NSWCCD/50-TR-2000/41 September 2000 Resistance and Powering Department Report

USCGC HEALY (WAGB 20) Results of Performance and Special Trials

by George H. Brodie Lowry L. Hundley Steven C. Intolubbe

Distribution Unlimited Approved for Public Release

20001016 021

THIS PAGE INTENTIONALLY LEFT BLANK

RI	EPORT DOCU	IMENTATION	PAGE		OMB No. 0704-0188
completing and reviewing this colle Washington Headquarters Services, other provision of law, no person sh	ction of information. Send comme	nts regarding this burden estimate or	any other aspect of this collection of	04 Arlington VA 2220	lata sources, gathering and maintaining the data needed, and suggestions for reducing this burden to Department of Defense, 2-4302. Respondents should be aware that notwithstanding any rol number. PLEASE DO NOT RETURN YOUR FORM TO
1. REPORT DATE (DD-1	<i>ММ-ҮҮҮҮ)</i> 2.	REPORT TYPE			ATES COVERED (From - To)
01-08-2000 Formal					26 August 2000 CONTRACT NUMBER
4. TITLE AND SUBTITLE USCGC HEALY (WAGB 20)					
Results of Performance	ce and Special Trials			5b. 6	GRANT NUMBER
				5c. I 72	PROGRAM ELEMENT NUMBER
6. AUTHOR(S) George H. Brodie				5d. 1 SC1	PROJECT NUMBER N
Lowry L. Hundley					FASK NUMBER
Steven C. Intolubbe					002497WR20762-AA
					VORK UNIT NUMBER 10-020
7. PERFORMING ORGA Naval Surface Warfar					ERFORMING ORGANIZATION REPORT UMBER
				NS	WCCD-50-TR-2000/041
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Naval Sea Systems Command Crystal City, VA 10. SPONSOR/MONITOR'S ACRONYM(S) NAVSEA PMS 373F				VSEA PMS 373F	
y	•		,		SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION / AVAILABILITY STATEMENT					
Distribution Unlimited Approved for Public Release					
13. SUPPLEMENTARY NOTES					
HEALY (WAGB 20) of Mexico off the coast of Standardization of 148.4 rpm, a total 1,005 gal/hr (3,806 l For ship speeds of 3.1 ship lengths or whether turning to standard The maneuvering the sales and the standard The maneuvering the sales and the sales a	during builder's sea tria of Louisiana from 23 the and fuel performance to shaft torque of 725,000 iters/hr) with a ship spebetween 8 and 16.8 knowless when using a rudd arboard or to port. It is directionally sta	ls to evaluate the hydroc rough 31 August 1999. vials results showed that lbf-ft (983,000 N-m), a ed of 16.40 knots. The tr ts (the minimum and ma er angle of 35 degrees. ral stability, horizontal oble. The horizontal overs	dynamic performance of HEALY achieved the mo total shaft power of 20, rials were accomplished ximum speeds tested dur Results of the tactical tri overshoots, and low spee shoot results also indical	the ship. The tri eximum powering 500 hp (15,300 h at a displacemen ring the tactical t ials shows that H ed controllability te that HEALY re	ng trials were conducted on USCGC als were conducted in the Gulf of g conditions of an average shaft speed (W), and a total fuel consumption of at of 16,412 LT (18,152 tonnes). The start has a tactical diameter EALY has similar tactical dimensions a trials. The lateral stability trials a sponds similarly using right and left by reduced at speeds below 6 knots.
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON George H. Brodie
a. REPORT b. ABSTRACT c. THIS PAGE				79	19b. TELEPHONE NUMBER (include area code)
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED		/ 7	301-227-5275

Form Approved

THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS

	Page
FIGURES	v
TABLES	ix
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
TRIALS INSTRUMENTATION	2
TRIALS CONDITIONS	4
STANDARDIZATION AND FUEL ECONOMY TRIALS	6
TACTICAL TRIALS	22
LATERAL STABILITY TRIALS	45
HORIZONTAL OVERSHOOT TRIALS	48
LOW SPEED CONTROLLABILITY TRIALS	54
CONCLUSIONS	57
APPENDIX A: INSTRUMENTATION	A-1
APPENDIX B: MEASUREMENT UNCERTAINTY	B-1

THIS PAGE INTENTIONALLY LEFT BLANK

FIGURES

	Page
1.	Typical path of ship during standardization trials
2.	USCGC HEALY (WAGB 20) standardization trials results, shaft power,
	shaft torque, and shaft speed versus ship speed, 16,412 LT (18,152 tonnes),
	25-26 August 19999
3.	USCGC HEALY (WAGB 20) standardization trials results, shaft power
	versus ship speed, 16,412 LT (18,152 tonnes), 25-26 August 1999
4.	USCGC HEALY (WAGB 20) standardization trials results, shaft power
	versus average shaft speed, 16,412 LT (18,152 tonnes), 25-26 August 199911
5.	USCGC HEALY (WAGB 20) standardization trials results, total fuel
	consumption for the propulsion system versus ship speed, 16,412 LT
	(18,152 tonnes), 25-26 August 1999
6.	USCGC HEALY (WAGB 20) standardization trials results, total fuel
	consumption for the propulsion system versus shaft power, 16,412 LT
	(18,152 tonnes), 25-26 August 1999
7.	Typical path of ship during a drift corrected tactical turn run
8.	Comparison of the paths for uncorrected and corrected conventional tactical turns24
9.	USCGC HEALY (WAGB 20) tactical trials results, tactical dimensions
	versus approach ship speed
10.	USCGC HEALY (WAGB 20) tactical trials results, tactical dimensions
	versus rudder angle27
11.	USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer
	for nominal 8 knots approach speed

		Page
12.	USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 12.5 knots approach speed	29
13.	USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 16.5 knots approach speed	30
14.	USCGC HEALY (WAGB 20) tactical trials results, change of heading versus elapsed time for nominal 8 knots approach speed.	31
15.	USCGC HEALY (WAGB 20) tactical trials results, change of heading versus elapsed time for nominal 12.5 knots approach speed	32
16.	USCGC HEALY (WAGB 20) tactical trials results, change of heading versus elapsed time for nominal 16.5 knots approach speed	33
17.	Typical path of ship during an acceleration/deceleration run.	39
18.	USCGC HEALY (WAGB 20) acceleration trials results, DIW to steady ahead using 50%, 75%, and 100% power.	41
19.	USCGC HEALY (WAGB 20) deceleration trials results, various ahead speeds to DIW using 50% astern.	42
20.	USCGC HEALY (WAGB 20) deceleration trials results, various ahead speeds to 100% astern.	43
21.	USCGC HEALY (WAGB 20) lateral stability trials results, nominal 12.5 knots approach speed.	46
22.	USCGC HEALY (WAGB 20) horizontal overshoot trials results, nominal 12.5 knots approach speed, nominal 10 deg rudder angle, 26 August 1999	49
23.	USCGC HEALY (WAGB 20) horizontal overshoot trials results, nominal 12.5 knots approach speed, nominal 20 deg rudder angle, 26 August 1999	50

	Pa	ge
24.	USCGC HEALY (WAGB 20) horizontal overshoot trials results, nominal	
	16.5 knots approach speed, nominal 10 deg rudder angle, 26 August 1999	51
25.	USCGC HEALY (WAGB 20) horizontal overshoot trials results, nominal	
	16.5 knots approach speed, nominal 20 deg rudder angle, 26 August 1999.	52
26.	USCGC HEALY (WAGB 20) low speed controllability trials results,	
	nominal 10 deg rudder angle, 26 August 1999	55
27.	USCGC HEALY (WAGB 20) low speed controllability trials results,	
	nominal 35 deg rudder angle, 26 August 1999	56
A.1.	USCGC HEALY (WAGB 20) trials instrumentation diagram	-1

THIS PAGE INTENTIONALLY LEFT BLANK

TABLES

	Pag	ţе
1.	USCGC HEALY (WAGB 20) principal ship, propulsion system, and propeller characteristics	3
2.	USCGC HEALY (WAGB 20) hull and propeller roughness survey measurements, 26-28 January 1999.	5
3.	USCG HEALY (WAGB 20) trials conditions.	5
4.	USCGC HEALY (WAGB 20) standardization trials results summary, 16,412 LT, 25-26 August 1999, US customary units	4
5.	USCGC HEALY (WAGB 20) standardization trials results summary, 18,152 tonnes, 25-26 August 1999, metric units	5
6.	USCGC HEALY (WAGB 20) standardization trials results, propulsion summary, 16,412 LT, 25-26 August 1999, US customary units	6
7.	USCGC HEALY (WAGB 20) standardization trials results, propulsion summary, 18,152 tonnes, 25-26 August 1999, metric units	7
8.	USCGC HEALY (WAGB 20) standardization trials results, fuel summary, 16,412 LT, 25-26 August 1999, US customary units	8
9.	USCGC HEALY (WAGB 20) standardization trials results, fuel summary, 18,152 tonnes, 25-26 August 1999, metric units	9
10.	USCGC HEALY (WAGB 20) standardization trials results, ship speed and shaft speed relationship, 16,412 LT (18,152 tonnes), 25-26 August 1999	0
11.	USCGC HEALY (WAGB 20) standardization trials results, shaft power and fuel consumption relationship, 16,412 LT (18,152 tonnes), 25-26 August 1999	1
12.	USCGC HEALY (WAGB 20) tactical trials results	4

		Page
13.	USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 8 knots approach speed.	35
14.	USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 12.5 knots approach speed	36
15.	USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 16.5 knots approach speed	37
16.	USCGC HEALY (WAGB 20) acceleration trials results.	44
17.	USCGC HEALY (WAGB 20) deceleration trials results	44
18.	USCGC HEALY (WAGB 20) lateral stability trials results, nominal 12.5 knots approach speed.	47
19.	USCGC HEALY (WAGB 20) horizontal overshoot trials results.	53
В.1.	USCGC HEALY (WAGB 20) measurement uncertainties.	B-3
B.2.	USCGC HEALY (WAGB 20) Shaft Speed – Stbd (F/V) signal calibration results	B-4
в.з.	USCGC HEALY (WAGB 20) Shaft Speed – Stbd (F/V) uncertainty calculations	B-5

ABSTRACT

Performance and Special Trials consisting of standardization, fuel performance, tactical, and maneuvering trials were conducted on USCGC HEALY (WAGB 20) during builder's sea trials to evaluate the hydrodynamic performance of the ship. The trials were conducted in the Gulf of Mexico off the coast of Louisiana from 23 through 31 August 1999.

Standardization and fuel performance trials results showed that HEALY achieved the maximum powering conditions of an average shaft speed of 148.4 rpm, a total shaft torque of 725,000 lbf-ft (983,000 N-m), a total shaft power of 20,500 hp (15,300 kW), and a total fuel consumption of 1,005 gal/hr (3,806 liters/hr) with a ship speed of 16.40 knots. The trials were accomplished at a displacement of 16,412 LT (18,152 tonnes).

For ship speeds between 8 and 16.8 knots (the minimum and maximum speeds tested during the tactical trials), HEALY has a tactical diameter of 3.1 ship lengths or less when using a rudder angle of 35 degrees. Results of the tactical trials shows that HEALY has similar tactical dimensions whether turning to starboard or to port.

The maneuvering trials consisted of lateral stability, horizontal overshoots, and low speed controllability trials. The lateral stability trials results show that HEALY is directionally stable. The horizontal overshoot results also indicate that HEALY responds similarly using right and left rudder. Results of the low speed controllability trials indicate that the controllability of HEALY is significantly reduced at speeds below 6 knots.

ADMINISTRATIVE INFORMATION

Naval Surface Warfare Center, Carderock Division (NSWCCD), Code 5200, was tasked by Naval Sea Systems Command (NAVSEA) PMS 373 to conduct Performance and Special Trials (P&ST) on USCGC HEALY (WAGB 20). This work was authorized by Work Request N0002497WR20762-AA. The trials discussed in this report were conducted by NSWCCD representatives and were funded under Work Unit 5200-020.

INTRODUCTION

USCGC HEALY is a multi-mission icebreaking research ship capable of effectively performing operations satisfying a broad spectrum of scientific and icebreaking requirements in all polar regions. HEALY was named in honor of Captain Michael A. Healy, distinguished Commanding Officer of the U.S. Revenue Cutter BEAR from 1886 to 1895. Captain Healy was most notable as the foremost seaman and navigator of his time in the Bering Sea and Alaskan Arctic regions while commanding the BEAR.

The acquisition of HEALY was a joint effort between the U.S. Coast Guard and the U.S. Navy. Avondale Industries was awarded the construction contract on 15 July 1993.

The source of propulsion power for HEALY is four 7200 kilowatt diesel generator sets. The outputs of these generators are connected through a 6600 VAC, 60 Hz, 3 phase common bus distribution system to form a "central power plant". The "central power plant" routes the required electrical power to two fully reversing, variable speed, AC synchronous motors to power the port and starboard main propulsion shafts.

Fully automated systems provide control for the ship and the machinery plant. The Main Ship Control Console (MSCC) consists of the Integrated Bridge System that is comprised of the Integrated Navigation System, the Steering Control System, and the Electronic Chart Display Information System. Machinery plant control is provided in the Engineering Control Center through the Machinery Plant Control and Monitoring System (MPCMS). MPCMS provides control, monitoring, alarm, and reporting functions for all propulsion and auxiliary equipment.

Standardization, fuel economy, tactical, and maneuvering trials were conducted on USCGC HEALY (WAGB 20) during builder's sea trials in the Gulf of Mexico off the coast of Louisiana from 23 through 31 August 1999. The objective of the trials was to determine the hydrodynamic characteristics of the ship. The characteristics determined during the trials are presented in this report.

Table 1 lists the principal characteristics of the ship, propulsion system, and propellers.

TRIALS INSTRUMENTATION

The instrumentation for the trials was installed during two separate time periods in an effort to support various shipbuilder trials events. Torque and shaft speed measurement equipment was installed on HEALY during the period 15-21 July 1999. This equipment was needed to determine shaft torque, shaft speed, and shaft power during the initial shipyard underway periods referred to as "River Runs". The remainder of the instrumentation package was installed during the period 26-30 July 1999. Signal conditioning equipment was installed in the Motor Room, the Generator Room, and the Boiler Room. Outputs from the conditioning equipment were connected to the ship's fiber optic data network for transmission to the recording equipment located in the Chart Room. The instrumentation used during the trials is described in greater detail in Appendix A.

Table 1. USCGC HEALY (WAGB 20) principal ship, propulsion system, and propeller characteristics.

Ship Characteristics

Length overall (L _{OA})	420.0 ft (128.02 m)
Length on waterline (L _{OA})	401.61 ft (122.41 m)
Length between perpendiculars (L _{PP})	396.50 ft (120.85 m)
Beam, (B)	82.00 ft (24.99 m)
Beam, waterline (B _{wl})	79.97 ft (24.37 m)
Design Draft	29.25 ft (8.92 m)
Design Displacement	16,267 LT (17,991 tonnes)

Propulsion System Characteristics

Propulsion plant	Diesel Electric, AC / AC Cycloconverter
Generators	4 Sultzer 12Z AU40S
Drive motors	2 Synchronous, 11.2MW
Design shaft power	30,000 hp (22,380 kW)
Degian shaft speed	

Design shaft speed

Open ocean
Icebreaking

Bow thruster

168 rpm
130 rpm
2200 hp (1641 kW)

Propeller Characteristics

Number of propellers	. 2
Direction of rotation	Outboard Top
Number of blades	4
Propeller diameter	16.0 ft (4.877 m)
Pitch ratio at 0.7R	0.934
Expanded Area Ratio	0.68
Chord length at 0.7R	7.789 ft (2.374 m)
Maximum thickness at 0.7R	0.406 ft (0.124 m)
Hub diameter	5.584 ft (1.702 m)

TRIALS CONDITIONS

The ship's hull and propellers must be in a clean condition at the time the P&ST is accomplished. Environmental conditions must also be within specified limitations in order for the trials results to be representative of the performance of the ship itself and not be biased in some manner by the effects of unfavorable weather conditions.

HULL AND PROPELLER CONDITIONS

NSWCCD representatives conducted a hull and propeller roughness survey on HEALY during the period 26-28 January 1999. HEALY was in dry-dock at Avondale shipyard at the time of the survey and access to the hull was accomplished with a "cherry-picker" provided by the shipyard. Access to the port and starboard propellers was obtained by using scaffolding previously installed by Avondale shipyard.

Hull and propeller roughness data were collected with a British Ship Research Association (BSRA) Mark II Roughness Analyzer. The BSRA gauge was used to collect peak-to-trough roughness measurements at representative locations on the surface of the hull, the rudders, and the propellers. The gauge measures the maximum peak-to-trough height of the surface texture in micrometers (µm) for fifteen 50 millimeter sample lengths. The roughness reading for one data length is the average of 15 sample lengths; this is equivalent to a total length of 750 millimeters of surface area. The results of the roughness survey are shown in Table 2.

The ship was re-launched into the Mississippi River at Avondale on 2 February 1999 and remained there until the trials were conducted. The relatively large current and the lack of visibility in the Mississippi River precluded a hull and propeller inspection just prior to the Performance Trials. Due to the strong current and the fresh-water river it is assumed that minimal marine growth would have occurred between the January hull and propeller survey and the August trials. The underwater hull and the propeller measurements are therefore considered to be representative of the condition of the ship at the time of the trials.

Table 2. USCGC HEALY (WAGB 20) hull and propeller roughness survey measurements, 26-28 January 1999.

	Average		Average		Average
Hull	Roughness	Skeg and Rudder	Roughness	Propeller	Roughness
Locations	(µm)	Locations	(µm)	Locations	(µm)
- 46		CI D	255	D 11 D1 1 1 D 1	20
Frame 16	131	Skeg - Port	266	Propeller Blade 1 - Port	29
Frame 48	168	Skeg - Stbd	244	Propeller Blade 2 - Port	23
Frame 100	240	Rudder - Port	436	Propeller Blade 1 - Stbd	26
Frame 136 (between skegs)	201	Rudder - Stbd	372	Propeller Blade 2 - Stbd	28

ENVIRONMENTAL CONDITIONS

Builder's sea trials were conducted on HEALY from 23 through 31 August 1999 in the Gulf of Mexico off the coast of Louisiana. Environmental conditions observed during the performance trials portion of the builder's trials are shown in Table 3. Sea states during the trials were ideal and ranged between 0 and 1. During the trials the true wind speed averaged less than 12 knots and was generally from a westerly direction. These conditions were well within the acceptable limits of sea-state 3 and a true wind speed of 20 knots.

Prior to the beginning of the trials, HEALY was ballasted to achieve an even trim with a forward and aft draft of 29.25 ft. Seawater temperature and specific gravity were measured to be 88°F and 1.020 for both days. Compensating for seawater temperature and specific gravity, the ship displacement for the trials was determined to be 16,412 LT (18,152 tonnes).

Table 3. USCGC HEALY (WAGB 20) trials conditions.

Date	25 August 1999	26 August 1999	
General Trial Location Latitude	Gulf of Mexico 27.0 N	Gulf of Mexico 26.6 N	
Longitude Displacement	89.9 W 89.9 W 16,412 LT (18,152 tonnes)		
Water Depth	greater than 1000 fathoms		
Water Temperature Specific Gravity		(31° C))20	
True Wind Speed True Wind Direction	7 - 12 knots 217° - 336°	5 - 7 knots 240° - 310°	

STANDARDIZATION AND FUEL ECONOMY TRIALS

Standardization and fuel economy trials were conducted on HEALY on 25-26 August 1999 during builder's sea trials in the Gulf of Mexico. The general ship and environmental conditions for the period are shown in Table 3. All of the speed/power conditions except the 16.4 knots (148 rpm) condition were tested on 25 August. The 16.4 knots (148 rpm) condition was conducted on 26 August. Propulsion plant limitations during the trials prevented the completion of standardization runs with a shaft speed greater than 148 rpm. The propulsion system was unable to sustain powering conditions long enough to accurately measure speed, power, and fuel consumption for three separate runs. However, the approach data measured for the deceleration run from the initial condition of Ahead 100% were determined to be steady and long enough in duration to accurately represent the ship's performance at full power to complete the standardization trials. A drift-corrected ship speed was calculated using the method described in the ensuing section titled "Acceleration and Deceleration Trials."

As shown in Table 3, environmental conditions are considered to have been excellent throughout the standardization and fuel economy trials. Based on the speed measurements for the reciprocal runs, the local ocean currents averaged 1.2 knots on 25 August and 0.5 knots on 26 August. Data obtained during these two days of testing are considered to be representative of the performance characteristics of HEALY.

STANDARDIZATION AND FUEL ECONOMY TRIALS PROCEDURES

The standardization and the fuel economy trials were accomplished concurrently. In order to combine these two tests, the duration of each standardization run was increased from three minutes (typical for standardization runs) to six minutes. The length of each run was doubled to increase the amount of fuel consumed during each run and thus improve the accuracy of the fuel consumption measurement. A diagram of the typical path for a standardization (fuel performance) run is shown in Figure 1. The commands and actions used to conduct the trials are defined as follows:

STANDBY: Steady approach conditions have been established.

One minute to COMEX.

COMEX: Commence data acquisition. Maintain steady conditions.

One minute to EXECUTE.

EXECUTE: Execute the run. Maintain steady conditions.

Acquire data for 6 minutes.

FINEX: Terminate the run and data acquisition.

Ship conducts Williamson turn to prepare for next run.

Fig. 1. Typical path of ship during standardization trials.

STANDARDIZATION TRIALS RESULTS

The results of the standardization trials are shown in Figures 2-6 and Tables 4-11. The maximum speed/power conditions achieved on HEALY during the standardization trials were as follows:

Ship Speed 16.40 knots

Average Shaft Speed 148.4 rpm

Total Shaft Torque 725,000 lbf-ft (983,000 N-m)

Total Shaft Power 20,500 hp (15,300 kW)

Total Fuel Consumption 1,005 gal/hr (3,806 liters/hr)

Displacement 16,412 LT (18,152 tonnes)

As discussed previously, the approach data for the deceleration run with the initial condition Ahead 100% were considered acceptable for use in completing the standardization trials. The conditions achieved on HEALY during this run were as follows:

Ship Speed 17.50 knots

Average Shaft Speed 160.0 rpm

Total Shaft Torque 846,000 lbf-ft (1,147,000 N-m)

Total Shaft Power 25,800 hp (19,200 kW)

Total Fuel Consumption 1,190 gal/hr (4,505 liters/hr)

Displacement 16,412 LT (18,152 tonnes)

Fig. 2. USCGC HEALY (WAGB 20) standardization trials results, shaft power, shaft torque, and shaft speed versus ship speed, 16,412 LT (18,152 tonnes), 25-26 August 1999.

Fig. 3. USCGC HEALY (WAGB 20) standardization trials results, shaft power versus ship speed, 16,412 LT (18,152 tonnes), 25-26 August 1999.

Fig. 4. USCGC HEALY (WAGB 20) standardization trials results, shaft power versus average shaft speed, 16,412 LT (18,152 tonnes), 25-26 August 1999.

Fig. 5. USCGC HEALY (WAGB 20) standardization trials results, total fuel consumption for the propulsion system versus ship speed, 16,412 LT (18,152 tonnes), 25-26 August 1999.

Fig. 6. USCGC HEALY (WAGB 20) standardization trials results, total fuel consumption for the propulsion system versus shaft power, 16,412 LT (18,152 tonnes), 25-26 August 1999.

Table 4. USCGC HEALY (WAGB 20) standardization trials results summary, 16,412 LT, 25-26 August 1999, US customary units.

	Shaft	Shaft	Shaft	Propulsion	Fuel Consumption
Ship	Speed	Torque	Power	Plant	Propulsion Only **
Speed	Average	Total	Total	Generators	Total
(knots)	(rpm)	(lbf-ft/1000)	(hp/1000)	(online)	(gal/hr)
8.70	85.9	245	4.0	3	218
10.95	85.2	248	4.0	3	215
8.60	85.9	246	4.0	ю	215
9.80	85.6	247	4.0	m	216
13.70	110.5	399	8.4	3	410
11.40	110.7	398	8.4	3	410
13.70	110.7	399	8.4	3	410
12.55	110.7	399	8.4	ю	410
13.10	127.8	534	13.0	3	809
15.60	127.8	534	13.0	3	909
13.00	127.9	535	13.0	3	909
14.33	127.8	534	13.0	m	909
16.55	137.5	620	16.2	4	812
14.00	137.4	621	16.2	4	810
16.65	137.5	620	16.2	4	808
15.30	137.4	620	16.2	4	810
16.75	148.5	724	20.5	4	1004
16.10	148.4	725	20.5	4	1005
16.70	148.5	726	20.5	4	1008
16.40	148.4	725	20.5	4	1005
17.50	160.0	846	25.8	4	1190

extracted from approach data for deceleration run from 100% ahead
 ** based on 2680hp (2MW) hotel load

Table 5. USCGC HEALY (WAGB 20) standardization trials results summary, 18,152 tonnes, 25-26 August 1999, metric units.

