LCIE

Etablissement de Moirans

ZI Centr'alp 170, rue de Chatagnon 38430 Moirans

RCS Grenoble 408 363 174

Tél.: +33 4 76 07 36 36 Fax: +33 4 76 55 90 88

TEST REPORT

N°: 810533-A1-R2-E JDE: 131655

Subject

Electromagnetic compatibility and Radio spectrum Matters (ERM) tests according to standards: FCC CFR 47 Part 15, Subpart B et C RSS-210 Issue 8

Issued to

SOLEM

ZAE la Plaine 5 rue Georges Besses.

34830 - CLAPIER

Apparatus under test

♥ Product

Hose End Controller

Trade mark

SOLEM

Manufacturer

SOLEM

Model under test

BL-NR-US

Serial number

BLNR-0203C6 and BLNR-020CB3

♥ FCCID

YWW-BLNR

& ICID

9319A-BLNR

Test date

From November 17th to 26th, 2014

Test location

Moirans

Test performed by

G.Deschamps

Composition of document

32 pages

Modification of the last version

None

Document issued on

February 10th, 2015

Written by: Gaëtan Deschamps Tests operator

Approved BORATOIRE CENTRAL DES DUSTRIES ELECTRIQUES CIE SUD-EST calimanagerip 70, Rue de Chatagnon

38430 MOIRANS Tel. 04 76 65 36 36 Fay 0 76 55 90 88

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested .Unless otherwise specified; the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

Société par Actions Simplifiée

LCIE

33. av du Général Leclerc

Tel: +33 1 40 95 60 60

Tay: +33 1 40 95 86 56

contact@lcie.lr

au capital de 15 745 984 €

92266 Fontenay-aux-Roses cedex France

www.lcie.fr

RCS Nanterre B 408 363 174 mov.spl.www

SUMMARY

1.	TEST PROGRAM	3
2.	SYSTEM TEST CONFIGURATION	4
3.	RADIATED EMISSION DATA	8
4.	BANDWIDTH (15.247)	12
5.	MAXIMUM PEAK OUTPUT POWER (15.247)	15
6.	POWER SPECTRAL DENSITY (15.247)	18
7.	BAND EDGE MEASUREMENT (15.247)	21
8.	OCCUPIED BANDWIDTH	26
9.	ANNEX 1 (GRAPHS)	28
10.	UNCERTAINTIES CHART	32

1. TEST PROGRAM

Standard: - FCC Part 15, Subpart C 15.247

- ANSI C63.4 (2003)

- RSS-210 Issue 8 - Dec 2010 - RSS-Gen Issue 3 - Dec 2010

EMISSION TEST		RESULTS			
	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	□ PASS	
Limits for conducted disturbance at mains ports	150-500kHz	66 to 56	56 to 46	□ FAIL	
150kHz-30MHz	0.5-5MHz	56	46	── ☑ NA □ NP	
	5-30MHz	60	50		
Radiated emissions 9kHz-30MHz CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-210 §A8.5	9kHz-490kHz: Measure at 30 490kHz-1.705N	Measure at 300m 9kHz-490kHz : 67.6dBμV/m /F(kHz) Measure at 30m 490kHz-1.705MHz : 87.6dBμV/m /F(kHz) 1.705MHz-30MHz : 29.5 dBμV/m			
Radiated emissions 30MHz-25GHz* CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-210 §A8.5 Highest frequency: (Declaration of provider)	216MHz-960M			☑ PASS □ FAIL □ NA □ NP	
Bandwidth 6dB CFR 47 §15.247 (a) (2) RSS-210 §A8.2	At least 500kF	łz		☑ PASS □ FAIL □ NA □ NP	
Maximum Peak Output Power CFR 47 §15.247 (b) RSS-210 §A8.4 (4)	Limit: 30dBm Conducted or F	Radiated measureme	ent	☑ PASS □ FAIL □ NA □ NP	
Band Edge Measurement CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-210 §A8.5	Limit: -20dBc Radiated emis	or ssions limits in rest	ricted bands	☑ PASS ☐ FAIL ☐ NA ☐ NP	
Power spectral Density CFR 47 §15.247 (e) RSS-210 §A8.2	Limit: 8dBm/3	kHz		☑ PASS □ FAIL □ NA □ NP	
Occupied bandwidth RSS-Gen §4.6.1	No limit			☑ PASS □ FAIL □ NA □ NP	
Receiver Spurious Emission** RSS-Gen §4.10	See RSS-Gen	§4.10		☐ PASS ☐ FAIL ☑ NA ☐ NP	

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

⁻ If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

2. **SYSTEM TEST CONFIGURATION**

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT):

BL-NR-US

Serial Number: BLNR-0203C6 and BLNR-0203A5

Photography of EUT

<u>Power supply:</u> During all the tests, EUT is supplied by V_{nom} : 9VDC For measurement with different voltage, it will be presented in test method.

