DM3 SIGNAL

Charles Vin

12 octobre 2022

DM3 pour mercredi 12/10

Exercice 1 Avec $H(S) = \frac{S^2 + w_0^2}{S^2 + 2Sw_0\cos\theta + w_0^2}$.

- 1. Trouvez les pôles et les zéros de cette fonction de transfert
- 2. Tracer les pôles et les zéros dans le plans complexe ${\cal S}$
- 3. Quel type de filtre est réalisé par cette fonction de transfert? Passe-bas, passe-haut, passe-bande, coupe-bande
- 4. Avec MatLab tracez la réponse en fréquence de ce filtre pour
 - (a) $\theta = 60^{\circ}$
 - (b) $\theta = 80^{\circ}$
 - (c) $\theta = 87^{\circ}$

et avec $w_0 = 2\pi f_0, f_0 = 50hz$

- 1. Trouvons les racines du dénominateur : $S^2 + 2Sw_0\cos\theta$
 - $-\Delta = (2w_0\cos\theta)^2 4w_0^2 = 4w_0^2\cos^2\theta 4w_0^2 = 4w_0^2(\cos^2\theta 1)$
 - $-\sqrt{\Delta} = 2w_0\sqrt{\cos^2\theta 1}$
 - Si $w_0=0$ ou si $\theta=0$ alors $\Delta=0$ il n'y a pas de racine.
 - Sinon $\forall w_0 \in R^*, \theta \in R^*, w_0^2 > 0, \cos^2(\theta) 1 < 0 \Rightarrow \Delta < 0$
 - Dans ce cas il y a deux racines complexes : $\frac{-(2w_0\cos\theta)\pm i*2w_0\sqrt{\cos^2\theta-1}}{2} = -w_0\cos\theta\pm i*\sqrt{\cos^2\theta-1}$

$$\begin{split} H(S) &= \frac{S^2 + w_0^2}{S^2 + 2Sw_0\cos\theta + w_0^2} \\ &= \frac{(S - iw_0)(S + iw_0)}{(S - w_0\cos\theta \pm i *\sqrt{\cos^2\theta - 1})(S + -w_0\cos\theta \pm i *\sqrt{\cos^2\theta - 1})} \end{split}$$

On a donc deux pôles : $\pm i * w_0(-\cos\theta + \sqrt{\cos^2\theta - 1})$ et deux zéros $\pm iw_0$

- 2. On pose $w_0=2\pi f_0, f_0=50hz$. Pour les coordonnes des points, voir la table 1. Pour le plot des points, voir la figure 1.
 - On remarque que lorsque si $\cos\theta < 0$ alors le système est instable. Si $\cos\theta = 0$ le système est conditionnellement stable.

θ	$\pi/2$	$\pi/4$	$\pi/3$	$2\pi/3$
z_1	$(0, w_0)$	$(0, w_0)$	$(0, w_0)$	$(0, w_0)$
z_2	$(0,-w_0)$	$(0,-w_0)$	$(0,-w_0)$	$(0,-w_0)$
p_1	$(0, w_0)$	$(-w_0 * \frac{\sqrt{2}}{2}, \frac{w_0}{\sqrt{2}})$	$\left(-\frac{w_0}{2}, \frac{\sqrt{3}}{2}w_0\right)$	$\left(\frac{w_0}{2}, \frac{\sqrt{3}}{2}w_0\right)$
p_2	$(0,-w_0)$	$\left(-w_0 * \frac{\sqrt{2}}{2}, -\frac{w_0}{\sqrt{2}}\right)$	$\left(-\frac{w_0}{2}, -\frac{\sqrt{3}}{2}w_0\right)$	$\left(\frac{w_0}{2}, -\frac{\sqrt{3}}{2}w_0\right)$

Table 1 – Coordonnées des pôles et des zéros pour $w_0 = 2\pi*50$

- 3. Parcourons l'axe des imaginaires de $jw = 0 \rightarrow +\infty$.
 - Lorsque w = 0, |H(jw)| = 1 car les p_i et z_i sont placé sur un cercle.
 - Lorsque $w = w_0, |H(jw)| = 0$ car on se place sur z_1 donc le numérateur s'annule

Figure 1 – Pôle et zéros pour $w_0 = 2\pi*50$

- Lorsque $w\to +\infty, |H(jw)|\to 1$ également. On peut donc déduire que le gain se réduit vers zéros autour de $w_0=2\pi f_0$ puis remonte vers un (on pourra le voir sur la figure MatLab dans la question suivante). C'est donc un filtre coupe bande sur f_0 .
- 4. Pour les figures, voir la page suivante.