Решение домашнего задания №

Роман Тарасов, группа 876

з 1. Задача первая

₄ 1.1 Пункт 1

 η

1

6 Исходная задача:

min
$$2x_1 + 3|x_2 - 10|$$

s.t. $|x_1 + 2| + |x_2| < 5$

с Сделаем замены:

$$|x_2 - 10| = t$$

$$x_2 - 10 = y_1$$

$$x_1 - 2 = y_2$$

$$p = 5$$

в Тогда можно переписать задачу в виде

min
$$2x_1 + 3t$$

s.t. $|y_1| = t$
 $|y_2| + |x_2| \le p$
 $x_2 - 10 = y_1$
 $x_1 - 2 = y_2$
 $p = 5$

9 Условие $|y_2| + |x_2| \le p$ можно записать как

 K_1 — конус, порождённый первой нормой. Обозначим этот конус за \mathcal{C}_1 .

Переменная t присутствует только в одном ограничении $|y_1| = t$. Причём, в целевой функции t присутствует с положительным коэффициентом. Значит, можно заменить это условие

13 на $|y_1| \le t$, и при этом оптимальное значение не изменится и будет достигаться при $|y_1| = t$. 14 То есть

$$\begin{pmatrix} y_1 \\ t \end{pmatrix} \in K_1 \tag{2}$$

15 K_1 — конус, порождённый первой нормой. Обозначим этот конус за \mathcal{C}_2 .

16 Окончательно

min
$$2x_1 + 3t$$
s.t.
$$\begin{pmatrix} 0 & 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \\ p \\ t \end{pmatrix} = \begin{pmatrix} 10 \\ -2 \\ 5 \end{pmatrix}$$

$$(x_1, y_1, t, y_2, x_2, p) \in \mathbb{R} \times \mathcal{C}_2 \times \mathcal{C}_1$$

3десь $\mathbb{R} \times \mathcal{C}_2 \times \mathcal{C}_1$ — конус. Ограничения типа равенств мы переписали в матричном виде.

$_{ ext{ iny 18}}$ 1.2 Π yhkt 2

19 Введём новую переменную $t = ||\mathbf{x}||_1$. Тогда задачу можно переписать как

$$\min t$$
s.t. $||\mathbf{x}||_1 = t$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

Здесь как и в предыдущей задаче переменная t участвует только в одном ограничении $||\mathbf{x}||_1 = t$. При этом в целевой функции она взята с положительным коэффициентом. Тогда можно заменить это ограничение на $||\mathbf{x}||_1 \le t$, то есть $(\mathbf{x},t) \in K_1$. При этом оптимальное значение будет то же самое, то есть в случае равенства $||\mathbf{x}||_1 = t$. Итак, задача в каноническом виде выглядит:

$$\min t$$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$(\mathbf{x}, t) \in K_1$$

₂₅ 1.3 Пункт 3

²⁶ $B(\mathbf{x}_c, R) = {\mathbf{x} \mid ||\mathbf{x} - \mathbf{x}_c|| \le R}.$

Сделаем новые переменные $\mathbf{y} = \mathbf{x} - \mathbf{x}_c$, и $\mathbf{z} = -\mathbf{A}\mathbf{x} + \mathbf{b}$. Тогда в новых переменных условия перепишутся в виде $||\mathbf{y}|| \le R$, $\mathbf{z} \ge \mathbf{0}$. Это означает, что $(\mathbf{y}, R) \in K_{||.||}$, $\mathbf{z} \in \mathbb{R}_+^m$. Здесь $K_{||.||}$ конус, порождённый той же нормой, что и шар.

Два ограничения типа равенства $\mathbf{y} = \mathbf{x} - \mathbf{x}_c$ и $\mathbf{z} = -\mathbf{A}\mathbf{x} + \mathbf{b}$ можем переписать в матричном виде и тогда получим задачу в каноническом виде

s.t.
$$\begin{pmatrix} \mathbf{A} & \mathbf{O} & -\mathbf{I} & \mathbf{0} \\ \mathbf{I} & -\mathbf{I} & \mathbf{O} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ R \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{x}_c \end{pmatrix}$$
$$\begin{pmatrix} \mathbf{x} \\ \mathbf{z} \\ \mathbf{y} \\ R \end{pmatrix} \in \mathbb{R}^n \times \mathbb{R}^m_+ \times K_{||.||}$$

👊 2. Задача вторая

зз Нарисуем допустимое множество:

Рис. 1: Допустимое множество

Оно имеет 4 угловые точки: $(0,0),(0,5),(4,0),\left(\frac{11}{3},\frac{4}{3}\right)$. Последняя точка — точка пересечения прямых $x_1+x_2=5$ и $2x_1+\frac{1}{2}x_2=8$. В силу фундаментальной теоремы линейного программирования в одной из этих точек достигается минимум целевой функции $f(x_1,x_2)=-5x_1-x_2$. Можно просто перебрать их.

•
$$f(0,0) = 0$$

•
$$f(0,5) = -5$$

•
$$f(4,0) = -20$$

•
$$f\left(\frac{11}{3}, \frac{4}{3}\right) = \frac{-59}{3}$$

42

Видим, что наименьшее значение достигается в точке (4,0) и равно -20.

₄₃ 3. Задача третья

44 Задача линейного программирования с ограничениями типа неравенств:

$$\min \ \mathbf{c}^{\mathsf{T}} \mathbf{x} \tag{3}$$

s.t.
$$\mathbf{A}\mathbf{x} \le \mathbf{b}$$
 (4)

45 В нашей задаче

$$\mathbf{c} = \begin{pmatrix} -2\\5\\14 \end{pmatrix}; \ \mathbf{A} = \begin{pmatrix} 4 & 3 & -1\\0 & 6 & 2\\-1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1 \end{pmatrix}; \ \mathbf{b} = \begin{pmatrix} -3\\7\\0\\0\\0 \end{pmatrix}$$
(5)

46 На семинаре было показано, что для задачи такого вида $g(\mu) = -\mathbf{b}^{\top} \mu - f^*(-\mathbf{A}\mu)$. Для линейной функции $f(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x}$ сопряжённая функция есть

$$f^*(\mathbf{y}) = \begin{cases} 0 & \mathbf{y} = \mathbf{c} \\ +\infty & \mathbf{y} \neq \mathbf{c} \end{cases}$$
 (6)

Случай с $+\infty$ нас не интересует, так как в двойственной задаче нам нужно отыскать максимум функции q. Поэтому двойственная задача выглядит так:

$$\max -\mathbf{b}^{\top} \mu \tag{7}$$

$$s.t. - \mathbf{A}^{\mathsf{T}} \mu = \mathbf{c} \tag{8}$$

$$\mu \ge \mathbf{0} \tag{9}$$

Перепишем это в более удобной форме:

$$\max 3\mu_1 - 7\mu_2$$
s.t.
$$-\mu_1 + 2\mu_2 - \mu_5 = 2$$

$$3\mu_1 + 6\mu_2 - \mu_4 = -5$$

$$4\mu_1 - \mu_3 = -14$$

$$\mu_i > 0$$

 μ_3, μ_4, μ_5 не используются в целевой функции, но зато неотрицательно, поэтому можем исключить их и заменить на неравенства

$$\max 3\mu_1 - 7\mu_2$$
s.t. $-\mu_1 + 2\mu_2 \ge -14$ (1)

$$3\mu_1 + 6\mu_2 \ge -5\tag{2}$$

$$4\mu_1 \ge 2 \tag{3}$$

$$\mu_i \ge 0$$

Переменных всего 2, поэтому и тут можем решить проведя аналитические рассуждения. В силу неотрицательности переменных неравенство (2) выполнено всегда, поэтому его можно исключить. Умножим неравенство (2) на -3. Получили $3\mu_1 - 6\mu_2 \le 42$. Тогда в силу того что $\mu_2 \ge 0$ получаем оценку для целевой функции: $3\mu_1 - 7\mu_2 = 3\mu_1 - 6\mu_2 - \mu_2 \le 42 + 0 = 42$. При этом значение 42 достигается при $\mu_1 = 14$, $\mu_2 = 0$. При этом $-\mu_1 + 2\mu_2 = -14 \ge -14$, $4\mu_1 = 56 \ge 2$, $\mu_1 \ge 0$, $\mu_2 \ge 0$. Значит, точка (14,0) входит в допустимое множество, а значит в ней достигается максимум.

Покажем, что для исходной задачи выполнено условие Слейтера. Тогда из этого будет следовать, что 42 есть минимум целевой функции в исходной задаче.

Все функции ограничений и целевая линейны, поэтому задача выпукла. Также существует точка $(\frac{1}{10^{137}}, \frac{1}{998}, 3.25)$, для которой все неравенства строгие:

$$6 \cdot \frac{1}{9^{98}} + 2 \cdot 3.25 = 6 \cdot \frac{1}{9^{98}} + 6.5 < 7$$

$$4 \cdot \frac{1}{10^{137}} + 3 \cdot \frac{1}{9^{98}} - 3.25 < -3$$

$$\frac{1}{9^{98}} > 0$$

$$\frac{1}{10^{137}} > 0$$

$$3.25 > 0$$

Следовательно, 42 — решение прямой задачи.

₆₅ 4. Задача четвёртая

64

Разделим для удобства первое равенство на 2. И введём новые переменные x_5 , x_6 , чтобы превратить неравенства в равенства.

$$\min \ x_1 + x_2 + 2x_3 - 2x_4$$
 s.t.
$$2x_1 + x_2 + x_3 + 2x_4 = 4$$

$$-x_1 + 2x_3 + x_4 + x_5 = 3$$

$$x_1 + 2x_3 + 2x_4 + x_6 = 5$$

$$x_{123456} \ge 0$$

Угадаем начальную точку (0,4,0,0,3,5). Для неё $\mathbf{c}_{\mathcal{B}_i} = (1,0,0)^{\top}$, $\mathbf{x}_{\mathcal{B}_0} = (4,3,5)^{\top}$. Тогда $-\mathbf{c}_{\mathcal{B}_i}^{\top} \mathbf{x}_{\mathcal{B}_0} = -4$. Вычислим также и оценки замещения $c'_j = c_j - \mathbf{c}_{\mathcal{B}_i}^{\top} \mathbf{a}_j$. $c'_2 = c'_5 = c'_6 = 0$, так как эти переменные базисные. Для остальных:

$$c'_1 = 1 - (1, 0, 0)(2, -1, 1)^{\top} = -1$$

 $c'_3 = 2 - (1, 0, 0)(1, 2, 2)^{\top} = 1$

	$ x_1 $	x_2	x_3	x_4	x_5	x_6
$ -\mathbf{c}_{\mathcal{B}_{\prime}}^{\top} \mathbf{x}_{\mathcal{B}_{0}} = -4$	-1	0	1	-4	0	0
$x_2 = 4$	2	1	1	2	0	0
$x_5 = 3$	-1	0	2	1	1	0
$x_6 = 5$	1	0	2	2	0	1

$$c_4' = -2 - (1, 0, 0)(2, 1, 2)^{\mathsf{T}} = -4$$

Среди отрицательных оценок замещения выбираем ту, у которой наименьший индекс. Это оценка для переменной x_1 . То есть, $j^* - 1$.

