What is claimed is:

 A colored dispersion comprising a polymer and a dye represented by General Formula (1):

General Formula (1)

X = D-B

wherein X is a group represented by General Formulas (1-1) to (1-15); D is a nitrogen atom or $=CR_1-$, R_1 being a hydrogen atom or a substituent; and B is a group represented by General Formulas (2-1) to (2-16):

General Formula (1-1)

General Formula (1-4)

General Formula (1-7)

$$R_2$$
 N
 N
 R_3
 R_4

General Formula (1-10)

$$0 = \begin{pmatrix} R_2 \\ 0 = R_3 \end{pmatrix}$$

General Formula (1-13)

General Formula (1-2)

$$R_2$$
 N R_4

General Formula (1-5)

General Formula (1-8)

General Formula (1-11)

$$O = \begin{matrix} R_3 & R_2 \\ \\ N & \\ R_5 & O \end{matrix}$$

General Formula (1-14)

$$R_2$$
 N
 N
 N
 N
 N
 N

General Formula (1-3)

$$R_3$$

General Formula (1-6)

General Formula (1-9)

General Formula (1-12)

$$R_6$$
 N
 R_5
 R_5

General Formula (1-15)

$$\begin{array}{c|c}
R_2 \\
N \\
N \\
N \\
R_3
\end{array}$$

General Formula (2-1)

$$R_5$$
 R_2
 R_5
 N
 $O-R_4$

General Formula (2-4)

$$R_2$$
 N
 N
 R_3
 N
 R_4

General Formula (2-7)

General Formula (2-10)

$$R_5$$
 O R_6 O-Ra

General Formula (2-13)

$$R_6 \sim N$$
 $N \sim R_2$
 $N \sim N$
 $R_5 \sim N \sim N$

General Formula (2-16)

General Formula (2-2)

$$\begin{array}{c}
R_2 \\
N \\
O \\
O - Ra
\end{array}$$

General Formula (2-5)

General Formula (2-8)

$$R_2$$
 N
 R_3
 R_4

General Formula (2-11)

$$O = \begin{matrix} R_2 \\ Q - R_3 \end{matrix}$$

General Formula (2-14)

General Formula (2-3)

$$R_2$$
 N R_3

General Formula (2-6)

General Formula (2-9)

General Formula (2-12)

General Formula (2-15)

$$R_2$$
 N
 N
 R_3

wherein R_2 , R_3 , R_4 , R_5 , R_6 , and R_a each is a hydrogen atom or a substituent, provided that R_2 , R_3 , R_4 , R_5 , R_6 , or R_a may be jointed together to form a ring; and Z is a group of atoms which forms a 5- or 6-membered heterocyclic ring containing a nitrogen atom in the heterocyclic ring, provided that the heterocyclic ring may have a substituent or may be further condensed with a ring.

- 2. The colored dispersion of claim 1, wherein X in General Formula (1) is represented by General Formula (1-2), General Formula (1-4), General Formula (1-5) or General Formula (1-6).
- 3. The colored dispersion of claim 1, wherein B in General Formula (1) is represented by General Formula (2-3), General Formula (2-4), General Formula (2-5), General Formula (2-6), or General Formula (2-7).
- 4. The colored dispersion of claim 1, wherein X in General Formula (1) is represented by General Formula (1-2) or General Formula (1-4).

- 5. The colored dispersion of claim 1, wherein B in General Formula (1) is represented by General Formula (2-3) or General Formula (2-5).
- 6. The colored dispersion of claim 1, wherein X in General Formula (1) is represented by General Formula (1-4).
- 7. The colored dispersion of claim 1, wherein B in General Formula (1) is represented by General Formula (2-3).
- 8. The colored dispersion of claim 1, wherein X in General Formula (1) is represented by General Formula (1-4) and B in General Formula (1) is represented by General Formula (2-3).
- 9. The colored dispersion of claim 1, wherein X or B in General Formula (1) is substituted with at least one hydrogen bonding group selected from the group consisting of -OH, -NHSO₂Rb, -NHCOORb, -NHCONHRb, or -NHCORc, Rb being a substituent, and Rc being an aryl group, a heterocyclic group, or a branched alkyl group.
- 10. The colored dispersion of claim 1, wherein X or by B in General Formula (1) is substituted with a hydrogen bonding

group, and the hydrogen bonding group forms a hydrogen bond with either a nitrogen atom or an oxygen atom in the heterocyclic ring represented by General Formulas (1-1) to (1-15) or General Formulas (2-1) to (2-16).

