社会人学生を対象とした情報系 PBL のための 評価モデルの提案

中鉢 欣秀 1,a) 中鉢 直宏 2,b)

受付日 2011年11月4日, 採録日 2011年12月1日

概要:本研究では社会人学生を対象とした PBL の成績評価モデルとしてのルーブリックを構築することを目指し、成績評価の実データをテキスト・マイニングすることで特徴的な評価項目を抽出する. 形態素解析と基礎的な統計処理により PBL における教員からの評価の視点の全体的な特性を明らかにすることができたので報告する.

キーワード: PBL,成績評価,ルーブリック

Proposing an evaluation model for PBL students having job experience in Information Systems

Yoshihide Chubachi^{1,a)} Naohiro Chubachi^{2,b)}

Received: November 4, 2011, Accepted: December 1, 2011

Abstract: In order to develop a rubric as an evaluation model for students in IT industries, we obtained significant evaluation items by analyzing accumulated evaluation results from PBL with a text mining method. A morphological analysis and basic statistics figured out general evaluation points by professors.

Keywords: PBL, evaluation model, rubric

1. はじめに

産業技術大学院大学(以下, AIIT)では通常の大学院の修士論文に相当する位置付けで PBL (Project Based Learning)を実施している [1], [2]. 情報アーキテクチャ専攻では 2008 年度より PBL 履修者の成績評価を iPBL と名付けたシステムを用い, データとして蓄積している [3].

本専攻における PBL の成績評価は、学生の活動と成果物に対し、それぞれ質的・量的側面から点数化することを基本的な方針としている [4]. 加えて、各教員は学生の講評を記入しており、成績判定会議の資料として用いている.

産業技術大学院大学 Advanced Institute of Industrial Technology, Shinagawa, Tokyo 140-0011, Japan

2 青山学院大学附置情報科学研究センター

Aoyama Gakuin Univ., Information Science Research Center

a) yc@aiit.ac.jp

b) chubachi@irc.aoyama.ac.jp

本研究では、この教員による講評のテキスト・データを自然言語解析し、AIIT における学生の専門的能力の評価の特性を調べることにより、PBLにおいて特に難しいとされる学生の成績評価モデルの定義を目指している。本学の情報アーキテクチャ専攻の教授・准教授 10 名は全て社会人経験を有していることから、その経験を活かした評価方法の特徴や、社会人学生に対する評価の視点などを明らかにしたい。最終的には、「学生に対する講評」として評価されている学習行動の特徴を踏まえ、社会人学生を対象にした情報系の PBL 評価を行う際の学習行動基準を作成することで、ルーブリック (Rubric) を構築することを狙う.

以下, 2. で本研究の背景について述べる. 3. では, 対象とした成績評価コーパスの属性と解析手法を示す. 4. では, コーパスが含む専門性の高い単語の抽出結果, 及び, 品詞毎の出現頻度のデータを示す. 5. では, 得られた結果についてルーブリック作成の観点から考察する. 最後に, 6. で本稿のまとめを行う.

2. 研究の背景

近年,実践的な能力育成のためにアクション・ラーニングや PBL (Project Based Learning) などが盛んに行われている [5], [6]. このような学習においては,成果だけではなく学習のプロセスを評価することが必要となる.そのために,ルーブリックという評価手法が注目を浴びている.ルーブリックの導入事例としては永田ら [7] の調査による米国コロラド大学ボウルダー校における事例などが紹介されている.

学習にルーブリックを導入することの効果について,鈴木 [8] は,学習者に対して事前にルーブリックを提示することで,内発的動機づけが高くなり,理解を指向して授業を受ける傾向になることを指摘している.

よって、社会人学生を対象にした PBL 活動においても 社会人として求められる評価の尺度をルーブリックとし て提示することで、より学習効果を高めることが期待でき る. しかし、鈴木も指摘している通り、ルーブリックを教 育の実践の中で作り出すことは難しい. 本研究で実施して いる、実際の評価データを解析することによる体系的なア プローチを一般化することができれば、この問題を解決す るための一助になり得る.

また、AIIT で現在行われている文章による講評という 評価方法については、教員ごとの評価の視点にばらつきが 生じる恐れが懸念点としてあげられる. また、学生を評価 すべきポイントに漏れが発生することもあり得る. 加え て、文章による記述は教員にとって手間がかかる評価方法 である.

共通の評価軸としてのルーブリックを構築することができれば、教員による評価のばらつきを抑えることが期待できる。また、より具体的な評価項目を示すことにより、評価ポイントに漏れがないことを確認することもできるようになる。加えて、評価軸を体系的に整理した評価表を用意すれば、教員の採点に要する手間を軽減できる可能性もある。更に、学習者の学習履歴特性を明確に記録できるようにもなり、学生の将来的なキャリア形成のための資料としても利用できる[9]、[10].

3. データの解析手法

今回の解析には、AIIT における 2009 年度から 2011 年度までの 3 年間分の成績評価表を対象とすることにした。また、教員が作成した成績表には素点と総合点の 2 種類があり、それぞれに講評が記載されている。今回は総合点の講評をデータとして用いることとした。このデータに含まれる属性を表 1 に示す。なお、事前に教員名と学生名をランダムな ID に置換した。

このデータからコーパスを作成するためにオープンソースの形態素解析ツールである MeCab[11] を用いた. 統計処

表 1 分析対象の評価表の属性

No	属性	値	備考
1	教員数	10 名	実務家教員
2	学生数	150 名	約8割が社会人
3	評価表の数	12 枚	3 年× 4Q
4	評価対象数	587 名	評価した学生数
5	合計文字数	83428 字	総合評価に記述された文字数
6	平均文字数	142.1 字	合計文字数 ÷ 評価対象数

理には R[12] を使用し、MeCab との連携には RMeCab[13] を利用した.

4. 解析の結果

4.1 専門性の高い単語の抽出

専門職大学院における PBL の評価の特徴を捉えるため、 講評の記述から専門性の高い単語を抽出する. MeCab で用いている IPA 辞書には一般性のある単語が登録されている と仮定できる. よって、IPA 辞書に含まれない未定義語を 調べることにより、一般的な辞書にはない、専門性の高い 用語が抽出できることになる.

まず、MeCabの--unk-feature オプションを用いてテキストを解析したところ、239 語が未知語となった. これらの大半がカタカナ語とアルファベットからなる略語であった. 同時に、数値や記号、明らかな誤記やカタカナ語の表記の揺らぎも含まれていた.

次に、これらをユーザ辞書に登録した。カタカナ語は一般名詞または固有名詞として追加した。また、アルファベットからなる略語については、すでに同じ意味の語が IPA 辞書にある場合、または、カタカナ語の未知語として出現していた場合、カタカナの表記を基本形としてユーザ辞書に登録した(例:DB \rightarrow データベース)*1。誤記についても、正しい表記を登録した(例:グーループ \rightarrow グループ)、カタカナ語の揺らぎは、IPA 辞書にある表記を優先して辞書に追加した(例:スタディー \rightarrow スタディ).

最後に、未知語と判定された語のうち、199 語をユーザ辞書に登録したところ、数字や記号と誤記による誤判定以外の未知語はなくなった。199 語の中から、明らかな誤記である17 語を除外し、残りの182 語が専門性の高い用語であると仮定することにし、これらの語について出現頻度を調べた結果は表2となった。

これらは大きくカタカナ語と略語に分けられ、カタカナ語についてはスキル、リーダシップ、アプリ、マネジャー、レビュー、データベース、フレームワーク、アーキテクチャ、コンピテンシ、ドキュメンテーション、クライント、クラウドといった単語が並ぶ.

略語については、PBLやPM(プロジェクトマネジャー)

^{*1} 略語で複数の単語として解析し得るものについてはそのまま残した(例: "PM" は "プロジェクトマネジャー" とせず, そのまま PM として登録した).

表 2 未知語として判定された単語の出現頻度(4回以上)