Матрица базиса единичная, поэтому $\mathbf{u} = B^{-1}\mathbf{a}_1 = (2, -1, 1)^{\top}$. $\theta^* = min\left(\frac{4}{2}, \frac{5}{1}\right) = 2$, и отсюда l=2. Далее выполняем операции со строками матрицы, чтобы столбцы новой базисной марицы стали единичными, а оценка замещения для x_1 занулилась.

	$ x_1 $	x_2	x_3	x_4	x_5	x_6
$ -\mathbf{c}_{\mathcal{B}_1}^{\top} \mathbf{x}_{\mathcal{B}_1} = -2$	0	0.5	1.5	-3	0	0
$ \begin{aligned} x_1 &= 2 \\ x_5 &= 5 \\ x_6 &= 3 \end{aligned} $	1	0.5	$0.5 \\ 2.5$	1	0	0
$x_5 = 5$	0	0.5	2.5	2	1	0
$x_6 = 3$	0	0.5	1.5	1	0	1

Проделываем аналогичные вычисления. Здесь $j^* = 4, l = 1.$

	$ x_1 $	x_2	x_3	x_4	x_5	x_6
$-\mathbf{c}_{\mathcal{B}_2}^{\top} \mathbf{x}_{\mathcal{B}_2} = 4$	3	2	2	0	0	0
$x_1 = 4$	1	0.5	0.5	1	0	0
$x_5 = 1$	-2	-0.5	1.5	0	1	0
$x_6 = 1$	-1	0	1	0	0	1

Все оценки замещения неотрицательны, значит, в точке ((0,0,0,2,1,1) достигается минимум целевой функции, который равен $\mathbf{c}_{\mathcal{B}_2}^{\top}\mathbf{x}_{\mathcal{B}_2}=-4.$

₇₉ 5. Задача пятая

80 Фаза 1

ві Вспомогательная задача:

$$\min x_6 + x_7 + x_8$$
s.t. $x_1 + 3x_2 + 4x_4 + x_5 + x_6 = 2$

$$x_1 + 2x_2 - 3x_4 + x_5 + x_7 = 2$$

$$-x_1 - 4x_2 + 3x_3 + x_8 = 1$$

$$x_1, \dots, x_8 \ge 0$$

Начальная точка (0,0,0,0,0,2,2,1), $\mathbf{c}_{\mathcal{B}_0}^{\top}=(1,1,1)^{\top}.$ Решаем вспомогательную задачу:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
$-\mathbf{c}_{\mathcal{B}_0}^{\top}\mathbf{x}_{\mathcal{B}_0} = -5$	-1	-1	-3	-1	-2	0	0	0
$\begin{array}{c c} x_6 = 2 \\ x_7 = 2 \end{array}$	1	3	0	4	1	1	0	0 0
$x_7 = 2$	1	2	0	-3	1	0	1	0
$x_8 = 1$	-1	4	3	0	0	0	0	$1 \mid$

$$j^* = 1, l = 6$$

	$ x_1 $	x_2	x_3	x_4	x_5	x_6	x_7	x_8
$-\mathbf{c}_{\mathcal{B}_1}^{\top} \mathbf{x}_{\mathcal{B}_1} = -3$	0	2	-3	3	-1	1	0	0
$x_1 = 2$	$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	3	0	4	1	1	0	0
$x_7 = 0$	0	-1	0	-7	0	-1	1	0
$x_8 = 3$	0	-1	3	4	1	1	0	1

$$j^* = 3, l = 8$$

	$ x_1 $	x_2	x_3	x_4	x_5	x_6	x_7	x_8
$-\mathbf{c}_{\mathcal{B}_2}^{\top}\mathbf{x}_{\mathcal{B}_2} = 0$	0	1	0	7	0	2	0	0
$x_1 = 2$	1	3	0	4	1	1	0	0
$x_7 = 0$	0	-1	0	-7	0	-1	1	0
$x_3 = 1$	0	$-\frac{1}{3}$	1	$\frac{4}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$

