Selling with Evidence

Frédéric Koessler and Vasiliki Skreta

July 13, 2019

Myerson 1983: Informed Principal

- Inscrutable Principle: all principals choose the same mechanism
- Strong solution: a solution is strong if it is
 - Safe: IC for every type of principal when her type is known to the agent
 - Undominated: IC and not dominated by other IC mechanism.
- Neutral Optima: IC and not blocked by any justifiable blocking rule
- Expectational Equilibrium: for any deviation, there exists a belief and strategy forms a BNE and is worse for all principals
- Core Mechanisms: IC and no other mechanism such that if all that prefer the latter choose it, it is IC for these principals
- Thm: a strong solution, if exists, is neutral optima. Neutral Optima exist and are both expectational equilibria and core mechanisms.

Model Setting

- Allocation $(p, x) : S \times T \rightarrow [0, 1] \times [-\mathcal{X}, \mathcal{X}]$
- The buyer
 - Type $t \in T$, $\tau \in \Delta(T)$
 - Valuation u(s, t)
 - Utility U(s,t) = p(s,t)u(s,t) x(s,t)
 - Interim Utility $U_{\pi}(s,t) = \sum_{s \in S} \pi(s) U(s,t), \forall \pi \in \Delta(S)$
- The seller
 - Type $s \in S$, $\pi^0 \in \Delta(S)$
 - Valuation v(s,t)
 - Utility V(s,t) = x(s,t) p(s,t)v(s,t)
 - Interim Utility $V(s) = \sum_{t \in T} \tau(t) V(s,t)$

Certification and Mechanisms

- Exogenous Certification Structure: $\mathcal{E} \subset 2^S$, closed under intersection.
 - Certifiable Set of Events for $s \in S$: $\mathcal{E}(s) = \{E \in \mathcal{E} : s \in E\}$
 - Smallest Certifiable Set $E^*(s) = \cap_{E \in \mathcal{E}(s)} E$
 - ullet Own-Type Certifiability: $\{s\} \in \mathcal{E}, orall s \in \hat{S}$
- Reporting correspondence:

$$R: S \Rightarrow S$$

 $s \mapsto R(s) = \{\tilde{s} \in S : E^*(\tilde{s}) \in \mathcal{E}(s)\}$

Note: $R(s) = \{s\}$ under own-type certifiability.

• Mechanism:

$$\mathcal{M}: \mathcal{E} \times M_5 \times M_T \rightarrow [0,1] \times [-\mathcal{X},\mathcal{X}]$$

 $(\mathcal{E}, m_s, m_t) \mapsto (\mathcal{P}, \mathcal{X})$

• Default Allocation (p, x) = (0, 0) if the buyer rejects the mechanism.

Koessler Skreta 2019 Selling with Evidence July 13, 2019 6 / 20

Feasible Allocations

Definition (Feasible Allocation)

An allocation (p, x) is *feasible* for belief π if

- $V_{\pi}(s) \geq 0$
- there exists a mechanism \mathcal{M} , reporting and participation strategies that implements (p, x) and forms BNE given \mathcal{M} and π .

Lemma (Revelation Principal)

An allocation (p,x) is feasible for belief π given $\mathcal E$ iff

- S-IC: $V(s) \ge V(s'|s), \forall s \in S, s' \in R(s)$
- *S-IR*: $V(s) \ge 0, \forall s \in S$
- B-IC: $U_{\pi}(t) \geq U_{\pi}(t'|t), \forall t, t' \in T$
- *B-IR*: $U_{\pi}(t) \geq 0, \forall t \in T$

Under own-type certifiability $R(s) = \{s\}$, S-IC always satisfied.

Koessler Skreta 2019 Selling with Evidence July 13, 2019 7 / 20

Ex-Ante Optimal and Full Information Allocation

Definition (Ex-ante Optimal)

An allocation (p,x) is *ex-ante optimal* if it solve $\max_{(p,x)} \sum_{s \in S} \pi^0(s) V(s)$ subject to S-IC, S-IR, B-IC, B-IR for interim belief $\pi = \pi^0$.

Definition (Full-Information Allocation)

An allocation (p,x) is a full-information allocation if it for every $s \in S$ solves $\max_{(p,x)} V(s)$ subject to the ex post IC and IR:

$$U(s,t) \ge p(s,t')u(s,t) - x(s,t'), \forall t,t' \in T$$

$$U(s,t) \ge 0, \forall t \in T$$

- Full-info allocation might not be feasible.(S-IC)
- Always feasible under own-type certifiability.
- If it is feasible, it is feasible regardless of π .

Koessler Skreta 2019 Selling with Evidence July 13, 2019 8 / 20

Mechanism Proposal Game

- Nature choose s (resp. t) according to π^0 (resp. τ) and privately informs the seller (resp. buyer)
- ② Seller certifies $F \in \mathcal{E}(s)$ and proposes \mathcal{M} . Buyer observes F and \mathcal{M}
- ullet They both observes a public signal drawn from Unif[0,1] and play ${\mathcal M}$

Definition (Expectational Equilibrium)

An allocation (p, x) is an expectational equilibrium iff

- it is feasible for π^0
- for any other $F \in \mathcal{E}$ and $\tilde{\mathcal{M}}$, there exists a belief $\tilde{\pi} \in \Delta_F(S)$, reporting and participation strategies that form a continuation BNE given $\tilde{\mathcal{M}}$ and $\tilde{\pi}$, inducing a dominated profit vector $\tilde{V}(s) \leq V(s), \forall s \in F$

Strong Pareto Optimal Allocation

Definition (π -buyer-feasible)

An allocation (p, x) is π -buyer-feasible if it satisfy the B-IC and B-IR for interim belief π .

$$\mathcal{V}^B(\pi) = \{(V^{(p,x)}(s))_{s \in S} \in \mathbb{R}^{|S|} : (p,x) \text{is } \pi\text{-buyer-feasible}\}.$$
 $\mathcal{V}^B = \cup_{\pi \in \Delta(S)} \mathcal{V}^B(\pi)$

Definition (SPO Allocation)

$$\mathcal{V}^{SPO} = \{ V^* \in \mathcal{V}^B : \mathcal{V}^B(\pi) \cap \{ V : V \geqslant_{\pi} V^* \} = \emptyset, \forall \pi \in \Delta(S) \}$$

where $V \geqslant_{\pi} V^*$ means $V(s) \geq V^*(s) \forall s$ and strict for some s with $\pi(s) > 0$. $\mathcal{V}^{SPO}(\pi) = \mathcal{V}^{SPO} \cap \mathcal{V}^B(\pi)$

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 2 差 9 4 0 0

Main Result

Proposition (Existence)

$$\mathcal{V}^{SPO}(\pi) \neq \emptyset, \forall \pi \in \Delta(S)$$

Proposition

If an SPO allocation (p, x) is feasible for the prior π^0 , then it is an expectational equilibrium of the mechanism proposal game.

Proposition

If an SPO allocation (p, x) is feasible for the prior π^0 , then it is ex-ante optimal.

Proof of Existence

• Step 1: define an exchange economy where a bundle of goods for s consists of a vector of slacks $c = (c(s,t),c(s,t,t'))_{t,t'}$ and the indirect utility of trader s given c is

$$V_I(s|c) = \max_{x(s,\cdot),p(s,\cdot)} \sum_{t \in T} \tau(t)(x(s,t) - p(s,t)v(s,t))$$

subject to the constraint

$$p(s,t)u(s,t) - x(s,t) \ge p(s,t')u(s,t) - x(s,t') - c(s,t,t'), \forall t,t' \in T$$
$$p(s,t)u(s,t) - x(s,t) \ge -c(s,t), \forall t \in T$$

Let C(s) be the non-empty closed and convex set of slacks such that the maximization problem is nonempty.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Proof of Existence

• Step 2: define the demand function $D(s|\gamma)$ given the price $\gamma(t)$ and $\gamma(t,t')$ for the slacks c(s,t) and c(s,t,t')

$$D(s|\gamma) := \arg\max_{c \in C(s)} V_I(s|c)$$

subject to the budget constraint

$$\sum_{t \in T} \gamma(t)c(s,t) + \sum_{t,t'} \gamma(t,t')c(s,t,t') \leq 0$$

Definition

A Walrasium equilibrium relative to π is a non-negative price vector γ and slack vectors c such that

- $c \in D(s|\gamma)$
- $\sum_{s \in S} \pi(s)c(s,t) \le 0, \forall t \in T; \sum_{s \in S} \pi(s)c(s,t,t') \le 0, \forall t,t' \in T;$

Koessler Skreta 2019 Selling with Evidence July 13, 2019 14 / 20

Proof of Existence

• Step 3: show the Walras' Law is satisfied: if $c \in D(s|\gamma)$, then

$$\sum_{t \in T} \gamma(t)c(s,t) + \sum_{t,t'} \gamma(t,t')c(s,t,t') = 0$$

- Step 4: show that a Walrasian equilibrium exists.
- Step 5: show any Walrasian Equilibrium profit vector $V_I(s|c)$ relative to π is an SPO profit vector with belief π .

