Autovalores y Autovectores:

L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

24 de septiembre de 2020

Agenda de Autovalores y Autovectores

Definiciones y consecuencias

El polinomio característico

Autovalores y autovectores de matrices importantes

¿ Qué presentamos ?

Para la discusión

Definiciones y consecuencias

 $|\psi\rangle$ un autovector del operador $\mathbb A$ si se cumple que

$$\mathbb{A} |\psi\rangle = \lambda |\psi\rangle ,$$

 λ (en general será un número complejo) es el autovalor del autovector $|\psi\rangle$

Autovalores, autovectores e independencia lineal $\{|\psi_1\rangle,\cdots|\psi_k\rangle\}$ autovectores de $\mathbb{A}:\mathbf{V}^m\to\mathbf{V}^n$. Si existen k autovalores: $\{\lambda_1,\lambda_2,\cdots,\lambda_k\}$, **distintos** correspondientes a cada autovector $|\psi_j\rangle$, entonces los $\{|\psi_1\rangle,\cdots,|\psi_k\rangle\}$ son linealmente independientes y por lo tanto $\{|\psi_i\rangle\}$ es base

Definiciones y consecuencias

 $|\psi
angle$ un autovector del operador $\mathbb A$ si se cumple que

$$\mathbb{A} \left| \psi \right\rangle = \lambda \left| \psi \right\rangle \,,$$

 λ (en general será un número complejo) es el autovalor del autovector $|\psi\rangle$

- Autovalores, autovectores e independencia lineal $\{|\psi_1\rangle, \cdots |\psi_k\rangle\}$ autovectores de $\mathbb{A}: \mathbf{V}^m \to \mathbf{V}^n$. Si existen k autovalores: $\{\lambda_1, \lambda_2, \cdots, \lambda_k\}$, **distintos** correspondientes a cada autovector $|\psi_j\rangle$, entonces los $\{|\psi_1\rangle, \cdots, |\psi_k\rangle\}$ son linealmente independientes y por lo tanto $\{|\psi_i\rangle\}$ es base
- ▶ La representación matricial del operador $\mathbb{A}: \mathbf{V}^n \to \mathbf{V}^n$ en la base de autovectores $\{|\psi_i\rangle\}$ es diagonal:

$$\langle \psi^i | \mathbb{A} | \psi_j \rangle = A_j^i = \operatorname{diag} (\lambda_1, \lambda_2, \cdots, \lambda_n)$$
.

(continuará...)

La representación matricial de la ecuación de autovalores es diagonal si existe una base ortogonal:

$$\mathbb{A} |\psi\rangle = \lambda |\psi\rangle \xrightarrow{\{|\mathbf{e}_i\rangle\}} \left\langle \mathbf{e}^i \,\middle|\, \mathbb{A} \,\middle|\, \mathbf{e}_j\right\rangle \left\langle \mathbf{e}^j \,\middle|\, \psi\right\rangle = \lambda \left\langle \mathbf{e}^i \,\middle|\, \psi\right\rangle \Rightarrow \mathcal{A}_j^i \,\, \mathcal{c}^j = \lambda \mathcal{c}^i \,,$$

la base ortonormal, $\{|{\bf e}_i\rangle\}$, genera una representación diagonal de ${\mathbb A}$, y entonces $A^i_i \propto \delta^i_i$.

La representación matricial de la ecuación de autovalores es diagonal si existe una base ortogonal:

$$\mathbb{A} \left| \psi \right\rangle = \lambda \left| \psi \right\rangle \xrightarrow{\{\left| \mathbf{e}_{i} \right\rangle\}} \left\langle \mathbf{e}^{i} \right| \mathbb{A} \left| \mathbf{e}_{j} \right\rangle \left\langle \mathbf{e}^{j} \right| \psi \right\rangle = \lambda \left\langle \mathbf{e}^{i} \right| \psi \right\rangle \Rightarrow \mathcal{A}_{j}^{i} \ \mathcal{C}^{j} = \lambda \mathcal{C}^{i} \ ,$$

la base ortonormal, $\{|{\bf e}_i\rangle\}$, genera una representación diagonal de $\mathbb A$, y entonces $A_i^i\propto \delta_i^i.$

