

PCTWORLD ORGANISATION FÜR GEISTIGES EIGENTUM
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁷ : C08J 3/03, C08G 18/08, 59/00		A1	(11) Internationale Veröffentlichungsnummer: WO 00/29465 (43) Internationales Veröffentlichungsdatum: 25. Mai 2000 (25.05.00)
(21) Internationales Aktenzeichen: PCT/EP99/08789		(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) Internationales Anmeldedatum: 16. November 1999 (16.11.99)			
(30) Prioritätsdaten: 198 52 784.5 16. November 1998 (16.11.98) DE 199 34 519.8 22. Juli 1999 (22.07.99) DE		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V. [DE/DE]; Hofgartenstrasse 8, D-80539 München (DE).			
(72) Erfinder; und			
(75) Erfinder/Anmelder (<i>nur für US</i>): ANTONIETTI, Markus [DE/DE]; Am Luchgraben 12, D-14558 Bergholz-Rehbrücke (DE). LANDFESTER, Katharina [DE/DE]; Siemensstrasse 19, D-14482 Potsdam (DE). TIARKS, Franca [DE/DE]; Ebereschenallee 56, D-14050 Berlin (DE). BECHTHOLD, Nina [DE/DE]; In der Feldmark 13, D-14476 Golm (DE). WILLERT, Mirjam [DE/DE]; Am Hüllepfuhl 30a, D-13589 Berlin (DE).			
(74) Anwälte: WIEICKMANN, H. usw.; Kopernikusstrasse 9, D-81679 München (DE).			

(54) Title: POLYADDITIONS IN AQUEOUS AND NON-AQUEOUS MINI-EMULSIONS

(54) Bezeichnung: POLYADDITIONEN IN WÄSSRIGEN UND NICHTWÄSSRIGEN MINIEMULSIONEN

(57) Abstract

The invention relates to a method for carrying out polyaddition reactions in mini-emulsions.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Durchführung von Polyadditionsreaktionen in Miniemulsionen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Sengal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	IU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

- 1 -

Polyadditionen in wässrigen und nichtwässrigen Miniemulsionen

Beschreibung

5

Die Erfindung betrifft ein Verfahren zur Durchführung von Polyadditionsreaktionen in Miniemulsionen.

Die Miniemulsionspolymerisation ist ein neuartiges Verfahren der Hetero-
10 phasenpolymerisation, welches das Einsatzgebiet der klassischen Emulsionspolymerisation erweitert. Miniemulsionen sind Dispersionen aus einer
wässrigen Phase, einer Ölphase und gegebenenfalls einem oder mehreren
15 oberflächenaktiven Tensiden, bei denen ungewöhnlich kleine Tröpfchen-
größen realisiert werden. Bei Polymerisationsreaktionen in Miniemulsionen
wird üblicherweise ein unpolares Monomer oder ein Gemisch von Mono-
meren und gegebenenfalls einem Cosurfactant in Wasser mit Hilfe eines
20 Tensids und unter Einsatz hoher Scherfelder zu Tröpfchen in der
gewünschten Größenordnung dispergiert, die durch das zugesetzte Tensid
kolloidal stabilisiert werden (Sudol und El-Aasser, in: Emulsion Poly-
merization and Emulsion Polymers; Lovell, P.A; El-Aasser, M.S., Hrsg.,
25 Chichester (1997), 699). Bei derartigen Miniemulsionen kann die
Tröpfchengröße aufgrund von Kollisionen und Fusionen noch anwachsen.

Die deutsche Patentanmeldung 198 52 784.5-43 beschreibt die osmotische
25 Stabilisierung von Mini- und Mikroemulsionen durch Verwendung von was-
serunlöslichen Verbindungen als emulsionsstabilisierende Komponente:
Durch Zusatz der wasserunlöslichen Substanz zur Ölphase, die üblicher-
weise die disperse Phase der Emulsion ist, wird ein osmotischer Druck
aufgebaut, der dem durch die Oberflächenspannung der Emulsionströpfchen
30 aufgebauten Kapillar- oder Kelvin-Druck entgegenwirkt. Dies hat zur Folge,
daß eine Ostwald-Reifung der Emulsionströpfchen verzögert oder vermieden
wird.

- 2 -

Eine Herstellung von Polyadditionsprodukten durch Heterphasentechniken wurde bisher noch nicht beschrieben. Auf dem Markt sind zwar bereits wässrige Polyurethan- bzw. Polyepoxid-Dispersionen erhältlich. Diese werden jedoch in einer verfahrenstechnisch aufwendigen Weise als Sekundärdispersionen hergestellt, und zwar durch Kondensation des Polyurethans oder Polyepoxide in einem organischen Lösungsmittel, Eintrag in Wasser, anschließendes Entfernen des organischen Lösungsmittels. Andere wässrige Polyurethane enthalten gut wasserlösliche Amine und sind damit zumindest partiell selbst wasserlöslich, stellen also im strengen Sinne keine Dispersion dar.

