Math 4341 (Topology)

▶ **Definition**. A bijection $f: X \to Y$ between two topological spaces is called a *homeomorphism* if both f and its inverse f^{-1} are continuous. In this case, we say that X and Y are homeomorphic and we write $X \simeq Y$.

- ▶ **Definition**. A bijection $f: X \to Y$ between two topological spaces is called a *homeomorphism* if both f and its inverse f^{-1} are continuous. In this case, we say that X and Y are homeomorphic and we write $X \simeq Y$.
- lacktriangle Note that \simeq satisfies the property of an equivalence relation.

- ▶ **Definition**. A bijection $f: X \to Y$ between two topological spaces is called a *homeomorphism* if both f and its inverse f^{-1} are continuous. In this case, we say that X and Y are *homeomorphic* and we write $X \simeq Y$.
- lacktriangle Note that \simeq satisfies the property of an equivalence relation.
- **Example**. Let $f:(-1,1)\to\mathbb{R}$ be the bijective map

$$f(x) = \tan\left(\frac{\pi x}{2}\right)$$

whose inverse is $f^{-1}(x) = \frac{2}{\pi} \arctan x$. Then both f and f^{-1} are continuous so (-1,1) and \mathbb{R} are homeomorphic.

Example. Let $B^n:=B(0,1)$ be the unit ball in \mathbb{R}^n . Then $B^n\simeq\mathbb{R}^n$. This is because the map $f:B^n\to\mathbb{R}^n$ given by

$$f(x) = \frac{x}{1 - \parallel x \parallel}$$

is a continuous bijection with inverse $f^{-1}(x) = \frac{x}{1+||x||}$.

Example. Let $B^n:=B(0,1)$ be the unit ball in \mathbb{R}^n . Then $B^n\simeq\mathbb{R}^n$. This is because the map $f:B^n\to\mathbb{R}^n$ given by

$$f(x) = \frac{x}{1 - \parallel x \parallel}$$

is a continuous bijection with inverse $f^{-1}(x) = \frac{x}{1+||x||}$.

▶ **Definition**. Let X and Y be topological spaces. A function $f: X \to Y$ is called an *embedding* if $f: X \to f(X)$ is a homeomorphism; where $f(X) \subset Y$ has the subspace topology.

Example. Let $B^n:=B(0,1)$ be the unit ball in \mathbb{R}^n . Then $B^n\simeq\mathbb{R}^n$. This is because the map $f:B^n\to\mathbb{R}^n$ given by

$$f(x) = \frac{x}{1 - \parallel x \parallel}$$

is a continuous bijection with inverse $f^{-1}(x) = \frac{x}{1+||x||}$.

- ▶ **Definition**. Let X and Y be topological spaces. A function $f: X \to Y$ is called an *embedding* if $f: X \to f(X)$ is a homeomorphism; where $f(X) \subset Y$ has the subspace topology.
- **Example**. If X is a top. space and $Y \subset X$ a subspace, then the inclusion $\iota: Y \to X$ given by $\iota(x) = x$ is an embedding.

Definition. The *n-sphere* is the set

$$S^n = \{ x \in \mathbb{R}^{n+1} : ||x|| = 1 \} \subset \mathbb{R}^{n+1}$$

with the subspace topology from \mathbb{R}^{n+1} .

Definition. The *n-sphere* is the set

$$S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\} \subset \mathbb{R}^{n+1}$$

with the subspace topology from \mathbb{R}^{n+1} .

▶ **Proposition 5.1**. Let $p = (0, 0, ..., 0, 1) \in S^n$ be the "north pole". Then $S^n \setminus \{p\} \simeq \mathbb{R}^n$.

Definition. The *n-sphere* is the set

$$S^n = \{ x \in \mathbb{R}^{n+1} : ||x|| = 1 \} \subset \mathbb{R}^{n+1}$$

with the subspace topology from \mathbb{R}^{n+1} .

- **Proposition 5.1**. Let $p = (0, 0, ..., 0, 1) \in S^n$ be the "north pole". Then $S^n \setminus \{p\} \simeq \mathbb{R}^n$.
- ▶ *Proof.* Let $x = (x_1, ..., x_{n+1}) \in S^n \setminus \{p\}$ so that $x_{n+1} \neq 1$.

Definition. The *n-sphere* is the set

$$S^{n} = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\} \subset \mathbb{R}^{n+1}$$

with the subspace topology from \mathbb{R}^{n+1} .

- **Proposition 5.1**. Let $p = (0, 0, ..., 0, 1) \in S^n$ be the "north pole". Then $S^n \setminus \{p\} \simeq \mathbb{R}^n$.
- ▶ *Proof.* Let $x = (x_1, ..., x_{n+1}) \in S^n \setminus \{p\}$ so that $x_{n+1} \neq 1$.
 - ▶ Define the *stereographic projection* of *x* by

$$f(x) = f(x_1, \ldots, x_n, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, \ldots, x_n) \in \mathbb{R}^n.$$

Definition. The *n-sphere* is the set

$$S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\} \subset \mathbb{R}^{n+1}$$

with the subspace topology from \mathbb{R}^{n+1} .

- **Proposition 5.1**. Let $p = (0, 0, ..., 0, 1) \in S^n$ be the "north pole". Then $S^n \setminus \{p\} \simeq \mathbb{R}^n$.
- ▶ *Proof.* Let $x = (x_1, ..., x_{n+1}) \in S^n \setminus \{p\}$ so that $x_{n+1} \neq 1$.
 - ▶ Define the *stereographic projection* of *x* by

$$f(x) = f(x_1, \ldots, x_n, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, \ldots, x_n) \in \mathbb{R}^n.$$

Geometrically, if one draws a straight line through x and p, then its intersection with $\mathbb{R}^n \times \{0\}$ is the point (f(x), 0).

Definition. The *n-sphere* is the set

$$S^{n} = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\} \subset \mathbb{R}^{n+1}$$

with the subspace topology from \mathbb{R}^{n+1} .

- **Proposition 5.1**. Let $p = (0, 0, ..., 0, 1) \in S^n$ be the "north pole". Then $S^n \setminus \{p\} \simeq \mathbb{R}^n$.
- ▶ *Proof.* Let $x = (x_1, ..., x_{n+1}) \in S^n \setminus \{p\}$ so that $x_{n+1} \neq 1$.
 - ▶ Define the *stereographic projection* of *x* by

$$f(x) = f(x_1, \ldots, x_n, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, \ldots, x_n) \in \mathbb{R}^n.$$

- Geometrically, if one draws a straight line through x and p, then its intersection with $\mathbb{R}^n \times \{0\}$ is the point (f(x), 0).
- f is continuous because each of its components are.

Definition. The *n-sphere* is the set

$$S^{n} = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\} \subset \mathbb{R}^{n+1}$$

with the subspace topology from \mathbb{R}^{n+1} .

- **Proposition 5.1**. Let $p = (0, 0, ..., 0, 1) \in S^n$ be the "north pole". Then $S^n \setminus \{p\} \simeq \mathbb{R}^n$.
- ▶ *Proof.* Let $x = (x_1, ..., x_{n+1}) \in S^n \setminus \{p\}$ so that $x_{n+1} \neq 1$.
 - ▶ Define the *stereographic projection* of *x* by

$$f(x) = f(x_1, \ldots, x_n, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, \ldots, x_n) \in \mathbb{R}^n.$$

- Geometrically, if one draws a straight line through x and p, then its intersection with $\mathbb{R}^n \times \{0\}$ is the point (f(x), 0).
- f is continuous because each of its components are.
- f has a continuous inverse $g: \mathbb{R}^n o S^n \setminus \{p\}$ given by

$$g(y_1,\ldots,y_n)=(t(y)y_1,\ldots,t(y)y_n,1-t(y)),$$

where $t(y) = 2/(1 + ||y||^2)$.

▶ **Definition**. Let X be a top. space. A *separation* of X is a pair U, V of disjoint non-empty open subsets of X such that $X = U \cup V$. We say X is *connected* if it has no separation.

- ▶ **Definition**. Let X be a top. space. A *separation* of X is a pair U, V of disjoint non-empty open subsets of X such that $X = U \cup V$. We say X is *connected* if it has no separation.
- ▶ **Example**. The subspace $(0,1) \cup (2,3) \subset \mathbb{R}$ has a separation.

- ▶ **Definition**. Let X be a top. space. A *separation* of X is a pair U, V of disjoint non-empty open subsets of X such that $X = U \cup V$. We say X is *connected* if it has no separation.
- **Example**. The subspace $(0,1) \cup (2,3) \subset \mathbb{R}$ has a separation.
- ▶ **Remark**. If $X = U \cup V$ is a separation, then $U = X \setminus V$ and $V = X \setminus U$ are both open and closed.

- ▶ **Definition**. Let X be a top. space. A *separation* of X is a pair U, V of disjoint non-empty open subsets of X such that $X = U \cup V$. We say X is *connected* if it has no separation.
- **Example**. The subspace $(0,1) \cup (2,3) \subset \mathbb{R}$ has a separation.
- ▶ **Remark**. If $X = U \cup V$ is a separation, then $U = X \setminus V$ and $V = X \setminus U$ are both open and closed.
- ▶ **Lemma 5.2**. A topological space X is connected iff \emptyset and X are the only subsets of X that are both open and closed.

- ▶ **Definition**. Let X be a top. space. A *separation* of X is a pair U, V of disjoint non-empty open subsets of X such that $X = U \cup V$. We say X is *connected* if it has no separation.
- **Example**. The subspace $(0,1) \cup (2,3) \subset \mathbb{R}$ has a separation.
- ▶ **Remark**. If $X = U \cup V$ is a separation, then $U = X \setminus V$ and $V = X \setminus U$ are both open and closed.
- ▶ **Lemma 5.2**. A topological space X is connected iff \emptyset and X are the only subsets of X that are both open and closed.
- **Example**. The rational numbers $\mathbb{Q} \subset \mathbb{R}$ are not connected.

- ▶ **Definition**. Let X be a top. space. A *separation* of X is a pair U, V of disjoint non-empty open subsets of X such that $X = U \cup V$. We say X is *connected* if it has no separation.
- **Example**. The subspace $(0,1) \cup (2,3) \subset \mathbb{R}$ has a separation.
- ▶ **Remark**. If $X = U \cup V$ is a separation, then $U = X \setminus V$ and $V = X \setminus U$ are both open and closed.
- ▶ **Lemma 5.2**. A topological space X is connected iff \emptyset and X are the only subsets of X that are both open and closed.
- **Example**. The rational numbers $\mathbb{Q} \subset \mathbb{R}$ are not connected.
 - ▶ Choose any irrational number $a \in \mathbb{R}$. Then

$$\mathbb{Q} = ((-\infty, a) \cap \mathbb{Q}) \cup (\mathbb{Q} \cap (a, \infty)),$$

which is a separation.

