

Sequence Listing.ST25.txt SEQUENCE LISTING

```
<110>
       Bjorn, Soren E
       Nicolaisen, Else M
       Jorgensen, Anker S
<120>
       TF Binding Compound
<130>
       6455.200-us
<140>
       10/617,619
<141>
       2003-11-07
       Danish Application No. PA 2002 01099
<150>
<151>
       2002-07-12
<150>
       us 60/404,568
<151>
       2002-08-19
<160>
       14
<170>
       PatentIn version 3.3
<210>
       1
       406
<211>
<212>
       PRT
<213>
       Artificial
<220>
<223>
       Synthetic
<220>
<221>
       MISC_FEATURE
<222>
       (1)..(406)
<223>
       Xaa=4-carboxyglutamic acid (gamma-carboxyglutamate)
<400>
Ala Asn Ala Phe Leu Xaa Xaa Leu Arg Pro Gly Ser Leu Xaa Arg Xaa 1 5 10 15
Cys Lys Xaa Xaa Gln Cys Ser Phe Xaa Xaa Ala Arg Xaa Ile Phe Lys
20 25 30
Asp Ala Xaa Arg Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp 45
Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln 50 55 60
Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn 65 70 75 80
Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly
85 90 95
```

Sequence Listing.ST25.txt
Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys
100 105 110 Arg Cys His Glu Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr 115 120 125 Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg 130 140 Asn Ala Ser Lys Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro 145 150 155 160 Lys Gly Glu Cys Pro Trp Gln Val Leu Leu Leu Val Asn Gly Ala Gln 165 170 175 Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala 180 185 190 His Cys Phe Asp Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu 195 200 205 Gly Glu His Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg 210 220 Val Ala Gln Val Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn 225 230 235 240 His Asp Ile Ala Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp 245 250 255 His Val Val Pro Leu Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg Thr 260 265 270 Leu Ala Phe Val Arg Phe Ser Leu Val Ser Gly Trp Gly Gln Leu Leu 275 280 285 Asp Arg Gly Ala Thr Ala Leu Glu Leu Met Val Leu Asn Val Pro Arg 290 295 300 Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg Lys Val Gly Asp Ser 305 310 315 Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala Gly Tyr Ser Asp Gly Ser 325 330 335 Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro His Ala Thr His Tyr 340 345

Sequence Listing.ST25.txt Arg Gly Thr Trp Tyr Leu Thr Gly Ile Val Ser Trp Gly Gln Gly Cys 355 360 Ala Thr val Gly His Phe Gly Val Tyr Thr Arg Val Ser Gln Tyr Ile 370 380 Glu Trp Leu Gln Lys Leu Met Arg Ser Glu Pro Arg Pro Gly Val Leu 390 Leu Arg Ala Pro Phe Pro 405 <210> 30 <211> <212> DNA <213> Human <400> 2 30 gctagccacc atggtctccc aggccctcag <210> 39 <211> <212> DNA Human <213> <400> 3 39 cgagccccat ttcccggatc cgcagagccc aaatcttgt <210> 39 <211> <212> DNA <213> Human <400> 4 39 cgagccccat ttcccggatc cgcagagccc aaatcttgt <210> 5 23 <211> <212> DNA Human <213> <400> 5 23 ttgccggccg tcgcactcat tta <210> 6 <211> 701 PRT <212> Human <213> <400> 6

Page 3

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Gly Leu Gln 1 10 15

Gly Cys Leu Ala Ala Gly Gly Val Ala Lys Ala Ser Gly Gly Glu Thr 20 25 30

Arg Asp Met Pro Trp Lys Pro Gly Pro His Arg Val Phe Val Thr Gln
35 40 45

Glu Glu Ala His Gly Val Leu His Arg Arg Arg Arg Ala Asn Ala Phe 50 60

Leu Glu Glu Leu Arg Pro Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu 65 70 75

Gln Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg 90 95

Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser 100 105

Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr 115 120 125

Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn Cys Glu Thr His 130 140

Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly Gly Cys Glu Gln 145 150 155 160

Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys Arg Cys His Glu 165. 170 175

Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr Pro Thr Val Glu 180 185 190

Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys 195 200 205

Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro Lys Gly Glu Cys 210 220

Pro Trp Gln Val Leu Leu Leu Val Asn Gly Ala Gln Leu Cys Gly Gly 225 . 230 235

Thr Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala His Cys Phe Asp 245 250 255

Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu Gly Glu His Asp 260 265 270 Page 4

Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg Val Ala Gln Val 275 280 285

Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn His Asp Ile Ala 290 295 300

Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp His Val Val Pro 305 310 315

Leu Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg Thr Leu Ala Phe Val 325 330 335

Arg Phe Ser Leu Val Ser Gly Trp Gly Gln Leu Leu Asp Arg Gly Ala 340 345

Thr Ala Leu Glu Leu Met Val Leu Asn Val Pro Arg Leu Met Thr Gln 355 360 365

Asp Cys Leu Gln Gln Ser Arg Lys Val Gly Asp Ser Pro Asn Ile Thr 370 380

Glu Tyr Met Phe Cys Ala Gly Tyr Ser Asp Gly Ser Lys Asp Ser Cys 385 390 395

Lys Gly Asp Ser Gly Gly Pro His Ala Thr His Tyr Arg Gly Thr Trp 405 410 415

Tyr Leu Thr Gly Ile Val Ser Trp Gly Gln Gly Cys Ala Thr Val Gly
420 425 430

His Phe Gly Val Tyr Thr Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln 435 440 445

Lys Leu Met Arg Ser Glu Pro Arg Pro Gly Val Leu Leu Arg Ala Pro 450 455 460

Phe Pro Gly Ser Ala Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys 465 470 475

Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 485 490 495

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 500 510

Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Page 5 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 530 540

Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 545 550 550

Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 565 570 575

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 580 585

Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser

Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 610 620

Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 625 635 640

Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 645 650 655

Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 660 670

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 675 680 685

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 690 700

<210> 7

<211> 232

<212> PRT

<213> Human

<400> 7

Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala
10 15

Pro Glu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 20 25 30

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Page 6 Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 50 60

