Vertiefung Analysis Hausaufgabenblatt Nr. 3

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: November 3, 2023)

Problem 1. Sei λ_n^* das äußere Lebesgue-Maß und $A \subseteq \mathbb{R}^n$. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (a) A ist λ_n^* messbar.
- (b) Es gilt $\lambda_n^* (A \cap Q) + \lambda_n^* (A^c \cap Q) = \lambda_n^* (Q)$ für alle $Q \in \mathbb{J}(n)$.

Proof.

Definition 1. Sei μ^* ein äußeres Maß auf X. Eine Menge $A \subseteq X$ heißt μ^* -messbar, falls gilt

$$\mu^*(D) = \mu^*(A \cap D) + \mu^*(A^c \cap D) \qquad \forall D \subseteq X.$$

Weil alle Teilmengen $I \in \mathbb{J}(n)$ solche Teilmengen $D \subseteq X$ sind, gilt natürlich (a) \Longrightarrow (b). Jetzt bleibt (b) \Longrightarrow (a) zu zeigen. Es gibt, für jede $\epsilon > 0$, eine abzählbare Überdeckung $M = \{Q_i, i \in \mathbb{N}\} \subseteq \mathbb{J}$ aus offene Intervale von D, für die gilt $\sum_{i=1}^{\infty} \lambda_n^*(Q_i) = \lambda_n^*(D) + \epsilon$. Für jede $Q_i \in M$ gilt

$$\lambda_n^* (A \cap Q_i) + \lambda_n^* (A^c \cap Q_i) = \lambda_n^* (Q_i).$$

Außerdem gilt

$$\sum_{i=1}^{\infty} \lambda_n^* \left(A \cap Q_i \right) + \sum_{i=1}^{\infty} \lambda_n^* \left(A^c \cap Q_i \right) = \sum_{i=1}^{\infty} \lambda_n^* (Q_i) = \lambda_n^* (D) + \epsilon.$$

Weil $A \cap Q_i$ bzw. $A^c \cap Q_i$ eine abzählbare Überdeckung von A bzw. A^c ist, gilt für $Q = \bigcup_{i=1}^{\infty} Q_i$:

$$\lambda_n^*(A \cap D) \le \lambda_n^*(A \cap Q) \le \sum_{i=1}^{\infty} \lambda_n^*(A \cap Q_i),$$

und ähnlich

$$\lambda_n^*(A^c \cap D) \le \lambda_n^*(A^c \cap Q) \le \sum_{i=1}^{\infty} \lambda_n^*(A \cap Q_i).$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Daraus folgt

$$\lambda_n^*(A \cap D) + \lambda_n^*(A^c \cap D) \le \lambda_n^*(D).$$

Problem 2. Sei (X, \mathcal{A}, ν) ein Maßraum und μ^* das von (\mathcal{A}, ν) induzierte äußere Maß auf X, d.h. in Satz 1.37 ist $K = \mathcal{A}$ und $\nu = \nu$. Nach Satz 1.59 induziert μ^* ein Maß $\mu := \mu^* | A(\mu^*)$ auf der σ -Algebra $\mathcal{A}(\mu^*)$.

- (a) Zeigen Sie, dass μ eine sogenannte Erweiterung von ν ist, also dass
 - (1) $\mathcal{A} \subseteq \mathcal{A}(\mu^*)$ und
 - (2) $\mu(A) = \nu(A)$ für alle $A \in \mathcal{A}$ gilt.
- (b) Gilt sogar $\mu = \nu$, also $\mathcal{A} = \mathcal{A}(\mu^*)$?
- Proof. (a) Wir beweisen zuerst $\mu(A) = \nu(A)$ für alle $A \in \mathcal{A}$. Es genugt zu beweisen, dass $\nu(A) = \mu^*(A)$. Es ist klar, dass $\{A\}$ eine abzählbare Überdeckung von A ist, und daher $\mu^*(A) \leq \nu(A)$. Aber für jede abzählbare Überdeckung $(Q_i), Q_i \in \mathcal{A}, \bigcup_{i=1}^{\infty} Q_i \supseteq A$, gilt wegen der Monotonie von μ^* und der σ -additivität von $\nu \sum_{i=1}^{\infty} \nu(Q_i) \geq \nu(A)$. Daraus folgt

$$\mu(A) = \nu(A)$$
 für alle $A \in \mathcal{A}$.

Jetzt beweisen wir (1). Sei $A \in \mathcal{A}$. Wir müssen zeigen, das für alle $D \subseteq X$, gilt

$$\mu^*(A\cap D) + \mu^*(A^c\cap D) = \mu^*(D).$$

Sei $(Q_i), Q_i \in \mathcal{A}$ eine abzählbare Überdeckung von D, für die gilt $\sum_{i=1}^{\infty} \nu(Q_i) \leq \mu^*(D) + \epsilon, \epsilon > 0$ beliebig. Betrachten Sie

$$\mu^*(A \cap Q_i) + \mu^*(A^c \cap Q_i).$$

Weil sowohl A als auch Q_i in \mathcal{A} sind, gilt

$$\mu^*(A \cap Q_i) + \mu^*(A^c \cap Q_i) = \mu^*(Q_i).$$

Daraus folgt

$$\mu^*(A \cap D) + \mu^*(A^c \cap D) \le \mu^*(A \cap Q) + \mu^*(A^c \cap Q)$$

$$\le \sum_{i=1}^{\infty} (\mu^*(A \cap Q_i) + \mu^*(A^c \cap Q_i))$$

$$= \sum_{i=1}^{\infty} \mu^*(Q_i) \le \mu^*(D) + \epsilon$$

Weil $\epsilon > 0$ beliebig war, gilt

$$\mu^*(A \cap D) + \mu^*(A^c \cap D) \le \mu^*(D),$$

also A ist messbar.

(b) Nein. Sei zum Beispiel $\mathcal{A}=\mathcal{A}_{\sigma}(\mathbb{J}(n))$, und $\nu:\mathcal{A}\to[0,\infty]$ das eingeschränkte Lebesgue-Maß. Dann ist $\mu^*=\lambda_n^*$, und daher μ das Lebesgue-Maß. Es gilt aber

$$\{q\} \not\in \mathcal{A}_{\sigma}\left(\mathbb{J}(n)\right), \qquad q \in \mathbb{R},$$

obwohl jede Punktmenge λ_n^* messbar ist.