МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»

Институт математики, механики и компьютерных наук им. И.И.Воровича Кафедра алгебры и дискретной математики

Мурадьян Илья Валерьевич

Задача поиска графа-паттерна на помеченном графе

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по направлению 01.03.02 — Прикладная математика и информатика

Научный руководитель – доцент, д.ф.-м.н. Скороходов Владимир Александрович

Содержание

Основные сведения	3
Исходная задача	5
Постановка задачи	5
Алгоритм исключения по локальным условиям	6
Список литературы	7

Основные сведения

Дадим основные определения, которые будут использоваться в этой работе.

Определение 1. Ориентированным графом (в дальнейшем – просто графом) будем называть тройку G(X,U,f), где:

- ▷ X, |X| > 0 множество вершин графа;
- $\triangleright U$ множество дуг графа;
- ho f: U o X imes X отображение, сопоставляющее каждой дуге её начало и конец;

Определение 2. Граф G(X, U, f) будем называть **конечным**, если множества X и U конечны.

Определение 3. Четвёрку $G(X,U,f,\omega)$ будем называть взвешенным графом, если G'(X,U,f) – граф, а $\omega:U\to\mathbb{Z}$ – весовая функция.

Определение 4. Будем говорить, что дуга u исходит из вершины x и заходит в вершину y, если f(u) = (x, y). Обозначим $f_+(u) = x$, $f_-(u) = y$.

Определение 5. Будем говорить, что вершина y смежна c вершиной x, если $\exists u: f(u) = (x,y)$. Обозначим множество вершин, смежных c x, через Adj(x). Множество $Inc(x) = \{u \in U | f_+(u) = x\}$ назовём множеством **инцидентных** c x дуг.

Определение 6. Путём называется последовательность дуг $\widehat{u} = (u_i)_{i=1}^m$ такая, что $\forall i \in [1; m-1]_{\mathbb{N}}$ $f_-(u_i) = f_+(u_{i+1})$. Число m назовём длиной пути и обозначим через $|\widehat{u}|$. Будем говорить, что $\widehat{u}.s = f_+(u_1)$ – это начало пути \widehat{u} , а $\widehat{u}.t = f_-(u_m)$ – это конец пути \widehat{u} . Для удобства будем считать, что на графе G существует |X| путей нулевой длины, каждый из которых представляет собой пустую последовательность дуг, а его начало и одновременно конец суть некоторая вершина графа G. Путь ненулевой длины \widehat{u} называется контуром, если его начало совпадает с концом. Если граф не содержит циклов, он называется бесконтурным.

Определение 7. Весом пути взвешенного графа назовём сумму весов его рёбер:

$$\omega(\widehat{u}) = \sum_{k=1}^{|\widehat{u}|} \omega(u_k).$$

Определение 8. Тройку $G(G'(X,U,f[,\omega]),C,\{U_c\}_{c\in C})$ будем называть цветным графом, если G' – конечный граф, C – конечное непустое множество, $\{U_c\}_{c\in C}$ – семейство множеств таких, что $U_c\subset U$ и $U=\bigcup_{c\in C}U_c$. Заметим, что это семейство не обязательно является разбиением множества U. Множество C будем называть множеством цветов, а каждое из множеств U_c - множеством дуг, допускающих цвет C. Обозначим через $Inc_c(x)$ множество дуг, допускающих цвет C и инцидентных вершине C.

Заметим, что исходя из определения каждая дуга допускает по крайней мере один цвет.

Исходная задача

Постановка задачи

Пусть L - непустое конечное множество (множество меток). Пусть G(V,E), G'(V',E') - неориентированные связные графы. Будем называть граф G архивным графом, граф G' - графом-паттерном, или шаблонным графом.

Введём отображения $l:V\to L,\ l':V'\to L,\$ сопоставляющие вершинам архивного и шаблонного графов соответствующие метки. При этом мы требуем, чтобы введённые на шаблонном графе метки были уникальны, т.е. отображение l' – инъективно.

