When File Synchronization Meets Number Theory

Antoine Amarilli, Fabrice Ben Hamouda, Florian Bourse, Robin Morisset, David Naccache, and Pablo Rauzy

École normale supérieure, Département d'informatique 45, rue d'Ulm, F-75230, Paris Cedex 05, France. surname.name@ens.fr (except for fabrice.ben.hamouda@ens.fr)

Abstract. This work revisits set reconciliation, a problem consisting in synchronizing two multisets whiles minimizing communication. We propose a new number theoretic reconciliation protocol called "Divide & Factor". In terms of asymptotic transmission complexity, Divide & Factor is comparable to prior proposals (that anyhow reached optimality). Nonetheless, the new protocols offer interesting parameter trade-offs resulting in experimentally measured constant-factor transmission gains over the popular software rsync.

Reconciliation experiments show that the new protocol usually transmits less data than rsync but requires lengthier calculations.

1 Introduction

This work revisits set reconciliation, a problem consisting in synchronizing two multisets while minimizing communication complexity. Set reconciliation is necessary in many practical situations, the most typical of which is certainly incremental information backup.

Set reconciliation has already several efficient and elegant solutions. For instance, [3] presents a particularly interesting reconciliation protocol whose computational and communication complexities are linear in the number of differences between the reconciled multisets.

We refer the reader to [3,4,5] (to quote a few references) for more on the problem's history and its existing solutions.

This article proposes a new reconciliation protocol based on number theory. In terms of asymptotic transmission complexity, the proposed procedure is comparable to prior proposals (that anyhow reached optimality). Nonetheless, the new protocols offer interesting parameter trade-offs resulting in experimentally measured *constant*-factor gains over the popular software rsync.

Indeed, during most of our reconciliation experiments, the new protocol transmitted less bytes than rsync but required lengthier calculations.

Beyond these constant-factor gains, the mathematical ideas underlying the protocol seem new and interesting as such.

2 "Divide & Factor" Set Reconciliation

2.1 Problem Definition and Notations

Oscar possesses an old version of a directory \mathfrak{D} that he wishes to update. Neil has the up-to-date version \mathfrak{D}' . The challenge faced by Oscar and Neil¹ is that of exchanging as little data as

Oscar and Neil will respectively stand for old and new.

possible during the synchronization process. In practice \mathfrak{D} and \mathfrak{D}' usually differ both in their files and in their tree structure.

In tackling this problem we separate the "what" from the "where" and disregard the relative position of files in subdirectories². Let \mathfrak{F} and \mathfrak{F}' denote the multisets of files contained in \mathfrak{D} and \mathfrak{D}' . We denote $\mathfrak{F} = \{F_0, \ldots, F_n\}$ and $\mathfrak{F}' = \{F'_0, \ldots, F'_{n'}\}$.

Let $\operatorname{Hash}(F)$ be a collision-resistant hash function³ where F is a file. Denote by $\operatorname{NextPrime}(F)$ the first prime following $\operatorname{Hash}(F)$ and let u denote $\operatorname{NextPrime}$'s output size in bits⁴. Define the shorthand notations: $h_i = \operatorname{NextPrime}(F_i)$ and $h'_i = \operatorname{NextPrime}(F'_i)$.

2.2 Description of the Basic Exchanges

Let t be the number of discrepancies between \mathfrak{F} and \mathfrak{F}' that Oscar wishes to learn, i.e.:

$$t = \#\mathfrak{F} + \#\mathfrak{F}' - 2\#\left(\mathfrak{F} \bigcap \mathfrak{F}'\right) = \#\left(\mathfrak{F} \bigcup \mathfrak{F}'\right) - \#\left(\mathfrak{F} \bigcap \mathfrak{F}'\right)$$

We generate a prime p such that:

$$2^{2ut+1} \le p < 2^{2ut+2} \tag{1}$$

Given \mathfrak{F} , Oscar generates and sends to Neil the redundancy:

$$c = \prod_{F_i \in \mathfrak{F}} \mathtt{NextPrime}(F_i) = \prod_{i=1}^n h_i \bmod p$$

Neil computes:

$$c' = \prod_{F_i' \in \mathfrak{F}'} \mathtt{NextPrime}(F_i') = \prod_{i=1}^{n'} h_i' \bmod p \quad \text{and} \quad s = \frac{c'}{c} \bmod p$$

Using [7] the integer s can be written as:

$$s = \frac{a}{b} \bmod p \text{ where the } G_i \text{ denote files and } \begin{cases} a = \prod_{G_i \in \mathfrak{F}' \land G_i \not\in \mathfrak{F}} \mathtt{NextPrime}(G_i) \\ b = \prod_{G_i \not\in \mathfrak{F}' \land G_i \in \mathfrak{F}} \mathtt{NextPrime}(G_i) \end{cases}$$

Note that since \mathfrak{F} and \mathfrak{F}' differ by at most t elements, a and b are strictly lesser than 2^{ut} . Theorem 1 (see [2]) guarantees a and b can be efficiently recovered from s (A problem known as the *Rational Number Reconstruction* [4,8]). This is typically done using Gauss' algorithm for finding the shortest vector in a bi-dimensional lattice [7].

(amarilli): use iform ime (discussion tive costs with to (1.) hashing nd (2.) finding ct prime costs) nuoi? (David).

² i.e. view directories as multisets of files.

 $^{^3}$ e.g. SHA-1

⁴ We assume that the fact that u-bit strings contain only $u/\log u$ primes does not affect the collision-resistance properties of NextPrime.

Theorem 1. Let $a, b \in \mathbb{Z}$ such that $-A \le a \le A$ and $0 < b \le B$. Let p > 2AB be a prime and $s = ab^{-1} \mod p$. Then a, b can be recovered from A, B, s, p in polynomial time.

Taking $A = B = 2^{ut} - 1$, (1) implies that 2AB < p. Moreover, $0 \le a \le A$ and $0 < b \le B$. Thus Oscar can recover a and b from s in polynomial time. By testing the divisibility of a and b by the h_i and the h'_i , Neil and Oscar can deterministically identify the discrepancies between \mathfrak{F} and \mathfrak{F}' and settle them.

Formally, this is done as follows:

As we have just seen, the "output \bot and halt" protocol interruption should actually never occur if bounds on parameters are respected. However, a file synchronization procedure that works *only* for a limited number of differences is not really useful in practice. Section 2.3 explains how to extend the protocol even when the number of differences exceeds t, the informational capacity of the modulus p.

2.3 The Case of Insufficient Information

To extend the protocol to an arbitrary t, Oscar and Neil agree on an infinite set of primes p_1, p_2, \ldots As long as the protocol fails, Neil will keep accumulating information about the difference between \mathfrak{F} and \mathfrak{F}' as shown in appendix A. Note that no information is lost and that the transmitted modular knowledge about the difference adds-up until it reaches a threshold sufficient to reconciliate \mathfrak{F} and \mathfrak{F}' .

3 Efficiency Considerations

This section explores two strategies to reduce the size of p and hence improve transmission by constant factors (from an asymptotic communication standpoint, nothing can be done as the protocol already transmits information proportional to t, the difference to settle).

3.1 Probabilistic Decoding: Reducing p

Generate a prime p about twice shorter than the p recommended in section 2.2, namely:

$$2^{ut+w-1}$$

where $w \ge 1$ is some small integer (say w = 50). Let $\eta = \max(n, n')$. The new redundancy c is calculated as previously and is hence also approximately twice smaller. Namely:

$$s = \frac{a}{b} \bmod p \text{ and } \begin{cases} a = \prod\limits_{G_i \in \mathfrak{F}' \wedge G_i \not \in \mathfrak{F}} \mathtt{NextPrime}(G_i) \\ b = \prod\limits_{G_i \not \in \mathfrak{F}' \wedge G_i \in \mathfrak{F}} \mathtt{NextPrime}(G_i) \end{cases}$$

and since there are at most t differences, we must have

$$ab \le 2^{ut} \tag{3}$$

The difference with respect to section 2.2 is that we do not have a fixed bound for a and b anymore; equation (3) only provides a bound for the product ab. Therefore, we define a sequence of at most $\lceil ut/w \rceil + 1$ couples of bounds:

$$(A_i, B_i) = \left(2^{wi}, \left\lfloor \frac{p-1}{2^{wi+1}} \right\rfloor\right)$$
 where $B_i > 1$ and $\forall i > 0, \ 2A_iB_i < p$

Equations (2) and (3) imply that there must exist at least one index i such that $0 \le a \le A_i$ and $0 < b \le B_i$. Then using Theorem 1, given (A_i, B_i, p, s) one can recover (a, b), and hence the difference between \mathfrak{F} and \mathfrak{F}' .

The problem is that (by opposition to section 2.2) we have no guarantee that such an (a, b) is unique. Namely, we could (in theory) stumble over an $(a', b') \neq (a, b)$ satisfying (3) for some index $i' \neq i$. We expect this to happen with negligible probability (that we do not try to estimate here) when w is large enough, but this makes the modified protocol heuristic only.

3.2 The File Laundry: Reducing u

What happens if we brutally shorten u in the basic Divide & Factor protocol?

As expected by the birthday paradox, we should start seeing collisions. Let us analyze the statistics governing the appearance of collisions.

Consider Hash as a random function from $\{0,1\}^*$ to $\{0,\ldots,2^u-1\}$. Let X_i be the random variable:

$$X_i = \begin{cases} 1 & \text{if file } F_i \text{ collides with another file.} \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, we have $\Pr[X_i = 1] \leq \frac{\eta - 1}{2^u}$. The average number of colliding files is hence:

$$\mathbb{E}\left[\sum_{i=0}^{\eta-1} X_i\right] \le \sum_{i=0}^{\eta-1} \frac{\eta-1}{2^u} = \frac{\eta(\eta-1)}{2^u}$$

For instance, for $\eta=10^6$ files and 32-bit digests, the expected number of colliding files is less than 233.

