# **Incentivizing Resource Pooling**

Chen Chen



October 2023

Joint work with: Yilun Chen (CUHK-SZ) and Pengyu Qian (Purdue)

#### The Line Dance

Queuing theory, the mathematical study of lines, helps businesses, call centers, computer networks and others figure out how to keep things moving.

#### Multiple servers, multiple lines



#### Multiple servers, single line



THE WALL STREET JOURNAL.

Service improves (significantly) with resource pooling

# Resource pooling: known fact

N servers: job arrival rate  $\lambda < 1$ , server processing rate  $\mu = 1$ 



# Resource pooling: known fact

vs.

N servers: job arrival rate  $\lambda < 1$ , server processing rate  $\mu = 1$ 

#### Without resource pooling:



With resource pooling:



# jobs in system:  $N \cdot \frac{\lambda}{1-\lambda}$ 

$$N \cdot \frac{\lambda}{1-\lambda}$$

linear

$$\frac{\lambda}{1-\lambda}$$

constant



## Can resource pooling be achieved in decentralized systems?

Decentralization boosts security, privacy, and scalability

- **Goal:** design mechanism to incentivize resource pooling in a decentralized setting.
- **Applications:** Decentralized computing marketplaces on blockchains

- **Goal:** design mechanism to incentivize resource pooling in a decentralized setting.
- **Applications:** Decentralized computing marketplaces on blockchains







Golem Network
Market cap: \$170M

Akash Network Market cap: \$320M

iExec Market cap: \$75M

- **Goal:** design mechanism to incentivize resource pooling in a decentralized setting.
- **Applications:** Decentralized computing marketplaces on blockchains







Golem Network
Market cap: \$170M

Akash Network Market cap: \$320M

iExec Market cap: \$75M

- Essential aspects of the problem:
  - ▶ Number of servers *N* is large.
  - Servers possess limited information about the other servers.

- **Goal:** design mechanism to incentivize resource pooling in a decentralized setting.
- **Applications:** Decentralized computing marketplaces on blockchains







Golem Network
Market cap: \$170M

Akash Network Market cap: \$320M

iExec Market cap: \$75M

- Essential aspects of the problem:
  - ightharpoonup Number of servers N is large.
  - Servers possess limited information about the other servers.
- Main result: develop a simple token-based mechanism that incentives complete resource pooling in limited information setting when N is large.
  - $\Longrightarrow$  System dynamics and performance match those under centralized control in the asymptotics

# Model setup

- $\blacksquare$  N strategic servers
- Jobs arrive with  $\mathsf{Poisson}(\lambda)$  where  $\lambda < 1$ ; capacity units arrive with  $\mathsf{Poisson}(1)$



# Model setup

- lacktriangleq N strategic servers
- Jobs arrive with  $Poisson(\lambda)$  where  $\lambda < 1$ ; capacity units arrive with Poisson(1)
- Costs:
  - 1. Holding cost: each waiting job costs one per unit of time
  - 2. Processing cost: serving a job costs  $c \ge 0$
- Servers' objective: minimizing own long-run average total cost



# Model setup

- lacktriangleq N strategic servers
- Jobs arrive with  $\mathsf{Poisson}(\lambda)$  where  $\lambda < 1$ ; capacity units arrive with  $\mathsf{Poisson}(1)$
- Costs:
  - 1. Holding cost: each waiting job costs one per unit of time
  - 2. Processing cost: serving a job costs  $c \ge 0$
- Servers' objective: minimizing own long-run average total cost
- $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$

 $\lambda < 1$ 

- Limited information:
  - (a) other servers' arrivals and actions are unobservable
  - (b) precise knowledge of number of servers N <u>not required</u> (except knowing that it is relative large)

### **Related Literature**

#### Resource pooling:

- Power of resource pooling: [Tsitsiklis and Xu, 2013]
- Decentralized setup with two servers: [Hu and Caldentey, 2023]

#### Mean-field equilibrium:

- Analysis of complex operational problems: [lyer et al., 2014], [Balseiro et al., 2015], [Kanoria and Saban, 2021], [Arnosti et al., 2021]
- Fluid mean-field equilibrium similar in spirit to [Balseiro et al., 2015]

#### Scrip system:

Analysis of scrip system: [Kash et al., 2007], [Kash et al., 2015], [Johnson et al., 2014], [Bo et al., 2018]

