白芍网络药理学

2023-12-29

LiChuang Huang

@ 立效研究院

Contents

1	摘要 1.1	。 需求和结果	1
2	前言		1
3		和方法	1
	3.1 3.2	材料	1
4	分析	结果	2
5	结论		2
6	附:	分析流程	2
	6.1		2
	6.2	白芍所有化合物 (TCMSP) 的化学类	2
			2
	0.0	6.2.2 白芍的苷类 (Glycosides, G) 成分和靶基因	3
	6.3	白芍苷类 (Glycosides, G) 的网络药理学分析	4
		, , , , , , , , , , , , , , , , , , , ,	4 5
		6.3.2 过敏性鼻炎 (allergic rhinitis, AR) 相关基因	6
			6
	6.4	a集分析 ····································	7
	0.1	6.4.1 白芍苷类 (Glycosides, G) 与 AR 交集基因的富集分析	7
	6.5		8
	0.0		8
R	efere	nce	9
${f L}$	ist	of Figures	
	1	Classification hierarchy	3
	2	Baishao Network pharmacology visualization	4
	3	Paeoniflorin Network pharmacology visualization	5
	4	Baishao glucosides targets intersect with AR related targets	6
	5	Paeoniflorin targets intersect with AR related targets	7
	6	Gly Interect genes KEGG enrichment	7
	7	Gly Interect genes GO enrichment	8
	8	Overall combining Affinity	8
	9	Paeoniflorin combine USP5	9

List of Tables

1	Baishao Compounds and targets	2
2	Baishao glycosides related compounds	3
3	AR related genes	5

1 摘要

1.1 需求和结果

- 白芍总苷 Total glucosides of paeony 中主要化学成分 10-20 个(TCMSP 筛选下口服利用度等) 及各个化学成分对应的作用靶点 (gene 与 AR 过敏性鼻炎相关),最终形成 drug-chemical-target gene 靶点图
 - 由于苷类 (Glycosides, G) 成分过少 (Tab. 2, Fig. 1), 没有利用 OB 筛选。由于靶点过少,这里也没有根据 AR 相关过滤后绘制成分靶点图,而是直接绘制,网络药理图见 Fig. 2。其中与 AR 相关的基因见 Fig. 4。
- 将获得的靶点进行 GO, KEGG 富集分析,目标靶点为 USP5,关联成分为芍药苷 Paeoniflorin
 - 苷类 (Glycosides, G) 没有富集到 USP5 (TCMSP 的苷类 (Glycosides, G) 靶点信息, 不包含 USP5
 和 SOX18) , Fig. 6 和 Fig. 7 为富集分析结果。
- 将芍药苷 pae 单独拎出,形成 pae-targets-pathway 网络,此处形成的 target genes 的 GO、KEGG 富集图也需要,备注 USP5 参与哪些部分(功能、通路)
 - Fig. 3 为 Paeoniflorin 网络药理图 (由于靶点过少,这里也没有根据 AR 相关过滤后绘制成分靶点图,而是直接绘制)。Paeoniflorin 与 AR 交集基因为 Fig. 5
- 分子对接模拟芍药苷与 USP5 互作
 - 见 Fig. 8 和 Fig. 9
- 转至第 2 步目标靶点为 SOX18, 关联成分为芍药苷 Paeoniflorin
 - Paeoniflorin 不包含 SOX18
- 第 3 步中备注 SOX18 参与哪些部分(功能、通路)
 - 不参与
- 分子对接模拟芍药苷与 SOX18 互作
 - 没有 SOX18 对应蛋白 (人类) 的 PDB 结构数据, 因此难以模拟。

2 前言

3 材料和方法

3.1 材料

3.2 方法

Mainly used method:

- Database PubChem used for querying information (e.g., InChIKey, CID) of chemical compounds; Tools of Classyfire used for get systematic classification of chemical compounds.^{1,2}
- R package ClusterProfiler used for gene enrichment analysis.³
- The API of UniProtKB (https://www.uniprot.org/help/api_queries) used for mapping of names or IDs of proteins .
- Website TCMSP https://tcmsp-e.com/tcmsp.php used for data source.⁴
- AutoDock vina used for molecular docking.⁵
- Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

5 结论

6 附:分析流程

6.1 TCMSP 白芍成分获取

Table 1 (下方表格) 为表格 Baishao Compounds and targets 概览。

(对应文件为 Figure+Table/Baishao-Compounds-and-targets.xlsx)

注: 表格共有 1036 行 17 列,以下预览的表格可能省略部分数据;表格含有 85 个唯一'Mol ID'。

Table 1: Baishao Compounds and targets

Mol ID	Herb_p	Molecu3	Molecu4	MW	AlogP	Hdon	Hacc	OB (%)	Caco-2
MOL000106	Baishao	PYG	https:	126.12	1.03	3	3	22.98	0.69
MOL000211	Baishao	Mairin	https:	456.78	6.52	2	3	55.38	0.73
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54
MOL000219	Baishao	BOX	https:	121.12	0.76	0	2	31.55	0.54

6.2 白芍所有化合物 (TCMSP) 的化学类

6.2.1 白芍的所有成分

Figure 1 (下方图) 为图 Classification hierarchy 概览。

(对应文件为 Figure+Table/Classification-hierarchy.pdf)

Figure 1: Classification hierarchy

6.2.2 白芍的苷类 (Glycosides, G) 成分和靶基因

Table 2 (下方表格) 为表格 Baishao glycosides related compounds 概览。

(对应文件为 Figure+Table/Baishao-glycosides-related-compounds.xlsx)

注:表格共有 93 行 20 列,以下预览的表格可能省略部分数据;表格含有 1 个唯一'Herb_pinyin_name'。

Table 2: Baishao glycosides related compounds

Herb_p	compounds	Target	Mol ID	Molecu	MW	AlogP	Hdon	Hacc	OB (%)
Baishao	(Z)-(1	NA	MOL001908	https:	446.55	-1.28	6	10	5.74
Baishao	albifl	NA	MOL001911	https:	480.51	-1.91	5	11	21.29
Baishao	albifl	NA	MOL001927	https:	480.51	-1.33	5	11	12.09
Baishao	galloy	NA	MOL001932	https:	632.62	-0.04	7	15	3.03
Baishao	oxypae	NA	MOL001933	https:	496.51	-1.55	6	12	21.88

Herb_p	compounds	Target	Mol ID	Molecu	MW	AlogP	Hdon	Hacc	OB (%)
Baishao	Oxypae	NA	MOL005089	https:	496.51	-1.55	6	12	8.38
Baishao	sucrose	Aldose	MOL000842	https:	342.34	-4.31	8	11	7.17
Baishao	sucrose	Aldose	MOL000842	https:	342.34	-4.31	8	11	7.17
Baishao	sucrose	Aldose	MOL000842	https:	342.34	-4.31	8	11	7.17
Baishao	sucrose	Alpha	MOL000842	https:	342.34	-4.31	8	11	7.17
Baishao	Astrag	Calmod	MOL000561	https:	448.41	-0.32	7	11	14.03
Baishao	Astrag	Calmod	MOL000561	https:	448.41	-0.32	7	11	14.03
Baishao	sucrose	Chitin	MOL000842	https:	342.34	-4.31	8	11	7.17
Baishao	Astrag	Coagul	MOL000561	https:	448.41	-0.32	7	11	14.03
Baishao	Astrag	Coagul	MOL000561	https:	448.41	-0.32	7	11	14.03

6.3 白芍苷类 (Glycosides, G) 的网络药理学分析

6.3.1 白芍-苷类 (Glycosides, G) -靶点

Figure 2 (下方图) 为图 Baishao Network pharmacology visualization 概览。

(对应文件为 Figure+Table/Baishao-Network-pharmacology-visualization.pdf)

Figure 2: Baishao Network pharmacology visualization

Figure 3 (下方图) 为图 Paeoniflorin Network pharmacology visualization 概览。

(对应文件为 Figure+Table/Paeoniflorin-Network-pharmacology-visualization.pdf)

Figure 3: Paeoniflorin Network pharmacology visualization

6.3.2 过敏性鼻炎 (allergic rhinitis, AR) 相关基因

AR 相关基因通过 geneCards 获取, 并通过 Biomart 注释。

Table 3 (下方表格) 为表格 AR related genes 概览。

(对应文件为 Figure+Table/AR-related-genes.xlsx)

注: 表格共有 178 行 8 列,以下预览的表格可能省略部分数据;表格含有 178 个唯一'hgnc_symbol'。

1. hgnc_symbol: 基因名 (Human)

Table 3: AR related genes

hgnc_s	ensemb	entrez	refseq	chromo	start	end_po	descri
ADRB2	ENSG00	154	NM_000024	5	148826611	148828623	adreno
ALOX5AP	ENSG00	241	NM_001629	13	30713478	30764426	arachi
BDNF-AS	ENSG00	497258		11	27506830	27698231	BDNF a
BGLAP	ENSG00	632	NM_199173	1	156242184	156243317	bone g
BPIFA1	ENSG00	51297	NM_001	20	33235995	33243311	BPI fo
BTK	ENSG00	695		X	101349338	101390796	Bruton
C5AR1	ENSG00	728		19	47290023	47322066	${\rm comple}$
CCDC40	ENSG00	55036	NM_001	HG2118	59543	125319	coiled
CCL1	ENSG00	6346	NM_002981	17	34360328	34363233	C-C mo
CCL18	ENSG00	6362	NM_002988	HSCHR1	18377	26129	C-C mo
CCL20	ENSG00	6364		2	227805739	227817564	$\mbox{C-C}$ mo
CCL4	ENSG00	6351	NM_002984	HSCHR1	57924	59718	C-C mo
CCNO	ENSG00	10309		5	55231152	55233608	cyclin
CCR5	ENSG00	1234	NM_000579	3	46370946	46376206	C-C mo
CCR8	ENSG00	1237	NM_005201	3	39329709	39333680	C-C mo

hgnc_s	ensemb	entrez	refseq	chromo	start	end_po	descri
•••				•••			•••

6.3.3 苷类 (Glycosides, G) 和过敏性鼻炎 (allergic rhinitis, AR) 靶基因的交集

Figure 4 (下方图) 为图 Baishao glucosides targets intersect with AR related targets 概览。

(对应文件为 Figure+Table/Baishao-glucosides-targets-intersect-with-AR-related-targets.pdf)

Figure 4: Baishao glucosides targets intersect with AR related targets

${\bf Intersection:}$

NOS2, PIK3CG, PTGS1, PTGS2

(上述信息框内容已保存至 Figure+Table/Baishao-glucosides-targets-intersect-with-AR-related-targets-content)

6.3.4 芍药苷 (Paeoniflorin, P) 和过敏性鼻炎 (allergic rhinitis, AR) 靶基因的交集

Figure 5 (下方图) 为图 Paeoniflorin targets intersect with AR related targets 概览。

(对应文件为 Figure+Table/Paeoniflorin-targets-intersect-with-AR-related-targets.pdf)

Figure 5: Paeoniflorin targets intersect with AR related targets

Intersection:

(上述信息框内容已保存至 Figure+Table/Paeoniflorin-targets-intersect-with-AR-related-targets-content)

6.4 富集分析

6.4.1 白芍苷类 (Glycosides, G) 与 AR 交集基因的富集分析

Figure 6 (下方图) 为图 Gly Interect genes KEGG enrichment 概览。

(对应文件为 Figure+Table/Gly-Interect-genes-KEGG-enrichment.pdf)

Figure 6: Gly Interect genes KEGG enrichment

Figure 7 (下方图) 为图 Gly Interect genes GO enrichment 概览。

(对应文件为 Figure+Table/Gly-Interect-genes-GO-enrichment.pdf)

Figure 7: Gly Interect genes GO enrichment

6.5 分子对接

对接的对象为: SOX18, USP5

6.5.1 芍药苷 (Paeoniflorin, P)

Figure 8 (下方图) 为图 Overall combining Affinity 概览。

(对应文件为 Figure+Table/Overall-combining-Affinity.pdf)

Figure 8: Overall combining Affinity

Figure 9 (下方图) 为图 Paeoniflorin combine USP5 概览。

(对应文件为 Figure+Table/442534_into_2dag.png)

Figure 9: Paeoniflorin combine USP5

Reference

- 1. Kim, S. et al. PubChem substance and compound databases. Nucleic Acids Research (2015).
- 2. Djoumbou Feunang, Y. et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. *Journal of Cheminformatics* 8, 61 (2016).
- 3. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 4. Ru, J. et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of cheminformatics 6, (2014).
- 5. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical Information and Modeling* **61**, 3891–3898 (2021).