Cherry MX Blue Switch

MEEN 431-501 5/1/17 Casey Peterson and Ben Musil

Background

- Mechanical over membrane
 - Comfort/Typing response
 - Durability
 - Customization
 - o "Clickity-clackity"
- Types of switch classified by colors
 - Red linear, low resistance, no feedback
 - Brown tactile, low resistance, bump feedback
 - Blue tactile, medium resistance, bump and audible feedback

Plan of Action and Deliverables

- Create a free-body diagram (FBD)
 of the 3 switch motions
- 2. Derive equations of motion (EOM)
- Model and simulate the switch in Unity

FBD's and EOM's: 1st Motion

FBD's and EOM's: 2nd Motion

FBD's and EOM's: 3rd Motion

Unity

- Simplified the shapes
- Constrained horizontal and rotational movement of the plunger and switch
- Modeled spring as a spring-driven friction device
- Assumed gravity does not have a significant effect on the plunger and switch

Unity

Partially compressed position

Unity

Fully compressed position

Demonstration

Conclusion

- The mechanical switch is a simple but effective dynamic system
- Unity allows us to model simple systems easily but requires a great deal of experience to model complex physical systems

Questions?