1

Linear Equations in Linear Algebra

1.3

VECTOR EQUATIONS

© 2012 Pearson Education, Inc.

VECTOR EQUATIONS

Vectors in \mathbb{R}^2

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries is

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix},$$

where w_1 and w_2 are any real numbers.

• The set of all vectors with 2 entries is denoted by \mathbb{R}^2 (read "r-two").

© 2012 Pearson Education, Inc.

VECTOR EQUATIONS

- The \mathbb{R} stands for the real numbers that appear as entries in the vector, and the exponent 2 indicates that each vector contains 2 entries.
- Two vectors in \mathbb{R}^2 are **equal** if and only if their corresponding entries are equal.
- Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , their **sum** is the vector $\mathbf{u} + \mathbf{v}$ obtained by adding corresponding entries of \mathbf{u} and \mathbf{v} .
- Given a vector u and a real number c, the scalar multiple of u by c is the vector cu obtained by multiplying each entry in u by c.

© 2012 Pearson Education, Inc.

Slide 1.3-3

VECTOR EQUATIONS

• Example 1: Given $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, find $4\mathbf{u}$, $(-3)\mathbf{v}$, and $4\mathbf{u} + (-3)\mathbf{v}$.

Solution:
$$4\mathbf{u} = 4 \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} (4)(1) \\ (4)(-2) \end{bmatrix} = \begin{bmatrix} 4 \\ -8 \end{bmatrix},$$
 $(-3)\mathbf{v} = (-3) \begin{bmatrix} 2 \\ -5 \end{bmatrix} = \begin{bmatrix} (-3)(2) \\ (-3)(-5) \end{bmatrix} = \begin{bmatrix} -6 \\ 15 \end{bmatrix},$ and

$$4\mathbf{u} + (-3)\mathbf{v} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} + \begin{bmatrix} -6 \\ 15 \end{bmatrix} = \begin{bmatrix} (4) + (-6) \\ (-8) + (15) \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$$

© 2012 Pearson Education, Inc.

GEOMETRIC DESCRIPTIONS OF \mathbb{R}^2

- Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$.
- So we may regard \mathbb{R}^2 as the set of all points in the plane.

© 2012 Pearson Education, Inc.

Slide 1.3-5

PARALLELOGRAM RULE FOR ADDITION

• If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are \mathbf{u} , $\mathbf{0}$, and \mathbf{v} . See the figure below.

© 2012 Pearson Education, Inc.

VECTORS IN \mathbb{R}^3 and \mathbb{R}^n

- Vectors in \mathbb{R}^3 are 3×1 column matrices with three entries.
- They are represented geometrically by points in a three-dimensional coordinate space, with arrows from the origin.
- If *n* is a positive integer, \mathbb{R}^n (read "r-n") denotes the collection of all lists (or *ordered n-tuples*) of *n* real numbers, usually written as $n \times 1$ column matrices, such as

 $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}.$

© 2012 Pearson Education, Inc.

Slide 1.3-7

ALGEBRAIC PROPERTIES OF \mathbb{R}^n

- The vector whose entries are all zero is called the zero vector and is denoted by 0.
- For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(ii)
$$(u + v) + w = u + (v + w)$$

(iii)
$$u + 0 = 0 + u = u$$

(iv)
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
,
where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$

$$(v) \quad c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

© 2012 Pearson Education, Inc.

ALGEBRAIC PROPERTIES OF \mathbb{R}^n

(vii)
$$c(d\mathbf{u}) = (cd)(\mathbf{u})$$

(viii)
$$1\mathbf{u} = \mathbf{u}$$

© 2012 Pearson Education, Inc.

Slide 1.3- 9

LINEAR COMBINATIONS

• Given vectors \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_p in \mathbb{R}^n and given scalars c_1 , c_2 , ..., c_p , the vector \mathbf{y} defined by $\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$

is called a **linear combination** of $\mathbf{v}_1, ..., \mathbf{v}_p$ with **weights** $c_1, ..., c_p$.

