2018/19 Semester 2

Object Oriented Programming with Applications

Problem Sheet 4 - Wednesday 17th October 2018¹

Exercise 4.1. Get a working implementation of the CompositeIntegrator class. Use the lecture material.

You will notice that the class, as presented in lectures is not *robust*. Consider and modify your code according for the following situations (i.e. throw appropriate exceptions).

- 1. What if newtonCotesOrder in the is a number other than 1, 2, 3, 4?
- 2. What if N in the Integrate method is less than or equal to 0?
- 3. Does the code work if a > b in the Integrate method?

Exercise 4.2. The Newton's method for approximating solutions x to f(x) = 0, where $f: \mathbb{R} \to \mathbb{R}$ is assumed to be differentiable is an iterative method where, given an initial guess for the solution x_0 the next entry in the sequence of approximations is calculated as:

$$x_n := x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, \quad n = 1, 2, \dots$$

Do the following:

- 1. To see that you understand how this works calculate the first three approximations to $0 = x^2 2 =: f(x)$ with $x_0 = 2$ (this is a nice way of approximating $\sqrt{2}$ if you ever have to do this by hand).
- 2. Create a method with the following "signature":

It should have the following properties: the return value should be the approximation x_n of solution to f(x)=0 such that |f(x)|<maxError. If the number of iterations has reached or exceeded maxIter then an exception should be thrown. If fPrime != null then it should be used, otherwise the derivative should be approximated using symmetric finite differences. That is, for a given $\delta>0$ we say that

$$f'(x_0)$$
 is approximately $\frac{1}{2\delta} \left(f(x_0 + \delta) - f(x_0 - \delta) \right)$.

3. Test it by approximating the solution to $0 = x^2 - 2$ with $x_0 = 2$.

¹Last updated 1st October 2018

Exercise 4.3. Newton's method generalises to higher dimensions. Indeed consider a differentiable $F: \mathbb{R}^d \to \mathbb{R}^d$. Let $J_F(x)$ denote the Jacobian matrix of this function evaluated at x. That is:

$$J_F(x) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \dots & \frac{\partial F_1}{\partial x_d} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \dots & \frac{\partial F_2}{\partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_d}{\partial x_1} & \frac{\partial F_d}{\partial x_2} & \dots & \frac{\partial F_d}{\partial x_d} \end{pmatrix}.$$

Given an initial guess $x_0 \in \mathbb{R}^d$ we obtain successive approximations to x such that F(x) = 0 by solving

$$J_F(x_{n-1})(x_n - x_{n-1}) = -F(x_{n-1}), \quad n = 1, 2, \dots$$

Your task is to complete the class below:

The Newton Method should stop if either maxIt is reached or if the l^2 norm (i.e. the usual Euclidean norm) of $F(x_n)$ is smaller than tol.

Now test it by approximating the solution to F(x,y) = 0 where

$$F(x,y) := \begin{pmatrix} x^2 + y^2 - 2xy - 1 \\ x^2 - y^2 - 7 \end{pmatrix}$$

with $x_0 = (1, -1)^T$. Note that it is easy to see that at least one solution is x = 4, y = 3. *Hints*.

• To define something like $F: \mathbb{R}^d \to \mathbb{R}^d$ in C# use:

```
Func<Vector<double>, Vector<double>> F = (x) =>
{
    Vector<double> y = Vector<double>.Build.Dense(x.Count);
    y[0] = x[0]*x[0] + x[1]*x[1] - 2*x[0]*x[1] - 1;
    y[1] = x[0]*x[0] - x[1]*x[1] - 7;
    return y;
}:
```

• To define something like the Jacobian Matrix use:

```
Func<Vector<double>, Matrix<double>> J_F = (x) => {
   int d = x.Count;
   Matrix<double> J_F_vals = Matrix<double>.Build.Dense (d, d);
   J_F_vals[0,0] = 2*x[0] -2*x[1];
   J_F_vals[0,1] = 2*x[1]-2*x[0];
   J_F_vals[1,0] = 2*x[0];
   J_F_vals[1,1] = -2*x[1];
   return J_F_vals;
};
```

- You can see above how to define an empty vector and matrix respectively.
- To fill in a whole jth column in a matrix you can use: M. SetColumn (j, v) assuming M is a matrix and v is a vector of appropriate length.
- To solve a linear system Ax = b (with A a $d \times d$ matrix and b a vector in \mathbb{R}^d , x unknown) use: Vector<double> x = A.Solve(b);
- To find a determinant of a matrix A use double determinant = A.Determinat(); Note that A.Solve(b) might also fail when the determinant is very small rather than exactly 0.