Итак, решение вспомогательной задачи нулевое. Следовательно, исходная задача имеет решение и начальная точка есть (2,0,1,0,0). Строку со вспомогательной переменной x_7 можно исключить из таблицы.

$$oldsymbol{\Phi}$$
аза $oldsymbol{2}$ $\mathbf{c}_{\mathcal{B}_0}^ op = (2,3)^ op.$

	x_1	x_2	x_3	x_4	x_5
$ -\mathbf{c}_{\mathcal{B}_0}^{\top} \mathbf{x}_{\mathcal{B}_0} = -7 $	0	-2	0	-11	-5
$x_1 = 2$	1	3	0	4	1
$x_1 = 2$ $x_3 = 1$	0	$-\frac{1}{3}$	1	$\frac{4}{3}$	$\frac{1}{3}$

$$j^* = 2, l = 1$$

	$ x_1 $	$ x_2 $	$ x_3 $	x_4	x_5
$\left -\mathbf{c}_{\mathcal{B}_1}^{\top} \mathbf{x}_{\mathcal{B}_1} = -\frac{17}{3} \right $	$\frac{2}{3}$	0	0	$-\frac{25}{3}$	$-\frac{13}{3}$
$\begin{array}{ c c } x_2 = \frac{2}{3} \\ x_3 = \frac{11}{9} \end{array}$	$ \begin{vmatrix} \frac{1}{3} \\ \frac{1}{9} \end{vmatrix} $	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\frac{\frac{4}{3}}{\frac{16}{9}}$	$\frac{1}{3}$

$$j^* = 4, l = 2$$

	x_1	x_2	$ x_3 $	x_4	$\mid x_5 \mid$
$-\mathbf{c}_{\mathcal{B}_2}^{ op}\mathbf{x}_{\mathcal{B}_2} = -rac{3}{2}$	$\frac{11}{4}$	$\frac{29}{4}$	0	0	$ -\frac{9}{4} $
	$\begin{vmatrix} \frac{1}{4} \\ -\frac{1}{3} \end{vmatrix}$	$\begin{array}{ c c }\hline \frac{3}{4} \\ -\frac{4}{3} \\ \hline \end{array}$	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}$

$$j^* = 5, l = 4$$

	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
$\left -\mathbf{c}_{\mathcal{B}_3}^{\top} \mathbf{x}_{\mathcal{B}_3} = -3 \right $	5	14	0	9	0
$x_5 = 2$ $x_3 = \frac{1}{3}$	1	3	0	4	1
$x_3 = \frac{1}{3}$	_	_	1	—	_

93 Итак, минимум функции достигается на наборе $(0,0,\frac{1}{3},0,2)$ и равен -3.

94 6. Задача шестая

95 Введём новые переменные, чтобы превратить неравенства в равенства

Введём новые переменные ${f z}$ и ${f y}$ и параметр M. Запишем вспомогательную задачу для M-метода:

$$\min \ z_1 + 2z_2 + 3z_3 + 4z_4 + M(y_1 + y_2 + y_3)$$
s.t.
$$4z_1 + 3z_2 + 2z_3 + z_4 + z_5 + y_1 = 10$$

$$z_1 - z_3 + 2z_4 + y_2$$

$$z_1 + z_2 + z_3 + z_4 - z_6 + y_3 = 1$$

$$\mathbf{z} \ge \mathbf{0}$$

$$\mathbf{y} \ge \mathbf{0}$$

98 Начальная точка для этой задачи (0,0,0,0,0,0,1,1,1), $\mathbf{c}_{\mathcal{B}}^{\top}$. Далее будем решать задачу 99 табличным методом, при этом помня, что M можно взять достаточно большой.

