Problem Solving with SAT

Terminology

Literal

– Refers either to a Boolean variable p or to its negation $\neg p$.

Clause

- Disjunction of literals, e.g., $C = l_1 \vee l_2 \vee l_3$
- Can be falsified with only one assignment to its literals, where all literals are assigned to F.
 - Satisfied with $2^k 1$ assignments to its k literals.
- The empty clause (denoted by ⊥) is always falsified.

Terminology

- Propositional formula f in CNF
 - Conjunction of clauses, e.g., $f = C_1 \wedge C_2 \wedge C_3$
 - Conjunction of disjunction of literals.

$$\bigwedge_i \bigvee_j l_{ij}$$

- Is satisfiable if there exists an assignment satisfying all clauses, otherwise unsatisfiable.
- An arbitrary formula can be transformed into CNF preserving satisfiability.

Resolution

- Basic method of satisfiability of propositional formulas.
 - The basis of current SAT solvers.
- Applicable to formulas in CNF.
- Idea: from the given clauses, derive new clauses, with the aim of deriving the empty clause ⊥ (contradiction).
 - Proves UNSAT.

Resolution Rule

• Given the clauses of the shape $p \lor V$ and $\neg p \lor W$, we can derive $V \lor W$.

$$\frac{p \vee V, \ \neg p \vee W}{V \vee W}$$

Unit Resolution

- If a clause consists of a single literal *l* (a unit clause),
 then the resolution rule allows to remove the literal
 ¬*l* from a clause containing ¬*l*.
- When V or W in $\frac{p \lor V, \neg p \lor W}{V \lor W}$ is empty, we have:

$$\frac{p, \neg p \lor W}{W}$$
 or $\frac{p \lor V, \neg p}{V}$

 Prove that the CNF consisting of the following 5 clauses is UNSAT.

1.
$$p \vee q$$

2.
$$\neg r \lor s$$

3.
$$\neg q \lor r$$

4.
$$\neg r \lor \neg s$$

5.
$$\neg p \lor r$$

 Prove that the CNF consisting of the following 5 clauses is UNSAT.

1.
$$p \lor q$$

2.
$$\neg r \lor s$$

3.
$$\neg q \lor r$$

4.
$$\neg r \lor \neg s$$

5.
$$\neg p \lor r$$

6.
$$p \lor r$$
 (1, 3, q)

7.
$$r$$
 (5, 6, p)

8.
$$s$$
 (2,7, r)

9.
$$\neg r$$
 (4, 8, s)

10.
$$\perp$$
 (7, 9, r)

 Freedom in choice: several other sequences of resolution steps will lead to ⊥ too.

DPLL

- Resolution
 - + Straightforward to give a refutation.
 - + Formula validation: f is a tautology iff $\neg f$ is UNSAT.
 - Not direct to obtain a satisfying solution.
- DPLL is an algorithm to establish the SAT/UNSAT of a CNF.
 - Based on unit resolution.
 - Due to Davis, Putnam, Logemann and Loveland in 1962.

DPLL

Basic idea

- First apply unit resolution as long as possible.
- Then, choose a variable p.
- Introduce the cases p and $\neg p$, and go on recursively.

DPLL Algorithm

```
\begin{aligned} \operatorname{DPLL}(X) \colon & X := \operatorname{unit-resol}(X) \\ & \text{if } X = \emptyset \text{ then return(sat)} \\ & \text{if } \bot \not \in X \text{ then} \\ & \text{choose variable } p \text{ in } X \\ & \text{DPLL}(X \cup \{p\}) \\ & \text{DPLL}(X \cup \{\neg p\}) \end{aligned}
```

unit-resol

- While there exists a clause consisting of one literal l (a unit clause):
 - remove $\neg l$ from all clauses containing $\neg l$,
 - remove all clauses containing l (since they are now redundant).

DPLL

- Unit resolution and case analysis.
 - Similar to constraint propagation and search in CP.
- Complete method.
 - As CP.
- Efficiency strongly depends on the choice of the variable.
 - As in CP.

1.
$$\neg p \lor \neg s$$
 4. $p \lor r$ 7. $\neg s \lor t$

4.
$$p \vee r$$

7.
$$\neg s \lor t$$

2.
$$\neg p \lor \neg r$$
 5. $p \lor s$ 8. $q \lor s$

5.
$$p \vee s$$

3.
$$\neg q \lor \neg t$$
 6. $r \lor t$ 9. $q \lor \neg r$

6.
$$r \vee t$$

9.
$$q \lor \neg r$$

- No unit clause, choose a variable, say p.

• Add
$$p$$
 + unit resolution • Add $\neg p$ + unit resolution

$$\neg s$$
 (1), $\neg r$ (2)
 q ($\neg s$, 8), t ($\neg r$, 6)
 $\neg t$ (q , 3)
 \bot (t , $\neg t$)

$$r(4), s(5)$$

 $q(r,9), t(s,7)$
 $\neg t(q,3)$
 $\bot(t,\neg t)$

1.
$$\neg p \lor \neg s$$
 4. $p \lor r$
2. $\neg p \lor \neg r$ 5. $\Rightarrow f$
3. $\neg q \lor \neg t$

7.
$$\neg s \lor t$$

2.
$$\neg p \lor \neg r$$

8.
$$q \vee s$$

3.
$$\neg q \lor \neg t$$

9.
$$q \vee \neg r$$

- No unit clause, choose a variable, say p.

• Add
$$p$$
 + unit resolution • Add $\neg p$ + unit resolution

$$\neg s$$
 (1), $\neg r$ (2)
 q ($\neg s$, 8), t ($\neg r$, 6)
 $\neg t$ (q , 3)
 \bot (t , $\neg t$)

$$r(4), s(5)$$

 $q(r, 9), t(s, 7)$
 $\neg t(q, 3)$
 $\bot(t, \neg t)$

1.
$$\neg p \lor \neg s$$
 4. $p \lor r$ 7. $\neg s \lor t$

4.
$$p \vee r$$

7.
$$\neg s \lor t$$

2.
$$\neg p \lor \neg r$$
 5. $p \lor s$ 8. $q \lor s$

5.
$$p \vee s$$

3.
$$\neg q \lor \neg t$$
 6. $r \lor t$

- No unit clause, choose a variable, say p.

• Add
$$p$$
 + unit resolution • Add $\neg p$ + unit resolution

$$\neg s$$
 (1), $\neg r$ (2)
 q ($\neg s$, 8), t ($\neg r$, 6)
 $\neg t$ (q , 3)
 \bot (t , $\neg t$)

$$r(4)$$

$$s(5)$$

$$t(s,7)$$

$$\neg q(t,3)$$

1.
$$\neg p \lor \neg s$$
 4. $p \lor r$ 7. $\neg s \lor t$
2. $\neg p \lor \neg r$ 5. $p \lor s$ 8. $q \lor s$
3. $\neg q \lor \neg t$

- No unit clause, choose a variable, say p.
- Add p + unit resolution Add $\neg p$ + unit resolution

$$\neg s (1), \neg r (2)$$
 $r(4)$
 $q (\neg s, 8), t(\neg r, 6)$ $s (5)$
 $\neg t (q, 3)$ $t(s, 7)$
 $\bot (t, \neg t)$ $\neg q (t, 3)$

Solution: p = q = F, r = s = t = T.

1.
$$\neg p \lor \neg s$$

4.
$$p \vee r$$

1.
$$\neg p \lor \neg s$$
 4. $p \lor r$ 7. $\neg s \lor t$ 10. ...

2.
$$\neg p \lor \neg r$$
 5. $p \lor s$ 8. $q \lor s$

5.
$$p \vee s$$

3.
$$\neg q \lor \neg t$$

$$6. r \vee t$$

3.
$$\neg q \lor \neg t$$
 6. $r \lor t$ 9. $a \lor b \lor \neg c$

- No unit clause, choose a variable, say p.

• Add
$$p$$
 + unit resolution • Add $\neg p$ + unit resolution

$$\neg s$$
 (1), $\neg r$ (2)
 q ($\neg s$, 8), t ($\neg r$, 6)
 $\neg t$ (q , 3)
 \bot (t , $\neg t$)

$$r(4)$$

$$s(5)$$

$$t(s,7)$$

$$\neg q(t,3)$$

1.
$$\neg p \lor \neg s$$
 4. $p \lor r$ 7. t 10. ...
2. $\neg p \lor \neg r$ 5. $p \lor s$ 8. $q \lor s$
3. $\neg q \lor \neg t$ 6. $r \lor t$ 9. $t \lor p \lor \neg c$

- No unit clause, choose \mathbb{Z} variable ay p.
- Add p + unit resolution

$$r(4)$$
 $q(\neg s, 8), t(\neg s)$
 $r(4)$
 $r(5)$
 $r(4)$
 $r(5)$
 $r(5)$
 $r(5)$
 $r(5)$
 $r(6)$
 $r(7)$
 r

Implementation of DPLL

- A direct implementation would make a copy of the CNF X at every recursive call.
 - Inefficient!
- Need to work on the original CNF X and mimic the DPLL algorithm which consists of a series of unit resolution, case analysis, backtrack and fail.

```
\mathrm{DPLL}(X):
X := \text{unit-resol}(X)
if X = \emptyset then return(sat)
if \bot \not\in X then
         choose variable p in X
        \mathrm{DPLL}(X \cup \{p\})
        \mathrm{DPLL}(X \cup \{\neg p\})
```

Efficient Implementation of DPLL

Basic idea

- Keep track of a list M of literals that have been decided and derived during the execution of DPLL.
- M is originally empty.
- *M* is extended when:
 - a literal is derived by unit resolution (UnitPropagate),
 - a case analysis starts (Decide).
- *M* is repaired when contradiction is found:
 - go back to the last decision, remove everything behind the last decision, negate the decision (Backtrack), and continue with a new decision,
 - otherwise (when it is not possible to backtrack), Fail.

Efficient Implementation of DPLL

Notation

- A literal l holds in M ($M \models l$) iff l occurs in M.
- A clause C yields contradiction ($M \models \neg C$) iff for every literal l in C, we have, $M \models \neg l$.
- l is undefined in M iff neither $M \models l$ nor $M \models \neg l$.
- A decision literal l^d originates from a decision in the DPLL algorithm.

Efficient Implementation of DPLL

- The DPLL algorithm can be mimicked by starting with an empty M and applying four rules as long as possible.
 - At any moment, the current CNF of the DPLL algorithm corresponds to M + the original CNF from which all negations of literals from M have been stripped away.
- At the end, we have either:
 - fail, proving that the CNF is UNSAT, or
 - a list M containing p or $\neg p$ for every variable p, yielding a satisfying assignment.

UnitPropagate

 Mimics the generation of a new unit clause in DPLL.

$$M \Rightarrow Ml$$

if l is undefined in M and the CNF contains a clause $C \lor l$ satisfying $M \models \neg C$.

Decide

 Mimics the choice p in DPLL, when no UnitPropagate is possible.

$$M \Rightarrow Ml^d$$

if l is undefined in M.

Backtrack

 Mimics backtracking to the negation of the last decision in case a branch is unsatisfiable.

$$Ml^dN \Rightarrow M \neg l$$

if $Ml^dN \models \neg C$ for a clause C in the CNF and N does not contain decision literals.

Fail

 Mimics the end of DPLL when every branch, and hence the CNF, is unsatisfiable.

$$M \Rightarrow \text{fail}$$

if $M \models \neg C$ for a clause C in the CNF and M does not contain decision literals.

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s$

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r$

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r t$

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$ CONTRADICTION

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$
Backtrack	$\neg p$

$$\neg p \lor \neg s \qquad p \lor r \qquad \neg s \lor t \qquad \neg p \lor \neg r \qquad p \lor s$$

$$q \lor s \qquad \neg q \lor \neg t \qquad r \lor t \qquad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$
Backtrack	$\neg p$
UnitPropagate	$\neg p_{r}$

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$
Backtrack	$\neg p$
UnitPropagate	$\neg prs$

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$
Backtrack	$\neg p$
UnitPropagate	$\neg prsq$

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$
Backtrack	$\neg p$
UnitPropagate	$\neg prsqt$

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$
Backtrack	$\neg p$
UnitPropagate	¬prsqt CONTRADICTION

$$\neg p \lor \neg s \quad p \lor r \quad \neg s \lor t \quad \neg p \lor \neg r \quad p \lor s$$

$$q \lor s \quad \neg q \lor \neg t \quad r \lor t \quad q \lor \neg r$$

Rule	M
Decide	p^d
UnitPropagate	$p^d \neg s \neg r tq$
Backtrack	$\neg p$
UnitPropagate	$\neg prsqt$
Fail	