

Programming Assignment 1

(Due on September 19, 2016 by 11:59pm)

I. Questions (20%):

(1) (as 2.11) (4%) Consider the two image subsets, S1 and S2, shown in the following figure. For $V = \{1\}$, determine whether these two subsets are (a) 4-adjacent, (b) 8-adjacent, or (c) m-adjacent.

S1 S2	
S1 S2 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0) \(\sum_{0} \)
1 0 0 1 0 0 1 0 0 1	, , , ,
1 0 0 1 0 1 1 0 0 0	× 1
0 0 1 1 1 0 0 0 0 0	Yes
0 0 1 1 1 0 0 1 1 1	103
•	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
C	Yes

(2) (as 2.15) (4%) Consider the image segment shown

(a) Let $V = \{0,1\}$ and compute the lengths of the shortest 4-, 8-, and m-path between p and q. If a particular path does not exist between these two points, explain

4) DNE. No way to get to last I. 8) 6

m) 6

(b) Repeat for $V = \{1,2\}$.

- (3) Based on the definition of EXTADD(f, g),
- (a) (2%) Design a block diagram to realize the EXTADD(f, g) operation using ADD and EXTEND operations

(b) (2%) Compute the EXTADD(f, g), where
$$f = \begin{pmatrix} 3 & 5 & -2 \\ i & 0 & i \end{pmatrix}_{1,2}$$
; $g = \begin{pmatrix} 2 & 4 \\ 3 & 9 \\ -2 & i \end{pmatrix}_{2,2}$

$$\text{EXTADD}(f_{19}) = \begin{bmatrix} 5 & 9 & -2 \\ 3 & 9 & 2 \\ -2 & 2 & 2 \end{bmatrix}$$

(4) 4%

Given the following histogram (A), after a shifting by T, the histogram becomes (B). Write a transformation function and plot the transformation curve for such a shifting transformation.

<u>(5) 4%</u>

Give the histogram (A), after applying the transformation (C), plot the new histogram after the transformation.