#### Other related work:

- Cooperative game model: [Anily and Haviv, 2010], [Anily and Haviv, 2014], [Karsten et al., 2015]
- Supermarket game: [Xu and Hajek, 2013], [Yang et al., 2019]

### **Outline**

- Motivation, research question, and literature review (done)
- Token-based mechanism
  - Solution concept: Fluid mean-field equilibrium (FMFE)
  - ► Characterization of FMFE
  - ► Designing key element of mechanism
- FMFE strategy as near-optimal best response
  - Asymptotic analysis for large markets
  - Numerical analysis for small markets
- Extension to heterogeneous servers
- Takeaway

In the mechanism, a server can:

■ Request help from others <u>without recall</u> at any time.

When a capacity unit arrives, either: (i) process its job, (ii) help others, or (iii) be idle and waste the unit without recall.

In the mechanism, a server can:

- Request help from others without recall at any time.
  - Requested jobs relocate to shared pool

- When a capacity unit arrives, either: (i) process its job, (ii) help others, or (iii) be idle and waste the unit without recall. If a server offers help:
  - ► The *oldest* job in shared pool is served (if pool is non-empty)

• A shared pool to match requests and provisions of help in FCFS order.

- Request help from others without recall at any time.
  - Requested jobs relocate to shared pool

- When a capacity unit arrives, either: (i) process its job, (ii) help others, or (iii) be idle and waste the unit without recall. If a server offers help:
  - ► The *oldest* job in shared pool is served (if pool is non-empty)

- A shared pool to match requests and provisions of help in FCFS order.
  - ▶ Shared pool queue length is unobservable, but servers can infer it.

- Request help from others without recall at any time.
  - Requested jobs relocate to shared pool
  - Each request costs one token
- When a capacity unit arrives, either: (i) process its job, (ii) help others, or (iii) be idle and waste the unit without recall. If a server offers help:
  - ► The *oldest* job in shared pool is served (if pool is non-empty)
  - ▶ A token is rewarded with prob  $\phi \in (0,1)$
- A shared pool to match requests and provisions of help in FCFS order.
  - ▶ Shared pool queue length is unobservable, but servers can infer it.
- A token system to mitigate free riding.

- Request help from others without recall at any time.
  - Requested jobs relocate to shared pool
  - Each request costs one token
- When a capacity unit arrives, either: (i) process its job, (ii) help others, or (iii) be idle and waste the unit without recall. If a server offers help:
  - ► The *oldest* job in shared pool is served (if pool is non-empty)
  - ▶ A token is rewarded with prob  $\phi \in (0,1)$
- A shared pool to match requests and provisions of help in FCFS order.
  - ▶ Shared pool queue length is unobservable, but servers can infer it.
- A token system to mitigate free riding.
- Servers interact via shared pool

- Request help from others without recall at any time.
  - Requested jobs relocate to shared pool
  - Each request costs one token
- When a capacity unit arrives, either: (i) process its job, (ii) help others, or (iii) be idle and waste the unit without recall. If a server offers help:
  - ► The *oldest* job in shared pool is served (if pool is non-empty)
  - ▶ A token is rewarded with prob  $\phi \in (0,1)$
- A shared pool to match requests and provisions of help in FCFS order.
  - ▶ Shared pool queue length is unobservable, but servers can infer it.
- A token system to mitigate free riding.
- Servers interact via shared pool
- lacktriangle The value of  $\phi$  is critical to system performance

- Mean-field approximation: each server optimizes by assuming state of shared pool is fixed at long-run average ⇒
  - ightharpoonup Expected waiting time in shared pool is constant  $w\geq 0$ : value determined endogenously by equilibrium
  - $\triangleright$  Probability that shared pool is non-empty is constant: equal to  $\phi$ !

Approximation methodology similar to (Balseiro et al. 2015)

- Mean-field approximation: each server optimizes by assuming state of shared pool is fixed at long-run average ⇒
  - Expected waiting time in shared pool is constant  $w \geq 0$ : value determined endogenously by equilibrium
  - Probability that shared pool is non-empty is constant: equal to  $\phi$ !

#### For each server

```
rate of requesting help = rate of spending tokens
= rate of earning tokens = \phi · rate of offering help
```

Approximation methodology similar to (Balseiro et al. 2015)

- Mean-field approximation: each server optimizes by assuming state of shared pool is fixed at long-run average ⇒
  - lackbox Expected waiting time in shared pool is constant  $w\geq 0$ : value determined endogenously by equilibrium
  - Probability that shared pool is non-empty is constant: equal to  $\phi$ !



