

Doc. Number :
☐ Tentative Specification
☐ Preliminary Specification
Approval Specification

MODEL NO.: G238HCJ SUFFIX: L02

Customer: Comm	on
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By

CONTENTS

1.	GENERAL DESCRIPTION	5
	1.1 OVERVIEW	5
	1.2 GENERAL SPECIFICATIONS	5
2.	MECHANICAL SPECIFICATIONS	5
3.	ABSOLUTE MAXIMUM RATINGS	6
	3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
	3.2 ELECTRICAL ABSOLUTE RATINGS	6
	3.2.1 TFT LCD MODULE	6
	3.2.2 BACKLIGHT UNIT	7
	4.1 FUNCTION BLOCK DIAGRAM	8
	4.2. INTERFACE CONNECTIONS	8
	BACKLIGHT UNIT(Converter connector pin)	10
	4.3 ELECTRICAL CHARACTERISTICS	11
	4.3.1 LCD ELETRONICS SPECIFICATION	11
	4.3.2 Vcc POWER DIP CONDITION	13
	4.3.3 BACKLIGHT UNIT	13
	4.3.4 POWER CONNECTOR PIN ASSIGNMENT	15
	4.4 LVDS INPUT SIGNAL SPECIFICATIONS	16
	4.4.1 LVDS DATA MAPPING TABLE	16
	4.4.2 COLOR DATA INPUT ASSIGNMENT	17
	4.5 DISPLAY TIMING SPECIFICATIONS	18
	4.6 POWER ON/OFF SEQUENCE	20
5.	OPTICAL CHARACTERISTICS	22
	5.1 TEST CONDITIONS	22
	5.2 OPTICAL SPECIFICATIONS	22
6.	RELIABILITY TEST ITEM	26
7.	PACKING	27
	7.1 PACKING SPECIFICATIONS	27
	7.2 PACKING METHOD	27
	7.3 PALLET	28
	7.4 UN-PACKING METHOD	29
8.	Innolux MODULE LABEL	30
9.	PRECAUTIONS	31
	9.1 ASSEMBLY AND HANDLING PRECAUTIONS	31
	9.2 STORAGE PRECAUTIONS	31

Appendix. OUTLINE DRAWING		33
9.4 SAFETY PRECAUTIONS		32
9.3 OPERATION PRECAUTIONS	S	32

REVISION HISTORY

Version	Date	Section	Description
2.0	2021.1.29	All	Approval Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G238HCJ-L02 is a 23.8" TFT Liquid Crystal Display MNT module with WLED Backlight unit and 30 pins 2ch-LVDS interface. This module supports 1920 x 1080 Full HD mode and can display up to 16.7M colors.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	23.8" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.2745 (H) x 0.2745 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	=
Display Colors	16.7M	color	-
Transmissive Mode	Normally black	-	=
Surface Treatment	AG type, 3H hard coating, Haze 25	-	-
Luminance, White	450	Cd/m2	
Color Gamut	72% of NTSC(Typ.)	-	
ROHS, Halogen Free &TCO 7.0	ROHS, Halogen Free TCO 7.0 compliance	-	
Power Consumption	Total (23.49)W(Max.)@cell (4.29)W (Max.), BL (Max.)	(19.2)W	(1)

Note (1) The specified power consumption: Total= cell (reference 4.3.1)+BL (reference 4.3.3)

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note	
	Horizontal (H)	539.74	540.24	540.74	mm		
Module Size	Vertical (V)	315.16	315.66	316.16	mm	(1)	
	Thickness (T)	13.05	13.55	13.85	mm		
Pozol Aron	Horizontal	529.74	530.24	530.74	mm		
Bezel Area	Vertical	299.16	299.66	300.16	mm		
Active Area	Horizontal		527.04		mm		
Active Alea	Vertical		296.46		mm		
Weight		2043	2270	2384	g		

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Thickness(T) of LB CNT is 12.8mm(Typ)

Note (2)

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Linit	Noto
item	Symbol	Min.	Max.	Unit	Note
Storage Temperature	TST	-20	60	°C	(1), (2)
Operating Ambient Temperature	TOP	0	60	°C	(1), (2)

Note (1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) Panel surface temperature should be 0° C min. and 65° C max under Vcc=5.0V, Input fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control. Any condition of ambient operating temperature, the surface of active area should be keeping not higher than 65° C.