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 85 90 95

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 100 105 110

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 130 140

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 145 150 155 160

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 165 170 175

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180 185 190

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 215 220

Ser Leu Ser Leu Ser Pro Gly Lys 225 230

<210> 8

<211> 641 <212> PRT

<213> Artificial

<220> <223> Synthetic

<220> <221> misc_feature <222> (6)..(7)

```
Sequence Listing.ST25.txt
      Xaa can be any naturally occurring amino acid
<223>
<220>
       misc_feature
<221>
       (14)..(14)
<222>
       xaa can be any naturally occurring amino acid
<223>
<220>
       misc_feature
<221>
       (16)..(16)
<222>
       xaa can be any naturally occurring amino acid
<223>
<220>
<221>
       misc_feature
       (19)..(20)
<222>
       Xaa can be any naturally occurring amino acid
<223>
<220>
       misc_feature
<221>
<222>
        (25)..(26)
       xaa can be any naturally occurring amino acid
 <220>
        misc_feature
 <221>
 <222>
        (29)..(29)
        Xaa can be any naturally occurring amino acid
 <223>
 <220>
        misc_feature
 <221>
        (35)..(35)
 <222>
        Xaa can be any naturally occurring amino acid
 <223>
 <400> 8
 Ala Asn Ala Phe Leu Xaa Xaa Leu Arg Pro Gly Ser Leu Xaa Arg Xaa
 Cys Lys Xaa Xaa Gln Cys Ser Phe Xaa Xaa Ala Arg Xaa Ile Phe Lys
20 25
 Asp Ala Xaa Arg Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp
 Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln 50 60
  Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn
65 70 75 80
  Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly
85 90
  Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys
  Arg Cys His Glu Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr
                                            Page 8
```

Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg 130 135

Asn Ala Ser Lys Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro 145 150 150

Lys Gly Glu Cys Pro Trp Gln Val Leu Leu Leu Val Asn Gly Ala Gln 165 170 175

Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala 180 185 190

His Cys Phe Asp Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu 195 200 205

Gly Glu His Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg 210 215 220

Val Ala Gln Val Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn 235 230 230

His Asp Ile Ala Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp 245 250 255

His Val Val Pro Leu Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg Thr 260 265 270

Leu Ala Phe Val Arg Phe Ser Leu Val Ser Gly Trp Gly Gln Leu Leu 275 280 285

Asp Arg Gly Ala Thr Ala Leu Glu Leu Met Val Leu Asn Val Pro Arg 290 295 300

Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg Lys Val Gly Asp Ser 305 310 315

Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala Gly Tyr Ser Asp Gly Ser 325

Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro His Ala Thr His Tyr 340 345 350

Arg Gly Thr Trp Tyr Leu Thr Gly Ile Val Ser Trp Gly Gln Gly Cys 355

Ala	Thr 370	va	1 6	Пy	His	Phe	Gly 375	Se Val	quen Tyr	ce L [.] Thr	istir Arg	ng.ST Val 380	⁻ 25.1 Ser	cxt Gln	Tyr	Ile	2
G] u 385	Тгр	Le	eu C	31n	Lys	Leu 390	Met	Arg	Ser	Glu	Pro 395	Arg	Pro	Gly	٧a٦	Lei 400	2
Leu	Arg	Αl	a I	Pro	Phe 405	Pro	Gly	Ser	Αla	Glu 410	Pro	Lys	ser	Cys	Asp 415	Lys	S
Thr	ніѕ	; Th	ır '	Cys 420	Pro	Pro	Cys	Pro	Ala 425	Pro	Glu	Leu	Leu	Gly 430	Glу	Pr	0
Ser	٧a	l Pl 4	he 35	Leu	Phe	Pro	Pro	Lys 440	Pro	Lys	Asp	Thr	Leu 445	Met	Ile	Se	r
Arg	Th:	r P O	ro	Glu	val	Thr	Cys 455	∨a1	Va1	۷a٦	Asp	Val 460	Ser	His	Glu	As	р
Pro 465	G]	u V	al	Lys	Phe	470	ı Trp	туг	r val	Asp	Gly 475	val	Glu	val	ніѕ	AS 48	sn 30
Ala	a Ly	s T	hr	Lys	Pro 485	Arg	g Glu	ı Glu	u Glr	1 Tyr 490	Asr	ser	Thr	· туг	495	Vā	al
٧a) Se	r۱	/a1	Let 500	ı Thi	r Va	l Le	u Hi	s Gli 50	n Ası 5	o Tr) Leu	ı Asr	o Gly 510	/ Lys	s G	lu
Ту	r Ly	/S (Cys 515	Lys	s va	1 Se	r As	n Ly 52	s Al.	a Le	u Pro	o Ala	a Pro 52	o Ile 5	e Glu	ı L	ys
Τh	r I	le :	ser	Ly	s Al	a Ly	s G1 53	y G1	n Pr	o Ar	g Gl	: u Pre 540	o Gl	n Va	1 ту	r T	hr
Le 54	u P	ro	Pro	se	r Ar	g As 55	p G1	u L€	eu Th	ır Ly	's As 55	n Gl 5	n _. Va	1 Se	r Le	u T	hr 60
C	/s L	eu	va ⁻	l Ly	's G] 56	y Pł 55	ne Ty	/r Pi	ro Se	er As 57	sp 11 70	e Al	a Va	ıl Gl	u Tr 57	p (31u
S	er A	sn	G٦	y G1 58	in Pi 80	o G	lu A	sn A	sn Ty 58	yr Ly 35	ys Th	nr Th	ır Pr	o Pr 59	ro Va	1 1	Leu
Α	sp S	er	As 59	p G ¹	ly S	er P	he P	he L 6	eu T 00	yr S	er Ly	ys Le	eu Th 60	nr Va 05	al As	5p	Lys
S		\rg 510	Tr	p G	ln G	ln G	ly A 6	sn V 15	al P	he S	er C	ys Se 67	er Va 20	al M	et H	is	Glu

