# **Historic, Archive Document**

Do not assume content reflects current scientific knowledge, policies, or practices.



# **Basin Outlook Reports**

and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

LOCAL SOIL CONSERVATION SERVICE FIELD OFFICE, OR WILLIAM F. WELLER

WATER SUPPLY SPECIALIST SOIL CONSERVATION SERVICE W. 316 BOONE AVE.; SUITE 450 SPOKANE, WA 99201-2348 (509) 353-2341

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it meits. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soil Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthy or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthy and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydroiogic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

All programs and services of the USDA Soil Conservation Service are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

Lynn A. Brown State Conservationist Soil Conservation Service Spokane, Washington

Released by

William (Bill) Richards
Chief
Soil Conservation Service
U.S. Department of Agriculture

Kq pənssı

97209-3489.

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR

# Basin Outlook Reports June 1, 1992



W. 316 Boone Avenue Suite 450 Spokane, WA 99201-2348 United States Department of Agriculture

Soii Conservation Service





A
U. S. DEPT. OF AGRICULTURE
NATIONAL AGRICUL. LIBRARY
CURRENT SERIAL RECORDS
BELTSVILLE MD
20705

aTD 224 . W2W37

#### WASHINGTON WATER SUPPLY OUTLOOK

JUNE 1992

#### GENERAL OUTLOOK:

WASHINGTON Water Supply Outlook Report as of June 1, 1992: \*\* NOTE \*\* Please return your questionnaire for next year's, report. With the above normal temperatures and below hormal snowpack continuing, drought conditions have been declared in the Okanogan and Ahtanum basins. May had below normal precipitation with 18% of normal statewide. It varied from 10% of average in the Okanogan Basin to 44% in the Spokane Year-to-date precipitation is 83% statewide and varies from 61% in the Okanogan to 94% in the Walla Walla Basin. Temperatures varied from four degrees above in the Seattle area to one degree above in the Yakima Basin. Low elevation snowpack is gone, with snow remaining on only six of the 38 SNOTEL sites. The snowpack varies from 0% of normal in the Elwah River Basin to 44% in the Wenatchee Washington's SNOTEL sites were averaging 20% of normal snowpack on June 1 (by June 5, it was 11%), down from 45% a month ago. Forecasts for 1992 runoff vary from 80% of average for the Stehekin River to 18% for the Grande Ronde River in Walla Walla Basin. May streamflows varied from 35% of normal on the Walla Walla River near Milton-Freewater, Oregon, to 185% on the Similkameen River. June 1 reservoir storage is generally good, with reservoirs in the Yakima Basin at 98 % of average and 87% of capacity.

#### SNOWPACK:

Warm weather continued over Washington during May, causing further deterioration in the mountain snowpack. Statewide SNOTEL sites in Washington have a snowpack 20% of average for June 1, down from 45% last month. Maximum snow water content of 23.6 inches was measured at Lyman Lake SNOTEL in the Chelan Basin. This site would normally have 43.3 inches of water content on June 1. Snowpack varies over the state from 44% of normal in the Wenatchee Basin to 0% in the Elwah River area of the Olympic Basin, and several other watersheds around the state. Snowpack along the west slopes of the Cascade Mountains includes the Green River with 0%, the Lewis River 19% and the Skagit 34%. Snowpack in the Okanogan is at 6%, and the Yakima is at 1% of normal.

#### PRECIPITATION:

May precipitation from National Weather Service stations was 18% of average statewide. The year-to-date precipitation statewide is 83%, and varied from 94% of normal in the Walla Walla Basin to 61% in the Okanogan Basin. May precipitation varied from 10% of average in the Okanogan Basin, to 46% in the Colville Basin. SNOTEL sites in Washington showed high elevation year-to-date precipitation values to be 83%. Maximum year-to-date precipitation was at the June Lake SNOTEL site near Mt. St. Helens, with 114.7 inches since October 1, 1991. Normal for this site would be 150.3 inches.

#### RESERVOIR:

Reservoir storage in Washington is generally good for June 1. Reservoir storage in the Yakima Basin was 915,700 acre feet, 98% of normal. Storage at other reservoirs includes Roosevelt at 121% of average. The Okanogan reservoirs are at 84% of normal for June 1, and are being drafted for irrigation. The power generation reservoirs include the following: Coeur d'Alene Lake, 283,200 acre feet, or 97% of capacity; Chelan Lake, 464,300 acre feet, 103% of average and 69% of capacity, and Ross Lake at 1,186,500 acre feet and 106% of average, and 79% of capacity.

#### STREAMFLOW:

Forecasts for summer streamflow are for below to much below average and vary from 80% of average for Stehekin River to 18% of normal for Grande Ronde River in the Walla Walla River Basin. May forecasts for some west side streams include: Cedar River, 53% down from 70% last month; Skaqit River, 74%; and the Dungeness River, 61%. Some east side streams include the Yakima River at Parker, 41%; the Okanogan River at Tonasket, 54% up from 46% last month; and the Colville River at 42%. May streamflows varied throughout Washington, with near normal flows in the north half of the state and below normal in the southern part. The Columbia River at Birchbank was at 100% of normal, the highest in the The Columbia River at The Dalles, was 80%. Other stream had the following percent of normal flow: the Okanogan River, 65%; the Walla Walla River, which at 11% was the lowest in the state; the Spokane River, 36%; the Yakima at the Parker, 51%; the Wenatchee River at 87%, the Chelan River; 99%, and the Methow at 127%. The Cowlitz River was 53% of normal.

## CONSERVE YOUR IRRIGATION WATER

Can irrigators use less water and get good yields? We think so. With energy costs on an upward spiral and water shortages likely, we offer these water saving ideas to irrigators.

Consider ditch lining or gated pipe. This will reduce the 10-90% loss which occurs in earth ditches.

Keep ditches clean and free from weeds, sediment or other debris, which can slow water velocity, affect delivery rate, and increase evaporation.

Make sure head gates, drop structures, and pipe inlets are operational. A washed out structure is water lost.

Inspect ditch banks for rodent damage. Rodent holes cause leakage or failures.

Make sure sprinkler nozzles are not worn or leaky. Check pipe connections nd valves to prevent leaks.

Operate sprinklers at recommended pressure to effectively use available water.

Maintain your pump at peak efficiency to save energy.

#### BETTER WATER MANAGEMENT

Better water management may require more labor. It may require changing a head of water in the middle of the night. But it will be worth it. You should:

Measure your water to determine how much is applied.

Consider alternate row irrigation for crops planted in furrows.

Plan short runs. Match stream size and velocity to soil intake rate and capacity.

Catch and reuse tail water where possible.

Under irrigate the lower end of the field to stretch your water.

When water is short, consider eliminating that last irrigation.

Soil Conservation Service personnel can:

Help plan and design new irrigation systems or evaluate existing ones. Provide technical assistance for land leveling, pipeline installation, and other practices.

#### KNOW YOUR SOILS

Soil absorbs irrigation water at a given rate. This varies with each soil type. Some crops require more water than others. Check soil moisture by spade, probe, or moisture meter. Or use the "feel" method.

# WHEN IRRIGATION IS NEEDED SOIL WILL FEEL AND ACT THIS WAY

| Soil Texture | A handful of soil will                                    |  |  |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------|--|--|--|--|--|--|--|--|
| Coarse       | Tend to stick together slightly, but will not form a ball |  |  |  |  |  |  |  |  |
| Medium       | Be crumbly, but will form a ball                          |  |  |  |  |  |  |  |  |
| Fine         | be pliable, and will form a ball.                         |  |  |  |  |  |  |  |  |

If you have a conservation plan on your farm, or if the soil is your area has been mapped, the Soil Conservation Service can crosscheck soil type and irrigation data and provide you with the water holding capacity of your soil for a given crop.

# RANCHING TIPS FOR WATER-SHORT YEARS

Forage production on range and dry pasture depends entirely on natural moisture. While overgrazing does damage to perennial plants during a season of normal moisture, it is more severe during a drought year. It reduces plant vigor, stops root and leaf growth, reduces ground cover, and invites accelerated erosion. Once erosion begins, it worse each year, further reducing plant vigor and production. This process is difficult to reverse.

Rather than risk permanent damage to grazing resources start planning a strategy early. For example:

- reduce livestock numbers to balance with forage supply

- cull herds more than normal

- sell calves and lambs early

determine forage needs and buy

needed supplements early

- grow small grains or sorghums for hay or pasture (these use less water than conventional forage crops)
- defer planting perennial pasture, hay or range seedings until a year with more favorable water outlook
- keep spring developments, stock tanks, float valves and pipeline in good working order so water is not wasted
- use evaporation retardant on ponds and tanks

- prepare for hauling stock water

- give spring development high priority (even mediocre springs

will be helpful)

- check with local SCS and ASCS offices to learn if cost-share programs are available to help with spring developments or other water conservation practices

- don't overgraze or otherwise disturb streambank vegetation (it will help prevent erosion, reduce sediment, and provide food and cover for wildlife)

Remember, if a unit must be abused, well-established seedings can tolerate overgrazing better than native range.

