Umbb/FS/Master/Stat.

Module: Econométrie.

Année universitaire 2021-2022

Master MSS semestre 3

Jany 202

Préparation EMD Econométrie.

NB:Vous M'envoyer le plutôt votre travail je vous envoie le corrigé.

Modèles Econométriques Linéaires

Modèle de Regression Linéaire Multiple (Présentation. Estimation. Tests et validation. Prévision)

A) Partie Théorique (Questions de cours)

Présentation:

Présentation du Modèle: Soit $y_i = a_0 + a_1x_{i1} + a_2x_{i2} + \epsilon_i$ pour i = 1, ..., n.

Pour alléger les écritures, on prends le nombre de variables explicatives p=2 et on laisse le nombre d'observations n>1.

(i) Ecrire le modèle sous forme matricielle, bien noter les dimensions des matrices notées: $Y, X, A, \text{ et } \epsilon.$

et donner les différentes appélations de Y, X et ϵ

(ii) Exprimer ϵ en fonction de Y, X et A.

Noter
$$S=\epsilon'\epsilon=(\epsilon_1....,\epsilon_n)$$
 $\begin{pmatrix} \epsilon_1\\ \cdot\\ \cdot\\ \cdot\\ \epsilon_n \end{pmatrix}$ (iii)Résoudre l'équation $\frac{\partial S}{\partial A}=0$

En déduire

$$\hat{A} = \arg\min S = (X'X)^{-1}X'Y$$

bien noter la dimension A

où X' désigne la transposée deX

(iv) Donner les matrices X/X et X/Y en fonctions de x_{i1}, x_{i2} et y_i , avec i=1,...,n. Généraliser pour p quelconque $x_{i1}, x_{i2}, ..., x_{ip}$

Estimation (Propriétes des estimateurs)

Etude du Biais de \hat{A} :

Dans l'expression de \hat{A} remplacer Y par son expression en fonction de A

(v)Montrer que $\hat{A} = A + (X'X)^{-1}X'\epsilon$

Déduire $E(\hat{A}) = A$ en rappelant les conditons

Matrice Variance covariance de \hat{A} noté $V_{\hat{A}}$

(vi) Calculer la matrice $(\hat{A}-A)(\hat{A}-A)\prime$ et calculer son espérance

Déduire que

$$V_{\hat{A}} = \sigma_{\epsilon}^2 (X'X)^{-1}$$

en rappelant les conditions.

où σ_{ϵ}^2 désigne la variance commune de l'erreur ϵ

Montrer que la matrice

$$V_{\hat{A}} = \sigma_{\epsilon}^2 (X'X)^{-1}$$

tend vers la matrice nulle lorsque $n \rightarrow \infty$

Déduire que l'estimateur de A est B.L.U.E(Best Linéair Unbiased Estimateur)

Estimateur de la matrice variance covariance $V_{\hat{A}}$ noté $\hat{V}_{\hat{A}}$

(vii) Montrer que: $V_{\hat{A}} = \sigma^2_{\epsilon}(X'X)^{-1} \Rightarrow \hat{V}_{\hat{A}} = \hat{\sigma}^2_{\epsilon}(X'X)^{-1}$ où $\hat{\sigma}^2_{\epsilon}$ désigne l'estimateur de σ^2_{ϵ} Calcul de $\hat{\epsilon} = Y - \hat{Y}$ (Developpement du résidu)

Dans l'expression $\hat{\epsilon} = Y - \hat{Y}$ remplacer \hat{A} par $A + (X'X)^{-1}X'\epsilon(\text{ voir v})$ (viii) Déduire $\hat{\epsilon} = [I - X(\acute{X}X)^{-1}\acute{X}]\epsilon$

Mettre
$$\hat{\epsilon} = \Gamma \epsilon$$
 avec $\Gamma = \left[I - X(\hat{X}X)^{-1}\hat{X}\right]$

Propriétes de Γ

(ix) Montrer que Γ est symétrique ($\Gamma = \Gamma$) et idempotente ($\Gamma \times \Gamma = \Gamma$)

(x)

Déduire $\hat{\epsilon}'\hat{\epsilon} = \epsilon'\Gamma\epsilon$

et $E(\hat{\epsilon}'\hat{\epsilon}) = \sigma_{\epsilon}^2 tr(\Gamma)$ où tr désigne la trace de la matrice.

Ainsi : L'estimateur sans biais de la variance de l'erreur ϵ

$$\hat{\sigma}_{\epsilon}^2 = \frac{\sum_i \hat{\epsilon}_i^2}{n-p-1} = \frac{\acute{Y}\Gamma Y}{n-p-1} = \frac{SCR}{n-p-1}$$

où p le nombre de variables explicatives (notre exemple p=2)

Tests et validation

Tableau d'ANOVA et la notion de R² coefficient de Détermination

(xi) Vérifier cette équation:

$$\sum_{i} (y_{i} - \bar{y})^{2} = \sum_{i} (\hat{y}_{i} - \bar{y})^{2} + \sum_{i} (y_{i} - \hat{y})^{2}$$

SCTot= SCExp+ SCRes

Variabilié Totale=Variabilité Expliquée par le Modèle+Variabilité Non expliquée par le Modèle (Résiduelle)

Compléter le tableau suivant:

Source de variation	Somme des carrés	Degrés de liberté	Carrée Moyen
Modèle(Expliquée par le modèlede Régression)	SCExp ou SCRegr	?	$\frac{SCExp}{p}$
Résiduel(Non Expliquée par le Modèle)	SCRes	?	?
Totale	SCTot	n-1	-

Donner R² le coefficient de Détermination en fonction de SCTot, SCExp et SCRes. Qu'est ce qu'il exprime?

Que signifie R^2 proche de 1?

Que signifie R^2 proche de 0?

 R^2 corrigé noté $\bar{R}^2 = ?$ Quel est son rôle?

Test de Significativité globale de la régression(test de Fisher)

(xii) Donner H_0 et H_1 . Donner la statistique du test et la distribution sous H_0 . Donner la région critique.

Test de Significativité individuelle de la régression(test de Student)

(xiii)Donner H_0 et H_1 .Donner la statistique du test et la distribution sous H_0 .Donner la région critique.

Test de Durbin-Watson

(xiv)Donner H_0 et H_1 .Donner la statistique du test et la distribution sous H_0 .Donner la région critique.

Test du caractère aléatoire des erreurs(Test des runs ou des séquances)

(xv) Donner la statistique du test et la distribution sous H₀.Donner la région critique.

Test de Normalité des erreurs Test bde Kolmogorov Smirnov(Test KS)

- (xvi) Donner la statistique du test et la distribution sous H₀.Donner la région critique.
- B)Application:

Utiliser les résultats des Questions de cours Partie (A)

Exercice

Soit $y_i = a_0 + a_1 x_{i1} + a_2 x_{i2} + \epsilon_i$ pour i = 1, 2, 3,

i	x_{i1}	x_{i2}	y_i
1	3	1	6
2	2	3	4
3	1	2	5
4	2	1	9

Remarque: Prendre $\alpha = 5\%$. pour tous les tests.

- (i) Estimer $A = (a_0, a_1, a_2)'$
- (ii) Evaluer SCT, SCExp et SCRésidus
- (iii) Calculer \mathbb{R}^2 et Présenter le Tableau de l'ANOVA.
- (iv) Calculer V_A matrice variance covariance des estimateurs $\hat{A}=(\hat{a}_0\ ,\,\hat{a}_1,\,\hat{a}_2)'$ de $A=(a_0\ ,\,a_1,\,a_2)'$ et calculer $\hat{V}_{\hat{A}}$ l'estimateur de V_A .
 - (v) Effectuer le test de significativité individuelle de Student

Avec $(H_0: a_1 = 0)$ contre $(H_1: a_1 \neq 0)$

et $(H_0: a_2 = 0)$ contre $(H_1: a_2 \neq 0)$

- (vi) Effectuer le test de significativité globale de Fischer.
- (vii) Effectuer le test de Durbin Watson(D.W)
- (viii) Effectuer le test du caractère aléatoire des erreurs (test des runs).

Prendre H_0 : ϵ est une séquence aléatoire.

(ix) Effectuer le test de Normalité des erreurs(test KS). Prendre $H_0: \epsilon \hookrightarrow \mathcal{N}(0, \sigma_{\epsilon}^2)$.

4