نوجه:

از نوشتن با مداد خودداری نمایید. استفاده از ماشین حساب مجاز نیست.

در طول امتحان به هیچ سوالی پاسخ داده نمی شود.

سوال 1 معادله دیفرانسیل دسته دایره هایی را بنویسید که مرکز آنها روی محور xها واقع است.

سوال ۲ – معادله مرتبه اول $y' = \frac{x+7y-4}{7x+y-\Delta}$ را حل کنید.

سوال ۳ – معادله دیفرانسیل زیر را حل کنید :

 $(\mathbf{f} x^{\mathsf{T}} y^{\mathsf{T}} - \mathbf{T} y) dx + (\mathbf{T} x^{\mathsf{T}} y^{\mathsf{T}} - x) dy = \mathbf{1}$

سوال ۴ – معادله دیفرانسیل با مقدار اولیه $x(x^{\mathsf{r}}-\mathsf{I})y'-y=x^{\mathsf{r}}y^{\mathsf{r}}$, $y(\mathsf{r})=\frac{-\mathsf{I}}{\mathsf{r}}$ معادله دیفرانسیل با مقدار اولیه

نمره : معادله دیفرانسیل مرتبه دوم زیر را به کمک روش ضرایب نامعین حل کنید $y''+y=(9x+14)e^x+4\sin x$

موفق باشيد

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۱۳ گروه هماهنگ) نیمسال دوم ۹۴–۱۳۹۳

برای پیدا کردن معادله یک دایره که مرکز آن بر روی محور xها واقع باشد به صورت $(x-a)^{\mathsf{r}} + y^{\mathsf{r}} = r^{\mathsf{r}}$ است. برای پیدا کردن معادله دیفرانسیل این دسته از دایره ها دو مرتبه از طرفین تساوی مشتق می گیریم $\mathsf{r}(x-a) + \mathsf{r}(yy)' = \mathsf{r}$ $\mathsf{r}(x-a) + \mathsf{r}(yy)' = \mathsf{r}$ $\mathsf{r}(x-a) + \mathsf{r}(yy)' = \mathsf{r}$

. را اعمال می کنیم. $\begin{cases} x = X + a \\ y = Y + b \end{cases}$ را اعمال می کنیم.

$$\frac{dY}{dX} = \frac{X + \mathsf{Y}Y + (a + \mathsf{Y}b - \mathsf{f})}{\mathsf{Y}X + Y + (\mathsf{Y}a + b - \Delta)} \quad \rightarrow \quad \begin{cases} a + \mathsf{Y}b - \mathsf{f} = \bullet \\ \mathsf{Y}a + b - \Delta = \bullet \end{cases} \quad \Rightarrow \quad \begin{cases} a = \mathsf{Y} \\ b = \mathsf{I} \end{cases}$$

با توجه به این مقادیر ، به معادله همگن $\frac{dY}{dX} = \frac{X + \Upsilon Y}{\Upsilon X + Y}$ می رسیم.

 $u+X\frac{du}{dX}=\frac{X+\Upsilon Xu}{\Upsilon X+Xu}$ \to $X\frac{du}{dX}=\frac{\Upsilon+\Upsilon u}{\Upsilon+u}-u=\frac{\Upsilon-u^{\Upsilon}}{\Upsilon+u}$ \to $\frac{\Upsilon+u}{\Upsilon-u^{\Upsilon}}du=\frac{dX}{X}$: ماريم Y=Xu داريم.

 $\int \frac{\mathsf{T} + u}{\mathsf{I} - u^\mathsf{T}} du = \int \frac{dX}{X} \to \frac{\mathsf{I}}{\mathsf{T}} \int (\frac{\mathsf{I}}{\mathsf{I} + u} + \frac{\mathsf{T}}{\mathsf{I} - u}) du = \int \frac{dX}{X} \to \frac{\mathsf{I}}{\mathsf{T}} [\ln(\mathsf{I} + u) - \mathsf{T} \ln(\mathsf{I} - u)] = \ln(AX)$ $\mathsf{I} + \frac{Y}{X} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T} \quad \text{i. } \ln \frac{\mathsf{I} + u}{(\mathsf{I} - u)^\mathsf{T}} = \ln(AX)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T} \quad \text{i. } \ln \frac{\mathsf{I} + u}{(\mathsf{I} - u)^\mathsf{T}} = \ln(AX)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} \to X + Y = a(X - Y)^\mathsf{T}$ $\mathsf{I} + \frac{\mathsf{I}}{\mathsf{I}} = (AX)^\mathsf{T} (\mathsf{I} - \frac{Y}{X})^\mathsf{T} (\mathsf{I$

