WANG Liangjiayi - ECO372 Assignment 2

Student Nb: [1004405789]

a.														
. reg age trea	at,robust													
Linear regress	sion			Number of F(1, 720 Prob > I R-square Root MSI	ed =	722 0.13 0.7216 0.0002 6.63	. reg married	ed treat,robust			Number F(1, 72 Prob > R-squar Root MS	ed =	= 0.1 = 0.702 = 0.000	
age	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	married	Coef	Robust Std. Err.	t	P> t	[95% Conf	. Interval	
treat _cons	.1792038 24.44706	.5026692 .3197422	0.36 76.46	0.722 0.000	8076687 23.81932	1.166076 25.0748	treat _cons	.0107031		0.38 8.91		0443399 .1228953	.0657461	
. reg education	-	st		Number	of obs =	722	. reg hispan:	ic treat, rob	oust					
Linear regres:	ston			F(1, 720 Prob > I R-square Root MSI	ed =	2.14 0.1441 0.0031 1.7033	Linear regre	ssion			Number F(1, 72 Prob > R-squar Root MS	ed =	0.66 0.4154 0.0009	
education	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	hispanic	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]	
treat _cons	.1922361 10.18824	.1314755 .0785342	1.46 129.73	0.144 0.000	065885 10.03405	.4503572 10.34242	treat _cons	0186651 .1129412		-0.81 7.35		0636357 .0827563	.0263055	
. reg black t	reat, robust						. reg nodegree	treat, robus	st					
Linear regress	ion			Number of F(1, 726 Prob > F R-square Root MSE	ed =	722 0.00 0.9645 0.0000 .40014	Linear regress:	ion			Number of F(1, 720) Prob > F R-squared Root MSE	-	722 6.82 0.0092 0.0098 .41293	
black	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	nodegree	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	
treat _cons	.0013468 .8	.0302489 .0194298	0.04 41.17	0.964 0.000	0580399 .7618542	.0607335 .8381458	treat _cons	0834779 .8141176	.0319616 .018896	-2.61 43.08	0.009 0.000	146227 .7770197	0207288 .8512155	

 H_0 : there is no difference between two groups

 H_a : there is statistically significant difference between two groups

We set the significance level at 5%. From the table, we conclude that the P-value for the observables characteristics: age, year of school, married, Black, and Hispanic are greater than 0.05. Thus, those variables are not statistically significant at 5%. There is no difference between individuals who were assigned into the training and those who were not assigned into the training in those pre-experiment observables characteristics (age, year of school, married, Black, and Hispanic).

In comparison, the P-value for the observable characteristics: High school dropouts is smaller than 0.05, which represents High school dropouts is statistically significant at 5%. The individuals assigned into the training and those who were not were different in the pre-experiment observables characteristics: High school dropouts.

We expect the means of the characteristics in the experimental groups are the same and we can use this to test the existence of selection bias and whether the randomization is successfully assigned. The selection bias will cause biased estimate. Overall, in this case, most of the pre-experiment observables characteristics are the same in both groups and the randomization is valid.

. reg re78 treat, robust

Linear regression	Number of obs	=	722
	F(1, 720)	=	3.30
	Prob > F	=	0.0698
	R-squared	=	0.0049
	Root MSE	=	6242

re78	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
treat	886.3037	488.1385	1.82	0.070	-72.04121	1844.649
_cons	5090.048	277.4261	18.35	0.000	4545.388	5634.709

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Y is the earnings of experimental participants in 1978

X is a dummy variable and represent the assigned groups for each participant (1: treatment group; 0: control group)

u is error term.

After running that regression with robust, the estimation of coefficient is the same in table and our regression. The NSW treatment groups' earning are \$886 more than control groups' earnings on average. However, the Standard Error are not the same. In the table 5, the standard error equals 476 and in regression the standard error equals 488. The deviation between a sample mean and the actual mean of a population are larger in our regression. Also, from the regression table, we find that the difference of earnings between two groups $(\widehat{\beta}_1)$ are statistically significant at 10% significance level (p-value<0.1).

c.

