Computer Vision of

Distracted Driver Detection

Group 3: Zhuohan Yu, Zeqiu Zhang

Background

Distracted driving is one of the main reasons for car accidents.

According to CDC's data, it causes about 425,000 people injured and 3,000 people killed every year.

Dataset Description

Train: 19060

Test: 79726

Pixel Size: 460 * 680

Train Data Distribution

10 Classes:

c0: safe driving

c1: texting - right

c2: talking on the phone - right

c3: texting - left

c4: talking on the phone - left

c5: operating the radio

c6: drinking

c7: reaching behind

c8: hair and makeup

c9: talking to passenger

Model Description

EfficientNet

Model Description

EfficientNetV2

Stage	Operator	Stride	#Channels	#Layers
0	Conv3x3	2	24	1
1	Fused-MBConv1, k3x3	1	24	2
2	Fused-MBConv4, k3x3	2	48	4
3	Fused-MBConv4, k3x3	2	64	4
4	MBConv4, k3x3, SE0.25	2	128	6
5	MBConv6, k3x3, SE0.25	1	160	9
6	MBConv6, k3x3, SE0.25	2	256	15
7	Conv1x1 & Pooling & FC	-	1280	1

Model Description

EfficientNetV2

Experiment Setup

- 1. Batch challenge
- 2. Two ways of split
 - a. Regular Split
 - b. Kfold Split
- 3. Model definition
 - a. Pretrained Models
 - b. Optimizers
 - c. Loss function
 - d. Callbacks
 - i. checkpoint
 - ii. early stopping
 - iii. ReduceLROnPlateau

Framework: *Tensorflow*

Experiment Setup

- 1. Tuning parameters
 - a. dropout rate
 - b. number of epoch
 - c. image size
- 2. Double Ensemble
 - a. Kfold Ensemble
 - b. Model Ensemble

Results

- 1. Resnet50, Resnet152V2
- 2. Densenet
- 3. InceptionV3
- 4. EfficientNetV2B2
- 5. EfficientNetV2B3

Pretrained Model	Val_accuacy	Private Score
D+101	0. 9969	0. 32719
Densenet121	0.9967	0.36186
Densenet169	0.9971	0. 34589
Densenet201	0.9967	0. 36915
	0.9946	0. 28210
InceptionV3	0.9958	0. 37053
	0.9943	0. 39464
Resnet152V2	0.9962	0. 59611
EfficientNetB2	0.9969	0. 34956
	0.9967	0. 31996
Dec: -:+N-+Vono	0.9969	0. 29559
EfficientNetV2B2	0.9962	0. 35109
	Kfold Ensemble	0. 20779
	0.9965	0. 30356
EfficientNetV2B3	0.9966	0. 30581
	Kfold Ensemble	0. 22650
EfficientNetV2M	0. 9958	0. 32306
EfficientNetV2L	0.9944	0. 38809
Model E	0. 20481	

Conclusions

1. EfficientNetV2B2 and EfficientNetV2B3 perform the best among all the models

1. Kfold and ensemble could improve the score

Future Researches

- 1. Use more sophisticated augmentation like CutMix or Mixup
- 2. Try larger image size for EfficientNetV2M and EfficientNetV2L
- 3. Feed information of timeline from same drivers' pictures into model

Reference

https://www.kaggle.com/c/state-farm-distracted-driver-detection/data Kaggle: State Farm Distracted Driver Detection

Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In *International Conference on Machine Learning* (pp. 6105-6114). PMLR.

Tan, M., & Le, Q. V. (2021). Efficientnetv2: Smaller models and faster training. *arXiv* preprint arXiv:2104.00298.

State Farm distracted driver detection. Kaggle. (n.d.). Retrieved December 6, 2021, from https://www.kaggle.com/c/state-farm-distracted-driver-detection/discussion/22631.

State Farm distracted driver detection. Kaggle. (n.d.). Retrieved December 6, 2021, from https://www.kaggle.com/c/state-farm-distracted-driver-detection/discussion/22906.

State Farm distracted driver detection. Kaggle. (n.d.). Retrieved December 6, 2021, from https://www.kaggle.com/jiaodong/vgg-16-pretrained-loss-0-23800.

Thank you