CLASS 21, NOVEMBER 1: THE COMPLEX LOGARITHM

We now return to a discussion about what a complex logarithm could look like. It is still defined to be an inverse to the exponential function (on some domain) and thus must satisfy

$$\log(z) = \log(re^{i\theta}) = \log(r) + i\theta$$

for θ in a fixed range. As we discovered on the homework, this is holomorphic if $\theta \in (-\pi, \pi)$ and r > 0, but can't be even continuous if we attempt to extend it any further.

We can somewhat remedy this; as θ varies only a little, we can define the logarithm around θ coherently. So we could define log locally, patch the local definitions together, and yield useful information.

Example 21.1. Let C be a curve winding m times counterclockwise around the origin. Then we can write

$$\int_C \frac{dz}{z} = \sum_{j=1}^{2m} \int_{C_j} \frac{dz}{z}$$

where C_i is the j^{th} piece of the curve with angle change π . Thus we can rewrite

$$\sum_{j=1}^{2m} [\log_j(z)]_{r_{j-1}e^{i\pi j}}^{r_j e^{i\pi j}} = \sum_{j=1}^{2m} (\log(r_j) - \log(r_{j-1})) + i(\pi j - \pi(j-1)) = \sum_{j=1}^{2m} i\pi = 2\pi i m$$

where \log_j has a branch on $\theta = \frac{3\pi}{2}$ if j is odd, and $\theta = \frac{\pi}{2}$ if j is even. The same formula holds if m < 0

This yields the following ubiquitous definition:

Definition 21.2. If C is a curve with $z_0 \notin C$, then the winding number of C about z_0 is

$$m_C = \frac{1}{2\pi i} \int_C \frac{dz}{z - z_0}$$

An additional phrase also came up, the idea of a **branch** for log. This is precisely a choice of $\phi \in \mathbb{R}$ such that

$$\log(re^{i\theta}) = \log(r) + i\theta$$

for all $\theta \in (\phi - 2\pi, \phi)$ and r > 0. Thus the log we discussed previously has a branch about $\phi = \pi$. This is called **the principal branch** of the logarithm. We will call the logarithm with such a branch \log^{ϕ} as a shorthand.

Note not every logarithm has a branch. You can produce open sets for which no such value is possible. In general however, we have the following theorem:

Theorem 21.3. If Ω is a simply connected open set, with $1 \in \Omega$ and $0 \notin \Omega$, then there exists F such that F is holomorphic in Ω , $e^F = z$, and $F(r) = \log(r)$ for every $r \in \mathbb{R} \cap \Omega$ near 1.

Thus we may define a log on any simply connected set.

Proof. We will construct our logarithm according to the fact that it should be an antiderivative for $f(z) = \frac{1}{z}$. Since $0 \notin \Omega$, f is holomorphic in Ω . So we may define

$$F(z) = \int_{\gamma} \frac{dw}{w}$$

where γ is a path connecting 1 to z. By simple connectedness, this is well defined (in the sense that any γ will yield the same result since they are automatically homotopic). This yields that F is a primative, and thus is necessarily holomorphic.

Now we need to show $e^{F(z)} = z$. This is equivalent to $1 = ze^{-F(z)}$. We do this by differentiating:

$$\frac{\partial}{\partial z} z e^{-F(z)} = e^{-F(z)} - z e^{-F(z)} F'(z) = (1 - F'(z)z) e^{-F(z)} = 0$$

Therefore $ze^{-F(z)}$ is constant. So it is enough to plug in a single value: z=1. This yields $C=1\cdot e^{-F(1)}=1\cdot e^0=1$. This was our intention.

Finally, for z close enough to 1, we can ensure that γ be chosen on the real line. In this case, it is just the standard log from calculus!

Example 21.4. One needs to be quite careful with some expected results about log (taking for example \log_0). For example, it is not true in general that

$$\log(z \cdot w) = \log(z) + \log(w)$$

for two complex numbers z, w avoiding some particular branch. Indeed, if we consider

$$\log(e^{\frac{2\pi i}{3}} \cdot e^{\frac{2\pi i}{3}})) = \log(e^{\frac{4\pi i}{3}}) = \log(e^{\frac{-2\pi i}{3}}) = -\frac{2\pi i}{3} \neq \frac{4\pi i}{3}$$

The same goes for any \log_{ϕ} and even F as in Theorem 21.3.

Note that if we do the taylor series expansion of the principal branch of the logarithm shifted about 1, we get the expected formula:

$$\log(z+1) = z - \frac{z^2}{2} + \frac{z^3}{3} + \dots = \sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n}$$

which naturally has radius of convergence 1.

Additionally, we can expand our usual definitions of z^n to z^α for any $\alpha \in \mathbb{R}$! If Ω is as in Theorem 21.3, we can take $\log = F$ in the theorem and write

$$z^{\alpha} = e^{\alpha \log(z)}$$

We get automatically that $1^{\alpha} = 1$ and if $\alpha = \frac{1}{n}$, then

$$(z^{\frac{1}{n}})^n = (e^{\frac{1}{n}\log(z)})^n = z$$

This extends even more broadly by the following theorem we will prove next time:

Theorem 21.5. If f is a nowhere vanishing holomorphic function in a simply connected region Ω , then there exists another holomorphic function g(z) such that

$$f(z) = e^{g(z)}$$