Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 04.02.2011

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note:
	Aufgabe	1	2	3	4	Σ]
	erreichbare Punkte	10	10	10	10	40	1
	erreichte Punkte						1
		I			I	<u>I</u>	1
Bitte							
tragen Sie	Name, Vorname und	Matrik	elnumr	ner auf	f dem I	Deckbla	tt ein,
rechnen Si	e die Aufgaben auf se	parater	n Blätte	ern, ni e	cht auf	dem A	Angabeblatt,
beginnen S	Sie für eine neue Aufg	abe im:	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den N	Vamen	sowie d	lie Mat	rikelnu	mmer a	an,
begründen	Sie Ihre Antworten a	usführl	lich und	d			
kreuzen Si	ie hier an, an welchen	n der fo	olgende	n Tern	nine Sie	e nicht	zur mündlichen
	ntreten können:		Ŭ				
	Do., 10.02.2011	□ Fr.,	11.02.2	2011		Mo., 14	4.02.2011

1. Im Folgenden wird der sogenannte statische Tauchvorgang eines U-Bootes betrachtet. Für das Sinken oder Steigen des U-Boots in eine Tiefe h, kann Meerwasser in eine dafür vorgesehene Kammer eines Kolbenspeichers mit dem Volumen V_w verbracht oder ausgeblasen werden. Das Volumen V_w kann verändert werden, indem in die zweite Kammer mit dem Volumen V_L ein Volumenstrom eingebracht wird und damit der trennende Kolben mit der Masse m_p verschoben wird. Mit s und $w=\dot{s}$ wird die Ortskoordinate bzw. zugehörige Geschwindigkeit des Kolbens bezeichnet. Der Kolbenspeicher besitzt ferner die Länge l und den Querschnitt A.

Abbildung 1: Prinzipskizze zur Aufgabe 1.

- a) Geben Sie das positionsabhängige Volumen $V_L = V_L(s)$ an und stellen Sie den 2 P.| Impulsatz für den Kolben auf. Berücksichtigen Sie hierzu die Druckkraft $F_p = (p_L p_w)A$ mit dem von der Tauchtiefe abhängigen Wasserdruck $p_w = a_0h + a_1$ mit den positiven Konstanten $a_i \in \{1,2\}$ und eine geschwindigkeitsproportionale Dämpfung mit der Dämpferkonstanten d.
- b) Stellen Sie ebenso den Impulssatz für das U-Boot in vertikaler Richtung auf. 2 P.| Berücksichtigen Sie dabei die Auftriebskraft $F_A = \rho_w(V_B V_w(s))g$ mit dem konstanten Bootsvolumen V_B und der konstanten Wasserdichte ρ_w sowie die Gewichtskraft. Vernachlässigen Sie hierzu das Volumen der Verrrohrung und berücksichtigen Sie die Gesamtmasse des U-Boots in der Form $m = \rho_w V_w(s) + m_K$ mit der konstanten Kabinenmasse m_K .
- c) Geben Sie das mathematische Modell des U-Boots in der Form 2 P.

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{f}(\mathbf{x}, u)$$
$$y = g(\mathbf{x}, u)$$

an. Wählen Sie dazu die Zustandsgrößen $\mathbf{x}=\left[s,w,h,\dot{h}\right]^T$, die Eingangsgröße $u=p_L$ sowie die Ausgangsgröße y=h.

d) Bestimmen Sie alle Ruhelagen \mathbf{x}_R , u_R des Systems und linearisieren Sie das 4 P.| System um eine allgemeine Ruhelage.

2. Gegeben ist das System

$$\dot{\mathbf{x}} = \underbrace{\begin{bmatrix} 0 & 1 \\ -(1+a^2) & 2 \end{bmatrix}}_{=\mathbf{A}} \mathbf{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u, \quad \mathbf{x}(0) = \mathbf{x}_0$$
 (1a)

$$y = [-1, 1] \mathbf{x} \tag{1b}$$

mit der Konstanten a > 0.

