

SEQUENCE LISTING

```
<110>
      Nielsen, Bjarne R.
       Nielsen, Ruby
      Lehmbeck, Jan
<120> Thermostable Glucoamylase
<130> 5279.210-US
<160> 35
<170> PatentIn version 3.3
<210> 1
<211> 25
<212> PRT
<213> Talaromyces emersonii
<220>
<221> misc_feature
<223> Xaa at position 13 denotes a residue that could
not be assigned
<400> 1
Ala Asn Gly Ser Leu Asp Ser Phe Leu Ala Thr Glu Xaa Pro Ile Ala
                                    10
Leu Gln Gly Val Leu Asn Asn Ile Gly
            20
                                25
<210> 2
<211> 20
<212> PRT
<213> Talaromyces emersonii
<400> 2
Val Gln Thr Ile Ser Asn Pro Ser Gly Asp Leu Ser Thr Gly Gly Leu
                                    10
Gly Glu Pro Lys
            20
<210>
<211>
      22
<212> PRT
<213> Talaromyces emersonii
<220>
```

```
<221> misc_feature
<222> (0)..(22)
<223> Xaa denotes a resdue that could not be assigned
<400> 3
Xaa Asn Val Asn Glu Thr Ala Phe Thr Gly Pro Xaa Gly Arg Pro Gln
Arg Asp Gly Pro Ala Leu
<210> 4
<211> 35
<212> PRT
<213> Talaromyces emersonii
<400> 4
Asp Val Asn Ser Ile Leu Gly Ser Ile His Thr Phe Asp Pro Ala Gly
Gly Cys Asp Asp Ser Thr Phe Gln Pro Cys Ser Ala Arg Ala Leu Ala
                               25
Asn His Lys
       35
<210> 5
<211> 16
<212> PRT
<213> Talaromyces emersonii
<220>
<221> misc feature
<222> (0)..(16)
<223> Xaa denotes a residue that could not be assigned
<400> 5
Thr Xaa Ala Ala Ala Glu Gln Leu Tyr Asp Ala Ile Tyr Gln Trp Lys
               5
                                   10
<210> 6
<211> 35
<212> PRT
<213> Talaromyces emersonii
<400> 6
```

Ala Gln Thr Asp Gly Thr Ile Val Trp Glu Asp Asp Pro Asn Arg Ser 1 5 10 15

Tyr Thr Val Pro Ala Tyr Cys Gly Gln Thr Thr Ala Ile Leu Asp Asp 20 25 30

Ser Trp Gln 35

<210> 7

<211> 591

<212> PRT

<213> Talaromyces emersonii

<400> 7

Ala Thr Gly Ser Leu Asp Ser Phe Leu Ala Thr Glu Thr Pro Ile Ala 1 5 10 15

Leu Gln Gly Val Leu Asn Asn Ile Gly Pro Asn Gly Ala Asp Val Ala 20 25 30

Gly Ala Ser Ala Gly Ile Val Val Ala Ser Pro Ser Arg Ser Asp Pro 35 40 45

Asn Tyr Phe Tyr Ser Trp Thr Arg Asp Ala Ala Leu Thr Ala Lys Tyr 50 55 60

Leu Val Asp Ala Phe Asn Arg Gly Asn Lys Asp Leu Glu Gln Thr Ile 65 70 75 80

Gln Gln Tyr Ile Ser Ala Gln Ala Lys Val Gln Thr Ile Ser Asn Pro $85 \hspace{1cm} 90 \hspace{1cm} 95$

