目 录

极限专题	2
函数极限	2
数列极限	5
微分学专题	8
一元微分	8
多元微分	9
积分学专题	11
不定积分	11
定积分	13
反常积分	14
二重积分	15
三重积分	16
曲线积分	17
曲面积分	19
微分方程专题	21
微积分应用专题	23
几何应用	23
物理应用	27
证明题专题	28
中值定理	28
不等式	31
无穷级数专题	34
其他类型专题	39

极限专题

函数极限

1.
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x \ln \left(1 + \sin^2 x\right)}$$
 (九, 決)

2.
$$\lim_{x \to 0} \frac{(x - \sin x)e^{-x^2}}{\sqrt{1 - x^3} - 1}$$
 (+\(\preceq\), \(\preceq\))

3.
$$\lim_{x\to 0} \frac{\ln(e^{\sin x} + \sqrt[3]{1-\cos x}) - \sin x}{\arctan(4\sqrt[3]{1-\cos x})}$$
 (+--, 初)

4.
$$\lim_{x\to 0} \frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}}{x^2}$$
 (十, 初)

变式:
$$\lim_{x\to 0} \frac{1-\cos x\sqrt{\cos 2x}\dots\sqrt[n]{\cos nx}}{x^2}$$

5.
$$\lim_{x \to \frac{\pi}{2}} \frac{\left(1 - \sqrt{\sin x}\right)\left(1 - \sqrt[3]{\sin x}\right) \cdots \left(1 - \sqrt[n]{\sin x}\right)}{\left(1 - \sin x\right)^{n-1}}$$
 (+--, $\frac{\pi}{2}$)

6.
$$\lim_{x\to 0} \frac{\sqrt{\frac{1+x}{1-x}} \cdot \sqrt[4]{\frac{1+2x}{1-2x}} \cdot \sqrt[6]{\frac{1+3x}{1-3x}} \cdots \sqrt[2n]{\frac{1+nx}{1-nx}} - 1}{3\pi \arctan x - (x^2+1)\arctan^3 x}$$
, 其中 n 为正整数。 (十二, 决)

7.
$$\lim_{x \to +\infty} \sqrt{x^2 + x + 1} \frac{x - \ln(e^x + x)}{x}$$
 (十三,初)

8.
$$\lim_{x \to \infty} \frac{\left(\int_0^x e^{u^2} du\right)^2}{\int_0^x e^{2u^2} du}$$
 (六, 決)

9.
$$\lim_{x\to 0} \left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n} \right)^{\frac{e}{x}}$$
 (一,初)

10.
$$\lim_{x \to \infty} e^{-x} \left(1 + \frac{1}{x} \right)^{x^2}$$
 (二, 初)

11.
$$\lim_{x\to 0} \frac{(1+x)^{\frac{2}{x}} - e^2[1-\ln(1+x)]}{x}$$
 (Ξ , \eth)

变式:
$$\lim_{x\to 0} \frac{(1+x)^{\frac{2}{x}} - e^2 \left[1 - \ln(1+x)\right]}{x^2}$$

高等数学

12.
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}$$
 (二, 读)

13.
$$\lim_{x \to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x}$$
 (三, 决)

14.
$$\lim_{x \to +\infty} \left[\left(x^3 + \frac{x}{2} - \tan \frac{1}{x} \right) e^{\frac{1}{x}} - \sqrt{1 + x^6} \right]$$
 (三, 读)

变式:
$$\lim_{x \to +\infty} \left[\left(x^3 + \frac{x}{2} - x^3 \tan \frac{1}{x} \right) e^{\frac{1}{x}} - \sqrt{1 + x^6} \right]$$

15.
$$\lim_{x \to 0^{+}} \left[\ln(x \ln a) \cdot \ln\left(\frac{\ln ax}{\ln \frac{x}{a}}\right) \right], a > 1$$
 (四, 决)

16.
$$\lim_{x \to +\infty} \sqrt[3]{x} \int_{x}^{x+1} \frac{\sin t}{\sqrt{t + \cos t}} dt$$
 (四, 初)

17. 设函数
$$y = \begin{cases} \frac{\sqrt{1 - a \sin^2 x} - b}{x^2}, & x \neq 0 \\ 2, & x = 0 \end{cases}$$
 在点 $x = 0$ 处连续,则 $a + b$ 的值为

18. 设 f(x), g(x) 在 x=0 的某一邻域 U 内有定义, 对任意 $x \in U$,

$$f(x) \neq g(x)$$
, 且 $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = a > 0$, 求 $\lim_{x\to 0} \frac{\left[f(x)\right]^{g(x)} - \left[g(x)\right]^{g(x)}}{f(x) - g(x)}$ 。

(十二,初)

19. 已知
$$\lim_{x\to 0} \left(1 + x + \frac{f(x)}{x}\right)^{\frac{1}{x}} = e^3$$
,求 $\lim_{x\to 0} \frac{f(x)}{x^2}$ 。 (六,初)

20. 若
$$f(1) = 0$$
, $f'(1)$ 存在,求极限 $\lim_{x\to 0} \frac{f(\sin^2 x + \cos x)\tan 3x}{(e^{x^2} - 1)\sin x}$ 。 (八,初)

21. 设f(x)在点x=1附近有定义,且在点x=1可导,f(1)=0,f'(1)=2,求

极限
$$\lim_{x\to 0} \frac{f\left(\sin^2 x + \cos x\right)}{x^2 + x \tan x}$$
。

(一, 决)

- 22. 设 f(x)有二阶导数连续,且 f(0) = f'(0) = 0,f''(0) = 6,求 $\lim_{x\to 0} \frac{f(\sin^2 x)}{x^4}$ 。
 (九,初)
- 24. 设函数 f(x) 在 x = 0 的某邻域内有二阶连续导数,且 f(0), f'(0), f''(0)均不为零。证明:存在唯一一组实数 k_1, k_2, k_3 ,使得

$$\lim_{h \to 0} \frac{k_1 f(h) + k_2 f(2h) + k_3 f(3h) - f(0)}{h^2} = 0$$

(二, 决)

- 25. 设函数 y = f(x) 的二阶导数连续,且 f''(x) > 0, f(0) = 0, f'(0) = 0, 求 $\lim_{x \to 0} \frac{x^3 f(u)}{f(x) \sin^3 u}$, 其中 u 是曲线 y = f(x) 在点 P(x, f(x)) 处的切线在 x 轴上的截距。
- 26. 设f(x)在 $[0,+\infty)$ 上连续,无穷积分 $\int_0^{+\infty} f(x) dx$ 收敛,求 $\lim_{y\to +\infty} \frac{1}{y} \int_0^y x f(x) dx$ 。

(一, 决)

27. 设
$$f(x)$$
在 $[1,+\infty)$ 上连续可导, $f'(x) = \frac{1}{1+f^2(x)} \left[\sqrt{\frac{1}{x}} - \sqrt{\ln(1+\frac{1}{x})} \right]$,证明:
$$\lim_{x \to +\infty} f(x)$$
存在。 (四,决)

数列极限

1.
$$\lim_{n\to\infty} (1+a)(1+a^2)\cdots(1+a^{2^n}), |a|<1$$
 (二, 初)

2.
$$\lim_{n\to\infty}\cos\frac{\theta}{2}\cdot\cos\frac{\theta}{2^2}\cdots\cos\frac{\theta}{2^n}$$
 (三, 初)

3.
$$\lim_{n \to \infty} \left(\frac{a^{\frac{1}{n}} + b^{\frac{1}{n}} + c^{\frac{1}{n}}}{3} \right)^{n}, a > 0, b > 0, c > 0$$
 (一, 读)

4.
$$\lim_{n\to\infty} n \left[\left(1 + \frac{1}{n} \right)^n - e \right]$$
 (一,決)

5.
$$\lim_{n\to\infty} \left[1 + \sin\left(\pi\sqrt{1+4n^2}\right)\right]^n$$
 (五, 初)

6.
$$\lim_{n\to\infty} \sin^2\left(\pi\sqrt{n^2+n}\right)$$
 (九,初)

7.
$$\lim_{n\to\infty} n\sin(\pi n!e)$$
 变式: $\lim_{n\to\infty} n\sin(2\pi n!e)$ (七, 决)

8.
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$$
 (二,決)

9.
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2} \sin^2\left(1 + \frac{k}{n}\right)$$
 (十二, 決)

10.
$$\lim_{n\to\infty} n \left(\frac{\sin\frac{\pi}{n}}{n^2+1} + \frac{\sin\frac{2\pi}{n}}{n^2+2} + \dots + \frac{\sin\pi}{n^2+n} \right)$$
 (七, 初)

11.
$$\lim_{n\to\infty}\sum_{k=1}^{n}\frac{k}{(k+1)!}$$
 (\vec{n}, \vec{n})