表 2 未知語として判定された単語の出現頻度(4回以上)						
ID	Term	Info1	Info2	Freq		
1184	PBL	名詞	一般	142		
1187	PM	名詞	一般	138		
1327	スキル	名詞	一般	61		
2223	PIA	名詞	固有名詞	30		
1506	リーダシップ	名詞	一般	19		
1244	アプリ	名詞	一般	18		
1194	Web	名詞	一般	17		
1463	マネジャー	名詞	一般	15		
701	レビュー	名詞	サ変接続	14		
1180	IT	名詞	一般	14		
1374	データベース	名詞	一般	14		
1401	ビデオ	名詞	一般	14		
2257	XDF	名詞	固有名詞	14		
1418	フレームワーク	名詞	一般	12		
1250	アーキテクチャ	名詞	一般	11		
1303	コンピテンシ	名詞	一般	11		
1379	ドキュメンテーション	名詞	一般	11		
1280	クライアント	名詞	一般	10		
1281	クラウド	名詞	一般	10		
2211	Java	名詞	固有名詞	10		
1483	モチベーション	名詞	一般	9		
2262	iPhone	名詞	固有名詞	9		
2259	iOS	名詞	固有名詞	8		
1290	コアタイム	名詞	一般	7		
1363	テレビ	名詞	一般	7		
1406	ファシリテータ	名詞	一般	7		
2190	Android	名詞	固有名詞	7		
2244	Skype	名詞	固有名詞	7		
1179	GUI	名詞	一般	6		
1256	インタフェース	名詞	一般	6		
1337	ストリーム	名詞	一般	6		
2187	AR	名詞	固有名詞	6		
1405	ファシリテーション	名詞	一般	5		
2199	DoWMS	名詞	固有名詞	5		
1178	DBMS	名詞	一般	4		
1191	R&D	名詞	一般	4		
1383	ネゴシエーション	名詞	一般	4		
1419	ブラッシュアップ	名詞	一般	4		
1436	プロマネ	名詞	一般	4		
1442	ベースライン	名詞	一般	4		
1511	レビュー	名詞	一般	4		
2205	Google	名詞	固有名詞	4		
2245	Spring	名詞	固有名詞	4		
2249	Twitter	名詞	固有名詞	4		
2275	協働	名詞	固有名詞	4		

が上位に来るのはデータの性格上自然であるが、他に Web, IT, Java, IPhone, iOS, Android, Skype といった技術用語が多く出現していることが特徴的である。これら以外では、プロジェクトのテーマに含まれる PIA (プライバシー影響評価) や AR (拡張現実感)等の語が含まれる.

ここで作成したユーザ辞書と IPA 辞書と併用し、講評

図 1 講評の形態素解析から得た品詞の個数

図 2 形態素に出現した名詞の分類

の記述に対して形態素解析を行った. 合計で 2,774 個の形態素が得られ、それらの品詞毎の個数は図 1 に示す通りであった. 品詞の大半は名詞と動詞で占められている. 次いで、副詞、助詞、形容詞が続いている.

4.2 名詞についての解析

最も多く出現した「名詞」について、細分類の内訳を調べたところ図 2 が得られた. ここでは、一般名詞が一番多く、サ変接続名詞、形容動詞語幹がその後に続く. サ変接続名詞が一般名詞のほぼ半分の割合で出現している.

サ変接続名詞は、「○○する」といった形で動詞的に利用する品詞である。PBL の評価においては学生または教員などが行った何らかの活動について言及するために用いられている可能性が高い。そこで、このサ変名詞に注目してその詳細を調べた。

表 3 に,50 回以上の頻度で出現したサ変接続名詞を示した. これによると,学生が何らかの活動をしたり,開発をしたり,貢献をしたり,作成をしたりすることについての

表 3 サ変接続名詞の出現頻度 (50 回以上)

衣 3	丁変接続名詞の出現頻度 (50 回以上)				
ID	Term	Info1	Info2	Freq	
964	活動	名詞	サ変接続	356	
1154	開発	名詞	サ変接続	281	
1111	貢献	名詞	サ変接続	205	
730	作成	名詞	サ変接続	203	
1092	評価	名詞	サ変接続	198	
731	作業	名詞	サ変接続	147	
898	担当	名詞	サ変接続	140	
1039	経験	名詞	サ変接続	112	
1104	調査	名詞	サ変接続	109	
1004	発表	名詞	サ変接続	104	
987	理解	名詞	サ変接続	103	
919	提案	名詞	サ変接続	95	
946	期待	名詞	サ変接続	88	
804	向上	名詞	サ変接続	87	
786	参加	名詞	サ変接続	74	
1108	議論	名詞	サ変接続	71	
844	対応	名詞	サ変接続	66	
881	意見	名詞	サ変接続	66	
949	検討	名詞	サ変接続	63	
1032	管理	名詞	サ変接続	58	
955	機能	名詞	サ変接続	57	
835	実装	名詞	サ変接続	56	
928	改善	名詞	サ変接続	56	
1089	設計	名詞	サ変接続	56	
777	努力	名詞	サ変接続	53	
953	構築	名詞	サ変接続	50	

図3 形態素に出現した動詞の分類

言及が多くなされていることがわかる. その一方で, 評価する, 期待する, といった単語については, 主語が教員である可能性がある. よって, これらの単語の使われ方 (何を評価するのか, 何を期待するのか) について正確に知るには, 共起頻度の解析や係り受けなどを考慮した解析が必要となる.

