CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS (MOSFETs)

Chapter Outline

- 5.1 Device Structure and Physical Operation
- 5.2 Current-Voltage Characteristics
- 5.3 MOSFET Circuits at DC
- 5.4 Applying the MOSFET in Amplifier Design
- 5.5 Small-Signal Operation and Models
- 5.6 Basic MOSFET Amplifier Configurations
- 5.7 Biasing in MOS Amplifier Circuits
- 5.8 Discrete-Circuit MOS Amplifiers
- 5.9 The Body Effect and Other Topics

5.1 Device Structure and Physical Operation

Device structure of MOSFET

- \square "MOS" \equiv metal-oxide-semiconductor structure
- ☐ MOSFET is a four-terminal device: gate (G), source (S), drain (D) and body (B)
- \Box The device size (channel region) is specified by channel width (*W*) and channel length (*L*)
- ☐ Two kinds of MOSFETs: *n*-channel (NMOS) and *p*-channel (PMOS) devices
- ☐ The device structure is basically symmetric in terms of drain and source
- ☐ Source and drain terminals are specified by the operation voltage

Operation with zero gate voltage

- ☐ The MOS structure form a parallel-plate plate capacitor with gate oxide layer in the middle
- ☐ Two *pn* junctions (S-B and D-B) are connected as back to back diodes
- ☐ The source and drain terminals are isolated by two depletion regions without conducting current
- \Box The operating principles will be introduced by using the *n*-channel MOSFET as an example

Creating a channel for current flow

- ☐ Positive charges accumulate in gate as a positive voltage applies to gate electrode
- \square Electric field forms a depletion region by pushing holes in p-type substrate away from the surface
- \Box Electrons accumulate on the substrate surface as gate voltage exceeds a **threshold voltage** $V_{\rm t}$
- \Box The induced *n* region thus forms a **channel** for current flow from drain to source
- \Box The channel is created by inverting the substrate surface from *p*-type to *n*-type \rightarrow **inversion layer**
- ☐ The field controls the amount of charge in the channel and determines the channel conductivity

NTUEE Electronics - L. H. Lu

Applying a small drain voltage

- \square A positive $v_{GS} > V_t$ is used to induce the channel \rightarrow *n*-channel **enhancement-type** MOSFET
- \square Free electrons travel from source to drain through the induced *n*-channel due to a small v_{DS}
- \Box The current i_D flows from drain to source (opposite to the direction of the flow of negative charge)
- ☐ The current is proportional to the number of carriers in the induced channel
- □ The channel is controlled by the **effective voltage** or **overdrive voltage**: $v_{OV} = v_{GS} V_{t}$
- \Box The electron charge in the channel due to the overdrive voltage: $|Q| = C_{ox}WLv_{OV}$
- \Box **Gate oxide capacitance** C_{ox} is defined as capacitance per unit area
- ☐ MOSFET can be approximated as a linear resistor in this region with a resistance value inversely proportional to the excess gate voltage

Operation as increasing drain voltage

- \square As v_{DS} increases, the voltage along the channel increases from o to v_{DS}
- □ The voltage between the gate and the points along the channel decreases from v_{GS} at the source end to $(v_{GS}-v_{DS})$ at the drain end
- \square Since the inversion layer depends on the voltage difference across the MOS structure, increasing v_{DS} will result in a tapered channel
- \Box The resistance increases due to tapered channel and the i_D - v_{DS} curve is no longer a straight line
- \square At the point $v_{DSsat} = v_{GS} V_t$, the channel is **pinched off** at the drain side
- \square Increasing v_{DS} beyond this value has little effect on the channel shape and i_D saturates at this value
- **☐ Triode region**: $v_{DS} < v_{DSsat}$
- **□ Saturation region**: $v_{DS} \ge v_{DSsat}$

Derivation of the I-V relationship

☐ Induced charge in the channel due to MOS capacitor:

$$Q_I(x) = -C_{ox}[v_{GS} - V_t - v(x)]$$

☐ Equivalent resistance dR along the channel:

$$dR = \frac{dx}{qn(x)\mu_n h(x)W} = \frac{dx}{\mu_n W Q_I(x)}$$

□ I-V derivations:

$$dv = i_D dR = \frac{i_D dx}{\mu_n W Q_I(x)} = \frac{i_D dx}{\mu_n C_{ox} W [v_{GS} - V_t - v(x)]}$$

$$\int_{0}^{v_{DS}} \mu_{n} C_{ox} W[v_{GS} - V_{t} - v(x)] dv = \int_{0}^{L} i_{D} dx$$

$$i_D = \mu_n C_{ox} \frac{W}{L} [(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2]$$

