Développement d'un nombre réel en série de Engel

par Daniel Duverney Lycée Albert Châtelet, Douai

On note [x] la partie entière de x, et $\{x\}$ sa partie fractionnaire : $\{x\} = x - [x]$. Les lettres entre crochets renvoient à la bibliographie, située à la fin de l'article.

A - ALGORITHME DE BRIGGS.

Dans tout ce qui suit, x_0 est un réel, $x_0 \in]0$, 1]. L'algorithme qui permet de développer x_0 en fraction continue régulière est bien connu ([Va], [Le]). Il s'écrit :

$$\begin{cases} u_0 = \left[\frac{1}{x_0}\right] \\ x_1 = \frac{1}{x_0} - u_0 \end{cases}$$

puis par récurrence :

(A-1)
$$\begin{cases} u_n = \left[\frac{1}{x_n}\right] \\ x_{n+1} = \frac{1}{x_n} - u_n \end{cases}$$

Nous allons ici étudier un algorithme assez voisin, implicitement utilisé par HENRY BRIGGS (1561-1630) pour calculer certaines valeurs du logarithme décimal (voir plus loin, paragraphe D, et [Na], tome 1, p. 125).

L'algorithme de BRIGGS s'écrit :

(A-2)
$$\begin{cases} u_0 = \left[\frac{1}{x_0}\right] + 1 \\ x_1 = u_0 x_0 - 1 \end{cases}$$
 puis par récurrence
$$\begin{cases} u_n = \left[\frac{1}{x_n}\right] + 1 \\ x_{n+1} = u_n x_n - 1 \end{cases}$$

L'algorithme de BRIGGS possède les propriétés suivantes :

Proposition A-1.
$$\forall x \in \mathbb{N}, x_n > 0$$
.

Démonstration. Par définition de la partie entière

$$\left[\frac{1}{x_n}\right] \le \frac{1}{x_n} < \left[\frac{1}{x_n}\right] + 1$$

$$\Rightarrow u_n - 1 \le \frac{1}{x_n} < u_n$$

Le résultat se démontre alors par récurrence ; on a $x_0 > 0$. Supposons $x_n > 0$; il résulte alors de (A-3) que $u_n x_n > 1$ donc $x_{n+1} > 0$ d'après (A-2).

Proposition A-2. La suite (x_n) est décroissante.

Démonstration. On a vu en (A-3) que

$$u_n - 1 \le \frac{1}{x_n}$$

Puisque x_n est positif (**proposition A-1**), on a donc :

$$u_n x_n - x_n \le 1$$

$$\iff u_n x_n - 1 \le x_n$$

$$\iff x_{n+1} \le x_n$$

Proposition A-3. La suite (u_n) est croissante.

Démonstration. En effet, $\frac{1}{x_0}$ croît d'après la **proposition A-2**, et la fonction partie entière est croissante. Donc :

$$u_n = \left[\frac{1}{x_n} \right] + 1$$
 est croissante.

Proposition A-4. $\forall n \in \mathbb{N}, u_n \geq 2.$

Démonstration. On a $u_n \ge u_0 = \left\lceil \frac{1}{x_0} \right\rceil + 1 \ge 2 \operatorname{car} x_0 \le 1$.

Proposition A-5. Soit $x_0 \in [0, 1]$, et soit (u_n) la suite définie par l'algorithme de BRIGGS. Alors la série de terme général $\frac{1}{u_0 u_1 \dots u_n}$ est convergente, et :

$$x_0 = \frac{1}{u_0} + \frac{1}{u_0 u_1} + \dots + \frac{1}{u_0 u_1 \dots u_n} + \dots$$

Démonstration. On a en vertu de A-2:

 $x_{n+1} = u_n x_n - 1$

donc

$$x_n = \frac{1}{u_n} + \frac{1}{u_n} x_{n+1}$$

de même

$$x_{n-1} = \frac{1}{u_{n-1}} + \frac{1}{u_{n-1}} x_n$$

d'où

$$x_{n-1} = \frac{1}{u_{n-1}} + \frac{1}{u_{n-1}u_n} + \frac{1}{u_{n-1}u_n} x_{n+1}$$

on obtient ainsi facilement par récurrence

(A-4)
$$x_0 = \frac{1}{u_0} + \frac{1}{u_0 u_1} + \dots + \frac{1}{u_0 u_1 \dots u_n} + \frac{1}{u_0 u_1 \dots u_n} \cdot x_{n+1}$$

Or, (x_n) étant décroissante : $x_n \le x_0 \le 1$. Et puisque $u_n \ge 2$ (proposition A-4), on a :

$$\frac{1}{u_0 u_1 \dots u_n} \cdot x_{n+1} \le \frac{1}{2^{n+1}} \to 0 \text{ quand } n \to +\infty. \text{ D'où le résultat.}$$

B - DÉVELOPPEMENT D'UN NOMBRE RÉEL EN SÉRIE DE ENGEL.

Nous avons démontré au paragraphe précédent que tout réel x_0 compris entre 0 et 1 peut s'écrire sous la forme : $x_0 = \frac{1}{u_0} + \frac{1}{u_0 u_1} + \ldots + \frac{1}{u_0 u_1 \ldots u_n} + \ldots$

$$x_0 = \frac{1}{u_0} + \frac{1}{u_0 u_1} + \dots + \frac{1}{u_0 u_1 \dots u_n} + \dots$$

où u_n est une suite d'entiers positifs, croissante, dont les termes successifs se calculent par l'algorithme de BRIGGS.

Réciproquement, démontrons la

Proposition B-1. Si
$$x_0 \in \]\ 0\ ,\ 1\]\ s'écrit sous la forme :
$$x_0 = \frac{1}{m_0} + \frac{1}{m_0 \, m_1} + \ldots + \frac{1}{m_0 \, m_1 \ldots m_n} + \ldots$$$$

où (m_n) est une suite d'entiers strictement positifs, croissante, alors $(m_n) = (u_n)$, suite donnée par l'algorithme de BRIGGS.

Démonstration. Notons d'abord que :

$$x_0 \in [0, 1] \Rightarrow m_0 \ge 2$$
, d'où $m_0 m_1 \dots m_n \ge 2^{n+1}$

puisque (m_n) est croissante, ce qui assure la convergence de la série. Si x_0 vérifie (B-1), on a :

$$m_0 x_0 - 1 = \frac{1}{m_1} + \frac{1}{m_1 m_2} + \dots + \frac{1}{m_1 m_2 \dots m_n} + \dots$$

$$\leq \frac{1}{m_0} + \frac{1}{m_0 m_1} + \dots + \frac{1}{m_0 m_1 \dots m_{n-1}} + \dots \qquad \text{(car } m_n \text{ croissante)}$$

$$\Rightarrow m_0 x_0 - 1 \leq x_0 \quad \text{d'où } m_0 \leq 1 + \frac{1}{x_0}$$

D'autre part, il est clair d'après (B-1) que $x_0 < \frac{1}{m_0}$, donc $m_0 - 1 \le \frac{1}{x_0} < m_0$, ce qui prouve que

$$m_0 - 1 = \left[\frac{1}{x_0}\right]$$
, donc $m_0 = u_0$. On en déduit :

$$x_1 = \frac{1}{u_1} + \frac{1}{u_1 u_2} + \dots + \frac{1}{u_1 u_2 \dots u_n} = \frac{1}{m_1} + \frac{1}{m_1 m_2} + \dots + \frac{1}{m_1 m_2 \dots m_n} + \dots$$

et en itérant ce raisonnement, on a bien $m_n = u_n$, $\forall n \in \mathbb{N}$, C.Q.F.D.

Nous concluons que le développement en série obtenu par l'algorithme de BRIGGS est le seul qui soit de la forme (B-1). Il est connu sous le nom de développement en série de ENGEL de x₀. ([Pe], p. 116; [Ga], p. 17.)

Exemples. La proposition (B-1) nous permet d'affirmer que :

- a) Puisque $e-2=\frac{1}{2!}+\frac{1}{3!}+\dots$, on a affaire au développement en série de ENGEL de e-2, avec $u_n=n+2$.
- **b**) Puisque ch $1-1=\frac{1}{2!}+\frac{1}{4!}+\dots$ nous avons ici le développement en série de ENGEL de ch 1-1, avec $u_n = (2n+1)(2n+2)$
- c) Puisque sh $1-1=\frac{1}{3!}+\frac{1}{5!}+...$, on a ici le développement en série de ENGEL de sh 1-1, et $u_n = (2n+2)(2n+3).$

C - CARACTÉRISATION DES NOMBRES RATIONNELS.

Proposition C-1. Soit $x_0 \in [0, 1]$. Alors x_0 est rationnel si et seulement si la suite (u_n) de son développement en série de ENGEL est constante à partir d'un certain rang.