این معادله کامل نیست اما چون $\frac{M_y - N_x}{N} = \frac{\mathbf{r} x^{\mathsf{r}} y^{\mathsf{r}} - 1}{\mathbf{r} x^{\mathsf{r}} y^{\mathsf{r}} - x} = \frac{1}{x}$ مستقل از y است بنابر این یک عامل انتگرالساز یک متغیره بر

: و با ضرب این عامل انتگرالساز در طرفین معادله داریم $\mu = e^{\int \frac{1}{x} dx} = x$: دارد. داریم دارد.

$$(\mathbf{f} x^{\mathsf{r}} y^{\mathsf{r}} - \mathbf{f} x y) dx + (\mathbf{f} x^{\mathsf{r}} y^{\mathsf{r}} - x^{\mathsf{r}}) dy = \mathbf{f}$$

$$x^{\mathsf{r}} y^{\mathsf{r}} - x^{\mathsf{r}} y = c$$
: خه یک معادله کامل است و جواب آن عبارت است از

. یک معادله برنولی است. طرفین معادله را در $y^{-\mathsf{r}}$ ضرب می کنیم. یک معادله برنولی است. طرفین معادله را در $y^{-\mathsf{r}}$ ضرب می کنیم

$$x(x^{\mathsf{r}} - 1) \frac{y'}{y^{\mathsf{r}}} - \frac{1}{y} = x^{\mathsf{r}}$$

 $u' + \frac{1}{x(x^{\mathsf{T}} - 1)}u = \frac{-x^{\mathsf{T}}}{x^{\mathsf{T}} - 1}$ و در نتیجه $u' = x(x^{\mathsf{T}} - 1)(-u') - u = x^{\mathsf{T}}$ و در نتیجه $u' = \frac{y'}{y^{\mathsf{T}}}$ و یا $u' = \frac{1}{y}$ خواهیم داشت $u' = \frac{1}{y}$ و در نتیجه

$$u = e^{-\int \frac{1}{x(x^{\mathsf{T}} - 1)} dx}$$
 $(c + \int \frac{-x^{\mathsf{T}}}{x^{\mathsf{T}} - 1} e^{\int \frac{1}{x(x^{\mathsf{T}} - 1)} dx} dx)$: اب تبرابر است با نبرابر است ب

$$\int \frac{1}{x(x^{7}-1)} dx = \frac{1}{7} \int (\frac{-7}{x} + \frac{1}{x-1} + \frac{1}{x+1}) dx = \frac{1}{7} (-7 \ln x + \ln(x+1) + \ln(x-1)) = \frac{1}{7} \ln \frac{x^{7}-1}{x^{7}}$$
 داریحم:

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۱۳ گروه هماهنگ) نیمسال دوم ۹۴–۱۳۹۳

: بنابر این:
$$e^{-\int \frac{1}{x(x^{\mathsf{Y}}-1)} dx} = \frac{x}{\sqrt{x^{\mathsf{Y}}-1}} \quad g \quad e^{\int \frac{1}{x(x^{\mathsf{Y}}-1)} dx} = \frac{\sqrt{x^{\mathsf{Y}}-1}}{x} dx$$

$$u = \frac{x}{\sqrt{x^{\mathsf{Y}}-1}} (c + \int \frac{-x^{\mathsf{Y}}}{x^{\mathsf{Y}}-1} \frac{\sqrt{x^{\mathsf{Y}}-1}}{x} dx) = \frac{x}{\sqrt{x^{\mathsf{Y}}-1}} (c - \int \frac{x}{\sqrt{x^{\mathsf{Y}}-1}} dx) = \frac{x}{\sqrt{x^{\mathsf{Y}}-1}} (c - \sqrt{x^{\mathsf{Y}}-1})$$

$$y(\mathsf{Y}) = \frac{-1}{\mathsf{Y}} \to \frac{-1}{\mathsf{Y}} = \frac{\sqrt{\mathsf{Y}-1}}{\mathsf{Y}(c - \sqrt{\mathsf{Y}-1})} \to c = \cdot : pto in the substitution of the substi$$

به ازای $y_{p_1} = x(a\sin x + b\cos x)$ و با توجه به جواب همگن، جواب خصوصی را به صورت $y_{p_1} = x(a\sin x + b\cos x)$ در نظر می گیریم. $y_{p_1}'' = -x(a\sin x + b\cos x) + \Upsilon(a\cos x - b\sin x)$ داریم :

سیدرضا موسوی