POWER SWITCHING TRANSISTORS N-P-N LEISTUNGS-SCHALTTRANSISTOREN N-P-N

Type Typ	Maximum ratings • Grenzdaten						I _{CBO} at	U_{CB}	h_{21E} at	U_{CB}	i <i>E</i>	f	t _f	$U_{BE\ sat}$	U _{CE} sat	ø
	U _{CBO}	U _{CEO}	I _C		P _{tot}	ϑ _j °C	I _{CES} * be	bei U _{CES} *	bei	U _{CE} *	Ic*	f _T * MHz	μς	U _{BE} *	max V	Case Gehäus
							mA									
(U601	60	50	3	3	104)	155	0,3	60	≥ 20	6 12	1 0,5	30 ≧ 15	.,	1,0³)*	1")	T35
KU602	120	80	3	3	104)	155	0,3	120	≥ 20	6 12	1 0,5	30 ≧ 15		1,0³)*	1 ¹)	T35
(U605	200	80	10	6	50 ⁵)	155	1	50	50 ≧ 10	1,7* 10	8 0,5	≧ 5	≦ 0,5	2,42)	1,7²)	T37
(U606	120	60	8	6	50 ⁵)	155	1	50	50 ≥ 10	2,45* 10	8 0,5	≟ 5	≦ 0,5	2,4²)	2,45²)	T37
(U607	210	80	10	5	70 ⁵)	155	1	150	50 ≧ 10	1,7 * 10	8 0,5	26 ≧ 9	≦ 0,5	2,4 ²)	1,7²)	T37
(U608	250	80	10	5	70 ⁵)	155	1	150	50 ≧ 10	1,7 * 10	8 0,5	26 ≥ 9	≦ 0,5	2,4 ²)	1,7²)	T37
(U611	60	50	3	3	106)	155	0,05	50	90 ≥ 20	6 12	1 0,5	30 ≧ 15		1,07)*	11)	T32
KU612	120	80	3	3	10 ⁶)	155	0,05	50	90 ≥ 20	6 12	1 0.5	30 ≥ 15		1,0 ⁷)*	11)	T32

¹⁾ $I_C = 1 \text{ A}$, $I_B = 0.1 \text{ A}$ 2) $I_C = 8 \text{ A}$, $I_B = 0.8 \text{ A}$ 3) $U_{CB} = 6 \text{ V}$, $-I_E = 1 \text{ A}$

DataSheet4U.com

DataShee

DUAL TRANSISTORS N-P-N DOPPEL-TRANSISTOREN N-P-N

Туре	Maximum ratings • Grenzdaten							t U _{CB}	h _{21E}	at	U _{CB}	1 _E	<u>.</u>
Тур	U _{CBO}	U _{CEO}	UEBO	lc	Pc 1)	ϑ_j	max be	∍i		bei			⊕ <u>.</u>
DataSheet4U.com	٧	٧	٧	mA	mW	°C	nA	٧			WWW.	DataShe	et4 ශි කිm
KC510	45	30	5	100	450	175	10	30	50 5	500	10	0,1	T25

^{&#}x27;) Both systems, without cooling \bullet Beide Systeme, ohne Kühlung <code>DataSheet4U.com</code>

⁴⁾ $U_{CE} \le 30 \text{ V}$, $\vartheta_c \le 75 \,^{\circ}\text{C}$ 5) $U_{CE} \le 20 \text{ V}$, $\vartheta_c \le 35 \,^{\circ}\text{C}$ 6) $U_{CE} = 20 \text{ V}$, $\vartheta_c \le 45 \,^{\circ}\text{C}$ 7) $U_{CB} = 6 \text{ V}$, $-I_E = 0,2 \text{ A}$