DRINKING WATER SURVEILLANCE PROGRAM

BELLE RIVER WATER TREATMENT PLANT

REPORT FOR 1991 AND 1992

BELLE RIVER WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

BELLE RIVER WATER TREATMENT PLANT 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Belle River water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration and disinfection. Powder activated carbon is added for taste and odour control when required. This plant has a design capacity of 18.0 x 1000 m $^3/{\rm day}$. The Belle River water treatment plant serves a population of approximately 13,000.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Belle River water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE
A '' INDICATES THAT NO SAMPLE WAS TAKEN

	SCAN	SITE RAW TESTS	POSITIVE %	OSITIVE	TRE	TREATED STS POSITIVE %PO	DSITIVE	SOU	SOUTH ST STS POSITIVE	%POSITIVE	WES TESTS	TE RAW TESTS POSITIVE %POSITIVE #POSITIVE #POSITIVE TESTS POSITIVE %POSITIVE #POSITIVE #POSITIVE #POSITIVE #POSITIVE	SITIVE
	BACTERIOLOGICAL	45	28	62	16		•	2		0	. 12	0	0
	CHEMISTRY (FIELD)	51	51	100	102	102	100	20	20	100	120	119	8
	CHEMISTRY (LABORATORY)	705	374	93	406	305	75	82	. 20) 85	627	207	, 84 ,
	METALS	207	166	07	408	119	59	92	Μ	33 35	552	185	33
	CHLOROAROMATICS	168	0	0	168	0	0	17		0 0	86	0	0
	CHLOROPHENOLS	59	0	0	57	0	0	٠				•	
	PESTICIDES AND PCB	277	-	0	277	•	0	22		0, 0	156	-	0
	PHENOL ICS	17	-	\$	17	3	17						
	POLYAROMATIC HYDROCARBONS	136	0	0	102	0	0				82	0	0
	SPECIFIC PESTICIDES	81	0	0	83	0	0	•			2	0	0
	VOLATILES	505	0	0	505	89	13	95		3 , 12	350	87	13
	RAD I ONUCL I DES	21	9	28	12	2	33	•			•		•
TOTAL		2,309	627		2,299	909		567	131	_	1,854	756	

DRINKING WATER SURVEILLANCE PROGRAM

BELLE RIVER WATER TREATMENT PLANT 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Belle River water treatment plant in May of 1990. A previous DWSP annual report was published for 1990.

PLANT DESCRIPTION

The Belle River water treatment plant is a conventional treatment plant which treats water from Lake St. Clair. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration and disinfection. Powder activated carbon is added for taste and odour control when required. This plant has a design capacity of $18.0 \times 1000 \, \text{m}^3/\text{day}$. The Belle River water treatment plant serves a population of approximately 13,000.

The sample day flows ranged from 4.9 x 1000 m^3/day to 12.8 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration.

Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative

sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- -THE TREATED AND DISTRIBUTED WATER:
- -ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- -POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C . The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 12 of 31 treated and distributed water samples with a maximum reported value of 25.0°C .

CHEMISTRY (LABORATORY)

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in 8 of 30 treated and distributed water samples with a maximum reported value of 546 umho/cm.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in all 30 treated and distributed water samples with a maximum reported value of 249 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 13 of 31 treated and distributed water samples with a maximum reported value of 350 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

Hexachlorocyclopentadiene was found at positive levels in 2 of the 15 treated and distributed water samples analyzed. The maximum observed level was 74.0 ng/L. This was below the United States Environmental Protection Agency Ambient Water Quality Criteria of 206,000 ng/L.

Traces of pesticides including atrazine, desethyl atrazine, simazine, metolachlor and dicamba were detected. This is consistent with findings at other locations in the area.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs have been revised to replace the aesthetic phenolic objective with objectives for specific phenols.

Phenolics were found at positive levels in 3 of the 17 treated and distributed water samples analyzed. The maximum observed level was 1.6 ug/L.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected above trace levels.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 31 treated and distributed water samples analyzed with a maximum level of 71.0 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bq/L). No results were above the available guidelines.

CONCLUSIONS

The presence of a number of pesticides which were detected at the Belle River water treatment plant indicates that this raw water source is adversely affected by agricultural activity.

The results are similar to those found in previous years.

No known health related guidelines were exceeded.

The Belle River water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #:

BELLE RIVER WTP

220003412

UTM #:

173592504684575

DISTRICT:

WINDSOR SOUTHWEST

REGION:
DISTRICT OFFICER:

J. DRUMMOND

SUPERINTENDENT:

ED RENAUD

ADDRESS:

497 LAKEVIEW DR. GEN. DEL.

BELLE RIVER, ONTARIO

NOR 1AO 519-728-1680

MUNICIPALITY: AUTHORITY:

BELLE RIVER MUNICIPAL

PLANT INFORMATION

PLANT VOLUME:

(X 1000 M3)

DESIGN CAPACITY:

18.000 (X 1000 M3/DAY)

RATED CAPACITY:

- (X 1000 M3/DAY)

MUNICIPALITY POPULATION
BELLE RIVER 3,600
TWP OF MAIDSTONE 3,420
TWP OF ROCHESTER 5,980

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	FILTERED TREATED	4 TIMES/DAY 4 TIMES/DAY
PH	RAW TREATED	DAILY READING DAILY READING
TEMPERATURE	RAW TREATED	DAILY READING DAILY READING
TURBIDITY	RAW FILTERED TREATED	DAILY READING CONTINUOUS CONTINUOUS

Page 10

TABLE 3 DRINKING WATER SURVEILLANCE PROGRAM BELLE RIVER WTP SAMPLE DAY CONDITIONS AND TREATMENT CHEMICAL DOSAGES FOR 1991 AND 1992

TASTE AND ODOUR ACTIVATED CARBON POWDER	3.50 5.05 11.00 8.83
POST CHLORINATION CHLORINE	THE 12 C S S 160 54.20 3.31 2.55 2.55 3.40 3.40 3.30 5.30 3.31 2.55 3.55 3.40 3.30 3.31 3.57 3.57 3.57 3.57 3.57 3.50 3.30 3.30 5.20 5.20 5.20 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.3
COAGULATION A10 POLYELECTROLYTE	3.85 3.31 4.603 2.27 2.29 2.29 2.38 3.20 3.20 3.20 3.66 3.36 3.30 1.11
COAGULATION POLYALUMINUM SILICATE SULPHATE FLCW (1000M3)	5, 160, 54, 20 5, 340, 39, 30 6, 356, 28, 10 5, 356, 22, 8 7, 790, 53, 90 12, 800, 23, 40 8, 970, 23, 40 8, 970, 23, 40 8, 970, 23, 40 8, 970, 23, 40 5, 300, 13, 10 5, 300, 25, 75 5, 440, 24, 70 10, 750, 19, 50 10, 750, 19, 50 5, 500, 38, 80 5, 400, 38, 80
OELAY ₹ F TIME(HRS) (200000000000000000000000000000000000000
DATE	91 JAN 22 91 FEB 129 91 MAR 19 91 MAY 210 91 JUN 18 91 JUN 120 91 NOCT 22 91 NOCT 22 92 APR 21 92 APR 21 92 AUG 17

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - 2. Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
.! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken
! UN	No Data: Result Unreliable

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

WSD Wrong Sample Description On Bottle

Ŷ

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

*																	¢															
DIST. SYSTEM WEST RIVER STANDING	(A1)		•									•		•	٠	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•						•						•	•	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 5/100ML (A1)	٠														٠	GUIDELINE = N/A	•			•						•					
DIST. SYSTEM SOUTH ST STANDING	N9	•		٠	٠	•			•	•							N9							•		•			٠	•		•
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0	•															DET'N LIMIT = 0															
TREATMENT PLANT TREATED		٠					•	٠															•									
TREATMENT PLANT RAW	BACTÈRIOLOGICAL MF (CT/100ML)	9000 A3C	80 <=>	170 A3C	610 A3C	20 <=>	50 <≈>	<=> 07	80 <=>	108	10 <=>	1600 A3C	20 <=>	<=> 07	15000 >	1100 <=>	T COLIFORM BCKGRD MF (CT/100ML)	70000 A3C	989	4100 A3C	20000 A3C	11000 A3C	4300 A3C	11000 A3C	8000 A3C	2100	2900	90000 A3C	16000 A3C	4900 A3C	20000 A3C	20700
	BACTÈRIOLOC TOTAL COLIFORM MF (CT/100ML)	1991 JAN			1991 APR			1991 AUG	1991 SEP		1991 NOV			1992 AUG		1992 DEC	T COLIFORM BCK	1991 JAN	1991 FEB		1991 APR	1991 JUN									1992 NOV	1992 DEC

DIST. SYSTEM HEST RIVER STANDING		. 400	.200	007.	. 200	700	100	2000	002.	002.	007.	004.	. 200	. 200					•				009							٠					•
DIST. SYSTEM DIST. SYSTEM SOUTH ST WEST RIVER STANDING FREE FLOW	GUIDELINE = N/A	. 300	. 300	. 300	. 500	007	000			002.		007.	. 200					. 200	. 100	GUIDELINE = N/A	200		002	200		006.	006.	1.100	006.	. 500	1.000	. 800			
SUKFILLANCE FROGRAM 1971 DIST. SYSTEM DIST. SYSOUTH ST SOUTH ST FREE FLOW STANDING	DET'N LIMIT = 0			٠		•	•											007.	.200	DET'N LIMIT = 0					•							•			
DRINKING WATER TREATED	ELD)	.350	. 130	. 180	170	001	120	031.	080.	060.	.920	.080	.170	.160	060.	060.	.130	. 120	.140		750	000	000.	057	870	0.470	1.170	079.	. 140	.730	1.030	069°	.590	009.	 . 680
TREATMENT PLANT RAW	COMB) (MG/L)				•		:													FREE (MG/L)					•										
	CHEMIST COMB) (MG/L	1991 JAN		1001 MAR				NO7 66							1992 APR			1992 NOV		FLD CHLORINE FREE (MG/L		1991 JAN	1991 FEB				1991 JUL		1991 SEP			1992 FEB		1992 JUN	

