

THIS IS GOING TO BE ONE OF THOSE WEIRD, DARK-MAGIC PROOFS, ISN'T IT? I CAN TELL.

WHAT? NO. NO. IT'S A

We will:

We will:

• Prove Savitch's Theorem: $SPACE(f(n)) \subseteq SPACE((f(n))^2)$.

We will:

• Prove Savitch's Theorem: $SPACE(f(n)) \subseteq SPACE((f(n))^2)$.

• Conclude that *PSPACE* = *NPSPACE*.

Theorem

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

Proof.

We convert a NDTM machine N into an equivalent DTM M while only squaring the space.

Theorem

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

Proof.

We convert a NDTM machine N into an equivalent DTM M while only squaring the space.

For configurations c, c' and $k \in \mathbb{N}$, we want to know if N can get from c to c' in at most k steps.

Theorem

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

Proof.

We convert a NDTM machine N into an equivalent DTM M while only squaring the space.

For configurations c,c' and $k\in\mathbb{N}$, we want to know if N can get from c to c' in at most k steps. Let $c=(w,q,\ell)$ and $c'=(w',q',\ell')$

	Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		$T_{f(n)}$
С	0	q	h	W ₀	w ₁	W ₂	Wn	W_{n+1}		$W_{f(n)}$
	0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		$W_{0,f(n)}$
	1	q_{i_1}	h_1	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,f(n)}$
	2	q_{i_2}	h ₂	W _{2,0}	$w_{2,1}$	W _{2,2}	$w_{2,n-1}$	$W_{2,n}$		$W_{2,f(n)}$
	<u>:</u>								٠.,	
	k	q_{i_k}	h _k	$W_{k,0}$	$W_{k,1}$	$W_{k,2}$	$W_{k,n-1}$	W _{k,n}		$W_{k,f(n)}$
c'	k	q'	h'	w_0'	w_1'	w_2'	w'_{n-1}	W'_n		$w'_{f(n)}$

Theorem

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

Proof.

We convert a NDTM machine N into an equivalent DTM M while only squaring the space.

For configurations c,c' and $k\in\mathbb{N}$, we want to know if N can get from c to c' in at most k steps. Let $c=(w,q,\ell)$ and $c'=(w',q',\ell')$

	Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		$T_{f(n)}$
С	0	q	h	W ₀	w ₁	W ₂	Wn	W_{n+1}		$W_{f(n)}$
	0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		$W_{0,f(n)}$
	1	q_{i_1}	h ₁	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,f(n)}$
	2	q_{i_2}	h ₂	W _{2,0}	w _{2,1}	W _{2,2}	$w_{2,n-1}$	$W_{2,n}$		$W_{2,f(n)}$
	<u>:</u>								٠.,	
	k	q_{i_k}	h _k	$W_{k,0}$	$W_{k,1}$	$W_{k,2}$	$W_{k,n-1}$	W _{k,n}		$W_{k,f(n)}$
c'	k	q'	h'	w'_0	w_1'	w_2'	w'_{n-1}	w'n		$W'_{f(n)}$

Almost looks like a ladder!

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

Function Reachable (c, c', k) # Can we reach from c to c' in k steps?

4/19

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

```
Function Reachable (c, c', k)
                            # Can we reach from c to c' in k steps?
         If (k = 1)
           Return (c' can be reached from c in M) \vee (c = c')
```

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

```
Function Reachable(c,c',k) # Can we reach from c to c' in k steps? If (k=1) Return (c' can be reached from c in M) \lor (c=c')
```

For each possible configuration c_{mid}

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

```
Proof (Cont.)

Function Reachable(c, c', k)
```

```
Function Reachable(c,c',k) # Can we reach from c to c' in k steps? If (k=1) Return (c' can be reached from c in M) \lor (c=c') For each possible configuration c_{\mathsf{mid}} If (\mathsf{Reachable}(c,c_{\mathsf{mid}},\lceil k/2\rceil) \land \mathsf{Reachable}(c_{\mathsf{mid}},c',\lfloor k/2\rfloor)) Return T Return F
```

4 / 19

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

• We can tweak the machine to get a single accepting c_Y configuration by reversing the head and erasing the tape before halting.

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

- We can tweak the machine to get a single accepting c_Y configuration by reversing the head and erasing the tape before halting.
- Since N uses f(n) space, there are just $C = |Q| \times f(n) \times |\Gamma|^{f(n)}$ is the number of possible configurations.

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

- We can tweak the machine to get a single accepting c_Y configuration by reversing the head and erasing the tape before halting.
- Since N uses f(n) space, there are just $C = |Q| \times f(n) \times |\Gamma|^{f(n)}$ is the number of possible configurations.
- We start by calling Reachable (c_0, c_Y, C) , where c_0 encodes the (input-specific!) starting configuration.

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

- We can tweak the machine to get a single accepting c_Y configuration by reversing the head and erasing the tape before halting.
- Since N uses f(n) space, there are just $C = |Q| \times f(n) \times |\Gamma|^{f(n)}$ is the number of possible configurations.
- We start by calling Reachable(c₀, c_Y, C), where c₀ encodes the (input-specific!) starting configuration. Why is this enough to determine if N accepts?

5/19

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

- We can tweak the machine to get a single accepting c_Y configuration by reversing the head and erasing the tape before halting.
- Since N uses f(n) space, there are just $C = |Q| \times f(n) \times |\Gamma|^{f(n)}$ is the number of possible configurations.
- We start by calling Reachable (c_0, c_Y, C) , where c_0 encodes the (input-specific!) starting configuration. Why is this enough to determine if N accepts?
- The depth of the recursion is $\log_2(C) = O(f(n))$.

5/19

Ran Ben Basat COMP0017 Complexity December 5, 2022

Savitch's Theorem: $f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$

Proof (Cont.)

- We can tweak the machine to get a single accepting c_Y configuration by reversing the head and erasing the tape before halting.
- Since N uses f(n) space, there are just $C = |Q| \times f(n) \times |\Gamma|^{f(n)}$ is the number of possible configurations.
- We start by calling Reachable (c_0, c_Y, C) , where c_0 encodes the (input-specific!) starting configuration. Why is this enough to determine if N accepts?
- The depth of the recursion is $\log_2(C) = O(f(n))$.
- Each time we store one configuration, requiring O(f(n)) space.

5/19

Ran Ben Basat COMP0017 Complexity December 5, 2022

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

- We can tweak the machine to get a single accepting c_Y configuration by reversing the head and erasing the tape before halting.
- Since N uses f(n) space, there are just $C = |Q| \times f(n) \times |\Gamma|^{f(n)}$ is the number of possible configurations.
- We start by calling Reachable (c_0, c_Y, C) , where c_0 encodes the (input-specific!) starting configuration. Why is this enough to determine if N accepts?
- The depth of the recursion is $\log_2(C) = O(f(n))$.
- Each time we store one configuration, requiring O(f(n)) space.
- Therefore, the total space is $O(f^2(n))$.

$$f(n) \ge n \implies NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Proof (Cont.)

- We can tweak the machine to get a single accepting c_Y configuration by reversing the head and erasing the tape before halting.
- Since N uses f(n) space, there are just $C = |Q| \times f(n) \times |\Gamma|^{f(n)}$ is the number of possible configurations.
- We start by calling Reachable(c₀, c_Y, C), where c₀ encodes the (input-specific!) starting configuration. Why is this enough to determine if N accepts?
- The depth of the recursion is $\log_2(C) = O(f(n))$.
- Each time we store one configuration, requiring O(f(n)) space.
- Therefore, the total space is $O(f^2(n))$.

Conclusion: PSPACE = NPSPACE.

5/19

PSPACE-Completeness

Definition

A problem *B* is PSPACE-Complete if:

- $B \in PSPACE$.
- For all $A \in PSPACE : A \leq_p B$.

PSPACE-Completeness

Definition

A problem *B* is PSPACE-Complete if:

- $B \in PSPACE$.
- For all $A \in PSPACE : A \leq_p B$.

To ponder: why do we use \leq_p ?

Knowing that $TQBF \in PSPACE - Complete$, and assuming that $TQBF \in NP$, which of the following are true:

7 / 19

Knowing that $TQBF \in PSPACE - Complete$, and assuming that $TQBF \in NP$, which of the following are true:

 \bullet P = PSPACE.

7 / 19

- \bullet P = PSPACE.
- NP = PSPACE.

- \bullet P = PSPACE.
- NP = PSPACE.
- \bullet P = NP.

- \bullet P = PSPACE.
- NP = PSPACE.
- \bullet P = NP.
- NP = co NP.

- \bullet P = PSPACE.
- NP = PSPACE.
- \bullet P = NP.
- NP = co NP.
- co-NP = PSPACE.