		Shaft	Shaft	Shaft	Propulsion	Fuel Consumption
Run	Ship	Speed	Torque	Power	Plant	Propulsion Only **
Number	Speed	Average	Total	Total	Generators	Total
	(knots)	(rpm)	(N-m/1000)	(MW)	(online)	(liters/hr)
1000N	8.70	85.9	333	3.0	3	825
1010S	10.95	85.2	336	3.0	3	816
1020N	8.60	85.9	333	3.0	ĸ	812
Average	9.80	92.8	334	3.0	3	817
1030S	13.70	110.5	541	6.3	3	1554
1040N	11.40	110.7	540	6.3	3	1552
1050S	13.70	110.7	541	6.3	3	1553
Average	12.55	110.7	541	6.3	3	1553
1060N	13.10	127.8	725	7.6	3	2302
1070S	15.60	127.8	723	7.6	3	2289
1080N	13.00	127.9	725	6.7	3	2291
Average	14.33	127.8	724	9.7	e	2293
1090S	16.55	137.5	840	12.1	4	3074
1100N	14.00	137.4	842	12.1	4	3065
1110S	16.65	137.5	840	12.1	4	3060
Average	15.30	137.4	841	12.1	4	3066
1130S	16.75	148.5	981	15.3	4	3799
1132N	16.10	148.4	983	15.3	4	3804
1140S	16.70	148.5	984	15.3	4	3816
Average	16.40	148.4	983	15.3	4	3806
3330*	17.50	160.0	1147	19.2	4	4505
						_

extracted from approach data for deceleration run from 100% ahead
 based on 2680hp (2MW) hotel load

Table 6. USCGC HEALY (WAGB 20) standardization trials results, propulsion summary, 16,412 LT, 25-26 August 1999, US customary units.

											Propulsion	Fuel Consumption
Run	Ship		Shaft Speed			Shaft Torque			Shaft Power		Plant	Propulsion Only **
Number	Speed	Stbd	Port	Average	Stbd	Port	Total	Stbd	Port	Total	Generators	Total
	(knots)	(rpm)	(rpm)	(rpm)	(lbf-ft/1000)	(lbf-ft/1000)	(lpf-ft/1000)	(hp/1000)	(hp/1000)	(hp/1000)	(online)	(gal/hr)
1000N	8.70	85.9	85.9	85.9	122	124	245	2.0	2.0	4.0	3	218
1010S	10.95	84.9	85.5	85.2	123	124	248	2.0	2.0	4.0	3	215
1020N	8.60	85.9	85.9	85.9	122	124	246	2.0	2.0	4.0	3	215
Average	9.80			92.6			247			4.0	ec	216
10308	13.70	1102	110.9	110.5	199	199	399	4.2	4.2	4.8	67	410
1040N	11.40	110.8	110.7	110.7	199	200	398	4.2	4.2	8.4	'n	410
10508	13.70	110.4	111.0	110.7	199	200	399	4.2	4.2	8.4	8	410
Average	12.55			110.7			399			8.4	6	410
	:		0 201	0	350	0)6	703	37			,	000
NOON	13.10	171.1	6.771	177.0	007	200	+60	0.0	0.0	13.0	า	900
1070S	15.60	127.6	128.1	127.8	598	267	534	6.5	6.5	13.0	e	909
1080N	13.00	127.8	127.9	127.9	566	569	535	6.5	9.9	13.0	3	909
Average	14.33			127.8			534			13.0	3	909
S0601	16.55	137.7	137.3	137.5	312	307	620	8.2	8.0	16.2	4	812
1100N	14.00	137.8	136.9	137.4	312	309	621	8.2	8.1	16.2	4	810
1110S	16.65	137.7	137.3	137.5	312	307	620	8.2	8.0	16.2	4	808
Average	15.30			137.4			620			16.2	4	810
1130S	16.75	148.6	148.3	148.5	365	359	724	10.3	10.1	20.5	4	1004
1132N	16.10	148.6	148.2	148.4	366	360	725	10.4	10.2	20.5	4	1005
1140S	16.70	148.6	148.3	148.5	366	360	726	10.4	10.2	20.5	4	1008
Average	16.40			148.4			725			20.5	4	1005
3330*	17.50	159.4	160.5	160.0	426	420	846	12.9	12.8	25.8	4	0611

extracted from approach data for deceleration run from 100% ahead
 based on 2680hp (2MW) hotel load

Table 7. USCGC HEALY (WAGB 20) standardization trials results, propulsion summary, 18,152 tonnes, 25-26 August 1999, metric units.

Speed Sthd Port Average Sthd Port Total Sthd Port Total Generators (kinols)	Run	Ship		Shaft Speed			Shaft Torque			Shaft Power		Propulsion Plant	Fuel Consumption Propulsion Only **
8.70 85.9 85.9 85.9 165 168 333 1.5	Number	Speed (knots)	Stbd (rpm)	Port (rpm)	Average (rpm)	Stbd (N-m/1000)	Port (N-m/1000)	Total (N-m/1000)	Stbd (MW)	Port (MW)	Total (MW)	Generators (online)	Total (liters/hr)
1095 849 85.5 85.2 167 168 336 1.5 1	1000N	8.70	85.9	85.9	85.9	165	168	333	1.5	1.5	3.0	3	825
8.60 85.9 85.9 85.9 166 167 333 1.5 1.5 9.80 85.6 85.6 10.5 10.5 270 270 541 3.1 3.1 11.40 110.2 110.7 110.7 270 271 541 3.1 3.1 13.70 110.4 111.0 110.7 270 271 541 3.1 3.1 13.70 110.4 111.0 110.7 270 271 541 3.1 3.1 13.50 12.55 12.7 127.9 127.8 361 364 725 4.8 4.9 15.60 127.8 127.9 127.8 361 364 725 4.8 4.9 15.60 127.8 127.9 127.9 361 364 725 4.8 4.9 16.55 137.7 137.3 137.4 423 417 840 6.1 6.0 16.65 137.7 <	10108	10.95	84.9	85.5	85.2	167	168	336	1.5	1.5	3.0	6	816
9.80 85.6 334 13.70 110.2 110.9 110.5 270 270 541 3.1 3.1 11.40 110.8 110.7 269 271 540 3.1 3.1 11.40 110.4 110.7 10.7 269 271 541 3.1 3.1 13.70 110.4 111.0 110.7 270 271 541 3.1 3.1 13.10 127.7 127.9 127.8 361 364 725 4.8 4.9 15.60 127.6 127.9 127.8 361 364 725 4.8 4.9 15.60 127.8 127.9 361 364 725 4.8 4.9 15.60 127.8 361 364 725 4.8 4.9 15.60 127.9 127.9 361 364 725 4.8 4.9 16.55 137.7 137.3 137.5 423 <t< td=""><td>1020N</td><td>8.60</td><td>85.9</td><td>85.9</td><td>85.9</td><td>166</td><td>191</td><td>333</td><td>1.5</td><td>1.5</td><td>3.0</td><td>3</td><td>812</td></t<>	1020N	8.60	85.9	85.9	85.9	166	191	333	1.5	1.5	3.0	3	812
13.70 110.2 110.9 110.5 270 270 541 3.1 3.1 11.40 110.8 110.7 110.7 269 271 540 3.1 3.1 3.1 12.55 110.4 111.0 110.7 270 271 541 3.1 3.1 3.1 13.10 127.7 127.9 127.8 361 364 725 4.8 4.9 15.60 127.6 128.1 127.8 361 364 725 4.8 4.9 15.50 127.8 127.9 127.8 361 364 725 4.8 4.9 16.55 137.7 137.3 137.5 423 417 840 6.1 6.0 16.50 137.8 137.4 423 417 840 6.1 6.0 16.50 137.7 137.3 137.4 423 417 840 6.1 6.0 16.60 148.6 148.5	Average	9.80			85.6			334			3.0	ю	817
11.40 110.8 110.7 110.7 269 271 540 3.1 3.1 3.2 13.70 110.4 111.0 110.7 270 271 541 3.1 3.2 13.10 127.7 127.9 127.8 361 364 725 4.8 4.9 15.60 127.6 128.1 127.8 361 364 725 4.8 4.9 15.00 127.8 127.9 127.9 361 364 725 4.8 4.9 16.55 137.7 137.3 137.5 423 417 840 6.1 6.0 16.56 137.7 137.3 137.4 423 417 840 6.1 6.0 16.57 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 148.5 496 488 983 7.7 7.6 16.10 148.6 148.3 148.5 148.5 496 488 983 7.7 7.6 16.10 148.6 148.8 148.5	10308	13.70	110.2	110.9	110.5	270	270	541	3.1	3.1	6.2	m	1554
13.70 110.4 111.0 110.7 270 271 541 3.1 3.2 13.10 127.7 127.9 127.8 361 364 725 4.8 4.9 13.00 127.6 128.1 127.9 361 364 725 4.8 4.9 13.00 127.8 127.9 127.9 361 364 725 4.8 4.9 14.33 127.8 127.9 127.9 361 364 725 4.8 4.9 16.55 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 148.5 496 488 984 7.7 7.6 16.70 148.6 148.3 148.5 496 488 984 7.7 7.6 16.70 148.6 148.3 148.5 496 488 984 7.7 7.6 16.70 148.6 148.3 148.5 496 488 984 7.7 7.6 16.70 148.6 148.3 148.5 896 893 7.7 7.6 16.70 148.6 148.3 148.5 896 893 7.7 7.6 16.70 148.6 148.3 148.5 896 893 7.7 7.6 16.70 159.4 160.5 160.0 578 569 1147 9.6 9.6 1	1040N	11.40	110.8	110.7	110.7	269	271	540	3.1	3.1	6.3	3	1552
t 12.55 110.7 127.9 127.8 361 364 725 4.8 4.9 13.10 127.7 127.9 127.8 361 364 725 4.8 4.9 13.00 127.8 127.9 127.8 361 364 725 4.8 4.9 13.00 127.8 127.9 127.9 361 364 725 4.8 4.9 14.00 127.8 127.9 361 364 725 4.8 4.9 16.55 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 16.50 148.6 148.3 148.5 495 488 984 7.7 7.6 16.70 148.6 148.4 496	10508	13.70	110.4	111.0	110.7	270	271	541	3.1	3.2	6.3	٣	1553
13.10 127.7 127.9 127.8 361 364 725 4.8 4.9 4.9 15.60 127.6 128.1 127.8 361 362 723 4.8 4.9 4.9 13.00 127.8 127.9 127.9 361 364 725 4.8 4.9 4.9 14.33 127.8 137.3 137.5 423 417 840 6.1 6.0 6.	Average	12.55			110.7			541			6.3	6	1553
15.60 127.6 128.1 127.8 361 362 723 4.8 4.9 4.9 13.00 127.8 127.9 127.9 127.9 361 364 725 4.8 4.9 4.9 14.33 137.3 137.5 423 417 840 6.1 6.0 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0	1060N	13.10	127.7	127.9	127.8	361	364	725	4.8	4.9	6.7	3	2302
13.00 127.8 127.9 127.9 361 364 725 4.8 4.9 14.33 137.7 137.3 137.5 423 417 840 6.1 6.0 16.55 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 16.55 148.6 148.3 148.5 495 488 983 7.7 7.6 16.75 148.6 148.3 148.5 496 488 983 7.7 7.6 16.40 159.4 160.5 160.0 578 569 1147 9.6 9.6	10708	15.60	127.6	128.1	127.8	361	362	723	8.4	4.9	6.7	3	2289
16.55 137.7 137.3 137.5 423 417 840 6.1 6.0 16.55 137.7 137.3 137.5 423 417 840 6.1 6.0 16.65 137.7 137.3 137.4 423 417 840 6.1 6.0 16.50 137.7 137.3 137.5 423 417 840 6.1 6.0 16.75 148.6 148.3 148.5 495 487 981 7.7 7.6 16.10 148.6 148.2 148.4 496 488 983 7.7 7.6 16.40 15.4 160.5 160.6 578 569 1147 9.6 9.6	1080N	13.00	127.8	127.9	127.9	361	364	725	4.8	4.9	9.7	3	2291
16.55 137.7 137.3 137.5 423 417 840 6.1 6.0 14.00 137.8 136.9 137.4 423 419 842 6.1 6.0 16.65 137.7 137.3 137.4 423 417 840 6.1 6.0 16.50 137.7 137.5 148.5 423 417 841 6.0 6.0 16.73 148.6 148.5 495 487 981 7.7 7.6 16.10 148.6 148.2 148.4 496 488 983 7.7 7.6 16.70 148.6 148.3 148.5 496 488 984 7.7 7.6 16.40 159.4 160.5 160.0 578 569 1147 9.6 9.6 1	Average	14.33			127.8			724			7.6	6	2293
14.00 137.8 136.9 137.4 423 419 842 6.1 6.0 16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 15.30 137.7 137.4 423 417 840 6.1 6.0 16.75 148.6 148.3 148.5 495 487 981 7.7 7.6 16.10 148.6 148.3 148.5 496 488 983 7.7 7.6 16.40 18.6 148.3 148.5 496 488 984 7.7 7.6 17.50 18.9 16.0 578 569 1147 9.6 9.6	10908	16.55	137.7	137.3	137.5	423	417	840	6.1	6.0	12.1	4	3074
16.65 137.7 137.3 137.5 423 417 840 6.1 6.0 15.30 137.4 495 487 981 7.7 7.6 16.75 148.6 148.2 148.4 496 488 983 7.7 7.6 16.10 148.6 148.2 148.5 496 488 983 7.7 7.6 16.70 148.6 148.3 148.5 496 488 984 7.7 7.6 17.50 159.4 160.5 160.0 578 569 1147 9.6 9.6	1100N	14.00	137.8	136.9	137.4	423	419	842	6.1	0.9	12.1	4	3065
e 15.30 137.4 841 841 16.75 148.6 148.3 148.5 495 487 981 7.7 7.6 16.10 148.6 148.2 148.4 496 488 983 7.7 7.6 16.70 148.6 148.5 496 488 984 7.7 7.6 16.40 148.3 148.5 496 488 984 7.7 7.6 17.50 159.4 160.5 160.0 578 569 1147 9.6 9.6	11108	16.65	137.7	137.3	137.5	423	417	840	6.1	0.9	12.1	4	3060
16.75 148.6 148.3 148.5 495 487 981 7.7 7.6 16.10 148.6 148.2 148.4 496 488 983 7.7 7.6 16.70 148.6 148.3 148.5 496 488 984 7.7 7.6 16.40 15.4 160.5 160.0 578 569 1147 9.6 9.6	Average	15.30			137.4			841			12.1	4	3066
16.10 148.6 148.2 148.4 496 488 983 7.7 7.6 16.70 148.6 148.3 148.5 496 488 984 7.7 7.6 16.40 15.4 160.5 160.0 578 569 1147 9.6 9.6 1	11308	16.75	148.6	148.3	148.5	495	487	186	7.7	7.6	15.3	4	3799
e 16.70 148.6 148.3 148.5 496 488 984 7.7 7.6 16.40 17.50 159.4 160.5 160.0 578 569 1147 9.6 9.6	1132N	16.10	148.6	148.2	148.4	496	488	983	7.7	7.6	15.3	4	3804
e 16.40 159.4 160.5 160.0 578 569 1147 9.6 9.6 1	1140S	16.70	148.6	148.3	148.5	496	488	984	7.7	7.6	15.3	4	3816
17.50 159.4 160.5 160.0 578 569 1147 9.6 9.6	Average	16.40			148.4			983			15.3	4	3806
	3330*	17.50	159.4	160.5	160.0	578	269	1147	9.6	9.6	19.2	4	4505