- Process transconductance parameter ($\mu A/V^2$): $k'_n = \mu_n C_{ox}$
- Aspect ratio: W/L
- Transconductance parameter (μ A/V²): k_n = $\mu_n C_{ox}(W/L)$
- ☐ Drain current of MOSFETs:
 - Triode region: $i_D = k_n [(v_{GS} V_t)v_{DS} \frac{1}{2}v_{DS}^2]$
 - Saturation region: $i_{Dsat} = \frac{1}{2} k_n (v_{GS} V_t)^2$
- \square On-resistance (channel resistance for small v_{DS}):

$$r_{DS} = 1/k_n(v_{GS} - V_t)$$

x = 0

The *p*-channel enhancement-type MOSFET

- $\square p$ -channel enhanced-type MOSFETs are fabricated on n-type substrate with p⁺ source and p⁺ drain
- □ Normally, source is connected to high voltage and drain is connected to low voltage
- \square As a negative voltage applies to the gate, the resulting field pushes electrons in n-type substrate away from the surface, leaving behind a carrier-depletion region
- \square As gate voltage exceeds a negative **threshold voltage** V_t , holes accumulate on the substrate surface
- □ A *p*-type channel (**inversion layer**) is induced for current flow from source to drain
- □ Negative gate voltage is required to induce the channel → **enhancement-type** MOSFET

Complementary MOS (CMOS)

- ☐ CMOS technology employs both PMOS and NMOS devices
- \square If substrate is *p*-type, PMOS transistors are formed in *n* well (*n*-type body needed)
- \square If substrate is *n*-type, NMOS transistors are formed in *p* well (*p*-type body needed)
- ☐ The substrate and well are connected to voltages which reverse bias the junctions for device isolation

Exercise 5.1 (Textbook)

Exercise 5.2 (Textbook)

NTUEE Electronics - L. H. Lu

5.2 Current-Voltage Characteristics

Circuit symbol

□*n*-channel enhancement-mode MOSFET

The current-voltage characteristics

 \square Cut-off region: $(v_{GS} \le V_t)$

$$\rightarrow i_D = 0$$

 \square Triode region: $(v_{GS} > V_t \text{ and } v_{DS} < v_{GS} - V_t)$

$$\Rightarrow i_D = \mu_n C_{ox} \frac{W}{L} [(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2]$$

□ Saturation: $(v_{GS} > V_t \text{ and } v_{DS} \ge v_{GS} - V_t)$

$$\Rightarrow i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t)^2$$

□ large-signal model (saturation)

Channel length modulation

- \Box The channel pinch-off point moves slightly away from drain as $v_{DS} > v_{DSsat}$
- \Box The effective channel length ($L_{\rm eff}$) reduces with $v_{\rm DS}$
- ☐ Electrons travel to pinch-off point will be swept to drain by electric field
- \Box The length accounted for conductance in the channel is replaced by L_{eff} :

$$\int_{0}^{v_{GS}-V_{t}} k'_{n}W[v_{GS}-V_{t}-v(x)]dv = \int_{0}^{L_{eff}} i_{D}dx$$

$$i_{D} = \frac{1}{2}k'_{n}\frac{W}{L_{eff}}(v_{GS}-V_{t})^{2} = \frac{1}{2}k'_{n}\frac{W}{L-\Delta L}(v_{GS}-V_{t})^{2} \approx \frac{1}{2}k'_{n}\frac{W}{L}(v_{GS}-V_{t})^{2}(1+\frac{\Delta L}{L})$$
assuming that $\frac{\Delta L}{L} \propto v_{DS} \rightarrow i_{D} = \frac{1}{2}k'_{n}\frac{W}{L}(v_{GS}-V_{t})^{2}(1+\lambda v_{DS})$

Finite output resistance

- $\square V_A$ (Early voltage) = $1/\lambda$ is proportional to channel length: $V_A = V_A'L$
- $\square V'_A$ is process-technology dependent with a typical value from 5 ~ 50 V/ μ m
- \square Due to the dependence of i_D on v_{DS} , MOSFET shows **finite output resistance** in saturation region

