Time Built OCED

Chloe Hall

2022-11-16

```
#Load necessary packages
library(readxl)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.3.6
                   v purrr 0.3.5
## v tibble 3.1.8
                     v dplyr 1.0.10
## v tidyr 1.2.1
                    v stringr 1.4.1
                    v forcats 0.5.2
## v readr 2.1.3
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(ggplot2)
library(dbplyr)
## Attaching package: 'dbplyr'
## The following objects are masked from 'package:dplyr':
##
##
      ident, sql
#Load the data
enr <- read_excel("~/Downloads/ROCCA/ENR facility spreadsheet april.xlsx")</pre>
#select to relevant columns
enr<-enr %>%
 select(country_name, ccode, facility_name, construction_start, construction_start_lower_bound, constr
#list of countries in dataset
country<-unique(enr$country_name)</pre>
final <- data.frame(matrix(ncol = 6, nrow = 0))</pre>
colnames(final)<- c("country_name", "ccode", "facility_name", "start", "end")</pre>
for (row in 1:nrow(enr)) {
 if (is.na(enr[row, 4]) || enr[row, 4] < 0||enr[row, 4] > 3000) {
   start = enr$construction_start_lower_bound[row]
 }
 else{
   start = enr$construction_start[row]
 }
```

```
if (is.na(enr[row, 7] )|| enr[row, 7] < 0||enr[row, 7] > 3000) {
     end= enr$construction_end_lower_bound[row]
  } else{
   end = enr$construction_end[row]
  if(!is.na(start)&!is.na(end)){
      final[nrow(final) + 1, ] <-</pre>
      c(enr[row, 1], enr[row, 2], enr[row, 3], start, end, enr[row, 10])
 }
}
df<- data.frame(matrix(ncol = 5, nrow = 0))</pre>
colnames(df)<- c("country_name", "ccode", "start", "years_to_build", "enr_type")</pre>
#Creating Variable for build time
for (row in 1:nrow(final)) {
 years_to_build = final$end[row]-final$start[row]
   if(years_to_build>=0){ #Removing the weird negative range values
      df[nrow(df) + 1, ] <-
      c(final[row, 1], final[row, 2], final[row, 4], years_to_build, final[row,6])
   }
}
str(df)
## 'data.frame': 240 obs. of 5 variables:
## $ country_name : chr "Algeria" "Argentina" "Argentina" "Argentina" ...
## $ ccode
                 : chr "615" "160" "160" "160" ...
                          "1986" "1968" "1978" "1979" ...
## $ start
                   : chr
## $ years_to_build: chr "6" "0" "12" "8" ...
                          "1" "1" "1" "2" ...
## $ enr_type
                  : chr
df$start<-as.Date(as.character(df$start), format = "%Y")</pre>
df$years_to_build<-as.numeric(df$years_to_build)</pre>
str(df)
## 'data.frame':
                   240 obs. of 5 variables:
## $ country_name : chr "Algeria" "Argentina" "Argentina" "Argentina" ...
                   : chr "615" "160" "160" "160" ...
## $ ccode
                    : Date, format: "1986-11-16" "1968-11-16" ...
## $ start
## $ years_to_build: num 6 0 12 8 7 10 6 6 11 12 ...
                   : chr "1" "1" "1" "2" ...
## $ enr_type
oced<-df %>%
  filter(country_name=="Australia"|country_name=="Belgium"|country_name=="Canada"|country_name=="Czech |
#The lm line coef
coef(lm(oced$years_to_build~oced$start))[2]
     oced$start
## 5.270756e-06
ggplot(oced, aes(x=start, y=years_to_build, color=country_name)) +
  annotate("text", x=8000,y=35,label=(paste0("OLSslope==",coef(lm(oced$years_to_build~oced$start))[2]))
```

```
geom_point()+
geom_smooth(method = lm, se = T, color = "black")+
ggtitle("OCED Countries Time to Build")
```

`geom_smooth()` using formula 'y ~ x'

OCED Countries Time to Build

