FORMULA SHEET

Constants / Conversions

$$R = 8.314 \frac{kPa.m^{3}}{kmol.K} = 8.314 \frac{J}{mol.K} \qquad N_{A} = 6.023x10^{26} \frac{molecules}{kmol} \qquad g = 9.81m/s^{2}$$

$$R = 0.08205 \frac{atm.m^{3}}{kmol.K} \qquad k = \frac{R}{N_{A}} = 1.3805x10^{-23} J/K \qquad 1 cP = 10^{-3} Pa.s$$

$$101.325 \text{ kPa} = 1 \text{ atm}$$
 $1 \text{ bar} = 100 \text{ kPa}$

$$1 bar = 100 kPa$$

$$1 L = 1000 cm^3 = 1000 mL = 0.001 m^3$$

$$760 \text{ } mmHg = 1 \text{ } atm \qquad 1 \text{ } inch = 2.54 \text{ } cm$$

$$1 inch = 2.54 cm$$

Phase Rule

$$y = y_1 + \frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_1)$$

Geometric Shapes

$$V_{sphere} = \frac{4}{3}\pi r^3$$

$$SA_{sphere} = 4\pi r^2$$

$$V_{cylinder} = \pi r^2 h$$

Ideal Gas

$$Pv = nRT$$

Kinetic Theory of Gases

$$c_{mp} = \sqrt{\frac{2RT}{M}} \qquad \qquad \sqrt{c^2} = \sqrt{\frac{3RT}{M}} \qquad \qquad \overline{c} = \sqrt{\frac{8RT}{\pi M}}$$

$$P = \frac{N_A m \overline{c^2}}{3V_m} \qquad \qquad E_k = \frac{1}{2} m \overline{c^2} \qquad \qquad k = \frac{R}{N_A}$$

$$\lambda = \frac{1}{\sqrt{2\pi\sigma^2 \rho_N}} \qquad \qquad \delta = \left[\frac{kT}{P}\right]^{1/3} \qquad \qquad \rho_N = \frac{N_A}{V_m} = \frac{P}{kT}$$

Kinetic Theory of Gases - Transport Properties

$$\mu = \frac{M}{N_A \pi \sigma^2} \sqrt{\frac{RT}{\pi M}} \qquad \kappa = \frac{C_v}{N_A \pi \sigma^2} \sqrt{\frac{RT}{\pi M}} \qquad D_{AA} = \frac{RT}{P N_A \pi \sigma^2} \sqrt{\frac{RT}{\pi M}}$$

$$\mu = \frac{\rho_N \overline{c} \lambda m}{2} \qquad \kappa = \frac{\lambda \rho_N \overline{c}}{2} \frac{C_v}{N_A}$$

$$F/A = -\mu \frac{du}{dz} \qquad Q/A = -\kappa \frac{dT}{dz} \qquad j_A = -D \frac{dC}{dz}$$

...continued

FORMULA SHEET (continued)

$$C_{v} = \frac{3}{2}R$$

$$C_p = \frac{5}{2}R$$

$$C_p = C_v + R$$

van der Waals EOS

$$P = \frac{RT}{V_{m} - b} - \frac{a}{V_{m}^{2}}$$

$$V_{m}^{3} - [b + \frac{RT}{P}]V_{m}^{2} + \frac{a}{P}V_{m} - \frac{ab}{P} = 0$$

