2.2. Semântica do Cálculo de Predicados clássico

Observação 169: As fórmulas do Cálculo de Predicados são construídas a partir das fórmulas atómicas (símbolos de relação "aplicados" a termos) e, por esta razão, as fórmulas atómicas desempenham papel semelhante ao das variáveis proposicionais no Cálculo Proposicional. Contudo, ao passo que no Cálculo Proposicional podemos atribuir "diretamente" um valor lógico a uma variável proposicional, a atribuição de valores lógicos às fórmulas atómicas é mais complexa.

Para atribuirmos valores lógicos a fórmulas atómicas, em particular, será necessário fixar previamente a **interpretação dos termos**.

Tal requer que indiquemos qual o **universo** de objetos (**domínio de discurso**) pretendido para a denotação dos termos (por exemplo, números naturais, conjuntos, etc.), bem como a **interpretação** pretendida quer para os **símbolos de função** do tipo de linguagem em questão (por exemplo, para indicar que, tomando \mathbb{N}_0 por universo, o símbolo de função binário + denotará a **operação** de adição) quer para as **variáveis** de primeira ordem.

Para a **interpretação das fórmulas atómicas**, será ainda necessário fixar a **interpretação dos símbolos de relação** como **relações** entre objetos do domínio de discurso.

A indicação de qual o domínio de discurso pretendido e de quais as interpretações que deverão ser dadas aos diversos símbolos será efetuada através daquilo que designaremos por **estrutura para um tipo de linguagem**.

A interpretação de variáveis de primeira ordem será feita no contexto de um domínio de discurso, através daquilo a que chamaremos atribuições numa estrutura.

Um par (estrutura, atribuição) permitirá fixar o valor lógico de qualquer fórmula e, portanto, pode ser pensado como uma valoração, uma vez que estes pares desempenharão papel semelhante ao das valorações do Cálculo Proposicional.

Definição 170: Seja $L = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ um tipo de linguagem. Uma estrutura de tipo L é um par $(D, \overline{})$ tal que:

- a) D é um conjunto não vazio, chamado o domínio da estrutura;
- **b)** $\bar{}$ é uma função com domínio $\mathcal{F} \cup \mathcal{R}$, chamada a *(função de) interpretação da estrutura*, tal que:
 - para cada constante c de L, \bar{c} é um elemento de D;
 - para cada símbolo de função f de L, de aridade n ≥ 1, f é uma função de tipo Dⁿ → D;
 - para cada símbolo de relação R de L, de aridade n, \overline{R} é uma relação n-ária em D (i.e. $\overline{R} \subseteq D^n$).

Notação 171:

- Usaremos a letra E (possivelmente indexada) para denotar estruturas.
- Dada uma estrutura E, dom(E) denotará o domínio de E.

Exemplo 172:

- **a)** Seja $E_{Arit} = (\mathbb{N}_0, \overline{})$, onde:
 - O é o número zero;
 - \bar{s} é a função *sucessor* em \mathbb{N}_0 , i. e., $\bar{s}: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$; $n \mapsto n+1$
 - $\overline{+}$ é a função adição em \mathbb{N}_0 , i. e., $\overline{+}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$; $(m,n) \mapsto m+n$
 - $\overline{\times}$ é a função *multiplicação* em \mathbb{N}_0 , i. e.,

$$\overline{\times}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$$
; $(m,n) \mapsto m \times n$

- \equiv é a relação de *igualdade* em \mathbb{N}_0 , i. e., \equiv = { $(m,n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m = n$ };
- \leq é a relação menor do que em \mathbb{N}_0 , i. e., \leq = $\{(m, n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m < n\}$.

