Evaluating interfaces with the users - Qualitative Methods Human Computer Interaction

·

Based on slide deck

Part 3: Designing with the user. Evaluating interfaces with the users - Qualitative Methods
Human Computer Interaction I: Principles and Design

by Saul Greenberg

Professor

University of Calgary, Canada

The new slides are marked with a *

Slide deck by Saul Greenberg. Permission is granted to use this for non-commercial purposes as long as general credit to Saul Greenberg is clearly maintained. Warning: some material in this deck is used from other sources without permission. Credit to the original source is given if it is known.

Evaluating interfaces with the users

Why evaluation is crucial Quickly debug prototypes by observing people use them Methods that reveal what a person is thinking about Ethics

Why bother?

Iterative design

- does system behavior match the user's task requirements?
- are there specific problems with the design?
- what solutions work?

Acceptance testing

- verify that system meets expected user performance criteria
 - 80% of 1st time customers will take 1-3 minutes to withdraw
 \$50 from the automatic teller

*Evaluation

Naturalistic approach

Experimental approach

- usability engineering
 - usability inspection methods
 - qualitative methods
 - quantitative methods
 - usability testing methods
 - qualitative methods
 - quantitative methods

Naturalistic approach

Observation occurs in realistic setting

- real life

Problems

- hard to arrange and do
- time consuming
- may not generalize

Experimental approach

Experimenter controls all environmental factors

- study relations by manipulating independent variables
- observe effect on one or more dependent variables
- Nothing else changes

There is no difference in user performance (time and error rate) when selecting an item from a pull down or a pull right menu of 4 items

File Edit	View	Insert		File 🔷	New
New				Edit 🖒	Open
Open				View □	Close
Close				Insert ⊏>	Save
Save					0470

Validity

External validity

- confidence that results applies to real situations
- usually good in natural settings

Internal validity

- confidence in our explanation of experimental results
- usually good in experimental settings

Trade-off: Natural vs Experimental

- precision and direct control over experimental design versus
- desire for maximum generalizability in real life situations

*Usability engineering approach

- usability engineering iterative process to improve usability of a system
- usability the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use [ISO 1998]
 - effectiveness accuracy and completeness in achieving specified goals
 - efficiency resources expended in relation to the accuracy and completeness in achieving goals
 - ➤ satisfaction freedom from discomfort, and positive attitudes towards the use of the product

*Usability engineering approach

Types of evaluation (according to its purpose)

- exploratory how is it (or will it be) used?
 - explores current usage and the potential design space for new designs
- predictive estimating how good it will be
 - estimates the overall quality of an interface (once a design has been made)
- **formative** how can it be made better?
 - informs the design process and helps improve an interface during design
- **summative** how good is it?
 - assesses the overall quality of an interface

Usability inspection methods

Designer tries the system (or prototype)

- does the system "feel right"?
- benefits
 - can catch some major problems in early versions
- problems
 - not reliable as completely subjective
 - not valid as introspector is a non-typical user
 - intuitions and introspection are often wrong

Usability inspection methods:

- task centered walkthroughs
- heuristic evaluation

Observe people using systems in simulated settings

- people brought in to artificial setting that simulates aspects of real world setting
- people given specific tasks to do
- observations / measures made as people do their tasks
- look for problem areas / successes
- good for uncovering 'big effects'

Is the test result relevant to the usability of real products in real use outside of lab?

Problems

- non-typical users tested
- non-typical tasks
- different physical environment
- different social context
 - motivation towards experimenter vs motivation towards boss

Partial solution

- use real users
- task-centered system design tasks
- environment similar to real situation

How many users should you observe?

- observing many users is expensive
- but individual differences matter
 - best user 10x faster than slowest
 - best 25% of users approx. 2x faster than slowest 25%

Partial Solution

- reasonable number of users tested
- reasonable range of users
- big problems usually detected with handful of users
- small problems / fine measures need many users

Low cost methods to gather usability problems

- approximate: capture most large and many minor problems

How?