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 625

Lys

9 <210> 2106 DNA Artificial <220> Synthetic <223> atggtctccc aggccctcag gctcctctgc cttctgcttg ggcttcaggg ctgcctggct 60 120 gcaggcgggg tcgctaaggc ctcaggagga gaaacacggg acatgccgtg gaagccgggg cctcacagag tcttcgtaac ccaggaggaa gcccacggcg tcctgcaccg gcgccggcgc 180 gccaacgcgt tcctggagga gctgcggccg ggctccctgg agagggagtg caaggaggag 240 300 cagtgctcct tcgaggaggc ccgggagatc ttcaaggacg cggagaggac gaagctgttc tggatttctt acagtgatgg ggaccagtgt gcctcaagtc catgccagaa tgggggctcc 360 tgcaaggacc agctccagtc ctatatctgc ttctgcctcc ctgccttcga gggccggaac 420 tgtgagacgc acaaggatga ccagctgatc tgtgtgaacg agaacggcgg ctgtgagcag 480 tactgcagtg accacaggg caccaagcgc tcctgtcggt gccacgaggg gtactctctg 540 ctggcagacg gggtgtcctg cacacccaca gttgaatatc catgtggaaa aatacctatt 600 ctagaaaaaa gaaatgccag caaaccccaa ggccgaattg tggggggcaa ggtgtgcccc 660 720 aaaggggagt gtccatggca ggtcctgttg ttggtgaatg gagctcagtt gtgtgggggg accctgatca acaccatctg ggtggtctcc gcggcccact gtttcgacaa aatcaagaac 780 tggaggaacc tgatcgcggt gctgggcgag cacgacctca gcgagcacga cggggatgag 840 900 cagagccggc gggtggcgca ggtcatcatc cccagcacgt acgtcccggg caccaccaac cacgacatcg cgctgctccg cctgcaccag cccgtggtcc tcactgacca tgtggtgccc 960 ctctgcctgc ccgaacggac gttctctgag aggacgctgg ccttcgtgcg cttctcattg 1020 gtcagcggct ggggccagct gctggaccgt ggcgccacgg ccctggagct catggtgctc 1080 aacgtgcccc ggctgatgac ccaggactgc ctgcagcagt cacggaaggt gggagactcc 1140

ccaaatatca cggagtacat gttctgtgcc ggctactcgg atggcagcaa ggactcctgc

gcgggggaca gtggaggccc acatgccacc cactaccggg gcacgtggta cctgacgggc

atcgtcagct ggggccaggg ctgcgcaacc gtgggccact ttggggtgta caccagggtc

tcccagtaca tcgagtggct gcaaaagctc atgcgctcag agccacgccc aggagtcctc

Page 11

1200

1260

1320 1380

	tcccgg atccgcagag	cccaaatctt	gtgacaaaac	tcacacatgc	1440
ctgcgagccc cattl	[[[[]]	agassats30	tetteetet	cccccaaaa	1500
ccaccgtgcc cagca	acctga actcctgggg	ggaccyccay		aataaacata	1560
cccaaggaca ccct	catgat ctcccggacc	cctgaggtca	catgcgtggt	ggtggacgtg	
anccacdaad accc	tgaggt caagttcaac	tggtacgtgg	acggcgtgga	ggtgcataat	1620
######################################	gcggga ggagcagtac	aacagcacgt	accgtgtggt	cagcgtcctc	1680
gccaayacaa agee	ggactg gctgaatggc	· aannantaca	aqtqcaaggt	ctccaacaaa	1740
accgtcctgc acca	ggacty gergaargg	. uaggagtaen	- 3 2 20	сспапаасса	1800
gccctcccag cccc	catcga gaaaaccato	tccaaagcca	aayyycaycc	cegagaacea	1860
caggtgtaca ccct	gccccc atcccggga	gagctgacca	agaaccaggt	cagcctgacc	
tacctaatca aagg	gcttcta tcccagcga	atcgccgtgg	agtgggagag	caatgggcag	1920
tycetyy to a 35	acaagac cacgcctcc	c qtqctqgact	ccgacggcto	cttcttcctc	1980
ccggagaaca acca	acaagac caegeers	- + 445,400,400	ı daacatett	ctcatgctcc	2040
tacagcaagc tcac	ccgtgga caagagcag	y tygcagcagg	gguacgees	- atctccaaat	2100
gtgatgcatg aggo	ctctgca caaccacta	c acgcagaaga	geeteteel	giccicgggc	
aaatga	.•				2106

<210> 10 <211> 7493 <212> DNA

<213> Artificial

<220>

<223> Synthetic

gctagccacc atggtctccc aggccctcag gctcctctgc cttctgcttg ggcttcaggg 60 120 ctgcctggct gcaggcgggg tcgctaaggc ctcaggagga gaaacacggg acatgccgtg 180 gaagccgggg cctcacagag tcttcgtaac ccaggaggaa gcccacggcg tcctgcaccg gcgccggcgc gccaacgcgt tcctggagga gctgcggccg ggctccctgg agagggagtg 240 caaggaggag cagtgctcct tcgaggaggc ccgggagatc ttcaaggacg cggagaggac 300 gaagctgttc tggatttctt acagtgatgg ggaccagtgt gcctcaagtc catgccagaa 360 tgggggctcc tgcaaggacc agctccagtc ctatatctgc ttctgcctcc ctgccttcga 420 480 gggccggaac tgtgagacgc acaaggatga ccagctgatc tgtgtgaacg agaacggcgg ctgtgagcag tactgcagtg accacacggg caccaagcgc tcctgtcggt gccacgaggg 540 600 gtactctctg ctggcagacg gggtgtcctg cacacccaca gttgaatatc catgtggaaa aatacctatt ctagaaaaaa gaaatgccag caaaccccaa ggccgaattg tggggggcaa 660 720 ggtgtgcccc aaaggggagt gtccatggca ggtcctgttg ttggtgaatg gagctcagtt 780 gtgtgggggg accctgatca acaccatctg ggtggtctcc gcggcccact gtttcgacaa

