

R2S15902FP

6ch Electronic Volume with 4 Input Selector

REJ03F0152-0100 Rev.1.0 Nov.22.2005

Description

R2S15902FP is an audio signal processor for home audio. This IC contains 6 channels electronic volume, gain control, input selector and 2 band tone control.

Features

- 6 channels independent electronic volume (0 to −99dB/1dBstep, −∞dB)
- 6 channels independent gain control (0 to +14dB/2dB step)
- L/R channel 4 input selector (Input gain: 0 to +14dB/ 2dB step)
- Multi channel input: 6 channels input
- Tone control Bass: -14 to + 14dB(2dB step), Treble: -14 to + 14dB(2dB step)
- Can use 1 input for REC output (REC output gain: 0, +2, +4, +6dB)
- Built-in ADC output (Input Att: 0/ -6/ -12/ -18dB)
- Built-in L+R/ L-R block
- Built-in digital power supply

Recommended Operating Condition

Supply voltage range $V_{CC} = 8.0V$ to 10.0V: 9.0V(typ)

Application

Receiver, AV amp, Home theater, Mini stereo etc.

System Block Diagram

Block Diagram and Pin Configuration

Pin Description

Pin No.	Name	Function
1	ADCL (L-R)	Output pin for ADC (and L-R output)
2	LOUTSL	L channel pre-output (REC output) for SL channel
3	LINSL	SL channel input from L channel pre-output (REC output)
4	ROUTSR	R channel pre-output (REC output) for SR channel
5	RINSR	SR channel input from R channel pre-output (REC output)
6, 7, 8, 9, 10, 11	LIN, RIN, CIN, SWIN, SLIN, SRIN	Input pin of L/R/C/SW/SL/SR channel (Multi)
12	DGND	Digital ground
13	DATA	Input pin of control data
14	CLOCK	Input pin of control clock
15, 16, 17, 18, 19, 20	SROUT, SLOUT, SWOUT, COUT, ROUT, LOUT	Output pin of SR/SL/SW/C/R/L channel
21, 22 23, 24	BASR1, BASR2, BASL1, BASL2	Frequency characteristic setting pin of R/L channel tone control (BASS)
25, 26	TRER, TREL	Frequency characteristic setting pin of R/L channel tone control (Treble)
27, 29	VOLINL, VOLINR	Input pin of L/R channel volume
28, 30	GAINOUTL, GAINOUTR	Output pin of L/R channel Input gain
31,33,35, 32,34,36	INL1, 2, 3, INR1, 2, 3	Input pin of L/R channel (Input selector)
37, 38	INL4/RECL1, INR4/RECR1	Input pin of L/R channel (Input selector) can use REC output pin
39	AGND	Analog ground
40	VREF	1/2 V _{CC} input
41	VCC	Power supply to internal analog circuit
42	ADCR(L+R)	Output pin for ADC(and L+R output)
43	L+RCIN	L+R input for C channel
44	L+RSWIN	L+R input for SW channel

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Condition
Power supply	Supply voltage	10.5	V	V _{CC}
Power dissipation	Pd	1.25	W	Ta≤25°C
Thermal derating	K	12.5	mW/°C	Ta>25°C
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Recommended Operating Conditions

(Ta=25°C, unless otherwise noted.)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Supply voltage	V _{CC}	8.0	9.0	10.0	V	
Logic "H" level input voltage	V _{IH}	2.7	_	5.5	V	$V_{CC} = 9V$
Logic "L" level input voltage	V _{IL}	0	_	0.7	V	$V_{CC} = 9V$

Relationship Between Data and Clock

Clock and Data Timings

Timing Definition of Digital Block

Parameter	Symbol	Min	Тур	Max	Unit
CLOCK cycle time	tcr	8	_	_	
CLOCK pulse width ("H" level)	tWHC	3.2	_	_	
CLOCK pulse width ("L" level)	tWLC	3.2	_	_	
Rising time of clock and data	tr	_	_	0.8	
Falling time of clock and data	tf		_	0.8	
DATA setup time (Rising time of clock)	tSHD	1.6	_	_	μs
DATA setup time (Falling time of clock)	tSLD	1.6	_	_	
DATA hold time ("H" level)	tHHD	1.6	_	_	
DATA hold time ("L" level)	tHLD	1.6	_	_	
CLOCK setup time	tSC	1.6	_	_	

Power on Reset

This IC built-in the power on reset function.

The voltage of VCC-GND less than 4V, the serial DATA can not accept.

Data Control Specification

Initialize all data of the 4 formats when digital power supply (V_{CC}) turns on.

Prohibit using except specified data code as follows.

	1 1		-										1			1	1	1		1	S	lot1
D0a D1a	D2a		D4a	D5a	D6a	D7a	D8a	D9a	D10a	D11a	D12a	D13a	D14a	D15a	D16a		D18a	D19a	D20a	D21a	D22	D2
1)Input Se	elector	(2) REC Out	REC-(3 Ga Cor	Óutput iin	AE Ing A	out	(5) L/R Input	Tone		Bass/ rol By	pass		(7)	Treble)	(8) SL/SR /C/SW Input		nput C	ain	0	0	0
																					S	lot2
D0b D1b	D2b	D3b	D4b	D5b	D6b	D7b	D8b	D9b	D10b	D11b	D12b	D13b	D14k	D15b	D16b	D17b	D18b	D19b	D20b	D21b	D22	D2
(10) Lch Ga Contr	ain			(11)L	ch Vo	lume				(10) RchGa Contro				(11)	Rch \	Volum	ne		0	0	0	1
												<u>'</u>								•	S	lot3
	D2c	D3c	D4c	D5c	D6c	D7c	D8c	D9c	D10c	D11c	D12c	D13c	D140	D15c	D16c	D17c	D18c	D19c	D20c	D21c		lot3
	ain	D3c	D4c			D7c /olum		D9c	SV	D11c (10) Wch G Contro	ain	D13c	D14d			D17d Volum		D19c	D20c	D21c		D2
D0c D1c (10) CchGa	ain	D3c	D4c					D9c	SV	(10) Wch G	ain	D13c	D14d					D19c			D22	D2
D0c D1c (10) CchGa	ain ol		D4c	(11)	Cch \		e		SV ((10) Wch G	Sain ol			(11)S	Wch'	Volum	ne		0	0	D22	D2

Setting Code

It's initial setting when power is turned on.

(1) Input Selector

Setting	D0a	D1a	D2a
ALL OFF	0	0	0
IN1	0	1	0
IN2	1	0	0
IN3	1	1	0
IN4* ₁	0	0	1

Note: No guarantee except for these codes.

(2) REC Output

REC output	REC1
Setting	D3a
OFF	0
ON	1 _{*1}

^{*1:} When IN4 selected, REC1 can not use.

IN4	REC1	D0a	D1a	D2a	D3a
ON	OFF	0	0	1	1

(3) REC-Output Gain Control

Gain setting	D4a	D5a
0dB	0	0
+2dB	0	1
+4dB	1	0
+6dB	1	1

(4) ADC Input ATT

ATT setting	D6a	D7a
0dB	0	0
–6dB	0	1
-12dB	1	0
-18dB	1	1

^{*2:} When L \pm R selected, ADC input ATT can not use.

(5) L/R Input

Setting	D8a
Selector in	0
Multi in	1

It's initial setting when power is turned on.

(6) Bass/Bypass (Tone control is bypass)

Gain setting	D9a	D10a	D11a	D12a
+14dB	1	1	1	1
+12dB	1	1	1	0
+10dB	1	1	0	1
+8dB	1	1	0	0
+6dB	1	0	1	1
+4dB	1	0	1	0
+2dB	1	0	0	1
0dB	1	0	0	0
–2dB	0	0	0	1
-4dB	0	0	1	0
–6dB	0	0	1	1
-8dB	0	1	0	0
-10dB	0	1	0	1
-12dB	0	1	1	0
-14dB	0	1	1	1
Bypass∗₃	0	0	0	0

^{*3:} Tone control is bypass.

