702 Assignment IV

Question 1

Data Inspection

After loading the tree.txt, we randomly assign 30% of the age data to be NaN values.

number	diameter	age
1	12.0	125
2	11.4	119
3	7.9	NA
4	9.0	85
5	10.5	99
6	7.9	117
7	7.3	69
8	10.2	133
9	11.7	154
10	11.3	NA
11	5.7	61
12	8.0	80
13	10.3	114
14	12.0	NA
15	9.2	NA
16	8.5	106
17	7.0	82
18	10.7	NA
19	9.3	NA
20	8.2	99

Imputation

First, we look at stripplot to examine the distribution of imputed values compared to the observed values. Using 'norm'argument, it turns out that our imputed values have much larger variance than the actual data.

In order to examine the quality of imputation, we randomly select dataset 7 and 17 from the 50 imputed complete dataset.

Using scatter plot to examine the relationship between diameter and imputed age across dataset 7, 17, and original data, we observe a similar positive correlation between the two variables.

Using density plot, we can inspect the how much our imputed age values overlap with the observed values. Intuitively, the more the overlap there is, the better the quality our imputed values are, since it signals that they approximate the true values.

Via visual inspection, our two randomly drawn imputed age values well approximate the observed values, and the relationship between age and diameter is preserved.

Model

Before fitting a linear model on our full dataset, we can fit the regression model on one of the selected dataset to check for linear regression assumptions beforehand. This is done on dataset 17.

Based on the residual vs. fitted plot and QQ plot, we are confident that our assumptions of linearity, equal variance, and independe are satisfied on dataset 17, showing that our imputed data are likely to meet linear regression assumptions.

Pooling

Table 2: Final Imputation Model

term	estimate	std.error	statistic	p.value	b	df	dfcom	fmi	lambda	m	riv	ubar
(Intercept)	3.5866	1.2505	2.8681	0.0143	0.3966	11.8769	18	0.3583	0.2587	50	0.3490	1.1593
age	0.0541	0.0117	4.6180	0.0007	0.0000	11.0366	18	0.4062	0.3076	50	0.4442	0.0001

Using the multiple imputation combining rules to do the regression of age on diameter, we find that the coefficient of age (= 0.05) as a predictor for diameter is statistically significant (p < 0.05), with a confidence level of (0.03, 0.08). Our intercept is 3.59, which is also statistically significant (p < 0.05). It means that for any given tree at age 0, the predicted diameter is 3.59 cm. It shows that with every unit increase age, the

diameter of the tree is predicted to increase by 0.05 cm. Overall, this regression model summary shows that there is a positive correlation between age and diameter, and this relationship is statistically significant given our pooled data. However, our limited sample size can potentially undermine the validity of our conclusion, and the quality of imputed values can be further investigated.

Question 2

Imputation

We use the nhanes data to investigate the relationship between Body Mass Index and potential predictors. To deal with the missing values, we use multiple imputation approach, with 'pmm' argument to create 10 imputed datasets. In this case, we prefer 'pmm' instead of 'norm' as an effort to avoid incurring negative values of age in imputed datasets.

In order to examine the quality of imputed data, dataset 3 and dataset 10 were randomly chosen. By plotting the relationship between bmxbmi and age across dataset 3, dataset 10, and the original data, we find that the linear relationship is consistent. The distribution of bmxbmi across riagendr groups are also consistent across the three datasts. Besides, the density plot of age shows that our imputed age highly overlap with the observed values. As a result, we are confident about the quality of our imputed values.

Model

Given our research interest, we then fit a linear model on imputed data 3 using age, riagendr, ridreth2, dmdeduc as predictors of bmxbmi. Since we are also interested in whether or not education and gender will have interaction effect on bmxbmmi, an interaction term dmdeduc:riagendr is also included. We find that regression assumptions, including equal variance and especially normality are violated. Thus, we consider transforming our response variable to log scale in order to mitigate the skewness.

Theoretical Quantiles
Im(bmxbmi ~ age + riagendr + ridreth2 + dmdeduc + dmdeduc:riagend

After using log-scale bmxbmi as the response variable, we find that the issue of assumption violation is greatly alleviated. Thus, we decide to conduct our analysis on log-bmxbmi scale.

Im(log(bmxbmi) ~ age + riagendr + ridreth2 + dmdeduc + dmdeduc:riagei

Before fitting the model, we use backward model selection method (metric = AIC) to aid model selection. It turns out that the selection did not screen out any predictor using AIC metric, and we continue using the model on pooled dataset.

