Formale Grundlagen der Informatik II 7. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto SoSe 2015 15. Juli 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Aufgabe G1 (Quiz)

Für die folgenden Mengen geben Sie jeweils an, ob sie

- entscheidbar,
- · rekursiv aufzählbar, aber nicht entscheidbar,
- · nicht rekursiv aufzählbar

sind.

- (a) SAT(AL) := $\{ \varphi \in AL \mid \varphi \text{ erfullbar} \}$
- (b) $\{(\varphi, \psi) \in AL \times AL \mid \varphi \models \psi\}$
- (c) SAT(FO) := $\{\varphi \in FO \mid \varphi \text{ erfullbar}\}$
- (d) $VAL(FO) := \{ \varphi \in FO \mid \varphi \text{ all gemeing \"ultig} \}$
- (e) $\overline{SAT(FO)} := \{ \varphi \in FO \mid \varphi \text{ unerfullbar} \}$
- (f) FINSAT(FO) := $\{\varphi \in FO \mid \varphi \text{ hat ein endliches Modell}\}$
- (g) $INF(FO) := \{ \varphi \in FO \mid \varphi \text{ ist erfullbar und hat nur unendliche Modelle} \}$

Aufgabe G2 (Graphen und FO)

Ein Pfad in einem Graphen $\mathcal{G}=(V,E)$ ist eine Sequenz $\langle x_0,x_1,\ldots,x_n\rangle$ von Knoten, so dass $(x_i,x_{i+1})\in E$ für alle i< n. Der Graph heißt zusammenhängend, wenn es für alle Paare von Knoten (x,y) einen Pfad $\langle x_0,x_1,\ldots,x_n\rangle$ gibt, mit $x=x_0$ und $y=x_n$. Zeigen Sie, dass es keine FO-Formelmenge Γ in der Sprache der Graphen, d.h. in der Signatur $\{E\}$, gibt, sodass $\mathcal{G}\models\Gamma$ genau dann, wenn \mathcal{G} zusammenhängend ist.

Aufgabe G3 (Nichtstandardmodelle)

- (a) Zeigen Sie, dass es keine FO(S) Formelmenge Φ gibt, die ein unendliches Modell besitzt, und die Eigenschaft hat, dass in jedem Modell \mathcal{A} von Φ alle Elemente durch veriablenfreie S-Terme ausgedrückt werden können, d.h., dass es für jedes a in der Trägermenge von \mathcal{A} einen Term $t \in T_0(S)$ gibt, sodass $a = t^{\mathcal{A}}$.
- (b) Sei $S = \{+,\cdot,<,0,1\}$ die Signatur der Arithmetik und $\mathcal{N} = (\mathbb{N},+^{\mathbb{N}},\cdot^{\mathbb{N}},<^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}})$ das Modell der natürlichen Zahlen. Folgern Sie aus (a) die Existenz eines Nichtstandardmodells \mathcal{N}^* von \mathcal{N} (vgl. Seite 21 im Skript).

Im folgenden sei $\mathcal{N}^* = (\mathbb{N}^*, +^*, \cdot^*, <^*, 0^*, 1^*)$ ein Nichtstandardmodell von \mathcal{N} und $\underline{\cdot} \colon \mathbb{N} \to T_0(S)$ eine Kodierung von natürlichen Zahlen in S-terme induktiv definiert durch $\underline{0} = 0$ und $\underline{n+1} = \underline{n} + 1$.

- (c) Zeigen, Sie dass die Abbildung $\widehat{\cdot}: \mathbb{N} \to \mathbb{N}^*; n \mapsto \widehat{n} := \underline{n}^{\mathcal{N}^*}$ ein injektiver, nicht surjektiver Homomorphismus ist.
- (d) Zeigen Sie, dass alle Elemente, die nicht in $\widehat{\mathbb{N}} := \{\widehat{n} \mid n \in \mathbb{N}\}$ liegen, größer als jedes Element in $\widehat{\mathbb{N}}$ sind.
- (e) Zeigen Sie, dass es eine Teilmenge von \mathbb{N}^* gibt, die kein kleinstes Element hat.
- (f) Was zeigt ein Beweis von $\varphi(x) \in FO(S)$ durch vollständige Induktion, wenn x über die Elemente von \mathbb{N}^* läuft?
- (g) Extra: Folgern sie aus (b) und (c) die Aussage aus G2. *Hinweis*: Nehmen Sie an, dass ein geeignetes Γ existiere. Substituieren Sie dann alle Atome der Form Exy in Γ durch $x = y + 1 \lor y = x + 1$. Dann wäre \mathcal{N} ein Modell des resultierenden Γ' , nicht aber \mathcal{N}^* .

Aufgabe G4

- (a) Drücken Sie die folgenden "Tatsachen" durch Sätze der Logik erster Stufe in einer passenden Signatur aus:
 - i. Ein Drache ist glücklich, wenn alle seine Kinder fliegen können.
 - ii. Grüne Drachen können fliegen.
 - iii. Ein Drache ist grün, wenn mindestens einer seiner Elterndrachen grün ist.
 - iv. Alle grünen Drachen sind glücklich.

Hinweis: Überlegen Sie sich u. a., was Sie in der Signatur benötigen, um "ist Kind von" ausdrücken zu können.

- (b) Leiten sie argumentativ die vierte Aussage aus den ersten drei her.
- (c) Zeigen Sie mittels des Resolutionsverfahrens, dass die vierte Aussage aus den ersten drei folgt. Hinweis: Beachten Sie, dass man auf eine Skolemfunktion geführt wird, die ggf. "nicht fliegende Kinder" liefert.