

Prüfung Analysis I

401-0212-16L

Nach name

XX

Vorname

 $Legi ext{-}Nr.$

XX-000-000

Prüfungs-Nr.

000

Bitte noch nicht umblättern!

Beachten Sie die Hinweise auf dem Antwortheft.

Aufgabe 1

Für jede Frage ist nur eine Option richtig. Es gibt keine negativen Punkte.

1.MC1 [1 Punkt] Sei (a_n) eine reelle Folge. Was ist die konkrete Bedeutung der folgenden Aussage?

$$\forall T \ge 1, \exists N \ge 1, \forall n \ge N, a_n < -T.$$

- (A) $\lim_{n\to+\infty} a_n = -\infty$.
- (B) $\lim_{n\to+\infty} a_n$ existiert nicht.
- (C) $\lim_{n\to+\infty} a_n > 0$.
- (D) $\lim_{n\to+\infty} |a_n| = +\infty$.
- **1.MC2** [1 Punkt] Sei (a_n) eine reelle Folge. Welche mathematische Aussage bedeutet, dass (a_n) das Cauchy-Kriterium erfüllt?
 - (A) $\exists \varepsilon > 0, \exists N \geq 1, \forall n \geq N, \forall m \geq N, |a_n a_m| < \varepsilon$.
 - (B) $\forall \varepsilon > 0, \exists N \ge 1, \forall n \ge N, \exists m \ge N, |a_n a_m| < \varepsilon.$
 - (C) $\forall \varepsilon > 0, \exists N \ge 1, \forall n \ge N, \forall m \ge N, |a_n a_m| < \varepsilon.$
 - (D) $\forall \varepsilon > 0, \forall N \ge 1, \forall n \ge N, \forall m \ge N, |a_n a_m| > \varepsilon$.
- **1.MC3** [1 Punkt] Welche Formel ist richtig für alle Funktionen f, g differenzierbar von \mathbb{R} nach \mathbb{R} ?
 - (A) $(f \circ g)'(x) = f'(x)g'(f(x)).$
 - (B) $(f \circ g)'(x) = f(x)g'(f(x)).$
 - (C) $(f \circ g)'(x) = g'(f(x)).$
 - (D) $(f \circ g)'(x) = g'(x)f'(g(x)).$
- **1.MC4** [1 Punkt] Sei $f: [-1,1] \to \mathbb{R}$ eine differenzierbare Funktion mit folgendem Graph.

Welche der folgenden Aussagen gilt?

- (A) f ist konvex.
- (B) f' hat drei Nullstellen.
- (C) f hat zwei Nullstellen.
- (D) $f'(x) \ge 0$ für alle $x \in [-1, 1]$.

- **1.MC5** [1 Punkt] Sei (a_n) eine Folge von positiven reellen Zahlen, die das Cauchy-Kriterium erfüllt. Welche der folgenden Aussagen trifft zu?
 - (A) Die Reihe $\sum_{n>1} a_n$ ist konvergent.
 - (B) Die Folge (a_n) konvergiert gegen 0.
 - (C) Die Folge $(1/a_n)$ ist beschränkt.
 - (D) Die Folge (a_n) hat eine konvergente Teilfolge.
- **1.MC6** [1 Punkt] Sei $f:]-1,1[\to \mathbb{R}$ eine stetige Funktion. Welche der folgenden Aussagen ist richtig?
 - (A) Es gibt ein lokales Maximum von f.
 - (B) Es gilt $f(1/n) \to f(0)$, wenn $n \to +\infty$.
 - (C) Es gibt eine Folge (a_n) mit $-1 < a_n < 1$, sodass $a_n \to 1$ wenn $n \to +\infty$, aber die Folge $f(a_n)$ konvergiert nicht.
 - (D) f ist beschränkt.
- **1.MC7** [1 Punkt] Sei $f:]0,1] \to \mathbb{R}$ eine stetige Funktion. Welche der folgenden Bedingungen impliziert, dass

