

Polynomial Regression, Overfitting and Regularization

Itthi Chatnuntawech

Linear Models

Line 1 feature

$$y = w_0 + w_1 x_1 + w_2 x_2$$

Plane 2 features

$$y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_p x_p$$

Hyperplane p features

Nonlinear Relationship

$$y = mx + c$$
$$y = w_0 + w_1 x_1$$

A linear model

$$y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_p x_p$$

It is linear in both parameters (w_1, w_2, \dots, w_p) and variables (x_1, x_2, \dots, x_p)

There is no nonlinear terms such as w_i^p , $w_i w_j$, $w_i^k w_i^l$, e^{w_i} and $log(w_i)$ and $x_i^p, x_i x_i, x_i^k x_i^l, e^{x_i}$ and $log(x_i)$.

A simple polynomial

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_p x^p$$

It is linear in parameters (w_1, w_2, \ldots, w_p) , but not linear in variables because it contains x^2, x^3, \dots, x^p

A linear model

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x_1 + \hat{w}_2 x_2 + \dots + \hat{w}_p x_p$$

A simple polynomial

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x + \hat{w}_2 x^2 + \dots + \hat{w}_p x^p$$

A linear model

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x_1 + \hat{w}_2 x_2 + \ldots + \hat{w}_p x_p$$

feature feature 1 2

feature n

A simple polynomial

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x + \hat{w}_2 x^2 + \dots + \hat{w}_p x^p$$

$$\text{Let } z_i = x^i$$

$$\hat{y} = \hat{w}_0 + \hat{w}_1 z_1 + \hat{w}_2 z_2 + \dots + \hat{w}_p z_p$$

A linear model

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x_1 + \hat{w}_2 x_2 + \dots + \hat{w}_p x_p$$

feature feature feature p

A simple polynomial

$$\hat{y} = \hat{w}_0 + \hat{w}_1 z_1 + \hat{w}_2 z_2 + \ldots + \hat{w}_p z_p$$

sklearn.preprocessing.PolynomialFeatures

class sklearn.preprocessing.PolynomialFeatures(degree=2, *, interaction_only=False, include_bias=True, order='C')
[source]

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)
[source]

Underfitting and Overfitting

Assume that the true relationship is $y=x^2$, and we have collected only 10 points

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x + \hat{w}_2 x^2 + \dots + \hat{w}_p x^p$$

Underfitting and Overfitting

Assume that the true relationship is $y=x^2$, and we have collected only 10 points

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x + \hat{w}_2 x^2 + \dots + \hat{w}_p x^p$$

