Tutorial 2

- 1. Suppose het x_0, x_1, \dots, x_m be not necessarily distinct pts. Let f and g be two polynomials s.t f and g be two polynomials s.t f and g agree expans on $x = x_0, x_1, \dots, x_m$. Also agree expans on $x = x_0, x_1, \dots, x_m$. Show f = g dy $f \le m$ and deg $g \le m$. Show f = g
- 2. f(0) = 1 f'(0) = 6.5 f''(0) = 2 f'''(0) = 3. Find a polynomial of degree ≤ 3 which agrees with f(n) at 0,0,0,0.
 - 3. f(0.2) = 1.823 E 1 f'(0.2) = 8.333 E - 1 f'(0.4) = 3.365 E - 1f'(0.4) = 7.143 E - 1
 - a) Construct the divided difference table
 - b) Approximate f(0.3)

4. A function f(x) has a double zero at Z_1 and a triple zero at Z_2 . Determine and a triple zero at Z_2 . Determine the form of the polynomial of degree ≤ 5 which the form of the polynomial of degree ≤ 5 which the form of the polynomial of degree ≤ 5 which the form of the polynomial of degree ≤ 5 which interpolates f(x) twice at Z_1 , three times at interpolates f(x) twice at Z_1 , Z_2 and once at some other point Z_3 .

(3) f(0.2) = 1.987 E-1 f'(0.2) = 9.801 E-1 f''(0.2) = -1.987 E-1 f(0.4) = 3.894 E-1f(0.4) = 4 divided difference table and approximate f(0.3)