Relative Humidity (%RH)

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Symbol		Unit	Note
		Min.	Max.		
Power Supply Voltage	VCCS	-0.3	6.0	٧	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

3.2.2 BACKLIGHT UNIT

Itom	Cumbal	Symbol		Linit	Note	
Item	Symbol	Min.	Max.	Unit	Note	
Converter Voltage	Vi	-0.3	18	V	(1), (2)	
Enable Voltage	EN		5.5	V		
Backlight Adjust	Dimming		5.5	V		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 4.3.3 for further information).

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	For LCD internal use only, Do not connect
Pin	Name	Description

26	NC	For LCD internal use only, Do not connect
27	NC	For LCD internal use only, Do not connect
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.:

Foxconn; GS23301-0321R-7H

or FCN: WF13-422-3033 or P-TWO: 187098-30091 or equivalent.

Note (2) User's connector Part No:

Mating Wire Cable Connector Part No.: FI-X30H(JAE) or FI-X30HL(JAE)

Mating FFC Cable Connector Part No.: 217007-013001 (P-TWO) or JF05X030-1 (JAE).

Note (3) The first pixel is odd.

BACKLIGHT UNIT(Converter connector pin)

Pin	Symbol	Description	Remark
1	V_{i}	Converter input voltage	12V
2	V _i	Converter input voltage	12V
3	V _i	Converter input voltage	12V
4	V _i	Converter input voltage	12V
5	V_{GND}	Converter ground	Ground
6	V_{GND}	Converter ground	Ground
7	V_{GND}	Converter ground	Ground
8	V_{GND}	Converter ground	Ground
9	EN	Enable pin	3.3V
10	Dimming	Backlight Adjust	PWM Dimming (Hi: 3.3V _{DC} , Lo: 0V _{DC})

Note (1)Connector Part No.: CI4310M1HR0-NH (Cvilux) or equivalent.

Note (2)User's connector Part No.: Cl4310S0000 (Cvilux) or equivalent.

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Parame	tor	Symbol		Value		Unit	Note
Falaille	;lei	Syllibol	Min.	Тур.	Max.	Offic	Note
Power Supply	Vcc	4.5	5.0	5.5	V	=	
Ripple Vo	V_{RP}	-	-	300	mV	=	
Rush Cui	rent	I _{RUSH}	-	-	3	Α	(2)
	White		-	0.362	0.449	Α	(3)a
Power Supply Current	Black		-	0.361	0.434	Α	(3)b
	Vertical Stripe			0.703	0.836	Α	(3)c
Power Cons	umption	PLCD	-	3.516	4.29	Watt	(4)
LVDS differential	input voltage	Vid	100	ı	600	mV	
LVDS common in	Vic	1.0	1.2	1.4	V		
LVDS Logic High	VIH	-	ı	0.1	V		
LVDS Logic Low I	nput Voltage	VIL	-0.1	-		V	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) Measurement Conditions:

Vcc rising time is 470µs

Note (3) The specified max power supply current is under the conditions at Vcc = 5.0 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, Fr = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition

Single-end Signals

4.3.2 Vcc POWER DIP CONDITION

Dip condition:4.0 ≦ Vcc ≦ 4.5, Td ≦ 20ms

4.3.3 BACKLIGHT UNIT

Ta = 25 ± 2 ℃

Paramete	\n	Cumbal		Value		Linit	Note
Paramete)	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Power Su	V_{i}	10.8	12.0	13.2	V		
Converter Power Su	pply Current	l _i	-	1.3	1.6	А	@ Vi = 12V (Duty 100% For Vf 3.05Vmax)
Backlight Power Co	P_{BL}	-	15.6	19.2	W	@ Vi = 12V (Duty 100%)	
EN Control Level	Backlight on		2.0	3.3	5.0	V	
EN Control Level	Backlight off	-	0	-	0.15	V	
PWM Dimming Control	PWM High Level		2.0	3.3	5.0	V	
Level	PWM Low Level	-	0	-	0.15	V	
PWM Dimming Contr	ol Duty Ratio	-	1	-	100	%	@200Hz
PWM Dimming Contr	ol Frequency	f _{PWM}	190	200	20k	Hz	(2)
LED Life Ti	me	LL	50,000	-	-	Hrs	(3)

Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) At 20k Hz PWM control frequency, duty ratio range is restricted from 20% to 100%.

