8.6-1

(a) $\frac{L(80)}{L(76)} = \frac{(128\pi)^{-n/2} exp[-\frac{1}{128}\Sigma(x_i - 80)^2]}{(128\pi)^{-n/2} exp[-\frac{1}{128}\Sigma(x_i - 76)^2]}$ $= exp[\frac{8}{128}\Sigma x_i - \frac{624n}{128}] \le k$ $\bar{X} \le \frac{16}{n} log(k) + 78 = c$

The best critical region is $C = \{\mathbf{x}; \bar{X} \leq c\}$

(b)
$$P(\bar{X} \le c; \mu = 80) = 0.05$$

$$P(\bar{X} > c; \mu = 76) = 0.05$$

$$\frac{c - 80}{\sqrt{64/n}} = -1.645$$

$$\frac{c - 76}{\sqrt{64/n}} = 1.645$$

$$c = 78$$

$$n = 43$$

8.6-3

(a)
$$\frac{L(3)}{L(5)}=(\frac{5}{3})^nexp[-\frac{2}{15}\Sigma x_i]\leq k$$

$$\Sigma x_i\geq -\frac{15}{2}[\log(k)-n\log(\frac{5}{3})]=c$$

The best critical region is $C = \{\mathbf{x}; \Sigma x_i \geq c\}$

(b)
$$P(\Sigma x_i \ge c; \theta = 3) = 0.1$$

$$P(\frac{2}{3}\Sigma x_i < \frac{2}{3}c; \theta = 3) = 0.9$$

$$\frac{2}{3}c = \chi_{24}^2(0.1) = 33.2$$

$$c = 49.8$$

The best critical region is $C = \{\mathbf{x}; \Sigma x_i \geq 49.8\}$

- (c) c only depends on Σx_i and $\theta = 3$, thus The best critical region holds i.e $C = \{\mathbf{x}; \Sigma x_i \geq 49.8\}$
- (d) For any $\theta_1 > 3$,

$$\frac{L(3)}{L(\theta_1)} = \left(\frac{\theta_1}{3}\right)^n exp\left[\left(\frac{1}{\theta_1} - \frac{1}{3}\right)\Sigma x_i\right] \le k$$

Due to $\theta_1 > 3$

$$\Sigma x_i \ge -(\frac{1}{3} - \frac{1}{\theta_1})[log(k) - n(log(\theta_1) - log(3))] = c$$

where c is selected such that $P(\Sigma x_i \ge c; H_0 : \theta = 3) = \alpha$. Note that the same value of c can be used for each $\theta > 3$, but (of course) k does not remain the same.

8.6-5

(a) For any $\mu_1 < 50$,

$$\frac{L(50)}{L(\mu_1)} = exp\{-\frac{1}{72}[2(\mu_1 - 50)\Sigma x_i + n(50^2 - \mu_1^2)]\} \le k$$
$$-\frac{1}{72}[2(\mu_1 - 50)\Sigma x_i + n(50^2 - \mu_1^2)] \le \log(k)$$

Due to $\mu_1 - 50 < 0$

$$\bar{X} \le \frac{-72log(k) - n(50^2 - \mu_1)^2}{2n(\mu_1 - 50)} = c$$

The UMP critical region is $C_1 = \{\mathbf{x}; \bar{X} \leq c\}$

(b) Consider H_0 ; $\mu = 50$; H_1 ; $\mu > 50$. For any $\mu_2 > 50$, from similarly procedure.

$$-\frac{1}{72}[2(\mu_1 - 50)\Sigma x_i + n(50^2 - \mu_1^2)] \ge \log(k)$$

Due to $\mu_1 - 50 > 0$

$$\bar{X} \le \frac{-72log(k) - n(50^2 - \mu_1)^2}{2n(\mu_1 - 50)} = c$$

The UMP critical region is $C_2 = \{\mathbf{x}; \bar{X} \geq c\}$ Thus the two sided UMP critical region is $C_3 = \{\mathbf{x}; \bar{X} \geq c \& \bar{X} \leq c\}$ Thus $P(C_3) = 0$, the required uniformly most powerful test does not exist.

8.6-7

(a) $\frac{L(0.5)}{L(\mu_1)} = \left(\frac{0.5}{\mu_1}\right)^{\sum x_i} e^{10(\mu_1 - 0.5)} \le k$ $\log(k) - 10(\mu_1 - 0.5)$

 $\Sigma x_i \ge \frac{\log(k) - 10(\mu_1 - 0.5)}{\log(\frac{0.5}{\mu_1})} = c$

where c is selected such that $P(\Sigma x_i \geq c; H_0 : 0.5) = \alpha$. So it is a UMP test.

(b) $\Sigma x_i \sim Poisson(\lambda), \ \lambda = 10 \times \mu = 5.$

$$0.068 = 1 - P(\Sigma x_i < c; \ \mu = 0.5)$$

c = 9

(c)

Figure 1: Sketch the power function of this test

8.6-9 For any $\theta_1 < 0.5$

$$\begin{split} \frac{L(0.5)}{L(\theta_1)} &= \frac{(0.5)^{\sum x_i}}{\theta_1^{\sum x_i} (1 - \theta_1)^{1 - \sum x_i}} \le k \\ &\sum x_i \le \frac{\log(k) - 5\log(1 - \theta_1)}{\log(0.5) - \log(\theta_1) + \log(1 - \theta_1)} = c \end{split}$$

where c is selected such that $P(\Sigma x_i \leq c; H_0: 0.5) = \alpha$. So it is a UMP test.

$$K(\theta) = \sum_{k=0}^{1} {5 \choose k} \theta^k (1-\theta)^{(5-k)}$$