UNIVERSITY of WASHINGTON

Introduction to Machine Learning MLEARN 510A – Lesson 6

Recap of Lesson 5

- Feature Engineering
- Custom Feature Transformation
- Feature Selection
- Chaining Transformations Together
- Hyper-parameter Tuning
- Testing, Launching, Monitoring and Maintaining

Course Outline

- Introduction to Statistical Learning
- 2. Linear Regression
- 3. Classification
- 4. Model Building, Part 1
- 5. Model Building, Part 2
- 6. Resampling Methods
- 7. Linear Model Selection and Regularization
- 8. Time Series Analysis
- 9. Frequent Itemset Mining
- 10. Dimensionality Reduction

Outline of Lesson 6

- Resampling Methods
- Validation Set Approach
- Leave-One-Out Cross Validation (LOOCV)
- LOOCV vs. k-fold Cross Validation
- Bias-Variance Tradeoff for Cross Validation
- The Bootstrap Method

The Machine Learning Process

Why Resampling?

- ➤ **Problem:** Before we deploy our model, we do not have a true test set that can be used to evaluate how well the model generalizes
- > Solution: Carve out a test set from your training set

Resampling Methods

- > Tools that involve repeatedly drawing samples from a training set
- Refit a model of interest on each sample in order to obtain more information about the fitted model
- Useful for
 - Model assessment: Estimate test error rates
 - Model selection: Estimate model flexibility
- Downside: They are computationally expensive
- But we have much better computing resources

Types of Resampling Methods

- Two types of resampling methods
- Cross Validation: Used to estimate the test error associated with a given statistical learning method in order to evaluate its performance, or to select the appropriate level of flexibility
- ➤ **Bootstrap:** provide a measure of accuracy of a parameter estimate or of a given statistical learning method

A Note on Prediction Error

- > Training Error Rate: How well does the model fits training data
- Training error usually underestimates the test error especially if the model is complex
- In general, larger the sample size, lower is the generalization error

Validation Set/Hold Out Set Approach

- Involves randomly dividing the available set of observations into two parts, a *training set* and a *test set* or *hold-out set*
- Model is fit on the training set, and the fitted model is used to predict the responses for the observations in the test set
- The resulting validation provides an estimate of the test error rate
- Simple to implement

Drawbacks of Hold Out Strategy

- > Test error estimated by using a single test set is high variable
- It highly depends on which observations are included in training set and the test set
- Since training is completed on a smaller set of observations, some statistical models may fit poorly on this smaller set
- In this case, validation set error rate may overestimate the test error for the model fit on entire data

Drawbacks of Hold Out Strategy

Leave-One-Out Cross Validation (LOOCV)

- LOOCV involves splitting the set of observations into two parts
- A single observation (x_1, y_1) is used for the validation set, and the observations $\{(x_2, y_2), \ldots, (x_n, y_n)\}$ make up the training set
- Model is fit on the n-1 training observations, and a prediction \hat{y}_1 is made for the excluded observation, using its value x_1
- This provides an unbiased estimate of the true error

Quiz

What could go wrong with an error estimate that is based on a single observation in the test set?

Leave-One-Out Cross Validation (LOOCV)

- Basing error estimate on a single observation will have a lot of variability
- Cycle through observations and iteratively include each observation in the test set and measure its error

LOOCV estimate of the test MSE is

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i.$$

Drawbacks of LOOCV

- > LOOCV requires a model be fit for each observation in the test set
- This makes it expensive to implement
- ➤ If model being fitted is linear or polynomial regression, a simple adjustments makes a single model fit work

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2,$$

y_i is the prediction from the original least squares fit and h_i is leverage

Does not work for other models

k-Fold Cross Validation

K-FOLD STRATEGY

LOOCV vs. k-Fold Cross Validation

Hold Out vs. k-Fold Cross Validation

Bias-Variance Tradeoff for k-fold CV

- So which strategy is better? LOOCV or k-fold CV?
- Answer lies in Bias-Variance tradeoff
- ➤ LOOCV is less biased than k-fold CV (when k < n) → low bias
- ➤ LOOCV is more variable than k-fold CV (when k < n) → high variance</p>
- > This implies that there is a tradeoff here between bias and variance

Which One to Use?

- Sweet spot is somewhere in the middle which achieves a compromise between bias and variance
- ➤ Use k-fold cross-validation using k = 5 or k = 10
- These values have been shown empirically to yield test error rate estimates that suffer neither from excessively high bias nor from very high variance

Cross Validation for Classification

- Cross validation can also be a very useful approach in the classification setting when Y is qualitative
- CV works like described earlier; except we use misclassification error instead of MSE
- LOOCV error rate takes the form.

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} Err_i,$$

where $Err_i = I(y_i = \hat{y}_i)$. The *k*-fold CV error rate and validation set error rates are defined analogously

The Bootstrap

- Powerful statistical tool that can be used to quantify the uncertainty associated with a given estimator or statistical learning method
- For example, estimate the standard errors of the coefficients from a linear regression fit
- Bootstrap is easily applied to a wide range of statistical learning methods, including some for which a measure of variability is otherwise difficult to obtain

Sampling With/Without Replacement

- Two different strategies of sampling
- > Sampling With Replacement: Once an item is sampled, the item is placed back in the set (replaced) and then another item is drawn
- > Sampling Without Replacement: Once an item is sampled, it is not placed back in the set and we proceed to draw the next item

Quiz

Which sampling strategy leads to independent samples?

Example

Say you had a population of 7 people, and you wanted to sample
Their names are: [John, Jack, Qiu, Tina, Hatty, Jacques, Des]

- Sampling With Replacement
- P(John, John) = (1/7) * (1/7) = .02.
- P(John, Jack) = (1/7) * (1/7) = .02.
- P(John, Qui) = (1/7) * (1/7) = .02.
- P(Jack, Qui) = (1/7) * (1/7) = .02.
- P(Jack Tina) = (1/7) * (1/7) = .02.

- Sampling Without Replacement
- P(John, Jack) = (1/7) * (1/6) = .024.
- P(John, Qui) = (1/7) * (1/6) = .024.
- P(Jack, Qui) = (1/7) * (1/6) = .024.
- P(Jack Tina) = (1/7) * (1/6) = .024...

The Bootstrap

- > Draw random samples with replacement from the training data
- Repeat the process n times to get n bootstrap data sets
- Fit the model to each of the bootstrap

The Bootstrap Approach

Other Versions of Bootstrap

- There are also other variations of the bootstrap
- Instead of simulating from the original data-set, we simulate from a distribution that was fitted using the original data-set this is the parametric bootstrap
- We could also sample (with replacement) from the residuals of a fitted model
- There are also approaches for handling dependent data such as time-series data

When Does Bootstrap Fail?

- The bootstrap can provide faulty inference in the following situations
- Too little data e.g., suppose there is just one data-point!
- When dealing with heavy-tailed distributions
- When the data is not IID

Resources

Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation

Jupyter Notebook

Case Study

ON-BRAND STATEMENT

FOR GENERAL USE

> What defines the students and faculty of the University of Washington? Above all, it's our belief in possibility and our unshakable optimism. It's a connection to others, both near and far. It's a hunger that pushes us to tackle challenges and pursue progress. It's the conviction that together we can create a world of good. And it's our determination to Be Boundless. Join the journey at **uw.edu**.

