Série 2 : Applications Lineaires et Matrices

Exercice 1. Soient f une application de \mathbb{R}^3 dans \mathbb{R}^3 définie, pour tout $(x,y,z) \in \mathbb{R}^3$, par

$$f(x,y,z) = (x + y + z, y - z, x + 2z),$$

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau et l'image de f. f est-elle injective? Est-elle surjective?
- 3. Montrer que $ker(f) \oplus Im(f) = \mathbb{R}^3$.
- 4. Déterminer f(F) où $F\{(x,y,z) \in \mathbb{R}^3, x+2z=0\}$.

Exercice 2. Soit φ l'application définie par

$$\begin{array}{ll} \varphi: & \mathbb{R}_3[X] \longrightarrow \mathbb{R}^4 \\ & P \mapsto (P(1), P'(1), P(2), P'(2)) \end{array}$$

- 1. Montrer que φ est linéaire..
- 2. Déterminer le noyau de φ . En déduire que φ est surjective.

Exercice 3. L'entier n étant dans N. Soit f l'application définie par

$$\varphi: \mathbb{R}_{n+1}[X] \longrightarrow \mathbb{R}_n[X]$$

$$P \mapsto (n+1)P - XP'$$

- 1. Montrer que f est linéaire..
- 2. Déterminer le noyau de f. En déduire que f est surjective.

Exercice 4. Soit g un endomorphisme de \mathbb{R}^3 défini par :

$$g(1,0,0) = (2,1,3), g(0,1,0) = (0,1,-3), g(0,0,1) = (0,-2,2)$$

- 1. Soit $X = (x, y, z) \in \mathbb{R}^3$. Calculer g(X).
- 2. Soit $E = \{X \in \mathbb{R}^3 : g(X) = 2X\}$ et $F = \{X \in \mathbb{R}^3 : g(X) = -X\}$. Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 3. Déterminer une base de E et une base de F.
- 4. Y a-t- $il <math>E \oplus F = \mathbb{R}^3$.

Exercice 5. Soient E un K-espaces vectoriels de dimension finie, f et g deux endomorphismes d'un espace vectoriel E vérifiant de fid.

- 1. Montrer que $Ker(g \circ f) = Ker(f)$ et $Im(g \circ f) = Im(g)$
- 2. Montrer que $E = Ker(f) \oplus Im(\mathbf{G})$.

Exercice 6. Soit $A = \begin{pmatrix} 2 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$ Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 7. Soit $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. Utiliser la méthode du pivot de Gauss pour montrer que A est inversible. Préciser son inverse.

Exercice 8. Soit $A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ Calculer $A^2 - 4A + 3I$. En déduire que A est inversible et calculer son inverse.

Exercice 9. Soient les matrices $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ et $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$.

- 1. a) Calculer P^{-1} .
 - b) Calculer $A_0 = P^{-1}AP$.
 - c) Calculer A^n pour tout $n \ge 1$.
- 2. On considère les suites (u_n) et (v_n) définies par $u_0 = 1$ et $v_0 = 2$ et les relations de récurrence suivantes

$$\begin{cases} u_{n+1} &= 2u_n - v_n \\ v_{n+1} &= -u_n + 2v_n \end{cases}.$$