

Formation, Conseil, Ingénierie

SQL

Plus d'informations sur http://www.dawan.fr
Contactez notre service commercial au 09.72.37.73.73 (prix d'un appel local)

Objectifs

- Découvrir SQL
- Savoir modéliser une Base de Données
- Être capable de créer les requêtes standards de sélection, d'enregistrement, de modification ou de suppression de données
- Savoir relier des tables entre elles

Plan de l'intervention

- Introduction
- Commandes simples
- Présentation des SGBDr
- Utilisation avancée

Introduction

Introduction

Bases de données

Une base de données ?

Un SGBD ?

Système de Gestion de Bases de Données

Le SQL ?

Structured Query Language

Base de Données

- Une base de données est une collection de données organisées de façon à être facilement accessibles, administrées et mises à jour.
- Les bases de données peuvent être classées par le type de contenu qu'elles renferment : bibliographique, full text, images ou des nombres....

SGBD

- Un système de gestion de base de données (SGBD) est une application qui sert comme son nom l'indique à stocker et accéder à des données.
- MySQL : Sous licence GPL (gratuite) performante quoique légèrement incomplète
- PostgreSQL : Également Open Source performante et offrant de nombreuses fonctionnalités
- Oracle : La base de données professionnelle
- DB2 (IBM): Une autre base de données professionnelle
- SQL Server (MS): La solution proposée par Microsoft

SQL(Structured Query Language)

- langage de requête structurée
- langage de définition de données (LDD)
- langage de manipulation des données qui permet de rechercher, d'ajouter, de modifier ou de supprimer des données dans les bases de données relationnelles.
- langage de contrôle de données (LCD)
- définir des permissions au niveau des utilisateurs d'une base de données.

Introduction

Historique, versions et normalisation

1970 – 1980 : apparition du langage SQL et utilisation par IBM puis Oracle

1985 : SQL devient une norme ISO internationale

1992: SQL 2 évolution majeure https://en.wikipedia.org/wiki/SQL-92

1999 : SQL 3, supporte bien sûr la norme précédente SQL2 (compatibilité ascendante) mais propose également des extensions objets.

Introduction

Méthode MERISE

- Dictionnaire de Données
- Modèle Conceptuel de Données
- Modèle Logique de Données

Dictionnaire de Données

 regroupe les données que vous aurez à conserver dans votre base (et qui figureront donc dans le MCD).

Le Dictionnaire de Données contient :

- Code mnémonique : Ex designation_produit, nom_produit ...etc
- Type de donnée : type caractère, numérique, boolean, date ...etc
- Taille des données : ex varchar(255), int(4) ...etc

- Modèle Conceptuel de Données (MCD)
- Définir les entités et relations de notre BD
- Entité : ensemble de propriétés encore appelées attributs ou caractéristiques
- Associations : Une association définit un lien sémantique entre une ou plusieurs entités

Modèle Conceptuel de Données (MCD)

- Exemple d'Entités et d'Association :
- Remarquez bien les cardinalités 0,N/1,N de part et d'autre des entités

Les cardinalités indiquées ici signifient qu'un auteur rédige un ou plusieurs livre (mais au moins un). On peut avoir des livres sans auteur.

Avec les cardinalités inversées cela signifierait que les livres ont au moins un auteur, et qu'un auteur peut ne pas avoir rédiger de livre

Pour chaque livre, on connaît le nombre de chapitres rédigés par l'auteur.

Modèle Conceptuel de Données (MCD)

- **0,1**: occurrence du type entité peut exister tout en n'étant impliquée dans aucune association et peut être impliquée dans au maximum une association.
- **0,n**: c'est la cardinalité la plus ouverte ; une occurrence du type entité peut exister tout en n'étant impliquée dans aucune association et peut être impliquée, sans limitation, dans plusieurs associations.
- 1,1: une occurrence du type entité ne peut exister que si elle est impliquée dans exactement (au moins et au plus) une association.
- 1,n: une occurrence du type entité ne peut exister que si elle est impliquée dans au moins une association.

Modèle Logique de Données (MLD)

- Etape pour établir une modélisation des données au niveau logique (ou relationnel) à partir du MCD, puis comment passer à l'étape de création des tables
- Cette étape suit des Règles de conversion

Modèle Logique de Données (MLD)

Cette étape suit des Règles de conversion

Transformation des relations binaires du type 1 (x,n) - (x,1)

Relation binaire (0,1)-(1,1)

Modèle Logique de Données (MLD) Règles de conversion

Relation binaire (0,1)-(0,1) (2 solutions)

Transformation des relations binaires du type (x,n) - (x,n)

Transformation de plusieurs relations entre 2 entités

Modèle Logique de Données (MLD) Règles de conversion

Transformation des relations ternaires

Transformation de l'identifiant relatif

Transformation des relations réflexives

Formes normales

Le but est d'améliorer la structure de la DB, éviter les redondances et autre problème de conception.

1NF (1ère forme normale): un champ ne peut pas avoir plusieurs valeurs

propriétaire	
Jean Dupont	Peugeot 106, Renault twingo
Fred Kim	Bmw Z1
Pedro Ama	Peugeot 106, Bmw Z1

propriétaire	modèle de voiture
Jean Dupont	Peugeot 106
Jean Dupont	Renault twingo
Fred Kim	Bmw Z1
Pedro Ama	Peugeot 106
Pedro Ama	Bmw Z1

2NF: un champ ne doit pas dépendre d'une partie de la clef

nom	prénom	ville

prénom jour de la fete		

Il faut séparer en deux tables, le jour de la fête dépend du prénom uniquement, pas du nom

Forme normale

3NF: un champ ne doit pas dépendre d'un autre champ non clef

lci le nombre d'habitant ne dépend pas de la clef <u>nom,prenom</u>

Forme normale de Boyce-Codd un champ non clef ne peut pas déterminer un autre champ

Il existe d'autres formes normales 4NF,...

https://stph.scenari-community.org/bdd/nor1-lin/co/norAC03.html

Exercice MCD MLD

- http://pise.info/modelisation/enonces.htm
- Exercice créer les tables pour gérer les candidat faisant un QCM et avoir leur résultats.
- Modélisation de commandes (produit, commandes, détails)

On peut utiliser MysqlWorkBench pour la modélisation une fois qu'on sait faire sur papier (MysqlWorkBench permet également de faire du reverse engineering a partir de fichiers SQL – mais on verra cela plus tard)

Pour info : Outils de modélisation MCD – MLD

Il existe de nombreux outils comme MysqlWorkbench et qui permettent en plus de gérer l'ensemble des schéma UML et dont on peut se servir pour créer notre MCD et MLD : DIA, Umbrello,

Mais l'UML est un vaste sujet dont il n'est pas question dans cette formation et qui permet en autre de concevoir une base de données.

Nb en UML les notations de cardinalités sont inversées (look accross notation)

DAWAN - Reproduction interdite sans autorisation

CREATE DATABASE NomDeLaBase;

SHOW DATABASES;

USE NomDeLaBase;

SHOW TABLES;

<u>L'interclassement</u> (utf8_general_ci, etc..) défini le type de données stockées mais également la manière dont va se faire le classement des données et donc le résultat des recherches. _ci signifie case insensitive(=non sensible à la casse), les recherche de 'c' ou 'C' donne la même chose). Pour stocker les caractères de la plupart des langues on choisit utf8_xxx

Les types de données

Numériques : TINYINT / SMALLINT / INTEGER

FLOAT / DOUBLE (UNSIGNED)

Textuels: CHAR / VARCHAR / TEXT / LONGTEXT

Temporels: DATE / TIME / DATETIME / TIMESTAMP

 Il faut parfois indiquer la taille des valeurs stockées notamment pour les CHAR et les VARCHAR, mais pas nécessairement pour les INT (meme si on peut..

https://stackoverflow.com/questions/5634104/what-is-the-size-of-column-of-int11-in-mysql-in-bytes

Les types de données

Avec FIREFOX, (pas edge), quand on crée les champs sur PHPMyAdmin, la taille des TYPE est indiquée lors du choix du type dans le menu déroulant

Créations d'une table

CREATE TABLE [nomTable] (
[nomChamp] [type] [NULL] [options],
PRIMARY KEY ([nomChamp]));

NULL: champ facultatif

NOT NULL: champ obligatoire

Options: AUTO_INCREMENT, DEFAULT, UNIQUE

Modifications de structure de la table

ALTER TABLE [nomTable] ...

