(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-201952 (P2003-201952A)

(43)公開日 平成15年7月18日(2003.7.18)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

F03D 7/04

F03D 7/04

H 3H078

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号

特願2002-645(P2002-645)

(22)出願日

平成14年1月7日(2002.1.7)

(71) 出願人 000005348

富士重工業株式会社

東京都新宿区西新宿一丁目7番2号

(72)発明者 吉田 茂雄

東京都新宿区西新宿1丁目7番2号 富士

重工業株式会社内

(74)代理人 100100354

弁理士 江藤 聡明

Fターム(参考) 3H078 AA02 BB20 CC02 CC51

(54) 【発明の名称】 風車のピッチアライメント調整方法

(57)【要約】

【課題】 コストアップを招くことなくビッチアライメ ントを簡単に調整できると共に、サブシステムの小型・ 軽量化もしくは耐久性向上、及び設備事業費の低減化が 図れる風車のピッチアライメント調整方法を提供する。 【解決手段】 複数のブレード6a、6b、6cのうち の任意の1枚のブレード6cのピッチ角を固定した状態 で、ロータ4を定速回転させながら残りのブレード6 a、6bのピッチ角を対応するアクチュエータにより変 更して、その各ピッチ角におけるナセルの振動状態を測 定し、その振動状態の測定結果に基づいて複数のブレー ド6a、6b、6cの最適なピッチ角の組み合わせを決 定して、その決定された組み合わせのピッチ角となるよ うに、対応するアクチュエータを介してピッチアライメ ントを調整する。

【特許請求の範囲】

【請求項1】 ナセルに回転自在に支持されたロータに ハブを介して取り付けられた複数のブレードを有し、各 プレードのピッチ角を独立したアクチュエータにより制 御するようにした風車のピッチアライメントを調整する 風車のピッチアライメント調整方法において、

1

上記複数のプレードのうちの任意の 1 枚のブレードのピ ッチ角を固定した状態で、上記ロータを定速回転させな がら残りのブレードのピッチ角を対応するアクチュエー タにより変更して、該各ピッチ角における上記ナセルの 10 振動状態を測定し、

上記振動状態の測定結果に基づいて上記複数のブレード の最適なピッチ角の組み合わせを決定して、上記複数の プレードのピッチ角を決定された組み合わせのピッチ角 となるように、対応するアクチュエータを介してピッチ アライメントを調整することを特徴とする風車のピッチ アライメント調整方法。

【請求項2】 上記振動状態として振動加速度を測定 し、該振動加速度が最小となるピッチ角の組み合わせ を、上記最適なピッチ角の組み合わせとして決定すると 20 とを特徴とする請求項1に記載の風車のビッチアライメ ント調整方法。

【請求項3】 上記振動状態として振動加速度のパワー スペクトラム密度を測定し、該パワースペクトラム密度 に基づいて上記ナセルの振動バランスが最良となる組み 合わせを、上記最適なビッチ角の組み合わせとして決定 することを特徴とする請求項1に記載の風車のピッチア ライメント調整方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は風車のピッチアライ メント調整方法に関し、特に、複数のブレードの各ピッ チ角を独立したアクチュエータにより各々制御するよう にした風車のピッチアライメント調整方法に関する。 [0002]

【従来の技術】近年、無公害な発電設備として風力発電 設備が普及しつつある。風力発電に使用される風車は、 一般にタワーの上端に発電機等を収容するナセルを回転 自在に取り付け、このナセルにハブ及び複数のブレード を有するロータを回転自在に支承して構成されている。 【0003】また、特に大型の風車では、風速変動に応 じてブレードのピッチ角を変更するアクティブピッチ制 御により、起動トルクの増大が図られていると共に、風 速に応じたロータの回転数の制御が行なわれ、かつ強風 時にはブレードを風向と平行にするフェザリングにより 出力及び回転速度を常用範囲内に収める制御が行なわれ ている。

