

7.1 Matrices, Vectors:Addition and Scalar Multiplication

The basic concepts and rules of matrix and vector algebra are introduced in Secs. 7.1 and 7.2 and are followed by **linear systems** (systems of linear equations), a main application, in Sec. 7.3.

Let us first take a leisurely look at matrices before we formalize our discussion. A **matrix** is a rectangular array of numbers or functions which we will enclose in brackets. For example,

$$\begin{bmatrix} 0.3 & 1 & -5 \\ 0 & -0.2 & 16 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \begin{bmatrix} e^{-x} & 2x^2 \\ e^{6x} & 4x \end{bmatrix}, [a_1 & a_2 & a_3], \begin{bmatrix} 4 \\ \frac{1}{2} \end{bmatrix}$$

are matrices. The numbers (or functions) are called **entries** or, less commonly, *elements* of the matrix. The first matrix in (1) has two **rows**, which are the horizontal lines of entries. Furthermore, it has three **columns**, which are the vertical lines of entries. The second and third matrices are **square matrices**, which means that each has as many rows as columns—3 and 2, respectively. The entries of the second matrix have two indices, signifying their location within the matrix. The first index is the number of the row and the second is the number of the column, so that together the entry's position is uniquely identified. For example, a_{23} (read *a two three*) is in Row 2 and Column 3, etc. The notation is standard and applies to all matrices, including those that are not square.

Matrices having just a single row or column are called **vectors**. Thus, the fourth matrix in (1) has just one row and is called a **row vector**. The last matrix in (1) has just one column and is called a **column vector**. Because the goal of the indexing of entries was to uniquely identify the position of an element within a matrix, one index suffices for vectors, whether they are row or column vectors. Thus, the third entry of the row vector in (1) is denoted by a_3 .

Matrices are handy for storing and processing data in applications. Consider the following two common examples.

EXAMPLE 1 Linear Systems, a Major Application of Matrices

We are given a system of linear equations, briefly a linear system, such as

$$4x_1 + 6x_2 + 9x_3 = 6$$

$$6x_1 - 2x_3 = 20$$

$$5x_1 - 8x_2 + x_3 = 10$$

where x_1, x_2, x_3 are the **unknowns**. We form the **coefficient matrix**, call it **A**, by listing the coefficients of the unknowns in the position in which they appear in the linear equations. In the second equation, there is no unknown x_2 , which means that the coefficient of x_2 is 0 and hence in matrix **A**, $a_{22} = 0$, Thus,

$$\mathbf{A} = \begin{bmatrix} 4 & 6 & 9 \\ 6 & 0 & -2 \\ 5 & -8 & 1 \end{bmatrix}.$$
 We form another matrix $\tilde{\mathbf{A}} = \begin{bmatrix} 4 & 6 & 9 & 6 \\ 6 & 0 & -2 & 20 \\ 5 & -8 & 1 & 10 \end{bmatrix}$

by augmenting A with the right sides of the linear system and call it the augmented matrix of the system.

Since we can go back and recapture the system of linear equations directly from the augmented matrix $\widetilde{\mathbf{A}}$, $\widetilde{\mathbf{A}}$ contains all the information of the system and can thus be used to solve the linear system. This means that we can just use the augmented matrix to do the calculations needed to solve the system. We shall explain this in detail in Sec. 7.3. Meanwhile you may verify by substitution that the solution is $x_1 = 3$, $x_2 = \frac{1}{2}$, $x_3 = -1$.

The notation x_1, x_2, x_3 for the unknowns is practical but not essential; we could choose x, y, z or some other letters.

EXAMPLE 2 Sales Figures in Matrix Form

Sales figures for three products I, II, III in a store on Monday (Mon), Tuesday (Tues), · · · may for each week be arranged in a matrix

Mon Tues Wed Thur Fri Sat Sun
$$\mathbf{A} = \begin{bmatrix} 40 & 33 & 81 & 0 & 21 & 47 & 33 \\ 0 & 12 & 78 & 50 & 50 & 96 & 90 \\ 10 & 0 & 0 & 27 & 43 & 78 & 56 \end{bmatrix} \quad \mathbf{II}$$

If the company has 10 stores, we can set up 10 such matrices, one for each store. Then, by adding corresponding entries of these matrices, we can get a matrix showing the total sales of each product on each day. Can you think of other data which can be stored in matrix form? For instance, in transportation or storage problems? Or in listing distances in a network of roads?

General Concepts and Notations

Let us formalize what we just have discussed. We shall denote matrices by capital boldface letters **A**, **B**, **C**, \cdots , or by writing the general entry in brackets; thus $\mathbf{A} = [a_{jk}]$, and so on. By an $m \times n$ matrix (read m by n matrix) we mean a matrix with m rows and n columns—rows always come first! $m \times n$ is called the **size** of the matrix. Thus an $m \times n$ matrix is of the form

(2)
$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

The matrices in (1) are of sizes 2×3 , 3×3 , 2×2 , 1×3 , and 2×1 , respectively.

Each entry in (2) has two subscripts. The first is the *row number* and the second is the *column number*. Thus a_{21} is the entry in Row 2 and Column 1.

If m = n, we call **A** an $n \times n$ square matrix. Then its diagonal containing the entries $a_{11}, a_{22}, \dots, a_{nn}$ is called the **main diagonal** of **A**. Thus the main diagonals of the two square matrices in (1) are a_{11}, a_{22}, a_{33} and $e^{-x}, 4x$, respectively.

Square matrices are particularly important, as we shall see. A matrix of any size $m \times n$ is called a **rectangular matrix**; this includes square matrices as a special case.

Vectors

A **vector** is a matrix with only one row or column. Its entries are called the **components** of the vector. We shall denote vectors by *lowercase* boldface letters \mathbf{a} , \mathbf{b} , \cdots or by its general component in brackets, $\mathbf{a} = [a_j]$, and so on. Our special vectors in (1) suggest that a (general) **row vector** is of the form

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
. For instance, $\mathbf{a} = \begin{bmatrix} -2 & 5 & 0.8 & 0 & 1 \end{bmatrix}$.

A **column vector** is of the form

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}. \quad \text{For instance,} \quad \mathbf{b} = \begin{bmatrix} 4 \\ 0 \\ -7 \end{bmatrix}.$$

Addition and Scalar Multiplication of Matrices and Vectors

What makes matrices and vectors really useful and particularly suitable for computers is the fact that we can calculate with them almost as easily as with numbers. Indeed, we now introduce rules for addition and for scalar multiplication (multiplication by numbers) that were suggested by practical applications. (Multiplication of matrices by matrices follows in the next section.) We first need the concept of equality.

DEFINITION

Equality of Matrices

Two matrices $\mathbf{A} = [a_{jk}]$ and $\mathbf{B} = [b_{jk}]$ are **equal**, written $\mathbf{A} = \mathbf{B}$, if and only if they have the same size and the corresponding entries are equal, that is, $a_{11} = b_{11}$, $a_{12} = b_{12}$, and so on. Matrices that are not equal are called **different**. Thus, matrices of different sizes are always different.

EXAMPLE 3 Equal

Equality of Matrices

Let

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 4 & 0 \\ 3 & -1 \end{bmatrix}.$$

Then

$${f A}={f B}$$
 if and only if $egin{array}{ll} &a_{11}=4, &a_{12}=&0, \\ &a_{21}=3, &a_{22}=-1. \end{array}$

The following matrices are all different. Explain!

$$\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \qquad \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \qquad \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 & 0 \\ 4 & 2 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$

DEFINITION

Addition of Matrices

The sum of two matrices $\mathbf{A} = [a_{jk}]$ and $\mathbf{B} = [b_{jk}]$ of the same size is written $\mathbf{A} + \mathbf{B}$ and has the entries $a_{jk} + b_{jk}$ obtained by adding the corresponding entries of \mathbf{A} and \mathbf{B} . Matrices of different sizes cannot be added.

As a special case, the **sum** $\mathbf{a} + \mathbf{b}$ of two row vectors or two column vectors, which must have the same number of components, is obtained by adding the corresponding components.

EXAMPLE 4 Addition of Matrices and Vectors

If
$$\mathbf{A} = \begin{bmatrix} -4 & 6 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 5 & -1 & 0 \\ 3 & 1 & 0 \end{bmatrix}$, then $\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 5 & 3 \\ 3 & 2 & 2 \end{bmatrix}$.

A in Example 3 and our present **A** cannot be added. If $\mathbf{a} = \begin{bmatrix} 5 & 7 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -6 & 2 & 0 \end{bmatrix}$, then $\mathbf{a} + \mathbf{b} = \begin{bmatrix} -1 & 9 & 2 \end{bmatrix}$.

An application of matrix addition was suggested in Example 2. Many others will follow.

DEFINITION

Scalar Multiplication (Multiplication by a Number)

The **product** of any $m \times n$ matrix $\mathbf{A} = [a_{jk}]$ and any **scalar** c (number c) is written $c\mathbf{A}$ and is the $m \times n$ matrix $c\mathbf{A} = [ca_{jk}]$ obtained by multiplying each entry of \mathbf{A} by c.

Here $(-1)\mathbf{A}$ is simply written $-\mathbf{A}$ and is called the **negative** of \mathbf{A} . Similarly, $(-k)\mathbf{A}$ is written $-k\mathbf{A}$. Also, $\mathbf{A} + (-\mathbf{B})$ is written $\mathbf{A} - \mathbf{B}$ and is called the **difference** of \mathbf{A} and \mathbf{B} (which must have the same size!).

EXAMPLE 5 Scalar Multiplication

If
$$\mathbf{A} = \begin{bmatrix} 2.7 & -1.8 \\ 0 & 0.9 \\ 9.0 & -4.5 \end{bmatrix}$$
, then $-\mathbf{A} = \begin{bmatrix} -2.7 & 1.8 \\ 0 & -0.9 \\ -9.0 & 4.5 \end{bmatrix}$, $\frac{10}{9}\mathbf{A} = \begin{bmatrix} 3 & -2 \\ 0 & 1 \\ 10 & -5 \end{bmatrix}$, $0\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.

If a matrix **B** shows the distances between some cities in miles, 1.609**B** gives these distances in kilometers.

Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the addition of numbers we obtain similar laws for the addition of matrices of the same size $m \times n$, namely,

Here **0** denotes the **zero matrix** (of size $m \times n$), that is, the $m \times n$ matrix with all entries zero. If m = 1 or n = 1, this is a vector, called a **zero vector**.

Hence matrix addition is *commutative* and *associative* [by (3a) and (3b)]. Similarly, for scalar multiplication we obtain the rules

(a)
$$c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

(b)
$$(c+k)\mathbf{A} = c\mathbf{A} + k\mathbf{A}$$

(c)
$$c(k\mathbf{A}) = (ck)\mathbf{A}$$
 (written $ck\mathbf{A}$)

$$1\mathbf{A} = \mathbf{A}.$$

PROBLEM SET 7.1

(4)

1–7 GENERAL QUESTIONS

- **1. Equality.** Give reasons why the five matrices in Example 3 are all different.
- **2. Double subscript notation.** If you write the matrix in Example 2 in the form $\mathbf{A} = [a_{jk}]$, what is a_{31} ? a_{13} ? a_{26} ? a_{33} ?
- **3. Sizes.** What sizes do the matrices in Examples 1, 2, 3, and 5 have?
- **4. Main diagonal.** What is the main diagonal of **A** in Example 1? Of **A** and **B** in Example 3?
- **5. Scalar multiplication.** If **A** in Example 2 shows the number of items sold, what is the matrix **B** of units sold if a unit consists of (**a**) 5 items and (**b**) 10 items?
- 6. If a 12 × 12 matrix A shows the distances between 12 cities in kilometers, how can you obtain from A the matrix B showing these distances in miles?
- 7. Addition of vectors. Can you add: A row and a column vector with different numbers of components? With the same number of components? Two row vectors with the same number of components but different numbers of zeros? A vector and a scalar? A vector with four components and a 2 × 2 matrix?

