

Arquitetura de Computadores

Turma LI21N/LT21N

AULA 8 UNIDADES DE CONTROLO MICROPROGRAMADAS

TÓPICOS DE REVISÃO

- Definição de conjunto de instruções
 Noção de mnemónica
 Operandos de uma instrução
- Tipos de instrução Transferência de dados Processamento de dados Controlo de fluxo de execução
- Definição / caracterização do ISA (Instruction Set Arquitecture)

Ano Lectivo 2019/2020

2º Semestre

Prof. Jorge Fonseca

ISA	0	PCOD	E	Α	D	Α	Α	AB		
ISA	8	7	6	5 4		3	2	1	0	
	Inst	ruções	s de Ti	ransfe	rência	3				
mov rx, imm4	0	0	0	r	X		imı	m4		
ld rx, [ry]	0	0	1	r	X			r	y	
st rx, [ry]	0	1	0	1	•	rx ry			У	
Ins	0 0 1 rx - - ry Instruções de processamento de dados rz 0 1 1 rx ry rz rz 1 0 0 rx ry rz									
sub rx, ry, rz	0	1	1	r	X	r	У	r	Z	
add rx, ry, rz	1	0	0	r	X	r	У	r	Z	
	Instr	uções	de con	trolo d	le flux)				
bae offset5	1	0	1	-		(offset5			
b offset5	1	1	0	-		(offset5			

Numa instrução é preciso codificar:

- OPCODE: código único que distingue uma instrução de outra
- Operandos: pode ser operação da ALU, constante, Offset e/ou registos
- a codificação da operação da ALU pode pertencer ao OPCODE

Características:

- A constante para expressar um literal do tipo inteiro fica limitada a 4 bits, portanto ao valor 15.
- O offset é codificado com 5 bits e representa um inteiro com sinal ficando limitado a um salto baseado na instrução corrente para +15 ou -16 instruções.

Exercício1: Escrever em Código Máquina um programa para determinar o valor de A + B - C. Considere o operando A na posição de memória A0 operando A1 na posição de memória A1 na posição de memória A2 na posição de memória A4 na posição de memória A5 na posição de memória A6 na posição de memória A7 na posição de memória A8 na posição de memória A9 na posição de memória A

	Code Address	OP	со	DE	Α	D	Α	Α	AB		HEX
	Address	8	7	6	5	4	3	2	1	0	
MOV R1,0	00	0	0	0	0	1	0	0	0	0	010
LD R0, [R1]	01	0	0	1	0	0	-	-	0	1	041
MOV R1,1	02	0	0	0	0	1	0	0	0	1	011
LD R2, [R1]	03	0	0	1	1	0	1	-	0	1	061
ADD R2, R0, R2	04	1	0	0	1	0	0	0	1	0	122
MOV R1,2	05	0	0	0	0	1	0	0	1	0	012
LD R0, [R1]	06	0	0	1	0	0	ı	ı	0	1	041
SUB R2, R2, R0	07	0	1	1	1	0	1	0	0	0	0E8
MOV R1,3	08	0	0	0	0	1	0	0	1	1	013
ST R2, [R1]	09	0	1	0	1	-	1	0	0	1	089
B 0	10	1	1	0	-	0	0	0	0	0	180

RAM							
ADDR							
0	Α						
1	В						
2	С						
3	R						

Imagem 1 – Implementação do módulo descodificador

Do ISA retira-se o controlo dos seguintes sinais:

- código da operação: B8..6

- operação da ALU: B6

- imm4: B3..0

- offset5: B4..0

- AA: B3..2

- AB: B1..0

- AD: B5..4

Estrutura interna do Core3

- Um programa é uma sequência de Códigos Máquina em memória para serem processados pelo CPU.
- Aspeto característico de arquitetura RISC: as instruções ocupam todas o mesmo espaço em memória.
- Processador de ciclo único → Arquitetura Harvard: separa a memória de código da memória de dados, ou seja, espaço de endereçamento distintos.