Démonstration.

a) Si u_n est constante à partir d'un certain rang N, alors

$$x_{N} = \frac{1}{u_{N}} + \frac{1}{u_{N} u_{N}} + \dots = \frac{1}{u_{N} - 1}$$

est rationnel; il est donc de même x_0 en vertu de (A-4)

b) Supposons $x_0 = \frac{A_0}{B_0}$ rationnel. Effectuons la division euclidienne de B_0 par A_0 :

$$B_0 = A_0 Q_0 + R_0 \text{ avec } 0 \le R_0 < A_0$$

On a alors:

(C-1)
$$x_{1} = u_{0}x_{0} - 1 = \left\{ \left[\frac{B_{0}}{A_{0}} \right] + 1 \right\} \frac{A_{0}}{B_{0}} - 1$$
$$= (Q_{0} + 1) \frac{A_{0}}{B_{0}} - 1$$
$$= \frac{A_{0}Q_{0} + A_{0} - B_{0}}{B_{0}} = \frac{A_{0} - R_{0}}{B_{0}}.$$

Il résulte immédiatement de (C-1) que l'on peut poser $x_n = \frac{A_n}{B_0}$, et que la suite (A_n) décroît. Comme $A_n \in N^*$

(**proposition A-1**), il existe $N \in \mathbb{N}$ tel que : $\forall n \geq N$, $A_n = A_N$. Donc $\forall n \geq N$, $x_n = x_N$. Par suite :

$$\forall n \geq N, u_n = u_N, C.Q.F.D.$$

Exemple 1. e, ch 1 et sh 1 sont irrationnels puisque les suites de leurs développements en série de ENGEL tendent vers $+\infty$.

Exemple 2. ([Li]) $\sum_{n=0}^{+\infty} \frac{1}{2^{n^2}}$ est irrationnel; en effet, il s'agit d'un développement en série de ENGEL, avec $u_n = 2^{2n+1}$.

Exemple 3. Si $e^{\sqrt{2}}$ était rationnel, ch $\sqrt{2} = \frac{e^{\sqrt{2}} + e^{-\sqrt{2}}}{2}$ le serait aussi, or : $ch \sqrt{2} = 1 + \frac{(\sqrt{2})^2}{2!} + \frac{(\sqrt{2})^4}{4!} + \dots + \frac{(\sqrt{2})^{2n}}{2n!} + \dots$ $= 1 + \frac{2}{2!} + \frac{2^2}{4!} + \dots + \frac{2^n}{2n!} + \dots$

$$= 1 + \frac{1}{2!} + \frac{1}{4!} + \dots + \frac{1}{2n!} + \dots$$

$$\operatorname{ch} \sqrt{2} = 1 + 1 + \frac{1}{3 \times 2} + \dots + \frac{1}{3 \times 5 \dots (2n-1)n!} + \dots$$

On a donc le développement en série de ENGEL de ch $\sqrt{2}$ – 2, avec $u_n = (n+2)(2n+3)$; ch $\sqrt{2}$ est donc irrationnel et $e^{\sqrt{2}}$ aussi, moyennant la **proposition C – 1**.

D - LOGARITHMES ET SÉRIES DE ENGEL.

Plaçons-nous, pour simplifier, dans le cas des logarithmes décimaux : soit à calculer $\log a$, a entier, $2 \le a \le 9$. Soit k_0 le plus petit entier tel que $a^{k_0} > 10$. On a alors : $k_0 \log a > 1$ et $(k_0 - 1) \log a \le 1$ d'où :

 $\frac{1}{\log a} + 1 \ge k_0 > \frac{1}{\log a}$. Il en résulte :

$$k_0 = \left[\frac{1}{\log a}\right] + 1$$

 k_0 est donc le premier terme du développement de $\log a$ en série de ENGEL Posons ensuite :

$$x_1 = k_0 \log a - 1$$

$$\Leftrightarrow x_1 = \log \left\{ \frac{a^{k_0}}{10} \right\}$$

On recommence le même calcul avec $\left\{\frac{a^{k_0}}{10}\right\}$ à la place de a. On cherche le plus petit entier k_1 , tel que

 $\left\{\frac{a^{k_0}}{10}\right\}^{k_1} > 10$ ce qui équivaut à $a^{k_0 k_1} > 10^{k_1 + 1}$; k_1 est le deuxième terme du développement de $\log a$ en série de

ENGEL; et ainsi de suite. On voit que le calcul de log a se ramène à déterminer le nombre de chiffres, dans le système décimal, des puissances de a ([Na], tome 1, p. 126). Ce calcul nécessite néanmoins l'utilisation de très

grands nombres. On trouvera ci-dessous les quatres premiers termes du développement en série de ENGEL de log a pour $a = 2, 3, \dots, 9$. Pour a = 2 par exemple, on obtient par ce moyen les approximations rationnelles de $\log 2$

$$\frac{3}{10}$$
; $\frac{59}{196}$; $\frac{15783}{52430}$

а	и ₀	u_1	<i>u</i> ₂	и3	<i>u</i> ₄
2	4	5	49	107	188
3	3	3	4	6	18
4	2	5	49	107	188
5	2	3	6	7	8
6	2	2	9	75	120
7	2	2	3	8	8
8	2	2	2	5	9
9	2	2	2	2	4

E - LA FORMULE DE STRATEMEYER.

On sait que l'algorithme de développement d'un nombre réel en fraction continue permet d'obtenir explicitement le développement en fraction continue de x_0 lorsque x_0 est quadratique, c'est-à-dire solution d'une équation de la forme

$$a x_0^2 + b x_0 + c = 0$$
 pour $a, b, c \in \%$, $a \ne 0$

(sur ce sujet, voir par exemple [Va], p. 21; pour une étude approfondie, consulter [Fa]).

Il n'en est malheureusement pas de même pour le développement en série de ENGEL. On sait cependant, grâce à une formule due à G. Stratemeyer [St], obtenir le développement en série de ENGEL de $x_0 = t_0 - \sqrt{t_0^2 - 1}$, $t_0 \in \mathbb{N} - \{0, 1\}.$

Considérons, en effet, la suite (t_n) définie par son premier terme t_0 , et la relation de récurrence :

(E-1)
$$t_{n+1} = 2 t_n^2 - 1.$$

Alors:

$$t_{n+1}^2 = 4 t_n^4 - 4 t_n^2 + 1,$$

d'où
$$\sqrt{t_{n+1}^2 - 1} = 2 t_n \sqrt{t_n^2 - 1}$$
. Par suite :

$$t_n - \sqrt{t_n^2 - 1} = t_n - \frac{1}{2t_n} \sqrt{t_{n+1}^2 - 1}$$

$$= \frac{2t_n^2 - \sqrt{t_{n+1}^2 - 1}}{2t_n}$$

$$= \frac{1}{2t_n} + \frac{1}{2t_n} \left(t_{n+1} - \sqrt{t_{n+1}^2 - 1} \right)$$

en vertu de (E-1). Posons $x_n = t_n - \sqrt{t_n^2 - 1}$. Nous avons donc :

(E-2)
$$x_n = \frac{1}{2t_n} + \frac{1}{2t_n} x_{n+1}.$$

Ou encore : $x_{n+1} = 2 t_n x_n - 1$.

On reconnaît l'algorithme de BRIGGS avec $u_n = 2 t_n$.

D'où le:

Théorème E-1. Soit $t_0 \in \mathbb{N} - \{0, 1\}$, et $x_0 = t_0 - \sqrt{t_0^2 - 1}$. Alors le développement de x_0 en série de ENGEL est donné par :

$$x_0 = \sum_{n=0}^{+\infty} \frac{1}{2 t_0 \cdot 2 t_1 \dots 2 t_n},$$

la suite (t_n) vérifiant la relation de récurrence : $t_{n+1} = 2t_n^2 - 1$.

F - DÉVELOPPEMENT D'UN NOMBRE RÉEL EN FRACTION CONTINUE DE ENGEL.

Il existe un procédé, indiqué par EULER ([Eu], tome 1, p. 288) permettant de transformer une série de la forme :

$$\frac{1}{A} - \frac{1}{AB} + \frac{1}{ABC} - \frac{1}{ABCD} + \dots$$

en fraction continue. Nous allons le préciser dans le cas des séries de ENGEL.

Proposition F-1.

$$\forall n \in \mathbb{N}, \left\{ \frac{1}{x_n} \right\} = 1 - \frac{u_n}{u_{n+1} + \left\{ \frac{1}{x_{n+1}} \right\}}.$$

Démonstration. D'après (A-2):

$$x_{n+1} = u_n x_n - 1$$

$$\Leftrightarrow \frac{u_n}{1+x_{n+1}} = \frac{1}{x_n}$$

$$\Leftrightarrow \frac{u_n \cdot \frac{1}{x_{n+1}}}{1 + \frac{1}{x_{n+1}}} = \frac{1}{x_n}$$

$$\Leftrightarrow \frac{u_n \left(u_{n+1} - 1 + \left\{ \frac{1}{x_{n+1}} \right\} \right)}{1 + u_{n+1} - 1 + \left\{ \frac{1}{x_{n+1}} \right\}} = u_n - 1 + \left\{ \frac{1}{x_n} \right\}$$
 d'après (A-1)

$$\Leftrightarrow \frac{u_n \left(u_{n+1} - 1 + \left\{ \frac{1}{x_{n+1}} \right\} \right)}{u_{n+1} + \left\{ \frac{1}{x_{n+1}} \right\}} - (u_n - 1) = \left\{ \frac{1}{x_n} \right\}$$

$$\Leftrightarrow \left\{ \frac{1}{x_n} \right\} = 1 - \frac{u_n \left(u_{n+1} + \left\{ \frac{1}{x_{n+1}} \right\} \right)}{u_{n+1} + \left\{ \frac{1}{x_{n+1}} \right\}} + \frac{u_n \left(u_{n+1} - 1 + \left\{ \frac{1}{x_{n+1}} \right\} \right)}{u_{n+1} + \left\{ \frac{1}{x_{n+1}} \right\}}$$

$$\Leftrightarrow \left\{ \frac{1}{x_n} \right\} = 1 - \frac{u_n}{u_{n+1} + \left\{ \frac{1}{x_{n+1}} \right\}} \qquad \text{C.Q.F.D.}$$

