For a fuzzy controller with the algorithm

| F | temp = hot | THEN | fanspeed = high | ELSE |

IF temp = warm THEN fanspeed = medium ELSE

IF temp = cool THEN fanspeed = low

and memberships discretely defined as follows

(a) Derive the algorithm for the relation, R , using Mamdani Minimum implication. Show this relation in a matrix form.

			Н								0.5	1.0	1.0	1.0
			M				0.5	1.0	1.0	1.0	0.5			
			L	1.0	1.0	0.66	0.33							
Н	W	С		0	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
		1.0	14	1.0	1.0	0.66	0.33	0	0	0	0	0	0	0
		1.0	16	1.0	1.0	0.66	0.33	0	0	0	0	0	0	0
	0.5	0.5	18	0.5	0.5	0.5	0.33,0.5 0.5	0.5	0.5	0.5	0.5	0	0	0
	1.0		20	0	0	0	0.5	1.0	1.0	1.0	0.5	0	0	0
	1.0		22	0	0	0	0.5	1.0	1.0	1.0	0.5	0	0	0
	1.0		24	0	0	0	0.5	1.0	1.0	1.0	0.5	0	0	0
	0.66		26	0	0	0	0.5	0.66	0.66	0.66	0.5	0	0	0
0.5	0.33		28	0	0	0	0.33	0.33	0.33	0.33	0.33,0.5 0.5	0.5	0.5	0.5
1.0			30	0	0	0	0	0	0	0	0.5	1.0	1.0	1.0
1.0			32	0	0	0	0	0	0	0	0.5	1.0	1.0	1.0

(b) For a temperature of 28°C, derive the corresponding fuzzy fan speed and sketch its m.f.

$$= [0\ 0\ 0\ 0.33\ 0.33\ 0.33\ 0.33\ 0.5\ 0.5\ 0.5\ 0.5]$$

This results can be represented graphically as follows:

(c) Derive the crisp controller output using the SCOG method.

speed* =
$$\frac{0.33 \cdot (1500 + 2000 + 2500 + 3000) + 0.5 \cdot (3500 + 4000 + 4500 + 5000)}{0.33 + 0.33 + 0.33 + 0.33 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5} = \frac{3000 + 8500}{3.\overline{3}\overline{3}} = 3,450 \text{ rpm}$$

Note: What if the crisp input value is not exactly from the discrete universe of X, e.g 29°C?

- Include 29° C in the universe of discourse of X (increase resolution); speed* = 3,915 rpm
- Represent 29°C as interval [28,30]; speed* = 3,780 rpm
- Represent 29°C as triangular m. f. $\{x, 28, 29, 30\}$; speed* = 3,455 rpm