SAINT-PETERSBURG STATE UNIVERSITY

SPbU-IP-09-08

Recursive algorithms, branching coefficients for affine algebras and applications

Vladimir Lyakhovsky Anton Nazarov

Department of Theoretical Physics

SAINT-PETERSBURG 2009

Recursive algorithms, branching coefficients for affine algebras and applications

Vladimir Lyakhovsky *
Theoretical Department, SPb State University,
198904, Sankt-Petersburg, Russia
e-mail:lyakh1507@nm.ru

Anton Nazarov [†]
Theoretical Department, SPb State University, 198904, Sankt-Petersburg, Russia e-mail:antonnaz@gmail.com

December 28, 2009

Abstract

Recurrent relations for branching coefficients in affine Lie algebras highest weight modules are studied. The decomposition algorithm for integrable highest weight modules reduction based on the injection fan technique is adopted to the situation where the Weyl denominator becomes singular with respect to a reductive subalgebra. We study some modifications of the injection fan technique and demonstrate that it is possible to define the "subtracted fans" that play the role similar to the original one. The possible applications of subtracted fans in CFT models are considered.

1 Introduction

The problem of reduction of a Lie algebra representation to a subalgebra is studied for several decades and has various applications in physics. In

^{*}Supported by RFFI grant N 09-01-00504 and the National Project RNP.2.1.1./1575 $^\dagger Supported$ by the National Project RNP.2.1.1./1575

the context of finite-dimensional algebras it is important for the study of great unification models whilst the branching problem for affine Lie algebras emerges in conformal field theory, for example, in the construction of the modular-invariant partition functions [1].

There exist several approaches to the computation of the branching coefficients. Some of them use the BGG resolution [2] (for Kac-Moody algebras the algorithm is described in [3],[4]), the Schure function series [5], the BRST cohomology [6], Kac-Peterson formulas [3, 7] or the combinatorial methods applied in [8].

Usually only the embedding of the maximal reductive subalgebras is considered since the case of non-maximal subalgebra can be obtained using the chain of maximal injections. In this paper we study the recurrent properties for branching coefficients which generalise the recurrent relations obtained earlier (see the paper [9]and the references therein) to the cases of non-maximal reductive subalgebras. The result is formulated by an introduction of a new injection fan called "subtracted fan". Using this new tools we formulate simple and explicit algorithm for the computation of branching coefficients which is applicable to the non-maximal subalgebras of finite-dimensional and affine Lie algebras.

We show that our algorithm can be used in a study of conformal embeddings where the central charge of the conformal field theory is preserved, and the computations are simplified taking into account some physical limitations.

The paper is organised as follows. In the next subsection we fix the notations used throughout the paper. In the Section 2 we derive the subtracted recurrent formula for anomalous branching coefficients and describe the decomposition algorithm for integrable highest weight modules of algebra $\mathfrak g$ with respect to a reductive subalgebra $\mathfrak a$ (subsection 2.2). In the next Section 3 we present several examples and discuss some applications in CFT models (s. 4). We conclude the paper with a review of obtained results. Possible future developments are discussed (s. 5).

1.1 Notation

Consider affine Lie algebras \mathfrak{g} and \mathfrak{a} with the underlying finite-dimensional subalgebras $\overset{\circ}{\mathfrak{g}}$ and $\overset{\circ}{\mathfrak{a}}$ and an injection $\mathfrak{a} \longrightarrow \mathfrak{g}$ such that \mathfrak{a} is a reductive subalgebra $\mathfrak{a} \subset \mathfrak{g}$ with correlated root spaces: $\mathfrak{h}_{\mathfrak{a}}^* \subset \mathfrak{h}_{\mathfrak{g}}^*$ and $\mathfrak{h}_{\mathfrak{g}}^* \subset \mathfrak{h}_{\mathfrak{g}}^*$.

We use the following notations adopted from the paper [9].

 L^{μ} ($L^{\nu}_{\mathfrak{a}}$) — the integrable module of \mathfrak{g} with the highest weight μ ; (resp. integrable \mathfrak{a} -module with the highest weight ν);

```
r, (r_{\mathfrak{a}}) — the rank of the algebra \mathfrak{g} (resp. \mathfrak{a});
        \Delta (\Delta_{\mathfrak{a}})— the root system; \Delta^+ (resp. \Delta_{\mathfrak{a}}^+)— the positive root system (of
\mathfrak{g} and \mathfrak{a} respectively);
        \operatorname{mult}(\alpha) \left(\operatorname{mult}_{\mathfrak{a}}(\alpha)\right) — the multiplicity of the root \alpha in \Delta (resp. in (\Delta_{\mathfrak{a}}));
        \overset{\circ}{\Delta}, \overset{\circ}{\Delta}, \overset{\circ}{\Delta} — the finite root system of the subalgebra \overset{\circ}{\mathfrak{g}} (resp. \overset{\circ}{\mathfrak{a}}); \Theta, (\Theta_{\mathfrak{a}})
       the highest root of the algebra \mathfrak{g} (resp. subalgebra \mathfrak{a});
        \mathcal{N}^{\mu}, (\mathcal{N}^{\nu}_{\mathfrak{a}}) — the weight diagram of L^{\mu} (resp. L^{\nu}_{\mathfrak{a}});
        W, (W_{\mathfrak{a}})— the corresponding Weyl group;
        C, (C_{\mathfrak{a}})— the fundamental Weyl chamber;
        \bar{C}, (\bar{C}_{\mathfrak{a}}) — the closure of the fundamental Weyl chamber;
        \rho, (\rho_{\mathfrak{a}}) — the Weyl vector;
        \epsilon(w) := \det(w);
        \alpha_i, (\alpha_{(\mathfrak{a})j}) — the i-th (resp. j-th) basic root for \mathfrak{g} (resp. \mathfrak{a}); i=0,\ldots,r
 , (j=0,\ldots,r_{\mathfrak{a}});
        \delta — the imaginary root of \mathfrak{g} (and of \mathfrak{a} if any);
        \alpha_i^{\vee}, \left(\alpha_{(\mathfrak{a})j}^{\vee}\right)—the basic coroot for \mathfrak{g} (resp. \mathfrak{a}), i=0,\ldots,r; (j=0,\ldots,r_{\mathfrak{a}});
        \overset{\circ}{\xi}, \overset{\circ}{\xi_{(\mathfrak{a})}} — the finite (classical) part of the weight \xi \in P, (resp. \xi_{(\mathfrak{a})} \in P_{\mathfrak{a}});
        \lambda = \begin{pmatrix} \circ \\ \lambda; k; n \end{pmatrix} — the decomposition of an affine weight indicating the
finite part \lambda, level k and grade n .
        P \text{ (resp. } P_{\mathfrak{a}}) — the weight lattice;
=\left\{\begin{array}{l} \sum_{i=1}^{r}\mathbf{Z}\alpha_{i}^{\vee}\left(\text{resp. }\sum_{i=1}^{r}\mathbf{Z}\alpha_{(\mathfrak{a})i}^{\vee}\right)\text{for untwisted algebras or }A_{2r}^{(2)},\\ \sum_{i=1}^{r}\mathbf{Z}\alpha_{i}\left(\text{resp. }\sum_{i=1}^{r}\mathbf{Z}\alpha_{(\mathfrak{a})i}\right)\text{for }A_{r}^{(u\geq2)}\text{ and }A\neq A_{2r}^{(2)},\\ \end{array}\right\};\Psi^{(\mu)}:=\sum_{w\in W}\epsilon(w)e^{w\circ(\mu+\rho)-\rho}-\text{the singular weight element for the }\mathfrak{g}\text{-module }L^{\mu};\Psi_{(\mathfrak{a})}^{(\nu)}:=
\sum_{w \in W_{\mathfrak{a}}} \epsilon(w) e^{w \circ (\nu + \rho_{\mathfrak{a}}) - \rho_{\mathfrak{a}}} — the corresponding singular weight element for the
        \widehat{\Psi^{(\mu)}}\left(\widehat{\Psi^{(\nu)}_{(\mathfrak{a})}}\right) — the set of singular weights \xi \in P (resp. \in P_{\mathfrak{a}}) for the
module L^{\mu} (resp. L_{\mathfrak{a}}^{\nu}) with the coordinates \left(\xi, k, n, \epsilon\left(w\left(\xi\right)\right)\right)|_{\xi=w(\xi)\circ(\mu+\rho)-\rho},
(resp. \left(\xi, k, n, \epsilon\left(w_a\left(\xi\right)\right)\right) \mid_{\xi=w_a(\xi)\circ(\nu+\rho_a)-\rho_a}), (this set is similar to P'_{\text{nice}}(\mu)
in [4]
       m_{\xi}^{(\mu)}, \left(m_{\xi}^{(\nu)}\right) — the multiplicity of the weight \xi \in P (resp. \in P_{\mathfrak{a}}) in
 the module L^{\mu}, (resp. \xi \in L^{\nu}_{\mathfrak{a}});
```

$$\begin{array}{c} ch\left(L^{\mu}\right) \; (\text{resp. } ch\left(L_{\mathfrak{a}}^{\nu}\right)) & -\text{the formal character of } L^{\mu} \; (\text{resp. } L_{\mathfrak{a}}^{\nu}); \\ ch\left(L^{\mu}\right) = \frac{\sum_{w \in W} \epsilon(w) e^{w \circ (\mu + \rho) - \rho}}{\prod_{\alpha \in \Delta^{+}} (1 - e^{-\alpha})^{\text{mult}(\alpha)}} = \frac{\Psi^{(\mu)}}{\Psi^{(0)}} \; -\text{the Weyl-Kac formula.} \\ R := \prod_{\alpha \in \Delta^{+}} \left(1 - e^{-\alpha}\right)^{\text{mult}(\alpha)} = \Psi^{(0)} \\ \left(\text{resp. } R_{\mathfrak{a}} := \prod_{\alpha \in \Delta_{\mathfrak{a}}^{+}} \left(1 - e^{-\alpha}\right)^{\text{mult}_{\mathfrak{a}}(\alpha)} = \Psi_{\mathfrak{a}}^{(0)}\right) - \text{the denominator.} \\ L_{\mathfrak{g} \downarrow \mathfrak{a}}^{\mu} = \bigoplus_{\nu \in P_{\mathfrak{a}}^{+}} b_{\nu}^{(\mu)} L_{\mathfrak{a}}^{\nu} \; -\text{the reduction of the representation;} \\ b_{\nu}^{(\mu)} \; -\text{the branching coefficients;} \end{array}$$

$$\sum_{\nu \in \tilde{C}_{\mathfrak{a}}} b_{\nu}^{(\mu)} \Psi_{(\mathfrak{a})}^{(\nu)} = \sum_{\lambda \in P_{\mathfrak{a}}} k_{\lambda}^{(\mu)} e^{\lambda} \tag{1}$$

 k_{λ} — the anomalous branching coefficients; It is important to mention that

$$b_{\nu}^{(\mu)} = k_{\nu}^{(\mu)} \text{ for } \nu \in \bar{C}_{\mathfrak{a}} \tag{2}$$

 $x_e = \frac{|\pi_{\mathfrak{a}}\Theta|}{|\Theta_{\mathfrak{a}}|}$ — the embedding index.

2 Recurrent relation for branching coefficients. Singularities and subtractions

Our aim is to demonstrate that despite possible singularities in the Weyl denominator projected to the subalgebra root space injection fan technique can be properly modified. as a result of such modification the generalized recurrent relations for anomalous branching coefficients (1) will appear in the following form:

$$k_{\xi}^{(\mu)} = -\frac{1}{s(\gamma_0)} \left(\sum_{\omega \in W_{\perp} \setminus W} \epsilon(\omega) \operatorname{dim} \left(L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho)) - \rho_{\mathfrak{a}_{\perp}}} \right) \delta_{\xi - \gamma_0, \pi_{\mathfrak{a}}(\omega(\mu+\rho) - \rho)} + \sum_{\gamma \in \Gamma_{\mathfrak{a} \subset \mathfrak{g}}} s(\gamma + \gamma_0) k_{\xi + \gamma}^{(\mu)} \right)$$

$$(3)$$

Here \mathfrak{a}_{\perp} is the subalgebra generated by the roots of \mathfrak{g} orthogonal to the root system of \mathfrak{a} , W_{\perp} is the corresponding Weyl group, $\Gamma_{\mathfrak{a}\subset\mathfrak{g}}$ is the set of weights in the expansion of the denominator $\prod_{\alpha\in\Delta^+\setminus\Delta^+_{\mathfrak{a}_{\perp}}}(1-e^{-\alpha})^{\mathrm{mult}(\alpha)-\mathrm{mult}_{\mathfrak{a}}(\alpha)}$ and $s(\gamma)$ is the coefficient of e^{γ} in this expansion. In the next subsection we study the situation in details and prove the validity of this relation.

In the next section we shall describe the computational algorithm for branching coefficients based on this formula and present some examples.

2.1 Proof of the recurrent relation

The branching of a module can be symbolically written using formal characters and projection operators $\pi_{\mathfrak{a}}$ that bring the roots of \mathfrak{g} to the weight subspace of \mathfrak{a} :

$$L^{\mu}_{\mathfrak{g}\downarrow\mathfrak{a}} = \bigoplus_{\nu \in P^{+}_{\mathfrak{a}}} b^{(\mu)}_{\nu} L^{\nu}_{\mathfrak{a}} \quad \Longrightarrow \quad \pi_{\mathfrak{a}}(chL^{\mu}_{\mathfrak{g}}) = \sum_{\nu \in P^{+}_{\mathfrak{a}}} b^{(\mu)}_{\nu} chL^{\nu}_{\mathfrak{a}} \tag{4}$$

The Weyl-Kac character formula leads to the equality

$$\pi_{\mathfrak{a}}\left(\frac{\sum_{\omega\in W}\epsilon(\omega)e^{\omega(\mu+\rho)-\rho}}{\prod_{\alpha\in\Delta^{+}}(1-e^{-\alpha})^{\mathrm{mult}(\alpha)}}\right) = \sum_{\nu\in P_{\mathfrak{a}}^{+}}b_{\nu}^{(\mu)}\frac{\sum_{\omega\in W_{\mathfrak{a}}}\epsilon(\omega)e^{\omega(\nu+\rho_{\mathfrak{a}})-\rho_{\mathfrak{a}}}}{\prod_{\beta\in\Delta_{\mathfrak{a}}^{+}}(1-e^{-\beta})^{\mathrm{mult}_{\mathfrak{a}}(\beta)}}$$
(5)

It is important to keep in mind that the projection of some of positive roots of the algebra \mathfrak{g} can be equal to zero. These roots are orthogonal to the root space of the subalgebra \mathfrak{g} embedded into the root space of the algebra \mathfrak{g} . Let's denote the subset of such roots by $\Delta_{\perp}^{+} = \{\alpha \in \Delta_{\mathfrak{g}}^{+} : \forall \beta \in \Delta_{\mathfrak{g}}^{+}, \alpha \perp \beta\}$.

Notice that if the set Δ_{\perp}^+ is non-empty the Weyl reflections corresponding to the positive roots of Δ_{\perp}^+ generate a subgroup W_{\perp} of the Weyl group W. Consider any two positive roots α , $\beta \in \Delta_{\perp}^+$ and the corresponding Weyl reflections ω_{α} , $\omega_{\beta} \in W_{\perp}$. Since roots of the subalgebra \mathfrak{a} are invariant under ω_{α} , ω_{β} they are also invariant under the action of $\omega_{\gamma} = \omega_{\alpha} \cdot \omega_{\beta}$. So the subgroup W_{\perp} preserves the root system of the subalgebra \mathfrak{a} .

Thus we have obtained the root system Δ_{\perp} which is orthogonal to the root system $\Delta_{\mathfrak{a}}$ and invariant with respect to W_{\perp} . This root system can be considered as the root system of a subalgebra $\mathfrak{a}_{\perp} \subset \mathfrak{g}$.

Now we should find out when the subset Δ_{\perp}^+ is non-empty and the subgroup W_{\perp} and subalgebra \mathfrak{a}_{\perp} are non-trivial.

If \mathfrak{a} is a maximal regular subalgebra of \mathfrak{g} then the rank of \mathfrak{a} is equal to the rank of \mathfrak{g} and it is clear that Δ_{\perp}^+ is empty. On the other hand non-maximal regular embedding of \mathfrak{a} into \mathfrak{g} can be obtained through the chain of maximal embeddings $\mathfrak{a} \subset \mathfrak{p}_1 \subset \mathfrak{p}_2 \subset \cdots \subset \mathfrak{g}$. The maximal regular embeddings are constructed by the exclusion of one or two roots from the extended Dynkin diagram of the algebra. Since this process can give us non-connected Dynkin diagrams we can see which roots are orthogonal to the root space of non-maximal regular subalgebra \mathfrak{a} .

Consider for instance regular the embedding of $A_1 \subset B_2$.

The extended Dynkin diagram of B_2 is presented in the Figure 1. When we drop the central node and get the embedding $A_1 \oplus A_1 \subset B_2$. Then $\mathfrak{a} = A_1$ and $\mathfrak{a}_{\perp} = A_1$.

Here we present the simple criterion of Δ_{\perp}^+ 's non-emptiness for a regular embedding $\mathfrak{a} \subset \mathfrak{g}$ when both \mathfrak{a} and \mathfrak{g} are simple. If the Dynkin diagram of \mathfrak{g} can be split into the disconnected diagrams of \mathfrak{a} and some other subalgebras $\{\bar{\mathfrak{a}}_j\}$ then the subset Δ_{\perp} is non-empty, subalgebra \mathfrak{a}_{\perp} is non-trivial and all the $\bar{\mathfrak{a}}_j$ are the subalgebras of \mathfrak{a}_{\perp} .

Note that when we study the regular embedding obtained by dropping the nodes of the extended Dynkin diagram of the algebra \mathfrak{g} and the subalgebra \mathfrak{a} is one of the connected components, the subalgebra \mathfrak{a}_{\perp} may be broader than the algebra generated by the other connected components. See for example the figure 5 for the embedding of $B_2 \subset B_4$. In this case the extended Dynkin diagram of B_4 is split by dropping the simple root $\alpha_2 = e_2 - e_3$ into the diagrams of the subalgebra of interest $\mathfrak{a} = B_2$ and two diagrams of the orthogonal A_1 subalgebras. But the subalgebra \mathfrak{a}_{\perp} is equal not to $A_1 \oplus A_1$ but to B_2 . This fact is due to the existence of the positive root $e_2 = s_{\alpha_2} \cdot s_{\alpha_3} \cdot \alpha_4$ in the root system of B_4 .

We should analyze the case when the diagram of the subalgebra \mathfrak{a}_{\perp} is not a subdiagram of the extended Dynkin diagram \mathfrak{g} for the simple Lie algebras \mathfrak{a} , \mathfrak{g} and the regular embedding $\mathfrak{a} \subset \mathfrak{g}$. We drop the subdiagram of \mathfrak{a} and the node α' that connects it with all the rest nodes of the diagram of \mathfrak{g} and consider the remaining diagram. This diagram is the diagram of the algebra $\bar{\mathfrak{a}}$ of rank($\bar{\mathfrak{a}}$) = rank(\mathfrak{g}) - rank(\mathfrak{a}). It is clear that $\bar{\mathfrak{a}} \subset \mathfrak{a}_{\perp}$. So the question is if \mathfrak{a}_{\perp} has additional roots, which are not the roots of $\bar{\mathfrak{a}}$ but are the linear combinations of them. It is possible when the set of angles between the roots of $\bar{\mathfrak{a}}$ does not contain all the angles between the roots of \mathfrak{a} , then reflecting the roots of \mathfrak{a} by $s_{\alpha'}$ we get the additional roots of \mathfrak{a}_{\perp} .

All the cases are listed in the table 2.1.

Table 1: Subalgebras \mathfrak{a} , \mathfrak{a}_{\perp} for the classical series

The exceptional Lie algebras require tedious case-by-case analysis.

In terms of Weyl groups the task of construction of the root system of \mathfrak{a}_{\perp} is formulated as follows. Given a Weyl group W and a subgroup $W_{\mathfrak{a}}$ find the subgroup $W_{\mathfrak{a}_{\perp}} \subset W$ such that $\omega W_{\mathfrak{a}} \omega^{-1} = W_{\mathfrak{a}}$; for $\omega \in W_{\mathfrak{a}_{\perp}}$, so we need to find the normalizer of $W_{\mathfrak{a}}$ in W, such that some of the elements of $W_{\mathfrak{a}_{\perp}}$ are the reflections corresponding to the positive roots of \mathfrak{g} . This task can be carried out using the computational methods of finite group theory [10] but we are unaware of any publication with the exhaustive tables of such subgroups.

In the case of special embeddings the set Δ_{\perp}^+ can be empty as for the special embedding of $A_1 \subset A_2$ with the embedding index equal to 4, or non-empty for example for the embedding $A_1 \subset A_2 \subset A_3$ which is depicted at the Figure 2.1.

Using the existing classification of maximal special subalgebras [11] we immediately have the following pairs of the orthogonal subalgebras \mathfrak{a} , \mathfrak{a}_{\perp}

$$su(p) \oplus su(q) \qquad \subset su(pq)$$

$$so(p) \oplus so(q) \qquad \subset so(pq)$$

$$sp(2p) \oplus sp(2q) \qquad \subset so(4pq)$$

$$sp(2p) \oplus so(q) \qquad \subset sp(2pq)$$

$$so(p) \oplus so(q) \qquad \subset so(p+q) \quad \text{for } p \text{ and } q \text{ odd}$$

$$(6)$$

Exceptional Lie algebras and other non-maximal subalgebras require lengthy analysis which is not important for the needs of computation of the branching coefficients.

The construction of the subalgebra \mathfrak{a}_{\perp} is not obvious from the Dynkin diagrams of \mathfrak{g} and \mathfrak{a} but for the needs of calculation of the branching coefficients $b_{\nu}^{(\mu)}$ it is sufficient to select the positive roots $\Delta_{\perp}^{+} = \{\alpha \in \Delta^{+} : \alpha \perp \Delta_{\mathfrak{a}}\}$ in the set of positive roots of \mathfrak{g} .

Now we look at the $\mathfrak{a}_{\perp} \oplus \mathfrak{h}$ -module with the highest weight μ . For the character of this module we get

$$chL^{\mu}_{\mathfrak{a}_{\perp} \oplus \mathfrak{h}} = \frac{\sum_{\omega \in W_{\perp}} \epsilon(\omega) e^{\omega(\mu + \rho_{\mathfrak{a}_{\perp}}) - \rho_{\mathfrak{a}_{\perp}}}}{\prod_{\alpha \in \Delta^{+}_{+}} (1 - e^{-\alpha})^{\text{mult}(\alpha)}}$$
(7)

If we consider the projection $\pi_{\mathfrak{a}}(\operatorname{ch} L^{\mu}_{\mathfrak{a}_{\perp} \oplus \mathfrak{h}})$ it will give us the single exponent $e^{\pi_{\mathfrak{a}} \cdot \mu}$ with the multiplicity equal to the dimension of the module $L^{\mu}_{\mathfrak{a}_{\perp} \oplus \mathfrak{h}}$, since all the roots of \mathfrak{a}_{\perp} are orthogonal to the root system of \mathfrak{a} .

Using this idea we reorganize the expression for the character of \mathfrak{g} -module into the sum over $\mathfrak{a}_{\perp} \oplus \mathfrak{h}$ -modules in the following way.

Figure 1: Extended Dynkin diagram of B_2 and embedding of A_1

Figure 2: Special embedding $A_1 \subset A_2 \subset A_3$. Grey vectors are the roots of A_2 , thick black - of $\mathfrak{a}=A_1$, dashed black are the orthogonal roots of A_1 which is contained in \mathfrak{a}_{\perp}

We can multiply the equation (5) by the term

$$\pi_{\mathfrak{a}} \left(\prod_{\alpha \in \Delta^{+} \setminus \Delta^{+}_{+}} (1 - e^{-\alpha})^{\operatorname{mult}_{\mathfrak{g}}(\alpha)} \right) \tag{8}$$

This term is non-zero.

Also we can see that for any formal polynomial or series Q

$$\pi_{\mathfrak{a}}(Q)\pi_{\mathfrak{a}}(1-e^{-\alpha}) = \pi_{\mathfrak{a}}\left(Q\cdot(1-e^{-\alpha})\right) \tag{9}$$

The equation (5) takes the form

$$\pi_{\mathfrak{a}} \left(\frac{\sum_{\omega \in W} \epsilon(\omega) e^{\omega(\mu+\rho)-\rho}}{\prod_{\alpha \in \Delta_{\perp}^{+}} (1 - e^{-\alpha})^{\operatorname{mult}(\alpha)}} \right) =$$

$$\pi_{\mathfrak{a}} \left(\prod_{\alpha \in \Delta^{+} \setminus \Delta_{\perp}^{+}} (1 - e^{-\alpha})^{\operatorname{mult}_{\mathfrak{g}}(\alpha)} \right) \sum_{\nu \in P_{\mathfrak{a}}^{+}} b_{\nu}^{(\mu)} \frac{\sum_{\omega \in W_{\mathfrak{a}}} \epsilon(\omega) e^{\omega(\nu+\rho_{\mathfrak{a}})-\rho_{\mathfrak{a}}}}{\prod_{\beta \in \Delta_{\mathfrak{a}}^{+}} (1 - e^{-\beta})^{\operatorname{mult}_{\mathfrak{a}}(\beta)}}$$
(10)

The right-hand side of this equation can be reorganised as in the paper [9]. We introduce the anomalous branching coefficients k_{λ} .

$$\sum_{\nu \in P_{\mathfrak{a}}} b_{\nu}^{(\mu)} \Psi_{(\mathfrak{a})}^{(\nu)} = \sum_{\lambda \in P_{\mathfrak{a}}} k_{\lambda}^{(\mu)} e^{\lambda} \tag{11}$$

Also we extract the common denominator of the right-hand side of the equation (10)

$$\pi_{\mathfrak{a}} \left(\frac{\sum_{\omega \in W} \epsilon(\omega) e^{\omega(\mu+\rho)-\rho}}{\prod_{\alpha \in \Delta_{\perp}^{+}} (1 - e^{-\alpha})^{\operatorname{mult}(\alpha)}} \right) = \left(\prod_{\alpha \in \pi_{\mathfrak{a}} \left(\Delta^{+} \setminus \Delta_{\perp}^{+}\right)} (1 - e^{-\alpha})^{\operatorname{mult}_{\mathfrak{g}}(\alpha) - \operatorname{mult}_{\alpha}} \right) \sum_{\lambda \in P_{\mathfrak{a}}} k_{\lambda}^{(\mu)} e^{\lambda} \quad (12)$$

If the set Δ_{\perp}^+ is non-empty then the Weyl reflections corresponding to the positive roots of Δ_{\perp}^+ generate a subgroup W_{\perp} of Weyl group W.

We have denoted the subalgebra with the root space spanned over the set Δ_{\perp}^{+} by \mathfrak{a}_{\perp} .

Then we can reorganise the summation on the left-hand side of the equation (12) in the following way. We consider the factor-group $W_{\perp}\backslash W$ and the

left conjugate classes. For the class $\tilde{\omega} \in W_{\perp} \setminus W$ we choose the representative $\omega \in \tilde{\omega}$ in such a way that $\omega(\mu + \rho) \in \bar{C}_{\mathfrak{a}_{\perp}}$. Then

$$\pi_{\mathfrak{a}} \left(\frac{\sum_{\omega \in W} \epsilon(\omega) e^{\omega(\mu+\rho)-\rho}}{\prod_{\alpha \in \Delta_{\perp}^{+}} (1 - e^{-\alpha})^{\operatorname{mult}(\alpha)}} \right) = \pi_{\mathfrak{a}} \left(\sum_{\omega \in W_{\perp} \setminus W} \epsilon(\omega) \frac{\sum_{\nu \in W_{\perp}} \epsilon(\nu) e^{\nu \cdot \omega(\mu+\rho)-\rho}}{\prod_{\alpha \in \Delta_{\perp}^{+}} (1 - e^{-\alpha})^{\operatorname{mult}(\alpha)}} \right)$$
(13)

We see that the fraction on the right-hand side of the equation looks like the character of some representation of the algebra \mathfrak{a}_{\perp} . In order to write it explicitly we rewrite $\nu \cdot \omega(\mu + \rho) - \rho$ as

$$\nu \cdot \omega(\mu + \rho) - \rho = \nu \cdot \left(\omega(\mu + \rho) - \pi_{\mathfrak{a}}(\omega(\mu + \rho)) - \rho_{\mathfrak{a}_{\perp}} + \rho_{\mathfrak{a}_{\perp}} + \pi_{\mathfrak{a}}(\omega(\mu + \rho))\right) - \rho \tag{14}$$

Since $\nu \cdot \pi_{\mathfrak{a}}(\omega(\mu + \rho)) = \pi_{\mathfrak{a}}(\omega(\mu + \rho))$ and $\omega(\mu + \rho) - \pi_{\mathfrak{a}}(\omega(\mu + \rho)) = \pi_{\mathfrak{a}_{\perp}}(\omega(\mu + \rho))$, we get

$$\sum_{\omega \in W_{\perp} \backslash W} \epsilon(\omega) \frac{\sum_{\nu \in W_{\perp}} \epsilon(\nu) e^{\nu \cdot \omega(\mu+\rho) - \rho}}{\prod_{\alpha \in \Delta_{\perp}^{+}} (1 - e^{-\alpha})^{\text{mult}(\alpha)}} =$$

$$\sum_{\omega \in W_{\perp} \backslash W} \epsilon(\omega) e^{\pi_{\mathfrak{a}}(\omega(\mu+\rho)) - \rho} \frac{e^{\rho_{\mathfrak{a}_{\perp}}} \sum_{\nu \in W_{\perp}} \epsilon(\nu) e^{\nu \cdot (\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho)) - \rho_{\mathfrak{a}_{\perp}} + \rho_{\mathfrak{a}_{\perp}}) - \rho_{\mathfrak{a}_{\perp}}}}{\prod_{\alpha \in \Delta_{\perp}^{+}} (1 - e^{-\alpha})^{\text{mult}(\alpha)}} =$$

$$\sum_{\omega \in W_{\perp} \backslash W} \epsilon(\omega) e^{\pi_{\mathfrak{a}}(\omega(\mu+\rho)) - \rho} e^{\rho_{\mathfrak{a}_{\perp}}} chL_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho)) - \rho_{\mathfrak{a}_{\perp}}} (15)$$

The projection $\pi_{\mathfrak{a}}$ of the character of the highest-weight module $L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho))-\rho_{\mathfrak{a}_{\perp}}}$ is equal to the dimension of the module multiplied by the unity of the algebra of formal exponents. So we have

$$\pi_{\mathfrak{a}} \left(\sum_{\omega \in W_{\perp} \setminus W} \epsilon(\omega) e^{\pi_{\mathfrak{a}}(\omega(\mu+\rho)) - \rho} e^{\rho_{\mathfrak{a}_{\perp}}} ch L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho)) - \rho_{\mathfrak{a}_{\perp}}} \right) = \sum_{\omega \in W_{\perp} \setminus W} \epsilon(\omega) \dim \left(L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho)) - \rho_{\mathfrak{a}_{\perp}}} \right) e^{\pi_{\mathfrak{a}}(\omega(\mu+\rho) - \rho)} \quad (16)$$

These dimensions of the modules could be easily calculated using the Weyl formula.

Thus we have the equality

$$\sum_{\omega \in W_{\perp} \setminus W} \epsilon(\omega) dim \left(L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho)) - \rho_{\mathfrak{a}_{\perp}}} \right) e^{\pi_{\mathfrak{a}}(\omega(\mu+\rho) - \rho)} = \left(\prod_{\alpha \in \pi_{\mathfrak{a}}\left(\Delta^{+} \setminus \Delta_{\perp}^{+}\right)} (1 - e^{-\alpha})^{\text{mult}_{\mathfrak{g}}(\alpha) - \text{mult}_{\alpha}} \right) \sum_{\lambda \in P_{\mathfrak{a}}} k_{\lambda}^{(\mu)} e^{\lambda} \quad (17)$$

We can rewrite the multiplier of the right-hand side as in the paper [9].

$$\prod_{\alpha \in \pi_{\mathfrak{a}} \circ (\Delta^{+} \setminus \Delta_{\perp}^{+})} \left(1 - e^{-\alpha} \right)^{\operatorname{mult}(\alpha) - \operatorname{mult}_{\mathfrak{a}}(\alpha)} = -\sum_{\gamma \in P_{\mathfrak{a}}} s(\gamma) e^{-\gamma}$$
(18)

For the coefficient function $s(\gamma)$ define $\Phi_{\mathfrak{a}\subset\mathfrak{g}}\subset P_{\mathfrak{a}}$ as its carrier:

$$\Phi_{\mathfrak{a}\subset\mathfrak{g}} = \{ \gamma \in P_{\mathfrak{a}} \mid s(\gamma) \neq 0 \}; \tag{19}$$

$$\prod_{\alpha \in \pi_{\mathfrak{a}} \circ (\Delta^{+} \setminus \Delta_{\perp}^{+})} \left(1 - e^{-\alpha} \right)^{\operatorname{mult}(\alpha) - \operatorname{mult}_{\mathfrak{a}}(\alpha)} = -\sum_{\gamma \in \Phi_{\mathfrak{a} \subset \mathfrak{g}}} s(\gamma) e^{-\gamma}.$$
 (20)

So we get the equation

$$\sum_{\omega \in W_{\perp} \setminus W} \epsilon(\omega) dim \left(L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho)) - \rho_{\mathfrak{a}_{\perp}}} \right) e^{\pi_{\mathfrak{a}}(\omega(\mu+\rho) - \rho)} =$$

$$= -\sum_{\gamma \in \Phi_{\mathfrak{a} \subset \mathfrak{g}}} s(\gamma) e^{-\gamma} \sum_{\lambda \in P_{\mathfrak{a}}} k_{\lambda}^{(\mu)} e^{\lambda}$$

$$= -\sum_{\gamma \in \Phi_{\mathfrak{a} \subset \mathfrak{g}}} \sum_{\lambda \in P_{\mathfrak{a}}} s(\gamma) k_{\lambda}^{(\mu)} e^{\lambda - \gamma} \quad (21)$$

From the equality of the coefficients of the equal formal exponents we get

$$\sum_{\omega \in W_{\perp} \setminus W} \epsilon(\omega) dim \left(L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho)) - \rho_{\mathfrak{a}_{\perp}}} \right) \delta_{\xi, \pi_{\mathfrak{a}}(\omega(\mu+\rho) - \rho)} + \sum_{\gamma \in \Phi_{\mathfrak{a} \subset \mathfrak{g}}} s(\gamma) \ k_{\xi+\gamma}^{(\mu)} = 0; \quad \xi \in P_{\mathfrak{a}}$$

$$(22)$$

To get the recurrent relation for the anomalous branching coefficients we should use the following procedure, introduced in the paper [9].

Let γ_0 be the lowest vector with respect to the natural ordering in $\mathring{\Delta}_{\mathfrak{a}}$ in the lowest grade of $\Phi_{\mathfrak{a}\subset\mathfrak{g}}$. Decomposing the defining relation (20)

$$\prod_{\alpha \in \pi_{\mathfrak{a}} \circ (\Delta^{+} \setminus \Delta_{\perp}^{+})} \left(1 - e^{-\alpha} \right)^{\operatorname{mult}(\alpha) - \operatorname{mult}_{\mathfrak{a}}(\alpha)} = -s \left(\gamma_{0} \right) e^{-\gamma_{0}} - \sum_{\gamma \in \Phi_{\mathfrak{a} \subset \mathfrak{g}} \setminus \{ \gamma_{0} \}} s \left(\gamma \right) e^{-\gamma}, \tag{23}$$

in (22) we obtain

$$k_{\xi}^{(\mu)} = -\frac{1}{s\left(\gamma_{0}\right)} \left(\sum_{\omega \in W_{\perp} \setminus W} \epsilon(\omega) \operatorname{dim} \left(L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho))-\rho_{\mathfrak{a}_{\perp}}} \right) \delta_{\xi-\gamma_{0},\pi_{\mathfrak{a}}(\omega(\mu+\rho)-\rho)} + \sum_{\gamma \in \Gamma_{\mathfrak{a} \subset \mathfrak{g}}} s\left(\gamma + \gamma_{0}\right) k_{\xi+\gamma}^{(\mu)} \right)$$

$$(24)$$

where the set

$$\Gamma_{\mathfrak{a}\subset\mathfrak{a}} = \{\xi - \gamma_0 | \xi \in \Phi_{\mathfrak{a}\subset\mathfrak{a}}\} \setminus \{0\}. \tag{25}$$

So we have obtained recurrent relation for the anomalous branching coefficients.

If the set Δ_{\perp}^{+} is empty the modules $L_{\mathfrak{a}_{\perp}}$ are trivial, the dimensions are equal to 1 and we get the following formula (11) (26) from the paper [9]

$$k_{\xi}^{(\mu)} = -\sum_{\omega \in W \setminus e} \epsilon(\omega) \, k_{\xi - \pi_{\mathfrak{a}} \circ (\omega \circ \rho - \rho)}^{(\mu)} + \sum_{\omega \in W, \, \nu \in W_{\mathfrak{a}}} \epsilon(\omega) \epsilon(\nu) \delta_{\pi_{\mathfrak{a}} \circ (\omega \circ (\mu + \rho) - \rho), \xi + \rho_{\mathfrak{a}} - \nu \circ \rho_{\mathfrak{a}}}$$

$$(26)$$

In the next section we describe the algorithm for the computation of branching coefficients using the relation (24).

2.2 Algorithm for the recursive computation of the branching coefficients

We use the recurrent relation (24) to formulate the algorithm for recursive computation of the branching coefficients. It is important to mention that the computation of the branching coefficients is organised without the explicit construction of the module $L_{\mathfrak{g}}^{(\mu)}$ and any of the modules $L_{\mathfrak{g}}^{(\nu)}$.

The algorithm is divided into the following steps.

- 1. Construct the set Δ^+ of the positive roots of the algebra \mathfrak{g} .
- 2. Select the positive roots $\alpha \in \Delta^+$ which are orthogonal to the root subspace of the subalgebra \mathfrak{a} and form the set Δ_{\perp}^+ .
- 3. Construct the set $\widehat{\Psi^{(\mu)}} = \{\omega(\mu + \rho) \rho; \ \omega \in W\}$ of the anomalous points of the \mathfrak{g} -module $L^{(\mu)}$.
- 4. Select those weights $\lambda = \omega(\mu + \rho)$ which lies in the closure of the main Weyl chamber of the algebra \mathfrak{a}_{\perp} . Since we have constructed the set Δ_{\perp}^+ we can easily check if the weight λ lies in the main Weyl chamber of \mathfrak{a}_{\perp} checking that the scalar product of λ with the roots of Δ_{\perp}^+ is non-negative.

- 5. For $\lambda = \omega(\mu + \rho)$, $\lambda \in \bar{C}_{\mathfrak{a}_{\perp}}$ calculate the dimensions of the corresponding modules dim $\left(L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho))-\rho_{\mathfrak{a}_{\perp}}}\right)$ using the Weyl formula with the set Δ_{\perp}^{+} .
- 6. Construct the set Γ (25).
- 7. Calculate anomalous branching coefficients in the main Weyl chamber of the subalgebra \mathfrak{a} using recurrent relation (24).

If we are interested in the branching coefficients for the embedding of the finite-dimensional Lie algebra into the affine Lie algebra we can construct the set of the anomalous points up to required grade and use steps 4-7 of the algorithm for each grade. We can also speed up the algorithm by one-time computation of the representatives of the conjugate classes $W_{\perp}\backslash W$.

The next section consists of several examples computed with this algorithm.

3 Examples

3.1 Finite dimensional Lie algebras

3.1.1 Regular embedding of A_1 into B_2

Consider the regular embedding of A_1 into B_2 . Simple roots α_1, α_2 of B_2 are drawn as the thick vectors at the Figure 3. We denote the corresponding Weyl reflections by ω_1, ω_2 . Simple root β of the embedded A_1 is equal to $\alpha_1 + \alpha_2$.

Let's describe the reduction of fundamental representation of B_2 with the highest weight (in fundamental weight basis) equal to (1,0). On the Figure 3 we have also shown the set of points $\omega(\mu + \rho)$, $\omega \in W$ of fundamental representation of B_2 with the corresponding determinants of Weyl reflections $\epsilon(\omega)$. Now we have to factorise the Weyl group W by $W_{\perp} = \{\omega_1\}$. We get the following set of anomalous points $\omega(\mu + \rho) - \rho$, $\omega \in W_{\perp} \setminus W$: We have also depicted the corresponding $\mathfrak{a}_{\perp} = A_1$ -modules $L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu + \rho)) - \rho_{\mathfrak{a}_{\perp}}}$. Then we project these points and dimensions of modules onto the root space of subalgebra $\mathfrak{a} = A_1$ and get the following anomalous points in fundamental weights basis with corresponding multiplicities:

$$(1,2), (0,-3), (-4,3), (-5,-2)$$
 (27)

For the function $s(\gamma)$ and the set Γ from the definition (19,25) we have

$$(1,2), (2,-1)$$
 (28)

Figure 3: Regular embedding of ${\cal A}_1$ into ${\cal B}_2$

Figure 4: Anomalous points and the corresponding $\mathfrak{a}_{\perp}=A_1$ -modules

Here the second component denotes the value of $s(\gamma)$.

Anomalous branching coefficient $k_1^{(1,0)} = 2$, then for anomalous branching coefficient $k_0^{(1,0)}$ the formula (24) gives us

$$k_0^{(1,0)} = -1 \cdot k_2^{(1,0)} + 2 \cdot k_1^{(1,0)} - 3 \cdot \delta_{0,0} = 1$$
 (29)

So we have computed the branching coefficients.

3.1.2 Embedding of B_2 into B_4

Consider the the regular embedding of the subalgebra B_2 into the algebra B_4 . We calculate the branching coefficients for the fundamental representation of B_4 . The corresponding Dynkin diagrams are in the Figure 5.

Figure 5: Dynkin diagrams

In the orthogonal basis e_1, \ldots, e_4 simple roots of B_4 are

$$(e_1 - e_2, e_2 - e_3, e_3 - e_4, e_4)$$
 (30)

Positive roots are

$$(e_1 - e_2, e_2 - e_3, e_3 - e_4, e_4, e_1 - e_3, e_2 - e_4, e_3 + e_4, e_3, e_1 - e_4, e_2 + e_4, e_2, e_1 + e_4, e_2 + e_3, e_1, e_1 + e_3, e_1 + e_2)$$
 (31)

Simple roots of the embedded subalgebra $\mathfrak{a} = B_2$ are

$$(e_3 - e_4, e_4) (32)$$

The set Δ_{\perp}^{+} is equal to

$$\{e_1 - e_2, e_1 + e_2, e_1, e_2\}$$
 (33)

We see that this is the set of positive roots of the algebra $\mathfrak{a}_{\perp} = B_2$.

To find the branching coefficients we need to compute the anomalous points of B_4 , select point lying in the main Weyl chamber of \mathfrak{a}_{\perp} and compute the dimensions of corresponding \mathfrak{a}_{\perp} -modules.

We consider the B_4 -module with the highest weight $\mu = (0, 1, 0, 2) = 2e_1 + 2e_2 + e_3 + e_4$.

The set of the anomalous points $\omega(\mu + \rho) - \rho$, $\omega \in W$ consists of 384 points. We do not show it here.

We need to select those points $\omega(\mu+\rho)$ which are projected into the main chamber of the embedded algebra \mathfrak{a}_{\perp} . It means that scalar product of these points with all the roots from Δ_{\perp}^+ is non-negative.

To compute dimensions of the corresponding \mathfrak{a}_{\perp} -modules we need to project each selected point onto the root space Δ_{\perp}^+ and substract $\rho_{\mathfrak{a}_{\perp}}$, then use Weyl dimension formula.

We show the result of this procedure on the Figure 6.

Figure 6: Anomalous points with the dimensions of corresponding \mathfrak{a}_{\perp} -modules.

Then we should construct "the fan" and use the recurrent relation for the computation of anomalous branching coefficients.

Using the definition (25) we get the following set of the points Γ with the corresponding values $s(\gamma + \gamma_0)$, depicted at the Figure 7. We use the

Figure 7: Fan for $B_2 \subset B_4$

recurrent relation (24) and get following branching coefficients:

$$\pi_{\mathfrak{a}}\left(chL_{B_{4}}^{(0,1,0,2)}\right) = 6 \ chL_{B_{2}}^{(0,0)} + 60 \ chL_{B_{2}}^{(0,2)} + 30 \ chL_{B_{2}}^{(1,0)} + 19 \ chL_{B_{2}}^{(2,0)} + 40 \ chL_{B_{2}}^{(1,2)} + 10 \ chL_{B_{2}}^{(2,2)}$$

$$(34)$$

The dimension of the highest-weight B_4 -module $L_{B_4}^{(0,1,0,2)}$ is equal to 2772. It is easy to see, that right-hand side of the equation (34) gives the same result.

3.2 Affine Lie algebras

3.2.1 Embedding of the affine algebra into affine algebra

Consider the affine extension of the example 3.1.1. Since this embedding is regular, the level of the representations of the subalgebra is equal to the level of the representation of the algebra.

The set Δ_{\perp}^+ of the orthogonal positive roots with the zero projection on the root space of the subalgebra \hat{A}_1 is the same as in the finite-dimensional case.

Consider the level one representation of the algebra $\mathfrak{g} = \hat{B}_2$ with the highest weight $w_1 = (1, 0, 1, 0)$, where the first two components are the coordinates of the classical part in the orthogonal basis e_1, e_2 , the third is the level of the weight and the fourth the grade.

The set of the anomalous points of this representation up to sixth grade is depicted in the Figure 8 and in each grade it looks like in the Figure 3.

Figure 8: The anomalous points of the (1,0,1,0) representation of the algebra \hat{B}_2

As the next step of our algorithm 2.2 we project the anomalous points to the weight space of the subalgebra \hat{A}_1 and calculate the dimensions of the corresponding \mathfrak{a}_{\perp} -modules $L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho))-\rho_{\mathfrak{a}_{\perp}}}$. The result of this computation up to the twelfth grade is presented at the Figure

Figure 9: Projected anomalous points and the dimensions of \mathfrak{a}_{\perp} -modules.

Then we should construct "the fan" and use the recurrent relation for the computation of anomalous branching coefficients.

Using the definition (25) we get the following set of the points Γ with the corresponding values $s(\gamma + \gamma_0)$: 10. Here we restricted the computation to the twelfth grade.

Also we should mention that the lowest vector of the fan γ_0 is equal to zero, since we have excluded all the roots of Δ_{\perp}^+ from the defining relation (25).

Using the recurrent relation for the anomalous branching coefficients we get the following result

Selecting the points inside the main Weyl chamber of the subalgebra \hat{A}_1

Figure 10: Fan for $\hat{A}_1 \subset \hat{B}_2$

Figure 11: Anomalous branching coefficients for $\hat{A}_1 \subset \hat{B}_2$

we get the following results for the branching coefficients up to twelfth grade

$$L_{\hat{B}_{2}\downarrow\hat{A}_{1}}^{w_{1}} = 2L_{\hat{A}_{1}}^{w_{1}}(0) \oplus 1L_{\hat{A}_{1}}^{w_{0}}(0) \oplus 4L_{\hat{A}_{1}}^{w_{0}}(-1) \oplus$$

$$2L_{\hat{A}_{1}}^{w_{1}}(-1) \oplus 8L_{\hat{A}_{1}}^{w_{0}}(-2) \oplus 8L_{\hat{A}_{1}}^{w_{1}}(-2) \oplus 15L_{\hat{A}_{1}}^{w_{0}}(-3) \oplus$$

$$12L_{\hat{A}_{1}}^{w_{1}}(-3) \oplus 26L_{\hat{A}_{1}}^{w_{1}}(-4) \oplus 29L_{\hat{A}_{1}}^{w_{0}}(-4) \oplus 51L_{\hat{A}_{1}}^{w_{0}}(-5) \oplus$$

$$42L_{\hat{A}_{1}}^{w_{1}}(-5) \oplus 78L_{\hat{A}_{1}}^{w_{1}}(-6) \oplus 85L_{\hat{A}_{1}}^{w_{0}}(-6) \oplus 120L_{\hat{A}_{1}}^{w_{1}}(-7) \oplus$$

$$139L_{\hat{A}_{1}}^{w_{0}}(-7) \oplus 202L_{\hat{A}_{1}}^{w_{1}}(-8) \oplus 222L_{\hat{A}_{1}}^{w_{0}}(-8) \oplus 306L_{\hat{A}_{1}}^{w_{1}}(-9) \oplus$$

$$346L_{\hat{A}_{1}}^{w_{0}}(-9) \oplus 530L_{\hat{A}_{1}}^{w_{0}}(-10) \oplus 482L_{\hat{A}_{1}}^{w_{1}}(-10) \oplus 714L_{\hat{A}_{1}}^{w_{1}}(-11) \oplus$$

$$797L_{\hat{A}_{1}}^{w_{0}}(-11) \oplus 1080L_{\hat{A}_{1}}^{w_{1}}(-12) \oplus 1180L_{\hat{A}_{1}}^{w_{0}}(-12) \quad (35)$$

This result can be expressed using the power series expansion of the branching functions [3].

$$b_0^{(w_1)} = 1 + 4q^1 + 8q^2 + 15q^3 + 29q^4 + 51q^5 + 85q^6 + 139q^7 + 222q^8 + 346q^9 + 530q^{10} + 797q^{11} + 1180q^{12} + \dots$$
(36)

$$b_1^{(w_1)} = 2 + 2q^1 + 8q^2 + 12q^3 + 26q^4 + 42q^5 + 78q^6 + 120q^7 + 202q^8 + 306q^9 + 482q^{10} + 714q^{11} + 1080q^{12} + \dots$$
(37)

Here the lower index of the branching function denotes the number of the corresponding \hat{A}_1 fundamental weight $w_0 = \lambda_0 = (0, 1, 0), \ w_1 = \alpha/2 = (1, 1, 0).$

4 Physical applications

Here we want to discuss possible applications of the described techniques in physical models.

Branching coefficients for the embedding of affine Lie subalgebra into affine Lie algebra can be used to construct modular invariant partition functions of Wess-Zumino-Novikov-Witten models ([1], [12], [13], [14]).

But for this construction to work the embedding is required to be conformal, which means that the central charge of the subalgebra is equal to the central charge of the algebra.

$$c(\mathfrak{a}) = c(\mathfrak{g}) \tag{38}$$

The class of the conformal embeddings is rather small, the complete classification is given in the paper [14]. The requirement (38) allows to reduce the task of the computation of the branching coefficients of affine Lie algebras

to the computation of the branching coefficients of the finite-dimensional Lie algebras.

Here we describe this procedure and discuss how the requirement (38) can be used to simplify the algorithm 2.2.

Conformal embeddings should preserve conformal invariance, so Sugawara central charge should be the same for the original and the embedded theory.

The states for the theory that corresponds to the algebra g

$$J_{-n_1}^{a_1} J_{-n_2}^{a_2} \dots |\lambda\rangle \quad n_1 \ge n_2 \ge \dots > 0$$
 (39)

For sub-algebra $\mathfrak{a} \subset \mathfrak{g}$

$$\tilde{J}_{-n_1}^{a_1'} \tilde{J}_{-n_2}^{a_2'} \dots |\pi_{\mathfrak{a}}(\lambda)\rangle \tag{40}$$

Here $\tilde{J}_{-n_j}^{a_j'}$ are the generators of \mathfrak{a} and $\pi_{\mathfrak{a}}$ is the projection of \mathfrak{g} to \mathfrak{a} . \mathfrak{g} -invariance of vacuum entails its \mathfrak{a} -invariance, but it is not the case for energy-momentum tensor. So energy-momentum tensor of bigger theory should consist only of generators of \mathfrak{a} . Then $T_{\mathfrak{g}} = T_{\mathfrak{a}} \Rightarrow c(\mathfrak{g}) = c(\mathfrak{a})$. This leads to equation

$$\frac{k \dim \mathfrak{g}}{k+g} = \frac{x_e k \dim \mathfrak{a}}{x_e k + a} \tag{41}$$

Here x_e is the embedding index and g, a are dual Coxeter numbers of corresponding algebras.

It can be shown that solutions of equation (41) exist only for level 1 k=1 [1].

If we have modular-invariant partition function for the fields described by the representation of the algebra $\mathfrak g$ this modular invariance is preserved by the projection on the subalgebra $\mathfrak a$, but we need also the preservation of the conformal invariance. So we should select only those highest-weight modules of the subalgebra $\mathfrak a$ for which the relation (41) holds.

Since in the decomposition (4) the highest weight ν of the subalgebra module belongs to some grade n of projected algebra module $\pi_{\mathfrak{a}} \cdot L_{\mathfrak{g}}^{(\mu)}$, from the relation (41) one can obtain the following requirement on the conformal dimensions of the corresponding fields

$$\Delta_{\pi_{\mathfrak{a}}\mu} + n = \Delta_{\nu} \tag{42}$$

It leads to the relation on the classical parts of the corresponding weights:

$$\frac{(\mathring{\mu}, \mathring{\mu} + 2\rho)}{2(1+g)} + n = \frac{(\mathring{\nu}, \mathring{\nu} + 2\rho_{\mathfrak{a}})}{2(x_e + a)}$$
(43)

There exits the finite reducibility theorem for the conformal embeddings which states that only finite number of the branching coefficients is non-zero in the case of the conformal embedding $\mathfrak{a} \subset \mathfrak{a}$.

Then after we have found all such weights ν and the corresponding branching coefficients $b_{\nu}^{(\mu)}$ we can substitute the sums $\sum_{\nu \in P_{\mathfrak{q}}^+} b_{\nu}^{(\mu)} \chi_{\nu}$ over the modified characters χ_{ν} of the corresponding \mathfrak{q} -modules in place of the characters of the \mathfrak{g} -modules in the diagonal modular-invariant partition function

$$Z(\tau) = \sum_{\mu \in P_{\mathfrak{g}}^+} \chi_{\mu}(\tau) \bar{\chi}_{\mu}(\bar{\tau}) \tag{44}$$

Thus we obtain the non-diagonal modular-invariant partition function for the theory with the current algebra \mathfrak{a} .

$$Z_{\mathfrak{a}}(\tau) = \sum_{\nu,\lambda \in P_{\mathfrak{a}}^+} \chi_{\nu}(\tau) M_{\nu\lambda} \bar{\chi}_{\lambda}(\bar{\tau})$$

$$\tag{45}$$

4.1 Example

4.1.1 Special embedding $\hat{A}_1 \subset \hat{A}_2$

Consider the embedding of the affine Lie algebra \hat{A}_1 into \hat{A}_2 built as the affine extension of the special embedding $su(2) \subset su(3)$ with the embedding index $x_e = 4$. The level of the algebra $\mathfrak{g} = \hat{A}_2$ is equal to one, so the level of the subalgebra $\tilde{k} = kx_e = 4$.

There exist three level one dominant weights [1,0,0], [0,1,0], [0,0,1] in the weight space of \hat{A}_2 . It is easy to see that the set Δ_{\perp} is empty.

Here we view the representation with the highest weight $w_0 = (1, 0, 0)$ in detail.

The set of the anomalous points of this representation up to sixth grade is depicted in the Figure 12. We also show the root subspace of the subalgebra \hat{A}_1 under consideration.

As the next step of our algorithm 2.2 we project the anomalous points to the weight space of the subalgebra \hat{A}_1 and calculate the dimensions of the corresponding \mathfrak{a}_{\perp} -modules $L_{\mathfrak{a}_{\perp}}^{\pi_{\mathfrak{a}_{\perp}}(\omega(\mu+\rho))-\rho_{\mathfrak{a}_{\perp}}}$. The result of this computation up to the twelfth grade is presented at the Figure 13

Then we should construct "the fan" and use the recurrent relation for the computation of anomalous branching coefficients.

Using the definition (25) we get the following set of the points Γ with the corresponding values $s(\gamma + \gamma_0)$, depicted at the Figure 14. Here we restricted the computation to the twelfth grade.

Figure 12: The anomalous points of the (1,0,1,0) representation of the algebra A_2

Using the recurrent relation for the anomalous branching coefficients we get the following result

We see that only two anomalous branching coefficients inside the main Weyl chamber of A_1 are non-zero and equal to the branching coefficients. So the finite reducibility theorem holds and we get

$$L_{\hat{A}_2\downarrow\hat{A}_1}^{[1,0,0]} = L_{\hat{A}_1}^{[0,4]} \oplus L_{\hat{A}_1}^{[4,0]}$$

$$\tag{46}$$

For the other level one dominant weights of \hat{A}_2 we get trivial branching rules

$$L_{\hat{A}_2 + \hat{A}_1}^{[0,1,0]} = L_{\hat{A}_1}^{[2,2]} \tag{47}$$

$$L_{\hat{A}_{2}\downarrow\hat{A}_{1}}^{[0,1,0]} = L_{\hat{A}_{1}}^{[2,2]}$$

$$L_{\hat{A}_{2}\downarrow\hat{A}_{1}}^{[0,0,1]} = L_{\hat{A}_{1}}^{[2,2]}$$

$$(47)$$

Figure 13: Projected anomalous points and the dimensions of \mathfrak{a}_{\perp} -modules.

Using this result we can construct modular-invariant partition function

$$Z = \left| \chi_{[4,0]} + \chi_{[0,4]} \right|^2 + 2\chi_{[2,2]}^2 \tag{49}$$

5 Conclusion

We have constructed the recurrent relation for branching coefficients and proposed practical algorithm for the reduction procedure. Also we have discussed the application of this algorithm to the physical problem of construction the modular-invariant partition functions in the conformal field theory. This method of conformal embeddings is well-known but may be actual in the study of WZW-models emerging in the context of the AdS/CFT correspondence [15, 16, 17].

Figure 14: Fan for $\hat{A}_1 \subset \hat{A}_2$

Figure 15: Anomalous branching coefficients for $\hat{A}_1 \subset \hat{A}_2$

6 Acknowledgements

The work was supported in part by RFFI grant N 09-01-00504 and the National Project RNP.2.1.1./1575.

References

- [1] P. Di Francesco, P. Mathieu, and D. Senechal, *Conformal field theory*. Springer, 1997.
- [2] I. Bernstein, M. Gelfand, and S. Gelfand, "Differential operators on the base affine space and a study of γ-modules, Lie groups and their representations," in Summer school of Bolyai Janos Math.Soc. Halsted Press, NY, 1975.
- [3] V. Kac, *Infinite dimensional Lie algebras*. Cambridge University Press, 1990.
- [4] M. Wakimoto, *Infinite-dimensional Lie algebras*. American Mathematical Society, 2001.
- [5] B. Fauser, P. Jarvis, R. King, and B. Wybourne, "New branching rules induced by plethysm," J. Phys A: Math. Gen 39 (2006) 2611–2655.
- [6] S. Hwang and H. Rhedin, "General branching functions of affine Lie algebras," *Arxiv preprint hep-th/9408087* (1994) .
- [7] T. Quella, "Branching rules of semi-simple Lie algebras using affine extensions," *Journal of Physics A-Mathematical and General* **35** (2002) no. 16, 3743–3754.
- [8] B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, "Principal sl3 subspaces and quantum Toda Hamiltonians," arxiv 707.
- [9] M. Ilyin, P. Kulish, and V. Lyakhovsky, "On a property of branching coefficients for affine Lie algebras," *Algebra i Analiz, to appear, arXiv* 812, arXiv:0812.2124 [math.RT].
- [10] J. Stembridge, "Computational aspects of root systems, Coxeter groups, and Weyl characters, Interaction of combinatorics and representation theory, MSJ Mem., vol. 11," Math. Soc. Japan, Tokyo (2001) 1–38.

- [11] E. Dynkin, "Semisimple subalgebras of semisimple Lie algebras," *Matematicheskii Sbornik* **72** (1952) no. 2, 349–462.
- [12] M. Walton, "Affine Kac-Moody algebras and the Wess-Zumino-Witten model," arXiv:hep-th/9911187.
- [13] M. Walton, "Conformal branching rules and modular invariants," *Nuclear Physics B* **322** (1989) 775–790.
- [14] A. Schellekens and N. Warner, "Conformal subalgebras of Kac-Moody algebras," *Physical Review D* **34** (1986) no. 10, 3092–3096.
- [15] J. M. Maldacena and H. Ooguri, "Strings in AdS(3) and SL(2,R) WZW model. I," J. Math. Phys. 42 (2001) 2929–2960, arXiv:hep-th/0001053.
- [16] J. M. Maldacena, H. Ooguri, and J. Son, "Strings in AdS(3) and the SL(2,R) WZW model. II: Euclidean black hole," J. Math. Phys. 42 (2001) 2961–2977, arXiv:hep-th/0005183.
- [17] J. M. Maldacena and H. Ooguri, "Strings in AdS(3) and the SL(2,R) WZW model. III: Correlation functions," Phys. Rev. D65 (2002) 106006, arXiv:hep-th/0111180.