Breast Cancer Diagnosis Using Deep Transfer Learning

CMPE 258 - PROJECT PRESENTATION ABHISHEK BAIS, WASAE QURESHI, SUBARNA CHOWDHARY SOMA GRADUATE STUDENT COMP SCI, SJSU

1 IN 8 WOMEN will be diagnosed with breast cancer in her lifetime.

THE AMERICAN CANCER SOCIETY'S ESTIMATES FOR 2021

- 281,550 NEW CASES OF INVASIVE BREAST CANCER
- 43,600 WOMEN WILL DIE FROM BREAST CANCER

Pic Credits: PA Department of Health

EARLY, ACCURATE DETECTION OF CANCER CAN SAVE LIVES

Symptoms of Breast Cancer

Pic Credits: A Cancerous Word Press Report

TRADITIONAL METHODS OF DETECTION SUCH AS MAMMOGRAPHY REQUIRE EXPERTS

Pic Credits: Journal of American College of Radiology

DOMAIN TRANSFER LEARNING PROVIDES ABILITY FOR FAST, ACCURATE DETECTION REDUCING EXPERT RELIANCE

IMBALANCED INPUT

- 397476 BENIGN CANCER IMAGES
- 157572 MALIGNANT CANCER IMAGES

BALANCED FOR STUDY

- 2500 BENIGN CANCER IMAGES
- 2500 MALIGNANT CANCER IMAGES

Breast Cancer Histopathology Images, Case Western Reserve University

DATASET DETAILS

CNN + CUSTOM DNN LAYERS

CNN + LSTM

<u>Pic Credits: Md. Zabirul Islam, Md. Milon Islam, Amanullah Asraf, Science Direct</u>

STUDY METHODOLOGY

MACHINE LEARNING STAGES AND CNN MODELS

PRECISION

RECALL

AUC

SIZE VS ACCURACY

ACCURACY

LOSS MULLER LOOP EVALUATION

	model_name	model_params	training_accuracy	val_accuracy
2	NASNetMobile	4269716	0.830667	0.753
5	VGG16	14714688	0.822333	0.820

	model_name	model_params	training_accuracy	val_accuracy
0	VGG16	14714688	0.845667	0.8

	model_name	model_params	training_accuracy	val_accuracy
0	VGG16	14714688	0.839333	0.733

	model_name	model_params	training_accuracy	val_accuracy
0	VGG16	14714688	0.814	0.793

	model_name	model_params	training_accuracy	val_accuracy
0	VGG16	14714688	0.811667	0.798

	model_name	model_params	training_accuracy	val_accuracy
0	VGG16	14714688	0.804	0.789

	model_name	model_params	training_accuracy	val_accuracy
0	VGG16	14714688	0.848667	0.826

BASELINE

- 10 epochs
- Patience 20
- Early stop
- rmsProp optimizer
- Dropout 0.2
- Adaptive learning, minlr 1e-4

INCREASE EPOCHS

• 20 epochs

BATCH NORMALIZATION

AUGMENT IMAGES

- Zoom 10%
- Rotate 10% random
- Horizontal flip
- Vertical flip

DROPOUT 0.5

ADAM OPTIMIZER

UNFREEZE last 4
CNN LAYERS

HYPER PARAMETER TUNE VGG16 ENSEMBLE

	model_name	model_params	training_accuracy	val_accuracy
0	VGG16	14714688	0.848667	0.826

ACCURACY

FEW COMMON ERRORS IN PREDICTION

BEST MODEL VGG16

CONFUSION MATRIX

SUPPORT

	precision	recall	f1-score	support
negative	0.82	0.84	0.83	495
positive	0.84	0.82	0.83	505
accuracy			0.83	1000
macro avg	0.83	0.83	0.83	1000
weighted avg	0.83	0.83	0.83	1000

TENSORBOARD INTEGRATION

DEMO LINK - GIT
DEMO LINK - COLAB

AUTOMATED PIPELINES WITH TFX


```
EXAMPLES VALIDATOR
```


EXAMPLE GEN

```
1 transform.outputs
. {'transform_graph': Channel(
      type name: TransformGraph
      artifacts: [Artifact(artifact: id: 5
  type id: 13
  uri: "/tmp/tfx-interactive-2021-05-06T01 24
  custom properties {
    key: "name"
    value {
      string_value: "transform_graph"
  custom_properties {
    key: "producer component"
    value {
      string_value: "Transform"
```

TRANSFORM

STATISTICS GEN

```
path = os.path.join(_data_root, 'labels.txt')
dule file-module file,
stom_executor_spec-executor_spec.ExecutorClassSpec(GenericExecutor),
mples-transform.outputs["transformed examples"],
ema-schema_gen.outputs['schema'],
ansform graph-transform.outputs['transform graph'],
ain_args-trainer_pb2.TrainArgs(num_steps=150),
al args-trainer pb2.EvalArgs(num steps-1),
stom_confige('labels_path': _labels_path))
run(trainer)
 data from https://storage.googleapis.com/tensorflow/keras-applications/vgg
889256 [-----] - 0s @us/step
TRAINER
```


TFX EVALUATOR, PUSHER

CLOUD PLATFORM DEPLOYED ON GCP AI PLATFORM

DEMO LINK – TFX, KUBEFLOW

FLASK WEB APP HOSTED EC2

MAKES GOOGLEAPI CALLS TO MODEL (LATEST) DEPLOYED ON GCP

<u>DEMO LINK – FLASK EC2</u>

CI/CD PIPELINE VIA GITHUB, TFX, KUBEFLOWS

PIPELINE, MODEL VERSIONING VIA GOOGLE AI PLATFORM

REAL TIME
PREDICTION VIA
TENSORFLOW
SERVING, GOOGLE
API & FLASK WEB
APP

HOSTED ON EC2

BIG PICTURE

Tasks	Contributor(s)
Project Discussion and Literature Review	All
Data Loading	All
Data Preprocessing (Label balancing + Augmentation)	Abhishek, Subarna
EDA	Abhishek, Subarna
Model Configuration	Abhishek
Visualization	Abhishek, Subarna
Training + Hyperparameter Tuning + Tensorboard	Abhishek
Evaluation (Prediction/Confusion matrix/Classification report/Show top errors)	Subarna

Tasks	Contributor(s)
Bug Fixing (Preprocessing + LSTM)	Wasae
End2End demo and full tfx mlops ci/cd level-2 (Brainstorming)	All
TFX Pipeline	Subarna
Kubeflow	Wasae, Subarna (assisted)
Web App	Wasae
Github Setup + Report + PPT	All

TEAM MEMBER CONTRIBUTIONS

DEEP TRANSFER LEARNING CAN PROVIDE EARLY, ACCURATE DETECTION