- qualitative:
 - observe user interactions
 - gather user explanations and opinions
 - produces a description, usually in non-numeric terms
 - anecdotes, transcripts, problem areas, critical incidents...
- quantitative
 - count, log, measure something of interest in user actions
 - speed, error rate, counts of activities

Qualitative usability testing methods

Methods

- extracting the conceptual model
- direct observation
 - think-aloud
 - constructive interaction/co-discovery
- query techniques (interviews and questionnaires)
- continuous evaluation (user feedback and field studies)

Conceptual model extraction

How?

- show the user static images of
 - the prototype or screens during use
- ask the user explain
 - the function of each screen element
 - how they would perform a particular task

What?

- Initial conceptual model
 - how person perceives a screen the very first time it is viewed
- Formative conceptual model
 - How person perceives a screen after its been used for a while

Value?

- good for eliciting people's understanding before & after use
- poor for examining system exploration and learning

Direct observations

Evaluator observes users interacting with system

- in lab:
 - user asked to complete a set of pre-determined tasks
- in field:
 - user goes through normal duties

Value

- excellent at identifying gross design/interface problems
- validity depends on how controlled/contrived the situation is

Simple observation method

User is given the task Evaluator just watches the user

Problem

 does not give insight into the user's decision process and attitude

Think aloud method

Users speak their thoughts while doing the task

- what they are trying to do
- why they took an action
- how they interpret what the system did
- gives insight into what the user is thinking
- most widely used evaluation method in industry
 - may alter the way users do the task
 - unnatural (awkward and uncomfortable)
 - hard to talk if they are concentrating

Constructive interaction/Co-discovery method

Two people work together on a task

- monitor their normal conversations
- removes awkwardness of think-aloud

Constructive interaction/Co-discovery method

Co-discovery learning

- use semi-knowledgeable "coach" and novice
- only novice uses the interface
 - novice asks questions
 - coach responds
- gives insights into two user groups

Recording observations

How do we record user actions for later analysis?

- otherwiserisk forgetting, missing, or misinterpreting eventspaper and pencil
- primitive but chean
 - primitive but cheap
 - observer records events, comments, and interpretations
 - hard to get detail (writing is slow)
 - 2nd observer helps...
- audio recording
 - good for recording think aloud talk
 - hard to tie into on-screen user actions
- video recording
 - can see and hear what a user is doing
 - one camera for screen, rear view mirror useful
 - initially intrusive

Coding sheet example...

tracking a person's use of an editor

	Ge	eneral actio	ns	G	raph edi	ting	Erro	rs
Time	text	scrolling	image	new	delete	modify	correct	miss
	editing		editing	node	node	node	error	error
09:00	X							
09:02				X				
09:05							X	
09:10					X			
09:13								

Interviews

Good for pursuing specific issues

- vary questions to suit the context
- probe mode deeply on interesting issues as they arise
- good for exploratory studies via open-ended questioning
- often leads to specific constructive suggestions

Problems:

- accounts are subjective
- time consuming
- evaluator can easily bias the interview
- prone to rationalization of events/thoughts by user
 - user's reconstruction may be wrong

How to interview

Plan a set of central questions

- a few good questions gets things started
 - avoid leading questions
- focuses the interview
- could be based on results of user observations

Let user responses lead follow-up questions

- follow interesting leads vs bulldozing through question list

Retrospective testing interviews

Post-observation interview to

- perform an observational test
- create a video record of it
- have users view the video and comment on what they did
 - clarify events that occured during system use
 - excellent for grounding a post-test interview
 - avoids erroneous reconstruction
 - users often offer concrete suggestions

Critical incidence interviews

People talk about incidents that stood out

- usually discuss extremely annoying problems with fervor
- not representative, but important to them
- often raises issues not seen in lab tests

Questionnaires and surveys

Questionnaires / Surveys

- preparation "expensive," but administration cheap
 - can reach a wide subject group (e.g. mail)
- does not require presence of evaluator
- results can be quantified

But

- only as good as the questions asked

Questionnaires and surveys

How

- establish the purpose of the questionnaire
 - what information is sought?
 - how would you analyze the results?
 - what would you do with your analysis?
- do not ask questions whose answers you will not use!
- determine the audience you want to reach
- determine how would you will deliver / collect the questionnaire
 - on-line for computer users
 - web site with forms
 - surface mail
 - pre-addressed reply envelope gives far better response

Open-ended questions

- asks for unprompted opinions
- good for general subjective information
 - but difficult to analyze rigorously

Can you suggest any improvements to the interfaces?

