

E16

FIG. 1A

P60

FIG. 1B

FORWARD PRIMER [GCAGGGCGGTGCGTGACTAC]
REVERSE PRIMER [GGGTGGTGAAGGTTGAGGTTGTG]

FIG. 2

NESTIN POSITIVE CELLS PROLIFERATE AROUND ISLETS IN VITRO

FIG. 3

100x

FIG. 4A

200x

FIG. 4B

FIG. 5

FIG. 6

Nestin Amino Acid Sequence:

"MEGCMGEESFQMWELNRRLEAYLGRVKALEEQNELLSAGLGLR
RQSADTSWRAHADDELAALRALVDQRWREKHAEEVARDNLAAELEGVAGRCEQLRL
ARERTTEEVARNRAVEAEKCARAWLSSQGAELERELEALRVAHEEEERVGLNAQAAC
APRLPAPPAPPAPEVEELARRLGEAWRGAVRGYQERVAHMETSLDQTRERLARAVQ
GAR
EVRLELQQQLQAERGGLLERRAALEQRLEGRWQERL RATEKFQLAVEALEQEKGQLQSQ
IAQVLEGRQQLAHLKMSLSLEVATYRTLLEAENSRLQTPGGGSKTSLSFQDPKLELQF
PRTPEGRLGSLLPVLSPTSLPSPLPATLETVP AFLKNQEFLQARTPTLASTPIPPT
PQAPSPAVDAEIRAQDAPLSLLQTQGGRKQAAPEPLRAEARVAIPASVLPGPEEPGGQR
QEASTGQS PEDHASLAPPLSPDHSSLEAKDGESGGSRVFSICRGE GEQGIWGLVEKET
AIEGKVSSLQQE IWEEDLN RKEI QDSQVPLEKETL KSLGEEIQESLKTLENQSHET
LERENQECPRSLEEDLETLSLEKENKRAIKCGGGSETS RKR GCRQLKPTGKD TQL
QLSQKENQELMKSLEGNLETFLFPGTENQELVSSLQENLES LTALEKENQ EPLRSPEV
GDEEALRPLTKENQ EPLRSLEDENKEAFRSLEKENQ EPLKTL EEDQSIVRPLETENH
KSLRSLEE QDQETL RTLEKETQ QRRRSLGEQDQMTLR PPEKVD LPLKSLDQ EIA RPL
ENENQEFLKSLK EESVEAVKS LETE ILES LKSAGQENLETLK SPETQ APLWT PEEINK
SGGNESSRKGN SRTTGVC GSEPRDIQTPGRGESGII EISGSME PGFEISRG VD KESQ
RNLEEEENLGKGEYQ ELSRSLEEGQELPQSADVQRWEDTVEKDQELAQESPPGMAGV
ENKDEAELNLR EQDGTGK EEEVVEQGELNATEEVWFPGE GHPE NPEPK EQR GLVE GAS
VKGGAEGLQDPEGQSQQVGTPGLQAPQGLPEAIEPLVEDDVAPGGDQASPEVMLGSEP
AMGESAAGAEPGLGQGVGGLDPGHLTREEVMEPPL EESLEAKRVQGLEGP RD LEE
AGGLGTEFSELPGKSRDPWEPPREGREESEAAPRGAE AAFAETLGH TDAPSPWP
LGSEEAEE D VPPVLVSPSPTYTPILEDAPGLQPQAE GSQE ASWGVQGRA EAAG KV ESEQ
EELGSGEIPEGLQEEGEESREESEEDELGETLPDSTPLGFYLRSPRWTPLSRGH
PLKETGKEGWDP AVLASEGLEPSEKEE GEE EEE C GRDSDL SEE FED LGTEAPFLPG
VPGEVAEPLGQV PQVPLLDPA WDRDG ESDG FADEEE ESEE GEE ED QEE GREG PAG RWGP
GSSVGSLQALSSSQRGEFLES DSVSVPWDDSLRGAVAGAPKTA LETES QDSAEP SG
SEEESDPVSLEREDK VPGPLEIPSGMEDAGPGADIIGVNGQGPNLEGKSQHVNGVMN
GLEQSEESGARN ALVSEGDRGSPFQEEEGSALKRSSAGAPVHLGQQFLKFTQREGDR
ESWSSGED"

Nestin Nucleotide Sequence:

BASE COUNT 1238 a 1176 c 1676 g 764 t ORIGIN 1

atggagggct gcatggggga ggagtcgtt catgtggg agctaatcg ggcctggag 61
gcctacctgg gccgggcaaa ggccgtggag gagcagaatg agtgcgtcgg cgccggactc 121
ggggggctcc ggccacaatc cgccgacacc tcctgggggg cgcatgcga cgacgagctg 181
gccccctgc gtgcgtcggt tgaccaacgc tggcgggaga agcacgcggc cgagggtggcg 241
cgegacaacc tggctgaaga gctggaggcc gtggcaggcc atgcgagca gctgcggctg 301
gccccggagc ggacgacgga ggaggtagcc cgcaaccggc gcgcggcga ggcagagaaa
361 tgcgccccggg cctggcttag ccaggggg gcagagctgg agcgcgagct agaggctta
421 cgcggtggc acgaggagga ggcgcgtcggt ctgaacgcgc aggctgcgt tgccccccgc

FIG. 7A

481 ctgcccgcgc cgccccggcc tcccgcgccg gccccggagg tagaggagct ggcaaggcga
541 ctggcgagg cgtggcggg ggcagtgcgc ggctaccagg agcgcgtggc acacatggag
601 acgtcgctgg accagaccccg cgaggccctg gccccggcgg tgcaagggtgc ccgcgaggc
661 cgcctggcgc tgcagcagct ccaggctgag cgccggaggcc tcctggagcg cagggcagcg
721 ttggAACAGA ggtggaggg cgcgtggcag gageggctgc gggctactga aaagtccag
781 ctggctgtgg aggccctggaa gcaggagaaa cagggccctac agagccagat cgctcaggc
841 ctggaaggcgc ggcagcagct ggcgcacccctc aagatgtccc tcagcctggaa ggtggccacg
901 tacaggaccc tcctggaggc tgagaactcc cgcgtcaaa cacctggcgg tggctccaag
961 acttcctca gcttcagga ccccaagctg gagctgcaat tccttaggac cccagaggc
1021 cggcgtctg gatcttgct cccagtcgt agcccaactt ccctccctc acccttgtct
1081 gctaccctg agacacctgt gccagccctt ctaagaacc aagaattccct ccaggcccgt
1141 acccttaccc tggccagcac ccccatccccccc cccacacccctc aggccacccctc tcctgtctga
1201 gatcagaga tcaagagccca ggatgcctct ctcctctgc tcacagacaca ggggtggagg
1261 aaacaggcctc cagagccct gogggctgaa gccagggtgg ccattccctgc cagcgtctg
1321 cctggaccag aggagccctgg gggccagcgg caagaggcca gtacaggc
gtcccccagag 1381 gaccatgcct ccttggcacc accccctcagc cctgaccact ccagtttaga
ggctaaggat 1441 ggagaatccg gtgggtctag agtgttcagc atatgcggag gggaaagggtga
agggccaaatc 1501 tgggggttgg tagagaaga aacagccata gaggccaaag tggtaagc
cttgcagcag 1561 gaaatatggg aagaagagga tctaaacagg aaggaaatcc aggactccca
ggttcccttg 1621 gaaaaagaaa ccctgaagtc tctggagag gagattcaag agtcaactgaa
gactctggaa 1681 aaccagagcc atgagacact agaaaggag aatcaagaat gtccgaggc
tttagaaaga 1741 gacttagaaa cactaaaaag tctagaaaag gaaaataaaa gagctattaa
aggatgtgga 1801 ggtagtgaga cctctagaaa aagaggctgt aggcaacita agcctacagg
aaaagaggac 1861 acacagacat tgcaatccct gcaaaaggag aatcaagaac taatgaatc
tcttgaaggt 1921 aatctagaga cattttttt tccaggaacg gaaaatcaag aatttagtaag
ttctctgcaa 1981 gagaacttag agtcaattgac agtctctggaa aaggagaatc aagagccact
gagatctcca 2041 gaagtagggg atgaggaggc actgagaccc tgcacaagg agaatc
acccctgagg 2101 tcttttgaag atgagaacaa agaggccctt agatctctag aaaaagagaa
ccaggagcca 2161 ctgaagactc tagaagaaga ggaccagagt attgtgagac ctctagaaac
agagaatcac 2221 aaatcactgaa ggccttttga agaacaggac caagagacat tgagaactct
tgaaaaagag 2281 actcaacagc gacggaggc tctaggggaa caggatcaga tgacattaag
accccccagaa 2341 aaagtggatc tagaaccact gaagtctctt gaccaggaga tagcttagacc
tcttggaaaat 2401 gagaatcaag agttcttaaa gtcactcaa gaagagagcg tagaggc
aaaatctta 2461 gaaacagaga tccctagaatc actgaagtct gcgggacaag agaacctgg
aacactgaaa 2521 tctccagaaa ctcaagcacc actgtggact ccagaagaaa taaaataaactc
agggggcaat 2581 gaatctctaa gaaaaggaaa ttcaagaacc actggagatct gtggaaatgt
accaagagac 2641 attcagactc ctgaaagagg agaatcaggaa atcattgaga tctctgggag
catggAACCT 2701 ggagaatttgg agatctccag aggatgtagac aaggaaatgc aaaggaatct
ggaagaggaa 2761 gagaacctgg gaaaggagaga tcaacaaggag tcaactgaggatct ctctggag
ggaggcag 2821 gagctgccgc agtctgcaga tgtgcagagg tggaaagata cggtggagaa
ggaccaagaa 2881 ctggctcagg aaagccctcc tggatggct ggatggaaa ataaggatga
ggcagagctg 2941 aatctaaggg agcaggatgg cttcactggg aaggaggagg tggtagagca
gggagagctg 3001 aatgccacag aggaggtctg gttcccaggc gaggggcacc

