Somme de sous-espaces vectoriels

Dans tout ce chapitre E désigne un espace-vectoriel.

Introduction et motivation

• Si F et G sont deux sous-espaces vectoriels de E, alors $F \cap G$ est aussi un sous-espace vectoriel de E.

Exemple

On considère les deux plans suivants dans \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\} = Vect((1, 0, 0), (0, 1, 0)), \quad G = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0\} = Vect((1, 0, 0), (0, 0, 1)).$$

Leur intersection est la droite

 $F\cap G=\{(x,y,z)\in\mathbb{R}^3\;|z=0\text{ et }y=0\}$

c'est à dire : F = Vect((1,0,0)).

✓ Dessin :

• En revanche, (à moins que $F \subset G$ ou $G \subset F$), la réunion $F \cup G$ n'est pas un sous-espace vectoriel de E!

Exemple

On considère les deux droites suivantes dans \mathbb{R}^2 : F = Vect((1,0)) et G = Vect((1,1)).

 $F \cup G$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 .

✓ Dessin :

Par exemple : $(1,0) \in F \cup G$ et $(1,1) \in F \cup G$ mais $(1,0)+(1,1)=(2,1) \notin F \cup G$

On aimerait donc définir une opération "similaire à l'union" qui préserve la structure d'espace vectoriel...

Exemple

Dans \mathbb{R}^3 , si on dispose des deux droites F = Vect((1,0,0)) et G = Vect((1,1,0)), on voudrait un moyen simple de désigner le plan H = Vect((1,0,0),(1,1,0)).

H est ce que l'on va appeler la somme de F et G, notée H=F+G.

✓ Dessin :

1 Somme de deux sous-espaces vectoriels

1.1 Somme, somme directe, S.E.V supplémentaires

Définition 1 (Somme de deux S.EV)

Soient F et G deux sous-espaces vectoriels de E.

On appelle somme de F et G et on note F+G l'ensemble :

$$F + G =$$

Proposition 1 (La somme est un S.E.V)

La somme F + G est également un sous-espace vectoriel de E.

Preuve:

- F et G sont des S.E.V de E, donc contiennent 0_E . Ainsi, $0_E =$
- Soient $v, v' \in F + G$ et $\lambda \in \mathbb{R}$. Vérifions que $v + \lambda v' \in E$.

Par définition, on peut écrire $v = v_1 + v_2$ et $v' = v'_1 + v'_2$ avec $v_1, v'_1 \in F$ et $v_2, v'_2 \in G$.

Ainsi,
$$v + \lambda v' =$$

Exemples

• Dans \mathbb{R}^2 , considérons les droites

$$F = Vect((1,0)) = \{(x,0), x \in \mathbb{R}\}\ \text{ et } G = Vect((0,1)) = \{(0,y), y \in \mathbb{R}\}.$$

Alors F + G =

 \bullet Dans $\mathbb{R}[X],$ considérons les S.E.V :

$$F = Vect(1, X, X^3) = \{a + bX + cX^3, \ (a, b, c) \in \mathbb{R}^3\} \ \text{ et } \ G = Vect(X, X^2) = \{\alpha X + \beta X^2, \ (\alpha, \beta) \in \mathbb{R}^2\}.$$

Alors F + G =

Remarque 1

Un vecteur $v \in F + G$ ne se décompose pas nécessairement <u>de manière unique</u> comme $v = v_1 + v_2$!

Pour le deuxième exemple : on a $X \in F + G$, mais on peut le décomposer de multiples manières :

$$X = \underbrace{X}_{\in F} + \underbrace{0}_{\in G}, \qquad X = \underbrace{2X}_{\in F} + \underbrace{(-X)}_{\in G}, \qquad X = \underbrace{3X}_{\in F} + \underbrace{(-2X)}_{\in G} \quad \text{etc...}$$

Définition 2 (Somme directe)

Soient F et G deux sous-espaces vectoriels de E.

On dit que la somme F + G est directe, ou que "F et G sont en somme directe" lorsque :

Pour signifier que la somme F + G est directe, on la note :

Exemple

Tout $(x,y) \in \mathbb{R}^2$ s'écrit $(x,y) = \underbrace{x(1,0)}_{\in Vect((1,0))} + \underbrace{y(0,1)}_{\in Vect((0,1))}$ et cette décomposition est clairement unique.

On a donc la somme directe : $\mathbb{R}^2 = Vect((1,0)) \oplus Vect((0,1))$.

