MapReduce algorithms for processing relational data

Design Pattern: Secondary Sorting

- MapReduce sorts input to reducers by key
 - Values are arbitrarily ordered
- What if want to sort value also?
 - E.g., $k \rightarrow (v_1, r), (v_3, r), (v_4, r), (v_8, r)...$

Secondary Sorting: Solutions

- Solution 1:
 - Buffer values in memory, then sort
 - Why is this a bad idea?
- Solution 2:
 - "Value-to-key conversion" design pattern: form composite intermediate key, (k, v_1)
 - Let execution framework do the sorting
 - Preserve state across multiple key-value pairs to handle processing
 - Anything else we need to do?

Value-to-Key Conversion

Before

$$k \rightarrow (v_1, r), (v_4, r), (v_8, r), (v_3, r)...$$

Values arrive in arbitrary order...

After

$$(k, v_1) \rightarrow (v_1, r)$$

 $(k, v_3) \rightarrow (v_3, r)$
 $(k, v_4) \rightarrow (v_4, r)$
 $(k, v_8) \rightarrow (v_8, r)$

Values arrive in sorted order...

Process by preserving state across multiple keys
Remember to partition correctly!

Working Scenario

- Two tables:
 - User demographics (gender, age, income, etc.)
 - User page visits (URL, time spent, etc.)
- Analyses we might want to perform:
 - Statistics on demographic characteristics
 - Statistics on page visits
 - Statistics on page visits by URL
 - Statistics on page visits by demographic characteristic

– ...

Relational Algebra

- Primitives
 - Projection (π)
 - Selection (σ)
 - Cartesian product (x)
 - Set union (\cup)
 - Set difference (–)
 - Rename (ρ)
- Other operations
 - Join (⋈)
 - Group by... aggregation
 - ...

Projection

Projection in MapReduce

Easy!

- Map over tuples, emit new tuples with appropriate attributes
- No reducers, unless for regrouping or resorting tuples
- Alternatively: perform in reducer, after some other processing
- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!

Selection

Selection in MapReduce

- Easy!
 - Map over tuples, emit only tuples that meet criteria
 - No reducers, unless for regrouping or resorting tuples
 - Alternatively: perform in reducer, after some other processing
- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!

Group by... Aggregation

- Example: What is the average time spent per URL?
- In SQL:
 - SELECT url, AVG(time) FROM visits GROUP BY url
- In MapReduce:
 - Map over tuples, emit time, keyed by url
 - Framework automatically groups values by keys
 - Compute average in reducer
 - Optimize with combiners

Source: Microsoft Office Clip Ar

Relational Joins

Natural Join Operation – Example

• Relations r, s:

10115 1, 5.			
Α	В	С	D
α	1	α	а
β	2	γ	а
γ	4	β	b
α	1	γ	а
δ	2	β	b
r			

В	D	Ε
1	а	α
3	а	β
1	а	$eta \ eta \ \delta$
2 3	b	δ
3	b	\in
S		

 $r\bowtie s$

Α	В	С	D	Ε
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

Natural Join Example

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1

S1

$R1 \bowtie S1 =$

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Types of Relationships

Join Algorithms in MapReduce

- Reduce-side join
- Map-side join
- In-memory join
 - Striped variant
 - Memcached variant

Reduce-side Join

- Basic idea: group by join key
 - Map over both sets of tuples
 - Emit tuple as value with join key as the intermediate key
 - Execution framework brings together tuples sharing the same key
 - Perform actual join in reducer
 - Similar to a "sort-merge join" in database terminology
- Two variants
 - 1-to-1 joins
 - 1-to-many and many-to-many joins

Reduce-side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-many

Map

Reduce

Reduce-side Join: V-to-K Conversion

In reducer...

Reduce-side Join: many-to-many

In reducer...

What's the problem?

Reduce-side Join: many-to-many

Produce mapper output with composite key that includes foreign key and table name

Reduce-side Join: many-to-many

Use custom partitioning and grouping to send data with same key to a single reducer

Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:

A sequential scan through both datasets to join (called a "merge join" in database terminology)

Map-side Join: Parallel Scans

- If datasets are sorted by join key, join can be accomplished by a scan over both datasets
- How can we accomplish this in parallel?
 - Partition and sort both datasets in the same manner
- In MapReduce:
 - Map over one dataset, read from other corresponding partition
 - No reducers necessary (unless to repartition or resort)
- Consistently partitioned datasets: realistic to expect?

Map-side Join: Parallel Scans

and split both A and B before sending to mapper. Mapper will produce output, educer needed.

Map-side Join: Parallel Scans

Parallel Scan & Join

 $p \in P$; $q \in Q$; $gq \in Q$

while more tuples in inputs do

```
while p.a < gq.b do
    advance p
  end while
  while p.a > gq.b do
    advance gq {a group might begin here}
  end while
  while p.a == gq.b do
    q = gq {mark group beginning}
    while p.a == q.b do
       Add \langle p, q \rangle to the result
       Advance q
    end while
    Advance p {move forward}
  end while
  gq = q {candidate to begin next group}
end while
```

In-Memory Join

- Basic idea: load one dataset into memory, stream over other dataset
 - Works if R << S and R fits into memory</p>
 - Called a "hash join" in database terminology
- MapReduce implementation
 - Distribute R to all nodes
 - Map over S, each mapper loads R in memory, hashed by join key
 - For every tuple in S, look up join key in R
 - No reducers, unless for regrouping or resorting tuples

In-Memory Join

and distribute dataset B to all the mappers. For each key in B, iterate over all the rjoining

In-Memory Join: Variants

- Striped variant:
 - R too big to fit into memory?
 - Divide R into R_1 , R_2 , R_3 , ... s.t. each R_n fits into memory
 - Perform in-memory join: $\forall n$, $R_n \bowtie S$
 - Take the union of all join results
- Memcached join:
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup

Memcached

Memcached Join

- Memcached join:
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup
- Capacity and scalability?
 - Memcached capacity >> RAM of individual node
 - Memcached scales out with cluster
- Latency?
 - Memcached is fast (basically, speed of network)
 - Batch requests to amortize latency costs

Which join to use?

- In-memory join > map-side join > reduce-side join
 - Why?
- Limitations of each?
 - In-memory join: memory
 - Map-side join: sort order and partitioning
 - Reduce-side join: general purpose

Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 - Multiple strategies for relational joins
- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization