

SGM8271/SGM8272/SGM8274 High Voltage Rail-to-Rail Output Operational Amplifiers

GENERAL DESCRIPTION

The SGM8271 (single), SGM8272 (dual) and SGM8274 (quad) are high voltage operational amplifiers that are designed to offer a wide input common mode voltage range and output voltage swing. These devices can operate from ±2.25V to ±18V dual power supplies or from 4.5V to 36V single supply.

The devices feature high slew rate, low input bias and offset current, low offset voltage and low offset-voltage temperature coefficient.

The SGM8271/2/4 are specified over the extended -40°C to +125°C temperature range. The SGM8271 single is available in Green SOT-23-5, MSOP-8 and SOIC-8 packages. The SGM8272 dual is available in Green SOIC-8 and MSOP-8 packages. The SGM8274 quad is available in Green SOIC-14 and TSSOP-14 packages.

FEATURES

- Low Power Consumption: 150µA/Amplifier
- Wide Input Common Mode Voltage Range
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Rail-to-Rail Output
- High Input Impedance
- Low Offset Voltage: 3mV (MAX)
- High Slew Rate: 7V/µs
- Small Packaging:

SGM8271 Available in Green SOT-23-5, MSOP-8 and SOIC-8

SGM8272 Available in Green MSOP-8 and SOIC-8 SGM8274 Available in Green TSSOP-14 and SOIC-14

APPLICATIONS

High Impedance Sensor

Photodiode Amplifier

Precision Instrumentation

Phase-Locked Loop Filter

High End, Professional Audio

DAC Output Amplifier

ATE

Medical

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	SOT-23-5	-40°C to +85°C	SGM8271AYN5G/TR	SBDXX	Tape and Reel, 3000
	SOT-23-5	-40°C to +85°C	SGM8271BYN5G/TR	SG5XX	Tape and Reel, 3000
SGM8271	MSOP-8	-40°C to +85°C	SGM8271YMS8G/TR	SGM8271 YMS8 XXXXX	Tape and Reel, 3000
	SOIC-8	-40°C to +85°C	SGM8271YS8G/TR	SGM 8271YS8 XXXXX	Tape and Reel, 2500
	SOIC-8	-40°C to +125°C	SGM8271XS8G/TR	SGM 8271XS8 XXXXX	Tape and Reel, 2500
	MSOP-8	-40°C to +85°C	SGM8272YMS8G/TR	SGM8272 YMS8 XXXXX	Tape and Reel, 3000
SGM8272	SOIC-8	-40°C to +85°C	SGM8272YS8G/TR	SGM 8272YS8 XXXXX	Tape and Reel, 2500
	SOIC-8	-40°C to +125°C	SGM8272XS8G/TR	SGM 8272XS8 XXXXX	Tape and Reel, 2500
	SOIC-14	-40°C to +85°C	SGM8274YS14G/TR	SGM8274YS14 XXXXX	Tape and Reel, 2500
SGM8274	SOIC-14	-40°C to +125°C	SGM8274XS14G/TR	SGM8274XS14 XXXXX	Tape and Reel, 2500
	TSSOP-14	-40°C to +85°C	SGM8274YTS14G/TR	SGM8274 YTS14 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

- Serial Number

NOTE: XX = Date Code. XXXXX = Date Code and Vendor Code.

SOT-23-5

SOIC-8/MSOP-8/SOIC-14/TSSOP-14

YYY X X

Date Code - Month
Date Code - Year

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

- Date Code - Year

SGM8271/SGM8272 SGM8274

High Voltage Rail-to-Rail Output Operational Amplifiers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S 40V
Input Common Mode Voltage Range
(-V _S) - 0.1V to (+V _S) - 1.5V
Input/Output Voltage Range (- V_S) - 0.3V to (+ V_S) + 0.3V
Differential Input Voltage1.5V
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM4000V
MM (SGM8271/2)150V
MM (SGM8274)300V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

NOTE:

1. Proper power supply sequencing is recommended for the CMOS device. Always sequence $V_{\rm S}$ on first, followed by the inputs and outputs.

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

SGM8271AYN5G (TOP VIEW)

SGM8271BYN5G (TOP VIEW)

SGM8271 (TOP VIEW)

SGM8272 (TOP VIEW)

SGM8274 (TOP VIEW)