Name	Туре	Rating	Reference / Sn	Comments
Supply1	□ AC □ DC ☑ Battery	-	6LR61-6AM6 9V / None	Alkaline Battery

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
Supply1	DC	0.05	V		V	-
Access 1	USB	1				Temporary USB installed for the reception of different orders (power, choice of channel, modulation etc.)

Auxiliary equipment used during test:

Type	Reference	Sn	Comments
Laptop	ThinkPad Tseries	L3-B746308/01	-

Laptop	Thi	inkPad Tseries			L3-B746	308/01		-	
Equipment infor	mation:								
Type:				Bluet	ooth Lov	v Energy v4.0			
Frequency band:		[2400 – 2483.5] MHz							
Sub-band REC70	03:				Annex	(3 (a)			
Spectrum Modula				 ✓ l	DSSS (Te	ested like it)			
Number of Chann	el:				4	-			
Spacing channel:					2M				
Channel bandwid	th:				1M				
		☑ 1		□ 2		□ 3		□ 4	
Transmit chains:			а		□ Symr	netrical		☐ Asymmetrie	cal
		Gain 1: 3dBi		n 2:	dBi	Gain 3:	dBi	Gain 4:	dBi
Beam forming gai	n:	□ Yes: dB			☑ No				
Receiver chains		☑ 1		□ 2		□ 3		□ 4	
Type of equipmen	nt:				□ Pl	☐ Plug-in		☐ Combined	
Ad-Hoc mode:						☑ No			
		☐ Yes (Load Base	ed)		□ Off	mode		☑ No	
Adaptivity mode:		Clear Ch	annel A	ssessn	nent Time:		None		
		q value fo	r Load E	Based I	Equipmen	t:		None	
Duty cycle used for tests:	or all the	☑ Continuous duty (95%)	[□ Intermittent duty □		□ Co	Continuous operation	
Real Duty cycle:		2%							
Equipment type:		☑ Production model			□ Prototype				
Chip Reference:		nRF51822 By Nordic Semiconductor							
		Tmin:	I	☑ -20°	C	□ 0°C			°C
Temperature rang	je:	Tnom:				20°C			

	Tmin:		□ 0°C	□ °C		
Temperature range:	Tnom:	20°C				
	Tmax:	□ 35°C		□°C		
Test source voltage:	□ AC:	□ DC:	☑ Battery: 9V	DC / Alkaline		

CHANNEL PLAN						
Channel	Frequency (MHz)	Channel	Frequency (MHz)			
Cmin: 0	2402	Cmid: 20	2442			
1	2404	21	2444			
2	2406	22	2446			
3	2408	23	2448			
4	2410	24	2450			
5	2412	25	2452			
6	2414	26	2454			
7	2416	27	2456			
8	2418	28	2458			
9	2420	29	2460			
10	2422	30	2462			
11	2424	31	2464			
12	2426	32	2466			
13	2428	33	2468			
14	2430	34	2470			
15	2432	35	2472			
16	2434	36	2474			
17	2436	37	2476			
18	2438	38	2478			
19	2440	Cmax: 39	2480			

DATA RATE							
Data Rate (Mbps)	Worst Case Modulation						
1	GFSK	V					

2.2. **EUT CONFIGURATION**

- The EUT is set in the following modes during tests with simulator / software (v1.93b): "Terminal" Permanent emission with modulation on a fixed channel in the data rate that produced the highest power
- Permanent reception
- The Power order sent for the Module is set at 0dBm.

2.3. EQUIPMENT MODIFICATIONS

□ None
☑ Modification:

The capacity C17 (1pF) between antenna and C9 (capacity) is removed, see following map:

2.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of $52.5dB\mu V$ is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 $dB\mu V/m$.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

The 32 dBµV/m value can be mathematically converted to its corresponding level in µV/m.

