Universidade Federal de Uberlândia - UFU

Faculdade de Computação - FACOM

Bacharelado em Sistemas de Informação

FACOM32504 - Redes de Computadores

Prof. Thiago Pirola Ribeiro

Base

• As imagens e textos dos slides foram obtidas, em sua grande maioria, dos livros contantes da bibliografia da disciplina e modificadas para esta disciplina.

Redes Locais

- Introdução
- Elementos de rede (ativos/passivos)
- Topologias e suas propriedades
- Visão geral da Arquitetura IEEE 802
 - O padrão
 - IEEE 802.3 e Ethernet

Redes Locais

Redes Locais - Introdução

• Classificadas conforme distância:

Sigla	Significado	Descrição
PAN	Personal Area Network ou Rede de	Limitadas a poucos metros: blueto-
	Área Pessoal	oth
LAN	Local Area Network ou Rede de Área	Custo baixo; abrange uma sala ou
	Local	edifício
MAN	Metropolitan Area Network ou Rede	Custo médio; abrange uma grande
	de Área Metropolitana	cidade ou uma região metropolitana
WAN	Wide Area Network ou Rede de	Custo elevado; abrange várias cidade
	Longo Alcance	

Redes Locais

Elementos de Rede

Repetidores

• Um repetidor conectando dois segmentos de uma LAN.

Função de um repetidor

Hierarquia de Hubs

Roteadores interligando LANs e WANs independentes

Backbone de Barramento

Backbone em Estrela

Um Switch usando software VLAN

Dois Switches em um Backbone usando software VLAN

Redes Locais

Topologias e suas propriedades

Topologia Física

Topologia de malha completamente conectada

• Principais Desvantagens: quantidade de cabeamento e o número de portas necessárias:

Topologia Estrela

• Desvantagem: dependência de toda a topologia em um único ponto.

Topologia de Barramento

• Desvantagens: dificuldade de reconfiguração e o isolamento de falhas.

Topologia de Anel

• Desvantagens: tráfego unidirecional, uma interrupção no anel (por exemplo, uma estação inoperante) pode derrubar toda a rede.

Topologia Híbrida

• Backbone em estrela com três redes na topologia de barramento.

Redes Locais

- Projeto 802 Computer Society do IEEE 1985:
 - Estabelecer padrões que permitissem a intercomunicação entre equipamentos de fabricantes diferentes;
- Padrão adotado pela ANSI (American National Standards Institute);
- Em 1987, a ISO (*International Organization for Standardization*) aprovou como um padrão internacional (ISO 8802).

• A rede Ethernet foi desenvolvida pela Xerox em Palo Alto (PARC)

- A rede Ethernet foi desenvolvida pela Xerox em Palo Alto (PARC)
- A especificação produzida em 1980 pela DEC, Intel e Xerox (DIX) definiu uma velocidade de transmissão de 10 Mbit/s, em segmentos de cabo coaxial com comprimento máximo igual a 500 m, podendo ser coberta uma distância máxima (com repetidores) de 2.5 km;

- A rede Ethernet foi desenvolvida pela Xerox em Palo Alto (PARC)
- A especificação produzida em 1980 pela DEC, Intel e Xerox (DIX) definiu uma velocidade de transmissão de 10 Mbit/s, em segmentos de cabo coaxial com comprimento máximo igual a 500 m, podendo ser coberta uma distância máxima (com repetidores) de 2.5 km;
- A norma IEEE 802.3 adotou os principais aspectos desta especificação.

- A rede Ethernet foi desenvolvida pela Xerox em Palo Alto (PARC)
- A especificação produzida em 1980 pela DEC, Intel e Xerox (DIX) definiu uma velocidade de transmissão de 10 Mbit/s, em segmentos de cabo coaxial com comprimento máximo igual a 500 m, podendo ser coberta uma distância máxima (com repetidores) de 2.5 km;
- A norma IEEE 802.3 adotou os principais aspectos desta especificação.
- A evolução das redes IEEE 802.3 processou-se em várias direções:

- A rede Ethernet foi desenvolvida pela Xerox em Palo Alto (PARC)
- A especificação produzida em 1980 pela DEC, Intel e Xerox (DIX) definiu uma velocidade de transmissão de 10 Mbit/s, em segmentos de cabo coaxial com comprimento máximo igual a 500 m, podendo ser coberta uma distância máxima (com repetidores) de 2.5 km;
- A norma IEEE 802.3 adotou os principais aspectos desta especificação.
- A evolução das redes IEEE 802.3 processou-se em várias direções:
 - Utilização de pares de cobre em alternativa a cabo coaxial, em topologias físicas em estrela, sendo a difusão do sinal realizada por repetidores multiporta (hubs);

- A rede Ethernet foi desenvolvida pela Xerox em Palo Alto (PARC)
- A especificação produzida em 1980 pela DEC, Intel e Xerox (DIX) definiu uma velocidade de transmissão de 10 Mbit/s, em segmentos de cabo coaxial com comprimento máximo igual a 500 m, podendo ser coberta uma distância máxima (com repetidores) de 2.5 km;
- A norma IEEE 802.3 adotou os principais aspectos desta especificação.
- A evolução das redes IEEE 802.3 processou-se em várias direções:
 - Utilização de pares de cobre em alternativa a cabo coaxial, em topologias físicas em estrela, sendo a difusão do sinal realizada por repetidores multiporta (hubs);
 - Utilização de comutadores (switches) substituindo total ou parcialmente os hubs, sem necessidade de substituir a infraestrutura de cabos instalada;

- A rede Ethernet foi desenvolvida pela Xerox em Palo Alto (PARC)
- A especificação produzida em 1980 pela DEC, Intel e Xerox (DIX) definiu uma velocidade de transmissão de 10 Mbit/s, em segmentos de cabo coaxial com comprimento máximo igual a 500 m, podendo ser coberta uma distância máxima (com repetidores) de 2.5 km;
- A norma IEEE 802.3 adotou os principais aspectos desta especificação.
- A evolução das redes IEEE 802.3 processou-se em várias direções:
 - Utilização de pares de cobre em alternativa a cabo coaxial, em topologias físicas em estrela, sendo a difusão do sinal realizada por repetidores multiporta (hubs);
 - Utilização de comutadores (switches) substituindo total ou parcialmente os hubs, sem necessidade de substituir a infraestrutura de cabos instalada;
 - Aumento da velocidade de operação para 100 Mbit/s (Fast Ethernet), 1 Gbit/s (Gigabit Ethernet) e 10 Gbit/s (10G Ethernet).

• LLC - (Logical Link Control - Controle de Link Lógico)

- LLC (Logical Link Control Controle de Link Lógico)
 - Propósito: fornecer controles de fluxo e de erros para os protocolos das camadas superiores;

- LLC (Logical Link Control Controle de Link Lógico)
 - Propósito: fornecer controles de fluxo e de erros para os protocolos das camadas superiores;
 - Provê um protocolo único para o controle do enlace de dados de todas as LANs IEEE;

- LLC (Logical Link Control Controle de Link Lógico)
 - Propósito: fornecer controles de fluxo e de erros para os protocolos das camadas superiores;
 - Provê um protocolo único para o controle do enlace de dados de todas as LANs IEEE;
 - Um único protocolo LLC é capaz de fornecer acesso e interconexão entre diferentes LANs;

- MAC (Media Access Control Controle de Acesso ao Meio de transmissão)
 - Propósito: definir métodos de acesso específicos para cada rede LAN;
 - Diferente da LLC, a subcamada MAC contém uma série de módulos distintos;
 - Cada módulo define o método de acesso e o formato específico para o protocolo LAN correspondente.

Visão geral da Arquitetura IEEE 802

- Ethernet é um nome dado a uma tecnologia LAN de comutação de pacotes;
- Ethernet original 1976 PARC (Palo Alto Research Center) da Xerox;
- 1978 Xerox Corporation, a Intel Corporation e a Digital Equipment Corporation padronizaram a Ethernet: o IEEE lançou versão compatível 802.3

Topologia Física

10Base5: Thick Ethernet

10Base2: Thin Ethernet

10Base2: Thin Ethernet - Conexão

10Base-T: Twisted-Pair Ethernet

10Base-F: Fiber Ethernet

Resumindo Ethernet-Padrão

Características	10Base5	10Base2	10Base-T	10Base-F
Mídia	Cabo coaxial grosso	Cabo coaxial fino	2 UTP	2 Fibras
Comprimento máximo	500 m	185 m	100 m	2.000 m

Evolução do Padrão

Separação dos Domínios de Colisão

Switched Ethernet

Ethernet Full-Duplex

Roteiro de Estudos

Forouzan, Behrouz A. Comunicação de Dados e Redes de Computadores. 4a ed. AMGH, 2010.

• Seções: 1.1, 1.2, 13.1, 13.2, 13.3, 13.4, 13.5, 15.1, 15.2 e 15.3 INTERLIGAÇÃO DE REDES COM TCP/IP - PRINCÍPIOS, PROTOCOLOS E ARQUITETURA DOUGLAS E. COMER Volume 1 6a edição

Universidade Federal de Uberlândia - UFU

Faculdade de Computação - FACOM

Bacharelado em Sistemas de Informação

Prof. Thiago Pirola Ribeiro