EE532: Device Simulation Lab Project

Name: Rishikesh Anand & Shamini P R Entry No: 2023EEM1025 & 2023EEM1029

April 24, 2024

 ${\bf Experiment\ Name: High\ Performance\ UTBB\ FDSOI\ Devices\ Featuring\ 20nm\ Gate\ Length\ for\ 14nm}$

Node and Beyond

1 Design parameters for PFET FDSOI:

Table 1: Design parameters PFET FDSOI

Parameters	Type
Channel	Silicon
Source & Drain (For PFET FDSOI)	SiGe
Gate Length (L_G)	20 nm
BOX thickness (T_{box})	25nm
Source & Drain doping	Boron
Source & Drain doping concentration	$1\times 10^{21}/cm^3$
Channel thickness(T_{Si})	6nm
Gate material	Titanium Nitride
Back gate material	Silicon
Back gate doping	$1 \times 10^{18}/cm^3$
Spacer material	Si_3N_4
Metal workfunction of Titanium Nitride	4.5 eV
BOX material	SiO_2
Gate oxide material	SiO_2
High-K oxide	HfO_2

Table 2: Physics models for UTBB FDSOI

Parameters	Value	
Mobility models	Mobility (Doping Dependence High field sat-	
	uration)	
Band gap and Band gap narrow-	Effective intrinsic density (no band gap nar-	
ing	rowing)	
Temperature(K)	300K	
Recombination	SRH (DopingDep Temperature)	
Fermi Level	Fermi	
Area factor	1e3	
Physics material	SiGe MoleFraction (xFraction=0.5)	

2 Device structure

Figure 1: FDSOI PFET Device structure

Figure 2: FDSOI PFET Device structure with meshing

3 Simulated Device physics models

Figure 3: PFET FDSOI hole density

Figure 4: PFET FDSOI electron density

Figure 5: PFET FDSOI electric field

Figure 6: PFET FDSOI srh recombination

Above Simulated Device physics models shown basically shows the PFET FDSOI hole density plot. Here, the source and drain has doping of SiGe in P-type doping so the colour is red. The back gate Silicon Substrate is N-type so the colour is blue. Also, The channel has colour of yellow because of fully depleted region due to inversion layer formation due to both front and back gate biasing in positive value.

Above Simulated Device physics models shown basically shows the PFET FDSOI electron density plot. Here, the colour is basically opposite of hole density as shown. Similarly, the device simulated physics model of electric field and SRH recombination is also shown up.

4 Design parameters for NFET FDSOI:

Table 3: Design parameters

Table 3. Design parameters			
Parameters	Type		
Channel	Silicon		
Source & Drain (For NFET FDSOI)	SiC		
Gate Length (L_G)	20 nm		
BOX thickness (T_{box})	25nm		
Source & Drain doping	Boron		
Source & Drain doping concentration	$1 \times 10^{21}/cm^3$		
Channel thickness(T_{Si})	6nm		
Gate material	Titanium Nitride		
Back gate material	Silicon		
Back gate doping	$1 \times 10^{18}/cm^3$		
Spacer material	Si_3N_4		
Metal workfunction of Titanium Nitride	4.5 eV		
BOX material	SiO_2		
Gate oxide material	SiO_2		
High-K oxide	HfO_2		

Table 4: Physics models

Table 4. I hysics models		
Parameters	Value	
Mobility models	Mobility (Doping Dependence High field sat-	
	uration)	
Band gap and Band gap narrow-	Effective intrinsic density (no band gap nar-	
ing	rowing)	
Temperature(K)	300K	
Recombination	SRH (DopingDep Temperature)	
Fermi Level	Fermi	
Area factor	1e3	
Physics material	SiGe MoleFraction (xFraction=0.5)	

5 Device structure NFET FDSOI

Figure 7: FDSOI NFET Device structure

Figure 8: FDSOI NFET Device structure with meshing

6 Simulated Device physics models

Figure 9: NFET FDSOI hole density

Figure 10: NFET FDSOI electron density

Figure 11: NFET FDSOI electric field

Figure 12: NFET FDSOI srh recombination

Above Simulated Device physics models shown basically shows the NFET FDSOI hole density plot. Here, the source and drain has doping of SiC in N-type doping so the colour is blue. The back gate Silicon Substrate is P-type so the colour is red. Also, The channel has colour of yellow because of fully depleted region due to inversion layer formation due to both front and back gate biasing in positive value.

Above Simulated Device physics models shown basically shows the PFET FDSOI electron density plot. Here, the colour is basically opposite of hole density as shown. Similarly, the device simulated physics model of electric field and SRH recombination is also shown up.

7 Theoretical Calculation

7.1 Calculation of effective oxide thickness (EOT):

As we know, Effective oxide thickness (EOT) is the effective thickness of oxide for a combination of SiO_2 and HfO_2 which is present in both NFET and PFET FDSOI shown in this project.

