Parametric Surface A parametric surface S is a see S= {(x,y,Z) | x=x(w,v), y=y(w,v), Z=Z(v,v), (w) (D) where o is the region in UV-plane Parametric equations for 5 100 x6 r(u,v) = x(u,v) i + y(u,v) j + z(u,v) & describe surface parametrized eg. by r(u,v) = (wtv, u-v, 2u+3v) Over set D= { (u,v) + 0 \(u,v \\ \) | golde= r(U,V) = 10,0,07 + UL 1,1,27 + VL 1,-1,3 is a triangle with Vertex; ore (0,0,0), 11,1,2), (1,+1,3) ER + 45 8 NEI = - VID eg curtare paramatrized by Y(U,U) = (U, V, Vover D = {(u,v) | u+v2 = 1

eg. paramatrize the upper unit hemis phere
Cartesian torm
T'(4V) = 2U, V, /1-1-1-1-1->
over coptional 2 D = {(u, v) } 0 \ u' + v' \
Culmitrical town
$\overrightarrow{r}(\overrightarrow{u},\overrightarrow{v}) = \langle u\cos v, u\sin v, \sqrt{1-\overrightarrow{u}^2} \rangle$
over p = {(u,v) 0 < u < 1.0 < v < 222}
spherical toma =1 m this case
to the last of the never some
spherical torm $e^{-1 \text{ in this case}}$ $Y(U, V) = 1 \cdot \text{smVcosU}, \text{smVsmU}, \text{1.cos V}$
Over p= {(u,v) 0 = V = =, 0 = u = 27, }
eg. The graph of y=x-x over 04x61 is revolved around x-axis,
paramatrize the surface of revolution
$\vec{r}(u,v) = \{u\}(u-u)\cos v, (u-u)\sin v\}$
over u: 0 = u < 1
0 = V = 2h
eg. Z=3x on 0=xs1 is votated around z-axis
$T'(u,v) = \langle u(u), u(u), u(u) \rangle$
over D= 5 (u,v) o= X=1, c = 1 (v) o= X=1, c = 1
which I circle
2. adding after rotating

langent Planes $Vu = \frac{dx}{du}(u,v)i + \frac{dy}{du}j + \frac{dz}{du}k$ $V_{0} = \frac{dx}{dv}(u,v)i + \frac{dy}{dv}j + \frac{dz}{dv}k$ are tangent to S at point relation vo) ins, rulko, vo) and Voldo, vo) generate the tangent plane to 5 surface over of S = A(s) = So ruxroldA surface eg. Ind area of the upper unit hemsphere cylinderical form step 1: paramatrilation of surface, write domain F(u,v) = 2 4 cosv, Usmv, JI-v2 > U= (u,v) 0 = u(s) step 2 = 11 ru x roll One patch III grea on the surface ru = 2 cost, smV, = > Ti = < - USNU, UCOSV, 0> $|\overrightarrow{Vu} \times \overrightarrow{Vv}| = \frac{1}{\sqrt{1-u^2}}, \frac{1}{\sqrt{1-u$ Step 3: Integration ALGO = Sp Ilrux roll dA As = 50 0 NI-u' du du

Surface Integral
divergence. Hux & amount of F that is caught by S
SINTE V A
Pij Sij
Jan
Surface integral of f over the surface 5
$\iint_{S} f(x,y,z) dS = \lim_{\text{max odi}, \ 0 \text{ i}=1}^{m} \sum_{j=1}^{n} f(p_{ij}^{*}) dS_{ij}^{*}$
OSij X Yux Yu DU; OVj
后秋 1
Ss f(xiy, z) ds = So f(r(u,v)) raxro dA
= Sot(riu,v) ruxru dudu
eg. Let C be the unper to unit homes where End to CC 11
eg. Let S be the upper the unit hemisphere. Find \$\frac{1}{2} SS_2 \frac{1}{2} dS (Spherical)
Step 1 2 paramatrization of surface, write domain
$P(u,v) = \langle 1. Smvcosu, 1. Smvsmu, 1. cosv)$
= L SINVOISU, SINVSINU, COSV>
Step 22 Fu x Fv D= [w.v) 0 = u = 2 to]
step 22 ru x rv
$\vec{r}_u = 2 - \sin v \sin u$, $\sin v \cos u$, o
Tu = < cosv 80s u, cosv sinu, -sinu)
Tu x ru = Sin v plagin parametrization
Step 3: Integral SSS Z ds Il rux rull dudu
$= \int_0^{\frac{\pi}{2}} \int_0^{2\pi} \cos v \cdot \sin v du dv$
= 761. [1917]

Stokes' Theorem	Charles Institute
rection: The following situation, no sign;	Hip when applying stokes's Theorem
Situation 1: 0 S: aftered out ward 7?	positive K-romponent for my
@ boundary C: counterco	
	I MY CE
Structure 2 = Q S. mward 7 / ne	vice k-component by
@ boundary c s clocks	The Continuor Ann Signature
(felly Fraker	1604-1
2	
Stoke's Theorem, Lee She an su	inface that is bounded by a simple, closed boundary
curve C with positive orient	ation. Let F he a vector field whose component
have continuos partial derivat	ives
$\oint_{C} F \cdot dr =$	SS curl F. ds
bormded curve	shadesurface
eg. Let C be the intersection	If $\chi^2 + y^2 = 1$ with the plane $Z = $
F = L3Z, 5x, -2	y> Find & F.dr
solve: $CuvlF' = (-2,3,$	5>
By Stoke's Thm,	do surface integral of curl F on the region interserte
$\overline{r}(u,v) = \langle u, v \rangle$	V, V+3)
	$0 \leq u^2 + v^2 \leq 1$
$\vec{N} = \langle 0, -1 \rangle$, 1.7. Natural
SS cort F. ds	= SISTED EUTE. 12 du du
多% 肚出现 Find ss.	curl F.ds, \$ stokes Them to And for
相関が2000 c is closed curve	= Sphere, cylinder, circle, ellipse, intersection of surface, gob
9 3 2 F = 2 F, W, K)	Carre cupy Green Theorem
3) curt a reasonable vel	tor

thus integral of F over S is the sum of the divergence div F over S

Lot Z be a simple solid and let S be the boundary surface of Z, given the positive continuous printation. Let F be a vector field whose component functions have continuous partial derivatives on an open region that contains Z

但用多件, Surface integral + multiple surface of Objet 一定间

1914 Lending To To The Condition of the Grant Stand

The state of the s

AND STATE OF THE S

STATE OF THE STATE

Compare

Green's Theorem
$$\int \int_{P} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA = \int_{C} P dx + Q dy$$

double integral (]= < P, 2>

Stokes' Theorem SS curlFids = S. F. dr surface inregial < >) line integral

Divergence Theoren SSS IN F dV = SSF. ds

typle integral (--> Surface Integral