Double Machine Learning (DML)

Professor Song YaoOlin Business School

Customer Analytics

Why do we need yet another causal inference tool?

Challenges in the New Era

- High dimension data
 - ▶ Linear/Logit break down—esp. difficult with complex interactions
 - ▶ Matching (KNN/PSM/IPW) suffers poor overlap
- How about use ML when calibrating propensity scores?
 - Overfitting bias
 - Sensitivity to misspecification
 - Standard error not properly accounted for
- What we need:
 - ▶ Handle high-dimentional data
 - ML's flexibility
 - Valid causal effect inference

Double Machine Learning (DML)

Chernozhukov et al. (2018)*

- Combine ML with orthogonalization
 - · Handle high-dimensional data
 - ML
 - · Maintain valid causal estimates and inference
- Widely used in the industry

3

What is Orthogonalization?

Frisch-Waugh-Lovell (FWL) Theorem $~Y=eta_1D+eta_2X+\epsilon$

- We are interested in β_1 —X is called "nuisance" as we don't care about it
- We normally regress ${\it Y}$ on ${\it D}$ and ${\it X}$
 - $\cdot \hat{Y} = \hat{\beta}_1 D + \hat{\beta}_2 X$
- Alternatively, an overkill and redundant approach with THREE regressions
 - Regress Y on X and get the residual \tilde{Y} ,

$$\hat{Y}^* = \hat{\gamma_2}X; \ \tilde{Y} = Y - \hat{Y}^*$$

• Regress D on X and get the residual \tilde{D} ,

$$\hat{D^*} = \hat{\theta}_2 X; \, \tilde{D} = D - \hat{D^*}$$

• When regressing $ilde{Y}$ on $ilde{D}$, we gets exactly the same estimate \hat{eta}_1

^{*} In the original paper, the model is called "Double/Debiased Machine Learning"

An Numerical Example to Demo FWL

Ice Cream Sales Data

```
# load data
icecream = pd.read_csv('https://songyao21.github.io/course_data/ice_cream_sales.csv')
display(icecream)
```

	temp	weekday	cost	price	sales
0	17.3	6	1.5	5.6	173
1	25.4	3	0.3	4.9	196
2	23.3	5	1.5	7.6	207
3	26.9	1	0.3	5.3	241
4	20.2	1	1.0	7.2	227
•••					
9995	24.1	5	0.3	5.7	184
9996	26.1	2	0.3	5.3	191
9997	22.0	6	0.3	5.2	171
9998	21.9	1	1.0	7.5	214
9999	20.0	7	0.5	5.9	237

- sales: outcome
- price: treatment
- temp, weekday, cost:
 - control covariates (nuisance)

5

An Numerical Example to Demo FWL

```
OLS = smf.ols("sales ~ price + temp + C(weekday) + cost",
               data=icecream).fit()
 print(OLS.summary().tables[1])
                                                                [0.025
                                                                            0.9751
                     coef
                             std err
                                                     P>|t|
Intercept
                 201.0207
                               1.005
                                        200.072
                                                      0.000
                                                               199.051
                                                                            202,990
                 -33.3613
C(weekday)[T.2]
                                        -76.978
                               0.433
                                                      0.000
                                                               -34.211
                                                                            -32.512
C(weekday)[T.3]
                 -32,9829
                               0.441
                                        -74.780
                                                      0.000
                                                               -33.847
                                                                            -32.118
C(weekday)[T.4]
                 -32.9927
                                0.440
                                        -75.008
                                                      0.000
                                                               -33.855
                                                                            -32.130
C(weekday)[T.5]
                 -32.9545
                                0.437
                                        -75.456
                                                      0.000
                                                                -33.811
                                                                            -32.098
C(weekday)[T.6]
                 -32.9413
                                0.443
                                        -74.340
                                                      0.000
                                                                -33.810
                                                                            -32.073
C(weekday)[T.7]
                   0.3027
                                0.420
                                          0.721
                                                      0.471
                                                                 -0.521
                                                                             1.126
                  -3.9746
                                0.113
                                        -35.316
                                                                 -4.195
                                                                             -3.754
price
                                                      0.000
                    1.8523
                                                                             1.909
temp
                                0.029
                                         64.416
                                                      0.000
                                                                 1.796
                   3.2713
                                0.272
                                         12.033
                                                      0.000
                                                                  2.738
                                                                             3.804
cost
### Frisch-Waugh-Lovell
 resid_y_ols = smf.ols("sales \sim temp + C(weekday) + cost", data=icecream).fit()
 resid_p_ols = smf.ols("price ~ temp + C(weekday) + cost", data=icecream).fit()
 smf.ols("sales_res ~ price_res",
         data=icecream.assign(sales_res=resid_y_ols.resid, # sales residuals
                              price_res=resid_p_ols.resid) # price residuals
        ).fit().summary().tables[1]
               coef std err
                                  t P>|t| [0.025 0.975]
                     0.114 -1.97e-12 1.000 -0.223 0.223
 Intercept -2.24e-13
           -3.9746 0.112 -35.330 0.000 -4.195 -3.754
 price_res
```

Frisch-Waugh-Lovell Helps with Orthogonalization

- Regress Y on X and get the residual
 - If correctly specified, the residual \tilde{Y} is uncorrelated to X (orthogonal)
- Regress D on X and get the residual,
 - If correctly specified, the residual \tilde{D} is uncorrelated to X (orthogonal)
- The above two regressions "remove all the influences" of X
- Regressing \tilde{Y} on \tilde{D} is free of the influence of X

7

How Does ML Help with Orthogonalization?

