Analysis of Massive Data Sets

Stream Data Model and Processing

Klemo Vladimir

Faculty of Electrical Engineering and Computing
Consumer Computing Laboratory

Stream Data Model and Processing

Outline

- 1. Introduction/Stream Data Model
- 2. Sampling streams (Random sample/Sliding windows)
- 3. Filtering streams (*Bloom filter*)
- 4. Counting distinct elements (Flajolet-Martin)
- 5. Estimating moments (*Alon-Matias-Szegedy*)
- 6. Literature

- Data arrives in streams
 - It must be processed immediately or stored
 - If not, then it is lost forever
- Data arrives rapidly
 - It is not feasible to store it all
- Infinite and non-stationary data
 - Controlled externally
 - Google queries, Twitter statuses...

Examples

- Web traffic
 - Google search queries
 - Twitter public stream
- Internet traffic
 - Routing IP packets
- Sensor data
 - Data rate * Total number of sensors
- Image data
 - Satellites, surveillance cameras

Data stream management system

- Data stream management system
 - Analogy to DBMS
 - Archival storage
 - Not used to answer queries
 - Working storage
 - Limited cannot store all the data from all the streams
 - Stores summarizes or parts of streams
 - Disk or main memory

- Standing queries
 - Execute "permanently"
 - Example: temperature sensor
 - Alert on x degrees C
 - Depends only on most recent reading
 - Max temperature
 - Store current maximum
 - Average of *n* recent readings
 - First n readings
 - avg = sum/n
 - Next readings
 - x new element, y oldest element
 - $new_avg = avg + (x y)/n$

- Ad-hoc queries
 - Asked once about the current state of stream
 - Depend on stream summarization stored in working storage
 - Sliding windows
 - Store most recent elements of a stream
 - Stream management system keeps the window fresh
 - Removes oldest elements as new ones come in
 - Random sample
 - Store random, but representative sample of a stream

- Online algorithms/learning *
 - In Machine Learning
 - Algorithm slowly adapts to the changes in data
 - For every sample in the data, the model is slightly updated
 - SVM, Perceptron ...

Conditions

- Large number of streams
- Stream elements enter at rapid rate
- System cannot store the entire streams
- Challenge
 - How to derive information from the stream using a limited amount of memory?
- Accuracy/performance trade-off
 - It is much more efficient to get an approximate answer than an exact solution

Stream Data Model and Processing

- Motivating example: Search engine queries
 - Elements are tuples
 - (user, query, timestamp)
 - Need to study the behavior of typical users
 - Find fraction of unique queries in the past month
 - Sample 10% of the whole stream

- Motivating example: Search engine queries
 - Obvious approach for 10% sample
 - For each search query, generate a random number in range 0 – 9
 - Store the query if number is 0
 - On average, 10% of the queries for each user after some time
 - the law of large numbers

- Motivating example: Search engine queries
 - Obvious approach
 - What is the problem with this approach?
 - The fraction of unique queries in the sample will not be the fraction for the stream as a whole
 - Probability of a given query appearing to be unique in the sample is distorted by the sample
 - Example
 - Query appeared exactly two times in the whole stream
 - System sampled only first occurrence of the query
 - Query appears unique in the sample, but it is not unique in the stream

- Motivating example: Search engine queries
 - Obvious approach: Random numbers 0-9
 - Finding unique queries
 - Suppose a query is unique
 - Query appears once in the whole stream

- 10% chance of being in the sample
- Suppose a query appears twice in the whole stream

Total: **18%** chance of appearing **once** in the sample (looking unique)

- Motivating example: Search engine queries
 - Obvious approach: Random numbers 0-9
 - Overestimate of the true fraction of unique queries
 - Problem
 - Independent selection
 - Each time query arrives, random number is generated
 - Based on query position in the stream
 - Solution
 - Sampling by value
 - Pick users, not searches

