

[1] GRAPH ATTENTION NETWORKS, ICLR (2018)

[2] SADVERSARIAL ATTACKS ON GRAPH NEURAL NETWORKS VIA META LEARNING, ICLR (2019)

Presenter: Guihong Wan, Oct/2020

Outline

- Part1: Graph networks review
 - GCN
 - GAT
- Part2: Adversarial attack on graph networks
 - Background
 - Adversarial attack vis meta learning

Review

Graph Neural Networks

A Gconv Layer

GCN

The
$$l^{th}$$
 GCN Layer: $H^{l+1} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^lW^l)$

 $H^0 = X$, otherwise the output of previous layer.

$$\widetilde{A} = A + I_N, \qquad \widetilde{D} = \sum_{j} \widetilde{A}_{ij}$$

W: what to learn.

Main idea: learn a node v's representation by aggregating its own feature x_v and its neighbors' feature x_u , for all $u \in N(v)$.

Normalization: the multiplication will completely change the scale of the features.

Graph Attention Networks (GAT)

 $h_i : i^{th}$ data vector

 Wh_i : linear transformation

 $j \in N_i$: a neighbor node of node i

 e_{ii} : a shared attentional mechanism

LeakyReLU $\left(ec{\mathbf{a}}^T [\mathbf{W} ec{h}_i \| \mathbf{W} ec{h}_j]
ight)$

Softmax over all $j \in N_i$:

$$lpha_{ij} = rac{\exp\left(ext{LeakyReLU}\left(ec{\mathbf{a}}^T[\mathbf{W}ec{h}_i \| \mathbf{W}ec{h}_j]
ight)
ight)}{\sum_{k \in \mathcal{N}_i} \exp\left(ext{LeakyReLU}\left(ec{\mathbf{a}}^T[\mathbf{W}ec{h}_i \| \mathbf{W}ec{h}_i]
ight)
ight)}$$

GAT (cont.)

$$ec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} lpha_{ij} \mathbf{W} ec{h}_j \right)$$

$$\vec{h}'_i = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

GAT (cont.)

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

In matrix form:

$$H_{N\times F} = [h_1, h_2, ..., h_N]^T \longrightarrow H'_{N\times F'} = [h'_1, h'_2, ..., h'_N]^T$$

1.
$$HW_{F \times F'}^T = Z_{N \times F'}$$
 \leftarrow linear transformation

$$2. \alpha Z = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1N} \\ \vdots & \ddots & \vdots \\ \alpha_{N1} & \cdots & \alpha_{NN} \end{bmatrix} \begin{bmatrix} z_{11} & \cdots & z_{1F'} \\ \vdots & \ddots & \vdots \\ z_{N1} & \cdots & z_{NF'} \end{bmatrix} \leftarrow \text{Each feature is averaged over all nodes}$$

$$3.\tilde{A}_{N\times N}=A+I_N$$

$$\mathsf{GAT:} \ H' = \widetilde{A} \odot \alpha \ HW^T$$

GAT VS GCN

GAT: $H' = \widetilde{A} \odot \alpha HW^T$ $GCN: H' = \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}HW^T$

Adversarial Attack

- 1. Background
- 2. Key idea of the paper
- 3. Experimental results

ADVERSARIAL ATTACKS ON GRAPH NEURAL NETWORKS VIA META LEARNING, ICLR (2019)

Background

Goal: to investigate the *robustness* of graph neural networks.

Result: Small graph perturbations lead to a strong decrease

in performance for graph neural networks.

Idea: to use meta-learning for the opposite:

modifying the training data to **worsen** the performance for testing data.

Background: Supervised node classification

Task: semi-supervised node classification

Given: the set of labeled nodes: V_L of graph G(A, X)

Goal: to learn a function f_{θ} , which maps each node to exactly one class. The parameters θ are learned by minimizing a loss function L_{train} :

$$\theta^* = \arg\min_{\theta} \mathcal{L}_{train}(f_{\theta}(G))$$

 $f_{\theta}(G)$: matrix of class probabilities: $[0,1]^{N\times C}$

 L_{train} : loss only for labeled nodes

Background: Adversarial attacks

Evasion attack: at test time

Poisoning attack: at training time.

