第1回. 実数の定義と性質 (三宅先生の本, 1.1と 1.4の内容)

岩井雅崇 2021/04/13

1 記法に関して

以下この授業を通してよく使う記号や用語をまとめる. (興味がなければ飛ばして良い)

1.1 よく使う記号

- $\mathbb{N} = \{$ **自然数全体** $\} = \{1, 2, 3, 4, 5, \cdots \}$
- $\mathbb{Z} = \{$ **整数全**体 $\} = \{0, \pm 1, \pm 2, \cdots \}$
- $\mathbb{Q} = \{$ 有理数全体 $\} = \{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \}$
- ℝ = { 実数全体 }
- $\mathbb{R} \setminus \mathbb{Q} = \{x \in \mathbb{R} \mid x \notin \mathbb{Q}\} = \{$ 無理数全体 $\}$

1.2 区間

- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\} \ (a,b \ 共に実数)$
- $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$ $(a \ \text{tistable distance}, b \ \text{tistable distance})^1$
- $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$ $(a は実数または <math>-\infty, b$ は実数)
- $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ $(a は実数または <math>-\infty$, b は実数または $+\infty$)

特に(a,b) を開区間といい, [a,b] を閉区間という. この記法により, $\mathbb{R}=(-\infty,+\infty)$ である.

例 1. $A = [-1,1], B = [-2,-1), C = [2,+\infty)$ とする. $A \cap B$ は空集合である. A のみ閉区間であり、 開区間はこの中にはない.

1.3 有界集合

定義 2. A を \mathbb{R} の部分集合とする.

- \underline{A} が上に有界であるとは、ある実数 a があって、任意の (すべての) $x \in A$ について $x \le a$ となること. $(A \subset (-\infty, a]$ に同じ.)
- \underline{A} が下に有界であるとは、ある実数 a があって、任意の $x \in A$ について $a \le x$ となること、 $(A \subset [a, +\infty)$ に同じ、)
- \underline{A} が有界であるとは、上にも下にも有界であること。(ある正の実数 a があって、 $A\subset [-a,a]$ となることと同じ。)

 $^{^{1}+\}infty$ は実数ではないが限りなく大きなものとして扱います.一種の記法です. $-\infty$ も同様に限りなく小さいものとして扱います.

例 3. $A=[-1,1], B=[-2,-1), C=[2,+\infty)$ とする. A,B は有界集合である. C は下に有界であるが、上に有界ではない.

1.4 数列と数列の極限

定義 4. 各自然数 n について、実数 a_n を対応させたものを $\{a_n\}_{n=1}^{\infty}$ と書き、数列と呼ぶ.

- 常に $a_n \in \mathbb{Q}$ であるとき, 有理数列という.
- $\{a_n \mid n \in \mathbb{N}\}$ が有界であるとき, 有界数列という.
- $a_1 \leq a_2 \leq a_3 \leq \cdots$ であるとき、単調増加数列という.
- $a_1 \ge a_2 \ge a_3 \ge \cdots$ であるとき, 単調減少数列という.

例 5. • $a_n = \frac{1}{n}$ からなる数列は有理数列, 有界数列, 単調減少数列である.

- $a_n = n$ からなる数列は有理数列, 単調増加数列である.
- \bullet $a_n=(-1)^n\sqrt{2}$ からなる数列は有界数列である.

定義 6 (数列の極限の感覚的な定義). 数列が $\{a_n\}_{n=1}^{\infty}$ が極限 $\alpha \in \mathbb{R}$ を持つとは, n を大きくしていくと a_n が α に限りなく近づくこと. このとき

$$\lim_{n\to\infty}a_n=\alpha\text{ stat }a_n\xrightarrow[n\to\infty]{}\alpha$$

とかき、 $\underline{a_n}$ は $\underline{\alpha}$ に収束するという。 $\underline{a_n}$ が収束しないとき、 $\underline{a_n}$ は発散するという。 \underline{n} を大きくしていくと、 $\underline{a_n}$ が限りなく大きくなるとき、 $\underline{\lim_{n\to\infty}a_n=+\infty}$ と書く。限りなく小さくなるとき、 $\underline{\lim_{n\to\infty}a_n=-\infty}$ と書く。

これでも良いのだが、万が一のため数列の極限の厳密な定義も書いておく. 2

定義 7 $(\epsilon$ -N 論法を用いた厳密な極限の定義)。 数列が $\{a_n\}_{n=1}^\infty$ が極限 $\alpha \in \mathbb{R}$ を持つとは、任意の正の実数 ϵ について、ある $N \in \mathbb{N}$ があって、N < n ならば $|a_n - \alpha| < \epsilon$ となること.