Wildlife will suffer during a drought as much or more than domestic livestock. The wildlife that share your land is a valuable natural resource.

To help wildlife:

- include features at stock water developments which will allow small animals and birds safe access to water (these are usually not expensive and are easily installed)

- fence ponds and springs and install collector pipes to deliver water to a tank or trough. This will improve water quality and quantity for livestock, as well as provide lush vegetation for small animals and birds.

Other places for information or assistance:

- check with local ASCS office for possible special practices or cost-sharing that might assist with irrigation on your farm or ranch this year.
- maintain contact with Farmers Home Administration for special local programs available.
- maintain contact with the local Cooperative Extension Service office for agricultural and marketing conditions.

If you belong to an irrigation district, contact irrigation officials throughout the season to learn about current water availability and water supply forecasts.

For more information concerning your crop, and soil and water conditions, contact the local Conservation District Office.



## BASIN SUMMARY OF SNOW COURSE DATA

JUNE 1992

| SHOW COURSE                       | E          | LEVATIO       | DATE               | SHOW<br>DEPTH | WATER<br>CONTENT | LAST<br>YEAR                 | AVERAGE<br>1961-90 | SHOW COURSE                 | ELEVATION    | DATE          | NON2<br>HT930 | WATER<br>CONTENT | LAST<br>YEAR | AVERAGI<br>1961-91 |
|-----------------------------------|------------|---------------|--------------------|---------------|------------------|------------------------------|--------------------|-----------------------------|--------------|---------------|---------------|------------------|--------------|--------------------|
|                                   | ••••       |               |                    |               |                  |                              |                    |                             |              |               |               |                  |              |                    |
| YAKIHA RIVER                      |            |               |                    |               |                  |                              |                    | PEND OREILLE RIVER          |              |               |               |                  |              |                    |
| BIG BOULDER CRE                   | EK         | 3200          | 6/01/92            |               | .04              |                              | ••                 | BUNCHGRASS NEADOWS          | 5000         | 6/01/92       |               | .0E              | 5.6          | 1.1                |
| BLEWETT PASS#2P                   | ILLOW      | 4270          | 6/01/92            |               | .09              | .0                           | .0                 | BUNCHGRASS MOUPILLO         |              | 6/01/92       | •••           | .0               | 11.8         | 16.2               |
| BUMPING LAKE                      |            | 3450          | 6/01/92            |               | .04              | ••                           | ••                 | HOODOO BASIN                | 6050         | 6/01/92       |               | 14.0€            | 41.0         | 32.9               |
| BUMPING LAKE (N                   | -          | 3400          | 6/01/92            |               | .04              |                              | ••                 | HOODOO CREEK                | 5900         | 6/01/92       | •••           | 10.3E            | 37.9         | 31.9               |
| SUMPING RIDGE P                   |            | 4600          | 6/01/92            |               | .09              | 7.2                          | 6.3                | KETTLE RIVER                |              |               |               |                  |              |                    |
|                                   | ILLOW      | 6000          | 6/01/92            |               | 1.59             | 33.1                         | 19.6               | BIG WHITE MTH CAN           |              | 5/28/92       | 0             | .0               | 10.9         | 8.9                |
|                                   | ILLOY      | 3370          | 6/01/92            |               | .0\$             |                              | 5.0                | FARRON CAN                  | . 4000       | 5/29/92       | 0             | .0               | .0           | .3                 |
|                                   | LLLOY      | 6000          | 6/01/92            |               | .0s              |                              | 3.8                | SPOKANE RIVER               | (440         | ( (0.4 +00.2) |               |                  |              |                    |
|                                   | ILLOY      | 5380          | 6/01/92            |               | .0s              | • •                          | .0                 | LOST LAKE<br>MOSQUITO RIDGE | 6110<br>5200 | 6/01/92       | •••           | 5.1E             | 53.0         | 41.6               |
|                                   | LLLOY      | 5400          | 6/01/92            |               | .0s              |                              | 21.4               | MOSQUITO PILLO              |              | 6/01/92       |               | .0€              | 12.0         | ••                 |
| OLALLIE HOWS PI<br>SASSE RIDGE PI | LLOY       | 3960<br>4200  | 6/01/92            |               | 20.              |                              | 30.0               | SURSET                      | 5540         | 6/01/92       | •••           | .0               | 11.2         | 16.0               |
| STAMPEDE PASS PI                  |            | 3860          | 6/01/92            | •••           | 20.              | .0                           | 1.3                | SUNSET PILLO                |              | 6/01/92       |               | .0€              | 22.5         | ••                 |
| TUNNEL AVENUE                     | LLUU       | 2450          | 6/01/92            | •••           | .0s              | 3.9                          | 15.0               | NEUHAN LAKE                 | . ,,,,,      | 0/01/12       |               | .0               | 25.4         | 20.7               |
| WHITE PASS ES PI                  | HOU        | 4500          | 6/01/92            | •••           | .0e              |                              | 2.7                | QUARTZ PEAK PILLO           | 4700         | 6/01/92       | •••           |                  |              |                    |
| ANTANUM CREEK                     | COOL       | 4300          | 6/01/12            | •••           | 20.              | 1.0                          | 4.6                | OKAHOGAN RIVER              |              | 0,01,72       |               | .0               | .0           | .0                 |
|                                   | LLOY       | 6000          | 6/01/92            |               | .0s              | 1.5                          | 3.8                | ABERDEEN LAKE CAN.          | 4300         | 6/01/92       | •••           | .0e              | ••           |                    |
| MILL CREEK                        | CCOW       | 0000          | 0/01/12            |               | .03              | 1.3                          | 3.0                | BLACKVALL PEAK CAN.         | 6370         | 5/30/92       |               | .0€              | ••           | 2/ 2               |
|                                   | LLOV       | 4960          | 6/01/92            |               | .0s              | .0                           | .6                 | ENDERBY CAN.                |              | 6/01/92       | 36            | 15.4             | 46.8         | 26.2<br>39.0       |
|                                   | LLOY       | 5530          | 6/01/92            | •••           | .0               | .0                           | ••                 | FREEZEOUT CK. TRAIL         | 3500         | 5/28/92       | 0             | .0               | .0           | 39.0               |
| LEVIS - COULITZ RIVE              |            |               | 0,0.,,2            |               |                  | .0                           |                    | NAMILTON NILL CAN.          |              | 6/01/92       | •••           | .0e              | .2           | 1.3                |
|                                   |            | 3200          | 6/01/92            | •••           | .os              | .0                           | .0                 | NARTS PASS                  | 6500         | 5/29/92       | 28            | 15.2e            | 50.5         | 1.3                |
|                                   |            | 3800          | 6/01/92            | •••           | .05              | 9.0                          | 9.4                | HARTS PASS PILLON           |              | 6/01/92       | •••           | 1.65             | 63.7         | 25.3               |
| PARADISE PARK PI                  |            | 5500          | 6/01/92            | •••           | 18.05            | 78.2                         | 48.1               | NCCULLOCH CAH.              | 4200         | 6/01/92       | •••           | .0e              | •••          | .3                 |
| PIGTAIL PEAK PI                   |            | 5900          | 6/01/92            |               | 5.98             | 56.0                         | 37.5               | HISSEZULA HTH CAH.          | 5090         | 6/01/92       | •••           | .0e              | .0           | ••                 |
|                                   |            | 4500          | 6/01/92            |               | .0\$             | .9                           | 1.1                | NT. KOBAU CAN.              | 5900         | 5/30/92       | 0             | .0               | 3.7          | 5.0                |
| SKEEP CANYON PIL                  | LOV        | 4050          | 6/01/92            | •••           | .05              | 6.0                          | 11.6               | MUTTON CREEK #1             | 5700         | 6/01/92       | •••           | .0e              | ••           | ••                 |
| SPENCER HOW PIL                   | LOU        | 3400          | 6/01/92            |               | .os              | .0                           | .0                 | POSTILL LAKE CAN.           | 4500         | 6/01/92       | •••           | .0e              | ••           | ••                 |
| SPIRIT LAKE PIL                   | LOU        | 3100          | 6/01/92            | •••           | .0s              | .0                           | .0                 | SALMON MOWS PILLOW          | 4500         | 6/01/92       | ***           | .0s              | .0           | .0                 |
| SURPRISE LICS PIL                 | LOU        | 4250          | 6/01/92            | •••           | .0s              | 9.5                          | 14.5               | SILVER STAR ATH CAN.        | 6000         | 5/30/92       | 7             | 3.6              | 23.1         | 16.9               |
| WHITE PASS ES PIL                 | LOV        | 4500          | 6/01/92            | •••           | .0s              | 1.0                          | 4.6                | TROUT CREEK CAN.            | 4690         | 6/01/92       | •••           | .0e              | ••           | 4.5                |
| HITE RIVER                        |            |               |                    |               |                  |                              |                    | HETHOW RIVER                | •            |               |               |                  |              |                    |
| CORRAL PASS PIL                   |            | 6000          |                    |               | 4                |                              |                    | MARTS PASS                  | 6500         | 5/29/92       | 26            | 15.2e            | 50.5         | ••                 |
| HORSE LAKE PILL                   |            | 5400          | 6/01/92<br>6/01/92 | •••           | 1.58             | 33.1                         | 19.6               | MARTS PASS PILLOW           | 6500         | 6/01/92       | •••           | 1.68             | 63.7         | 25.3               |
| REEN RIVER                        | <b>.</b>   | ,,,,,,        | 6/01/72            |               | 20.              | 39.6                         | 21.4               | NUTTON CREEK #1             | 5700         | 6/01/92       | •••           | .0e              | ••           | ••                 |
| COUGAR MTM. PILI                  | ou 1       | 5200          | 6/01/92            | •••           | 00               | •                            |                    | SALHON MOUS PILLOV          | 4500         | 6/01/92       |               | 20.              | .0           | .0                 |
| GRASS HOUNTAIN #2                 | -          |               | 5/31/92            | 0             | .0s              | .0                           | .0                 | CHELAN LAKE BASIN           |              |               |               |                  |              |                    |
| LESTER CREEK                      | _          |               | 5/31/92            | 0             | .0               | .0                           | ••                 | LYHAN LAKE PILLOV           | 5900         | 6/01/92       | •••           | 23.68            | 84.4         | 43.3               |
| LYKH LAKE                         | _          |               | 5/31/92            | 0             | .0               | .0                           |                    | NINERS RIDGE PILLOW         | 6200         | 6/01/92       |               | 9.35             | 67.6         | ••                 |
| SAUNTEL RIDGE                     |            |               | 5/31/92            | 0             | .0<br>.0         | 1.8<br>6.3                   | **                 | PARK CK RIDGE PILLOW        | 4600         | 6/01/92       |               | 20.              | 25.7         | 5.2                |
| STAMPEDE PASS PILL                |            |               |                    | •••           |                  | 2.72                         | 16.6               | RAINY PASS                  | 4780         | 5/29/92       | 28            | 13.5             | 26.4         | ••                 |
| TVIN CAMP                         |            |               | 5/31/92            | 0             | .0s<br>.0        | 3.9<br>.0                    | 15.0               | RAINY PASS PILLOW           | 4780         | 6/01/92       |               | 5.5\$            | 44.2         | 20.4               |
| OQUALNIE RIVER                    | ·          |               | ,, , , , , ,       | •             |                  | .0                           | ••                 | ENTIAT RIVER                |              |               |               |                  |              |                    |
| OLALLIE HOUS PILL                 | OU 39      | 960 4         | 5/01/92            | •••           | .os              | 35.8                         | 30.0               | POPE RIDGE PILLOW           | 3540         | 6/01/92       | •••           | 20.              | .0           | .0                 |
| YKOHISH RIVER                     |            |               |                    |               |                  | 33.0                         | 30.0               | WEKATCHEE RIVER             |              |               |               |                  |              |                    |
| STANPEDE PASS PILL                | N 31       | 860 6         | /01/92             | •••           | .0s              | 3.9                          | 15.0               | BLEVETT PASS#ZPILLOV        | 4270         | 6/01/92       |               | .0s              | .0           | .0                 |
| STEVENS PASS PILL                 | N 40       |               |                    | •••           | .05              | 14.4                         | 5.7                | FISH LAKE PILLOV            |              | 6/01/92       | •••           | .0s              | .0           | 5.0                |
| GIT RIVER                         |            |               |                    |               |                  | ****                         | J.1                | LYNAN LAKE PILLOU           |              | 6/01/92       | •••           | 23.68            | 84.4         | 43.3               |
| BEAVER CREEK TRAIL                | 22         | 200 5         | /28/92             | 0             | .0               | .0                           | ••                 | STEVENS PASS PILLOU         |              |               |               | .0s              | 14.4         | 5.7                |
| BEAVER PASS                       | 36         |               | /28/92             | 0             | .0               | 15.9                         | ••                 | TROUGH #2 PILLOW            |              |               | •••           | .0s              | .0           | .0                 |
| BROWN TOP                         | M 60       |               |                    |               | 22.6             | 71.8                         | ••                 | UPPER WHEELER PILLOW        |              |               | •••           | .0s              | .0           | .0                 |
| DEVILS PARK                       | 59         |               |                    |               | 15.8             | 61.2                         | 31.8               | UPPER WHEELER PILLOW        |              |               | •••           | .0s              | .0           | .0                 |
| FREEZEOUT CK. TRAIL               | 35         |               | /28/92             | 0             | .0               | .0                           | ••                 |                             |              |               |               |                  |              |                    |
| HARTS PASS                        | 65         |               |                    | -             |                  | 50.5                         | ••                 | COLOCKUN CREEK              | £746         |               |               | ^~               | •            | .0                 |
| MARTS PASS PILLO                  | ¥ 65€      |               |                    | ••            |                  | 63.7                         | 25.3               | TROUGH #2 PILLOV            | 5310         | 6/01/92       | •••           | 20.              | .0           | .0                 |
| LYHAN LAKE PILLO                  | 1 590      |               |                    |               |                  | 84.4                         | 43.3               |                             |              |               |               |                  |              |                    |
|                                   | 190        |               | 28/92              | 0             | .0               | .0                           | ••                 |                             |              |               |               |                  |              |                    |
| KEADON'S CABIN                    |            |               |                    | 0             | .0               | .0                           | ••                 |                             |              |               |               |                  |              |                    |
| NEW HOZOHEEN LAKE                 | 280        | JU 5/         | 28/92              | 4             |                  |                              |                    |                             |              |               |               |                  |              |                    |
|                                   | 280<br>478 | - •           |                    |               |                  |                              | ••                 |                             |              |               |               |                  |              |                    |
| NEW HOZOHEEN LAKE                 | 478        | 30 5/         | 29/92              | 28 1          | 13.5             | 26.4                         |                    |                             |              |               |               |                  |              |                    |
| NEW HOZOHEEN LAKE<br>RAINY PASS   | 478        | 30 <b>5</b> / | 29/92              | 28 1          | 3.5<br>5.5s      | 26. <b>4</b><br>44. <b>2</b> | <br>20.4<br>10.0   |                             |              |               |               |                  |              |                    |

HOUNT CRAG PILLOW 4050 6/01/92 --- .0S .0





# SPOKANE RIVER BASIN

June 1, 1992: The June 1 forecasts for summer runoff within the Spokane River Basin are 31% of normal, down from 53% for last month. The forecast is based on a snowpack that is 12% of average and a water year-to-date precipitation value 78% of normal. Precipitation for May was 44% of average. Temperatures in the basin were five degrees above normal during May. Streamflow on the Spokane River was 36% of normal for May. June 1 storage in Coeur d'Alene Lake was 283,200 acre feet, 97% of capacity.

#### SPOKANE RIVER BASIN

|                                         |           | Streamflo | w Forecasts  | : - Ju     | ine 1, 199   | 92          |                                         |            |                                         |
|-----------------------------------------|-----------|-----------|--------------|------------|--------------|-------------|-----------------------------------------|------------|-----------------------------------------|
| *************************************** | ========= |           | *==***====   | =====      |              | -=======    | =========                               | ========   | =========                               |
|                                         |           | <<=====   | == Drier === | ===        | Future Co    | onditions = | ===== Wette                             | r ====>>   | !                                       |
|                                         |           | !         |              |            |              |             |                                         |            |                                         |
| Forecast Point                          | Forecast  | ======    | =======      | == Ch      | ance Of E    | xceeding *  |                                         | =======    |                                         |
|                                         | Period    | 90%       | 70%          | 5          | 0% (Most     | Probable)   | 30%                                     | 10%        | 30-Yr Avg.                              |
|                                         |           | (1000AF)  | (1000AF)     | İ          | (1000AF)     | (% AVG.)    | (1000AF)                                | (1000AF)   | (1000AF)                                |
| 22-2                                    | ========  | ========  |              | = j ===    |              | .=======    |                                         |            | ======================================= |
| SPOKANE nr Post Falls (1,2)             | JUN-SEP   | 11.0      | 168          | i          | 240          | 31          | 310                                     | 470        | 785                                     |
|                                         | JUN-JUL   | 11.0      | 151          | i          | 215          | 31          | 280                                     | 420        | 692                                     |
|                                         |           |           |              | i          |              |             | i                                       |            |                                         |
| SPOKANE at Long Lake (2)                | JUN-JUL   | 43        | 178          | i          | 270          | 31          | 360                                     | 495        | 861                                     |
|                                         |           |           |              | i          |              |             | i                                       |            |                                         |
| ======================================= | .======== |           | =========    | '<br>===== | =======      | .========   | ==============                          | ========== | =========                               |
| SPOKANE RIVER BASIN                     |           |           |              |            | ı            | SPOKANE     | RIVER BASIN                             |            |                                         |
| Reservoir Storage (1000                 | AF) - End | of May    |              |            | i            |             | nowpack Analy                           | sis - June | 1 1992                                  |
| ======================================= |           | :======   |              | =====      | '<br>======= | =========   | ======================================= |            | ========                                |
|                                         | Usable    | *** Usab  | le Storage   | ***        | ı            |             | Numb                                    | er This    | Year as % of                            |
| Reservoir                               | Capacity  | This      | Last         |            | Water        | shed        | of                                      |            |                                         |
| Reservoir                               | 1         | Year      |              | PV A       | 1            | 51100       | Data S                                  |            |                                         |
|                                         | <br>      |           |              | •          | <br>         |             | vata 5                                  |            | Yr Average                              |
|                                         | 291.2     |           |              |            | !            |             |                                         |            |                                         |
| COEUR D'ALENE                           | 271.2     | 283.2     | 296.2 3      | 53.9       | լ ърока<br>і | ne River    | 3                                       | 10         | 12                                      |

\_\_\_\_\_\_ \* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.





