MATH 710, INSTRUCTOR: JACOB KOGAN

XIAOWEI SONG

November 22, 2024

R embeding test:

Tikz plot test:

1. Sep 3, 2015.

1.1. **Distance.** need to be: $\begin{cases} d(x,y) &= d(y,x) \\ d(x,y) &\geq 0, \ d(x,y) = 0 \ iff \ x = y \\ d(x,z) &\leq d(x,y) + d(y,z) \ (\text{Triangular inequality}) \end{cases}$

for $a_1, a_2, \dots, a_m \in \mathbb{R}^n, d(x, y) = |x - y|^2$, where the Norm-2 not true for Triangular rule For example: x = 0, y = 0.5, z = 1

$$x=0$$
 $y=0.5$ $z=1$

$$d(x,y) = 0.25, d(y,z) = 0.25, d(x,z) = 1$$

which makes d(x,y) + d(y,z) < d(x,z), thus not triangular inequality

1.2. Centroid is the closest point to all data points in a cluster. K-means, 1st step: check each cluster's center, find one center closest to the data point, then assign the data point to the cluster

for the data points above $a_i, 1 \le i \le m$, we want to find one point closest to all data points, define cost function: $f(x) = \sum_{i=1}^{m} |x - a_i|^2$, we want to get $\min_{x \in R^n} f(x)$, then use the found x to represent $a_i, 1 \le i \le m$

Algorithm 1

let
$$0 = \frac{df(x)}{dx} = \frac{d}{dx} \left[\sum (x - a_i)^2 \right] = 2 \sum (x - a_i) = 2 \sum x - 2 \sum a_i$$

 $\Rightarrow mx = \sum_{i=1}^{m} a_i \stackrel{\downarrow}{\Rightarrow} x = \frac{1}{m} \sum_{i=1}^{m} a_i$ which is the mean of all data points. Note: Set $A = \{a_1, a_2, \dots, a_m\} \in \mathbb{R}^n$, its centroid $c(A) = \frac{1}{m} \sum_{i=1}^{m} a_i$ depends on distance function

1.3. **K-means.** Set $A = \pi_1 \cup \pi_2 \cup \cdots \cup \pi_k$, considering hard clustering, $\pi_i \cap \pi_j = \Phi$, and $\{\pi_1,\ldots,\pi_k\}=\Pi$ a partition

A partition is associated with a quality number, such as $\sum_{a \in \pi_1} |c(\pi_1) - a|^2 = q(\pi_1)$

All partition's Quality $Q(\Pi) = \sum_{i=1}^k q(\pi_i)$

Batch K-means:

Definition 1. Initialize partition $\Pi = \{\pi_1, \pi_2\}, \pi_1 = \{a_1, a_2, a_3\}, \pi_2 = \{a_4, \dots, a_8\}$

For each given partition, compute its centroid,

Step 1: For each point, compute its distance to centroids, assign it to closest partition

Step 2: Vector Assignment, update centroids

$$Q(\Pi_1) = \sum_{i=1}^{3} |c_1 - a_i|^2 + \sum_{i=4}^{8} |c_2 - a_i|^2$$
$$Q(\Pi_2) = \sum_{i=1}^{4} |c_1^* - a_i|^2 + \sum_{i=5}^{8} |c_2^* - a_i|^2$$

where

$$|c_2 - a_4|_{\Pi_1}^2 > |c_1^* - a_4|_{\Pi_2}^2$$

 $\Rightarrow Q(\Pi_1) > Q(\Pi_2) > \dots > Q(\Pi_n) \ge 0$

The mid-plane between any 2 centroids = Convex Hull $\{\Pi_1\} \cap Convex \{\Pi_2\}$

1.3.1. Batch K-means local minimum stuck. Given N points in 1-dimension, find k=2, trying to cut N-1 lines and calculate Quality number and compare the numbers

Suppose 3 points: 0, 1, 3

Init $\Pi_1 = \{0\} \cup \{1,3\}$, then $Q(\Pi_1) = 0 + (1+1) = 2$, Batch K-means will stop here.

While $\Pi_2 = \{0, 1\} \cup \{3\}$, then $Q(\Pi_2) = (\frac{1}{4} + \frac{1}{4}) + 0 = 0.5 < Q(\Pi_1)$.

which means batch K-means failed here to find a global optimization

One way to solve:

1.4. Incremental K-means. At each step, only move one point to all clusters and compute quality numbers.

Set $a_1, \ldots, a_m \in \mathbb{R}^n$, c as the centroid

$$f(x) = \sum_{i=1}^{m} |x - a_i|^2 = \sum_{i=1}^{m} |x - c + c - a_i|^2 = \sum_{i=1}^{m} \left[|x - c|^2 + 2(x - c)^T (x - c) + |c - a_i|^2 \right]$$

$$= \sum_{i=1}^{m} |x - c|^2 + 2(x - c)^T \sum_{i=1}^{m} (c - a_i) + \sum_{i=1}^{m} (c - a_i)^2$$

$$= m |x - c|^2 + 2(x - c)^T \cdot 0 + \sum_{i=1}^{m} (c - a_i)^2$$

Thus
$$f(x) = \sum_{i=1}^{m} |x - a_i|^2 = m |x - c|^2 + \sum_{i=1}^{m} (c - a_i)^2$$

Set $A = \{a_1, a_2, \dots, a_n\}, B = \{b_1, \dots, b_a\}$

Set
$$A = \{a_1, a_2, \dots, a_p\}$$
, $B = \{b_1, \dots, b_q\}$
then $Q(A \cup B) = Q(A) + Q(B) + p |c - c(A)|^2 + q |c - c(B)|^2$
where $c = \frac{pc(A) + qc(B)}{p+q} = \frac{p}{p+q}c(A) + \frac{q}{p+q}c(B)$

$$Q(A \cup B) = \sum_{i=1}^{p} |c - a_i|^2 + \sum_{j=1}^{q} |c - b_j|^2$$

$$= \sum_{i=1}^{p} |c(A) - a_i|^2 + p |c(A) - c|^2 + \sum_{i=1}^{q} |c(B) - b_i|^2 + q |c(B) - c|^2$$

$$= Q(A) + Q(B) + p |c - c(A)|^2 + q |c - c(B)|^2$$

proved.

Proof:

Example:
$$A = \{a_1, a_2\}, B = \{b\}$$

 $Q(A \cup B) = Q(A \cup \{b\}) = Q(A) + \underbrace{Q(B)}_{=0} + p |c - c(A)|^2 + 1 \cdot |c - b|^2$

where
$$c = \frac{p}{p+1}c(A) + \frac{1}{p+1}b \Rightarrow c - b = \frac{p}{p+1}\left[c(A) - b\right]$$

 $c - c(A) = \frac{1}{p+1}\left[-c(A) + b\right] = \frac{1}{p+1}b - \frac{1}{p+1}c(A)$
Thus $Q\left(A \cup B\right) = Q(A) + \frac{p}{(p+1)^2}\left|b - c(A)\right|^2 + \frac{p^2}{(p+1)^2}\left|b - c(A)\right|^2 = Q\left(A\right) + \frac{p+p^2}{(p+1)^2}\left|b - c(A)\right|^2 = Q\left(A\right) + \left|b - c(A)\right|^2 \frac{p}{p+1}$

1.4.1. For $A = \{a_1, a_2, \dots, a_p, b\}$, $A^- = \{a_1, \dots, a_p\}$, $B = \{b\}$. ? $Q(A^-)$ interested after removing b.

$$\underbrace{Q\left(A\right)}_{\text{Known}} = Q\left(A^{-} \cup B\right) = \underbrace{Q\left(A^{-}\right)}_{\text{Unknown?}} + \left|b - c(A^{-})\right|^{2} \frac{p}{p+1}$$

$$\frac{b + pc(A^{-1})}{1 + p} = c(A) \Rightarrow c(A^{-}) = \frac{1}{p} \left[(1 + p) c(A) - b \right]$$

$$\Rightarrow b - c(A^{-}) = \frac{1 + p}{p} \left[b - c(A) \right]$$

Lemma. $A = \{a_1, \dots, a_p\}, B = \{b\}, A^+ = \{a_1, \dots, a_p, b\}, \text{ then } Q(A^+) = Q(A) + \frac{p}{p+1} |c(A) - b|^2$

Lemma.
$$B = \{b_1, \dots, b_{q-1}, b_q\}, B^- = \{b_1, \dots, b_{q-1}\}, Q(B^-) = Q(B) - \frac{q}{q-1} |b_q - c(B)|^2$$

Claim.
$$A = \{a_1, \dots, a_p\}, B = \{b_1, \dots, b_q\}, A^+ = \{a_1, \dots, a_p, b_q\}, B^- = \{b_1, \dots, b_{q-1}\}.$$

$$[Q(A) + Q(B)] - [Q(A^+) + Q(B^-)] = [Q(A) - Q(A^+)] + [Q(B) - Q(B^-)] = -\frac{p}{p+1} |c(A) - b_q|^2 + \frac{q}{q-1} |b_q - c(B)|^2$$

1.5. Comparision between batch K-means and Incremental K-means.

Case 1. Batch K-means, $\Pi = \{\pi_1, \dots, \pi_k\}$

Step1: compute
$$c(\pi_i)$$
, $i = 1, ..., k$
Step2: $if \ a \in \pi_i, \ m_i = |\pi_i|$; $if \ a \in \pi_j, m = |\pi_j|$
look at if $\Delta_{Batch} = |c_i - a|^2 - |c_j - a|^2 > 0$, then a should belong to π_j