Level in μ V/m = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

3. RADIATED EMISSION DATA

3.1. ENVIRONMENTAL CONDITIONS

Date of test :November 20th, 2014

Test performed by :G.Deschamps

Atmospheric pressure (hPa) :990 Relative humidity (%) :34 Ambient temperature (°C) :17

3.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment)

☐ 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by V_{nom} .

Test setup in anechoic chamber, axis Z

3.3. TEST METHOD

<u>Pre-characterisation measurement:</u> (9kHz – 1GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

The pre-characterization graphs are obtained in PEAK detection and PEAK/AVERAGE from 1GHz to 25GHz.

Characterization on 10 meters open site from 9kHz to 1GHz:

The product has been tested according to ANSI C63.4 (2003), FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C §15.225 limits in the frequency range 13.553MHz 13.567MHz. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. Frequency list has been created with anechoic chamber pre-scan results.

Characterization on 3 meters full anechoic chamber from 1GHz to 25GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart B §15.109 limits and C §15.209 limits. Measurement bandwidth was 1MHz from 1GHz to 25GHz.

Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is

 \square On mast, varied from 1m to 4m

☑ Fixed and centered on the EUT

Frequency list has been created with anechoic chamber pre-scan results.

3.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Amplifier 1-13GHz	LCIE SUD EST	ı	A7102067	10/14	10/15
Antenna Bi-log	CHASE	CBL6111A	C2040172	04/13	04/15
Antenna horn	EMCO	3115	C2042029	09/14	09/15
Cable - Measure	-	-	A5329038	08/14	08/15
Cable Measure	-	-	A5329206	01/14	01/15
Cable Measure	-	18G	A5329603	08/14	08/15
Semi-Anechoic chamber #3	SIEPEL	-	D3044017	-	-
Radiated emission comb generator	BARDET	1	A3169050	-	-
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	01/14	01/15
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15
Turntable chamber (Cage#3)	ETS Lingren	Model 2165	F2000371	=	-
Table	LCIE	-	F2000461	-	-
Turntable controller (Cage#3)	ETS Lingren	Model 2090	F2000444	-	-

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

	Mana	□ Diverses
\mathbf{v}	None	□ Divergence:

3.6. TEST RESULTS

3.6.1. Pre-characterization at 3 meters [30MHz-1GHz]

See graphs for 30MHz-1GHz:

Graph identifier	Polarization	Mode	EUT position	Channel	Comments
Emr# 1	Н	TX	Axis XY	Min/Mid/Max	See annex 1
Emr# 2	V	TX	Axis XY	Min/Mid/Max	See annex 1
Emr# 3	Н	TX	Axis Z	Min/Mid/Max	See annex 1
Emr# 4	V	TX	Axis Z	Min/Mid/Max	See annex 1

3.6.2. Characterization on 10 meters open site from 30MHz to 1GHz

Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

No	Frequency (MHz)	Limit Quasi-Peak (dBµV/m)	Measure Quasi-Peak (dBµV/m)	Margin (Mes-Lim) (dB)	Angle Table (deg)	Pol Ant.		Correc. Factor (dB)	Comments
No significant suspect frequency.									

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

3.6.3. Characterization on 3meters anechoic chamber from 1GHz to 25GHz

Worst case final data result:

The frequency list is created from the results obtained during the pre-characterization in anechoic chamber. Measurements are performed using a PEAK and AVERAGE detection.