Example. If X has the discrete topology and consists of at least two points, then $X = \{x\} \cup (X \setminus \{x\})$ is a separation of X, so X is not connected.

- ▶ **Example**. If X has the discrete topology and consists of at least two points, then $X = \{x\} \cup (X \setminus \{x\})$ is a separation of X, so X is not connected.
- ▶ **Lemma 5.3**. Let $X = U \cup V$ for disjoint open sets U and V, and let $Y \subset X$. If Y is connected, then $Y \subset U$ or $Y \subset V$.

- ▶ **Example**. If X has the discrete topology and consists of at least two points, then $X = \{x\} \cup (X \setminus \{x\})$ is a separation of X, so X is not connected.
- ▶ **Lemma 5.3**. Let $X = U \cup V$ for disjoint open sets U and V, and let $Y \subset X$. If Y is connected, then $Y \subset U$ or $Y \subset V$.
- **Proof**. We will show the contrapositive of the statement, so assume that $Y \cap U \neq \emptyset$ and $Y \cap V \neq \emptyset$. Then

$$Y = Y \cap X = Y \cap (U \cup V) = (Y \cap U) \cup (Y \cap V)$$

is a separation of Y (since $Y \cap U$ and $Y \cap V$ are disjoint, non-empty and open in the subspace topology).

▶ **Theorem 5.4**. Let $\{A_i\}_{i \in I}$ be a collection of connected subspaces of a topological space X with a common point $x \in X$; i.e. $x \in A_i$ for all $i \in I$. Then $\bigcup_{i \in I} A_i$ is connected.

- ▶ **Theorem 5.4**. Let $\{A_i\}_{i\in I}$ be a collection of connected subspaces of a topological space X with a common point $x \in X$; i.e. $x \in A_i$ for all $i \in I$. Then $\bigcup_{i \in I} A_i$ is connected.
- ▶ **Proof**. Suppose $\bigcup_{i \in I} A_i = U \cup V$ is a separation.

- ▶ **Theorem 5.4**. Let $\{A_i\}_{i\in I}$ be a collection of connected subspaces of a topological space X with a common point $x \in X$; i.e. $x \in A_i$ for all $i \in I$. Then $\bigcup_{i \in I} A_i$ is connected.
- ▶ **Proof**. Suppose $\bigcup_{i \in I} A_i = U \cup V$ is a separation.
 - Assume without loss of generality that $x \in U$. By Lemma 5.3 we have for each i that either $A_i \subset U$ or $A_i \subset V$.

- ▶ **Theorem 5.4**. Let $\{A_i\}_{i\in I}$ be a collection of connected subspaces of a topological space X with a common point $x \in X$; i.e. $x \in A_i$ for all $i \in I$. Then $\bigcup_{i \in I} A_i$ is connected.
- ▶ **Proof**. Suppose $\bigcup_{i \in I} A_i = U \cup V$ is a separation.
 - Assume without loss of generality that $x \in U$. By Lemma 5.3 we have for each i that either $A_i \subset U$ or $A_i \subset V$.
 - ▶ Since $x \in A_i$ we must have $A_i \subset U$ for all $i \in I$. This implies that $\bigcup_{i \in I} A_i \subset U$, so V must be empty.

▶ **Theorem 5.5**. Let $A \subset X$ be connected. If a subset $B \subset X$ satisfies $A \subset B \subset \bar{A}$, then B is also connected. In particular, \bar{A} is connected whenever A is.

- ▶ Theorem 5.5. Let $A \subset X$ be connected. If a subset $B \subset X$ satisfies $A \subset B \subset \bar{A}$, then B is also connected. In particular, \bar{A} is connected whenever A is.
- ▶ *Proof.* Suppose $B = U \cup V$ is a separation.

- ▶ Theorem 5.5. Let $A \subset X$ be connected. If a subset $B \subset X$ satisfies $A \subset B \subset \bar{A}$, then B is also connected. In particular, \bar{A} is connected whenever A is.
- ▶ *Proof.* Suppose $B = U \cup V$ is a separation.
 - ▶ By Lemma 5.3 we must have that $A \subset U$ or $A \subset V$, so assume without loss of generality that $A \subset U$. Then $B \subset \bar{A} \subset \bar{U}$ (where all closures are in X).

- ▶ **Theorem 5.5**. Let $A \subset X$ be connected. If a subset $B \subset X$ satisfies $A \subset B \subset \bar{A}$, then B is also connected. In particular, \bar{A} is connected whenever A is.
- ▶ *Proof.* Suppose $B = U \cup V$ is a separation.
 - ▶ By Lemma 5.3 we must have that $A \subset U$ or $A \subset V$, so assume without loss of generality that $A \subset U$. Then $B \subset \bar{A} \subset \bar{U}$ (where all closures are in X).
 - By definition of the subspace topology, there are open sets U' and V' in X so that $U = B \cap U'$, $V = B \cap V'$, and

$$U = B \setminus V = B \setminus V' \subset X \setminus V'$$
.

The latter space is closed so $\bar{U} \subset X \setminus V' \subset X \setminus V$.

- ▶ Theorem 5.5. Let $A \subset X$ be connected. If a subset $B \subset X$ satisfies $A \subset B \subset \bar{A}$, then B is also connected. In particular, \bar{A} is connected whenever A is.
- ▶ *Proof.* Suppose $B = U \cup V$ is a separation.
 - ▶ By Lemma 5.3 we must have that $A \subset U$ or $A \subset V$, so assume without loss of generality that $A \subset U$. Then $B \subset \bar{A} \subset \bar{U}$ (where all closures are in X).
 - By definition of the subspace topology, there are open sets U' and V' in X so that $U = B \cap U'$, $V = B \cap V'$, and

$$U = B \setminus V = B \setminus V' \subset X \setminus V'.$$

The latter space is closed so $\bar{U} \subset X \setminus V' \subset X \setminus V$.

▶ Hence $B \subset \overline{U} \subset X \setminus V$ which means $B \cap V = \emptyset$, so $V = \emptyset$.

▶ **Theorem 5.6**. Let $f: X \to Y$ be a continuous map between top. spaces. If X is connected, then f(X) is also connected.

- ▶ **Theorem 5.6**. Let $f: X \to Y$ be a continuous map between top. spaces. If X is connected, then f(X) is also connected.
- ▶ *Proof.* Suppose that $f(X) = U \cup V$ is a separation.

- ▶ **Theorem 5.6**. Let $f: X \to Y$ be a continuous map between top. spaces. If X is connected, then f(X) is also connected.
- ▶ *Proof.* Suppose that $f(X) = U \cup V$ is a separation.
 - Then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint open subsets of X with $X = f^{-1}(U) \cup f^{-1}(V)$. Since X is connected, either $f^{-1}(U)$ or $f^{-1}(V)$ is empty.

- ▶ **Theorem 5.6**. Let $f: X \to Y$ be a continuous map between top. spaces. If X is connected, then f(X) is also connected.
- ▶ *Proof.* Suppose that $f(X) = U \cup V$ is a separation.
 - Then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint open subsets of X with $X = f^{-1}(U) \cup f^{-1}(V)$. Since X is connected, either $f^{-1}(U)$ or $f^{-1}(V)$ is empty.
 - Assume $f^{-1}(U) = \emptyset$. Since $U \subset f(X)$ we must have $U = \emptyset$.

- ▶ **Theorem 5.6**. Let $f: X \to Y$ be a continuous map between top. spaces. If X is connected, then f(X) is also connected.
- ▶ *Proof.* Suppose that $f(X) = U \cup V$ is a separation.
 - Then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint open subsets of X with $X = f^{-1}(U) \cup f^{-1}(V)$. Since X is connected, either $f^{-1}(U)$ or $f^{-1}(V)$ is empty.
 - Assume $f^{-1}(U) = \emptyset$. Since $U \subset f(X)$ we must have $U = \emptyset$.
- **Corollary 5.7**. [Intermediate value theorem] Let $f: X \to \mathbb{R}$ be continuous and assume that X is connected. If there is an $r \in \mathbb{R}$ and $x, y \in X$ so that f(x) < r < f(y), then there is a $z \in X$ with f(z) = r.

- ▶ **Theorem 5.6**. Let $f: X \to Y$ be a continuous map between top. spaces. If X is connected, then f(X) is also connected.
- ▶ *Proof.* Suppose that $f(X) = U \cup V$ is a separation.
 - Then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint open subsets of X with $X = f^{-1}(U) \cup f^{-1}(V)$. Since X is connected, either $f^{-1}(U)$ or $f^{-1}(V)$ is empty.
 - Assume $f^{-1}(U) = \emptyset$. Since $U \subset f(X)$ we must have $U = \emptyset$.
- **Corollary 5.7**. [Intermediate value theorem] Let $f: X \to \mathbb{R}$ be continuous and assume that X is connected. If there is an $r \in \mathbb{R}$ and $x, y \in X$ so that f(x) < r < f(y), then there is a $z \in X$ with f(z) = r.
- ▶ *Proof.* By Theorem 5.6 $f(X) \subset \mathbb{R}$ is connected. This implies that $r \in [f(x), f(y)] \subset f(X)$ (why ???).

▶ **Theorem 5.8**. Let X_1, \dots, X_n be topological spaces. Then $X_1 \times \dots \times X_n$ is connected iff every X_i is.

- ▶ **Theorem 5.8**. Let X_1, \dots, X_n be topological spaces. Then $X_1 \times \dots \times X_n$ is connected iff every X_i is.
- ▶ *Proof.* (⇒) Use Theorem 5.6 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.

- ▶ **Theorem 5.8**. Let X_1, \dots, X_n be topological spaces. Then $X_1 \times \dots \times X_n$ is connected iff every X_i is.
- ▶ *Proof.* (\Rightarrow) Use Theorem 5.6 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.
- ▶ (\Leftarrow) We show that $X \times Y$ is connected when X and Y are.

- ▶ **Theorem 5.8**. Let X_1, \dots, X_n be topological spaces. Then $X_1 \times \dots \times X_n$ is connected iff every X_i is.
- ▶ *Proof.* (⇒) Use Theorem 5.6 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.
- ▶ (\Leftarrow) We show that $X \times Y$ is connected when X and Y are.
 - Fix $x_0 \in A$ and let $A_{x_0} = \{x_0\} \times Y$. Then A_{x_0} is the image of the continuous map $Y \to X \times Y$ given by $y \mapsto (x_0, y)$, so A_{x_0} is connected by Theorem 5.6.