Case 1. Incremental K-means,

Step2: if
$$a \in \pi_i$$
, $m_i = |\pi_i|$; if $a \in \pi_j$, $m = |\pi_j|$ if $\Delta_{Incremental} = \frac{m_i}{m_i - 1} |a - c(\pi_i)|^2 - \frac{m_j}{m_j + 1} |a - c(\pi_j)|^2 > 0$, then we should move a from π_i to π_j .

then
$$\Delta_{Batch} - \Delta_{Incremental} = -\left\{\frac{m_i}{m_i - 1} |a - c(\pi_i)|^2 - \frac{m_j}{m_j + 1} |a - c(\pi_j)|^2\right\} + \left\{|c_i - a|^2 - |c_j - a|^2\right\}$$

$$= \frac{1}{m_i - 1} |a - c(\pi_i)|^2 - \frac{1}{m_j + 1} |c_j - a|^2 \ge 0$$

which explains why Batch K-means can miss some important move.

1.6. **2-steps K-means.** Step 1: Run K-means until it stops

Step 2: one iteration of "Incremental K-means" If (Change is detected) goto Step 1 else Stop

Example. Init partitions as
$$\Pi_1 = \{0\} \cup \{1,3\}$$
, batch K-means will stop Incremental K-means, $\pi_1 = \{\Phi\}$, $\pi_2 = \{0,1,3\}$, $Q = \left(\frac{4}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{5}{3}\right)^2$ $\pi_1 = \{0,1\}$, $\pi_2 = \{3\}$, $Q = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{2}$ $\pi_1 = \{0,3\}$, $\pi_2 = \{1\}$, $Q = \left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2 = 4.5$

1.7. Quality function. Given
$$\{a_1, \dots, a_m\}$$
 build K clusters, $x_j \in \mathbb{R}^n, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} \in \mathbb{R}^{nk} = \mathbb{R}^N$

$$\begin{split} &D_{i}\left(x_{1},\ldots,x_{k}\right)=\min_{1\leq l\leq k}\left|x_{l}-a_{i}\right|^{2}\\ &\text{function }D_{i}:R^{N}\mapsto R\\ &f(x)=\sum_{i=1}^{m}D_{i}\left(x_{1},\ldots,x_{k}\right)\text{ , trying to do }\min_{x\in R^{N}}f(x) \end{split}$$

1.8. for f(x) = |x|, not differentiable.

One way to make it differentiable since there is only one zero point not differentiable, use a family of smooth function $f_x(x) = (x^2 + s)^{1/2}$, s > 0 and s is small

1.9. **for**
$$(x_1, \ldots, x_m)$$
, **find** $f(x) = \max x_i$.

Problem. use $f_s(x) = s \log \left(\sum_{i=1}^n \exp \left(\frac{x_i}{s} \right) \right)$,

Proposition.
$$\lim_{s\to 0^+} f_s(x) = f(x)$$

Proof: for x_1, x_2 , if $x_1 > x_2$,

$$s \log \left(\exp \left(\frac{x_1}{s} \right) + \exp \left(\frac{x_2}{s} \right) \right) = s \log \left[\exp \left(\frac{x_1}{s} \right) \left(1 + \exp \left(\frac{x_2 - x_1}{s} \right) \right) \right]$$
$$= s \log \left(\exp \left(\frac{x_1}{s} \right) \right) + s \log \left[1 + \exp \left(\frac{x_2 - x_1}{s} \right) \right]$$
$$\stackrel{s \to 0^+}{=} x_1 + 0$$

thus
$$\lim_{s\to 0^+} s \log \left[1 + \exp\left(\frac{x_2 - x_1}{s}\right)\right] = 0$$

1.10. **Sep 17.** Given
$$A = \{a_1, \dots, a_n\}$$
, $\Pi = \{\pi_1, \dots, \pi_k\}$ $Q(\Pi) = \sum_{\pi \in \Pi} \sum_{a \in \pi} |a - c(\pi)|^2$ $D_i(x_1, \dots, x_k) = \min_l |x_l - a_i|^2$

Convex function:

$$f: \mathbb{R}^n \to \mathbb{R}, \forall t \ and \ 0 \le t \le 1, \ x, y \in \mathbb{R}^n, \ f[tx + (1-t)y] \le tf(x) + (1-t)f(y)$$