On dispose en fait d'une caractérisation plus simple des sommes directes :

ightharpoonup Théorème 1 (Caractérisation d'une somme directe par l'intersection $F \cap G$)

Soient F et G deux sous-espaces vectoriels de E. On a l'équivalence suivante :

La somme F + G est directe \iff

Preuve:

• Supposons que la somme F + G est directe, montrons que $F \cap G = \{0_E\}$.

Soit
$$v \in F \cap G$$
, alors on peut écrire : $v = \underbrace{v}_{\in F} + \underbrace{0_E}_{\in G}$ et $v = \underbrace{0_E}_{\in F} + \underbrace{v}_{\in G}$.

Puisque cette décomposition doit être unique, on a forcément $v = 0_E$ et $0_E = v$. Ainsi $v = 0_E$! Ceci montre l'inclusion $F \cap G \subset \{0_E\}$, l'inclusion réciproque est évidente.

• Supposons que $F \cap G = \{0_E\}$, montrons que la somme F + G est directe. Soit $v \in F + G$, on suppose qu'il s'écrit à la fois : $v = \underbrace{v_1}_{\in F} + \underbrace{v_2}_{\in G}$ et $v = \underbrace{v_1'}_{\in F} + \underbrace{v_2'}_{\in G}$.

Montrons qu'en fait $v_1 = v'_1$ et $v_2 = v'_2$ (donc la décomposition sera unique).

On a
$$v_1 + v_2 = v'_1 + v'_2$$
, donc : $\underbrace{v_1 - v'_1}_{\in F} = \underbrace{v'_2 - v_2}_{\in G}$

On a $v_1 + v_2 = v_1' + v_2'$, donc : $\underbrace{v_1 - v_1'}_{\in F} = \underbrace{v_2' - v_2}_{\in G}$. Ainsi, $v_1 - v_1'$ et $v_2' - v_2$ appartiennent à la fois à F et à G, c'est à dire à $F \cap G = \{0_E\}$. On a donc $v_1 - v_1' = 0_E$ et $v_2' - v_2 = 0_E$, ce qui donne bien $v_1 = v_1'$ et $v_2 = v_2'$.

On verra, dans la suite, d'autres caractérisation équivalentes pour vérifier qu'une somme est directe.

Bien souvent, on cherchera en fait à décomposer l'espace vectoriel E tout entier comme somme directe de deux sous-espace vectoriels : si l'on montre que $E = F \oplus G$, n'importe quel élément de E se décompose de manière unique comme somme d'un vecteur de F et d'un vecteur de G.

Définition 3 (S.E.V supplémentaires)

On dit que deux sous-espaces vectoriels F et G de E sont supplémentaires lorsque Autrement dit:

1

2

Attention!

Ne pas confondre "supplémentaire" et "complémentaire"! On ne considèrera jamais le complémentaire $\overline{F} = E \setminus F$ d'un SEV F de E. $(\overline{F} \text{ n'est même pas un sous-espace vectoriel de } E...)$

Exercice 1

Dans l'espace vectoriel $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on définit les S.E.V des fonctions paires et impaires :

$$\mathcal{P} = \Big\{ f \in E \mid \forall x \in \mathbb{R}, \ f(-x) = f(x) \Big\}, \quad \mathcal{I} = \Big\{ f \in E \mid \forall x \in \mathbb{R}, \ f(-x) = -f(x) \Big\}.$$

Montrer que \mathcal{P} et \mathcal{I} sont supplémentaires dans E.

1.2 Concaténation des bases

On travaille à présent avec des sous-espaces vectoriels de dimension finie.

ightharpoonup Proposition 2 (Famille génératrice de F+G)

Soient F et G deux sous-espaces vectoriels de dimension finie de E.

On introduit $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ une base de G.

Alors la famille $\mathcal{F} = (f_1, \dots, f_p, g_1, \dots, g_q)$ obtenue en **concaténant** (c'est à dire en "fusionnant") ces deux bases est

Preuve:

Par définition, tout $v \in F + G$ s'écrit $v = \underbrace{v_1}_{\in F} + \underbrace{v_2}_{\in G}$.

On a $v_1 \in F = Vect(f_1, \ldots, f_p)$, donc en particulier $v_1 \in Vect(f_1, \ldots, f_p, g_1, \ldots, g_q)$.

On a $v_2 \in G = Vect(g_1, \ldots, g_q)$, donc en particulier $v_2 \in Vect(f_1, \ldots, f_p, g_1, \ldots, g_q)$.

Ainsi, on a $v = v_1 + v_2 \in Vect(f_1, ..., f_p, g_1, ..., g_q)$.

Tout $v \in F + G$ s'écrit donc comme combinaison linéaire de $(f_1, \ldots, f_p, g_1, \ldots, g_q)$.

