Capítulo 12

Método de Newton

Algoritmo 12.1: Método de Newton.

12.1 Convergência local

Dada uma matriz quadrada A, lembre-se que a norma de A é dada por

$$||A|| = \max_{||x||=1} ||Ax||$$

onde ||Ax|| é norma usual do vetor Ax. Neste caso dizemos que a norma matricial $||\cdot||$ é induzida pela norma correspondente $||\cdot||$ de vetores. Nesta seção, ||A|| indicará a norma matricial induzida pela norma euclideana de vetores.

Exercício: Mostre que

- 1. $\|\cdot\|$ é de fato uma norma no espaço das matrizes, isto é, $\|A\| = 0 \Leftrightarrow A = 0$, $\|\lambda A\| = |\lambda| \|A\|$ e $\|A + B\| \le \|A\| + \|B\|$;
- 2. $||Ax|| \le ||A|| ||x||$ (A matriz, x vetor) e $||AB|| \le ||A|| ||B||$ (A, B matrizes);
- 3. ||I|| = 1, onde I é matriz identidade.

O resultado a seguir é uma versão simplificada do Lema 2.3.3 de [2].

Lema 12.1 (Perturbação da identidade). Se F é uma matriz quadrada tal que ||F|| < 1, então I - F é não singular $e ||(I - F)^{-1}|| \le \frac{1}{1 - ||F||}$.

Demonstração. Se I-F fosse singular, então existiria um y com ||x||=1 tal que (I-F)y=0. Assim, teríamos ||Fy||=||y||=1, e logo $||F||=\max_{||x||=1}||Fx||\geq ||Fy||=1$, uma contradição. Logo I-F é não singular.

Vamos obter a cota superior para a norma da inversa de I - F. Primeiro, é fácil ver que

$$\left(\sum_{k=0}^{N} F^{k}\right)(I - F) = I - F^{N+1},$$

onde $F^k = FF \cdots F$ (k vezes). Como ||F|| < 1 e $||F^k|| \le ||F|| ||F^{k-1}|| \le \cdots \le ||F||^k$, temos $\lim_{k \to \infty} F^k = 0$, e logo a expressão acima fornece

$$\left(\lim_{N\to\infty}\sum_{k=0}^{N}F^{k}\right)(I-F)=I,$$

donde segue que $(I - F)^{-1} = \lim_{k \to \infty} \sum_{k=0}^{N} F^k$. Assim,

$$\|(I-F)^{-1}\| = \left\| \lim_{N \to \infty} \sum_{k=0}^{N} F^k \right\| \le \lim_{N \to \infty} \sum_{k=0}^{N} \|F^k\| \le \lim_{N \to \infty} \sum_{k=0}^{N} \|F\|^k = \frac{1}{1 - \|F\|}.$$

Isso finaliza a demonstração.

O próximo lema, retirado de [3, Lema 5.4.1], diz que, dada uma matriz não singular A_* , qualquer matriz suficientemente próxima é também não singular, e a norma da sua inversa pode ser majorada pela norma da inversa de A_* . Ele será útil na prova de convergência do método de Newton, dado que temos que lidar com a inversa da hessiana de f próximo à solução.

Lema 12.2. Seja A_* matriz quadrada não singular. Se A é tal que $||A - A_*|| \le \frac{1}{2||A_*^{-1}||}$ então A é não singular $e ||A^{-1}|| \le 2||A_*^{-1}||$.

Demonstração. Note que

$$||I - AA_*^{-1}|| = ||(A - A_*)A_*^{-1}|| \le ||A - A_*|| ||A_*^{-1}|| \le 1/2.$$

Aplicando o Lema 12.1 com $F = I - AA_*^{-1}$ concluímos que $AA_*^{-1} = I - F$ é não singular e

$$\|(AA_*^{-1})^{-1}\| = \|[I - (I - AA_*^{-1})]^{-1}\| \le \frac{1}{1 - \|I - AA_*^{-1}\|} \le 2.$$

Como o produto AA_*^{-1} é não singular, A é não singular. Da desigualdade acima segue que

$$||A^{-1}|| = ||A_*^{-1}A_*A^{-1}|| = ||A_*^{-1}(AA_*^{-1})^{-1}|| \le ||A_*^{-1}|| ||(AA_*^{-1})^{-1}|| \le 2||A_*^{-1}||,$$

como queríamos demonstrar.

Finalmente, podemos provar a convergência local do método de Newton.

Teorema 12.1 (Convergência local do método de Newton). Suponha que f tenha derivadas de segunda ordem contínuas. Seja x^* tal que $\nabla f(x^*) = 0$ e suponha que $\nabla^2 f(x^*)$ seja não singular. Então existe $\varepsilon > 0$ tal que, se $||x^0 - x^*|| \le \varepsilon$, vale:

- 1. A sequência $x^{k+1} = x^k + d_N^k = x^k (\nabla^2 f(x^k))^{-1} \nabla f(x^k), \ k \ge 0$, está bem definida (isto é, o passo de Newton está bem definido para todo $k \ge 0$);
- 2. $\{x^k\}$ converge a x^* com ordem superlinear;
- 3. Se a função $\nabla^2 f$ é Lipschitz contínua, isto é, se existe L > 0 tal que

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\|, \qquad \forall x, y \in \mathbb{R}^n,$$

então $\{x^k\}$ converge a x^* com ordem quadrática.

Demonstração. Como $\nabla^2 f$ é contínua e não singular em x^* , temos $\|\nabla^2 f(x^*)^{-1}\| > 0$ e a existência de um $\varepsilon > 0$ tal que

$$||x - x^*|| \le \varepsilon \implies ||\nabla^2 f(x) - \nabla^2 f(x^*)|| \le \frac{1}{4||\nabla^2 f(x^*)^{-1}||}.$$
 (12.1)

Assim, tomando $||x^0 - x^*|| \le \varepsilon$, o Lema 12.2 garante que $x^1 = x^0 - (\nabla^2 f(x^0))^{-1} \nabla f(x^0)$ está bem definido. Por hipótese temos $\nabla f(x^*) = 0$, e logo

$$||x^{1} - x^{*}|| = ||x^{0} - x^{*} - \nabla^{2} f(x^{0})^{-1} \nabla f(x^{0})||$$

$$= ||\nabla^{2} f(x^{0})^{-1} [-\nabla^{2} f(x^{0})(x^{0} - x^{*}) + \nabla f(x^{0}) - \nabla f(x^{*})]||$$

$$\leq ||\nabla^{2} f(x^{0})^{-1}|| ||\nabla f(x^{0}) - \nabla f(x^{*}) - \nabla^{2} f(x^{0})(x^{0} - x^{*})||.$$
(12.2)

Consideremos a função φ de uma variável definida por

$$\varphi(t) = \nabla f(tx^0 + (1-t)x^*), \quad t \in [0, 1].$$

Temos

$$\varphi'(t) = \nabla^2 f(tx^0 + (1-t)x^*)(x^0 - x^*).$$

Pelo Teorema do Valor Médio aplicado à φ , existe $\bar{t} \in (0,1)$ tal que

$$\varphi'(\bar{t}) = \frac{\varphi(1) - \varphi(0)}{1 - 0},$$

o que implica

$$\nabla^2 f(\bar{t}x^0 + (1 - \bar{t})x^*)(x^0 - x^*) = \nabla f(x^0) - \nabla f(x^*).$$

Usando essa expressão em (12.2), chegamos a

$$||x^{1} - x^{*}|| \le ||\nabla^{2} f(x^{0})^{-1}|| ||\nabla^{2} f(\bar{t}x^{0} + (1 - \bar{t})x^{*})(x^{0} - x^{*}) - \nabla^{2} f(x^{0})(x^{0} - x^{*})||$$

$$\le r_{0}||x^{0} - x^{*}||,$$
(12.3)

onde

$$r_0 = \|\nabla^2 f(x^0)^{-1}\| \max_{t \in [0,1]} \|\nabla^2 f(tx^0 + (1-t)x^*) - \nabla^2 f(x^0)\|.$$

Note que para $t \in [0, 1]$, temos

$$||tx^{0} + (1-t)x^{*}|| = (1-t)||x^{0} - x^{*}|| \le ||x^{0} - x^{*}|| \le \varepsilon.$$

Assim, (12.1) e o Lema 12.2 garantem que

$$r_0 \le 2\|\nabla^2 f(x^*)^{-1}\| \frac{1}{4\|\nabla^2 f(x^*)^{-1}\|} = \frac{1}{2}.$$

Daí, segue de (12.3) que

$$||x^1 - x^*|| \le r_0 ||x^0 - x^*|| \le \varepsilon/2 \le \varepsilon,$$

e usando novamente (12.1) e o Lema 12.2, concluímos que x^2 está bem definido. Repetindo indutivamente o argumento, provamos que, para todo $k \geq 0$, o iterando $x^{k+1} = x^k - (\nabla^2 f(x^k)^{-1}) \nabla f(x^k)$ está bem definido (item 1) e que

$$||x^{k+1} - x^*|| \le r_0 \cdot r_1 \cdots r_k ||x^k - x^*|| \le \frac{1}{2^{k+1}} ||x^k - x^*||,$$
(12.4)

onde

$$r_k = \|\nabla^2 f(x^k)^{-1}\| \max_{t \in [0,1]} \|\nabla^2 f(tx^k + (1-t)x^*) - \nabla^2 f(x^k)\| \le 1/2.$$

Isso mostra que $\lim_k x^k = x^*$ com ordem superlinear (item 2).

Vamos mostrar a convergência quadrática (item 3). Suponha que $\nabla^2 f$ seja Lipschitz contínua com constante L>0, como no enunciado. O passo de indução realizado na prova dos itens 1 e 2 fornece uma expressão análoga à (12.3), com x^{k+1} no lugar de x^1 e x^k no lugar de x^0 . Assim, usando o Lema 12.2, temos

$$||x^{k+1} - x^*|| \le r_k ||x^k - x^*||$$

$$= \left(||\nabla^2 f(x^k)^{-1}|| \max_{t \in [0,1]} ||\nabla^2 f(tx^k + (1-t)x^*) - \nabla^2 f(x^k)|| \right) ||x^k - x^*||$$

$$\le \left(2||\nabla^2 f(x^*)^{-1}|| \max_{t \in [0,1]} L \underbrace{||tx^k + (1-t)x^* - x^k||}_{(1-t)||x^k - x^*||} \right) ||x^k - x^*||$$

$$\le 2||\nabla^2 f(x^*)^{-1}|| ||x^k - x^*||^2 \max_{t \in [0,1]} (1-t),$$

o que implica

$$||x^{k+1} - x^*|| \le C||x^k - x^*||^2, \tag{12.5}$$

onde $C = 2\|\nabla^2 f(x^*)^{-1}\| > 0$. Ou seja, $\lim_k x^k = x^*$ com ordem quadrática.

12.2 Newton globalizado com busca linear

Como sabemos, o método de Newton não possui convergência global. Apesar disso, sua ordem convergência é rápida quando próximo à solução. Uma ideia é "mergulhar" o método de Newton em um esquema com convergência global, tentando assim aproveitar os benefícios de Newton quando estivermos próximo à solução. Existem diferentes maneiras de fazer isso. Nesta seção apresentamos uma hibridização de Newton com o método do gradiente (Algoritmo 11.2, página 39), mergulhados no esquema geral de descida (Algoritmo 11.1, página 36). Vamos nos referir ao método resultante como "Newton globalizado".

Algoritmo 12.2: Método de Newton globalizado.

O Algoritmo 12.2 possui convergência global pois se enquadra no esquema geral de descida (Algoritmo 11.1), ao mesmo tempo que combina a rápida convergência de Newton próximo à solução. Observe que a direção $-\nabla f(x^k)$ é considerada caso a direção de Newton não passe nos testes exigidos no esquema geral de descida. Como $-\nabla f(x^k)$ satisfaz a condição β para todo $\beta \in (0,1]$ (Lema 11.1, página 38), restringimos o parâmetro $\beta \in (0,1]$ no Algoritmo 12.2. Assim, a condição β só precisa ser verificada para as direções de Newton.

O método de Newton "puro" (Algoritmo 12.1) a sua convergência local (Teorema 12.1) não dependem da direção d_N^k ser de descida. Ou seja, Newton não tem preferência por minimizadores ou maximizadores. Ele de fato pode convergir à maximizadores (veja o Exercício 6.11 de [1]). Caso a direção de Newton não seja de descida, ela será rejeitada pela condição do ângulo no

Algoritmo 12.2. Portanto é importante saber quando ela será de descida. Uma condição suficiente para tal é $\nabla^2 f(x^k)$ ser definida positiva pois, neste caso, $\nabla^2 f(x^k)^{-1}$ o será e logo

$$\nabla f(x^k)^t d_N^k = -\nabla f(x^k)^t \nabla^2 f(x^k)^{-1} \nabla f(x^k) < 0.$$

Na verdade, como a análise acerca de Newton é apenas ao redor de um ponto de acumulação x^* , basta que $\nabla^2 f(x^*)$ seja definida positiva.

O resultado a seguir resume a convergência do Algoritmo 12.2. Em particular, ele diz que a partir de uma certa iteração, o algoritmo se comporta como Newton puro para uma escolha adequada dos parâmetros.

Teorema 12.2 (Convergência de Newton globalizado). Suponha que f seja continuamente diferenciável. Seja x^* um ponto de acumulação da sequência $\{x^k\}$ gerada pelo Algoritmo 12.2, desconsiderando o critério de parada. Então

$$\nabla f(x^*) = 0.$$

Se f possuir derivadas de segunda ordem contínuas e $\nabla^2 f(x^*)$ for definida positiva então existe $\bar{k} \in \mathbb{N}$ tal que

- 1. a direção de Newton $d_N^k = -\nabla^2 f(x^k)^{-1} \nabla f(x^k)$ está bem definida para todo $k \geq \bar{k}$, ou seja, é calculada com sucesso a partir da iteração \bar{k} ;
- 2. para $\theta \in (0, \frac{1}{4\kappa}), d_N^k$ satisfaz a condição do ângulo para todo $k \geq \bar{k}$, onde

$$\kappa = \|\nabla^2 f(x^*)^{-1}\| \|\nabla^2 f(x^*)\| \ge 1$$

é o número de condição da matriz $\nabla^2 f(x^*)$;

- 3. $para \ \beta \in \left(0, \frac{1}{2\|\nabla^2 f(x^*)\|}\right), \ \|d_N^k\| \ge \beta \|\nabla f(x^k)\| \ para \ todo \ k \ge \bar{k}, \ ou \ seja, \ a \ direção \ de \ Newton nunca \'e ajustada a partir da iteração <math>\bar{k}$;
- 4. para $\eta \in (0, \frac{1}{2})$, a condição de Armijo é satisfeita com $d^k = d_N^k$ e $t_k = 1$ para todo $k \ge \bar{k}$;
- 5. $\{x^k\}$ converge a x^* com ordem pelo menos superlinear, e quadrática se $\nabla^2 f$ é Lipschitz contínua

Demonstração. Seja $K \subset \mathbb{N}$ o conjunto de índices para o qual a subsequência de $\{x^k\}$ converge, isto é, $\lim_{k \in K} x^k = x^*$. A condição de primeira ordem $\nabla f(x^*) = 0$ segue do Teorema 11.1 (página 36). A matriz $\nabla^2 f(x^*)$ é não singular pois é definida positiva. Ademais, da continuidade de $\nabla^2 f$ em x^* , existe $\varepsilon_1 > 0$ tal que $\nabla^2 f(x)$ é não singular para todo x satisfazendo $\|x - x^*\| \le \varepsilon_1$. Por sua vez, o Teorema 12.1 garante que existe $\varepsilon_2 > 0$ para o qual a direção de Newton será calculada com sucesso caso $\|x^k - x^*\| \le \varepsilon_2$. Em particular, d_N^k será calculada com sucesso na iteração k caso

$$k \in S = \{k \in K \mid ||x^k - x^*|| \le \varepsilon\},\$$

onde $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$. Mais ainda, para estes índices, $\nabla^2 f(x^k)$ é não singular, e logo $d_N^k = 0$ se, e somente se, $\nabla f(x^k) = 0$. Neste caso o algoritmo prossegue com $d^k = 0$, e nada há o que provar. Logo, podemos supor sem perda de generalidade que $d_N^k \neq 0$ para todo $k \in \mathcal{S}$. Note ainda que S é infinito e que $\lim_{k \in S} x^k = x^*$.

Vamos mostrar primeiro que cada um dos itens 1 a 4 ocorre não para um único \bar{k} , mas para todo k suficientemente grande e restrito à S. Em seguida seremos capazes de argumentar que os itens 1 a 4 ocorrem para todo $k \geq \bar{k}$, onde k é qualquer índice de \mathbb{N} .

Pelo visto acima, a boa definição de d_N^k vale para todo $k \in S$.

A condição do ângulo é satisfeita para todo $k \in S$ suficientemente grande. O Teorema da Função Inversa aplicado à ∇f garante que $\nabla^2 f^{-1}$ é contínua em x^* . A continuidade de $\nabla^2 f$ e $\nabla^2 f^{-1}$ em x^* implica

$$0 < \|\nabla^2 f(x^k)\| \le 2\|\nabla^2 f(x^*)\|, \quad 0 < \|\nabla^2 f(x^k)^{-1}\| \le 2\|\nabla^2 f(x^*)^{-1}\|$$
(12.6)

para todo $k \in S$ suficientemente grande, digamos, para todo $k \in S$, $k \ge k_0$. Assim

$$\theta \le \frac{1}{4\kappa} = \frac{1}{4\|\nabla^2 f(x^*)\| \|\nabla^2 f(x^*)^{-1}\|} \le \frac{1}{\|\nabla^2 f(x^k)\| \|\nabla^2 f(x^k)^{-1}\|}.$$
 (12.7)

Como $\nabla f(x^k)$ é simétrica, sua inversa $\nabla f(x^k)^{-1}$ também é. Ademais, $\nabla f(x^k)^t d_N^k = \nabla f(x^k)^t \nabla^2 f(x^k)^{-1} \nabla f(x^k)$, e logo segue de (12.7) e das propriedades da norma matricial que

$$\begin{split} \theta \| \nabla f(x^k) \| \| d_N^k \| &\leq \frac{\| \nabla f \| \| d_N^k \|}{\| \nabla^2 f \| \| \nabla^2 f^{-1} \|} \frac{| \nabla f^t d_N^k |}{| \nabla f^t \nabla^2 f^{-1} \nabla f |} \leq \frac{\| \nabla f \| \| d_N^k \| | \nabla f^t d_N^k |}{\| \nabla^2 f \| \| \nabla^2 f^{-1} \nabla f \|^2} \\ &= \frac{\| \nabla f \| | \nabla f^t d_N^k |}{\| \nabla^2 f \| \| \nabla^2 f^{-1} \nabla f \|} \leq \frac{\| \nabla f \| | \nabla f^t d_N^k |}{\| \nabla^2 f \nabla^2 f^{-1} \nabla f \|} \\ &= | \nabla f^t d_N^k | \end{split}$$

para todo $k \in S$, $k \ge k_0$ (omitimos " (x^k) " por simplicidade). Isso implica que

$$\nabla f(x^k)^t d_N^k = -|\nabla f(x^k)^t d_N^k| \le -\theta ||\nabla f(x^k)|| ||d_N^k||$$

para todo $k \in S$, $k > k_0$.

A condição β é satisfeita para todo $k \in S$ suficientemente grande. De (12.6) vem

$$\nabla^2 f(x^k) d_N^k = -\nabla f(x^k) \ \Rightarrow \ \|d_N^k\| \ge \frac{1}{\|\nabla^2 f(x^k)\|} \|\nabla f(x^k)\| \ge \beta \|\nabla f(x^k)\|$$

para todo $k \in S, k \ge k_0$.

A condição de Armijo é satisfeita com $t_k = 1$ para todo $k \in S$ suficientemente grande. A aproximação quadrática de f em torno de x^* (Teorema 1.2, página 8) ao longo da direção de Newton fornece

$$f(x^k + d_N^k) = f(x^k) + \nabla f(x^k)^t d_N^k + \frac{1}{2} (d_N^k)^t \nabla^2 f(x^k) d_N^k + r(d_N^k)^t d_N^k + r(d_N$$

onde

$$\frac{r(d_N^k)}{\|d_N^k\|} \to 0 \quad \text{quando} \quad d_N^k \to 0. \tag{12.8}$$

Substituindo $\nabla f(x^k) = -\nabla^2 f(x^k) d_N^k$ no termo linear da expressão acima, obtemos

$$f(x^k + d_N^k) = f(x^k) - \frac{1}{2} (d_N^k)^t \nabla^2 f(x^k) d_N^k + r(d_N^k).$$
(12.9)

Suponha por absurdo que a condição de Armijo falhe infinitas vezes para $t_k=1$, digamos para $k\in K_1\subset S$, isto é,

$$f(x^k + d_N^k) > f(x^k) + \alpha \nabla f(x^k)^t d_N^k = f(x^k) - \alpha (d_N^k)^t \nabla^2 f(x^k) d_N^k, \tag{12.10}$$

para todo $k \in K_1$. Combinando (12.9) e (12.10) e dividindo por $||d_N^k||^2$, obtemos, para todo $k \in K_1$,

$$\frac{r(d_N^k)}{\|d_N^k\|^2} \ge \left(\frac{1}{2} - \alpha\right) \frac{(d_N^k)^t \nabla^2 f(x^k) d_N^k}{(d_N^k)^t d_N^k} \ge \left(\frac{1}{2} - \alpha\right) \lambda_{\min}(\nabla^2 f(x^k)), \tag{12.11}$$

onde $\lambda_{\min}(\nabla^2 f(x^k))$ é o menor autovalor da matriz $\nabla^2 f(x^k)$.

Como $\nabla f(x^*)=0$, temos $\lim_{k\in K}\|\nabla^2 f(x^k)d_N^k\|=\lim_{k\in K}\|\nabla f(x^k)\|=0$, e como $\nabla^2 f$ é contínua e definida positiva em x^* , segue que $\lim_{k\in K}d_N^k=0$. Mais ainda, os autovalores são funções contínuas da matriz, e logo $\lambda_{\min}(\nabla^2 f(x^k))\geq 1/2\lambda_{\min}(\nabla^2 f(x^*))>0$ para todo $k\in K_1$ suficientemente grande. Assim, levando $k\in K_1$ ao limite em (12.11) obtemos

$$\lim_{k \in K_1} \frac{r(d_N^k)}{\|d_N^k\|^2} \neq 0,$$

contrariando (12.8). Concluímos portanto que (12.10) ocorre apenas finitas vezes, isto é, existe $k_1 \in S$ tal que a condição de Armijo é satisfeita para a direção de Newton d_N^k com $t_k = 1$, para todo $k \in S$, $k \ge k_1$.

Validade para todo $k \in \mathbb{N}$, $k \geq \bar{k}$. De acordo com os itens anteriores, é natural definirmos $\bar{k} = \max\{k_0, k_1\}$. Pela prova de convergência local do método de Newton (Teorema 12.1), temos

$$\|(x^k + d_N^k) - x^*\| \le \|x^k - x^*\| \le \varepsilon \tag{12.12}$$

sempre que $k \in S$ (veja (12.4)). Ou seja, a direção de Newton mantém o iterando próximo à x^* , dentro da vizinhança de raio ε . Isso nos permite utilizar o seguinte argumento: para $k=\bar{k}$, a direção de Newton é calculada com sucesso e não é descartada pois, pelo visto acima, as condições do ângulo, β e de Armijo (com $t_k=1$) são satisfeitas. O novo iterando $x^{k+1}=x^k+d_N^k$ satisfaz (12.12), e logo $k+1\in S$. Repetindo esse argumento sucessivamente, concluímos que $k\in S$ para todo $k\geq \bar{k},\ k\in \mathbb{N}$. Ou seja, os itens 1, 2, 3 e 4 valem com este \bar{k} .

Finalmente, o item 5 segue diretamente dos itens anteriores e do Teorema 12.1. \Box

Observação 12.1. A fim de aproveitar os benefícios do método de Newton, o teorema acima sugere escolhas para os parâmetros do Algoritmo 12.2. Em particular, o parâmetro η da busca de Armijo deve ser menor que 1/2; na prática é comum escolher $\eta=10^{-4}$. Os outros parâmetros são menos diretos pois dependem da hessiana de f. Mesmo assim, o item 2 sugere que quanto mais mal condicionada é a hessiana de f em x^* ($\kappa \gg 1$), mais próximo de zero θ deve ser. Na dúvida, podemos escolher $\theta \approx 0$ (usualmente, $\theta=10^{-6}$). Uma análise similar vale para β .