Slide 20:

Transfer function
$$H(j\omega) = \left[\frac{\omega_n^2}{\omega_n^2 - \omega^2 + 2j\zeta\omega_n\omega}\right]$$

Substitute
$$\omega = \omega_n \rightarrow H(j\omega) = \left[\frac{\omega_n^2}{2j\zeta\omega_n^2}\right] = \left[\frac{1}{2j\zeta}\right]$$

$$\Rightarrow$$
 Gain = $\frac{1}{2\zeta}$; Phase lead = $-\frac{\pi}{2}$

Resonant frequency is where the magnitude of $H(j\omega)$ is a maximum

We need
$$|H(j\omega)| = \left[\frac{\omega_n^2}{\sqrt{(\omega_n^2 - \omega^2)^2 + (2\zeta\omega_n\omega)^2}}\right]$$
 to be maximum

ightarrow Denominator squared: $\left(\omega_n^2-\omega^2\right)^2+\left(2\zeta\omega_n\omega\right)^2$ to be a minimum

Differentiate this wrt ω and equate to zero: $2(\omega_n^2 - \omega^2)(-2\omega) + 2(2\zeta\omega_n\omega)(2\zeta\omega_n) = 0$

$$\Rightarrow \left(-\omega_n^2 + \omega^2\right) + 2(\zeta \omega_n)^2 = 0$$

$$\rightarrow \omega_r = \sqrt{1 - 2\zeta^2} \omega_n$$