```
import matplotlib.pyplot as plt
       df = pd.read_csv("customer_segmentation_data.csv")
       df.head()
       df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53503 entries, 0 to 53502
Data columns (total 20 columns):
# Column
                            Non-Null Count Dtype
0 Customer ID
                            53503 non-null int64
   Age
                          53503 non-null int64
1
  Gender
                            53503 non-null object
                             53503 non-null object
3 Marital Status
                               53503 non-null object
4 Education Level
5 Geographic Information
                                 53503 non-null object
6 Occupation
                             53503 non-null object
7 Income Level
                              53503 non-null int64
                              53503 non-null object
8 Behavioral Data
9 Purchase History
                               53503 non-null object
10 Interactions with Customer Service 53503 non-null object
11 Insurance Products Owned
                                    53503 non-null object
12 Coverage Amount
                                 53503 non-null int64
13 Premium Amount
                                 53503 non-null int64
14 Policy Type
                             53503 non-null object
15 Customer Preferences
                                 53503 non-null object
16 Preferred Communication Channel 53503 non-null object
17 Preferred Contact Time
                               53503 non-null object
18 Preferred Language
                                 53503 non-null object
                                  53503 non-null object
19 Segmentation Group
dtypes: int64(5), object(15)
memory usage: 8.2+ MB
In [4]: df.isna().sum()
      # Check for duplicate rows
      df.duplicated().sum()
Out[4]:0
In [6]: X = df.drop(['Customer ID', 'Segmentation Group'], axis=1)
      # ----- Encode categorical columns -----
      from sklearn.preprocessing import LabelEncoder
      le = LabelEncoder()
      for col in X.columns:
        if X[col].dtype == 'object':
          X[col] = le.fit_transform(X[col])
      # ---- View processed data frame ----
      X.head()
```

In [12]: import pandas as pd

Out[6]:

[6]:	Age	Gender	Marital Status	Education Level	Geographic Information	Occupation	Income Level	Behavioral Data	Purchase History	Interactions with Customer Service	Insurance Products Owned	Coverage Amount	Premium Amount	Policy Type	C Pref
0	23	0	1	0	22	3	70541	4	270	4	1	366603	2749	2	
1	26	1	4	2	10	5	54168	4	942	0	0	780236	1966	2	
2	29	0	3	0	27	3	73899	4	387	1	2	773926	4413	2	
3	20	1	0	1	28	3	63381	4	582	0	1	787815	4342	1	
4	25	0	2	1	34	5	38794	0	630	0	3	366506	1276	1	

In [7]: from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans

scaler = StandardScaler()

 $X_scaled = scaler.fit_transform(X)$

 $\label{lem:kmeans} $$ kmeans = KMeans(n_clusters=4, random_state=42)$ $$ df['Cluster'] = kmeans.fit_predict(X_scaled)$ $$$

df['Cluster'].value_counts()
df.head()

D:\anaconda\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

[7]:	Customer ID	Age	Gender	Marital Status	Education Level	Geographic Information	Occupation	Income Level	Behavioral Data	Purchase History	 Insurance Products Owned	Coverage Amount	Premium Amount	Policy Type
0	84966	23	Female	Married	Associate Degree	Mizoram	Entrepreneur	70541	policy5	04-10- 2018	 policy2	366603	2749	Group
1	95568	26	Male	Widowed	Doctorate	Goa	Manager	54168	policy5	11-06- 2018	 policy1	780236	1966	Group
2	10544	29	Female	Single	Associate Degree	Rajasthan	Entrepreneur	73899	policy5	06-05- 2021	 policy3	773926	4413	Group
3	77033	20	Male	Divorced	Bachelor's Degree	Sikkim	Entrepreneur	63381	policy5	09-02- 2018	 policy2	787815	4342	Family
4	88160	25	Female	Separated	Bachelor's Degree	West Bengal	Manager	38794	policy1	09-10- 2018	 policy4	366506	1276	Family

5 rows × 21 columns

In [8]: from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans

Scale / standardize features so all columns are on the same scale scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Fit KMeans clustering model
kmeans = KMeans(n_clusters=4, random_state=42)
df['Cluster'] = kmeans.fit_predict(X_scaled)

Check how many customers are in each cluster print(df['Cluster'].value_counts()) df.head()

D:\anaconda\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

Cluster

3 15427

2 13511

1 12493

0 12072

Name: count, dtype: int64

\cap	ı ıtl	[Q]	
\circ	uι	O	١.

ii[o]:	Customer ID	Age	Gender	Marital Status	Education Level	Geographic Information	Occupation	Income Level	Behavioral Data	Purchase History	 Insurance Products Owned	Coverage Amount	Premium Amount	Policy Type
0	84966	23	Female	Married	Associate Degree	Mizoram	Entrepreneur	70541	policy5	04-10- 2018	 policy2	366603	2749	Group
1	95568	26	Male	Widowed	Doctorate	Goa	Manager	54168	policy5	11-06- 2018	 policy1	780236	1966	Group
2	10544	29	Female	Single	Associate Degree	Rajasthan	Entrepreneur	73899	policy5	06-05- 2021	 policy3	773926	4413	Group
3	77033	20	Male	Divorced	Bachelor's Degree	Sikkim	Entrepreneur	63381	policy5	09-02- 2018	 policy2	787815	4342	Family
4	88160	25	Female	Separated	Bachelor's Degree	West Bengal	Manager	38794	policy1	09-10- 2018	 policy4	366506	1276	Family

5 rows × 21 columns

In [10]: # List of numeric columns only

numeric_cols = ['Age', 'Income Level', 'Coverage Amount', 'Premium Amount']

494145.806508

2982 713360

cluster_summary = df.groupby('Cluster')[numeric_cols].mean()
cluster_summary

Out[10]:	Age	Income Level	Coverage Amount	Premium Amount
Cluster				
0	43.700464	82896.975812	491907.670726	2990.450050
1	44.495317	82448.991275	440269.043704	3070.237573
2	44.650359	82348.480941	539765.529346	3057.186145

In [13]: cluster_summary.plot(kind='bar', figsize=(10,6))

3 43.752512 83293.951514

plt.title('Average Feature Values per Cluster') plt.ylabel('Value') plt.show()

df_labeled.head()

Average Feature Values per Cluster


```
Cluster
In [18]: print(df.columns)
Index(['Customer ID', 'Age', 'Gender', 'Marital Status', 'Education Level',
           'Geographic Information', 'Occupation', 'Income Level',
          'Behavioral Data', 'Purchase History',
          'Interactions with Customer Service', 'Insurance Products Owned',
          'Coverage Amount', 'Premium Amount', 'Policy Type',
           'Customer Preferences', 'Preferred Communication Channel',
          'Preferred Contact Time', 'Preferred Language', 'Segmentation Group'],
         dtype='object')
In [22]: from sklearn.preprocessing import StandardScaler
                   from sklearn.cluster import KMeans
                   scaler = StandardScaler()
                   X_scaled = scaler.fit_transform(X)
                   kmeans = KMeans(n clusters=4, random state=42)
                  df['Cluster'] = kmeans.fit_predict(X_scaled)
D:\anaconda\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` will change from 1
e of `n_init` explicitly to suppress the warning
  super()._check_params_vs_input(X, default_n_init=10)
In [23]: def label_segments(row):
                         if row['Cluster'] == 0:
                               return 'High Value'
                         elif row['Cluster'] == 1:
                               return 'Low Value'
                         elif row['Cluster'] == 2:
                               return 'Medium Value'
                               return 'New/Young Customers'
                   df_labeled = df.copy()
                   df_labeled['Customer_Segment'] = df_labeled.apply(label_segments, axis=1)
```

Out[23]:	Customer ID	Age	Gender	Marital Status	Education Level	Geographic Information	Occupation	Income Level	Behavioral Data	Purchase History	 Coverage Amount	Premium Amount	Policy Type	Custon Preferenc
0	84966	23	Female	Married	Associate Degree	Mizoram	Entrepreneur	70541	policy5	04-10- 2018	 366603	2749	Group	En
1	95568	26	Male	Widowed	Doctorate	Goa	Manager	54168	policy5	11-06- 2018	 780236	1966	Group	Ν
2	10544	29	Female	Single	Associate Degree	Rajasthan	Entrepreneur	73899	policy5	06-05- 2021	 773926	4413	Group	En
3	77033	20	Male	Divorced	Bachelor's Degree	Sikkim	Entrepreneur	63381	policy5	09-02- 2018	 787815	4342	Family	Т
4	88160	25	Female	Separated	Bachelor's Degree	West Bengal	Manager	38794	policy1	09-10- 2018	 366506	1276	Family	En

5 rows × 22 columns

In []:
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js