Training I 2021. Sept 26. Yelao Ferwick Tree & Range Sum Query Importance of This topic in CP: "I mean RSQ (range sum query), RMQ, (range minimum / maximum query), or R whatever Q is a topic in CP that cannot be emphasized enough!" — Charlie Liu. What's this data structure (Ferwick Tree) used for? Consider this RSQ problem: There are 1 boxes and 2 types of queries 1. add a marbles to box i 2. sum marbles from box k to box Y 012345678810111213 4 5 4 10 13 3 7 SUM(0, 3) = 10 Query 2 Update (0, +3) = Query Sum (0, 3) = 13 Query We will discuss / go over 3 possible ways to solve this problem. The worst case complexity are O(n) $O(\sqrt{n})$ $O(\log(N))$ O(N) construction O(N. Lag(N)) Construction

3	
	1 1 1+ - C 1:4
	1. Accumulative Sum List
	7 (2) (2) (2)
	Define A where $a_i = \sum_{j=0}^{n} B(j)$ $0 < i < n$
	7.0
-	012345618110112134136118
_b	j=0 0123456788101112131415161718 ; [145410133749101234791314
451	O 1 2 3 : 1 5 10 14
A	. 1 5 10 14
- 6	
	$a_1 = b_1$
	az = b1 + bz
ÇE.	az = b , + bz + bz
7	
A.	an = b, + b2 + b3 + + bn
	Sum Query · Sum (i, j)=[A[j] - A(i-1) for i>1
	Complexity (A(j) i=0
	Complexity CCC)
	Upolate Query Upolate (i, m)
	opare due y opinic o , , ,
	A(R) += m z s R s N
	Complexity O(N)
	Worst time complexity: O(N)
	Good to use if no updates happen

Two dimensional Accumulative 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21 22 23 24	e Sum Matrix
1 3 6	$Aij = \sum_{n=1}^{2} \sum_{m=1}^{2} B_{mn}$ $Sum Query O(1)$ $Update O(n^{2})$

Note that sort decomposition not only can be used in
Note that sort decomposition not only can be used in RMQ (range minimum Query) or RSQ (range sum Query)
But some problems can only be solved easily by some sort decomposition rather than femula tree / segment the
sart decomposition rather than femula tree / segment the
"sgrt decomp isn't just a datastructure. It's a
problem solving strategy. If I am doing something
with an array of length N, does it help if I
break it into SQRT(N) blocks of subarray of
length SQRT(N)?" - Charlie Lin

