

Project Overview

Project Steps

Data Preparation	Features	EDA	Models	App
Missing values and dates	Lags	Time Series Behavior Analysis	XGBoost	Streamlit App Deployment
	Rolling Windows	·	LSTM	- /
		Seasonal, holiday,		Live Forecast
Outliers and	Time based	promotion, oil,	ARIMA and	Output
anomalies	Features	store and location	SARIMA	
				10-Day Forecast and download

About the Data

Key Steps

- Merged: items, stores, and holidays
- Cleaned missing values & outliers
- Created lag, rolling avg, calendar features

Shape: $3.39M \text{ rows} \times 41 \text{ cols}$

Date range: Jan 2013 – Mar 2014

Stores: 10

Items: 1,127

Avg daily sales: 3.97

Zero sales: 47.25%

From Patterns to Predictions

RMSE 7.77

XGBoost

XGBoost performs well on large-scale tabular time series data, especially when engineered features include lag and rolling metrics.

- Delivered the best RMSE
- Performed well due to extensive feature engineering.
- Handles missing values and complex interactions effectively.

RMSE 7.80

LSTM

The LSTM model captures trend and seasonality reasonably well.

- LSTM did not outperforming XGBoost dramatically.
- Improvements could include tuning sequence length and feature selection

RMSE 7.88

SARIMA

The SARIMA model successfully captures both short-term and weekly seasonal dependencies in the sales data

- Captured weekly seasonality and trend components well.
- Higher RMSE due to limitations in handling features
- Strong interpretability, but less flexible for complex data.

XGBoost Deep Dive

Top 5 Features - XGBoost Model

Why XGBoost Stood Out

- Lowest RMSE (7.77) and lowest bias among all models
- Effectively leveraged lag-based and rolling window features
- Adapted well to sparse & skewed data (47% zero sales)
- Weekly predictions aligned closely with true values
- Transparent model: top predictors are interpretable

Evaluation Metrics

Model	RMSE	MAD	SMAPE	Bias
XGBoost	7.77 🔽	3.52	120.69%	0.173 🔽
LSTM	7.80	3.49 🔽	121.55%	0.195
SARIMA	7.89	3.53	122.40%	0.189

Key Takeaways:

- XGBoost had the best RMSE and Bias → most accurate and least skewed.
- LSTM achieved lowest MAD and SMAPE → most consistent error.
- SARIMA performed well capturing seasonality, but had slightly higher errors overall.

App Demo (Click here for the app)

Final Thought & Recommendations

Key Takeaways

• Time-based features significantly improved results

• ML models outperform classical ones

LSTM requires tuning & memory usage

 XGBoost has best trade-off accuracy vs explainability

Recommendations

 Deploy app to support demand planning

• Automate updates and retraining

• Explore Prophet or attention-based models like Transformers