Instruction	C	PCOD	E	С	SD	10	ER	EP	SnA	SO	WR	RD	HEX	PRG
Decoder	3	2	1	0	7	6	5	4	3	2	1	0	ПЕХ	PNG
mov rx, immediate4	0	0	0	-	0	0	1	0	-	0	0	ı	020	2*020
ld rx, [ry]	0	0	1	-	0	1	1	0	-	0	0	1	061	2*061
st rx, [ry]	0	1	0	-	-	-	0	0	-	0	1	0	002	2*002
sub rx, ry, rz	0	1	1	-	1	0	1	1	1	0	0	ı	0B8	2*0B8
add rx, ry, rz	1	0	0	-	1	0	1	1	0	0	0	ı	0B0	2*0B0
bae offset5	1	0	1	0	-	-	0	0	-	1	0	ı	004	004
bae offset5	1	0	1	1	-	-	0	0	-	0	0	ı	000	000
b offset4	1	1	0	-	-	-	0	0	-	1	0	ı	004	2*004
cmp rx, ry	1	1	1	-	-	-	0	1	1	0	0	ı	018	2*018

Tabela 2 – Módulo descodificador

Descodificador de instruções:

- Produz os sinais de controlo da unidade de processamento baseado no OPCODE e *flags C e Z* e controla a evolução do programa
- Micro-código implementado tipicamente numa ROM

Aspectos relevantes:

- Registo PC (Program Counter): retém a posição da instrução em execução.
- SO: controla o valor de incremento do PC.
- Clock da unidade de controlo em oposição de fase do clock da unidade de processamento.

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

	Code	OP	со	DE	Α	D	AA		AB		PRG
	Address	8	7	6	5	4	3	2	1	0	(HEX)
MOV R1, 0A	00										000
LD R0, [R1]	01										000
MOV R1, 0B	02										000
LD R2, [R1]	03										000
CMP RO, R2	04										000
BAE +4	05										000
MOV R1, 0C	06										000
ST R2, [R1]	07										000
B +3	08										000
MOV R1, 0C	09										000
ST R0, [R1]	0A										000
B 0	OB										000

RAI	M
ADDR	
0A	X
OB	Υ
0C	M

Algoritmo
IF X >= Y {
M = X
} ELSE {
M = Y
}

ISA	OF	PCO	DE	Α	AD AA A		AB				
ISA	8	7	6	5	4	З	2	1	0		
mov rx, imm4	0	0	0	r	X	imm4					
ld rx, [ry]	0	0	1	rx		1	1	r	у		
st rx, [ry]	0	1	0	1	-	r	X	ry			
sub rx, ry, rz	0	1	1	r	X	r	у	rz			
add rx, ry, rz	1	0	0	r	X	r	у	rz			
bae offset5	1	0	1	1	offset5						
b offset5	1	1	0	-	offset5						
cmp rx, ry	1	1	1	-	_	r	X	r	у		

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

	Code	OF	co	DE	А	D	A	A	А	В	PRG
	Address	8	7	6	5	4	3	2	1	0	(HEX)
MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
LD R0, [R1]	01					04.110/17			Marie		041
MOV R1, 0B	02										01B
LD R2, [R1]	03										061
CMP RO, R2	04										1C2
BAE +4	05										143
MOV R1, 0C	06										01C
ST R2, [R1]	07										089
B +3	08										183
MOV R1, OC	09	1									01C
ST R0, [R1]	0A	1									081
B 0	OB										180
											000
											000
	8			10 - 100 10 - 100		6 - 17 6 - 18		10 17 10 16		13 97 13 33	000
											000
		2 - 77 1 - 15		6 - 32 6 - 32		5 - 52 5 - 15		6 - 92 6 - 15		6 - 32 6 - 35	000

X
Υ
M

Algoritmo	•
IF X >= Y {	
M = X	
} ELSE {	
M = Y	
}	

ISA	OI	PCO	DE	Α	D	Α	A	AB		
ISA	8	7	6	5	4	3	2	1	0	
mov rx, imm4	0	0	0	r	X		imm			
ld rx, [ry]	0	0	1	r	х	4	-	r	у	
st rx, [ry]	0	1	0	10	353	r	X	ry		
sub rx, ry, rz	0	1	1	r	X	۲	у	rz		
add rx, ry, rz	1	0	0	r	X	ry		rz		
bae offset5	1	0	1		offset		t5	:5		
b offset5	1	1	0	1.5	- of		ffse	et5		
cmp rx, ry	1	1	1	-		r	x	ry		