Need Correct Specifications in the First Two Regressions

- However, we need the first two regressions are correctly specified (e.g., properly account for nonlinearity and interactions, etc.)
- $Y = \gamma_2 X$ may be incorrectly specified
 - The residual has some remnants of X
- $D = \theta_2 X$ may be incorrectly specified
 - The residual has some remnants of \boldsymbol{X}
- So when regress the residual on residual, we may still have the effect of X

Frisch-Waugh-Lovell on Steroids

- ML comes to the rescue
 - Y = g(X), ML-based estimation
 - D = f(X), ML-based estimation (this is reason behind the "Double")
 - Get the residuals from the first and the second regressions
 - Regress residual on residual to get the effect of D on Y

ć

Frisch-Waugh-Lovell on Steroids

- ▶ To mitigate overfitting (and data leakage), we will also use <u>K-fold cross</u> prediction to obtain out-of-fold residuals
- Overfit g(X):
 - Reduce bias so the residual \tilde{Y} becomes too small—part of D 's effect on Y is captured by g(X)
 - In the residual regression, D's estimate is biased towards 0
- Overfit f(X):
 - Reduce bias so the residual $ilde{D}$ becomes too small—less variation in $ilde{D}$
 - In the residual regression, D's estimate may have a large standard error and become insignificant ($\underline{lack\ of\ statistical\ power}$)

K-fold Cross Prediction and Out-of-fold Residuals

ML Algorithms: Which One to Use?

LightGBM and RF are the most common choices

Use Case	Recommended ML Model	Why
Tabular data (e.g., all data we consider in this course)	Random Forest, LightGBM	Handles nonlinearity, interactions, minimal tuning
High-dimensional sparse data	Lasso / ElasticNet	Strong regularization, interpretable
Large-scale tabular + GPU	XGBoost, LightGBM	Fast, scalable
Deep interactions / complex data	Neural nets	Powerful but harder to tune, risk of overfitting
Mixed continuous/categorical	CatBoost	Handles both well

DML Implementation—Setup

Using LGBM

```
## DML with LGBMRegressor
from lightgbm import LGBMRegressor
from sklearn.model_selection import cross_val_predict

# specify the variables
Y = icecream["sales"]
D = icecream["price"]
X = icecream[["temp", "weekday", "cost"]]

# Create the base model
lgbm = LGBMRegressor(
    objective='regression',
    max_depth=3,
    random_state=42,
    n_jobs=-1, # Use all available cores
    verbose=-1 # Not show progress, replace with 1 to show progress
)
```

13

DML Implementation—Three Regressions

```
## Debiasing Y, getting residuals of Y~X
icecream['sales_resid'] = Y - cross_val_predict(lgbm, X, Y, cv=5)
## Debiasing D, getting residuals of D~X
icecream['price_resid'] = D - cross_val_predict(lgbm, X, D, cv=5)
## Estimate the DML model with the residuals regression
DML_model = smf.ols(formula='sales_resid ~ price_resid', data=icecream).fit()
DML_model.summary().tables[1]
```

```
        coef
        std err
        t
        P>|t|
        [0.025
        0.975]

        Intercept
        -0.0080
        0.072
        -0.110
        0.912
        -0.150
        0.134

        price_resid
        -3.8890
        0.071
        -54.498
        0.000
        -4.029
        -3.749
```

Was -3.97 with OLS

DML Implementation—Using a Library (DoubleML, EconML, and many others)

```
from doubleml import DoubleMLData, DoubleMLPLR
 from lightgbm import LGBMRegressor
 from sklearn.ensemble import RandomForestRegressor
 # Prepare the data for DoubleML
 data = DoubleMLData(icecream, y_col='sales', d_cols='price',
                     x_cols=['temp', 'weekday', 'cost'])
 # Specify the machine learning methods for nuisance parameters
 learner = LGBMRegressor(objective='regression', max_depth=5, n_estimators=100,
                        n_jobs=-1, random_state=42, verbose=-1)
 # Alternatively, you can use RandomForestRegressor
 # learner = RandomForestRegressor(max_depth=5, n_estimators=100,
                                   random_state=42, n_jobs=-1, verbose=0)
 # Initialize the DoubleMLPLR model
 ## Set the random state globally to assure reproductibility,
 ## because DoubleMLPLR cannot set it within the setup or fit step.
 np.random.seed(42)
 random.seed(42)
 dml_plr = DoubleMLPLR(data, ml_m=learner, ml_l=learner, n_folds=5)
 # Fit the model
 dml_plr.fit()
 # Print the results
 print(dml_plr.summary)
                                                        2.5 %
                  std err
                                              P>Itl
price -3.898185 0.103646 -37.610414 1.452650e-309 -4.101328 -3.695042
                                                                                                     15
```

Why the difference in the estimates?

Price is Higher in Summer—So is Demand

- Price sensitivity (elasticity) is lower as measured in abs value.

Connection to Other Methods

Close Ties to Other Models

- Should consider use several as robustness checks, when possible
- Similar to IV—Orthogonalization
 - ▶ IV—Isolate the effect uncorrelated with confounders
 - ▶ DML—Isolate the effect uncorrelated with observables
 - DML still need to be carefully about unobserved confounders
 - Need large covariates/features space
- Complementary to matching—mitigate poor matching

17

Limitations of DML

Not a magic wand

- Relies on observables to control confounders
 - ▶ Assumes no unobserved confounding
 - ▶ Cannot address unobserved confounders
- More complex and computational intensive
 - Requires multiple ML models and cross-fitting
 - Harder to interpret and debug