Class Work: Proof using Cases

This is a FULL-TIME activity worth 10 points.

1.	Consider the following proposition:

For all integers a, b and d with $d \neq 0$, if d divides a or d divides b, then d divides ab.

- (a) Notice the hypothesis to this proposition is a disjunction. How could you use this fact to set up a direct proof of the proposition that involves two cases? What would those two cases be?
- (b) In the first of those two cases, what are you assuming? And what do you want to show?
 - Assuming:
 - Proving:
- (c) Make a "forward" step by taking the assumption from Case 1 and rewriting it using a definition.
- (d) Make a "backward" step by taking the conclusion of Case 1 and rewriting it using a definition.
- (e) In the space below, sketch out a proof of Case 1. ("Sketching" a proof means writing some kind of a rough but reasonably complete and correct version of the proof. That could be a know-show table or a paragraph-style proof that is not completely up to the writing standards yet.)

- (f) Now move on to Case 2. What will you assume? What to you want to prove?
 - Assuming:
 - Proving:

(g)	Make a "forward" step by taking the assumption from Case 2 and rewriting it using a definition.
(h)	Make a "backward" step by taking the conclusion of Case 2 and rewriting it using a definition.
(i)	In the space below, sketch out a proof of Case 2.
(j)	Now in the space below, write a complete, formal paragraph proof of the entire proposition.

2.	Consider	the	foll	owing	propositi	on:
				~	F - 0 F 0 0 - 11	

For each integer n, if n is odd, then $8|(n^2-1)$.

- (a) This is a conditional statement, so you have three basic methods for proving it: direct proof, contraposition, or contradiction. Which one seems most likely to work? Why?
- (b) If you used a direct proof on this statement, what would you assume? And what do you want to prove?
 - Assuming:
 - Proving:
- (c) Make a "forward" step by rewriting your assumption using a definition.
- (d) Make a "backward" step by rewriting your conclusion using a definition.
- (e) You've assumed something now about n and want to show something about $n^2 1$. Make a substitution based on what you know at this point and do some basic algebra to get an expression for $n^2 1$:

$$n^2 - 1 =$$

- (f) Can you tell just from this expression that $n^2 1$ is divisible by 8? Why or why not?
- (g) Think of two cases you could introduce at this point that might help the proof move forward.
 - Case 1:
 - Case 2:
- (h) Sketch a proof of Case 1 below.

(i)	Sketch a	proof of Ca	se 2 below.
-----	----------	-------------	-------------

(j) Now write up a formal proof for the whole proposition.