extracted from approach data for deceleration run from 100% ahead
 based on 2680hp (2MW) hotel load

Table 8. USCGC HEALY (WAGB 20) standardization trials results, fuel summary, 16,412 LT, 25-26 August 1999, US customary units.

Din		1000	Sildit	Shar	ruel Kates	tates	Fuel Rates	ıtcs	Fuel Rates		Fuel Kates		Fuel	Fuel	Fuel	Fuel	Fuel	Fuel Consumption
	Ship	Speed	Torque	Power	Generator	ntor 1	Generator 2	or 2	Generator 3		Generator 4		nosumption	Consumption	Consumption	Consumption (Consumption	Consumption Consumption Consumption Consumption Consumption Propulsion Only **
Number	Speed	Average		Total	Supply Return		Supply Return		Supply Return		Supply Return		Generator 1	Generator 2	Generator 3	Generator 4	Total	Total
1	(knots)	(mdr)	(lbt-tt/1000)	(np/1000)	(gal/hr)	Ē	(gar/nr)		(gar/nr)		(gal/nr)	+	(gal/nr)	(gar/nr)	(gavnr)	(gavur)	(gar/nr)	(ganur)
N00	8.70	85.9	245	4.0	1027	806	:	*				157	119	*	120	124	364	218
108	10.95	85.2	248	4.0	1025	806	:	**				857	118	:	119	122	359	215
1020N	8.60	85.9	246	4.0	1026	806	:	*	8 286	5 698	8 186	159	118	***	118	122	357	215
Average	08.6	85.6	247	4.0	1026	806	:	:	8 286	898	8 086	858	118	:	119	123	360	216
308	13.70	110 \$	399	% 4	1052	873	:	:	1008	829	1005 8	821	179	:	178	184	542	410
1040N	11.40	110.7	398	4	1053	874	:	**				122	179	:	178	184	541	410
505	13.70	110.7	399	4	1053	874	:	*				821	179	:	178	184	541	410
Average	12.55	110.7	399	4.8	1053	874	:	:		-		821	179	:	178	184	541	410
N09	13.10	127.8	534	13.0	1001	847	:	:	1035 7	192	1043 7	96	243	:	242	248	733	809
10705	15.60	127.8	534	13.0	1601	849	:	:	1033 7		1042 7	161	242	* * *	241	246	729	909
N08	13.00	127.9	535	13.0	1601	849	:	***		792		797	242	:	241	247	730	909
Average	14.35	127.8	534	13.0	1001	848	:	:	1034 7		1043 7	961	243	ŧ	242	246	731	909
S08	16.55	137.5	620	16.2	0601	898	1079	804	1035	812	1041	115	222	275	222	226	946	812
1100N	14.00	137.4	621	16.2	1090	698	1079	908	_	_		918	222	273	222	226	943	810
108	16.65	137.5	620	16.2	1089	898	1079	908		_		316	221	273	222	225	942	808
Average	15.30	137.4	620	16.2	1090	898	1079	805		812 1		818	222	274	222	226	944	810
308	16.75	148.5	724	20.5	1601	822	1088	892	1040		1053 7	177	569	320	270	276	1135	1004
32N	16.10	148.4	725	20.5	1601	822	6801	692			1055 7	8/2	569	320	270	277	1136	1005
1140S	16.70	148.5	726	20.5	1092	821	1089	692	1040	168		777	270	320	272	278	1140	1008
Average	16.40	148.4	725	20.5	1091	822	1089	692			1054 7	- 11	269	320	172	277	1137	1005
3330*	17.50	160.0	846	25.8	1062	744	0111	774	1080	756 I.	1158 8.	822	318	336	324	336	1314	1190

extracted from approach data for deceleration run from 100% ahead
 based on 2680hp (2MR) Hotel load
 denotes generator offline

Average Fuel Temperatures Supply = 115 deg F Return = 135 deg F

Table 9. USCGC HEALY (WAGB 20) standardization trials results, fuel summary, 18,152 tonnes, 25-26 August 1999, metric units.

Run Number		or and	Shart	Shaft	Fuel Rates	Rates	Fuel Rates	tes	Fuel Rates		Fuel Rates		Fuel	Fuel	Fuel	Fuel	Fuel Consumption
1001	Ship	Speed	Torque Total	Power Total	Generator 1		Generator 2		Generator 3		Generator 4		Consumption Consumption	Consumption	Consumption Generator 4	Consumption Total	Consumption Propulsion Only **
	(knots)	(rpm)	(N-m/1000)	(MW)	(liters/hr)		(liters/hr)		(liters/hr		(liters/hr)		(liters/hr)	(liters/hr)	(liters/hr)	(liters/hr)	(liters/hr)
N000	8.70	85.9	333	3.0	3888	3437	***	***	3740 32	3285 37	3713 3243		***	456	470	1377	825
1010S	10.95	85.2	336	3.0	3881	3436	* * *	***				5 446	* * *	450	464	1359	816
020N	8.60	85.9	333	3.0	3884	3439	***	***		3290 37	3712 3250	446	* *	446	462	1353	812
Average	9.80	85.6	334	3.0	3884	3437	* * *	*	3736 32	3286 37	3711 3246	5 447	:	450	465	1362	817
0308	13.70	110.5	541	6.3	3984	3305	*	*	3814 31	3138 35	3804 3108	629		579	969	2050	1554
040N	11.40	110.7	540	6.3	3986	3309	* * *	**					* *	675	969	2048	1552
050S	13.70	110.7	541	6.3	3984	3308	***	***					***	675	269	2048	1553
Average	12.55	110.7	541	6.3	3985	3308	* * *	*					:	929	969	2048	1553
N090	13.10	127.8	725	7.6	4128	3207	*	**	3917 29	2999 39	3949 3012	921	*	816	937	2776	2302
1070S	15.60	127.8	723	9.7	4131	3213	***	***	3912 29	2999 35	3945 3015	_	* *	913	930	2761	2289
N080	13.00	127.9	725	6.7	4130	3214	* * *	***	3911 25	2997 39	3950 3017		***	914	933	2763	2291
Average	14.35	127.8	724	7.6	4130	3212	*	*	3913 29	2998 35	3947 3015	816	*	914	933	2765	2293
S060	16.55	137.5	840	12.1	4127	3286	4085 3	3044	3917 30	3075 39	3941 3084	841	1042	842	856	3581	3074
N001	14.00	137.4	842	12.1	4128	3288		3051			3942 3087	_	1035	841	854	3571	3065
1110S	16.65	137.5	840	12.1	4123	3285					3941 3089	838	1034	841	852	3565	3060
Average	15.30	137.4	841	12.1	4126	3287	4085 3	3049	3915 30	3074 35	3941 3087	840	1036	841	854	3572	3066
1130S	16.75	148.5	981	15.3	4129	3111					3985 2940		1209	1024	1045	4297	3799
132N	16.10	148.4	983	15.3	4131	3112			3934 29	2912 35	3992 2943	6101	1211	1023	1048	4301	3804
140S	16.70	148.5	984	15.3	4132	3109	4123 2		3936 29	2908 35	3994 2942	1023	1211	1028	1052	4315	3816
Average	16.40	148.4	983	15.3	4131	3111	4121 2		3935 29	2910 39	3991 2942	1020	1211	1024	1048	4304	3806
3330	17.50	160.0	846	25.8	4020	2816	4202 2	2930 4	4088 28	2862 43	4383 3112	1204	1272	1226	1272	4974	4505

^{*} extracted from approach data for deceleration run from 100% ahead ** based on 2680hp (2MW) Hotel load *** denotes generator offline

Average Fuel Temperatures Supply = 115 deg F Return = 135 deg F

Table 10. USCGC HEALY (WAGB 20) standardization trials results, ship speed and shaft speed relationship, 16,412 LT (18,152 tonnes), 25-26 August 1999.

Ship Speed	Shaft Speed
(knots)	(rpm)
8.0	65
8.5	70
9.0	75
9.5	80
10.0	85
10.5	90
11.0	95
11.5	100
12.0	105
12.5	110
13.0	115
13.5	120
14.0	125
14.5	130
15.0	135
15.5	140
16.0	145
16.5	150
17.0	155
17.5	160

Table 11. USCGC HEALY (WAGB 20) standardization trials results, shaft power and fuel consumption relationship, 16,412 LT (18,152 tonnes), 25-26 August 1999.

	Power		Fuel Con Propulsio	-	
(hp)	(kW)	(gal/hr)	(liters/hr)	(gal/nm)	(l/nm)
4000	2984	215	814	22	83
5000	3730	255	965	24	92
6000	4476	305	1155	27	104
7000	5222	355	1344	30	114
8000	5968	400	1514	33	123
9000	6714	450	1704	35	133
10000	7460	500	1893	38	143
11000	8206	545	2063	40	151
12000	8952	590	2233	42	159
13000	9698	635	2404	44	167
14000	10444	687	2600	47	177
15000	11190	733	2775	49	185
16000	11936	779	2948	51	193
17000	12682	824	3120	53	201
18000	13428	869	3290	55	208
19000	14174	914	3458	57	216
20000	14920	958	3625	59	223
21000	15666	1001	3790	61	230
22000	16412	1045	3954	63	237
23000	17158	1087	4116	64	244
24000	17904	1130	4277	66	250
25000	18650	1172	. 4436	68	256
26000	19396	1214	4593	69	262

Nominal values based on curve fits from Figure 6.

TACTICAL TRIALS

A series of tactical turns were conducted on HEALY to determine the ship's turning characteristics for various combinations of ship speeds and rudder angles. Three different right rudder angles were tested for nominal approach speeds of 8, 12.5, and 16.5 knots. In addition to the nine turns using right rudder, a port turn was accomplished at an approach speed of 13 knots. This check turn was accomplished to verify that the ship's turning characteristics were the same whether using right or left rudder. As shown in Table 3, weather conditions were excellent throughout the trials and the turning characteristics determined are considered to accurately represent the capabilities of HEALY.

TACTICAL TRIALS PROCEDURES

Each turn was commenced only after steady approach conditions had been established and maintained during the approach or COMEX portion of the run. The commands and actions used to conduct the trials are defined as follows:

STANDBY: Steady approach conditions have been established.

One minute to COMEX.

COMEX: Commence data acquisition. Maintain steady conditions.

One minute to EXECUTE.

EXECUTE: The rudder is positioned smartly to the scheduled angle. The rudder and

throttle are held steady until the completion of the turn (540 degrees

change of heading).

FINEX: Terminate the run and data acquisition.

The typical path of a tactical turn conducted in an environment with no wind or current is illustrated in Figure 7.

Fig. 7. Typical path of ship during a drift corrected tactical turn run.

Tactical data included in this report have been corrected for drift due to the effects of water current and wind, and thus represent the turning characteristics for HEALY operating in an environment of still wind and water. This is the only way in which standardized data can be developed. The uncorrected turning characteristics of HEALY will vary about the values presented in this report in response to the effects of water current, wind, and sea state that exist at the time a given tactical maneuver is conducted.