4.3 動詞についての解析

動詞についても同様に、出現頻度の高いものを調べた. 動詞の細分類は図3に示した通り、自立語と接尾語と非自立語の3種類がある.このうち、接尾語と非自立語については単語を見ただけでは性質が分からないので対象から外し、自立語のみ頻度を調べた.

講評の文章に 15 回以上出現した自立動詞を表 4 に示す.

表 4 自立動詞の出現頻度 (15 回以上)

	E 17 7201101	· / LII-/LI/X	× (10 🖂	<u> </u>
ID	Term	Info1	Info2	Freq
233	する	動詞	自立	1698
248	できる	動詞	自立	337
208	ある	動詞	自立	310
536	行う	動詞	自立	243
258	なる	動詞	自立	175
271	まとめる	動詞	自立	71
353	取り組む	動詞	自立	50
326	出す	動詞	自立	49
439	持つ	動詞	自立	49
229	こなす	動詞	自立	44
593	進める	動詞	自立	40
411	得る	動詞	自立	38
464	果たす	動詞	自立	27
415	思う	動詞	自立	26
525	考える	動詞	自立	26
553	見る	動詞	自立	25
481	活かす	動詞	自立	23
500	目立つ	動詞	自立	22
539	行く	動詞	自立	22
555	見受ける	動詞	自立	19
220	かける	動詞	自立	18
305	伝える	動詞	自立	17
404	引っ張る	動詞	自立	17
255	とる	動詞	自立	16
341	努める	動詞	自立	16
293	与える	動詞	自立	15
320	優れる	動詞	自立	15
387	学ぶ	動詞	自立	15
497	異なる	動詞	自立	15
592	進む	動詞	自立	15
_				

する,できる,ある,行う等の一般的な動詞以外に着目すると,学生による PBL での活動の状況を記述するために 用いられた動詞が含まれていることが分かる.例えば,ま とめる,取り組む,こなす,すすめる,果たすといった動 詞が該当する.

なお,前述のサ変接続名詞に対する解析と同様,それぞれの動詞の主語や目的語についてはこの結果からだけでは示されない.

4.4 副詞についての解析

続いて、副詞についても頻度を解析する. MeCab で作成したコーパスにある副詞は一般または助詞類接続の2種類に分類されたが、ここでは両者の区別はしないものとする.

表 5 に出現回数が 5 回以上の副詞をまとめた。全体として、学生に対して定性的な評価をしている表現が多い。大まかに、肯定的な表現と否定的な表現に分けるとすると、肯定的な表現としては、よく、きちんと、最も、極めてなどが該当する。否定的なものとしては、やや、あまり、もう少し、といった表現があげられよう。

表 5 副詞の出現頻度 (5回以上)

	衣 3 副副の出境頻及 (3 回以上)				
ID	Term	Info1	Info2	Freq	
61	特に	副詞	一般	42	
36	よく	副詞	一般	36	
35	やや	副詞	一般	31	
11	きちんと	副詞	一般	27	
37	より	副詞	一般	27	
66	あまり	副詞	助詞類接続	23	
95	もう少し	副詞	助詞類接続	22	
27	ほとんど	副詞	一般	19	
91	まだ	副詞	助詞類接続	17	
29	もう	副詞	一般	16	
53	最も	副詞	一般	16	
54	極めて	副詞	一般	16	
68	ある程度	副詞	助詞類接続	16	
28	ほぼ	副詞	一般	14	
9	かなり	副詞	一般	13	
72	さらに	副詞	助詞類接続	13	
73	しっかり	副詞	助詞類接続	11	
102	実際	副詞	助詞類接続	11	
96	もともと	副詞	助詞類接続	9	
32	もっと	副詞	一般	8	
97	一層	副詞	助詞類接続	8	
99	全く	副詞	助詞類接続	8	
101	多少	副詞	助詞類接続	8	
48	必ずしも	副詞	一般	6	
98	一応	副詞	助詞類接続	6	
24	ともに	副詞	一般	5	
47	徐々に	副詞	一般	5	
59	比較的	副詞	一般	5	
70	いろいろ	副詞	助詞類接続	5	
75	すこし	副詞	助詞類接続	5	
77	それほど	副詞	助詞類接続	5	
110	相当	副詞	助詞類接続	5	

ただし、副詞は文脈によって指し示す内容が大きく異なるものがある。例えば、「特に」という語は「特に優れている」と使う場合もあるし、「特に劣っている」という文脈でも使える。従って、これらの副詞による表現の意味を正確に把握するためには、これらの副詞の前後にくる単語が重要であると考えられるので、使用された文脈を踏まえた解析が必要になる。

4.5 形容詞についての解析

形容詞も自立と非自立に分けることができるが、副詞と同様にこれらの細分類を区別することなく、頻度を調べた. 表 6 に、5 回以上出現した形容詞を示す.

高い,多いという言葉がよく使われており,学生に対する評価のために頻繁に用いられていることが分かる.同様に,ない,少ない,という語もよく用いられている.これらについても文脈によって内容が変化する(二重否定など)ので,より詳細な解析が必要であると言えよう.

表 6 形容詞の出現頻度 (5 回以上)

ID	Term	Info1	Info2	Freq
2689	高い	形容詞	自立	145
2648	多い	形容詞	自立	78
2641	ない	形容詞	自立	77
2652	少ない	形容詞	自立	58
2649	大きい	形容詞	自立	51
2669	無い	形容詞	自立	29
2676	良い	形容詞	自立	27
2655	弱い	形容詞	自立	22
2661	新しい	形容詞	自立	22
2697	欲しい	形容詞	非自立	22
2694	ほしい	形容詞	非自立	21
2642	よい	形容詞	自立	18
2633	うまい	形容詞	自立	17
2671	粘り強い	形容詞	自立	16
2645	低い	形容詞	自立	15
2634	おとなしい	形容詞	自立	13
2666	深い	形容詞	自立	13
2656	強い	形容詞	自立	12
2687	難しい	形容詞	自立	10
2662	早い	形容詞	自立	9
2644	乏しい	形容詞	自立	8
2674	細かい	形容詞	自立	8
2696	よい	形容詞	非自立	8
2643	上手い	形容詞	自立	7
2658	悪い	形容詞	自立	6
2682	近い	形容詞	自立	6
2657	忙しい	形容詞	自立	5
2664	正しい	形容詞	自立	5
2679	薄い	形容詞	自立	5
2686	長い	形容詞	自立	5
2695	やすい	形容詞	非自立	5

5. 考察

今回,解析したデータは専門職大学院の実務家教員による PBL の成績評価における実際の資料から得たものである.情報系の専門職大学院であるため,ICT 領域の専門能力に関する評価にやや内容的な偏りがあるものの,PBL という形態の学習に共通する成績評価軸を定めるための手がかりになる.

例えば、表2で示した未知語によるフィルタリングから 得た単語のうち、リーダシップや、ドキュメンテーション、 モチベーション、ファシリテーション、ネゴシエーショ ン、レビューといったキーワードは、社会人の業務遂行能 力(コンピテンシ)を評価する観点から、教員が特に意識 して用いている語である。これらは、PBLの教育効果のメ ジャメントに一般的に用いることができうる単語である。

一方で、スキルやコンピテンシといった単語については、 これらの語を単独で見ただけではどのような対象を評価 したのかは分からない. しかし、今後、これらのコロケー ションを解析することで,これらの単語に共起する語を抽出することができ,具体的にどのようなスキルやコンピテンシが評価されたのかを調べることができよう.

学生のどのような学習行動が評価の対象となったかということについては、表3から一定の傾向を見て取ることができる。例として、「貢献する」という語がサ変接続名詞の出現頻度順位で第3位になっている。これは、学生がチームに対して、何をどのように貢献したかという点が、PBLの評価において主要な評価の要素になっていることを示す。

加えて、表 4 で示した自立動詞を見れば、「まとめる」や「取り組む」といったより具体的な学習行動が記述されていることがわかる。このような講評が多く見られることは、役割や貢献を評価する社会人のための PBL 評価の特徴である。

表5と表6で示した副詞と形容詞については、これらの語が用いられた文脈にまで遡らないと評価の項目としては利用しづらい. しかしながら、将来的には、前後の用語の関係の解析や、これらの単語と学生の最終的な成績評価の得点との相関関係を調べるなどにより「どのような評価がされた学生の得点が高くなるのか」といった傾向を分析することができる.