Remarque 2

• En fait, il n'est pas nécessaire de considérer des "bases" : il suffit que (f_1, \ldots, f_p) (resp. (g_1, \ldots, g_q)) soit une famille génératrice de F (resp. G) pour avoir la conclusion de la Proposition 2.

On pourra donc retenir : $Vect(f_1, ..., f_p) + Vect(g_1, ..., g_q) =$

\blacksquare Méthode : Déterminer l'espace vectoriel F + G

• Pour déterminer explicitement le SEV F+G, on peut revenir à la définition

$$F + G = \{v_1 + v_2, \ (v_1, v_2) \in F \times G\}.$$

• On peut aussi déterminer des familles génératrices de F et G, de sorte que $F = Vect(f_1, \ldots, f_p)$ et $G = Vect(g_1, \ldots, g_q)$ et on a alors $F + G = Vect(f_1, \ldots, f_p, g_1, \ldots, g_q)$.

Exercice 2

On considère les deux plans de \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y = 0\}.$

Montrer que $F + G = \mathbb{R}^3$.

A Attention!

Comme on vient de le voir, la famille obtenue par concaténation d'une base de F et d'une base de G n'est pas forcément une base de F + G!

Dans l'exercice précédent, on avait $\mathcal{B}_F = ((1,0,-1),(0,1,-1))$ et $\mathcal{B}_G = ((1,2,0),(0,0,1))$.

La concaténation de ces deux bases donne une famille génératrice de $F + G = \mathbb{R}^3$, mais ce n'est pas une famille libre!

En fait, le cas où la concaténation des deux bases donne une base de F + G est exactement le cas d'une somme directe, ce qui donne une nouvelle caractérisation!

<u>★</u> Théorème 2 (Caractérisation d'une somme directe par concaténation des bases)

Soient F et G deux sous-espaces vectoriels de dimension finie de E.

On introduit $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ une base de G.

On a l'équivalence suivante :

La somme F + G est directe \iff

Preuve (facultative):

On a déjà vu en Proposition 2 que $\mathcal B$ est une famille génératrice de F+G. Il reste donc à montrer :

La somme F + G est directe $\iff \mathcal{B} = (f_1, \dots, f_p, g_1, \dots, g_q)$ est une famille libre.

• Supposons que la somme F+G est directe, c'est à dire $F\cap G=\{0_E\}$ d'après le Théorème 1.

Montrons que \mathcal{B} est libre. Soient $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ et $\mu_1, \ldots, \mu_q \in \mathbb{R}$ tels que $\sum_{i=1}^p \lambda_i f_i + \sum_{i=1}^q \mu_i g_i = 0_E$ et montrons que tous ces scalaires sont nuls.

On a
$$\sum_{i=1}^{p} \lambda_i f_i = -\sum_{i=1}^{q} \mu_i g_i$$
 donc ces vecteurs appartiennent à $F \cap G = \{0_E\}$.

Ainsi, on en déduit que $\sum_{i=1}^{p} \lambda_i f_i = 0_E$ et $\sum_{i=1}^{q} \mu_i g_i = 0_E$. Enfin, comme les familles (f_1, \ldots, f_p) et (g_1, \ldots, g_q) sont libres, on en déduit que $\lambda_1 = \ldots = \lambda_p = 0$ et $\mu_1 = \ldots = \mu_q = 0$, d'où le résultat.

• Inversement, supposons que \mathcal{B} est libre.

Montrons que la somme F + G est directe, c'est à dire que $F \cap G = \{0_E\}$ d'après le Théorème 1.

Soit $v \in F \cap G$. Puisque $v \in F$, on peut écrire $v = \sum_{i=1}^{p} \lambda_i f_i$. Puisque $v \in G$, on peut écrire $v = \sum_{i=1}^{q} \mu_i g_i$.

On en déduit que $\sum_{i=1}^{p} \lambda_i f_i - \sum_{i=1}^{q} \mu_i g_i = v - v = 0_E$. Puisque la famille $\mathcal{B} = (f_1, \dots, f_p, g_1, \dots, g_q)$

est libre, il en résulte que $\lambda_1 = \ldots = \lambda_p = \mu_1 = \ldots = \mu_q = 0$. On obtient donc $v = \sum_{i=1}^p \lambda_i v_i = 0_E$.

On conclut que $F \cap G \subset \{0_E\}$. L'inclusion réciproque est évidente.

Cette caractérisation nous donne ainsi une nouvelle façon de montrer qu'une somme est directe.

Exercice 3

Dans \mathbb{R}^3 , on considère le plan $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ et la droite G = Vect((1, 1, 1)). Montrer que F et G sont supplémentaires dans \mathbb{R}^3 (c'est à dire que $\mathbb{R}^3 = F \oplus G$.)

Une conséquence importante du Théorème de concaténation des bases est la suivante :

Ocrollaire 1 (Existence d'un supplémentaire en dimension finie)

Soit E un espace vectoriel de dimension finie.

Tout sous-espace vectoriel F de E admet un sous-espace supplémentaire G dans E, c'est à dire qu'il existe un sous-espace vectoriel G de E tel que $E = F \oplus G$.

Preuve:

Notons n = dim(E) et p = dim(F) (avec donc $p \le n$).

On introduit $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F.

 \mathcal{B}_F est une famille libre de vecteurs de F, donc une famille libre de vecteurs de E.

D'après le Théorème de la base incomplète, on sait qu'on peut rajouter n-p vecteur pour la compléter en une base $\mathcal{B} = (f_1, \dots, f_p, g_1, \dots, g_{n-p})$ de E!

Posons alors $G = Vect(g_1, \ldots, g_{n-p})$.

- On a: $E = Vect(f_1, ..., f_p, g_1, ..., g_{n-p}) = Vect(f_1, ..., f_p) + Vect(g_1, ..., g_{n-p}) = F + G.$
- De plus, la famille $\mathcal{B}_G = (g_1, \dots, g_{n-p})$ est libre, donc c'est une base de G. (si \mathcal{B}_G était liée, alors \mathcal{B} serait également liée, ce qui est exclu!)

Ainsi, en concaténant les bases \mathcal{B}_F de F et \mathcal{B}_G de G, on obtient la base \mathcal{B} de E = F + G.

D'après le théorème de concaténation des bases (Théorème 2), la somme F+G est directe.

On a donc bien montér que $E = F \oplus G : F$ et G sont supplémentaires dans E.

A Attention!

Il n'y a pas unicité du supplémentaire!

Pour cette raison, on dit toujours qu'on introduit "un supplémentaire" et non pas "le supplémentaire".

Exemple : Vérifier (à l'aide du critère que vous préférez!) que

$$Vect((1,0)) \oplus Vect((0,1)) = \mathbb{R}^2$$
 et aussi $Vect((1,0)) \oplus Vect((1,1)) = \mathbb{R}^2$.

G = Vect((0,1)) et G = Vect((1,1)) sont donc des supplémentaires de F = Vect((1,0)) dans $E = \mathbb{R}^2$.

Ξ Méthode : Déterminer un supplémentaire de F dans E

Si on souhaite déterminer un supplémentaire d'un sous-espace vectoriel F de E:

- | 1 | On détermine une base $\mathcal{B}_F = (f_1, \ldots, f_p)$ de F.
- 2 On complète cette famille en une base $\mathcal{B} = (f_1, \ldots, f_p, g_1, \ldots, g_q)$ de E.
- $\boxed{3}$ On sait alors qu'en posant $G = Vect(g_1, \ldots, g_q)$, on a un supplémentaire de F dans E, c'est à dire que $F \oplus G = E$.

Exercice 4

Déterminer un supplémentaire de $F = Vect(X^2 - 2X + 1, -X + 2)$ dans $\mathbb{R}_3[X]$.

Dimension d'une somme, dimension d'une somme directe

On travaille toujours avec des sous-espaces vectoriels de dimension finie.

ightharpoonup Théorème 3 (Formule de Grassmann : dimension de la somme F+G)

Soient F et G deux sous-espaces vectoriels de dimension finie de E.

Alors F + G est de dimension finie et $\dim(F + G) =$

Conséquence : On a toujours $\dim(F+G)$ $\dim(F) + \dim(G)$.

Remarque 3

Cette formule n'est pas sans rappeler $Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$!

Preuve du Théorème 3 (facultative) :

- Montrons d'abord que la formule est vraie pour les sommes directes $F + G = F \oplus G$. Supposons $F \cap G = \{0_E\}$ donc $\dim(F \cap G) = 0$. On veut donc montrer $\dim(F \oplus G) = \dim(F) + \dim(G)$. Soient $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ une base de G. Puisque la somme $F \oplus G$ est directe, on sait d'après le Théorème de concaténation des bases que $\mathcal{B}=(f_1,\ldots,f_p,g_1,\ldots,g_q)$ est une base de $F \oplus G$. C'est donc que $\dim(F+G) = p+q = \dim(F) + \dim(G)$, d'où le résultat.
- Revenons à présent au cas général où la somme n'est pas directe : $F \cap G \neq \{0_E\}$.

Puisque $F \cap G$ est un SEV de F, d'après le Corollaire 1, on peut introduire F' un supplémentaire de $F \cap G$ dans F: c'est à dire que F' est un SEV de F tel que $F = F \cap G \oplus F'$. Cette somme étant directe, on sait que $\dim(F) = \dim(F \cap G) + \dim(F')$,

- et donc $\dim(F') = \dim(F) \dim(F \cap G)$. Montrons à présent que $F + G = F' \oplus G$:
 - D'abord comme la somme $F \cap G \oplus F'$ est directe, on sait que $(F \cap G) \cap F' = \{0_E\}$, c'est à dire $G \cap F' = \{0_E\}$. Ceci montre que la somme F' + G est directe.
 - Justifions que F + G = F' + G. Puisque $F' \subset F$, on a bien-sûr $F' + G \subset F + G$.

Inversement, si $v \in F + G$, on peut écrire $v = \underbrace{v_1}_{\in F} + \underbrace{v_2}_{\in G}$.

Comme $v_1 \in F = F \cap G \oplus F'$, on peut écrire $v_1 = \underbrace{w_1}_{\in F \cap G} + \underbrace{w_2}_{\in F'}$, donc $v = \underbrace{w_2}_{\in F'} + \underbrace{w_1 + v_2}_{\in G} \in F' + G$.

Pour finir : $\dim(F+G) = \dim(F' \oplus G) = \dim(F') + \dim(G) = \dim(F) - \dim(F \cap G) + \dim(G)$. \square

En conséquence, on obtient une dernière caractérisation des sommes directes :

★ Théorème 4 (Caractérisation d'une somme directe par la dimension)

Soient F et G deux sous-espaces vectoriels de dimension finie de E. On a l'équivalence :

La somme
$$F + G$$
 est directe $\iff dim(F + G) =$

En particulier, pour une somme directe, on pourra écrire $dim(F \oplus G) =$

Preuve:

Avec la formule de Grassmann (Théorème 3), on voit directement que

$$dim(F+G) = dim(F) + dim(G) \iff$$

1.4 Récapitulatif : montrer qu'une somme de deux S.E.V est directe

Ξ Méthode : Montrer que deux S.E.V F et G sont en somme directe

Soit E un espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E. Toutes les affirmations suivantes sont équivalentes :

- (a) La somme F + G est directe (on l'écrit alors $F \oplus G$).
- (b) $F \cap G = \{0_E\}$
- (c) La concaténation d'une base de F et d'une base de G donne une base de F+G.
- (il suffit de vérifier que c'est une famille libre, car c'est toujours une famille génératrice de F + G!)
- (d) $\dim(F+G) = \dim(F) + \dim(G)$.

1.5 Récapitulatif : montrer que deux S.E.V sont supplémentaires

Rappel : (Définition 3) On dit que F et G sont supplémentaires dans E lorsque $F \oplus G = E$, c'est à dire :

La somme
$$F + G$$
 est directe $\underline{\underline{\mathbf{et}}}$ $F + G = E$

★ Théorème 5 (Caractérisations des S.E.V supplémentaires)

Soit E un espace vectoriel de dimension finie. Soient F et G deux sous-espaces vectoriels de E.

On introduit $\mathcal{B}_F = (f_1, \dots, f_p)$ une base de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ une base de G.

L'affirmation "F et G sont supplémentaires dans E" (c'est à dire $F \oplus G = E$) est équivalente à chacune des affirmation suivantes :

- (a) Avec la définition : $\forall v \in E, \exists !(v_1, v_2) \in F \times G, v = v_1 + v_2.$
- (b) Avec l'intersection : F + G = E et $F \cap G = \{0_E\}$.
- (c) Avec les bases : La concaténation $\mathcal{B} = [\mathcal{B}_F, \mathcal{B}_G] = (f_1, \dots f_p, g_1, \dots g_q)$ est une base de E.
- (d) Avec les dimensions (version 1): F + G = E et dim(F) + dim(G) = dim(E).
- (e) Avec les dimensions (version 2): $F \cap G = \{0_E\}$ et dim(F) + dim(G) = dim(E).

