

Aula 07 Mineração de Processos II

Prof. Dr. Rogério Rossi 2021

- Perspectiva de controle de fluxo
- Perspectiva organizacional
 - Perspectiva de recursos
- Perspectiva de performance
- Perspectiva informacional

PERSPECTIVA DE CONTROLE DE FLUXO

(Control-flow Perspective):

- foca na ordenação lógica das atividades
- Busca encontrar uma boa caracterização de todos os possíveis caminhos de um processo
 - Os dados são organizados com alguma forma de notação, como:

Redes de Petri Net, BPMN e UML

PERSPECTIVA ORGANIZACIONAL

(Organizational Perspective)

- □ reconhecida como perspectiva do recurso (**resource perspective**)
- □ Foca em dados relacionados aos **atores envolvidos em cada atividade** que podem ser **pessoas**, **sistemas**, **departamentos ou cargos**.
- Busca apresentar a rede social envolvida no processo para estruturar a organização em termos de unidades organizacionais e cargos.

PERSPECTIVA DE PERFORMANCE

(Time Perspective)

- foca nas datas e horários atribuídos ao início e fim de cada atividade do processo
 - Fornece informações detalhadas da localização dos problemas de performance por meio da combinação de um modelo de processo seja ele um modelo formal pré-definido ou um modelo minerado e os períodos identificados nos eventos de logs.

PERSPECTIVA INFORMACIONAL

(Informational Perspective)

- conhecida como perspectiva do caso (case perspective)
- □ Foca em aspectos específicos de casos individuais gerados na execução de um processo
- □ Uma instância ou caso de processo pode ser caracterizada pelo seu percurso no processo, pelos recursos que a executam, ou por valores descritos nos dados dos eventos.

Modelo de Processo de Software

(Rubin et al., 2007)

Modelo de Processo de Software

- O modelo de processo de software gerado neste fluxo tradicional (slide anterior) é prescritivo, ou seja, o modelo não necessariamente reflete o trabalho que está sendo realizado nas rotinas diárias
- □ a detecção das **discrepâncias entre o modelo de processos sugerido e o modelo que é realmente praticado** é difícil de ser evidenciada manualmente,

 ou até mesmo utilizando ferramentas como planilhas Excel
- Os praticantes do modelo, neste caso os Engenheiros de Software, não são envolvidos na modelagem do processo, e eles podem ser considerados os melhores especialistas em partes específicas que atuam.

Modelo de Processo de Software com Mineração de Processos

- Os logs de eventos ou trilhas de auditoria das ferramentas utilizadas no desenvolvimento de software pelos Engenheiros de Software são submetidos aos algoritmos de mineração de processos para identificar o processo real sendo executado.
 - ☐ As técnicas de mineração de processos podem indicar **possíveis**inconformidades do processo em execução em relação ao processo modelado

 e também indicar possíveis pontos de gargalo.
 - Permite que o Engenheiro de Processos analise estes dados e realize as otimizações que sejam mais efetivas.

Ferramentas para a mineração de processos

ProM

DISCO

ProM (Process Mining Workbench)

- ☐ facilita a análise de eventos por pesquisadores e profissionais da área de mineração de processos
- Apresenta um ambiente facilmente extensível para permitir a criação de extensões na forma de *plug-ins* por qualquer interessado e assim distribuir para outros integrantes da comunidade

DISCO

- □ foca no alto desempenho, e possui uma interface amigável e intuitiva
 - □ adota o uso de um algoritmo que pode ser considerado uma versão aprimorada do Fuzzy Miner (ProM)

ProM DISCO ☐ Open Source Software Comercial ☐ Facilmente extensível na forma de * Foca no alto desempenho, interface amigável e plug-ins sob licença L-GPL intuitiva ☐ Executável em SOs Windows, Mac e ❖ Executável em SOs Windows e Mac Linux ❖ Formatos de entrada: CSV, XLS/XLSX, MXML, XES e ☐ Formatos de entrada: XML **FXL** ☐ Possui 8 tipos de *plug-ins* para Implementa apenas uma versão de seu próprio

diferentes finalidades

algoritmo, sem divulgar detalhes de implementação

"Técnicas" na abordagem de PM considera

procedimentos e métodos

utilizados para alcançar os resultados esperados

durante a mineração de processos e

realizar análises de acordo com a

perspectiva de mineração de processos.

