

Chirping Up the Right Tree: Incorporating biological taxonomies into deep bioacoustic classifiers

Vincent Lostanlen

Andrew Farnsworth

Justin Salamon

Motivation

Migratory birds are in peril!

- Phenomena like deforestation and climate change threaten many avian habitats
- Tracking migratory changes can help conservation efforts

How do we track migratory birds?

 <u>Birdwatchers</u>: wide geographical coverage, but limited to daytime

Practical Use Case: BirdVox Project

Machine listening relies on class hierarchies

Tend to be based on similarity judgements that may vary across **individuals**, **cultures**, and **use cases**

Evolutionary biology can provide structure!

- Darwinian classification yields a systematic phylogentic hierarchy
- We can try to leverage these biological taxonomies in machine listening!

Big idea

- We leverage biological hierarchies to impose inductive bias on bioacoustic classifiers to make more effective use of data
- Achieve this via multi-task training and hierarchical model architectures
- Benefits:
 - Encourage model to learn hierarchical relationships
 - o In conservation science, most insightful taxonomic level may not be known a priori
 - Train one model instead of multiple for multi-level prediction

Methods

Our Taxonomy

Base Model (Salamon et al. 2017)

Architecture used in state of the art flight call classification method

Base Model (Salamon et al. 2017)

Architecture used in state of the art flight call classification method

TaxoNet Hierarchical Composition Block

Feature maps at layers are partitioned, with each partition mapping to a member of the current taxonomic level

Partitions for a taxa member in the current layer only connect to partitions corresponding to descendents in the next taxonomic level, mirroring the structure of the taxonomy

Experimental Design - New Datasets

- American Northwest Avian Flight Call Classification (ANAFCC)
 - https://doi.org/10.5281/zenodo.3666782
 - **Aggregation of datasets:** BirdVox-70k, CLO-43SD, CLO-SWTH, CLO-WTSP, Macauly Library, Xeno-Canto, Old Bird
 - Verified and re-annotated by expert ornithologist (Andrew Farnsworth)
 - Used for training and validation
- BirdVox 14 Species Dataset (BirdVox-14SD)
 - https://doi.org/10.5281/zenodo.3667094
 - Sampled from 10 autonomous recording units over a full migration season, annotated for 14 species and "other"
 - Used for testing
- Enforce consistent distribution of species across splits using knapsack solver

Experimental Design - Training

- Input: log-scale mel-frequency spectrogram with per-channel energy normalization (PCEN) applied
- **Data augmentation:** pitch shifting, time-stretching, additive background noise
- Uniformly sampled with respect to fine-level classes using pescador
- Equally weighted multi-task training used to train at multiple taxonomic levels
- Evaluate using micro-averaged (class independent) accuracy

Evaluation

Baseline Models - Flat Single-Task

- Train a model specialized for each taxonomic level
- Two main strategies:
 - "Specialist" at a given level, predict using a model trained at that level
 - "Coarsening" at a given level, predict using a model trained at a finer level and project up to the corresponding level

Target-Level Prediction

Results: Fine-Level Prediction

- TaxoNet outperforms the specialist baseline at the fine level!
- Leveraging hierarchical classification improves performance even if we only care about the finest level!

Results: Medium-Level Prediction

- TaxoNet still outperforms specialist strategy at the medium level
- TaxoNet significantly outperforms coarsening strategy

TaxoNet is capable of multi-tasking!

Results: Coarse-Level Prediction

- Important to note that there is **severe class imbalance** at the coarse level
- TaxoNet matches specialist strategy performance and coarsening from the medium level
- TaxoNet significantly outperforms coarsening from the fine level

Ablation Studies

1. Non-hierarchical multi-task model

2. Hierarchical baseline model - block

3. Hierarchical containment model - block

4. Hierarchical composition multiclass - block

Ablation Comparisons

- TaxoNet performs best at fine-level
- TaxoNet performs second best at medium level
- All ablations perform similarly to TaxoNet at the coarse level

Model	Fine-Level Accuracy	Medium-Level Accuracy	Coarse-Level Accuracy
<u>TaxoNet</u>	66.33	76.50	94.69
Non-Hierarchical Multi-Task	61.82	75.10	94.39
Hierarchical Baseline	58.74	75.83	94.54
Hierarchical Containment	63.47	79.36	94.75
Hierarchical Composition Multi-Class	60.39	75.94	94.67

1. Non-hierarchical multi-task model

Model	Fine-Level Accuracy	Medium-Level Accuracy	Coarse-Level Accuracy
<u>TaxoNet</u>	66.33	76.50	94.69
1.	61.82	75.10	94.39

2. Hierarchical baseline model - block

Model	Fine-Level Accuracy	Medium-Level Accuracy	Coarse-Level Accuracy
<u>TaxoNet</u>	66.33	76.50	94.69
2.	58.74	75.83	94.54

3. Hierarchical containment model - block

Model	Fine-Level Accuracy	Medium-Level Accuracy	Coarse-Level Accuracy
<u>TaxoNet</u>	66.33	76.50	94.69
3.	63.47	79.36	94.75

4. Hierarchical composition multiclass - block

Model	Fine-Level Accuracy	Medium-Level Accuracy	Coarse-Level Accuracy
<u>TaxoNet</u>	66.33	76.50	94.69
4.	60.39	75.94	94.67

In summary:

- TaxoNet matches or outperforms specialist and coarsening strategies
- Deep hierarchical classification exploits taxonomic relationships to better leverage the training data
- New datasets: ANAFCC and BirdVox-14SD
- Open-source flight call classification: BirdVoxClassify
 - Integrated with BirdVoxDetect: pip install birdvoxdetect
- // TODO:
 - Enforcing hierarchical consistency
 - Exploring the effect of the depth and width of taxonomies

https://github.com/BirdVox/birdvoxclassify https://github.com/BirdVox/cramer2020icassp

Thank you!