178LE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER UTP

	RAW PLAN	TREATED FLANI	OIST. SYSTEM SOUTH ST FREE FLOW	DIST. SYSTEM SOUTH ST STANDING	DIST. SYSTEM WEST RIVER FREE FLOW	DIST. SYSTEM WEST RIVER STANDING
D CHLORINE	CHEMISTRY (FIELD) FLD CHLORINE (TOTAL) (MG/L)) .	DET*N LIMIT = 0		GUIDELINE = N/A	
1991 JAN	•	.800			.800	.500
		1,130			1,300	1,100
		1.060			1,000	1,000
		.620			1.000	.300
		026.			1.100	1.100
	•	.590		•	006.	1.000
1991 JUL		1.250	•		1.300	1.000
		.730		٠	1.300	1.000
	•	1.060			1.100	1.000
		.810			006.	1.000
	•	1.200			1.300	1.000
1992 FEB		.850		•	1.000	006.
	•	009.	•		•	
	•	069.			•	
		.810				
1992 NOV	•	1.130	006.	.300		
1992 DEC	٠	1.080	1.100	.200		
FLO PH (DMNSLESS	ESS)		OET'N LIMIT = N/A		GUIDELINE = 6.5-8.5 (A4)	(A4)
1991 JAN	8.400	7.500		,	7.500	7.400
	7.500	7.100	•		7.400	7.400
1991 MAR	7.500	7,100			7.500	7.600
	8.200	7.600			7.700	7.800
1991 MAY	8.100	7.500		•	7.400	7.400
	8.130	7.670			7.500	7.600
	9.110	7.980		•	7.600	7.600
1991 AUG	8.940	7.820	•		2.600	7.500
	8.960	7.960			2.600	2.600
1991 OCT	8.300	7.700	•	•	2.400	7.300
	8.210	7.760	•	•	2.400	7.500
1992 FEB	8.340	7.950			7.800	8.100
	8.440	7.890				
	8.310	7.820		٠	•	٠
1992 AUG	8.200	7.700				
1992 NOV	8.240	7.410	7.000	7.200		•
1007 DEC	US7 8	0.50	7.700	7.600		

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

DIST. SYSTEM WEST RIVER STANDING		17 000	15 000	2000	13.000	12.000	18,000	19.000	21.000	23.000	23,000	16.000	15.000	11,000		•																				
OIST. SYSTEM DIST. SYS WEST RIVER WEST RIVE FREE FLOW STANDING	GUIDELINE = 15 (A3)		000.5					20.000												GUIDELINE = 1.0 (A1)						•	•			•	•	•	•			
DIST, SYSTEM SOUTH·ST STANDING														٠				14.000	10.000											•					•	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = N/A					٠												11.000	7.000	DET'N LIMIT = N/A				•		.•		٠								•
TREATMENT PLANT TREATED	ELD) .		3.000	3.000	2,000	10.000	18,000	24.000	24,000	25,000	24.000	12.000	9.000	3.000	11.000	21.000	. 20,000	5.000	3.000		. 110	. 030	090.	.050	. 030	070.	.030	020.	020.	.030	.030	070.	090.	.080	060.	020.
TREATMENT PLANT RAW	CHEMISTRY (FIELD) E (DEG.C)		1,000	2.000	000.4	9.000	17,000	24.000	24.000	24.000	23,000	10,000	9.000	2,000	13.000	21.000	20,000	4.000	2.500	(FTU)	57.850	9.780	26.990	286,000	35.930	42.450	21.570	109.500	37.340	13.690	25.700	5.290	19.500	83.980	20.900	109.700
	CHEMI FLO TEMPERATURE (DEG.C		1991 JAN	1991 FEB	1991 MAR			1001			1001 CFP								1992 DEC	UT3) YTIOTHAILT OTS	1991 JAN	1991 FEB		1991 APR								1992 FEB		1992 JUN	1992 AUG	

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

							;
	CHEMISTRY (LABORATORY)	4BORATORY)	DET'N LIMIT = 0.2	15	GUIDELINE = 30-500 (A4)	A4)	
	119.200	103.600			104.700	103.900	-
	115.300	103.500	٠		104.300	104.900	
1991 MAR	138.400	129.500	. •		131.900	129.400	
	153.900	180.500		•	172.300	170.100	
1991 MAY	145.300	139.900	•		141.800	141.800	
1991 JUN	93.200	86.700		•	84.500	84.900	
	75.300	75.700			76.300	72.900	
1991 AUG	76.000	74.100	•		٠	70.800	
1991 SEP	84.100	79.000	•	•	77.200	27.000	
	89.100	82.100	•	•	81.300	81.200	
	88.200	78.300		•	79.300	79.800	
	98,500	05.400	•	•	96.800	97.200	
1002 APR	131 000	140.800					
	002 200	80 000	•		•	i	
1992 JUN	132 000	13.500	•	•			
	02.300	21.000	. 400	200	•	•	
1992 NUV	120 300	130 500	126 200	128 400		•	
					. :		:
CALCIUM (MG/L	^		DET'N LIMIT = 0.20	09	GUIDELINE = 100 (F2)		
	50.600	50.800			51.200	50.200	
1991 FEB	47.200	72.900	•	•	47.500	47.100	
_	54,200	54.300	٠		55.500	55,300	
	62.400	007.82	. ,	•	74.800	75.400	
1001 MAY	56 800	57 600			007.75	57.800	
	33 600	37, 800	•		007 22	002.75	
	27. 400	27 100			26 700	25 900	
1001 110	24.000	000.00	•	•		26 700	
2001	000.00	21,000			. 000 02	30 7 00	
	20.000	31.000		•	20.000	004.42	
	20.600	31.800			51.800	32.200	
	30.100	29.600			30.700	30.300	
	39.400	41.300	•	٠	41.000	70.700	
1992 APR	55.600	64.300	•				
	30.700	32.500	•				
	53.000	56.350	•	•			
	34, 200	36.350	36.600	36.450			
1992 DEC	47.000	50.750	49.300	50.400	•	. •	
							:
CYANIDE (MG/L	^		DET'N LIMIT = 0.001	-	GUIDELINE = 0.2 (A1)		
28 SAMPLES	CB	BOI					

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

TREATMENT PLANT	T TREATMENT PLANT TREATED	DIST. SYSTEM SOUTH ST FREE FLOW	DIST. SYSTEM SOUTH ST STANDING	OIST. SYSTEM WEST RIVER FREE FLOW	DIST. SYSTEM WEST RIVER STANDING
IISTRY (CHEMISTRY (LABORATORY)	DET'N LIMIT = 0.20		GUIDELINE = 250 (A3)	
3.300	24.300			25.100	25.500
7.300	19.900	:		19.500	19.700
007.9	27.300			28.600	28.100
16.200	17.400			30.800	30.800
22.900	25.900			26.900	27.600
11.200	13.900	•		13.100	13.300
12.700	13.900			19.200	18.300
13.500	14.100				16.300
12,600	14.600			15.000	15.000
9.000	11.200			11,200	11.300
10.800	12,300			12.600	12.600
18.600	23.500			25.900	21.900
34.000	36.700				
15.800	14.800	•	•	٠	,
30.900	35.800				
12.300	16.100	16.200	16.000		•
15.000	18.800	18.200	18.600	•	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0.50		GUIDELINE = 5 (A3)	
90.500	2.500	٠		2.500	
8.000	B0L			BDL	
6.500	2,000 <1			1.500 <1	2,000 <1
8.500	3.000			3,000	
4.500	BDL			8DL	
1,000 <1				T> 005.	.500 <t< td=""></t<>
2.000	.500 <1	•		.500 <t< td=""><td>.500 <1</td></t<>	.500 <1
BDL		•		٠	B0L
1.500	2.000			8DF	.500 <t< td=""></t<>
1.000 <t< td=""><td></td><td>•</td><td></td><td>BDL</td><td>BDL</td></t<>		•		BDL	BDL
BDL	BDL	•		BOL	BDL
3.000	.500 <1	•	•	T> 005.	.500 <t< td=""></t<>
8.000	.500 <1	•	٠		
9.000	1> 005.	•	٠	٠	•
7.500	2.500				
21.000	2.000	1,000 <↑	2.000		
11.000	2.000		2.500		

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

			SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
T1V1TY	CHEMISTRY (LABORATORY)	BORATORY)	DET'N LIMIT = 1.0	1 1 1 1 5 5 6 6 7	GUIDELINE = 400 (F2)	
100	582	383			390	390
	272	351	•		349	351
	707	7.22	•		730	455
	075	27.6			625	523
	7 (4)	0,000		•	717	7.18
	214	204				2770
	262	5/7			507	200
991 JUL	554	242	•		597	/57
	225	236				241
	777	526			255	524
	247	576	,		245	547
200	3/3	27.5	•		247	248
	0.47	(47			143	102
	31/	559			50	77
1992 APR	205	200	•		,	
1992 JUN	272	275				
	627	687				
	263	290	292	586	•	
	351	380	371	378	•	•
RG CAR	DISS ORG CARBON (MG/L)		DET*N LIMIT = 0.10		GUIDELINE = 5.0 (A3)	9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
991 JAN	4.500	2.700		٠	2.900	3.000
	2,700	1,700		•	1.800	1.800
	3.600	2.500			2.700	2.800
	2005	100			3,100	2.900
	5.600	000.	•	•	2000	2 200
	3.200	1.800	•	•	7.000	7.500
991 JUN	2,100	1.400	•		1.200	1.500
	2.600	1.300	•	٠	1.300	1.300
	2.800	1.300				1.300
	2 500	1 200		٠	1,100	1.200
	1 800	1 200			1 200	1.200
	000.1	007.			1 100	1 200
	009.1	1.100			001.	007.
1992 FEB	1.800	1.400			1.500	004.1
	3.300	2.200				
	2,200	1.400				
	3 800	3.000	•			
	230.5	1 700	1 800	1 000		
AON ZAA	5.500	007-1	000.	002.0	•	

DIST. SYSTEM WEST RIVER STANDING		130	031.	001.	.120	. 140	080	. 100	.100	.100	.140	.100	.080	. 100			•	•		14.)	174.800	161.100	185,800	250.000	199.000	122.000	102.200	103.000	111,000	113.000	108.900	146,000					
OIST. SYSTEM WEST RIVER FREE FLOW	GUIOELINE = 1.5 (A1)	130	021.	001.	.120	. 140	080.	.100	.100	٠	.140	.080	.080	.100						GUIDELINE = 80-100 (A4)	176.200	162,200	188,400	249.000	200,000	119,000	105.900		114.000	112.000	109.900	146.000	•		•	•	
DIST. SYSTEM SOUTH ST STANDING								•		•	•	•		٠	•	٠		090.	. 140	1	•		•	•	•	•		•	•	•	•	•	•	•	•	125.160	170.710
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.01				•		•									•	•	090.	.120	DET'N LIMIT = 0.5		٠	•							•		•		•		125.470	229.670
TREATMENT PLANT TREATED	BORATORY)	000	021.	001.	. 120	. 160	. 100	. 100	.100	080	.140	.080	080	.100	. 140	080	.160	.080	. 120	• • • • • • • • • • • • • • • • • • •	174.700	163.700	185,100	247.000	198,000	125.000	102.200	108,000	115.000	112.000	107.000	146.000	228.300	118,000	203.900	125.190	171.200
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)		0.00	100	.120	. 140	140	. 100	100	. 100	.140	.100	. 100	100	160	100	.140	. 120	. 100	•	178,200	161.200	186.400	208.000	198,000	121,000	101.000	102.000	109.000	110,000	108.800	141.000	195.000	117,000	193.540	120.470	161.680
	FLUORIDE (MG/L					1991 APR	1991 MAY	1991 JUN		1991 AUG	1991 SEP				1007 APR					HARONESS (MG/L	1991 JAN	1991 FEB					1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 FEB		1992 JUN			