The body effect

- ☐ The BS and BD junction should be reverse biased for the device to function properly
- □ Normally, the body of a *n*-channel MOSFET is connected to the most negative voltage
- \Box The depletion region widens in BS and BD junctions and under the channel as $V_{\rm SB}$ increases
- \square **Body effect**: V_t increases due to the excess charge in the depletion region under the channel
- ☐ The body effect can cause considerable degradation in circuit performance
- ☐ Threshold voltage:

$$V_{t} = V_{t0} + \gamma \left[\sqrt{2\phi_{f} + V_{SB}} - \sqrt{2\phi_{f}} \right]$$
where $\gamma = \frac{\sqrt{2qN_{A}\varepsilon_{Si}}}{C_{ox}}$ and $\phi_{f} = \frac{kT}{q} \ln(\frac{N_{A}}{n_{i}})$

☐ Current equations:

$$i_{D} = \mu_{n} C_{ox} \frac{W}{L} [(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2}]$$

$$i_{Dsat} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (v_{GS} - V_{t})^{2}$$

Temperature effect

- $\square V_{\rm t}$ decreases by ~2mV for every 1°C rise $\rightarrow i_{\rm D}$ increases with temperature
- $\Box k'_{\rm n}$ decreases with temperature $\rightarrow i_{\rm D}$ decreases with increasing temperature
- \Box For a given bias voltage, the overall observed effect of a temperature increase is a decrease in i_D

Breakdown and input protection

- ☐ Weak avalanche
 - \blacksquare pn junction between the drain and substrate suffers avalanche breakdown as $V_{\rm DS}$ increases
 - Large drain current is observed
 - Typical breakdown voltage 20 ~ 150 V
- ☐ Punch-through
 - Occurs at lower voltage (~20 V) for short channel devices
 - Drain current increases rapidly as the drain depletion region extends through the channel
 - Does not result in permanent damage to the device
- ☐ Gate-oxide breakdown
 - Gate-oxide breakdown occurs when gate-to-source voltage exceeds 30 V
 - Permanent damage to the device
- ☐ Input Protection
 - Protection circuit is needed for the input terminals of MOS integrated circuits
 - Using clamping diode for the input protection

The *p*-channel enhancement-type MOSFET

- ☐ For a PMOS, the source is connected to high voltage and the drain is connected to low voltage
- \square To induce the *p*-channel for the MOSFET, a negative v_{GS} is required $\rightarrow V_t$ (threshold voltage) < oV
- ☐ The body is normally connected to the most positive voltage

The current-voltage characteristics

$$\square$$
 Cut-off region: $(v_{GS} \ge V_{tp})$

$$\rightarrow i_D = 0$$

 \square Triode region: ($v_{GS} < V_{tp}$ and $v_{DS} > v_{GS} - V_{tp}$)

$$\Rightarrow i_D = \mu_p C_{ox} \frac{W}{L} [(v_{GS} - V_{tp}) v_{DS} - \frac{1}{2} v_{DS}^2]$$

□ Saturation: $(v_{GS} < V_{tp} \text{ and } v_{DS} \le v_{GS} - V_{tp})$

$$\Rightarrow i_D = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (v_{GS} - V_{tp})^2$$

- □ Transconductance parameter $k'_p = \mu_p C_{ox} \approx 0.4 k'_n$
- \square The values of v_{GS} , v_{DS} , V_t and λ for p-channel MOSFET operation are all negative
- \square Drain current i_D is still defined as a positive current

Exercise 5.4 (Textbook)

Exercise 5.5 (Textbook)

Exercise 5.6 (Textbook)

Exercise 5.7 (Textbook)

5.3 MOSFET Circuits at DC

DC analysis for MOSFET circuits

- Assume the operation mode and solve the dc bias utilizing the corresponding current equation
- ☐ Verify the assumption with terminal voltages (cutoff, triode and saturation)
- ☐ If the solution is invalid, change the assumption of operation mode and analyze again

