

S'20 CS 410/510

Intro to quantum computing

Fang Song

Week 5

- Modular arithmetic
- Order finding
- Prime factorization

Credit: based on slides by Richard Cleve

Exercise

- 1. Compute the product of the numbers below
 - Example. $3 \times 5 = 15$
 - $19 \times 31 = 58\%$
 - 244176193×176944583 = . . •
- 2. Find the prime factorization of the numbers below.
 - Example. $15 = 3 \times 5$
 - 21 = 3x7
 - $247 = (3 \times 1)^{6}$
 - 205027 = 421 × 487
 - 55514685797288803 = · · · · · ·
- 3. How many bits do we need to write an integer $x \in \mathbb{Z}$ in binary?

A round of applause

- Exponential quantum speedup
 - Nice, but query-model, "artificial" problems ...

Black-box problem	Deterministic	Randomized	Quantum
Deutsch	2 (queries)	2 (queries)	1 (query)
Deutsch-Josza	$2^{n-1} + 1$	$\Omega(n)$	1 (Exact)
Simon	$2^{n-1} + 1$	$\Omega(\sqrt{2^n})$	0(n)

Today: quantum (exponential) speedup on a "real-life" hard problem

Integer factorization

Input. Positive integer $N (= pq, p, q \ prime)$ Goal. Find p, q

- Classical efficient algorithm NOT known
 - Number field sieve ~ $2^{O((\frac{\log N}{3})^{\frac{1}{3}}(\log \log N)^{\frac{2}{3}})}$

Efficient = poly-time in input size Ex. N has n bits. Runtime $O(n^5)$

- Efficient quantum algorithm $O((\log N)^3)$ [Shor94, Kitaev94]
 - Generalization of Simon's algorithm

An inconvenient consequence in cybersecurity

- RSA cryptosystem relies on hardness of factorization
 - Foundation of modern cryptography and Internet security

Will be broken by a quantum computer

RSA Factoring Challenge

Feb 28, 2020: RSA-250 (250 decimal digits = 829 bits) factored! Total computation time ~ 2700 core-years (Intel Xeon Gold 6130)

 $RSA-250 = 6413528947707158027879019017057738908482501474294344720811685963202453234463\\0238623598752668347708737661925585694639798853367 \times \\3337202759497815655622601060535511422794076034476755466678452098702384172921\\0037080257448673296881877565718986258036932062711$

Roadmap to quantum factorization algorithm

- Today: 1 & 2 (treating PE as black-box)
- Next time: 3 open up PE and QFT

Review: arithmetic/number theory

Modular arithmetic

$$a, b, N \in \mathbb{Z}, N \geq 1$$

- $\bullet a \equiv b \mod N \Leftrightarrow N \mid (a b)$
- $\gcd(a,b) = \max\{c: c|a \text{ and } c|b\}$
 - a, b coprime, if gcd(a, b) = 1
- $\mathbb{Z}_N := \{0,1,...,N-1\}$
- $\blacksquare \mathbb{Z}_N^* \coloneqq \{ a \in \mathbb{Z}_N : \gcd(a, N) = 1 \}$
 - Euler φ function $\varphi(N)\coloneqq |\mathbb{Z}_N^*|$
- Fact. $\forall a \in \mathbb{Z}_N^*$, $\exists ! (unique) b \in \mathbb{Z}_N^* s. t. ab \equiv 1 \mod N$
 - Call b the inverse of a, and write it $a^{-1} \mod N$
 - \mathbb{Z}_N^* under multiplication mod N form a group.

Order

$$\mathbb{Z}_N^* := \{ a \in \mathbb{Z}_N : \gcd(a, N) = 1 \}, \varphi(N) = |\mathbb{Z}_N^*|$$

- Def (order mod N). Given $a \in \mathbb{Z}_N^*$, ord_N(a) := min{ $r: a^r \equiv 1 \mod N$ }
- Fact (Euler's Theorem). $\forall a \in \mathbb{Z}_N^*$, $a^{\varphi(N)} \equiv 1 \mod N$
 - \rightarrow ord_N(a) is well-defined
 - \rightarrow ord_N(a) | φ (N)

Order finding

Order finding

Input. Positive integer $N \geq 2$, $a \in \mathbb{Z}_N^*$ Goal. Compute $\operatorname{ord}_N(a)$

- Theorm. Factorization order finding
 - We can solve one efficiently iff. we can solve the other efficiently.
 - → Best classical algorithm takes exponential time
- Theorm. ∃ poly-time quantum algorithm for order finding (hence factorization too)

Reducing factoring to order finding

Input. N(=pq) Goal. Find p, q

Factoring

■ Idea: Pick random $a \in \mathbb{Z}_N^*$, compute $\underline{r = ord_N(a)}$

$$a^{r} \equiv 1 \mod N \Leftrightarrow N \mid a^{r} - 1$$
If r happens to be even, $a^{r} - 1 = (a^{\frac{r}{2}} + 1)(a^{\frac{r}{2}} - 1)$

$$p : q = N \mid (a^{\frac{r}{2}} + 1)(a^{\frac{r}{2}} - 1)$$

$$can N \mid (a^{\frac{r}{2}} - 1)! \quad a^{\frac{r}{2}} = 1 \mod N \quad r \neq r$$

$$even food c + s def even foo$$

Reducing factoring to order finding cont'd

Input: an odd, composite integer N that is not a prime power.

```
Repeat
```

```
Randomly choose a \in \{2, \dots, N-1\}.
   Compute d = \gcd(a, N).
   If d > 2 then
                                               /* We've been incredibly lucky. */
       Return u = d and v = N/d.
                                               /* Now we know a \in \mathbb{Z}_N^*. */
   Else
       Let r be the order of a in \mathbb{Z}_N^*.
                                                /* Requires the order finding algorithm. */
       If r is even then
          Compute x = a^{r/2} - 1 \pmod{N}.
                                               efficient
          Compute d = \gcd(x, N).
          If d > 2 then
              Return u = d and v = N/d.
                                               /* Answer is found. */
Until answer is found (or you get tired).
```

 \blacksquare Bad a

- $ord_N(a)$ is odd
- $N|(a^{\frac{r}{2}}+1)$
- Fact. $\Pr_{a \leftarrow \mathbb{Z}_N^*}[a \text{ BAD}] \leq \frac{1}{2}$
- \rightarrow Succeed in k iterations with prob. $\geq 1 \frac{1}{2^k}$.
- Runtime = $O(k \cdot \text{Order-finding})$

Exercise

Let $\omega_r \coloneqq e^{2\pi i \frac{1}{r}}$ be the r^{th} root of unity

1. Show that
$$\omega_r^r = 1$$
.

1. Show that
$$\omega_r^r = 1$$
. $\omega_r^r = (e^{z\pi i \frac{r}{r}})^r = e^{z\pi i \cdot 1} = 1$

2. Show that
$$\sum_{j=0}^{r-1} \omega_r^j = 0$$
.

$$\sum_{j=0}^{r-1} \omega_{r}^{j} = \omega_{r}^{j} + \omega_{r}^{j} + \cdots + \omega_{r}^{r-1}$$

$$= \frac{1 - \omega_{r}^{r}}{1 - \omega_{r}}$$

$$\begin{array}{l}
1 + \chi + \chi \xrightarrow{2} & + \chi^{k_1} \\
= \frac{1 - \chi^k}{1 - \chi}
\end{array}$$

Phase estimation

Meaning of "phase"

- Phase transition
 - Solid → liquid → gas , plasma
 - https://en.wikipedia.org/wiki/Phase_transition
- Phase in periodic function (waves)
 - Location with a single wave length
 - https://en.wikipedia.org/wiki/Phase (waves)

- Phase factor $e^{i\theta}$
 - Global phase: $e^{i\theta}|\psi\rangle$ vs. $|\psi\rangle$ same statistics under measurements
 - Relative phase: $|0\rangle + e^{i\theta}|1\rangle$
 - $|0\rangle + |1\rangle$ vs. $|0\rangle |1\rangle$: Measurement statistics differ

Phase estimation (a.k.a. eigenvalue est.)

