

CS 412 Intro. to Data Mining

Chapter 4. Data Warehousing and On-line Analytical Processing

Chapter 4: Data Warehousing and On-line Analytical Processing

■ Data Warehouse: Basic Concepts

- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP

- Data Warehouse Design and Usage
- Data Warehouse Implementation
- Summary

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year) → ให้อักษะที่ สามรถจับเขาใช้ผลใหญ่
 - □ Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
 □ mរព័រថ្មៅរូស្រា
- □ Data cube: A lattice of cuboids
 - In data warehousing literature, an n-D base cube is called a base cuboid
 - The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid
 - ☐ The lattice of cuboids forms a data cube.

Data Cube: A Lattice of Cuboids

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Star Schema: An Example

Snowflake Schema: An Example

หลุมดา Fact Constellation: An Example

Data Cube Measures: Three Categories

- Distributive: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., count(), sum(), min(), max()
- Algebraic: if it can be computed by an algebraic function with *M* arguments (where *M* is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - \square avg(x) = sum(x) / count(x)
 - Is min_N() an algebraic measure? How about standard_deviation()?
- Holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank()

Multidimensional Data

สนมณเบ่าเป็น ฟังก็รับของ

สินค้า เลือน ทห

□ Sales volume as a function of product, month, and region

Dimensions: Product, Location, Time Hierarchical summarization paths

A Sample Data Cube

Cuboids Corresponding to the Cube

Typical OLAP Operations

- □ Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - Drill across: involving (across) more than one fact table
 - Drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

A Star-Net Query Model