Então, E_{Arit} é uma estrutura de tipo ARIT. Designaremos, por vezes, esta estrutura por estrutura standard de tipo ARIT.

b) O par $E_0 = (\{a, b\}, \overline{\ })$, onde:

•
$$\overline{O} = \alpha$$
;

•
$$\bar{s}$$
 é a função $\{a,b\}$ \longrightarrow $\{a,b\}$;

•
$$\mp$$
 é a função $\{a,b\} \times \{a,b\} \longrightarrow \{a,b\}$;

$$\bullet \ \overline{\times} \ \acute{\text{e}} \ \text{a função} \quad \{a,b\} \times \{a,b\} \quad \longrightarrow \quad \{a,b\} \quad ; \\ (x,y) \qquad \longmapsto \quad \left\{ \begin{array}{ll} a & \text{se } x = y \\ b & \text{se } x \neq y \end{array} \right.$$

•
$$\equiv = \{(a,a),(b,b)\};$$

$$\bullet \ \overline{<} = \{(a,b)\},\$$

é também uma estrutura de tipo ARIT.

c) Existem $2 \times 4 \times 16 \times 16 \times 16 \times 16$ estruturas de tipo *ARIT* cujo domínio é $\{a,b\}$. (Porquê?)

Definição 173: Seja E uma estrutura de tipo L. Uma função $a: \mathcal{V} \to dom(E)$ diz-se uma atribuição em E e o par (E,a) diz-se uma valoração de tipo L.

(Recorde que ${\mathcal V}$ é o conjunto das variáveis de primeira ordem.)

Exemplo 174: São atribuições em E_{Arit} as funções

- $\begin{array}{ccc} \bullet & a_0 : \mathcal{V} & \longrightarrow & \mathbb{N}_0 \\ & x & \mapsto & 0 \end{array}$
- $\begin{array}{ccc} \bullet & \alpha_{ind} : \mathcal{V} & \longrightarrow & \mathbb{N}_{O} \\ & x_{i} & \mapsto & i \end{array}$

Definição 175: O valor de um L-termo t numa L-estrutura $E = (D, \overline{})$ para uma atribuição a em E é notado por $t[a]_E$ ou, simplesmente, por t[a] quando é claro qual a estrutura que deve ser considerada, e é o elemento de D definido, por recursão estrutural em L-termos, do seguinte modo:

- a) $x[\alpha]_E = \alpha(x)$, para todo $x \in \mathcal{V}$;
- b) $c[\alpha]_E = \overline{c}$, para todo $c \in \mathcal{F}$ de aridade 0;
- c) $(f(t_1,...,t_n))[\alpha]_E = \overline{f}(t_1[\alpha]_E,...t_n[\alpha]_E)$ para todo $f \in \mathcal{F}$ de aridade $n \ge 1$ e para todos $t_1,...,t_n \in \mathcal{T}_L$.

Observação 176:

- A alínea a) da def. anterior diz que a função que a cada termo faz corresponder o seu valor é uma extensão da função atribuição α.
- As alíneas b) e c) dizem, em particular, que as interpretações dos símbolos de função também contribuem essencialmente para o valor de t.

Exemplo 177: Seja t o termo $s(0) \times (x_0 + x_2)$ de tipo ARIT. Recorde as atribuições a_{ind} e a_0 em E_{Arit} definidas no Exemplo 174.

1. O valor de t determinado pela atribuição a_{ind} é

$$\begin{array}{ll} & (s(0)\times(x_0+x_2))[a_{ind}]\\ =& (\times(s(0),+(x_0,x_2)))[a_{ind}]\\ =& \overline{\times}(\overline{s}(\overline{0}),\overline{+}(a_{ind}(x_0),a_{ind}(x_2))) & \text{(pela def. de valor de termo)}\\ =& \overline{\times}(\overline{s}(\overline{0}),\overline{+}(0,2)) & \text{(pela def. de a_{ind})}\\ =& (0+1)\times(0+2) & \text{(pela def. de E_{Arit})}\\ =& 2 \end{array}$$

2. Já para a atribuição a_0 , o valor de t é 0. (Porquê?)

3. Considere-se agora a estrutura E_0 do Exemplo 172 e considere-se a seguinte atribuição nesta estrutura:

$$\alpha: \mathcal{V} \longrightarrow \{a,b\}$$

 $x \mapsto b$

O valor de t determinado por α é:

$$\begin{array}{ll} & (s(0)\times(x_0+x_2))[\alpha]\\ =& (\times(s(0),+(x_0,x_2)))[\alpha]\\ =& \overline{\times}(\overline{s}(\overline{0}),\overline{+}(\alpha(x_0),\alpha(x_2))) & \text{(pela def. de valor de termo)}\\ =& \overline{\times}(\overline{s}(\overline{0}),\overline{+}(b,b)) & \text{(pela def. de }\overline{\alpha})\\ =& \overline{\times}(a,b) & \text{(pela def. de }\overline{0},\overline{s},\overline{+})\\ =& b & \text{(pela def. de }\overline{\times}) \end{array}$$

Notação 178: Sejam a uma atribuição numa estrutura $E, d \in dom(E)$ e x uma variável. Denotamos por $a \begin{pmatrix} x \\ d \end{pmatrix}$ a atribuição em E definida por:

$$a\begin{pmatrix} x \\ d \end{pmatrix}(y) = \begin{cases} d & \text{se } y = x \\ a(y) & \text{se } y \neq x \end{cases}.$$

Se
$$v = (E, a)$$
 então $v \begin{pmatrix} x \\ d \end{pmatrix}$ denota $\left(E, a \begin{pmatrix} x \\ d \end{pmatrix}\right)$.

Observação: $a \in a \begin{pmatrix} x \\ d \end{pmatrix}$ diferem, no máximo, no valor que dão a x.

Exemplo 179: Recorde a atribuição a_{ind} em E_{Arit} definida no Exemplo 174. $a_{ind} \begin{pmatrix} x_{\rm O} \\ 1 \end{pmatrix}$ denota a atribuição em E_{Arit} definida por

$$a_{ind} \begin{pmatrix} x_0 \\ 1 \end{pmatrix} (x_i) = \begin{cases} 1 \text{ se } i = 0 \\ i \text{ se } i \neq 0 \end{cases}$$

Definição 180: O valor lógico de uma L-fórmula φ numa L-estrutura $E=(D,\overline{\ })$ para uma atribuição a em E é notado por $\varphi[a]_E$ ou, simplesmente, por $\varphi[a]$ quando é claro qual a estrutura que deve ser considerada e é o elemento do conjunto dos valores lógicos $\{0,1\}$ definido, por recursão em φ , do seguinte modo:

a)
$$(R(t_1,...,t_n))[\alpha]_E = \begin{cases} 1 & \text{se } (t_1[\alpha]_E,...,t_n[\alpha]_E) \in \overline{R} \\ 0 & \text{caso contrário} \end{cases}$$
, para todo símbolo de relação n -ário R , para todos $t_1,...,t_n \in \mathcal{T}_L$;

- **b)** $\perp [\alpha]_E = 0$;
- c) $(\neg \varphi)[\alpha]_E = v_\neg(\varphi[\alpha]_E)$;
- **d)** $(\varphi \Box \psi)[\alpha]_E = v_{\Box}(\varphi[\alpha]_E, \psi[\alpha]_E)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$;

e)
$$(\forall x \varphi)[\alpha]_E = \begin{cases} 1 & \text{se, para todo } d \in D, \ \varphi\left[\alpha\binom{x}{d}\right]_E = 1 \\ 0 & \text{caso contrário} \end{cases}$$
;

f)
$$(\exists x \varphi)[\alpha]_E = \begin{cases} 1 & \text{se existe } d \in D \text{ t. q. } \varphi\left[\alpha {x \choose d}\right]_E = 1 \\ 0 & \text{caso contrário} \end{cases}$$
.

