Algebra Qualifying Exam, June 2016
June 3^{rd} , 2016
Last name
First name
KSU Email

- a) Let H and K be normal subgroups of a finite group G. Suppose that $H \cap K = \{1\}$ and the order of G equals the product of orders of H and K. Show that $G \simeq H \times K$.
- b) Let p and q be positive prime integers, such that p < q and $p \nmid q 1$. Show that all groups of order pq are isomorphic to each other.

Hint: use Sylow's theorems and part a).

- a) Consider the field $\mathbb{Q}(\sqrt[3]{-3})$. Show that this field is NOT a normal extension of \mathbb{Q} . (Here $\sqrt[3]{-3}$ is the real cubic root of -3.)
- b) Let F be the Galois closure of the field $\mathbb{Q}(\sqrt[3]{-3})$. Show that F is isomorphic to $\mathbb{Q}[x]/(x^6+3)$.

Hint: we know that $\sqrt[3]{-3} \in F$. Use the geometry of complex numbers to show that also $\sqrt{-3} \in F$, and use it to deduce that $\sqrt[6]{-3} \in F$.

Let k[x, y] be the ring of polynomials in two variables, where k is a field of characteristic not equal to 2. Consider the ideal $I = (x^2 - y, x^2 + y + 2)$.

- a) Assume that -1 is a square in k. Show that $I = I_+ \cap I_- = I_+ I_-$, where $I_+ = (x + \sqrt{-1}, y + 1), I_- = (x \sqrt{-1}, y + 1)$. Is I a prime ideal? Provide a proof.
- b) Assume that -1 is NOT a square in k. Show that I is a maximal ideal in k[x,y]. Show that K:=k[x,y]/I is a field and is isomorphic to $k[x]/(x^2+1)$.

Let $M \in M_{n \times m}(k)$ be an $n \times m$ matrix with entries from a field k. Define the row rank of M as the dimension of the subspace in k^m spanned by the rows of M, and the column rank of M as the dimension of the subspace in k^n spanned by the columns of M. Show that these ranks are equal.

- 5. (10 pts) Let A be a linear transformation of a complex 4-dimensional vector space, such that A in NOT diagonalizable, and it satisfies the property $A^3 = A^2$.
 - a) What eigenvalues might A have?
 - b) What Jordan blocks can the Jordan canonical form of A have?
 - c) What Jordan canonical form might A have?

Provide proofs.

Let R be a principal ideal domain and let $I \subset R$ be a non-zero ideal in R. Prove that I is isomorphic to R as an R-module.