【0004】このようなアクティブピッチ制御によりピ ッチ角を変更するピッチ可変機構としては、各ブレード のピッチ角を共通のアクチュエータにより複数のリンク 50 て取り付けられた複数のブレードを有し、各ブレードの

を介して連動して制御する連動式のものと、各ブレード のビッチ角を各々独立したアクチュエータにより独立し て制御する独立式のものとが知られているが、連動式の ものは複雑なリンク機構等を要し、ハブ内の構造が複雑 になることから、最近ではハブ内の構造が簡素化できる 独立式のものが比較的多く採用されている。

【0005】ところで、上記のようにアクティブピッチ 制御によりプレードのピッチ角を変更する場合には、ブ レードの形状誤差やピッチアライメント誤差により、各 ブレードが発生する空気力にアンバランスが生じ、これ により主軸、ナセル、ヨー系統等のサブシステムに変動 荷重が作用して、耐用年数の低下などの悪影響を及ぼす ことになる。

【0006】そこで、従来は、風車の設置にあたって、 各ブレードを形状誤差が極力小さくなるように高精度に 製造すると共に、各ブレードをハブの結合部に対して幾 何学的誤差が極力小さくなるように髙精度にアライメン ト調整して取り付けるようにしている。

[0007]

【発明が解決しようとする課題】ところが、上述したよ うに各ブレードを髙精度に製造するには、製造・検査等 に時間がかかり、コストアップになることが懸念され る。また、各ブレードをハブの結合部に幾何学的に高精 度に位置合わせして取り付けるには、取り付け作業及び 検査に時間を要することが懸念される他、タワー上の高 所での長時間に亘る取り付け調整作業及び検査は安全性 の観点から好ましくない。

【0008】また、このようにブレードの形状誤差及び ピッチアライメント誤差が各々設定範囲内に入るように ブレードの製造及び取り付けを行なう場合には、両者の 30 誤差の組み合わせが最大となる場合の荷重アンバランス にも対処できるように、主軸、ナセル、ヨー系統等のサ ブシステムを設計する必要があるため、該サブシステム が大型で重量が大きく、コストアップになることが懸念 される。

【0009】なお、ピッチアライメントに関しては、ハ ブのブレード結合部をアライメント誤差が生じにくい形 状にすることも考えられるが、このようにするとコスト アップを招くことになる。

【0010】従って、かかる点に鑑みてなされた本発明 の目的は、コストアップを招くことなくピッチアライメ ントを簡単に調整できると共に、サブシステムの小型・ 軽量化もしくは耐久性向上、及び設備事業費の低減化が 図れる風車のピッチアライメント調整方法を提供するこ とにある。

[0011]

【課題を解決するための手段】上記目的を達成する請求 項1 に記載の風車のピッチアライメント調整方法の発明 は、ナセルに回転自在に支持されたロータにハブを介し

40

ランスが最良となるようにピッチアライメントを簡単に 調整することが可能となる。

にした風車のビッチアライメントを調整する風車のビッチアライメント調整方法において、上記複数のブレードのうちの任意の1枚のブレードのビッチ角を固定した状態で、上記ロータを定速回転させながら残りのブレードのビッチ角を対応するアクチュエータにより変更して、該各ビッチ角における上記ナセルの振動状態を測定し、上記振動状態の測定結果に基づいて上記複数のブレードの最適なビッチ角の組み合わせを決定して、上記複数の

上記振動状態の測定結果に基づいて上記複数のブレード の最適なビッチ角の組み合わせを決定して、上記複数の ブレードのピッチ角を決定された組み合わせのピッチ角 10 となるように、対応するアクチュエータを介してピッチ アライメントを調整することを特徴とする。

【0012】請求項1の発明によると、任意の1枚のブレードのピッチ角を固定し、ロータを定速回転させながら残りのブレードのピッチ角を対応するアクチュエータにより変更して、その各ピッチ角におけるナセルの振動状態を測定し、その振動状態の測定結果に基づいて複数のブレードのピッチ角を対応するアクチュエータを介して最適なピッチ角の組み合わせに調整するので、空力

