

Free T3 ELISA

96

DRG Instruments GmbH, Germany Frauenbergstraße. 18, 35039 Marburg Phone: +49 (0)6421-1700 0, Fax: +49 (0)6421-1700 50

Website: www.drg-diagnostics.de E-mail: drg@drg-diagnostics.de

Distributed by:

DRG International, Inc., USA 841 Mountain Ave., Springfield, NJ 07081 Phone: (973) 564-7555, Fax: (973) 564-7556 Website: www.drg-international.com E-mail: corp@drg-international.com

Please use only the valid version of the Instructions for Use provided with the kit. Verwenden Sie nur die jeweils gültige, im Testkit enthaltene, Gebrauchsanweisung. Si prega di usare la versione valida delle istruzioni per l'uso a disposizione con il kit. Por favor, se usa solo la version valida de la metodico técnico incluido aqui en el kit. Utilisez seulement la version valide des Instructions d'utilisation fournies avec le kit.

Table of Contents / Inhaltsverzeichnis / Tabella die Contenuti / Tabla de Contenidos / Sommaire

1	INTRODUCTION	2	1	INTRODUCCIÓN	23
2	PRINCIPLE OF THE TEST	2	2	FUNDAMENTO DEL ENSAYO	23
3	WARNINGS AND PRECAUTIONS	3	3	PRECAUCIONES	23
4	REAGENTS		4	COMPONENTES DEL KIT	
5	SPECIMEN COLLECTION AND PREPARATION	l5	5	MUESTRAS	
6	ASSAY PROCEDURE	5	6	PROCEDIMIENTO DE ENSAYO	
7	EXPECTED NORMAL VALUES	7	7	VALORES ESPERADOS	27
8	QUALITY CONTROL	7	8	CONTROL DE CALIDAD	27
9	PERFORMANCE CHARACTERISTICS	8	9	CARACTERÍSTICAS DEL ENSAYO	27
10	LIMITATIONS OF USE	9	10	LIMITACIONES DE USO	28
11	LEGAL ASPECTS		11	ASPECTOS LEGALES	
1	EINLEITUNG		1	INTRODUCTION	
2	TESTPRINZIP		2	PRINCIPE DU TEST	
3	VORSICHTSMAßNAHMEN		3	PRECAUTIONS D'UTILISATION	
4	BESTANDTEILE DES KITS		4	COMPOSITION DU KIT	
5	PROBENVORBEREITUNG	-	5	ECHANTILLON	_
6	TESTDURCHFÜHRUNG		6	RÉALISATION DU TEST	
7	ERWARTETE WERTE	15	7	VALEURS ATTENDUES	33
8	QUALITÄTSKONTROLLE	15	8	CONTROLE DE QUALITE	33
9	ASSAY-CHARACTERISTIKA		9	CARACTERISTIQUES DU TEST	
10	GRENZEN DES TESTS		10	LIMITES D'UTILISATION	
11	RECHTLICHE GRUNDLAGEN	16	11	ASPECTS LEGAUX	34
1	INTRODUZIONE		12	REFERENCES / LITERATURE	35
2	PRINCIPIO DEL TEST				
3	PRECAUZIONI		SYI	MBOLS USED	36
4	COMPONENTI DEL KIT				
5	CAMPIONI				
6	ATTUAZIONE DEL TEST				
7	VALORI NORMALI				
8	CONTROLLO QUALITÀ				
9	CARATTERISTICHE DEL TEST				
10	LIMITAZIONE DEL TEST				
11	ASPETTI LEGALI	22			

1 INTRODUCTION

1.1 Intended Use

The **DRG Free T3 ELISA** is an enzyme immunoassay for the quantitative *in vitro diagnostic* measurement of free triiodothyronine (FT3) in serum.

1.2 Summary and Explanation

Triiodothyronine is the most potent thyroid hormone of the human body. It effects various physiological functions including stimulation of metabolism and development of the foetal and neonatal brain (1,8). In blood, the vast majority of T3 (>99.5%) is bound to carrier proteins. The main transport protein is thyroxine-binding globulin (TBG). Only 0.2% - 0.5% of total T3 remains unbound (2). However, only the unbound (free) fraction of T3 exerts a biological activity. In many clinical conditions such as pregnancy, the concentration of carrier proteins changes, resulting in an alteration of total T3 levels while the concentration of free T3 remains constant (3). The biological activity of Triiodothyronine is regulated at the target tissue level by de-iodination and plasma membrane transport (4).

There is a gender-specific response to thyroid hormone with aging (5). The measurement of free T3 concentration more reliably correlates with the clinical status than total T3 levels.

Increased FT3 concentrations are observed with hyperthyroidism, particularly the isolated T3-hyperthyreosis. Decreased FT3 concentrations are observed with hypothyroidism, long-term therapy with thyreostatics, glucocorticoids, propranolol or amiodarone, chronically ill patients (low T3-T4 syndrome) or anorexia. Dialysis patients in general show marginally lower FT3 concentrations.

Free T3 determination provides an effective method for confirming manifest and isolated T3 hyperthyroidism (6). Moreover, free T3 can be used in subsequent treatment monitoring, as free T3 levels are generally elevated in patients with hyperthyroidism (7).

2 PRINCIPLE OF THE TEST

The DRG Free T3 ELISA is a solid phase enzyme-linked immunosorbent assay (ELISA) based on the **principle of competitive binding**.

The microtiter wells are coated with a polyclonal (sheep) antibody directed towards a unique antigenic site of the T3 molecule.

Endogenous FT3 of a patient sample competes with a T3-horseradish peroxidase conjugate for binding to the coated antibody. After incubation the unbound conjugate is washed off.

The amount of bound peroxidase conjugate is inversely proportional to the concentration of FT3 in the sample.

Having added the substrate solution, the intensity of colour developed is inversely proportional to the concentration of FT3 in the patient sample.

3 WARNINGS AND PRECAUTIONS

- 1. This kit is for in vitro diagnostic use only. For professional use only.
- 2. All reagents of this test kit which contain human serum or plasma have been tested and confirmed negative for HIV I/II, HBsAg and HCV by FDA approved procedures. All reagents, however, should be treated as potential biohazards in use and for disposal.
- 3. Before starting the assay, read the instructions completely and carefully. <u>Use the valid version of instructions for use provided with the kit.</u> Be sure that everything is understood.
- 4. The microplate contains snap-off strips. Unused wells must be stored at 2 °C 8 °C in the sealed foil pouch and used in the frame provided.
- 5. Pipetting of samples and reagents must be done as quickly as possible and in the same sequence for each step.
- 6. Use reservoirs only for single reagents. This especially applies to the substrate reservoirs. Using a reservoir for dispensing a substrate solution that had previously been used for the conjugate solution may turn solution colored. Do not pour reagents back into vials as reagent contamination may occur.
- 7. Mix the contents of the microplate wells thoroughly to ensure good test results. Do not reuse microwells.
- 8. Do not let wells dry during assay; add reagents immediately after completing the rinsing steps.
- 9. Allow the reagents to reach room temperature (21 °C 26 °C) before starting the test. Temperature will affect the absorbance readings of the assay. However, values for the patient samples will not be affected.
- 10. Never pipet by mouth and avoid contact of reagents and specimens with skin and mucous membranes.
- 11. Do not smoke, eat, drink or apply cosmetics in areas where specimens or kit reagents are handled.
- 12. Wear disposable latex gloves when handling specimens and reagents. Microbial contamination of reagents or specimens may give false results.
- 13. Handling should be done in accordance with the procedures defined by an appropriate national biohazard safety guideline or regulation.
- 14. Do not use reagents beyond expiry date as shown on the kit labels.
- 15. All indicated volumes have to be performed according to the protocol. Optimal test results are only obtained when using calibrated pipettes and microtiter plate readers.
- 16. Do not mix or use components from kits with different lot numbers. It is advised not to exchange wells of different plates even of the same lot. The kits may have been shipped or stored under different conditions and the binding characteristics of the plates may result slightly different.
- 17. Avoid contact with Stop Solution containing 0.5 M H₂SO₄. It may cause skin irritation and burns.
- 18. Some reagents contain Proclin 300, BND and/or MIT as preservatives. In case of contact with eyes or skin, flush immediately with water.
- 19. TMB substrate has an irritant effect on skin and mucosa. In case of possible contact, wash eyes with an abundant volume of water and skin with soap and abundant water. Wash contaminated objects before reusing them. If inhaled, take the person to open air.
- 20. Chemicals and prepared or used reagents have to be treated as hazardous waste according to the national biohazard safety guideline or regulation.
- 21. For information on hazardous substances included in the kit please refer to Safety Data Sheets. Safety Data Sheets for this product are available upon request directly from DRG.

4 REAGENTS

4.1 Reagents provided

1. *Microtiterwells*, 12 x 8 (break apart) strips, 96 wells;

Wells coated with anti-T3 antibody (polyclonal).

2. Standard (Standard 0 - 5), 6 vials, 1 mL each, ready to use;

Concentrations: 0 - 1.0 - 2.5 - 5.0 - 10.0 - 20.0 pg/mL

Conversion: $1 \text{ pg/mL} \times 1.536 = \text{pmol/L}$

Contain non-mercury preservative.

3. Control Low & High, 2 vials, 1 mL each, ready to use;

For control values and ranges please refer to vial label or QC-Datasheet.

Contain non-mercury preservative.

4. Enzyme Conjugate, 1 vial, 14 mL, ready to use;

T3 conjugated with horseradish peroxidase;

Contains non-mercury preservative.

5. **Substrate Solution**, 1 vial, 25 mL, ready to use;

Tetramethylbenzidine (TMB).

6. **Stop Solution**, 1 vial, 14 mL, ready to use;

Contains 0.5 M H₂SO₄

Avoid contact with the stop solution. It may cause skin irritations and burns.

7. Wash Solution, 1 vial, 30 mL (40X concentrated);

See "Reagent Preparation".

Note: Additional Standard 0 for sample dilution is available upon request.

4.2 Materials required but not provided

- A microtiter plate calibrated reader (450 ± 10 nm) (e.g. the DRG Instruments Microtiter Plate Reader).
- Calibrated variable precision micropipettes.
- Absorbent paper.
- Distilled or deionized water
- Timer
- Graph paper or software for data reduction

4.3 Storage Conditions

When stored at 2 °C - 8 °C unopened reagents will retain reactivity until expiration date. Do not use reagents beyond this date.

Opened reagents must be stored at 2 °C - 8 °C. Microtiter wells must be stored at 2 °C - 8 °C. Once the foil bag has been opened, care should be taken to close it tightly again.

Opened kits retain activity for 8 weeks if stored as described above.

4.4 Reagent Preparation

Bring all reagents and required number of strips to room temperature prior to use.

Wash Solution

Add deionized water to the 40X concentrated Wash Solution.

Dilute 30 mL of concentrated Wash Solution with 1170 mL deionized water to a final volume of 1200 mL.

- 4 -

The diluted Wash Solution is stable for 2 weeks at room temperature.

4.5 Disposal of the Kit

The disposal of the kit must be made according to the national regulations. Special information for this product is given in the Safety Data Sheet, section 13.

4.6 Damaged Test Kits

In case of any severe damage to the test kit or components, DRG has to be informed in writing, at the latest, one week after receiving the kit. Severely damaged single components should not be used for a test run. They have to be stored until a final solution has been found. After this, they should be disposed according to the official regulations.

5 SPECIMEN COLLECTION AND PREPARATION

Serum can be used in this assay.

Do not use haemolytic, icteric or lipaemic specimens.

Please note: Samples containing sodium azide should not be used in the assay.

5.1 Specimen Collection

Serum:

Collect blood by venipuncture (e.g. Sarstedt Monovette for serum), allow to clot, and separate serum by centrifugation at room temperature. Do not centrifuge before complete clotting has occurred. Patients receiving anticoagulant therapy may require increased clotting time.

5.2 Specimen Storage and Preparation

Specimens should be capped and may be stored for up to 4 days at 2 °C - 8 °C prior to assaying.

Specimens held for a longer time (up to 3 months) should be frozen only once at -20 °C prior to assay. Thawed samples should be inverted several times prior to testing.

5.3 Specimen Dilution

If in an initial assay, a specimen is found to contain more than the highest standard, the specimens can be diluted with *Standard 0* and re-assayed as described in Assay Procedure.

For the calculation of the concentrations this dilution factor has to be taken into account.

Example:

a) dilution 1:10: 10 μ L sample + 90 μ L Standard 0 (mix thoroughly)

b) dilution 1:100: 10 μL dilution a) 1:10 + 90 μL Standard 0 (mix thoroughly).

