DILUTED TREATMENT EFFECT ESTIMATION FOR TRIGGER ANALYSIS IN ONLINE CONTROLLED EXPERIMENTS

Alex Deng and Victor Hu February 1, 2015

Microsoft

OUTLINE

- · Trigger Analysis and The Dilution Problem
- · Traditional Approach: Exact Dilution Formula
- · Novel Approach: Dilution as Variance Reduction
- · Empirical Results
- · Illustrative Example (if time permits)

Paper and slides available at: http://alexdeng.github.io/

THE DILUTION PROBLEM

LOW COVERAGE FEATURE AND TRIGGER ANALYSIS

More and more low coverage features:

- · A specific type of instant answer, e.g. weather, recipe, celebrity
- · Personalized feature triggered on sophisticated criteria

٠ ...

Trigger analysis/Triggered Analysis: only use triggered data to have a better estimate of the treatment effect and higher statistical power

3

ROI CALIBRATION AND THE DILUTION PROBLEM

- · Need to compare feature effect at the overall treatment effect level for return of investment (ROI) comparison.
- · Should we invest \$X to a feature only affecting a small user base or another feature with larger user base?
- Effect estimated in trigger analysis ≠ overall(all-up) treatment effect
- Problem: how do we translate estimation(and confidence interval) from trigger analysis to overall treatment effect so ROI calibration is possible?

DILUTION FORMULA

EASY CASE: ADDITIVE METRICS

Metrics like Clicks-per-user and Revenue-per-user are additive, because for each user, X = TrX + UnTrX. We proved

$$\Delta_{\text{overall}}(X) = \Delta_{\text{Tr}}(X) \times \frac{N_{\text{Tr}}}{N}$$
 (1)

- · N_{Tr} is the triggered user count. $\frac{N_{Tr}}{N}$ is user trigger rate.
- · Effect diluted by the user trigger rate.
- Formula applies to user-trigger and also session-trigger analysis.
- · Many people can guess this formula without derivation.

RATIO METRICS

Metrics like Click-Through-Rate (CTR), Session-Success-Rate(SSR) are called Ratio Metrics. Rratio metrics are as common as additive metrics

- Ratio metrics are typically defined as ratio per user, e.g.
 CTR-per-user, so users have equal weights
- \cdot For each user, $X_i = \frac{Numerator_i}{Denominator_i}$
- · Asked people to guess the formula. It is much harder than additive metrics and the popular guess is:

$$\Delta_{\text{Overall}}(X) = \Delta_{\text{Tr}}(X) \times \frac{N_{\text{Tr}}}{N} \times \overline{\text{TR}},$$

where $TR = \frac{TrDenominator}{Denominator}$ — "denominator trigger rate" and \overline{TR} is the average over all triggered users.

· We learned it is WRONG and could be way off!

7

RATIO METRICS CONT'D

Theoretical derivation: Rubin Causal Model(potential outcome pairs)

For a ratio metric X, assuming for all users there is no treatment effect on the Denominator, then

$$\begin{split} &\Delta_{Overall}(X) = \frac{1}{N} \sum_{Tr} TR_i \times (TrX_{iT} - TrX_{iC}) \\ &\stackrel{E}{=} \Delta(TR \times TrX) \quad TR = 0 \text{ and } TrX = 0 \text{ for untriggered user} \end{split} \tag{*}$$

where (TrX $_{iT}$, TrX $_{iC}$) is the potential outcome pair. Only when TrX $_{iT}$ – TrX $_{iC}$ independent of TR $_{i}$, then

$$\Delta_{\text{Overall}}(X) \stackrel{E}{=} \Delta_{\text{Tr}}(X) \times \frac{N_{\text{Tr}}}{N} \times \overline{\text{TR}}.$$
 (2)

when effect $TrX_{iT}-TrX_{iC}$ has strong correlates with TR, (2) could be way off.

8

WE NEED BETTER SOLUTION

- · Result (*) requires no effect on denominator assumption
- · Derivation only guarantees that (*) is an unbiased estimator for the overall treatment effect. There is no guarantee that it will be better than $\Delta(X)$
- · What about other types of metrics: $\overline{f(X_i)}$ for arbitrary f?

We have a better solution that is unified, elegant and better.

TRIGGER ANALYSIS + DILUTION = VARIANCE REDUCTION

Q: What's the purpose of using trigger analysis and dilution?

