Глава 1: Кинематика точки

§ 2 Косоугольные координаты

Здесь можно немного добавить строгости, а то ничерта не понятно. Пусть V — евклидово пространство (линейное со скалярным произведением). Как нам определяли, $g_{ik} = e_i \cdot e_k$,

$$\boldsymbol{a} \cdot \boldsymbol{b} = \sum_{ij} a^i b^j g_{ij}$$

Здесь a^k — коэффициенты разложения по $\boldsymbol{e_k}$ — называются контравариантными координатами.

Пусть V^* — сопряжённое к V, его базисом являются координатные функции $f_k :: f_k(\boldsymbol{x}) = x^k$. Поскольку задано скалярное произведение, задан канонический изоморфизм $V \to V^*$. Нам, правда, потребуется $V^* \to V$.

Введём ещё одну систему векторов в $V: e^k = f_k^*$, то есть $f_k(\boldsymbol{x}) = e^k \cdot \boldsymbol{x}$. Она и называется взаимным базисом, коэффициенты разложения по ней — ковариантные координаты. Из линейности скалярного произведения, ровно такие же координаты будут у соответствующей формы в V^* . Линейную независимость легко получить из ЛНЗ f_k , а раз их dim V, то полученные векторы являются базисом.

Так что можно сформулировать правило:

- Контравариантные координаты коэффициенты разложения по базису линейного пространства.
- Ковариантные координаты коэффициенты разложения по базису пространства линейных форм.

Ещё можно определить $g^{ij} = e^i \cdot e^j$, и перенести это на соответствующие линейные формы. Обобщая дальше, можно вообще сказать, что $g_i^k = \delta_{ij}$. Тогда g будет задавать действие формы на вектор. Вроде физикам это зачем-то надо.

А после тирады выше уже развлекаться с индексами.

Утверждение 1. $e^k \cdot e_j = \delta_{kj}$

Следует из определения координатной функции, ведь $oldsymbol{e^k} \cdot oldsymbol{x} = \mathrm{f_k}(oldsymbol{x})$

Утверждение 2. $a \cdot b = \sum_i a^i b_i$

Утверждение 3. Пусть $r=\sum_k \xi^k e_k \ u=\sum_k \xi_k e^k$. Тогда $\xi_k=r\cdot e_k=\sum_j \xi^j g_{jk}$

$$ightharpoonup$$
 Hy, $m{r}\cdotm{e_k}=\sum_j \xi_j\,m{e^j}\cdotm{e_k}=\sum_j \xi_j\,\delta_{jk}=\xi_k$. Вроде всё.

Аналогичная ситуация с ξ^k .

Утверждение 4. $\xi^k = m{r} \cdot m{e^k} = \sum_j \xi_j g^{jk}$.

Утверждение 5.

$$e^{k} = \sum_{j} g^{jk} e_{j}, \quad e_{k} = \sum_{j} g_{jk} e^{j}$$

 Π ервое домножить на $oldsymbol{e^i}$, второе на $oldsymbol{e_i}$.

Утверждение 6. $\sum_i g^{i\ell} g_{ik} = \delta_{\ell k}$

▼

$$\sum_{i} g^{i\ell} g_{ik} = \sum_{i} g^{i\ell} \boldsymbol{e_i} \cdot \boldsymbol{e_k} = \boldsymbol{e^{\ell}} \cdot \boldsymbol{e_k} = \delta_{\ell k}$$

Как видно, когда определения безкоординатные, жызнъ прекрасна!. ¹

 $^{^{1}}$ тут не опечатка, а отсылка к известной картинке ;)

Глава А: Обозначения

f — линейная форма. $oldsymbol{\langle}$ — вектор. $oldsymbol{\langle}$ \mathbf x $oldsymbol{\rangle}$