Feuille d'exercices 21. Fractions rationnelles et calculs d'intégrales

Exercice 21.1 : (niveau 1) Décomposer $\frac{X^2}{X^2+i}$ en éléments simples dans $\mathbb{C}(X)$.

Exercice 21.2 : (niveau 1)

Montrer qu'il n'existe pas de fraction rationnelle $F \in \mathbb{K}(X)$ telle que $F^2 = X$.

Exercice 21.3 : (niveau 1)

1°) Montrer qu'il existe
$$\gamma \in \mathbb{R}$$
 tel que $\sum_{p=1}^{n} \frac{1}{p} - \ln(n) \underset{n \to +\infty}{\longrightarrow} \gamma$.

$$2^{\circ}$$
) Calculer $\sum_{n=1}^{+\infty} \frac{1}{n(4n^2-1)}$.

Exercice 21.4 : (niveau 1)

Soit P un polynôme à coefficients complexes de degré $n \ge 2$ et dont les racines, notées x_1, \ldots, x_n , sont supposées simples.

1°) Donner la décomposition en éléments simples de
$$\frac{1}{P(X)}$$
.

$$\mathbf{2}^{\circ}$$
) Montrer que $\sum_{i=1}^{n} \frac{1}{P'(x_i)} = 0$.

Exercice 21.5 : (niveau 1)

Soit P un polynôme de degré n admettant n racines distinctes notées x_1, \ldots, x_n .

$$\mathbf{1}^{\circ}$$
) Décomposer la fraction rationnelle $\frac{P'}{P}$ en éléments simples.

2°) Calculer
$$\sum_{i=1}^{n} \frac{1}{(x-x_i)^2}$$
 et $\sum_{1 \leq i < j \leq n} \frac{1}{(x-x_i)(x-x_j)}$ en fonction de P et de ses dérivées.

Exercice 21.6 : (niveau 2)

Soit $P \in \mathbb{R}[X]$ un polynôme non constant. Montrer qu'il n'existe pas de fraction rationnelle $F \in \mathbb{R}(X)$ telle que $F\left(\frac{X^2}{1+X}\right) = P(X)$.

Exercice 21.7 : (niveau 2)

Soit F une fraction rationnelle sur \mathbb{K} , où \mathbb{K} est un corps de caractéristique nulle.

- 1°) Démontrer que si α est une racine de F de multiplicité $m \in \mathbb{N}^*$, alors α est une racine de F' de multiplicité m-1.
- **2°)** Démontrer que si β est un pôle de F de multiplicité $p \in \mathbb{N}^*$, alors β est un pôle de F' de multiplicité p+1.

Exercice 21.8 : (niveau 2)

Soit $P \in \mathbb{C}[X]$. Quelle est la décomposition en éléments simples de P'(X)

 $F(X) = \frac{P'(X)}{P(X)}?$

Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que P' divise P.

Exercice 21.9 : (niveau 2)

Décomposer en éléments simples dans $\mathbb{R}(X)$ la fraction $\frac{X^{2n}}{(X^2+1)^n}$.

Exercice 21.10: (niveau 2)

Calcul de $\int \frac{dt}{t^7 - 1}$.

Exercice 21.11 : (niveau 2)

Soit N un entier supérieur ou égal à 2. Calculer $\sum_{n=2}^{N} \frac{3n^2 - 1}{(n-1)^2 n^2 (n+1)^2}.$

Exercice 21.12 : (niveau 2)

Calcul de $\int \frac{t^4 + t^2 + 1}{(t^2 + t + 1)^3} dt$.

Exercice 21.13: (niveau 2)

Calcul de $\int \frac{\sin t \, dt}{\cos^2 t + \tan^2 t}$.

Exercice 21.14 : (niveau 2)

Soit $P,Q\in\mathbb{C}[X]$ tels que $Q\neq 0$ et $P\wedge Q=1$. Trouver une CNS sur la parité de P et de Q pour que la fraction rationnelle $F=\frac{P}{Q}$ soit paire. Même question pour F impaire.

Exercice 21.15 : (niveau 2)

n désigne un entier strictement positif. On note U_n l'ensemble des racines $n^{\text{\`e}mes}$ de l'unité dans \mathbb{C} .

- $\mathbf{1}^\circ)$ Si $C\in\mathbb{C}[X]$ avec deg(C)< n, donner la décomposition en éléments simples de $\frac{C(X)}{X^n-1}.$
- 2°) Trouver deux polynômes (aussi simples que possible) A et B de $\mathbb{C}[X]$ tels que $\sum_{\omega \in U} \frac{\omega}{(X-\omega)} = \frac{A}{B}.$

3°) Trouver deux polynômes (aussi simples que possible) A et B de $\mathbb{C}[X]$ tels que $\sum_{\omega \in U_n} \frac{\omega}{(X - \omega)^2} = \frac{A}{B}.$

Exercice 21.16 : (niveau 3)

Décomposer $\frac{3}{(X^3-1)^2}$ en éléments simples dans $\mathbb{C}(X)$, à l'aide d'un développement

Exercice 21.17 : (niveau 3)

Soit P un polynôme non constant à coefficients complexes.

- 1°) Donner la décomposition de $\frac{P'}{P}$ à l'aide des racines de P et de leurs multiplicités.
- 2°) En déduire le théorème de Lucas : les racines de P' sont dans l'enveloppe convexe des racines de P, c'est-à-dire que les racines de P' sont des barycentres à coefficients positifs des racines de P.

Exercice 21.18 : (niveau 3) Décomposer $\frac{1}{(X-1)(X^n-1)}$ en éléments simples dans $\mathbb{C}(X)$.

Exercice 21.19: (niveau 3)

Soit $P, Q \in \mathbb{Z}[X]$ avec $Q \neq 0$. On pose $F = \frac{P}{Q}$ et on suppose que, pour tout $n \in \mathbb{N}$, F(n) est un nombre premier. Montrer que F est constante.

Exercices supplémentaires :

Exercice 21.20 : (niveau 1)

Décomposer $\frac{4}{(X^2+1)^2}$ en éléments simples dans $\mathbb{C}(X)$.

Exercice 21.21: (niveau 1)

Calculer $S = \sum_{n=2}^{+\infty} \frac{4n-3}{n(n^2-4)}$.

Exercice 21.22 : (niveau 2) $\text{Soit } n,m \in \mathbb{N}. \text{ Décomposer } \frac{X^m}{(X-1)^n} \text{ en éléments simples}.$

Exercice 21.23 : (niveau 2)

Calcul de
$$\int \frac{dx}{1 + th^2x}$$
.

Exercice 21.24 : (niveau 2)

Calculer
$$\int \frac{\cos(2x)}{\sin x + \sin(3x)} dx$$
.

Exercice 21.25 : (niveau 2)

Soit $n \in \mathbb{N}^*$ et x_1, \dots, x_n une famille de n complexes 2 à 2 distincts.

On pose $P(X) = \prod_{i=1}^{n} (X - x_i)$. Calculer $\sum_{i=1}^{n} \frac{P''(x_i)}{P'(x_i)}$.

Exercice 21.26 : (niveau 2)

Calcul de $\int \frac{3(\cos x)^2 - 1}{2\cos x \sin x} dx.$

Exercice 21.27 : (niveau 2) Calcul de $\int \frac{dx}{\cos x + \cos 3x}$.

Exercice 21.28: (niveau 3)

Soit $(a,b) \in \mathbb{R}^2$, avec $a \neq b$, et soit $(n,p) \in \mathbb{N}^{*2}$: Décomposez en éléments simples dans $\mathbb{R}[X]$ la fraction $f(x) = \frac{1}{(x-a)^n (x-b)^p}$.

Exercice 21.29: (niveau 3)

On note z_1, \ldots, z_4 les racines du polynôme $X^4 - X^3 + 1$. Calculer $S = \sum_{k=1}^4 \frac{z_k^3 + 2}{(z_k^2 - 1)^2}$.

Exercice 21.30 : (niveau 3)

On pose $\mathbb{K}_0(X) = \{ F \in \mathbb{K}(X) / \deg(F) \le 0 \}.$

- $\mathbf{1}^{\circ}$) Montrer que $\mathbb{K}_0(X)$ est un anneau.
- 2°) Quels sont les idéaux de $\mathbb{K}_0(X)$?

Exercice 21.31 : (niveau 3)

Soit K un corps de caractéristique nulle.

1°) Soit $F \in \mathbb{K}(X)$. Montrer que, lorsque $\deg(F) \neq 0$, $\deg(F') = \deg(F) - 1$.

Lorsque $\deg(F) = 0$, montrer que $\deg(F') \leq -2$.

Déterminer $\{\deg(F') \mid F \in \mathbb{C}(X) \text{ avec } \deg(F) = 0\}.$

2°) Montrer qu'il n'existe pas de fraction rationnelle sur $\mathbb{K}(X)$ telle que $F' = \frac{1}{X}$.