6) Aim: Write a Python program to implement Logistic Regression and plot the graphs.

In [113...

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

With Iris Dataset

Tn	[3].	df -	nd noad	csv("Iris	cev")
411	1 2 1 .	uı –	Du l Cau	COVI TITO	. L S V

In [4]: df

Out[4]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	lris- setosa
1	2	4.9	3.0	1.4	0.2	Iris- setosa
2	3	4.7	3.2	1.3	0.2	Iris- setosa
3	4	4.6	3.1	1.5	0.2	Iris- setosa
4	5	5.0	3.6	1.4	0.2	Iris- setosa
•••				•••		
145	146	6.7	3.0	5.2	2.3	lris- virginica
146	147	6.3	2.5	5.0	1.9	lris- virginica
147	148	6.5	3.0	5.2	2.0	lris- virginica
148	149	6.2	3.4	5.4	2.3	lris- virginica
149	150	5.9	3.0	5.1	1.8	lris- virginica

150 rows × 6 columns

In [5]: import seaborn as sns

In [6]: sns.pairplot(df,hue='Species') Out[6]: <seaborn.axisgrid.PairGrid at 0x228b754a610> 150 125 50 25 SepalWidthCm Iris-setosa 2.0 PetalWidthCm 150

In [7]: X = df.iloc[:,1:5]
Y = df.iloc[:,-1]

In [8]: X

```
Out[13]: 1.0
In [14]: import numpy as np
         from sklearn.metrics import accuracy_score,f1_score,recall_score,precision_score
In [15]: print('Accuracy: %.3f' % accuracy_score(Y_test, Y_pred))
         print('f1 score: %.3f' % f1_score(Y_test, Y_pred,average='micro'))
         print('recall: %.3f' % recall_score(Y_test, Y_pred, average='macro'))
         print('Precision: %.3f' % precision_score(Y_test, Y_pred,average='macro'))
        Accuracy: 1.000
        f1 score: 1.000
        recall: 1.000
        Precision: 1.000
In [16]: import numpy as np
         def callfuct():
             user_input = []
             SepalLengthCm = float(input("Enter value between 4.300000 to 7.900000 for Se
             SepalWidthCm = float(input("Enter value between 2.000000 to 4.400000 for Se
             PetalLengthCm = float(input("Enter value between 1.000000 to 6.900000 for P
             PetalWidthCm = float(input("Enter value between 0.100000 to 2.500000 for Pe
             user_input.append([SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm]
             user_input = np.array(user_input)
             predicted_classes = dt.predict(user_input)
             print(predicted_classes)
In [17]: callfuct()
        ['Iris-versicolor']
        C:\Users\nayan\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn
        \base.py:493: UserWarning: X does not have valid feature names, but LogisticRegre
        ssion was fitted with feature names
          warnings.warn(
```

With Mushrooms Dataset

```
In [18]: df1 = pd.read_csv("mushrooms.csv")
In [19]: df1
```

Out[19]:

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	•••
0	р	Х	S	n	t	р	f	С	n	k	
1	е	х	S	у	t	а	f	С	b	k	
2	е	b	S	W	t	I	f	С	b	n	
3	р	х	у	W	t	р	f	С	n	n	
4	е	х	S	g	f	n	f	W	b	k	
•••											
8119	е	k	S	n	f	n	a	С	b	у	
8120	е	х	S	n	f	n	a	С	b	у	
8121	е	f	S	n	f	n	а	С	b	n	
8122	р	k	у	n	f	у	f	С	n	b	
8123	е	Х	S	n	f	n	а	С	b	V	

8124 rows × 23 columns

```
df1.isnull().sum()
In [20]:
Out[20]: class
                                       0
                                       0
          cap-shape
                                       0
          cap-surface
          cap-color
                                       0
                                       0
          bruises
          odor
                                       0
          gill-attachment
                                       0
          gill-spacing
                                       0
          gill-size
                                       0
          gill-color
                                       0
          stalk-shape
                                       0
          stalk-root
                                       0
          stalk-surface-above-ring
                                       0
          stalk-surface-below-ring
                                       0
          stalk-color-above-ring
          stalk-color-below-ring
                                       0
          veil-type
                                       0
                                       0
          veil-color
          ring-number
                                       0
                                       0
          ring-type
                                       0
          spore-print-color
                                       0
          population
                                       0
          habitat
          dtype: int64
         missing_count = df1.isin(['?']).sum()
In [28]:
         missing_count
```

```
Out[28]: class
                                         0
          cap-shape
                                         0
          cap-surface
                                         0
                                         0
          cap-color
                                         0
          bruises
          odor
                                         0
          gill-attachment
                                         0
          gill-spacing
                                         0
          gill-size
                                         0
          gill-color
                                         0
          stalk-shape
                                         0
                                      2480
          stalk-root
          stalk-surface-above-ring
                                         0
          stalk-surface-below-ring
                                         0
          stalk-color-above-ring
                                         0
          stalk-color-below-ring
                                         0
                                         0
          veil-type
          veil-color
                                         0
                                         0
          ring-number
          ring-type
                                         0
                                         0
          spore-print-color
          population
                                         0
                                         0
          habitat
          dtype: int64
In [30]: # Replace '?' with NaN
         data = df1.replace('?', pd.NA)
         # Impute missing values with mode
         data = df1.apply(lambda col: col.fillna(col.mode()[0]))
         data
```