(トルク及びスラスト)アンバランスの要因となるブレード形状誤差とピッチアライメント誤差とを区別することなく、総合的なバランスが取れるようにピッチアライメントを簡単に調整することが可能になり、これにより変動荷重を小さくすることが可能となる。

【0013】従って、各ブレードの製造及びハブ結合部への取り付けに際しての幾何学的精度要求を緩くすることが可能となるので、ブレードのコストダウンが図れると共に、ピッチ角のアライメント設定に対する要求値が基本的に不要となるので、風車の設置が容易になり、それに伴ってタワー上の髙所での作業を簡略化でき、作業 30の安全性及び設置期間の短縮化が図れる。

【0014】更に、変動荷重を小さくできることから、 主軸、ナセル、ヨー系統等のサブシステムの小型・軽量 化もしくは耐久性向上が図れ、風車の設備事業費(風車 本体、設置、保守の各費用)の低減化が図れる。

【0015】請求項2に記載の発明は、請求項1のビッチアライメント調整方法において、上記振動状態として振動加速度を測定し、該振動加速度が最小となるビッチ角の組み合わせを、上記最適なビッチ角の組み合わせとして決定することを特徴とする。

【0016】請求項2の発明によると、ナセルの振動加速度が最小となるようにピッチアライメントを簡単に調整することが可能となる。

【0017】請求項3.に記載の発明は、請求項1のビッチアライメント調整方法において、上記振動状態として振動加速度のパワースペクトラム密度を測定し、該パワースペクトラム密度に基づいて上記ナセルの振動バランスが最良となる組み合わせを、上記最適なビッチ角の組み合わせとして決定することを特徴とする。

【0018】請求項3の発明によると、ナセルの振動バ 50 動制御したり、強風時にロータ4が過回転するのを防止

[0019]

【発明の実施の形態】以下、本発明による風車のビッチアライメント調整方法の実施の形態について、図1乃至図6を参照して説明する。

【0020】(第1実施の形態)図1は本発明によるピッチアライメント調整方法を実施し得る水平軸型風車の概要を示す全体斜視図である。この水平軸型風車1は、タワー2の上端に回転自在に取り付けられた発電機等を収容するナセル3を有しており、このナセル3に略水平方向に延在して回転自在に支持された主軸(図示せず)によって、ハブ5及び複数枚のブレード、本実施の形態では3枚のブレード6a、6b、6cを有するロータ4が回転自在に支持されている。

【0021】各ブレード6a、6b、6cは、ハブ5内 に搭載されている対応する公知のアクチュエータにより 各々独立してピッチ角を調整できるようにハブ5に回動 自在に取り付けられ、風速変動に応じて各ブレード6a、6b、6cのピッチ角を変更するアクティブピッチ 制御により、起動トルクの増大が図られると共に、風速 に応じた回転数の制御が行なわれ、かつ強風時には各ブレード6a、6b、6cを風向と平行にするフェザリングにより出力及び回転速度が常用範囲内に収まるように 制御されるようになっている。

【0022】本発明の第1実施の形態では、図1に示した水平軸型風車1の設置或いはメンテナンスにあたって、ブレード6a、6b、6cを、ナセル3の振動が最も小さくなるピッチ角の組み合わせにアライメント調整する。

【0023】図2は第1実施の形態におけるピッチアライメント調整方法を実施する調整システムの概略構成図である。この調整システムは、各ブレード6a、6b、6cのピッチ角を独立して可変するアクチュエータ10a、10b、10cと、ロータ4を定速回転させるモータ11と、アクチュエータ10a、10b、10c及びモータ11の駆動を制御する制御器12と、ナセル3の振動加速度を測定する振動測定器13と、制御器12から出力される各ブレード6a、6b、6cのピッチ角情報と共に振動測定器13による振動加速度の測定値を記録する記録装置14とを有している。

