

Лекция 2. Введение в машинное обучение

Содержание курса

- Методы предсказания и классификации (линейная и логистическая регрессия, нейронные сети, машины опорных векторов и другие)
- Методы кластеризации (метод k-средних и другие)
- Техники диагностики качества обучения и повышения их точности
- Применение машинного обучения в обработки больших данных
- Практическое использование машинного обучения

Материалы и ресурсы

- □ Информационный портал по машинному обучению http://www.machinelearning.ru/
- □ Kypc «Machine Learning» на Coursera https://www.coursera.org/learn/machine-learning/
- □ Курсы в интернет https://proity.ru/analytics/data-science/
- □ Чубукова И.В. Data Mining: учебное пособие https://biblioclub.ru/index.php?page=book_red&id=233055

Что такое машинное обучение

добыча данных, раскопка данных, "промывание"

данных извлечение информации, извлечение

Data mining

знаний, анализ шаблонов, информационная проходка данных, обнаружение знаний в базах данных

Big Data

Самообучающиеся алгоритмы

Где применяется машинное обучение

□ Database mining: получение информации из больших объемов данных (переходы по ссылкам веб-страниц, медицинские истории, биоинформатика, ...) 🗖 Задачи, которые не могут быть хорошо запрограммированы вручную (автономные транспортные средства, распознавание символов, обработка текстов на естественном языке, компьютерное зрение, ...) □ Самообучаемые программы (системы рекомендаций интернет-магазинов, принятия решений, ...) □ Искусственный интеллект (имитация работы мозга животных, ...) □ Множество других областей

Пример: Предсказание цен на недвижимость

№ объекта	Площадь, м²	Цена, тыс. м.к.
1	2104	460
2	1416	232
3	1534	315
4	852	178
5	1948	305
6	950	293
7	611	141
8	1751	343
9	451	102
10	1244	209
11	1416	286

Имеются данные о недвижимости на Марсе и ее стоимости

Можно ли на основе этих данных предсказать, сколько будет стоить дом площадью **750** м² ?

Пример: Предсказание цен на недвижимость

Пример: Предсказание цен на недвижимость

Сведения о пациентах, больных раком

Размер опухоли	11	19	21	27	34	38	45	51	59	63
Злокачест- венная	0	0	0	1	0	1	0	1	1	1

Если у нас появится пациент с опухолью размером 24, какая она у него будет, скорее доброкачественная или злокачественная?

Размер меньше 35 — доброкачественная Размер больше или равно 35 — злокачественная

Сведения о пациентах, больных раком

Размер	15	19	27	24	21	q	51	24	<i>4</i> 7
опухоли	10	10	21	27	Z I	3	01	 27	77
Возраст	20	12	41	45	20	35	20	 45	52
Злокачест- венная	0	0	1	0	0	1	1	 0	1

Если у нас появится пациент с опухолью размером 24 и возрастом 22, какая она у него будет, скорее доброкачественная или злокачественная?

Пример: Классификация текста

Имеется подборка новостных статей. Задача: группировать их по близким темам. Путь решения: выделить ключевые слова.

Статья	Кол-во слов «Мяч»	Кол-во слов «Реформа»
Нинин	6	3
Eeeeee	8	2
Ппппп	9	1
Pppppp	7	3
Иииииии	2	9
Дддд	3	7
Уууууу	4	8
Ммм	3	8

Пример: Классификация текста

Определение машинного обучения

Машинное обучение — область науки, которая изучает возможность компьютеров обучаться без необходимости их непосредственно программировать [Артур Самюэл, 1959 г.]

Артур Самюэл написал программу игры в шашки, которая обучалась, играя сама против себя.

Говорят, что компьютерная программа *обучается* на основе опыта E по отношению к некоторому классу задач T и меры качества P, если качество решения задач из T, измеренное на основе P, улучшается с приобретением опыта E.

[T.M. Mitchell. Machine Learning. McGraw-Hill, 1997]

Определение машинного обучения

Говорят, что компьютерная программа *обучается* на основе опыта E по отношению к некоторому классу задач T и меры качества P, если качество решения задач из T, измеренное на основе P, улучшается с приобретением опыта E.

[T.M. Mitchell. Machine Learning. McGraw-Hill, 1997]

Пример 1: Игра в шашки

Задача T — способность выиграть в шашки

Опыт E — множество сыгранных партий

Качество P — вероятность выигрыша в следующей партии

Пример 2: Распознавание рукописных символов

Задача T — распознавание рукописного текста

Опыт E — различные примеры написанный символов

Качество P — количество правильно распознанных символов

Определение машинного обучения

Существует программа, которая изучает, какие электронные письма были отмечены пользователем как спам, а какие как не спам. Основываясь на этих данных, программа определяет в дальнейшем, является ли новое полученное письмо спамом или не является.

