Representação de Riesz e adjuntas Álgebra Linear – Videoaula 20

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Representações de funcionais lineares e produto interno

Seja $f: \mathbb{R}^n \to \mathbb{R}$ um funcional linear. Então f é representado por uma matriz de ordem $1 \times n$ nas bases canônicas:

$$\overline{a} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$$

tal que, para todo $x = (x_1, \dots, x_n)$,

$$f(x_1, \dots, x_n) = \overline{a} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$= a_1 x_1 + \cdots + a_n x_n$$
$$= \langle \overline{a}, x \rangle$$

Será que o mesmo vale para qualquer EPI de dimensão finita?

Espaço dual

O espaço vetorial

$$V^* = \mathsf{L}(V,\mathbb{R})$$

dos funcionais lineares sobre V é chamado de dual de V.

Notação alternativa

$$V' = V^*$$

Teorema (Teorema da representação de Riesz)

Seja V um EPI de dimensão finita.

A função

$$\tau \colon V \to V^*, \qquad \tau(v) = \langle \cdot, v \rangle$$

i.e., $\tau(v)(x) = \langle x, v \rangle$, é um isomorfismo linear.

Em particular, para cada $f \in V^*$ existe um único vetor $v \in V$ tal que

$$f(x) = \langle x, v \rangle$$
 para todo $x \in V$.

Se $f = \langle \cdot, v \rangle$, então v chama-se de **vetor de Riesz** de f.

É comum se denotar $\tau(v)|_{x} = \tau(v)(x)$.

$$\tau \colon V \to V^*, \qquad \tau(v) = \langle \cdot, v \rangle$$

 $\underline{\tau}$ é linear: Se $v, w \in V$ e $\lambda \in \mathbb{R}$, então para todo $x \in V$ vale que

$$\tau(v + \lambda w)|_{x} = \langle x, v + \lambda w \rangle$$

$$= \langle x, v \rangle + \lambda \langle x, w \rangle$$

$$= \tau(v)|_{x} + \lambda \tau(w)|_{x}$$

$$= (\tau(v) + \lambda \tau(w))|_{x}$$

ou seja, $\tau(v + \lambda w) = \tau(v) + \lambda \tau(w)$.

$$\tau \colon V \to V^*, \qquad \tau(v) = \langle \cdot, v \rangle$$

 τ é injetiva: Se $v \in \ker(\tau)$, então para todo x,

$$0 = \tau(v)|_{x} = \langle x, v \rangle$$

o que implica que $v = 0_V$.

$$\tau \colon V \to V^*, \qquad \tau(v) = \langle \cdot, v \rangle$$

au é sobrejetiva: Seja $f \in V^*$.

- Se f = 0, então $f = \tau(0_V)$.
- Se $f \neq 0$, então $\ker(f) \neq V$, logo $\ker(f)^{\perp} \neq V^{\perp}$, ou seja, $\ker(f)^{\perp} \neq \{0_V\}$.

• $\ker(f)^{\perp} \neq \{0_V\}.$

Tome $w \in \ker(f)^{\perp} \text{ com } w \neq 0_V$.

Em particular, $w \notin \ker(f)$.

Tome $v=rac{1}{f(w)}w$. Então $v\in\ker(f)^{\perp}$ e

$$f(v) = f\left(\frac{1}{f(w)}w\right) = \frac{1}{f(w)}f(w) = 1$$

• No caso em que $f \neq 0$, encontramos $v \in \ker(f)^{\perp}$ com f(v) = 1. Em particular, $v \neq 0_V$.

Dado $x \in V$, temos que $x - f(x)v \in \ker(f)$, pois

$$f(x - f(x)v) = f(x) - f(x)f(v) = f(x) - f(x) = 0,$$

logo

$$0 = \langle x - f(x)v, v \rangle = \langle x, v \rangle - f(x)\langle v, v \rangle,$$

o que significa que

$$f(x) = \frac{1}{\langle v, v \rangle} \langle x, v \rangle = \left\langle x, \frac{1}{\langle v, v \rangle} v \right\rangle = \tau \left(\frac{1}{\langle v, v \rangle} v \right) \Big|_{x}$$

para qualquer $x \in X$, ou seja, $f = \tau\left(\frac{1}{\langle v, v \rangle}v\right)$.

Teorema

Sejam V e W EPIs com dimensões finitas e $T \in L(V, W)$ uma transformação linear.

Então existe uma única transformação linear $T^* \in L(W,V)$ tal que

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle$$

para todos $v \in V$ e $w \in W$.

Definição

A transformação T^* é chamada de **adjunta** de T.

Unicidade: Se $S \in L(W, V)$ é outra transformação linear para a qual

$$\langle T(v), w \rangle = \langle v, S(w) \rangle$$

para todos $v \in V$ e $w \in W$, então, para cada $w \in W$,

$$\langle v, S(w) \rangle = \langle T(v), w \rangle = \langle v, T^*(w) \rangle,$$

o que sabemos implicar que $S(w) = T^*(w)$, i.e., $S = T^*$.

Existência: Dado $w \in W$ fixo, temos o funcional linear em V

$$v \mapsto \langle T(v), w \rangle = \langle \cdot, w \rangle \circ T.$$

Pelo Teorema de Representação de Riesz, este funcional é dado pelo produto interno por um único vetor de V. Ou seja, existe um único vetor $T^*(w) \in V$ tal que

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle$$

para todo $v \in V$.

A transformação $T^* \colon W \to V$ está bem-definida: $T^*(w)$ é o vetor de Riesz de $v \mapsto \langle T(v), w \rangle$.

Falta mostrar que T^* é linear.

Dados $w_1, w_2 \in W$ e $\lambda \in \mathbb{R}$, temos que verificar que $T^*(w_1) + \lambda T^*(w_2)$ satisfaz à propriedade que define $T^*(w_1 + \lambda w_2)$. Para todo $v \in V$,

$$\langle v, T^*(w_1) + \lambda T^*(w_2) \rangle = \langle v, T^*(w_1) \rangle + \lambda \langle v, T^*(w_2) \rangle$$

= $\langle T(v), w_1 \rangle + \lambda \langle T(v), w_2 \rangle$
= $\langle T(v), w_1 + \lambda w_2 \rangle$,

o que significa que $T^*(w_1 + \lambda w_2) = T^*(w_1) + \lambda T^*(w_2)$.

Propriedades de adjuntas

Versão formal

Teorema

Se $S, T \in L(V, W)$ e $Q \in L(W, Z)$ são transformações lineares entre EPIs e $\lambda \in \mathbb{R}$, então

- **1** $(S + \lambda T)^* = S^* + \lambda T^*$
- $(T^*)^* = T$
- $id_V^* = id_V.$
- $(QT)^* = Q^*T^*$
- **5** $(T^*)^{-1} = (T^{-1})^*$, se T é inversível.

DE SANTA CATARINA

Propriedades de adjuntas

Versão legível

Teorema

Para transformações S, T entre EPIs,

9
$$(S + \lambda T)^* = S^* + \lambda T^*$$

$$(T^*)^* = T$$

3
$$id^* = id$$
.

$$(ST)^* = T^*S^*$$

$$(T^*)^{-1} = (T^{-1})^*$$

no sentido de que um lado da equação está definido se, e somente se, o outro lado está definido, em cujo caso ambos os lados coincidem.

Propriedades de adjuntas

Versão legível

Se ST está definida, então para quaisquer v, w,

$$\langle (ST)v, w \rangle = \langle S(T(v)), w \rangle$$

$$= \langle T(v), S^*(w) \rangle$$

$$= \langle v, T^*(S^*(w)) \rangle$$

$$= \langle v, (T^*S^*)(w) \rangle$$

portanto $(ST)^* = T^*S^*$.

