Домашняя контрольная работа

Александр Нехаев

Задача 1

У вас тяжелый день - вместо монокристальных подложек Si (510) Вам привезли подложки Si (210). Руководитель требует от Вас оценки возможности использования этих подложек в Ваших экспериментах. Обычно Вы проводите съемку на $CrK\alpha_1$, λ =2.2897 Å, геометрия "на отражение" в режиме симметричного сканирования. На каком углу Вы увидите первый рефлекс? Кремний Si - кубический кристалл, Fd-3m, a = 5.4309 Å.

Решение

Условие наблюдения дифракционного максимума: $\vec{k}' - \vec{k} = \vec{q}_{hkl}$. В свою очередь:

$$\left| \vec{k'} - \vec{k} \right| = 2 \cdot \frac{1}{\lambda} \cdot \sin\left(\frac{2\theta}{2}\right)$$

$$\left| \overrightarrow{q_{\text{hkl}}} \right| = \frac{\sqrt{h^2 + k^2 + l^2}}{a}$$

тогда

$$\sin\theta = \frac{\sqrt{h^2 + k^2 + l^2} \lambda}{2 a}$$

Рассматриваем подложку (510). Величина угла для нее:

Видим, что условие дифракции не выполняется, поскольку синус угла больше 1.

Рассматриваем подолжку (210). Угол будет:

Out[10]=
$$0.471432$$

Синус угла меньше 1, однако не выполнено условие отражения для пространственной группы Fd-3m:

Следующий вектор (420). Сразу проверяем условия отражения:

Теперь находим угол 2θ (в градусах):

Out[16]=
$$141.076$$

Задача 2

Все события в один день! После подложек Вам привезли специальную ячейку для исследования в режиме *in situ*. Ее конструкция проста (*k*, *k*' - волновые вектора первичного и вторичного пучков):

Вы работаете в режиме симметричного сканирования на $\operatorname{Cr} K\alpha_1$, $\lambda = 2.2897\,$ Å, геометрия "на отражение". Определите угловую зависимость ослабления интенсивности рефлексов фольгой. Насколько сильно уменьшится интенсивность рефлекса на $10^{\circ}\,2\theta$? На $50^{\circ}\,2\theta$? Массовый коэффициент поглощения $\operatorname{Cr} K\alpha_1$ для алюминия $157.5\,\operatorname{cm}^2/\mathrm{r}$, плотность алюминия $2.7\,\mathrm{r}/\mathrm{cm}^3$.

Решение

$$ln[17]:=$$
 $\lambda = 2.29 \text{ Å}$;
 $\rho = 2.7 \text{ g/cm}^3$;
 $\mu = 157.5 \text{ cm}^2/\text{g}$;
 $z = 1 \mu\text{m}$;

Закон Бугера-Ламберта-Бэра:

$$I_x = I_0 e^{-\mu x}$$

Закон Мозли:

$$x = \frac{2 \rho z}{\sin(\theta)}$$

Коэффициент 2 отражает, что луч проходит фольгу 2 раза.

Итоговая формула для отношения будет иметь вид:

$$\frac{I_{x}(2 \theta)}{I_{0}} = e^{-\mu \frac{2 \rho z}{\sin(\theta)}}$$

Находим искомые отношения $\left(\frac{I(10\,^\circ)}{I_0}$ и $\frac{I(50\,^\circ)}{I_0}\right)$:

	10°	0.376876
Out[23]=	50°	0.817712

Задача 3

Рассчтайте интенсивность рефлексов (100) и (111) на дифрактограмме поликристаллического образца CuAu $_3$ ($\alpha = 3.965$ Å, S.G. Pm-3m, координаты атомов Cu(0,0,0) и Au(0.5,0.5,0.0), тепловыми колебаниями пренебрегайте, заселенности позиций единичные). Для упрощения расчетов считайте, что рассеивающий фактор атома $F = Ze^{\frac{\sin\theta}{\lambda}} (\lambda = [\mathring{A}] - \text{показатель экспоненты в } \mathring{A}^{-1}, Z - \text{атомный номер}),$ аномальным рассеянием можно пренебречь. Съемка проводится на излучении $CuK\alpha_1$, $\lambda = 1.5406$ Å, геометрия "на отражение", монохроматор отсутствует. Считайте единичными интенсивность первичного пучка, абсорбционный фактор, текстурный фактор и фактор экстинкции.

Решение

План действий:

- 1. Углы дифракционные $\left(d_{\rm hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}\right) \to 2 \ d_{\rm hkl} = {\rm Sin}[q_{\rm hkl}] = \lambda \to 2 \ \theta$
- **2.** p(100) = 6, p(111) = 8
- 3. LPG= 2θ
- **4.** F_{Cu} , $F_{\text{Au}} < -2 \theta$
- **5.** $(100) = F_{\text{Cu}} + F_{\text{Au}} F_{\text{Au}} F_{\text{Au}} = F_{\text{Cu}}(2 \theta) F_{\text{Au}}(2 \theta)$
- **6.** LPG $(2 \theta) * p (100) * |F_{100}|^2$

Решение

Начнем с уравнения интенсивности рефлекса на дифрактограмме. В полной форме оно имеет вид:

$$I_{\text{hkl}} = p_{\text{hkl}} \cdot A \cdot \text{LPG} \cdot T(h \ k \ l) \cdot E_{\text{hkl}} \cdot |F_{\text{hkl}}|^2$$

Однако по условию:

$$A = 1$$
, $T(hkl) = 1$, $E_{hkl} = 1$

поэтому:

$$I_{hkl} = p_{hkl} \cdot LPG \cdot |F_{hkl}|^2$$
.

Теперь будем выражать переменные, входящие в полученное уравнение по порядку.

1. p_{hkl} - фактор повторяемости для рефлексов 100 и 111 соотвественно:

$$In[24]:= p = \{6, 8\};$$

2. Теперь рассматриваем LPG- фактор. Для его нахождения нам нужны значения углов 2 θ . Для этого сначала находим межплоскостные расстояния $d_{\rm hkl}$ по формуле (1).

$$d_{\rm hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \tag{1}$$

Out[29]=

d _{hkl}	100	3.965 Å
	111	2.28919 Å

Затем используя закон Брэгга (2) находим значения углов 2 θ .

$$2 d_{hkl} \sin(\theta) = \lambda n$$

$$\sin(\theta) = \frac{\lambda n}{2 d_{hkl}}$$
(2)

Out[33]=

θ°	100	22.4106
	111	39.3375

Для пространственной группы Pm-3 m отсутствуют условия погасания и первые пики рассматриваемых рефлексов будут наблюдаться на полученных углах.

LPG - фактор находится по формуле:

$$LPG[\theta] = \frac{1 + \cos(2\theta)^2}{\sin(\theta)^2 \cos(\theta)}$$

Находим соотвествующие значения из полученных углов:

Out[36]=

LPG	100	50.0683
	111	14.9815

3. Теперь ищем структурную амплитуда. Её формула имеет вид:

$$F_{\text{hkl}} = \sum_{j} g_j \ t_j(q_{\text{hkl}}) \ e^{2\pi i (h x_j + k y_j + l z_j)} \cdot F_j^{\text{atom}}(q_{\text{hkl}})$$

По условию мы пренебрегаем тепловыми колебаниями, откуда $t_j(q_{\mathrm{hkl}}) = 1$, заселенности позиций g_j так же единичные.

Суммируем по атомам в элементарной ячейке - по одному Си и по 3м Аи. Формула принимает вид:

$$F_{\text{hkl}} = \sum_{j} e^{2\pi i (h x_j + k y_j + l z_j)} \cdot Z \cdot e^{-\frac{\sin(\theta)}{\lambda}}$$

С учетом структуры решетки, определяем координаты атомов в элементарной ячейке (выделена зеленым для наглядности).

Получаем, что для Cu кординаты (0,0,0), а для атомов Au: $(\frac{1}{2},\,\frac{1}{2},\,0),\,(\frac{1}{2},\,0,\,\frac{1}{2}),\,(0,\,\frac{1}{2},\,\frac{1}{2}).$

Наконец структурные амплитуды для 100 и 111 соотвественно (Z_{Cu} = 29, Z_{Au} = 79):

	F _{hkl}	100	-50 e ^{-0.126103 /Å}
Out[44]=		111	266 e -0.218418/Å

4. В итоге интенсивности:

	I	100	$(7.51025 \times 10^5) e^{-2.52207 \times 10^{-1}/\text{Å}}$
Out[46]=		111	$(8.48026 \times 10^6) e^{-4.36835 \times 10^{-1}/\text{Å}}$

Задача 4

На рентгенограмме ромбического соединения GdFeO 3 имеются следующие линии: 3.870 Å (110), 2.806 Å (020) и 2.725 Å (112). Определите параметры элементарной ячейки. Определите число формульных единиц на ячейкуZ, если $ho_{\text{пикн.}}$ = 7.510 г/см 3 $(M_{\rm Gd}=157.25\;;\,M_{\rm Fe}=58.85\;;\,M_O=16.00\,).$

Решение

Вектор обратной решетки для ромбического соединения:

$$\frac{1}{d_{\text{hkl}}} = \sqrt{\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}}$$

Записываем систему уравнений в матричном виде исходя из рефлексов:

Находим значения a, b, c соотвественно:

In[47]:= {a, b, c} = LinearSolve
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix}^2$$
, $\begin{bmatrix} 3.87 \text{ Å} \\ 2.806 \text{ Å} \\ 2.725 \text{ Å} \end{bmatrix}^{-1/2}$

Out[47]=
$$\{ \{ 5.34385 \text{ Å} \}, \{ 5.612 \text{ Å} \}, \{ 7.67533 \text{ Å} \} \}$$

Зная значения а, b, c можем определить число формульных единиц в элементарной ячейке

$$z = \frac{\rho \cdot V \cdot N_a}{\sum_{i=1}^n M_i}$$

Out[51]= 3.94178

Залача 5

Рефлекс (311) нанопорошка γ – Al₂ O₃ (Пр. гр. Fd –3 m, a = 7.9448 Å) по результатам профильного анализа хорошо аппроксимируется функцией Лоренца и имеет полуширину 0.3440°. Считая инструментальный вклад в полуширину линейно-аддитивным и равным 0.05°, рассчитайте эффективный размер ОКР. Съемка проводилась на излучении Си K α_1 .

Решение

Исходные данные:

```
In[52]:= h = 3;
    k = 1;
    l = 1;
    a = Quantity [7.9448 , "Angstroms "];
    FWHM = 0.3440 °;
    InstrumentalError = 0.05 °;
```

Формула Шеррера:

$$r = \frac{\lambda K}{\beta \cos(\theta)}$$

Уравнение Брэгга

$$2 d_{hkl} \sin(\theta) = \lambda$$

Ищем
$$d_{hkl}$$
 как $d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$:

Теперь ищем угол θ из уравнения Брэгга:

Out[59]=
$$0.327474$$

Ищем интегральную ширину из полуширины с учетом инструментального вклада:

```
Out[60]= 0.00806018
```

Наконец, находим эффективный размер (считаем K=1):

Out[61]= 201.917 Å