Transmission intervals and coronavirus control

Jonathan Dushoff, McMaster University

UT COVID-19 Consortium Colloquium (CCC), May 2021

Covid modeling questions

- How far and fast would it spread if unchecked?
- ► How hard is it to eliminate?
- How are we doing on control in a particular place and time?

https://wzmli.github.io/COVID19-Canada

Wuhan control measures

https:

//jamanetwork.com/journals/jama/fullarticle/2764658

Time-varying reproductive numbers

- ightharpoonup Case reproductive number \mathcal{R}_c (e.g., Wallinga and Teunis)
 - How many people will get infected by a case infected at time t?
 - $i(t) = \sum \mathcal{R}(t-\tau)g(\tau)i(t-\tau)$
- ▶ Instantaneous reproductive number \mathcal{R}_c (e.g., Cori et al.)
 - What overall reproductive number predicts what I'm seeing now?
 - $ightharpoonup i(t) = \sum \mathcal{R}(t)g(\tau)i(t-\tau)$
- Speed vs. strength
 - ▶ What if *g* is changing?
 - ► Are *r*-based tools available?

Transmission intervals

- Sort of the poor relations of disease-modeling world
- ► Ad hoc methods
- ► Error often not propagated

How long is a disease generation? (present)

Definition

Generation Interval:

Interval between the time that an individual is infected by an infector and the time this infector was infected

Generation-interval distributions

Approximate generation intervals

- ► The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- ► Link r (exponential growth rate) and R (effective reproductive number)

Transmission intervals drive epidemics

- ▶ Population-level *Speed* of spread *r* is a product:
 - ightharpoonup Something about Strength $\mathcal R$
 - ×
 - Something about *Quickness*: Individual-level speed of transmission $g(\tau)$

Mechanistic perspective

- $\triangleright \mathcal{R}$ is known
- ▶ Quicker generations ⇒ faster population-level spread

HIV in sub-Saharan Africa

 $C \approx 18 \, \mathrm{month}$. Faster than expected.

Ebola outbreak

 $C \approx 1 \, \mathrm{month}$. Slower than expected.

Coronavirus speed

 $C \approx 5 \,\mathrm{day}$. Coronavirus!

Phenomenological perspective

- Population-level speed r is observed
- Quicker generations (low \bar{G}) $\implies lower \mathcal{R}$.

Powers et al., https://www.pnas.org/ content/111/45/15867

Generation interval

- One generation:
 - Latent period (time until infectiousness) +
 - Infectious waiting time (time until infection)
- Infectious waiting time
 - Drawn at random from infectious period
 - Equal to infectious period only when we assume a Markovian process

How long until the bus comes?

Transmission intervals

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ▶ Serial interval: symptoms ⇒ symptoms
 - Observable..., may be hard to define
- Other:
 - ▶ diagnosis ⇒ diagnosis
 - notification \improx notification
- ► Some cases are never symptomatic, or never diagnosed

Serial intervals

Steps

- Generation interval:
 - Latent + infectious waiting
- Serial interval:
 - Symptomatic waiting + Incubation

Outline

Linking $r\mathcal{R}$

Serial-interval distributions

Renewal-equation

- ➤ A broad framework that covers a wide range of underlying models
- \blacktriangleright $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - ightharpoonup k(au) measures how infectious a person is (on average) at time au after becoming infected
- k changes through time
 - proportion susceptible, control measures
 - we often think about fixed $k(\tau)$ though

Infection kernel

- k(τ) is the expected rate at which you infect at time τ after being infected
- $\int_{\tau} k(\tau) d\tau$ is the expected number of people infected:
 - R the effective reproductive number
- $\blacktriangleright k(\tau)/\mathcal{R}$ is a distribution:
 - $g(\tau)$, the *intrinsic* generation distribution

Estimation framework

- \blacktriangleright $k(\tau,t)$ is basically everything we want to know
- Usually unobservable, though
- ▶ Typically try to observe r or \mathcal{R}
- ightharpoonup and something about g(au)

Euler-Lotka equation

- ▶ If we assume k is not changing through time, we expect exponential growth
- $1 = \int k(\tau) \exp(-r\tau) \, d\tau$
 - ▶ i.e., the total of *discounted* contributions is 1
- ▶ $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$
- Note that $b(\tau) = k(\tau) \exp(-r\tau)$ is also a distribution
 - ► The initial "backwards" generation interval

Interpretation: generating functions

▶
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

$$ightharpoonup \mathcal{R} = 1/M(-r)$$

► J Wallinga, M Lipsitch; DOI: 10.1098/rspb.2006.3754

Compound-interest interpretation

- \blacktriangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- ▶ X is the compound-interest approximation to the exponential
 - Linear when $\kappa=1$ (i.e., when g is exponential)
 - lacktriangle Approaches exponential as $\kappa o 0$
- $r = (1/\bar{G}) \times \ell(\mathcal{R}; \bar{\kappa})$
- Park et al., Epidemics DOI:10.1101/312397

Product framework

- lacktriangle Quicker generations (small $ar{G}$) mean faster r for fixed ${\cal R}$
 - ightharpoonup \Longrightarrow Weaker $\mathcal R$ for fixed r
- lacktriangle More variation κ means more "compounding" of infections
 - quicker spread, when epidemic is growing

Approximating the rR relationship

Exponential growth rate (per generation)

Propagating error

Propagating error

Types of interval

Define:

- ▶ Intrinsic interval: How infectious is a patient at time τ after infection?
- Forward interval: When will the people infected today infect others?
- Backward interval: When did the people who infected people today themselves become infected?
- Censored interval: What do all the intervals observed up until a particular time look like?
 - Like backward intervals, if it's early in the epidemic

Growing epidemics

- Measured generation intervals look shorter at the beginning of an epidemic
 - A disproportionate number of people are infectious right now
 - They haven't finished all of their transmitting
 - We are biased towards observing faster events

Correcting backward intervals

Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

Generations in space

- Local interactions
- ▶ ⇒ wasted contacts
- realized generation intervals smaller than intrinsic
- $ightharpoonup \implies$ intrinsic GIs over-estimate ${\cal R}$
- Trapman et al., 2016. JRS Interface DOI:10.1098/rsif.2016.0288

Observed and estimated intervals

Outbreak estimation

Park et al. JRSI, DOI: 10.1098/rsif.2019.0719

Outline

Linking rR

Serial-interval distributions

Serial-interval distributions

The serial-mean paradox

- Serial intervals measure generations of the same process as generation intervals
 - Should have the same mean
 - But often larger variance (flu example)
- Empirically, even the means are not the same!
- Generation interval:
 - Latent + infectious waiting . . . of infector
- Serial interval:
 - Symptomatic waiting (infector) + Incubation (infectee)

Heterogeneity

- Generation intervals include latent period of infectors only (often strongly weighted)
- Serial intervals average over infectees (everyone is infected once)
- Coronavirus: people diagnosed early are less likely to transmit

The link paradox

- ► Imagine a renewal process where symptoms in the infector cause symptoms in the infectee
 - Assume homogeneity
- ▶ This has to match the same rR link as the true process
- But it also can't (because the serial interval is in general broader than the generation interval)
 - All else equal, a broader interval means lower R.

The forward serial interval

Dynamical effects mean that the forward serial interval is shortened!

Observed epidemiological intervals

Summary

- Strength \mathcal{R} and speed r are complementary ways to understand epidemic growth and control
- Transmission intervals are key to linking these measurements
 - Clear definitions
 - Combining different sources of information
 - Propagating error

Thanks

- Organizers and audience
- ► Collaborators:
 - Li, Park, Weitz, Bolker, Earn, Champredon, Gharouni, Papst, Hampson, So . . .
- ► Funders: NSERC, CIHR, PHAC, WHO, McMaster