Nirma University

Institute of Technology

Semester End Examination (IR), May - 2017

B. Tech. in Computer Engineering / Information Technology, Semester-VI

CE601 Design and Analysis of Algorithms

Roll / Exam l	No. Supervisor's Initial with Date					
Time: 3	3 Hours Max Marks: 100					
Instruct	ions: 1. Attempt all the questions. 2. Figures to right indicate full marks. 3. Draw neat sketches wherever necessary. Section I					
Q-1	Do as directed	[18]				
a)	Design an optimal algorithm to perform sorting of an array consisting of n elements using merge sort. Analyse time complexity of the algorithm by showing step by step calculations for each step of the algorithm.	[10]				
b)	What is the significance of "Asymptotic notations" in analysing the time complexity of an algorithm? Differentiate between each of the asymptotic notations through suitable examples and figures.	[8]				
Q-2	Do as directed	[16]				
a)	What is the advantage of using "Fibonacci Heap"? Describe all its operations in detail.	[6]				
	OR (7) Point	[()				
a)	Given an array A of size n and containing integer values (Z). Design an algorithm to compute the maximum sum of the subarray.					
b)	Propose an optimal solution to the "8-Queens problem" using backtracking.	[6]				
c)	What is the significance of "Disjoint set structures"? Explain any one of its operations in brief.					
Q-3	Do as directed	[16]				
a)	How can the method of "Potential function" be used to perform amortized analysis of an algorithm? OR	[6]				
a)	Explain the following terms with examples:-	[6]				
,a)	1) P 2) NP-Complete 3) NP-Hard					
b)	What is the primary requirement to perform search operation using "binary search"? Can we use linked list to implement "binary search"? Give suitable reasons for your answer.	(Z). Design [6] rray. clem" using [6] Explain any [4] [16] to perform [6] [6] eration using [6] eration using [6] eration using [6] to perform [4] [16]				
c)	Which are the "worst case" scenarios possible in the Quick sort	[4]				
C)	algorithm? What will be the running time of the algorithm in those scenarios?					
	Section II					
Q-4 a)		-				
a)	Solve the recurrence by Recurrence Tree method. $T(n) = 4T(n/2) + n^2$	[4]				

b) Solve the following recurrence relation. T(n) = 1, if n=1

[4]

 $=4T_{(n-1)}-2^n$, otherwise.

- c) Dynamic Programing Approach always gives an optimal solution. [4] True or False? Explain with justification and example.
- d) What do you mean by smooth function? How do you find out [4] whether a given function is smooth or not? Give a suitable example.

OR

d) Solve the Knapsack problem for the following data using Greedy [4] Approach. Total capacity of knapsack is 100 Kg.

	Object 1	Object 2	Object 3	Object 4	Object 5
Weights (Kg)	10	20	30	40	50
Values (Rs.)	20	30	66	40	60

Q-5 Do as directed

[16]

a) For the following graph, find minimum spanning tree using Prim's [8] algorithms by applying Greedy Approach.

b) For the following graph, find minimum spanning tree using [8] Kruskal's algorithms by applying Greedy Approach.

OR

b) Prove that for finding nth Fibonacci number using dynamic [8] programing approach, the complexity is in O(log n).

Q-6 Do as directed

[18]

- a) Given two strings, X = abbccccb and Y = abdccabb. Find the long [6] common subsequence of X and Y using dynamic programing.
- b) Find the optimal order and cost for multiplying the matrices:- [6]

 A × B × C × D × E using dynamic programming.

where A is 10×4, B is 4×5, C is 5×20, D is 20×2 and E is 2×50 c) For the following diagram, solve the single source shortest problem [6] using Dijikstra's Algorithm.

