HARDVÉR POČÍTAČOV

Štruktúra počítačového systému

- Časti počítačového systému, ktoré spolupracujú s OS sú:
 - □ I/O systém
 - □ Pamäť všetky typy
 - Periférne úložné zariadenia
 - Ochrana jednotlivých komponentov

Základné časti číslicového počítača

- Procesor riadi činnosť počítača a vykonáva jeho hlavnú činnosť – spracovanie údajov. V súčasnosti je funkcia procesora často integrovaná do jedného integrovaného obvodu nazývaného mikroprocesor.
- Operačná pamäť- umožňuje ukladanie údajov a inštrukcií pre procesor
- Vstupno/výstupný systém slúži pre komunikáciu s ostatnými zariadeniami počítača (vonkajšia pamäť, konzola, ...)
- Systémová zbernica umožňuje komunikáciu medzi procesorom, operačnou pamäťou a modulom vstupu a výstupu

Zbernicová organizácia

Základné pojmy

Reprezentácia dát

Pomenovanie	Počet bitov (N)	Kardinalita (2 ^N)
Bajt (byte)	8	256
Slovo (word)	16	65536
Dvojslovo (double word)	32	4294967296
Štvorslovo (quad word)	64	264

Operačná pamäť

Operačnú pamäť reprezentuje údajová štruktúra typu pole.

Môžeme ju charakterizovať dvomi údajmi

- **šírka pamäte** udáva **počet bitov (N)** jednotlivých prvkov poľa,
- **veľkosť pamäte** udáva jej **kapacitu** 2^N, teda koľko prvkov je schopná súčasne uchovávať.
- □ Jednotlivé prvky sú očíslované od 0 po 2^N−1.
- □ Pri prístupe k prvkom pamäte adresa.

Procesor

- Vyberá inštrukcie z pamäte a vykonáva ich.
 ALU + riadiaca jednotka
- Registre procesora
 - Riadiace a stavové registre
 - PC (program counter) počítadlo inštrukcií.
 - Register inštrukcií IR (instruction register), obsahuje operačný kód inštrukcie, ktorá sa bude práve vykonávať.
 - Register príznakov (flag register).

Procesor pokr.

■ Všeobecne prístupné registre

- Dátové registre akumulátor (AC)
- Adresové registre
 - Indexový register (index register) pre adresovanie úsekov pamäte vzhľadom na nejaký počiatok
 - Ukazovateľ zásobníka (stack pointer) určuje adresu vrcholu používateľského zásobníka. Menia ho inštrukcie push a pop. Je možné ho modifikovať aj priamo.
 - **Segmentový register** (segment pointer) pri segmentovaní. Uchováva adresu počiatku segmentu.

Registre, adresy, inštrukcie

Registre

- 8 64 registrov; 4-8 bajtov
 - Príklad Registre architektúry x86

Obecné registre - AX, BX, CX, DX – 16 bitové

Obecné registre - SP, BP, SI, DI -32 bitové

Segmentové registre — CS, DS, ES, FS, GS, SS – 16 bitové

Špeciálne registre — IP a FLAGS

Adresy

2-4 bytové adresy pamäťových miest

Inštrukcie

príklad kódu

```
add eax, 10 - EAX \leftarrow EAX + 10
add BYTE PTR [var], 10 - add\ 10 to the single byte
stored at memory address var
and eax, 0fH - clear\ all\ but\ the\ last\ 4\ bits\ of\ EAX.
xor edx, edx - set the contents of EDX to zero.
```

Vykonávanie inštrukcií

Príklad: jednoduchý 8 bitový procesor, 64 KB pamäte

Ku hodnote AC (akumulátora) pripočítame konštantu a podľa výsledku vykonáme podmienený skok

(PC- adresa inštrukcie, IR – register inštrukcií, "zero" – register príznakov)

1 krok - začiatok programu od adresy 100

Operači	Operačná pamäť		Registre procesora			
Adresa	Hodnota	Register	Hodnota pred	Hodnota po		
100	64	PC	100	101		
101	5	IR	XX	64		
102	192	AC	79	79		
103	0	"zero"	1	1		
104	1					
105	78	1	1	1		

Vykonávanie inštrukcií pokr.

