The group G is isomorphic to the group labelled by [24, 1] in the Small Groups library. Ordinary character table of $G\cong C3$: C8:

	1a	2a	4a	4b	3a	6a	12a	12b	8a	8b	8c	8 <i>d</i>
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	1	-1	-1	-1	-1
χ_3	1	1	-1	-1	1	1	-1	-1	E(4)	E(4)	-E(4)	-E(4)
χ_4	1	1	-1	-1	1	1	-1	-1	-E(4)	-E(4)	E(4)	E(4)
χ_5	1	-1	E(4)	-E(4)	1	-1	E(4)	-E(4)	E(8)	-E(8)	$E(8)^{3}$	$-E(8)^3$
χ_6	1	-1	E(4)	-E(4)	1	-1	E(4)	-E(4)	-E(8)	E(8)	$-E(8)^{3}$	$E(8)^{3}$
χ_7	1	-1	-E(4)	E(4)	1	-1	-E(4)	E(4)	$E(8)^{3}$	$-E(8)^{3}$	E(8)	-E(8)
χ_8	1	-1	-E(4)	E(4)	1	-1	-E(4)	E(4)	$-E(8)^{3}$	$E(8)^{3}$	-E(8)	E(8)
χ_9	2	2	2	2	-1	-1	-1	-1	0	0	0	0
χ_{10}	2	2	-2	-2	-1	-1	1	1	0	0	0	0
χ_{11}	2	-2	2 * E(4)	-2 * E(4)	-1	1	-E(4)	E(4)	0	0	0	0
χ_{12}	2	-2	-2*E(4)	2 * E(4)	-1	1	E(4)	-E(4)	0	0	0	0

Trivial source character table of $G \cong C3$: C8 at p = 3:

Normalisers N_i	N_1						N_2										
p-subgroups of G up to conjugacy in G			P_1							P_2							
Representatives $n_j \in N_i$	1a	8a	4a	2a	8c	8b	4b	8d	1a	8a	4a	2a	8b	8c	4b	8d	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	1	3	3	1	1	3	1	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	3	3	-1	-1	3	-1	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	E(4)	-3	3	-E(4)	E(4)	-3	-E(4)	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-E(4)	-3	3	E(4)	-E(4)	-3	E(4)	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	E(8)	3 * E(4)	-3	$E(8)^{3}$	-E(8)	-3 * E(4)	$-E(8)^{3}$	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-E(8)	3 * E(4)	-3	$-E(8)^3$	E(8)	-3 * E(4)	$E(8)^{3}$	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	3	$E(8)^{3}$	-3 * E(4)		E(8)	$-E(8)^{3}$	3 * E(4)	-E(8)	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	3	$-E(8)^{3}$	-3 * E(4)	-3	-E(8)	$E(8)^{3}$	3 * E(4)	E(8)	0	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	1	1	-1	-1	1	-1	1	-1	1	1	-1	-1	1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-E(4)	-1	1	E(4)	-E(4)	-1	E(4)	1	-E(4)	-1	1	E(4)	-E(4)	-1	E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	E(4)	-1	1	-E(4)	E(4)	-1	-E(4)	1	E(4)	-1	1	-E(4)	E(4)	-1	-E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	$E(8)^{3}$	-E(4)	-1	E(8)	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	-1	E(8)	$-E(8)^{3}$	E(4)	-E(8)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	$-E(8)^3$	-E(4)	-1	-E(8)	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-1	-E(8)	$E(8)^{3}$	E(4)	E(8)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	E(8)	E(4)	-1	$E(8)^{3}$	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	-1	$E(8)^{3}$	-E(8)	-E(4)	$-E(8)^{3}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-E(8)	E(4)		$-E(8)^3$	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	-1	$-E(8)^3$	E(8)	-E(4)	$E(8)^{3}$	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 12, 5)(2, 16, 8)(3, 18, 10)(4, 19, 11)(6, 21, 14)(7, 22, 15)(9, 23, 17)(13, 24, 20)]) \cong C3$

 $N_1 = Group([(1,2,3,6,4,7,9,13)(5,16,10,21,11,22,17,24)(8,18,14,19,15,23,20,12),(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C3:C8$ $N_2 = Group([(1,12,5)(2,16,8)(3,18,10)(4,19,11)(6,21,14)(7,22,15)(9,23,17)(13,24,20),(1,2,3,6,4,7,9,13)(5,16,10,21,11,22,17,24)(8,18,14,19,15,23,20,12)]) \cong C3:C8$