► Entonces $A^i_j \ c^j = \lambda c^i \Rightarrow \left(A^i_j - \lambda \delta^i_j\right) c^j = 0 \Rightarrow \det |\mathbb{A} - \lambda \mathbb{I}| = 0$ Es la ecuación característica (o secular) y a partir de ella emergen los autovalores del operador \mathbb{A} :

$$\det \left| A_j^i - \lambda \delta_j^i
ight| = \left| egin{array}{cccc} A_1^1 & A_2^1 & \cdots & A_n^1 \ A_1^2 & A_2^2 - \lambda & & A_n^2 \ dots & & \ddots & \ A_1^n & A_2^n & & A_n^n - \lambda \end{array}
ight| = 0 \, .$$

▶ El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_j \rangle| = \det |\langle \tilde{e}^I | \mathbb{A} | \tilde{e}_m \rangle|$.

- ▶ El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_j \rangle| = \det |\langle \tilde{e}^l | \mathbb{A} | \tilde{e}_m \rangle|$.
- ▶ El polinomio característico será un polinomio de grado *n*. Las raíces de este polinomio serán los autovalores.

- ▶ El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_j \rangle| = \det |\langle \tilde{e}^l | \mathbb{A} | \tilde{e}_m \rangle|$.
- ▶ El polinomio característico será un polinomio de grado *n*. Las raíces de este polinomio serán los autovalores.
- Las raíces podrán ser: n reales y distintas, m reales, distintas y k iguales, con m = n k o algunas imaginarias

- ▶ El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_j \rangle| = \det |\langle \tilde{e}^l | \mathbb{A} | \tilde{e}_m \rangle|$.
- ▶ El polinomio característico será un polinomio de grado *n*. Las raíces de este polinomio serán los autovalores.
- Las raíces podrán ser: n reales y distintas, m reales, distintas y k iguales, con m = n k o algunas imaginarias
- Para el caso de n raíces reales y distintas. Los n autovalores distintos, estarán asociados a n autovectores también distintos.

$$P(\lambda) = \det |A_j^i - \lambda \delta_j^i| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_m) \cdots (\lambda - \lambda_n).$$

- ▶ El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_j \rangle| = \det |\langle \tilde{e}^l | \mathbb{A} | \tilde{e}_m \rangle|$.
- ▶ El polinomio característico será un polinomio de grado *n*. Las raíces de este polinomio serán los autovalores.
- Las raíces podrán ser: n reales y distintas, m reales, distintas y k iguales, con m = n k o algunas imaginarias
- Para el caso de n raíces reales y distintas. Los n autovalores distintos, estarán asociados a n autovectores también distintos.

$$P(\lambda) = \det |A_j^i - \lambda \delta_j^i| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_m) \cdots (\lambda - \lambda_n).$$

▶ Un operador $\mathbb A$ con una representación matricial $n \times n$, con n autovalores distintos, asociados a n autovectores linealmente independientes generán una representación matricial diagonal. $\left\langle \psi^i \middle| \mathbb A \middle| \psi_j \right\rangle = A^i_j = \mathrm{diag}\left(\lambda_1, \lambda_2, \cdots, \lambda_n\right)$.

Si las raíces del polinomio característico presentan algún grado de multiplicidad, el polinomio característico podrá factorizarse como:

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)^k (\lambda - \lambda_2) \cdots (\lambda - \lambda_m).$$

Existirán m = n - k raíces simples asociadas con m = n - k autovectores linealmente independientes

Si las raíces del polinomio característico presentan algún grado de multiplicidad, el polinomio característico podrá factorizarse como:

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)^k (\lambda - \lambda_2) \cdots (\lambda - \lambda_m).$$

Existirán m = n - k raíces simples asociadas con m = n - k autovectores linealmente independientes

▶ El autovalor λ_1 , con multiplicidad k podrá ser asociado con $1, 2, \cdots$ hasta k autovectores linealmente independientes.

Si las raíces del polinomio característico presentan algún grado de multiplicidad, el polinomio característico podrá factorizarse como:

$$P(\lambda) = \det |A_j^i - \lambda \delta_j^i| = (\lambda - \lambda_1)^k (\lambda - \lambda_2) \cdots (\lambda - \lambda_m).$$

Existirán m = n - k raíces simples asociadas con m = n - k autovectores linealmente independientes

- ▶ El autovalor λ_1 , con multiplicidad k podrá ser asociado con $1, 2, \cdots$ hasta k autovectores linealmente independientes.
- ▶ El autovalor λ_1 , estará asociado a un subespacio vectorial, denominado autoespacio \mathbf{S}_{λ_1} tal que $\dim(\mathbf{S}_{\lambda_1}) \leq \operatorname{grado}$ de multiplicidad del autovalor λ_1