Out[30]:

		class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	•••
	0	р	Х	S	n	t	р	f	С	n	k	
	1	е	Х	S	у	t	a	f	С	b	k	
	2	е	b	S	W	t	I	f	С	b	n	
	3	р	Х	у	W	t	р	f	С	n	n	
	4	е	Х	S	g	f	n	f	W	b	k	
	•••					•••	•••					
	8119	е	k	S	n	f	n	a	С	b	у	
1	8120	е	Х	S	n	f	n	a	С	b	у	
	8121	е	f	S	n	f	n	a	С	b	n	
1	8122	р	k	У	n	f	у	f	С	n	b	
	8123	е	Х	S	n	f	n	а	С	b	у	

8124 rows × 23 columns

```
In [35]: from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
```

```
In [38]: df1['class'] = encoder.fit_transform(df1['class'])
    df1['cap-shape'] = encoder.fit_transform(df1['cap-shape'])
    df1['cap-surface'] = encoder.fit_transform(df1['cap-surface'])
    df1['cap-color'] = encoder.fit_transform(df1['cap-color'])
    df1['bruises'] = encoder.fit_transform(df1['bruises'])
    df1['odor'] = encoder.fit_transform(df1['odor'])

    df1['gill-attachment'] = encoder.fit_transform(df1['gill-attachment'])

    df1['gill-spacing'] = encoder.fit_transform(df1['gill-spacing'])

    df1['stalk-root'] = encoder.fit_transform(df1['gill-spacing'])

    df1['gill-size'] = encoder.fit_transform(df1['gill-size'])

    df1['gill-color'] = encoder.fit_transform(df1['gill-color'])

    df1['stalk-shape'] = encoder.fit_transform(df1['stalk-shape'])

    df1['stalk-surface-above-ring'] = encoder.fit_transform(df1['stalk-surface-above df1['stalk-surface-below-ring'] = encoder.fit_transform(df1['stalk-surface-below-ring'] = encoder.fit_transform(df1['stalk-surface-below-ring']
```

```
df1['stalk-color-above-ring'] = encoder.fit_transform(df1['stalk-color-above-ring']
           df1['stalk-color-below-ring'] = encoder.fit_transform(df1['stalk-color-below-ring']
           df1['veil-type'] = encoder.fit_transform(df1['veil-type'])
           df1['veil-color'] = encoder.fit_transform(df1['veil-color'])
           df1['ring-number'] = encoder.fit_transform(df1['ring-number'])
           df1['ring-type'] = encoder.fit_transform(df1['ring-type'])
           df1['spore-print-color'] = encoder.fit_transform(df1['spore-print-color'])
           df1['population'] = encoder.fit_transform(df1['population'])
           df1['habitat'] = encoder.fit_transform(df1['habitat'])
In [39]:
          df1
Out[39]:
                                        cap-
                                                                    gill-
                                                                             gill-
                                                                                  gill-
                                                                                         gill-
                         cap-
                                  cap-
                 class
                                              bruises odor
                        shape surface
                                                             attachment spacing
                                                                                  size color
                                       color
              0
                     1
                            5
                                    2
                                           4
                                                   1
                                                          6
                                                                       1
                                                                               0
                                                                                     1
                                                                                            4
                                    2
                                           9
                                                   1
              1
                     0
                                                          0
                                                                       1
                                                                                     0
                                                                                            4
              2
                            0
                                    2
                                                   1
                                                          3
                     0
                                           8
                                                                       1
                                                                               0
                                                                                     0
                                                                                            5
              3
                     1
                            5
                                    3
                                           8
                                                   1
                                                          6
                                                                       1
                                                                               0
                                                                                     1
                                                                                            5
                                                   0
                                                          5
              4
                     0
                            5
                                    2
                                           3
                                                                       1
                                                                               1
                                                                                     0
                                                                                            4
           8119
                    0
                            3
                                    2
                                                   0
                                                          5
                                                                      0
                                                                               0
                                           4
                                                                                     0
                                                                                           11
           8120
                            5
                                    2
                                                   0
                                                          5
                     0
                                           4
                                                                      0
                                                                                     0
                                                                                           11
           8121
                            2
                                    2
                                                   0
                                                          5
                                                                      0
                                                                                     0
                                                                                            5
                     0
                                           4
                                                                               0
           8122
                            3
                     1
                                    3
                                           4
                                                   0
                                                          8
                                                                       1
                                                                               0
                                                                                     1
                                                                                            0
                            5
                                    2
                                                   0
                                                          5
                                                                      0
                                                                               0
                                                                                     0
           8123
                    0
                                           4
                                                                                           11
          8124 rows × 23 columns
          X = df1.iloc[:,1:24]
In [40]:
           Y = df1.iloc[:,0:1]
In [102...
           from sklearn.model_selection import train_test_split
           X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random
           from sklearn.linear_model import LogisticRegression
In [103...
```

