

SMART ENGINEERING SOLUTION

GENERAL CATALOG

Model: LS-L-71 Series

Quick Float Type

Level Switch

All Right Reserved
Digital Smart Engineering Ltd.
P 202-449-2826
444 8th street Alexandria VA 22312, USA

Web: www.dsmartengg.com

Introduction

This is the quick float type level switch which is designed for being used to control liquid level in the industrial fields as well as in the water treatment plant. Especially in the waste water treatment plant, it's used not only to control liquid level but also to obtain the automatic working of a pump.

Features

- Since there is no metal exposure, corrosion-resistent and usable for a long time.
- Simple construction and usable in waste water or high viscosity liquids.
- Simple design.

Operating principle

Float rises by the buoyancy is occured as liquid level increases. If the built-in mercury switch is at specific operating point, contact becomes on (in case of contact A) or off(in case of contact B). If the liquid level gets down, contact moves contray to above-mentioned movements

Specification

Model		LS-L-66	LS-L-71	LS-L-7	
Installation		Top Flange		Тор	
Flange Size		KS(JIS) 100A 10K FF			
Enclosure		Weather Proof (IP54)		None	
Switch		Mercury S/W			
Contact Type & Rating		SPST & AC 110V 1A Max.			
Material	Housing		ABS	None	
	Flange	PVC / SUS		None	
	Guide Wire	PP None		None	
	*1 Cable	NBR	NBR / Silicone	NBR / Silicone / Polyurethane	
	*ª Float	ABS	ABS / SUS		
Float Size		Ø60 mm	Ø80(ABS) Ø94(SU	S)Ø80 Ø94(SUS	
Length		STD. 6 m			

Remark

*1 Cable Silicone (Temp. : 60 °C~180 °C)

Polyurethane (Resistance for Acid)

* Float SUS 316 (Temp.: 60 °C~180 °C)

Dimensions

Installation steps

- Let the WEIGHT loosen by inserting from the upper part of tank.
- Insert FLOAT with GUIDE WIRE.
- Insert volts in the hole of FLANGE and tighten them properly by using spanner.

Connection

- Loosen the screw to open the case.
- Bring out the Electrical Spring Connector which is inside and keep it.
- Pull in the Single Cable from the outside of cable gland to inside.
- Twist it several times after connecting the cable of required contact, put the Electrical Spring Connector on it, and press it by using tools. (On the bottom of flange and inside, there are stamped in order like E1, E2, E3 etc., up to the number of floats.)
- After connection, put the lid on and tighten screws on the upper part.

Change of the operating position

- Loosen screws on flange to pull the fluids from the tank.
- Open the case.
- Loosen cable gland tightened in cable.
- Carefully cut the cable tie tied up in cable not to damage cable or nylon wire.
- Pull up the cable remaining required length under the flange.
- Tighten the cable gland to be sealed with the inside of the tank.
- Cut the extra cable in proper length and connect it. (Not to connect the Electrical Spring Connector additionally.)
- Tie the cable tie with nylon wire of the Weight. (If tied up too close to the Float, the Float will not operate. So tie it about 100 mm away from the Float.)

Check the movement

- Check the movement under the condition that the Float is loosened vertically.
- Open the lid to select the cable to be checked.(There are stamped in order like E1, E2, E3 ... etc., from the upper part up to the number of Float.)
- Position the selector switch of tester in Q and assign each line to both terminals.
- If the vertically loosened float is inclined at about over 90_0 by hand, the arrow of tester indicates 0Ω : Contact is in normal condition (In case of contact A). In case of contact B, the normal condition is when ∞ is indicated at 0Ω .

Ordering Code