Thus, we first convert bmxbmi to log scale and conduct another multiple imputation.

Pooling

Then we use multiple imputation combining ruls to find point and variance estimates.

Table 3: Final Imputation Model

term	estimatestd.error	r statistic p.value	b	df	dfcom	fmi	lambdam	riv	ubar
(Intercept)	2.8748 0.0065	442.9371 0.0000	0.0000	360.4742	10107	0.1593	0.1546 10	0.1829	0.0000
age	0.0059 0.0001	49.7535 0.0000	0.0000	311.2925	10107	0.1722	$0.1669\ 10$	0.2003	0.0000

term	estimat	estd.error	statistic	p.value	b	df	dfcom	fmi	lambdam	riv	ubar
riagendr2	0.0337	0.0060	5.6323	0.0000	0.0000	2323.57	7310107	0.0550	0.0541 10	0.0572	0.0000
ridreth22	0.0751	0.0060	12.4969	0.0000	0.0000	1875.95	7610107	0.0630	$0.0620\ 10$	0.0661	0.0000
ridreth23	0.0643	0.0061	10.5067	0.0000	0.0000	6062.98	0010107	0.0242	$0.0239\ 10$	0.0245	0.0000
ridreth24	-	0.0138	-	0.0007	0.0000	680.903	4 10107	0.1131	$0.1105\ 10$	0.1243	0.0002
	0.0467		3.3963								
ridreth25	0.0409	0.0134	3.0606	0.0022	0.0000	1608.75	2310107	0.0693	$0.0681\ 10$	0.0731	0.0002
dmdeduc2	0.1360	0.0101	13.4271	0.0000	0.0000	1492.78	3710107	0.0724	$0.0712\ 10$	0.0767	0.0001
dmdeduc3	0.1253	0.0088	14.2647	0.0000	0.0000	1910.28	6110107	0.0623	$0.0613\ 10$	0.0653	0.0001
dmdeduc7	-	0.1178	-	0.2445	0.0013	724.914	1 10107	0.1093	$0.1069\ 10$	0.1196	0.0124
	0.1373		1.1648								
dmdeduc9	-	0.0900	-	0.1741	0.0021	104.742	9 10107	0.3041	$0.2910\ 10$	0.4104	0.0057
	0.1231		1.3685								
riagendr2:dm	deduc2-	0.0138	-	0.0067	0.0000	828.106	8 10107	0.1016	$0.0994\ 10$	0.1104	0.0002
	0.0375		2.7206								
riagendr2:dm	deduc3-	0.0112	-	0.0376	0.0000	1927.96	6610107	0.0620	$0.0610\ 10$	0.0650	0.0001
	0.0233		2.0812								
riagendr2:dm	deduc7-	0.1579	-	0.5596	0.0022	842.456	9 10107	0.1006	$0.0985\ 10$	0.1092	0.0225
	0.0922		0.5836								
riagendr2:dm	deduc9-	0.1182	-	0.8717	0.0035	117.395	4 10107	0.2867	$0.2747\ 10$	0.3787	0.0101
	0.0191		0.1618								

Based on our model, we find that multiple predictors/levels of predictor are statistically significant for predicting bmxbmi. The intercept is 2.87, meaning that for a white male aged 0 with less than high school educcation, the predicted BMI is 17.67. Holding all other variables constant, one unit increase in age will increase predicted BMI by 1.00. Holding all other variables constant but changing the gender to female will increase predicted BMI by 3.4%. Holding all other variables constant, race being Black will increase predicted BMI by 8%. Holding all other variables constant but changing the gender to female will increase predicted BMI by 3.4%. Holding all other variables constant, race being Mexican American will increase predicted BMI by 7%. Holding all other variables constant, race being other race including multi-racial will decrease predicted BMI by 4%. Holding all other variables constant, race being other Hispanic will increase predicted BMI by 1.05. Holding all other variables constant, highest level of eucation being high school diploma will increase predicted BMI by 15%. Holding all other variables constant, highest level of eucation being more than high school will increase predicted BMI by 13%. The interaction effect is statistically significant only when holding all other variables constant and the gender is female and the highest level of education is high school diploma or more than high school. Speficially, when holding all other variables constant, if gender is female and the highest level of education is high school diploma, BMI value is predicted to decrease by 4%. When holding all other variables constant, if gender is female and the highest level of education is more than high school, BMI value is predicted to decrease by 2.3%.