## Alphabet et Mots

#### Alphabet

- un alphabet est un ensemble fini et non vide
- ses éléments sont appelés *lettres*

#### Mot

- un mot défini sur un alphabet X est une *séquence finie* de lettres de X
- $\bullet$  pour désigner le  $\mathbf{mot}$  vide (séquence vide) on utilise le symbole  $\varepsilon$

### Longueur d'un mot

Si *u* est un mot et *x* une lettre de l'alphabet X

- |u| désigne sa **longueur** (nombre de lettres)
- $|u|_x$  désigne le nombre d'occurrences de x dans u.

1/54

## Alphabet et Mots

#### Concaténation (de mots)

- la concaténation de 2 mots u et v est notée u,v
- Si  $u = x_1 x_2 ... x_n$  et  $v = y_1 y_2 ... y_m$ , alors  $u.v = z_1 z_2 .... z_{n+m}$

où  $z_i = x_i$  pour  $i \le n$  et  $z_i = y_{i-n}$  pour i > n

•  $u.\varepsilon = \varepsilon.u = u$  ( $\varepsilon$  est élément neutre)

#### La concaténation est associative

• (u.v).w = u.(v.w) On peut donc noter u.v.w

## Propriétés

- |u.v| = |u| + |v|
- $\bullet \ \forall x \in X, |u.v|_x = |u|_x + |v|_x$

2 / 5/

## Alphabet et Mots

#### Itération de la concaténation

La notation  $u^i$  (où u est un mot et i un entier naturel) désigne le mot défini par

- $u^0 = \varepsilon$
- $u^{i+1} = u^i \cdot u = u \cdot u^i$  pour  $i \ge 0$

#### Facteur

- un mot u est un **facteur** du mot v ssi il existe des mots p et s tels que v = p.u.s
- Si  $\exists s$  tq v=u.s, alors u est un facteur gauche (ou préfixe) de v.
- Si  $\exists p$  tq v = p.u, alors u est un **facteur droit** (ou **suffixe**) de v.
- Si u est facteur de v et u ≠ ε et u ≠ v, alors u est un facteur propre de v.

## Langages

## Langage

- Un langage sur un alphabet X est un ensemble de mots sur X.
- NB : un langage n'est pas nécessairement un ensemble fini

## Concaténation (de langages)

Si L et L' sont des langages sur X,

$$L.L' = \{u.v | u \in L, v \in L'\}$$

## La concaténation est associative

$$L_1.(L_2.L_3) = (L_1.L_2).L_3 = L_1.L_2.L_3$$

4 / 54

## Langages

## Élément neutre

 $\{\varepsilon\}$  est l'élément neutre de la concaténation de langages.

$$\forall L, \{\varepsilon\}.L = L.\{\varepsilon\} = L$$

## Élément absorbant

 $\emptyset$  est l'élément absorbant de la concaténation de langages.

$$\forall L, \ \emptyset.L = L.\emptyset = \emptyset$$

## Langages

## Itération de la concaténation

- $L^0 = \{\varepsilon\}$
- $L^{i+1} = L^i . L = L . L^i, \quad i \ge 0$

#### Clôture de Kleene

- $\bigcup_{i>0} L^i$  est la clôture de Kleene
- $\bullet$  On note  $L^* = \bigcup_{i \geq 0} L^i$  (notation « étoile de Kleene »)
- $\bullet \ \{\varepsilon\}^* = \{\varepsilon\}$
- $\emptyset^* = \{\varepsilon\}$ , par définition.
- si L contient un mot non vide, alors  $L^*$  est infini.

## Langages

#### Monoïde

- Si X est un alphabet,  $X^* = \{mots \ sur \ l' \ alphabet \ X\}$
- ullet X\* est donc une expression simple pour désigner l'ensemble des mots utilisant l'alphabet X
- $X^*$  est appelé **monoïde libre** engendré par X.

#### « étoile stricte »

ullet On note  $\mathbf{L}^+ = igcup_{\mathbf{i} > \mathbf{1}} \mathbf{L^i}$ 

Autre définition, équivalente :

• 
$$L^+ = L^*.L = L.L^*$$

## Langages rationnnels

#### Expression rationnelle

Un expression rationnelle et définie inductivement par

- atomes :  $\emptyset$ ,  $\varepsilon$ , x (pour toute lettre  $x \in X$ ) sont des expressions rationnelles
- opérateurs : +, ., \*

Si  $e_1$  et  $e_2$  sont des expressions rationnelles, alors

- $e_1 + e_2$  est une expression rationnelle.
- $e_1.e_2$  est une expression rationnelle.
- e<sub>1</sub> · e<sub>2</sub> est une expression rationnelle.
   e<sub>1</sub>\* est une expression rationnelle.
- $\bullet$  parenthésage : si e est une exp. rationnelle, alors (e) est une expression rationnelle.

8 / 54

## Langages rationnnels

#### Langage associé à une expression rationnelle

À chaque expression rationnelle e est associé un langage  $\mathcal{L}(e)$  défini par

- $2 \mathcal{L}((e_1)) = \mathcal{L}(e_1)$
- **3**  $\mathcal{L}(e_1 + e_2) = \mathcal{L}(e_1) \cup \mathcal{L}(e_2)$
- $\begin{array}{l} \bullet \ \mathcal{L}(e_1.e_2) = \mathcal{L}(e_1).\mathcal{L}(e_2) \\ \text{si } \not\exists e' \ \text{et } e'' \ \text{tq} \ e_1 = e' + e'' \ \text{ou} \ e_2 = e' + e'' \end{array}$
- $\begin{array}{l} \bullet \ \ \, \mathcal{L}(e_1{}^*) = \mathcal{L}(e_1)^* \\ \text{si } \not\exists e' \ et \ e'' \ tq \ e_1 = e' + e'' \ \text{ou} \ \ e_1 = e'.e'' \end{array}$

 $\mathcal{L}(\emph{e})$  est appelé langage dénoté par e

## Langages rationnnels

#### Variantes d'expressions rationnelles :

Les expressions rationnelles sont souvent  $\ensuremath{\mathsf{w}}$  étendues » de la façon suivante :

- Omission possible de l'opérateur point :  $\mathcal{L}(e_1e_2)=\mathcal{L}(e_1.e_2)$
- opérateur  $^i$  (exposant) pour  $i \geq 0$  (même priorité que \*)  $\mathcal{L}(\mathbf{e_1}^i) = \mathcal{L}(\mathbf{e_1})^i$ 
  - si  $\not\exists e'$  et e'' tq  $e_1=e'+e''$  ou  $e_1=e'.e''$
- opérateur  $^+$  (comme exposant, ne pas confondre avec +)  $\mathcal{L}(e_1^+) = \mathcal{L}(e_1)^+ = \mathcal{L}(e_1).\mathcal{L}(e_1)^*$  si  $\not\exists e'$  et e'' tq  $e_1 = e' + e''$  ou  $e_1 = e'.e''$

 $\ensuremath{\mathsf{NB}}$  : Les expressions implémentées dans les composants logiciels ont leur propre syntaxe (cf TDM)

9 / 54

10 / 54

## Langages rationnels

#### Définition 1

- Un langage rationnel est un langage qui peut être dénoté par une expression rationnelle
- On appelle RAT la famille des langages rationnels

#### Définition 2 ou propriété

- RAT est la plus petite famille de langages qui
  - contient  $\emptyset$ ,  $\{\varepsilon\}$ ,  $\{x\}$ ,  $\forall x \in X$
  - est close par union, concaténation et étoile de Kleene

#### Propriété

• Tout langage fini  $\in RAT$ 

#### Propriété

 Il existe des langages non rationnels (la preuve sera apportée plus tard).

## Automates finis déterministes

#### Définition

Un automate fini déterministe est défini par

- un alphabet X
- ullet un ensemble fini  ${\cal Q}$  appelé ensemble d'états
- ullet un **état initial**  $q_{ini} \in \mathcal{Q}$
- un sous-ensemble  $\mathcal{F} \subseteq \mathcal{Q}$  d'états dits **acceptants** (ou encore **finals** ou encore **terminaux**)
- une fonction  $\delta: \mathcal{Q} \times X \to \mathcal{Q}$  appelée fonction de transition
- Notation :  $\delta(q_d, x) = q_a$  pourra être noté  $q_d \stackrel{\times}{\to} q_a$
- $q_d$  est appelé état de départ et  $q_a$  état d'arrivée

11/54

## Automates finis déterministes

#### Représentation graphique





13 / 54

## Automates finis déterministes

#### Extension de la fonction de transition

La fonction de transition peut être étendue aux mots :

$$\begin{array}{cccc} \hat{\delta}: \mathcal{Q} \times X^* & \to & \mathcal{Q} \\ & (q, \varepsilon) & \mapsto & q \\ & (q, xw) & \mapsto & \hat{\delta}(\delta(q, x), w) \ x \in X, w \in X^* \end{array}$$

