

Aufgabe	10 Pul
Please pr wrong.	roylde numbers in the requested precision within each question. The use of different precision is evaluated as
The stud	the following ungrouped data fine called Beathway and contains cata from one of the first studies wing a broady on model in 1981. The study divided a standard of $m_{\rm H}=481$, less if four besides to it groups of see $m_{\rm H}>1$. It is a $p_{\rm H}=1$, which is the beaths when expanded to generally experience of the containing of see that the beaths of all groups whether they are above detailed a in hardway appears which groups the studies of the standard of a financiary proposal, a finite group of the containing response containing the sponse can be $p_{\rm H}=1$. The standard of the
	Ef Decrise
	(a) Give the number m_1 of bect as exposed to the dose for which $x_i = \log_{10}(\text{dose}_i) = 1.891$.

m (requested precision: whole numbers)		0.5 Punkte
	59	Zahl
proportion of earths (requested precision: 2 digits)		0.5 Punkte
	0.10	
(b) Fit a generalized linear model using the carantical link function for the response V. treating the explanatory variable as a continious one. Calculate the sum of squared en-	and rors	2 Punkte
(SSE).		
(SSE). 301 (requested precision: 2 digits)		2 Funkre
(SSE). 301 (requested precision: 2 digits)	50,14	

(c) Provide the corresponding AIC and BIC values for the mod	del in (b), 2 Punkt
AIC (requested precision: 2 digits)	1 Punkt
	376-35i Y
B/C (requested precision: 2 dig(ts)	1 Punkt
(d) For the model fitted in (b), give the 95% asymptotic Walds parameter corresponding to the explanatory variable.	confidence interval for the 2 Punkte
	1 Punkt
lower bound of C. (requested precision: 3 digits)	28.867 _{. N}

Control Linit chapters: $\frac{2e_{-1}(f(X-r)/\sigma)}{2e_{-1}(f(X-r)/\sigma)} \rightarrow N(0,1)$ $\delta = 2$ $\sim f(X-r) \rightarrow \delta N(0,1)$ Since for Poisson-Oistribution Var=f1 $\sim > Vor = 0^2 = 4$ L) delta-most ad Me^{-1} $\lim_{n \to \infty} f(f(y-fr)) \rightarrow N(0,1)$ $\lim_{n \to \infty} f(f(y-fr)) \rightarrow N(0,1)$ $\lim_{n \to \infty} g(f(y-fr)) \rightarrow N(0,1)$

	(d) For the model fitted in (b), give the 95% asympt parameter corresponding to the explanatory variable.	otic (Wald) confidence interval for the ole.	2 Punkt
	lower bound of CI (requested precision: 3 digits)		1 Punkt
	lower bound of CI (requested precision, 3 digits)	28.867	
			1 Punkt
	upper bound of CI (requested precision: 3 digits)		
		40318	
	(e) What is the proportion of correctly classified ob 0.5 as threshold probability?	oservations from the model fitted in (b) using	1 Punk
			1 Punkt
	proportion of correctly classified observations (requeste	d precision: 2 digits) 0.82 Zahl	
E Ba	Fit a generalized linear model using a probit link. Calculate the sum of squared errors (SSE), sed on the value of SSE, would you prefer the model using a probit link, the model of (b) or (b).	2 Punkte	
Ba bo	sed on the value of SSE, would you prefer the model using a probit link, the model of (b) or	2 Punkte 1 Austr	

ufgabe 4	10 Punkte
The answer of an item of this task is correct (and the corresponding point (points) is (are) granted) only if the correct statements is specified exactly .	set of right
(a) Choose the statement (statements) that is (are) true.	1 Punkt
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
Logistic regression assumes a linear relationship between the logarithm of the odds of the response and explanatory variables.	the
If we have a binary response variable, we always have to use logistic regression.	
The link function used for obtaining the logistic regression model is the identity link.	

The link function used for obtaining the logistic regression model is the log link.

(b) Choose the assumption (assumptions) that is (are) **not** an assumption in the GLM framework where *Y* is the response variable and *X* the explanatory variable.

The response is binary.

The conditional probability density (or mass) function (pdf or pmf) of *Y* given *X* = *x* belongs to the exponential dispersion family.

The conditional probability density (or mass) function (pdf or pmf) of *X* given *Y* = *y* belongs to the exponential dispersion family.

For a random sample of size n, the responses *Y*₁, *i* = 1,..., n, are independent and identically distributed.

The link function links the expectation of the response with the linear predictor.

(d) Choose the statement (statements) that is (are) true for a GLM.	2 Punkte
For a poisson distributed random response variable, the canonical link is the logit link.	
The link function links the expected value of the random response variable to the linear predictor,	
The link function transforms the expected value of the random response variable to the natural part the exponential dispersion family corresponding to the random response variable.	rameter θ of
The link function is used to transform the values of the response variable.	
(e) Choose the statement (statements) that is (are) true for a GLM.	1 Punkt
The degrees of freedom of a saturated model are always equal to 0.	

	le logistic regression model with parameter vector $\boldsymbol{\beta}=(\beta_1,\beta_2)^*$ and $\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$. Choose the statement (statements) that is (are) true .	2 Punkto
Increasing the by $\exp{(\beta_2)}$.	explanatory variable by one unit, the odds of success for the response variable will be	multiplied
Increasing the additively by	e explanatory variable by one unit, the odds of success for the response variable will inc $\exp{(\beta_2)}$.	rease
$oxed{\int}$ If $eta_2=0$ the	success probability of the response variable is equal to zero.	
W8 - 0 th	europe mechability of the recenses unrights is a senstant function of the conference	riable

mode	I matrix $oldsymbol{X}=$: :	. Choose the statement (statements) that is (are) true .	2 Punkt
×	by $\exp(\beta_2)$.		variable by one unit, the odds of success for the response variable will be mult	
	additively by e	$xp(\beta_2)$.	variable by one unit, the odds of success for the response variable will increas	e
X			pability of the response variable is equal to zero. Dability of the response variable is a constant function of the explanatory variable.	ole.
	The median	effective leve	I is the point where the success probability of the response variable is maximize	ed.