Os outros são similares.

Seja $T \colon \mathbb{R}^2 o \mathbb{R}^2$ dada por

$$T(x,y) = (x, x + y).$$

Vamos calcular $T^*\colon \mathbb{R}^2 \to \mathbb{R}^2$. Queremos que para todos $u,v\in \mathbb{R}^2$ valha que

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle.$$

Vamos tentar calcular T^* somente na base canônica $\mathcal{E}_2 = \{e_1, e_2\}$ de \mathbb{R}^2 .

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \qquad T(x,y) = (x,x+y).$$

Restringimos a equação da adjunta para vetores da base canônica:

$$egin{aligned} \langle \mathcal{T}^*(e_1), e_1
angle &= \langle e_1, \mathcal{T}(e_1)
angle \ &= \langle (1,0), \mathcal{T}(1,0)
angle \ &= \langle (1,0), (1,1)
angle \ &= 1 \end{aligned}$$

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \qquad T(x,y) = (x, x + y).$$

- $\langle T^*(e_1), e_1 \rangle = 1$
- Similarmente, $\langle T^*(e_1), e_2 \rangle = 1$
- Portanto,

$$T^*(e_1) = \langle T^*(e_1), e_1 \rangle e_1 + \langle T^*(e_1), e_2 \rangle e_2 = e_1 + e_2 = (1, 1)$$

• Ou seja, $T^*(1,0) = (1,1)$.

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \qquad T(x,y) = (x,x+y).$$

- $T^*(1,0) = (1,1)$
- Similarmente, $T^*(0,1) = (1,0)$
- Em geral,

$$T^*(x,y) = xT^*(1,0) + yT^*(0,1) = (x+y,x)$$

Matrizes de adjuntas

$$T, T^*: \mathbb{R}^2 \to \mathbb{R}^2, \ T(x, y) = (x, x + y), \ T^*(x, y) = (x + y, x)$$

Note que

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

е

$$\begin{bmatrix} T^* \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^t$$

(onde " A^{t} " é a transposta de A).

Matrizes com respeito a bases ortonormais

Teorema

Sejam

- V um EPI com uma base ordenada $\mathcal{B} = \{(u_1, \dots, u_n)\}$
- W um EPI com uma base **ortonormal** ordenada $\mathcal{C} = \{w_1, \dots, w_m\}$.
- $T \in L(V, W)$

Então a entrada (i,j) de $[T]_{\mathfrak{B}}^{\mathfrak{C}}$ é $\langle T(u_j), w_i \rangle$, ou seja,

$$[T]_{\mathfrak{B}}^{\mathfrak{C}} = \begin{bmatrix} \langle T(u_1), w_1 \rangle & \langle T(u_2), w_1 \rangle & \cdots & \langle T(u_n), w_1 \rangle \\ \langle T(u_1), w_2 \rangle & \langle T(u_2), w_2 \rangle & \cdots & \langle T(u_n), w_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle T(u_1), w_m \rangle & \langle T(u_2), w_m \rangle & \cdots & \langle T(u_n), w_m \rangle \end{bmatrix}$$

Matrizes com respeito a bases ortonormais

Pelo Teorema de coordenadas em bases ortonormais, a j-ésima coluna de $\left[T\right]_{\mathcal{B}}^{\mathcal{C}}$ é

$$egin{aligned} \left[T(u_j)
ight]^{\mathfrak{C}} &= egin{bmatrix} \left\langle T(u_j), w_1
ight
angle \\ \left\langle T(u_j), w_2
ight
angle \\ \left\langle T(u_j), w_m
ight
angle \end{bmatrix}, \end{aligned}$$

cuja *i*-ésima entrada é $\langle T(u_i), w_i \rangle$.

Matrizes de adjuntas

Corolário

Sejam

- V um EPI com uma base **ortonormal** ordenada $\mathfrak{B} = \{(u_1, \dots, u_n)\}$
- W um EPI com uma base **ortonormal** ordenada $\mathcal{C} = \{w_1, \dots, w_m\}$.
- $T \in L(V, W)$.

