

Indian Association for the Cultivation of Science (Deemed to be University under the de novo category)

Master's/Integrated Master's-PhD Program/Integrated Bachelor's-Master's Program/PhD Course

Mid-Semester Examination-Autumn 2024

Subject: Introductory Mathematical Methods

and Classical Mechanics

Full marks: 25

Subject Code(s): PHS1101

Time allotted: 2 hr

Answer all questions

- 1. (a) Find a unit vector perpendicular to the plane defined by the following two vectors: $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = 2\hat{i} - 3\hat{j} + 4\hat{k}$. (b) If $\vec{A} + \vec{B} = 11\hat{i} - \hat{j} + 5\hat{k}$ and $\vec{A} - \vec{B} = -5\hat{i} + 11\hat{j} + 9\hat{k}$, then what is the angle between the vectors \vec{A} and $\vec{A} + \vec{B}$? (c) Two forces, $\vec{F}_1 = \hat{i} + 2\hat{j} + 3\hat{k}$ Newton and $\vec{F}_2 = 4\hat{i} - 5\hat{j} - 2\hat{k}$ Newton acts on a particle to displace it from point (20,5,0) m to (0,0,7) m. What is the work done? (1 mark) 2. (a) For any vector field \vec{A} , show that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$. (2 marks) (b) For any scalar field ϕ , show that $\vec{\nabla} \times (\vec{\nabla} \phi) = 0$. (2 marks) (c) Consider the surface, $\phi(x,y,z)=\frac{2}{3}$ Find a unit vector on this surface at the point えきサナモ=3 (1 mark) (1,1,1).3. (a) Consider a one-dimensional damped harmonic oscillator of mass m. The restoring and the damping forces are $-k_1x$ and $-k_2(dx/dt)$, respectively. Find its position x at a time t choosing the origin at the centre of the force. Under what conditions the motion will not be oscillatory. (3 marks)
- (b) Show that for $k_2 \to 0$, the total energy of the oscillator will be conserved. (2 marks) 4. (a) Define a central force and show that for a central force $\vec{\nabla} \times \vec{F} = 0$. (2 marks)
- (b) Show that the work done by a central force is independent of path. Hence define the potential V of the force. How V is related to the force \vec{F} ? (2 marks)
- (c) A particle moves in a central force. Show that the angular momentum about the centre of force is conserved. (1 mark)

- 5. (a) Show that the motion of a particle in an external gravitational field is confined to a two-dimensional plane.

 (1 mark)
- Show that for a motion confined in a plane, the components of acceleration are, $a_r = \ddot{r} r\dot{\theta}^2$, and $a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$, where symbols have their usual meaning. (2 marks)
 - (c) Equation of a conic section in polar coordinate is given as,

$$\frac{1}{r} = \frac{1}{\ell} + \frac{\epsilon}{\ell} \cos(\theta - \theta_i)$$

where, ℓ is the semi-latus rectum and ϵ is the eccentricity. Show that the motion of a particle under the influence of a central inverse square force is a conic section. (2 marks)