Resolución de SLNHs

Rafael Ramírez Ros

Clase 9 (de problemas de EDOs-GM)

Abreviaturas

- SL = Sistema lineal
- SLH/SLNH = Sistema lineal homogéneo/no homogéneo
- CC = Coeficientes constantes
- PVI = Problema de valor inicial (o de Cauchy)
- LI/LD = Linealmente independiente/dependiente
- VAP/VEP = Valor/vector propio
- PEQ = Punto de equilibrio

Estructura de la soluciones

- Sea $A: I \to \mathcal{M}_{n \times n}(\mathbb{R})$ una función matricial y sea $b: I \to \mathbb{R}^n$ una función vectorial, ambas continuas en un intervalo $I \subset \mathbb{R}$.
- lacksquare La solución general del SLNH $oldsymbol{x}'=A(t)oldsymbol{x}+oldsymbol{b}(t)$ es

$$\boldsymbol{x}_{\mathrm{g}}(t) = \boldsymbol{x}_{\mathrm{h}}(t) + \boldsymbol{x}_{\mathrm{p}}(t)$$

donde:

- **x**_h(t) es la solución general del SLH x' = A(t)x; y
- lacksquare $m{x}_{p}(t)$ es una solución particular del SLNH $m{x}'=A(t)m{x}+m{b}(t).$
- Si $\Phi(t)$ es una matriz fundamental del SLH $\mathbf{x}' = A(t)\mathbf{x}$,

$$\boldsymbol{x}_{\mathsf{h}}(t) = \Phi(t)\boldsymbol{c},$$

donde el vector constante $c \in \mathbb{R}^n$ queda libre.

Variación de las constantes (1a parte)

- Buscamos una solución particular $x_p(t)$ sustituyendo el vector constante c por una función u(t).
- Si la función vectorial $u: I \to \mathbb{R}^n$ es derivable y

$$\Phi(t)\boldsymbol{u}'(t)=\boldsymbol{b}(t),$$

entonces

$$\boldsymbol{x}_{\mathsf{p}}(t) = \Phi(t)\boldsymbol{u}(t)$$

es una solución particular del SLNH $\mathbf{x}' = A(t)\mathbf{x} + \mathbf{b}(t)$.

- No se necesita ninguna constante de integración al calcular las primitivas, pues solo queremos una solución particular.
- Ejemplos: Problemas 25 y 27.

Variación de las constantes (2a parte)

- Sea $A \in \mathcal{M}_{n \times n}(R)$ una matriz constante.
- Sea $b: I \rightarrow \mathbb{R}^n$ una función vectorial continua.
- Condición inicial: $\mathbf{x}(t_0) = \mathbf{x}_0$ con $t_0 \in I$ y $\mathbf{x}_0 \in \mathbb{R}^n$.
- La única solución del PVI es:

$$\mathbf{x}(t) = \mathrm{e}^{(t-t_0)A}\mathbf{x}_0 + \int_{t_0}^t \mathrm{e}^{(t-s)A}\mathbf{b}(s)\mathrm{d}s.$$

■ Ejemplo: Problema 26.

Coeficientes indeterminados (término constante)

- SLNH: $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$, con $A \in \mathcal{M}_{n \times n}(\mathsf{R})$ y $\mathbf{b} \in \mathsf{R}^n$ constantes.
- ¿Existen soluciones particulares constantes: $\mathbf{x}_{p}(t) \equiv \alpha \in \mathsf{R}^{n}$?
- Nota: Las soluciones constantes son PEQs del SLNH.
- Observación: $\mathbf{x}_{p}(t) \equiv \alpha$ solución particular $\Leftrightarrow A\alpha = -\mathbf{b}$.
- Respuestas:
 - **1** $det(A) \neq 0$ (o sea, $\lambda = 0$ no es un VAP de A) $\Rightarrow \exists ! \alpha \in \mathbb{R}^n$;
 - 2 Si det(A) = 0 y $rango(A|\mathbf{b}) = rango(A) \Rightarrow \exists \infty \alpha \in \mathbf{R}^n$; y
 - 3 Si $\det(A) = 0$ y rango $(A|\mathbf{b}) > \operatorname{rango}(A) \Rightarrow \exists \alpha \in \mathbf{R}^n$.
- Ejercicio: Si $\lambda = 0$ es un VAP semi-simple, $\exists ! \ \alpha, \beta \in \mathbb{R}^n$ tales que $\mathbf{x}_{\mathbf{p}}(t) = \alpha + \beta t$ es una solución particular del SLNH.
- Ejemplo: Problema 23.

