Overview of PerformanceAnalytics' Charts and Tables

Brian G. Peterson

Diamond Management & Technology Consultants Chicago, IL brian@braverock.com

R/Rmetrics User and Developer Workshop, 2007

Outline

Introduction

Set Up PerformanceAnalytics

Review Performance

Summary

Overview

- Utilize charts and tables to display and analyze data:
 - asset returns
 - compare an asset to other similar assets
 - compare an asset to one or more benchmarks
- Utilize common performance and risk measures to aid the investment decision
- Examples developed using data for six (hypothetical) managers, a peer index, and an asset class index
- Hypothetical manager data developed from real manager timeseries using accuracy and perturb packages to perturb data maintaining the statistical distribution properties of the original data.

Install PerformanceAnalytics.

- As of version 0.9.4, PerformanceAnalytics is available in CRAN
- Version 0.9.5 was released at the beginning of July
- Install with:
 - > install.packages("PerformanceAnalytics")
- ► Required packages include Hmisc, zoo, and Rmetrics packages such as fExtremes.
- Load the library into your active R session using:
 - > library("PerformanceAnalytics").

Load and Review Data.

- > data(managers)
- > head(managers)

```
HAM4 HAM5 HAM6 EDHEC LS EQ SP500 TR
              HAM1 HAM2
                            HAM3
1996-01-31
           0.0074
                     NA
                          0.0349
                                  0.0222
                                           NA
                                                NA
                                                             NA
                                                                  0.0340
1996-02-29 0.0193
                          0.0351
                                  0.0195
                                                                  0.0093
                     NA
                                           NA
                                                NA
                                                             NA
1996-03-31 0.0155
                     NA
                          0.0258 - 0.0098
                                           NA
                                                NA
                                                             NA
                                                                  0.0096
1996-04-30 -0.0091
                     NA
                          0.0449
                                  0.0236
                                           NA
                                                NA
                                                             NA
                                                                  0.0147
1996-05-31 0.0076
                                                                  0.0258
                     NA
                          0.0353
                                 0.0028
                                           NA
                                                NA
                                                             NA
1996-06-30 -0.0039
                     NA -0.0303 -0.0019
                                           NA
                                                NA
                                                             NA
                                                                  0.0038
           US 10Y TR US 3m TR
1996-01-31
           0.00380
                      0.00456
1996-02-29 -0.03532
                      0.00398
```

1996-02-29 -0.03532 0.00398 1996-03-31 -0.01057 0.00371 1996-04-30 -0.01739 0.00428 1996-05-31 -0.00543 0.00443 1996-06-30 0.01507 0.00412

Set Up Data for Analysis.

```
> dim(managers)
[1] 132 10
> managers.length = dim(managers)[1]
> colnames (managers)
 [1] "HAM1" "HAM2" "HAM3"
                                             "HAM4"
                                                          "HAM5"
 [6] "HAM6" "EDHEC LS EO" "SP500 TR" "US 10Y TR" "US 3m TR
> manager.col = 1
> peers.cols = c(2,3,4,5,6)
> indexes.cols = c(7.8)
> Rf.col = 10
> #factors.cols = NA
> trailing12.rows = ((managers.length - 11):managers.length)
> trailing12.rows
 [1] 121 122 123 124 125 126 127 128 129 130 131 132
> trailing36.rows = ((managers.length - 35):managers.length)
> trailing60.rows = ((managers.length - 59):managers.length)
> #assume contiquous NAs - this may not be the way to do it na.contiqu
> frInception.rows = (length(managers[,1]) -
+ length (managers[,1][!is.na(managers[,1])]) + 1):length (managers[,1])
```

Draw a Performance Summary Chart.

- > charts.PerformanceSummary(managers[,c(manager.col,indexes.cols)],
- + colorset=rich6equal, lwd=2, ylog=TRUE)

HAM1 Performance

Show Calendar Performance.

```
> t(table.CalendarReturns(managers[,c(manager.col,indexes.cols)]))
            1996 1997 1998 1999 2000
                                       2001
                                             2002 2003 2004 2005 2006
             0.7
                  2.1
                       0.6 - 0.9 - 1.0
                                       0.8 1.4 -4.1
                                                        0.5
                                                             0.0
                                                                  6.9
Jan
Feb
                  0.2
                       4.3
                            0.9
                                        0.8
                                             -1.2 - 2.5
                                                        0.0
             1.9
                                 1.2
                                                             2.1
                                                                  1.5
                       3.6
                            4.6
                                 5.8
                                             0.6
Mar
             1.6
                  0.9
                                       -1.1
                                                   3.6
                                                        0.9 - 2.1
                                                                  4.0
                  1.3
                       0.8
                            5.1
                                 2.0
                                       3.5
                                             0.5
                                                   6.5 - 0.4 - 2.1 - 0.1
Apr
            -0.9
Mav
            0.8
                  4.4 -2.3
                           1.6
                                 3.4
                                        5.8
                                             -0.2
                                                   3.4
                                                        0.8
                                                             0.4 - 2.7
                  2.3
                      1.2
                            3.3
                                 1.2
                                        0.2
                                             -2.4
                                                   3.1
                                                        2.6
                                                             1.6
                                                                 2.2
Jun
            -0.4
Jul
            -2.3
                 1.5 - 2.1
                            1.0
                                 0.5
                                        2.1
                                             -7.5
                                                   1.8
                                                        0.0
                                                             0.9 - 1.4
                  2.4 - 9.4 - 1.7
Aug
             4.0
                                 3.9
                                        1.6
                                            0.8
                                                   0.0
                                                        0.5
                                                             1.1
                                                                  1.6
Sep
             1.5
                  2.2
                       2.5 - 0.4
                                 0.1
                                       -3.1
                                             -5.8
                                                   0.9
                                                        0.9
                                                             2.6
                                                                  0.7
Oct
             2.9 - 2.1
                       5.6 -0.1 -0.8
                                        0.1
                                              3.0
                                                   4.8 -0.1 -1.9
                                                                  4.3
Nov
             1.6
                  2.5
                       1.3
                            0.4
                                 1.0
                                       3.4 6.6
                                                   1.7
                                                        3.9
                                                             2.3
                                                                  1.2
             1.8
                  1.1
                       1.0
                            1.5 -0.7 6.8
                                             -3.2
                                                   2.8
                                                        4.4
                                                             2.6
                                                                  1.1
Dec
HAM1
            13.6 20.4
                       6.1 16.1 17.7
                                       22.4
                                             -8.0 23.7 14.9
                                                             7.8 20.5
              NA 21.4 14.6 31.4 12.0
                                       -1.2
                                             -6.4 19.3
                                                            11.3 11.7
EDHEC
     LS
         ΕO
                                                       8.6
SP500 TR
            23.0 33.4 28.6 21.0 -9.1 -11.9 -22.1 28.7 10.9
```

Calculate Statistics.

> table.Stats(managers[,c(manager.col,peers.cols)])

	HAM1	HAM2	намз	HAM4	HAM5	НАМ6
Observations	132.0000	125.0000	132.0000	132.0000	77.0000	64.0000
NAs	0.0000	7.0000	0.0000	0.0000	55.0000	68.0000
Minimum	-0.0944	-0.0371	-0.0718	-0.1759	-0.1320	-0.0404
Quartile 1	0.0000	-0.0098	-0.0054	-0.0198	-0.0164	-0.0016
Median	0.0112	0.0082	0.0102	0.0138	0.0038	0.0128
Arithmetic Mean	0.0111	0.0141	0.0124	0.0110	0.0041	0.0111
Geometric Mean	0.0108	0.0135	0.0118	0.0096	0.0031	0.0108
Quartile 3	0.0248	0.0252	0.0314	0.0460	0.0309	0.0255
Maximum	0.0692	0.1556	0.1796	0.1508	0.1747	0.0583
SE Mean	0.0022	0.0033	0.0032	0.0046	0.0052	0.0030
LCL Mean (0.95)	0.0067	0.0076	0.0062	0.0019	-0.0063	0.0051
UCL Mean (0.95)	0.0155	0.0206	0.0187	0.0202	0.0145	0.0170
Variance	0.0007	0.0013	0.0013	0.0028	0.0021	0.0006
Stdev	0.0256	0.0367	0.0365	0.0532	0.0457	0.0238
Skewness	-0.6588	1.4580	0.7908	-0.4311	0.0738	-0.2800
Kurtosis	2.3616	2.3794	2.6829	0.8632	2.3143	-0.3489

Compare Distributions.

> chart.Boxplot(managers[trailing36.rows, c(manager.col, peers.cols, + indexes.cols)], main = "Trailing 36-Month Returns")

Trailing 36-Month Returns

Compare Distributions.

```
> layout(rbind(c(1,2),c(3,4)))
> chart.Histogram(managers[,1,drop=F], main = "Plain", methods = NULL)
> chart.Histogram(managers[,1,drop=F], main = "Density", breaks=40,
+ methods = c("add.density", "add.normal"))
> chart.Histogram(managers[,1,drop=F], main = "Skew and Kurt", methods = c
+ ("add.centered", "add.rug"))
> chart.Histogram(managers[,1,drop=F], main = "Risk Measures", methods = c
+ ("add.risk"))
```


Show Relative Return and Risk.

- > chart.RiskReturnScatter(managers[trailing36.rows,1:8], Rf=.03/12, ma
- + "Trailing 36-Month Performance", colorset=c("red", rep("black",5), "
 + "green"))

Annualized Risk

Calculate Statistics.

> table.Stats(managers[,c(manager.col,peers.cols)])

	HAM1	HAM2	намз	HAM4	HAM5	HAM6
Observations	132.0000	125.0000	132.0000	132.0000	77.0000	64.0000
NAs	0.0000	7.0000	0.0000	0.0000	55.0000	68.0000
Minimum	-0.0944	-0.0371	-0.0718	-0.1759	-0.1320	-0.0404
Quartile 1	0.0000	-0.0098	-0.0054	-0.0198	-0.0164	-0.0016
Median	0.0112	0.0082	0.0102	0.0138	0.0038	0.0128
Arithmetic Mean	0.0111	0.0141	0.0124	0.0110	0.0041	0.0111
Geometric Mean	0.0108	0.0135	0.0118	0.0096	0.0031	0.0108
Quartile 3	0.0248	0.0252	0.0314	0.0460	0.0309	0.0255
Maximum	0.0692	0.1556	0.1796	0.1508	0.1747	0.0583
SE Mean	0.0022	0.0033	0.0032	0.0046	0.0052	0.0030
LCL Mean (0.95)	0.0067	0.0076	0.0062	0.0019	-0.0063	0.0051
UCL Mean (0.95)	0.0155	0.0206	0.0187	0.0202	0.0145	0.0170
Variance	0.0007	0.0013	0.0013	0.0028	0.0021	0.0006
Stdev	0.0256	0.0367	0.0365	0.0532	0.0457	0.0238
Skewness	-0.6588	1.4580	0.7908	-0.4311	0.0738	-0.2800
Kurtosis	2.3616	2.3794	2.6829	0.8632	2.3143	-0.3489

Examine Performance Consistency.

- > charts.RollingPerformance(managers[, c(manager.col, peers.cols,
- + indexes.cols)], Rf=.03/12, colorset = c("red", rep("darkgray",5), "
- + "green"), lwd = 2)

Rolling 12 month Performance

Display Relative Performance.

```
> chart.RelativePerformance(managers[ , manager.col, drop = FALSE],
+ managers[ , c(peers.cols, 7)], colorset = tim8equal[-1], lwd = 2, le
+ = "topleft")
```


Compare to a Benchmark.

```
> chart.RelativePerformance(managers[, c(manager.col, peers.cols)],
+ managers[, 8, drop=F], colorset = rainbow8equal, lwd = 2, legend.loc
+ "topleft")
```


Compare to a Benchmark.