Lemma 2.
$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

Proof. for t close to 0,
$$f[x + t(y - x)] = f[(1 - t)x + ty] \le (1 - t)f(x) + tf(y)$$

$$\Leftrightarrow f [x + t (y - x)]$$

$$f [x + t (y - x)] - f(x)$$

$$\leq t [f(y) + tf(y)]$$

$$\leq t [f(y) - f(x)]$$

$$f [x + t (y - x)] - f(x)$$

$$t(y - x)$$

$$(y - x) \lim_{t \to 0} \frac{f [x + t (y - x)] - f(x)}{t(y - x)}$$

$$\leq f(y) - f(x)$$

$$\leq f(y) - f(x)$$

$$\leq f(y) - f(x)$$

$$\leq f(y) - f(x)$$

2. 20151022 Entropic mean, $\Phi/f - divergence$, presented by Maria Ben-Tal et al. (1989)

2.1. Then entropic mean.

Definition 3. Let $\phi: \mathbb{R}_+ \to \mathbb{R}$ be a strictly convex differentiable function with $(0,1] \subset dom\phi$, and $\phi(1) = 0, \phi'(1) = 0$. Then the class of such functions are denoted by Φ . The "distance" between 2 pdf was defined as $I_{\phi}\left(p,q\right) \coloneqq \sum_{j=1}^{n} q_{j}\phi\left(\frac{p_{j}}{q_{j}}\right); p,q \in D_{n} = \left\{x \in \mathbb{R}^{n}: \sum_{j=1}^{n} x_{j} = 1, x > 0\right\}.$ Adopting this concept, we define the distance from x to a_i by $d_{\phi}(x, a_i) := a_i \phi\left(\frac{x}{a_i}\right), 1 \le i \le n$. The optimization problem is now:

(2.1)
$$\min \left\{ \sum_{i=1}^{n} w_i a_i \phi\left(\frac{x}{a_i}\right) : x \in \mathbb{R}_+ \right\}$$

and the resulting optimal solution denoted $\bar{x}_{\phi}(a) = \bar{x}_{\phi}(a_1, \dots, a_n)$ will be called the entropic mean of (a_1,\ldots,a_n) .

Lemma 4. Let $\phi \in \Phi$. Then

- (1) for any $\beta_2 > \beta_1 \ge \alpha > 0$ or $0 < \beta_2 < \beta_1 \le \alpha$, $d_{\phi}(\beta_2, \alpha) > d_{\phi}(\beta_1, \alpha)$ (2) for any $\alpha_2 \ge \alpha_1 > \beta > 0$ or $0 < \alpha_2 < \alpha_1 < \beta$, $d_{\phi}(\beta, \alpha_2) > d_{\phi}(\beta, \alpha_1)$

Proof. a). Since ϕ is strictly convex, $d_{\phi}(\cdot, \alpha)$ is strictly convex for any $\alpha > 0$, which can be showed by:

Thus by gradient inequality for
$$d_{\phi}\left(\cdot,\alpha\right)$$
, $d_{\phi}\left(\cdot,\alpha\right) = d_{\phi}\left(\frac{\cdot}{\alpha}\right) - \frac{\cdot}{\alpha}\phi'\left(\frac{\cdot}{\alpha}\right)$ $d_{\phi}\left(\cdot,\alpha\right) = d_{\phi}\left(\frac{\cdot}{\alpha}\right) - \frac{\cdot}{\alpha}\phi'\left(\frac{\cdot}{\alpha}\right)$ $d_{\phi}\left(\cdot,\alpha\right) = d_{\phi}\left(\frac{\cdot}{\alpha}\right) - \left[-\frac{\cdot}{\alpha^{2}}\phi'\left(\frac{\cdot}{\alpha}\right) + \frac{\cdot}{\alpha}\phi''\left(\frac{\cdot}{\alpha}\right) - \frac{\cdot}{\alpha^{2}}\phi'\left(\frac{\cdot}{\alpha}\right) + \frac{\cdot}{\alpha}\phi''\left(\frac{\cdot}{\alpha}\right)\right] = \frac{\cdot}{\alpha^{3}}\phi''\left(\frac{\cdot}{\alpha}\right) > 0$, since $\alpha > 0$.

$$d_{\phi}\left(\beta_{2},\alpha\right) = \alpha\phi\left(\frac{\beta_{2}}{\alpha}\right) > \alpha\phi\left(\frac{\beta_{1}}{\alpha}\right) + \left(\beta_{2} - \beta_{1}\right)\phi'\left(\frac{\beta_{1}}{\alpha}\right)$$

$$d_{\phi}(\beta_{2}, \alpha) = \alpha \phi\left(\frac{\beta_{2}}{\alpha}\right) > \alpha \phi\left(\frac{\beta_{1}}{\alpha}\right) + (\beta_{2} - \beta_{1}) \phi'\left(\frac{\beta_{1}}{\alpha}\right)$$
Since $\phi'(1) = 0$,
$$\begin{cases} \phi'(x) > 0, & \text{if } x > 1 \\ \phi'(x) < 0, & \text{if } x < 1 \end{cases}$$
, then $(\beta_{2} - \beta_{1}) \phi'\left(\frac{\beta_{1}}{\alpha}\right) > 0$, since
$$\begin{cases} \text{if } \beta_{2} > \beta_{1} \ge \alpha > 0, \\ \text{if } 0 < \beta_{2} < \beta_{1} \le \alpha, \end{cases}$$

b). it is straight-forward to find out $d_{\phi}(\beta,\cdot)$ is srictly convex for the 1st argument, then from a), it is similarly proved.