6 ASSAY PROCEDURE

6.1 General Remarks

- All reagents and specimens must be allowed to come to room temperature before use. All reagents must be mixed without foaming.
- Once the test has been started, all steps should be completed without interruption.
- Use new disposal plastic pipette tips for each standard, control or sample in order to avoid cross contamination.
- Absorbance is a function of the incubation time and temperature. Before starting the assay, it is recommended that all reagents are ready, caps removed, all needed wells secured in holder, etc. This will ensure equal elapsed time for each pipetting step without interruption.
- As a general rule the enzymatic reaction is linearly proportional to time and temperature.

6.2 Test Procedure

Each run must include a standard curve.

- 1. Secure the desired number of Microtiter wells in the frame holder.
- 2. Dispense 50 µL of each Standard, Control and samples with new disposable tips into appropriate wells.
- 3. Dispense **100 µL** *Enzyme Conjugate* into each well.

 Thoroughly mix for 10 seconds. It is important to have a complete mixing in this step.
- 4. Incubate for **60 minutes** at room temperature.
- 5. Briskly shake out the contents of the wells.

Rinse the wells **4 times** with **300 µL - 400 µL** diluted *Wash Solution* per well. Strike the wells sharply on absorbent paper to remove residual droplets.

Important note:

The sensitivity and precision of this assay is markedly influenced by the correct performance of the washing procedure!

- 6. Add 150 µL of Substrate Solution to each well.
- 7. Incubate for **30 minutes** at room temperature.
- 8. Stop the enzymatic reaction by adding **100 μL** of **Stop Solution** to each well.
- 9. Determine the absorbance (OD) of each well at **450 ± 10 nm** with a microtiter plate reader It is recommended that the wells be read **within 10 minutes** after adding the *Stop Solution*.

6.3 Calculation of Results

- 1. Calculate the average absorbance values for each set of standards, controls and patient samples.
- 2. Using linear graph paper, construct a standard curve by plotting the mean absorbance obtained from each standard against its concentration with absorbance value on the vertical (Y) axis and concentration on the horizontal (X) axis.
- 3. Using the mean absorbance value for each sample determine the corresponding concentration from the standard curve.
- 4. Automated method: The results in the Instructions for Use have been calculated automatically using a 4-Parameter curve fit. (4 Parameter Rodbard or 4 Parameter Marquardt are the preferred methods.) Other data reduction functions may give slightly different results.
- 5. The concentration of the samples can be read directly from this standard curve. Samples with concentrations higher than that of the highest standard have to be further diluted or reported as > 20 pg/mL. For the calculation of the concentrations this dilution factor has to be taken into account.

6.3.1 Example of Typical Standard Curve

The following data is for demonstration only and cannot be used in place of data generations at the time of assay.

Stan	dard	Optical Units (450 nm)
Standard 0	0.0 pg/mL	1.92
Standard 1	1.0 pg/mL	1.69
Standard 2	2.5 pg/mL	1.43
Standard 3	5.0 pg/mL	1.12
Standard 4	10.0 pg/mL	0.81
Standard 5	20.0 pg/mL	0.55

7 EXPECTED NORMAL VALUES

It is strongly recommended that each laboratory should determine its own normal and abnormal values.

In a study conducted with apparently healthy adults (18 to 81 years), using the DRG Free T3 ELISA the following data were observed:

Population	n	Mean (pg/mL)	Median (pg/mL)	2.5 th - 97.5 th Percentile (pg/mL)	Range (min max.) (pg/mL)
Males	59	3.22	3.21	2.34 - 4.33	2.21 - 4.48
Females	58	3.09	2.99	2.19 - 4.88	1.99 - 5.58

The results correlate well to the ranges described in the literature (9, 10).

The results alone should not be the only reason for any therapeutic consequences. The results should be correlated to other clinical observations and diagnostic tests.

8 QUALITY CONTROL

Good laboratory practice requires that controls be run with each calibration curve. A statistically significant number of controls should be assayed to establish mean values and acceptable ranges to assure proper performance.

It is recommended to use control samples according to state and federal regulations. The use of control samples is advised to assure the day to day validity of results. Use controls at both normal and pathological levels.

The controls and the corresponding results of the QC-Laboratory are stated in the QC certificate added to the kit. The values and ranges stated on the QC sheet always refer to the current kit lot and should be used for direct comparison of the results.

It is also recommended to make use of national or international Quality Assessment programs in order to ensure the accuracy of the results.

Employ appropriate statistical methods for analysing control values and trends. If the results of the assay do not fit to the established acceptable ranges of control materials patient results should be considered invalid.

In this case, please check the following technical areas: Pipetting and timing devices; photometer, expiration dates of reagents, storage and incubation conditions, aspiration and washing methods.

After checking the above mentioned items without finding any error contact your distributor or DRG directly.

9 PERFORMANCE CHARACTERISTICS

9.1 Assay Dynamic Range

The range of the assay is between 0.38 - 20 pg/mL.

9.2 Specificity of Antibodies (Cross Reactivity)

The following substances were tested for cross reactivity of the assay:

Sample	Concentration (ng/mL)	Cross-reactivity %
L-Thyroxine	1940	< 0.001
L-Tyrosine	100	< 0.001
3-lodo-L-tyrosine	100	< 0.001
3.5-Diiodotyrosine	100	0.0012
Furosemide	100	< 0.001
Sodium Acetylsalicylate	100	< 0.001

9.3 Sensitivity

The <u>analytical sensitivity</u> of the DRG ELISA was calculated by subtracting 2 standard deviations to the mean of 20 replicate analyses of the *Standard 0* and was found to be 0.381 pg/mL.

The Limit of Blank (LoB) is 0.327 pg/mL.

The Limit of Detection (LoD) is 0.536 pg/mL.

The Limit of Quantification (LoQ) is 0.990 pg/mL.

9.4 Reproducibility

9.4.1 Intra Assay

The within assay variability is shown below:

Sample	n	Mean (pg/mL)	CV (%)
1	10	1.87	9.1
2	10	3.90	2.1
3	10	6.07	4.3
4	10	13.49	4.6

9.4.2 Inter Assay

The between assay variability is shown below:

Sample	n	Mean (pg/mL)	CV (%)
1	30	1.95	9.5
2	30	4.09	12.0
3	30	6.04	9.9
4	30	13.34	7.4

9.4.3 Inter-Lot

The inter-assay (between-lots) variation was determined by repeated measurements of samples with 3 different kit lots.

Sample	n	Mean (pg/mL)	CV (%)
1	18	3.14	9.6
2	18	6.14	11.1
3	18	8.66	8.6
4	18	12.93	11.3

9.5 Recovery

Recovery of the DRG ELISA was determined by adding increasing amounts of the analyte to different patient samples containing different amounts of endogenous analyte.

		Sample 1	Sample 2	Sample 3	Sample 4
Concentration (pg/mL)		10.53	4.26	6.11	9.99
Average Recovery (%)		97.6	99.1	102.6	96.6
Dange of Deceyory (9/)	from	96.5	96.4	100.9	94.6
Range of Recovery (%)	to	99.4	101.5	106.6	100.3

10 LIMITATIONS OF USE

Reliable and reproducible results will be obtained when the assay procedure is performed with a complete understanding of the package insert instruction and with adherence to good laboratory practice.

Any improper handling of samples or modification of this test might influence the results.

10.1 Interfering Substances

Haemoglobin (up to 4 mg/mL), bilirubin (up to 0.5 mg/mL) and triglyceride (up to 7.5 mg/mL) have no influence on the assay results.

10.2 Drug Interferences

Until today no substances (drugs) are known to us, which have an influence to the measurement of FT3 in a sample.

10.3 High-Dose-Hook Effect

No hook effect was observed in this test.

11 LEGAL ASPECTS

11.1 Reliability of Results

The test must be performed exactly as per the manufacturer's instructions for use. Moreover the user must strictly adhere to the rules of GLP (Good Laboratory Practice) or other applicable national standards and/or laws. This is especially relevant for the use of control reagents. It is important to always include, within the test procedure, a sufficient number of controls for validating the accuracy and precision of the test.

The test results are valid only if all controls are within the specified ranges and if all other test parameters are also within the given assay specifications. In case of any doubt or concern please contact DRG.

11.2 Therapeutic Consequences

Therapeutic consequences should never be based on laboratory results alone even if all test results are in agreement with the items as stated under point 11.1. Any laboratory result is only a part of the total clinical picture of a patient. Only in cases where the laboratory results are in acceptable agreement with the overall clinical picture of the patient should therapeutic consequences be derived.

The test result itself should never be the sole determinant for deriving any therapeutic consequences.

11.3 Liability

Any modification of the test kit and/or exchange or mixture of any components of different lots from one test kit to another could negatively affect the intended results and validity of the overall test. Such modification and/or exchanges invalidate any claim for replacement.

Claims submitted due to customer misinterpretation of laboratory results subject to point 11.2 are also invalid. Regardless, in the event of any claim, the manufacturer's liability is not to exceed the value of the test kit. Any damage caused to the test kit during transportation is not subject to the liability of the manufacturer.

1 EINLEITUNG

Der DRG Free T3 ELISA wird zur quantitativen Bestimmung des freien Trijodthyronins (FT3) in Serum eingesetzt.

Nur für In-vitro Diagnostik.

2 TESTPRINZIP

Der DRG Free T3 ELISA ist ein Festphasen-Enzymimmunoassay, der auf dem **Prinzip der kompetitiven Bindung** basiert.

Die Wells der Mikrotiterplatten sind mit einem polyklonalen Antikörper beschichtet, der gegen eine definierte Antikörper-Bindungsstelle des T3-Moleküls gerichtet ist.

Die Proben werden in die beschichteten Wells gegeben und zusammen mit einem T3-Enzymkonjugat inkubiert. Während der Inkubation konkurriert das FT3 aus der Probe mit dem T3-Enzymkonjugat um die freien Bindungsstellen auf den beschichteten Wells.

Das nicht gebundene Konjugat wird durch Waschen der Wells entfernt. Anschließend wird die Substratlösung zugegeben und die Farbentwicklung nach einer definierten Zeit gestoppt.

Die Intensität der gebildeten Farbe ist umgekehrt proportional der FT3-Konzentration in der Probe. Die Extinktion wird bei 450 nm mit einem Mikrotiterplattenleser gemessen.

3 VORSICHTSMAßNAHMEN

- Dieser Kit ist nur zum in vitro diagnostischen Gebrauch geeignet.
- Nur die g

 ültige, im Testkit enthaltene, Gebrauchsanweisung verwenden.
- Informationen zu im Kit enthaltenen gefährlichen Substanzen entnehmen Sie bitte dem Sicherheitsdatenblatt.
- Alle Bestandteile dieses Testkits, die humanes Serum oder Plasma enthalten, wurden mit FDA-geprüften Methoden auf HIV I/II, HbsAg und HCV getestet und als negativ bestätigt. Jedoch sollten alle Bestandteile im Umgang und bei der Entsorgung wie mögliche Gefahrenstoffe betrachtet werden.
- Der Kontakt mit der Stop Solution sollte vermieden werden, da sie 0,5 M H₂SO₄ enthält. Schwefelsäure kann Hautreizungen und Verbrennungen verursachen.
- Nicht mit dem Mund pipettieren und den Kontakt von Kitbestandteilen und Proben mit Haut und Schleimhäuten vermeiden.
- In den Bereichen, in denen Proben oder Kitbestandteile verwendet werden, nicht rauchen, essen oder Kosmetika verwenden.
- Beim Umgang mit Proben oder Reagenzien Einweg-Latexhandschuhe tragen. Die Verunreinigung von Reagenzien oder Proben mit Mikroben kann zu falschen Ergebnissen führen.
- Der Gebrauch sollte gemäß der Vorschriften einer entsprechenden nationalen Gefahrenstoff-Sicherheitsrichtlinie erfolgen.
- Reagenzien nicht nach dem auf dem Kit-Etikett angegebenen Verfallsdatum verwenden.
- Alle im Kit-Protokoll angegebenen Mengen müssen genau eingehalten werden. Optimale Ergebnisse können nur durch Verwendung kalibrierter Pipetten und Mikrotiterplatten-Lesegeräte erreicht werden.
- Komponenten von Kits mit unterschiedlichen Lotnummern nicht untereinander vertauschen. Es wird empfohlen, keine Wells von verschiedenen Platten zu verwenden, auch nicht, wenn es sich um das gleiche Lot handelt. Die Kits können unter anderen Bedingungen gelagert oder versendet worden sein, so dass die Bindungscharakteristik der Platten leicht unterschiedlich ausfällt.
- Chemikalien und zubereitete oder bereits benutzte Reagenzien müssen gemäß den nationalen Gefahrenstoffvorschriften wie gefährlicher Abfall behandelt werden.
- Sicherheitsdatenblätter für dieses Produkt sind auf Anfrage direkt von der Firma DRG Instruments GmbH erhältlich.

4 BESTANDTEILE DES KITS

4.1 Kitinhalt

1. *Microtiterwells*, 96 Wells, 12 x 8 Wells (einzeln brechbar);

Mit anti-T3-Antikörper (polyklonal) beschichtet.

2. Standard (Standard 0 - 5), 6 Fläschchen, je 1 mL, gebrauchsfertig;

Konzentrationen: 0 - 1,0 - 2,5 - 5,0 - 10,0 - 20,0 pg/mL

Umrechnungsfaktor: $1 \text{ pg/mL} \times 1.536 = \text{pmol/L}$

Enthält quecksilberfreies Konservierungsmittel.

3. Control Low & High (Kontrolle), 2 Fläschchen, je 1 mL, gebrauchsfertig;

Kontrollwerte und -bereiche entnehmen Sie bitte dem Fläschchenetikett oder dem QC-Datenblatt.

Enthält quecksilberfreies Konservierungsmittel.

4. Enzyme Conjugate (Enzymkonjugat), 1 Fläschchen, 14 mL, gebrauchsfertig;

T3 mit Meerrettichperoxidase konjugiert;

Enthält quecksilberfreies Konservierungsmittel.

5. Substrate Solution (Substratlösung), 1 Fläschchen, 25 mL, gebrauchsfertig;

Substratlösung TMB.

6. Stop Solution (Stopplösung), 1 Fläschchen, 14 mL, gebrauchsfertig;

enthält 0,5 M H₂SO₄

Kontakt mit der Stopplösung vermeiden! Kann Hautreizungen und Verbrennungen verursachen.

7. Wash Solution (Waschlösung), 1 Fläschchen, 30 mL, 40X konzentriert;

Siehe "Vorbereitung der Reagenzien".

Anmerkung: Zusätzlicher Standard 0 zur Probenverdünnung ist auf Anfrage erhältlich.

4.2 Erforderliche aber nicht enthaltene Geräte und Materialien

- Kalibriertes Mikrotiterplattenlesegerät mit 450 ± 10 nm Filter), (z.B. das DRG Instruments Mikrotiterplattenlesegerät)
- Kalibrierte variable Präzisions-Mikropipette
- Saugfähiges Papier
- Destilliertes Wasser
- Laborwecker
- Millimeterpapier oder Software zur Datenauswertung

4.3 Lagerung und Haltbarkeit des Kits

Die ungeöffneten Reagenzien behalten bei Lagerung um 2 °C - 8 °C ihre Reaktivität bis zum Verfallsdatum. Nach dem Verfallsdatum die Reagenzien nicht mehr verwenden.

Nach dem Öffnen sollten alle Reagenzien bei 2 °C - 8 °C gelagert werden.

Die Mikrotiterwells sollten bei 2 °C - 8 °C gelagert werden. Der einmal geöffnete Folienbeutel sollte stets sehr sorgfältig wieder verschlossen werden. Unter den beschriebenen Lagerbedingungen behalten geöffnete Kits 8 Wochen ihre Reaktivität.

4.4 Vorbereitung der Reagenzien

Alle Reagenzien sowie die benötigte Anzahl von Wells sollen vor dem Gebrauch auf Raumtemperatur gebracht werden.

Wash Solution

Die 40-fach konzentrierte Wash Solution (30 mL) mit 1170 mL destilliertem Wasser auf ein Gesamtvolumen von 1200 mL verdünnen.

Die verdünnte Waschlösung ist bei Raumtemperatur für 2 Wochen stabil.

4.5 Entsorgung des Kits

Die Entsorgung des Kits muss gemäß den nationalen gesetzlichen Vorschriften erfolgen. Spezielle Informationen für dieses Produkt finden Sie im Sicherheitsdatenblatt, Abschnitt 13.

4.6 Beschädigte Testkits

Im Falle einer starken Beschädigung des Testkits oder der Komponenten muss die Firma DRG in schriftlicher Form spätestens eine Woche nach Erhalt des Kits informiert werden. Stark beschädigte Einzelkomponenten sollten nicht für den Testlauf verwendet werden. Sie müssen gelagert werden bis eine endgültige Lösung gefunden wurde. Danach sollten Sie gemäß den offiziellen Richtlinien entsorgt werden.

5 PROBENVORBEREITUNG

Serum kann in diesem Test als Probenmaterial eingesetzt werden.

Lipämische, ikterische und/oder stark hämolysierte Proben sollten nicht verwendet werden. *Achtung:* Proben, die Natriumazid enthalten, sollten nicht verwendet werden.

5.1 Probenentnahme

Serum:

Blut durch Venenpunktion entnehmen (z.B. mit Sarstedt Monovette für Serum), gerinnen lassen und das Serum durch Zentrifugation bei Raumtemperatur abtrennen. Vor der Zentrifugation muss die Gerinnung vollständig abgeschlossen sein. Bei Patienten, die Antikoagulantien erhalten, kann die Gerinnungszeit länger dauern.

5.2 Probenaufbewahrung

Proben sollten stets gut verschlossen sein und können vor Testbeginn bis zu 4 Tage bei 2 °C - 8 °C gelagert werden. Für eine längere Aufbewahrung (bis zu 3 Monaten) sollten die Proben eingefroren bei -20 °C bis zum Testbeginn gelagert werden. Nur einmal einfrieren. Aufgetaute Proben sollten vor Testbeginn vorsichtig durchmischt werden, ohne Schaumbildung.

5.3 Probenverdünnung

Wenn in einem ersten Testdurchlauf bei einer Probe eine Konzentration höher als der höchste Standard gefunden wird, kann diese Probe mit *Standard 0* weiter verdünnt und nochmals bestimmt werden. Die Verdünnung muss jedoch bei der Berechnung der Konzentration beachtet werden.

Beispiel:

a) Verdünnung 1:10: 10 μL Probe + 90 μL Standard 0 gründlich mischen)

b) Verdünnung 1:100: 10 μL Verdünnung a) 1:10 + 90 μL Standard 0 (gründlich mischen).

6 TESTDURCHFÜHRUNG

6.1 Allgemeine Hinweise

- Alle Reagenzien und Proben müssen vor Gebrauch auf Raumtemperatur gebracht und gut durchmischt werden.
 Dabei sollte Schaumbildung vermieden werden.
- Wenn die Testdurchführung einmal begonnen wurde, muss sie ohne Unterbrechung zu Ende geführt werden.
- Für jeden Standard, jede Kontrolle oder Probe eine neue Plastikspitze verwenden, um Verschleppungen zu vermeiden.
- Die Optische Dichte ist abhängig von Inkubationszeit und Temperatur. Deshalb ist es notwendig, vor Beginn der Testdurchführung alle Reagenzien in einen arbeitsbereiten Zustand zu bringen, die Deckel der Fläschchen zu öffnen, alle benötigten Wells in den Halter zu setzen. Nur eine solche Vorbereitung garantiert gleiche Zeiten für jeden Pipettiervorgang ohne Pausen.
- Als generelle Regel gilt, dass die enzymatische Reaktion linear proportional zu Zeit und Temperatur ist.

6.2 Testdurchführung

Jeder Lauf muss eine Standardkurve beinhalten.

- 1. Die benötigte Anzahl Wells in der Halterung befestigen.
- 2. **Je 50 µL** Standard, Control und Proben mit neuen Plastikspitzen in die entsprechenden Wells geben.
- 3. **100 μL** *Enzyme Conjugate* in jedes Well geben. Für 10 Sekunden gut schütteln. Es ist sehr wichtig, in diesem Schritt eine komplette Durchmischung zu erreichen.
- 4. **60 Minuten** bei Raumtemperatur inkubieren.
- 5. Den Inhalt der Wells kräftig ausschütteln. Wells 4-mal mit 300 μL 400 μL verdünnter Wash Solution waschen. Verbleibende Flüssigkeit durch Ausklopfen der Wells auf saugfähigem Papier entfernen. Achtung: Die Sensitivität und Präzision dieses Assays wird erheblich beeinflusst von der korrekten Durchführung des Waschschrittes!
- 6. 150 µL Substrate Solution in jedes Well geben.
- 7. 30 Minuten bei Raumtemperatur inkubieren.
- 8. Die enzymatische Reaktion durch Zugabe von **100 µL** *Stop Solution* in jedes Well abstoppen.
- Die Optische Dichte bei 450 ± 10 nm mit einem Mikrotiterplatten-Lesegerät innerhalb von 10 Minuten nach Zugabe der Stop Solution bestimmen.

6.3 Ergebnisermittlung

- 1. Die durchschnittlichen Werte der Optischen Dichte (OD) für jedes Set von Standards, Controls und Patientenproben bestimmen.
- Eine Standardkurve ermitteln durch Auftragen der mittleren Optischen Dichte jedes Standards gegen die Konzentration, wobei der OD-Wert auf der vertikalen (Y) Achse und die Konzentration auf der horizontalen (X) Achse eingetragen wird.
- Unter Verwendung der mittleren OD wird für jede Probe die entsprechende Konzentration aus der Standardkurve ermittelt.
- 4. Automatische Methode: Die in der Gebrauchsanweisung angegebenen Werte wurden automatisch mit Hilfe der 4 Parameter-Gleichung bestimmt. (4 Parameter Rodbard oder 4 Parameter Marquardt sind die bevorzugten Methoden.) Andere Auswertungsfunktionen können leicht abweichende Werte ergeben.
- 5. Die Konzentration der Proben kann direkt von der Standardkurve abgelesen werden. Proben, die eine h\u00f6here Konzentration als die des h\u00f6chsten Standards enthalten, m\u00fcssen verd\u00fcnnt werden. Dieser Verd\u00fcnnungsfaktor muss bei der Berechnung der Konzentration beachtet werden.

6.3.1 Beispiel für eine Standardkurve

Nachfolgend wird ein typisches Beispiel für eine Standardkurve mit dem DRG ELISA gezeigt. Diese Werte sollten **nicht** zur Berechnung von Patientendaten verwendet werden.

Stan	dard	Optische Dichte (450 nm)
Standard 0	0,0 pg/mL	1,92
Standard 1	1,0 pg/mL	1,69
Standard 2	2,5 pg/mL	1,43
Standard 3	5,0 pg/mL	1,12
Standard 4	10,0 pg/mL	0,81
Standard 5	20,0 pg/mL	0,55

7 ERWARTETE WERTE

Es wird empfohlen, dass jedes Labor seine eigenen normalen und abnormalen Werte ermittelt.

In einer Studie mit dem DRG Free T3 ELISA wurden die Proben von scheinbar gesunden Erwachsenen (18 bis 81 Jahre alt) untersucht. Dabei ergaben sich folgende Werte:

Population	n	Mittelwert (pg/mL)	Median (pg/mL)	2,5 97,5. Perzentile (pg/mL)	Bereich (min max.) (pg/mL)
Männer	59	3,22	3,21	2,34 - 4,33	2,21 - 4,48
Frauen	58	3,09	2,99	2,19 - 4,88	1,99 - 5,58

Die Werte stimmen gut mit den in der Literatur angegebenen Bereichen überein (9, 10).

Die mit diesem Testkit erzielten Ergebnisse sollten niemals als alleinige Grundlage für therapeutische Konsequenzen dienen. Die Ergebnisse müssen zusammen mit anderen klinischen Befunden und diagnostischen Tests des Patienten interpretiert werden.

8 QUALITÄTSKONTROLLE

Es wird empfohlen, die Kontrollproben gemäß den nationalen gesetzlichen Bestimmungen einzusetzen. Durch die Verwendung von Kontrollproben wird eine Tag-zu-Tag Überprüfung der Ergebnisse erzielt. Es sollten Kontrollen sowohl mit normalem als auch pathologischem Level eingesetzt werden.

Die Kontrollen mit den entsprechenden Ergebnissen des QC-Labors sind im QC-Zertifikat, das dem Kit beiliegt, aufgeführt. Die im QC-Blatt angegebenen Werte und Bereiche beziehen sich stets auf die aktuelle Kitcharge und sollten zum direkten Vergleich der Ergebnisse verwendet werden.

Es wird ebenfalls empfohlen, an nationalen oder internationalen Qualitätssicherungs-Programmen teilzunehmen, um die Genauigkeit der Ergebnisse zu sichern.

Es sollten geeignete statistische Methoden zur Analyse von Kontroll-Werten und Trends angewendet werden. Wenn die Ergebnisse des Assays nicht mit den angegebenen Akzeptanzbereichen des Kontrollmaterials übereinstimmen, sollten die Patientenergebnisse als ungültig eingestuft werden.

In diesem Fall überprüfen Sie bitte die folgenden Bereiche: Pipetten und Zeitnehmer, Photometer, Verfallsdatum der Reagenzien, Lagerungs- und Inkubationsbedingungen, Absaug- und Waschmethode.