- Straightforward overall treatment effect in all-up analysis fail to use the information about triggering and the fact that un-triggered component of the data contains no information for the treatment effect but only noises.
- 2. The ultimate goal is to have a more accurate unbiased estimator for the overall treatment effect. Accuracy is measured by variance of the estimator.
- 3. We want to reduce the variance of the overall treatment effect estimator in the all-up analysis, by using side information contained in the triggering events. In other word, Trigger Analysis+Dilution = Variance Reduction!

VR VIA COVARIATE ADJUSTMENT

X is the metric of interest. Y is covariate(s) such that $E(Y^{(T)}) = E(Y^{(C)})$, i.e. $E(\Delta(Y)) = 0$ (no treatment effect on Y). Y represents side information, e.g. no treatment effect for trigger complement data.

Observation: for any θ ,

$$E(\Delta(X)) = E(\Delta(X) - \theta \times \Delta(Y)) = E(\Delta(X)) - \theta \times \underbrace{E(\Delta(Y))}_{0}$$

So $\Delta(X) - \theta \times \Delta(Y)$ is an unbiased estimator for the treatment effect on X.

Task: choose a θ to minimize the variance

$$\underset{\theta}{\operatorname{argmin}} \operatorname{Var}(\Delta(X) - \theta \times \Delta(Y))$$

DILUTION AS VR CONT'D

Closed-form optimal θ :

$$\theta^* = \frac{\operatorname{Cov}(\Delta(X), \Delta(Y))}{\operatorname{Var}(\Delta(Y))} = \frac{\operatorname{Cov}(\overline{X_T}, \overline{Y_T}) + \operatorname{Cov}(\overline{X_C}, \overline{Y_C})}{\operatorname{Var}(\overline{Y_T}) + \operatorname{Var}(\overline{Y_C})}$$

The second equation may vary if the metric is not in the form of an average, e.g. percentile metrics. θ is a vector when Y takes vector value.

If we want want to estimate treatment effect on metric X

- 1. Identify a set of covariates Y.
- 2. θ^* can be first estimated from the data.
- 3. $\Delta(X) \theta^* \Delta(Y)$ is an unbiased estimator and it has smaller variance!

COVARIATES FOR DILUTION

For any metric X, trigger event information naturally implies UnTrX (the same metric X calculated using trigger-complement data) is a covariate!

For ratio metric, if we further can assume no effect on the denominator trigger rate, we might use TR (demoninator trigger rate) as additional covariate.

Technical remark: UnTrX might not be well defined, e.g. for ratio metrics when a user always trigger the feature. In this case we can define UnTrX=0 and add a binary indicator TR==1 as covariate (see paper for details)

VR VS. DILUTION FORMULA

- VR is a unified framework that works for all types of metrics.
 Dilution Formula approach need different formula for additive and ratio metrics.
- The ultimate purpose is to get a better estimation of the overall treatment effect. VR approach this in a straight line while trigger analysis + dilution is indirect
- · VR quantifies the reduction of variance using the side information of feature triggering. It is strictly better than trigger analysis + dilution formula in most cases (Section 4.4). Using empirical results we show exact dilution formula (*) can perform worse than $\Delta(X)$ when trigger rate is high

COVARIATE ADJUSTMENT VS. LINEAR REGRESSION

- VR method mentioned here first published in Deng et. al. (WSDM 2013)
- It resembles linear regression but they are different! There is no linear model assumption whatsoever required. (David Freedman 2008: Randomization does not justify the assumption behind OLS model)
- · Yang and Tsiatis et. al. (2001) showed a similar estimator (ANCOVAII) based on semi-parametric theory. Also see Tsiatis, Davidian, Zhang and Lu (2008), Targeted Learning (Mark J. van der Laan and Sherri Rose, 2011). Deng et. al. 2013 is a much simpler derivation.

SESSION-SUCCESS-RATE IN 3 EXPERIMENTS

Experiments	Trigger Rate						
	%Triggered Users	%Triggered Sessions					
ExpA	5.26%	1.27%					
ExpB	33.46%	20.83%					
ExpC	65.17%	60.35%					

Table: Trigger User and Trigger Session Ratios.

Compare 3 methods:

- 1. Exact Dilution Formula $\Delta(TR \times TrX)$ (*)
- 2. VR response TR \times TrX and covariates Y = (UnTrX, TR, TR == 1) (**)
- 3. VR response X and covariates Y = (UnTrX, TR, TR == 1) (***)

VARIANCE REDUCTION RATE

	User Trigger								
Experiments	Exact Formula(*)	VR **	VR ***						
	VR rate	VR rate	VR rate						
ExpA	88.60% (11.40%)	98.42% (1.58%)	95.60% (4.40%)						
ExpB	-17.14% (117.14%)	84.80% (14.20%)	78.57% (21.43%)						
ExpC	-49.47% (149.47%)	61.45% (38.55%)	36.03% (63.97%)						

Table: User Trigger Variance Reduction comparison.

