

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 257000 N
                                     M_x = 9130000 \text{ Nmm}
                                                                                    Ε
= 446000 N
                                     \sigma_a = 152 \text{ N/mm}^2
                                                                                    G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma(N) =
                                                                                    \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca}=
                                     σ
                                                                                    \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 275000 N
                                     M_x = 8600000 \text{ Nmm}
                                                                                    Ε
= 421000 N
                                     \sigma_a = 152 \text{ N/mm}^2
                                                                                    G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma(N) =
                                                                                    \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca}=
                                     σ
                                                                                    \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 151000 N
                                     M_x = 7740000 \text{ Nmm}
                                                                                    Ε
                                     \sigma_a = 152 \text{ N/mm}^2
= 170000 N
                                                                                    G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma(N) =
                                                                                    \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca} =
                                     σ
                                                                                    \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 164000 N		$E = 195000 \text{ N/mm}^2$	
T_y	= 193000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$	
y_G	=	$\sigma(N) =$	$\sigma_{l} = r_{l}$	_ =
A _*	=	$\sigma(M_x)=$	$\sigma_{II} = r$	=
S_u	=	$\tau(T_{y}) =$	$\sigma_{\text{tresca}} = r$	_ =
J_{u}	=	σ =	σ_{mises} =	
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =	

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 287000 N
                                      M_x = 10600000 \text{ Nmm}
                                                                                      Ε
= 354000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 228000 N
                                     M_x = 10400000 \text{ Nmm}
                                                                                   Ε
= 402000 N
                                     \sigma_a = 152 \text{ N/mm}^2
                                                                                   G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 166000 N	$M_x = 6900000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 181000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_y) =$	$\sigma_{\text{tresca}} =$	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 178000 N				$= 195000 \text{ N/mm}^2$		
T_v	= 142000 N	σ_{a}	$= 152 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$		
y_G	=	σ(N)	=	σ_{l}	=	r_u	=
A,	=	$\sigma(M_s)$	₍)=	σ_{II}	=	r_{v}	=
S_{u}^{n}	=	$\tau(T_y)$	=	σ_{tres}		r_{o}	=
J_u	=	σ΄	=	σ_{mis}	es=		
J_v	=	τ	=	$\sigma_{\rm st}$	_{-n} =		

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 228000 N
                                      M_x = 10600000 \text{ Nmm}
                                                                                     Ε
= 421000 N
                                              = 152 \text{ N/mm}^2
                                                                                     G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                     \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                     \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                     \sigma_{tresca}=
                                      σ
                                                                                     \sigma_{\text{mises}}=
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 246000 N
                                      M_x = 7340000 \text{ Nmm}
                                                                                      Ε
= 546000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca} =
                                      σ
                                                                                      \sigma_{\text{mises}}=
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 187000 N	$M_x = 7230000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 151000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_y) =$	σ_{tresca} =	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}} =$		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 150000 N		= 6250000 Nmm				
T_y	= 173000 N	σ_{a}	$= 152 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$		
y_G	=	σ(N)	=	σ_{I}	=	r_u	=
A _*	=	$\sigma(M_s)$	_×)=	σ_{II}	=	r_{v}	=
S_u	=	$\tau(T_y)$) =	σ_{tres}	ca=	r_{o}	=
J_{u}	=	σ	=	σ_{mise}	es=		
J_v	=	τ	=	$\sigma_{\rm st.ve}$	en=		

