Week 10 Tutoring

CSE 180

Final

Tuesday, 12/12 8:00-11:00 am (3 hours)

- The Final is cumulative, covering the entire quarter, with somewhat greater emphasis on later material.
- Bring:
 - Red Scantron
 - Cheat sheet

Design Theory

- A set of design principles that allows one to decide what constitutes a "good" or "bad" database schema design
- A set of algorithms for modifying a "bad" design to a "better" one

How to make a good schema design?

Remove redundancies

Functional Dependencies

- The information that rank determines salary_scale is a type of integrity constraint known as a functional dependency (FD).
- Functional dependencies can help us detect anomalies that may exist in a given schema
- $X \rightarrow Y = "X determines Y"$
- A relation instance r of R satisfies the FD $X \rightarrow Y$ if for every pair of tuples t and t in r:

If
$$\pi_{x}(t) = \pi_{x}(t')$$
 holds, then $\pi_{y}(t) = \pi_{y}(t')$ also holds.

• That is, if the two tuples t and t' agree on the the values of all the attributes in X, then the two tuples t and t' must also agree on the values of all the attributes in Y.

FD example

This is a violation because $A_1...A_m \rightarrow B_1...B_m$ therefore, the rest of the attributes in R should match as well.

In this case zzzz... does not match wwww...

	A ₁ A ₂ A _m	B ₁ B _n	the rest of the attributes in R, if any
t	XXXXXXXXXXXXXX	ууууууууу	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
			The actual values do not matter, but they cannot be the same if R is a set.
ť'	xxxxxxxxxxxx	ууууууууу	✓ wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
	vvvvvvvvvvv	ууууууууу	uuuuuuuuuuuuuuuuuuuuu OK
	xxxxxxxxxxxx	vvvvvvvv	uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Implications

We say that a set \mathcal{F} of FDs implies an FD F if for every instance r that satisfies \mathcal{F} , it must also be true that r satisfies F.

Notation: $\mathcal{F} \models \mathsf{F}$

Armstrong's Axioms

Let X, Y, and Z denote sets of attributes over a relation schema R.

- Reflexivity: If $Y \subseteq X$, then $X \to Y$.
 - FDs in this category are called trivial FDs.
- Augmentation: If $X \to Y$, then $XZ \to YZ$ for any set Z of attributes.
- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$.

Derived from Armstrong's axioms

- Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$.
- Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$
- Pseudo-Transitivity: If $X \to Y$ and $WY \to Z$, then $XW \to Z$.

Rules cont.

We use the notation $\mathcal{F} \vdash F$ to mean that F can be derived from F using Armstrong's axioms.

VS. $\mathcal{F} \models F$: We say that a set \mathcal{F} of FDs implies an FD F if for every instance r that satisfies \mathcal{F} , it must also be true that r satisfies F.

Completeness and Soundness of Armstrong's Axioms

Completeness: If a set ${\cal F}$ of FDs implies F, then F can be derived from ${\cal F}$ using Armstrong's axioms.

If
$$\mathcal{F} \models F$$
, then $\mathcal{F} \vdash F$.

Soundness: If F can be derived from a set of FDs ${\cal F}$ using Armstrong's axioms, then ${\cal F}$ implies F.

If
$$\mathcal{F} \vdash F$$
, then $\mathcal{F} \models F$.

With Completeness and Soundness, we know that

$$\mathcal{F} \vdash \mathsf{F}$$
 if and only if $\mathcal{F} \models \mathsf{F}$

Closure of a Set of FD ${\mathcal F}$

Let \mathcal{F}^+ denote the set of all FDs implied by a given set \mathcal{F} of FDs.

ullet Also called the closure of $oldsymbol{\mathcal{F}}$

To decide whether \mathcal{F} implies F, first compute \mathcal{F} , then see whether F is a member of \mathcal{F} .

Attribute Closure Algorithm

Let X be a set of attributes, and ${\boldsymbol{\mathcal{F}}}$ be a set of FD s.

