How to resolve these noise

The mainly used technique to minimize these noise is to use:

➤ Kalman Filtering technique (KF)

Sometime Complementary filters(C.F) are also used

Kalman filtering (KF)

- Is a optimal estimation algorithm
- A kalman filter is a more sophisticated smoothing algorithm
- Minimizing noise from measurement by sensor is the purpose of Kalman filter.

- It is an iterative mathematical process that uses a set of equations and consecutive data inputs to quickly estimate the true value(MPV), position, velocity etc. of the object being measured.
- It is an tools to estimate the predicted value

Basic understanding for Kalman filtering

Fig: Kalman Filtering Model

 In Conducting Kalman filtering there are 3 main calculation that needs to be done

1st = Calculate the Kalman gain

:::These calculations are iterative so that the estimate narrows down into actual correct value

2nd = Calculate current estimate

::::Each time it update the current estimate

3rd = Finally recalculate the new error in the estimate

So what do we need in order to calculate the Kalman Gain????

- We need 2 things
- ✓ we need to know the error in the estimate (here once we have original error an put into our system we never go back to original error estimate).
- ✓ Second we need error in the measured (input) data
- Both of these are feed into our calculation
- Gain puts a relative importance in
- > Error in the estimate
- > Error in the measured data
- i. if error in estimate = smaller = K.F puts more importance in measured data
- ii. If error in the data = smaller = K.F puts more importance in estimate

- Secondly the calculation of current estimate is done
- For this it require Kalman Gain, and also depends on previous estimate, and measured value
- And the gain will decide how much weight to put onto the measured value and pervious estimate
- Finally once we have calculated the current estimate than system calculates the error in the estimate, so it can be used in the next iteration

Kalman Gain

 Actually it is used to determine how much of the new measurement to use to update the new estimate

Let,

Kalman Gain = KG

Error in the estimate = E_{est}

Error in the measurement = E_{mes}

$$:: KG = \frac{Eest}{Eest + Emea}$$

Note ($0 \le KG \le 1$)

• Now,

```
Current Estimate = EST_t

Previous Estimate = EST_{t-1}

New measurement = MES

:: EST_t = EST_{t-1} + K.G[MEA - EST_{t-1}]
```

Remember

If K.G = higher
$$\longrightarrow$$
 error in measurement $(E_{mea}) \longrightarrow$ small

i.e our measurement is accurate

✓ More relative weightage on E_{est}

IF K.G = Small → error in estimate (E_{est}) → small
 i.e our estimate is more accurate

✓ More importance(weight) on measurement

