

Programação Dinâmica Técnicas de Projeto de Algoritmos

Aula 13 Alessandro L. Koerich

Pontificia Universidade Católica do Paraná (PUCPR)

Ciência da Computação – 7º Período Engenharia de Computação – 5º Período

Programa do PA

...2. Fundamentos
...3. Notação 'Assintótica'e'
...Glasse de Eficiênoia......
...4: 'Análise Matemática de
...Algoritmos
...5. Análise Empírica de
...Algoritmos
...Fundamentos da Análise da Eficiência de Algoritmos

15. Teorema do Limite Inferior

16. Árvores de Decisão

17. Problemas P, NP e NPC

Limitações

r.ora

iência/Eng. de Computaçã

Droi Apol Algoritmos

___.

Aulas Anteriores

- * Estratégia Força Bruta
- Estratégia Dividir & Conquistar
- * Estratégia Reduzir & Conquistar
- * Estratégia Transformar & Conquistar
- * Estratégia Compromisso Tempo-Espaço
- * Estratégia Gulosa

Plano de Aula

- * Introdução
- * Programação de Linha de Montagem
- * Resumo

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

2006

ter.org

/Eng. de Computação

Proj. Anal. Algoritmos

Introdução

A **programação dinâmica** se aplica tipicamente a problemas de otimização onde uma série de escolhas deve ser feita, a fim de se alcançar um solução ótima

Introdução

- * Resolve problemas combinando as soluções de subproblemas
- * Aplicado quando os **subproblemas** não são independentes, isto é, quando os subproblemas compartilham subsubproblemas.
- * Resolve cada **subsubproblema** somente uma vez e grava a resposta em uma tabela, evitando assim o trabalho de recalcular a resposta toda a vez que o **subsubproblema** é encontrado

Introdução

- Em geral, a programação dinâmica é aplicada em problemas de otimização.
- * Problemas de otimização
 - Muitas soluções possíveis;
 - * Cada solução tem um valor;
 - * Desejamos encontrar uma solução com um valor ótimo (min ou máx).

Introdução

- * O desenvolvimento de um algoritmo de programação dinâmica pode ser desmembrado em:
 - * Caracterizar a estrutura de uma solução ótima
 - * Definir recursivamente o valor de uma solução ótima
 - * Calcular o valor de uma solução ótima em um processo *bottom-up*
 - * Construir uma solução ótima a partir de informações calculadas

Introdução

- Usaremos a programação dinâmica para resolver alguns problemas de otimização.
- **▶ Primeiro exemplo**: programação de duas linhas de montagem

Programação de Linha de Montagem

- * Uma fábrica de automóveis com duas linhas de montagem
 - * Um chassis entra em cada linha de montagem
 - * Peças são adicionadas a ele em uma série de estações
 - * O automóvel sai pronto no final da linha

Programação de Linha de Montagem

- * Cada linha tem *n* estações numeradas com j=1,2,3,...,n
- * Indicamos a j-ésima estação na linha i por S_{ij} .
- * A j-ésima estação da linha 1 ($S_{1,j}$) executa a mesma função que a j-ésima estação da linha 2 $(S_{1,j})$

Programação de Linha de Montagem

- Porém, as estações foram construídas em épocas diferentes e com tecnologias diferentes, assim, o tempo exigido em cada estação varia.
- * Indicamos o tempo de montagem exigido na estação $S_{i,j}$ por $a_{i,j}$.
- * Temos também e_i e x_i como os tempos para um chassis entrar na linha de montagem i e sair concluído da linha de montagem i respectivamente.

- Normalmente, um chassis entra e sai de uma mesma linha de montagem.
- Porém, no caso de um pedido urgente, um automóvel parcialmente concluído pode ser passado de uma linha de montagem a outra.

Programação de Linha de Montagem

* O tempo para transferir um chassi da linha de montagem i depois da passagem pela estação $S_{i,j}$ é $t_{i,j}$, onde i =1,2 e j=1,2,...,n-1

Programação de Linha de Montagem

Problema

Determinar que estações escolher na linha 1 e quais escolher na linha 2 de modo a minimizar o tempo total de passagem de um único automóvel pela fábrica.

Programação de Linha de Montagem

* O tempo total mais rápido resulta da escolha das estações 1, 3 e 6 da linha 1 e das estações 2, 4 e 5 da linha 2.