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

	Code	Code OPCODE AD		D	AA		AB		PRG		
	Address	8	7	6	5	4	3	2	1	0	(HEX)
MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
LD R0, [R1]	01	0	0	1	0	0	- T	i z .	0	1	041
MOV R1, 0B	02	Г		783 - 300		76 - O.		98 - St			01B
LD R2, [R1]	03										061
CMP R0, R2	04									3	1C2
BAE +4	05										143
MOV R1, 0C	06									3	01C
ST R2, [R1]	07										089
B+3	08	1								30	183
MOV R1, OC	09	Ī									01C
ST RO, [R1]	0A	Ī								80	081
B 0	OB										180
	91.			8 38 8 33		6 36 6 36		6 36 6 36		8 83 8 33	000
											000
	81	10 70 12 73				4 17 4 16		9 77 9 78		6 93 8 38	000
											000
	34	15 - 37 6 - 15		6 - 37 6 - 39		6 - 97 6 - 19		6 - 15		6 - 32 6 - 39	000

ADDR	
0A	X
0B	Υ
0C	M

	Algoritmo	
IF X >	>= Y {	
M:	= X	
} ELS	E {	
M:	= Y	
}		

ISA	O	PCO	DE	Α	D	Α	Α	AB		
ISA	8	7	6	5	4	3	2	1	0	
mov rx, imm4	0	0	0	r	X		m4			
ld rx, [ry]	0	0	1	r	Х	4		ry		
st rx, [ry]	0	1	0	1.	353	rx		ry		
sub rx, ry, rz	0	1	1	r	X	r	у	rz		
add rx, ry, rz	1	0	0	r	х	r	у	rz		
bae offset5	1	0	1	!		t5				
b offset5	1	1	0	35		offset			:5	
cmp rx, ry	1	1	1	ુ	-	r	X	r	у	

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

		Code	OF	OPCODE		AD		AA		A AB		PRG
		Address	8	7	6	5	4	3	2	1	0	(HEX)
33 20	MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
	LD R0, [R1]	01	0	0	1	0	0	- T	17.	0	1	041
	MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
	LD R2, [R1]	03		_								061
	CMP RO, R2	04									8	1C2
	BAE+4	05										143
	MOV R1, 0C	06									3	01C
	ST R2, [R1]	07										089
86	B+3	08									30	183
	MOV R1, 0C	09										01C
55	ST R0, [R1]	0A									30	081
	B 0	OB										180
35		84.			8 38 8 33		6 36 6 36		60 560 60 565		8 88 8 88	000
												000
35		8 t			6 - 55 6 - 55		6 17 8 18		9 33 9 33		0 - 30 0 - 33	000
												000
			277		(2		62 - 92 6 - 35		(2		(2	000

RAN	V1
ADDR	
0A	X
0B	Υ
0C	M

Algoritmo							
IF X >= Y {							
M = X							
} ELSE {							
M = Y							
}							

ISA	O	PCO	DE	Α	D	Α	Α	AB		
ISA	8	7	6	5	4	3	2	1	0	
mov rx, imm4	0	0	0	r	X					
ld rx, [ry]	0	0	1	r	X				ry	
st rx, [ry]	0	1	0	1.5	353	- rx		ry		
sub rx, ry, rz	0	1	1	r	X	r	у	rz		
add rx, ry, rz	1	0	0	r	X	ry		rz		
bae offset5	1	0	1	ુ	offset5					
b offset5	1	1	0			t5				
cmp rx, ry	1	1	1		-	rx		ry		