Nous en déduisons le résultat suivant :

Proposition F-2. Soit $x_0 \in]0,1]$, rationnel, et (u_n) la suite de son développement en série de ENGEL (constante à partir du rang N). On a :

artir du rang N). On a:

$$x_0 = \frac{1}{u_0 - \frac{u_0}{u_1 + 1 - \frac{u_1}{u_2 + 1 - \dots}}}$$

$$\dots - \frac{u_{N-2}}{u_{N-1} + 1 - \frac{u_{N-1}}{u_N}}$$

En d'autres termes, l'algorithme de ENGEL fournit un développement de x_0 en fraction continue limitée.

Démonstration. Si x_0 est rationnel, on a $A_n = A_N$ pour $n \ge N$ (voir la démonstration de la **proposition C-1**).

Donc
$$A_N$$
 divise B_0 et $x_N = \frac{A_N}{B_0} = \frac{1}{K}$, $K \in \mathbb{N}^*$.

Par suite : $\left\{\frac{1}{x_N}\right\} = 0$. Utilisons maintenant la **proposition F-1**. Nous avons : $\left\{\frac{1}{x_{N-1}}\right\} = 1 - \frac{U_{N-1}}{U_N}$

$$\left\{ \frac{1}{x_{N-1}} \right\} = 1 - \frac{U_{N-1}}{U_{N}}$$

$$\Rightarrow \left\{ \frac{1}{x_{N-2}} \right\} = 1 - \frac{U_{N-2}}{U_{N-1} + 1 - \frac{U_{N-1}}{U_{N}}}$$

$$\Rightarrow \left\{ \frac{1}{x_{N-3}} \right\} = 1 - \frac{U_{N-3}}{U_{N-2} + 1 - \frac{U_{N-2}}{U_{N-1} + 1 - \frac{U_{N-1}}{U_{N}}}}$$

et le résultat s'en déduit par récurrence, en remarquant à la fin que :

$$\frac{1}{x_0} = \left[\frac{1}{x_0}\right] + \left\{\frac{1}{x_0}\right\}$$
$$= u_0 - 1 + \left\{\frac{1}{x_0}\right\}.$$

Traitons maintenant le cas où x_0 est *irrationnel*.

Proposition F-3. Soit $x_0 \in [0, 1]$, *irrationnel*, et (u_n) la suite de son développement en série de ENGEL. Alors la fraction continue illimitée

$$\frac{1}{u_0 - \frac{u_0}{u_1 + 1 - \frac{u_1}{u_2 + 1 - \frac{u_2}{u_3 + 1 - \dots}}}}$$

converge vers x_0 .

Démonstration. En notant la fraction continue précédente :

$$\frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \dots}}}$$

on a

(F-1)
$$\begin{cases} a_1 = 1 \\ a_n = -u_{n-2} \quad \text{pour } n \ge 2 \end{cases}$$

et

(F-2)
$$\begin{cases} b_1 = u_0 \\ b_n = u_{n-1} + 1 \text{ pour } n \ge 2. \end{cases}$$

Notant:

$$R_1 = \frac{a_1}{b_1} = \frac{P_1}{Q_1}$$

$$R_2 = \frac{a_1}{b_1 + \frac{a_2}{b_2}} = \frac{P_2}{Q_2} \dots$$

les réduites successives de la fraction continue, on a la relation de récurrence : $Q_{n+1} = b_{n+1} Q_n + a_{n+1} Q_{n-1}$, valable dès que $n \ge 1$ en posant $Q_0 = 1$ ([Le], p. 97). On calcule ainsi facilement : $Q_1 = b_1 = u_0$, $Q_2 = u_0 u_1$ et on démontre par récurrence que, $\forall n \ge 1$:

$$Q_n = u_0 u_1 \dots u_n$$

Mais on sait ([Le], p. 98) que la fraction continue converge en même temps que la série :

$$\frac{a_1}{Q_1} - \frac{a_1 a_2}{Q_1 Q_2} + \dots + (-1)^{n-1} \frac{a_1 a_2 \dots a_n}{Q_{n-1} Q_n} + \dots$$

et a la même somme.

Cette série converge évidemment et sa somme vaut, d'après (F-1) et (F-3) :

$$\frac{1}{u_0} - \frac{1(-u_0)}{u_0 \cdot (-u_0 u_1)} + \dots + (-1)^{n-1} \frac{1 \cdot (-u_0)(-u_1) \dots (-u_{n-2})}{(u_0 u_1 \dots u_{n-2}) \cdot (u_0 u_1 \dots u_{n-1})}$$

$$= \frac{1}{u_0} + \frac{1}{u_0 u_1} + \dots + \frac{1}{u_0 u_1 \dots u_{n-1}} + \dots$$

C'est le développement de x_0 en série de ENGEL, et la **proposition F-3** est donc démontrée.

Ainsi, l'algorithme de ENGEL permet de décomposer un nombre réel x_0 en une fraction continue qui possède, en commun avec le développement en fraction continue régulière, la propriété d'être limitée lorsque x_0 est rationnel, illimitée lorsque x_0 est irrationnel.

G - Propriétés stochastiques des séries de Engel.

Dans ce dernier paragraphe, nous nous posons le problème suivant : choisissons au hasard un réel x_0 dans l'intervalle] 0, 1] (ce qui revient à dire que] 0, 1] est probabilisé par la mesure de LEBESGUE). Que peut-on dire du développement en série de ENGEL de x_0 ? Ce type de question a été abondamment étudié par les mathématiciens hongrois ([E-R-S], [Ré], [Ga]).

Le terme u_n du développement en série de ENGEL de x_0 est alors une variable aléatoire, à valeurs dans

On a $u_n = k$, (k = 2, 3, ...) si et seulement si x_0 appartient à un intervalle de la forme :

$$\frac{1}{u_0} + \frac{1}{u_0 u_1} + \dots + \frac{1}{u_0 u_1 \dots u_{n-1} k} \le x < \frac{1}{u_0} + \frac{1}{u_0 u_1} + \dots + \frac{1}{u_0 u_1 \dots u_{n-1} (k-1)}$$

avec $2 \le u_0 \le u_1 \le ... \le u_{n-1} \le k$. On remarque que tous ces intervalles sont disjoints. Par conséquent :

(G-1)
$$P(u_n = k) = \frac{1}{k(k-1)} \sum_{2 \le u_0 \le u_1 \le \dots \le u_{n-1} \le k} \frac{1}{u_0 u_1 \dots u_{n-1}}$$

Calculons maintenant, pour $2 \le j \le k$, la probabilité conditionnelle suivante :

(G-2)
$$P(u_n = k/u_{n-1} = j) = \frac{P((u_n = k) \cap (u_{n-1} = j))}{P(u_{n-1} = j)}.$$

L'évenement ($u_n = k$) \cap ($u_{n-1} = j$) est réalisé si et seulement si, x_0 appartient à un intervalle de la forme :

$$\frac{1}{u_0} + \frac{1}{u_0 u_1} + \ldots + \frac{1}{u_0 u_1 \ldots u_{n-2} j k} \le x < \frac{1}{u_0} + \frac{1}{u_0 u_1} + \ldots + \frac{1}{u_0 u_1 \ldots u_{n-2} j (k-1)}$$

avec $2 \le u_0 \le ... \le u_{n-2} \le j$. Donc:

$$P((u_n = k) \cap (u_{n-1} = j)) = \frac{1}{j k (k-1)} \sum_{2 \le u_0 \le \dots \le u_{n-2} \le j} \frac{1}{u_0 u_1 \dots u_{n-2}}.$$

Un calcul facile, à partir de (G-1) et (G-2), conduit à :

(G-3)
$$P(u_n = k)/u_{n-1} = j) = \frac{j-1}{k(k-1)}.$$

Nous avons donc démontré le théorème suivant [E-R-S] :

Théorème G-1. La suite de variables aléatoires u_n est une chaîne de MARKOV homogène, dont les probabilités de transition sont données par :

$$\begin{cases} P(u_n = k/u_{n-1} = j) = \frac{j-1}{k(k-1)} & \text{si } 2 \le j \le k \\ P(u_n = k/u_{n-1} = j) = 0 & \text{si } j > k \end{cases}$$

Il est facile de voir, à partir de (G-1), que :

(G-4)
$$P(u_0 = k) = \frac{1}{k(k-1)}$$

Soit maintenant ε_k la variable aléatoire qui désigne le nombre d'occurrences du nombre k dans le développement en série de ENGEL. On a, pour $r \in \mathbb{N} - \{0\}$:

$$\mathbb{P}\left(\left.\varepsilon_{k}\geq r\right.\right)=\mathbb{P}\left(\left(\left.u_{0}=k\right.\right)\cap\left(\left.u_{1}=k\right.\right)\cap\ldots\cap\left(\left.u_{r-1}=k\right.\right)\right)$$

$$+\sum_{j=0}^{+\infty} P((u_j \le k-1) \cap (u_{j+1} = k) \cap ... \cap (u_{j+r} = k))$$