#### For each server

```
 \text{rate of requesting help} = \text{rate of spending tokens} \\ = \text{rate of earning tokens} = \phi \cdot \text{rate of offering help}
```

- Mean-field approximation: each server optimizes by assuming state of shared pool is fixed at long-run average ⇒
  - Expected waiting time in shared pool is constant  $w \ge 0$ : value determined endogenously by equilibrium
  - $\triangleright$  Probability that shared pool is non-empty is constant: equal to  $\phi$ !
- Fluid relaxation: allow # of tokens to be negative; only require that tokens satisfy the flow balance constraint in expectation

- Mean-field approximation: each server optimizes by assuming state of shared pool is fixed at long-run average ⇒
  - ightharpoonup Expected waiting time in shared pool is constant  $w\geq 0$ : value determined endogenously by equilibrium
  - ightharpoonup Probability that shared pool is non-empty is constant: equal to  $\phi$ !
- Fluid relaxation: allow # of tokens to be negative; only require that tokens satisfy the flow balance constraint in expectation
- After simplification: server's best response depends only on its queue length
  - ⇒ Closed-form characterization (next slide)

- Mean-field approximation: each server optimizes by assuming state of shared pool is fixed at long-run average ⇒
  - Expected waiting time in shared pool is constant  $w \ge 0$ : value determined endogenously by equilibrium
  - $\triangleright$  Probability that shared pool is non-empty is constant: equal to  $\phi$ !
- Fluid relaxation: allow # of tokens to be negative; only require that tokens satisfy the flow balance constraint in expectation
- After simplification: server's best response depends only on its queue length ⇒ Closed-form characterization (next slide)
- Fluid mean-field equilibrium (FMFE):



# Server's best response

**Closed-form solution: threshold policy** w.r.t. queue length:

- $\blacksquare$  Request help only when queue length exceeds a threshold k (which depends on  $\phi$  and w)
- Offer help only when queue is empty

## Server's best response

**Closed-form solution: threshold policy** w.r.t. queue length:

- $\blacksquare$  Request help only when queue length exceeds a threshold k (which depends on  $\phi$  and w)
- Offer help only when queue is empty

**Proposition.** Suppose  $\exists \, \bar{w} < \infty$  such that all servers believe that  $w \leq \bar{w}$ ; then  $w = O\left(\frac{1}{N}\right)$ .

Proof: Using a drift analysis.

## Server's best response

**Closed-form solution: threshold policy** w.r.t. queue length:

- $\blacksquare$  Request help only when queue length exceeds a threshold k (which depends on  $\phi$  and w)
- Offer help only when queue is empty

**Proposition.** Suppose  $\exists \bar{w} < \infty$  such that all servers believe that  $w \leq \bar{w}$ ; then  $w = O\left(\frac{1}{N}\right)$ .

Proof: Using a drift analysis.



## Best response when w < 1

- When  $0 < \phi \le \lambda$ ,  $k = |\log_{\lambda}(\phi)|$
- When  $\lambda < \phi < 1$ , k = 0



## Best response when w < 1

- When  $0 < \phi \le \lambda$ ,  $k = \lfloor \log_{\lambda}(\phi) \rfloor$
- When  $\lambda < \phi < 1$ , k = 0



**Proposition.** For any  $\phi \in (0,1)$ , if all servers play the above strategy, it forms a FMFE when number of servers N is large.

### Minimum number of servers to sustain FMFE

- FMFE necessitates  $w \leq 1$ .
- Minimum # servers can be specified analytically or numerically.

### Minimum number of servers to sustain FMFE

- FMFE necessitates  $w \le 1$ .
- Minimum # servers can be specified analytically or numerically.
- **Example:** suppose  $\phi = \lambda$



### Minimum number of servers to sustain FMFE

- FMFE necessitates  $w \leq 1$ .
- Minimum # servers can be specified analytically or numerically.
- **Example:** suppose  $\phi = \lambda$ 
  - ► Shared pool is an M/M/1 queue  $\Rightarrow w = \frac{\lambda}{1-\lambda} \cdot \frac{1}{N\lambda} = \frac{1}{(1-\lambda)N}$
  - $ightharpoonup w \le 1 \Rightarrow N \ge \left\lceil \frac{1}{1-\lambda} \right\rceil$