12. 设
$$\alpha \in (0,1)$$
,则 $\lim_{n \to +\infty} (n+1)^{\alpha} - n^{\alpha}$ (十,初)

13.
$$\lim_{n\to\infty} (n!)^{\frac{1}{n^2}}$$
 (四, 初)

14.
$$\lim_{n\to\infty}\sum_{k=1}^{n-1}\left(1+\frac{k}{n}\right)\sin\frac{k\pi}{n^2}$$
 (一,决)

15.
$$\lim_{n\to\infty} \left[\sqrt[n+1]{(n+1)!} - \sqrt[n]{(n)!} \right]$$
 (九, 决)

16.
$$\lim_{n\to\infty} \sqrt{n} \left(1 - \sum_{k=1}^{n} \frac{1}{n + \sqrt{k}} \right)$$
 (十一,決)

17. 若
$$f(x)$$
 在点 $x = a$ 可导,且 $f(a) \neq 0$,则 $\lim_{n \to \infty} \left(\frac{f\left(a + \frac{1}{n}\right)}{f(a)} \right)^n$ 。 (八,初)

18. 设数列
$$\{a_n\}$$
满足: $a_1 = 1$,且 $a_{n+1} = \frac{a_n}{(n+1)(a_n+1)}$, $n \ge 1$ 。求极限 $\lim_{n \to \infty} n! a_n$ 。
(十二,初)

- 19. 设 $x_1 = 2021, x_n^2 2(x_n + 1)x_{n+1} + 2021 = 0(n \ge 1)$,证明数列 $\{x_n\}$ 收敛,并求极限 $\lim_{n \to \infty} x_n$ 。 (十三,初)
- 20. 设 $x_0 = 1, x_n = \ln(1 + x_{n-1})(n \ge 1)$,则 $\lim_{n \to \infty} nx_n = _____$ 。(十三补赛,初)
- 21. 设f(x)在区间(-1,1)内三阶连续可导,满足

$$f(0) = 0, f'(0) = 1, f''(0) = 0, f'''(0) = -1$$

22. 设D是平面上由光滑闭曲线围成的有界区域,其面积为A>0,函数f(x,y)在该区域及其边界上连续且f(x,y)>0,记

$$J_n = \left(\frac{1}{A}\iint\limits_D f^{1/n}\big(x,y\big)\mathrm{d}\sigma\right)^n$$
 则 $\lim\limits_{n\to +\infty} J_n = \underline{\hspace{1cm}}$ 。 (六,换)

23. 设函数 f(x) 在闭区间[0,1]上具有连续导数, f(0)=0, f(1)=1。证明:

$$\lim_{n \to \infty} n \left[\int_0^1 f(x) dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right] = -\frac{1}{2}$$
(人, 初)

25. 设函数 f(x) 在闭区间 [a,b] 上有连续的二阶导数,证明:

$$\lim_{n \to \infty} n^{2} \left[\int_{a}^{b} f(x) dx - \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + \frac{2k-1}{2n}(b-a)\right) \right] = \frac{(b-a)^{2}}{24} \left[f'(b) - f'(a) \right]$$
 (+\(\equiv.\)

- 26. 设 $\{a_n\}_{n=0}^{\infty}$ 为数列, a,λ 为有限数,求证:
 - (1) 如果 $\lim_{n\to\infty} a_n = a$,则 $\lim_{n\to\infty} \frac{a_1 + a_2 + \ldots + a_n}{n} = a$ 。
- (2) 如果存在正整数 p, 使得 $\lim_{n\to\infty} \left(a_{n+p}-a_n\right)=\lambda$, 则 $\lim_{n\to\infty} \frac{a_n}{n}=\frac{\lambda}{p}$ 。 (三,初)

微分学专题

一元微分

1. 设
$$y = y(x)$$
由 $x = \int_{1}^{y-x} \sin^2\left(\frac{\pi t}{4}\right) dt$ 所确定,则 $\frac{dy}{dx}\Big|_{x=0} =$ ______。 (六,初)

2. 已知
$$\begin{cases} x = \ln(1 + e^{2t}) \\ y = t - \arctan e^{t} \end{cases}$$
, 求 $\frac{d^2 y}{dx^2}$ 。 (二, 决)

3. 设
$$f(t)$$
 二阶连续可导,且 $f(t) \neq 0$,若
$$\begin{cases} x = \int_0^t f(s) ds \\ y = f(t) \end{cases}$$
,则
$$\frac{d^2 y}{dx^2} = \underline{\qquad} (七, \ \text{決})$$

4. 设函数 y = y(x) 由方程 $xe^{f(y)} = e^y \ln 29$ 确定, 其中 f 具有二阶导数, 且 $f' \neq 1$,

则
$$\frac{d^2y}{dx^2} =$$
 (一,初)

5. 设
$$f(x) = e^x \sin 2x$$
,则 $f^{(4)}(0) = _____$ 。 (八,初)

拓展: 设 $f(x) = e^x \sin x$, 求 $f^{(n)}(x)$ 。

6. 设函数
$$f(x) = (x+1)^n e^{-x^2}$$
,则 $f^{(n)}(-1) = _____$ 。 (十二,初)

7. 设
$$f(x) = (x^2 + 2x - 3)^n \arctan^2 \frac{x}{3}$$
, 其中 n 为正整数,则 $f^{(n)}(-3) = ______。 (十一,决)$

8. 设函数
$$f(x)$$
连续, $g(x) = \int_0^1 f(xt) dt$,且 $\lim_{x\to 0} \frac{f(x)}{x} = A$, A 为常数,求 $g'(x)$ 并讨论 $g'(x)$ 在 $x = 0$ 处的连续性。 $(-, \overline{n})$ (考研数学一 1997 和数学二 2020)

多元微分

1. 设函数
$$f(t)$$
有二阶连续导数, $r = \sqrt{x^2 + y^2}$, $g(x,y) = f(\frac{1}{r})$,求 $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$ 。
(二,初)

2. 设w = f(u,v)有二阶连续偏导数,且u = x - cy, v = x + cy,其中c为非零常数,

3. 已知函数 $z = u(x,y)e^{ax+by}$,且 $\frac{\partial^2 u}{\partial x \partial y} = 0$ 。确定常数 $a \cap b$,使函数 z = z(x,y)

满足方程
$$\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = 0$$
。 (四,初)

4. 已知 $z = xf\left(\frac{y}{x}\right) + 2y\varphi\left(\frac{x}{y}\right)$, 其中 f, φ 均为二阶可微函数。

(1) 求
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial^2 z}{\partial x \partial y}$ (2) 当 $f = \varphi$, 且 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=a} = -by^2$ 时, 求 $f(y)$ 。(十二, 初)

5. 设z = z(x,y)是由方程 $2\sin(x+2y-3z) = x+2y-3z$ 所确定的二元隐函数,

则
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = _____$$
。 (十三,初)

6. 设函数 z = z(x,y) 由方程 F(x-y,z) = 0 确定,其中 F(u,v) 具有连续二阶偏

导数,则
$$\frac{\partial^2 z}{\partial x \partial y} =$$
 (十,决)

7. 设函数 f(x,y) 有二阶连续偏导数,满足 $f_x^2 f_{yy} - 2 f_x f_y f_{xy} + f_y^2 f_{xx} = 0$,且

$$f_y \neq 0$$
, $y = y(x,z)$ 是由方程 $z = f(x,y)$ 所确定的函数,求 $\frac{\partial^2 y}{\partial x^2}$ 。 (三,决)

8. 设z = z(x,y)是由方程 $F\left(x + \frac{z}{y}, y + \frac{z}{x}\right) = 0$ 所决定,其中F(u,v)具有连续偏

导数,且 $xF_u + yF_v \neq 0$,则 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =$ _____。(结果要求不显含有F及其偏

9. 设z=z(x,y)是由方程 $F\left(z+\frac{1}{x},z-\frac{1}{y}\right)=0$ 确定的隐函数,且具有连续的二

阶偏导数。求证: $x^2 \frac{\partial z}{\partial x} - y^2 \frac{\partial z}{\partial y} = 1$ 和 $x^3 \frac{\partial^2 z}{\partial x^2} + xy(x - y) \frac{\partial^2 z}{\partial x \partial y} - y^3 \frac{\partial^2 z}{\partial y^2} + 2 = 0$ 。
(三,初)

10. 设 \vec{l}_j , j=1,2,...,n 是平面上点 P_0 处的 $n\geq 2$ 各方向向量,相邻两个向量之间的

夹角为
$$\frac{2\pi}{n}$$
。若函数 $f(x,y)$ 在点 P_0 有连续偏导,证明: $\sum_{j=1}^n \frac{\partial f(P_0)}{\partial \vec{l}_j} = 0$ 。

(六, 决)

11. 设 $F(x_1, x_2, x_3) = \int_0^{2\pi} f(x_1 + x_3 \cos \varphi, x_2 + x_3 \sin \varphi) d\varphi$,其中f(u, v)具有二

