Introduction To Model Theory

Will Johnson

April 5, 2022

Contents

1	Back-and-forth Equivalence I	2
2	Back-and-forth Equivalence II	7
3	Connections to Back-and-Forth Technique	11
4	Compactness 4.1 Ultraproducts	
5	Quantifier elimination	14
6	Saturated Models	20
7	Prime models	24
	7.1 Omitting types theorem	24
8	Heirs and definable types	26
	8.1 Definable types	26
	8.2 Heirs and strong heirs	
	8.3 Heirs and definable types	
	8.4 Types in ACF	
	8.5 1-types in DLO	
9	Stable Theories	32
	9.1 Strong heirs from ultrapowers	33
	9.2 Stability	
	9.3 Coheirs	

10	10.1	The fundamental order	53 55
ΙU			
10	Fund	lamental Order and Forking	53
	9.8	Ramsey's theorem and indiscernible sequences	49
	9.7	1 /	47
	9.6	J 1	45
	9.5	71	43
) I	42
		J 1	41
			40
		9.4.4 Symmetry	39
		9.4.3 "u" for "ultrafilter"	38
		-	37
		•	37
	9.4	Coheir Independence	37

1 Back-and-forth Equivalence I

Convention: Relations and functions are sets of pairs (x,y)

Definition 1.1. A binary relation is a pair (E,R) where E is a set and $R \subseteq E^2$. We call E the universe of the relation. For $a,b\in E$, write aEb if $(a,b)\in R$

We abbreviate (E, R) as R or E, if E or R is clear

Example 1.1.
$$(\mathbb{R},<)$$
, $(\mathbb{R},=)$, (\mathbb{R},\geq) , $(\mathbb{Z},<)$

Definition 1.2. A binary relation R is said to be

- **reflexive** if $aRa \ (\forall a \in E)$
- symmetric if $aRb \Rightarrow bRa \ (\forall a, b \in E)$

- transitive if $aRb \wedge bRc \Rightarrow aRc \ (\forall a, b, c \in E)$
- antisymmetric if $aRb \wedge bRa \Rightarrow a = b \ (\forall a, b \in E)$
- total if $aRb \lor bRa \ (\forall a, b \in E)$
- an equivalence relation if it's reflexive, symmetric and transitive
- a partial order if it's reflexive, antisymmetric and transitive
- a linear order if it's a total partial order

Example 1.2. = is an equivalence relation

⊆ is a partial order

 \leq is a linear order

Definition 1.3. An **isomorphism** from (E,R) to (E',R') is a bijection $f:E \to E'$ s.t. for any $a,b \in E$, $aRb \Leftrightarrow f(a)R'f(b)$. Two binary relations (E,R) and (E',R') are **isomorphic** (\cong) if there is an isomorphism between them

Example 1.3. $f:(\mathbb{Z},<) \to (2\mathbb{Z},>)$ and f(x)=-2x is an isomorphism. $x< y \Leftrightarrow -2x>-2y$

 \cong is an equivalence relation

Definition 1.4. A **local isomorphism** from R to R' is an isomorphism from a finite restriction of R to a finite restriction of R'. The set of local isomorphisms from R to R' is denoted $S_0(R,R')$. For $f \in S_0(R,R')$, $\mathrm{dom}(f)$ and $\mathrm{im}(f)$ denote the domain and range of f

Example 1.4. $(\mathbb{Z}, <)$ is a restriction of $(\mathbb{R}, <)$

Example 1.5. Suppose $R=R'=(\mathbb{Z},<)$, there is $f\in S_0(R,R')$ given by $\mathrm{dom}(f)=\{1,2,3\}$ and $\mathrm{im}(f)=\{10,20,30\}$ and f(1)=10,f(2)=20, f(3)=30

Definition 1.5. Let f, g be local isomorphisms from R to R'. Then f is a **restriction** of g if $f \subseteq g$ and f is an **extension** of g if $f \supseteq g$.

Example 1.6. $g: \{0, 1, 2, 3\} \rightarrow \{5, 10, 20, 30\}$, g extends f in the previous example

Definition 1.6. Let R,R' be binary relations with universe E,E'. A **Karpian family** for (R,R') is a set $K\subseteq S_0(R,R')$ satisfying the following two conditions for any $f\in K$

- 1. (**forth**) if $a \in E$ then there is $g \in K$ with $g \supseteq f$ and $a \in dom(g)$
- 2. **(back)** if $b \in E'$ then there is $g \in K$ with $g \supseteq f$ and $b \in \text{im}(g)$

R and R' are ∞ -equivalent, write $R \sim_{\infty} R'$, if there is a non-empty Karpian family

Proposition 1.7. If $f:(E,R)\to (E',R')$ an isomorphism and $K=\{g\subseteq f:$ *g* is finite}, then *K* is Karpian and $R \sim_{\infty} R'$

Proof. Suppose $g \in K$

• (forth) Suppose $a \in E$, take b = f(a) and let $h = g \cup \{(a, b)\}$. Then $h \subseteq f$, so $h \in K$, $h \supseteq g$, $a \in dom(h)$

• (back) similarly

Proposition 1.8. If (E,R) and (E',R') are countable and $R \sim_{\infty} R'$, then $R \cong$

Proof. Let $K \subseteq S_0(R,R')$ be Karpian, $K \neq \emptyset$, $E = \{e_1,e_2,e_3,...\}$, E' = $\{e'_1, e'_2, e'_3, \dots\}$

Recursively build $f_1 \subseteq f_2 \subseteq \cdots$, $f_i \in K$

Let f_1 be anything in K as K is non-empty.

 f_{2i} some extension of f_{2i-1} with $e_i \in \text{dom}(f_{2i})$

$$f_{2i+1}$$
 some extension of f_{2i} with $e_i' \in \operatorname{im}(f_{2i+1})$
Now let $g = \bigcup_{i=1}^{\infty} f_i$, then g is an isomorphism

Definition 1.9. A dense linear order without endpoints (DLO) is a linear order (C, \leq) satisfying

- 1. $C \neq \emptyset$
- 2. $\forall x, y \in C, x < y \Rightarrow \exists z \in C \ x < z < y$
- 3. $\forall x \in C$, $\exists y, z \in C$ y < x < z

Example 1.7. (\mathbb{Q}, \leq) , (\mathbb{R}, \leq)

non-example: (\mathbb{Z}, \leq) , $([0, 1], \leq)$

Proposition 1.10. Let (C, \leq) and (C', \leq) be DLO's. Then $S_0(C, C')$ is Karpian. So $C \sim_{\infty} C'$

Proof. Let $f \in S_0(C,C')$, $\mathrm{dom}(f) = \{a_1,\ldots,a_n\}$, $a_1 < \cdots < a_n$ and $\mathrm{im}(f) = b_1,\ldots,b_n$, $b_1 < \cdots < b_n$. Since f is a local isomorphism, $f(a_i) = b_i$

- (forth) Suppose $a \in C$. We want $b \in C'$ s.t. $f \cup \{(a,b)\} \in S_0(C,C')$.
 - if $a_i < a < a_{i+1}$. We take $b \in C'$ s.t. $b_i < b < b_{i+1}$ since dense
 - if $a < a_1$. We take b ∈ C' s.t. $b < b_1$ since no endpoints
 - if $a > a_n$, take $b \in C'$ s.t. $b > b_n$
 - if $a = a_i$, take $b = b_i$
- (back) similar

Proposition 1.11. *If* (C, \leq) *and* (C', \leq) *are countable DLOs, then* $C \sim_\infty C'$ *, so* $C \cong C'$

Hence

$$\begin{split} (\mathbb{Q}, \leq) &\cong (\mathbb{Q} \setminus \{0\}, \leq) \\ &\cong (\mathbb{Q} \cup \{\sqrt{2}\}, \leq) \\ &\cong (\mathbb{Q} \cap (0, 1), \leq) \end{split}$$

Definition 1.12. Let R, R' be binary relations with universe E, E'

- A **0-isomorphism** from R to R' is a local isomorphism from R to R'
- For p > 0, a p-isomorphism from R to R' is a local isomorphism f from R to R' satisfying the following two conditions
 - 1. **(forth)** For any $a \in E$, there is a (p-1)-isomorphism $g \supseteq f$ with $a \in \text{dom}(g)$
 - 2. **(back)** For any $b \in E'$, there is a (p-1)-isomorphism $g \supseteq f$ with $b \in \text{im}(g)$
- An ω -isomorphism from R to R' is a local isomorphism f from R to R' s.t. f is a p-isomorphism for all $p < \omega$

The set of p-isomorphisms from R to R' is denoted $S_p(R,R')$

Example 1.8. Suppose $R=R'=(\mathbb{Z},<), f:\{2,4\}\to\{1,2\}$ is a local isomorphism with f(2)=1 and f(4)=2. Then $f\notin S_1(\mathbb{Z},\mathbb{Z})$ (forth) fails. For a=3, there is no b s.t. 1< b<2

 $g: \{2,4\} \rightarrow \{1,5\}$ is a 1-isomorphism but not a 2-isomorphism

Proposition 1.13. If $f \in S_p(R, R')$ and $g \subseteq f$, then $g \in S_p(R, R')$

Proof. if p = 0 easy

if
$$p>0$$
 (forward), $\forall a\in E$, $\exists h\in S_{p-1}(R,R')$ has $a\in \mathrm{dom}(h)$ and $h\supseteq f\supseteq g$

Proposition 1.14. $S_p(R,R') \neq \emptyset$ iff $\emptyset \in S_p(R,R')$

Proof. \Leftarrow immediate

$$\Rightarrow$$
. Suppose $f \in S_p(R, R')$. Then $\emptyset \subseteq f$. Hence $\emptyset \in S_p(R, R')$.

Definition 1.15. R and R' are p-equivalent, written $R \sim_p R'$, if there is a p-isomorphism from $R \to R'$

R and R' are ω -equivalent or elementarily equivalent, written $R\sim_\omega R'$ or $R\equiv R'$, if there is an ω -isomorphism from R to R'

Note: $R \sim_{\omega} R'$ iff $S_{\omega}(R,R') \neq \emptyset$ iff $\emptyset \in S_{\omega}(R,R')$ iff $\forall p \ \emptyset \in S_p(R,R')$ iff $\forall p \ R \sim_p R'$

Definition 1.16. Let R,R' be binary relations with universe E,E'. The Ehfrenfeucht-Fraïssé game of length n, denoted $\mathrm{EF}_n(R,R')$ is played as follows

- There are two players, the Duplicator and Spoiler
- There are n rounds
- In the *i*th round, the Spoiler chooses either an $a_i \in E$ or a $b_i \in E'$
- The Duplicator responds with a $b_i \in E'$ or an $a_i \in E$ respectively
- At the ends of the game, the Duplicator wins

$$\{(a_i,b_i),\dots,(a_n,b_n)\}$$

is a local isomorphism from R to R'

• Otherwise, the Spoiler wins

Example 1.9. For $EF_3(\mathbb{Q}, \mathbb{R})$

$$\begin{array}{c|c} \mathbb{Q} & \mathbb{R} \\ \hline \text{S:} a_1 = 7 & \text{D:} b_1 = 7 \\ \text{D:} a_2 = 1.4 & \text{S:} b_2 = \sqrt{2} \\ \text{D:} a_3 = -10 & \text{S:} b_3 = 1.41 \\ \end{array}$$

So D wins

Example 1.10. $\mathrm{EF}_3(\mathbb{R},\mathbb{Z})$

$$\begin{tabular}{ll} \mathbb{R} & \mathbb{Z} \\ $\mathrm{D}{:}a_1=1$ & $\mathrm{S}{:}b_1=1$ \\ $\mathrm{D}{:}a_2=1.1$ & $\mathrm{S}{:}b_2=2$ \\ $\mathrm{S}{:}a_3=1.01$ & $\mathrm{S}{:}b_2=2$ \\ \end{tabular}$$

D fails

Proposition 1.17. $EF_n(R,R')$ is a win for Duplicator iff $R \sim_n R'$

Proposition 1.18. In $EF_n(R,R')$ if moves so far are a_1,b_1,\ldots,a_i,b_i , p=n-1, $f=\{(a_1,b_1),\ldots,(a_i,b_i)\}$. Then Duplicator wins iff $f\in S_p(R,R')$

2 Back-and-forth Equivalence II

Definition 2.1. Let (M,R), (M',R') be binary relations.. The Ehfrenfeucht-Fraïssé game of length n, denoted $\mathrm{EF}_n(M,M')$ is played as follows

- There are two players, the Duplicator and Spoiler
- \bullet There are n rounds
- In the *i*th round, the Spoiler chooses either an $a_i \in M$ or a $b_i \in M'$
- The Duplicator responds with a $b_i \in M'$ or an $a_i \in M$ respectively
- At the ends of the game, the Duplicator wins

$$\{(a_i,b_i),\dots,(a_n,b_n)\}$$

is a local isomorphism from R to R'

• Otherwise, the Spoiler wins

Lemma 2.2. Suppose we are playing $EF_n(M,M')$ and there have been q rounds so far, with p=n-q rounds remaining. Suppose the moves so far are $(a_1,b_1),\ldots,(a_n,b_n)$. Let $f=\{(a_1,b_1),\ldots,(a_q,b_q)\}$. Then the following are equivalent

- Duplicator has a winning strategy
- *f is a p-isomorphism*

Proof. By induction on p.

if p = 0, then the game is over, so Duplicator wins iff $f \in S_0(M, M')$

p>0. If f isn't a local isomorphism, then Duplicator will definitely lose, and f isn't a p-isomorphism. So we may assume $f\in S_0(M,M')$. Then the following are equivalent

- Duplicator wins
- For any $a_{q+1} \in M$, there is a $b_{q+1} \in M'$ s.t. Duplicator wins in the position $(a_1,b_1,\dots,a_{q+1},b_{q+1})$, AND for any $b_{q+1} \in M'$, there is a $a_{q+1} \in M$ s.t. Duplicator wins in the position $(a_1,b_1,\dots,a_{q+1},b_{q+1})$,
- \bullet For any $a_{q+1}\in M$ there is a $b_{q+1}\in M'$ s.t. $f\cup\{(a_{q+1},b_{q+1})\}\in S_{p-1}(M,M')$ (by induction) , AND ...
- \bullet For any $a_{q+1}\in M$, there is $g\in S_{p-1}(M,M')$ s.t. $g\supseteq f$ and $a_{q+1}\in {\rm dom}(g),$ AND

 $\bullet \ f \in S_p(M,M')$

Theorem 2.3. If M is p-equivalent to M', then $EF_p(M, M')$ is a win for the Duplicator. Otherwise it is a win for the Spoiler

Proof. We need to prove $\emptyset \in \mathrm{EF}_p(M,M')$

Theorem 2.4. Every (p+1)-isomorphism is a p-isomorphism

Proof. By induction on *p*.

p = 0: every 1-isomorphism is a 0-isomorphism.

So $S_0(M,M')\supseteq S_1(M,M')\supseteq S_2(M,M')\supseteq\cdots$ In terms of the Ehfrenfeucht-Fraïssé game

Theorem 2.5. Suppose $s \in S_p(M,M')$ and $t \in S_p(M',M'')$ and dom(t) = im(s). Then $u := t \circ s \in S_p(M,M'')$

Corollary 2.6. If $M \sim_p M'$ and $M' \sim_p M''$, then $M \sim_p M''$

$$\textit{Proof. } \emptyset \in S_p(M,M') \text{ and } \emptyset \in S_p(M',M'') \text{, hence } \emptyset \in S_p(M,M'') \\ \qquad \qquad \Box$$

Theorem 2.7. Suppose $s \in S_p(M,M')$. Then $s^{-1} \in S_p(M,M')$

Proof. Since $s \in S_p(M, M')$, s is a local isomorphism from M onto M'. As s is an bijection, s^{-1} is also a bijection.

Corollary 2.8. If $M \sim_p M'$, then $M' \sim_p M$

 \sim_n is an equivalence relation

Theorem 2.9. Let K be a Karpian family for (M,R) and (M',R'). Then $K \subseteq S_p(M,M')$ for all p. (also for all α)

Corollary 2.10. If M, M' are DLOs, then $S_0(M, M') = S_p(M, M')$ for all p. $M \sim_{\omega} M'$

Corollary 2.11. $A \cong B \Longrightarrow A \sim_{\infty} B \Longrightarrow A \sim_{\omega} B \Longrightarrow A \sim_{n} B$

Corollary 2.12. \sim_p and \sim_ω are equivalence relations

Theorem 2.13. Suppose $(\mathbb{Q}, \leq) \sim_{\omega} (C, R)$. Then (C, R) is a DLO

Proof. Suppose (C, R) is not a DLO and break into cases

- R is not reflexive. As $\emptyset \in S_1(\mathbb{Q},C)$. Spoiler chooses $b_1 \in C$ s.t. $(b_1,b_1) \notin R$. Then duplicator must choose $a_1 \in \mathbb{Q}$ s.t. $a_1 \nleq a_1$, impossible
- R is antisymmetric. $\emptyset \in S_2(\mathbb{Q},C)$. Let $b_1,b_2 \in C$ s.t. b_1Rb_2 and b_2Rb_1 . We want to show that $b_1=b_2$. Since $\emptyset \in S_2(\mathbb{Q},C)$, we have a local isomorphism $\{(a_1,b_1),(a_2,b_2)\} \in S_0(\mathbb{Q},C)$. Hence $a_1 \leq a_2$ and $a_2 \leq a_1$. As so $a_1=a_2$. As this is a bijection, $b_1=b_2$.
- R is transitive. $\emptyset \in S_3(\mathbb{Q},C)$. Let $b_1,b_2,b_3 \in C$ s.t. b_1Rb_2 and b_2Rb_3 . $\Box\Box\Box\Box a_1,a_2,a_3 \in \mathbb{Q}$ s.t. $\{(a_1,b_1),(a_2,b_2),(a_3,b_3)\} \in S_0(\mathbb{Q},C)$.
- R is total. $\square\square\square S_2(\mathbb{Q},C)$.
- $\bullet \ \, (C,R) \text{ has no maximum. } \forall b_1 \in C$
- (C,R) has no minimum
- (C,R) is dense. For any $b_1 \neq b_2 \in C$ s.t. $b_1Rb_2.$ $S_3(\mathbb{Q},C)$

Corollary 2.14. The class of DLOs is the \sim_{ω} -equivalence class of (\mathbb{Q}, \leq)

Definition 2.15. A linear order (C, \leq) is **discrete** without endpoints if $C \neq \emptyset$ and

$$\forall a \exists b : a \lhd b$$

$$\forall b \exists a : a \lhd b$$

where $a \triangleleft b$ means $a \lessdot b$ and not $\exists c : a \lessdot c \lessdot b$

Example 2.1. (\mathbb{Z}, \leq) . So is (C, \leq) , where

$$\begin{split} C = & \{ \dots, -3, -2, -1 \} \cup \\ & \{ -1/2, -1/3, -1/4, -1/5, \dots \} \cup \\ & \{ \dots, 1/5, 1/4, 1/3, 1/2 \} \cup \\ & \{ 1, 2, 3, \dots \} \end{split}$$

Definition 2.16. Let (C,<) be discrete. If $a \le b \in C$, then d(a,b) is the size of $[a,b) = \{x \in C : a \le x < b\}$ or ∞ if infinite. If a > b, then d(a,b) = d(b,a) (definition)

$$d(a,b) = 0 \Leftrightarrow a = b$$

Lemma 2.17. Let (C, <) and (C', <) be discrete linear orders without endpoints. Suppose $a_1 < \cdots < a_n$ in C and $b_1 < \cdots < b_n$ in C'. Let f be the local isomorphism $f(a_i) = b_i$. Suppose that for every $1 \le i < n$, we have

$$d(a_i,a_{i+1}) = d(b_i,b_{i+1}) \ \text{or} \ d(a_i,a_{i+1}) \geq 2^p \leq d(b_i,b_{i+1})$$

Then f is a p-isomorphism

IDEA: a 0-isomorphism needs to respect the order. A 1-isomorphism needs to respect the order plus the relation d(x,y)=1 (to make sure we can find the point). A 2-isomorphism needs to respect the order plus the relation d(x,y)=i for i=1,2,3. A 3-isomorphism needs to respect the order plus the relations d(x,y)=i for $i=1,2,3,\ldots,7$

this is like binary search algorithm:D

Proof.
 •
$$a_i < a < a_{i+1}$$

 - if $d(a_i, a_{i+1} = d(b_i, b_{i+1}))$
 which means they are finite

Theorem 2.18. Let (C, \leq) and (C', \leq') be discrete linear orders without points. Then \emptyset is a p-equivalence from (C, \leq) to (C', \leq) for all p. Therefore $(C, \leq) \sim \omega(C', \leq)$.

Remark. If $(\mathbb{Z}, \leq) \sim_{\omega} (C, R)$, then (C, R) is a dense linear order

Definition 2.19. Let (M,R), (M',R') be binary relations.. The **infinite Ehfrenfeucht-Fraïssé game**, denoted $\mathrm{EF}_{\infty}(M,M')$ is played as follows

- There are two players, the Duplicator and Spoiler
- There are infinitely many rounds (indexed by ω)
- In the *i*th round, the Spoiler chooses either an $a_i \in M$ or a $b_i \in M'$
- The Duplicator responds with a $b_i \in M'$ or an $a_i \in M$ respectively
- \bullet if $\{(a_1,b_1),\dots,(a_n,b_n)\}$ is not a local isomorphism, then the Spoiler immediately wins
- The Duplicator wins if the Spoiler has not won by the end of the game

Theorem 2.20. TFAE

- 1. $R \sim_{\infty} R'$, i.e., there is a non-empty Karpian family K
- 2. Duplicator has a winning strategy for $EF_{\infty}(M, M')$
- 3. Spoiler does not have a winning strategy for $EF_{\infty}(M, M')$

Proof. $1 \rightarrow 2$. Karpian family is the winning strategy

3 Connections to Back-and-Forth Technique

Theorem 3.1 (Fraïssé's Theorem). Let (M,R) and (N,S) be m-ary relations, let $\bar{a} \in M^n$ and $\bar{b} \in N^n$. Then \bar{a} and \bar{b} are p-equivalent iff

$$(M,R) \vDash f(\bar{a}) \iff (N,S) \vDash f(\bar{b})$$

for any formula $f(\bar{x})$ with quantifier rank at most p

Proof. \Rightarrow . Induction on p. If $\bar{a} \sim_0 \bar{b}$, then by definition, they satisfy the same atomic formulas. Therefore they satisfy the same quantifier-free formulas.

Suppose that $\bar{a} \sim_{p+1} \bar{b}$. The formula $f := (\exists y) g(\bar{x},y)$ has quantifier rank at most p+1. So $g(\bar{x},y)$ is a formula of quantifier rank at most p. $(M,R) \vDash f(\bar{a})$ iff there is a $c \in M$ s.t. $(M,R) \vDash g(\bar{a},c)$. Then there is a $d \in N$ s.t. $\bar{a}c \sim_p \bar{b}d$. By IH, $(N,S) \vDash g(\bar{b},d)$ and thus $(N,S) \vDash (\exists y)g(\bar{b},y)$. Another direction is similar

To prove the converse we need the following lemma

Lemma 3.2. *If the arity* m *of a relation, and the integers* n *and* p *are fixed, there is only finite number* C(n, p) *of* p-equivalence classes of n-tuples

 $(M,R_1,\bar{a}_1),\dots,(M,R_n,\bar{a}_n). \text{ For any } (M,R) \text{ and } \bar{a}\in M\text{, } \exists 1\leq i\leq n \text{ s.t. } \bar{a}\sim_p \bar{a}_i$

Proof. Induction on p. If p=0, then consider a set of symbols $X=\{x_1,\dots,x_n\}$. There are at most finitely many m-ary relations defined on X. Also there are at most finitely many ways to interpret the relation "=" on X. Let (M,R) and (N,S) be m-ary relations, $\bar{a}\in M^n$ and $\bar{b}\in N^n$. Let $A=\{a_1,\dots,a_n\}$ and $B=\{b_1,\dots,b_n\}$. Let $R_A=R\cap A^m$ and $S_B=S\cap B^m$. If p=0, $\bar{a}\sim_0 \bar{b}$ iff R_A is isomorphic to R_B via $a_i\mapsto b_i$, $i=1,\dots,n$. So there are at most finitely many 0-equivalence classes of n-tuples

By IH, there exists relations $\{(M_k,R_k)\mid k\leq C(n+1,p)\}$ and $\{\bar{d}_k\in M_k^{n+1}\mid k\leq C(n+1,p)\}$ s.t. each n+1-tuple is p-equivalent to some \bar{d}_k . Now consider an arbitrary relation (M,R) and an n-tuple \bar{a} , we define $[\bar{a}]=\{k\mid \exists c\in M(\bar{a}c\sim_p\bar{d}_k)\}$. For any relation (N,S) and $\bar{b}\in N^n$, $\bar{a}\sim_{p+1}\bar{b}\Leftrightarrow [\bar{a}]=[\bar{b}]$

Proof (*continued*). We now show that if \bar{a} and \bar{b} satisfy the same formulas of QR at most p, then $\bar{a} \sim_p \bar{b}$.