DC analysis example

Assuming MOSFET in saturation

$$-V_{SS} = V_{GS} + I_D R_S = V_{GS} + \frac{1}{2} k_n \frac{W}{L} (V_{GS} - V_t)^2 R_S \rightarrow V_{GS} = 3V \text{ and } V_{DS} = -1.696V$$

$$\rightarrow V_{GS} = 3V \text{ or } 1V \text{(not a valid solution)} \qquad V_{DS} < V_{GS} - V_t \rightarrow \text{not in satura}$$

$$(V_{DS} = 4V) \ge (V_{GS} - V_t = 1V) \rightarrow \text{saturation}$$

Assuming MOSFET in saturation

$$(V_t)^2 R_S \rightarrow V_{GS} = 3V \text{ and } V_{DS} = -1.696V$$

 $V_{DS} < V_{GS} - V_t \rightarrow \text{not in saturation!}$

Assuming MOSFET in triode

$$I_{D} = k_{n}^{'} \frac{W}{L} [(V_{GS} - V_{t})V_{DS} - \frac{1}{2}V_{DS}^{2}]$$

$$V_{GS} + I_{D}R_{S} = -V_{SS}$$

$$V_{DS} + I_{D}(R_{D} + R_{S}) = V_{DD} - V_{SS}$$

$$\to V_{GS} = 3.35V, V_{DS} = 0.35V \text{ and } I_{D} = 0.33mA$$

$$V_{DS} < V_{GS} - V_{t} \to \text{in triode}$$

Exercise 5.8 (Textbook)

Exercise 5.9 (Textbook)

Exercise 5.10 (Textbook)

Example 5.5 (Textbook)

Example 5.6 (Textbook)

Exercise 5.12 (Textbook)

Example 5.7 (Textbook)

Example 5.8 (Textbook)

5.4 Applying the MOSFET in Amplifier Design

MOSFET voltage amplifier

- \square MOSFET with a resistive load R_D can be used as a voltage amplifier
- ☐ The voltage transfer characteristic (VTC)
 - The plot of $v_{\rm I}$ ($v_{\rm GS}$) versus $v_{\rm O}$ ($v_{\rm DS}$)
 - DC analysis as v_{GS} increases from o to V_{DD}
 - Cutoff mode: (o V $\leq v_{GS} < V_t$)
 - $\rightarrow i_D = 0$
 - $\rightarrow v_O = v_{DS} = V_{DD}$
 - Saturation mode: $(v_{GS} > V_t)$
 - $\rightarrow i_D = \frac{1}{2} k_n (v_{GS} V_t)^2$

 - Triode mode: (v_{GS} further increases)

Biasing the MOSFET to obtain linear amplification

- ☐ The slope in the VTC indicates voltage gain
- ☐ MOSFET in saturation can be used as voltage amplification
- \square Point Q is known as **bias point** or **dc operating point**

$$\rightarrow V_{DS} = V_{DD} - \frac{1}{2} k_n (V_{GS} - V_t)^2 R_D$$

 \Box The signal to be amplified is superimposed on V_{GS}

$$\rightarrow v_{\rm GS}(t) = V_{\rm GS} + v_{\rm gs}(t)$$

- \Box The time-varying part in $v_{GS}(t)$ is the amplified signal
- ☐ The circuit can be used as a linear amplifier if:
 - A proper bias point is chosen for gain
 - The input signal is small in amplitude

The small-signal voltage gain

 \Box The amplifier gain is the slope at Q:

$$A_{v} = \frac{dv_{DS}}{dv_{GS}} \Big|_{v_{GS} = V_{GS}} = -k_{n} (V_{GS} - V_{t}) R_{D} = -k_{n} V_{OV} R_{D}$$

☐ Maximum voltage gain of the amplifier

$$\mid A_{v}\mid = \mid -\frac{I_{D}R_{D}}{V_{OV}/2}\mid <\frac{V_{DD}}{V_{OV}/2} = \mid A_{v\max}\mid$$

Time

Determining the VTC by graphical analysis

- ☐ Provides more insight into the circuit operation
- □ **Load line**: the straight line represents in effect the load

$$\rightarrow i_{\rm D} = (V_{\rm DD} - v_{\rm DS})/R_{\rm D}$$

☐ The operating point is the intersection point

Locating the bias point *Q*

- ☐ The bias point (intersection) is determined by properly choosing the load line
- \Box The output voltage is bounded by $V_{\rm DD}$ (upper bound) and $V_{\rm OV}$ (lower bound)
- ☐ The load line determines the voltage gain
- ☐ The bias point determines the maximum upper/lower voltage swing of the amplifier

