Ortogonális Triangularizáció Givens Eljárással

Bevezetés

Az adott tengely körüli adott θ szögű síkbeli forgatásoknak megfelelo ortogonális mátrixokat elemi forgatómátrixoknak nevezzük. A forgatómátrixok használhatók numerikus matematikában is. Tetszőleges $A \in R^{n \times n}$ mátrix ortogonális-trianguláris fölbontása előállítható elemi forgatómátrixokkal végzett szorzások segítségével. A feladat megírni két scriptet amelyek forgatómátrixot gyártanak az adott mátrixhoz, illetve QR fölbontást hajt végre az adott mátrixon a forgatómátrix segítségével.

Givens forgatómátrix előállítása

Ezek a forgatómátrixok úgy néznek ki mint az egységmátrixok. Annyiban térnek el, hogy az eredeti mátrixban kinullázandó elem sor és oszlop indexe paraméterként van adva a forgatómátrixnak, ezeken a pozíciókon a forgatómátrix rendre a $\cos\theta$, $\sin\theta$, $-\sin\theta$ és a $\cos\theta$ értékeit tárolja.

QR fölbontás Givens mátrixokkal

Az elemi forgatómátrixokat használjuk fel az eredeti mátrix ortogonális-trianguláris felbontására. Az eredeti mátrixot beszorozzuk balról az összes ilyen mátrixszal. E következtében két mátrixot kapunk, az egyik ortogonális, a másik pedig fölső trianguláris. Ezeket összeszorozva visszakapjuk az eredeti mátrixot.

Tesztelés

A megírt függvényt össze kell hasonlítani a gyakorlaton megírt Householder QR fölbontó függvénnyel, illetve a matlabba beépített qr függvénnyel. Ezeket futási idő és pontosság szempontjából. Harminc véletlenszerűen generált és különböző méretű mátrixra le kell tesztelni az elkészült eljárást. Ez összesen 12 ábrát fog eredményezni.

GQR vs HQR

Futási idő

• 10 egész számokat tartalmazó mátrixra:

Látható, hogy a GQR sokkal rosszabb futási időben mint a HQR

• 10 darab valós számokat tartalmazó mátrixra:

• 10 darab az [1 1000] intervallumból véletlenül választott egész számokat tartalmazó mátrixra:

Pontosság

10 egész számokat tartalmazó mátrixra:

• 10 darab valós számokat tartalmazó mátrixra:

• 10 darab az [1 1000] intervallumból véletlenül választott egész számokat tartalmazó mátrixra:

GQR vs qr

Futási idő

• 10 egész számokat tartalmazó mátrixra:

Látható, hogy a matlab optimalizál a mátrixon ahol tud, így sokkal gyorsabb mint az általam megírt GQR fölbontás.

Látható, hogy valamivel gyorsabban lefutott a GQR függvény mint az előbb, azonban beépített még mindig túlszárnyalja az enyémet.

 10 darab az [1 1000] intervallumból véletlenül választott egész számokat tartalmazó mátrixra:

Pontosság

• 10 egész számokat tartalmazó mátrixra:

• 10 darab valós számokat tartalmazó mátrixra:

• 10 darab az [1 1000] intervallumból véletlenül választott egész számokat tartalmazó mátrixra:

