CAMADA DE ENLACE

Prof. Marcelo A. Rauh Schmitt

Funções

- Proporcionar uma comunicação confiável e eficiente entre duas máquinas adjacentes
 - Prover uma interface para o serviço de rede
 - Tratar os erros de transmissão
 - Regular o fluxo de dados a fim de que receptores lentos não sejam inundados por transmissores rápidos

Funcionamento geral

 Encapsulamento dos pacotes do nível de rede em quadros para transmissão.

Abstração!

Tipos de serviços

- □ Serviço sem conexão e sem confirmação
 - Quando pode ser utilizado
 - baixa taxa de erros
 - tráfego real time
 - Qualquer recuperação é deixada para as camadas superiores
 - Utilizado em LANs (redes locais)
- □ Serviço sem conexão e com confirmação
 - Apropriado para canais menos confiáveis
 - Interessante para redes sem fio

Tipos de serviços (continuação)

- □ Serviço orientado à conexão e com confirmação
 - Estabelecimento de conexão antes das transmissões
 - inicialização de variáveis e contadores
 - Transmissão dos quadros
 - Numeração dos quadros
 - Garantia de entrega
 - Garantia de apenas um recebimento
 - Garantia de entrega na ordem
 - Fechamento da conexão
 - Liberação de variáveis, buffers e outros recursos

Framing

- Objetivo de montar um quadro (frame)
 - Detectar erros
 - Transmissão de bits a mais
 - Transmissão de bits a menos
 - Modificação de bits
- Cada quadro apresenta um checksum
 - O checksum é recomputado na recepção
 - O checksum recomputado é comparado com o enviado

- Contagem de caracteres
 - Problema
 - Se um erro de transmissão causar modificação no contador
 - Não utilizado

- Byte flags com byte stuffing
 - Problema
 - Dado igual ao flag -> escape byte
 - Baseado em byte

- Bit Flag com Bit Stuffing
 - Flags de início e fim com bit stuffing

- (a) 01101111111111111110010
- (b) 01101111101111101010 Stuffed bits
- (c) 01101111111111111110010

- □ Violação de condição física
 - Em algumas LANs, cada bit da camada de enlace é representada por dois bits da camada física (codificação Manchester)
 - $\Box 1 = 10$
 - 0 = 01
 - □ Pode-se usar 11 ou 00 para delimitar frames.

Sinalização Manchester

Controle de fluxo

- O transmissor não pode ser mais rápido do que o receptor
- Métodos para o controle de fluxo
 - feedback-based flow control
 - o receptor autoriza o transmissor a enviar mais quadros
 - rate-based flow control (nunca utilizado na camada de enlace)
 - mecanismos do protocolo que limita a taxa de transmissão

Controle de fluxo tem de explicar melhor

- Sliding Window
 - Não precisa confirmar cada quadro
 - Há uma janela de transmissão que não exige confirmação

- Piggybacking
 - Coloca a confirmação junto com o dado

Controle de erro

- Estratégias
 - ■Correção de erros
 - muita redundância
 - pouca necessidade de retransmissão
 - canais menos confiáveis
 - Detecção de erros
 - pouca redundância
 - maior necessidade de retransmissão
 - canais mais confiáveis

Controle de erro

□ Exemplo – bit de paridade

Original Data	Even Parity	Odd Parity
0000000	0	1
01011011	1	0
01010101	0	1
11111111	0	1
10000000	1	0
01001001	1	0

Controle de erro

- □ CRC Cyclic Redundancy Check
 - Simples de implementar em hardware
 - Bom para detectar erros
 - Inventado por W. Wesley Perterson (EUA 1961)
 - Muito usado em comunicação de dados

HDLC - High-Level Data Link Control

HDLC - High-Level Data Link Control

- Orientado a bit
- Utiliza bit stuffing
- Utiliza Sliding window com número de sequência de 3 bits
 - Até 7 quadros podem estar sem confirmação
- Piggyback
 - número do quadro que ainda não veio

HDLC

 Formato geral do quadro dos protocolos orientados a bit

- Control
 - Número de sequência
 - Número de confirmação (acknowledgement)
 - Outras funções
- Checksum CRC

HDLC

- Tipos de quadros
 - Informação
 - Supervisão
 - Tipo O confirmação (RECEIVE READY)
 - Tipo 1 não confirmação (REJECT)
 - Tipo 2 confirma e pede para não mandar (RECEIVE NOT READY)
 - Tipo 3 não confirmação seletiva (SELECTIVE REJECT)
 - Não numerado
 - Controle
 - Anuncia que vai desligar, por exemplo
 - Anuncia que voltou

HDLC

HDLC - exemplo

PPP - Point-to-Point Protocol

- □ RFC 1661e outras
- Orientado a caractere
- Utiliza byte stuffing
- Unnumbered frame opcionalmente pode-se usar um modo confiável
- LCP Link Control Protocol estabelecimento de conexão
- NCP Network Control Protocol negociação de parâmetros de rede

PPP

- Uso atuais do PPP em linhas ADSL
 - □ PPPoE PPP over Ethernet
 - PPPoA − PPP over ATM

Outros protocolos

- □ ATM
- □ Frame Relay
- MPLS