Problem Setup

Given a limited budget of perturbations Δ (e.g. the number of edges can be changed),

the goal is to insert/delete edges so that training on the perturbated graph leads to weaker classification performance.

This corresponds to solving the bilevel problem:

$$\min_{\hat{G} \in \Phi(G)} \quad \mathcal{L}_{\mathsf{atk}}(f_{\theta^*}(\hat{G})) \quad s.t. \quad \theta^* = \operatorname*{arg\,min}_{ heta} \quad \mathcal{L}_{\mathsf{train}}(f_{ heta}(\hat{G}))$$

Problem Setup (cont.)

$$\min_{\hat{G} \in \Phi(G)} \quad \mathcal{L}_{\mathsf{atk}}(f_{ heta^*}(\hat{G})) \quad s.t. \quad heta^* = rg \min_{ heta} \quad \mathcal{L}_{\mathsf{train}}(f_{ heta}(\hat{G}))$$

 L_{train} : the training network tries to increase the classification accuracy on unlabeled nodes.

 L_{atk} : loss the attacker aims to optimize. The attacker wants to decrease the accuracy on the unlabeled nodes.

$$\max_{\widehat{G} \in \Phi(G)} \mathcal{L}_{test}\left(f_{\theta^*}(\widehat{G})\right) \quad s.t. \ \theta^* = \arg\min_{\theta} \mathcal{L}_{train}\left(f_{\theta}\left(\widehat{G}\right)\right)$$

where , $L_{atk} = -L_{test}$

Problem Setup (cont.)

$$\min_{\hat{G} \in \Phi(G)} \quad \mathcal{L}_{\mathsf{atk}}(f_{ heta^*}(\hat{G})) \quad s.t. \quad heta^* = rg \min_{ heta} \quad \mathcal{L}_{\mathsf{train}}(f_{ heta}(\hat{G}))$$

$$\max_{\widehat{G} \in \Phi(G)} \mathcal{L}_{test}\left(f_{\theta^*}(\widehat{G})\right) \quad s.t. \ \theta^* = \arg\min_{\theta} \mathcal{L}_{train}\left(f_{\theta}\left(\widehat{G}\right)\right)$$

where, $L_{atk} = -L_{test}$

However, L_{test} is unknown. Two options:

$$1. L_{atk} = -L_{train}$$
$$2. L_{atk} = -L_{self}$$

$$2. L_{atk} = - L_{self}$$

Challenges

- 1. The number of possible edge perturbations is in $O(N^{2\Delta})$, ignoring symmetry. (modify Δ out of N^2)
- 2. The data (i.e. graph structure) is discrete, which means that gradient-based optimization is not directly applicable.

Idea

- 1. Treat the graph structure matrix as a hyperparameter
- 2. Relax the discreteness of the structure in order to obtain meta-gradients but perform discrete perturbations.

Modified graph

$$abla_G^{ ext{meta}} :=
abla_G \, \mathcal{L}_{ ext{atk}}(f_{ heta^*}(G)) \quad s.t. \quad heta^* = \operatorname{opt}_{ heta}(\mathcal{L}_{ ext{train}}(f_{ heta}(G)))$$

Meta gradients

Meta-gradients (e.g., gradients w.r.t hyperparameters) are obtained by back propagating through the learning phase of a differentiable model.

$$abla_G^{ ext{meta}} :=
abla_G \, \mathcal{L}_{ ext{atk}}(f_{ heta^*}(G)) \quad s.t. \quad heta^* = \operatorname{opt}_{ heta}(\mathcal{L}_{ ext{train}}(f_{ heta}(G)))$$

Meta-gradients indicate how the attacker loss after training: L_{atk} will change for a small perturbations on the training data.

$$abla_G^{ ext{meta}} :=
abla_G \, \mathcal{L}_{ ext{atk}}(f_{ heta^*}(G)) \quad s.t. \quad heta^* = \operatorname{opt}_{ heta}(\mathcal{L}_{ ext{train}}(f_{ heta}(G)))$$

Meta gradients

For example, start from some initial θ_0

$$\theta_{t+1} = \theta_t - \alpha \nabla_{\theta_t} L_{train}(f_{\theta_t}(G))$$

The attacker's loss after traning for T steps:

$$L_{atk}(f_{\theta_T}(G))$$

Then:
$$\nabla_G^{meta} = \nabla L_{atk}(f_{\theta_T}(G))$$

$$G, \theta_t \to f_{\theta_t}(G), L_{train} \to \theta_T = \theta_t - \alpha \nabla_{\theta_t} L_{train} \to L_{atk}$$

This integrates the idea of meta learning.