However, it is important to note that a collision can only yield a *false positive*, and never a *false negative*. In other words, while a collision may obliviate a difference⁵ a collision will never create a nonexistent difference ex *nihilo*.

Thus, it suffices to replace $\operatorname{Hash}(F)$ by a chopped $\hbar_{k,u}(F) = \operatorname{MAC}_k(F) \operatorname{mod} 2^u$ to quickly filter-out file differences by repeating the protocol for $k = 1, 2, \ldots$ At each iteration the parties will detect new files and new deletions, fix these and "launder" again the remaining multisets.

To understand why, under the assumption that MACs are random and independent, the probability that a stubborn file persists colliding decreases exponentially with the number of iterations k, assume that η remains invariant between iterations and define the following random variables:

$$X_i^\ell = \begin{cases} 1 & \text{if file } F_i \text{ collides with another file during iteration } \ell. \\ 0 & \text{otherwise.} \end{cases}$$

$$Y_i = \prod_{\ell=1}^k X_i^\ell = \begin{cases} 1 & \text{if file } F_i \text{ collides with another file during the } k \text{ first protocol iterations.} \\ 0 & \text{otherwise.} \end{cases}$$

By independence, we have:

$$\Pr\left[Y_i = 1\right] = \prod_{\ell=1}^k \Pr\left[X_i^\ell = 1\right] = \Pr\left[X_i^1 = 1\right] \dots \Pr\left[X_i^k = 1\right] \le \left(\frac{\eta - 1}{2^u}\right)^k$$

Therefore the average number of colliding files is:

$$\mathbb{E}\left[\sum_{i=0}^{\eta-1} Y_i\right] \le \sum_{i=0}^{\eta-1} \left(\frac{\eta-1}{2^u}\right)^k = \eta \left(\frac{\eta-1}{2^u}\right)^k$$

And the probability that at least one false positive will survive k rounds is:

$$\epsilon_k \le \eta \left(\frac{\eta - 1}{2^u}\right)^k$$

For the previously considered instance⁶ we get $\epsilon_2 \leq 5.43\%$ and $\epsilon_3 \leq 2 \cdot 10^{-3}\%$.

A more refined (but somewhat technical) analysis As mentioned previously, the parties can remove the files confirmed as different during iteration k and work during iteration k+1 only with common and colliding files. Now, the only collisions that can fool round k, are the collisions of a file-pairs (F_i, F_j) such that F_i and F_j have both already collided during all the previous iterations⁷. We call such collisions "masquerade balls". Define the random variable:

⁵ e.g. make the parties blind to the difference between index.htm and iexplore.exe.

 $^{^{6}}$ $\eta = 10^{6}, u = 32.$

⁷ Note that we do not require that F_i and F_j repeatedly collide which each other. e.g. we may witness during the first round $\hbar_{1,u}(F_1) = \hbar_{1,u}(F_2)$ and $\hbar_{1,u}(F_3) = \hbar_{1,u}(F_4)$ while during the second round $\hbar_{2,u}(F_1) = \hbar_{2,u}(F_4)$ and $\hbar_{2,u}(F_2) = \hbar_{2,u}(F_3)$.

sque t tu utilises la en non definie $Z_i^\ell = \begin{cases} 1 & \text{if } F_i \text{ participated in masquerade balls during all ℓ first protocol iterations.} \\ 0 & \text{otherwise.} \end{cases}$

Set $Z_i^0=1$ and write $p_\ell=\Pr\left[Z_i^{\ell-1}=1 \text{ and } Z_j^{\ell-1}=1\right]$ for all ℓ and $i\neq j$. For $k\geq 1$, we have:

$$\begin{split} \Pr\left[\,Z_{i}^{k} = 1\,\right] &= \Pr\left[\,\exists j \neq i,\, X_{i,j}^{k} = 1,\, Z_{i}^{k-1} = 1 \text{ and } Z_{j}^{\ell-1} = 1\,\right] \\ &\leq \sum_{j=0,j\neq i}^{\eta-1} \Pr\left[\,X_{i,j}^{k-1} = 1\,\right] \Pr\left[\,Z_{i}^{k-1} = 1 \text{ and } Z_{j}^{k-1} = 1\,\right] \\ &\leq \frac{\eta-1}{2^{u}} p_{k-1} \end{split}$$

