

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΙ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ

Στογαστικές Ανελίξεις- 9 Ιουλίου 2012

Άσχηση 1 α) Δώστε τον ορισμό μιας στοχαστιχής ανέλιξης $\{B(t)\}_{t\geq 0}$ με ανεξάρτητες προσαυξήσεις.

- β) Έστω $\{B(t)\}_{t\geq 0}$ μια στοχαστική ανέλιξη Gauss με $B_0=0$, ανεξάρτητες προσαυξήσεις, και $B(t)\sim \mathcal{N}(0,t)$. Δείξτε ότι αν $0 \le s \le t$ τότε $\mathbb{E}[B(t)B(s)] = s$.
- γ) Ορίζουμε τώρα $W(t)=e^{-t}B(e^{2t})$ για $t\geq 0$. Υπολογίστε την συνάρτηση του μέσου $\mu_W(t)=\mathbb{E}[W(t)]$ και την συνάρτηση αυτοσυσχέτισης $\rho_W(s,t) = \text{Corr}(W(s),W(t)).$
- δ) Είναι η W ανέλιξη Gauss; στάσιμη με την ευρεία έννοια; στάσιμη υπό την αυστηρή έννοια; Eχει η W ανεξάρτητες προσαυξήσεις; Δικαιολογήστε.

Άσκηση 2 Θεωρήστε έναν τυχαίο περίπατο $\{X_n\}$ στο \mathbb{Z} , με $X_0=1$ και πιθανότητες μετάβασης

$$p_{k,k+1} = p < 1, \quad p_{k,k-1} = 1 - p, \quad \text{gia } k \in \{1, 2, \dots, N-1\}.$$

- α) Αν $T_0 = \inf\{k \ge 0: X_k = 0\}$ και $T_N = \inf\{k \ge 0: X_k = N\}$ είναι οι χρόνοι πρώτης άφιξης στα σημεία 0 και N αντίστοιχα, υπολογίστε την πιθανότητα $\mathbb{P}[T_N < T_0]$.
- β) Υπολογίστε την αναμενόμενη τιμή του χρόνου πρώτης εξόδου από το $\{1, 2, ..., N-1\}$.

Άσκηση ${\bf 3}$ Θεωρήστε μια μαρκοβιανή αλυσίδα $\{X_n\}$ στο σύνολο καταστάσεων ${\mathbb X}=\{1,2,\dots,8\}$ με πίνακα μετάβασης

- α) Ταξινομήστε τις καταστάσεις σε κλάσεις επικοινωνίας. Ποιες κλάσεις είναι παροδικές και ποιες επαναληπτικές;
- β) Αν $X_0=1$ υπολογίστε την $\mathbb{P}\big[X_n=k\big]$ για κάθε $n\in\mathbb{N}$ και κάθε $k\in\mathbb{X}.$
- γ) Αν $X_0=4$ υπολογίστε την πιθανότητα η αλυσίδα να καταλήξει σε καθεμιά από τις κλειστές της κλάσεις.
- δ) Αν $X_0 = 4$, τι μπορείτε να πείτε για το όριο

$$\lim_{n\to\infty}\frac{X_1+X_2+\cdots+X_n}{n};$$

(ποια είναι η πιθανότητα να υπάρχει; ποιες τιμές μπορεί να πάρει και με ποια πιθανότητα;)

Άσχηση 4 Στο μοντέλο διάχυσης του Ehrenfest N σωματίδια τοποθετούνται σε ένα δοχείο με δύο διαμερίσματα, A και B. Σε κάθε βήμα επιλέγουμε τυχαία ένα από τα N σωματίδια και του αλλάζουμε διαμέρισμα. Ας είναι $\{X_n\}$ η μαρκοβιανή αλυσίδα στον χώρο καταστάσεων $\mathbb{X}=\{0,1,\ldots,N\}$, που περιγράφει το πλήθος των σωματιδίων στο διαμέρισμα \mathbf{A} μετά από n βήματα.

- α) Ποιες είναι οι πιθανότητες μετάβασης της X_n ; $\beta)~\Delta$ είξτε ότι η $\pi(k)=\frac{1}{2^N}{N\choose k}$ είναι αναλλοίωτη κατανομή της αλυσίδας.
- γ) Υπάρχει άλλη αναλλοίωτη κατανομή; Αν ναι δώστε τουλάχιστον άλλη μια, αν όχι εξηγήστε γιατί.
- δ) Αν κάποια χρονική στιγμή όλα τα σωματιδία βρίσκονται στο διαμέρισμα Α, ποια είναι η αναμενόμενη τιμή του χρόνου που θα μεσολαβήσει μέχρι την επόμενη φορά που θα ξαναβρεθούν όλα τα σωματίδια στο διαμέρισμα Α;

Διάρχεια Εξέτασης 2 ώρες και 30 λεπτά ΚΑΛΗ ΕΠΙΤΥΧΙΑ!