Überraschenderweise wurde gefunden, daß Polyadditionen in Miniemulsionen unter Erhalt des partikulären Charakters durchgeführt werden können. Dabei werden die zur Polyaddition verwendeten Edukte, z.B. Diamine und Diepoxide zur Herstellung von Polyepoxid-Dispersionen oder Diisocyanate und Diamine oder/und Dialkohole zur Herstellung von Polyurethan- oder/und Polyharnstoff-Dispersionen in einem geeigneten Dispergiermedium vorzugsweise mit Hilfe eines oberflächenaktiven Tensids und gegebenenfalls einer oder mehreren wasserunlöslichen Substanzen dispergiert und z.B. durch Zugabe eines Katalysators oder/und durch Temperaturerhöhung zur Reaktion gebracht. Auf diese Weise entsteht direkt die gewünschte Polymerdispersion. Durch Variation der Stöchiometrie zwischen beiden Reaktionspartnern sind auch funktionelle Polymere, funktionelle Partikel, bzw. durch Zugabe von Vernetzungsmitteln auch funktionelle Mikrogele zugänglich. Der Einsatz solcher Dispersionen ist in allen Bereichen möglich, in denen jetzt bereits wässrige Polyepoxid- bzw. Polyurethandispersionen verwendet werden, d.h. insbesondere bei Klebstoffen, Deckanstrichen und Lacken.

- 3 -

Ein Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Durchführung von Polyadditionsreaktionen in Miniemulsionen, welches dadurch gekennzeichnet ist, daß man eine die Edukte der Polyadditionsreaktionen enthaltende Miniemulsion in einem fluiden Medium erzeugt und 5 dann zur Reaktion bringt, wobei eine Dispersion von Partikeln des Polyadditionsprodukts im Medium erhalten wird.

Polyadditionen im Sinne der vorliegenden Erfindung sind ohne Abspaltung von Nebenprodukten in Stufen verlaufende Polyreaktionen, bei denen durch 10 vielfach wiederholte Addition von di- oder polyfunktionellen Edukten in unabhängigen Einzelreaktionen (Stufenreaktionen) über die Bildung von reaktiven Oligomeren als diskrete Zwischenstufen Polyadditionsprodukte aufgebaut werden. Dazu gehören sowohl Unipolyadditionsreaktionen, bei denen man von zwei Monomertypen ausgeht, als auch Copolyadditions- 15 reaktionen, bei denen mehr als zwei unterschiedliche Monomertypen eingesetzt werden. Bevorzugte Beispiele für Polyadditionsreaktionen ist die Herstellung von Polyurethanen aus multifunktionellen Hydroxyverbindungen und multifunktionellen Isocyanaten, die Herstellung von Polyharnstoffen aus multifunktionellen Aminen und multifunktionellen Isocyanaten und die 20 Herstellung von Polyepoxiden aus multifunktionellen Epoxiden und multifunktionellen Aminen, Thiolen oder/und Hydroxyverbindungen.

Die Miniemulsion, in der die Polyadditionsreaktion durchgeführt wird, kann durch Anwendung hoher Scherfelder, z.B. durch einen Ultraschallstab, einen 25 Strahldispersator oder einen Mikrofluidizer eingestellt werden. Die Emulsionströpfchen liegen vorzugsweise in der Größenordnung von 20 bis 1000 nm, insbesondere von 30 nm bis 600 nm mittlerer Teilchendurchmesser. Vorzugsweise wird eine Miniemulsion einer Ölphase in einer im wesentlichen damit nicht mischbaren hydrophilen Phase, z.B. einer polaren 30 organischen Phase, insbesondere jedoch einer wässrigen Phase gebildet.

- 4 -

Zur Stabilisierung der Emulsion werden vorzugsweise oberflächenaktive Tenside wie etwa Natriumdodecylsulfat, Cetyltrimethylammoniumchlorid oder auch polymere Tenside, wie z.B. Blockcopolymeren von Styrol und Ethylenoxid zugesetzt. Die Tensidmenge liegt vorzugsweise im Bereich von
5 0,1 bis 20 Gew.-%, vorzugsweise 0,2 bis 10 Gew.-% und besonders bevorzugt 0,5 bis 5 Gew.-% bezogen auf das Gesamtgewicht der Emulsion.

