$11.\overline{1}$) A/B Testing

Vitor Kamada

December 2019

Reference

Tables, Graphics, and Figures from

Computational and Inferential Thinking: The Foundations of Data Science

Adhikari & DeNero (2019): Ch 12.1 A/B Testing

https://www.inferentialthinking.com/

Stat Labs by Deborah Nolan and Terry Speed

```
from datascience import *
path_data = 'https://github.com/data-8/textbook/raw/gh-pages/data/'
births = Table.read_table(path_data + 'baby.csv')
```

Birth Weight	Gestational Days	Maternal Age	Maternal Height	Maternal Pregnancy Weight	Maternal Smoker
120	284	27	62	100	False
113	282	33	64	135	False
128	279	28	64	115	True

Maternal	Smoker	count
	False	715
	True	459

%matplotlib inline
import matplotlib.pyplot as plots
plots.style.use('fivethirtyeight')
smoking and birthweight.hist('Birth Weight', group = 'Maternal Smoker')

$$H_0: \mu_s = \mu_{ns} \text{ vs } H_A: \mu_s < \mu_{ns}$$

Test Statistic

Maternal Smoker Birth Weight average

False	123.085
True	113.819

```
means = means_table.column(1)
observed_difference = means.item(1) - means.item(0)
observed_difference
```

-9.266142572024918

Difference between the Means

```
def difference_of_means(table, label, group_label):
    reduced = table.select(label, group_label)
    means_table = reduced.group(group_label, np.average)
    means = means_table.column(1)
    return means.item(1) - means.item(0)
difference_of_means(births, 'Birth Weight', 'Maternal Smoker')
```

-9.266142572024918

Random Permutations

```
shuffled_labels = smoking_and_birthweight.sample\
  (with_replacement = False).column(0)
original_and_shuffled = smoking_and_birthweight.with_column\
   ('Shuffled Label', shuffled_labels)
```

Shuffled Label	Birth Weight	Maternal Smoker
True	120	False
True	113	False
True	128	True

Predicting the Statistic Under the H_0

Shuffled Label Birth Weight average

False	119.352
True	119.634

0.2815393756570188

Simulation

```
def one simulated difference(table, label, group label):
    shuffled labels = table.sample(with replacement = False
                                       ).column(group label)
    shuffled table = table.select(label).with column(
        'Shuffled Label', shuffled labels)
    return difference_of_means(shuffled_table,
                                   label, 'Shuffled Label')
one simulated difference(births, 'Birth Weight', 'Maternal Smoker')
                        0.13129484894190568
differences = make array()
repetitions = 5000
for i in np.arange(repetitions):
    new difference = one simulated difference(births, 'Birth Weight',
                                               'Maternal Smoker')
    differences = np.append(differences, new difference)
```

9/13

Table().with column('Difference Between Group Means', differences).hist() print('Observed Difference:', observed difference) plots.title('Prediction Under the Null Hypothesis');

Another Permutation Test

```
smoking_and_age = births.select('Maternal Smoker', 'Maternal Age')
smoking_and_age.hist('Maternal Age', group = 'Maternal Smoker')
```


Simulating 5,000 Values of the Statistic

-0.8076725017901509

Table().with column('Difference Between Group Means', age differences).hist(plots.scatter(observed age difference, 0, color='red', s=40) plots.title('Prediction Under the Null Hypothesis') print('Observed Difference:', observed_age_difference)

empirical_P = np.count_nonzero\ (age differences <= observed_age_difference) / 5000 0.0108 ___