

- 9.1 Prinzip
- 9.2 Beispiel: GGT
- 9.3 Beispiel: Binäres Suchen
- 9.4 Beispiel: Türme von Hanoi

Was heißt "rekursiv"

Eine Methode m() heißt rekursiv, wenn sie sich selbst aufruft

```
m() \( \bullet \) m() direkt rekursiv
m() \( \bullet \) n() \( \bullet \) m() indirekt rekursiv
```

Beispiel: Berechnung der Fakultät (n!)

rekursive Definition

Rekursive Methode zur Berechnung der Fakultät

```
long fact (long n) {
    if (n == 1)
        return 1;
    else
        return fact(n-1) * n;
}
```

Allgemeines Muster

```
if (Problem klein genug)
nichtrekursiver Zweig;
else
rekursiver Zweig mit kleinerem Problem
```

Ablauf einer rekursiven Methode

- 9.1 Prinzip
- 9.2 Beispiel: GGT
- 9.3 Beispiel: Binäres Suchen
- 9.4 Beispiel: Türme von Hanoi

Beispiel: größter gemeinsamer Teiler

rekursiv

```
static int ggt (int x, int y) {
  int rest = x % y;
  if (rest == 0) return y;
  else return ggt(y, rest);
}
```

iterativ

```
static int ggt (int x, int y) {
  int rest = x % y;
  while (rest != 0){
    x = y; y = rest;
    rest = x % y;
  }
  return y;
}
```

Jeder rekursive Algorithmus kann auch iterativ programmiert werden

- rekursiv: meist kürzerer Quellcode
- iterativ: meist kürzere Laufzeit

Rekursion v.a. bei rekursiven Datenstrukturen nützlich (Bäume, Graphen, ...)

- 9.1 Prinzip
- 9.2 Beispiel: GGT
- 9.3 Beispiel: Binäres Suchen
- 9.4 Beispiel: Türme von Hanoi

Beispiel: binäres Suchen iterativ

- schneller als sequentielles Suchen
- Array muss allerdings sortiert sein

z.B. Suche von 17

	0	1	2	3	4	5	6	7
а	2	3	5	7	11	13	17	19
	<u></u>			†				<u></u>
low				m				high

- Index des mittleren Element bestimmen (m = (low + high) / 2)
- 17 > a[m] > zwischen a[m+1] und a[high] weitersuchen

• 17 > a[m] \triangleright zwischen a[m+1] und a[high] weitersuchen

	0	1	2	3	4	5	6	7
а	2	3	5	7	11	13	17	19
		•			•	•	<u></u>	<u></u>
							low	high
							m	

Binäres Suchen iterativ


```
static int binarySearch (int[] a, int x) {
  int low = 0;
  int high = a.length - 1;
  while (low <= high) {
    int m = (low + high) / 2;
    if (a[m] == x) return m;
    else if (x > a[m]) low = m + 1;
    else /* x < a[m] */ high = m - 1;
  }
  /* low > high*/
  return -1;
}
```

```
0 1 2 3 4 5 6 7 8 9 10 11
2 3 3 5 7 7 8 10 11 15 16 17

2 3 3 5 7 7 8 10 11 15 16 17

2 3 3 5 7 7 8 10 11 15 16 17

2 3 3 5 7 7 8 10 11 15 16 17
```

- Suchraum wird in jedem Schritt halbiert
- bei n Arrayelementen sind höchstens $log_2(n)$ Schritte nötig, um jedes Element zu finden

n	seq.Suchen	bin.Suchen
10	10	4
100	100	7
1000	1000	10
10000	10000	14

Laufzeitkomplexität = $O(log_2(n))$

Beispiel: binäres Suchen rekursiv


```
static int search (int[] a, int x, int low, int high) {
    if (low > high) return -1; // empty
    int m = (low + high) / 2;
    if (x == a[m]) return m;
    if (x < a[m]) return search(a, x, low, m-1);
    /* x > a[m] */ return search(a, x, m+1, high);
}

0 1 2 3 4 5 6 7 8 9 10 11

2 3 3 5 7 7 8 10 11 15 16 17

A

2 3 3 5 7 7 8 10 11 15 16 17
```

2 3 3 5 7 7 8 <mark>10</mark> 11 15 16 17

Ablauf des rekursiven binären Suchens


```
x = 17, low = 0, high = 7
 static int search (int[] a, int x, int low, int high) {
    if (low > high) return -1;
    int m = (low + high) / 2;
                                                         m == 3
    if (x == a[m]) return m;
                                                                                               low
                                                                                                                        high
    if (x < a[m]) return search(a, x, low, m-1);
    return search(a, x, m+1, high);
         low = 4, high = 7
             static int search (int[] a, int x, int low, int high) {
                if (low > high) return -1;
                int m = (low + high) / 2;
                                                                     m = 5
                if (x == a[m]) return m;
                                                                                                             low m
                                                                                                                        high
                if (x < a[m]) return search(a, x, low, m-1);
                return search(a, x, m+1, high);
                 low = 6, high = 7
                          static int search (int[] a, int x, int low, int high) {
                             if (low > high) return -1;
                            int m = (low + high) / 2;
                                                                                 m = 6
                            if (x == a[m]) return m;
                                                                                                                    low high
                            if (x < a[m]) return search(a, x, low, m-1);
                                                                                                                      m
                            return search(a, x, m+1, high);
```


- 9.1 Prinzip
- 9.2 Beispiel: GGT
- 9.3 Beispiel: Binäres Suchen
- 9.4 Beispiel: Türme von Hanoi

Beispiel: Türme von Hanoi

gegeben

gesucht

Bewege n Scheiben von Stab 1 nach Stab 2

- Nur 1 Scheibe aufs Mal
- Es darf nie größere Scheibe auf kleinerer liegen

Rekursive Lösung

Implementierung


```
static void move (int n, int from, int to) {
   if (n == 1) {
      Out.println(from + " => " + to);
   } else {
      int other = 6 - (from + to);
      move(n - 1, from, other);
      Out.println(from + " => " + to);
      move(n - 1, other, to);
   }
}
```

```
1 + 2 + 3 = 6

6 - (1 + 2) = 3

6 - (1 + 3) = 2

6 - (2 + 3) = 1
```

