

Motion Correction - fMRI preprocessing

Nicolas Francio, Mehdi Hajoub, Louis-Alexandre Léger, Pingsheng Li, Shiyi Huang

> Variant 2 Groupe Z

Introduction

"subject motion produces substantial changes in the timecourses of resting state functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration and regression of motion estimates from the data."

- Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion

Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion

Jonathan D. Power ^{a,*}, Kelly A. Barnes ^a, Abraham Z. Snyder ^{a,b}, Bradley L. Schlaggar ^{a,b,c,d}, Steven E. Petersen ^{a,b,d,e}

- ^a Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- ^b Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- ^c Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- ^d Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
- ^e Department of Psychology, Washington University in Saint Louis, St. Louis, MO, USA

Flanker Test

Flanker test :

- Participants respond to a central target stimulus while surrounded by congruent or incongruent flanker stimuli, testing attention and cognitive control.
- Utilized in fMRI to analyze brain activity, revealing the neural basis of decision making and conflict resolution during cognitive tasks

Introduction

Visualizing Data

What are the typical artefacts observed in functional and anatomical scan?

What are the typical artefacts observed in functional and anatomical scan?

Can they be identified by visual inspection?

FIT = 0

 $0.25 \, \text{FIT} < 0.5$

FIT > 0.5

FIT = 0.125

FIT = 0.5

- FIT = 0 takes the whole volume as a mask.
- FIT = 1 fails completely at masking the gray and some white matter.
- The best FIT seems to be in the 0.25-0.5 range.

FIT = 0.25

FIT = 0.375

FIT = 0.625

FIT = 0.75

Motion correction

olas Fra

• Objective: a given voxel describes the same brain position in all volumes

Visualizing the result for a volume:

Before After

Mehdi

Visualizing the result: time series for a specific voxel

- Baseline shift (Scaling factor)
- Temporal Preservation

Cost Functions

	RMS	Average FD
mutualinfo	0.094162	0.077112
woods	0.182136	0.177952
corratio	0.095800	0.088877
normcorr	0.095991	0.093267
normmi	0.095785	0.079037
leastsquares	0.099433	0.089022

 What are different types of cost functions used in FSL's motion correction?

Nicolas Francio

Middle vs Mean Reference Volumes & Subject Comparison

Middle Volume Reference

Framewise Displacement (FD) for sub-06 using reference vol: Middle 0.30 0.25 (iii) 0.20 0.15 0.00 0.05 0.00

Mean Volume Reference

Subject-06 Subject-07 Subject-08 Rotation and Translation Data Rotation and Translation Data Rotation and Translation Data --- Rotation x 0.100 0.10 --- Rotation v 0.075 0.25 - Rotation z --- Rotation z 0.05 — Translation z 0.050 0.20 0.025 0.15 0.000 -0.025 0.05 -0.050 Translation x --- Rotation v - Translation v -0.075--- Rotation z -0.05-0.15 Translation z -0.100 120

VS

Mean vs Middle Reference Volumes & Subject Comparison

Threshold = Q3 + 1.5 * IQR

Speaker

DVARS and additional outlier detection

Motion Outliers for Subject 06

Speaker

Annexe

Motion Outliers for Subject 08

DVARS and **FD** are correlated

Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion

DVARS and **FD** are correlated

Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion