Due Apr 30, 11:59 PM WIB

⊘ Congratulations! You passed!	Go to next item
Grade received 100% Latest Submission Grade 100% To pass 80% or higher	So to leak telli
You are using reinforcement learning to control a four legged robot. The position of the robot would be its	1/1 point
reward action return state	
You are controlling a Mars rover. You will be very very happy if it gets to state 1 (significant scientific discovery), slightly scientific discovery), and unhappy if it gets to state 3 (rover is permanently damaged). To reflect this, choose a reward R(1) < R(2) < R(3), where R(1) and R(2) are negative and R(3) is positive. R(1) > R(2) > R(3), where R(1), R(2) and R(3) are positive. R(1) > R(2) > R(3), where R(1), R(2) and R(3) are negative. R(1) > R(2) > R(3), where R(1), R(2) and R(3) are negative.	
3. You are using reinforcement learning to fly a helicopter. Using a discount factor of 0.75, your helicopter starts in some sthe first step, -100 on the second step, and 1000 on the third and final step (where it has reached a terminal state). What o -100 - 0.75*100 + 0.75^2*1000 -0.25*100 - 0.25^2*100 + 0.25^3*1000 -100 - 0.25*100 + 0.25^2*1000	

Given the rewards and actions below, compute the return from state 3 with a discount factor of $\gamma=0.25$.

- 0 0
- 6.25
- O 25
- 0.39