Ser Gly Asp Leu Ser Thr Gly Gly Leu Gly Glu Pro Lys Phe Asn Val 100 105 110

Asn Glu Thr Ala Phe Thr Gly Pro Trp Gly Arg Pro Gln Arg Asp Gly 115 120 125

Pro Ala Leu Arg Ala Thr Ala Leu Ile Ala Tyr Ala Asn Tyr Leu Ile 130 135 140

Asp Asn Gly Glu Ala Ser Thr Ala Asp Glu Ile Ile Trp Pro Ile Val 145 150 155 160

Gln Asn Asp Leu Ser Tyr Ile Thr Gln Tyr Trp Asn Ser Ser Thr Phe Asp Leu Trp Glu Glu Val Glu Gly Ser Ser Phe Phe Thr Thr Ala Val Gln His Arg Ala Leu Val Glu Gly Asn Ala Leu Ala Thr Arg Leu Asn His Thr Cys Ser Asn Cys Val Ser Gln Ala Pro Gln Val Leu Cys Phe Leu Gln Ser Tyr Trp Thr Gly Ser Tyr Val Leu Ala Asn Phe Gly Gly Ser Gly Arg Ser Gly Lys Asp Val Asn Ser Ile Leu Gly Ser Ile His Thr Phe Asp Pro Ala Gly Gly Cys Asp Asp Ser Thr Phe Gln Pro Cys Ser Ala Arg Ala Leu Ala Asn His Lys Val Val Thr Asp Ser Phe Arg Ser Ile Tyr Ala Ile Asn Ser Gly Ile Ala Glu Gly Ser Ala Val Ala Val Gly Arg Tyr Pro Glu Asp Val Tyr Gln Gly Gly Asn Pro Trp Tyr Leu Ala Thr Ala Ala Ala Glu Gln Leu Tyr Asp Ala Ile Tyr Gln Trp Lys Lys Ile Gly Ser Ile Ser Ile Thr Asp Val Ser Leu Pro Phe Phe Gln Asp Ile Tyr Pro Ser Ala Ala Val Gly Thr Tyr Asn Ser Gly Ser Thr Thr Phe Asn Asp Ile Ile Ser Ala Val Gln Thr Tyr Gly Asp

Gly Tyr Leu Ser Ile Val Glu Lys Tyr Thr Pro Ser Asp Gly Ser Leu 385 395 Thr Glu Gln Phe Ser Arg Thr Asp Gly Thr Pro Leu Ser Ala Ser Ala 405 Leu Thr Trp Ser Tyr Ala Ser Leu Leu Thr Ala Ser Ala Arg Arg Gln 420 425 Ser Val Val Pro Ala Ser Trp Gly Glu Ser Ser Ala Ser Ser Val Leu 435 440 Ala Val Cys Ser Ala Thr Ser Ala Thr Gly Pro Tyr Ser Thr Ala Thr Asn Thr Val Trp Pro Ser Ser Gly Ser Gly Ser Ser Thr Thr Thr Ser 475 Ser Ala Pro Cys Thr Thr Pro Thr Ser Val Ala Val Thr Phe Asp Glu 490 485 Ile Val Ser Thr Ser Tyr Gly Glu Thr Ile Tyr Leu Ala Gly Ser Ile 500 505 510 Pro Glu Leu Gly Asn Trp Ser Thr Ala Ser Ala Ile Pro Leu Arg Ala 520 515 Asp Ala Tyr Thr Asn Ser Asn Pro Leu Trp Tyr Val Thr Val Asn Leu 540 530 Pro Pro Gly Thr Ser Phe Glu Tyr Lys Phe Phe Lys Asn Gln Thr Asp 555 560 545 550 Gly Thr Ile Val Trp Glu Asp Asp Pro Asn Arg Ser Tyr Thr Val Pro 570 Ala Tyr Cys Gly Gln Thr Thr Ala Ile Leu Asp Asp Ser Trp Gln 585 580

<210> 8

<211> 1605

<212> DNA

<213> Aspergillus niger

<220 <221 <222	> (CDS (1).	.(160	02)										
<220 <221 <222	> \$		pept:											
<220: <221: <222:	> r	nat_r (73).	pept:	ide										
<400 atg	tcg	ttc												48
ttg (Leu 2	-					_	_		_	_		 _	-	96
aac (Asn (144
gac (Asp (192
ccc a														240
ggt o														288
agt (Ser			Ser	Thr	Ile	Glu	Asn	Ile	Ser	Ala	Gln			336
cag (Gln (384
ggt o Gly o 105														432
gga d Gly i														480
ggc f														528