Sollten Sie nach Überprüfung der vorgenannten Bereiche keinen Fehler erkannt haben, setzen Sie sich bitte mit Ihrem Lieferanten oder direkt mit der Firma DRG in Verbindung.

9 ASSAY-CHARAKTERISTIKA

9.1 Messbereich

Der Messbereich des Testes liegt zwischen 0,38 - 20 pg/mL.

9.2 Spezifität der Antikörper (Kreuzreaktivität)

Die Daten entnehmen Sie bitte der ausführlichen englischen Arbeitsanleitung.

9.3 Sensitivität

Die <u>analytische Sensitivität</u>, definiert als Mittelwert, abzüglich der zweifachen Standardabweichung, des *Standard 0* (n = 20), beträgt 0,381 pg/mL.

Der "Limit of Blank" (LoB) ist 0,327 pg/mL.

Die Nachweisgrenze (LoD) ist 0,536 pg/mL.

Die Quantifizierungsgrenze (LoQ) ist 0,990 pg/mL.

Die Daten zu:

9.4 Reproduzierbarkeit (Präzision)

9.5 Wiederfindung

entnehmen Sie bitte der ausführlichen englischen Version der Gebrauchsanweisung.

10 GRENZEN DES TESTS

Zuverlässige und reproduzierbare Ergebnisse werden erzielt, wenn das Testverfahren mit vollständigem Verständnis der Anweisungen in der Gebrauchsanleitung und unter Befolgung der GLP (Good Laboratory Practice)-Richtlinien durchgeführt wird.

Jede unsachgemäße Behandlung von Proben oder Modifikation dieses Tests können die Ergebnisse beeinflussen.

10.1 Interferenzen

Hämoglobin (bis zu 4 mg/mL), Bilirubin (bis zu 0,5 mg/mL) und Triglyceride (bis zu 7,5 mg/mL) haben keinen Einfluss auf das Testergebnis.

10.2 Beeinflussung durch Medikamente

Bislang sind uns keine Substanzen (Medikamente) bekannt geworden, die einen Einfluss auf die Bestimmung von FT3 in einer Probe haben.

10.3 High-Dose-Hook Effekt

Ein Hook-Effekt tritt in diesem Test nicht auf.

11 RECHTLICHE GRUNDLAGEN

11.1 Zuverlässigkeit der Ergebnisse

Der Test muss exakt gemäß der Testanleitung des Herstellers abgearbeitet werden. Darüber hinaus muss der Benutzer sich strikt an die Regeln der GLP (Good Laboratory Practice) oder andere eventuell anzuwendende Regeln oder nationale gesetzliche Vorgaben halten. Dies betrifft besonders den Gebrauch der Kontrollreagenzien. Es ist sehr wichtig, bei der Testdurchführung stets eine ausreichende Anzahl Kontrollen zur Überprüfung der Genauigkeit und Präzision mitlaufen zu lassen.

Die Testergebnisse sind nur gültig, wenn alle Kontrollen in den vorgegebenen Bereichen liegen, und wenn alle anderen Testparameter die vorgegebenen Spezifikationen für diesen Assay erfüllen. Wenn Sie bezüglich eines Ergebnisses Zweifel oder Bedenken haben, setzen Sie sich bitte mit der Firma DRG in Verbindung.

11.2 Therapeutische Konsequenzen

Therapeutische Konsequenzen sollten keinesfalls nur aufgrund von Laborergebnissen erfolgen, selbst dann nicht, wenn alle Testergebnisse mit den in 11.1 genannten Voraussetzungen übereinstimmen. Jedes Laborergebnis ist nur ein Teil des klinischen Gesamtbildes eines Patienten.

Nur in Fällen, in denen die Laborergebnisse in akzeptabler Übereinstimmung mit dem allgemeinen klinischen Bild des Patienten stehen, sollten therapeutische Konsequenzen eingeleitet werden.

Das Testergebnis allein sollte niemals als alleinige Grundlage für die Einleitung therapeutischer Konsequenzen dienen.

11.3 Haftung

Jegliche Veränderungen des Testkits und/oder Austausch oder Vermischung von Komponenten unterschiedlicher Chargen von einem Testkit zu einem anderen, können die gewünschten Ergebnisse und die Gültigkeit des gesamten Tests negativ beeinflussen. Solche Veränderungen und/oder Austausch haben den Ausschluss jeglicher Ersatzansprüche zur Folge.

Reklamationen, die aufgrund von Falschinterpretation von Laborergebnissen durch den Kunden gemäß Punkt 11.2 erfolgen, sind ebenfalls abzuweisen. Im Falle jeglicher Reklamation ist die Haftung des Herstellers maximal auf den Wert des Testkits beschränkt. Jegliche Schäden, die während des Transports am Kit entstanden sind, unterliegen nicht der Haftung des Herstellers.

1 INTRODUZIONE

Il test immuno-enzimatico **DRG Free T3 ELISA** contiene materiale per la determinazione quantitativa di Triiodotironina libero (FT3, T3 libero) in siero.

Questo test kit è adatto soltanto per l'uso diagnostico.

2 PRINCIPIO DEL TEST

Il test kit DRG Free T3 ELISA è un test immunologico in fase solida con enzimi ancorati su un substrato (ELISA), basato sul **principio del legame competitivo**.

I micropozzetti sono ricoperti con un anticorpo policionale diretto contro un unico sito antigenico della molecola T3. FT3 endogena di un campione compete con il T3 coniugato alla per ossidasi di rafano per il sito di legame sull'anticorpo ancorato nel micropozzo. Dopo l'incubazione il coniugato non legato è lavato via.

La quantità della perossidasi coniugata legata è inversamente proporzionale alla concentrazione di FT3 nel campione. Dopo l'aggiunta della soluzione substrato, l'intensità del colore sviluppato è inversamente proporzionale alla concentrazione di FT3 nel campione del paziente.

3 PRECAUZIONI

- Questo kit è adatto soltanto per l'uso diagnostico in vitro.
- Si prega di usare la versione valida dell'inserto del pacco a disposizione con il kit.
- Informazioni su sostanze pericolose contenute nel kit sono riportate nel regolamento di sicurezza.
- Tutti i componenti del kit che contengono siero o plasma umano sono controllati e confermati negativi per la presenza di HIV I/II, HbsAg e HCV con metodi conformi alle norme FDA. Ciononostante tutti i componenti dovrebbero essere trattati come potenziali sostanze nocive nella manutenzione e nello smaltimento.
- Il contatto con la Stop Solution dovrebbe essere evitato perché contiene 0,5 M H₂SO₄. L'acido solforico può provocare irritazioni cutanee e ustioni.
- Non pipettare con la bocca ed evitare il contatto con componenti del kit con la pelle o con le mucose.
- Nelle aree in cui il test viene utilizzato non fumare, mangiare, bere o fare uso di prodotti cosmetici.
- Nella manutenzione dei campioni o reagenti del kit portare guanti di latex monouso. La contaminazione dei reagenti o
 dei campioni con microbi può dare risultati falsi.
- L'utilizzo dovrebbe avvenire secondo regole che seguono le rispettive norme di sicurezza nazionali sulle sostanze nocive.
- Non utilizzare i reagenti dopo la scadenza indicata sul kit.
- Ogni indicazione sulla quantità indicata del protocollo del kit deve essere accuratamente seguito. Risultati ottimali possono essere ottenuti soltanto con l'uso di pipette calibrate e spettrofotometro calibrato.
- Componenti del kit con numeri di lotto diversi non devono essere combinati. È consigliabile di non utilizzare pozzetti di
 piastre diversi, anche se si tratta dello stesso lotto. I kit potrebbero essere stati magazzinati o spediti a condizioni
 diverse, cosicché le caratteristiche di legame potrebbero divergere leggermente.
- I componenti chimici e reagenti preparati o già utilizzati devono essere trattati e smaltiti secondo le norme di sicurezza nazionali sulle sostanze nocive.
- I regolamenti di sicurezza di questo prodotto possono essere richiesti direttamente dalla ditta DRG Instruments GmbH.

4 COMPONENTI DEL KIT

4.1 Contenuto del kit

1. *Microtiterwells* (Micropozetti), 12 x 8 file (separatamente staccabili), 96 pozzetti; Pozzetti ricoperti con l'anti-T3 anticorpo (policionale)

2. Standard (Standard 0 - 5), 6 flaconi, 1 mL ognuno, pronto all'uso;

Concentrazione: 0 - 1.0 - 2.5 - 5.0 - 10.0 - 20.0 pg/mL

Conversione 1 pg/mL \times 1.536 = pmol/L

Contiene conservante senza mercurio.

3. Control Low & High (Controllo), 2 flaconi, 1 mL ognuno, pronto all'uso;

I valori dei controlli sono indicati sull'etichetta dei flaconi o sulla descrizione QC.

Contiene conservante senza mercurio.

4. Enzyme Conjugate (Tracciante enzimatico), 1 flacone, 14 mL, pronto all'uso;

T3 coniugato alla perossidasi di rafano;

Contiene conservante senza mercurio.

Substrate Solution (Soluzione di substrato), 1 flacone, 25 mL, pronto all'uso;
 TMB (benzidine tetrametilico).

6. **Stop Solution** (Soluzione d'arresto), 1 flacone, 14 mL, pronto all'uso;

Contiene 0,5 M H₂SO₄

Evitare il contatto con la soluzione d'arresto. Può causare irritazioni cutanee e ustioni.

 Wash Solution (Soluzione di lavaggio), 1 flacone, 30 mL (concentrata 40X); vedi "preparazione dei reagenti".

Nota: Ulteriore Standard 0 per la diluizione dei campioni può essere richiesto alla ditta.

4.2 Materiali richiesti ma non contenuti nel kit

- Uno spettrofotometro calibrato per micropozzetti (450 ± 10 nm) (p.es. il DRG Instruments Microtiterplate Reader)
- Micropipette calibrate di precisione a volume variabile
- Carta assorbente
- Acqua distillata

4.3 Magazzinaggio e stabilità del kit

A 2 °C - 8 °C i reagenti non aperti rimangono reattivi fino alla data di scadenza indicata. Non usare reagenti oltre questa data.

Tutti i reagenti aperti devono essere magazzinati a 2 °C - 8 °C. I micropozzetti devono essere magazzinati a 2 °C - 8 °C. Una volta aperti i pacchi, questi devono essere richiusi accuratamente.

Test kits aperti rimangono attivi per 8 settimani se magazzinati alle condizioni sopra descritte.

4.4 Preparazione dei reagenti

Prima dell'uso portare tutti i reagenti e il numero necessario di pozzetti a temperatura ambiente.

Wash Solution

Diluire 30 mL Wash Solution concentrata con 1170 mL di acqua deionizzata fino ad un volume finale di 1200 mL. La soluzione di lavaggio diluita è stabile per 2 settimane a temperatura ambiente.

4.5 Smaltimento del kit

Lo smaltimento del kit deve avvenire secondo le regole a norma di legge. Informazioni particolareggiate per questo prodotto si trovano nel regolamento di sicurezza, capitolo 13.

4.6 Test kits danneggiati

Nel caso di gravi danneggiamenti del kit o dei suoi componenti deve avvenire una dichiarazione scritta alla ditta DRG, al più tardi una settimana dopo il ricevimento del kit. Componenti danneggiati non dovrebbero essere utilizzati per il test. Questi componenti devono essere magazzinati fino ala soluzione del problema. Dopo di che essi devono essere smaltiti secondo le norme ufficiali.

5 CAMPIONI

Siero può essere usato per questo test.

Non usare campioni emolitici, itterici o lipemici.

Attenzione: Se i campioni contengono sodio azide non devono essere utilizzati per questo test.

5.1 Collezione dei campioni

Siero:

Collezionare sangue tramite puntura venale (p.es. Sarstedt Monovette per siero), far coagulare e separare il siero centrifugando a temperatura ambiente.

Non centrifugare prima che la coagulazione sia completata. Campioni di pazienti con una terapia anticoagulante possono richiedere più tempo per la coagulazione.

5.2 Magazzinaggio dei campioni

I campioni dovrebbero essere magazzinati ben chiusi fino a 4 giorni a 2 °C - 8 °C.

Campioni magazzinati per un periodo più lungo (fino a 3 mesi) dovrebbero essere congelati solo una volta a -20 °C prima dell'analisi. Congelare soltanto una volta. Invertire campioni scongelati alcune volte prima dell'uso.

5.3 Diluizione dei campioni

Se in un campione di siero viene trovata una concentrazione oltre lo standard più alto, questo campione può essere diluito con *Standard 0* e nuovamente determinato.

Della diluizione deve essere però tenuto conto.

