Laboratorium Podstaw Fizyki

Nr ćwiczenia					
Temat ćwiczenia					
Nazwisko i Imię prowadzącego kurs					
Wykonawca:					
Imię i Nazwisko nr indeksu, wydział					
Termin zajęć: dzień tygodnia, godzina					
Numer grupy ćwiczeniowej					
Data oddania sprawozdania:					
Ocena końcowa					
Zatwierdzam wyniki pomiarów.					
Data i podpis prowadzącego zajęcia					

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

0.1 Cele ćwiczenia:

- Skalowanie termopary oraz wyznaczenie współczynnika termoelektrycznego termopary.
- Wyznaczenie temperatury krzepnięcia wody.

0.2 Metoda pomiarowa

- Skalowanie termopary wyznaczenie zależności U=f(T)
- Jedno spojenie termopary umieścić w termosie z lodem ($T_0=0^{\circ}C$)
- Drugie spojenie termopary umieścić w naczyniu termicznym
- Podgrzewanie naczynia termicznego
- Obliczenie współczynnika temperaturowego α termopary
- Wyznaczenie temperatury krzepnięcia wody

0.3 Spis przyrządów

- Multimetr
 - 1. Pomiar napięcia $\Delta U = 0.05\% \cdot rdg + 0.01 \cdot zakres; \text{ zakres } 100mV$
- kuchenka elektryczna
- termometr
- naczynie do podgrzewania wody
- termos z roztworem lodu i wody
- termopara
- woltomierz
- naczynie na roztwór lodu z wodą i solą kuchenną
- naczynie na wodę/lód
- strzykawka
- stoper

0.4 Oznaczenia zmiennych

Opis oznaczeń:

U - napięcie

 ${\bf T}$ - temperatura

t - czas

 ${\cal T}_k$ - temperatura krzepnięcia

 ${\cal U}_k$ - napięcie krzepnięcia

 α - wspólczynnik termoelektryczny

0.5 Tabele pomiarowe

0.5.1 Skalowanie termopary

т	u(T)	U	u(U)	α	u(α)	u(α)/α · 100%	В	u(B)
[°C]	[℃]	[mV]	[mV]	[mV/°C]	[mV/°C]	[%]	[mV]	[mV]
50	0,58	1,97	0,00057		0,00095	2,0086	-0,436	0,061
52	0,58	2,03	0,00059	0,04716				
54	0,58	2,13	0,00062	0,04716				
56	0,58	2,2	0,00064					

Rysunek 1: Tabela1

0.5.2 Wyznaczenie temperatury krzepnięcia wody

t	U	u(U)	U _k	u(U _k)	T _k	u _c (T _{k)}	u _c (T _k)/T _k · 100%
[s]	[mV]	[mV]	[mV]	[mV]	[°C]	[°C]	[%]
320	-0,06	-0,000017					
340	-0,06	-0,000017	-0,057	0,0033	-10,44	0,075	-0,72
360	-0,05	-0,000014					

Rysunek 2: Tabela 2

0.6 Wykresy

0.6.1 Skalowanie termopary i wyznaczenie współczynnika termoelektrycznego α

Rysunek 3: Wykres 1

0.6.2 Wyznaczenie temperatury krzepnięcia wody

Rysunek 4: Wykres 1

0.7 Wykorzystane wzory i przykładowe obliczenia

Niepewność pomiaru temperatury

$$\Delta T = 1^{\circ}C$$

(1)

0.7.1 Niepewność pomiaru woltomierzem

$$\Delta U = 0.05\% \cdot \text{rdg} + 0.01\% \cdot \text{dgt}$$

(2)

0.7.2 Niepewność pomiaru napięcia

$$u(U) = \frac{0.05\% \cdot \text{rdg} + 0.01\% \cdot \text{dgt}}{\sqrt{3}} = \frac{0.05\% \cdot 1.97 + 0.01\% \cdot 0.01}{\sqrt{3}} \approx 0.00057 [V]$$
 (3)

0.7.3 Temperatura krzepnięcia

$$T_k = \frac{U_k + B}{a} = \frac{-0,057 - 0,436}{0,04716} \approx -10,44^{\circ}C$$
(4)

0.7.4 Niepewność złożona tempperatury krzepnięcia

$$u_c(T_k) = \sqrt{\left[\frac{\partial T_k}{\partial \alpha}\right]^2 \cdot u^2(\alpha) + \left[\frac{\partial T_k}{\partial u_k}\right]^2 \cdot u^2(u_k)}$$
 (5)

$$u_c(T_k) = \sqrt{\left[\frac{-u_k}{\alpha}\right]^2 \cdot u^2(\alpha) + \left[\frac{1}{\alpha}\right]^2 \cdot u^2(u_k)}$$
(6)

$$u_c(T_k) = \sqrt{\left[\frac{0,057}{0,04716}\right]^2 \cdot 0,00095^2 + \left[\frac{1}{0,04716}\right]^2 \cdot 0,0033^2} \approx 0,075^{\circ}C$$
 (7)

0.8 Wnioski

- Temperatura krzepnięcia wody przy ciśnieniu równym 1 atm = 101 325 Pa wynosi 0°C, natomiast uzyskana w wyniku moich pomiarów temperatura jest równa -10,440 (0,075) °C, co uwzględniając wszystkie niepewnośći znacząco odbiega wartości teorytycznej.
- Taka rozbieżność wyników może być spowodowana zbyt małą iością pomiarów w obszarze plateu w
 wyniku czego obliczone ze średniej napięć napięcie krzepnięcia było niedokładne.