Linear Algebra

Department of Mathematics
Indian Institute of Technology Guwahati

January - May 2019

MA 102 (RA, RKS, MGPP, KVK)

Topics:

- Vector Spaces and Subspaces
- Linear Independence
- Basis and Dimension

A field is a set \mathbb{F} with two binary operations called addition, denoted by +, and multiplication, denoted by \cdot , satisfying the following field axioms:

 $\textbf{ Closure:} \ \, \text{For all} \ \, \alpha,\beta\in\mathbb{F} \text{, the sum } \alpha+\beta\in\mathbb{F} \text{ and the product} \\ \alpha\cdot\beta\in\mathbb{F}.$

- $\textbf{ Closure:} \ \, \text{For all} \, \, \alpha,\beta \in \mathbb{F} \text{, the sum} \, \, \alpha+\beta \in \mathbb{F} \, \, \text{and the product} \\ \, \alpha \cdot \beta \in \mathbb{F}.$
- $\textbf{ 2 Commutativity: For all } \alpha,\beta \in \mathbb{F},\, \alpha+\beta=\beta+\alpha \text{ and } \\ \alpha\cdot\beta=\beta\cdot\alpha.$

- $\textbf{ Closure:} \ \, \text{For all} \, \, \alpha,\beta \in \mathbb{F} \text{, the sum} \, \, \alpha+\beta \in \mathbb{F} \, \, \text{and the product} \\ \, \alpha \cdot \beta \in \mathbb{F}.$
- $\textbf{@ Commutativity: For all } \alpha,\beta \in \mathbb{F},\, \alpha+\beta=\beta+\alpha \text{ and } \\ \alpha \cdot \beta = \beta \cdot \alpha.$
- **3** Associativity: For all α, β, γ , $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ and $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$.

- $\textbf{ Closure:} \ \, \text{For all} \, \, \alpha,\beta \in \mathbb{F} \text{, the sum} \, \, \alpha+\beta \in \mathbb{F} \, \, \text{and the product} \\ \, \alpha \cdot \beta \in \mathbb{F}.$
- $\textbf{@ Commutativity: For all } \alpha,\beta \in \mathbb{F},\, \alpha+\beta=\beta+\alpha \text{ and } \\ \alpha \cdot \beta = \beta \cdot \alpha.$
- **3** Associativity: For all α, β, γ , $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ and $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$.
- **1** Identity: There exist $0 \in \mathbb{F}$ and $1 \in \mathbb{F}$ such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for all $\alpha \in \mathbb{F}$.

- $\textbf{ Closure:} \ \, \text{For all} \, \, \alpha,\beta \in \mathbb{F} \text{, the sum} \, \, \alpha+\beta \in \mathbb{F} \, \, \text{and the product} \\ \, \alpha \cdot \beta \in \mathbb{F}.$
- $\textbf{② Commutativity: For all } \alpha,\beta \in \mathbb{F},\, \alpha+\beta=\beta+\alpha \text{ and } \\ \alpha \cdot \beta = \beta \cdot \alpha.$
- **3** Associativity: For all α, β, γ , $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ and $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$.
- **1** Identity: There exist $0 \in \mathbb{F}$ and $1 \in \mathbb{F}$ such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for all $\alpha \in \mathbb{F}$.
- **1** Inverse: For $\alpha \in \mathbb{F}$, there exist $\beta, \gamma \in \mathbb{F}$ such that $\alpha + \beta = 0$, and $\alpha \cdot \gamma = 1$ when $\alpha \neq 0$.

- $\textbf{ Closure:} \ \, \text{For all} \, \, \alpha,\beta \in \mathbb{F} \text{, the sum} \, \, \alpha+\beta \in \mathbb{F} \, \, \text{and the product} \\ \, \alpha \cdot \beta \in \mathbb{F}.$
- **2** Commutativity: For all $\alpha, \beta \in \mathbb{F}$, $\alpha + \beta = \beta + \alpha$ and $\alpha \cdot \beta = \beta \cdot \alpha$.
- **3** Associativity: For all α, β, γ , $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ and $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$.
- **1** Identity: There exist $0 \in \mathbb{F}$ and $1 \in \mathbb{F}$ such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for all $\alpha \in \mathbb{F}$.
- Inverse: For $\alpha \in \mathbb{F}$, there exist $\beta, \gamma \in \mathbb{F}$ such that $\alpha + \beta = 0$, and $\alpha \cdot \gamma = 1$ when $\alpha \neq 0$. β is denoted by $-\alpha$ and γ by α^{-1} or $1/\alpha$.

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

Example

 \mathbb{R} ,

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

Example

 \mathbb{R} , \mathbb{C} ,

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

Example

 \mathbb{R} , \mathbb{C} , \mathbb{Q} , with usual addition and multiplication.

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of $\mathbb F$ are referred to as scalars. For vector spaces, the real field $\mathbb R$ can be replaced with any field $\mathbb F$.

Example

 \mathbb{R} , \mathbb{C} , \mathbb{Q} , with usual addition and multiplication.

What about **Z**?

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

Example

 \mathbb{R} , \mathbb{C} , \mathbb{Q} , with usual addition and multiplication.

What about \mathbb{Z} ? No, since 2 does not have inverse w.r.t. '.'.

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

Example

 \mathbb{R} , \mathbb{C} , \mathbb{Q} , with usual addition and multiplication.

What about \mathbb{Z} ? No, since 2 does not have inverse w.r.t. '·'.

Take $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, and define

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

Example

 \mathbb{R} , \mathbb{C} , \mathbb{Q} , with usual addition and multiplication.

What about \mathbb{Z} ? No, since 2 does not have inverse w.r.t. '.'.

Take $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, and define $a + b := (a + b) \mod 5$ and $a \cdot b := (ab) \mod 5$.

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

Example

 \mathbb{R} , \mathbb{C} , \mathbb{Q} , with usual addition and multiplication.

What about \mathbb{Z} ? No, since 2 does not have inverse w.r.t. '.'.

Take $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, and define $a + b := (a + b) \mod 5$ and $a \cdot b := (ab) \mod 5$. \mathbb{Z}_5 is a field.

6. Distributivity: For all $\alpha, \beta, \gamma \in \mathbb{F}$, $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$.

Remark: Elements of \mathbb{F} are referred to as scalars. For vector spaces, the real field \mathbb{R} can be replaced with any field \mathbb{F} .

Example

 \mathbb{R} , \mathbb{C} , \mathbb{Q} , with usual addition and multiplication.

What about \mathbb{Z} ? No, since 2 does not have inverse w.r.t. '.'.

Take $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, and define $a + b := (a + b) \mod 5$ and $a \cdot b := (ab) \mod 5$. \mathbb{Z}_5 is a field. Here 3 + 4 = 2, $4 \cdot 2 = 3$, etc.

Consider
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 over \mathbb{Z}_5 .

Consider
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 over \mathbb{Z}_5 . Then A is invertible and the inverse

is given by

Consider
$$A=\begin{bmatrix}1&2\\2&1\end{bmatrix}$$
 over \mathbb{Z}_5 . Then A is invertible and the inverse is given by $A^{-1}=\begin{bmatrix}3&4\\4&3\end{bmatrix}$.

Consider
$$A=\begin{bmatrix}1&2\\2&1\end{bmatrix}$$
 over \mathbb{Z}_5 . Then A is invertible and the inverse is given by $A^{-1}=\begin{bmatrix}3&4\\4&3\end{bmatrix}$.

Compute
$$A^{-1}$$
 using $A^{-1} = (ad - bc)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Consider
$$A=\begin{bmatrix}1&2\\2&1\end{bmatrix}$$
 over \mathbb{Z}_5 . Then A is invertible and the inverse is given by $A^{-1}=\begin{bmatrix}3&4\\4&3\end{bmatrix}$.

Compute
$$A^{-1}$$
 using $A^{-1} = (ad - bc)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

The system $A\mathbf{x} = \begin{bmatrix} 3 & 4 \end{bmatrix}^T$ has unique solution and is given by $\mathbf{x} = A^{-1} \begin{bmatrix} 3 & 4 \end{bmatrix}^T = \begin{bmatrix} 0 & 4 \end{bmatrix}^T$.

Consider
$$A=\begin{bmatrix}1&2\\2&1\end{bmatrix}$$
 over \mathbb{Z}_5 . Then A is invertible and the inverse is given by $A^{-1}=\begin{bmatrix}3&4\\4&3\end{bmatrix}$.

Compute
$$A^{-1}$$
 using $A^{-1} = (ad - bc)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

The system $A\mathbf{x} = \begin{bmatrix} 3 & 4 \end{bmatrix}^T$ has unique solution and is given by $\mathbf{x} = A^{-1} \begin{bmatrix} 3 & 4 \end{bmatrix}^T = \begin{bmatrix} 0 & 4 \end{bmatrix}^T$.

Remark

For any field, usually one writes ab instead of $a \cdot b$.