Furthermore $p_0 = 1$ and

$$\begin{split} p_{\ell} &= \Pr\left[X_{0}^{\ell} = X_{1}^{\ell}, \, Z_{0}^{\ell} = 1 \text{ and } Z_{1}^{\ell} = 1\right] + \Pr\left[X_{0}^{\ell} \neq X_{1}^{\ell}, \, Z_{0}^{\ell} = 1 \text{ and } Z_{1}^{\ell} = 1\right] \\ &\leq \Pr\left[X_{0}^{\ell} = X_{1}^{\ell}, \, Z_{0}^{\ell-1} = 1 \text{ and } Z_{1}^{\ell-1} = 1\right] \\ &+ \sum_{i \geq 2, j \geq 2} \Pr\left[X_{0,i}^{\ell} = 1, \, X_{1,j}^{\ell} = 1, \, Z_{0}^{\ell-1} = 1 \text{ and } Z_{1}^{\ell-1} = 1\right] \\ &= \Pr\left[X_{0}^{\ell} = X_{1}^{\ell}\right] \Pr\left[Z_{0}^{\ell-1} = 1 \text{ and } Z_{1}^{\ell-1} = 1\right] \\ &+ \sum_{i \geq 2, j \geq 2} \Pr\left[X_{0,i}^{\ell} = 1\right] \Pr\left[X_{1,j}^{\ell} = 1\right] \Pr\left[Z_{0}^{\ell-1} = 1 \text{ and } Z_{1}^{\ell-1} = 1\right] \\ &\leq \frac{1}{2^{u}} p_{\ell-1} + \frac{(\eta - 2)^{2}}{2^{2u}} p_{\ell-1} = p_{\ell-1} \left(\frac{1}{2^{u}} + \frac{(\eta - 2)^{2}}{2^{2u}}\right) \end{split}$$

hence:

$$p_{\ell} \le \left(\frac{1}{2^u} + \frac{(\eta - 2)^2}{2^{2u}}\right)^{\ell},$$

and

$$\Pr\left[Z_i^{\ell} = 1\right] \le \left(\frac{1}{2^u} + \frac{(\eta - 2)^2}{2^{2u}}\right)^{k-1}$$

And finally, the survival probability of at least one false positive after k iterations satisfies:

$$\epsilon'_k \le \frac{\eta(\eta - 1)}{2^u} \left(\frac{1}{2^u} + \frac{(\eta - 2)^2}{2^{2u}}\right)^{k - 1}$$

For $(\eta = 10^6, u = 32, k = 2)$, we get $\epsilon'_2 \le 0.013\%$.

How to select u**?** For a fixed k, ϵ'_k decreases as u grows. For a fixed u, ϵ'_k also decreases as k grows. Transmission, however, grows with both u (bigger digests) and k (more iterations). We write for the sake of clarity: $\epsilon'_k = \epsilon'_{k,u,\eta}$.

Fix η . Note that the number of bits transmitted per iteration ($\simeq 3ut$), is proportional to u. This yields an expected transmission complexity bounded by a quantity $T_{u,\eta}$ such that:

$$T_{u,\eta} \propto u \sum_{k=1}^{\infty} k \cdot \epsilon'_{k,u,\eta} = \frac{u\eta (\eta - 1)}{2^u} \sum_{k=1}^{\infty} k \left(\frac{1}{2^u} + \frac{(\eta - 2)^2}{2^{2u}} \right)^{k-1} = \frac{u\eta (\eta - 1) 8^u}{\left(2^u - 4^u + (\eta - 2)^2 \right)^2}$$

Dropping the proportionality factor $\eta(\eta - 1)$, neglecting $2^u \ll 2^{2u}$ and approximating $(\eta - 2) \simeq \eta$, we can optimize the function:

$$\phi_{\eta}(u) = \frac{u \cdot 8^u}{(4^u - \eta^2)^2}$$

 $\phi_{10^6}(u)$ admits an optimum for u=19.

Note: The previous analysis is a rough approximation, in particular:

- We consider u-bit prime digests while u-bit strings contain only about $2^{u}/u$ primes.
- In all our probability calculations η can be replaced by the total number of differences t. It is reasonable to assume that in most *practical* settings $t \ll \eta$, but extreme instances where $t \sim \eta$ can sometimes be encountered as well.
- We used a fixed u in all rounds. Nothing forbids using a different u_k at each iteration⁸.
- Our analysis treated t as a constant, but large t values increase p and hence the number of
 potential files detected as different per iteration an effect disregarded in our analysis.

Given that, after all, optimization may only result in constant-factor improvements, we suggest to optimize t and u experimentally, e.g. using the open source program **btrsync** developed by the authors (cf. section 6).

3.3 How to Stop a Probabilistic Washing Machine?

We now combine both optimizations and assume that ℓ laundry rounds are necessary for completing some reconciliation task using a shortened p. Unlike section 2.2, confirming correct protocol termination is now non-trivial.

If the round failure probability⁹ is some function v(w) (that we did not estimate) and if w is kept small (for efficiency reasons), the probability $(1 - v(w))^{\ell}$ that the protocol will properly terminate may dangerously drift away from one.

If v of $\ell+v$ rounds failed, Oscar needs to solve a problem called Chinese Remaindering With Errors:

⁸ ...or even fine-tuning the u_k s adaptively, as a function of the laundry's effect on the progressively reconciliated multisets.

⁹ i.e. that probability that a round resulted in an $(a',b') \neq (a,b)$ satisfying equation (3).

