Coding Tools for Improving Coding Efficiency of Future Video Coding (JVET)

김신재, 도지훈 지도교수 김재곤

Media Communication Lab.

I. Introduction

- Joint Video Exploration Team (JVET)
 - □ ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC 29/WG 11)
 - □ Significantly exceeding the compression capability of HEVC/H.265
 - The scope of technology
 - SDR/HDR(High-Dynamic-Range) video, VR/360 video
 - Requirements
 - Compression performance: 30% 50% bit-rate reductions vs. HEVC
 - Video Formats: VGA (640x480) ~ 8K UHD
 - Timeline
 - Publication of a future video coding specification by approximately 2020
- □ JVET releases the Joint Exploration Model (JEM) Software codec for technical verification
- □ Released Call for Proposal (CfP) of JVET in Oct., 2017
- Coding efficiency of JEM 7.0 in the comparison with HEVC
 - 29% BD-rate saving with about 10 times encoding run-time

II. Reference Sample Preparation in JEM

- Reference sample padding (RSP)
 - ☐ The reference sample padding is performed when no reference samples exist
 - There are no reference samples or partially available
 - ☐ The basic idea of reference sample padding
 - Fill in a sample that does not exist using the closest sample available

- Proposed Method
 - Assumption for reflecting the linearity of the available samples

If the available samples are linear, performance improvement is expected by filling the non-existing samples linearly

[2]

Determine linearity

$$Abs(s_1 + s_2 - 2s_{mid}) < (1 \ll (BitDepth_Y - x))$$

- As Increase linearity factor x, the condition of linearity is more strict
- ☐ If the above condition is satisfied, linear padding is performed
 - The variation is reflected according to the position of the padding area

$$s_1 - s_2 = \Delta S_x$$

 $s_1 - s_3 = \Delta S_y$ $P_x = s_2 - \frac{\Delta x \Delta S_x}{width_{CU}}$ $P_y = s_3 - \frac{\Delta y \Delta S_y}{height_{CU}}$

- □ In case of the CU blocks boundary, reference the reconstruct block (Case 2, 3)
- Experimental Result
 - Test conditions
 - JEM 7.0 rc1, All Intra, HD (1920x1080) 64 frames, linear factor x = 8

		BD-rate		
HD sequence	Υ	U	V	
ParkScene	0.02%	-0.10%	-0.13%	
Cactus	0.03%	-0.32%	0.16%	
BasketballDrive	-0.09%	-0.14%	-0.32%	
BQTerrace	-0.03%	0.23%	0.27%	
		_		

	_		
HD sequence	Υ	U	V
ParkScene	0.01%	-0.08%	-0.04%
Cactus	0.02%	0.07%	0.13%
BasketballDrive	0.02%	-0.26%	-0.10%
BOTerrace	0.05%	0.17%	-0 14%

- < Test 1. Apply only Case 1>
- ly Case 1> < Test 2. Apply Case 1, 2, 3>
- Analyze with JEM Bitstream Analyzer
 - Proposed method reduces the range of residue value. This improves quality by reducing quantization error. But the inverse cases also exist

< Proposed >

An increase in bit amount can also be caused when divided into smaller

Prediction mode: 60
Y residue range: -36 ~ 7

Prediction mode: 63
Y residue range: -35 ~ 65

Prediction mode: 63
Y residue range: -9 ~ 24

< Proposed >

< Anchor >

III. Merge Mode in JEM

- Merge mode
 - Merge mode to derive the motion information from spatially or temporally neighboring blocks
 - Transmit index information to select one out of several available candidates (5 candidates)

S_0	\mathcal{S}_1	S_2	S_3	Col
-------	-----------------	-------	-------	-----

- spatial candidates (max 4 candidates)
 - Search for spatial candidates S_0 , S_1 , S_2 , S_3
 - Remove redundant candidates
- temporal candidates (max 1 candidate)
 - Search for temporal candidate *Col*
- combined bi-predictive candidates
- zero motion vector candidate

Proposed Method

- Change the List of Merge by Block Size
 - If $width \ge height$ Existing merge sequence in JEM is followed

If width < height
Change the derivation order of Left and Above

- The order of MERGE candidates is different according to the shape of CU block and the CU's partition information
 - when width = height, it was not always QT split.
- The width, height do not represent all CU split structures
 - Determined only by the CU partitioning

BD-rate (cubic)

-0.42%

Experimental Result of Method

- Test conditions
 - JEM 7.0, Random Access, HD (1920x1080 for 1sec)

	BD-rate (piecewise cubic)			BD-rate (cubic)		
	Y	U	V	Y	U	V
-oodMarket	0.06%	0.36%	0.35%	0.08%	0.37%	0.36%
Гango	0.01%	-1.23%	0.03%	0.01%	-1.25%	0.01%
CatRobot	0.07%	-0.03%	0.37%	0.05%	-0.05%	0.32%
DaylightRoad	-0.02%	-0.25%	0.08%	-0.01%	-0.25%	0.09%
BuildingHall	-0.01%	-0.17%	-0.13%	-0.01%	-0.16%	-0.13%
UHD Total	0.02%	-0.26%	0.14%	0.02%	-0.27%	0.13%
BQTerrace	-0.06%	-0.33%	0.38%	-0.07%	-0.32%	0.37%
RitualDance	-0.15%	-0.04%	-0.21%	-0.15%	-0.07%	-0.35%
Гimelapse	-0.12%	0.19%	-0.45%	-0.12%	0.12%	-0.55%
BasketballDrive	-0.16%	0.47%	0.57%	-0.18%	0.45%	0.56%
Cactus	-0.10%	0.10%	0.01%	-0.10%	0.10%	0.02%
HD Total	-0.12%	0.08%	0.06%	-0.12%	0.05%	0.01%
Total	-0.05%	-0.09%	0.10%	-0.05%	-0.11%	0.07%
	, T ₀	-11	Dlaa	ار م! –	•	
	< 16	STI =	BIOC	k siz	∀ >	

Cactus	0.03%	0.03%	-0.26%	0.04%	0.03%	-0.26%
HD Total	-0.05%	-0.03%	-0.18%	-0.05%	-0.04%	-0.15%
< Test2 = Test1 + partitioning >						
	BD-rate (piecewise cubic)			BD-rate (cubic)		
	Y	U	V	Y	U	V
BQTerrace	-0.11%	-0.27%	-0.06%	-0.11%	-0.28%	-0.06%
RitualDance	0.00%	-0.10%	-0.07%	0.00%	-0.04%	-0.03%
Timelapse	-0.05%	0.41%	0.05%	-0.05%	0.39%	0.08%
BasketballDrive	-0.04%	0.38%	-0.20%	-0.02%	0.34%	-0.20%
Cactus	-0.06%	-0.09%	-0.24%	-0.06%	-0.09%	-0.23%
	i			i		

-0.05% 0.06% -0.11% -0.05% 0.06% -0.09% -0.05% 0.06% -0.09% -0.05% 0.06% -0.09%

Analyze

• By using proposed method, the percent of taking Above MV is changed

BasketballDrive

< The MV is about 1~2% further changed>

IV. Conclusions

- ☐ The proposed method of RSP has almost the same performance as the conventional method
 - Several sequence get a small gain when proposed method only applies to Case1
- The proposed method of taking Merge list has the best performance when considering only the block size
 Logically, It is accurate when adding multiple conditions(ex. Partitioning and
 - Second CU), but not in terms of performance.

 Although the performance improvement is 0.12% in HD size, performance loss occurs in UHD.