REMAP Filter

- objetivo possibilitar o mapeamento dos nomes abstratos dos
 arquivos a partir de seu diretório, nome e extensão
 - □ aplica **expressões regulares** ou **regex** (*regular expression*) -
- uma forma concisa e flexível de identificar cadeias de caracteres de interesse, como caracteres particulares, palavras ou padrões de caracteres.

REMAP Filter

Preparação dos Dados >>> aplicação de filtros

- Permite abstração do nível de log
- Busca **filtrar os dados relevantes presentes nos logs** e particularidades de projeto que precisam ser abstraídas.

REMAP Filter é um filtro disponível na ferramenta **ProM**

Cadeias de Markov (Markov Chain)

- algoritmo publicado em 1971 para representar o **comportamento de um sistema matemático** através dos **diferentes estados** que o sistema pode estar, e indicar como o sistema pode ser alterado em função do tempo
- Considera o **espaço amostral** dos possíveis estados como discreto, ou seja, o **sistema sofre transições de um estado para outro**, num conjunto finito ou contável de possíveis estados.

Redes de Petri (Petri Nets)

- é uma notação de modelagem de processos publicada por Carl Adam
 Petri, em 1962, com o objetivo de permitir modelar e analisar os
 processos através do formalismo
 - buscam prevenir ambiguidades, incertezas e contradições, pois possuem um único ponto de entrada, um único de saída, e cada posição (componente passivo) representa uma condição, e cada transição (componente ativo) uma tarefa

Redes de Petri (Petri Nets)

Preparação de dados

eventos reais >>> extraídos e tratados

Uso de ferramentas e técnicas de mineração de processos para se realizar a mineração dos dados sobre os eventos e realizar a identificação do processo real em execução e também verificar possíveis anormalidades.

Log

- termo utilizado para descrever um repositório de registros de eventos relevantes num sistema baseado em software
- Utilizar a mineração de processos aplicada aos processos de desenvolvimento de software >>> realizar a extração dos logs dos eventos em ferramentas utilizadas no processo.

Documeno	Da Autor	Função	Comentários
Planejae.BLL/Classes/ProjetoBL L.cs	26/9/16 19:30 João Lago	backend	Incluindo dados da classe projeto
Planejae.DAL/Planejae.DAL.csp	26/9/16	Dackellu	inclumuo dados da classe projeto
roj	19:30 João Lago	backend	Incluindo dados da classe projeto
•	26/9/16		
Planejae.UI/Content/Site.css	8:48 Matheus Magno	frontend	Mudando estilo do site
	26/9/16		
Planejae.UI/Images/login.png	8:48 Matheus Magno	frontend	Mudando estilo do site
Planejae.UI/Views/Atividade/Vi	26/9/16		
ew.cshtml	8:48 Matheus Magno	frontend	Mudando estilo do site
Planejae.DAL/Planejae.DAL.csp	25/9/16 Fernando da		
roj	20:13 Silva	dba	Atualização dos scripts
Planejae.DAL/SQL/01-	24/9/16 Fernando da	JI	Atualia a a da a aniata
Table/CreateAll.sql Planejae.DAL/SQL/01-	22:23 Silva 24/9/16 Fernando da	dba	Atualização dos scripts
Table/InsertAll.sql	22:23 Silva	dba	Inserção de domínios
Planejae.Tests/Funcional/casos	20/9/16	dba	mserção de dominios
Teste.xml	22:48 Pedro Soares	tester	Casos de testes funcionais de projetos
resectant	ZZ. 10 Tedro Joures	tester	casos de testes funcionais de projetos
Planejae.Docs/Funcional/Requi	10/9/16 Fernando da		
sitosFuncionai.docx	23:40 Silva	PO	1a versão requisitos funcionais

Abstração no nível de log

buscar as informações necessárias para responder as seguintes questões:

Como identificar as instâncias de processos (casos)?

Como identificar os tipos de arquivos?

Como abstrair detalhes do log?

Como ignorar informações desnecessárias?

Identificação de Processos

Identificação dos processos de desenvolvimento de software

- Objetivo gerar um modelo a partir dos logs de eventos, sem utilizar qualquer metainformação.
- Esta identificação visa descobrir não só o fluxo de controle dos processos, mas também os modelos organizacionais.

Identificação de Processos

Para uma interpretação humana do modelo descoberto,

pode se **traduzir os modelos gerados** para uma

notação de modelagem de processos, como:

- Redes Petri e
 - BPMN.

Verificação de Processos

objetivo - comparar um modelo formal existente com o modelo praticado, por meio da análise do um log de eventos reais da execução dos processos.

Processo Formal de Desenvolvimento de Software

PPB	Proposal and Production Budget	VTE	Validate Technical Specification
FSDA	Functional Specification Document Analysis	DEV	Development
SPPB	Send Production Planning and Budget	CODV	Code Verification
CPA	Client Proposal Analysis	TEST	Testing
		DOC	Documentation

Identificação

- identificar a sequência real de execução das atividades
- identificar as **probabilidades das atividades serem executadas conforme o modelo formal** (utiliza-se um *plug in* da ferramenta

 ProM algoritmo de **Markov Chain**).
 - Busca-se enriquecer o **modelo formal de processos**, afim de visualizar as probabilidades dentro da linha de transição de atividades do processo formal.

(Lemos *et al.*, 2011)

PARA DE	PPB	FSDA	SPPB	CPA	DEV	VTE	CODV	TEST	DOC	FIM
INÍCIO	0,560	0,018	0,003	0,128	0,252	0,000	0,018	0,007	0,014	0,000
PPB	0,000	0,285	0,021	0,276	0,136	0,000	0,005	0,008	0,003	0,266
FSDA	0,068	0,000	0,000	0,305	0,190	0,000	0,032	0,004	0,016	0,385
SPPB	0,000	0,000	0,000	0,000	0,658	0,000	0,026	0,000	0,000	0,316
CPA	0,010	0,006	0,002	0,000	0,767	0,002	0,065	0,015	0,002	0,131
DEV	0,016	0,006	0,000	0,013	0,000	0,002	0,462	0,061	0,004	0,436
VTE	0,000	0,000	0,000	0,000	0,750	0,000	0,250	0,000	0,000	0,000
CODV	0,009	0,000	0,000	0,003	0,035	0,000	0,000	0,234	0,013	0,706
TEST	0,006	0,006	0,000	0,029	0,020	0,000	0,018	0,000	0,553	0,368
DOC	0,032	0,000	0,001	0,028	0,016	0,000	0,036	0,015	0,000	0,872

Análise dos resultados

- □ probabilidade do processo iniciar na **atividade de desenvolvimento** (**DEV**) é de 25,2% (cada quatro projetos iniciados pulam todas etapas de planejamento e começam o desenvolvimento)
- Ao realizar a análise das atividades é possível representar graficamente as probabilidades de transições entre os processos

Processo Formal de Desenvolvimento de Software

representado por probabilidades de Markov Chain

Análise dos resultados

atividades de validação de especificação técnica (VTE) e envio de proposta de solução e orçamento de esforço para o cliente (SPPB) possuem uma probabilidade próxima de 0% de execução

Análise dos resultados

- atividades de verificação de código (CODV), testes (TEST) e documentação (DOC) são ignoradas em 43,6% dos projetos.
 - Da atividade de desenvolvimento (DEV) se executa o estado final
- □ Isto indica que uma parte relevante dos projetos de software são entregues sem a verificação adequada.

References

DUMAS, M.; LA ROSA, M.; MENDLING, J.; REIJERS, H. A. Fundamentals of Business Process Management, Heidelberg: Springer, 2013.

GARCIA, C. *et al.* **Process mining techniques and applications-A systematic mapping study**. International Journal of Expert Systems with Applications, v. 133, pp. 260-295, 2019.

LEMOS, A. M.; SABINO, C. C.; LIMA, R. M.; OLIVEIRA, C. A. Using process mining in software development process management: A case study. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, pp. 1181-1186, 2011.

RUBIN, V.; GÜNTHER, C. W.; VAN DER AALST, W. M.; KINDLER, E.; VAN DONGEN, B. F.; SCHÄFER, W. **Process mining** framework for software processes. In: International Conference on Software Process. Springer, Berlin, Heidelberg, pp. 169-181, 2007.

VAN DER AALST, W. Using Process Mining to Bridge the Gap between BI and BPM. IEEE Computer, v. 44, n. 12, p. 77-80, 2011.

VAN DER AALST, W.; DAMIANI, E. **Processes meet big data**: **Connecting data science with process science**. IEEE Transactions on Services Computing, v. 8, n. 6, p. 810-819, 2015.

VAN DER AALST, W. et al. **Process mining manifesto**. In: International Conference on Business Process Management. Springer, Berlin, Heidelberg, p. 169-194, 2011.

VAN DONGEN, B. F.; et al. **The ProM framework: A new era in process mining tool support.** In: International Conference on Application and Theory of Petri Nets, Springer, Berlin, Heidelberg, 2005.