# Optimal value of $\phi$





**Proposition.** The expected total number of jobs in system, denoted by  $Q_{\Sigma}(\phi)$ , satisfies:

- 1. When  $\phi < \lambda$ :  $\lim_{N \to \infty} Q_{\Sigma}(\phi)/N = q(\phi) > 0$
- 2. When  $\phi \geq \lambda$ :  $Q_{\Sigma}(\phi) = \frac{\phi}{1-\phi}$

# Optimal value of $\phi$





**Main result.** The optimal value is  $\phi = \lambda$ . Moreover, this induces complete resource pooling: it is each server's best strategy to (i) request help whenever a job arrives, (ii) offer help when queue is empty.

 $\Longrightarrow$  System's dynamics and performance match those under centralized control

■ Servers  $i \ge 2$  follow FMFE strategy; server one minimizes own cost.

- Servers  $i \ge 2$  follow FMFE strategy; server one minimizes own cost.
- Optimal value of fluid mean-field problem with w=0:  $c\lambda+\mathbb{E}\big[Q^{\mathrm{F}}\big]$   $\mathbb{E}[Q^{\mathrm{F}}]$ : a server's queue length when it follows the FMFE strategy

- Servers  $i \ge 2$  follow FMFE strategy; server one minimizes own cost.
- Optimal value of fluid mean-field problem with w=0:  $c\lambda+\mathbb{E}\big[Q^{\mathrm{F}}\big]$   $\mathbb{E}[Q^{\mathrm{F}}]$ : a server's queue length when it follows the FMFE strategy

**Lemma**. If server one also follows FMFE strategy, its time-average total cost is upper-bounded by  $c\lambda + \mathbb{E}\big[Q^{\scriptscriptstyle \mathrm{F}}\big] + \frac{C_1(\lambda,\phi)}{N}$ .

- Servers  $i \ge 2$  follow FMFE strategy; server one minimizes own cost.
- $\blacksquare$  Optimal value of fluid mean-field problem with w=0:  $c\lambda+\mathbb{E}\big[Q^{\scriptscriptstyle \mathrm{F}}\big]$   $\mathbb{E}[Q^{\scriptscriptstyle \mathrm{F}}]\text{: a server's queue length when it follows the FMFE strategy}$

**Lemma**. If server one also follows FMFE strategy, its time-average total cost is upper-bounded by  $c\lambda + \mathbb{E}\big[Q^{\scriptscriptstyle{\mathrm{F}}}\big] + \frac{C_1(\lambda,\phi)}{N}$ .

**Lemma**. Regardless of the strategy server one uses, its time-average total cost is lower-bounded by  $c\lambda+\mathbb{E}\left[Q^{\scriptscriptstyle{\mathrm{F}}}\right]-\frac{C_2(\lambda,\phi,\delta)}{N^{1-\delta}}$  for any  $\delta\in(0,1)$ .

- Servers  $i \ge 2$  follow FMFE strategy; server one minimizes own cost.
- Optimal value of fluid mean-field problem with w=0:  $c\lambda+\mathbb{E}\big[Q^{\mathrm{F}}\big]$   $\mathbb{E}[Q^{\mathrm{F}}]$ : a server's queue length when it follows the FMFE strategy

**Lemma**. If server one also follows FMFE strategy, its time-average total cost is upper-bounded by  $c\lambda + \mathbb{E}\big[Q^{\scriptscriptstyle \mathrm{F}}\big] + \frac{C_1(\lambda,\phi)}{N}$ .

**Lemma**. Regardless of the strategy server one uses, its time-average total cost is lower-bounded by  $c\lambda+\mathbb{E}\left[Q^{\mathrm{F}}\right]-\frac{C_{2}(\lambda,\phi,\delta)}{N^{1-\delta}}$  for any  $\delta\in(0,1)$ .

#### Proof sketch:

- A relaxation to server one's problem: grant an additional power to empty the shared pool at the end of every interaction with shared pool
  - ⇒ Request help only when a job arrives

- Servers  $i \ge 2$  follow FMFE strategy; server one minimizes own cost.
- $\blacksquare$  Optimal value of fluid mean-field problem with w=0:  $c\lambda+\mathbb{E}\big[Q^{\scriptscriptstyle \mathrm{F}}\big]$

 $\mathbb{E}[Q^{\mathrm{F}}]$ : a server's queue length when it follows the FMFE strategy

**Lemma**. If server one also follows FMFE strategy, its time-average total cost is upper-bounded by  $c\lambda + \mathbb{E}\big[Q^{\scriptscriptstyle{\mathrm{F}}}\big] + \frac{C_1(\lambda,\phi)}{N}$ .

