Лабораторная работа

Изучение ВАХ лавинного фотодиода с отрицательной обратной сязью

Автор работы: Хоружий Кирилл

Кузнецова Арина Евгений Дедков Александр Двуреченский

Александр двуреченскии Яушев Михаил

От: 24 ноября 2021 г.

Цель работы

- 1. Измерение ВАХ лавинного фотодиода с отрицательной обратной сязью.
- 2. Определение емкости ячейки C и пробойного напряжения $U_{
 m br}$ лавинного фотодиода.

Оборудование

Источник-измеритель Keithley 236 (1), лавинный фотодиод SiPM (2), светоизолированный бокс (3) со светодиодом (4), поключенный к реугулируемому источнику напряжения (5).

Рис. 1: Схема установки для измерения световых и темновх вольт-амперных характеристик фотодиода

RQC Φ_{H} 3 T_{E} X

Ход Работы

Темновая ВАХ. Измерим темновую ВАХ фотодиода, данные приведены в таблице 1, см. рис. 2.

Рис. 2: Темновая ВАХ фотодиода

Настройка светодиода. Настроим интенсивность светодиода так, чтобы

$$I_{\text{light}}(20 \text{ B}) \approx I_{\text{dark}}(20 \text{ B}).$$

Для этого сначала было подано напряжение в 20 В на фотодетектор в обратном смещении, затем плавно увеличивалось неапряжение на светодиоде. Значение 20 В выбрано потому что оно соответствует полному формированию ОПЗ (области пространственного заряда). Коэффициент умножения M(20 B) = 1.

Световая ВАХ. Измерим световую ВАХ фотодиода, данные приведены в таблице 2, см. рис. 3.

Рис. 3: Световая ВАХ фотодиода

Напряжение U измерялось достаточно точно, чтобы пренебречь погрешностью. Погрешность измерения тока I была взята за 1% в связи с нестаблильностью измеряемой величины.

 Φ_{H} ЗТ E Х RQC

Коэффициент лавинного умножения. Значение фототока может быть найдено, как

$$I_{\text{photo}}(U_i) = I_{\text{light}}(U_i) - I_{\text{dark}}(U_i).$$

Тогда коэффициент лавинного умножения:

$$M(U_i) = I_{\text{photo}}(U_i)/I_{\text{photo}}(20 \text{ B}),$$

данные приведены в таблице 3. Построим зависимость $M(U_i)$, см. рис. 4.

Рис. 4: Зависость коэффициент лавинного умножения M(U)

Зависимость коэффициента лаинного умножения SiPM от перенапряжения в гейгероской области апроксимируется линейной функцией:

$$M(U) = \frac{C(U - U_{\rm br})}{e}.$$

Построим лавинный участок M(U) в линейном масштабе (см. рис. 5) и аппроксимируем линейной функцией M(U) = aU - b.

Рис. 5: Лавинный участок зависимости M(U)

По МНК находим коэффициенты аппроксимации:

$$a = (368 \pm 4) \times 10 \text{ B}^{-1}, \qquad b = (230 \pm 3) \times 10^3.$$

Из которых находим значения емкости ячейки и пробойное напряжение $U_{\rm br}$:

$$C = e \cdot a = (0.59 \pm 0.02) \ \Phi\Phi, \qquad U_{\rm br} = \frac{b}{a} = (62 \pm 2) \ {\rm B}.$$

RQC Φ_{H} ЗТ $_{\mathrm{E}}$ Х

Дополнение

Таблица 1: Измерения $I_{\rm dark}(U)$

Таблица 2: Измерения $I_{\text{light}}(U)$

Таблица 3: Измерения $I_{\mathrm{photo}}(U)$

Ī	I _{dark} , нА	U, B	$I_{ m light},$ нА	U, B	$I_{ m photo}$, н ${ m A}$
)	0.40	0.00	2.36	0.00	1.96
	0.45	5.00	2.75	5.00	2.30
	0.51	10.00	2.81	10.00	2.30
	0.58	15.00	2.88	15.00	2.30
	0.70	20.00	2.99	20.00	2.29
	0.87	25.00	3.24	25.00	2.37
	1.17	30.00	3.74	30.00	2.57
	1.65	35.00	4.66	35.00	3.01
	2.50	40.00	6.29	40.00	3.79
	4.15	45.00	9.20	45.00	5.05
	8.16	50.00	14.9	50.00	6.76
	13.1	55.00	29.2	55.00	16.1
	15.8	58.00	55.7	58.00	39.9
	21.8	59.00	77.6	59.00	55.8
	34.7	60.00	127	60.00	92.3
	80.7	61.00	319	61.00	238
	390	62.00	1440	62.00	1050
	1000	62.50	3508	62.50	2508
	2230	63.00	7640	63.00	5410
	4060	63.50	13350	63.50	9290
	6350	64.00	19830	64.00	13480
	9110	64.50	26940	64.50	17830
	10460	64.70	29950	64.70	19490
	11150	64.80	31700	64.80	20550
	11670	64.85	32550	64.85	20880