Zur osmotischen Stabilisierung der Dispersion reicht in vielen Fällen das Vorhandensein einer hydrophoben Additionskomponente, d.h. eines der
10 Edukte aus. Im Falle der Verwendung polarer, insbesondere wässriger Dispergiermedien können jedoch zusätzlich inerte, d.h. nicht bei der Polyadditionsreaktion beteiligte, im Dispergiermedium unlösliche ultrahydrophobe Verbindungen zugesetzt werden und zwar im allgemeinen in einer Menge von 0,1 und 40 Gew.-%, vorzugsweise 0,2 bis 10 Gew.-%
15 und besonders bevorzugt 0,5 bis 5 Gew.-% bezogen auf das Gesamtgewicht der Emulsion.

Dabei sind insbesondere ultrahydrophobe Verbindungen geeignet, die sich mit der Ölphase vermischen und eine Löslichkeit im Dispergiermedium von
20 vorzugsweise weniger als 5×10^{-5} g/l besonders bevorzugt weniger als 5×10^{-6} g/l und am meisten bevorzugt weniger als 5×10^{-7} g/l bei Raumtemperatur aufweisen. Beispiele hierfür sind Kohlenwasserstoffe, insbesondere volatile und gegebenenfalls halogenierte Kohlenwasserstoffe, Silane, Organosilane, Siloxane, langkettige Ester, Öle wie Pflanzenöle, z.B.
25 Olivenöl, hydrophobe Farbstoffmoleküle, verkappte Isocyanate sowie oligomere Polymerisations-, Polykondensations- und Polyadditionsprodukte.

Die Tenside und ultrahydrophoben Verbindungen werden vorzugsweise so ausgewählt, daß sie mit dem resultierenden Polyadditionsprodukt kompatibel
30 sind. So können Substanzen verwendet werden, die eine hohe Volatilität besitzen oder/und nützlicherweise bei einer evtl. Weiterverwendung der polymeren Dispersion zum Einsatz kommen, z.B. als Weichmacher, Farbstoff

- 5 -

etc., so daß sie positiv zur Zielanwendung beitragen können. Durch Variation der Tenside oder/und der ultrahydrophoben Verbindungen bzw. deren Mengen im Reaktionsansatz kann die Teilchengröße der Emulsion sowie der resultierenden Polymer-Dispersion wunschgemäß eingestellt werden.

Die Polyadditionsreaktion in der Miniemulsion kann auf bekannte Weise ausgelöst werden, z.B. durch Zugabe eines Katalysators oder/und durch Temperaturerhöhung. Vorzugsweise geht man dabei von einer kritisch stabilisierten und besonders bevorzugt von einer thermodynamisch stabilen Emulsion aus. Bei derart osmotisch stabilisierten Emulsionen können Dispersionen des Polyadditionsprodukts erhalten werden, deren Teilchengröße sich gegenüber der Eduktemulsion nicht auf unerwünschte Weise geändert hat. Die Teilchen des Polyadditionsprodukts haben eine mittlere Größe von vorzugsweise 20 bis 1000 nm und besonders bevorzugt von 30 bis 600 nm.

Darüber hinaus eignet sich das erfindungsgemäße Verfahren auch zur Herstellung von mehrphasigen Nanohybridpartikeln, z.B. Partikeln, die Polyadditionsprodukte und darin verkapselte inerte Feststoffpartikel, z.B. anorganische Materialien wie Metallkolloide, oxidische Partikel wie SiO₂, TiO₂, CaSO₄, CaCO₃, BaSO₄, Zeolithe, Eisenoxide, ZnO, CuO, CrO₂, ZrO₂, Fluor- und Hydroxyapatite und Feinruß, oder organische Materialien, wie kolloidale Farbstoffaggregate enthalten. Vorzugsweise werden Feststoffpartikel verkapselt, die eine hydrophobe oder eine hydrophobisierte Oberfläche aufweisen. Die Hydrophobisierung der Oberfläche kann durch Zugabe von Substanzen erfolgen, die eine Monoschicht auf den Feststoffpartikeln bilden, z.B. langketten Carbonsäuren. Weiterhin können auch Polyadditionssedukte oder -produkte (diese dann in geringen Mengen als Beimischung) zur Hydrophobisierung der oben genannten Partikel eingesetzt werden. Die Größe der Feststoffpartikel liegt im allgemeinen im Bereich von 0,5 bis 400 nm, vorzugsweise im Bereich von 1 bis 250 nm.

- 6 -

und besonders bevorzugt im Bereich von 10 nm bis 200 nm. Die Größe der Emulsionströpfchen wird der Größe der zu verkapselnden Feststoffpartikel angepaßt.