	z_1	z_2	z_3	z_4	z_5	z_6	y_1	y_2	y_3
$\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}} = -13\mathrm{M}$	1-6M	2-4M	3-2M	4-4M	-M	Μ	0	0	0
$y_1 = 10$	4	3	2	1	1	0	1	0	0
$y_2=2$	1	0	-1	2	0	0	0	1	0
$y_3=1$	1	1	1	1	0	-1	0	0	1

$$j^* = z_1, \ l = y_3$$

	z_1	z_2	z_3	z_4	z_5	z_6	y_1	y_2	y_3
$\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}} = -7\mathrm{M}\text{-}1$	0	2M+1	$4\mathrm{M}\!+\!2$	2M+3	-M	-5M+1	0	0	6M-1
$y_1 = 6$	0	-1	-2	-3	1	4	1	0	-4
$y_2 = 1$	0	-1	-2	1	0	1	0	1	-1
$z_1=1$	1	1	1	1	0	-1	0	0	1

$$j^* = z_5, l = y_1$$

	z_1	z_2	z_3	z_4	z_5	z_6	y_1	y_2	y_3
$\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}} = -M-1$	0	$\mathrm{M}\!+\!1$	2M+2	-M+3	0	-M+1	Μ	0	2M-1
$z_5 = 6$	0	-1	-2	-3	1	4	1	0	-4
$y_2 = 1$	0	-1	-2	1	0	1	0	1	-1
$z_1=1$	1	1	1	1	0	-1	0	0	1

$$j^* = z_6, l = y_2$$

	z_1	z_2	z_3	z_4	z_5	z_6	y_1	y_2	y_3
$\mathbf{c}_{\mathcal{B}}^{T}\mathbf{x}_{\mathcal{B}} = -2$	0	2	4	2	0	0	М	M-1	Μ
$z_5 = 6$	0	3	6	-7	1	0	1	-4	0
$z_6=1$	0	-1	-2	1	0	1	0	1	-1
$z_1=1$	1	0	-1	2	0	0	0	1	0

Таким образом, оптимальное значение функции достигается на наборе $(x_1, x_2, x_3, x_4) = (2, 0, 0, 0)$ и равно 2.

ոь **7.** Задача седьмая

введём новые переменные $\mathbf{y}_i = \mathbf{A}_i \mathbf{x} - \mathbf{b}_i$, $i = 1, \dots, k$, $\mathbf{z} = \mathbf{x} - \mathbf{x}_0$. Тогда задачу можно переписать в следующем виде:

$$\min \sum_{i=1}^{k} ||\mathbf{y}_i||_1 + \frac{1}{2} ||\mathbf{z}||_2^2$$
s.t. $\mathbf{y}_i = \mathbf{A}_i \mathbf{x} - \mathbf{b}_i, \ i = 1, \dots, k$

$$\mathbf{z} = \mathbf{x} - \mathbf{x}_0$$

Целевая функция $f(\mathbf{x}, \mathbf{y}_i, \dots, \mathbf{y}_k, \mathbf{z}) = \sum_{i=1}^k ||\mathbf{y}_i||_1 + \frac{1}{2}||\mathbf{z}||_2^2$ не зависит явно от \mathbf{x} . Ограничения можно переписать в матричной форме:

$$\begin{pmatrix}
\mathbf{A}_{1} & -I & \mathbf{O} & \mathbf{O} & \dots & \mathbf{O} & \mathbf{O} \\
\mathbf{A}_{2} & \mathbf{O} & -I & \mathbf{O} & \dots & \mathbf{O} & \mathbf{O} \\
\dots & & & \dots & & \dots \\
\mathbf{A}_{k} & \mathbf{O} & \mathbf{O} & \mathbf{O} & \dots & -I & \mathbf{O} \\
I & \mathbf{O} & \mathbf{O} & \mathbf{O} & \dots & \mathbf{O} & -I
\end{pmatrix}
\begin{pmatrix}
\mathbf{x} \\
\mathbf{y}_{1} \\
\vdots \\
\vdots \\
\mathbf{y}_{k} \\
\mathbf{z}
\end{pmatrix} =
\begin{pmatrix}
\mathbf{b}_{1} \\
\vdots \\
\vdots \\
\mathbf{b}_{k} \\
\mathbf{x}_{0}
\end{pmatrix}$$
(10)