Sequence Listing.ST25.txt aatcaagaac tggaggaacc tgatcgcggt gctgggcgag cacgacctca gcgagcacga 840 cggggatgag cagagccggc gggtggcgca ggtcatcatc cccagcacgt acgtcccggg 900 960 caccaccaac cacgacatcg cgctgctccg cctgcaccag cccgtggtcc tcactgacca tgtggtgccc ctctgcctgc ccgaacggac gttctctgag aggacgctgg ccttcgtgcg 1020 cttctcattg gtcagcggct ggggccagct gctggaccgt ggcgccacgg ccctggagct 1080 catggtgctc aacgtgcccc ggctgatgac ccaggactgc ctgcagcagt cacggaaggt 1140 gggagactcc ccaaatatca cggagtacat gttctgtgcc ggctactcgg atggcagcaa 1200 ggactcctgc gcgggggaca gtggaggccc acatgccacc cactaccggg gcacgtggta 1260 cctgacgggc atcgtcagct ggggccaggg ctgcgcaacc gtgggccact ttggggtgta 1320 caccagggtc tcccagtaca tcgagtggct gcaaaagctc atgcgctcag agccacgccc 1380 1440 aggagtcctc ctgcgagccc catttcccgg atccgcagag cccaaatctt gtgacaaaac tcacacatgc ccaccgtgcc cagcacctga actcctgggg ggaccgtcag tcttcctctt 1500 1560 cccccaaaa cccaaggaca ccctcatgat ctcccggacc cctgaggtca catgcgtggt ggtggacgtg agccacgaag accctgaggt caagttcaac tggtacgtgg acggcgtgga 1620 1680 ggtgcataat gccaagacaa agccgcggga ggagcagtac aacagcacgt accgtgtggt cagcgtcctc accgtcctgc accaggactg gctgaatggc aaggagtaca agtgcaaggt 1740 ctccaacaaa gccctcccag cccccatcga gaaaaccatc tccaaagcca aagggcagcc 1800 ccgagaacca caggtgtaca ccctgccccc atcccgggat gagctgacca agaaccaggt 1860 1920 cagcctgacc tgcctggtca aaggcttcta tcccagcgac atcgccgtgg agtgggagag 1980 caatgggcag ccggagaaca actacaagac cacgcctccc gtgctggact ccgacggctc cttcttcctc tacagcaagc tcaccgtgga caagagcagg tggcagcagg ggaacgtctt 2040 ctcatgctcc gtgatgcatg aggctctgca caaccactac acgcagaaga gcctctccct 2100 gtctccgggt aaatgaaagg gcgaattctg cagatatcca gcacagtggc ggccgctcga 2160 gtctagaggg cccgtttaaa cccgctgatc agcctcgact gtgccttcta gttgccagcc 2220 2280 atctgttgtt tgcccctccc ccgtgccttc cttgaccctg gaaggtgcca ctcccactgt 2340 2400 ggggggtggg gtggggcagg acagcaaggg ggaggattgg gaagacaata gcaggcatgc tggggatgcg gtgggctcta tggcttctga ggcggaaaga accagctggg gctctagggg 2460 gtatccccac gcgccctgta gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag 2520 cgtgaccgct acacttgcca gcgccctagc gcccgctcct ttcgctttct tcccttcctt 2580 tctcgccacg ttcgccggct ttccccgtca agctctaaat cgggggctcc ctttagggtt 2640 ccgatttagt gctttacggc acctcgaccc caaaaaactt gattagggtg atggttcacg 2700 Page 13

tagtgggcca tcgccctgat agacggtttt tcgccctttg acgttggagt ccacgttctt	2760
taatagtgga ctcttgttcc aaactggaac aacactcaac cctatctcgg tctattcttt	2820
tgatttataa gggattttgc cgatttcggc ctattggtta aaaaatgagc tgatttaaca	2880
aaaatttaac gcgaattaat tctgtggaat gtgtgtcagt tagggtgtgg aaagtcccca	2940
ggctccccag caggcagaag tatgcaaagc atgcatctca attagtcagc aaccaggtgt	3000
ggctccccag caggcagaag latgcaaage acgeateraaa gcatgcatct caattagtca	3060
ggaaagtccc caggctcccc agcaggcaga agtatgcaaa gcatgcatct caattagtca	3120
gcaaccatag tecegeeet aacteegeee atecegeee taacteegee cagtteegee	3180
cattetecge eccatggetg actaatttt tttatttatg cagaggeega ggeegeetet	3240
gcctctgagc tattccagaa gtagtgagga ggcttttttg gaggcctagg cttttgcaaa	3300
aagctcccgg gagcttgtat atccattttc ggatctgatc aagagacagg atgaggatcg	3360
tttcgcatga ttgaacaaga tggattgcac gcaggttctc cggccgcttg ggtggagagg	3420
ctattcggct atgactgggc acaacagaca atcggctgct ctgatgccgc cgtgttccgg	3480
ctgtcagcgc aggggcgccc ggttcttttt gtcaagaccg acctgtccgg tgccctgaat	3540
gaactgcagg acgaggcagc gcggctatcg tggctggcca cgacgggcgt tccttgcgca	
gctgtgctcg acgttgtcac tgaagcggga agggactggc tgctattggg cgaagtgccg	3600
gggcaggatc tcctgtcatc tcaccttgct cctgccgaga aagtatccat catggctgat	3660
gcaatgcggc ggctgcatac gcttgatccg gctacctgcc cattcgacca ccaagcgaaa	3720
catcgcatcg agcgagcacg tactcggatg gaagccggtc ttgtcgatca ggatgatctg	3780
gacqaagagc atcaggggct cgcgccagcc gaactgttcg ccaggctcaa ggcgcgcatg	3840
cccgacggcg aggatctcgt cgtgacccat ggcgatgcct gcttgccgaa tatcatggtg	3900
gaaaatggcc gcttttctgg attcatcgac tgtggccggc tgggtgtggc ggaccgctat	3960
caggacatag cgttggctac ccgtgatatt gctgaagagc ttggcggcga atgggctgac	4020
cgcttcctcg tgctttacgg tatcgccgct cccgattcgc agcgcatcgc cttctatcgc	4080
cttcttgacg agttcttctg agcgggactc tggggttcga aatgaccgac caagcgacgc	4140
ccaacctgcc atcacgagat ttcgattcca ccgccgcctt ctatgaaagg ttgggcttcg	4200
gaatcgtttt ccgggacgcc ggctggatga tcctccagcg cggggatctc atgctggagt	4260
tcttcgccca ccccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca	4320
tcacaaattt cacaaataaa gcatttttt cactgcattc tagttgtggt ttgtccaaac	4380
tcatcaatgt atcttatcat gtctgtatac cgtcgacctc tagctagagc ttggcgtaat	4440
catggtcata gctgtttcct gtgtgaaatt gttatccgct cacaattcca cacaacatac	4500
catggtcata gctgtticci ytytyaaact gtacctaata aatgagctaa ctcacattaa	4560
gagccggaag cataaagtgt aaagcctggg gtgcctaatg agtgagctaa ctcacattaa	