NTUEE Electronics - L. H. Lu

5.5 Small-Signal Operation and Models

The DC bias point

- MOSFET in saturation
 - Drain current: $I_D = \frac{1}{2}k_n(V_{GS} V_t)^2 = \frac{1}{2}k_nV_{OV}^2$
 - Drain voltage: $V_{DS} = V_{DD} I_D R_D > V_{OV}$
- ☐ The small-signal circuit parameters are determined by the bias point

The small-signal operation

☐ The small-signal drain current:

$$v_{GS} = V_{GS} + v_{gs}$$

$$i_{D} = \frac{1}{2} k_{n}^{'} \frac{W}{L} (V_{GS} + v_{gs} - V_{t})^{2} = \frac{1}{2} k_{n}^{'} \frac{W}{L} (V_{GS} - V_{t})^{2} + k_{n}^{'} \frac{W}{L} (V_{GS} - V_{t}) v_{gs} + \frac{1}{2} k_{n}^{'} \frac{W}{L} v_{gs}^{2}$$

$$\approx \frac{1}{2} k_{n}^{'} \frac{W}{L} (V_{GS} - V_{t})^{2} + k_{n}^{'} \frac{W}{L} (V_{GS} - V_{t}) v_{gs} = I_{D} + i_{d}$$

$$\rightarrow i_{d} = k_{n}^{'} \frac{W}{L} (V_{GS} - V_{t}) v_{gs}$$

☐ The small-signal voltage gain:

$$\begin{aligned} v_D &= V_{DD} - i_D R_D = V_{DD} - (I_D + i_d) R_D = V_D - i_d R_d = V_D + v_d \\ \rightarrow v_d &= -i_d R_D = -k_n' \frac{W}{L} V_{OV} R_D v_{gs} \\ \rightarrow A_v &\equiv \frac{v_d}{v_{gs}} = -k_n' \frac{W}{L} V_{OV} R_D \end{aligned}$$

The small-signal parameters

 \square Transconductance ($g_{\rm m}$): describes how $i_{\rm d}$ change with $v_{\rm gs}$

$$g_{m} \equiv \frac{i_{d}}{v_{gs}} = \frac{\partial i_{D}}{\partial v_{GS}}\Big|_{v_{GS} = V_{GS}} = k_{n}' \frac{W}{L} (V_{GS} - V_{t}) = \sqrt{2k_{n}' \frac{W}{L} I_{D}}$$

 \Box Output resistance (r_o): describes how i_d change with v_{ds}

$$r_o \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]_{v_{GS}=constant}^{-1} \approx \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$

- Drain current varies with v_{DS} due to channel length modulation
- Finite r_0 to model the linear dependence of i_D on v_{DS}
- The effect can be neglected if r_0 is sufficiently large
- \square Body transconductance ($g_{\rm mb}$): describes how $i_{\rm d}$ changes with $v_{\rm bs}$

$$i_{D} = \frac{1}{2} k_{n}^{'} \frac{W}{L} (v_{GS} - V_{t})^{2}$$

$$\rightarrow g_{mb} \equiv \frac{\partial i_{D}}{\partial v_{BS}} \Big|_{\substack{v_{GS} = \text{constant} \\ v_{DS} = \text{constant}}} = \frac{\partial i_{D}}{\partial V_{t}} \frac{\partial V_{t}}{\partial v_{BS}} = -k_{n}^{'} \frac{W}{L} (v_{GS} - V_{t}) \frac{\partial V_{t}}{\partial v_{BS}} = g_{m} \frac{\partial V_{t}}{\partial v_{SB}}$$

$$V_{t} = V_{t0} + \gamma \left[\sqrt{2\phi_{F} + v_{SB}} - \sqrt{2\phi_{F}} \right] \text{ where } \gamma = \sqrt{2qN_{A}\varepsilon_{Si}} / C_{ox}$$

$$\rightarrow \frac{\partial V_{t}}{\partial v_{SB}} \equiv \chi = \frac{\gamma}{2\sqrt{2\phi_{F} + V_{SB}}}$$

$$g_{mb} = g_{m} \chi$$

- The body effect of the MOSFET is modeled by $g_{\rm mb}$
- Can be neglected if body and source are connected together

