Matrix theory Assignment 10

Shivangi Parashar

Abstract—This document contains the concept of vector space V over a field F.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment10/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment10/ Assignment 10.tex

1 Problem

If **V** is a vector space over field **F**, verify that:

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$

2 Solution

Using property of commutativity of (+) in V

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = (\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4)$$
(2.0.1)

Using property of associativity of (+) in V

$$(\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4) = \alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)]$$
(2.0.2)

Using property of commutativity of (+) in V

$$\alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)] = \alpha_2 + (\alpha_3 + \alpha_1) + \alpha_4$$
(2.0.3)

Using property of associativity of (+) in V

$$\alpha_2 + (\alpha_3 + \alpha_1) + \alpha_4 = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$
 (2.0.4)