KONDENZÁTORY

Základní parametr – **KAPACITA**

Důležité parametry- Provozní napětí

Ztrátový činitel (činitel jakosti, ekvivalentní seriový odpor)

Izolační odpor (časová konstanta)

Zbytkový proud

Teplotní závislost, tolerance, napěťová závislost kapacity

Kmitočtová závislost kapacity, provozního napětí, proudu

Stárnutí

Konstrukce- Svitkové : s papírovým, plastovým dielektrikem, obyčejné, bezindukční, foliové, metalizované

Keramické : s lineárním průběhem teplotní závislosti kapacity, s nelineárním průběhem teplotní závislosti kapacity, z reoxidované keramiky, jednoduché, monolitické

Elektrolytické : hliníkové, tantalové, s kapalným elektrolytem, s tuhým elektrolytem

Slídové

Vzduchové (vakuové, olejové)

Střadače elektrického náboje

SVITKOVÉ KONDENZÁTORY

Konstrukce: svitky svinuté z pásů dielektrika, které jsou proloženy elektrodami Svitky se navijí ze složených pásů na automatických naviječkách. Po dosažení stanovených rozměrů se svitek ukončí, přelepí

Dielektrikum: kondenzátorový papír (natroncelulózový, hadrový), 6 až 20 μm, nevydrží všechno, nejméně 2 vrstvy folie z plastů – polystyren, polyetylentereftalát, polykarbonát, polyimid, polypropylen

Elektrody: Al folie tloušťky několika µm

Vývody elektrod: kontaktní praporky přivařené na elektrody, vodiče vložené do svitku (PS), bezindukční vývody na čelech svitku (nanesený kov, přitisknuté armatury)

Kondenzátory s metalizovanými elektrodami (MP)

Elektroda je vrstva Zn nebo Al tloušťky 0,05 až 1 μm nanesená na dielektrikum- regenerační schopnost

Papírové dielektrikum: napařování – papír se lakuje nitrocelulozovým lakem (1 μm), suší (105°C), napařuje ve vakuu (Zn 10⁻¹ Pa, nukleační centra Ag 1-5 nm, Al 10⁻³ Pa) Napařuje se na široké pásy, ty se dělí, místa přo řezání jsou maskována parami oleje, stínidly

Plastové folie: obvyklejší naprašování Al, je rychlejší

HERMETIZACE, POUZDŘENÍ

Svitkové kondenzátory nesnáší vlhkost.

Svitky papírových kondenzátorů se **impregnují**, zvýší to stabilitu, napěťovou pevnost, kapacitu. Používá se inertní impregnant (olej, ceresin, ne DELOR)- nesmí napadat tenké elektrody, nesmí se rozkládat při průrazu. Impregnované svitky se vkládají a uzavírají do **hermetických pouzder**, nejlépe z kovu, keramiky a skla

Svitky s plastovým dielektrikem se obvykle neimpregnují, ale po navinutí se zahřívají až folie změkne. Tak se folie smrští a svitek utěsní takže nenavlhá. Pouzdra se dělají z plastů, s plastovou zálivkou Monolitické kondenzátory: folie se nemusí navíjet, mohou se skládat do paketů a za horka slepit. Laminovaná deska se rozřeže, opatří vývody a je kondenzátor

KERAMICKÉ KONDENZÁTORY

Dielektrikem je vypálená keramická hmota, která podle složení může mít relativní permitivitu od jednotek (hmoty s definovaným lineárním průběhem teplotní závislosti permitivity), až do několika desítek tisíc (feroelektrické hmoty). Vodivé elektrody kondenzátorů se vytváří spékáním z emulzního stříbra tlustovrstvou technologií

Základní vlastnosti keramických kondenzátorů určuje použité dielektrikum – keramika.

Nejstarší keramiky (1930) byly z kysličníku titaničitého a hořečnatého – ε_r = 15-95, TKC +100...-750 10^{-6} /° C

Titanátové keramiky (BaTiO₃, CaTiO₃, SrTiO₃, MgTiO₃) mají ϵ_r = 1000-20000, jsou ale feroelektrické - vykazují Curieovu teplotu, dielektrickou hysterezi, závislost permitivity na intenzitě pole

Kondenzátory typu 1 – stabilní, lineární kondenzátory s malými ztrátami: tgδ max. 2.10 ⁻³, TKC +200...-6800 10⁻⁶ / C, kapacita není závislá na napětí

Hodí se na VF kondenzátory kapacit do několika nF, i na VN a velké výkony

Kondenzátory typu 2 – s dielektrikem s vysokou permitivitou, feroelektrická dielektrika tvořená titaničitany žíravých zemin. Ostrý vrchol teplotní závislosti ε_r lze pomocí příměsí posouvat a tvarovat, podle předpokládaného použití kondenzátorů (posouvače SrTiO₃, PbTiO₃, BaSnO₃, CaSnO₃, zplošťovače CaTiO₃, Bi₂ SnO₃)

Hmoty PERMITIT, základní materiál BaTiO₃, tgδ max. 3.10⁻², odchylky kapacity i +- 50%

Hodí se tam, kde malé ztráty a stabilita nejsou nezbytným požadavkem. Zejména jako blokovací, filtrační, vazební kondenzátory

Kondenzátory typu 3 – barierové kondenzátory z reoxidované keramiky. Feroelektrická keramika stejná jako u typu 2, jinak se pálí.

Nejdříve v redukční atmosféře H_2 asi při 1200° C , vznikne polovodivý materiál s malou rezistivitou. Dalším výpalem v oxidační atmosféře – vzduchu se vytvoří na povrchu zrn tenká -1µm – vrstva oxidu = dielektrika Hmota SUPERMIT, SIBATIT ε_r asi 50 000

Kondenzátory typu 3 mají vlastnosti ještě horší než kondenzátory typu 2 – vlivem vysoké intenzity pole v dielektriku, uplatňuje se i odpor polovodivé keramiky, takže ztráty jsou běžně 10 %.

Hodí se tam, kde už nejsou žádné nezbytné požadavky. Jen jako blokovací, filtrační, vazební kondenzátory na nepříliš vysokých frekvencích a v číslicových obvodech.

KONSTRUKCE KONDENZÁTORŮ

Vývody: bezvývodové, s drátovými vývody, se šroubovací armaturou

Tvar kondenzátoru: nejstarší trubka, dnes destička, disk, multičip, trapezový, průchodkový, hrníčkový, talířový

Elektrody: z emulzního Ag, nanáší se stříkáním, natíráním, tiskem, nasáváním, výpal 850 ° C

Povrchová ochrana: samopajitelný lak, syntetický email, fenolitický tmel (impregnovaný voskem), skelná glazura

VÝROBA KERAMIKY

S nízkou permitivitou – Stealit, Kalit

Přírodní suroviny – Kaolin (křemičitan hlinitý Al(OH)₈ Si₄ O₁₀

Křemen (SiO₂)

Živec (NaAl Si₃ O₈, CaAl ₂Si₂ O₈) (jako porcelán)

Kysličníkové – Stabilit, Tempa –MgO, TiO₂

Rutilové – Rutilit, Kondensa - TiO₂, ZrO₂

Všecko se mele za mokra, míchá

Rozmíchaná suspenze se se čistí na vibračním sítě, v magnetickém žlabu

Odvodní se kalolisem a nechá se stárnout v blocích (Hubel)

Tvarování – lisování, lití, tažení

Sušení, pálení v oxidační atmosféře 1300 až 1500 ° C

S vysokou permitivitou – feroelektrické

Suroviny syntetické – BaCO₃ , TiO₂ , ZrO₂ , SnO₂ ,MgCO₃ ,SrCO₃ , se míchaji ve stechiometrických poměrech

Suspenze se se čistí na vibračním sítě, v magnetickém žlabu, odvodňuje, suší

1. Pálení 1000 až 1300 °C, rozkládají se uhličitany, vytváří titanáty, zirkonáty

Co vznikne se mele v bubnovém mlýně

Míchá s přísadou polyvinylalkoholu

Dále následuje tvarování – lisování, lití, tažení

Sušení, 2. pálení v oxidační atmosféře 1300 až 1500 ° C (redukční a oxidační)

SMD

Termination

Elektrody, suspenzní stříbro, musí snést pájení, vývody Ni ochrana

Termination (nickel barrier) Inner electrode AgPd Substrate electrode Ag Intermediate electrode Ni External electrode Sn

KKE0484-W

VISHAY DRALORIC

CLASS 1 CERAMIC MATERIALS								
ABBREVIATION FOR DIELECT	R 7	R 16	R 16 HIGH Q	NP 0	R 42			
Relative Dielectric Constant [∈ _r]		~ 7	~ 16	~ 17	~ 32	~ 40		
Ceramic Type According to IEC 6	C 221	C 320	C 320	C 320	C 331			
Temperature Coefficient of the Capacitance	[10 ⁻⁶ /K]	+ 130 + 70	+ 130 + 70	+ 115 + 85	- 30 + 30	- 200 - 300		
Dissipation Factor [10		≤ 0.5 [1MHz]	≤ 0.4 [1MHz]	≤ 0.15 [1MHz]	≤ 5 [1MHz]	≤ 0.5 [1MHz]		
Insulation Resistance	[Ω]	≥ 10 ¹⁰	≥ 10 ¹⁰	≥ 10 ¹¹	≥ 10 ¹⁰	≥ 10 ¹⁰		
Permissible Temperature Range [°C]		- 55 to + 100	- 55 to + 100	- 55 to + 100	- 55 to + 85	- 55 to + 100		
Max. Relative Air Humidity [%]		75%	75%	. 75%	75%	75%		

CLASS 2 CERAMIC MATERIALS

ABBREVIATION FOR DIELECT	RIC	X7R	Y5U	Z5U	
Relative Dielectric Constant	[∈ _r]	~ 4500	~ 8500	~ 5000	
Ceramic Type According to EIA	198	II	III	III	
Temperature Dependance		*	*	*	
Dissipation Factor	[10 ⁻³]	≤ 20 [1KHz]	≤ 20 [1KHz]	≤ 20 [1KHz]	
Insulation Resistance	[Ω]	≥ 10 ¹¹	≥ 10 ¹¹	≥ 10 ¹¹	
Permissible Temperature Range	e [°C]	- 30 to + 85	- 30 to + 85	- 30 to + 85	

Tab. 5.9 Značení teplotní závislosti kapacity na keramických kondenzátorech typu 1

α _C	Pismenový	Barevné zn	Obchodní		
x10 ⁻⁶ /°C	kód	základní barva	barevná značka	název	
+ 100	A	šeď pastelová 1010	modř světlá 4400	Porcelit	
+ 33	В	_11_	bílá 1000	Stabilit L33P	
0	Ċ	_"_	černá 1999		
- 33	н	_n_	hněď kávová 2320		
- 47	J		šeď střední 1100	Stabilit K, LA7N	
- 75	L	_11_	červeň ruměl- ková 8190	Stabilit K75N	
- 150	P	_"_	oranžová ná- věstní 7550	Stabilit K150N	
- 220	R .	_"_	žluť chromová 6200	7 848	
- 330	S	_"_	zeleň světlá 5149		
- 470	Ť	-"-	modř tyrkyso- vá 4205		
- 750	σ	_"_	fialová 3500	Rutilit	
- 1500	V	_"_	šeď střední 1100	Negatit	

^{*)} Stupnice barevných odstínů podle ČSN 67 3067

Tab. 5.10 Značení teplotní charakteristiky kapacity keramických kondenzátorů typů 2 a 3

Typ konden- zátoru	Permitivita	Základní barva *)	Pismenový kód	Obchodní název
2 1			E	
2 B	1000	neužívá se	P	Permitit 1000
2 C	2000	hněď paste- lová 2092	Z	Permitit 2000
2 D			G	
2 E	4000	hněď kávová 2 32 0	W = "	Permitit 4002
2 F	6000,10 000	červeň ruměl ková 8140	X	Permitit 6000, 10 000
3 E		neužívá se	N	Supermit

^{*)}Stupnice barevných odstínů podle ČSN 67 3067

6800 pF = 6,8 nF	6k8	6n8
10 000 pF = 10 nF	10k	10n
100 000 pF = 100 nF	100k	100n

	Systém A	Systém B
±0,1 pF	1 2 2	В
±0,25 pF	_ "	C
±0,5 pF	E	D
±1 pF	D	F
±2 %	C	G
±5 %	В	J
±10 %	A	K
±20 %	M	M
-20 +50 %	QM .	S
-20 +80 %	RM	Z

Jmenovité stejnosměrné napětí se označuje buď přímo hodnotou, nebo písmenovým kódem:

12,5 V	n	63	v	 8	400	V	 e	
25 V								
32 V	 _	160	V	 c	630	٧	 g	
40 V	 	250	V	 d.	1000	V	 h	

high Q porcelain capacitors,	some specifications taken from
manufacture	ers catalogues

ilialiulacturers catalogues								
		max current @ 1 GHz	ESF 150 MHz	1 GHz	working power (indicative values)	voltage range available in stock		
ATC 100 B 3 x 3 mm	3p9 10 pF 39 pF 100 pF 390 pF		0.050 Ω 0.045 Ω 0.040 Ω 0.035 Ω 0.030 Ω	0.1 Ω 0.1 Ω 0.1 Ω	500 W in HF-VHF 250 W a 1 GHz	up to 100pF = 500V		
ATC 100 A 1.5 x 1.5mm	40 =	0.8 A 1,5 A 2 A 3 A	0.2 Ω a 0.15Ω a	a 1 GHz 1 GHz a 1 GHz a 1 GHz	70-100 W @ 1 GHz 30 W @ 10 GHz	from 50 to 200 V depending on type and availability		
common specifications for types A and B Q > 10.000 @ 1 MHz Q > 20.000 / C(pF) @ 100 MHz thermal stability 90 ppm / °C , (it means that with a temperature range from +20°C to +120°C ,						0.000 / C(pF) @ 100 MHz a temperature range from +20°C to +120°C ,		
$(\Delta t = 100^{\circ}C) \text{ the capacity value will change of only 0,9 \%}$ insulation resistance					= 10 ² GΩ -55°C / +125°C 360 to 1000 pF			

62pF case B