Representative sample

- Sample by value: (user, query, t)
- Keep list of all users with the membership information
 - if user is in the sample (True/False)
- Procedure when new query arrives
 - User lookup
 - If membership and user is in the sample
 - add this query to the sample
 - If no membership yet
 - Generate random integer between 0 9
 - If 0: mark user as member of sample, else mark as not member
 - Problems
 - Not enough memory to keep the list of users
 - Expensive lookup for every query

- Representative sample (hashing)
 - Sample by value: (user, query, t)
 - b = number of users
 - a/b = fraction of the users to store in the sample
 - Hash queries to **b** buckets (0 b-1)
 - Hashing as pseudobucketing
 - Store query in the sample if it is hashed to bucket with value less than a
 - All or none of specific user's queries are selected
 - Fraction of unique queries is the same as for the stream as a whole

- Representative sample
 - Sample size
 - What if the total sample size is limited?
 - Bucket management
 - Use more buckets
 - Dynamically adjust the set of buckets
 - If sample gets too large:
 - Pick one bucket that is included in the sample
 - Delete elements from the selected bucket

- Representative sample
 - Bucket management
 - Hash to 100 buckets
 - Sample: buckets 0 9
 - If the sample gets too big
 - get rid of bucket 9
 - 8, 7, ...
 - Generalization: sampling key-value pairs
 - Stream elements are tuples
 - Sample is based on picking some set of keys

Stream Data Model and Processing

- Motivating example
 - Simple spam filter based on email addresses
 - Set S of 1 billion allowed email addresses
 - Not spam, if an email address is a member of S
- How to check membership of S?
 - Hash table
 - Naive solution
 - Works only if all of S can be stored in memory

Bloom filter

- A Bloom filter placed on the stream of emails will answer with:
 - Not spam
 - Email address is member of S
 - Spam
 - Email address is not member of S
- Reduced storage costs
- Bloom filter can have false positives
 - And no false negatives

- Bloom filter (simple)
 - Create a bit array B of n bits, initially all zeroes
 - Choose a hash function h with range [0,n-1]
 - Hash members of **S**, **h(s)**, and set bit **h(s)** to **1**
 - B[h(s)] = 1
 - Filtering
 - Emit a if B[h(a)] = 1

- Bloom filter is:
 - An array of n bits, initially all 0's
 - A collection of hash functions
 - h_1, h_2, \ldots, h_k
 - Each hash function maps "key" values to n buckets, corresponding to the n bits of the bit-array
 - A set S of m key values.

Bloom filter

- The purpose of the Bloom filter
 - allow through all stream elements whose keys are in S, while rejecting most of the stream elements whose keys are not in S
- Procedure
 - Take each key value in S and hash it using each of the k hash functions
 - For some hash function h_i and some key value K in S
 - Set to 1 each bit that is h_i(K)

- Bloom filter: Example
 - Stream elements: words
 - n=10 bits for the Bloom filter
 - Two hash functions:
 - $h_1(x) = len(x)\%10$
 - $h_2(x) = ord(x[0])\%10$

- Bloom filter: Example
 - Input: "bloom filter"
 - Filter creation:
 - B = 0000000000
 - h_1 ("bloom") = 5, h_2 ("bloom") = 98%10=8
 - B = 00000**1**00**1**0
 - $h_1("filter") = 6$, $h_2("filter") = 102\%10=2$
 - B = 00**1**00**11**0**1**0

- Bloom filter: Example
 - Filter lookup:
 - We want to know if some element x was seen before
 - Compute h(x) for each hash function h
 - If all the resulting bit positions are 1
 - We have seen x before
 - Collisions: expect some number of false positives
 - If at least one of these positions is 0
 - We have not seen x before

- Bloom filter: Performance
 - Probability of *false positive*
 - Depends on:
 - Density of 1's in the array (d₁)
 - Number of hash functions (k)

$$d_1^k$$

$$- d_1 = ?$$

- max(d₁) = num of inserted elements * k
- In practice
 - collisions lower d₁
 - $d_1 < max(d_1)$