Meta gradients

$$abla_G^{ ext{meta}} :=
abla_G \, \mathcal{L}_{ ext{atk}}(f_{ heta^*}(G)) \quad s.t. \quad heta^* = \operatorname{opt}_{ heta}(\mathcal{L}_{ ext{train}}(f_{ heta}(G)))$$

$$G, \theta_t \to f_{\theta_t}(G), L_{train} \to \theta_T = \theta_t - \alpha \nabla_{\theta_t} L_{train} \to L_{atk}$$

This integrates the idea of meta learning.

Note: it is expensive to calculate meta-gradients, but there are lots of approximate solutions, e.g. MAML.

C. Finn P. Abbeel and S. Levine, Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Discrete perturbation

Score function:

$$S = \nabla_{\hat{A}}^{meta} \odot \left(-2\,\hat{A} + 1\right)$$

e(u,v): maximum entry (u, v) in S

Discrete perturbation (cont.)

$$S = \nabla_{\hat{A}}^{meta} \odot (-2 \hat{A} + 1)$$
: flip the assign of $\nabla_{\hat{A}}^{meta}$

S(u,v) =
$$\nabla_{G}^{meteq}$$
 (-2 auv +1)
= ∇_{G}^{meta} if auv =0
- ∇_{G}^{meta} if auv =1
Choose $e'(u,v) = argmenx$ S(u,v)
set auv = 0, if auv =1
set auv =1, if auv =0

Discrete perturbation (cont.)

Score function:
$$S = \nabla_{\hat{A}}^{meta} \odot (-2 \hat{A} + 1)$$

Adjacency matrix: A

Adjacency changes

$$\hat{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 -1: deletion 1: addition

self.adjacency_meta_grad

= tf.multiply(tf.gradients(test_loss, self.adjacency_changes)[0], tf.reshape(self.modified_adjacency, [-1]) * -2 + 1, name="Meta gradient")

tf.gradients(test_loss, self.adjacency_changes)

Why flip the assign of $\nabla_{\widehat{A}}^{meta}$?

The attacker wants to max L_{test}

$$0-1/0 \stackrel{\text{deletion}}{=} 0/1$$

$$0/0 \stackrel{\text{addition}}{=} 1/1$$

$$\Theta \qquad O/O < \frac{\text{deletion}}{\nabla < O}$$

Algorithm 1: Poisoning attack on graph neural networks with meta gradients and self-training **Input:** Graph G = (A, X), modification budget Δ , number of training iterations T, training class labels C_L **Output:** Modified graph $\hat{G} = (\hat{A}, X)$ $\hat{\theta} \leftarrow$ train surrogate model on the input graph using known labels C_L ; $\hat{C}_U \leftarrow \text{predict labels of unlabeled nodes using } \hat{\theta};$ $\hat{A} \leftarrow A$; while $\|\hat{A} - A\|_0 < 2\Delta$ do randomly initialize θ_0 ; $\begin{cases} \textbf{for } t \ \textit{in } 0 \dots T - 1 \ \textbf{do} \\ \theta_{t+1} \leftarrow \text{step} \left(\theta_t, \nabla_{\theta_t} \mathcal{L}_{\text{train}}(f_{\theta_t}(\hat{A}, X)); C_L\right); \\ \text{descent} \end{cases} / / \text{ update e.g. via gradient}$ // Compute meta gradient via backprop through the training procedure $\nabla_{\hat{A}}^{\text{meta}} \leftarrow \nabla_{\hat{A}} \mathcal{L}_{\text{self}}(f_{\theta_T}(\hat{A}, X); \hat{C}_U);$

 $S \leftarrow
abla_{\hat{A}}^{ ext{meta}} \odot (-2\hat{A}+1)$; // Flip gradient sign of node pairs with edge $e' \leftarrow \text{maximum entry } (u, v) \text{ in } S \text{ that fulfills constraints } \Phi(G);$ $\hat{A} \leftarrow \text{insert or remove edge } e' \text{ to/from } \hat{A}; \leftarrow \text{modify the graph structure}$

 $\hat{G} \leftarrow (\hat{A}, X);$

return : \hat{G}

Experimental results

Table 2: Misclassification rate (in %) with 5% perturbed edges.

