Zakaj naj mi bo mar za probabilistično programiranje?

- Temelj statističnega modeliranja in probabilističnega strojnega učenja.
- Prihodnost "podatkovnega inženirstva".
- Obvezno orodje za vsakega, ki se želi resno ukvarjati s kvantitativno analizo podatkov!

uporabna statistika

(generativno) globoko učenje

2

Oris vsebine

- 1 Negotovost in probabilistično razmišljanje,
- 2 statistično modeliranje,
- 3 probabilistično programiranje,
- 4 programski jezik Stan,
- **5** praktični del.

Predpostavljamo znanje programiranja in osnovno razumevanje verjetnosti.

Interaktivni test opreme za delavnico

4

1 del

Negotovost in probabilistično razmišljanje

Q: Ali bo naslednji teden v Ljubljani deževalo?

6

Q: Kako toplo (°C) bo jutri opoldne v Ljubljani?

ጸ

Naravni jezik je nekonsistenten, nenatačnen in premalo ekspresiven za resno kvantitativno delo!

- Dobra novica Primeren jezik so že razvili!
- Slaba novica Gre za teorijo verjetnosti matematiki se ne moremo izogniti.
- **Dobra novica** Ni se nam potrebno naučiti niti vse dodiplomske verjetnosti¹ potrebujemo le verjetnost kot jezik, računal pa bo računalnik.

¹ Kar pa ne pomeni, da nam ne bo koristilo! Verjetnost je osnova kvantitativne analize podatkov.

Gramatika verjetnosti

Verjetnost P (pogosto Pr) je funkcija, ki dogodkom prireja numerične vrednosti in zadošča tem aksiomom:

A1
$$P(A) \geq 0$$
.

A2
$$P(\Omega) = 1$$
.

A3
$$P(A_1 \cup A_2 \cup A_3 \cup ...) = \sum_{i=1}^{\infty} P(A_i),$$

za poljubno sekvenco disjunktnih dogodkov.

Definicija pogojne verjetnosti:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

10

Porazdelitve

- Porazdelitve so elementarni izrazi probabilističnega razmišljanja in
- osnovni gradniki statističnih modelov.
- Porazdelitve so v skladu s pravili teorije verjetnosti, zato so konsistentne in natančne probabilistične izjave.
- Več kot vemo o porazdelitvah, bolj bogato se lahko izražamo.

12

Bernoullijeva porazdelitev

 $\frac{\text{distribution}}{\text{Bernoulli}(p)} \qquad \frac{\text{pmf}}{p^x(1-p)^{1-x}}; \ x=0,1; \ p\in(0,1) \qquad \qquad p \qquad \qquad p(1-p)$

Q: Ali bo naslednji teden v Ljubljani deževalo?

14

Normalna (Gaussova) porazdelitev

Q: Kako toplo (°C) bo jutri opoldne v Ljubljani?

Normalna (Gaussova) porazdelitev

distribution	pdf	mean	variance
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}};\ \sigma>0$	μ	σ^2
	μ=0 μ=0 μ=0	. σ ² = 0.2, —	
		, σ²= 5.0, — - 2, σ²= 0.5, — -	
	(X) 0.5 (S) 0.4		
	02		
	-5 -4 -3 -2 -1 0 1 2 X	3 4 5	

Q: Kako toplo (°C) je bilo na današnji dan pred 50 leti?

16

Porazdelitev Beta

Porazdelitev Beta

distribution	pdf	mean	variance
$Beta(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1};\ x\in(0,1),\ \alpha,\beta>0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
	2.5 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		

Q: Kolikšna je verjetnost, da naslednji teden v LJ dežuje?

18

Preizkus probabilističnega razmišljanja

To so izidi 10 metov (morda nepoštenega) kovanca:

ccgccgcccg(?)

Q1: Je enajsti met **c**ifra ali **g**rb?

Q2: Kolikšna je verjetnost *p*, da na tem kovancu pade grb?

Q3: Je kovanec pošten? Poštenost je npr., da je *p* med 48% and 52%.

V razmislek ...

Verjetnost je koherenten in natančen jezik za izražanje negotovosti:

- Če ne sledimo zakonom verjetnosti, nas nihče ne bo razumel!
- Sicer pa so probabilistične izjave lahko subjektivne ali navidez popolnoma nesmiselne.
- Precej naravno nam je, da imamo verjetnostno mnenje o stvareh, ki niso naključne. Naključje je samo eden izmed virov negotovosti (in ne preveč pogost).

Uporaba verjetnosti za izražanje negotovosti je bistvo bayesovskega pogleda na statistično sklepanje!

20

2 del Statistično modeliranje

Model = Hipoteza, kako so nastali naši podatki.

22

Ni modeliranja brez modela. Ne, resno, ni.

24

Q: Zapišite 1 metodo iz statistike ali strojnega učenja, ki se uporablja za napovedovanje, razpoznavanje vzorcev, gručenje, testiranje hipotez, ipd.

Zaporedje enic in ničel (= podatki):

10010010101101100111111111111111

Statistični model (= poskus statistične interpretacije):

Zaporedje je nastalo s 30 neodvisnimi meti kovanca z neznano verjetnostjo enice θ .

Predhodno mnenje o parametrih modela:

Nimam pojma, koliko je θ , zato ne bom izrazil preference do nobene vrednosti θ .

Statistično sklepanje (= učenje):

Pri vseh teh predpostavkah in upoštevajoč zakone verjetnosti, kakšno mora biti moje mnenje o θ , ko vidim podatke?

