

Exercice 1 (Sous-espaces vectoriels de dimension finie).

Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension n > 0. Soient U, V, W trois sous-espaces vectoriels de \mathbb{E} .

- 1- Montrer que si dim $U + \dim V > n$, alors $U \cap V$ n'est pas réduit à $\{0_{\mathbb{E}}\}$
- 2- On suppose que dim $U + \dim V + \dim W > 2n$, que dire de $U \cap V \cap W$?

Exercice 2 (Supplémentaires).

Soit \mathbb{E} un \mathbb{C} -espace vectoriel de dimension n > 0. Soient \mathbb{F}_1 et \mathbb{F}_2 deux sous-espaces-vectoriels de \mathbb{E} .

1- On suppose que $\dim \mathbb{F}_1 = \dim \mathbb{F}_2$. On veut montrer qu'il existe un sous-espace vectoriel \mathbb{G} de \mathbb{E} tel que :

$$\mathbb{F}_1 \oplus \mathbb{G} = \mathbb{F}_2 \oplus \mathbb{G} = \mathbb{E}$$

- a) Que dire si $\mathbb{F}_1 = \mathbb{F}_2$?
- b) Que dire si dim $\mathbb{F}_1 = n$?
- c) Si $\mathbb{F}_1 \neq \mathbb{F}_2$ et dim $\mathbb{F}_1 < n$, montrer qu'il existe un vecteur x de \mathbb{E} tel que \mathbb{F}_1 soit en somme directe avec Vect(x), et \mathbb{F}_2 également.
- d) Conclure avec une récurrence.
- 2- On suppose que $\dim \mathbb{F}_1 < \dim \mathbb{F}_2$. Montrer qu'il existe deux sous-espace vectoriel \mathbb{G}_1 et \mathbb{G}_2 de \mathbb{E} tel que :

$$\mathbb{F}_1 \oplus \mathbb{G}_1 = \mathbb{F}_2 \oplus \mathbb{G}_2 = \mathbb{E} \text{ et } \mathbb{G}_2 \subset \mathbb{G}_1$$

Pensez à utiliser la question précédente!

Problème

On cherche à résoudre, dans $\mathcal{M}_2(\mathbb{R})$, l'équation d'inconnue $M \in \mathcal{M}_2(\mathbb{R})$:

$$M^2 = I_2$$

I - Préliminaires

Soit $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{R})$.

- 1- Montrer que $\mathcal{A}_n(\mathbb{K}) \oplus \mathcal{S}_n(\mathbb{K}) = \mathcal{M}_n(\mathbb{K})$.
- 2- Décomposer la matrice A suivante comme somme d'une matrice symétrique et d'une matrice antisymétrique.

$$A = \begin{pmatrix} 1 & -1 & 3 & 8 \\ 5 & -2 & 0 & 4 \\ 4 & 1 & 2 & -2 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

II - Analyse

Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 = I_2$.

1- Soient $(A, S) \in \mathcal{A}_n(\mathbb{K}) \times \mathcal{S}_n(\mathbb{K})$ telles que M = S + A. Montrer qu'on a nécessairement :

$$\begin{cases} A^2 + S^2 &= I_2 \\ AS + SA &= \mathbf{0}_2 \end{cases}$$

2- En déduire que AS est une matrice symétrique

3- On pose
$$S=\begin{pmatrix} a & c \\ c & b \end{pmatrix}$$
 et $A=\begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix}$, avec $(a,b,c,d)\in\mathbb{R}^4$. Montrer que $d=0$ ou $a=-b$.

4- En déduire que toutes les solutions de $M^2=I_2$ sont soit I_2 , soit $-I_2$, soit de la forme :

$$\begin{pmatrix} \operatorname{ch} \phi \cos \theta & \operatorname{ch} \phi \sin \theta + \operatorname{sh} \phi \\ \operatorname{ch} \phi \sin \theta - \operatorname{sh} \phi & -\operatorname{ch} \phi \sin \theta \end{pmatrix} \text{ avec } (\theta, \phi) \in [0; 2\pi[\times \mathbb{R}$$

 $Rappel: \text{on a } \mathrm{ch}\,\phi = \frac{\mathrm{e}^\phi + \mathrm{e}^{-\phi}}{2} \text{ et } \mathrm{sh}\,\phi = \frac{\mathrm{e}^\phi - \mathrm{e}^{-\phi}}{2}, \text{ avec notamment, } \mathrm{ch}^2\,\phi - \mathrm{sh}^2\,\phi = 1, \text{ pour tout réel } \phi.$

III - Synthèse

Vérifier ques les matrices trouvées à la question précédentes sont bien solutions de l'équation de départ.