THAT WHICH IS CLAIMED IS:

1. A compound of Formula I:

$$R_{13}N \downarrow L \qquad X \qquad A \qquad X$$

$$R_{14}-N \qquad R_{2}-N \qquad R_{3}$$

$$R_{2}-N \qquad R_{4}$$

$$R_{4}$$

wherein:

X is selected from the group consisting of O, S, and NH;

Y is CH or N;

A is CH or N;

B is selected from the group consisting of NH, O or S;

 $R_{\rm l}$ is selected from the group consisting of H, loweralkyl, halogen, oxyalkyl, oxyaryl, and oxyarylakyl;

 R_2 and R_9 are each independently selected from the group consisting of H, H_2 , hydroxy, lower alkyl, cycloalkyl, aryl, alkylaryl, alkoxyalkyl, hydroxycycloalkyl, alkoxycycloalkoxy, hydroxyalkyl, aminoalkyl and alkylaminoalkyl; and

 R_3 , R_4 , R_{13} and R_{14} are each independently selected from the group consisting of H, lower alkyl, alkoxyalkyl, cycloalkyl, aryl, alkylaryl, hydroxyalkyl, aminoalkyl, and alkylaminoalkyl, or R_3 and R_4 together or R_{13} and R_{14} together represent a C_2 to C_{10} alkyl, hydroxyalkyl, or alkylene, or R_3 and R_4 together or R_{13} and R_{14} together are:

wherein n is a number from 1 to 3, and R_{10} is H or -CONH R_{11} N R_{15} R $_{16}$, wherein R_{11} is lower alkyl and R_{15} and R_{16} are each independently selected from the group consisting of H and lower alkyl;

$$R_{5}$$
 R_{6}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{6}
 R_{7}
 R_{7}
 R_{7}
 R_{7}

wherein R₅, R₆, R₇, and R₈ are each individually selected from the group consisting of H, alkyl, halo, aryl, arylalkyl, aminoalkyl, aminoaryl, oxoalkyl, oxoaryl, and oxoarylalkyl; and wherein said compound of Formula I binds the minor groove of DNA as a dimer.

2. The compound of Formula I, wherein L is:

$$R_5$$
 R_6
 R_7

A is N, B is NH, X is O, Y is CH, R_1 , R_2 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{14} are each H, and R_3 and R_{13} are each H_2 .

Ì

The compound of Formula I, wherein L is: 3.

A is N, B is NH, X is O, Y is CH, R_1 , R_2 , R_4 , R_5 , R_6 , R_{7} , R_{8} , R_{9} and R_{14} are each H, and R_3 and R_{13} are each H_2 .

A method of binding mixed sequence DNA comprising contacting a 4. sample DNA with a compound of Formula (I):

$$R_{13}N \xrightarrow{R_1} L \xrightarrow{X} X \xrightarrow{B} R_{2}-N R_{3}$$

$$R_{14}-N \xrightarrow{R_{9}} R_{9} \xrightarrow{R_{2}-N} R_{4}$$

$$R_{14}-N \xrightarrow{R_{14}} R_{14}$$

wherein:

X is selected from the group consisting of O, S, and NH;

Y is CH or N;

A is CH or N;

B is selected from the group consisting of NH, O or S;

R₁ is selected from the group consisting of H, loweralkyl, halogen, oxyalkyl, oxyaryl, and oxyarylakyl;

 R_2 and R_9 are each independently selected from the group consisting of H, H_2 , hydroxy, lower alkyl, cycloalkyl, aryl, alkylaryl, alkoxyalkyl, hydroxycycloalkyl, alkoxycycloalkoxy, hydroxyalkyl, aminoalkyl and alkylaminoalkyl; and

 $R_3,\,R_4,\,R_{13}$ and R_{14} are each independently selected from the group consisting of H, lower alkyl, alkoxyalkyl, cycloalkyl, aryl, alkylaryl, hydroxyalkyl, aminoalkyl, and alkylaminoalkyl, or R_3 and R_4 together or R_{13} and R_{14} together represent a C_2 to C_{10} alkyl, hydroxyalkyl, or alkylene, or R_3 and R_4 together or R_{13} and R_{14} together are:

wherein n is a number from 1 to 3, and R_{10} is H or -CONHR₁₁NR₁₅R₁₆, wherein R_{11} is lower alkyl and R_{15} and R_{16} are each independently selected from the group consisting of H and lower alkyl;

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{7}
 R_{5}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{7}
 R_{7}
 R_{7}

wherein R₅, R₆, R₇, and R₈ are each individually selected from the group consisting of H, alkyl, halo, aryl, arylalkyl, aminoalkyl, aminoaryl, oxoalkyl, oxoaryl, and oxoarylalkyl; wherein said compound of Formula I binds the minor groove of DNA as a dimer.

5. The method of Claim 4 wherein L is:

$$R_5$$
 R_6 R_7

A is N, B is NH, X is O, Y is CH, R_1 , R_2 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{14} are each H, and R_3 and R_{13} are each H_2 .

6. The method of Claim 4, wherein L is:

A is N, B is NH, X is O, Y is CH, R_1 , R_2 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{14} are each H, and R_3 and R_{13} are each H_2 .

7. A method of detecting mixed sequence DNA comprising contacting a sample of DNA with a fluorescent compound of Formula (I):

$$\begin{array}{c|c}
R_{13}N & Y & A \\
R_{14}-N & B & R_{2}-N \\
R_{9} & R_{4}
\end{array}$$
(I)

wherein:

X is selected from the group consisting of O, S, and NH;

Y is CH or N;

A is CH or N;

B is selected from the group consisting of NH, O or S;

R₁ is selected from the group consisting of H, loweralkyl, halogen, oxyalkyl, oxyaryl, and oxyarylakyl;

R₂ and R₉ are each independently selected from the group consisting of H, H₂, hydroxy, lower alkyl, cycloalkyl, aryl, alkylaryl, alkoxyalkyl, hydroxycycloalkyl, alkoxycycloalkoxy, hydroxyalkyl, aminoalkyl and alkylaminoalkyl; and

 R_3 , R_4 , R_{13} and R_{14} are each independently selected from the group consisting of H, lower alkyl, alkoxyalkyl, cycloalkyl, aryl, alkylaryl, hydroxyalkyl, aminoalkyl, and alkylaminoalkyl, or R_3 and R_4 together or R_{13} and R_{14} together represent a C_2 to C_{10} alkyl, hydroxyalkyl, or alkylene, or R_3 and R_4 together or R_{13} and R_{14} together are:

wherein n is a number from 1 to 3, and R_{10} is H or -CONHR₁₁NR₁₅R₁₆, wherein R_{11} is lower alkyl and R_{15} and R_{16} are each independently selected from the group consisting of H and lower alkyl;

$$R_{5}$$
 R_{6}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{8}

wherein R₅, R₆, R₇, and R₈ are each individually selected from the group consisting of H, alkyl, halo, aryl, arylalkyl, aminoalkyl, aminoaryl, oxoalkyl, oxoaryl, and oxoarylalkyl; and wherein said compound of Formula I binds the minor groove of DNA as a dimer;

and then observing fluorescence in the sample, the observation of fluorescence indicating the compound of Formula I has bound to a sequence of DNA.

8. The method of Claim 7, wherein L is:

$$R_5$$
 R_7

A is N, B is NH, X is O, Y is CH, R_1 , R_2 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{14} are each H, and R_3 and R_{13} are each H_2 .

9. The method of Claim 7, wherein L is:

$$R_5$$
 R_7
 R_7

A is N, B is NH, X is O, Y is CH, R_1 , R_2 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{14} are each H, and R_3 and R_{13} are each H_2 .

10. A pharmaceutical formulation comprising a compound of Formula I:

$$R_{13}N \downarrow L \qquad X \qquad A \qquad X$$

$$R_{14}-N \downarrow R_{9} \qquad R_{2}-N \downarrow R_{4}$$

$$R_{14}-N \downarrow R_{14}$$

$$R_{14}-N \downarrow R_{14}$$

$$R_{14}-N \downarrow R_{14}$$

$$R_{14}-N \downarrow R_{14}$$

$$R_{15}-N \downarrow R_{15}$$

$$R_{15}-N \downarrow R_{15}$$

$$R_{15}-N \downarrow R_{15}$$

wherein:

X is selected from the group consisting of O, S, and NH;

Y is CH or N;

A is CH or N;

B is selected from the group consisting of NH, O or S;

R₁ is selected from the group consisting of H, loweralkyl, halogen, oxyalkyl, oxyaryl, and oxyarylakyl;

R₂ and R₉ are each independently selected from the group consisting of H, H₂, hydroxy, lower alkyl, cycloalkyl, aryl, alkylaryl, alkoxyalkyl, hydroxycycloalkyl, alkoxycycloalkoxy, hydroxyalkyl, aminoalkyl and alkylaminoalkyl; and

 R_3 , R_4 , R_{13} and R_{14} are each independently selected from the group consisting of H, lower alkyl, alkoxyalkyl, cycloalkyl, aryl, alkylaryl, hydroxyalkyl, aminoalkyl, and alkylaminoalkyl, or R_3 and R_4 together or R_{13} and R_{14} together represent a C_2 to C_{10} alkyl, hydroxyalkyl, or alkylene, or R_3 and R_4 together or R_{13} and R_{14} together are:

wherein n is a number from 1 to 3, and R_{10} is H or -CONHR₁₁NR₁₅R₁₆, wherein R_{11} is lower alkyl and R_{15} and R_{16} are each independently selected from the group consisting of H and lower alkyl;

$$R_{5}$$
 R_{6}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{8}
 R_{9}
 R_{9

wherein R₅, R₆, R₇, and R₈ are each individually selected from the group consisting of H, alkyl, halo, aryl, arylalkyl, aminoalkyl, aminoaryl, oxoalkyl, oxoaryl, and oxoarylalkyl;

in a pharmaceutically acceptable carrier.

11. The pharmaceutical formulation of Claim 10, wherein L is:

A is N, B is NH, X is O, Y is CH, R_1 , R_2 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{14} are each H, and R_3 and R_{13} are each H_2 .

12. The pharmaceutical formulation of Claim 10, wherein L is:

A is N, B is NH, X is O, Y is CH, R_1 , R_2 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{14} are each H, and R_3 and R_{13} are each H_2 .