VORLESUNG 6 NACH TITEL FRAGEN - Teil3

Definition:

Sei V ein K-VR, $T \subseteq V$

T heißt eine Basis von V, wenn gilt:

- 1. Span(T) = V (T ist ein erzeugendes System von V)
- 2. T ist linear unabhängig

Beweis:

eine Basis $(k_1, k_2, ..., k_n)$ ist ein minimales erzeugendes System, denn $b_k \notin Span(\{k_1, ..., k_n\} \setminus \{b_i\})$

Anmerkung:

 $b_i \ inSpan(...) \rightarrow \text{es existiert}$

Satz:

Sei V ein K-VR und B_1, B_2 seine Basen dieses VR. Dann gilt: $|B_1| = |B_2|$

Definition:

Sei V ein K-VR und B eine Basis dieses VR.

Gilt: $|B| = n \in \mathbb{N}$, dann ist V ein n-dimensionaler VR (dim V = n)

Andernfalls ist V ein unendlich Dimensionaler VR (dim $V = \infty$)

Satz:

Sei V ein K-VR und $(b_1,...,b_n)$ eine Basis dieses VR. Dann existiert für jedes $v \in V$ eindeutig bestimmte $k_1, ..., k_n \in K$

mit
$$v = k_1 \cdot b_1 + \dots + k_n \cdot b_n$$
) (Basisdarstellung von V)

mit
$$v = k_1 \cdot b_1 + ... + k_n \cdot b_n$$
) (Basisdarstellung von V)

Man nennt $V_{b_1,...,b_n} = \begin{pmatrix} k_1 \\ ... \\ k_n \end{pmatrix}_{b_1,...,b_n}$ den Koordinatenvektor von v bzgl. $(b_1,...,b_n)$