ž	RAW	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
IONCAL (DMNSLESS	CHEMISTRY (LABORATORY)	BORATORY)	DET'N LIMIT = N/A		GUIDELINE = N/A	
NAL 190	1.366	5.494			1.986	. 785
	2.011 NAF	1.336 NAF			2.258 NAF	1.226
	4.977 NAF	2.638 NAF	•		3.712 NAF	2.559
991 APR	6.366 NAF	3.482 NAF			.277 NAF	1.916
		1.401 NAF	•		1.586 NAF	2.543
	2.514 NAF	1.901 NAF	•	•	.927 NAF	
	.578 NAF	3.862 NAF		•	6.056 NAF	9.090
		3.416			.000 NAF	.051
991 SEP	3.594 NAF	4.275 NAF	•		4.858 NAF	
	3, 139	1.596	•	•	2.239	
	269	777	•		2.280	1.547
000 558	202 7	3 716			70U E	267 2
	789	2,639	•			
	2 15/ MAE	2 2/4 11/5			•	
	7XN #C1.2	770				•
2002 2000	304.	752 1		2 /54	•	•
	906-	.330		2.430	•	•
992 DEC	1.634	4.209	3.471	2.963		
POTASSIUM (MG/L	^		DET'N LIMIT = 0.01		GUIDELINE = 10 (F2)	
991 JAN	2.780	2.160			2.180	2.180
1991 FEB	1.850	1.770			1.730	1,760
	2.120	1.950	•	•	1.950	1.980
	2.400	2.750	.•	•	2.600	2.550
991 MAY	2.100	1.900	•	•	2.000	2.000
	1.450	1.350			1.400	1.300
	1 050	1 120			1.440	1.350
410	000	010	•	•		1 150
	003.1	000.	•		1 200	021.1
	002.	007.	•		002.1	000.
	1.350	1.500		•	056.	067.1
_	1.290	1.140	•	•	061.1	1.180
992 FEB	1.390	1.390			1.540	1.360
992 APR	2.567	5.469		•		
992 JUN	1.470	1.140	•			
	2.833	2.962	•	•		
	7 026	2 273	2 314	2 227		
					•	•

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

DIST. SYSTEM WEST RIVER STANDING		337	304 705	781	35.5	7.5.1	177	016	750 -	. 134	110	- 1995	767			•					12 000	10.550	11 600	001.31	13,500	004.8	01100	000.0	0.100	8 000	8 100	10 200		•	•		
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	320	300 NAF	781	968	718	.245	700		. 155	.115	. 022	227		•	•	•	•		GUIDELINE = 30.0 (F2)	11 750	10.550	12.100	15 100	13 800	8, 700	0 550		9, 100	7.900	8,100	10 600		•	•		
DIST. SYSTEM SOUTH ST STANDING	פח															•	. 148	(7.7)	2/4.	GUI		•		•	•											8.290	10.900
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = N/A								•	٠			•				107	747	2	DET*N LIMIT = 0.1									•	•						8.280	10.680
TREATMENT PLANT TREATED	BORATORY)	272.	. 299 NAF	727.	768.	.724	. 171	960.	.028	.197	.109	053	077	999.	.372	.673	178	502	3000		11.600	10.700	12.000	15.500	13,100	9.200	8.350	8.700	9.200	8.000	8.050	10.500	16,380	8.880	15.360	8.370	10.800
TREATMENT PLANT	CHEMISTRY (LABORATORY) (DMNSLESS)	.481	.600 NAF	.801	. 778	.804	.292	.048 NAF	.276	267	.281	.057	.546	. 791	.156	.801	. 287	799		^	12.600	10.550	12.400	12,700	13.600	9.000	8.800	000.6	9.100	8.200	8.150	10.300	13.620	9.880	14.880	8.510	10,780
⊢ œ̃	CHEMISTRY LANGELIERS INDEX (DMNSLESS)	1991 JAN		1991 MAR		1991 MAY			1991 AUG					1992 APR				1992 DFC		MAGNESIUM (MG/L	1991 JAN	1991 FEB		1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 FEB		1992 JUN			1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

	RAW	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER	WEST RIVER STANDING
SODIUM (MG/L	CHEMISTRY (LABORATORY)	ABORATORY)	DET'N LIMIT = 0.20	N9	GUIDELINE = 200 (A4)	
1991 JAN	10.000	007.6	•		9.800	006.6
	7,900	8.000	•		7.900	7.800
	12.700	12.300			12.200	12.500
	11.800	15.000	•		14.600	14.400
1991 MAY	12.200	12.000		•	12.800	12.600
	6.200	6.200			6,000	9.000
	6.800	9.900			9.300	8.500
	7,800	6.800	•			8.200
	8,000	7.800			8.400	8.400
1991 OCT	6.200	5.800		•	6.200	2,600
	9.400	6.100	•		6.400	6.300
	10.400	11,700	•		11,500	10.900
	16.910	17.390				
	072 6	7.270	•		•	
	15, 770	16.860				
	5.820	6.130	6.140	6.090		
	7.070	7.400	7.240	7.390	•	
TOT ML	AMMONIUM TOTAL (MG/L)		DET'N LIMIT = 0.002		GUIDELINE = 0.05 (F2)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1991 JAN	.042				1> 900.	
	1> 200.		•	•	BDL	
	.022	BDL			B0L	801
	T> 900.	T> 800.	•	•	1> 900.	.004 <1
1 MAY	.018	801	•		.002 <t< td=""><td>1> 400.</td></t<>	1> 400.
	.042	BDL	•		BDL	BDL
	.030	. 000 <t< td=""><td></td><td></td><td>1> 900.</td><td>.012</td></t<>			1> 900.	.012
	1> 400.	BDL	•	•	•	801
1991 SEP	.012	BDL		•	1> 400.	30F
	1> 200.	B0L	•		B0L	. BDL
1991 NOV	210.	B0L		•	B0L	BDL
	.028		•	•	.004 <1	. 000 <t< td=""></t<>
1992 APR	.036	.008 <1			•	
	770.	B0L	•			
	770.					
1992 NOV	BDL	. 002 <t< td=""><td>. 004 <t< td=""><td>.006 <1</td><td></td><td></td></t<></td></t<>	. 004 <t< td=""><td>.006 <1</td><td></td><td></td></t<>	.006 <1		

DIST. SYSTEM WEST RIVER STANDING		80F	108	BDL	8Df	.001 <1	108	B0L	BOL	B0L	108	80F	108				•			3.060	2.210	3.660	4.570	2.640	.780	.200	.025	.035	245	.370	1.550				
DIST. SYSTEM DIST WEST RIVER WEST FREE FLOW STAN	GUIDELINE = 1.0 (A1)	T> (00.	. 108	108	80F	B0L	108	BDL		B0L	108	108	80r						GUIDELINE = 10.0 (A1)	3.060	2,210	3.800	4.800	2.620	.750	.250	•	.030	.240	.380	1.820				
DIST. SYSTEM SOUTH ST STANDING			-														. 001 <1	108		•	•				•									- :	0.010
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.001					•					•					•	108	108	DET'N LIMIT = 0.005		•									•		٠		. !	1.030
TREATMENT PLANT TREATED	30RATORY)	T> 100.	BOL	B0L	. 001 <t< td=""><td>BOL</td><td>108</td><td>80 C</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>. 100.</td><td>BOL</td><td>.001 <t< td=""><td>BOL</td><td>108</td><td></td><td>3.000</td><td>2.190</td><td>3.680</td><td>5.060</td><td>2.530</td><td>006.</td><td>.080</td><td>. 105</td><td>.050</td><td>.250</td><td>.370</td><td>1.590</td><td>4.320</td><td>. 560</td><td>7.700</td><td>1.020</td></t<></td></t<>	BOL	108	80 C	BDL	BDL	BDL	BOL	BOL	. 100.	BOL	.001 <t< td=""><td>BOL</td><td>108</td><td></td><td>3.000</td><td>2.190</td><td>3.680</td><td>5.060</td><td>2.530</td><td>006.</td><td>.080</td><td>. 105</td><td>.050</td><td>.250</td><td>.370</td><td>1.590</td><td>4.320</td><td>. 560</td><td>7.700</td><td>1.020</td></t<>	BOL	108		3.000	2.190	3.680	5.060	2.530	006.	.080	. 105	.050	.250	.370	1.590	4.320	. 560	7.700	1.020
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	. 048	.011	.031	890.	.037	.023	.004 <t< td=""><td>500.</td><td>500.</td><td>T> 400.</td><td>T> 400.</td><td>600°</td><td>.035</td><td>.013</td><td>.033</td><td>.037</td><td>.016</td><td>(MG/L)</td><td>2.940</td><td>2.210</td><td>3.450</td><td>3.340</td><td>2.650</td><td>.815</td><td>.050</td><td>1> 210.</td><td>.025</td><td>.230</td><td>.380</td><td>1.510</td><td>4.850</td><td>.590</td><td>7.540</td><td>506.</td></t<>	500.	500.	T> 400.	T> 400.	600°	.035	.013	.033	.037	.016	(MG/L)	2.940	2.210	3.450	3.340	2.650	.815	.050	1> 210.	.025	.230	.380	1.510	4.850	.590	7.540	506.
_	VITRITE (MG/L		1991 FEB	1991 MAR	1991 APR								1992 FEB			1992 AUG		1992 DEC	WITRATE (TOTAL) (MG/L	1991 JAN					1991 JUN		1991 AUG								1992 NOV

