¹H(³⁴Si,p):resonances **2012Im01**

 $J^{\pi}=0^{+}$ for ³⁴Si ground state.

2012Im01: A 34 Si beam at $7*10^4$ pps and a purity of 97% was produced by the projectile fragmentation of a 63-MeV/nucleon 40 Ar primary beam and separated by the RIPS separator at RIKEN. The secondary target was a 10.9(5) mg/cm² polyethylene film. An incident energy of 4.4(12) MeV/nucleon for the 34 Si beam was determined by the timing difference between a plastic scintillator and two PPACs placed upstream of the target. The PPACs also record the positions and angles of the projectiles incident upon the target. Outgoing particles were detected and identified by a three-layer ΔE -E telescope consisting of 0.5-mm DSSD, 1.5-mm silicon, and 1.5-mm silicon detectors mounted at 0° with an E_{lab} resolution σ =130 keV . Measured excitation functions of proton elastic scattering on 34 Si for $\theta_{lab} < 10^\circ$ using thick target inverse kinematics. Deduced E_R , L-transfer, Γ_P , and Γ from R-matrix analysis for 8 resonances in the highly excited states in 35 P, which are isobaric analog states of 35 Si states.

³⁵P Levels

E(level) [†]	Γ	L	S [‡]	Comments
14938 24	<12.7 keV	0		E_R =2783 24, Γ_p =4.6 keV 28, Γ =4.6 keV 81 in 2012Im01.
15161 <i>3</i>	<4.4 keV	3	0.63 16	E_R =3006 2, Γ_p =1.6 keV 4, Γ =1.6 keV 28 in 2012Im01. IAR of the 7/2 g.s. of
				³⁵ Si.
15306 24	<30.4 keV	2	0.19 15	$E_R=3151\ 24$, $\Gamma_p=3.3\ keV\ 27$, $\Gamma=10.4\ keV\ 200\ in\ 2012Im01$.
15964 <i>18</i>	84 keV 25	2	0.79 20	$E_R=3809 \ 18$, $\Gamma_p=26.7 \ \text{keV} \ 69 \ \text{in} \ 2012 \text{Im} 01$.
16145 <i>36</i>	0.35 MeV 9	1	1.37 32	$E_R=3990\ 36$, $\Gamma_p=185\ keV\ 43$, $\Gamma=354\ keV\ 87$ in 2012Im01.
16605 <i>44</i>	0.22 MeV 15	0	0.45 28	$E_R=4450 \ 44$, $\Gamma_p=58.4 \ \text{keV} \ 370$, $\Gamma=215 \ \text{keV} \ 150 \ \text{in} \ 2012 \text{Im} 01$.
17254 <i>12</i>	<11.6 keV	2	0.04 1	$E_R = 5099 \ 12$, $\Gamma_p = 3.8 \ \text{keV} \ 9$, $\Gamma = 3.8 \ \text{keV} \ 78 \ \text{in} \ 2012 \text{Im} 01$.
17355 <i>15</i>	32 keV 22	1	0.12 7	$E_R = 5200 \ 15$, $\Gamma_p = 20.9 \ \text{keV} \ 120 \ \text{in} \ 2012 \text{Im} 01$.

[†] Excitation energies are deduced by evaluators from $E_R + S_p(^{35}P) = 12155.1$ 20 (2021Wa16). E_R given in 2012Im01 are in the center-of-mass system.

1

[‡] Spectroscopic factors are derived from Γ_p using the formula from 1968Th07 as described in 2012Im01.