8–16 ADDITION AND SCALAR MULTIPLICATION OF MATRICES AND VECTORS

Let
$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 4 \\ 6 & 5 & 5 \\ 1 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 5 & 2 \\ 5 & 3 & 4 \\ -2 & 4 & -2 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 5 & 2 \\ -2 & 4 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} -4 & 1 \\ 5 & 0 \\ 2 & -1 \end{bmatrix},$$

$$\mathbf{E} = \begin{bmatrix} 0 & 2 \\ 3 & 4 \\ 3 & -1 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} 1.5 \\ 0 \\ -3.0 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -5 \\ -30 \\ 10 \end{bmatrix}.$$

Find the following expressions, indicating which of the rules in (3) or (4) they illustrate, or give reasons why they are not defined.

8.
$$2A + 4B$$
, $4B + 2A$, $0A + B$, $0.4B - 4.2A$

9.
$$3A$$
, $0.5B$, $3A + 0.5B$, $3A + 0.5B + C$

10.
$$(4 \cdot 3)$$
A, $4(3$ **A**), 14 **B** -3 **B**, 11 **B**

11.
$$8\mathbf{C} + 10\mathbf{D}$$
, $2(5\mathbf{D} + 4\mathbf{C})$, $0.6\mathbf{C} - 0.6\mathbf{D}$, $0.6(\mathbf{C} - \mathbf{D})$

12.
$$(C + D) + E$$
, $(D + E) + C$, $0(C - E) + 4D$, $A - 0C$

13.
$$(2 \cdot 7)$$
C, $2(7$ C), $-$ D + 0 E, E $-$ D + C + u

14.
$$(5\mathbf{u} + 5\mathbf{v}) - \frac{1}{2}\mathbf{w}, -20(\mathbf{u} + \mathbf{v}) + 2\mathbf{w},$$

 $\mathbf{E} - (\mathbf{u} + \mathbf{v}), 10(\mathbf{u} + \mathbf{v}) + \mathbf{w}$

15.
$$(\mathbf{u} + \mathbf{v}) - \mathbf{w}$$
, $\mathbf{u} + (\mathbf{v} - \mathbf{w})$, $\mathbf{C} + 0\mathbf{w}$, $0\mathbf{E} + \mathbf{u} - \mathbf{v}$

16.
$$15\mathbf{v} - 3\mathbf{w} - 0\mathbf{u}$$
, $-3\mathbf{w} + 15\mathbf{v}$, $\mathbf{D} - \mathbf{u} + 3\mathbf{C}$, $8.5\mathbf{w} - 11.1\mathbf{u} + 0.4\mathbf{v}$

- 17. Resultant of forces. If the above vectors u, v, w represent forces in space, their sum is called their resultant. Calculate it.
- **18. Equilibrium.** By definition, forces are *in equilibrium* if their resultant is the zero vector. Find a force **p** such that the above **u**, **v**, **w**, and **p** are in equilibrium.
- **19. General rules.** Prove (3) and (4) for general 2×3 matrices and scalars c and k.

- 20. TEAM PROJECT. Matrices for Networks. Matrices have various engineering applications, as we shall see. For instance, they can be used to characterize connections in electrical networks, in nets of roads, in production processes, etc., as follows.
 - (a) Nodal Incidence Matrix. The network in Fig. 155 consists of six *branches* (connections) and four *nodes* (points where two or more branches come together). One node is the *reference node* (grounded node, whose voltage is zero). We number the other nodes and number and direct the branches. This we do arbitrarily. The network can now be described by a matrix $\mathbf{A} = [a_{ik}]$, where

$$a_{jk} = \begin{cases} +1 \text{ if branch } k \text{ leaves node } (j) \\ -1 \text{ if branch } k \text{ enters node } (j) \\ 0 \text{ if branch } k \text{ does not touch node } (j). \end{cases}$$

A is called the *nodal incidence matrix* of the network. Show that for the network in Fig. 155 the matrix **A** has the given form.

Fig. 155. Network and nodal incidence matrix in Team Project 20(a)

(b) Find the nodal incidence matrices of the networks in Fig. 156.

Fig. 156. Electrical networks in Team Project 20(b)

(c) Sketch the three networks corresponding to the nodal incidence matrices

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 0 & 0 & 1 \\ -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{bmatrix},$$
$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \end{bmatrix}.$$

(d) Mesh Incidence Matrix. A network can also be characterized by the *mesh incidence matrix* $\mathbf{M} = [m_{jk}]$, where

$$m_{jk} = \begin{cases} +1 \text{ if branch } k \text{ is in mesh } \boxed{j} \\ \text{and has the same orientation} \\ -1 \text{ if branch } k \text{ is in mesh } \boxed{j} \\ \text{and has the opposite orientation} \\ 0 \text{ if branch } k \text{ is not in mesh } \boxed{j} \end{cases}$$

and a mesh is a loop with no branch in its interior (or in its exterior). Here, the meshes are numbered and directed (oriented) in an arbitrary fashion. Show that for the network in Fig. 157, the matrix **M** has the given form, where Row 1 corresponds to mesh 1, etc.

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Fig. 157. Network and matrix **M** in Team Project 20(d)

(d) Computer graphics. To visualize a threedimensional object with plane faces (e.g., a cube), we may store the position vectors of the vertices with respect to a suitable $x_1x_2x_3$ -coordinate system (and a list of the connecting edges) and then obtain a twodimensional image on a video screen by projecting the object onto a coordinate plane, for instance, onto the x_1x_2 -plane by setting $x_3 = 0$. To change the appearance of the image, we can impose a linear transformation on the position vectors stored. Show that a diagonal matrix **D** with main diagonal entries 3, 1, $\frac{1}{2}$ gives from an $\mathbf{x} = [x_i]$ the new position vector y = Dx, where $y_1 = 3x_1$ (stretch in the x_1 -direction by a factor 3), $y_2 = x_2$ (unchanged), $y_3 = \frac{1}{2}x_3$ (contraction in the x_3 -direction). What effect would a scalar matrix have?

(e) Rotations in space. Explain y = Ax geometrically when A is one of the three matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix},$$

$$\begin{bmatrix} \cos\varphi & 0 & -\sin\varphi \\ 0 & 1 & 0 \\ \sin\varphi & 0 & \cos\varphi \end{bmatrix}, \begin{bmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

What effect would these transformations have in situations such as that described in (d)?

7.3 Linear Systems of Equations. Gauss Elimination

We now come to one of the most important use of matrices, that is, using matrices to solve systems of linear equations. We showed informally, in Example 1 of Sec. 7.1, how to represent the information contained in a system of linear equations by a matrix, called the augmented matrix. This matrix will then be used in solving the linear system of equations. Our approach to solving linear systems is called the Gauss elimination method. Since this method is so fundamental to linear algebra, the student should be alert.

A shorter term for systems of linear equations is just **linear systems**. Linear systems model many applications in engineering, economics, statistics, and many other areas. Electrical networks, traffic flow, and commodity markets may serve as specific examples of applications.

Linear System, Coefficient Matrix, Augmented Matrix

A linear system of m equations in n unknowns x_1, \dots, x_n is a set of equations of the form

(1)
$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1$$
$$a_{21}x_1 + \cdots + a_{2n}x_n = b_2$$
$$\cdots \cdots \cdots$$
$$a_{m1}x_1 + \cdots + a_{mn}x_n = b_m.$$

The system is called *linear* because each variable x_j appears in the first power only, just as in the equation of a straight line. a_{11}, \dots, a_{mn} are given numbers, called the **coefficients** of the system. b_1, \dots, b_m on the right are also given numbers. If all the b_j are zero, then (1) is called a **homogeneous system**. If at least one b_j is not zero, then (1) is called a **nonhomogeneous system**.

A **solution** of (1) is a set of numbers x_1, \dots, x_n that satisfies all the m equations. A **solution vector** of (1) is a vector \mathbf{x} whose components form a solution of (1). If the system (1) is homogeneous, it always has at least the **trivial solution** $x_1 = 0, \dots, x_n = 0$.

Matrix Form of the Linear System (1). From the definition of matrix multiplication we see that the m equations of (1) may be written as a single vector equation

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

where the **coefficient matrix** $A = [a_{ik}]$ is the $m \times n$ matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

are column vectors. We assume that the coefficients a_{jk} are not all zero, so that **A** is not a zero matrix. Note that **x** has *n* components, whereas **b** has *m* components. The matrix

$$\widetilde{\mathbf{A}} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & | & b_1 \\ & \ddots & \ddots & | & & \\ & \ddots & \ddots & | & \ddots \\ & & & \ddots & | & \ddots \\ & & & & & a_{m1} & | & b_m \end{bmatrix}$$

is called the **augmented matrix** of the system (1). The dashed vertical line could be omitted, as we shall do later. It is merely a reminder that the last column of $\tilde{\mathbf{A}}$ did not come from matrix \mathbf{A} but came from vector \mathbf{b} . Thus, we *augmented* the matrix \mathbf{A} .

Note that the augmented matrix $\tilde{\mathbf{A}}$ determines the system (1) completely because it contains all the given numbers appearing in (1).

EXAMPLE 1 Geometric Interpretation. Existence and Uniqueness of Solutions

If m = n = 2, we have two equations in two unknowns x_1, x_2

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2.$$

If we interpret x_1 , x_2 as coordinates in the x_1x_2 -plane, then each of the two equations represents a straight line, and (x_1, x_2) is a solution if and only if the point P with coordinates x_1, x_2 lies on both lines. Hence there are three possible cases (see Fig. 158 on next page):

- (a) Precisely one solution if the lines intersect
- (b) Infinitely many solutions if the lines coincide
- (c) No solution if the lines are parallel

For instance,

If the system is homogenous, Case (c) cannot happen, because then those two straight lines pass through the origin, whose coordinates (0, 0) constitute the trivial solution. Similarly, our present discussion can be extended from two equations in two unknowns to three equations in three unknowns. We give the geometric interpretation of three possible cases concerning solutions in Fig. 158. Instead of straight lines we have planes and the solution depends on the positioning of these planes in space relative to each other. The student may wish to come up with some specific examples.

First, however, let us discuss an important systematic method for solving linear systems.