Exercise 4.4. In fact our interest in the Newton's method is also for minimization problems. A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ will have a local minimum (or maximum or saddle point) at x if

$$\nabla f(x) := \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_d}(x) \end{pmatrix}$$

is equal to zero. If f is convex then this will be the global minimum. So we are approximating solutions to $F(x) = \nabla f(x) = 0$ using Newton's method. The Jacobian matrix of F is now

$$\begin{pmatrix}
\frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \dots & \frac{\partial F_1}{\partial x_d} \\
\frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \dots & \frac{\partial F_2}{\partial x_d} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_d}{\partial x_1} & \frac{\partial F_d}{\partial x_2} & \dots & \frac{\partial F_d}{\partial x_d}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_d^2}
\end{pmatrix}$$

which is the Hessian matrix of f.

In some cases one would have to approximate the Hessian using finite differences. Let us define $T_{\delta,i}y:\mathbb{R}^d\to\mathbb{R}^d$ as

$$T_{\delta,i}y = (y_1, \dots, y_{i-1}, y_i + \delta, y_{i+1}, \dots, y_d)^T.$$

Then

$$\begin{split} &\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \\ &\approx \frac{1}{2h} \left(\frac{\partial f}{\partial x_j}(T_{i,h}x) - \frac{\partial f}{\partial x_j}(T_{i,-h}x) \right) \\ &\approx \frac{1}{2h} \left(\frac{1}{2h} \left(f(T_{j,h}T_{i,h}x) - f(T_{j,-h}T_{i,h}x) \right) - \frac{1}{2h} \left(f(T_{j,h}T_{i,-h}x) - f(T_{j,-h}T_{i,-h}x) \right) \right). \end{split}$$

Your task is to develop a Newton based minimizer by completing the class below

```
public class NewtonMnimizer
   private const double delta = 1e-7; // for approximating grad
   private NewtonSolver solver;
   public NewtonMnimizer(double tol, int maxIt)
       solver= new NewtonSolver(tol, maxIt);
   private Vector<double> ApproximateGrad(Func<Vector<double>, double> f,
                                           Vector<double> x)
    /* ... write the code ... */
   private Matrix<double> ApproximateHessian(Func<Vector<double>, double> f,
                                               Vector<double>> grad_f,
                                               Vector<double> x)
    /* ... write the code, allow for grad_f == null ... */
   public Vector<double> Minimize(Func<Vector<double>, double> f,
                           Func<Vector<double>> grad_f,
                           Func<Vector<double>, Matrix<double>> hessian_f,
                           Vector<double> x_0)
    /* ... write the code,
   allow for grad_f == null and also hessian_f == null ... \star/
```

Test it by finding the global minimum of the function f given by $f(x,y) = x^2 + y^2$ by running the following code:

```
NewtonMnimizer minimizer = new NewtonMnimizer (1e-5, 100);
Func<Vector<double>, double> f = (x) => x [0] * x [0] + x [1] * x [1];
Vector<double> startPt = Vector<double>.Build.Dense (2);
startPt[0] = 1; startPt[1] = -1;
Console.WriteLine ("With approximate grad of f and hessian of f using f.d.");
Console.WriteLine(minimizer.Minimize(f, null, null, startPt));
Console.WriteLine ("With exact grad_f and approximate hessian f using f.d.");
Func<Vector<double>, Vector<double>> grad_f = (x) => {
    Vector<double> grad = Vector<double>.Build.Dense(x.Count);
    grad[0] = 2*x[0]; grad[1] = 2*x[1];
    return grad;
};
Console.WriteLine(minimizer.Minimize(f, grad_f, null, startPt));
Console.WriteLine ("With exact grad of f and hessian of f.");
Func<Vector<double>, Matrix<double>> hessian_f = (x) => {
    Matrix<double> hessian = Matrix<double>.Build.Dense(x.Count,x.Count);
    hessian[0,0] = 2; hessian[0,1] = 0;
   hessian[1,0] = 0; hessian[1,1] = 2;
    return hessian;
};
Console.WriteLine(minimizer.Minimize(f, grad_f, hessian_f, startPt));
Console.ReadKev ():
```