### Autre définition équivalente

$$\begin{array}{cccc} \hat{\delta}: \mathcal{Q} \times X^* & \to & \mathcal{Q} \\ & (q, \varepsilon) & \mapsto & q \\ & (q, wx) & \mapsto & \delta(\hat{\delta}(q, w), x) \ x \in X, w \in X^* \end{array}$$

- ullet si  $q'=\hat{\delta}(q,w)$  on pourra utiliser la notation  $q\stackrel{w}{
  ightarrow} q'$
- soit  $u = x_1 x_2 ... x_{n+1}, \ x_i \in X$ , et  $r_i \in \mathcal{Q}$  tq  $r_i \xrightarrow{x_i} r_{i+1}$ , alors  $r_1 \xrightarrow{u} r_{n+1}$

\_\_\_

## Automates finis déterministes

#### Langage reconnu

Le langage reconnu par un automate déterministe  $\mathcal{A}=(X,\mathcal{Q},\delta,q_{\mathit{ini}},\mathcal{F})$  est :

$$\mathcal{L}(\mathcal{A}) = \{ w \in X^* | \hat{\delta}(q_{ini}, w) \in \mathcal{F} \}$$

### Remarque : propriété

 $\varepsilon \in \mathcal{L}(\mathcal{A}) \iff q_{ini} \in \mathcal{F}$ 

## Automates finis déterministes

#### Automate déterministe complet

Un automate déterministe A est dit **complet** si sa fonction de transition  $\delta$  est définie  $\forall (q,x) \in \mathcal{Q} \times X$ 

#### Propriété

Tout langage reconnu par un automate peut être reconnu par un automate complet.

Si un automate déterministe A n'est pas complet, il existe un algorithme simple permettant de construire un automate déterministe complet qui reconnaît le même langage que A

15 / 54

16 / 54

## Automates finis déterministes : algo de reconnaissance

 $\textbf{Require}: A \ \text{est un automate fini déterministe}$ 

**Require**: *u* est un mot quelconque.

Si  $u \neq \varepsilon$ , on appelle  $x_i$   $(0 \le i < |u|)$  sa lettre de rang i

**Ensure :** Renvoie TRUE si et seulement si *u* est accepté par *A*.

 $\textit{etatCourant} \leftarrow \text{\'etat initial de } \textit{A} \,;$ 

index = 0;

while (index < |u|) do

 $lettre \leftarrow x_{index}$ ;

if  $(\delta(etatCourant, lettre)$  est indéfini) then

return FALSE;

end if

 $etatCourant \leftarrow \delta(etatCourant, lettre);$ 

 $index \leftarrow index + 1$ ;

end while

**return**  $etatCourant \in \mathcal{F}$ ;

Automates finis déterministes

## État accessible

Soit A, un automate. Un état q est dit **accessible** s'il existe un mot w tel que  $\hat{\delta}(q_{ini}, w) = q$ 

## Automate accessible

Un automate est dit accessible si tous ses états sont accessibles.

#### Propriét

Tout langage reconnu par un automate peut être reconnu par un automate accessible

## État co-accessible

Soit A, un automate. Un état q est dit **co-accessible** s'il existe un mot w tel que  $\hat{\delta}(q,w)\in\mathcal{F}$ 

17 / 5

## Automates finis déterministes

## Automate co-accessible

Un automate est dit **co-accessible** si tous ses états sont

#### Propriété

Tout langage reconnu par un automate peut être reconnu par un automate co-accessible

#### Automate émondé

Un automate est dit émondé s'il est accessible ET co-accessible

## Propriété

Tout langage reconnu par un automate peut être reconnu par un automate émondé

## Automates finis non déterministes

#### Définition

Un automate fini non déterministe est défini par

- $\bullet$  un alphabet X
- un ensemble fini Q appelé ensemble d'états
- un ensemble non vide d'états initiaux :  $Ini \in 2^{\mathcal{Q}}$ ,  $Ini \neq \emptyset$
- un sous-ensemble  $\mathcal{F} \subseteq \mathcal{Q}$  d'états dits acceptants (ou encore finals ou encore terminaux)
- une fonction  $\delta:\mathcal{Q}\times X\to 2^\mathcal{Q}$  appelée fonction de transition
- Notation :  $q_{a} \in \delta(x,q_{d})$  pourra être noté  $q_{d} \stackrel{x}{
  ightarrow} q_{a}$

