Lista gwiazdkowa (10.03.2025), Analiza Matematyczna II

- **401.** Załóżmy, że f jest ograniczona i całkowalna w sensie Riemanna na odcinku [a,b] oraz istnieje $\delta > 0$ taka, że $f(x) \geq \delta$ na [a,b]. Udowodnij, że funkcja g(x) = 1/f(x) jest całkowalna w sensie Riemanna na $[a,b]^1$.
- **402.** Niech $f:[a,b]\to\mathbb{R}$ będzie funkcją monotoniczną. Wykaż, że f jest całkowalna w sensie Riemmana.
- **403.** Niech $f:[0,\pi]\to\mathbb{R}$ będzie funkcją określoną wzorem

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{(a_n,b_n)}(x),^{2}$$

gdzie (a_n, b_n) są parami rozłącznymi przedziałami o długościach 2^{-n} . Wykaż, że f jest całkowalna w sensie Riemanna oraz oblicz wartość całki $\int_0^{\pi} f(x) dx$.

404. Załóżmy, że fjest funkcją ciągłą na odcinku [0,1]o wartościach rzeczywistych. Udowodnij, że

$$\lim_{n \to \infty} (n+1) \int_0^1 x^n f(x) \, dx = f(1).$$

405. Pokazać, że

$$\int_0^1 x^{-x} \, dx = \sum_{n=0}^\infty n^{-n}.$$

406. Załóżmy, że f jest ciągła, ściśle rosnąca z $[0,\infty)$ na $[0,\infty)$. Niech g oznacza funkcję odwrotną do f. Udowodnij, że dla dowolnych a,b>0 mamy

$$\int_0^a f(x) \, dx + \int_0^b g(x) \, dx \ge ab$$

oraz zbadaj kiedy zachodzi równość.

- **407.** Czy liczba $\int_0^{\sqrt{2\pi}} \sin(x^2) dx > 0$ jest dodatnia czy ujemna?
- 408. Udowodnić, że równanie

$$\int_0^a e^{-x} \left(\frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{100}}{100!} \right) dx = 50$$

ma rozwiązanie a zawarte w przedziale [50, 100].

¹Uwaga: bez założenia $f(x) \ge \delta > 0$ funkcja g(x) nie byłaby ograniczona.

 $^{^{2}\}chi_{A}$ oznacza funkcję, która przyjmuje wartość 1 na zbiorze A oraz zero poza nim.

³Pytanie dla dociekliwych: czy rozłączność przedziałów ma znaczenie?

409. Niech $f; [0,1] \longrightarrow \mathbb{R}$ będzie funkcją trzykrotnie różniczkowalną która spełnia f(0) = f(1) oraz $\int_0^1 f(x) dx = 0$. Udowodnij, że⁴

$$30240 \left(\int_0^1 x f(x) \, dx \right)^2 \le \int_0^1 |f''(x)|^2 \, dx.$$

410. Niech $a \in [0,1]$. Znajdź wszystkie funkcje ciągłe $f:[0,1] \longmapsto \mathbb{R}$ spełniające poniższe warunki:

$$\int_0^1 f(x) \, dx = a^0, \quad \int_0^1 x f(x) \, dx = a^1, \quad \int_0^1 x^2 f(x) \, dx = a^2.$$

- **411.** Załóżmy, że $f: [-1,1] \longrightarrow \mathbb{R}$ jest ciągła i parzysta. Ponadto dla każdego n=1,2,... spełnia ona warunek $\int_{-1}^{1} x^{2n} f(x) dx = 0$. Udowodnij, że f(x) = 0 dla każdego $x \in [-1,1]$.
- **412.** Dla funkcji ciągłej f na przedziale [0,1] wykazać równość

$$\int_0^{\pi} x f(\sin(x)) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin(x)) dx.$$

- **413.** Wykorzystując oszacowania wykorzystane w dowodzie wzoru Stirlinga na wykładzie wyznaczyć liczbę cyfr liczb 100! i 1000!.
- **414.** Funkcja ciągła f spełnia $\int_0^1 x^n f(x) dx = 0$ dla $n \leq N$. Udowodnić, że f na przedziale [0,1] zeruje się przynajmniej N+1 razy.
- 415. Pokazać, że wartość całki

$$\int_0^\infty \frac{1}{(x^2+1)(x^\alpha+1)} \, dx$$

nie zależy od parametru $\alpha > 0$.

416. Niech $f:[0,\infty)\to\mathbb{R}$ będzie funkcją ciągłą o wartościach dodatnich. Wykazać, że dla każdego x>0 prawdziwa jest nierówność

$$\int_0^x t^2 f(t) dt \cdot \int_0^x f(t) dt \ge \left(\int_0^x t f(t) dt \right)^2.$$

417. Załóżmy, że $f:[0,2\pi]$ spełnia warunek Lipshitza. Wykazać, że istnieje C>0, taka że dla $k\in\mathbb{N}$ spełnione jest szacowanie⁵:

$$\left| \int_0^{2\pi} f(x) \sin(kx) \, dx \right| \le \frac{C}{k}.$$

 $^{^4}Wskazówka:$ Użyć zasadniczego twierdzenia rachunku różniczkowego i całkowego oraz nierówności Cauchy'ego–Schwarza.

 $^{^5}Wskazówka$: Może pomóc zrobienie najpierw tego zadania dla funkcji klasy C^1 przy pomocy całkowania przez części. Jeśli nie założymy różniczkowalności można rozważać sumy Riemmana i zastosować odpowiednik całkowania przez części dla sum, czyli sumowanie Abela.