【0024】各アクチュエータ10a、10b、10cは、上述したように各プレード6a、6b、6cのピッチ角を独立して制御するためにハブ5内に搭載されているもので、各々油圧シリンダや電動モータ等の駆動源を有している。

【0025】制御器12は、ピッチアライメント調整専用に構成することもできるが、図1に示した水平軸型風車1には、風向を検出してナセル3をヨー軸を中心に回動制御したり、強風時にロータ4が過回転するのを防止

する制御を行なったりする制御器が搭載されているの で、本実施の形態ではこの水平軸型風車1に本来搭載さ れている制御器を共用し、この制御器に運転モードの他 にアライメント設定モードを設定してビッチアライメン ト調整時の運転手順をプログラムしておく。

【0026】振動測定器13は、例えばナセル3の任意 の箇所に加速度センサを取り付けてナセル3の振動加速 度を直接測定するよう構成するか、加速度センサの代わ りに歪みセンサを接着してナセル3の振動加速度を間接 的に測定するよう構成する。

【0027】また、記録装置14は、一般的な公知の記 録装置を用いる。

【0028】本実施の形態では、アライメント設定モー ドにおいて、先ず、3枚のブレード6a、6b、6cの うちの任意のプレード、例えばブレード6 cのピッチ角 を制御器12によりアクチュエータ10cを介して所定 の角度 θ 3に固定し、その状態で制御器12によりモー タ11を駆動してロータ4を定速回転、例えば60гp mで回転させながら、他の2枚のブレード6a及び6b のピッチ角 θ 1、 θ 2を制御器12により対応するアク チュエータ10 a、10 bを介して所定の角度範囲で微 小角度ずつ自動的に変角させ、その各ピッチ角における ナセル3の振動加速度を振動測定器13で測定して記録 装置14に記録する。

【0029】なお、ブレード6 cのピッチ角 8 3は、好 ましくはブレード6 c がハブ5 の結合部に対して幾何学 的原点(ビッチ角が幾何学的に一致している点)にほぼ 位置する角度に設定する。また、ブレード6a、6b は、例えば各々の幾何学的原点から±5度の範囲で変角 させる。

【0030】その後、記録装置14に記録された振動加 速度の測定結果を解析して、ナセル3の振動が最も小さ くなるブレード6a、6b、6cの最適なピッチ角の組 み合わせを求め、その求めた最適なピッチ角の組み合わ せとなるように、各ブレード6a、6b、6cのピッチ 角を制御器12により対応するアクチュエータ10a、 10 b、10 cを介してアライメント調整する。

【0031】即ち、記録装置14に記録された測定結果 を解析すると、例えば図3に模式的に示すような振動加 速度等髙線を得ることができるので、この解析結果から ブレード6cのピッチ角 3 に対して最適、即ち振動が 最小となるブレード6 a 及び6 b のピッチ角θ l opt及 ッチ角の組み合わせを (θ lopt, θ 2 opt, θ 3) のよ うに決定し、その決定されたピッチ角の組み合わせとな るように、各プレード6a,6b,6cのピッチ角をア ライメント調整する。なお、これらのピッチ角は、ブレ ード6a、6b、6cの各形状誤差を吸収するので、通 常は幾何学的原点とは若干異なる角度を取る。

後、以後の通常の運転モードでは、そのアライメント調 整されたピッチ角をピッチ角制御の基準点として、風速 変動に応じて制御器 1 2 により各プレード 6 a 、 6 b 、 6 cのピッチ角を対応するアクチュエータ10a、10 b、10cを介してアクティブ制御する。

【0033】このように、本実施の形態では、1枚のブ レード6 cのピッチ角をθ 3に固定し、ロータ4を定速 回転させながら他の2枚のブレード6a,6bのピッチ 角 θ 1、 θ 2を可変して、その各ピッチ角におけるナセ 10 ル3の振動加速度を測定し、その測定結果に基づいてナ セル3の振動が最も小さくなるプレード6a、6b、6 cの最適なビッチ角の組み合わせを決定して、その決定 した最適なビッチ角の組み合わせとなるようにブレード 6a、6b、6cのビッチ角を対応する各アクチュエー タ10a、10b、10cを介して調整するようにした ので、空力アンバランスの要因となるブレード形状誤差 とピッチアライメント誤差とを区別することなく、総合 的なバランスが取れるようにピッチアライメントを簡単 に調整でき、変動荷重を小さくすることができる。

【0034】従って、ブレード6a、6b、6cの製造 及び検査等を容易にでき、コストダウンを図ることがで きると共に、ピッチ角のアライメント設定に対する要求 値が基本的に不要となるので風車1の設置が容易にな り、それに伴いタワー2上の髙所での作業を簡略化でき るので、作業の安全性及び設置期間の短縮化を図ること ができる。更に、変動荷重を小さくできることから、主 軸、ナセル3、ヨー系統等のサブシステムの小型・軽量 化若しくは高耐久性を図ることができ、風力発電の設備 事業費を低減することができる。

【0035】(第2実施の形態)本発明の第2実施の形 30 態では、図1に示した水平軸型風車1の設置或いはメン テナンスにあたって、ブレード6a、6b、6cを、ナ セル3の振動バランスが最も良くなるピッチ角の組み合 わせにアライメント調整する。

【0036】このため、本実施の形態では、図4に調整 システムの概略構成図を示すように、図2に示した調整 システムの構成に、振動測定器13から出力される振動 加速度のパワースペクトラム密度を演算する高速フーリ エ変換器(FFT)21を付加し、このFFT21で演 算したパワースペクトラム密度を制御器12から出力さ れる各ブレード6a、6b、6cのピッチ角情報と共に 記録装置14に記録するようにする。

【0037】このようにして、アライメント設定モード においては、第1実施の形態と同様にして、先ず、3枚 のブレード6a、6b、6cのうちの任意のブレード、 例えばブレード6 cのピッチ角を θ 3 に固定し、その状 態で制御器12によりモータ11を駆動してロータ4を 定速回転、例えば60 r p mで回転させながら、他の2 枚のブレード6a及び6bの各ピッチ角 $\theta1$ 、 $\theta2$ を制 【0032】以上のようにして、アライメント調整した 50 御器12により対応するアクチュエータ10a、10b

を介して所定の角度範囲で微小角度ずつ自動的に変角させ、その各ピッチ角におけるナセル3の振動加速度を振動測定器13で測定する。

【0038】本実施の形態では、振動測定器13から出力される振動加速度をFFT21に供給してそのパワースペクトラム密度を求め、そのパワースペクトラム密度を制御器12からの各ブレード6a、6b、6cのピッチ角情報とともに記録装置14に記録する。

【0039】その後、記録装置14に記録された測定結果を解析して、ナセル3の振動パランスが最も良くなる 10ブレード6a、6b、6cの最適なピッチ角の組み合わせを決定し、その決定された最適なピッチ角の組み合わせとなるように、各ブレード6a、6b、6cのピッチ角を制御器12により対応するアクチュエータ10a、10b、10cを介してアライメント調整する。

【0040】ここで、FFT21により振動測定器13で測定された振動加速度のパワースペクトラム密度を求めると、図5に示すように、アライメント誤差が大きい場合には、ロータ4の回転速度と同一周期の1P成分のパワースペクトル強度が大きくなって支配的となり、振20動バランスが良い場合には(nb×P)成分のパワースペクトル強度が大きくなって支配的となることが知られている。なお、nbはブレード枚数を示す。

【0041】従って、本実施の形態のように、3枚のブレード6a、6b、6cを有するロータ4を例えば60rpmで定速回転させると、アライメント誤差が大きい場合には1P(1Hz)成分が支配的となり、振動バランスが良くなるに従って3P(3Hz)成分が支配的となる。

