# Algorithm Cheat Sheet

# Asymptotics

$$\begin{array}{c|cccc} f(n) = ? & \text{o} & \text{O} & \Theta & \Omega & \omega \\ f(n)/g(n) & \text{o} & \leq & [c_1, c_2] & \geq c & \infty \end{array}$$

## Loop Invariant

Initialization Maintenance Termination

## Solving Recurrences

#### Master Theorem

| f(n)                                                                                                                                                  | T(n)                                              | $g = n^{log_b a}$                                 | T                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------|
| $O(n^{\log_b a - \epsilon}), \epsilon > 0  \Theta(n^{\log_b a})$                                                                                      | $\Theta(n^{log_{b}a})$                            | f < g                                             | 0(g)                     |
| $\Theta(n^{log_ba})$                                                                                                                                  | $\Theta(n^{log_ba}\log n)$                        | <i>f=g</i>                                        |                          |
| $\Theta(n^{\log_b a} \log^k n)$                                                                                                                       | $\Theta(n^{\log_b a} \log^{k+1} n)$               | $f = \Theta(g \log^k n) \ \Theta(g \log^{k+1} n)$ | $\Theta(g \log^{k+1} n)$ |
| $\Omega(n^{log_b  a+\varepsilon}), \varepsilon > 0  \Theta(f(n))$<br>regularity condition: r.c. holds for $f(n) = af(n/b) \le cf(n)$ , some $n^k > g$ | $\Theta(f(n))$<br>r.c. holds for $f(n) = n^k > g$ | f>g&<br>af(n/b)≤cf(n)                             | <i>(</i> -)0             |

## Simplified

$$T(n) = aT(n/b) + cn$$

#### Substitution method:

$$T(n) = aT(n/b) + f(n) = a[aT(n/b^{2}) + f(n/b)] + f(n) = a^{2}T(n/b^{2}) + af(n/b) + f(n) = \cdots$$

$$\underbrace{a^{\lg_{b}n}}_{=0(n^{\lg_{b}a})} \cdot \underbrace{T(n/b^{\lg_{b}n})}_{=T(1)=\Theta(1)} + \sum_{k=0}^{\lg_{b}n-1} a^{k}f(n/b^{k}) = a^{2}T(n/b^{2}) + af(n/b^{2}) + af(n/b^{2}) + af(n/b^{2}) + af(n/b^{2}) = af(n/b^{2}) + af(n/b) + af(n/b$$

#### **Recursion tree:**

Build a tree from the levels in the substitution:

Level 0: f(n)

Level 1: a elements, each costs f(n/b)

...

Level k:  $a^k$  elements, each costs  $f(n/b^k)$ Last level:  $n^{\lg_b a}$  elements, each costs  $\Theta(1)$ 

## Quicksort

General recurrence:  $T(n) = T(k) + T(n - k - 1) + \Theta(n)$ 

W.C.: array already sorted, partition at the beginning:

$$T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$$

**Note**: for any *n*-proportional division we get  $\Theta(n \lg n)$ :

$$T(n) = T(n/\alpha) + T((\alpha - 1)n/\alpha) + \Theta(n)$$

For  $\alpha = 2$  we will get a balanced tree.

## **Expected running time:**

$$E[T(n)] = \sum_{k} \Pr[k - split] \cdot T(n|k - split) = 2/n \cdot \sum_{k=1}^{n-1} (T(k) + \Theta(n)) = \boxed{\Theta(n \lg n)}$$

## Selection

## ${\bf RANDOMIZED\text{-}SELECT(A,p,r,i)}$

q = RANDOMIZED-PARTITION(A,p,r)RANDOMIZED-SELECT(A,q+1,r,i-k)

Expected running time

## **Deterministic Selection Algorithm**

- 1. Divide A into groups of 5 elements
- 2. Find the median in each group (within 7 cmps)  $\rightarrow$  subset M
- 3. Recursively select the median x of M
- 4. Partition A with respect to pivot x at least 3n/10-6 eles are  $\leq / \geq x$
- 5. Recurse on the appropriate part  $T(n) \le T(\lceil \frac{n}{5} \rceil) + T(\frac{7n}{10} + 6) + \Theta(n) = O(n)$

## Search Tree

### TREE-SUCCESSOR(x)

if right[x]  $\neq$  NIL

then return TREE-MINIMUM(right[x])  $y \leftarrow p[x]$ //find 1st left parent while  $\mathbf{y} \neq \mathbf{NIL}$  and  $\mathbf{x} = \mathrm{right}[y]$  do  $\mathbf{x} \leftarrow \mathbf{y}$   $\mathbf{y} \leftarrow p[y]$ return  $\mathbf{y}$ 

### Btree

k kevs & k+1 children

#children [t, 2t]. (root except: [2, 2t]

All leaves at same depth

Leaves: same restriction on #keys

 $h = \Theta(\log n / \log t)$ 

If absorb red nodes into their black parents  $\rightarrow$  2-3-4 tree.

Red-Black trees can be mapped to a 2-3-4 tree and vice-versa  $\,$ 

#### Red-Black Trees

- Children, parent of a red node are black
- root & leaves(NIL) is black
- All black paths have same # of blacks (black height)
- $h \le 2 \log (n+1)$  The subtree rooted at any node x contains  $\le 2bh(x) 1$  internal nodes. (by induction on  $h, bh \le h/2$

#### Case 1: a's uncle is red:

Color father and uncle black, and grandfather red. Problem moved up 2 levels to grandfather.



## Case 2: a's uncle is black, a is a right child:

Rotate left around father and continue to case 3.



### Case 3: a's uncle is black, a is left child:

Rotate right around grandfather, switch colors between father and new sibling.