□ 2 krok

Dekódovanie inštrukcie - operand je na adrese z PC

Operačná pamäť		Registre procesora			
Adresa	Hodnota	Register	Hodnota pred	Hodnota po	
100	64	PC	101	102	
101	5	IR	64	64	
102	192	AC	79	79	
103	0	"zero"	1	1	
104	1				
105	78				

Vykonávanie inštrukcií pokr.

□ 3 krok

Vykonanie inštrukcie – výsledok do AC, nastavenie registra príznakov

Operačná pamäť		Registre procesora			
Adresa	Hodnota		Register	Hodnota pred	Hodnota po
100	64		PC	102	102
101	5		IR	64	64
102	192		AC	79	84
103	0		"zero"	1	0
104	1				
105	78				

Vykonávanie inštrukcií

 4 krok - druhý inštrukčný cyklus - podmienený skok podľa registra príznakov

Operačná pamäť		Registre procesora			
Adresa	Hodnota	Register	Hodnota pred	Hodnota po	
100	64	PC	102	256	
101	5	IR	192	192	
102	192	AC	84	84	
103	0	"zero"	0	0	
104	1				
105	78				

Vykonávanie inštrukcií

□ 5 krok – podmienený skok

Operačná pamäť		Registre procesora			
Adresa	Hodnota	Register	Hodnota pred	Hodnota po	
100	64	PC	102	256	
101	5	IR	192	192	
102	192	AC	84	84	
103	0	"zero"	0	0	
104	1				
105	78			1	

Adresa =
$$256*vyšší_bajt + nižší_bajt = 256*1+0$$

Viacjadrové (multi-core) procesory

- □ Pozostávajú z 2 alebo viac nezávislých jadier
- Nachádzajú sa obyčajne na jednom integrovanom obvode
- Dvojjadrový, štvorjadrový, viacjadrový procesor
- Jadra môžu byť prepojene tesne alebo voľne. Napr. jadra môžu ale nemusia zdieľať cache pamäte a môžu implementovať zasielanie správ alebo zdieľanú pamäť medzi jadrami.
- Schémy prepojenia jadier: zbernica, kruh, 2 rozmerná mriežka (mesh) alebo súradnicové prepojenie
- V homogénnych viacjadrových systémoch všetky jadra sú homogénne
- □ V heterogénnych nie sú homogénne

Viacjadrové (multi-core) procesory

Amdahalov zákon

Vyjadruje aké maximálne zrýchlenie môžeme očakávať ak časť (1-P) z programu sa dá vykonať len sériovo a zvyšná časť programu (P) - paralelne

Zrýchlenie **S** pri použití **N** procesorov, za predpokladu, že časť **P** z programu je možné vykonať **paralelne**

$$S(N) = \frac{1}{(1 - P) + \frac{P}{N}}$$

Viacjadrové (multi-core) procesory

Výhody

- Blízkosť viacerých CPU jadier na jednom chipe dovoľuje výmenu signálov s vyššou rýchlosťou a s vyššou kvalitou, ako v opačnom prípade.
- Najväčšie zrýchlenie procesy, ktoré intenzívne využívajú CPU.
- Potrebujú menej energie ako rovnaký počet vzájomne prepojených procesorov
- Zdieľajú obvody ako napr. L2 cache a interface k FSB (front side bus).