418. Funkcja $f:[0,\infty)\to\mathbb{R}$ jest ciągła. Wykaż, że

$$\lim_{y \to 0} \int_0^\infty \frac{yf(x)}{x^2 + y^2} \, dx = \frac{\pi}{2} f(0).$$

419. Udowodnić, że jeśli $f:[1,\infty)\to\mathbb{R}$ jest funkcją niemalejącą, wklęsłą, klasy C^2 to ciąg

$$a_n = \int_1^n f(x) \, dx - \sum_{k=1}^n f(k) + \frac{1}{2} f(n)$$

jest ograniczony.

420. Wyznacz wartość całki

$$\int_{1}^{2} \left(e^{1 - \frac{1}{(x-1)^{2}}} + 1 \right) + \left(1 + \frac{1}{\sqrt{1 - \log(x-1)}} \right) dx.$$

421. Załóżmy, że f jest funkcją ciągłą na [0,1]. Udowodnij, że

$$\lim_{n \to \infty} \int_0^1 f(y) \sin(2\pi ny) \, dy = 0.$$

422. Niech f będzie funkcją ciągłą na $[0,\infty)$ posiadającą skończoną granicę $\lim_{x\to\infty} f(x)$. Udowodnij, że dla każdego $\delta>0$

$$\lim_{t \to \infty} t \int_{\delta}^{\infty} e^{-tx} f(x) \, dx = 0$$

oraz oblicz granicę

$$\lim_{t \to \infty} t \int_0^\infty e^{-tx} f(x) \, dx.$$

423. Niech f będzie funkcją klasy C^1 na $[0,\infty)$, taką że $\int_1^\infty x^{-1} f(x) \, dx$ jest zbieżna. Dla a,b>0 udowodnij wzór Froullaniego:

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} = f(0) \ln \frac{b}{a}.$$

424. Dla a > 0, $b \in \mathbb{R}$ wyznacz wartość całki⁶

$$F(a,b) = \int_0^\infty e^{-ax^2} \cos(bx) \, dx.$$

425. (a) Uzasadnij, że

$$f_n(x) = \left(1 + \frac{x}{n}\right)^{-n}$$

zbiega jednostajnie do e^{-x} na $[0, \infty)$.

 $^{^6}Wskaz\'owka$: B.s.o. można przyjąć a=1. Potem policz pochodną po b funkcji G(b)=F(1,b) (uzasadnienie dlaczego z pochodną można wejść pod całkę mile widziane). Ułóż równanie różniczkowe dla G(b) i je rozwiąż.

(b) Oblicz (jeszcze raz) całkę

$$\int_0^\infty e^{-x^2} \, dx = \int_0^\infty \lim_{n \to \infty} \left(1 + \frac{x^2}{n} \right)^{-n} \, dx.$$

426. W zależności od parametru α zbadaj zbieżność całki

$$\int_0^\infty \frac{dx}{1 + x^\alpha \sin^2 x}.$$

427. Obliczyć⁷

$$\int_0^{\pi/2} \frac{t}{\operatorname{tg} t} \, dt.$$

- **428.** Udowodnić, że funkcja zadana wzorem $\sin(1/x)$ nie jest granicą jednostajną ciągu wielomianów na (0,1).
- **429.** Znajdź funkcję f(x,y) nieciągłą w (0,0), ale posiadającą obie pochodne cząstkowe w każdym punkcie.
- **430.** Znajdź funkcję f(x,y) nieciągłą w (0,0), ale posiadającą wszystkie pochodne kierunkowe w każdym punkcie.
- **431.** Udowodnij, że funkcja ciągła $f: \mathbb{R}^n \to \mathbb{R}, n > 1$, nie jest różnowartościowa.
- **432.** Istnieje funkcja ciągła $f: \mathbb{R}^2 \to \mathbb{R}$, taka że funkcje $t \mapsto f(tu, tv)$ mają minimum w t = 0 dla dowolnego $(u, v) \neq (0, 0)$, ale f(x, y) nie ma minimum w punkcie (0, 0).
- **433.** Znajdź funkcję $f:[0,1]\to\mathbb{R}$, która dla żadnego $\alpha>0$ nie spełnia warunku Höldera:

$$|f(x) - f(y)| \le C|x - y|^{\alpha}, \quad x, y \in [0, 1],$$

ale ma wahanie ograniczone.

- **434.** Niech $g,h:\mathbb{R}^2\to\mathbb{R}$ będą funkcjami klasy C^1 . Udowodnij, że następujące warunki są równoważne:
 - (a) Istnieje $f:\mathbb{R}^2\to\mathbb{R}$ klasy $C^2,$ taka że na \mathbb{R}^2 mamy równości:

$$g = \frac{\partial f}{\partial x}, \quad h = \frac{\partial f}{\partial y}.$$

(b) Na \mathbb{R}^2 zachodzi

$$\frac{\partial g}{\partial u} = \frac{\partial h}{\partial x}.$$

⁷Rozważ:
$$F(p) = \int_0^{\pi/2} \frac{\arctan(p \operatorname{tg} t)}{\operatorname{tg}(t)} dt.$$

435. Funkcja f(x,y) jest określona w otoczeniu punktu (0,0) i ma następujące własność: jeśli funkcje x(t) i y(t) są różniczkowalne w otoczeniu zera, x(0) = 0, y(0) = 0 oraz h(t) = f(x(t), y(t)), to h jest różniczkowalna w zerze oraz

$$h'(0) = ax'(0) + by'(0).$$

Udowodnić, że f(x,y) jest różniczkowalna w punkcie (0,0).