【0042】そこで、記録装置14亿記録された測定結 30 果を、例えば3P成分と1P成分との比を評定パラメータとして解析すると、例えば図6に模式的に示すような振動加速度等高線を得ることができるので、この解析結果からブレード6cのピッチ角 θ 3に対して最適、即ち振動パランスが最も良いブレード6a及び6bのピッチ角 θ 1 opt及び θ 2 optを求めて、ブレード6a、6b、6cの最適なピッチ角の組み合わせを(θ 1 opt、 θ 2 opt、 θ 3)のように決定し、その決定された最適なピッチ角の組み合わせとなるように、各ブレード6a、6b、6cのピッチ角をアライメント調整する。なお、こ 40 れらのピッチ角は、第1実施の形態の場合と同様に、ブレード6a、6b、6cの各形状誤差を吸収するので、通常は幾何学的原点とは若干異なる角度を取る。

【0043】このように、本実施の形態では、1枚のブレード6 cのピッチ角を θ 3 に固定し、ロータ4を定速回転させながら他の2枚のブレード6 a、6 bのピッチ角 θ 1、 θ 2を変更して、その各ピッチ角におけるナセル3の振動加速度のパワースペクトラム密度を測定し、その測定結果に基づいてナセル3の振動パランスが最も良くなるブレード6 a、6 b、6 cのピッチ角の組み合 50

わせを求めて、その組み合わせとなるようにブレード6 a、6b、6cのピッチ角を調整するようにしたので、 第1実施の形態と同様の効果を得ることができる。

【0044】なお、本発明は上記実施の形態に限定されることなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えばブレード枚数は3枚に限らず、2枚または4枚以上の風車のアライメント調整にも適用できると共に、水平軸型風車に限らず、風速変動に応じて各ブレードのピッチ角を各々独立したアクチュエータで独立してアクティブ制御する種々の形式の風車に適用することができる。

[0045]

【発明の効果】以上のように、本発明によれば、任意の 1 枚のブレードのピッチ角を固定し、ロータを定速回転 させながら残りのブレードのピッチ角を対応するアクチュエータにより変更して、その各ピッチ角におけるナセルの振動状態を測定し、その振動状態の測定結果に基づいて複数のブレードのピッチ角を対応するアクチュエータを介して最適なピッチ角の組み合わせとなるようにピッチアライメントを調整するようにしたので、ブレード形状誤差とピッチアライメント誤差とを区別することなく、総合的なバランスが取れるようにピッチアライメントを簡単に調整することができ、変動荷重を小さくすることができる。

【0046】従って、各ブレードの製造及びハブ結合部への取り付けに際しての幾何学的精度を緩くするととができるので、ブレードのコストダウンが図れると共に、ビッチ角のアライメント設定に対する要求値が基本的に不要となるので、風車の設置が容易になり、それに伴ってタワー上の高所での作業を簡略化できるので、作業の安全性及び設置期間の短縮化が図れる。更に、変動荷重を小さくできるととから、主軸、ナセル、ヨー系統等のサブシステムの小型・軽量化もしくは耐久性向上が図れるので、風車の設備事業費を低減することができる。

【図面の簡単な説明】

【図1】本発明によるビッチアライメント調整方法を実施し得る水平軸型風車の概要を示す全体斜視図である。 【図2】本発明の第1実施の形態におけるビッチアライメント調整方法を実施する調整システムの概略構成図で 40 ある。

【図3】第1実施の形態による振動加速度の解析結果を 模式的に示す図である。

【図4】本発明の第2実施の形態におけるピッチアライメント調整方法を実施する調整システムの概略構成図である。

【図5】第2実施の形態による振動加速度のパワースペクトラム密度を説明するための図である。

【図6】第2実施の形態によるパワースペクトラム密度 の解析結果を模式的に示す図である。

【符号の説明】

