

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Curso: Matemáticas discretas

AYUDANTES: FRANCISCA CAPRILE, CATALINA ORTEGA, MATÍAS FERNÁNDEZ E

Ignacio Vergara

Ayudantía 8

13 de octubre de 2023

 $2^{\rm o}$ semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado
- B. Barías

Clases de equivalencia

Sea \sim una relación de equivalencia sobre un conjunto A y un elemento $x \in A$. La clase de equivalencia de x bajo \sim es el conjunto

$$[x]_{\sim} = \{ y \in A \mid x \sim y \}.$$

Teorema: Sea \sim una relación de equivalencia sobre un conjunto A.

- 1. Para todo $x \in A$, $x \in [x]$.
- 2. $x \sim y$ si y solo si [x] = [y].
- 3. Si $[x] \neq [y]$, entonces $[x] \cap [y] = \emptyset$.

Función

Sea $f \subseteq A \times B$ diremos que f es una función de A en B si dado cualquier elemento $\forall a \in A \exists b \in B$ tal que:

$$afb \land afc \Longrightarrow b = c$$

Sea $f: A \to B$. Diremos que f es

- Inyectiva si la función es uno a uno, esto es $\forall x, y \in A$ se tiene que $f(x) = f(y) \Longrightarrow x = y$.
- Sobreyectiva si $\forall b \in B. \exists a \in A \text{ tal que } b = f(a)$
- **Biyectiva** si es inyectiva y sobreyectiva a la vez.

Función invertible Dada una función f de A en B, diremos que f es invertible si su relación inversa f^{-1} es una función de B en A.

Composición de funciones Dadas relaciones R de A en B y S de B en C, la composición de R y S es una relación de A en C definida como

$$S \circ R = \{(a,c) \in A \times C \mid \exists b \in B \text{ tal que } aRb \wedge bSc\}$$

Principio del palomar Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m>n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x, y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

Equinumeroso Sean A y B dos conjuntos cualesquiera. Diremos que A es equinumeroso con B (o que A tiene el mismo tamaño que B) si existe una función biyectiva $f: A \to B$. Lo denotamos como

$$A \approx B$$

Ejercicio 1

Se define el conjunto M conformado por todas las estaciones del metro de Santiago. Además se define la relación binaria L sobre el conjunto $M \times M$, de modo que dos estaciones $(a,b) \in L$ si es posible realizar un viaje en metro desde a hasta b sin realizar ningún transbordo (combinación). Por ejemplo, $(Conchal, U.deChile) \in L$, sin embargo, $(ULA, Bellasartes) \notin L$. En base a las definiciones previas y considerando el trazado actual del metro de Santiago, evalúe si es posible definir L como una relación de equivalencia y describa sus posibles clases de equivalencia. En caso contrario, plantee correcciones a la definición para definir L como una relación de equivalencia y describir sus posibles clases de equivalencia.

Ejercicio 2

Sean A, B conjuntos no vacíos con al menos dos elementos cada uno. Sean $\pi: A \times B \to A$ dada por $\pi(a,b) = a, \sigma: B \times A \to B$ dada por $\sigma(b,a) = b$ y $f: A \times B \to B \times A$ dada por f(a,b) = (b,a). Determine si las siguientes composiciones están definidas.

- 1. $\pi \circ \sigma$.
- 2. $\sigma \circ f$.
- 3. $f \circ \pi$.

Ejercicio 3

Sean A, B conjuntos no vacíos con al menos dos elementos cada uno. Determine la invectividad y la sobreyectividad de las siguientes funciones. En caso de que sean biyectivas, determine la inversa.

- 1. $\pi: A \times B \to A$ dada por $\pi(a, b) = a$.
- 2. $f: A \times B \to B \times A$ dada por f(a, b) = (b, a).

Ejercicio 4

Considere el conjunto \mathbb{N} con el orden usual \leq y sea $\mathcal{F} := \{f | f : \mathbb{N} \to \{0, ..., 9\}$ es una función monótona decreciente $\}$. Demuestre que \mathcal{F} es equinumeroso con \mathbb{Q} .

Hint: Puede utilizar que si g es una funcion inyectiva tal que $g:A\to B$ con A infinito y B numerable (con numerable se entiende como equinumeroso con \mathbb{N} , pueden asumir \mathbb{Q} es equinumeroso con \mathbb{N} , o sea \mathbb{Q} es numerable), entonces A es equinumeroso con B. Queda como propuesto demostrar éste resultado