Module 5

Linear Algebra

Introduction of linear algebra related to Computer Science & Engineering.

Elementary row transformationofa matrix, Rank of a matrix. Consistency and Solution of system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector.

Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications: Boolean matrix, Network Analysis, Markov Analysis, Critical point of a network system. Optimum solution.

(RBT Levels: L1, L2 and L3).

5.1 Rank of a matrix

Introduction:

- **\Lambda** Elementary row operations are $R_i \to R_i$, $R_i \to kR_i$, $R_i \to k_1R_i + K_2R_i$
- ❖ A non-zero matrix is in Echelon form if
 - (i) All the zero rows are below the non-zero rows.
 - (ii) The first non-zero element in each non-zero row lies to the right of the non-zero element in any preceding row.
- ❖ In other words, For an Echelon form, all the elements below the first non-zero element of each row should be zero.
- ***** Example:

are in Echelon form.

$$\begin{pmatrix} 2 & 3 & 1 & 0 & 4 \\ 0 & -4 & -5 & 3 & 2 \\ 0 & 3 & 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & -1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 3 & 2 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 1 & -1 & 3 & 4 \\ 0 & 3 & 2 & 1 & 5 \\ 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

are not in Echelon form.

- ❖ Apply elementary row transformation successively to get the echelon form of the given matrix.
- The rank of the matrix is the number of non-zero rows in the echelon form of the matrix. Rank of $A = \rho(A) = r$.
- ❖ The rank of the matrix is not altered by elementary transformations.

❖ A matrix and its transpose have the same rank.

• If A is a null matrix then
$$\rho(A) = 0$$
.

• If A is a non-singular $n \times n$ matrix then $\rho(A) = n$.

Find the rank of the following matrices by using elementary transformations:

1.
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{pmatrix}$$
Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{pmatrix}$

$$R_2 \to R_2 - R_1, R_3 \to R_3 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & 2 & -1 \end{pmatrix}$$

$$R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 2.

Therefore, the rank of the given matrix is 2.

$$\begin{array}{cccc}
2. & \begin{pmatrix}
3 & -1 & 2 \\
-6 & 2 & 4 \\
-3 & 1 & -2
\end{pmatrix}$$

Let
$$A = \begin{pmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & -2 \end{pmatrix}$$

$$R_2 \to R_2 + 2R_1, R_3 \to R_3 + R_1$$

$$\sim \begin{pmatrix} 3 & -1 & 2 \\ 0 & 0 & 8 \\ 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 2.

3.
$$\begin{pmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{pmatrix}$$

$$R_2 \to 2R_2 - 5R_1, R_3 \to R_3 + 2R_1$$

$$\sim \begin{pmatrix} 2 & 3 & 4 & -1 \\ 0 & -11 & -20 & 3 \\ 0 & 11 & 20 & -3 \end{pmatrix}$$

$$R_3 \to R_3 + R_1$$

$$\sim \begin{pmatrix} 2 & 3 & 4 & -1 \\ 0 & -11 & -20 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 2.

Therefore, the rank of the given matrix is 2.

$$4. \ \begin{pmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{pmatrix}$$

$$R_2 \to R_2 - 3R_1, R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & 3 & 4 & 3 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$

$$R_3 \to 3R_3 - R_2$$

$$\sim \begin{pmatrix} 1 & 3 & 4 & 3 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 2.

5.
$$\begin{pmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - 4R_1, R_4 \to R_4 - 4R_1$$

$$\sim \begin{pmatrix} 2 & 1 & 3 & 5 \\ 0 & 0 & -5 & -7 \\ 0 & 0 & -15 & -21 \end{pmatrix}$$

$$R_3 \to R_3 - R_2, R_4 \to R_4 - 3R_1$$

$$\sim \begin{pmatrix} 2 & 1 & 3 & 5 \\ 0 & 0 & -5 & -7 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 2.

6.
$$\begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix}$$

$$\operatorname{Let} A = \begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix}$$

$$R_2 \to 2R_2 + R_1, R_3 \to 2R_3 + R_1$$

$$\sim \begin{pmatrix} -2 & -1 & -3 & -1 \\ 0 & 3 & 3 & -3 \\ 0 & -1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix}$$

$$R_2 \to \frac{R_2}{3}$$

$$\sim \begin{pmatrix} -2 & -1 & -3 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & -1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix}$$

$$R_3 \to R_3 + R_2, R_4 \to R_4 - R_2$$

$$\sim \begin{pmatrix} -2 & -1 & -3 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & -2 \end{pmatrix}$$

$$R_3 \leftrightarrow R_4$$

$$\sim \begin{pmatrix} -2 & -1 & -3 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 3.

7.
$$\begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$

$$Let A = \begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$

$$R_1 \leftrightarrow R_2$$

$$\begin{pmatrix} 1 & -1 & -2 & -4 \\ 2 & 3 & -1 & -1 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1, R_3 \rightarrow R_3 - 3R_1, R_4 \rightarrow R_4 - 6R_1$$

$$\begin{pmatrix} 1 & -1 & -2 & -4 \\ 0 & 5 & 3 & 7 \\ 0 & 4 & 9 & 10 \\ 0 & 9 & 12 & 17 \end{pmatrix}$$

$$R_3 \rightarrow 5R_3 - 4R_2, R_4 \rightarrow 5R_4 - 9R_2$$

$$\begin{pmatrix} 1 & -1 & -2 & -4 \\ 0 & 5 & 3 & 7 \\ 0 & 0 & 33 & 22 \\ 0 & 0 & 33 & 22 \end{pmatrix}$$

$$R_4 \rightarrow R_4 - R_3$$

$$\begin{pmatrix} 1 & -1 & -2 & -4 \\ 0 & 5 & 3 & 7 \\ 0 & 0 & 33 & 22 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 3.

8.
$$\begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$
 (May 22)

Let
$$A = \begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$R_1 \leftrightarrow R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -3 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$R_3 \rightarrow R_3 - 3R_1, R_4 \rightarrow R_4 - R_1$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -3 & -1 \end{pmatrix}$$

$$R_3 \rightarrow R_3 - R_2, R_4 \rightarrow R_4 - R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 2.

9.
$$\begin{pmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{pmatrix}$$

$$\operatorname{Let} A = \begin{pmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 + R_1, R_4 \to R_4 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 3 & 0 \end{pmatrix}$$

$$R_3 \to R_3 + R_2, R_4 \to R_4 - R_1$$

$$\sim \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 3 & 0 \end{pmatrix}$$

$$R_3 \leftrightarrow R_4$$

$$\sim \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 4.

$$10.\begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - 3R_1, R_4 \to R_4 - 6R_1$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 0 & -4 & -11 & 5 \end{pmatrix}$$

$$R_2 \leftrightarrow R_3$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -11 & 5 \end{pmatrix}$$

$$R_4 \to R_4 - R_2$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & -3 & 2 \end{pmatrix}$$

$$R_4 \to R_4 - R_3$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. The number of non-zero rows is 3.

5.2 Consistency of a system of linear equations

I. Homogeneous system of linear equations

Consistent	Solution exists	
Inconsistent	Solution does not exist	
	$a_1x + b_1y + c_1z = 0$	
Homogeneous system	$a_2x + b_2y + c_2z = 0$	
	$a_3x + b_3y + c_3z = 0$	
Matrix form	$ \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} $	
	Or $AX = 0$	
Coefficient matrix	$A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$	
$\rho(A) = 3$	Trivial solution (Unique)	
	x = 0, y = 0, z = 0	
$\rho(A) < 3$	Non-trivial solution (Infinite)	
	z = k, y = pk, x = qk	

Homogeneous system of equations is always consistent.

