CISC 102 (Fall 21) Homework #3: Proofs (24 Points)

Student Name/ID: Ryan Pleava (20279636)
October 24, 2021

Question 1

If we take the premise $\neg p \longrightarrow \neg q$ to be true, then saying $q \longrightarrow p$ is an application of modus tollens, which is valid.

Question 2

If x is any man, then the statement could be written as $P(x) \longrightarrow M(x)$, and if $\forall x P(x)$, then $True \longrightarrow M(x)$, $\therefore M(x)$ is an application of, universal instantiation, general instantiation, and modus ponens.

Question 3

Let r be rain, f be fog, s be the sailing competition, l be the lifesaving demonstration, and t be the trophy;

```
\neg (r \land f) \longrightarrow (s \land l) \text{ *Premise}
s \longrightarrow t \text{ *Premise}
\neg t \text{ *Premise}
\neg t \longrightarrow \neg s \text{ *Modus Tollens (2)}
\neg s \text{ *Modus Ponens (4)}
\neg (s \land l) \longrightarrow \neg (\neg r \lor \neg f) \text{ *Modus Tollens (1)}
\neg s \lor \neg l \longrightarrow r \lor f \text{ *DeMorgan's (7)}
T \lor \neg l \longrightarrow r \land f \text{ *Sub in T for s (5)}
T \longrightarrow r \land f \text{ *Dominance Law (8)}
r \land f \text{ *Modus Ponens (9)}
\therefore r \text{ *Simplification (10)}
```

Question 4

Let
$$x \in \mathbb{Z}$$

This can be written as: $x^2 + (x+1)^2$
= $x^2 + x^2 + 2x + 1$

```
=2x^2+2x+1
= 2(x^2 + x) + 1
```

Since x is an integer, $(x^2 + x)$ will always yield some integer k.

= 2(k) + 1 is the definition of what it means to be an odd number.

 $\therefore x^2 + (x+1)^2$ will always yield an odd number.

Question 5

```
Case 1: n is even, let n = 2k, k \in \mathbb{Z}
(2k)^3 + 2((2k)^2) + 2k + 4
=8k^3+8k^2+2k+4
= 2(4k^3 + 4k^2 + k + 2)
Since k \in \mathbb{Z}, (4k^3 + 4k^2 + k + 2) must also yield some integer p.
= 2(p)
```

This is the definition of an even number, \therefore when n is even, $n^3 + 2n^2 + n + 4$ is even.

```
Case 2: n is odd, let n = 2k + 1, k \in \mathbb{Z}
(2k+1)^3 + 2((2k+1)^2) + 2(k+1) + 4
=8k^3+12k^2+6k+1+8k^2+8k+2+2k+1+4
=8k^3+20k^2+16k+8
= 2(4k^3 + 10k^2 + 8k + 4)
Since k \in \mathbb{Z}, (4k^3 + 10k^2 + 8k + 4) will always yield some integer p.
= 2(p)
```

This is the definition of an even number, \therefore when n is odd, $n^3 + 2n^2 + n + 4$ is even.

Since the only 2 cases both yield even integers, we can conclude that $\forall n \in \mathbb{Z}$, $n^3 + 2n^2 + n + 4$ is even. QED

Question 6

Let p be the proposition 'For all rational number x and irrational number y, the sum of x and y is irrational.

If we assume $\neg p$:

x + y is rational.

$$\longrightarrow \frac{a}{b} + y = \frac{c}{d}, a, b, c, d \in \mathbb{R}$$

Definition of rational numbers, y is irrational (proposition q)

$$\longrightarrow y = \frac{c}{d} - \frac{a}{b} \longrightarrow y = \frac{bc - ac}{bd}$$

 $\longrightarrow \neg p \longrightarrow q \land \neg q$, this is a contradiction.

 \longrightarrow ($\neg p$ is false) \longrightarrow (p is true), which means that x + y is irrational.

Question 7

 $P(1) \equiv 1^2 \ge 1 \equiv 1 \ge 1 \equiv True$ This is a direct proof.

Question 8

Let p be the proposition 'at least three of any 25 days chosen must fall in the same month of the year.'