定理 8 (実数の存在)。 $\mathbb Q$ を有理数の集合とする. このとき $\mathbb Q$ を含む集合 X があって, 次を満たす.

- 1. 任意の $x \in X$ に関して、ある有理数列 $\{a_n\}$ があり、 $\lim_{n\to\infty} a_n = x$ となる.
- 2. X 上の数列 $\{a_n\}$ がコーシー列ならば、ある $\alpha \in X$ があり、 $\lim_{n\to\infty} a_n = \alpha$ となる. (コーシー列は収束する.)

 $^{^2}$ この授業では ϵ -N 論法を用いた厳密な証明はしないつもりだが, 念のため定義をします. 詳しいことは追加資料で書きます. 後期の担当の先生によっては ϵ -N 論法や ϵ - δ 論法を使うかもしれないので, 後期で分からなくなった場合, 適宜利用してください.

このX を \mathbb{R} と書き、実数の集合と呼ぶ.

ここで数列 $\{a_n\}$ がコーシー列とは任意の正の実数 ϵ について、ある $N\in\mathbb{N}$ があって、N< m,n ならば $|a_n-a_m|<\epsilon$ となる数列のこととする.

定理 9 (実数の連続性). ℝ上の上に有界な単調増加数列は収束する.

同様に ℝ上の下に有界な単調減少数列は収束する.

例 ${f 10.}\ a_n=rac{1}{n}$ は下に有界な単調減少数列である. よって定理 9 から数列 $\{a_n\}$ は収束する. 実際 $\lim_{n o\infty}a_n=0$ である.

命題 11 (極限の性質). $\lim_{n\to\infty}a_n=\alpha,\ \lim_{n\to\infty}b_n=\beta,\ c\in\mathbb{R}$ とするとき, 以下が成り立つ.

- $\lim_{n\to\infty}(a_n\pm b_n)=\alpha\pm\beta$
- $\lim_{n\to\infty}(ca_n)=c\alpha$
- $\lim_{n\to\infty} (a_n b_n) = \alpha \beta$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\alpha}{\beta} \ (\beta \neq 0 \ \mathcal{O}$ とき.)

1.5 最大・最小・上限・下限

定義 12. *A* を ℝ の部分集合とする.

- $\underline{m} \in \underline{A}$ が \underline{A} の最大とは、任意の $\underline{a} \in A$ について $\underline{a} \leq m$ となること. このとき $\underline{m} = \max(A)$ と書く.
- $\underline{m \in A}$ が \underline{A} の最小とは、任意の $a \in A$ について $m \leq a$ となること. このとき $\underline{m = \min(A)}$ と書く.
- Aが上に有界であるとき、

 $\sup A = \min\{x \in \mathbb{R} \mid$ 任意の $a \in A$ について $a \leq x$ となる $\}$

 εA の上限とする. A が上に有界でないとき, $\sup A = +\infty$ とする.

A が下に有界であるとき、

 $\inf A = \max\{x \in \mathbb{R} \mid$ 任意の $a \in A$ について $x \leq a$ となる $\}$

 δA の下限とする. A が下に有界でないとき, $\inf A = -\infty$ とする.

注意点として、最大・最小はいつも存在するとは限らないが、上限・下限はいつも存在する. $(\pm\infty$ を含めてですが.)

例 13. A = (0,1] のとき, $\max(A) = \sup(A) = 1$, $\inf(A) = 0$, $\min(A)$ は存在しない.

2 演習問題

演習問題の解答は授業の黒板にあります.

- 1. $A = \{1 \frac{1}{n} \mid n \in \mathbb{N}\}$ とする. A の最大・最小・上限・下限を求めよ. また A が有界であることを示せ.
- 2. $a_1=10, a_{n+1}=10\sqrt{a_n}$ として、数列 $\{a_n\}_{n=1}^\infty$ を定める. 数列 $\{a_n\}_{n=1}^\infty$ は有界な単調増加数列であることを示せ、またこの数列の収束値を求めよ.