CS2010: Data Structures and Algorithms II

Shortest paths in graphs

Ivana.Dusparic@scss.tcd.ie

Outline

- > Shortest paths
 - Single source shortest path
 - > Topological sort acyclic graphs but ok with negative weights
 - > Dijkstra non negative weights but ok with cycles
 - > Bellman-Ford non-negative cycles
 - Single-pair shortest path
 - > A* search algorithm
 - All pairs shortest path
 - > Floyd-Warshall
- > Dynamic programming summary

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

Ē	c-weigh	tca aig	парп
	4->5	0.35	
	5->4	0.35	(5)=
	4->7	0.37	TA .
	5->7	0.28	- ↓ /
	7->5	0.28	(4)
	5->1	0.32	
	0->4	0.38	
	0->2	0.26	

0 / 4	0.50
0->2	0.26
7->3	0.39
1->3	0.29
2->7	0.34
6->2	0.40
3->6	0.52
6->0	0.58
6->4	0.93

Shortest path variants

Which vertices?

- Single source: from one vertex *s* to every other vertex.
- Single sink: from every vertex to one vertex *t*.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Dijkstra's shortest path algorithm

Data structures for single-source shortest paths

Goal. Find the shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists.

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

shortest-paths tree from 0

	edgeTo[]	<pre>distTo[]</pre>
0	null	0
1	5->1 0.32	1.05
2	0->2 0.26	0.26
3	7->3 0.37	0.97
4	0->4 0.38	0.38
5	4->5 0.35	0.73
6	3->6 0.52	1.49
7	2->7 0.34	0.60

parent-link representation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

v→w successfully relaxes

Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).

· Add vertex to tree and relax all edges pointing from that vertex.

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0

an edge-weighted digraph

Dijkstra Demo

https://algs4.cs.princeton.edu/lectures/44DemoDijkstra.p

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- · Add vertex to tree and relax all edges pointing from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

shortest-paths tree from vertex s

Dijkstra exercise

Start from vertex 1

V	DistTo[]	EdgeTo[]
0		
1		
2		
3		
4		
5		
6		
7		

Turning point – which vertice Cant be reached from 1?

Solution

ex	Known	Cost	Path		
	Т	3	1	1	0
	Т	0	-1	1	
g .	F	INF	-1	No Pa	ath
	Т	1	1	1	3
	F	INF	-1	No Pa	ath
	т	2	1	1	5
8	Т	11	5	1	5
	F	INF	-1	No Pa	ath
-					

Dijkstra performance

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{EV} V$
Fibonacci heap	1†	$\log V^\dagger$	1†	$E + V \log V$

† amortized

Bottom line.

- · Array implementation optimal for dense graphs.
- · Binary heap much faster for sparse graphs.
- · 4-way heap worth the trouble in performance-critical situations.
- · Fibonacci heap best in theory, but not worth implementing.

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).

Dijkstra – why can't work with negative weights?

- > Example?
- Consquence: picking the shortest candidate edge (local optimality) always ends up being correct (global optimality).
 - Greedy algorithm!
 - Wouldn't be true if used dijkstra with negative weights use a different algorithm instead!
- Can be modified to work with negative weights, i.e., vertex can be en-queued more than once -> exponential worst case running time though!

 A^*

A* shortest path

- > Single source, single destination/goal
- > Extension of Dijkstra's algorithm
- > Uses heuristics to guide its search and achieve better performance
 - prioritizes paths that seem to be leading closer to the goal

Heuristic function

- > solving a problem more quickly when classic methods are too slow
- > finding an approximate solution when classic methods fail to find any exact solution
- trading optimality, completeness, accuracy, or precision for speed.
- > a function that ranks alternatives in search algorithms at each branching step based on available information to decide which branch to follow
 - Eg approximate exact solution

Heuristic function h(n)

- > The 2 most important properties:
 - relatively cheap to compute
 - relatively accurate estimator of the cost to reach a goal. Usually a "good" heuristic is if ½ opt(n) <h(n) <opt(n)
- > Admissible heuristic
 - h(n) never overestimates the actual cost from n to goal

A^*

- y uses both the actual distance from the start and the estimated distance to the goal.
- only expands a node if it seems promising (only focuses on reaching the goal node, not every other node)
- > A guided version of Dijkstra
- > Evaluation function f(n) = g(n) + h(n) where

g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to goal

A^*

- > How to pick a heuristic function?
- > Domain knowledge some information about a goal
- > Eg in route planning:
 - Manhattan distance on a square grid that allows 4 directions of movement
 - Diagonal distance 8-direction square
 - Euclidean distance any direction
 - A good example on route planning in games
 http://theory.stanford.edu/~amitp/GameProgramming/Heuristics
 html

Topological sort shortest path

Shortest path in acyclic graphs

- > Is it easier than in graphs with cycles?
- Yes! Linear time
- Use topological sort (which only works in DAGs directional acyclic graphs) to find shortest path
- > If we have an edge from x to y, the ordering visits x before y
- > Shortest path visits/relaxes edges in topological order
- > Topological sort identify a vertex with no incoming edges, add it to the ordered list, remove it, repeat...
 - (decrease by 1 and conquer)

Topological sort shortest path demo

https://algs4.cs.princeton.edu/lectures/44DemoAcyclicSP.pdf

So far

- > No negative weights Dijkstra
- > No cycles Toplogical sort shortest path
- > What if the graph has negative weights and cycles?
- > What about negative cycles?

