Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

Paper Review

Sangho Kim

- The limitation of GloU
- DIoU Loss
- CloU Loss
- Experiments

The limitation of GloU

The limitations of GloU

- The limitation of GloU
- DIoU Loss
- CloU Loss
- Experiments

Distance-IoU Loss

$$\mathcal{L}_{DIoU} = 1 - IoU + \frac{\rho^2(\mathbf{b}, \mathbf{b}^{gt})}{c^2}$$

- where \boldsymbol{b} and \boldsymbol{b}^{gt} denote the central points of B and B^{gt} , respectively,
- ρ is the Euclidean distance,
- ullet and c is the diagonal length of the smallest enclosing box covering the two boxes

Distance-IoU Loss

Figure 2: GIoU loss degrades to IoU loss for these cases, while our DIoU loss is still distinguishable. Green and red denote target box and predicted box respectively.

- The limitation of GloU
- DIoU Loss
- CloU Loss
- Experiments

Complete IoU Loss

- A good loss for bbox regression should consider three important geometric factors, i.e., overlap area, central point distance and aspect ratio.
- Our proposed DIoU loss aims at considering the overlap area and central point distance of bboxes.
- However, the consistency of aspect ratios for bboxes is also an important factor.

Complete IoU Loss

 Therefore, based on DIoU loss, the CIoU loss is proposed by imposing the consistency of aspect ratio

$$\mathcal{L}_{CIoU} = 1 - IoU + rac{
ho^2(\mathbf{b}, \mathbf{b}^{gt})}{c^2} + lpha v$$
, $v = rac{4}{\pi^2} (arctan rac{w^{gt}}{h^{gt}} - arctan rac{w}{h})^2$, $lpha = rac{v}{(1 - IoU) + v}$

- where α is positive trade-off parameter, and v measures the consistency of aspect ratio
- by which the overlap area factor is given higher priority for regression, especially for non-overlapping cases.

- The limitation of GloU
- DIoU Loss
- CloU Loss
- Experiments

Compare with IoU losses

Table 1: Quantitative comparison of **YOLOv3** (Redmon and Farhadi 2018) trained using \mathcal{L}_{IoU} (baseline), \mathcal{L}_{GIoU} , \mathcal{L}_{DIoU} and \mathcal{L}_{CIoU} . (D) denotes using DIoU-NMS. The results are reported on the test set of PASCAL VOC 2007.

Loss / Evaluation	AP		AP75	
	IoU	GIoU	IoU	GIoU
\mathcal{L}_{IoU}	46.57	45.82	49.82	48.76
\mathcal{L}_{GIoU}	47.73	46.88	52.20	51.05
Relative improv. %	2.49%	2.31%	4.78%	4.70%
\mathcal{L}_{DIoU}	48.10	47.38	52.82	51.88
Relative improv. %	3.29%	3.40%	6.02%	6.40%
\mathcal{L}_{CIoU}	49.21	48.42	54.28	52.87
Relative improv. %	5.67%	5.67%	8.95%	8.43%
$\mathcal{L}_{CIoU}(D)$	49.32	48.54	54.74	53.30
Relative improv. %	5.91%	5.94%	9.88%	9.31%

Detection examples using YOLOv3

Detection examples using YOLOv3

 \mathcal{L}_{GIoU}

Detection examples using YOLOv3

 \mathcal{L}_{GIoU}

 \mathcal{L}_{CIoU}