Beyond modelocking: High repetition-rate frequency combs derived from a continuous-wave laser

by

Daniel C. Cole

B.S., Washington University in St. Louis, 2012M.S., University of Colorado, 2015

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Physics

2018

This thesis entitled: Beyond modelocking: High repetition-rate frequency combs derived from a continuous-wave laser written by Daniel C. Cole has been approved for the Department of Physics

Scott A. Diddams	
Reader Two	

Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

Cole, Daniel C. (Ph.D., Physics)

Beyond modelocking: High repetition-rate frequency combs derived from a continuous-wave laser Thesis directed by Dr. Scott A. Diddams

Optical frequency combs based on modelocked lasers have revolutionized precision metrology by facilitating measurements of optical frequencies, with implications both for fundamental scientific questions and for applications such as fast, broadband spectroscopy. In this thesis, I describe advances in the generation of frequency combs without modelocking in platforms with smaller footprints and higher repetition rates, with the ultimate goal of bringing frequency combs to new applications in a chip-integrated package. I discuss two approaches for comb generation: parametric frequency conversion in Kerr microresonators and active electro-optic modulation of a continuous-wave laser. After introducing microresonator-based frequency combs (microcombs), I discuss two specific developments in microcomb technology: First, I describe a new, extremely reliable method for generation of soliton pulses through the use of a phase-modulated pump laser. This technique eliminates the dependence on initial conditions that was formerly a universal feature of these experiments, presenting a solution to a significant technical barrier to the practical application of microcombs. Second, I present observations of soliton crystal states with highly structured 'fingerprint' optical spectra that correspond to ordered pulse trains exhibiting crystallographic defects. These pulse trains arise through interaction of solitons with avoided mode crossings in the resonator spectrum. I also discuss generation of Kerr soliton combs in the Fabry-Perot (FP) geometry, with a focus on the differences between the FP geometry and the ring geometry that has been the choice of most experimenters to date. Next, I discuss combs based on electro-optic modulation. I introduce the operational principle, and then describe the first self-referencing of a frequency comb of this kind and a proofof-principle application experiment. Finally, I discuss a technique for reducing the repetition rate of a high repetition-rate frequency comb, which will be a necessary post-processing step for some applications.

Acknowledgements

There are many people who have contributed to the success of the research described herein, my time as a graduate student, and my scientific journey so far, and I can really only name some of them in space allotted:

- I owe my gratitude to my research advisors Scott Diddams and Scott Papp. They are both diligent advocates for their students, and have consistently gone above and beyond in providing resources and encouraging me to pursue opportunities. Moreover, they have been very capable mentors—for me they struck the right balance between granting autonomy and giving direction. Most importantly, without their scientific guidance, the work described in this thesis would simply not be half the quality it is.
- A great number of talented scientists at NIST have been excellent research partners and mentors. A necessarily incomplete list of the people I've worked with and learned from includes Pascal Del'Haye, Katja Beha, Aurelien Coillet, Tara Fortier, Frank Quinlan, William Loh, Erin Lamb, Jordan Stone, Travis Briles, David Carlson, Wei Zhang, Liron Stern, and Dan Hickstein.
- Miro Erkintalo's collaboration-at-a-distance greatly benefited Chapter ??.
- Luigi Lugiato had the patience to conduct an entire manuscript's worth of theoretical research with me over email, and I'm grateful for how much I learned through these discussions.
- Ki Youl Yang, Xu Yi, and Kerry Vahala at CalTech enabled many of the experiments described here by sharing with us their high quality, and high Q, silica resonators.
- Professors Kaufman, Gopinath, and Rieker gave their time and energy to serve on my committee
 and make this thesis a stronger document.
- Zohar Nussinov, Li Yang, and Jason Woods of Washington University in St. Louis taught me about physics research and encouraged me to pursue a PhD.
- Chelsea Cerny's love and support made carrying out this research immensely more enjoyable.
- The contributions of my parents and my siblings cannot be enumerated; suffice it to say that they've surely been the strongest influences on the path I've taken, and that without all they've done I would not be earning a PhD in physics.

Contents

References 1

References

- [1] John L. Hall, "Nobel lecture: Defining and measuring optical frequencies." *Reviews of Modern Physics* **78** (2006), 1279–1295.
- [2] Theodor W. Hänsch, "Nobel lecture: Passion for precision." Reviews of Modern Physics 78 (2006), 1297–1309.
- [3] Scott A. Diddams, David J. Jones, Jun Ye, Steven T. Cundiff, John L. Hall, Jinendra K. Ranka, Robert S. Windeler, Ronald Holzwarth, Thomas Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb." Physical Review Letters 84 (2000), 5102–5105.
- [4] David J. Jones, Scott A. Diddams, Jinendra K. Ranka, Andrew Stentz, Robert S. Windeler, John L. Hall, and Steven T. Cundiff, "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis." Science 288 (2000), 635–639.
- [5] S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An Optical Clock Based on a Single Trapped 199 Hg+ Ion." Science 293 (2001), 825–828.
- [6] Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology." Nature 416 (2002), 233–237.
- [7] A. Stingl, M. Lenzner, Ch. Spielmann, and F. Krausz, "Sub-10-fs mirror-dispersion-controlled Ti: sapphire laser." *Optics Letters* **20** (1995), 602–604.
- [8] Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz, "Visible continuum generation in airsilica microstructure optical fibers with anomalous dispersion at 800 nm." *Optics Letters* **25** (2000), 25.
- [9] John M. Dudley, Goëry Genty, and Stéphane Coen, "Supercontinuum generation in photonic crystal fiber." Reviews of Modern Physics 78 (2006), 1135–1184.
- [10] Axel Beyer, Lothar Maisenbacher, Arthur Matveev, Randolf Pohl, Ksenia Khabarova, Alexey Grinin, Tobias Lamour, Dylan C Yost, Theodor W Hänsch, Nikolai Kolachevsky, and Thomas Udem, "The Rydberg constant and proton size from atomic hydrogran." *Science* **358** (2017), 79–85.
- [11] S. N. Lea, "Limits to time variation of fundamental constants." Reports on Progress in Physics 70 (2007), 1473–1523.