1. Test for consistency and solve the following system of equations:

$$x + 2y + 3z = 0$$
, $3x + 4y + 4z = 0$, $7x + 10y + 12z = 0$

Coefficient matrix is

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{pmatrix}$$

$$R_2 \to R_2 - 3R_1, R_3 \to R_3 - 7R_1$$

$$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & -5 \\ 0 & -4 & -9 \end{pmatrix}$$

$$R_3 \to R_3 - 2R_2$$

$$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

This is in echelon form. Number of non-zero rows is 3.

 $\rho(A) = 3$. Therefore, the given system of equations has trivial solution.

Therefore, x = 0, y = 0, z = 0.

$$x + 3y - 2z = 0$$
, $2x - y + 4z = 0$, $x - 11y + 14z = 0$

Coefficient matrix is

$$A = \begin{pmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & 3 & -2 \\ 0 & -7 & 8 \\ 0 & -14 & 16 \end{pmatrix}$$

$$R_3 \to R_3 - 2R_2$$

$$\sim \begin{pmatrix} 1 & 3 & -2 \\ 0 & -7 & 8 \\ 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. Number of non-zero rows is 2.

 $\rho(A) = 2$. Therefore, the given system of equations has non-trivial solutions.

Reduced system of equations is

$$x + 3y - 2z = 0 - (1)$$

$$-7y + 8z = 0 - (2)$$

Choose
$$z = k$$
 then $y = \frac{8k}{7}$ and $x = -\frac{10}{7}k$

Therefore,
$$x = -\frac{10}{7}k$$
, $y = \frac{8k}{7}$, $z = k$

$$x + 3y + 2z = 0$$
, $2x - y + 3z = 0$, $3x - 5y + 4z = 0$, $x + 17y + 4z = 0$

Coefficient matrix is

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & -1 & 3 \\ 3 & -5 & 4 \\ 1 & 17 & 4 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - 3R_1, R_4 \to R_4 - R_1$$

$$\sim \begin{pmatrix} 1 & 3 & 2 \\ 0 & -7 & -1 \\ 0 & -14 & -2 \\ 0 & 14 & 2 \end{pmatrix}$$

$$R_3 \rightarrow R_3 - 2R_2$$

$$\sim \begin{pmatrix}
1 & 3 & 2 \\
0 & -7 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

This is in echelon form. Number of non-zero rows is 2.

 $\rho(A) = 2$. Therefore, the given system of equations has non-trivial solutions.

Reduced system of equations is

$$x + 3y + 2z = 0 - (1)$$

$$-7y - z = 0 - (2)$$

Choose
$$z = k$$
 then $y = \frac{-k}{7}$ and $x = -\frac{11}{7}k$

Therefore,
$$x = -\frac{11}{7}k$$
, $y = \frac{-k}{7}$, $z = k$

II. Non-homogeneous system of linear equations

	$a_1x + b_1y + c_1z = d_1$	
Non-homogeneous	$a_2x + b_2y + c_2z = d_2$	
system	$a_3x + b_3y + c_3z = d_3$	
Matrix form	$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$	
	Or $AX = B$	
Augmented matrix	$(A,B) = \begin{pmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{pmatrix}$	
$\rho(A) = \rho(A, B)$	Consistent	
	$\rho(A) = \rho(A, B) = 3$	Unique solution Infinite number of solutions
	$\rho(A) = \rho(A, B) < 3$	Infinite number of solutions
$\rho(A) \neq \rho(A,B)$	Inconsistent	

Unique Solution

Infinite Solutions

No solutions

$$x + 2y + 3z = 1$$
, $2x + 3y + 8z = 2$, $x + y + z = 3$

Augmented matrix is

$$(A,B) = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 8 & 2 \\ 1 & 1 & 1 & 3 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & -2 & 2 \end{pmatrix}$$

$$R_3 \to R_3 - R_2$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & -4 & 2 \end{pmatrix}$$

This is in echelon form. Number of non-zero rows is 3.

$$\rho(A) = \rho(A, B) = 3.$$

Therefore, the given system of equations is consistent and has a unique solution.

Reduced system of equations is

$$x + 2y + 3z = 1$$
 ---- (1)
 $-y + 2z = 0$ ---- (2)
 $-4z = 2$ ---- (3)

Solving by back substitution,

$$x = \frac{9}{2}$$
, $y = -1$, $z = -\frac{1}{2}$

$$5x + 3y + 7z = 4$$
, $3x + 26y + 2z = 9$, $7x + 2y + 10z = 5$

Augmented matrix is

$$(A,B) = \begin{pmatrix} 5 & 3 & 7 & 4 \\ 3 & 26 & 2 & 9 \\ 7 & 2 & 10 & 5 \end{pmatrix}$$

$$R_2 \to 5R_2 - 3R_1, R_3 \to 5R_3 - 7R_1$$

$$\sim \begin{pmatrix} 5 & 3 & 7 & 4 \\ 0 & 121 & -11 & 33 \\ 0 & -11 & 1 & -3 \end{pmatrix}$$

$$R_3 \to 11R_3 + R_2$$

$$\sim \begin{pmatrix} 5 & 3 & 7 & 4 \\ 0 & 121 & -11 & 33 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This is in echelon form. Number of non-zero rows is 2.

$$\rho(A) = \rho(A, B) = 2.$$

Therefore, the given system of equations is consistent and has an infinite number of solutions.

Reduced system of equations is

$$5x + 3y + 7z = 4 - (1)$$

 $121y - 11z = 33 - (2)$

Choose
$$z = k$$
 then $y = \frac{3+k}{11}$ and $x = \frac{7-16k}{11}$.

Therefore,
$$x = \frac{7-16k}{11}$$
, $y = \frac{3+k}{11}$, $z = k$.

$$x + y + z = -3$$
, $3x + y - 2z = -2$, $2x + 4y + 7z = 7$

Augmented matrix is

$$(A,B) = \begin{pmatrix} 1 & 1 & 1 & -3 \\ 3 & 1 & -2 & -2 \\ 2 & 4 & 7 & 7 \end{pmatrix}$$

$$R_2 \to R_2 - 3R_1, R_3 \to R_3 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & -3 \\ 0 & -2 & -5 & 7 \\ 0 & 2 & 5 & 13 \end{pmatrix}$$

$$R_3 \to R_3 + R_2$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & -3 \\ 0 & -2 & -5 & 7 \\ 0 & 0 & 0 & 20 \end{pmatrix}$$

This is in echelon form. Number of non-zero rows is 3.

$$\rho(A) = 2 \text{ and } \rho(A, B) = 3. \ \rho(A) \neq \rho(A, B).$$

Therefore, the given system of equations is inconsistent

Therefore, the system has no solution.

$$x + 2y + 2z = 5$$
, $2x + y + 3z = 6$, $3x - y + 2z = 4$, $x + y + z = -1$

Coefficient matrix is

$$(A,B) = \begin{pmatrix} 1 & 2 & 2 & 5 \\ 2 & 1 & 3 & 6 \\ 3 & -1 & 2 & 4 \\ 1 & 1 & 1 & -1 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - 3R_1, R_4 \to R_4 - R_1$$

$$\sim \begin{pmatrix} 1 & 2 & 2 & 5 \\ 0 & -3 & -1 & -4 \\ 0 & -7 & -4 & -11 \\ 0 & -1 & -1 & -6 \end{pmatrix}$$

$$R_3 \to 3R_3 - 7R_2, R_4 \to 3R_4 - R_2$$

$$\sim \begin{pmatrix} 1 & 2 & 2 & 5 \\ 0 & -3 & -1 & -4 \\ 0 & 0 & -5 & -5 \\ 0 & 0 & -2 & -14 \end{pmatrix}$$

$$R_4 \to 5R_4 - 2R_3$$

$$\sim \begin{pmatrix} 1 & 2 & 2 & 5 \\ 0 & -3 & -1 & -4 \\ 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & -60 \end{pmatrix}$$

This is in echelon form. Number of non-zero rows is 4.

$$\rho(A) = 3 \text{ and } \rho(A, B) = 4. \ \rho(A) \neq \rho(A, B).$$

Therefore, the given system of equations is inconsistent

Therefore, the system has no solution.

