4.7. Exercícios

Pabela 4.16 Produto iônico da água em função da temperatura.

 $(K_w$ é o produto iônico da água e ta temperatura (°C), conforme [21, Tabela II].)

$-\log_{10}(K_w)_i$	14,9435	14,7338	14,5346	14,3463	14,1669	13,9965	13,8330	13,6801	13,5348	13,3960	13,2617	13,1369	13,0171
t_i	0	ഹ	10	15	20	25	30	35	40	45	20	55	9
, ž	ī	2	က	4	က	9	7	_∞	6	10	11	12	13

Tabela 4.17 Escolha do modelo de $-\log_{10}(K_w)$ em função da temperatura.

(m é o modelo e T a temperatura em Kelvin (T=273,15+t).)

ξ	ho	P.	p	p3	p_4	$1-r^2$	σ^2
1	00		7.	0			
-	4.2216×10^{0}	2.9201×10^{3}				8,58×10 ⁻⁴ 3,65×10 ⁻⁴	$3,65 \times 10^{-4}$
(101	0 0040 103	1 0995 101			0.86~10-7 4.61~10-7	4.61×10^{-7}
.71	_01×121c,0	0,0342v10 0,0342×10 0,03042v10 0,0300v10	T,USSUXTU	(27.00,0	*,01010
٣.	-7.1817×10^{1}	6.2107×10^3	1.1507×10^{1}	$ 3 - 71817 \sim 10^{1} 6.2107 \sim 10^{3} 1.1507 \sim 10^{1} -1.9400 \sim 10^{-3} $		[9,83×10"' 5,11×10"'	$5,11\times10^{-7}$
•	21076	60100000	10000	1-01-10-1	4-01 10-4	7-01 02 0	E GO 10-7
4	3.5736×10 ⁴	-2,0656×10"	-7,0883×10*	$[-3.5736\times10^{4}]$ -2.0656×10^{9} -7.0883×10^{4} -2.7101×10^{-1} -1.5046×10^{-1} -1.5046×10^{-1}	_ U.×1400c,1-	9,(2×10	o,vooxuu

Análise dos resultados

2 em relação ao modelo 1 é significativa, pois tanto $1-r^2$ quanto a variância residual σ^2 Pelos resultados de $1-r^2$ e σ^2 da Tabela 4.17, pode-se notar que a melhoria do modelo reduziram. No entanto, essa melhoria não é percebida quando se usam os modelos 3 e 4, porque apesar de 1 – r^2 reduzir um pouco, o valor de σ^2 aumenta a partir do modelo 2. Portanto, o modelo 2

$$-\log_{10}(K_w) = -6,5127\times10^1 + 6,0342\times10^3\frac{1}{7} + 1,0335\times10^1\log_e(T)$$

é o melhor, visto que consegue o mesmo nível de qualidade no ajuste usando um menor número de parâmetros.

Exercícios

Seção 4.1

Šeja a tabela

y_i	7,8,2,1,0 1,0,4,0
x_i	0,0 2,1,2,8,7 1,7,5,7 1,1,2,7
i	H 02 02 4 70

Fazer o diagrama de dispersão.

- gapelo primeiro e segundo pontos e calcular o $b_0 + b_1 x + b_2 x^2$ usando os pontos 2. Determinar o polinômio de grau 1 que paslesvio D.
- 4.3. Achar o polinômio de grau 1 que passa pelo erceiro e quinto pontos e calcular D.
- 4.4. Encontrar a reta de quadrados mínimos isando os cinco pontos da tabela e calcular D.
- .5. Verificar qual dos três modelos acima (4.2, [3 e 4.4) é o melhor.

Seção 4.2

.6. Dada a tabela, calcular o coeficiente de feterminação r^2 do modelo $u = b_0 + b_1 x$

3.5	2,3 1,9 1,1	
200	2,1 3,0 4,4 4,4	
	- 0 to 4	

- 4.7. Determinar a variância residual σ^2 do mo-
- 4.8. Calcular o coeficiente de determinação e a variância residual do modelo linear $u = b_0 + b_1 x$ a partir dos pontos da Tabela 4.5.
- la 4.11, calcular o coeficiente de determinação e 4.9. Usando os dados (Ano, Urbana) da Tabea variância residual do modelo $u = b_0 + b_1 x$.
- 4.10. O que mede o coeficiente de determi-

Seção 4.3

 $u=b_0+b_1x_1+b_2x_2$ a partir dos pontos da tabela 4.11. Achar a equação de quadrados mínimos

_	_							
y_i	73	Ξ	6	4	Π	6	П	7
x_{i2}	-2	ĭ	0	1	1	2	3	4
x_{i1}	ī	0	Т	N	4	ນ	ro	9
i	_	23	က	4	πo	9	7	∞

4.12. Calcular os coeficientes do modelo u =

_	
y_i	-30,5 -20,2 -3,3 8,9 16,8 21,4
x_i	$\begin{array}{c} -2,0 \\ -1,5 \\ 0,0 \\ 1,0 \\ 2,2 \\ 3,1 \end{array}$
2	1 2 3 5 4 6

- 4.13. Implementar, em qualquer linguagem de programação, o algoritmo de regressão linear múltipla e polinomial da Figura 4.5.
- 4.14. Determinar os parâmetros do modelo do Exercício 4.11 usando o programa implementado no Exercício 4.13.
- 4.15. Achar os coeficientes do modelo do Exercício 4.12 com o programa do Exercício 4.13.

Seção 4.4

- 4.16. Implementar a decomposição em valores singulares em uma linguagem de programação.
- 4.17. Usando a mesma linguagem do exercício linear múltipla e polinomial via decomposição anterior, implementar o algoritmo de regressão em valores singulares mostrado na Figura 4.7.
- 4.18. Resolver o Exercício 4.11 usando o programa do Exercício 4.17.
- 4.19. Resolver o Exercício 4.12 utilizando o programa do Exercício 4.17.