- \bullet P = PSPACE.
- NP = PSPACE.
- \bullet P = NP.
- NP = co NP.
- co-NP = PSPACE.
- SAT is PSPACE-Complete.

- \bullet P = PSPACE.
- NP = PSPACE.
- \bullet P = NP.
- NP = co NP.
- co-NP = PSPACE.
- SAT is PSPACE-Complete.
- BEQ is NP-Complete.

Knowing that $TQBF \in PSPACE - Complete$, and assuming that $TQBF \in NP$, which of the following are true:

- \bullet P = PSPACE.
- NP = PSPACE.
- \bullet P = NP.
- NP = co NP.
- co-NP = PSPACE.
- SAT is PSPACE-Complete.
- BEQ is NP-Complete.

Answer on Mentimeter:

Knowing that $TQBF \in PSPACE - Complete$, and assuming that $TQBF \in NP$, which of the following are true:

8 / 19

Knowing that $TQBF \in PSPACE - Complete$, and assuming that $TQBF \in NP$, which of the following are true:

• P = PSPACE. No, this doesn't imply that $TQBF \in P$.

- P = PSPACE. No, this doesn't imply that $TQBF \in P$.
- NP = PSPACE. Yes, all PSPACE problems are reducible to TQBF as its PSPACE-Complete.

- P = PSPACE. No, this doesn't imply that $TQBF \in P$.
- NP = PSPACE. Yes, all PSPACE problems are reducible to TQBF as its PSPACE-Complete.
- \bullet P = NP. No.

- P = PSPACE. No, this doesn't imply that $TQBF \in P$.
- NP = PSPACE. Yes, all PSPACE problems are reducible to TQBF as its PSPACE-Complete.
- \bullet P = NP. No.
- NP = co NP. Yes! PSPACE is closed under complementation.

Knowing that $TQBF \in PSPACE - Complete$, and assuming that $TQBF \in NP$, which of the following are true:

- P = PSPACE. No, this doesn't imply that $TQBF \in P$.
- NP = PSPACE. Yes, all PSPACE problems are reducible to TQBF as its PSPACE-Complete.
- \bullet P = NP. No.
- NP = co NP. Yes! PSPACE is closed under complementation.
- co-NP = PSPACE. Yes.

Knowing that $TQBF \in PSPACE - Complete$, and assuming that $TQBF \in NP$, which of the following are true:

- P = PSPACE. No, this doesn't imply that $TQBF \in P$.
- NP = PSPACE. Yes, all PSPACE problems are reducible to TQBF as its PSPACE-Complete.
- \bullet P = NP. No.
- NP = co NP. Yes! PSPACE is closed under complementation.
- co-NP = PSPACE. Yes.
- SAT is PSPACE-Complete. Yes.

Knowing that $TQBF \in PSPACE - Complete$, and assuming that $TQBF \in NP$, which of the following are true:

- P = PSPACE. No, this doesn't imply that $TQBF \in P$.
- NP = PSPACE. Yes, all PSPACE problems are reducible to TQBF as its PSPACE-Complete.
- \bullet P = NP. No.
- NP = co NP. Yes! PSPACE is closed under complementation.
- co-NP = PSPACE. Yes.
- SAT is PSPACE-Complete. Yes.
- BEQ is NP-Complete. Yes! \overline{BEQ} is NP-Complete (why?). For any $L \in NP$, we have thus $\overline{L} \leq_p TQBF \leq_p \overline{BEQ}$ which gives $L \leq_p BEQ$.

Theorem

TQBF is PSPACE-Complete.

Proof Sketch.

Recall the proof of the Cook-Levin theorem:

Theorem

TQBF is PSPACE-Complete.

Proof Sketch.

Recall the proof of the Cook-Levin theorem:

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	w ₀	<i>w</i> ₁	W2	w_{n-1}	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	w _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		w _{0,N}
1	q_{i_1}	h_1	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		$w_{1,N}$
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W ₂ ,N
:								٠	
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$		$W_{f(N),N}$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch.

Recall the proof of the Cook-Levin theorem:

Step	State	Head	T ₀	T_1	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	<i>w</i> ₀	<i>w</i> ₁	W ₂	W_{n-1}	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	w _{0,1}	W _{0,2}	$w_{0,n-1}$	w _{0,n}		w _{0,N}
1	q_{i_1}	h_1	w _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		$w_{1,N}$
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W2,N
:								٠.,	
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$		$W_{f(N),N}$

The challenge is that now we have a PSPACE machine, so while space is bounded by $N = n^{o(1)}$, the time could be $f(N) = 2^{O(N)} = 2^{n^{O(1)}}$, so the same reduction would not work (the formula will have exponential size).

9/19

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	Wb	W ₁	W ₂	Wn-1	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$W_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h ₁	W1,0	W1,1	W1,2	$w_{1,n-1}$	W1,n		W1,N
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$W_{2,n-1}$	W _{2,n}		W _{2,N}
1								1.	
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$		$W_{f(N),N}$

Instead, we can think about this similarly to a word ladder.

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	Wb	W ₁	W ₂	W_{n-1}	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h ₁	W1,0	W1,1	W1,2	W1,n-1	W1,n		W1,N
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$W_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$		$W_{f(N),N}$

Instead, we can think about this similarly to a word ladder.

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	Wb	W ₁	W ₂	W_{n-1}	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h ₁	W1,0	W1,1	W1,2	W1,n-1	W1,n		W1,N
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$W_{2,n-1}$	W _{2,n}		W _{2,N}
1								1.	
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$		$W_{f(N),N}$

Instead, we can think about this similarly to a word ladder.

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}}$$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	Wb	W ₁	W ₂	W_{n-1}	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	W _{0,n-1}	W _{0,n}		W _{0,N}
1	q_{i_1}	h ₁	W1,0	W1,1	W1,2	$w_{1,n-1}$	W1,n		W1,N
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$W_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$		$W_{f(N),N}$

Instead, we can think about this similarly to a word ladder.

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\phi_{c,c_{\mathsf{mid}},b/2} \land \phi_{c_{\mathsf{mid}},c',b/2} \right]$$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	Wb	W ₁	W ₂	W_{n-1}	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	W _{0,n-1}	W _{0,n}		W _{0,N}
1	q_{i_1}	h ₁	W1,0	W1,1	W1,2	W1,n-1	W1,n		W1,N
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$W_{2,n-1}$	W _{2,n}		W _{2,N}
1								1.	
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$		$W_{f(N),N}$

Instead, we can think about this similarly to a word ladder.

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\phi_{c,c_{\mathsf{mid}},b/2} \land \phi_{c_{\mathsf{mid}},c',b/2} \right] \quad \text{(Assuming } b > 1)$$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n	 T _N
0	q 0	0	Wb	W ₁	W ₂	W_{n-1}	Ш	Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	W _{0,n-1}	W _{0,n}	W _{0,N}
1	q_{i_1}	h ₁	W1,0	W1,1	W1,2	W1,n-1	W1,n	W1,N
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$W_{2,n-1}$	W _{2,n}	W _{2,N}
1								
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$	$W_{f(N),N}$

Instead, we can think about this similarly to a word ladder.

Namely, given configurations c,c' and a bound on the number of steps b, we construct the following QBF $\phi_{c,c',b}$, which is true if and only if c' is reachable from c within at most b steps.

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\begin{array}{ccc} \phi_{c,c_{\mathsf{mid}},b/2} & \wedge & \phi_{c_{\mathsf{mid}},c',b/2} \end{array} \right] \quad \text{(Assuming } b > 1 \text{)}$$

Each configuration is encoded with the same $x_{t,i,\gamma}, y_{t,s}, z_{t,h}$ variables as in the CL theorem.

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T _{n-1}	T _n		T _N
0	q 0	0	Wb	W ₁	W ₂	W_{n-1}	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h ₁	W1,0	W1,1	W1,2	$w_{1,n-1}$	W1,n		W1,N
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$W_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
f(N)	$q_{i_f(N)}$	$h_{f(N)}$	$W_{f(N),0}$	$W_{f(N),1}$	$W_{f(N),2}$	$W_{f(N),f(N)-1}$	$W_{f(N),n}$		$W_{f(N),N}$

Instead, we can think about this similarly to a word ladder.

Namely, given configurations c,c' and a bound on the number of steps b, we construct the following QBF $\phi_{c,c',b}$, which is true if and only if c' is reachable from c within at most b steps.