To correct the ship's path during the tactical turn, an average drift vector for each circle was determined by dividing the difference in position by the elapsed time for ship positions at which the heading differs by 360 degrees. This drift calculation was performed only after the ship had reached a steady turning rate (after 120 degrees of heading change). As an example, a drift vector may be determined from the difference in position and time for a ship at headings of 150 degrees and 510 degrees. These drift vectors are used to adjust each positional data point measured during the run and thus correct the data to represent the environment of still wind and water. (As described in a later section, drift vectors determined during the tactical turns are also used to correct acceleration and deceleration maneuvers for the effect of wind and current). An example of the difference between the uncorrected and the corrected path of a ship is shown in Figure 8.

Fig. 8. Comparison of the paths for uncorrected and corrected conventional tactical turns.

TACTICAL TRIALS RESULTS

Advance, transfer, and tactical diameter as a function of steady approach speed are shown in Fig. 9. This figure indicates that the advance, transfer, and tactical diameter of HEALY are only slightly dependent on ship speed. When using a nominal rudder angle of 35 degrees, for example, advance varies by only 20 yards when ship approach speed is between 8 knots and 16.5 knots.

Figure 9 indicates that transfer and tactical diameter also only increase slightly as a function of speed when a rudder angle of 10 degrees is used. Based on the results of a port turn with a nominal 20 degrees rudder angle as shown in Figure 9, HEALY turns the same to the port as it does to the starboard. This is a desirable characteristic and is typical of ships with two propellers. Figure 9 also indicates that the tactical diameter of HEALY is approximately 3 ship lengths for all speeds tested when a rudder angle of 35 degrees is used.

Figure 10 and Table 12 indicate that the turning characteristics of HEALY change substantially as a function of rudder angle. Tactical diameter decreases from approximately 750 yards (685 meters) to approximately 375 yards (343 meters) as rudder angle is increased from 10 degrees to 35 degrees. The fact that the three curves shown in Fig. 9 represent three different speeds, and the curves essentially coincide for each parameter shown (advance, transfer, and tactical diameter) again indicates only slight dependence of ship turning characteristics on ship approach speed.

Figures 11 - 13 show the advance versus transfer characteristics for HEALY at approach speeds of 8, 12.5, and 16.5 knots respectively. These figures can be used to determine either the advance or the transfer of HEALY for each 10 degrees of heading change for heading changes between 0 degrees and 180 degrees. Again, these distances represent the turning characteristics of HEALY for the condition of zero wind and zero current. Figures 14 - 16 show the change of heading versus time characteristics for HEALY at approach speeds of 8, 12.5, and 16.5 knots respectively. Characteristics shown in these figures will be altered by environmental conditions that exist at the time a given maneuver is accomplished. Tables 12 through 15 provide the standardized turning characteristics of HEALY in tabular form.

Fig. 9. USCGC HEALY (WAGB 20) tactical trials results, tactical dimensions versus approach ship speed.

Fig. 10. USCGC HEALY (WAGB 20) tactical trials results, tactical dimensions versus rudder angle.

	9.3	deg Right F	Rudder	19.	2 deg Right	Rudder	35.0 deg Right Rudder			
	Time to			Time to			Time to			
Change	Change			Change			Change			
of	of			of			of			
Heading	Heading	Advance	Transfer	Heading	Advance	Transfer	Heading	Advance	Transfer	
(deg)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)	
0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	
10	52	237 217	-5 -5	31	145 132	5 5	29	127 116	- 9 -9	
20	73	331 303	7 7	46	211 193	14 13	41	179 164	-2 -2	
30	90	401 367	27 25	58	263 240	29 27	51	222 203	7 7	
40	106	460 421	54 49	70	308 282	48 44	61	258 235	21 19	
50	121	515 471	93 85	83	352 322	78 72	71	290 265	38:35	
60	136	557 510	134 122	94	386 353	110 100	81	315 288	66 61	
70	151	595 544	190 174	106	415 379	150 137	91	338 309	92 84	
80	166	624 570	243 222	118	434 396	173 158	101	355 325	122 111	
90	183	636 581	306 280	131	452 413	232 212	111	371 339	152 139	
100	200	643 588	373 341	143	456 417	275 251	122	377 345	185 169	
110	216	638 584	433 396	156	460 420	324 296	133	379 347	218 199	
120	233	622 569	497 454	170	451 412	372 340	144	375 343	248 227	
130	249	596 545	554 507	184	428 391	415 379	155	364 333	280 256	
140	266	562 514	608 556	197	405 371	454 415	167	347 317	308 282	
150	282	514 470	654 598	212	372 340	486 444	179	328 300	334 305	
160	299	460 421	690 631	226	339 310	519 474	191	307 281	357,327	
170	316	402 368	716 654	241	290 266	538 492	203	276 253	374:342	
180	332	340 311	735 672	255	250 228	554 507	215	245 224	386 ; 353	

Fig. 11. USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 8 knots approach speed.

	2.7	deg Right I	Rudder		2.7 deg Right Rudder 18.9 deg Right Rudder				18.6 deg Left Rudder				34.6 deg Right Rudder			
	Time to			Ti	ime to				Time to				Time to			
Change	Change			C	hange				Change			-	Change		i	
of	of	•		ĺ	of				of				of		1	
Heading	Heading	Advance	Transfer	He	eading	Advance	Transfer	-	Heading	Advance	Transfer		Heading	Advance	Transfer	
(deg)	(s)	(vd) (m)	(yd) (m)		(s)	(yd) (m)	(yd) (m)		(s)	(yd) (m)	(yd) (m)		(s)	(yd) (m)	(yd) (m)	
0	0	0 0	0 0		0	0 0	0 0		0	0 0	0 0		0	0 0	010	
10	32	148 135	14 13		22	156 143	5 4		22	153 140	8 7		18	130 119	212	
20	46	215 196	27 25		32	226 207	10 9		31	214 195	15 14		26	181 165	9 9	
30	59	265 242	45 42		41	281 257	26 24		39	267 244	35 32		32	222 203	21 20	
40	71	310 283	67 61		48	325 297	49 45		47	313 286	60 55		39	262 239	37 34	
50	83	351 321	100 91		56	367 336	76170		55	3551325	93 85	ı	45	291 266	59 54	
60	95	384 351	134 122		64	400 366	112 102	- 1	62	386 353	119 109		51	320 292	84 77	
70	107	410 375	176 161		73	431 394	153 140		70	411 376	157 143	Į	58	341 312	113 103	
80	119	427 391	198 181		80	451 413	195 178	-	77	429 393	198 181	-	65	361 330	146 134	
90	132	442 404	259 236		89	467 427	239 218		85	443 405	241 221	- [72	374 342	180 164	
100	144	438 401	302 276		97	473 433	287 262		93	447 409	286 262	-	78	383 350	209 191	
110	157	444 406	351 321		106	473 432	333 304	- {	101	445 407	334 305	- [85	385 352	244 223	
120	171	433 395	399 365		115	463 423	377 345		110	433 396	372 340		93	381 348	276 253	
130	185	407 372	441 403		124	444 406	420 384	-	119	415 379	417 381		100	373 341	308 281	
140	198	382 349	478 437		133	418 383	463 423		127	387 354	451 413	1	108	357 327	334 306	
150	212	346 316	508 465		142	391 357	496 454		136	355 325	488 446		116	337 308	359 328	
160	227	311 285	539 492		151	352 321	524 479		146	317 290	516 471		124	312 285	380 348	
170	242	262 239	556 508		160	308 282	549 502	- [155	279 255	538 492	1	133	283 259	397 363	
180	256	220 201	569 520		170	260 238	563 515		164	231 211	547 501		140	254 233	394 360	

Fig. 12. USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 12.5 knots approach speed.

	2.4	deg Right F	Rudder	19.	3 deg Right	Rudder	34.4 deg Right Rudder			
	Time to			Time to			Time to			
Change	Change			Change			Change			
of	of			of			of			
Heading	Heading	Advance	Transfer	Heading	Advance	Transfer	Heading	Advance	Transfer	
(deg)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)	
0	0	0 0	0 0	0	0 0	010	0	0 0	0 0	
10	25	233 213	3 2	17	158 144	010	16	147 135	0 0	
20	36	328 300	17 15	25	227 207	9 8	22	198 181	7 7	
30	44	404 370	42 38	32	283 259	25 22	27	242 221	20 18	
40	53	470 429	78 71	38	331 303	48 44	32	278 255	37 ! 34	
50	61	527 481	119 109	44	374 342	76 69	37	314 287	58 53	
60	68	572 523	168 154	50	411 376	115 105	42	340 311	83 76	
70	76	609 557	223 204	56	438 401	151 138	47	360 329	113 103	
80	84	633 579	284 260	62	460 421	197 180	52	375 343	145 ; 132	
90	91	649 593	348 318	69	475 435	241 220	57	388 355	180 164	
100	99	652 596	414 378	75	480 439	288 263	62	389 356	216 198	
110	107	647 591	477 436	82	478 437	339 310	68	392 358	250 229	
120	115	626 572	541 494	89	467 427	386 353	74	384 351	285 260	
130	124	595 544	602 550	95	451 412	431 394	79	373 341	315 288	
140	132	558 510	653 597	102	420 384	472 431	85	356 325	343 313	
150	140	507 463	700 640	109	389 356	510 466	91	334 305	369 337	
160	148	450 412	738 674	116	349 319	538 492	98	302 276	390 357	
170	157	388 355	762 697	123	301 276	562 514	103	273 250	407 372	
180	165	321 293	779 712	130	257 235	577 528	109	240 219	417 381	

Fig. 13. USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 16.5 knots approach speed.

Fig. 14. USCGC HEALY (WAGB 20) tactical trials results, change of heading versus elapsed time for nominal 8 knots approach speed.

Fig. 15. USCGC HEALY (WAGB 20) tactical trials results, change of heading versus elapsed time for nominal 12.5 knots approach speed.

Fig. 16. USCGC HEALY (WAGB 20) tactical trials results, change of heading versus elapsed time for nominal 16.5 knots approach speed.

Table 12. USCGC HEALY (WAGB 20) tactical trials results.

				_										
Steady	Roll	Angle	(deg)		0.4 S	0.4 S	0.3 S	1.3 S	1.4 S	2.1 P	1.2 S	2.8 S	2.9 S	2.6 S
Maximum	Roll	Angle	(deg)		0.7 S	0.8 S	1.0 S	1.9 S	2.5 S	3.2 P	3.1.8	3.7 S	4.4 S	5.2 S
Steady	Yaw	Rate	(deg/s)		1.7	1.5	1.3	1.1	1.0	1.0	6.0	6.0	0.7	9.0
Time	to 360 deg		(s)		989	521	445	421	348	337	296	320	260	224
Time	to 270 deg	Chg of Hdg	(s)		481	389	328	319	258	249	217	242	194	167
Time	180 deg	gof Hdg	(s)		332	255	215	215	170	164	140	165	130	601
	to 90 deg	Chg of Hdg Ch	(s)		183	131	Ξ	119	68	85	72	16	69	57
Percent	Speed Loss	E	(%)		18.4	26.4	41.1	16.6	29.9	33.8	43.6	12.3	24.0	40.9
Steady	Speed	in Turn	(knots)		8.9	5.9	4.6	10.6	8.8	9.8	7.0	14.3	12.4	6.6
Steady	Turning	Diameter	(yd) (m)		735 672	560 512	380 347	775 709	555 507	535 489	390 357	790 722	580 530	405 370
	Tactical	Diameter	(yd) (m)		735 672	555 507	385 352	750 686	565 517	545 498	400 366	780 713	575 526	415 379
		Transfer	(yd) (m)		305 279	230 210	150 137	325 297	240 219	240 219	165 150	350 320	240 219	180 165
		Advance	(yd) [(m)		635 581	450 411	370 338	650 594	465 425	445 407	375 343	650 594	475 434	390 357
Steady	Rudder	Angle	(deg)		9.3 R	19.2 R	35.0 R	9.7 R	18.9 R	19.81	34.6 R	9.4 R	19.3 R	34.4 R
	Approach	Speed	(knots)		8.30	8.00	7.85	12.75	12.50	13.00	12.35	16.30	16.30	16.75
		Number			2000	2010	2030	2040	2050	2055	2060	2070	2080	2090

Table 13. USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 8 knots approach speed.