$$P_{c} = \frac{a}{27b^{2}}$$

$$T_{c} = \frac{8a}{27Rb}$$

$$V_{c} = 3b$$

$$d = \frac{27}{64} \frac{R^{2}T_{c}^{2}}{P_{c}}$$

$$b = \frac{RT_{c}}{8P_{c}}$$

Mixing Rules >>>
$$b = \sum y_i b_i$$

$$a = \left[\sum y_i \sqrt{a_i}\right]^2$$

Law of Corresponding States

Pitzer-Curl

$$T_r = \frac{T}{T_c} \qquad P_r = \frac{P}{P_c}$$

$$PV_m = ZRT$$

$$Z = Z^{(0)} + \omega Z^{(1)}$$

$$\text{Mixtures} >>> \quad \mathbf{T}_{\mathrm{pc}} = \sum_{\mathbf{i}} \mathbf{y}_{\mathbf{i}} \mathbf{T}_{\mathrm{ci}} \,, \quad \mathbf{P}_{\mathrm{pc}} = \sum_{\mathbf{i}} \mathbf{y}_{\mathbf{i}} \mathbf{P}_{\mathrm{ci}} \quad \ \overline{\boldsymbol{\omega}} = \sum_{i} \mathbf{y}_{i} \boldsymbol{\omega}_{i}$$

Volumetric Behaviour of Liquids

$$\beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$

$$\alpha_P = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$$

$$\gamma_V = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_V$$

$$V_T = V_T \left(1 + A\theta + B\theta^2 + C\theta^3 \right)$$

Tait's Equation

$$\beta_T = \frac{c}{P+d}$$

$$\frac{V_o - V}{V_o} = c \ln \left[\frac{P + d}{d} \right]$$

Vapour-Liquid Equilibrium

Raoult's Law

$$P_{v_i} x_i = P y_i = \overline{p}_i$$

Clausius-Clapeyron

$$\frac{dP}{dT} = \frac{\Delta H v}{T(V_g - V_I)}$$

$$\ln\left(\frac{P_2}{P_1}\right) = \frac{\Delta H v}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \qquad \ln(P) = -\frac{A}{T} + C$$

$$\ln(P) = -\frac{A}{T} + C$$

...continued

FORMULA SHEET (continued)

Viscosity of Liquids

Newtonian

$$\tau = -\mu \frac{du}{dy}$$

Non-Newtonian

$$\mu_{app} = \frac{\tau}{\left(\frac{du}{dy}\right)}$$

Power Law

$$\tau = K \left(\frac{du}{dy}\right)^n$$

Kinematic Viscosity

Temperature Dependence

$$\ln(\mu) = -\frac{A}{T} + C$$

Flow of Fluids in Pipes

$$Re = \frac{D\overline{u}\rho}{\mu}$$

$$Q = \overline{u}A = \overline{u}\frac{\pi D^2}{4}$$

$$Power = Q\Delta P$$

Ideal (Bernoulli)

$$\frac{P}{\rho} + gh + \frac{u^2}{2} = Const$$
$$\frac{\Delta P}{\rho} + g\Delta h + \frac{\Delta u^2}{2} = 0$$

Laminar

Ideal (Bernoulli)
$$\frac{P}{\rho} + gh + \frac{u^2}{2} = Const.$$

$$-\left[\frac{\Delta P}{L} + \rho g \frac{\Delta h}{L}\right] = \frac{32\mu \overline{u}}{D^2}$$

$$-\left[\frac{\Delta P}{L} + \rho g \frac{\Delta h}{L}\right] = \frac{2f\overline{u}^2 \rho}{D}$$

Turbulent

$$-\left\lceil \frac{\Delta P}{L} + \rho g \frac{\Delta h}{L} \right\rceil = \frac{2 f \overline{u}^2 \rho}{D}$$

Density of Solids

SimpleCubicMaterials =
$$\frac{m}{d^3}$$
 FCC materials = $\frac{\sqrt{2}m}{d^3}$ BCC materials = 1.299 $\frac{m}{d^3}$

$$FCC \ materials = \frac{\sqrt{2}m}{d_{\perp}^{3}}$$

BCC materials =
$$1.299 \frac{m}{d^3}$$

$$HCP \ materials = \frac{\sqrt{2}m}{d^3}$$

Lennard Jones Potential

$$\Phi(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \qquad F(r) = \frac{d\Phi(r)}{dr}$$

$$F(r) = \frac{d\Phi(r)}{dr}$$

$$\Phi(r) = \int_{\infty}^{r} F(r) dr$$

$$\Phi(r) = \Phi(r)_r + \Phi(r)_a$$

$$b_o = \frac{2\pi}{3}\sigma^3 N_A$$

...continued

FORMULA SHEET (continued)