Como resolver o problema?

- * <u>Força Bruta</u>: enumerar todos os modos possíveis e calcular quanto tempo cada um deles demora.
- ***** Existem 2^n maneiras possíveis de escolher estações $\rightarrow \Omega$ (2^n) \rightarrow impraticável para n grande
- **★** Solução possível → programação dinâmica

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

2006

Programação de Linha de Montagem

- * Caracterizar a estrutura de uma solução ótima
- * Considerar o modo mais rápido possível para um chassis seguir desde o ponto de partida passando pela estação $S_{1,i}$.
 - * Se j = 1, fácil: determinar somente quanto tempo demora para passar pela estação $S_{1,j}$
 - * Se $j \ge 2$, há duas opções para obter $S_{1,i}$:
 - * Através de $S_{1,i-1}$, e depois diretamente para $S_{1,i}$
 - Através de $S_{2,i-1}$, e depois transferido para $S_{1,i}$

computer.org

Ciência/Eng. de Computação

Anal. Algoritmos

2004

Programação de Linha de Montagem

Supondo que o caminho mais rápido é através de $S_{1,j-1}$

- * Observação chave: devemos ter pego um caminho mais rápido a partir da entrada através de $S_{1,j-1}$ nesta solução.
- * Se houvesse um caminho mais rápido através de $S_{1,j-1}$, nós o usaríamos para obter um caminho mais rápido através de $S_{1,j}$

PUCPR

Programação de Linha de Montagem

Supondo agora que o caminho mais rápido é através de $S_{2,j-1}$

- * Observação chave: Novamente, devemos ter pego um caminho mais rápido a partir da entrada através de $S_{2,j-1}$ nesta solução.
- * Se houvesse um caminho mais rápido através de $S_{2,j-1}$, nós o usaríamos para obter um caminho mais rápido através de $S_{1,j}$

g. de Computação Proj. Anal. Algoritmos 2006

Ciência/Eng. de Computação Pro

Proj. Anal. Algoritmos

<u>Geralmente</u>: Uma solução ótima para um problema (o caminho mais rápido através $S_{1,j}$) contém dentro dele um solução ótima para subproblemas (o caminho mais rápido através $S_{1,j-1}$ ou $S_{2,j-1}$)

Isto $\acute{e} \rightarrow uma$ subestrutura $\acute{o}tima$.

. de Computação Pro

nos

000/

21

Usar subestruturas ótimas para construir soluções ótimas para o problema a partir de soluções ótimas para subproblemas

O caminho mais rápido através de $S_{1,j}$ é tanto:

- * Caminho mais rápido através de $S_{1,j-1}$, e depois diretamente através de $S_{1,j}$ ou
- * Caminho mais rápido através de $S_{2,j-1}$, transferência da linha 2 para linha 1, e depois através $S_{1,j}$

Proj. Anal. Algoritmos

Programação de Linha de Montagem

Simetricamente...

O caminho mais rápido através de $S_{2,j}$ é tanto:

- * Caminho mais rápido através de $S_{2,j-1}$, e depois diretamente através de $S_{2,j}$ ou
- * Caminho mais rápido através de $S_{1,j-1}$, transferência da linha 1 para linha 2, e depois através $S_{2,j}$

Programação de Linha de Montagem

Portanto, para resolver problemas de encontrar um caminho mais rápido através de $S_{1,j}$ e $S_{2,j}$, resolver os subproblemas de encontrar um caminho mais rápido através de $S_{1,j-1}$ e $S_{2,j-1}$.

g. de Computação Proj. Anal. Algoritmos 2006

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

- Etapa 2: Solução Recursiva
- Definir recursivamente o valor de uma solução ótima em termos das soluções ótimas dos subproblemas
- * Subproblemas: encontrar o caminho mais rápido pela estação j em ambas as linhas, para j = 1, 2, ..., n.

ciência/Eng. de Computação

Proj. Anal. Algoritmos

2006

ECPR

Programação de Linha de Montagem

- * Seja $f_i[j]$ = o tempo mais rápido possível para levar um chassi desde o ponto de partida até a estação $S_{i,j}$, onde i = 1, 2 e j = 1, 2, . . ., n.
- * Meta: f^* = tempo mais rápido para levar um chassi por todo o percurso na fábrica.

