Réseaux TCP/IP: TD1

Exercice 1

Sujet

Simplifier les adresses suivantes :

```
1. FE80:0000:0000:0000:4CFF:FE4F:4F50
```

```
2. 2001:0688:1F80:2000:0203:FFFF:0018:EF1E
```

Résolution

Question 1

```
FE80:0000:0000:0000:0000:4CFF:FE4F:4F50 \rightarrow FE80::4CFF:FE4F:4F50
```

Question 2

```
2001:0688:1F80:2000:0203:FFFF:0018:EF1E 
ightarrow
```

2001:688:1F80:2000:203:FFFF:18:EF1E

Exercice 2

Sujet

Donner la forme "expansée" des adresses suivantes :

```
1. FEC0:0:0:FFFF::1
```

2. FE80::1

3. FE80::4CD2:FFA1::1

Résolution

Question1

```
FEC0:0:0:FFFF::1 \rightarrow FEC0:0000:0000:FFFF:0000:0000:0000:0001
```

Question 2

```
FE80::1 \rightarrow FE80:0000:0000:0000:0000:0000:0000
```

Question 3

FE80::4CD2:FFA1::1 \rightarrow Impossible car l'adresse est incorrecte

Exercice 3

Sujet

Pour configurer l'interface d'un hôte qui doit se connecter à un réseau existant, on nous donne l'adresse 172.16.19.40/21

- 1. Quel est le masque réseau de cette adresse?
- 2. Combien de bits ont été réservés pour les sous-réseaux privés ?
- 3. Combien de sous-réseaux privés sont disponibles
- 4. Combien d'hôtes peut contenir chaque sous-réseau
- 5. Quel est l'adresse du sous-réseau de l'exemple?
- 6. Quelle est l'adresse de diffusion générale?

Résolution

Pré-étude: 172.16.19.40/21

- 172 : \rightarrow classe B \rightarrow nombre de réseau : 16 bits
- /21 : préfixe (= partie réseau) sur 21 bits

Question 1

- Masque de réseau :
 - \circ Préfixe sur 21 bits \rightarrow 1111 1111 . 1111 1111 . 1111 1000 . 0000 0000 \rightarrow 255.255.248.0

Question 2

- Bits réservés pour les sous-réseaux privés :
 - $\circ = 21 16 = 5$ bits sont réservés pour coder les sous-réseaux privés.

Question 3

- Nombre de sous-réseaux disponibles :
 - $\circ \ 2^5-2=30$ sous-réseaux disponibles. (-2 pour l'adresse de broadcast et l'adresse du réseau).

Question 4

- Nombre d'hôtes par sous-réseau :
 - $\circ~32-21=11
 ightarrow 2^{11}-2=2046$ hôtes par sous-réseau.

Question 5

• Adresse du sous réseau

o Masque: 255.255.248.0

• Adresse: 172.16.19.40/21

 \circ Adresse du sous-réseau : 255.255.248.0 \cap 172.16.19.40 = 172.16.16.0

Question 6

• Adresse de diffusion générale

o On passe les 11 bits d'hôte (les bits de poids faible) à 1 : 172.16.23.255

Exercice 4

Sujet

Une entreprise à succursales multiples utilise l'adresse IP: 196.179.110.0.

Pour une gestion plus fine de ses sous-réseaux, le responsable informatique désire pouvoir affecter une adresse IP propre à chaque sous-réseau des 10 succursales.

- 1. De quelle classe d'adresse s'agit-il?
- 2. Donner et expliquer la valeur du masque de sous réseau correspondant.
- 3. Combien de machines chaque sous-réseau pourra-t-il compter et pourquoi?
- 4. Définir l'adresse de Broadcast du réseau 3.

Résolution

Question 1

Soit l'adresse 196.179.110.0

• $196 \in [192; 223] \Rightarrow$ il s'agit de la classe C.

Question 2

Classe C \Rightarrow le masque peut tout couvrir mais nous avons des contraintes : on veut créer au moins 10 sous réseaux donc on laisse la place nécéssaire soit $2^4=16\Rightarrow$ masque de sous réseau : 255.255.240

Question 3

Chaque sous-réseau pourra compter $2^4-2=14$ machines car il y a l'adresse de broadcast et l'adresse du réseau.

Question 4

Adresse de Broadcast du sous-réseau 3 :

• On est dans le sous réseau 3 (0011) et on passe les bits d'hôte à 1 (1111) \to 0011 1111 \to 63 .

∘ ⇒ 196.179.110.63