函数项级数、幂级数

May 14, 2018

Outline

函数项级数的概念

幂级数及其收敛性

函数项级数的概念

- ▶ (复)函数项级数: $\{u_n(z)\}$, $\sum_{n=1}^{\infty} u_n(z)$, $z \in \mathbb{C}$
- Z∈ ℝ——实函数项级数
- ▶ 收敛点: $\exists z_0 \in \mathbb{C}$, s.t. $\sum_{n=1}^{\infty} u_n(z_0)$ 收敛
- ▶ 收敛域: 收敛点的全体
- ▶ 发散点,发散域

例1. (1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} z^n$$

$$(2) \sum_{n=1}^{\infty} \frac{1}{3-4n} (\cos x)^n$$

幂级数及其收敛性

幂级数:
$$\sum_{n=0}^{\infty} c_n(z-z_0)^n$$
, $z \in \mathbb{C}$, $\sum_{n=0}^{\infty} c_n(x-x_0)^n$, $x \in \mathbb{R}$ 目标: $\sum_{n=0}^{\infty} c_n z^n$

Theorem (1 Abel 定理)

(1) if
$$\sum_{n=0}^{\infty} c_n z^n$$
 在点 z_0 ($z_0 \neq 0$) 收敛 $\Rightarrow \forall |z| < |z_0|$, $\sum_{n=0}^{\infty} c_n z^n$ 绝对 收敛 ∞

(2) if
$$\sum_{n=0}^{\infty} c_n z^n$$
 在点 z_0 发散 $\Rightarrow \forall |z| > |z_0|$, $\sum_{n=0}^{\infty} c_n z^n$ 发散

Theorem (2)

设 $\sum_{n=0}^{\infty} c_n z^n$ 不是仅在z=0处收敛,也不是在整个复平面上收敛,则 $\exists R>0$, s.t. if |z|< R 时,级数绝对收敛;|z|>R 时,发散;当 |z|=R 时,不一定。 这个B 称为收敛半径

- ► |z| < R 称为收敛圆, |x| < R, 称为收敛区间</p>
- ▶ if $\sum_{n=0}^{\infty} c_n z^n$ 仅在z=0 处收敛,规定z=0 ,if $\sum_{n=0}^{\infty} c_n z^n$ 在整

Theorem (3)

设
$$\lim_{n\to\infty} |\frac{c_{n+1}}{c_n}| = \rho \text{ (or } \lim_{n\to\infty} \sqrt[n]{|c_n|} = \rho \text{),}$$
则 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为:

$$R = \begin{cases} \frac{1}{\rho} & 0 < \rho < +\infty \\ +\infty & \rho = 0 \\ 0 & \rho = +\infty \end{cases}$$