The Attribute Closer X^+ with respect to \mathcal{F} is the set of all attributes A such that $X \rightarrow A$ is derivable from \mathcal{F}

Should be clear that: If $A \in \text{``Closure''}$ (that is, if $A \in X^+$), then $X \to A$. More strongly: $\mathcal{F} \vdash X \to A$ if and only if $A \in X^+$.

Normal Forms

- First Normal Form (1NF)
 - Every attribute is atomic
- Second Normal Form (2NF)
 - -- Not important
- Boyce-Codd Normal Form (BCNF)
- Third Normal Form (3NF)

BCNF and 3NF

R is in _NF if for every FD X \rightarrow A in F, at least one of following is true:

- $X \rightarrow A$ is a trivial FD (i.e., $A \subseteq X$), or
- X is a superkey for R, or
- A is a Prime Attribute. That is, A is part of some key of R

Trivial

Trivial FD

 \circ A \rightarrow A, B \rightarrow B, C \rightarrow C, AB \rightarrow A, AB \rightarrow B, BC \rightarrow B, BC \rightarrow C, AC \rightarrow A, AC \rightarrow C, ABC \rightarrow A, ABC \rightarrow B, ABC \rightarrow C, ABC \rightarrow AB, A

FD Example 2 using Attribute Closure

- $\mathcal{T} = \{ AB \rightarrow E, B \rightarrow AC, BE \rightarrow C \}$
- Question: Does BC → E?
- Compute (BC)⁺

We'll write (BC)⁺ Instead of {B,C}⁺

- Closure = { B, C }
- Closure = { A, B, C } (due to B → AC)
- Closure = $\{A, B, C, E\}$ (due to $AB \rightarrow E$)
- Closure = { A, B, C, E } (due to BE → C)
 No change, so stop.
- Therefore (BC)⁺ = {A,B,C,E}
- Since E ∈ (BC)⁺, answer YES.

Superkeys, Keys and Prime Attributes

For $X \rightarrow A...$

- If $X^+ = attr(R)$, then X is a **superkey**
- If there is not proper subset of X that is a super key, then X is a **key**
 - I.e. if A and AD are superkeys, only A is a key
- A is a prime attribute if it is part of some key

Star Schemas

Dimension and Dependent Attributes

Dimension Attribute: The key of a dimension table

Dependent Attribute: a fact value determined by the dimension attributes of the tuple

Online

Online Analytical Processing Operations

\$ of Anheuser-Busch by drinker/bar

	Jim	Bob	Mary
Joe's	45	33	30
Bar			
Nut-	50	36	42
House			
Blue Chalk	38	31	40

\$ of A-B B	eers / d	Irinke
-------------	----------	--------

	Jim	Bob	Mary
Bud	40	29	40
M' lob	45	31	37
Bud Light	48	40	35

- Pivoting: Changing the dimensions used in a cross-tab
- Slicing: Creating a cross-tab for fixed values only
- Rollup: Moving from finer-granularity data to a coarser granularity
- Drill down: Moving from coarser granularity data to finer granularity data

Joins

Outer Join: preserves dangling tuples by padding them with NULL

FULL Outer Join: pad both sides; default

R

A	В
1	2
4	5

S

В	С
2	3
6	7

SELECT * FROM R FULL OUTER JOIN S ON R.B = S.B;

A	В	В	С
1	2	2	3
4	5	N	N
N	N	6	7

Right Outer Join

Pad dangling tuples of S only

R

A	В
1	2
4	5

S

В	С
2	3
6	7

SELECT * FROM R RIGHT OUTER JOIN S ON R.B = S.B;

A	В	В	С
1	2	2	3
N	N	6	7

Left Outer Join

Pad dangling tuples of R only

R

A	В
1	2
4	5

S

В	С
2	3
6	7

SELECT * FROM R LEFT OUTER JOIN S ON R.B = S.B;

A	В	В	С
1	2	2	3
4	5	N	N

Setting NULL values to 0

How do you change NULL value to 0?

- COALESCE(x, 0) has value x if x isn't NULL, and value 0 if x is NULL.
- Using LEFT OUTER JOIN
- Using UNION