Аннуляторы ограниченных $(\mathfrak{g},\mathfrak{k})$ -модулей и симплектическая геометрия

Алексей Владимирович Петухов

Институт Проблем Передачи Информации

22 августа 2018 года

Дифференциальные уравнения и \mathfrak{g} -модули

Определение

Пусть X — гладкое неприводимое многообразие над \mathbb{C} , а \mathfrak{g} — алгебра Ли. **Действием** \mathfrak{g} на X называется любой гомоморфизм алгебр Ли

$$\rho: \mathfrak{g} \to \mathrm{Vect}(X)$$
.

Дифференциальные уравнения и \mathfrak{g} -модули

Определение

Пусть X — гладкое неприводимое многообразие над \mathbb{C} , а \mathfrak{g} — алгебра Ли. **Действием** \mathfrak{g} на X называется любой гомоморфизм алгебр Ли

$$\rho: \mathfrak{g} \to \mathrm{Vect}(X)$$
.

Тезис: \mathfrak{g} -модули = $\begin{array}{c}$ линейные дифференциальные уравнения (на X)

$$\mathrm{U}(\mathfrak{g})/\mathrm{Ann}_{\mathrm{U}(\mathfrak{g})}f\leftarrow\mathrm{Ann}_{\mathrm{U}(\mathfrak{g})}f\leftarrow f,$$
 $(m,M)
ightarrow\mathrm{Ann}_{\mathrm{U}(\mathfrak{g})}m\leftarrow$ Решения $ho(\mathrm{Ann}_{\mathrm{U}(\mathfrak{g})}m).$

$(\mathfrak{g},\mathfrak{k})$ -модули

Пусть $\mathfrak{k}\subset\mathfrak{g}$ — это подалгебра Ли, а M — какой-то \mathfrak{g} -модуль.

могут существовать подалгебры, действие которых интегрируется до действия их присоединённых групп

Определение

M называется $(\mathfrak{g},\mathfrak{k})$ -модулем, если $\forall m \in M(\dim(\mathrm{U}(\mathfrak{k})m) < \infty).$

Пример

Пусть V — это какой-то конечномерный \mathfrak{k} -модуль. Тогда $\mathrm{U}(\mathfrak{g})\otimes_{\mathrm{U}(\mathfrak{k})}V$ является $(\mathfrak{g},\mathfrak{k})$ -модулем.

Пример

$$\mathfrak{g} = \mathfrak{gl}(n) = \langle x_i \partial_j \rangle_{1 \le i, j \le n}, \mathfrak{k} = \mathfrak{so}(n),$$
 $M := \{ (x_1^2 + ... + x_n^2)^d f \mid \deg f + 2d = \sqrt{2} \}.$ $M \cong_K \oplus_{k \ge 0} R_K(k\pi_1).$

Подалгебра Фернандо-Каца

Теорема

Если $\dim \mathfrak{g} < \infty$, то существует наибольшая подалгебра Ли $\mathfrak{k} \subset \mathfrak{g}$, для которой M — это $(\mathfrak{g},\mathfrak{k})$ -модуль. Она называется подалгеброй Фернандо-Каца и обозначается $\mathfrak{g}[M]$.

Подалгебра Фернандо-Каца

Теорема

Если $\dim \mathfrak{g} < \infty$, то существует наибольшая подалгебра Ли $\mathfrak{k} \subset \mathfrak{g}$, для которой M — это $(\mathfrak{g},\mathfrak{k})$ -модуль. Она называется подалгеброй Фернандо-Каца и обозначается $\mathfrak{g}[M]$.

Теорема

Для всякого дифференциального уравнения, есть наибольшая группа, которая естественным образом действует на его решениях.

От алгебры к геометрии

- \mathfrak{g} -модуль $M \to (V(M), \mathrm{GV}(M))$ это подмногообразия в \mathfrak{g}^* . \mathfrak{g} полупроста, M простой \mathfrak{g} -модуль M.
 - полупроста, то простои д-модуль то.
 - ullet GV(M) зависит только от аннулятора M,
 - ullet GV(M) это нильпотентная коприсоединённая орбита в ${\mathfrak g}^*$,
 - ullet многообразия $\mathrm{GV}(M)$ и $\mathrm{V}(M)$ сохраняются умножениями \mathfrak{g}^* на константы,
 - $2 \dim V(M) \ge \dim GV(M)$,
 - ullet если M это $(\mathfrak{g},\mathfrak{k})$ -модуль, то (\Rightarrow) $V(M)|_{\mathfrak{k}}=0$,
 - ullet если M это $(\mathfrak{g},\mathfrak{k})$ -модуль, то (\Rightarrow) многообразие V(M) является K-эквивариантным.

Пример

$$\mathfrak{g} = \mathfrak{gl}(n) = \langle x_i \partial_j \rangle_{1 \leq i,j \leq n}, \mathfrak{k} = \mathfrak{so}(n),$$
 $M := \{ (x_1^2 + ... + x_n^2)^d f \mid \deg f + 2d = \sqrt{2} \}.$ $M \cong_K \oplus_{k \geq 0} R_K(k\pi_1).$

 $\mathrm{GV}(M)=$ матрицы ранга 1 и следа $0\approx\mathrm{T}^*\mathbb{P}^{n-1},$ $\mathrm{V}(M)\approx$ конормальное расслоение к конике в \mathbb{P}^{n-1}

Допустимые и ограниченные модули

 $\mathfrak g$ полупроста, $\mathfrak k\subset\mathfrak g$ редуктивна в $\mathfrak g$

Определение

 $(\mathfrak{g},\mathfrak{k})$ -модуль M называется допустимым, если кратность вхождения любого \mathfrak{k} -модуля в M конечна.

