

EEE319 Optimisation Lecture 4 Linear Programming (3)

Prof. Xinheng Wang

xinheng.wang@xjtlu.edu.cn

Office: EE512

,

Outline

- Last week
 - Tableau

- This week
 - Linear programming with mixed constraints
 - Big M method

Mixed constraints from an example

$$Max Z = 400x_1 + 200x_2$$

s.t.
$$x_1 + x_2 = 30$$

$$2x_1 + 8x_2 \ge 80$$

$$x_1 \le 20$$

$$x_1, x_2 \ge 0$$

• Inserting slack variable, surplus variable and artificial variable into constraints, where inequality is transformed into equations:

$$x_1+x_2+a_1=30$$
 artificial variable
$$2x_1+8x_2-s_1+a_2=80$$
 surplus + artificial variables
$$x_1+s_2=20$$
 slack variables
$$Z=400x_1+200x_2-Ma_1-Ma_2$$
 -Ma_i because of maximisation

Arranging all the terms of objective function on one side

$$x_1 + x_2 + a_1 = 30$$

 $2x_1 + 8x_2 - s_1 + a_2 = 80$
 $x_1 + s_2 = 20$
 $Z - 400x_1 - 200x_2 + Ma_1 + Ma_2 = 0$

Establishing initial tableau

$$x_1 + x_2 + a_1 = 30$$

 $2x_1 + 8x_2 - s_1 + a_2 = 80$
 $x_1 + s_2 = 20$
 $Z - 400x_1 - 200x_2 + Ma_1 + Ma_2 = 0$

Basic Variables	x_1	x_2	s_1	S_2	a_1	a_2	Z		
	1	1	0	0	1	0	0	30	
	2	8	- 1	0	0	1	0	80	
	1	00	0_	1	0_	0	0	20	
	-400	-200	0	0	M	\overline{M}	1	0	

Sometimes a dashed line is used to separate the constraints and objective function

• Eliminating the big M from the bottom row by row operations (very critical step)

• Eliminating the big M from the bottom row by row operations (very critical step)-continued

Basic Variables

$$x_1$$
 x_2
 x_1
 x_2
 x_1
 x_2
 x_2
 x_1
 x_2
 x_2

 $-M*R_2 + R_4$

• Adding basic variables (coefficient on each column has got only one '1')

Basic Variables	x_1	x_2	s_1	s_2	a_1	a_2	\boldsymbol{Z}	
a_1	1	1	0	0	1	0	0	30
a_2	2	8	- 1	0	0	1	0	80
s_2	1	0	0	1	0	0	0	20
Z	-3M - 400	-9M - 200	M	0	0	0	1	-110M

Setting non-basic variables to zero, $x_1 = x_2 = s_1 = 0$, $a_1 = 40$, $a_2 = 80$, $s_2 = 20$. They are feasible. Ignore Z so far.

• Selecting the pivot column with the smallest negative value (M is a very big value, e.g. M=1,000,000)

Basic Variables	x_1	x_2	s_1	S_2	a_1	a_2	\boldsymbol{Z}	
a_1	1	1	0	0	1	0	0	30
a_2	2	8	- 1	0	0	1	0	80
s_2	1	0	0	1	0	0	0	20
\boldsymbol{Z}	-3M - 400	-9M - 200	M	0	0	0	1	-110M

 Selecting the pivot row with the smallest ratio (M is a very big value, e.g. M=1,000,000)

Basic Variables	x_1	x_2	s_1	S_2	a_1	a_2	\boldsymbol{Z}	
a_1	1	1	0	0	1	0	0	30
a_2	2	8	-1	0	0	1	0	80
s_2	1	0	0	1	0	0	0	20
Z	-3M - 400	-9M - 200	M	0	0	0	1	-110M

Highlighting the intersected value

Basic Variables	x_1	x_2	s_1	S_2	a_1	a_2	\boldsymbol{Z}	
a_1	1	1	0	0	1	0	0	30
a_2	2	8	- 1	0	0	1	0	80
s_2	1	0	0	1	0	0	0	20
\boldsymbol{Z}	-3M - 400	-9M - 200	M	0	0	0	1	-110M

• Changing the intersected value to 1

Basic Variables	x_1	x_2	s_1	S_2	a_1	a_2	\boldsymbol{Z}	
a_1	1	1	0	0	1	0	0	30
a_2	1/4	1	-1/8	0	0	1/8	0	10
s_2	1	0	0	1	0	0	0	20
\overline{Z}	-3M - 400	-9M - 200	M	0	0	0	1	-110M