- 11. The colored dispersion of claim 9, wherein X in General Formula (1) is represent by General Formula (1-4), General Formula (1-5) or General Formula (1-6).
- 12. The colored dispersion of claim 9, wherein B in General Formula (1) is represent by General Formula (2-3) or General Formula (2-4).
- 13. The colored dispersion of claim 9, wherein the hydrogen bonding group is -OH or $-NHSO_2Rb$, Rb being a substituent.
- 14. The colored dispersion of claim 1, wherein the dye is represented by General Formula (2):

General Formula (2)

$$R_2$$
 N
 N
 R_7
 N
 N
 R_8
 R_9

wherein R_2 is a hydrogen atom or a substituent; D is a nitrogen atom or =CR₁-, R_1 being a hydrogen atom or a substituent; B is a group represented by General Formulas (2-1) to (2-16); R_7 and R_8 each being a substituent; and R_9 being a hydrogen atom or a substituent.

- 15. The colored dispersion of claim 14, wherein B is represented by General Formulas (2-3), (2-4), (2-5), (2-6) or (2-7).
- 16. The colored dispersion of claim 14, wherein B is represented by General Formula (2-3), or General Formula (2-5).
- 17. The colored dispersion of claim 14, wherein B is represented by General Formula (2-3).

18. A colored dispersion comprising a polymer and a dye represented by General Formula (3):

General Formula (3)

wherein A is a residue of a dye represented by General Formula (1); L is a divalent linking group or a single bond; G is a group comprising a fade preventing group for the dye residue; and q is an integer of 1 or 2, provided that when q is 2, each -L-G may be the same or different.

19. The colored dispersion of claim 18, wherein G in General Formula (3) is a residue of a compound selected from the group consisting of General Formulas (4) to (9), the residue being a part of the compound which is eliminated a hydrogen atom from the compound:

Genaral Formula (4)

X₁₀₁ R₁₀₂

Genaral Formula (5)

Genaral Formula (6)

Genaral Formula (7)

Genaral Formula (8)

$$E_1$$
 M_2
 E_2
 R_{123}
 R_{124}
 R_{125}
 R_{126}

Genaral Formula (9)

wherein R_{101} represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a silyl group, or a phosphino group; X_{101} represents -O-, -S-, or -(NR_d)-, wherein R_d represents a hydrogen atom, an alkyl group, or an aryl group; R_{102} , R_{103} , R_{104} , R_{105} , and R_{106} each represents a hydrogen atom or a non-metallic substituent and substituents at the ortho position of R_{102} through R_{106} can be joined together to form a 5- to 7-membered ring; R_{107}

represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an acyl group, a sulfonyl group, or a sulfinyl group; W represents a group of nonmetallic atoms necessary to form a 5- to 7-membered ring having either an oxygen atom or a nitrogen atom; R_{108} , R_{109} , R_{110} , and R_{111} each represents a hydrogen atom or a nonmetallic substituent; R_{112} , R_{113} , R_{114} , R_{115} , R_{116} , R_{117} , and R_{118} each represents a non-metallic substituent exhibiting an ultraviolet ray absorbing function; M_1 and M_2 each represents copper, cobalt, nickel, palladium, or platinum; M3 represents nickel, cobalt, or iron; R_{119} , R_{120} , R_{121} , R_{119} , R_{120} , and R_{121} each represents a hydrogen atom, an alkyl group, or an aryl group; R_{122} and R_{122} ' each represents a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group, an alkoxy group, or an aryloxy group; X_{102} and X_{103} each represents -0-, or -S-; each substituent of R_{119} through R_{122} and R_{119}' through R_{122}' can be joined together with an adjacent group to form an aromatic ring or a 5- to 8-membered ring; E_1 and E_3 each independently represents -O-, -S-, or -N(R_{131})-; an E_1 -M2 bond or an E_3 -M2 bond may be a coordinate bond and in such cases, E_1 and E_2 each represents a hydroxyl group, a mercapto group, an alkoxy group, an alkylthio group, or $-N(R_{131})(R_{132})$, wherein R_{131} and

 R_{132} each represents a hydrogen atom, an alkyl group, an aryl group, or a hydroxyl group; E_2 represents -O-, -S-, or -N(R_{133})-, wherein R_{133} represents a hydrogen atom or an aryl group; R_{123} through R_{126} each independently represents a hydrogen atom, an alkyl group or an aryl group; herein at least two substituents selected from the group consisting of R_{123} and R_{124} , R_{125} and R_{126} , and R_{124} and R_{125} can be joined together to form a 5- to 8-membered ring; F represents a compound which is capable of coordinating to M_2 , and the number of coordination positions of the compound is 1 to 5; R_{127} through R_{130} each independently represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group; X_{104} through X_{107} each represents -S-, or -O-; M_3 represents nickel, cobalt, or iron; R_{127} and R_{128} or R_{129} and R_{130} , can be joined together to form a ring structure.