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\phi_{c,c_{\mathsf{mid}},b/2} \land \phi_{c_{\mathsf{mid}},c',b/2} \right] \quad (\mathsf{Assuming} \ b > 1)$$

Each configuration is encoded with the same $x_{t,i,\gamma},y_{t,s},z_{t,h}$ variables as in the CL theorem

For b=1 we explicitly write the formula of the t'th step yielding the t+1'th

10 / 19

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\phi_{c,c_{\mathsf{mid}},b/2} \land \phi_{c_{\mathsf{mid}},c',b/2} \right] \quad (\mathsf{Assuming} \ b > 1)$$

The reduction outputs $\phi_{c_0,c_Y,f(N)}$.

Theorem 1

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

```
1
2
\phi_{..f(N)/2}
\phi_{..f(N)/4}
\phi_{..f(N)/4}
\phi_{..f(N)/4}
\phi_{..f(N)/4}
\phi_{..f(N)/4}
```

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

How big is the formula?

We created an $\Omega(f(N)) = 2^{\Omega(n)}$ sized formula!

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

How big is the formula?

We created an $\Omega(f(N)) = 2^{\Omega(n)}$ sized formula!

Why is this not surprising?

$$\phi_{c,c',b} = \exists c_{\mathrm{mid}} \left[\begin{array}{ccc} \phi_{c,c_{\mathrm{mid}},b/2} & \wedge & \phi_{c_{\mathrm{mid}},c',b/2} \end{array} \right]$$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

How big is the formula?

We created an $\Omega(f(N)) = 2^{\Omega(n)}$ sized formula!

Why is this not surprising?

$$\phi_{c,c',b} = \exists c_{\text{mid}} \left[\phi_{c,c_{\text{mid}},b/2} \wedge \phi_{c_{\text{mid}},c',b/2} \right]$$

We were using only \exists quantifiers (essentially, created a CNF!)

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

How big is the formula?

We created an $\Omega(f(N)) = 2^{\Omega(n)}$ sized formula

Why is this not surplising?

$$\phi_{c, \cdot', b} = \exists c_{\mathsf{mic}} \left[\phi_{c, c_{\mathsf{mid}}, b/2} \wedge \phi_{s_{\mathsf{mid}}, c', b/2} \right]$$

We were using only \exists quantifiers (essentially, created a CNF!)

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

We can use the "abbreviation trick":

18 / 19

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}}$$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\ \forall (c_i,c_j) \in \{(c,c_{\mathsf{mid}}),(c_{\mathsf{mid}},c')\} : \right]$$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\ \forall (c_i,c_j) \in \{(c,c_{\mathsf{mid}}),(c_{\mathsf{mid}},c')\} : \quad \phi_{c_i,c_j,b/2} \ \right].$$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\ \forall (c_i,c_j) \in \{(c,c_{\mathsf{mid}}),(c_{\mathsf{mid}},c')\} : \quad \phi_{c_i,c_j,b/2} \ \right].$$

Theorem

TQBF is PSPACE-Complete.

Proof Sketch. (Cont.)

We can use the "abbreviation trick":

$$\phi_{c,c',b} = \exists c_{\mathsf{mid}} \left[\ \forall (c_i,c_j) \in \{(c,c_{\mathsf{mid}}),(c_{\mathsf{mid}},c')\} : \quad \phi_{c_i,c_j,b/2} \ \right].$$

We have $\log f(N) = n^{O(1)}$ levels, each has a polynomial size QBF.

18 / 19

Today we saw:

• Savitch's theorem, that shows that $NSPACE(S(N)) \subseteq SPACE(S^2(N))$.

- Savitch's theorem, that shows that $NSPACE(S(N)) \subseteq SPACE(S^2(N))$.
- This implies that $NPSPACE \subseteq PSPACE$.

- Savitch's theorem, that shows that $NSPACE(S(N)) \subseteq SPACE(S^2(N))$.
- This implies that $NPSPACE \subseteq PSPACE$.
- That TQBF is PSPACE-Complete.

- Savitch's theorem, that shows that $NSPACE(S(N)) \subseteq SPACE(S^2(N))$.
- This implies that $NPSPACE \subseteq PSPACE$.
- That TQBF is PSPACE-Complete.
- To ponder: would the proof work for an NDTM machine M?

Today we saw:

- Savitch's theorem, that shows that $NSPACE(S(N)) \subseteq SPACE(S^2(N))$.
- This implies that NPSPACE ⊆ PSPACE.
- That TQBF is PSPACE-Complete.
- To ponder: would the proof work for an NDTM machine M?

Next lecture: the Log-space class.