$$f^* = min (f_1[n] + x_1, f_2[n] + x_2)$$

onde
$$f_1[1] = e_1 + a_{1,1} e f_2[1] = e_2 + a_{2,1}$$

@computer o

a/Eng. de Computação

oi Anal Algoritmas

2004

Programação de Linha de Montagem

* Para j = 2, ..., n:

$$f_1[1] = \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$$

$$f_2[1] = \min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j})$$

Programação de Linha de Montagem

* Combinando as equações anteriores, obtemos as equações recursivas:

$$f_{1}[j] = \begin{cases} e_{1} + a_{1,1} & \text{se } j = 1\\ \min(f_{1}[j-1] + a_{1,j}, f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{se } j \geq 2 \end{cases}$$

$$f_{2}[j] = \begin{cases} e_{2} + a_{2,1} & \text{se } j = 1\\ \min(f_{2}[j-1] + a_{2,j}, f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{se } j \geq 2 \end{cases}$$

omputer ora

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

itmos 20

06

koe@comput

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

- * $f_i[j]$ fornece o valor de uma solução ótima. E se quisermos construir uma solução ótima?
- * Definimos $l_i[j] = \# \text{ linha (1 ou 2) cuja estação}$ *j*−1 é usada em um caminho mais rápido pela estação $S_{i,j}$. Onde i=1,2 e j=2,3,...,n
- * $l^* = \#$ linha cuja estação n é usada em um caminho mais rápido pela fábrica inteira.

Programação de Linha de Montagem

Programação de Linha de Montagem

▶ Vamos através do caminho ótimo dado pelos valores de *l* (linhas sombreadas na figura anterior).

Programação de Linha de Montagem

- **Etapa 3**: Cálculo dos Tempos mais Rápidos (Computar uma solução ótima)
- * Poderíamos somente escrever um algoritmo recursivo baseado nas recorrências anteriores.
- * Porém, seu tempo de execução é exponencial em n.

- * Seja $r_i(j)$ o número de referências feitas a $f_i[j]$ em um algoritmo recursivo
- * A partir da primeira equação temos:

$$r_1(n) = r_2(n) = 1$$

* Pelas recorrências temos:

$$r_1(j) = r_2(j) = r_1(j+1) + r_2(j+1)$$

para
$$j = 1, 2, ..., n-1$$

Programação de Linha de Montagem

- * Assim, $r_i(j) = 2^{n-j}$
- * Prova: Indução sobre *j*, decrescente a partir de
- ***** Base: i = n, $2^{n-j} = 2^0 = 1 = r_i(n)$
- * Passo de indução: Assumir $r_i(j+1) = 2^{n-(j+1)}$

Então,
$$r_i(j) = r_i(j+1) + r_2(j+1)$$

= $2^{n-(j+1)} + 2^{n-(j+1)}$
= $2^{n-(j+1)+1}$
= $2^{n-j} \rightarrow \Theta(2^n)$

Programação de Linha de Montagem

- * Portanto, $f_1[1]$ sozinho é referenciado 2^{n-1} vezes
- ▶ Portanto, *top-down* não é uma boa maneira de computar $f_i[j]$.
- <u>Observação</u>: Podemos fazer melhor. $f_i[j]$ depende somente de $f_1[j-1]$ e $f_2[j-1]$ para $j \ge 1$
- Portanto, a computação deve ser feita em ordem crescente de $i \rightarrow \Theta(n)$

Programação de Linha de Montagem

* O procedimento Fast-Way toma como entrada os valores $(a_{i,j}, t_{i,j}, e_i e x_i)$, bem como n, o número de estações em cada linha de montagem.


```
FASTEST-WAY (a, t, e, x, n)
   f_1[1] \leftarrow e_1 + a_{1,1}
     f_2[1] \leftarrow e_2 + a_{2,1}
     for i \leftarrow 2 to n
            do if f_1[j-1] + a_{1,j} \le f_2[j-1] + t_{2,j-1} + a_{1,j}
                  then f_1[j] \leftarrow f_1[j-1] + a_{1,j}
                  else f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}
               if f_2[j-1] + a_{2,j} \le f_1[j-1] + t_{1,j-1} + a_{2,j}
                  then f_2[j] \leftarrow f_2[j-1] + a_{2,j}
                         l_2[i] \leftarrow 2
                  else f_2[j] \leftarrow f_1[j-1] + t_{1,j-1} + a_{2,j}
14 if f_1[n] + x_1 \le f_2[n] + x_2
         then f^* = f_1[n] + x_1
16
                l^* = 1
         else f^* = f_2[n] + x_2
                l^* = 2
```

