Dynamic Programming ... Continued

0-1 Knapsack Problem

Knapsack 0-1 Problem

- The difference between this problem and the fractional knapsack one is that you CANNOT take a fraction of an item.
 - You can either take it or not.
 - Hence the name Knapsack 0-I problem.

Knapsack 0-1 Problem – Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

• The best subset of S_k that has the total weight w, either contains item k or not.

- First case: $w_k > w$
 - Item k can't be part of the solution! If it was the total weight would be > w, which is unacceptable.
- Second case: $w_k \le w$
 - Then the item k <u>can</u> be in the solution, and we choose the case with greater value.

Knapsack 0-1 Problem

- Let's run our algorithm on the following data:
 - n = 4 (# of elements)
 - W = 5 (max weight)
 - Elements (weight, value):

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

// Initialize the base cases for
$$w = 0$$
 to W
$$B[0,w] = 0$$

for
$$i = 1$$
 to n

$$B[i,0] = 0$$

|--|

1:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	Q	0	0	0	0
1	0	Ö				
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$w = 1$$

$$w-w_i = -1$$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

Items:

1:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	→ 3			
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 2$
 $\mathbf{w} - \mathbf{w}_i = 0$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

|--|

1:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0 -	0	0	0	0
1	0	0	3	3		
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 3$
 $\mathbf{w} - \mathbf{w}_i = 1$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

Items:

1:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0_	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 4$
 $\mathbf{w} - \mathbf{w}_i = 2$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else
$$B[i,w] = B[i-1,w]$$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items:

1:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0_	0	0
1	0	0	3	3	3	→ 3
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $w = 5$
 $w-w_i = 3$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

1:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	•0				
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 1$$

$$w-w_i = -2$$

$$\begin{split} &\text{if } w_i <= w \quad /\!/ \text{item i can be in the solution} \\ &\text{if } v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w] \\ &B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &B[i,w] = B[i\text{-}1,w] \\ &\text{else } B[i,w] = B[i\text{-}1,w] /\!/ w_i > w \end{split}$$

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	1 3	3	3	3
2	0	0	3			
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$w = 2$$

$$w-w_i = -1$$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	→ 4		
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 3$$

$$w-w_i = 0$$

$$\begin{split} &\text{if } w_i <= w \quad /\!/ \text{item i can be in the solution} \\ &\text{if } v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w] \\ & \quad B[i\text{,}w] = v_i + B[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ & \quad B[i\text{,}w] = B[i\text{-}1\text{,}w] \\ &\text{else } B[i\text{,}w] = B[i\text{-}1\text{,}w] \ /\!/ \ w_i > w \end{split}$$

items:	Items:
--------	--------

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0_	3	3	3	3
2	0	0	3	4	4	
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 4$
 $w - w_i = 1$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3_	3	3	3
2	0	0	3	4	4	▶ 7
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $w = 5$
 $w-w_i = 2$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

<u>ltems:</u>

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	, 0	, 3	, 4	4	7
3	0	v 0	V 3	V 4		
4	0					

$$i = 3$$

 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 1..3$
 $w-w_i = -3..-1$

if
$$w_i \le w$$
 //item i can be in the solution
$$if \ v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w]$$

$$B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i]$$
 else
$$B[i,w] = B[i\text{-}1,w]$$
 else
$$B[i,w] = B[i\text{-}1,w] // w_i > w$$

Items:

I:(2,3)

2: (3,4)

3: (4,5)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0 _	0	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

$$i = 3$$

 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 4$
 $\mathbf{w} - \mathbf{w}_i = 0$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

|--|

I:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	▼ 7
4	0					

$$i = 3$$
 $v_i = 5$
 $w_i = 4$
 $w = 5$
 $w-w_i = 1$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w]$$
 // $w_i > w$

Items:

I:(2,3)

2: (3,4)

3: (4,5)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	1 0	13	, 4	15	7
4	0	• 0	* 3	* 4	* 5	

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $\mathbf{w} = 1..4$
 $w-w_i = -4..-1$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$
 else
$$B[i,w] = B[i-1,w] // w_i > w$$

Items:

I:(2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	▼ 7

$$i = 4$$

$$v_i = 6$$

$$w_i = 5$$

$$\mathbf{w} = \mathbf{5}$$

$$w - w_i = 0$$

if
$$w_i \le w$$
 //item i can be in the solution if $v_i + B[i-1,w-w_i] > B[i-1,w]$
$$B[i,w] = v_i + B[i-1,w-w_i]$$
 else
$$B[i,w] = B[i-1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

Items:

1:(2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

We're DONE!!

The max possible value that can be carried in this knapsack is \$7

Knapsack 0-1 Algorithm

- This algorithm only finds the max possible value that can be carried in the knapsack
 - The value in B[n,W]

 To know the *items* that make this maximum value, we need to trace back through the table.

Knapsack 0-1 Algorithm Finding the Items

```
    Let i = n and k = W
    if B[i, k] ≠ B[i-1, k] then
    mark the i<sup>th</sup> item as in the knapsack
    i = i-1, k = k-w<sub>i</sub>
    else
    i = i-1 // Assume the i<sup>th</sup> item is not in the knapsack
    // Could it be in the optimally packed knapsack?
```

Knapsack 0-1 Algorithm

Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	1 7
4	0	0	3	4	5	7

<u>ltems:</u>

I:(2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i = 4$$
 $k = 5$
 $v_i = 6$
 $w_i = 5$
 $B[i,k] = 7$
 $B[i-1,k] = 7$

$$i=n \ , k=W$$
 while $i,k>0$
$$if \ B[i,k]\neq B[i-1,k] \ then$$

$$mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$$

$$i=i-1, k=k-w_i$$
 else
$$i=i-1$$

Knapsack:

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	↑ 7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items:</u> Knapsack:

I:(2,3)

2: (3,4)

3: (4,5)

$$i = 3$$

 $k = 5$
 $v_i = 5$
 $w_i = 4$
 $\mathbf{B[i,k]} = 7$
 $B[i-1,k] = 7$

$$i=n \ , k=W$$
 while $i,k>0$
$$if \ B[i,k]\neq B[i-1,k] \ then$$

$$mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$$

$$i=i-1, k=k-w_i$$
 else
$$i=i-1$$

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	- 7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Knapsack: <u>ltems:</u> Item 2

$$i = 2$$

$$k = 5$$

$$v_i = 4$$

$$w_i = 3$$

$$B[i,k] = 7$$

$$B[i-1,k] = 3$$

$$k - w_i = 2$$

$$i = n, k = W$$

while
$$i, k > 0$$

if
$$B[i, k] \neq B[i-1, k]$$
 then

mark the ith item as in the knapsack

$$i = i-1, k = k-w_i$$

else

$$i = i-1$$

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

i = n, k = W

<u>ltems:</u>	Knapsack:
I: (2,3)	Item 2
2.(3.4)	Transaction 1

$$i = 1$$
 $k = 2$
 $v_i = 3$
 $w_i = 2$
 $B[i,k] = 3$
 $B[i-1,k] = 0$
 $k - w_i = 0$

while i,
$$k > 0$$

if $B[i, k] \neq B[i-1, k]$ then
 $mark the i^{th} item as in the knapsack$
 $i = i-1, k = k-w_i$
else
 $i = i-1$

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>ltems:</u>	Knapsack:		
I:(2,3)	Item 2		
2: (3.4)	la one l		

$$i = 1$$

 $k = 2$
 $v_i = 3$
 $w_i = 2$
B[i,k] = 3
B[i-1,k] = 0
 $k - w_i = 0$

k = 0, so we're DONE!

The optimal knapsack should contain: *Item 1 and Item 2*

Knapsack Problem

- I) Fill out the dynamic programming table for the knapsack problem to the right.
- 2) Trace back through the table to find the items in the knapsack.

Slides adapted from Arup Guha's Computer
 Science II Lecture notes:

http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures/

Additional material from the textbook:

Data Structures and Algorithm Analysis in Java (Second Edition) by Mark Allen Weiss

Additional images:

www.wikipedia.com xkcd.com