数据挖掘 Data Mining

模型的评价

分类问题 Recap

■ 数据预处理→模型训练→模型调整→对新数据分类→模型评价

2020年2月17日星期一

内容提纲

1准确率的局限

2不平衡分类

3过拟合和欠拟合

1准确率的局限

1.1准确率评价

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)				
CLAGO	Class=No	c (FP)	d (TN)				

准确率 (Accuracy) =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

1.1准确率的局限

- 考虑一个二分类问题
 - 0类的实例数 = 9990
 - 1类的实例数 = 10
- 如果模型预测每个实例为0类,则准确率为 9990/10000=99.9%
 - 准确率是误导
 - 模型不能正确预测任何1类实例
 - 而在疾病检测中,1类更需要被关心

1.2其它度量

混淆矩阵

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	(TP)	b (FN)				
CLAGO	Class=No	c (FP)	d (TN)			

真阳历TP, 真阳性(True positive rate, TPR) 或灵敏度(sensitivity)、查全率 recall)

$$TPR = TP/(TP + FN)$$

- 真阴历TN, 真阴性 (True negative rate, TNR) 或特指度 (specificity)
 TNR = TN/(TN+FP)
- 假阳历FP,假阳性(False positive rate, FPR)或 误报率 FPR = FP/(TN+FP)
- 假阴历FN,假阴性(False negative rate, FNR)漏报率(与查全率此消彼长)
 FNR = FN/(TP + FN)

FPR是指

- A 假阴性
- 8 假阳性
- c 漏报率
- □ 误报率

FNR是指

- A 假阴性
- B 假阳性
- | 漏报率
- □ 误报率

1.2其它度量(续)

- 两个广泛使用的度量
 - 召回率(查全率, recall)和精确率(查准率, precision)

$$recall = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

	PREDICTED CLASS						
ACTUAL CLASS		Class=Yes	Class=No				
	Class=Yes	a (TP)	b (FN)				
	Class=No	c (FP)	d (TN)				

■ *F*₁度量

$$F_1 = \frac{2rp}{r+p} = \frac{2 \times TP}{2 \times TP + FP + FN}$$

- 假设我们手上有60个正样本,40个负样本,我们要找出所有的正样本, 系统查找出50个,其中只有40个是真正的正样本,计算上述各指标。
 - TP: 将正类预测为正类数: [填空1]
 - FN: 将正类预测为负类数:[填空2]
 - FP: 将负类预测为正类数:[填空3]
 - TN: 将负类预测为负类数: 「填空4]
 - 准确率(accuracy) = 预测对的/所有 = (TP+TN)/(TP+FN+FP+TN) = [填空5
 - 精确率(precision)=TP/(TP+FP)=[填空6]
 - 召回率(recall)=TP/(TP+FN)=[填空7]

正常使用填空题需3.0以上版本雨课堂

1.2其它度量(续)

- 假设我们手上有60个正样本,40个负样本,我们要找出所有的正样本, 系统查找出50个,其中只有40个是真正的正样本,计算上述各指标。
 - TP: 将正类预测为正类数 40
 - FN: 将正类预测为负类数 20 (60-40, 剩余没正确分类的正样本)
 - FP: 将负类预测为正类数 10
 - TN: 将负类预测为负类数 30
 - 准确率(accuracy) = 预测对的/所有 = (TP+TN)/(TP+FN+FP+TN) = 70%
 - 精确率(precision) = TP/(TP+FP) = 80%
 - 召回率(recall) = TP/(TP+FN) = 2/3

1.3查全率vs. 查准率

■ 下面是两个场景:

- 1. **地震的预测**,对于地震的预测,我们希望的是recall非常高,也就是说每次地震我们都希望预测出来。这个时候我们可以牺牲precision。情愿发出1000次警报,把10次地震都预测正确了;也不要预测100次,对了8次,漏了2次。
- 2. 嫌疑人定罪,基于不错怪一个好人的原则(无罪推定原则, presumption of innocence),对于嫌疑人的定罪我们希望是非常准确的(precision高),及时有时候放过了一些罪犯(recall低),但也是值得的。

$$F_1 = \frac{2rp}{r+p} = \frac{2 \times TP}{2 \times TP + FP + FN}$$

■ 对于分类器来说,分类本质上是给一个概率,此时,我们再选择一个 CUTOFF点(阀值),高于这个点的判阳性(positive),低于的判阴性 (negative)。那么这个点的选择就需要结合具体场景去选择。

1.4 ROC曲线

- 接收者操作特征曲线(Receiver Operating Characteristic Curve,或者叫ROC曲线)是一种坐标图式的分析工具,用于
 - (1) 选择最佳的分类模型、舍弃次佳的模型。
 - (2) 在同一模型中设定最佳阈值。
- 给定一个二元分类模型和它的阈值,就能从所有样本的(阳性/阴性)真实值和预测值计算出一个(X=FPR,Y=TPR)坐标点。

1.4 ROC曲线(续)

(FPR, TPR):

- (0,0): 任何分类都是阴性
- (1,1): 任何分类都是阳性
- (0,1): 理想分类
- 对角线:
 - 随机猜测结果
 - 对角线以下:
 - 预测结果与真实 结果相反

1.4 ROC用于模型比较

- 当两个模型之间没有绝对差别 时
 - M1 is better for small FPR
 - M2 is better for large FPR
- ROC曲线下方的区域称为 AUC, Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

1.4如何构建ROC曲线

- 首先利用分类器计算每个数据记录的后 验概率P(+|A)
- 将这些数据记录对应的P(+|A)从高到低排列(如右表):
 - 由低到高,对于每个P(+|A)值 (threshold,阈值),把对应的记录 以及那些值高于或等于阈值指派为 阳性类positive,把那些值低于阈值指 派为阴性类negative
 - 统计 TP, FP, TN, FN
 - 计算TPR = TP/(TP+FN)和 FPR = FP/(FP+TN)
- 绘出诸点(FPR, TPR)并连接它们

Instance	P(+ A)	True Class		
1	0.95	+		
2	0.93	+		
3	0.87	_		
4	0.85	-		
5	0.85	-		
6	0.85	+		
7	0.76	_		
8	0.53	+		
9	0.43	-		
10	0.25	+		

1.4如何构建ROC曲线

												_
	Class	+		+	-	-		+	*	+	+	
Threshol	d>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
2	FN	0	1	1	2	2	2	2	3	3	4	5
a - 766	TPR	1	0.8	8.0	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	8.0	0.8	0.6	0.4	0.2	0.2	0	0	0
									1 1 1 1 1 1 1 1			

ROC Curve:

1									')	/
0.9									/	
0.8								X		-
0.7							/			
0.6				+		/		_		
0.5					/					
0.4		_		/						
0.3			/				\rightarrow	ΑU	IC	1
0.2		/								
0.1										
			60	10	72	20	Ÿ		47	
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	=
6	0.85	+
7	0.76	=
8	0.53	+
9	0.43	-
10	0.25	+

2不平滑分类

2 Imbalanced Data Mining

■ 数据不平衡问题

2020年2月17日星期一

2.1基于抽样的方法

基于抽样的方法

- 考虑一个包含100个正样本和1000个负样本的数据集
- Oversampling 过采样
 - 复制正样本,直到训练集中正样本和负样本一样多
 - 可能导致模型过分拟合,因为一些噪声样本也可能被复制多次

■ Undersampling欠采样

- 随机抽取100个负样本,与所有的正样本一起形成训练集
- 问题: 一些有用的负样本可能没有选出来用于训练, 因此导致一个不太优的模型
- 解决问题的方法: 多次执行不充分抽样,并归纳类似于组合学习方法的多分类器
- Oversampling + Undersampling

2.1基于抽样的方法

Oversampling minority class

噪声样本也可能 被复制多次

Undersampling majority class

有用的负样本可能 没有选出来用于训 练

2.2两阶段学习

- 两阶段学习: PN-Rules
 - 是基于规则的分类
 - 学习分两个阶段,每个阶段学习一组规则
- 训练
 - 阶段I: 学习一组规则,尽可能覆盖正类(少的那一类)
 - 阶段II: 使用阶段I覆盖的正类和负类样本+部分其它负类样本,学习一组规则

2.2两阶段学习(续)

- 分类
 - 用第一组规则对x分类,如果分到负类,则x属于负类
 - 否则,用第二组规则确定x所属的类
- R. Agarwal, and M. V. Joshi. PNrule: A New Framework for Learning Classifier Models in Data Mining (A Case-Study in Network Intrusion Detection). In Proc. of the First SIAM Conference on Data Mining. Chicago, USA, April 2001

Rakesh Agrawal

Computer scientist

Rakesh Agrawal is a computer scientist who until recently was a Technical Fellow at the Microsoft Search Labs. Wikipedia

Education: Indian Institute of Technology Roorkee

Books: 23 European Symposium on Computer Aided Process Engineering: GWh Level Renewable Energy Storage and Supply Using Liquid CO2, MORE

Awards: SIGMOD Edgar F. Codd Innovations
Notable student: Ramakrishnan Srikant

3过拟合和欠拟合

3模型过分拟合和拟合不足

- 分类模型的误差大致分为两种:
 - 训练误差: 是在训练记录上误分类样本比例
 - 泛化误差: 是模型在未知记录上的期望误差
- 一个好的分类模型不仅要能够很好的拟合训练数据,而且对未知样本也要能准确分类。
- 换句话说,一个好的分类模型必须具有低训练误差和低泛化误差。
- 当训练数据拟合太好的模型(较低训练误差),其泛化误差可能比具有较高训练误差的模型高,这种情况成为模型过分拟合。

3模型过分拟合和拟合不足

- 以决策树算法为例
 - 当决策树很小时,训练和检验误差都很大,这种情况称为模型拟合不足。 出现拟合不足的原因是模型尚未学习到数据的真实结构。
 - 随着决策树中结点数的增加,模型的 训练误差和泛化误差都会随之下降。
 - 当树的规模变得太大时,即使训练误差还在继续降低,但是泛化误差开始增大,导致模型过分拟合。

3模型过分拟合和拟合不足

3.1导致过分拟合的原因

表 4-3 哺乳类动物分类的训练数据集样本。打星号的类标号代表错误标记的记录

名称	体温	胎生	4条腿	冬眠	类标号
豪猪	恒温	是	是	是	是
猫	恒温	是	是	否	是
蝙蝠	恒温	是	否	是	否*
鲸	恒温	是	否	否	否*
蝾螈	冷血	否	是	是	否
科莫多巨蜥	冷血	否	是	否	否
蟒蛇	冷血	否	否	是	否
鲑鱼	冷血	否	否	否	否
鹰	恒温	否	否	否	否
東工修	冷血	是	否	否	否

表 4-4 哺乳类动物分类的检验数据集样本

名称	体温	胎生	4 条腿	冬眠	类标号
人	恒温	是	否	否	是
鸽子	恒温	否	否	否	否
象	恒温	是	是	否	是
豹纹鲨	冷血	是	否	否	否
海龟	冷血	否	是	否	否
企鹅	冷血	否	否	否	• 否
鳗	冷血	否	否	否	否
海豚	恒温	是	否	否	是
针鼹	恒温	否	是	是	是
希拉毒蜥	冷血	否	是	是	否

过分拟合

3.1导致过分拟合的原因

噪声导致的过分拟合

- 例子: 哺乳动物的分类问题, 十个训 练记录中有两个被错误标记: 蝙蝠和 鲸
- 如果完全拟合训练数据,决策树M1的 训练误差为0,但它在检验数据上的误 差达30%: 人和海豚, 针鼹误分为非哺 乳动物
- 相反,一个更简单的决策树M2,具有 较低的检验误差(10%),尽管它的训 练误差较高,为20%
- 决策树M1过分拟合了训练数据。因为 属性测试条件4条腿具有欺骗性,它拟 合了误标记的训练纪录,导致了对检 验集中记录的误分类