ELECTRICAL CHARACTERISTICS

 $(V_S = 5V, R_L = 2k\Omega \text{ connected to 2.5V, unless otherwise noted.})$

PARAMETER CONDITIONS		SGM8271/2/4						
		COMPITIONS	TYP	М	MIN/MAX OVER TEMPERATURE			
		CONDITIONS	+25℃	+25℃	-40℃ to +85℃	-40℃ to +125℃	UNITS	MIN/ MAX
Input Offset Voltage (Vos)		V _{CM} = 2.5V	0.6	3.0	3.8	3.9	mV	MAX
Input Offset Voltage Drift (ΔV _{OS} /Δ	ΔT)		3				μV/°C	TYP
Input Bias Current (I _B)			20				pА	TYP
Input Offset Current (I _{OS})			20				pА	TYP
Open-Loop Voltage Gain (A _{OL})		V_{OUT} = 0.5V to 4.5V, R_L = 5k Ω	86	75	72	70	dB	MIN
Output Valtage Swing from Dail	V _{OH}	$R_L = 10k\Omega$	16	39	43	46	mV	MAX
Output Voltage Swing from Rail	V _{OL}	$R_L = 10k\Omega$	14	30	34	38	mV	MAX
Outside Object Object (I)	Sink	$R_L = 10\Omega$	46.2	34.1	21.5	11.0	mA N	NAINI
Output Short-Circuit Current (I _{SC})	Source	$R_L = 10\Omega$	44.4	30.5	20.7	12.3		MIN
Input Common Mode Voltage Range	ge (V _{CM})		-0.1 to 3.5				٧	TYP
Common Mode Rejection Ratio (CMRR)		V _{CM} = -0.1V to 3.5V	84	67	62	60	dB	MIN
Power Supply Rejection Ratio (PSRR)		V _S = 4.5V to 36V	103	82	80	78	dB	MIN
Quiescent Current/Amplifier		I _{OUT} = 0A	144	275	309	329	μA	MAX
Gain-Bandwidth Product (GBP)		C _L = 100pF, V _{CM} = 2.5V	1.4				MHz	TYP
Gain Margin		C _L = 100pF, V _{CM} = 2.5V	-10				dB	TYP
Phase Margin		C _L = 100pF, V _{CM} = 2.5V	50				٥	TYP
Channel-to-Channel Crosstalk		f = 1MHz	-80				dB	TYP
Olavi Data (OD)	Up	V _{OUT} = 2V _{P-P} step, C _L = 100pF, A _V = 1	5				V/µs	TYP
Slew Rate (SR)	Down	V _{OUT} = 2V _{P-P} step, C _L = 100pF, A _V = 1	5				V/µs	TYP
Overland December Times (ODT)	Up	$V_{IN} \times G = V_{S}$	2.0					TVD
Overload Recovery Time (ORT)	Down	$V_{IN} \times G = V_{S}$	4.0				μs	TYP
Settling Time (t _S)		$C_L = 100$ pF, $A_V = 1$, 200mV output step	2				μs	TYP
		f = 20kHz, V _{CM} = 2.5V	30				n)// ==	T) (5
Input Voltage Noise Density (en)		$f = 1kHz, V_{CM} = 2.5V$ 45				nV/√Hz	TYP	
Total Harmonic Distortion + Nois	е	$V_{OUT} = 2V_{P-P}$, f = 1kHz, $A_V = 1$, $R_L = 600\Omega$	0.018				0/	TVD
(THD+N)		$V_{OUT} = 2V_{P-P}, f = 1kHz, A_V = 1, R_L = 2k\Omega$	0.009				%	TYP

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = \pm 5V, R_L = 2k\Omega \text{ connected to 0V, unless otherwise noted.})$

PARAMETER			SGM8271/2/4					
		COMPITIONS	TYP	М	MIN/MAX OVER TEMPERATURE			E
		CONDITIONS	+25℃	+25℃	-40℃ to +85℃	-40°C to +125°C	UNITS	MIN/ MAX
Input Offset Voltage (Vos)		V _{CM} = 0V	0.6	3.0	3.8	3.9	mV	MAX
Input Offset Voltage Drift (ΔV _{OS} /Δ	T)		3				μV/°C	TYP
Input Bias Current (I _B)			20				pА	TYP
Input Offset Current (I _{OS})			20				pА	TYP
Open-Loop Voltage Gain (A _{OL})		V_{OUT} = -4.5V to 4.5V, R_L = 5k Ω	93	81	78	76	dB	MIN
Output Voltage Swing from Deil	V _{OH}	$R_L = 10k\Omega$	28	67	73	79	mV	MAX
Output Voltage Swing from Rail	V_{OL}	$R_L = 10k\Omega$	23	39	47	62	mV	MAX
Output Current (I _{OUT})			60				mA	TYP
Input Common Mode Voltage Range (V _{CM})			-5.1 to 3.5				٧	TYP
Common Mode Rejection Ratio (CMRR)		V _{CM} = -5.1V to 3.5V	92	75	68	66	dB	MIN
Quiescent Current/Amplifier		I _{OUT} = 0A	145	276	311	332	μA	MAX
Gain-Bandwidth Product (GBP)		C _L = 100pF, V _{CM} = 0V	1.4				MHz	TYP
Gain Margin		C _L = 100pF, V _{CM} = 0V	-10				dB	TYP
Phase Margin		C _L = 100pF, V _{CM} = 0V	50				٥	TYP
Channel-to-Channel Crosstalk		f = 1MHz	-80				dB	TYP
Olari Data (OD)	Up	V _{OUT} = 2V _{P-P} step, C _L = 100pF, A _V = 1	6				V/µs	TYP
Slew Rate (SR)	Down	V _{OUT} = 2V _{P-P} step, C _L = 100pF, A _V = 1	4				V/µs	TYP
Occasional Basessana Times (OBT)	Up	$V_{IN} \times G = V_{S}$	1.5					TVD
Overload Recovery Time (ORT)	Down	$V_{IN} \times G = V_{S}$	2.5				μs	TYP
Settling Time (t _S)		C _L = 100pF, A _V = 1, 200mV output step	2				μs	TYP
Innut Veltage Naine Danette (c.)		f = 20kHz, V _{CM} = 0V	30				n\// ==	TVD
Input Voltage Noise Density (e _n)		f = 1kHz, V _{CM} = 0V	45			nV/√⊦		TYP
Total Harmonic Distortion + Noise	9	$V_{OUT} = 2V_{P-P}, f = 1kHz, A_V = 1, R_L = 600\Omega$	0.018				0/	TVD
(THD+N)		$V_{OUT} = 2V_{P-P}$, $f = 1kHz$, $A_V = 1$, $R_L = 2k\Omega$	0.009				%	TYP