Autovalores y autovectores de matrices importantes

Siempre se cumple que

$$\left. \begin{array}{l} \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left| \mathbf{u}_{i} \right\rangle \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\ \\ \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \right| \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\ \\ \left\langle \mathbf{u}^{j} \right| \mathbb{A} - \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \left(\lambda_{i} - \lambda_{j}^{*}\right) \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle . \end{array} \right\} \Rightarrow$$

▶ Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son distintos, $(i \neq j)$ entonces los autovectores serán ortogonales, $\langle \mathbf{u}^j | \mathbf{u}_i \rangle \propto \delta_i^j$.

Autovalores y autovectores de matrices importantes

Siempre se cumple que

$$\left. \begin{array}{l} \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left| \mathbf{u}_{i} \right\rangle \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\ \\ \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \right| \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\ \\ \left\langle \mathbf{u}^{j} \right| \mathbb{A} - \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \left(\lambda_{i} - \lambda_{j}^{*}\right) \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle . \end{array} \right\} \Rightarrow$$

- ▶ Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son distintos, $(i \neq j)$ entonces los autovectores serán ortogonales, $\langle \mathbf{u}^{j} | \mathbf{u}_{i} \rangle \propto \delta_{i}^{j}$.
- ▶ Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son los mismos, (i = j) entonces los autovalores son reales: $\lambda_i = \lambda_i^*$.

Autovalores y autovectores de matrices importantes

Siempre se cumple que

$$\left. \begin{array}{l} \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left| \mathbf{u}_{i} \right\rangle \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\ \\ \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \right| \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\ \\ \left\langle \mathbf{u}^{j} \right| \mathbb{A} - \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \left(\lambda_{i} - \lambda_{j}^{*}\right) \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle . \end{array} \right\} \Rightarrow$$

- ▶ Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son distintos, $(i \neq j)$ entonces los autovectores serán ortogonales, $\langle \mathbf{u}^{j} | \mathbf{u}_{i} \rangle \propto \delta_{i}^{j}$.
- ▶ Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son los mismos, (i = j) entonces los autovalores son reales: $\lambda_i = \lambda_i^*$.
- ▶ Si $\mathbb A$ es unitario, $\mathbb A\equiv \mathbb U$, se cumple que $\mathbb U^\dagger=\mathbb U^{-1}$ entonces

$$\mathbb{U} \left| \psi_j \right\rangle = \lambda_j \left| \psi_j \right\rangle \Rightarrow \left\langle \psi^j \right| \mathbb{U}^\dagger \mathbb{U} \left| \psi_j \right\rangle = 1 = \lambda_j^* \lambda_j \ \Rightarrow \ \lambda_j = e^{i \varphi_j} \,,$$

con φ_{μ} una función real.

1. Que la ecuación de autovalores $\mathbb{A} \ket{\psi} = \lambda \ket{\psi}$, es una ecuación con dos incógnitas: λ y $\ket{\psi}$. O que es una ecuación un UNA incognita doble: λ y $\ket{\psi}$.

- 1. Que la ecuación de autovalores $\mathbb{A} \ket{\psi} = \lambda \ket{\psi}$, es una ecuación con dos incógnitas: λ y $\ket{\psi}$. O que es una ecuación un UNA incognita doble: λ y $\ket{\psi}$.
- 2. Que los autovectores para autovalores distintos forman base

- 1. Que la ecuación de autovalores $\mathbb{A} |\psi\rangle = \lambda |\psi\rangle$, es una ecuación con dos incógnitas: λ y $|\psi\rangle$. O que es una ecuación un UNA incognita doble: λ y $|\psi\rangle$.
- 2. Que los autovectores para autovalores distintos forman base
- 3. Que la representación matricial del operador $A^i_j = \left\langle \psi^i \middle| \mathbb{A} \middle| \psi_j \right\rangle$ en la base de autovectores $\{ |\psi_i \rangle \}$ es diagonal con los autovalores: $\left\langle \psi^i \middle| \mathbb{A} \middle| \psi_j \right\rangle = A^i_j = \mathrm{diag} \left(\lambda_1, \lambda_2, \cdots, \lambda_n \right)$.