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

DIST. SYSTEM WEST RIVER STANDING		. 360	.220	.310	1.800	.200	.120	.160	T> 070.	. 120	. 140	. 120	.210		•				(A4)	8.070	8.060	8.380	8.210	8.270	8.140	8.130	8.090	8.200	8.110	7.940	8.340					
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A	.380	.250	.310		.190	.130	.110		108	. 190	140	170			•		٠	GUIDELINE = 6.5-8.5 (A4)	8.050	8.060	8.370	8.250	8.260	8.220	8.120		8.200	8.120	8.010	8.260			•		
DIST. SYSTEM SOUTH ST STANDING	פטונ					٠	•			•					•		.210	.350	פחונ				•		•			•					•	•	7.860	8.110
DIST. SYSTEM COUTH ST SOUTH ST FREE FLOW	DET'N LIMIT = 0.02						•			•	•						.220	.350	DET'N LIMIT = N/A												٠	•	•	•	7.890	8.120
TREATMENT PLANT TREATED		140	.230	.330	006.	. 190	. 160	.080 <	.110	100.	. 140	.210	. 160	.330	.200	007.	. 180	.260		8.000	8.050	8.380	8.240	8.270	8.120	8,200	8.110	8.230	8.110	8.000	8.290	8.170	8.340	8.260	7.840	8.130
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY) KJELD (MG/L)	7.80	410	. 590	2,150	.380	.290	.280	.260	.450	.260	.210	.340	.550	.420	.630	.550	067		8, 150	8 310	8.380	8.250	8.340	8.220	8,190	8.390	8.530	8.260	8.050	8.400	8.390	8.130	8.410	8.190	8.330
	CHEMIS CHEMIS	1001		1091 MAR		1991 MAY		1991 JUL	1991 AUG		1991 OCT	1991 NOV			1992 JUN	1992 AUG		1992 DEC	PH (DMNSLESS)	1001	1001 FFR	1001 MAR	1001 APR	1991 MAY		1991 JUL		1991 SEP	1991 001	1991 NOV				1992 AUG		

ω
~
e)
ō
æ

	RAW	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
RESIDUE FILIRATE	CHEMISTRY (LABORATORY) ATE (MG/L)	BORATORY)	DET'N LIMIT = N/A	ō	GUIDELINE = 500 (A3)	
1001	250 000 080	249,000 CRO			253.000 CRO	253.000 CRO
	223.000 CRO					
	277,000 CRO		. •			
	281,000 CRO					
		265.000 CRO				
						173.000 CRO
				٠	172.000 CRO	
1991 AUG	146,000 CRO	153,000 CRO				
1991 SEP						
1991 OCT	154.000 CRO					
1992 FEB	206.000 CRO				106.000 CRO	209.000 CRO
1992 APR	330.000 CRO	325.000 CRO				
1992 JUN						
1992 AUG	298,000 CRO			•		
	171.000 CRO	189.000 CRO	190.000 CRO	188,000 CRO	RO .	
1992 DEC	228.000	247.000	241.000	246.000		•
SULPHATE (MG/L	'L)		DET'N LIMIT = 0.20		GUIDELINE = 500 (A3)	
1991 JAN	36.770	42.590	•		43.540	44.820
	28 410	087 77			36.170	35.950
	37 940	37.080			37,990	37,300
	32 570	08.530			48.280	47.750
	34.690	42.150			43.220	43.260
	20.270	26.680			26.010	26.040
	20.250	26.330			30.240	29.110
	20.180	24.800				27.150
1991 SEP	20.970	27.310	•		28.260	27.500
1991 OCT	18,120	24.750		•	25.290	24,390
	17.890	22.880		•	23.210	25.460
1992 FEB	26.670	31.740			30.850	30.370
1992 APR	47.730	51.860				
	24.310	26.290		•		
1992 AUG	38.270	74.980		•		
1992 NOV	19.540	43.300	41.190	43.410		
275 5004	20.1		24 200	4.000		

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

RAM						
TY (FTU JAN FEB MAR AAPR AAPR AUG		TREATMENT PLANT TREATED	DIST. SYSTEM SOUTH ST FREE FLOW	DIST, SYSTEM SOUTH ST STANDING	DIST. SYSTEM WEST RIVER . FREE FLOW	DIST. SYSTEM WEST RIVER STANDING
JAN MARR APR JUN JUL AUG	CHEMISTRY (LABORATORY)	RATORY)	DET'N LIMIT = 0.05		GUIDELÎNE = 1.0 (A1)	
MAAR MAAY AUG	0	300			.700	025.
MAAR MAAY ADUR AUG	0 887	100			.050	.100
APR JUN JUL AUG	0	.120		•	.110	. 180
MAY JUN AUG	. 0	.260			T> 061.	.320
JUN JUL AUG	0	T> 080.	•	•	1> 071.	1> 051.
JUL AUG	0	. 190		•	.100	.170
AUG	0	.160			020.	100
	0	.350			•	.140
	0	097.		•	.180	.200
00.7	0	T> 070.		.•	BDL	108
NON.	0	1> 040.			.240 <1	.230 <1
FEB	0	BOL			1> 001.	T> 090.
APR	0	.370		•	•	
NOL	0	.290		•	•	
AUG	0	.480				
NOV	0	.220 <t< td=""><td>.230 <1</td><td>004.</td><td></td><td></td></t<>	.230 <1	004.		
050	01	T> 012.	. 200 <t< td=""><td></td><td></td><td></td></t<>			

			FREE FLOW ST	STANDING	FREE FLOW	STANDING
SILVER (UG/L	METALS)		DET'N LIMIT = 0.05	DB	GUIDELINE = N/A	
62 SAMPLES	108	108	BOL	108	108	108
ALUMINUM (UG/L	^		DET'N LIMIT = 0.10	ns	GUIDELINE = 100 (A4)	
1001	390.000	22.000		. ,	22.000	23 000
	26.000	31.000			28.000	29.000
	430.000	51.000			57.000	47.000
	880.000	74.000			95.000	82.000
	250.000	120.000			110.000	110.000
	300.000	160.000			150.000	130.000
	150.000	350.000			340.000	330.000
1991 AUG	280.000	220.000			300.000	260.000
	220.000	300.000	•		330.000	260.000
	95.000	58.000			53.000	24.000
1991 NOV	120.000	38.000			39.000	49.000
	55.000	26.000			48.000	50.000
	160.000	120.000				
1992 JUN	290.000	210.000				
	160.000	250.000				
	260.000	17.000	18.000	18.000		
1992 DEC	210.000	40.000	35.000	32.000		
ARSENIC (UG/L	^		DET'N LIMIT = 0.10	N9	GUIDELINE = 25 (A1)	
1991 JAN	T> 095.	108			190 <1	801
	1> 065.	BDL	•	•	.200 <t< td=""><td>1> 091.</td></t<>	1> 091.
1991 MAR	1> 095.	108			.380 <t< td=""><td>BDL</td></t<>	BDL
1991 APR	T> 089.	108			80F	80r
	1> 057.	108			80L	B0L
1991 JUN	1> 050.	.270 <1			.300 <1	.350 <t< td=""></t<>
	T> 098.	.360 <1			108	1> 077
1991 AUG	1.300	.530 <1			1> 067.	.510 <t< td=""></t<>
	1> 085.	.130 <1			. 180 <t< td=""><td>1> 061.</td></t<>	1> 061.
	.510 <t< td=""><td>.360 <t< td=""><td>•</td><td></td><td>1> 071.</td><td>.360 <1</td></t<></td></t<>	.360 <t< td=""><td>•</td><td></td><td>1> 071.</td><td>.360 <1</td></t<>	•		1> 071.	.360 <1
	.530 <7		•	•	.210 <t< td=""><td></td></t<>	
	.330 <1	.280 <1				.320 <1
1992 APR	.320 <1	80f		•	•	٠
	1> 092.	.380 <1				
	.890 ×I	1> 050.				
			280 ×I	270 41		

	RAW	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
BARIUM (UG/L	METALS L)		DET'N LIMIT = 0.05		GUIDELINE = 1000 (A2)	
1001		17.000			18,000	18.000
	17,000	16,000			15.000	16.000
		18,000			19.000	18.000
		28,000			27.000	26.000
1991 MAY	26.000	26.000			23.000	. 24, 000
		17.000			18,000	18.000
	15.000	18,000			17.000	18.000
1991 AUG		18,000			20,000	19.000
		19.000			19.000	19.000
		14.000			14.000	14.000
		14,000			14,000	15.000
		19,000			18.000	18,000
1002 APR		23,000			•	
		17.000				
		32 000	,			
		22,000	23.000	24.000		
		20.000	20.000	21.000		
BORON (UG/L		, , , , , , , , , , , , , , , , , , ,	DET'N LIMIT = 2.	2.00 GU	GUIDELINE = 5000 (A1)	
1991 JAN	27.000	21.000			28.000	27.000
		19.000 <t< td=""><td></td><td>٠</td><td>19,000 <t< td=""><td>20.000 <t< td=""></t<></td></t<></td></t<>		٠	19,000 <t< td=""><td>20.000 <t< td=""></t<></td></t<>	20.000 <t< td=""></t<>
		20.000 <t< td=""><td></td><td></td><td>21.000</td><td>19,000 <1</td></t<>			21.000	19,000 <1
1001 APR		23.000			29,000	27.000
		27,000			29.000	29.000
		17,000 <t< td=""><td></td><td>•</td><td>19.000 <t< td=""><td>18,000 <t< td=""></t<></td></t<></td></t<>		•	19.000 <t< td=""><td>18,000 <t< td=""></t<></td></t<>	18,000 <t< td=""></t<>
1991 JUL	23.000	25.000			23.000	25.000
		20.000 <1	٠	•	29.000	28.000
		21,000		•	27.000	32.000
100 LOCI	•	18,000 <t< td=""><td>. •</td><td></td><td>19.000 <1</td><td>19,000 <1</td></t<>	. •		19.000 <1	19,000 <1
	•	15,000 <t< td=""><td></td><td></td><td>15.000 <t< td=""><td>15,000 <t< td=""></t<></td></t<></td></t<>			15.000 <t< td=""><td>15,000 <t< td=""></t<></td></t<>	15,000 <t< td=""></t<>
	17.000	19,000 <t< td=""><td>•</td><td>•</td><td>17.000 <t< td=""><td>17.000 <t< td=""></t<></td></t<></td></t<>	•	•	17.000 <t< td=""><td>17.000 <t< td=""></t<></td></t<>	17.000 <t< td=""></t<>
1992 APR		33.000				
		17.000 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1992 AUG	•	65.000				
	23.000	26.000	27.000	28.000	٠	

