ME 3710

Homework 6

Due Thursday February 29 at 11:59pm – upload to Canvas [5 problems – 15 pts]

Problem 5.37

Find the horizontal and vertical forces to hold stationary, the nozzle as shown in the figure below. The fluid flowing through it is 10 °C liquid water; $A_1 = 1.0 \,\text{m}^2$, $A_2 = 0.25 \,\text{m}^2$, $V_1 = 20 \,\frac{\text{m}}{\text{s}}$, $V_2 = V_{atm}$ and $V_1 = V_{atm} + 30 \,\text{kPa}$. Neglect gravity.

Problem 5.38

Water flows through a horizontal bend and discharges into the atmosphere as shown in the figure below. When the pressure gage reads $10~\mathrm{psi}$, the resultant x-direction anchoring force, F_{Ax} , in the horizontal plane required to hold the bend in place is shown on the figure. Determine the flowrate through the bend and the y-direction anchoring force, F_{Ay} , required to hold the bend in place. The flow is not frictionless.

Problem 5.39

Find the magnitude of the force F required to hold the plate in the figure below stationary.

Problem 5.43

Air at $T_1=300\,\mathrm{K}$, $p_1=303\,\mathrm{kPa}$, and $V_1=0.5\,\mathrm{m/s}$ enters the Venturi as shown in the figure below. The air leaves at $T_2=220\,\mathrm{K}$ and $p_2=101\,\mathrm{kPa}$; $A_1=0.6\,\mathrm{m}^2$ and $A_2=1.0\,\mathrm{m}^2$. Calculate the horizontal force required to hold the Venturi stationary.

Problem 5.50

A vertical jet of water leaves a nozzle at a speed of $10 \,\mathrm{m/s}$ and a diameter of $20 \,\mathrm{mm}$. It suspends a plate having a mass of $1.5 \,\mathrm{kg}$ as indicated in the figure below. What is the vertical distance h?

