General Purpose Transistors

NPN Silicon

This transistor is designed for general purpose amplifier applications. It is housed in the SOT-416/SC-75 package which is designed for low power surface mount applications.

Features

• Pb-Free Package is Available

MAXIMUM RATINGS (T_A = 25°C)

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter - Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	I _C	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1) @T _A = 25°C Derated above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance, Junction- to- Ambient (Note 1)	$R_{\theta JA}$	600	°C/W
Total Device Dissipation, FR-4 Board (Note 2) @T _A = 25°C Derated above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction- to- Ambient (Note 2)	$R_{\theta JA}$	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 × 1.0 Inch Pad

ON Semiconductor®

http://onsemi.com

GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

SOT-416/SC-75 CASE 463 STYLE 1

MARKING DIAGRAM

AM = Device Code

M = Date Code*

• = Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT3904TT1	SOT-416	3000 Tape & Reel
MMBT3904TT1G	SOT-416 (Pb-Free)	3000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic Symbol Min Max U						Unit	
OFF CHARACTERISTICS							
Collector-Emitter Breakdown Voltage (Note 3) (I _C = 1.0 mAdc, I _B = 0)			V _{(BR)CEO}	40	-	Vdc	
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)			V _{(BR)CBO}	60	-	Vdc	
Emitter-Base Brea (I _E = 10 μAdc, I	S .		V _{(BR)EBO}	6.0	-	Vdc	
	Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)			-	50	nAdc	
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)			I _{CEX}	-	50	nAdc	
ON CHARACTERI	STICS (Note 3)		•				
$(I_C = 1.0 \text{ mAdc}, (I_C = 10 \text{ mAdc}, (I_C = 50 \text{ mAdc},$, V _{CE} = 1.0 Vdc) , V _{CE} = 1.0 Vdc) V _{CE} = 1.0 Vdc) V _{CE} = 1.0 Vdc) c, V _{CE} = 1.0 Vdc)		h _{FE}	40 70 100 60 30	- 300 -	-	
Collector-Emitter $(I_C = 10 \text{ mAdc}, (I_C = 50 \text{ mAdc},$	$I_B = 1.0 \text{ mAdc}$		V _{CE(sat)}	- -	0.2 0.3	Vdc	
Base-Emitter Satu (I _C = 10 mAdc, (I _C = 50 mAdc,	I _B = 1.0 mAdc)		V _{BE(sat)}	0.65 -	0.85 0.95	Vdc	
SMALL-SIGNAL	CHARACTERISTICS						
Current-Gain - Ba (I _C = 10 mAdc,	andwidth Product V _{CE} = 20 Vdc, f = 100 MHz)		f _T	300	-	MHz	
Output Capacitano (V _{CB} = 5.0 Vdc	e , I _E = 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF	
Input Capacitance (V _{EB} = 0.5 Vdc	, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF	
Input Impedance (V _{CE} = 10 Vdc,	$I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$		h _{ie}	1.0	10	kΩ	
Voltage Feedback (V _{CE} = 10 Vdc,	Ratio $I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$		h _{re}	0.5	8.0	X 10 ^{- 4}	
Small-Signal Curro (V _{CE} = 10 Vdc,	ent Gain I _C = 1.0 mAdc, f = 1.0 kHz)		h _{fe}	100	400	-	
Output Admittance (V _{CE} = 10 Vdc,	I _C = 1.0 mAdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos	
Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 k Ω , f = 1.0 kHz)			NF	-	5.0	dB	
SWITCHING CHAI	RACTERISTICS						
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$	MMBT3904TT1	t _d	-	35	ns	
Rise Time	$(I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$	MMBT3904TT1	t _r	-	35		
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc)	MMBT3904TT1	t _s	-	200	ns	
Fall Time	$(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	MMBT3904TT1	t _f	-	50]	

Figure 1. Normalized Thermal Response

* Total shunt capacitance of test jig and connectors

Figure 2. Delay and Rise Time Equivalent Test Circuit

Figure 3. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

Figure 4. Capacitance

Figure 5. Charge Data

Figure 8. Storage Time

Figure 9. Fall Time

200

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

Figure 10. Noise Figure

Figure 11. Noise Figure

h PARAMETERS

 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

Figure 12. Current Gain

Figure 13. Output Admittance

Figure 14. Input Impedance

Figure 15. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 16. DC Current Gain

Figure 17. Collector Saturation Region

Figure 18. "ON" Voltages

Figure 19. Temperature Coefficients

PACKAGE DIMENSIONS

SC-75/SOT-416 CASE 463-01 ISSUE F

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
p	0.15	0.20	0.30	0.006	0.008	0.012
C	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.059	0.063	0.067
Е	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			C	0.04 BS0	
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.061	0.063	0.065

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

mm SCALE 10:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative