

All the Databases! Let's Discuss them all!

Amanda Kay Moran

- Basics and Database History
- Relational Databases
 - Postgres and MySql
- NoSQL Databases
 - Apache Cassandra and FoundationDB
- Graph Databases
 - Apache Tinkerpop
- Next Steps

Who is Amanda?

- MS in Computer Science
 - BS in Biology
- Worked in Silicon Valley for 8 years
 - Many different companies big and small
- Has worked on 5 different Databases
 - 3 Proprietary databases
 - •2 Open Source databases (Apache Trafodion)
 - And 2 different distributed systems
- Udacity Data Engineering: Data Modeling

Why Do I Care About This?

- •The technology is interesting!
 - Stanford Databases by Professor Jennifer Widom
- It's all about the Data
 - Where you data is persisted
 - Where you data is analyzed
 - How data is quickly served to you
- Your job depends on it!
 - Okay, that's a little dramatic... but it's true
- Your applications depend on it!

History of Databases

Photo Credit: Analytics Vidhya

Focused on Open Source

- Open Source has been proven to have won
- Open Source communities
 - Contributions
 - Training
 - Tutorials
 - Docs
 - Mailing lists
 - •All free :)

Relational (RDBMS)

Relational Databases

- Codd's 12 rules
 - Rule 1: All information in a relational database is represented explicitly at the logical level and in exactly one way by values in tables
- Must have ACID Transactions
 - Atomicity
 - Consistency
 - Isolation

 - Durability
- Uses SQL as its primary query language

SELECT * FROM myCoolTable WHERE conference = virtual

Relational: Examples

PostgreSQL

- Developed by PostgreSQL Global Development Group
- Not just one company behind it
- Object Relational Database
- MySQL
 - Bought by Sun Microsystems → Oracle
 - Multiple forks after the Oracle
 - More popular than PostgreSQL
 - 2019 Report: 39% of Developers use MySQL
 - More 3rd party tools

A Word on OLAP vs OLTP

- OLAP(Online Analytical Processing)
 - Complex analytical and ad-hoc queries optimized for reads
 - Not high writes (data is normally loaded in batches)
 - Lots of JOINS
- OLTP (Online Transactional Processing)
 - Less complex queries but many
 - Read, insert, update, delete

Relational: When to Use

- •SQL
- Ability to do JOINS, aggrelations, analytics
- Smaller Data (not Big Data)
- Need flexibility in your queries
 - Lots of ad-hoc queries
- You need ACID transactions
 - Need consistent data
- Simplicity

Relational: When Not to Use

- Large Amounts of Data
- Need High Availability
 - Single point of failure → Need to hot swap
- Need Higher Read Performance
 - ACID is great, but it slows you down
- Need flexibility in schemas
 - Ability to add columns only for rows that need it
- Ability to store different types of data formats

NoSQL a reaction to limitations of RDBMS

Photo Credit: educba: What is a NoSql Database

- Data is not necessarily in tables
- NoSQL
 - Not Only SQL
 - Non Relational
- Many different types with different strengths
- Different data structures and modeling allow for faster operations
- Cloud Native

- Document
 - MongoDB
- Key Value
 - FoundationDB
- Column Family
 - Apache Cassandra

Photo Credit: Guru99

- SELECT * FROM myCoolTable
- Each have own query language
 - And support for many drivers (Python, c++, etc)
- MongoDB

```
db.myCoolTable.find( {} )
```

Apache Cassandra

```
SELECT * FROM coolTable WHERE state = CA
```

FoundationDB

```
tr = db.create_transaction()
myCoolTable.unpack(k)[0] for k, v in tr[]
```


NoSQL Examples: Apache Cassandra

- Donated to the Apache Foundation
 - 10 years old
 - Supported by many different companies
- Leaderless architecture
 - High availability, easy to scale, fast reads and writes
- Uses CQL
- All the big apps use Apache Cassandra

NoSQL Examples: FoundationDB

- Key-value Database
- Open Sourced by Apple after acquisition
- Does not have a query language API instead
 - Little difficult at first
- Has a layered architecture
 - Core
 - Layers of functionality on top
- •Supports ACID transactions!

NoSQL: When to Use

- Need High Availability
- Big Data
- Need Linear Scalability
- Low latency
- Need fast reads and writes
- Flexibility with schema
- Distributed users
- Know queries in advance (applications)

NoSQL: When Not to Use

- Need to use SQL (ways around this)
- Need ACID transactions
 - And don't want to use FoundationDB
- Need to be able to JOIN tables
- Need flexibility
- Ability to do Ad-hoc queries
- Have small data -- don't need the headache!

NoSQL: A Word of Warning

- Beware when moving from RDBMS to NoSQL
- Can't not be moved over as-is
- More of a learning curve
- •Think queries and applications first!

Graph

Graph Databases

 Wikipedia: "uses graph structures for semantic queries with nodes and edges and properties to represent and store data"

Photo Credit: Neo4i

Graph Databases

- The key is the relationships between the data
- Dependencies between data is clear
 - Not clear in Relational or other NoSQL
- Fast way to query and retrieve data (traverse)
- Uses Gremlin query language

Photo Credit: Neo4

Graph Databases

SQL

SELECT * FROM myCoolTable WHERE conference = ossumit

Gremlin

myCoolGraph.V().hasLabel('ossumit')

 Complex SQL queries can be reduced to very simple Gremlin queries

Photo Credit: Neo4j

Graph Databases: Apache Tinkerpop

- Started in 2009 in Los Alamos National Lab
- Graduated to Top Level Project 2016
- Active community
- Training with Gremlin

Graph Databases: When to Use

- When trying to understand relationships
- •Need better performance (for complex JOINs) can "walk" the graph instead
- Try the whiteboard test
 - •Does the data naturally fit in a graph?
- •Great article and talk: Neo4J: GraphDB vs RDBMS

Graph Databases: When to Not Use

- Disconnected Data -- or relationships not important
- Write Heavy Workload
- Using it at a Key-Value store
- Data is not from a known point
 - Can't walk the graph if don't know where to start
- Overhead in creating graph (adding edges)

Relational vs NoSQL vs Graph

- Not either or
 - All organizations have both and multiples of each
- Each have benefits and drawbacks
 - Get informed before choosing
- All are easy to explore from your laptop
 - Benefits of Open Source
- Consider managed platforms based on oss
- Consider your uses cases
 - Reach out to other groups
 - Reach out to message boards/email lists

What to Do Next?

- Keep learning! Get hands on!
- PostgreSQL
 - Wiki
- MySQL
 - Developer Zone
- Apache Cassandra
 - Documentation
 - DataStax Academy
- FoundationDB
 - Tutorials
- Apache TinkerPop
 - Documentation

Thank you!!