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

		Code	OPCODE		AD		AA		AB		PRG	
		Address	8	7	6	5	4	3	2	1	0	(HEX)
32 23	MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
	LD R0, [R1]	01	0	0	1	0	0		12	0	1	041
	MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
	LD R2, [R1]	03	0	0	1	1	0		i.e.	0	1	061
20	CMP R0, R2	04			/E - 31		V: 31		VII - 35			1C2
	BAE +4	05										143
6	MOV R1, 0C	06									0	01C
	ST R2, [R1]	07										089
	B +3	08									30	183
	MOV R1, 0C	09										01C
5	ST R0, [R1]	0A									30	081
	B 0	OB										180
5		8 L			6 55 6 55		6 55 5 55		8 33 8 33		6 (6) 6 (6)	000
												000
5		91			9 35 9 35		4 V		(4 - 32) (4 - 35)		9 35 9 35	000
												000
		3 4	12 77 10 10		(2 - 32) (5 - 15		(2 - 37 (c - 15		6 - 32 6 - 32		6 - 35 6 - 35	000

RAN	V1
ADDR	
0A	X
0B	Υ
0C	M

	Algoritmo							
IF X	>= Y {							
M	= X							
} ELS	E {							
M	= Y							
}								

ISA	O	PCO	DE	Α	D	Α	A	AB		
ISA	8	7	6	5	4	3	2	1	0	
mov rx, imm4	0	0	0	r	X					
ld rx, [ry]	0	0	1	r	X				ry	
st rx, [ry]	0	1	0	3.5	353	- rx		ry		
sub rx, ry, rz	0	1	1	r	X	r	у	rz		
add rx, ry, rz	1	0	0	r	X	r	у	rz		
bae offset5	1	0	1	ુ	6 v Si	0	ffset	5	3	
b offset5	1	1	0		offset5					
cmp rx, ry	1	1	1		-	rx		r	у	

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

	Code	OF	OPCODE AD		D	AA		AB		PRG	
	Address	8	7	6	5	4	3	2	1	0	(HEX)
MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
LD R0, [R1]	01	0	0	1	0	0		=	0	1	041
MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
LD R2, [R1]	03	0	0	1	1	0	87)	Œ.	0	1	061
CMP RO, R2	04	1	1	1	2	-	0	0	1	0	1C2
BAE +4	05										143
MOV R1, 0C	06									0	010
ST R2, [R1]	07										089
B+3	08									30	183
MOV R1, 0C	09										010
ST R0, [R1]	0A									30	081
B 0	OB										180
	81.	16 36 16 35		8 88 8 88		6 56 6 56		6 56 8 36		8 (8) 8 (8)	000
											000
	91.			9 93 9 93		14 - 17 13 - 15		9 33 9 36		0 - 33 9 - 33	000
											000
10		12 - 77 10 - 12		6 - 32 6 - 32		(2 - 17) (0 - 15)		(2 – 37) (2 – 32)		5 - 35 5 - 19	000

OB	ADDR	
18 3	0A	X
00	OB	Υ
UC	0C	M
I	15	

Algoritme	0
IF X >= Y {	
M = X	
} ELSE {	
M = Y	
}	

ISA	O	PCO	DE	Α	D	Α	Α	AB		
ISA	8	7	6	5	4	3	2	1	0	
mov rx, imm4	0	0	0	r	X		im	m4		
ld rx, [ry]	0	0	1	r	х			ry		
st rx, [ry]	0	1	0	5.5	353	- rx		ry		
sub rx, ry, rz	0	1	1	r	rx		ry		rz	
add rx, ry, rz	1	0	0	r	X	ry		rz		
bae offset5	1	0	1		offset5					
b offset5	1	1	0			0	ffset	t5		
cmp rx, ry	1	1	1	2	-	rx		r	у	

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

		Code	e OPCODE		AD		A	A	AB		PRG	
		Address	8	7	6	5	4	3	2	1	0	(HEX)
22 23	MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
	LD R0, [R1]	01	0	0	1	0	0		=	0	1	041
(3) (3)	MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
	LD R2, [R1]	03	0	0	1	1	0	37	i.e.	0	1	061
(3) (3)	CMP R0, R2	04	1	1	1	2	-	0	0	1	0	1C2
	BAE +4	05	1	0	1	270	0	0	0	1	1	143
(2) (3)	MOV R1, OC	06		_	12 00		10 00		10 00			01C
	ST R2, [R1]	07										089
88	B +3	08									8	183
	MOV R1, OC	09										01C
65	ST R0, [R1]	0A									30	081
	B 0	OB										180
50 50	3		12 SE		6 50 6 55		6 36 8 8		6 50 6 55			000
												000
88	3	8 t	S 37		0 00 0 00		0 - 00 0 - 00		16 - 17 18 - 18		9 - 33 9 - 33	000
												000
		3 8			(2 - 72) (19)		(2 - 27 (1)		(2 - 22) (1 - 1)		2 - 32 2 - 39	000

