9.9 习题

张志聪

2024年12月8日

9.9.1

⇒

对于任意 $\epsilon > 0$,因为序列 $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ 是等价的,由定义 9.9.5 两者是最终 $\epsilon -$ 接近的,即存在正整数 $N \geq 1$ 使得 $|a_n - b_n| \leq \epsilon$ 对任意 $n \geq N$ 均成立,即序列 $(a_n - b_n)_{n=1}^{\infty}$ 是最终 $\epsilon -$ 接近于 0,由定义 6.1.5 (序列的收敛) 可知序列 $(a_n - b_n)_{n=1}^{\infty}$ 收敛于 0,即 $\lim_{n \to \infty} (a_n - b_n) = 0$ 。

• =

 $\lim_{n\to\infty}(a_n-b_n)=0$,那么,对于任意 $\epsilon>0$,都存在正整数 $N\geq 1$ 使得 $|a_n-b_n|\leq \epsilon$ 对任意 $n\geq N$ 均成立,于是可得,序列 $(a_n)_{n=1}^\infty,(b_n)_{n=1}^\infty$ 是最终 $\epsilon-$ 接近的。由定义 9.9.5 可知,序列 $(a_n)_{n=1}^\infty,(b_n)_{n=1}^\infty$ 是等价的。

9.9.2

• $(a) \implies (b)$

f 在 X 是一致连续的,则对任意 $\epsilon > 0$ 都存在 $\delta > 0$ 使得 $|f(x) - f(y)| \le \epsilon$ 对任意 $x, y \in X, |x - y| \le \delta$ 均成立。

因为 $(x_n)_{n=0}^{\infty}$ 和 $(y_n)_{n=0}^{\infty}$ 是由 X 中元素构成的等价序列,那么,存在 正整数 N 使得

 $|x_n - y_n| \le \delta$

此时

$$|f(x_n) - f(y_n)| \le \epsilon$$

由定义 9.9.5 可知 $(f(x_n))_{n=0}^{\infty}$ 和 $(f(y_n))_{n=0}^{\infty}$ 是等价的。

 \bullet (b) \Longrightarrow (a)

反证法,假设 f 在 X 上不是一致连续的。那么,存在 $\epsilon_0 > 0$,对任意 $n \in \mathbb{N}$ 存在 $x_n, y_n \in X$ 当 $|x_n - y_n| < 1/n$ 都有 $|f(x_n) - f(y_n)| > \epsilon_0$ 。由定义 9.9.5 可知, $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ 是等价的,但因为对任意 n 都有 $|f(x_n) - f(y_n)| > \epsilon_0$ 可知, $(f(x_n))_{n=1}^{\infty}$,($f(y_n))_{n=0}^{\infty}$ 不是等价的。这与 题设 (b) 矛盾。

9.9.3

f 在 X 是一致连续的,则对任意 $\epsilon > 0$ 都存在 $\delta > 0$ 使得 $|f(x) - f(y)| \le \epsilon$ 对任意 $x,y \in X, |x-y| \le \delta$ 均成立。

因为 $(x_n)_{n=0}^{\infty}$ 是柯西序列,即存在 N 使得对任意 $n, m \geq N$ 都有

$$|x_n - x_m| < \delta$$

此时

$$|f(x_n) - f(x_m)| \le \epsilon$$

于是可得 $(f(x_n))_{n=0}^{\infty}$ 是柯西序列。

9.9.4

 x_0 是 X 的附着点,由引理 9.1.14 可知,存在一个完全由 X 中元素构成的序列 $(a_n)_{n=0}^{\infty}$ 收敛于 x_0 。由定理 6.4.18 可得收敛序列是柯西序列,则由命题 9.9.12 可知, $(f(x_n))_{n=0}^{\infty}$ 是柯西序列,再次利用定理 6.4.18 可得柯西序列收敛,于是 $\lim_{x\to x_0; x\in X} f(x)$ 存在。

例 9.9.10 另一种证明:

序列 $(1/n)_{n=1}^{\infty}$ 是 (0,2) 中的柯西序列,但是序列 $f(1/n)_{n=1}^{\infty}$ 发散(不是柯西序列),所以根据命题 9.9.12 可知,f 不是一致连续的。

9.9.5

反证法,假设 f(E) 是无界的,那么对任意的实数 M 都存在一个元素 $x \in E$ 使得 $f(x) \ge M$.

特别地,对于每一个自然数 n,集合 $\{x \in E : |f(x)| \ge n\}$ 都是非空的。 所以我们可以使用选择公理选取 E 中的一个序列 $(x_n)_{n=0}^{\infty}$ 使得 $|f(x_n)| \ge n$ 对所有的 n 均成立。由于这个序列属于有界子集 E,由定理 6.6.8 可知, $(x_n)_{n=0}^{\infty}$ 有一个收敛的子序列 $(x_{n_j})_{j=0}^{\infty}$,其中 $n_0 < n_1 < n_2 < \dots$ 是一个递 增的自然数序列。特别地,对于所有的 $j \in N$ 均有 $n_j \ge j$ 。

由定理 6.4.18 可得收敛序列是柯西序列,则由命题 9.9.12 可知, $(f(x_{n_j}))_{n=0}^{\infty}$ 是柯西序列,再次利用定理 6.4.18 可得 $(f(x_{n_j}))_{n=0}^{\infty}$ 是收敛序列。

另外,我们从序列的构造过程中看出 $|f(x_{n_j})| \ge n_j \ge j$ 对所有的 j 均成立,从而序列 $(f(x_{n_j}))_{n=0}^\infty$ 是无界的,这是一个矛盾。

9.9.6

任意 $\epsilon>0$,因为函数 $g:Y\to Z$ 是 Y 上的一致连续函数,存在一个 $\delta_q>0$ 使得

$$|g(x) - g(y)| \le \epsilon$$

对任意 $x, y \in Y, |x - y| \le \delta_g$ 均成立。

因为函数 $f: X \to Y$ 是 X 上的一致连续函数,存在一个 $\delta_f > 0$ 使得

$$|f(x) - f(y)| \le \delta_q$$

对任意 $x, y \in X, |x - y| \le \delta_f$ 均成立。 综上,

$$|(g \circ f)(x) - (g \circ f)(y)| \le \epsilon$$

对任意 $x, y \in X, |x - y| \le \delta_f$ 均成立。

所以, $q \circ f$ 是 X 上的一致连续函数。