Predicting Relationships Between Variables with Regression

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Recognize Regression problems in different fields: from Quant Trading to Demand forecasting

Understand how to set up a Regression problem - Dependent and Independent variables

Contrast Classification and Regression and when each technique should be used

Examples of Regression Problems

What will be the returns from a stock on a given date?

If waiting time increases, how does this affect customer satisfaction?

What will be the sales of this product in a given week?

A Regression Problem Statement

You would like to compute some Continuous Value

Stock Returns
Sales

A Regression Problem Statement

You would like to quantify the relationship between 2 variables

Wait time

Customer Satisfaction

Regression

Regression helps you quantify the relationship between variables

Let's take the example of Stock Returns

Day of the week

Day of the month

Daily Stock returns in the last 1 week

Stock Returns for a given day might depend on a number of variables

Day of the week

Day of the month

Daily Stock returns in the last 1 week

Function

Stock Returns

The Stock Returns on a given day are a function of these variables

Regression is the process that identifies this function

Regression

Types of Regression

Linear Regression
Polynomial Regression
Non-linear Regression

Many businesses need to estimate sales at a future point in time

A retail business will use it for inventory planning

A manufacturing business will use it plan production cycles

Sales at a future time might depend on

Sales in the previous week

Expected Marketing spend

Holidays

Regression

Sales in the previous week

Expected Marketing spend

Function

Sales in future week

Dependent Variable

Holidays

Independent variables

High Risk, High Reward

A maxim heard quite often in the business world!

The Capital Asset Pricing Model

Used for pricing risky securities

$$R_i = R_f + \beta_i (R_m - R_f)$$

$$R_i = R_f + \beta_i (R_m - R_f)$$

The return on a security

$$R_i = (R_f) + \mathcal{B}_i (R_m - R_f)$$

The risk free Rate of Return

+a Premium

$$R_i = R_f + \beta_i (R_m - R_f)$$

The Volatility of the security

A Measure of risk

$$R_i = R_f + \beta_i (R_m - R_f)$$

Expected return of the market over and above the risk free rate

$$R_i = R_f + \beta_i (R_m - R_f)$$

Beta of a security is an important measure

It can tell you how much risk a security adds to a portfolio

$$R_i = R_f + \beta_i (R_m - R_f)$$

Beta quantifies the relationship between Stock Returns and Market Returns

$$R_i = R_f + \beta_i (R_m - R_f)$$

Use Regression to find the value of Beta

Teach a computer to identify eyes, nose, mouth

Facial Recognition

Virtual dressing rooms

Auto-capture photos

Find the co-ordinates of the important facial features

Their position depends on

- relative position within the picture
- the properties of surrounding pixels

The co-ordinates of each feature can be found using one regression problem

Regression

Size of the picture

Greyscale value of each pixel

Function

Left eye center co-ordinates

Independent variables

Dependent Variable

Classification and Regression are similar in many ways

Typical Classification Setup

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

"Test the model" using test data

Typical Regression Setup

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

"Test the model" using test data

Typical Regression Setup

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

"Test the model" using test data

Problem Statement

The problem statement in Classification

Assign a category/label

The problem statement in Regression

Compute a continuous value

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement **Features**

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Features

In classification The problem instance represented using numeric attributes

In Regression
The Independent Variables

Problem Statement

Define the problem statement **Features**

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Training

In classification Use training data to build a classifier

In Regression
Use training data to quantify the relationship between variables

Training

Regression is also a form of Supervised learning

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

In classification Assign a label for a new instance

Test

In Regression

Compute output value given the independent variables

Classification vs Regression

A Categorical output

A Continuous output

Classification vs Regression

Relationship between Input and Output

Usually a black box

A mathematical function

Summary

Recognize Regression problems in different fields: from Quant Trading to Demand forecasting

Understand how to set up a Regression problem - Dependent and Independent variables

Contrast Classification and Regression and when each technique should be used