	Session Trigger								
Experiments	Exact Formula(*)	VR **	VR ***						
	VR rate	VR rate	VR rate						
ExpA	97.12% (2.88%)	99.44% (0.56%)	98.25% (1.75%)						
ExpB	28.12% (71.88%)	89.85% (10.15%)	85.99% (14.01%)						
ExpC	-31.32% (131.32%)	69.10% (30.90%)	53.97% (46.03%)						

Table: Session Trigger Variance Reduction Comparison.

Group	User	S1	S2	S3	S4	S5	Х	TR	TrX	UnTrX	TR=1
T	A	1	0	0	0	1	2/5	1/5	0	1/2	0
T	В	1	1	0	1	_	3/4	1	3/4	0	1
T	C	1	0	0			1/3	1/3	1	0	0
T	D	0	0	0			0	0	0	0	0
C	E	0	1	0	1	1	3/5	1/5	0	3/4	0
C	F	1	1	1			1	1	1	0	1
C	G	0	0	1			1/3	0	0	1/3	0
C	Н	0	1	0	0		1/4	1/4	1	0	0

1. Estimate θ^* . Note that $\theta^* = \mathrm{Var}(Y)^{-1} \times \mathrm{Cov}(X,Y)$ where Y is the vector (UnTrX, TR, IsTR = 1) and Var and Cov here are matrices. For the control group, θ^* is

$$\begin{pmatrix} 0.127 & -0.081 & -0.090 \\ -0.081 & 0.192 & 0.213 \\ -0.090 & .213 & 0.250 \end{pmatrix}^{-1} \times \begin{pmatrix} -0.010 \\ 0.130 \\ 0.151 \end{pmatrix} = \begin{pmatrix} 0.488 \\ 0.317 \\ 0.512 \end{pmatrix}.$$

Group	User	S1	S2	S3	S4	S5	X	TR	TrX	UnTrX	TR=1
T	А	1	0	0	0	1	2/5	1/5	0	1/2	0
T	В	1	1	0	1		3/4	1	3/4	0	1
T	C	1	0	0			1/3	1/3	1	0	0
T	D	0	0	0			0	0	0	0	0
C	E	0	1	0	1	1	3/5	1/5	0	3/4	0
C	F	1	1	1			1	1	1	0	1
C	G	0	0	1			1/3	0	0	1/3	0
C	Н	0	1	0	0		1/4	1/4	1	0	0

1. Estimate θ^* . Note that $\theta^* = \mathrm{Var}(Y)^{-1} \times \mathrm{Cov}(X,Y)$ where Y is the vector (UnTrX, TR, IsTR = 1) and Var and Cov here are matrices. For the control group, θ^* is

$$\begin{pmatrix} 0.127 & -0.081 & -0.090 \\ -0.081 & 0.192 & 0.213 \\ -0.090 & .213 & 0.250 \end{pmatrix}^{-1} \times \begin{pmatrix} -0.010 \\ 0.130 \\ 0.151 \end{pmatrix} = \begin{pmatrix} 0.488 \\ 0.317 \\ 0.512 \end{pmatrix}.$$

2. VR Estimation:

$$\begin{split} & \Delta_{\text{VR}} = \Delta(\text{X}) - 0.488 \times \Delta(\text{UnTrX}) - 0.317 \times \Delta(\text{TR}) - 0.512 \times \Delta(\text{ISTR} = 1) \\ & = -0.175 - 0.488 \times (-0.145) - 0.317 \times 0.021 - 0.512 \times 0 = -0.111 \end{split}$$

EXAMPLE CONT'D

3. To get z-score, we also need to calculate the variance. which is

$$\begin{split} &\operatorname{Var}(\overline{X}_T) + \operatorname{Var}(\overline{X}_C) + (\theta^*)^T \left(\operatorname{Cov}(\overline{Y}_T) + \operatorname{Cov}(\overline{Y}_C) \right) \theta^* \\ &- 2 \times (\theta^*)^T \left(\operatorname{Cov}(\overline{X}, \overline{Y}_T) + \operatorname{Cov}(\overline{X}, \overline{Y}_C) \right) \\ &= 0.00435 \end{split}$$

- 4. Z-score is then $-0.111/\sqrt{0.00434} = -1.685$.
- 5. Variance reduction rate: 1 0.00435/0.086 = 95.0%.
- 6. Confidence interval follows trivially