FORMLER - USIKKERHET

MIDDELVERDI OG STANDARDAVVIK

Observert middelverdi for en populasjon : $m_x = \frac{1}{n} \sum_{i=1}^{n} x_i$

Sann middelverdi for hele populasjonen : $\mu_{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i}$

Estimert standardavvik for en populasjon : $s_x = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-m_x)^2}$

Sann standardavvik for hele populasjonen : $\sigma_x = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2}$

UNIFORM FORDELING

En stokastisk variabel med en uniform fordeling har verdier $x \in [X_1, X_2]$, middelverdi og varians:

$$\mu_x = \frac{X_1 + X_2}{2}, \quad \sigma_x^2 = \frac{(X_2 - X_1)^2}{12}$$

KONFIDENSINTERVALL

$$\mu_x \in m_x \pm t_p \frac{s_x}{\sqrt{n}}$$

hvor t_p tas fra t-fordelingen, gitt i tabellen nedenfor.

Antall	Antall	t_p som funksjon av n og p			
observa-	frihets-	p=20%	p=10%	p=5%	p=1%
sjoner	grader	Konfidensgrad			
n	$n_f = n - 1$	100- <i>p</i> =80%	100- <i>p</i> =90%	100- <i>p</i> =95%	100- <i>p</i> =99%
5	4	1,5	2,1	2,8	4,6
10	9	1,4	1,8	2,3	3,3
15	14	1,3	1,8	2,1	3,0
25	24	1,3	1,7	2,1	2,8
40	39	1,3	1,7	2,0	2,7
120	119	1,28	1,66	1,98	2,62
∞	∞	1,28	1,65	1,96	2,58

FEILFORPLANTNING

Maksimal feil for en funksjon, $f(x_1, x_2, ..., x_n)$, av flere variabler:

$$|\Delta f| = \left| \frac{\partial f}{\partial x_1} \Delta x_1 \right| + \left| \frac{\partial f}{\partial x_2} \Delta x_2 \right| + \dots + \left| \frac{\partial f}{\partial x_n} \Delta x_n \right|$$

Varians for en funksjon, $f(x_1, x_2, ..., x_n)$, av flere variabler, gitt stokastiske, uavhengige feil:

$$\sigma_f^2 = \sum_{i=1}^n \sigma_{x_i}^2 \left(\frac{\partial f}{\partial x_i} \right)^2$$

hvor hver variabel, x_i , har en usikkerhet med variansen $\sigma_{x_i}^2$

FORMLER - STØY

$$SNR_{dB} = 1,76 + 6N$$

 $k = 1,38 \cdot 10^{-23} \text{ J/K}$
 $T_{cas} = T_1 + \frac{T_2}{G_1} + \frac{T_3}{G_1 G_2} + ...$
 $T_e = 290 \left(10^{NF/10} - 1\right)$

 $v_n = \sqrt{kTBR}$ (Rayleigh – Jeans approximation)

FORMLER - OPTIKK

$$\vec{S} = \vec{E} \times \vec{H} = \vec{E} \times \frac{\vec{B}}{\mu_0}, \quad |S| \propto |E| \cdot |B|$$

Ladningenes posisjon : $x = x_0 \cdot \sin \omega t$

FORMLER - SENSORER OG INSTRUMENTERING

Masse-fjær modell av dynamiske sensorer: Sammenhengen mellom pålagt kraft, F, og resulterende posisjon, x, vibrasjonshastighet, v, og akselerasjon, a:

$$x = \frac{F}{k_{spring} + j\omega R_M - \omega^2 m}, \quad v = \frac{F}{R_M + j\omega m + \frac{k_{spring}}{j\omega}} \quad a = \frac{F}{m + \frac{R_M}{j\omega} - \frac{k_{spring}}{\omega^2}}$$

hvor m =massen, k_{spring} = fjærstivheten, og R_M = tapsfaktorn for viskøse tap. Masse-fjær systemet får resonansfrekvensen:

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k_{spring}}{m}}$$

SPENNINGSFORHOLD I EN BRU-KOBLING

$$u = U_0 \left[\frac{R_2}{R_1 + R_2} - \frac{R_3}{R_3 + R_4} \right]$$

FORSTERKNING I EN INVERTERENDE OP-AMP

$$u_2 = -u_1 \frac{Z_2}{Z_1}$$

