CLAIMS

1	1. A beam refraction apparatus, comprising:		
2	an input fiber that carries an input beam;		
3	a wavelength dispersive element coupled to the input fiber, the		
4	wavelength dispersive element spreading the input beam in at least one		
5	dimension as a function of wavelength and generating a dispersed beam;		
6	a controllable grating reflecting the dispersed beam to the		
7	wavelength dispersive element and generating a recombined beam, the		
8	controllable grating providing a controllable reflectivity as a function of		
9	wavelength;		
0	an output fiber that receives the recombined beam; and		
11	a collimating optical member coupled to the input and output fibers		
12	that passes the input beam and the recombined beams in parallel and		
13	opposite directions.		
1	2. The apparatus of claim 1, wherein the collimating optical		
2	member is a dual fiber collimator.		
1	3. The apparatus of claim 1, wherein the collimating optical		
2	member includes a prism.		
1	4. The apparatus of claim 1, wherein the collimating optical		
2	member includes a pair of mirrors.		
1	5. The apparatus of claim 1, wherein the collimating optical		
2	member includes at least one cylindrical lens.		
	The survey of aloing 1 fouther comprising:		
1	6. The apparatus of claim 1, further comprising:		
2	a walk-off crystal positioned adjacent to the collimating optical		
3	member.		

1	7.	7. The apparatus of claim 6, further comprising:			
2	a half-wave plate positioned adjacent to the walk-off crystal.				
1	8.	The apparatus of claim 1, further comprising:			
2	a refle	ector positioned along an optical path of the collimating optical			
3	member, the	member, the reflector directing at least a portion of the input beam to the			
4	controllable grating.				
1	9.	The apparatus of claim 1, wherein the reflector is a turning			
2	mirror.				
1	10.	The apparatus of claim 1, wherein the wavelength dispersive			
2	element includes at least one microelectromechanical device.				
1	11.	The apparatus of claim 10, wherein the			
2	microelectro	mechanical device includes one or more micro mirrors.			
1	12.	The apparatus of claim 10, wherein the			
2	microelectromechanical device includes one or more cantilevers.				
1	13.	The apparatus of claim 10, wherein the			
2	microelectromechanical device includes one or more light controlling				
3	devices.				
1	14.	The apparatus of claim 10, wherein the			
2	microelectro	mechanical device includes one or more one or more			
3	deformable g	grating modulators.			
1	15.	The apparatus of claim 1, wherein the controllable grating is			
2	an array with	a diffraction efficiency that is controlled as a function of			

position on the array.

3

1

1	16.	The apparatus of claim 1, wherein the controllable grating is			
2	an array of ribbons.				
1	1.7	The apparatus of claim 1, wherein the controllable grating is			
1	17.				
2	a micromach	ined grating device.			
1	18.	The apparatus of claim 1, further comprising:			
2	a lens positioned between the wavelength dispersive element and the				
3	controllable grating.				
1	19.	A beam refraction apparatus, comprising:			
2	an in	out fiber that carries an input beam;			
3	a wavelength dispersive element coupled to the input fiber, the				
4	wavelength dispersive element spreading the input beam in at least one				
5	dimension as a function of wavelength and generating a dispersed beam;				
6	a controllable grating reflecting the dispersed beam to the				
7	wavelength dispersive element and generating a recombined beam, the				
8	controllable grating providing a controllable reflectivity as a function of				
9	wavelength;				
10	an oı	atput fiber that receives a first portion of the recombined beam			
11	from the con	trollable grating;			
12	a det	ector array positioned to receive a second portion of the			
13	recombined	beam from the controllable grating.			
1	20.	The apparatus of claim 19, further comprising:			
2	a foc	using lens positioned between the detector array and the			
3	controllable	grating.			

21.

1

The apparatus of claim 20, further comprising:

- a collimating optical member coupled to the input and output fibers that passes the input beam and the first portion of the recombined beams in parallel and opposite directions.
- 1 22. The apparatus of claim 19, wherein the wavelength 2 dispersive element includes at least one microelectromechanical devices.
- 1 23. The apparatus of claim 22, wherein the 2 microelectromechanical device includes one or more micro mirrors.
- 1 24. The apparatus of claim 22, wherein the 2 microelectromechanical device includes one or more cantilevers.
- 1 25. The apparatus of claim 22, wherein the 2 microelectromechanical device includes one or more acousto-optic 3 modulator.
- 1 26. The apparatus of claim 22, wherein the 2 microelectromechanical device includes one or more light controlling 3 devices.
- 1 27. The apparatus of claim 22, wherein the 2 microelectromechanical device includes one or more one or more 3 deformable grading modulators.
- 1 28. The apparatus of claim 19, wherein the controllable grating is 2 an array with a diffraction efficiency that is controlled as a function of 3 position on the array.
- 1 29. The apparatus of claim 19, wherein the controllable grating is 2 an array of ribbons.

1	30. The apparatus of claim 19, wherein the controllable grating is		
2	a micromachined grating device.		
1	31. A dynamic channel equalizer, comprising:		
2	an input fiber that carries an input beam;		
3	a wavelength dispersive element coupled to the input fiber, the		
4	wavelength dispersive element spreading the input beam in at least one		
5	dimension as a function of wavelength and generating a dispersed beam;		
6	a controllable grating reflecting the dispersed beam to the		
7	wavelength dispersive element and generating a recombined beam, the		
8	controllable grating providing a controllable reflectivity as a function of		
9	wavelength;		
10	an output fiber that receives a first portion of the recombined beam		
11	from the controllable grating; and		
12	a beam expander coupled to the input fiber makes the input beam		
13			
1	32. The apparatus of claim 31, wherein the wavelength		
2	dispersive element includes at least one microelectromechanical device.		
1	33. The equalizer of claim 32, wherein the		
2	microelectromechanical device includes one or more micro mirrors.		
1	34. The equalizer of claim 32, wherein the		
2			
1	35. The equalizer of claim 32, wherein the		
2	microelectromechanical device includes one or more light controlling		
3	devices.		

1	36. The equalizer of claim 32, wherein the	The equalizer of claim 32, wherein the		
2	microelectromechanical device includes one or more one or more			
3	deformable grating modulators.			
1	37. The apparatus of claim 31, wherein the con	trollable grating is		
2	an array with a diffraction efficiency that is controlled as a	function of		
3	position on the array.			
1	38. The apparatus of claim 31, wherein the con	trollable grating is		
2	an array of ribbons.			
1	39. A dynamic spectral compensation spparatu	s, comprising:		
2	a sensor that measures power in a selected spectral	region and		
3	produces a signal in response to the measured power; and			
4	a dynamic gain equalizer that receives the signal for	a dynamic gain equalizer that receives the signal from the sensor,		
5	and modifies the selected spectral region by attenation in	a wavelength		
6	dependent manner until the selected spectrum region reac	nes a target		
7	spectrum, wherein the selected spectrum region is modified	ed in response to		

the received signal.

8