26

Zaporedje enic in ničel (= podatki):

100100101011011001111111111111111

$$y_1,\ldots,y_n \qquad \qquad y_i\in\{0,1\}$$

Statistični model (= poskus statistične interpretacije):

Zaporedje je nastalo s 30 neodvisnimi meti kovanca z neznano verjetnostjo enice θ .

$$y_1, y_2, \dots, y_n | \theta \sim_{iid} Bernoulli(\theta)$$

Predhodno mnenje o parametrih modela:

Nimam pojma, koliko je θ , zato ne bom izrazil preference do nobene vrednosti θ .

$$\theta \sim Beta(1,1)$$

Statistično sklepanje (= učenje):

Pri vseh teh predpostavkah in upoštevajoč zakone verjetnosti, kakšno mora biti moje mnenje o θ , ko vidim podatke?

$$p(\theta|y) = \frac{p(\theta, y)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

$$\theta|y_1,\ldots,y_n \sim \textit{Beta}(\sum y_i + 1, n - \sum y_i + 1)$$

3 delProbabilistično programiranje

30

Probabilistični programski jezik (PPL) je programski jezik, ki je zasnovan za opisovanje probabilističnih modelov in računsko sklepanje iz teh modelov.

Vir: Wikipedia

Probabilistični programski jezik nam omogoča, da se osredotočimo na modeliranje in preskočimo matematične in računske probleme pri sklepanju.

32

Dva primera imperativnega programiranja 🧼 🧅 🔝 🔚 Source on Save 🔍 🙇 🔻 🗐 🔻 🥠 🗇 🙎 🔚 🗌 Source on Save 🔍 🔏 🗸 🔻 📒 1 # Bubble Sort 1 # Generate 30 Bernoulli variables 2 - sort <- function(x) { 2 * bernoulli <- function(p) { $n \leftarrow length(x)$ x <- c() 4 5+ for (k in n:2) { for (i in 1:30) { 5 + i <- 1 if (runif(1) > p) { 6 + while (i < k) { 7 $x \leftarrow c(x, 0)$ if (x[i] > x[i+1]) { } else { 8 temp <- x[i+1] x[i+1] <- x[i] 9 x < -c(x, 1)10 10 x[i] <- temp 11 11 12 12 X 13 i < -i + 113 } 14 14 15 16 X 17 }

Imperativno programiranje in

in Statistično modeliranje

#Sklepanje o relativni frekvenci tega zaporedja 10010010110110110011111111111111111

```
y_1, \dots, y_n y_i \in \{0, 1\}

y_1, y_2, \dots, y_n | \theta \sim_{iid} Bernoulli(\theta)

\theta \sim Beta(1, 1)
```

- Podane imamo vhodne podatke in parametre,
- sprogramiramo algoritem, ki generira zahtevane izhodne podatke.
- Podane imamo vhodne in izhodne podatke,
- · opišemo generator, ki naj bi generiral podatke,
- sklepamo o najbolj verjetnih vrednostih parametrov.

34

Odmor

koda za drugi del:

https://github.com/bstatcomp/Stan-Intro-Workshop

4 del

Programski jezik Stan

36

Kaj je Stan?

- Orodje za učinkovito Bayesovo statistično modeliranje.
- Najlažje ga uporabljamo preko vmesnikov (na primer RStan, PyStan, ...).
- Stan je "compiled" jezik, to pomeni, da se statistični model preslika v c++ kodo, ki se nato pred uporabo prevede (zato je potrebno pred uporabo modela malo počakati).

Obvezni bloki vsakega Stan programa

- data blok, v katerem s pomočjo spremenljivk deklariramo vhodne podatke. Vrednosti vhodnih podatkov pripravi uporabnik/razvijalec, običajno v programskem jeziku, ki ga uporabljamo kot vmesnik.
- parameters blok, v katerem deklariramo parametre, ki jih želimo oceniti (kateri parametri našega statističnega modela nas zanimajo). Stan preko vmesnika (na primer RStan) vrne vrednosti parametrov nazaj v izhodiščni programski jezik.
- model opis statističnega modela.

```
Primer komentarja, ki obsega
več vrstic.
*/

data {
    // tukaj definiramo vhodne podatke
}

parameters {
    // parametri modela, ki jih želimo oceniti
}

model {
    // sem spada statistično modeliranje
}
```

38

Osnovni tipi spremenljivk

```
    int - celo število int a;
    real - realno število real b;
    seznam (array) - seznam celih ali realnih števil int a[10]; real b[n];
    matrika (matrix) - 2D seznam [vrstice, stolpci] int A[10, 10];
    vector - vektor realnih števil (optimiziran seznam) vector[n] v;
    simplex - vektor pozitivnih realnih števil, ki se seštejejo v 1 simplex[n] s;
    (skoraj) vsem spremenljivkam lahko določimo zgornjo in spodnjo mejo real<lower=0> sigma; real<lower=0, upper=1> success_rate;
```

Porazdelitve

```
• Bernoulli (y ~ bernoulli(theta);
```

 ${m y}$ je vektor "uspehov" (1) in "neuspehov" (0) ${m heta}$ (theta) predstavlja verjetnost uspeha

• beta

normal

y je vektor realnih števil **μ, σ** sta upanje oziroma varianca y ~ normal(mu, sigma);

• porazdelitve uporabimo tudi za vnašanje predznanja o določenih parametrih modela theta \sim beta(1,1);

40

5 del

Praktični primeri

	Izjemno kratek uvod v R	
42		