Определение 9. Совпадением на графе G будем называть частичный подграф $\widehat{G}(\widehat{V},\widehat{E})$ графа G такой, что:

- 1. Существует биективное отображение $m_{\widehat{G}}: V' \to \widehat{V}$.
- 2. $\forall v' \in V' : l'(v') = l(m_{\widehat{G}}(v'))$
- 3. $\forall (v'_1, v'_2) \in E' : (m_{\widehat{G}}(v'_1), m_{\widehat{G}}(v'_2)) \in E$

Пусть для вершины $v \in V$ существует некоторое совпадение $\widehat{G}(\widehat{V},\widehat{E})$ на графе G такое, что $v \in \widehat{V}$. Тогда вершину v будем называть подходящей паттерну G' по совпадению \widehat{G} , иначе – неподходящей. В случае, если вершина v подходит по совпадению \widehat{G} , вершину $m_{\widehat{G}}^{-1}(v) \in V'$ назовём соответствующей данной вершине v. Заметим, что вершина v может подходить паттерну по нескольким совпадениям, но в силу инъективности отображения l' ей может соответствовать лишь одна вершина $v' \in V'$.

Через $\widetilde{V}\subseteq V$ обозначим множество всех подходящих паттерну G' вершин. Наша задача и будет состоять в отыскании этого подмножества. Опишем используемый нами алгоритм.

Пусть $T=\emptyset\cup\mathcal{C}_{V'}^1$ – все 0-элементные и 1-элементные подмножества множества вершин графа-паттерна. Построим отображение $f_0:V\to T,$ заданное следующим:

$$v' \in f_0(v) \Leftrightarrow l(v) = l'(v'). \tag{1}$$

Нетрудно убедиться, что в силу инъективности отображения l, введённое отображение f_0 действительно имеет областью значений множество T.

Алгоритм будет строиться на изменении отображения f_0 , поэтому для удобства нам потребуется ввести операцию над подобными отображениями. Пусть $f_1, f_2: V \to 2^{V'}$. Обозначим $f_2 = Exclude(f_1, v_0 (\in V), v'_0 (\in V'))$, если выполнено следующее:

- 1. $\forall v \neq v_0 \in V : f_1(v) = f_2(v)$.
- 2. $v_0' \notin f_2(v_0)$.
- 3. $\{v_0'\} \cup f_2(v_0) = f_1(v_0)$

Ясно, что по отображению f_1 легко построить отображение $Exclude(f_1, v_0, v'_0)$, просто исключая вершину v'_0 из множества $f_1(v_0)$.

Алгоритм исключения по локальным условиям

Для начала дадим несколько определений.

Определение 10. Пусть дан граф G(V,E). Пусть $v \in V$. Тогда обозначим через Adj(v) множество смежных с ней вершин: $Adj(v) = \{u \in V | \exists (v,u) \in E\}$. Если $\widetilde{V} \subset V$, то $Adj(\widetilde{V}) = \bigcup_{\widetilde{v} \in \widetilde{V}} Adj(\widetilde{v})$. В частности, $Adj(\emptyset) = \emptyset$.

Определение 11. Пусть G(V, E), G'(V', E') – архивный и шаблонный графы соответственно. Пусть задано отображение $f: V \to T$, где множество T определено выше. Путь также $v \in V$. Назовём предикатом локальных условий следующий предикат:

$$LCC(f,v) = \forall u' \in Adj(f(v)) \exists u \in Adj(v) : u' \in f(u).$$
 (2)

Ниже приведён алгоритм LCCE – исключения по локальным условиям.

Вход: графы $G(V,E),\,G'(V',E'),\,$ отображение $f:V\to T,\,$ число итераций N

Выход: измененённое отображение f

1 начало LCCE

```
2 для i=1,2,..,N:
3 для v\in V:
4 если \neg LCC(f,v) тогда
5 f(v):=\emptyset
6 вернуть f
```

Список литературы