MODIFY [nomChamp] [type] [NULL] [options];

ADD COLUMN [nomChamp] [type] [NULL] [options];

DROP COLUMN [nomChamp];

DROP TABLE [nomTable];

Insertion de données

INSERT INTO [nomTable] (champX, ...)
VALUES (valeurX, ...);

Insertion sur plusieurs lignes possible.

Insertion de données

Colonne muette:

- Colonne clé avec auto_increment > numéro automatique inséré
- Colonne avec valeur par défaut > valeur par défaut insérée
- Colonne nullable > valeur NULL insérée
- Colonne sans valeur par défaut et non nullable
 - > l'insertion de la ligne est refusée

Modifier les données

Modifier:

UPDATE nomTable

SET *champX* = *valeurX*

WHERE id = 1;

Pas de condition : met à jour toute la table !

Suppression de données

Supprimer:

DELETE FROM nomTable

WHERE id = 1;

Pas de condition : met à jour toute la table !

Vider la table :

TRUNCATE TABLE nomTable;

Accéder aux données

Sélectionner :

SELECT * FROM nomTable;

Opération et Alias de colonne :

SELECT prix_ht, prix_ht*1.20 **AS** prix_ttc **FROM** *nomTable* ;

Accéder aux données

Clause WHERE:

SELECT champX, champY FROM nomTable

WHERE condition 1

AND condition2...;

Comparaison: =, <, <=, >, >=, <> / !=, LIKE, BETWEEN

Accéder aux données

Clause ORDER BY:

Organiser les résultats (alphabétique, numérique)

Clause LIMIT:

Limiter le nombre de résultats.

Accéder aux données (à noter)

De meme que l'on a des alias pour les champs on a également des alias pour les tables

Alias de table :

SELECT *nT*.champX as cX, champY as cY

FROM nomTable AS nT

WHERE nT.champX = 1 AND ChampY = 2;

ORDER BY CY

On ne peut plus utiliser nomTable une fois qu'elle est nommée avec un Alias

Les alias de champs ne peuvent pas être repris dans le WHERE.

Alias de table : utile pour les jointures d'une table avec elle-même (on verra cela plus tard)

DAWAN - Reproduction interdite sans autorisation

L'agrégation

- SUM calcul la somme de la colonne
- AVG calcul la moyenne de la colonne
- MAX calcul le maximum de la colonne
- MIN calcul le minimum de la colonne
- COUNT dénombre les éléments

Uniquement dans le SELECT

Autres fonctions

- NOW() -> heure actuelle
- CONCAT('bonjour', '-', 'toto') → 'bonjour-toto'
- REPLACE('hello toto', 'hello', 'bonjour') ->'bonjour toto'
- SUBSTRING()

Le regroupement

Clause GROUP BY:

Regrouper les calculs par valeur d'une colonne

SELECT id_genre, COUNT(id_livre) AS nb_livre

FROM livre

GROUP BY id_genre;

L'ordre des mots clés SQL

SELECT... FROM... JOIN... WHFRF... AND/OR... **GROUP BY...** HAVING... ORDER BY... LIMIT...

Les Jointures : Requêtes multi-tables UPDATE avec jointures

Jointures : Requêtes multi-tables

Les Jointures:

INNER JOIN

SELECT * FROM AINNER JOIN B ON A.key = B.key

Jointures : Requêtes multi-tables

LEFT JOIN

SELECT * FROM ALEFT JOIN B ON A.key = B.key; A B

SELECT * FROM A

LEFT JOIN B ON A.key = B.key

WHERE B.key IS NULL;

Jointures : Requêtes multi-tables

RIGHT JOIN

SELECT * FROM A

RIGHT JOIN B ON A.key = B.key;

SELECT * FROM A

RIGHT JOIN B ON A.key = B.key

WHERE A.key IS NULL;

Jointures : Requêtes multi-tables

FULL JOIN

SELECT * FROM AFULL JOIN B ON A.key = B.key

Bases de Données Relationnelles

Base de Données avec relations :

Une table est liée à une seconde table, ou plus, par une relation de **clé étrangère**, suivant des contraintes strictes dites « d'intégrité référentielle ».

Définition de la clé étrangère

Définition des clés :

ALTER TABLE [nomTable1] ADD INDEX (id_table1); /* Uniquement MySQL */

ALTER TABLE [nomTable1]

ADD CONSTRAINT nomDeLaConstrainte (ex

FK_table_name_nomColonne)

FOREIGN KEY nomTable1 (id_table1)

REFERENCES [nomTable2] (id_table2);

Contraintes d'intégrité référentielle

Définition des actions en chaîne :

... ON UPDATE [value] ON DELETE [value]

CASCADE / SET NULL / SET DEFAULT / RESTRICT / NO ACTION

Utilisation des relations

Sélection de données sur plusieurs tables

SELECT *

FROM tableA, tableB, tableC

WHERE tableA.id_tabB = tableB.id

AND tableA.id_tabC = tableC.id;

Requête INNER JOIN

Les requêtes imbriquées

Traiter une requête en fonction d'une autre :

```
SELECT * FROM genre
WHERE id_genre [NOT] IN (
SELECT DISTINCT id_genre
FROM livre
```


Les vues : créer / utiliser

Requêtes préenregistrées sur la base de données, que l'on qualifie aussi de tables virtuelles.

CREATE VIEW view_nomDeLaVue AS SELECT;

SELECT * **FROM** *nomDeLaVue* ;

Les vues : modifier / supprimer

Modifier :

ALTER VIEW nomDeLaVue AS SELECT;

Supprimer :

DROP VIEW nomDeLaVue;

Les vues : limites

Toujours une requête de sélection

Une vue : une requête (possibilité d'imbriquer)

Les procédures stockées (approche)

•

- Ensemble d'instruction de manipulation de données (INSERT, UPDATE, DELETE) qui peuvent être exécutés par un simple appel.
- L'appel diffère d'un SGBD à l'autre :

EXEC (avec SQL Server), CALL (avec MySQL), etc...

Les procédures stockées (approche)

Exemple de procédure stockée :

CREATE PROCEDURE nomProcedure()
BEGIN

...Requête SQL

END;

Exemple d'une procédure stockée pour le changement du nom du client ayant l'ID = 4, avec un paramètre - avec PHPMyAdmin

Les fonctions doivent renvoyer une valeur (pas obligatoire pour les procédures)

```
delimiter $$
CREATE FUNCTION mafonction(x INT) RETURNS INT
BEGIN
        DECLARE sortie INT;
        SET sortie = x*2;
        RETURN (sortie);
END$$
```

Les fonctions vont plutôt servir dans un SELECT ou un UPDATE comme la fonction CONCAT ou ROUND – **PAS** d'appel avec un CALL

Pour plus d'explication sur la syntaxe voir slide suivante

Avec l'interface de PHPMyAdmin, on peut créer une fonction : c'est comme pour une procédure, mais il faut changer le Type

Il n'est pas nécessaire de rédiger l'ensemble du script SQL de déclaration car l'interface nous simplifie le travail.

L'interface rajoute en plus des options supplémentaire comme le Créateur de la fonction, etc...

Il faut aller consulter https://dev.mysql.com/doc/refman/8.0/en/cr eate-procedure.html

En faisant Exporter on récupère le code SQL entier de création de la fonction.

Le délimiteur sert à changer le symbole d'exécution qui est « ; » afin que le code de la fonction ne soit pas exécuté pendant la déclaration de la fonction. On exécute que la déclaration de la fonction une fois que l'on a atteint le END. On met \$\$ ou // généralement pour remplacer temporairement le « ; »