阶连续偏导数。已知 $\frac{\partial F}{\partial x_i} = \int_0^{2\pi} \frac{\partial}{\partial x_i} \Big[f(x_1 + x_3 \cos \varphi, x_2 + x_3 \sin \varphi) \Big] d\varphi$,

$$\frac{\partial^2 F}{\partial x_i^2} = \int_0^{2\pi} \frac{\partial^2}{\partial x_i^2} \left[f\left(x_1 + x_3 \cos \varphi, x_2 + x_3 \sin \varphi\right) \right] d\varphi, i = 1, 2, 3$$

试求
$$x_3 \left(\frac{\partial^2 F}{\partial x_1^2} + \frac{\partial^2 F}{\partial x_2^2} - \frac{\partial^2 F}{\partial x_3^2} \right) - \frac{\partial F}{\partial x_3}$$
 并化简。 (十一, 决)

积分学专题

不定积分

1.
$$\int \frac{e^{-\sin x} \sin 2x}{\left(1 - \sin x\right)^2} dx$$
 (九, 初)

类题 1.
$$\int \frac{x^2 e^x}{(x+2)^2} dx$$
 类题 2. $\int \frac{(2x+1)e^{-2x}}{x^2} dx$

2.
$$\int \frac{\ln(x+\sqrt{1+x^2})}{(1+x^2)^{\frac{3}{2}}} dx$$
 (+, \eth)

类题:
$$\int \frac{x \ln\left(x + \sqrt{1 + x^2}\right)}{\left(1 + x^2\right)^2} dx$$

3.
$$\int \left(1+x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx$$
 (三, 读)

类题 1.
$$\int \frac{x + \sin x}{1 + \cos x} dx$$
 类题 2.
$$\int e^{2x} (1 + \tan x)^2 dx$$

类题 3.
$$\int e^{\sin x} \frac{x \cos^3 x - \sin x}{\cos^2 x} dx$$

4.
$$\int x \arctan x \ln(1+x^2) dx$$
 (四, 决)

类题 1.
$$\int 2x \arctan x dx$$
 类题 2. $\int x \ln(1+x^2) dx$

5.
$$\int \frac{x^2+1}{x^4+1} dx$$
 (六, 决)

类题:
$$\int \frac{x^2 \pm 1}{1 + kx^2 + x^4} dx$$

- 6. 已知f(x)在 $\left(\frac{1}{4}, \frac{1}{2}\right)$ 内满足 $f'(x) = \frac{1}{\sin^3 x + \cos^3 x}$,求f(x)。(一, 决)
- 7. 设隐函数 y = y(x) 由方程 $y^2(x-y) = x^2$ 所确定,则 $\int \frac{dx}{y^2} = ______$ 。

(十一, 初)

定积分

1. 计算定积分
$$\int_0^{\frac{\pi}{2}} \frac{e^x (1+\sin x)}{1+\cos x} dx$$
 。 (十一, 初)

2. 计算定积分
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{1+\tan x} dx$$
 。 (十三补赛, 初)

3. 计算定积分
$$I = \int_{-\pi}^{\pi} \frac{x \sin x \cdot \arctan e^x}{1 + \cos^2 x} dx$$
。 (五,初)

4. 设
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$
,其中 n 为正整数。若 $n \ge 2$,计算 $I_n + I_{n-2}$ 。 (七,决)

5. 设
$$n$$
为正整数,计算 $I = \int_{e^{-2n\pi}}^{1} \left| \frac{\mathrm{d}}{\mathrm{d}x} \cos\left(\ln\frac{1}{x}\right) \right| \mathrm{d}x$ 。 (六,初)

6. 设
$$f(x)$$
 是连续函数,且满足 $f(x) = 3x^2 - \int_0^2 f(x) dx - 2$,则 $f(x) = \underline{\qquad}$ (一,初)

7. 设
$$f(x)$$
 是 $[0,1]$ 上的连续函数,且满足 $\int_0^1 f(x) dx = 1$,求一个这样的函数
$$f(x)$$
 使得积分 $I = \int_0^1 (1+x^2) f^2(x) dx$ 取得最小值。 (五,决)

反常积分

1. 计算
$$\int_0^{+\infty} e^{-2x} |\sin x| dx$$
 (四,初)

(2019,数学一17) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积。

2. 已知
$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
, 则 $\int_0^{+\infty} \int_0^{+\infty} \frac{\sin x \sin(x+y)}{x(x+y)} dx dy = ______.$ (十二,初)

拓展: 计算
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$
, $\int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx$, $\int_0^{+\infty} \left(\frac{\sin x}{x}\right)^4 dx$ 的值。

3. 证明广义积分
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$
 不是绝对收敛的。 (五,初)

4. 设
$$s > 0$$
, 求 $I_n = \int_0^\infty e^{-sx} x^n dx (n = 1, 2, ...)$ 。 (二, 初)

6. 设区间 $(0,+\infty)$ 上的函数u(x)定义为 $u(x) = \int_0^{+\infty} e^{-xt^2} dt$,则u(x)的初等函数表达式为____。

7. 求积分
$$I = \int_0^{+\infty} \frac{u}{1+e^u} du$$
 的值。 (六,决)

8. 设 $f(x) = \int_0^x \left(1 - \frac{[u]}{u}\right) du$, 其中[x]表示小于等于x的最大整数,试讨论

$$\int_{1}^{+\infty} \frac{e^{f(x)}}{x^{p}} \cos\left(x^{2} - \frac{1}{x^{2}}\right) dx$$

的敛散性,其中p > 0。

(十三补赛,初)

b 站昵称: 李熵一

9. 讨论 $\int_0^{+\infty} \frac{x}{\cos^2 x + x^{\alpha} \sin^2 x} dx$ 的敛散性,其中 α 是一个实常数。 (三, 决)

二重积分

1. 计算
$$\iint_D \frac{(x+y)\ln\left(1+\frac{y}{x}\right)}{\sqrt{1-x-y}} dxdy$$
, 其中区域 D 是由直线 $x+y=1$ 与两坐标轴所

2. 求
$$\iint_{D} \operatorname{sgn}(xy-1) dxdy$$
, 其中 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 2\}$ 。 (三,初)

3. 设
$$D:1 \le x^2 + y^2 \le 4$$
,则 $I = \iint_D (x + y^2) e^{-(x^2 + y^2 - 4)} dxdy$ 的值是_____。(七,决)

4. 求二重积分
$$I = \iint_{x^2+y^2 \le 1} |x^2+y^2-x-y| dxdy$$
。 (四, 决)

5. 计算积分
$$\int_0^{2\pi} x \int_x^{2\pi} \frac{\sin^2 t}{t^2} dt dx$$
。 (五, 决)

6. 设f(x)在[a,b]上连续,证明:

$$2\int_{a}^{b} f(x) \left(\int_{x}^{b} f(t) dt\right) dx = \left(\int_{a}^{b} f(x) dx\right)^{2}$$
 (七, 決)

7. 计算积分
$$I = \int_0^{2\pi} d\phi \int_0^{\pi} e^{\sin\theta(\cos\phi - \sin\phi)} \sin\theta d\theta$$
 (十一, 初)

8. 记
$$D = \{(x, y) | x^2 + y^2 \le \pi \}$$
,则 $\iint_D \sin x^2 \cos y^2 + x \sqrt{x^2 + y^2} \, dx dy = ______。$ (十三,初)

9. 设函数 f(x,y) 在闭区域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 上具有二阶连续偏导数,且

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = x^2 + y^2, \quad \ \ \, \vec{x} \lim_{r \to 0^+} \frac{\iint_{x^2 + y^2 \le r^2} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) dxdy}{\left(\tan r - \sin r \right)^2} \, . \tag{+ \equiv \text{\text{\text{$\frac{2}{3}$}}} \text{$\frac{8}{3}$}, \text{$\frac{1}{3}$})$$

三重积分

2. 计算三重积分
$$\iint_V x^2 + y^2 dv$$
, 其中 V 是由 $x^2 + y^2 + (z-2)^2 \ge 4$,

$$x^2 + y^2 + (z-1)^2 \le 9$$
及 $z \ge 0$ 所围成的空间图形。 (十,初)

4. 某物体所在的空间区域为 $\Omega: x^2 + y^2 + 2z^2 \le x + y + 2z$, 密度函数为 $x^2 + y^2 + z^2$, 求质量 $M = \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz$ 。 (八,初)

5. 计算三重积分
$$M = \iiint_{\Omega} \frac{1}{\left(1+x^2+y^2+z^2\right)^2} dxdydz$$

其中 Ω : $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$

(十, 决)

6. F(x) 为连续函数, Ω 是由椭圆抛物面 $z = x^2 + y^2$ 和球面 $x^2 + y^2 + z^2 = t^2$ (t > 0) 所围起来的部分。定义三重积分

$$F(t) = \iiint_{\Omega} f(x^2 + y^2 + z^2) dv$$

求F(t)的导数F'(t)。 (四,初)