- a) Ermitteln Sie die Transformationsmatrix V, die A in die reelle Jordansche 2 P.|
 Normalform \tilde{A} überführt.
- b) Geben Sie das System (1) in den neuen Zuständen $\mathbf{z}(t) = \mathbf{V}^{-1}\mathbf{x}(t)$ an und 4 P.| bestimmen Sie die Transitionsmatrix $\tilde{\mathbf{\Phi}}(t)$.
- c) Bestimmen Sie den Ausgang y(t) des Systems für $u(t) = \delta(t)$ mit der Delta- 2 P.| funktion $\delta(t)$ und $\mathbf{x}_0 = \mathbf{0}$. Ist das System BIBO-stabil? Begründen Sie Ihre Antwort.

Im Weiteren sei a = 1.

d) Zeigen Sie, dass das System (1) durch eine Ausgangsrückführung der Form 2 P. $u = \alpha \dot{y}$ asymptotisch stabilisierbar ist. Bestimmen Sie hierzu explizit den Wertebereich von α so, dass die Dynamikmatrix des geschlossenen Regelkreises ausschließlich Eigenwerte mit strikt negativem Realteil aufweist.

3. Gegeben ist die Übertragungsfunktion

$$G(s) = \frac{1}{s(s+1)}$$

- a) Zeichnen Sie das Bodediagramm der Übertragungsfunktion G(s). Verwenden 2 P.| Sie dazu die Vorlage nach Abb. 3.
- b) Entwerfen Sie einen PI-Regler, der folgende Anforderungen an den geschlos- 4 P.| senen Kreis gewährleistet:
 - Anstiegszeit $t_r = \frac{3}{2}\sqrt{3}$
 - prozentuelles Überschwingen $\ddot{u} = 15\%$.
- c) Berechnen Sie allgemein die Übertragungsfunktion $F(s) = \hat{z}/\hat{w}$ nach Abb. 2. 2 P.

Abbildung 2: Blockschaltbild.

d) Berechnen Sie die Übertragungsfunktion F(s) aus Aufgabenteil c) für 2 P.

$$A(s) = s$$
, $B(s) = -1$, $C(s) = 1/s$, $D(s) = 1$, $E(s) = 0$

und bestimmen Sie die eingeschwungene Lösung für

$$w(t) = 3\sin(2t).$$

- 4. Bearbeiten Sie die folgenden Teilaufgaben:
 - a) Gegeben ist die folgende Übertragungsfunktion

2 P.|

$$G(s) = \frac{e^{-s}}{s}$$
.

Zeichnen Sie das Nyquist-Diagramm von G(s) für $\omega \geq 0$.

b) Bestimmen Sie die z-Transformierte der Folge

 $2 \, \mathrm{P.}$

$$f_k = 2^k k \left(e^{(k+1)T_a} - e^{kT_a} \right).$$

c) Gegeben ist die q-Übertragungsfunktion

4 P.

$$G^{\#}(q) = \frac{2(q-1)(q^2-2)}{q^3+3q^2+3q+2}, \quad T_a = 1.$$

Schließen Sie anhand von $G^{\#}(q)$ auf

- i. den Verstärkungsfaktor V,
- ii. die BIBO-Stabilität und
- iii. die Sprungfähigkeit

der $G^{\#}(q)$ entsprechenden s-Übertragungsfunktion G(s). Begründen Sie Ihre Antworten.

d) Entwerfen Sie für das System

2 P.

$$\mathbf{x}_{k+1} = \begin{bmatrix} \frac{1}{2} & 1\\ -1 & 2 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1\\ -1 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} -1 & 1 \end{bmatrix} \mathbf{x}_k$$

einen Zustandsregler $u_k = \mathbf{k}^T \mathbf{x}_k$ mit Hilfe der Formel von Ackermann so, dass die Eigenwerte des geschlossenen Regelkreises bei $\lambda_1 = \frac{1}{2}$ und $\lambda_2 = -\frac{1}{2}$ liegen.

Abbildung 3: Vorlage zur Aufgabe 3a).