Scaling Language Models

Antoine Bosselut

Announcements

- Assignment 3: Due Sunday, 30/04/2023 at 11:59 PM
 - Office Hours: **tomorrow**, Thursday 1 PM
- No Lecture Tomorrow!
- Course Project: Kickoff!
 - Data Packages were released

Next few days: Project Sign-ups

• To-Dos:

- **URGENT:** Look over the Project Description
- **URGENT:** Fill out team registration form if you haven't already
- **URGENT:** Get API key to access GPTWrapper Server:
 - Fill out data consent form
 - After filling it out, ML4ED will send API keys
- **URGENT:** Sign up for project repository
- Look through README in project repository for details on milestone submission
- Get started early! Milestone 1 due May 16th!

Nostoi

• Last class, learning about ChatGPT:

- Helpful comment that we were connecting a lot of concepts from many past lectures:
 Transformers (Week 4), Fine-tuning (Week 5), Data quality (Week 6), Text generation (Week 7)
- Can be difficult to keep track of these many concepts

• Nostoi: Al-powered slide reader

- Cross course search reference content to older courses
- Study tools automatically build flashcards for future studying
- Highlight words and get personalized explanations (powered by ChatGPT) Trust, but verify!

Today's Outline

Lecture

- Quick Recap: Scale
- Managing scale when training: Scaling laws
- Guest Lecture: Reza Banaei
 - Managing scale when deploying: Model Compression
 - how can we make LLMs more efficient?

Language Model Scaling

Larger models

More data

More compute

Every part of the model scales!

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	$2.0 imes 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	$1.6 imes 10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

- Trained on 570 GB of Common Crawl data
- How? Used cluster provided by Microsoft

Why scale?

- Last week, we talked about benefits of scaling in terms of **emergence**
- Practically, training for longer also leads to lower test loss
- Larger models can reach lower test losses

What should we scale?

Model size, dataset size, compute budget

Given a compute budget, how big of a model can we train? and how big of a dataset should we train it on?

Impact of compute budget

Dotted lines estimate these curves. Need to predict for larger models!

- For a fixed compute budget, there is an optimal number of parameters that we can train
- Having too large a model for too small a compute budget does NOT let the model learn
 - Model doesn't see enough examples during training
- Having too small a model for too large a compute budget is also bad
 - Repeated computation isn't helpful if the model has no capacity to encode additional information

Consideration

- With a fixed compute budget (in FLOP-days), we have two costs:
 - Number of floating point operations needed to train on a single example (model size)
 - Number of total examples we will train on
- How should we trade off these two costs?
 - Which should we prioritise?

Model-Data Trade-off

 Larger models benefit more from larger datasets

Smaller models saturate

- Only so much capacity to learn!
- At some point, larger models don't benefit more from same-sized data
- Data size and model size need to be scaled jointly

Other Cool Findings

Aspect Ratio (d_{model} / n_{layer})

Multiple ratios of depth vs. width (aka embedding size) are fine

Other cool findings

- LSTMs also follow scaling laws, benefitting from increased scale
- They scale less efficiently than transformers, though
- They still have trouble modelling long-term dependencies (>100 tokens)

To scale up: estimate model, data, compute

- Assuming no bottlenecks, expected test loss has power law relationship with each variable
- From smaller models, we can estimate how much compute, data, and model size is needed to achieve a particular test loss

Model Scaling in the last two years

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion

What happens if we get these estimates wrong?

Oops!

FLOPs

- Chinchilla authors founds that original works on model scaling had poorly estimated power laws
- New estimates showed that a 4x smaller model should be used for the compute budget
- Trained Gopher (280B) before finding this out!

Model Scaling in the last two years

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

Chinchilla gets better performance than all of the above models on most common NLP benchmarks!

Smaller model, trained on much more data!

Recap

- Scale is necessary to achieve many of the emergent breakthroughs of the last few years
 - in-context learning, chain-of-thought reasoning, instruction learning
- Training at scale is very expensive
 - Potentially, months of training
 - millions of \$\$\$\$
- Scaling laws let us estimate the optimal model and dataset sizes for a fixed compute budget, so that we only have to do the training once!

References

- Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020).
 Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.
- Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., ... & Sifre, L. (2022). Training compute-optimal large language models. arXiv preprint arXiv:2203.15556.