- [12] S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, "New limits on coupling of fundamental constants to gravity using Sr87 optical lattice clocks." *Physical Review Letters* 100 (2008), 2–5.
- [13] Tilo Steinmetz, Tobias Wilken, Constanza Araujo-Hauck, Ronald Holzwarth, Theodor W Hänsch, Luca Pasquini, Antonio Manescau, Sandro D'Odorico, Michael T Murphy, Thomas Kentischer, Wolfgang Schmidt, and Thomas Udem, "Laser frequency combs for astronomical observations." Science 321 (2008), 1335–1337.
- [14] J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source." *Electronics Letters* 41 (2005), 650–651.
- [15] T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, "Generation of ultrastable microwaves via optical frequency division." *Nature Photonics* 5 (2011), 425–429.
- [16] Scott A. Diddams, Leo Hollberg, and Vela Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb." *Nature* **445** (2007), 627–630.
- [17] Ian Coddington, Nathan Newbury, and William Swann, "Dual-comb spectroscopy." *Optica* **3** (2016), 414–426.
- [18] Steven T. Cundiff and Andrew M. Weiner, "Optical arbitrary waveform generation." Nature Photonics 4 (2010), 760–766.
- [19] Brian R. Washburn, Scott A. Diddams, Nathan R. Newbury, Jeffrey W. Nicholson, Man F. Yan, and Carsten G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared." Optics Letters 29 (2004), 250–252.
- [20] Christoph Gohle, Thomas Udem, Maximilian Herrmann, Jens Rauschenberger, Ronald Holzwarth, Hans A. Schuessler, Ferenc Krausz, and Theodor W. Hänsen, "A frequency comb in the extreme ultraviolet." *Nature* 436 (2005), 234–237.
- [21] Scott A. Diddams, "The evolving optical frequency comb [Invited]." Journal of the Optical Society of America B 27 (2010), B51–B62.
- [22] Jerome Faist, Gustavo Villares, Giacomo Scalari, Markus Rosch, Christopher Bonzon, Andreas Hugi, and Mattias Beck, "Quantum Cascade Laser Frequency Combs." Nanophotonics 5 (2016), 272–291.
- [23] N. R. Newbury and W. C. Swann, "Low-noise fiber-laser frequency combs (Invited)." Journal of the Optical Society of America B-Optical Physics 24 (2007), 1756–1770.
- [24] Martin E. Fermann and Ingmar Hartl, "Ultrafast fibre lasers." Nature Photonics 7 (2013), 868–874.
- [25] L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, "Invited Article: A compact optically coherent fiber frequency comb." Review of Scientific Instruments 86 (2015), 081301.

- [26] L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, "Operation of an optically coherent frequency comb outside the metrology lab." Optics Express 22 (2014), 6996.
- [27] Sean Coburn, Caroline B. Alden, Robert Wright, Kevin Cossel, Esther Baumann, Gar-Wing Truong, Fabrizio Giorgetta, Colm Sweeney, Nathan R. Newbury, Kuldeep Prasad, Ian Coddington, and Gregory B. Rieker, "Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer." Optica 5 (2018), 320–327.
- [28] Matthias Lezius, Tobias Wilken, Christian Deutsch, Michele Giunta, Olaf Mandel, Andy Thaller, Vladimir Schkolnik, Max Schiemangk, Aline Dinkelaker, Anja Kohfeldt, Andreas Wicht, Markus Krutzik, Achim Peters, Ortwin Hellmig, Hannes Duncker, Klaus Sengstock, Patrick Windpassinger, Kai Lampmann, Thomas Hülsing, Theodor W. Hänsch, and Ronald Holzwarth, "Space-borne frequency comb metrology." Optica 3 (2016), 1381.
- [29] D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti: sapphire laser." *Optics Letters* **16** (1991), 42–44.
- [30] T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, "Kerr lens mode locking." Optics Letters 17 (1992), 1292.
- [31] M. Hofer, M.H. Ober, F. Haberl, and M.E. Fermann, "Characterization of ultrashort pulse formation in passively mode-locked fiber lasers." *IEEE Journal of Quantum Electronics* **28** (1992), 720–728.
- [32] M. E. Fermann, M. L. Stock, M. J. Andrejco, and Y. Silberberg, "Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber."

