Q&A - Statistics

1. What is Statistics? Explain its main types.

Statistics is the science of collecting, analyzing, and interpreting data.

Types:

- Descriptive: Summarizes data (mean, graphs).
- Inferential: Makes predictions or conclusions about a population from a sample.

2. Define population and sample with examples.

Population: The entire group of interest. Example: All students in a university. Sample: A subset of the population. Example: 100 students selected from the university.

3. What is the difference between descriptive and inferential statistics?

Descriptive: Summarizes data (tables, charts, averages).

- Inferential: Uses data from samples to make conclusions or predictions about populations.

4. Explain data types (qualitative vs quantitative, discrete vs continuous).

Qualitative: Categorical (e.g., gender, colors).

- Quantitative: Numerical (e.g., height, marks).
- Discrete: Countable (e.g., number of cars).
- Continuous: Measurable (e.g., weight).

5. What is a variable in statistics? Give examples.

A variable is any characteristic that can take different values.

Examples: Age, income, test scores.

6. Define mean, median, and mode. How are they different?

Mean: Average of values.

- Median: Middle value in ordered data.
- Mode: Most frequent value.

They differ in how they represent central tendency.

7. How do you calculate the range of a dataset?

Range = Maximum value - Minimum value.

Example: For $\{2, 5, 9\}$, Range = 9 - 2 = 7.

8. What is the standard deviation, and why is it important?

Standard deviation measures the spread of data from the mean.

It shows how consistent or varied the data is.

9. Explain variance and how it relates to standard deviation.

Variance is the average of squared deviations from the mean. Standard deviation is the square root of variance.

10. What is a frequency distribution? Give an example.

A table showing how often values occur.

Example: Test scores grouped into ranges with counts.

11. Explain the concept of normal distribution and its characteristics.

Normal distribution is a symmetric, bell-shaped curve.

Characteristics: Mean=Median=Mode, 68-95-99.7% rule applies.

12. What is skewness, and how does it affect data interpretation?

Skewness measures asymmetry of data.

- Positive skew: Tail on right.

- Negative skew: Tail on left.

13. What is kurtosis, and what does it tell us about a dataset?

Kurtosis measures the 'tailedness' of data distribution.

High kurtosis = more extreme values; low kurtosis = fewer extremes.

14. Differentiate between probability and statistics.

Probability: Predicts likelihood of events.

- Statistics: Analyzes collected data to make conclusions.

15. What is a z-score, and how is it calculated?

Z-score = (Value - Mean) / Standard Deviation.

It measures how many standard deviations a value is from the mean.

16. Explain the difference between population standard deviation and sample standard deviation.

Population SD: Uses entire population data.

- Sample SD: Uses sample data with (n-1) denominator for unbiased estimate.

17. What is the Central Limit Theorem, and why is it important?

It states that the sampling distribution of the sample mean approaches a normal distribution as sample size increases, regardless of population shape. It allows valid inference using normal probability.

18. What is correlation? Differentiate between positive and negative correlation.

Correlation measures strength of relationship between variables.

- Positive: Variables move in same direction.
- Negative: Variables move in opposite directions.

19. Explain the difference between correlation and causation.

Correlation shows association between variables.

Causation means one variable directly affects the other.

20. What is regression analysis, and when is it used?

Regression analysis models relationships between variables to predict outcomes. Used in forecasting (e.g., predicting sales from advertising).

21. Explain hypothesis testing and its steps.

Hypothesis testing evaluates claims using data.

Steps: State hypotheses \rightarrow Choose test \rightarrow Set significance level \rightarrow Analyze data \rightarrow Accept/Reject null.

22. What is a null hypothesis and an alternative hypothesis?

Null (H0): Assumes no effect or difference.

- Alternative (H1): Assumes there is an effect or difference.

23. Explain p-value in hypothesis testing.

P-value is the probability of observing the data if H0 is true.

Low p-value (<0.05) \rightarrow reject H0.

24. What is the difference between Type I and Type II errors?

Type I: Rejecting true H0 (false positive).

- Type II: Failing to reject false H0 (false negative).

25. What is a confidence interval, and how is it interpreted?

A confidence interval gives a range of values that likely contain the population parameter.

Example: 95% CI means we are 95% confident the true value lies within the range.

26. Explain t-test and when to use it.

T-test compares means between two groups.

Used when population SD is unknown and sample size is small.

27. Explain chi-square test and its applications.

Chi-square test checks relationship between categorical variables.

Applications: Goodness of fit, independence tests.

28. What is ANOVA, and when is it used?

ANOVA (Analysis of Variance) compares means of 3 or more groups. Used to test if group differences are statistically significant.

29. How do you handle missing data in statistics?

Methods: Remove missing values, replace with mean/median, or use advanced imputation techniques.

30. What is sampling bias, and how can it be reduced?

Sampling bias occurs when a sample is not representative of the population. Reduce by using random sampling and ensuring diverse selection.