En utilisant la même méthode que plus haut, on obtient :

$$P(\varepsilon_k \ge r) = \frac{1}{k^r(k-1)} + \sum_{j=0}^{+\infty} \frac{1}{k^r(k-1)} \sum_{2 \le u_0 \le \dots \le u_j \le k-1} \frac{1}{u_0 \dots u_j}$$

$$P(\varepsilon_{k} \ge r) = \frac{1}{k^{r}(k-1)} \left[1 + \sum_{j=0}^{+\infty} \sum_{2 \le u_{0} \le \dots \le u_{j} \le k-1} \frac{1}{u_{0} \dots u_{j}} \right]$$

Le terme entre crochets est la somme de tous les termes de la forme $\frac{1}{2^{\alpha_2} 3^{\alpha_3} \dots (k-1)^{\alpha_{k-1}}}$, avec $\alpha_i \in \mathbb{N}$. Par

suite :

(G-5)
$$P(\varepsilon_k \ge r) = \frac{1}{k^r (k-1)} \prod_{j=2}^{k-1} \frac{1}{1 - \frac{1}{j}} = \frac{1}{k^r}$$

Ce résultat demeure vrai si r = 0. On en déduit immédiatement : pour tout $r \in \mathbb{N}$:

(G-6)
$$P(\varepsilon_k = r) = P(\varepsilon_k \ge r) - P(\varepsilon_k \ge r+1) = \frac{k-1}{k^{r+1}}.$$

Nous démontrons maintenant le résultat suivant [Ré].

Théorème G-2. Les variables aléatoires ε_k , k=2, 3, ..., sont mutuellement indépendantes.

Démonstration. Nous calculons :

$$\begin{split} \mathbf{P} \left[(\mathbf{\varepsilon}_2 = r_2) \cap (\mathbf{\varepsilon}_3 = r_3) \cap \dots \cap (\mathbf{\varepsilon}_{k-1} = r_{k-1}) \cap (\mathbf{\varepsilon}_k \geq r_k) \right] \\ &= \mathbf{P} \left[(u_0 = 2) \cap \dots \cap (u_{r_2-1} = 2) \cap (u_{r_2} = 3) \cap \dots \cap (u_{r_2+r_3-1} = 3) \right. \\ &\qquad \qquad \cap (u_{r_2+r_3} = 4) \cap \dots \cap (u_{r_2+r_3+\dots+r_{k-2}} = k-1) \\ &\qquad \qquad \cap \dots \cap (u_{r_2+r_3+\dots+r_{k-1}-1} = k-1) \cap (u_{r_2+r_3+\dots+r_{k-1}} = k) \\ &\qquad \qquad \cap \dots \cap (u_{r_2+r_3+\dots+r_{k-1}+r_k-1} = k) \right] \\ &= \frac{1}{2^{r_2} \cdot 3^{r_3} \cdot \dots \cdot (k-1)^{r_{k-1}} \cdot k^{r_k}} \cdot \frac{1}{k-1} \end{split}$$

Si bien que:

$$P((\epsilon_{2} = r_{2}) \cap (\epsilon_{3} = r_{3}) \cap ... \cap (\epsilon_{k} = r_{k})) = \frac{1}{2^{r_{2}} ... (k-1)^{r_{k-1}} k^{r_{k}}} \cdot \frac{1}{k}.$$

Donc $\forall k \geq 2$:

$$P(\bigcap_{i=2}^{k} (\varepsilon_i = r_i)) = \prod_{i=2}^{k} \frac{i-1}{i^{r_i+1}} = \prod_{i=2}^{k} P(\varepsilon_i = r_i),$$

ce qui démontre le théorème G-2.

Pour terminer, nous donnons une application du théorème G-2, basée sur le lemme de BOREL-CANTELLI.

Lemme G-3. Soit A_n (n = 1, 2, 3, ...) une suite d'événements mutuellement indépendants. Soit B l'événement : seulement un nombre fini des A_i se réalisent simultanément. Alors P (B) = 1 si, et seulement si, la série $\sum_{n=1}^{+\infty} P(A_n)$ est convergente.

On trouvera une démonstration du lemme G-3 dans [Ne] page 121, et une généralisation dans [Ga], page 36.

Théorème G-4 ([Ré]). Soit $2 \le k_1 < k_2 < ... < k_n < ...$ une suite strictement croissante d'entiers positifs. Alors la suite u_n du développement en série de ENGEL de x_0 contient, pour presque tout x_0 , une infinité de termes

de la suite (k_n) si la série $\sum_{j=1}^{+\infty} \frac{1}{k_j}$ est divergente, et n'en contient qu'un nombre fini si la série $\sum_{j=1}^{+\infty} \frac{1}{k_j}$ est convergente.

