Exercice 1

Soient a,b,h e IR to ocacb et och, et on considére le triangle T:

On remarque 47 on peut traver une eg. de droite par les droites ((0,0),(a,h)) et ((a,h),(0,b)).

Une équation de droite entre $((x_1,y_1),(x_2,y_2))$ s'écuit: $y = \frac{y_2 - y_1}{x_2 - x_1} \times + k$.

Draite
$$((0,0),(a,h))$$
: $y = \frac{h}{a} \times pau \quad 0 \le x \le a$

Draite
$$((a,h),(b,0))$$
: $y = \frac{h}{a-b}(x-b)$ par $a \le x \le b$
Danc $T = \begin{cases} (x,y) \in \mathbb{R}^2 & \begin{cases} y = \frac{hx}{a} & x \in [0,a] \\ y = \frac{h}{a-b}(x-b) & x \in [a,b] \end{cases}$

Ainsi
$$Aine (T) = \int_{0}^{a} \frac{hx}{a} dx + \int_{a}^{b} \frac{h}{a-b} (x-b) dx = \frac{ha^{2}}{2a} + \frac{h}{a-b} \left[\frac{(x-b)^{2}}{2} \right]_{a}^{b}$$

$$= \frac{ha}{2} + \frac{h}{b-a} \left(\frac{-(a-b)^{2}}{2} \right) = \frac{ha}{2} - \frac{h(a-b)}{2} = \frac{bh}{2} \quad \text{(Tiens tiens...)}$$