14	10	145	150	
	rp Pro Leu Val A		tcg tat gtg gct Ser Tyr Val Ala 165	
		Asp Leu Trp Glu	gaa gtc aat ggc Glu Val Asn Gly 180	=
			ctt gtc gaa ggt Leu Val Glu Gly	_
			tgg tgt gat tct Trp Cys Asp Ser 215	
	le Leu Cys Tyr L		tgg acc ggc agc Trp Thr Gly Ser 230	
	sn Phe Asp Ser S		aag gac gca aac Lys Asp Ala Asn 245	
	•	Phe Asp Pro Glu	gcc gca tgc gac Ala Ala Cys Asp 260	_
			gcc aac cac aag Ala Asn His Lys	
			aac gat ggt ctc Asn Asp Gly Leu 295	
	la Val Ala Val G		gag gac acg tac Glu Asp Thr Tyr 310	
	o Trp Phe Leu C		gcc gca gag cag Ala Ala Glu Gln 325	
3 -		Asp Lys Gln Gly	tcg ttg gag gtc Ser Leu Glu Val 340	
			agc gat gct gct Ser Asp Ala Ala	
			agc att gta gat Ser Ile Val Asp 375	

	ttc gcc gat Phe Ala Asp 380		Ser Ile		His Ala	1248					
	ggc tcc atg Gly Ser Met					1296					
-	gct cgc gac Ala Arg Asp				_	1344					
•	cgt cgt aac Arg Arg Asn 430		_			1392					
	agc gtg ccc Ser Val Pro 445					1440					
	agt gtg act Ser Val Thr 460		Trp Pro		. Ala Thr	1488					
	act acg acg Thr Thr Thr					1536					
	aag acc acc Lys Thr Thr					1584					
	atg tca ctg Met Ser Leu 510	tga				1605					
<210> 9 <211> 534 <212> PRT <213> Aspergillus niger											
<400> 9											
Met Ser Phe	Arg Ser Leu -20	Leu Ala Leu	Ser Gly -15	Leu Val Cys	Thr Gly						
Leu Ala Asn	Val Ile Ser -5	Lys Arg Ala -1 1	Thr Leu	Asp Ser Trp 5	Leu Ser						
Asn Glu Ala 10	Thr Val Ala	Arg Thr Ala	Ile Leu	Asn Asn Ile	e Gly Ala						

Asp Gly Ala Trp Val Ser Gly Ala Asp Ser Gly Ile Val Val Ala Ser Pro Ser Thr Asp Asn Pro Asp Tyr Phe Tyr Thr Trp Thr Arg Asp Ser Gly Leu Val Leu Lys Thr Leu Val Asp Leu Phe Arg Asn Gly Asp Thr Ser Leu Leu Ser Thr Ile Glu Asn Tyr Ile Ser Ala Gln Ala Ile Val Gln Gly Ile Ser Asn Pro Ser Gly Asp Leu Ser Ser Gly Ala Gly Leu Gly Glu Pro Lys Phe Asn Val Asp Glu Thr Ala Tyr Thr Gly Ser Trp Gly Arg Pro Gln Arg Asp Gly Pro Ala Leu Arg Ala Thr Ala Met Ile Gly Phe Gly Gln Trp Leu Leu Asp Asn Gly Tyr Thr Ser Thr Ala Thr Asp Ile Val Trp Pro Leu Val Arg Asn Asp Leu Ser Tyr Val Ala Gln Tyr Trp Asn Gln Thr Gly Tyr Asp Leu Trp Glu Glu Val Asn Gly Ser Ser Phe Phe Thr Ile Ala Val Gln His Arg Ala Leu Val Glu Gly Ser Ala Phe Ala Thr Ala Val Gly Ser Ser Cys Ser Trp Cys Asp Ser Gln Ala Pro Glu Ile Leu Cys Tyr Leu Gln Ser Phe Trp Thr Gly Ser Phe Ile Leu Ala Asn Phe Asp Ser Ser Arg Ser Gly Lys Asp Ala Asn Thr Leu Leu Gly Ser Ile His Thr Phe Asp Pro Glu Ala Ala Cys Asp Asp