- ▶ **Theorem 5.8**. Let X_1, \dots, X_n be topological spaces. Then $X_1 \times \dots \times X_n$ is connected iff every X_i is.
- ▶ *Proof.* (⇒) Use Theorem 5.6 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.
- ▶ (\Leftarrow) We show that $X \times Y$ is connected when X and Y are.
 - Fix $x_0 \in A$ and let $A_{x_0} = \{x_0\} \times Y$. Then A_{x_0} is the image of the continuous map $Y \to X \times Y$ given by $y \mapsto (x_0, y)$, so A_{x_0} is connected by Theorem 5.6.
 - ▶ Similarly $B_y = X \times \{y\}$ is connected for all $y \in Y$. By Theorem 5.4, $A_{x_0} \cup B_y$ is connected for all $y \in Y$ since (x_0, y) is contained in both A_{x_0} and B_y .

- ▶ **Theorem 5.8**. Let X_1, \dots, X_n be topological spaces. Then $X_1 \times \dots \times X_n$ is connected iff every X_i is.
- ▶ *Proof.* (⇒) Use Theorem 5.6 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.
- ▶ (\Leftarrow) We show that $X \times Y$ is connected when X and Y are.
 - Fix $x_0 \in A$ and let $A_{x_0} = \{x_0\} \times Y$. Then A_{x_0} is the image of the continuous map $Y \to X \times Y$ given by $y \mapsto (x_0, y)$, so A_{x_0} is connected by Theorem 5.6.
 - ▶ Similarly $B_y = X \times \{y\}$ is connected for all $y \in Y$. By Theorem 5.4, $A_{x_0} \cup B_y$ is connected for all $y \in Y$ since (x_0, y) is contained in both A_{x_0} and B_y .
 - Now clearly,

$$X\times Y=\bigcup_{y\in Y}A_{x_0}\cup B_y,$$

and all the sets on the RHS have the common point $(x_0, *)$, where $* \in Y$. Therefore, $X \times Y$ is connected by Theorem 5.4.

▶ Corollary 5.9. \mathbb{R}^n is connected for all $n \in \mathbb{N}$.

- ▶ Corollary 5.9. \mathbb{R}^n is connected for all $n \in \mathbb{N}$.
- ▶ **Prop. 5.10**. The *n*-sphere S^n is connected for all $n \in \mathbb{N}$.

- ▶ Corollary 5.9. \mathbb{R}^n is connected for all $n \in \mathbb{N}$.
- ▶ **Prop. 5.10**. The *n*-sphere S^n is connected for all $n \in \mathbb{N}$.
- ▶ *Proof.* Recall from Proposition 5.1 that $S^n \setminus \{p\} \simeq \mathbb{R}^n$, where p is the north pole. It follows that $S^n \setminus \{p\}$ is connected. Since $\overline{S^n \setminus \{p\}} = S^n$, the result follows from Theorem 5.5.

- ▶ Corollary 5.9. \mathbb{R}^n is connected for all $n \in \mathbb{N}$.
- ▶ **Prop. 5.10**. The *n*-sphere S^n is connected for all $n \in \mathbb{N}$.
- ▶ *Proof.* Recall from Proposition 5.1 that $S^n \setminus \{p\} \simeq \mathbb{R}^n$, where p is the north pole. It follows that $S^n \setminus \{p\}$ is connected. Since $\overline{S^n \setminus \{p\}} = S^n$, the result follows from Theorem 5.5.
- ▶ **Prop. 5.11**. For any $n \in \mathbb{N}$, we have $S^n \not\simeq \mathbb{R}$.

- ▶ Corollary 5.9. \mathbb{R}^n is connected for all $n \in \mathbb{N}$.
- ▶ **Prop. 5.10**. The *n*-sphere S^n is connected for all $n \in \mathbb{N}$.
- ▶ *Proof.* Recall from Proposition 5.1 that $S^n \setminus \{p\} \simeq \mathbb{R}^n$, where p is the north pole. It follows that $S^n \setminus \{p\}$ is connected. Since $\overline{S^n \setminus \{p\}} = S^n$, the result follows from Theorem 5.5.
- ▶ **Prop. 5.11**. For any $n \in \mathbb{N}$, we have $S^n \ncong \mathbb{R}$.
- ▶ *Proof.* Suppose $f: S^n \to \mathbb{R}$ is a homeomorphism. Then $S^n \setminus \{p\} \simeq \mathbb{R} \setminus \{f(p)\}$. We obtain a contradiction, since $S^n \setminus \{p\} \simeq \mathbb{R}^n$ is connected while $\mathbb{R} \setminus \{f(p)\}$ is not connected.

▶ **Definition**. Given two points x and y in a topological space X, a path from x to y is a continuous map $\gamma:[0,1]\to X$ such that $\gamma(0)=x$ and $\gamma(1)=y$.

- ▶ **Definition**. Given two points x and y in a topological space X, a path from x to y is a continuous map $\gamma:[0,1]\to X$ such that $\gamma(0)=x$ and $\gamma(1)=y$.
 - ▶ If for any pair *x*, *y* in *X* there is a path from *x* to *y*, we say that *X* is *path-connected*.

- ▶ **Definition**. Given two points x and y in a topological space X, a path from x to y is a continuous map $\gamma:[0,1]\to X$ such that $\gamma(0)=x$ and $\gamma(1)=y$.
 - ▶ If for any pair *x*, *y* in *X* there is a path from *x* to *y*, we say that *X* is *path-connected*.
- ▶ **Prop. 5.12**. A path-connected space is connected.

- ▶ **Definition**. Given two points x and y in a topological space X, a path from x to y is a continuous map $\gamma: [0,1] \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$.
 - ▶ If for any pair *x*, *y* in *X* there is a path from *x* to *y*, we say that *X* is *path-connected*.
- ▶ **Prop. 5.12**. A path-connected space is connected.
- ▶ *Proof.* Suppose $X = U \cup V$ be a separation.

- ▶ **Definition**. Given two points x and y in a topological space X, a path from x to y is a continuous map $\gamma: [0,1] \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$.
 - If for any pair x, y in X there is a path from x to y, we say that X is path-connected.
- ▶ **Prop. 5.12**. A path-connected space is connected.
- ▶ *Proof.* Suppose $X = U \cup V$ be a separation.
 - Let $\gamma:[0,1] \to X$ be any path. By Theorem 5.6 we see that $\gamma([0,1])$ is connected and by Lemma 5.3, $\gamma([0,1])$ is contained entirely in either U or in V.

- ▶ **Definition**. Given two points x and y in a topological space X, a path from x to y is a continuous map $\gamma:[0,1]\to X$ such that $\gamma(0)=x$ and $\gamma(1)=y$.
 - ▶ If for any pair *x*, *y* in *X* there is a path from *x* to *y*, we say that *X* is *path-connected*.
- ▶ **Prop. 5.12**. A path-connected space is connected.
- ▶ *Proof.* Suppose $X = U \cup V$ be a separation.
 - Let $\gamma:[0,1] \to X$ be any path. By Theorem 5.6 we see that $\gamma([0,1])$ is connected and by Lemma 5.3, $\gamma([0,1])$ is contained entirely in either U or in V.
 - ► This means that it is not possible to find paths from points in U to points in V. Hence X is not path-connected.

Example. For $x,y\in\mathbb{R}^n$, the path $\gamma:[0,1]\to\mathbb{R}^n$ defined by

$$\gamma(t) = (1-t)x + ty$$

is a path from x to y, so \mathbb{R}^n is path-connected.

Example. For $x, y \in \mathbb{R}^n$, the path $\gamma : [0,1] \to \mathbb{R}^n$ defined by

$$\gamma(t) = (1-t)x + ty$$

is a path from x to y, so \mathbb{R}^n is path-connected.

▶ **Example**. A subset A of \mathbb{R}^n is called *convex* if for any $x, y \in A$, the image of the straight line $\gamma(t) = (1-t)x + ty$ belongs to A. As in the previous example, it follows that convex subsets are path-connected and thus also connected.

Example. For $x, y \in \mathbb{R}^n$, the path $\gamma : [0,1] \to \mathbb{R}^n$ defined by

$$\gamma(t) = (1-t)x + ty$$

is a path from x to y, so \mathbb{R}^n is path-connected.

- ▶ **Example**. A subset A of \mathbb{R}^n is called *convex* if for any $x, y \in A$, the image of the straight line $\gamma(t) = (1 t)x + ty$ belongs to A. As in the previous example, it follows that convex subsets are path-connected and thus also connected.
 - Some examples of convex subsets are the upper half-plane

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid x_n>0\}$$

and any ball B(x, r), $x \in \mathbb{R}^n$, r > 0.

➤ A connected space does not need to be path-connected. A counter-example is the so-called topologist's sine curve

$$S = \{(x,y) \in \mathbb{R}^2 \mid y = \sin(1/x), x > 0\} \cup \{(0,y) \mid -1 \le y \le 1\},\$$

that is, the closure of the graph of $x\mapsto\sin(1/x)$ for x>0. For details, see Section 24 of Munkres' textbook.

▶ **Proposition 5.13**. Let X be a topological space. Define a relation \sim on X by declaring that $x \sim y$ if and only if there is a connected set $A \subset X$ such that $x, y \in A$. Then \sim is an equivalence relation. The equivalence classes of \sim are called the *connected components* of X.

- ▶ **Proposition 5.13**. Let X be a topological space. Define a relation \sim on X by declaring that $x \sim y$ if and only if there is a connected set $A \subset X$ such that $x, y \in A$. Then \sim is an equivalence relation. The equivalence classes of \sim are called the *connected components* of X.
- ▶ *Proof.* We see that $x \sim x$ for every x, since $\{x\}$ is connected.

- ▶ **Proposition 5.13**. Let X be a topological space. Define a relation \sim on X by declaring that $x \sim y$ if and only if there is a connected set $A \subset X$ such that $x, y \in A$. Then \sim is an equivalence relation. The equivalence classes of \sim are called the *connected components* of X.
- ▶ *Proof.* We see that $x \sim x$ for every x, since $\{x\}$ is connected.
 - If $x \sim y$ there exists a connected set A with $x, y \in A$. Then clearly $y, x \in A$ so $y \sim x$.

