Tema 6

Grafos y Estructuras de Partición

Objetivos

- Estudio de la representación de una relación binaria entre los datos de una colección mediante la estructura *Grafo* y algunas de sus aplicaciones más significativas
- Reutilización de modelos ya estudiados para representar grafos y para explorarlos
- Desarrollo de estructuras de datos eficientes para agrupar n elementos distintos en una colección de k conjuntos disjuntos $S = \{S_1, S_2, ..., S_k\}$ con dos tipos de operaciones:
 - Unión de dos conjuntos disjuntos
 - Búsqueda para saber a qué conjunto pertenece un elemento

Bibliografía

Michael T. Goodrich and Roberto Tamassia. "Data Structures & Algorithms in Java" (4th edition), John Wiley & Sons, 2005

(capítulo 13 y apartado 6 del capítulo 11)

Contenidos

- 1. Introducción
- 2. Representación de grafos
- 3. Implementación de un grafo mediante listas de adyacencia
- 4. Recorridos sobre grafos
- 5. Árbol de recubrimiento de coste mínimo (Kruskal)
- 6. Estructuras de partición: UF-Sets
- 7. Caminos de mínimo peso (Dijkstra)
- 8. Órdenes topológicos

Relaciones entre los datos de la colección

- Relación binaria entre los datos de la colección:
 - Una relación R sobre un conjunto V se define como un conjunto de pares $(a, b) / a, b \in V$
 - Si $(a, b) \in R$, se escribe "a R b" y denota que a está relacionado con b

Grafos dirigidos (Digrafos)

- \circ Un **grafo dirigido** (*gd*) es un par G = (V, A)
 - V es un conjunto finito de vértices (o nodos o puntos)
 - A es un conjunto de **aristas** (o arcos) dirigidas, donde una arista es un par ordenado de vértices (u, v): $u \rightarrow v$

$$V = \{\text{Cas, Val, Ali, Alb, Mad}\}$$

 $|V| = 5$
 $A = \{(\text{Cas, Val}), (\text{Val, Mad}), (\text{Val, Alb}),$
 $(\text{Val, Ali}), (\text{Mad, Val}), (\text{Mad, Alb})\}$
 $|A| = 6$

Grafos no dirigidos (Grafos)

- \circ Un **grafo no dirigido** (*gnd*) es un par G = (V, A)
 - V es un conjunto finito de vértices
 - A es un conjunto de aristas (o arcos) no dirigidas, donde una arista es un par no ordenado de vértices (u,v) = (v,u), u ≠ v: u — v

$$V = \{\text{Cas, Val, Ali, Alb, Mad}\}$$

 $|V| = 5$
 $A = \{(\text{Cas, Val}), (\text{Val, Ali}), (\text{Val, Mad}),$
 $(\text{Val, Alb}), (\text{Mad, Alb})\}$
 $|A| = 5$

Grafos etiquetados

- Oun **grafo** etiquetado es un grafo G = (V, A) sobre el que se define una función $f: A \rightarrow E$, donde E es un conjunto cuyas componentes se llaman etiquetas
 - Nota: la función de etiquetado se puede definir también sobre V, el conjunto de vértices
- Oun grafo ponderado es un grafo etiquetado con números reales $(A \equiv \Re)$

Relaciones de adyacencia

○ Sea G = (V, A) un grafo. Si $(u, v) \in A$, decimos que el vértice v es adyacente al vértice u

Ejemplo:

el vértice 2 es adyacente al 1

En un grafo no dirigido la relación es simétrica

Grado de un vértice

 El grado de un vértice en un grafo no dirigido es el número de aristas que inciden sobre él (o de vértices adyacentes)

Ejemplo: el grado del vértice 2 es 2

- El grado de un vértice en un grafo dirigido es la suma de:
 - El número de aristas que salen de él (grado de salida)
 - El número de aristas que entran en él (grado de entrada)