A vector space (VS) over a field \mathbb{F} is a nonempty set \mathbb{V} with two binary operations called vector addition, denoted by +, and scalar multiplication, denoted by \cdot , satisfying the following axioms:

A vector space (VS) over a field \mathbb{F} is a nonempty set \mathbb{V} with two binary operations called vector addition, denoted by +, and scalar multiplication, denoted by \cdot , satisfying the following axioms:

For $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in $\mathbb V$ and scalars α, β in $\mathbb F$

- **2** Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

- **1** Inverse: u + (-u) = 0

A vector space (VS) over a field \mathbb{F} is a nonempty set \mathbb{V} with two binary operations called vector addition, denoted by +, and scalar multiplication, denoted by \cdot , satisfying the following axioms:

For $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in $\mathbb V$ and scalars α, β in $\mathbb F$

- **1** Closure: $\mathbf{u} + \mathbf{v} \in \mathbb{V}$ and $\alpha \cdot \mathbf{u} \in \mathbb{V}$
- **2** Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

- **1** Inverse: $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- **1** Distributivity : $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$
- **O** Distributivity : $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$
- **3** Associativity: $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$
- $\mathbf{0}$ Identity: $1\mathbf{u} = \mathbf{u}$.

A vector space (VS) over a field \mathbb{F} is a nonempty set \mathbb{V} with two binary operations called vector addition, denoted by +, and scalar multiplication, denoted by \cdot , satisfying the following axioms:

For $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{V} and scalars α, β in \mathbb{F}

- **1** Closure: $\mathbf{u} + \mathbf{v} \in \mathbb{V}$ and $\alpha \cdot \mathbf{u} \in \mathbb{V}$
- **2** Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- **3** Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- **4** Identity: $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- **1** Inverse: u + (-u) = 0
- **6** Distributivity : $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$
- **O** Distributivity : $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$
- **3** Associativity: $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$
- **9** Identity: $1\mathbf{u} = \mathbf{u}$.

The elements of $\mathbb V$ are vectors and the elements of $\mathbb F$ are scalars.

• \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .

- \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \geq 1$, is a VS w.r.t. usual addition and scalar multiplication.

- \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \ge 1$, is a VS w.r.t. usual addition and scalar multiplication.
- \mathbb{R}^n over \mathbb{Q} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication.

- \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \ge 1$, is a VS w.r.t. usual addition and scalar multiplication.
- \mathbb{R}^n over \mathbb{Q} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication.
- $\mathcal{M}_{m,n}(\mathbb{F}) := \{[a_{ij}]_{m \times n} : a_{ij} \in \mathbb{F}\}$ is a VS over \mathbb{F} , under matrix addition and scalar-matrix multiplication.

- \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \ge 1$, is a VS w.r.t. usual addition and scalar multiplication.
- \mathbb{R}^n over \mathbb{Q} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication.
- $\mathcal{M}_{m,n}(\mathbb{F}) := \{[a_{ij}]_{m \times n} : a_{ij} \in \mathbb{F}\}$ is a VS over \mathbb{F} , under matrix addition and scalar-matrix multiplication.

Exercise

• Are these vector spaces (under the usual operations)? All $n \times n$ (a) symmetric matrices?

- \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \ge 1$, is a VS w.r.t. usual addition and scalar multiplication.
- \mathbb{R}^n over \mathbb{Q} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication.
- $\mathcal{M}_{m,n}(\mathbb{F}) := \{[a_{ij}]_{m \times n} : a_{ij} \in \mathbb{F}\}$ is a VS over \mathbb{F} , under matrix addition and scalar-matrix multiplication.

Exercise

Are these vector spaces (under the usual operations)?
 All n × n (a) symmetric matrices? (b) skew symmetric matrices?

- \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \ge 1$, is a VS w.r.t. usual addition and scalar multiplication.
- \mathbb{R}^n over \mathbb{Q} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication.
- $\mathcal{M}_{m,n}(\mathbb{F}) := \{[a_{ij}]_{m \times n} : a_{ij} \in \mathbb{F}\}$ is a VS over \mathbb{F} , under matrix addition and scalar-matrix multiplication.

Exercise

Are these vector spaces (under the usual operations)?
 All n × n (a) symmetric matrices? (b) skew symmetric matrices? (c) upper-triangular matrices?

- \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \ge 1$, is a VS w.r.t. usual addition and scalar multiplication.
- \mathbb{R}^n over \mathbb{Q} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication.
- $\mathcal{M}_{m,n}(\mathbb{F}) := \{[a_{ij}]_{m \times n} : a_{ij} \in \mathbb{F}\}$ is a VS over \mathbb{F} , under matrix addition and scalar-matrix multiplication.

Exercise

• Are these vector spaces (under the usual operations)? All $n \times n$ (a) symmetric matrices? (b) skew symmetric matrices? (c) upper-triangular matrices? (d) matrices with $a_{11} = 0$?

- \mathbb{F}^n over \mathbb{F} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication induced from \mathbb{F} .
- \mathbb{C}^n over \mathbb{R} , for $n \ge 1$, is a VS w.r.t. usual addition and scalar multiplication.
- \mathbb{R}^n over \mathbb{Q} , for $n \ge 1$, is a VS w.r.t. usual operations of addition and scalar multiplication.
- $\mathcal{M}_{m,n}(\mathbb{F}) := \{[a_{ij}]_{m \times n} : a_{ij} \in \mathbb{F}\}$ is a VS over \mathbb{F} , under matrix addition and scalar-matrix multiplication.

Exercise

• Are these vector spaces (under the usual operations)? All $n \times n$ (a) symmetric matrices? (b) skew symmetric matrices? (c) upper-triangular matrices? (d) matrices with $a_{11} = 0$? (e) matrices A such that $A^2 = A$?

• $\mathbb{R}[x] := \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .

- $\mathbb{R}[x] := \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .
- $\mathbb{R}_m[x] := \{ p(x) \in \mathbb{R}[x] \mid p(x) = 0 \text{ or } \deg(p(x)) \le m \}$ is a VS over \mathbb{R} .

- $\mathbb{R}[x] := \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .
- $\mathbb{R}_m[x] := \{ p(x) \in \mathbb{R}[x] \mid p(x) = 0 \text{ or } \deg(p(x)) \le m \}$ is a VS over \mathbb{R} .
- $\mathbb{R}^S := \{ \text{ functions from } S \text{ to } \mathbb{R} \} \text{ is a VS over } \mathbb{R}, \text{ where}$ $(f+g)(s) := f(s) + g(s), \ (\alpha f)(s) = \alpha(f(s)).$

- $\mathbb{R}[x] := \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .
- $\mathbb{R}_m[x] := \{ p(x) \in \mathbb{R}[x] \mid p(x) = 0 \text{ or } \deg(p(x)) \le m \}$ is a VS over \mathbb{R} .
- $\mathbb{R}^S := \{ \text{ functions from } S \text{ to } \mathbb{R} \} \text{ is a VS over } \mathbb{R}, \text{ where}$ $(f+g)(s) := f(s) + g(s), \ (\alpha f)(s) = \alpha(f(s)).$
- $\mathcal{C}((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f \text{is continuous}\}\ \text{is a VS over}\ \mathbb{R}.$

- $\mathbb{R}[x] := \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .
- $\mathbb{R}_m[x] := \{ p(x) \in \mathbb{R}[x] \mid p(x) = 0 \text{ or } \deg(p(x)) \le m \}$ is a VS over \mathbb{R} .
- $\mathbb{R}^S := \{ \text{ functions from } S \text{ to } \mathbb{R} \} \text{ is a VS over } \mathbb{R}, \text{ where}$ $(f+g)(s) := f(s) + g(s), \ (\alpha f)(s) = \alpha(f(s)).$
- $\mathcal{C}((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f \text{is continuous}\}\ \text{is a VS over}\ \mathbb{R}.$
- $\{f: (a,b) \to \mathbb{R} \mid f'' 3f' + 7f = 0\}$ is a VS over \mathbb{R} .

- $\mathbb{R}[x] := \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .
- $\mathbb{R}_m[x] := \{ p(x) \in \mathbb{R}[x] \mid p(x) = 0 \text{ or } \deg(p(x)) \le m \}$ is a VS over \mathbb{R} .
- $\mathbb{R}^S := \{ \text{ functions from } S \text{ to } \mathbb{R} \} \text{ is a VS over } \mathbb{R}, \text{ where}$ $(f+g)(s) := f(s) + g(s), \ (\alpha f)(s) = \alpha(f(s)).$
- $\mathcal{C}((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f \text{is continuous}\}\ \text{is a VS over}\ \mathbb{R}.$
- $\{f:(a,b)\to\mathbb{R}\mid f''-3f'+7f=0\}$ is a VS over \mathbb{R} .

A vector space $\mathbb V$ over $\mathbb R$ is called a real vector space.