-	9.3	deg Right F	Rudder	19.	2 deg Right	Rudder	35.	0 deg Right	Rudder
	Time to			Time to			Time to		
Change	Change			Change			Change		
of	of			of			of		
Heading	Heading	Advance	Transfer	Heading	Advance	Transfer	Heading	Advance	Transfer
(deg)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)
0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0
5	38	167 153	-8 -8	21	100 91	0 0	21	95 87	-9 -8
10	52	237 217	-5 -5	31	145 132	5 5	29	127 116	-9 -9
15	63	284 260	0 0	39	181 166	8 7	35	151 138	-8 -7
20	73	331 303	7 7	46	211 193	14 13	41	179 164	-2 -2
25	82	367 336	17 15	52	238 218	20 18	46	200 183	2 2
30	90	401 367	27 25	58	263 240	29 27	51	222 203	7 7
35	98	433 396	42 38	65	288 263	37 34	56	238 218	16 14
40	106	460 421	54 49	70	308 282	48 44	61	258 235	21 19
45	113	488 446	73 66	76	329 301	62 57	66	274 251	30 27
50	121	515 471	93 85	83	352 322	78 72	71	290 265	38 35
55	128	539 493	115 105	88	371 339	94 85	76	303 277	53 48
60	136	557 510	134 122	94	386 353	110 100	81	315 288	66 61
65	144	578 529	165 151	100	400 366	127 116	86	329 300	80 73
70	151	595 544	190 174	106	415 379	150 137	91	338 309	92 84
75	159	609 557	216 198	112	427 390	166 152	95	347 318	105 96
80	166	624 570	243 222	118	434 396	173 158	101	355 325	122 111
85	175	633 579	274 250	124	443 405	204 187	106	363 332	138 126
90	183	636 581	306 280	131	452 413	232 212	111	371 339	152 139
95	191	644 589	342 312	137	454 415	253 231	116	367 336	175 160
100	200	643 588	373 341	143	456 417	275 251	122	377 345	185 169
105	207	641 586	403 368	150	460 420	302 276	127	379 347	200 183
110	216	638 584	433 396	156	460 420	324 296	133	379 347	218 199
115	224	633 579	467 427	164	458 419	352 322	138	379 347	233 213
120	233	622 569	497 454	170	451 412	372 340	144	375 343	248 227
125	241	612 560	526 481	177	443 405	395 361	149	370 338	264 241
130	249	596 545	554 507	184	428 391	415 379	155	364 333	280 256
135	258	580 530	580 531	190	416 381	433 396	161	358 327	293 268
140	266	562 514	608 556	197	405 371	454 415	167	347 317	308 282
145	275	535 489	636 582	204	388 355	471 431	173	339 310	322 294
150	282	514 470	654 598	212	372 340	486 444	179	328 300	334 305
155	291	487 446	674 616	219	361 330	506 463	185	318 291	347 317
160	299	460 421	690 631	226	339 310	519 474	191	307 281	357 327
165	307	432 395	705 644	234	317 290	531 486	197	292 267	368 336
170	316	402 368	716 654	241	290 266	538 492	203	276 253	374 342
175	324	375 343	727 664	248	273 250	549 502	209	262 239	381 348
180	332	340 311	735 672	255	250 228	554 507	215	245 224	386 353

Table 14. USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 12.5 knots approach speed.

	2.7	deg Right I	Rudder	18.	9 deg Right	Rudder	18	.6 deg Left F	Rudder	34.	6 deg Right	Rudder
	Time to			Time to			Time to			Time to		
Change	Change		İ	Change			Change			Change		
of	of		:	of			of			of		
Heading	Heading	Advance	Transfer	Heading	Advance	Transfer	Heading	Advance	Transfer	Heading	Advance	Transfer
(deg)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)
0	0	0 0	0 0	0	. 0 0	0 0	0	0 0	0 0	0	0 0	0 0
5	22	104 95	6 5	16	115 106	-2 -2	16	109 100	5 5	14	98 89	0 0
10	32	148 135	14 13	22	156 143	5 4	22	153 140	8 7	18	130 119	2 2
15	39	185 169	19 18	28	192 176	8 7	26	184 168	13 11	22	159 145	3 3
20	46	215 196	27 25	32	226 207	10 9	31	214 195	15 14	26	181 165	9 9
25	53	241 220	34 31	37	254 233	17] 15	35	243 222	27 25	29	202 185	15 14
30	59	265 242	45 42	41	281 257	26 24	39	267 244	35 32	32	222 203	21 20
35	65	290 265	55 50	45	304 278	37 34	43	289 264	45 41	35	241 220	23 21
40	71	310 283	67 61	48	325 297	49 45	47	313 286	60 55	39	262 239	37 34
45	77	329 301	82 75	52	347 317	62 57	50	332 303	75 68	42	276 252	51 46
50	83	351 321	100 91	56	367 336	76 70	55	355 325	93 85	45	291 266	59 54
55	89	369 337	116 106	60	386 353	93 85	58	370 338	103 94	48	305 279	69 63
60	95	384 351	134 122	64	400 366	112 102	62	386 353	119 109	51	320 292	84 77
65	101	396 362	152 139	68	415 380	131 120	66	399 365	137 125	55	332 303	102 93
70	107	410 375	176 161	73	431 394	153 140	70	411 376	157 143	58	341 312	113 103
75	113	421 385	192 175	77	441 403	175 160	73	421 385	176 161	61	353 322	130 119
80	119	427 391	198 181	80	451 413	195 178	77	429 393	198 181	65	361 330	146 134
85	125	434 397	231 211	85	461 421	216 198	81	438 400	222 203	68	369 337	164 150
90	132	442 404	259 236	89	467 427	239 218	85	443 405	241 221	72	374 342	180 164
95	138	443 405	281 257	93	471 430	264 241	89	445 407	262 240	75	380 348	193 176
100	144	438 401	302 276	97	473 433	287 262	93	447 409	286 262	78	383 350	209 191
105	151	439 402	329 301	102	474 433	310 284	97	446 408	308 282	82	384 351	227 207
110	157	444 406	351 321	106	473 432	333 304	101	445 407	334 305	85	385 352	244 223
115	165	440 402	380 347	110	469 428	356 325	105	438 401	348 318	89	383 350	260 238
120	171	433 395	399 365	115	463 423	377 345	110	433 396	372 340	93	381 348	276 253
125	178	423 386	421 385	119	455 416	397 363	114	425 388	391 357	97	378 345	292 267
130	185	407 372	441 403	124	444 406	420 384	119	415 379	417 381	100	373 341	308 281
135	191	394 360	457 418	128	431 394	442 404	123	402 367	431 394	104	365 334	322 294
140	198	382 349	478 437	133	418 383	463 423	127	387 354	451 413	108	357 327	334 306
145	205	363 332	494 452	137	406 371	482 441	132	372 340	469 429	112	349 319	347 317
150	212	346 316	508 465	142	391 357	496 454	136	355 325	488 446	116	337 308	359 328
155	220	334 305	528 483	146	372 340	511 468	141	336 307	502 459	120	327 299	373 341
160	227	311 285	539 492	151	352 321	524 479	146	317 290	516 471	124	312 285	380 348
165	234	289 264	550 503	156	330 301	536 490	150	299 274	528 483	128	299 274	392 359
170	242	262 239	556 508	160	308 282	549 502	155	279 255	538 492	133	283 259	397 363
175	249	244 223	565 517	165	284 260	558 510	159	255 233	545 498	136	271 247	402 368
180	256	220 201	569 520	170	260 238	563 515	164	231 211	547 501	140	254 233	394 360

Table 15. USCGC HEALY (WAGB 20) tactical trials results, advance versus transfer for nominal 16.5 knots approach speed.

	9.4	deg Right R	ludder	19.	3 deg Right	Rudder	34.	4 deg Right	Rudder
	Time to			Time to			Time to		
Change	Change			Change		1	Change		
of	of			of			of		
Heading	Heading	Advance	Transfer	Heading	Advance	Transfer	Heading	Advance	Transfer
(deg)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)	(s)	(yd) (m)	(yd) (m)
0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0
5	18	165 151	-1 -1	13	115 105	-3 -3	12	116 106	1 1
10	25	233 213	3 2	17	158 144	0 0	16	147 135	0 0
15	30	284 259	8 7	21	193 177	4 4	19	175 160	3 3
20	36	328 300	17 15	25	227 207	9 8	22	198 181	7 7
25	40	369 337	28 25	28	254 232	16 14	25	223 204	14 13
30	44	404 370	42 38	32	283 259	25 22	27	242 221	20 18
35	49	438 400	59 54	35	309 283	36 33	29	261 239	28 26
40	53	470 429	78 71	38	331 303	48 44	32	278 255	37 34
45	56	498 455	96 88	41	352 322	62 56	34	298 272	46 42
50	61	527 481	119 109	44	374 342	76 69	37	314 287	58 53
55	65	550 503	145 132	47	392 359	93 85	39	327 299	70 64
60	68	572 523	168 154	50	411 376	115 105	42	340 311	83 76
65	72	590 540	196 179	53	424 388	130 119	44	351 321	98 90
70	76	609 557	223 204	56	438 401	151 138	47	360 329	113 103
75	80	622 569	253 231	59	450 411	175 160	49	368 336	129 118
80	84	633 579	284 260	62	460 421	197 180	52	375 343	145 132
85	88	643 588	317 290	66	468 428	218 199	54	385 352	164 150
90	91	649 593	348 318	69	475 435	241 220	57	388 355	180 164
95	95	652 596	381 348	72	479 438	265 242	60	391 358	198 181
100	99	652 596	414 378	75	480 439	288 263	62	389 356	216 198
105	103	650 594	448 410	79	481 439	315 288	66	392 358	238 218
110	107	647 591	477 436	82	478 437	339 310	68	392 358	250 229
115	112	636 582	512 468	85	472 432	364 333	71	388 355	268 245
120	115	626 572	541 494	89	467 427	386 353	74	384 351	285 260
125	120	611 559	574 525	92	458 419	410 375	76	380 347	297 272
130	124	595 544	602 550	95	451 412	431 394	79	373 341	315 288
135	128	579 530	627 574	98	441 403	452 413	82	364 333	330 301
140	132	558 510	653 597	102	420 384	472 431	85	356 325	343 313
145	136	532 487	677 619	105	407 372	492 450	88	346 317	356 325
150	140	507 463	700 640	109	389 356	510 466	91	334 305	369 337
155	144	479 438	720 658	112	367 335	525 480	94	320 293	379 347
160	148	450 412	738 674	116	349 319	538 492	98	302 276	390 357
165	153	418 382	751 687	119	327 299	551 504	101	286 261	400 365
170	157	388 355	762 697	123	301 276	562 514	103	273 250	407 372
175	161	354 324	772 706	126	280 256	571 522	107	255 233	413 378
180	. 165	321 293	779 712	130	257 235	577 528	109	240 219	417 381

ACCELERATION AND DECELERATION TRIALS

Acceleration and Deceleration Trials were conducted on HEALY to determine the distance (reach) and time required to achieve a steady ship speed after the ship operators have commanded a change in the ship's powering conditions. This information is important for safety considerations should the ship be required to rapidly change it's speed and position to avoid contact with another object. In the case of HEALY, acceleration characteristics are also important for icebreaking (ramming) operations. The propulsion plant limitations experienced during standardization trials did not impact the runs requiring the 100% ahead condition because the 100% condition was not sustained for a long enough time to cause problems.

ACCELERATION AND DECELERATION TRIALS PROCEDURES

Each acceleration/deceleration run begins by obtaining a steady ship speed on the approach course for the run. Some acceleration runs begin from the Dead-In-the-Water (DIW) condition and the approach speed is zero. Once the ship is steady at the specified conditions, propulsion plant commands are issued in an attempt to reach a new operating condition as quickly as possible. Figure 17 shows the typical path of the ship during an acceleration/deceleration maneuver.

The acceleration and deceleration runs were interspersed with two tactical circles so the ship track for each maneuver could be corrected for drift due to wind and water current. A tactical circle is conducted as close as possible in time and location to each acceleration or deceleration maneuver in order to determine the appropriate drift rate for correcting the ship's path during each run. The corrected ship path during each run was used to determine the distance (reach) and time required to achieve the desired steady condition following a particular engine order change.

The ship's Doppler Sonar Velocity Log (DSVL) was used to determine zero ship speed for the acceleration runs that begin with the ship in the DIW condition. Subsequent data analysis, i.e., the drift correction of the acceleration runs using drift vectors from the tactical circles interspersed with the acceleration/deceleration runs, indicated that one acceleration run began with an ahead approach speed of 0.9 knots rather than zero knots, while a second run had an astern approach speed of 0.9 knots.

Fig. 17. Typical path of ship during an acceleration/deceleration run.

ACCELERATION AND DECELERATION TRIALS RESULTS

Figure 18 is a plot of the acceleration performance of HEALY when accelerating from the DIW condition using 50%, 75%, and 100% ahead power. Steady ship speeds of 10.4, 13.6, and 17.4 knots were achieved for the three acceleration runs. The highest steady speed, and the largest reach, 1985 yd (1815 m), resulted from the acceleration run using full power. The full power acceleration run resulted in HEALY achieving a steady speed in the least amount of time, 4.5 minutes. The run using 75% power resulted in a reach of 1765 yd (1614 m) in about 5.7 minutes.

Figure 19 illustrates the results of two deceleration runs using 50% astern power to stop. One run has an initial speed of 3 knots and one run has an initial speed of 10 knots. The deceleration run starting at 3 knots reached the DIW condition in 65 seconds and traveled 70 (yd) (64 m). The run beginning with an approach speed of 10.2 knots reached the DIW condition in about 160 seconds and traveled about 490 yd (448 m).