Preuve:

- (a) est simplement la définition de $E = F \oplus G$.
- \bullet L'équivalence (a) \Longleftrightarrow (b) découle de la caractérisation du Théorème 1 :

$$(a) \Longleftrightarrow E = F \oplus G \Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{et la somme } F + G \text{ est directe} \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{et } F \cap G = \{0_E\} \end{array} \right. \Longleftrightarrow (b)$$

• L'équivalence (a) \iff (c) découle de la caractérisation du Théorème 2.

$$(a) \iff E = F \oplus G \iff \left\{ \begin{array}{l} F + G = E \\ \text{et la somme } F + G \text{ est directe} \end{array} \right. \iff \left\{ \begin{array}{l} F + G = E \\ \text{et } \mathcal{B} = [\mathcal{B}_E, \mathcal{B}_F] \end{array} \right. \text{est une base de } F + G$$

$$\iff \left\{ \begin{array}{l} F + G = E \\ \text{et } \mathcal{B} = [\mathcal{B}_E, \mathcal{B}_F] \end{array} \right. \iff (c)$$

• L'équivalence (a) \iff (d) découle de la caractérisation du Théorème 4 :

$$(a) \Longleftrightarrow E = F \oplus G \Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{ et la somme } F + G \text{ est directe} \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{ et } \dim(F + G) = \dim(F) + \dim(G) \end{array} \right.$$

$$\Longleftrightarrow \left\{ \begin{array}{l} F + G = E \\ \text{ et } \dim(E) = \dim(F) + \dim(G) \end{array} \right. \Longleftrightarrow (d)$$

• L'équivalence (a) \iff (e) découle de la formule de Grassman (Théorème 3) :

$$(a) \iff (b) \iff \begin{cases} F + G = E \\ \text{et } F \cap G = \{0_E\} \end{cases} \iff \begin{cases} \dim(F + G) = \dim(E) \\ \text{et } F \cap G = \{0_E\} \end{cases}$$
$$\iff \begin{cases} \dim(F) + \dim(G) - \dim(F \cap G) = \dim(E) \\ \text{et } F \cap G = \{0_E\} \end{cases}$$
$$\iff \begin{cases} \dim(F) + \dim(G) = \dim(E) \\ \text{et } F \cap G = \{0_E\} \end{cases} \iff (e)$$

ℰ Exercice 5

On rappelle que $S_n(\mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid {}^t\!A = A \}$ et $A_n(\mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid {}^t\!A = -A \}$

- 1. En utilisant la définition, montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$. (c'est à dire $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$).
- 2. En utilisant le critère "le plus simple", re-démontrer très rapidement ce résultat.

2 Projecteurs

Définition 4 (Projecteurs associés à deux S.E.V supplémentaires)

Soient F et G deux sous-espaces vectoriels supplémentaires de E: $E=F\oplus G$. Ainsi tout vecteur $v\in E$ s'écrit de manière unique $v=v_1+v_2$ avec $v_1\in F$ et $v_2\in G$. On introduit les applications suivantes :

- ullet p: est appelé
- $\bullet q$: est appelé

On dit que p et q sont des

• Dans $E = \mathbb{R}^2$, soient F et G deux-droites non-parallèles. On a alors $F \oplus G = E$:

✓ Dessin :

Tout vecteur $v \in \mathbb{R}^2$ peut s'écrire $v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$.

• Dans $E = \mathbb{R}^3$, soit F un plan et G une droite non-incluse dans F. On a alors $F \oplus G = E$:

✓ Dessin :

Tout vecteur $v \in \mathbb{R}^3$ peut s'écrire $v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$.

Exemple

On a vu que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$ et que tout $M \in \mathcal{M}_n(\mathbb{R})$ s'écrivait :

$$M = \underbrace{\frac{1}{2}(M + {}^{t}M)}_{\in \mathcal{S}_{n}(\mathbb{R})} + \underbrace{\frac{1}{2}(M - {}^{t}M)}_{\in \mathcal{A}_{n}(\mathbb{R})}.$$

Les projecteurs associés sont donc : $\forall M \in \mathcal{M}_n(\mathbb{R}), \quad p(M) = q(M) = q(M)$

Ξ Méthode : Déterminer les projecteurs associés à $E=F\oplus G$

On suppose que $E=F\oplus G.$ On souhaite déterminer les projecteurs p et q associés.

1 Déterminer des bases $\mathcal{B}_F = (f_1, \dots, f_p)$ de F et $\mathcal{B}_G = (g_1, \dots, g_q)$ de G.

 $\boxed{2}$ Introduire un vecteur $v \in E$ quelconque et déterminer sa décomposition dans la base $\mathcal{B} = (f_1, \ldots, f_p, g_1, \ldots, g_q)$ de E, c'est à dire déterminer des scalaires λ_i , μ_i tels que :

$$v = \underbrace{\lambda_1 f_1 + \ldots + \lambda_p f_p}_{p(v) \in F} + \underbrace{\mu_1 g_1 + \ldots + \mu_q g_q}_{q(v) \in G}$$

 $\fbox{3}$ Reconnaître p(v) et q(v) dans cette décomposition.

