Online Convex Optimization

Chapter 2: Complete Treatment with Proofs

Shai Shalev-Shwartz

Convexification Techniques

Two Key Methods

- Randomization: Allow probabilistic predictions
- Surrogate Loss: Replace original loss with convex upper bound

Example (Prediction with Expert Advice)

- Original problem: Discrete choices
- Convexification: $w_t \in \Delta_d$ (probability simplex)
- Loss becomes $\langle w_t, z_t \rangle$

Example (Online Classification)

- Surrogate loss: $f_t(w) = 2|\langle w, v_t \rangle y_t|$
- Maintains $w_t \in \Delta_{|H|}$ (version space probabilities)

FTL Algorithm and Analysis

FTL Update Rule

$$w_t =_{w \in S} \sum_{i=1}^{t-1} f_i(w)$$

Lemma (Regret Decomposition)

For any
$$u \in S$$
: Regret_T $(u) \le \sum_{t=1}^{T} [f_t(w_t) - f_t(w_{t+1})]$

Inductive Proof Sketch.

Base case: T = 1 trivial. Inductive step uses:

$$\sum_{t=1}^{T} f_t(w_t) \leq \sum_{t=1}^{T} f_t(w_{T+1})$$

Example (Quadratic Loss)

For $f_t(w) = \frac{1}{2} ||w - z_t||^2$:

- FTL: $w_t = \frac{1}{t-1} \sum_{i=1}^{t-1} z_i$
- Regret $O(\log T)$

FTRL Framework

Regularized Objective

$$w_t =_{w \in S} \left(\sum_{i=1}^{t-1} f_i(w) + R(w) \right)$$

Theorem (FTRL Regret Bound)

For linear
$$f_t$$
 and $R(w) = \frac{1}{2\eta} \|w\|^2$: $Regret_T(u) \le \frac{\|u\|^2}{2\eta} + \eta \sum_{t=1}^T \|z_t\|^2$

Key Steps.

- Apply FTL analysis to regularized losses
- Use Lemma 2.3: $\sum (f_t(w_t) f_t(u)) \le R(u) + \sum (f_t(w_t) f_t(w_{t+1}))$
- Bound stability terms via strong convexity

Doubling Trick

Adaptive η selection without knowing T: $\eta_m = \frac{B}{1\sqrt{2m}}$ for epoch m

OGD Algorithm and Analysis

Algorithm 1 Online Gradient Descent

Require: $\eta > 0$

- 1: Initialize $w_1 = 0$
- 2: for t = 1 to T do
- 3: Predict w_t , receive $z_t \in \partial f_t(w_t)$
- 4: Update $w_{t+1} = w_t \eta z_t$
- 5: end for

Theorem (OGD Regret Bound)

For L-Lipschitz losses:
$$Regret_T(u) \leq \frac{\|u\|^2}{2\eta} + \eta TL^2$$

Proof.

- Use FTRL analysis with $R(w) = \frac{1}{2\eta} ||w||^2$
- Show $\sum ||z_t||^2 \leq TL^2$

Strongly Convex Regularizers

Definition (σ-Strong Convexity)

$$R(u) \ge R(w) + \langle \nabla R(w), u - w \rangle + \frac{\sigma}{2} ||u - w||^2$$

Example (Common Regularizers)

- Euclidean: $R(w) = \frac{1}{2} ||w||_2^2$ (1-strongly convex)
- Entropic: $R(w) = \sum w_i \log w_i$ (1-strongly convex w.r.t. ℓ_1)

Lemma (Implication for FTRL)

For
$$\sigma$$
-strongly convex R : $Regret_T(u) \leq \frac{R(u)}{n} + \eta \sum_{t=1}^{T} \|z_t\|_*^2$

OMD and Duality

OMD Framework

- Primal update: $w_{t+1} =_w \langle \eta z_t, w \rangle + D_R(w || w_t)$
- Dual view: $\theta_{t+1} = \theta_t \eta z_t$ with $w_t = \nabla R^*(\theta_t)$

Theorem (General Regret Bound)

For $R(1/\eta)$ -strongly convex: $Regret_T(u) \leq R(u) + \eta \sum_{t=1}^T \|z_t\|_*^2$

Example (EG Algorithm)

- Regularizer: $R(w) = \sum w_i \log w_i$
- Update: $w_{t+1,i} \propto w_{t,i} e^{-\eta z_{t,i}}$

Local Norm Analysis

Theorem (Normalized EG)

For
$$0 \le z_{t,i} \le 1$$
: $Regret_T(u) \le \frac{\log d}{\eta} + \eta \sum_{t=1}^T \sum_i w_{t,i} z_{t,i}^2$

Key Inequality.

Using $e^{-a} \le 1 - a + a^2$ for $a \ge -1$:

$$D_{R^*}(-z_{1:t}||-z_{1:t-1}) \le \eta \sum_i w_{t,i} z_{t,i}^2$$

Optimal Tuning

Set
$$\eta = \sqrt{\frac{\log d}{T}}$$
 for $O(\sqrt{T \log d})$ regret

Key References

- Zinkevich (2003): Original OGD framework
- Hazan et al. (2007): Adaptive gradient methods
- Shalev-Shwartz (2011): Survey synthesis
- Rakhlin (2014): Duality approaches
- Cesa-Bianchi & Lugosi (2006): Prediction with expert advice