The small-signal equivalent circuit models

 \square Hybrid- π model

Small-Signal Parameters

NMOS transistors

■ Transconductance:

$$g_m = \mu_n C_{ox} \frac{W}{L} V_{OV} = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = \frac{2I_D}{V_{OV}}$$

Output resistance:

$$r_o = V_A/I_D = 1/\lambda I_D$$

5.6 Basic MOSFET Amplifier Configuration

Three basic configurations

Common-Source (CS)

Characterizing amplifiers

- ☐ The MOSFET circuits can be characterized by a voltage amplifier model (unilateral model)
- \Box The electrical properties of the amplifier is represented by $R_{\rm in}$, $R_{\rm o}$ and $A_{\rm vo}$
- ☐ The analysis is based on the small-signal or linear equivalent circuit (dc components not included)
- \square Voltage gain: $A_v \equiv \frac{v_o}{v_i} = \frac{R_L}{R_L + R_o} A_{vo}$
- Overall voltage gain: $G_v = \frac{v_o^2}{v_{sig}} = \frac{R_{in}}{R_{in} + R_{sig}} A_v = \frac{R_{in}}{R_{in} + R_{sig}} \frac{R_L}{R_L + R_{so}} A_{vo}$

The common-source (CS) amplifier

- ☐ Characteristic parameters of the CS amplifier
 - Input resistance: $R_{in} = \infty$
 - Output resistance: $R_o = R_D \parallel r_o \approx R_D$
 - Open-circuit voltage gain: $A_{vo} = -g_m(R_D \parallel r_o) \approx -g_m R_D$
 - Voltage gain: $A_v = -g_m(R_D \parallel R_L \parallel r_o) \approx -g_m(R_D \parallel R_L)$
- □CS amplifier can provide high voltage gain
- ☐ Input and output are out of phase due to negative gain
- □ Output resistance is moderate to high
- \square Small R_D reduces R_o at the cost of voltage gain

The common-source (CS) with a source resistance

- \Box Characteristic parameters (by neglecting r_o)
 - Input resistance:

$$R_{in} = \infty$$

■ Output resistance:

$$R_o = R_D$$

■ Open-circuit voltage gain:

$$A_{vo} = -\frac{g_m R_D}{1 + g_m R_s}$$

■ Voltage gain:

$$A_{v} = -\frac{g_{m}(R_{D} \parallel R_{L})}{1 + g_{m}R_{s}}$$

■ Overall voltage gain:

$$G_{v} = -\frac{g_{m}(R_{D} \parallel R_{L})}{1 + g_{m}R_{s}}$$

- **□ Source degeneration resistance** R_s is adopted
- \Box Gain is reduced by the factor (1+ $g_{\rm m}R_{\rm s}$)
- ☐ Considered a negative feedback of the amplifier

The common-gate (CG) amplifier

 \Box Characteristic parameters of the CG amplifier (by neglecting r_o)

■ Input resistance: $R_{in} = 1/g_m$

■ Output resistance: $R_o = R_D$

■ Open-circuit voltage gain: $A_{vo} = g_m R_D$

■ Voltage gain: $A_v = g_m(R_D \parallel R_L)$

Overall voltage gain: $G_v = \frac{1}{1 + g_m R_{sig}} g_m (R_D \parallel R_L)$

□CG amplifier can provide high voltage gain

☐ Input and output are in-phase due to positive gain

☐ Input resistance is very low

☐ A single CG stage is not suitable for voltage amplification

□ Output resistance is moderate to high

 \square Small R_D reduces R_o at the cost of voltage gain

 \Box The amplifier is no longer unilateral if r_o is included

The common-collector (CD) amplifier

- \square Characteristic parameters of the CD amplifier (by neglecting r_o)
 - Input resistance: $R_{in} = \infty$
 - Output resistance: $R_o = 1/g_m$
 - Voltage gain: $A_v = R_L / (R_L + 1/g_m) = g_m R_L / (g_m R_L + 1) \approx 1$
 - Overall voltage gain: $G_v = (R_L)/(R_L + 1/g_m) = g_m R_L/(g_m R_L + 1) \approx 1$
- □ CD amplifier is also called **source follower**.
- ☐ Input resistance is very high
- □ Output resistance is very low
- ☐ The voltage gain is less than but can be close to 1
- □CD amplifier can be used as voltage buffer

