Promoting Bilateral Mechanisms in Asia and the Pacific A Workshop on the Joint Crediting Mechanism

Power Generation by Waste Heat Recovery in Cement Industry

- JCM Model Projects in 2014 by MOEJ -

22 May 2015

Gen TAKAHASHI

Deputy General Manager
Global Business Development

JFE Engineering Corporation

- About JFE Engineering
- Project Summary
- Project Methodology
- Another JCM Project

Group Structure

JFE Holdings

(holding company)

Turnover: **37** billion\$

Employees: **57,200**

Fortune Global 500:

Ranked in 278

Japan Marine United

Net Sales (million \$)

3,600

Employees

6,000

JFE Engineering

Net Sales (million \$)

2,840

Employees

7,400

JFE Steel

Net Sales (million \$)

26,900

Employees

42,500

JFE Shoji Trade

Net Sales (million \$)

17,800

Employees

6,200

Business Field

Environment

Steel Structure

Global Network

- Head Offices / Overseas Offices
- Overseas Affiliate

Overseas Subsidiaries

- About JFE Engineering
- Project Summary
- Project Methodology
- Another JCM Project

JCM Model Project Summary

/year

Counterpart	PT Semen Indonesia
Site	Tuban Plant East Jawa
Power Generation	28MW
GHG	122 000t-C02

Emission

Reduction

Waste Heat Recovery Benefits

Cement Production
Waste Heat from
Exhaust Gas

JFE's WHR Technology Environmentally Friendly Power Generation

Benefits

CO₂ Emission Reduction

No Additional Fuel Required

Electricity Reserve for the Community

Savings on Production Costs

Reduced Consumption from Grid-Connected Power Plants

Electricity Generation Using Only Waste Heat

Available Electricity for the Communities

Apx. 20% substituted with Electricity by WHR

JFE's Service Record

Total: 285 Boilers, Total Power: 820 MW (For Cement: 66 Boilers - 300 MW)

For Cement: 2 Boilers For Others: 2 Boilers

Romania

India

Indonesia

Italy

China: 42 Boilers

For Cement: 39 Boilers

For Others: 3 Boilers

China

Taiwan

Thailand **Philippines** Japan:213 Boilers

Japan

For Cement: 4 Boilers For Others: 209 Boilers

Taiwan:12 Boilers

For Cement: 9 Boilers For Others 3 Boilers

S.E.Asia:13 Boilers Malaysia

For Cement: 10 Boilers

For Others: 3 Boilers

N.America: 2 Boilers

For Cement: 2 Boilers

India:1 Boiler

For Others: 1 Boiler

Cement WHR Boiler Other WHR Boiler

JFE Engineering Corporation

Cement Production Process

Typical System Flow

Clinker Production Process

Waste Heat Recovery
System

Cement Production - Baseline

After WHR System Installation

- About JFE Engineering
- Project Summary
- Project Methodology
- Another JCM Project

Eligibility Criteria

Criterion 1	The project utilizes waste heat from a cement production facility by waste heat recovery system (WHR) to generate electricity
Criterion 2	WHR system consists of a Suspension Preheater boiler (SP boiler) and/or Air Quenching Cooler boiler (AQC boiler), turbine generator and cooling tower
Criterion 3	WHR system utilizes only waste heat and does not utilize fossil fuels as a heat source to generate steam for power generation
Criterion 4	WHR system has not been introduced to a corresponding cement kiln of the project prior to its implementation

Eligibility Criteria

Criterion 5

Cement factory where the project is implemented is connected to a grid system and the theoretical maximum electricity output of the WHR system, which is calculated by multiplying maximum electricity output of the WHR system by the maximum hours per year (24*365=8,760 hours), is not greater than the total amount of the electricity imported to the cement factory from the grid system:

- > During the previous year before the validation, if the validation of the project is conducted before the operation of the project, or
- > During the previous year before the operation of the project, if the validation of the project is conducted after the operation of the project

Calculation of Reference Emissions

		A	В	С	D	E(A*B*C*D)
_	ntity of Electricity eration	Generation Capacity (MW)	Operating day per year (days/y)	Time (hrs/day)	Operating Rate	Electricity (MWh)
	Dry Season	28	182.5	24	0.85	104,244
	Rainy Season	22	182.5	24	0.85	81,906
The quantity of electricity 2.4 365 24 1 consumption				21,024		
The quantity of net electricity generation by the WHR system which replaced grid electricity import 165,126						

$$RE_y = EG_y * EF_{grid}$$

 $= 165,126 \text{ MWh/y} * 0.741 \text{ tCO}_2 \text{ e/MWh}$

 $= 122,358 tCO_2e/y$

Reference Emissions

Reference

Reference is the situation where WHR system has not been introduced. Diffusion rate of WHR system is very low in Indonesian Cement Industry