Определение

 $(\mathfrak{g},\mathfrak{k})$ -модуль M называется ограниченным, если $\exists C>0$, для которого кратность вхождения любого \mathfrak{k} -модуля в M меньше C.

Допустимые и ограниченные модули

 ${\mathfrak g}$ полупроста, ${\mathfrak k}\subset {\mathfrak g}$ редуктивна в ${\mathfrak g}$

Определение

 $(\mathfrak{g},\mathfrak{k})$ -модуль M называется допустимым, если $\mathrm{V}(M)/\!\!/ K$ есть точка.

Определение

 $(\mathfrak{g},\mathfrak{k})$ -модуль M называется **ограниченным**, если K-сферичны все неприводимые компоненты V(M) (имеют открытую орбиту борелевской подгруппы).

Результат

 ${\mathfrak g}$ полупроста, ${\mathfrak k}\subset {\mathfrak g}$ редуктивна в ${\mathfrak g}$

Теорема (И. Пенков, В. Серганова)

 $(\mathfrak{g},\mathfrak{k})$ -модуль M ограничен, если и только если $\mathrm{Ann}_{\mathrm{U}(\mathfrak{g})} M$ удовлетворяет [условию].

Теорема (П. 2018)

 $(\mathfrak{g},\mathfrak{k})$ -модуль M ограничен, если и только если $\mathrm{GV}(M)$ удовлетворяет [условию].

Результат

 $\mathfrak g$ полупроста, $\mathfrak k\subset \mathfrak g$ редуктивна в $\mathfrak g$

Теорема (И. Пенков, В. Серганова)

 $(\mathfrak{g},\mathfrak{k})$ -модуль M ограничен, если и только если $\mathrm{Ann}_{\mathrm{U}(\mathfrak{g})} M$ удовлетворяет [условию].

Теорема (П. 2018)

 $(\mathfrak{g},\mathfrak{k})$ -модуль M ограничен, если и только если $\mathrm{GV}(M)$ удовлетворяет [условию].

Доказательство основано на результатах эквивариантной симплетической геометрии, полученных И. Лосевым, Д. Тимашёвым и В. Жгуном.

Изотропно, коизотропно, лагранжево

Фиксируем $(V,\omega),\omega\in\Lambda^2V^*$.

- ullet $W\subset V$ называется изотропным, если $W\subset W^\perp$,
- ullet $W\subset V$ называется **коизотропным**, если $W^\perp\subset W$,
- ullet $W\subset V$ называется **лагранжевым**, если $W=W^\perp$.

Изотропно, коизотропно, лагранжево

Фиксируем $(V,\omega),\omega\in\Lambda^2V^*$.

- ullet $W\subset V$ называется **изотропным**, если $W\subset W^\perp$,
- ullet $W\subset V$ называется коизотропным, если $W^\perp\subset W$,
- ullet $W\subset V$ называется лагранжевым, если $W=W^\perp$.

Фиксируем $(X, \omega), \omega \in \Lambda^2 T^*X$.

- ullet $Y\subset X$ называется **изотропным**, если T_yY изотропно в T_yX ,
- ullet $Y\subset X$ называется **коизотропным**, если T_yY коизотропно в T_yX ,
- ullet $Y\subset X$ называется **лагранжевым**, если T_yY лагранжево в T_yX .

Изотропно, коизотропно, лагранжево

Фиксируем $(X,\omega),\omega\in\Lambda^2T^*X$.

- ullet действие K:X называется K-изотропным, если Kx изотропно в X,
- действие K: X называется K-коизотропным, если Kx коизотропно в X,
- ullet действие K:X называется K-лагранжевым, если $K\!x$ лагранжево в X.

Фиксируем $(X,\omega),\omega\in\Lambda^2T^*X$.

- ullet $Y\subset X$ называется **изотропным**, если T_yY изотропно в T_yX ,
- ullet $Y\subset X$ называется **коизотропным**, если T_yY коизотропно в T_yX ,
- ullet $Y\subset X$ называется лагранжевым, если $\mathrm{T}_y Y$ лагранжево в $\mathrm{T}_y X$.

Симплектический результат

Теорема (П. 2018)

 $(\mathfrak{g},\mathfrak{k})$ -модуль M ограничен, если и только если $\mathrm{GV}(M)$ является K-коизотропным.

Симплектический результат

Теорема (П. 2018)

 $(\mathfrak{g},\mathfrak{k})$ -модуль M ограничен, если и только если $\mathrm{GV}(M)$ является K-коизотропным.

Теорема (В. Жгун, Д. Тимашёв)

Пусть O — нильпотентная коприсоединённая орбита в \mathfrak{g}^* , а $L\subset O$ — K-эквивариантное лагранжево многообразие. Пусть так же $L\mid_{\mathfrak{k}}=0$. Тогда

K-сферично многообразие $L \iff K$ -коизотропно многообразие O.

Так не бывает

Теорема (И. Лосев)

Пусть O — нильпотентная коприсоединённая орбита в \mathfrak{a}^* . Тогда

- а) общий слой отображения $O o O /\!\!/ K$ содержит единственную открытую орбиту,
- 6) Quot($\mathbb{C}[O]^K$) = Quot($\mathbb{C}[O]$) K .
- в) если О является К-коизотропным, то любой слой отображения $O/\!\!/K \to \mathfrak{k}^*/\!\!/K$ состоит из точек или пуст.

Спасибо за Ваше Внимание!