**Lemma**. Regardless of the strategy server one uses, its time-average total cost is lower-bounded by  $c\lambda+\mathbb{E}\left[Q^{\mathrm{F}}\right]-\frac{C_{2}(\lambda,\phi,\delta)}{N^{1-\delta}}$  for any  $\delta\in(0,1)$ .

#### Proof sketch:

- A relaxation to server one's problem: grant an additional power to empty the shared pool at the end of every interaction with shared pool
  - ⇒ Request help only when a job arrives
- 2. A coupling argument and a drift analysis to show:
  - (a) shared pool's queue length transitions to stationary distribution quickly as  $N o \infty$
  - (b) in stationary distribution, shared pool is non-empty with probability  $\phi \frac{c(\lambda,\phi,\delta)}{N^{1-\delta}}$

# **Analysis for small market**

- Mechanism uses  $\phi = \lambda$ .
- Consider the fluid setup: tokens can go negative but expected rates of earning and spending tokens are equal.
- lacksquare Servers  $i\geq 2$  adopt complete resource pooling; server one is strategic and minimizes own cost.

# **Analysis for small market**

- Mechanism uses  $\phi = \lambda$ .
- Consider the fluid setup: tokens can go negative but expected rates of earning and spending tokens are equal.
- Servers  $i \ge 2$  adopt complete resource pooling; server one is strategic and minimizes own cost.

#### Grant server one additional information edge:

lacktriangle Complete information about the shared pool's queue length (denoted by  $q_0$ )

## Analysis for small market

- Mechanism uses  $\phi = \lambda$ .
- Consider the fluid setup: tokens can go negative but expected rates of earning and spending tokens are equal.
- Servers  $i \ge 2$  adopt complete resource pooling; server one is strategic and minimizes own cost.

#### Grant server one additional information edge:

- $\blacksquare$  Complete information about the shared pool's queue length (denoted by  $q_0$ )
- $\Rightarrow$  Optimal strategy depends only on two states:  $q_1$  (own queue length) and  $q_0$

⇒ Tractable optimization problem!

#### **Numerical results**

(a) job processing cost c=1; (b) job arrival rate  $\lambda \in \{0.7, 0.8, 0.9\}$ 

 ${\small {\sf Sub-optimality~gap} = \frac{{\small {\sf Cost~of~complete~resource~pooling-Cost~of~optimal~strategy}}{{\small {\sf Cost~of~optimal~strategy}}}}$ 



 The value of playing strategically is small even with few servers (and when server one can perfectly monitor the shared pool)

- For each server i: job arrival rate  $\lambda_i$  and processing rate  $\mu_i$ ; let  $\rho_i = \frac{\lambda_i}{\mu_i}$
- Assume  $0<\rho\leq\rho_i\leq\bar{\rho}<1$  and  $0<\underline{\lambda}\leq\lambda_i\leq\bar{\lambda}$  for all servers

- For each server i: job arrival rate  $\lambda_i$  and processing rate  $\mu_i$ ; let  $\rho_i = \frac{\lambda_i}{\mu_i}$
- $\blacksquare$  Assume  $0<\underline{\rho}\leq \rho_i\leq \bar{\rho}<1$  and  $0<\underline{\lambda}\leq \lambda_i\leq \bar{\lambda}$  for all servers
- $\blacksquare$  Consider token-based mechanism with  $\phi=\bar{\rho}$

- For each server i: job arrival rate  $\lambda_i$  and processing rate  $\mu_i$ ; let  $\rho_i = \frac{\lambda_i}{\mu_i}$
- $\blacksquare$  Assume  $0<\underline{\rho}\leq \rho_i\leq \bar{\rho}<1$  and  $0<\underline{\lambda}\leq \lambda_i\leq \bar{\lambda}$  for all servers
- lacktriangle Consider token-based mechanism with  $\phi=ar{
  ho}$

**Proposition** It is FMFE and approximate equilibrium for each server to (i) request help for all incoming jobs, and (ii) offer help with probability  $\rho_i/\bar{\rho}$  when a capacity unit arrives, when number of servers is large.

