

基于GM(1,1)模型的江苏省GDP预测研究

刘淇

(中国矿业大学经济管理学院, 江苏 徐州 221100)

摘 要:GDP是用来衡量一个国家或地区经济水平的核心指标。在经济运行发展中对GDP进行有效的预测,不仅可以判别一定程度的宏观经济走势,还能为相关部门提供决策支持。本文基于灰色系统理论,根据2002—2017年江苏省GDP总量数据建立GM(1,1)模型,并利用2018—2019年数据对模型进行模型精度检验,结果显示模型精度良好。根据建立的模型对江苏省2020—2022年GDP总量进行预测,为江苏省制定经济政策提供理论依据。

关键词:灰色预测;GM(1,1)模型;国民生产总值;江苏省

中图分类号: F293 文献标识码: A 文章编号: 1671-6728 (2021) 02-0007-02

GDP预测是一项复杂的工作,关于它的研究一直是热 点问题。吴鹏,邱赛兵建立灰色GM(1,N)模型对2010-2018 年我国的GDP数据进行模拟,结果显示模型精确度较高;孙 爱民运用西安市2010—2018年的GDP数据构建改进的灰色 GM (1,1) 模型,对西安市2019—2023年的GDP进行预测; 何刚等建立基于Simpson改进的灰色神经网络模型对我国 GDP进行预测,比较梯形公式的GM (1,1) 模型精度更高; 王嘉伟等构建改进的拉格朗日插值灰色预测模型预测新疆 地区2017—2019年GDP,精度较高,但对于短周期内变化较 小的数据,传统灰色模型预测结果较好;赵国君,张星通过 对传统灰色预测模型初始值和背景值的优化,建立优化的 GM (1,1) 模型,预测北京市未来五年GDP;牛海牛等依据 新疆建设兵团第九师2010—2015年GDP数据,建立灰色GM (1,1) 模型,预测第九师"十三五"期间生产总值;李凯,张 涛基于对初始值进行数据转换及对背景值进行改进的GM (1,1) 模型,对上海市2008—2016年度GDP数据进行分析并 预测,结果显示模型具有明显的预测精度优势;徐伍凤收集 广西北部湾经济区2007—2014年区域数据,基于灰色GM (1,1) 模型,对北部湾经济区2017—2018年的GDP进行预测 分析; 王刚依据北京市2000—2015年度GDP, 建立GM (1,1) 预测模型来预测北京市未来GDP,为经济提速作出贡献; 孔朝莉等选取海南省1987—2014年GDP数据,建立GM (1, 1) 模型,预测未来5年海南省GDP;孙中刚,徐丽以北京市 2006-2013年GDP数据为基础,建立灰色预测模型,预测北 京市经济增长水平;刘花璐,汤涛利用湖北省2006—2013年 GDP总量数据,建立GM (1,1) 模型,对2014—2017年GDP 数据进行预测。

江苏省GDP在2019年达99631.52亿元,位居全国第二,仅次于广东省,对我国社会主义经济的发展作出了巨大的贡献。构建预测模型对江苏省GDP进行预测,并结合实际政策对预测结果进行了相应的分析,具有重要的现实意义。

本文基于江苏省2002—2019年GDP数据,运用2002—2017年数据建立江苏省GDP的GM(1,1)模型,预留2018、2019年数据对模型进行精度检验,并依据模型对江苏省未来3年GDP进行预测。

一、灰色预测模型

自邓聚龙教授于1982年首先提出灰色系统理论以来,至今该理论得到了极大的发展。灰色预测模型是灰色系统理论的核心内容之一,而GM(1,1)(Grey Model)模型又是灰色预测模型中的一个核心模型,它在工业、商业,以及环境、社会和军事等领域中都有广泛的应用。

(一) 数据的检验和处理

首先为了保证建模方法的可行性,需要对已知数据做必要的检验处理。设参考数据为 $x^{(0)} = (x^{(0)}(1), x^{(0)}(2), ..., x^{(0)}(n))$,计算数据的级比: $\lambda(k) = \frac{x^{(0)}(k-1)}{x^{(0)}(k)}$,k = 2,3,...,n

如果所有的级比 $\lambda(k$ 都落在可容覆盖 $X = (e^{\frac{1}{n+1}}, e^{\frac{1}{n+1}})$ 内,则数据 $x^{(0)}$ 可以建立GM(1,1)模型进行灰色预测;否则,需要对数据做必要的变换处理,即取适当的常数c,作平移变换:

$$y^{(0)}(k) = x^{(0)}(k) + c$$
, $k = 1, 2, ..., n$

(二) 建立模型GM(1, 1)