Input:

- Unitary operation U (described by a quantum circuit).
- A quantum state $|\psi\rangle$ that is an eigenvector of $U: U|\psi\rangle = e^{2\pi i\theta}|\psi\rangle$. Output: An approximation to $\theta \in [0,1)$.
- Fact (HW4): Unitary U on n qubits has a complete set of orthonormal eigenvectors $\{|\psi_1\rangle, |\psi_2\rangle, ..., |\psi_N\rangle\}$, $N=2^n$

•
$$\langle \psi_{j} | \psi_{k} \rangle = \begin{cases} 1, j = k \\ 0, j \neq k \end{cases}$$

• $U | \psi_{j} \rangle = \frac{e^{2\pi i \theta_{j}}}{\sqrt{2\pi i \theta_{j}}} | \psi_{j} \rangle$
 $\lambda_{j} = e^{2\pi i \theta_{j}}$
 $\lambda_{j} = 1$

Kitaev's quantum phase estimation algorithm

- Theorem. PE produces $\hat{\theta}$ with
 - precision $|\hat{\theta} \theta| \le \delta$ and
 - failure probability $\leq \varepsilon$

whenever $t = \Omega(\log \frac{1}{\delta \cdot \varepsilon})$.

Proof (Next time)

Theorem. PE produces ∂ with

Solving order finding by phase estimation

Reducing order finding to phase estimation

Given $a \in \mathbb{Z}_N^*$, find $r \coloneqq ord_N(a)$. $[n \sim \log N : \# \text{ bits to encode elements of } \mathbb{Z}_N^*]$

- Wishful thinking:
 - A unitary operation U easy to implement
 - An eigenvector $|\psi\rangle$ whose eigenvalue reveals r. (Ex. U $|\psi\rangle=e^{2\pi i\theta}|\psi\rangle$, $\theta=1/r$)
 - Plug into Phase Estimation and done!

A proper unitary and eigenvec for order finding

Given
$$a \in \mathbb{Z}_{N}^{*}$$
, find $r \coloneqq ord_{N}(a)$.

 $[n \sim \log N : \# \text{ bits to encode elements of } \mathbb{Z}_{N}^{*}]$

*Unitary $M_{a} : |x\rangle \mapsto |ax \mod N\rangle$
 $w_{r} \coloneqq e^{2\pi i \frac{1}{r}} (r^{th} \text{ root of unity})$
 $x \in \{0, 1\}^{n} \quad N \in \mathbb{Z}^{n} \quad N \subseteq \mathbb{Z}^{n} \quad \omega_{r}^{r} \coloneqq e^{2\pi i \frac{r}{r}} = 1$

*Eigenvector: $|\psi\rangle \coloneqq \frac{1}{\sqrt{r}} (|1\rangle + \omega_{r}^{-1}|a\rangle + \omega_{r}^{-2}|a^{2}\rangle + \cdots + \omega_{r}^{-(r-1)}|a^{r-1}\rangle)$
 $M_{a}(\psi) = \frac{1}{\sqrt{r}} \left(M_{a}(i) + \omega_{r}^{-1} M_{a}(a) + \cdots + \omega_{r}^{-(r-1)}|a^{r-1}\rangle \right)$
 $w_{r} = w_{r}^{-1} = \frac{1}{\sqrt{r}} \left(1a + \omega_{r}^{-1} |a^{2}\rangle + \cdots + \omega_{r}^{-(r-1)}|a^{r-1}\rangle \right)$

*What is missing?

$$w_{r}(\psi) = e^{2\pi i \frac{1}{r}} (\psi)$$
 $w_{r}(\psi) = e^{2\pi i \frac{1}{r}} (\psi)$

Live with a set of eigenvectors

■ Unitary
$$M_a$$
: $|x\rangle \mapsto |ax \mod N\rangle$
$$\omega_r \coloneqq e^{2\pi i \frac{1}{r}}$$
■ Eigenvector: $|\psi\rangle \coloneqq \frac{1}{\sqrt{r}}(|1\rangle + \omega_r^{-1}|a\rangle + \omega_r^{-2}|a^2\rangle + \cdots + \omega_r^{-(r-1)}|a^{r-1}\rangle)$

$$|\psi_0\rangle = 1/\sqrt{r}(|1\rangle + |a\rangle + |a^2\rangle + \cdots + |a^{r-1}\rangle)$$

$$|\psi_1\rangle = 1/\sqrt{r}(|1\rangle + \omega_r^{-1}|a\rangle + \omega_r^{-2}|a^2\rangle + \cdots + \omega_r^{-(r-1)}|a^{r-1}\rangle) = |\psi\rangle$$