Thermal Expansion of Solids

$$\alpha_L = \frac{1}{L} \frac{dL}{dT}$$

Heat Conduction

Fourier's Law

$$Q = -\kappa A \frac{dT}{dx} = -\kappa A \frac{\Delta T}{\Delta x}$$

Composite Planar Wall

$$Q = -\kappa A \frac{dT}{dx} = -\kappa A \frac{\Delta T}{\Delta x}$$

$$Q = \frac{-A \Delta T}{\left[\frac{\Delta x_1}{\kappa_1} + \frac{\Delta x_2}{\kappa_2} + \frac{\Delta x_3}{\kappa_3} + \dots\right]}$$

Simple Cylinder

$$Q = \frac{-2\pi\kappa L \,\Delta T}{\ln\left(\frac{r_2}{r_1}\right)}$$

Composite Cylinder (Pipe)

$$Q = \frac{-2\pi L\Delta T}{\frac{\ln(r_2/r_1)}{\kappa_1} + \frac{\ln(r_3/r_2)}{\kappa_2} + \frac{\ln(r_4/r_3)}{\kappa_3} + \dots}$$

GENERALIZED COMPRESSIBILITY CHART

PITZER-CURL TABLES

Table C-1 Pitzer-Curl Generalized Z⁽⁰⁾

	Pr														
Tr	0.2	0.4	0.6	8.0	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
0.80	0.851	0.066	0.100	0.133	0.164	0.192	0.255	0.258	0.287	0.318	0.347	0.376	0.405	0.433	0.461
0.85	0.882	0.067	0.101	0.134	0.165	0.194	0.226	0.258	0.287	0.316	0.345	0.374	0.403	0.431	0.459
0.90	0.904	0.778	0.102	0.135	0.167	0.198	0.229	0.258	0.288	0.316	0.345	0.373	0.402	0.430	0.458
0.95	0.920	0.819	0.697	0.145	0.176	0.205	0.235	0.262	0.292	0.321	0.347	0.375	0.403	0.430	0.457
1.00	0.932	0.849	0.756	0.638	0.291	0.231	0.250	0.278	0.304	0.329	0.356	0.381	0.407	0.433	0.458
1.05	0.942	0.874	0.800	0.714	0.609	0.470	0.341	0.320	0.332	0.350	0.372	0.393	0.417	0.441	0.446
1.10	0.950	0.893	0.833	0.767	0.691	0.607	0.512	0.442	0.408	0.402	0.405	0.420	0.440	0.462	0.484
1.15	0.958	0.98	0.858	0.805	0.746	0.684	0.620	0.562	0.514	0.484	0.477	0.478	0.485	0.498	0.513
1.20	0.963	0.921	0.879	0.835	0.788	0.737	0.690	0.640	0.598	0.568	0.553	0.545	0.544	0.548	0.554
1.25	0.968	0.930	0.896	0.858	0.820	0.778	0.740	0.702	0.664	0.636	0.618	0.606	0.599	0.597	0.598
1.30	0.971	0.940	0.909	0.878	0.846	0.811	0.780	0.749	0.718	0.691	0.671	0.657	0.649	0.644	0.642
1.4	0.977	0.952	0.929	0.908	0.883	0.859	0.838	0.817	0.795	0.777	0.759	0.745	0.734	0.725	0.720
1.5	0.982	0.963	0.945	0.927	0.909	0.892	0.875	0.859	0.844	0.831	0.819	0.808	0.800	0.794	0.790
1.6	0.985	0.971	0.957	0.944	0.930	0.917	0.904	0.893	0.882	0.872	0.863	0.855	0.848	0.843	0.840
1.7	0.988	0.977	0.966	0.956	0.946	0.936	0.926	0.919	0.911	0.903	0.896	0.869	0.889	0.883	0.879
1.8	0.991	0.982	0.974	0.966	0.958	0.950	0.944	0.937	0.931	0.926	0.921	0.916	0.913	0.910	0.908
1.9	0.993	0.986	0.980	0.974	0.968	0.962	0.958	0.952	0.948	0.944	0.940	0.936	0.933	0.931	0.930
2.0	0.995	0.989	0.984	0.979	0.975	0.971	0.968	0.964	0.961	0.959	0.956	0.954	0.953	0.953	0.952

