Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés

Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Alapszintű formális modellek

Elméleti kérdések

- Definiálja a következő formalizmusokat:
 - Kripke-struktúra (KS)
 - Címkézett tranzíciós rendszer (LTS)
 - Kripke tranzíciós rendszer (KTS)
- Döntse el, hogy igazak-e a következő állítások:
 - Egy KTS modell egy állapota legfeljebb egy atomi kijelentéssel címkézhető.
 - Az LTS modellek esetén egy tranzíció több akcióval is címkézhető.
 - LTS modellek esetén állapot címkék és tranzíció címkék is használhatók.

Elméleti kérdések – Megoldás 1/2

Definiálja a következő formalizmusokat: KS, LTS, KTS

```
KS = (S, R, L) és AP, ahol AP = \{P, Q, R, ...\} atomi kijelentések halmaza (domén-specifikus) S = \{s_1, s_2, s_3, ...s_n\} állapotok halmaza, s_1 kezdőállapot R \subseteq S \times S: állapotátmeneti reláció L: S \rightarrow 2^{AP} állapotok címkézése atomi kijelentésekkel
```

$$LTS = (S, Act, \rightarrow)$$
, ahol
$$S = \{s_1, s_2, ... s_n\} \text{ állapotok halmaza, } s_1 \text{ kezdőállapot}$$

$$Act = \{a, b, c, ...\} \text{ akciók halmaza (domén-specifikus)}$$

$$\rightarrow \subseteq S \times Act \times S \text{ címkézett állapotátmenetek, pl. } s_1 \stackrel{a}{\rightarrow} s_2$$

$$KTS = (S, \rightarrow, L)$$
 és AP, Act , ahol $AP = \{P, Q, R, ...\}$ atomi kijelentések és $Act = \{a, b, c, ...\}$ akciók halmaza $S = \{s_1, s_2, s_3, ...s_n\}$ állapotok halmaza, s_1 kezdőállapot $\rightarrow \subseteq S \times Act \times S$ állapotátmeneti reláció (akciókkal címkézve) $L: S \rightarrow 2^{AP}$ állapotok címkézése atomi kijelentésekkel

Elméleti kérdések – Megoldás 2/2

- Döntse el, hogy igazak-e a következő állítások:
 - Egy KTS modell egy állapota legfeljebb egy atomi kijelentéssel címkézhető.
 - Hamis.
 - Az LTS modellek esetén egy tranzíció több akcióval is címkézhető.
 - Hamis.
 - LTS modellek esetén állapot címkék és tranzíció címkék is használhatók.
 - Hamis.

Formális modellek értelmezése

Az alábbi ábrákon látható két (az UPPAAL eszközben felvett) automata, ezek egy jelzőlámpa és egy gyalogos viselkedését modellezik. A kezdeti állapotban is_j=false, is_p=true.

Készítse el a két automata együtteseként tekintett teljes rendszer Kripke-struktúra modelljét, a jelzőlámpa és a gyalogos elérhető állapotkombinációit és a köztük lévő átmeneteket felvéve. A Kripke-struktúra minden állapotát jelölje meg azzal, hogy a jelzőlámpa és a gyalogos mely állapotait reprezentálja.

Formális modellek értelmezése – Megoldás

Követelmények formalizálása temporális logikákkal

Temporális logikai kifejezések értelmezése

Indokolja meg, hogy következő LTL ekvivalenciák helyesek-e:

- 1. $F(Start \vee Stop) \equiv (FStart) \vee (FStop)$
- 2. G Normal \equiv not F (not Normal)

Indokolja meg, hogy következő CTL ekvivalenciák helyesek-e:

- 1. AF (Start \vee Stop) \equiv (AF Start) \vee (AF Stop)
- 2. AF (Start \land Stop) \equiv (AF Start) \land (AF Stop)
- 3. EF (Start \land Stop) \equiv (EF Start) \land (EF Stop)

Indokolja meg, hogy az alábbi kifejezések szintaktikailag helyesek-e CTL illetve CTL* temporális logikában!

- 1. A (X Stop ∨ F Start)
- 2. A (Stop U (AX Start))

Temporális logikai kifejezések – Megoldás 1/3

Két kifejezés ekvivalens, ha bármely modellen:

- ha a bal oldal teljesül, akkor a jobb oldal is teljesül, és
- ha a jobb oldal teljesül, akkor a bal oldal is teljesül

A következő LTL ekvivalenciák helyesek-e:

1. $F(Start \vee Stop) \equiv (FStart) \vee (FStop)$

Helyes: Az operátorok szemantikája alapján a bal oldal teljesítéséből következik a jobb oldal teljesülése, és viszont.