FIG. 7B

cagagaaccc tgagccaaa 3061 gaggcagagag gcctgggtt gggagccagt
gtgaagggag gggctgaggg cctcaggac 3121 cctgaaggc aatcacaaca
ggtggggacc ccaggccctc aggctccccca ggggtgcaca 3181 gaggcgatag agccccttgtt
ggaagatgtat gttggccca ggggtgacca agcctccca 3241 gagggtcatgt tggggtcaga
gcctgcctat ggtgatctg ctgcgggagc tgagccaggc 3301 ctggggcagg ggggtggagg
gctgggggac ccaggccatc tgaccaggga agaggtatg 3361 gaaccacccc
tggaaagagga gagtttgag gcaaagaggg ttcaaggctt ggaagggctt 3421 agaaaggacc
tagaggagggc aggtggctgt gggacagagt tctccgagct gcctgggaag 3481 agcagagacc
cttgggagcc tcccaggggg ggttagggagg agtcagagggc tgaggccccc 3541
aggggagcag aggaggcgtt ccctgttgc accctggggcc acactggaaat tgatgcccct 3601
tcaccttggc ctctgggic agaggaagct gaggaggatg taccaccgt gctggctcc 3661
cccagcccaa cgtacacccc gatccctggaa gatgccctg ggctccagcc tcagggctaa 3721
gggagtctagg aggctatgt ggggggtgcag gggagggctg aagctggaa atgtagagagc 3781
gagcaggagg agggtgggtc tggggagatc cccggggcc tccaggagga aggggaggag 3841
agcagagaag agagcgagga ggtgagctc ggggagaccc ttccagactc cactccctg 3901
ggcttctacc tcaggtcccc cacctccccca aggtggaccc cactggagag cagggccac 3961
ccccctaagg agactggaaa ggagggctgg gatccctgtg tccctggcttc cgaggccctt 4021
gaggaaaccc tcaaaaaagga ggaggggggag gagggagaag aggagtgtgg ccgtgactct
4081 gaccctgtcag aagaatttga ggacctgggg actgaggcac ctcccttc tggggccct
4141 ggggaggtgg cagaacccctt gggccagggtt ccccaactgc tactggatcc tgcagccctgg
4201 gatcgagaatg gggaggtctga tgggtttgcata gatgaggaag aaagtggggaa ggagggagag
4261 gaggatcagg aggagggggag ggagccaggc gctggcggtt gggggccagg gtcttctgtt
4321 ggcagccctcc aggccttgc tagctccctc agagggaaat tccctggatc tgattctgt
4381 agtgcagcc tccctggga tgacagctt ggggttgcag tggctgggtc ccccaagact
4441 gcccggaaa cggagtcaca ggacagtgtt ggccttgc gctcagagga agagtcgtac
4501 cctgtttctt tggagaggggaa ggacaaagtc cctggccctc tagatccc cagttggatg
4561 gaggatgcag gcccaggggc agacatcatt ggtttaatg gccagggtcc caacttggag
4621 gggaaatgcac agcatgtaaa tggggagta atgaacgggc tggagcagtc tgagggaaat
4681 ggggcaagggaa atgcgtatgt ctctggggaa gaccggggaa gccccttca ggaggaggag
4741 gggatgcac tgaagaggc ttcggcaggc gctctgttc acctggggca gggtcagttc
4801 ctgaatctca ctcagaggga aggagataga gatgtctggc ctcaggggaa ggac //