	RAW	TREATED	DISI. STSIEM SOUTH ST FREE FLOW	SOUTH ST STANDING	UISI. SYSTEM WEST RIVER FREE FLOW	WEST RIVER STANDING
REPYLL TIM CHG/1	METALS	•	0.0 = 11M11 N.130		GUIDELINE = 6800 (04)	
120		•				
1991 JAN	T> 070.	BDL			BDL	BDL
1991 FEB	BDL	80F		•	BDL	80F
	T> 011.	BDL	٠	•	BDL	BDL
1991 APR	100 cT	BDL		•	BDL	BDL
	BDL	BDL		•	BDL	BDL
1991 JUN	BDL	BDL		•	BOL	BDL
	110 <t< td=""><td>. 100 <t< td=""><td>•</td><td>•</td><td>BDL</td><td>T> 080.</td></t<></td></t<>	. 100 <t< td=""><td>•</td><td>•</td><td>BDL</td><td>T> 080.</td></t<>	•	•	BDL	T> 080.
1991 AUG	.070 <1	BDL			BDL	108
1991 SEP	BDL	BDL		•	BOL	BDL
	BDL	BDL		•	BDL	BDL
	BDL	BDL	•	•	108	BDL
	BDL	BDL	•	•	T> 070.	BDL
1992 APR	BDL	BDL			•	,
	BDL	BDL		•		
	BDL	. 100 <		•		
	T> 090.	BDL	BDL	BDL	•	
1992 DEC	1> 070.	BDL	BDL	BDL		•
CADMIUM (UG/L	(DET'N LIMIT = 0.05		GUIDELINE = 5.0 (A1)	
	BDL	BDL	•	•	BOL	BDL
	170 <t< td=""><td>I CB</td><td></td><td></td><td>BOI</td><td>BDI</td></t<>	I CB			BOI	BDI
1001 MAR			•	•	ROI	. I G
	1,0,1	100	•	•	100	1 6
1001	1, 070	100	•	•	708	la la
	0.00	100		•	905	100
NOC LAST	BUL	BDL		•	BOL	80L
	BOL	BDL	•	•	BDL	BDL
	BDL	BDL		•	BDL	BOL
1991 SEP	BDL	BDL		•	BDL	. BDL
	801	BDL	•	•	108	BDL
1991 NOV	801	BDL	•	•	BDL	BDL
	120 <1	IOS		•	IOS	BDI
1992 APR	BDL	BDL		•		
	180 <t< td=""><td>T> 070</td><td></td><td></td><td></td><td></td></t<>	T> 070				
1992 ALIG	2 2		•	•	•	
	1, 080	100	. [6	. 5	•	•
1000		200	108	100		
	2	פחר	פער	BUL		

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

																				:																	
DIST. SYSTEM WEST RIVER STANDING		, 000			T> 011.	80F	.120 <t< td=""><td>T> 080.</td><td>.320 <7</td><td>T> 080.</td><td>. 110 <t< td=""><td>T> 070.</td><td>1> 070</td><td>.130 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>* * * * * * * * * * * * * * * * * * *</td><td>2.800 <1</td><td>1.900 <1</td><td>1.900 <1</td><td>108</td><td>1.300 <1</td><td>I> 069.</td><td>.820 <1</td><td>1.300 <t< td=""><td>2.400 <t< td=""><td>1.600 <t< td=""><td>BOL</td><td>80r</td><td></td><td></td><td></td><td></td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 080.	.320 <7	T> 080.	. 110 <t< td=""><td>T> 070.</td><td>1> 070</td><td>.130 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>* * * * * * * * * * * * * * * * * * *</td><td>2.800 <1</td><td>1.900 <1</td><td>1.900 <1</td><td>108</td><td>1.300 <1</td><td>I> 069.</td><td>.820 <1</td><td>1.300 <t< td=""><td>2.400 <t< td=""><td>1.600 <t< td=""><td>BOL</td><td>80r</td><td></td><td></td><td></td><td></td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<>	T> 070.	1> 070	.130 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>* * * * * * * * * * * * * * * * * * *</td><td>2.800 <1</td><td>1.900 <1</td><td>1.900 <1</td><td>108</td><td>1.300 <1</td><td>I> 069.</td><td>.820 <1</td><td>1.300 <t< td=""><td>2.400 <t< td=""><td>1.600 <t< td=""><td>BOL</td><td>80r</td><td></td><td></td><td></td><td></td><td>•</td></t<></td></t<></td></t<></td></t<>						* * * * * * * * * * * * * * * * * * *	2.800 <1	1.900 <1	1.900 <1	108	1.300 <1	I> 069.	.820 <1	1.300 <t< td=""><td>2.400 <t< td=""><td>1.600 <t< td=""><td>BOL</td><td>80r</td><td></td><td></td><td></td><td></td><td>•</td></t<></td></t<></td></t<>	2.400 <t< td=""><td>1.600 <t< td=""><td>BOL</td><td>80r</td><td></td><td></td><td></td><td></td><td>•</td></t<></td></t<>	1.600 <t< td=""><td>BOL</td><td>80r</td><td></td><td></td><td></td><td></td><td>•</td></t<>	BOL	80r					•
DIST, SYSTEM DAMEST RIVER WEST RIVER	GUIDELINE = N/A	17.071		1> 0.51	.110 <t< td=""><td>108</td><td>1> 071.</td><td>.080 <t< td=""><td>.500 <t< td=""><td>· 100 <t< td=""><td>.130 <t< td=""><td>1> 090.</td><td>1> 060.</td><td>.110 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>INE = 50.0 (A1)</td><td>3.000 <1</td><td>1.700 <1</td><td>2.400 <1</td><td>801</td><td>1.300 <1</td><td>.510 <t< td=""><td>108</td><td>1.300 <t< td=""><td>T> 040.</td><td>1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	108	1> 071.	.080 <t< td=""><td>.500 <t< td=""><td>· 100 <t< td=""><td>.130 <t< td=""><td>1> 090.</td><td>1> 060.</td><td>.110 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>INE = 50.0 (A1)</td><td>3.000 <1</td><td>1.700 <1</td><td>2.400 <1</td><td>801</td><td>1.300 <1</td><td>.510 <t< td=""><td>108</td><td>1.300 <t< td=""><td>T> 040.</td><td>1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.500 <t< td=""><td>· 100 <t< td=""><td>.130 <t< td=""><td>1> 090.</td><td>1> 060.</td><td>.110 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>INE = 50.0 (A1)</td><td>3.000 <1</td><td>1.700 <1</td><td>2.400 <1</td><td>801</td><td>1.300 <1</td><td>.510 <t< td=""><td>108</td><td>1.300 <t< td=""><td>T> 040.</td><td>1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	· 100 <t< td=""><td>.130 <t< td=""><td>1> 090.</td><td>1> 060.</td><td>.110 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>INE = 50.0 (A1)</td><td>3.000 <1</td><td>1.700 <1</td><td>2.400 <1</td><td>801</td><td>1.300 <1</td><td>.510 <t< td=""><td>108</td><td>1.300 <t< td=""><td>T> 040.</td><td>1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.130 <t< td=""><td>1> 090.</td><td>1> 060.</td><td>.110 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>INE = 50.0 (A1)</td><td>3.000 <1</td><td>1.700 <1</td><td>2.400 <1</td><td>801</td><td>1.300 <1</td><td>.510 <t< td=""><td>108</td><td>1.300 <t< td=""><td>T> 040.</td><td>1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<>	1> 090.	1> 060.	.110 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>INE = 50.0 (A1)</td><td>3.000 <1</td><td>1.700 <1</td><td>2.400 <1</td><td>801</td><td>1.300 <1</td><td>.510 <t< td=""><td>108</td><td>1.300 <t< td=""><td>T> 040.</td><td>1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<></td></t<>						INE = 50.0 (A1)	3.000 <1	1.700 <1	2.400 <1	801	1.300 <1	.510 <t< td=""><td>108</td><td>1.300 <t< td=""><td>T> 040.</td><td>1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<>	108	1.300 <t< td=""><td>T> 040.</td><td>1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<></td></t<>	T> 040.	1,700 <t< td=""><td>80F</td><td>BDL</td><td></td><td></td><td></td><td></td><td>٠</td></t<>	80F	BDL					٠
DIST. SYSTEM D SOUTH ST W STANDING F	GUIDEL																	1> 071.	. 070 <t< td=""><td>GUIDELINE</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.100 <t< td=""><td>3.400 <1</td></t<></td></t<>	GUIDELINE	•						•									2.100 <t< td=""><td>3.400 <1</td></t<>	3.400 <1
SOUTH ST SOUTH ST SOUTH ST SOUTH ST SOUTH ST	DET'N LIMIT = 0.02									•								1> 041.	. 060 <t< td=""><td>DET'N LIMIT = 0.50</td><td></td><td>•</td><td>•</td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td>•</td><td>2.200 <t< td=""><td>3.000 <1</td></t<></td></t<>	DET'N LIMIT = 0.50		•	•				,					•	•		•	2.200 <t< td=""><td>3.000 <1</td></t<>	3.000 <1
TREATMENT PLANT TREATED					. 190 <t< td=""><td>BOL</td><td>. 200 <t< td=""><td>T> 080.</td><td>1 > 07.</td><td>. 110 <t< td=""><td>.120 <</td><td>T> 080.</td><td>150 <1</td><td>1> 071.</td><td>.260 <1</td><td>.270 <1</td><td>.290 <1</td><td>1> 041.</td><td>1> 090.</td><td></td><td>1.200 <1</td><td>1.600 <t< td=""><td>2,400 <7</td><td>BOL</td><td>2.100 <1</td><td>B0L</td><td>1.700 <1</td><td>108</td><td>801</td><td>1,700 <1</td><td>.580 <1</td><td>108</td><td>1.300 <1</td><td>108</td><td>2.600 <1</td><td>2.000 <1</td><td>1.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	BOL	. 200 <t< td=""><td>T> 080.</td><td>1 > 07.</td><td>. 110 <t< td=""><td>.120 <</td><td>T> 080.</td><td>150 <1</td><td>1> 071.</td><td>.260 <1</td><td>.270 <1</td><td>.290 <1</td><td>1> 041.</td><td>1> 090.</td><td></td><td>1.200 <1</td><td>1.600 <t< td=""><td>2,400 <7</td><td>BOL</td><td>2.100 <1</td><td>B0L</td><td>1.700 <1</td><td>108</td><td>801</td><td>1,700 <1</td><td>.580 <1</td><td>108</td><td>1.300 <1</td><td>108</td><td>2.600 <1</td><td>2.000 <1</td><td>1.300 <t< td=""></t<></td></t<></td></t<></td></t<>	T> 080.	1 > 07.	. 110 <t< td=""><td>.120 <</td><td>T> 080.</td><td>150 <1</td><td>1> 071.</td><td>.260 <1</td><td>.270 <1</td><td>.290 <1</td><td>1> 041.</td><td>1> 090.</td><td></td><td>1.200 <1</td><td>1.600 <t< td=""><td>2,400 <7</td><td>BOL</td><td>2.100 <1</td><td>B0L</td><td>1.700 <1</td><td>108</td><td>801</td><td>1,700 <1</td><td>.580 <1</td><td>108</td><td>1.300 <1</td><td>108</td><td>2.600 <1</td><td>2.000 <1</td><td>1.300 <t< td=""></t<></td></t<></td></t<>	.120 <	T> 080.	150 <1	1> 071.	.260 <1	.270 <1	.290 <1	1> 041.	1> 090.		1.200 <1	1.600 <t< td=""><td>2,400 <7</td><td>BOL</td><td>2.100 <1</td><td>B0L</td><td>1.700 <1</td><td>108</td><td>801</td><td>1,700 <1</td><td>.580 <1</td><td>108</td><td>1.300 <1</td><td>108</td><td>2.600 <1</td><td>2.000 <1</td><td>1.300 <t< td=""></t<></td></t<>	2,400 <7	BOL	2.100 <1	B0L	1.700 <1	108	801	1,700 <1	.580 <1	108	1.300 <1	108	2.600 <1	2.000 <1	1.300 <t< td=""></t<>
TREATMENT PLANT RAW	METALS)		1> 0/7:		T> 077°	T> 006.	T> 097.	.340 <1	.510 <1	T> 046.	.330 <t< td=""><td>. 160 <t< td=""><td>1> 061.</td><td>. 180 <1</td><td>1> 097.</td><td>1> 099.</td><td>T> 044.</td><td>1> 095.</td><td>.230 <1</td><td>^</td><td>3,400 <1</td><td>T> 018.</td><td>2.900 <7</td><td>1.300 <1</td><td>3.100 <t< td=""><td>2.500 <1</td><td>2.400 <t< td=""><td>1,500 <1</td><td>780 <1</td><td></td><td>T> 096.</td><td>108</td><td>1,700 <t< td=""><td>. 750 <1</td><td>. 550 <1</td><td>2.300 <1</td><td>3.500 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 160 <t< td=""><td>1> 061.</td><td>. 180 <1</td><td>1> 097.</td><td>1> 099.</td><td>T> 044.</td><td>1> 095.</td><td>.230 <1</td><td>^</td><td>3,400 <1</td><td>T> 018.</td><td>2.900 <7</td><td>1.300 <1</td><td>3.100 <t< td=""><td>2.500 <1</td><td>2.400 <t< td=""><td>1,500 <1</td><td>780 <1</td><td></td><td>T> 096.</td><td>108</td><td>1,700 <t< td=""><td>. 750 <1</td><td>. 550 <1</td><td>2.300 <1</td><td>3.500 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1> 061.	. 180 <1	1> 097.	1> 099.	T> 044.	1> 095.	.230 <1	^	3,400 <1	T> 018.	2.900 <7	1.300 <1	3.100 <t< td=""><td>2.500 <1</td><td>2.400 <t< td=""><td>1,500 <1</td><td>780 <1</td><td></td><td>T> 096.</td><td>108</td><td>1,700 <t< td=""><td>. 750 <1</td><td>. 550 <1</td><td>2.300 <1</td><td>3.500 <t< td=""></t<></td></t<></td></t<></td></t<>	2.500 <1	2.400 <t< td=""><td>1,500 <1</td><td>780 <1</td><td></td><td>T> 096.</td><td>108</td><td>1,700 <t< td=""><td>. 750 <1</td><td>. 550 <1</td><td>2.300 <1</td><td>3.500 <t< td=""></t<></td></t<></td></t<>	1,500 <1	780 <1		T> 096.	108	1,700 <t< td=""><td>. 750 <1</td><td>. 550 <1</td><td>2.300 <1</td><td>3.500 <t< td=""></t<></td></t<>	. 750 <1	. 550 <1	2.300 <1	3.500 <t< td=""></t<>
	COBALT (UG/L					1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 001	1991 NOV	1992 FEB		1992 JUN				CHROMIUM (UG/L	1991 JAN	1991 FEB		1991.APR	1991 MAY	1991 JUN		1991 AUG	1991 SEP	1991 OCT			1992 APR		1992 AUG		1992 DEC

