

Data Analyst Internship

TASK 3: DIABETES PREDICTION ANALYSIS BY AMAN SHAIKH

Q1. Retrieve the Patient_id and ages of all patients.

Q2. Select all female patients who are older than 40.

In our patient population, there are no female individuals exceeding the age of 40.

Q3. Calculate the average BMI of patients.

Q4. List patients in descending order of blood glucose levels.

Q5. Find patients who have hypertension and diabetes.

Q6. Determine the number of patients with heart disease.

Q7. Group patients by smoking history and count how many smokers and nonsmokers there are.

Q8. Retrieve the Patient_ids of patients who have a BMI greater than the average BMI.

Q9. Find the patient with the highest HbA1c level and the patient with the lowest HbA1clevel.

Highest

Lowest

Q10. Calculate the age of patients in years (assuming the current date as of now).

Q11. Rank patients by blood glucose level within each gender group.

Q12. Update the smoking history of patients who are older than 50 to "Ex-smoker."

Q13. Insert a new patient into the database with sample data.

Q14. Delete all patients with heart disease from the database.

Q15. Find patients who have hypertension but not diabetes using the EXCEPT operator.

Q16. Define a unique constraint on the "patient_id" column to ensure its values are unique.

Q17. Create a view that displays the Patient_ids, ages, and BMI of patients.

Q18. Suggest improvements in the database schema to reduce data redundancy and improve data integrity.

- Normalization (Up to 3NF): Organize data into separate tables based on functional dependencies to eliminate redundancy and ensure data integrity.
- Primary Keys and Foreign Keys: Use primary keys to uniquely identify rows in each table and foreign keys to establish relationships between tables, enforcing referential integrity.
- 3. Avoid Multi-Valued Dependencies: Identify and eliminate multi-valued dependencies by decomposing tables or creating separate tables for related attributes to maintain atomicity and data integrity.
- 4. **Denormalization for Performance**: Consider denormalizing tables or introducing calculated fields to improve query performance, but carefully balance performance gains with the risk of data inconsistency.

Q19. Explain how you can optimize the performance of SQL queries on this dataset.

- Indexing: Use indexes on columns frequently used in WHERE clauses, JOIN conditions, and ORDER BY clauses to expedite row retrieval.
- Optimize Joins: Prefer INNER JOIN over OUTER JOIN for efficiency. Prioritize smaller tables as driving tables in the join clause.
- Avoid SELECT: Explicitly specify needed columns instead of using SELECT*, reducing data retrieval overhead.
- Limit Result Set: Apply LIMIT clause to restrict the number of rows returned, minimizing data transfer and processing.