Exercice 6

On a vu dans l'exercice 3 que $\mathbb{R}^3 = F \oplus G$ avec F = Vect((1,0,-1),(0,1,-1)) et G = Vect((1,1,1)). Déterminer les projecteurs associés.

Proposition 3 (Propriétés élémentaires des projecteurs)

Soient F et G deux sous-espaces vectoriels supplémentaires de E : $E=F\oplus G$.

On note p et q les projecteurs associés, de sorte que : $\forall v \in E, \ v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$.

Alors on a les propriétés suivantes :

- (a) p et q sont des applications linéaires :
- (b) p + q = et donc q =
- (c) Si $v \in F$, alors p(v) = Si $v \in G$, alors p(v) =

Preuve:

(a) Soient $v, v' \in E$ et $\lambda \in \mathbb{R}$. Montrons que $p(v + \lambda v') = p(v) + \lambda p(v')$ et $q(v + \lambda v') = q(v) + \lambda q(v')$. Par définition des projecteurs, l'"unique décomposition" de v dans $E = F \oplus G$ est : v =

De même, l'"unique décomposition" de v' dans $E=F\oplus G$ est : v'=

On obtient donc : $v + \lambda v' =$

Il s'agit de l'unique décomposition de $v + \lambda v'$ dans $E = F \oplus G!$

Par définition des projecteurs, c'est donc que $p(v + \lambda v') =$ et $q(v + \lambda v') =$

On a ainsi montré que $p \in \mathcal{L}(E)$ et $q \in \mathcal{L}(E)$.

(b) Par définition, pour tout $v \in E$, v = p(v) + q(v).

Autrement dit : $\forall v \in E, \ p(v) + q(v) =$

On a donc bien $p + q = Id_E$.

(c) Si $v \in F$, sa décomposition est v =

On a donc p(v) = et q(v) =

Si $v \in G$, sa décomposition est v =

On a donc p(v) = et q(v) =

Proposition 4 (Noyau et image d'un projecteur)

On suppose toujours que $E = F \oplus G$. Soit p le projecteur sur F parallèlement à G.

Alors: Ker(p) = et Im(p) =

Preuve:

• Montrons que Ker(p) = G par double inclusion :

- Si $v \in G$, alors on peut écrire $v = \underbrace{0_E}_{\in F} + \underbrace{v}_{\in G}$ donc $p(v) = 0_E$, i.e $v \in Ker(p)$.

- Si $v \in Ker(p)$, alors on peut écrire $v = \underbrace{p(v)}_{\in F} + \underbrace{q(v)}_{\in G}$ mais $p(v) = 0_E$, donc on a $v = q(v) \in G$.

• Montrons que Im(p) = F par double inclusion :

- Si $v \in F$, alors on peut écrire $v = \underbrace{v}_{\in F} + \underbrace{0_E}_{\in G}$, donc p(v) = v, et donc $v = p(v) \in Im(p)$.

- Si $v \in Im(p)$, on peut écrire v = p(u) pour un $u \in E$.

Par définition des projecteurs, $u = \underbrace{p(u)}_{\in F} + \underbrace{q(u)}_{\in G}$, donc $v = p(u) \in F$.

Pour terminer, donnons une autre façon de voir les projecteurs : $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$

★ Théorème 6 (Caractérisation des projecteurs)

Soit f un endomorphisme de E quelconque. Alors :

f est un projecteur \iff

Plus précisément, si f est un endomorphisme satisfaisant $f \circ f = f$, alors :

• On a E =

• f est le projecteur sur F =

parallèlement à G =

Preuve:

ℰ Exercice 7

On considère l'endomorphisme $f \in \mathcal{L}(\mathbb{R}^3)$ défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, \ f((x, y, z)) = (2x + 3y - z, -x - 2y + z, -x - 3y + 2z).$$

Montrer que f est un projecteur. Préciser sur quoi, parallèlement à quoi.

À savoir faire à l'issue de ce chapitre :

Au minimum

- ullet Connaître la définition de F+G et celle d'une somme directe.
- Connaître la définition de deux SEV supplémentaires.
- Savoir calculer explicitement le SEV F+G.
- Connaître les critères permettant de montrer qu'une somme est directe. (avec l'intersection, avec les bases, avec la dimension)

Pour suivre

- Repérer le critère "le plus simple" pour monter que $E=F\oplus G.$
- Définir et éventuellement déterminer les projecteurs associés à $E=F\oplus G.$
- Connaître et appliquer le Théorème de "Caractérisation des projecteurs"

- Manipuler des sommes de 3 SEV ou plus.
- Avoir lu et bien compris les preuves "facultatives".

