# Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации СибГУТИ

## Кафедра физики

Расчетно-графическое задание по физике №1 Вариант 18

Выполнил: студент гр. ТТ-21 Ланин В. Р. Преподаватель: Гулидов А.И.

На струне длины 120 см образовалась стоячая волна, причем все точки струны с амплитудой смещения 3,5 мм отстоят друг от друга на 15 см. Найти максимальную амплитуду колебаний струны.

$$l = 120 \text{ cm}$$
  
 $y_1 = 3.5 \text{ mM}$   
 $d = 15 \text{ cm}$   
 $y_m - ?$ 

Струна закреплена с двух сторон. По краям у струны узлы. Уравнение стоячей волны

$$y(x,t) = A \sin \omega \frac{x}{v} \cdot \cos \omega t,$$
 (1)

где y(x, t) — смещение точек среды с координатой x в момент t;  $\omega$  — круговая частота; v — скорость распространения колебаний в среде (фазовая скорость)

Независимый от времени множитель показывает амплитуду колебаний в точке с координатой x.

$$y(x) = A\sin\omega \frac{x}{v}.$$
 (2)

Обозначим аргумент функции синус через  $\varphi$ .

$$y(z) = A\sin\varphi. \tag{3}$$

Рассмотрим точки струны с амплитудой смещения, равной  $y_1$ . Все такие точки находятся на одинаковом расстоянии, если расстояние между ними равно  $\lambda/4$  и первая из них отступает от узла на  $\lambda/8$ . Тогда

$$\lambda / 4 = d = 15 \text{ cm};$$
 (4)  
 $\lambda = 60 \text{ cm}.$ 

Покажем это на рисунке.



Тогда координате  $x=\lambda/8$  соответствует фаза  $\varphi=2\pi/8=\pi/4$ ;

$$y\left(\frac{\pi}{4}\right) = A\sin\frac{\pi}{4} = y_1; \tag{5}$$

$$y_m = A = \frac{y_1}{\sin\frac{\pi}{4}} = \frac{3.5 \text{ MM}}{0.707} = 5 \text{ MM}.$$
 (6)

Ответ:  $y_m = 5$  мм.

Свет с длинами волн 520 *нм* и 600 *нм* проходит через две щели, расстояние между которыми 0,5 мм. На какое расстояние *x* (в мм) смещены относительно друг друга интерференционные полосы второго порядка для этих двух длин волн на экране, расположенном на расстоянии 1,5 м?

$$\lambda_1 = 520 \text{ HM} = 5,2 \cdot 10^{-7} \text{ M}$$
 $\lambda_2 = 600 \text{ HM} = 6 \cdot 10^{-7} \text{ M}$ 
 $d = 0,5 \text{ MM} = 5 \cdot 10^{-4} \text{ M}$ 
 $k = 2$ 
 $L = 1,5 \text{ M}$ 
 $x - ?$ 

Условие главных дифракционных максимумов при дифракции на двух щелях

$$d \sin \varphi = k\lambda, \ k = 0, 1, 2, 3, \dots$$
 (1)

В нашем случае

$$d\sin\varphi_1 = k\lambda_1, \qquad (2)$$

$$d\sin\varphi_2 = k\lambda_2.$$
 (3)



Из рисунка:

$$\frac{x_1 + \frac{d}{2}}{L} = \lg \varphi_1'; \quad \frac{x_1 - \frac{d}{2}}{L} = \lg \varphi_1; \quad (4); \quad (5)$$

$$\frac{x_2 + \frac{d}{2}}{L} = \lg \varphi_2'; \quad \frac{x_2 - \frac{d}{2}}{L} = \lg \varphi_2. \quad (6); \quad (7)$$

Так как  $d \ll L$ ,  $\varphi'_1 \approx \varphi_1$ ,  $\varphi'_2 \approx \varphi_2$ ;

$$tg\varphi_1 \approx \frac{x_1}{L} \approx \sin \varphi_1 = k\lambda_1;$$
 (8)

$$tg\varphi_2 \approx \frac{x_2}{L} \approx \sin\varphi_2 = k\lambda_2.$$
 (9)

Отсюда

$$x_1 = k\lambda_1 L;$$
 (10)  
 $x_2 = k\lambda_2 L;$  (11)  
 $x = x_2 - x_1 = kL(\lambda_2 - \lambda_1) = 2 \cdot 1,5 \cdot (6 \cdot 10^{-7} - 5,2 \cdot 10^{-7}) = 2,4 \cdot 10^{-7} \text{ M}.$  (12)

Ответ:  $x = 2,4 \cdot 10^{-7}$  м.

На стеклянную плоскопараллельную пластинку с показателем преломления 1,5 падает нормально пучок белого света. При какой наименьшей толщине пластины красные лучи ( $\lambda_1 = 650$  нм) будут максимально ослаблены, а синие ( $\lambda_2 = 500$  нм) максимально усилены. Наблюдение в проходящем свете.

$$n = 1,5$$
  
 $\alpha = 0^{\circ}$   
 $\lambda_1 = 650 \text{ HM} - \text{min}$   
 $\lambda_2 = 500 \text{ HM} - \text{max}$   
 $d_{\text{min}} - ?$ 

Оптическая разность хода волн 1 и 2:

$$\Delta = n(AC + BC) - AD, \quad (1)$$

где n — показатель преломления пленки. Из рисунка:

$$AC = BC = \frac{d}{\cos \beta}, \qquad (2)$$

$$AD = 2d \sin \alpha \, \operatorname{tg} \, \beta, \quad (3)$$

$$n = \frac{\sin \alpha}{\sin \beta}.\tag{4}$$



Тогда

$$\Delta = n \cdot \frac{2d}{\cos \beta} - 2d \sin \alpha \operatorname{tg} \beta = \frac{2d}{\cos \beta} \cdot (n - \sin \alpha \cdot \sin \beta) =$$

$$= \frac{2d}{\sqrt{1 - \sin^2 \beta}} \cdot \left( n - \frac{\sin^2 \alpha}{n} \right) = \frac{2d}{n\sqrt{1 - \sin^2 \alpha / n^2}} \cdot \left( n^2 - \sin^2 \alpha \right) =$$

$$= \frac{2d}{\sqrt{n^2 - \sin^2 \alpha}} \cdot \left( n^2 - \sin^2 \alpha \right) = 2d \cdot \sqrt{n^2 - \sin^2 \alpha}.$$

При нормальном падении лучей  $\alpha=0^\circ$ 

$$\Delta = 2nd.$$
 (5)

1) Условие минимума интефреренции:

$$\Delta = (2k+1) \cdot \frac{\lambda_1}{2}; \ k = 0, 1, 2, ...$$
 (6)

$$2nd = (2k+1) \cdot \frac{\lambda_1}{2}; \tag{7}$$

$$d = \frac{(2k+1)\cdot\lambda_1}{4n}. (8)$$

2) Условие максимума интефреренции:

$$\Delta = m\lambda_2; \ m = 1, 2, 3, ...$$
 (9)

$$2nd = m\lambda_2; (10)$$

$$d = \frac{m\lambda_2}{2n}. (11)$$

По условию ослабление для волн  $\lambda_1$  и усиление для волн  $\lambda_2$  должно происходить на одной и той же пластинке. Приравняем выражения для d:

$$\frac{(2k+1)\cdot\lambda_1}{4n} = \frac{m\lambda_2}{2n};\tag{12}$$

$$\frac{2k+1}{m} = \frac{2\lambda_2}{\lambda_1} = \frac{2 \cdot 500 \,\text{HM}}{650 \,\text{HM}} = \frac{100}{65} = \frac{20}{13}; \quad (13)$$

$$k = \left(\frac{20m}{13} - 1\right) \cdot \frac{1}{2}.\tag{14}$$

Число m должно быть целое. Если брать целое m, которое не делится на 13, то выражение  $\frac{20m}{13}$  никогда не станет целым числом. Тогда число k тоже не

будет целым. Найдем такое m, при котором k — целое.

| - |                |     |      |      |      | 1    |      |      |      |      |
|---|----------------|-----|------|------|------|------|------|------|------|------|
|   | m              | 13  | 26   | 39   | 52   | 65   | 78   | 91   | 104  | 117  |
| Ī | $\overline{k}$ | 9,5 | 19,5 | 29,5 | 39,5 | 49,5 | 59,5 | 69,5 | 79,5 | 89,5 |

Очевидно, что нет такого целого m, при котором k — целое. Точно выполнить условие ослабления для  $\lambda_1$  и усиления для  $\lambda_2$  невозможно.

Попробуем найти приблизительное выполнение условий ослабления и усиления лучей. Построим график зависимости k(m).

|   | $\frac{3}{2}$ |      |      | 1    |      |      |      |      |      |
|---|---------------|------|------|------|------|------|------|------|------|
| m | 1             | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| k | 0,27          | 1,04 | 1,81 | 2,58 | 3,35 | 4,12 | 4,88 | 5,65 | 6,42 |



Наименьшие числа m и k, близкие к целым:

$$m = 2, k = 1.$$

Минимальная толщина пластины

$$d_{\min} = \frac{m\lambda_2}{2n} = \frac{2 \cdot 5 \cdot 10^{-7}}{2 \cdot 1,5} = 3,33 \cdot 10^{-7} \text{ M} = 333 \text{ HM}. \quad (15)$$

Ответ:  $d_{\min} = 333$  нм.

На круглое отверстие нормально падает плоская монохроматическая волна. На расстоянии 8 м от него находится экран, где наблюдается дифракционная картина. Определить диаметр круглого отверстия, если в отверстии помещалось три зоны Френеля. Длина волны 600 нм. На сколько надо передвинуть экран наблюдения, чтобы в отверстии помещалось шесть зон Френеля?

$$l_1 = 8 \text{ M}$$
 $m_1 = 3$ 
 $\lambda = 600 \text{ HM} = 6 \cdot 10^{-7} \text{ M}$ 
 $m_2 = 6$ 
 $d - ?$ 
 $\Delta l - ?$ 

Радиус *m*-той зоны Френеля для плоской волны  $r = \sqrt{lm\lambda}$ , (1)

где l — расстояние от диафрагмы до экрана, m - номер зоны Френеля,  $\lambda$  - длина волны.

Отсюда находим диаметр отверстия:

$$d = 2r = 2\sqrt{l_1 m_1 \lambda} = 2 \cdot \sqrt{8 \cdot 3 \cdot 6 \cdot 10^{-7}} =$$

$$= 7.6 \cdot 10^{-3} \text{ M} = 7.6 \text{ MM}.$$
(2)



Для случая, когда в отверстии видно  $m_2 = 6$  зон Френеля, запишем

$$d = 2r = 2\sqrt{(l_1 - \Delta l)m_2\lambda}; \tag{3}$$

$$2\sqrt{l_1 m_1 \lambda} = 2\sqrt{(l_1 - \Delta l) m_2 \lambda}; \tag{4}$$

$$l_1 m_1 \lambda = (l_1 - \Delta l) m_2 \lambda; \tag{5}$$

$$l_1 m_1 = (l_1 - \Delta l) m_2; (6)$$

$$\Delta l = l_1 - \frac{l_1 m_1}{m_2} = \left(1 - \frac{m_1}{m_2}\right) \cdot l_1 = \left(1 - \frac{3}{6}\right) \cdot 8 = 4 \text{ m.}$$
 (7)

Ответ: d = 7.6 мм; приблизить на  $\Delta l = 4$  м.

Задача 5

Белый свет с длиной волны от 400 нм до 750 нм нормально падает на дифракционную решетку, имеющую 4000 штрихов на 1 см. С какого порядка спектры будут частично накладываться друг на друга? Определить угол дифракции, под которым происходит перекрытие спектров.

$$\lambda_1 = 400 \text{ HM} = 4 \cdot 10^{-7} \text{ M}$$
 $\lambda_2 = 750 \text{ HM} = 7,5 \cdot 10^{-7} \text{ M}$ 
 $n = 4000 \text{ cm}^{-1} = 4 \cdot 10^5 \text{ m}^{-1}$ 
 $k - ?$ 
 $\varphi - ?$ 

Условие максимумов интенсивности при дифракции на дифракционной решетке

$$d \sin \varphi = m\lambda, \ m = 0, 1, 2, 3, ...,$$
 (1)

где d=1/n — постоянная решетки,  $\varphi$  — угол, под которым виден дифракционный максимум,

m — порядок спектра,  $\lambda$  — длина волны.



Чтобы спектры перекрывались, должно выполняться условие

$$\varphi(\lambda_2, k) > \varphi(\lambda_1, k+1);$$
 (2)

$$\sin \varphi(\lambda_2, k) > \sin \varphi(\lambda_1, k+1);$$
 (3)

$$\frac{k\lambda_2}{d} > \frac{(k+1)\lambda_1}{d};\tag{4}$$

$$k\lambda_2 > (k+1)\lambda_1; \tag{5}$$

$$k(\lambda_2 - \lambda_1) > \lambda_1; \tag{6}$$

$$k > \frac{\lambda_1}{\lambda_2 - \lambda_1} = \frac{4 \cdot 10^{-7}}{7.5 \cdot 10^{-7} - 4 \cdot 10^{-7}} = 1.14;$$
 (7)

$$k = 2, k + 1 = 3.$$
 (8)

Определим угол перекрытия:

$$\varphi(\lambda_2, k) = \arcsin\frac{k\lambda_2}{d} = \arcsin k\lambda_2 n = \arcsin(2 \cdot 7, 5 \cdot 10^{-7} \cdot 4 \cdot 10^5) =$$

$$= 36.9^{\circ};$$
(9)

$$\varphi(\lambda_{1}, k+1) = \arcsin\frac{(k+1)\lambda_{1}}{d} = \arcsin(k+1)\lambda_{1}n =$$

$$= \arcsin(3 \cdot 4 \cdot 10^{-7} \cdot 4 \cdot 10^{5}) = 28,7^{\circ}.$$
(10)

Спектр перекрыт в интервале углов дифракции  $\varphi=28,7^{\circ}\div36,9^{\circ}$ . Ответ: спектры будут частично накладываться друг на друга, начиная с порядков 2 и 3; угол дифракции  $\varphi=28,7^{\circ}\div36,9^{\circ}$ .

Естественный луч света падает на полированную поверхность стеклянной пластины (n = 1,5), погруженной в коричное масло (n = 1,6). Определить угол полного внутреннего отражения и угол, когда отраженный свет максимально поляризован.

$$n_{\text{CT}} = 1.5$$
 $n_{\text{M}} = 1.6$ 
 $i_{\text{пр}} - ?$ 

Закон преломления

$$\frac{\sin i}{\sin r} = \frac{n_{\rm cr}}{n_{\rm m}}, \quad (1)$$

 $\frac{n_{\text{cr}} - 1,6}{i_{\text{пр}} - ?}$   $\frac{\sin i}{i_{\text{пр}} - ?}$   $\frac{\sin i}{i_{\text{Б}} - ?}$   $\frac{\sin r}{n_{\text{м}}} = \frac{n_{\text{сr}}}{n_{\text{м}}}$ , (1)  $n_{\text{м}}$  и  $n_{\text{сr}}$  - показатели преломления сред, из которой и в которую члет луч света;

r - угол преломления света.





При полном отражении  $r = 90^{\circ}$ .

$$\frac{\sin i_{\rm np}}{\sin 90^{\circ}} = \frac{n_{\rm cr}}{n_{\rm m}},\tag{2}$$

$$\sin i_{\text{np}} = \frac{n_{\text{cr}}}{n_{\text{m}}} = \frac{1.5}{1.6} = 0.9375,$$
 (3)

$$i_{\rm np} = 69,64^{\circ}.$$
 (4)

Закон Брюстера

$$tg i_{\rm B} = \frac{n_{\rm cr}}{n_{\rm M}}, \quad (5)$$

где  $i_{\rm B}$  — угол падения, при котором отраженная световая волна полностью поляризована.

$$i_{\rm E} = \arctan \frac{n_{\rm ct}}{n_{\rm M}} = \arctan \frac{1.5}{1.6} = 43.15^{\circ}.$$
 (6)

Otbet:  $i_{\text{np}} = 69,64^{\circ}$ ;  $i_{\text{B}} = 45,15^{\circ}$ .