2. G Normal \equiv not F (not Normal)

Helyes: Az operátorok szemantikája alapján a bal oldal teljesítéséből következik a jobb oldal teljesülése, és viszont.

Temporális logikai kifejezések – Megoldás 2/3

Indokolja meg, hogy következő CTL ekvivalenciák helyesek-e:

1. AF (Start \vee Stop) \equiv (AF Start) \vee (AF Stop)

Példa modell #1: A bal oldal teljesül, de a jobb oldal nem.

2. AF (Start \land Stop) \equiv (AF Start) \land (AF Stop)

Példa modell #2: A jobb oldal teljesül, de a bal oldal nem.

3. EF (Start \land Stop) \equiv (EF Start) \land (EF Stop) Példa modell #1 fentebb: Jobb oldal teljesül, de a bal oldal nem.

Temporális logikai kifejezések – Megoldás 3/3

Indokolja meg, hogy az alábbi kifejezés szintaktikailag helyes-e CTL illetve CTL* temporális logikában!

1. A (X Stop \vee F Start)

Szintaktikailag nem helyes CTL-ben, mert a V Boole operátor található az X Stop és az F Start útvonal-kifejezések között (ez pedig nem megengedett CTL esetén).

2. A (Stop U (AX Start))

Szintaktikailag helyes CTL-ben, mert az AU operátor két állapot-kifejezésre van alkalmazva, ezek a Stop és az AX Start.

Követelményformalizálás: Vasúti átjáró

- Egy vasúti átjárót biztosító fénysorompó viselkedését az állapotaihoz rendelt következő atomi kijelentésekkel jellemezzük: {kikapcsolt, fehér, piros}
- Az átjáróhoz érkező autós viselkedését az állapotaihoz rendelt következő atomi kijelentésekkel jellemezzük: {érkezik, körülnéz, megáll, áthalad}
- Formalizálja LTL kifejezések segítségével az alábbi követelményeket, amelyek az autós viselkedésére minden esetben (folyamatosan) vonatkoznak:
 - 1. Kikapcsolt állapotú fénysorompó esetén az autós körülnéz és a következő időpillanatban vagy áthalad, vagy megáll.
 - 2. Az autós előbb-utóbb át fog haladni a vasúti átjárón.
 - 3. Ha egy autós érkezésekor a fénysorompó piros, akkor az autós addig nem halad át, amíg fehérre nem vált a fénysorompó.

Követelményformalizálás: Vasúti átjáró – Megoldás

- A fénysorompó címkéi: {kikapcsolt, fehér, piros}
- Az autós címkéi:

```
{érkezik, körülnéz, megáll, áthalad}
```

- A követelményeket formalizáló LTL kifejezések:
 "minden esetben (folyamatosan) vonatkoznak": kezdeti G kell
 - 1. Kikapcsolt állapotú fénysorompó esetén az autós körülnéz és a következő időpillanatban vagy áthalad, vagy megáll.

```
G (kikapcsolt → (körülnéz ∧ X (áthalad ∨ megáll)))
```

2. Az autós előbb-utóbb át fog haladni a vasúti átjárón.

```
G F áthalad
```

3. Ha egy autós érkezésekor a fénysorompó piros, akkor az autós addig nem halad át, amíg fehérre nem vált a fénysorompó.

```
G ((érkezik \land piros) \rightarrow ((\neg áthalad) U fehér))
```

Követelményformalizálás: Szerverterem

- Egy bonyolult szimulációt futtató szerver állapotait a következő atomi kijelentésekkel jellemezzük: {kikapcsolt, várakozó, bemelegítés, szimuláció}
- A szerverszoba hűtésének működését a következő atomi kijelentésekkel jellemezzük: {készenlét, normál, maximális}
- Formalizálja LTL kifejezések segítségével az alábbi követelményeket, amelyek a rendszer működésére minden esetben (folyamatosan) vonatkoznak:
 - 1. Ha egy adott pillanatban a szimuláció a hűtés készenlét állapota mellett zajlik, akkor a következő pillanatban a szerver várakozó állapotra kapcsol.
 - 2. Előbb-utóbb elkezdhető a szimuláció.
 - 3. Ha kikapcsolt az állapot, akkor nem hajtható végre szimuláció, amíg bemelegítés nem történik (ami előbb-utóbb megtörténik).