250 255 260

Ser 265	Thr	Phe	Gln	Pro	Cys 270	Ser	Pro	Arg	Ala	Leu 275	Ala	Asn	His	Lys	Glu 280
Val	Val	Asp	Ser	Phe 285	Arg	Ser	Ile	Tyr	Thr 290	Leu	Asn	Asp	Gly	Leu 295	Ser
Asp	Ser	Glu	Ala 300	Val	Ala	Val	Gly	Arg 305	Tyr	Pro	Glu	Asp	Thr 310	Tyr	Tyr
Asn	Gly	Asn 315	Pro	Trp	Phe	Leu	Cys 320	Thr	Leu	Ala	Ala	Ala 325	Glu	Gln	Leu
Tyr	Asp 330	Ala	Leu	Tyr	Gln	Trp 335	Asp	Lys	Gln	Gly	Ser 340	Leu	Glu	Val	Thr
Asp 345	Val	Ser	Leu	Asp	Phe 350	Phe	Lys	Ala	Leu	Tyr 355	Ser	Asp	Ala	Ala	Thr 360
Gly	Thr	Tyr	Ser	Ser 365	Ser	Ser	Ser	Thr	Tyr 370	Ser	Ser	Ile	Val	Asp 375	Ala
Val	Lys	Thr	Phe 380	Ala	Asp	Gly	Phe	Val 385	Ser	Ile	Val	Glu	Thr 390	His	Ala
Ala	Ser	Asn 395	Gly	Ser	Met	Ser	Glu 400	Gln	Tyr	Asp	Lys	Ser 405	Asp	Gly	Glu
Gln	Leu 410	Ser	Ala	Arg	Asp	Leu 415	Thr	Trp	Ser	Tyr	Ala 420	Ala	Leu	Leu	Thr
Ala 425	Asn	Asn	Arg	Arg	Asn 430	Ser	Val	Val	Pro	Ala 435	Ser	Trp	Gly	Glu	Thr 440
Ser	Ala	Ser	Ser	Val 445	Pro	Gly	Thr	Cys	Ala 450	Ala	Thr	Ser	Ala	Ile 455	Gly
Thr	Tyr	Ser	Ser 460	Val	Thr	Val	Thr	Ser 465	Trp	Pro	Ser	Ile	Val 470	Ala	Thr
Gly	Gly	Thr 475	Thr	Thr	Thr	Ala	Thr 480	Pro	Thr	Gly	Ser	Gly 485	Ser	Val	Thr

Ser Thr Ser Lys Thr Thr Ala Thr Ala Ser Lys Thr Ser Thr Thr Thr 490 495 500

Arg Ser Gly Met Ser Leu 505 510

<210> 10

<211> 534

<212> PRT

<213> Aspergillus niger

<220>

<221> SIGNAL

<222> (1)..(24)

<400> 10

Met Ser Phe Arg Ser Leu Leu Ala Leu Ser Gly Leu Val Cys Thr Gly 1 5 10 15

Leu Ala Asn Val Ile Ser Lys Arg Ala Thr Leu Asp Ser Trp Leu Ser 20 25 30

Asn Glu Ala Thr Val Ala Arg Thr Ala Ile Leu Asn Asn Ile Gly Ala 35 40 45

Asp Gly Ala Trp Val Ser Gly Ala Asp Ser Gly Ile Val Val Ala Ser 50 55 60

Pro Ser Thr Asp Asn Pro Asp Tyr Phe Tyr Thr Trp Thr Arg Asp Ser 65 70 75 80

Gly Leu Val Leu Lys Thr Leu Val Asp Leu Phe Arg Asn Gly Asp Thr 85 90 95

Ser Leu Leu Ser Thr Ile Glu Asn Tyr Ile Ser Ala Gln Ala Ile Val 100 105 110

Gln Gly Ile Ser Asn Pro Ser Gly Asp Leu Ser Ser Gly Ala Gly Leu 115 120 125

Gly Glu Pro Lys Phe Asn Val Asp Glu Thr Ala Tyr Thr Gly Ser Trp 130 135 140

Gly 145	Arg	Pro	Gln	Arg	Asp 150	Gly	Pro	Ala	Leu	Arg 155	Ala	Thr	Ala	Met	Ile 160
Gly	Phe	Gly	Gln	Trp 165	Leu	Leu	Asp	Asn	Gly 170	Tyr	Thr	Ser	Thr	Ala 175	Thr
Asp	Ile	Val	Trp 180	Pro	Leu	Val	Arg	Asn 185	Asp	Leu	Ser	Tyr	Val 190	Ala	Gln
Tyr	Trp	Asn 195	Gln	Thr	Gly	Tyr	Asp 200	Leu	Trp	Glu	Glu	Val 205	Asn	Gly	Ser
Ser	Phe 210	Phe	Thr	Ile	Ala	Val 215	Gln	His	Arg	Ala	Leu 220	Val	Glu	Gly	Ser
Ala 225	Phe	Ala	Thr	Ala	Val 230	Gly	Ser	Ser	Cys	Ser 235	Trp	Cys	Asp	Ser	Gln 240
Ala	Pro	Glu	Ile	Leu 245	Cys	Tyr	Leu	Gln	Ser 250	Phe	Trp	Thr	Gly	Ser 255	Phe
Ile	Leu	Ala	Asn 260	Phe	Asp	Ser	Ser	Arg 265	Ser	Gly	Lys	Asp	Ala 270	Asn	Thr
Leu	Leu	Gly 275	Ser	Ile	His	Thr	Phe 280	Asp	Pro	Glu	Ala	Ala 285	Cys	Asp	Asp
Ser	Thr 290	Phe	Gln	Pro	Cys	Ser 295	Pro	Arg	Ala	Leu	Ala 300	Asn	His	Lys	Glu
Val 305	Val	Asp	Ser	Phe	Arg 310	Ser	Ile	Tyr	Thr	Leu 315	Asn	Asp	Gly	Leu	Ser 320
Asp	Ser	Glu	Ala	Val 325	Ala	Val	Gly	Arg	Tyr 330	Pro	Glu	Asp	Thr	Tyr 335	Tyr
Asn	Gly	Asn	Pro 340	Trp	Phe	Leu	Cys	Thr 345	Leu	Ala	Ala	Ala	Glu 350	Gln	Leu
Tyr	Asp	Ala 355	Leu	Tyr	Gln	Trp	Asp 360	Lys	Gln	Gly	Ser	Leu 365	Glu	Val	Thr

Asp Val Ser Leu Asp Phe Phe Lys Ala Leu Tyr Ser Asp Ala Ala Thr 370 Gly Thr Tyr Ser Ser Ser Ser Ser Thr Tyr Ser Ser Ile Val Asp Ala 385 Val Lys Thr Phe Ala Asp Gly Phe Val Ser Ile Val Glu Thr His Ala Ala Ser Asn Gly Ser Met Ser Glu Gln Tyr Asp Lys Ser Asp Gly Glu 420 425 Gln Leu Ser Ala Arg Asp Leu Thr Trp Ser Tyr Ala Ala Leu Leu Thr 435 440 445 Ala Asn Asn Arg Arg Asn Ser Val Val Pro Ala Ser Trp Gly Glu Thr 450 455 Ser Ala Ser Ser Val Pro Gly Thr Cys Ala Ala Thr Ser Ala Ile Gly 465 470 475 480 Thr Tyr Ser Ser Val Thr Val Thr Ser Trp Pro Ser Ile Val Ala Thr 485 490 Gly Gly Thr Thr Thr Ala Thr Pro Thr Gly Ser Gly Ser Val Thr 500 505 Ser Thr Ser Lys Thr Thr Ala Thr Ala Ser Lys Thr Ser Thr Thr Thr 515 520 525 Arg Ser Gly Met Ser Leu 530 <210> 11 <211> 17 <212> DNA <213> Artificial Sequence <220>

<223> N in position 3 = A, G, C, T

<223> Primer

<221> misc_feature

<220>

```
gtnttraaya ayathgg
                                                                      17
 <210> 12
 <211>
       17
 <212>
       DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
<220>
 <221> misc_feature
 <223> N= A, G, C, T
 <400> 12
                                                                      17
 gtnctnaaya ayathgg
 <210> 13
 <211> 17
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
<220>
 <221> misc_feature
 <223> N= A, G, C, T
<400> 13
ctrganaccc tyctyca
                                                                      17
 <210> 14
 <211> 17
 <212> DNA
 <213> Artificial Sequence
<220>
 <223> Primer
<400> 14
                                                                      17
ctraayaccc tyctyca
<210> 15
 <211> 17
 <212>
       DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
```

<400> 11

```
<220>
<221> misc_feature
<223> N= A, G, C, T
<400> 15
                                                                      17
accetyctre trggntt
<210> 16
<211>
      20
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 16
                                                                      20
gtgagcccaa gttcaatgtg
<210> 17
<211>
      21
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
     Primer
<400> 17
agaaatcggg tatcctttca g
                                                                      21
<210> 18
<211>
      105
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 18
gctcctcatg gtggatcccc agttgtgtat atagaggatt gaggaaggaa gagaagtgtg
                                                                     60
gatagaggta aattgagttg gaaactccaa gcatggcatc cttgc
                                                                     105
<210>
      19
<211>
      30
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
     Primer
<400> 19
```

gacaga	tere eaccargged recereging	30
<210><211><211><212><213>	27 DNA	
<220> <223>	Primer	
<400> gacctc	20 gagt cactgccaac tatcgtc	27
<210><211><211><212><212><213>	29	
<220> <223>	Primer	
<400> ccctca	21 ccag gggaatgctg cagttgatg	29
<210> <211> <212> <213>	18	
<220> <223>	Primer	
<400> cgccat	22 tete ggegaett	18
<210><211><211><212><213>	23 18 DNA Artificial Sequence	
<220> <223>	Primer	
<400> cgccgc	23 ggta ttctgcag	18
<210> <211> <212> <213>	DNA	
<220>		

<223>	Primer	
	24 aaac gacggtaccc gggagatete caccatggcg tecetegttg	50
<210><211><211><212><213>	44	
<220> <223>	Primer	
	25 acat catgeggeee tetagateae tgecaaetat egte	44
<210> <211> <212> <213>		
<220> <223>	Primer .	
	26 ggtc gctcctgctc g	21
<210> <211> <212> <213>	40	
<220> <223>	Primer	
<400> cgagcag	27 ggag cgacccaaat tatttctact cctggacacg	40
<210><211><211><212><213>	28 20 DNA Artificial Sequence	
<220> <223>	Primer	
<400> gatgaga	28 atag ttcgcatacg	20
<210> <211> <212>	29 43 DNA	

<213>	Artificial Sequence	
<220> <223>	Primer	
<400> cgtatg	29 cgaa ctateteate gacaaeggeg aggettegae tge	43
<210><211><211><212><213>	30 20 DNA Artificial Sequence	
<220> <223>	Primer	
<400> cgaagg	30 tgga tgagttccag	20
<210><211><211><212><213>		
<220> <223>	Primer	
<400> ctggaa	31 ctca tccaccttcg acctctggga agaagtagaa gg	42
<210><211><211><212><212><213>	32 21 DNA Artificial Sequence	
<220> <223>	Primer	
<400> gacaat	32 actc agatatccat c	21
<210><211><211><212><213>	43	
<220> <223>	Primer	
<400>	33 tato tgagtattgt cgagaaatat actoootoag acg	43

<210> 34 <211> 2748 <212> DNA

<213> Talaromyces emersonii

<400> 34

60 acgagatgtg tatatactgt gaaccaaact agatgatgtc agttatgctg gtctgagaac 120 tcatagaagc ccttgaaaat accccaagct agcactccaa ccctaactct gttgctctac tagatcaaga cgagtactct gattgagctg caggcttgga atatatgatt agcagaaaaa 180 gggttaaaac ttgtatgaca atcagtttgt cagtactccg tagtgatgcc atgtctatag 240 agtogacact aaggoagcat gtgaatgagt cggaaatgac aggaagcaga ttoottaaca 300 360 gtcatgttct ccgtgcctgc atccccacgt cacctgcaaa gatgcgacgc tactccacac 420 eggegeettg atgtetgetg tteetggeet agtggageee catgegetge tagetegtgg tcttcgaata aatcagaata aaaaacggag taattaattg cgcccgcaac aaactaagca 480 atgtaactca atgccaagct teegetgatg ctettgacat eteegtagtg gettettteg 540 600 taatttcaga cgtatatata gtagtaatgc ccagcaggcc gggataatga tggggatttc 660 tgaactctca gcttccgtac gctgaacagt ttgcttgcgt tgtcaaccat ggcgtccctc 720 gttgctggcg ctctctgcat cctgggcctg acgcctgctg catttgcacg agcgcccgtt 780 gcagcgcgag ccaccggttc cctggactcc tttctcgcaa ccgaaactcc aattgccctc 840 caaggcgtgc tgaacaacat cgggcccaat ggtgctgatg tggcaggagc aagcgccggc 900 attgtggttg ccagtccgag caggagcgac ccaaattgta ggttctttcc caccagaaat 960 tacttattta aatcagccct ctgacaggtt gaagatttct actcctggac acgtgacgca 1020 gcgctcacgg ccaaatacct cgtcgacgcc ttcatcgcgg gcaacaagga cctagagcag 1080 accatccage agtacatcag egegeaggeg aaggtgeaaa etateteeaa teegteegga 1140 gatttatcca ccggtggctt aggtgagccc aagttcaatg tgaatgagac ggcttttacc 1200 gggccctggg gtcgtccaca gagggacgga ccagcgttga gagcgacggc cctcattgcg 1260 tatgcgaact atctcatcgt aagcttctgc tcgctgccct tctctctgct cgtatgctaa gtagtcctgt caggacaacg gcgaggcttc gactgccgat gagatcatct ggccgattgt 1320 1380 ccagaatgat ctgtcctaca tcacccaata ctggaactca tccaccttcg gtaggcaaat gaatattccc gacacagcgt ggtactaatt tgattcagac ctctgggaag aagtagaagg 1440 1500 atcctcattc ttcacaaccq ccqtqcaaca ccqcqccctq gtcqaagqca atgcactggc 1560 aacaaggetg aaccacacgt getecaactg egteteteag geceeteagg teetgtgttt

cctgcagtca tactggaccg gatcgtatgt tctggccaac tttggtgqca gcggtcgttc 1620 cggcaaggac gtgaattcga ttctgggcag catccacacc tttgatcccg ccggaggctg 1680 tgacgactcg accttccagc cgtgttcggc ccgtgccttg qcaaatcaca aqqtqgtcac 1740 cgactcgttc cggagtatct atgcgatcaa ctcaggcatc qcagagggat ctgccqtqqc 1800 agtcggccgc taccctgagg atgtctacca gggcgggaac ccctggtacc tggccacagc 1860 agcggctgca gagcagcttt acgacgccat ctaccagtgg aagaagatcg gctcgataag 1920 tatcacggac gttagtctgc catttttcca ggatatctac ccttctqccq cqqtqqqcac 1980 ctataactct ggctccacga ctttcaacga catcatctcg gccgtccaga cqtatgqtqa 2040 tggatatctg agtattgtcg tacgttttgc cttagattct caggtgtaaa gaaaaaaatg 2100 gaactaactc agttctagga gaaatatact ccctcagacg gctctcttac cqaacaattc 2160 tecegtacag aeggeaetee getttetgee tetgeeetga ettggtegta egettetete 2220 ctaaccgctt cggcccgcag acagtccgtc gtccctgctt cctqgqgcqa aaqctccqca 2280 agcagegtee etgeegtetg etetgeeace tetgeeacq geceatacaq cacqqetace 2340 aacaccqtct qqccaaqctc tqqctctqqc aqctcaacaa ccaccaqtaq cqccccatqc 2400 accactccta cctctgtggc tgtgaccttc gacgaaatcg tcagcaccag ttacqqqqaq 2460 acaatctacc tggccggctc gatccccgag ctgggcaact ggtccacggc cagcgcqatc 2520 cccctccgcg cggatgctta caccaacagc aacccgctct ggtacgtgac cgtcaatctg 2580 ccccctggca ccagcttcga gtacaagttc ttcaagaacc agacggacgg gaccatcgtc 2640 tgggaagacg accegaaceg gtcgtacacg gtcccagcgt actgtgggca gactacegce 2700 attettgacg atagttggca gtgagataac atccaccett ctgtttta 2748

