Image Colorization Using Deep Learning

Ivan Ristić IN31-2022 Isidor Ivanov IN50-2022 Nemanja Radić IN34-2022 Uroš Ogrizović IN12-2022

Zašto kolorizovati slike?

- Restauracija starih crno-belih slika
- Obogatiti istorijske arhive
- Poboljšanje medicinskih fotografija
- Kreativne i umetničke aplikacije

Pregled projekta

Cilj

 Napraviti neuronsku mrežu koja uzima crno-bele slike i predviđa njihove obojene verzije

Alati

Python, TensorFlow/Keras, Matplotlib, Pandas, NumPy

Priprema podataka

DataSet: Slike sa

https://www.kaggle.com/datasets/puneet6060/intel-image-classification/data

Koraci

- Učitavanje putanja slika iz subfoldera
- Promena dimenzija slika na 128×128 piksela radi lakše obrade
- o Konvertovanje slika u sive tonove za unos modela
- Normalizvanje vrednosti piksela na [0, 1] za treniranje neuronske mreže

Arhitektura modela

- Encoder-Decoder: Jednostavna struktura autoenkodera
- CNN: Duboka konvoluciona neuronska mreža
- **U-Net**: Napredna arhitektura sa preskočnim vezama za bolje zadržavanje detalja

Encoder-Decoder Model

Struktura

- Model je zasnovan na jednostavnoj enkoder-dekoder arhitekturi
- Enkoder kompresuje ulaznu sliku u sivim tonovima u sažetu reprezentaciju karakteristika pomoću konvolucionih slojeva.
- Dekoder koristi te karakteristike da rekonstruiše izlaznu sliku u boji (RGB formatu).

Korišćeni slojevi

Conv2D, BatchNormalization, MaxPooling2D, Dropout, UpSampling2D

Prednosti

- Lak za implementaciju i obuku
- Dobar za učenje osnovnih obrazaca bojenja

Ograničenja

o Može doći do gubitka finih detalja i stvaranja zamućenih rezultata

CNN Model

Struktura

- Duboka konvoluciona neuronska mreža
- Višestruki konvolucioni blokovi za ekstrakciju karakteristika
- Uzorkovanje slojeva za vraćanje veličine slike

Korišćeni slojevi

o Conv2D, BatchNormalization, ReLU, MaxPooling2D, UpSampling2D

Prednosti

- Uči složene karakteristike i mapiranje boja
- o Bolja kolorizacija nego kod osnovnih autoenkodera

Ograničenja

Nema preskočnih veza, tako da se neki prostorni detalju mogu izgubiti

U-Net Model

Struktura

- Napredni enkoder-dekoder sa preskočnim vezama
- o Enkoder izdvaja karakteristike; dekoder rekonstruiše slike u boji
- Preskočne veze spajaju karakteristike enkodera i dekodera radi boljih detalja

Korišćeni slojevi

Conv2D, BatchNormalization, ReLU, MaxPooling2D, Dropout, UpSampling2D, concatenate

Prednosti

- Čuva prostorne detalje i ivice
- o Proizvodi najrealističnije i najdetaljnije boje

Ograničenja

Složeniji i zahteva više memorije i vremena za treniranje

Proces treniranja

- Trening set: 7000 slika
- **Test set**: 1000 slika
- **Epohe**: 20 30 zavisno od modela
- Veličina serije (batch size): 64 128

Evaluacija modela

- Validacija: Korišćen test set za praćenje učinka tokom obuke
- Vizualizacija: Prikazani crno-beli ulazi i predviđeni izlazi jedan pored drugog

Primeri rezultata (Encoder-Decoder Model)

Primeri rezultata (CNN Model)

Primeri rezultata (U-Net Model)

Poređenje arhitektura

- Encoder-Decoder: Brz, ali sa manje detalja
- CNN: Dobri rezultati, ali može da propustiti fine detalje
- **U-Net**: Najbolji rezultati, najbolje čuva detalje i boje

Izazovi

- Veliko vreme obrade skupa podataka
- Tačnost boja (ponekad nerealne boje)
- Overfitting (rešeno ranim zaustavljanjem i ispuštanjem (dropout))

Buduća poboljšanja

- Korišćenje Generativne Protivničke Mreže (GAN) za realističnije boje
- Korišćenje većeg i raznovrsnijeg skupa podataka
- Podaci veće rezolucije

Zaključak

- Uspešno izgrađeni i obučeni modeli za kolorizaciju slika
- U-Net Model daje najbolje rezultate od svih korišćenih modela
- Naučili smo osnove o obradi slika, neuronskim mrežama i proceni modela

KRAJ