© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°10

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – CCP 2001 Maths2 MP - Utilisation des matrices compagnons

Notations et définitions

- Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et n est un entier naturel.
- Si u est un endomorphisme d'un \mathbb{K} -espace vectoriel \mathbb{E} , on note $u^0 = \mathrm{Id}_{\mathbb{E}}$ et $\forall n \in \mathbb{N}, \ u^{n+1} = u^n \circ u$.
- On note K_n[X] la K-algèbre des polynômes de degré inférieur ou égal à n, M_n(K) la K-algèbre des matrices carrées de taille n à coefficients dans K de matrice unité I_n et GL_n(K) le groupe des matrices inversibles de M_n(K); les éléments de M_n(K) sont notés M = (m_{i,i}).
- Pour une matrice A de $\mathcal{M}_n(\mathbb{K})$, on note A^T la transposée de la matrice A, rg(A) son rang, $\chi_A = det(XI_n A)$ son polynôme caractéristique et Sp(A) l'ensemble de ses valeurs propres.
- Si $P = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ est un polynôme unitaire de $\mathbb{K}_n[X]$ on lui associe la **matrice compagnon**

$$C_{P} = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & -a_{0} \\ 1 & 0 & \ddots & . & 0 & -a_{1} \\ 0 & 1 & 0 & \ddots & \vdots & -a_{2} \\ 0 & \ddots & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & 0 & 1 & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 0 & 1 & -a_{n-1} \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{K})$$

(c'est-à-dire la matrice $C_P = (c_{i,j})$ est définie par $c_{i,j} = 1$ pour i - j = 1, $c_{i,n} = -a_{i-1}$ et $c_{i,j} = 0$ dans les autres cas).

Les parties II, III et IV utilisent les résultats de la partie I et sont indépendantes entre elles.

I Propriétés générales

Dans cette partie on considère le polynôme $P = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ de $\mathbb{K}_n[X]$ et C_P sa matrice compagnon associée.

- 1 Montrer que C_P est inversible si et seulement si $P(0) \neq 0$.
- 2 Montrer que $\chi_{C_p} = P$.

© Laurent Garcin MP Dumont d'Urville

Soit Q un polynôme de $\mathbb{K}_n[X]$, déterminer une condition nécessaire et suffisante pour qu'il existe une matrice A de $\mathcal{M}_n(\mathbb{K})$ telle que $\chi_A = Q$.

- $\boxed{\mathbf{4}}$ On note C_P^T la transposée de la matrice C_P .
 - **4.a** Justifier la proposition : $Sp(C_P) = Sp(C_P^T)$.
 - **4.b** Soit λ élément de $Sp(C_P^T)$, déterminer le sous-espace propre de C_P^T associé à λ .
 - **4.c** Montrer que C_P^{T} est diagonalisable si et seulement si P est scindé sur \mathbb{K} et a toutes ses racines simples.
 - **4.d** On suppose que P admet n racines $\lambda_1, \lambda_2, ..., \lambda_n$ deux à deux distinctes, montrer que C_P^T est diagonal $1 \quad 1 \quad \cdots \quad 1$

lisable et en déduire que le déterminant de Vandermonde $\begin{vmatrix} 1 & 1 & \cdots & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdots & \cdots & \lambda_n^2 \\ \vdots & \vdots & & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \cdots & \lambda_n^{n-1} \end{vmatrix} \text{ est non nul.}$

5 Exemples:

5.a Déterminer une matrice A (dont on précisera la taille *n*) vérifiant :

$$A^{2002} = A^{2001} + A^{2000} + 1999I_n$$

5.b Soient E un \mathbb{K} -espace vectoriel de dimension n et f un endomorphisme de E vérifiant : $f^{n-1} \neq 0$ et $f^n = 0$. Montrer que l'on peut trouver une base de E dans laquelle la matrice de f est une matrice compagnon que l'on déterminera.

