Streaming - Majority element and F0 estimation

- 1. Majority element (heavy hitters algorithm)
 - a. Assume the length of a data stream is n, how to find if there is a element that appears more than n/2 times with constant space? How many passes you need to make?
 - b. Answer:
 - i. Name key-value pair KV = (KV[0], KV[1])
 - ii. For each element e in the stream:
 - 1. If the key-value pair is empty, set it to be (e,1)
 - 2. If KV not empty, and e = KV[0], then set KV[1] += 1
 - 3. If KV not empty, and e != KV[0], then KV[1] = 1. Empty KV if KV[1] = 0
 - iii. Go through the stream again to check the frequency of KV[0]

iv.

- 2. Lower bound on memory for exact deterministic algorithm
 - a. Consider a sequence of m+1 elements
 - b. There are 2^m 1 possible subsets of elements for first m elements
 - c. To determine the exact number of distinct elements in the sequence, we need at least m bits of memory
 - d. If only m-1 bits are used, then the memory can only have 2^m 1 states
 - i. Two different subsets will share one state, which leads to incorrect answer
- 3. Can we use sampling to approximate F0?
 - a. No
 - b. Sampling cannot catch the minority with high probability, unless all elements appears with similar frequencies

4. Distinct element estimation using k-th min

a.

b.

c.

e.

f.

The smallest hashed value V_1 (Z in the lecture slide)

$$\mathbb{E}[\mathbb{Z}] = \int_0^1 \Pr(Z > t) dt = \int_0^1 \Pr(X_1 > t)^n = \int_0^1 (1 - t)^n dt = \frac{1}{n + 1}$$

$$\Pr[V_k \leq x] = \Pr[ext{at least k observations are} \leq x] = \sum_{l=k}^n inom{n}{l} x^l (1-x)^{n-l}$$
d.

$$rac{d}{dx} \sum_{l=k}^n inom{n}{l} x^l (1-x)^{n-l} = \sum_{l=k}^n inom{n}{l} \Big(l x^{l-1} (1-x)^{n-l} - x^l (n-l) (1-x)^{n-l-1} \Big)$$

 $\frac{n}{n}$ (n)

$$=n\binom{n-1}{k-1}x^{k-1}(1-x)^{(n-1)-(k-1)}$$

g. This is the pdf of beta distribution