- 5 Bei Polyadditionen in Miniemulsionen, insbesondere in osmotisch stabilisierten Emulsionen, kann eine effiziente Einbettung von Feststoffpartikeln in die Hülle von Polyadditionsprodukten erreicht werden. Vorzugsweise werden mindestens 60%, besonders bevorzugt mindestens 80%, noch stärker bevorzugt mindestens 90% und am meisten bevorzugt mindestens 95% der Feststoffpartikel eingebettet. Die durch Polyaddition erhaltenen Dispersionen können homogen verfilmt werden, wobei die resultierenden Filme eine hohe mechanische Stabilität und Säureresistenz aufweisen. Aufgrund der homogenen Verkapselung können die resultierenden Nanohybridpartikel beispielsweise für Farben oder
10 Beschichtungen mit einer hohen coloristischen Effizienz eingesetzt werden.
15

Der Nachweis der Einkapselung von Feststoffpartikeln in die Partikel des Polyadditionsproduktes kann mit Hilfe von Transmissions-Elektronenmikroskopie oder/und Ultrazentrifugation erfolgen.

- 20 Weiterhin soll die Erfindung durch die nachfolgenden Abbildungen und Beispiele erläutert werden. Es zeigt:
25

Abbildung 1: eine elektronenmikroskopische Aufnahme eines durch Polyaddition von Epikote E828 und 4,4'-Diaminodibenzyl hergestellten Latex.

- 7 -

Beispiele

Beispiel 1

- 5 6 g eines Monomomergemisches aus Epikote E828 und Jeffamin D2000 (Strukturen siehe Tabelle 1) im molaren Verhältnis 2:1 wurden zu einer Lösung aus 1g Natriumdodecylsulfat (Tensid) und 40 g Wasser gegeben und für 1 h bei höchster Magnetrührerstufe gerührt. Die Mischung wurde für 2 min bei 110 bis 115 W mit einem Ultraschallstab (Branson Sonifier W450 Digital, Amplitude 90%) miniemulgiert. Durch Temperaturerhöhung auf 60°C wurde die Reaktion gestartet. Die Reaktionsdauer betrug 12 h. Es wurde eine stabile Dispersion eines Amin-Epoxid-Polyadditionsprodukts erhalten.
- 15 Die Messung der Partikelgröße erfolgte unter Verwendung eines Nicomp Particle Sizer (Modell 370, PSS, Santa Barbara, USA) bei einem festgelegten Streuwinkel von 90°. Die Molekulargewichte der Polymere wurden durch GPC-Analyse bestimmt, die mit einer P1000-Pumpe und einem UV1000-Detektor (Thermo Separation Products) bei einer Wellenlänge von 260 nm 20 mit 5 µm 8 x 300 mm SDV Säulen mit 10⁶, 10⁵ bzw. 10³ Angström (Polymer Standard Service) in THF mit einer Fließrate von 1 ml/min bei 30°C durchgeführt wurde. Die Berechnung der Molekulargewichte erfolgte anhand einer Kalibrierung relativ zu den Standards
- 25 Elektronenmikroskopische Aufnahmen wurden mit einem Zeiss/912 Omega Elektronenmikroskop bei 100 kV durchgeführt. Die verdünnten Partikeldispersionen wurden auf ein 400-Mesh-Kohlenstoff beschichtetes Kupfergrid aufgebracht und trocknen gelassen.
- 30 Durch Variation der Tensidmenge (0,1 g, 0,5 g, 2,5 g und 4,0 g Natriumdodecylsulfat) konnte die Partikelgröße der resultierenden Latexteilchen im Bereich von ca. 80 nm bis 250 nm variiert werden.

- 8 -

Durch Variation des Monomers (1,12-Diaminododecan) und des Tensids (Styrol/Ethylenoxid-Blockcopolymer SE3030 (Sty)₁₀-b-(EO)₂₃) konnte ebenfalls die Partikelgröße variiert werden.

- 5 Die Ergebnisse sind in Tabelle 2 zusammengefaßt.

Beispiel 2

Entsprechend der in Beispiel 1 angegebenen Vorschrift wurden als Tenside
10 Cetyltrimethylammoniumchlorid (CTMA-Cl), Lutensol AT50 (C₁₆H₃₃)(EO)₅₀ sowie die Styrol/Ethylenoxid-Blockcopolymere PS/PEO1000/1050 (Sty)₁₀-b-(EO)₁₁₄ und SE1030 (Sty)₃₀-b-(EO)₂₃ anstelle von Natriumdodecylsulfat oder SE3030 verwendet. Es wurden Teilchengrößen im Bereich zwischen ca. 90 und 400 nm erhalten.

15

- Die Ergebnisse sind in Tabelle 3 gezeigt.

