STUDIES OF THE

ELECTRON CHARGE MISIDENTIFICATION RATE

DPG/PH egamma meeting 7/20/09

W. Andrews, D. Evans, F. Golf, J. Mülmenstädt, S. Padhi, Y. Tu, F. Würthwein, A. Yagil UC San Diego

D. Barge, C. Campagnari, P. Kalavase, D. Kovalskyi, V. Krutelyov, J. Ribnik UC Santa Barbara

L. Bauerdick, I. Bloch, K. Burkett, I. Fisk, <u>O. Gutsche</u> FNAL

INTRODUCTION

- Control of the electron charge misidentification rate is important for leptonic final states, especially same sign dilepton studies
- This talk presents studies to reduce the charge misidentification rate with basic cuts without significantly reducing the reconstruction efficiency
 - Starting from our analysis selection of electrons

EVENT SELECTION

- Study misidentification rate in single electron particle gun events
 - 1E6 events in $|\eta|$ < 2.5, 5 GeV \leq pT \leq 100 GeV produced in 227
- Event selection:
 - p_T > 10 GeV
 - $|d0| < 250 \, \mu m$ corrected for beam spot
 - Tight Category based Electron ID
 - Isolation: p_T/(p_T +SumEt(Calo&Trk)) > 0.92
 - Conversion veto by finding the conversion partner of an electron in the general track collection by requiring
 - $\Delta \cot \theta < 0.02$ (parallel to each other)
 - Distance |BI-B2| < 0.02 cm (close to each other)
 - P. Kalavase: http://indico.cern.ch/contributionDisplay.py?
 contribld=5&confld=49595

CHARGE MISIDENTIFICATION RATE

- · Definition of variables for single electron sample:
 - Reconstruction efficiency: ratio of reconstructed electrons over generated electrons
 - Charge misidentification rate:
 - select reconstructed electrons matched to a true electron
 - Misidentification rate is ratio of electrons with wrong reconstructed charge compared to true charge over all reconstructed and truth matched electrons

STATUS BEFORE IMPROVEMENT

REDUCE CHARGE MISIDENTIFICATION RATE

- Working hypothesis
 - Charge misidentification triggered by radiating a bremsstrahlung photon which converts (asymmetrically) in e⁺e⁻
 - General track follows true electron due to narrower road to pick up hits and stops short
 - GSF track picks up hits from the conversion electron due to wider road and reconstructs wrong charge
- Approach:

 - Electron-track match by hit sharing
 - 2.7% of GSF electrons without matched track
 - Keep those electrons without matched track

STATUS AFTER VETO

Reduce charge misidentification rate by factor 3.9
 while reducing reconstruction efficiency by 2.1%

SUMMARY

- Reduction of charge misidentification rate
 - Can be achieved by vetoing electrons whose charge do not agree with the charge of the associated general track
- Applying veto in single electron events
 - Reduces overall charge misidentification rate by factor 3.9
 - Without reducing the reconstruction efficiency significantly
- Studies ongoing and continuing in 31X
 - See next slides ...

COMPARISON TO 3 IX WITHOUT VETO

- Use same event selection and IE6 single electron events in 3_I_0
 - Only buggy electron ECAL isolation could not be used and was excluded from isolation definition
- Important: electron identification has not been retuned and is used like in 22X

Release	Reco efficiency [%]	Barrel reco efficiency [%]	Forward reco efficiency [%]
22X	81.3	87.1	71.9
310	78.6	87.9	64.6

First observation: fraction of electrons without associated tracks reduced from 2.7% to
 0.6%

RATE AFTER VETO IN 31X

- Efficiency reduced esp. in forward → need to retune electron selection
- With not retuned electron selection: charge misidentification rate slightly lower
- Needs more studies!