- $\mathbb{R}[x] := \{p(x) \mid p(x) \text{ is a real polynomial in } x\}$ is a VS over \mathbb{R} .
- $\mathbb{R}_m[x] := \{ p(x) \in \mathbb{R}[x] \mid p(x) = 0 \text{ or } \deg(p(x)) \le m \}$ is a VS over \mathbb{R} .
- $\mathbb{R}^S := \{ \text{ functions from } S \text{ to } \mathbb{R} \} \text{ is a VS over } \mathbb{R}, \text{ where}$ $(f+g)(s) := f(s) + g(s), \ (\alpha f)(s) = \alpha(f(s)).$
- $\mathcal{C}((a,b),\mathbb{R}) := \{f: (a,b) \to \mathbb{R} \mid f \text{is continuous}\}$ is a VS over \mathbb{R} .
- $\{f:(a,b)\to\mathbb{R}\mid f''-3f'+7f=0\}$ is a VS over \mathbb{R} .

A vector space $\mathbb V$ over $\mathbb R$ is called a real vector space.

A vector space V over C is called a complex vector space.

We mostly consider real and complex vector spaces.

In any vector space \mathbb{V} over \mathbb{F} , the following holds:

 $0\mathbf{u} = \mathbf{0}, \ \mathbf{u} \in \mathbb{V};$

- **1** $0u = 0, u \in V$;

- $\mathbf{0} \ 0\mathbf{u} = \mathbf{0}, \ \mathbf{u} \in \mathbb{V};$

- $0\mathbf{u} = \mathbf{0}, \ \mathbf{u} \in \mathbb{V};$
- **3** $(-1)u = -u, u \in V$;
- **4** If $\alpha \mathbf{u} = \mathbf{0}$ then either $\alpha = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$.

In any vector space \mathbb{V} over \mathbb{F} , the following holds:

- $0\mathbf{u} = \mathbf{0}, \ \mathbf{u} \in \mathbb{V};$
- **3** $(-1)u = -u, u \in V$;
- **4** If $\alpha \mathbf{u} = \mathbf{0}$ then either $\alpha = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$.

Exercise

• Define addition and scalar mult. on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ as follows:

For
$$(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \ \alpha \in \mathbb{R}$$

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \alpha.(x, y) = (\alpha x, 0).$$

In any vector space \mathbb{V} over \mathbb{F} , the following holds:

- **1** $0u = 0, u \in V;$
- **3** $(-1)u = -u, u \in V$;
- **4** If $\alpha \mathbf{u} = \mathbf{0}$ then either $\alpha = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$.

Exercise

• Define addition and scalar mult. on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ as follows:

For
$$(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \ \alpha \in \mathbb{R}$$

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \alpha.(x, y) = (\alpha x, 0).$$

Is \mathbb{R}^2 a VS over \mathbb{R} w.r.t. respect these operations?

In any vector space \mathbb{V} over \mathbb{F} , the following holds:

- $\mathbf{0} \quad 0\mathbf{u} = \mathbf{0}, \ \mathbf{u} \in \mathbb{V};$
- **3** $(-1)u = -u, u \in V$;
- **4** If $\alpha \mathbf{u} = \mathbf{0}$ then either $\alpha = 0$ or $\mathbf{u} = \mathbf{0}$.

Exercise

• Define addition and scalar mult. on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ as follows:

For
$$(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \ \alpha \in \mathbb{R}$$

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \alpha.(x, y) = (\alpha x, 0).$$

Is \mathbb{R}^2 a VS over \mathbb{R} w.r.t. respect these operations?

Is
$$1 \cdot (x, y) = (x, y)$$
?

In any vector space V over F, the following holds:

- **1** $0u = 0, u \in V;$

- **4** If $\alpha \mathbf{u} = \mathbf{0}$ then either $\alpha = \mathbf{0}$ or $\mathbf{u} = \mathbf{0}$.

Exercise

• Define addition and scalar mult. on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ as follows:

For
$$(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \ \alpha \in \mathbb{R}$$

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \alpha.(x, y) = (\alpha x, 0).$$

Is \mathbb{R}^2 a VS over \mathbb{R} w.r.t. respect these operations?

Is
$$1 \cdot (x, y) = (x, y)$$
?

Is
$$(-1)\cdot(2,3)$$
 the additive inverse of $(2,3)$?

Let \mathbb{V} be a VS over \mathbb{F} and $(\emptyset \neq) \mathbb{W} \subseteq \mathbb{V}$.

Let $\mathbb V$ be a VS over $\mathbb F$ and $(\emptyset \neq)$ $\mathbb W \subseteq \mathbb V$. Then $\mathbb W$ is a subspace of V (write $\mathbb W \preccurlyeq V$), if

 $\mathbf{u} + \mathbf{v} \in \mathbb{W}, \ \alpha \mathbf{u} \in \mathbb{W} \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}.$

Let \mathbb{V} be a VS over \mathbb{F} and $(\emptyset \neq) \mathbb{W} \subseteq \mathbb{V}$. Then \mathbb{W} is a subspace of V (write $\mathbb{W} \preccurlyeq V$), if $\mathbf{u} + \mathbf{v} \in \mathbb{W}, \ \alpha \mathbf{u} \in \mathbb{W}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}$.

• $\mathbb{W} \preccurlyeq \mathbb{V}$

Let \mathbb{V} be a VS over \mathbb{F} and $(\emptyset \neq) \mathbb{W} \subseteq \mathbb{V}$. Then \mathbb{W} is a subspace of V (write $\mathbb{W} \preccurlyeq V$), if $\mathbf{u} + \mathbf{v} \in \mathbb{W}, \ \alpha \mathbf{u} \in \mathbb{W}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}$.

• $\mathbb{W} \preceq \mathbb{V}$ iff $\alpha \mathbf{u} + \beta \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}$, $\alpha, \beta \in \mathbb{F}$

Let \mathbb{V} be a VS over \mathbb{F} and $(\emptyset \neq) \mathbb{W} \subseteq \mathbb{V}$. Then \mathbb{W} is a subspace of V (write $\mathbb{W} \preccurlyeq V$), if $\mathbf{u} + \mathbf{v} \in \mathbb{W}, \ \alpha \mathbf{u} \in \mathbb{W}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}$.

$$\begin{split} \bullet \ \ \mathbb{W} & \preccurlyeq \mathbb{V} \\ \text{iff} \quad \alpha \mathbf{u} + \beta \mathbf{v} \in \mathbb{W} \text{, for all } \mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha, \beta \in \mathbb{F} \\ \text{iff} \quad \alpha \mathbf{u} + \mathbf{v} \in \mathbb{W} \text{, for all } \mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F} \end{split}$$

Let $\mathbb V$ be a VS over $\mathbb F$ and $(\emptyset \neq) \mathbb W \subseteq \mathbb V$. Then $\mathbb W$ is a subspace of V (write $\mathbb W \preccurlyeq V$), if $\mathbf u + \mathbf v \in \mathbb W, \ \alpha \mathbf u \in \mathbb W$ for all $\mathbf u, \mathbf v \in \mathbb W, \ \alpha \in \mathbb F$.

$$\begin{split} \bullet \ \ \mathbb{W} & \preccurlyeq \mathbb{V} \\ \text{iff} \quad \alpha \mathbf{u} + \beta \mathbf{v} \in \mathbb{W} \text{, for all } \mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha, \beta \in \mathbb{F} \\ \text{iff} \quad \alpha \mathbf{u} + \mathbf{v} \in \mathbb{W} \text{, for all } \mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F} \\ \text{iff} \quad \mathbb{W} \text{ is a VS over same } \mathbb{F} \text{ and under same operations.} \end{split}$$

Let \mathbb{V} be a VS over \mathbb{F} and $(\emptyset \neq) \mathbb{W} \subseteq \mathbb{V}$. Then \mathbb{W} is a subspace of V (write $\mathbb{W} \preccurlyeq V$), if $\mathbf{u} + \mathbf{v} \in \mathbb{W}, \ \alpha \mathbf{u} \in \mathbb{W}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}$.

- $\mathbb{W} \preccurlyeq \mathbb{V}$ iff $\alpha \mathbf{u} + \beta \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha, \beta \in \mathbb{F}$ iff $\alpha \mathbf{u} + \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}$ iff \mathbb{W} is a VS over same \mathbb{F} and under same operations.
- If $W \preccurlyeq \mathbb{V}$, then $\mathbf{0} \in W$.

Let \mathbb{V} be a VS over \mathbb{F} and $(\emptyset \neq) \mathbb{W} \subseteq \mathbb{V}$. Then \mathbb{W} is a subspace of V (write $\mathbb{W} \preceq V$), if $\mathbf{u} + \mathbf{v} \in \mathbb{W}$, $\alpha \mathbf{u} \in \mathbb{W}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}$, $\alpha \in \mathbb{F}$.

- $$\begin{split} \bullet \ \ \mathbb{W} & \preccurlyeq \mathbb{V} \\ \text{iff} \quad \alpha \mathbf{u} + \beta \mathbf{v} \in \mathbb{W} \text{, for all } \mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha, \beta \in \mathbb{F} \\ \text{iff} \quad \alpha \mathbf{u} + \mathbf{v} \in \mathbb{W} \text{, for all } \mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F} \\ \text{iff} \quad \mathbb{W} \text{ is a VS over same } \mathbb{F} \text{ and under same operations.} \end{split}$$
- If $W \preceq \mathbb{V}$, then $\mathbf{0} \in W$.
- $\{0\} \leq \mathbb{V}$ and $\mathbb{V} \leq \mathbb{V}$, called the trivial subspaces.

Let $\mathbb V$ be a VS over $\mathbb F$ and $(\emptyset \neq)$ $\mathbb W \subseteq \mathbb V$. Then $\mathbb W$ is a subspace of V (write $\mathbb W \preccurlyeq V$), if

$$\mathbf{u}+\mathbf{v}\in\mathbb{W},\ \alpha\mathbf{u}\in\mathbb{W}\ \text{for all}\ \mathbf{u},\mathbf{v}\in\mathbb{W},\ \alpha\in\mathbb{F}.$$

- $\mathbb{W} \preccurlyeq \mathbb{V}$ iff $\alpha \mathbf{u} + \beta \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha, \beta \in \mathbb{F}$ iff $\alpha \mathbf{u} + \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}$
 - iff $\ \mathbb{W}$ is a VS over same $\ \mathbb{F}$ and under same operations.
- If $W \preceq \mathbb{V}$, then $\mathbf{0} \in W$.
- $\{0\} \leq \mathbb{V}$ and $\mathbb{V} \leq \mathbb{V}$, called the trivial subspaces.

Exercise

• Identify some subspaces of $\mathcal{M}_{m\times n}(\mathbb{R})$, $\mathcal{M}_n(\mathbb{C})$ and $\mathbb{R}^{[a,b]}$.

Let $\mathbb V$ be a VS over $\mathbb F$ and $(\emptyset \neq)$ $\mathbb W \subseteq \mathbb V$. Then $\mathbb W$ is a subspace of V (write $\mathbb W \preccurlyeq V$), if

$$\mathbf{u}+\mathbf{v}\in\mathbb{W},\ \alpha\mathbf{u}\in\mathbb{W}\ \text{for all}\ \mathbf{u},\mathbf{v}\in\mathbb{W},\ \alpha\in\mathbb{F}.$$

- $\mathbb{W} \preccurlyeq \mathbb{V}$ iff $\alpha \mathbf{u} + \beta \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha, \beta \in \mathbb{F}$ iff $\alpha \mathbf{u} + \mathbf{v} \in \mathbb{W}$, for all $\mathbf{u}, \mathbf{v} \in \mathbb{W}, \ \alpha \in \mathbb{F}$
 - iff $\ \mathbb{W}$ is a VS over same $\ \mathbb{F}$ and under same operations.
- If $W \preceq \mathbb{V}$, then $\mathbf{0} \in W$.
- $\{0\} \leq \mathbb{V}$ and $\mathbb{V} \leq \mathbb{V}$, called the trivial subspaces.

Exercise

• Identify some subspaces of $\mathcal{M}_{m\times n}(\mathbb{R})$, $\mathcal{M}_n(\mathbb{C})$ and $\mathbb{R}^{[a,b]}$.

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$.

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$.

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\mathsf{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\} \ \preccurlyeq \ \mathbb{V}.$$

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\mathsf{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\} \ \preccurlyeq \ \mathbb{V}.$$

• Let $S \subseteq \mathbb{V}$ (may be infinite!)

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\} \ \, \preccurlyeq \ \, \mathbb{V}.$$

• Let $S \subseteq \mathbb{V}$ (may be infinite!) The span of S is defined by

$$\mathsf{span}(S) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\} \ \, \preccurlyeq \ \, \mathbb{V}.$$

• Let $S \subseteq \mathbb{V}$ (may be infinite!) The span of S is defined by

$$\mathsf{span}(S) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

• S is a spanning set for \mathbb{V} if $span(S) = \mathbb{V}$.

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\} \ \preccurlyeq \ \mathbb{V}.$$

• Let $S \subseteq \mathbb{V}$ (may be infinite!) The span of S is defined by

$$\mathsf{span}(S) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

- S is a spanning set for \mathbb{V} if $span(S) = \mathbb{V}$.
- Convention: $span(\emptyset) = \{0\}$

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\mathsf{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\} \ \, \preccurlyeq \ \, \mathbb{V}.$$

• Let $S \subseteq \mathbb{V}$ (may be infinite!) The span of S is defined by

$$\mathsf{span}(S) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

- S is a spanning set for \mathbb{V} if $span(S) = \mathbb{V}$.
- Convention: $span(\emptyset) = \{0\}$

Example

 $\bullet \ \mathbb{R}_2[x] = \mathsf{span}(1, x, x^2)$

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\mathsf{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\} \ \, \preccurlyeq \ \, \mathbb{V}.$$

• Let $S \subseteq \mathbb{V}$ (may be infinite!) The span of S is defined by

$$\mathsf{span}(S) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

- S is a spanning set for \mathbb{V} if $span(S) = \mathbb{V}$.
- Convention: $span(\emptyset) = \{0\}$

Example

• $\mathbb{R}_2[x] = \text{span}(1, x, x^2) = \text{span}(1 + x, 1 - x, 1 + x + x^2).$

• Let $\mathbf{v}_i \in \mathbb{V}$, $\alpha_i \in \mathbb{F}$, $1 \leq i \leq k$. Then $\sum_{i=1}^k \alpha_i \mathbf{v}_i$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Clearly,

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k) := \left\{ \sum_{i=1}^k \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\} \ \, \preccurlyeq \ \, \mathbb{V}.$$

• Let $S \subseteq \mathbb{V}$ (may be infinite!) The span of S is defined by

$$\mathsf{span}(S) := \left\{ \sum_{i=1}^m \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

- S is a spanning set for \mathbb{V} if $span(S) = \mathbb{V}$.
- Convention: $span(\emptyset) = \{0\}$

- $\mathbb{R}_2[x] = \text{span}(1, x, x^2) = \text{span}(1 + x, 1 x, 1 + x + x^2)$.
- $\mathbb{R}[x] = \text{span}(\{1, x, x^2, \ldots\}).$

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS $\mathbb V$ over $\mathbb F.$

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S,

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$$

for some $\mathbf{0} \neq [\alpha_1, \alpha_2, \dots, \alpha_k]^T \in \mathbb{F}^k$.

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$$
 for some $\mathbf{0} \neq [\alpha_1, \alpha_2, \ldots, \alpha_k]^T \in \mathbb{F}^k$.

Example

Any finite set containing 0 is linearly dependent.

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$$

for some $\mathbf{0} \neq [\alpha_1, \alpha_2, \dots, \alpha_k]^T \in \mathbb{F}^k$.

- Any finite set containing 0 is linearly dependent.
- In $\mathbb{R}_2[x]$, is $\{x^2, 1-x^2, 1+x^2\}$ linearly dependent?

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$$

for some $\mathbf{0} \neq [\alpha_1, \alpha_2, \dots, \alpha_k]^T \in \mathbb{F}^k$.

- Any finite set containing 0 is linearly dependent.
- In $\mathbb{R}_2[x]$, is $\{x^2, 1-x^2, 1+x^2\}$ linearly dependent? $ax^2 + b(1-x^2) + c(1+x^2) = 0$

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$$

for some $\mathbf{0} \neq [\alpha_1, \alpha_2, \dots, \alpha_k]^T \in \mathbb{F}^k$.

- Any finite set containing 0 is linearly dependent.
- In $\mathbb{R}_2[x]$, is $\{x^2, 1-x^2, 1+x^2\}$ linearly dependent? $ax^2 + b(1-x^2) + c(1+x^2) = 0$ $\Rightarrow (b+c) + (a-b+c)x^2 = 0$ \Rightarrow

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$$

for some $\mathbf{0} \neq [\alpha_1, \alpha_2, \dots, \alpha_k]^T \in \mathbb{F}^k$.

Example

- Any finite set containing 0 is linearly dependent.
- In $\mathbb{R}_2[x]$, is $\{x^2, 1-x^2, 1+x^2\}$ linearly dependent? $ax^2 + b(1-x^2) + c(1+x^2) = 0$ $\Rightarrow (b+c) + (a-b+c)x^2 = 0$ $\Rightarrow b+c = 0, a-b+c = 0.$

because, a polynomial is zero iff all of its coefficients are zero.

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$$

for some $\mathbf{0} \neq [\alpha_1, \alpha_2, \dots, \alpha_k]^T \in \mathbb{F}^k$.

Example

- Any finite set containing 0 is linearly dependent.
- In $\mathbb{R}_2[x]$, is $\{x^2, 1-x^2, 1+x^2\}$ linearly dependent? $ax^2 + b(1-x^2) + c(1+x^2) = 0$ \Rightarrow $(b+c)+(a-b+c)x^2=0$

because, a polynomial is zero iff all of its coefficients are zero.

The last system has nontrivial solutions.

 \Rightarrow b+c=0, a-b+c=0.

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a VS \mathbb{V} over \mathbb{F} . Then S is linearly dependent (LD) if at least one of $v_i \in S$ is a linear combination of the rest of elements in S, i.e., if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$$

for some $\mathbf{0} \neq [\alpha_1, \alpha_2, \dots, \alpha_k]^T \in \mathbb{F}^k$.