Claim: For each p-equivalence class C, there is a formula f_C of QR p s.t. the tuples in C are exactly those satisfy f_C . $(M, R, \bar{a}) \in C \Leftrightarrow R \models f_C(\bar{a})$.

Induction on p. If p=0, given an n-tuple \bar{a} , there are finitely many atomic formulas with variables x_1,\dots,x_n . n^2+n^m . $\{x_i=x_j\mid i,j\leq n\}$ and $\{r(x_{i_1},\dots,x_{i_m})\mid i_j\leq n\}$.

Let f_C be the conjunction of those satisfied by \bar{a} and negation of the others. Then f_C characterizes the 0-equivalence class of \bar{a} . (characterizes $R\big|_{\{a_1,\dots,a_n\}}$)

Now prove p+1. Let \bar{a} be an n-tuple of (M,R). Let $f_1(\bar{x},y),\ldots,f_k(\bar{x},y)$ characterize all the p-equivalence classes C_1,\ldots,C_k on n+1-tuples. Let $\langle \bar{a} \rangle = \{i \leq k \mid (M,R) \vDash (\exists y)f_i(\bar{a},y)\}. \ \langle \bar{a} \rangle = [\bar{a}]$

$$\operatorname{Let} f_C(\bar{x}) = \bigwedge_{i \in \langle \bar{a} \rangle} (\exists y) f_i(\bar{x}, y) \wedge \bigwedge_{i \notin \langle \bar{a} \rangle} \neg (\exists y) f_i(\bar{x}, y). \ \bar{b} \sim_{p+1} \bar{a} \ \text{iff} \ [\bar{a}] = [\bar{b}] \ \text{iff} \ \langle \bar{a} \rangle = \langle \bar{b} \rangle \ \text{iff} \ f_C(\bar{b}) \ \text{holds}$$

bracket system

4 Compactness

4.1 Ultraproducts

If I is a nonempty set, a **filter** is a set F of subsets of I s.t.

- $I \in F, \emptyset \in F$
- if $X, Y \in F$, then $X \cap Y \in F$
- if $X \in F$ and $X \subset Y$, then $Y \in F$

A **filter prebase** B is a set of subsets of I contained in a filter; this means that the intersection of a finite number of elements of B is never empty. The filter F_B consisting of subsets of I containing a finite intersection of elements of B is the smallest filter containing B; we call it the filter **generated** by B. If, in addition, the intersection of two elements of B is always in B, we call B a **filter base**

Example 4.1. Let J be a set and I the set of finite subsets of J; for every $i \in I$, let $I_i = \{j : j \in I, j \supset i\}$, and let B be the set of all the I_i . Then $I_i \cap I_j = I_{i \cup J}$; B is closed under finite intersections and does contain \emptyset ; It is therefore a filter base.

Theorem 4.1. A filter F of subsets of I is an ultrafilter iff for every subset A of I, either A or its complement I - A is in F

Theorem 4.2. Let U be an ultrafilter of subsets of I. If I is covered by finitely many subsets A_1, \ldots, A_n , then one of the A_i is in U; moreover, if the A_i are pairwise disjoint, exactly one of the A_i is in U

Ultrafilter and Compactness

A topological space X is compact if and only if every ultrafilter in X is convergent

4.2 Applications of Compactness

Lemma 4.3. If M and N are elementarily equivalent structures, then M can be embedded into an ultraproduct of N

Proof. Let I be the set of injections from finite subset of M to N. If $f(\bar{a})$ is a formula with parameters \bar{a} in M, $M \vDash f(\bar{a})$, let $I_{f(\bar{a})}$ denote the set of such injections s whose universe contains \bar{a} and s.t. $N \vDash f(s(\bar{a}))$. The set $I_{f(\bar{a})}$ is never empty, as $M \vDash f(\bar{a})$, so $M \vDash \exists \bar{x}(f(\bar{x}) \land D(\bar{x}))$, where D is the conjunction of the formulas $x_i = x_j$ if $a_i = a_j$, and $x_i \ne x_j$ otherwise, and N also satisfies this formula. On the other hand, $I_{f(\bar{a})} \cap I_{g(\bar{b})} = I_{f(\bar{a}) \land g(\bar{b})}$, so the $I_{f(\bar{a})}$ form a filter base, which can be extended to an ultrafilter

Define a function S from M to N^U as follows: If $a \in M$, the ith coordinate of Sa is ia if i is defined at a, and any element of N otherwise

(We are excluding the case of empty universes, which is trivial.) Note that $\{i:i \text{ is defined at }a\}=I_{a=a}$, and that changing the coordinates outside of $I_{a=a}$ will not change Sa modulo U, so S is well-defined. If a=b, then S(a)=S(b) iff $\{i:N\models i(a)=i(b)\}=I_{a=b}\in U.$ If $a\neq b$, then $I_{a\neq b}\in U$, hence S is an injection.

$$N^U \vDash \phi(S(\bar{a})) \text{ iff } \{i: N \vDash \phi(i(\bar{a}))\} \in U. \text{ If } M \vDash \phi(\bar{a}), \text{ then } \{i: N \vDash \phi(i(\bar{a}))\} = I_{\phi(\bar{a})}.$$

5 Quantifier elimination

Theorem 5.1. If two structures M and N are elementarily equivalent and ω -saturated, they are ∞ -equivalent: More precisely, two tuples of the same type (over \emptyset), one in M and the other in N, can be matched up by an infinite back-and-forth construction

If M is $\omega\text{-saturated,}$ then for every \bar{a} of M and every p of $S_n(\bar{a}),\,p$ is realised in M

An ω -saturated model therefore realises all absolute n-types for all n. This condition, however, is not sufficient for a model to be ω -saturated. Example: let T be the theory of discrete order without endpoints; M is ω -saturated iff it has the form $\mathbb{Z} \times \mathbb{C}$ where \mathbb{C} is a dense chain without endpoints, while it realizes all pure n-types iff it has the form $\mathbb{Z} \times \mathbb{C}$ where \mathbb{C} is an infinite chain

If T is a complete theory and M is an ω -saturated model of T, then every denumerable model N of T can be elementarily embedded in M. In fact, if $N=\{a_0,a_1,\ldots,a_n,\ldots\}$, we can successively realize, in M, the type of a_0 , then the type of a_1 over a_0,\ldots , the type of a_{n+1} over (a_0,\ldots,a_n) , \ldots

As two denumerable, elementarily equivalent, ω -saturated structures are isomorphic. Under what conditions does a complete theory T have a (unique) ω -saturated denumerable model? That happens iff for every n, $S_n(T)$ is (finite or) denumerable. (Here, we do not assume that T is denumerable)

In fact, this condition further implies that for every $\bar{a} \in M$, $S_1(\bar{a})$ is denumerable (because to say that b and c have the same type over \bar{a} is to say that $\bar{a}b$ and $\bar{a}c$ have the same type over \emptyset). It is clearly necessary, because a denumerable model can realize only denumerable many n-types. To see that it is sufficient: Let A_1 be a denumerable subset of M that realizes all 1-types over \emptyset ; then let A_2 be a denumerable subset of M that realises all 1-types over finite subsets of A_1 ; etc. Let $A = \bigcup A_n$. A satisfies Tarski's test so it is an elementary submodel of M

Theorem 5.2. Let T be a theory, not necessarily complete, and let F be a nonempty set of formulas $f(\bar{x})$ in the language L of T, having for free variables only $\bar{x} = (x_1, \ldots, x_n)$, s.t. two n-tuples from models of T have the same type whenever they satisfy the same formulas of F. Then for every formula $g(\bar{x})$ of L in these variables, there is some $f(\bar{x})$ that is a Boolean combination of elements of F s.t. $T \vDash \forall \bar{x}(f(\bar{x}) \leftrightarrow g(\bar{x}))$

Proof. Consider the clopen set $[g(\bar{x})]$ in $S_n(T)$. If $[g] = \emptyset$, then $[g] = [f \land \neg f]$, and if $[g] = S_n(T)$, then $[g] = [f \lor \neg f]$, where f is an arbitrary element of F, which is nonempty. Consider $p \in [g]$ and $q \notin [g]$. There is $f_{p,q} \in F$ s.t. $p \models f_{p,q}(\bar{x})$ and $q \models \neg f_{p,q}(\bar{x})$ If p and q are different, then they are realised by two tuples satisfying different formulas of F. Here we consider the model amalgamated by the model realising p and the model realising q. Thus such $f_{p,q}$ exists

Keeping p fixed and varying q, all the $[f_{p,q}]$ and $\neg[g]$ form a family of closed sets whose intersection is empty; $\bigcup [\neg f_{p,q}] \supset [\neg g]$. by compactness, one of its finite subfamilies must have empty intersection, meaning that for some $h_p = f_{p,q} \wedge \dots \wedge f_{p,q_n} \in [h_p] \subset [g]$

Now when we vary p, [g] is a compact set that is covered by the open sets $[h_p]$, so a finite number of them are enough to cover it; the disjunction of these h_p , module T, is equivalent to g

Note that if we want that every sentence be equivalent module T to a quantifier-free sentence; that requires, naturally, that the set of sentences without quantifiers be nonempty, meaning that the language **involves** constant symbols, or else nullary relation symbols.

A theory T is **model complete** if it has the following property: If $M, N \vDash T$ and if $N \subseteq M$, then $N \preceq M$

Two theories T_1 and T_2 in the same language L, are **companions** if every model of one can be embedded into a model of the other

Theorem 5.3. Two theories are companions of each other iff they have the same universal consequences (a sentence being called **universal** if it is of the form $\forall x_1, \dots, x_n \ f(x_1, \dots, x_n)$ with f quantifier-free)

Proof. A universal sentence f that is true in a structure is always true in its substructure; if $T_1 \vDash f$ and if there is a model of T_2 that doesn't satisfy f, it cannot be extended to a model of T_1

Conversely, suppose that T_1 and T_2 have the same universal consequences, and let $M_1 \models T_1$. We name each element of M_1 by a new constant, and let $D(M_1)$ be the set of all *quantifier-free* sentences in the new language that are

true in M_1 . If $D(M_1) \vDash f(a_1,\dots,a_n)$, then $M \vDash \exists \bar{x} \ f(\bar{x})$, so $\forall \bar{x} \neg f(\bar{x})$ is not a consequence of T_1 , and therefore not of T_2 . There is therefore some model $M_2 \vDash T_2$ with $\bar{b} \in M_2$ s.t. $M_2 \vDash f(\bar{b})$. By compactness, this means that $D(M_1) \cup T_2$ is consistent, in other words, that M_1 embeds into a model of T_2

A theory T therefore has a minimal companion, which we shall denote by T_{\forall} , which is axiomatized by the universal consequences of T.

A theory T' is a **model companion** of T if it is a companion of T that is model complete

Theorem 5.4. A theory has at most one model companion

Proof. Let T_1 and T_2 be model companions of T. Therefore T_1 and T_2 are companions. Let $M_1 \models T_1$; it embeds into a $N_1 \models T_2$, which embeds into a $M_2 \models T_1$. We get a chain $M_1 \subset N_1 \subset M_2 \subset N_2 \subset \cdots \subset M_n \subset N_n \subset \cdots$, whose limit we call P. As T_1 is model complete, the chain of M_n is elementary, and P is an elementary extension of M_1 ; similarly $N_1 \preceq P$. Therefore M_1 is also a model of T_2 ; by symmetry T_1 and T_2 have the same models, meaning $T_1 = T_2$

We say that T' is a **model completion** of T if it is a model companion of T and also the following condition is satisfied: if $M \vDash T$, embeds into a model $M_1 \vDash T'$ and into a model $M_2 \vDash T'$, then a tuple \bar{a} of M satisfies the same formulas in M_1 and in M_2

Naturally a model complete theory is its own model completion, and it is clear that a theory that admits quantifier elimination is the model completion of every one of its companions. A theory is the model completion of every one of its companions iff it is the model completion of the weakest of them all, T_\forall

In the particular case where for every n>0 we can take for F the quantifier-free formulas, we say that the theory T eliminates quantifiers or admits quantifier elimination.

Theorem 5.5. *The model completion of a universal theory (i.e., one that is axiomatized by universal sentences) admits quantifier elimination*

Proof. Let \bar{a} and \bar{b} satisfying the same quantifier-free formulas, be in two models M_1 and M_2 of this theory T', and let $N_1 \subseteq M_1$, $N_2 \subseteq M_2$ generated by \bar{a} and \bar{b} respectively.

DLO has quantifier elimination

Facts. In DLO, any 0-isomorphism is an ω -isomorphism.

Suppose $qftp(\bar{a}) = qftp(\bar{b})$, want $tp(\bar{a}) = tp(\bar{b})$

 $\exists f: \langle \bar{a} \rangle_{\mathfrak{M}} \to \langle \bar{b} \rangle_{\mathfrak{N}}$ an isomorphism by Theorem 6, $f \in S_0(\mathfrak{M},\mathfrak{N}) = S_{\omega}(\mathfrak{M},\mathfrak{N})$. Then by Fraïssé's theorem, $\operatorname{tp}(\bar{a}) = \operatorname{tp}(\bar{b})$

 $M \equiv N \Leftrightarrow \langle \emptyset \rangle_M \cong \langle \emptyset \rangle_N \Leftrightarrow char(M) = char(N)$

same characteristic determine same minimal subring

 $M^n/\operatorname{Aut}(M/A)\cong S_n(A)$

Algebraically closed fields are axiomatized by the field axioms plus the axiom schema

$$\forall y_0, \dots, y_n \left(y_n \neq 0 \to \exists x \sum_{i=0}^n y_i x^i = 0 \right)$$

Lemma 5.6. *If* $K \models ACF$, then K is infinite

Proof. If
$$K = \{a_1, \dots, a_n\}$$
, then $P(x) = 1 + \prod_{i=1}^n (x - a_i)$ has no root in $K \subset \mathbb{R}$

If $M \models \mathsf{ACF}$ and K is a subfield, then K^{alg} denotes the set of $a \in M$ algebraic over K

Lemma 5.7. Given uncountable $M, N \models ACF$, suppose $\bar{a} \in M^n$ and $\bar{b} \in N^n$ and $qftp^M(\bar{a}) = qftp^N(\bar{b})$. Suppose $\alpha \in M$. Then there is $\beta \in N$ s.t. $qftp^M(\bar{a}, \alpha) = qftp^N(\bar{b}, \beta)$

Proof. Let $A=\langle \bar{a}\rangle_M$ and $B=\langle \bar{b}\rangle_N$. There is an isomorphism $f:A\to B$ and we can extend f to an isomorphism $f:\operatorname{Frac}(A)\to\operatorname{Frac}(B)$ (Note that A and B are subrings since they are only closed under multiplication and addition). Moving N by an isomorphism we may assume $\operatorname{Frac}(A)=\operatorname{Frac}(B)$ and $f=id_{\operatorname{Frac}(A)}$. (In particular, $\bar{a}=\bar{b}$). let $K=\operatorname{Frac}(A)$. Let $K=\operatorname{Frac}(A)$

Claim. There is $\beta \in N$ with $I(\alpha) = I(\beta)$ in K

Suppose α is algebraic over K with minimal polynomial P(x). Take $\beta \in N$ with $P(\beta) = 0$. Let Q(x) be the minimal polynomial over β over K. Then $P(x) \in Q(x) \cdot K[x]$. But P(x) is irreducible, so P(x) = Q(x). Then $I(\alpha) = I(\beta)$

suppose α is transcendental, since there are only countable many solutions, there is transcendental $\beta \in N$. Then $I(\alpha) = I(\beta) = 0$

Take such β , let $I = I(\alpha) = I(\beta)$

• If
$$P(x) \in K[x]$$
, $P(\alpha) = 0 \Leftrightarrow P(x) \in I \Leftrightarrow P(\beta) = 0$

- If $P(x), Q(x) \in K[x]$, then $P(\alpha) = Q(\alpha) \Leftrightarrow (P Q)(\alpha) = 0 \Leftrightarrow (P Q)(\beta) = 0 \Leftrightarrow P(\beta) = Q(\beta)$
- Hence if $\varphi(x)$ is an atomic $\mathcal{L}(K)$ -formula, then $M \vDash \varphi(\alpha) \Leftrightarrow N \vDash \varphi(\beta)$
- so is quantifier-free $\varphi(x) \in \mathcal{L}(K)$

Lemma 5.8. Lemma 5.7 holds if we replace "uncountable" with " ω -saturated"

Proof. Take uncountable $M' \geq M$ and $N' \geq N$, this is possible since models of ACF are infinite. By Lemma 5.7, there is $\beta_0 \in N'$ s.t. $\operatorname{qftp}(\bar{a},\alpha) = \operatorname{qftp}(\bar{b},\beta_0)$. By ω -saturation, we can find $\beta \in N$ s.t. $\operatorname{tp}(\beta/\bar{b}) = \operatorname{tp}(\beta_0/\bar{b})$. Then $\operatorname{tp}(\bar{b},\beta) = \operatorname{tp}(\bar{b},\beta_0)$

Theorem 5.9. *ACF has quantifier elimination*

Theorem 5.10. Suppose $M, N \models ACF$, then $M \equiv N \Leftrightarrow char(M) = char(N)$

Proof. TFAE

- $M \equiv N$
- for every sentence φ , $M \vDash \varphi \Leftrightarrow N \vDash \varphi$
- for every quantifier-free sentence φ , $M \vDash \varphi \Leftrightarrow N \vDash \varphi$
- for every atomic sentence φ , $M \vDash \varphi \Leftrightarrow N \vDash \varphi$
- for any terms $t_1, t_2, M \vDash t_1 = t_2 \Leftrightarrow N \vDash t_1 = t_2$
- for any term t, $M \models t = 0 \Leftrightarrow N \models t = 0$
- for any $n \in \mathbb{Z}$, $M \models n = 0 \Leftrightarrow N \models n = 0$
- $\{n \in \mathbb{Z} : n^M = 0\} = \{n \in \mathbb{Z} : n^N = 0\}$
- char(M) = char(N)

Corollary 5.11. ACF_p is complete for each p

Corollary 5.12. \mathbb{C} *is completely axiomatized by ACF*₀

Lemma 5.13. Let M be algebraically closed. Let K be a field. Let $\varphi(x)$ be an $\mathcal{L}(K)$ -formula in one variable. Let $D = \varphi(M)$. Then there is a finite subset $S \subseteq K^{alg}$ s.t. D = S or $D = M \setminus S$, that is, either $D \subseteq K^{alg}$ or $M \setminus K \subseteq K^{alg}$

Proof. By Q.E., we may assume φ is quantifier-free. Then φ is a boolean combination of atomic formulas

Let $\mathcal{F} = \{S: S \subseteq_f K^{\mathrm{alg}}\} \cup \{M \setminus S: S \subseteq_f K^{\mathrm{alg}}\}$. Note that \mathcal{F} is closed under boolean combinations. So we may assume φ is an atomic formula

Then
$$\varphi(x)$$
 is $(P(x)=0)$ for some $P(x)\in K[x]$. If $P(x)\equiv 0$, then $\varphi(M)=M\in \mathcal{F}$. Otherwise $\varphi(M)\subseteq_f K^{\mathrm{alg}}$, so $\varphi(M)\in \mathcal{F}$

Lemma 5.14. Suppose $M \leq N \vDash ACF$ and K is a subfield of M. Suppose $c \in N$ is algebraic over K. Then $c \in M$

Proof. Let P(x) be the minimal polynomial of c over K. Let b_1,\dots,b_n be the roots of P(x) in M. Then

$$M \vDash \forall x \left(P(x) = 0 \to \bigvee_{i=1}^{n} x = b_i \right)$$

so the same holds in N. Then $P(c) = 0 \Rightarrow c \in \{b_1, \dots, b_n\} \subseteq M$

Theorem 5.15. If $M \models ACF$ and K is a subfield, then K^{alg} is a subfield of M and $(K^{alg})^{alg} = K^{alg}$

Proof. Suppose $a,b\in K^{\mathrm{alg}}$. We claim $a+b\in K^{\mathrm{alg}}$. Let P(x) and Q(y) be the minimal polynomials of a,b over K. Let $\varphi(z)$ be the $\mathcal{L}(K)$ -formula

$$\exists x, y (P(x) = 0 \land Q(y) = 0 \land x + y = z)$$

Then $M \vDash \varphi(a+b)$ and $\varphi(M)=\{x+y: P(x)=0=Q(y)\}$ is finite. Thus $a+b \in \varphi(M) \subseteq K^{\mathrm{alg}}$

A similar argument shows K^{alg} is closed under the field operations, so K^{alg} is a subfield of M

Theorem 5.16. *Suppose* $M \models ACF$ *and* K *is a subfield. TFAE*

- 1. $K = K^{alg}$
- 2. $K \models ACF$
- 3. $K \leq M$

Proof. $1 \to 2$: suppose $P(x) \in K[x]$ has degree > 0. Then there is $c \in M$ s.t. P(c) = 0. By definition, $c \in K^{\text{alg}} = K$

 $2 \rightarrow 3$: quantifier elimination

$$3 \rightarrow 1.5.14$$

Corollary 5.17. *If* $M \models ACF$ *and* K *is a subfield, then* $K^{alg} \models ACF$

 K^{alg} is called the **algebraic closure** of K. It is independent of M:

Theorem 5.18. Let M, N be two algebraically closed fields extending K. Let $(K^{alg})_M$ and $(K^{alg})_N$ be K^{alg} in M and N, respectively. Then $(K^{alg})_M \cong (K^{alg})_N$

6 Saturated Models

Lemma 6.1. Let $S_0 \subseteq S_1 \subseteq \cdots \subseteq S_\alpha \subseteq \cdots$ be an increasing chain of sets indexed by $\alpha < \kappa$ for some regular cardinal κ . If $A \subseteq \bigcup_{\alpha < \kappa} S_\alpha$ and $|A| < \kappa$, then $A \subseteq S_\alpha$ for some $\alpha < \kappa$

Proof. define $f:A\to \kappa$ by $f(x)=\min\{\alpha:x\in S_\alpha\}$. Then $|f(A)|\le |A|<\kappa$, so $\alpha:=\sup f(A)<\kappa$. For any $x\in A$, we have $f(x)\le \alpha$ and so $x\in S_{f(x)}\subseteq S_\alpha$

Theorem 6.2. *If* M *is a structure and* κ *is a cardinal, there is a* κ *-saturated* $N \succeq M$

Proof. Build an elementary chain

$$M_0 \leq M_1 \leq \cdots \leq M_o \leq \cdots$$

of length κ^+ , where

- 1. $M_0 = M$
- 2. $M_{\alpha+1}$ is an elementary extension of M_{α} realizing every type in $S_1(M_{\alpha})$
- 3. If α is a limit ordinal, then $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$

Let
$$N=\bigcup_{\alpha<\kappa^+}M_\alpha.$$
 If $A\subseteq N$ and $|A|<\kappa$, then $A\subseteq M_\alpha$ for some $\alpha<\kappa^+$

Theorem 6.3. Suppose M is κ -saturated. If $A \subseteq M$ and $|A| < \kappa$, then every $p \in S_n(A)$ is realized in M

Proof. Take $N \succeq M$ containing a realization \bar{a} of p. We can extend the partial elementary map $\operatorname{toid}_A: A \to A$ to $f: A \cup \{a_1, \dots, a_n\} \to B$ where $B \subseteq M$. Then $\operatorname{tp}^M(f(\bar{a})/A) = \operatorname{tp}^N(\bar{a}/A) = p$, so $f(\bar{a})$ realizes p in M

Lemma 6.4. For any M there is an elementary extension $N \geq M$ with the following properties:

- Every type over M is realized in N
- If $A, B \subseteq M$ and $f : A \to B$ is a partial elementary map, then there is $\sigma \in Aut(N)$ with $\sigma \supseteq f$

Proof. Build an elementary chain

$$M = M_0 \leq M_1 \leq \cdots$$

of length ω , where M_{i+1} is ${|M_i|}^+$ -saturated. Every $p \in S_n(M)$ is realized in M_1

For the second point, let $f:A\to B$ be given. Recursively build an increasing chain of partial elementary maps f_n with $\mathrm{dom}(f_n),\mathrm{im}(f_n)\subseteq M_n$ as follows:

- $f_0 = f$
- If n>0 is odd, then f_n is a partial elementary map extending f_{n-1} with $\mathrm{dom}(f_n)=M_{n-1}$ and $\mathrm{im}(f_n)\subseteq M_n$
- If n>0 is even, then f_n is a partial elementary map extending f_{n-1} with $\mathrm{dom}(f_n)\subseteq M_n$ and $\mathrm{im}(f_n)=M_{n-1}$

Theorem 6.5. *If* M *is a structure and* κ *is a cardinal, there is a strongly* κ *-homogeneous* κ *-saturated* $N \succeq M$

Proof. Build an elementary chain

$$M_0 \preceq M_1 \preceq \cdots \preceq M_\alpha \preceq \cdots$$

of length κ^+ .

Lemma 6.6. Let M be a κ -saturated L-structure. For $L_0 \subseteq L$, the reduct $M \upharpoonright L_0$ is κ -saturated

Lemma 6.7. Let M be an L-structure and κ be a cardinal. There is an L-structure $N \geq M$ s.t. for every $L_0 \subseteq L$, the reduct $N \upharpoonright L_0$ is κ -saturated and κ -strongly homogeneous

Definition 6.8. Let T be an L(R)-theory

- 1. R is **implicitly defined** in T if for every L-structure M, there is at most one $R \subseteq M^n$ s.t. $(M,R) \models T$
- 2. R is **explicitly defined** in T if there is an L-formula $\phi(x_1,\dots,x_n)$ s.t. $T \vdash \forall \overline{x}(R(\overline{x}) \leftrightarrow \phi(\overline{x}))$

Lemma 6.9. Suppose R is not explicitly defined in T. Then there are $M, N \models T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$ s.t.

- $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$
- $M \vDash R(\bar{a})$ and $N \vDash \neg R(\bar{b})$

Proof. Suppose not. Let $S = \{ \operatorname{tp}^L(\bar{a}) : M \vDash T, \bar{a} \in M^n \}$. For $p \in S$, one of two things happends

- 1. Every realization of p satisfies R
- 2. Every realization of p satisfies $\neg R$

Otherwise we can find a realization \bar{a} satisfying R and a realization \bar{b} satisfying $\neg R$, as desired.

By compactness, for each $p\in S$ there is an L-formula $\phi_p(\bar x)\in p(\bar x)$ s.t. one of two things happens

- 1. $T \cup \{\phi_n(\bar{x})\} \vdash R(\bar{x})$
- 2. $T \cup \{\phi_p(\bar{x})\} \vdash \neg R(\bar{x})$

Let $\Sigma(\bar{x})=T\cup\{\neg\phi_p(\bar{x}):p\in S\}$. If $\Sigma(\bar{x})$ is consistent, there is $M\vDash T$ and $\bar{a}\in M^n$ satisfying $\Sigma(\bar{x})$. Let $p=\operatorname{tp}^L(\bar{a})$, so it satisfies ϕ_p but it also satisfies $\neg\phi_p$, a contradiction

Therefore $\Sigma(\bar x)$ is inconsistent. By compactness there are $p_1,\dots,p_n,q_1,\dots,q_m\in S$ s.t.

$$\begin{split} T \vdash \bigvee_{i=1}^n \phi_{p_i}(\bar{x}) \lor \bigvee_{i=1}^m \phi_{q_i}(\bar{x}) \\ T \cup \{\phi_{p_i}(\bar{x})\} \vdash R(\bar{x}) \quad \text{for } i = 1, \dots, n \\ T \cup \{\phi_{q_i}(\bar{x})\} \vdash \neg R(\bar{x}) \quad \text{for } i = 1, \dots, n \end{split}$$

Then $T \vdash \forall \overline{x}(R(\overline{x}) \leftrightarrow \bigvee_{i=1}^n \phi_{p_i}(\overline{x}))$. The \leftarrow is by the choice of the ϕ_{p_i} . The \rightarrow is because if none of the ϕ_{p_i} hold, then one of the ϕ_{q_i} holds, and then $\neg R$ must hold.

Finally
$$\vee_{i=1}^n \phi_{p_i}(\bar{x})$$
 is an explicit definition of R If $m=0$, then $T \vdash R(\bar{x})$, if $n=0$, then $T \vdash \neg R(\bar{x})$

Theorem 6.10 (beth). *If* R *is implicitly defined in* T, *then* R *is explicitly defined in* T

Proof. **Case 1**: *T* is complete.

If R is not explicitly defined, we obtain $M,N \vDash T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$ with $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$ but $M \vDash R(\bar{a})$ and $N \vDash \neg R(\bar{a})$. Since T is complete, we have $M \equiv N$. By elementary amalgamation, we may find elementary embeddings $M \to N'$, $N \to N'$. Replacing M and N by N' and N', we may choose M = N. By Lemma 6.7, we may replace M with an elementary extension and assume M and $M \upharpoonright L$ are \aleph_0 -saturated and \aleph_0 -strongly homogeneous. The fact that $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$ implies that there is an automorphism $\sigma \in \operatorname{Aut}(M \upharpoonright L)$ with $\sigma(\bar{a}) = \bar{b}$. Let $R' = \sigma(R)$. Let $M' = (M \upharpoonright L, R')$. Then σ is an isomorphism from M to M', so $M' \vDash T$. But $M' \upharpoonright L = M \upharpoonright L$. Because R is implicitly defined, R = R'. But then

$$\bar{a} \in R \Leftrightarrow \sigma(\bar{a}) \in \sigma(R) \Leftrightarrow \bar{b} \in R' \Leftrightarrow \bar{b} \in R$$

contradicting the fact that $M \models R(\bar{a})$ and $M \models \neg R(\bar{b})$

Case 2: T is not complete. Any completion of T implicitly defines R. By Case 1, any completion of T explicitly defines R. So in any model $M \vDash T$, there is an L-formula ϕ_M s.t. $M \vDash \forall \overline{x}(R(\overline{x}) \leftrightarrow \phi_M(\overline{x}))$

Assume R is not explicitly defined, there are $M,N \vDash T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$, with $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$ and $M \vDash R(\bar{a})$ and $N \vDash \neg R(\bar{a})$. Let T' be the L-theory obtained from T by replacing every R with ϕ_M . Then $M \vDash T'$. The type $\operatorname{tp}^L(\bar{a})$ contains the following

- \bullet $\phi_M(\bar{x})$
- sentences in T'

So $N \vDash \phi_M(\bar{b})$ and $N \vDash T'$.

Let $R'=\{\bar{c}\in N^n: N\vDash \phi_M(\bar{c})\}$. Then $(N\upharpoonright L,R')\vDash T$ because $N\vDash T'$. Therefore R'=R because R is implicitly defined. But $N\vDash \phi_M(\bar{b})$ and $N\vDash \neg R(\bar{b})$, a contradiction

Theorem 6.11. Let T be a complete theory. Then T has a countable ω -saturated model iff T is small

Proof. \Rightarrow : trivial

 $\Leftarrow: \text{Suppose } S_n(T) \text{ is countable for any } n. \text{ Take some } \omega\text{-saturated model } M^+. \text{ For each finite set } A\subseteq M^+ \text{ and type } p\in S_1(A)\text{, take some element } c_{A,p}\in M \text{ realizing } p. \text{ Define an increasing chain of countable subsets } A_0\subseteq A_1\subseteq\cdots M^+ \text{ as follows}$

- $A_0 = \emptyset$
- $A_{i+1} = A_i \cup \{c_{A,p} : A \subseteq_f A_i, p \in S_1(A)\}$

each A_i is countable, and define $M=\bigcup_{i=0}^\infty A_i$, which is countable Now we only need to prove that M is ω -saturated and $M \leq M^+$

7 Prime models

7.1 Omitting types theorem

Theorem 7.1 (Baire Category Theorem for $S_n(A)$). Let $U_1, U_2, ...$ be dense open sets. Then $\bigcap_{i=1}^{\infty} U_i$ is dense

Lemma 7.2. $S_n(A)$ is finite iff all types in $S_n(A)$ are isolated

Proof. If each $p \in S_n(A)$ is isolated. The family $\{\{p\} : p \in S_n(A)\}$ covers $S_n(A)$, so there is a finite cover. This is impossible unless $S_n(A)$ is finite \square

Definition 7.3. A set $X\subseteq S_n(A)$ is **comeager** if $X\supseteq \bigcap_{i=1}^\infty U_i$ for some dense open sets U_i

Work in $S_{\omega}(T)$.

Lemma 7.4. If $X_1, X_2, ...$ are comeager, then $\bigcap_{i=1}^{\infty} X_i$ is comeager

Lemma 7.5. For any formula $\phi(x_0,\ldots,x_n,y)$, there is a dense open set Z_ϕ s.t. if $M \vDash T$, $\bar{c} \in M^\omega$, $\operatorname{tp}^M(\bar{c}) \in Z_\phi$ and $M \vDash \exists y \phi(c_0,\ldots,c_n,y)$, then there is $i < \omega$ s.t. $M \vDash \phi(c_0,\ldots,c_n,c_i)$

Proof. Take $A = [\neg \exists y \phi(x_0, \dots, x_n, y)]$ and $B_i = [\phi(x_0, \dots, x_n, x_i)]$ for $i < \omega$. Let $Z_\phi = A \cup \bigcup_{i=0}^\infty B_i$, which is open. If $p = \operatorname{tp}^M(\bar{c}) \in Z_\phi$ and $M \models \exists y \phi(c_0, \dots, c_n, y)$ then $p \notin A$, so there is $i < \omega$ s.t. $p \in B_i$ meaning $M \models \phi(c_0, \dots, c_n, c_i)$

It remains to show that Z_ϕ is dense. Take non-empty $[\psi] \subseteq S_\omega(T)$; we claim $Z_\phi \cap [\psi] \neq \emptyset$. Take $p = \operatorname{tp}^M(\bar{e}) \in [\psi]$. We may assume $p \notin Z_\phi$, or we are done. Then $p \notin A$, so $M \vDash \exists y \phi(e_0, \dots, e_n, y)$. Take $b \in M$ s.t. $M \vDash \phi(e_0, \dots, e_n, b)$. Take i > n large enough that x_i doesn't appear in ϕ . Let $\bar{c} = (e_0, \dots, e_{i-1}, b, e_{i+1}, e_{i+2}, \dots)$. We have $M \vDash \psi(\bar{e})$ because $\operatorname{tp}(\bar{e}) \in [\psi]$ and therefore $M \vDash \psi(\bar{c})$, so $\operatorname{tp}(\bar{c}) \in [\psi]$. Also $M \vDash \phi(c_0, \dots, c_n, c_i)$

Proposition 7.6. There is a comeager set $W \subseteq S_{\omega}(T)$ s.t. if $\operatorname{tp}^M(\bar{c}) \in W$, then $\{c_i : i < \omega\} \leq M$

Proof. Let $W = \bigcap_{\phi} Z_{\phi}$. Suppose $\operatorname{tp}^{M}(\bar{c}) \in M$. Then for any $\phi(x_{0}, \ldots, x_{n}, y)$, if $M \models \exists y \phi(c_{0}, \ldots, c_{n}, y)$, then there is $i < \omega$ s.t. $M \models \phi(c_{0}, \ldots, c_{n}, c_{i})$. By Tarski-Vaught, $\{c_{i} : i < \omega\} \leq M$.

Lemma 7.7. Let $p \in S_n(T)$ be non-isolated. For any $(j_1,\ldots,j_n) \in \mathbb{N}^n$, there is a dense open set $V_{p,\bar{j}} \subseteq S_\omega(T)$ s.t. $\operatorname{tp}^M(\bar{c}) \in V_{p,\bar{j}} \Leftrightarrow \operatorname{tp}^M(c_{j_1},\ldots,c_{j_n}) \neq p$

Proof. Let $V_{p,\bar{j}}=V=\bigcup_{\phi\in p}[\neg\phi(x_{j_1},\ldots,x_{j_n})].$ If $\operatorname{tp}^M(\bar{c})\in V$, then there is some $\phi\in p$ s.t. $M\vDash \neg\phi(c_{j_1},\ldots,c_{j_n})$, and so $\operatorname{tp}^M(c_{j_1},\ldots,c_{j_n})\neq p.$ Conversely, if $\operatorname{tp}^M(c_{j_1},\ldots,c_{j_n})\neq p$, there is $\phi\in p$ s.t. $M\vDash \neg\phi(c_{j_1},\ldots,c_{j_n})$, and then $\operatorname{tp}^M(\bar{c})\in V$

It remains to show that V is dense. Suppose $[\psi] \subseteq S_{\omega}(T)$ is non-empty. Take $q = \operatorname{tp}^M(\bar{e}) \in [\psi]$. We may assume $q \notin V$. By choice of V, $\operatorname{tp}^M(e_{j_1}, \dots, e_{j_n}) = p$. Take m large enough so that $m \ge \max(j_1, \dots, j_n)$ and ψ is a formula in x_0, \dots, x_m . Let $\phi(y_1, \dots, y_n)$ be

$$\exists x_0,\dots,x_m \; \psi(x_0,\dots,x_m) \land \bigwedge_{i=1}^n (y_i=x_{j_i})$$

Then (e_{j_1},\dots,e_{j_n}) satisfies ϕ , and so $\phi\in p$. As p is non isolated, there is $N\models\phi(d_1,\dots,d_n)$ with $\operatorname{tp}^N(d_1,\dots,d_n)\neq p$. By definition of ϕ there are $c_0,\dots,c_m\in N$ with $N\models\psi(c_0,\dots,c_m)$ and $(d_1,\dots,d_n)=(c_{j_1},\dots,c_{j_n})$. Choose $c_{m+1},c_{m+2},\dots\in N$ arbitrarily. Then $\bar{c}=(c_i:i<\omega)\in N^\omega$ and $\operatorname{tp}(\bar{c})\in[\psi]$, and $\operatorname{tp}(c_{j_1},\dots,c_{j_n})=\operatorname{tp}(d_1,\dots,d_n)\neq p$, so $\operatorname{tp}(\bar{c})\in V$, showing $V\cap[\psi]\neq\emptyset$

Proposition 7.8. Let $p \in S_n(T)$ be non-isolated. There is a comeager set $V_p \subseteq S_\omega(T)$ s.t. if $\operatorname{tp}^M(\bar{c}) \in V_p$, then p is not realized by a tuple in $\{c_i : i < \omega\}$

Proof. Let $V_p = \bigcap_{\bar{j} \in \mathbb{N}^n} V_{p,\bar{j}}$. If $\operatorname{tp}^M(\bar{c}) \in V_p$, then for any $j_1, \dots, j_n \in \mathbb{N}$

$$\operatorname{tp}^M(c_{j_1},\dots,c_{j_n}) \neq p$$

Theorem 7.9 (Omitting types theorem). Let Π be a countable set of pairs (p,n), where $n<\omega$ and p is a non-isolated type in $S_n(T)$. There is a countable model $M \models T$ omitting p for every $(p,n) \in \Pi$

Proof. The set $Q=W\cap\bigcap_{(p,n)\in\Pi}V_p$ is comeager, hence non-empty. Take $\operatorname{tp}^N(\bar{c})\in Q$. Then $M:=\{c_i:i<\omega\}\preceq N$ because $\operatorname{tp}^N(\bar{c})\in W$. For $(p,n)\in\Pi$, M omits p because $\operatorname{tp}(\bar{c})\in V_p$

Theorem 7.10 (Ryll-Nardzewski). Let T be a complete theory in a countable language. Then T is ω -categorical iff $S_n(T)$ is finite for every $n < \omega$

Proof. Suppose $S_n(T)$ is infinite for some n. By 7.2 there is a non-isolated $p \in S_n(T)$. By 7.9 there is a countable model $M_0 \models T$ omitting p. Take an elementary extension $M_1 \succeq M_0$ where p is realized by $\bar{a} \in M_1^n$. By Löwenheim–Skolem Theorem we may assume M_1 is countable. Then $M_1 \ncong M_0$

8 Heirs and definable types

8.1 Definable types

Definition 8.1. $p(\bar{x})$ is a **definable type** if for every formula $\varphi(\bar{x}; \bar{y})$ the set

$$\{\bar{b} \in M : \varphi(\bar{x}, \bar{b}) \in p(\bar{x})\}$$

is definable, defined by some L(M)-formula $d\varphi(\bar{y})$

Proposition 8.2. *If* T *is strongly minimal and* $M \models T$ *, there is a* 1-type $p(x) \in S_1(M)$ *s.t.*

$$\varphi(x,\bar{b}) \in p(x) \Leftrightarrow \exists^{\infty} a \in M : M \vDash \varphi(a,\bar{b})$$

Moreover, $p = \operatorname{tp}(c/M)$ *for any* $N \geq M$ *and* $c \in N \setminus M$

Proof. Take N > M and $c \in N \setminus M$; let $p(x) = \operatorname{tp}(c/M)$. We must show that

$$N\vDash\varphi(c,\bar{b})\Leftrightarrow \exists^{\infty}a\in M: M\vDash\varphi(a,\bar{b})$$

 \Rightarrow : if

 \Leftarrow : if $N \models \neg \varphi(c, \bar{b})$, then $\neg \varphi(M, \bar{b})$ is infinite and so $\varphi(M, \bar{b})$ is finite \square

p(x) is called the **transcendental 1-type**

Proposition 8.3. *If T is strongly minimal*

- 1. T eliminates the \exists^{∞} quantifier
- 2. If $M \models T$, the transcendental 1-type $p \in S_1(M)$ is definable

Proof. 1. For any $\varphi(x,y)$, there is $n_{\varphi} < \omega$ s.t. for every $M \models T$ and $\bar{b} \in M$

$$\left|\varphi(M,\bar{b})\right| < n_{\varphi} \text{ or } \left|\neg\varphi(M,\bar{b})\right| < n_{\varphi}$$

2. For each $\varphi(x,\bar{y})$, $d\varphi(\bar{y})$ is the formula $\exists^{\infty} x \varphi(x,\bar{y})$

Corollary 8.4. If $p \in S_1(M)$ and M is strongly minimal, then p is definable

Definition 8.5. A theory *T* is **stable** if all *n*-types over models are definable

8.2 Heirs and strong heirs

Suppose $M \leq N$ and $p \in S_n(M)$. An **extension** or **son** of p is $q \in S_n(N)$ with $q \supseteq p$, i.e., $p = q \upharpoonright M$

Definition 8.6 (Heirs). $q \in S_n(N)$ is an **heir** of p, written $p \sqsubseteq q$, if for any $\varphi(\bar{x}, \bar{b}, \bar{c}) \in q(\bar{x})$ with $\bar{b} \in M$ and $\bar{c} \in N$, there is $\bar{c}' \in M$ with $\varphi(\bar{x}, \bar{b}, \bar{c}) \in p(\bar{x})$

Lemma 8.7. Suppose $M_1 \leq M_2 \leq M_3$ and $p_i \in S_n(M_i)$ for i=1,2,3, with $p_1 \subseteq p_2 \subseteq p_3$

- 1. If $p_1 \sqsubseteq p_2 \sqsubseteq p_3$, then $p_1 \sqsubseteq p_3$
- 2. If $p_1 \sqsubseteq p_3$, then $p_1 \sqsubseteq p_2$

Definition 8.8. If $p \in S_n(M)$, then (M, dp) is the expansion of M be relation symbols $d\varphi(\bar{y})$ for each $\varphi(\bar{x}, \bar{y})$, interpreted as follows:

$$(M,dp)\vDash d\varphi(\bar{b}) \Leftrightarrow \varphi(\bar{x},\bar{b}) \in p(\bar{x})$$

Remark. p is definable iff the new relations in (M,dp) are definable in the old structure M

Remark. The class of structures of the form (M, dp) with $M \models T$ and $p \in S_n(M)$ is an elementary class, axiomatized by T plus the following:

$$\begin{split} \forall \bar{y}_1 \dots \bar{y}_m \left(\bigwedge_{i=1}^m d\varphi_i(\bar{y}) \to \exists \bar{x} \bigwedge_{i=1}^m \varphi_i(\bar{x}, \bar{y}_i) \right) \text{ for formulas } \varphi_1(\bar{x}, \bar{y}_1), \dots, \varphi_n(\bar{x}, \bar{y}_n) \\ \forall \bar{y} (d\varphi(\bar{y}) \vee d\neg \varphi(\bar{y})) \text{ for each formula } \varphi(\bar{x}, \bar{y}) \end{split}$$

Any model of such theory has an underlying p

Lemma 8.9. If $(M, dp) \leq (N, dq)$, then $M \leq N$ and $p \sqsubseteq q$

Proof. $(N, dq) \geq (M, dp)$ implies $N \geq M$. Then:

- $q\supseteq p$: if $\varphi(\bar{x},\bar{b})\in p(\bar{x})$ (with $\bar{b}\in M$), then $(M,dp)\vDash d\varphi(\bar{b})$, so $(N,dq)\vDash d\varphi(\bar{b})$, and $\varphi(\bar{x},\bar{b})\in q(\bar{x})$
- $q \supseteq p$: suppose $\varphi(\bar{x}, \bar{b}, \bar{c}) \in q(\bar{x})$, with $\bar{b} \in M$ and $\bar{c} \in N$. Then $(N, dq) \vDash d\varphi(\bar{b}, \bar{c})$, and $(N, dq) \vDash \exists \bar{z} \ d\varphi(\bar{b}, \bar{z})$. Then $(M, dp) \vDash \exists \bar{z} \ d\varphi(\bar{b}, \bar{z})$

Corollary 8.10. If $p \in S_n(M)$, then there is $M_0 \leq M$ with $|M_0| \leq |T|$, s.t. $p \supseteq (p \upharpoonright M_0)$

Proof. Apply downward Löwenheim–Skolem theorem to (M,dp) to find $(M_0,dq) \leq (M,dp)$ with $|M_0| \leq |T|$. Then $q=p \upharpoonright M_0$ and $p \supseteq q$

Definition 8.11. If $M \leq N$ and $p \in S_n(M)$ and $q \in S_n(N)$, then q is a **strong heir** of p if $(N,dq) \succeq (M,dp)$

Proposition 8.12 (Types have heirs). Suppose $M \leq N$ and $p \in S_n(M)$

- 1. There is $N' \geq N$ and $q' \in S_n(N')$ a strong heir of p
- 2. There is $q \in S_n(N)$ an heir of p
- *Proof.* 1. Let \bar{c} be an infinite tuple enumerating N. Then $\operatorname{tp}^L(\bar{c}/M)$ is finitely satisfiable in M, hence finitely satisfiable in the expansion (M,dp). Therefore it is satisfied in some $(N',dq) \succeq (M,dp)$. So there is \bar{e} in N' with $\operatorname{tp}^L(\bar{e}/M) = \operatorname{tp}^L(\bar{c}/M)$. Then the map $f(c_i) = e_i$ is an L-elementary embeddings of N into N extending $\operatorname{id}_M: M \to M$. Moving N' by an isomorphism, we may assume $N' \succeq N$
 - 2. Take $N' \succeq N$ and $q' \in S_n(N')$ a strong heir of p. Let $q = q' \upharpoonright N$. Then $q' \supseteq q \supseteq p$ and $q' \supseteq p$, so $q \supseteq p$.