FIG. 7C

FIG. 8A
P60

FIG. 8B
P60

FIG. 8C
P60

FIG. 8D
P60

FIG. 8E

FIG. 9A

FIG. 9B

FIG. 9C

FIG. 10B

FIG. 10A

FIG. 10C

FIG. 10D

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 12

FIG. 13A

FIG. 13B

DAY: E8.5 E9.5 E13 E14 E15

FIG. 14

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 16

Figure 17

SEQ ID NO: 3

SEQ ID NO: 4

MAGAPGPLRLALLLGGMVGRAGPRPQGATVSLWETVQKWREYRRQCQRSLTEDPPPA
TDLFCNRTFDEYACWPDGEPGSFVNSCPWLWASSVPQGHVYRFCTAEGLWLQKD
NSSLPWRDLSECEESKRGERSSPEEQLLFLYIIYTGYALSFSALVIASAILLGFRHLHCTR
NYIHLNLFASFILRALSVFIKDAALKWMYSTAAQQHQWDGLLSYQDSLSCRLVFLLMQ
YCVAANYYWLLVEGVYLYTLLAFSVFSEQWIFRLYVSIGWGVPLLFVVPWGIVKYLYE
DEGCWTRNSNMNYWLIIRLPILFGIGVNFLIFVRVICIVVSKLKANLMCKTDIKCRLAKST
LTЛИПЛГTHEVIFAFVMDEHARGTLRFIKLFTELSFTSFQGLMVAILYCFVNNEVQLEFR
KSWERWRLEHLHIQRDSSMKPLKCPTSSLSSGATAGSSMYATCQASCS

Figure 18A

GLP-1R
PRE-IMM

NESTIN
GLP-1R/NUC

Figure 18

B

NIPs

Islets

346bp

Figure 19

Figure GLP-1(7-36)amide and Tolbutamide stimulate $[Ca^{2+}]_i$ influx in stem cells.

(A) Fura 2 loaded cells bathed in 5.6 mM glucose show a $[Ca^{2+}]_i$ increase in response to 10 nM GLP-1. Increasing the extracellular glucose to 20 mM (20 G) also caused an increase of $[Ca^{2+}]_i$; but application of GLP-1 in 20 mM glucose failed to produce a $[Ca^{2+}]_i$ response. A third application of GLP-1 on returning to 5.6 mM glucose produced a $[Ca^{2+}]_i$ response. (B) The glucose-dependent effects of GLP-1 were reproduced by 10 mM forskolin, suggesting that $[Ca^{2+}]_i$ elevation is cAMP-mediated. (C) The GLP-1 mediated increase of $[Ca^{2+}]_i$ was reversibly inhibited by 10 nM exendin (9-39). This effect is not due to receptor desensitization (D) as application of GLP-1 in the presence of exendin (9-39) failed to produce a response whereas subsequent applications of GLP-1 after washout of exendin produced repeated $[Ca^{2+}]_i$ elevations. (E) The GLP-1-mediated increase of $[Ca^{2+}]_i$ is inhibited by 0.5 mM extracellular La³⁺, suggesting that GLP-1 stimulates Ca²⁺ influx. (F) Stem cells bathed in 5.6 mM glucose were stimulated with 100 μ M tolbutamide (Tolbut.) and respond to repeated applications with increases in $[Ca^{2+}]_i$. Application of 10 nM GLP-1 also stimulates an increase of $[Ca^{2+}]_i$, suggesting that GLP-1 acts by depolarizing the cells.

Figure 20

Figure 21

Figure 22

A

Transfected with hIDX-1 and
incubated with GLP-1 (7-36)

B

Transfected with hIDX-1 and
incubated with Vehicle (PBS)

Insulin/IDX