UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2015/2 Prova da área IB

1 - 6	7	8	Total

Nome:	Cartão:	

 ${\bf Regras\ Gerais:}$

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique to do procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

110pm	Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.				
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$			
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F}\left\{f'(t)\right\} = iw\mathcal{F}\left\{f(t)\right\}$			
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$			
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$			
4.	Deslocamento no eixo t	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$			
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$			
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$			
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$			
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$			
8.	Conjugação	$\overline{F(w)} = F(-w)$			
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$			
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$			
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a } F\left(\frac{w}{a}\right), \qquad a \neq 0$			
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$			
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$			

Séries e transformadas de Fourier:

	Forma trigonométrica	Forma exponencial	
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(w_n t) + b_n \sin(w_n t)]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$	
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$	
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$		
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$		
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$		
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real,}$ onde $A(w) = \int_0^\infty f(t) \cos(wt) dt \in B(w) = \int_0^\infty f(t) \sin(wt) dt$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt} dw,$ onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$	
	$J_{-\infty}$	$J_{-\infty}$	

Tabela de integrais definidas:

Tabela de integrais definidas:	
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sec(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0 \\ 0, & m = 0 \\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
	$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty xe^{-a^2x^2}\sin(mx)dx = \frac{m\sqrt{\pi}}{4a^3}e^{-\frac{m^2}{4a^2}} (a>0)$

Frequências das notas musicais em Hertz:

Nota \ Escala	1	2	3	4	5	6
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó ‡	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

• Questão 1 (1.0 pontos) O diagrama de magnitudes da transformada de Fourier de uma função f(t), denotada por F(w), é apresentado abaixo:

Os diagramas de magnitudes das transformadas de Fourier das funções

$$g_1(t) = 2f(2t),$$

$$g_2(t) = f(t)\cos(4t)$$

$$g_3(t) = \frac{1}{2}f\left(\frac{1}{2}t\right)$$

são os seguintes:

a)

Marque a resposta que associa cada um dos itens a) b) e c) à representação correta do diagrama de magnitudes de cada uma das funções g_1, g_2 e g_3 :

- () a) $g_1(t)$, b) $g_2(t)$ e c) $g_3(t)$.
- () a) $g_1(t)$, b) $g_3(t)$ e c) $g_2(t)$.
- (X) a) $g_2(t)$, b) $g_1(t)$ e c) $g_3(t)$.
- () a) $g_2(t)$, b) $g_3(t)$ e c) $g_1(t)$.
- () a) $g_3(t)$, b) $g_1(t)$ e c) $g_2(t)$.
- () a) $g_3(t)$, b) $g_2(t)$ e c) $g_1(t)$.

• Questão 2 (1.0 pontos) Considere o diagrama de espectro de amplitude e fase da série de Fourier de uma função periódica f(t).

 $\acute{\rm E}$ correto a firmar que:

()
$$f(t) = -2 + ie^t - 2ie^{2t} + ie^{3t}$$

(X)
$$f(t) = -2 - 2\operatorname{sen}(t) + 4\operatorname{sen}(2t) - 2\operatorname{sen}(3t)$$

()
$$f(t) = -2 - \sin(t) + 2\sin(2t) - \sin(3t)$$

()
$$f(t) = -1 - \sin(t) + 2\sin(2t) - \sin(3t)$$

()
$$f(t) = -i\frac{\pi}{2}e^{-3t} + i\pi e^{-2t} - i\frac{\pi}{2}e^{-t} + 2i\pi + i\frac{\pi}{2}e^{t} - i\pi e^{2t} + i\frac{\pi}{2}e^{3t}$$

$$(\)\ f(t)=-2-\frac{i}{2}e^{-3t}+ie^{-2t}-\frac{i}{2}e^{-t}+\frac{i}{2}e^{t}-ie^{2t}+\frac{i}{2}e^{3t}$$

ullet Questão 3 (1.0 pontos) O diagrama de magnitudes da transformada de Fourier de uma função f(t), denotada por F(w), é apresentado abaixo:

Marque o gráfico que representa o diagrama de espectro de magnitudes da função $g(t)=f^{\prime}(2t)$:

a)

b)

|G(w)|

c)

|G(w)|

d)

|G(w)|

e)

f)

Solução: Observe que, pela regra da cadeia, $\frac{d}{dt}f(2t) =$ 2f'(2t). Logo,

Analogamente,

$$G(w) = \frac{1}{2}H\left(\frac{w}{2}\right),\,$$

 $\mathcal{F}\{f'(2t)\} = \mathcal{F}\left\{\frac{1}{2}\frac{d}{dt}f(2t)\right\} = \frac{iw}{2}\mathcal{F}\{f(2t)\}$

onde $H(w) = \mathcal{F}\{f'(t)\} = iwF(w)$. Logo,

Portanto,

$$G(w) = \frac{iw}{4} F\left(\frac{w}{2}\right).$$

 $G(w) = \frac{iw}{4} F\left(\frac{w}{2}\right).$

 \bullet Questão 4 (1.0 pontos) A transformada inversa de Fourier da função $G(w)=e^{-w^2}e^{-2iw}$ é:

()
$$g(t) = \frac{1}{2\sqrt{\pi}}\delta(t-2)e^{-\frac{t^2}{4}}$$

()
$$g(t) = \frac{1}{2\sqrt{\pi}}\delta(t-2)e^{-\frac{(t-2)^2}{4}}$$

(X)
$$g(t) = \frac{1}{2\sqrt{\pi}}e^{-\frac{(t-2)^2}{4}}$$

()
$$g(t) = \frac{1}{2\sqrt{\pi}}e^{-\frac{t^2}{4}}$$

()
$$g(t) = \frac{1}{2\sqrt{\pi}}e^{-\frac{t^2}{4}}e^{-2it}$$

()
$$g(t) = \frac{1}{2\sqrt{\pi}}e^{-\frac{(t+2)^2}{4}}$$

Solução: Observamos questão

$$\mathcal{F}\{\delta(t-2)\} = \int_{-\infty}^{\infty} \delta(t-2)e^{-iwt}dt = e^{-2iw}.$$

Também, temos que a transformada inversa de Fourier da função e^{-w^2} é dada por

$$\mathcal{F}\{e^{-w^{2}}\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-w^{2}} e^{iwt} dw$$
$$= \frac{1}{\pi} \int_{0}^{\infty} e^{-w^{2}} \cos(wt) dw$$
$$= \frac{1}{2\sqrt{\pi}} e^{-\frac{t^{2}}{4}}$$

Portanto, aplicando o teorema da convolução, temos:

$$g(t) = \int_{-\infty}^{\infty} \delta(\tau - 2) \frac{1}{2\sqrt{\pi}} e^{-\frac{(\tau - t)^2}{4}} d\tau = \frac{1}{2\sqrt{\pi}} e^{-\frac{(t - 2)^2}{4}}$$

 \bullet Questão 5 (1.0 pontos) Considere a função periódica definida pelo gráfico abaixo:

Considere T o período fundamental da função. É correto afirmar que:

()
$$T = 2 e \int_0^2 f(t) \sin(\pi t) dt = 0$$

()
$$T = 2 e \int_0^2 f(t) \sin(\pi t) dt = \frac{4}{\pi}$$

()
$$T = 3 e \int_0^3 f(t) \sin(\pi t) dt = 0$$

()
$$T = 3 e \int_0^3 f(t) \sin(\pi t) dt = \frac{6}{\pi}$$

()
$$T = 4 e \int_0^4 f(t) \sin(\pi t) dt = 0$$

(X)
$$T = 4 e \int_0^4 f(t) \sin(\pi t) dt = \frac{8}{\pi}$$

• Questão 6 (1.0 pontos) Considere a função periódica definida pelo gráfico abaixo:

É correto afirmar que:

() $a_0=b_n=0$ para todo $n\in\mathbb{N}$

$$() f(t) = -\frac{4}{\pi} \operatorname{sen}\left(\frac{\pi}{2}t\right) + \frac{4}{\pi} \operatorname{sen}(\pi t) - \frac{4}{3\pi} \operatorname{sen}\left(3\frac{\pi}{2}t\right) - \frac{4}{5\pi} \operatorname{sen}\left(5\frac{\pi}{2}t\right) + \cdots$$

()
$$f(t) = -\frac{4}{\pi} \operatorname{sen}(\pi t) + \frac{4}{\pi} \operatorname{sen}(2\pi t) - \frac{4}{3\pi} \operatorname{sen}(3\pi t) - \frac{4}{5\pi} \operatorname{sen}(5\pi t) + \cdots$$

()
$$f(t) = \frac{4}{\pi} - \frac{4}{\pi} \cos\left(\frac{\pi}{2}t\right) + \frac{4}{\pi} \cos(\pi t) - \frac{4}{3\pi} \cos\left(3\frac{\pi}{2}t\right) - \frac{4}{5\pi} \cos\left(5\frac{\pi}{2}t\right) + \cdots$$

() $b_8 \neq 0$

() Devido as suas infinitas descontinuidades, esta função não possui série de Fourier.