Beispiel 3

20 Statt eines Monomergemisches mit dem molaren Verhältnis Epoxid zu Diamin von 2:1 wurde jeweils eine Komponente im Überschuß zugegeben.
(a) Epoxid wurde im Überschuß in einem molaren Verhältnis Epoxid zu Amin von 2:1 bis 3,3:1 zugegeben.
(b) Das Amin wurde im Überschuß in einem molaren Verhältnis Epoxid
25 zu Amin von 1:1,22 bis 1:1,5 zugegeben.

Es wurden funktionelle Polyadditionsprodukte mit freien primären Amingruppen bzw. Epoxidgruppen erhalten, die als Ausgangsprodukte für weitere Reaktionsschritte eingesetzt werden können.

30

- Die Ergebnisse dieses Versuchs sind in Tabelle 4 A gezeigt.

- 9 -

Durch Ansäuerung des Latex konnte die Teilchengröße verringert werden.
Die Ergebnisse sind in Tabelle 4 B gezeigt.

Beispiel 4

5 Der in Beispiel 1 beschriebene Versuch wurde unter Verwendung der Amine
4,4'-Diaminodibenzyl, 1,12-Diaminododecan und 4,4'-Diaminodicyclo-
hexylmethan (Strukturen siehe Tabelle 1) wiederholt. Es wurden
10 Polymerdispersionen mit Teilchengrößen im Bereich von ca. 40 bis 75 nm
erhalten.

Die Ergebnisse sind in Tabelle 5 gezeigt. Abbildung 1 ist eine
elektronenmikroskopische Aufnahme des unter Verwendung von 4,4'-
Diaminodibenzyl hergestellten Latex.

15 Beispiel 5

6 g eines Monomergemisches aus Epikote E828 und Bisphenol A (Struktur
siehe Tabelle 1) wurden im molaren Verhältnis von 1:1 zu einer Lösung von
20 1 g Natriumdodecylsulfat und 40 g Wasser gegeben und für 1 h bei
höchster Magnetrührerstufe gerührt. Gemäß der in Beispiel 1 angegebenen
Vorschrift wurde eine Miniemulsion hergestellt und reagieren gelassen.

Auf analoge Weise, aber unter Verwendung von 6 g eines Monomer-
25 gemisches aus Epikote E828 und Hexandithiol (Struktur siehe Tabelle 1) im
Verhältnis 1:1 wurde eine stabile Dispersion eines Polysulfids erhalten.

Die Ergebnisse sind in Tabelle 6 dargestellt.

30

- 10 -

Beispiel 6

- 6 g eines Monomergemisches aus dem trifunktionellen Epoxid Denacol Ex-314 (Struktur siehe Tabelle 1) und Jeffamin D2000 im molaren Verhältnis 5 von 1:1,05 und 1:1,1 wurden zu einer Lösung aus 1 g Natriumdodecylsulfat und 40 g Wasser gegeben und für 1 h bei höchster Magnetrührerstufe gerührt. Entsprechend der in Beispiel 1 beschriebenen Vorschrift wurde eine Miniemulsion hergestellt und reagieren gelassen.
- 10 Der Versuch wurde unter Verwendung des difunktionellen Epoxids Epikote E828, des tetrafunktionellen Epoxids Ex-411 sowie mit Mischungen eines di- und eines trifunktionellen Epoxids bzw. eines di- und eines tetrafunktionellen Epoxids wiederholt.
- 15 Die Ergebnisse sind in Tabelle 7 dargestellt.

Beispiel 7

- 6 g eines Monomergemisches aus Isophorondiisocyanat und 1,12-Diaminododecan bzw. 4,4'-Diaminodibenzyl jeweils im molaren Verhältnis 20 1:1 wurden zu einer Lösung aus 1 g Natriumdodecylsulfat und 40 g Wasser gegeben und für 1 h bei höchster Magnetrührerstufe gerührt. Die Mischung wurde 2 min (bei Diaminodibenzyl 12 min) mit einer Amplitude von 90% 25 (110 bis 115 W) mit dem bereits in Beispiel 1 verwendeten Gerät miniemulgiert. Die Reaktion wurde durch eine Temperaturerhöhung auf 60°C gestartet. Die Reaktionsdauer war 12 h.

Die Ergebnisse dieses Versuchs sind in Tabelle 8 dargestellt.