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

	RAW	TREATED	SOUTH ST FREE FLOW	STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
COPPER (UG/L	METALS L)		DET'N LIMIT = 0.50		GUIDELINE = 1000 (A3)	
1001	2 100 cT	1> 088		•	3.100 <1	006.6
1001	1 200	5 029·			2.200 <1	2.400 <1
	2.300	T> 079.			2.000 <1	7.900
		1.200 <1			2.900 <1	15.000
1991 MAY		.550 <1			3.800 <t< td=""><td>7.100</td></t<>	7.100
		T> 099.	•		2.700 <1	7.500
1991 JUL		B0L			2.400 <1	2.900
1991 AUG		108			1.800 <1	2.700 <⊺
1991 SEP		108			1.100 <1	3.300 <t< td=""></t<>
	T> 096.	B01			1.800 <1	5.300
1991 NOV	1,000 <t< td=""><td>BOL</td><td></td><td></td><td>2.400 <1</td><td>25.000</td></t<>	BOL			2.400 <1	25.000
1992 FEB		.720 <1			2.200 <1	7.100
1992 APR	•	1,900 <t< td=""><td></td><td></td><td></td><td>٠</td></t<>				٠
1992 JUN	. •	.850 <t< td=""><td>•</td><td></td><td></td><td></td></t<>	•			
1992 AUG		•	•			٠
1992 NOV		T> 067.	3.500 <t< td=""><td>15.000</td><td></td><td></td></t<>	15.000		
	1.700 <1	-	1.800 <t< td=""><td>4.800 <t< td=""><td></td><td>•</td></t<></td></t<>	4.800 <t< td=""><td></td><td>•</td></t<>		•
IRON (UG/L	,		DET'N LIMIT = 6.00		GUIDELINE = 300 (A3)	0 0 1 1 1 1 1 1 1 1 1 1 0
1991 JAN		B0L	•		80F	BDL
1991 FEB	93.000	80f	•		B01	B0L
		B01			BDL	000.66
1001		BDI		•	B0L	80F
		. E			B0L	8.000 <t< td=""></t<>
	000 097	RD I			108	80F
		108	•		801	108
		5 800 cT	•	•	t> 006.9	108
1991 AUG		. 000.0		•	- IOR	BUI
		901			100	3 6
130 166	150.000	30.	•		100	100
1991 NOV		BDL		•	901	900
1992 FEB		8.300 <t< td=""><td></td><td></td><td>108</td><td>6.800 <</td></t<>			108	6.800 <
1992 APR		80 r				
1992 JUN		80F				•
1992 AUG		901				
1992 NOV		B01	13.000 <1	26.000 <t< td=""><td></td><td>٠</td></t<>		٠
1992 DEC	290.000	. BOL	1> 007.9	108		٠
MERCURY (UG/L	3/1)		DET'N LIMIT = 0.02		GUIDELINE = 1.0 (A1)	

1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP

	RAW	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
MANGANESE (UG/L	METALS)		DET*N LIMIT = 0.05		GUIDELINE = 50.0 (A3)	
	12.000	2.700			3.000	2.700
	3.500	.830		٠	.890	.880
	16.000	.560			099.	006.
	99.000	1,100			1.500	006.
	12.000	1> 078.			.320 <1	.270 <1
	16.000	.390 <1			.320 <1	.> 210 <1
	11.000	T> 091.			.160 <t< td=""><td>. 140 <1</td></t<>	. 140 <1
	27.000	.570			.270 <1	.310 <t< td=""></t<>
	19.000	. 220 <t< td=""><td></td><td></td><td>.170 <1</td><td>1> 011.</td></t<>			.170 <1	1> 011.
100	5.700	.680		•	.570	1> 074.
NON.	8.500	.610			.540	1> 091.
FFR	2.500	950			1.100	630
004	007 2	06Z	•			
2 =	000 20	000	•	•		•
200	000.71					
AUG.	10.000	. 000		. 007		
	12.000	3.900	2.600	3.600		
	6.500	1.100	1.500	.800		
MOLY80ENUM (UG/L	^		DET'N LIMIT = 0.05		GUIDELINE = N/A	
	1> 005.	1.400			1.400	1.600
	.730	1.000			066.	066.
	.320 <1	.930			1,100	1.000
	1> 091.	1.600		•	1.700	1.500
	1,100	1.500			1,400	1.500
NOC	.430 <t< td=""><td>.920</td><td></td><td>•</td><td>.950</td><td>.920</td></t<>	.920		•	.950	.920
	0.49	1,100		•	1.300	1.200
AUG	.390 <t< td=""><td>.890</td><td></td><td>•</td><td>1,100</td><td>1.100</td></t<>	.890		•	1,100	1.100
	1> 024.	.950		•	.920	.950
OCT	1> 074.	.630			099.	069.
	.480 <t< td=""><td>.680</td><td></td><td>•</td><td>.680</td><td>. 700</td></t<>	.680		•	.680	. 700
	.500 <t< td=""><td>.570</td><td>•</td><td></td><td>T> 067.</td><td>.610</td></t<>	.570	•		T> 067.	.610
	1.300	1.500		•		
	.590	1,000			•	
	1.700	2.500				
NOV	. 190 <t< td=""><td>066.</td><td>1.100</td><td>1,100</td><td></td><td></td></t<>	066.	1.100	1,100		
		:	•			