8. Find the values of λ and μ for which the system

$$x + y + z = 6$$
, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$

has (i) Unique solution (ii) Infinitely many solutions (iii) No solution. (May 22)

Augmented matrix is

$$(A,B) = \begin{pmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 10 \\ 1 & 2 & \lambda & \mu \end{pmatrix}$$

$$R_2 \to R_2 - R_1, R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & \lambda - 1 & \mu - 6 \end{pmatrix}$$

$$R_3 \to R_3 - R_2$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & -3 \\ 0 & -2 & -5 & 7 \\ 0 & 0 & \lambda - 3 & \mu - 10 \end{pmatrix}$$

This is in echelon form.

(i) If
$$\lambda \neq 3$$
, then $\rho(A) = \rho(A, B) = 3$.

The given system of equations has a unique solution.

(ii) If
$$\lambda = 3, \mu = 10$$
 then $\rho(A) = \rho(A, B) = 2$.

The given system of equations has infinitely many solutions.

(iii) If
$$\lambda = 3, \mu \neq 10$$
 then $\rho(A) \neq \rho(A, B)$.

The given system of equations has no solution.

9. Find the values of λ and μ for which the system

$$2x + 3y + 5z = 9$$
, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$

has (i) Unique solution (ii) Infinitely many solutions (iii) No solution.

Coefficient matrix is

$$(A,B) = \begin{pmatrix} 2 & 3 & 5 & 9 \\ 7 & 3 & -2 & 8 \\ 2 & 3 & \lambda & \mu \end{pmatrix}$$

$$R_2 \to 2R_2 - 7R_1, R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 6 \\ 0 & -15 & -39 & -47 \\ 0 & 0 & \lambda - 5 & \mu - 9 \end{pmatrix}$$

This is in echelon form.

(i) If
$$\lambda \neq 5$$
, then $\rho(A) = \rho(A, B) = 3$.

The given system of equations has a unique solution.

(ii) If
$$\lambda = 5$$
, $\mu = 9$ then $\rho(A) = \rho(A, B) = 2$.

The given system of equations has infinitely many solutions.

(iii) If
$$\lambda = 5$$
, $\mu \neq 9$ then $\rho(A) \neq \rho(A, B)$.

The given system of equations has no solution.

5.3 Gauss elimination method

1. Apply Gauss elimination method to solve the system of equations

$$x-2y+3z=2$$
, $3x-y+4z=4$, $2x+y-2z=5$.

Augmented matrix is

$$(A:B) = \begin{pmatrix} 1 & -2 & 3 & 2 \\ 3 & -1 & 4 & 4 \\ 2 & 1 & -2 & 5 \end{pmatrix}$$

$$R_2 \to R_2 - R_1, R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & -2 & 3 & 2 \\ 0 & 5 & -5 & -2 \\ 0 & 5 & -8 & 1 \end{pmatrix}$$

$$R_3 \to R_3 - R_2$$

$$\sim \begin{pmatrix} 1 & -2 & 3 & 2 \\ 0 & 5 & -5 & -2 \\ 0 & 0 & -3 & 3 \end{pmatrix}$$

Reduced system of equations is

$$x - 2y + 3z = 2$$
$$5y - 5z = -2$$
$$-3z = 3$$

By back substitution,

$$-3z = 3 \text{ gives } z = -1$$

$$5y - 5(-1) = -2 \text{ gives } y = -\frac{7}{5}$$

$$x - 2\left(-\frac{7}{5}\right) + 3(-1) = 2 \text{ gives } x = \frac{11}{5}$$

$$x = \frac{11}{5}$$
, $y = -\frac{7}{5}$, $z = -1$.

$$3x + y + 2z = 3$$
, $2x - 3y - z = -3$, $x + 2y + z = 4$. (MQP 2)

Augmented matrix is

$$(A:B) = \begin{pmatrix} 3 & 1 & 2 & 3 \\ 2 & -3 & -1 & -3 \\ 1 & 2 & 1 & 4 \end{pmatrix}$$

$$R_1 \leftrightarrow R_3$$

$$\sim \begin{pmatrix} 1 & 2 & 1 & 4 \\ 2 & -3 & -1 & -3 \\ 3 & 1 & 2 & 3 \end{pmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1, R_3 \rightarrow R_3 - 3R_1$$

$$\sim \begin{pmatrix} 1 & 2 & 1 & 4 \\ 0 & -7 & -3 & -11 \\ 0 & -5 & -1 & -9 \end{pmatrix}$$

$$R_3 \rightarrow 7R_2 - 5R_2$$

$$\sim \begin{pmatrix} 1 & 2 & 1 & 4 \\ 0 & -7 & -3 & -11 \\ 0 & 0 & 8 & -8 \end{pmatrix}$$

Reduced system of equations is

$$x + 2y + z = 4$$
$$-7y - 3z = -11$$
$$8z = -8$$

By back substitution,

$$8z = -8$$
 gives $z = -1$
 $-7y - 3(-1) = -11$ gives $y = 2$
 $x + 2(2) + (-1) = 4$ gives $x = 1$

$$x = 1$$
, $y = 2$, $z = -1$.

$$x + y + z = 9$$
, $x - 2y + 3z = 8$, $2x + y - z = 3$.

Augmented matrix is

$$(A:B) = \begin{pmatrix} 1 & 1 & 1 & 9 \\ 1 & -2 & 3 & 8 \\ 2 & 1 & -1 & 3 \end{pmatrix}$$

$$R_2 \to R_2 - R_1, R_3 \to R_3 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & -3 & 2 & -1 \\ 0 & -1 & -3 & -15 \end{pmatrix}$$

$$R_3 \to 3R_3 - R_2$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & -3 & 2 & -1 \\ 0 & 0 & -11 & -44 \end{pmatrix}$$

Reduced system of equations is

$$x + 2y + z = 4$$
$$-7y - 3z = -11$$
$$8z = -8$$

By back substitution,

$$8z = -8$$
 gives $z = -1$
 $-7y - 3(-1) = -11$ gives $y = 2$
 $x + 2(2) + (-1) = 4$ gives $x = 1$

$$x = 1$$
, $y = 2$, $z = -1$.

$$x + y + z = 9$$
, $2x + y - z = 0$, $2x + 5y + 7z = 52$.

Augmented matrix is

$$(A:B) = \begin{pmatrix} 1 & 1 & 1 & 9 \\ 2 & 1 & -1 & 0 \\ 2 & 5 & 7 & 52 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & -1 & -3 & -18 \\ 0 & 3 & 5 & 34 \end{pmatrix}$$

$$R_3 \to R_3 + 3R_2$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & -1 & -3 & -18 \\ 0 & 0 & -4 & -20 \end{pmatrix}$$

Reduced system of equations is

$$x + y + z = 9$$
$$-y - 3z = -18$$
$$-4z = -20$$

By back substitution,

$$-4z = -20$$
 gives $z = 5$
 $-y - 3(5) = -18$ gives $y = 3$
 $x + (3) + (5) = 9$ gives $x = 1$

$$x = 1$$
, $y = 3$, $z = 5$.

$$2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16$$
.

Augmented matrix is

$$(A:B) = \begin{pmatrix} 2 & 1 & 1 & 10 \\ 3 & 2 & 3 & 18 \\ 1 & 4 & 9 & 16 \end{pmatrix}$$

$$R_2 \to 2R_2 - 3R_1, R_3 \to 2R_3 - R_1$$

$$\sim \begin{pmatrix} 2 & 1 & 1 & 10 \\ 0 & 1 & 3 & 6 \\ 0 & 7 & 17 & 22 \end{pmatrix}$$

$$R_3 \to R_3 - 7R_2$$

$$\sim \begin{pmatrix} 2 & 1 & 1 & 10 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & -4 & -20 \end{pmatrix}$$

Reduced system of equations is

$$2x + y + z = 10$$
$$y + 3z = 6$$
$$-4z = -20$$

By back substitution,

$$-4z = -20$$
 gives $z = 5$
 $y + 3(5) = 6$ gives $y = -9$
 $2x - 9 + 5 = 10$ gives $x = 7$

$$x = 7$$
, $y = -9$, $z = 5$.

$$2x - 3y + z = -1$$
, $x + 4y + 5z = 25$, $3x - 4y + z = 2$.

Augmented matrix is

$$(A:B) = \begin{pmatrix} 2 & -3 & 1 & -1 \\ 1 & 4 & 5 & 25 \\ 3 & -4 & 1 & 2 \end{pmatrix}$$

$$R_2 \to 2R_2 - R_1, R_3 \to 2R_3 - 3R_1$$

$$\sim \begin{pmatrix} 2 & -3 & 1 & -1 \\ 0 & 11 & 9 & 51 \\ 0 & 1 & -1 & 7 \end{pmatrix}$$

$$R_3 \to 11R_3 - R_2$$

$$\sim \begin{pmatrix} 2 & -3 & 1 & -1 \\ 0 & 11 & 9 & 51 \\ 0 & 0 & -20 & 26 \end{pmatrix}$$

Reduced system of equations is

$$2x - 3y + z = -1$$
$$11y + 9z = 51$$
$$-20z = 26$$

By back substitution,

$$-20z = 26$$
 gives $z = -1.3$
 $11y + 9(-1.3) = 51$ gives $y = 5.7$
 $2x - 3(5.7) - 1.3 = -1$ gives $x = 8.7$

$$x = 8.7$$
, $y = 5.7$, $z = -1.3$

5.4 Gauss Jordan method

Introduction

In this method, using elementary row transformations, augmented matrix is reduced to

the form
$$\begin{pmatrix} 1 & 0 & 0 & k_1 \\ 0 & 1 & 0 & k_2 \\ 0 & 0 & 1 & k_3 \end{pmatrix}$$
.

1. Apply Gauss Jordan method to solve the system of equations:

$$x + 3y + 3z = 16$$
, $x + 4y + 3z = 18$, $x + 3y + 4z = 19$

The augmented matrix associated to the given system of equations is

$$(A:B) = \begin{pmatrix} 1 & 3 & 3 & 16 \\ 1 & 4 & 3 & 18 \\ 1 & 3 & 4 & 19 \end{pmatrix}$$

$$R_2 \to R_2 - R_1, R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix}
1 & 3 & 3 & 16 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{pmatrix}$$

$$R_1 \rightarrow R_1 - 3R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 3 & 10 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$R_1 \to R_1 - 3R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

Therefore, x = 1, y = 2, z = 3.

2. Solve the system of equations by using the Gauss-Jordan method

$$x + y + z = 10, 2x - y + 3z = 19, x + 2y + 3z = 22$$

The augmented matrix associated to the given system of equations is

$$(A:B) = \begin{pmatrix} 1 & 1 & 1 & 10 \\ 2 & -1 & 3 & 19 \\ 1 & 2 & 3 & 22 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 10 \\ 0 & -3 & 1 & -1 \\ 0 & 1 & 2 & 12 \end{pmatrix}$$

$$R_2 \to \frac{R_2}{-3}$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 10 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 1 & 2 & 12 \end{pmatrix}$$

$$R_3 \to R_3 - R_2, R_1 \to R_1 - R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 4/3 & 29/3 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 0 & 7/3 & 35/3 \end{pmatrix}$$

$$R_3 \to \frac{3}{7}R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 4/3 & 29/3 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

$$R_2 \to R_2 + \frac{1}{3}R_3, R_1 \to R_1 - \frac{4}{3}R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

Therefore, x = 3, y = 2, z = 5.

3. Solve the system of equations by using Gauss-Jordan method

$$x + y + z = 9$$
, $2x + y - z = 0$, $2x + 5y + 7z = 52$

The augmented matrix associated to the given system of equations is

$$(A:B) = \begin{pmatrix} 1 & 1 & 1 & 9 \\ 2 & 1 & -1 & 0 \\ 2 & 5 & 7 & 52 \end{pmatrix}$$

$$R_2 \to R_2 - 2R_1, R_3 \to R_3 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & -1 & -3 & -18 \\ 0 & 3 & 5 & 34 \end{pmatrix}$$

$$R_2 \to -1 \times R_2$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & 1 & 3 & 18 \\ 0 & 3 & 5 & 34 \end{pmatrix}$$

$$R_3 \to R_3 - 3R_2, R_1 \to R_1 - R_2$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & -9 \\ 0 & 1 & 3 & 18 \\ 0 & 0 & -4 & -20 \end{pmatrix}$$

$$R_3 \to -\frac{1}{4}R_3$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & -9 \\ 0 & 1 & 3 & 18 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

$$R_2 \to R_2 - 3R_3, R_1 \to R_1 + 2R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

Therefore, x = 1, y = 3, z = 5.

4. Apply Gauss Jordan method to solve the system of equations:

$$x - 2y + 3z = 2$$
, $3x - y + 4z = 4$, $2x + y - 2z = 5$

The augmented matrix associated to the given system of equations is

$$(A:B) = \begin{pmatrix} 1 & -2 & 3 & 2 \\ 3 & -1 & 4 & 4 \\ 2 & 1 & -2 & 5 \end{pmatrix}$$

$$R_2 \to R_2 - 3R_1, R_3 \to R_3 - 2R_1$$

$$\sim \begin{pmatrix} 1 & -2 & 3 & 2 \\ 0 & 5 & -5 & -2 \\ 0 & 5 & -8 & 1 \end{pmatrix}$$

$$R_3 \to R_3 - R_2$$

$$\sim \begin{pmatrix} 1 & -2 & 3 & 2 \\ 0 & 5 & -5 & -2 \\ 0 & 0 & -3 & 3 \end{pmatrix}$$

$$R_2 \to \frac{R_2}{5}$$

$$\sim \begin{pmatrix} 1 & -2 & 3 & 2 \\ 0 & 5 & -5 & -2 \\ 0 & 0 & -3 & 3 \end{pmatrix}$$

$$R_1 \to R_1 + 2R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 6/5 \\ 0 & 1 & -1 & -2/5 \\ 0 & 0 & -3 & 3 \end{pmatrix}$$

$$R_3 \to \frac{R_3}{-3}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 6/5 \\ 0 & 1 & -1 & -2/5 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$R_2 \to R_2 + R_3, R_1 \to R_1 - R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 11/5 \\ 0 & 1 & 0 & -7/5 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

Therefore, $x = \frac{11}{5}$, $y = -\frac{7}{5}$, z = -1.

5. Apply Gauss Jordan method to solve the system of equations:

$$2x - 3y + z = -1$$
, $x + 4y + 5z = 25$, $3x - 4y + z = 2$

The augmented matrix associated to the given system of equations is

$$(A:B) = \begin{pmatrix} 2 & -3 & 1 & -1 \\ 1 & 4 & 5 & 25 \\ 3 & -4 & 1 & 2 \end{pmatrix}$$

$$R_1 \leftrightarrow R_2$$

$$\sim \begin{pmatrix} 1 & 4 & 5 & 25 \\ 2 & -3 & 1 & -1 \\ 3 & -4 & 1 & 2 \end{pmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1, R_3 \rightarrow R_3 - 3R_1$$

$$\sim \begin{pmatrix} 1 & 4 & 5 & 25 \\ 0 & -11 & -9 & -51 \\ 0 & -16 & -14 & -73 \end{pmatrix}$$

$$R_2 \rightarrow \frac{R_2}{-11}$$

$$\sim \begin{pmatrix} 1 & 4 & 5 & 25 \\ 0 & 1 & 9/11 & 51/11 \\ 0 & -16 & -14 & -73 \end{pmatrix}$$

$$R_1 \rightarrow R_1 - 4R_2, R_3 \rightarrow R_3 + 16R_2$$

$$\sim \begin{pmatrix} 1 & 0 & 19/11 & 71/11 \\ 0 & 1 & 9/11 & 51/11 \\ 0 & 0 & -10/11 & 13/11 \end{pmatrix}$$

$$R_3 \rightarrow -\frac{11}{10}R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 19/11 & 71/11 \\ 0 & 1 & 9/11 & 51/11 \\ 0 & 0 & 1 & -13/10 \end{pmatrix}$$

$$R_1 \rightarrow R_1 - \frac{19}{11}R_3, R_2 \rightarrow R_2 - \frac{9}{11}R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 87/10 \\ 0 & 1 & 0 & 57/10 \\ 0 & 0 & 1 & 12/10 \end{pmatrix}$$

Therefore, $x = \frac{87}{10}$, $y = \frac{57}{10}$, $z = -\frac{13}{10}$.

6. Apply Gauss Jordan method to solve the system of equations:

$$2x + y + z = 10$$
, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$ (7, -9, 5)

The augmented matrix associated to the given system of equations is

$$(A:B) = \begin{pmatrix} 2 & 1 & 1 & 10 \\ 3 & 2 & 3 & 18 \\ 1 & 4 & 9 & 16 \end{pmatrix}$$

$$R_1 \leftrightarrow R_3$$

$$\sim \begin{pmatrix} 1 & 4 & 9 & 16 \\ 3 & 2 & 3 & 18 \\ 2 & 1 & 1 & 10 \end{pmatrix}$$

$$R_2 \rightarrow R_2 - 3R_1, R_3 \rightarrow R_3 - 2R_1$$

$$\sim \begin{pmatrix} 1 & 4 & 9 & 16 \\ 0 & -10 & -24 & -30 \\ 0 & -7 & -17 & -22 \end{pmatrix}$$

$$R_2 \rightarrow \frac{R_2}{-10}$$

$$\sim \begin{pmatrix} 1 & 4 & 9 & 16 \\ 0 & 1 & 24/10 & 3 \\ 0 & -7 & -17 & -22 \end{pmatrix}$$

$$R_1 \rightarrow R_1 - 4R_2, R_3 \rightarrow R_3 + 7R_2$$

$$\sim \begin{pmatrix} 1 & 0 & -6/10 & 4 \\ 0 & 1 & 24/10 & 3 \\ 0 & 0 & -2/10 & -1 \end{pmatrix}$$

$$R_3 \rightarrow -5R_3$$

$$\sim \begin{pmatrix} 1 & 0 & -6/10 & 4 \\ 0 & 1 & 24/10 & 3 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

$$R_1 \rightarrow R_1 + \frac{6}{10}R_3, R_2 \rightarrow R_2 - \frac{24}{10}R_3$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -9 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

Therefore, x = 7, y = -9, z = 5.

5.4 Gauss Seidel method

Introduction

Consider the system of equations
$$a_1x + b_1y + c_1z = d_1$$

$$a_2x + b_2y + c_2z = d_2$$

$$a_3x + b_3y + c_3z = d_3$$

Rearrange this system of equations to a diagonally dominant system.

Rearrange the given system of equations in such a way that a_1 , b_2 , c_3 must be non zero and numerically largest comparing to other coefficients.

Rewrite this system of equations as $x = \frac{1}{a_1}(d_1 - b_1y - c_1z)$

$$y = \frac{1}{h_2}(d_2 - c_2 z - a_2 x)$$

$$z = \frac{1}{c_3}(d_3 - a_3x - b_3y)$$

Consider the initial approximations as $x_0 = 0$, $y_0 = 0$, $z_0 = 0$.

First iteration: $x_1 = \frac{1}{a_1}(d_1 - b_1 y_0 - c_1 z_0)$

$$y_1 = \frac{1}{b_2}(d_2 - c_2 z_0 - a_2 x_1)$$

$$z_1 = \frac{1}{c_3}(d_3 - a_3x_1 - b_3y_1)$$

Second iteration: $x_2 = \frac{1}{a_1}(d_1 - b_1y_1 - c_1z_1)$

$$y_2 = \frac{1}{b_2}(d_2 - c_2 z_1 - a_2 x_2)$$

$$z_2 = \frac{1}{c_3}(d_3 - a_3x_2 - b_3y_2)$$

Third iteration: $x_3 = \frac{1}{a_1}(d_1 - b_1y_2 - c_1z_2)$

$$y_3 = \frac{1}{h_2}(d_2 - c_2 z_2 - a_2 x_3)$$

$$z_3 = \frac{1}{c_3}(d_3 - a_3x_3 - b_3y_3)$$

Therefore, approximate solution of the given system of equations is

$$x \cong x_3, y \cong y_3, z \cong z_3$$

Accuracy can be improved by increasing number of iterations.

Initial approximation does not affect the solution, it may affect the number of iterations.

1. Solve the following system of equations by Gauss-Seidel method

$$10x + y + z = 12, x + 10y + z = 12, x + y + 10z = 12$$

Rearrange this system of equations to a diagonally dominant system.

$$10x + y + z = 12$$

$$x + 10y + z = 12$$

$$x + y + 10z = 12$$

Rewrite this system of equations as

$$x = \frac{1}{10}(12 - y - z)$$

$$y = \frac{1}{10}(12 - z - x)$$

$$z = \frac{1}{10}(12 - x - y)$$

Consider the initial approximations as $x_0 = 0$, $y_0 = 0$, $z_0 = 0$.

First iteration:

$$x_1 = \frac{1}{10}(12 - y_0 - z_0) = \frac{1}{10}(12 - 0 - 0) = 1.2$$

$$y_1 = \frac{1}{10}(12 - z_0 - x_1) = \frac{1}{10}(12 - 0 - 1.2) = 1.32$$

$$z_1 = \frac{1}{10}(12 - x_1 - y_1) = \frac{1}{10}(12 - 1.2 - 1.32) = 1.452$$

Second iteration:

$$x_2 = \frac{1}{10}(12 - y_1 - z_1) = \frac{1}{10}(12 - 1.32 - 1.452) = 1.2$$

$$y_2 = \frac{1}{10}(12 - z_1 - x_2) = \frac{1}{10}(12 - 1.452 - 1.2) = 0.9348$$

$$z_2 = \frac{1}{10}(12 - x_2 - y_2) = \frac{1}{10}(12 - 1.2 - 0.9348) = 0.9865$$

Third iteration:

$$x_3 = \frac{1}{10}(12 - y_2 - z_2) = \frac{1}{10}(12 - 0.9348 - 0.9865) = 1.0079$$

$$y_3 = \frac{1}{10}(12 - z_2 - x_3) = \frac{1}{10}(12 - 0.9865 - 1.0079) = 1.0005$$

$$z_3 = \frac{1}{10}(12 - x_3 - y_3) = \frac{1}{10}(12 - 1.0079 - 1.0005) = 0.9992$$

$$x \cong 1, y \cong 1, z \cong 1$$

2. Solve the following system of equation by Gauss-Seidel method:

$$20x + y - 2z = 17$$
, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$

Rearrange this system of equations to a diagonally dominant system.