> table.CAPM(managers[trailing36.rows, c(manager.col, peers.cols)], managers[trailing36.rows

	HAM1	to	SP500	TR	HAM2	to	SP500	TR	намз	to	SP500 TI	R
Alpha	0.0051			0.0020					0.0020	0		
Beta			0.6	267			0.3	223			0.6320	0
Beta+			0.8	227			0.4	176			0.8240	0
Beta-			1.13	218			-0.0	483			0.829	1
R-squared			0.3	329			0.1	073			0.4812	2
Annualized Alpha			0.0	531			0.0	247			0.0243	3
Correlation			0.6	188			0.3	276			0.693	7
Correlation p-value			0.0	001			0.0	511			0.0000	0
Tracking Error			0.0	504			0.0	790			0.051	7
Active Premium			0.0	384			-0.0	260			-0.0022	2
Information Ratio			0.6	363			-0.3	295			-0.0428	8
Treynor Ratio			0.1	741			0.1	437			0.110	1
	HAM4	to	SP500	TR	HAM5	to	SP500	TR	HAM6	to	SP500 TE	R
Alpha			0.0	009			0.0	002			0.0022	2
Beta			1.13	282			0.8	755			0.8150	0
Beta+			1.8	130			1.0	985			0.9993	3
Beta-			1.2	223			0.5	283			1.1320	0
R-squared			0.3	144			0.5	209			0.475	7
Annualized Alpha			0.0	109			0.0	030			0.027	1
Correlation			0.5	368			0.7	218			0.689	7
Correlation p-value			0.0	002			0.0	000			0.000	0
Tracking Error			0.1	073			0.0	583			0.060	1
Active Premium			0.0	154			-0.0	077			0.0138	8
Information Ratio			0.1	133			-0.1	319			0.229	6
Treynor Ratio			0.0	768			0.0	734			0.104	5

table.CAPM underlying techniques

Return.annualized — Annualized return using

$$prod(1+R_a)^{\frac{scale}{n}}-1=\sqrt[n]{prod(1+R_a)^{scale}}-1$$
 (1)

TreynorRatio — ratio of asset's Excess Return to Beta β of the benchmark

$$\frac{(\overline{R_a - R_f})}{\beta_{a,b}} \tag{2}$$

- ActivePremium investment's annualized return minus the benchmark's annualized return
- Tracking Error A measure of the unexplained portion of performance relative to a benchmark, given by

TrackingError =
$$\sqrt{\sum \frac{(R_a - R_b)^2}{len(R_a)\sqrt{scale}}}$$
 (3)

InformationRatio — ActivePremium/TrackingError

Compare to a Benchmark.

- > #source("PerformanceAnalytics/R/Return.excess.R")
- > charts.RollingRegression(managers[, c(manager.col, peers.cols), drop
- + FALSE], managers[, 8, drop = FALSE], Rf = .03/12, colorset = redfocu + 2)

Rolling 12-month Regressions

Calculate Downside Risk.