Основываясь на определении Митчелла, ответьте, что является задачей T, опытом E и критерием P для этой программы?

Опыт Е № база данных меток пользователя

Задача Т 🗹 классификация писем на спам/не спам

Задачи машинного обучения

Примеры:

- предсказание цен на недвижимость (цена дома)
- медицинская диагностика (злокачественная)

Пример:

> классификация текста

Задачи обучения с учителем

- $\succ x^{(i)} входные переменные$ в пространстве X (для примера с недвижимостью $x^{(i)}$ это площадь, $X \in \mathbb{R}$)
- $> y^{(i)} выходные переменные в пространстве <math>Y$ (в примере с недвижимостью $y^{(i)}$ это стоимость, $Y \in \mathbb{R}$)
- ightharpoonup пара ($x^{(i)}, y^{(i)}$) называется обучающим примером
- $\succ (x^{(i)}, y^{(i)}), i=1,...,m$ называется обучающей выборкой

Задачей обучения с учителем для является получение такой функции $h: X \to Y$, чтобы h(x) являлось «хорошим» предсказанием для значения y.

Функцию h(x) называют *гипотезой*.

Задачи обучения с учителем

В зависимости от типа данных у

Задачи регрессии

$y \in R$

Действительные числа

Пример:

предсказание цен на дома (у – цена дома)

Задачи классификации

$$y \in \{y_1, y_2, \dots, y_N\}, N \ge 2$$

Значение из конечного множества (идентификаторы классов)

Пример:

медицинская диагностика (у – классы: злокачественная или нет)

Задачи машинного обучения

Какие из следующих задач относятся к обучению с учителем, а какие без учителя?

- *С учит.*

 ✓ имеется база e-mail писем, для которых указано, которые из них являются спамом. Задача научить алгоритм определять спам.
- *Без уч.* ✓ имеется база новостных заметок, которые необходимо разделить на группы по близким темам.

Задачи машинного обучения

К какому классу задач (регрессии или классификации) относятся следующие проблемы?

- **Регрес.** У вас есть склад товаров. Вам нужно решить, сколько товаров будет продано в следующем месяце.
- Классиф № Вам нужно написать программу, которая оценит учетные записи почтовых ящиков пользователей и решит, какие из них могут быть взломаны в будущем.
- *Классиф* № Имеются сведения о заемщиках банка. Необходимо определить, кому из заемщиков стоит выдавать кредит, а кому нет.
- Регрес.

 Основываясь на курсе акций различных компаний в прошлом, необходимо предсказать их стоимость на завтра, через неделю, месяц и т.д.
- *Классиф* № Получая изображение с камеры в аудитории, необходимо определить, кто из студентов присутствует на лекции.

Задачей обучения с учителем для является получение такой функции $h: X \rightarrow Y$, чтобы h(x) являлось «хорошим» предсказанием для значения у.

Что значит быть «хорошим» предсказанием?

Площадь, м²	Цена, тыс. м.к.
2104	460
1416	232
1534	315
852	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$Q = \sum_{i=1}^{m} |h(x_i) - y_i|$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$
– функция стоимости

Функция квадратичной ошибки, равная половине от среднего значения квадрата расстояния между значениями гипотезы и обучающей выборки

$$J(\theta_0, \theta_1) = \frac{1}{2 \cdot 3} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2] \approx 0.58$$

$$J(\theta_0, \theta_1) = \frac{1}{2 \cdot 3} [(1-1)^2 + (2-2)^2 + (3-3)^2] = 0$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

$$\theta_0 = 800$$

$$\theta_0 = 800$$

$$\theta_1 = -0.15$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

$$\theta_0 = 360$$

$$\theta_1 = 0$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} ((h_{\theta}(x_i) - y_i)^2$$

$$\theta_0 = 250$$

$$\theta_0 = 250$$

$$\theta_1 = 0.12$$

Градиентный спуск

Градиентный спуск

Общий принцип алгоритма:

Подобно катящемуся с горы мячику

- 1. Выбираем начальные значения θ_{0} , θ_{1}
- 2. Изменим $\theta_{_{0}}$, $\theta_{_{1}}$ на некоторое значение так, чтобы $J(\theta_{_{0}}$, $\theta_{_{1}})$ уменьшилась
- 3. Повторяем шаг 2 до тех пор, пока уменьшение $J(\theta_{_{0}},\theta_{_{1}})$ не станет достаточно малым

Градиентный спуск

Алгоритм градиентного спуска.