- For each server i: job arrival rate  $\lambda_i$  and processing rate  $\mu_i$ ; let  $\rho_i = \frac{\lambda_i}{\mu_i}$
- Assume  $0<\rho\leq\rho_i\leq\bar{\rho}<1$  and  $0<\underline{\lambda}\leq\lambda_i\leq\bar{\lambda}$  for all servers
- lacktriangle Consider token-based mechanism with  $\phi=ar
  ho$

**Proposition** It is FMFE and approximate equilibrium for each server to (i) request help for all incoming jobs, and (ii) offer help with probability  $\rho_i/\bar{\rho}$  when a capacity unit arrives, when number of servers is large.



- For each server i: job arrival rate  $\lambda_i$  and processing rate  $\mu_i$ ; let  $\rho_i = \frac{\lambda_i}{\mu_i}$
- $\blacksquare$  Assume  $0<\underline{\rho}\leq \rho_i\leq \bar{\rho}<1$  and  $0<\underline{\lambda}\leq \lambda_i\leq \bar{\lambda}$  for all servers
- lacktriangle Consider token-based mechanism with  $\phi=ar{
  ho}$

**Proposition** It is FMFE and approximate equilibrium for each server to (i) request help for all incoming jobs, and (ii) offer help with probability  $\rho_i/\bar{\rho}$  when a capacity unit arrives, when number of servers is large.



■ Number of jobs in centralized setting: between  $\frac{\underline{\rho}}{1-\underline{\rho}}$  and  $\frac{\bar{\rho}}{1-\bar{\rho}}$  Number of jobs within our mechanism:  $\frac{\bar{\rho}}{1-\bar{\rho}}$ 

- For each server i: job arrival rate  $\lambda_i$  and processing rate  $\mu_i$ ; let  $\rho_i = \frac{\lambda_i}{\mu_i}$
- $\blacksquare$  Assume  $0<\underline{\rho}\leq \rho_i\leq \bar{\rho}<1$  and  $0<\underline{\lambda}\leq \lambda_i\leq \bar{\lambda}$  for all servers
- lacktriangle Consider token-based mechanism with  $\phi=ar{
  ho}$

**Proposition** It is FMFE and approximate equilibrium for each server to (i) request help for all incoming jobs, and (ii) offer help with probability  $\rho_i/\bar{\rho}$  when a capacity unit arrives, when number of servers is large.



- Number of jobs in centralized setting: between  $\frac{\underline{\rho}}{1-\underline{\rho}}$  and  $\frac{\bar{\rho}}{1-\bar{\rho}}$  Number of jobs within our mechanism:  $\frac{\bar{\rho}}{1-\bar{\rho}}$
- Job processing costs are allocated  $\propto \mu_i$  versus  $\propto \lambda_i$ 
  - ⇒ Costs allocated fairly in our mechanism!

#### Summary

- We study incentivizing resource pooling in a decentralized multi-server system, where servers possess limited information about others
- Operational takeaway: A simple **token-based mechanism** incentivizes complete resource pooling when number of servers is large
  - ► Analysis based on fluid mean-field equilibrium.
  - Numerical results show that benefit from unilateral deviation is small even with only a few servers.

## Summary

- We study incentivizing resource pooling in a decentralized multi-server system, where servers possess limited information about others
- Operational takeaway: A simple **token-based mechanism** incentivizes complete resource pooling when number of servers is large
  - Analysis based on fluid mean-field equilibrium.
  - Numerical results show that benefit from unilateral deviation is small even with only a few servers.
- Ongoing work. Applying the mechanism and technical framework to analyze other decentralized systems, e.g., multi-hospital kidney exchange.

## Summary

- We study incentivizing resource pooling in a decentralized multi-server system, where servers possess limited information about others
- Operational takeaway: A simple **token-based mechanism** incentivizes complete resource pooling when number of servers is large
  - Analysis based on fluid mean-field equilibrium.
  - Numerical results show that benefit from unilateral deviation is small even with only a few servers.
- Ongoing work. Applying the mechanism and technical framework to analyze other decentralized systems, e.g., multi-hospital kidney exchange.

**Reference:** C. Chen, Y. Chen, and P. Qian. 2023. Incentivizing Resource Pooling.

Working paper available at https://papers.ssrn.com/abstract=4586771

