2 Ordered sets

When the partial (total) order is understood, we will usually write E instead of (E, \leq) . Henceforward we consider the sets \mathbb{R} and $\overline{\mathbb{R}}$ with the total order relations defined in the examples above. A subset A of a partially (totally) ordered set E is a partially (totally) ordered set with the partial (total) order inherited from E.

Example 2.1. N is a totally ordered sets with the relation inherited from \mathbb{R} .

Example 2.2. The total order of \mathbb{R} coincides with the one inherited from $\overline{\mathbb{R}}$.

Definition 2.3. Let (E, \leq) be a partially ordered set. Let A be subset of E. An element c of A is called the **least element** (**greatest element**) of A if $c \leq x$ ($c \geq x$) for every x in E.

When a least or greatest element of a subset A of E exist it is unique.

Definition 2.4. Let (E, \leq) be a partially ordered set. Let A be subset of E. An element c of E is called a **lower bound** (an **upper bound**) of A if $c \leq x$ ($c \geq x$) for every x in E. We say that A is **bounded bellow** (**bounded above**) if it has a lower bound (an upper bound).

Definition 2.5. Let E be a partially ordered set. Let A be subset of E. A lower bound (an upper bound) c of E is called the **infimum** (**supremum**) of A, and we denote it as inf A (sup A), if c is the greatest (least) element of the set of all lower (upper) bounds of A.

When a infimum or supremum of a subset A of E exist it is unique.

Property 2.6. Let (E, \leq) be a totally ordered set. Let A be a subset of E. An element c of E is the infimum (supremum) of A if and only if for every x in E:

 $c < x(x < c) \implies x$ is not a lower bound (an upper bound).

For every bounded below (above) subset A of \mathbb{R} the infimum (supremum) of A exits.

Property 2.7. For every subset A of $\overline{\mathbb{R}}$ the infimum and supremum of A exit.

Let x and y be two elements of a totally ordered set (E, \leq) . We say that an element z of E is **beteween** x and y if $x \leq z \leq y$ or $x \geq z \geq y$.

Definition 2.8. Let E be a totally ordered set. We say that a subset I of E is an **interval** if it contains every element between two elements of it.

Property 2.9. Intervals in \mathbb{R} could be characterized as one of the following sets:

$$\begin{split}]-\infty,\infty[&:= \mathbb{R}, \\]-\infty,b] := \{x \in \mathbb{R} \; ; \; x \leq b\}, \\]-\infty,b[&:= \{x \in \mathbb{R} \; ; \; x < b\}, \\ [a,\infty[&:= \{x \in \mathbb{R} \; ; \; x \geq a\}, \\]a,\infty[&:= \{x \in \mathbb{R} \; ; \; x \geq a\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a \leq x \leq b\}, \\ [a,b[&:= \{x \in \mathbb{R} \; ; \; a \leq x \leq b\}, \\]a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a < x \leq b\}, \\ [a,b] &:= \{x \in \mathbb{R} \; ; \; a \leq x \leq b\},$$

with a and b in \mathbb{R} .

Property 2.10. Intervals in $\overline{\mathbb{R}}$ could be characterized as one of the following sets:

$$[-\infty, \infty] := \overline{\mathbb{R}},$$

$$[-\infty, \infty[:= \{x \in \overline{\mathbb{R}} : x < \infty\},$$

$$] - \infty, \infty] := \{x \in \overline{\mathbb{R}} : x > -\infty\},$$

$$] - \infty, \infty[:= \{x \in \overline{\mathbb{R}} : x < b\},$$

$$[-\infty, b] := \{x \in \overline{\mathbb{R}} : x < b\},$$

$$[-\infty, b] := \{x \in \overline{\mathbb{R}} : x \leq b\},$$

$$] - \infty, b[:= \{x \in \overline{\mathbb{R}} : x \leq b\},$$

$$] - \infty, b[:= \{x \in \overline{\mathbb{R}} : -\infty < x < b\},$$

$$[a, \infty] := \{x \in \overline{\mathbb{R}} : x \geq a\},$$

$$[a, \infty] := \{x \in \overline{\mathbb{R}} : x \geq a\},$$

$$[a, \infty] := \{x \in \overline{\mathbb{R}} : x \geq a\},$$

$$[a, \infty] := \{x \in \overline{\mathbb{R}} : x \leq a\},$$

$$[a, \infty] := \{x \in \overline{\mathbb{R}} : a \leq x < \infty\},$$

$$[a, 0] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

$$[a, b] := \{x \in \overline{\mathbb{R}} : a \leq x \leq b\},$$

with a and b in \mathbb{R} .

For every a and r in \mathbb{R} with r > 0 we called the set $]a - r, a + r[\subset \overline{\mathbb{R}}]$ as the open interval centered at a with radius r.