Sequence Listing.ST25.txt ttgcgttgcg ctcactgccc gctttccagt cgggaaacct gtcgtgccag ctgcattaat 4620 gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc gcttcctcgc 4680 tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg 4740 cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag 4800 gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 4860 gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag 4920 gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 4980 ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 5040 atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 5100 tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt 5160 ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 5220 gagcgaggta tgṭaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 5280 ctagaagaac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 5340 ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggttttttt gtttgcaagc 5400 agcagattac gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt 5460 ctgacgctca gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa 5520 ggatcttcac ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat 5580 atgagtaaac ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga 5640 5700 tctgtctatt tcgttcatcc atagttgcct gactccccgt cgtgtagata actacgatac gggagggctt accatctggc cccagtgctg caatgatacc gcgagaccca cgctcaccgg 5760 5820 ctccagattt atcagcaata aaccagccag ccggaagggc cgagcgcaga agtggtcctg 5880 caactttatc cgcctccatc cagtctatta attgttgccg ggaagctaga gtaagtagtt 5940 cgccagttaa tagtttgcgc aacgttgttg ccattgctac aggcatcgtg gtgtcacgct 6000 cgtcgtttgg tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgat ccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt gtcagaagta 6060 agttggccgc agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca 6120 6180 tgccatccgt aagatgcttt tctgtgactg gtgagtactc aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac 6240 6300 atagcagaac tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac tcgtgcaccc aactgatctt 6360 6420 cagcatcttt tactttcacc agcgtttctg ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact catactcttc ctttttcaat 6480

Page 15

attattgaag catttatcag ggttattgtc tcatgagcgg atacatattt gaatgtattt	6540
agaaaaataa acaaataggg gttccgcgca catttccccg aaaagtgcca cctgacgtcg	6600
agaaaaataa acaaatayyy ytteegegen entotoo	6660
acggatcggg agatctcccg atcccctatg gtgcactctc agtacaatct gctctgatgc	6720
cgcatagtta agccagtatc tgctccctgc ttgtgtgttg gaggtcgctg agtagtgcgc	6780
gagcaaaatt taagctacaa caaggcaagg cttgaccgac aattgcatga agaatctgct	6840
tagggttagg cgttttgcgc tgcttcgcga tgtacgggcc agatatacgc gttgacattg	
attattgact agttattaat agtaatcaat tacggggtca ttagttcata gcccatalac	6900
ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacgaccc	6960
ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactttcca	7020
ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac atcaagtgta	7080
tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta	7140
tcatatgcca agtacgccc ctattgacgt cantgacgg tacatctacg tattagtcat	7200
tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg tattagtcat	7260
cgctattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat agcggtttga	7320
ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt tttggcacca	
aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc aaatgggcgg	7380
taggcgtgta cggtgggagg tctatataag cagagctctc tggctaacta gagaacccac	7440
tgcttactgg cttatcgaaa ttaatacgac tcactatagg gagacccaag ctg	7493

<210> 11 <211> 679

<211> 0/9 <212> PRT

<213> Artificial

<220>

<223> Synthetic

<400> 11

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Gly Leu Gln 10 15

Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val 20 25 30

Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro 35 40 45

Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu 50 60

Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile Page 16 Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly 85

Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro 100 100

Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile 115 120

Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr 130 135

Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala 145 150 150

Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile 165 170 175

Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val 180 185

Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln Val Leu Leu 195 200 205

Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile 210 220

Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg 225 230 230

Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly 255

Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr 260 265

Val Pro Gly Thr Thr Asn His Asp Ile Ala Leu Leu Arg Leu His Gln 275 280 285

Pro Val Val Leu Thr Asp His Val Val Pro Leu Cys Leu Pro Glu Arg 290 295 300

Thr Phe Ser Glu Arg Thr Leu Ala Phe Val Arg Phe Ser Leu Val Ser 305 310 315

Sequence Listing.ST25.txt Gly Trp Gly Gln Leu Leu Asp Arg Gly Ala Thr Ala Leu Glu Leu Met 335 325 325
Val Leu Asn Val Pro Arg Leu Met Thr Gln Asp Cys Leu Gln Gln Ser 340 345
Arg Lys Val Gly Asp Ser Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala 365
Gly Tyr Ser Asp Gly Ser Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly 370
Pro His Ala Thr His Tyr Arg Gly Thr Trp Tyr Leu Thr Gly Ile Val 385 390 395
Ser Trp Gly Gln Gly Cys Ala Thr Val Gly His Phe Gly Val Tyr Thr 405 410 415
Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met Arg Ser Glu 420 425 430
Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro Gly Ser Ala Glu 445 435
Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro 450 450
Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 480
Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 495 485 490 495
Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp 500 505 510
Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 515 525
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 530 540
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 545 550 560
Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 575