				,																																	
DIST. SYSTEM WEST RIVER STANDING)))))))))))))))))))		1.100 <7	1,000 <t< th=""><th>. 108</th><th>.420 <t< th=""><th>. BDL</th><th>T> 064.</th><th>1,700 <t< th=""><th>108</th><th>BDL</th><th>.820 <1</th><th>. 801</th><th>1.200 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>.980</th><th>.360 <t< th=""><th>1.100</th><th>2.400</th><th>1.800</th><th>1.300</th><th>1.200</th><th>.570</th><th>.650</th><th>.850</th><th>1.800</th><th>1.400</th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	. 108	.420 <t< th=""><th>. BDL</th><th>T> 064.</th><th>1,700 <t< th=""><th>108</th><th>BDL</th><th>.820 <1</th><th>. 801</th><th>1.200 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>.980</th><th>.360 <t< th=""><th>1.100</th><th>2.400</th><th>1.800</th><th>1.300</th><th>1.200</th><th>.570</th><th>.650</th><th>.850</th><th>1.800</th><th>1.400</th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<>	. BDL	T> 064.	1,700 <t< th=""><th>108</th><th>BDL</th><th>.820 <1</th><th>. 801</th><th>1.200 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>.980</th><th>.360 <t< th=""><th>1.100</th><th>2.400</th><th>1.800</th><th>1.300</th><th>1.200</th><th>.570</th><th>.650</th><th>.850</th><th>1.800</th><th>1.400</th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<>	108	BDL	.820 <1	. 801	1.200 <t< th=""><th></th><th></th><th></th><th></th><th>٠</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>.980</th><th>.360 <t< th=""><th>1.100</th><th>2.400</th><th>1.800</th><th>1.300</th><th>1.200</th><th>.570</th><th>.650</th><th>.850</th><th>1.800</th><th>1.400</th><th></th><th></th><th></th><th></th><th></th></t<></th></t<>					٠	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.980	.360 <t< th=""><th>1.100</th><th>2.400</th><th>1.800</th><th>1.300</th><th>1.200</th><th>.570</th><th>.650</th><th>.850</th><th>1.800</th><th>1.400</th><th></th><th></th><th></th><th></th><th></th></t<>	1.100	2.400	1.800	1.300	1.200	.570	.650	.850	1.800	1.400					
DIST. SYSTEM WEST RIVER FREE FLOW	CHIDELINE - 350 (02)	LINE = 350 (US)	1> 076.	T> 090.	.350 <t< th=""><th>.300 <t< th=""><th>B0L</th><th>T> 009.</th><th>2.200</th><th>BOL</th><th>BOL</th><th>.510 <t< th=""><th>80r</th><th>1.200 <t< th=""><th></th><th>•</th><th></th><th></th><th></th><th>GUIDELINE = 10 (A1)</th><th>.280 <1</th><th>.290 <1</th><th>. 200 <t< th=""><th>1> 077</th><th>. 480 <t< th=""><th>.570</th><th>.350 <1</th><th>.510</th><th>.260 <t< th=""><th>.280 <1</th><th>.360 <1</th><th>.420 <t< th=""><th></th><th>•</th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.300 <t< th=""><th>B0L</th><th>T> 009.</th><th>2.200</th><th>BOL</th><th>BOL</th><th>.510 <t< th=""><th>80r</th><th>1.200 <t< th=""><th></th><th>•</th><th></th><th></th><th></th><th>GUIDELINE = 10 (A1)</th><th>.280 <1</th><th>.290 <1</th><th>. 200 <t< th=""><th>1> 077</th><th>. 480 <t< th=""><th>.570</th><th>.350 <1</th><th>.510</th><th>.260 <t< th=""><th>.280 <1</th><th>.360 <1</th><th>.420 <t< th=""><th></th><th>•</th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	B0L	T> 009.	2.200	BOL	BOL	.510 <t< th=""><th>80r</th><th>1.200 <t< th=""><th></th><th>•</th><th></th><th></th><th></th><th>GUIDELINE = 10 (A1)</th><th>.280 <1</th><th>.290 <1</th><th>. 200 <t< th=""><th>1> 077</th><th>. 480 <t< th=""><th>.570</th><th>.350 <1</th><th>.510</th><th>.260 <t< th=""><th>.280 <1</th><th>.360 <1</th><th>.420 <t< th=""><th></th><th>•</th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	80r	1.200 <t< th=""><th></th><th>•</th><th></th><th></th><th></th><th>GUIDELINE = 10 (A1)</th><th>.280 <1</th><th>.290 <1</th><th>. 200 <t< th=""><th>1> 077</th><th>. 480 <t< th=""><th>.570</th><th>.350 <1</th><th>.510</th><th>.260 <t< th=""><th>.280 <1</th><th>.360 <1</th><th>.420 <t< th=""><th></th><th>•</th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<>		•				GUIDELINE = 10 (A1)	.280 <1	.290 <1	. 200 <t< th=""><th>1> 077</th><th>. 480 <t< th=""><th>.570</th><th>.350 <1</th><th>.510</th><th>.260 <t< th=""><th>.280 <1</th><th>.360 <1</th><th>.420 <t< th=""><th></th><th>•</th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<>	1> 077	. 480 <t< th=""><th>.570</th><th>.350 <1</th><th>.510</th><th>.260 <t< th=""><th>.280 <1</th><th>.360 <1</th><th>.420 <t< th=""><th></th><th>•</th><th></th><th></th><th></th></t<></th></t<></th></t<>	.570	.350 <1	.510	.260 <t< th=""><th>.280 <1</th><th>.360 <1</th><th>.420 <t< th=""><th></th><th>•</th><th></th><th></th><th></th></t<></th></t<>	.280 <1	.360 <1	.420 <t< th=""><th></th><th>•</th><th></th><th></th><th></th></t<>		•			
DIST. SYSTEM SOUTH ST STANDING	90110	1010E							•			•		•		•		T> 077.	1.100 <t< td=""><td>GUIDE</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>٠</td><td>•</td><td>٠</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td>.360 <1</td><td>.170 <1</td></t<>	GUIDE						•	٠	•	٠		•					.360 <1	.170 <1
DIST. SYSTEM DI SOUTH ST SO FREE FLOW ST	000 - 1177	UEI'N LIMII = U.20	•															.550 <1	1.200 <t< td=""><td>DET'N LIMIT = 0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td>••</td><td></td><td></td><td></td><td></td><td></td><td>1> 041.</td><td>.100 <t< td=""></t<></td></t<>	DET'N LIMIT = 0.05							•	•		••						1> 041.	.100 <t< td=""></t<>
TREATMENT PLANT TREATED	, , , , , , , , , , , , , , , , , , ,		.710 <7	T> 088.	108	108	108	. 250 <t< td=""><td>2.300</td><td>108</td><td>108</td><td>.730 <1</td><td>108</td><td>1,300 <1</td><td>2.700</td><td>1.200 <⊺</td><td>1.600 <t< td=""><td>T> 089.</td><td>1.300 <1</td><td></td><td>B01</td><td>1, 140 <t< td=""><td>108</td><td>T> 090.</td><td>B01</td><td>80r</td><td>108</td><td>BOL</td><td>108</td><td>108</td><td>108</td><td>T> 090.</td><td>B0L</td><td>B0L</td><td>.160 <t< td=""><td>1> 070.</td><td>108</td></t<></td></t<></td></t<></td></t<>	2.300	108	108	.730 <1	108	1,300 <1	2.700	1.200 <⊺	1.600 <t< td=""><td>T> 089.</td><td>1.300 <1</td><td></td><td>B01</td><td>1, 140 <t< td=""><td>108</td><td>T> 090.</td><td>B01</td><td>80r</td><td>108</td><td>BOL</td><td>108</td><td>108</td><td>108</td><td>T> 090.</td><td>B0L</td><td>B0L</td><td>.160 <t< td=""><td>1> 070.</td><td>108</td></t<></td></t<></td></t<>	T> 089.	1.300 <1		B01	1, 140 <t< td=""><td>108</td><td>T> 090.</td><td>B01</td><td>80r</td><td>108</td><td>BOL</td><td>108</td><td>108</td><td>108</td><td>T> 090.</td><td>B0L</td><td>B0L</td><td>.160 <t< td=""><td>1> 070.</td><td>108</td></t<></td></t<>	108	T> 090.	B01	80r	108	BOL	108	108	108	T> 090.	B0L	B0L	.160 <t< td=""><td>1> 070.</td><td>108</td></t<>	1> 070.	108
TREATMENT PLANT RAW	METALS	^	1,400 <t< th=""><th>1.200 <t< th=""><th>T> 058.</th><th>2.200</th><th>T> 088.</th><th>1.600 <t< th=""><th>2.500</th><th>1.400 <t< th=""><th>.450 <t< th=""><th>1.000 <t< th=""><th>. 590 <t< th=""><th>1,600 <t< th=""><th>3.700</th><th>2.700</th><th>2.300</th><th>2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	1.200 <t< th=""><th>T> 058.</th><th>2.200</th><th>T> 088.</th><th>1.600 <t< th=""><th>2.500</th><th>1.400 <t< th=""><th>.450 <t< th=""><th>1.000 <t< th=""><th>. 590 <t< th=""><th>1,600 <t< th=""><th>3.700</th><th>2.700</th><th>2.300</th><th>2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	T> 058.	2.200	T> 088.	1.600 <t< th=""><th>2.500</th><th>1.400 <t< th=""><th>.450 <t< th=""><th>1.000 <t< th=""><th>. 590 <t< th=""><th>1,600 <t< th=""><th>3.700</th><th>2.700</th><th>2.300</th><th>2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	2.500	1.400 <t< th=""><th>.450 <t< th=""><th>1.000 <t< th=""><th>. 590 <t< th=""><th>1,600 <t< th=""><th>3.700</th><th>2.700</th><th>2.300</th><th>2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.450 <t< th=""><th>1.000 <t< th=""><th>. 590 <t< th=""><th>1,600 <t< th=""><th>3.700</th><th>2.700</th><th>2.300</th><th>2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	1.000 <t< th=""><th>. 590 <t< th=""><th>1,600 <t< th=""><th>3.700</th><th>2.700</th><th>2.300</th><th>2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<></th></t<></th></t<></th></t<>	. 590 <t< th=""><th>1,600 <t< th=""><th>3.700</th><th>2.700</th><th>2.300</th><th>2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<></th></t<></th></t<>	1,600 <t< th=""><th>3.700</th><th>2.700</th><th>2.300</th><th>2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<></th></t<>	3.700	2.700	2.300	2,000 <t< th=""><th>1.900 <1</th><th>,</th><th>1.000</th><th>.300 <1</th><th>1.200</th><th>3.500</th><th>.810</th><th>. 780</th><th>.240 <1</th><th>.850</th><th>.530</th><th>.230 <1</th><th>.320 <1</th><th>I> 007.</th><th>.340 <1</th><th>1.200</th><th>.330 <t< th=""><th>1.700</th><th>0/9.</th></t<></th></t<>	1.900 <1	,	1.000	.300 <1	1.200	3.500	.810	. 780	.240 <1	.850	.530	.230 <1	.320 <1	I> 00 7 .	.340 <1	1.200	.330 <t< th=""><th>1.700</th><th>0/9.</th></t<>	1.700	0/9.
		NICKEL (UG/L		1991 FEB		1991 APR	1991 MAY		1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 NOV	1992 DEC	LEAD (UG/L	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 FEB	1992 APR			1992 NOV	