No	Frequency (MHz)	Limit Peak	Measure Peak	Margin Peak	Limit Average	Average* Calculated	Margin Average	Angle Table	Pol. Ant.	Ht. Ant.	FC (dB)	Remark
	(**************************************	(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(°)		(cm)	()	
1	1186.700	74.0	27.5	-46.5	54.0	-6.5	-60.5	200	Н	100	-7.3	Axis XY
2	1200.580	74.0	27.6	-46.4	54.0	-6.4	-60.4	200	Н	100	-7.2	Axis XY
3	1216.200	74.0	27.7	-46.3	54.0	-6.3	-60.3	200	Н	100	-7.1	Axis XY
4	1221.400	74.0	27.7	-46.3	54.0	-6.3	-60.3	200	Н	100	-7.1	Axis XY
5	1230.100	74.0	27.7	-46.3	54.0	-6.2	-60.2	200	Н	100	-7.1	Axis XY
6	2319.110	74.0	62.0	-12.0	54.0	28.0	-26.0	200	Н	100	-1.9	Axis XY
7	2374.150	74.0	64.7	-9.3	54.0	30.7	-23.3	200	Н	100	-1.8	Axis XY
8	2386.520	74.0	59.2	-14.8	54.0	25.2	-28.8	200	Н	100	-1.8	Axis XY
9	2488.800	74.0	61.8	-12.2	54.0	27.8	-26.2	200	Н	100	-1.6	Axis XY
10	2494.110	74.0	63.4	-10.6	54.0	29.4	-24.6	200	Н	100	-1.6	Axis XY
11	2562.200	74.0	61.5	-12.5	54.0	27.5	-26.5	200	Н	100	-1.4	Axis XY
12	4804.000	74.0	70.1	-3.9	54.0	36.1	-17.9	200	Н	100	3.9	Axis XY
13	4884.000	74.0	65.5	-8.5	54.0	31.5	-22.5	160	Н	100	4.1	Axis XY
14	4960.000	74.0	66.4	-7.6	54.0	32.4	-21.6	190	Н	100	4.3	Axis XY
15	7326.000	74.0	58.1	-15.9	54.0	24.1	-29.9	171	Н	100	8.2	Axis XY
16	7440.000	74.0	58.8	-15.2	54.0	24.8	-29.2	180	Н	100	8.5	Axis XY
17	11826.000	74.0	51.4	-22.6	54.0	17.4	-36.6	0	Н	100	11.3	Axis XY

^{*}Average results calculated with duty cycle method:

Average = Peak measure – 20*log(real duty cycle).

Note: Measures have been done at 3m distance

3.7. CONCLUSION

Radiated emission data measurement performed on the sample of the product **BL-NR-US**, SN: **BLNR-0203C6**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-210 Issue 8 limits.

4. BANDWIDTH (15.247)

4.1. TEST CONDITIONS

Date of test :November 21st, 2014

Test performed by :G.Deschamps

Atmospheric pressure (hPa) :995 Relative humidity (%) :32 Ambient temperature (°C) :19

4.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.5dB

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

Measurement Procedure:

- 1. Set resolution bandwidth (RBW) = 100kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

4.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	01/14	01/15
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

4.4.	DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION
☑ None	☐ Divergence:

4.5. TEST SEQUENCE AND RESULTS

4.6. CONCLUSION

Bandwidth measurement performed on the sample of the product **BL-NR-US**, SN: **BLNR-0203C6**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-210 Issue 8 limits.

5. MAXIMUM PEAK OUTPUT POWER (15.247)

5.1. TEST CONDITIONS

Date of test :November 21st, 2014

Test performed by :G.Deschamps

Atmospheric pressure (hPa) :995 Relative humidity (%) :32 Ambient temperature (°C) :19

5.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.5dB

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.
- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
- d is the distance in meters from which the field strength was measured.
- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30C}$$

Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

• ☑ RBW ≥ DTS bandwidth

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq 3 x RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

• ☐ Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq 3 x RBW
- c) Set the span \geq 1.5 x DTS bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

5.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	1	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	01/14	01/15
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

<i>5.4.</i>	DIVERGENCE	, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATIOI	٧

5.5. TEST SEQUENCE AND RESULTS

Modulation:

5.6. CONCLUSION

Maximum Peak Output Power measurement performed on the sample of the product **BL-NR-US**, SN: **BLNR-0203C6**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-210 Issue 8 limits.

6. Power Spectral Density (15.247)

6.1. TEST CONDITIONS

Date of test :November 21st, 2014

Test performed by :G.Deschamps

Atmospheric pressure (hPa) :995 Relative humidity (%) :32 Ambient temperature (°C) :19

6.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.5dB

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.
- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
- d is the distance in meters from which the field strength was measured.
- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30G}$$

Measurement Procedure PKPSD:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW ≥ 3 □ RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	01/14	01/15
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

6.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

6.5. TEST SEQUENCE AND RESULTS

Modulation:

6.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product **BL-NR-US**, SN: **BLNR-0203C6**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-210 Issue 8 limits.