 \Rightarrow b+c=0, a-b+c=0.

Example

- Any finite set containing 0 is linearly dependent.
- In $\mathbb{R}_2[x]$, is $\{x^2, 1-x^2, 1+x^2\}$ linearly dependent? $ax^2 + b(1-x^2) + c(1+x^2) = 0$ $\Rightarrow (b+c) + (a-b+c)x^2 = 0$

because, a polynomial is zero iff all of its coefficients are zero.

The last system has nontrivial solutions. Thus, the set is LD.

We say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in \mathbb{V}$ to be linearly independent (LI) if it is not linearly dependent,

We say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in \mathbb{V}$ to be linearly independent (LI) if it is not linearly dependent, that is, if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \ldots = \alpha_k = \mathbf{0}.$$

We say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in \mathbb{V}$ to be linearly independent (LI) if it is not linearly dependent, that is, if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \ldots = \alpha_k = \mathbf{0}.$$

An infinite set $S \subseteq \mathbb{V}$ is linearly independent (LI) if every finite subset of S is linearly independent.

We say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in \mathbb{V}$ to be linearly independent (LI) if it is not linearly dependent, that is, if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \ldots = \alpha_k = \mathbf{0}.$$

An infinite set $S \subseteq \mathbb{V}$ is linearly independent (LI) if every finite subset of S is linearly independent.

Example

• The set $\{1, 1+x, 1+x+x^2\} \subseteq \mathbb{R}_3[x]$ is linearly independent.

We say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in \mathbb{V}$ to be linearly independent (LI) if it is not linearly dependent, that is, if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \ldots = \alpha_k = \mathbf{0}.$$

An infinite set $S \subseteq \mathbb{V}$ is linearly independent (LI) if every finite subset of S is linearly independent.

Example

• The set $\{1, 1+x, 1+x+x^2\}\subseteq \mathbb{R}_3[x]$ is linearly independent. Use GJE.

We say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in \mathbb{V}$ to be linearly independent (LI) if it is not linearly dependent, that is, if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \ldots = \alpha_k = \mathbf{0}.$$

An infinite set $S \subseteq \mathbb{V}$ is linearly independent (LI) if every finite subset of S is linearly independent.

- The set $\{1, 1+x, 1+x+x^2\}\subseteq \mathbb{R}_3[x]$ is linearly independent. Use GJE.
- The set $\{1, x, x^2, \ldots\} \subseteq \mathbb{R}[x]$ is linearly independent.

We say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in \mathbb{V}$ to be linearly independent (LI) if it is not linearly dependent, that is, if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \alpha_2 = \ldots = \alpha_k = \mathbf{0}.$$

An infinite set $S \subseteq \mathbb{V}$ is linearly independent (LI) if every finite subset of S is linearly independent.

Example

- The set $\{1, 1+x, 1+x+x^2\} \subseteq \mathbb{R}_3[x]$ is linearly independent. Use GJE.
- The set $\{1, x, x^2, ...\} \subseteq \mathbb{R}[x]$ is linearly independent.

• The set
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

is linearly independent in $\mathcal{M}_2(\mathbb{R})$.

A subset B of a VS $\mathbb V$ is said to be a basis for $\mathbb V$ if

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

Example

• $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

- $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- $\mathbb{V} = \mathbb{R}_n[x]$ over \mathbb{R} : $\{1, x, x^2, \dots, x^n\}$, called the standard basis.

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

- $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- $\mathbb{V} = \mathbb{R}_n[x]$ over \mathbb{R} : $\{1, x, x^2, \dots, x^n\}$, called the standard basis.
- $\{1+x, x+x^2, 1+x^2\}$ is a basis of $\mathbb{R}_2[x]$ over \mathbb{R} . (Check)

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

- $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- $\mathbb{V} = \mathbb{R}_n[x]$ over \mathbb{R} : $\{1, x, x^2, \dots, x^n\}$, called the standard basis.
- $\{1+x, x+x^2, 1+x^2\}$ is a basis of $\mathbb{R}_2[x]$ over \mathbb{R} . (Check)
- $\mathbb{V} = \mathbb{R}[x]$ over \mathbb{R} : $\{1, x, x^2, \ldots\}$.

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

- $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- $\mathbb{V} = \mathbb{R}_n[x]$ over \mathbb{R} : $\{1, x, x^2, \dots, x^n\}$, called the standard basis.
- $\{1+x, x+x^2, 1+x^2\}$ is a basis of $\mathbb{R}_2[x]$ over \mathbb{R} . (Check)
- $\mathbb{V} = \mathbb{R}[x]$ over \mathbb{R} : $\{1, x, x^2, \ldots\}$.
- $\mathbb{V} = \mathbb{C}$ over \mathbb{R} : $\{1, i\}$.

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

- $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- $\mathbb{V} = \mathbb{R}_n[x]$ over \mathbb{R} : $\{1, x, x^2, \dots, x^n\}$, called the standard basis.
- $\{1+x, x+x^2, 1+x^2\}$ is a basis of $\mathbb{R}_2[x]$ over \mathbb{R} . (Check)
- $\mathbb{V} = \mathbb{R}[x]$ over \mathbb{R} : $\{1, x, x^2, \ldots\}$.
- $\mathbb{V} = \mathbb{C}$ over \mathbb{R} : $\{1, i\}$.
- $\bullet \ \mathbb{V} = \mathcal{M}_2(\mathbb{F}) \text{ over } \mathbb{F} \colon \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

- $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- $\mathbb{V} = \mathbb{R}_n[x]$ over \mathbb{R} : $\{1, x, x^2, \dots, x^n\}$, called the standard basis.
- $\{1+x, x+x^2, 1+x^2\}$ is a basis of $\mathbb{R}_2[x]$ over \mathbb{R} . (Check)
- $\mathbb{V} = \mathbb{R}[x]$ over \mathbb{R} : $\{1, x, x^2, \ldots\}$.
- $\mathbb{V} = \mathbb{C}$ over \mathbb{R} : $\{1, i\}$.
- $\bullet \ \mathbb{V} = \mathcal{M}_2(\mathbb{F}) \text{ over } \mathbb{F} \colon \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$
- $\mathbb{V} = \mathcal{M}_n(\mathbb{F})$ over \mathbb{F} : $\{E_{ij} : 1 \leq i, j \leq n\}$,

A subset B of a VS \mathbb{V} is said to be a basis for \mathbb{V} if $span(B) = \mathbb{V}$ and B is linearly independent.

- $\mathbb{V} = \mathbb{F}^n$ over \mathbb{F} : the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.
- $\mathbb{V} = \mathbb{R}_n[x]$ over \mathbb{R} : $\{1, x, x^2, \dots, x^n\}$, called the standard basis.
- $\{1+x, x+x^2, 1+x^2\}$ is a basis of $\mathbb{R}_2[x]$ over \mathbb{R} . (Check)
- $\mathbb{V} = \mathbb{R}[x]$ over \mathbb{R} : $\{1, x, x^2, \ldots\}$.
- $\mathbb{V} = \mathbb{C}$ over \mathbb{R} : $\{1, i\}$.
- $\bullet \ \mathbb{V} = \mathcal{M}_2(\mathbb{F}) \text{ over } \mathbb{F} \colon \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$
- $\mathbb{V} = \mathcal{M}_n(\mathbb{F})$ over \mathbb{F} : $\{E_{ij} : 1 \le i, j \le n\}$, where $E_{ij} = [a_{kl}]$, given by $a_{kl} = 1$ if k = i, l = j and 0, otherwise.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be LI in \mathbb{V} and $\mathbf{v} \notin \text{span}(S)$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be LI in \mathbb{V} and $\mathbf{v} \notin \text{span}(S)$. Then $S \cup \{\mathbf{v}\}$ is LI.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be LI in \mathbb{V} and $\mathbf{v} \notin \text{span}(S)$. Then $S \cup \{\mathbf{v}\}$ is LI.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \ldots, \alpha_m, \alpha \in \mathbb{F}$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be LI in \mathbb{V} and $\mathbf{v} \notin \text{span}(S)$. Then $S \cup \{\mathbf{v}\}$ is LI.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \text{span}(S)$, not true.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \operatorname{span}(S)$, not true. Thus, $\alpha = 0$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \operatorname{span}(S)$, not true. Thus, $\alpha = 0$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = 0$.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \ldots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \mathrm{span}(S)$, not true. Thus, $\alpha = \mathbf{0}$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = \mathbf{0}$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = \operatorname{span}(S)$.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \operatorname{span}(S)$, not true. Thus, $\alpha = \mathbf{0}$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = \mathbf{0}$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = \operatorname{span}(S)$. Then S contains a basis of \mathbb{U} .

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \mathrm{span}(S)$, not true. Thus, $\alpha = \mathbf{0}$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = \mathbf{0}$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = \operatorname{span}(S)$. Then S contains a basis of \mathbb{U} .

Proof. If $\mathbf{v}_1 = \mathbf{0}$, replace S by $S \setminus {\mathbf{v}_1}$.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \ldots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \mathrm{span}(S)$, not true. Thus, $\alpha = \mathbf{0}$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = \mathbf{0}$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = \operatorname{span}(S)$. Then S contains a basis of \mathbb{U} .