Ejemplo: el grado de entrada de 2 es 1

+ el grado de salida de 2 es 2 el grado del vértice 2 es 3

Grado de un grafo

El grado de un grafo es el de su vértice de grado máximo

Ejemplo:

El grado de este grafo es 4 (el grado del vértice 4)

Caminos

- Ou no camino de longitud k desde u a u' en un grafo G = (V, A) es una secuencia de vértices $\langle v_0, v_1, ..., v_k \rangle$ tal que:
 - $v_0 = u \ y \ v_k = u'$
 - $\forall i: 1...k: (v_{i-1}, v_i) \in A$
 - La longitud *k* del camino es el número de aristas
 - La longitud del camino con pesos es la suma de los pesos de las aristas que forman el camino
- Si hay un camino P desde u hasta u', decimos que u' es alcanzable desde u vía P

Caminos simples y ciclos

- Oun *ciclo* es un camino $\langle v_0, v_1, ..., v_k \rangle$ que:
 - Empieza y acaba en el mismo vértice $(v_0 = v_k)$
 - Contiene al menos una arista
- Un camino es simple si todos sus vértices son distintos
- Un bucle es un ciclo de longitud 1
- Un grafo es acíclico si no contiene ciclos

Ejemplo:

 $\langle 1, 2, 5, 4 \rangle$ es un camino simple (longitud 3)

 $\langle 1, 2, 5, 4, 1 \rangle$ es un ciclo de longitud 4

 $\langle 2, 2 \rangle$ es un ciclo de longitud 1, un bucle

Ejercicios

Ejercicio. Sea G = (V, A) un grafo dirigido con pesos:

```
V = \{0, 1, 2, 3, 4, 5, 6\}

A = \{((0,1), 2), ((0,3), 1), ((1,3), 3), ((1,4), 10), ((2,0), 4),

((2,5), 5), ((3,2), 2), ((3,4), 2), ((3,5), 8), ((3,6), 4),

((4,6), 6), ((6,5), 1)\}
```

Se pide:

- a) | *V* | y | *A* |
- b) Vértices adyacentes a cada uno de los vértices
- c) Grado de cada vértice y del grafo
- d) Caminos simples desde 0 a 6, y su longitud con y sin pesos
- e) Vértices alcanzables desde 0
- f) Caminos mínimos desde 0 al resto de vértices
- g) ¿Tiene ciclos?

Ejercicio. Sea G = (V, A) un grafo dirigido con pesos:

$$V = \{0, 1, 2, 3, 4, 5, 6\}$$

 $A = \{((0,1), 2), ((0,3), 1), ((1,3), 3), ((1,4), 10), ((2,0), 4),$
 $((2,5), 5), ((3,2), 2), ((3,4), 2), ((3,5), 8), ((3,6), 4),$
 $((4,6), 6), ((6,5), 1)\}$

10

Se pide:

- a) | *V* | y | *A* |
- b) Vértices adyacentes a cada uno de los vértices
- c) Grado de cada vértice y del grafo
- d) Caminos simples desde 0 a 6, y su longitud con y sin pesos
- e) Vértices alcanzables desde 0
- f) Caminos mínimos desde 0 al resto de vértices
- g) ¿Tiene ciclos?

Componentes conexas

- Las componentes conexas en un grafo no dirigido son las clases de equivalencia de vértices según la relación "ser alcanzable"
 - Un grafo no dirigido es conexo si $\forall u, v \in V$, v es alcanzable desde u. Es decir, si tiene una única componente conexa

Ejemplo: grafo no dirigido conexo

Componentes conexas

Ejemplo: grafo no dirigido conexo

Ejemplo: grafo no dirigido NO conexo (2 componentes conexas)

Componentes conexas

- Las componentes fuertemente conexas en un grafo dirigido son las clases de equivalencia de vértices según la relación "ser mutuamente alcanzable"
 - Un grafo dirigido es fuertemente conexo si $\forall u, v \in V$, v es alcanzable desde u

Ejemplo: grafo dirigido con 4 componentes fuertemente conexas