. gen age_sqr=age^2

. reg re78 age age_sqr education nodegree black hispanic treat, robust $% \left(1\right) =\left(1\right) \left(1\right) \left($

Linear regression Number of obs = 722 F(7, 714) = 2.71 Prob > F = 0.0089 R-squared = 0.0238Root MSE = 6208.4

re78	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
age	-3.805475	193.7217	-0.02	0.984	-384.1378	376.5268
age_sqr	.5296508	3.197424	0.17	0.868	-5.747827	6.807128
education	219.7946	165.5418	1.33	0.185	-105.2124	544.8015
nodegree	-494.2816	756.7119	-0.65	0.514	-1979.928	991.3648
black	-1762.833	774.898	-2.27	0.023	-3284.184	-241.4815
hispanic	-117.148	983.6556	-0.12	0.905	-2048.351	1814.055
treat	798.3512	488.168	1.64	0.102	-160.0653	1756.768
_cons	4430.163	3594.725	1.23	0.218	-2627.333	11487.66

 $Y_i = \beta_0 + \beta_1 A g e_i + \beta_2 A g e_i^2 + \beta_3 E ducation_i + \beta_4 Nodegree_i + \beta_5 B lack_i + \beta_6 H is panic + \beta_7 T reat + u_i$

Note:

Age: Age for each participant

Education: Year of schools for each participant

Nodegree: High school dropout status for each participant (1: yes; 0: no)

Black: Whether participant identify as Black (1: yes; 0: no)

Hispanic: Whether participant identify as Hispanic (1: yes; 0: no)

Treat: Assigned groups for each participant (1: participants in treatment group; 0: participants in control group)

Y: the earnings of experimental participants in 1978

u: error term.

Source

After running that regression with robust, the estimation of coefficient is the same in table and our regression. After control the exogenous variable (age, age_sqared, year of schooling, high school dropout status and race) that used in adjusted equations, the NSW treatment groups' earning are \$798 more than control groups' earnings on average. However, the Standard Error are not the same. In the paper table 5, the standard error equals 472 and in our regression the standard error equals 488. The deviation between a sample mean and the actual mean of a population are larger in our regression. Also, from the regression table, we find that the difference of earnings between two groups $(\widehat{\beta}_7)$ are not statistically significant at 5% significance level (p-value>0.05).

MS

Number of obs

722

 ${\bf d}.$. reg re78 age age_sqr education nodegree black hispanic treat

SS

df

				E / 7	744)	2.40
Model	670296792	7	95756684.6	F(7, Prob	,	= 2.48 = 0.0159
		-				
Residual	2.7520e+10	714	38543836.8	R-squ	ared	= 0.0238
				- Adj R	-squared	= 0.0142
Total	2.8191e+10	721	39099301.3	Root	MSE	= 6208.4
re78	Coef.	Std. Err.	t	P> t	[95% Con-	f. Interval]
age	-3.805475	211.1663	-0.02	0.986	-418.3866	410.7756
age_sqr	.5296508	3.556177	0.15	0.882	-6.452164	7.511466
education	219.7946	182.9296	1.20	0.230	-139.3496	578.9387
nodegree	-494.2816	749.2561	-0.66	0.510	-1965.29	976.727
black	-1762.833	803.88	-2.19	0.029	-3341.084	-184.5814
hispanic	-117.148	1054.228	-0.11	0.912	-2186.906	1952.61
treat	798.3512	472.1283	1.69	0.091	-128.5747	1725.277
_cons	4430.163	3653.224	1.21	0.226	-2742.183	11602.51

The original paper uses classic robust standard errors. After running that regression without robust, the estimation of coefficient ($\widehat{\beta_{treat}} = 798$) and standard error (472) is the same in table and our regression. Also, from the regression table, we find that the difference of earnings between two groups ($\widehat{\beta_{treat}}$) are statistically significant at 10% significance level (p-value<0.1).

e.

The pre-experiment characteristics should have no difference in both treatment group and control group.