7. BAND EDGE MEASUREMENT (15.247)

7.1. TEST CONDITIONS

Date of test :November 21st, 2014

Test performed by :G.Deschamps

Atmospheric pressure (hPa) :995 Relative humidity (%) :32 Ambient temperature (°C) :19

7.2. LIMIT

RF antenna conducted test:

Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB. For -20dBc limit, lowest power output level is considered, worst case.

Radiated emission test:

Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See results in Radiated emissions section before.

7.3. SETUP

The EUT is placed in an anechoic chamber; levels have been corrected to be in compliant with Peak Output Power measurement. The EUT is turn ON; the graphs of the restrict frequency band are recorded with a display line indicating the highest level and other the 20dB offset below to show compliance with 15.247 (d) and 15.205. The emissions in restricted bands are compared to 15.209 limits.

RBW: 100kHz VBW: 300kHz

7.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	01/14	01/15
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

7.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

$ \sqrt{} $	None	□ Divergence

7.6. TEST SEQUENCE AND RESULTS

Offset: Attenuator+cable 10.5dB **GRAPH / MODULATION.**

-20dBc limit used: Channel min, worst case: -24.71dBm

From 9 kHz to 150 kHz, channel min/mid/max:

From 150 kHz to 30 MHz, channel min/mid/max:

From 30 MHz to 1 GHz, channel min/mid/max:

From 1 GHz to 2.2 GHz, channel min/mid/max:

*In the second graph, the frequencies between the Marker M1 (1.88GHz) and M2 (1.89GHz) are not due to RF module (GSM Frequencies).

From 2.2 GHz to 2.39 GHz, channel min/mid/max:

From 2.39 GHz to 2.402 GHz, channel min/mid/max:

From 2.477 GHz to 2.5 GHz, channel min/mid/max:

From 2.5 GHz to 2.9 GHz, channel min/mid/max:

From 2.9 GHz to 8 GHz, channel min/mid/max:

From 8 GHz to 25 GHz, channel min/mid/max:

7.7. CONCLUSION

Band Edge Measurement performed on the sample of the product **BL-NR-US**, SN: **BLNR-0203C6**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-210 Issue 8 limits.

8. OCCUPIED BANDWIDTH

8.1. TEST CONDITIONS

Date of test :November 21st, 2014

Test performed by :G.Deschamps

Atmospheric pressure (hPa) :995 Relative humidity (%) :32 Ambient temperature (°C) :19

8.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.5dB

☐ Radiated measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Measurement Procedure:

- 1. RBW used should not be lower than 1% of the selected span
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. OBW 99% function of spectrum analyzer used

8.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	-	-
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	01/14	01/15
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

8.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None	□ Divergence:
--------	---------------

8.5. TEST SEQUENCE AND RESULTS

Cmin Cmid Cmax	2402			Occupied Bandwidth (MHz)	
Cmax				3.14	
Cmax	2442		3.12		
	2480		3.11		
Spectrum		Spectrum			\
Ref Level 10.50 dBm Offset 10.50 dB • RBW 1 MHz Att 15 dB SWT 1 ms • VBW 3 MHz Mo	` '	Ref Level 10.50 dBm Att 15 dE			
●1Pk View		•1Pk View	SWI THIS WEW SIMILE		
0 dBm M3	M1[1] -4.40 dBm 2.4016820 GHz —Occ Bw 3.140376266 MHz	0 dBm		M1[1] Occ Bw	-4.31 dBn 2.4416530 GH: 3.125904486 MH:
-10 dBm		-10 dBm	M1		
-20 dBm T1	T2	-20 dBm	T1	T2	
-30 dBm		-30 dBm			
-40 dBm		-40 dBm			
-50 dBm-	Marrayoush	-50 dBm			
-60 dBm		-60 dBm			
-70 dBm		-70 dBm			
-80 dBm		-80 dBm-			
CF 2.402 GHz 691 pts	Span 10.0 MHz	CF 2.442 GHz		pts	Span 10.0 MHz
Ref Att	k View	Mode Sweep M1[1] Occ Bw	-4.45 dbm 2.4796380 GHz 3.111432706 MHz		
-20 c		T2			
-30 c					
-40 c			The state of the s		
-50 c					
-70 c					
-80 c	dBm				

9. ANNEX 1 (GRAPHS)

10. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.