Обозначим большую блочную матрицу за ${\bf A}$, а последний вектор за ${\bf b}$. Пусть вектор переменных Лагранжа есть

$$\lambda = \begin{pmatrix} \lambda_1 \\ \cdot \\ \cdot \\ \cdot \\ \lambda_k \\ \mu \end{pmatrix} \tag{11}$$

Здесь подвектор λ_i отвечает за ограничение $\mathbf{A}_i \mathbf{x} - \mathbf{y}_i = \mathbf{b}_i$, а подвектор μ за ограничение $\mathbf{x} - \mathbf{x}_0 = \mathbf{z}$. На семинаре было показано, что двойственная функция будет равна $g(\lambda_1, \dots, \lambda_k, \mu) = g(\lambda) = -\lambda^\top \mathbf{b} - f^*(-\mathbf{A}^\top \lambda)$. Распишем подробнее произведение $-\mathbf{A}^\top \lambda$:

$$-\mathbf{A}^{\top}\lambda = \begin{pmatrix} -\sum_{i=1}^{k} \mathbf{A}_{i}^{\top}\lambda_{i} - \mu \\ \lambda_{1} \\ \vdots \\ \lambda_{k} \\ \mu \end{pmatrix}$$

$$(12)$$

 $f(\mathbf{x}, \mathbf{y}_i, \dots, \mathbf{y}_k, \mathbf{z}) = \sum_{i=1}^k ||\mathbf{y}_i||_1 + \frac{1}{2}||\mathbf{z}||_2^2 = h(\mathbf{x}) + \sum_{i=1}^k f_k(\mathbf{y}_i) + f_0(\mathbf{z})$, где $f_i(\mathbf{y}_i) = ||\mathbf{y}_i||_1$, а $f_0(\mathbf{z}) = \frac{1}{2}||\mathbf{z}||_2^2$, $h(\mathbf{x}) \equiv 0$. Тогда

$$f^*(-\mathbf{A}^{\top}\lambda) = f^*(-\sum_{i=1}^k \mathbf{A}_i^{\top}\lambda_i - \mu, \lambda_1, \dots, \lambda_k, \mu) = h^*(-\sum_{i=1}^k \mathbf{A}_i^{\top}\lambda_i - \mu) + \sum_{i=1}^k f_i^*(\lambda_i) + f_0^*(\mu)$$

$$h^*(\mathbf{y}) = \sup_{\mathbf{x}} \langle \mathbf{y}, \mathbf{x} \rangle = \begin{cases} 0 & \mathbf{y} = 0 \\ +\infty & \mathbf{y} \neq 0 \end{cases}$$

$$(13)$$

117 На семинаре было показано, что

$$f_i^*(\lambda_i) = \begin{cases} 0 & ||\lambda_i||_{\infty} \le 1\\ +\infty & ||\lambda_i||_{\infty} > 1 \end{cases}$$

$$f_0^*(\mu) = \frac{1}{2} ||\mu||_2^2$$
(14)

Так как мы ищем максимум двойственной функции, то нас не интересует значение функ-119 ции $f_i^* = +\infty$, поэтому можем принять все $f_i^* = 0$ и добавить условие $||\lambda_i||_\infty \le 1$. Также 120 нужно добавить условие $-\sum_{i=1}^k \mathbf{A}_i^\top \lambda_i - \mu = \mathbf{0}$ для равенства нули функции h^* . Получим

$$\max -\lambda^{\top} \mathbf{b} - \frac{1}{2} ||\mu||_{2}^{2}$$
s.t. $||\lambda_{i}||_{\infty} \leq 1, i = 1, \dots, k$

$$-\sum_{i=1}^{k} \mathbf{A}_{i}^{\top} \lambda_{i} - \mu = \mathbf{0}$$