

TIRAMISU: Black-Box Simulation Extractable NIZKs in the Updatable CRS Model

Karim Baghery 1,2 and Mahdi Sedaghat 1

¹imec-COSIC, KU Leuven, Leuven, Belgium ²University of Tartu, Tartu, Estonia.

karim.baghery@kuleuven.be ssedagha@esat.kuleuven.be

ia.cr/2020/474

Overview on Tiramisu & (Sub./Upd.) NIZKs in the CRS Model:

Tiramisu: Building U-ZK and U-BB-SE NIZKs (zk-SNARKs)

Given a language L with the NP relation R_L , define L' s. t. $((x, c, pk_i), (w, r)) \in R_{L'}$ iff:

$$c = Enc(pk_i, w; r)) \bigwedge ((x, w) \in R_L)$$

- $\Pi_{enc} := (KG, Enc, Dec)$ is CPA secure public-key cryptosystem with *updatable keys* (pk_i, sk_i)
- ➤ Updatable public-key cryptosystems: can be constructed from key-homomorphic encryption schemes [AHI11] (a variation of El-Gamal [ElG84] instantiated in the pairing-based groups)
 - Similar to updatable NIZK arguments [GKM+18]
 - and updatable signatures [ARS20]

Tiramisu in Comparison with Current Constructions:

IN ITALIAN, TIRAMISÙ LITERALLY
MEANS "LIFT MEUP", OR MORE
LITERALLY "PULL IT UP".

LITERALLY

		Zero-Knowledge			Simulation Extractability			
		ZK	U-ZK	Sub-ZK	nBB-SE	BB-SE	U-nBB-SE	U-BB-SE
	Tiramisu	√	✓	×	√	✓	√	√
(CØCØ KZM ⁺ 15 Bag19a	✓	×	×	√	\checkmark	×	×
	GM17 BG18 AB19	√	×	×	√	×	×	×
	Bag19b Lip19	\checkmark	\checkmark	\checkmark	√	×	X	×
	[ARS20a]	√	√	√ *	√	×	√	×

Thank You!

karim.baghery@kuleuven.be ssedagha@esat.kuleuven.be

CØCØ Framework: Building BB-SE NIZKs (zk-SNARKs)

Fiven a language L with the corresponding NP relation R_L , defines a new language L' such that $((x, c, \mu, pk_s, pk_e, \rho), (w, r, r_0, s_0)) \in R_{L'}$ iff:

$$c = Enc(pk_e, w; r)) \bigwedge \left((x, w) \in R_L \bigvee \left(\mu = f_{s_0}(pk_s) \bigwedge \rho = Com(s_0, r_0) \right) \right)$$

- *Enc*(.) is a semantically secure encryption scheme,
- $f_{S_0}(.):\{0,1\}^* \to \{0,1\}^{\lambda}$ is a PRF family,
- *Com*(.) is a perfectly binding commitment scheme.

Black-Box Extraction

Simulation Sound or nBB Simulation Extractable

➤ Used in several UC-secure protocols [Gro06]: Hawk [KMS+16], Gyges [JKS16], Ouroboros Crypsinous [KKKZ19], ...

[Bag19b, ARS20]: Building Sub-ZK & nBB-SE/U-nBB-SE zk-SNARKs

Sub-ZK and nBB Knowledge Sound SNARK e.g. [ABLZ17, Fuc18]

[Bag19b] [BG90, KZM+15]

Sub-ZK & nBB-SE SNARK

Given a language L with the corresponding NP relation R_L , define a new language L' such that $((x, e, \mu, pk_s, pk_e, \rho), (w, r, r_0, s_0)) \in R_{L'}$ iff:

$$c = Enc(pk_e, w; r)) \wedge \left((x, w) \in R_L \bigvee \left(\mu = f_{s_0}(pk_s) \bigwedge \rho = Com(s_0, r_0) \right) \right)$$

Sub-ZK and Updatable nBB Knowledge Sound SNARK e.g. [GKM+18]

[ARS20, Lamassu] [DS16, Bag19b]

Sub-ZK & U-nBB-SE SNARK

- \triangleright Given a language L with the corresponding NP relation R_L , defines a new language L' such that $((x, cpk, pk), (w, csk sk)) \in R_{L'}$ iff:
 - (cpk, csk) of a key-homomorphic signature
 - (pk, sk) of a one-time secure signature
 - μ : SK $\rightarrow PK$ (e.g. pk = g^{sk}).

$$(x, w) \in \mathbf{R}_L \bigvee (\operatorname{cpk} = \operatorname{pk} \cdot \mu(\operatorname{csk} - sk))$$