- 11 -

Tabelle 1 Übersicht über die eingesetzten Monomerkomponenten

<u>Epoxide</u>	
Epikote 828	
Denacol Ex-314	$\text{CH}(\text{OCH}_2-\text{C}_2\text{H}_3\text{O})_3$
Denacol Ex-411	$\text{C}(\text{OCH}_2-\text{C}_2\text{H}_3\text{O})_4$
<u>Amine</u>	
Jeffamin D2000	$\text{NH}_2-\left[\begin{array}{c} \text{CH}-\text{CH}_2-\text{O} \\ \\ \text{CH}_3 \end{array}\right]_n\begin{array}{c} \text{CH}-\text{CH}_2-\text{NH}_2 \\ \\ \text{CH}_3 \end{array}$
4, 4' Diamino-bibenzyl	
1,12 Diaminododekan	$\text{NH}_2-(\text{CH}_2)_{12}-\text{NH}_2$
4,4' Diaminodicyclohexylmethan	
<u>Dithiol</u>	
Hexandithiol	$\text{HS}-(\text{CH}_2)_6-\text{SH}$
<u>Diol</u>	
Bisphenol A	

- 12 -

Tabelle 2:

Beispiel	Monomer	Tensid [g]	Durchmesser [nm]
5	Jeffamin D2000	SDS	0,1
1	Jeffamin D2000	SDS	0,5
1	Jeffamin D2000	SDS	1,0
1	Jeffamin D2000	SDS	2,5
10	Jeffamin D2000	SDS	4,0
1	1,12-Diaminododecan	SDS	0,05
1	1,12-Diaminododecan	SDS	0,1
1	1,12-Diaminododecan	SDS	0,25
1	1,12-Diaminododecan	SDS	0,5
15	1,12-Diaminododecan	SDS	1,5
1	Jeffamin D2000	SE3030	1,25
1	Jeffamin D2000	SE3030	2,5
1	Jeffamin D2000	SE3030	3,0
20			
1	1,12-Diaminododecan	SE3030	1,25
1	1,12-Diaminododecan	SE3030	2,5
1	1,12-Diaminododecan	SE3030	3,0

Tabelle 3:

Beispiel	Tensid [g]	Durchmesser [nm]
2	CTMA-Cl	2
2	PS/PEO 1000/5000	2,5
2	Lutensol AT 50	2,5
30	SE 1030	2,5
		377

- 13 -

Tabelle 4 A

Verhältnis Epikote E828 / Jeffamin D2000	Tensid [g]	Durchmesser [nm]
2:1	CTMA-Cl	2,0
1:1,5	CTMA-Cl	2,0
3:1	CTMA-Cl	2,0
2:1	SDS	0,5
1:1,22	SDS	0,5
3,3:1	SDS	0,5
2:1	SDS	0,5
1:1,22	SDS	2,2
2,8:1	SDS	2,5

Tabelle 4 B:

Verhältnis Epikote E828/ Jeffamin D2000	Tensid [g]	Durchmesser [nm]
2:1	SDS	0,5
1:1,22	SDS	0,5
2:1	SDS	2,5
1:1,22	SDS	2,2

Tabelle 5:

Monomer [g]	Tensid [g]	Durchmesser [nm]
Jeffamin D2000	SDS	1,0
1,12-Diamino-dodecan	SDS	1,5
4,4'-Diaminodicyclohexylethan	SDS	1,5
4,4'-Diamino-dibenzyl	SDS	1,5

- 14 -

Tabelle 6:

Monomer	Tensid [g]		Durchmesser [nm]
1,6-Hexandithiol	SDS	1,0	194
Bisphenol A	SDS	1,0	243

Tabelle 7:

Epoxid/Amin	Monomer (Epoxid)	Tensid [g]		Durchmesser [nm]
2:1	Epikote E828	SDS	1,0	83
1:1,05	Denacol Ex-314	SDS	1,0	193
1:1,1	Denacol-Ex314	SDS	1,0	495
1:1,05	Denacol Ex-411	SDS	1,0	295
1:1,1	Denacol Ex-411	SDS	1,0	158
1:2	1:1 Epikote E828/ Denacol Ex-411	SDS	1,0	117
1:2	1:1 Epikote E828/ Denacol Ex-314	SDS	1,0	74

Tabelle 8:

Monomer (Amin)	Tensid [g]		Durchmesser [nm]
1,12-Diaminododecan	SDS	1,0	ca. 80
4,4'-Diaminodibenzyl	SDS	1,0	ca. 60

- 15 -

Ansprüche

1. Verfahren zur Durchführung von Polyadditionsreaktionen in
5 Miniemulsionen,

dadurch gekennzeichnet,

daß man eine die Edukte der Polyadditionsreaktion enthaltende
Miniemulsion in einem fluiden Medium erzeugt und dann zur Reaktion
bringt.

10 2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Polyadditionsreaktion eine Herstellung von Polyurethanen aus
multifunktionellen Hydroxyverbindungen und multifunktionellen
15 Isocyanaten umfaßt.