Note (3) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at $Ta = 25 \pm 2 \,^{\circ}$ C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

Power sequence and control signal timing are shown in the following figure

Note: While system is turned ON or OFF, the power sequences must follow as below descriptions

Turn ON sequence: Vi(+12V) → EN → Dimming

Turn OFF sequence: Dimming → EN → Vi(+12V)

Note (4)

4.3.4 POWER CONNECTOR PIN ASSIGNMENT

Connector: CI1406M1VL0-NH (CviLux) or Compatible

CN1

Pin number	Description
1	Cathode of LED string
2	Cathode of LED string
3	VLED
4	VLED
5	Cathode of LED string
6	Cathode of LED string

Note(1) Connector(wire type): CI1406M1VL0-NH (CviLux) or equivalent.

Note(2) User's mating connector part No.: FCN(WF1300106-B) and hook width must be less than 4.5mm.

Light Bar

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel O0	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVDS Channel E0	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Charmer E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel E2	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	1						Βlι	Jе			
	COIOI	R7	R6	R5	R4	R3	R2	R1	R0	G 7	G 6	G 5	G 4	G3	G2	G1	G0	B 7	В6	B5	В4	ВЗ	B2	B 1	B 0
	Black Red	0 1	0	0	0	0 1	0 1	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	О	О	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	_ :	:	:	:	:	:		:		:		:		:	:	:			:		:	:	:	:	
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	:0	0	0	0	0	0	0	0	0	0	0	0	:0
1	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:		:	:	:			-		:	:	:	:	:	:	:		:		-	:		:	:	
Of	:	:		:	:	:	:	:	:	:	:	:		:	:	:	:		:	:	:	-	: 0	•	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254) Green(255)	0	0	0	0	0	0	0	0	1 1	1 1	1	1 1	1	1	1 1	0 1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	ó
Gray	. ·																								ĭ
Scale		:	:		:	:	:	:					:	:			:	:		:					
Of	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(254)	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	1	1	1	1	1	1	1	o l
	Blue(255)	0	0	0	0	0	0	0	0	0	Ö	Ö	0	0	0	0	0	1	1	1	1	1	1	1	1
	_:::(===)				Ť	<u> </u>	<u> </u>		_	_	-	-	_	_		_	-	•	<u> </u>	•		· ·	•	•	

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	56	74.25	(97.98)	MHz	-
	Period	Tc	-	13.47	-	ns	
	Input cycle to cycle jitter	T _{rcl}	-0.02*Tc	-	0.02*Tc	ns	(1)
	Input Clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ps	(2)
LVDS Clock	Spread spectrum modulation range	F _{clkin_mod}	0.97*Fc	-	1.03*Fc	MHz	(2)
	Spread spectrum modulation frequency	F _{SSM}	-	-	100	KHz	(3)
	Frame Rate	Fr	49	60	77	Hz	Tv=Tvd+Tvb
	Total	Tv	1100	1125	1257	Th	-
Vertical Display Term	Active Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	20	45	177	Th	-
	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	960	960	960	Тс	-
	Blank	Thb	90	140	190	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

Please make sure the range of pixel clock has follow the below equation and Fc, Fr, Tv, Th not allowed to get beyond the min or max spec.

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) Input Clock to data skew is defined as below figures.

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note(4) Note(4) The DCLK range at last line of V-blank should be set in 0 to Hdisplay/2

Version 2.0 29 January 2021 19 / 34

4.6 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter		Value		Units
Parameter	Min	Тур	Max	Offics
T1	0.5	1	10	ms
T2	0	1	50	ms
Т3	0	1	50	ms
T4	500	1	-	ms
T5	450	1	-	ms
T6	200	-	-	ms
T7	10	1	100	ms
Т8	10	-	-	ms
Т9	10	-	-	ms
T10	20		50	ms

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V_{CC}	5	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
LED Light Bar Input Current Per Input Pin	I _{PIN}	(120± 2.55)	mA _{DC}				
PWM Duty Ratio	D	100	%				
LED Light Bar Test Converter		INX 35-D080484					

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.652			
	Red	Ry			0.337			
	Green	Gx			0.313			
Color Chromaticity	Oreen	Gy		Тур –	0.626	Typ +		(1) (5)
(CIE 1931)	Blue	Bx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	0.03	0.151	0.03	_	(1), (5)
(0.2 1001)	blue	Ву	CS-2000 R=G=B=255		0.066			
	White	Wx	Gray scale		0.313	•		
	vvriite	Wy	•		0.329			
Center Lumina (Center of		L _C		360	450	-	cd/m ²	(4), (5)
Contrast	Ratio	CR		700	1000	-	-	(2), (5)
		T _R		-	8			
Respons	e Time	T _F	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		7		ms	(3)
·		T _{GtG_AVE}	, , ,	-	14			, ,
White Va	ariation	δW	θ _x =0°, θ _Y =0°	75			%	(5), (6)
Viewing Angle	Horizontal	$\theta x - + \theta x +$	CR ≧ 10	170	178	-	Deg.	(1), (5)
viewing Angle	Vertical	θ y- + θ y+	OI\ ≦ 10	170	178	-	Deg.	(1), (3)

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time:

- -The T_R is the rising-time means the transition time from "Full-Black (gray 0)" to "Full-White (gray 255)" and the T_F is the falling-time means the transition time from "Full-White (gray 255)" to "Full-White (gray 0)" as the following figure.(Measured by TEKTRONIX TDS3054B).
- -The T_{GtG} is the response time means the transition time from "Gray N" to "Gray M" (N,M=0~255).

- T_{GtG AVE} is the total average of the T_{GtG} data (Measured by INX GTG instrument)
- The gray (N,M) stands for the (0,31,63,~255) as the following table.
- If system uses ODC (Over Driving Circuit) function, T_{GtG} AVE may be 5ms~10ms.
- * It depends on Overshoot rate.

Gray to	Cray		Rising time										
Gray to	Glay	0	31	63	95	127	159	191	223	255			
	0												
1 [31												
1 [63												
1 [95												
Falling time	127												
1 [159												
1 [191												
1 [223												
	255												

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_{\rm C} = L (5)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = Minimum [L (1) \sim L (9)] / Maximum [L (1) \sim L (9)]$

6. RELIABILITY TEST ITEM

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta=50℃ , 80%RH, 240hours	
High Temperature Operation (HTO)	(Ta=50℃, 240hours)	
Low Temperature Operation (LTO)	Ta= 0 [°] C , 240hours	(1)(2)(4)(5)
High Temperature Storage (HTS)	Ta= 60°C , 240hours	
Low Temperature Storage (LTS)	Ta= -20 $^{\circ}$ C , 240hours	
	Acceleration: 1.5 G	
	Wave: sine	
Vibration Test	Frequency: 10 - 300 Hz	
(Non-operation)	Sweep: 30 Minutes each Axis (X, Y, Z)	(2) (2)
	Acceleration: 50 G	(2) (3)
	Wave: Half-sine	
Shock Test	Active Time: 11 ms	
(Non-operation)	Direction: ± X, ± Y, ± Z.(one time for each Axis)	
Thermal Shock Test (TST)	(-20°C/30min , 60°C / 30min , 100 cycles)	

- Note (1)There should be no condensation on the surface of panel during test,
- Note (2) Temperature of panel display surface area should be 65°C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

7. PACKING

7.1 PACKING SPECIFICATIONS

(1) 12 LCD modules / 1 Box

(2) Box dimensions: 620(L) X 348(W) X 390(H) mm

(3) Weight: approximately: 28.8kg

7.2 PACKING METHOD

Figure. 7-1 Packing method

7.3 PALLET

For ocean shipping

Sea / Land Transportation (40ft HQ Container) Sea / Land Transportation (40ft Container)

For air transport

Figure. 7-2 Packing method

7.4 UN-PACKING METHOD

Figure. 7-3 UN-Packing method

8. Innolux MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: G238HCJ-L02

(b) * * * * : Factory ID

(c) Innolux barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description	
XX	Innolux internal use	-	
XX	Revision	Cover all the change	
Χ	Innolux internal use	-	
XX	Innolux internal use	-	
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.	
Х	INX internal use	Grade Code	
NNNN	Serial number	Manufacturing sequence of product	

INNOLUX 群創光電

PRODUCT SPECIFICATION

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

9.2 STORAGE PRECAUTIONS

- (1)When storing for a long time, the following precautions are necessary.
 - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 30° C at humidity 50+-10%RH.
 - (b) The polarizer surface should not come in contact with any other object.
 - (c) It is recommended that they be stored in the container in which they were shipped.
 - (d) Storage condition is guaranteed under packing conditions.
 - (e) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

9.3 OPERATION PRECAUTIONS

- (1) Normal operating condition
 - (a)Display pattern: dynamic pattern (Real display)
 - (Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Suitable operating time: under 16 hours a day.
 - (b) Static information display recommended to use with moving image.
 - (c)Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
- (3) Abnormal condition just means conditions except normal condition.

9.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

9.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

9.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

Appendix. OUTLINE DRAWING