## Automates finis non déterministes

## Extension de la fonction de transition

La fonction de transition peut être étendue aux mots :

$$\begin{array}{cccc} \hat{\delta}: \mathcal{Q} \times \mathit{X}^* & \to & 2^{\mathcal{Q}} \\ & (q, \varepsilon) & \mapsto & \{q\} \\ & (q, \mathit{xw}) & \mapsto & \bigcup_{q' \in \delta(q, x)} \hat{\delta}(q', w) \; (x \in \mathit{X}, w \in \mathit{X}^*) \end{array}$$

## Langage reconnu

Le langage reconnu par un automate non déterministe  $\mathcal{A}=(X,\mathcal{Q},\delta,\mathit{Ini},\mathcal{F})$  est défini par

$$\mathcal{L}(\mathcal{A}) = \{ w \in X^* | \exists q_{ini} \in Ini, \hat{\delta}(q_{ini}, w) \cap \mathcal{F} \neq \emptyset \}$$

# Équivalence entre automates finis déterministes et non déterministe

#### $REC \subseteq REC_{ND}$

Pour tout automate fini déterministe A, il existe un automate fini non déterministe  $A_{nd}$  qui reconnaît le même langage

 $A_{nd}$  peut être défini de façon triviale par

- $Q_{A_{nd}} = Q_A$
- $Ini_{A_{nd}} = \{q_{ini}\}$
- $\mathcal{F}_{A_{nd}} = \mathcal{F}_{A}$
- $\delta_{A_{pq}}(q,x) = \{\delta_A(q,x)\}\$  si  $\delta_A(q,x)$  est défini.
- $\delta_{A_{nd}}(q,x) = \emptyset$  si  $\delta_A(q,x)$  est indéfini.

21 / 54

#### 22 / 54

# Équivalence entre automates finis déterministes et non déterministe

#### $REC_{ND} \subseteq REC$

Pour tout automate fini **non** déterministe A, il existe un automate fini déterministe  $A_d$  qui reconnaît le même langage

### Automate déterministe équivalent

Pour un automate non déterministe A, un automate déterministe équivalent  $A_d$  peut être défini par

- $Q_{A_d} = 2^{Q_A}$
- $q_{ini} = Ini_A$
- $\mathcal{F}_{A_d} = \{q \in \mathcal{Q}_{A_d}, q \cap \mathcal{F}_A \neq \emptyset\}$
- $\delta_{A_d}(q, x) = \bigcup_{e \in q} \delta_A(e, x)$

Si L est reconnaissable, on pourra donc toujours supposer qu'il existe un automate à **un seul** état initial qui le reconnaît.

## Déterminisation

#### Algorithme

$$q_{ini} \leftarrow Ini_A$$
  
 $Q_{Ad} \leftarrow \{Ini_A\}$ 

while  $\exists (q, x) \in \mathcal{Q}_{A_d} \times X$ ,  $\delta_{A_d}(q, x)$  is undefined do

 $(q, x) \leftarrow$  one of such pair

 $q' \leftarrow \bigcup_{e \in q} \delta_A(e, x)$  $Q_{A_d} \leftarrow Q_{A_d} \cup \{q'\}$ 

 $\delta_{A_d}(q,x) \leftarrow q'$ 

end while

$$\mathcal{F}_{A_d} \leftarrow \{q \in \mathcal{Q}_{A_d}, q \cap \mathcal{F}_A \neq \emptyset\}$$

- L'automate obtenu est complet et complètement accessible.
- Il n'est, en général, pas minimal

## Stabilité de REC par $\cup$ , ., \*

#### Théorème

REC est close par union, concaténation et étoile de Kleene.

#### Clôture par union

Soient  $L_1 \in REC$ , reconnu par un automate  $A_1$  et  $L_2 \in REC$ , reconnu par un automate  $A_2$ . On suppose que  $\mathcal{Q}_{A_1} \cap \mathcal{Q}_{A_2} = \emptyset$  (il suffit de renommer les états si nécessaire)

L'automate non déterministe défini par

- $Q_A = Q_{A_1} \cup Q_{A_2}$
- $Ini_A = Ini_{A_1} \cup Ini_{A_2}$
- $\mathcal{F}_A = \mathcal{F}_{A_1} \cup \mathcal{F}_{A_2}$
- $\forall q \in \mathcal{Q}_{A_1}, \ \delta_A(q, x) = \delta_{A_1}(q, x)$
- $\forall q \in \mathcal{Q}_{A_2}, \ \delta_A(q, x) = \delta_{A_2}(q, x)$

reconnait le langage  $L_1 \cup L_2$ Donc  $L_1 \cup L_2 \in REC$ .