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 25$$

Rewrite this system of equations as

$$x = \frac{1}{20}(17 - y + 2z)$$
$$y = \frac{1}{20}(-18 + z - 3x)$$
$$z = \frac{1}{20}(25 - 2x + 3y)$$

Consider the initial approximations as $x_0 = 0$, $y_0 = 0$, $z_0 = 0$.

First iteration:

$$x_1 = \frac{1}{20}(17 - y_0 + 2z_0) = \frac{1}{20}(17 - 0 - 0) = 0.85$$

$$y_1 = \frac{1}{20}(-18 + z_0 - 3x_1) = \frac{1}{20}(-18 + 0 - 3(0.85)) = -1.0285$$

$$z_1 = \frac{1}{20}(25 - 2x_1 + 3y_1) = \frac{1}{20}(25 - 2(0.85) + 3(-1.0285)) = 1.0107$$

Second iteration:

$$x_2 = \frac{1}{20}(17 - y_1 + 2z_1) = \frac{1}{20}(17 + 1.0285 + 2(1.0107)) = 1.0025$$

$$y_2 = \frac{1}{20}(-18 + z_1 - 3x_2) = \frac{1}{20}(-18 + 1.0107 - 3(1.0025)) = -0.9998$$

$$z_2 = \frac{1}{20}(25 - 2x_2 + 3y_2) = \frac{1}{20}(25 - 2(1.0025) - 3(0.9998)) = 0.9998$$

Third iteration:

$$x_3 = \frac{1}{20}(17 - y_2 + 2z_2) = \frac{1}{20}(17 + 0.9998 + 2(0.9998)) = 0.9999$$

$$y_3 = \frac{1}{20}(-18 + z_2 - 3x_3) = \frac{1}{20}(-18 + 0.9998 - 3(0.9999)) = -0.9999$$

$$z_3 = \frac{1}{20}(25 - 2x_3 + 3y_3) = \frac{1}{20}(25 - 2(0.9999) - 3(0.9999)) = 1$$

$$x \cong 1, y \cong -1, z \cong 1$$

3. Use the Gauss – Seidel iterative method to solve the system of equations

$$27x + 6y - z = 85$$
, $6x + 15y + 2z = 72$, $x + y + 54z = 110$

Carryout four iterations, taking the initial approximation to the solution as (2, 3, 2).

Rearrange this system of equations to a diagonally dominant system.

$$27x + 6y - z = 85$$

 $6x + 15y + 2z = 72$
 $x + y + 54z = 110$

Rewrite this system of equations as

$$x = \frac{1}{27}(85 - 6y + z)$$
$$y = \frac{1}{15}(72 - 2z - 6x)$$
$$z = \frac{1}{54}(110 - x - y)$$

Consider the initial approximations as $x_0 = 2$, $y_0 = 3$, $z_0 = 2$.

First iteration:

$$x_1 = \frac{1}{27}(85 - 6y_0 + z_0) = \frac{1}{27}(85 - 6(3) + 2) = 2.5556$$

$$y_1 = \frac{1}{15}(72 - 2z_0 - 6x_1) = \frac{1}{15}(72 - 2(2) - 6(2.5556)) = 3.5111$$

$$z_1 = \frac{1}{54}(110 - x_1 - y_1) = \frac{1}{54}(110 - 2.5556 - 3.5111) = 1.9247$$

Second iteration:

$$x_2 = \frac{1}{27}(85 - 6y_1 + z_1) = \frac{1}{27}(85 - 6(3.5111) + (1.9247)) = 2.5133$$

$$y_2 = \frac{1}{15}(72 - 2z_1 - 6x_2) = \frac{1}{15}(72 - 2(1.9247) - 6(2.5133)) = 3.5381$$

$$z_2 = \frac{1}{54}(110 - x_2 - y_2) = \frac{1}{54}(110 - 2.5133 - 3.5381) = 1.9250$$

Third iteration:

$$x_3 = \frac{1}{27}(85 - 6y_2 + z_2) = \frac{1}{27}(85 - 6(3.5381) + 1.9250) = 2.4332$$

$$y_3 = \frac{1}{15}(72 - 2z_2 - 6x_3) = \frac{1}{15}(72 - 2(1.9250) - 6(2.4332)) = 3.5701$$

$$z_3 = \frac{1}{54}(110 - x_3 - y_3) = \frac{1}{54}(110 - 2.4332 - 3.5701) = 1.9259$$

$$x = 2.4332$$
, $y = 3.5701$, $z = 1.9259$

4. Apply the Gauss -Seidel iterative method to solve the system of equations

$$5x - y = 9$$
, $-x + 5y - z = 4$, $-y + 5z = -6$

Rearrange this system of equations to a diagonally dominant system.

$$5x - y + 0z = 9$$
$$-x + 5y - z = 4$$
$$0x - y + 5z = -6$$

Rewrite this system of equations as

$$x = \frac{1}{5}(9+y)$$
$$y = \frac{1}{5}(4+x+z)$$
$$z = \frac{1}{5}(-6+y)$$

Consider the initial approximations as $x_0 = 0$, $y_0 = 0$, $z_0 = 0$.

First iteration:

$$x_1 = \frac{1}{5}(9 + y_0) = \frac{1}{5}(9 + 0) = 1.8$$

$$y_1 = \frac{1}{5}(4 + z_0 + x_1) = \frac{1}{5}(4 + 0 + 1.8) = 1.16$$

$$z_1 = \frac{1}{5}(-6 + y_1) = \frac{1}{5}(-6 + 1.16) = -0.968$$

Second iteration:

$$x_2 = \frac{1}{5}(9 + y_1) = \frac{1}{5}(9 + 1.16) = 2.032$$

$$y_2 = \frac{1}{5}(4 + z_1 + x_2) = \frac{1}{5}(4 - 0.968 + 2.032) = 1.0128$$

$$z_2 = \frac{1}{5}(-6 + y_2) = \frac{1}{5}(-6 + 1.0128) = -0.9974$$

Third iteration:

$$x_3 = \frac{1}{5}(9 + y_2) = \frac{1}{5}(9 + 1.0128) = 2.0026$$

$$y_3 = \frac{1}{5}(4 + z_2 + x_3) = \frac{1}{5}(4 - 0.9974 + 2.0026) = 1.001$$

$$z_3 = \frac{1}{5}(-6 + y_3) = \frac{1}{5}(-6 + 1.001) = -0.9998$$

$$x \cong 2, y \cong 1, z \cong -1$$

5. Use the Gauss –Seidel iterative method to solve the system of equations

$$5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20$$

Rearrange this system of equations to a diagonally dominant system.

$$5x + 2y + z = 12$$

$$x + 4y + 2z = 15$$

$$x + 2y + 5z = 20$$

Rewrite this system of equations as

$$x = \frac{1}{5}(12 - 2y - z)$$

$$y = \frac{1}{4}(15 - 2z - x)$$

$$z = \frac{1}{5}(20 - x - 2y)$$

Consider the initial approximations as $x_0 = 0$, $y_0 = 0$, $z_0 = 0$.