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 257000 N
                                      M_x = 9120000 \text{ Nmm}
                                                                                      Ε
= 448000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 275000 N
                                     M_x = 9030000 \text{ Nmm}
                                                                                    Ε
= 376000 N
                                     \sigma_a = 152 \text{ N/mm}^2
                                                                                    G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma(N) =
                                                                                    \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca} =
                                     σ
                                                                                    \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 151000 N	$M_x = 8680000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 163000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_v	=
S_u	=	$\tau(T_y) =$	σ_{tresca} =	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}} =$		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 164000 N
                                      M_x = 6620000 \text{ Nmm}
                                                                                      Ε
= 172000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca} =
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 275000 N
                                      M_x = 11100000 \text{ Nmm}
                                                                                     Ε
                                              = 152 \text{ N/mm}^2
= 320000 N
                                                                                     G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                     \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                     \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 218000 N
                                      M_x = 10500000 \text{ Nmm}
                                                                                     Ε
= 375000 N
                                             = 152 \text{ N/mm}^2
                                                                                     G
                                                                                              = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                     \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                     \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                     \sigma_{tresca}=
                                      σ
                                                                                     \sigma_{\text{mises}}=
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 173000 N
                                    M_x = 8470000 \text{ Nmm}
                                                                                 Ε
= 173000 N
                                           = 152 \text{ N/mm}^2
                                                                                 G
                                                                                          = 76000 \text{ N/mm}^2
                                    \sigma_{\rm a}
                                    \sigma(N) =
                                                                                 \sigma_{\text{I}}
                                    \sigma(M_v)=
                                    \tau(T_v) =
                                                                                 \sigma_{tresca} =
                                    σ
                                                                                 \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 187000 N	$M_x = 5920000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 152000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r _u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_v	=
S_u	=	$\tau(T_{y}) =$	σ_{tresca} =	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 218000 N
                                      M_x = 10400000 \text{ Nmm}
                                                                                      Ε
= 388000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 236000 N
                                      M_x = 7520000 \text{ Nmm}
                                                                                      Ε
= 463000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 169000 N
                                      M_x = 5930000 \text{ Nmm}
                                                                                      Ε
= 154000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca} =
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 136000 N	$M_x = 6090000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 164000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_y) =$	$\sigma_{\text{tresca}} =$	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 235000 N
                                      M_x = 7780000 \text{ Nmm}
                                                                                     Ε
= 461000 N
                                              = 152 \text{ N/mm}^2
                                                                                     G
                                                                                              = 76000 \text{ N/mm}^2
                                      \sigma_{a}
                                      \sigma(N) =
                                                                                     \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                     \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                     \sigma_{tresca}=
                                      σ
                                                                                     \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 251000 N
                                      M_x = 7330000 \text{ Nmm}
                                                                                      Ε
= 456000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 143000 N	M_x			$= 195000 \text{ N/mm}^2$		
T_v	= 170000 N	σ_{a}	$= 152 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$		
y_G	=	σ(N)	=	σ_{I}	=	r_u	=
A,	=	$\sigma(M_s)$	₍)=	σ_{II}	=	r_{v}	=
S_{u}^{n}	=	$\tau(T_y)$	=	σ_{tres}		r_{o}	=
J_u	=	σ	=	σ_{mise}	es=		
J_v	=	τ	=	$\sigma_{\rm st v}$	en=		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 156000 N
                                     M_x = 5260000 \text{ Nmm}
                                                                                    Ε
= 179000 N
                                     \sigma_a = 152 \text{ N/mm}^2
                                                                                    G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma(N) =
                                                                                    \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca} =
                                     σ
                                                                                    \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 262000 N
                                      M_x = 9590000 \text{ Nmm}
                                                                                      Ε
= 329000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca} =
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 209000 N
                                      M_x = 8920000 \text{ Nmm}
                                                                                      Ε
= 418000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 157000 N	$M_x = 6060000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 180000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_v	=
S_u	=	$\tau(T_y) =$	$\sigma_{\text{tresca}} =$	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}} =$		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 169000 N	$M_x = 5780000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 145000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_y) =$	σ_{tresca} =	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}} =$		

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 208000 N
                                     M_x = 10300000 \text{ Nmm}
                                                                                    Ε
= 380000 N
                                             = 152 \text{ N/mm}^2
                                                                                    G
                                                                                              = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                    \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                     \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                     \sigma_{tresca}=
                                     σ
                                                                                    \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 225000 N
                                      M_x = 7570000 \text{ Nmm}
                                                                                      Ε
= 428000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca} =
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 178000 N	$M_{x} = 5470000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 161000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_y) =$	$\sigma_{\text{tresca}} =$	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

