Pseudocode for Repeated Prisoner's Dilemma Simulation (Computer vs Computer)

Repeated Prisoner's Dilemma Pseudocode (Computer vs Computer)

Algorithm 1 Main Function: Run Simulation

- 1: Initialize empty list data_list for storing game data (rounds and scores)
- 2: Input: Number of rounds to play, rounds
- 3: Define available strategies for computers
- 4: Print available strategies for selection
- 5: Input: User selects computer_strategy1 for Computer 1
- 6: Input: User selects computer_strategy2 for Computer 2
- 7: Initialize scores for both computers: player1_score and player2_score to
 0
- 8: Set initial choices for both computers to "cooperate"
- 9: for each round_num from 1 to rounds do

{Main game loop over number of rounds}computer_choice1 computer_strategy1(computer_choice2) {Computer 1 decides based on strategy and opponent's last move} computer_choice2 computer_strategy2(computer_choice1) {Computer 2 responds similarly} reward_player1, reward_player2 computer_choice1 Update cumulative scores: player1_score += reward_player1, player2_score += reward_player2 Append current round data to data_list using add_data

10:15: end for

- 16: Print "Game Over!" and final scores for both computers
- 17: Export the data to CSV and Excel using excel(data_list)

Algorithm 2 Prisoner's Dilemma Function

- 1: Input: player1_choice, player2_choice
- 2: Define rewards: betrayal_reward \leftarrow 5, cooperation_reward \leftarrow 3, temptation_reward \leftarrow 8, punishment_reward \leftarrow 1
- 3: if player1_choice is "betray" AND player2_choice is "betray" then
- 4: Return punishment_reward for both
- 5: else if player1_choice is "cooperate" AND player2_choice is "cooperate" then
- 6: Return cooperation_reward for both
- 7: else if player1_choice is "betray" AND player2_choice is "cooperate" then
- 8: Return temptation_reward for Player 1, and 0 for Player 2
- 9: else if player1_choice is "cooperate" AND player2_choice is "betray" then
- 10: Return 0 for Player 1, and temptation_reward for Player 2
- 11: end if

Algorithm 3 Add Data Function

- 1: Input: data_list, round_num, player1_score, player2_score
- 2: Append current round data (round number and player scores) to data_list

Algorithm 4 Export Data to CSV/Excel

- 1: Input: data_list
- 2: Write data_list to CSV file
- 3: Write data_list to Excel file using pandas
- 4: Print confirmation of file creation

Algorithm 5 Random Strategy

- 1: **Input:** x (opponent's last choice)
- 2: Return "cooperate" or "betray" randomly

Algorithm 6 Always Betray Strategy

- 1: **Input:** x (opponent's last choice)
- 2: Always return "betray"

Algorithm 7 Always Cooperate Strategy

- 1: **Input:** x (opponent's last choice)
- 2: Always return "cooperate"

Algorithm 8 Tit-for-Tat Strategy

- 1: **Input:** x (opponent's last choice)
- 2: Return opponent's last action

Algorithm 9 Strategy C (50% chance to betray or mimic)

- 1: **Input:** x (opponent's last choice)
- 2: Return "betray" with 50% probability, or mimic opponent's last action

Algorithm 10 Strategy D (50% chance to cooperate or mimic)

- 1: **Input:** x (opponent's last choice)
- 2: Return "cooperate" with 50% probability, or mimic opponent's last action

Algorithm 11 Strategy Xb (Bias towards betrayal, 70%)

- 1: **Input:** x (opponent's last choice)
- 2: Return "betray" with 70% probability, or "cooperate"

Algorithm 12 Strategy Xc (Bias towards cooperation, 70%)

- 1: **Input:** x (opponent's last choice)
- 2: Return "cooperate" with 70% probability, or "betray"