Lecture 15 Robust Estimation: RANSAC

Let's say we have found point matches between two images, and we think they are related by some parametric transformation (e.g. translation; scaled Euclidean; affine). How do we estimate the parameters of that transformation?

General Strategy

• Least-Squares estimation from point correspondences

But there are problems with that approach....

Problem: Outliers

Loosely speaking, outliers are points that don't "fit" the model.

Bad Data => Outliers

Loosely speaking, outliers are points that don't "fit" the model. Points that do fit are called "inliers"

outliers

Problem with Outliers

Least squares estimation is sensitive to outliers, so that a few outliers can greatly skew the result.

Multiple structures can also skew the results. (the fit procedure implicitly assumes there is only one instance of the model in the data).

Robust Estimation

- View estimation as a two-stage process:
 - Classify data points as outliers or inliers
 - Fit model to inliers while ignoring outliers
- Example technique: RANSAC
 (RANdom SAmple Consensus)

M. A. Fischler and R. C. Bolles (June 1981). "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". *Comm. of the ACM* **24**: 381--395.

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

```
Determine:
    S — the smallest number of points required
    N— the number of iterations required
    d— the threshold used to identify a point that fits well
    T— the number of nearby points required
      to assert a model fits well
Until Niterations have occurred
    Draw a sample of S points from the data
      uniformly and at random
    Fit to that set of S points
    For each data point outside the sample
       Test the distance from the point to the line
         against d if the distance from the point to the line
         is less than d the point is close
    end
    If there are T or more points close to the line
      then there is a good fit. Refit the line using all
      these points.
end
Use the best fit from this collection, using the
  fitting error as a criterion
```

(Forsyth & Ponce)

e = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)

p = desired probability that we get a good sample

Solve the following for N:

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Where in the world did that come from?

e = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)

p = desired probability that we get a good sample

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Probability that choosing one point yields an inlier

e = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)

p = desired probability that we get a good sample

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Probability of choosing s inliers in a row (sample only contains inliers)

e = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)

p = desired probability that we get a good sample

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Probability that one or more points in the sample were outliers (sample is contaminated).

e = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)

p = desired probability that we get a good sample

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Probability that N samples were contaminated.

e = probability that a point is an outlier

s = number of points in a sample

N = number of samples (we want to compute this)

p = desired probability that we get a good sample

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Probability that at least one sample was not contaminated (at least one sample of s points is composed of only inliers).

How many samples?

Choose N so that, with probability p, at least one random sample is free from outliers. e.g. p=0.99

$$(1 - (1 - e)^s)^N = 1 - p$$

$$N = \frac{\log(1-p)}{\log(1-(1-e)^s)}$$

	proportion of outliers e								
S	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

CSE486, Penn State Example: N for the line-fitting problem

- n = 12 points
- Minimal sample size S = 2
- 2 outliers: $e = 1/6 \Rightarrow 20\%$
- So N = 5 gives us a 99% chance of getting a pure-inlier sample
 - Compared to N = 66 by trying every pair of points

66 = 12 * 11 / 2 (Brute Force)

Acceptable consensus set?

- We have seen that we don't have to exhaustively sample subsets of points, we just need to randomly sample N subsets.
- However, typically, we don't even have to sample N sets!
- <u>Early termination</u>: terminate when inlier ratio reaches expected ratio of inliers

$$T = (1 - e) * (total number of data points)$$

RANSAC: Picking Distance Threshold C

- Usually chosen empirically
- But...when measurement error is known to be Gaussian with mean 0 and variance S^2 :
 - Sum of squared errors follows a χ^2 distribution with \mathbf{m} DOF, where \mathbf{m} is the DOF of the error measure (the *codimension*)
 - (dimension + codimension) = dimension of parameter space
 - E.g., m = 1 for line fitting because error is perpendicular distance
 - E.g., m = 2 for point distance
- Examples for probability p = 0.95 that point is inlier

m	Model	d^2	
1	Line, fundamental matrix	$3.84 \mathrm{S}^2$	
2	Homography, camera matrix	5.99 S ²	

After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers with greatest support
- Improve this initial estimate with Least Squares estimation over all inliers (i.e., standard minimization)
- Find inliers wrt that L.S. line, and compute L.S. one more time.

Practical Example

- Stabilizing aerial imagery using RANSAC
 - find corners in two images
 - hypothesize matches using NCC
 - do RANSAC to find matches consistent with an affine transformation
 - take the inlier set found and estimate a full projective transformation (homography)

Input: two images from an aerial video sequence.

Note that the motion of the camera is "disturbing"

Step1: extract Harris corners from both frames. We use a small threshold for R because we want LOTS of corners (fodder for our next step, which is matching).

Harris corners for first frame

Detailed view

Step2: hypothesize matches. For each corner in image 1, look for matching intensity patch in image2 using NCC. Make sure matching pairs have highest NCC match scores in BOTH directions.

Step2: hypothesize matches.

As you can see, a lot of false matches get hypothesized. The job of RANSAC will be to clean this mess up.

Step3: Use RANSAC to robustly fit best affine transformation to the set of point matches.

How many unknowns? How many point matches are needed?

Step3: Use RANSAC to robustly fit best affine transformation to the set of point matches.

Affine transformation has 6 degrees of freedom. We therefore need 3 point matches [each gives 2 equations]

Randomly sample sets of 3 point matches. For each, compute the unique affine transformation they define. How?

How to compute affine transformation from 3 point matches? Use Least Squares! (renewed life for a nonrobust approach)

						~	0	\sim 7
	Exi2	ExiYi	Exi	0	0	0	19	Exixi'
	Exili	2 y 2	Ey;	.0	0	0	L	EYixi'
	Ex.	Eyi	٤1	0	0	0	c =	Exi'
	0	0	0	Ex,2	Exili	Ex	121	Exili'
	0	٥	D	Exite	Eyi2	EX	e	Ey; ye'
	6	0	Ď	Ex:	EYE	€1	11 4	Eyi
L						Section 2		4

Then transform all points from image1 to image2 using that computed transformation, and see how many other matches confirm the hypothesis.

Repeat N times.

original point matches

labels from RANSAC green: inliers

red: outliers

Step4: Take inlier set labeled by RANSAC, and now use least squares to estimate a projective transformation that aligns the images. (we will discuss this ad nauseum in a later lecture).

Projective Transformation

Step4: estimate projective transformation that aligns the images.

Now it is easier for people (and computers) to see the moving objects.

original point matches

labels from RANSAC

green: inliers red: outliers

original point matches

green: inliers red: outliers