Figure 20 illustrates the stopping capability of HEALY when using 100% astern power. HEALY reached the DIW condition in 100 seconds and traveled 545 yd (498 m) when decelerating from a steady speed of 17.5 knots. When decelerating from 13.7 knots, HEALY reached the DIW condition in 90 seconds after travelling 380 yd (347 m). The smallest reach, 255 yd (233 m), and the least time to stop, 70 seconds, occurred when decelerating from 10.6 knots. Results of the acceleration and deceleration trials are summarized in Tables 16 and 17, respectively.

Fig. 18. USCGC HEALY (WAGB 20) acceleration trials results, DIW to steady ahead using 50%, 75%, and 100% power.

Fig. 19. USCGC HEALY (WAGB 20) deceleration trials results, various ahead speeds to DIW using 50% astern.

Fig. 20. USCGC HEALY (WAGB 20) deceleration trials results, various ahead speeds to 100% astern.

Table 16. USCGC HEALY (WAGB 20) acceleration trials results.

Run	Approach Engine Order	Terminal Engine Order	Approach Shaft Speed	Terminal Shaft Speed	Approach Ship Speed	Terminal Ship Speed	Terminal Time	Rea	ninal ach
			(rpm)	(rpm)	(knots)	(knots)	(s)	(yd)	(m)
3210	DIW	50% Ahead	0	90	0.9	10.4	380	1660	1518
3230	DIW	75% Ahead	0	121	-0.25	13.6	335	1765	1614
3270	DIW	100% Ahead	0	160	-0.9	17.4	270	1985	1815

Table 17. USCGC HEALY (WAGB 20) deceleration trials results.

	Approach	Terminal	Approach Average Shaft	Terminal Average Shaft	Approach Ship	Terminal Ship	Terminal	Tern	
Run	Engine Order	Engine Order	Speed	Speed	Speed	Speed	Time	Rea	
			(rpm)	(rpm)	(knots)	(knots)	(s)	(yd)	(m)
3221	50% Ahead	100% Astern	92	126	10.60	0.0	70	255	233
3240	75% Ahead	100% Astern	123	125	13.70	0.0	90	380	347
3300	100% Ahead	100% Astern	160	125	17.50	0.0	100	545	498
3290	25% Ahead	50% Astern	41	75	3.00	0.5	65	70	64
3260	50% Ahead	50% Astern	86	75	10.20	0.5	160	490	448

LATERAL STABILITY TRIALS

Lateral stability (spiral) maneuvers are typically performed to determine if a ship is directionally stable and to determine the ship's neutral rudder angle. Directional stability is characterized by the absence of turning rate hysteresis attributable to the direction of rudder travel.

LATERAL STABILITY TRIALS PROCEDURES

Verification that the ship turns the same to port and to starboard is achieved through a series of starboard to port, and port to starboard rudder deflections. Once a given angle of deflection is achieved, the ship is allowed to reach a steady rate of turn and then the rudder is eased to the next position. The series of rudder angles tested are achieved in order, first from large rudder angles to low rudder angles, and then from low angles to large angles.

Beginning with an approach speed of 12.5 knots, a steady rate of turn was achieved for each rudder angle listed in Table 18. Each rudder deflection was approached from the same direction and the helmsman did not hunt for exact rudder positions. During one maneuver, for example, moving from 19.5 degrees to 15 degrees actually resulted in a rudder position of 14.3 degrees, or slightly below the intended angle of 15 degrees. In this case the helmsman did not move the rudder back to 15 degrees, even when it was clear that the target value of 15 degrees had not been achieved.

The sea state was between 0 and 1 and the true wind speed was less than 10 knots at the time of the tests. The favorable weather conditions helped to obtain steady and repeatable rates of turn for both the large and the small rudder deflections.

LATERAL STABILITY TRIALS RESULTS

Results of the lateral stability trials are shown in Figure 21 and the relationship between yaw rate and rudder angle indicates the lack of significant hysteresis. Within the accuracy of the tests, the ship turns the same to port as to starboard, and is therefore directionally stable. The ship does appear to have a small neutral angle, of approximately 0.75 degrees right rudder.

Fig. 21. USCGC HEALY (WAGB 20) lateral stability trials results, nominal 12.5 knots approach speed.

Table 18. USCGC HEALY (WAGB 20) lateral stability trials results, nominal 12.5 knots approach speed.

Right to	o Left		Left to	Right
Rudder Angle	Yaw Rate		Rudder Angle	Yaw Rate
(deg)	(deg/s)		(deg)	(deg/s)
19.5 R	1.00 R		19.1 L	1.02 L
14.3 R	0.94 R		14.0 L	0.94 L
9.6 R	0.84 R		9.1 L	0.88 L
5.3 R	0.69 R	0 0 0 0 0 0 0	4.7 L	0.68 L
3.6 R	0.55 R		2.4 L	0.57 L
1.8 R	0.30 R		0.3 L	0.39 L
0.3 R	0.29 L		0.2 R	0.08 L
2.4 L	0.58 L		1.1 R	0.25 R
4.2 L	0.68 L		3.0 R	0.55 R
9.2 L	0.88 L		4.9 R	0.64 R
14.2 L	0.97 L		10.0 R	0.88 R
19.1 L	1.02 L		14.8 R	0.93 R
			19.7 R	1.02 R

HORIZONTAL OVERSHOOT TRIALS

Horizontal overshoot maneuvers (zigzags) were accomplished on HEALY to determine the effectiveness of both right and left rudder throws in initiating and in checking turns. The procedures used for these tests, and the results obtained are discussed below.

HORIZONTAL OVERSHOOT TRIALS PROCEDURES

A horizontal overshoot test begins by obtaining a steady approach speed with the rudder amidships and the ship on a course that is directly into, or with, the direction of the existing true wind. This ensures that both port and starboard turns will be affected equally by the wind and the test results will not be biased.

Once the ship is steady on the base course, the rudder is smartly moved to the desired position, such as 10 degrees to starboard. When the ship's heading has changed by 10 degrees to the right of the base course, the rudder is quickly moved to 10 degrees to port. When the ship heading reaches 10 degrees to the left of the base course, the rudder is again shifted to 10 degrees to starboard. This procedure causes the ship to zigzag through the water and the run is complete when a minimum of two complete cycles of heading changes have occurred.

HORIZONTAL OVERSHOOT TRIALS RESULTS

Horizontal overshoot maneuvers conducted at 12.5 and 16.5 knots indicate that the two rudder angles tested, 10 degrees and 20 degrees, are effective in turning and in checking the turning of HEALY. Figures 22 through 25 illustrate the yaw checking ability of HEALY for the conditions tested. Ten degrees of rudder is not adequate to check the turning of some ships but that is clearly not the case for HEALY. Table 19 lists the turning characteristics determined during the horizontal overshoot maneuvers.

Fig. 22. USCGC HEALY (WAGB 20) horizontal overshoot trials results, nominal 12.5 knots approach speed, nominal 10 deg rudder angle, 26 August 1999.

Fig. 23. USCGC HEALY (WAGB 20) horizontal overshoot trials results, nominal 12.5 knots approach speed, nominal 20 deg rudder angle, 26 August 1999.

Fig. 24. USCGC HEALY (WAGB 20) horizontal overshoot trials results, nominal 16.5 knots approach speed, nominal 10 deg rudder angle, 26 August 1999.

Fig. 25. USCGC HEALY (WAGB 20) horizontal overshoot trials results, nominal 16.5 knots approach speed, nominal 20 deg rudder angle, 26 August 1999.

Table 19. USCGC HEALY (WAGB 20) horizontal overshoot trials results.

Run Number	Nominal Approach Speed (knots)	Entrance Rudder Angle (deg)	Checking Rudder Angle (deg)	Change of Heading at Checking Execute (deg)	Maximum Heading Change (deg)	Maximum Overshoot Heading Change (deg)	Time 1st to 2nd Execute (s)	Time 2nd Execute to Max Overshoot (s)	Time 1st Execute to Max Overshoot (s)
4000	12.5	0.5 R 10.3 R 9.6 L 9.9 R	10.3 R 9.6 L 9.9 R 9.9 L	10.8 9.6 10.8	25.2 22.7 25.1	14.4 13.1 14.3	80 103 95	36 32 35	116 135 130
4010	12.5	0.8 R 19.7 R 19.6 L 19.9 R	19.7 R 19.6 L 19.9 R 19.6 L	21.4 21.4 20.0	37.0 36.1 36.0	15.6 14.7 16.0	88 97 94	25 24 25	113 121 119
4020	16.5	0 10.3 R 9.3 L 9.9 R	10.3 R 9.3 L 9.9 R 9.2 L	11.5 11.5 12.5	26.8 27.0 26.0	15.3 15.5 13.5	68 81 83	27 27 24	95 108 107
4030	16.5	0.8 R 20.1 R 19.2 L 19.2 L 20.2 R	20.1 R 19.2 L 20.2 R 19.2 L 20.0 R	24.3 25.0 24.0 24.6	41.9 41.6 41.2 41.3	17.6 16.6 17.2 16.7	78 80 80 80	21 20 21 21	99 100 101 101

LOW SPEED CONTROLLABILITY TRIALS

The low speed controllability of a ship is determined by conducting zigzag maneuvers at very low ship speeds. Test procedures and the results of the low speed controllability maneuvers are discussed below.

LOW SPEED CONTROLLABILITY TRIALS PROCEDURES

Low speed controllability trials begin by obtaining a steady approach speed with the rudder amidships and the ship on a course that is directly into or with the existing true wind. This ensures that turns to the port or to the starboard will be affected equally by the wind, and the test results will not be biased.

Once the ship is steady on course, the rudder is smartly moved to the desired rudder angle, such as right 10 degrees. The rudder angle is maintained for 30 seconds and then moved to left 10 degrees and held for another 30 seconds. Thirty seconds later the rudder is moved to 0 degrees and the run is terminated. During the trials on HEALY this procedure was accomplished at steady speeds of 6, 5, 4, 3, and 2 knots for rudder angles of 10 degrees and 35 degrees.

LOW SPEED CONTROLLABILITY TRIALS RESULTS

The results of the low speed controllability runs indicate that rudder effectiveness is greatly reduced at ship speeds less than six knots. Figure 26 indicates that the ship can be slowly turned using a rudder angle of 10 degrees. At any speed less than six knots, however, the ship's turning cannot be effectively checked. This lack of checking capability is in contrast to the characteristics determined during the horizontal overshoot tests at the nominal speed of 12.5 knots.

Ship controllability is even further limited when a rudder angle of 35 degrees is used at speeds of six knots or less. Figure 27 indicates that turns can be initiated but cannot be effectively checked unless the initial ship speed is greater than six knots. Use of 35 degrees rudder causes the ship to initially turn at a higher rate, but the large rudder angle has the effect of causing a greater reduction in ship speed that further reduces ship controllability.

Fig. 26. USCGC HEALY (WAGB 20) low speed controllability trials results, nominal 10 deg rudder angle, 26 August 1999.

Fig. 27. USCGC HEALY (WAGB 20) low speed controllability trials results, nominal 35 deg rudder angle, 26 August 1999.

CONCLUSIONS

- Standardization trials results indicated the maximum tested condition of 16.40 knots at a
 shaft speed of 148.4 rpm, total shaft torque of 725,000 lbf-ft (983,000 N-m), total shaft
 power of 20,500 hp (15,300 kW), and total fuel consumption rate of 10005 gal/hr (3,806
 liters/hr). Due to propulsion plant limitations, standardization tests could not be conducted at
 conditions above 148 rpm.
- 2. For all ship speeds tested, HEALY has a tactical diameter of 3.1 ship lengths or less when using a rudder angle of 35 degrees. This meets the ship design criterion of a tactical diameter less than or equal to 3.5 times the ship length on the waterline (401.6 ft.).
- 3. HEALY has similar tactical characteristics whether turning to starboard or to port.
- 4. Lateral stability trials results indicate that HEALY is directionally stable.
- 5. The controllability of HEALY is significantly reduced at speeds below 6 knots.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A: INSTRUMENTATION

INSTRUMENTATION INSTALLATION

Data collection and data analysis computers used during Performance Trials on HEALY were installed in the ship's Chart Room. The Chart Room provided a well-lighted, well-ventilated, and secure compartment that facilitated the data collection and analysis process. The trials team was provided with a key to the normally locked compartment and was given access to the desks and storage shelves also located in the Chart Room.

The Chart Room provided easy access to the various personnel in charge of ship trials, the ship Captain, Avondale Shipyard personnel, and Coast Guard personnel. This centralized location enabled all concerned trials personnel to communicate regarding test procedures, the need for changes in the schedule, and test results. Digital and/or analog signals from the Bridge, the Motor Room, the Generator Room, and the Boiler Room were therefore routed to the Chart Room.

Some signals were routed to the Chart Room via cables specifically installed for the trials. The majority of the signals, however, were transmitted to the Chart Room using the ship's fiber optic data network. Figure A.1. is a block diagram of the instrumentation used during the trials.

INTEGRATED BRIDGE SYSTEM AND GPS

A serial connection was made to the ship's Integrated Bridge System to obtain roll, pitch, heading, and relative wind velocity measurements. Additional signals from the Integrated Bridge System included outputs from the Doppler speed log and the ship's Global Positioning System (GPS). Sperry Marine personnel provided valuable assistance in making the necessary connections to the Integrated Bridge System.