Gauss Elimination and Back Substitution

The Gauss elimination method can be motivated as follows. Consider a linear system that is in triangular form (in full, upper triangular form) such as

$$2x_1 + 5x_2 = 2$$
$$13x_2 = -26$$

(Triangular means that all the nonzero entries of the corresponding coefficient matrix lie above the diagonal and form an upside-down 90° triangle.) Then we can solve the system by **back substitution**, that is, we solve the last equation for the variable, $x_2 = -26/13 = -2$, and then work backward, substituting $x_2 = -2$ into the first equation and solving it for x_1 , obtaining $x_1 = \frac{1}{2}(2 - 5x_2) = \frac{1}{2}(2 - 5 \cdot (-2)) = 6$. This gives us the idea of first reducing a general system to triangular form. For instance, let the given system be

$$2x_1 + 5x_2 = 2$$

$$-4x_1 + 3x_2 = -30.$$
 Its augmented matrix is
$$\begin{bmatrix} 2 & 5 & 2 \\ -4 & 3 & -30 \end{bmatrix}.$$

We leave the first equation as it is. We eliminate x_1 from the second equation, to get a triangular system. For this we add twice the first equation to the second, and we do the same

No solution

Fig. 158. Three equations in three unknowns interpreted as planes in space

operation on the *rows* of the augmented matrix. This gives $-4x_1 + 4x_1 + 3x_2 + 10x_2 = -30 + 2 \cdot 2$, that is,

$$2x_1 + 5x_2 = 2$$

 $13x_2 = -26$ Row 2 + 2 Row 1 $\begin{bmatrix} 2 & 5 & 2 \\ 0 & 13 & -26 \end{bmatrix}$

where Row 2 + 2 Row 1 means "Add twice Row 1 to Row 2" in the original matrix. This is the **Gauss elimination** (for 2 equations in 2 unknowns) giving the triangular form, from which back substitution now yields $x_2 = -2$ and $x_1 = 6$, as before.

Since a linear system is completely determined by its augmented matrix, *Gauss elimination can be done by merely considering the matrices*, as we have just indicated. We do this again in the next example, emphasizing the matrices by writing them first and the equations behind them, just as a help in order not to lose track.

EXAMPLE 2 Gauss Elimination. Electrical Network

Solve the linear system

$$x_1 - x_2 + x_3 = 0$$

$$-x_1 + x_2 - x_3 = 0$$

$$10x_2 + 25x_3 = 90$$

$$20x_1 + 10x_2 = 80$$

Derivation from the circuit in Fig. 159 (Optional). This is the system for the unknown currents $x_1 = i_1$, $x_2 = i_2$, $x_3 = i_3$ in the electrical network in Fig. 159. To obtain it, we label the currents as shown, choosing directions arbitrarily; if a current will come out negative, this will simply mean that the current flows against the direction of our arrow. The current entering each battery will be the same as the current leaving it. The equations for the currents result from Kirchhoff's laws:

Kirchhoff's Current Law (KCL). At any point of a circuit, the sum of the inflowing currents equals the sum of the outflowing currents.

Kirchhoff's Voltage Law (KVL). In any closed loop, the sum of all voltage drops equals the impressed electromotive force.

Node P gives the first equation, node Q the second, the right loop the third, and the left loop the fourth, as indicated in the figure.

Fig. 159. Network in Example 2 and equations relating the currents

Solution by Gauss Elimination. This system could be solved rather quickly by noticing its particular form. But this is not the point. The point is that the Gauss elimination is systematic and will work in general,

also for large systems. We apply it to our system and then do back substitution. As indicated, let us write the augmented matrix of the system first and then the system itself:

Step 1. Elimination of x_1

Call the first row of **A** the **pivot row** and the first equation the **pivot equation**. Call the coefficient 1 of its x_1 -term the **pivot** in this step. Use this equation to eliminate x_1 (get rid of x_1) in the other equations. For this, do:

Add 1 times the pivot equation to the second equation.

Add -20 times the pivot equation to the fourth equation.

This corresponds to **row operations** on the augmented matrix as indicated in BLUE behind the **new matrix** in (3). So the operations are performed on the **preceding matrix**. The result is

(3)
$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 10 & 25 & 90 \\ 0 & 30 & -20 & 80 \end{bmatrix} \quad \begin{array}{c} \text{Row } 2 + \text{Row } 1 \\ \text{Row } 2 + \text{Row } 1 \\ \text{Row } 2 + \text{Row } 1 \\ \text{Row } 4 - 20 \text{ Row } 1 \\ \text{Row } 4 - 20 \text{ Row } 1 \\ \text{Row } 2 + 25x_3 = 90 \\ \text{Row } 4 - 20 \text{ Row } 1 \\ \text{Row } 4 - 20$$

Step 2. Elimination of x_2

The first equation remains as it is. We want the new second equation to serve as the next pivot equation. But since it has no x_2 -term (in fact, it is 0 = 0), we must first change the order of the equations and the corresponding rows of the new matrix. We put 0 = 0 at the end and move the third equation and the fourth equation one place up. This is called **partial pivoting** (as opposed to the rarely used *total pivoting*, in which the order of the unknowns is also changed). It gives

Pivot 10
$$\longrightarrow$$

$$\begin{bmatrix}
1 & -1 & 1 & | & 0 \\
0 & \boxed{10} & 25 & | & 90 \\
0 & \boxed{30} & -20 & | & 80 \\
0 & 0 & 0 & | & 0
\end{bmatrix}$$
Pivot 10 \longrightarrow

$$\begin{bmatrix}
x_1 - x_2 + x_3 = 0 \\
10x_2 + 25x_3 = 90 \\
Eliminate 30x_2 \longrightarrow

$$\boxed{30x_2 - 20x_3 = 80} \\
0 = 0.$$$$

To eliminate x_2 , do:

Add -3 times the pivot equation to the third equation.

The result is

(4)
$$\begin{bmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 10 & 25 & | & 90 \\ 0 & 0 & -95 & | & -190 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \qquad \begin{cases} x_1 - x_2 + x_3 = 0 \\ 10x_2 + 25x_3 = 90 \\ -95x_3 = -190 \\ 0 = 0. \end{cases}$$

Back Substitution. Determination of x_3, x_2, x_1 (in this order)

Working backward from the last to the first equation of this "triangular" system (4), we can now readily find x_3 , then x_2 , and then x_1 :

$$-95x_3 = -190 x_3 = i_3 = 2 [A]$$

$$10x_2 + 25x_3 = 90 x_2 = \frac{1}{10}(90 - 25x_3) = i_2 = 4 [A]$$

$$x_1 - x_2 + x_3 = 0 x_1 = x_2 - x_3 = i_1 = 2 [A]$$

where A stands for "amperes." This is the answer to our problem. The solution is unique.

Elementary Row Operations. Row-Equivalent Systems

Example 2 illustrates the operations of the Gauss elimination. These are the first two of three operations, which are called

Elementary Row Operations for Matrices:

Interchange of two rows

Addition of a constant multiple of one row to another row

Multiplication of a row by a nonzero constant c

CAUTION! These operations are for rows, *not for columns*! They correspond to the following

Elementary Operations for Equations:

Interchange of two equations

Addition of a constant multiple of one equation to another equation

Multiplication of an equation by a nonzero constant c

Clearly, the interchange of two equations does not alter the solution set. Neither does their addition because we can undo it by a corresponding subtraction. Similarly for their multiplication, which we can undo by multiplying the new equation by 1/c (since $c \neq 0$), producing the original equation.

We now call a linear system S_1 row-equivalent to a linear system S_2 if S_1 can be obtained from S_2 by (finitely many!) row operations. This justifies Gauss elimination and establishes the following result.

THEOREM 1

Row-Equivalent Systems

Row-equivalent linear systems have the same set of solutions.

Because of this theorem, systems having the same solution sets are often called *equivalent systems*. But note well that we are dealing with *row operations*. No column operations on the augmented matrix are permitted in this context because they would generally alter the solution set.

A linear system (1) is called **overdetermined** if it has more equations than unknowns, as in Example 2, **determined** if m = n, as in Example 1, and **underdetermined** if it has fewer equations than unknowns.

Furthermore, a system (1) is called **consistent** if it has at least one solution (thus, one solution or infinitely many solutions), but **inconsistent** if it has no solutions at all, as $x_1 + x_2 = 1$, $x_1 + x_2 = 0$ in Example 1, Case (c).

Gauss Elimination: The Three Possible Cases of Systems

We have seen, in Example 2, that Gauss elimination can solve linear systems that have a unique solution. This leaves us to apply Gauss elimination to a system with infinitely many solutions (in Example 3) and one with no solution (in Example 4).

EXAMPLE 3 Gauss Elimination if Infinitely Many Solutions Exist

Solve the following linear system of three equations in four unknowns whose augmented matrix is

(5)
$$\begin{bmatrix} 3.0 & 2.0 & 2.0 & -5.0 & | & 8.0 \\ 0.6 & 1.5 & 1.5 & -5.4 & | & 2.7 \\ 1.2 & -0.3 & -0.3 & 2.4 & | & 2.1 \end{bmatrix}.$$
 Thus,
$$\begin{bmatrix} 3.0x_1 \\ 0.6x_1 \\ 1.2x_1 \end{bmatrix} + 2.0x_2 + 2.0x_3 - 5.0x_4 = 8.0$$

$$\begin{bmatrix} 0.6x_1 \\ 1.2x_1 \end{bmatrix} + 1.5x_2 + 1.5x_3 - 5.4x_4 = 2.7$$

Solution. As in the previous example, we circle pivots and box terms of equations and corresponding entries to be eliminated. We indicate the operations in terms of equations and operate on both equations and matrices.

Step 1. Elimination of x_1 from the second and third equations by adding

-0.6/3.0 = -0.2 times the first equation to the second equation,

-1.2/3.0 = -0.4 times the first equation to the third equation.

This gives the following, in which the pivot of the next step is circled.

(6)
$$\begin{bmatrix} 3.0 & 2.0 & 2.0 & -5.0 & | & 8.0 \\ 0 & 1.1 & 1.1 & -4.4 & | & 1.1 \\ 0 & -1.1 & -1.1 & 4.4 & | & -1.1 \end{bmatrix} \xrightarrow{\text{Row } 2 - 0.2 \text{ Row } 1} 3.0x_1 + 2.0x_2 + 2.0x_3 - 5.0x_4 = 8.0$$

$$\begin{bmatrix} (.1x_2) + 1.1x_3 - 4.4x_4 = 1.1 \\ -1.1x_2 - 1.1x_3 + 4.4x_4 = -1.1 \end{bmatrix}$$

$$\begin{bmatrix} (.1x_2) + 1.1x_3 - 4.4x_4 = -1.1 \\ -1.1x_2 - 1.1x_3 + 4.4x_4 = -1.1 \end{bmatrix}$$

Step 2. Elimination of x_2 from the third equation of (6) by adding

1.1/1.1 = 1 times the second equation to the third equation.

This gives

$$\begin{bmatrix} 3.0 & 2.0 & 2.0 & -5.0 & | & 8.0 \\ 0 & 1.1 & 1.1 & -4.4 & | & 1.1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \begin{array}{c} 3.0x_1 + 2.0x_2 + 2.0x_3 - 5.0x_4 = 8.0 \\ 1.1x_2 + 1.1x_3 - 4.4x_4 = 1.1 \\ 0 = 0. \end{array}$$

Back Substitution. From the second equation, $x_2 = 1 - x_3 + 4x_4$. From this and the first equation, $x_1 = 2 - x_4$. Since x_3 and x_4 remain arbitrary, we have infinitely many solutions. If we choose a value of x_3 and a value of x_4 , then the corresponding values of x_1 and x_2 are uniquely determined.

