Transcriptomic and epigenomic biomarkers to differentiate between smokers with lung or laryngeal cancer

Final presentation

Group 5Mia Anscheit
Matanat Mammadli
Friederike Wohlfarth

¹⁾ Squamous Cell Carcinoma of the lung (left) and of the larynx (right). Images from were obtained from https://www.pathologyoutlines.com/topic/larynxcarcinomageneral.html, https://www.cellnetpathology.com/, last accessed 2024/07/07.

Project introduction

→ in respiratory organs mostly caused by smoking

Which transcriptomic and epigenomic biomarkers are useful for the differentiation between squamous cell carcinoma in the lung and in the larynx?

Data

Overview

Quality control / Preprocessing Expression

Raw Counts in 60,660 genes

Preprocessing, Normalization for GC Content

60,660 genes

0.25 Quantile Filtering

45,266 genes

Differential gene expression analysis (DESeq2)

512 genes with adjusted p < 0.01 & abs(log2FoldChange) > 2

Differential gene expression analysis

library(TCGAbiolinks)

library(pathview)

library(pathview)

DEG Analysis - Feature selection

AC007920.2 AC099786.1 AC099786.2 AC099786.3 ACSF2 AD000090.1 AJAP1 ALOX12B AOP4 BMP5 C8orf34-AS1 CACNA2D2 CCKAR CDH16 CFAP221 CYP1A1

CYP4F22

FGG FI G FOXA2 FTI GKN2 GVOW3 HOXA9 HOXB-AS3 IL24 **IPPK** ITIH5 KCNK10 KI K7 KRT16P4 KRT78 KRT9 KRTCAP2

LMOD3 LRRC36 IYPD5 MAR21I 1 MASP1 MMP27 MYH2 MYH7 MYI 1 MYI PF MYOM3 NAPSA NKX2-1 NUSAP1 NXPF2 OR4K2 PGC SLURP1

PRCD PRSS2 PTPN5 RDH12 RPE65 SCARA5 SCGB3A2 SCN7A SCTR SFTA3 SFTPA1 SFTPA2 SFTPB SFTPC SHISAI 1 SLC22A6

SPEF2 SRI SUIT1C2 SYNP02L TRX4 TRX5 TBX5-AS1 TCF21 THBS4 **TMFM130** UNC45B UNC93A WT1 7AN **ZNF366**

library(Caret)

DEA - Feature selection

DEA - Feature selection

- Before feature selection: 60,660 genes
- After feature selection: 83 genes

library (TCGAbiolinks)
library (umap)

DEG Analysis - Feature selection

DEG Analysis - Feature selection

Quality control / Preprocessing Methylation

library(TCGAbiolinks)

- 485,577 cpg islands in 35,557 genes, beta value > 0 ---- 312,864 cpg islands
- excluded X, Y and unknown chromosomes --- 306,903 cpg islands

Differential methylation analysis

DM Analysis - Feature selection

Cells. 2020 Jul; 9(7): 1613.

Published online 2020 Jul 3. doi: 10.3390/cells9071613

Methylation in *HOX* Clusters and Its Applications in Cancer Therapy

Ana Paço, 1 Simone Aparecida de Bessa Garcia, 2 and Renata Freitas 2,3,*

CLASP1 \	HOXA-AS2
COLEC11	HOXA-AS3
CTB-49A3.4 \	HOXA2
CTB-57H20.1	HOXA3
CTD-2555C10.3	HOXA4
CYR61	HOXA5
DHCR7	HOXA7
DNHD1	HOXB-AS3
EPDR1	HOXB3
ESR2	HOXB4
FLOT1	HOXB5
FOXC1	HOXB6
FOXQ1	IER3
	INPP5D

MIR6080 **MRO** NFURI 1B NRG2 PACS1 PCDHA1 PCDHA10 PCDHA11 PCDHA12 PCDHA13 PCDHA2 PCDHA3 PCDHA4

PCDHA5 SCARF2 PCDHA6 SFRP4 PCDHA7 SKAP1 PCDHA8 SMAD6 PCDHA9 SMYD4 PCDHAC1 ST14 PLEKHMTP SYNF2 PPP1R9A **TARID** RANBP17 TIMM10B **RBM20** TMCO3 RP1-170019.22 **TMFM201** RP1-170019.24 7FPM1 RP11-399K21.11 **ZNF467** DD11-660I 16 2