ADDR	
0A	X
OB	Υ
0C	M
:5	
13	

	Algoritmo	
IF X >	·= Υ {	
M =	= X	
} ELSE	Ε{	
M =	= Y	
}		

ISA	O	PCO	DE	Α	D	Α	3 2 im	AB		
ISA	8	7	6	5	4	з	2	1	0	
mov rx, imm4	0	0	0	r	X		m4			
ld rx, [ry]	0	0	1	rx)ja	r	у	
st rx, [ry]	0	1	0	1.5	353	rx		ry		
sub rx, ry, rz	0	1	1	r	rx		у	rz		
add rx, ry, rz	1	0	0	r	X	ry		rz		
bae offset5	1	0	1	ુ	6 9 5:	t5	37			
b offset5	1	1	0	3.0		0	ffset	t5		
cmp rx, ry	1	1	1		-	rx		ry		

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

		Code	Code OPCODE		AD		AA		AB		PRG	
		Address	8	7	6	5	4	3	2	1	0	(HEX)
22	MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
	LD R0, [R1]	01	0	0	1	0	0		æ	0	1	041
2	MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
	LD R2, [R1]	03	0	0	1	1	0	37,		0	1	061
2	CMP RO, R2	04	1	1	1	(2)	-	0	0	1	0	1C2
	BAE +4	05	1	0	1	. T.	0	0	0	1	1	143
2	MOV R1, OC	06	0	0	0	0	1	1	1	0	0	01C
	ST R2, [R1]	07										089
5	B +3	08										183
	MOV R1, OC	09										01C
	ST R0, [R1]	0A										081
	B 0	OB										180
5		91.	16 88 16 88		8 38 8 38		6 55 6 55		6 16 6 16		8 15 8 15	000
												000
5		81	(4)7 (4)4		6 35 6 35		6 (6		15 17 15 15		0 - 10 0 - 10	000
												000
			12 - 77 10 - 15		(2 -)); (4 -) (2				25 - 32 25 - 35		6 - 32 6 - 35	000

ADDR	
0A	X
OB	Υ
0C	M
- 8	
- 5	

Algo	ritmo
IF X >= Y {	
M = X	
} ELSE {	
M = Y	
}	

ISA	O	PCO	DE	Α	D	Α	Α	AB			
ISA	8	7	6	5	4	3	2	1	0		
mov rx, imm4	0	0	0	r	X	c im			m4		
ld rx, [ry]	0	0	1	r	rx			ry			
st rx, [ry]	0	1	0		353	- rx		ry			
sub rx, ry, rz	0	1	1	r	X	ry		rz			
add rx, ry, rz	1	0	0	r	X	ry		rz			
bae offset5	1	0	1		6) v Si	0	ffset	t5			
b offset5	1	1	0	:-		0	ffset	t5			
cmp rx, ry	1	1	1	12	-	rx		ry			

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

		Code	OF	со	DE	А	D	A	A	А	В	PRG
		Address	8	7	6	5	4	3	2	1	0	(HEX)
(3) (3)	MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
	LD R0, [R1]	01	0	0	1	0	0		=	0	1	041
83 83	MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
	LD R2, [R1]	03	0	0	1	1	0	37		0	1	061
	CMP R0, R2	04	1	1	1	2	-	0	0	1	0	1C2
	BAE +4	05	1	0	1	· •	0	0	0	1	1	143
	MOV R1, OC	06	0	0	0	0	1	1	1	0	0	01C
	ST R2, [R1]	07	0	1	0	<u>(35</u> ()	i i	1	0	0	1	089
	B +3	08					-					183
	MOV R1, 0C	09										01C
55	ST R0, [R1]	0A									30	081
	B 0	OB										180
55					6 56 6 65		6 55 6 55		6 55 6 35		6 K	000
												000
35	S S	8 t	S 37		0 - 00 0 - 00		10 - 10 13 - 16		10 - 10 13 - 16		0 - 10 9 - 16	000
												000
		3 4	10 TO		0 - 17 0 - 19		(2 - 17) (0 - 15)		(5 – 37) (6 – 35)		0 - 25 0 - 19	000