原始数列采用一次累加法(AGO)生成序列: $x^{(0)} = (x^{(1)}(1), x^{(0)}(2), ..., x^{(0)}(n) = (x^{(0)}(1), x^{(0)}(1) + x^{(0)}(2), ..., x^{(0)}(n-1) + x^{(0)}(n))$ 求均值数列:

$$z^{(1)}(k) = 0.5x^{(1)}(k) + 0.5x^{(1)}(k-1), \quad k = 2,3,...,n$$
 建立灰微分方程为: $x^{(0)}(k) + az^{(1)}(k) = b$ 相应的白化微分方程为:
$$\frac{dx^{(1)}}{dt} + ax^{(1)}(t) = b$$
 记 $u = (a,b)^T, Y_1 = (x^{(0)}(2), x^{(0)}(3), ..., x^{(0)}(n))^T, B = \begin{bmatrix} -z^{(0)}(2) & 1 \\ -z^{(0)}(3) & 1 \\ \vdots & \vdots \\ -z^{(0)}(3) & 1 \end{bmatrix}$ 由最小二乘法,求使得 $J(\hat{u}) = (Y_1 - B \cdot \hat{u})^T (Y_1 - B \cdot \hat{u})$

达到最小值的 $\hat{u} = (\hat{a}, \hat{b})^T = (BB^T)^{-1}B^TY_1$ 求解白化微分方程得 $\hat{x}^{(1)}(k+1) = (x^{(0)}(1) - \frac{b}{a})e^{-ak} + \frac{b}{a}$, $k = 1, 2, \dots, n-1$

作者简介: 刘淇(2000—), 女, 汉族, 江苏徐州人。主要研究方向: 经济学。

(三) 检验预测值

(1)残差检验法

残差:
$$e(k) = x^{(0)}(k) - \hat{x}^{(0)}(k)$$
, $k = 2, 3, ..., n$
相对误差: $re(k) = \frac{e(k)}{x^{(0)}(k)} \times 100\%$ $k = 2, 3, ..., n$

平均绝对百分误差: $MAPE = \frac{1}{n-1}\sum_{k=1}^{n}|re(k)|$, 对于年度数据 MAPE小于10%时, 认为预测效果较好。

(2)后验差检验法

 $\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x^{(0)}(k)$ 和 $S_1^2 = \frac{1}{n} \sum_{k=1}^{n} [x^{(0)}(k) - \bar{x}]^2$ 为原始序列 $x^{(0)}$ 的均值和方案:

$$\overline{e} = \frac{1}{n-1} \sum_{k=2}^{n} e(k)$$
 和 $S_2^2 = \frac{1}{n-1} \sum_{k=2}^{n} [e(k) - \overline{e}]^2$ 为残差序列 的均值和方差;
后验方差比:
$$C = \sqrt{\frac{S_1^2}{S_2^2}}; 小误差概率: p = P\{|e(k) - \overline{e}| < 0.6745S_1\}$$

利用精度检验等级参照表(详见表1)给出的C,p值为 参考,来判断模型预测精度:

表 1 精度检验等级参照表

模型精度等级。	后验方差比 C_{ϕ}	小误差概率 p →
1級(好)。	$C \le 0.35 \varphi$	$p \ge 0.95 \varphi$
2級(合格)↓	$0.35 < C \le 0.5$	$0.8 \le p < 0.95 \phi$
3級(勉强)↓	$0.5 < C \le 0.65$	$0.7 \le p < 0.8$ ϕ
4级(不合格)↓	C > 0.65 o	$p < 0.7 \varphi$

二、江苏省GDP预测模型

(一) 数据来源及处理

本文从《江苏统计年鉴》获取2002—2019年江苏省GDP数据,计算得出对应的原始数列表(详见表2)。本文以2002—2017年的江苏GDP的历史数据进行建模,以2017—2019年的GDP数据对模型进行精度检验。

表 2 江苏省 2002-2019 年 GDP 总量(单位: 亿)

年份	2002	2003	2004	2005	2006	2007
GDP	10606.85	12442.87	15136.78	18769.32	21965.61	26296.15
年份	2008	2009	2010	2011	2012	2013
GDP	31357	34905.98	41962.18	49788.2	54870.91	60690.44
年份	2014	2015	2016	2017	2018	2019
GDP	66123.71	71255.93	77350.85	85869.76	92595.40	99631.52