Coeficientes indeterminados (término "exponencial")

- SLNH: $\mathbf{x}' = A\mathbf{x} + \mathbf{p}(t)e^{\lambda t}$, donde
 - $A \in \mathcal{M}_{n \times n}(\mathbf{R})$ es una matriz constante;
 - \blacksquare $\lambda \in \mathbf{R}$ no es un VAP de A; y
 - $p(t) = \sum_{j=0}^{m} p_j t^j \in (\mathbb{R}^n)_m[t]$ es un polinomio de grado $\leq m$.
- Teorema: $\exists ! \ \boldsymbol{q}(t) \in \left(\mathsf{R}^n\right)_m[t]$ tal que

$$oldsymbol{x}_{\mathsf{p}}(t) = oldsymbol{q}(t) \mathrm{e}^{\lambda t}$$

es una solución particular del SLNH.

- Demostración: Dado $\boldsymbol{p}(t) = \sum_{j=0}^{m} \boldsymbol{p}_{j} t^{j}$ imponemos que $q(t) = \sum_{j=0}^{m} \boldsymbol{q}_{j} t^{j}$ cumpla la tesis. Obtenemos un sistema lineal compatible determinado en las incógnitas $\boldsymbol{q}_{0}, \ldots, \boldsymbol{q}_{m}$.
- Advertencia: Es un sistema de dimensión (m+1)n.
- Nota: Si $\lambda = 0$, el término no homogéneo es polinomial.
- Ejemplos: Problemas 24a y 27.

Coeficientes indeterminados (término "trigonométrico")

- SLNH: $\mathbf{x}' = A\mathbf{x} + e^{\alpha t} [\mathbf{c}(t)\cos(\beta t) + \mathbf{s}(t)\sin(\beta t)]$, donde
 - $A \in \mathcal{M}_{n \times n}(\mathbf{R})$ es una matriz constante;
 - $\lambda_{\pm} = \alpha \pm \beta i \in \mathbf{C} \setminus \mathbf{R}$ no son VAPs de A; y
 - $c(t), s(t) \in (\mathbb{R}^n)_m[t]$ son dos polinomios de grado $\leq m$.
- Tesis: \exists ! $\boldsymbol{b}(t), \boldsymbol{r}(t) \in (\mathsf{R}^n)_m[t]$ tales que

$$\mathbf{x}_{p}(t) = e^{\alpha t} [\mathbf{b}(t)\cos(\beta t) + \mathbf{r}(t)\sin(\beta t)]$$

es una solución particular del SLNH.

- Demostración: Dados c(t) y s(t), imponemos que b(t) y r(t) cumplan la tesis. Obtenemos un sistema lineal compatible determinado en las incógnitas $b_0, r_0, \ldots, b_m, r_m$.
- Advertencia: Es un sistema de dimensión 2(m+1)n.
- Ejemplo: Problema 24b.

Reducción de la dimensión (caso SLHs)

- SLH: $\mathbf{x}' = A(t)\mathbf{x}$ con A(t) continua en un intervalo $I \subset \mathbf{R}$.
- $h_1(t), \dots, h_m(t)$ soluciones LI del SLH.
- $h_1(t), \ldots, h_n(t)$ base para todo $t \in \mathbb{R}$.
- \blacksquare H(t) matriz obtenida al poner esas funciones por columnas.
- Cambio de variable dependiente: $\mathbf{x} = H(t)\mathbf{u}$.
- SLH transformado: u' = B(t)u, donde las primeras m columnas de B(t) son nulas.
- Hemos reducido la "dimensión" de n a n-m.
- Ejemplo con m = 1 y n = 2: Problema 28.

Sistemas triangulares

- SLNH: $\mathbf{x}' = A(t)\mathbf{x} + \mathbf{b}(t)$ con A(t) triangular inferior/superior.
- Resolvemos recursivamente en orden descendente/ascendente las ecuaciones del sistema, empezando por la primera/última.
- Ejemplo: Problema 29.