Esempio:

a) diluizione 1:10: 10 µL campione + 90 µL Standard 0 (agitare bene)

b) diluizione 1:100: 10 μL della diluizione a) + 90 μL Standard 0 (agitare bene)

6 ATTUAZIONE DEL TEST

6.1 Indicazioni generali

- Tutti i reagenti e i campioni devono essere portati a temperatura ambiente e ben mescolati prima dell'uso. Evitare la formazione di schiume.
- Una volta iniziato il procedimento del test, questo deve essere portato alla fine senza interruzione.
- Per ogni componente, standard, controllo o campione è necessario utilizzare una nuova punta monouso per evitare reazioni incrociate.
- La densità ottica dipende dal tempo d'incubazione e dalla temperatura. Perciò si rende necessario di preparare tutti i reagenti, di aprire i tappi dei flaconi e di appostare tutti i pozzetti nelle appropriate posizioni. Soltanto una tale preparazione garantisce gli stessi tempi per ogni processo di pipettamento.
- Come regola generale vale che la reazione enzimatica si svolge linearmente proporzionale con il tempo e con la temperatura.

6.2 Eseguimento del test

Ogni analisi deve includere una curva standard.

- 1. Fissare i pozzetti necessari sul supporto.
- 2. Pipettare 50 μL di ogni Standard, Control e campione nei pozzetti, cambiando ogni volta la punta monouso.
- 3. Pipettare **100 μL** *Enzyme Conjugate* in ogni pozzetto.

 Agitare bene per 10 secondi. È molto importante raggiungere un completo mescolamento.
- 4. Incubare per **60 minuti** a temperatura ambiente.
- 5. Rovesciare la piastra per vuotare i pozzetti.

Lavare i pozzetti **4 volte** con **300 µL - 400 µL** *Wash Solution* diluita in ogni pozzetto. Rimuovere le gocce d'acqua rimanenti rivoltando la piastra su carta assorbente.

Importante:

La sensibilità e la precisazione di questo kit sono fortemente influenzate dal corretto eseguimento del lavaggio!

- 6. Aggiungere 150 µL della Substrate Solution ad ogni pozzetto.
- 7. Incubare per **30 minuti** a temperatura ambiente.
- 8. Fermare la reazione enzimatica aggiungendo 100 μL della Stop Solution ad ogni pozzetto.
- Determinare la densità ottica a 450 ± 10 nm con un fotometro per microtiter-piastre entro 10 minuti dopo l'aggiunta della Stop Solution.

6.3 Rilevamento dei risultati

- 1. Determinare i valori medi della densità ottica per ogni set di standard, controlli e campioni.
- 2. Costruire una curva standard: riportare i valori medi della densità ottica (OD) di ogni standard contro la rispettiva concentrazione dove i valori delle OD si devono trovare sull'asse verticale (Y) e le concentrazioni sull'asse orizzontale (X).
- 3. Utilizzando il valore medio delle OD per ogni campione si determina la rispettiva concentrazione dalla curva standard.
- 4. Metodo automatico: I valori riportati in questo istruzioni per l'uso sono stati determinati tramite l'equazione a 4 parametri. (I methodi preferiti sono 4 Parameter Rodbard oppure 4 Parameter Marquardt.) Altri funzioni usati per l'elaborazioni dei dati possono dare risultati leggermente differenti.
- 5. La concentrazione dei campioni può essere determinata direttamente dalla curva standard. Campioni con una concentrazione più elevata dello standard più concentrato devono essere diluiti. Di questo fattore di diluizione deve essere tenuto conto per il calcolo della concentrazione.

6.3.1 Esempio di una curva standard tipica

I seguenti dati sono a scopo dimostrativo soltanto e **non possono** sostituire i dati generati dall'eseguimento del test.

Stan	dard	Densità ottiche (450 nm)
Standard 0	0,0 pg/mL	1,92
Standard 1	1,0 pg/mL	1,69
Standard 2	2,5 pg/mL	1,43
Standard 3	5,0 pg/mL	1,12
Standard 4	10,0 pg/mL	0,81
Standard 5	20,0 pg/mL	0,55

7 VALORI NORMALI

È consigliabile che ogni laboratorio determini i propri valori normali e anormali.

In uno studio condotto con adulti apparentemente sani (18 a 81 anni), usando il DRG Free T3 ELISA, i seguenti valori sono stati trovati:

Popolazione	n	Media (pg/mL)	Mediano (pg/mL)	2,5 97,5. percentile (pg/mL)	Intervallo (min max.) (pg/mL)
Uomini	59	3,22	3,21	2,34 - 4,33	2,21 - 4,48
Donne	58	3,09	2,99	2,19 - 4,88	1,99 - 5,58

I risultati si correlano bene agli intervalli descritti in bibliografia (9, 10).

Come per tutti i test diagnostici, una diagnosi clinica definitiva non dovrebbe basarsi sui risultati di un singolo dosaggio. Una diagnosi clinica dovrebbe essere formulata dal medico in seguito ad un'attenta valutazione di tutti gli aspetti clinici assieme ai dati di laboratorio.

8 CONTROLLO QUALITÀ

È consigliabile utilizzare i campioni controllo secondo le norme di legge. Attraverso l'utilizzo dei campioni controllo si può raggiungere una verifica dei risultati giorno per giorno. Dovrebbero essere adoperati campioni controllo sia con un livello normale sia con uno patologico.

Le referenze con i rispettivi risultati del laboratorio QC sono elencati nel QC certificato, che è allegato al kit. I valori riportati nel QC certificato si riferiscono al lotto del kit attuale e dovrebbero essere utilizzati per un raffronto dei risultati. È altresì consigliabile di partecipare a programmi di sicurezza sulla qualità nazionali o internazionali, per assicurarsi dell'esattezza dei risultati.

Appropriati metodi statistici per l'analisi dei valori controllo e delle rappresentazioni grafici dovrebbero essere adoperati. Nel caso che i risultati del test non combaciano con il campo di accettazione indicato dal materiale di controllo, i risultati dei pazienti devono essere considerati invalidi. In questo caso si prega di controllare i seguenti fattori d'errore: pipette, cronometri, fotometro, data di scadenza dei reagenti, condizione di magazzinaggio e d'incubazione, metodi di aspirazione e di lavaggio.

Se dopo il controllo dei suddetti fattori non è rilevabile alcun errore, si prega di contattare il fornitore o direttamente la ditta DRG.

9 CARATTERISTICHE DEL TEST

9.1 Assay Dynamic Range

Le concentrazioni determinabili con questo test stanno tra 0,38 - 20 pg/mL.

9.2 Specificità degli anticorpi (reazioni ad incrocio)

Per dettagli più precisi consultare la metodica in inglese.

9.3 Sensitività analitica

La sensitività <u>analitica</u> è stata calcolata dai valori medi, meno due deviazione standard, di venti (20) repliche dello *Standard 0* ed erano 0,381 pg/mL.

Il limite del bianco (LoB) è 0,327 pg/mL.

Il limite di rilevabilità (LoD) è 0,536 pg/mL.

Il limite di quantificazione (LoQ) è 0,990 pg/mL.

Dati dettagliati su

9.4 Precisione

9.5 Recupero

si prega di consultare le dettagliate istruzioni per l'uso in inglese.

10 LIMITAZIONE DEL TEST

Risultati affidabili e riproducibili saranno ottenuti quando il procedimento del test è seguito con una comprensione completa delle istruzioni all'uso e seguendo una buona pratica di laboratorio (GLP).

Ogni manutenzione impropria dei campioni o modificazione al saggio può influenzare i risultati.

10.1 Sostanze interferenti

Emoglobina (fino a 4 mg/mL), bilirubina (fino a 0,5 mg/mL) e trigliceridi (fino a 7,5 mg/mL) non influenzano i risultati di questo test.

10.2 Droghe interferenti

Fino ad oggi nessuna sostanza (farmaco) è conosciuta a noi che abbia influenzato la determinazione di FT3 nel campione.

10.3 Effetto Hook (Gancio) ad alto dosaggio

Nessun effetto Hook (gancio) è stato osservato in questo prodotto.

11 ASPETTI LEGALI

11.1 Affidabilità dei risultati

Il test deve essere eseguito esattamente secondo il protocollo dato dal produttore. Inoltre l'utente deve seguire le regole del GLP (Good Laboratory Practice) o eventualmente altre regole comportamentali o disposizioni legali. Questo vale soprattutto per l'uso delle referenze. È molto importante utilizzare un numero appropriato di referenze in parallelo ai campioni test per poter controllare l'esattezza e la precisione del test.

I risultati del test sono validi soltanto se tutte le referenze cadono nei margini prestabiliti e se tutti gli altri parametri del test soddisfano la specificazione per questo test. Se esistono dubbi o domande su questi risultati, si prega di contattare la ditta DRG.

11.2 Conseguenze terapeutiche

Soltanto sulla base dei risultati dei laboratori non dovrebbero essere intraprese delle conseguenze terapeutiche di alcun tipo, anche se i risultati del test sono d'accordo con gli aspetti articolati nel punto 11.1. Ogni risultato di laboratorio è soltanto una parte di un quadro clinico completo di un paziente.

Soltanto in casi in cui i risultati di un test del laboratorio si accordano con il quadro clinico dell'ammalato, si possono intraprendere delle consequenze terapeutiche.

Il risultato del test da solo non è base sufficiente per lo stabilimento di una terapia.

11.3 Responsabilità legali

Ogni cambiamento del protocollo del test e/o lo scambio o il mescolamento di componenti provenienti da cariche diverse possono influenzare negativamente i risultati e compromettere la validità del test. Questi cambiamenti e/o scambi annullano ogni diritto al risarcimento.

Si respingano inoltre tutti i richiami risultanti da interpretazioni sbagliate da parte dell'utente secondo il paragrafo 11.2. Nel caso di reclamazione, la garanzia del produttore è limitato al valore massimo del test kit. Ogni danno provocato durante il trasporto del kit non sottostà alla responsabilità del produttore.

1 INTRODUCCIÓN

El **Kit de inmunoensayo enzimático DRG** Free T3 ELISA proporciona los materiales necesarios para la determinación cuantitativa del Triyodotironina libre (FT3, T3 libre) en suero.

Este ensayo está diseñado solo para diagnóstico in vitro.

2 FUNDAMENTO DEL ENSAYO

El Kit DRG Free T3 ELISA es un ensayo en fase sólida de inmunoadsorción unido a enzimas (ELISA), basado en el **principio de unión competitiva**.

Los pocillos de las placas están recubiertos con un anticuerpo policional dirigido contra un foci antigénico en la molécula T3. En las muestras de los pacientes FT3 compite con un conjugado T3-peroxidasa de rábano en la unión al anticuerpo inmovilizado. Después de la incubación el conjugado no unido se lava.

La cantidad de conjugado de peroxidasa unido es inversamente proporcional a la concentración de FT3 en la muestra. Después de la adición de la solución sustrato, la intensidad de color desarrollado es inversamente proporcional a la concentración de FT3 en la muestra del paciente.

3 PRECAUCIONES

- Este kit es solamente para diagnóstico in vitro.
- Por favor, se usa solo la version valida de la metodico técnico incluido aqui en el kit.
- Para obtener información de las sustancias peligrosas incluidas en el kit por favor mirar las hojas de los datos de seguridad del material.
- Todos los reactivos en este kit de ensayo que contienen suero o plasma humano se han ensayado y confirmado ser negativos para HIV I/II, HBsAg y HCV mediante procedimientos aprobados por la FDA. Sin embargo, todos los reactivos deben ser tratados tanto en su uso como dispensación como potencialmente biopeligrosos.
- Evitar contacto con Stop Solution que contiene H₂SO₄ 0,5 M. Puede provocar irritación y quemaduras en la piel.
- Nunca pipetear con la boca y evitar el contacto de los reactivos y las muestras con la piel y con membranas mucosas.
- No fumar, comer, beber o usar cosméticos en áreas donde las muestras o los reactivos del kit están siendo usados.
- Usar guantes de látex cuando se utilicen las muestras y los reactivos. La contaminación microbiana de los reactivos o las muestras puede dar resultados erróneos.
- El manejo debe realizarse de acuerdo a los procedimientos definidos por las guías o regulación nacionales de seguridad de sustancias biopeligrosas.
- No utilizar los reactivos después de su fecha de caducidad que aparece en las etiquetas del kit.
- Todos los volúmenes indicados han de ser realizados de acuerdo con el protocolo. Los resultados óptimos del ensayo se obtienen solo cuando se utilizan pipetas y lectores de microplacas calibrados.
- No mezclar o usar componentes de kits con distinto número de lote. Se recomienda no intercambiar pocillos de distintas placas incluso si son del mismo lote. Los kits pueden haber sido enviados o almacenados bajo diferentes condiciones y las características de unión de las placas pueden resultar diferentes.
- Los compuestos químicos y los reactivos preparados o utilizados han de tratarse como residuos peligrosos de acuerdo con las guías o regulación nacionales de seguridad de sustancias biopeligrosas.
- Las hojas de los datos de seguridad de este producto están disponibles bajo pedido directamente a DRG Instruments GmbH.

