TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Pseudo-Likelihood and Contrastive Divergence

Psuedo-Likelihood

For any distribution $P(\hat{\mathcal{Y}})$ on colorings $\hat{\mathcal{Y}}$, we define the pseudo-likelihood $\tilde{P}(\hat{\mathcal{Y}})$ as follows

$$\tilde{P}(\hat{\mathcal{Y}}) = \prod_{n} P(\hat{\mathcal{Y}}[n] \mid \hat{\mathcal{Y}}/n) = \prod_{n} P(\hat{\mathcal{Y}}[n] \mid \hat{\mathcal{Y}}[N(n)])$$

While computing $P_{\Phi,x}(\mathcal{Y})$ is intractable, computing $\tilde{P}_{\Phi,x}(\mathcal{Y})$ is tractable. We then use

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{\langle x, \mathcal{Y} \rangle \sim \operatorname{Pop}} - \ln \tilde{P}_{\Phi, x}(\mathcal{Y})$$

Pseudolikelihood Theorem

$$\underset{Q}{\operatorname{argmin}} \ E_{\mathcal{Y} \sim \operatorname{Pop}} \ - \ln \tilde{Q}(\mathcal{Y}) = \operatorname{Pop}$$

It suffices to show that for any Q we have

$$E_{\mathcal{Y} \sim \text{Pop}} - \ln \widetilde{\text{Pop}}(\mathcal{Y}) \le E_{\mathcal{Y} \sim \text{Pop}} - \ln \widetilde{Q}(\mathcal{Y})$$

Proof II

$$\min_{Q} E_{Y \sim \text{Pop}} - \ln \tilde{Q}(Y)$$

$$= \min_{Q} E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} - \ln Q(\mathcal{Y}[n]|\mathcal{Y}[N(n)])$$

$$\geq \min_{P_{1}, \dots, P_{N}} E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} - \ln P_{n}(\mathcal{Y}[n]|\mathcal{Y}[N(n)])$$

$$= \min_{P_{1}, \dots, P_{N}} \sum_{n} E_{\mathcal{Y} \sim \text{Pop}} - \ln P_{n}(\mathcal{Y}[n]|\mathcal{Y}[N(n)])$$

$$= \sum_{n} \min_{P_{n}} E_{\mathcal{Y} \sim \text{Pop}} - \ln P_{n}(\mathcal{Y}[n]|\mathcal{Y}[N(n)])$$

$$= \sum_{n} E_{\mathcal{Y} \sim \text{Pop}} - \ln P_{n}(\mathcal{Y}[n]|\mathcal{Y}[N(n)]) = E_{\mathcal{Y} \sim \text{Pop}} - \ln \widetilde{Pop}(\mathcal{Y})$$

Contrastive Divergence (CDk)

In contrastive divergence we first construct an MCMC process whose stationary distribution is P_s . This could be Metropolis or Gibbs or something else.

Algorithm CDk: Given a gold segmentation \mathcal{Y} , start the MCMC process from initial state \mathcal{Y} and run the process for k steps to get $\hat{\mathcal{Y}}'$. Then take the loss to be

$$\mathcal{L}_{\text{CD}} = s(\hat{\mathcal{Y}}') - s(\mathcal{Y})$$

If P_s = Pop then the distribution on $\hat{\mathcal{Y}}'$ is the same as the distribution on \mathcal{Y} and the expected loss gradient is zero.

Gibbs CD1

CD1 for the Gibbs MCMC process is a particularly interesting special case.

Algorithm (Gibbs CD1): Given \mathcal{Y} , select a node n at random and draw $y \sim P(\mathcal{Y}[n] \mid \mathcal{Y}[N(n)])$. Define $\mathcal{Y}[n=y]$ to be the assignment (segmentation) which is the same as \mathcal{Y} except that node n is assigned label y. Take the loss to be

$$\mathcal{L}_{\text{CD}} = s(\mathcal{Y}[n=y]) - s(\mathcal{Y})$$

Gibbs CD1 Theorem

Gibbs CD1 is equivalent in expectation to pseudolikelihood.

$$\mathcal{L}_{\text{PL}} = E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} -\ln P_{s}(\mathcal{Y}[n] = y \mid \mathcal{Y}[N(n)])$$

$$= E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} -\ln \frac{e^{s(\mathcal{Y})}}{Z_{n}} \qquad Z_{n} = \sum_{y'} e^{s(\mathcal{Y}[n=y'])}$$

$$= E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} \left(\ln Z_{n} - s(\mathcal{Y}) \right)$$

$$\nabla_{\Phi} \mathcal{L}_{\text{PL}} = E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} \left(\frac{1}{Z_{n}} \sum_{y'} e^{s(\mathcal{Y}[n=y'])} \nabla_{\Phi} s(\mathcal{Y}[n] = y') \right) - \nabla_{\Phi} s(\mathcal{Y})$$

$$= E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} \left(\sum_{y'} P(\mathcal{Y}[n=y' \mid \mathcal{Y}[N(n)]]) \nabla_{\Phi} s(\mathcal{Y}[n=y']) \right) - \nabla_{\Phi} s(\mathcal{Y})$$

Gibbs CD1 Theorem

$$\nabla_{\Phi} \mathcal{L}_{PL} = E_{\mathcal{Y} \sim Pop} \sum_{n} \left(\sum_{y'} P(\mathcal{Y}[n = y' \mid \mathcal{Y}[N(n)]]) \nabla_{\Phi} s(\mathcal{Y}[n] = y') \right) - \nabla_{\Phi} s(\mathcal{Y})$$

$$= E_{\mathcal{Y} \sim Pop} \sum_{n} \left(E_{y' \sim P(\mathcal{Y}[n = y' \mid \mathcal{Y}[N(n)]])} \nabla_{\Phi} s(\mathcal{Y}[n] = y') \right) - \nabla_{\Phi} s(\mathcal{Y})$$

$$\propto E_{\mathcal{Y} \sim Pop} E_{n} E_{y' \sim P(\mathcal{Y}[n = y' \mid \mathcal{Y}[N(n)]])} \left(\nabla_{\Phi} s(\mathcal{Y}[n] = y') - \nabla_{\Phi} s(\mathcal{Y}) \right)$$

$$= E_{\mathcal{Y} \sim Pop} E_{n} E_{y' \sim P(\mathcal{Y}[n = y' \mid \mathcal{Y}[N(n)]])} \nabla_{\Phi} \mathcal{L}_{Gibbs CD(1)}$$

\mathbf{END}