20 3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Polyadditionsreaktion eine Herstellung von Polyharnstoffen
aus multifunktionellen Aminoverbindungen und multifunktionellen
Isocyanaten umfaßt.

25 4. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Polyadditionsreaktion eine Herstellung von Polyepoxid-
Verbindungen aus multifunktionellen Amino-, Hydroxy- oder/und
Thiolverbindungen und multifunktionellen Epoxiden umfaßt.

- 16 -

5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man eine Miniemulsion einer dispersen Ölphase in einer kontinuierlichen hydrophilen Phase, insbesondere einer wässrigen Phase bildet.
- 10 6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man ein oberflächenaktives Tensid zugibt.
- 15 7. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zusätzlich eine hydrophobe inerte Substanz in das System eingebracht wird.
- 20 8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
daß die hydrophobe Substanz in einer Menge von 0,1-40 Gew.-% bezogen auf das Gesamtgewicht der Emulsion eingesetzt wird.
- 25 9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die mittlere Teilchengröße der Emulsion im Bereich von 30 bis 600 nm liegt.
- 30 10. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß eine Emulsion erzeugt wird, die kritisch stabilisiert oder thermodynamisch stabil gegenüber einer Änderung der Teilchengröße ist.

- 17 -

11. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Emulsion weiterhin darin dispergierte Feststoffpartikel enthält.
- 5 12. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Polyadditionsreaktion ohne wesentliche Änderung der
Teilchengröße erfolgt.

BEST AVAILABLE COPY

WO 00/29465

PCT/EP99/08789

1/1

Abbildung 1

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 8789

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C08J3/03 C08G18/08 C08G59/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C08J C08G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 509 494 A (DAINICHISEIKA COLOR & CHEMICALS) 21 October 1992 (1992-10-21) page 2, line 39 -page 5, line 30; claims 1,2	1,2,5-7
X	EP 0 685 544 A (BAYER) 6 December 1995 (1995-12-06) page 2, line 34 -page 3, line 39; claims 1,2	1,2
X	EP 0 568 976 A (MILES) 10 November 1993 (1993-11-10) page 2, line 45 -page 8, line 53	1,3
X	US 4 517 245 A (SPAIN) 14 May 1985 (1985-05-14) column 2, line 15 -column 4, line 20	1,4
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "g." document member of the same patent family

Date of the actual completion of the International search

18 February 2000

Date of mailing of the International search report

28/02/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3018

Authorized officer

Bourgonje, A

INTERNATIONAL SEARCH REPORT

Inte[redacted] Application No
PCT/EP 99/08789

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 104 223 A (HOSODA ET AL) 1 August 1978 (1978-08-01) column 3, line 13 -column 9, line 2 _____	1,4
A	WO 98 41552 A (DOW CHEMICAL) 24 September 1998 (1998-09-24) page 1, line 31 -page 8, line 22; claims _____	1-3
X	US 5 686 518 A (FONTEMONT ET AL) 11 November 1997 (1997-11-11) the whole document _____	1,5-10
X	MOURAN ET AL: "Miniemulsion Polymerization of Methyl Methacrylate with Dodecyl Mercaptan as Cosurfactant" JOURNAL OF POLYMER SCIENCE. PART A, vol. 34, 1996, pages 1073-1081, XP002128608 page 1073 -page 1078 _____	1,5-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No
PCT/EP 8789

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 509494	A 21-10-1992	DE 69217268 D DE 69217268 T JP 5070539 A JP 2845024 B JP 6056951 A		20-03-1997 28-05-1997 23-03-1993 13-01-1999 01-03-1994
EP 685544	A 06-12-1995	DE 19510651 A AT 183538 T CA 2150525 A DE 59506630 D JP 7331170 A US 5723518 A		07-12-1995 15-09-1999 04-12-1995 23-09-1999 19-12-1995 03-03-1998
EP 568976	A 10-11-1993	US 5358997 A CA 2091198 A DE 69301953 D DE 69301953 T DK 568976 T		25-10-1994 08-11-1993 02-05-1996 14-08-1996 05-08-1996
US 4517245	A 14-05-1985	DE 3436211 A FR 2558842 A GB 2153360 A, B JP 1506865 C JP 60185877 A JP 63048989 B KR 9003097 B		08-08-1985 02-08-1985 21-08-1985 13-07-1989 21-09-1985 03-10-1988 07-05-1990
US 4104223	A 01-08-1978	JP 50160331 A JP 883808 C JP 50059427 A JP 52013530 B JP 864785 C JP 50059428 A JP 51042127 B JP 868404 C JP 50061429 A JP 51044538 B AU 7364474 A DE 2446092 A DE 2462453 A GB 1472198 A GB 1472199 A US 3983056 A US 4073762 A		25-12-1975 30-09-1977 22-05-1975 15-04-1977 13-06-1977 22-05-1975 13-11-1976 30-06-1977 27-05-1975 29-11-1976 01-04-1976 10-04-1975 03-03-1977 04-05-1977 04-05-1977 28-09-1976 14-02-1978
WO 9841552	A 24-09-1998	AU 6559098 A EP 0968239 A US 5959027 A		12-10-1998 05-01-2000 28-09-1999
US 5686518	A 11-11-1997	NONE		

