Задача 9

Покажите, что последовательность $(1+\frac{1}{n})^n$ имеет предел.

Теорема (О трёх последовательностях). Если последовательности $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ таковы, что $x_n \leq y_n \leq z_n$ для всех $n \geq N_0$, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, то последовательность $\{y_n\}$ сходится $u \lim_{n \to \infty} y_n = a$.

Доказательство. По определению предела для любого $\varepsilon > 0$ найдутся номера $N_1 = N_1(\varepsilon)$ и $N_2 = N_2(\varepsilon)$ такие, что $x_n \in U_{\varepsilon}(a)$ при всех $n \geq N_1$ и $z_n \in U_{\varepsilon}(a)$ при всех $n \geq N_2$. Отсюда и из условия $x_n \leq y_n \leq z_n$ для всех $n \geq N_0$ следует,

что при всех $n \geq N$, где $N = max(N_0, N_1, N_2)$, выполняется условие $y_n \in U_{\varepsilon}(a)$. Это означает, что существует $\lim_{n \to \infty} y_n = a$.

Теорема. Если $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$, причем a < b, то

$$\exists N_0 : \forall n \geq N_0 \rightarrow x_n < y_n.$$

Доказательство. Выберем $\varepsilon > 0$ таким, чтобы ε -окрестности точек а и b не пересекались (возьмем, например, $\varepsilon = \frac{(b-a)}{3} > 0$). Согласно определению предела по заданному ε можно найти номера N_1 и N_2 такие, что $x_n \in U_{\varepsilon}(a)$ при всех $n \geq N_1$ и $y_n \in U_{\varepsilon}(b)$ при всех $n \geq N_2$. Пусть $N_0 = max\,(N,N_2)$. Тогда при всех $n \geq N_0$ выполняются неравенства

$$x_n < a + \varepsilon < b - \varepsilon < y_n$$

откуда следует утверждение

$$\exists N_0 : \forall n > N_0 \rightarrow x_n < y_n$$
.

Следствие. $Ecnu\lim_{n\to\infty}x_n=a, \lim_{n\to\infty}y_n=b, u \ \forall n\in\mathbb{N}\to x_n\geq y_n \ mo$ a>b.

Доказательство. Предположим, что неравенство $a \geq b$ не выполняется. Тогда a < b и по предыдущей теореме справедливо утверждение

$$\exists N_0 : \forall n \geq N_0 \rightarrow x_n < y_n,$$

которое противоречит условию

$$\forall n \in \mathbb{N} \to x_n \ge y_n.$$

Поэтому должно выполняться неравенство $a \ge b$.

Задачка. $Haŭmu \lim_{n\to\infty} x_n, \{x_n\} = \frac{1}{\sqrt{n^2+1}} + \ldots + \frac{1}{\sqrt{n^2+n}}.$

Peшение. Будем юзать теорему о двух милиционерах (или о трех последовательностях). Для этого заметим

$$\frac{1}{\sqrt{n^2+1}} + \dots + \frac{1}{\sqrt{n^2+n}} \ge \frac{1}{\sqrt{n^2+n}} + \dots + \frac{1}{\sqrt{n^2+n}} = \frac{n}{\sqrt{n^2+n}} = \frac{1}{\sqrt{n^2+n}} = \frac{1}{\sqrt{1+\frac{1}{n}}}.$$

С другой стороны имеем:

$$\frac{1}{\sqrt{n^2+1}} + \dots + \frac{1}{\sqrt{n^2+n}} \le \frac{1}{\sqrt{n^2+0}} + \dots + \frac{1}{\sqrt{n^2+0}} = \frac{n}{\sqrt{n^2}} = 1.$$

Таким образом:

$$\frac{1}{\sqrt{1+\frac{1}{n}}} \le x_n \le 1.$$

Переходя к приделам, получаем:

$$\lim_{x \to \infty} i \frac{1}{\sqrt{1 + \frac{1}{n}}} \le \lim_{x \to \infty} x_n \le \lim_{x \to \infty} 1.$$

$$1 \le \lim_{x \to \infty} x_n \le 1.$$

Ну и ежику понятно, что
$$\lim_{x\to\infty}x_n=1.$$