DATA 609 - Homework 6

Joshua Sturm

October 25, 2018

Chapter 7 Problems

1 (Page 251, exercise #2)

Nutritional Requirements-A rancher has determined that the minimum weekly nutritional requirements for an average-sized horse include 40 lb of protein, 20 lb of carbohydrates, and 45 lb of roughage. These are obtained from the following sources in varying amounts at the prices indicated:

	Protein	Carbohydrates	Roughage	Cost
Hay	0.5	2.0	5.0	1.8
Oats	1.0	4.0	2.0	3.5
Feeding blocks	2.0	0.5	1.0	0.4
High-protein concentrate	6.0	1.0	2.5	1
Requirements per horse	40.0	20.0	45.0	

Formulate a mathematical model to determine how to meet the minimum nutritional requirements at minimum cost.

1 Solution

We are given four variables:

$$x_1 = \text{Hay}$$

 $x_2 = \text{Oats}$
 $x_1 = \text{Fanding block}$

 $x_3 =$ Feeding blocks

 $x_4 = \text{High-Protein concentrate}$

Our cost function is:

$$1.80x_1 + 3.5x_2 + 0.4x_3 + 1.0x_4$$

And we want to minimize it, subject to the constraints:

$$0.5x_1 + x_2 + 2.0x_3 + 6.0x_4 \le 40.0$$
 (Protein)
 $2.0x_1 + 4.0x_2 + 0.5x_3 + 1.0x_4 \le 20.0$ (Carbohydrates)
 $5.0x_1 + 2.0x_2 + 1.0x_3 + 2.5x_4 \le 45.0$ (Roughage)

2 (Page 284, exercise #1)

For the example problem in this section, determine the sensitivity of the optimal solution to a change in c_2 using the objective function $25x_1 + c_2x_2$.

2 Solution

Let
$$Z = 25x_1 + c_2x_2$$
.

Then
$$x_1 = \frac{-c_2}{25}$$
.

The slope of the lumber constraint is $\frac{-2}{3}$, and the slope of the labour constraint is $\frac{-5}{4}$.

Thus, the range of values for which the current extreme point remains optimal is given by the inequality

$$\frac{-5}{4} \le \frac{-c_2}{25} \le \frac{-2}{3}$$

$$\frac{50}{3} \le c_2 \le \frac{125}{4}$$

Resources used:

 $\bullet \ \, http://sites.fas.harvard.edu/{\sim}apm121/lectures/lec8-hq.pdf$