• Calculation of gm:

Project Chamdon Dwivedi Roll no; 22104027 (4N+3) If p stage ; PMUS CL = 20pf Loop gain (min) = 40dB VDD = 1.8V 3 dB B.W of Voi (min) = 25 MHZ CMRR = 80 dB Im Calculation 0×50 + Vox50 = Vret Vo = 2 Vret Vo + Vo-Vret + gmVrest = D VscL 2 Vret. SCL + Vret = -gm Vrest $l(s) = -\frac{Vret}{V_{tel}x} = \frac{gm}{2sclt/so}$ $\omega_{u,loop} = \frac{g_m}{2CL} \Rightarrow g_m = \omega_{u,loop} \times 2CL \times 2DP$ $= 25MH3 \times 2 \times 2DP$ $g_m = 6.28mS$

• Open Loop schematic:

Open Loop gain and phase plot:

 Variation of open loop phase and gain w.r.t temperature from 10°C to 70°C:

Closed loop schematic:

• Closed loop gain and phase plot:

Variation of closed loop phase and gain w.r.t temperature from 10°C to 70 °C:

• TRANSIENT ANALYSIS FOR STEP INPUT:

• TRANSIENT ANALYSIS FOR SINUSOIDAL INPUT:

• TRANSIENT RESPONSE FOR WHEN w= w3db:

• TRANSIENT RESPONSE FOR WHEN w= w3db /10:

• DIFFERENCE IN INPUT NODE VOLTAGES WHEN Vi= 150mSin(w3db t):

• SCHEMETIC FOR COMMON MODE GAIN:

• ICMR:

- ➤ It is the range of input common mode voltage for which all transistor work in saturation.
- For calculation of ICMR- = (Vcm)min = 0.47 simulation result.
- > For calculation of ICMR+ = (Vcm)max = 0.89 simulation result.

• Table form gm, gds, cgs, cgd, Vov for all transistors:

Name:	m7	m8	m5	m6	m3	m4	m2	m1
Model:	cmosn	cmosn	cmosn	cmosn	cmosp	cmosp	cmosp	cmosp
Id:	4.50e-04							
Vgs:	5.47e-01	5.47e-01	6.22e-01	6.22e-01	-4.74e-02	-4.74e-02	-2.64e-01	-2.64e-01
Vds:	2.78e-01	2.78e-01	2.69e-01	2.69e-01	7.17e-01	7.17e-01	3.93e-01	3.93e-01
Vbs:	0.00e+00	0.00e+00	-2.78e-01	-2.78e-01	1.25e+00	1.25e+00	5.36e-01	5.36e-01
Vth:	4.09e-01	4.09e-01	4.91e-01	4.91e-01	-5.73e-01	-5.73e-01	-4.64e-01	-4.64e-01
Vdsat:	1.14e-01	1.14e-01	1.17e-01	1.17e-01	-1.71e-01	-1.71e-01	-1.63e-01	-1.63e-01
Gm:	6.03e-03	6.03e-03	6.11e-03	6.11e-03	4.28e-03	4.28e-03	4.33e-03	4.33e-03
Gds:	8.19e-05	8.19e-05	8.83e-05	8.83e-05	3.67e-05	3.67e-05	5.07e-05	5.07e-05
Gmb	1.71e-03	1.71e-03	1.55e-03	1.55e-03	1.14e-03	1.14e-03	1.29e-03	1.29e-03
Cbd:	0.00e+00							
Cbs:	0.00e+00							
Cgsov:	1.65e-13	1.65e-13	1.65e-13	1.65e-13	2.54e-13	2.54e-13	2.54e-13	2.54e-13
Cgdov:	1.65e-13	1.65e-13	1.65e-13	1.65e-13	2.54e-13	2.54e-13	2.54e-13	2.54e-13
Cgbov:	9.66e-19	9.66e-19	9.66e-19	9.66e-19	9.41e-19	9.41e-19	9.41e-19	9.41e-19
dQgdVgb:	1.67e-12	1.67e-12	1.65e-12	1.65e-12	3.08e-12	3.08e-12	3.11e-12	3.11e-12
dQgdVdb:	-1.65e-13	-1.65e-13	-1.65e-13	-1.65e-13	-2.48e-13	-2.48e-13	-2.53e-13	-2.53e-13
dQgdVsb:	-1.42e-12	-1.42e-12	-1.40e-12	-1.40e-12	-2.78e-12	-2.78e-12	-2.79e-12	-2.79e-12
dQddVgb:	-7.01e-13	-7.01e-13	-7.01e-13	-7.01e-13	-1.31e-12	-1.31e-12	-1.31e-12	-1.31e-12
dQddVdb:	1.66e-13	1.66e-13	1.67e-13	1.67e-13	2.51e-13	2.51e-13	2.55e-13	2.55e-13
dQddVsb:	7.06e-13	7.06e-13	6.83e-13	6.83e-13	1.33e-12	1.33e-12	1.37e-12	1.37e-12
dQbdVgb:	-2.69e-13	-2.69e-13	-2.51e-13	-2.51e-13	-4.64e-13	-4.64e-13	-4.91e-13	-4.91e-13
dQbdVdb:	-3.43e-15	-3.43e-15	-3.49e-15	-3.49e-15	-8.56e-17	-8.56e-17	-3.72e-15	-3.72e-15
dQbdVsb:	-1.59e-13	-1.59e-13	-1.26e-13	-1.26e-13	-1.44e-13	-1.44e-13	-2.16e-13	-2.16e-13