8.3 Heirs and definable types

Proposition 8.13. Let $p \in S_n(M)$ be definable and $N \succeq M$

- 1. p has a unique heir $q \in S_n(N)$
- 2. For $\varphi(\bar{x}, \bar{y})$ and $\bar{b} \in N$

$$\varphi(\bar{x}, \bar{b}) \in q(\bar{x}) \Leftrightarrow N \vDash d_p \varphi(\bar{b})$$
 (*)

3. In particular, q is definable with $d_q \varphi = d_p \varphi$ for all φ

Proof. Claim. If $q \in S_n(N)$ and $q \supseteq p$, then q satisfies (*) Take $\bar{a} \in N' \succeq N$ realizing q. If (*) fails then

$$(\varphi(\bar{x}, \bar{b})) \in q(\bar{x}) \Leftrightarrow N \vDash d_p \varphi(\bar{b})$$

$$N' \vDash \neg(\varphi(\bar{a}, \bar{b}) \leftrightarrow d_p \varphi(\bar{b}))$$

$$\neg(\varphi(\bar{x}, \bar{b}) \leftrightarrow d_n \varphi(\bar{b})) \in q(\bar{x})$$

As $q \supseteq p$, there is $b' \in M$ s.t.

$$\begin{split} \neg(\varphi(\bar{x},\bar{b}') &\leftrightarrow d_p \varphi(\bar{b}')) \in p(\bar{x}) \\ N' &\vDash \neg(\varphi(\bar{a},\bar{b}') \leftrightarrow d_p \varphi(\bar{b}')) \\ \varphi(\bar{x},\bar{b}') &\in p(\bar{x}) \not\Leftrightarrow M \vDash d_p \varphi(\bar{b}') \end{split}$$

a contradiction

There is at least one heir, and at most one heir satisfying (*)

Example 8.1. Suppose T is strongly minimal and $M \leq N$ are models of T. Let p and q be the transcendental 1-types over M and N. For any $\varphi(x, \bar{y})$

$$d_p\varphi(\bar{y})\equiv (\exists^\infty x\;\varphi(x,\bar{y}))\equiv d_q\varphi(\bar{y})$$

so q is the unique heir of p

Proposition 8.14. *TFAE for* $p \in S_n(M)$

- 1. p is definable
- 2. For every $N \geq M$, p has a unique heir over N

Proof. Suppose p has unique heirs. Then for any $N \geq M$, p has at most one strong heir over N. Therefore there is at most one way to expand N to an elementary extension of (M,dp). Then the elementary diagram (M,dp) implicitly defines the relations $d\varphi$. By Beth's implicit definability theorem, (M,dp) is a expansion of M by definable relations, meaning p is definable

Proposition 8.15. Suppose $M_1 \leq M_2 \leq M_3$ and $p_i \in S_n(M_i)$ for i=1,2,3 with $p_1 \subseteq p_2 \subseteq p_3$. Suppose p_1 is definable. Then $p_1 \sqsubseteq p_2 \sqsubseteq p_3$ iff $p_1 \sqsubseteq p_3$

Proof. We only need to show the implication $p_1 \sqsubseteq p_3 \Rightarrow p_2 \sqsubseteq p_3$. Suppose $p_1 \sqsubseteq p_3$. Take $p_2' \supseteq p_1$ and $p_3' \supseteq p_2'$. By the uniqueness of heirs of definable types, $p_2' = p_2$ and p_2 is definable. Then $p_3' = p_3$

8.4 Types in ACF

A **positive quantifier free formula** is a quantifier-free formula that doesn't use ¬

Fix a model $M \models \mathsf{ACF}$

Definition 8.16. A set $V \subseteq M^n$ is an **algebraic set** if

$$V = \varphi(M^n; \bar{b}) = \{\bar{a} \in M^n : M \vDash \varphi(\bar{a}, \bar{b})\}$$

where φ is positive quantifier free.

Remark. V is an algebraic set iff V is defined by finitely many polynomial equations

$$V = \{ \bar{a} \in M^n : P_1(\bar{a}) = \dots = P_m(\bar{a}) = 0 \}$$

Lemma 8.17. 1. M^n and \emptyset are algebraic sets

- 2. If $V, W \subseteq M^n$ are algebraic sets, then $V \cap W$ and $V \cup W$ are algebraic sets
- 3. Any finite subset of M^n is an algebraic set

Fact 8.18 (Quantifier elimination). Every definable set $D \subseteq M^n$ is a finite boolean combination of algebraic sets

Fact 8.19 (Consequence of Hilbert's basis theorem). The class of algebraic sets has the descending chain condition (DCC): there is no infinite chain of algebraic sets $V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots$

Corollary 8.20. *If* S *is a non-empty collection of algebraic sets, then* S *contains at least one minimal element*

Corollary 8.21. An infinite intersection $\bigcap_{i \in I} V_i$ of algebraic sets is an algebraic set

Corollary 8.22. If $S \subseteq K[\bar{x}]$ is any set of polynomials, possibly infinite, then the subset of M^n defined by S is an algebraic set. All algebraic sets arise this way

Corollary 8.23 (Noetherian induction). Let S be a class of algebraic sets. Suppose the following holds

If X is an algebraic set, and every algebraic set $Y \subseteq X$ is in S, then $X \in S$

Then every algebraic set is in S

Definition 8.24. An algebraic set V is **reducible** if $V=W_1\cup W_2$ for algebraic sets $W_1,W_2\subsetneq V$. A **variety** is a non-empty irreducible algebraic set

Remark. If V is an algebraic variety, then the set of algebraic proper subsets of V is closed under finite unions

Proposition 8.25. *If V is an algebraic set, then V is a finite union of varieties*

Proof. • $V = \emptyset$: V is a union of zero varieties

- \bullet *V* is irreducible: *V* is a union of one variety
- *V* is reducible: $V = X \cup Y$ where $X, Y \subseteq V$. By Noetherian induction!

Definition 8.26. The **generic type** of *V* is the type generated by the following formulas

- 1. $x \in V$
- 2. $x \notin W$ for each algebraic proper subset $W \subsetneq V$

We will write this type as $p_V(\bar{x})$

Note that $x \in V$ and $x \notin W$ is all definable

Proposition 8.27. *Let V be a variety*

- 1. $p_V(\bar{x})$ is a consistent complete type
- 2. If W is an algebraic set, then $p_V(\bar{x}) \vdash \bar{x} \in W \Leftrightarrow W \supseteq V$

Proof. Finite satisfiability: given finitely many proper algebraic subsets $W_1,\ldots,W_m\subsetneq V$, we have $V\supsetneq\bigcup_{i=1}^m W_i$, so there is $\bar{a}\in V$ and $\bar{a}\notin W_i$ for $1\leq i\leq m$

1. If $W\supseteq V$, then $p_V(\bar{x})\vdash \bar{x}\in V\vdash \bar{x}\in W$. If $W\not\supseteq V$, then $(W\cap V)\subsetneq V$, so $p_V(\bar{x})\vdash \bar{x}\notin W\cap V$. But $p_V(\bar{x})\vdash \bar{x}\in V$ so $p_V(\bar{x})\vdash \bar{x}\notin W$

Completeness: by 2, for any positive quantifier-free formula $\varphi(\bar{x})$

$$p_V(\bar{x}) \vdash \varphi(\bar{x}) \text{ or } p_V(\bar{x}) \vdash \neg \varphi(\bar{x})$$

Theorem 8.28. The map $V \mapsto p_V$ is a bijection from the set of varieties $V \subseteq M^n$ to $S_n(M)$

Proof. Injectivity: suppose V,W are varieties and $V\neq W.$ WLOG, $V\nsubseteq W.$ Then $p_W(\bar{x})\vdash \bar{x}\in W$ but $p_V(\bar{x})\nvdash \bar{x}\in W$, so $p_V\neq p_W$

Surjectivity: fix $p \in S_n(M)$. Take V a minimal algebraic set s.t. $p(\bar{x}) \vdash \bar{x} \in V$. (There is at least one such V, namely M^n). V is non-empty because p is consistent. If V is reducible as $V = X \cup Y$ for smaller algebraic sets X, Y, then $p(\bar{x}) \vdash \bar{x} \in X$ or $p(\bar{x}) \vdash \bar{x} \in Y$ by completeness, contradicting the choice of V. Thus V is a variety. By choice of $V, p(\bar{x}) \vdash \bar{x} \in V$. \square

Proposition 8.29. $N \geq M$, let $V \subseteq M^n$ be a variety, defined by a formula φ

- 1. φ defines a variety $V_N \subseteq N^n$
- 2. V_N depends only on V, not on the choice of φ

Proof. Take ψ a positive quantifier-free formula defining V. Then $\forall \bar{x}(\varphi(\bar{x}) \leftrightarrow \psi(\bar{x}))$ is satisfied by M, and therefore by N. Let $V_N = \psi(N)$. As ψ is positive quantifier free, V_N is an algebraic set. As $M \vDash \exists \bar{x}\psi(\bar{x}), V_N$ is non-empty. If $V_N = W_1 \cup W_2$ where W_1, W_2 are algebraic proper subsets of V_N defined by $\theta_i(\bar{x},\bar{b}_i)$ for some positive quantifier-free L-formula θ_i and tuple of parameters $\bar{b}_i \in N$. Then

$$N \vDash \exists \bar{y}_1 \bar{y}_2 \left(\forall \bar{x} \left(\psi(\bar{x}) \leftrightarrow \bigvee_{i=1}^2 \theta_i(\bar{x}, \bar{y}_i) \right) \land \bigwedge_{i=1}^2 \exists \bar{x} (\psi(\bar{x}) \land \neg \theta_i(\bar{x}, \bar{y}_i)) \right)$$

which implies V is reducible

Theorem 8.30. Let $M \leq N$ be models of ACF. Let $V \subseteq M^n$ be a variety, and let $V_N \subseteq N^n$ be its extension. Then $p_{V_N} \in S_n(N)$ is the unique heir of $p_V \in S_n(M)$

Proof. Let $q \in S_n(N)$ be an heir of p_V . Let φ be an L(M)-formula defining V and V_N . Then $\varphi(\bar{x}) \in p_V(\bar{x}) \subseteq q(\bar{x})$, so $q(\bar{x}) \vdash \bar{x} \in V_N$. Suppose $q(\bar{x}) \not\vdash \bar{x} \notin W$ for some algebraic $W \subsetneq V_N$, $q(\bar{x}) \vdash \bar{x} \in W$. Let $\psi(\bar{x}, \bar{b})$ be a positive quantifier-free formula defining W. Let $\theta(\bar{b})$ be the L(M)-formula

$$\forall \bar{x}(\psi(\bar{x},\bar{b}) \rightarrow \varphi(\bar{x})) \land \exists \bar{x}(\varphi(\bar{x}) \land \neg \psi(\bar{x},\bar{b}))$$

which says $\psi(M^n, \bar{b}) \subsetneq \varphi(M^n)$. $N \models \theta(\bar{b})$ since $W \subsetneq V$. Then $q(\bar{x}) \vdash \psi(\bar{x}, \bar{b}) \land \theta(\bar{b})$. Because $q \supseteq p_V$, there is $\bar{b}' \in M$ s.t.

$$p_V(\bar{x}) \vdash \psi(\bar{x}, \bar{b}') \land \theta(\bar{b}')$$

Thus we find an algebraic proper subset of V

General fact: If $q \sqsubseteq p$, suppose $\forall \bar{b}(\varphi(\bar{b}) \Rightarrow \psi(\bar{x}, \bar{b}) \in p(\bar{x}))$, then $\forall \bar{b} \in N$, $\varphi(\bar{b}) \Rightarrow \psi(\bar{x}, \bar{b}) \in q(\bar{x})$

8.5 1-types in DLO

9 Stable Theories

9.1 Strong heirs from ultrapowers

Definition 9.1. If $p \in S_n(M)$, I set, $\mathcal U$ ultrafilter on I, $M^{\mathcal U} = M^I/\mathcal U$. The **ultrapower type** $p^{\mathcal U} \in S_n(M^{\mathcal U})$ is the strong heir of p s.t. $(M^{\mathcal U}, dp^{\mathcal U}) = (M, dp)^{\mathcal U}$

```
p^{\mathcal{U}} \text{ is a strong heir of } p \\ \text{If } \varphi(\bar{x},\bar{y}) \in L, \bar{b} \in M^{\mathcal{U}} \text{ represented by } (\bar{b}:i\in I) \in M^{I}, \\ \varphi(\bar{x},\bar{b}) \in p^{\mathcal{U}} \Leftrightarrow (M,dp)^{\mathcal{U}} \vDash d\varphi(\bar{b}) \Leftrightarrow \{i\in I \mid (M,dp) \vDash d\varphi(\bar{b}_i)\} \in \mathcal{U} \Leftrightarrow \{i\in I \mid \varphi(x,\bar{b}_i) \in p(x)\} \in \mathcal{U}
```

Proposition 9.2. Suppose $M \leq N$, $p \in S_n(M)$, $q \in S_n(N)$, $q \supseteq p$. Then there is I, ultrafilter \mathcal{U} on I s.t. (for some copy of $M^{\mathcal{U}}$, moved by isomorphism), $M \leq N \leq M^{\mathcal{U}}$, $p \subseteq q \subseteq p^{\mathcal{U}}$

```
Proof. Let I = \{f : N \to M \mid f \supseteq id_M\}.
```

Note that if $\phi(\bar{x}, \bar{b}) \in q(\bar{x})$, $\bar{b} \in N$, there is $f \in I$, $\phi(\bar{x}, f(\bar{b})) \in p(\bar{x})$. (has some duplicate variable problem, if $b_1 = b_2$, but $c_1 \neq c_2$, but maybe we could take some equivalent formulas)

For each $\phi(\bar{x},\bar{b})$, $\bar{b}\in N$, let $S_{\varphi,\bar{b}}=\{f\in I\mid \phi(\bar{x},f(\bar{b}))\in p(\bar{x})\}$. Let $\mathcal{F}=\{S_{\phi,\bar{b}}\mid \phi(\bar{x},\bar{b})\in q(\bar{x})\}$

Claim \mathcal{F} has F.I.P

Suppose $\phi_i(\bar{x},\bar{b}_i)\in q(\bar{x}), 1\leq i\leq m.$ So $\bigwedge_{i=1}^m\phi_i(\bar{x},\bar{b}_i)\in q(\bar{x})$, then there is $f\in I$ s.t. $\bigwedge_{i=1}^m\phi_i(\bar{x},f(\bar{b}_i)\in p(\bar{x}))$. Then $f\in S_{\varphi_i,\bar{b}_i}$, so $\bigcap_{i=1}^n S_{\phi_i,b_i}\neq\emptyset$ Thus there is $\mathcal{U}\supseteq \mathcal{F}.$ Form $M^{\mathcal{U}}$, $p^{\mathcal{U}}.$ Let $g:N\to M^{\mathcal{U}}$ as follows. If

Thus there is $\mathcal{U}\supseteq\mathcal{F}$. Form $M^{\mathcal{U}}$, $p^{\mathcal{U}}$. Let $g:N\to M^{\mathcal{U}}$ as follows. If $c\in N$, $g(c)=[(f(c):f\in I)]$. Note if $c\in M$, then f(c)=c for all f, and so $g\mid M=\mathrm{id}_M$

For any $\phi(\bar{x}, \bar{y})$, $\bar{b} \in N$, $\phi(\bar{x}, \bar{b}) \in q(\bar{x}) \Rightarrow S_{\phi, \bar{b}} \in \mathcal{F} \Rightarrow S_{\phi, \bar{b}} \in \mathcal{U} \Rightarrow \{f \in I \mid \phi(\bar{x}, f(\bar{b})) \in p(\bar{x})\} \in \mathcal{U} \Leftrightarrow \phi(\bar{x}, g(\bar{b})) \in p^{\mathcal{U}}$

So $g: N \to M^{\mathcal{U}}$, $\phi(\bar{x}, \bar{b}) \in q(\bar{x}) \Rightarrow \phi(\bar{x}, g(\bar{b})) \in p^{\mathcal{U}}$. $N \vDash \phi(\bar{b}) \Rightarrow M^{\mathcal{U}} \vDash \phi(g(\bar{b}))$. WLOG, $N \preceq M^{\mathcal{U}}$ and $g \supseteq \mathrm{id}_N$. $\phi(\bar{x}, \bar{b}) \in q(\bar{x}) \Rightarrow \phi(\bar{x}, \bar{b}) \in p^{\mathcal{U}}$. \square

Since we can prove compactness by ultrapower. Everything we get from compactness can be got by some ultrapower

Corollary 9.3. Every heir of p extends to a strong heir of p

9.2 Stability

Definition 9.4. If α is an ordinal, then $2^{\alpha} = \text{strings of length } \alpha$ in alphabet $\{0,1\}$

Definition 9.5. $\varphi(\bar{x},\bar{y})$ be a formula. For α an ordinal, take variables \bar{x}_{σ} for $\sigma \in 2^{\alpha}$, \bar{y}_{τ} for $\tau \in 2^{<\alpha}$.

$$\begin{array}{l} D_{\alpha} = \{\varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \text{ extends } \tau 0\} \cup \{\neg \varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \text{ extends } \tau 1\} \\ \varphi(\bar{x}, \bar{y}) \text{ has the } \textbf{dichotomy property } \text{if} \end{array}$$

- 1. D_{ω} is consistent
- 2. D_n is consistent for all $n \in \omega$
- 3. D_{α} is consistent for all α

1-3 are equivalent

Example 9.1. D_2 is $\varphi(x_{00}, y)$, $\varphi(x_{00}, y_0)$, $\varphi(x_{01}, y)$, $\neg \varphi(x_{01}, y_0)$ and so on

Proposition 9.6. Fix T, \mathbb{M} , and an integer $n < \omega$. Suppose there is a small model $M \leq \mathbb{M}$ and a type $p \in S_n(M)$ that is not definable, then some formula $\varphi(x_1, \dots, x_n, \bar{y})$ has the dichotomy property

Proof. Because p is not definable, there is an $N \succeq M$, $q_1, q_2 \in S_n(N)$, $q_1, q_2 \sqsupseteq p$ and $q_1 \ne q_2$. There is $\varphi(\bar{x}, \bar{b}) \in q_1(\bar{x}) \setminus q_2(\bar{x})$, $\bar{b} \in N$.

Claim If $M' \geq N$, $p' \in S_n(M')$, $p' \supseteq p$, then there is some $N' \geq M'$, $q_1', q_2' \in S_n(N')$, $q_1', q_2' \supseteq p'$, $q_1', q_2' \supseteq p$. and there is $\bar{b}' \in N'$, $\varphi(\bar{x}, \bar{b}') \in q_1'$, $\neg \varphi(\bar{x}, \bar{b}') \in q_2$

There is $M^{\mathcal{U}}$ s.t. $M \leq M' \leq M^{\mathcal{U}}$, $p \subseteq p' \subseteq p^{\mathcal{U}}$. Then $M' \leq M^{\mathcal{U}} \leq N^{\mathcal{U}}$ and $p \sqsubseteq p^{\mathcal{U}} \sqsubseteq q_i^{\mathcal{U}}$ for i = 1, 2. Take $N' = N^{\mathcal{U}}$, $q_i' = q_i^{\mathcal{U}}$, and \bar{b}' to be the image of \bar{b} under the elementary embedding $N \to N^{\mathcal{U}}$

Recursively build a tree of (M,p) / (M0,p0) (M1,p1)

build $(M_\tau,p_\tau,\varphi(x,b_\tau))$ for $\tau\in 2^{<\omega}$

Then φ has dichotomy

working in M

Proposition 9.7. If some $\varphi(x_1,\ldots,x_n,\bar{y})$ has dichotomy property, then for every cardinal $\lambda \geq \aleph_0$, there is $A \subseteq \mathbb{M}$, $|A| \leq \lambda$, $|S_n(A)| > \lambda$

Proof. take smallest cardinal μ s.t. $2^{\mu} > \lambda$, $\mu \leq \lambda$. note that $|2^{<\mu}| = \left|\bigcup_{\alpha<\mu} 2^{\alpha}\right| \leq \lambda$.

 φ has dichotomy proposition, so D_μ is consistent. In the monster, there are \bar{a}_σ for $\sigma \in 2^\mu$, \bar{b}_τ for $\tau \in 2^{<\mu}$ s.t. if σ extends $\tau 0$ then $\mathbb{M} \vDash \varphi(\bar{a}_\sigma, \bar{b}_\tau)$ and if

 σ extends $\tau 1$ then $\mathbb{M} \vDash \neg \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$. Let $A = \{\bar{b}_{\tau} : \tau \in 2^{<\mu}\}$. Then $|A| \leq \lambda$ but $\operatorname{tp}(a_{\sigma}/A) \neq \operatorname{tp}(a_{\sigma'}/A)$ for $\sigma \neq \sigma'$. Thus $|S_n(A)| \geq 2^{\mu} > \lambda$.

Lemma 9.8. *for* λ *infinite, TFAE*

- 1. $\forall A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $\forall n, |S_n(A)| \leq \lambda$
- 2. $\forall A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $|S_1(A)| \leq \lambda$

Proof. $2 \to 1$: By induction on n, $|S_{n-1}(A)| \le \lambda$. Then we can find $\bar{b}_{\alpha} \in \mathbb{M}^{n-1}$ for $\alpha < \lambda$ s.t.

$$S_{n-1}(A)=\{\operatorname{tp}(\bar{b}_{\alpha}/A):\alpha<\lambda\}$$

For each α , $\left|A\bar{b}_{\alpha}\right| \leq \lambda \Rightarrow \left|S_{1}(A\bar{b}_{\alpha})\right| \leq \lambda$. So we can find $c_{\alpha,\beta} \in \mathbb{M}$ for $\beta < \lambda$ s.t.

$$S_1(A\bar{b}_\alpha) = \{\operatorname{tp}(c_{\alpha,\beta}/A\bar{b}_\alpha): \beta < \lambda\}(\operatorname{for}\,\alpha < \lambda)$$

Claim: if $p \in S_n(A)$ then $p = \operatorname{tp}(\bar{b}_{\alpha}c_{\alpha,\beta}/A)$ for some $\alpha, \beta < \lambda$

Take $(\bar{b}',c')\in \mathbb{M}^n$ realizing p. Then $\operatorname{tp}(\bar{b}'/A)=\operatorname{tp}(\bar{b}_{\alpha}/A)$ for some $\alpha<\lambda$. Moving (\bar{b}',c') by an automorphism in $\operatorname{Aut}(\mathbb{M}/A)$, we may assume $\bar{b}'=\bar{b}_{\alpha}$. Then $\operatorname{tp}(c/A\bar{b}_{\alpha})=\operatorname{tp}(c_{\alpha,\beta}/A\bar{b}_{\alpha})$ for some $\beta<\lambda$. Moving c' by an automorphism in $\operatorname{Aut}(\mathbb{M}/A\bar{b}_{\alpha})$, we may assume $c'=c_{\alpha,\beta}$

By the claim,
$$|S_n(A)| \le \lambda^2 = \lambda$$

Definition 9.9. T is λ -stable if $|A| \leq \lambda \Rightarrow |S_1(A) \leq \lambda|$

Proposition 9.10. *If* $\lambda \geq |L|$, *TFAE*

- 1. $\forall A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $\forall n, |S_n(A)| \leq \lambda$
- 2. $\forall A \subseteq \mathbb{M}$, if $|A| \leq \lambda$, then $|S_1(A)| \leq \lambda$
- 3. If $M \leq \mathbb{M}$, $|M| \leq \lambda \Rightarrow |S_1(M)| \leq \lambda$
- 4. If $M \leq \mathbb{M}$, $|M| \leq \lambda \Rightarrow |S_n(M)| \leq \lambda$

Proof. $3\to 1$: Let $A\subseteq \mathbb{M}$, $|A|\le \lambda$, using downward Löwenheim–Skolem Theorem to get a model $A\subseteq M\preceq \mathbb{M}$ and |A|+|L|=|M|

$$4 \rightarrow 2$$
: similar

Example 9.2. strongly minimal theory is λ -stable for $\lambda \geq |L|$

Given $A\subseteq \mathbb{M}$, $\exists M \leq \mathbb{M}$, $|M|\leq \lambda$. $S_1(M)=$ const types + transcendental types, so $|S_1(M)|=|M|+1$

 λ -stable \Rightarrow no φ has D.P \Rightarrow all types are definable

Lemma 9.11. Suppose $\forall M \leq \mathbb{M}$, $\forall p \in S_1(M)$ is definable. Then T is λ -stable for some λ

Proof. Take $\lambda=2^{|L|}>|L|$. Suppose $M\preceq \mathbb{M}$ and $|M|\leq \lambda.$ $p\in S_1(M)$ is determined by $\varphi\in L\mapsto d_p\varphi\in L(M), |S_1(M)|\leq |L(M)|^{|L|}\leq \lambda^{|L|}=2^{|L|}$

Theorem 9.12. *TFAE*

- 1. T is λ -stable for some λ
- 2. no formula $\varphi(\bar{x}, \bar{y})$ has D.P.
- 3. no $\varphi(x, \bar{y})$ has D.P.
- 4. $M \models T, p \in S_1(M) \Rightarrow p$ is definable
- 5. $M \models T, p \in S_n(M) \Rightarrow p$ is definable

Proof.

9.3 Coheirs

Definition 9.13. If $M \leq N$, if $p \in S_n(M)$, if $q \in S_n(N)$, then q is a **coheir** of p if $q \supseteq p$ and q is finitely satisfiable in M (for any $\phi(x) \in q(x)$, there is $a \in M$ s..t $N \vDash \phi(a)$)

Example 9.3. $\mathbb{Q}^{\mathrm{alg}} \leq \mathbb{C}$, $q = \mathrm{tp}(\pi/\mathbb{C})$, $p = \mathrm{tp}(\pi/\mathbb{Q}^{\mathrm{alg}})$. $q \supseteq p$, but q isn't a coheir since $x = \pi \in q(x)$

Example 9.4. If $M \leq N$ strongly minimal, $q(x) \in S_1(N)$, $p(x) \in S_1(M)$ is the transcendental 1-type, $p \subseteq q$, then q is a coheir of p,

If $\varphi(x) \in q(x)$, then $\varphi(N)$ is cofinite and M is infinite, so $\varphi(N) \cap M \neq \emptyset$

Lemma 9.14. If $M \leq N$, $\Sigma(\bar{x})$ partial type over N, $\Sigma(\bar{x})$ is f.sat. in M, then $\exists q(\bar{x}) \in S_n(N)$, $q(\bar{x})$ is fsat. in M

Proof. Let $\Psi(\bar{x}) = \{\psi(\bar{x}) \in L(N) : \forall \bar{a} \in M, N \vDash \psi(\bar{a})\}$ If $\bar{a} \in M$, then \bar{a} satisfies Ψ Claim $\Sigma(\bar{x})$ fsat in $M \Rightarrow \Sigma \cup \Psi$ is fsat $\Rightarrow q \in S_n(N), q \supseteq \Sigma \cup \Psi$ If q isn't fast. in M then $\varphi(\bar{x}) \in q(\bar{x}), \varphi(\bar{x})$ not sat. in M

Theorem 9.15. If $p \in S_n(M)$, $N \succeq M$, then $\exists q \in S_n(N)$, q is a coheir of p

Theorem 9.16. Suppose $M_1 \leq M_2 \leq M_3$, $p_1 \in S_n(M_1)$, $p_2 \in S_n(M_2)$, p_2 is a coheir of p_1 . Then $\exists p_3 \in S_n(M_3)$, p_3 is a coheir of p_1 and p_2

9.4 Coheir Independence

9.4.1 Coheir independence

Definition 9.17. Let M be a small model, \bar{a}, \bar{b} small tuples (possibly infinite). Then \bar{a} is **coheir independent** from \bar{b} over M, written

$$\bar{a} \bigcup_{M}^{u} \bar{b}$$

if $\operatorname{tp}(\bar{a}/M\bar{b})$ is finitely satisfiable in M

Remark. The relation $A \cup_M^u B$ is finitary w.r.t. the arguments A and B, in the following sense. $A \cup_M^u B$ holds iff the following does:

For any finite tuple $\bar{a} \in A$ and any finite tuple $\bar{b} \in B$, we have $\bar{a} \bigcup_{M}^{u} \bar{b}$ Since a formula $\varphi(\bar{x}, \bar{y})$ can only refer to finitely many variables

Remark. The relation \bigcup^u can be used to define heirs and coheirs, as follows. Suppose M,N are small models with $M \leq N$. Suppose $p \in S_n(M)$ and $q \in S_n(N)$ with $q \supseteq p$. Take $\bar{a} \in \mathbb{M}^n$ realizing q

- 1. $q = \operatorname{tp}(\bar{a}/N)$ is a coheir of $p = \operatorname{tp}(\bar{a}/M)$ iff $\bar{a} \downarrow_M^u N$
- 2. $q=\operatorname{tp}(\bar{a}/N)$ is an heir of $p=\operatorname{tp}(\bar{a}/M)$ iff $N \mathrel{\dot{\bigcup}}_M^u \bar{a}$

9.4.2 Existence

Lemma 9.18. Let M be a small model and \bar{a}, \bar{b} be tuples, possibly infinite

- 1. There is $\sigma \in \operatorname{Aut}(\mathbb{M}/M)$ s.t. $\sigma(\bar{a}) \bigcup_{M}^{u} \bar{b}$
- 2. There is $\sigma \in Aut(\mathbb{M}/M)$ s.t. $\bar{a} \bigcup_{M}^{u} \sigma(\bar{b})$

Proof. 1. Let α be the length of \bar{a} and \bar{x} be an α -tuple of variables. Let

$$\Psi(\bar{x}) = \{\psi(\bar{x}) \in L(M\bar{b}) : \psi(\bar{x}) \text{ is satisfied by every } \bar{a}' \in M^{\alpha}\}$$

If $\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/M)$, then there is $\bar{a}' \in M^{\alpha}$ satisfying $\varphi(\bar{x})$ because $\operatorname{tp}(\bar{a}/M)$ is finitely satisfiable in M. Then \bar{a}' satisfies $\{\varphi(\bar{x})\} \cup \Psi(\bar{x})$. This shows $\operatorname{tp}(\bar{a}/M) \cup \Psi(\bar{x})$ is finitely satisfiable, hence realized by some $\bar{a}' \in \mathbb{M}^{\alpha}$

Then \bar{a}' realizes $\operatorname{tp}(\bar{a}/M)$, so $\operatorname{tp}(\bar{a}'/M) = \operatorname{tp}(\bar{a}/M)$, and there is $\sigma \in \operatorname{Aut}(\mathbb{M}/M)$ s.t. $\sigma(\bar{a}) = \bar{a}'$. Finally $\bar{a}' \downarrow_M^u \bar{b}$ by choice of $\Psi(\bar{x})$: if $\varphi(\bar{x}) \in \operatorname{Aut}(\mathbb{M}/M)$

 $\operatorname{tp}(\bar{a}'/M\bar{b})$ and $\varphi(\bar{x})$ isn't satisfiable in M, then $M \models \neg \exists \bar{x} \varphi(\bar{x})$ and $M \models \forall \bar{x} \neg \varphi(\bar{x})$, hence $\neg \varphi(\bar{x}) \in \Psi(\bar{x})$ and \bar{a} doesn't satisfy $\varphi(\bar{x})$, a contradiction

2. By 1, there is $\tau \in \operatorname{Aut}(\mathbb{M}/M)$ s.t. $\tau(\bar{a}) \bigcup_M^u \bar{b}$. Let $\sigma = \tau^{-1}$. Then $\sigma(\tau(\bar{a})) \bigcup_{\sigma(M)}^u \sigma(\bar{b})$, or equivalently, $\bar{a} \bigcup_M^u \sigma(\bar{b})$

Corollary 9.19. *Suppose* $p \in S_n(M)$ *and* $N \succeq M$

- 1. There is $q \in S_n(M)$ s.t. q is a coheir of p
- 2. There is $q \in S_n(M)$ s.t. q is an heir of p

Proof. 1. Take $\bar{a}\in\mathbb{M}^n$ realizing p. Let \bar{b} enumerate N. By Lemma, there is $\sigma\in\operatorname{Aut}(\mathbb{M}/M)$ s.t. $\sigma(\bar{a})\downarrow_M^u\bar{b}$, i.e., $\sigma(\bar{a})\downarrow_M^uN$. Thus $\operatorname{tp}(\sigma(\bar{a})/N)$ is a coheir of $\operatorname{tp}(\sigma(\bar{a})/M)=\operatorname{tp}(\bar{a}/M)=p$

2. Similarly we have $N \perp_M^u \sigma(\bar{a})$, and thus $\operatorname{tp}(\sigma(\bar{a})/N)$ is an heir of $\operatorname{tp}(\sigma(\bar{a})/M) = \operatorname{tp}(\bar{a}/M)$

9.4.3 "u" for "ultrafilter"

Proposition 9.20. *Let* \bar{a} *be an* α *-tuple in* \mathbb{M} *. Let* M *be a small model and* B *a small set. TFAE*

- 1. $\bar{a} \bigcup_{M}^{u} B$
- 2. There is an ultrafilter \mathcal{U} on the set M^{α} s.t. for any L(MB)-formula $\varphi(\bar{x})$

$$\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB) \Leftrightarrow \{\bar{a}' \in M^{\alpha} : \mathbb{M} \vDash \varphi(\bar{a}')\} \in \mathcal{U}$$

Proof. \Rightarrow : For $\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB)$, let $I = M^{\alpha}$ and $\mathcal{F} = \{\varphi(M^{\alpha}) : \varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB)\}$. We claim that \mathcal{F} has FIP. Let \mathcal{U} be an ultrafilter on M^{α} extending \mathcal{F} . Then for any L(MB)-formula

$$\varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB) \Rightarrow \varphi(M^\alpha) \in \mathcal{F} \Rightarrow \varphi(M^\alpha) \in \mathcal{U} \Leftrightarrow \{\bar{a}' \in M : \mathbb{M} \vDash \varphi(\bar{a}')\} \in \mathcal{U}$$

Then

$$\varphi(\bar{x}) \notin \operatorname{tp}(\bar{a}/MB) \Rightarrow \neg \varphi(\bar{x}) \in \operatorname{tp}(\bar{a}/MB) \Rightarrow \varphi(M^{\alpha}) \notin \mathcal{U}$$

⇐:

Proposition 9.21. Suppose $p \in S_n(M)$ and $N \succeq M$

1. If $q \in S_n(N)$ is a coheir of p, then there is an ultrafilter \mathcal{U} on M^n s.t.

$$q(\bar{x}) = \{\varphi(\bar{x}) \in L(N) : \varphi(M^n) \in \mathcal{U}\} \tag{\star}$$

2. Conversely, if \mathcal{U} is an ultrafilter on M^n and we define $q(\bar{x})$ according to (\star) , then $q(\bar{x}) \in S_n(N)$ and q is a coheir of p

Proof. 1. Take \bar{a} realizing q and p, then $\bar{a} \bigcup_{M}^{u} N$. Apply proposition 9.20

2. It suffices to show that q is finitely satisfiable in M and complete

Corollary 9.22 (Coheirs extend). Suppose $M \leq N \leq N'$ and $p \in S_n(M)$ and $q \in S_n(N)$ is a coheir of p, then is $q' \in S_n(N')$ with $q' \supseteq q$ and q' is a coheir of p

Proof. By proposition 9.21 there is an ultrafilter \mathcal{U} on M^n s.t.

$$q(\bar{x}) = \{\varphi(\bar{x}) \in L(N) : \varphi(M^n) \in \mathcal{U}\}$$

Take
$$q'(\bar{x}) = \{ \varphi(\bar{x}) \in L(N') : \varphi(M^n) \in \mathcal{U} \}$$

Remark. Suppose $q\in S_n(N)$ is an heir of $p\in S_n(M)$. Then $N\downarrow_M^u \bar a$ for a realization $\bar a$. Proposition 9.20 gives an ultrafilter $\mathcal U$ and tells us something., ultimate conclusion is

There is an ultrapower $M^{\mathcal{U}} \succeq N$ s.t. $p^{\mathcal{U}} \supseteq q$

9.4.4 Symmetry

Suppose $q \in S_n(N)$ is an extension of $p \in S_n(M)$.

In stable theory, coheir and heir are the same thing, so for any $q\in S_n(N)$ and $p\in S_n(M),$ $M\preceq N$

$$\bar{a} \underset{M}{\overset{u}{\bigcup}} N \Leftrightarrow N \underset{M}{\overset{u}{\bigcup}} \bar{a}$$

Theorem 9.23. *If T is stable, then*

$$\bar{a} \underbrace{\bigcup_{M}^{u} \bar{b}}_{M} \Leftrightarrow \bar{b} \underbrace{\bigcup_{M}^{u}}_{M} \bar{a}$$

Proof. It suffices to prove \Rightarrow . Let α be the length of \bar{a} . Take a small model N containing M and \bar{b} . By the method of 9.22, one can find a type $q \in S_{\alpha}(N)$ extending $\operatorname{tp}(\bar{a}/M\bar{b})$ finitely satisfiable in M. Take \bar{a}' realizing q. Then $\bar{a}' \downarrow_M^u N$. Also $\operatorname{tp}(\bar{a}'/M\bar{b}) = q \upharpoonright (M\bar{b}) = \operatorname{tp}(\bar{a}/M\bar{b})$, so there is $\sigma \in \operatorname{Aut}(\mathbb{M}/M\bar{b})$ s.t. $\sigma(\bar{a}') = \bar{a}$. Then

$$\bar{a}' \mathop{\downarrow}\limits_{M}^{u} N \Rightarrow \sigma(\bar{a}') \mathop{\downarrow}\limits_{\sigma(M)}^{u} \sigma(N) \Leftrightarrow \bar{a} \mathop{\downarrow}\limits_{M}^{u} \sigma(N)$$

Replacing N with $\sigma(N)$, we may assume $\bar{a} \mathrel{\bigcup}_M^u N$. Therefore we have $N \mathrel{\bigcup}_M^u \bar{a}$. As $\bar{b} \in N$, this implies $\bar{b} \mathrel{\bigcup}_M^u \bar{a}$

9.4.5 Finitely satisfiable types commute with definable types

Recall that if $M \leq N \leq M$, then

$$N \underset{M}{\overset{u}{\downarrow}} \bar{a} \Leftrightarrow \operatorname{tp}(\bar{a}/N) \supseteq \operatorname{tp}(\bar{a}/M)$$

Therefore the following lemma generalizes the fact that definable types have unique types

Lemma 9.24. Let M be a small model. Suppose $\operatorname{tp}(\bar{a}/M)$ is definable and $\bar{b} \bigcup_{M}^{u} \bar{a}$. Then $\operatorname{tp}(\bar{a}/M\bar{b})$ is $p \upharpoonright M\bar{b}$, where p is the M-definable global type extending $\operatorname{tp}(\bar{a}/M)$

Proof. We must show that for any *L*-formula $\varphi(\bar{x}, \bar{y}, \bar{z})$ and any $\bar{c} \in M$,

$$\varphi(\bar{x},\bar{b},\bar{c}) \in \operatorname{tp}(\bar{a}/M\bar{b}) \Leftrightarrow \mathbb{M} \vDash (d_n\bar{x})\varphi(\bar{x},\bar{b},\bar{c})$$

Otherwise, these things are true

$$\begin{split} \mathbb{M} &\vDash \varphi(\bar{a}, \bar{b}, \bar{c}) \not\Leftrightarrow \mathbb{M} \vDash (d_p(\bar{x})\varphi(\bar{x}, \bar{b}, \bar{c}) \\ \mathbb{M} &\vDash \varphi(\bar{a}, \bar{b}, \bar{c}) \not\leftrightarrow (d_p\bar{x})\varphi(\bar{x}, \bar{b}, \bar{c}) \\ (\varphi(\bar{a}, \bar{y}, \bar{c}) \not\leftrightarrow (d_p\bar{x})\varphi(\bar{x}, \bar{y}, \bar{c})) \in \operatorname{tp}(\bar{b}/M\bar{a}) \end{split}$$

As $\bar{b} \bigcup_{M'}^{u}$ there is $\bar{b}' \in M$ s.t.

$$\begin{split} \mathbb{M} &\vDash \varphi(\bar{a}, \bar{b}', \bar{c}) \not\leftrightarrow (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \\ \mathbb{M} &\vDash \varphi(\bar{a}, \bar{b}', \bar{c}) \not\Leftrightarrow \mathbb{M} \vDash (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \\ \varphi(\bar{x}, \bar{b}', \bar{c}) &\in \mathsf{tp}(\bar{a}/M) \not\Leftrightarrow \mathbb{M} \vDash (d_p \bar{x}) \varphi(\bar{x}, \bar{b}', \bar{c}) \end{split}$$

A contradiction

Lemma 9.25. Let $p \in S_n(\mathbb{M})$ be finitely satisfiable in a small model M. If $\bar{a} \models p \upharpoonright$ $M\bar{b}$, then $\bar{a} \bigcup_{M}^{u} \bar{b}$

Theorem 9.26. Let p, q be global types. Suppose p is definable over some small set A. (p is A-invariant) Suppose q is finitely satisfiable in some small set B (q is *B-invariant by* 9.35). *Then* p *and* q *commute*

Proof. Otherwise, there is an $L(\mathbb{M})$ -formula $\varphi(\bar{x}, \bar{y})$ s.t.

$$(p \otimes q)(\bar{x}, \bar{y}) \vdash \varphi(\bar{x}, \bar{y})$$
$$(q \otimes p)(\bar{y}, \bar{x}) \vdash \neg \varphi(\bar{x}, \bar{y})$$

The formula φ uses only finitely many parameters \bar{c} from M. By Löwenheim– Skolem Theorem there is a small model M containing $AB\bar{c}$. Then $\varphi(\bar{x},\bar{y})$ is an L(M)-formula. Also, p is M-definable and q is finitely satisfiable in M. Note that p, q and $p \otimes q$, $q \otimes p$ are M-invariant types. Take $(\bar{a}, b) \models (p \otimes q) \upharpoonright M$ and $\bar{a} \vDash p \upharpoonright M$, $\bar{b} \vDash q \upharpoonright M\bar{a}$. By Lemma 9.25, $\bar{b} \mathrel{\dot{\bigcup}}_M^u \bar{a}$ Now $\operatorname{tp}(\bar{a}/M)$ is the definable type $p \upharpoonright M$, so by Lemma 9.25

$$\bar{a} \vDash p \upharpoonright M\bar{b}$$

Thus $(\bar{b}, \bar{a}) \vDash (q \otimes p) \upharpoonright M$

It follows that $(q \otimes p)(\bar{y}, \bar{x})$ and $(p \otimes q)(\bar{x}, \bar{y})$ have the same restriction to M. Then φ leads to a contradiction

Types commute in stable theories

Assume the theory *T* is stable

Proposition 9.27 (Assuming stability). Let $p \in S_n(\mathbb{M})$ be a global type and Mbe a small model. TFAE

- 1. p is finitely satisfiable in M
- 2. p is M-invariant
- 3. p is M-definable

Proof.
$$1 \rightarrow 2$$
: 9.35 $2 \rightarrow 3$: 9.37

Theorem 9.28 (Assuming stability). Let $p(\bar{x})$, $q(\bar{y})$ be two invariant global types. Then p and q commute

Proof. The types p and q are invariant over small sets A and B respectively. Take a small model M containing $A \cup B$. Then p and q are M-invariant. By Proposition 9.27, p is M-definable and p is finitely satisfiable in M. Therefore p and q commute by Theorem 9.26

9.4.7 Morley products and $igsup^u$

Let M be a small model. If p and q are M-definable types, then the Morley product $p \otimes q$ is also M-definable by 9.49. Since M-definable global types corresponds to (M-)definable types over M (Proposition 9.34), we can regard \otimes as an operation on definable types over M

If T is stable, then all types over M are definable, and we get an operation

$$S_n(M)\times S_n(M)\to S_{m+n}(M)$$

$$(p,q)\mapsto p\otimes q$$

The following theorem shows that, at least in stable theories, there is a very close connection between the Morley product $p\otimes q$ and the coheir independence relation $\bar{a} \downarrow_M^u \bar{b}$

Theorem 9.29. Assume T is stable. Let $M \leq \mathbb{M}$ be a small model and \bar{a}, \bar{b} be tuples in \mathbb{M} . Then

$$\bar{a} \mathop{\textstyle \bigcup}_{M}^{u} \bar{b} \Leftrightarrow \operatorname{tp}(\bar{b}, \bar{a}/M) = \operatorname{tp}(\bar{b}/M) \otimes \operatorname{tp}(\bar{a}/M)$$

Proof. First suppose $\bar{a} \downarrow_M^u \bar{b}$. Then $\operatorname{tp}(\bar{a}/M\bar{b})$ is finitely satisfiable in M. By Lemma 9.14, there is a global type p which is finitely satisfiable in M and extends $\operatorname{tp}(\bar{a}/M\bar{b})$. By Proposition 9.27, p is M-definable. Then p is the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{a}/M)$. Let q be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{b}/M)$. Then

$$\bar{b} \vDash q \upharpoonright M$$
 and $\bar{a} \vDash p \upharpoonright M\bar{b}$

because p extends $\operatorname{tp}(\bar{a}/M\bar{b})$. Therefore

$$(\bar{b}, \bar{a}) \vDash (q \otimes p) \upharpoonright M$$

or equivalently, $\operatorname{tp}(\bar{b}, \bar{a}/M) = (q \otimes p) \upharpoonright M$.

Conversely, suppose $\operatorname{tp}(\bar{b},\bar{a}/M)=\operatorname{tp}(\bar{b}/M)\otimes\operatorname{tp}(\bar{a}/M)$. Let q be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{b}/M)$ and let p be the unique M-definable global extension of the definable type $\operatorname{tp}(\bar{a}/M)$ by 9.34. Then

$$(\bar{b},\bar{a})\vDash (q\otimes p)\upharpoonright M$$

or equivalently

$$\bar{b} \vDash q \upharpoonright M$$
 and $\bar{a} \vDash p \upharpoonright M\bar{b}$

By Proposition 9.27 p is finitely satisfiable in M, and so

$$\bar{a} \vDash p \upharpoonright M\bar{b} \Rightarrow \bar{a} \overset{u}{\underset{M}{\bigcup}} \bar{b}$$

by Lemma 9.25

9.5 Invariant types

Lemma 9.30. *If* $X \subseteq \mathbb{M}^n$, *TFAE*

- 1. $\sigma(X) = X \text{ if } \sigma \in Aut(\mathbb{M}/A)$
- 2. If $\bar{a}, \bar{b} \in \mathbb{M}^n$, $\bar{a} \equiv_{A} \bar{b} \Rightarrow (\bar{a} \in X \Leftrightarrow \bar{b} \in X)$
- 3. There is $f: S_n(A) \to \{0,1\}$ s.t. $\bar{a} \in X \Leftrightarrow f(\mathsf{tp}(\bar{a}/A)) = 1$

Proof. rewrite (2) as

- If $\bar{a}, \bar{b} \in \mathbb{M}^n$, $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$, $\sigma(\bar{a}) = \sigma(\bar{b})$, then $\bar{a} \in X \Leftrightarrow \bar{b} \in X$
- If $\bar{a} \in M$, $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$, $\bar{a} \in X \Leftrightarrow \sigma(\bar{a}) \in X$

Definition 9.31. $X \subseteq \mathbb{M}^n$ is A-invariant if $\forall \sigma \in \operatorname{Aut}(\mathbb{M}/A), \sigma(X) = X$

Example 9.5. If *X* is *A*-definable, then *X* is *A*-invariant

Lemma 9.32. If $D \subseteq \mathbb{M}^n$ is definable and A-invariant, then D is A-definable

Proof. Step 1: If $\bar{b} \in D$ then $\operatorname{tp}(\bar{b}/A) \vdash \bar{x} \in D$, by compactness, there is $\varphi(\bar{x}) \in \operatorname{tp}(\bar{b}/A)$ s.t. $\varphi(\bar{x}) \vdash \bar{x} \in D$, $\varphi(\mathbb{M}^n) \subseteq D$

Step 2: So then D is covered by A-definable subsets of D. By compactness, D is covered by finitely many of them, which implies D is A-definable

Definition 9.33. p is A-definable if $\forall \varphi$, $\{\bar{b} \in \mathbb{M}: \varphi(\bar{x},\bar{b}) \in p(\bar{x})\}$ is A-definable

Remark. 1. p is A-definable $\Rightarrow p$ is A-invariant

2. If p is definable, then p is A-invariant $\Leftrightarrow p$ is A-definable

3. If p is definable thne p is A-definable for some small A Each $d_p \varphi$ uses only finitely many parameters

Proposition 9.34. *Suppose* $M \leq M$ *, small*

- 1. If $p\in S_n(M)$ definable and $p^{\mathbb{M}}$ is its heir over \mathbb{M} , then $p^{\mathbb{M}}\in S_n(\mathbb{M})$ is M-definable
- 2. $p \mapsto p^{\mathbb{M}}$ is a bijection from definable types over M to M-definable types over \mathbb{M}

Proof. 1. $p^{\mathbb{N}}$ has the same definition as p, so it's M-definable

2. $q \mapsto q \upharpoonright M$ is an inverse to $p \mapsto p^{\mathbb{M}}$

Warning: an M-invariant type p is not determined by $p \upharpoonright M$. If $A \subseteq \mathbb{M}$, A-definable type p is not determined by $p \upharpoonright A$. Only works for models CHECK

Theorem 9.35. Suppose $M \leq \mathbb{M}$ and $p \in S_n(M)$

- 1. If $q \in S_n(\mathbb{M})$ and q is a coheir of p, then q is M-invariant
- 2. $\exists q \in S_n(\mathbb{M}), p \subseteq q \text{ is } M\text{-invariant}$

Proof. If q is a coheir of p, but q is not M-invariant, then $\exists \bar{b}, \bar{c}, \ \bar{b} \equiv_M \bar{c}, \ \varphi(\bar{x}, \bar{b}) \in q, \varphi(\bar{x}, \bar{c}) \notin q$. Then $\varphi(\bar{x}, \bar{b}) \land \neg \varphi(\bar{x}, \bar{c}) \in q(\bar{x})$. Because q is fsat. in M, $\exists \bar{a} \in M$, $M \vDash \varphi(\bar{a}, \bar{b}) \land \neg \varphi(\bar{a}, \bar{c})$, so $\bar{b} \not\equiv_M \bar{c}$

In stable theories:

Lemma 9.36. If T is stable and p is A-invariant, then p is A-definable

Theorem 9.37. Suppose T stable, $M \leq \mathbb{M}$ small, $p \in S_n(M)$. Let $p^{\mathbb{M}}$ the global heir.

- 1. $p^{\mathbb{M}}$ is the only M-invariant global type extending p
- 2. $p^{\mathbb{M}}$ is the only global coheir of p
- 3. If $M \leq N \leq \mathbb{M}$ and q is the heir of p over N, then q is the unique coheir of p over N

Proof. 1. M-invariant $\Leftrightarrow M$ -definable

2. there is some coheir of p. Any coheir is M-invariant, so $p^{\mathbb{M}}$ is the only coheir

Corollary 9.38. *In a stable theory, coheirs are unique and coheir=heir*

Corollary 9.39. *In a stable theory, "coheir" is transitive*

9.6 Morley sequence

Lemma 9.40. If p, q are A-invariant global types, $p \in S_n(\mathbb{M})$, $q \in S_m(\mathbb{M})$, then there is $r \in S_{n+m}(A)$ s.t. $(\bar{b}, \bar{c}) \models r$ iff

$$\bar{b} \vDash p \upharpoonright A \quad and \quad c \vDash q \upharpoonright (A\bar{b}) \tag{*}$$

Proof. Let $X=\{(\bar{b},\bar{c}):\bar{b}\vDash p\upharpoonright A \text{ and }\bar{c}\vDash q\upharpoonright A\bar{b}\}$. If $(\bar{b},\bar{c})\in X$ and $\sigma\in \operatorname{Aut}(\mathbb{M}/A)$, then $\sigma(\bar{b})\vDash \sigma(p\upharpoonright A)=p\upharpoonright A$ and $\sigma(\bar{c})\vDash q\upharpoonright A\sigma(\bar{b})$. So $\sigma(\bar{b},\bar{c})\in X$, X is A-invariant

Fix $\bar{b}_0 \vDash p \upharpoonright A$, $\bar{c}_0 \vDash q \upharpoonright A\bar{b}_0$, so $(\bar{b}_0, \bar{c}_0) \in X$. Let $r = \operatorname{tp}(\bar{b}_0, \bar{c}_0/A)$. If $(\bar{b}, \bar{c}) \vDash r$, then $(\bar{b}, \bar{c}) \in X$

Conversely, if $(\bar{b}, \bar{c}) \in X$, want $(\bar{b}, \bar{c}) \models r$, i.e., $(\bar{b}, \bar{c}) \equiv_A (\bar{b}_0, \bar{c}_0)$

 $\bar{b} \vDash p \upharpoonright A = \operatorname{tp}(\bar{b}_0/A) \text{ so } \bar{b} \equiv_A \bar{b}_0, \exists \sigma \in \operatorname{Aut}(A), \sigma(\bar{b}) = \bar{b}_0. \text{ Replace } (\bar{b}, \bar{c}) \text{ with } (\sigma(\bar{b}), \sigma(\bar{c})) = (\bar{b}_0, \sigma(\bar{c})).$

WMA $\bar{b}=\bar{b}_0$. Then \bar{c} and \bar{c}_0 both satisfy $q \upharpoonright A\bar{b}_0$. Move \bar{c} by $\tau \in \operatorname{Aut}(\mathbb{M}/A\bar{b}_0)$, we may assume $\bar{c}=\bar{c}_0$. Then $\bar{c}\equiv_{A\bar{b}_0}\bar{c}_0 \Rightarrow \bar{b}\bar{c}\equiv_A\bar{b}_0\bar{c}_0$

Proposition 9.41. If $p \in S_n(\mathbb{M})$, $q \in S_m(\mathbb{M})$ and both are A-invariant, then there is A-invariant $p \otimes q \in S_{n+m}(\mathbb{M})$ s.t. for any small $A' \supseteq A$,

$$(\bar{b},\bar{c})\vDash(p\otimes q)\upharpoonright A'\Leftrightarrow b\vDash p\upharpoonright A' \text{ and } \bar{c}\vDash q\upharpoonright A'\bar{b}$$

Proof. Note p,q are A'-invariant for any A'-invariant, so lemma gives $r_{A'} \in S_{n+m}(A')$ for each $A' \supseteq A$ s.t. $(\bar{b},\bar{c}) \vDash r_{A'} \Leftrightarrow$ the condition

If
$$A'' \supseteq A' \supseteq A$$
, if $(\bar{b}, \bar{c}) \vDash r_{A''}$ then $(\bar{b}, \bar{c}) \vDash r_{A'}$ so $r_{A'} \vDash r_{A'} \upharpoonright A'$.
 Let $p \otimes q = \bigcup_{A'} r_{A'}$, then $p \otimes q \in S_{n+m}(\mathbb{M})$ and $r_{A'} = p \otimes q \upharpoonright A'$

If $\sigma\in {\rm Aut}(\mathbb{M}/A)$, then $\sigma(p\otimes q)=\sigma(p)\otimes\sigma(q)=p\otimes q$, so $p\otimes q$ is A-invariant

Fact 9.42. If $p \in S_n(M)$ A-invariant where M is $|A|^+$ -saturated and $N \succeq M$, then p has a unique A-invariant extension over N

Fact 9.43. If $p,q\in S_{n+m}(\mathbb{M})$ A-invariant, take $\bar{b}\vDash p$, $\bar{b}\in\mathbb{M}_1\succeq\mathbb{M}$, take $\bar{c}\vDash q\upharpoonright\mathbb{M}_1$ then $\operatorname{tp}(\bar{b},\bar{c}/\mathbb{M})=p\otimes q$

Definition 9.44. The (Morley) product of invariant types p, q is $p \otimes q$

If p, q are A-invariant, then $(\bar{b}, \bar{c}) \vDash (p \otimes q) \upharpoonright A \Leftrightarrow \bar{b} \vDash p \upharpoonright A$ and $\bar{c} \vDash q \upharpoonright A\bar{b}$

Definition 9.45. $\operatorname{acl}(A) = \bigcup \{ \varphi(\mathbb{M}) : \varphi(x) \in L(A), |\varphi(\mathbb{M})| < \infty \}$

Fact 9.46. *In ACF, if* K *a subfield of* \mathbb{M} *, then* $\operatorname{acl}(K)$ *is* K^{alg}

Fact 9.47. *In any theory* T*,* acl(-) *is a finitary closure operation*

Example 9.6. If T is strongly minimal and $p \in S_1(\mathbb{M})$ transcendental 1-type, what is $p \otimes p$

 $b \vDash p \upharpoonright A \Leftrightarrow b \notin \operatorname{acl}(A)$

Therefore $(b,c) \vDash (p \otimes p) \upharpoonright A$ iff $b \vDash p \upharpoonright A$ and $c \vDash p \upharpoonright Ab$ iff $b \notin \operatorname{acl}(A)$ and $c \notin \operatorname{acl}(Ab)$

idea: b, c are algebraically independent over A

In stable theories, $(p \otimes q)(x, y)$ is the "most free" completion of $p(\bar{x}) \cup q(\bar{y})$

Example 9.7. Suppose $\mathbb{M} \models \mathsf{ACF}$. let p_V denote generic type of a variety $V \subseteq \mathbb{M} \{x \in V\} \cup \{x \notin W : W \subsetneq V, W \text{ algebraic}\}$

If $V\subseteq \mathbb{M}^n$, $W\subseteq \mathbb{M}^m$ varieties, then $V\times W$ is a variety, and $p_V\otimes p_W=p_{V\times W}$

Proof. $p_V \otimes p_W = p_Z$ for some variety $Z \subseteq \mathbb{M}^{n+m}$. Take small $M \leq \mathbb{M}$ s.t. V, W, Z are M-definable. Take $\bar{a} \vDash p_V \upharpoonright M$, take small $N \leq \mathbb{M}$, $N \supseteq M\bar{a}$. Take $\bar{b} \vDash p_W \upharpoonright N$, so $(\bar{a}, \bar{b}) \vDash p_V \otimes p_W \upharpoonright M = p_Z \upharpoonright M$.

" $x \in V \in p_V \upharpoonright M$ ", $\bar{a} \in V$, $\bar{b} \in W$, so $(\bar{a}, \bar{b}) \in V \times W$.

Fact: $p_Z(\bar{x}) \vdash \bar{x} \in U \Leftrightarrow Z \subseteq U$ for U algebraic

So $(\bar{a}, \bar{b}) \in V \otimes W \Leftrightarrow Z \subseteq V \times W$

Suppose $Z \subsetneq V \times W$. Take $(\bar{a}_0, \bar{b}_0) \in V \times W \setminus Z$. Let $Z_{\bar{a}} = \{\bar{y} \in M : (\bar{a}, \bar{y}) \in Z\}$, then $Z_{\bar{a}}$ is an algebraic set over $N \supseteq M_{\bar{a}}$ L

Definition 9.48. invariant types p, q "commute" if $p \otimes q(\bar{x}, \bar{y}) = q \otimes p(\bar{y}, \bar{x})$

Example 9.8. In ACF, any two types commutes

$$p_V \otimes p_W = p_{V \times W} = p_W \otimes p_V$$

If p is a definable type and $\varphi(\bar{x},\bar{y})$ is a formula, then $(d_p\bar{x})\varphi(\bar{x},\bar{y})$ means $d\varphi(\bar{y})$, the formula defining $\{\bar{b}\in\mathbb{M}:\varphi(\bar{x},\bar{b})\in p(\bar{x})\}$

 $d_n \bar{x}$ works like quantifier, free variables in $(d_n \bar{x}) \varphi(\bar{x}, \bar{y})$ are \bar{y}

Example 9.9. Suppose $\mathbb{M} \models T$ strongly minimal, let p = transcendental 1-type, $\varphi()$

Proposition 9.49. If p,q are A-definable global types, then $p\otimes q$ is A-definable and $(d_{p\otimes q}(\bar x,\bar y))\varphi(\bar x,\bar y,\bar z)\equiv (d_p\bar x)(d_q\bar y)\varphi(\bar x,\bar y,\bar z)$

Proof. Fix $\bar{c} \in \mathbb{M}$, take $M \leq \mathbb{M}$ s.t. $\bar{c} \in M$ and $M \supseteq A$, so p, q are M-definable. Take $\bar{a} \models p \upharpoonright M$ and $\bar{b} \models q \upharpoonright M\bar{a}$, so $(\bar{a}, \bar{b}) \models (p \otimes q) \upharpoonright M$. So

$$\begin{split} \varphi(\bar{x},\bar{y},\bar{c}) &\in p \otimes q \Leftrightarrow \varphi(\bar{x},\bar{y},\bar{c}) \in p \otimes q \upharpoonright M \\ &\Leftrightarrow \mathbb{M} \vDash \varphi(\bar{a},\bar{b},\bar{c}) \\ &\Leftrightarrow \varphi(\bar{a},\bar{y},\bar{c}) \in q(\bar{y}) \upharpoonright M\bar{a} \\ &\Leftrightarrow \varphi(\bar{a},\bar{y},\bar{c}) \in q(\bar{y}) \\ &\Leftrightarrow \mathbb{M} \vDash (d_q\bar{y})\varphi(\bar{a},\bar{y},\bar{c}) \\ &\Leftrightarrow (d_q\bar{y})\varphi(\bar{x},\bar{y},\bar{c}) \in p(\bar{x}) \\ &\Leftrightarrow (d_p\bar{x})(d_q\bar{y})\varphi(\bar{x},\bar{y},\bar{c}) \end{split}$$

Example 9.10. in a strongly minimal theory, if $p \in S_1(\mathbb{M})$ is transcendental and $q = p \otimes p$ then $(d_q(x,y))\varphi(x,y,\bar{z})$ is $\exists^\infty x \exists^\infty y \varphi(x,y,\bar{z})$

Two definable types p,q commute iff $(d_p \bar{x})(d_q \bar{y})\varphi(\bar{x},\bar{y},\bar{z}) \equiv (d_q \bar{y})(d_p \bar{x})\varphi(\bar{x},\bar{y},\bar{z})$ Let A-invariant $p \in S_n(\mathbb{M})$

Definition 9.50. A Morley sequence of p over A is a sequence $\bar{b}_1, \bar{b}_2, \bar{b}_3, \dots \in \mathbb{M}^n$ s.t.

$$\bar{b}_1 \vDash p \upharpoonright A, \bar{b}_2 \vDash p \upharpoonright A\bar{b}_1, \ldots, \bar{b}_i \vDash p \upharpoonright A\bar{b}_1 \ldots \bar{b}_{i-1} \ldots$$
 So $(\bar{b}_1, \ldots, \bar{b}_n) \vDash \underbrace{p \otimes \cdots \otimes p}_{n \text{ times}}$

Example 9.11. If T is strongly minimal, p is transcendental 1-type, a Morley sequence over A is b_1, b_2, \dots s.t. $b_1 \notin \operatorname{acl}(A), b_2 \notin \operatorname{acl}(Ab_1), \dots$

Example 9.12. In DLO, in (\mathbb{R}, \leq) , 1, 2, 3, 4, ... is indiscernible An increasing sequence is indiscernible in DLO

Theorem 9.51. If $p \in S_n(\mathbb{M})$ A-invariant and $(\bar{b}_i : i < \omega)$ is a Morley sequence of p over A, then it is A-indiscernible

9.7 Order Property

Remark. If φ has O.P., then $\neg \varphi$

Lemma 9.52. For any infinite $\lambda \geq \aleph_0$ there is a linear order (I, \leq) and $S \subseteq I$ s.t. $|I| > \lambda$, $|S| \leq \lambda$, S is dense in I

Proof. there is
$$\mu$$
 s.t. $|2^{\mu}| > \lambda$ and $|2^{<\mu}| \le \lambda$.
Let $I = 2^{\mu} \cup 2^{<\mu}$ and $S = 2^{<\mu}$

Theorem 9.53. *If* $\varphi(\bar{x}, \bar{y})$ *has O.P., then* T *is not* λ *-stable for any* λ

Proof. Take $I \supseteq S$ s.t. S dense in I, $|S| \le \lambda$, $|I| > \lambda$

 $ar{a}_i, ar{b}_j, i, j \in \mathbb{Z}$, $arphi(ar{a}_i, ar{b}_j) \Leftrightarrow i < j$. By compactness, we can take any linear order. There is $ar{a}_i, ar{b}_j$ for $i, j \in I$ s.t. $\mathbb{M} \vDash arphi(ar{a}_i, ar{b}_j) \Leftrightarrow i < j$

Let
$$C = \{\bar{b}_j : j \in S\}, |C| \le \lambda$$
.

Claim $I \smallsetminus S \to S_n(C)$, $i \mapsto \operatorname{tp}(\bar{a}_i/C)$ is an injection

If $i_1 < i_2$, then there is $j \in S$, $i_1 < j < i_2$ then $\varphi(\bar{a}_i, \bar{b}_j) \land \neg \varphi(\bar{a}_{i_2}, \bar{b}_j)$, $\bar{b}_j \in C$, so $\bar{a}_{i_1} \not\equiv_C \bar{a}_{i_2} \mid S_n(C) \mid \geq |I \smallsetminus S| > \lambda$

Lemma 9.54. Suppose $\varphi(\bar{x}, \bar{y})$ doesn't have O.P. Let n_{φ} be from Lemma 9. Let $\bar{b}_1, \bar{b}_2, \ldots$ be indiscernible (over \emptyset). Then there is no \bar{a} s.t. $\mathbb{M} \vDash \varphi(\bar{a}, \bar{b}_i)$ for $0 \le i < n_{\varphi}$ s.t.

Proof.
$$n = n_{\varphi}$$
. Suppose \bar{a} exists, for $0 \leq$

Lemma 9.55. Suppose $\varphi(x_1, ..., x_n; \bar{y})$ doesn't have O.P.. Take $N > \max(n_{\varphi}, n_{\neg \varphi})$. let p be an A-invariant type over \mathbb{M} . Let $a_1, a_2, ...$ be a Morley sequence of p over A

- 1. If $\varphi(\bar{x}, \bar{b}) \in p(\bar{x})$, then $\mathbb{M} \models \varphi(\bar{a}_i, \bar{b})$ for most of i < 2N
- 2. If $\varphi(\bar{x}, \bar{b}) \notin p(\bar{x})$, then $\mathbb{M} \vDash \neg \varphi(\bar{a}_i, \bar{b})$ for most of i < 2N

Example 9.13. If T is strongly minimal then T is stable if $\varphi(x,\bar{y})$ has the O.P., then there is $a_i,\bar{b}_i\in\mathbb{M}\;\mathbb{M}\vDash\varphi(a_i,\bar{b}_j)\Leftrightarrow i< j \text{ for } i,j\in\mathbb{Z}$

So $\varphi(\mathbb{M}, \bar{b}_0)$ is neither finite or cofinite

Theorem 9.56. If T is stable and p and q are global types (all types are definable and hence invariant for some A), then $(p \otimes q)(\bar{x}, \bar{y}) = (q \otimes p)(\bar{y}, \bar{x})$

Proof. Suppose not. Take $\varphi(\bar{x}, \bar{y}) \in L(\mathbb{M})$. $\varphi(\bar{x}, \bar{y}) \in (p \otimes q)(\bar{x}, \bar{y})$, $\varphi(\bar{x}, \bar{y}) \notin (q \otimes p)(\bar{y}, \bar{x})$.