• The weights in a linear combination can be any real numbers, including zero.

• example:
$$0 = 0 v_1 + \dots + 0 v_p$$

$$\mathbb{R}^n$$

© 2012 Pearson Education, Inc.

• Example 2: Let $\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$.

Determine whether **b** can be generated (or written) as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 . That is, determine whether weights x_1 and x_2 exist such that

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 = \mathbf{b}$$
 ----(1)

If vector equation (1) has a solution, find it.

© 2012 Pearson Education, Inc.

Slide 1.3-11

LINEAR COMBINATIONS

Solution: Use the definitions of scalar multiplication and vector addition to rewrite the vector equation

$$\begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix},$$

$$\uparrow$$

$$\mathbf{a}_1$$

$$\mathbf{a}_2$$

$$\mathbf{b}$$

which is same as $\begin{bmatrix} x_1 \\ -2x_1 \\ -5x_1 \end{bmatrix} + \begin{bmatrix} 2x_2 \\ 5x_2 \\ 6x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$

© 2012 Pearson Education, Inc.

and
$$\begin{bmatrix} x_1 + 2x_2 \\ -2x_1 + 5x_2 \\ -5x_1 + 6x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}.$$
 ----(2)

• The vectors on the left and right sides of (2) are equal if and only if their corresponding entries are both equal. That is, x_1 and x_2 make the vector equation (1) true if and only if x_1 and x_2 satisfy the following system. $x_1 + 2x_2 = 7$ system.

$$-2x_1 + 5x_2 = 4 \qquad ----(3)$$
$$-5x_1 + 6x_2 = -3$$

© 2012 Pearson Education, Inc.

Slide 1.3-13

LINEAR COMBINATIONS

• To solve this system, row reduce the augmented matrix of

the system as follows.
$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

• The solution of (3) is $x_1 = 3$ and $x_2 = 2$. Hence **b** is a linear combination of \mathbf{a}_1 and \mathbf{a}_2 , with weights $x_1 = 3$ and $x_2 = 2$. That is,

$$3\begin{bmatrix} 1\\ -2\\ -5 \end{bmatrix} + 2\begin{bmatrix} 2\\ 5\\ 6 \end{bmatrix} = \begin{bmatrix} 7\\ 4\\ -3 \end{bmatrix}.$$

© 2012 Pearson Education, Inc

Now, observe that the original vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b} are the columns of the augmented matrix that we row reduced:

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{b} \end{bmatrix}$$

• Write this matrix in a way that identifies its columns.

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{b} \end{bmatrix}$$
 ----(4)

© 2012 Pearson Education, Inc.

Slide 1.3- 15

LINEAR COMBINATIONS

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}].$$
 ----(5)

• In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if there exists a solution to the linear system corresponding to the matrix (5).

© 2012 Pearson Education, Inc

• **Definition:** If $\mathbf{v}_1, ..., \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, ..., \mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ and is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v}_1, ..., \mathbf{v}_p$.

That is,

Span $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p$$

with $c_1, ..., c_p$ scalars.

© 2012 Pearson Education, Inc.

Slide 1.3- 17

A GEOMETRIC DESCRIPTION OF Span {v}

Let v be a nonzero vector in \mathbb{R}^3 . Then Span $\{v\}$ is the set of all scalar multiples of v, which is the set of points on the line in \mathbb{R}^3 through v and 0. See the figure below.

© 2012 Pearson Education, Inc.

A GEOMETRIC DESCRIPTION OF Span $\{u,v\}$

- If **u** and **v** are nonzero vectors in \mathbb{R}^3 , with **v** not a multiple of **u**, then Span $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^3 that contains **u**, **v**, and **0**.
- In particular, Span $\{\mathbf{u}, \mathbf{v}\}$ contains the line in \mathbb{R}^3 through \mathbf{u} and $\mathbf{0}$ and the line through \mathbf{v} and $\mathbf{0}$. See the figure below.

3u v 2v 3v x₂

© 2012 Pearson Education, Inc.