IN THE CLAIMS

Listing of Claims:

1	1. (currently amended) A method for managing power utilization and performance of a
2	multiprocessor (MP) system comprising the steps of:
3	receiving first sensor data defining physical parameters of said MP system;
4	receiving first parameters corresponding to customer level operational
5	requirements of said MP system;
6	determining power and performance goal settings for processors in said MP
7	system in response to said first sensor data and said first parameters;
8	generating a set of controls for said MP system in response to said power and
9	performance goal settings; and
10	applying said set of controls to adjust operation parameters of said processors in
11	said MP system.
1	2. (original) The method of claim 1, wherein said method further comprises the step of:
2	applying said controls to adjust operation parameters of cooling systems for said
3	MP system.
1	3. (original) The method of claim 1, wherein said MP system comprises a single
2	multiprocessor very large scale integrated circuit (VLSI) chip.
•	4 (' ' 1) The control of Calabara 2 and control MD control commission a continu
1	4. (original) The method of claim 3, wherein said MP system comprises a cooling
2	means for said multiprocessor VLSI chip.
1	5. (original) The method of claim 4, wherein said cooling means comprises a single chip
2	cooling fan.
1	6. (original) The method of claim 4, wherein said cooling means comprises a
2	controllable single chip thermo-electric cooler.

7. (original) The method of claim 3, wherein said MP system comprises a self-contained

- 2 MP system, said self-contained MP system comprising a plurality of said multiprocessor
- 3 VLSI chips, said self-contained MP system further comprising a first controllable cooling
- 4 system.
- 8. (original) The method of claim 7, wherein said MP system comprises a rack MP
- 2 system, said rack MP system comprising a plurality of said self-contained MP systems
- and a controllable rack cooling system.
- 9. (original) The method of claim 8, wherein said MP system comprises a plurality of
- 2 said rack MP systems, said MP system further comprising a controllable MP system
- 3 cooling means.
- 1 10. (original) The method of claim 1, wherein said first sensor data comprises
- temperatures of said processors in said MP system, supply voltages corresponding to
- 3 circuits in said processors, clock frequencies of said processors, electromagnetic radiation
- 4 (EMC) of said MP system, acoustic levels of said MP system, vibration levels of said MP
- 5 system, and air temperatures of cooling systems in said MP system.
- 1 11. (currently amended) The method of claim 1, wherein said first parameters comprise
- 2 customer level quality of service parameters for said MP system.
- 1 12. (original) The method of claim 1, wherein said first parameters comprise policy of
- 2 operation parameters for said MP system.
- 1 13. (original) The method of claim 11, wherein said quality of service parameters
- 2 comprise assignment data defining processor assignment to tasks performed by said MP
- 3 system, access availability data for processors in said MP system, performance level data
- 4 defining a performance for an application executing on processors of said MP system,
- 5 and processor operational data defining which of said processors are operational.

1 14. (original) The method of claim 12, wherein said policy of operation parameters comprise data defining a cost of power for said MP system, acceptable acoustic noise 2 level data for said MP system, acceptable EMC output noise level data for said MP 3 4 system, acceptable output vibration level data of said MP system and acceptable 5 temperature level data for elements of said MP system. 15. (original) The method of claim 1, wherein said power and performance goals 1 2 comprise data defining a desired MP system power consumption level, data defining a 3 desired processor power consumption level, data defining desired MP system 4 temperatures, desired MP acoustic noise output levels, desired EMC noise levels, and 5 desired processor instruction execution speeds. 1 16. (original) The method of claim 1, wherein said set of controls comprise power 2 supply voltage settings for said processors, clock frequency settings for said processors, 3 cooling fan speeds, controls for said MP system cooling means and operational mode 4 settings for said processors. 1 17. (original) The method of claim 16, wherein said operational mode settings comprise an active mode and a sleep low power mode. 2 1 18. (original) The method of claim 16, wherein said MP system cooling means 2 comprises channeled temperature conditioned air. 1 19. (currently amended) A controller for managing power and performance in a multiprocessor MP system comprising: 2 3 a first receiving circuit operable to receive first sensor data corresponding to physical parameters of said MP system; 4 a second receiving circuit operable to receive first parameters defining customer 5

level quality of service operational requirements of said MP system;

6

,	a tillid circuit operable to determine power and performance goal settings for said
8	processors in said MP system in response to said first data and said first parameters;
9	a fourth circuit operable to generate a set of controls for said MP system in
10	response to said power and performance goal settings; and
11	a fifth circuit operable to apply said set of controls to adjust operation parameters
12	of said processors in said MP system.
1	20. (original) The controller of claim 19, wherein said fifth circuit is further operable to
2	apply said set of controls to adjust operation parameters of cooling systems of said MP
3	system.
1	21. (original) The controller of claim 19, wherein said set of controls comprise power
2	supply voltage settings for said processors, clock frequency settings for said processors,
3	cooling fan speeds, controls for said MP system cooling means and operational mode
4	settings for said processors.
1	22. (original) The controller of claim 21, wherein said operational mode settings
2	comprise an active mode and a sleep low power mode.
1	23. (original) The controller of claim 21, wherein said MP system cooling means
2	comprises channeled temperature conditioned air, chilled fluid and solid state cooling
3	units.
1	24. (currently amended) A multiprocessor (MP) system comprising a plurality of
2	processors and a controller for managing power and performance in said MP system, said
3	controller further comprising:
	circuitry for receiving first sensor data defining physical parameters of said MP
4	
5	system;

6	circuitry for receiving first parameters corresponding to customer level quality of
7	service operational requirements of said MP system;
8	circuitry for determining power and performance goal settings for processors in
9	said MP system in response to said first sensor data and said first parameters;
10	circuitry for generating a set of controls for said MP system in response to said
11	power and performance goal settings; and
12	circuitry for applying said set of controls to adjust operation parameters of said
13	processors in said MP system.
1	25. (original) The MP system of claim 24, wherein said controller is one of said
2	plurality of processors in said MP system.
1	26. (original) The MP system of claim 24, further comprising:
2	circuitry for applying said controls to adjust operation parameters of cooling
3	systems for said MP system.
1	27. (original) The MP system of claim 24, wherein said MP system comprises a single
2	multiprocessor very large scale integrated circuit (VLSI) chip.
1	28. (original) The MP system of claim 27, wherein said MP system comprises a cooling
2	means for said multiprocessor VLSI chip.
1	29. (original) The MP system of claim 28, wherein said cooling means comprises a
2	single chip cooling fan.
1	30. (original) The MP system of claim 27, wherein said MP system comprises a self-
2	contained MP system, said self-contained MP system comprising a plurality of said
3	multiprocessor VLSI chips, said self-contained MP system further comprising a first
4	controllable cooling system.

- 1 31. (original) The MP system of claim 30, wherein said MP system comprises a rack MP
- 2 system, said rack MP system comprising a plurality of said self-contained MP systems
- 3 and a controllable rack cooling system.
- 1 32. (original) The MP system of claim 31, wherein said MP system comprises a plurality
- of said rack MP systems, said MP system further comprising a controllable MP system
- 3 cooling means.
- 1 33. (original) The MP system of claim 24, wherein said first parameters comprise policy
- 2 of operation parameters for said MP system.