Examen de Estadística Económica. Juny 2011

Contesta a tres de los cuatro problemas propuestos. Utiliza hojas separadas para problemas diferentes. Todos los problemas puntúan lo mismo. Se penalizará a quien entregue los cuatro problemas.

Problema 1 En una oficina trabajan 3 contables. El primero hace un 40 % de las operaciones contables, pero se equivoca en un 5 % de sus cálculos. El segundo hace un 35 % de las operacions y se equivoca en un 3 % de los cálculos. El último contable sólo lleva un 25 % de la contabilidad, pero se equivoca muy poco (un 1 % de las veces).

- a) Identifica los sucesos más relevantes y las probabilidades asignadas en el enunciado. Distingue claramente las probabilidades condicionadas de las no condicionadas.
- b) Si un inspector revisa la contabilidad de la empresa y se fija en una operación al azar, ¿Cuál es la probabilidad de que esta operación sea errónea?
- c) Si la operación es errónea, ¿Cuál es la probabilidad de que la haya hecho el primer contable?
- d) Si se revisan 10 operaciones, ¿Cuál es la probabilidad de que 3 o más sean erróneas?

Problema 2 Un restaurante de cocina indú ofrece un servicio de entrega de menús a domicilio. Por experiencia se sabe que el 80% de los pedidos se entregan en menos de una hora. Si cada dia se sirven 15 menús a domicilio, se pide calcular:

- a) La probabilidad de que en un dia se retrasen (se entreguen en 1 hora o más) 4 pedidos.
- b) La probabilidad de que se retrasen 5 o más pedidos.
- c) La probabilidad de que se retrasen más de 5 pedidos y menos de 10.

Con el objeto de aumentar el volumen de negocio se lanza una promoción consistente en regalar el menú siempre que el pedido tarde en entregarse una hora o más. El precio de venta de un menú es de 15 euros y los costes del servicio a domicilio constan de una parte fija de 60 euros al dia y de 4 euros por la elaboración de cada menú. Sabiendo que con la nueva promoción se sirven 20 menús diarios:

- d) Calcular el beneficio diario esperado.
- d) Calcular la probabilitat de que en un dia el beneficio sea de 120 euros o más.

Problema 3 El dueño de una tienda de discos ha comprobado que el 20 % de los clientes que entran en su tienda realizan una compra. Cierta mañana entran en su tienda 180 personas, que pueden ser consideradas como una muestra aleatoria de todos sus clientes.

- a) ¿Cuál es la media de la proporción muestral de clientes que realizan alguna compra?
- b) ¿Cuál es la varianza de la proporción muestral?
- c) ¿Cuál es la probabilidad de que la proporción muestral sea mayor que 0,15?
- d) ¿Cuál debe ser el tamaño mínimo de la muestra para asegurarnos de que la desviación típica de la proporción muestral sea inferior a 0,02?

Problema 4 La cantidad de horas que duermen los estadounidenses cada noche varía mucho. Consideremos la siquiente muestra de las horas que duermen cada noche 16 personas.

6,9	7,6	6,5	6,2
7,8	7,0	5,5	7,6
7,3	6,6	7,1	6,9
6,8	6,5	7,2	5,8

(a) Calcula una estimación puntual para la media de horas que se duerme cada noche y para la desviación típica. ¿Qué estimadores utilizas? ¿Por qué?

Suponer ahora que la población sigue una distribución normal.

- (b) Determinar un intervalo de confianza del 80% para la media de horas que se duerme cada noche.
- (c) Determinar un intervalo de confianza del 95 % para la varianza.

Variables aleatorias usuales

V.A. (X)	$f_X(x)$		E(X)	Var(X)	Otras propiedades
Binomial $B(n, p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	si $x \in \Omega_X$	np	np(1-p)	
$\Omega_X = \{0, 1, \cdots, n\}$	0	si $x \notin \Omega_X$			
Poisson $Po(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	$si x \in \Omega_X$	λ	λ	
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			
Geométrica $Ge(p)$	$(1-p)^{x-1}p$	si $x \in \Omega_X$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	
$\Omega_X = \{1, 2, \cdots\}$	0	si $x \notin \Omega_X$	-		
					$F_X(x) = \begin{cases} 1 - (1-p)^{k+1} & x \in [k, k+1), \\ k \in \Omega_X \\ 0 & x < 0 \end{cases}$
Geométrica $Ge(p)$	$(1-p)^x p$	si $x \in \Omega_X$	$\frac{1-p}{n}$	$\frac{1-p}{n^2}$	$F_X(x) = \left\{ \begin{array}{cc} k \in \Omega_X \end{array} \right.$
	, , , , ,		P	P	0 x < 0
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			
				_	$\int \frac{x-a}{b-a} x \in [a,b]$
Uniforme $\mathcal{U}(a,b)$	$\frac{1}{b-a}$	si $x \in [a, b]$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$F_X(x) = \begin{cases} \frac{x-a}{b-a} & x \in [a,b] \\ 0 & x < a \\ 1 & x > b \end{cases}$
	o a		_	12	1 x > b
$\Omega_X = [a, b]$	0	si $x \notin [a, b]$			
Gaussiana $X(\mu, \sigma^2)$			μ	σ^2	$Z \sim N(0,1)$ normal estándar
$\Omega_X = \mathbb{R}$					$F_Z(-z) = 1 - F_Z(z)$
					$F_X(x) = F_Z(\frac{x-\mu}{\sigma})$

Estadísticos usuales

Parámetro muestral (estadístico)	Esperanza	Varianza	Distribución de probabilidad	
\bar{X}	$E(\bar{X}) = \mu$	$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$	$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$	población normal, σ conocido
			$\begin{split} \bar{X} &\sim N(\mu, \frac{\sigma^2}{n}) \\ \frac{\bar{X} - \mu}{\hat{s}_X / \sqrt{n}} &\sim t_{n-1} \\ \bar{X} &\sim N(\mu, \frac{\hat{s}_X^2}{n}) \end{split}$	población normal, σ desconocido, $n \leq 30$
			$\bar{X} \sim N(\mu, \frac{\hat{s}_X^2}{n})$	σ desconocido, $n>30$
\hat{s}_X^2	$E(\hat{s}_X^2) = \sigma^2$	$\operatorname{Var}(\hat{s}_X^2) = \frac{2\sigma^4}{n-1}$	$\frac{n-1}{\sigma^2}\hat{s}_X^2 \sim \chi_{n-1}^2$	población normal
\hat{p}_X	$E(\hat{p}_X) = p$	$\operatorname{Var}(\hat{p}_X) = \frac{p(1-p)}{n}$	$\begin{vmatrix} \hat{p}_X \sim N(p, \frac{p(1-p)}{n}) \\ \hat{p}_X \sim t_{n-1} \end{vmatrix}$	$n > 30$ población normal, $n \le 30$

Intervalos de confianza usuales

Parámetro muestral	Intervalo de confianza	
Media	$ar{X} \pm z_{lpha/2} rac{\sigma}{\sqrt{n}}$	la población sigue una normal y σ es conocido
	$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ $\bar{X} \pm t_{n-1,\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$ $\bar{X} \pm z_{\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	la población sigue una normal, σ desconocido y $n \leq 30$
	$\bar{X} \pm z_{\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	$\sin n > 30$
Varianza	$\left[\frac{n-1}{\chi_{n-1,1-\alpha/2}^2} \hat{s}_X^2, \frac{n-1}{\chi_{n-1,\alpha/2}^2} \hat{s}_X^2 \right]$	la población sigue una normal
Proporción	$\hat{p}_X \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X (1 - \hat{p}_X)}{n}}$	si n > 30