Démonstration. Notons A_k l'événement : le nombre k est contenu, au moins une fois, dans la suite u_n . On a $A_k = (\epsilon_k \ge 1)$, donc les événements A_k sont mutuellement indépendants, et en vertu de (G-5) :

$$P(A_k) = \frac{1}{k}.$$

Le théorème G-4 résulte donc immédiatement du lemme de BOREL-CANTELLI.

Exemple G-5. On sait que la série $\sum_{i=1}^{+\infty} \frac{1}{p_i}$, où (p_n) est la suite des *nombres premiers*, est *divergente* ([H-W], page 17). Par conséquent, si on choisit au hasard un nombre x_0 dans l'intervalle]0,1], il est quasi certain que son développement en série de ENGEL contiendra une infinité de termes u_n premiers.

Exemple G-6. [Ré] On choisit au hasard un nombre x_0 dans l'intervalle]0,1]. Montrons que la probabilité pour que la suite $(u_n)_{n \in \mathbb{N}}$ de son développement en série de ENGEL soit strictement croissante vaut $\frac{1}{2}$. Pour cela, cherchons la loi de probabilité de la variable aléatoire χ qui mesure le plus petit entier m tel que aucun entier k > m n'apparaît pas plus d'une fois dans le développement de x_0 .

Il est clair que, pour $k = 2, 3, \dots$:

$$(\chi=k)=(\varepsilon_k\geq 2)\cap (\varepsilon_{k+1}\leq 1)\cap (\varepsilon_{k+2}\leq 1)\cap \dots$$

Or les événements ($\varepsilon_k \ge 2$) et ($\varepsilon_{k+j} \le 1$), $j=1,2,\ldots$ sont mutuellement indépendants, donc :

$$P(\chi = k) = P(\varepsilon_k \ge 2) \cdot \prod_{j=k+1}^{+\infty} P(\varepsilon_j \le 1).$$

Grâce à (G-5), on obtient :

$$P(\chi = k) = \frac{1}{k^2} \cdot \prod_{j=k+1}^{+\infty} \left(1 - \frac{1}{j^2}\right) = \frac{1}{k(k+1)}.$$

Soit maintenant A l'événement : la suite u_n est strictement croissante. Il est clair que $\overline{A} = (\chi \ge 2)$. Donc :

$$P(\overline{A}) = \sum_{k=2}^{+\infty} \frac{1}{k(k+1)} = \frac{1}{2}$$
 C.Q.F.D.

BIBLIOGRAPHIE

- [Co] L. COMTET, Analyse Combinatoire, P.U.F, 1970.
- [E-R-S] P. ERDÖS, A. RENYI and P. SZÜSZ, On Engel's and Sylvester's series, Ann. Univ. Sci. Budapest, Sectio Math. 1 [1958], 7-32.
- [Eu] L. EULER, Introduction à l'analyse infinitésimale, ACL-Éditions, 1987.
- [Fa] A. FAISANT, L'équation diophantienne du second degré, Hermann, 1991.
- [Ga] J. GALAMBOS, Representations of Real Numbers by Infinite Series, Springer-Verlag, 1976.
- [H-W] G.H. HARDY and E.M. WRIGHT, An introduction to the theory of numbers, Oxford Science Publications (1979)
- [Le] H. LEBESGUE, Leçons sur les constructions géométriques, Jacques Gabay, 1987.
- [Li] J. LIOUVILLE, Sur des classes très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationnelles algébriques, J. Math. Pures et Appl. (1), 16 (1851), 133-142.
- [Na] C. NAUX, Histoire des Logarithmes de Neper à Euler, A. Blanchard, 1966.
- [Ne] J. NEVEU, Bases mathématiques du calcul et des probabilités, Masson, 1964.
- [Pe] O. PERRON, *Irrationalzahlen*, Chelsea Publishing Company.
- [Ré] A. RENYI, A new approach to the theory of Engel's series, Ann. Univ. Sci. Budapest, Sectio Math. 5, 1962, p. 25-32.
- [S-T] I.N. STEWART and D.O. TALL, Agebraic Number Theory, Chapman and Hall, 1987.
- [Sa] P. SAMUEL, Théorie algébrique des nombres, Hermann, 1967.
- [St] G. STRATEMEYER, Entwicklung positiver Zahlen nach Stammbrüchen (Dissertation), Mitteil. des Mathem. Seminars d. Universität Gie pen , Bd. II, Heft 20, 1931.
- [Va] G. VALIRON, Cours d'Analyse Mathématique, Masson, 1948.