3.2噪声导致的过分拟合

3.3缺乏代表性样本导致的过分拟合

- 根据少量训练记录做出分类决策的模型也容易受过分拟合的影响。
- 由于训练数据缺乏具有代表性的样本,在没有多少训练记录的情况下, 学习算法仍然细化模型就会产生过分拟合。

名称	体温	胎生	4条腿	冬眠	类标号
蝾螈	冷血	否	是	是	否
虹鳉	冷血	是	否	否	否
應	恒温	否	否	否	否
弱夜鹰	恒温	否	否	是	否
鸭嘴兽	恒温	否	是	是	是

表 4-5 哺乳动物分类的训练集样本

图 4-26 根据表 4-5 中的数据集建立的决策树 数据挖掘导论

3.3缺乏代表性样本导致的过分拟合

- 例子: 五个训练记录,所有的记录都是正确标记的,对应的决策树尽管 训练误差为0,但检验误差高达30%
- 人、大象和海豚被误分类,因为决策树只把恒温、冬眠、4条腿的动物 分为哺乳动物。决策树做出这样的分类决策是因为只有一个训练记录(鸭嘴兽)具有这些特征。
- 这个例子清楚的表明,当决策树的叶结点没有足够的代表性样本时,很可能做出错误的预测。

表 4-4 哺乳类动物分类的检验数据集样本

名称	体温	胎生	4 条腿	冬眠	类标号
人	恒温	是	否	否	是
鸽子	恒温	否	否	否	否
象	恒温	是	是	否	是
豹纹鲨	冷血	是	否	否	否
海龟	冷血	否	是	否	否
企鹅	冷血	否	否	否	• 否
鳗	冷血	否	否	否	否
海豚	恒温	是	否	否	是
针鼹	恒温	否	是	是	是
希拉毒蜥	冷血	否	是	是	否

3.4减少泛化误差

- 过分拟合的主要原因一直是个争辩的话题,但数据挖掘研究界普遍认为模型的复杂度对模型的过分拟合有影响。
- 如何确定正确的模型复杂度?理想的复杂度是能产生最低泛化误差的模型的复杂度。
- 奥卡姆剃刀定律

2.4奥卡姆剃刀(Occam's Razor)

- 奥卡姆剃刀(Occam's Razor),拉丁文为lex parsimoniae,意思是简约之法则。
- 是由14世纪逻辑学家、圣方济各会修士威廉奥卡姆William of Occam (约1287年至1347年)提出的一个解决问题的法则。
- 他在《箴言书注》第2卷15章说"切勿浪费较多东西,去做:用较少的东西,同样可以做好的事情"。
- 奥卡姆剃刀定律被广泛运用在多个学科的逻辑定律, 它的简单表述:
 - 如无必要,勿增实体
 - Entities should not be multiplied unnecessarily

3.4减少泛化误差

- 根据奥卡姆剃刀原则
 - 引入惩罚项, 使较简单的模型比复杂的模型更可取
 - KNN最近邻分类模型中,增加邻近节点选择的个数
 - 决策树的剪枝, SVM的正则化项
 - 贝叶斯网络中, 限制参数个数
 - 神经网络中,引入dropout机制

(a) Standard Neural Net

(b) After applying dropout.

3.4减少泛化误差

- 使用确认集
 - 该方法中,不是用训练集估计泛化误差,而是把原始的训练数据集 分为两个较小的子集,一个子集用于训练,而另一个称为确认集, 用于估计泛化误差。
 - 该方法为评估模型在未知样本上的性能提供了较好办法。

下列说法正确的是

- A 过拟合是由于训练集多,模型过于简单
- 过拟合是由于训练集少,模型过于复杂
- 欠拟合是由于训练集多,模型过于简单
- 欠拟合是由于训练集少,模型过于简单

总结

使用确认集,基于抽样的方法

统计查全率vs. 查准率

Any Questions?

谢谢!