一. 填空题 (每空3分,共18分)

1.
$$\int_a^b f'(x+b) dx =$$
______.

2.
$$\int_{0}^{+\infty} e^{-2x} dx =$$

① 若级数
$$\sum_{n=1}^{\infty} u_n(u_n \neq 0)$$
 收敛,则 $\sum_{n=1}^{\infty} \frac{1}{u_n}$ 发散.

② 若级数
$$\sum_{n=1}^{\infty} u_n(u_n \neq 0)$$
 发散,则 $\sum_{n=1}^{\infty} \frac{1}{u_n}$ 收敛.

③ 若级数
$$\sum_{n=1}^{\infty}u_n$$
 和 $\sum_{n=1}^{\infty}v_n$ 都发散,则 $\sum_{n=1}^{\infty}(u_n+v_n)$ 必发散.

④ 若级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛, $\sum_{n=1}^{\infty} v_n$ 发散, 则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 必发散.

⑤ 级数
$$\sum_{n=1}^{\infty} ku_n$$
 (k 为任意常数) 与级数 $\sum_{n=1}^{\infty} u_n$ 的敛散性相同.

写出正确结论的序号____

4. 设二元函数
$$z = xe^{x+y} + (x+1)\ln(1+y)$$
,则 $dz|_{(1,0)} =$ ______

5. 若 D 是由
$$x$$
 轴、 y 轴及 $2x + y - 2 = 0$ 围成的区域,则 $\iint_{D} dx dy = ______.$

6. 微分方程 xy' + y = 0 满足初始条件 y(1) = 3 的特解是___

二. 单项选择题 (每小题 3 分, 共 24 分)

1. 设函数
$$f(x) = \int_0^x (t-1)(t+2)dt$$
,则 $f(x)$ 在区间[-3, 2]上的最大值为 ().

(A)
$$-\frac{2}{3}$$
 (B) $\frac{10}{3}$

(B)
$$\frac{10}{3}$$

2. 设
$$I_1 = \iint_D \cos \sqrt{x^2 + y^2} d\sigma$$
, $I_2 = \iint_D \cos (x^2 + y^2) d\sigma$, $I_3 = \iint_D \cos (x^2 + y^2)^2 d\sigma$, 其中 $D = \{(x,y)|x^2 + y^2 \le 1\}$, 则有().

(A)
$$I_1 > I_2 > I_3$$

(B)
$$I_3 > I_2 > I$$

(C)
$$I_2 > I_1 > I_2$$

3. 设
$$u_n > 0, n = 1, 2, 3 \cdots$$
,若 $\sum_{n=1}^{\infty} u_n$ 发散, $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛,则下列结论正确的是().

(A)
$$\sum_{n=1}^{\infty} u_{2n-1}$$
 收敛, $\sum_{n=1}^{\infty} u_{2n}$ 发散

(A)
$$\sum_{n=1}^{\infty} u_{2n-1}$$
 收敛, $\sum_{n=1}^{\infty} u_{2n}$ 发散 (B) $\sum_{n=1}^{\infty} u_{2n}$ 收敛, $\sum_{n=1}^{\infty} u_{2n-1}$ 发散

(C)
$$\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$$
 收敛

(D)
$$\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$$
 收敛

- 4. 函数 f(x,y) 在点 P(x,y) 的某一邻域内有连续的偏导数,是 f(x,y) 在该点可微的(

- (A) 充分非必要 (B) 必要非充分 (C) 充分必要 (D) 既非充分又非必要
- 5. 下列微分方程中,不属于一阶线性微分方程的为().
 - (A) $xy' y = \frac{x \cos \ln x}{\ln x}$
- (B) $xy' \ln x + y = 3x(\ln x + 1)$,
- (C) (2y-x)y'-y=2x
- (D) $(x^2-1)y'-xy+2=0$
- 6. 设级数 $\sum_{n=1}^{\infty} a_n$ 绝对收敛,则级数 $\sum_{n=1}^{\infty} (1 + \frac{1}{n})^n a_n$ ().

- (A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 不能判定敛散性散
- 7. $\psi F(x) = \int_{x}^{x+2\pi} e^{\sin t} \sin t dt$, $\emptyset F(x)$ ().
 - (A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数

- 8. $\frac{\partial}{\partial t}u = f(x-y, y-z, t-z), \quad \boxed{0} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} + \frac{\partial u}{\partial t} = ($ (A) $2f_1'$ (B) $2f_2'$ (C) $2f_3'$ (D) (

- (D) 0

三. 计算下列各题(共52分)

1.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x - \cos^3 x} \ dx \ (5 \%)$$

2. 求曲线 $y = x^2 - 2x$, y = 0, x = 1, x = 3 所围成的平面图形的面积. (6分)

- 3. 已知二重积分 $\iint_{\mathbb{D}} x^2 d\sigma$,其中 \mathbb{D} 由 $y = 1 \sqrt{1 x^2}$,x = 1以及 y = 0 围成.
 - (I)请画出 D的图形,并在极坐标系下将二重积分化为累次积分; (3分)
 - (Ⅱ) 请在直角坐标系下分别用两种积分次序将二重积分化为二次积分; (4分)
 - (Ⅲ) 选择一种积分次序计算出二重积分的值. (4分)

4. 设函数u = f(x, y, z)有连续偏导数,且 $z = \varphi(x, y)$ 是由方程 $xe^z - ye^y = ze^z$ 所确定的二元函数,求 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ 及 du. (8分)

5. 求幂级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2n}$$
 的收敛域及和函数 $S(x)$. (8分)

6. 求二元函数
$$f(x, y) = (x^2 + y)e^{2y}$$
 的极值. (8分)

7. 求微分方程 $y'' + 2y' = e^{-2x}$ 的通解,及满足初始条件 f(0) = 1, f'(0) = 0 的特解. (6 分)

四. 假设函数 f(x) 在[a,b]上连续,在(a,b)内可导,且 $f'(x) \le 0$,记 $F(x) = \frac{1}{x-a} \int_a^x f(t) dt$,证明在(a,b)内 $F'(x) \le 0$. (6分)