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys 580 585

Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 595 600 605

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 610 615 620

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 625 630 635

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 645 650 655

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 660 665 670

Leu Ser Leu Ser Pro Gly Lys 675

<210> 12

<211> 2040

<212> DNA

<213> Artificial

<220>

<223> Synthetic

<400> 12 atggtctccc aggccctcag gctcctctgc cttctgcttg ggcttcaggg ctgcctggct 60 120 gcagtcttcg taacccagga ggaagcccac ggcgtcctgc accggcgccg gcgcgccaac gcgttcctgg aggagctgcg gccgggctcc ctggagaggg agtgcaagga ggagcagtgc 180 240 tccttcgagg aggcccggga gatcttcaag gacgcggaga ggacgaagct gttctggatt 300 tcttacagtg atggggacca gtgtgcctca agtccatgcc agaatggggg ctcctgcaag gaccagctcc agtcctatat ctgcttctgc ctccctgcct tcgagggccg gaactgtgag 360 acgcacaagg atgaccagct gatctgtgtg aacgagaacg gcggctgtga gcagtactgc 420 agtgaccaca cgggcaccaa gcgctcctgt cggtgccacg aggggtactc tctgctggca 480 gacggggtgt cctgcacacc cacagttgaa tatccatgtg gaaaaatacc tattctagaa 540 aaaagaaatg ccagcaaacc ccaaggccga attgtggggg gcaaggtgtg ccccaaaggg 600 gagtgtccat ggcaggtcct gttgttggtg aatggagctc agttgtgtgg ggggaccctg 660 720 atcaacacca tctgggtggt ctccgcggcc cactgtttcg acaaaatcaa gaactggagg aacctgatcg cggtgctggg cgagcacgac ctcagcgagc acgacgggga tgagcagagc 780 Page 19

840

900

cggcgggtgg cgcaggtcat catccccagc acgtacgtcc cgggcaccac caaccacgac

atcgcgctgc tccgcctgca ccagcccgtg gtcctcactg accatgtggt gcccctctgc

3 3 3	5 5		-			
ctgcccgaac g	ggacgttctc	tgagaggacg	ctggccttcg	tgcgcttctc	attggtcagc	960
ggctggggcc a	agctgctgga	ccgtggcgcc	acggccctgg	agctcatggt	gctcaacgtg	1020
ccccggctga t	tgacccagga	ctgcctgcag	cagtcacgga	aggtgggaga	ctccccaaat	1080
atcacggagt a	acatgttctg	tgccggctac	tcggatggca	gcaaggactc	ctgcgcgggg	1140
gacagtggag g	gcccacatgc	cacccactac	cggggcacgt	ggtacctgac	gggcatcgtc	1200
agctggggcc a	agggctgcgc	aaccgtgggc	cactttgggg	tgtacaccag	ggtctcccag	1260
tacatcgagt g	ggctgcaaaa	gctcatgcgc	tcagagccac	gcccaggagt	cctcctgcga	1320
gccccatttc	ccggatccgc	agagcccaaa	tcttgtgaca	aaactcacac	atgcccaccg	1380
tgcccagcac (ctgaactcct	ggggggaccg	tcagtcttcc	tcttccccc	aaaacccaag	1440
gacaccctca 1	tgatctcccg	gacccctgag	gtcacatgcg	tggtggtgga	cgtgagccac	1500
gaagaccctg a	aggtcaagtt	caactggtac	gtggacggcg	tggaggtgca	taatgccaag	1560
acaaagccgc g	gggaggagca	gtacaacagc	acgtaccgtg	tggtcagcgt	cctcaccgtc	1620
ctgcaccagg a	actggctgaa	tggcaaggag	tacaagtgca	aggtctccaa	caaagccctc	1680
ccagccccca	tcgagaaaac	catctccaaa	gccaaagggc	agccccgaga	accacaggtg	1740
tacaccctgc	ccccatcccg	ggatgagctg	accaagaacc	aggtcagcct	gacctgcctg	1800
gtcaaaggct '	tctatcccag	cgacatcgcc	gtggagtggg	agagcaatgg	gcagccggag	1860
aacaactaca	agaccacgcc	tcccgtgctg	gactccgacg	gctccttctt	cctctacagc	1920
aagctcaccg	tggacaagag	caggtggcag	caggggaacg	tcttctcatg	ctccgtgatg	1980
catgaggctc	tgcacaacca	ctacacgcag	aagagcctct	ccctgtctcc	gggtaaatga	2040
<220> <223> Synt	ficial hetic					
<400> 13 gctagccacc	atggtctccc	aggccctcag	gctcctctgc	cttctgcttg	ggcttcaggg	60
ctgcctggct	gcagtcttcg	taacccagga	ggaagcccac	ggcgtcctgc	accggcgccg	120
•					agtgcaagga	180
ggagcagtgc	tccttcgagg	aggcccggga	gatcttcaag	gacgcggaga	ggacgaagct	240
gttctggatt	tcttacagtg	atggggacca	gtgtgcctca	agtccatgcc	agaatggggg	300

Sequence Listing.ST25.txt ctcctgcaag gaccagctcc agtcctatat ctgcttctgc ctccctgcct tcgagggccg