Take A s.t. p, q are A-definable and $\varphi(\bar{x}, \bar{y}) \in L(A)$

Take $p \otimes q \otimes p \otimes q \otimes \cdots$

 $((b_i,c_i):i\in\omega)$ a Morley sequence of $p\otimes q$ over A

If
$$i \leq j$$
, $(b_i, c_j) \vDash p \otimes q \upharpoonright A$, $\mathbb{M} \vDash \varphi(b_i, c_j)$

If
$$i > j$$
, $(c_i, b_i) \models q \otimes p \upharpoonright A \bowtie \models \neg \varphi(b_i, c_i)$

9.8 Ramsey's theorem and indiscernible sequences

Definition 9.57. X set, C a set of "colors", then $f:[X]^{\kappa} \to C$ is a coloring of κ -elements subsets of X

Definition 9.58. $Y \subseteq X$ is **homogeneous** if $f \upharpoonright [Y]^{\kappa}$ is constant

Definition 9.59. If N, m, n, k are cardinals, $N \to (m)_k^n$ means that if |X| = N, |C| = k, $f : [X]^n \to C$, then there is $Y \subseteq X$, Y is homogeneous and has size m

Fact 9.60 (Friends and strangers theorem). |X| = 6, |C| = 2 and $f : [X]^2 \to C$, then there is $Y \subseteq X$ homogeneous and size 3

Theorem 9.61 (Finite Ramsey's theorem). If $n, m, k \in \omega$ then there is $N < \omega$ s.t. $N \to (m)_k^n$

Proof. Let $L=\{R_1,\dots,R_k\}$, R_i is an n-ary predicate (relation) symbol. T is the L-theory that says:

- If $R_i(\bar{x})$ then \bar{x} is distinct
- If \bar{x} is distinct then $R_i(\bar{x})$ holds for exactly one i
- If \bar{y} is a permutation of \bar{x} , $R_i(\bar{x}) \leftrightarrow R_i(\bar{y})$

A model of T is a set M and a coloring of $[M]^n$

Let φ be the formula s.t. $M \models \varphi \Leftrightarrow$ there is a homogeneous $Y \subseteq M$, |Y| = m

$$\exists y_1, \dots, y_m \bigwedge_{1 \leq i_1 < \dots < i_n \leq m} \bigwedge_{1 \leq j_1 < \dots < j_n \leq m} \text{same color}$$

Suppose $N \not\rightarrow (m)_k^n$, then $\exists M \vDash T \mid M \mid = N$ and $M \nvDash \varphi$. Suppose $N \not\rightarrow (m)_k^n$ for any $N < \omega$, then by compactness, $T \cup \{\neg \varphi\}$ has infinite models. By theorem 17 last week, there is $M \vDash T \cup \{\neg \varphi\}$, indiscernible sequence $a_1, a_2, \dots \in M$ not constant, but indiscernibility $\Rightarrow \{a_1, a_2, \dots \}$ is homogeneous. $\{a_1, \dots, a_m\}$ is homogeneous

Fact 9.62 (Infinite Ramsey's theorem). $\aleph_0 \to (\aleph_0)_k^n$ for $n, k \in \omega$

extracting indiscernibles

Working $\mathbb{M} \vDash T$. If (I, \leq) is a linear order and $(\bar{a}_i : i \in I)$ is a sequence in \mathbb{M} and if $B \subseteq \mathbb{M}$

Definition 9.63. $\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B) = \{ \varphi(\bar{x}_1, \dots, \bar{x}_n) \in L(B) : \forall i_1 < \dots < i_n \in I, \mathbb{M} \vDash \varphi(\bar{a}_{i_1}, \dots, \bar{a}_{i_n}) \}$, the Ehrenfeucht-Mostowski type over B

Remark. tp^{EM} is really a sequence of partial types over $B, \Sigma_1, \Sigma_2, ...$

$$\begin{array}{l} \textbf{Example 9.14. } \ln \ (\mathbb{R}, \leq) \text{, 1,1,2,2,3,3,4,4,...} \\ (x_1 \leq x_2) \in \operatorname{tp}^{\operatorname{EM}} (\dots) \\ x_1 < x_2 \notin \operatorname{tp}^{\operatorname{EM}} \end{array}$$

 $\textit{Remark.} \ \, \text{If} \, \, (\bar{a}_i:i\in I) \text{ is a sequence, } I_0\subseteq I \text{, then tp}^{\text{EM}}((\bar{a}_i:i\in I)/B)\subseteq I \text{ and } I \text{ is a sequence, } I \text{ is a seq$ $\operatorname{tp}^{\mathrm{EM}}((\bar{a}_i:i\in I_0)/B)$

Definition 9.64. If $\varphi(\bar{x}_1,\dots,\bar{x}_n)\in L(B)$, $(\bar{a}_i:i\in I)$ is " φ -indiscernible" if $\forall i_1 < \dots < i_n, \forall j_1 < \dots < j_n,$

$$\mathbb{M}\vDash\varphi(\bar{a}_{i_1},\ldots,\bar{a}_{i_n})\leftrightarrow\varphi(\bar{a}_{j_1},\ldots,\bar{a}_{j_n})$$

Remark. $(\bar{a}_i : i \in I)$ is B-indiscernible iff it is φ -indiscernible for all $\varphi \in L(B)$

Definition 9.65. If Δ is a set of formulas, \bar{a} is Δ -indiscernible if it is φ indiscernible for all $\varphi \in \Delta$

Lemma 9.66. *Let* $(\bar{a}_i : i \in I)$ *be infinite*

- 1. If $m < \omega$, Δ is a finite set of L-formulas, then there is Δ -indiscernible subsequence of length m
- 2. If (J, \leq) is a linear order, Δ a set of formulas, then there is $(\bar{b}_j : j \in J) \in \mathbb{M}$ s.t. \bar{b} is Δ -indiscernible and $\mathsf{tp}^{\mathsf{EM}}(\bar{b}) \supset \mathsf{tp}^{\mathsf{EM}}(\bar{a})$

1. By induction on $|\Delta|$. Proof.

 $|\Delta| = 0$, take any subsequence of length m

 $|\Delta| > 0$, $\Delta = \Delta_0 \cup \{\varphi\}$, $\varphi(x_1, \dots, x_n)$. Ramsey: there is $N \to (m)_2^n$, by induction there is subsequence $(\bar{b}_i : i < N) \Delta_0$ -indiscernible. Define $f: [N]^n \to \{0, 1\}$ by

$$f(\{i_1,\dots,i_n\}) = \begin{cases} 1 & \mathbb{M} \vDash \varphi(b_{i_1},\dots,b_{i_n}) \\ 0 & \text{otherwise} \end{cases}$$

there is subsequence $(\bar{c}_i : i < m)$ that is homogeneous, φ -indiscernible

2. By compactness, we may assume J is finite, Δ is finite. By part 1

Theorem 9.67. If $(\bar{a}_i : i \in I)$ an infinite sequence, B is a set of parameters, (J,\leq) infinite linear order, then there is B-indiscernible sequence $(\bar{b}_j:j\in J)$ with $tp^{EM}(\bar{b}/B) \supseteq tp^{EM}(\bar{a}/B)$

Proof. Apply Lemma 9.66 with $\Delta = \{\text{all the } L(B)\text{-formulas}\}$

"Extracting indiscernible sequences"

Example 9.15 (=Theorem 17 last week). If $|\mathbb{M}| = \infty$, take distinct $a_0, a_1, a_2, \dots \in \mathbb{M}$, $x_1 \neq x_2 \in \operatorname{tp}^{\operatorname{EM}}(\bar{a})$. Take b_0, b_1, \dots indiscernible, extracted from \bar{a} , then $(x_1 \neq x_2) \in \operatorname{tp}^{\operatorname{EM}}(\bar{a}) \subseteq \operatorname{tp}^{\operatorname{EM}}(\bar{b})$, so $b_i \neq b_j$ for i < j. So \bar{b} is a non-constant indiscernible sequence

Example 9.16. Suppose $\mathbb{M} \succeq (\mathbb{R}, +, \cdot, \leq, 0, 1, -)$. Suppose $b_1, b_2, b_3, ...$ is indiscernible, extracted from 1, 2, 3, ...

$$\begin{array}{l} x_1 > 0 \in \mathsf{tp}^{\mathsf{EM}}(\bar{a}) \subseteq \mathsf{tp}^{\mathsf{EM}}(\bar{b}) \\ x_2 - x_1 \geq 1 \in \mathsf{tp}^{\mathsf{EM}}(\bar{b}) \end{array}$$

 $\begin{array}{l} \textit{Remark.} \ (\bar{a}_i:i\in I) \ \text{is B-indiscernible iff tp}^{\rm EM}(\bar{a}/B) \ \text{is "complete", i.e.,} \\ \forall \varphi(x_1,\ldots,x_n)\in L(B) \text{, } \varphi\in \operatorname{tp}^{\rm EM} \ \text{or } \neg\varphi\in \operatorname{tp}^{\rm EM} \end{array}$

Theorem 9.68. If $(\bar{a}_i:i\in I)$ is B-indiscernible, if (J,\leq) is a linear order, then there is B-indiscernible $(\bar{b}_j:j\in J)$ with $\operatorname{tp}^{\operatorname{EM}}(\bar{b}/B)=\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$

Remark. If $(\bar{a}_i:i\in I)$ is B-indiscernible, then $\operatorname{tp}(\bar{a}/B)$ is determined by $\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$ and (I,\leq)

$$\mathbb{M}\vDash\varphi(a_{i_1},\ldots,a_{i_n})\Leftrightarrow\varphi\in\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$$

So if $(\bar{a}_i:i\in I)$, $\bar{b}_i:i\in I$ both B-indiscernible and $\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)=\operatorname{tp}^{\operatorname{EM}}(\bar{b}/B)$, then $\operatorname{tp}(\bar{a}/B)=\operatorname{tp}(\bar{b}/B)$

Theorem 9.69 (extending indiscernibles). *If* $(\bar{a}_i : i \in I)$ *is B-indiscernible, if* (J, \leq) *extends* (I, \leq) *, then* $\exists \bar{a}_j$ *for* $j \in J \setminus I$ *s.t.* $(\bar{a}_j : j \in J)$ *is B-indiscernible*

Proof. extract B-indiscernible $(\bar{c}_j:j\in J)$ from $(\bar{a}_i:i\in I)$, $\operatorname{tp}^{\operatorname{EM}}(\bar{c}/B)=\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$

the subsequence $(\bar{c}_i:i\in I)$ has same EM-type as

there is $\sigma\in \operatorname{Aut}(\mathbb{M}/B)$ s.t. $\sigma(\bar{c}_i)=\bar{a}_i$ for $i\in I.$ Define $\bar{a}_j:=\sigma(\bar{c}_j)$ for $j\in J\smallsetminus I$

Theorem 9.70. *If* $\varphi(\bar{x}, \bar{y}) \in L$, *TFAE*

- 1. φ has O.P., $\bar{a}_i, \bar{b}_i, i \in \mathbb{Z}$, $\mathbb{M} \vDash \varphi(\bar{a}_i, \bar{b}_j) \Leftrightarrow i < j$
- 2. same as (1) but $(\bar{a}_i\bar{b}_i:i\in\mathbb{Z})$ is indiscernible
- 3. There is an indiscernible $(\bar{a}_i : i \in \mathbb{Z})$ some \bar{b} s.t. $\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}) \Leftrightarrow i < 0$

Proof. $1 \rightarrow 2$: extract an indiscernible sequence from

$$2 \rightarrow 3$$
: take $\bar{b} = \bar{b}_0$

$$3 o 1$$
: For any $j \in \mathbb{Z}$, $(\bar{a}_i : i \in \mathbb{Z}) \equiv_B (\bar{a}_{i+j} : i \in \mathbb{Z})$, there is $\sigma_j \in \operatorname{Aut}(\mathbb{M})$, $\sigma_j(\bar{a}_i) = \bar{a}_{i+j}$. Let $\bar{b}_j = \sigma_j(\bar{b})$. Then $\bar{a}_i\bar{b}_j = \sigma(\bar{a}_{i-j}\bar{b})$

$$\mathbb{M} \vDash \varphi(\bar{a}_i, \bar{b}_i) \Leftrightarrow \mathbb{M} \vDash \varphi(\bar{a}_{i-1}, \bar{b}) \Leftrightarrow i - j < 0 \Leftrightarrow i < j \qquad \Box$$

Corollary 9.71. T is unstable \Leftrightarrow there is $\varphi(\bar{x}, \bar{y})$ with O.P. $\Leftrightarrow (\bar{a}_i : i \in \mathbb{Z})$, $\varphi(\bar{x}, \bar{y})$, \bar{b} s.t. $\varphi(\bar{a}_i, \bar{b}) \Leftrightarrow i < 0$

Total indiscernibility

Example 9.17. In DLO, 1,2,3,4,... is indiscernible but not totally indiscernible In a totally

Proposition 9.72. *If* T *is unstable, then* \exists *indiscernible sequence that isn't totally indiscernible*

Proof. Take φ with O.P., take $(\bar{a}_i\bar{b}_i:i\in\mathbb{Z})$ witnessing O.P., then $\varphi(a_1,b_2)\wedge\neg\varphi(a_2,b_1)$, so $(\bar{a}_i\bar{b}_i:i\in\mathbb{Z})$ isn't totally indiscernible

Definition 9.73. $\operatorname{tp}(a_1,\dots,a_n/B)$ is **symmetric** if \forall permutation $\sigma \in S(n)$ $\bar{a}_1,\dots,\bar{a}_n \equiv_B \bar{a}_{\sigma(1)},\dots,\bar{a}_{\sigma(n)}$

Remark. Let σ_i be the permutation swapping i and i+1 and fixing everything else.

 $\operatorname{tp}(\bar{a}_1,\dots,\bar{b}_n/B)$ is symmetric iff it holds for each σ_i

Remark. Let $(\bar{a}_i: i \in I)$ be B-indiscernible. Let $p_n = \operatorname{tp}(\bar{a}_{i_1}, \dots, \bar{a}_{i_n}/B)$ for any $i_1 < \dots < i_n$. Then $(\bar{a}_i: i \in I)$ is totally B-indiscernible iff each p_n is symmetric

Remark. If $(\bar{a}_i:i\in I)$ is B-indiscernible, then $\operatorname{tp}^{\operatorname{EM}}(\bar{a}/B)$ determines whether \bar{a} is totally B-indiscernible

$$\mathsf{tp}^{\mathsf{EM}}$$
 is p_1, p_2, \dots

Lemma 9.74. Let $(\bar{a}_i: i \in \mathbb{Z})$ be B-indiscernible. Let $C = \{\bar{a}_i: i \notin \{0,1\}\}$. If $\bar{a}_0\bar{a}_1 \equiv_{BC} \bar{a}_1\bar{a}_0$. Then $(\bar{a}_i: i \in \mathbb{Z})$ is totally B-indiscernible

Proof. there is $\sigma_0 \in \operatorname{Aut}(\mathbb{M}/BC)$, $\sigma_0(\bar{a}_0) = \bar{a}_1$, $\sigma(\bar{a}_1) = \bar{b}_0$

By indiscernibility, there is $\alpha_i \in \operatorname{Aut}(\mathbb{M}/B)$ s.t. α_i swaps \bar{a}_i , \bar{a}_{i+1} fixes \bar{a}_j for $j \notin \{i, i+1\}$. This means $\bar{a}_1 \dots \bar{a}_n \equiv_B \bar{a}_{\sigma_i(1)} \dots \bar{a}_{\sigma_i(n)}$ so $\operatorname{tp}(\bar{a}_1, \dots, \bar{a}_n/B)$ is symmetric

Proposition 9.75. *If* \mathbb{M} *is stable and* $A \subseteq \mathbb{M}$ *small, then* \mathbb{M} *is stable as an* L(A)*-structure*

Proof. Otherwise, there is L(A)-formula $\varphi(\bar{x}, \bar{y})$ with the O.P. $\varphi(\bar{x}, \bar{y}, \bar{c})$ for some $\bar{c} \in A$, $\bar{b}_i \bar{c}$ is the new \bar{b}

Theorem 9.76. TFAE

- 1. *T* is stable
- 2. every indiscernible sequence is totally indiscernible
- 3. B-indiscernible \Rightarrow totally B-indiscernible

Proof. $3 \rightarrow 2$: trivial

 $1 \to 3$: Suppose T stable but $(\bar{a}_i: i \in I)$ B-indiscernible not totally B-indiscernible

Extract
$$(\bar{a}'_i : i \in I)$$
 from $(\bar{a}_i : i \in I)$ some

Corollary 9.77. If T is stable, if $(\bar{a}_i : i \in I)$ is indiscernible, if D is definable, $\{i \in I : \bar{a}_i \in D\}$ is finite or cofinite in I

Proof. Suppose not. Take
$$i_1,i_2,\dots\in I$$
 s.t. $a_{i_1},a_{i_2},\dots\notin D$,

10 Fundamental Order and Forking

10.1 The fundamental order

Fix $n < \omega$

Definition 10.1. If $M \leq \mathbb{M}$, $p \in S_n(M)$, $\varphi(x_1, \dots, x_n; \bar{y})$. p represents φ if $\exists \bar{b} \in M \ \varphi(\bar{x}, \bar{b}) \in p(\bar{x})$. p omits φ otherwise

The **class** of p is $[p] = \{\varphi : p \text{ represents } \varphi\}$ $[p] \leq [q]$ if $[p] \supseteq [q]$

The **fundamental order** is $\{[p]: M \leq \mathbb{M}, p \in S_n(M)\}$, with \leq (depends on n). $p \leq q$ means $[p] \leq [q]$

Remark. \leq is a partial order on the fundamental order but a preorder on the class $\{p:M \vDash T, p \in S_n(M)\}$

[p] is not a standard notation

Example 10.1. n=1, $\varphi(x,y):=x=y$. $p\in S_1(M)$ represents p iff $\exists b\in M$, $x=b\in p(x)$ iff p is a constant type

Example 10.2. n = 1, T = DLO, there are four classes:

1. constant types

- 2. types at $+\infty$
- 3. types at $-\infty$
- 4. others

x = y is represented in 1

x < y is represented in 1,3,4 tp $(2/\mathbb{R})$ has x < 3, tp $(-\infty/\mathbb{R})$ has x < 0, tp $(\sqrt{2}/\mathbb{Q})$ has x < 2, tp $(+\infty/R)$ doesn't have x < b

x > y is represented in 1,2,4

 $\operatorname{tp}(\sqrt{2}/\mathbb{Q})$ and $\operatorname{tp}(0^+/\mathbb{R})$ have the same class

Goal: in a stable theory: if q is an extension of p, then if $q \supseteq p$, then [q] = [p], if $q \supseteq p$, then [q] < [p]

Proposition 10.2. Suppose $M \leq N$, $p \in S_n(M)$, $q \in S_n(N)$, $p \subseteq q$

- 1. $[q] \leq [p]$
- 2. [q]=[p] iff for any L-formula $\varphi(\bar x,\bar y)$, if $\bar b\in N$ and $\varphi(\bar x,\bar b)\in q(\bar x)$, then $\exists \bar b'\in M\ \varphi(\bar x,\bar b')\in p$
- 3. if $q \supseteq p$, then [q] = [p]

Proof. 1. every formula φ represented by p is represented by q

- 2. $[q] = [p] \Leftrightarrow [q] \ge [p] \Leftrightarrow [q] \subseteq [p] \Leftrightarrow$ this condition
- 3.

Remark. Suppose $M \leq N$, $p \in S_n(M)$, $q \in S_n(N)$, $p \subseteq q$

1. [q]=[p] means that $\forall \varphi(\bar{x},\bar{y})\in L$, $\exists \bar{b}\in N$, $\varphi(\bar{x},\bar{b})\in q(\bar{x})\Rightarrow \exists \bar{b}\in M\varphi(\bar{x},\bar{b})\in p(\bar{x})$

2. but $q \supseteq p$ considers L(M)-formulas

$$q \supseteq p \text{ iff } [q] = [p] \text{ in } L(M)$$

Proposition 10.3. $M, N \leq \mathbb{M}$, $p \in S_n(M)$, $q \in S_n(N)$, then $[p] \geq [q]$ iff \exists ultrafilter \mathcal{U} and elementary embedding $M \to N^{\mathcal{U}}$ making $q^{\mathcal{U}} \supseteq p$

Proof. ⇒ similar to 9.2

$$\Leftarrow: [q^{\mathcal{U}}] = [q]$$
 because $q^{\mathcal{U}} \supseteq q$, $[q^{\mathcal{U}}] \leq [p]$ because $q^{\mathcal{U}} \supseteq p$

10.2 The fundamental order in stable theory

Assume *T* is stable

Lemma 10.4. Suppose $M \leq N \leq M$, $p \in S_n(M)$, $q_1, q_2 \in S_n(N)$, $q_1, q_2 \supseteq p$ and $[q_1] = [p] = [q_2]$. Then $q_1 = q_2$.

In other words, there is at most one extension of p *to* N *with the same class as* p

Proof. similar to 9.6

Suppose
$$q_1 \neq q_2$$
, $\exists \varphi(\bar{x}, \bar{b})$ s.t. $\varphi \in q_1, \neg \varphi \in q_2$
Let $\beta = [p]$

Claim: If $M' \leq \mathbb{M}$, $p' \in S_n(M')$, $[p'] = \beta$, then $\exists N' \geq M'$, $\exists q'_1, q'_2 \in S_n(N')$, $q'_1, q'_2 \supseteq p'$, $[q'_1] = [q'_2] = \beta$ and $\exists \bar{b}' \in N'$, $\varphi(\bar{x}, \bar{b}') \in q'_1$ and $\neg \varphi \in q'_2$ $[p'] \geq [p]$, so there \mathcal{U} , elementary embedding $M' \to M^{\mathcal{U}}$ s.t. $p^{\mathcal{U}} \supseteq p'$. Then we have $M' \to M^{\mathcal{U}} \to N^{\mathcal{U}}$

$$[q_1^{\mathcal{U}}]=[q_1]=\beta=[q_2]=[q_2^{\mathcal{U}}]. \text{ Let } q_i'=q_i^{\mathcal{U}}, N'=N^{\mathcal{U}}$$

Using the claim, we can build a tree of types

where $p_{\sigma 0}$ and $p_{\sigma 1}$ are extensions of p_{σ} differing by a formula $\varphi(\bar{x}, \bar{b}_{\sigma})$. Then φ has the dichotomy property

 $\textbf{Proposition 10.5.} \ \ \textit{If} \ M \leq N, p \in S_n(M), q \in S_n(N), q \supseteq p$

1.
$$q \supseteq p \Leftrightarrow [q] = [p]$$

$$2. \ q \not \supseteq p \Leftrightarrow [q] < [p]$$

 $\textit{Proof.} \ \ \text{Let} \ q' \ \text{be the heir of} \ p, q' \in S_n(N)$

If
$$q \supseteq p$$
, then $q = q'$

If
$$[q] = [p]$$
, then $[q] = [q'] = [p]$ so Lemma 10.4 shows $q = q'$

10.3 bounds

T is stable

Fix $A \subseteq \mathbb{M}$, $p \in S_n(A)$

Definition 10.6. If $M \leq \mathbb{M}$, $M \supseteq A$, then $\operatorname{Ex}_M(p) = \{[q] : q \in S_n(M), q \supseteq p\}$

Lemma 10.7. Every chain in $Ex_M(p)$ has an upper bound

Proof. Let $F = \{q \in S_n(M) : q \supseteq p\}$. Suppose $\{[q_i] : i \in I\}$ is a chain, $q_i \in F$, (I, \leq) a linear order, $[q_i] \leq [q_i]$ for $i \leq j$

If $i \leq j$, q_i omits φ , then q_i omits φ

Let $\Sigma(\bar{x}) = \{ \neg \varphi(\bar{x}, \bar{b}) : \varphi(\bar{x}, \bar{y}) \text{ omitted by some } q, \bar{b} \in M \}$

Claim: $p(\bar{x}) \cup \Sigma(\bar{x})$ is consistent

suppose $\varphi_1,\ldots,\varphi_m$, φ_j is omitted by q_{i_j} , $i_j\in I$, $\bar{b}_1,\ldots,\bar{b}_m\in M$. Want $p\cup\{\neg\varphi_j(\bar{x},\bar{b}_j):1\leq j\leq m\}$ consistent

Take $q(\bar{x})\in S_n(M)$ a completion of $p(\bar{x})\cup \Sigma(\bar{x}).$ Then $q\in F$, so $[q]\in \mathrm{Ex}_M(p).$

Definition 10.8. $\operatorname{Bd}_M(p) = \{ \operatorname{maximal} \beta \in \operatorname{Ex}_M(p) \}$

Elements of $Bd_M(p)$ are called **bounds** of p

Corollary 10.9. $\forall \beta \in \operatorname{Ex}_M(p), \exists \beta' \in \operatorname{Bd}_M(p), \beta' \geq \beta, \text{ and } \operatorname{Bd}_M(p) \text{ is not empty}$

Example 10.3. Suppose $A \leq \mathbb{M}$, $p \in S_n(A)$, A is a model

 $\mathbf{Claim} \colon [p] = \max \mathrm{Ex}_M(p) \text{, so } \mathrm{Bd}_M(p) = \{[p]\}$

Take $q \in S_n(M)$, $q \supseteq p$, then [q] = [p], $[q] \in \operatorname{Ex}_M(p)$. If $r \in S_n(M)$, $r \supseteq p$, then $[r] \leq [p]$, so if $p \in \operatorname{Ex}_M(p)$ then $\beta \leq [p]$

Lemma 10.10. Suppose $M, N \leq M, M, N \supseteq A, p \in S_n(A)$

- 1. $\forall \beta \in Ex_M(p)$, $\exists \beta' \in Ex_N(p)$, $\beta' \geq \beta$
- $\mathbf{2.}\ \operatorname{Bd}_M(p)=\operatorname{Bd}_N(p)$

Proof. 1. Take $M' \leq \mathbb{M}$, $M' \supseteq M \cup N$, $\beta \in \operatorname{Ex}_M(p)$ means $\exists q \in S_n(M)$, $q \supseteq p$, $[q] = \beta$

Let $q' \in S_n(M')$ be $q' \supseteq q$

Let $r = q' \upharpoonright N$. Then $r \supseteq p$, so $[r] \in \operatorname{Ex}_N(p)$. $[r] \ge [q'] = [q] = \beta$