- ▶ **Proposition 5.13**. Let X be a topological space. Define a relation \sim on X by declaring that $x \sim y$ if and only if there is a connected set $A \subset X$ such that $x, y \in A$. Then \sim is an equivalence relation. The equivalence classes of \sim are called the *connected components* of X.
- ▶ *Proof.* We see that $x \sim x$ for every x, since $\{x\}$ is connected.
 - If $x \sim y$ there exists a connected set A with $x, y \in A$. Then clearly $y, x \in A$ so $y \sim x$.
 - If $x \sim y$ and $y \sim z$ we get connected sets A and B such that $x, y \in A$ and $y, z \in B$. Let $C = A \cup B$. Then $x, z \in C$, and C is connected by Theorem 5.4, so $x \sim z$.

Proposition 5.14. Let $\{C_i\}_{i \in I}$ be the set of connected components of a topological space *X*. Then

- **Proposition 5.14**. Let $\{C_i\}_{i \in I}$ be the set of connected components of a topological space *X*. Then
 - ightharpoonup (i) $X = \bigcup_{i \in I} C_i$ and the C_i are pairwise disjoint,

- **Proposition 5.14**. Let $\{C_i\}_{i \in I}$ be the set of connected components of a topological space *X*. Then
 - ightharpoonup (i) $X = \bigcup_{i \in I} C_i$ and the C_i are pairwise disjoint,
 - ▶ (ii) if $Y \subset X$ is connected, then $Y \subset C_i$ for some $i \in I$,

- **Proposition 5.14**. Let $\{C_i\}_{i \in I}$ be the set of connected components of a topological space *X*. Then
 - ightharpoonup (i) $X = \bigcup_{i \in I} C_i$ and the C_i are pairwise disjoint,
 - \blacktriangleright (ii) if $Y \subset X$ is connected, then $Y \subset C_i$ for some $i \in I$,
 - ▶ (iii) $C_i \subset X$ is connected for each $i \in I$, and

- **Proposition 5.14**. Let $\{C_i\}_{i \in I}$ be the set of connected components of a topological space *X*. Then
 - ightharpoonup (i) $X = \bigcup_{i \in I} C_i$ and the C_i are pairwise disjoint,
 - ▶ (ii) if $Y \subset X$ is connected, then $Y \subset C_i$ for some $i \in I$,
 - ▶ (iii) $C_i \subset X$ is connected for each $i \in I$, and
 - ▶ (iv) C_i is closed for all $i \in I$.

- **Proposition 5.14**. Let $\{C_i\}_{i \in I}$ be the set of connected components of a topological space *X*. Then
 - ightharpoonup (i) $X = \bigcup_{i \in I} C_i$ and the C_i are pairwise disjoint,
 - ▶ (ii) if $Y \subset \bar{X}$ is connected, then $Y \subset C_i$ for some $i \in I$,
 - ▶ (iii) $C_i \subset X$ is connected for each $i \in I$, and
 - ▶ (iv) C_i is closed for all $i \in I$.
- ▶ *Proof.* (ii) Let $Y \subset X$ be connected, and let $x \in Y$. Since $y \sim x$ for all $y \in Y$, so $Y \subset [x]$.

- **Proposition 5.14**. Let $\{C_i\}_{i \in I}$ be the set of connected components of a topological space *X*. Then
 - ▶ (i) $X = \bigcup_{i \in I} C_i$ and the C_i are pairwise disjoint,
 - ▶ (ii) if $Y \subset X$ is connected, then $Y \subset C_i$ for some $i \in I$,
 - ▶ (iii) $C_i \subset X$ is connected for each $i \in I$, and
 - ▶ (iv) C_i is closed for all $i \in I$.
- ▶ *Proof.* (ii) Let $Y \subset X$ be connected, and let $x \in Y$. Since $y \sim x$ for all $y \in Y$, so $Y \subset [x]$.
 - (iii) Fix $x_0 \in C_i$. For every $y \in C_i$ there a connected subset A_y so that $x_0, y \in A_y$. Then $A_y \subset C_i$ by (ii). Since $C_i = \bigcup_{y \in C_i} A_y$ and all of the A_y contain x_0 , C_i is connected by Theorem 5.4.

- **Proposition 5.14**. Let $\{C_i\}_{i \in I}$ be the set of connected components of a topological space *X*. Then
 - ightharpoonup (i) $X = \bigcup_{i \in I} C_i$ and the C_i are pairwise disjoint,
 - ▶ (ii) if $Y \subset X$ is connected, then $Y \subset C_i$ for some $i \in I$,
 - ▶ (iii) $C_i \subset X$ is connected for each $i \in I$, and
 - ▶ (iv) C_i is closed for all $i \in I$.
- ▶ *Proof.* (ii) Let $Y \subset X$ be connected, and let $x \in Y$. Since $y \sim x$ for all $y \in Y$, so $Y \subset [x]$.
 - ▶ (iii) Fix $x_0 \in C_i$. For every $y \in C_i$ there a connected subset A_y so that $x_0, y \in A_y$. Then $A_y \subset C_i$ by (ii). Since $C_i = \bigcup_{y \in C_i} A_y$ and all of the A_y contain x_0 , C_i is connected by Theorem 5.4.
 - (iv) We will show that $C_i = \overline{C_i}$. Write $C_i = [x]$ for any $x \in C_i$. Let $y \in \overline{C_i}$. Then $\overline{C_i}$ is a subset containing both x and y, and $\overline{C_i}$ is connected by Theorem 5.5, so $y \in [x] = C_i$.

▶ **Remark**. It follows from Proposition 5.14 that connected components are open if there are only finitely many of them.