Corollary 5. Let $\phi \in \Phi$ and $\alpha, \beta > 0$. Then $d_{\phi}(\beta, \alpha) \geq 0$ with equality IFF $\alpha = \beta$.

Theorem 6. Let $\phi \in \Phi$. Then

(1) There exists a unique continuous function \bar{x}_{ϕ} which solves 2.1 such that

$$\min_{1 \le i \le n} \{a_i\} \le \bar{x}_\phi \le \max_{1 \le i \le n} \{a_i\}$$

, for all $a_i > 0$. In particular $\bar{x}(\alpha, \dots, \alpha) = \alpha$.

(2) The mean \bar{x}_{ϕ} is strict, i.e.,

$$\min_{1 \le i \le n} \{a_i\} < \max_{1 \le i \le n} \{a_i\} \Rightarrow \min_{1 \le i \le n} \{a_i\} < \bar{x}_{\phi} < \max_{1 \le i \le n} \{a_i\}$$

(3) \bar{x}_{ϕ} is homogeneous (scale invariant), i.e.,

$$\bar{x}_{\phi}(\lambda a) = \lambda \bar{x}_{\phi}(a)$$

, for all $\lambda > 0, a_i > 0$.

- (4) If $w_i = w$ for all i, then \bar{x}_{ϕ} is symmetric; i.e., $\bar{x}(a_1, \ldots, a_n)$ is invariant to permutations of the $a_i's > 0$.
- (5) \bar{x}_{ϕ} is isotone; i.e., for all i and fixed $\{a_{j}\}_{j=1}^{n} > 0, j \neq i, \bar{x}(a_{1}, \dots, a_{j-1}, \cdot, a_{j+1}, \dots, a_{n})$ is an increasing function.

2.2. Examples.

Example 7 (Classical means). Solving the derivative of 2.1: $\sum_{i=1}^{n} w_i \phi'\left(\frac{x}{a_i}\right) = 0$

(1) Arithmetic mean. $\phi(t) = -\lg t + t - 1$, $\phi'(t) = -\frac{1}{t} + 1$, then $0 = \sum_{i=1}^{n} w_i \phi'\left(\frac{x}{a_i}\right) = \sum_{i=1}^{n} w_i \left(1 - \frac{a_i}{x}\right) \Rightarrow \bar{x} = \sum_{i=1}^{n} w_i a_i \coloneqq A(a)$.

2) Harmonic mean. $\phi(t) = (t-1)^2$, $\phi'(t) = 2(t-1)$, then $0 = \sum_{i=1}^n w_i \phi'\left(\frac{x}{a_i}\right) = \sum_{i=1}^n w_i\left(\frac{x}{a_i} - 1\right) \Rightarrow \bar{x} = \left(\sum_{i=1}^n w_i \frac{1}{a_i}\right)^{-1} := H(a)$.

3) Root mean square. $\phi(t) = 1 - 2\sqrt{t} + t$, $\phi'(t) = 1 - t^{-1/2}$, then $0 = \sum_{i=1}^{n} w_i \phi'\left(\frac{x}{a_i}\right) = \sum_{i=1}^{n} w_i \left(1 - \sqrt{\frac{a_i}{x}}\right) \Rightarrow \bar{x} = \left(\sum_{i=1}^{n} w_i \sqrt{a_i}\right)^2 := R(a)$.

4) Geometric mean. $\phi(t) = t \log t - t + 1, \phi'(t) = \lg t$, then $0 = \sum_{i=1}^{n} w_i \phi'\left(\frac{x}{a_i}\right) = \sum_{i=1}^{n} w_i (\log x - \log a_i) \Rightarrow \bar{x} = \exp\left(\sum_{i=1}^{n} w_i \log a_i\right) = \prod_{i=1}^{n} a_i^{w_i} := G(A).$