mouter ora

Ciência/Enq. de Computação

Proj. Anal. Algoritmos

20

37

Programação de Linha de Montagem

- * Após calculados $f_i[j]$, f^* , $l_i[j]$ e l^* , podemos construir a seqüência de estações usadas no caminho mais rápido pela fábrica.
- * Procedimento *Print-Stations*

e@computer.org

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

2004

.

Programação de Linha de Montagem

Programação de Linha de Montagem

- * Procedimento *Print-Stations*
- * No exemplo da figura, teríamos:
 - * Linha 1: estação 6
 - * Linha 2: estação 5
 - * Linha 2: estação 4
 - Linha 1: estação 3
 - * Linha 2: estação 2
 - Linha 1: estação 1

C

Ciência/Eng. de Computaçã

Proj. Anal. Algoritmos

2006

06

computer.org

cia/Eng. de Computação

Proj. Anal. Algoritmos

Resumo

- * Características da Programação Dinâmica:
 - * O problema precisa ter a propriedade da subestrutura ótima
 - * Então comecamos com uma solução recursiva, mas ela será inviável
 - * Com isso, a transformamos em uma solução iterativa, que irá ter tempo polinomial, com a característica de calcular primeiro o valor de uma solução ótima e só depois construir a solução.

Elementos da Programação Dinâmica: **Subproblemas Sobrepostos**

Subproblemas sobrepostos

- * O segundo ingrediente que um problema de otimização deve ter para a programação dinâmica ser aplicável.
- * O espaço de subproblemas deve ser pequeno.

Elementos da Programação Dinâmica: **Subproblemas Sobrepostos**

Subproblemas sobrepostos

- * ocorrem quando um algoritmo recursivo revisita o mesmo problema repetidamente
- * Bons algoritmos "dividir e conquistar" geralmente geram um novo problema em cada estágio da recursão.
- * Exemplo: Merge-Sort

Elementos da Programação Dinâmica: **Subproblemas Sobrepostos**

Figure 15.5 The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN(p, 1, 4). Each node contains the parameters i and j. The computations performed in a shaded subtree are replaced by a single table lookup in MEMOIZED-MATRIX-CHAIN(p, 1, 4).

* Recursivo: $\Omega(2^n)$

♣ Programação Dinâmica: O(n²)

Elementos da Programação Dinâmica: Memoização

Método Alternativo: Memoization

- * "Armazene, não recompute"
- * Faça uma tabela indexada por subproblemas
- * Quando resolver um subproblema:
 - Buscar na tabela
 - Se a resposta for sim, use-a
 - Senão, compute a resposta e armazene-a
- * Em programação dinâmica, vamos um passo adiante. Determinamos em que ordem queremos acessar a tabela e preenchemos desta maneira.

omputer org

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

2006

45

Subsequência Comum Mais Longa

- * Uma subsequência não precisa ser consecutiva (contínua), mas ela deve estar em ordem.
- * O problema da LCS pode se resolvido por força bruta ou programação dinâmica.

computer.org

Ciência/Enq. de Computaçã

Proj. Anal. Algoritmos

2006

46

Subsequência Comum Mais Longa

Subsequência Comum Mais Longa

Algoritmo "Força-Bruta"

- ♣ Para cada subseqüência de X, verificar se é uma subseqüência de Y.
- * Tempo: Θ ($n 2^m$)
 - * 2^m subseqüências de X para verificar
 - * Cada subsequência leva Θ (n) para verificar. Varrer Y para a primeira letra, a partir dela, varrer pela segunda letra, e assim por diante.