4 COMPONENTES DEL KIT

4.1 Componentes del Kit

1. *Microtiterwells* (Placas multipocillo), 12 x 8 tiras separables, 96 pocillos;

Pocillos recubiertos con anticuerpo anti-T3 (policlonal).

2. Standard (Standard 0 - 5), (Estándar), 6 viales, 1 mL cada, listos para usar;

Concentraciones: 0 - 1,0 - 2,5 - 5,0 - 10,0 - 20,0 pg/mL

Conversión: $1 \text{ pg/mL} \times 1.536 = \text{pmol/L}$

Contiene conservante sin mercurio.

3. Control Low & High (Control), 2 viales, 1 mL cada, listos para usar;

Referir los valores y rangos del control a la etiqueta del vial o a la Hoja de datos QC.

Contiene conservante sin mercurio.

4. Enzyme Conjugate (Conjugado enzimático), 1 vial, 14 mL, listo para usar;

T3 conjugado con la Peroxidasa de rábano;

Contiene conservante sin mercurio.

5. Substrate Solution (Solución de sustrato), 1 vial, 25 mL, listo para usar;

Tetrametilbencidina (TMB).

6. Stop Solution (Solución de parada), 1 vial, 14 mL, listo para usar;

Contiene 0.5 M H₂SO₄

Evitar el contacto con la Solución de parada. Puede causar irritación y quemaduras en al piel.

7. Wash Solution (Solución de lavado), 1 vial, 30 mL (concentrado 40X);

Ver "Preparación de los Reactivos".

Nota: Se puede solicitar el *Standard 0* para la dilución de la muestra.

4.2 Equipamiento y material requerido pero no provisto

- Lector de microplacas calibrado (450 ± 10 nm) (ej. DRG Instruments Microtiter Plate Reader)
- Micropipetas de precisión variable calibradas
- Papel absorbente
- Agua destilada

4.3 Almacenamiento y estabilidad del kit

Cuando se almacena a 2 °C - 8 °C, los reactivos sin abrir mantienen su reactividad hasta la fecha de caducidad. No utilizar los reactivos más allá de esta fecha.

Los reactivos abiertos han de almacenarse a 2 °C - 8 °C. Las placas multipocillo han de almacenarse a 2 °C - 8 °C. Una vez se ha abierto la bolsa hay que tener cuidado y cerrarla de nuevo.

Los kits abiertos conservan su actividad durante 8 semanas si se almacenan como se ha descrito arriba.

4.4 Preparación de los Reactivos

Dejar que todos los reactivos y el número requerido de tiras alcancen la temperatura ambiente antes de usarse.

Wash Solution

Mezclar 30 mL de Wash Solution concentrada con 1170 mL de agua desionizada hasta un volumen final de 1200 mL. La solución del lavado diluida es estable durante 2 semanas a temperatura ambiente.

4.5 Eliminación del Kit

La eliminación del kit debe realizarse de acuerdo con las leyes nacionales. En las hojas de datos de seguridad se proporciona información especial de este producto (ver capítulo 13).

4.6 Kits de ensayo dañados

En caso de que exista cualquier daño severo del kit de ensayo o de sus componentes, ha de informarse por escrito a DRG, no mas tarde de una semana después de recibir el kit. No deben utilizarse componentes dañados para llevar a cabo un ensayo. Han de almacenarse hasta que se encuentre una solución. Después de esto, deben ser eliminados de acuerdo con las leyes oficiales.

5 MUESTRAS

En este ensayo pueden usarse suero.

No usar muestras hemolíticas, ictéricas o lipémicas.

Tener en cuenta: No deben usarse muestras que contengan acida sódica.

5.1 Toma de muestras

Suero:

Recoger la sangre por punción en la vena (ej. Sarstedt Monovette para el suero), permitir coagulación, y separar el suero por centrifugación a temperatura ambiente. No centrifugar antes de la coagulación completa. Las muestras de pacientes que reciben terapia anticoagulante requieren más tiempo para coagular.

5.2 Almacenamiento de las muestras

Las muestras deben ser tapadas y pueden ser almacenadas hasta 4 días a 2 °C - 8 °C antes del ensayo. Las muestras almacenadas por un período de tiempo mas largo (hasta 3 meses) han de congelarse sólo una vez a -20 °C antes del ensayo. Las muestras descongeladas deben invertirse varias veces antes del ensayo.

5.3 Dilución de las muestras

Si en un ensayo inicial, se encuentra una muestra que presenta valores mayores que el estándar mas concentrado, ha de diluirse con *Standard 0* y volver a ensayarse como se describe en el Procedimiento de Ensayo.

Para el cálculo de las concentraciones habrá que tener en cuenta el factor de dilución.

Ejemplo:

a) dilución 1:10: 10 µL muestra + 90 µL *Standard 0* (mezclar totalmente)

b) dilución 1:100: 10 µL dilución a) 1:10 + 90 µL Standard 0 (mezclar totalmente).

6 PROCEDIMIENTO DE ENSAYO

6.1 Consideraciones generales

- Todos los reactivos y muestras han de estar a temperatura ambiente antes de su uso. Todos los reactivos deben mezclarse sin formar espuma.
- Una vez se ha comenzado el ensayo deben completarse todos los pasos sin interrupción.
- Utilizar puntas de pipeta de plástico nuevas para cada estándar, control o muestra para evitar combinaciones cruzadas.
- La absorbancia es función del tiempo de incubación y la temperatura. Antes de comenzar el ensayo, se recomienda que todos los reactivos estén preparados, tapas removidas, todos los pocillos que se necesiten asegurados en recipiente, etc. Esto asegurará un tiempo similar para cada paso de pipeteo sin que haya interrupciones.
- Como regla general, la reacción enzimática es linealmente proporcional al tiempo y a la temperatura.

6.2 Procedimiento de ensayo

Cada uno debe incluir una curva de estándares.

- 1. Asegurar el número deseado de pocillos en el recipiente.
- 2. Dispensar **50 µL** de cada **Standard, Control** y **muestras** <u>con puntas nuevas</u> en los pocillos adecuados.
- 3. Dispensar **100 μL** de *Enzyme Conjugate* a cada pocillo.

 Mezclar totalmente durante 10 segundos. Es importante mezclar completamente en este paso.
- 4. Incubar durante **60 minutes** a temperatura ambiente.
- 5. Sacudir enérgicamente el contenido de los pocillos.

Lavar los pocillos **4 veces** con **300 µL - 400 µL** *Wash Solution* diluida por pocillo. Realizar un golpe seco de los pocillos contra el papel absorbente para eliminar las gotas residuales.

Nota importante:

La sensibilidad y la precisión de este ensayo se ve marcadamente influenciada por la realización correcta del proceso de lavado!

- 6. Adicionar **150 µL** de **Substrate Solution** a cada pocillo.
- 7. Incubar durante **30 minutes** a temperatura ambiente.
- 8. Parar la reacción enzimática mediante la adición de 100 µL de Stop Solution a cada pocillo.
- Leer la OD a 450 ± 10 nm con un lector de microplacas dentro de los 10 minutos después de la adición de la Stop Solution.

6.3 Cálculo de los Resultados

- 1. Calcular los valores de absorbancia media para cada conjunto de estándares, controles y muestras de pacientes.
- 2. Construir una curva estándar mediante la representación de la absorbancia media obtenida para cada estándar frente a su concentración con el valor de absorbancia en el eje vertical (Y) y la concentración en el eje horizontal (X).
- 3. Usando el valor de absorbancia media de cada muestra determinar la concentración correspondiente a partir de la curva estándar.
- 4. Método automatizado: Los resultados en las instrucciones de uso se han calculado automáticamente usando una curva de regresión 4 Parámetros. (4 Parámetros Rodbard o 4 Parámetros Marquardt son los métodos preferidos.) Otras funciones de regresión darán lugar a resultados sensiblemente diferentes.
- 5. La concentración de las muestras puede leerse directamente de la curva de estándares. Las muestras con concentraciones superiores al mayor estándar han de diluirse. Para el cálculo de las concentraciones hay que tener en cuenta el factor de dilución.

6.3.1 Ejemplo de una Curva Estándar Típica

Los siguientes datos son solamente para la explicación y **no** pueden ser utilizados en lugar de los datos generados en el momento del ensayo.

Está	ndar	Unidades Ópticas (450 nm)
Standard 0	0,0 pg/mL	1,92
Standard 1	1,0 pg/mL	1,69
Standard 2	2,5 pg/mL	1,43
Standard 3	5,0 pg/mL	1,12
Standard 4	10,0 pg/mL	0,81
Standard 5	20,0 pg/mL	0,55

7 VALORES ESPERADOS

Se recomienda encarecidamente que cada laboratorio determine sus valores normales e inusuales.

En un estudio llevado a cabo con adultos aparentemente sanos (18 a 81 años) , usando el DRG Free T3 ELISA, se obtuvieron los siguientes valores:

Población	n	Media (pg/mL)	Mediana (pg/mL)	Percentil 2,5 - 97,5 (pg/mL)	Rango (min max.) (pg/mL)	
Hombres	59	3,22	3,21	2,34 - 4,33	2,21 - 4,48	
Mujeres	58	3,09	2,99	2,19 - 4,88	1,99 - 5,58	

Los resultados se correlacionan bien con los rangos descritos en la literatura. (9, 10).

Los resultados obtenidos no deberían ser el único motivo para una intervención terapéutica. Los resultados han de correlacionarse con otras observaciones clínicas y tests de diagnóstico.

8 CONTROL DE CALIDAD

Se recomienda usar muestras control de acuerdo con las leyes estatales y federales. El uso de muestras control se recomienda para asegurar la validez diaria de los resultados. Usar controles tanto a niveles normal como patológico. Los controles y los correspondientes resultados del Laboratorio de control de calidad están fijados en el certificado de control de calidad que acompañan al kit. Los valores y los rangos fijados en la hoja del control de calidad se refieren siempre al kit actual y deben usarse para la comparación directa de los resultados.

Es recomendable también hacer uso de programas de Aseguramiento de la Calidad nacionales o internacionales para asegurar la exactitud de los resultados.

Utilizar métodos estadísticos apropiados para el análisis de los valores y tendencia de los controles. Si los resultados del ensayo no se ajustan a los rangos aceptables establecidos en los controles, los resultados obtenidos de los pacientes han de considerarse inválidos.

En este caso, por favor comprobar las siguientes áreas técnicas: Pipeteo y tiempo empleado, fotómetro, fecha de caducidad de los reactivos, condiciones de almacenamiento e incubación, métodos de aspiración y lavado.

Después de comprobar los asuntos arriba mencionado sin encontrar ningún error, contactar con su distribuidor o con DRG directamente.

9 CARACTERÍSTICAS DEL ENSAYO

9.1 Rango dinámico del ensayo

El rango del ensayo se encuentra entre 0,38 - 20 pg/mL.

9.2 Especificidad de los Anticuerpos (Reactividad Cruzada)

Consultar el manual de usuario en inglés.

9.3 Sensibilidad Analítica

La <u>sensibilidad analítica</u> se calculó a partir de la media menos dos desviaciones estándar de veinte (20) réplicas del *Standard 0* y resultó ser 0,381 pg/mL.

El límite del blanco (LoB) es 0,327 pg/mL.

El Límite de Detección (LoD) es 0,536 pg/mL.

El Límite de Cuantificación (LoQ) es 0,990 pg/mL.

Para información sobre

9.4 Precisión

9.5 Recuperación

por favor consulte la versión detallada en inglés de las Instrucciones de Uso.

10 LIMITACIONES DE USO

Únicamente se obtendrán resultados fiables y reproducibles, cuando el procedimiento del ensayo se realice entendiendo las instrucciones de uso correctamente y desarrollando buenas prácticas de laboratorio.

Cualquier manejo impropio de las muestras o modificación del test puede influenciar los resultados.

10.1 Sustancias que pueden interferir

Hemoglobina (hasta 4 mg/mL), Bilirrubina (hasta 0,5 mg/mL) y Triglicéridos (hasta 7,5 mg/mL) no influencian los resultados del ensayo.

10.2 Interferencias con drogas

Hasta ahora no se han encontrado sustancias (drogas) conocidas por nosotros, que tengan influencia en la medida de FT3 en una muestra.

10.3 Efecto de Alta Concentración (Gancho)

No se ha observado efecto gancho en este ensayo.