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = \pm 15V, R_L = 2k\Omega \text{ connected to 0V, unless otherwise noted.})$

PARAMETER			SGM8271/2/4					
		CONDITIONS	TYP	MI	MIN/MAX OVER TEMPERATURE			E
		CONDITIONS	+25°C	+25°C	-40℃ to +85℃	-40°C to +125°C	UNITS	MIN/ MAX
Input Offset Voltage (Vos)		V _{CM} = 0V	0.6	3.0	3.8	3.9	mV	MAX
Input Offset Voltage Drift (ΔV _{OS} /Δ	T)		3				μV/°C	TYP
Input Bias Current (I _B)			20				pА	TYP
Input Offset Current (Ios)			20				pА	TYP
Open-Loop Voltage Gain (A _{OL})		V_{OUT} = -14.5V to 14.5V, R_L = 5k Ω	100	85	82	80	dB	MIN
Output Valtage Swing from Beil	V _{OH}	$R_L = 10k\Omega$	67	174	193	210	mV	MAX
Output Voltage Swing from Rail	V _{OL}	$R_L = 10k\Omega$	63	102	124	148	mV	MAX
Output Current (I _{OUT})			60				mA	TYP
Input Common Mode Voltage Range (V _{CM})			-15.1 to 13.5				V	TYP
Common Mode Rejection Ratio (CMRR)		V _{CM} = -15.1V to 13.5V	95	79	71	66	dB	MIN
Quiescent Current/Amplifier		I _{OUT} = 0A	150	286	320	337	μA	MAX
Gain-Bandwidth Product (GBP)		C _L = 100pF, V _{CM} = 0V	1.4				MHz	TYP
Gain Margin		C _L = 100pF, V _{CM} = 0V	-10				dB	TYP
Phase Margin		C _L = 100pF, V _{CM} = 0V	50				۰	TYP
Channel-to-Channel Crosstalk		f = 1MHz	-80				dB	TYP
Claus Data (CD)	Up	V _{OUT} = 2V _{P-P} step, C _L = 100pF, A _V = 1	7				V/µs	TYP
Slew Rate (SR)	Down	$V_{OUT} = 2V_{P-P}$ step, $C_L = 100$ pF, $A_V = 1$	4				V/µs	TYP
Overdeed Beauty Times (OBT)	Up	$V_{IN} \times G = V_{S}$	0.5					TVD
Overload Recovery Time (ORT)	Down	$V_{IN} \times G = V_{S}$	1.0				μs	TYP
Settling Time (t _S)		C _L = 100pF, A _V = 1, 200mV output step	2				μs	TYP
Input Voltage Noise Density (en)		f = 20kHz, V _{CM} = 0V	29				n\// [TYP
		$f = 1kHz, V_{CM} = 0V$ 43					nV/ _{√Hz}	וור
Total Harmonic Distortion + Noise	Э	$V_{OUT} = 2V_{P-P}, f = 1kHz, A_V = 1, R_L = 600\Omega$	0.018				0/	TVD
(THD+N)		$V_{OUT} = 2V_{P-P}$, $f = 1kHz$, $A_V = 1$, $R_L = 2k\Omega$	0.009				%	TYP

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = \pm 18V, R_L = 2k\Omega \text{ connected to 0V, unless otherwise noted.})$