The output of the ship's rudder angle repeater system was paralleled and input to a synchro-to-analog converter. The resulting direct current voltage output signals were then connected to the data collection computer.

In addition to the ship's GPS, NSWCCD installed a military keyed Precise Lightweight Global Positioning System Receiver (PLGR) on the ship's mast above the bridge. This receiver was installed in order to obtain the best accuracy possible (short of a differential system) from the GPS constellation. The output cable from the PLGR was routed down the mast trunk and into the Chart Room.

MOTOR ROOM

Torsionmeters were installed on the port and starboard shafts in the motor room to obtain a precise measure of shaft torque. Torsionmeters installed on HEALY consist of steel rings that clamp around each shaft to mechanically transfer shaft deflection to sensors that are bolted to the rings. Shaft deflection transferred to the sensors causes strain gauges within the sensors to produce a signal proportional to the magnitude of the shaft torque. The output signal is transmitted from the rotating torque sensors and is converted to a direct current voltage that is proportional to shaft torque based on the known shaft characteristics, i.e., modulus of rigidity, shaft outside diameter, and shaft inside diameter.

Torque calibration values used for HEALY are as follows:

·	Port Shaft	Starboard Shaft
Outside Diameter (in)	23.672	23.667
Inside Diameter (in)	7.992	7.992
Modulus of Rigidity (psi)	11750000	11750000

A shaft speed measurement system was also installed on each main propulsion shaft. This system consists of 60 strips of infrared reflective tape attached to each shaft and an infrared light source/light sensor mounted adjacent to the tapes on the shaft. Each shaft revolution therefore produced 60 voltage pulses that were converted to a direct current voltage that was directly proportional to shaft speed. Both the torque and the shaft speed signals were then routed through an analog-to-digital (A/D) converter located in the motor room. The resulting digital signals were then routed to the Chart Room via the ship's fiber optic network. Shaft power was subsequently computed using the torque and shaft speed inputs.

GENERATOR ROOM

Calibrated turbine flowmeters were provided by, and installed by, Carderock Division, Naval Surface Warfare Center, Ship Systems Engineering Station, Philadelphia. Turbine flowmeters were installed on the supply and return sides of the four main diesel generators located in Generator Room Number 1 and Generator Room Number 2. Resistance temperature devices were also installed on the diesel generators in order to correct the fuel rates for the effects of temperature. The frequency outputs of these transducers were converted to direct current voltages and were routed to an analog-to-digital (A/D) converter located in the Engineering Control Center (ECC). The resulting digital signals were routed to the Chart Room via the ship's fiber optic network.

BOILER ROOM

Frequency-to-voltage (F/V) converters and an A/D converter were located in the Boiler Room to convert the outputs of fuel meters installed on Boiler Number 2. Digital signals representative of the boiler fuel rates and fuel temperatures were similarly routed to the Chart Room via the ship's fiber optic network.

DATA MONITORING AND ANALYSIS

An integrated data acquisition and analysis system located in the Chart Room was used for monitoring, recording and analysis of the trials data. All of the measurements obtained during the Performance Trials were monitored real-time via flat panel monitors installed in the Chart Room as well as on the bridge. These displays were used to set the appropriate ship conditions for each run and to ensure that all instrumentation was operating properly. Upon completion of the run, the data was immediately analyzed and the results examined for use in determination of the success of the run.

Fig. A.1. USCGC HEALY (WAGB 20) trials instrumentation diagram.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B: MEASUREMENT UNCERTAINTY

INTRODUCTION

This appendix summarizes the instrumentation and the associated measurement uncertainties for sea trials conducted on HEALY. A more detailed uncertainty analysis of typical full scale sea trials measurements can be found in the CARDEROCKDIV report on uncertainty analysis of full-scale trials by E.H. Johnson [1]. A general discussion of uncertainty analysis may be found in "Experimentation and Uncertainty Analysis" by H.W. Coleman and W.G. Steele [2]. This analysis assumes that the repeatability of runs and standardization "spots" are the data of interest, so the uncertainty due to the scatter observed in any individual run is not considered. We are able to say with 95% confidence that the points which make up the standardization curves are accurate and repeatable within + Ux. (the total uncertainty of a reading X).

CALIBRATIONS

The scaling coefficients for measurements obtained from the ship's equipment were determined by aligning the raw output of each sensor with its corresponding digital or mechanical indicator reading. In the case of the rudder measurement, for example, the rudder was carefully positioned, and held, at numerous angles as indicated by the rudder reference scale (quadrant) located on the rudder stock in aft steering. The voltage outputs from the rudder sensor were recorded and equated to positions of the quadrant pointer. At the completion of the alignment, a linear regression curve fit is applied to generate the gain and zero values.

The shaft torsionmeters were calibrated in a laboratory calibration stand prior to being shipped to the installation site. The torque sensors were deflected by known amounts equivalent to torque values between zero and 120 percent of the design full-scale torque. The curve fit technique was used to correlate the known torque values with the corresponding sensor outputs. After installation, jackshafts are conducted to set the zero on the torsionmeters.

^{1.} Johnson, Erik H., "Uncertainty Analysis of Standardization Trials on a Navy Fleet Oiler," CARDEROCKDIV/HD-1428-01 (Sept 1993).

^{2.} Coleman, Hugh W., and W. Glenn Steele, "Experimentation and Uncertainty Analysis for Engineers," John Wiley & Sons, Inc. (1989).

The shaft speed measurement system was calibrated by injecting several precisely known frequencies into the frequency-to-voltage (F/V) converters used to produce a direct current voltage. The curve fit technique was then used to correlate the known frequencies (shaft speed) with the corresponding voltage outputs.

The summary results for the uncertainty of the signals measured during the trials on HEALY are shown in Table B.1.

Table B.1. USCGC HEALY (WAGB 20) measurement uncertainties.

						Percent
						Uncertainty
					Maximum	Relative to
Signal		Bias	Precision	Total	Calibrated	
Name	Units	Error	Error	Uncertainty	Value	Value
Rudder	deg	± 0.171	± 0.426	± 0.459	35.0	1.31%
Shaft Speed - Stbd (F/V)	rpm	± 0.435	± 0.383	± 0.580	284.0	0.20%
Shaft Speed - Port (F/V)	rpm	± 0.113	± 0.697	± 0.706	284.0	0.25%
Shaft Speed - Stbd (Counter)	rpm	± 0.119	n/a	± 0.119	n/a	n/a
Shaft Speed - Port (Counter)	rpm	± 0.119	n/a	± 0.119	n/a	n/a
Shaft Torque - Stbd	lbf-ft	± 2,477	± 5,436	± 5,974	794,795	0.75%
Shaft Torque - Port	lbf-ft	$\pm 2,514$	± 1,631	$\pm 2,997$	-794,795	0.38%
Generator 1 Fuel Rate - Supply	gpm	± 0.154	± 0.372	± 0.40	30.0	1.34%
Generator 1 Fuel Rate - Return	gpm	± 0.162	± 0.418	- ± 0.45	30.0	1.49%
Generator 2 Fuel Rate - Supply	gpm	± 0.201	± 0.344	± 0.40	30.0	1.33%
Generator 2 Fuel Rate - Return	gpm	± 0.168	± 0.387	± 0.42	30.0	1.41%
Generator 3 Fuel Rate - Supply	gpm	± 0.177	± 0.436	± 0.47	30.0	1.57%
Generator 3 Fuel Rate - Return	gpm	± 0.182	± 0.455	± 0.49	30.0	1.63%
Generator 4 Fuel Rate - Supply	gpm	± 0.141	± 0.394	± 0.42	30.0	1.39%
Generator 4 Fuel Rate - Return	gpm	± 0.159	± 0.445	± 0.47	30.0	1.58%
Generator 1 Fuel Temp - Supply	deg F	± 1.650	± 0.139	± 1.66	150.0	1.10%
Generator 1 Fuel Temp - Return	deg F	± 1.852	± 0.161	± 1.86	150.0	1.24%
Generator 2 Fuel Temp - Supply	deg F	± 1.801	± 0.158	± 1.81	150.0	1.21%
Generator 2 Fuel Temp - Return	deg F	± 1.722	± 0.182	± 1.73	150.0	1.15%
Generator 3 Fuel Temp - Supply	deg F	± 1.795	± 0.153	± 1.80	150.0	1.20%
Generator 3 Fuel Temp - Return	deg F	± 1.678	± 0.183	± 1.69	150.0	1.13%
Generator 4 Fuel Temp - Supply	deg F	± 1.714	± 0.119	± 1.72	150.0	1.15%
Generator 4 Fuel Temp - Return	deg F	± 1.773	± 0.176	± 1.78	150.0	1.19%
Roll	deg	± 0.325	± 0.459	± 0.56	30.0	1.87%
Pitch	deg	± 0.288	± 0.821	± 0.87	30.0	2.90%
Heading	deg	± 0.297	± 1.336	± 1.37	360.0	0.38%
Wind Speed	knots	± 5.0	± 3.5	± 6.10	100.0	6.10%
Wind Direction	deg	± 0.5	± 1.1	± 1.21	360.0	0.34%
Doppler Speed	knots	± 0.4	± 0.6	± 0.72	40.0	1.80%
X position	yd	± 1	± 3	± 3	n/a	n/a
Y position	yd	± 1	± 3	± 3	n/a	n/a

SAMPLE UNCERTAINTY CALCULATION

The process of calculating measurement uncertainty is demonstrated in Tables B.2. and B.3. using the starboard shaft speed signal as an example. This particular signal was measured using an inferred light sensor and the frequency-to-voltage converter embedded within the starboard shaft's torsionmeter system. The voltage was then acquired using an A/D converter located in the Motor Room.

Table B.2. USCGC HEALY (WAGB 20) Shaft Speed – Stbd (F/V) signal calibration results.

Ship	USCGC HEALY (WA	AGB 20)	
Channel Name	Shaft Speed - Stbd (F/	•	
Calibration Date	11-Feb-99	,	
Output Voltage	Engineering	Curve	Difference
(volts)	Units, (rpm)	Fit, (rpm)	Squared
0.001	0.00	-0.48	0.23
1.384	41.00	41.04	0.00
2.726			0.11
4.080	122.00	121.99	0.00
5.615	168.00	168.08	0.01
6.773	203.00	202.85	0.02
8.141	244.00	243.92	0.01
9.478	284.00	284.07	0.00
8.141	244.00	243.92	0.01
6.773	203.00	202.85	0.02
5.615	168.00	168.08	0.01
4.079	122.00	121.96	0.00
2.726	81.00	81.34	0.11
1.384	41.00	41.04	0.00
	estimate (SEE), rpm	===>	0.21
I	Bias of curve fit, rpm	===>	0.42
	Slope, rpm/volt	===>	30.0253
	Intercept, rpm	===>	-0.5123
	Intercept, -volts	===>	0.0171
Coefficient of	determination (R^2)	===>	1.0000
	Variance, rpm	===>	0.0385
Star	ndard Deviation, rpm	===>	0.2036
Max	imum Voltage (volts)	===>	9.478
Maximum	engineering unit, rpm	===>	168.000

Table B.3. USCGC HEALY (WAGB 20) Shaft Speed – Stbd (F/V) uncertainty calculations.

Ship USCGC HEALY (WAGB 20)

Channel Name Shaft Speed - Stbd (F/V)

Calibration Date 11-Feb-99

Maximum Calibrated Engineering Unit 284.00

Corresponding Maximum Voltage 9.478

	Corresponding Maximum Voltage 9.478			
	Sources of Bias Error	Variable	Units	Error
(1)	Linear speed to rotational speed	Bls	rpm	± 0.07
(2)	Frequency-to-analog conv. during calibration and acquisition	Bf/a1, f/a2	rpm	± 0.060
(3)	Analog-to-digital conversion during calibration and acquisition	Ba/d1, a/d2	rpm	± 0.020
(4)	Curve fit	Bcf	rpm	± 0.420
(5)	Total Bias Limit, RMS (1) through (4)	Bn	rpm	± 0.435
	Sources of Precision Error			
(6)	Repeatability index (standard deviation of the means)	Pnr	rpm	± 0.009
(7)	Process unsteadiness, 1.96*(mean of the standard deviations)	Snp	rpm	± 0.383
(8)	Total Precision Limit, RMS (6) and (7)	Pn	rpm	± 0.383
(9)	Total Uncertainty, RMS (5) and (8)	Un	rpm	± 0.580

THIS PAGE INTENTIONALLY LEFT BLANK

INITIAL DISTRIBUTION

Copies

- 2 NAVSEA PMS 373T CDR Gaiser
- 2 CO USCGC HEALY (WAGB 20)
- 12 USCG ELC (Code 23)
- 2 DTIC

CENTER DISTRIBUTION

Copies	Code	Name
1	50	W. Morgan
1	5010	B. Raver
10	5060	Dave Walden
4	52	R. Stenson
1	3442	TIC