测定金属的电阻率

选择倍率 $\times 0.01$

序号	长度(cm)	直径(mm)	阻值 $(imes 0.01\Omega)$	电阻率 $ ho(imes 10^{-8}\Omega\cdot m)$	
1	25.00	4.06	0.05034	2.607	
2	24.97	4.04	0.05040	2.587	
3	24.95	4.06	0.05049	2.620	
4	25.05	4.04	0.05046	2.582	
5	25.03	4.06	0.05056	2.615	
平均值	25.00	4.052	0.05045	2.6022	

$$ho = rac{R \cdot s}{l} = rac{\pi R \cdot d^2}{4l}$$

$$\overline{
ho}=rac{1}{5}\sum_{i=0}^5
ho_i=2.6022 imes10^{-8}\Omega\cdot m$$

$$U_A = \sqrt{rac{1}{n(n-1)}\sum_{i=1}^n (
ho_i - \overline{
ho})^2} = 7.559 imes 10^{-11}$$

$$U_{B} = \overline{
ho} \sqrt{(rac{\Delta R}{R})^{2} + (rac{2\Delta d}{d})^{2} + (rac{\Delta l}{l})^{2}} = 2.622 imes 10^{-10}$$

$$U = \sqrt{U_A^2 + U_B^2} = 2.729 imes 10^{-10}$$

$$\therefore \rho = (2.6022 \times 10^{-8} \pm 2.729 \times 10^{-10}) \Omega \cdot m$$

测定金属的电阻温度系数

选择倍率 $\times 0.1$

序号	温度(°C)	阻值 $(imes 0.1\Omega)$	序号	温度(°C)	阻值 $(imes 0.1\Omega)$
1	15.1	0.045079	6	40.0	0.050035
2	20.0	0.046041	7	45.2	0.051030
3	25.1	0.047051	8	49.8	0.052009
4	29.9	0.048039	9	54.9	0.053005
5	35.4	0.049042	10	60.2	0.053098

知
$$R = R_0(1 + \alpha t)$$

由图知
$$R_0=4.24 imes10^{-3}\Omega$$

则
$$\overline{lpha}=4.46 imes10^{-3}\,{}^{\circ}C^{-1}$$

理论值
$$lpha=433 imes10^{-5}\,^{\circ}C^{-1}$$

相对误差
$$E=rac{|lpha-\overline{lpha}|}{lpha} imes 100\%=3\%$$