<210> 35 <211> 618

<212> PRT

<213> Talaromyces emersonii

<400> 35

Met Ala Ser Leu Val Ala Gly Ala Leu Cys Ile Leu Gly Leu Thr Pro 1 5 10 15

Ala Ala Phe Ala Arg Ala Pro Val Ala Ala Arg Ala Thr Gly Ser Leu 20 25 30 Asp Ser Phe Leu Ala Thr Glu Thr Pro Ile Ala Leu Gln Gly Val Leu Asn Asn Ile Gly Pro Asn Gly Ala Asp Val Ala Gly Ala Ser Ala Gly Ile Val Val Ala Ser Pro Ser Arg Ser Asp Pro Asn Tyr Phe Tyr Ser Trp Thr Arg Asp Ala Ala Leu Thr Ala Lys Tyr Leu Val Asp Ala Phe Ile Ala Gly Asn Lys Asp Leu Glu Gln Thr Ile Gln Gln Tyr Ile Ser Ala Gln Ala Lys Val Gln Thr Ile Ser Asn Pro Ser Gly Asp Leu Ser Thr Gly Gly Leu Gly Glu Pro Lys Phe Asn Val Asn Glu Thr Ala Phe Thr Gly Pro Trp Gly Arg Pro Gln Arg Asp Gly Pro Ala Leu Arg Ala Thr Ala Leu Ile Ala Tyr Ala Asn Tyr Leu Ile Asp Asn Gly Glu Ala Ser Thr Ala Asp Glu Ile Ile Trp Pro Ile Val Gln Asn Asp Leu Ser Tyr Ile Thr Gln Tyr Trp Asn Ser Ser Thr Phe Asp Leu Trp Glu Glu Val Glu Gly Ser Ser Phe Phe Thr Thr Ala Val Gln His Arg Ala Leu Val Glu Gly Asn Ala Leu Ala Thr Arg Leu Asn His Thr Cys Ser Asn Cys Val Ser Gln Ala Pro Gln Val Leu Cys Phe Leu Gln Ser Tyr Trp Thr Gly Ser Tyr Val Leu Ala Asn Phe Gly Gly Ser Gly Arg Ser Gly Lys Asp Val Asn Ser Ile Leu Gly Ser Ile His Thr Phe Asp Pro Ala

Gly Gly Cys Asp Asp Ser Thr Phe Gln Pro Cys Ser Ala Arg Ala Leu

Ala Asn His Lys Val Val Thr Asp Ser Phe Arg Ser Ile Tyr Ala Ile

Asn Ser Gly Ile Ala Glu Gly Ser Ala Val Ala Val Gly Arg Tyr Pro

Glu Asp Val Tyr Gln Gly Gly Asn Pro Trp Tyr Leu Ala Thr Ala Ala

Ala Ala Glu Gln Leu Tyr Asp Ala Ile Tyr Gln Trp Lys Lys Ile Gly

Ser Ile Ser Ile Thr Asp Val Ser Leu Pro Phe Phe Gln Asp Ile Tyr

Pro Ser Ala Ala Val Gly Thr Tyr Asn Ser Gly Ser Thr Thr Phe Asn

Asp Ile Ile Ser Ala Val Gln Thr Tyr Gly Asp Gly Tyr Leu Ser Ile

Val Glu Lys Tyr Thr Pro Ser Asp Gly Ser Leu Thr Glu Gln Phe Ser

Arg Thr Asp Gly Thr Pro Leu Ser Ala Ser Ala Leu Thr Trp Ser Tyr

Ala Ser Leu Leu Thr Ala Ser Ala Arg Arg Gln Ser Val Val Pro Ala

Ser Trp Gly Glu Ser Ser Ala Ser Ser Val Pro Ala Val Cys Ser Ala

Thr Ser Ala Thr Gly Pro Tyr Ser Thr Ala Thr Asn Thr Val Trp Pro

Ser Ser Gly Ser Gly Ser Ser Thr Thr Thr Ser Ser Ala Pro Cys Thr 500 505 510

Thr Pro Thr Ser Val Ala Val Thr Phe Asp Glu Ile Val Ser Thr Ser 515 520 525

Tyr Gly Glu Thr Ile Tyr Leu Ala Gly Ser Ile Pro Glu Leu Gly Asn 530 540

Trp Ser Thr Ala Ser Ala Ile Pro Leu Arg Ala Asp Ala Tyr Thr Asn 545 550 555 560

Ser Asn Pro Leu Trp Tyr Val Thr Val Asn Leu Pro Pro Gly Thr Ser 565 570 575

Phe Glu Tyr Lys Phe Phe Lys Asn Gln Thr Asp Gly Thr Ile Val Trp 580 585 590

Glu Asp Asp Pro Asn Arg Ser Tyr Thr Val Pro Ala Tyr Cys Gly Gln 595 600 605

Thr Thr Ala Ile Leu Asp Asp Ser Trp Gln 610 615