25 / 54

## Stabilité de REC par $\cup$ , ., \*

#### Clôture par concaténation

Soient  $L_1 \in REC$ , reconnu par un automate  $A_1$  et  $L_2 \in REC$ , reconnu par un automate  $A_2$ . On suppose que  $\mathcal{Q}_{A_1} \cap \mathcal{Q}_{A_2} = \emptyset$  On suppose, de plus, que  $A_2$  possède un seul état initial :  $q_{iniA2}$  L'automate non déterministe défini par

- $Q_A = Q_{A_1} \cup Q_{A_2}$
- $Ini_A = Ini_{A_1}$
- ullet  $\mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A}_2}\cup_{\mathit{Seulement si }arepsilon\in\mathcal{L}_2}\,\mathcal{F}_{\mathcal{A}_1}$
- $\forall q \in \mathcal{Q}_{A_1} \backslash \mathcal{F}_{A_1}, \ \delta_A(q, x) = \delta_{A_1}(q, x)$
- $\forall q \in \mathcal{F}_{A_1}, \ \delta_A(q, x) = \delta_{A_1}(q, x) \cup \delta_{A_2}(q_{iniA2}, x)$
- $\forall q \in \mathcal{Q}_{A_2}, \ \delta_A(q, x) = \delta_{A_2}(q, x)$

reconnait le langage  $L_1.L_2$ 

Donc  $L_1.L_2 \in REC$ .

26 / 54

## Stabilité de REC par $\cup$ , ., \*

#### Clôture par étoile de Kleene

Soient  $L_1 \in REC$ , tel que  $\varepsilon \in L$ , reconnu par un automate  $A_1$  possédant un seul état initial  $q_{iniA1}$  L'automate non déterministe défini par

- $Q_A = Q_{A_1}$
- $Ini_A = Ini_{A_1} = \{q_{iniA1}\}$
- $\mathcal{F}_A = \mathcal{F}_{A_1}$
- $\forall q \in \mathcal{Q}_{A_1} \backslash \mathcal{F}_{A_1}, \ \delta_A(q, x) = \delta_{A_1}(q, x)$
- $\bullet \ \forall q \in \mathcal{F}_{A_1}, \ \delta_A(q, x) = \delta_{A_1}(q, x) \cup \delta_{A_1}(q_{\textit{ini}A1}, x)$

reconnait le langage  $L_1^*$ 

Donc  $L_1^* \in REC$ .

Si  $L \in REC$  et  $\varepsilon \not\in L$ , on remarque que  $L^* = (L \cup \{\varepsilon\})^*$  et que  $(L \cup \{\varepsilon\}) \in REC$ . Donc  $L^* \in REC$  d'après ce qui précède.

## Stabilité de REC par ∪,.,\*

#### Théorème

 $RAT \subseteq REC$ 

- REC est close par union, concaténation et étoile de Kleene.
- *REC* contient  $\emptyset$ ,  $\{\varepsilon\}$ ,  $\{x\}$   $(\forall x \in X)$
- RAT est la plus petite famille close par union, concaténation et étoile de Kleene contenant  $\emptyset, \{\varepsilon\}, \{x\} \ (\forall x \in X)$
- RAT ⊆ REC

Tout langage rationnel peut être reconnu par un automate.

#### 28 / 54

## Équations et langages

Soient A et B deux langages. L'équation à une inconnue (notée L)

$$L=A.L\cup B$$

- Admet-elle une solution?
- Si oui, est-elle unique?
- Comment la calculer?

## Équations et langages

#### Lemme d'Arden

Soient A et B deux langages, et l'équation

$$L = A.L \cup B$$

- A\*.B est une solution.
- A\*.B est une solution minimale.
- si  $\varepsilon \not\in A$ , alors  $A^*.B$  est l'**unique** solution .

Remarque : Si  $A \in RAT$ ,  $B \in RAT$  et  $\varepsilon \not\in A$ , l'unique solution  $A^*B \in RAT$ 

## Équations et langages

### Système d'équations

Un système à n inconnues  $L_i$ ,  $(1 \le i \le n)$  et n équations

$$(i) L_i = \bigcup_{i=1}^n A_{i,j}.L_j \cup B_i$$

où les  $A_{i,j}$  et les  $B_i$  sont des langages et où  $\varepsilon \notin A_{i,j}$ 

- admet une solution unique.
- si les  $A_{i,i}$  et  $B_i$  sont rationnels, alors chaque  $L_i$  est rationnel.

