

Final Colloquium

Gruppe1

Niklas Heiber, Michael Jathe, Jonas Gerken, Benedikt Lipinski

Motivation

Szenario: Waldbrand

Einsatz des Bots:

- Personen finden und Standort bestimmen
- Kommunikation mit den Personen

Requirements

ı		T/05	DECORIDE ON
	Requireme	ents Rescue Bot	Gruppe1: Jonas, Benedikt, Niklas, Michael

ID	TYPE	DESCRIPTION
Α	functional	Der Roboter muss autonom fahren können.
A.1	functional	Der Roboter muss auf dem Land fahren können.
A.1.1	non-functional	Der Roboter soll auf Ketten fahren.
A.2	functional	Der Roboter muss auf dem Wasser fahren können.
A.2.1	functional	Der Roboter muss schwimmen können.
A.2.2	functional	Der Roboter muss wasserfest sein.
A.2.3	non-functional	An den Ketten befinden sich Paddelbleche für die Bewegun im Wasser.
A.3	functional	Der Roboter muss Hindernissen ausweichen können.
A.3.1	functional	Der Roboter muss Hindernisse erkennen.
В	functional	Der Roboter muss einen Erste-Hilfe-Kasten tragen können.
С	functional	Der Roboter muss Schallsignale erkennen und differenzieren können.
C.1	functional	Der Roboter muss Schallsiganle in der Ebene aus allen 4 Richtungen erkennen.
D	functional	Der Roboter muss das zu retten Objekt identifizieren können.
D.1	functional	Der Roboter muss die Temperatur des Objekts bestimmen können.
D.2	non-functional	Die Temperatur soll über eine Wärmebildkamera bestimmt werden.
E	functional	Der Roboter soll eine Gegensprechanlage besitzen.
F	functional	Der Roboter muss sich bei größerer Beladung für den Landweg entscheiden.

Context model

Stakeholder

«stakeholder» Rescue workers

«need»
Support in dangerous situations

«stakeholder»
The victim

«need»

Medical help and rescue

«stakeholder»
Family of the victim

«need»

Want to know their relatives to be
safe

«stakeholder» Finance manager

«need»
High added value at an affordable

«solution»

Making the robots applicable for situations which are too dangerous for the rescue workers

«solution»

As quick and gentle rescue as possible

«solution»

Send the victim the best possible rescue

«solution»

A system with a good priceperformance ratio «stakeholder»
The own employer

«need»
A sellable product with a high sales
rate and a high profit margin

«stakeholder» TÜV «need»
Safety for involved rescue
workers, the victim and third
persons

«stakeholder» Customer «need»
Well equipped auxiliary workers

«solution»

Building a system with high security to avoid compensation and to establish a purchase incentive, also feasible with a high profit margin

«solution»

Comply with guidelines, establish a safe system and get a TÜV certification

«solution»

Good quality with a good maintenance and customer care

Stakeholder-Matrix

Stakeholder Influence x Impact Matrix

Use Case

Activity diagram

Swimlane

Swimlane

Top level architecture

D.1/D.2 Thermal camera

Architecture model

Schematic rescue bot

Class diagramm

Mechanical copmosite structure diagram

State machine AutoModeDrive

State machine Ultrasonic

State machine Drive around right/left

State machine object recognition

State machine DriveMode

State machine audio navigation

Paper Prototype

- Erste Designidee
- Kettenantrieb
- 4 Schallsensoren
- Kamera
- Ablage für Erste-Hilfe-Set

• Abmessungen:

- L: ca.750mm

- B: 570mm

- H: ca. 800mm

Teile sind druckbar!

Druckstatistiken

Geschätzte Druckzeit: 345h:18m:33s

Layer-Anzahl: 801

Zeilen gesamt: 12119962 Benötigtes Filament: 1645762 mm Left Extruder 1645762 mm

Right Extruder 0 mm

- Schwimmkörpervolumen: ca. 7,9 Liter -> max. 7,9 kg Gesamgewicht
- Gewicht der Druckteile: ca. 5,7 kg
- Es bleiben 2,2kg für sämtliche Anbauteile (Säge, Elektronik, Akku, Ketten, Sensoren) -> Schwimmkörpervolumen sollte vergrößert werden

Druckstatistiken

Geschätzte Druckzeit: 345h:18m:33s

Layer-Anzahl: 801

Zeilen gesamt: 12119962 Benötigtes Filament: 1645762 mm Left Extruder 1645762 mm

Right Extruder 0 mm

Given your inserted data:

- The Filament Diameter Ø1.75 mm
- Material ABS with a density of 1.43 g/cm³
- The Filament Length: 1645760.0 mm

We calculated the following values for you:

- weight: 5660.69 g --> 5.66069 kg
- volume: 3958520.0 mm³ --> 0.003 m³

Test environment

Test environment

- Größe 30 X 30 Felder
- 4 Schallquellen in:
 - 3,3; 3,28; 26,27

R = Border

G = Ground

O = Obstacle

W =Water

Fazit

Requirements Rescue Bot Gruppe1: Jonas, Benedikt, Niklas, Michael

ID	TYPE	DESCRIPTION
Α	functional	Der Roboter muss autonom fahren können.
A.1	functional	Der Roboter muss auf dem Land fahren können.
A.1.1	non-functional	Der Roboter soll auf Ketten fahren.
A.2	functional	Der Roboter muss auf dem Wasser fahren können.
A.2.1	functional	Der Roboter muss schwimmen können.
A.2.2	functional	Der Roboter muss wasserfest sein.
A.2.3	non-functional	An den Ketten befinden sich Paddelbleche für die Bewegun im Wasser.
A.3	functional	Der Roboter muss Hindernissen ausweichen können.
A.3.1	functional	Der Roboter muss Hindernisse erkennen.
В	functional	Der Roboter muss einen Erste-Hilfe-Kasten tragen können.
С	functional	Der Roboter muss Schallsignale erkennen und differenzieren können.
C.1	functional	Der Roboter muss Schallsiganle in der Ebene aus allen 4 Richtungen erkennen.
D	functional	Der Roboter muss das zu retten Objekt identifizieren können.
D.1	functional	Der Roboter muss die Temperatur des Objekts bestimmen können.
D.2	non-functional	Die Temperatur soll über eine Wärmebildkamera bestimmt werden.
E	functional	Der Roboter soll eine Gegensprechanlage besitzen.
F	functional	Der Roboter muss sich bei größerer Beladung für den Landweg entscheiden.