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \pi.$$

- (A) $f(1/n) \to \pi$, wenn $n \to +\infty$.
- (B) $f(x/2) \to \pi/2$, wenn $x \to 0$.
- (C) $e^x f(x) \to \pi$, wenn $x \to 0$.
- (D) $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in]-1, 1[, |x| < \varepsilon \Rightarrow |f(x) \pi| < \delta.$
- **1.MC8** [1 Punkt] Seien f und g stetige Funktionen von \mathbb{R} nach \mathbb{R} . Angenommen, dass $f(x) \to +\infty$ und $g(x) \to -\infty$ wenn $x \to 0$. Welche der folgenden Tatsachen ist *nicht* möglich?
 - (A) $\lim_{x\to 0} f(x)/g(x) = -1$.
 - (B) $\lim_{x\to 0} f(x)/g(x) = +\infty$.
 - (C) $\lim_{x\to 0} f(x)/g(x) = 0$.
 - (D) $\lim_{x\to 0} f(x)/g(x) = -\infty$.
- **1.MC9** [1 Punkt] Sei $f:]-1,1[\to \mathbb{R}$ eine differenzierbar Funktion, sodass

$$f(-1/2) = f(0) = f(1/2) = 0.$$

Welche der folgenden Tatsachen ist richtig?

- (A) f' hat genau drei Nullstellen.
- (B) f' hat mindestens zwei Nullstellen.
- (C) f' hat höchstens zwei Nullstellen.
- (D) f' hat mindestens drei Nullstellen.

Aufgabe 2

Bitte tragen Sie Ihre Antwort in das Antwortheft ein. Es wird nur das Endergebnis bewertet.

2.A1 [1 Punkt] Bestimmen Sie, ob die folgenden Reihen konvergent sind oder nicht (die Summe, wenn konvergent, ist nicht erforderlich)

$$\sum_{n\geq 1} \frac{(-1)^{n^2}}{n!+1}$$
$$\sum_{n\geq 0} \frac{1}{n+12}$$

2.A2 [1 Punkt] Berechnen Sie den folgenden Grenzwert

$$\lim_{n \to +\infty} \exp(\sqrt{9n-1} - 3\sqrt{n}).$$

2.A3 [1 Punkt] Berechnen Sie die Ableitung der folgenden Funktionen

$$f(x) = \frac{2x+1}{x^4+2}$$
$$f(x) = \sin(\exp(x))$$

2.A4 [1 Punkt] Berechnen Sie die folgenden Grenzwerte, oder geben Sie an, dass der Grenzwert nicht existiert

$$\lim_{x \to 1} \frac{\log(\cos(x^2 - 1))}{x - e^x}$$
$$\lim_{x \to 0} \left(\frac{e^x - e^{x^2}}{\sin(x^2 - x)}\right)^6$$
$$\lim_{x \to +\infty} x \cos(x).$$

2.A5 [1 Punkt] Berechnen Sie den Konvergenzradius der folgenden Potenzreihe

$$\sum_{n\geq 1} \frac{(3n)!}{(n!)^3} z^n.$$

 $\bf 2.A6~[1~Punkt]~$ Finden Sie das Maximum und das Minimum der folgenden Funktion im Intervall[-1,2]

$$f(x) = e^x/(x^2 + 1)$$

2.A7 [1 Punkt] Berechnen Sie die Taylor-Approximation der dritten Ordnung der Funktion

$$f(x) = \cos(\pi\sqrt{x})$$
, bei $x = 1$.

Prüfungs-Nr.: 000 XX-XX-XX-000-000 Seite 4 von 10

2.A8 [1 Punkt] Berechnen Sie eine Stammfunktion der Funktion $f: \mathbb{R} \to \mathbb{R}$, die durch

$$f(x) = \frac{x}{x^4 + 1},$$

definiert ist.

2.A9 [1 Punkt] Berechnen Sie das Integral

$$\int_0^1 x \log(x^2 + 1) dx.$$

Aufgabe 3

Bitte tragen Sie Ihre Antwort in das Antwortheft ein. Jede Behauptung in Ihrer Antwort muss begründet werden.