- 2. suppose $\beta \in \mathrm{Bd}_M(p)$
 - by 1, there is $\beta' \in \operatorname{Ex}_N(p)$ with $\beta \leq \beta'$

- by Corollary 10.9, there is $\beta'' \in \operatorname{Bd}_N(p)$ with $\beta' \leq \beta''$
- By 1, there is $\beta''' \in \operatorname{Ex}_M(p)$ with $\beta'' \leq \beta'''$

Then $\beta \leq \beta' \leq \beta'' \leq \beta''' \in \operatorname{Ex}_M(p)$. Therefore

$$\beta = \beta' = \beta'' = \beta'''$$

This shows $\operatorname{Bd}_M(p) \subseteq \operatorname{Bd}_N(p)$

Since $Bd_M(p)$ doesn't depend on M, we write it as Bd(p)

10.4 Theorem of the bound

T is stable

Definition 10.11. $p \in S_n(\mathbb{M})$ is Lascar A-invariant if p is M-invariant for every $A \subseteq M \leq \mathbb{M}$

weaker than being A-invariant in stable theory

Lemma 10.12. If $A \subseteq M \leq M$, $p \in S_n(A)$, $q \in S_n(M)$, $q \supseteq p$, $[q] \in Bd(p)$. Let q^M be the global heir of q. Then q^M is Lascar A-invariant

Proof. By 10.2, $[q^{\mathbb{M}}] = [q] \in \operatorname{Bd}(p)$. If $q^{\mathbb{M}}$ isn't Lascar A-invariant, there is small $N \supseteq A$ $q^{\mathbb{M}}$ isn't N-invariant, not N-definable. Then $q^{\mathbb{M}} \not\supseteq q^{\mathbb{M}} \upharpoonright N$ (or else $q^{\mathbb{M}}$ would be N-definable 9.34). By Proposition 10.5, $[q^{\mathbb{M}} \upharpoonright N] > [q^{\mathbb{M}}] = [q]$

 $\text{Let } r = q^{\mathbb{M}} \upharpoonright N, r \supseteq p \text{, so } [r] \in \operatorname{Ex}_N(p) \text{, } [q] \in \operatorname{Bd}(p) = \operatorname{Bd}_N(p) \text{ is maximal in } \operatorname{Ex}_N(p) \text{, but } [r] > [q], [r] \in \operatorname{Ex}_N(p)$

Lemma 10.13. Fix \bar{b} and A, then $\exists M \supseteq A$, $M \preceq \mathbb{M}$, the global heir of $\operatorname{tp}(\bar{b}/M)$ is Lascar A-invariant. Also given $\beta \in \operatorname{Bd}(\operatorname{tp}(\bar{b}/A))$, can make $\operatorname{tp}(\bar{b}/M)$ and it's heir have class β

Proof. Take $\beta \in \operatorname{Bd}(p)$, $p = \operatorname{tp}(\bar{b}/A)$. Take $M \supseteq A \ M \preceq \mathbb{M}$. Take $q \in S_n(M)$, $[q] = \beta$. Take $\bar{b}_0 \vDash q$, $\operatorname{tp}(\bar{b}_0/A) = \operatorname{tp}(\bar{b}/A)$. There is $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$, $\sigma(\bar{b}_0) = \bar{b}$. Move M, q, b_0 by σ , We may assume $\bar{b}_0 = \bar{b}$, so $\operatorname{tp}(\bar{b}/M) = q$, $[q] = \beta$. By 10.12, $q^{\mathbb{M}}$ is Lascar A-invariant

Lemma 10.14. Fix \bar{b} , A. Suppose $M_1, M_2 \leq \mathbb{M}$, $M_1, M_2 \supseteq A$. Let $p_i \in S_n(\mathbb{M})$ be the heir of $\operatorname{tp}(\bar{b}/M_i)$. Suppose p_1, p_2 are Lascar A-invariant, then $p_1 = p_2$

Proof. Suppose $p_1 \neq p_2$. Take $\varphi(\bar{x}, \bar{c}) \in p_1(\bar{x}), \neg \varphi(\bar{x}, \bar{c}) \in p_2$.

Lemma 10.13 shows there is $M_3 \leq \mathbb{M}$, $M_3 \supseteq A$ s.t. $\operatorname{tp}(\bar{c}/M_3) \sqsubseteq r \in S_n(\mathbb{M})$ and r is Lascar A-invariant.

Take $\bar{e} \vDash r \upharpoonright M_1 M_2 M_3 \bar{b}$. Note $\bar{b} \vDash p_1 \upharpoonright M_1$ and $\bar{e} \vDash r \upharpoonright M_1 \bar{b}$. Then $(\bar{b}, \bar{e}) \vDash (p_1 \otimes r) \upharpoonright M_1$ since p_1, r are M_1 -invariant. In stable theory, product commutes. Therefore $(\bar{e}, \bar{b}) \vDash (r \otimes p_1) \upharpoonright M_1$. Then $\bar{b} \vDash p_1 \upharpoonright M_1 e$.

 $ar e dash r \upharpoonright M_3 = \operatorname{tp}(ar c/M_3)$, $ar e \equiv_{M_3} ar c$, p_1 is M_3 -invariant. Hence $arphi(ar x, ar e) \in p_1$. So $\mathbb M \vDash arphi(ar c, ar e)$

Same argument with p_2 , get $\mathbb{M} \models \neg \varphi(\bar{c}, \bar{e})$, a contradiction

Theorem 10.15. *If* $p \in S_n(A)$, |Bd(p)| = 1

 $\begin{array}{l} \textit{Proof.} \ \, \text{Take} \, \bar{b} \vDash p, \, \beta_1, \beta_2 \in \operatorname{Bd}(p). \, \, \text{Lemma 10.13, there is} \, A \subseteq M_1, M_2 \preceq \mathbb{M} \\ \text{s.t.} \, \left[\operatorname{tp}(\bar{b}/M_i) \right] = \beta \text{ if } p_i = \operatorname{tp}(\bar{b}/M_i), p_i^{\mathbb{M}} \text{ is Lascar A-invariant.} \\ \text{Lemma 10.14} \, p_1^{\mathbb{M}} = p_2^{\mathbb{M}} \end{array} \quad \Box$

Definition 10.16. bd(p) =the bound of p

example

10.5 Non-forking extensions

Assume stability

Proposition 10.17. *If* $A \subseteq B$, $p \in S_n(A)$, $q \in S_n(B)$, $p \subseteq q$, then $\mathrm{bd}(q) \leq \mathrm{bd}(p)$

Proof. Take $M\supseteq B$, $M\le \mathbb{M}$, $r\in S_n(M)$ extending q with $[r]=\mathrm{bd}(q)$. Then r extends p, so $[r]\in \mathrm{Ex}_M(p)$. As $\mathrm{bd}(p)$ is the maximum of $\mathrm{Ex}_M(p)$ we must have $[r]\le \mathrm{bd}(p)$

Definition 10.18. If $A\subseteq B$, $p\in S_n(A)$, $q\in S_n(B)$, $q\supseteq p$, q is a nonforking extension of p iff $\mathrm{bd}(q)=\mathrm{bd}(p)$

Proposition 10.19. If $M \leq N$ and $q \in S_n(N)$ extends $p \in S_n(M)$, then q is a non-forking extension of p iff q is an heir of p

Proposition 10.19 ensures the notation $q \supseteq p$ is unambiguous

Proof.
$$bd(p) = [p]$$
 and $bd(q) = [q]$

Proposition 10.20 (Full transitivity). Suppose $A_1 \subseteq A_2 \subseteq A_3$ and $p_i \in S_n(A_i)$ for i = 1, 2, 3 with $p_1 \subseteq p_2 \subseteq p_3$. Then $p_1 \sqsubseteq p_3$ iff $p_1 \sqsubseteq p_2$ and $p_2 \sqsubseteq p_3$

Proposition 10.21 (Extension). *If* $p \in S_n(A)$ *and* $B \supseteq A$, *then there is at least one* $q \in S_n(B)$ *with* $q \supseteq p$

Proof. Take a small model $M\supseteq B$. Then $\mathsf{bd}(p)\in \mathsf{Bd}(p)\subseteq \mathsf{Ex}_M(p)$, so there is $r\in S_n(M)$ extending p with $[r]=\mathsf{bd}(p)$. Let $q=r\upharpoonright B$. Then $\mathsf{bd}(r)=\mathsf{bd}(p)$, so $r\supseteq p$. By full transitivity, $q\supseteq p$

10.6 Forking formulas and Lascar invariance

Lemma 10.22. If $A \subseteq M \leq M$ and if the global heir of $\operatorname{tp}(\bar{b}/M)$ is Lascar A-invariant, then $\operatorname{tp}(\bar{b}/M) \supseteq \operatorname{tp}(\bar{b}/A)$

Proof. Let β be the bound of $tp(\bar{b}/A)$. By Lemma 10.13 there is a small model $M'\supseteq A$ s.t. the global heir of $tp(\bar{b}/M')$ is Lascar A-invariant and has class β . By Lemma 10.14 $tp(\bar{b}/M')$ and $tp(\bar{b}/M)$ have the same global heir. By Proposition 10.2 they have the same class. Then the class of $tp(\bar{b}/M)$ is $\beta=bd(tp(\bar{b}/A))$, implying $tp(\bar{b}/M)\supseteq tp(\bar{b}/A)$

Proposition 10.23 (Forking and Lascar *A*-invariance). *If* p *is a global type and* $A \subseteq \mathbb{M}$, *then* $p \supseteq (p \upharpoonright A)$ *iff* p *is Lascar* A-invariant

Proof. First suppose $p \supseteq (p \upharpoonright A)$. For any small model $M \supseteq A$, we have $p \supseteq (p \upharpoonright M)$ by Full transitivity, which then means p is the heir of $p \upharpoonright M$ by Proposition 10.19. Then p is M-definable, so p is Lascar A-invariant

Conversely, suppose p is Lascar A-invariant. Take a small model $M \supseteq A$ and take $\bar{b} \vDash p \upharpoonright M$. Then p is M-definable, so p is the global heir of $p \upharpoonright M = \operatorname{tp}(\bar{b}/M)$. By Lemma 10.22, $\operatorname{tp}(\bar{b}/M) \supseteq \operatorname{tp}(\bar{b}/A) = p \upharpoonright A$. But p is the heir of $\operatorname{tp}(\bar{b}/M)$

Intuition if φ forks over A, then $\varphi(\mathbb{M})$ is "small", and $\{\varphi(\mathbb{M}): \varphi \text{ forks over } A\}$ is an ideal

A Metric Spaces

 $\mathbb{R}_{\geq 0} \text{ denotes } [0,+\infty] = \{x \in \mathbb{R} : x \geq 0\}$

Definition A.1. A **metric** on a set M is a function $d: M \times M \to \mathbb{R}_{\geq 0}$ satisfying the following properties

- 1. $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x, y) = d(y, x)

3.
$$d(x,z) \le d(x,y) + d(y,z)$$

Example A.1. $M = \mathbb{R}^2$, d(x, y) =(the distance from x to y)

$$d(x_1,x_2;y_1,y_2) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}$$

Example A.2. The **Manhattan metric** on \mathbb{R}^2 is given by

$$d(x_1, x_2; y_1, y_2) = |x_1 - y_1| + |x_2 - y_2|$$

measure distances in a city grid

Example A.3. Let M be the set of strings. The **edit distance** from x to y is the minimum number of intersections, deletions, and substitutions to go from x to y

$$d(drip, rope) = 3$$

$$drip \mapsto drop \mapsto rop \mapsto rope$$

Edit distance is a metric on M

Definition A.2. A **metric space** is a pair (M,d) where M is a set and d is a metric space

- ullet ($\mathbb{R}^n, d_{Euclidean}$) where $d_{Euclidean}$ is the usual Euclidean distance
- $\bullet \ (\mathbb{R}^2, d_{Manhattan})$ where $d_{Manhattan}$ is the Manhattan distance

Often we abbreviate (M, d) as M, when d is clear Fix a metric space (M, d)

Definition A.3. If $p \in M$ and $\epsilon > 0$, then

$$B_{\epsilon}(p) = \{x \in M : d(x, p) < \epsilon\}$$
$$\overline{B}_{\epsilon}(p) = \{x \in M : d(x, p) < \epsilon\}$$

 $B_\epsilon(p)$ and $\overline{B}_\epsilon(p)$ are called the ${\bf open}$ and ${\bf closed}$ balls of radius ϵ around p

Example A.4. In \mathbb{R}^2 with the Euclidean metric, the open ball of radius 2 around (0,0) the open disk

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 2^2\}$$

Example A.5. In \mathbb{R}^2 with the Manhattan metric, the open ball of radius 1 around (0,0) the open disk

$$\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$$

Suppose $p \in M$ and $X \subseteq M$

Definition A.4. p is an **interior point** of X if X contains an open ball of positive radius around p

In particular, p must be an element of X

Example A.6. If $X = [-1,1] \times [-1,1]$, then (0,0) is an interior point of X, but (1,0) and (0,2) are not

Definition A.5. The **interior** int(X) is the set of interior points

Warning: There are metric spaces where the interior of $\overline{B}_{\epsilon}(p)$ isn't $B_{\epsilon}(p)$

Definition A.6. A set $X \subseteq M$ is **open** if X = int(X), i.e., every point of X is an interior point of X

Example A.7 (in \mathbb{R}). The set (-1,2) is open. The sets [-1,2] and [-1,2) are not; they have interior (-1,2)

Fact: the interior $\operatorname{int}(X)$ is the unique largest open set contained in X Let $a_1,a_2,...$ be a sequence in a metric space (M,d) and let p be a point

Definition A.7. " $\lim_{i\to\infty} a_i = p$ " if for every $\epsilon > 0$, there is n s.t.

$$\{a_n,a_{n+1},a_{n+2},\dots\}\subseteq B_\epsilon(p)$$

Example A.8. Work in $\mathbb R$ with the usual distance. Let $a_n=1/n$. Then $\lim_{n\to\infty}a_n=0$ but $\lim_{n\to\infty}a_n\neq 1$

Fact: For any sequence a_1,a_2,a_3,\cdots in (M,d), there is at most one point p s.t. $\lim_{i\to\infty}a_i=p$

If such a p exists, it is called the **limit**, and written $\lim_{i \to \infty} a_i$ let X be a set and p be a point in a metric space (M,d)

Definition A.8. p is an accumulation point of X if $p = \lim_{n \to \infty} a_n$ for some sequence a_n in X

Equivalently

Definition A.9. p is an accumulation point of X if for every $\epsilon > 0$, we have $B_{\epsilon}(p) \cap X \neq \emptyset$

Definition A.10. The **closure** of X, written $\operatorname{cl}(X)$ or \overline{X} , is the set of accumulation points

Definition A.11. A set $X \subseteq M$ is **closed** if $X = \operatorname{cl}(X)$

Fact: The closure cl(X) is the unique smallest closed set containing X

Example A.9. Work in \mathbb{R} with the distance d(x,y) = |x-y|

Q is neither closed nor open

 \mathbb{R} is both closed and open, so is emptyset

Let X^c denote the completement $M \setminus X$

Fact: X is closed iff X^c is open

Fact: $int(X) = cl(X^c)^c$ and $cl(X) = int(X^c)^c$

Let (M,d) and (M',d) be metric spaces. Let $f:M\to M'$ be a function

Definition A.12. f is continuous if

$$\lim_{n\to\infty}a_n=p\Rightarrow\lim_{n\to\infty}f(a_n)=f(p)$$

for $a_1, a_2, a_3, \dots, p \in M$

idea: f is continuous iff f preserves limits

Example A.10. Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x \le 0 \end{cases}$$

Then $\lim_{n\to\infty} 1/n = 0$, but

$$\lim_{n\to\infty}f(1/n)=\lim_{n\to\infty}1=1\neq -1=f(0)$$

Proposition A.13. Fix $f:(M,d)\to (M',d)$. The following are equivalent

- 1. *f* is continuous
- 2. For every open set $U \subseteq M'$, the preimage $f^{-1}(U)$ is open
- 3. For every $p \in M$, for every $\epsilon > 0$, there is $\delta > 0$ s.t. for every $x \in M$,

$$d(x,p) < \delta \Rightarrow d(f(x),f(p)) < \epsilon$$

Fact: The functions sin, cos, exp, $\sqrt[3]{}$ and polynomials are continuous

Proposition A.14. *If* $f, g : \mathbb{R} \to \mathbb{R}$ *are continuous, then* $f + g, f \cdot g, f - g, f \circ g$ *are continuous*

Proposition A.15. If $f : \mathbb{R} \to \mathbb{R}$ is continuous and $f(x) \neq 0$ for all x, then 1/f(x) is continuous. If $f(x) \geq 0$ for all x, then $\sqrt{f(x)}$ is continuous

Example A.11. This function is continuous

$$h(x) = \exp\left(\frac{1}{1+x^2}\right) - \frac{1}{17 + \sin(\sqrt[3]{x})}$$

Definition A.16. A function $f:M\to M'$ is **Lipschitz continuous** if there is $c\in\mathbb{R}$ s.t. for any $x,y\in M$

$$d(f(x), f(y)) \le c \cdot d(x, y)$$

Example A.12 (In $\mathbb R$). The function f(x)=|x|+|x-1| is Lipschitz continuous with c=2

Proposition A.17. *If* f *is* Lipschitz *continuous, then* f *is* continuous

Example A.13. The function $f(x)=x^2$ is continuous but not Lipschitz continuous

Definition A.18. Let (M,d) be a metric space and $S \subseteq M$ be a set. Then (S,d') is a metric space, where d'(x,y) = d(x,y) for $x,y \in S$

- d' is the restriction of d to $S \times S$
- We say that (S, d') is a **subspace** of (M, d)

Let $(M,d),\,(M',d)$ be metric spaces, $S\subseteq M$ and $f:S\to M'$ be a function

Definition A.19. f is **continuous** if f is continuous as a map from the subspace (S,d') to (M',d)

Example A.14 (in \mathbb{R}). Let $f:(-\infty,0)\cup(0,\infty)\to\mathbb{R}$ be given by f(x)=1/x. Then f is continuous

Definition A.20. An **isometry** or **isomorphism** from (M,d) to (M',d') is a bijection $f: M \to M'$ s.t. for any $x, y \in M$

$$d(x,y) = d'(f(x), f(y))$$

Example A.15 (in \mathbb{R}^2). The map $(x,y)\mapsto (x+1,y-7)$ is an isometry So is the map $(x,y)\mapsto (3/5x+4/5y,-4/5x+3/5y)$

These two metric spaces are isometric via the isometry $x \mapsto (x,0)$

- ullet R with the usual distance
- The subspace $\mathbb{R} \times \{0\}$ inside \mathbb{R}^2 with the usual distance

Proposition A.21. The isometries of \mathbb{R}^2 are exactly the rotations, translations, reflections and glide reflections

Let *X* be a non-empty set in a metric space

Definition A.22. The **diameter** of X, written diam(X), is

$$\sup\{d(p,q): p, q \in X\}$$

(Possibly diam $(X) = +\infty$)

Example A.16. In \mathbb{R}^2 with the usual metric, the diameter of $B_r(p)$ is 2r

Work in a metric space M

Definition A.23. A Cauchy sequence is a sequence a_1, a_2, a_3, \dots s.t.

$$\lim_{n\to\infty} \mathrm{diam}(\{a_n,a_{n+1},a_{n+2},\dots\}) = 0$$

Proposition A.24. Every sequence which converges to a point in M is a Cauchy sequence

Proposition A.25. Let $a_1, a_2, a_3, ...$ be a sequence in a metric space (M, d). The following are equivalent

- The sequence is a Cauchy sequence
- There is some metric space M' s.t. M is a subspace of M', and $\lim_{n\to\infty}a_n$ converges in M'

Proposition A.26. *In* \mathbb{R} , *every Cauchy sequence converges*

This fails in the subspace \mathbb{Q}

Definition A.27. A metric space (M, d) is **complete** if every Cauchy sequence in M converges (to a point in M)

Example A.17. \mathbb{R} is complete. The subspace \mathbb{Q} and (-1,1) are not complete

Let (M, d) be a metric space

Definition A.28. The **completion** of M is a new metric space \overline{M} . Objects of \overline{M} are equivalence classes of Cauchy sequences in M. Two Cauchy sequences $(a_i)_{i\in\mathbb{N}}$ and $(b_i)_{i\in\mathbb{N}}$ are equivalent if $\lim_{i\to\infty}d(a_i,b_i)=0$. The distance in \overline{M} between two Cauchy sequences $(a_i)_{i\in\mathbb{N}}$ and $(b_i)_{i\in\mathbb{N}}$ is $\lim_{i\to\infty}d(a_i,b_i)$

Proposition A.29. This is well-defined, and \overline{M} is complete

Proposition A.30. If we identify $c \in M$ with the constant sequence c, c, c, c, ...then M is a dense subspace of \overline{M} . If M is complete, then $\overline{M} = M$

Example A.18. \mathbb{R} is the completion of \mathbb{Q} w.r.t. its usual metric

Example A.19. The *p*-adic norm on \mathbb{Q} is defined by

$$|0|_{p} = 0$$

 $\left|0\right|_{p}=0$ $\left|p^{k}a/b\right|_{p}=p^{-k} \text{ if } a,b \text{ are integers not divisible by } p$

For example, $|1.3|_5 = |5^{-1} \cdot 13/2|_5 = 5^1$

The *p*-adic metric on \mathbb{Q} is given by $d(x,y) = |x-y|_p$. This is an incomplete metric. The completion is called \mathbb{Q}_p , the set of *p*-adic numbers

Definition A.31. C([0,1]) is the space of continuous functions $f:[0,1] \to \mathbb{R}$

Proposition A.32. There is a metric on C([0,1]) where $d(f,g) = \max\{|f(x) - g(x)| :$ $x \in [0,1]$. This makes C([0,1]) into a complete metric space.

Definition A.33. A metric space (M, d) is **connected** if the only clopen sets are M and \emptyset . Otherwise M is disconnected

Definition A.34. A set $X \subseteq M$ is **connected** (resp. **disconnected**) if the subspace (X, d) is connected or disconnected as a metric space.

Proposition A.35. *X* is disconnected iff there is a non-constant continuous function $f: X \to \{0, 1\}$

Example A.20. The set $[-10, -1] \cup [1, 10]$ is disconnected, as witnessed by

$$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$$

Example A.21. The set $[-10, 10] \setminus \{0\}$ is disconnected

Example A.22. The set \mathbb{Q} is disconnected, witnessed by

$$f(x) = \begin{cases} 0 & x < \sqrt{2} \\ 1 & x > \sqrt{2} \end{cases}$$

The set $\mathbb{R} \setminus \mathbb{Q}$ is disconnected by a similar argument

Proposition A.36. *If* $X \subseteq \mathbb{R}$ *is non-empty, then the following are equivalent*

- *X* is connected
- X is convex: if $a, b \in X$, then $[a, b] \subseteq X$
- *X* is an interval, a set of the form

$$[a,b],(a,b),(a,b],[a,b)$$

$$(-\infty,a),(-\infty,a],[a,+\infty),(a,+\infty),(-\infty,\infty)$$

Proposition A.37. *Let* $f: M \to M'$ *be continuous. If* $X \subseteq M$ *is connected, then* $f(X) \subseteq M'$ *is connected*

Corollary A.38 (Intermediate Value Theorem). *If* $f : [a,b] \to \mathbb{R}$ *is continuous and* f(a) < y < f(b), *then there is* $x \in [a,b]$ *with* f(x) = y

Proof. f([a,b]) is connected, hence convex, so it contains $y \in [f(a),f(b)]$. Therefore there is $x \in [a,b]$ with f(x)=y

There are discontinuous functions $f: \mathbb{R} \to \mathbb{R}$ satisfying the IVT classify infinite set with only 1 unary predicate

B Problems want to ask

5