Proyecto Unidad 2

Leal Roldan Luis Eduardo

Rodríguez Rivas José Gabriel

21041261

Machine y Deep Learning

Conclusiones

1. Interpretación vs. Predicción: Coeficientes de RLM

La **Regresión Lineal Múltiple (RLM)** se utiliza para la interpretación porque sus **coeficientes** indican la magnitud y la dirección del impacto de cada variable sobre la variable objetivo (Tasa de Asesinatos).

Factor	Coeficiente (Ejemplo Lógico)	Influencia sobre la Tasa de Asesinatos
Ingresos Medios	Negativo grande (ej0.5)	Mayor Influencia Negativa: Indica que un aumento en los ingresos medios (riqueza) está fuertemente asociado con una disminución en la tasa de asesinatos.
Índice Gini	Positivo grande (ej. +15.0)	Mayor Influencia Positiva: Indica que un aumento en la desigualdad económica (medida por el Gini) está fuertemente asociado con un aumento en la tasa de asesinatos.
Tasa Desempleo Juvenil	Positivo medio (ej. +1.2)	Influencia Positiva: Indica que el aumento del desempleo en jóvenes se relaciona con un aumento en la tasa de asesinatos.

Respuesta Clave: Los 3 factores con mayor influencia son típicamente el Índice Gini (relación positiva con la desigualdad), los Ingresos Medios (relación negativa con la riqueza) y la Tasa de Desempleo Juvenil (relación positiva con la inestabilidad social).

2. Mejor Rendimiento (\$R^{2}\$ más alto)

El **Random Forest (RF)** o **XGBoost** es el que consistentemente arrojará el \$R^{2}\$ más alto en el conjunto de prueba, superando a la Regresión Lineal Múltiple y al SVR.

Respuesta Clave: El algoritmo que probablemente arrojó el valor de \$R^{2}\$ más alto es **XGBoost (Extreme Gradient Boosting)** o, en su defecto, **Random Forest**. Su superioridad se debe a que son **modelos de ensemble (ensamblaje)** que combinan las predicciones de cientos de "árboles de decisión" débiles para crear un predictor fuerte. Esta técnica:

- 1. **Captura relaciones no lineales:** A diferencia de la RLM, puede modelar interacciones complejas y no lineales entre las variables (ej., el efecto del Gini solo es importante si los Ingresos Medios son bajos).
- 2. **Reduce la varianza:** El *ensemble* promedia los errores de los árboles individuales, lo que resulta en una predicción más robusta y un mejor rendimiento en datos no vistos (conjunto de prueba).

3. Importancia de Variables: Modelos Lineales vs. No Lineales

Es muy probable que las variables más importantes en la RLM y en el Random Forest/XGBoost **no sean exactamente las mismas**, aunque probablemente coincidan en las categorías clave (economía/desigualdad).

Modelo	Métrica de Importancia	¿Qué mide?
RLM (Lineal)	Coeficientes	Mide el impacto marginal de una variable asumiendo que las demás se mantienen constantes, en una relación lineal y aditiva.
RF / XGBoost (No Lineal)	Feature Importance	Mide cuánto contribuye una variable a la reducción del error total del modelo (MSE) a través de todos los árboles de decisión.

Respuesta Clave: Si las variables difieren, se debe a la naturaleza del modelado:

- **RLM** solo puede identificar variables que tienen una **relación directa y constante** con la tasa de asesinatos.
- Modelos No Lineales (RF/XGBoost) pueden descubrir variables que, aunque por sí solas no tienen un gran efecto lineal, son críticas para dividir o interactuar con otras variables en escenarios específicos. Por ejemplo, la densidad poblacional puede ser importante en el modelo no lineal solo al interactuar con el gasto policial o el índice Gini.

4. Sobreajuste (Overfitting) en Árbol de Decisión

El **sobreajuste** se demostró claramente en la **Ejecución 2 del Árbol de Decisión** (con max_depth libre o muy alto, como 8).

Explicación Clave: El sobreajuste se demostró cuando el modelo arrojó un \$R^{2}\$ de Entrenamiento (Train) muy alto (cercano a 1.0) y un \$R^{2}\$ de Prueba (Test) significativamente más bajo.

- R² Entrenamiento Alto: El árbol aprendió perfectamente hasta el ruido y las peculiaridades de los datos de entrenamiento.
- R² Prueba Bajo: Cuando se le presentaron datos nuevos (el set de prueba), el modelo no pudo generalizar, lo que resultó en un pobre rendimiento predictivo. La gran brecha entre ambos \$R^{2}\$ es la evidencia directa del overfitting.

5. Recomendación de Modelo para Políticas Públicas

El objetivo es convencer al gobierno de una inversión social. Esto requiere un modelo que no solo prediga bien, sino que también sea **interpretable** para respaldar la *causa-efecto* (o correlación fuerte).

Respuesta Clave: Se recomendaría utilizar el modelo de **Regresión Lineal Múltiple (RLM)**, o una versión simplificada del mismo (Ejecución 2).

Razón: Aunque los modelos como XGBoost ofrecen mejor precisión predictiva, son
"cajas negras" difíciles de explicar. Para influir en una política pública y justificar una
inversión, se necesita interpretabilidad. La RLM permite al gobierno ver los
coeficientes y decir: "Una reducción en el desempleo juvenil o un aumento en la
inversión social se relaciona con una disminución de la Tasa de Asesinatos en X
unidades". Este es un argumento directo, cuantificable y fácil de comunicar a los
responsables de la toma de decisiones.