If CIA holds, the earning difference can be identified as causal effect of the training program. In our case, the CIA holds since the participants are randomly assigned to treatment and control group which eliminate the selection bias. And from Question a, we noticed that most of characteristics have same mean in both groups

f.ttest re78, by(treat) unequal

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	425	5090.048	277.368	5718.089	4544.861	5635.236
1	297	5976.352	401.7594	6923.796	5185.685	6767.019
combined	722	5454.636	232.7105	6252.943	4997.765	5911.507
diff		-886.3037	488.2045		-1845.251	72.64306
diff =	= mean(0) - = 0	- mean(1)	Satterthwai	te's degrees	_	= -1.8154 = 557.062
	iff < 0) = 0.0350	Pr(Ha: diff != T > t) =	-		iff > 0) = 0.9650
H_0 : Earning	1978_{cont}	_{trol} – Earnin	g 1978 _{treatme}	$_{ent}=0$		
H_a : Earnir	ng 1978 _{con}	_{trol} – Earnin	g 1978 _{treatme}	$e_{nt} \neq 0$		
p-value	= 0.0700 >	> 0.05				

Since p-value > 0.05, we fail to reject null hypothesis H0 that Earnings in 1978 for participants in treatment group is the same for participant in control group. At 5% significance level, we have no evidence that there is a statistically significant difference between 1978 earnings for participants in treatment group ($Earning\ 1978_{treatment}$) and 1978 earnings for participants in control group ($Earning\ 1978_{control}$). Thus, we conclude that the earnings for participant who join the training (treatment group) is as same as the earnings for participant who are not join the training (control group).

The effectiveness of training program is not remarkable in our case and it may due to several reasons. In the question a, we noticed that the means of high school dropout is not the same in both groups which will influence the accuracy of regression result and lead to small bias. Also, most of our independent variables in regression are not significant at 5% level. If we eliminate those potential problems, the effectiveness of training program may be significant.

PSID-3 is all male household heads continuously from 197-1978, who were less than 55-years-old and did not classify themselves as retried in 1975 and were not working when surveyed in either spring of 1975 or 1976.

h.													
. reg age trea				F(1, 4 Prob > R-squa	F =	128.56 0.0000 0.3261	. reg married				Number of F(1, 423	3) =	429 129.99 0.0000
				Root M	SE =	9.0109					R-square Root MSE		0.2655 .403
age	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]	married	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval
treat _cons	-13.63155 38.25781	1.202261 1.137848	-11.34 33.62		-15.9947 36.02127	-11.2684 40.49435	treat _cons	5269623 .6953125	.046223 .040779	-11.40 17.05	0.000 0.000	6178177 .6151578	436107 .7754672
. reg educatio	on treat,rob	ust					. reg hispanio	treat, robu	st				
Linear regress	sion			Number F(1, 4 Prob > R-squa Root M	F =	425 0.06 0.8004 0.0002 2.311	Linear regress	sion			Number of F(1, 423 Prob > F R-square Root MSE	3) = = = ed =	425 0.48 0.4902 0.0012 .30209
education	Coef.	Robust Std. Err.	. t	P> t	[95% Conf	. Interval]	hispanic	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
treat _cons	.0757839 10.30469	.2995041 .2802907	0.25 36.76		5129178 9.753751	.6644855 10.85562	treat _cons	0229114 .1171875	.0331801 .0284967	-0.69 4.11	0.490 0.000	0881299 .0611748	.0423071 .1732002
. reg black tr Linear regress	-			Number of F(1, 423) Prob > F R-squared Root MSE	= =	425 48.82 0.0000 0.1207 .43215							
black	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]							
treat _cons	.3482218 .453125	.0498361 .0441034	6.99 10.27	0.000 0.000		.4461791 .5398142							
. reg nodegree	treat, robus	st .											
Linear regress	ion			Number of F(1, 423) Prob > F R-squared Root MSE	- :	425 18.90 0.0000 0.0468 .4624							
nodegree	Coef.	Robust Std. Err.	ŧ	P> t	[95% Conf. Ir	nterval]							
treat _cons	.2228272 .5078125	.0512607 .0442931	4.35 11.46	0.000 0.000		3235846 5948745							

 H_0 : there is no difference between two groups

 H_a : there is statistically significant difference between two groups

We set the significance level at 5%. From the table, we conclude that the P-value for the observables characteristics: age, married, black, and nodegree are smaller than 0.05. Thus, those variables are statistically significant at 5% and we reject H0. There is a statistically significant difference between individuals who were assigned into the training and those who were not in those pre-experiment observables characteristics (age, married, black and nodegree). In this case, the participants are not randomly assigned. Thus, the selection bias occurs and leads to the estimation bias in the regression model which affect the labor market outcome.

