Into the weeds of EC pairings

Ariel Gabizon
Aztec)

Divisors on k(X)

 $P := k \cup \infty$.

Divisors on k(X)

$$P := k \cup \infty$$
.

A divisor is a formal sum

$$D = \sum_{\alpha \in P} d_{\alpha} \cdot [\alpha]$$

where $d_{\alpha} \in \mathbb{Z}$ is non-zero except for finitely many α .

Evaluating at ∞ via projective space

Evaluating
$$f(x) = \frac{x^2 + x + 1}{3x^2 + 1}$$
 at ∞ :

Evaluating at ∞ via projective space

Evaluating
$$f(x) = \frac{x^2 + x + 1}{3x^2 + 1}$$
 at ∞ :

Homogenize:
$$-->\frac{x^2+xz+z^2}{3x^2+z^2}$$

Evaluating at ∞ via projective space

Evaluating
$$f(x) = \frac{x^2 + x + 1}{3x^2 + 1}$$
 at ∞ :

Homogenize:
$$-->\frac{x^2+xz+z^2}{3x^2+z^2}$$

Evaluate at
$$(x, z) = (1, 0): \frac{1}{3}$$

Divisors of functions

$$f \in k(X)$$

$$div(f) = \sum o_{\alpha}(f) \cdot [\alpha]$$

where $o_{\alpha}(f)$ is the order of f at α :

Divisors of functions

$$f \in k(X)$$

$$div(f) = \sum o_{\alpha}(f) \cdot [\alpha]$$

where $o_{\alpha}(f)$ is the order of f at α :

$$f = (x - a)^{o_a(f)}(g(x))$$

where $g(\alpha) \neq 0$, ∞

Divisors of functions

$$f \in k(X)$$

$$div(f) = \sum o_{\alpha}(f) \cdot [\alpha]$$

where $o_{\alpha}(f)$ is the order of f at α :

$$f = (x - a)^{o_a(f)}(g(x))$$

where $g(\alpha) \neq 0$, ∞

How to compute $o_{\infty}(f)$? If f = g/h for polys g, h, $o_{\infty}(f) = deg(h) - deg(g)$

example:

 $f = \frac{(X-1)^2(X-2)}{X-3}$

 $\operatorname{div}(f) = 2 \cdot [1] + [2] - [3] - 2[\infty].$

example:

$$f = \frac{(X-1)^2(X-2)}{X-3}$$

$$X - 3$$

 $\operatorname{div}(f) = 2 \cdot [1] + [2] - [3] - 2[\infty].$

Define $deg(D) := \sum_{\alpha \in P} d_{\alpha}$.

For $f \in k(X)$ we always have deg(div(f)) = 0.

► The set of divisors is a group under coordinate wise addition

- ➤ The set of divisors is a group under coordinate wise addition
- The set of divisors of degree zero is a subgroup Div^0 under this rule.

- ➤ The set of divisors is a group under coordinate wise addition
- The set of divisors of degree zero is a subgroup Div^0 under this rule.
- If D = div(f) for $f \in k(x)$ we call D a principal divisor.

- ➤ The set of divisors is a group under coordinate wise addition
- The set of divisors of degree zero is a subgroup Div^0 under this rule.
- ▶ If D = div(f) for $f \in k(x)$ we call D a principal divisor.
- The divisor class group of degree 0 is: Div⁰/(principal divisors).

Is this an interesting group?

- ➤ The set of divisors is a group under coordinate wise addition
- The set of divisors of degree zero is a subgroup Div^0 under this rule.
- ▶ If D = div(f) for $f \in k(x)$ we call D a principal divisor.
- The divisor class group of degree 0 is: Div⁰/(principal divisors).

Is this an interesting group? No, its trivial! But this gets more interesting when we do it over an elliptic curve instead of a field.

Suppose our curve E is $y^2 = x^3 - x$. Instead of $\mathbf{k}(\mathbf{X})$ we'll work now over

 $H := k(x, y)/(y^2 - x^3 - x).$

Suppose our curve E is $y^2 = x^3 - x$. Instead of

 $\mathbf{k}(\mathbf{X})$ we'll work now over $H := k(x, y)/(y^2 - x^3 - x).$

For example in H, $x = y^2 \cdot \frac{1}{x^2 - 1}$.

Suppose our curve E is $y^2 = x^3 - x$. Instead of $\mathbf{k}(\mathbf{X})$ we'll work now over

H :=
$$k(x, y)/(y^2 - x^3 - x)$$
.
For example in H, $x = y^2 \cdot \frac{1}{x^2 - 1}$.

Now, a divisor is $D = \sum_{P \in E} d_j[P]$, and for $f \in H$ $\operatorname{div}(f) = \sum_{P \in F} o_P(f)[P]$

div(f) =
$$\sum_{P \in E} o_P(f)[P]$$

Suppose our curve E is $y^2 = x^3 - x$. Instead of k(X) we'll work now over $H := k(x, y)/(y^2 - x^3 - x)$.

For example in H, $x = y^2 \cdot \frac{1}{x^2 - 1}$.

Now, a divisor is $D = \sum_{P \in E} d_j[P]$, and for $f \in H$ $div(f) = \sum_{P \in E} o_P(f)[P]$ How to compute $o_P(f)$?

$$f = u^{o_{P}(f)} \cdot g$$

for g with $g(P) \neq 0$, ∞ and u with $o_P(u) = 1$.

It can be shown, like in k(X) we always have

deg(div(f)) = 0.

It can be shown, like in k(X) we always have deg(div(f)) = 0.

Example: f = x Compute div(x). Can be shown $o_{\infty}(x) = -2, o_{(0,0)}(y) = 1$.

It can be shown, like in k(X) we always have deq(div(f)) = 0.

Example:
$$f = x$$
 Compute $div(x)$. Can be shown

 $o_{\infty}(x) = -2, o_{(0,0)}(y) = 1.$

$$o_{\infty}(x) = -2, o_{(0,0)}(y) = 1.$$

Since $x = y^2 \cdot \frac{1}{x^2 - 1}$, we have $o_{(0,0)}(x) = 2$.

So $div(x) = 2([0,0]) - 2[\infty]$.

The cool theorem

As before, we can define $C := Div^0/(principal divisors)$.

The cool theorem

As before, we can define $C := Div^0/(principal divisors)$.

It turns out C is isomorphic to E as a group!

The cool theorem

As before, we can define $C := Div^0/(principal divisors)$.

It turns out C is isomorphic to E as a group!

Proof sketch: We will show that every divisor D of degree zero can be written as $D = div(g) + [P] - [\infty]$.

Proof sketch: We will show that every divisor D of degree zero can be written as $D = div(g) + [P] - [\infty]$.

The idea is that divisors of line functions allow us to compress two points into one: If we have $[P_1] + [P_2]$ as part of divisor and l(x, y) is the line passing through P_1 , P_2 then

$$div(1) = [P_1] + [P_2] + [P_3] - 3[\infty]$$

Proof sketch: We will show that every divisor D of degree zero can be written as $D = div(g) + [P] - [\infty]$.

The idea is that divisors of line functions allow us to compress two points into one: If we have $[P_1] + [P_2]$ as part of divisor and l(x, y) is the line passing through P_1 , P_2 then

$$div(1) = [P_1] + [P_2] + [P_3] - 3[\infty]$$

So can switch:

$$[P_1] + [P_2] - \longrightarrow div(1) - [P_3] - 3 \cdot [\infty]$$