Problem 1. (Chinese Remaindering With Errors: CRWE). Given as input integers v, B and $\ell+v$ points $(s_1, p_1), \ldots, (s_{\ell+v}, p_{\ell+v}) \in \mathbb{N}^2$ where the p_i 's are coprime, output all numbers $0 \le s < B$ such that $s \equiv s_i \mod p_i$ for at least v values of i.

We refer the reader to [2] for more on this problem, which is beyond the scope of this article and note that Boneh [1] provides a polynomial-time algorithm for solving the CRWE problem under certain conditions satisfied by our setting.

To detect that reconciliation succeeded, Neil will send to Oscar $\operatorname{Hash}(\mathfrak{F}')$ as soon as the interaction starts. As long as Oscar's CRWE resolution does not result in a state matching $\operatorname{Hash}(\mathfrak{F}')$, the parties will continue the interaction.

4 Asymptotic Computational Complexity

Let $\mu(k)$ be the time required to multiply two k-bit numbers¹⁰. The division and the modular reduction of two k-bit numbers modulo a k-bit number costs $\tilde{O}(\mu(k))$ [1]. For naive algorithms $\mu(k) = O(k^2)$, but using FFT multiplication strategies [5], $\mu(k) = \tilde{O}(k)$. FFT is experimentally faster than other methods (naïve or Karatsuba) for $k \sim 64 \cdot 10^6$ and on. For such sizes, in packages such as gmp, division and modular reduction also run in $\tilde{O}(\mu(k))$.

Since $p \sim 2^{ut}$, here are the costs:

Entity	Computation	Complexity expressed in \tilde{O} of				
Both	redundancies c and c'	$n \cdot \mu(ut)$	naïve product	nut	using fft	
Oscar	$s = c'/c \mod p$	$\mu(ut)$	naïve inversion	ut	using fft	
Oscar	a, b such that $s = a/b \mod p$	$(ut)^2$	naïve ext. GCD	$\mu(ut)$	using [4,8]	
Both	factorization of a (resp. b) by modular reductions	$n \cdot \mu(ut)$	naïve reduction	nut	using fft	
	Overwhelming complexity:	max(($(ut)^2, n \cdot \mu(ut)$		nut	

Fig. 1. Global Protocol Complexity.

4.1 Improvements

It is possible to improve the complexity of the computation of the redundancy and the factorization to $\tilde{O}(n/t\mu(ut), \tilde{O}(nu))$ with FFT [5]. To simplify the explanations, let us suppose t is a power of 2: $t = 2^{\tau}$, and t divides n.

The idea is the following: we group h_i by group of t elements and we compute the product of each of these groups in \mathbb{N} .

$$H_j = \prod_{i=jt}^{jt+t-1} h_i.$$

Each of these products can be computed in $\tilde{O}(\mu(ut))$ using a standard method of product tree, depicted in Algorithm 1 (for j=0) and in Figure 2. And all these n/t products can be computed in $\tilde{O}(n/t\mu(ut))$. Then, one can compute c by multiplying these products H_j together, modulo p, which costs $\tilde{O}(n/t\mu(ut))$.

We suppose that $\forall k, k', \mu(k+k') > \mu(k) + \mu(k')$

Algorithm 1 Product Tree Algorithm

```
Require: a table h such that h[i] = h_i
Ensure: \pi = \pi_1 = \prod_{i=0}^{t-1} h_i, and \pi[i] = \pi_i for i \in \{1, \dots, 2t-1\} as in Figure 2
 1: \pi \leftarrow \text{array of size } t
 2: function PRODTREE(i,start,end)
         \mathbf{if} \ \mathrm{start} = \mathrm{end} \ \mathbf{then}
 3:
 4:
              return 1
          else if start + 1 = end then
 5:
 6:
              return h[start]
 7:
          else
              mid \leftarrow \lfloor (start + end)/2 \rfloor
 8:
              \pi[i] \leftarrow PRODTREE(2 \times i, start, mid)
 9:
10:
              \pi[i+1] \leftarrow PRODTREE(2 \times i + 1, start, mid)
11:
              return \times PRODTREE(mid,end)
12: \pi[1] \leftarrow PRODTREE(1,0,t)
```

The same technique applies for the factorization, but this time, we have to be a bit more careful. After computing the tree product, we can compute the residues of a (or b) modulo H_j , then we can compute the residues of these new elements modulo the two children of H_j in the product tree $(\prod_{i=jt}^{jt+t/2-1} h_i)$ and $\prod_{i=jt}^{jt+t/2-1} h_i$, and then compute the residues of these two new values modulo the children of the previous children, and so on. Intuitively, we go down the product tree doing modulo reduction. At the end (i.e., at the leaves), we obtain the residues of a modulo each of the h_i . This is illustrated in Algorithm 3 and Figure 3 (for j = 1). Complexity is $\tilde{O}(\mu(ut))$, for each j. So the total complexity is $\tilde{O}(n/t\tilde{O}(\mu(ut)))$.