Exemplo 181: Consideremos a estrutura ARIT e a atribuição a_{ind} em E_{Arit} definida no Exemplo 174. Consideremos as fórmulas

$$\varphi_1 = s(0) < x_2 \qquad \qquad \varphi_2 = \exists x_2(s(0) < x_2)
\varphi_3 = \forall x_2(s(0) < x_2) \qquad \qquad \varphi_4 = \forall x_1 \exists x_2(s(x_1) < x_2)$$

Vamos determinar $\varphi_i[\alpha_{ind}]$, para i=1,2,3,4. A melhor forma de usar a Def. 180 é verificar se $\varphi_i[\alpha_{ind}]=1$.

1.

$$arphi_1[lpha_{ind}]=1$$

sse $(s(0)[lpha_{ind}],x_2[lpha_{ind}])\in\overline{<}$ (por def. de valor de fórmula)
sse $(1,2)\in\overline{<}$ (por def. de valor de termo)
sse $1<2$ (por def. de $\overline{<}$)

Ora, 1 < 2. Logo, $\varphi_1[a_{ind}] = 1$.

(por def.

(por def. valor de termo)

valor de fórm.)

(por def. de \leq)

2.

$$\varphi_2[\alpha_{ind}] = 1$$

sse existe
$$n \in \mathbb{N}_0$$
 t.q. $(s(0) [a_{ind} \binom{x_2}{n}], x_2 [a_{ind} \binom{x_2}{n}]) \in \overline{<}$

sse existe
$$n \in \mathbb{N}_0$$
 t.g. $1 < n$

Ora, existe
$$n \in \mathbb{N}_0$$
 t.q. $1 < n$. Logo, $\varphi_2[a_{ind}] = 1$.

existe $n \in \mathbb{N}_0$ t.g. $(1,n) \in \overline{<}$

3. $\varphi_3[a_{ind}] = 0$ porque a proposição "para todo $n \in \mathbb{N}_0, 1 < n$ " é falsa.

 $\varphi_4[\alpha_{ind}] = 1$ sse para todo $n \in \mathbb{N}_0$, existe $m \in \mathbb{N}_0$ t. q. $(s(x_1)[\alpha'], x_2[\alpha']) \in \overline{<}$ sse para todo $n \in \mathbb{N}_0$, existe $m \in \mathbb{N}_0$ t. q. $(n+1,m) \in \overline{<}$ sse para todo $n \in \mathbb{N}_0$, existe $m \in \mathbb{N}_0$ t. q. n+1 < m

onde $a' = a_{ind} \begin{pmatrix} x_1 \\ n \end{pmatrix} \begin{pmatrix} x_2 \\ m \end{pmatrix}$. Logo $\varphi_4[a_{ind}] = 1$.

- Vamos a seguir observar que, uma vez fixada uma estrutura, o valor de um termo depende apenas dos valores das suas variáveis e o valor de uma fórmula depende apenas dos valores das suas variáveis livres.
- Vamos ainda estabelecer como se relacionam os valores de t'[t/x] e de t', e como se relacionam os valores lógicos de $\varphi[t/x]$ e de φ .

Proposição 182: Seja t um termo de tipo L e sejam a_1 e a_2 duas atribuições numa estrutura $E = (D, \overline{})$ do tipo L. Se, para todo $x \in VAR(t)$, $a_1(x) = a_2(x)$, então $t[a_1] = t[a_2]$.

Dem.: Por indução estrutural em *t*. Exercício.

Proposição 183: Seja φ uma fórmula de tipo L e sejam α_1 e α_2 atribuições numa estrutura E do tipo L. Se, para todo $x \in LIV(\varphi)$, $\alpha_1(x) = \alpha_2(x)$, então $\varphi[\alpha_1] = \varphi[\alpha_2]$.

Dem.: Por indução estrutural em φ . (Exercício.)

Observação 184: Se φ é uma sentença, E determina o valor lógico de φ .

Exemplo 185: Considere as seguintes fórmulas de tipo *ARIT*.

$$\varphi = \forall x_0 \ 0 = x_0 \qquad \qquad \psi = \forall x_0 (0 = x_0 \lor 0 < x_0)$$

- Para toda a atribuição α em E_{Arit} , $\varphi[\alpha] = 0$
- Para toda a atribuição α em E_{Arit} , $\psi[\alpha] = 1$

Proposição 186: Sejam t e t' termos de tipo L e seja α uma atribuição numa estrutura de tipo L. Então, $t'[t/x][\alpha] = t'[\alpha({}_{t[\alpha]}^x)]$.