由于2002—2010年数据级比没有落入可容覆盖 $X = (e^{\frac{2}{n+1}}, e^{\frac{2}{n+1}})$ 内,故取常数c=30000亿,作平移变换 $y^{(0)}(k) = x^{(0)}(k) + c$ 使 $y^{(0)} = (y^{(0)}(1), y^{(0)}(2), ..., y^{(0)}(n))$ 的级比落入可容覆盖内。

(二) 江苏省GDP预测模型的建立

经过数据预处理,最终利用y⁽⁰⁾对江苏省GDP进行预测。

1.对数据进行累加处理;

2.构造数据矩阵及数据向量,利用MATLAB软件编程进行计算,求得参数 $\hat{u}=(\hat{a},\hat{b})^T=(BB^T)^{-1}B^TY_1=[-0.0718,38627]^T即 a=-0.0718,<math>b=38627$, $\hat{u}=-537720$;

3.得微分方程为:
$$\frac{dy^{(1)}}{dt}$$
 - 0.0718 $y^{(1)}(t)$ = 38627;

4.时间相应方程: $\hat{y}^{(1)}(k+1)=578330e^{0.0718k}-537720$;

5.计算拟合值 $\hat{y}^{(1)}(k+1)$ 及模型预测值 $\hat{y}^{(0)}(k+1)$,根据平移变换求出原始序列预测值 $\hat{x}^{(0)}(k+1)$ 。

(三) 江苏省GDP预测结果及检验

利用建立的江苏省GDP预测模型预测2018、2019年江苏省GDP(单位:亿): $\hat{x}^{(1)}(2018) = \hat{y}^{(1)}(2018) - 30000 = 96520$

$$\hat{x}^{(1)}(2019) = \hat{y}^{(1)}(2019) - 30000 = 105940$$

$$re(2018) = \frac{x^{(0)}(2018) - \hat{x}^{(0)}(2018)}{x^{(0)}(2018)} = -4.24\%$$

$$re(2019) = \frac{x^{(0)}(2019) - \hat{x}^{(0)}(2019)}{x^{(0)}(2019)} = -6.33\%$$
 2018、2019年江苏省GDP预测值相对误差均小于10%,

2018、2019年江苏省GDP预测值相对误差均小于10%,预测效果较为理想,结合后验差检验法对预测结果进行检验,C=0.0702,计算小误差概率 $p=P\{e(k)-\overline{e}\}<0.6745S_i\}=1>0.95$,根据精度检验等级参照表得出预测精度等级为1级,预测效果为"好"。

表 3 江苏省 2018—2022 年 GDP 数据(单位: 亿)

年份	原始数据	预测数据	相对误差
2018	92595.40	96520	-4.2%
2019	99631.52	105940	-6.3%
2020		116070	
2021		126950	
2022		138640	

由预测结果可知,江苏省2020—2022年GDP总量将达116070、126950、138640亿元,未来三年将保持平均9.3%的经济增长速度(详见表3)。

三、江苏省GDP预测模型的优缺点

GM(1,1)预测模型本身的优点是利用较少的数据也可以预测结果,且它更适合于数据符合一定特征的预测,例如人口预测、经济预测等。相较于一些其他的预测模型来说GM(1,1)预测精度更高,不仅适用于短期预测,也适用于中长期预测。在对江苏省GDP进行预测时,结果显示误差较小,模型表现出来较好的预测精度。

四、结语

通过对2002—2017年江苏省GDP数据进行处理,建立 GM(1,1)模型,并预留2018—2019年数据进行模型的精度 检验,结果显示相对误差小于10%,表明模型精度良好,据此对未来三年江苏省GDP总量进行预测分析,预测显示江苏省GDP到2020年将突破十万亿大关,保持平稳较快增长。本文对江苏省经济发展有以下建议:增强消费和需求对经济的带动作用;进一步促进社会投资规模的扩大。

参考文献:

- [1]吴鹏,邱赛兵.基于优化多维灰色模型的宏观经济发展预测[J]. 统计与决策,2020,36(03):42-45.
- [2]孙爱民.基于改进GM(1,1)模型的西安市GDP预测[J].价值工程,2020,39(09):88-92.
- [3]何刚,吴文青,夏杰.基于Simpson公式的灰色神经网络在GDP 预测中的应用[J].统计与决策,2020,36(02):43-47.