13E053SAS Spektralna analiza signala Domaći zadatak za školsku godinu 2018/19

Koju verziju zadatka radim?

Student(kinja) sa rednim brojem indeksa BBBB/GGGG radi zadatak sa sledećim vrednostima parametara:

$$P = \text{mod}(BBBB + GGGG, 2), \quad Q = \text{mod}(B + B + B + B + G + G + G + G, 4)$$

$$R = mod(BBBB + GGGG, 3), S = mod(B + B + B + B + G + G + G + G, 3)$$

Na primer, za broj indeksa 0123/2016, parametri su $P=1,\ Q=3,\ R=0,\ S=0.$ Vrednosti parametara određuju podatke, kriterijumsku funkciju i metode sa kojima treba da radite, prema priloženoj tabeli.

Datoteka sa podacima	
Q = 0	x0.csv
Q = 1	x1.csv
Q=2	x2.csv
Q=3	x3.csv

Kriterijumska funkcija	
R = 0	FPE
R = 1	AIC
R=2	CAT

Metoda 1		
S = 0	kovarijaciona	
S = 1	modifikovana kovarijaciona	
S = 2	Burgova	

Metoda 2		
P = 0	Blackman- Tukey	
P=1	usrednjeni periodogram	

Kako su podaci u datotekama organizovani?

Datoteka xi.csv sadrže matrice sa odbircima različitih realizacija istog slučajnog procesa x[n], pri čemu i-ta vrsta odgovara i-toj realizaciji. Tačke od 1 do 6 treba raditi samo na osnovu jedne, slučajno izabrane realizacije (jedna vrsta matrice sa podacima), a za tačke od 7 do 9 treba koristiti svih 50 realizacija. Svi slučajni procesi su realni, tako da estimacije SGS $\hat{P}(f)$ treba prikazati na intervalu $0 \le f \le 0.5$.

Koju formu ima rešenje domaćeg zadatka?

Rešenje domaćeg zadatka podrazumeva samo funkcionalan Matlab/Octave ili Python program, koji generiše tražene grafike. Sve potrebne datoteke treba poslati na email adresu <u>ptadic@etf.rs</u> do datuma koji će biti naknadno objavljen. Datoteke koje se šalju *treba da budu bez ikakvih komentara*.

Koje gotove funkcije smem da koristim?

Za neke od f-ja koje treba da napišete postoje i ugrađene, "bibliotečke" f-je — npr periodogram u Matlabu, odnosno scipy.signal.periodogram u Pythonu). Ove ugrađene f-je treba da koristite samo u cilju verifikacije sopstvenih f-ja. Kad god postoji odgovarajuća ugrađena f-ja, na istom grafiku treba da prikažete rezultat koji vraća vaša i ova ugrađena f-ja. Van toga, dozvoljena je upotreba samo f-ja za crtanje grafika, množenje/inverziju matrica i slično.

Kako i kada se domaći brani?

Domaći zadatak se brani usmeno i donosi najviše 30 poena. Na usmenoj odbrani se očekuje da je student u stanju da objasni funkcionalnost koda, da tumači dobijene rezultate, i da poznaje osnovne osobine svake od razmatranih metoda. Odbrane će biti organizovane krajem semestra, u terminu koji će naknadno biti dogovoren. Osvojeni poeni važe do junskog roka 2019/20 školske godine.

Zadatak

- **1.** Napisati funkcije koje na osnovu datih odbiraka realnog procesa x[n] generišu procene njegove spektralne gustine snage $\hat{P}_{xx}(f)$ sledećim metodama:
 - · periodogram,
 - usrednjeni periodogram,
 - Blackman-Tukey,
 - autokorelaciona,
 - kovarijaciona,
 - modifikovana kovarijaciona,
 - Burgova.
- **2.** Grafički prikazati estimacije SGS dobijene primenom periodograma, usrednjenog periodograma i Blackman-Tukeyjeve metode.
- **3.** Primeniti tehniku "zatvaranja prozora" na metodu 2. Ilustrovati primenu ove metode prikazom nekoliko karakterističnih grafika na istoj slici.
- **4.** Aproksimativno izabrati red modela za AR metode na osnovu oblika estimacija $\hat{P}_{xx}(f)$ dobijenih neparametarskim metodama. Prikazati odgovarajuće estimacije za svaku od parametarskih metoda.
- **5.** Za metodu 1 primenom kriterijumske funkcije odrediti optimalni red modela. Prikazati grafike kriterijumske funkcije i odgovarajuće estimacije SGS koja se dobija za optimalni red modela.
- **6.** Na osnovu koeficijenata $\hat{a}[k]$ dobijenih primenom metode 1 u tački 5, formirati polinom $\hat{A}(z)$, a zatim filtrirati sekvencu podataka x[n] filtrom sa funkcijom prenosa $H(z) = \hat{A}(z)$. Prikazati grafik autokorelacione funkcije izlazne sekvence filtra na relevantnom intervalu.
- **7.** Prikazati jedne preko drugih sve realizacije periodograma, metode 1 i metode 2 (tri grafika sa po 50 realizacija). Za metodu 2 koristiti parametre dobijene u tački 3. Na posebnoj slici prikazati zavisnost varijansi estimacija od učestanosti.
- 8. Za periodogram i metodu 1 prikazati varijanse estimacija dobijenih korišćenjem
 - a. svih odbiraka svake od realizacija,
 - b. prvih N/4 odbiraka svake od realizacija.
- 9. Za metodu 1 prikazati estimacije i odgovarajuće varijanse dobijene za red modela
 - a. p = N/2,
 - b. p = N/4.