On Notation. If unknowns remain arbitrary, it is also customary to denote them by other letters t_1, t_2, \cdots . In this example we may thus write $x_1 = 2 - x_4 = 2 - t_2, x_2 = 1 - x_3 + 4x_4 = 1 - t_1 + 4t_2, x_3 = t_1$ (first arbitrary unknown), $x_4 = t_2$ (second arbitrary unknown).

EXAMPLE 4 Gauss Elimination if no Solution Exists

What will happen if we apply the Gauss elimination to a linear system that has no solution? The answer is that in this case the method will show this fact by producing a contradiction. For instance, consider

$$\begin{bmatrix} 3 & 2 & 1 & | & 3 \\ 2 & 1 & 1 & | & 0 \\ 6 & 2 & 4 & | & 6 \end{bmatrix}$$

$$\begin{bmatrix} 3x_1 + 2x_2 + x_3 = 3 \\ 2x_1 + x_2 + x_3 = 0 \\ 6x_1 + 2x_2 + 4x_3 = 6. \end{bmatrix}$$

Step 1. Elimination of x_1 from the second and third equations by adding

 $-\frac{2}{3}$ times the first equation to the second equation,

 $-\frac{6}{3} = -2$ times the first equation to the third equation.

This gives

$$\begin{bmatrix} 3 & 2 & 1 & | & 3 \\ 0 & -\frac{1}{3} & \frac{1}{3} & | & -2 \\ 0 & -2 & 2 & | & 0 \end{bmatrix} \xrightarrow{\text{Row } 2 - \frac{2}{3} \text{ Row } 1} 3x_1 + 2x_2 + x_3 = 3$$

$$\begin{bmatrix} -\frac{1}{3}x_2 + \frac{1}{3}x_3 = -2 \\ -2x_2 + 2x_3 = 0. \end{bmatrix}$$

Step 2. Elimination of x_2 from the third equation gives

$$\begin{bmatrix} 3 & 2 & 1 & | & 3 \\ 0 & -\frac{1}{3} & \frac{1}{3} & | & -2 \\ 0 & 0 & 0 & | & 12 \end{bmatrix}$$
 Row 3 - 6 Row 2
$$3x_1 + 2x_2 + x_3 = 3$$
$$-\frac{1}{3}x_2 + \frac{1}{3}x_3 = -2$$
$$0 = 12.$$

The false statement 0 = 12 shows that the system has no solution.

Row Echelon Form and Information From It

At the end of the Gauss elimination the form of the coefficient matrix, the augmented matrix, and the system itself are called the **row echelon form**. In it, rows of zeros, if present, are the last rows, and, in each nonzero row, the leftmost nonzero entry is farther to the right than in the previous row. For instance, in Example 4 the coefficient matrix and its augmented in row echelon form are

(8)
$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & -\frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 3 & 2 & 1 & | & 3 \\ 0 & -\frac{1}{3} & \frac{1}{3} & | & -2 \\ 0 & 0 & 0 & | & 12 \end{bmatrix}.$$

Note that we do not require that the leftmost nonzero entries be 1 since this would have no theoretic or numeric advantage. (The so-called *reduced echelon form*, in which those entries *are* 1, will be discussed in Sec. 7.8.)

The original system of m equations in n unknowns has augmented matrix $[\mathbf{A} | \mathbf{b}]$. This is to be row reduced to matrix $[\mathbf{R} | \mathbf{f}]$. The two systems $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{R}\mathbf{x} = \mathbf{f}$ are equivalent: if either one has a solution, so does the other, and the solutions are identical.

At the end of the Gauss elimination (before the back substitution), the row echelon form of the augmented matrix will be

Here, $r \le m$, $r_{11} \ne 0$, and all entries in the blue triangle and blue rectangle are zero. The number of nonzero rows, r, in the row-reduced coefficient matrix \mathbf{R} is called the **rank of R** and also the **rank of A**. Here is the method for determining whether $\mathbf{A}\mathbf{x} = \mathbf{b}$ has solutions and what they are:

(a) No solution. If r is less than m (meaning that \mathbf{R} actually has at least one row of all 0s) and at least one of the numbers $f_{r+1}, f_{r+2}, \dots, f_m$ is not zero, then the system

 $\mathbf{R}\mathbf{x} = \mathbf{f}$ is inconsistent: No solution is possible. Therefore the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent as well. See Example 4, where r = 2 < m = 3 and $f_{r+1} = f_3 = 12$.

If the system is consistent (either r = m, or r < m and all the numbers $f_{r+1}, f_{r+2}, \cdots, f_m$ are zero), then there are solutions.

- (b) Unique solution. If the system is consistent and r = n, there is exactly one solution, which can be found by back substitution. See Example 2, where r = n = 3and m = 4.
- (c) Infinitely many solutions. To obtain any of these solutions, choose values of x_{r+1}, \dots, x_n arbitrarily. Then solve the rth equation for x_r (in terms of those arbitrary values), then the (r-1)st equation for x_{r-1} , and so on up the line. See Example 3.

Orientation. Gauss elimination is reasonable in computing time and storage demand. We shall consider those aspects in Sec. 20.1 in the chapter on numeric linear algebra. Section 7.4 develops fundamental concepts of linear algebra such as linear independence and rank of a matrix. These in turn will be used in Sec. 7.5 to fully characterize the behavior of linear systems in terms of existence and uniqueness of solutions.

PROBLEM SET 7.3

1-14 **GAUSS ELIMINATION**

Solve the linear system given explicitly or by its augmented matrix. Show details.

1.
$$4x - 6y = -11$$

 $-3x + 8y = 10$

$$4x - 6y = -11$$

$$-3x + 8y = 10$$
2.
$$\begin{bmatrix} 3.0 & -0.5 & 0.6 \\ 1.5 & 4.5 & 6.0 \end{bmatrix}$$

3.
$$x + y - z = 9$$
 4. $8y + 6z = -6$

3.
$$x + y - z = 9$$
 4. $\begin{bmatrix} 4 & 1 & 0 & 4 \\ 8y + 6z = -6 & 5 & -3 & 1 & 2 \\ -2x + 4y - 6z = 40 & 0 & 2 & 1 & 5 \end{bmatrix}$

5.
$$\begin{bmatrix} 13 & 12 & -6 \\ -4 & 7 & -73 \\ 11 & -13 & 157 \end{bmatrix}$$

7.
$$\begin{bmatrix} 2 & 4 & 1 & 0 \\ -1 & 1 & -2 & 0 \\ 4 & 0 & 6 & 0 \end{bmatrix}$$
 8.
$$4y + 3z = 8$$
$$2x - z = 2$$
$$3x + 2y = 5$$

9.
$$-2y - 2z = -8$$
 10. $\begin{bmatrix} 5 & -7 & 3 & 17 \\ -15 & 21 & -9 & 50 \end{bmatrix}$

11.
$$\begin{bmatrix} 0 & 5 & 5 & -10 & 0 \\ 2 & -3 & -3 & 6 & 2 \\ 4 & 1 & 1 & -2 & 4 \end{bmatrix}$$

12.
$$\begin{bmatrix} 2 & -2 & 4 & 0 & 0 \\ -3 & 3 & -6 & 5 & 15 \\ 1 & -1 & 2 & 0 & 0 \end{bmatrix}$$

13.
$$10x + 4y - 2z = -4$$
$$-3w - 17x + y + 2z = 2$$
$$w + x + y = 6$$

$$8w - 34x + 16y - 10z = 4$$
14.
$$\begin{bmatrix} 2 & 3 & 1 & -11 & 1 \\ 5 & -2 & 5 & -4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 5 & -2 & 5 & -4 & 5 \\ 1 & -1 & 3 & -3 & 3 \\ 3 & 4 & -7 & 2 & -7 \end{bmatrix}$$

- **15. Equivalence relation.** By definition, an *equivalence* relation on a set is a relation satisfying three conditions: (named as indicated)
 - (i) Each element A of the set is equivalent to itself (Reflexivity).
 - (ii) If A is equivalent to B, then B is equivalent to A (Symmetry).
 - (iii) If A is equivalent to B and B is equivalent to C, then A is equivalent to C (Transitivity).

Show that row equivalence of matrices satisfies these three conditions. *Hint*. Show that for each of the three elementary row operations these conditions hold.

16. CAS PROJECT. Gauss Elimination and Back Substitution. Write a program for Gauss elimination and back substitution (a) that does not include pivoting and (b) that does include pivoting. Apply the programs to Probs. 11–14 and to some larger systems of your choice.

17–21 MODELS OF NETWORKS

In Probs. 17–19, using Kirchhoff's laws (see Example 2) and showing the details, find the currents:

20. Wheatstone bridge. Show that if $R_x/R_3 = R_1/R_2$ in the figure, then I = 0. (R_0 is the resistance of the instrument by which I is measured.) This bridge is a method for determining R_x . R_1 , R_2 , R_3 are known. R_3 is variable. To get R_x , make I = 0 by varying R_3 . Then calculate $R_x = R_3R_1/R_2$.

Wheatstone bridge

Net of one-way streets

Problem 20

Problem 21

21. Traffic flow. Methods of electrical circuit analysis have applications to other fields. For instance, applying

- the analog of Kirchhoff's Current Law, find the traffic flow (cars per hour) in the net of one-way streets (in the directions indicated by the arrows) shown in the figure. Is the solution unique?
- **22. Models of markets.** Determine the equilibrium solution $(D_1 = S_1, D_2 = S_2)$ of the two-commodity market with linear model (D, S, P = demand, supply, price; index 1 = first commodity, index 2 = second commodity)

$$D_1 = 40 - 2P_1 - P_2,$$
 $S_1 = 4P_1 - P_2 + 4,$
 $D_2 = 5P_1 - 2P_2 + 16,$ $S_2 = 3P_2 - 4.$

- 23. Balancing a chemical equation $x_1C_3H_8 + x_2O_2 \rightarrow x_3CO_2 + x_4H_2O$ means finding integer x_1, x_2, x_3, x_4 such that the numbers of atoms of carbon (C), hydrogen (H), and oxygen (O) are the same on both sides of this reaction, in which propane C_3H_8 and O_2 give carbon dioxide and water. Find the smallest positive integers x_1, \dots, x_4 .
- **24. PROJECT. Elementary Matrices.** The idea is that elementary operations can be accomplished by matrix multiplication. If **A** is an $m \times n$ matrix on which we want to do an elementary operation, then there is a matrix **E** such that **EA** is the new matrix after the operation. Such an **E** is called an **elementary matrix**. This idea can be helpful, for instance, in the design of algorithms. (*Computationally*, it is generally preferable to do row operations *directly*, rather than by multiplication by **E**.)
 - (a) Show that the following are elementary matrices, for interchanging Rows 2 and 3, for adding -5 times the first row to the third, and for multiplying the fourth row by 8.

$$\mathbf{E_1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{E_2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -5 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{E_3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix}.$$

Apply \mathbf{E}_1 , \mathbf{E}_2 , \mathbf{E}_3 to a vector and to a 4×3 matrix of your choice. Find $\mathbf{B} = \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}$, where $\mathbf{A} = [a_{jk}]$ is the general 4×2 matrix. Is \mathbf{B} equal to $\mathbf{C} = \mathbf{E}_1 \mathbf{E}_2 \mathbf{E}_3 \mathbf{A}$?

