Computergrafik Labor

Vorstellung Raytracer

WS 24/25

Niklas Oesterle (niklas.oesterle@h-ka.de)

Raytracer (04_raytracer)

- Implementierung eines
 Raytracers
 (Verwendung der bisherigen
 math und geometry Implementierung)
- "Einfacher" *whitted style*Raytracer
- Lambertian shading

Szenenaufbau (Cornell-Box)

- Verfahren, welches einen Vergleich zwischen einem synthetisierten und einem echten Bild erlaubt
- nach vorne geöffnetes *Zimmer*
- Gegenstände werden in Box platziert
- Konkrete Vorstellung wichtig für "Nachbau"
 - Kamera-Geometrie
 - Objekt-Positionierung

Kameraaufbau

Orthografische Projektion

- Bildschirm (l, r, b, t)
- lokales, orthogonales Koordinatensystem ($\vec{u}, \vec{v}, \vec{w}$)
- Auflösung (n_x, n_y)

Zusätzlich bei perspektivischer Projektion

- Augpunkt (*e*)
- Abstand zum Bildschirm (*d*)

Parallel projection same direction, different origins

Perspective projection same origin, different directions

Perspektivische und Orthografische Sicht

Parallel projection same direction, different origins

Perspective projection same origin, different directions

Raytracer - Step-By-Step

1. Ray Generation

i. Bildung eines (Seh-)Strahls (abhängig von Kamera-Geometrie)

2. Ray Intersection

- i. Intersection mit anderen Objekten in der Szene prüfen
- ii. Das zur Kamera nächste Objekt herausfinden

3. **Shading**

i. Pixelfarbe anhand der Intersection berechnen, abhängig von Lichtquellen

Raytracer - Pseudocode

Lambertian Shading

- Punktförmige Lichtquellen, (x,y,z) genügt
- Für alle nicht-blockierten Lichtquellen Aufhellung berechnen
- Oberflächennormale (\vec{n}), Richtung zur Lichtquelle (\vec{I})
- ullet Anteil ambienten Lichts k_a
- ullet Anteil diffusen Lichts k_d

Bildausgabe

PPM

- Pro Pixel: Drei mit Leerzeichen getrennte Farbwerte (siehe Vorlesung)
- Ausgabe in ppm-Datei
- Clion kann ppm-Dateien nicht interpretieren

SDL2

- Bereits in sdl2renderer.cc verwendet
 - → Fensteraufbau kann übernommen werden
- Farbe lässt sich wie zuvor setzen SDL_SetRenderDrawColor(renderer, r, g, b, a)
- Pixel des Fensters lassen sich färben SDL_RenderDrawPoint(renderer, x, y)

Raytracer vs. Pathtracer

Tipps

• Pseudocode auf Folien und Hinweise auf dem Übungsblatt beachten

Literatur

- Raytracing in One Weekend: Erste Kapitel bis Kameraaufbau (vor allem 2. & 4.)
- Fundamentals of Computer Graphics (Raytracing ab S. 69)

Häufige Fehler

- Bei Gleitkommazahlen oder numerischen Ungenauigkeiten der Schnittpunktberechnung, kann Schnittpunkt p hinter der Oberfläche sein
- Schattenakne (Strahl mit $p + \epsilon * \vec{n}$ bilden)
- Kamera-Geometrie muss verstanden werden
 - Positionierung der Objekte im Raum (Sichtbarkeit sicherstellen!)