11 ASPECTOS LEGALES

11.1 Fiabilidad de los Resultados

El ensayo debe realizarse exactamente de acuerdo a las instrucciones del fabricante. Mas aún, el usuario debe ajustarse estrictamente a las reglas BPL (Buenas Prácticas de Laboratorio) o a otros estándares y/o leyes nacionales aplicables. Esto es especialmente relevante para el uso de reactivos control. Es importante incluir siempre, dentro del procedimiento de ensayo, un número suficiente de controles para validar la exactitud y la precisión del ensayo.

Los resultados del ensayo son válidos sólo si todos los controles se encuentran dentro de los rangos especificados y si todos los otros parámetros del ensayo se encuentran dentro de las especificaciones dadas para el ensayo. En cado de alguna duda o inquietud, por favor, contactar con DRG.

11.2 Consecuencias Terapéuticas

Las consecuencias terapéuticas nunca deben basarse sólo en los resultados de laboratorio incluso si todos los resultados del ensayo están de acuerdo con los asuntos fijados en el punto 11.1. Cualquier resultado de laboratorio es solamente una parte del cuadro clínico de un paciente.

Solamente en los casos donde los resultados de laboratorio están en acuerdo con todo el cuadro clínico de un paciente, se pueden derivar consecuencias terapéuticas.

Nunca deben derivarse consecuencias terapéuticas a partir de solamente el resultado obtenido en el ensayo

11.3 Responsabilidad

Cualquier modificación del kit y/o cambio o mezcla de cualquier componente procedentes de kits de lotes diferentes puede afectar negativamente a los resultados esperados y en la validez de todo el test. Esas modificaciones y/o cambios invalidad cualquier reclamación de reposición.

Las reclamaciones emitidas debidas a una mala interpretación de los resultados de laboratorio por parte del comprador referidos al punto 11.2 son también inválidas. A pesar de todo, en el caso de cualquier reclamación, la responsabilidad del fabricante no excede el valor del kit. Cualquier daño provocado al kit durante su transporte no está sujeto a la responsabilidad del fabricante.

1 INTRODUCTION

Le kit de dosage immuno-enzymatique **DRG Free T3 ELISA** propose les matériaux requis pour la mesure quantitative de Triiodothyronine libre (FT3, T3 libre, T3L) dans le sérum.

Ce kit est à utiliser uniquement dans le cadre de tests diagnostiques in vitro.

2 PRINCIPE DU TEST

Le kit DRG Free T3 ELISA est basé sur une réaction immuno-enzymatique compétitive.

Les micro-plaques sont recouvertes avec un anticorps polyclonal dirigé contre un antigène spécifique de la molécule T3. FT3 endogène contenu(e) dans l'échantillon du patient entre en compétition avec T3 conjuguée à la HRP pour la liaison à l'anticorps. Après incubation, le conjugué non-lié est éliminé durant le lavage des puits.

La quantité de peroxidase liée est inversement proportionnelle à la concentration de FT3 contenue dans l'échantillon. Suite à l'addition de solution substrat, l'intensité de coloration obtenue est inversement proportionnelle à la concentration de FT3 contenue dans l'échantillon.

3 PRECAUTIONS D'UTILISATION

- Ce kit est uniquement destiné aux tests diagnostiques in vitro.
- Utilisez uniquement la version valide d'instructions d'utilisation qui est incluse dans le kit.
- Les informations concernant la toxicité des réactifs contenus dans ce kit sont présentées dans la fiche de sécurité (« Safety Data Sheets »).
- Tous les réactifs de ce kit contenant du sérum ou du plasma humain ont été testés avec des résultats négatifs pour le VIH I/II, le HBsAg et le HCV selon les normes FDA en vigueur. Néanmoins, lors de leur utilisation, tous les réactifs de ce kit doivent être manipulés avec précaution.
- Eviter les contacts avec la Stop Solution, celle-ci contient 0,5 M de H₂SO₄. Cela pourrait engendrer irritations ou brûlures de la peau.
- Ne jamais pipeter avec la bouche, et éviter tout contact de la peau ou des muqueuses avec les réactifs ou les échantillons.
- Ne pas fumer, manger, boire ou utiliser des produits cosmétiques dans les zones où les échantillons ou le kit ont été maniés.
- Porter des gants d'examen lors de l'utilisation des échantillons ou des réactifs. Une contamination microbienne des échantillons ou des réactifs pourrait fausser les résultats.
- L'utilisation de ce kit devra être en accord avec les normes ou recommandations nationales de sécurité en vigueur concernant les produits à risque biologique.
- Ne pas utiliser les réactifs au-delà de la date d'expiration inscrite sur l'emballage.
- Tous les volumes indiqués doivent être scrupuleusement respectés, comme indiqué dans le protocole expérimental.
 Seule l'utilisation de pipettes calibrées ou d'un spectrophotomètre lecteur de micro-plaques calibré garantit l'obtention de résultats optimaux à ce test.
- Ne pas mélanger ou utiliser des réactifs contenus dans des kits de lots différents. Il est conseillé de ne pas échanger les puits de différentes plaques, même si celles-ci proviennent du même lot. Les kits peuvent avoir été transportés ou stockés différemment, et les caractéristiques de liaison de chaque plaque pourraient ainsi être modifiées.
- L'élimination des solutions chimiques et des réactifs contenus dans ce kit, utilisés ou non, doit être en accord avec la réglementation nationale en vigueur concernant l'élimination des déchets à risque biologique.
- La fiche de sécurité concernant ce produit peut être obtenue en contactant directement DRG Instruments GmbH.

4 COMPOSITION DU KIT

4.1 Contenu du kit

1. *Microtiterwells* (*Plaques de micro-titration*), 12 x 8 (à détacher) barrettes, plaques de 96 puits; Les puits sont recouverts avec un anticorps anti-T3 (polyclonal).

Standard (Standard 0 - 5), 6 flacons, 1 mL chacun, prêts à l'emploi;

Concentrations: 0 - 1,0 - 2,5 - 5,0 - 10,0 - 20,0 pg/mL

Conversion: $1 \text{ pg/mL} \times 1.536 = \text{pmol/L}$ Contient agent de conservation sans mercure.

3. Control Low & High (Contrôle), 2 flacons, 1 mL chacun, prêts à l'emploi;

Les valeurs contrôles et limites sont indiquées sur l'étiquette du flacon ou sur la fiche QC.

Contient agent de conservation sans mercure.

4. Enzyme Conjugate (Conjugué enzymatique), 1 flacon, 14 mL, prêt à l'emploi ;

T3 conjugué à la HRP;

Contient agent de conservation sans mercure.

 Substrate Solution (Solution substrat), 1 flacon, 25 mL, prêt à l'emploi ; Tétraméthylbenzidine (TMB).

6. Stop Solution (Solution d'arrêt), 1 flacon, 14 mL, prêt à l'emploi ;

Contient 0,5 M de H₂SO₄

Eviter les contacts avec la solution stop. Cela pourrait engendrer irritations ou brûlures de la peau.

7. Wash Solution (Solution de lavage), 1 flacon (concentré 40X);

Voir « Préparation des réactifs ».

Remarque : Un Standard 0 supplémentaire pour la dilution de l'échantillon peut être fourni sur demande.

4.2 Equipement et matériel requis, mais non fournis

- Un spectrophotomètre lecteur de micro-plaques calibré (450 ± 10 nm) (ex. le lecteur de microplaques de DRG Instruments GmbH)
- Des micro-pipettes de précision variables et calibrées
- Du papier absorbant
- De l'eau distillée

4.3 Stockage et stabilité du kit

Les réactifs contenus dans des flacons non-ouverts, stockés à 2 °C à 8 °C, seront stables jusqu'à la date d'expiration inscrite sur l'étiquette. Ne pas utiliser les réactifs au delà de cette date.

Les réactifs contenus dans des flacons ouverts doivent être stockés à 2 °C à 8 °C. Les micro-plaques doivent être stockées à 2 °C à 8 °C. Une fois la capsule d'aluminium ouverte, attention à bien refermer le flacon.

Les kits ouverts conservent leur activité durant 8 semaines s'ils sont stockés comme précédemment mentionné.

4.4 Préparation des réactifs

Amener tous les réactifs et le nombre de barrettes nécessaires au test à température ambiante avant utilisation.

Wash Solution

Diluer 30 mL de *Wash Solution* concentrée avec 1170 mL d'eau désionisée, pour un volume final de 1200 mL. *La solution de lavage diluée est stable deux semaines à température ambiante.*

4.5 Elimination des déchets relatifs au kit

L'élimination des déchets relatifs au kit doit être réalisée selon les règles nationales en vigueur. Les informations spécifiques au kit sont présentées dans la fiche de sécurité (voir chapitre 13).

4.6 Kits endommagés

Dans le cas de dommages importants survenus au kit ou ses composants, informer la DRG, au plus tard une semaine après réception du kit. Les composants endommagés ne doivent pas être utilisés pour le test. Ils doivent être stockés jusqu'à ce qu'une solution adaptée ait été trouvée. Après cela, ils doivent être éliminés selon les directives officielles en vigueur.

5 ECHANTILLON

Le sérum peut être utilisé pour ce test.

Ne pas utiliser des échantillons hémolysés, ictériques ou lipémiques.

Remarque: Les échantillons contenant de l'azide de sodium ne doivent pas être utilisés pour ce test.

5.1 Prélèvement et préparation des échantillons

Sérum:

Prélever le sang par ponction veineuse (ex. Sarstedt Monovette pour sérum), laisser coaguler, puis séparer le sérum par centrifugation à température ambiante. Ne pas centrifuger avant que la coagulation ne soit terminée. Les patients sous traitement anti-coagulant peuvent demander un temps de coagulation plus important.

5.2 Conservation des échantillons

Les tubes contenant les échantillons doivent être fermés et peuvent être stockés jusqu'à 4 jours à 2 °C - 8 °C avant d'être testés.

Les échantillons stockés pour un temps prolongé (jusqu'à 3 mois) doivent être congelés à -20 °C avant d'être testés. Les échantillons décongelés doivent être retournés plusieurs fois avant le test.

5.3 Dilution de l'échantillon

Si, lors d'un test préliminaire, la concentration de l'échantillon se révèle être supérieure à celle du standard le plus concentré, alors l'échantillon doit être dilué avec le *Standard 0* et testé de nouveau, comme décrit dans Réalisation du test.

Pour le calcul des concentrations, ce facteur de dilution doit être pris en considération.

Exemple:

a) dilution 1:10:
 b) dilution 1:100:
 10 μL de l'échantillon + 90 μL Standard 0 (bien mélanger).
 10 μL dilution a) 1:10 + 90 μL Standard 0 (bien mélanger).

6 RÉALISATION DU TEST

6.1 Remarques générales

- Tous les réactifs et échantillons doivent être amenés à température ambiante avant utilisation. Tous les réactifs doivent être mélangés, sans formation de mousse.
- Une fois la procédure engagée, toutes les étapes doivent être réalisées sans interruption.
- Utiliser un nouveau cône de pipette pour chaque standard, contrôle ou échantillon, ceci afin d'éviter toute contamination.
- L'absorbance est fonction du temps d'incubation et de la température. Avant de commencer le test, il est recommandé de préparer tous les réactifs, bouchons ouverts, de préparer les puits des microplaques, etc. Cela garantira un intervalle de temps équivalent entre chaque étape, sans interruption.
- En règle générale, la réaction enzymatique est linéairement proportionnelle au temps et à la température.

6.2 Réalisation du dosage

Chaque test doit inclure une courbe étalon.

- 1. Disposer le nombre de puits de micro-titration désiré dans le support.
- 2. Déposer **50 μL** de chaque *Standard, Control* et les **échantillons**, <u>avec de nouveaux cônes de pipette</u>, dans les puits appropriés.
- 3. Déposer **100 µL d'***Enzyme Conjugate* dans chaque puits.
 Bien mélanger pendant 10 secondes. Il est important d'obtenir un mélange parfait lors de cette étape.
- 4. Incuber pendant 60 minutes à température ambiante.
- 5. Décanter le contenu des puits et rincer les puits 4 fois avec 300 μL 400 μL de la Wash Solution diluée par puits). Tapoter les puits sur du papier absorbant afin d'éliminer les gouttelettes résiduelles. Remarque importante:

La sensibilité et la précision de ce test sont fortement dépendantes de la bonne réalisation des étapes de lavage!

- 6. Ajouter 150 μL de Substrate Solution à chaque puits.
- 7. Incuber pendant **30 minutes** à température ambiante.
- 8. Stopper la réaction enzymatique en ajoutant 100 µL de Stop Solution à chaque puits.
- 9. Lire la densité optique à **450 ± 10 nm** à l'aide d'un spectrophotomètre lecteur de micro-plaques **dans les 10 minutes** après avoir ajouté la *Stop Solution*.