dt=LogisticRegression()

```
In [104...
         dt.fit(X_train,Y_train)
         C:\Users\nayan\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn
         \utils\validation.py:1300: DataConversionWarning: A column-vector y was passed wh
         en a 1d array was expected. Please change the shape of y to (n_samples, ), for ex
         ample using ravel().
           y = column_or_1d(y, warn=True)
         C:\Users\nayan\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn
         \linear_model\_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (sta
         tus=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
Out[104...
               LogisticRegression
          LogisticRegression()
In [105...
          Y_pred = dt.predict(X_test)
          Y_pred
Out[105...
          array([0, 1, 0, ..., 0, 0, 0], dtype=int64)
          dt.score(X_test, Y_test)
In [106...
Out[106...
          0.9502708025603152
In [109...
          from sklearn.metrics import accuracy_score,f1_score,recall_score,precision_score
In [110...
          print('Accuracy: %.3f' % accuracy score(Y test, Y pred))
          print('f1 score: %.3f' % f1_score(Y_test, Y_pred,average='micro'))
          print('recall: %.3f' % recall_score(Y_test, Y_pred, average='macro'))
          print('Precision: %.3f' % precision_score(Y_test, Y_pred,average='macro'))
          # Print confusion matrix
         Accuracy: 0.950
         f1 score: 0.950
         recall: 0.950
         Precision: 0.950
In [111...
         df1.corr()
```

Out[111...

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachmen
class	1.000000	0.052951	0.178446	-0.031384	-0.501530	-0.093552	0.129200
cap-shape	0.052951	1.000000	-0.050454	-0.048203	-0.035374	-0.021935	0.078865
cap- surface	0.178446	-0.050454	1.000000	-0.019402	0.070228	0.045233	-0.03418(
cap-color	-0.031384	-0.048203	-0.019402	1.000000	-0.000764	-0.387121	0.041436
bruises	-0.501530	-0.035374	0.070228	-0.000764	1.000000	-0.061825	0.137359
odor	-0.093552	-0.021935	0.045233	-0.387121	-0.061825	1.000000	-0.05959(
gill- attachment	0.129200	0.078865	-0.034180	0.041436	0.137359	-0.059590	1.000000
gill- spacing	-0.348387	0.013196	-0.282306	0.144259	-0.299473	0.063936	0.071489
gill-size	0.540024	0.054050	0.208100	-0.169464	-0.369596	0.310495	0.108984
gill-color	-0.530566	-0.006039	-0.161017	0.084659	0.527120	-0.129213	-0.128567
stalk-shape	-0.102019	0.063794	-0.014123	-0.456496	0.099364	0.459766	0.186485
stalk-root	-0.348387	0.013196	-0.282306	0.144259	-0.299473	0.063936	0.071489
stalk- surface- above-ring	-0.334593	-0.030417	0.089090	-0.060837	0.460824	0.118617	-0.088916
stalk- surface- below-ring	-0.298801	-0.032591	0.107965	-0.047710	0.458983	0.061820	-0.116177
stalk-color- above-ring	-0.154003	-0.031659	0.066050	0.002364	0.083538	0.174532	0.099299
stalk-color- below-ring	-0.146730	-0.030390	0.068885	0.008057	0.092874	0.169407	0.097160
veil-type	NaN	NaN	NaN	NaN	NaN	NaN	NaN
veil-color	0.145142	0.072560	-0.016603	0.036130	0.119770	-0.057747	0.897518
ring- number	-0.214366	-0.106534	-0.026147	-0.005822	0.056788	0.111905	0.093236
ring-type	-0.411771	-0.025457	-0.106407	0.162513	0.692973	-0.281387	-0.146689
spore- print-color	0.171961	-0.073416	0.230364	-0.293523	-0.285008	0.469055	-0.029524
population	0.298686	0.063413	0.021555	-0.144770	0.088137	-0.043623	0.165575
habitat	0.217179	-0.042221	0.163887	0.033925	-0.075095	-0.026610	-0.030304

23 rows × 23 columns

In [112...
import seaborn as sns
sns.pairplot(df1, hue='class')

Out[112... <seaborn.axisgrid.PairGrid at 0x228bce02650>

In []: