Normalization

By **Dhandapani Yedappalli Krishnamurthi** Sep 30, 2025

Normal Forms (Steps of Normalization)

1NF (First Normal Form)

- Each column should have **atomic values** (no multiple values in a single field).
- No repeating groups.
- Example (Unnormalized Table):

StudentID	StudentName	Subjects	
1	Kapil	Math, Science	
2	Sneha	English, History	

X Problem: Multiple values in "Subjects".

1NF Conversion:

StudentID	StudentName	Subject
1	Kapil	Math
1	Kapil	Science
2	Sneha	English
2	Sneha	History

2NF (Second Normal Form)

- Must be in 1NF.
- No partial dependency (non-key attribute should not depend on part of a composite key).
- Example (1NF Table):

StudentID	Subject	Teacher	
1	Math	n Sangeetha	
1	Science	Tharun	

X Problem: "Teacher" depends only on "Subject", not on the full composite key (StudentID + Subject).

2NF Conversion:

Students Table

StudentID	StudentName
01000011111	

1	Kapil	
2	Sneha	

Subjects Table

Subject	Teacher	
Math	Sangeetha	
Science	Tharun	
English	Tharun	
History	Sangeetha	

StudentSubjects Table

StudentID	Subject	
1	Math	
1	Science	
2	English	
2	History	

3NF (Third Normal Form)

- Must be in 2NF.
- No transitive dependency (non-key column depending on another non-key column).

Example (2NF Table):

Subject	Teacher	TeacherPhone
Math	Sangeetha	9991112222
Science	Tharun	8881112222

X Problem: "TeacherPhone" depends on "Teacher", not directly on "Subject".

3NF Conversion:

Subjects Table

Subject	Teacher
Math	Sangeetha
Science	Tharun

Teachers Table

Teacher	TeacherPhone
Sangeetha	9991112222
Tharun	8881112222

A transitive dependency is a type of functional dependency in a database where a non-prime attribute (an attribute that is not part of any candidate key) depends on another non-prime attribute, instead of directly depending on the primary key.

In simpler words:

 \leftarrow A transitive dependency occurs when A → B and B → C, so A → C, where:

- A is usually the primary key.
- B is a non-key attribute.
- C is another non-key attribute.

Example:

Consider a table Students:

StudentID	StudentName	Department	HOD
101	Kapil	CSE	Dr. Rao
102	Sneha	ECE	Dr. Mehta

StudentID → Department (Student ID determines Department)

- Department → HOD (Department determines HOD)
- So, by transitivity: StudentID → HOD

Here, HOD is transitively dependent on StudentID via Department.

Why it matters:

- Transitive dependencies cause data redundancy and update anomalies.
- To remove them, we normalize the table into Third Normal Form (3NF) by separating the transitive part into another table.

For the example:

Students Table:

StudentID	StudentName	Department
101	Kapil	CSE
102	Sneha	ECE

Department Table:

Department	HOD
CSE	Dr. Rao
ECE	Dr. Mehta

👉 In short:

Transitive dependency = Non-key attribute depends on another non-key attribute (through the primary key). Would you like me to also show you a diagram/visual illustration of transitive dependency to make it crystal clear?

BCNF (Boyce-Codd Normal Form)

- A stronger version of **3NF**.
- Every determinant must be a candidate key.

Example:

If a course has multiple instructors, but one instructor can only teach one subject \rightarrow BCNF helps resolve this by further splitting.

Benefits of Normalization

- Eliminates redundancy.
- Prevents anomalies.
- Ensures data integrity.
- Easier to maintain and scale.

✓ Summary:

- **1NF:** Atomic values, no repeating groups.
- **2NF:** No partial dependency.
- **3NF:** No transitive dependency.
- BCNF: Every determinant must be a candidate key.