Proof. If $\mathbf{v}_1 = \mathbf{0}$, replace S by $S \setminus \{\mathbf{v}_1\}$. Otherwise, for $1 \le k \le m$, check if $\mathbf{v}_k \in \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \mathrm{span}(S)$, not true. Thus, $\alpha = 0$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = 0$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = \operatorname{span}(S)$. Then S contains a basis of \mathbb{U} .

Proof. If $\mathbf{v}_1 = \mathbf{0}$, replace S by $S \setminus \{\mathbf{v}_1\}$. Otherwise, for $1 \le k \le m$, check if $\mathbf{v}_k \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$. Whenever your answer is yes, replace S by $S \setminus \{\mathbf{v}_k\}$ and repeat the process.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \operatorname{span}(S)$, not true. Thus, $\alpha = \mathbf{0}$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = \mathbf{0}$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = \operatorname{span}(S)$. Then S contains a basis of \mathbb{U} .

Proof. If $\mathbf{v}_1 = \mathbf{0}$, replace S by $S \setminus \{\mathbf{v}_1\}$. Otherwise, for $1 \le k \le m$, check if $\mathbf{v}_k \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$. Whenever your answer is yes, replace S by $S \setminus \{\mathbf{v}_k\}$ and repeat the process. The process must end in at most m steps.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \mathrm{span}(S)$, not true. Thus, $\alpha = 0$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = 0$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = \operatorname{span}(S)$. Then S contains a basis of \mathbb{U} .

Proof. If $\mathbf{v}_1 = \mathbf{0}$, replace S by $S \setminus \{\mathbf{v}_1\}$. Otherwise, for $1 \le k \le m$, check if $\mathbf{v}_k \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$. Whenever your answer is yes, replace S by $S \setminus \{\mathbf{v}_k\}$ and repeat the process. The process must end in at most m steps.

The set $B \subseteq S$ thus obtained spans \mathbb{U} and is linearly independent.

Proof. Suppose $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m + \alpha \mathbf{v} = \mathbf{0}$ for some $\alpha_1, \dots, \alpha_m, \alpha \in \mathbb{F}$. If $\alpha \neq \mathbf{0}$, then $\mathbf{v} \in \mathrm{span}(S)$, not true. Thus, $\alpha = 0$, and $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_m \mathbf{v}_m = \mathbf{0}$. S being LI, we have $\alpha_i = 0$.

Theorem: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subseteq \mathbb{V}$ and $\mathbb{U} = \operatorname{span}(S)$. Then S contains a basis of \mathbb{U} .

Proof. If $\mathbf{v}_1 = \mathbf{0}$, replace S by $S \setminus \{\mathbf{v}_1\}$. Otherwise, for $1 \le k \le m$, check if $\mathbf{v}_k \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$. Whenever your answer is yes, replace S by $S \setminus \{\mathbf{v}_k\}$ and repeat the process. The process must end in at most m steps.

The set $B \subseteq S$ thus obtained spans $\mathbb U$ and is linearly independent.

Why?

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \text{span}(S)$ be such that m = #(T) > r.

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$.

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
.

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{ir}\mathbf{v}_{r}, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. So $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{ir}\mathbf{v}_{r}, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. So $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Since m > r, the rows of A are linearly dependent.

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{ir}\mathbf{v}_{r}, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. So $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. So $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i =$$

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \text{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. So $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i = \sum_{i=1}^{m} \alpha_i \mathbf{A}_i \begin{vmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{vmatrix} =$$

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. So $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

$$\sum_{i=1}^{m} \alpha_{i} \mathbf{u}_{i} = \sum_{i=1}^{m} \alpha_{i} \mathbf{A}_{i} \begin{bmatrix} \mathbf{v}_{1} \\ \vdots \\ \mathbf{v}_{r} \end{bmatrix} = \mathbf{0} \begin{bmatrix} \mathbf{v}_{1} \\ \vdots \\ \mathbf{v}_{r} \end{bmatrix} = \mathbf{0} \begin{bmatrix} \mathbf{v}_{1} \\ \vdots \\ \mathbf{v}_{r} \end{bmatrix}$$

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq \mathbb{V}$ and $T \subseteq \operatorname{span}(S)$ be such that m = #(T) > r. Then T is LD.

Proof. Let $T = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$. Write

$$\mathbf{u}_i = a_{i1}\mathbf{v}_1 + a_{i2}\mathbf{v}_2 + \cdots + a_{ir}\mathbf{v}_r, \ 1 \leq i \leq m.$$

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mr} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}$$
. So $\mathbf{u}_i = \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix}$.

$$\sum_{i=1}^{m} \alpha_i \mathbf{u}_i = \sum_{i=1}^{m} \alpha_i \mathbf{A}_i \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0} \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_r \end{bmatrix} = \mathbf{0}.$$

Theorem: Let V be a VS having a finite spanning set.

Theorem: Let $\mathbb V$ be a VS having a finite spanning set. Then $\mathbb V$ has a finite basis and

Theorem: Let $\mathbb V$ be a VS having a finite spanning set. Then $\mathbb V$ has a finite basis and any two bases of $\mathbb V$ has same number of elements.

Theorem: Let \mathbb{V} be a VS having a finite spanning set. Then \mathbb{V} has a finite basis and any two bases of \mathbb{V} has same number of elements.

Proof. Follows from the previous two results.

Theorem: Let $\mathbb V$ be a VS having a finite spanning set. Then $\mathbb V$ has a finite basis and any two bases of $\mathbb V$ has same number of elements.

Proof. Follows from the previous two results.

Dimension: If a VS \mathbb{V} over \mathbb{F} has a finite basis with n elements, then \mathbb{V} is said to be finite dimensional and n is said to be the dimension of \mathbb{V} .

Theorem: Let \mathbb{V} be a VS having a finite spanning set. Then \mathbb{V} has a finite basis and any two bases of \mathbb{V} has same number of elements.

Proof. Follows from the previous two results.

Dimension: If a VS \mathbb{V} over \mathbb{F} has a finite basis with n elements, then \mathbb{V} is said to be finite dimensional and n is said to be the dimension of \mathbb{V} . We write $\dim(\mathbb{V}) = n$.

Theorem: Let \mathbb{V} be a VS having a finite spanning set. Then \mathbb{V} has a finite basis and any two bases of \mathbb{V} has same number of elements.

Proof. Follows from the previous two results.

Dimension: If a VS \mathbb{V} over \mathbb{F} has a finite basis with n elements, then \mathbb{V} is said to be finite dimensional and n is said to be the dimension of \mathbb{V} . We write $\dim(\mathbb{V}) = n$.

If $\mathbb V$ does not have a finite spanning set, then $\mathbb V$ is said to be infinite dimensional.

Theorem: Let \mathbb{V} be a VS having a finite spanning set. Then \mathbb{V} has a finite basis and any two bases of \mathbb{V} has same number of elements.

Proof. Follows from the previous two results.

Dimension: If a VS \mathbb{V} over \mathbb{F} has a finite basis with n elements, then \mathbb{V} is said to be finite dimensional and n is said to be the dimension of \mathbb{V} . We write $\dim(\mathbb{V}) = n$.

If $\mathbb V$ does not have a finite spanning set, then $\mathbb V$ is said to be infinite dimensional.

Theorem: Let \mathbb{V} be finite dimensional. Then any linearly independent set in \mathbb{V} can be extended to a basis for \mathbb{V} .

Theorem: Let \mathbb{V} be a VS having a finite spanning set. Then \mathbb{V} has a finite basis and any two bases of \mathbb{V} has same number of elements.

Proof. Follows from the previous two results.

Dimension: If a VS \mathbb{V} over \mathbb{F} has a finite basis with n elements, then \mathbb{V} is said to be finite dimensional and n is said to be the dimension of \mathbb{V} . We write $\dim(\mathbb{V}) = n$.

If V does not have a finite spanning set, then V is said to be infinite dimensional.

Theorem: Let \mathbb{V} be finite dimensional. Then any linearly independent set in \mathbb{V} can be extended to a basis for \mathbb{V} . Proof: Follows from previous theorems.

Finite dimensional:

• The zero space $\{0\}$ has dimension 0.

- The zero space $\{0\}$ has dimension 0.
- \mathbb{F}^n over \mathbb{F} ,

- The zero space $\{0\}$ has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;

- The zero space $\{0\}$ has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} ,

- The zero space {**0**} has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;

- The zero space $\{0\}$ has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- ullet ${\mathbb C}$ over ${\mathbb R}$,

- The zero space $\{0\}$ has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- \mathbb{C} over \mathbb{R} , dimension: 2;

- The zero space $\{0\}$ has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- \mathbb{C} over \mathbb{R} , dimension: 2;
- $\mathcal{M}_n(\mathbb{F})$ over \mathbb{F} ,

- The zero space $\{0\}$ has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- \mathbb{C} over \mathbb{R} , dimension: 2;
- $\mathcal{M}_n(\mathbb{F})$ over \mathbb{F} , dimension: n^2 .