> table.DownsideRisk(managers[,1:6],Rf=.03/12)

	HAM1	HAM2	намз	HAM4	HAM5	
Semi Deviation	0.0191	0.0201	0.0237	0.0395	0.0324	- 1
Gain Deviation	0.0169	0.0347	0.0290	0.0311	0.0313	-
Loss Deviation	0.0211	0.0107	0.0191	0.0365	0.0324	-
Downside Deviation (MAR=10%)	0.0178	0.0164	0.0214	0.0381	0.0347	-
Downside Deviation (Rf=3%)	0.0154	0.0129	0.0185	0.0353	0.0316	-
Downside Deviation (0%)	0.0145	0.0116	0.0174	0.0341	0.0304	-
Maximum Drawdown	0.1518	0.2399	0.2894	0.2874	0.3405	ļ
Historical VaR (95%)	-0.0258	-0.0294	-0.0425	-0.0799	-0.0733	-
Historical ES (95%)	-0.0513	-0.0331	-0.0555	-0.1122	-0.1023	-
Modified VaR (95%)	-0.0342	-0.0276	-0.0368	-0.0815	-0.0676	-
Modified ES (95%)	-0.0610	-0.0614	-0.0440	-0.1176	-0.0974	_

Semivariance and Downside Deviation

 Downside Deviation as proposed by Sharpe is a generalization of semivariance which calculates bases on the deviation below a Minimumn Acceptable Return(MAR)

$$\delta_{MAR} = \sqrt{\frac{\sum_{t=1}^{n} (R_t - MAR)^2}{n}}$$
 (4)

- Downside Deviation may be used to calculate semideviation by setting MAR=mean(R) or may also be used with MAR=0
- Downside Deviation (and its special cases semideviation and semivariance) is useful in several performance to risk ratios, and in several portfolio optimization problems.

Value at Risk

- Value at Risk (VaR) has become a required standard risk measure recognized by Basel II and MiFID
- traditional mean-VaR may be derived historically, or estimated parametrically using

$$z_c = q_p = qnorm(p) (5)$$

$$VaR = \bar{R} - z_c \cdot \sqrt{\sigma} \tag{6}$$

- even with robust covariance matrix or Monte Carlo simulation, mean-VaR is not reliable for non-normal asset distributions
- for non-normal assets, VaR estimates calculated using GPD (as in VaR.GPD) or Cornish Fisher perform best
- modified Cornish Fisher VaR takes higher moments of the distribution into account:

$$z_{cf} = z_c + \frac{(z_c^2 - 1)S}{6} + \frac{(z_c^3 - 3z_c)K}{24} + \frac{(2z_c^3 - 5z_c)S^2}{36}$$
 (7)

$$modVaR = \bar{R} - z_{cf}\sqrt{\sigma}$$
 (8)

 modified VaR also meets the definition of a coherent risk measure per Artzner,et.al.(1997)

Risk/Reward Ratios in PerformanceAnalytics

 SharpeRatio — return per unit of risk represented by variance, may also be annualized by

$$\frac{\sqrt[n]{prod(1+R_a)^{scale}}-1}{\sqrt{scale}\cdot\sqrt{\sigma}}$$
 (9)

 Sortino Ratio — improvement on Sharpe Ration utilizing downside deviation as the measure of risk

$$\frac{(\overline{R_a - MAR})}{\delta_{MAR}} \tag{10}$$

- Calmar and Sterling Ratios ratio of annualized return (Eq. 1) over the absolute value of the maximum drawdown
- Sortino's Upside Potential Ratio upside semdiviation from MAR over downside deviation from MAR

$$\frac{\sum_{t=1}^{n} (R_t - MAR)}{\delta_{MAR}} \tag{11}$$

 Favre's modified Sharpe Ratio — ratio of excess return over Cornish-Fisher VaR

$$\frac{(\overline{R_a - R_f})}{modVaR_{R_a,p}} \tag{12}$$

 NOTE: The newest measures such as modified Sharpe and Sortino's UPR are far more reliable than older measures, but everyone still seems to look at older measures.

Summary

- Performance and Risk analysis are greatly facilitated by the use of charts and tables.
- The display of your infomation is in many cases as important as the analysis.
- The observer should have gained a working knowledge of how specific visual techniques may be utilized to aid investment decision making.
- Further Work
 - Additional parameterization to make charts and tables more useful.
 - Pertrac or Morningstar-style sample reports.
 - Functions and graphics for more complicated topics such as factor analysis and optimization.