Proof of Expectational Equilibria

- Given an SPO profit vector \hat{V} , define $\mathcal{V}(\pi)$ the convex hull of eqm profits with off path belief π . And $\mathcal{V} = conv \cup_{\pi \in \Delta_F(S)} \mathcal{V}(\pi)$
- ② The correspondence on $\Delta_F(S) \times \mathcal{V}$:

$$(\pi, V) \to \left(\arg\max_{\pi' \in \Delta_F(S)} \sum_{s \in S} \pi'(s) (V(s) - \hat{V}(s)) \times \mathcal{V}(\pi)\right)$$

has a fixed point (π^*, V^*)

- **③** Suppose $I = \{s \in F : V^*(s) > \hat{V}\} \neq \emptyset$, then $\pi^*(s) = 0, \forall s \notin I$.
- **4** $\tilde{V}(s) = V^*(s)$ if $s \in I$ and $\tilde{V}(s) = \hat{V}(s)$ if $s \notin I$ is π^* feasible which implies \hat{V} not SPO. Contradiction!

◆ロト ◆個ト ◆差ト ◆差ト を めるぐ

Proof of Ex-Ante Optimality

Let \hat{V} be an SPO allocation and V^* be an ex-ante optimal allocation. SBCT \hat{V} not ex ante optimal.

- $S_2 = \{s \in S: \hat{V}(s) < V^*(s)\}
 eq \emptyset$ and $\pi^0(S_2)
 eq 0$
- Define allocation $\tilde{p}(s,t) = p^*(s,t)$ and

$$\tilde{x}(s,t) = p^*(s,t)v(s,t) + \underbrace{\hat{V}(s) + \frac{\mathbb{I}_{s \in S_2}}{\pi^0(S_2)} \left[\mathbb{E}_S V^*(s,t) - \mathbb{E}_{S,T} \hat{V}(s,t) \right]}_{\tilde{V}(s,t)}$$

- $ilde{V}$ dominates \hat{V} : $\mathbb{E}_{\mathcal{S},\mathcal{T}}V^*(s,t) > \mathbb{E}_{\mathcal{S},\mathcal{T}}\hat{V}(s,t) \Rightarrow ilde{V}(s) > \hat{V}, orall s \in \mathcal{S}_2$
- (\tilde{p}, \tilde{x}) is π^0 -feasible: $\mathbb{E}_S[\tilde{x}(s, t)] = \mathbb{E}_S[p^*(s, t)v(s, t) + \hat{V}(s)] + [\mathbb{E}_SV^*(s, t) \mathbb{E}_{S, T}\hat{V}(s, t)] = \mathbb{E}_S[x^*(s, t)]$
- Contradiction!

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Seller Incentive Compatibility

- SPO is S-IC under own-type certifiability.
- SOP is S-IC for all certifiability structure under private values (buyer utility doesn't depend on seller type.)
- If $V(s'|s) = V(s), \forall s'$ then SPO is S-IC iff $R(s) \subset \{s' \in S : V(s') \leq V(s)\}$ (rich certifiability)
- Let's $\{S_k\}_k^K = S/_{u(\cdot,t)}, \forall t$, and $\forall s \in S_k : s' \notin R(s), \forall s \notin S_k$ (Two-way disprovability)

SPO vs Full Information

If full information allocation is SPO, and the seller can certify his own type, it is the unique equilibrium vector.

Definition

A profit vector V is π -buyer-feasible ex-ante optimal if it maximize $\sum_{s \in S} \pi(s) V(s)$ under the B-IC, B-IR for the interim belief π .

Proposition

The full-information profit vector is SPO if and only if it is π -buyer-feasible ex-ante optimal for all π .

- $u(s,t) = u(s,t') = u(s), \forall t,t' \in T$
- $u(s,t) = u(s',t) = u(t), \forall s, s' \in S$

Are all equilibria SPO?

SPO vs Full Information

If full information allocation is SPO, and the seller can certify his own type, it is the unique equilibrium vector.

Definition

A profit vector V is π -buyer-feasible ex-ante optimal if it maximize $\sum_{s \in S} \pi(s) V(s)$ under the B-IC, B-IR for the interim belief π .

Proposition

The full-information profit vector is SPO if and only if it is π -buyer-feasible ex-ante optimal for all π .

- $u(s,t) = u(s,t') = u(s), \forall t,t' \in T$
- $u(s,t) = u(s',t) = u(t), \forall s,s' \in S$

Are all equilibria SPO?Yes, under own type certifiability.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Thank You!