5) Mean of order p. $\phi_p(t) = \frac{t^{1-p}-p}{p-1} + t$, $p \neq 1, p > 0$. $\phi_p'(t) = 1 + \frac{(1-p)t^{-p}}{p-1} = 1 - t^{-p}$, then $0 = \sum_{i=1}^n w_i \phi'\left(\frac{x}{a_i}\right) = \sum_{i=1}^n w_i \left(1 - \frac{a_i^p}{x^p}\right) \Rightarrow x^p = \sum w_i a_i^p \Rightarrow \bar{x} = \left(\sum w_i a_i^p\right)^{1/p}$. To extend $\bar{x_p}$ for negative order, one may choose $\tilde{\phi}_q(t) = \frac{t^q - qt}{q-1} + 1, q > 0, q \neq 1 \Rightarrow \bar{x}_q = \left(\sum w_i a_i^{1-q}\right)^{1/(1-q)}$, since $\tilde{\phi}_q'(t) = \frac{qt^{q-1}-q}{q-1} = \frac{q}{q-1} \left(t^{q-1}-1\right)$, then $0 = \sum_{i=1}^n w_i \tilde{\phi}'\left(\frac{x}{a_i}\right) = \sum_{i=1}^n w_i \left(\frac{x^{q-1}}{a_i^{q-1}}-1\right) \Rightarrow \bar{x}_q = \left(\sum w_i a_i^{1-q}\right)^{1/(1-q)}$.

Note, $\tilde{\phi}_{q}\left(t\right)=t\phi_{p}\left(\frac{1}{t}\right)=t\left(t^{-1}+\frac{t^{p-1}-p}{p-1}\right)=1+\frac{t^{p}-pt}{p-1},$ hence $\tilde{\phi}_{q}$ is also strictly convex $\forall t>0$.

And for p = q = 0.5 yielding the Root mean square R, $\bar{x} = \left(\sum w_i a_i^p\right)^{1/p} = \bar{x} = \left(\sum w_i a_i^{0.5}\right)^2$ q = 2 gives harmonic mean H, $\bar{x}_q = \left(\sum w_i a_i^{-1}\right)^{-1}$. Application of L'Hospital's rule shows:

$$\lim_{p \to 1} \phi_p(t) = \lim_{p \to 1} \left(\frac{t^{1-p} - p}{p-1} + t \right)$$

$$= t + \lim_{p \to 1} \left(-t^{1-p} \log t - 1 \right)$$

$$= t - \log t - 1$$

which corresponds to Arithmetic mean's ϕ . and

$$\lim_{q \to 1} \phi_q(t) = \lim_{q \to 1} \left(\frac{t^q - qt}{q - 1} + 1 \right)$$

$$= 1 + \lim_{q \to 1} \left(t^q \log t - t \right)$$

$$= 1 + t \log t - t$$

which corresponds to Geometric mean's ϕ .

9) Composition of means.

Let $\phi(t) = \frac{1}{3} \left(-2 \log t + t^2 - 1 \right)$, $\Rightarrow 0 = \sum w_i \left(\frac{x}{a_i} - \frac{a_i}{x} \right) \Rightarrow \bar{x}_{\phi}(a) = \left(\frac{\sum w_i a_i}{\sum w_i / a_i} \right)^{1/2} = \sqrt{A(a)H(a)}$, i.e., the geometric mean of A and H.

2.3. Comparision of means.

Theorem 8. Let $\phi, \psi \in \Phi$ and denote by $\bar{x}_{\phi}, \bar{x}_{\psi}$ respectively the corresponding entropic means. If there exists a constant $K \neq 0$ such that

$$K\phi'(t) \le \psi'(t), \forall t \in \mathbb{R}_+ \setminus \{1\}$$

then,

$$\bar{x}_{\phi}\left(a\right) \geq \bar{x}_{psi}\left(a\right)$$
.

Proof by contradiction.

Example 9. Show the classical inequalities $A(a) \geq G(a) \geq H(a)$ are an easy consequence of the theorem above.

Theorem 10. Let $\phi_1, \phi_2 \in \Phi$ and $\phi_{\lambda}(t) := \lambda \phi_1(t) + (1 - \lambda) \phi_2(t)$, then for all $0 \le \lambda \le 1$, $\min \{\bar{x}_{\phi_1}(a), \bar{x}_{\phi_2}(a)\} \le \bar{x}_{\phi_{\lambda}}(a) \le \max \{\bar{x}_{\phi_1}(a), \bar{x}_{\phi_2}(a)\}$

Proof. 1st note $\forall \lambda \in [0,1], \phi_{\lambda} \in \Phi$. Now $\bar{x}_{\phi_{\lambda}}$ is obtained from

$$\sum_{i=1}^{n} w_{i} \left\{ \lambda \phi_{1}' \left(\frac{\bar{x}_{\phi_{\lambda}}}{a_{i}} \right) + (1 - \lambda) \, \phi_{2}' \left(\frac{\bar{x}_{\phi_{\lambda}}}{a_{i}} \right) \right\} = 0$$

Assume $\bar{x}_{\phi_{\lambda}} < \min(\bar{x}_{\phi_1}, \bar{x}_{\phi_2})$, then since ϕ'_1, ϕ'_2 are strictly increasing we have

(2.2)
$$\lambda \sum_{i=1}^{n} w_i \phi_1' \left(\frac{\bar{x}_{\phi_1}}{a_i} \right) + (1 - \lambda) \sum_{i=1}^{n} w_i \phi_2' \left(\frac{\bar{x}_{\phi_2}}{a_i} \right) > 0.$$

but from the optimality conditions for $\bar{x}_{\phi_1}, \bar{x}_{\phi_2}$, the left hand of 2.2 should be equal to 0, hence the contradiction.