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

ritmos 20

2006

alekoe@compu

Ciência/Eng. de Computação

Proj. Anal. Algoritmos

Subsequência Comum Mais Longa

Etapa 1: Caracterização de uma Subsegüência Comum mais Longa

- Algoritmo "Forca-Bruta": Para cada subsequência de X. verificar se é uma subsequência de Y.
- Cada subsequência de *X* corresponde a um subconjunto dos índices $\{1,2,...,m\}$ de X. Existem 2^m subsequências $\mathrm{de}\,X$.
- * Tempo: Θ ($n 2^m$)
 - * 2^m subseqüências de X para verificar
 - * Cada subsequência leva $\Theta(n)$ para verificar. Varrer Y para a primeira letra, a partir dela, varrer pela segunda letra, e assim por diante.

Subsequência Comum Mais Longa

Etapa 1 (cont.)

- * Porém o problema da LCS tem uma propriedade de subestrutura ótima.
- * Dada uma seqüência $X = \langle x_1, x_2, ..., x_m \rangle$, definimos o *i–ésimo* prefixo de X, para i=0,1,...,m como $X_i=\langle x_1,x_2,...,x_i \rangle$.
- * Ex: Se $X = \langle A, B, C, B, D, A, B \rangle$, então $X_4 = \langle A, B, C, B \rangle$ e X_0 é a seqüência vazia.

Subsequência Comum Mais Longa

Etapa 1 (cont.)

Sejam as seqüências $X = \langle x_1, x_2, ..., x_m \rangle$ e $Y = \langle y_1, y_2, ..., y_m \rangle$ e seja $Z = \langle z_1, z_2, ..., z_m \rangle$ qualquer LCS de X e Y.

Notação:

 $X_i = \text{prefixo} \langle x_i, ..., x_i \rangle$ $Y_i = \text{prefixo} \langle y_i, ..., y_i \rangle$

Teorema:

Seja $Z = \langle z_1, ..., z_k \rangle$ qualquer LCS de X e Y.

- 1. Se $x_m = y_n$, então $z_k = x_m$ e Z_{k-1} é uma LCS de X_{m-1} e Y_{m-1} .
- 2. Se $x_m \neq y_n$, então $z_k \neq x_m \Rightarrow Z$ é uma LCS de X_{m-1} e Y.
- 3. Se $x_m \neq y_n$, então $z_k \neq y_n \Rightarrow Z$ é uma LCS de X e Y_{n-1} .

Subsequência Comum Mais Longa

Etapa 1 (cont.)

Prova:

1. Primeira mostrar que $z_k=x_m=y_n$. Suponha que não. Então, faça uma subseqüência $Z'=\langle z_1,...,z_k,x_m\rangle$. É uma subseqüência comum de X e Y e tem comprimento $k + 1 \Rightarrow Z'$ é uma subsequência comum mais longa que $Z \Rightarrow$ contradiz Z sendo uma LCS.

Agora mostrar que Z_{k+1} é uma LCS de X_{m-1} e Y_{n-1} . Claramente, é uma subseqüência comum. Agora suponha que existe uma subsequência comum W de X_{m-1} e Y_{n-1} que é mais longa que $Z_{k+1} \Rightarrow$ comprimento de $W \ge k$. Faça a subsequência W anexando x_m a W. W'é uma subsequência comum de X e Y, tem comprimento $\geq k+1$ \Rightarrow contradiz Z sendo uma LCS.

Subsequência Comum Mais Longa

Etapa 1 (cont.)

Prova (cont.):

2. Se $z_k \neq x_m$, então Z é uma subseqüência comum de X_{m-1} e Y. Suponha que exista uma subseqüência $W \operatorname{de} X_{m-1}$ e Y com comprimento > k. Então W é uma subseqüência comum de $X \in Y \Rightarrow$ contradiz Z sendo uma LCS.

3. Simétrica a 2.

Portanto, uma LCS de duas següências contém como um prefixo uma LCS de prefixos das següências.

Etapa 2: Formulação Recursiva

* Do teorema anterior, temos que existem 1 ou 2 subproblemas a examinar quando se encontra uma LCS $\det X = \langle x_1, x_2, ..., x_m \rangle \in Y = \langle y_1, y_2, ..., y_m \rangle$

* Se $x_m = y_n$, devemos encontrar uma LCS de X_{m-1} e Y_{n-1} .

* Se $x_m \neq y_n$, devemos resolver 2 subproblemas:

• Encontrar uma LCS de X_{m-1} e Y.

• Encontrar uma LCS de X e Y_{n-1} .