II Localisation des racines d'un polynôme

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$, on pose pour tout entier $i \in [1, n]$:

$$r_i = \sum_{j=1}^n |a_{i,j}|$$
 et $D_i = \{z \in \mathbb{C}, |z| \le r_i\}$

Pour X =
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), \text{ on note } \|X\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

6 Soit
$$\lambda \in \operatorname{Sp}(A)$$
 et $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ un vecteur propre associé à λ .

Montrer que pour tout entier $i \in [1, n]$: $|\lambda x_i| \le r_i ||X|_{\infty}$.

- $\boxed{\mathbf{7}} \text{ Démontrer que Sp(A)} \subset \bigcup_{i=1}^{n} D_{i}.$
- Soit $P = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ un polynôme de $\mathbb{C}[X]$. Etablir que toutes les racines de P sont dans le disque fermé de centre 0 et de rayon $R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|, \dots, 1 + |a_{n-1}|\}$.
- **9** Application :

Soit a, b, c et d quatre entiers naturels distincts et non nuls, montrer que l'équation d'inconnue n:

$$n^a + n^b = n^c + n^d$$

n'admet pas de solution sur $\mathbb{N} \setminus \{0, 1\}$.

© Laurent Garcin MP Dumont d'Urville

III Suites récurrentes linéaires

On note $E = \mathbb{C}^{\mathbb{N}}$ l'espace vectoriel des suites de complexes et si u est une suite de E, on écrira u(n) à la place de u_n pour désigner l'image de n par u.

On considère le polynôme $P = X^p + a_{p-1}X^{p-1} + \dots + a_0$ de $\mathbb{C}[X]$ avec $a_0 \neq 0$ et on lui associe le sous-espace vectoriel F de E formé des éléments u vérifiant la relation :

$$\forall n \in \mathbb{N} : u(n+p) = -a_{n-1}u(n+p-1) - \dots - a_0u(n)$$

- **10** Montrer que si λ est racine de P alors la suite $n \mapsto \lambda^n$ est élément de F.
- Soit φ l'application de F vers \mathbb{C}^p définie par : $u \mapsto (u(0), u(1), \dots, u(p-1))$. Montrer que φ est un isomorphisme d'espaces vectoriels. Quelle est la dimension de F?
- **12** Pour tout entier $i \in [0, p-1]$, on définit les élements e_i de F par :

$$\forall j \in [0, p-1], \ e_i(j) = \begin{cases} 1 & \text{si } j=i \\ 0 & \text{si } j \neq i \end{cases}$$

- **12.a** Déterminer $e_i(p)$ pour $i \in [0, p-1]$.
- **12.b** Montrer que le système de vecteurs $(e_0, e_1, \dots, e_{p-1})$ est une base de F.
- **12.c** Soit u un élément de F, établir que $u = \sum_{i=0}^{p-1} u(i)e_i$.
- Si u est un élément de E, on définit l'élément f(u) de E par : f(u): $n \mapsto u(n+1)$. Montrer que l'application f ainsi définie est un endomorphisme de E et que F est stable par f.
- Si g est l'endomorphisme de F induit par f, montrer que la matrice de g dans la base $(e_0, e_1, \dots, e_{p-1})$ est C_P^T .
- 15 On suppose que P admet p racines non nulles et deux à deux distinctes : $\lambda_0, \lambda_1, ..., \lambda_{p-1}$.
 - **15.a** Déterminer une base de F formée de vecteurs propres de g.
 - **15.b** En déduire que, si u est élément de F, il existe des constantes complexes $k_0, k_1, ..., k_{p-1}$ telles que :

$$\forall n \in \mathbb{N}, u(n) = k_0 \lambda_0^n + k_1 \lambda_1^n + \dots + k_{p-1} \lambda_{p-1}^n$$

Exemple: (On revient à la notation usuelle u_n)
Soient a, b et c trois réels distincts. Déterminer une base de l'espace vectoriel des suites définies par u_0 , u_1 et u_2 et par la relation de récurrence valable pour tout $n \in \mathbb{N}$:

$$u_{n+3} = (a+b+c)u_{n+2} - (ab+ac+bc)u_{n+1} + abc$$

IV Matrices vérifiant rg(U - V) = 1

Dans cette partie, pour une matrice A, on notera C_A la matrice compagnon du polynôme χ_A .