Dem.: Por indução estrutural em t'. (Exercício.)

Proposição 187: Sejam φ uma fórmula de tipo L, t um termo de tipo L, $E = (D, \overline{})$ uma estrutura de tipo L, a uma atribuição em E e x uma variável substituível por t em φ . Então, $\varphi[t/x][a] = \varphi[a(t|a])$.

Dem.: Por indução estrutural em φ . Exercício.

Definição 188: Seja $v=(E,\alpha)$ uma valoração de tipo L e seja φ uma fórmula de tipo L. Se $\varphi[\alpha]=1$, dizemos que α satisfaz φ em E, ou que v satisfaz φ . Notação: v sat. φ ou (E,α) sat. φ .

Se $\varphi[a] = 0$, dizemos que a não satisfaz φ em E, ou que v não satisfaz φ . Notação: v não sat. φ .

A proposição seguinte estabelece as condições de satisfação.

Proposição 189: Seja $L = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ um tipo de linguagem. Seja $R \in \mathcal{R}$ de aridade n. Sejam v = (E, a) uma valoração, φ, ψ fórmulas, t_1, \ldots, t_n termos, todos de tipo L. Então:

- a) $v \text{ sat. } R(t_1, \dots, t_n) \text{ sse } (t_1[\alpha], \dots, t_n[\alpha]) \in \overline{R}.$
- **b)** v não sat. ⊥
- c) $v \text{ sat. } \neg \varphi \text{ sse } v \text{ não sat. } \varphi$
- **d)** v sat. $(\varphi \square \psi)$ sse (...) ver Cálculo Proposicional
- **e)** v sat. $\forall x \varphi$ sse, para todo $d \in dom(E)$, $v \begin{pmatrix} x \\ d \end{pmatrix}$ sat. φ ;
- **f)** $v \text{ sat. } \exists x \varphi \text{ sse existe } d \in dom(E) \text{ tal que } v \begin{pmatrix} x \\ d \end{pmatrix} \text{ sat. } \varphi;$

Dem.: Consequência imediata das definições.

As condições de satisfação são uma alternativa conveniente à Def. 180.

Exemplo 190: Consideremos a estrutura E_0 de tipo *ARIT* do Exemplo 172, com domínio $D = \{\alpha, b\}$, e a atribuição α em E_0 tal que $\alpha(x) = b$, para todo x. Seja $v = (E_0, \alpha)$.

$$\begin{array}{lll} & v \text{ sat. } \exists x_2s(\mathsf{O}) < x_2 \\ \text{sse} & \text{ existe } d \in D \text{ t.q. } \left(s(\mathsf{O})\left[\alpha\left(\frac{x_2}{d}\right)\right], x_2\left[\alpha\left(\frac{x_2}{d}\right)\right]\right) \in \overline{<} & \text{ (pelas condições de satisfação)} \\ \text{sse} & \text{ existe } d \in D \text{ t.q. } (a,d) \in \overline{<} & \text{ (por def. de valor de termo)} \\ \text{sse} & \text{ existe } d \in D \text{ t.q. } d = b & \text{ (por def. de } \overline{<}) \\ \end{array}$$

Logo v sat. $\exists x_2 s(0) < x_2$, donde $(\exists x_2 s(0) < x_2)[\alpha] = 1$.

Definição 191: Seja L um tipo de linguagem. Sejam $\varphi \in \mathcal{F}_L$ e $\Gamma \subseteq \mathcal{F}_L$.

- Seja v = (E, a) uma valoração de tipo L.
 - Recordar que *v sαtisfαz* φ (Notação: *v* sat. φ) se $\varphi[\alpha]_E = 1$.
 - ▶ Dizemos que v satisfaz Γ se, para todo $\psi \in \Gamma$, v sat. ψ . Notação: v sat. Γ .
- Dizemos que
 - φ é satisfazível se existe valoração v de tipo L que satisfaz φ ;
 - Γ é satisfazível se existe valoração v de tipo L que satisfaz Γ
 (ou seja, que satisfaz todas as fórmulas que pertencem a Γ).

Exemplo 192: Consideremos a atribuição α em E_{Arit} tal que $\alpha(x) = 0$, para todo $x \in \mathcal{V}$. Seja $v = (E_{Arit}, \alpha)$. Sejam

$$\varphi = 0 = x_0$$
 $\Gamma = \{0 < x_0, x_0 < 0\}$
 $\psi = 0 < x_0$ $\Delta = \{0 < x_0, \neg 0 < x_0\}$

- ightharpoonup v sat. $\forall x_0 (\varphi \lor \psi)$.
- v não sat. ψ, mas ψ é satisfazível.
- ▶ v não sat. $\forall x_0 \psi$, mas $\forall x_0 \psi$ é satisfazível.
- ν não sat. Γ, mas Γ é satisfazível.
- v não sat. Δ, aliás Δ não é satisfazível.

Exemplo 193: Consideremos o tipo de linguagem ARIT.

- a) Os conjuntos de fórmulas
 - $\{ \forall x_0 (x_0 \times x_1 = x_0), \forall x_1 (x_1 \times s(x_0) = x_1) \}$
 - $\{ \forall x_0 (x_0 \times x_1 = x_1), \exists x_2 (x_2 + x_0 = x_0) \}$

são satisfazíveis.

b) O conjunto $\{\forall x_0 (x_0 = x_0), \neg (0 = 0)\}$ não é satisfazível.

Definição 194: Seja L um tipo de linguagem. Sejam $\varphi \in \mathcal{F}_L$, $\Gamma \subseteq \mathcal{F}_L$ e E uma estrutura de tipo L.

▶ Dizemos que E é modelo de φ , ou que φ é verdadeira em E, ou ainda que φ é válida em E, se: para toda a atribuição α em E, (E,α) sat. φ .

Notação: $E \mod \varphi$.

Dizemos que E é modelo de Γ se, para todo ψ ∈ Γ, E mod. ψ. Notação: E mod. Γ.

Exemplo 195: Consideremos o tipo de linguagem ARIT. Sejam

$$\varphi = 0 = x_0$$
 $\Gamma = \{0 < x_0, x_0 < 0\}$
 $\psi = 0 < x_0$ $\Delta = \{0 < x_0, \neg 0 < x_0\}$

- ► E_{Arit} mod. $\varphi \lor \psi$ e E_{Arit} mod. $\forall x_0 (\varphi \lor \psi)$. Ou seja: $\varphi \lor \psi$ e $\forall x_0 (\varphi \lor \psi)$ são verdadeiras em E_{Arit} .
- E_{Arit} não mod. ψ, mas existe modelo de ψ.
 Ou seja: ψ é falsa em E_{Arit}, mas existe estrutura onde ψ é verdadeira.
- ► E_{Arit} não mod. $\forall x_0 \psi$, mas existe modelo de $\forall x_0 \psi$.
- E_{Arit} não mod. Γ, mas existe modelo de Γ.
- $ightharpoonup E_{Arit}$ não mod. Δ , aliás Δ não tem modelo.

Exemplo 196: Seja Γ o conjunto formado pelas seguintes sentenças:

$$\forall x_{0} \neg (0 = s(x_{0}));$$

$$\forall x_{0} \forall x_{1} ((s(x_{0}) = s(x_{1})) \rightarrow (x_{0} = x_{1}));$$

$$\forall x_{0} \neg (s(x_{0}) < 0);$$

$$\forall x_{0} \forall x_{1} ((x_{0} = s(x_{1})) \rightarrow ((x_{0} < x_{1}) \lor (x_{0} = x_{1})));$$

$$\forall x_{0} (x_{0} + 0 = x_{0});$$

$$\forall x_{0} \forall x_{1} (s(x_{0}) + x_{1} = s(x_{0} + x_{1}));$$

$$\forall x_{0} (x_{0} \times 0 = 0);$$

$$\forall x_{0} \forall x_{1} (s(x_{0}) \times x_{1} = (x_{0} \times x_{1}) + x_{1}).$$

 E_{Arit} é um modelo de Γ.

