Surface Simplification (Gueziec's Method)

600.445

Copyright © CISST ERC, 2003

Engineering Research Center for Computer Integrated Surgical Systems and Technology

g

Gueziec's Method

- Reference
 - A. Gueziec, "Surface Simplification inside a tolerance volume", IBM Research Report RC20440, 5/20/97
- Essentially "triangle decimation" done correctly
 - Preserves topology
 - Preserves volume
 - Provable error bound

Copyright © CISST ERC, 2003

Building a vertex star

Copyright © CISST ERC, 2003

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Notation: "star" v* of a vertex v

Figure 4: A: the star \mathbf{v}^* of a regular vertex \mathbf{v} of valence seven. B: the link $\ell(\mathbf{v})$ of the regular vertex \mathbf{v} , composed of one simple closed polygonal curve. C: the star \mathbf{w}^* of a singular vertex \mathbf{w} of valence four. D: the link $\ell(\mathbf{w})$ of \mathbf{w} , composed of two disconnected polygonal curves. E: the star \mathbf{u}^* of a boundary vertex of valence five.

Copyright © CISST ERC, 2003

Algorithm outline

Until Queue/ Last Bucket Empty:

- Take edge with low(est) weight
- If edge can be safely collapsed

 - If valence does not exceed maximum
 If simplified vertex is regular
 If triangle normal rotation is acceptable
 If triangle compactness is acceptable
 If error does not exceed tolerance

 - □Change neighboring configuration
 - □Remove all edges of the star from the queue
 - □Reinstate new edges in the queue
- Else

remove edge from queue

Figure 6: Simplification algorithm.

Copyright © CISST ERC, 2003

Book-keeping to remember hierarchy

Figure 7: A: an edge refers to four indices. B: defining parents of surface elements during an edge collapse.

Copyright © CISST ERC, 2003

Engineering Research Center for Computer Integrated Surgical Systems and Technology

9

Picking new vertex to preserve volume

Volume associated with edge star is sum of tetrahedra v_0 = vertex associated with simplified vertex star g_0 = centroid of edge star

Copyright © CISST ERC, 2003

Picking new vertex to preserve volume

Given edge star $(v_1, v_2)^* = \{v_3, ..., v_n\}$. Let T_{12} be the set of all triangles t in $v_1^* \cup v_2^*$ and let $vertices(t) = \{v_{t1}, v_{t2}, v_{t3}\}$ be the set of verticies associated with a triangle t. Compute the centroid

$$g = \sum_{i=3}^{n} \frac{v_i}{n-2}$$
 of $(v_1, v_2)^*$. Then the volume associated

with the $(v_1, v_2)^*$ is

$$V_{1,2} = \sum_{t \in T_{12}} V_{tetra}(g, v_{t1}, v_{t2}, v_{t3})$$

We want to pick v₀ such that

$$\sum_{i=3}^{n-1} V_{tetra}(g, V_0, V_i, V_{i+1}) = \sum_{t \in T_{12}} V_{tetra}(g, V_{t1}, V_{t2}, V_{t3})$$

Copyright © CISST ERC, 2003

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Volume of a tetrahedron

$$V_{tetra}(V_0, V_1, V_2, V_3) = \frac{1}{6}(V_1 - V_0) \bullet (V_2 - V_0) \times (V_3 - V_0)$$

Copyright © CISST ERC, 2003

Picking new vertex to preserve volume

- Volume preservation constraint defines a <u>plane</u> on which v₀ must lie.
- Select the point on this plane that minimizes sum-ofsquared distance to planes of all triangles being collapsed

Copyright © CISST ERC, 2003

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Volume preservation results

m o de l	Femur	Buddha	Deino
original # of triangles	180,854	333,586	44,954
simplified # of triangles	3,124	49,106	19,490
original volume	233,462.7455 mm ³	23,048,568.98 pixel ³	230,276.599 m m ³
vol. after simplification	233,462.7452 mm ³	23,048,569.03 pixel ³	230,276.600 m m ³

Copyright © CISST ERC, 2003

Triangle compactness improvement

Figure 11: A visual inspection of these triangles extracted from the shaft of the Femur model shows that facets are more regular in the simplified femur model produced by the our algorithm (Right) than they are in the original output of an iso-surface algorithm (Left). In particular, most "sliver" (very narrow) triangles have been removed. Histograms of triangle compactness presented in Fig.10 confirm this observation.

Copyright © CISST ERC, 2003

Engineering Research Center for Computer Integrated Surgical Systems and Technology

9

Triangle compactness improvement

Figure 10: A: histogram of compactness values before simplification for the Femur example. B: histogram of compactness values after simplification. C: example of triangles of compactness values of .1 to 1 in .1 increments, corresponding to boundaries between the histogram bins. A flat triangle has a compactness of zero.

Copyright © CISST ERC, 2003

Merging Rule

When merge, assign (enlarge) vertex tolerances so that old surface shell is guaranteed to be completely inside the new surface shell

Copyright © CISST ERC, 2003

Rainbow colormap.

Carotid artery

Figure~27:~A:~Carotid~Arteries~(57~K~triangles).~B:~Simplification~(5.6~K~triangles)~with~a~maximum~error~of~0.8%.~C:~Superimposition~of~A~and~B.

Copyright © CISST ERC, 2003

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Carotid artery

Original (57 K triangles)

Simplified to 0.8% tolerance (5.6 K triangles)

Copyright © CISST ERC, 2003

Engineering Research Center for Computer Integrated Surgical Systems and Technology

9