# COLVILLE - PEND OREILLE RIVER BASINS: 4

June 1, 1992: June 1 snow cover is 30% of average on the Pend Oreille and 0% on the Kettle. Snowpack meltout occurred at the Bunchgrass Meadow SNOTEL site on May 21. The average June 1 reading is 16.2 inches. Precipitation during May was 42% of average, bringing the water year-to-date to 72% of normal. May streamflow was 79% of normal on the Pend Oreille River, 100% on the Columbia at the International Boundary, and 67% on the Kettle River. The forecast for the Kettle River streamflow is 40% of normal, the Pend Oreille, 38% down from 55% last month, and the Colville River, 42%, down from 59% of normal for the summer runoff period. Temperatures were three degrees above normal for May.

#### COLVILLE - PEND OREILLE RIVER BASINS Streamflow Forecasts - June 1, 1992

| *************************************** | =========                              | ========                               |                      |                 |          |                       | ========    | =======                                |                   |
|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------|-----------------|----------|-----------------------|-------------|----------------------------------------|-------------------|
|                                         |                                        | <<=====                                | == Drier ===         | ==== Fc         | iture Co | onditions ===         | ==== Wetter | ====>>                                 |                   |
| Forecast Point                          | Forecast                               | ======                                 | .========            | === Char        | nce Of E | xceeding * ==         |             | ======                                 |                   |
| 10100001101111                          | Period                                 | 90%                                    | 70%                  |                 |          | Probable)             | 30%         | 10%                                    | i<br>  30-Yr Avg. |
|                                         |                                        | (1000AF)                               | (1000AF)             | j (1            | 1000AF)  | (% AVG.)              | (1000AF)    | (1000AF)                               | (1000AF)          |
|                                         |                                        | ========                               | ========             |                 |          |                       |             | =======                                |                   |
| PEND OREILLE bl Box Canyon (1,2)        | JUN-SEP                                | 2170                                   | 2560                 | 1               | 2950     | 38                    | 3790        | 5640                                   | 7754              |
|                                         | JUN-JUL                                | 1570                                   | 1900                 | !               | 2220     | 34 [                  | 2980        | 4660                                   | 6543              |
| CHAMOKANE CK nr Long Lake               | MAY-AUG                                | 0.1                                    | 1.9                  | 1               | 3.9      | 41 [                  | 5.9         | 8.7                                    | 9.4               |
| CHARLOCARE OF THE EOING EARC            | JUL-AUG                                | 1.0                                    | 1.3                  | i               | 1.4      | 42                    | 1.5         | 1.8                                    | 3.3               |
|                                         |                                        |                                        |                      | i               |          | · · ·                 |             |                                        | 5.5               |
| COLVILLE at Kettle Falls                | JUN-SEP                                | 4.2                                    | 12.0                 | i               | 17.2     | 42 j                  | 22          | 30                                     | 41                |
|                                         | JUL-AUL                                | 2.3                                    | 8.6                  | į               | 12.9     | 43                    | 17.2        | 24                                     | 30                |
| KETTLE or Laurier                       | JUN-SEP                                | 166                                    | 270                  | l               | 340      | 40                    | 410         | 515                                    | 851               |
|                                         | 10K - 10F                              | 145                                    | 240                  | i               | 300      | 40 j                  | 365         | 455                                    | 758               |
| COLUMBIA at Birchbank (1,2)             | JUN-SEP                                | 21000                                  | 23800                | 2               | 5000     | 79 [                  | 26200       | 29000                                  | 31580             |
| COCONDIN AC BITCHOOK (1,2)              | JUN-JUL                                | 15000                                  | 17100                |                 | 8100     | 79                    | 19100       | 21200                                  | 22910             |
| COLUMBIA on Count Coulon Do (1.2)       | JUN-SEP                                | 23600                                  | 27500                |                 | 9200     | 70                    | 30900       | 34800                                  | (4/50             |
| COLUMBIA at Grand Coulee Dm (1,2)       | JON-255                                | 16700                                  | 19900                |                 | 1300     | 68 I                  | 22700       | 25900                                  | 41650<br>31370    |
|                                         | JON-JOE                                | 18700                                  | 19900                | '               | 1300     | ∞  <br>               | 22700       | 23900                                  | 31370             |
| COLVILLE - PEND ORE                     | :::::::::::::::::::::::::::::::::::::: | ====================================== |                      | ======<br>      |          | COLVILLE •            | PEND OREILL | ====================================== | THE               |
| Reservoir Storage (100                  |                                        |                                        |                      | i               |          | Watershed Sno         |             |                                        |                   |
| ***********************                 |                                        |                                        |                      |                 | ======   | ============          |             |                                        |                   |
| Reservoir                               | Usable                                 | This                                   | le Storage '<br>Last |                 | Water    | abad                  | Numbe<br>of |                                        | Year as % of      |
| KEZELYOTI                               | Capacity                               | Year                                   |                      | Avg             | water    | Sileu                 | Data Si     |                                        |                   |
| ======================================  |                                        |                                        |                      | ==== =:<br>51.0 |          | ========<br>lle River | 0           | ••••••••<br>0                          | 0                 |
|                                         | ,,,,,,,                                |                                        |                      |                 | 00.71    |                       | v           | J                                      | v                 |

|           |           | •      |        |        |                    |   |    |    |
|-----------|-----------|--------|--------|--------|--------------------|---|----|----|
| ROOSEVELT | 5232.0    | 3440.5 | 2630.3 | 2851.0 | Colville River     | 0 | 0  | 0  |
| BANKS     | NO REPORT |        |        |        | Pend Oreille River | 3 | 27 | 30 |
|           |           |        |        |        | Kettle River       | 2 | 0  | 0  |
|           |           |        |        |        |                    |   |    |    |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.





## OKANOGAN - METHOW RIVER BASINS:

June 1, 1992: The State Department of Ecology has declared a drought emergency in the Okanogan River Basin this summer. Some emergency aid may be available to water short farmers. Summer runoff forecast for the Okanogan River is 54% of normal, up from 46%; the Similkameen River, 56%, and the Methow River, 54% of normal, down from 68%. Temperatures were three degrees above normal for the month. June 1 snow cover was 24% of average for the Okanogan, and 6% for the Methow Basin. May precipitation in the Okanogan-Methow was 10% of normal, with water year-to-date at 61% of average. May streamflow on the Methow River was 79% of normal, 65% on the Okanogan River, and 68% on the Similkameen River. water content at the Harts Pass SNOTEL, elevation 6500 feet, was 1.6 inches, this site would normally contain 25.3 Storage in the Conconully Reservoirs is 15,200 acre feet, which is 65% of capacity and 84% of June 1 average.