RAN	••
ADDR	
0A	X
OB	Υ
0C	M
- 8	
-	

Algoritmo	•
IF X >= Y {	
M = X	
} ELSE {	
M = Y	
}	

ISA	O	PCO	DE	E AD		AA		Α	В		
ISA	8	7	6	5	4	3 2		1	0		
mov rx, imm4	0	0	0	r	rx		rx		im	m4	
ld rx, [ry]	0	0	1	rx		1			у		
st rx, [ry]	0	1	0	35 353		rx		ry			
sub rx, ry, rz	0	1	1	r	X	ry		rz			
add rx, ry, rz	1	0	0	r	X	ry		rz			
bae offset5	1	0	1		- offset		t5				
b offset5	1	1	0	10		0	ffset	t5			
cmp rx, ry	1	1	1	-	-	rx		r	у		

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

	Code	OF	co	DE	А	D	А	A	А	В	PRG
	Address	8	7	6	5	4	3	2	1	0	(HEX)
MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
LD R0, [R1]	01	0	0	1	0	0		=	0	1	041
MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
LD R2, [R1]	03	0	0	1	1	0	3		0	1	061
CMP RO, R2	04	1	1	1	2	-	0	0	1	0	1C2
BAE +4	05	1	0	1	· •	0	0	0	1	1	143
MOV R1, OC	06	0	0	0	0	1	1	1	0	0	01C
ST R2, [R1]	07	0	1	0	737 ()	: E	1	0	0	1	089
B+3	08	1	1	0	747	0	0	0	1	1	183
MOV R1, 0C	09							200			01C
ST R0, [R1]	0A									33	081
B 0	OB										180
	8			66 56 6 65		6 50 6 55		6 50 6 55			000
											000
S	8			0 00 0 00		0 - 00 0 - 00		16 - 17 18 - 18		0 - 10 0 - 16	000
											000
				(A - 37) (C - 15)		(2 - 32) (4 - 15		0 - 37 0 - 35		6 - 35 6 - 35	000

V
X
Υ
M

Algoritmo	•
IF X >= Y {	
M = X	
} ELSE {	
M = Y	
}	

ISA	OF	CO	DE	Α	AD		Α	Α	В
ISA	8	7	6	5	4	3	2	1	0
mov rx, imm4	0	0	0	rx			im	m4	
ld rx, [ry]	0	0	1	rx				ry	
st rx, [ry]	0	1	0	35 353		rx		ry	
sub rx, ry, rz	0	1	1	r	X	ry		r	z
add rx, ry, rz	1	0	0	r	X	ry		rz	
bae offset5	1	0	1	ુ	- offset			t5	
b offset5	1	1	0	i -		offse		t5	
cmp rx, ry	1	1	1		-	rx		r	у

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

		Code	OF	co	DE	Α	D	AA		A AB		PRG	
		Address	8	7	6	5	4	3	2	1	0	(HEX)	
92	MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A	
	LD R0, [R1]	01	0	0	1	0	0			0	1	041	
22	MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B	
	LD R2, [R1]	03	0	0	1	1	0	370	=	0	1	061	
(2) (3)	CMP RO, R2	04	1	1	1	2	-	0	0	1	0	1C2	
	BAE +4	05	1	0	1	ंग	0	0	0	1	1	143	
82 85	MOV R1, 0C	06	0	0	0	0	1	1	1	0	0	01C	
	ST R2, [R1]	07	0	1	0	(30)	7	1	0	0	1	089	
50 55	B+3	08	1	1	0	14	0	0	0	1	1	183	
	MOV R1, OC	09	0	0	0	0	1	1	1	0	0	01C	
33	ST R0, [R1]	0A		_	(1-37)		W		VI 37			081	
	B 0	OB										180	
33		91.	16 SA 16 35		6 36 6 33		6 56 6 (6		6 56 6 6			000	
												000	
35 35		91.	15 77 16 35		2 32 2 33		6 - 17 6 - 16		6 - 17 6 - 16		14 92 14 35	000	
												000	
			6 - 32 6 - 32		5 - 32 5 - 32		62 - 32 61 - 19		62 - 92 61 - 15		6 92 6 19	000	

