Basic Math for Al

Kelas Guru

1. Aljabar Linier: Matriks, Vektor, Nilai dan Vektor Eigen

2. Kalkulus: Fungsi, Turunan, Optimasi

3. Peluang: Konsep dasar peluang, peluang bersyarat,

teorema bayes

Penerapan Matematika di Al

Aljabar Linier

Data yang

Mesin

Data disimpan dalam

besar

bentuk matriks

Penerapan Matematika di Al

Kalkulus

Dengan
Optimasi Mesin

Meningkatkan

keakuratan prediksi

Kalkulus

Penerapan Matematika di Al

Peluang

Tidak ada

hasil Mesin

konklusif

Menggunakan peluang untuk kesimpulan

Vektor

Vektor → besaran yang
memiliki nilai dan arah
Skalar → konstanta atau
besaran yang memiliki nilai

Penjumlahan vektor

 $a+b = (a_1+b_1, ..., a_n+b_n)$

perkalian skalar

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

Jarak pada Vektor

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Jarak Euclidean

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

Jarak Manhattan

Matriks: kumpulan nilai dari beberapa variabel yang disusun menjadi baris dan kolom. Matriks berukuran mxn memiliki m baris dan n kolom:

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R}$$

Studi Kasus Matriks

Nama	Kategori harga	Pekerjaan	Brand/ Merk
Α	1	2	1
В	2	1	1
С	3	1	2
D	2	2	2

Penjumlahan Matriks

Determinan Matriks

det(A)=
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$
=
$$\begin{vmatrix} a & b & c \\ a & b & c \\ d & e & f \\ g & h & i & g & h \end{vmatrix}$$

Misalkan A matriks persegi, invers dari A adalah matriks persegi A⁻¹ dengan AA⁻¹ = A⁻¹A = I (matriks identitas)

$$I_n = egin{bmatrix} 1 & 0 & 0 & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$A^{-1} = rac{1}{\det(A)}\operatorname{adj}(A).$$

$$I_{n} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \qquad A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A). \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\operatorname{ad-bc}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Nilai dan Eigen Vektor

Fungsi dan Gradient

Fungsi: aturan yang memetakan antara 2 himpunan

Fungsi dan Gradient

Gradient adalah besaran perubahan atau kemiringan

$$m = \frac{Y1 - Y2}{X1 - X2}$$

Contoh penerapan di algoritma Support Vector Machine (SVM) Menentukan garis pembatas antar 2 kelas

Turunan dan Optimasi

Turunan (differensial) merupakan pengembangan dari gradient.

Turunan sering digunakan untuk mencari nilai maksimum atau minimum

auang Bersy

- 2 kejadian A dan B dikatakan saling lepas jika A ∩ B = Ø, misalnya kejadian munculnya angka ganjil dan genap saat melempar 1 dadu.
 Pada kejadian ini P(A ∩ B) =0.
- Jika kejadian A tidak mempengaruhi kejadian B (dan sebaliknya) maka A dan B
 dikatakan saling bebas. Peluang munculnya kejadian A dan B = P(A ∩ B) = P(A) x
 P(B). Misalnya kejadian terjadinya kecelakaan dan hujan
- Peluang kejadian A atau B = P(A∪B) = P(A) + P(B) P(A ∩ B)
- Peluang terjadi suatu kejadian H bila diketahui bahwa kejadian X telah terjadi disebut peluang bersyarat yang dikenal dalam teorema bayes

$$P(H|X) = \frac{P(H \cap X)}{P(X)} = \frac{P(X|H)P(H)}{P(X)}$$

Thanks!

Stay Healty and Stay Happy

References:

- https://www.dqlab.id/machine-learning-adalahrebranding-dari-matemaritika-benarkah
- https://maths.id/konsep-dasar-pemetaan-pengertiansifat-jenis-fungsi
- Modul Orbit AI Gen Y dan For Start Up"Matematika dasar untuk kecerdasan buatan"

Today's Video Lesson

You can put a video related and relevant to today's lesson materials to give a deeper understanding to your students.

