Scaling Techniques Documentation

1. Introduction

Scaling is an essential step in data preprocessing to ensure that numerical features have similar ranges, preventing certain features from dominating the model due to their large values.

2. Why Scaling?

- Prevents features with larger values from overshadowing smaller ones.
- Improves model convergence in algorithms like K-Means, Logistic Regression, and Neural Networks.
- Enhances performance of distance-based algorithms (K-Means Clustering, KNN).

3. Implementation in Python

Python Code:

from sklearn.preprocessing import MinMaxScaler, LabelEncoder

```
scaler = MinMaxScaler() X_train[['tenure', 'MonthlyCharges']] =
scaler.fit_transform(X_train[['tenure', 'MonthlyCharges']]) X_test[['tenure',
'MonthlyCharges']] = scaler.transform(X_test[['tenure', 'MonthlyCharges']])
```

print(X_train.head())

4. Conclusion

Scaling is crucial in clustering analysis to ensure all features contribute equally. We used both Min-Max Scaling and Standardization to preprocess the dataset before applying K-Means clustering.