Sprawozdanie

Elektronika analogowa

Filtry Pasywne

1. Wstep

Filtrem częstotliwości nazywamy układ o strukturze czwórnika (czwórnik to układ mający cztery zaciski – jedna z par zacisków pełni rolę wejścia, zaś druga wyjścia), który przepuszcza bez tłumienia lub z małym tłumieniem napięcia i prądy o określonym paśmie częstotliwości, a tłumi napięcia i prądy leżące poza tym pasmem. Filtry częstotliwości mają głównie zastosowanie w urządzeniach elektronicznych i energetycznych.

Wyrozniamy filtry aktywne, czyli takie w, ktorych ukladzie wykorzystuje sie elementy aktywne takie jak wzmacniacze operacyjne. Na zajeciach zajmowalismy sie filtrami pasywnymi zbudowanych z samych elementow pasywnych.

```
In [69]: import pandas as pd
   import numpy as np
   import scipy.signal as signal
   import matplotlib.pyplot as plt
   from IPython.display import clear_output
```

Filtr dolnoprzepustowy

Pracowalismy na stanowisku numer 5 przydzielona do naszego stanowiska rezystancja wynosila $10k\Omega$ natomiast pojemnosc wynosila 330pF. Do pomiarow wykorzystalismy kondensator o pojemnosci 408pF oraz rezystor o rezystancji $9,9664k\Omega$.

```
In [70]: R = 9.9664 * 10e3
C = 330 * 10e-12

# Czestotliwosc graniczna naszego filtra
borderFreq = 1 / (2* np.pi * R * C)
print(f"Czestotliwosc graniczna uzytego filtra wynosi: {borderFreq}")
```

Czestotliwosc graniczna uzytego filtra wynosi: 483.9136562239894

Transmitancja filtra dolno przepustowego

$$G(s) = rac{1}{1 + RCs}$$
 $G(s) = rac{1}{1 + 3.288912 \cdot 10^{-4} s}$

In [71]: dolnoPrzepustowy = pd.read_csv("dolno_przepustowy.csv", sep=";")
 dolnoPrzepustowy["G[db]"] = 20 * np.log10(dolnoPrzepustowy["Vpp_wyj"] / dolnoPrzepustowy dolnoPrzepustowy

Out[71]:

	Vpp_wyj	Vpp_wej	Freq	G[db]
0	1.04	1.02	1.0	0.168663
1	1.04	1.02	1.3	0.168663
2	1.04	1.02	1.7	0.168663
3	1.04	1.02	2.1	0.168663
4	1.02	1.02	2.8	0.000000
5	1.04	1.02	3.6	0.168663
6	1.02	1.02	4.6	0.000000
7	1.04	1.02	6.0	0.168663
8	1.00	1.02	7.7	-0.172003
9	1.00	1.02	10.0	-0.172003
10	0.96	1.02	13.0	-0.526579
11	0.94	1.02	17.0	-0.709446
12	0.90	1.02	21.0	-1.087153
13	0.82	1.02	28.0	-1.895726
14	0.76	1.02	36.0	-2.555732
15	0.66	1.02	46.0	-3.781125
16	0.56	1.02	60.0	-5.208243
17	0.48	1.02	77.0	-6.547179
18	0.38	1.02	100.0	-8.576332

```
In [72]: num = [0, 5]
         den = [R*C, 1]
         s1 = signal.TransferFunction(num, den)
         w, nyquist = signal.freqresp(s1)
         clear output()
         plt.figure(figsize=(7, 7))
         plt.title("Charakterystyka Nyquista dla zbudowanego filtra dolnoprzepustowego", fontsize
         plt.plot(nyquist.real, nyquist.imag, "b")
         plt.plot(nyquist.real, -nyquist.imag, "r")
         plt.xlabel("Re", fontsize=18)
         plt.ylabel("Img", fontsize=18)
         plt.grid()
         plt.show()
         w, mag, phase = signal.bode(s1)
         fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 7))
         fig.suptitle("Charakterystyka Bodego", fontsize=16)
         ax1.semilogx(w, mag)
         ax2.semilogx(w, phase)
         plt.show()
```

Charakterystyka Nyquista dla zbudowanego filtra dolnoprzepustowego

Charakterystyka Bodego