Viacjadrové (multi-core) procesory

Nevýhody

- Potrebná dodatočná podpora zo strany OS pre maximalizáciu využitia výpočtovej kapacity.
- Závislosť výkonu na využití vlákien v aplikáciách.
- Ťažšie sa chladia kvôli vysokej hustote.
- Výkon procesora nie je jediným obmedzením pre výkon systému:
 - šírka pásma pri spojení s pamäťou cez systémovú zbernicu je ďalším obmedzením

Vstupno/výstupné operácie

- Vstupno/výstupné operácie zabezpečuje V/V systém
- Úlohou V/V systému je prenášať informácie medzi
 CPU alebo OP a periférnymi zariadeniami
- □ V/V systém pozostáva z :
 - V/V zariadení (periférie)
 - Radičov V/V zariadení
 - Softvéru ovládače (drivery)

Vstupno/výstupné operácie pokr.

- □ Návrh V/V systému základné problémy
 - CPU a V/V nemožno synchronizovať, dá sa len koordinovať
 - CPU je obyčajne omnoho rýchlejšie ako V/V zariadenie
 V/V komunikujú s CPU asynchrónne
 - CPU binárne kódovanie informácie,
 V/V spolupracuje s človekom treba kódovať a dekódovať

Prerušenie

Zdrojom prerušenia môže byť:

- Procesor napr. pri pretečení aritmetickej operácie, delení nulou a pod.
- Časovač pri zabezpečení vykonávanie určenej činnosti v presne stanovenom intervale.
- Periférne zariadenia oznamujú procesoru ukončenie vstupno-výstupnej operácie, resp. žiadosť o obsluhu.
- Hardvér počítača napr. pri chybe parity pamäte, výpadku napájania a pod.

Obsluha prerušení

- Keď sa vyskytne prerušenie, CPU
 - uchováva stav CPU
 - registre a čítač inštrukcie (PC)
 - vykonáva kód na adrese, na ktorej nastalo prerušenie
 - závisí od zdroja prerušenia
 - idea je nasledovná:
 - tento kód obslúži prerušenie
 - potom prerušený program môže pokračovať

Rutina pre obsluhu komunikačnej linky

(a) bez použitia prerušeniapooling

(b) s použitím prerušenia

Vykonanie inštrukcie a prerušenie

Prerušenie povolené

- Procesor skontroluje či nastalo prerušenie
- Ak nenastalo, zavedie d'alšiu inštrukciu
- Ak nastalo, zastaví vykonávanie bežiaceho programu a vykoná obslužný program prerušenia

Priebeh riadenia programu v prípade vzniku požiadavky na prerušenie

Viacnásobné prerušenie

Vzniku viacerých požiadaviek na prerušenie, spracovanie podľa priorít

Vstupno-výstupné operácie

Procesor a periférne zariadenie si vymieňajú informácie rôzneho charakteru:

- riadiace informácie, napr. požiadavka previnúť magnetickú pásku na začiatok, určenie smeru nasledujúcej V/V operácie, a pod.,
- stavové informácie, napr. stav tlačiarne (pripravená, obsadená, chyba),
- dáta, s ktorými sa má V/V operácia uskutočniť

Riadenie vnstupno-výstupných operáci

Programovo riadený vstup a výstup

Neustála kontrola stavového registra periférneho zariadenia

V/V riadený prerušením

prerušenie umožňuje procesoru sa venovať inej práce kým nastane prerušenie – efektívnejšie

Priamy prístup do pamäte (DMA)

Priamy prístup do pamäte - DMA

- V/V riadený prerušením nepostačuje na obsluhu periférií, ktoré prenášajú veľké objemy dát medzi pamäťou a periférnymi zariadeniami
- Využíva sa špecializovaný obvod pre priamy prístup k pamäte direct memory access (DMA), je riadený pomocou radiča DMA
- Podstata DMA
 - CPU inicializuje DMA kanál, potom prenos riadi radič bez účasti
 CPU
 - Tým sa radovo zvýši prenosová rýchlosť
 - Prenáša sa veľký blok údajov v jednej súvislej operácii
 - Počas DMA prenosu môže dôjsť ku kolízii (radič DMA a CPU môžu súčasne potrebovať zbernicu, alebo pristupovať k pamäti)

DMA operácie

- DMA radič
 - pristupuje k periférnemu zariadeniu cez jeho radič
 - číta/zapisuje celé bloky dát
 - číta/zapisuje ich do/z pamäte
- □ Prerušenia sú
 - na úrovni blokov dát
 - menej časté a preto
 - CPU môže urobiť veľa práce medzi prerušeniami.