	Op. 0.0.0.0.0.						
Ν	= 143000 N		= 5210000 Nmm				
T_y	= 179000 N	σ_{a}	$= 152 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$		
y_G	=	σ(N)		σ_{I}	=	r_u	=
A _*	=	$\sigma(M_{x})$	₍)=	σ_{II}	=	r_{v}	=
S_u	=	$\tau(T_y)$	=	σ_{tres}	ca=	r_{o}	=
J_u	=	σ	=	σ_{mise}	es=		
J_v	=	τ	=	$\sigma_{\rm st.v}$	en=		

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 235000 N
                                     M_x = 8610000 \text{ Nmm}
                                                                                    Ε
= 426000 N
                                              = 152 \text{ N/mm}^2
                                                                                    G
                                                                                              = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                    \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                     \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                     \sigma_{tresca}=
                                     σ
                                                                                    \sigma_{\text{mises}}=
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 251000 N
                                      M_x = 7940000 \text{ Nmm}
                                                                                      Ε
= 432000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 143000 N	$M_x = 6440000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 171000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_y) =$	$\sigma_{\text{tresca}} =$	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 156000 N
                                      M_x = 4920000 \text{ Nmm}
                                                                                      Ε
= 180000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca} =
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 268000 N
                                      M_x = 9580000 \text{ Nmm}
                                                                                      Ε
= 356000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 212000 N
                                      M_x = 9890000 \text{ Nmm}
                                                                                      Ε
= 370000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca} =
                                      σ
                                                                                      \sigma_{\text{mises}}=
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 176000 N	$M_x = 6610000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 202000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _.	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_y) =$	$\sigma_{\text{tresca}} =$	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 190000 N	$M_{x} = 7590000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 154000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_v	=
S_u	=	$\tau(T_y) =$	σ_{tresca} =	r_{o}	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 223000 N
                                      M_x = 10400000 \text{ Nmm}
                                                                                      Ε
= 396000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 240000 N
                                      M_x = 8510000 \text{ Nmm}
                                                                                      Ε
= 370000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 191000 N		= 8010000 Nmm				
T_y	= 160000 N	σ_{a}	$= 152 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$		
y_G	=	σ(N)	=	σ_{l}	=	r_u	=
A _*	=	$\sigma(M_s)$	_×)=	σ_{II}	=	r_{v}	=
S_u	=	$\tau(T_y)$	=	σ_{tres}	ca=	r_{o}	=
J_u	=	σ΄	=	σ_{mise}	es=		
J_v	=	τ	=	$\sigma_{\rm st.ve}$	en=		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 153000 N	$M_x = 8250000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$	
T_y	= 170000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$	
y_G	=	$\sigma(N) =$	$\sigma_{l} = r_{l}$, =
A _*	=	$\sigma(M_x)=$	$\sigma_{II} = r_{V}$, =
S_u	=	$\tau(T_{y}) =$	$\sigma_{\text{tresca}} = r_{\text{c}}$, =
J_{u}	=	σ =	σ_{mises} =	
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =	

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 251000 N
                                      M_x = 8910000 \text{ Nmm}
                                                                                      Ε
= 421000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 268000 N
                                      M_x = 8590000 \text{ Nmm}
                                                                                      Ε
= 376000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 161000 N	$M_x = 7710000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 186000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
$y_G^{'}$	=	$\sigma(N) =$	$\sigma_{l} =$	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_y) =$	$\sigma_{tresca} =$	r_{o}	=
J_u	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}} =$		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 175000 N	$M_x = 5400000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$	
T_y	= 203000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$	
y_G	=	$\sigma(N) =$	$\sigma_{l} = r$	'u =
A _*	=	$\sigma(M_x)=$	$\sigma_{II} = r$	· _v =
S_u	=	$\tau(T_y) =$	σ_{tresca} = r	· =
J_{u}	=	σ =	σ_{mises} =	
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =	