#### OKANOGAN - METHOW RIVER BASINS Streamflow Forecasts - June 1, 1992

|                                        |                                        | ========      | ========     | ==========              |              | ======================================= | =========              | ========           |
|----------------------------------------|----------------------------------------|---------------|--------------|-------------------------|--------------|-----------------------------------------|------------------------|--------------------|
|                                        |                                        | \ <<=====     | Drier ====   | == Future Co            | onditions == | ===== Wetter                            | =====>>                |                    |
| Forecast Point                         | Forecast                               | <br>  ======= |              | = Chance Of E           | xceeding * = |                                         | :=======  <br> -====== |                    |
|                                        | Period                                 | 90%           | 70%          | _                       | Probable)    |                                         | 10%                    | 30-Yr Avg.         |
|                                        |                                        | (1000AF)      | (1000AF)     | •                       | (% AVG.)     | (1000AF)                                | (1000AF)               | (1000AF)           |
| ====================================== | MAY-SEP                                | 560           | 675          | <b>=======</b><br>  730 | 56           | 785                                     | 900                    | 1300               |
|                                        | JUL-YAM                                | 520           | 635          | 690                     | 57           | 745                                     | 860                    | 1205               |
|                                        | MUL-YAM                                | 485           | 560          | 590                     | 58           | 620                                     | 695                    | 1014               |
| (1) KANOGAN RIVER or Tonasket          | MAY-SEP                                | 310           | 645          | 800                     | 54           | 955                                     | 1290                   | 1485               |
|                                        | JUL-YAM                                | 300           | 595          | 730                     | 55           | 865                                     | 1160                   | 1328               |
|                                        | NUL-YAM                                | 255           | 495          | 600                     | 55 [         | 705                                     | 945                    | 1095               |
| ETHOW RIVER nr Pateros (1)             | MAY-SEP                                | 285           | 405          | l<br>  460              | 54           | 515                                     | 635                    | 854                |
|                                        | MAY-JUL                                | 250           | 370          | 420                     | 53 [         | 470                                     | 590                    | 786                |
|                                        | NUL-YAM                                | 189           | 300          | 350<br>                 | 53           | 400                                     | 510                    | 659                |
| OKANOGAN - METHOW                      | DIVED DACING                           |               |              | <br>                    | OKANOCAN     |                                         | D PACING               | =========          |
|                                        |                                        | of Move       |              | 1                       |              |                                         |                        | 1000               |
| Reservoir Storage (10                  | ====================================== | or may        | ========     | <br>:========           | watersned SN | owpack Analys<br>========               | 15 - June 1            | , 1992<br>======== |
|                                        | Usable                                 | *** Usabl     | e Storage ** | * 1                     |              | Numbe                                   | r This                 | Year as % of       |
| occepair                               | Canacity                               | Thic          | Lock         | 1 Unton                 | ahad         | o.f                                     |                        |                    |

| Reservoir                | Usable  <br>Capacity <br> | *** Usab<br>This<br>Year | le Storag<br>Last<br>Year | ge ***  <br> <br>  Avg | Watershed      | Number<br>of<br>Data Sites | This Year | r as % of Average |
|--------------------------|---------------------------|--------------------------|---------------------------|------------------------|----------------|----------------------------|-----------|-------------------|
| CONCONULLY LAKE (SALMON) | 10.5                      | 8.2                      | 10.2                      | 9.0                    | Okanogan River | 6                          | 15        | 24                |
| CONCONULLY RESERVOIR     | 13.0                      | 6.9                      | 11.0                      | 9.0                    | Methow River   | 2                          | 3         | 6                 |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.





#### WENATCHEE - CHELAN RIVER BASINS:



June 1, 1992: June 1 snowpack in the Wenatchee Basin is 44%; the Chelan Basin 42%. The Entiat, Stemilt and Squilchuck show no snow. Reservoir storage in Lake Chelan is 464,300 acre feet or 103% of June 1 average and 69% of capacity. Lyman Lake SNOTEL had the most snow water with 23.6 inches of water; this site would normally have 43.3 inches. Runoff for the Entiat River is forecast to be 75% of normal for the summer. Summer forecasts for the Chelan River are for 76%, Wenatchee River's runoff 72%, and 76% on the Squilchuck-Stemilt. Icicle Creek is forecast to be 68% of normal. Streamflow for May on the Chelan River was 99% of average and the Wenatchee River was 87% of normal. Precipitation during May was 16% of normal in the basin and 85% for the year-to-date.

#### WENATCHEE - CHELAN RIVER BASINS Streamflow Forecasts - June 1, 1992

|                                         |                    |            | =========   | •===========    |                                         | =========    | ========   | =========== |
|-----------------------------------------|--------------------|------------|-------------|-----------------|-----------------------------------------|--------------|------------|-------------|
|                                         |                    |            |             |                 | onditions ===                           |              |            |             |
| Forecast Point                          | Forecast           | ======     |             | = Chance Of     | Exceeding * ==                          |              | =======    |             |
|                                         | Period             | 90%        | 70%         | _               | Probable)                               | 30%          | 10%        | 30-Yr Avg.  |
|                                         |                    | (1000AF)   | (1000AF)    | •               | (% AVG.)                                |              | (1000AF)   | (1000AF)    |
| ======================================= |                    |            |             | =======         |                                         |              | ========   | =========   |
| CHELAN RIVER at Chelan (1)              | MAY-SEP            | 585        | 725         | 790             | 76                                      | 855          | 995        | 1041        |
|                                         | MAY-JUL            | 510        | 635         | 690             | 76                                      | 745          | 870        | 905         |
|                                         | NUL-YAM            | 385        | 475         | 520             | 75                                      | 565          | 655        | 693         |
| STEHEKIN R. at Stehekin                 | MAY-SEP            | 525        | 570         | 600             | 80                                      | 630          | 675        | 751         |
|                                         | MAY-JUL            | 435        | 475         | 500             | 80                                      | 525          | 565        | 625         |
|                                         | MAY-JUN            | 325        | 350         | 370             | 80                                      | 390          | 415        | 462         |
|                                         |                    | 427        | 1/2         | 455             | 70"                                     | 4/0          | 407        |             |
| ENTIAT RIVER nr Ardenvoir               | MAY-SEP            | 123        | 142         | 155<br>  140    | 75                                      | 168          | 187        | 208         |
|                                         | MAY-JUL            | 111        | 128         | 1 110           | 74  <br>73                              | 152          | 169        | 188         |
|                                         | MAY-JUN            | 87         | 101         | 1               | 73                                      | 119          | 133        | 150         |
| WENATCHEE R. at Peshastin               | MAY-SEP            | 510        | 805         | 1000            | 70                                      | 1200         | 1490       | 1428        |
|                                         | MAY-JUL            | 465        | 725         | 900             | 70                                      | 1080         | 1330       | 1277        |
|                                         | MUL-YAM            | 365        | 565         | 700             | 70                                      | 835          | 1040       | 997         |
| STEMILT or Wenatchee (miners in)        | MAY-SEP            | 60         | 87          | <br>  105       | 76                                      | 123          | 150        | 138         |
| VOLUE COSSIV TO A CONTROL OF            | 400.050            | 120        | 200         | 1 250           | (0)                                     | 700          | 7.70       | 770         |
| ICICLE CREEK nr Leavenworth             | APR-SEP            | 129<br>114 | 200<br>180  | 250<br>  225    | 68  <br>66                              | 300<br>270   | 370<br>335 | 370         |
|                                         | APR-JUL<br>APR-JUN | 87         | 139         | l 175           | ∞  <br>65                               | 210          | 265        | 340<br>270  |
|                                         |                    |            |             | i               | i                                       |              |            |             |
| COLUMBIA R. bl Rock Island Dam (2)      | MAY-SEP            | 36300      | 40500       | 43400           | 69                                      | 46300        | 50500      | 62910       |
|                                         | MAY-JUL            | 29100      | 32600       | 35000           | 67                                      | 37400        | 40900      | 52190       |
|                                         | MUL-YAM            | 22100      | 24700       | 26500           | 67                                      | 28300        | 30900      | 39480       |
|                                         |                    |            |             | <br>=========   | <br>                                    | ==========   |            | ==========  |
| WENATCHEE - CHELAN R                    | IVER BASINS        | 5          |             | 1               | WENATCHEE                               | - CHELAN RIV | ER BASINS  |             |
| Reservoir Storage (1000                 |                    | •          |             | •               | Watershed Sno                           | •            |            |             |
|                                         | Usable             |            | e Storage * |                 | :====================================== | Number       |            |             |
| Reservoir                               | Capacity           | This       | Last        | Water           | shed                                    | of           |            |             |
|                                         |                    | Year       | Year A      |                 |                                         | Data Si      | tes Last   | r Average   |
|                                         |                    |            |             |                 |                                         |              |            |             |
| CHELAN LAKE                             | 676.1              | 464.3      | 547.4 450   | ).6   Chela<br> | n Lake Basin                            | 3            | 19         | 42          |
|                                         |                    |            |             | Entia           | t River                                 | 1            | 0          | 0           |
|                                         |                    |            |             | Wenat           | chee River                              | 5            | 24         | 44          |
|                                         |                    |            |             | Squil           | chuck Creek                             | 0            | 0          | 0           |
|                                         |                    |            |             | Stemi           | lt Creek                                | 1            | 0          | 0           |
|                                         |                    |            |             | Coloc           | kum Creek                               | 1            | 0          | 0           |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.





## YAKIMA RIVER BASIN:



June 1, 1992: The Ahtanum drainage has been declared a drought emergency area by the Washington State Department of Ecology. Emergency aid may be available to water short May precipitation was 40% of normal and 82% for the water year-to-date. The outlook for irrigation water for the summer is fair for those with reservoir storage and poor for the rest. June 1 reservoir storage for the five major reservoirs at 915,700 acre feet, 98% of average. 1 snowpack is 1% based upon 11 snow courses and SNOTEL readings. June 1 summer streamflow forecasts for the Yakima Basin vary throughout the basin as follows: the Yakima River at Cle Elum, 46%; Naches River, 47%; the Yakima River near Parker, 41%, Ahtanum Creek, 45%; and Tieton River 48%. May streamflows varied with the Yakima River at Parker 51% of normal, 57% on the Yakima near Cle Elum, and 56% on the Naches River. Temperatures were four degree above average for May. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U. S. Bureau of Reclamation's forecast for the total water supply available which includes adjustments for reservoir operation and irrigation return flow.