INTERNATIONALER RECHERCHENBERICHT

Internationale Aktenzeichen
PCT/EP 99/08789

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C08J3/03 C08G18/08 C08G59/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)

IPK 7 C08J C08G

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 509 494 A (DAINICHISEIKA COLOR & CHEMICALS) 21. Oktober 1992 (1992-10-21) Seite 2, Zeile 39 -Seite 5, Zeile 30; Ansprüche 1,2	1,2,5-7
X	EP 0 685 544 A (BAYER) 6. Dezember 1995 (1995-12-06) Seite 2, Zeile 34 -Seite 3, Zeile 39; Ansprüche 1,2	1,2
X	EP 0 568 976 A (MILES) 10. November 1993 (1993-11-10) Seite 2, Zeile 45 -Seite 8, Zeile 53	1,3
X	US 4 517 245 A (SPAIN) 14. Mai 1985 (1985-05-14) Spalte 2, Zeile 15 -Spalte 4, Zeile 20	1,4
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweitthalb erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

18. Februar 2000

28/02/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-9016

Bevollmächtigter Bediensteter

Bourgonje, A

INTERNATIONALER RECHERCHENBERICHT

Intell. xnales Abbenzeichen
PCT/EP 08789

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 4 104 223 A (HOSODA ET AL) 1. August 1978 (1978-08-01) Spalte 3, Zeile 13 -Spalte 9, Zeile 2	1,4
A	WO 98 41552 A (DOW CHEMICAL) 24. September 1998 (1998-09-24) Seite 1, Zeile 31 -Seite 8, Zeile 22; Ansprüche	1-3
X	US 5 686 518 A (FONTENOT ET AL) 11. November 1997 (1997-11-11) das ganze Dokument	1,5-10
X	MOURAN ET AL: "Miniemulsion Polymerization of Methyl Methacrylate with Dodecyl Mercaptan as Cosurfactant" JOURNAL OF POLYMER SCIENCE. PART A, Bd. 34, 1996, Seiten 1073-1081, XP002128608 Seite 1073 -Seite 1078	1,5-10

INTERNATIONALER RECHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationale Aktenzeichen

PCT/EP 99/08789

Im Rechenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 509494	A	21-10-1992	DE 69217268 D DE 69217268 T JP 5070539 A JP 2845024 B JP 6056951 A	20-03-1997 28-05-1997 23-03-1993 13-01-1999 01-03-1994
EP 685544	A	06-12-1995	DE 19510651 A AT 183538 T CA 2150525 A DE 59506630 D JP 7331170 A US 5723518 A	07-12-1995 15-09-1999 04-12-1995 23-09-1999 19-12-1995 03-03-1998
EP 568976	A	10-11-1993	US 5358997 A CA 2091198 A DE 69301953 D DE 69301953 T DK 568976 T	25-10-1994 08-11-1993 02-05-1996 14-08-1996 05-08-1996
US 4517245	A	14-05-1985	DE 3436211 A FR 2558842 A GB 2153360 A,B JP 1506865 C JP 60185877 A JP 63048989 B KR 9003097 B	08-08-1985 02-08-1985 21-08-1985 13-07-1989 21-09-1985 03-10-1988 07-05-1990
US 4104223	A	01-08-1978	JP 50160331 A JP 883808 C JP 50059427 A JP 52013530 B JP 864785 C JP 50059428 A JP 51042127 B JP 868404 C JP 50061429 A JP 51044538 B AU 7364474 A DE 2446092 A DE 2462453 A GB 1472198 A GB 1472199 A US 3983056 A US 4073762 A	25-12-1975 30-09-1977 22-05-1975 15-04-1977 13-06-1977 22-05-1975 13-11-1976 30-06-1977 27-05-1975 29-11-1976 01-04-1976 10-04-1975 03-03-1977 04-05-1977 04-05-1977 28-09-1976 14-02-1978
WO 9841552	A	24-09-1998	AU 6559098 A EP 0968239 A US 5959027 A	12-10-1998 05-01-2000 28-09-1999
US 5686518	A	11-11-1997	KEINE	

