

Cairo University Faculty of Computers and Artificial Intelligence Mid-Term Exam

Department: Information Technology	
Course Name: Pattern Recognition	Date: April 2022
Course Code: IT 352	Duration: 1 hours
Instructor(s): Dr. Mona Soliman	Total Marks: 15 Marks
Name :	.SID:

Question 1: (6 marks)

(a) State the main function of Principle Component Analysis (PCA) (1 mark)

(b) What are the steps involved in PCA Algorithm? (2 marks)

(c)	Consider the two dimensional patterns (2, 1 values using PCA Algorithm. (3 marks)	1), (3, 5), (4, 3), (5, 6), (6, 7), (7, 8), Compute the Eigen

Question 2: (4 marks) Consider the image given in (fig-1). **Construct** its normalized GLCM by assuming direction operator as next pixel on right side and calculate its homogeneity and uniformity to construct a test feature vector. Having two training samples with different classes, **Deduce** the class of the test feature vector.

Uniformity= $\sum_{i,j} C_{i,j}^2$, Homogeneity= $-\sum_{i,j} C_{i,j} log_2 C_{i,j}$

1	1	2	2
3	3	0	0
2	1	1	2
3	0	3	0

S No.	Uniformity	Homogeneity	Class
1	0.13	0.39	1
2	0.21	0.71	0

Figure-1

Question 3 (5 Marks)

- (a) Write the formula of linear discriminate function based on minimum square error that can be used to classify between two classes . (1 mark)
- (b) For the following samples (3 marks)

Class1: [1 1],[2 1], [1 2], Class2: [5 5],[6 5],[5 6]

- (i) Sketch the points of each class with different symbols
- (ii) Draw the hyper plane line separating the two classes using linear discriminate function in part (a)
- (iii) Draw a single perceptron model representing this classification problem

(c) To which class the point [3 3] belongs? (1 mark)