First iteration:

$$x_1 = \frac{1}{5}(12 - 2y_0 - z_0) = \frac{1}{5}(12 - 2(0) - 0) = 2.4$$

$$y_1 = \frac{1}{4}(15 - 2z_0 - x_1) = \frac{1}{4}(15 - 2(0) - 2.4) = 3.15$$

$$z_1 = \frac{1}{5}(20 - x_1 - 2y_1) = \frac{1}{5}(20 - 2.4 - 2(3.15)) = 2.26$$

Second iteration:

$$x_2 = \frac{1}{5}(12 - 2y_1 - z_1) = \frac{1}{5}(12 - 2(3.15) - 2.26) = 0.688$$

$$y_2 = \frac{1}{4}(15 - 2z_1 - x_2) = \frac{1}{4}(15 - 2(2.26) - 0.688) = 2.488$$

$$z_2 = \frac{1}{5}(20 - x_2 - 2y_2) = \frac{1}{5}(20 - 0.688 - 2(2.488)) = 2.8672$$

Third iteration:

$$x_3 = \frac{1}{5}(12 - 2y_2 - z_2) = \frac{1}{5}(12 - 2(2.488) - 2.8672) = 0.8314$$

$$y_3 = \frac{1}{4}(15 - 2z_2 - x_3) = \frac{1}{4}(15 - 2(2.8672) - 0.8314) = 2.1086$$

$$z_3 = \frac{1}{5}(20 - x_3 - 2y_3) = \frac{1}{5}(20 - 0.8314 - 2(2.1086)) = 2.9903$$

$$x = 0.8314, y = 2.1086, z = 2.9903$$

6. Solve the following system of equations by Gauss Seidel iterative method

$$x + 3y + 10z = 24$$
, $2x + 17y + 4z = 35$, $28x + 4y - z = 32$

Rearrange this system of equations to a diagonally dominant system.

$$28x + 4y - z = 32$$

$$2x + 17y + 4z = 35$$

$$x + 3y + 10z = 24$$

Rewrite this system of equations as

$$x = \frac{1}{28}(32 - 4y + z)$$

$$y = \frac{1}{17}(35 - 4z - 2x)$$

$$z = \frac{1}{10}(24 - x - 3y)$$

Consider the initial approximations as $x_0 = 0$, $y_0 = 0$, $z_0 = 0$.

First iteration:

$$x_1 = \frac{1}{28}(32 - 4y_0 + z_0) = \frac{1}{28}(32 - 4(0) + 0) = 1.1429$$

$$y_1 = \frac{1}{17}(35 - 4z_0 - 2x_1) = \frac{1}{17}(35 - 4(0) - 2(1.1429)) = 1.9244$$

$$z_1 = \frac{1}{10}(24 - x_1 - 3y_1) = \frac{1}{10}(24 - 1.1429 - 3(1.9244)) = 1.7084$$

Second iteration:

$$x_2 = \frac{1}{28}(32 - 4y_1 + z_1) = \frac{1}{28}(32 - 4(1.9244) + 1.7084) = 0.9290$$

$$y_2 = \frac{1}{17}(35 - 4z_1 - 2x_2) = \frac{1}{17}(35 - 4(1.7084) - 2(0.9290)) = 1.5476$$

$$z_2 = \frac{1}{10}(24 - x_2 - 3y_2) = \frac{1}{10}(24 - 0.9290 - 3(1.5476)) = 1.8428$$

Third iteration:

$$x_3 = \frac{1}{28}(32 - 4y_2 + z_2) = \frac{1}{28}(32 - 4(1.5476) + 1.8428) = 0.9876$$

$$y_3 = \frac{1}{17}(35 - 4z_2 - 2x_3) = \frac{1}{17}(35 - 4(1.8428) - 2(0.9876)) = 1.5090$$

$$z_3 = \frac{1}{10}(24 - x_3 - 3y_3) = \frac{1}{10}(24 - 0.9876 - 3(1.5090)) = 1.8485$$

$$x = 0.9876, y = 1.5090, z = 1.8485$$

5.6 Rayleigh's power method

Introduction:

- ❖ This method is useful to find the largest Eigen value and its corresponding Eigen vector.
- If initial Eigen vector is not given, take $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as an initial Eigen vector.

Problems:

1. Using Rayleigh's power method find the the largest eigen value and the corresponding eigen vector of the matrix $\begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix}$ by taking $\begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}^T$ as initial eigen vector $\begin{bmatrix} \mathbf{carry out 6 iterations} \end{bmatrix}$. (MOP 1)

$$\begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 0.5 \\ -0.5 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 0.5 \\ -0.5 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ -4 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 0.8 \\ -0.8 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 0.8 \\ -0.8 \end{pmatrix} = \begin{pmatrix} 5.6 \\ 5.21 \\ -5.21 \end{pmatrix} = 5.6 \begin{pmatrix} 1 \\ 0.93 \\ -0.93 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 0.93 \\ -0.93 \end{pmatrix} = \begin{pmatrix} 5.86 \\ 5.74 \\ -5.74 \end{pmatrix} = 5.86 \begin{pmatrix} 1 \\ 0.98 \\ -0.98 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 0.98 \\ -0.98 \end{pmatrix} = \begin{pmatrix} 5.96 \\ 5.9 \\ -5.9 \end{pmatrix} = 5.96 \begin{pmatrix} 1 \\ 0.99 \\ -0.99 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 0.99 \\ -0.99 \end{pmatrix} = \begin{pmatrix} 5.98 \\ 5.98 \\ -5.98 \end{pmatrix} = 5.98 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

After 6 iterations, largest eigen value is 5.98, The corresponding eigen vector is $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$

2. Find the largest eigen value and the corresponding eigen vector of

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 with the initial approximate eigen vector $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T (MQP 2)$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ -2 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ 0.33 \\ -0.33 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0.33 \\ -0.33 \end{pmatrix} = \begin{pmatrix} 4.68 \\ -0.68 \\ 0.68 \end{pmatrix} = 4.68 \begin{pmatrix} 1 \\ -0.15 \\ 0.15 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -0.15 \\ 0.15 \end{pmatrix} = \begin{pmatrix} 6.6 \\ -2.6 \\ 2.6 \end{pmatrix} = 6.6 \begin{pmatrix} 1 \\ -0.4 \\ 0.4 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -0.4 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 7.6 \\ -3.6 \\ 3.6 \end{pmatrix} = 7.6 \begin{pmatrix} 1 \\ -0.47 \\ 0.47 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -0.47 \\ 0.47 \end{pmatrix} = \begin{pmatrix} 7.88 \\ -3.88 \\ 3.88 \end{pmatrix} = 7.88 \begin{pmatrix} 1 \\ -0.5 \\ 0.5 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -0.5 \\ 0.5 \end{pmatrix} = \begin{pmatrix} 8 \\ -4 \\ 4 \end{pmatrix} = 8 \begin{pmatrix} 1 \\ -0.5 \\ 0.5 \end{pmatrix}$$

After 6 iterations, largest eigen value is 8

The corresponding eigen vector is $\begin{pmatrix} 1 \\ -0.5 \\ 0.5 \end{pmatrix}$.

3. Find the largest eigen value and the corresponding eigen vector for

$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$
 with initial vector $(1 \ 1 \ 1)^T$ [Carryout 5 iterations.]