Closed questions

- restrict respondent's responses by supplying alternative answers
- makes questionnaires a chore for respondent to fill in
- can be easily analyzed
- watch out for hard to interpret responses!
 - alternative answers should be very specific

Do you use com	puters at work:	
✓ often	sometimes	rarely
VS		
In your typical v	vork day, do you use	computers:
O over 4 h	rs a day	
) between	2 and 4 hrs daily	
🧹 between	1 and 2 hrs daily	
less thar	n 1 hr a dav	

Scalar

- ask user to judge a specific statement on a numeric scale
- scale usually corresponds with agreement or disagreement with a statement

Characters on the computer screen are:

- hard to read
 easy to read
- 1 2 3 4 5

Multi-choice

- respondent offered a choice of explicit responses

How	do you most often get help with the system? (tick one)
	on-line manual paper manual
\bigcirc	ask a colleague
	ch types of software have you used? (tick all that apply)
\bigcirc	word processor
\bigcirc	data base
$ \sqrt{2} $	spreadsheet
\bigcirc	compiler

Ranked

- respondent places an ordering on items in a list
- useful to indicate a user's preferences
- forced choice

Rank the usefulness of these methods of issuing a command (1 most useful, 2 next most useful..., 0 if not used

- 1 command line
- _2_ menu selection
- _3_ control key accelerator

Combining open-ended and closed questions

- gets specific response, but allows room for user's opinion

It is easy to recover from mistakes:

Continuous evaluation

Monitor systems in actual use

- usually late stages of development
 - ie beta releases, delivered system
- fix problems in next release

User feedback via gripe lines

- users can provide feedback to designers while using the system
 - help desks
 - bulletin boards
 - email
 - built-in gripe facility
- best combined with trouble-shooting facility
 - users always get a response (solution?) to their gripes

Continuous evaluation

Case/field studies

- careful study of "system usage" at the site
- good for seeing "real life" use
- external observer monitors behavior
- site visits

Ethics

Ethics

Testing can be a distressing experience

- pressure to perform, errors inevitable
- feelings of inadequacy
- competition with other subjects

Golden rule

- subjects should always be treated with respect

Ethics - before the test

Don't waste the user's time

- use pilot tests to debug experiments, questionnaires etc
- have everything ready before the user shows up

Make users feel comfortable

- emphasize that it is the system that is being tested, not the user
- acknowledge that the software may have problems
- let users know they can stop at any time

Maintain privacy

tell user that individual test results will be completely confidential

Inform the user

- explain any monitoring that is being used
- answer all user's questions (but avoid bias)

Only use volunteers

- user must sign an informed consent form > ← ■ → → ● → → へ ○

Ethics - during the test

Don't waste the user's time

never have the user perform unnecessary tasks

Make users comfortable

- try to give user an early success experience
- keep a relaxed atmosphere in the room
- coffee, breaks, etc
- hand out test tasks one at a time
- never indicate displeasure with the user's performance
- avoid disruptions
- stop the test if it becomes too unpleasant

Maintain privacy

- do not allow the user's management to observe the test

Ethics - after the test

Make the users feel comfortable

state that the user has helped you find areas of improvement

Inform the user

 answer particular questions about the experiment that could have biased the results before

Maintain privacy

- never report results in a way that individual users can be identified
- only show videotapes outside the research group with the user's permission

What you now know

Debug designs by observing how people use them

- quickly exposes successes and problems
- specific methods reveal what a person is thinking
- but naturalistic vs laboratory evaluations is a tradeoff

Methods include

- conceptual model extraction
- direct observation
 - think-aloud
 - constructive interaction/co-discovery
- query via interviews, retrospective testing and questionnaires
- continuous evaluation via user feedback and field studies

Ethics are important

Interface Design and Usability Engineering

*Bibliography

- Saul Greenberg, Designing with the user. User centered design and Prototyping, University of Calgary, Canada http://pages.cpsc.ucalgary.ca/~saul/481/
- Keith Andrews, Human Computer Interaction, Chapter 3. Usability Engineering, Chapter 9. Usability Testing Methods, TU Graz, Austria

https://courses.isds.tugraz.at/hci/hci.pdf