## RB-INSERT(T, z)

y = T.NIL //

x = T.root

```
while x \neq T.NIL do
  v = x
  if z.key; x.key then
    x = x.left
  else x = x.right
z.p = v
z.left = T.NIL //
z.right = T.NIL //
z.color = RED //
if y == T.NIL then
  T.root = z
elseif z.key; y.key then
 v.left = z
else
  y.right = z
RB-INSERT-FIXUP(T, z)//
```

#### delete

Determine which y to splice out: either z: no/one child or z's

x: NIL or a non-NIL child of v

y is removed by manipulating pointers of p[y] and x. (when y

if  $y \neq z$ , copy its data into z (y is successor)



### Case 1: a's sibling is red:

Rotate left around father, switch colors between father and grandfather and continue with circled subtree to other case.



Case 2: a's sibling and nephews are black: Take blacks from a and c and move problem up.



## Case 3: a's sibling is black with left red and right black:

Rotate right around sibling, switch colors between new sibling and old sibling and continue to case 4.



### Case 4: a's sibling is black with right red:

Rotate left around father, color grandfather with father's color, color father with extra black, color uncle black.



# Examples

#### PARTITION (A,p,r)

x = A[r]i = p-1for j=p to r-1if  $A[j] \leq x$  then i=i+1, swap(A[i],A[j]) swap(A[i+1],A[r])return i+1

#### HEAPSORT(A,n)

BUILD-MAX-HEAP(A,n) for  $i \leftarrow n$  downto 2 do exchange A[1]&A[i]MAX-HEAPIFY(A,1,i 1)

Top k: Compute k largest in sorted order in time  $O(n + k \log n)$  Find k largest in online stream:  $n \gg k$  elements using space O(k) in  $O(n \log k)$  time

#### Merge

i=1, j=1  
for t = 1 to 
$$n_1 + n_2$$
  
if  $(i \le n_1 \text{ and } (j > n_2 \text{ or } K[i] < L[j]))$  then  $M[t] = K[i], i = i+1$   
else  $M[t] = L[j], j = j+1$ 

Some hierarchies: > is "o", = is "\Theta"
$$2^{2^{n+1}} > 2^{2^n} > (n+1)! > n! > e^n > n \cdot 2^n > 2^n > (3/2)^n > (\lg n)^{\lg n} = n^{\lg \lg n} > (\lg n)! > n^3 > n^2$$

$$= 4^{\lg n}$$

$$> n \lg n = \lg(n!) > n = 2^{\lg n} > (\sqrt{2})^{\lg n} > 2^{\sqrt{2 \lg n}} > \lg^2 n > \ln n > \sqrt{\lg n} > \ln \ln n > 2^{\lg^* n} > \lg^* \lg n = \lg^* n$$

$$> \lg \lg^* n > 1 = n^{1/\lg n}$$

#### Some recurrences:

Binary search:  $T(n) = T(n/2) + 1 = O(\lg n)$ Linear search: T(n) = T(n-1) + 1 = O(n) $T(n) = 4T(n/3) + n \lg n \Rightarrow \Theta(n^{\lg_3 4}) \text{ (MT case 1)}$  $T(n) = 3T(n/3) + n/\lg n \Rightarrow \Theta(n \lg \lg n)$  (tree)  $T(n) = 4t(n/2) + n^2\sqrt{n} \Rightarrow \Theta(n^{2.5})$  (MT case 3)  $T(n) = 3T(n/3 - 2) + n/2 \Rightarrow \Theta(n \lg n)$  (bounds)  $T(n) = 2T(n/2) + n/\lg n \Rightarrow \Theta(n \lg \lg n)$  (tree)  $T(n) = T(n/2) + T(n/4) + T(n/8) + n \Rightarrow \Theta(n)$ (bounds)  $T(n) = T(n-1) + 1/n \Rightarrow \Theta(\lg n)$  (substitution)  $T(n) = T(n-1) + \lg n \Rightarrow \Theta(n \lg n)$  (bounds)  $T(n) = T(n-2) + 1/\lg n \Rightarrow \Theta(n/\lg n)$  (bounds)  $T(n) = \sqrt{n}T(\sqrt{n}) + n \Rightarrow T(n) = \Theta(n \lg \lg n)$  (tree)

## Sorting in Linear Time

#### Comparison lower bounds

- Stirling's formula:  $n! = \sqrt{2\pi n} (n/e)^n (1 + \Theta(1/n))$
- Simultaneous max and min:  $\lceil 3n/2 \rceil 2$

#### COUNTING-SORT(A, B, n, k)

for 
$$i \leftarrow 0$$
 to  $k$  range  
do  $C[i] \leftarrow 0$   
for  $j \leftarrow 1$  to  $n$   
do  $C[A[j]] \leftarrow C[A[j]] + 1$   
for  $i \leftarrow 1$  to  $k$   
do  $C[i] \leftarrow C[i] + C[i-1]$   
for  $j \leftarrow n$  downto  $1$   
do  $B[C[A[j]]] \leftarrow A[j]$   
 $C[A[j]] \leftarrow C[A[j]] - 1$ 

 $\Theta(n+k)$ . Auxiliary storage: C[0..k]

#### Radix Sorting

 $\Theta(d(n+k)).$ 

For n b-bit numbers  $(n < 2^b)$ , can partition into blocks of r bits,  $r \leq b \Rightarrow \Theta((b/r)(n+2^r))$ Optimal:  $r \approx \log n \Rightarrow \Theta(bn/\log n)$ 

Copyright © 2015 Radon Co http://www.stdout.org/~winston/latex/