Clustered protocadherins methylation alterations in cancer

Ana Florencia Vega-Benedetti,^{#1} Eleonora Loi,^{#1} Loredana Moi, ¹ Sylvain Blois, ¹ Antonio Fadda, ¹ M Antonella Arcella, ³ Manuela Badiali, ⁴ Felice Giangaspero, ^{2,3} Isabella Morra, ⁵ Amedeo Columbano, ⁶ Luigi Zorcolo, ⁷ Viviana Gismondi, ⁸ Liliana Varesco, ⁸ Sara Erika Bellomo, ⁹ Silvia Giordano, ^{9,10} Matts

DM Analysis - Feature selection

DM Analysis - Feature selection

- Before feature selection: 306,903 cpg islands
- After feature selection: 97 cpg islands

library(TCGAbiolinks)
library(umap)

Data integration Connecting Expression and Methylation

library(TCGAbiolinks)

aggregated mean beta values for methylation and counts for expression for each gene

Methylation / Expression-Level in Larynx Carcinoma compared to Lung Carcinoma

- hypomethylated-downregulated
- hypomethylated-upregulated
- not significant
- hypermethylated-downregulated
- hypermethylated-upregulated

KR 7PI

ZPLD1 ADCY8

DUAME

PIWIL2

KHDRBS2

SHISA3

PEX5L

FUT9

SULT1C2P1

OR10AD1

MIR663AHG

PRDM9

AFP

ADH1C

OTOL1

Machine Learning (with caret)

Cross validation with 10 folds

Machine Learning (with caret)

95% CI : (0.9667, 1)
No Information Rate : 0.789
P-Value [Acc > NIR] : 6.037e-12

P-Value [Acc > NIR] : 1.82e-10

No Information Rate : 0.789 P-Value [Acc > NIR] : 2.724e-09

Example of the Random Forest decision trees

library(reprtree)

Feature importance (with caret)

Most important features

Summary & Conclusion

- we trained three models to predict the site of squamous cell carcinoma
- differences in expression and methylation level may be characterized by tissue of origin
- the application could be diagnostic of patients with Cancer of unknown primary (CUP)
- Here, the cancer spreads within lymph nodes in the and the primary cannot be found, the ML can be used to predict were the tumor originates from
- the model could be applied to predict the primary site of the tumor

References

- Maximilian Leitheiser et al. "Machine learning models predict the primary sites of head and neck squamous cell carcinoma metastases based on DNA methylation". en. In: The Journal of Pathology 256.4 (2022). Eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/path.5845, pp. 378–387. issn:1096-9896. (visited on 07/06/2024).
- Philipp Jurmeister et al. "Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases". In: Science Translational Medicine 11.509 (Sept. 2019). Publisher: American Association for the Advancement of Science, eaaw8513. url: https://www.science.org/doi/10.1126/scitranslmed.aaw8513 (visited on 07/06/2024).
- Anil Vachani et al. "A 10-Gene Classifier for Distinguishing Head and Neck Squamous Cell Carcinoma and Lung Squamous Cell Carcinoma". In: Clinical Cancer Research 13.10 (May 2007), pp. 2905–2915. issn: 1078-0432. url: https://doi.org/10.1158/1078-0432.CCR-06-1670 (visited on 07/06/2024).
- Yawei Li et al. "Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis". In: Genomics Proteomics Bioinformatics 20.5 (2022). issn: 850-866. doi: 10.1016/j.gpb.2022.11.003.
- Yin Li et al. "Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data". In: Sci Rep 8.1 (2018). doi: 10.1038/s41598-018-34160-w.
- Alana Sorgini et al. "Analysis of the TCGA Dataset Reveals that Subsites of Laryngeal Squamous Cell Carcinoma are Molecularly Distinct". In: Cancers 13.1 (Dec. 31, 2020), p. 105. issn: 2072-6694. doi: 10.3390/cancers13010105.
- **Joshua D. Campbell et al.** "Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas". In: Cell Reports 23.1 (Apr. 3, 2018), 194–212.e6. issn: 2211-1247. Doi: 10.1016/j.celrep.2018.03.063.
- **Katherine A. Hoadley et al.** "Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer". In: Cell 173.2 (Apr. 5, 2018), 291–304.e6. issn: 1097-4172. doi: 10.1016/j.cell.2018.03.022