6G5Z3011 Multi-variable calculus and analytical methods

Tutorial Sheet 04

Qs 1-4 on **Line integrals**

1. A, B and D are the points (0,0), (2,0) and (2,1) respectively. Evaluate the path integral

$$\int_{C} (x^{2} + 2y + 4) dx + (x^{2} + 2y + 4) dy$$

when (a) C is the straight line segment AD and (b) when C is the path made up of the straight line segments AB and BD.

2. Evaluate the path integral

$$\int_{C} (x^{2} + 2y) dx + (x + y^{2}) dy$$

where C is the segment of the line y = 2x + 1 from (1,3) to (3,7).

3. Evaluate the path integral

$$\int_{C} x \, dy + (y+1) \, dx$$

where C is

- (a) the segment of the curve $y = \sin x$ from (0,0) to $(\frac{\pi}{2},1)$,
- (b) the segment of the line $y = \frac{2x}{\pi}$ from (0,0) to $(\frac{\pi}{2},1)$,
- (c) any other path from (0,0) to $(\frac{\pi}{2},1)$.
- 4. When a force \mathbf{F} moves along a path C in the plane then the total work given by

$$\int_{C} \mathbf{F}.\,d\mathbf{r}$$

where $\mathbf{r}(x, y)$ is the position vector $x\mathbf{i} + y\mathbf{j}$.

Show that when the force \mathbf{F} , given by $\mathbf{F}(x,y) = xy\mathbf{i} + y^2\mathbf{j}$, moves along the path C, defined by $t\mathbf{i} + t^2\mathbf{j}$ where $0 \le t \le 1$, the work done by the force is $\frac{7}{12}$.