Finite dimensional:

- The zero space {**0**} has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- \mathbb{C} over \mathbb{R} , dimension: 2;
- $\mathcal{M}_n(\mathbb{F})$ over \mathbb{F} , dimension: n^2 .

Infinite dimensional:

Finite dimensional:

- The zero space {**0**} has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- \mathbb{C} over \mathbb{R} , dimension: 2;
- $\mathcal{M}_n(\mathbb{F})$ over \mathbb{F} , dimension: n^2 .

Infinite dimensional:

• $\mathbb{R}[x]$ over \mathbb{R} ;

Finite dimensional:

- The zero space {**0**} has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- \mathbb{C} over \mathbb{R} , dimension: 2;
- $\mathcal{M}_n(\mathbb{F})$ over \mathbb{F} , dimension: n^2 .

Infinite dimensional:

- $\mathbb{R}[x]$ over \mathbb{R} ;
- \mathbb{R} over \mathbb{Q} ;

Finite dimensional:

- The zero space {**0**} has dimension 0.
- \mathbb{F}^n over \mathbb{F} , dimension: n;
- $\mathbb{R}_n[x]$ over \mathbb{R} , dimension: n+1;
- \mathbb{C} over \mathbb{R} , dimension: 2;
- $\mathcal{M}_n(\mathbb{F})$ over \mathbb{F} , dimension: n^2 .

Infinite dimensional:

- $\mathbb{R}[x]$ over \mathbb{R} ;
- \mathbb{R} over \mathbb{Q} ;
- $C((0,1),\mathbb{R})$ over \mathbb{R} .

Prove the following statements:

• $C^2((a,b),\mathbb{R}) := \{f : (a,b) \to \mathbb{R} \mid f'' \text{is continuous} \}$ is a subspace of the VS $C((a,b),\mathbb{R})$ over \mathbb{R} .

- $C^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}\$ is a subspace of the VS $C((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS \mathbb{R} over \mathbb{R} has no nontrivial subspaces?

- $C^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}\$ is a subspace of the VS $C((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS \mathbb{R} over \mathbb{R} has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.

- $\mathcal{C}^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS $\mathbb R$ over $\mathbb R$ has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preceq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preceq \mathbb{V}$.

- $\mathcal{C}^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS \mathbb{R} over \mathbb{R} has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preceq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preceq \mathbb{V}$.
- Let $\mathbb{U}, \mathbb{W} \leq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \leq \mathbb{V}$ iff $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$.

- $\mathcal{C}^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS \mathbb{R} over \mathbb{R} has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preceq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preceq \mathbb{V}$.
- Let $\mathbb{U}, \mathbb{W} \leq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \leq \mathbb{V}$ iff $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$.
- Suppose $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Let $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$. Then $\mathbb{U} + \mathbb{W} \preceq \mathbb{V}$.

- $\mathcal{C}^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS \mathbb{R} over \mathbb{R} has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preccurlyeq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preccurlyeq \mathbb{V}$.
- Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \preceq \mathbb{V}$ iff $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$.
- Suppose $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Let $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$. Then $\mathbb{U} + \mathbb{W} \preceq \mathbb{V}$. $[\mathbb{U} + \mathbb{W} \text{ is called an internal direct sum if } \mathbb{U} \cap \mathbb{W} = \{\mathbf{0}\}$,

- $\mathcal{C}^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS \mathbb{R} over \mathbb{R} has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preceq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preceq \mathbb{V}$.
- Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \preceq \mathbb{V}$ iff $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$.
- Suppose $\mathbb{U}, \mathbb{W} \preccurlyeq \mathbb{V}$. Let $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$. Then $\mathbb{U} + \mathbb{W} \preccurlyeq \mathbb{V}$. $[\mathbb{U} + \mathbb{W} \text{ is called an internal direct sum if } \mathbb{U} \cap \mathbb{W} = \{\mathbf{0}\}$, and then one writes $\mathbb{U} \oplus \mathbb{W}$.]

- $\mathcal{C}^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS \mathbb{R} over \mathbb{R} has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preccurlyeq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preccurlyeq \mathbb{V}$.
- Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \preceq \mathbb{V}$ iff $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$.
- Suppose $\mathbb{U}, \mathbb{W} \preccurlyeq \mathbb{V}$. Let $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$. Then $\mathbb{U} + \mathbb{W} \preccurlyeq \mathbb{V}$. $[\mathbb{U} + \mathbb{W} \text{ is called an internal direct sum if } \mathbb{U} \cap \mathbb{W} = \{\mathbf{0}\}$, and then one writes $\mathbb{U} \oplus \mathbb{W}$.]
- Let \mathbb{U} , \mathbb{W} be VS's over \mathbb{F} .

- $C^2((a,b),\mathbb{R}) := \{f : (a,b) \to \mathbb{R} \mid f'' \text{is continuous} \}$ is a subspace of the VS $C((a,b),\mathbb{R})$ over \mathbb{R} .
- The VS \mathbb{R} over \mathbb{R} has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preceq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preceq \mathbb{V}$.
- Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \preceq \mathbb{V}$ iff $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$.
- Suppose $\mathbb{U}, \mathbb{W} \preccurlyeq \mathbb{V}$. Let $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$. Then $\mathbb{U} + \mathbb{W} \preccurlyeq \mathbb{V}$. $[\mathbb{U} + \mathbb{W} \text{ is called an internal direct sum if } \mathbb{U} \cap \mathbb{W} = \{\mathbf{0}\}$, and then one writes $\mathbb{U} \oplus \mathbb{W}$.]
- Let \mathbb{U} , \mathbb{W} be VS's over \mathbb{F} . Then $\mathbb{U} \times \mathbb{W}$ is a VS over \mathbb{F} : $(u_1, w_1) + (u_2, w_2) := (u_1 + u_2, w_1 + w_2), \alpha(u, w) := (\alpha u, \alpha w).$

- $\mathcal{C}^2((a,b),\mathbb{R}):=\{f:(a,b)\to\mathbb{R}\mid f''\text{is continuous}\}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over $\mathbb{R}.$
- The VS $\mathbb R$ over $\mathbb R$ has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \preceq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \preceq \mathbb{V}$.
- Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \preceq \mathbb{V}$ iff $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$.
- Suppose $\mathbb{U}, \mathbb{W} \preccurlyeq \mathbb{V}$. Let $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$. Then $\mathbb{U} + \mathbb{W} \preccurlyeq \mathbb{V}$. $[\mathbb{U} + \mathbb{W} \text{ is called an internal direct sum if } \mathbb{U} \cap \mathbb{W} = \{\mathbf{0}\}$, and then one writes $\mathbb{U} \oplus \mathbb{W}$.]
- Let \mathbb{U} , \mathbb{W} be VS's over \mathbb{F} . Then $\mathbb{U} \times \mathbb{W}$ is a VS over \mathbb{F} : $(u_1, w_1) + (u_2, w_2) := (u_1 + u_2, w_1 + w_2), \alpha(u, w) := (\alpha u, \alpha w).$ $[\mathbb{U} \times \mathbb{V}]$ is called the external direct sum of \mathbb{U} and \mathbb{W} ,

- $\mathcal{C}^2((a,b),\mathbb{R}) := \{f: (a,b) \to \mathbb{R} \mid f'' \text{ is continuous} \}$ is a subspace of the VS $\mathcal{C}((a,b),\mathbb{R})$ over \mathbb{R} .
- The VS R over R has no nontrivial subspaces?
- If $\mathbb{U} \preceq \mathbb{W}$ and $\mathbb{W} \preceq \mathbb{V}$, then $\mathbb{U} \preceq \mathbb{V}$.
- Let $\{\mathbb{U}_i \mid \mathbb{U}_i \leq \mathbb{V}\}$ be nonempty. Then $\cap_i \mathbb{U}_i \leq \mathbb{V}$.
- Let $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$. Then $\mathbb{U} \cup \mathbb{W} \preceq \mathbb{V}$ iff $\mathbb{U} \subset \mathbb{W}$ or $\mathbb{W} \subset \mathbb{U}$.
- Suppose $\mathbb{U}, \mathbb{W} \leq \mathbb{V}$. Let $\mathbb{U} + \mathbb{W} := \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in \mathbb{U}, \mathbf{w} \in \mathbb{W}\}$. Then $\mathbb{U} + \mathbb{W} \preceq \mathbb{V}$. $[\mathbb{U} + \mathbb{W}]$ is called an internal direct sum if $\mathbb{U} \cap \mathbb{W} = \{\mathbf{0}\}\$, and then one writes $\mathbb{U} \oplus \mathbb{W}$.
- Let \mathbb{U} , \mathbb{W} be VS's over \mathbb{F} . Then $\mathbb{U} \times \mathbb{W}$ is a VS over \mathbb{F} :

$$(u_1, w_1) + (u_2, w_2) := (u_1 + u_2, w_1 + w_2), \alpha(u, w) := (\alpha u, \alpha w).$$
 [$\mathbb{U} \times \mathbb{V}$ is called the external direct sum of \mathbb{U} and \mathbb{W} , Notation: $\mathbb{U} \oplus \mathbb{W}$.]