Subsequência Comum Mais Longa

Etapa 2 (cont.): Formulação Recursiva

- A solução recursiva para o problema da LCS envolve estabelecer uma recorrência para o valor de uma solução ótima.
- Definindo $c[i,j] = \text{comprimento da LCS de } X_i \text{ e } Y_j$. Se i=0 ou j=0, uma das següencias tem comprimento o, logo LCS = o.
- A subestrutura ótima do problema da LCS fornece a fórmula recursiva:

$$c[i,j] = \begin{cases} 0 & se \ i = 0 \ \text{ou} \ j = 0 \\ c[i-1,j-1]+1 & se \ i,j > 0 \ e \ x_i = y_j \\ \max(c[\ i-1,j],c[i,j-1]) & se \ i,j > 0 \ e \ x_i \neq y_j \end{cases}$$

Subsequência Comum Mais Longa

Etapa 3: Calculando o Comprimento da LCS

- * O procedimento *LCS-LENGTH* toma duas següencias X e Y como entradas.
- * Armazena os valores de c[i,j] em uma tabela c[o...m,o...n].
- **★** Mantém uma tabela *b*[1...*m*,1...*n*] para construir a solução ótima. b[i,j] aponta para a entrada da tabela correspondente à solução ótima do subproblema escolhida ao se calcular c[i,j].

Subsequência Comum Mais Longa

Etapa 3(cont.): Cálculo do comprimento da solução ótima

```
LCS-LENGTH(X, Y)
 1 m \leftarrow length[X]
 2 n \leftarrow length[Y]
     for i \leftarrow 1 to m
            do c[i, 0] \leftarrow 0
     for i \leftarrow 0 to n
            do c[0, j] \leftarrow 0
     for i \leftarrow 1 to m
           do for i \leftarrow 1 to n
                     do if x_i = y_i
                            then c[i, j] \leftarrow c[i-1, j-1] + 1
                                  b[i, j] \leftarrow " \ "
                           else if c[i - 1, j] \ge c[i, j - 1]
                                     then c[i, j] \leftarrow c[i-1, j]
                                     else c[i, j] \leftarrow c[i, j-1]
17 return c and b
```

Subsequência Comum Mais Longa

Figure 15.6 The c and b tables computed by LCS-LENGTH on the sequences $X = \langle A, B, C, B, C, B \rangle$ D, A, B and $Y = \langle B, D, C, A, B, A \rangle$. The square in row i and column j contains the value of c[i, j]and the appropriate arrow for the value of b[i, j]. The entry 4 in c[7, 6]—the lower right-hand corner of the table—is the length of an LCS (B, C, B, A) of X and Y. For i, j > 0, entry c[i, j] depends only on whether $x_i = y_j$ and the values in entries c[i-1, j], c[i, j-1], and c[i-1, j-1], which are computed before c[i, j]. To reconstruct the elements of an LCS, follow the b[i, j] arrows from the lower right-hand corner; the path is shaded. Each "\" on the path corresponds to an entry (highlighted) for which $x_i = y_i$ is a member of an LCS.

Subsequência Comum Mais Longa

Etapa 4: Cálculo do comprimento da solução ótima

- * A chamada inicial é PRINT-LCS (b,X,m,n)
- ullet b[i,j] aponta para a entrada da tabela cujo subproblema usamos para resolver LCS de X_i e
- Quando $b[i,j] = \nabla$, estendemos LCS em um caractere. Então a subsequência comum mais longa = entradas contendo \mathbb{R} .

Subsequência Comum Mais Longa

Construção de uma LCS

```
PRINT-LCS(b, X, i, j)
   if i = 0 or j = 0
      then return
   if b[i, j] = "\\\"
      then PRINT-LCS(b, X, i-1, j-1)
           print x_i
   elseif b[i, j] = "\uparrow"
      then PRINT-LCS(b, X, i - 1, j)
   else Print-LCS(b, X, i, i - 1)
```

Resumo

Características da Programação Dinâmica:

- * O problema precisa ter a propriedade da subestrutura ótima
- * Então começamos com uma solução recursiva, mas ela será inviável
- * Com isso, a transformamos em uma solução interativa, que irá ter tempo polinomial, com a característica de calcular primeiro o valor de uma solução ótima e só depois construir a solução.

mouter ora

Ciência/Eng. de Computação

Proj. Anal. Algoritmos