Algorithm 2 Division using product tree

```
Require: a an integer, \pi the product tree from Algorithm 1

Ensure: A_i = A[i] = a \mod \pi_i for i \in \{1, \dots, 2t-1\}, computed as in Figure 2

1: A \leftarrow array of size t

2: function ModTree(i)

3: if i < 2t then

4: A[i] \leftarrow A[\lfloor i/2 \rfloor] \mod \pi[i]

5: ModTree(2 \times i)

6: ModTree(2 \times i + 1)

7: A[1] \leftarrow a \mod \pi[1]

8: ModTree(2)

9: ModTree(3)
```

5 Optimizing Parameters

The proposed process lends itself to a final fine-tuning. We list here some of the proposed research directions that could be investigated to that end:

5.1 Using a Smooth p

Comme explique dans un ancien email, je pense que l'on devrait utiliser un produit de petits nombres premiers au lieu d'un grand nombre premier p. Des l'instant que ces petits nombres premiers sont plus grands que les hashes, cela fonctionne. L'interêt est que l'on peut travailler modulo ces "petits nombres premiers" avec le CRT. Et en plus, la generation de ce modulo p (pas premier) est beaucoup plus rapide.

Faster hashing into the primes using $h-h \mod \pi + k\pi$ where π is a product of small primes

6 Implementation

To illustrate the concept, the authors has coded and evaluated the proof of concept described in this section.

The executable and source codes of the program, called btrsync, can be downloaded from: https://github.com/RobinMorisset/Btrsync.

The synchronisation is unidirectional (clearer). The program consist in two subprograms: a bash script and a python script:

6.1 The Bash Script

A bash script runs a python script (describe below) on the two computers to be synchronized. If the computer is not the one running the bash script, the python script is executed through ssh. The bash scripts also creates two pipes: one from Neil stdin to Oscar stdout and one from Oscar stdin to Neil stdout. Data exchanged during the protocol transits via these two pipes.

6.2 The Python Script

The python script uses gmp which implements all the number theory operations required by Oscar and Neil, and does the actual synchronization. This script works in two phases:

Finding Different Files

- 1. Compute the hashes of all files concatenated with their paths, type (folder/file), and permissions (not supported yet).
- 2. Implement the protocol proposed in Section ?? [add here a reference to the appropriate section in the paper] with input data coming from stdin and output data going to stdout.

More precisely:

- Oscar sends it product of hashes modulo a first prime number p_1 .
- Neil receives the product, divides by its own product of hashes, reconstructs the fraction modulo p_1 [can we elaborate more on what happens here? which functions in GMP are used to do the reconstruction?] and checks if he can factor the denominator using his hashes base. If he can, he stops and sends the numerator and the list of tuples (path, type, hash of content of the file) corresponding to the denominator's factors. Otherwise he sends "None" [is this the ASCII string "None"? if not what does he send precisely?].

- If Neil sent "None", Oscar computes the product of hashes modulo another prime p_2 , sends it... CRT mechanism... [can we elaborate more on what happens here? which functions in GMP are used to do the CRT?]
- If Neil sent the numerator and a list of tuples, then Oscar factors the numerator over his
 own hash values. Now each party (Neil, Oscar) knows precisely the list of files (path + type
 + hash of content) that differs from the over party.

[please structure the following:]

2. synchronize all the stuff [this is not an expression we can use in a paper...]. This part is not completely optimized.

We just remove all folders Oscar should not have and create new folders.

Then we remove all files Oscar should not have and synchronize using rsync the last files.

We could check for move (since we have the list of hash of contents of files) and do moves locally.

We can even try to detect moves of complete subtrees...

6.3 Move Resolution Algorithm

To reproduce the structure of Oscar on Neil, we have a list of file moves to apply. Sadly, it is not straightforward to apply the moves, because, if we take a file to move, its destination might be blocked, either because a file already exists (we want to move a to b, b already exists), or because a folder cannot be created (we want to move a to b/c, b already exists but is a file and not a folder). Note that for a move operation $a \to b$, there is at most one file blocking the location b: we will call it the blocker.

If the blocker is not present on Oscar, then we can just delete. However, if it exists, then we might need to move it somewhere else before we solve the move we are interested in. This move itself might have a blocker, and so on. It seems that we just need to continue until we reach a move which has no blocker or where the blocker can be deleted, but we can get caught in a cycle: if we must move a to b, b to c and c to a, then we will not be able to perform anything without using a temporary location.

How can we perform the moves? A simple way would be to move each file to a unique temporary location and then rearrange files to our liking: however, this performs many unnecessary moves and will result in problems if the program is interrupted. We can do something more clever so by performing a decomposition in strongly connected components of the *move graph* (with one vertex per file and one edge per move operation going from to the file to its blocker or to its destination if no blocker exists). The computation of the SCC decomposition is simplified by the observation that because two files being moved to the same destination must be equal, we can only keep one arbitrary in-edge per node, and look at the graph pruned in this fashion: its nodes have in-degree at most one, so the strongly connected components are either single nodes or cycles. Once the SCC decomposition is known, the moves can be applied by applying each SCC in a bottom-up fashion, an SCC's moves being solved either trivially (for single files) or using one intermediate location (for cycles).

The detailed algorithm is implemented as two mutually recursive functions and presented as Algorithm 3.

Algorithm 3 Perform moves

Require: D is a dictionary where D[f] denotes the intended destinations of f

```
1: M \leftarrow []
 2: T \leftarrow []
 3: for f in D's keys do
 4:
         M[f] \leftarrow \text{not\_done}
 5: function UNBLOCK_COPY(f, t)
         if t is blocked by some b then
 6:
 7:
             if b is not in D's keys then
                                                                                                                 \triangleright We don't need b
 8:
                 \operatorname{unlink}(b)
 9:
             else
10:
                 RESOLVE(b)
                                                                                          \triangleright Take care of b and make it go away
11:
         if T[f] was set then
12:
             f \leftarrow T[f]
13:
         copy(f, d)
14: function RESOLVE(f)
         if M[f] = \text{done then}
15:
16:
             return
                                                                                        ▶ Already managed by another in-edge
17:
         if M[f] = \text{doing then}
18:
             T[f] \leftarrow \text{mktemp}()
             move(f, T[f])
19:
20:
             M[f] \leftarrow \text{done}
21:
             return
                                                                                   \triangleright We found a loop, moved f out of the way
22:
         M[f] \leftarrow \text{doing}
23:
         for d \in D[f] do
24:
             if d \neq f then
                                                                                                           ▷ Perform all the moves
25:
                 unblock\_copy(f, d)
26:
         if f \notin D[f] and T[f] was not set then
27:
             \operatorname{unlink}(f)
28:
         if T[f] was set then
29:
             \operatorname{unlink}(T[f])
30: for f in D's keys do
         RESOLVE(f)
31:
```

An optimization implemented by btrsync over the algorithm described here is to move files instead of copying them and then removing the original file, because moves are faster than copies on most filesystems as they don't need to copy the file contents.

6.4 Experimental Comparison to rsync

To demonstrate the benefits of our approach, we compared our btrsync implementation to the standard rsync on the following datasets:

synthetic A directory containing 1000 very small files containing the numbers from 1 to 1000. synthetic_shuffled The result of applying a few operations to synthetic: 10 files were deleted, 10 files were renamed, and the contents of 10 files was changed.

source A snapshot of the btrsync source tree.

source_moved The result of renaming a big folder (several hundred of kilobytes) in source.

firefox-13.0 The source archive of Mozilla Firefox 13.0.

firefox-13.0.1 The source archive of Mozilla Firefox 13.0.1.

empty An empty folder.

We performed the measurements with rsync version 3.0.9 (used both as the standalone rsync and for the underlying call to rsync in btrsync). The standalone rsync was given the --delete flag to delete existing files on Oscar which do not exist on Neil. We passed the -I flag to ensure that rsync did not cheat by looking at the file modification times (which btrsync does not do), and --chmod="a=rx,u+w" as an attempt to disable the transfer of file permissions (which btrsync does not transfer). Although these settings ensure that rsync does not need to transfer the permissions, verbose logging suggests that it transfers them anyway, so rsync must lose a few bytes per file as compared to btrsync for this reason.

Bandwidth accounting was performed with the -v flag for rsync invocations (which report the number of sent and received bytes), and by counting the amount of data transmitted for btrsync's own negociations. The experiment was performed between two remote hosts on a high-speed link. The time measurements account both for CPU time and for transfer time and are just given as a general indication.

Results are given in table 4. The timing results show that btrsync is slower than rsync, especially when the number of files is high (i.e., the synthetic datasets). The bandwidth results, however, are more satisfactory. It is true that the trivial datasets where either Oscar or Neil have no data, rsync outperforms btrsync: this is especially clear in the case where Neil has no data: rsync immediately notices that there is nothing to transfer, whereas btrsync transfers information to determine the symmetric difference. On the non-trivial datasets, however, btrsync outperforms rsync. This is the case on the synthetic datasets, where btrsync does not have to transfer information about all the files which were not modified, and even more so on the case where there are no modifications at all. On the Firefox source code dataset, btrsync saves a very small amount of bandwidth, presumably because of unmodified files. For the btrsync source code dataset, we notice that btrsync, unlike rsync, was able to detect the move and to avoid retransferring the moved folder.

7 Haskell Implementation

(Antoine: je range ça dans sa propre section, mais j'imagine qu'on va le couper ou juste dire que ça existe.)

7.1 Program Structure

A proof-of-concept called Btrsync has been implemented in Haskell and is available at https://github.com/RobinMo

It is intended to work as a drop-in replacement of rsync for directories, taking as arguments two (possibly remote) directories. It launches instances of itself on each of these machines (by ssh), playing respectively Neil and Oscar's roles.

Communication between Neil and Oscar is handled by the original instance, that links each agent standard output to the standard input of the other.

Neil does almost all computations, while Oscar send him the needed informations and run the effective transfer of files when the computations are done. Btrsync uses rsync to synchronize single files, because it's algorithm to detect changes in a files is very good.