Então

$$\left[T^*\right]_{\mathfrak{C}}^{\mathfrak{B}} = \left(\left[T\right]_{\mathfrak{B}}^{\mathfrak{C}}\right)^t$$

A entrada (i,j) de $[T^*]^{\mathfrak{B}}_{\mathfrak{C}}$ é

$$\langle T^*(w_j), u_i \rangle = \langle w_j, T(u_i) \rangle = \langle T(u_i), w_j \rangle,$$

que é a entrada (j,i) de $[T]_{\mathcal{B}}^{\mathcal{C}}$. Portanto, essas matrizes são transpostas uma da outra.

Transpostas sem PI?

Se considerarmos bases não-ortonormais, podem existir diferentes transformações $S,\,Q$ que são representadas pela transposta da matriz de T em diferentes bases.

Por exemplo, se considerarmos as transformações $T,S\colon\mathbb{R}^2\to\mathbb{R}^2$ dadas por

$$T(x,y) = (-x+3y,2y)$$
 e $S(x,y) = (-x,3x+2y)$

e a base canônica $\mathcal{E}_2 = \{(1,0),(0,1)\}$, então

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix} \quad \text{e.e.} \quad \begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^t$$

Transpostas sem PI?

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}$$
 e $\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^t$

mas se considerarmos a base $\mathcal{B} = \{(1,0), (1,1)\},\$

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} = \left(\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}}^{\mathcal{B}} \right)^{t}$$
 enquanto $\begin{bmatrix} S \end{bmatrix}_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$

$$[S]_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$$

Endomorfismos lineares

Definição

Se V é um espaço vetorial, denotamos L(V) = L(V, V).

Uma transformação linear $T \in L(V)$ é chamada de um **operador linear** ou um **endomorfismo linear**.

Subespaços invariantes e compressões

Definição

Seja $T \in L(V)$ linear. Dizemos que um subespaço $W \subseteq V$ é invariante por T ou T-invariante se $T(W) \subseteq W$.

Por exemplo, o subespaço $W=\{(0,y):y\in\mathbb{R}\}$ é invariante pela transformação T(x,y)=(x,x+y). De fato,

$$T(0,y)=(0,y)$$

Definição

Se $W \subseteq V$ é T-invariante, a **compressão** de T a W é

$$T_W \in L(W), \qquad T_W(u) = T(u).$$

"Compressão" é essencialmente o mesmo que "restrição", mas também diminuímos o contra-domínio.

Adjuntas de compressões

Considerando novamente \mathbb{R}^2 com o PI usual, o subespaço

$$W = \{(0, y) : y \in \mathbb{R}\}$$

e a transformação

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \qquad T(x, y) = (x, x + y),$$

Qual é a adjunta de $T_W \colon W \to W$?

Será que é $(T^*)_W$? Lembre-se que $T^*(x,y) = (x+y,x)$. Temos que

$$T^*(0,y) = (y,0)$$

W não é nem T^* -invariante. Não faz sentido nem escrever " $(T^*)_W$ "!

Adjuntas de compressões

Teorema

Sejam V um EPI de dimensão finita, $T \in L(V)$ e $W \subseteq V$ um subespaço invariante.

Então
$$(T_W)^* = (\operatorname{proj}_W T^*)_W$$

Note que

$$(\operatorname{proj}_W T^*)(W) \subseteq \operatorname{proj}_W(V) \subseteq W$$
,

e a compressão $(\text{proj}_W T^*)_W$ faz sentido.

Adjuntas de compressões

Teorema

Sejam V um EPI de dimensão finita, $T \in L(V)$ e $W \subseteq V$ um subespaço invariante.

Então
$$(T_W)^* = (\operatorname{proj}_W T^*)_W$$

Para todos $u, w \in W$,

$$\langle T_W(u), w \rangle = \langle T(u), w \rangle$$

$$= \langle u, T^*(w) \rangle$$

$$= \langle u, \operatorname{proj}_W(T^*(w)) \rangle$$

$$= \langle u, (\operatorname{proj}_W T^*)_W(w) \rangle$$

onde a penúltima igualdade é uma propriedade que conhecemos de projeção ortogonal.

Isso determina que $(\text{proj}_W T^*)_W$ satisfaz à propriedade da adjunta de T_W .

Subespaços invariantes e adjuntas

Teorema

Sejam V um EPI de dimensão finita, $T \in L(V)$ e $W \subseteq V$ um subespaço.

- **1** W é T-invariante se, e somente se, W^{\perp} é T^* -invariante.
- 2 Se W é tanto T-invariante quanto T*-invariante, então

$$(T_W)^* = T_W^*$$

Suponha que W é T-invariante. Então para todo $z \in W^{\perp}$ e todo $w \in W$,

$$0 = \langle T(w), z \rangle = \langle w, T^*(z) \rangle,$$

ou seja, $T^*(z)\in W^\perp$, qualquer que seja $z\in W^\perp$. Ou seja, W^\perp é T^* -invariante.

Subespaços invariantes e adjuntas

Mostramos que se W é T-invariante, então W^{\perp} é T^* -invariante, quaisquer quem sejam W e T.

Em particular, o mesmo fato se aplica com T^* no lugar de T e W^{\perp} no lugar de W: Se W^{\perp} é T^* -invariante, então $(W^{\perp})^{\perp} = W$ é $(T^*)^* = T$ -invariante.

Item (2) é exercício/trivial a partir do teorema anterior.

Teorema

Sejam V, W EPIs de dimensão finita e $T \in L(V, W)$.

- - T é sobrejetiva \iff T^* é injetiva
 - T é bijetiva \iff T^* é bijetiva.
- \bullet im $(T^*T) = \text{im}(T^*) e \text{im}(TT^*) = \text{im}(T)$.

Temos que

$$w \in \ker(T^*) \iff T^*(w) = 0_V$$

$$\iff \langle T^*(w), v \rangle = 0 \text{ para todo } v \in V$$

$$\iff \langle w, T(v) \rangle = 0 \text{ para todo } v \in V$$

$$\iff w \in \operatorname{im}(T)^{\perp}$$

Portanto $ker(T^*) = im(T)^{\perp}$.

Para a outra igualdade, troque T por T^* e tome "perps" (subespaços ortogonais).

2 T é injetiva $\iff T^*$ é sobrejetiva T é sobrejetiva $\iff T^*$ é injetiva T é bijetiva $\iff T^*$ é bijetiva

Pelo item (1),

$$T$$
 é injetiva $\iff \ker(T) = \{0_V\}$
 $\iff \ker(T)^{\perp} = \{0_V\}^{\perp} = V$
 $\iff \operatorname{im}(T^*) = V$
 $\iff T^*$ é sobrejetiva

3
$$\ker(T^*T) = \ker(T) \in \ker(TT^*) = \ker(T^*)$$

Claramente,
$$ker(T) \subseteq ker(T^*T)$$
.

Reciprocamente, se $T^*T(v) = 0_V$, então

$$0 = \langle T^*T(v), v \rangle = \langle T(v), T(v) \rangle,$$

logo
$$T(v) = 0_V$$
.

Portanto,
$$ker(T) = ker(T^*T)$$
.

A outra igualdade é obtida trocando T por T^* .

Segue do item (3) tomando perps e aplicando o item (1):

$$\ker(T^*T) = \ker(T)$$
 $\ker(T^*T)^{\perp} = \ker(T)^{\perp}$
 $\operatorname{im}((T^*T)^*) = \operatorname{im}(T^*)$
 $\operatorname{im}(T^*T) = \operatorname{im}(T^*)$

e similarmente para a outra igualdade.