Il y a d'autre éléments qui sont venus se rajouter DEFINER, NO SQL ... il faut aller voir la documentation :

https://stackoverflow.com/questions/5634104/what-is-the-size-of-column-of-

int11-in-mysql-in-bytes DAWAN - Reproduction interdite sans autorisation


```
1 -- Commentaire
                        Autre Exemple de script SAL avec déclaration de deux 2 fonctions et insertion
 2 # Commentaire
                        d'un enregistrement dans une table, montrant l'utilisation du délimiteur
 3 /* Commentaire sur
 4 plusieurs lignes */
6 DELIMITER $$ # Change le symbole ";" pour la fin d'instruction en "$$"
7 /* en effet on ne doit pas exécuter les les instructions maintenant mais quand la fonction sera appelée. */
9 # on n'est pas obligé
10 CREATE DEFINER=`root`@`localhost` FUNCTION `mon addition`(`a` INT, `b` INT) RETURNS int(11)
      NO SQL
12 BEGIN
13 DECLARE res INT4;
14 SET res = a+b;
15 RETURN (res);
16 END $$
17
18 #INSERT INTO `client` (`id`, `nom`) VALUES (NULL, 'XX'); #ne marchera pas car le délimiteur est '$$' et non plus ';'
19 #si la ligne précédente est exécutée avec un ';' à la fin elle fait planter le script et le script s'arrete là. Ce qui
   a été exécuté avant n'est pas annulé.
21 INSERT INTO `client` (`id`, `nom`) VALUES (NULL, 'YY')$$ #sera exécuté normalement
22
23 CREATE DEFINER=`root`@`localhost` FUNCTION `ma mutliplication`(`a` INT, `b` INT) RETURNS int(11)
      NO SQL
25 BEGIN
26 DECLARE res INT4:
27 SET res = a*b;
28 RETURN (res);
29 END $$
31 # on remet le delimiteur avec sa valeur 'habituelle'
32 DELIMITER; #Avec mysql et phpmyadmin le délimiteur revient à ";" tout seul, mais on peut toujours l'indiquer.
```


Appel de ma fonction 'mon_addition' dans un SELECT

SELECT pren	om, age	, mon_addition(age,	,10) as	age_dans_di	x_ans FRO	M `clie
+ Options						
prenom	age	age dans dix ans				
Jeannie julie	51	61				
tutu	NULL	NULL				
Sophie cecile	50	60				
Beatrice	NULL	NULL				

On n'aurait pas pu faire CALL mon_addition(4,5)

Il existe également :

* des taches planifiées qui se lance en fonction d'une date

```
CREATE EVENT myevent ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

DO

UPDATE myschema.mytable SET mycol = mycol + 1;

https://dev.mysql.com/doc/refman/5.7/en/create-event.html
```

* des déclencheurs qui se lance si une action est effectuée (lors de l'insertion dans une table particulière)

```
CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));

CREATE TRIGGER ins_sum BEFORE INSERT ON account

FOR EACH ROW SET @sum = @sum + NEW.amount;

SET @sum = 0;

INSERT INTO account VALUES(137, 14.98), (141, 1937.50), (97, -100.00);

SELECT @sum AS 'Total amount inserted'
```


Les optimisations

Vérifier la charges des requêtes

Sauvegarder les données ? Archiver ?

Les optimisations

L'outil SQL Explain EXPLAIN select * from nom_table

```
| id | select_type | table | type | possible_keys | key |
| 1 | SIMPLE | instructor | ALL | NULL | NULL |
| 1 | SIMPLE | grade | ALL | NULL |
```

```
| key_len | ref | rows | Extra |
| NULL | NULL | 5 | Using where; Using temporary; Using filesort |
| NULL | NULL | 6 | Using where; Using join buffer |
```


Les optimisations

- Charge de la requête SQL
- Interpréter les indicateurs Explain

Sauvegarder les données

- mysqldump --user=mon_user --password=mon_password
 --all-databases > ALLBD_Backup.sql
- mysqldump --user=mon_user --password=mon_password
 --databases nom_de_la_base > BD_name_Backup.sql

Restaurez les données

- mysql --user=user_name --password=password< file_Backup.sql
- mysql --user=user_name --password=password database_name < file_Backup.sql

Archivez les données

 mysqldump <commandes> | gzip > archive_file_name.sql.gz

SQL

Plus d'informations sur http://www.dawan.fr
Contactez notre service commercial au 0800.10.10.97(prix d'un appel local)