 Optics Letters 18 (1993), 894.
- [33] K. A. Stankov, "A mirror with an intensity-dependent reflection coefficient." Applied Physics B Photophysics and Laser Chemistry 45 (1988), 191–195.
- [34] Daryl T. Spencer, Tara Drake, Travis C. Briles, Jordan Stone, Laura C. Sinclair, Connor Fredrick, Qing Li, Daron Westly, B. Robert Ilic, Aaron Bluestone, Nicolas Volet, Tin Komljenovic, Lin Chang, Seung Hoon Lee, Dong Yoon Oh, Myoung-gyun Suh, Ki Youl Yang, Martin H. P. Pfeiffer, Tobias J. Kippenberg, Erik Norberg, Luke Theogarajan, Kerry Vahala, Nathan R. Newbury, Kartik Srinivasan, John E. Bowers, Scott A. Diddams, and Scott B. Papp, "An optical-frequency synthesizer using integrated photonics." Nature 557 (2018), 81–85.
- [35] Travis C. Briles, Jordan R. Stone, Tara E. Drake, Daryl T. Spencer, Connor Frederick, Qing Li, Daron A. Westly, B. Robert Illic, Kartik Srinivasan, Scott A. Diddams, and Scott B. Papp, "Kerr-microresonator solitons for accurate carrier-envelope-frequency stabilization." arXiv (2017), 1711.06251.
- [36] Robert W. Boyd, Nonlinear Optics. San Diego, CA: Elsevier, 2003.
- [37] T. M. Fortier, David J. Jones, and S. T. Cundiff, "Phase stabilization of an octave-spanning Ti:sapphire laser." *Optics Letters* **28** (2003), 2198–2200.

- [38] David R. Carlson, Daniel D. Hickstein, Alex Lind, Stefan Droste, Daron Westly, Nima Nader, Ian Coddington, Nathan R. Newbury, Kartik Srinivasan, Scott A. Diddams, and Scott B. Papp, "Self-referenced frequency combs using high-efficiency silicon-nitride waveguides." Optics Letters 42 (2017), 2314–2317.
- [39] David S. Hum and Martin M. Fejer, "Quasi-phasematching." Comptes Rendus Physique 8 (2007), 180–198.
- [40] P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator." *Nature* 450 (2007), 1214–1217.
- [41] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, "Microresonator-Based Optical Frequency Combs." *Science* **332** (2011), 555–559.
- [42] A. A. Savchenkov, A. B. Matsko, and L. Maleki, "On Frequency Combs in Monolithic Resonators." *Nanophotonics* 5 (2016), 363–391.
- [43] Yanne K. Chembo, "Kerr optical frequency combs: Theory, applications and perspectives." Nanophotonics 5 (2016), 214–230.
- [44] Alessia Pasquazi, Marco Peccianti, Luca Razzari, David J. Moss, Stéphane Coen, Miro Erkintalo, Yanne K. Chembo, Tobias Hansson, Stefan Wabnitz, Pascal Del'Haye, Xiaoxiao Xue, Andrew M. Weiner, and Roberto Morandotti, "Micro-combs: A novel generation of optical sources." Physics Reports 729 (2017), 1–81.
- [45] Hansuek Lee, Tong Chen, Jiang Li, Ki Youl Yang, Seokmin Jeon, Oskar Painter, and Kerry J. Vahala, "Chemically etched ultrahigh-Q wedge-resonator on a silicon chip." *Nature Photonics* 6 (2012), 369–373.
- [46] Xu Yi, Qi-Fan Yang, Ki Youl Yang, Myoung-Gyun Suh, and Kerry Vahala, "Soliton frequency comb at microwave rates in a high-Q silica microresonator." Optica 2 (2015), 1078–1085.
- [47] Pascal Del'Haye, Scott A. Diddams, and Scott B. Papp, "Laser-machined ultra-high-Q microrod resonators for nonlinear optics." *Applied Physics Letters* **102** (2013), 221119.
- [48] W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, "Generation of near-infrared frequency combs from a MgF\$_2\$ whispering gallery mode resonator." Optics Letters 36 (2011), 2290–2292.
- [49] Anatoliy A. Savchenkov, Andrey B. Matsko, Vladimir S. Ilchenko, Iouri Solomatine, David Seidel, and Lute Maleki, "Tunable optical frequency comb with a crystalline whispering gallery mode resonator." *Physical Review Letters* **101** (2008), 093902.
- [50] Yoshitomo Okawachi, Kasturi Saha, Jacob S. Levy, Y. Henry Wen, Michal Lipson, and Alexander L. Gaeta, "Octave-spanning frequency comb generation in a silicon nitride chip." Optics Letters 36 (2011), 3398–3400.
- [51] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics." *Nature Photonics* 7 (2013), 597–607.

