Neural Network Architecture for Efficient Deep Hedging

No-Transaction Band Network

Hedging Optimization

$$P = -Z + \sum_{t=0}^{T-1} (\delta_t \Delta S_t - c | \Delta \delta_t | S_t)$$

Z: Terminal value of the derivative

 δ : A unit of stocks hold at each time step

S: Stock price

c: Transaction cost rate

Architecture

(a) Feed-forward network.

(b) No-transaction band network.

If $\delta_{\rm t}$ smaller than $b_{\rm low}$, $\delta_{\rm t+1}$ = $b_{\rm low}$ If $\delta_{\rm t}$ greater than $b_{\rm up}$, $\delta_{\rm t+1}$ = $b_{\rm up}$ Else $\delta_{\rm t+1}$ = $\delta_{\rm t}$ (No-transaction

Between b_{low} and b_{up} is no-transaction-band

Advantages

- Neural network's inputs do not depend on the current position:
 This feature overcomes the difficulty of position-dependence to facilitate training.
- Neural network encodes an efficient strategy:

 Strategy using a band is cost-effective because it never transacts inside the band. A Neural network encodes this wisdom as an "induction bias."

Numerical Experiment

