

EJERCICIOS DEL TEMA 3 - PARTE 3

Cinemática diferencial del robot

Ejercicio 1. Obtén la representación gráfica del robot definido por la siguiente tabla de parámetros de Denavit-Hartenberg.

- a) Calcula la matriz Jacobiana considerando sólo la posición del (x,y,z) (sin la orientación) del elemento terminal.
- b) Estudia las posibles configuraciones singulares del robot.

i	θί	di	a _i	α_{i}
1	0	q_1	0	0
2	q_2	0	0	-90
3	0	q ₃	0	0

Ejercicio 2. Obtén la representación gráfica del robot SCARA definido por la siguiente tabla de parámetros de Denavit-Hartenberg.

a) Calcula la matriz Jacobiana considerando sólo la posición del (x,y,z) (sin la orientación) del elemento terminal.

i	θί	di	a _i	α_{i}
1	q_1	I ₁	l_2	0
2	q_2	0	l ₃	0
3	0	q_3	0	0
4	q_4	- I ₄	0	180

Ejercicio 3. Se dispone de un robot definido por la siguiente tabla de parámetros de Denavit-Hartenberg:

i	θί	d _i	a _i	α_{i}
1	q_1	0	0	-90
2	0	q_2	0	90
3	0	q_3	0	0

Calcula la matriz Jacobiana considerando sólo la posición del (x,y,z) (sin la orientación) del elemento terminal. Estudia las posibles configuraciones singulares del robot.

Robótica Industrial

Área de Tecnología Electrónica

Ejercicio 4. Se dispone de un robot definido por la siguiente tabla de parámetros de Denavit-Hartenberg:

i	θί	di	a _i	α_{i}
1	q_1	0	0	0
2	-90	q_2	0	-90
3	0	q ₃	0	0

Calcula la matriz Jacobiana considerando sólo la posición del (x,y,z) (sin la orientación) del elemento terminal. Estudia las posibles configuraciones singulares del robot.