$$\wedge \wedge_{\alpha} |\gamma\rangle = \omega_r |\gamma\rangle$$

$$\vdots$$

$$|\psi_j\rangle = \frac{1}{\sqrt{r}}(|1\rangle + \omega_r^{-j}|a\rangle + \omega_r^{-2j}|a^2\rangle + \cdots + \omega_r^{-(r-1)j}|a^{r-1}\rangle)$$

$$\vdots$$

$$|\psi_{r-1}\rangle = 1/\sqrt{r}(|1\rangle + \omega_r^{-(r-1)}|a\rangle + \omega_r^{-2(r-1)}|a^2\rangle + \cdots + \omega_r^{-(r-1)(r-1)}|a^{r-1}\rangle)$$

Live with a set of eigenvectors cont'd

■ Unitary
$$M_a: |x\rangle \mapsto |ax \mod N\rangle$$

$$\omega_r \coloneqq e^{2\pi i \frac{1}{r}}$$

• Eigenvector: $|\psi\rangle \coloneqq \frac{1}{\sqrt{r}}(|1\rangle + \omega_r^{-1}|a\rangle + \omega_r^{-2}|a^2\rangle + \dots + \omega_r^{-(r-1)}|a^{r-1}\rangle)$

$$|\psi_{0}\rangle = \frac{1}{\sqrt{r}}(|1\rangle + |a\rangle + |a^{2}\rangle + \dots + |a^{r-1}\rangle)$$

$$M_{a}|\psi_{0}\rangle = \frac{1}{\sqrt{r}}\left(M_{a}|i\rangle + M_{a}|a\rangle + \dots + M_{a}|a\rangle^{r-1}\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|a\rangle + |a\rangle^{2}\rangle + \dots + |a^{r}\rangle^{2}\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|a\rangle + |a\rangle + |a\rangle^{2}\rangle + \dots + |a\rangle^{r-1}\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|a\rangle + |a\rangle + |a\rangle^{2}\rangle + \dots + |a\rangle^{r-1}\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|a\rangle + |a\rangle + |a\rangle^{2}\rangle + \dots + |a\rangle^{r-1}\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|a\rangle + |a\rangle + |a\rangle^{2}\rangle + \dots + |a\rangle^{r-1}\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|a\rangle + |a\rangle + |a\rangle^{2}\rangle + \dots + |a\rangle^{r-1}\rangle$$

Live with a set of eigenvectors cont'd

■ Unitary $M_a: |x\rangle \mapsto |ax \mod N\rangle$

$$\omega_r \coloneqq e^{2\pi i \frac{1}{r}}$$

■ Eigenvector: $|\psi\rangle \coloneqq \frac{1}{\sqrt{r}}(|1\rangle + \omega_r^{-1}|a\rangle + \omega_r^{-2}|a^2\rangle + \dots + \omega_r^{-(r-1)}|a^{r-1}\rangle)$

$$|\psi_{j}\rangle = \frac{1}{\sqrt{r}}(|1\rangle + \omega_{r}^{-j}|a\rangle + \omega_{r}^{-2j}|a^{2}\rangle + \cdots + \omega_{r}^{-(r-1)j}|a^{r-1}\rangle)$$

$$M_{a}|\psi_{j}\rangle = \frac{1}{\sqrt{r}}(M_{a}|1\rangle + \omega_{r}^{-j}M_{a}|a\rangle + \cdots + \omega_{r}^{-(r-1)\cdot j}|a^{r-1}\rangle)$$

$$= \frac{1}{\sqrt{r}}(M_{a}|1\rangle + \omega_{r}^{-j}|a^{2}\rangle + \cdots + \omega_{r}^{-(r-1)\cdot j}|a^{r-1}\rangle)$$

$$= \frac{1}{\sqrt{r}}(M_{a}|1\rangle + \omega_{r}^{-j}|a^{2}\rangle + \cdots + \omega_{r}^{-(r-1)\cdot j}|a^{r-1}\rangle)$$

$$= \frac{1}{\sqrt{r}}(\omega_{r}^{-(r-1)\cdot j}|1\rangle + |a\rangle + \omega_{r}^{-j}|a^{2}\rangle + \cdots$$

