UMC202: Introduction to Numerical Analysis

Naman Mishra

August 2023

Contents

1	The Course 1.1 Grading		
2	Introduction	2	
3	Single Variable Root-Finding 3.1 Fixed point	2 2	
Lecture 01: Introduction			Wed 02 Aug '2
1	The Course		

Grading 1.1

Absolute grading. 90 ± 2 marks out of 100 for an A+.

• Final exam: 50%.

• Midterm exam: 30%.

• Assignments: 20%.

1.2 References

• Numerical Analysis by Richard L. Burden and J. Douglas Faires

2 Introduction

Solving algebraic systems of equations numerically.

- (i) F(x) = 0.
- (ii) $F_i(x_1, ..., x_n) = 0$ where $j \in \{1, ..., m\}$.
- (iii) y' = f(t, y) with $y(t_0) = y_0$.
- (iv) y'' + ay' + by = 0 with either $y(t_0) = y_0, y'(t_0) = y_1$ or $y(t_0) = y_0, y(t_1) = y_1$.

We'll do interpolation, root-finding techniques, differential equations with initial conditions, etc.

3 Single Variable Root-Finding

Given a continuous function $F: \mathbb{R} \to \mathbb{R}$, we want to find x such that F(x) = 0.

Let x^* be a solution to F(x) = 0. We algorithmically generate a sequence $\{x_n\}$ that tends to x^* .

The algorithm: Find two points a and b such that F(a)F(b) < 0. By the intermidiate value theorem, there exists $x^* \in (a,b)$ such that $F(x^*) = 0$. We can perform a binary search to close in on x^* .

Remarks. This only works if such points a and b exist. The graph of F could be tangent to the x-axis, as in $x \mapsto x^2$.

3.1 Fixed point

We can rewrite F(x) = 0 as x = g(x), where g(x) = x + F(x). Finding a root of F is equivalent to finding a fixed point of g.