Pour les ambitieux

3 HORS PROGRAMME : Somme de r sous-espaces vectoriels

3.1 Définitions

Définition 5 (Somme de r S.EV)

Soient F_1, \ldots, F_r des sous-espaces vectoriels de E.

On appelle somme de F_1, \ldots, F_r et on note $F_1 + \ldots + F_r$ ou bien $\sum_{i=1}^r F_i$ l'ensemble :

$$F_1 + \ldots + F_r = \{v_1 + \ldots + v_r, (v_1, \ldots v_r) \in F_1 \times \ldots \times F_r\}.$$

Proposition 5 (La somme est un S.E.V)

La somme $F_1 + \ldots + F_r$ est une sous-espace vectoriel de E.

Définition 6 (Somme directe)

Soient F_1, \ldots, F_r des sous-espaces vectoriels de E.

La somme $\sum_{i=1}^r F_i$ est dite directe si tout vecteur $v \in \sum_{i=1}^r F_i$ s'écrit de manière <u>unique</u> comme $v = v_1 + \ldots + v_r$ avec $(v_1, \ldots, v_r) \in F_1 \times \ldots \times F_r$.

Dans ce cas, la somme est notée $F_1 \oplus \ldots \oplus F_r$ ou bien $\bigoplus_{i=1}^r F_i$.

A Attention !

On n'a plus de caractérisation simple avec l'intersection... En particulier, il n'est pas suffisant de vérifier que $F_1 \cap \ldots \cap F_r = \{0_E\}$, ni même que $F_i \cap F_j = \{0_E\}$ pour $i \neq j$ pour avoir une somme directe! Les autres caractérisations peuvent néanmoins se généraliser :

Proposition 6 (Famille génératrice de la somme)

Soient $F_1, ..., F_r$ des sous-espaces vectoriels de dimension finie. $(r \ge 2)$

Pour tout $k \in [1, r]$, on introduit \mathcal{B}_k une base de F_k .

La famille (notée $[\mathcal{B}_1, \dots, \mathcal{B}_r]$) obtenue par concaténation des vecteurs de $\mathcal{B}_1, \dots, \mathcal{B}_r$ est une famille génératrice de $F_1 + \dots + F_r$.

★ Théorème 7 (Caractérisation d'une somme directe par les bases)

Soient $F_1,...,F_r$ des sous-espaces vectoriels de dimension finie. $(r \ge 2)$

Pour tout $k \in [1, r]$, on introduit \mathcal{B}_k une base de F_k .

La somme $F_1 + \ldots + F_r$ est directe $\iff \mathcal{B} = [\mathcal{B}_1, \ldots, \mathcal{B}_r]$ est une base de $F_1 + \ldots + F_r$.

La base $\mathcal{B} = [\mathcal{B}_1, \dots, \mathcal{B}_r]$ obtenue par concaténation est alors appelée

"base adaptée" à la somme directe $\bigoplus_{i=1}^{r} F_i$.

★ Théorème 8 (Dimension de la somme)

Soient $F_1, ..., F_r$ des sous-espaces vectoriels de dimension finie. $(r \ge 2)$

Alors $\sum_{i=1}^r F_i$ est de dimension finie et $dim\left(\sum_{i=1}^r F_i\right) \leqslant \sum_{i=1}^r dim(F_i)$.

业 Théorème 9 (Caractérisation d'une somme directe par la dimension)

Soient $F_1, ..., F_r$ des sous-espaces vectoriels de dimension finie. $(r \ge 2)$

La somme
$$F_1 + \ldots + F_r$$
 est directe $\iff dim\left(\sum_{i=1}^r F_i\right) = \sum_{i=1}^r dim(F_i)$.

Pour une somme de r sous-espaces, on ne parle plus vraiment d'espaces "supplémentaires". On peut tout de même énoncé un résultat similaire à celui vu précédemment :

★ Théorème 10 (Caractérisations des S.E.V supplémentaires)

Soit E un espace vectoriel de dimension finie.

Soient $F_1, ..., F_r$ des sous-espaces vectoriels de E. $(r \ge 2)$

Pour tout $k \in [1, r]$, on introduit \mathcal{B}_k une base de F_k .

L'affirmation " $E = \bigoplus_{k=1}^r F_i$ " est équivalent à chacune des affirmations suivantes :

- (a) $\forall v \in E, \exists !(v_1, ..., v_r) \in F_1 \times ... \times F_r, v = v_1 + ... + v_r.$
- (b) La concaténation $\mathcal{B} = [\mathcal{B}_1, \dots, \mathcal{B}_r]$ est une base de E.
- (c) $E = \sum_{i=1}^{r} F_i \text{ et } \sum_{i=1}^{r} dim(F_i) = dim(E).$