6.3 Calcul des résultats

- 1. Calculer les valeurs moyennes des densités optiques pour chaque série de standards, contrôles et échantillons.
- 2. Etablir la courbe étalon en reportant la densité optique moyenne de chaque valeur standard en fonction de sa concentration, en posant la densité optique en axe des ordonnées et la concentration en axe des abscisses.
- 3. L'utilisation de la densité optique moyenne pour chaque échantillon détermine la concentration correspondante à partir de la courbe étalon.
- 4. Méthode automatique. Les résultats dans les instructions d'utilisation ont été calculés de façon automatique en utilisant une courbe de régression 4 Paramètres. (4 paramètres Rodbard ou 4 paramètres Marquardt sont les méthodes favorites.) D'autres fonctions logistiques peuvent donner des résultats légèrement différents.
- 5. La concentration des échantillons peut être lue directement à partir de cette courbe étalon. Les échantillons avec une concentration supérieure à celle du plus haut standard doivent être dilués de nouveau. Pour le calcul des concentrations, ce facteur de dilution doit être pris en considération.

6.3.1 Exemple d'une courbe standard typique

Les résultats suivants sont ici présentés à titre d'exemple et ne peuvent être utilisés au moment de l'essai.

Stan	dard	Unités optiques (450 nm)		
Standard 0	0,0 pg/mL	1,92		
Standard 1	1,0 pg/mL	1,69		
Standard 2	2,5 pg/mL	1,43		
Standard 3	5,0 pg/mL	1,12		
Standard 4	10,0 pg/mL	0,81		
Standard 5	20,0 pg/mL	0,55		

7 VALEURS ATTENDUES

Il est fortement recommandé à chaque laboratoire de déterminer ses propres valeurs normales et pathologiques.

Dans une étude menée sur des adultes apparemment sains (18 à 21 ans), à l'aide du test Free T3 ELISA de DRG, les valeurs suivantes ont été observées :

Population	n	Valeur moyenne (pg/mL)	Médiane (pg/mL)	2,5 97,5. Percentile (pg/mL)	Portée (min max.) (pg/mL)
Hommes	59	3,22	3,21	2,34 - 4,33	2,21 - 4,48
Femmes	58	3,09	2,99	2,19 - 4,88	1,99 - 5,58

Les résultats correspondent bien aux intervalles décrits dans la littérature (9, 10).

Les résultats ne doivent pas être utilisés seuls pour déterminer les décisions thérapeutiques. Ils doivent être corrélés avec d'autres observations cliniques et tests diagnostiques.

8 CONTROLE DE QUALITE

Il est recommandé d'utiliser les échantillons contrôles selon les réglementations nationales en vigueur. L'utilisation des échantillons contrôles est recommandé afin de s'assurer jour après jour de la validité des résultats. Utiliser les contrôles de valeurs normales et pathologiques.

Les contrôles et les résultats correspondants issus du laboratoire QC sont mentionnés dans le certificat QC fourni avec le kit. Les valeurs et les limites mentionnées sur la fiche QC font toujours référence au lot de kit courant et doivent être utilisées pour une comparaison directe avec les résultats.

Il est également recommandé d'utiliser les programmes d'évaluation de qualité nationaux ou internationaux, afin de s'assurer de l'exactitude des résultats.

Utiliser les méthodes d'analyses statistiques appropriées pour l'analyse des valeurs contrôles et des tendances. Si les résultats ne correspondent pas aux limites établies des contrôles, les résultats concernant ces patients doivent être considérées comme non valides.

Dans ce cas, tester les zones techniques suivantes : mécanisme de pipettage et temps; spectrophotomètre, dates d'expiration des réactifs, conditions de stockage et d'incubation, méthodes d'aspiration et de lavage.

Après avoir tester les points mentionnés, si aucune erreur n'est détectée, contacter votre distributeur ou directement la DRG.

9 CARACTERISTIQUES DU TEST

9.1 Zone de mesure

Les limites du dosage sont comprises entre 0,38 - 20 pg/mL.

9.2 Spécificité des anticorps (Réaction croisée)

Voir le manuel d'utilisateur en version anglaise.

9.3 Sensibilité de l'analyse

La <u>sensibilité de l'analyse</u> a été calculée en soustrayant 2 écarts-types de la moyenne de l'analyse de 20 réplicats du *Standard 0* et a été mesurée à 0,381 pg/mL.

La limite du blanc (LoB) est de 0,327 pg/mL.

La limite de détection (LoD) est de 0,536 pg/mL.

La limite de quantification (LoQ) est de 0,990 pg/mL.

Pour

9.4 Précision

9.5 Récupération

consulter la version anglaise détaillée du mode d'emploi.

10 LIMITES D'UTILISATION

Les résultats seront fiables et reproductibles si la procédure de dosage est effectuée dans le respect le plus strict des instructions et des bonnes pratiques de laboratoire.

Toute manipulation incorrecte des échantillons ou toute modification de ce test peut affecter les résultats.

10.1 Substances parasites

L'hémoglobine (jusqu'à 4 mg/mL), la bilirubine (jusqu'à 0,5 mg/mL) et les triglycérides (jusqu'à 7,5 mg/mL) n'ont aucune influence sur les résultats du dosage.

10.2 Drogues parasites

Jusqu'à présent, nous ne connaissons aucune substance (drogues) capable d'influencer la mesure de FT3 dans un échantillon.

10.3 Effet de surdosage

Aucun effet de surdosage n'a été observé pour ce test.

11 ASPECTS LEGAUX

11.1 Fiabilité des résultats

Ce test doit être exactement utilisé selon les instructions d'utilisation du fabricant. De plus, les utilisateurs doivent strictement respecter les règles de la bonne pratique de laboratoire, ou autres lois nationales. Cela est spécialement le cas pour l'utilisation des réactifs contrôles. Pour chaque test, il est important d'inclure un nombre suffisant de contrôles, afin de pouvoir valider l'exactitude et la précision du test.

Les résultats du test sont valides si et seulement si tous les contrôles sont compris dans les gammes de mesure mentionnées et si tous les autres paramètres du test sont également compris dans les instructions de ce test. En cas de doute ou d'inquiétude, contacter la DRG.

11.2 Conséquences thérapeutiques

Les suites thérapeutiques ne devront jamais être basées sur les résultats de laboratoire seuls, même si les tous les résultats du test sont en accord avec les points mentionnés dans le paragraphe 11.1. Tout résultat n'est qu'une partie du tableau clinique complet d'un patient.

Les suites thérapeutiques peuvent découler des résultats de laboratoire si et seulement si ceux-ci sont en accord avec l'ensemble du tableau clinique du patient.

Le résultat du test en lui-même ne doit en aucun cas être le seul déterminant des suites thérapeutiques à suivre.

11.3 Responsabilité

Toute modification du kit et / ou échange ou mélange d'un des composants de différents lots, d'un kit à un autre, pourrait affecter de façon négative les résultats attendus et la validité du test dans son ensemble. De telles modifications ou échanges invalident toute réclamation pour remplacement.

Toutes les réclamations soumises, relatives au paragraphe 11.2, et dues à une mauvaise interprétation des résultats de laboratoire de la part du client sont également invalides. Néanmoins, en cas de réclamation, la responsabilité du fabricant n'est pas de dépasser les limites de la valeur du kit. Tout dommage causé au kit lors de son transport n'est pas du ressort de la responsabilité du fabricant.

12 REFERENCES/LITERATURE

- Bowen R (2010-07-24). "Physiologic Effects of Thyroid Hormones". Colorado State University. Retrieved: 2013-09-29.
- 2. Salter D R, Dyke C M, Wechsler A. Triiodothyronine (T3) and cardiovascular therapeutics: a review. Journal of cardiac surgery, 1992; 7(4), 363-374.
- 3. Osathanondh R, Tulchinsky D, Chopra, I J. Total and free thyroxine and triiodothyronine in normal and complicated pregnancy. The Journal of Clinical Endocrinology & Metabolism, 1976; 42(1), 98-104.
- 4. Visser TJ. Cellular uptake of thyroid hormones. In: De Groot LJ, et al. editors; 2016.
- 5. Suzuki S et al. Gender-specific regulation of response to thyroid hormone in aging. Thyroid Res. 2012; 26;5(1):1.
- 6. Saito O et al. (2012) Comparison between serum free triiodothyronine levels and body fluid distribution in hemodialysis patients. Clin Exp Nephrol.; 2012; 16(6), 952-8.
- 7. Bahn RS et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American thyroid association and the American association of clinical endocrinologists. Thyroid, 2011; 21, 593-641.
- 8. Sawin, C T et al. The free triiodothyronine (T3) index. Annals of internal medicine, 1978; 88(4), 474-477.
- Kratzsch J et al. New reference intervals for thyrotropin and thyroid hormones based on National Academy of Clinical Biochemistry criteria and ultrasonography of the thyroid. Clin. Chem. 2005; 51:1480-6.
- 10. Kussmaul T et al. Thyroid analytes TSH, FT3 and FT4 in serum of healthy elderly subjects as measured by the Roche modular system: do we need age and gender dependent reference levels? Clin Lab. 2014; 60(9), 1551-9.

SYMBOLS USED

Symbol	English	Deutsch	Italiano	Español	Français
CE	European Conformity	CE-Konformitäts- kennzeichnung	Conformità europea	Conformidad europea	Conformité normes européennes
(i)	Consult instructions for use *	Gebrauchsanweisung beachten *	Consultare le istruzioni per l'uso	Consulte las instrucciones de uso	Consulter les instructions d'utilisation
IVD	In vitro diagnostic medical device *	In-vitro-Diagnostikum *	Diagnostica in vitro	Diagnóstico in vitro	Diagnostic in vitro
REF	Catalogue number *	Artikelnummer *	No. di Cat.	No de catálogo	Référence
LOT	Batch code *	Chargencode *	Lotto no	Número de lote	No. de lot
$\overline{\Sigma}$	Contains sufficient for <n> tests *</n>	Ausreichend für <n> Prüfungen *</n>	Contenuto sufficiente per "n" saggi	Contenido suficiente para <n> ensayos</n>	Contenu suffisant pour "n" tests
1	Temperature limit *	Temperaturbegrenzung *	Temperatura di conservazione	Temperatura de conservacion	Température de conservation
\subseteq	Use-by date *	Verwendbar bis *	Data di scadenza	Fecha de caducidad	Date limite d'utilisation
***	Manufacturer *	Hersteller *	Fabbricante	Fabricante	Fabricant
\triangle	Caution *	Achtung *			
RUO	For research use only	Nur für Forschungszwecke	Solo a scopo di ricerca	Sólo para uso en investigación	Seulement dans le cadre de recherches
Distributed by	Distributed by	Vertreiber	Distributore	Distribuidor	Distributeur
Content	Content	Inhalt	Contenuto	Contenido	Conditionnement
Volume/No.	Volume / No.	Volumen / Anzahl	Volume / Quantità	Volumen / Número	Volume / Quantité
Microtiterwells	Microtiterwells	Mikrotiterwells	Micropozzetti	Placas multipocillo	Plaques de micro- titration
Antiserum	Antiserum	Antiserum	Antisiero	Antisuero	Antisérum
Enzyme Conjugate	Enzyme Conjugate	Enzymkonjugat	Tracciante enzimatico	Conjugado enzimático	Conjugué enzymatique
Enzyme Complex	Enzyme Complex	Enzymkomplex	Complesso enzimatico	Complejo enzimático	Complexe enzymatique
Substrate Solution	Substrate Solution	Substratlösung	Soluzione di substrato	Solución de sustrato	Solution substrat
Stop Solution	Stop Solution	Stopplösung	Soluzione d'arresto	Solución de parada	Solution d'arrêt
Zero Standard	Zero Standard	Nullstandard	Standard zero	Estándar cero	Zero Standard
Standard	Standard	Standard	Standard	Estándar	Standard
Control	Control	Kontrolle	Controllo	Control	Contrôle
Assay Buffer	Assay Buffer	Assaypuffer	Tampone del test	Tampón de ensayo	Tampon d'essai
Wash Solution	Wash Solution	Waschlösung	Soluzione di lavaggio	Solución de lavado	Solution de lavage
1N NaOH	1N NaOH	1N NaOH	1N NaOH (idrossido di sodio 1N)	1N NaOH	1N NaOH
1 N HCI	1 N HCI	1 N HCI		1 N HCI	1N HCI
Sample Diluent	Sample Diluent	Probenverdünnungs- medium	Diluente dei campioni	Solución para dilución de la muestra	Solution pour dilution de l'échantillon
Conjugate Diluent	Conjugate Diluent	Konjugatverdünnungs- medium	Diluente del tracciante	Solución para dilución del conjugado	Solution pour dilution du conjugué