RAN	1
ADDR	
0A	X
OB	Υ
0C	M

ISA	O	co	DE	AD		AA		Α	В
IJA	8	8 7		5	4	3	3 2		0
mov rx, imm4	0	0	0	rx		i		imm4	
ld rx, [ry]	0	0	1	rx		4		ry	
st rx, [ry]	0	1	0	8E 3E8		rx		ry	
sub rx, ry, rz	0	1	1	r	X	ry		rz	
add rx, ry, rz	1	0	0	r	X	ry		rz	
bae offset5	1	0	1	ું	- offse			t5	
b offset5	1	1	0	8-		offse		et5	
cmp rx, ry	1	1	1	-		rx		r	у

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

		Code	OPCODE		AD		AA		AB		PRG	
		Address	8	7	6	5	4	3	2	1	0	(HEX)
32 20	MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
	LD R0, [R1]	01	0	0	1	0	0	200		0	1	041
	MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
	LD R2, [R1]	03	0	0	1	1	0	370	=	0	1	061
82 85	CMP R0, R2	04	1	1	1	23	-	0	0	1	0	1C2
	BAE+4	05	1	0	1	- TO	0	0	0	1	1	143
82 60	MOV R1, OC	06	0	0	0	0	1	1	1	0	0	01C
	ST R2, [R1]	07	0	1	0	73 50	7	1	0	0	1	089
60	B +3	08	1	1	0	~ <u></u>	0	0	0	1	1	183
	MOV R1, OC	09	0	0	0	0	1	1	1	0	0	01C
33	ST R0, [R1]	0A	0	1	0	74.0	.=	0	0	0	1	081
	B 0	OB					3 3		2 3			180
55		81.	16 SA 16 35		6 36 6 33		6 56 6 (6		6 56 6 6		8 83 8 83	000
												000
60 60	100	8	9 33 9 35		9 35 9 35		9 33 9 36		9 33 9 33		9 35	000
												000
			(2 - 32) (2 - 12		5 - 32 5 - 32		6 - 32 6 - 15		10 - 20 10 - 15		6 - 32 6 - 19	000

ADDR	
0A	X
0B	Υ
0C	M

Algoritm	0
IF X >= Y {	
M = X	
} ELSE {	
M = Y	
}	

ISA	O	PCO	DE	Α	D	Α	Α	Α	В	
ISA	8 7 6 5 4		4	3	2	1	0			
mov rx, imm4	0	0	0	r	X		im	nm4		
ld rx, [ry]	0	0	1	rx				ry		
st rx, [ry]	0	1	0	35 353		rx		ry		
sub rx, ry, rz	0	1	1	r	X	ry		rz		
add rx, ry, rz	1	0	0	r	X	r	у	rz		
bae offset5	1	0	1				offset		t5	
b offset5	1	1	0	1-		0	ffset	t5		
cmp rx, ry	1	1	1	-	-	rx		r	У	

Exercício2 : Escrever em Código Máquina um programa para determinar o maior valor contido nas posições de memória de endereço OAH e OBH.

	Code	OPCODE		AD		AA		AB		PRG	
	Address	8	7	6	5	4	3	2	1	0	(HEX)
MOV R1, 0A	00	0	0	0	0	1	1	0	1	0	01A
LD R0, [R1]	01	0	0	1	0	0			0	1	041
MOV R1, 0B	02	0	0	0	0	1	1	0	1	1	01B
LD R2, [R1]	03	0	0	1	1	0	S		0	1	061
CMP R0, R2	04	1	1	1	-	-	0	0	1	0	1C2
BAE +4	05	1	0	1	870	0	0	0	1	1	143
MOV R1, OC	06	0	0	0	0	1	1	1	0	0	01C
ST R2, [R1]	07	0	1	0	73 78	i i i	1	0	0	1	089
B+3	08	1	1	0	14	0	0	0	1	1	183
MOV R1, OC	09	0	0	0	0	1	1	1	0	0	01C
ST RO, [R1]	0A	0	1	0	947	-	0	0	0	1	081
B 0	OB	1	1	0		0	0	0	0	0	180
8	81.			9 33 9 33		(2 - 32) (2 - 33)				6 97. 8 38	000
											000
	81.							6 - 55 8 - 55			000
											000
	37			12 - 22 6 - 15				64 - 37 4		6 - 25 6 - 25	000

