

M54/74HC563 M54/74HC573

OCTAL D-TYPE LATCH WITH 3 STATE OUTPUT HC563 INVERTING - HC573 NON INVERTING

- HIGH SPEED
 - $t_{PD} = 13 \text{ ns} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } T_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- OUTPUT DRIVE CAPABILITY

 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE IOL = IOH = 6 mA (MIN.)
- BALANCED PROPAGATION DELAYS

 tpi H = tpHi
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS563/573

DESCRIPTION

The M54/74HC563 and M54HC573 are high speed CMOS OCTAL LATCH WITH 3-STATE OUTPUTS fabricated with in silicon gate C²MOS technology.

These ICs archive the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

These 8 bit D-Type latches are controlled by a latch enable input (\overline{OE}).

While the LE input is held at a high level, the Q outputs will follow the data input precisely or inversely. When the LE is taken low, the Q outputs will be latched precisely or inversely at the logic level

of D input data. While the \overline{OE} input is at low level, the eight outputs will be in a normal logic state (high or low logic level) and while high level the outpts will be in a high impedance state.

The application designer has a choise of combination of inverting and non inverting outputs.

The three state output configuration and the wide choise of outline make bus organized system simple.

All inputs are equipped with protection circuits against discharge and transient excess voltage.

PIN CONNECTION (top view)

October 1993 1/13

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION (HC563)

PIN No	SYMBOL	NAME AND FUNCTION
1	OE	3 State output Enable Input (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	Q0 to Q7	3 State Latch Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

PIN DESCRIPTION (HC573)

PIN No	SYMBOL	NAME AND FUNCTION
1	ŌĒ	3 State output Enable Input (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	Q0 to Q7	3 State Latch Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

TRUTH TABLE

	INPUTS	OUTPUTS			
ŌE	LE	Q (HC573) Q (HC563)			
Н	X	Х	Z	Z	
L	L	Χ	NO CHANGE *	NO CHANGE *	
L	Н	L	L	Н	
L	Н	Н	Н	L	

LOGIC DIAGRAMS

X: DON'T CARE
Z: HIGH IMPEDANCE
*: Q/Q OUTPUTS ARE LATCHED AT THE TIME WHEN THE LE INPUT IS TAKEN LOW LOGIC LEVEL.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P _D	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V_{CC}	Supply Voltage		2 to 6	V
V_{I}	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T_op	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C °C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Test Conditions						Value				
Symbol	Parameter	V cc (V)				_A = 25 ^o C and 7		1	85 °C HC	1	125 °C HC	Unit
		(۷)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
Vон	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VIH	I _O =-20 μA	4.4	4.5		4.4		4.4		$\frac{1}{2}$ v
		6.0	or		5.9	6.0		5.9		5.9		
		4.5	V _{IL}	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	V _{IH}	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND			±0.1		±1		±1	μΑ
l _{OZ}	3 State Output Off State Current	6.0		V _{IH} or V _{IL} V _{CC} or GND			±0.5		±5.0		±10	μΑ
I _{CC}	Quiescent Supply Current	6.0		V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Te	est Co	nditions				Value				
Symbol	Parameter	Vcc	C _L			_A = 25 ^o C and 7			85 °C HC	1	125 °C HC	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0				25	60		75		90	
t _{THL}	Time	4.5	50			7	12		15		18	ns
		6.0				6	10		13		15	
t _{PLH}	Propagation	2.0				50	115		145		175	
t _{PHL}	Delay Time	4.5	50			15	23		29		35	ns
	(LE - Q, Q)	6.0				13	20		25		30	
		2.0				60	155		195		235	
		4.5	150			20	31		39		47	ns
		6.0				17	26		33		40	
t _{PLH}	Propagation	2.0				42	110		140		165	
t _{PHL}	Delay Time	4.5	50			14	22		28		33	ns
	(D - Q, Q)	6.0				12	19		24		28	
		2.0				57	150		190		225	
		4.5	150			19	30		38		45	ns
		6.0				16	26		32		38	
t _{PZL}	3 State Output	2.0				55	140		175		210	
tpzh	Enable Time	4.5	50	$R_L = 1 K\Omega$		17	28		35		42	ns
		6.0				14	24		30		36	
		2.0				66	180		225		270	
		4.5	150	$R_L = 1 K\Omega$		22	36		45		54	ns
		6.0				19	31		38		46	
t _{PLZ}	3 State Output	2.0				40	125		155		190	
t _{PHZ}	Disable Time	4.5	50	$R_L = 1 K\Omega$		17	25		31		38	ns
		6.0				15	21		26		32	
t _{W(L)}	Minimum Pulse	2.0				40	75		95		110	
t _{W(H)}	Width	4.5	50			8	15		19		22	ns
		6.0				7	13		16		19	
ts	Minimum Set-up	2.0				16	50		65		75	
	Time	4.5	50			5	10		13		15	ns
		6.0				3	9		11		13	
t _h	Minimum Hold	2.0					5		5		5	
	Time	4.5	50				5		5		5	ns
		6.0					5		5		5	
C _{IN}	Input Capacitance					5	10		10		10	pF
Соит	Output Capacitance					10						pF
C _{PD} (*)	Power Dissipation Capacitance			r HC563 r HC573		49 51						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/8$ (per Gate)

for HC563 CPD (TOTAL) = $33 + 16 \times n$ [pF]; for HC573 CPD (TOTAL) = $33 + 18 \times n$ [pF]

The CPD when n pcs of FLIP-FLOP operate, can be gained by following equations:

SWITCHING CHARACTERISTICS TEST WAVEFORM

 $t_{PLH},\; t_{PHL},\; (LE\; -\; Q,\; \overline{Q})\; t_s,\; t_h,\; t_w$

t_{PLZ}, t_{PZL}

The 1K Ω load resistors should be connected between outputs and V $_{CC}$ line and the 50pF load capacitors should be connected between outputsand GND line. All inputs except \overline{OE} input should be connected to V $_{CC}$ line or GND line such that outputs will be in low logic level while \overline{OE} input is held low.

t_{PHZ}, t_{PZH}

The 1K $\!\Omega$ load resistors and the 50pF load capacitors should be connected between each output and GND line.

All inputs except $\overline{\text{OE}}$ input should be connected to V_{CC} or GND line such that output will be in high logic level while $\overline{\text{OE}}$ input is held low.

TEST CIRCUIT Icc (Opr.)

Plastic DIP20 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Ceramic DIP20 MECHANICAL DATA

DIM.	mm				inch	
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			25			0.984
В			7.8			0.307
D		3.3			0.130	
Е	0.5		1.78	0.020		0.070
e3		22.86			0.900	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
I	1.27		1.52	0.050		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N1			4° (min.),	15° (max.)		
Р	7.9		8.13	0.311		0.320
Q			5.71			0.225

SO20 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
С		0.50			0.020	
c1			45°	(typ.)		
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
M			0.75			0.029
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
А	9.78		10.03	0.385		0.395			
В	8.89		9.04	0.350		0.356			
D	4.2		4.57	0.165		0.180			
d1		2.54			0.100				
d2		0.56			0.022				
E	7.37		8.38	0.290		0.330			
е		1.27			0.050				
e3		5.08			0.200				
F		0.38			0.015				
G			0.101			0.004			
М		1.27			0.050				
M1		1.14			0.045				

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

