Introduction aux Réseaux

DIU « Enseigner l'Informatique au Lycée »

Université de Bordeaux

aurelien.esnard@u-bordeaux.fr abdou.guermouche@u-bordeaux.fr

Sécurité des Communications

Contexte

- Alice veut transmettre une information secrète à Bob (et seulement a Bob) en utilisant un réseau non sécurisé.
- Mallory veut avoir accès à cette information.

Attaquons à l'aube !!!

Mallory

Cryptographie

- Un élément clé dans tous les système de sécurité
- Élément essentiel pour assurer
 - Confidentialité
 - Seules les personnes autorisées ont accès aux données
 - Intégrité des données
 - Seules les personnes autorisées peuvent modifier les données
 - Authentification
 - Prouver l'identité
 - Non répudiation
 - L'émetteur d'un message ne peut pas dire qu'il ne l'a pas fait

Utilisation du chiffrement

 Alice veut transmettre une information secrète à Bob (et seulement a Bob) en utilisant un réseau non sécurisé.

- Comment gérer les clés ?
- Quel algorithme utiliser?

Chiffrement symétrique

- Chiffrement de déchiffrement avec la même clé
- i.e. $K_E = K_D$
- La clé doit être connue d'Alice et de Bob.
- Exemples : AES, DES, ...

Chiffrement asymétrique

- Clé de chiffrement et de déchiffrement différente
- i.e. K_E≠K_D
- Alice et Bob possèdent chacun une paire de clé C,K telles que
 - K_{Alice} est privée à Alice (resp. Bob)
 - C_{alice} est publique
 - Tout ce qui est chiffré avec C_{Alice} peut être déchiffré avec K_{Alice} et réciproquement.
- Exemples: RSA, ECC, ...

Chiffrement asymétrique

- Scénario simple
 - Chiffrer avec la clé publique C
 - Déchiffrer avec la clé privée K

Chiffrement asymétrique

Scénario réaliste

- Générer une clé aléatoire secréte S (symétrique)
- Chiffrer S avec C et l'envoyer
- Déchiffrer S avec K
- Utiliser K pour chiffrer le trafic

Algorithmes de hachage

- Permettent la vérification de l'intégrité du message
- Fonctions à sens unique calculant une empreinte du message
 - Facilité de calcul du hachage d'un message
 - Impossibilité de retrouver le message à partir du hachage
 - Impossibilité de construire deux messages ayant le même hachage
 - Impossibilité de modifier un message sans mise à jour du hachage
- Sha256, Sha1, MD5, ...
- Exemples
 - echo "bonjour" | sha1sum
 1F71E0F4AC9B47CD93BF269E4017ABAAB9D3BD63
 - echo "Attaquons à l'aube!!!" | sha1sum 8073B9D9B2EB74F31F9AE87359AF440883380D7E

Signature électronique

- Permet de vérifier l'authenticité du message
- Générer le hachage H du message
- Chiffrer H avec K_{alice} et envoyer le résultat avec le message
- Bob peut vérifier la signature en utilisant C_{alice}
 - Bob est sûr que le message n'est pas corrompu si le résultat du déchiffrement est identique au hachage qu'il calcule
 - Bob est sûr qu'Alice est l'émetteur du message

Certificats électroniques

Que se passe-t-il si Alice n'a pas C_{hob} initialement

Problème du Man-In-The-Middle

Certificats électroniques

- Un certificat contient
 - Une clé publique
 - Une identité (dans un format clé/valeur)
 - Une signature par une autorité de confiance dont la clé publique est connue
- À la réception du certificat de Bob, Alice peut vérifier que le certificat appartient bien à Bob
- Mallory ne peut plus usurper l'identité de Bob

SSL/TLS

- Protocole de sécurisation des échanges sur Internet
- Basé sur l'utilisation de certificats
- Utilisé pour l'implémentation de versions sécurisées des protocoles standards (HTTPS, SMTPS, IMAPS, ...)

HTTPS

- HTTPS (HTTP Secure)
 - Utilisation transparente du protocole HTTP au-dessus de TLS/SSL (port 443 au lieu de 80)
 - Authentification du serveur web via son certificat (signé du CA)
 - Confidentialité et intégrité des données envoyées au serveur
 - Authentification du client facultative

HTTPS

Authentification du serveur et du client avec SSL/TLS

Source: wikipedia