PARAMETER			SGM8271/2/4					
		CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE				RE
PARAWETER		CONDITIONS	+25℃	+25℃	-40°C to +85°C	-40°C to +125°C	UNITS	MIN/ MAX
Input Offset Voltage (Vos)		V _{CM} = 0V	0.6	3.0	3.8	3.9	mV	MAX
Input Offset Voltage Drift (ΔV _{OS} /Δ	T)		3				μV/°C	TYP
Input Bias Current (I _B)			20				pА	TYP
Input Offset Current (Ios)			20				pА	TYP
Open-Loop Voltage Gain (A _{OL})		V_{OUT} = -17.5V to 17.5V, R_L = 5k Ω	101	87	84	82	dB	MIN
Outrot Valtage Code a frage Dail	V _{OH}	$R_L = 10k\Omega$	81	208	231	251	mV	MAX
Output Voltage Swing from Rail	V _{OL}	$R_L = 10k\Omega$	73	119	146	172	mV	MAX
Output Current (I _{OUT})	•		60				mA	TYP
Input Common Mode Voltage Rang	je (V _{CM})		-18.1 to 16.5				V	TYP
Common Mode Rejection Ratio (CMRR)		V _{CM} = -18.1V to 16.5V	91	78	72	69	dB	MIN
Quiescent Current/Amplifier		I _{OUT} = 0A	157	299	332	352	μA	MAX
Gain-Bandwidth Product (GBP)		C _L = 100pF, V _{CM} = 0V	1.4				MHz	TYP
Gain Margin		C _L = 100pF, V _{CM} = 0V	-10				dB	TYP
Phase Margin		C _L = 100pF, V _{CM} = 0V	50				0	TYP
Channel-to-Channel Crosstalk		f = 1MHz	-80				dB	TYP
Olaria Data (OD)	Up	V _{OUT} = 2V _{P-P} step, C _L = 100pF, A _V = 1	7				V/µs	TYP
Slew Rate (SR)	Down	$V_{OUT} = 2V_{P-P}$ step, $C_L = 100$ pF, $A_V = 1$	4				V/µs	TYP
Occasional Basessana Times (OBT)	Up	$V_{IN} \times G = V_{S}$	0.5					TVD
Overload Recovery Time (ORT)	Down	$V_{IN} \times G = V_S$	1.0				μs	TYP
Settling Time (t _S)		C _L = 100pF, A _V = 1, 200mV output step	2				μs	TYP
Input Voltage Noise Density (en)		f = 20kHz, V _{CM} = 0V	29				n)// /_	
		f = 1kHz, V _{CM} = 0V 43					nV/ _{√Hz}	TYP
Total Harmonic Distortion + Noise)	$V_{OUT} = 2V_{P-P}$, f = 1kHz, $A_V = 1$, $R_L = 600\Omega$	0.018				0/	TVD
(THD+N)		$V_{OUT} = 2V_{P-P}$, $f = 1kHz$, $A_V = 1$, $R_L = 2k\Omega$	0.009				%	TYP

TYPICAL APPLICATION CIRCUITS

TYPICAL PERFORMANCE CHARACTERISTICS

At $V_S = \pm 15V$, $R_L = 2k\Omega$ connected to 0V, unless otherwise noted.

SGM8271/SGM8272 SGM8274

High Voltage Rail-to-Rail Output Operational Amplifiers

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JANUARY 2017 – REV.A.1 to REV.A.2	Page
Added Differential Input Voltage	3
JANUARY 2016 – REV.A to REV.A.1	Page
Changed CMRR minimum at V _S = 5V, ±5V	5~6
Deleted Output Current (I _{OUT}) conditions	6~8
Updated SOIC-14 and TSSOP-14 packages	14~15
Deleted differential voltage	1
Changes from Original (AUGUST 2012) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS SOT-23-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	BSC	
e1	1.900	BSC	BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS MSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650 BSC		0.026 BSC		
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

PACKAGE OUTLINE DIMENSIONS SOIC-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions imeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	1.65	0.049	0.065	
A3	0.55	0.75	0.022	0.030	
b	0.36	0.49	0.014	0.019	
D	8.53	8.73	0.336	0.344	
E	5.80	6.20	0.228	0.244	
E1	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050	BSC	
L	0.45	0.80	0.018	0.032	
L1	1.04	REF	0.040) REF	
L2	0.25	BSC	0.01	BSC	
R	0.07		0.003		
R1	0.07		0.003		
h	0.30	0.50	0.012	0.020	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS TSSOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches		
, , , ,	MIN	MAX	MIN	MAX	
Α		1.200		0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	4.860	5.100	0.191	0.201	
Е	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650	BSC	0.026	BSC	
L	0.500	0.700	0.02	0.028	
Н	0.25	TYP	0.01 TYP		
θ	1°	7°	1°	7°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
SOIC-14	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1
TSSOP-14	13"	12.4	6.95	5.60	1.20	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13"	386	280	370	5