MATE 5150: Determinants

Alejandro Ouslan

Academic Year 2024-2025

Contents

1 Diagonalizability 1

1 Diagonalizability

In Example 6 of Sectoin 5.1, we obtained a basis of eigenvectors by choosing one eigenvector corresponding to each eigenvalue. In general, such a procedure does not yield a basis, but the following theorem shows that any set constructed in this manner is linearly independen.

Theorem 1. Let T be a linear operator on a vector space V, and let $\lambda_1, \ldots, \lambda_m$ be distinct eigenvalues of T. If v_1, \ldots, v_m , then $\{v_1, \ldots, v_m\}$ is linearly independent

Corollary 1. Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenalues, then T is diagonalizable.

Proof. Supongamos que T tiene n valores propios distintos $\lambda_1, \ldots, \lambda_n$ y sea v_1, \ldots, v_n vectores propios de T correspondientes a $\lambda_1, \ldots, \lambda_n$. para $1 \leq i \leq n$. por el terorema 5.5 son linealmente independientes Dado que dim(V) entonces el candidato para ser una base de V es $\{v_1, \ldots, v_n\}$. Por el terorema 5.1 entonce. T es diagonalizable. \square

Definition 1. A polynomial f(x) is P(F) splits over F if ther are scalars c, a_1, \ldots, a_n (not necessarily distinct) in F such that

$$f(x) = c(t - a_1) \cdots (t - a_n)$$

Theorem 2. The characteristic polynomial of any diagonalizable linear operator splits.

Proof. Supongamos T es diagonalizable y \exists una base β para v tal que $[T]_{\beta} = D$, donde D es diagonal y supongamos que

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Sea f(t) el polinomio caracteristico de T. Entonces

$$f(t) = det(D - tI_n)$$

$$det \begin{bmatrix} \lambda_1 - t & 0 & \cdots & 0 \\ 0 & \lambda_2 - t & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n - t \end{bmatrix} = (\lambda_1 - t) \cdots (\lambda_n - t)$$

Definition 2. Let λ be an eigenvalue of linear operator or matrix with characteristic polynomial f(t). The **algebraic** multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).