MI-ARI

(Computer arithmetics) winter semester 2017/18

PR. Problems with carry and its accelerating

© Alois Pluháček Pavel Kubalík, 2017 Department of digital design Faculty of Information technology Czech Technical University in Prague

PR. Problems with carry and its accelerating

- Binary adder
- Ripple carry adder
- Carry skip adder
- Carry look-ahead adder
- Conditional sum adder
- Asynchronous adder

Binary adder

full adder (1 bit binary adder)

$$s = a \oplus b \oplus p =$$

$$= \overline{a}\overline{b}p + \overline{a}b\overline{p} + a\overline{b}\overline{p} + abp$$

$$=abp+abp+abp$$
 $q=\sum_{}$
 p
 $=ab+ap+bp=$
 $=ab+ap+bp=$
 $=ab+(ap\oplus bp)$

half adder

Ripple carry adder

Parallel ripple carry adder:

the same using half-adder:

Ripple carry adder ii

$$q_i = a_i b_i + a_i p_i + b_i p_i$$
 ... carry for the next order $q_i = a_i b_i + (a_i p_i \oplus b_i p_i) = a_i b_i + (a_i \oplus b_i) \cdot p_i$

$$a_i=0$$
 a $b_i=0$ $\Rightarrow q_i=0$... carry in order i is terminated $a_i=1$ a $b_i=1$ $\Rightarrow q_i=1$... carry in order i is generated else (if $a_i \neq b_i$) $\Rightarrow q_i=p_i$... carry on order i is propagated $p_{i+1}=q_i=p_i$! however in steady state! p_{i+1} is delayed towards to p_i

$$q_i = G_i + P_i \cdot p_i$$
, where $G_i = a_i \cdot b_i$ (carry in order i is generated) $P_i = a_i \oplus b_i$ (carry is "propagated" in order i)

$$P_i = 1, P_{i+1} = 1, \dots, P_{i+k} = 1 \implies q_{i+k} = p_i$$

 $p_i \cdot P_i \cdot P_{i+1} = 1, \dots \cdot P_{i+k} = 1 \implies q_{i+k} = 1$

Carry skip adder

carry skip adder

Adder is divided into section of k positions. The carry which would be propagated throw k positions is bypassed around the section.

Notes:

- At least 3 sections are needed to reduce the latency.
- ullet Instead of $P_i=a_i\oplus b_i$ this equation $P_i'=P_i+G_i$ can be used. $P_i'=a_i+b_i$.
- ullet If the full-adder is composed using two half-adders the output of first half-adder can be used as $P_i=a_i\oplus b_i$.
- The sections can be associated into large sections, which can be called super-sections and next again to bigger super-sections.

Carry skip adder ii Ex.: 3 section with 4 positions \sim Total 12 bits one section: $a_3 b_3 \qquad a_2 b_2 \qquad a_1 b_1$ $a_0 b_0$ p_0 q_3 three sections:

Carry skip adder iii

Notes:

- At least 3 sections are needed to reduce the latency.
- ullet Instead of $P_i=a_i\oplus b_i$ this equation $P_i'=P_i+G_i$ can be used. $P_i'=a_i+b_i$.
- ullet If the full-adder is composed using two half-adders the output of first half-adder can be used as $P_i=a_i\oplus b_i$.
- The sections can be associated into large sections, which can be called super-sections and next again to bigger super-sections.

Carry look-ahead adder

sčítačka s predikcí přenosů [carry look-ahead adder]

$$q = ab + (ap \oplus bp) = ab + (a \oplus b) \cdot p = G + P \cdot p$$

= $ab + ap + bp = ab + (a + b) \cdot p = G + P' \cdot p$

$$G_i = a_i \cdot b_i$$
 carry is generated in order i

$$P_i = a_i \oplus b_i$$
 carry is propagated in order i

$$P_i' = a_i + b_i$$
 carry is generated or propageted in order i

$$q_0 = p_1 = G_0 + P_0 \cdot p_0$$
 $q_1 = p_2 = G_1 + P_1 \cdot p_1$ $q_1 = p_2 = G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot p_0$ $q_2 = p_3 = G_2 + P_2 \cdot G_1 + P_2 \cdot P_1 \cdot G_0 + P_2 \cdot P_1 \cdot P_0 \cdot p_0$ etc. The P_i' can be used instead of P_i .

Carry look-ahead adder ii

carry look-ahead:

$$p_{1} = G_{0} + P_{0} \cdot p_{0}$$

$$p_{2} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot p_{0}$$

$$p_{3} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot p_{0}$$

$$p_{4} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot p_{0}$$

Carry look-ahead adder iii

carry look-ahead:

$$p_{1} = G_{0} + P_{0} \cdot p_{0}$$

$$p_{2} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot p_{0}$$

$$p_{3} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot p_{0}$$

$$p_{4} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot p_{0}$$

Carry look-ahead adder iv carry look-ahead adder using half-adders $a_3 b_3$ $a_2 b_2$ $a_1 b_1$ $a_0 b_0$ $q_3 = p_4$ p_2 p_0 G_1 G_0 G_3 G_2 carry look-ahead

Carry look-ahead adder — cascade scheme

4bit section (as an example):

$$p_{1} = G_{0} + P_{0} \cdot p_{0}$$

$$p_{2} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot p_{0}$$

$$p_{3} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot p_{0}$$

$$p_{4} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot p_{0}$$

$$G^* = G_3 + P_3 \cdot G_2 + P_3 \cdot P_2 \cdot G_1 + P_3 \cdot P_2 \cdot P_1 \cdot G_0$$

 $P^* = P_3 \cdot P_2 \cdot P_1 \cdot P_0$

 G^st ... carry-out is generated from its higher order

 P^st ... carry is propagated in this section

$$p_4 = G^* + P^* \cdot p_0$$

Conditional sum adder

conditional sum adder

basic logic element:

$$s^0=a\oplus b$$
 ... bit of sum for $p=0$ $s^1=a\oplus b\oplus 1$... bit of sum for $p=1$ $q^0=a\cdot b$... next carry for $p=0$ $q^1=a+b$... next carry for $p=1$

bit of sum for
$$p=0$$

bit of sum for $p=1$

$$q^0 = a \cdot b$$

next carry for
$$p = 0$$

$$q^1 = a + b$$

next carry for
$$p=1$$

multiplexor:

double of multiplexor:

Conditional sum adder ii

8bits adder scheme

Conditional sum adder iv

If it is not necessary determine carry from order 0, 1, ..., 6, then the given multiplexers can be released:

Asynchronous adder

We take into account ripple carry adder:

length \boldsymbol{L} of critical path: max. number of neighboring orders, over them the carry is propagated

(it means, that carry is not generated or deleted in this orders)

!!! length L depends on specific values of addends !!!

N ... number of bits of both addends A and B

$$0 \le L \le N$$

The worst case is used to determine frequency of clock cycle, it means:

$$L=N.$$

But (statistically) the mean value is equal only to:

$$\left\lceil L = \lceil \log_2 rac{4}{5} N
ceil
ight
ceil$$
 ;

e.g. Mean value for N=64 is $L=7~\ll 64$.

Asynchronous adder ii

The idea is, that it is possible to wait for minimal required time before the next clock pulse start. But this require:

- 1. detect (or somehow determine), that the transition process in combinational circuit is ended,
- 2. to use generator driven by some condition (that these processes are ended).
- ad 1: Adder can be even most problematic circuit due to the big delay.
- ad 2: The driven clock cycle generator is used in asynchronous computers.

Asynchronous computer is based on synchronous sequential circuit, where exist different delays between clock pulses.

asynchronous adder \in asynchronous computer

One-digit asynchronous adder

one-digit asynchronous adder (JAS)

- "replacement" of full adder,
- output signalizing valid output carry ($h \sim$ "done").

basic principle:

The carry is determine independently

$$q = ab + ap + bp$$

and its negation

$$\overline{q} = \overline{a} \overline{b} + \overline{a} \overline{p} + \overline{b} \overline{p}$$

In steady state must be satisfied

$$q = 1$$
 or $q = 1$,

it must be

$$q + \overline{q} = 1.$$

One-digit asynchronous adder ii

$$q^{0} = a^{0}b^{0} + a^{0}p^{0} + b^{0}p^{0}$$

 $q^{1} = a^{1}b^{1} + a^{1}p^{1} + b^{1}p^{1}$

$$\left. egin{array}{c} a^0 &= {f 0} \ b^0 &= {f 0} \ b^1 &= {f 0} \ b^1 &= {f 0} \ \end{array}
ight.
ight.$$

$$a^0=a$$
, $b^0=b$, $a^1=a$, $b^1=b$
= $0 \Rightarrow q^0=1$

$$egin{array}{lll} a=b=0 & \Rightarrow & q^0=1 \ a=b=1 & \Rightarrow & q^1=1 \ a
eq b & a & p^0=1 & \Rightarrow & q^0=1 \ a
eq b & a & p^1=1 & \Rightarrow & q^1=1 \ \end{array}
ight\} \qquad h=q^0+q^1=1 \ a
eq b & a & p^1=1 & \Rightarrow & q^1=1 \ \end{array}$$

$$q^{0} = a^{0}b^{0} + a^{0}p^{0} + b^{0}p^{0}$$

$$q^{1} = a^{1}b^{1} + a^{1}p^{1} + b^{1}p^{1}$$

$$s = a^{1} \oplus b^{1} \oplus p^{1}$$

(n+1) bit asynchronous adder

asynchronous adder in asynchronous computer

GHP ... generator of clock pulse JO ... other circuit are in steady state