In comparison, the P-value for the observable characteristics: Education and Hispanic is greater than 0.05, which represents year of education is not statistically significant at 5%. The individuals assigned into the training and those who were not has no different in the pre-experiment observables characteristics: Education, Hispanic.

i. . gen age_sqr=age^2 . reg re78 age age_sqr education nodegree black hispanic treat df MS 55 Number of obs 425 F(7, 417) 5.29 Model 1.7849e+09 7 254984265 Prob > F 0.0000 Residual 2.0102e+10 417 48205230.7 R-squared 0.0816 Adi R-squared 0.0661 424 51619035.5 Total 2.1886e+10 Root MSE 6943 re78 Coef. Std. Err. P>|t| [95% Conf. Interval] t 769.8936 232.7513 3.31 0.001 312.3815 1227.406 age -12.63406 3.395785 0.000 -19.30905 -5.95907 age sqr -3.72 192.5652 226.1696 0.395 -252.0094 637.1397 education 0.85 -581.9737 1044,792 -2635.689 nodegree -0.56 0.578 1471.742 black -1516.321 971.6635 -1.56 0.119 -3426.29 393,6479 hispanic 293.7419 1369.466 0.21 0.830 -2398.175 2985,659 -509.2156 967.4217 -0.53 0.599 -2410.847 1392.415 treat

-1.02

-4635.431

4526.469

cons

From question d, we find that the original paper uses the classic standard error. Then we run a new regression based on new dataset.

-13532.97

4262.11

0.306

After running that regression without robust, the estimation of coefficient and standard error are the same in table and our regression. After control the exogenous variable (age, age_sqared, year of schooling, high school dropout status and race) that used in adjusted equations, the NSW treatment groups' earning are \$509 less than PSID-3 groups' earnings on average.

Compared the result in question d, the estimated effect for PSID-3 is -\$509 and the estimated effect for control group is \$798. Two results are completely different. The non-experimental estimate method does not randomly assign the participants. The observable/unobservable characteristics of trainees and the comparison group members differ. Also, we cannot ensure that the unobservable in the earnings and participation equations are uncorrelated. Thus, the \$-509 as a non-experimental estimate cannot replicate the experimental results (\$798).

j.

From the result in question h, we find that the treatment group is 13-years old younger than the control group. And treat has greater effect on age compared to other characteristics. And we expect younger participants have higher wage.

. reg age treat, robust

Linear regression	Number of obs	=	425
	F(1, 423)	=	128.56
	Prob > F	=	0.0000
	R-squared	=	0.3261
	Root MSE	=	9.0109

age	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
treat		1.202261	-11.34	0.000	-15.9947	-11.2684
_cons		1.137848	33.62	0.000	36.02127	40.49435

k.

- . gen diff=re78-re75
- . reg diff age age_sqr treat

425	os =	er of ob	Numb	MS	df	SS	Source
3.41	=	421)	- F(3,				
0.0176	=	> F	0 Prob	23351675	3	700550249	Model
0.0237	=	uared	5 R-sq	68503430.	421	2.8840e+10	Residual
0.0168	ed =	R-square	- Adj				
8276.7	=	MSE	6 Root	69670977.	424	2.9540e+10	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	diff
1121.71	2736	67.02	0.027	2.22	268.2832	594.3688	age
-2.313065	695	-17.46	0.011	-2.57	3.854744	-9.890007	age_sqr
795.0104	134	-3444.	0.220	-1.23	1078.325	-1324.562	treat
4426,933	1 48	-12354	0.354	-0.93	4268.744	-3963.773	cons

$$Y_i = \beta_0 + \beta_1 A g e_i + \beta_2 A g e_i^2 + \beta_3 T r e a t + u_i$$

Note:

Age: Age for each participant

Treat: Assigned groups for each participant (1: participants in treatment group; 0: participants in control group)

Y: the earning growth 1975-78 of experimental participants

U: the error term.

From this regression, the estimate (\$-1325) is identical to column 7.

1.

In column 7, the only observable characteristics we control for is age. In control group, the estimate of earning growth is \$856 and in PSID-3 group the estimate of earning growth is \$-1325. In question h and j, we also noticed that there are differences in the characteristics like race, married and high school dropout between treatment and control group, that could influence the outcomes. Without control for those variables and eliminate the correlation between the unobservables, the non-experimental estimate is biased.