The following is a partial translation of Japanese Laid-Open Patent Application No. 11-177986

Page 2, column 2, lines 39-42:

[0015]

Embodiments of The Invention

A description will now be given of one preferred embodiment of the invention with reference to the accompanying drawings. FIG. 1 is a diagram for explaining the principle (1) of the invention.

Page 2, column 2, line 43 - Page 3, column 3, line 2:
[0016]

In FIG. 1, "I1" indicates an I-picture (intra-coded picture) within a GOP (group of pictures), "B1" to "B10" indicate B-pictures (bidirectionally predictive-coded pictures) within the GOP, and "P1" to "P4" indicate P-pictures (predictive-coded pictures) within the GOP. Moreover, "Ba" to "Bj" indicate dummy B-pictures which contain only the header information indicating that that picture is of the type of B-picture, and have the intra-frame difference data set to 0.

Page 3, column 3, lines 3-14:

[0017]

The I-pictures do not use the information on other pictures, but are encoded only for the information on their own pictures. For example, the I-pictures are generated by performing the DCT encoding without taking the intra-frame difference data. The P-

pictures are generated by performing to the forward predictive motion picture encoding on the time axis by using the previous I-picture or previous P-picture as the reference frame. The B-pictures are generated by performing the forward and backward predictive motion picture encoding on the time axis by using the previous and/or future I-pictures or previous and/or future P-pictures as the reference frames.

Page 3, column 3, lines 15-21:

[0018]

One GOP is composed of one or a plurality of I-pictures and none or a plurality of the "not" I pictures. FIG. 1 (A) shows an example composition of frames within one GOP, FIG. 1 (B) shows an example composition of frames after the B-picture skipping process, and FIG. 1 (C) shows an example composition of frames after the dummy B-picture insertion. The vertical axes of FIG. 1 (A) to (B) indicate the data quantity of each picture.

Page 3, column 3, lines 22-26:

[0019]

In the data sequence of FIG. 1 (A) produced by the MPEG1 encoding method, when the video data quantity exceeds the band of the transmission channel, the data of B-pictures are deleted as shown in FIG. 1 (B). Namely, the B-picture skipping process is performed so that the video data quantity is reduced so as to be below the band of the transmission channel.

Page 3, column 3, lines 27-33:

[0020]

After the B-picture skipping process is performed, the dummy B-pictures "Ba" to "Bj" are inserted at the locations of the deleted B-pictures "B1" to "B10" as shown in FIG. 1 (C), so that the composition of frames in the standard MPEG1 format is created. In each of the dummy B-pictures "Ba" to "Bj" inserted, only the header information indicating that that picture is of the type of B-picture exists.

FIG. 1:

Principle (1) of The Invention

- (A) Example composition of frames of 1 GOP (N = 15, N = 3)Data Quantity (kbit)
- (B) Example composition of frames after the B-picture skipping process

Data Quantity (kbit)

(C) Example composition of frames after the dummy picture insertion

Data Quantity (kbit)

1: dummy B-pictures

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-177986

(43)Date of publication of application: 02.07.1999

(51)Int.CI.

7/32 HO4N

(21)Application number: 09-336767

(71)Applicant: NIPPON TELEGR & TELEPH

CORP (NTT)

(22)Date of filing:

08.12.1997

(72)Inventor: YAMAMOTO NOBUHIKO

KANEDA YOJI

NISHIO KATSUSHI

(54) MPEG VIDEO INFORMATION PROVIDING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide users with videos in accordance with an MPEG standard when the images are distributed to narrow band channels not included in the MPEG standard.

SOLUTION: If the amount of data on video information (I1, B1 to B10, P1 to P4) which are compressed by MPEG exceeds the band of a channel, B pictures (B1 to B10) are thinned to keep the data amount of the video information within the channel band. Then, dummy B pictures 1 (Ba to Bj) where the inter-frame difference information is equal to 0 are produced and put into the places where the B pictures (B1 to B10) are taken out. Thus, the video information of a standard MPEG format is produced again.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-177986

(43)公開日 平成11年(1999)7月2日

(51) Int.Cl.⁶ H 0 4 N 7/32 識別記号

F I H 0 4 N 7/137

Z

審查請求	未請求	請求項の数3	OL	(E 3	Ą/
71)山窟人	0000042	26			

(21)出願番号

特願平9-336767

(22)出顯日

平成9年(1997)12月8日

(71)出願人 000004226

日本電信電話株式会社

東京都新宿区西新宿三丁目19番2号

(72)発明者 山本 信彦

東京都新宿区西新宿三丁目19番2号 日本

電信電話株式会社内

(72)発明者 金田 洋二

東京都新宿区西新宿三丁目19番2号 日本

重信電話株式会社内

(72)発明者 西尾 勝志

東京都新宿区西新宿三丁目19番2号 日本

電信電話株式会社内

(74)代理人 弁理士 小笠原 吉義 (外1名)

(54) 【発明の名称】 MPEG映像情報提供方法

(57)【要約】

【課題】MPEG規格外の狭帯域通信路における映像配信において、MPEG規格に準じた映像を利用者に提供する。

【解決手段】MPEGにより圧縮された映像情報(I 1, B1~B10, P1~P4)のデータ量が通信路の帯域を超えた場合に、Bビクチャ(B1~B10)を間引いて映像情報のデータ量を通信路の帯域以内におさえ、フレーム間差分情報が0となるダミーBビクチャ1(Ba~Bj)を疑似的に作成して、Bビクチャ(B1~B10)を間引いた場所に挿入し、標準的なMPEGフォーマットの映像情報に作り直す。

本発明の原理説明四(1)

【特許請求の範囲】

【請求項1】 MPEGビデオ方式で圧縮/符号化した映像を通信網を介して提供するシステムにおいて、映像情報を伝送帯域に合わせてフレーム間差分情報ピクチャを間引き、代わりにMPEGのフォーマットを崩さないようにフレーム間差分情報が0のピクチャを挿入することを特徴とするMPEG映像情報提供方法。

【請求項2】 請求項1記載のMPEG映像情報提供方法において、送信側でフレーム間差分情報が0のビクチャを挿入することを特徴とするMPEG映像情報提供方法。

【請求項3】 請求項1記載のMPEG映像情報提供方法において、送信側で映像情報を伝送帯域に合わせたフレーム間差分情報ピクチャの間引き処理を行い、受信側でフレーム間差分情報が0のピクチャを挿入することを特徴とするMPEG映像情報提供方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は帯域の狭い通信路に おいて、良好な映像情報を提供するためのMPEG映像 20 情報提供方法に関する。

[0002]

【従来の技術】映像情報(動画像)を圧縮する方式としてMPEG1, MPEG2(以下, MPEGという)がある(参考文献:最新MPEG教科書,株式会社アスキー発行)。

【0003】従来から、このMPEGにより圧縮された映像情報を送信側に蓄えて、伝送路を用いて受信側に配信する映像提供システムが存在する。また、近年インターネットの普及に伴い、様々な方式で、リアルタイムに 30映像提供システムが開発されている(参考文献:日経エレクトロニクス「インターネットでテレビ放送が始まる」1996.1.15、日経BP社発行)。

【0004】MPEGを用いた映像配信システムにおいて,通信路の輻輳等により伝送帯域が映像情報の符号化レートを下まわった場合には,映像情報が再生時間内に送れずに画像が途切れ,映像品質を低下させてしまう。

[0005] この欠点を補うために、従来、受信側の通信路の帯域に合わせて、送信側でその帯域におさまるように映像情報内のフレームを間引いて情報量を減らし、受信側に配信する方式がある。

【0006】MPEG1を映像情報の圧縮/符号化に利用した映像配信システムにおいては、以下の手順で映像情報の配信が行われる。

1. TVまたはVTRなどからの映像ソースをMPEG 1符号化装置に取り込み、映像情報の圧縮/符号化を行 い、MPEG1形式のデータに変換する。

【0007】2.変換したデータ(以下,MPEG1データという)を配信サーバに蓄積する。

3. クライアントの要求により、配信サーバは、クライ 50

アント-サーバ間の通信レートに映像データの転送レートを適応させるために、差分情報フレーム(インターフレーム)であるBピクチャまたはPピクチャを間引いてクライアント側に配信する。

【0008】4.クライアントではサーバから配信され たデータを受信し,リアルタイムに再生を行う。

[0009]

【発明が解決しようとする課題】上記の映像配信システムの第3の手順において間引かれた映像データは、フレームレートが可変となるが、MPEG1の規格では1秒当たりの映像数(以下、フレームレートという)を規定してあるため、クライアント側はMPEG1の規格に類似する機能を持つ独自の再生装置(ビューワ)が必要となる

【0010】本発明の目的は、MPEG規格外の狭帯域 通信路における映像配信において、MPEGの規格に準 じた映像を利用者に提供することにある。

[0011]

【課題を解決するための手段】上述した従来の方式では、映像情報の途切れを解消するが、映像ピクチャの間引きによりフレームレートがMPEG1の規格から外れることになり、再生側はMPEGライクな独自の再生装置が必要になる。

【0012】この問題を解決するため、本発明では、上記の従来の方式の第3の手順において、フレーム間差分情報が0となるピクチャを疑似的に作成して、間引いたピクチャの代わりに置き換える。

[0013] すなわち、本発明は、MPEGビデオ方式で圧縮/符号化した映像を通信網を介して提供するシステムにおいて、送信側で映像情報を伝送帯域に合わせてフレーム間差分情報ビクチャを間引き、代わりにMPEGのフォーマットを崩さないようにフレーム間差分情報が0のピクチャを送信側または受信側で挿入するようにする。

【0014】 これにより、MPEG1で規定されたピクチャレートにすることが可能となり、MPEG1の規格を標準サポートするビューワであれば、再生することが可能になる。

[0015]

【発明の実施の形態】以下、本発明の実施の形態を図を 用いて説明する。図1は、本発明の原理説明図(1)で ある

【0016】図1において、I1はGOP(Group of picture:グループオブピクチャ)内のIピクチャ(Intra-coded picture:イントラ符号化画像)、B1からB10はGOP内のBピクチャ(Bidirectionally predictive-coded picture:両方向予測符号化画像)、P1からP4はGOP内のPピクチャ(Predictive-coded picture:前方予測符号化画像)を表わす。また、BaからBjはBピクチャタイプを表わすへッダ情報だけが存在

し、フレーム間差分情報がOであるダミーBピクチャ1 を表わしている。

【0017】 I ピクチャは、符号化されるときにその画 像 1 枚の中だけで閉じた情報のみを使用されている画像 であり、例えば、差分をとらずにそのままDCTして符 号化された画像である。Pビクチャは,差分をとる基準 となる画像として、入力で時間的に前に位置するすでに 復号化されたIピクチャまたはPピクチャを用いるよう に符号化された画像である。Bピクチャは,差分をとる 基準となる画像として、入力で時間的に前に位置するす でに復号化されたIピクチャまたはPピクチャ,時間的 に後ろに位置するすでに復号化された I ピクチャまたは Pピクチャ、またはその両方から作られた補間画像の3 種類を用いるように符号化された画像である。

【0018】GOPは、1または複数の1ピクチャと0 または複数の非Iピクチャから構成される。図1(A) は1GOP内のフレーム構成例,図1(B)はBピクチ ャ間引き処理後のフレーム構成例、図1(C)はダミー Bビクチャ挿入後のフレーム構成例を示す。図1(A) ~ (C) の縦軸は各ピクチャのデータ量を表わしてい る。

【0019】図1(A)に示すようなMPEG1で符号 化されたデータ列において、映像データが通信路の帯域 を超えた場合、図1(B)に示すように、Bピクチャの データを削除,すなわち間引き処理を行うことで映像デ ータ量を通信路の帯域以内におさえる。

【0020】次に、図1(C)に示すように、Bピクチ ャを表わすピクチャデータが存在しないBピクチャタイ プのダミーBピクチャ1(Ba~Bj)を,削除したB なMPEG1フォーマットを作り出す。ダミーBピクチ v1 (Ba~Bj)は、ピクチャデータが0でピクチャ タイプヘッダだけ存在する。

【0021】図2は、本発明の原理説明図(2)であ る。図2において、I1はGOP内のIピクチャ、B1 からB10はGOP内のBピクチャ、P1からP4はG OP内のPピクチャを表わす。BaからBjはBピクチ ャタイプ、PaからPdはPピクチャタイプを表わすへ ッダ情報だけが存在し、フレーム間差分情報が〇のダミ ーBピクチャ1, ダミーPピクチャ2を表わしている。 [0022]図2(A)は1GOP内のフレーム構成 例,図2 (B) はBピクチャ,Pピクチャ間引き処理後 のフレーム構成例,図2(C)はダミーBピクチャ,ダ ミーPピクチャ挿入後のフレーム構成例を示す。図2 (A)~(C)の縦軸は各ピクチャのデータ量を表わし ている。

【0023】図2(A)に示すようなMPEG1で符号 化されたデータ列において、映像データが通信路の帯域 を超えた場合には,図2(B)に示すようにPピクチ

行うことで映像データ量を通信路の帯域以内におさえ

【0024】次に図2(C)に示すように、Pピクチ ャ, Bビクチャを表わすヘッダビクチャデータが存在し ないダミーPピクチャ2のPa~PdとダミーBピクチ ャ1のBa~Bjとを、削除したPピクチャ(P1~P 4)とBピクチャ(B1~B10)の場所に挿入するこ とで、標準的なMPEG1フォーマットを作り出す。ダ ミーBピクチャ1のBa~Bj,ダミーPピクチャ2の 10 Pa~Pdはピクチャデータが0でピクチャタイプへッ ダだけ存在する。

【0025】図3は本発明の動作環境の構成例(1)を 示す図である。MPEG1エンコーダ等で作成したMP EG1ビデオフォーマットの映像情報は、送信側の映像 情報蓄積部31に蓄積されている。この蓄積された映像 情報は間引き処理部32に入力される。通信速度検出部 35は、送信側と受信側間の通信速度を検出し、間引き 処理部32に通知する。

【0026】間引き処理部32は、入力された映像情報 20 のデータレートを通信速度検出部35から通知された通 信速度以下にデータ量を削減するために,ピクチャデー タの削除を行う(間引き処理)。間引き処理を行った映 像情報は,ダミーピクチャ挿入部33に入力される。

【0027】ダミーピクチャ挿入部33では、入力され た映像情報に含まれるMPEG1ビデオヘッダの情報を 解析し、ダミーピクチャを生成する。また、本方式によ るダミーピクチャ挿入処理により,作成したダミーピク チャを入力された映像情報に挿入する(挿入処理)。

【0028】間引き処理および挿入処理を施された映像 ピクチャBl~Bl0の場所に挿入することで、標準的 30 情報は、送信部34より通信網30経由で受信側に送ら れる。受信側では、受信部36にて受信された映像情報 が復号化部37に送られて復号され、ディスプレイ部3 8 により表示される。この構成例により、受信側の処理 能力が低い場合に、受信側の処理負荷を軽減することが

> [0029]図4は本発明の動作環境の構成例(2)を 示す図である。図3に示す構成例との差異は、送信側に は間引き処理部42を配置し、図3に示すダミーピクチ ャ挿入部33に相当するダミーピクチャ挿入部46は受 40 信側に配置しているととである。本方式のうち間引き処 理は送信側で行い,ダミーピクチャの挿入処理は受信側 で行う。この構成例により、送信側の処理能力が低い場 合に、送信側の処理負荷を軽減することができる。

【0030】以上の発明の実施の形態では、MPEG1 について本発明を適用する場合の例について述べたが、 本発明はMPEG1に限らず、MPEG2等においても 同様に適用が可能である。

[0031]

【発明の効果】MPEG1の映像情報を用いて,受信側 ャ、Bピクチャのデータを削除、すなわち間引き処理を 50 の通信路の帯域に合わせて送信側で映像情報に間引き処 5

理を行い,受信側に配信する既存の提供方式では,GO P当りの I ピクチャ,Bピクチャ,Pピクチャのデータ 量の比が40:30:30の場合、Bピクチャを間引く と,実際のMPEG1映像情報のデータ量の約30%を 削減することができ、BピクチャおよびPピクチャを間 引くと、実際の映像情報のデータ量の約60%を削減す ることができるが、MPEG1の規格から外れることに なる。

【0032】本発明によれば、送信側でフレーム間差分 情報が0となるピクチャを疑似的に作成し、これを間引 10 33 ダミーピクチャ挿入部 いたピクチャの代わりに置き換えてやることにより、従 来に比べて1~2パーセントの情報量の増加だけで標準 のMPEG1再生装置(ビューワ)を利用することがで きる。

【0033】また、受信側でフレーム間差分情報が0と なるピクチャを疑似的に作成して間引いたピクチャの代 わりに置き換えてやることにより、従来と同等の情報量 で標準のMPEG1再生装置(ビューワ)を利用すると とができる。

[0034]上記の効果については、MPEG2におい 20 45 受信部 ても同様の効果が得られる。

【図面の簡単な説明】

【図1】本発明の原理説明図(1)である。

【図2】本発明の原理説明図(2)である。

* 【図3】本発明の動作環境の構成例(1)を示す図であ

【図4】本発明の動作環境の構成例(2)を示す図であ

【符号の説明】

- ダミーBピクチャ
- ダミーPピクチャ
- 31 映像情報蓄積部
- 32 間引き処理部
- 3 4 送信部
- 35 通信速度検出部
- 36 受信部
- 37 復号化部
- 38 ディスプレイ部
- 41 映像情報蓄積部
- 42 間引き処理部
- 43 送信部
- 44 通信速度検出部
- 46 ダミーピクチャ挿入部
- 47 復号化部
- 48 ディスプレイ部

【図3】

本免明の動作環境の構成例(1)

[図4]

本免明の動作環境の構成例(2)

【図1】

本発明の原理説明図(1)

(C) ダミーピクチャ挿入後のフレーム構成例

【図2】

本発明の原理段明図(2)

(B) Pピクチャ、Bピクチャ間引き処理後のフレーム構成例

(C) ダミーピクチャ挿入後のフレーム構成例