Prove the following statements:

• Let $\mathbb{V} = \mathcal{M}_2(\mathbb{R})$,

• Let
$$\mathbb{V} = \mathcal{M}_2(\mathbb{R}), \ \mathbb{U} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}, \ \mathbb{W} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}.$$

• Let
$$\mathbb{V} = \mathcal{M}_2(\mathbb{R})$$
, $\mathbb{U} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}$, $\mathbb{W} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}$.
Then \mathbb{U} , $\mathbb{W} \preceq \mathbb{V}$, $\mathbb{V} = \mathbb{U} + \mathbb{W}$, but $\mathbb{V} \neq \mathbb{U} \oplus \mathbb{W}$.

• Let
$$\mathbb{V} = \mathcal{M}_2(\mathbb{R})$$
, $\mathbb{U} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}$, $\mathbb{W} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}$.

Then $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$, $\mathbb{V} = \mathbb{U} + \mathbb{W}$, but $\mathbb{V} \neq \mathbb{U} \oplus \mathbb{W}$.

[Note: $\mathbb{U} \cap \mathbb{W} = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}$.]

• Let
$$\mathbb{U}_1, \mathbb{U}_2 \preccurlyeq \mathbb{V}$$
 and $\mathbb{V}' = \mathbb{U}_1 + \mathbb{U}_2$.

Prove the following statements:

• Let
$$\mathbb{V} = \mathcal{M}_2(\mathbb{R})$$
, $\mathbb{U} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}$, $\mathbb{W} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}$.

Then \mathbb{U} , $\mathbb{W} \preceq \mathbb{V}$, $\mathbb{V} = \mathbb{U} + \mathbb{W}$, but $\mathbb{V} \neq \mathbb{U} \oplus \mathbb{W}$.

[Note:
$$\mathbb{U} \cap \mathbb{W} = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}.$$
]

• Let $\mathbb{U}_1, \mathbb{U}_2 \preccurlyeq \mathbb{V}$ and $\mathbb{V}' = \mathbb{U}_1 + \mathbb{U}_2$. Then $\mathbb{V}' = \mathbb{U}_1 \oplus \mathbb{U}_2$ iff

- Let $\mathbb{V} = \mathcal{M}_2(\mathbb{R})$, $\mathbb{U} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}$, $\mathbb{W} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}$.

 Then $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$, $\mathbb{V} = \mathbb{U} + \mathbb{W}$, but $\mathbb{V} \neq \mathbb{U} \oplus \mathbb{W}$.

 [Note: $\mathbb{U} \cap \mathbb{W} = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}$.]
- Let $\mathbb{U}_1, \mathbb{U}_2 \preccurlyeq \mathbb{V}$ and $\mathbb{V}' = \mathbb{U}_1 + \mathbb{U}_2$. Then $\mathbb{V}' = \mathbb{U}_1 \oplus \mathbb{U}_2$ iff every $\mathbf{v} \in \mathbb{V}'$ can be written in unique way as $\mathbf{v} = \mathbf{u} + \mathbf{w}, \ \mathbf{u} \in \mathbb{U}_1, \mathbf{w} \in \mathbb{U}_2$.
- For a VS \mathbb{V} and $S \subseteq \mathbb{V}$, span $(S) = \bigcap \{ \mathbb{U} \mid \mathbb{U} \preccurlyeq \mathbb{V}, S \subseteq \mathbb{U} \}$

- Let $\mathbb{V} = \mathcal{M}_2(\mathbb{R})$, $\mathbb{U} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}$, $\mathbb{W} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}$.

 Then $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$, $\mathbb{V} = \mathbb{U} + \mathbb{W}$, but $\mathbb{V} \neq \mathbb{U} \oplus \mathbb{W}$.

 [Note: $\mathbb{U} \cap \mathbb{W} = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}$.]
- Let $\mathbb{U}_1, \mathbb{U}_2 \preccurlyeq \mathbb{V}$ and $\mathbb{V}' = \mathbb{U}_1 + \mathbb{U}_2$. Then $\mathbb{V}' = \mathbb{U}_1 \oplus \mathbb{U}_2$ iff every $\mathbf{v} \in \mathbb{V}'$ can be written in unique way as $\mathbf{v} = \mathbf{u} + \mathbf{w}, \ \mathbf{u} \in \mathbb{U}_1, \mathbf{w} \in \mathbb{U}_2$.
- For a VS \mathbb{V} and $S \subseteq \mathbb{V}$, span $(S) = \bigcap \{ \mathbb{U} \mid \mathbb{U} \leq \mathbb{V}, S \subseteq \mathbb{U} \} =$ the smallest subspace of \mathbb{V} containing S.

- Let $\mathbb{V} = \mathcal{M}_2(\mathbb{R})$, $\mathbb{U} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & 0 \end{bmatrix} : x_i \in \mathbb{R} \right\}$, $\mathbb{W} = \left\{ \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} : x_i \in \mathbb{R} \right\}$.

 Then $\mathbb{U}, \mathbb{W} \preceq \mathbb{V}$, $\mathbb{V} = \mathbb{U} + \mathbb{W}$, but $\mathbb{V} \neq \mathbb{U} \oplus \mathbb{W}$.

 [Note: $\mathbb{U} \cap \mathbb{W} = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} : x \in \mathbb{R} \right\}$.]
- Let $\mathbb{U}_1, \mathbb{U}_2 \preccurlyeq \mathbb{V}$ and $\mathbb{V}' = \mathbb{U}_1 + \mathbb{U}_2$. Then $\mathbb{V}' = \mathbb{U}_1 \oplus \mathbb{U}_2$ iff every $\mathbf{v} \in \mathbb{V}'$ can be written in unique way as $\mathbf{v} = \mathbf{u} + \mathbf{w}, \ \mathbf{u} \in \mathbb{U}_1, \mathbf{w} \in \mathbb{U}_2$.
- For a VS \mathbb{V} and $S \subseteq \mathbb{V}$, span $(S) = \bigcap \{ \mathbb{U} \mid \mathbb{U} \leq \mathbb{V}, S \subseteq \mathbb{U} \} =$ the smallest subspace of \mathbb{V} containing S.

Prove the following statement:

Let $\mathbb V$ be a VS and B a basis for $\mathbb V$. Then every nonzero vector $\mathbf v$ in $\mathbb V$ can be expressed uniquely as a linear combination of (finitely many) vectors in B with nonzero coefficients.

Prove the following statement:

Let $\mathbb V$ be a VS and B a basis for $\mathbb V$. Then every nonzero vector $\mathbf v$ in $\mathbb V$ can be expressed uniquely as a linear combination of (finitely many) vectors in B with nonzero coefficients.

Exercise

Let \mathbb{V} be a vector space with $\dim \mathbb{V} = n$. Prove that

• Any linearly independent set in \mathbb{V} contains at most n vectors.

Prove the following statement:

Let $\mathbb V$ be a VS and B a basis for $\mathbb V$. Then every nonzero vector $\mathbf v$ in $\mathbb V$ can be expressed uniquely as a linear combination of (finitely many) vectors in B with nonzero coefficients.

Exercise

- Any linearly independent set in \mathbb{V} contains at most n vectors.
- Any spanning set for \mathbb{V} contains at least n vectors.

Prove the following statement:

Let $\mathbb V$ be a VS and B a basis for $\mathbb V$. Then every nonzero vector $\mathbf v$ in $\mathbb V$ can be expressed uniquely as a linear combination of (finitely many) vectors in B with nonzero coefficients.

Exercise

- Any linearly independent set in \mathbb{V} contains at most n vectors.
- Any spanning set for \mathbb{V} contains at least n vectors.
- Any linearly independent set of exactly n vectors in $\mathbb V$ is a basis for $\mathbb V$.

Prove the following statement:

Let $\mathbb V$ be a VS and B a basis for $\mathbb V$. Then every nonzero vector $\mathbf v$ in $\mathbb V$ can be expressed uniquely as a linear combination of (finitely many) vectors in B with nonzero coefficients.

Exercise

- Any linearly independent set in \mathbb{V} contains at most n vectors.
- Any spanning set for \mathbb{V} contains at least n vectors.
- Any linearly independent set of exactly n vectors in $\mathbb V$ is a basis for $\mathbb V$.
- Any spanning set for \mathbb{V} of exactly n vectors is a basis for \mathbb{V} .

Prove the following statement:

Let $\mathbb V$ be a VS and B a basis for $\mathbb V$. Then every nonzero vector $\mathbf v$ in $\mathbb V$ can be expressed uniquely as a linear combination of (finitely many) vectors in B with nonzero coefficients.

Exercise

- Any linearly independent set in \mathbb{V} contains at most n vectors.
- Any spanning set for \mathbb{V} contains at least n vectors.
- Any linearly independent set of exactly n vectors in $\mathbb V$ is a basis for $\mathbb V$.
- Any spanning set for \mathbb{V} of exactly n vectors is a basis for \mathbb{V} .
- Any spanning set for \mathbb{V} can be reduced to a basis for \mathbb{V} .