$$= \frac{1}{\sqrt{r}}(\omega_{r}^{-(r-1)\cdot j}|1\rangle + |a\rangle + \omega_{r}^{-j}|a^{2}\rangle + \cdots$$

$$= \frac{1}{\sqrt{r}}(\omega_{r}^{-(r-1)\cdot j}|1\rangle + |a\rangle + \omega_{r}^{-j}|a^{2}\rangle + \cdots$$

$$= \frac{1}{\sqrt{r}}(\omega_{r}^{-(r-1)\cdot j}|1\rangle + |a\rangle + |\omega_{r}^{-j}|a^{2}\rangle + \cdots$$

$$= \frac{1}{\sqrt{r}}(\omega_{r}^{-(r-1)\cdot j}|1\rangle + |a\rangle + |\omega_{r}^{-j}|a^{2}\rangle + \cdots$$

$$= \frac{1}{\sqrt{r}}(\omega_{r}^{-(r-1)\cdot j}|1\rangle + |a\rangle + |\omega_{r}^{-j}|a^{2}\rangle + \cdots$$

$$= \frac{1}{\sqrt{r}}(\omega_{r}^{-(r-1)\cdot j}|1\rangle + |a\rangle + |\omega_{r}^{-j}|a^{2}\rangle + \cdots$$

Live with a set of eigenvectors cont'd

■ Unitary
$$M_a$$
: $|x\rangle \mapsto |ax \mod N\rangle$
$$\omega_r \coloneqq e^{2\pi i \frac{1}{r}}$$
■ Eigenvector: $|\psi\rangle \coloneqq \frac{1}{\sqrt{r}}(|1\rangle + \omega_r^{-1}|a\rangle + \omega_r^{-2}|a^2\rangle + \cdots + \omega_r^{-(r-1)}|a^{r-1}\rangle)$

$$|\psi_0\rangle = 1/\sqrt{r}(|1\rangle + |a\rangle + |a\rangle + |a^2\rangle + \cdots + |a^{r-1}\rangle)$$

$$|\psi_j\rangle \stackrel{:}{=} 1/\sqrt{r}(|1\rangle + |\omega_r^{-j}|a\rangle + |\omega_r^{-2j}|a^2\rangle + \cdots + |\omega_r^{-(r-1)j}|a^{r-1}\rangle)$$

$$|\psi_{r-1}\rangle = 1/\sqrt{r}(|1\rangle + |\omega_r^{-(r-1)}|a\rangle + |\omega_r^{-2(r-1)}|a^2\rangle + \cdots + |\omega_r^{-(r-1)(r-1)}|a^{r-1}\rangle)$$

$$\sum_{j=0}^{r-1} |\psi_j\rangle = \frac{1}{\sqrt{r}} \left(|r\rangle|_1 + |\omega_r^{-(r-1)}|_2 + |\omega_r^{-(r-1)}|_2 + |\omega_r^{-(r-1)(r-1)}|a^{r-1}\rangle\right)$$

Quantum order finding algorithm

$$|1\rangle = \frac{1}{\sqrt{r}} \sum_{j} |\psi_{j}\rangle$$
 , $M_{a} |\psi_{j}\rangle = e^{2\pi i \frac{j}{r}}$

- Observation: $|\psi_j\rangle$ orthonormal $\langle \psi_i | \psi_k \rangle = \delta_{ik} \xi x$.
- → PE with input |1⟩
- \approx PE with $|\psi_i\rangle$ for a random j
- lacktriangle Post-processing to recover r

Quantum order-finding algorithm

Summary

Factoring

Order Fiding

Phase Estimation

$$N|(a^{\frac{r}{2}}+1)(a^{\frac{r}{2}}-1)$$

- What's next?
 - Phase estimation algorithm
 - Complexity of quantum order finding (implementing controlled M_a)

Quantum order-finding algorithm

Logistics

- Proposal due Sunday May 3rd , 11:59pm AoE
 - Submit as a group via Gradescope
 - No group? Submit a proposal and I will coordinate
 - I-2 pages: consisting of I) the topic, background, context, and motivation; 2) identify a few core references; and 3) a goal you intend to achieve and a plan.
- Talk by Silverman in Math department
 - Cryptography and quantum computing
 - See campuswire for details. Register by May 6
- IBM Qiskit competition

Scratch