WAVE MOTION AND SOUND II

Intended Learning Outcomes – after this lecture you will learn:

- 1. standing wave as the result of superposition of incident and reflected wave trains
- 2. beats due to interference of two traveling waves with slightly different frequencies
- 3. Doppler effect in sound

Textbook Reference: 15.7-15.8, 16.7-16.8

Standing wave – result of superposition between incident and reflected waves

continuous incident
wave train (not pulse)

$$A\cos(kx-\omega t)$$

For open boundary condition, reflected wave is

$$A\cos(kx + \omega t)$$

Resulting wave:

$$y(x,t) = A\cos(kx - \omega t) + A\cos(kx + \omega t)$$
$$= 2A\cos kx\cos \omega t$$

sinusoidal amplitude time variation

 \triangle not propagating because no $\cos(kx - \omega t)$ term

For fixed boundary condition, reflected wave is $-A\cos(kx + \omega t)$ resulting wave:

$$y(x,t) = A\cos(kx - \omega t) - A\cos(kx + \omega t)$$

= $2A\sin kx \sin \omega t$

Demonstration:

1. Standing wave applet

2. Standing waves on vibrating string

For a string of length L clamped on both ends, **normal modes** of vibration are those standing waves that can be fitted into the string

Normal mode frequencies are

$$L = n \frac{\lambda}{2}$$
 \Rightarrow $\lambda_n = \frac{2L}{n}$, $n = 1, 2, ...$

and frequencies are

$$f_n = n\left(\frac{v}{2L}\right) = nf_1, \ n = 1, 2, ...$$

(a) n = 1: fundamental frequency, f_1

(b) n = 2: second harmonic, f_2 (first overtone)

(c) n = 3: third harmonic, f_3 (second overtone)

(d) n = 4: fourth harmonic, f_4 (third overtone)

Beats – interference of two traveling waves with *slightly* different frequencies Consider two waves at a fixed spatial point $x_0 = 0$ for simplicity

$$y_a(t) = A\cos(-2\pi f_a t + \phi_a)$$

$$y_b(t) = A\cos(-2\pi f_b t + \phi_b)$$

only half of the corresponding period

Resulting note at the same point $x_0 = 0$:

$$y_a(t) + y_b(t)$$

$$= 2A \cos\left(-2\pi \frac{f_a + f_b}{2}t + \frac{\phi_a + \phi_b}{2}\right) \cos\left(-2\pi \frac{f_a - f_b}{2}t + \frac{\phi_a - \phi_b}{2}\right)$$
fast varying with frequency slow varying with frequency $\frac{1}{2}|f_a - f_b|$, hear rise

$$\tfrac{1}{2}(f_a+f_b)\approx f_a\approx f_b$$

and fall in intensity with period

$$T = \frac{1}{2} \frac{1}{\frac{1}{2}|f_a - f_b|} = \frac{1}{|f_a - f_b|}$$

Beat frequency $f_{\text{beat}} = |f_a - f_b|$

Demonstration

1. Beats

2. Beats animation

Question

A tuning fork vibrates at 440 Hz, while a second tuning fork vibrates at an unknown frequency. They produce a tone that rises and falls in intensity three times per second. The frequency of the second tuning fork is (434 Hz / 437 Hz / 443 Hz / 446 Hz / either 434 or 446 Hz / either 437 or 443 Hz).

Answer: see inverted text on P. 552

Doppler effect – frequency changes when source and/or observer are "moving"

Demonstration – a passing-by fire truck

Consider mechanical wave (sound as an example) only, *all speeds relative to the medium* (air), which is assumed to be stationary.

Case I: Source not moving (relative to the medium)

Listener "hits" wave fronts with speed $v + v_L$ Time to hit 2 consecutive wave fronts

$$T = \frac{\lambda}{v + v_L}$$

$$\therefore f_L = \frac{1}{T} = \frac{v + v_L}{\sqrt[3]{\lambda}}$$

$$= \left(\frac{v + v_L}{v}\right) f_S$$

If listener approaching source, $v_L > 0$ and $f_L > f_S$, hear a higher pitch If listener leaving source, $v_L < 0$ and $f_L < f_S$, hear a lower pitch

Case II: Source moving

$$\lambda_{\text{behind}} = \frac{v + v_S}{f_S}$$

- \triangle Sign convention for v_L and v_S the direction pointing from listener to source is taken to be +ve check that the formula works in all possible cases
- \triangle If listener at rest ($v_L = 0$), source approaching listener, then $v_S(>/<)$ 0, and $f_L(>/<)$ f_S
- Mhat if $v_s > v$? A condition called **supersonic**, leads to **shock wave**. Read textbook if you are interested.

Ouestion

In an outdoor concert with wind blowing steadily at 10 m/s from the performer towards you, is the sound you hear Doppler-shifted?

Answer: see inverted text on P. 557 of textbook

Example 16.15 – 16.17 P. 555

A police car's siren has frequency $f_S = 300$ Hz. Take speed of sound in still air, v, to be 340 m/s Case I:

Case II:

Listener Police car at rest
$$f_{L} = ?$$

$$V_{L} = -30 \text{ m/s}$$

$$V_{L} = -30 \text{ m/s}$$

$$V_{S} = 0$$

$$V_{S$$

Case III:

Listener

$$f_L = ?$$
 $v_L = 15 \text{ m/s}$
 $v_L = 15 \text{ m/s}$
 $v_S = 45 \text{ m/s}$

- In all 3 cases, the source and listener have the same relative velocity, but different f_L , i.e., cannot use either source or listener as frame of reference because there exist an absolute frame of reference the medium.
- ⚠ How about waves without medium, such as light? All inertia frame of references are equivalent and Doppler effect can depend on the relative motion of the source and receiver only.

$$f_R = \sqrt{\frac{c - v}{c + v}} f_S$$

v is the relative velocity between source and receiver, +ve if moving away from each other.

\sim		estion		
	116)Ct	10	n
()	ш	∠OL		ш

If remote star moving away from us, see (red / blue) shift in the light it emits.

Clicker Questions

Q15.9

While a guitar string is vibrating, you gently touch the midpoint of the string to ensure that the string does not vibrate at that point. The lowest-frequency standing wave that could be present on the string vibrates at

- A. the fundamental frequency.
- B. twice the fundamental frequency.
- C. three times the fundamental frequency.
- D. four times the fundamental frequency.
- E. There is not enough information given to decide.

© 2016 Pearson Education, Inc.

Q16.8

You hear a sound with a frequency of 256 Hz. The amplitude of the sound increases and decreases periodically: It takes 2 seconds for the sound to go from loud to soft and back to loud. This sound can be thought of as a sum of two waves with frequencies

- A. 256 Hz and 2 Hz.
- B. 254 Hz and 258 Hz.
- C. 255 Hz and 257 Hz.
- D. 255.5 Hz and 256.5 Hz.
- E. 255.75 Hz and 256.25 Hz.

© 2016 Pearson Education, Inc.

Q16.9

On a day when there is no wind, you are moving toward a stationary source of sound waves. Compared to what you would hear if you were not moving, the sound that you hear has

- A. a higher frequency and a shorter wavelength.
- B. the same frequency and a shorter wavelength.
- C. a higher frequency and the same wavelength.
- D. the same frequency and the same wavelength.
- E. none of the above.

© 2016 Pearson Education, Inc.

Q16.10

On a day when there is no wind, you are at rest and a source of sound waves is moving toward you. Compared to what you would hear if the source were not moving, the sound that you hear has

- A. a higher frequency and a shorter wavelength.
- B. the same frequency and a shorter wavelength.
- C. a higher frequency and the same wavelength.
- D. the same frequency and the same wavelength.
- E. none of the above.

© 2016 Pearson Education, Inc.

Ans: Q15.9) B, Q16.8) E, Q16.9) C, Q16.10) A