ADDR	
ADDR	- 353
0A	X
OB	Υ
0C	M
- 13	
-	

Algoritm	10
IF X >= Y {	
M = X	
} ELSE {	
M = Y	
}	

ISA	O	PCO	DE	Α	AD		Α	AB	
IJA	8	7	6	5	4	3	2	1	0
mov rx, imm4	0	0	0	rx			im		
ld rx, [ry]	0	0	1	rx				ry	
st rx, [ry]	0	1	0	E 358		rx		ry	
sub rx, ry, rz	0	1	1	r	X	ry		rz	
add rx, ry, rz	1	0	0	r	X	r	у	rz	
bae offset5	1	0	1	્રા	- offset			t5	
b offset5	1	1	0	E-		0	ffset	t5	
cmp rx, ry	1	1	1		-	rx		r	у

Exercício3: Escrever em Código Máquina um programa para determinar o maior valor contido no array x.

		Code		со	DE	Α	D	Α	A	Α	В	PRG
		Address	8	7	6	5	4	3	2	1	0	(HEX)
			\$ 52 \$ 52		8 38 3 33		8 39 3 33		8 38 8 38		8 39 3 39	000
												000
			8 92 8 99		8 98 8 99		8 92 8 93		8 99 8 99		8 39 8 39	000
												000
			8 99 8 99		8 98 3 33		8 99 3 99		6 99 3 33		8 39 3 33	000
												000
(3) (a)			8 99		8 88 3 83		\$8 33 10 33		8 18 8 11		8 38 3 33	000
												000
82			8 98 8 99		8 (6) 3 (3)		\$8 33 w 3		8 18 3 11		8 - 18 3 - 33	000
												000
	9. Si		20 - 200 21 - 325		9 93 9 33		6 - 77. 6 - 75.		6 - 72 6 - 68		5 - 55 6 - 55	000
												000
86	2. G		9 33 9 33		0 33 0 35		6 33 8 33		9 - 33 9 - 33		9 - 33 9 - 33	000
												000
55	5. Si		9 33 9 33		9 93 9 35		9 93 9 33		9 77 9 8		9 - 22 9 - 33	000
												000
88	5. S		S 37.		6 77. 9 75		8 98 8 9		9 93 9 33		9 77 9 88	000
												000
86	5. Si		96 - 375 98 - 385		0 77. 9 85		0 90 9 33		6 - 22 8 - 33		9 - 22 9 - 33	000
												000
CV Els			, s = 32; g = 15		9 - 92 6 - 15		9 - 92 6 - 15		9 - 92 6 - 18		9—19 6—19	000

RA	M
ADDR	
0	i
1	maior
2	x[0]
3	x[1]
4	x[2]
5	x[3]
6	x[4]
7	x[5]

Algoritmo
nibble i, maior;
nibble x[6]; /* inteiros sem sinal */
maior=x[0];
for (i=1; i < 6; i++) {
if (x[i] > maior) maior = x[i];
}

ISA	OF	CO	DE	Α	D	Α	A	AB		
ISA	8	7	6	5	4	3	2	1	0	
mov rx, imm4	0	0	0	rx			imm4		4	
ld rx, [ry]	0	0	1	rx				ry		
st rx, [ry]	0	1	0	35. 35.8		rx		ry		
sub rx, ry, rz	0	1	1	r	X	ry		rz		
add rx, ry, rz	1	0	0	r	X	ry		rz		
bae offset5	1	0	1	3	- offset5					
b offset5	1	1	0	- I		offse		t5		
cmp rx, ry	1	1	1	-	120	rx		r	У	