(7) Treble

Gain setting	D13a	D14a	D15a	D16a
+14dB	1	1	1	1
+12dB	1	1	1	0
+10dB	1	1	0	1
+8dB	1	1	0	0
+6dB	1	0	1	1
+4dB	1	0	1	0
+2dB	1	0	0	1
0dB	1/0	0	0	0
−2dB	0	0	0	1
-4dB	0	0	1	0
−6dB	0	0	1	1
-8dB	0	1	0	0
-10dB	0	1	0	1
-12dB	0	1	1	0
-14dB	0	1	1	1

(8) SL/ SR/ C/ SW Input *2

Setting	D17a
L ± R in	0*2
Multi in	1

^{*2:} When L \pm R selected, ADC input ATT can not use.

(9) Input Gain

Gain setting	D18a	D19a	D20a
0dB	0	0	0
+2dB	0	0	1
+4dB	0	1	0
+6dB	0	1	1
+8dB	1	0	0
+10dB	1	0	1
+12dB	1	1	0
+14dB	1	1	1

(10) Gain Control

	Lch	D0b	D1b	D2b
	Rch	D10b	D11b	D12b
Gain	Cch	D0c	D1c	D2c
setting	SWch	D10c	D11c	D12c
	SLch	D0d	D1d	D2d
	SRch	D10d	D11d	D12d
00	dB	0	0	0
+2	dB	0	0	1
+4	dB	0	1	0
+6	dB	0	1	1
+8dB		1	0	0
+10dB		1	0	1
+12dB		1	1	0
+14	4dB	1	1	1

(11) 6channels Volume

It's initial setting when power is turned on.

	Lch	D3b	D4b	D5b	D6b	D7b	D8b	D9b
	Rch	D13b	D14b	D15b	D16b	D17b	D18b	D19b
ATT	Cch	D3c	D4c	D5c	D6c	D7c	D8c	D9c
AII	SWch	D13c	D14c	D15c	D16c	D17c	D18c	D19c
	SLch	D3d	D4d	D5d	D6d	D7d	D8d	D9d
	SRch	D13d	D14d	D15d	D16d	D17d	D18d	D19d
	0dB	0	0	0	0	0	0	0
_	-1dB	0	0	0	0	0	0	1
_	-2dB	0	0	0	0	0	1	0
_	-3dB	0	0	0	0	0	1	1
_	-4dB	0	0	0	0	1	0	0
_	-5dB	0	0	0	0	1	0	1
_	-6dB	0	0	0	0	1	1	0
_	-7dB	0	0	0	0	1	1	1
_	-8dB	0	0	0	1	0	0	0
_	-9dB	0	0	0	1	0	0	1
_	10dB	0	0	0	1	0	1	0
	11dB	0	0	0	1	0	1	1
_	12dB	0	0	0	1	1	0	0
_	13dB	0	0	0	1	1	0	1
_	14dB	0	0	0	1	1	1	0
_	15dB	0	0	0	1	1	1	1
_	16dB	0	0	1	0	0	0	0
_	17dB	0	0	1	0	0	0	1
_	18dB	0	0	1	0	0	1	0
_	19dB	0	0	1	0	0	1	1
-	20dB	0	0	1	0	1	0	0
-	21dB	0	0	1	0	1	0	1
-	22dB	0	0	1	0	1	1	0
-	23dB	0	0	1	0	1	1	1
-	24dB	0	0	1	1	0	0	0
-	25dB	0	0 0	1	1	0	0	1
-	26dB	0	0	1	1	0	1	0
-	27dB	0	0	1	1	0	1	1
-	28dB	0	0	1	1	1	0	0
-	29dB	0	0	1	1	1	0	1
_	30dB	0	0	1	1	1	1	0
_	31dB	0	0	1	1	1	1	1
_	32dB	0	1	0	0	0	0	0
	33dB	0	1	0	0	0	0	1
-	34dB	0	1	0	0	0	1	0
-	35dB	0	1	0	0	0	1	1
-	36dB	0	1	0	0	1	0	0
-	37dB	0	1	0	0	1	0	1
-	38dB	0	1	0	0	1	1	0
_	39dB	0	1	0	0	1	1	1
_	40dB	0	1	0	1	0	0	0
_	41dB	0	1	0	1	0	0	1
_	42dB	0	1	0	1	0	1	0
_	43dB	0	1	0	1	0	1	1