7.2 Time Measurements

Because of difficulties in linking with the GMP library the code is significantly slower than it could be (especially in the computation of the primes from the hashes).

TODO: benchmarks with time + bandwidth (our only benefit ..)

8 Conclusion and Further Improvements

We strongly encourage the developer community to continue improving our open source and public-domain software (that we called btrsync).

9 Acknowledgment

The authors acknowledge Guillain Potron for his early involvement in this research work.

10 ToDo

todo: Fix euclidean to Euclidean in reference 5.

todo: Merge two reference files rsynch and wagner.

References

- 1. Burnikel, C., Ziegler, J., Im Stadtwald, D., et al.: Fast recursive division (1998)
- 2. Fouque, P.A., Stern, J., Wackers, J.G.: Cryptocomputing with rationals. In: Blaze, M. (ed.) Financial Cryptography. Lecture Notes in Computer Science, vol. 2357, pp. 136–146. Springer (2002)
- 3. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: Field, J., Hicks, M. (eds.) POPL. pp. 495–508. ACM (2012)

er de l'intro et

- 4. Pan, V., Wang, X.: On rational number reconstruction and approximation. SIAM Journal on Computing 33, 502 (2004)
- 5. Schönhage, A., Strassen, V.: Schnelle multiplikation grosser zahlen. Computing 7(3), 281–292 (1971)
- Tridgell, A.: Efficient algorithms for sorting and synchronization. Ph.D. thesis, PhD thesis, The Australian National University (1999)
- 7. Vallée, B.: Gauss' algorithm revisited. J. Algorithms 12(4), 556-572 (1991)
- 8. Wang, X., Pan, V.: Acceleration of euclidean algorithm and rational number reconstruction. SIAM Journal on Computing 32(2), 548 (2003)

References

- 1. D. Boneh, Finding Smooth Integers in Short Intervals Using CRT Decoding, Proceedings of the 32-nd Annual ACM Symposium on Theory of Computing, 2000, pp. 265–272.
- 2. D. Bleichenbacher and Ph. Nguyen, Advances in Cryptology Proceedings of Eurocrypt'00, vol. 1807 of Lecture Notes in Computer Science, Springer-Verlag, pp. 53–69.
- 3. Y. Minsky, A. Trachtenberg, Scalable Set Reconciliation, 40th Annual Allerton Conference on Communications, Control and Computing, Monticello, IL, October 2002. A full version entitled Practical Set Reconciliation can be downloaded from http://ipsit.bu.edu/documents/BUTR2002-01.ps
- 4. Y. Minsky, A. Trachtenberg, R. Zippel, Set reconciliation with nearly optimal communication complexity. IEEE Transactions on Information Theory, 49(9), 2003, pp. 2213–2218.
- 5. D. Eppstein, M. Goodrich, F. Uyeda, G. Varghese What's the difference?: efficient set reconciliation without prior context ACM SIGCOMM Computer Communication Review SIGCOMM '11, 41(4), 2011, pp. 218-229.

A Extended Protocol

Note that parties do not need to store the p_i 's in full. Indeed, the p_i s could be subsequent primes sharing their most significant bits. This reduces storage per prime to a very small additive constant $\cong \ln(p_i) \cong \ln(2^{2tu+2}) \cong 1.39(tu+1)$ of about $\log_2(tu)$ bits.

Fig. 2. Product tree

Fig. 3. Division from product tree

Entities and Datasets			Transmission (Bytes)						Time (s)	
Neil's \mathfrak{F}'	Oscar's F	\mathbf{TX}_r	$\mathbf{R}\mathbf{X}_r$	\mathbf{TX}_b	$\mathbf{R}\mathbf{X}_b$	abs	rel	\mathbf{t}_r	\mathbf{t}_b	
source	empty	1613	778353	1846	788357	10237	+2%	0.2	7.7	
empty	source	11	29	12436	6120	18516	+46305 %	0.1	5.5	
empty	empty	11	29	19	28	7	+32 %	0.1	0.3	
synthetic	synthetic_shuffled	24891	51019	3638	4147	-68125	-57 %	0.2	26.8	
synthetic_shuffled	synthetic	24701	50625	3443	3477	-68406	-58 %	0.2	26.6	
synthetic	synthetic	25011	50918	327	28	-75574	-67 %	0.1	25.7	
firefox-13.0.1	firefox-13.0	90598	28003573	80895	27995969	-17307	+0 %	2.6	4.2	
source_moved	source	2456	694003	1603	1974	-692882	-99 %	0.2	2.5	

Fig. 4. Experimental results. The two first columns indicate the datasets, synchronization is performed from Neil to Oscar. RX and TX are received and sent byte counts, r and b are rsync and btrsync, we also provide the absolute difference in exchanged data (positive when btrsync transfers more data than rsync) and the relative amount of data sent by btrsync compared to rsync (over 100% when btrsync transfers more data than rsync). The last two columns show timing results.