

<u>Gameboard</u>

Maths

Complex Numbers: Equations to Quartics 3i

# Complex Numbers: Equations to Quartics 3i



| Part A $z^4=16$                                                        |  |
|------------------------------------------------------------------------|--|
| The roots of the equation $z^4=16$ can be written in the form $x+iy$ . |  |
| Give the solution with positive $x$ .                                  |  |

The following symbols may be useful: i

Give the solution with negative  $\boldsymbol{x}.$ 

The following symbols may be useful:  $\mathtt{i}$ 

Give the solution with positive y.

The following symbols may be useful: i

Give the solution with negative y.

The following symbols may be useful: i

## Part B Another quartic

| The previous part can be used to solve the equation | $w^4 = 16(1 -$ | $w)^4$ . The s | solutions can | be written | in the |
|-----------------------------------------------------|----------------|----------------|---------------|------------|--------|
| form $x+iy$ .                                       |                |                |               |            |        |

Of the two roots that are purely real - that is,  $\mathrm{Im}(w)=0$  - give the larger root.

Of the two roots that are purely real - that is,  $\mathrm{Im}(w)=0$  - give the smaller root.

The other two roots are complex, and can be written in the form x+iy.

Give the complex root with positive y.

The following symbols may be useful: i

Give the complex root with negative y.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, Jan 2010, Paper 4727, Question 4.



<u>Gameboard</u>

Maths Arga

Argand Diagrams: Solving Inequalities 3i

# Argand Diagrams: Solving Inequalities 3i





Figure 1: C and l are shown on a single Argand diagram.

The Argand diagram above shows a circle  ${\cal C}$  and a half-line  ${\it l}$ . The circle has centre 3i and passes through the origin.

#### 

Give the equation of  ${\cal C}$  in the form

$$|z-z_1|=a$$

where  $z_1$  is complex and a is real.

The following symbols may be useful: i, z

# ${\bf Part \, B} \qquad {\bf Equation \, of } \, l \\$

The equation of  $\boldsymbol{l}$  can be written in the form

$$arg(z-)$$

Use the items to complete the equation of l.

Items:



## Part C Inequalities

The shaded region includes its boundaries and is defined by two inequalities. They are in the form

and

$$\leq rg(z-) \leq (z-1)$$

Use the items to complete the inequalities.

Items:



Adapted with permission from UCLES, A Level, June 2013, Paper 4725, Question 6.

Gameboard:

**STEM SMART Double Maths 48 - Complex Numbers**,

**Matrices & Geometry Revision** 



<u>Gameboard</u>

Maths

Complex Numbers: De Moivre 4ii

# Complex Numbers: De Moivre 4ii



Part A  $\cos^6 heta$ 

By expressing  $\cos \theta$  in terms of  $e^{i\theta}$ , write  $\cos^6 \theta$  in terms of  $\cos(n\theta)$ .

Give your answer in the form

$$\cos^6 \theta = f(\cos 6\theta, \cos 4\theta, \cos 2\theta)$$

The following symbols may be useful: cos(), theta

### Part B Solutions to an equation

Hence solve, for  $0 \le \theta \le \pi$ ,

$$\cos 6\theta + 6\cos 4\theta + 2\cos 2\theta = 3.$$

Give your solutions in radians to 3 significant figures.



Adapted with permission from UCLES, A Level, June 2017, Paper 4727, Question 7.

Gameboard:

**STEM SMART Double Maths 48 - Complex Numbers,** 

**Matrices & Geometry Revision** 



Gameboard

Maths

Algebra and Roots: Cubics with Substitution 3i

# Algebra and Roots: Cubics with Substitution 3i



The cubic equation  $x^3 + 2x^2 + 3x + 4 = 0$  has roots  $\alpha$ ,  $\beta$  and  $\gamma$ .

#### Part A Substitution

Use the substitution  $x = \frac{1}{u+1}$  to find a cubic equation in u with the form  $au^3 + bu^2 + cu + d = 0$  where a, b, c and d are integers.