Similarly for
$$\bar{x}_{\phi_{\lambda}} > \max(\bar{x}_{\phi_{1}}, \bar{x}_{\phi_{2}})$$
.

Example 11. let $\phi_1(t) = -\log t + t - 1$ and $\phi_2(t) = (t - 1)^2$. Then $\bar{x}_{\phi_1} = A(a)$ and $\bar{x}_{\phi_2} = H(a)$. Consider $\lambda = \frac{2}{3}, \phi_{\lambda}(t) = \lambda \phi_1(t) + (1 - \lambda) \phi_2(t)$ which is the function to derive the geometric mean of harmonic mean and arithmetic mean.

Then $H(a) \le \sqrt{A(a)H(a)} \le A(a)$ since $H(a) \le A(a)$.

2.4. Entropic mean for random variables. Let A be a non-negative RV with distribution F and support $supp A := [\alpha, \beta], 0 \le \alpha \le \beta \le +\infty$. A natural generalization of problem 2.1 is

$$\min\left\{ E\left[A\phi\left(\frac{x}{A}\right)\right] \coloneqq \int_{\alpha}^{\beta} t\phi\left(\frac{x}{t}\right) dF\left(t\right) : x \in \mathbb{R}_{+}\right\},$$

$$Pr\{A = a_i\} := w_i$$
, for the discrete case above

Theorem 12. then for any positive random variable A:

- (1) There exists a unique \bar{x}_{ϕ} which solves 2.1 such that $\bar{x}_{\phi} \in supp A$.
- (2) If a is a degenerate RV, i.e., A=C where C is a positive finite constant, then $\bar{x}_{\phi} = C$.
- (3) For all $\lambda > 0$, $\bar{x}_{\phi}(\lambda A) = \lambda \bar{x}_{\phi}(A)$.

The optimality condition equation:

$$\int_{\alpha}^{\beta} \phi'\left(\frac{x}{t}\right) dF(t) = 0$$

Example 13 (θ th Quantile.). Let

$$\phi(\xi) = \begin{cases} (1 - \theta)(\xi - 1) & , \xi > 1 \\ \theta(1 - \xi) & , 0 < \xi \le 1 \end{cases} (0 < \theta < 1)$$

Remark 14. The differentiability assumption on ϕ can be relaxed, since ϕ is convex, its left and right derivative $\phi'_{-}(x)$ and $\phi'_{+}(x)$ exist and finite and increasing. Moreover, the subdifferential of ϕ is $\partial \phi(x) = [\phi'_{-}(x), \phi'_{+}(x)]$. then $0 \in \partial \phi(x)$ and it is guaranteed for all strictly convex function $\phi(x) > 0, \forall x \in \mathbb{R}_{+} \setminus \{1\}$.

Clearly $\phi(\xi)$ is not differentiable at $\xi = 1$, but $0 \in \partial \phi(1)$, thus not matter. The objective function of 2.1 is

$$\begin{split} h(x) \coloneqq & E\left[t\phi\left(\frac{x}{A}\right)\right] = \int_0^\infty t\phi\left(\frac{x}{t}\right)dF\left(t\right) \\ &= (1-\theta)\int_0^x \left(x-t\right)dF(t) + \theta\int_x^\infty \left(t-x\right)dF\left(t\right) \\ &= (1-\theta)\left[x\int_0^x dF(t) - \int_0^x tdF(t)\right] + \theta\left[\int_x^\infty tdF(t)\right] - \theta x\left[1-\int_0^x dF(t)\right] \\ &= \underbrace{\left(1-\theta\right)xF(x)}_{-} - (1-\theta)\int_0^x tdF(t) + \theta\left[E\left(A\right) - \int_0^x tdF(t)\right] - \theta x + \underbrace{\theta xF\left(x\right)}_{-} \\ &= xF(x) - \int_0^x tdF(t) + \underbrace{\theta\int_0^x tdF(t)}_{-} + \theta E\left(A\right) - \underbrace{\theta\int_0^x tdF(t)}_{-} - \theta x \\ &= xF(x) - \int_0^x tdF(t) + \theta E\left(A\right) - \theta x \end{split}$$

Then $0 = h'(\bar{x}_{\phi}) = F(x) + xf(x) - xf(x) - \theta \Rightarrow F(\bar{x}_{\phi}) = \theta$, i.e., \bar{x}_{ϕ} is the θ th quantile of the continuous RV A. In particular for $\theta = \frac{1}{2}, \bar{x}_{\phi}$ is the median.