Вход: $J(\theta_0,...,\theta_n)$ — функция, $\theta_0^0,...,\theta_n^0$ — начальные значения переменных, α — темп обучения, ε — критерий остановки.

Выход: $\theta_0^*, \dots, \theta_n^*$ — найденные значения для локального минимума.

Действия:

```
для j = 0, ..., n:
       \theta_i := \theta_i^0
повторять {
       для j = 0, \dots, n: d\theta_j := \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)
       для j = 0, ..., n:
               \theta_i := \theta_i - \alpha \ d\theta_i
} пока d\theta_i > \varepsilon, j = 0, ..., n
для j = 0, ..., n:
       \theta_i^* := \theta_i
```

Частная производная

Градиент
$$\nabla J(\theta) = \left[\frac{\partial}{\partial \theta_0} J(\theta), \dots, \frac{\partial}{\partial \theta_n} J(\theta) \right]$$

Конец алгоритма.

Направление спуска

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_1) > 0$$

Точка сдвинется влево

Направление спуска

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_1) < 0$$

Точка сдвинется вправо

Темп обучения

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Малое значение α — низкая скорость сходимости (дольше работает)

 α – темп обучения

Большое значение α — алгоритм «проскочит» минимум (вообще не сойдется)

Темп обучения

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

 $\tan \varphi_1 > \tan \varphi_2 > \tan \varphi_3$

При приближении к точке минимума, алгоритм сам снижает величину шага. Изменять α в процессе работы не нужно!

Задача предсказания цен на недвижимость

Площадь, м ²	Цена, тыс. м.к.
2104	460
1416	232
1534	315
852	178

Гипотеза

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

Используем алгоритм градиентного спуска, чтобы найти параметры $\theta_0, \, \theta_1$

повторять {
$$для \ j = 0, ..., n : \\ d\theta_j := \frac{\partial}{\partial \theta_j} J(\theta_0, ..., \theta_n)$$

$$для \ j = 0, ..., n : \\ \theta_j := \theta_j - \alpha \ d\theta_j$$
 } пока $d\theta_i > \varepsilon, j = 0, ..., n$

Вычислить частные производные по θ_0 , θ_1 для:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) =$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} =$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1}x^{(i)} - y^{(i)})^{2},$$

$$j = 0,1$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) x^{(i)}$$

Алгоритм градиентного спуска для линейной регрессии.

Вход: $J(\theta_0, \theta_1)$ — функция, θ_0^0, θ_1^0 — начальные значения переменных, α — темп обучения, ε — критерий остановки.

Выход: θ_0^*, θ_1^* – найденные значения для локального минимума.

Действия:

$$\theta_0$$
: = θ_0^0

$$\theta_1$$
: = θ_1^0

повторять {

$$d\theta_0 := \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right)$$

$$d\theta_1 := \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right) x^{(i)}$$

$$\theta_0 := \theta_0 - \alpha \ d\theta_0$$

$$\theta_1 := \theta_1 - \alpha \ d\theta_1$$
 } нока $d\theta_0 > \varepsilon$, $d\theta_1 > \varepsilon$

Сначала вычисляем градиент,

потом делаем шаг

 $\theta_0^* := \theta_0$

 $\theta_1^* := \theta_1$

Конец алгоритма.

Площадь, м ²	Цена, тыс. м.к.
2104	460
1416	232
1534	315
852	178

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$h(x) = \theta_0 + \theta_1 x$$

Начальная точка:

$$\theta_0 = 900$$

$$\theta_1 = -0.1$$

$$J(\theta_0, \theta_1)$$

(function of the parameters $heta_0, heta_1$)

Решение задачи предсказания стоимости недвижимости при помощи линейно регрессии алгоритмом градиентного спуска:

$$h(x)=89.3+0.12x$$

Площадь, м²	Цена, тыс. м.к.
2104	460
1416	232
1534	315
852	178

Для дома площадью 1250 м² Предсказанное значение стоимости будет 240 тыс. м. к.

Градиентный спуск

Предположим, что начальная точка θ_1 находится в локальном минимуме функции $J(\theta_1)$, как показано на рисунке:

Чему будет равно значение θ_1 после выполнения одного шага алгоритма?

- **и** не изменится
- изменится в случайном направлении
- изменится в направлении глобального минимума функции
- **У** уменьшится
- 💆 увеличится