Aluno(a)	Data

A Solução desta Avaliação, como arquivo.pdf, deve ser enviada para labsdg@hotmail.com

Assunto:Prova-2 meu nome

1- Desenvolver, usando o mínimo de portas lógicas, todas as etapas do projeto de um circuito conversor do código Binário (**B**₂ **B**₁ **B**₀) para o código Alfa (**A**₂ **A**₁ **A**₀) mostrado na tabela abaixo.

B ₂ B ₁ B ₀			$A_2 A_1 A_0$		
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	1	0	1	1
			I		

2- Elaborar a **Tabela de Teste de Estados** e o respectivo **Diagrama de Transição de Estados** para o circuito da figura abaixo. (A= LSB)

3- Desenvolver, usando flipflops tipo JK, todas as etapas do projeto mínimo de um contador síncrono com a seguinte sequência de contagem:

$$0 \rightarrow 1 \rightarrow 3 \ \rightarrow 4 \rightarrow 6 \rightarrow 0$$