	Lch	D3b	D4b	D5b	D6b	D7b	D8b	D9b
	Rch	D13b	D14b	D15b	D16b	D17b	D18b	D19b
	Cch	D3c	D4c	D5c	D6c	D7c	D8c	D9c
ATT	SWch	D13c	D14c	D15c	D16c	D17c	D18c	D19c
	SLch	D3d	D4d	D5d	D6d	D7d	D8d	D9d
	SRch	D13d	D14d	D15d	D16d	D17d	D18d	D19d
_	44dB	0	1	0	1	1	0	0
_	45dB	0	1	0	1	1	0	1
_	46dB	0	1	0	1	1	1	0
_	47dB	0	1	0	1	1	1	1
_	48dB	0	1	1	0	0	0	0
_	49dB	0	1	1	0	0	0	1
_	50dB	0	1	1	0	0	1	0
_	51dB	0	1	1	0	0	1	1
_	52dB	0	1	1	0	1	0	0
_	53dB	0	1	1	0	1	0	1
_	54dB	0	1	1	0	1	1	0
_	55dB	0	1	1	0	1	1	1
_	56dB	0	1	1	1	0	0	0
_	57dB	0	1	1	1	0	0	1
_	58dB	0	1	1	1	0	1	0
_	59dB	0	1	1	1	0	1	1
_	60dB	0	1	1	1	1	0	0
_	61dB	0	1	1	1	1	0	1
_	62dB	0	1	1	1	1	1	0
_	63dB	0	1	1	1	1	1	1
_	64dB	1	0	0	0	0	0	0
_	65dB	1	0	0	0	0	0	1
_	66dB	1	0	0	0	0	1	0
_	67dB	1	0	0	0	0	1	1
_	68dB	1	0	0	0	1	0	0
_	69dB	1	0	0	0	1	0	1
_	70dB	1	0	0	0	1	1	0
_	71dB	1	0	0	0	1	1	1
_	72dB	1	0	0	1	0	0	0
_	73dB	1	0	0	1	0	0	1
_	74dB	1	0	0	1	0	1	0
_	75dB	1	0	0	1	0	1	1
	76dB	1	0	0	1	1	0	0
	77dB	1	0	0	1	1	0	1
	78dB	1	0	0	1	1	1	0
	79dB	1	0	0	1	1	1	1
	80dB	1	0	1	0	0	0	0
	81dB	1	0	1	0	0	0	1
	82dB	1	0	1	0	0	1	0
	83dB	1	0	1	0	0	1	1
	84dB	1	0	1	0	1	0	0
	85dB	1	0	1	0	1	0	1
	86dB	1	0	1	0	1	1	0
_	87dB	1	0	1	0	1	1	1
-	88dB	1	0	1	1	0	0	0
	89dB	1	0	1	1	0	0	1
_	90dB	1	0	1	1	0	1	0

	Lch	D3b	D4b	D5b	D6b	D7b	D8b	D9b
	Rch	D13b	D14b	D15b	D16b	D17b	D18b	D19b
ATT	Cch	D3c	D4c	D5c	D6c	D7c	D8c	D9c
^11	SWch	D13c	D14c	D15c	D16c	D17c	D18c	D19c
	SLch	D3d	D4d	D5d	D6d	D7d	D8d	D9d
	SRch	D13d	D14d	D15d	D16d	D17d	D18d	D19d
_	91dB	1	0	1	1	0	1	1
_	92dB	1	0	1	1	1	0	0
_	93dB	1	0	1	1	1	0	1
_	94dB	1	0	1			1	0
_	95dB	1	0 1		1	1	1	1
_	96dB	1	1	0	0	0	0	0
_	97dB	1	1	0	0	0	0	1
-98dB -99dB -∞dB		1	1	0	0	0	1	0
		1	1	0	0	0	1	1
		1	1	1/0	1/0	1	1/0	1/0

Note: No guarantee except for these codes.

