CS 271 - Introduction to Artificial Intelligence

Fall 2016

HomeWork 2

Name: Liangjian Chen

ID: #52006933 November 3, 2016

Problem 1 Solution:

Define cost function as how many constrains are violated. At beginning the cost is 4.

First Iteration: Assume algorithm choose assignment 1, then neighbor node list as following:

choice	cost
help	3
desk	3
easy	4
else	4
kind	4
soon	4

Algorithm chooses work help.

Second Iteration: Assume algorithm choose assignment 2, then neighbor node list as following:

choice	cost
eta	3
hat	3
her	3
$_{ m him}$	3
one	3

Algorithm randomly chooses eta again.

Third Iteration: Assume algorithm choose assignment 3, then neighbor node list as following:

$\cos t$
3
2
3
3
3
3
3
3
3
3

So, Algorithm chooses word usage.

Problem 2 Solution:

Variables: $\{T_i\}$ represents i^{th} class's time.

 $\{I_i\}$ represents i^{th} class's instructor. $\{R_i\}$ represents i^{th} class's classroom.

Domains: Domains of T_i is a set of possible slot time for Class iDomains of I_i is a set of possible instructor for Class iDomains of R_i is a set of possible classroom for Class i

Constrains: For any two class whose time slots are overlapped with each other, their classroom and instructor should be different and their.

Problem 3 Solution:

Variables: $\{(X_i, Y_i)\}$ represents coordinate of i^{th} rectangle's left upper point.

Domains: $0 \le X_i \le X - dX_i$ $0 \le Y_i \le Y - dY_i$

Constrains: assume $minX_i = X_i$, $maxX_i = X_i + dX_i$, $minY_i = Y_i$, $maxY_i = Y_i + dY_i$. Then for any two rectangle i,j, at least one of following hold: $max(minX_i, minX_i) > min(maxX_i, maxX_i)$

 $max(minX_i, minX_j) > min(maxX_i, maxX_j)$ $max(minY_i, minY_j) > min(maxY_i, maxY_j)$

Problem 4 Solution:

(a) label the cell as following graph.

- (b) Yes
- (c) Yes, A = 2 B = 6 C = 9 D = 5 E = 4 F = 1 G = 3 H = 8

Problem 5 Solution:

- (a) No, New Domain as following: $D_2, D_3 = \{3, 4, 5, 6, 7, 8, 9\}$ $D_4, D_5, D_6, D_7 = \{5, 6, 7, 8, 9\}$ $D_8, D_9, ..., D_{15} = \{7, 8, 9\}$
- (b) Yes and One solution is following:

$$X_1 = 1$$

 $X_2, X_3 = 3$
 $X_4, X_5, X_6, X_7 = 5$
 $X_8, X_9, ..., X_{15} = 7$

- (c) from small to large
- (d) assume d is the size of domain, $O(15*d^2) = O(d^2)$

Problem 6 Solution:

$$O + O = R + 10C_{10}$$

$$C_{10} + W + W = U + 10C_{100}$$

$$C_{100} + T + T = O + 10C_{100}$$

$$C_{1000} = F$$

Among variable O,R,W,T,O,U, their values are different.

Domain:

$$D(F), D(C_{1000}) = \{1\}$$

$$D(C_{10}), D(C_{100}) = \{0, 1\}$$

$$D(T) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$D(W), D(O), D(U), D(R) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

- (a) F is 1, therefore C_{1000} is 1 and eliminate 1 in other domain. and $D(T) = \{5, 6, 7, 8, 9\}$. $D(O) = \{0, 2, 4, 6, 8\}$.
- (b) next MRV is C_{100} . set C_{100} is 0, $D(W) = \{2, 3, 4\}, D(U) = \{4, 6, 8\}.$
- (c) next MRV is C_{10} . set C_{10} is 0, $D(O) = \{2, 4\}$, $D(R) = \{4, 8\}$.
- (d) next MRV is D(O), set D(O) = 4, therefore, $D(T) = \{7\}, D(R) = \{8\}, D(W) = \{3\}, D(U) = \{6\}.$
- (e) next MRV is D(T), set D(T) = 7.
- (f) next MRV is D(R), set D(W) = 8.
- (g) next MRV is D(W), set D(W) = 3.
- (h) next MRV is D(U), set D(U) = 6.

Find a solution which is 734 + 734 = 1468.

Problem 7 Solution:

- (a) variable elimination and arc consistency with domain splitting
- (b) variable elimination and arc consistency with domain splitting
- (c) variable elimination and arc consistency with domain splitting