(A axiomática de Peano para a Aritmética é constituída pelas fórmulas de Γ juntamente com um princípio de indução para \mathbb{N}_0 .)

Proposição 197: Seja L um tipo de linguagem. Sejam $\varphi \in \mathcal{F}_L$ e E uma estrutura de tipo L. As seguintes condições são equivalentes:

- 1. $E \mod \varphi$.
- 2. $E \mod. \forall x \varphi$.
- 3. $E \mod \varphi[t/x]$, para todo $t \in \mathcal{T}_L$.

Dem.: $1 \Rightarrow 2$: Fácil. $2 \Rightarrow 3$: usa a Proposição 187. $3 \Rightarrow 1$: Trivial.

Definição 198: Seja $\varphi \in \mathcal{F}_L$ tal que $LIV(\varphi) = \{y_1, \dots, y_n\}$. Então, $\forall y_1 \dots \forall y_n \varphi$ é uma fórmula fechada e diz-se um *fecho universal* de φ .

Observação: Os vários fechos de φ diferem na ordem escolhida para o prefixo de quantificadores universais. Veremos que essa ordem é irrelevante a menos de equivalência lógica.

Corolário 199:Seja $\forall y_1 \cdots \forall y_n \varphi$ um fecho universal de φ . Então $E \mod. \varphi$ sse $E \mod. \forall y_1 \cdots \forall y_n \varphi$.

Observação 200: Podemos explorar a relação entre estruturas e fórmulas e considerar

- O conjunto das fórmulas que são verdadeiras numa estrutura;
- A classe dos modelos de um conjunto de fórmulas.

Definição 201: Sejam L um tipo de linguagem e E uma estrutura de tipo L. A teoria de E é o conjunto $\{\varphi \in \mathcal{F}_L \mid E \bmod \varphi\}$, denotado TEO(E).

Exemplo 202: Seja $\Gamma = TEO(E_{Arit})$.

- São elementos de Γ, por exemplo, as fórmulas
 - ightharpoonup s(0) + s(0) = s(s(0))
 - $\neg \exists x_0 \ O = s(x_0)$
 - $\exists x_0 \exists x_1 \exists x_2 (x_0 \times x_0 + x_1 \times x_1 = x_2 \times x_2)$
- Pergunta difícil: será E_{Arit} ο único modelo de Γ?

Observação 203: A partir do momento em que dispomos do conceito de valoração, os seguintes conceitos têm em Lógica de 1.ª Ordem a mesma definição que em Lógica Proposicional.

Definição 204: Sejam φ e ψ fórmulas de tipo L e seja Γ um conjunto de fórmulas de tipo L.

- 1. φ diz-se (*universalmente*) *válida* (notação: $\models \varphi$) se, para toda a valoração ν de tipo L, ν satisfaz φ .
- 2. φ e ψ dizem-se *logicamente equivalentes* (notação: $\varphi \Leftrightarrow \psi$) se, para toda a valoração v de tipo L, v satisfaz φ se e só se v satisfaz ψ .
- 3. φ diz-se consequência semântica de Γ (notação: $\Gamma \models \varphi$) se, para toda a valoração ν de tipo L, se ν satisfaz Γ então ν satisfaz φ .

Observação 205: Uma fórmula de tipo L é universalmente válida sse é válida em todas as estruturas de tipo L.

Exemplo 206: Consideremos o tipo de linguagem *ARIT*.