(b) Conclude that E_1 , E_2 , E_3 are obtained by doing the corresponding elementary operations on the 4 \times 4

unit matrix. Prove that if **M** is obtained from **A** by an elementary row operation, then

$$\mathbf{M} = \mathbf{E}\mathbf{A}$$
,

where **E** is obtained from the $n \times n$ unit matrix \mathbf{I}_n by the same row operation.

7.4 Linear Independence. Rank of a Matrix. Vector Space

Since our next goal is to fully characterize the behavior of linear systems in terms of existence and uniqueness of solutions (Sec. 7.5), we have to introduce new fundamental linear algebraic concepts that will aid us in doing so. Foremost among these are *linear independence* and the *rank of a matrix*. Keep in mind that these concepts are intimately linked with the important Gauss elimination method and how it works.

Linear Independence and Dependence of Vectors

Given any set of m vectors $\mathbf{a}_{(1)}, \dots, \mathbf{a}_{(m)}$ (with the same number of components), a **linear combination** of these vectors is an expression of the form

$$c_1\mathbf{a}_{(1)}+c_2\mathbf{a}_{(2)}+\cdots+c_m\mathbf{a}_{(m)}$$

where c_1, c_2, \dots, c_m are any scalars. Now consider the equation

(1)
$$c_1\mathbf{a}_{(1)} + c_2\mathbf{a}_{(2)} + \cdots + c_m\mathbf{a}_{(m)} = \mathbf{0}.$$

Clearly, this vector equation (1) holds if we choose all c_j 's zero, because then it becomes $\mathbf{0} = \mathbf{0}$. If this is the only *m*-tuple of scalars for which (1) holds, then our vectors $\mathbf{a}_{(1)}, \dots, \mathbf{a}_{(m)}$ are said to form a *linearly independent set* or, more briefly, we call them **linearly independent**. Otherwise, if (1) also holds with scalars not all zero, we call these vectors **linearly dependent**. This means that we can express at least one of the vectors as a linear combination of the other vectors. For instance, if (1) holds with, say, $c_1 \neq 0$, we can solve (1) for $\mathbf{a}_{(1)}$:

$$\mathbf{a}_{(1)} = k_2 \mathbf{a}_{(2)} + \cdots + k_m \mathbf{a}_{(m)}$$
 where $k_j = -c_j/c_1$.

(Some k_j 's may be zero. Or even all of them, namely, if $\mathbf{a}_{(1)} = \mathbf{0}$.)

Why is linear independence important? Well, if a set of vectors is linearly dependent, then we can get rid of at least one or perhaps more of the vectors until we get a linearly independent set. This set is then the smallest "truly essential" set with which we can work. Thus, we cannot express any of the vectors, of this set, linearly in terms of the others.

Apply \mathbf{E}_1 , \mathbf{E}_2 , \mathbf{E}_3 to a vector and to a 4×3 matrix of your choice. Find $\mathbf{B} = \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}$, where $\mathbf{A} = [a_{jk}]$ is the general 4×2 matrix. Is \mathbf{B} equal to $\mathbf{C} = \mathbf{E}_1 \mathbf{E}_2 \mathbf{E}_3 \mathbf{A}$?

(b) Conclude that E_1 , E_2 , E_3 are obtained by doing the corresponding elementary operations on the 4 \times 4

unit matrix. Prove that if **M** is obtained from **A** by an elementary row operation, then

$$\mathbf{M} = \mathbf{E}\mathbf{A}$$
,

where **E** is obtained from the $n \times n$ unit matrix \mathbf{I}_n by the same row operation.

7.4 Linear Independence. Rank of a Matrix. Vector Space

Since our next goal is to fully characterize the behavior of linear systems in terms of existence and uniqueness of solutions (Sec. 7.5), we have to introduce new fundamental linear algebraic concepts that will aid us in doing so. Foremost among these are *linear independence* and the *rank of a matrix*. Keep in mind that these concepts are intimately linked with the important Gauss elimination method and how it works.

Linear Independence and Dependence of Vectors

Given any set of m vectors $\mathbf{a}_{(1)}, \dots, \mathbf{a}_{(m)}$ (with the same number of components), a **linear combination** of these vectors is an expression of the form

$$c_1\mathbf{a}_{(1)}+c_2\mathbf{a}_{(2)}+\cdots+c_m\mathbf{a}_{(m)}$$

where c_1, c_2, \dots, c_m are any scalars. Now consider the equation

(1)
$$c_1\mathbf{a}_{(1)} + c_2\mathbf{a}_{(2)} + \cdots + c_m\mathbf{a}_{(m)} = \mathbf{0}.$$

Clearly, this vector equation (1) holds if we choose all c_j 's zero, because then it becomes $\mathbf{0} = \mathbf{0}$. If this is the only *m*-tuple of scalars for which (1) holds, then our vectors $\mathbf{a}_{(1)}, \dots, \mathbf{a}_{(m)}$ are said to form a *linearly independent set* or, more briefly, we call them **linearly independent**. Otherwise, if (1) also holds with scalars not all zero, we call these vectors **linearly dependent**. This means that we can express at least one of the vectors as a linear combination of the other vectors. For instance, if (1) holds with, say, $c_1 \neq 0$, we can solve (1) for $\mathbf{a}_{(1)}$:

$$\mathbf{a}_{(1)} = k_2 \mathbf{a}_{(2)} + \cdots + k_m \mathbf{a}_{(m)}$$
 where $k_j = -c_j/c_1$.

(Some k_j 's may be zero. Or even all of them, namely, if $\mathbf{a}_{(1)} = \mathbf{0}$.)

Why is linear independence important? Well, if a set of vectors is linearly dependent, then we can get rid of at least one or perhaps more of the vectors until we get a linearly independent set. This set is then the smallest "truly essential" set with which we can work. Thus, we cannot express any of the vectors, of this set, linearly in terms of the others.

EXAMPLE 1 Linear Independence and Dependence

The three vectors

$$\mathbf{a}_{(1)} = [3 \quad 0 \quad 2 \quad 2]$$
 $\mathbf{a}_{(2)} = [-6 \quad 42 \quad 24 \quad 54]$
 $\mathbf{a}_{(3)} = [21 \quad -21 \quad 0 \quad -15]$

are linearly dependent because

$$6\mathbf{a}_{(1)} - \frac{1}{2}\mathbf{a}_{(2)} - \mathbf{a}_{(3)} = \mathbf{0}.$$

Although this is easily checked by vector arithmetic (do it!), it is not so easy to discover. However, a systematic method for finding out about linear independence and dependence follows below.

The first two of the three vectors are linearly independent because $c_1\mathbf{a}_{(1)}+c_2\mathbf{a}_{(2)}=\mathbf{0}$ implies $c_2=0$ (from the second components) and then $c_1 = 0$ (from any other component of $\mathbf{a}_{(1)}$.

Rank of a Matrix

DEFINITION

The rank of a matrix A is the maximum number of linearly independent row vectors of **A**. It is denoted by rank **A**.

Our further discussion will show that the rank of a matrix is an important key concept for understanding general properties of matrices and linear systems of equations.

EXAMPLE 2

Rank

The matrix

(2)
$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{bmatrix}$$

has rank 2, because Example 1 shows that the first two row vectors are linearly independent, whereas all three row vectors are linearly dependent.

Note further that rank A = 0 if and only if A = 0. This follows directly from the definition.

We call a matrix A_1 row-equivalent to a matrix A_2 if A_1 can be obtained from A_2 by (finitely many!) elementary row operations.

Now the maximum number of linearly independent row vectors of a matrix does not change if we change the order of rows or multiply a row by a nonzero c or take a linear combination by adding a multiple of a row to another row. This shows that rank is **invariant** under elementary row operations:

THEOREM 1

Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

Hence we can determine the rank of a matrix by reducing the matrix to row-echelon form, as was done in Sec. 7.3. Once the matrix is in row-echelon form, we count the number of nonzero rows, which is precisely the rank of the matrix.

Determination of Rank EXAMPLE 3

For the matrix in Example 2 we obtain successively

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{bmatrix}$$
 (given)

$$\begin{bmatrix} 3 & 0 & 2 & 2 \\ 0 & 42 & 28 & 58 \\ 0 & -21 & -14 & -29 \end{bmatrix}$$
 Row 2 + 2 Row 1
Row 3 - 7 Row 1

$$\begin{bmatrix} 3 & 0 & 2 & 2 \\ 0 & 42 & 28 & 58 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Row 3 + $\frac{1}{2}$ Row 2

The last matrix is in row-echelon form and has two nonzero rows. Hence rank A = 2, as before.

Examples 1–3 illustrate the following useful theorem (with p = 3, n = 3, and the rank of the matrix = 2).

THEOREM 2

Linear Independence and Dependence of Vectors

Consider p vectors that each have n components. Then these vectors are linearly independent if the matrix formed, with these vectors as row vectors, has rank p. However, these vectors are linearly dependent if that matrix has rank less than p.

Further important properties will result from the basic

THEOREM 3

Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.

Hence **A** and its transpose A^T have the same rank.

PROOF In this proof we write simply "rows" and "columns" for row and column vectors. Let A be an $m \times n$ matrix of rank A = r. Then by definition of rank, A has r linearly independent rows which we denote by $\mathbf{v}_{(1)}, \dots, \mathbf{v}_{(r)}$ (regardless of their position in \mathbf{A}), and all the rows $\mathbf{a}_{(1)}, \cdots, \mathbf{a}_{(m)}$ of **A** are linear combinations of those, say,

(3)
$$\mathbf{a}_{(1)} = c_{11}\mathbf{v}_{(1)} + c_{12}\mathbf{v}_{(2)} + \cdots + c_{1r}\mathbf{v}_{(r)}$$

$$\mathbf{a}_{(2)} = c_{21}\mathbf{v}_{(1)} + c_{22}\mathbf{v}_{(2)} + \cdots + c_{2r}\mathbf{v}_{(r)}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{a}_{(m)} = c_{m1}\mathbf{v}_{(1)} + c_{m2}\mathbf{v}_{(2)} + \cdots + c_{mr}\mathbf{v}_{(r)}.$$

These are vector equations for rows. To switch to columns, we write (3) in terms of components as n such systems, with $k = 1, \dots, n$,

$$a_{1k} = c_{11}v_{1k} + c_{12}v_{2k} + \dots + c_{1r}v_{rk}$$

$$a_{2k} = c_{21}v_{1k} + c_{22}v_{2k} + \dots + c_{2r}v_{rk}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{mk} = c_{m1}v_{1k} + c_{m2}v_{2k} + \dots + c_{mr}v_{rk}$$

and collect components in columns. Indeed, we can write (4) as

(5)
$$\begin{bmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{bmatrix} = v_{1k} \begin{bmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{m1} \end{bmatrix} + v_{2k} \begin{bmatrix} c_{12} \\ c_{22} \\ \vdots \\ c_{m2} \end{bmatrix} + \dots + v_{rk} \begin{bmatrix} c_{1r} \\ c_{2r} \\ \vdots \\ c_{mr} \end{bmatrix}$$

where $k = 1, \dots, n$. Now the vector on the left is the kth column vector of \mathbf{A} . We see that each of these n columns is a linear combination of the same r columns on the right. Hence \mathbf{A} cannot have more linearly independent columns than rows, whose number is rank $\mathbf{A} = r$. Now rows of \mathbf{A} are columns of the transpose \mathbf{A}^T . For \mathbf{A}^T our conclusion is that \mathbf{A}^T cannot have more linearly independent columns than rows, so that \mathbf{A} cannot have more linearly independent rows than columns. Together, the number of linearly independent columns of \mathbf{A} must be r, the rank of \mathbf{A} . This completes the proof.

EXAMPLE 4 Illustration of Theorem 3

The matrix in (2) has rank 2. From Example 3 we see that the first two row vectors are linearly independent and by "working backward" we can verify that Row 3=6 Row $1-\frac{1}{2}$ Row 2. Similarly, the first two columns are linearly independent, and by reducing the last matrix in Example 3 by columns we find that

Column
$$3 = \frac{2}{3}$$
 Column $1 + \frac{2}{3}$ Column 2 and Column $4 = \frac{2}{3}$ Column $1 + \frac{29}{21}$ Column 2 .

Combining Theorems 2 and 3 we obtain

THEOREM 4

Linear Dependence of Vectors

Consider p vectors each having n components. If n < p, then these vectors are linearly dependent.

PROOF The matrix **A** with those p vectors as row vectors has p rows and n < p columns; hence by Theorem 3 it has rank $\mathbf{A} \le n < p$, which implies linear dependence by Theorem 2.

Vector Space

The following related concepts are of general interest in linear algebra. In the present context they provide a clarification of essential properties of matrices and their role in connection with linear systems.

27–35 **VECTOR SPACE**

Is the given set of vectors a vector space? Give reasons. If your answer is yes, determine the dimension and find a basis. $(v_1, v_2, \cdots$ denote components.)

- **27.** All vectors in R^3 with $v_1 v_2 + 2v_3 = 0$
- **28.** All vectors in R^3 with $3v_2 + v_3 = k$
- **29.** All vectors in \mathbb{R}^2 with $v_1 \ge v_2$
- **30.** All vectors in \mathbb{R}^n with the first n-2 components zero

- **31.** All vectors in \mathbb{R}^5 with positive components
- **32.** All vectors in R^3 with $3v_1 2v_2 + v_3 = 0$, $4v_1 + 5v_2 = 0$
- 33. All vectors in R^3 with $3v_1 v_3 = 0$, $2v_1 + 3v_2 4v_3 = 0$
- **34.** All vectors in \mathbb{R}^n with $|v_j| = 1$ for $j = 1, \dots, n$
- **35.** All vectors in R^4 with $v_1 = 2v_2 = 3v_3 = 4v_4$

7.5 Solutions of Linear Systems: Existence, Uniqueness

Rank, as just defined, gives complete information about existence, uniqueness, and general structure of the solution set of linear systems as follows.

A linear system of equations in n unknowns has a unique solution if the coefficient matrix and the augmented matrix have the same rank n, and infinitely many solutions if that common rank is less than n. The system has no solution if those two matrices have different rank.

To state this precisely and prove it, we shall use the generally important concept of a **submatrix** of **A**. By this we mean any matrix obtained from **A** by omitting some rows or columns (or both). By definition this includes **A** itself (as the matrix obtained by omitting no rows or columns); this is practical.

THEOREM 1

Fundamental Theorem for Linear Systems

(a) Existence. A linear system of m equations in n unknowns x_1, \dots, x_n

(1)
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
$$\dots$$
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

is **consistent**, that is, has solutions, if and only if the coefficient matrix \mathbf{A} and the augmented matrix $\widetilde{\mathbf{A}}$ have the same rank. Here,

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \quad and \quad \widetilde{\mathbf{A}} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{bmatrix}$$

(b) Uniqueness. The system (1) has precisely one solution if and only if this common rank r of A and \widetilde{A} equals n.

- (c) Infinitely many solutions. If this common rank r is less than n, the system (1) has infinitely many solutions. All of these solutions are obtained by determining r suitable unknowns (whose submatrix of coefficients must have rank r) in terms of the remaining n-r unknowns, to which arbitrary values can be assigned. (See Example 3 in Sec. 7.3.)
- (d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by the Gauss elimination. (This method will automatically reveal whether or not solutions exist; see Sec. 7.3.)

PROOF (a) We can write the system (1) in vector form $\mathbf{A}\mathbf{x} = \mathbf{b}$ or in terms of column vectors $\mathbf{c}_{(1)}, \dots, \mathbf{c}_{(n)}$ of \mathbf{A} :

(2)
$$\mathbf{c}_{(1)}x_1 + \mathbf{c}_{(2)}x_2 + \dots + \mathbf{c}_{(n)}x_n = \mathbf{b}.$$

 $\widetilde{\mathbf{A}}$ is obtained by augmenting \mathbf{A} by a single column \mathbf{b} . Hence, by Theorem 3 in Sec. 7.4, rank $\widetilde{\mathbf{A}}$ equals rank \mathbf{A} or rank $\mathbf{A} + 1$. Now if (1) has a solution \mathbf{x} , then (2) shows that \mathbf{b} must be a linear combination of those column vectors, so that $\widetilde{\mathbf{A}}$ and \mathbf{A} have the same maximum number of linearly independent column vectors and thus the same rank.

Conversely, if rank $\hat{\mathbf{A}} = \operatorname{rank} \mathbf{A}$, then \mathbf{b} must be a linear combination of the column vectors of \mathbf{A} , say,

$$\mathbf{b} = \alpha_1 \mathbf{c}_{(1)} + \dots + \alpha_n \mathbf{c}_{(n)}$$

since otherwise rank $\widetilde{\mathbf{A}} = \operatorname{rank} \mathbf{A} + 1$. But (2*) means that (1) has a solution, namely, $x_1 = \alpha_1, \dots, x_n = \alpha_n$, as can be seen by comparing (2*) and (2).

(b) If rank A = n, the *n* column vectors in (2) are linearly independent by Theorem 3 in Sec. 7.4. We claim that then the representation (2) of **b** is unique because otherwise

$$\mathbf{c}_{(1)}x_1 + \dots + \mathbf{c}_{(n)}x_n = \mathbf{c}_{(1)}\widetilde{x}_1 + \dots + \mathbf{c}_{(n)}\widetilde{x}_n.$$

This would imply (take all terms to the left, with a minus sign)

$$(x_1 - \widetilde{x}_1)\mathbf{c}_{(1)} + \cdots + (x_n - \widetilde{x}_n)\mathbf{c}_{(n)} = \mathbf{0}$$

and $x_1 - \widetilde{x}_1 = 0, \dots, x_n - \widetilde{x}_n = 0$ by linear independence. But this means that the scalars x_1, \dots, x_n in (2) are uniquely determined, that is, the solution of (1) is unique.

(c) If rank $\mathbf{A} = \operatorname{rank} \hat{\mathbf{A}} = r < n$, then by Theorem 3 in Sec. 7.4 there is a linearly independent set K of r column vectors of \mathbf{A} such that the other n-r column vectors of \mathbf{A} are linear combinations of those vectors. We renumber the columns and unknowns, denoting the renumbered quantities by $\hat{\mathbf{c}}$, so that $\{\hat{\mathbf{c}}_{(1)}, \cdots, \hat{\mathbf{c}}_{(r)}\}$ is that linearly independent set K. Then (2) becomes

$$\hat{\mathbf{c}}_{(1)}\hat{x}_1 + \dots + \hat{\mathbf{c}}_{(r)}\hat{x}_r + \hat{\mathbf{c}}_{(r+1)}\hat{x}_{r+1} + \dots + \hat{\mathbf{c}}_{(n)}\hat{x}_n = \mathbf{b},$$

 $\hat{\mathbf{c}}_{(r+1)}, \dots, \hat{\mathbf{c}}_{(n)}$ are linear combinations of the vectors of K, and so are the vectors $\hat{x}_{r+1}\hat{\mathbf{c}}_{(r+1)}, \dots, \hat{x}_n\hat{\mathbf{c}}_{(n)}$. Expressing these vectors in terms of the vectors of K and collecting terms, we can thus write the system in the form

(3)
$$\hat{\mathbf{c}}_{(1)}y_1 + \dots + \hat{\mathbf{c}}_{(r)}y_r = \mathbf{b}$$

with $y_j = \hat{x}_j + \beta_j$, where β_j results from the n-r terms $\hat{\mathbf{c}}_{(r+1)}\hat{x}_{r+1}, \cdots, \hat{\mathbf{c}}_{(n)}\hat{x}_n$; here, $j=1,\cdots,r$. Since the system has a solution, there are y_1,\cdots,y_r satisfying (3). These scalars are unique since K is linearly independent. Choosing $\hat{x}_{r+1},\cdots,\hat{x}_n$ fixes the β_j and corresponding $\hat{x}_j = y_j - \beta_j$, where $j=1,\cdots,r$.

(d) This was discussed in Sec. 7.3 and is restated here as a reminder.

The theorem is illustrated in Sec. 7.3. In Example 2 there is a unique solution since rank $\widetilde{\mathbf{A}} = \operatorname{rank} \mathbf{A} = n = 3$ (as can be seen from the last matrix in the example). In Example 3 we have rank $\widetilde{\mathbf{A}} = \operatorname{rank} \mathbf{A} = 2 < n = 4$ and can choose x_3 and x_4 arbitrarily. In Example 4 there is no solution because rank $\widetilde{\mathbf{A}} = 2 < \operatorname{rank} \widetilde{\mathbf{A}} = 3$.

Homogeneous Linear System

Recall from Sec. 7.3 that a linear system (1) is called **homogeneous** if all the b_j 's are zero, and **nonhomogeneous** if one or several b_j 's are not zero. For the homogeneous system we obtain from the Fundamental Theorem the following results.

THEOREM 2

Homogeneous Linear System

A homogeneous linear system

(4)
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$
$$\dots \dots \dots \dots \dots$$
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

always has the **trivial solution** $x_1 = 0, \dots, x_n = 0$. Nontrivial solutions exist if and only if rank $\mathbf{A} < n$. If rank $\mathbf{A} = r < n$, these solutions, together with $\mathbf{x} = \mathbf{0}$, form a vector space (see Sec. 7.4) of dimension n - r called the **solution space** of (4).

In particular, if $\mathbf{x}_{(1)}$ and $\mathbf{x}_{(2)}$ are solution vectors of (4), then $\mathbf{x} = c_1 \mathbf{x}_{(1)} + c_2 \mathbf{x}_{(2)}$ with any scalars c_1 and c_2 is a solution vector of (4). (This **does not hold** for nonhomogeneous systems. Also, the term solution space is used for homogeneous systems only.)

PROOF

The first proposition can be seen directly from the system. It agrees with the fact that $\mathbf{b} = \mathbf{0}$ implies that rank $\widetilde{\mathbf{A}} = \operatorname{rank} \mathbf{A}$, so that a homogeneous system is always *consistent*. If rank $\mathbf{A} = n$, the trivial solution is the unique solution according to (b) in Theorem 1. If rank $\mathbf{A} < n$, there are nontrivial solutions according to (c) in Theorem 1. The solutions form a vector space because if $\mathbf{x}_{(1)}$ and $\mathbf{x}_{(2)}$ are any of them, then $\mathbf{A}\mathbf{x}_{(1)} = \mathbf{0}$, $\mathbf{A}\mathbf{x}_{(2)} = \mathbf{0}$, and this implies $\mathbf{A}(\mathbf{x}_{(1)} + \mathbf{x}_{(2)}) = \mathbf{A}\mathbf{x}_{(1)} + \mathbf{A}\mathbf{x}_{(2)} = \mathbf{0}$ as well as $\mathbf{A}(c\mathbf{x}_{(1)}) = c\mathbf{A}\mathbf{x}_{(1)} = \mathbf{0}$, where c is arbitrary. If rank $\mathbf{A} = r < n$, Theorem 1 (c) implies that we can choose n - r suitable unknowns, call them x_{r+1}, \dots, x_n , in an arbitrary fashion, and every solution is obtained in this way. Hence a basis for the solution space, briefly called a **basis of solutions** of (4), is $\mathbf{y}_{(1)}, \dots, \mathbf{y}_{(n-r)}$, where the basis vector $\mathbf{y}_{(j)}$ is obtained by choosing $x_{r+j} = 1$ and the other x_{r+1}, \dots, x_n zero; the corresponding first r components of this solution vector are then determined. Thus the solution space of (4) has dimension n - r. This proves Theorem 2.