#### YAKIMA RIVER BASIN Streamflow Forecasts - June 1, 1992

|                              |                                         |              |              |          | ine 1, 199   |                                        |                        |            |                                        |
|------------------------------|-----------------------------------------|--------------|--------------|----------|--------------|----------------------------------------|------------------------|------------|----------------------------------------|
|                              |                                         |              |              |          |              |                                        | ===== Wetter           |            | ************************************** |
| Forecast Point               | Forecast                                | <br>  ====== |              | ==== Ch  | ance Of E    | xceeding * =                           | =========              | <br>       |                                        |
|                              | Period                                  | 90%          | 70%          |          |              | Probable)                              | 30%                    | 10%        | 30-Yr Avg.                             |
|                              |                                         |              | (1000A       | F)       | (1000AF)     | (% AVG.)                               | (1000AF)               | (1000AF)   | (1000AF)                               |
| YAKIMA RIVER at Martin (1)   | MAY-SEP                                 | <b>28</b>    | 40           | :        | 45           | 42                                     | 50                     | 62         | 107                                    |
|                              | HAY-JUL                                 | 25           | 35           | i        | 40           | 42                                     | 45                     | 55         | 96                                     |
|                              | MUL-YAM                                 | 21           | 30           | i        | 34           | 42                                     | 38                     | 47         | 81                                     |
| YAKIMA RIVER at Cle Elum (2) | MAY-SEP                                 | 240          | 300          |          | 340          | 46                                     | 380                    | 440        | 740                                    |
| TARTA RIVER de cec cedan (2) | MAY-JUL                                 | 210          | 265          |          | 300          | 46                                     | 335                    | 390        | 657                                    |
|                              | MAY-JUN                                 | 177          | 220          |          | 250          | 46                                     | 280                    | 325        | 546                                    |
| YAKIMA RIVER nr Parker (2)   | MAY-SEP                                 | 335          | 520          | -        | 650          | 41                                     | 780                    | 965        | 1580                                   |
| TAKIMA KIVEK III FAIKEI (2)  | MAY-JUL                                 | 295          | 460          |          | 570          | 41                                     | 680                    | 845        | 1390                                   |
|                              |                                         |              |              |          |              |                                        |                        |            |                                        |
|                              | MUL-YAM                                 | 250          | 390          | l        | 485          | 41                                     | 580                    | 720        | 1182                                   |
| KACHESS RIVER or Easton (1)  | MAY-SEP                                 | 17.0         | 30           | i        | 36           | 39                                     | 42                     | 55         | 92                                     |
|                              | MAY-JUL                                 | 17.0         | 28           | i        | 33           | 38                                     | 38                     | 49         | 86                                     |
|                              | MAY-JUN                                 | 15.0         | 25           | į        | 29           | 39                                     | 33                     | 43         | 74                                     |
| CLE ELUM RIVER nr Roslyn (1) | MAY-SEP                                 | 109          | 151          | -        | 170          | 45                                     | 189                    | 230        | 378                                    |
|                              | MAY-JUL                                 | 99           | 136          | i        | 153          | 45                                     | 170                    | 210        | 340                                    |
|                              | HAY-JUN                                 | 79           | 110          |          | 124          | 45                                     | 138                    | 169        | 276                                    |
|                              | , , , , , , , , , , , , , , , , , , , , |              |              | i        |              | - 1                                    | ,,,,,                  |            | 2.0                                    |
| BUMPING RIVER or Nile (1)    | MAY-SEP                                 | 33           | 50           | - 1      | 57           | 48                                     | 64                     | 81         | 118                                    |
|                              | MAY-JUL                                 | 29           | 44           | -        | 51           | 48                                     | 58                     | 73         | 107                                    |
|                              | MAY-JUN                                 | 25           | 37           | !        | 42           | 48                                     | 47                     | 59         | 87                                     |
| MERICAN RIVER nr Nile        | MAY-SEP                                 | 36           | 44           |          | 49           | 48 <b> </b>                            | 54                     | 62         | 102                                    |
|                              | MAY-JUL                                 | 32           | 39           | i        | 44           | 48                                     | 49                     | 56         | 92                                     |
|                              | NUL-YAM                                 | 27           | 32           |          | 36           | 48                                     | 40                     | 45         | 75                                     |
| IETON RIVER at Tieton (1)    | MAY-SEP                                 | 54           | 84           |          | 98           | 48                                     | 112                    | 142        | 204                                    |
| Term Kirck de Victori (1)    | HAY-JUL                                 | 44           | 69           | i        | 80           | 48                                     | 91                     | 116        | 167                                    |
|                              | NUL-YAM                                 | 33           | 52           |          | 61           | 48                                     | 70                     | 89         | 128                                    |
| MACHES RIVER or Naches (2)   | MAY-SEP                                 | 220          | 280          | -        | 320          | 47                                     | 360                    | 420        | 687                                    |
| Money Kitch III Maches (2)   | MAY-JUL                                 | 520          | 575          | i i      | 610          | 100                                    | 645                    | 700        | 610                                    |
|                              | MAY-JUN                                 | 166          | 210          | -        | 240          | 47                                     | 270                    | 315        | 506                                    |
| UTANUM COEEK no Tomoico (2)  | HAY-CED                                 | 0 5          | 13.6         | -        | 17.0         | /5                                     | 20                     | 24         | 70                                     |
| HTANUM CREEK nr Tampico (2)  | MAY-SEP                                 | 8.5          |              | -        | 17.0         | 45                                     | 20                     | 26         | 38                                     |
|                              | JUL-YAM<br>NUL-YAM                      | 7.7<br>6.3   | 12.2<br>10.0 | -        | 15.3<br>12.6 | 45  <br>45                             | 18.4<br>15.2           | 23<br>18.9 | 34<br>28                               |
|                              |                                         |              |              | <u> </u> |              | <u> </u>                               |                        |            |                                        |
| YAKIMA RIVER BASI            |                                         |              |              |          | l .          | YAKIMA RI                              |                        |            |                                        |
| Reservoir Storage (1         |                                         |              |              |          | •            |                                        | owpack Analys          |            |                                        |
|                              | Usable                                  |              | le Storag    |          | 1            |                                        | Numbe                  |            | Year as % of                           |
| leservoir                    | Capacity                                |              | Last         | A =      | Water        | shed                                   | of                     |            |                                        |
|                              | <br>                                    | Year         | Year         | Avg      | <br> ======= | ##=#==##=############################# | Data Si<br>=========== |            | _                                      |
| (EECHELUS                    | 157.8                                   | 105.5        | 153.5        | 144.0    | Yakim        | a River                                | 11                     | 1          | 1                                      |
| ACHESS                       | 239.0                                   | 221.1        | 236.0        | 218.0    | Ahtan        | um Creek                               | 1                      | 0          | 0                                      |
| LE ELUM                      | 436.9                                   | 383.3        | 430.4        | 378.0    |              |                                        |                        |            |                                        |
| BUMPING LAKE                 | 33.7                                    | 35.4         | 31.6         | 27.0     | !<br>!       |                                        |                        |            |                                        |
| RIMROCK                      | 198.0                                   | 170.4        | 195.8        | 167.0    | <br>         |                                        |                        |            |                                        |
|                              |                                         |              |              |          | I            |                                        |                        |            |                                        |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.





## WALLA WALLA RIVER BASIN:



June 1, 1992: May precipitation was 38% of average, bringing the water year-to-date precipitation to 94% of normal. The forecast is for 34% of average streamflow in the Walla Walla River for the coming summer, the Grande Ronde, 18%, the lowest in the state; and 30% for Mill Creek. May streamflow was 11% of normal on the Walla Walla River, 49% for the Snake River and 40% for the Grande Ronde River near Troy. June 1 snowpack is at 0%, down from 7% last month. Temperatures were five degrees above average for May.

#### WALLA WALLA RIVER BASIN

|                                         |           | Streamflow | Forecasts   | - June 1, 199 | 92                      |               |             |              |  |  |
|-----------------------------------------|-----------|------------|-------------|---------------|-------------------------|---------------|-------------|--------------|--|--|
| ======================================= |           |            |             | ========      |                         |               | ========    | =========    |  |  |
|                                         |           | <<=====    | Drier ====  | == Future Co  | onditions ===           | ==== Wetter   | ====>>      |              |  |  |
|                                         |           | 1          |             |               |                         |               | 1           |              |  |  |
| Forecast Point                          | Forecast  | =======    |             | = Chance Of i | Exceeding * ==          |               |             |              |  |  |
|                                         | Period    | 90%        | 70%         | 50% (Most     | Probable)               | 30%           | 10%         | 30-Yr Avg.   |  |  |
|                                         |           | (1000AF)   | (1000AF)    | (1000AF)      | (% AVG.)                | (1000AF)      | (1000AF)    | (1000AF)     |  |  |
| ======================================= |           |            | =======     | ========      | -                       |               | ========    | =========    |  |  |
| MILL CREEK at Walla Walla               | MAY-SEP   | 0.1        | 1.0         | 2.3           | 31                      | 3.6           | 5.5         | 7.5          |  |  |
|                                         | MAY-JUL   | 0.1        | 0.9         | 2.2           | 30                      | 3.5           | 5.4         | 7.3          |  |  |
|                                         | NUL-YAM   | 0.1        | 0.9         | 2.1           | 30                      | 3.3           | 5.1         | 7.1          |  |  |
|                                         |           |            |             |               | 1                       |               |             |              |  |  |
| SF WALLA WALLA nr Milton Freewater      | MAY-JUL   | 13.1       | 16.4        | 18.7          | 51                      | 21            | 24          | 37           |  |  |
|                                         |           |            |             |               | 1                       |               |             |              |  |  |
|                                         | :=======  |            | =========   |               |                         |               |             | =========    |  |  |
| WALLA WALLA RIVER BA                    | SIN       |            |             | 1             | WALLA WALLA RIVER BASIN |               |             |              |  |  |
| Reservoir Storage (1000                 | AF) - End | of May     |             | 1             | Watershed Sno           | owpack Analys | is - June 1 | , 1992       |  |  |
|                                         |           | =======    | ========    |               | ************            |               | ========    |              |  |  |
|                                         | Usable    | *** Usabl  | e Storage * | *             |                         | Numbe         | r This'     | rear as % of |  |  |
| Reservoir                               | Capacity  | This       | Last        | Water         | shed                    | of            | =====       |              |  |  |
|                                         | 1         | Year       | Year Av     | /g            |                         | Data Si       | tes Last    | r Average    |  |  |
|                                         |           | =======    | ========    |               |                         |               | ========    |              |  |  |
|                                         |           |            |             | Mill          | Creek                   | 1             | 0           | 0            |  |  |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.





#### COWLITZ - LEWIS RIVER BASINS:



June 1, 1992: May precipitation was 14% of normal, bringing the water year-to-date precipitation to 81% of average. June 1 snow cover for the Cowlitz-Lewis River Basin is 19%, down from 37% last month. The Paradise Park SNOTEL contained the largest water content for the basin with 18.0 inches of water. Normal June 1 water content is 48.1 inches. Forecasts for summer runoff in the Lewis River are 42%, and for the Cowlitz River, 51%. May streamflow on the Cowlitz River was 53% of average, and 40% on the Lewis River. Temperatures were six degrees above normal for May.

#### COWLITZ - LEWIS RIVER BASINS Streamflow Forecasts - June 1, 1992

|                                       | =========    | ======================================= | . Daisa      |                  |        | onditions =   | Vet                | er ===                  | =====:<br>==>> | ========                                |
|---------------------------------------|--------------|-----------------------------------------|--------------|------------------|--------|---------------|--------------------|-------------------------|----------------|-----------------------------------------|
|                                       |              |                                         | - Drier ==== | rut              | uie c  | orial crons = | #0(                |                         |                |                                         |
| Forecast Point                        | Forecast     |                                         |              | = Chanc          | e Of   | Exceeding *   |                    |                         |                |                                         |
|                                       | Period       | 90%                                     | 70%          | 50%              | (Most  | Probable)     | 30%                | 1                       | 0%             | 30-Yr Avg.                              |
|                                       |              | (1000AF)                                | (1000AF)     |                  |        | (% AVG.)      | (1000AI            | (10                     | 00AF)          | (1000AF)                                |
| LEWIS RIVER at Ariel (2)              | MAY-SEP      | 148                                     | 275          | 1                | 360    | 42            | <br>  445          |                         | <br>575        | 848                                     |
|                                       | MAY-JUL      | 116                                     | 220          | 1                | 290    | 42            | 360                |                         | 465            | 696                                     |
|                                       | NUL-YAM      | 96                                      | 182          | ]                | 240    | 42            | 300                | :                       | 385            | 578                                     |
| COWLITZ R. bl Mayfield Dam (2)        | MAY-SEP      | 15.0                                    | 465          |                  | 780    | 51            | l<br>  1100        | 1                       | 560            | 1531                                    |
|                                       | MAY-JUL      | 13.0                                    | 395          | į ,              | 660    | 51            | 925                | 1                       | 320            | 1292                                    |
|                                       | MUL-YAM      | 10.0                                    | 315          | į :              | 530    | 51            | 745                | 1                       | 060            | 1038                                    |
| COWLITZ R. at Castle Rock (2)         | MAY-SEP      | 20                                      | 565          | ¦ ,              | 970    | 48            | <br>  <b>1</b> 370 | 1                       | 970            | 2021                                    |
|                                       | MAY-JUL      | 17.0                                    | 465          | į į              | 800    | 48            | 1140               | 1.                      | 630            | 1679                                    |
|                                       | NUL-YAM      | 14.0                                    | 380          | 1 (              | 650    | 48            | 920<br>            | 13                      | 320            | 1349                                    |
|                                       |              | .========                               | ========     | :                |        |               |                    | ======                  |                | ========                                |
| COWLITZ - LEWIS RIV                   |              |                                         |              | !                |        |               | LEWIS RIVE         |                         | -              |                                         |
| Reservoir Storage (100                | 00 AF) - End | of May<br>                              |              | <br>=======      |        | Watershed Sr  | nowpack Anal       | ysis -                  | June 1,        | 1992<br>========                        |
|                                       | Usable       |                                         | e Storage *  |                  |        |               |                    | ber                     | This Y         | ear as % of                             |
| Reservoir                             | Capacity     | This                                    | Last         |                  | Water  | shed          | 0                  |                         |                | =========                               |
|                                       | <br>         | Year<br>========                        | Year A       | vg  <br>==== === | .====  |               |                    | <b>S</b> ites<br>====== | Last Y         | r Average                               |
|                                       |              |                                         |              |                  | Cowl i | tz River      |                    | 6                       | 17             | 23                                      |
|                                       |              |                                         |              |                  | Lewis  | River         |                    | 4                       | 0              | 0                                       |
| ************************************* |              | ========                                | ========     |                  |        |               | *******            | ======                  |                | ======================================= |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.





## WHITE - GREEN RIVER BASINS:

June 1, 1992: Low water supplies are foreseen by the City of Seattle for the coming summer, with water rationing already in effect. Summer runoff is forecasted to be 53% on the Green and Cedar Rivers June 1 snowpack was 4% of normal in the White River and 0% in the Green River. Meltout of snow at the Stampede Pass SNOTEL, occurred on May 12. Normal June 1 water content is 15.0 inches. May precipitation was 39% of normal, bringing the water year-to-date to 81% of average. Temperatures were five degrees above average for May.

#### WHITE - GREEN RIVER BASINS Streamflow Forecasts - June 1, 1992

| Streamflow Forecasts - June 1, 1992     |              |              |              |             |               |               |              |                                         |  |  |
|-----------------------------------------|--------------|--------------|--------------|-------------|---------------|---------------|--------------|-----------------------------------------|--|--|
| ======================================= | =========    |              | ========     | ========    | ========      |               | ========     | ======================================= |  |  |
|                                         |              | <<=====      | : Drier ==== | == Future C | conditions == | ===== Wetter  | ====>>       |                                         |  |  |
|                                         |              |              |              |             |               |               | i            |                                         |  |  |
| Forecast Point                          | Forecast     |              |              | = Chance Of | Exceeding * = |               | =======      |                                         |  |  |
|                                         | Period       | 90%          | 70%          |             | Probable)     | 30%           | 10%          | 30-Yr Avg.                              |  |  |
|                                         | 1 21 100     | (1000AF)     | (1000AF)     | •           | (% AVG.)      | (1000AF)      | (1000AF)     |                                         |  |  |
|                                         |              | ( TOOOAF)    | (1000AF)     | (1000AF)    | (% AVG.)      | (1000AF)      | (1000AF)     | (1000AF)                                |  |  |
|                                         | ========     |              |              | ========    |               |               | ========     | ======================================= |  |  |
| GREEN R bl Howard Hanson Dam (2)        | MAY-SEP      | 70           | 91           | 105         | 53            | 119           | 140          | 198                                     |  |  |
|                                         | MAY-JUL      | 60           | 78           | 90          | 53            | 102           | 120          | 170                                     |  |  |
|                                         | NUL-YAM      | 52           | 68           | 78          | 53            | 88            | 104          | 147                                     |  |  |
|                                         |              |              |              | ĺ           | i             |               |              |                                         |  |  |
| CEDAR RIVER or Cedar Falls              | MAY-SEP      | 22           | 29           | 34          | 53            | 39            | 47           | 64                                      |  |  |
| CEDAR RIVER III CCCCI TOTTS             | MAY-JUL      | 19.0         | 26           | 30          | 54            | 35            | 41           | 56                                      |  |  |
|                                         |              |              |              | !           |               |               |              |                                         |  |  |
|                                         | NUL-YAM      | 16.0         | 21           | 25          | 53            | 29            | 34           | 47                                      |  |  |
|                                         |              |              |              |             | 1             |               |              |                                         |  |  |
|                                         |              |              |              |             |               |               |              |                                         |  |  |
| WHITE - GREEN RIVE                      | R BASINS     |              |              | 1           | WHITE - G     | REEN RIVER BA | SINS         |                                         |  |  |
| Reservoir Storage (10                   | 00 AF) - End | of May       |              | 1           | Watershed Sn  | owpack Analys | is - June 1. | 1992                                    |  |  |
|                                         |              | :::::::::::: | =========    | :========   |               |               | =========    | ======================================= |  |  |
|                                         | Usable       | *** Heahl    | e Storage ** | r* 1        |               | Numbe         | c Thic V     | ear as % of                             |  |  |
| Reservoir                               |              |              | •            |             | rshed         | of            |              | ,                                       |  |  |
| Keservoir                               | Capacity     | This         | Last         |             | rsneu         |               |              | ========                                |  |  |
|                                         | 1            | Year         | Year Av      | g           |               | Data Si       | tes Last Y   | r Average                               |  |  |
|                                         |              |              |              |             |               | =========     |              | ========                                |  |  |
|                                         |              |              |              | White       | e River       | 2             | 2            | 4                                       |  |  |
|                                         |              |              |              | 1           |               |               |              |                                         |  |  |
|                                         |              |              |              | l Gree      | n River       | 3             | 0            | 0                                       |  |  |
|                                         |              |              |              |             |               |               | _            | •                                       |  |  |
|                                         |              |              |              | l cod-      | r River       | 0             | 0            | 0                                       |  |  |
|                                         |              |              |              | Ceda        | L KIAGI.      | U             | U            | U                                       |  |  |
|                                         |              |              |              | 1           |               |               |              |                                         |  |  |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.





#### NORTH PUGET SOUND RIVER BASINS:



June 1, 1992: Forecast for the Skagit River streamflow is 74% of normal for the spring and summer period. May streamflow in the Skagit River was 79% of average. June 1 snow cover in the Skagit Basin is 36% of normal. Rainy Pass SNOTEL at elevation 4780 feet, has 5.5 inches of water content; normal June 1 water content is 20.4 inches. June 1 reservoir storage is above average, with Ross Lake Reservoir at 106% of normal and 79% of capacity. Precipitation for May was 35% of average with a water year-to-date at 84% of normal. May temperatures were five degrees above normal.

# NORTH PUGET SOUND RIVER BASINS

| Streamflow Forecasts - June 1, 1992                                     |                    |           |           |        |                 |                                                                            |                                        |          |                        |  |
|-------------------------------------------------------------------------|--------------------|-----------|-----------|--------|-----------------|----------------------------------------------------------------------------|----------------------------------------|----------|------------------------|--|
|                                                                         |                    | <<=====   | = Drier : | =====  | Future Co       | onditions ==                                                               | ===== Wetter                           | =====>>  |                        |  |
| Forecast Point                                                          | Forecast<br>Period | 90%       | 70%       |        |                 | Exceeding * = Probable)                                                    | ====================================== | <br>     | 70 v                   |  |
|                                                                         | 761100             | (1000AF)  |           |        |                 | (% AVG.)                                                                   | (1000AF)                               | (1000AF) | 30-Yr Avg.<br>(1000AF) |  |
| SKAGIT RIVER at Newhalem (2)                                            | MAY-SEP            | 1140      | 1330      | i      | 1450            | 74                                                                         | 1570                                   | 1760     | 1963                   |  |
|                                                                         | MAY-AUG            | 1060      | 1230      | - 1    | 1350            | 74                                                                         | 1470                                   | 1640     | 1826                   |  |
|                                                                         | MAY-JUL            | 940       | 1090      | - 1    | 1190            | 74                                                                         | 1290                                   | 1440     | 1608                   |  |
|                                                                         | MUL-YAM            | 660       | 790       | 1      | 880             | 74                                                                         | 970                                    | 1100     | 1188                   |  |
| NORTH PUGET SOUND RIVER BASINS Reservoir Storage (1000 AF) - End of May |                    |           |           |        |                 | NORTH PUGET SOUND RIVER BASINS  Watershed Snowpack Analysis - June 1, 1992 |                                        |          |                        |  |
|                                                                         | Usable             | *** Usab  | le Storag | ge *** | 1               |                                                                            | Numbe                                  | r This   | rear as % of           |  |
| Reservoir                                                               | Capacity           | This      | Last      |        | Water           | shed                                                                       | of                                     | =====    | =========              |  |
|                                                                         | - 1                | Year      | Year      | Avg    |                 |                                                                            | Data Si                                | tes Last | ír Average             |  |
|                                                                         |                    | ========  | =======   | ====== | ==== <b>=</b> = | ========                                                                   |                                        |          | ==========             |  |
| ROSS                                                                    | 1404.1             | 1099.3    | 864.3     | 1033.9 | Snoqu<br>       | almie River                                                                | 1                                      | 0        | 0                      |  |
| DIABLO RESERVOIR                                                        | 90.6               | 87.2      | 89.0      | 86.1   | Skyko           | mish River                                                                 | 2                                      | 0        | 0                      |  |
| GORGE RESERVOIR                                                         |                    | NO REPORT | r         |        | <br>  Skagi     | t River                                                                    | 5                                      | 17       | 36                     |  |

\* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

Baker River

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.





## OLYMPIC PENINSULA RIVER BASINS:

June 1, 1992: May precipitation was 22% of average, with water year-to-date precipitation accumulation at 91% of normal. No June 1 snow courses are read in the Olympic Basin. June forecasts for streamflow in the basin are for 61% of average on the Dungeness River and 59% on the Elwha River. The Big Quilcene can expect much below normal runoff this summer. The Mount Crag SNOTEL near Quilcene showed no water content on June 1, last year it was bare also. Temperatures were three degrees above normal for May.

# OLYMPIC PENINSULA RIVER BASINS

## Streamflow Forecasts - June 1, 1992

|                                |                |               |              |               |                                | =             |             |              |  |
|--------------------------------|----------------|---------------|--------------|---------------|--------------------------------|---------------|-------------|--------------|--|
|                                |                | <<=====       | : Drier ==== | == Future Co  | onditions ==                   | ===== Wetter  | =====>>     | <br>         |  |
| Forecast Point                 | Forecast       | <br>  ======= | ]            |               |                                |               |             |              |  |
|                                | Period         | 90%           | 70%          | 50% (Most     | Probable)                      | 30%           | 10%         | 30-Yr Avg.   |  |
|                                |                | (1000AF)      | (1000AF)     | (1000AF)      | (% AVG.)                       | (1000AF)      | (1000AF)    | (1000AF)     |  |
| DUNGENESS RIVER or Sequim      | MAY-SEP        | <b>6</b> 2    | 76           |               | 61 J                           | 94            | 108         | <br>140      |  |
|                                | MAY-JUL        | 50            | 61           | 68            | 61                             | 75            | 86          | 112          |  |
|                                | MAY-JUN        | 32            | 41           | 48            | 61                             | 55            | 64          | 79           |  |
| ELWHA RIVER or Port Angeles    | MAY-SEP        | 174           | 220          | 250           | 59                             | 280           | 325         | 427          |  |
|                                | MAY-JUL        | 139           | 175          | 200           | 58                             | 225           | 260         | 342          |  |
|                                |                |               |              | <br>:======== | <br>:=========                 |               |             | ==========   |  |
| OLYMPIC PENINSULA RIVER BASINS |                |               |              |               | OLYMPIC PENINSULA RIVER BASINS |               |             |              |  |
| Reservoir Storage (            | 1000 AF) - End | of May        |              | 1             | Watershed Sno                  | owpack Analys | is - June 1 | , 1992       |  |
|                                | Usable         | *** Usabl     | e Storage ** | *             |                                | Numbe         | r This      | Year as % of |  |
| Reservoir                      | Capacity       | This          | Last         | Water         | shed                           | of            | =====       | =========    |  |

| Reservoir                               | Usable  <br>Capacity | e Storage<br>Last<br>Year | ***  <br> <br>  Avg | Watershed                               | Number<br>of<br>Data Sites | This Year | r as % of |
|-----------------------------------------|----------------------|---------------------------|---------------------|-----------------------------------------|----------------------------|-----------|-----------|
| ======================================= | =========            | <br>                      | <br> <br>           | Elwha River                             | 0                          | 0         | 0         |
|                                         |                      |                           | !<br>!              | Morse Creek                             | 0                          | 0         | 0         |
|                                         |                      |                           |                     | Dungeness River                         | 0                          | 0         | 0         |
|                                         |                      |                           |                     | Quilcene River                          | 0                          | 0         | 0         |
|                                         |                      |                           |                     | Wynoochee River                         | 0                          | 0         | 0         |
|                                         | .==========          | <br>======                | ا<br>======         | ======================================= |                            | =======   | =======   |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