## Équations et langages

#### Notation

Si les  $A_{i,j}$  et  $B_i$  sont rationnels, alors on pourra

- ullet utiliser le signe + à la place de  $\cup$
- utiliser des expressions rationnelles à la place des langages

En d'autres termes, la notation :

(i) 
$$L_i = e_{i,1}L_1 + e_{i,2}L_2 + \dots e_{i,n}L_n + e'_i$$

où les  $e_{i,j}$  et  $e_i'$  sont des expressions rationnelles a la même signification que

(i) 
$$L_i = \mathcal{L}(e_{i,1}).L_1 \cup \mathcal{L}(e_{i,2}).L_2 \cup \dots \mathcal{L}(e_{i,n}.)L_n \cup \mathcal{L}(e'_i)$$

31 / 54

## Équations et langages

## Langages $L_q$ , définition

Soit un automate  $\mathcal{A}=(X,\mathcal{Q},q_{ini},\mathcal{F},\delta)$  et un état  $q\in\mathcal{Q}$ ,

$$L_q = \{ w \in X^* | \hat{\delta}(q, w) \in \mathcal{F} \}$$

#### Propriété

$$L_{q_{ini}} = \mathcal{L}(\mathcal{A})$$

## Système d'équations des $L_q$ (cas de l'automate déterministe)

• si  $q \notin \mathcal{F}$  :

$$L_q = \bigcup_{x \in X} \{x\}.L_{\delta(q,x)}$$

ullet si  $q\in\mathcal{F}$  :

$$L_q = \{\varepsilon\} \cup \bigcup_{x \in X} \{x\} . L_{\delta(q,x)}$$

Équations et langages

## Système d'équations associées à un automate déterministe (définition)

À tout automate déterministe A, on associe un système de  $card(\mathcal{Q})$  équations à  $card(\mathcal{Q})$  inconnues (notées ici  $L_q$ ).  $(e_q)$ :

- $L_q = \bigcup_{x \in X} \{x\}.L_{\delta(q,x)}$ , si  $q \notin \mathcal{F}$
- $L_q = \{\varepsilon\} \cup \bigcup_{x \in X} \{x\}. L_{\delta(q,x)}$ , si  $q \in \mathcal{F}$ :

#### Proposition

- Le système d'équations admet une solution unique.
- ullet La solution pour chaque  $L_q$  est un langage rationnel.

## Méthode de résolution

Système d'équations linéaire et utilisation du lemme d'Arden

33 / 54

34 / 54

## Théorême de Kleene : *REC* = *RAT*

## $REC \subseteq RAT$

Pour tout automate déterministe A

- $\bullet$  Chaque  $L_q$  admet une solution unique, qui est un langage rationnel.
- ullet  $\mathcal{L}(A) = \mathcal{L}_{q_{ini}}$  est un langage rationnel

Donc  $REC \subseteq RAT$ 

#### Théorème de Kleene

$$RAT = REC$$

## Résiduels

#### Langage résiduel : définition

Pour tout langage  $L\subseteq X^*$  et tout mot  $u\in X^*$  on appelle **langage** résiduel de L par u le langage

$$u^{-1}L = \{ v \in X^* | u.v \in L \}$$

## Propriétés « constructives » des résiduels

 $\forall u \in X^*, \forall x \in X, \forall L \subseteq X^*$ ,

$$(u.x)^{-1}L = x^{-1}(u^{-1}L)$$
(1)

$$u^{-1}(L_1 \cup L_2) = u^{-1}L_1 \cup u^{-1}L_2 \tag{2}$$

$$x^{-1}(L_1.L_2) = (x^{-1}L_1).L_2 \cup Eps(L_1).(x^{-1}L_2)$$
 (3)

$$x^{-1}L^* = (x^{-1}L).L^* \tag{4}$$

où  $\mathit{Eps}(L) = L \cap \{\varepsilon\}$ 

36 / 54

## Équations et langages

#### Propriété

Soit L un langage et  $u \in L, u \neq \varepsilon$ . u s'écrit x.v où x est sa 1ère lettre

$$u = x.v \in L \iff v \in x^{-1}L \iff u \in x.(x^{-1}L)$$

En conséquence,

• si  $\varepsilon \notin L$  :

$$L = \bigcup_{x \in X} x.(x^{-1}L)$$

• si  $\varepsilon \in L$  :

$$L = \bigcup_{x \in X} x.(x^{-1}L) \cup \{\varepsilon\}$$

## Exemple de calcul des résiduels

$$L = ab(ab)^*(ca + b)*$$

$$a^{-1}L = b(ab)^*(ca + b)*$$

$$(aa)^{-1}L = \emptyset$$

$$(ab)^{-1}L = (ab)^*(ca + b)^*$$

$$(ac)^{-1}L = \emptyset$$

$$(aba)^{-1}L = b(ab)^*(ca + b)^*$$

$$(abb)^{-1}L = (ca + b)^*$$

$$(abc)^{-1}L = \emptyset$$

$$(abb)^{-1}L = \emptyset$$

$$(abb)^{-1}L = (ca + b)^*$$

$$(abb)^{-1}L = (ca + b)^*$$

$$(abc)^{-1}L = a(ca + b)^*$$

$$(abc)^{-1}L = a(ca + b)^*$$

$$(abc)^{-1}L = (ca + b)^*$$

$$(abc)^{-1}L = (abc)^{-1}L$$

$$(abc)^{-1}L = \emptyset$$

37 / 54

20 / 54

## Automate des résiduels



39 / 54

## Automate des résiduels

## Automate des résiduels

Soit  $L \subseteq X^*$  possédant un nombre fini de résiduels, on définit son automate des résiduels (automate déterministe)

- $Q = \{u^{-1}L, u \in X^*\}$  (ensemble (fini) des résiduels de L)
- $q_{ini} = L = \varepsilon^{-1}L$
- $\mathcal{F} = \{u^{-1}L \in \mathcal{Q}, \ \varepsilon \in u^{-1}L\} = \{u^{-1}L, \ u \in L\}$
- $\forall (u^{-1}L) \in \mathcal{Q}, \ \forall x \in X, \ \delta(u^{-1}L, x) = (ux)^{-1}L = x^{-1}(u^{-1}L)$

#### Propriété

Si L possède un nombre fini de résiduels, l'automate des résiduels de L reconnaît L.

## Propriété

Tout langage possédant un nombre fini de résiduels est reconnaissable.

10 / 54

## Résiduels et automates

## Propriété

Soit A, automate **déterministe**,  $q \in Q$  un état et  $u \in X^*$  un mot :

$$\hat{\delta}(q_{ini}, u) = q \Rightarrow L_q = u^{-1}\mathcal{L}(A)$$

## Propriété

Soit automate **déterministe et accessible** reconnaissant L, chaque langage  $L_q$  est un résiduel de L.

#### Propriété

Dans un automate **déterministe complet** reconnaissant L, pour tout résiduel R de L, il existe <u>au moins</u> un état q tel que  $L_q = R$ .

#### Propriété

Tout automate **déterministe complet** possède une nombre d'états au moins égal au nombre de résiduels du langage reconnu.

## Résiduels et reconnaissables

## Propriété

Tout langage reconnaissable admet un nombre fini de résiduels

#### Propriété

Un langage est reconnaissable si et seulement si il admet un nombre fini de résiduels

#### Propriété

Tout langage reconnaissable admet un automate déterministe complet minimal unique.

Cet automate est son automate des résiduels.

## Minimalisation

#### Congruence de Nérode

Définie sur les états d'un automate déterministe et accessible par

$$p \cong q \iff L_p = L_q$$

#### C'est bien une congruence

- compatible avec  $\delta$  :  $\forall x \in X, p \cong q \iff \delta(p, x) \cong \delta(q, x)$
- ullet sature  $\mathcal{F}: p \cong q \Rightarrow (p \in \mathcal{F} \iff q \in \mathcal{F})$

#### Nombre de classes d'équivalence

Autant de classes d'équivalence que d'ensembles  $L_q$  distincts, donc autant que de langages résiduels

#### Conclusion

L'automate quotient est l'automate minimal

43 / 5

## Minimalisation, méthode de Moore

## Algorithme de Moore : calcul de la congruence de nérode

Calcul récurrent

0

$$p \cong_0 q \iff (p \in \mathcal{F} \iff q \in \mathcal{F})$$

2 états sont équivalents (niveau 0) s'ils sont tous deux acceptants ou tous deux non acceptants.

**a** 

$$p \cong_{i+1} q \iff p \cong_i q \text{ et } \forall x \in X, \delta(p, x) \cong_i \delta(q, x)$$

2 états sont équivalents au niveau i+1 s'ils le sont au niveau i **ET** si pour toute lettre x les états obtenus par x depuis ces 2 états sont équivalents au niveau i.

- le calcul est itéré jusqu'à n tel que  $\cong_n = \cong_{n-1}$
- $\bullet \cong = \cong_n$

44 / 54

## Minimalisation, méthode de Moore

#### Partition de l'ensemble d'états par raffinements successifs

Les états sont répartis en classes qui sont raffinées à chaque étape. On note  $[q]_i$  la classe de q à l'étape i.

On note  $x_1, x_2, ... x_m$  les lettres de l'alphabet.

- au départ (i = 0), 2 classes :  $\{\mathcal{F}, Q \mathcal{F}\}$
- passer de l'étape i à i+1:

Pour chaque classe, établir le « profil » de chaque état :

$$\textit{profil}_{\textit{i}}(\textit{q}) = ([\delta(\textit{q},\textit{x}_1)]_{\textit{i}} \;,\; [\delta(\textit{q},\textit{x}_2)]_{\textit{i}} \;,\; \ldots \;,\; [\delta(\textit{q},\textit{x}_m)]_{\textit{i}})$$

si plusieurs profils distincts apparaissent, la classe est scindée : une partie par profil, regroupant les états de même profil.

- fin quand aucune partie n'a été scindée lors d'une étape.
- les classes obtenues sont les classes de l'équivalence de Nérode
- l'automate minimal est l'automate « quotient »

## Minimalisation, méthode de Moore

#### Automate minimal

- $\bullet \ \mathcal{Q}^{min} \ = \ \{ \ [q] \ , q \in Q \}$
- $\bullet \ \mathcal{F}^{min} = \{ [q], [q] \subseteq \mathcal{F} \}$
- $\bullet \ \delta([q], x) = [\delta(q, x)]$

46 / 54

## Exemple de minimalisation (algo de Moore)

## Automate initial (déterministe complet et accessible)



#### Étape 0

Créer 2 classes A et B

- une pour les états acceptants
- une pour tous les autres

## Exemple de minimalisation (algo de Moore)

# **Étape 0** (résultat) $A = \{q_2, q_3\} \subseteq \mathcal{F}, \ B = \{q_0, q_1\}$



## Étape 1

$$\begin{array}{c|ccc} A & a & b \\ \hline q_2 & B & A \\ q_3 & B & A \end{array}$$

 $q_2$  et  $q_3$  ont même profil. A n'est pas scindée.

$$\begin{array}{c|ccc}
B & a & b \\
\hline
q_0 & A & B \\
q_1 & A & A
\end{array}$$

 $q_0$  et  $q_1$  ont des profils distincts (donc sont **non** équivalents).

On scinde B en 2 classes :

 $B_A = \{q_0\}, B_B = \{q_1\}$ 

## Exemple de minimalisation (algo de Moore)

## **Étape 1** (résultat)

$$A = \{q_2, q_3\} \subseteq \mathcal{F}, \ B_A = \{q_0\}, \ B_B = \{q_1\}$$



#### Étape 2

$$\begin{array}{c|ccc} A & a & b \\ \hline q_2 & B_A & A \\ q_3 & B_A & A \end{array}$$

 $q_2$  et  $q_3$  sont équivalents. A n'est pas scindée.

Les classes  $B_A$  et  $B_B$  ne peuvent pas être scindées (singletons).

## Exemple de minimalisation (algo de Moore)

## Étape 2 (résultat)

$$A=\{q_2,q_3\}\subseteq\mathcal{F},$$





Classes d'équivalence inchangées, donc algorithme terminé.

Les classes obtenues sont les états de l'automate minimal.

E0 / E4

## Exemple de minimalisation (algo de Moore)



Automate déterministe complet minimal

## Exemple de minimalisation (algo de Moore)

## Automate initial (déterministe complet et accessible)



#### Étape 0

Créer 2 classes A et B

- une pour les états acceptants
- une pour tous les autres

52/

## Exemple de minimalisation (algo de Moore)

## Étape 0 (résultat)

$$A = \{q_1, q_2, q_3\} \subseteq \mathcal{F}, B = \{q_0\}$$



## Étape 1

$$\begin{array}{c|cccc} A & a & b \\ \hline q_1 & A & B \\ q_2 & B & A \\ q_3 & A & A \\ \end{array}$$

Les états présentent 3 profils distincts : (A, B), (B, A), (A, A)A est scindée en 3.

## Exemple de minimalisation (algo de Moore)

## Étape 1 (résultat)

$$A_A = \{q_1\}, A_B = \{q_2\}, A_C = \{q_3\}$$
  
 $A_A \subseteq \mathcal{F}, A_B \subseteq \mathcal{F}, A_C \subseteq \mathcal{F}$   
 $B = \{q_0\}$ 



#### Étape 2

Plus aucun raffinement n'est possible..

NB : on est revenu à l'automate initial, qui était donc minimal

53 / 54