- ▶ **Remark**. It follows from Proposition 5.14 that connected components are open if there are only finitely many of them.
- ▶ **Example**. We claim that the connected components of \mathbb{Q} are the singleton sets $\{x\}$. Indeed, let X be any subset of \mathbb{Q} containing at least two points, and suppose that $x, y \in X$, $x \neq y$. There there is an irrational number r, x < r < y, and

$$X = (X \cap (-\infty, r)) \cup (X \cap (r, \infty))$$

is a separation of X. Hence X is not connected.

- ▶ **Remark**. It follows from Proposition 5.14 that connected components are open if there are only finitely many of them.
- **Example**. We claim that the connected components of \mathbb{Q} are the singleton sets $\{x\}$. Indeed, let X be any subset of \mathbb{Q} containing at least two points, and suppose that $x, y \in X$, $x \neq y$. There there is an irrational number r, x < r < y, and

$$X = (X \cap (-\infty, r)) \cup (X \cap (r, \infty))$$

is a separation of X. Hence X is not connected.

Since the topology on \mathbb{Q} is not the discrete one, the connected component $\{x\}$ is not open for any x.

▶ **Theorem 5.15**. \mathbb{R} is connected.

- ▶ **Theorem 5.15**. \mathbb{R} is connected.
- ▶ *Proof*: Assume that $U \cup V$ is a separation of \mathbb{R} . Let $a, b \in \mathbb{R}$ with $a \in U$ and $b \in V$, and without loss of generality we can assume that a < b.

- ▶ **Theorem 5.15**. \mathbb{R} is connected.
- ▶ *Proof*: Assume that $U \cup V$ is a separation of \mathbb{R} . Let $a, b \in \mathbb{R}$ with $a \in U$ and $b \in V$, and without loss of generality we can assume that a < b.
- ▶ Let $S = \{x \in \mathbb{R} \mid [a, x] \subset U\}$. This is nonempty since $a \in S$. Also S is bounded above by b (otherwise $b \in [a, x] \subset U$).

- ▶ **Theorem 5.15**. \mathbb{R} is connected.
- ▶ *Proof*: Assume that $U \cup V$ is a separation of \mathbb{R} . Let $a, b \in \mathbb{R}$ with $a \in U$ and $b \in V$, and without loss of generality we can assume that a < b.
- Let $S = \{x \in \mathbb{R} \mid [a, x] \subset U\}$. This is nonempty since $a \in S$. Also S is bounded above by b (otherwise $b \in [a, x] \subset U$).
- Let $c = \sup S$. If $c \in V$, then there exists an open interval $(c \varepsilon', c + \varepsilon') \subset V$. Since $c = \sup S$, there exists $y \in (c \varepsilon', c) \cap S$. Then $y \in S$ implies that $[a, y] \subset U$. Both U and V contain y, a contradiction. Hence $c \in U$.

- ▶ **Theorem 5.15**. \mathbb{R} is connected.
- ▶ *Proof*: Assume that $U \cup V$ is a separation of \mathbb{R} . Let $a, b \in \mathbb{R}$ with $a \in U$ and $b \in V$, and without loss of generality we can assume that a < b.
- Let $S = \{x \in \mathbb{R} \mid [a, x] \subset U\}$. This is nonempty since $a \in S$. Also S is bounded above by b (otherwise $b \in [a, x] \subset U$).
- Let $c = \sup S$. If $c \in V$, then there exists an open interval $(c \varepsilon', c + \varepsilon') \subset V$. Since $c = \sup S$, there exists $y \in (c \varepsilon', c) \cap S$. Then $y \in S$ implies that $[a, y] \subset U$. Both U and V contain y, a contradiction. Hence $c \in U$.
- Since U is open, there exists an open interval $(c \varepsilon, c + \varepsilon) \subset U$. Since $c = \sup S$, there exists $y \in (c \varepsilon, c) \cap S$. Then $y \in S$ implies that $[a, y] \subset U$.

- ▶ **Theorem 5.15**. \mathbb{R} is connected.
- ▶ *Proof*: Assume that $U \cup V$ is a separation of \mathbb{R} . Let $a, b \in \mathbb{R}$ with $a \in U$ and $b \in V$, and without loss of generality we can assume that a < b.
- Let $S = \{x \in \mathbb{R} \mid [a, x] \subset U\}$. This is nonempty since $a \in S$. Also S is bounded above by b (otherwise $b \in [a, x] \subset U$).
- Let $c = \sup S$. If $c \in V$, then there exists an open interval $(c \varepsilon', c + \varepsilon') \subset V$. Since $c = \sup S$, there exists $y \in (c \varepsilon', c) \cap S$. Then $y \in S$ implies that $[a, y] \subset U$. Both U and V contain y, a contradiction. Hence $c \in U$.
- Since U is open, there exists an open interval $(c \varepsilon, c + \varepsilon) \subset U$. Since $c = \sup S$, there exists $y \in (c \varepsilon, c) \cap S$. Then $y \in S$ implies that $[a, y] \subset U$.
- Note that $[y, c + \varepsilon/2] \subset (c \varepsilon, c + \varepsilon) \subset U$. Hence $[a, c + \varepsilon/2] = [a, y] \cup [y, c + \varepsilon/2] \subset U$. Then $c + \varepsilon/2 \in S$, which contradicts $c = \sup S$.