17 Une matrice A est-elle nécessairement semblable à la matrice compagnon C_A?

Pour tout couple (U, V) de matrices de $GL_n(\mathbb{K})$, on considère les deux propositions suivantes, que l'on identifie chacune par un symbole :

- (*) : rg (U V) = 1
- (**) : Il existe une matrice inversible P telle que $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$.

- **18** Montrer qu'un couple (U, V) de matrices distinctes de $GL_n(\mathbb{K})$ vérifiant (**) vérifie (*).
- Déterminer un couple (U, V) de matrices de $GL_2(\mathbb{K})$ (n=2) vérifiant (*) mais ne vérifiant pas (**) et déterminer le plus grand commun diviseur des polynômes χ_U et χ_V .

Dans la suite de cette partie, (U, V) est un couple de matrices de $GL_n(\mathbb{K})$ vérifiant (*) et tel que χ_U et χ_V sont deux polynômes premiers entre eux.

Soit E un \mathbb{K} -espace vectoriel de dimension n et de base B. On désigne par u et v les automorphismes de E tels que U (respectivement V) soit la matrice de u (respectivement v) dans la base B.

Enfin on pose H = Ker(u - v).

- **20** Montrer que H est un hyperplan vectoriel de E.
- **21** Soit F un sous-espace vectoriel non nul de E stable par u et par v c'est-à-dire :

$$u(F) \subset F$$
 et $v(F) \subset F$

On notera u_F (respectivement v_F) l'endomorphisme induit par u (respectivement v) sur F.

On rappelle que χ_{u_F} divise χ_u .

- 21.a Montrer que F n'est pas inclus dans H.
- **21.b** On suppose que $F \neq E$. Montrer que F + H = E puis que l'on peut compléter une base B_F de F par des vecteurs de H pour obtenir une base B' de E. En utilisant les matrices de U et U dans la base U, montrer que l'on aboutit à une contradiction.
- **21.c** Quels sont les seuls sous-espaces stables à la fois par u et par v?
- 22 Pour $j \in \mathbb{N}$, on note $G_j = \{x \in E, u^j(x) \in H\}$.
 - **22.a** Montrer que les sous-espaces G_i sont des hyperplans vectoriels de E.
 - **22.b** Montrer que $\bigcap_{j=0}^{n-2} G_j \neq \{0\}.$
 - **22.c** Soit y un vecteur non nul de $\bigcap_{j=0}^{n-2} G_j$. On pose pour $j \in [0, n-1]$: $e_j = u^j(y)$.

Montrer que $B'' = (e_0, e_1, \dots, e_{n-1})$ est une base de E.

(On pourra considérer $F = \text{vect}(y, u(y), \dots, u^{p-1}(y))$ où p est le plus grand entier naturel non nul pour lequel la famille $(y, u(y), \dots, u^{p-1}(y))$ est libre).

- **22.d** Montrer que la matrice de u (respectivement v) dans B'' est C_U (respectivement C_V).
- 22.e Conclure.
- **23** Application:

Soient u et v deux automorphismes d'un \mathbb{K} -espace vectoriel \mathbb{E} de dimension n vérifiant :

$$rg(u - v) = 1$$
, $\chi_u(X) = X^n + 1$ et $\chi_v(X) = X^n - 1$

- **23.a** Montrer qu'il existe une base (e_1, \dots, e_n) de E telle que $u(e_i) = v(e_i) = e_i$ pour tout $i \in [1, n-1]$ et $v(e_n) = -u(e_n) = e_1$.
- **23.b** On note G le sous-groupe de GL(E) engendré par u et v. Montrer que card $G \le (2n)!$. On pourra considérer l'ensemble $X = \{\pm e_1, \dots, \pm e_n\}$.