If we assume $\neg p$:

- \longrightarrow (Each month contains at most 2 of the 25 chosen days) Let q be the proposition that 'there are 25 chosen days'.
- \longrightarrow (Number of chosen days $\leq 2 \times 12$) \longrightarrow (Number of chosen days ≤ 24) $\longrightarrow \neg q$
- $\longrightarrow \neg p \longrightarrow \neg q \land q$, this is a contradiction.

 $(\neg p \text{ is false}) \longrightarrow (\text{p is true})$, meaning that at least three of any 25 days chosen must fall in the same month of the year.

Question 9

```
(3x + 2 \text{ is even}) \equiv (x + 5 \text{ is odd}) \equiv (x^2 \text{ is even}) \text{ *Premise}
\longrightarrow ((3x + 2 \text{ is even}) \leftrightarrow (x + 5 \text{ is odd}) \leftrightarrow (x^2 \text{ is even})) \text{ Logical Equivalence (1)}
\longrightarrow ((x^2 \text{ is odd}) \leftrightarrow (x + 5 \text{ is even}) \leftrightarrow ((3x + 2 \text{ is odd})) \text{ Contrapositive (2)}
\text{Case 1: x is even, x} = 2k, k \in \mathbb{Z}
\longrightarrow (((2k)^2 \text{ is odd}) \leftrightarrow ((2k) + 5 \text{ is even}) \leftrightarrow ((3(2k) + 2 \text{ is odd}))
\longrightarrow ((2(2k^2) \text{ is odd}) \leftrightarrow (2(k + 2) + 1 \text{ is even}) \leftrightarrow (2(3k + 1) \text{ is odd}))
\longrightarrow (\text{False}) \leftrightarrow (\text{False}) \leftrightarrow (\text{False})
\text{Case 2: x is odd, x} = 2k + 1, k \in /zz
\longrightarrow (((2k + 1)^2 \text{ is odd}) \leftrightarrow ((2k + 1) + 5 \text{ is even}) \leftrightarrow ((3(2k + 1) + 2 \text{ is odd}))
\longrightarrow (2(2k^2 + 2k) + 1 \text{ is odd}) \leftrightarrow (2(k + 3) \text{ is even}) \leftrightarrow (2(3k + 2) + 1 \text{ is odd}))
\longrightarrow (\text{True}) \leftrightarrow (\text{True}) \leftrightarrow (\text{True})
```

Since for both cases, all 3 contrapositive statements produce the same results, the 3 statements are all equivalent.

Question 10

It is easiest to show the the transitivity of equivalences using general predicates a, b, and c. $(a \leftrightarrow b \land b \leftrightarrow c) \longrightarrow a \leftrightarrow c$ * Premise

$$\equiv (a \longrightarrow b) \land (b \longrightarrow a) \land (b \longrightarrow c) \land (c \longrightarrow b) \longrightarrow a \leftrightarrow c * Logical Equivalence \longrightarrow (a \longrightarrow c) \land (c \longrightarrow a) * Hypothetical Syllogism$$

 $\equiv (a \leftrightarrow c) \longrightarrow (a \leftrightarrow c)$ *Logical Equivalence

≡ True

With this, we can prove the equivalence across all four predicates, p_1, p_2, p_3, p_4 , to show all of their equivalences by applying this previous lemma, we will call this lemma1.

We already know that $p_1 \leftrightarrow p_3, p_1 \leftrightarrow p_4, p_2 \leftrightarrow p_3$

1st Proof: $((p_1 \leftrightarrow p_3 \land p_1 \leftrightarrow p_4) \longrightarrow p_3 \leftrightarrow p_4)$ *Application of Lemma1

2nd Proof: $((p_1 \leftrightarrow p_3 \land p_2 \leftrightarrow p_3) \longrightarrow p_1 \leftrightarrow p_2)$ *Application of Lemma1

3rd Proof: $((p_2 \leftrightarrow p_3 \land p_3 \leftrightarrow p_4) \longrightarrow p_2 \leftrightarrow p_4)$ *Application of Lemma1 using previously found equivalence $(p_3 \leftrightarrow p_4)$

 $\therefore p_1 \leftrightarrow p_2 \leftrightarrow p_3 \leftrightarrow p_4$

QED