- Bloom filter: Performance
 - Model: throwing darts
 - d darts = number of elements * number of hash functions
 - t targets = number of bits in the bloom filter
 - $-d_1 = Number of targets hit by at least one dart$

- Bloom filter: Performance
 - Model: throwing darts
 - Probability of given target is hit by a given (one) dart
 - 1/t
 - Probability of one dart not hitting the given target
 - 1 1/t
 - Probability none of d darts hit a given target is
 - $d_0 = (1 1/t)^d$

- Bloom filter: Performance
 - Model: throwing darts
 - Probability none of d darts hit a given target (d₀)

$$(1 - 1/t)^{d} = (1 - 1/t)^{t(d/t)} \sim = e^{-d/t}$$

- Bloom filter: Performance
 - Model: throwing darts: Example
 - n = 1 billion, k = 5, m = 100 million

$$- t = 10^{9}, d = 5*10^{8}$$

$$- d_0 = e^{-0.5} = 0.607$$

- $d_1 = 1 d_0 = 0.393 [d_1 < 0.5 (collisions)]$
- Probability of false positive
 - $d_1^k = 0.393^5 = 0.00937 (<1\%)$

Stream Data Model and Processing

4. Counting distinct elements

Counting distinct elements

- Motivating example
 - Web site statistics
 - Number of unique users per month
 - Users are identified by IP addresses
 - 4 billion IP addresses
 - Obvious approach:
 - Keep list of all IP addresses with counts
 - Use efficient search structure (hash table, tree)

Problem

- Maintaining a count of the number of distinct elements in the stream
- Not enough space to store the set of counts

Applications

- Number of unique visitors
- Number of distinct products sold
- Number of different words in a crawled web page

- Flajolet-Martin algorithm
 - **n** = number of stream elements
 - **a** = stream element
 - Pick a hash function h
 - Maps stream elements to at least log, n bits
 - r(a) = number of trailing 0's in h(a)
 - R = max(r(a)), for all a in S
 - Distinct elements estimate:
 - 2^R

- Flajolet-Martin algorithm
 - R depends only on distinct elements
 - If same element appears in the stream it will have r(a) the same
 - Probability that r(a) = i
 - Goes down exponentially

- when i is increased by 1
 - Need to double the number of elements to reach prob. of x+1
 - Thus, 2^R is good estimate

Flajolet-Martin algorithm

- Flajolet-Martin algorithm
 - Formal analysis
 - probability that hash ends in at least r zeroes (p₁)

$$-2^{-1}$$

Probability of **not** seeing a tail of **r** zeroes among **m** elements (p₀)

$$-(1-2^{-r})^{m}$$

$$p_0 = (1-2^{-r})^m = (1-2^{-r})^{2^{-r} m * 2^{-r}} \sim = e^{-m * 2^{-r}}$$

- Flajolet-Martin algorithm
 - Formal analysis
 - Probability of **not** finding hash with **r** tail
 - $m << 2^{r}$

•
$$p_0 = e^{-m2^{-r}} \sim = 1 \rightarrow p_1 = 0$$

$$- m >> 2^{r}$$

•
$$p_0 = e^{-m2^{-r}} \sim = 0 \rightarrow p_1 = 1$$

- Result
 - -2^R is always around **m**!
 - Not too high, not too low

- Flajolet-Martin algorithm
 - Problems
 - 2^R can be too large
 - Workaround
 - Use many hash functions h_i and obtain many samples R_i
 - Combine samples
 - Average: problem with large values
 - Median: all powers of 2
 - Solution
 - Partition samples into small groups
 - Count average in groups and take median of the averages

Stream Data Model and Processing

Moments

- Generalization of the count distinct problem
- Stream has elements chosen from a set A of n values
- m_i = number of occurrences of the *i*th element for any i
- kth-order moment of the stream
 - Sum over all i of (m_i)^k

$$\sum_{i \in A} m_i^k$$

- Special cases
 - 0th moment
 - Number of distinct elements
 - 1st moment
 - Length of the stream
 - 2nd moment
 - Surprise number
 - Measure of how uneven the distribution is

- Special cases
 - 2nd moment
 - Surprise number
 - Example
 - Stream length: 100
 - 11 values appear
 - 10, 9, 9, 9, 9, 9, 9, 9, 9, 9 = 910
 - 90, 1, 1, 1, 1, 1, 1, 1, 1, 1 = 8110

- Alon-Matias-Szegedy
 - Works for all moments
 - Unbiased
 - Based on calculation of many random variables

- Alon-Matias-Szegedy
 - 2nd moment
 - $\sum_a m_a^2$
 - Suppose there is not enough space to count all the m's
 - Estimation using limited space
 - Compute some number of variables
 - For each variable X store
 - X.element
 - X.value

- Alon-Matias-Szegedy
 - For each X
 - 1. choose position in the stream randomly
 - 2. set **X.element** to be the element found at that position
 - 3. initialize X.value to 1
 - 4. add 1 to X.value each time another occurrence of X.element is encountered

- Alon-Matias-Szegedy
 - 2nd moment estimate

- For any X
- Example
 - Stream: a, b, c, b, a, b
 - n = 6
 - $m_a = 2$, $m_b = 3$, $m_c = 1$
 - 2^{nd} moment = $1^2 + 2^2 + 3^2 = 14$

- Alon-Matias-Szegedy
 - Stream: a, b, c, b, a, b
 - 2 variables (X₁ and X₂)
 - Random positions: 1, 4
 - From position 1:
 - $-X_1$.element = b, X_1 .value = 3
 - From position 4:
 - $-X_2$.element = a, X_2 .value = 1
 - 2nd moment estimate
 - $n(2X_1.value 1) = 6(2*3 1) = 30$
 - $n(2X_2.value 1) = 6(2*1 1) = 6$
 - Avg: 18

- Alon-Matias-Szegedy
 - Why it works?
 - e(i) = stream element that appears at position i
 - c(i) = number of times element e(i) appears in the rest of the stream

$$E(n(2x-1)) = 1/n \sum_{1...n} n(2c(i)-1)$$
expected value of X calculate average n possible starting points

- Alon-Matias-Szegedy
 - Why it works?
 - e(i) = stream element that appears at position i
 - c(i) = number of times element e(i) apperts in the rest of the stream

$$E(n(2x-1)) = 1/n \sum_{1..n} n(2c(i)-1)$$

$$= \sum_{1..n} (2c(i)-1)$$

$$= \sum_{1..n} 1+3+5+...+(2m_a-1)$$
Last a: 2*1-1=1 Second last a: 2*2-1=3 First a: 2*m_a-1

- Alon-Matias-Szegedy
 - Why it works?
 - e(i) = stream element that appears at position i
 - c(i) = number of times element e(i) apperts in the rest of the stream

$$E(n(2x-1)) = 1/n \sum_{1..n} n(2c(i)-1)$$

$$= \sum_{1..n} (2c(i)-1)$$

$$= \sum_{1..n} 1+3+5+...+(2m_a - 1)$$

$$= \sum_{1..n} m_a^2$$

Literature

• J. Leskovec, A. Rajaraman, and J. D. Ullman, "Mining of Massive Datasets", 2014, Chapter 4. Mining Data Streams

- P. Flajolet and G.N. Martin, "Probabilistic counting for database applications," 24th Symposium on Foundations of Computer Science, pp. 76–82, 1983.
- N. Alon, Y. Matias, and M. Szegedy, "The space complexity of approximating frequency moments," 28th ACM Symposium on Theory of Computing, pp. 20–29, 1996.