```
import pandas as pd
df=pd.read_csv('/content/heart.csv')
df
```

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

```
303 rows × 14 columns
df.isna().sum()
(2)
        0
  age
  sex
        0
  ср
        а
  trtbps
        0
  chol
        0
  fbs
        0
  restecg
        0
  thalachh
        0
        0
  exng
  oldpeak
        0
  slp
        0
  caa
        0
  thall
        0
  output
        0
  dtype: int64
x=df.iloc[:,:-1].values
  array([[63., 1., 3., ..., 0., 0., 1.],
      [37., 1., 2., ..., 0., 0., 2.],
      [41., 0., 1., ..., 2., 0., 2.],
     [68., 1., 0., ..., 1., 2., 3.],
     [57., 1., 0., ..., 1., 1., 3.],
[57., 0., 1., ..., 1., 1., 2.]])
y=df.iloc[:,-1].values
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     from sklearn.model_selection import train_test_split
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.30, random\_state=42)
x_train
  array([[39., 0., 2., ..., 2., 0., 2.], [29., 1., 1., ..., 2., 0., 2.],
     [50., 0., 2., ..., 1., 0., 2.],
```

```
[69., 1., 3., ..., 1., 1., 2.],
            [46., 1., 0., ..., 2., 0., 3.],
[63., 0., 1., ..., 2., 2., 2.]])
y_train
     array([1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
            1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
            1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1,
            0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1,
            0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0,
            0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,
            1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0,
            0,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,
            1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,
            1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1])
# preprocessing
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x_train)
x_train=scaler.fit_transform(x_train)
x_test=scaler.fit_transform(x_test)
x test
     {\sf array}([[\ 0.29414409,\ 0.5985056\ ,\ -0.84722571,\ \dots,\ -0.58445999,
               0.0575118 , -1.97484177],
             [\ 0.52098403,\ 0.5985056\ ,\ 2.11806429,\ \ldots,\ -0.58445999,
            -0.81475054, 1.09713431],
[ 0.29414409, 0.5985056 , 1.12963429, ..., 1.0272327 ,
              0.0575118 , 1.09713431],
            [ 1.42834376, -1.67082814, -0.84722571, ..., 1.0272327 ,
              0.92977415, -0.43885373],
             [\ 0.40756406,\ 0.5985056\ ,\ 1.12963429,\ \dots,\ -0.58445999,
              -0.81475054, 1.09713431],
             [ 2.44912347, -1.67082814, 1.12963429, ..., -0.58445999,
              -0.81475054, -0.43885373]])
from sklearn.neighbors import KNeighborsClassifier
model=KNeighborsClassifier(n_neighbors=5)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
y_pred
     array([0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0,
            0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
            1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
            1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1,
from sklearn.metrics import confusion_matrix,accuracy_score,ConfusionMatrixDisplay
result=confusion_matrix(y_test,y_pred)
result
     array([[34, 7],
            [ 5, 45]])
cmd=ConfusionMatrixDisplay(result,display_labels=cm)
cmd.plot()
```

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7d7011165de0>

score=accuracy_score(y_test,y_pred)
score

0.8681318681318682