360

420 gaactgtgag acgcacaagg atgaccagct gatctgtgtg aacgagaacg gcggctgtga gcagtactgc agtgaccaca cgggcaccaa gcgctcctgt cggtgccacg aggggtactc 480 tctgctggca gacggggtgt cctgcacacc cacagttgaa tatccatgtg gaaaaatacc 540 tattctagaa aaaagaaatg ccagcaaacc ccaaggccga attgtggggg gcaaggtgtg 600 ccccaaaggg gagtgtccat ggcaggtcct gttgttggtg aatggagctc agttgtgtgg 660 720 ggggaccctg atcaacacca tctgggtggt ctccgcggcc cactgtttcg acaaaatcaa gaactggagg aacctgatcg cggtgctggg cgagcacgac ctcagcgagc acgacgggga 780 840 tgagcagagc cggcgggtgg cgcaggtcat catccccagc acgtacgtcc cgggcaccac caaccacgac atcgcgctgc tccgcctgca ccagcccgtg gtcctcactg accatgtggt 900 960 gcccctctgc ctgcccgaac ggacgttctc tgagaggacg ctggccttcg tgcgcttctc 1020 attggtcagc ggctggggcc agctgctgga ccgtggcgcc acggccctgg agctcatggt 1080 gctcaacgtg ccccggctga tgacccagga ctgcctgcag cagtcacgga aggtgggaga 1140 ctccccaaat atcacggagt acatgttctg tgccggctac tcggatggca gcaaggactc 1200 ctgcgcgggg gacagtggag gcccacatgc cacccactac cggggcacgt ggtacctgac 1260 gggcatcgtc agctggggcc agggctgcgc aaccgtgggc cactttgggg tgtacaccag ggtctcccag tacatcgagt ggctgcaaaa gctcatgcgc tcagagccac gcccaggagt 1320 1380 cctcctgcga gccccatttc ccggatccgc agagcccaaa tcttgtgaca aaactcacac 1440 atgcccaccg tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttccccc aaaacccaag gacaccctca tgatctcccg gacccctgag gtcacatgcg tggtggga 1500 1560 cgtgagccac gaagaccctg aggtcaagtt caactggtac gtggacggcg tggaggtgca 1620 taatgccaag acaaagccgc gggaggagca gtacaacagc acgtaccgtg tggtcagcgt 1680 cctcaccgtc ctgcaccagg actggctgaa tggcaaggag tacaagtgca aggtctccaa 1740 caaagccctc ccagccccca tcgagaaaac catctccaaa gccaaagggc agccccgaga 1800 accacaggtg tacaccctgc ccccatcccg ggatgagctg accaagaacc aggtcagcct 1860 gacctgcctg gtcaaaggct tctatcccag cgacatcgcc gtggagtggg agagcaatgg 1920 gcagccggag aacaactaca agaccacgcc tcccgtgctg gactccgacg gctccttctt 1980 cctctacagc aagctcaccg tggacaagag caggtggcag cagggggaacg tcttctcatg 2040 ctccgtgatg catgaggctc tgcacaacca ctacacgcag aagagcctct ccctgtctcc 2100 gggtaaatga aagggcgaat tctgcagata tccagcacag tggcggccgc tcgagtctag 2160 agggcccgtt taaacccgct gatcagcctc gactgtgcct tctagttgcc agccatctgt 2220 tgtttgcccc tcccccgtgc cttccttgac cctggaaggt gccactccca ctgtcctttc Page 21

ctaataaaat	gaggaaattg	catcgcattg	tctgagtagg	tgtcattcta	ttctgggggg	2280
tggggtgggg	caggacagca	agggggagga	ttgggaagac	aatagcaggc	atgctgggga	2340
	tctatggctt					2400
ccacgcgccc	tgtagcggcg	cattaagcgc	ggcgggtgtg	gtggttacgc	gcagcgtgac	2460
cgctacactt	gccagcgccc	tagcgcccgc	tcctttcgct	ttcttccctt	cctttctcgc	2520
cacgttcgcc	ggctttcccc	gtcaagctct	aaatcggggg	ctccctttag	ggttccgatt	2580
tagtgcttta	cggcacctcg	accccaaaaa	acttgattag	ggtgatggtt	cacgtagtgg	2640
gccatcgccc	tgatagacgg	tttttcgccc	tttgacgttg	gagtccacgt	tctttaatag	2700
tggactcttg	ttccaaactg	gaacaacact	caaccctatc	tcggtctatt	cttttgattt	2760
ataagggatt	ttgccgattt	cggcctattg	gttaaaaaat	gagctgattt	aacaaaaatt	2820
taacgcgaat	taattctgtg	gaatgtgtgt	cagttagggt	gtggaaagtc	cccaggctcc	2880
ccagcaggca	gaagtatgca	aagcatgcat	ctcaattagt	cagcaaccag	gtgtggaaag	2940
tccccaggct	ccccagcagg	cagaagtatg	caaagcatgc	atctcaatta	gtcagcaacc	3000
atagtcccgc	ccctaactcc	gcccatcccg	cccctaactc	cgcccagttc	cgcccattct	3060
ccgccccatg	gctgactaat	tttttttatt	tatgcagagg	ccgaggccgc	ctctgcctct	3120
gagctattcc	agaagtagtg	aggaggcttt	tttggaggcc	taggcttttg	caaaaagctc	3180
ccgggagctt	gtatatccat	tttcggatct	gatcaagaga	caggatgagg	atcgtttcgc	3240
atgattgaac	aagatggatt	gcacgcaggt	tctccggccg	cttgggtgga	gaggctattc	3300
ggctatgact	gggcacaaca	gacaatcggc	tgctctgatg	ccgccgtgtt	ccggctgtca	3360
gcgcaggggc	gcccggttct	ttttgtcaag	accgacctgt	ccggtgccct	gaatgaactg	3420
caggacgagg	, cagcgcggct	atcgtggctg	gccacgacgg	gcgttccttg	cgcagctgtg	3480
ctcgacgttg	tcactgaagc	gggaagggac	tggctgctat	tgggcgaagt	gccggggcag	3540
gatctcctgt	catctcacct	tgctcctgcc	gagaaagtat	ccatcatggc	tgatgcaatg	3600
cggcggctg	atacgcttga	tccggctacc	tgcccattcg	accaccaagc	gaaacatcgc	3660
atcgagcgag	g cacgtactcg	gatggaagco	ggtcttgtcg	atcaggatga	tctggacgaa	3720
gagcatcagg	ggctcgcgcc	agccgaactg	ttcgccaggc	tcaaggcgcg	catgcccgac	3780
ggcgaggato	tcgtcgtgac	ccatggcgat	gcctgcttgc	cgaatatcat	ggtggaaaat	3840
ggccgctttt	t ctggattcat	cgactgtggc	: cggctgggtg	tggcggaccg	ctatcaggac	3900
atagcgttg	g ctacccgtga	tattgctgaa	gagcttggcg	gcgaatgggc	tgaccgcttc	3960
ctcgtgctt	t acggtatcgo	cgctcccgat	tcgcagcgca	tcgccttcta	tcgccttctt	4020
gacgagttc	t tctgagcggg	actctggggt	tcgaaatgac	cgaccaagcg	acgcccaacc	4080