7. 设函数 f(x, y, z) 在区域 $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$ 上具有连续的二阶偏

导数,且满足
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \sqrt{x^2 + y^2 + z^2}$$
,计算

$$I = \iiint_{\Omega} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} \right) dx dy dz$$

(八,决)

曲线积分

1. 设曲线积分 $I = \oint_L \frac{x dy - y dx}{|x| + |y|}$, 其中 L 是以 (1,0), (0,1), (-1,0), (0,-1) 为顶

点的正方形的边界曲线,方向为逆时钟方向,则 $I = ____$ 。

(六, 决)

b 站昵称: 李熵一

- 2. 设函数u = u(x)连续可微,u(2) = 1,且 $\int_L (x + 2y) u dx + (x + u^3) u dy$ 在右半平面与路径无关,求u(x)。 (四,初)
- 3. 已知平面区域 $D = \{(x,y) | 0 \le x \le \pi, 0 \le y \le \pi\}$, $L \to D$ 的正向边界, 试证:

(1)
$$\oint_L xe^{\sin y} dy - ye^{-\sin x} dx = \oint_L xe^{-\sin y} dy - ye^{\sin x} dx$$

(2)
$$\oint_{L} xe^{\sin y} dy - ye^{-\sin x} dx \ge \frac{5}{2}\pi^{2}$$
 (一,初)

- - (1) 设 L 为正向闭曲线 $(x-2)^2 + y^2 = 1$ 。证明: $\oint_L \frac{2xydx + \varphi(x)dy}{x^4 + y^2} = 0$ 。
 - (2) 求函数 $\varphi(x)$ 。
 - (3) 设C是围绕原点的光滑的简单正向闭曲线,求 $\oint_C \frac{2xydx + \varphi(x)dy}{x^4 + y^2}$ 。

(二, 初)

类题: (2005 数学一) 设函数 $\varphi(y)$ 具有连续导数,在围绕原点的任意分段光滑简单闭曲线 L 上,曲线积分 $\oint_L \frac{\varphi(y) \mathrm{d} x + 2xy \mathrm{d} y}{2x^2 + y^4}$ 的值恒为同一常数。

(1) 证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有

$$\oint_C \frac{\varphi(y) dx + 2xy dy}{2x^2 + y^4} = 0$$

(2) 求函数 $\varphi(y)$ 的表达式。

5. 设曲线 Γ 为曲线 $x^2 + y^2 + z^2 = 1, x + z = 1, x \ge 0, y \ge 0, z \ge 0$ 从点 A(1,0,0)

到点 B(0,0,1) 的一段,求曲线积分 $I = \int_L y dx + z dy + x dz$ 。 (九,初)

6. 记空间曲线 Γ : $\begin{cases} x^2 + y^2 + z^2 = a^2 \\ x + y + z = 0 \end{cases} (a > 0), 则积分 \oint_{\Gamma} (1 + x)^2 ds = \underline{\qquad} (+\Box, \lambda)$

8. 设曲线 L 是空间区域 $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ 的表面与平面

$$x + y + z = \frac{3}{2}$$
的交线,则 $\left| \oint_L (z^2 - y^2) dx + (x^2 - z^2) dy + (y^2 - x^2) dz \right| = ______$ 。
(十, 决)

9. 设 $I_a(r) = \int_C \frac{y dx - x dy}{\left(x^2 + y^2\right)^a}$, 其中 a 为常数,曲线 C 为椭圆 $x^2 + xy + y^2 = r^2$,取

正向,求极限 $\lim_{r\to +\infty}I_a(r)$ 。 (五,初)

10. 设连续可微函数 z = z(x,y) 由方程 F(xz-y,x-yz) = 0 (其中 F(u,v) 有连续的偏导数) 唯一确定, L 为正向单位圆周,试求:

$$\oint_L \left(xz^2 + 2yz\right) dy - \left(2xz + yz^2\right) dx$$

(三, 决)

11. 设函数 f(t)在 $t \neq 0$ 时一阶连续可导,且 f(1) = 0,求函数 $f(x^2 - y^2)$,使得曲线积分 $\int_L y (2 - f(x^2 - y^2)) dx + x f(x^2 - y^2) dy$ 与路径无关,其中 L 为任一不与直线 $y = \pm x$ 相交的分段光滑闭曲线。

(十,初)

曲面积分

1. 计算 $\iint_{\Sigma} \frac{ax dy dz + (z+a)^2 dx dy}{\sqrt{x^2 + y^2 + z^2}}$, 其中 Σ 为下半球面 $z = -\sqrt{a^2 - y^2 - x^2}$ 的上侧,

$$a > 0$$
。 (一,决)

2. 设Σ是一个光滑封闭曲面,方向朝外。给定第二型的曲面积分

$$I = \iint_{\Sigma} (x^3 - x) dydz + (2y^3 - y) dzdx + (3z^3 - z) dxdy$$

试确定曲面 Σ ,使得积分I的值最小,并求该最小值。

(五,初)

3. 设函数 f(x)连续可导, $P=Q=R=f\left(\left(x^2+y^2\right)z\right)$,有向曲面 Σ_t 是圆柱体 $x^2+y^2\leq t^2, 0\leq z\leq 1$ 的表面,方向向外,记第二型的曲面积分

$$I_{t} = \iint_{\Sigma_{t}} P dy dz + Q dz dx + R dx dy$$

求极限
$$\lim_{t\to 0^+} \frac{I_t}{t^4}$$
。 (五, 决)

4. 设函数 f(x)连续,a,b,c 为常数, Σ 是单位球面 $x^2 + y^2 + z^2 = 1$,记第一型曲面积分 $I = \iint_{\Sigma} f(ax + by + cz) dS$ 。求证: $I = 2\pi \int_{-1}^{1} f(\sqrt{a^2 + b^2 + c^2}u) du$ (三,初)

5. 已知S 是空间曲线 $\begin{cases} x^2 + 3y^2 = 1 \\ z = 0 \end{cases}$,绕y轴旋转形成的椭球面的上半部分($z \ge 0$)

(取上侧), Π 是S 在点P(x,y,z)处的切平面, $\rho(x,y,z)$ 是原点到切平面 Π 的 距离, λ,μ,ν 表示S 的正法向的方向余弦,计算

(1)
$$\iint_{S} \frac{z}{\rho(x,y,z)} dS$$
 (2)
$$\iint_{S} z(\lambda x + 3\mu y + \nu z) dS$$
 (二, 决)

6. 设球体 $(x-1)^2 + (y-1)^2 + (z-1)^2 \le 12$ 被平面 P: x + y + z = 6 所截的小球缺为 Ω 。记球缺上的球冠为 Σ ,方向指向球外,求第二型曲面积分

$$I = \iint_{\Sigma} x dy dz + y dz dx + z dx dy$$

(六,初)

7. 设P(x,y,z)和R(x,y,z)在空间上有连续 ,设上半球面

$$S: z = z_0 + \sqrt{r^2 - (x - x_0)^2 - (y - y_0)^2}$$
, 方向向上

若对任何点 (x_0, y_0, z_0) 和r > 0,第二型曲面积分 $\iint_S P dy dz + R dx dy = 0$,证明:

$$\frac{\partial P}{\partial x} \equiv 0$$

(七, 决)

8. 对于 4 次齐次函数

$$f(x, y, z) = a_1 x^4 + a_2 y^4 + a_3 z^4 + 3a_4 x^2 y^2 + 3a_5 y^2 z^2 + 3a_6 x^2 z^2$$

计算曲面积分
$$\oint_{\Sigma} f(x,y,z) dS$$
,其中 $\Sigma: x^2 + y^2 + z^2 = 1$ 。 (十三, 初)

9. 若对于 R^3 中半空间 $\left\{(x,y,z)\in R^3 \middle| x>0\right\}$ 内任意有向光滑封闭曲面S,都有

$$\iint_{S} xf''(x) dydz + y(xf(x) - f'(x)) dzdx - xz(\sin x + f'(x)) dxdy = 0$$

其中
$$f$$
在 $(0,+\infty)$ 上二阶导数连续且 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f'(x) = 0$,求 $f(x)$ 。

(十三补赛,初)

微分方程考题

1. 求解微分方程
$$\begin{cases} \frac{dy}{dx} - xy = xe^{x^2} \\ y(0) = 1 \end{cases}$$
 (三, 决)

2. 微分方程
$$\begin{cases} (x+1)\frac{dy}{dx} + 1 = 2e^{-y} \\ y(0) = 0 \end{cases}$$
 的解是_____。 (十三补赛,初)

4. 微分方程
$$y'' - (y')^3 = 0$$
 的通解是____。 (七, 决)