• Changing the other value in that column to zero

Basic Variables

$$x_1$$
 x_2
 s_1
 s_2
 a_1
 a_2
 Z
 a_1
 1
 1
 0
 0
 1
 0
 0
 30

 a_2
 1/4
 1
 -1/8
 0
 0
 1/8
 0
 10

 s_2
 1
 0
 0
 1
 0
 0
 0
 20

 Z
 -3M - 400
 -9M - 200
 M
 0
 0
 0
 1
 -110M

$$R_1$$
- R_2 ;
 R_4 +(9M+200) R_2

• x_2 enters basic variable

Basic Variables	x_1	x_2	s_1	S_2	a_1	a_2	\boldsymbol{Z}	
a_1	3/4	0	1/8	0	1	-1/8	0	20
x_2	1/4	1	-1/8	0	0	1/8	0	10
s_2	1	0	0		0	0	0	20
Z	$-\frac{3}{4}M - 350$	0	$-\frac{1}{8}M-25$	0	0	$\frac{9}{8}M$	1	-20M + 2000

• Selecting pivot column and row again

Basic Variables	x_1	x_2	s_1	S_2	a_1	a_2	\boldsymbol{Z}	
a_1	3/4	0	1/8	0	1	-1/8	0	20
x_2	1/4	1	-1/8	0	0	1/8	0	10
s_2	1	0	0	1	0	0	0	20
Z	$-\frac{3}{4}M - 350$	0	$-\frac{1}{8}M - 25$	0	0	$\frac{9}{8}M$	1	-20M + 2000

• Pushing other values to zero

• Pushing other values to zero

• Pushing other values to zero

• x_1 enters basic variables

Basic Variables	x_1	x_2	s_1	s_2	a_1	a_2	\boldsymbol{Z}	
a_1	0	0	1/8	-3/4	1	-1/8	0	5
x_2	0	1	-1/8	-1/4	0	1/8	0	5
x_1	1	0	0	1	0	0	0	20
\boldsymbol{Z}	0	0	$-\frac{1}{8}M-25$	$\frac{3}{4}M + 350$	0	$\frac{9}{8}M$	1	-5M + 9000

• Selecting pivoting column and row again

Basic Variables	x_1	x_2	s_1	s_2	a_1	a_2	\boldsymbol{Z}	
a_1	0	0	1/8	-3/4	1	-1/8	0	5
x_2	0	1	-1/8	-1/4	0	1/8		5
x_1	1	0	0	1	0	0	0	20
Z	0	0	$-\frac{1}{8}M-25$	$\frac{3}{4}M + 350$	0	$\frac{9}{8}M$	1	-5M + 9000

Changing the value to 1

Basic Variables
$$x_1$$
 x_2 s_1 s_2 a_1 a_2 Z a_2 a_2 a_3 a_4 a_5 $a_$

• Changing the other values in that column to 0

Basic Variables	x_1	x_2		S_1		S_2	a_1	a_2	\boldsymbol{Z}	
a_1	0	0		1		- 6	8	- 1	0	40
x_2	0	1	_	1/8		-1/4	0	1/8	0	5
x_1	1	0		0		1	0	0	0	20
Z	0	0	$-\frac{1}{8}N$	A-2	$25 \frac{3}{4}$	M + 350	0	$\frac{9}{8}M$	1	-5M + 9000
Basic Vario	ables	x_1	x_2	S_1	S_2	a_1		a_2	Z	
a_1		0	0	1	- 6	8		$-\overline{1}$	0	40
x_2		0	1	0	- 1	1		0	0	10
x_1		1	0	0	1	0		0	0	20
Z.		0	0	0	200	M + 200	Μ	-25	1	10000

• s_1 enters basic variables

Basic Variables	x_1	x_2	S_1	S_2	a_1	a_2	\boldsymbol{Z}	
S_1	0	0	1	- 6	8	-1	0	40
x_2	0	1	0	-1	1	0	0	10
x_1	1	0	0	1	0	0	0	20
\boldsymbol{Z}	0	0	0	200	M + 200	M - 25	1	10000

Z=10000, when x_1 =20 and x_2 =10

Simplex Method

• This is also called big M method.

Summary

- Optimisation from an example
- No constraints
- No confirmation of size of errors yet

THANK YOU

X The picture can't be displayed.		