16) Integration, Cointegration, and Stationarity

Vitor Kamada

June 2018

Reference

Tables, Graphics, and Figures from

https://www.quantopian.com/lectures

Lecture 43 Integration, Cointegration, and Stationarity

Stationary Stochastic Process

 $\begin{cases} x_t: t=1,2,... \end{cases} \text{ is stationary if for every} \\ \text{collection of time indices } 1 \leq t_1 < t_2 < ... < t_m, \\ \text{the joint distribution of } (x_{t_1}, x_{t_2}, ..., x_{t_m}) \text{ is the} \\ \text{same as the joint distribution of} \\ (x_{t_{1+h}}, x_{t_2+h}, ..., x_{t_{m+h}}) \text{ for all integers } h \geq 1 \\ \end{cases}$

- No restrictions on how x_t and x_{t-1} are related to one another
- Any correlation between adjacent terms is the same across all time periods

Covariance Stationary Process

A stochastic process $\{x_t: t=1,2,...\}$ with a finite second moment $[E(x_t^2)<\infty]$ is covariance stationary if

- (i) $E(x_t)$ is constant;
- (ii) $Var(x_t)$ is constant; and
- (iii) for any t, $h \ge 1$, $Cov(x_t, x_{t+h})$ depends only on h and not on t

Weakly Dependent Time Series

A stationary time series process $\{x_t : t = 1, 2, ...\}$ is **weakly dependent** if x_t and x_{t+h} are "almost independent" as h increases without bound

$$Corr(x_t, x_{t+h}) \rightarrow 0 \text{ as } h \rightarrow \infty$$

LLN and CLT require stationarity and some form of weak dependence

Autoregressive Process of Order One [AR(1)]

$$y_t = \rho_1 y_{t-1} + e_t, \qquad t = 1, 2, ...$$

 e_t is an independent and identically distributed (iid) sequence with zero mean and variance σ_e^2

 $\mathsf{AR}(1)$ is weakly dependent if $|
ho_1| < 1$

$$Var(y_t) =
ho_1^2 Var(y_{t-1}) + Var(e_t)$$
 $\sigma_y^2 =
ho_1^2 \sigma_y^2 + \sigma_e^2$ $\sigma_y^2 = rac{\sigma_e^2}{1-
ho_1^2}$

$\mathsf{AR}(1)$ is weakly dependent if $|\rho_1| < 1$

$$y_{t+h} = \rho_1 y_{t+h-1} + e_{t+h} = \rho_1 (\rho_1 y_{t+h-2} + e_{t+h-1}) + e_{t+h}$$
$$\rho_1^2 y_{t+h-2} + \rho_1 e_{t+h-1} + e_{t+h}$$
$$\rho_1^2 y_t + \rho_1^{h-1} e_{t+1} + \dots + \rho_1 e_{t+h-1} + e_{t+h}$$

$$Cov(y_t, y_{t+h}) = E(y_t, y_{t+h})$$
 $ho_1^h E(y_t^2) +
ho_1^{h-1} E(y_t e_{t+1}) + ... + E(y_t e_{t+h})$
 $ho_1^h E(y_t^2) =
ho_1^h \sigma_y^2$

$$Corr(y_t, y_{t+h}) = \frac{Cov(y_t, y_{t+h})}{\sigma_y \sigma_{y_0}} = \rho_1^h$$

Stationary Series A $\sim N(0,1)$

Non-Stationary Series B $\sim N(0.1t, 1)$

Dickey and Fuller Test (1979)

$$y_t = \alpha + \rho y_{t-1} + e_t$$

$$H_0: \rho = 1$$
 vs $H_a: \rho < 1$

Augmented Dickey-Fuller Test

Add: $y_{t-2}, y_{t-3}...$

Or/and add Time Trend

from statsmodels.tsa.stattools import adfuller

Testing for Stationarity

```
def check for stationarity(X, cutoff=0.01):
    # H 0 in adfuller is unit root exists (non-stationary)
    # We must observe significant p-value to convince ourselves that the series
 is stationary
    pvalue = adfuller(X)[1]
    if pvalue < cutoff:</pre>
        print 'p-value = ' + str(pvalue) + ' The series ' + X.name +' is likely
 stationary.'
        return True
   else:
        print 'p-value = ' + str(pvalue) + ' The series ' + X.name +' is likely
 non-stationary.'
        return False
check for stationarity(A);
check for stationarity(B);
```

```
p-value = 0.000498500723545 The series A is likely stationary.
p-value = 0.948244716942 The series B is likely non-stationary.
```

Series C $\sim N(sin(t), 1)$

p-value = 0.21959

Order of Integration: I(i)

$$Y_t = \sum_{j=0}^{\infty} b_j \epsilon_{t-j} + \eta_t$$

$$I(0)$$
 means $\sum\limits_{k=0}^{\infty}|b_k|^2<\infty$

Autocorrelation decays quickly

Stationarity
$$\rightarrow I(0)$$

Series A1 is I(1)

A1 = np.cumsum(A)

Series A2 is I(2)

A2 = np.cumsum(A1)

15/25

Lag Operator (L)

$$LX_t = X_{t-1}$$
 $(1-L)X_t = X_t - X_{t-1} = \Delta X$ If X_t is $I(1)$ then $X_t - X_{t-1}$ is $I(0)$

symbol_list = ['MSFT']

```
\begin{split} \text{prices} &= \text{get\_pricing}(\text{symbol\_list}, \ \text{fields=['price']} \\ &\quad , \ \text{start\_date='2014-01-01'} \\ &\quad , \ \text{end\_date='2015-01-01')['price']} \\ \text{prices.columns} &= \text{map}(\text{lambda } x : \ x.\text{symbol}, \ \text{prices.columns}) \\ X &= \text{prices['MSFT']} \\ \text{check\_for\_stationarity}(X); \end{split}
```

p-value = 0.666326790934

The series MSFT is likely non-stationary.

plt.plot(X.index, X.values)

plt.ylabel('Price')
plt.legend([X.name]);

X1 = X.diff()[1:]

p-value = 1.48184901469e-28

19 / 25

$X1 = X.pct_change()[1:]$

p-value = 8.05657888734e-29

Cointegration

$$(X_1, X_2, ... X_K)$$
 are $I(1)$

A set of time series is Cointegrated, if some linear combination of them is I(0)

If
$$2X_1 + X_2$$
 is $I(0)$, then they are Cointegrated

Testing for Cointegration

$$X_2 = \alpha + \beta X_1 + \epsilon$$

The combination:

$$X_2 - \beta X_1 = \alpha + \epsilon$$

should be stationary

symbol_list = ['ABGB', 'FSLR']

OLS to compute β

$$X1 = sm.add_constant(X1)$$

 $results = sm.OLS(X2, X1).fit()$
 $X1 = X1[symbol_list[0]]$
 $results.params$

const 26.609769

ABGB 1.536686

 $b = results.params[symbol_list[0]]$

$$Z = X2 - b * X1$$

check_for_stationarity(Z)

p-value = 0.00097294855