Solução:

$$a_0 = \frac{2}{4} \int_{-2}^{-1} 2dt + \frac{2}{4} \int_{-2}^{-1} (-2)dt = 0$$
$$a_n = 0$$

$$b_n = \frac{2}{4} \int_{-2}^{2} f(t) \operatorname{sen}(w_n t) dt$$

$$= \int_{1}^{2} 2 \operatorname{sen}(w_n t) dt$$

$$= \left[2 \frac{\cos(w_n t)}{w_n} \right]_{1}^{2}$$

$$= 2 \frac{\cos(2w_n) - \cos(w_n)}{w_n}$$

$$= 4 \frac{\cos(\pi n) - \cos(\frac{\pi}{2}n)}{n\pi}$$

Ou seja,

$$b_{1} = -\frac{4}{\pi}$$

$$b_{2} = \frac{4}{\pi}$$

$$b_{3} = -\frac{4}{3\pi}$$

$$b_{4} = 0$$

$$b_{5} = -\frac{4}{5\pi}$$

- Questão 7 (2.0 pontos) Marque verdadeiro, falso ou não sei. Observação: item respondido corretamente vale 0.2, item respondido incorretamente vale -0.2 e item marcado como não sei vale 0.0.
- i) É possível reconstruir uma função usando apenas o diagrama de espectro de magnitudes.
- ii) Conhecendo apenas o diagrama de magnitudes é possível calcular a energia total do sinal dada por $\int_{-\infty}^{\infty} |f(t)|^2 dt$.
- iii) A transformada de Fourier de uma função real é uma função real.

- iv) Para toda função f(t) que possui transformada de Fourier, $\int_{-\infty}^{\infty} F(w)dw = 0$. v) O diagrama de espectro de magnitudes da transformada de Fourier de uma função real possui simetria par. vi) Para toda função f(t) que possui transformada de Fourier, $\int_{-\infty}^{\infty} f(t)dt = F(0)$.
- vii) O diagrama de espectro de fases da transformada de Fourier de uma função real possui simetria par. viii) Para toda função T-periódica f(t) que possui série de Fourier, $\int_0^T |f(t)|^2 dt = T \sum_{n=-\infty}^\infty |C_n|^2.$
- ix) A função $f(t) = \sum_{n=-\infty}^{\infty} \delta(t-n)$ não possui série de Fourier, pois não é periódica. x) Toda função real pode ser escrita como a soma de uma função par e outra função ímpar

	Verdadeiro	Falso	Não Sei
i)		X	
ii)	X		
iii)		X	
iv)		X	
v)	X		

i iunçao impar.					
	Verdadeiro	Falso	Não Sei		
vi)	X				
vii)		X			
viii)	X				
ix)		X			
x)	X				

• Questão 8 (2.0 pontos) Resolva a seguinte equação diferencial parcial usando a técnica das Transformadas de Fourier:

$$\left\{ \begin{array}{ll} \displaystyle \frac{\partial u}{\partial t}(x,t) + u(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), & \displaystyle -\infty < x < \infty, \quad t > 0 \\ \\ \displaystyle u(x,0) = 2\delta(x), & \displaystyle -\infty < x < \infty \end{array} \right.$$

 ${f Solução:}$ Aplicamos a transformada de Fourier para obter o problema:

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial U}{\partial t}(k,t) + (1+k^2)U(k,t) = 0, \\ \\ \displaystyle U(k,0) = 2, \end{array} \right.$$

onde $U(k,t) = \mathcal{F}_x\{u(x,t)\}$. Usamos o método de separação de variáveis para calcular a solução do problema de valor inicial:

$$\begin{array}{rcl} \frac{\partial U}{\partial t}(k,t) + (1+k^2)U(k,t) & = & 0 \\ & & \downarrow & \\ & \frac{\partial U}{\partial t}(k,t) & = & -(1+k^2)U(k,t) \\ & & \downarrow & \\ & \frac{1}{U}\frac{\partial U}{\partial t} & = & -(1+k^2) \\ & & \downarrow & \\ & \int_0^t \frac{1}{U}\frac{\partial U}{\partial \tau}d\tau & = & -\int_0^t (1+k^2)d\tau \\ & & \downarrow & \\ & \int_{U(k,0)}^{U(k,t)} \frac{1}{U}dU & = & -(1+k^2)t \\ & & \downarrow & \\ & \ln(|U(k,t)|) - \ln(2) & = & -(1+k^2)t \\ & & \downarrow & \\ & U(k,t) & = & e^{\ln(2) + (k^2 - 1)t} = 2e^{-(1+k^2)t}. \end{array}$$

Agora, vamos calcular a transformada inversa:

$$\begin{array}{rcl} u(x,t) & = & \displaystyle \frac{1}{2\pi} \int_{-\infty}^{\infty} U(k,t) e^{ikx} dk \\ \\ & = & \displaystyle \frac{1}{2\pi} \int_{-\infty}^{\infty} 2 e^{-(1+k^2)t} e^{ikx} dk \\ \\ & = & \displaystyle \frac{e^{-t}}{\pi} \int_{-\infty}^{\infty} e^{-k^2t} e^{ikx} dk \\ \\ & = & \displaystyle \frac{2e^{-t}}{\pi} \int_{0}^{\infty} e^{-k^2t} \cos(kx) dk \\ \\ & = & \displaystyle \frac{1}{\sqrt{\pi t}} e^{-t} e^{-\frac{x^2}{4t}} \end{array}$$