The Formula for EOT can be written as:-

$$EOT = t_{SiO2} + \left(\frac{\varepsilon_{SiO2}}{\varepsilon_{HfO2}}\right) \times t_{HfO2} \tag{1}$$

Where:

Substituting values of table 5, we get:

$$t_{SiO2} = 1.4nm \tag{2}$$

Table 5: Known values for EOT equation

Parameters	Value
Silicon dioxide thickness (t_{SiO2})	0.6nm
Relative permittivity of Silicon dioxide (ε_{SiO2})	3.9
Relative permittivity of Hafnium dioxide(ε_{HfO2})	22
EOT	0.9nm

7.2 Calculation of Oxide capacitance, C_{ox} :

$$C_{ox} = \frac{\varepsilon_{ox}}{EOT} \tag{3}$$

On calculation, we get:

$$C_{ox} = 3.95 \frac{\mu F}{cm^2} \tag{4}$$

7.3 Calculation of ϕ_f :

We know the formula for ϕ_f where :

 $N_A = 1 \times 10^{21}/cm^3$ $n_i = 1.5 \times 10^{10}/cm^3$

After putting all values ,we get:

$$\frac{kT}{a} \times ln(\frac{Na}{ni}) \tag{5}$$

On calculation. we get:

$$\phi_f = 0.383V \tag{6}$$

7.4 Calculation of work function ϕ_s

$$\phi_s = \chi + \frac{E_G}{2} + \phi_f \tag{7}$$

where:

 $\chi = 4.05 \text{eV}$ (Electron affinity of silicon)

 $E_G = 1.12 \text{eV}$ (Bandgap energy of silicon)

 $\phi_f = 0.383 \text{V}$

After putting all values ,we get:

$$\phi_s = 4.83eV \tag{8}$$

8 Analysis

8.1 I_D/V_G curve of PFET FDSOI:

1. Vdd = 0.9 V & Vdd = 0.05V

Figure 13: FDSOI PFET I_D/V_G curve

2. Vdd = 0.75 V & Vdd = 0.05V

Figure 14: FDSOI PFET I_D/V_G curve

8.2 I_D/V_G curve of NFET FDSOI:

Vdd = 0.9 V

Figure 15: FDSOI NFET I_D/V_G curve

Vdd = 0.75 V

Figure 16: FDSOI NFET I_D/V_G curve at $V_{DD} = 0.75$ V & 0.05V

8.3 I_D/V_G curve of PFET/NFET FDSOI:

(a) Vdd = 0.9 V & Vdd = 0.05V

Figure 17: FDSOI N/PFET I_D/V_G curve

(b) Vdd = 0.75 V Vdd = 0.05 V

Figure 18: FDSOI N/PFET I_D/V_G curve

(a) DIBL of NFET
$$V_{dd}$$
 sat = 0.9 V and V_{dd} lin = 0.05 V

$$DIBL = \frac{Vth(linear) - Vth(sat)}{Vds(sat) - Vds(linear)}$$

$$DIBL = \frac{0.6 - 0.52}{0.9 - 0.05} = 0.094 = 94mV/V$$

(b) DIBL of NFET $V_{dd}sat = 0.75 \text{ V}$ and $V_{dd}lin = 0.05 \text{ V}$

$$DIBL = \frac{Vth(linear) - Vth(sat)}{Vds(sat) - Vds(linear)}$$

$$DIBL = \frac{0.72 - 0.52}{0.75 - 0.05} = 0.285 = 285 \, mV/V$$

8.4 I_D/V_G of PFET with back bias from -2V to 2V at Vdd=0.75V

Figure 19: FDSOI PFET I_D/V_G curve with back biasing

Table 6: I_{on}/I_{off} of PFET with back bias from -2V to 2 V

$I_{on}(\mu A)$	I _{off} (f A)	I_{on} / I_{off} (10 ¹⁰)	Back Bias Voltage (V)
		/	
61.52	3.01	20.44	-2
52.32	3.19	16.40	-1
44.29	3.28	13.5	0
37.18	3.38	11	1
30.79	3.48	8.85	2

As back bias voltage increases from -2V to 2V I_{on}/I_{off} of PFET decreases.

8.5 I_D/V_G of NFET with back bias from -2V to 2V at Vdd=0.75V

Figure 20: FDSOI NFET I_D/V_G curve with back biasing

As back bias voltage increases from -2V to 2V I_{on}/I_{off} of NFET decreases.

Table 7: I_{on}/I_{off} of NFET with back bias from -2V to 2 V

$I_{on}(\mu A)$	I_{off} (f A)	Ion / Ioff	Back Bias Voltage (V)
0.1458	7.69e-11	1.89e13	-2
0.1356	5.655e-10	2.3e12	-1
0.126	5.743e-9	2.19e11	0
0.1164	6.599e-8	1.76e10	1
0.1069	9.159e-7	1.16e9	2

9 Conclusion

9.1 Comparison table

Table 8: Comparison table

Parameters	Paper Work	Simulated Work
V_{DD}	0.9V	0.9V
$N/P ext{ DIBL } (mV/V)$	80/100	97/108
N/P Subthreshold swing(S.S) (mV/dec)	90/110	90/105
N/P Ion (mA/ μm)	1.12/1.22	4.4e-5/126e-3
N/P Ioff (mA/ μ m)	0.63/0.67	3.28e-15/5.74e-9