Brownian Motion

Problem sheet 8

1. Stopping times

Let $(B_t)_{t\geqslant 0}$ be a Brownian motion and consider the hitting time

$$T_a = \inf\{t > 0 : B_t = a\}$$
,

for a > 0. Prove that for any $\lambda > 0$

$$\mathbb{E}[e^{-\lambda T_a}] = e^{-a\sqrt{2\lambda}} .$$

Hint: Use the optional stopping theorem with a suitable (exponential) martingale.

2. Expected occupation measures

Consider the expected occupation measure associated to d-dimensional Brownian motion

$$\nu_{x,t}(A) = \mathbb{E}_x \int_0^t 1_A(B_s) \, \mathrm{d}s .$$

(a) Show that $\nu_{x,y}$ has a density with respect to the Lebesgue measure given by

$$g_t(x,y) = \int_0^t p_s(x,y) \,\mathrm{d}s \;,$$

where $p_t(x, y)$ is the transition probability density of Brownian motion.

(b) Prove that in $d \ge 3$

$$\lim_{t \to \infty} g_t(x, y) = g(x, y) = \frac{\Gamma(d/2 - 1)}{2\pi^{\frac{d}{2}}} |x - y|^{2-d}$$

Hint: Use the change of variables $r = |x - y|^2/2s$.

(c) Deduce that

$$\lim_{t \to \infty} \nu_{x,t}(A) = \begin{cases} \int_A g(x,y) \, \mathrm{d}y & \text{if } d \geqslant 3, \\ +\infty & \text{if } d \leqslant 2. \end{cases}$$

3. Bessel process Let $(\mathbf{B}(t):t\geq 0)$ be a d-dimensional BM with generator $\frac{1}{2}\Delta$ defined for all $f\in C_0^2(\mathbb{R}^d,\mathbb{R}),\ d\geq 2$.

Define the d-dimensional Bessel process as $t \mapsto X(t) := \|\mathbf{B}(t)\|_2 \in \mathbb{R}$. As it turns out, X is a Feller Markov process.

(a) For a radially-symmetric $f \in C_0^2(\mathbb{R}^d, \mathbb{R})$, compute $\frac{1}{2}\Delta f(X(t))$ to derive the generator of the Bessel process

$$\mathcal{L}f(x) = \frac{d-1}{2x}f'(x) + \frac{1}{2}f''(x) .$$

(Radial symmetry means that f depends on the Euclidean norm $x := ||\mathbf{x}||_2$ only). :c

1

- (b) Show that $X(t)^2 dt$ is a martingale.
- (c) For d=3 show that $t\mapsto M(t):=X(t)^4-10tX(t)^2+15t^2$ is a martingale.

4. Harmonic functions

Let B be a Brownian motion on \mathbb{R}^2 . Suppose that $D \subseteq \mathbb{R}^2$ is a bounded open region and that $v \in C^2(D) \cap C(\overline{D})$ satisfies

$$\frac{1}{2}\Delta v = -1 \; , \qquad \forall x \in D \; , \qquad v(x) = 0 \; , \qquad \forall x \in \partial D \; ,$$

- (a) Show that $v(x) = \mathbb{E}_x[T]$, where $T = \inf\{t > 0 : B_t \in \partial D\}$.
- (b) Using rotational symmetry (that is, assume that u is radial), find a solution

$$u \colon B_{0,r} \to \mathbb{R}$$
,

to the above equation for $D = B_{0,r}$ (an open ball of radius r centered around 0) in the form of a second degree polynomial in |x|.

(c) For a general domain D such that $0 \in D$, show that $v(0) \ge d(0, \partial D)^2/2$. Here $d(x, \partial D)$ is the distance between the point $x \in \mathbb{R}^2$ and the set $\partial D \subseteq \mathbb{R}^2$:

$$d(x, A) = \inf\{|x - y| : y \in A\}$$
.