JISLR 6.6.3 a) Training RSS iv) Steadily deceanes Becomere as sinculares it minimizes the RSS. when S becomes miticully large RSS will Latisfy the contraint. B also minimizes the RSS' for this mination b) Text RSS ii) Devere initially and the countrally years increasing in a Unhaupe B's are all set to 0, when 5=0. As wanty it starts to fit the model ta go but RSS declares when it fratter incurres, it will try to overfit the data and text RSS will start to incurre 9 Variance iii) Steadily incurre When " is "O' the model will predict only the constant and Variance will be less. When is to incurre, it starts to include more By and it will incurace the variance d) Bins iv) nteadily decreases by invening is from zero it will include more Bir & bias devenus

Remains constant As the reducible was is independent of the model, a vill remain contant-	
VSLR 6-6-5	
We need to minimize France Porting Property of the Property o	
We have, B = 0 & n=p=2 mininize	
Ž(y(-Σβ;x;)*+λž,β;²	
(y2-β, G1-β2×12) + (y2-β, G1-β2-52) + λ(β1+β2)	

b) From precious question we have 十角月 (y1-Bix11-B2x12)+(y2-Bix1-Bx22)+ 1 (B2+B2) = 2(31-B1X11-B2X1)2+2(B1+B2) = 2(y+ Bixi+ B2 xii-2yBx11-2yBx11-2Bx1) 241+2313017+282 217-4418,291-4318251-48,216 Let us differentiate wint Bi & Be to minimize 2 (B1, B2) - 47/211 + 4x11 B2 + 4x2B1+21B1-0 - Bi (1+2x12)=2y1x11-2x12 B2 =0 => B1 = 241×11 - 2x12 B2 47x1+4x11 B1+4x11 B2+22B=0 β2 (2+2x12) = 2y,x11 - 2x2 β, β2 = 2y,x11 - 2x1 β, From above equations Bi= Bo

grimilan to Ridge
minimize & Gi-Bo- & Bixij) + 2 [Bil > 点(タルーをおなり)+ 入三月月 = (y1-B1X11-B2X12)2+(y2-B1X51-BX51)2+ 2 (1B1+1B21) 高(ye-Po-高Bj xy) mbject to 高181145 no must mininge land coefficienty 2 (y1-(B)+ B2) X1) 20 nubicut to 18,1+1821 =5 many solutions many points & hence has

	1000	
A	4) ISLR	
an.	1) Bo	ned on majority vote Red = 6, green = 4.
		Red= 6, green= 4.
A.		no clan predicted is red
T	41) 0	
1	ii) Bar	Average is 0.45
H		no predicted class is green.
	5) ISLR	9.7.3
AT	4	
H	a) Re	In Jupyten Norbook
1	b) Eq	mation: $-0.5+x_1=x_2$
		-0.5+x1-x2>0.
	90	entication rules
		-12+×1-12>0 → Blue
		-1/2 x1 -x2 ≤0 → Rid
i	a) Ref	a Jupytu Notebook
	The same of	y Jupytu Notchock
3	f) RU	n Jupyten Notchook
	9) LA	mation can be -0.25+x1-x2>0