The solution space of (4) is also called the **null space** of **A** because $\mathbf{A}\mathbf{x} = \mathbf{0}$ for every **x** in the solution space of (4). Its dimension is called the **nullity** of **A**. Hence Theorem 2 states that

(5)
$$\operatorname{rank} \mathbf{A} + \operatorname{nullity} \mathbf{A} = n$$

where n is the number of unknowns (number of columns of A).

Furthermore, by the definition of rank we have rank $A \le m$ in (4). Hence if m < n, then rank A < n. By Theorem 2 this gives the practically important

THEOREM 3

Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns always has nontrivial solutions.

Nonhomogeneous Linear Systems

The characterization of all solutions of the linear system (1) is now quite simple, as follows.

THEOREM 4

Nonhomogeneous Linear System

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are obtained as

$$\mathbf{x} = \mathbf{x_0} + \mathbf{x}_h$$

where $\mathbf{x_0}$ is any (fixed) solution of (1) and $\mathbf{x_h}$ runs through all the solutions of the corresponding homogeneous system (4).

PROOF

The difference $\mathbf{x}_h = \mathbf{x} - \mathbf{x}_0$ of any two solutions of (1) is a solution of (4) because $\mathbf{A}\mathbf{x}_h = \mathbf{A}(\mathbf{x} - \mathbf{x}_0) = \mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{x}_0 = \mathbf{b} - \mathbf{b} = \mathbf{0}$. Since \mathbf{x} is any solution of (1), we get all the solutions of (1) if in (6) we take any solution \mathbf{x}_0 of (1) and let \mathbf{x}_h vary throughout the solution space of (4).

This covers a main part of our discussion of characterizing the solutions of systems of linear equations. Our next main topic is determinants and their role in linear equations.

7.6 For Reference: Second- and Third-Order Determinants

We created this section as a quick general reference section on second- and third-order determinants. It is completely independent of the theory in Sec. 7.7 and suffices as a reference for many of our examples and problems. Since this section is for reference, go on to the next section, consulting this material only when needed.

A **determinant of second order** is denoted and defined by

(1)
$$D = \det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

So here we have *bars* (whereas a matrix has *brackets*).

Note the following. The signs on the right are +-+. Each of the three terms on the right is an entry in the first column of D times its **minor**, that is, the second-order determinant obtained from D by deleting the row and column of that entry; thus, for a_{11} delete the first row and first column, and so on.

If we write out the minors in (4), we obtain

$$(4^*) \quad D = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{21}a_{13}a_{32} - a_{21}a_{12}a_{33} + a_{31}a_{12}a_{23} - a_{31}a_{13}a_{22}.$$

Cramer's Rule for Linear Systems of Three Equations

(5)
$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$
$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$
$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

is

(6)
$$x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \quad x_3 = \frac{D_3}{D}$$
 $(D \neq 0)$

with the determinant D of the system given by (4) and

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}, \quad D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, \quad D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

Note that D_1 , D_2 , D_3 are obtained by replacing Columns 1, 2, 3, respectively, by the column of the right sides of (5).

Cramer's rule (6) can be derived by eliminations similar to those for (3), but it also follows from the general case (Theorem 4) in the next section.

7.7 Determinants, Cramer's Rule

Determinants were originally introduced for solving linear systems. Although *impractical in computations*, they have important engineering applications in eigenvalue problems (Sec. 8.1), differential equations, vector algebra (Sec. 9.3), and in other areas. They can be introduced in several equivalent ways. Our definition is particularly for dealing with linear systems.

A determinant of order n is a scalar associated with an $n \times n$ (hence *square*!) matrix $\mathbf{A} = [a_{jk}]$, and is denoted by

(1)
$$D = \det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & \cdot & \cdot & \cdots & \cdot \\ & \cdot & \cdot & \cdots & \cdot \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

For n = 1, this determinant is defined by

(2)
$$D = a_{11}$$
.

For $n \ge 2$ by

(3a)
$$D = a_{j1}C_{j1} + a_{j2}C_{j2} + \dots + a_{jn}C_{jn} \qquad (j = 1, 2, \dots, \text{ or } n)$$

or

(3b)
$$D = a_{1k}C_{1k} + a_{2k}C_{2k} + \dots + a_{nk}C_{nk} \quad (k = 1, 2, \dots, \text{ or } n).$$

Here,

$$C_{jk} = (-1)^{j+k} M_{jk}$$

and M_{jk} is a determinant of order n-1, namely, the determinant of the submatrix of **A** obtained from **A** by omitting the row and column of the entry a_{jk} , that is, the *j*th row and the *k*th column.

In this way, D is defined in terms of n determinants of order n-1, each of which is, in turn, defined in terms of n-1 determinants of order n-2, and so on—until we finally arrive at second-order determinants, in which those submatrices consist of single entries whose determinant is defined to be the entry itself.

From the definition it follows that we may expand D by any row or column, that is, choose in (3) the entries in any row or column, similarly when expanding the C_{jk} 's in (3), and so on.

This definition is unambiguous, that is, it yields the same value for *D* no matter which columns or rows we choose in expanding. A proof is given in App. 4.

Terms used in connection with determinants are taken from matrices. In D we have n^2 entries a_{jk} , also n rows and n columns, and a main diagonal on which $a_{11}, a_{22}, \dots, a_{nn}$ stand. Two terms are new:

 M_{jk} is called the **minor** of a_{jk} in D, and C_{jk} the **cofactor** of a_{jk} in D. For later use we note that (3) may also be written in terms of minors

(4a)
$$D = \sum_{k=1}^{n} (-1)^{j+k} a_{jk} M_{jk} \qquad (j = 1, 2, \dots, \text{ or } n)$$

(4b)
$$D = \sum_{i=1}^{n} (-1)^{j+k} a_{jk} M_{jk} \qquad (k = 1, 2, \dots, \text{ or } n).$$

EXAMPLE Minors and Cofactors of a Third-Order Determinant

In (4) of the previous section the minors and cofactors of the entries in the first column can be seen directly. For the entries in the second row the minors are

$$M_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}, \qquad M_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}, \qquad M_{23} = \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$$

and the cofactors are $C_{21} = -M_{21}$, $C_{22} = +M_{22}$, and $C_{23} = -M_{23}$. Similarly for the third row—write these down yourself. And verify that the signs in C_{jk} form a **checkerboard pattern**

EXAMPLE 2 Expansions of a Third-Order Determinant

$$D = \begin{vmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{vmatrix} = 1 \begin{vmatrix} 6 & 4 \\ 0 & 2 \end{vmatrix} - 3 \begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} + 0 \begin{vmatrix} 2 & 6 \\ -1 & 0 \end{vmatrix}$$

$$= 1(12 - 0) - 3(4 + 4) + 0(0 + 6) = -12.$$

This is the expansion by the first row. The expansion by the third column is

$$D = 0 \begin{vmatrix} 2 & 6 \\ -1 & 0 \end{vmatrix} - 4 \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix} + 2 \begin{vmatrix} 1 & 3 \\ 2 & 6 \end{vmatrix} = 0 - 12 + 0 = -12.$$

Verify that the other four expansions also give the value -12.

EXAMPLE 3 Determinant of a Triangular Matrix

$$\begin{vmatrix} -3 & 0 & 0 \\ 6 & 4 & 0 \\ -1 & 2 & 5 \end{vmatrix} = -3 \begin{vmatrix} 4 & 0 \\ 2 & 5 \end{vmatrix} = -3 \cdot 4 \cdot 5 = -60.$$

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal matrices?

General Properties of Determinants

There is an attractive way of finding determinants (1) that consists of applying elementary row operations to (1). By doing so we obtain an "upper triangular" determinant (see Sec. 7.1, for definition with "matrix" replaced by "determinant") whose value is then very easy to compute, being just the product of its diagonal entries. This approach is *similar* (*but not the same*!) to what we did to matrices in Sec. 7.3. In particular, be aware that interchanging two rows in a determinant introduces a multiplicative factor of -1 to the value of the determinant! Details are as follows.

THEOREM 1

Behavior of an nth-Order Determinant under Elementary Row Operations

- (a) Interchange of two rows multiplies the value of the determinant by -1.
- **(b)** Addition of a multiple of a row to another row does not alter the value of the determinant.
- (c) Multiplication of a row by a nonzero constant c multiplies the value of the determinant by c. (This holds also when c=0, but no longer gives an elementary row operation.)

PROOF (a) By induction. The statement holds for n=2 because

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc, \quad \text{but} \quad \begin{vmatrix} c & d \\ a & b \end{vmatrix} = bc - ad.$$

(a) Line through two points. Derive from D=0 in (12) the familiar formula

$$\frac{x - x_1}{x_1 - x_2} = \frac{y - y_1}{y_1 - y_2}.$$

- (b) Plane. Find the analog of (12) for a plane through three given points. Apply it when the points are (1, 1, 1), (3, 2, 6), (5, 0, 5).
- (c) Circle. Find a similar formula for a circle in the plane through three given points. Find and sketch the circle through (2, 6), (6, 4), (7, 1).
- (d) **Sphere.** Find the analog of the formula in (c) for a sphere through four given points. Find the sphere through (0, 0, 5), (4, 0, 1), (0, 4, 1), (0, 0, -3) by this formula or by inspection.
- **(e) General conic section.** Find a formula for a general conic section (the vanishing of a determinant of 6th order). Try it out for a quadratic parabola and for a more general conic section of your own choice.

21–25 CRAMER'S RULE

Solve by Cramer's rule. Check by Gauss elimination and back substitution. Show details.

21.
$$3x - 5y = 15.5$$
 22. $2x - 4y = -24$ $6x + 16y = 5.0$ $5x + 2y = 0$

23.
$$3y - 4z = 16$$
 24. $3x - 2y + z = 13$ $2x - 5y + 7z = -27$ $-2x + y + 4z = 11$ $-x$ $-9z = 9$ $x + 4y - 5z = -31$

25.
$$-4w + x + y = -10$$

 $w - 4x + z = 1$
 $w - 4y + z = -7$
 $x + y - 4z = 10$

7.8 Inverse of a Matrix. Gauss–Jordan Elimination

In this section we consider square matrices exclusively.

The **inverse** of an $n \times n$ matrix $\mathbf{A} = [a_{jk}]$ is denoted by \mathbf{A}^{-1} and is an $n \times n$ matrix such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

where **I** is the $n \times n$ unit matrix (see Sec. 7.2).

If **A** has an inverse, then **A** is called a **nonsingular matrix**. If **A** has no inverse, then **A** is called a **singular matrix**.