Hierarchia pamäti

Smerom dolu

- rastie kapacita a čas prístupu

- klesá cena a frekvencia

prístupu

Cache pamät'

- Malá rýchla pamäť, obsahujúca posledne použité dáta,
 - najčastejšie medzi procesorom a pamäťou, ale tiež používaná pre lokálne kópia sieťových dát atď.
 - pokúša sa zvýšiť výkon tým, že všetky informácie sú prítomné v pamäti
 - pri pokuse o čítaní z hlavnej pamäte sa najskôr skontroluje či daný údaj nie je v cache-pamäti
- Mechanizmus rozhodovania pre pohyb informácie medzi vrstvami je veľmi podstatný a riadi ho nejaký nahradzovací algoritmus

Operačná pamäť a I/O

- Obyčajne len CPU môže pristupovať priamo k adresám pamäte
- Ostatné pamäte cez radiče
- V niektorých systémoch
 - □ registre radiča sú mapované do OP (RAM)
 - výsledok uniformná práca s perifériami
 - môžu sa obslúžiť cez procedúry správy pamäte
 - adresovanie je len v OP
 - prístup cez DMA, obsluha prerušení, ...

Pásky

- Veľmi podobné audio páskam
- Sekvenčný prístup : read/write hlava
- Keď je nastavená pozícia prenos je veľmi rýchly
- Je stála : back-up súborov
 - Magnetická búrka ju môže zmazať
- □ Rozmery a hustoty sú rôzne
 - teraz 8mm páska má najväčšiu hustotu a na ňu sa zmesti 5Gb dát (350-stôp)

Časovače

- Zvláštny typ periférneho zariadenia
- Používajú sa na počítanie uplynulého (systémového) času
- □ Pre
 - prerušenie zastavených procesov
 - prepínanie kontextu v time-sharing systémoch
- Prístup k ním je obyčajné privilegovaný

Ochrana

- Potreba ochrany
 - ak užívateľský proces má prístup k
 - pamäte procesov iných užívateľov
 - k I/O zariadení iných užívateľov
 - môže ich poškodiť
 - vedome
 - nevedome

Možné porušenia ochrany

- Užívateľský proces priamo pristupuje k pamäte iného užívateľského procesu
- Užívateľský proces intervenuje do I/O iného užívateľského procesu cez zásah do I/O ovládača a nepriamo poškodzuje dáta
- Užívateľský proces vstúpi do OS a prepisuje iné užívateľské procesy alebo samotný OS
 - MS-DOS a Macintosh OS to dovoľujú
- Zastaviť chod OS napr. cez nekonečnú slučku

Režim užívateľa/supervisora

Prepínanie režimov na základe zmeny 1 bitu Musí byť poskytnutá hardvérom

Privilegované inštrukcie

- Privilegované inštrukcie sú inštrukcie, ktoré sa vykonávajú v režime supervizora a riadia
 - I/O, vrátane riadení prerušení
 - výnimkou sú inštrukcie, ktoré generujú prerušenie a môžu vzniknúť aj pri mapovaní pamäťových adries
 - správu pamäte
- HW podpora, rozhodujúca pre výkon a atomickosť (nedeliteľnosť)

Ochrana pamäte

- □ Závisí od techniky správy pamäte segmentácia alebo stránkovanie
 - Napr. ak pamäť je rozdelená na segmenty
 - pre každý segment a pre každý užívateľský proces je
 - base address počiatočná adresa, offset požadovaná adresa, limit - rozsah platných adries

Ochrana pamäte

- Ak pamäť je rozdelená na stránky
 - každá stránka je prístupná cez tabuľku stránok procesu
 - samotná technika správy pamäte zabezpečuje ochranu