⑩日本菌特許庁(JP)

10 特許出願公開

⑩公開特許公報(A)

昭63-80590

(5) Int.Cl.⁴ H 01 S 3/18 識別記号

好

庁内整理番号 7377-5F ④公開 昭和63年(1988)4月11日

377-5F

容査請求 未請求 発明の数 1 (全6頁)

公発明の名称 光出力モニタ付半導体レーザ

到特 頤 昭61-223705

砂出 願 昭61(1986)9月24日

砂発 明 者 福 田 光 男 神奈川県厚木市森の里若宮3番1号 日本電信電話株式会 社厚木電気通信研究所内

②発 明 者 野 口 悦 男 神奈川県厚木市森の里若宮3番1号 日本電信電話株式会 社厚木電気通信研究所内

砂発 明 者 中 野 純 一 神奈川県厚木市森の里若宮3番1号 日本電信電話株式会 社厚木電気通信研究所内

典 神奈川県厚木市森の里若宮3番1号 日本電信電話株式会

社厚木電気通信研究所内

①出 顋 人 日本電信電話株式会社②代 理 人 弁理士 中村 純之助

0代 理 人 弁理士 中村 純之即 最終頁に続く 東京都千代田区内幸町1丁目1番6号

明細一一

1. 発明の名称

四発

明者

光出力モニタ付半導体レーザ

2. 特許請求の範囲

2. 上記受光器は、レーザからのモニタ光を受 光쟁に導波するための反射就またはプリズムを、 レーザとの間に設けたことを特徴とする特許語求 の範囲第1項に記載した光出力モニタ付半導体レ ーザ。

3. 上記受光器は、レーザからのモニタ光を受 光器に導波するための反射銃とプリズムとを、レ ーザとの間に設けたことを特徴とする特許領求の 範囲第1項に記載した光出力モニタ付半導体レー

3.発明の詳細な説明

(産業上の利用分野)

本発明は、高安定で経済的な光ファイバ伝送用の光出力モニタ付半導体レーザに関するものである。

(従来の技術)

同一ウエハ上にレーザとレーザ光出力のモニタ 用受光器とをモノリシックに形成した例として、 第5回に示すような半導体レーザが知られている (エレクトロン・レターズ (Electron Lett.) vol. 16, p. 342 (1980) に記載された伊賀位、 "GaInAsP/InP leser with monolithic ally integrated monitoring detector")。上記 モニタ付半導体レーザを製作する場合には、レー

持開昭63-80590(2)

一方、レーザ効作に幾面を必要としない分布帰 造型 (DFB) レーザでは、減レーザの発光層を モニタ部分にまで延長し、あるいはレーザ幾面を ストライプに対して斜めにして、レーザ放出光の モニタ用受光路の結合効率をあげる方法がとられ

のいずれかを、受光悶として用いる方法があり、 高感度な受光器として発明者により侵索されてい る。

(発明が解決しようとする問題点)

しかしながら、上記従来技術における前者、 DFB型レーザによる方法は、潤子分離のための エッチング工程や素子の製造プロセスが複雑にな る上に、DFB型のレーザにしか適用できないと いう欠点があり、後者の埋め込み構造型のレーザ による方法は、埋め込み型レーザだけにしか適用 できないという欠点があった。

本発明の目的は、上記モニタ用受光器の受光面 欲が小さく、検出感度が低いという問題点を解決 し、各種の構造を有し、安価で高歩電りな光出力 モニタ付半器体レーザを得ることにある。

(問題点を解決するための手段)

上記目的は、活性別の上または下に位**置す**る活性間に隣接しない間のうち、少なくとも一周のパンドギャップエネルギを、上記活性間のパンドギャップエネルギと、同じかまたは小さくした層を

ている(村田位「DFPレーザ/PDモノリシッ ク集積約子」昭和60年度電子通信学会総合全国大 会予務集、931、P. 4-55;特別昭59-125659 号「モニタ集積型半導体発光素子」)。 また、第6 図 (a) および(b) に示したような塩め込み構 遠型レーザが用いられている。 これらの堪め込み 緯逸型レーザは、鮮8図(g)に示すレーザのよ うに、 n 型 I n P 拮板 7 上に、 n 型 I n P クラッド 想6、InGaAsP活性暦5、p型InPクラッド 暦4、InGaAsPキャップ層15を順次結晶成長 させたのち、メサ状にエッチングし、さらにP型 InPIG12、n型InPIG13、n型InGsAsPIG 14の各種を結晶成長させて製作するか、あるいは 第6回(b)に示すように、InP森板7上にP 型IaP層12を成長させてから潜を形成し、その 上にn型InPクラッド層6、InClaAsP活性層 5、p型InPクラッド暦4、InGaAsPギャッ プ層15の各層を結晶成長させて製作する。これら の埋め込み層、すなわち (a) における12、13。 14の各層および(b)における12、13、16の各層

受光層とし、数受光層の上または下に設けた受光 層の準電性と異なる準電性を有する層と、上記受 光層とでpn接合を形成して受光器にすることに より速成される。

(作用)

一方、上記のように光跡起された電子および正

特開昭63-80590(3)

孔のInGaAsP層中における拡散長は、それぞれ2mおよび1m以下であるが、上記受光層は数 受光層の上または下の滤電性が受光層と異なる層 とpn接合を形成しているため、上記のように光 誘起された電子および正孔のうち、受光層のpn 接合より上記拡散長内で発生した電子はpn接合 に到達し、光誘起電液になるため、モニタ用受光 歴の受光量を増大することができる。

(奖放例)

つぎに本発明の契約例を因面とともに説明する。 第1 図は本発明による光出力モニタ付半導体レーザの第1 実施例を示す斜視回および期面図で、 (a-i) はpn接合が受光層の上にある場合を示す図、(b) は活性圏の下に受光度がある場合を示す受光器部分の断面図、第2 図は上記第1 図(b)に示す半導体レーザに反射類を設けた第2 実施例を示す上面図、第4 図は上記第1 図(a-1)の半導体レーザにブリズムを設けた第3 実施例を示す上面図、第4 図は上記第1 図(a

を受光層とし、数受光層上の異なる準能性を有する n型 I n G a A s P 層 26 ' との間に p n 接合 31 を 形成している。 図における ** ** ** は p n 接合で あることを示したものである。

ここで、レーザ1のp(+)個包括28とn(-) 伽電極30との間に電圧を印加し、活性型23に電流 を注入すると、上下左右に20°~40°程度の角度 でレーザ光がレーザ燐面の発光部32から放射され る。上記レーザ光はもう一方の受光器2側の面か らも放射されるため、本実施例の索子配置ではレ ーザ光が受光路2のpn接合部31に入射する。こ こで上記シーザ光は上下左右に20°~40°程度の 範囲で拡がるため、InGsAsP受光層25′へ入 射する。上記受光層25′へ入射したレーザ光は完 全に吸収されるまで、一受光器電極29および+受 光器電磁28~の間で反射し、あるいは上記受光燈 に隣接する層との間の風折率蓋により、効率よく 上記受光暦28、中に閉じ込められ電子一正孔対を 発生する。上記受光灯のInGaAsP用中で誘起 された電子および正孔の拡散長はそれぞれ2mお

- i)の半球体レーザに反射数とプリズムを設け た第4 夹腕例を示す上面図である。第1 図(a -1) に示す実施例は、活性思の上に受光層を設け、 pn接合が上記受光層の上にある場合を、 InGaAsPノInPプレーナ型レーザについて示 した斜視図である。図における1および2はそれ ゼれレーザおよび殳光器を示している。 n 型 InP基板21上にn型InPクラッド層22、 InGaAsP活性型23、p型InPクラッド層24、 p型InGaAsPキャップ層25、n型InGaAsP 歴26を被相成長法を用いて順次連続的に結晶成長 させ、上記n型InCaAsP暦26の一部を選択的 にエッチングしたのち、例えば、リアクティブエ ッチング等により、上記n型InPクラッド層22 に違する分離阱27を形成し、+レーザ電框28、+ 受光縣電極28′、一受光器電極29、一レーザ電極 30をそれぞれ燕君により形成している。受光器2 例においては、InGaAsP間23′に鍵線せず、

よび 1 m 以下であるから、受光層 25 ° において p n 接合から上記拡散長内で発生した電子は、 p n 接合に到速して光牌起電流になる。このよう にして、本発明によればモニタ用受光器 2 の受光 最を増大させることができる。ここで、

かつパンドギャップエネルギが上記InGaAsP

別23′と同等以下であるり型InGaAsP用25′

InGaAsP暦26′もその組成を製飾することに より全光暦とすることができる。

第1図(a-ii)に示す半導体レーザは、活性 暦23上に受光暦26°を設け、上記受光暦26°が pn設合31の上にある場合を説明する斜視図であ るが、受光暦26°の準定性が異なるけれども、動 作原理は上記第1図(a-i)に示した場合と同 じである。

第1回(b)は活性月23の下に受光月25°を設けた場合を説明する受光母2部分の断面回で、レーザとしてはInGaAsP/InPプレーナ型レーザである。各個の原序および受光器の配配が異なっているが、動作は上記(a - i)および(a - ii)に示す突施例と同じである。ここで受光器の電極28°はp型InP別24°またはn型InP別22

特開昭63-80590(4)

のいずれかから取出すことができる。

上記説明はn型基切を用いた場合の例であるが、p型基切を用いても本発明が適用できること、 受光層はp型でもn型でも本発明が有効であることはいうまでもない。

(発明の効果)

上記のように本発明による光出力モニタ付半導 体レーザは、半導体レーザと、該半導体レーザの 光出力モニタ用半導体受光器とを、同一基板上に 形成した光出力モニタ付半導体レーザにおいて、 レーザ動作器(街性層)の上または下にあり、上 記括性層に隣接しない層のうち、少なくとも一層 のパンドギャップエネルギを、上記活性層のパン ドギャップエネルギと同じか、または小さくした 層を受光階とし、眩受光層の上または下に設けた、 受光層の導気性と異なる磁気性を有する層と上記 受光別とでpn接合を形成して受光器としたこと により、レーザからのモニタ光を効率よく受光で き、しかも、反射難音がない光出力モニタ付半導 体レーザを得ることができるから、光ファイバ伝 送用モノリシック光源として利用することが可能 である。さらに、レーザ用ウエハから構造が単純 な受光器を作載することができ、煮子製作、プロ セスも簡似であるから、歩句りがよく、経済的な 義子を持ることが可能である.

26 . 26 。は必ずしも上記外挿上にあるとは吸らない。したがって、反射鏡の反射面34およびブリズムの入射面36を設けてレーザ光の光路を曲げることにより、受光層の受光量をより一層増加させることができる。さらに上記反射面34および升面36を設けて、レーザ光の当該面への入射角を関数することにより、受光器2.からレーザ1の発光部32への戻り光を除去することが可能である。本発明によれば戻り光による遊音がない光出スモタ付半郷体レーザを得ることが可能である。

上記実施例では反射飲およびプリズムを受光器 に組み込んだ形に記載したが、上記反射飲あるい はプリズムを分離滞27の中に独立して形成しても 関標の効果が待られる。

上記記載はInGeAsP/InP系のプレーナ型 レーザを例に説明したが、本発明は他の材料から なるレーザおよび埋め込み型レーザなどの他の構 波の素子についても、当然有効であり、光ファイ バ伝送用以外の光源にも適用可能である。

4. 図面の簡単な説明

1…半導体レーザ

2 … 半導体受光器

21…恭板

23… 活性層

31…pn 接合

34…反射氛

特開昭63-80590(5)

36…プリズム

賴之助

沙 1 图 (a-i)

1:井專体上一价 2:牛專体受危器 21:基板 23:右性層 25', 26', 26":贫光層 31:戶n接合 34:反射线 36: プリズム

学 2 図

沙 3 网

孝 4 図

第1頁の続き

①発 明 者・ 植 木

僧 頬 砂発 明 者

神奈川県厚木市森の里若宮3番1号 日本電信電話株式会

社學木電気通信研究所内

神奈川県厚木市森の里若宮3番1号 日本電信電話株式会 社厚木電気通信研究所内