- 7. 已知可导函数 f(x)满足 $f(x)\cos x + 2\int_0^x f(t)\sin t dt = x + 1$,则 f(x) = _____。
- 8. 求在 $[0,+\infty)$ 上的可微函数 f(x),使 $f(x) = e^{-u(x)}$,其中 $u = \int_0^x f(t) dt$ 。
 (四,决)

9. 满足
$$\frac{du(t)}{dt} = u(t) + \int_0^1 u(t) dt \, \mathcal{D}_u(0) = 1$$
的可微函数 $u(t) = \underline{\qquad}$ (九, 决)

10. 求方程(2x+y-4)dx+(x+y-1)dy=0的通解。 (二, 决)

12. 已知
$$du(x,y) = \frac{ydx - xdy}{3x^2 - 2xy + 3y^2}$$
,则 $u(x,y) = _____$ 。 (十一,初)

15. 设可微函数 f(x,y)满足 $\frac{\partial f}{\partial x} = -f(x,y)$, $f\left(0,\frac{\pi}{2}\right) = 1$, 且

$$\lim_{n \to \infty} \left(\frac{f\left(0, y + \frac{1}{n}\right)}{f\left(0, y\right)} \right)^{n} = e^{\cot y}$$

则 f(x,y) =____。 (八,决)

16. 设函数 f(x) 的导数 f'(x) 在[0,1]上连续, f(0) = f(1) = 0, 且满足

$$\int_0^1 \left[f'(x) \right]^2 dx - 8 \int_0^1 f(x) dx + \frac{4}{3} = 0$$

则 $f(x) = \underline{\hspace{1cm}}$ (十一,决)

类题:设 f(x)在 $[0,+\infty)$ 上是有界连续函数,证明:方程 y'+y=f(x)的每一个解在 $[0,+\infty)$ 上都是有界函数。

微积分应用专题

几何应用

- 2. 求曲面 $z = \frac{x^2}{2} + y^2$ 平行于平面 2x + 2y z = 0 的切平面方程。 (八, 初)
- 4. 若曲线 y = f(x) 是由 $\begin{cases} x = t + \cos t \\ e^y + ty + \sin t = 1 \end{cases}$ 确定,则此曲线在 t = 0 对应点处的 切线方程为 。 (十,初)
- 5. 设 y = f(x) 是由方程 $\arctan \frac{x}{y} = \ln \sqrt{x^2 + y^2} \frac{1}{2} \ln 2 + \frac{\pi}{4}$ 确定的隐函数,且 满足 f(1) = 1,则曲线 y = f(x) 在点 (1,1) 处的切线方程为_____。

- 8. 求通过直线 L: $\begin{cases} 2x+y-3z+2=0 \\ 5x+5y-4z+3=0 \end{cases}$ 的两个相互垂直的平面 π_1 和 π_2 ,使其中一个平面过点 (4,-3,1)。 (四,初)
- 9. 求直线 l_1 : $\begin{cases} x-y=0 \\ z=0 \end{cases}$ 与直线 l_2 : $\frac{x-2}{4} = \frac{y-1}{-2} = \frac{z-3}{-1}$ 的距离。 (二, 初)
- 10. 过直线 $\begin{cases} 10x + 2y 2z = 27 \\ x + y z = 0 \end{cases}$ 作曲面 $3x^2 + y^2 z^2 = 27$ 的切平面,求此切平面

的方程。

(四,决)

11. 设
$$F(x,y,z)$$
和 $G(x,y,z)$ 有连续偏导数, $\frac{\partial(F,G)}{\partial(x,z)} \neq 0$ 。

曲线
$$\Gamma$$
: $\begin{cases} F(x,y,z)=0 \\ G(x,y,z)=0 \end{cases}$ 过点 $P_0(x_0,y_0,z_0)$ 。记 Γ 在 xOy 平面上的投影曲线为

$$S$$
。求 S 上过点 (x_0, y_0) 的切线方程。 (五, 决)

12. 过单叶双曲面
$$\frac{x^2}{4} + \frac{y^2}{2} - 2z^2 = 1$$
和球面 $x^2 + y^2 + z^2 = 4$ 的交线且与直线

$$\begin{cases} x=0 \\ 3y+z=0 \end{cases}$$
垂直的平面方程为____。 (八, 决)

13. 过三条直线
$$L_1$$
: $\begin{cases} x = 0 \\ y - z = 2 \end{cases}$, L_2 : $\begin{cases} x = 0 \\ x + y - z + 2 = 0 \end{cases}$, L_3 : $\begin{cases} x = \sqrt{2} \\ y - z = 0 \end{cases}$ 的圆柱面方

程为____。 (十三,

初)

14. 已知直线
$$L$$
: $\begin{cases} 2x-4y+z=0 \\ 3x-y-2z=9 \end{cases}$ 和平面 $\pi:4x-y+z=1$,则直线 L 在平面 π

上的投影直线方程为____。

〔十三补赛,初〕

15. 过曲线 $y = \sqrt[3]{x} (x \ge 0)$ 上的点 A作切线,使该切线与曲线及 x轴所围成的平

面图形的面积为 $\frac{3}{4}$,求A点的坐标。 (五,初)

16. 设函数
$$y = f(x)$$
 由参数方程 $\begin{cases} x = 2t + t^2 \\ y = \psi(t) \end{cases}$, $t > -1$ 所确定,且 $\frac{d^2 y}{dx^2} = \frac{3}{4(1+t)}$

其中 $\psi(t)$ 具有二阶导数,曲线 $y = \psi(t)$ 与 $y = \int_1^{t^2} e^{-u^2} du + \frac{3}{2e}$ 在t = 1处相切,

求函数
$$\psi(t)$$
。 (二,初)

17. 曲面 $z = x^2 + y^2 + 1$ 在点 M(1,-1,3) 的切平面与曲面所围区域的体积为___。

(七, 初)

18. 求曲面 $x^2 + y^2 = az$ 和 $z = 2a - \sqrt{x^2 + y^2} (a > 0)$ 所围立体的表面积。

(三, 决)

19. 设 $a,b,c,\mu > 0$, 曲面 $xyz = \mu$ 与曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 相切,求 μ 。

(十一, 初)

- 20. 设 $P_0(1,1,-1)$, $P_1(2,-1,0)$ 为空间的两点,则函数 $u = xyz + e^{xyz}$ 在点 P_0 处沿 P_0P_1 方向的方向导数为_____。 (十二,决)
- 22. 设函数 y = y(x) 由 $x^3 + 3x^2y 2y^3 = 2$ 所确定,求 y(x) 的极值。(五,初)
- 23. 设抛物线 $y = ax^2 + bx + 2\ln c$ 过原点,当 $0 \le x \le 1$ 时, $y \ge 0$,又已知该抛物 线与 x 轴及直线 x = 1 所围图形的面积为 $\frac{1}{3}$,试确定 a,b,c,使此图形绕 x 轴旋转一周而成的旋转体的体积最小。
- 24. 现要设计一个容积为V的圆柱体的容器,已知上下两底的材料费为单位面积a元,而侧面的材料费为单位面积b元,试给出最节省的设计方案,即高与上下底的直径之比为何值时所需费用最少?(一,决)

类题: (2018 考研数学一) 将长为 2m 的铁丝分成三段, 依次围成圆、正方形与正三角形, 三个图形的面积之和是否存在最小值?若存在, 求出最小值。

25. 函数 $u = x_1 + \frac{x_2}{x_1} + \frac{x_3}{x_2} + \frac{2}{x_3} (x_i > 0, i = 1, 2, 3)$ 的所有极值点为_____。
(十二, 决)

26. 设 $\Sigma_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$,其中a > b > c > 0, $\Sigma_2: z^2 = x^2 + y^2$, Γ 为 Σ_1 和 Σ_2 的交线,求椭球面 Σ_1 在 Γ 上各点的切平面到原点距离的最大值和最小值。

(二, 决)

27. 设平面 L 的方程为 $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$,且通过五个点 $P_1(-1,0), P_2(0,-1), P_3(0,1), P_4(2,-1), P_5(2,1)$,则 L 上任意两点之间的直线距离 最大值为____。 (十一,决)

28. 设二元函数 f(x,y) 在平面上有连续的二阶偏导数,对任意角度 α ,定义一

元函数 $g_{\alpha}(t) = f(t\cos\alpha, t\sin\alpha)$,若对任何 α 都有 $\frac{\mathrm{d}g_{\alpha}(0)}{\mathrm{d}t} = 0$ 且 $\frac{\mathrm{d}^2g_{\alpha}(0)}{\mathrm{d}t^2} > 0$,

证明: f(0,0)是f(x,y)的极小值。 (九,初)

29. 设 M 是以三个正半轴为母线的半圆锥面,求其方程。 (七,初)

30. 设一球缺高为h,所在球半径为R。证明该球缺的体积为 $\frac{\pi}{3}(3R-h)h^2$,球 冠的面积为 $2\pi Rh$ 。 (六,初)