Electrical Characteristics

Unless otherwise noted, Ta = 25°C, $V_{CC} = 9V$, f = 1kHz, Volume = 0dB, Input selector = IN1, Input gain = 0db, Input gain = 0dB,

(1) Power supply characteristics

		Limits				Limits		
Parameter	Symbol	Min	Тур	Max	Unit	Test condition		
Analog power supply circuit current	Icc	_	35	55	l mA	With $V_{CC} = 9V$ V_{CC} current, when no signal is provided		

(2) Input/Output characteristics (OVER ALL)

			Limits	i						
Parameter	Symbol	Min	Тур	Max	Unit	Test condition				
Input resistance	Rin	17	25	33	kΩ	6 to 11, 31 to 36 pin				
Maximum output voltage	VOM	1.8	2.2	_	Vrms	6 to 11pin input, 15 to 20pin output, THD = 1%, RL = 10kΩ, Output gain control = +6dB				
Pass gain	Gv	-2.0	0	2.0	dB	6 to 11pin input, 15 to 20pin output, Vi = 0.3Vrms, FLAT				
Total harmonic distortion	THD	_	0.005	0.02	%	6 to 11pin input, 15 to 20pin output, BW: 400Hz to 30kHz, f = 1kHz, Vo				
Balance of mutual channels	CBAL	-0.5	0	0.5	dB	31,32pin input, 19,20pin output, Vi = 0.3Vrms				
	Vana1	_	2	6		JIS-A, Rg = 0Ω , 19,20pin output,	Output gain control = 0dB			
	Vono1	_	9	18		Volume = -∞dB setting	Output gain control = +14dB			
Output noise	Vono2	_	2	6	µVrms	JIS-A, Rg = 0Ω , 19,20pin output,	Output gain control = 0dB			
voltage	V 01102	_	9	18	μνιιιιδ	Volume = 0dB setting	Output gain control = +14dB			
	Vono3		2	6		JIS-A, Rg = 0Ω , 15 to 18pin output,	Output gain control = 0dB			
	V01103	_	9	18		Volume = 0dB setting	Output gain control = +14dB			
Selector	SS1	_	-90	-70		< Input selector> Vo = 1Vrms, Rg = 0Ω , RL = $10k\Omega$, JIS-A				
separation	SS2	_	-90	-70	dB	< Multi input selector > Vo = 1Vrms, Rg = 0Ω , RL = $10k\Omega$,	JIS-A			
Channel separation	cs	_	-90	-70		Vo = 1Vrms, Rg = 0Ω , RL = $10k\Omega$, JIS-A				

(3) 6 channel Volume characteristics

			Limits			
Parameter	Symbol	Min	Тур	Max	Unit	Test condition
Maximum attenuation	ATTmax	_	-105	-95	dB	Vi = 2Vrms, JIS-A, VOL = -∞dB
Volume gain gang error of mutual channels	Dvol	-0.5	0	+0.5	dB	Volume = 0dB

(4) Tone control characteristics

Unless otherwise noted, Tone ON/OFF = ON

			Limits			
Parameter	Symbol	Min	Тур	Max	Unit	Test condition
Tone control voltage gain (Boost/Bass)	G (BASS) B	+11	+14	+17	dB	f = 100Hz Bass +14dB setting
Tone control voltage gain (Cut/Bass)	G (BASS) C	-17	-14	-11	dB	f = 100Hz Bass –14dB setting
Tone control voltage gain (Boost/Treble)	G (TRE) B	+11	+14	+17	dB	f = 10kHz Treble +14dB setting
Tone control voltage gain (Cut/Treble)	G (TRE) C	-17	-14	-11	dB	f = 10kHz Treble –10dB setting
Balance of mutual channels	BALT	-2	0	+2	dB	Bass setting +14, -14dB Treble setting +14, -14dB

Tone Control

(1) Bass

(2) Treble

Curve of characteristics

Application Example

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- However the state of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resoluting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 205, AZIA Center, No.133 Yincheng Rd (n), Pudong District, Shanghai 200120, China Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510