- 20. The colored dispersion of claim 1, wherein the dispersion comprises particles having a core/shell structure, and the dye and the polymer are incorporated in the core portion.
- 21. An ink-jet ink comprising the colored particle dispersion of claim 1.

- 22. A method for recording an image comprising a step of: jetting a droplet of an ink-jet ink of claim 21 onto a surface of a recording sheet.
- 23. A dye represented by General Formula (1), wherein X or B in General Formula (1) is substituted with at least one hydrogen bonding group selected from the group consisting of -OH, -NHSO₂Rb, -NHCOORb, -NHCONHRb, or -NHCORc, Rb being a substituent and Rc being an aryl group, a heterocyclic group, or a branched alkyl group,

General Formula (1)

X = D-B

wherein X is a group represented by General Formulas (1-1) to (1-15); D is a nitrogen atom or $=CR_1-$, R_1 being a hydrogen atom or a substituent; and B is a group represented by General Formulas (2-1) to (2-16):

General Formula (1-1)

General Formula (1-4)

General Formula (1-7)

$$R_2$$
 N
 N
 R_3
 R_4

General Formula (1-10)

$$0 = \begin{pmatrix} R_2 \\ 0 = R_3 \end{pmatrix}$$

General Formula (1-13)

General Formula (1-2)

$$R_2$$
 N R_4

General Formula (1-5)

General Formula (1-8)

General Formula (1-11)

$$O = \begin{matrix} R_3 & R_2 \\ \\ N & \\ R_5 & O \end{matrix}$$

General Formula (1-14)

$$R_2$$
 N
 N
 N
 R_3

General Formula (1-3)

$$R_2$$
 N

General Formula (1-6)

General Formula (1-9)

$$R_5$$
 O S N N R_6 O

General Formula (1-12)

$$\begin{array}{c|c}
R_6 \\
N \\
N \\
R_5
\end{array}$$

General Formula (1-15)

General Formula (2-1)

General Formula (2-4)

$$R_3$$
 N
 R_3
 N
 R_4

General Formula (2-7)

General Formula (2-10)

$$S = N$$
 $N = N$
 $N =$

General Formula (2-13)

$$R_6$$
 R_2
 R_5
 R_2
 R_5
 $O-Ra$

General Formula (2-16)

General Formula (2-2)

General Formula (2-5)

General Formula (2-8)

$$R_2 \xrightarrow{N-N} R_3 \\ R_4$$

General Formula (2-11)

$$O = \begin{pmatrix} R_2 \\ Q \\ R_3 \end{pmatrix}$$

General Formula (2-14)

General Formula (2-3)

$$R_2$$
 R_3

General Formula (2-6)

General Formula (2-9)

General Formula (2-12)

$$O = \bigvee_{N=0}^{R_3} \bigcap_{N=0}^{R_2}$$

General Formula (2-15)

$$R_2$$
 N
 N
 R_3

wherein R_2 , R_3 , R_4 , R_5 , R_6 , and R_a each is a hydrogen atom or a substituent, provided that R_2 , R_3 , R_4 , R_5 , R_6 , or R_a may be jointed together to form a ring; and Z is a group of atoms which forms a 5- or 6-membered heterocyclic ring containing a nitrogen atom in the heterocyclic ring, provided that the heterocyclic ring may have a substituent or may be further condensed with a ring.

- 24. The dye of claim 23, wherein X or B in General Formula (1) is substituted with a hydrogen bonding group, and the hydrogen bonding group forms a hydrogen bond with either a nitrogen atom or an oxygen atom in the heterocyclic ring represented by General Formulas (1-1) to (1-15) or General Formulas (2-1) to (2-16).
- 25. The dye of claim 23, wherein X in General Formula (1) is represent by General Formula (1-4), General Formula (1-5) or General Formula (1-6).
- 26. The dye of claim 23, wherein B in General Formula (1) is represent by General Formula (2-3) or General Formula (2-4).

- 27. The dye of claim 23, wherein the hydrogen bonding group is -OH or $-NHSO_2Rb$, Rb being a substituent.
- 28. The dye of claim 23, wherein the dye is represented by General Formula (2):

General Formula (2)

$$R_{2}$$
 N
 $D-B$
 R_{7}
 N
 N
 R_{8}
 R_{9}

wherein R_2 is a hydrogen atom or a substituent; D is a nitrogen atom or = CR_1 -, R_1 being a hydrogen atom or a substituent; B is a group represented by General Formulas (2-1) to (2-16); R_7 and R_8 each being a substituent; and R_9 being a hydrogen atom or a substituent.

29. The dye of claim 28, wherein B in General Formula (2) is represented by General Formula (2-3), General Formula (2-4), General Formula (2-5), General Formula (2-6), or General Formula (2-7).