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 269000 N
                                      M_x = 9930000 \text{ Nmm}
                                                                                      Ε
= 319000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 214000 N
                                     M_x = 9380000 \text{ Nmm}
                                                                                    Ε
= 382000 N
                                     \sigma_a = 152 \text{ N/mm}^2
                                                                                    G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma(N) =
                                                                                    \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca}=
                                     σ
                                                                                    \sigma_{\text{mises}} =
```


Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 176000 N		$E = 195000 \text{ N/mm}^2$	
T_y	= 197000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$	
y_G	=	$\sigma(N) =$	$\sigma_{l} = r_{u}$	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} = r_{v}$	=
S_u	=	$\tau(T_{y}) =$	$\sigma_{\text{tresca}} = r_{\text{o}}$	=
J_{u}	=	σ =	σ_{mises} =	
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =	

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 190000 N		$E = 195000 \text{ N/mm}^2$		
T_y	= 150000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	σ_{l} =	r_u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} =$	r_{v}	=
S_u	=	$\tau(T_{y}) =$	$\sigma_{tresca} =$	r_{o}	=
J_{u}	=	σ =	$\sigma_{\text{mises}} =$		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

Calcolo degli sforzi in * con forze baricentriche

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

```
= 195000 \text{ N/mm}^2
= 223000 N
                                      M_x = 10400000 \text{ Nmm}
                                                                                      Ε
= 394000 N
                                              = 152 \text{ N/mm}^2
                                                                                      G
                                                                                               = 76000 \text{ N/mm}^2
                                      \sigma_{\rm a}
                                      \sigma(N) =
                                                                                      \sigma_{\text{I}}
                                      \sigma(M_v)=
                                                                                      \sigma_{\text{II}}
                                      \tau(T_v) =
                                                                                      \sigma_{tresca}=
                                      σ
                                                                                      \sigma_{\text{mises}} =
```


Calcolo degli sforzi in * con forze baricentriche

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 240000 N	M_x	= 7820000 Nmm	Ε	$= 195000 \text{ N/mm}^2$		
T_v	= 427000 N	σ_{a}	$= 152 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$		
$y_G^{'}$	=	σ(N)	=	σ_{I}	=	r_u	=
A _*	=	$\sigma(M_x)$	(_v)=	σ_{II}	=	r_{v}	=
S_u	=	$\tau(T_y)$	=	σ_{tres}		r_{o}	=
J_u	=	σ	=	σ_{mis}	es=		
J_v	=	τ	=	$\sigma_{\rm st v}$	en=		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 200000 N		= 7240000 Nmm				
T_v	= 165000 N	σ_{a}	$= 152 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$		
y_G	=	σ(N)	=	σ_{I}	=	r_u	=
A,	=	$\sigma(M_s)$	₍)=	σ_{II}	=	r_{v}	=
S_{u}^{n}	=	$\tau(T_y)$	=	σ_{tres}		r_{o}	=
J_u	=	σ	=	σ_{mise}	es=		
J_v	=	τ	=	$\sigma_{\rm st.ve}$	en=		

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare l'asse neutro e l'andamento delle tens. normali.

Rappresentare l'andamento delle tens. tangenziali.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in *.

Ν	= 160000 N	$M_x = 5860000 \text{ Nmm}$	$E = 195000 \text{ N/mm}^2$		
T_y	= 197000 N	$\sigma_a = 152 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
y_G	=	$\sigma(N) =$	$\sigma_{l} = r$	r _u	=
A _*	=	$\sigma(M_x)=$	$\sigma_{II} = r$	ſ _v	=
S_u	=	$\tau(T_{y}) =$	$\sigma_{tresca} = r$	o	=
J_{u}	=	σ =	σ_{mises} =		
J_v	=	τ =	$\sigma_{\text{st.ven}}$ =		

