Bifurcation in parameter dependent systems

Numerical Methods for Systems Biology WS 12/13

Jonas Ibn-Salem

10.01.13

Overview

1 Introduction: Fixed Point Analysis

2 Bifurcation

Example: Logistig growth with harvesting

3 Hopf Bifurcation

4 Numerical Bifurcation Analysis: Path following

Introduction: Fixed Point Analysis

Given the system of differential equations:

$$y' = f(y)$$

Definition

A fixed point y^* is defined by $f(y^*) = 0$.

- Solve the equation f(y) = 0
- Analyse eigenvalues of the Jacobian at fixed points.

Bifurcation

Now: System with *controle parameter* μ .

$$y' = f(y, \mu)$$

How does μ influence the fixed points?

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Bifurcation

Now: System with *controle parameter* μ .

$$y' = f(y, \mu)$$

How does μ influence the fixed points?

- Change in FP stability
- Change in FP number and location.

Bifurcation

Now: System with *controle parameter* μ .

$$y' = f(y, \mu)$$

How does μ influence the fixed points?

- Change in FP stability
- Change in FP number and location.

Definition

Bifurcation is the changing of the character of an equalibrium point and/or the creation of extra ones by alteration of a control parameter.

The value of μ where bifurcation occurs is called a *bifurcation point*.

Example: Logistig growth with harvesting

Growth of a (fish) population under harvesting (fishing):

$$y' = \frac{1}{10}y(10 - y) - \mu$$

Solving $f(y, \mu) = 0$ for any parameter μ .

Example: Logistig growth with harvesting

Growth of a (fish) population under harvesting (fishing):

$$y' = \frac{1}{10}y(10 - y) - \mu$$

Solving $f(y, \mu) = 0$ for any parameter μ .

Fixed points at

$$y_{1/2} = 5 \pm \sqrt{25 - 10\mu}$$

Stability:

$$\lambda = \frac{df}{dy} = -\frac{2}{10}y + 1$$

Hopf Bifurcation

Definition

A *Hopf Bifurcation* is the appearance or disappearance of a periodic orbit (limit cycle) through a local change in the stability properties of a fixed point.

Appears when a pair of complex

conjugate eigenvalues around the fixed point crosses the imaginary axis of the complex plane.

Hopf Bifurcation example

chlorine dioxide-iodine-malonic acid reaction

iodine: $y_1' = \mu - y_1 - \frac{4y_1y_2}{y_1^2 + 1}$ chlorine dioxine: $y_2' = y_1(1 - \frac{y_2}{y_1^2 + 1})$

- Fixed points at $(y_1, y_2) = (\frac{\mu}{5}, \frac{1}{25}(\mu^2 + 25))$
- Bifurcation point at $\mu \approx 7.3$

bla

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

Numerical Bifurcation Analysis

How to draw the bifurcation diagram and find bifurcation points?

Fixed point analysis for equidistant parameters μ is inefficient.

Idea

Follow the fixed point around the fold bifurcation curve.

Treating μ as an aditional dependent variable in phase space and solve

$$f(y,\mu)=0$$

.

Numerical Bifurcation Analysis

- Given two nearby points $z_1=(y_1,\mu_1)$ and $z_2=(y_2,\mu_2)$
- Initial approximation $z_a = 2z_2 z_1$ as starting point for Newton's method.
- Additional equation: $(z_3 z_a) \cdot (z_a z_2) = 0$

Jonas Ibn-Salem ()

Bifurcation

Bifurcation Diagram for $y' = \mu y - y^3$

• Fixing $\mu=-1$ yield $z_1=(0,-1)$ and $z_2=(0,-1+\delta\mu)$ for small approximate distance $\delta\mu$

Bifurcation Diagram for $y' = \mu y - y^3$

• Fixing $\mu=-1$ yield $z_1=(0,-1)$ and $z_2=(0,-1+\delta\mu)$ for small approximate distance $\delta\mu$

4□ > 4同 > 4 = > 4 = > = 900

Bifurcation Diagram for $y' = \mu y - y^3$

• Fixing $\mu=-1$ yield $z_1=(0,-1)$ and $z_2=(0,-1+\delta\mu)$ for small approximate distance $\delta\mu$

• Other fixed points for $\mu=1$ yield $z_1=(1,1)$ and $z_2=(1,1+\delta\mu)$

Bifurcation Diagram for $y' = \mu y - y^3$

- Fixing $\mu=-1$ yield $z_1=(0,-1)$ and $z_2=(0,-1+\delta\mu)$ for small approximate distance $\delta\mu$

• Other fixed points for $\mu=1$ yield $z_1=(1,1)$ and $z_2=(1,1+\delta\mu)$

Summary

• ...