Experimental Runs

Confidence Interval (CLT)

Random:
$$\bar{\chi}_{n} = 17.67 \text{ mins} \qquad n = 500$$

$$\bar{G}_{h} = 0.606 \qquad \bar{Z}_{1/2} = 2.576$$

$$\text{Confidence Interval}: \left(\bar{\chi}_{n} - \bar{Z}_{2/2} \frac{\hat{G}_{n}}{\sqrt{n}}, \bar{\chi}_{n} + \bar{Z}_{1/2} \frac{\hat{G}_{n}}{\sqrt{n}}\right)$$

$$= \left(17.67 - 2.576 \cdot \frac{0.606}{\sqrt{500}}, 17.67 + 2.576 \cdot \frac{0.606}{\sqrt{500}}\right)$$

$$\text{Confidence Interval} \left(m_{n} = 5\right) : \left[17.60, 17.74\right]$$

Back - To - Front:

$$\bar{\chi}_{N} = 10.58 \text{ mins} \qquad N = 500$$

$$\bar{G}_{N} = 0.819 \qquad \bar{Z}_{N}^{2} = 2.576$$
Confidence Interval: $(\bar{\chi}_{N} - \bar{Z}_{2} \frac{\hat{G}_{N}}{\sqrt{N}}, \bar{\chi}_{N} + \bar{Z}_{2} \frac{\hat{G}_{N}}{\sqrt{N}})$

$$= (20.58 - 2.576 \cdot \frac{0.819}{\sqrt{S00}}, 20.58 + 2.576 \cdot \frac{0.819}{\sqrt{S00}})$$
Confidence Interval $(m\tilde{h}_{S})$: $[10.49]$, 20.67

Outside - In :

$$\bar{\chi}_{n} = 16.81$$
 mins $n = 500$
 $\bar{G}_{n} = 0.548$ $\bar{\chi}_{12} = 2.576$

Confidence Interval: $(\bar{\chi}_{n} - \bar{z}_{2} \frac{\hat{g}_{n}}{\sqrt{n}}, \bar{\chi}_{n} + \bar{z}_{2} \frac{\hat{g}_{n}}{\sqrt{n}})$

$$= (16.81 - 2.576 \cdot \frac{0.548}{\sqrt{500}}, 16.81 + 2.576 \cdot \frac{0.548}{\sqrt{500}})$$
Confidence Interval $(m\bar{c}_{15}) : [16.75, 16.81]$

After 500 Experimental runs:

Boarding strategy	Average boarding time (mins)	Variance in time (mins)	Confidence Interval (mins)
Random	17.67	0.606	[17.60, 17.74]
Back-To-Front	20.58	0.819	[20.48, 20.67]
Outside-In	16.81	0.548	[16.75, 16.81]