The following symbols may be useful: u

Part B 
$$\left(\frac{1}{lpha}-1\right)\left(\frac{1}{eta}-1\right)\left(\frac{1}{\gamma}-1\right)$$

Hence, find the value of  $\left(\frac{1}{\alpha}-1\right)\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\gamma}-1\right)$  as a single fraction.

Adapted with permission from UCLES, A Level, June 2018, Paper 4725, Question 5.

Gameboard:

**STEM SMART Double Maths 48 - Complex Numbers**,

**Matrices & Geometry Revision** 



<u>Gameboard</u>

Maths

Algebra Matrices

Matrices - Linear Equations 1

# **Matrices - Linear Equations 1**



Use matrix notation to solve the following set of three equations:

$$x + ky - z = 3$$
$$3x + ky = 1$$
$$-x + 4y + z = 3.$$

where k is a constant.

#### Part A Matrix form

Write these equations in matrix form  $\mathbf{A}\mathbf{x} = \mathbf{b}$ .

$$\left(\begin{array}{c|c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array}\right) \quad \left(\begin{matrix} x \\ y \\ z \end{matrix}\right) = \quad \left(\begin{array}{c} \hline \\ \hline \\ \hline \\ \\ \hline \\ \end{array}\right)$$

## Part B No unique solution

Find an expression for the condition that there is no unique solution to this set of equations.

The following symbols may be useful: k

#### **Part C** The inverse matrix

Find the inverse matrix  $\mathbf{A}^{-1}$ .

Items:



# Part D Solution to the set of equations

Using  $A^{-1}$ , find the solutions for x, y and z in terms of k.



Items:

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 48 - Complex Numbers,

**Matrices & Geometry Revision** 



<u>Gameboard</u>

Maths

Algebra

Matrices

Matrices - Transformations 2

# **Matrices - Transformations 2**







 ${f A},\,{f B}$  and  ${f C}$  are 3 imes 3 matrices such that  ${f C}={f B}{f A}$  and

$$\mathbf{B}=egin{pmatrix} -1&0&0\0&k&0\0&0&1 \end{pmatrix}$$

and

$$\mathbf{C} = egin{pmatrix} p & 0 & q \ 0 & r & 0 \ s & 0 & t \end{pmatrix}$$

Part A Matrix  ${f B}^{-1}$ 

Find  $\mathbf{B}^{-1}$ .



#### Part B Matrix A

Use  $\mathbf{B}^{-1}$  to find the matrix  $\mathbf{A}$ .



# Part C Transformation produced by A

Given that the matrix  $\bf A$  represents rotation anticlockwise about the y-axis through an angle D, complete the matrix  $\bf A$  using the items below.

Items:

# Part D Reflection in the z=0 plane

Given that  ${\bf C}$  represents reflection in the z=0 plane, find  ${\bf C}$ .



# ${\bf Part \ E } \quad {\bf Angle} \ D$

Deduce the value of the angle D. Give your answer in radians and assume  $0 \leq D < 2\pi$ .

The following symbols may be useful: pi

Created for isaacphysics.org by Julia Riley

Gameboard:

**STEM SMART Double Maths 48 - Complex Numbers,** 

**Matrices & Geometry Revision** 



<u>Gameboard</u>

Maths

Polar Coordinates: General 3i

# Polar Coordinates: General 3i



The equation of a curve, in polar coordinates, is

$$r=\sqrt{3}+ an heta, \quad ext{ for } -rac{1}{3}\pi\leqslant heta\leqslantrac{1}{4}\pi.$$

# Part A Tangent at the pole

Find the equation of the tangent at the pole in the form  $\theta = \alpha$ .

The following symbols may be useful: pi, theta

#### Part B Greatest value of r

State the greatest value of r.

# Part C Corresponding value of $\theta$

State the value of  $\theta$  at which r takes its greatest value.

The following symbols may be useful: pi

## Part D Sketch the curve

Sketch the curve.

Which curve in Figure 1 most resembles your sketch?



Figure 1: Four curves.

- Curve A
- Curve B
- Curve C
- Curve D

## Part E Area of region

Given that

$$\int \tan x \, \mathrm{d}x = \ln|\sec x| + C,$$

find the exact area of the region enclosed by the curve and the lines  $\theta=0$  and  $\theta=\frac{1}{4}\pi$ .

The following symbols may be useful: ln(), log(), pi

Adapted with permission from UCLES, A Level, June 2006, Paper 4726, Question 7.

Gameboard:

**STEM SMART Double Maths 48 - Complex Numbers**,

**Matrices & Geometry Revision** 



<u>Gameboard</u>

Maths

Vectors: Lines and Planes 3i

# Vectors: Lines and Planes 3i



The plane  $\Pi$  passes through the points (1,2,1),(2,3,6) and (4,-1,2).

### Part A Cartesian equation of $\Pi$

Find a Cartesian equation of the plane  $\Pi$ .

Give your answer in the form ax + by + cz = 19.

The following symbols may be useful: x, y, z

#### Part B Intersection of l and $\Pi$

The line 
$$l$$
 has equation  $r=\left( egin{array}{c} -1 \\ -2 \\ 6 \end{array} 
ight) +\lambda \left( egin{array}{c} 4 \\ 3 \\ -2 \end{array} 
ight).$ 

Find the value of  $\lambda$  at the point of intersection of  $\Pi$  and l.

#### Part C Angle between l and $\Pi$

Find the acute angle between  $\Pi$  and l.

Give your answer in degrees to 3 significant figures.

Gameboard:

STEM SMART Double Maths 48 - Complex Numbers,

Matrices & Geometry Revision

All materials on this site are licensed under the  ${\color{red} \underline{\textbf{Creative Commons license}}},$  unless stated otherwise.



<u>Gameboard</u>

Maths

Vectors: Geometry 2i

# **Vectors: Geometry 2i**



(In this question, the notation  $\triangle ABC$  denotes the area of the triangle ABC.)

The vector product of two vectors  $\underline{\boldsymbol{p}}$  and  $\underline{\boldsymbol{q}}$  is given by  $\underline{\boldsymbol{p}} \times \underline{\boldsymbol{q}} = |\underline{\boldsymbol{p}}||\underline{\boldsymbol{q}}|\sin\theta\hat{\underline{\boldsymbol{n}}}$  where  $\theta$  is the angle between  $\underline{\boldsymbol{p}}$  and  $\underline{\boldsymbol{q}}$ , with  $0 \leq \theta \leq \pi$ , and  $\underline{\hat{\boldsymbol{n}}}$  is a unit vector perpendicular to both  $\underline{\boldsymbol{p}}$  and  $\underline{\boldsymbol{q}}$  in the right-handed sense.

The points P,Q and R have position vectors  $p\underline{i},q\underline{j}$  and  $r\underline{k}$  respectively, relative to the origin O, where p,q and r are positive. The points O,P,Q and R are joined to form a tetrahedron.

## Part A Sketch tetrahedron

Draw a sketch of the tetrahedron.

Which of these sketches is correct?



Figure 1: Four sketches.

- Sketch A
- Sketch B
- Sketch C
- Sketch D

## Part B Triangle areas

Write down the values of  $\triangle OPQ$ ,  $\triangle OQR$  and  $\triangle ORP$ .

What is  $\triangle OPQ$ ?

The following symbols may be useful: p, q, r

What is  $\triangle OQR$ ?

The following symbols may be useful: p, q, r

What is  $\triangle ORP$ ?

## Part C Vector product and area

Use the definition of the vector product to show that  $k|\overrightarrow{RP}\times\overrightarrow{RQ}|$  is equal to the area of one of the tetrahedron's faces, where k is a constant to be found.

Which area is  $k|\overrightarrow{RP} imes \overrightarrow{RQ}|$  equal to?

- $\triangle OQR$
- $\triangle ORP$
- $\triangle PQR$
- $\triangle OPQ$

What is the value of k?

## Part D Relationship between areas

Show that we can find an equation of the form

$$(\triangle OPQ)^2 + (\triangle OQR)^2 + (\triangle ORP)^2 = \alpha(\triangle PQR)^2$$

where  $\alpha$  is a constant to be found.

What is  $\alpha$ ?

Adapted with permission from UCLES, A Level, June 2011, Paper 4727, Question 7.