tgccatcacg	agatttcgat	Sequ tccaccgccg	uence Listii ccttctatga	aaggttgggc	ttcggaatcg	4140
ttttccggga	cgccggctgg	atgatcctcc	agcgcgggga	tctcatgctg	gagttcttcg	4200
cccaccccaa	cttgtttatt	gcagcttata	atggttacaa	ataaagcaat	agcatcacaa	4260
atttcacaaa	taaagcattt	ttttcactgc	attctagttg	tggtttgtcc	aaactcatca	4320
atgtatctta	tcatgtctgt	ataccgtcga	cctctagcta	gagcttggcg	taatcatggt	4380
catagctgtt	tcctgtgtga	aattgttatc	cgctcacaat	tccacacaac	atacgagccg	4440
gaagcataaa	gtgtaaagcc	tggggtgcct	aatgagtgag	ctaactcaca	ttaattgcgt	4500
tgcgctcact	gcccgctttc	cagtcgggaa	acctgtcgtg	ccagctgcat	taatgaatcg	4560
gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggcgctc	ttccgcttcc	tcgctcactg	4620
actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	agctcactca	aaggcggtaa	4680
tacggttatc	cacagaatca	ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	4740
aaaaggccag	gaaccgtaaa	aaggccgcgt	tgctggcgtt	tttccatagg	ctccgccccc	4800
ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagaggtg	gcgaaacccg	acaggactat	4860
aaagatacca	ggcgtttccc	cctggaagct	ccctcgtgcg	ctctcctgtt	ccgaccctgc	4920
cgcttaccgg	atacctgtcc	gcctttctcc	cttcgggaag	cgtggcgctt	tctcatagct	4980
cacgctgtag	gtatctcagt	tcggtgtagg	tcgttcgctc	caagctgggc	tgtgtgcacg	5040
aacccccgt	tcagcccgac	cgctgcgcct	tatccggtaa	ctatcgtctt	gagtccaacc	5100
cggtaagaca	cgacttatcg	ccactggcag	cagccactgg	taacaggatt	agcagagcga	5160
ggtatgtagg	cggtgctaca	gagttcttga	agtggtggcc	taactacggc	tacactagaa	5220
gaacagtatt	tggtatctgc	gctctgctga	agccagttac	cttcggaaaa	agagttggta	5280
gctcttgatc	cggcaaacaa	accaccgctg	gtagcggttt	ttttgtttgc	aagcagcaga	5340
ttacgcgcag	aaaaaaagga	tctcaagaag	atcctttgat	cttttctacg	gggtctgacg	5400
ctcagtggaa	cgaaaactca	cgttaaggga	ttttggtcat	gagattatca	aaaaggatct	5460
tcacctagat	ccttttaaat	taaaaatgaa	gttttaaatc	aatctaaagt	atatatgagt	5520
aaacttggtc	tgacagttac	caatgcttaa	tcagtgaggc	acctatctca	gcgatctgtc	5580
tatttcgttc	atccatagtt	gcctgactcc	ccgtcgtgta	gataactacg	atacgggagg	5640
gcttaccatc	tggccccagt	gctgcaatga	taccgcgaga	cccacgctca	ccggctccag	5700
atttatcagc	aataaaccag	ccagccggaa	gggccgagcg	cagaagtggt	cctgcaactt	5760
tatccgcctc	catccagtct	attaattgtt	gccgggaagc	tagagtaagt	agttcgccag	5820
ttaatagttt	gcgcaacgtt	gttgccattg	ctacaggcat	cgtggtgtca	cgctcgtcgt	5880
ttggtatggc	ttcattcagc	tccggttccc	aacgatcaag	gcgagttaca	tgatccccca	5940
tgttgtgcaa	aaaagcggtt	agct <u>c</u> cttcg	gtcctccgat Page	cgttgtcaga 23	agtaagttgg	6000

```
ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat
                                                                    6060
                                                                    6120
ccqtaaqatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta
                                                                    6180
tgcggcgacc gagttgctct tgcccggcgt caatacggga taataccgcg ccacatagca
                                                                    6240
qaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct
taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat
                                                                    6300
                                                                     6360
cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa
agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatattatt
                                                                     6420
gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa
                                                                     6480
                                                                     6540
ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctgac gtcgacggat
                                                                     6600
cgggagatct cccgatcccc tatggtgcac tctcagtaca atctgctctg atgccgcata
                                                                     6660
gttaagccag tatctgctcc ctgcttgtgt gttggaggtc gctgagtagt gcgcgagcaa
                                                                     6720
aatttaagct acaacaaggc aaggcttgac cgacaattgc atgaagaatc tgcttagggt
                                                                     6780
taggcgtttt gcgctgcttc gcgatgtacg ggccagatat acgcgttgac attgattatt
                                                                     6840
gactagttat taatagtaat caattacggg gtcattagtt catagcccat atatggagtt
                                                                     6900
ccgcgttaca taacttacgg taaatggccc gcctggctga ccgcccaacg acccccgccc
                                                                     6960
attgacgtca ataatgacgt atgttcccat agtaacgcca atagggactt tccattgacg
                                                                     7020
tcaatgggtg gagtatttac ggtaaactgc ccacttggca gtacatcaag tgtatcatat
                                                                     7080
gccaagtacg ccccctattg acgtcaatga cggtaaatgg cccgcctggc attatgccca
                                                                     7140
gtacatgacc ttatgggact ttcctacttg gcagtacatc tacgtattag tcatcgctat
                                                                     7200
taccatggtg atgcggtttt ggcagtacat caatgggcgt ggatagcggt ttgactcacg
                                                                     7260
gggatttcca agtctccacc ccattgacgt caatgggagt ttgttttggc accaaaatca
                                                                     7320
acgggacttt ccaaaatgtc gtaacaactc cgccccattg acgcaaatgg gcggtaggcg
                                                                     7380
tgtacggtgg gaggtctata taagcagagc tctctggcta actagagaac ccactgctta
ctggcttatc gaaattaata cgactcacta tagggagacc caagctg
                                                                     7427
```

```
<210> 14
<211> 5
<212> PRT
<213> Artificial
<220>
<223> Synthetic
<400> 14
Gly Gly Gly Gly Ser
1
```