31. 设f(u,v)在全平面上有连续的偏导数,证明:曲面 $f\left(\frac{x-a}{z-c},\frac{y-b}{z-c}\right)=0$ 的 (七, 决) 所有切平面都交于点(a,b,c)。

物理应用

- 1. 在平面上,有一条从点(a,0)向右的射线,其线密度为 ρ 。在点(0,h)处(其中h>0)有一质量为m的质点。求射线对该质点的引力。 (三,初)
- 3. 设l是过原点、方向为 $\left(\alpha,\beta,\gamma\right)$ (其中 $\alpha^2+\beta^2+\gamma^2=1$)的直线,均匀椭球 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2} \le 1 \text{ (其中0} < c < b < a \text{, 密度为1) 绕} l$ 旋转。
 - (1) 求其转动惯量。
 - (2) 求其转动惯量关于方向 (α,β,γ) 的最大值和最小值。 (二,初)
- 4. 设D为椭圆形 $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1(a > b > 0)$,面密度为 ρ 的均质薄板;l为通过椭圆焦点(-c,0)(其中 $c^2 = a^2 b^2$)垂直于薄板的旋转轴。
- (1) 求薄板 D 绕l 旋转的转动惯量 J 。
- (2) 对于固定的转动惯量,讨论椭圆薄板的面积是否有最大值和最小值。

(三, 决)

证明题考题

b 站昵称: 李熵一

中值定理

1. 设函数 f(x) 在[0,1]上连续,在(0,1)内可微,且

$$f(0) = f(1) = 0, f(\frac{1}{2}) = 1$$

证明: (1) 存在 $\xi \in \left(\frac{1}{2},1\right)$ 使得 $f(\xi) = \xi$ 。

(2) 存在
$$\eta \in (0,\xi)$$
 使得 $f'(\eta) = f(\eta) - \eta + 1$ 。 (一, 决)

2. 设f(x)在[0,1]上连续,f(x)在(0,1)上可导,且f(0)=0,f(1)=1。

证明: (1) 存在 $x_0 \in (0,1)$, 使得 $f(x_0) = 2 - 3x_0$ 。

(2) 存在
$$\xi, \eta \in (0,1)$$
, 且 $\xi \neq \eta$, 使得 $\left[1 + f'(\xi)\right]\left[1 + f'(\eta)\right] = 4$ 。(十二, 初)

3. 设函数 f(x)在[a,b]上连续,在(a,b)内二阶可导,且

$$f(a) = f(b) = 0, \int_a^b f(x) dx = 0$$

- (1) 证明存在互不相同的点 $x_1, x_2 \in (a,b)$, 使得 $f'(x_i) = f(x_i), i = 1,2$;
- (2) 证明存在 $\xi \in (a,b), \xi \neq x_i, i = 1,2$,使得 $f''(\xi) = f(\xi)$ 。 (十二, 决)

类题: (3)证明存在 $\xi \in (a,b), \xi \neq x_i, i = 1,2$, 使得 $f''(\xi) - 3f'(\xi) + 2f(\xi) = 0$ 。

- 4. 设函数 f(x) 在闭区间 [-1,1] 上具有连续的三阶导数,且 f(-1)=0, f(1)=1, f'(0)=0。求证: 在开区间(-1,1)内至少存在一点 ξ ,使得 $f'''(\xi)=3$ 。 (三,初)
- 5. 设函数 f(x)在[0,1]上具有连续导数,且 $\int_0^1 f(x) dx = \frac{5}{2}$, $\int_0^1 x f(x) dx = \frac{3}{2}$,证明:存在 $\xi \in (0,1)$,使得 $f'(\xi) = 3$ 。 (十一,决)
- 6. 设函数 f(x) 在区间 $\left[0,1\right]$ 上连续且 $\int_0^1 f(x) \mathrm{d}x \neq 0$, 证明: 在区间 $\left[0,1\right]$ 上存在

三个不同的点 x_1, x_2, x_3 , 使得

$$\frac{\pi}{8} \int_{0}^{1} f(x) dx = \left[\frac{1}{1+x_{1}^{2}} \int_{0}^{x_{1}} f(t) dt + f(x_{1}) \arctan x_{1} \right] x_{3}$$

$$= \left[\frac{1}{1+x_{2}^{2}} \int_{0}^{x_{2}} f(t) dt + f(x_{2}) \arctan x_{2} \right] (1-x_{3})$$
(九, 决)

b 站昵称: 李熵一

7. 设函数 f(x) 在 [0,1] 上有二阶导数,且有正常数 A,B 使得

$$|f(x)| \le A, |f''(x)| \le B$$

证明: 对于任意
$$x \in [0,1]$$
, 有 $|f'(x)| \le 2A + \frac{B}{2}$ 。 (六, 初)

8. 设函数
$$f(x)$$
在 $[-2,2]$ 上二阶可导,且 $|f(x)| < 1$,又 $f^2(0) + [f'(0)]^2 = 4$, 试证在 $(-2,2)$ 内至少存在一点 ξ ,使得 $f(\xi) + f''(\xi) = 0$ 。 (四, 决)

9. 设函数
$$f(x)$$
 在区间 $[0,1]$ 上连续,且 $I = \int_0^1 f(x) dx \neq 0$ 。证明:在 $(0,1)$ 内存

在不同的两点
$$x_1, x_2$$
 使得 $\frac{1}{f(x_1)} + \frac{1}{f(x_2)} = \frac{2}{I}$ (八, 初)

10. 设
$$f(x)$$
 在 $[0,+\infty)$ 上 可 微 , $f(0)=0$, 且 存 在 常 数 $A>0$, 使 得
$$|f'(x)| \le A |f(x)| \text{在}[0,+\infty) \text{上成立,证明:} \text{在}(0,+\infty) \text{上有} f(x) \equiv 0 \text{.} \text{.} \text{(十一,初)}$$

11. 设
$$f(x)$$
 在 $(-\infty, +\infty)$ 上无穷次可微, 并且满足: 存在 $M>0$, 使得

$$\left| f^{(k)}(x) \right| \le M(k = 1, 2, \dots), \forall x \in (-\infty, +\infty), \ \exists \ f\left(\frac{1}{2^n}\right) = 0(n = 1, 2, \dots), \ \text{求证:} \ \texttt{在}$$

$$(-\infty, +\infty) \bot, \ f(x) \equiv 0. \tag{\Xi, 决}$$

12. 设函数
$$f(x)$$
在[0,1]上连续,且 $\int_0^1 f(x) dx = 0$, $\int_0^1 x f(x) dx = 1$,试证:

(1)
$$\exists x_0 \in [0,1]$$
 使得 $|f(x_0)| > 4$ 。(2) $\exists x_1 \in [0,1]$ 使得 $|f(x_1)| = 4$ 。(七,初)

13. 设函数
$$f(x)$$
 在区间 $(0,1)$ 内连续,且存在两两互异的点 $x_1, x_2, x_3, x_4 \in (0,1)$,

使得
$$a = \frac{f(x_1) - f(x_2)}{x_1 - x_2} < \frac{f(x_3) - f(x_4)}{x_3 - x_4} = \beta$$
。证明: 对任意 $\lambda \in (\alpha, \beta)$,存在

不等式

1. 求最小的实数 C,使得满足 $\int_0^1 |f(x)| dx = 1$ 的连续的函数 f(x) 都有

$$\int_0^1 f\left(\sqrt{x}\right) dx \le C \tag{\square, in}$$

- 2. 设 $|f(x)| \le \pi$, $f'(x) \ge m > 0(a \le x \le b)$ 。证明 $\left| \int_a^b \sin f(x) dx \right| \le \frac{2}{m}$ 。(五,初)
- 3. 是否存在区间[0,2]上的连续可微函数f(x),满足f(0)=f(2)=1,

$$|f'(x)| \le 1$$
, $|\int_0^2 f(x) dx| \le 1$? 请说明理由。 (二, 决)

4. 设当 x > -1时,可微函数 f(x)满足条件 $f'(x) + f(x) - \frac{1}{1+x} \int_0^x f(t) dt = 0$,

且
$$f(0)=1$$
。试证: 当 $x \ge 0$ 时,有 $e^{-x} \le f(x) \le 1$ 成立。 (五, 决)

5. 设
$$D = \{(x,y) | 0 \le x < 1, 0 \le y \le 1\}, I = \iint_D f(x,y) dxdy$$
, 其中函数 $f(x,y)$ 在 D

上有连续的二阶偏导数。若对任何x,y有f(0,y)=f(x,0)=0,且 $\frac{\partial^2 f}{\partial x \partial y} \le A$ 。证

明:
$$I \leq \frac{A}{4}$$
。 (五, 决)

6. 设 f(x,y) 在 $x^2 + y^2 \le 1$ 上有连续的二阶导数, $f_{xx}^2 + 2f_{xy}^2 + f_{yy}^2 \le M$ 。 若

$$f(0,0) = f_x(0,0) = f_y(0,0) = 0$$
, 证明:
$$\left| \iint_{x^2 + y^2 \le 1} f(x,y) dx dy \right| \le \frac{\pi \sqrt{M}}{4}$$

(七,初)

7. 设f(x)在[0,1]上可导,f(0)=0,且当 $x \in (0,1)$,0 < f'(x) < 1。试证: 当

$$a \in (0,1)$$
时,有 $\left(\int_0^a f(x) dx\right)^2 > \int_0^a f^3(x) dx$ 。 (八, 初)

8. 设函数 f(x) > 0且在实轴上连续,若对任意实数 t ,有 $\int_{-\infty}^{+\infty} e^{-|t-x|} f(x) dx \le 1$ 。

证明:
$$\forall a,b,a < b$$
,有 $\int_a^b f(x) dx \le \frac{b-a+2}{2}$ 。 (九,初)

9. 设f(x)在区间[0,1]上连续,且 $1 \le f(x) \le 3$ 。证明:

$$1 \le \int_0^1 f(x) dx \int_0^1 \frac{1}{f(x)} dx \le \frac{4}{3}$$

(十,初)

10. 设
$$f(x,y)$$
在区域 D 内可微,且 $\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \le M$, $A(x_1,y_1),B(x_2,y_2)$

是D内两点,线段AB包含在D内,证明:

$$\left| f\left(x_1, y_1\right) - f\left(x_2, y_2\right) \right| \le M \left| AB \right|$$

其中|AB|表示线段AB的长度。

(十, 初)

11. 证明: 对于连续函数
$$f(x) > 0$$
, 有 $\ln \int_0^1 f(x) dx > \int_0^1 \ln f(x) dx$ 。(十, 初)

12. 设f(x)在[0,+∞)上具有连续导数,满足

$$3[3+f^{2}(x)]f'(x) = 2[1+f^{2}(x)]^{2}e^{-x^{2}}$$

且 $f(0) \le 1$ 。证明:存在常数M > 0,使得 $x \in [0,+\infty)$ 时,恒有 $|f(x)| \le M$ 。

(十一, 初)

13. 设
$$0 < x < \frac{\pi}{2}$$
,证明: $\frac{4}{\pi^2} < \frac{1}{x^2} - \frac{1}{\tan^2 x} < \frac{2}{3}$ 。 (八,决)

14. 设f(x)为 $(-\infty,+\infty)$ 上连续的周期为 1 的周期函数,且满足 $0 \le f(x) \le 1$

与
$$\int_0^1 f(x) dx = 1$$
。证明: 当 $0 \le x \le 13$ 时,有

$$\int_{0}^{\sqrt{x}} f(t) dt + \int_{0}^{\sqrt{x+27}} f(t) dt + \int_{0}^{\sqrt{13-x}} f(t) dt \le 11$$

并给出取等号的条件。

(八, 决)

15. 设函数 f(x,y) 在区域 $D = \{(x,y) | x^2 + y^2 \le a^2\}$ 上具有一阶连续偏导数,

且满足
$$f(x,y)\Big|_{x^2+y^2=a^2}=a^2$$
以及 $\max_{(x,y)\in D}\left[\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2\right]=a^2$,其中 $a>0$ 。证

明:
$$\left| \iint_{D} f(x, y) dx dy \right| \leq \frac{4}{3} \pi a^{2} . \tag{九, 决}$$

16. 设 Ω 是由光滑的简单封闭曲面 Σ 围成的有界闭区域,函数f(x,y,z)在 Ω

上具有连续二阶偏导数,且 $f(x,y,z)\Big|_{(x,y,z)\in\Sigma}=0$ 。记 ∇f 为f(x,y,z)的梯度,

并令
$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
。证明:对任意常数 $C > 0$,恒有

$$C \iiint_{\Omega} f^{2} dx dy dz + \frac{1}{C} \iiint_{\Omega} (\Delta f)^{2} dx dy dz \ge 2 \iiint_{\Omega} |\nabla f|^{2} dx dy dz$$
 (十一,决)

17. 设 $A_n(x,y) = \sum_{k=0}^n x^{n-k} y^k$,其中0 < x, y < 1,证明:

$$\frac{2}{2-x-y} \le \sum_{n=0}^{\infty} \frac{A_n(x,y)}{n+1} \le \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1-y} \right)$$
 (十二, 決)

18. 设f(x),g(x)是 $[0,1] \to [0,1]$ 的连续函数,且f(x)单调增加。求证:

$$\int_0^1 f(g(x)) dx \le \int_0^1 f(x) dx + \int_0^1 g(x) dx$$
(+\(\pi\), \(\phi\))

无穷级数专题

类题: (2011 考研数学一) (1) 证明 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$

(2) 证明
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
 收敛。

(1999, 考研数学二)设f(x)是区间 $[1,+\infty)$ 上单调减少且非负的连续函数,

$$a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx (n = 1, 2, ...)$$
,证明数列 $\{a_n\}$ 的极限存在。

2. 判断级数
$$\sum_{n=1}^{\infty} \frac{1+\frac{1}{2}+...+\frac{1}{n}}{(n+1)(n+2)}$$
 的敛散性,若收敛,求其和。 (五,初)

3. 求幂级数
$$\sum_{n=1}^{\infty} \left[1 - n \ln \left(1 + \frac{1}{n} \right) \right] x^n$$
 的收敛域。 (十二, 决)

- 4. 设 $I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$,其中n为正整数。
 - (1) 若 $n \ge 2$, 计算 $I_n + I_{n-2}$;
 - (2)设p为实数,讨论级数 $\sum_{n=1}^{\infty} (-1)^n I_n^p$ 的绝对收敛性和条件收敛性。(七,决)

(1999 考研数学一) 设
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$

(1) 求
$$\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
的值。

(2) 试证:对任意的常数 $\lambda > 0$,级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛。

5. 求幂级数
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$$
 的和函数,并求级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^{2n-1}}$ 的和。 (三,初)

(考研模拟卷) 计算幂级数的和函数 $\sum_{n=0}^{\infty} \frac{1}{n!!} x^n, n = 0,1,2,...$

7. 设
$$f(x)$$
 在 $x = 0$ 处存在二阶导数 $f''(0)$, 且 $\lim_{x \to 0} \frac{f(x)}{x} = 0$ 。

证明:级数
$$\sum_{n=1}^{\infty} \left| f\left(\frac{1}{n}\right) \right|$$
收敛。 (五,

初)

8. 计算
$$\sum_{n=1}^{+\infty} \arctan \frac{2}{4n^2 + 4n + 1}$$
 (十三补赛,

初)

9. 设
$$f(x)$$
是在 $(-\infty, +\infty)$ 内的可微函数,且 $|f'(x)| < mf(x)$,其中

$$0 < m < 1$$
。任取实数 a_0 ,定义 $a_n = \ln f(a_{n-1}), n = 1, 2, \dots$ 。证明:

$$\sum_{n=1}^{\infty} (a_n - a_{n-1})$$
绝对收敛。

(二, 决)

10.
$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$
,记 $\lim_{n \to \infty} a_n = C$,讨论级数 $\sum_{n=1}^{\infty} (a_n - C)$ 的敛散性。(八,决)

补充: 讨论级数
$$\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^n - e \right]$$
 的敛散性。

11. 设
$$0 < a_n < 1, n = 1, 2, ...$$
,且 $\lim_{n \to \infty} \frac{\ln \frac{1}{a_n}}{\ln n} = q$ (有限或+∞)

(1) 证明: 当
$$q > 1$$
时,级数 $\sum_{n=1}^{\infty} a_n$ 收敛;当 $q < 1$ 时,级数 $\sum_{n=1}^{\infty} a_n$ 发散。

12. 已知 $u_n(x)$ 满足 $u'_n(x) = u_n(x) + x^{n-1}e^x, n = 1, 2, ...$,且 $u_n(1) = \frac{e}{n}$,求函数项级

b 站昵称: 李熵一

数
$$\sum_{n=1}^{\infty} u_n(x)$$
之和。 (一, 初)

14. 设
$$a_n > 0$$
, $S_n = \sum_{k=1}^n a_k$, 证明:

(1) 当a > 1时,级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^a}$ 收敛;

(2) 当
$$a \le 1$$
, 且 $S_n \to \infty (n \to \infty)$ 时, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^a}$ 发散。 (二, 初)

15. 设
$$\sum_{n=1}^{\infty} a_n$$
与 $\sum_{n=1}^{\infty} b_n$ 为正项级数,证明:

(1) 若
$$\lim_{n\to\infty} \left(\frac{a_n}{a_{n+1}b_n} - \frac{1}{b_{n+1}} \right) > 0$$
,则 $\sum_{n=1}^{\infty} a_n$ 收敛;

(2) 若
$$\lim_{n\to\infty} \left(\frac{a_n}{a_{n+1}b_n} - \frac{1}{b_{n+1}} \right) < 0$$
,且 $\sum_{n=1}^{\infty} b_n$ 发散,则 $\sum_{n=1}^{\infty} a_n$ 发散。 (四,初)

16. 若对于任何收敛于零的序列 $\{x_n\}$,级数 $\sum_{n=1}^{\infty}a_nx_n$ 都是收敛的,试证明:级数

$$\sum_{n=1}^{\infty} |a_n| 收敛。 (四,决)$$

17. 假设
$$\sum_{n=0}^{\infty}a_nx^n$$
 的收敛半径为 1, $\lim_{n\to\infty}na_n=0$,且 $\lim_{x\to 1^-}\sum_{n=0}^{\infty}a_nx^n=A$ 。证明 $\sum_{n=0}^{\infty}a_n$

收敛且
$$\sum_{n=0}^{\infty} a_n = A$$
。 (五, 决)

18. 已知 a_k, b_k 是正数数列,且 $b_{k+1} - b_k \ge \delta > 0, k = 1, 2, \ldots, \delta$ 为一切常数,证明:

若级数
$$\sum_{k=1}^{\infty} a_k$$
 收敛,则级数 $\sum_{k=1}^{\infty} \frac{k \sqrt[k]{(a_1 a_2 \dots a_k)(b_1 b_2 \dots b_k)}}{b_{k+1} b_k}$ 收敛。 (十,初)

- (1) 证明数列 $\{u_n\}$ 收敛,并求极限 $\lim_{n\to\infty}u_n$;
- (2) 证明级数 $\sum_{n=1}^{\infty} (-1)^n u_n$ 条件收敛;
- (3) 证明当 $p \ge 1$ 时级数 $\sum_{n=1}^{\infty} \frac{u_n}{n^p}$ 收敛,并求级数 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 的和。 (十二,初)
- 20. 设 $p > 0, x_1 = \frac{1}{4}, x_{n+1}^p = x_n^p + x_n^{2p} (n = 1, 2...)$,证明 $\sum_{n=1}^{\infty} \frac{1}{1 + x_n^p}$ 收敛并求其和。
 (六,决)
- 21. 设 $\{u_n\}_{n=1}^{\infty}$ 为单调递减的正实数列, $\lim_{n\to\infty}u_n=0$, $\{a_n\}_{n=1}^{\infty}$ 为一实数列,级数

$$\sum_{n=1}^{\infty} a_n u_n$$
 收敛, 证明: $\lim_{n\to\infty} (a_1 + a_2 + ... + a_n) u_n = 0$ (十, 决)

22. 求级数
$$\sum_{n=1}^{\infty} \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{3}{7} \cdots \frac{n}{2n+1} \cdot \frac{1}{n+1}$$
之和。 (十, 决)

23. 设 $\{a_n\}$ 与 $\{b_n\}$ 均为正实数列,满足: $a_1=b_1=1$ 且 $b_n=a_nb_{n-1}-2, n=2,3,\ldots$

又设 $\{b_n\}$ 为有界数列,证明级数 $\sum_{n=1}^{\infty} \frac{1}{a_1 a_2 \cdots a_n}$ 收敛,并求该级数的和。(十三,初)

24. 设
$$\{u_n\}$$
是正数列,满足 $\frac{u_{n+1}}{u_n}=1-\frac{\alpha}{n}+o\left(\frac{1}{n^{\beta}}\right)$,其中常数 $\alpha>0,\beta>1$

(1) 对于 $v_n = n^{\alpha} u_n$, 判断级数 $\sum_{n=1}^{\infty} \ln \frac{v_{n+1}}{v_n}$ 的敛散性;

【注: 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty}a_n=0$, $\lim_{n\to\infty}b_n=0$,则 $a_n=o(b_n)$ ⇔存在常数M>0及正整数N,使得 $|a_n|\leq M|b_n|$ 对任意n>N成立】

25. 设正数列 $\{a_n\}$ 单调减少且趋于零, $f(x) = \sum_{n=1}^{\infty} a_n^n x^n$,证明: 若级数 $\sum_{n=1}^{\infty} a_n$ 发散,

则积分
$$\int_{1}^{+\infty} \frac{\ln f(x)}{x^2} dx$$
也发散。 (十三补赛, 初)

26. 函数 $f(x) = \begin{cases} 3, & x \in [-5,0) \\ 0, & x \in [0,5) \end{cases}$ 在(-5,5] 的傅里叶级数在 x = 0 收敛的值_____。

(七,初)

27. 展 $[-\pi,\pi)$ 上的函数 f(x) = |x| 成傅里叶级数, 并证明 $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$ 。

(六, 决)

28. 设f(x)在 $(-\infty,+\infty)$ 可导,且 $f(x)=f(x+2)=f(x+\sqrt{3})$,用 Fourier 级数理论证明f(x)为常数。 (八,初)

其他类型专题

- 3. 设 f(x) 在 $[0,+\infty)$ 上 ,且对于固定的 $x \in [0,+\infty)$,当自然数 $n \to +\infty$ 时, $f(x+n) \to 0$ 。证明:函数序列 $\{f(x+n)|n=1,2,...\}$ 在 [0,1] 上一致收敛于 0 。 (一,决)
- 4. 设 f(x) 在 (a,b) 内二次可导,且存在常数 α,β ,使得对于 $\forall x \in (a,b)$,有 $f'(x) = \alpha f(x) + \beta f''(x)$,证明 f(x) 在 (a,b) 内无穷次可导。 (七,初)
- 5. 设f(x,y)为 R^2 上的非负的连续函数,若 $I = \lim_{t \to +\infty} \iint_{x^2+y^2 \le t^2} f(x,y) d\sigma$ 存在极限,

则称广义积分收敛于 $\iint\limits_{\mathbb{R}^2} f(x,y) d\sigma$ 收敛于 I 。若 $\iint\limits_{\mathbb{R}^2} f(x,y) d\sigma$ 收敛于 I ,证明极

限
$$\lim_{t\to +\infty} \iint_{-t\leq x,y\leq t} f(x,y) d\sigma$$
 存在且收敛于 I 。 (六, 决)

6.
$$\sum_{n=1}^{100} n^{-\frac{1}{2}}$$
 的整数部分为_____。 (八, 决)

7. 设函数 f(x)在 $(-\infty, +\infty)$ 上四阶连续可导,且满足

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x+\theta h)h^2$$

其中 θ 是与x,h无关的常数,证明f(x)是不超过3次的多项式。 (五,决)

8. 设f(x)在 $(-\infty,+\infty)$ 上具有连续导数,且 $|f(x)| \le 1, f'(x) > 0, x \in (-\infty,+\infty)$ 。

证明: 对于
$$0 < \alpha < \beta$$
, $\lim_{n \to \infty} \int_{\alpha}^{\beta} f'\left(nx - \frac{1}{x}\right) dx = 0$ 成立。 (十, 决)

9. 设 f 在 [a,b] 上非负连续,严格单增,且存在 $x_n \in [a,b]$ 使得

$$\left[f\left(x_{n}\right)\right]^{n} = \frac{1}{h-a} \int_{a}^{b} \left[f\left(x\right)\right]^{n} dx$$

求 $\lim_{n\to\infty} x_n$ 。

(六,初)

10. 设 f(x) 是仅有正实根的多项式函数,满足 $\frac{f'(x)}{f(x)} = -\sum_{n=0}^{+\infty} c_n x^n$ 。证明:

$$c_n > 0 (n \ge 0)$$
, 极限 $\lim_{n \to \infty} \frac{1}{\sqrt[n]{c_n}}$ 存在, 且等于 $f(x)$ 的最小根。 (十一, 初)

11. 设
$$n$$
 为整数, $n > 1$, $F(x) = \int_0^x e^{-t} \left(1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^n}{n!} \right) dt$

证明: 方程
$$F(x) = \frac{n}{2}$$
在 $\left(\frac{n}{2}, n\right)$ 内至少有一个根。 (一, 决)

12. 证明:
$$\lim_{n\to\infty} \int_0^1 \frac{n}{n^2 x^2 + 1} e^{x^2} dx = \frac{\pi}{2}$$
 (三, 决)

- 13. 证明 $f(n) = \sum_{m=1}^{n} \int_{0}^{m} \cos \frac{2\pi n[x+1]}{m} dx$ 等于 n 的所有因子(包括1和 n 本身)之
- 和,其中[x+1]表示不超过x+1的最大整数,并计算f(2021)。 (十二,初)
- 14. 设函数 f(x)在 $(-\infty,+\infty)$ 上具有二阶导数,并且

$$f''(x) > 0$$
, $\lim_{x \to +\infty} f'(x) = \alpha > 0$, $\lim_{x \to -\infty} f'(x) = \beta < 0$