# Chapitre 4 : Dérivée



notion de série de Taylor - arte : le calcul infinitésimal

## 1 le nombre dérivé - la tangente à une courbe

#### 1.1 nombre dérivée

#### définition

- f une fonction définie sur  $\mathbb R$
- taux de variation de f sur [a, b]:
  - c'est le calcul de la "rapidité" de changement de f sur [a,b]
  - il correspond en fait à la pente de la droite qui passe par les points A(a,f(a)) et B(b,f(b))
  - cette pente vaut  $\frac{\Delta f}{\Delta x}(a,b) = \frac{f(b) f(a)}{b a}$



- nombre dérivé de f en a :
  - en poussant cette notion à l'extrême (notion de limite) autour du point A(a, f(a)), obtient le nombre dérivée de f en a, si il existe
  - il correspond en fait à la pente de la courbe f en A(a,f(a))
  - cette pente vaut  $\lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(a+h) f(a)}{h} = f'(a)$



Figure 1



Figure 2





#### exemple

- calculer le taux d'accroissement de  $f(x) = 8x^2 + 6x 17$  entre [-2, 4]
- calculer le nombre dérivé de f en 0, 4 et -2
- calculer le nombre dérivé de f en z fixé sur  $\mathbb{R}$ ; peut-on exploiter ce résultat?

#### subtilité sur le nombre dérivée

- dans la définition de f'(a), le nombre h se rapproche de 0
- parfois, il est important de préciser comment : par la gauche, par la droite ou cela n'a pas d'importance
- visuellement, cela correspond à une pente différente de la fonction à droite et à gauche
- par exemple, si h doit arriver par la gauche, on parle de nombre dérivée à gauche
- voyons un exemple :



• calculer la dérivée à droite de f en  $1:f_d'(1)=f'(1^+)=\lim_{\substack{h\to 0\\h>0}}\frac{f(1+h)-f(1)}{h}$ 

• calculer la dérivée à gauche de f en  $1:f_g'(1)=f'(1^-)=\lim_{\substack{h\to 0\\h<0}}\frac{f(1+h)-f(1)}{h}$ 

#### équation d'une tangente

#### définition et propriété

- f une fonction dérivable en  $a \in \mathbb{R}$
- la dérivée de f en a est la droite passant par A(a, f(a)) et ayant pour pente f'(a)
- l'équation de la tangente à f en a est :  $y = f'(a) \times (x a) + f(a)$



#### exemple

- soit f une fonction tq f(1) = 2 et f'(1) = 3; donner l'équation de sa tangente en 1
- problème ouvert :
  - $f(x) = x^2$  dont le nombre dérivé en z est : f'(z) = 2z
  - $g(x) = \frac{1}{x}$  dont le nombre dérivé en z est :  $g'(z) = -\frac{1}{z^2}$  les fonctions f et g peuvent-elles avoir une tangente commune? si oui, préciser

#### remarque HP

- si f est une fonction dérivable en  $a \in \mathbb{R}$
- l'équation de la tangente est la "meilleure approximation polynomiale d'ordre 1"
- en clair, c'est la droite (polynôme d'ordre 1) qui approxime le mieux la fonction en ce point
- on aborde par ce biais la notion de développement limité de f à l'ordre 1

#### 2 la dérivée vue comme une fonction

#### 2.1 la dérivée

#### définition et propriété

- f une fonction définie sur [a, b]
- si f possède un nombre dérivé pour chaque  $x \in [a, b]$ , on peut considérer la fonction f' suivante :

$$\begin{array}{cccc} f' & : & [a,b] & \to & \mathbb{R} \\ & x & \mapsto & f'(x) \end{array}$$

- cette fonction f' s'appelle la dérivée de f sur [a,b]
- comme nous l'avons vu précédemment, elle donne la pente de f en tout  $x \in [a, b]$

#### exemple

- f(x) = 2x + 1; calculer la dérivée de f sur  $\mathbb{R}$
- $f(x) = -3x^2 + 5$ ; calculer la dérivée de f sur  $\mathbb{R}$

#### 2.2 dérivée de base

propriété (à connaître par coeur, dans les 2 sens)

| Fonction $f$                 | $D_f$                                                 | Fonction dérivée $f'$                 | $D_{f'}$                                    |
|------------------------------|-------------------------------------------------------|---------------------------------------|---------------------------------------------|
| Cte                          | $\mathbb{R}$                                          | 0                                     | $\mathbb{R}$                                |
| x                            | $\mathbb{R}$                                          | 1                                     | $\mathbb{R}$                                |
| $x^2$                        | $\mathbb{R}$                                          | 2x                                    | $\mathbb{R}$                                |
| $\frac{1}{x}$                | ℝ*                                                    | $-\frac{1}{x^2}$                      | ℝ*                                          |
| $\sqrt{x}$                   | $\mathbb{R}^+$                                        | $\frac{1}{2\sqrt{x}}$                 | ℝ*+                                         |
| $x^n, n \in \mathbb{Z}^+$    | $\mathbb{R}$                                          | $n \times x^{n-1}$                    | $\mathbb{R}$                                |
| $x^n, n \in \mathbb{Z}^{*-}$ | ℝ*                                                    | $n \times x^{n-1}$                    | ℝ*                                          |
| sin(x)                       | $\mathbb{R}$                                          | cos(x)                                | $\mathbb{R}$                                |
| cos(x)                       | $\mathbb{R}$                                          | -sin(x)                               | $\mathbb{R}$                                |
| tan(x)                       | $\boxed{\mathbb{R} \setminus \{\frac{\pi}{2}[\pi]\}}$ | $\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$ | $\mathbb{R}\setminus\{\frac{\pi}{2}[\pi]\}$ |

exemple : calculer les dérivée suivantes

• 
$$f(x) = x^5$$

$$f(x) = 2x^3$$

• 
$$f(x) = -\frac{2}{x}$$
 de 2 façons différentes

• 
$$f(x) = 2\sqrt{x}$$

• 
$$f(x) = -x^{-5}$$

#### zoom sur $(\sqrt{x})$ ,

- on rappelle que :  $\sqrt{x} = x^{\frac{1}{2}}$
- en utilisant la dérivée de  $x^n$  , trouver une autre méthode pour calculer la dérivée de  $\sqrt{x}$

# 3 opération sur les dérivées

# 3.1 somme, produit, quotient de dérivée propriété

- f et g 2 fonctions dérivables sur un intervalle de  $\mathbb R$
- au précaution d'usage près en ce qui concerne division par zéro ou autre, on obtient les résultats importants supra, à connaître par coeur, si possible dans les 2 sens

| Fonction                    | Fonction dérivée                        |  |
|-----------------------------|-----------------------------------------|--|
| $k \times f  avec  k = Cte$ | $k \times f'$                           |  |
| f + g                       | f'+g'                                   |  |
| $f \times g$                | $f' \times g + f \times g'$             |  |
| $\frac{f}{g}$               | $\frac{f' \times g - f \times g'}{g^2}$ |  |

exemple : calculer les dérivée suivantes

• 
$$f(x) = x^5 + x^2 - 18x + 2$$

• 
$$g(x) = 2x \times sin(x)$$

• 
$$h(x) = -\frac{x+1}{x+2}$$
 de 2 façons différentes

• 
$$i(x) = \sqrt{x} \times x^3$$
 de 2 façons différentes

### 3.2 composition de fonction

#### propriété

- f et g 2 fonctions dérivables sur un intervalle de  $\mathbb R$  suivant le schéma de composition suivant :
- au précaution d'usage (en particulier  $[c,d]\subset D_f$ ), on obtient :  $[f(g(x))]'=f'(g(x))\times g'(x)$

#### exemple : calculer les dérivée suivantes

• 
$$f(x) = (x+1)^5$$

• 
$$g(x) = 2(2x+1)^3$$

• 
$$h(x) = -\frac{2}{3x^2 + 1}$$

• 
$$i(x) = -2\sqrt{5x^3 + 6}$$

• 
$$k(x) = sin(3x + 2)$$

- HP idée :
  - f une fonction; trouver la dérivée de  $f^{-1}$
  - en déduire 1 nouvelle méthode pour calculer la dérivée de  $x \longrightarrow \sqrt{x}$

#### 3.3 un peu de graphique avec python jusqu'au dérivée

#### qq vidéos pour explorer les math via python

- 1 introduction
- 2 les bases du graphique
- 3 priorité opératoire
- 4 tracer une fraction rationnelle
- 5 tracer les racines complexes de l'unité
- 6 tracer de l'équation différentielle discrète logistique (suite récursive)
- 7 tracer des tangentes
- 8 tracer de loi de probabilités jointes

tous ces sujets sont accessibles avec un peu de temps, une bonne tasse de thé et quelques biscuits  $\dots$  bonne lecture