If A has an inverse, the inverse is unique.

Indeed, if both **B** and **C** are inverses of **A**, then AB = I and CA = I, so that we obtain the uniqueness from

$$\mathbf{B} = \mathbf{IB} = (\mathbf{CA})\mathbf{B} = \mathbf{C}(\mathbf{AB}) = \mathbf{CI} = \mathbf{C}.$$

We prove next that **A** has an inverse (is nonsingular) if and only if it has maximum possible rank n. The proof will also show that $\mathbf{A}\mathbf{x} = \mathbf{b}$ implies $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ provided \mathbf{A}^{-1} exists, and will thus give a motivation for the inverse as well as a relation to linear systems. (But this will **not** give a good method of solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ **numerically** because the Gauss elimination in Sec. 7.3 requires fewer computations.)

THEOREM 1

Existence of the Inverse

The inverse A^{-1} of an $n \times n$ matrix A exists if and only if rank A = n, thus (by Theorem 3, Sec. 7.7) if and only if det $A \neq 0$. Hence A is nonsingular if rank A = n, and is singular if rank A < n.

PROOF Let A be a given $n \times n$ matrix and consider the linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}.$$

If the inverse A^{-1} exists, then multiplication from the left on both sides and use of (1) gives

$$A^{-1}Ax = x = A^{-1}b.$$

This shows that (2) has a solution \mathbf{x} , which is unique because, for another solution \mathbf{u} , we have $\mathbf{A}\mathbf{u} = \mathbf{b}$, so that $\mathbf{u} = \mathbf{A}^{-1}\mathbf{b} = \mathbf{x}$. Hence \mathbf{A} must have rank n by the Fundamental Theorem in Sec. 7.5.

Conversely, let rank $\mathbf{A} = n$. Then by the same theorem, the system (2) has a unique solution \mathbf{x} for any \mathbf{b} . Now the back substitution following the Gauss elimination (Sec. 7.3) shows that the components x_j of \mathbf{x} are linear combinations of those of \mathbf{b} . Hence we can write

$$\mathbf{x} = \mathbf{B}\mathbf{b}$$

with **B** to be determined. Substitution into (2) gives

$$Ax = A(Bb) = (AB)b = Cb = b$$
 (C = AB)

for any **b**. Hence C = AB = I, the unit matrix. Similarly, if we substitute (2) into (3) we get

$$x = Bb = B(Ax) = (BA)x$$

for any x (and b = Ax). Hence BA = I. Together, $B = A^{-1}$ exists.

Determination of the Inverse by the Gauss-Jordan Method

To actually determine the inverse A^{-1} of a nonsingular $n \times n$ matrix **A**, we can use a variant of the Gauss elimination (Sec. 7.3), called the **Gauss–Jordan elimination**.³ The idea of the method is as follows.

Using A, we form n linear systems

$$Ax_{(1)} = e_{(1)}, \cdots, Ax_{(n)} = e_{(n)}$$

where the vectors $\mathbf{e}_{(1)}, \dots, \mathbf{e}_{(n)}$ are the columns of the $n \times n$ unit matrix \mathbf{I} ; thus, $\mathbf{e}_{(1)} = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^\mathsf{T}$, $\mathbf{e}_{(2)} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^\mathsf{T}$, etc. These are n vector equations in the unknown vectors $\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(n)}$. We combine them into a single matrix equation

³WILHELM JORDAN (1842–1899), German geodesist and mathematician. He did important geodesic work in Africa, where he surveyed oases. [See Althoen, S.C. and R. McLaughlin, Gauss–Jordan reduction: A brief history. *American Mathematical Monthly*, Vol. **94**, No. 2 (1987), pp. 130–142.]

We do *not recommend* it as a method for solving systems of linear equations, since the number of operations in addition to those of the Gauss elimination is larger than that for back substitution, which the Gauss–Jordan elimination avoids. See also Sec. 20.1.

 $\mathbf{AX} = \mathbf{I}$, with the unknown matrix \mathbf{X} having the columns $\mathbf{x}_{(1)}, \cdots, \mathbf{x}_{(n)}$. Correspondingly, we combine the n augmented matrices $[\mathbf{A} \ \mathbf{e}_{(1)}], \cdots, [\mathbf{A} \ \mathbf{e}_{(n)}]$ into one wide $n \times 2n$ "augmented matrix" $\tilde{\mathbf{A}} = [\mathbf{A} \ \mathbf{I}]$. Now multiplication of $\mathbf{AX} = \mathbf{I}$ by \mathbf{A}^{-1} from the left gives $\mathbf{X} = \mathbf{A}^{-1}\mathbf{I} = \mathbf{A}^{-1}$. Hence, to solve $\mathbf{AX} = \mathbf{I}$ for \mathbf{X} , we can apply the Gauss elimination to $\tilde{\mathbf{A}} = [\mathbf{A} \ \mathbf{I}]$. This gives a matrix of the form $[\mathbf{U} \ \mathbf{H}]$ with upper triangular \mathbf{U} because the Gauss elimination triangularizes systems. The Gauss–Jordan method reduces \mathbf{U} by further elementary row operations to diagonal form, in fact to the unit matrix \mathbf{I} . This is done by eliminating the entries of \mathbf{U} above the main diagonal and making the diagonal entries all 1 by multiplication (see Example 1). Of course, the method operates on the entire matrix $[\mathbf{U} \ \mathbf{H}]$, transforming \mathbf{H} into some matrix \mathbf{K} , hence the entire $[\mathbf{U} \ \mathbf{H}]$ to $[\mathbf{I} \ \mathbf{K}]$. This is the "augmented matrix" of $\mathbf{IX} = \mathbf{K}$. Now $\mathbf{IX} = \mathbf{X} = \mathbf{A}^{-1}$, as shown before. By comparison, $\mathbf{K} = \mathbf{A}^{-1}$, so that we can read \mathbf{A}^{-1} directly from $[\mathbf{I} \ \mathbf{K}]$.

The following example illustrates the practical details of the method.

EXAMPLE 1 Finding the Inverse of a Matrix by Gauss-Jordan Elimination

Determine the inverse A^{-1} of

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}.$$

Solution. We apply the Gauss elimination (Sec. 7.3) to the following $n \times 2n = 3 \times 6$ matrix, where BLUE always refers to the previous matrix.

This is $[\mathbf{U} \ \mathbf{H}]$ as produced by the Gauss elimination. Now follow the additional Gauss–Jordan steps, reducing \mathbf{U} to \mathbf{I} , that is, to diagonal form with entries 1 on the main diagonal.

$$\begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 3.5 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 0 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.2 & 0.3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.6 & 0.4 & -0.4 \\ 0.8 & 0.2 & -0.2 \end{bmatrix} - \begin{bmatrix} 0.3 & 0.3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.7 & 0.2 & 0.3 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ 0.5$$

The last three columns constitute A^{-1} . Check:

$$\begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix} \begin{bmatrix} -0.7 & 0.2 & 0.3 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Hence $AA^{-1} = I$. Similarly, $A^{-1}A = I$.

Formulas for Inverses

Since finding the inverse of a matrix is really a problem of solving a system of linear equations, it is not surprising that Cramer's rule (Theorem 4, Sec. 7.7) might come into play. And similarly, as Cramer's rule was useful for theoretical study but not for computation, so too is the explicit formula (4) in the following theorem useful for theoretical considerations but not recommended for actually determining inverse matrices, except for the frequently occurring 2×2 case as given in (4^*) .

THEOREM 2

Inverse of a Matrix by Determinants

The inverse of a nonsingular $n \times n$ matrix $\mathbf{A} = [a_{ik}]$ is given by

(4)
$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} C_{jk} \end{bmatrix}^{\mathsf{T}} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix},$$

where C_{jk} is the cofactor of a_{jk} in det **A** (see Sec. 7.7). (CAUTION! Note well that in \mathbf{A}^{-1} , the cofactor C_{jk} occupies the same place as a_{kj} (not a_{jk}) does in **A**.) In particular, the inverse of

(4*)
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \text{is} \quad \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}.$$

PROOF We denote the right side of (4) by **B** and show that BA = I. We first write

$$\mathbf{BA} = \mathbf{G} = [g_{kl}]$$

and then show that G = I. Now by the definition of matrix multiplication and because of the form of **B** in (4), we obtain (CAUTION! C_{sk} , not C_{ks})

(6)
$$g_{kl} = \sum_{s=1}^{n} \frac{C_{sk}}{\det \mathbf{A}} a_{sl} = \frac{1}{\det \mathbf{A}} (a_{1l}C_{1k} + \dots + a_{nl}C_{nk}).$$

Now (9) and (10) in Sec. 7.7 show that the sum (\cdots) on the right is $D = \det \mathbf{A}$ when l = k, and is zero when $l \neq k$. Hence

$$g_{kk} = \frac{1}{\det \mathbf{A}} \det \mathbf{A} = 1,$$

$$g_{kl} = 0 \quad (l \neq k).$$

In particular, for n = 2 we have in (4), in the first row, $C_{11} = a_{22}$, $C_{21} = -a_{12}$ and, in the second row, $C_{12} = -a_{21}$, $C_{22} = a_{11}$. This gives (4*).

The special case n=2 occurs quite frequently in geometric and other applications. You may perhaps want to memorize formula (4^*) . Example 2 gives an illustration of (4^*) .

EXAMPLE 2 Inverse of a 2 × 2 Matrix by Determinants

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}, \quad \mathbf{A}^{-1} = \frac{1}{10} \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 0.4 & -0.1 \\ -0.2 & 0.3 \end{bmatrix}$$

EXAMPLE 3 Further Illustration of Theorem 2

Using (4), find the inverse of

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}.$$

Solution. We obtain det $A = -1(-7) - 1 \cdot 13 + 2 \cdot 8 = 10$, and in (4),

$$C_{11} = \begin{vmatrix} -1 & 1 \\ 3 & 4 \end{vmatrix} = -7, \qquad C_{21} = -\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 2, \qquad C_{31} = \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = 3,$$

$$C_{12} = -\begin{vmatrix} 3 & 1 \\ -1 & 4 \end{vmatrix} = -13, \quad C_{22} = \begin{vmatrix} -1 & 2 \\ -1 & 4 \end{vmatrix} = -2, \quad C_{32} = -\begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = 7,$$

$$C_{13} = \begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix} = 8, \qquad C_{23} = -\begin{vmatrix} -1 & 1 \\ -1 & 3 \end{vmatrix} = 2, \quad C_{33} = \begin{vmatrix} -1 & 1 \\ 3 & -1 \end{vmatrix} = -2,$$

so that by (4), in agreement with Example 1,

$$\mathbf{A}^{-1} = \begin{bmatrix} -0.7 & 0.2 & 0.3 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{bmatrix}.$$

Diagonal matrices $\mathbf{A} = [a_{jk}], a_{jk} = 0$ when $j \neq k$, have an inverse if and only if all $a_{jj} \neq 0$. Then \mathbf{A}^{-1} is diagonal, too, with entries $1/a_{11}, \dots, 1/a_{nn}$.

PROOF For a diagonal matrix we have in (4)

$$\frac{C_{11}}{D} = \frac{a_{22} \cdots a_{nn}}{a_{11} a_{22} \cdots a_{nn}} = \frac{1}{a_{11}},$$
 etc.