- 1. Que la ecuación de autovalores $\mathbb{A} \ket{\psi} = \lambda \ket{\psi}$, es una ecuación con dos incógnitas: λ y $\ket{\psi}$. O que es una ecuación un UNA incognita doble: λ y $\ket{\psi}$.
- 2. Que los autovectores para autovalores distintos forman base
- 3. Que la representación matricial del operador $A^i_j = \langle \psi^i | \mathbb{A} | \psi_j \rangle$ en la base de autovectores $\{ |\psi_i \rangle \}$ es diagonal con los autovalores: $\langle \psi^i | \mathbb{A} | \psi_j \rangle = A^i_i = \mathrm{diag} \left(\lambda_1, \lambda_2, \cdots, \lambda_n \right)$.
- 4. Que los autovalores (y después los autovectores) se calculan a mediante el polinomio característico

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

- 1. Que la ecuación de autovalores $\mathbb{A} \ket{\psi} = \lambda \ket{\psi}$, es una ecuación con dos incógnitas: λ y $\ket{\psi}$. O que es una ecuación un UNA incognita doble: λ y $\ket{\psi}$.
- 2. Que los autovectores para autovalores distintos forman base
- 3. Que la representación matricial del operador $A^i_j = \langle \psi^i | \mathbb{A} | \psi_j \rangle$ en la base de autovectores $\{ |\psi_i \rangle \}$ es diagonal con los autovalores: $\langle \psi^i | \mathbb{A} | \psi_j \rangle = A^i_i = \mathrm{diag} \left(\lambda_1, \lambda_2, \cdots, \lambda_n \right)$.
- 4. Que los autovalores (y después los autovectores) se calculan a mediante el polinomio característico

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

5. Que los autovalores pueden ser n simples o individuales $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_n$

- 1. Que la ecuación de autovalores $\mathbb{A} |\psi\rangle = \lambda |\psi\rangle$, es una ecuación con dos incógnitas: λ y $|\psi\rangle$. O que es una ecuación un UNA incognita doble: λ y $|\psi\rangle$.
- 2. Que los autovectores para autovalores distintos forman base
- 3. Que la representación matricial del operador $A_j^i = \langle \psi^i | \mathbb{A} | \psi_j \rangle$ en la base de autovectores $\{ |\psi_i \rangle \}$ es diagonal con los autovalores: $\langle \psi^i | \mathbb{A} | \psi_j \rangle = A_i^i = \mathrm{diag} \left(\lambda_1, \lambda_2, \cdots, \lambda_n \right)$.
- 4. Que los autovalores (y después los autovectores) se calculan a mediante el polinomio característico

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

- 5. Que los autovalores pueden ser n simples o individuales $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_n$
- 6. Que los autovalores pueden ser m = n k con al menos k-degeneraciones

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)^k (\lambda - \lambda_2) \cdots (\lambda - \lambda_m).$$

Para la discusión

- 1. Si $|v_1\rangle$ y $|v_2\rangle$ son autovectores del operador lineal $\mathbb A$ con distintos autovalores λ_1 y λ_2 , respectivamente. Muestre que $\alpha |v_1\rangle + \beta |v_2\rangle$ ($\alpha \neq 0, \beta \neq 0$) no es un autovector de $\mathbb A$.
- Considere las siguientes representaciones matriciales de operadores

$$\left\langle \mathbf{e}^{i} \middle| \mathbb{A} \middle| \mathbf{e}_{j} \right\rangle = \left(\begin{array}{ccc} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 3 & 3 & 20 \end{array} \right) \quad \left\langle \mathbf{e}^{i} \middle| \mathbb{B} \middle| \mathbf{e}_{j} \right\rangle = \left(\begin{array}{ccc} 4 & -3 & 1 \\ 4 & -1 & 0 \\ 1 & 7 & -4 \end{array} \right)$$

y encuentre sus autovalores y autovectores

- 3. Sean \mathbb{A} y \mathbb{B} dos operadores hermíticos, con autovalores no degenerados y un operador unitario definido como: $\mathbb{U} = \mathbb{A} + i\mathbb{B}$. Muestre que
 - 3.1 Si $\mathbb A$ y $\mathbb B$ conmutan, $[\mathbb B,\mathbb A]=0$, los autovectores de $\mathbb A$ también lo son de $\mathbb B$.
 - 3.2 Si $\mathbb{U}|v_i\rangle = \mu_i|v_i\rangle$, entonces $|\mu_i| = 1$.