Bellman-Ford Shortest Path Algorithm

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0\rightarrow 1\rightarrow 2\rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

Adding 8 to each edge weight changes the shortest path from $0\rightarrow 1\rightarrow 2\rightarrow 3$ to $0\rightarrow 3$.

Conclusion. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

```
for (int i = 0; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
        relax(e);</pre>
pass i (relax each edge)
```

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

an edge-weighted digraph

$0\rightarrow 1$	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

Bellman-Ford Demo

- > https://algs4.cs.princeton.edu/lectures/44DemoBellman Ford.pdf
- Only positive weights in this example paper exercise with negative weights

Bellman-Ford Exercise

Bellman-Ford Exercise Table

Iteration	Dist to S	A	В	С	D	Е
0	0	inf	inf	inf	inf	Inf
1						
2						
3						
4						
5						

Keep track of distance and parent node eg 5 (via B) for each node for each iteration

Bellman-Ford algorithm: visualization

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found path that is at least as short as any shortest path containing i (or fewer) edges.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- · But much faster than that in practice.

Single source shortest path summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	$E \log V$	$E \log V$	V
Bellman-Ford	no negative cycles	E V	E V	V
Bellman-Ford (queue-based)		E + V	E V	v

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in pass V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $$1,000 \Rightarrow 741 \text{ Euros } \Rightarrow 1,012.206 \text{ Canadian dollars } \Rightarrow $1,007.14497.$

 $1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be -ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!

Floyd-Warshall shortest path algorithm

All-pairs shortest path

- > Run Dijkstra for each vertex?
- > Run Bellman-Ford each vertex?
- > Worst case scenario assume fully connected graph, so $E = V^2$
- > Dijkstra = V times V^2 log V = V^3 log V
- > Bellman-Ford = V times V^3 = V^4
- Other options?
- > Floyd-Warshall = V^3 (but V^2 space)

Floyd-Warshall all-pairs shortest path

- > For a path p = {v1, v2, ..., vl}, vertices v2 to vl-1 are intermediate vertices
- > Path consisting of a single edge has no intermediate vertices
- > d_{ij} (k) is a shortest path from i to j such that any intermediate vertices on the path are chosen from the set {1, 2, ..., k} in any order, any subset of them

Floyd-Warshall

- \rightarrow Assume we know $d_{ij}^{(k-1)}$ how do we calculate $d_{ij}^{(k)}$
- > The path either goes through k, or it does not
 - If it does not, then shortest path $d_{ij}^{(k)} = d_{ij}^{(k-1)}$
 - If it does, it means it passes through it exactly once, and it consists of shortest path from i to k, and then the shortest path from k to j $d_{ij}^{(k)} = d_{ik}^{(k-1)-} + d_{kj}^{(k)-1}$

$$\begin{aligned} d_{ij}^{(0)} &= w_{ij}, \\ d_{ij}^{(k)} &= \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{for } k \ge 1. \end{aligned}$$

Floyd-Warshall pseudocode

```
for k = 1 to n do for i = 1 to n do for j = 1 to n do if (d[i, k] + d[k, j] < d[i, j]) \{d[i, j] = d[i, k] + d[k, j]; pred[i, j] = k;\} return d[1..n, 1..n];
```


Floyd-Warshall demo

https://www.cs.usfca.edu/~galles/visualization/Floyd.ht ml

Floyd-Warshall exercise

D ⁰	Α	В	С	D	E
Α	0	3	8	INF	-4
В	INF	0	INF	1	7
С	INF	4	0	INF	INF
D	2	INF	-5	0	INF
E	INF	INF	INF	6	0

Exercise solution

D ⁵	Α	В	С	D	E
Α	0	0	1	-3	-4
В	3	0	-4	1	-1
С	7	4	0	5	3
D	2	-1	-5	0	-2
E	8	5	1	6	0

Dynamic Programming

Dynamic programming

- > Algorithm Design, Kleinberg and Tardos, Pearson 2014
- > Introduction to Design and Analysis of Algorithms, Levitin. Pearson 2012

Dynamic programming

- > Examples:
 - Bellman-Ford
 - Floyd-Warshall
- > Examines the full search space but implicitly, by breaking up the problem into a series of subproblems, and then building up the solution to larger and larger subproblems
- > Typically overlapping subproblems instead of over and over calculating solutions to a subproblem, record it in a table and look up when needed
- > So why a fancy name if this is all that it's doing?
- > Richard Bellman on the Birth of Dynamic Programming, by Stuart Dreyfus https://pubsonline.informs.org/doi/pdf/10.1287/opre.50.1.48.17791

Dynamic programming

- > Informal guidelines:
 - There are only a polynomial number of subproblems
 - The solution to the original problem can be easily computed from the solution of the subproblems
 - There is a natural order of subproblems from smallest to largest together with easy to compute recurrence that allows building a solution to a subproblem from smaller subproblems

Shortest paths challenges

- > http://www.diag.uniroma1.it/challenge9/
- > http://www.diag.uniroma1.it/challenge9/download.shtml