Attack	GCN	CORA CLN	DeepWalk	GCN	CITESEER CLN	DeepWalk	GCN	POLBLOGS CLN	DeepWalk	Avg. rank
Clean	$ 16.6 \pm 0.3$	17.3 ± 0.3	20.3 ± 1.0	28.5 ± 0.9	28.3 ± 0.9	34.8 ± 1.4	6.4 ± 0.6	7.6 ± 0.5	5.3 ± 0.5	7.4
DICE First-order Nettack*	$ \begin{vmatrix} 18.0 \pm 0.4 \\ 17.2 \pm 0.3 \\ - \end{vmatrix} $	18.0 ± 0.2 17.6 ± 0.2	22.8 ± 0.3 20.7 ± 0.2	$ \begin{vmatrix} 28.9 \pm 0.3 \\ 28.3 \pm 0.3 \\ 31.9 \pm 0.3 \end{vmatrix} $	29.1 ± 0.3 28.4 ± 0.3 30.2 ± 0.4	39.1 ± 0.4 34.0 ± 0.3 41.2 ± 0.4	$ \begin{vmatrix} 11.2 \pm 1.1 \\ 7.8 \pm 0.9 \\ - \end{vmatrix} $	11.2 ± 0.8 7.6 ± 0.5	10.2 ± 0.6 7.9 ± 0.6	5.0 7.1
A-Meta-Train A-Meta-Both	$\begin{array}{ c c c }\hline 21.8 \pm 0.9 \\ 20.7 \pm 0.4\end{array}$	20.5 ± 0.3 19.0 ± 0.3	25.0 ± 0.6 28.5 ± 0.5	$\begin{array}{ c c c }\hline 31.9 \pm 0.7 \\ 28.6 \pm 0.4 \\ \end{array}$	$30.1 \pm 0.5 \\ 28.7 \pm 0.4$	$32.7 \pm 0.5 \\ 34.4 \pm 0.4$	$\begin{array}{ c c c }\hline 11.9 \pm 2.8 \\ 19.8 \pm 0.8 \\ \end{array}$	12.9 ± 2.5 16.5 ± 1.3	5.8 ± 0.2 21.5 ± 1.9	4.7
Meta-Train Meta-Self	$egin{array}{c c} 22.0 \pm 1.2 \\ 24.5 \pm 1.0 \\ \end{array}$	$egin{aligned} 21.7 \pm 0.4 \\ 20.3 \pm 0.4 \end{aligned}$	26.1 ± 0.6 28.1 ± 0.6	$\begin{vmatrix} 30.3 \pm 1.0 \\ 34.6 \pm 0.7 \end{vmatrix}$	29.0 ± 0.6 32.2 ± 0.6	$36.0 \pm 0.2 \\ 34.6 \pm 0.7$	$egin{array}{c} 16.3 \pm 2.9 \\ 22.5 \pm 0.8 \end{array}$	18.7 ± 2.3 17.9 ± 1.7	14.5 ± 4.2 59.0 ± 3.0	3.2 2.3
Meta w/ Oracle	21.0 ± 0.5	21.6 ± 0.3	27.8 ± 0.7	34.2 ± 0.9	32.9 ± 0.6	36.1 ± 0.7	25.6 ± 1.9	19.1 ± 1.4	52.3 ± 2.8	2.0

^{*} Did not finish within three days on CORA-ML and POLBLOGS

Result: Small graph perturbations lead to a strong decrease in performance for graph neural networks.

Experimental results

Table 5: Share (in %) of edge deletions (DEL) and insertions (INS) by Meta-Self on CORA-ML.

	$\mid c_i {=} c_j$	$c_i \neq c_j$
DEL	15.3	3.9
INS	9.4	71.4

Thank you!