5.7 Biasing in MOS Amplifier Circuits

DC bias for MOSFET amplifier

- ☐ The amplifiers are operating at a proper dc bias point
- ☐ Linear signal amplification is provided based on small-signal circuit operation
- \Box The DC bias circuit is to ensure the MOSFET in **saturation** with a proper collector current I_D

Biasing by fixing gate-to-source voltage

- \square Fix the dc voltage V_{GS} to specify the saturation current of the MOSFET: $I_D = \frac{1}{2}k_n(V_{GS} V_t)^2 = \frac{1}{2}k_n(V_G V_t)^2$
- \Box Bias current deviates from the desirable value due to variations in the device parameters $V_{\rm t}$ and $\mu_{\rm n}$

Biasing by fixing gate voltage and connecting a source resistance

- □ The bias condition is specified by: $V_G = V_{GS} + \frac{1}{2}k_n(V_{GS} V_t)^2 R_S$ and $I_D = \frac{1}{2}k_n(V_{GS} V_t)^2$
- ☐ Drain current has better tolerance to variations in the device parameters

Biasing using a drain-to-gate feedback resistor

- □ A single power supply is needed
- $\square R_{G}$ ensures the MOSFET in saturation ($V_{GS} = V_{DS}$)
- $\square \text{ MOSFET operating point: } \frac{V_{DD} V_{GS}}{R_D} = \frac{1}{2} k_n (V_{GS} V_t)^2$
- \square The value of the feedback resistor R_G affects the small-signal gain

Biasing using a constant-current source

- ☐ The MOSFET can be biased with a constant current source *I*
- \square The resistor R_D is chosen to operate the MOSFET in active mode
- ☐ The current source is typically a current mirror
- ☐ Current mirror circuit:
 - MOSFETs Q_1 and Q_2 are in saturation
 - The reference current $I_{REF} = I = I_{D}$

$$\frac{V_{DD} - V_{GS}}{R} = \frac{1}{2} k_n (V_{GS} - V_t)^2$$

$$I_{REF} = \frac{1}{2} k_n (V_{GS} - V_t)^2$$

■ When applying to the amplifier circuit, the voltage V_{D_2} has to be high enough to ensure Q_2 in saturation

Example 6.11 (Textbook)

Exercise 6.31 (Textbook)

Exercise 6.32 (Textbook)

Exercise 6.33 (Textbook)

5.8 Discrete-Circuit MOS Amplifiers

Circuit analysis:

- □DC analysis:
 - Remove all ac sources (short for voltage source and open for current source)
 - All capacitors are considered open-circuit
 - DC analysis of MOSFET circuits for all nodal voltages and branch currents
 - Find the dc current I_D and make sure the MOSFET is in saturation
- **AC** analysis:
 - Remove all dc sources (short for voltage source and open for current source)
 - All **large capacitors** are considered short-circuit
 - Replace the MOSFET with its small-signal model for ac analysis
 - \blacksquare The circuit parameters in the small-signal model are obtained based on the value of I_D

The common-source (CS) amplifier

The common-source amplifier with a source resistance

NTUEE Electronics - L. H. Lu

The common-gate (CG) amplifier

$R_{o} = R_{D}$ $R_{sig} \stackrel{i_{i}}{\longrightarrow} S$ $V_{sig} \stackrel{i_{i}}{\longrightarrow} R_{in} = \frac{1}{g_{m}} = \frac{1}{g_{m}}$

The common-drain (CD) amplifier

The amplifier frequency response

- ☐ The gain falls off at low frequency band due to the effects of the coupling and by-pass capacitors
- ☐ The gain falls off at high frequency band due to the internal capacitive effects in the MOSFETs
- ☐ Midband:
 - All coupling and by-pass capacitors (large capacitance) are considered short-circuit
 - All internal capacitive effects (small capacitance) are considered open-circuit
 - Midband gain is nearly constant and is evaluated by small-signal analysis
 - The bandwidth is defined as $BW = f_H f_L$
 - A figure-of-merit for the amplifier is **its gain-bandwidth product** defined as $GB = |A_M|BW$

NTUEE Electronics - L. H. Lu

Exercise 6.37 (Textbook)

Exercise 6.38 (Textbook)

Exercise 6.40 (Textbook)

Exercise 6.41 (Textbook)

Exercise 6.42 (Textbook)

Exercise 6.43 (Textbook)

Exercise 6.44 (Textbook)