1 plant installed / 25 plants total

Conservativeness

Electricity consumption of WHR system is calculated by the theoretically maximum load of auxiliary equipment

=> Rated capacity of installed equipment (EG_{CAP}) related to WHR system and max. hours/period

The quantity of gross electricity generation by waste heat

 $EG_{AUX,v}$:2.4MW(EG_{CAP})*24h/d*365days

1.9MW(Designed capacity)*24h/d*365days

Reference Emissions

 $RE_y = EG_y * EF_{grid}$ RE_y : Reference emissions EG_y : The quantity of net electricity generation

EF_{grid}: CO₂ emission factor for an Indonesian regional grid system

Determination of EG_v

 $EG_v = EG_{GEN} - EG_{AUX}$

EGGEN: The quantity of gross electricity generation by waste heat

EGALIX: The quantity of electricity consumption by WHR system

Determination of EG_{AUX}

 $EG_{AUX} = EG_{CAP} * 24 * 365$

EG_{CAP}: The total maximum rated capacity of equipments of WHR system

Emission Reductions

Emission Reductions

= Reference Emissions

Replacement of Grid Electricity Generation

- Calculation of reference/project emissions Emissions to be calculated in the methodology are those replaced by power generation of WHR system
- Emission Reductions= Reference Emissions Project Emissions
- No additional fuelProject Emissions = 0

Data and parameters fixed ex ante

► EF_{grid}: CO₂ emission factor

National Committee on Clean Development Mechanism Indonesian DNA for CDM, Updates on Emission Factors of Electricity Interconnection System(2011)

► EG_{CAP}: Total max. rated capacity of equipments of the WHR system which consumes electricity

Rated capacity of all installed equipments of the WHR system which consumes electricity

Monitoring

► EG_{GEN},y: Quantity of gross electricity generation

Watt meter log data are saved:

every one minute

in both electronic data in a server and on printed paper

Project Schedule

Power Generation will start in the beginning of April 2016

	2013	2014	2015	2016
Design				
Equipment				
Construction				
Commissioning				*

- About JFE Engineering
- Project Summary
- Project Methodology
- Another JCM Project

Another JCM Project by JFE

Introduction of Waste to Energy Plant in Yangon City

- JCM Feasibility Study in 2014 by MOEJ -

*Image

Eligibility Criteria

Criterion 1	The project newly installs an incinerator, waste heat recovery boiler, exhaust gas treatment equipment and turbine generator.
	l •

The project incinerates fresh municipal solid waste and **Criterion 2** generates electricity from steam produced in a boiler which uses heat of incineration.

The project facility is constructed within the municipality **Criterion 3** where waste to be incinerated by the project is generated. The fraction of energy generated by auxiliary fossil fuels in **Criterion 4**

a construction design document is planned to be not more than 50 % of the total energy generated in the incinerator during normal operation.

Electricity generated is exported to a grid or used for displacing captive fossil fuel fired power generator.

Emissions of NO2 and CO at the stack of incinerator are designed to be less than or equal to the following levels: **Criterion 6** NO2 (230mg/m3@11%O2) and CO (42mg/m3@11%O2)

Criterion 5

GHG emission reductions

		JFE
GHG emission reductions	4,663	tCO2e
Reference emissions	12,073	
(CH4 emissions from landfill site)	7,496	
(CO2 emissions from electricity)	4,576	
Project emissions	7,409	
(CO2 emissions from waste incineration)	4,913	
(N2O emissions from waste incineration)	369	
(CO2 emissions from electricity)	2,102	
(CO2 emissions from fossil fuel consumption) JFE Engineering Corporation	26	27

Thank you for your kind attention.

JFE Engineering Corporation (Tokyo Head Office)

Marunouchi Trust Tower North 19F,

1-8-1 Marunouchi, Chiyoda-ku, Tokyo 100-0005, JAPAN

PT. JFE Engineering Indonesia

Sentral Senayan III 13th Floor, Jl. Asia Afrika No.8, Gelora Bung Karno - Senayan, Jakarta Pusat 10270, INDONESIA TEL: +62-21-29660785 FAX: +62-21-29660788