Követelményformalizálás: Szerverterem – Megoldás

- A szerver címkéi: {kikapcsolt, várakozó, bemelegítés, szimuláció}
- A hűtés címkéi: {készenlét, normál, maximális}
- A követelményeket formalizáló LTL kifejezések : "minden esetben (folyamatosan) vonatkoznak": kezdeti G kell
 - 1. Ha egy adott pillanatban a szimuláció a hűtés készenlét állapota mellett zajlik, akkor a következő pillanatban a szerver várakozó állapotra kapcsol.
 - G ((szimuláció ∧ készenlét) → X várakozó)
 - 2. Előbb-utóbb elkezdhető a szimuláció. G F szimuláció
 - 3. Ha kikapcsolt az állapot, akkor nem hajtható végre szimuláció, amíg bemelegítés nem történik (ami előbb-utóbb megtörténik). G (kikapcsolt → ((¬ szimuláció) U bemelegítés))

Tulajdonságok ellenőrzése formális modelleken

Ellenőrző kérdések: Modellellenőrző algoritmusok

- Írja le, hogyan azonosíthatók azok az állapotok a modellben, amelyeken igaz az E(P U Q) tulajdonság!
- 2. Rajzolja fel a tabló felbontás szabályát az LTL temporális logika U operátora esetén! Írja le, mikor adódhat ellentmondásos ág az U operátorral felírt kifejezés így megadott felbontásának elvégzése során!
- 3. Írja le a korlátos modellellenőrzés alapötletét!

CTL tulajdonság ellenőrzése címkézéssel

Adott az alábbi Kripke-struktúra.

- A tanult iteratív állapotcímkézési eljárást végrehajtva ellenőrizze a modellen, hogy teljesül-e a kezdőállapotból az alábbi CTL kifejezés: A(p U (EX ¬q)).
- Az iteráció minden lépéséhez adja meg a címkéző kifejezést és (felsorolással) a címkézett állapotok halmazát!

CTL tulajdonság ellenőrzése címkézéssel – Háttér

Tudnivalók:

- Felhasznált séma: A(p U q) = q v (p ∧ AX A(p U q))
- Iteratív címkézési algoritmus:
 - Első lépés: A q-val már címkézett állapotok adják azokat az állapotokat, amelyekre először rátehető az A(p U q) címke.
 - További lépések: Ha szerepel egy állapoton a p címke, és minden rákövetkező állapoton szerepel az A(p U q) címke, akkor erre az állapotra is rátehető az A(p U q) címke.
 - Célszerű: Az újonnan A(p U q)-val címkézett állapotok megelőző állapotait végignézni a szabály alkalmazására.

CTL tulajdonság ellenőrzése címkézéssel – Megoldás

Ellenőrizze a modellen, hogy teljesül-e a kezdőállapotból az alábbi CTL kifejezés: A(p U (EX ¬q))

- A ¬q címke feltehető: D
- 2. Az EX ¬q címke feltehető: B, C
- 3. Az A(p U (EX ¬q)) címke először feltehető: B, C
- 4. Az A(p U (EX ¬q)) címke ezután feltehető: A

Az iteráció vége, nincs több címkézhető állapot

A tulajdonság igaz a kezdőállapotra.

Modellellenőrzés: Szerverek

- Egy informatikai rendszer egy adatbázisszerverből és egy alkalmazásszerverből áll, amelyek kikapcsoltak vagy bekapcsoltak lehetnek. Alaphelyzetben mindkét szerver ki van kapcsolva.
- A szervereket hibamentes esetben egyszerre kapcsolják ki/be.
- Az üzemállapot az, amikor mindkét szerver be van kapcsolva.
- Ha az üzemállapotban az adatbázisszervert hiba következtében kikapcsolják, az rendszerszinten üzemképtelen állapotnak tekinthető. Ezután az alkalmazásszervert is kikapcsolják, majd mindkét szerver bekapcsolásával indítják újra a rendszert.
 - Rajzolja fel a rendszer itt leírt működését modellező Kripke-struktúrát az egyes szerverek bekapcsolását és kikapcsolását figyelembe véve! Az egyes állapotokat jellemezze a következő atomi kijelentésekkel: {alaphelyzet, üzemállapot, üzemképtelen}
 - Ellenőrizze a modellen, hogy az üzemállapotból tekintve teljesül-e a következő CTL kifejezés:

E(Ÿzemképtelen U alaphelyzet)

Modellellenőrzés: Szerverek – Megoldás

- Egy informatikai rendszer egy adatbázisszerverből és egy alkalmazásszerverből áll, amelyek kikapcsolt vagy bekapcsolt állapotban lehetnek. Alaphelyzetben mindkét szerver ki van kapcsolva.
- A szervereket hibamentes esetben egyszerre kapcsolják ki/be.
- Az <u>üzemállapot</u> az, amikor mindkét szerver be van kapcsolva.
- Ha az üzemállapotban az adatbázisszervert hiba következtében kikapcsolják, az rendszerszinten üzemképtelen állapotnak tekinthető. Ezután az alkalmazásszervert is kikapcsolják, majd mindkét szerver bekapcsolásával indítják újra a rendszert.
 - 1. Rajzolja fel a rendszer itt leírt működését modellező Kripke-struktúrát.
 - 2. Ellenőrizze az üzemállapotból tekintve: E(¬üzemképtelen U alaphelyzet)

Modellellenőrzés tabló módszerrel

Adott a rajzon látható Kripke struktúra.

Végezzük el a következő kifejezés ellenőrzését a tabló módszert alkalmazva:

 \neg (P U Q)

Modellellenőrzés tabló módszerrel – Háttér 1/2

Adott a rajzon látható Kripke struktúra.

Végezzük el a következő kifejezés ellenőrzését a tabló módszert alkalmazva:

$$\neg$$
 (P U Q)

Tudnivalók:

- Negált kifejezés (ellenpélda kereséshez): (P U Q)
- Tabló építés szabálya: (p U q) = q v (p ∧ X(p U q))

Modellellenőrzés tabló módszerrel – Háttér 2/2

Adott a rajzon látható Kripke struktúra.

Végezzük el a következő kifejezés ellenőrzését a tabló módszert alkalmazva:

Tudnivalók:

- Negált kifejezés (ellenpélda kereséshez): (P U Q)
- Tabló építés szabálya: (p U q) = q v (p ∧ X(p U q))
- A tabló építésben ellentmondásra jutunk:
 - Atomi kijelentésre vonatkozó lokális állítás nem teljesül
 - X operátor van, de az útvonal véget ér Q teljesülése nélkül
 - Ciklus alakul ki P teljesülésével, de Q teljesülése nélkül
- A tabló sikeres ágai (itt ellenpéldát adnak):
 - Atomi kijelentésekre vonatkozó állítások listája teljesül
 - Ciklus alakul ki ellentmondás nélkül

Modellellenőrzés tabló módszerrel - Megoldás

Tabló építés: A kifejezés negáltja (P U Q)

Állapotterek reprezentációja

ROBDD kézi összeállítása

Adott az f logikai függvény igazságtáblázata:

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- 1. Rajzolja fel az f logikai függvény döntési fáját! A rajzoláshoz az x, y, z változósorrendet használja.
- 2. Ez alapján adja meg az f függvényt redukált rendezett bináris döntési diagram (ROBDD) alakban!
- 3. Adja meg a függvényt algebrai (képlet) alakban!

ROBDD kézi összeállítása – Megoldás 1/3

Adott az f logikai függvény igazságtáblázata:

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

1. Bináris döntési fa:

ROBDD kézi összeállítása – Megoldás 2/3

2. Az ROBDD meghatározása az f függvényhez:

ROBDD kézi összeállítása – Megoldás 3/3

2. Az ROBDD meghatározása az f függvényhez:

3. Algebrai alak: Az 1 csomóponthoz vezető utak alapján

$$f = (\neg x \wedge y) \vee (x \wedge \neg y \wedge z) \vee (x \wedge y)$$

ROBDD alapú műveletek függvényeken

Tekintse az alábbi, ROBDD alakban megadott f és g függvényeket, és rajzolja fel ezek alapján ROBDD alakban az f\g függvényt!

A redukált csomópontok feltüntetése:

A hivatkozandó csomópontok azonosítása:

Az f\g függvény ROBDD-jének konstrukciója: A csomópontok összeállítása az igaz és hamis ágakon.

Az f\g függvény ROBDD-jének konstrukciója: Terminális csomópontok és izomorf részfák azonosítása

Az fog függvény ROBDD-jének konstrukciója: A redukálás és összevonás elvégzése.

Az fog függvény ROBDD-jének konstrukciója: Az eredmény szebb alakban.