2.5. Extremal principle for the HLP Generalized mean.

Claim 15. Means not processing the properties listed in 6 cannot be derived from the solution of problem 2.1 with the entropy type distance $d_{\phi}(x, a_i) = a_i \phi(x/a_i)$.

Inequality: $\forall p > 0, \, p \ln p \ge p-1$

Misc (Xiaowei Song)

Hölder's Inequality:
$$\left|u^Tv\right| \leq \left(\sum |u_i|^p\right)^{\frac{1}{p}} \left(\sum |v_i|^q\right)^{\frac{1}{q}}$$
, where $\frac{1}{p} + \frac{1}{q} = 1$

$$\Psi(z) = \log\left(\sum_{i=1}^{k} e^{-z_i}\right), z \in \mathbb{R}^k$$

1. Ψ is convex (5 points)

Proof:

let
$$z_{\lambda}=\frac{1}{p}x+\frac{1}{q}y$$
,
where $x,y\in R^k, p,q\in R^+$ and $\frac{1}{p}+\frac{1}{q}=1,\ \lambda=\frac{1}{p}, 1-\lambda=\frac{1}{q},\ 0<\lambda<1$

$$\begin{split} \Psi\left(\frac{1}{p}x + \frac{1}{q}y\right) &= \Psi(z_{\lambda}) = \log\left(\sum_{i=1}^{k} e^{-z_{i}}\right) \\ &= \log\left(\sum_{i=1}^{k} \exp\left[-\left(\frac{1}{p}x_{i} + \frac{1}{q}y_{i}\right)\right]\right) \\ &= \log\left(\sum_{i=1}^{k} \exp\left[-\left(\frac{1}{p}x_{i}\right)\right] \exp\left[-\left(\frac{1}{q}y\right)\right]\right) \\ &= \log\left(\sum_{i=1}^{k} \left[\exp\left(-x_{i}\right)\right]^{\frac{1}{p}} \left[\exp\left(-y_{i}\right)\right]^{\frac{1}{q}}\right) \\ &= \log\left(u^{T}v\right) \end{split}$$

where

$$u = \begin{bmatrix} [\exp(-x_1)]^{\frac{1}{p}} \\ [\exp(-x_2)]^{\frac{1}{p}} \\ \vdots \\ [\exp(-x_k)]^{\frac{1}{p}} \end{bmatrix}, v = \begin{bmatrix} [\exp(-y_1)]^{\frac{1}{q}} \\ [\exp(-y_2)]^{\frac{1}{q}} \\ \vdots \\ [\exp(-y_k)]^{\frac{1}{q}} \end{bmatrix}$$

thus from Hölder's Inequality, we can have

$$\begin{split} u^T v &= \left| u^T v \right| \leq \left(\sum_{i=1}^{n} \left| u_i \right|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} \left| v_i \right|^q \right)^{\frac{1}{q}} \\ &= \left(\sum_{i=1}^{k} \left| \left[\exp \left(-x_i \right) \right]^{\frac{1}{p}} \right|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{k} \left| \left[\exp \left(-x_i \right) \right]^{\frac{1}{p}} \right|^p \right)^{\frac{1}{q}} \\ &= \left(\sum_{i=1}^{k} \exp \left(-x_i \right) \right)^{\frac{1}{p}} \left(\sum_{i=1}^{k} \exp \left(-y_i \right) \right)^{\frac{1}{p}} \end{split}$$

(where $u^T v > 0$ since $u_i > 0, v_i > 0, i = 1, ..., k$, thus $u^T v = |u^T v|$) thus

$$\begin{split} \Psi\left(\frac{1}{p}x + \frac{1}{q}y\right) &= \Psi(z_{\lambda}) = \log\left(u^{T}v\right) \\ &\leq \log\left(\sum_{i=1}^{k} \exp\left(-x_{i}\right)\right)^{\frac{1}{p}} \left(\sum_{i=1}^{k} \exp\left(-y_{i}\right)\right)^{\frac{1}{p}} \\ &= \frac{1}{p} \log\left(\sum_{i=1}^{k} \exp\left(-x_{i}\right)\right) + \frac{1}{q} \log\left(\sum_{i=1}^{k} \exp\left(-y_{i}\right)\right) \\ &= \frac{1}{p} \Psi(x) + \frac{1}{q} \Psi(y) \end{split}$$

which proved convexity of function Ψ 2.

$$\Psi(y) - \Psi(z) \le \sum_{i=1}^{k} (z_i - y_i) \frac{\exp(-y_i)}{\sum_{i=1}^{k} \exp(-y_i)}$$

References

Ben-Tal, Aharon, Charnes, Abraham, & Teboulle, Marc. 1989. Entropic means. *Journal of Mathematical Analysis and Applications*, **139**(2), 537–551. Cited by 0040. **2**