- [52] Danielle Braje, Leo Hollberg, and Scott Diddams, "Brillouin-Enhanced Hyperparametric Generation of an Optical Frequency Comb in a Monolithic Highly Nonlinear Fiber Cavity Pumped by a cw Laser." *Physical Review Letters* **102** (2009), 193902.
- [53] Ewelina Obrzud, Steve Lecomte, and Tobias Herr, "Temporal solitons in microresonators driven by optical pulses." *Nature Photonics* **11** (2017), 600–607.
- [54] Vladimir S. Ilchenko and Andrey B. Matsko, "Optical resonators with whispering-gallery modes - Part II: Applications." *IEEE Journal on Selected Topics in Quantum Electronics* 12 (2006), 15–32.
- [55] Ki Youl Yang, Katja Beha, Daniel C. Cole, Xu Yi, Pascal Del'Haye, Hansuek Lee, Jiang Li, Dong Yoon Oh, Scott A. Diddams, Scott B. Papp, and Kerry J. Vahala, "Broadband dispersion-engineered microresonator on a chip." Nature Photonics 10 (2016), 316–320.
- [56] Govind P. Agrawal, Nonlinear Fiber Optics. 4th. Burlington, MA: Elsevier, 2007.
- [57] Maria L Calvo and Vasudevan Lakshminarayanan, eds. Optical Waveguides: From Theory to Applied Technologies. Boca Raton, FL: Taylor & Francis, 2007.
- [58] A. N. Oraevsky, "Whispering-gallery waves." Quantum Electronics 32 (2002), 377–400.
- [59] Hermann A. Haus, Waves and Fields in Optoelectronics. Englewood Cliffs: Prentice-Hall, 1984.
- [60] J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper." Optics Letters 22 (1997), 1129.
- [61] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics." *Physical review letters* 91 (2003), 043902.
- [62] Ehsan Shah Hosseini, Siva Yegnanarayanan, Amir Hossein Atabaki, Mohammad Soltani, and Ali Adibi, "Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths." *Optics Express* 18 (2010), 2127.
- [63] Tal Carmon, Lan Yang, and Kerry J Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities." *Optics Express* **12** (2004), 4742–4750.
- [64] Raúl del Coso and Javier Solis, "Relation between nonlinear refractive index and third-order susceptibility in absorbing media." *Journal of the Optical Society of America B* **21** (2004), 640.
- [65] Roger H. Stolen and John E. Bjorkholm, "Parametric Amplification and Frequency Conversion in Optical Fibers." *IEEE Journal of Quantum Electronics* **18** (1982), 1062–1072.
- [66] T. Kippenberg, S. Spillane, and K. Vahala, "Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity." Physical Review Letters 93 (2004), 083904.
- [67] Anatoliy A. Savchenkov, Andrey B. Matsko, Dmitry Strekalov, Makan Mohageg, Vladimir S. Ilchenko, and Lute Maleki, "Low threshold optical oscillations in a whispering gallery mode CaF2 resonator." Physical Review Letters 93 (2004), 243905.

- [68] Imad H. Agha, Yoshitomo Okawachi, Mark A. Foster, Jay E. Sharping, and Alexander L. Gaeta, "Four-wave-mixing parametric oscillations in dispersion-compensated high- Q silica microspheres." Physical Review A 76 (2007), 043837.
- [69] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, "Temporal solitons in optical microresonators." *Nature Photonics* 8 (2014), 145–152.
- [70] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, "Temporal solitons in optical microresonators." arXiv (2012), 1211.0733.
- [71] François Leo, Stéphane Coen, Pascal Kockaert, Simon-Pierre Gorza, Philippe Emplit, and Marc Haelterman, "Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer." *Nature Photonics* 4 (2010), 471–476.
- [72] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, "Universal formation dynamics and noise of Kerrfrequency combs in microresonators." *Nature Photonics* 6 (2012), 480–487.
- [73] Yanne K. Chembo and Curtis R. Menyuk, "Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators." *Physical Review A* 87 (2013), 053852.
- [74] Stéphane Coen, Hamish G Randle, Thibaut Sylvestre, and Miro Erkintalo, "Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model." Optics Letters 38 (2013), 37–39.
- [75] M. Haelterman, S. Trillo, and S. Wabnitz, "Dissipative modulation instability in a nonlinear dispersive ring cavity." Optics Communications 91 (1992), 401–407.
- [76] T. Hansson, M. Bernard, and S. Wabnitz, "Modulational Instability of Nonlinear Polarization Mode Coupling in Microresonators." *Journal of the Optical Society of America B* 35 (2018), 835–841.
- [77] Y. K. Chembo, I. S. Grudinin, and N. Yu, "Spatiotemporal dynamics of Kerr-Raman optical frequency combs." *Physical Review A* **92** (2015), 043818.
- [78] Cyril Godey, Irina V. Balakireva, Aurélien Coillet, and Yanne K. Chembo, "Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes." *Physical Review A* 89 (2014), 063814.
- [79] I. V. Barashenkov and Yu S. Smirnov, "Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons." *Physical Review E* **54** (1996), 5707–5725.
- [80] A. Coillet and Y. K. Chembo, "Routes to spatiotemporal chaos in Kerr optical frequency combs." Chaos 24 (2014), 013113.
- [81] L. A. Lugiato and R. Lefever, "Spatial Dissipative Structures in Passive Optical Systems." Physical Review Letters 58 (1987), 2209–2211.
- [82] L. A. Lugiato and R. Lefever, "Diffraction stationary patterns in passive optical systems."

 Interaction of Radiation with Matter (1987).

- [83] William H. Renninger and Peter T. Rakich, "Closed-form solutions and scaling laws for Kerr frequency combs." *Scientific Reports* 6 (2016), 24742.
- [84] John Scott Russell, "Report on Waves." Fourteenth Meeting of the British Association for the Advancement of Science (1844), 311–390.
- [85] M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, "Spatial soliton pixels in semiconductor devices." *Physical Review Letters* 79 (1997), 2042–2045.
- [86] S. Minardi, F. Eilenberger, Y. V. Kartashov, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, and T. Pertsch, "Three-dimensional light bullets in arrays of waveguides." *Physical Review Letters* 105 (2010), 263901.
- [87] F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers." *IEEE Journal on Selected Topics in Quantum Electronics* 2 (1996), 540–556.
- [88] P. Grelu and N. Akhmediev, "Dissipative solitons for mode-locked lasers." Nature Photonics 6 (2012), 84–92.
- [89] L. F. Mollenauer and J. P. Gordon, Solitons in Optical Fibers. Academic Press, 2006, p. 296.
- [90] A. Hasegawa and Y. Kodama, Solitons in Optical Communications. Academic Press, 1995.
- [91] Hermann A. Haus and William S. Wong, "Solitons in optical communications." Reviews of Modern Physics 68 (1996), 423–444.
- [92] Stéphane Coen and Miro Erkintalo, "Universal scaling laws of Kerr frequency combs." Optics Letters 38 (2013), 1790–1792.
- [93] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H.P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, "Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators." Nature Physics 13 (2017), 94–102.
- [94] N. J. Zabusky and M. D. Kruskal, "Interaction of "solitons" in a collisionless plasma and the recurrence of initial states." *Physical Review Letters* **15** (1965), 240.
- [95] J. P. Gordon, "Interaction forces among solitons in optical fibers." Optics Letters 8 (1983), 596–598.
- [96] Boris A. Malomed, "Bound solitons in the nonlinear Schrodinger-Ginzburg-Landau equation." *Physical Review A* **44** (1991), 6954–6957.
- [97] J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, "Ultraweak long-range interactions of solitons observed over astronomical distances." *Nature Photonics* **7** (2013), 657–663.
- [98] Pedro Parra-Rivas, Damia Gomila, Pere Colet, and Lendert Gelens, "Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation." European Physical Journal D 71 (2017), 198.

- [99] Yadong Wang, François Leo, Julien Fatome, Miro Erkintalo, Stuart G. Murdoch, and Stéphane Coen, "Universal mechanism for the binding of temporal cavity solitons." Optica 4 (2017), 855–863.
- [100] Victor Brasch, Tobias Herr, Michael Geiselmann, Grigoriy Lihachev, Martin H. P. Pfeiffer, Michael L. Gorodetsky, and Tobias J. Kippenberg, "Photonic chip-based optical frequency comb using soliton Cherenkov radiation." Science 351 (2016), 357.
- [101] Jordan R. Stone, Travis C. Briles, Tara E. Drake, Daryl T. Spencer, David R. Carlson, Scott
 A. Diddams, and Scott B. Papp, "Thermal and Nonlinear Dissipative-Soliton Dynamics in
 Kerr Microresonator Frequency Combs." arXiv (2017), 1708.08405.
- [102] V. E. Lobanov, G. V. Lihachev, N. G. Pavlov, A. V. Cherenkov, T. J. Kippenberg, and M. L. Gorodetsky, "Harmonization of chaos into a soliton in Kerr frequency combs." Optics Express 24 (2016), 27382.
- [103] Chaitanya Joshi, Jae K. Jang, Kevin Luke, Xingchen Ji, Steven A. Miller, Alexander Klenner, Yoshitomo Okawachi, Michal Lipson, and Alexander L. Gaeta, "Thermally controlled comb generation and soliton modelocking in microresonators." Optics Letters 41 (2016), 2565–2568.
- [104] Weiqiang Wang, Zhizhou Lu, Wenfu Zhang, Sai T. Chu, Brent E. Little, Leiran Wang, Xiaoping Xie, Mulong Liu, Qinghua Yang, Lei Wang, Jianguo Zhao, Guoxi Wang, Qibing Sun, Yuanshan Liu, Yishan Wang, and Wei Zhao, "Robust soliton crystals in a thermally controlled microresonator." Optics Letters 43 (2018), 2002–2005.
- [105] Jae K. Jang, Miro Erkintalo, Stuart G. Murdoch, and Stéphane Coen, "Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field." Optics Letters 40 (2015), 4755–4758.
- [106] Jae K. Jang, Miro Erkintalo, Stephane Coen, and Stuart G. Murdoch, "Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons." *Nature Com*munications 6 (2015), 7370.
- [107] Yadong Wang, Bruno Garbin, Francois Leo, Stephane Coen, Miro Erkintalo, and Stuart G. Murdoch, "Writing and Erasure of Temporal Cavity Solitons via Intensity Modulation of the Cavity Driving Field." arXiv (2018), 1802.07428.
- [108] Scott B. Papp, Katja Beha, Pascal Del'Haye, Franklyn Quinlan, Hansuek Lee, Kerry J. Vahala, and Scott A. Diddams, "Microresonator frequency comb optical clock." Optica 1 (2014), 10–14.
- [109] Myoung Gyun Suh, Qi Fan Yang, Ki Youl Yang, Xu Yi, and Kerry J. Vahala, "Microresonator soliton dual-comb spectroscopy." *Science* **354** (2016), 1–5.
- [110] Pablo Marin-Palomo, Juned N. Kemal, Maxim Karpov, Arne Kordts, Joerg Pfeifle, Martin H.P. Pfeiffer, Philipp Trocha, Stefan Wolf, Victor Brasch, Miles H. Anderson, Ralf Rosenberger, Kovendhan Vijayan, Wolfgang Freude, Tobias J. Kippenberg, and Christian Koos, "Microresonator-based solitons for massively parallel coherent optical communications." Nature 546 (2017), 274–279.

- [111] J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg, "Counting the cycles of light using a self-referenced optical microresonator." Optica 2 (2015), 706–711.
- [112] Pascal Del'Haye, Aurélien Coillet, Tara Fortier, Katja Beha, Daniel C. Cole, Ki Youl Yang, Hansuek Lee, Kerry J. Vahala, Scott B. Papp, and Scott A. Diddams, "Phase-coherent microwave-to-optical link with a self-referenced microcomb." *Nature Photonics* **10** (2016), 1–5.
- [113] Victor Brasch, Erwan Lucas, John D. Jost, Michael Geiselmann, and Tobias J. Kippenberg, "Self-referenced photonic chip soliton Kerr frequency comb." *Light: Science & Applications* 6 (2017), e16202.
- [114] Hossein Taheri, Ali A. Eftekhar, Kurt Wiesenfeld, and Ali Adibi, "Soliton formation in whispering-gallery-mode resonators via input phase modulation." *IEEE Photonics Journal* 7 (2015), 2200309.
- [115] Ian Hendry, Wei Chen, Yadong Wang, Bruno Garbin, Julien Javaloyes, Gian-luca Oppo, Stéphane Coen, Stuart G Murdoch, and Miro Erkintalo, "Spontaneous symmetry breaking and trapping of temporal Kerr cavity solitons by pulsed or amplitude-modulated driving fields." *Physical Review A* **97** (2018), 053834.
- [116] Daniel C. Cole, Erin S. Lamb, Pascal Del'Haye, Scott A. Diddams, and Scott B. Papp, "Soliton crystals in Kerr resonators." Nature Photonics 11 (2017), 671–676.
- [117] M. Zajnulina, M. Böhm, D. Bodenmüller, K. Blow, J.M. Chavez Boggio, A.A. Rieznik, and M.M. Roth, "Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation." Optics Communications 393 (2017), 95–102.
- [118] Adil Haboucha, Hervé Leblond, Mohamed Salhi, Andrey Komarov, and François Sanchez, "Coherent soliton pattern formation in a fiber laser." Optics Letters 33 (2008), 524–526.
- [119] Foued Amrani, Mohamed Salhi, Philippe Grelu, Hervé Leblond, and François Sanchez, "Universal soliton pattern formations in passively mode-locked fiber lasers." Optics Letters 36 (2011), 1545–1547.
- [120] A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, "Analysis of soliton pattern formation in passively mode-locked fiber lasers." *Physical Review A* 78 (2008), 043806.
- [121] B A Malomed, A Schwache, and F Mitschke, "Soliton lattice and gas in passive fiber-ring resonators." Fiber and Integrated Optics 17 (1998), 267–277.
- [122] F. Mitschke and A. Schwache, "Soliton ensembles in a nonlinear resonator." *Journal of Optics B: Quantum and Semiclassical Optics* **10** (1998), 779–788.
- [123] A. Schwache and F. Mitschke, "Properties of an optical soliton gas." *Physical Review E* **55** (1997), 7720–7725.
- [124] Pascal Del'Haye, Katja Beha, Scott B. Papp, and Scott A. Diddams, "Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs." *Physical Review Letters* 112 (2014), 043905.

- [125] Pascal Del'Haye, Aurélien Coillet, William Loh, Katja Beha, Scott B. Papp, and Scott a. Diddams, "Phase steps and resonator detuning measurements in microresonator frequency combs." Nature Communications 6 (2015), 5668.
- [126] Hermann A. Haus and Weiping Huang, "Coupled-Mode Theory." Proceedings of the IEEE 79 (1991), 1505–1518.
- [127] A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, "Kerr frequency comb generation in overmoded resonators." Optics Express 20 (2012), 27290–27298.
- [128] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, "Mode Spectrum and Temporal Soliton Formation in Optical Microresonators." Physical Review Letters 113 (2014), 123901.
- [129] Yang Liu, Yi Xuan, Xiaoxiao Xue, Pei-Hsun Wang, Steven Chen, Andrew J. Metcalf, Jian Wang, Daniel E. Leaird, Minghao Qi, and Andrew M. Weiner, "Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation."

 Optica 1 (2014), 137–144.
- [130] Xiaoxiao Xue, Yi Xuan, Yang Liu, Pei-Hsun Wang, Steven Chen, Jian Wang, Dan E. Leaird, Minghao Qi, and Andrew M. Weiner, "Mode-locked dark pulse Kerr combs in normal-dispersion microresonators." Nature Photonics 9 (2015), 594–600.
- [131] Chengying Bao, Yi Xuan, Daniel E. Leaird, Stefan Wabnitz, Minghao Qi, and Andrew M. Weiner, "Spatial mode-interaction induced single soliton generation in microresonators." Optica 4 (2017), 1011.
- [132] T. Hansson and S. Wabnitz, "Bichromatically pumped microresonator frequency combs." Physical Review A 90 (2014), 013811.
- [133] D. V. Skryabin and William J. Firth, "Interaction of cavity solitons in degenerate optical parametric oscillators." *Optics Letters* **24** (1999), 1056–1058.
- [134] S. Wabnitz, "Control of soliton train transmission, storage, and clock recovery by cw light injection." *Journal of the Optical Society of America B* **13** (1996), 2739–2749.
- [135] J. A. Barker and D. Henderson, "What is "liquid"? Understanding the states of matter." Reviews of Modern Physics 48 (1976), 587–671.
- [136] Takeshi Egami and Simon Billinge, **Underneath the Bragg Peaks**. 2nd. Oxford, UK: Elsevier, 2012, p. 422.
- [137] Niel W. Ashcroft and David N. Mermin, **Solid State Physics**. 1st ed. Belmont, CA: Brooks/Cole, 1976, p. 826.
- [138] Andrew Weiner, Ultrafast Optics. 1st ed. Hoboken, NJ: Wiley, 2009, p. 598.
- [139] Daniel C. Cole, Alessandra Gatti, Scott B. Papp, Franco Prati, and Luigi Lugiato, "Theory of Kerr frequency combs in Fabry-Perot resonators." *Physical Review A* (2018), accepted.
- [140] Wei Zhang, Daniel C. Cole, and Scott B. Papp, Forthcoming (2018).
- [141] Su-Peng Yu and Scott B. Papp, Forthcoming (2018).

- [142] Daniel C. Cole, Katja M. Beha, Scott A. Diddams, and Scott B. Papp, "Octave-spanning supercontinuum generation via microwave frequency multiplication." Proceedings of the 8th Symposium on Frequency Standards and Metrology 2015, Journal of Physics: Conference Series 723 (2016), 012035.
- [143] Katja Beha, Daniel C. Cole, Pascal Del'Haye, Aurélien Coillet, Scott A. Diddams, and Scott
 B. Papp, "Electronic synthesis of light." Optica 4 (2017), 406–411.
- [144] T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator." Applied Physics Letters 21 (1972), 341–343.
- [145] Motonobu Kourogi, Ken Nakagawa, and Motoichi Ohtsu, "Wide-Span Optical Frequency Comb Generator for Accurate Optical Frequency Difference Measurement." *IEEE Journal of Quantum Electronics* 29 (1993), 2693–2701.
- [146] H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, "Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators." *IEEE Journal of Selected Topics in Quantum Electronics* **6** (2000), 1325–1331.
- [147] Takahide Sakamoto, Tetsuya Kawanishi, and Masayuki Izutsu, "Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator." Optics Letters 32 (2007), 1515–1517.
- [148] Isao Morohashi, Takahide Sakamoto, Hideyuki Sotobayashi, Tetsuya Kawanishi, Iwao Hosako, and Masahiro Tsuchiya, "Widely repetition-tunable 200 fs pulse source using a Mach-Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber."

 Optics Letters 33 (2008), 1192–1194.
- [149] A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, "Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking." Electronics Letters 46 (2010), 1343.
- [150] Rui Wu, V. R. Supradeepa, Christopher M. Long, Daniel E. Leaird, and Andrew M. Weiner, "Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms." *Optics Letters* **35** (2010), 3234.
- [151] V. R. Supradeepa and Andrew M. Weiner, "Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing." *Optics Letters* **37** (2012), 3066.
- [152] Andrew J. Metcalf, Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner, "High-Power Broadly Tunable Electrooptic Frequency Comb Generator." *IEEE Journal of Selected Topics in Quantum Electronics* 19 (2013), 3500306.
- [153] Rui Wu, Victor Torres-Company, Daniel E Leaird, and Andrew M Weiner, "Supercontinuum-based 10-GHz flat-topped optical frequency comb generation." *Optics Express* **21** (2013), 6045–6052.

- [154] A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators." Review of Scientific Instruments 71 (2000), 1929–1960.
- [155] A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kärtner, and H. M. Crespo, "Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers." *Optics Letters* **34** (2009), 3851–3853.
- [156] Gianni Di Domenico, Stéphane Schilt, and Pierre Thomann, "Simple approach to the relation between laser frequency noise and laser line shape." Applied Optics 49 (2010), 4801–4807.
- [157] William C. Swann, Esther Baumann, Fabrizio R. Giorgetta, and Nathan R. Newbury, "Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator." Optics Express 19 (2011), 24387.
- [158] Jiang Li, Xu Yi, Hansuek Lee, Scott A. Diddams, and Kerry J. Vahala, "Electro-optical frequency division and stable microwave synthesis." *Science* **345** (2014), 309–314.
- [159] Judah Levine, "Introduction to time and frequency metrology." Review of Scientific Instruments 70 (1999), 2567–2596.
- [160] David R. Carlson, Daniel D. Hickstein, Daniel C. Cole, Scott A. Diddams, and Scott B. Papp, "Dual-comb interferometry via repetition-rate switching of a single frequency comb." arXiv (2018), 1806.05311.
- [161] A. J. Metcalf, C. Bender, S. Blakeslee, W. Brand, D. Carlson, S. A. Diddams, C. Fredrick, S. Halverson, F. Hearty, D. Hickstein, J. Jennings, S. Kanodia, K. Kaplan, E. Lubar, S. Mahadevan, A. Monson, J. Ninan, C. Nitroy, S. Papp, L. Ramsey, P. Robertson, A. Roy, C. Schwab, K. Srinivasan, G. K. Stefansson, and R. Terrien, "Infrared Astronomical Spectroscopy for Radial Velocity Measurements with 10 cm/s Precision." In: Conference on Lasers and Electro-Optics. 2018, JTh5A.1.
- [162] Daniel C. Cole, Scott B. Papp, and Scott A. Diddams, "Downsampling of optical frequency combs." *Journal of the Optical Society of America B* **35** (2018), 1666–1673.
- [163] Sterling Backus, Charles G. Durfee, Margaret M. Murnane, and Henry C. Kapteyn, "High power ultrafast lasers." Review of Scientific Instruments 69 (1998), 1207.
- [164] Andrius Baltuska, Matthias Uiberacker, Eleftherios Goulielmakis, Reinhard Kienberger, Vladislav S Yakovlev, Thomas Udem, Theodor W Hänsch, and Ferenc Krausz, "Phase-Controlled Amplification of Few-Cycle Laser Pulses." *IEEE Journal of Selected Topics in Quantum Electronics* 9 (2003), 972–989.
- [165] Christoph Gohle, Jens Rauschenberger, Takao Fuji, Thomas Udem, Alexander Apolonski, Ferenc Krausz, and Theodor W Hänsch, "Carrier envelope phase noise in stabilized amplifier systems." Optics Letters 30 (2005), 2487–2489.
- [166] J. Rauschenberger, T. Fuji, M. Hentschel, A.-J. Verhoef, T. Udem, C. Gohle, T. W. Hänsch, and F. Krausz, "Carrier-envelope phase-stabilized amplifier system." Laser Physics Letters 3 (2006), 37–42.

- [167] M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers." *Physical Review Letters* 84 (2000), 6010–6013.
- [168] Masaaki Hirano, Tetsuya Nakanishi, Toshiaki Okuno, and Masashi Onishi, "Silica-Based Highly Nonlinear Fibers and Their Application." *IEEE Journal of Selected Topics in Quantum Electronics* 15 (2009), 103–113.
- [169] Dimitrios Mandridis, Ibrahim Ozdur, Franklyn Quinlan, Mehmetcan Akbulut, Jason J. Plant, Paul W. Juodawlkis, and Peter J. Delfyett, "Low-noise, low repetition rate, semiconductorbased mode-locked laser source suitable for high bandwidth photonic analogdigital conversion." Applied Optics 49 (2010), 2850–2857.
- [170] Hans-A. Bachor and Peter J. Manson, "Practical Implications of Quantum Noise." Journal of Modern Optics 37 (1990), 1727–1740.
- [171] Franklyn Quinlan, Tara M. Fortier, Haifeng Jiang, and Scott A. Diddams, "Analysis of shot noise in the detection of ultrashort optical pulse trains." *Journal of the Optical Society of America B* **30** (2013), 1775–1785.
- [172] Alexander M. Heidt, "Efficient Adaptive Step Size Method for the Simulation of Supercontinuum Generation in Optical Fibers." *Journal of Lightwave Technology* **27** (2009), 3984–3991.
- [173] J. Hult, "A Fourth-Order Runge-Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers." Journal of Lightwave Technology 25 (2007), 3770–3775.
- [174] Rachid Driad, Josef Rosenzweig, Robert Elvis Makon, Rainer Lösch, Volker Hurm, Herbert Walcher, and Michael Schlechtweg, "InP DHBT-Based IC Technology for 100-Gb/s Ethernet." *IEEE Transactions on Electronic Devices* **58** (2011), 2604–2609.
- [175] Damir Ferenci, Markus Grozing, Manfred Berroth, Robert Makon, Rachid Driad, and Josef Rosenzweig, "A 25 GHz Analog Demultiplexer with a Novel Track and Hold Circuit for a 50 GS/s A/D-Conversion System in InP DHBT Technology." In: **Microwave Symposium Digest**. 2012, pp. 1–3.
- [176] Kensuke Ikeda, "Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system." Optics Communications 30 (1979), 257–261.
- [177] K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers." *IEEE Journal of Quantum Electronics* **25** (1989), 2665–2673.