Problema C

Quadtree

Arquivo fonte: quadtree.{c | cpp | java}

Autor: Antonio Cesar de Barros Munari (Fatec Sorocaba)

Existem diversas formas práticas de compactação de informação, que fazem o seu trabalho por meio da eliminação de redundâncias presentes no contexto que se está analisando. Uma forma bastante interessante é por meio de estruturas denominadas Quadtree, que permitem uma decomposição recursiva do espaço. Uma quadtree é uma árvore onde todos os nós são folhas ou então possuem grau igual a 4. No caso mais simples, podemos assumir que as regiões de um espaço podem conter dois tipos de informação, que representaremos por zeros e uns neste problema. A ideia básica é subdividir o espaço em 4 partes, e atribuir a cada parte um valor 0 se aquela parte contiver apenas zeros, 1 se contiver

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0
0	0	0	0	1	1	0	0
1	1	1	1	1	1	0	0
1	1	1	1	1	1	0	0
1	1	1	1	0	0	0	0
1	1	1	1	0	0	0	1

Figura 1a: Arranjo binário

Figura 1b: Quadtree correspondente à Figura 1a

apenas uns ou então 2, se a parte tiver tanto zeros como uns. Partes do tipo 2 são então subdivididas em 4 partes menores, e o processo continua até que não tenhamos quaisquer partes do tipo 2.

Na Figura 1 temos um arranjo binário disposto em um formato 8x8. A Figura 1a mostra o arranjo espacial na matriz quadrada subjacente, a Figura 1b mostra a quadtree correspondente. Na árvore a raiz corresponde à matriz 8x8, que contém tanto zeros como uns. Isso faz com que a raiz tenha valor 2 (indicado pela cor cinza na figura). Subdividimos então essa área não homogênea 8x8 em 4 pedaços 4x4: um no quadrante superior esquerdo, outro no superior direito, outro no quadrante inferior direito e outro no quadrante inferior esquerdo. O primeiro desses quadrantes tem apenas valores zero, então seu valor é zero (indicado pela cor branca do nó marcado com '1' na quadtree. O quadrante inferior esquerdo, por sua vez, possui apenas células (ou pixels) com valor um, então o quadrante inteiro tem valor 1 (indicado pela cor preta do nó marcado com '4' na quadtree). Os quadrantes restantes possuem tanto zeros como uns e estão marcados com cinza na figura, indicando que não são homogêneos e, por esse motivo, precisam ser subdivididos em arranjos 2x2. A quadtree da Figura 1b pode também ser expressa de forma textual como mostrado a seguir, onde o primeiro inteiro da primeira linha indica a quantidade de linhas do arranjo NxN e o segundo valor indica a cor do nó raiz da quadtree, seguindo-se então uma linha para cada nível da árvore, no sentido da esquerda para a direita:

8 202210021102010000010

Sua tarefa neste problema será gerar a representação textual da quadtree correspondente a um arranjo binário NxN lido da entrada.

Entrada

Cada caso de teste é iniciado por um inteiro N, $4 \le N \le 512$, em que N é uma potência de 4 e indica a medida de cada lado do arranjo binário NxN a ser processado. Seguem-se então N linhas, cada uma contendo N valores V separados por um espaço em branco, onde o valor de V será sempre igual a zero ou a um. A entrada é finalizada com um valor N = 0, que não deverá ser processado.

Saída

Para cada caso de teste, imprima a representação textual da quadtree, conforme explicado anteriormente e ilustrado nos exemplos.

Exemplos

Entrada:	Saída:
8	8 2
0 0 0 0 0 0 0	0221
0 0 0 0 0 0 0	0021
0 0 0 0 1 1 1 0	1020
0 0 0 0 1 1 0 0	1000
1 1 1 1 1 0 0	0010
1 1 1 1 1 0 0	
1 1 1 1 0 0 0 0	4 2
1 1 1 1 0 0 0 1	2222
4	0101
0 1 0 1	0101
1 0 1 0	0101
0 1 0 1	0101
1 0 1 0	
8	8 2
0 0 0 0 0 0 0	0222
0 0 0 0 0 0 0	0011
0 0 0 0 1 1 1 1	1102
0 0 0 0 1 1 1 1	0210
0 0 0 1 1 1 1 1	1101
0 0 1 1 1 1 1 1	0111
0 0 1 1 1 1 0 0	
0 0 1 1 1 0 0 0	
0	