6. おわりに

本研究では、AIIT において PBL 型科目を履修した学生の 2009 年度から 3 年間分の成績評価の講評の記述を形態素解析してコーパスを得て、これを元にテキスト・マイニングを行った。

成績評価コーパスからは、IT系の専門職大学院の社会人学生に対する評価として特徴的な単語を解析できた。これらについて考察したところ、IT系の専門領域の観点からの評価が多く含まれる一方で、教員が学生の学習行動として期待し、評価の対象とする内容が抽出できた。学生の実践的な業務遂行能力に関連するものも多く出現した。

これらの結果から、PBLにおける学生の評価軸として利用できるルーブリックを構築するための基礎資料として今回の解析結果を用いることができるという感触を得た。今後、頻出する単語が出現している文脈や、意味内容などについてより詳細な分析を行い、教員が学生のどんなポイントをどのように評価しているのかを明らかにすることを通して、PBL評価のためのルーブリックの構築に反映させていきたい。

最後に、今回の解析のために用いた成績評価のデータは AIIT において実際に行われた成績評価の実データである。 このような実データの解析に基づいての学生の学習行動の 基準化や、それに基づくルーブリックの作成などを行なっ ている事例は少ないと思われるので、この研究の今後の成 果についても引き続き公開していきたい。

参考文献

- [1] 戸沢義夫:情報システム専門職大学院大学における PBLの 実践 (教育関連システム),情報処理学会研究報告.情報シス テムと社会環境研究報告, Vol. 2007, No. 85, pp. 9–12(オン ライン),入手先 〈http://ci.nii.ac.jp/naid/110006388466/〉 (2007-08-23).
- 酒森 潔:産業技術大学院大学・情報アーキテクチャ専攻の PBL: 社会人大学院における PBL 学習 (ペた語義 (第13回)),情報処理, Vol. 53, No. 5, pp. 514-518 (オンライン),入手先 (http://ci.nii.ac.jp/naid/40019297257/) (2012).
- (3) 中鉢欣秀, 土屋陽介, 長尾雄行:グループウェア導入による PBL の見える化, JeLA 会誌, Vol. 9, pp. 129-135 (オンライン),入手先 (http://ci.nii.ac.jp/naid/40016726932/) (2009-05).
- [4] 加藤由花、中鉢欣秀、戸沢義夫:専門職大学院における PBL 型教育の実践-産業技術大学院大学における事例、産 業技術大学院大学紀要、Vol. 3, pp. 83-90 (オンライン)、 入手先 (http://ci.nii.ac.jp/naid/40017058603/) (2009).
- [5] 松澤芳昭, 大岩元:産学協同の Project-based Learning によるソフトウエア技術者教育の試みと成果, 情報処理 学会論文誌, Vol. 48, No. 8, pp. 2767–2780 (2007).
- [6] 松澤芳昭, 杉浦学, 大岩元:産学協同の PBL における顧客と開発者の協創環境の構築と人材育成効果,情報処理学会論文誌, Vol. 49, No. 2, pp. 944-957 (2008).
- [7] 永田智子, 加藤久恵: 教員養成プログラムにおけるティーチング・ポートフォリオの検討-米国コロラド大学ボウルダー校の事例を中心に, 学校教育学研究, Vol. 15, pp. 137-145 (オンライン), 入手先 〈http://hdl.handle.net/10132/808〉 (2003).
- [8] 鈴木雅之:ルーブリックの提示が学習者に及ぼす 影響のメカニズムと具体的事例の効果の検討(< 特集>新時代の学習評価),日本教育工学会論文誌, Vol. 35, No. 3, pp. 279-287 (オンライン),入手先 ⟨http://ci.nii.ac.jp/naid/110008897525/⟩ (2011).
- [9] Chubachi, N. and Murota, M.: Development of Job Recommendation System Based on User's Learning Records, Poster Paper Notes of the 14th International Conference on Computers in Education, ICCE (2006).
- [10] 中鉢直宏,室田真男:学習履歴特性を利用した職業推薦システムにおける職業と授業科目の関連度についての考察,第 22 回全国大会講演論文集,日本教育工学会 (2006).
- [11] Kudo, T., Yamamoto, K. and Matsumoto, Y.: Applying Conditional Random Fields to Japanese Morphological Analysis, Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (EMNLP-2004), pp. 230–237 (2004).
- [12] R Core Team, R Foundation for Statistical Computing: R: A Language and Environment for Statistical Computing, Vienna, Austria (2012).
- [13] 石田基広: R によるテキストマイニング入門, 森北出版 (2008).