3.A1 [4 Punkte] Die reelle Folge (a_n) sei rekursive gegeben durch

$$a_1 = \sqrt{2}$$

$$a_{n+1} = \sqrt{a_n + 2} \text{ wenn } n \ge 1.$$

- (a) Zeigen Sie, dass (a_n) immer wohldefiniert ist.
- (b) Zeigen Sie, dass $a_n \leq 2$ für jedes $n \geq 1$.
- (c) Zeigen Sie, dass (a_n) monoton wachsend ist.
- (d) Folgern Sie, dass (a_n) konvergent ist, und berechnen Sie den Grenzwert.

3.A2 [7 Punkte] Sei $f:]-\infty, 1] \to \mathbb{R}$ die Funktion gegeben durch

$$f(x) = x\sqrt{1-x},$$

- (a) Erklären Sie, warum f stetig ist.
- (b) Berechnen Sie den Grenzwert

$$\lim_{x \to -\infty} f(x).$$

- (c) Erklären Sie, warum f glatt in $]-\infty,1[$ ist, und berechnen Sie f'(x) für x<1.
- (d) Berechnen Sie den folgenden Grenzwert

$$\lim_{\substack{x \to 1 \\ x < 1}} f'(x).$$

- (e) Berechnen Sie die Werte von x < 1, bei denen f'(x) = 0 ist.
- (f) Zeigen Sie, dass

$$f(x) \le \frac{2}{3^{3/2}}$$

für jedes $x \le 1$, mit Gleichheit, genau dann wenn x = 2/3.

(g) Bestimmen Sie f''(x) für x < 1, und zeigen Sie, dass f''(x) < 0 für jedes x < 1 ist.

- **3.A3** [2 Punkte] Sei $f(x) = \cos(x)^4 \sin(x)^3$ definiert für $x \in \mathbb{R}$.
 - (a) Drücken Sie f(x) als Funktion von $\cos(ax)$, $\sin(bx)$, für geeignete Werte von a und b aus.
 - (b) Berechnen Sie das Integral

$$\int_0^{\pi} f(x) dx.$$

3.A4 [2 Punkte]

(a) Bestimmen Sie reelle Zahlen a, b, c, sodass

$$\frac{2x-1}{x(x^2-1)} = \frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+1}.$$

(b) Berechnen Sie das Integral

$$\int_{2}^{5} \frac{2x-1}{x(x^2-1)} dx.$$

- **3.A5** [3 Punkte] Sei $f(x) = e^{x^2}$ definiert für jedes $x \in \mathbb{R}$.
 - (a) Erklären Sie, warum f glatt ist.
 - (b) Bestimmen Sie f'(x) und f''(x).
 - (c) Beweisen Sie durch Induktion über n, dass es für alle $n \geq 0$ ein Polynom H_n gibt, so dass

$$f^{(n)}(x) = H_n(x)f(x)$$

für jedes $x \in \mathbb{R}$.

- **3.A6** [5 Punkte] Sei $f: \mathbb{R} \to \mathbb{R}$ eine glatte Funktion mit der Eigenschaft, dass f''(x) = f(x) für jedes $x \in \mathbb{R}$.
 - (a) Sei g die Funktion, definiert durch $g(x) = e^x(f(x) f'(x))$ für alle $x \in \mathbb{R}$. Zeigen Sie, dass g'(x) = 0 für alle $x \in \mathbb{R}$.
 - (b) Folgern Sie, dass es $c \in \mathbb{R}$ gibt, sodass $f(x) f'(x) = ce^{-x}$ für alle $x \in \mathbb{R}$.
 - (c) Sei h die Funktion, definiert durch $h(x) = e^{-x} f(x)$ für alle $x \in \mathbb{R}$. Zeigen Sie, dass

$$h'(x) = -ce^{-2x}$$

für alle $x \in \mathbb{R}$ ist.

(d) Schliessen Sie, dass es reelle Zahlen c_1 und c_2 gibt, sodass

$$f(x) = c_1 e^x + c_2 e^{-2x}.$$

(e) Berechnen Sie f'' unter Verwendung dieses letzten Ausdrucks und leiten Sie daraus ab, dass $c_2 = 0$, und somit, dass $f(x) = c_1 e^x$ für alle $x \in \mathbb{R}$.