(July 2021 18MAT11)

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 4 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ 0 \\ 0.67 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0.67 \end{pmatrix} = \begin{pmatrix} 7.34 \\ -2.67 \\ 4.01 \end{pmatrix} = 7.34 \begin{pmatrix} 1 \\ -0.36 \\ 0.55 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -0.36 \\ 0.55 \end{pmatrix} = \begin{pmatrix} 7.82 \\ -3.63 \\ 4.01 \end{pmatrix} = 7.82 \begin{pmatrix} 1 \\ -0.46 \\ 0.51 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -0.46 \\ 0.51 \end{pmatrix} = \begin{pmatrix} 7.94 \\ -3.89 \\ 3.99 \end{pmatrix} = 7.94 \begin{pmatrix} 1 \\ -0.49 \\ 0.5 \end{pmatrix}$$

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -0.49 \\ 0.5 \end{pmatrix} = \begin{pmatrix} 7.98 \\ -3.97 \\ 3.99 \end{pmatrix} = 7.98 \begin{pmatrix} 1 \\ -0.5 \\ 0.5 \end{pmatrix}$$

After 5 iterations, largest eigen value is 7.98

The corresponding eigen vector is $\begin{pmatrix} 1 \\ -0.5 \\ 0.5 \end{pmatrix}$.

4. Using Rayleigh's power method find the largest eigen value and the corresponding eigen vector of the matrix $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ by taking $\begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}^T$ as initial eigen vector [carry out 5 iterations]. (Jan 20, 18MAT11)

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 0.5 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0.5 \end{pmatrix} = \begin{pmatrix} 2.5 \\ 0 \\ 2 \end{pmatrix} = 2.5 \begin{pmatrix} 1 \\ 0 \\ 0.8 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0.8 \end{pmatrix} = \begin{pmatrix} 2.8 \\ 0 \\ 2.6 \end{pmatrix} = 2.8 \begin{pmatrix} 1 \\ 0 \\ 0.93 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0.93 \end{pmatrix} = \begin{pmatrix} 2.93 \\ 0 \\ 2.86 \end{pmatrix} = 2.93 \begin{pmatrix} 1 \\ 0 \\ 0.98 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0.98 \end{pmatrix} = \begin{pmatrix} 2.98 \\ 0 \\ 2.96 \end{pmatrix} = 2.98 \begin{pmatrix} 1 \\ 0 \\ 0.99 \end{pmatrix}$$

After 5 iterations, largest eigen value is 7.98

The corresponding eigen vector is $\begin{pmatrix} 1 \\ -0.5 \\ 0.5 \end{pmatrix}$.

5. Using Rayleigh's power method find the largest eigen value and the corresponding eigen vector of the matrix $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ by taking $\begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}^T$ as initial eigen vector [carry out 7 iterations]. (MQP 1, 18MAT11)

$$\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad = \begin{pmatrix} 25 \\ 1 \\ 2 \end{pmatrix} \qquad = 25 \begin{pmatrix} 1 \\ 0.04 \\ 0.08 \end{pmatrix}$$

$$\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 0.04 \\ 0.08 \end{pmatrix} = \begin{pmatrix} 25.2 \\ 1.12 \\ 1.68 \end{pmatrix} = 25.2 \begin{pmatrix} 1 \\ 0.04 \\ 0.07 \end{pmatrix}$$

$$\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 0.04 \\ 0.07 \end{pmatrix} = \begin{pmatrix} 25.18 \\ 1.12 \\ 1.72 \end{pmatrix} = 25.18 \begin{pmatrix} 1 \\ 0.04 \\ 0.07 \end{pmatrix}$$

$$\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 0.04 \\ 0.07 \end{pmatrix} = \begin{pmatrix} 25.18 \\ 1.12 \\ 1.72 \end{pmatrix} = 25.18 \begin{pmatrix} 1 \\ 0.04 \\ 0.07 \end{pmatrix}$$

Two consecutive iterations give the same eigen value and eigen vector.

Largest eigen value is 25.18

The corresponding eigen vector is $\begin{pmatrix} 1\\0.04\\0.07 \end{pmatrix}$.

6. Find the largest eigen value and the corresponding eigen vector of the matrix $\begin{pmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix}$. Perform 5 iterations by taking the initial eigen vector as $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

$$\begin{pmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix} = 4 \begin{pmatrix} -0.75 \\ 0.25 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} -0.75 \\ 0.25 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0 \\ -1 \end{pmatrix} = 1 \begin{pmatrix} 0.5 \\ 0 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -0.5 \\ 1 \end{pmatrix} = 1 \begin{pmatrix} 0 \\ -0.5 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -0.5 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1.5 \\ -1 \end{pmatrix} = 1.5 \begin{pmatrix} 0.067 \\ 1 \\ 0.067 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0.067 \\ 1 \\ 0.067 \end{pmatrix} = \begin{pmatrix} 2.74 \\ -0.866 \\ 2.134 \end{pmatrix} = 2.74 \begin{pmatrix} 1 \\ 0.316 \\ 0.779 \end{pmatrix}$$

After 5 iterations, largest eigen value is 25.18

The corresponding eigen vector is $\begin{pmatrix} 1\\0.04\\0.07 \end{pmatrix}$.

7. Find the largest eigen value and the corresponding eigen vector of the matrix

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 by Rayleigh's power method. (May 22)

Take $(1 \ 0 \ 0)^T$ as an initial eigen vector.

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -0.5 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -0.5 \\ 0 \end{pmatrix} = \begin{pmatrix} 2.5 \\ -2 \\ 0.5 \end{pmatrix} = 2.5 \begin{pmatrix} 1 \\ -0.8 \\ 0.2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -0.8 \\ 0.2 \end{pmatrix} = \begin{pmatrix} 2.8 \\ -2.8 \\ 1.2 \end{pmatrix} = 2.8 \begin{pmatrix} 1 \\ -1 \\ 0.43 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0.43 \end{pmatrix} = \begin{pmatrix} 3 \\ -3.43 \\ 1.86 \end{pmatrix} = 3.43 \begin{pmatrix} 0.87 \\ -1 \\ 0.54 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 0.87 \\ -1 \\ 0.54 \end{pmatrix} = \begin{pmatrix} 2.74 \\ -3.41 \\ 2.08 \end{pmatrix} = 3.41 \begin{pmatrix} 0.76 \\ -1 \\ 0.65 \end{pmatrix}$$

After 5 iterations, largest eigen value is 3.41

The corresponding eigen vector is $\begin{pmatrix} 0.76 \\ -1 \\ 0.65 \end{pmatrix}$.

8. Find the largest eigen value and the corresponding eigen vector of the matrix

$$\begin{pmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix}$$
 by Rayleigh's power method.

Take $(1 \ 0 \ 0)^T$ as an initial eigen vector.

$$\begin{pmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad = \begin{pmatrix} 1 \\ 4 \\ 6 \end{pmatrix} \qquad = 6 \begin{pmatrix} 0.167 \\ 0.667 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix} \begin{pmatrix} 0.167 \\ 0.667 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.166 \\ 2.336 \\ 8.003 \end{pmatrix} = 8.003 \begin{pmatrix} 0.021 \\ 0.292 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix} \begin{pmatrix} 0.021 \\ 0.292 \\ 1 \end{pmatrix} = \begin{pmatrix} 1.145 \\ 0.252 \\ 6.002 \end{pmatrix} = 6.002 \begin{pmatrix} 0.191 \\ 0.042 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix} \begin{pmatrix} 0.191 \\ 0.042 \\ 1 \end{pmatrix} = \begin{pmatrix} 2.065 \\ -0.068 \\ 6.272 \end{pmatrix} = 6.272 \begin{pmatrix} 0.329 \\ -0.011 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix} \begin{pmatrix} 0.329 \\ -0.011 \\ 1 \end{pmatrix} = \begin{pmatrix} 2.326 \\ 0.272 \\ 6.941 \end{pmatrix} = 6.941 \begin{pmatrix} 0.335 \\ 0.04 \\ 1 \end{pmatrix}$$

After 5 iterations, largest eigen value is 6.941

The corresponding eigen vector is $\begin{pmatrix} 0.335\\ 0.04\\ 1 \end{pmatrix}$.