- 1. A fórmula $x_0 = x_1$ não é válida, pois não é válida na estrutura E_{Arit} .
- 2. A fórmula $x_0 = x_0$ é válida na estrutura E_{Arit} . No entanto, esta fórmula não é válida em todas as estruturas de tipo *ARIT*. Por exemplo, se considerarmos uma estrutura $E_1 = (\{a,b\},\overline{\ })$ em que \equiv seja a relação $\{(a,a)\}$, E_1 não é modelo de $x_0 = x_0$.
- 3. A fórmula $\forall x_0 (x_0 = x_1 \lor \neg (x_0 = x_1))$ é válida.

Observação 207:

- As propriedades enunciadas para a equivalência lógica no capítulo sobre Cálculo Proposicional (clássico) mantêm-se verdadeiras no contexto do Cálculo de Predicados. Por exemplo, ⇔ é uma relação de equivalência em F_L.
- 2. As equivalências lógicas notáveis desse capítulo continuam verdadeiras no contexto do Cálculo de Predicados.
- 3. Naturalmente, há um conjunto de novas equivalências lógicas notáveis.

Proposição 208: Sejam $x, y \in \mathcal{V}$ e $\varphi, \psi \in \mathcal{F}_L$. As seguintes afirmações são verdadeiras.

a)
$$\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$$

b)
$$\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$$

c)
$$\forall x \varphi \Leftrightarrow \neg \exists x \neg \varphi$$

d)
$$\exists x \varphi \Leftrightarrow \neg \forall x \neg \varphi$$

e)
$$\forall x (\varphi \land \psi) \Leftrightarrow \forall x \varphi \land \forall x \psi$$
 f) $\exists x (\varphi \lor \psi) \Leftrightarrow \exists x \varphi \lor \exists x \psi$

$$\exists x \, (\varphi \lor \psi) \Leftrightarrow \exists x \, \varphi \lor \exists x$$

g)
$$\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$$

h)
$$\exists x \exists y \varphi \Leftrightarrow \exists y \exists x \varphi$$

i)
$$Qx \varphi \Leftrightarrow \varphi$$
 se $x \notin LIV(\varphi)$, para todo $Q \in \{\exists, \forall\}$

i) $Qx \varphi \Leftrightarrow Qy \varphi[y/x]$ se $y \notin LIV(\varphi)$ e x é substituível por y em φ , para todo $Q \in \{\exists, \forall\}$

Notação 209: A seguir usaremos a notação $LIV(\Gamma)$, onde Γ é um conjunto de *L*-fórmulas, para representar o conjunto $\bigcup_{\alpha \in \Gamma} LIV(\varphi)$. **Proposição 210**: Sejam φ e ψ fórmulas de tipo L, seja Γ um conjunto de fórmulas de tipo L, sejam x e y variáveis e seja t um termo de tipo L.

- a) Se $\Gamma \models \forall x \varphi$ e x é substituível por t em φ , então $\Gamma \models \varphi[t/x]$.
- **b)** Se $\Gamma \models \varphi$ e $x \notin LIV(\Gamma)$, então $\Gamma \models \forall x \varphi$.
- c) Se $\Gamma \models \varphi[t/x]$ e x é substituível por t em φ , então $\Gamma \models \exists x \varphi$.
- **d)** Se $\Gamma \models \exists x \varphi$, $\Gamma, \varphi \models \psi$, e $x \notin LIV(\Gamma \cup \{\psi\})$, então $\Gamma \models \psi$.

Dem.:

- a) Suponhamos que (E,α) satisfaz Γ . (Queremos demonstrar que: $\varphi[t/x][\alpha]_E=1$.) Então, pela hipótese, $(\forall x \varphi)[\alpha]_E=1$. Assim, por definição, $\varphi[\alpha\binom{x}{d}]_E=1$, para todo $d\in dom(E)$
 - e daqui, em particular, $\varphi\left[a\left(t_{[a]}^{x}\right)\right]_{E}=1$, pois $t[a]\in dom(E)$. Logo, como por hipótese x é substituível por t em φ , aplicando a Proposição 187 tem-se que $\varphi[t/x][a]_{E}=1$.
- c-d) Exercício.