30. The dye of claim 28, wherein B in General Formula (2) is represented by General Formula (2-3) or General Formula (2-5).

- 31. The dye of claim 28, wherein B in General Formula (2) is represented by General Formula (2-3)
- 32. A dye represented by General Formula (3):

 General Formula (3)

$$A \leftarrow L \rightarrow G$$

wherein A is a residue of a dye represented by General Formula (1); L is a divalent linking group or a single bond; G is a group comprising a light fade preventing group for the dye residue; and q is an integer of 1 or 2, provided that when q is 2, each -L-G may be the same or different.

33. The dye of claim 32, wherein G in General Formula (3) is selected from the group consisting of General Formulas (4) to (9):

Genaral Formula (4)

Genaral Formula (5)

Genaral Formula (6)

Genaral Formula (7)

Genaral Formula (8)

Genaral Formula (9)

wherein R₁₀₁ represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a silyl group, or a phosphino group; X_{101} represents -O-, -S-, or $-(NR_d)$ -, wherein R_d represents a hydrogen atom, an alkyl group, or an aryl group; $R_{102},\ R_{103},\ R_{104},\ R_{105},$ and R_{106} each represents a hydrogen atom or a non-metallic substituent and substituents at the ortho position of R_{102} through R_{106} can be joined together to form a 5- to 7-membered ring; R₁₀₇

represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an acyl group, a sulfonyl group, or a sulfinyl group; W represents a group of nonmetallic atoms necessary to form a 5- to 7-membered ring having either an oxygen atom or a nitrogen atom; R₁₀₈, R₁₀₉, R_{110} , and R_{111} each represents a hydrogen atom or a nonmetallic substituent; R_{112} , R_{113} , R_{114} , R_{115} , R_{116} , R_{117} , and R_{118} each represents a non-metallic substituent exhibiting an ultraviolet ray absorbing function; M_1 and M_2 each represents copper, cobalt, nickel, palladium, or platinum; M3 represents nickel, cobalt, or iron; R_{119} , R_{120} , R_{121} , R_{119}' , R_{120}' , and R_{121}' each represents a hydrogen atom, an alkyl group, or an aryl group; R_{122} and R_{122}' each represents a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group, an alkoxy group, or an aryloxy group; X_{102} and X_{103} each represents -O-, or -S-; each substituent of R_{119} through R_{122} and $R_{119}{}^{\prime}$ through $R_{122}{}^{\prime}$ can be joined together with an adjacent group to form an aromatic ring or a 5- to 8-membered ring; E_1 and E_3 each independently represents -O-, -S-, or -N(R_{131})-; an E_1 -M2 bond or an E_3 -M2 bond may be a coordinate bond and in such cases, E_1 and E_2 each represents a hydroxyl group, a mercapto group, an alkoxy group, an alkylthio group, or $-N(R_{131})(R_{132})$, wherein R_{131} and

 R_{132} each represents a hydrogen atom, an alkyl group, an aryl group, or a hydroxyl group; E_2 represents -O-, -S-, or -N(R_{133})-, wherein R_{133} represents a hydrogen atom or an aryl group; R_{123} through R_{126} each independently represents a hydrogen atom, an alkyl group or an aryl group; herein at least two substituents selected from the group consisting of R_{123} and R_{124} , R_{125} and R_{126} , and R_{124} and R_{125} can be joined together to form a 5- to 8-membered ring; F represents a compound which is capable of coordinating to M_2 , and the number of coordination positions of the compound is 1 to 5; R_{127} through R_{130} each independently represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group; X_{104} through X_{107} each represents -S-, or -O-; M_3 represents nickel, cobalt, or iron; R_{127} and R_{128} or R_{129} and R_{130} , can be joined together to form a ring structure.

34. The dye of claim 32, wherein A in General Formula (3) is substituted with at least one hydrogen bonding group selected from the group consisting of -OH, -NHSO₂Rb, -NHCOORb, -NHCONHRb, or -NHCORc, Rb being a substituent, and Rc being an aryl group, a heterocyclic group, or a branched alkyl group.

- 35. The dye of claim 28, wherein X or B in General Formula (2) is substituted with at least one hydrogen bonding group selected from the group consisting of -OH, -NHSO₂Rb, -NHCOORb, -NHCONHRb, or -NHCORc, Rb being a substituent, and Rc being an aryl group, a heterocyclic group, or a branched alkyl group.
- 36. The dye of claim 34, wherein the hydrogen bonding group is -OH or $-NHSO_2Rb$, Rb being a substituent.
- 37. The dye of claim 35, wherein the hydrogen bonding group is -OH or $-NHSO_2Rb$, Rb being a substituent.