Table C-2 Pitzer-Curl Generalized Z⁽¹⁾

	Pr														
Tr	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
0.80	- 0.095	-0.028	- 0.044	- 0.058	- 0.07	-0.08	-0.10	-0.11	-0.12	- 0.13	- 0.14	- 0.15	- 0.16	- 0.17	- 0.18
0.85	-0.067	-0.031	-0.049	-0.064	-0.08	-0.09	-0.11	-0.12	-0.13	-0.14	-0.15	-0.16	-0.17	-0.18	-0.18
0.90	-0.042	-0.09	-0.053	-0.068	-0.085	-0.10	-0.11	-0.12	-0.13	-0.14	-0.15	-0.16	-0.17	-0.17	-0.18
0.95	-0.025	-0.050	-0.100	-0.072	-0.091	-0.10	-0.11	-0.12	-0.12	-0.13	-0.14	-0.15	-0.15	-0.16	-0.17
1.00	-0.012	-0.16	-0.20	-0.05	-0.080	-0.090	-0.099	-0.108	-0.115	-0.123	-0.13	-0.13	-0.14	-0.14	-0.15
1.05	0.000	+0.001	+0.005	+0.015	+0.02	+0.01	-0.01	-0.04	-0.06	-0.07	-0.08	-0.09	-0.10	-0.11	
1.10	+0.002	0.008	0.016	0.030	0.055	0.082	+0.11	+0.082	+0.035	0.000	-0.02	-0.03	-0.05	-0.06	-0.07
1.15	0.004	0.012	0.012	0.040	0.064	0.093	0.12	0.140	0.136	+0.100	+0.07	+0.04	+0.02	0.00	-0.01
1.20	0.009	0.018	0.028	0.044	0.069	0.10	0.13	0.16	0.17	0.17	0.16	0.14	0.12	+0.09	+0.07
1.25	0.011	0.023	0.036	0.050	0.069	0.10	0.13	0.16	0.18	0.19	0.19	0.18	0.16	0.14	0.12
1.30	0.013	0.027	0.041	0.055	0.072	0.10	0.13	0.16	0.18	0.20	0.20	0.20	0.20	0.19	0.18
1.4	0.016	0.032	0.049	0.065	0.082	0.10	0.13	0.16	0.18	0.19	0.20	0.21	0.21	0.21	0.20
1.5	0.017	0.035	0.052	0.070	0.088	0.10	0.13	0.15	0.17	0.18	0.20	0.20	0.21	0.21	0.21
1.6	0.018	0.036	0.054	0.07	0.08	0.10	0.12	0.14	0.16	0.17	0.18	0.19	0.20	0.20	0.21
1.7	0.018	0.036	0.054	0.07	0.09	0.10	0.11	0.13	0.15	0.16	0.17	0.18	0.19	0.20	0.21
1.8	0.018	0.036	0.054	0.07	0.09	0.10	0.11	0.13	0.15	0.16	0.17	0.18	0.19	0.20	0.21
1.9	0.018	0.035	0.05	0.07	0.09	0.10	0.11	0.13	0.15	0.16	0.17	0.18	0.19	0.20	0.21
2.0	0.016	0.031	0.05	0.07	0.08	0.10	0.11	0.13	0.14	0.15	0.16	0.17	0.19	0.20	0.21

FRICTION FACTOR CHART

