Теорія категорії І курс магістратура, 2 семестр

17 лютого 2024 р.

0.1 Основні означення

Definition 0.1.1 Категорія C складається з наступних компонент:

- із набору **об'єктів**; об'єкти позначають за X, Y, Z, \ldots , а набір позначають за Ob(C);
- із набору **морфізмів**; морфізми позначають за f, g, h, \ldots , а набір позначають за $\operatorname{Hom}(C)$;
- кожний морфізм має область визначення та область значень; позначається зазвичай як $f \colon X \to Y$, де об'єкт X область визначення, об'єкт Y область значень;
- кожний об'єкт X має **тотожний морфізм** $1_X: X \to X$;
- для кожних морфізмів $f\colon X\to Y,\ g\colon Y\to Z$ існуватиме **композиція морфізмів** $g\circ f\colon X\to Z.$ При цьому всьому зобов'язані виконуватися такі аксіоми:
- 1) для всіх морфізмів $f\colon X\to Y$ виконано $1_Y\circ f=f\circ 1_X=f;$
- 2) для кожних трьох морфізмів $f \colon W \to X, g \colon X \to Y, h \colon Y \to Z$ виконується асоціативність композиції, тобто $f \circ (g \circ h) = (f \circ g) \circ h$.

Remark 0.1.2 Морфізми ще часто називають **стрілочками**.

Example 0.1.3 Розглянемо Set – це буде категорія, яка складається з наступного:

- − Ob(Set) набір всіх множин;
- Hom(Set) набір всіх відображень;
- тотожне відображення $1_X: X \to X$ задається як $x \mapsto x$;
- композиція між $f: X \to Y$ та $g: Y \to Z$ задається $g \circ f$ таким чином: $x \mapsto f(x) \mapsto g(f(x))$. Ясно, що всі ці дві аксіоми виконані.

Важливо, що Ob(Set) – це саме <u>набір</u> всіх множин, а не множина всіх множин. Тому що парадокс Рассела стверджує, що не існує множини, елементи яких будуть множинами.

До речі, Set(X,Y) – набір всіх відображень $f\colon X\to Y$ – буде, насправді, <u>множиною</u>. Відображення між двома множинами – це просто підмножина декартового добутку $X\times Y$. Коли ми беремо дві довільні множини X,Y, то звідси $X\times Y$ теж буде множиною.

Example 0.1.4 Розглянемо стисло ще приклади категорій:

- 1) Grp об'єктами будуть групи; стрілками будуть гомоморфізми груп;
- 2) Ring об'єктами будуть кільця; стрілками будуть гомоморфізмами кілець;
- 3) Тор об'єктами будуть топологічні простори; стрілочками будуть неперервні відображення;
- 4) Мап об'єктами будуть гладкі многовиди; стрілочками будуть гладкі відображення.

Example 0.1.5 Розглянемо моноїд M. Ми можемо утворити категорію \mathcal{M} , яка містить єдиний об'єкт — це моноїд.

Example 0.1.6 Розглянемо так званий посет (P, \prec) (partially ordered set). Скажемо, що $\mathrm{Ob}(P) = P$ та P(i,j) – це будуть тільки ті стрілки, для яких $i \prec j$. Композиція тут існує, оскільки \prec є транзитивним відношенням. Також існує тотожне відображення, оскільки \prec є рефлексивним відношенням.

Навіть не обов'язково тут вимагати, щоб для (P, \prec) відношення \prec було антисиметричним.

Definition 0.1.7 Задано C – категорія.

Стрілочка $f: X \to Y$ називається **ізоморфізмом**, якщо існує стрілка $g: Y \to X$, для якої

$$f \circ g = 1_Y$$
 $g \circ f = 1_X$

У свою чергу об'єкти X,Y даної категорії називаються **ізоморфними**.

Позначення: $X \cong Y$.

Definition 0.1.8 Ендоморфізмом назвемо стрілочку $f: X \to X$. Тобто це стрілка між двома однаковими об'єктами.

Автоморфізмом назвемо ізоморфім f, який є ендоморфізмом.

Definition 0.1.9 Категорія C називається дискретною, якщо

$$C(A,B) = \begin{cases} \emptyset, & A \neq B \\ \{1_A\}, & A = B \end{cases}$$

Тобто існують лише стрілки $A \to A$, і тільки тотожні.

Definition 0.1.10 Категорія D називається підкатегорією C, якщо

набір об'єктів D міститься в наборі об'єктів C

набір стрілок $A \to B$ в D міститься в наборі стрілок $A \to B$ в C для довільних об'єктів A, B із D композиція двох морфізмів в D задається так само, як і в C

Definition 0.1.11 Підкатегорія D категорії C називається **повною**, якщо

набір стрілок A, B в D збігається з набором стрілок A, B в C, для довільних об'єктів A, B із D

0.2 Узагальнення ін'єкції та сюр'єкції

0.2.1 Монік

Definition 0.2.1 Задано C – категорія.

Морфізм $\alpha \colon x \to y$ називається моніком, якщо

$$\alpha \beta_1 = \alpha \beta_2 \implies \beta_1 = \beta_2$$

Тобто морфізм – монік, якщо можна завжди скоротити зліва.

$$z \xrightarrow{\beta_2} x \xrightarrow{\alpha} y$$

Theorem 0.2.2 У конкретній категорії кожний ін'єктивний морфізм – монік.

Proof

Нехай C — конкретна категорія та $\alpha \colon X \to Y$ — ін'єктивний морфізм. Нехай $\beta_1, \beta_2 \colon Z \to X$ — морфізми C та припустимо, що $\alpha\beta_1 = \alpha\beta_2$. Для всіх $z \in Z$ ми маємо $\alpha(\beta_1(z)) = \alpha\beta_1(z) = \alpha\beta_2(z) = \alpha(\beta_2(z))$, тому за ін'єктивністю, $\beta_1(z) = \beta_2(z)$. Отже, $\beta_1 = \beta_2$.

Remark 0.2.3 Зворотне твердження не працює.

Example 0.2.4 Розглянемо повну категорію C = Div підкатегорії Grp. Тут абелева група називається **подільною**, якщо $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\} : \exists b \in A : a = nb$.

Оберемо об'єкти $\mathbb{Q}, \mathbb{Q}/\mathbb{Z}$ із нашої категорії C та гомоморфізм $\alpha \colon \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$, який є сюр'єктивним. Даний морфізм не ін'єктивний, оскільки $\ker \alpha = \mathbb{Z}$. Стверджується, що α – монік.

Нехай $\beta_1,\beta_2\colon A\to \mathbb{Q}$ — морфізми в C та припустимо, що $\beta_1\neq\beta_2$. Тоді існує елемент $a\in A$, для якого $\beta_1(a)-\beta_2(a)\neq 0$. Ліворуч раціональне число, тож $\beta_1(a)-\beta_2(a)=\frac{r}{s}$ для деяких $r,s\in \mathbb{Z}$ та $r\neq 0,s\neq 0$. Оскільки A — подільна група, то існує для елемента $a\in A$ та n=2r існує $b\in A$, для якого a=nb. Тоді $\beta_1(nb)-\beta_2(nb)=n\beta_1(b)-n\beta_2(b)=\frac{r}{s}$.

Отже, $\beta_1(b)-\beta_2(b)=\frac{1}{2s}\notin\mathbb{Z}$, а тому звідси $\alpha\beta_1\neq\alpha\beta_2.$

Theorem 0.2.5 У категоріях Set, Тор, Grp, Rng морфізм ін'єктивний \iff морфізм – монік.

Proof.

Ми вже знаємо, що ін'єктивний морфізм – монік. Залишилося довести зворотний бік для цих категоріях.

(Set). Нехай $\alpha\colon X\to Y$ — монік морфізм. Оберемо $x_1,x_2\in X$ та припустимо, що $\alpha(x_1)=\alpha(x_2)$. Покладемо $z=0\in\mathbb{Z}$ та покладемо $Z=\{z\}$ (хоча тут може бути будь-який сінглтон), визначимо $\beta_1,\beta_2\colon Z\to X$ як $\beta_1(z)=x_1,\beta_2(z)=x_2$. Тоді $\alpha(\beta_1(z))=\alpha(\beta_1(z))=\alpha(x_1)=\alpha(x_2)=\alpha(\beta_2(z))=\alpha\beta_2(z)$. За монічністю, звідси $\beta_1=\beta_2$, тобто $x_1=\beta_1(z)=\beta_2(z)=x_2$. Таким чином, α — ін'єктивний.

(Тор). Насправді, все аналогічно, тільки є деякі зауваження. На множину Z треба задати дискретну топологію (єдина можлива топологія для неї). Відображення β_1, β_2 будуть уже неперервними через дискретність Z.

(Grp). Нехай $\alpha: G \to H$ – монік морфізм. Розглянемо $\beta_1, \beta_2: \ker \alpha \to G$ – перший буде вкладенням,

другий буде тривіальним. Тоді $\alpha\beta_1 = \alpha\beta_2$. Дійсно,

$$\alpha\beta_1(g) = \alpha(g) \stackrel{g \in \ker \alpha}{=} e = \alpha(e) = \alpha\beta_2(g).$$

 $\alpha\beta_1(g)=\alpha(g)\stackrel{g\in\ker\alpha}{=}e=\alpha(e)=\alpha\beta_2(g).$ За монічністю, звідси $\beta_1=\beta_2$, тобто β_1 — тривіальне вкладення. Отже, $\ker\alpha=\{e\}$, а це означає ін'єктивніть α .

(Rng). Таке саме доведення.

0.2.2 Розщеплений монік

Definition 0.2.6 Задано C – категорія.

Морфізм $\alpha\colon X\to Y$ називається **розщепленим моніком**, якщо

$$\exists \beta \colon y \to x : \beta \alpha = 1_x$$

Морфізм – розщеплений монік, тобто даний морфізм має лівий оборотний.

$$\int_{1} x \xrightarrow{\beta} y$$

Theorem 0.2.7 Кожний розщеплений монік – монік.

Нехай α : $x \to y$ – розщеплений монік в категорії, тобто існує морфізм β : $y \to x$, для якого $\beta \alpha = 1_x$. Нехай $\beta_1, \beta_2 \colon z \to x$ будуть морфізмами та припустимо, що $\alpha\beta_1 = \alpha\beta_2$. Тоді $\beta_1 = 1_x \beta_1 = \beta \alpha \beta_1 = \beta \alpha \beta_2 = 1_x \beta_2 = \beta_2.$

Theorem 0.2.8 У конкретній категорії кожний розщеплений монік – ін'єктивний морфізм.

Proof.

Нехай C – конкретна категорія та $\alpha \colon X \to Y$ – розщеплений монік, тобто існує морфізм $\beta \colon Y \to X$, для якого $\beta \alpha = 1_X$. Тоді

$$x_1 = 1_X(x_1) = \beta \alpha(x_1) = \beta(\alpha(x_1)) = \beta(\alpha(x_2)) = \beta(\alpha(x_2)) = 1_X(x_2) = x_2.$$

Remark 0.2.9 Зворотне твердження не працює.

Example 0.2.10 Розглянемо категорію Grp. Вкладення $\alpha \colon 2\mathbb{Z} \to \mathbb{Z}$ – ін'єктивний гомоморфізм. Але це не буде розщепленим моніком.

!Припустимо, що все ж таки він розщеплений монік, тобто існує гомоморфізм $\beta: \mathbb{Z} \to 2\mathbb{Z}$, для якого $\beta \alpha = 1_{2\mathbb{Z}}$. Тоді $2\beta(1) = \beta(2) = \beta(\alpha(2)) = \beta\alpha(2) = 2$, тобто $\beta(1) = 1$, але це суперечність! Просто тому що β відображає на $2\mathbb{Z}$.

Можна аналогічні міркування провести для категорії Rng.

Example 0.2.11 Розглянемо категорію Тор. Оберемо тотожне відображення $\alpha \colon \mathbb{R} \to \mathbb{R}$, де область визначення має дискретну топологія, а область значень – стандартну. Тоді α – ін'єктивний, але не розщеплений монік.

!Припустимо, що існує морфізм $\beta\colon\mathbb{R}\to\mathbb{R}$, для якого $\beta\alpha=1_\mathbb{R}$. Тоді $\beta=\beta1_\mathbb{R}=\beta\alpha=1_\mathbb{R}$, однак множина $\{0\}$ відкрита в \mathbb{R} з дискретною топологією, але не відкрита в стандартній топології. Це суперечність! Тому що β – неперервне відображення.

Proof.

 \Rightarrow Дано: α – розщеплений монік. Оскільки Set – конкретна категорія, то звідси α – ін'єктивний. $\overline{\text{Теп}}$ ер нехай $X=\emptyset$. Тоді за умовою, існує $\beta\colon Y\to X$, для якого $\beta\alpha=1_X=1_\emptyset$. Тоді оскільки β функція, то $Y = \emptyset$.

 \sqsubseteq Дано: α – ін'єктивний та $X = \emptyset \implies Y = \emptyset.$

Нехай $X \neq \emptyset$, тобто існує елемент $x_0 \in X$. Оскільки α – ін'єктивний, то $\alpha|_{\operatorname{Im}\alpha}\colon X \to \operatorname{Im}\alpha$ буде задавати бієкцію, тож для кожного $y \in \operatorname{Im}\alpha$ існує єдиний елемент $\beta(y) \in X$, для якого $\alpha(\beta(y)) = y$. Це визначає функцію $\beta\colon \operatorname{Im}\alpha \to X$, що розширюється до функції $\beta\colon Y \to X$, якщо покласти $\beta(y) = x_0, y \notin \operatorname{Im}\alpha$. Для $x \in X$ ми маємо $\beta\alpha(x) = \beta(\alpha(x)) = x = 1_X(x)$. Нехай $X = \emptyset$, тоді $Y = \emptyset$ та порожня функція $\beta\colon Y \to X$ задовольняє $\beta\alpha = 1_X$.