	IKEAIMENI.PLANI IKEAIMENI PLANI RAW TREATED	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING	
ANTIMONY (UG/L	METALS		DET'N LIMIT = 0.05		GUIDELINE = 146 (D4)		
1991 JAN	.330 <t< td=""><td>.530</td><td></td><td></td><td>.670</td><td>.580</td><td></td></t<>	.530			.670	.580	
	1> 007.	1> 097			1> 097.	1> 077	
		089.			099.	.650	
1991 APR	.220 <t< td=""><td>560</td><td></td><td>•</td><td>.610</td><td>.670</td><td></td></t<>	560		•	.610	.670	
	.410 <t< td=""><td>.410 <t< td=""><td></td><td></td><td>1> 007.</td><td>.450 <1</td><td></td></t<></td></t<>	.410 <t< td=""><td></td><td></td><td>1> 007.</td><td>.450 <1</td><td></td></t<>			1> 007.	.450 <1	
1991 JUN	.370 <1	.540		•	.410 <t< td=""><td>.540</td><td></td></t<>	.540	
1991 JUL	.570	.530		•	.630	099.	
	.500 <t< td=""><td>079.</td><td></td><td>•</td><td>089.</td><td>.530</td><td></td></t<>	079.		•	089.	.530	
1991 SEP	T> 007.	.420 <1			.360 <1		
1991 OCT	T> 087.	.380 <1			1> 007.	.360 <t< td=""><td></td></t<>	
1991 NOV	T> 067.	1> 077.		•	1> 077		
	.520	. 410 <t< td=""><td></td><td></td><td>.340 <1</td><td>.290 <</td><td></td></t<>			.340 <1	.290 <	
1992 APR	T> 024.						
	. 220 <t< td=""><td>.330 <t< td=""><td>•</td><td></td><td>•</td><td></td><td></td></t<></td></t<>	.330 <t< td=""><td>•</td><td></td><td>•</td><td></td><td></td></t<>	•		•		
	.350 <t< td=""><td>.370 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	.370 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
	.330 <t< td=""><td>.540</td><td>.580</td><td>.650</td><td></td><td></td><td></td></t<>	.540	.580	.650			
1992 DEC	.390 <1	.390 <t< td=""><td>.380 <</td><td>.420 <t< td=""><td></td><td></td><td></td></t<></td></t<>	.380 <	.420 <t< td=""><td></td><td></td><td></td></t<>			
SELENIUM (UG/L	^		DET'N LIMIT = 1.00		GUIDELINE = 10 (A1)		
	BOL	BOL		•	BDL	BDL	
1991 FEB	BOL	BOL		•	108	1.400 <t< td=""><td></td></t<>	
	BOL	1.500 <7		•	2,400 <t< td=""><td>· 2.700 <t< td=""><td></td></t<></td></t<>	· 2.700 <t< td=""><td></td></t<>	
1991 APR	BOL	BOL			108	BDL	
1991 MAY	B0L	1,100 <t< td=""><td></td><td>•</td><td>108</td><td>1.200 <t< td=""><td></td></t<></td></t<>		•	108	1.200 <t< td=""><td></td></t<>	
1991 JUN	B01				108	1.500 <t< td=""><td></td></t<>	
1991 JUL	B0L	1,400 <1		•	1.200 <1	3.200 <1	
1991 AUG	B0L	108		•	108	801	
	B0L		•		1.900 <t< td=""><td>2.000 <t< td=""><td></td></t<></td></t<>	2.000 <t< td=""><td></td></t<>	
	1.300 <t< td=""><td>1.500 <t< td=""><td>•</td><td>٠</td><td>108 801</td><td>1.300 <1</td><td></td></t<></td></t<>	1.500 <t< td=""><td>•</td><td>٠</td><td>108 801</td><td>1.300 <1</td><td></td></t<>	•	٠	108 801	1.300 <1	
	80F	108			108 801	B0L	
	BDL	1.600 <t< td=""><td>•</td><td></td><td>3.400 <1</td><td>1.600 <1</td><td></td></t<>	•		3.400 <1	1.600 <1	
	BDL	108 801	•	•	•		
1992 JUN	BOL	. BOL					
	8DL	BOL	•		•		
1992 NOV	2.900 <1	1,400 <t< td=""><td>1.500 <t< td=""><td>1.500 <t< td=""><td></td><td></td><td></td></t<></td></t<></td></t<>	1.500 <t< td=""><td>1.500 <t< td=""><td></td><td></td><td></td></t<></td></t<>	1.500 <t< td=""><td></td><td></td><td></td></t<>			
	140	-	-				

- u	RAW	TREATED	SOUTH ST SOUTH ST FREE FLOW STANDING	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
STRONTIUM (UG/L	METALS)		DET'N LIMIT = 0.10	ਰ ਰ	GUIDELINE = N/A	
1001	190 000	170.000	•		180,000	180.000
	130.000	130,000		•	130.000	130.000
	190,000	170.000			170.000	170.000
	220.000	270.000			280.000	260.000
	260.000	250.000			240.000	270.000
	130.000	130.000			120.000	120.000
	120.000	130.000			160.000	150.000
	130.000	120.000			140.000	140.000
	130.000	130.000			150.000	140.000
	110.000	110.000			110.000	110.000
	120,000	120.000		•	120.000	120.000
	150.000	160.000		٠	150.000	150.000
	340.000	270.000				
	160.000	130.000	,			•
	360.000	390.000	•			
	130 000	150.000	150.000	150.000	•	•
	170.000	170.000	170.000	180.000		
TITANIUM (UG/L	•	1	DET'N LIMIT = 0.50	5	GUIDELINE = N/A	
1001	UU7 8	5.600		٠	2.400	5.700
	200	1 800 F			T> 000 - 4	3.800 <t< td=""></t<>
	5.700	3.000	•		8 400	8 200
	15.000	0.500	•	•	000:0	000.8
	14.000	9.500	•	•		
1991 MAY	3.700 <1			•		
1991 JUN	3.800 <1	1.500 <t< td=""><td></td><td>•</td><td>1.500 <1</td><td>1.400 <1</td></t<>		•	1.500 <1	1.400 <1
	5.500	2.200 <1			2.000 <1	
	1 100 < 1	1.500 <1			T> 050.	1> 078.
	2 000 <	750 <1		•	.810 <t< td=""><td>1> 089.</td></t<>	1> 089.
	2 / 00 / 2				1> 026	1,100 <1
	1, 002 0		•			1,200 <t< td=""></t<>
	1,000.7	1. 020		•		
				•		
	8.300	004.0	•	•	•	
	1> 000.4	1. /00 <1			•	
1992 AUG	12.000	8.300				
	3.900 <1	2.000 <1	2.000 <1	2.200 <1		
	3.300 <1	1.900 <1	1,900 <1	1.900 •		
THALLIUM (UG/L	•		DET'N LIMIT = 0.05		GUIDELINE = 13 (04)	
				-		

	RAW	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
URANTUM (UG/L	METALS)		DET'N LIMIT = 0.05		GUIDELINE = 100 (A1)	
JAN	1.300	390 <1			.530	1> .025
FEB	.750	.240 <t< td=""><td></td><td></td><td>.230 <t< td=""><td>T> 042.</td></t<></td></t<>			.230 <t< td=""><td>T> 042.</td></t<>	T> 042.
MAR	1.400	. 890			.850	.820
APR	1.000	. 840			1.200	.840
MAY	.950	.200 <7		•	1> 061.	170 <1
NON	.520	1> 060.			1> 090.	T> 080.
TOF	.380 <t< td=""><td>8DL</td><td></td><td></td><td>BOL</td><td>BDL</td></t<>	8DL			BOL	BDL
AUG	T> 017.	108		•	108	108
SEP	1> 092.	108			BDL	BD1
LJU		1> 070			IOR	T> 040
\QN	.240 <1	BDI			108	. IOR
FFB	Z > 062.	. 250 <t< td=""><td>•</td><td>•</td><td>190 <t< td=""><td>230 <1</td></t<></td></t<>	•	•	190 <t< td=""><td>230 <1</td></t<>	230 <1
400						
2 2	530	. IOS.	•			
	0000	000			•	
504	001.1	1,020	. 080	. 001		
2 4	065.	0.00.	2000.	2001.	•	
; ;						
VANADIUM (UG/L	^		DET'N LIMIT = 0.05		GUIDELINE = N/A	
JAN	066.	1> 041.			.200 <t< td=""><td>T> 061.</td></t<>	T> 061.
FEB	.370 <1	.170 <1			. 200	.180 <t< td=""></t<>
MAR	1.000	. 250 <1		٠.	T> 012.	.180 <⊤
APR	2.300	.300 <1		•	1> 067.	.390 <1
ΑY	.840	1> 077.			.410 <t< td=""><td>1> 077</td></t<>	1> 077
NON	1.100	.310 <1				350 <t< td=""></t<>
=	.670	. 180 <t< td=""><td></td><td>•</td><td></td><td>200 <t< td=""></t<></td></t<>		•		200 <t< td=""></t<>
AUG	1.200	.210 <t< td=""><td></td><td></td><td>710 <t< td=""><td>230 <1</td></t<></td></t<>			710 <t< td=""><td>230 <1</td></t<>	230 <1
SFP	750	1> 091				290 <t< td=""></t<>
00.1	.280 <t< td=""><td>T> 080</td><td></td><td></td><td>180 <t< td=""><td>100 <1</td></t<></td></t<>	T> 080			180 <t< td=""><td>100 <1</td></t<>	100 <1
NOV	. 140 <t< td=""><td>801</td><td></td><td></td><td></td><td>T> 040</td></t<>	801				T> 040
FFB		BD I	•	•	- E	. 108
APP	T> 057	210 <t< td=""><td>•</td><td>•</td><td>3.</td><td></td></t<>	•	•	3.	
1 3		1, 000	•		•	
200	000.	> 090.	•	•		
2 :	001.1	. 860				
NO.	005.1	1> 080.	T> 0Tf.	.120 <1		
۲	820	370 <t< td=""><td>.330 <t< td=""><td>1> U72</td><td></td><td></td></t<></td></t<>	.330 <t< td=""><td>1> U72</td><td></td><td></td></t<>	1> U72		

Page 41

		DRINKING WATER	TAB SURVEILLANCE PRO	ABLE 4 PROGRAM 1991 AND 194	1ABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP	
	TREATMENT PLANT RAW	TREATMENT PLANT TREATED	DIST. SYSTEM SOUTH ST FREE FLOW	DIST. SYSTEM SOUTH ST STANDING	DIST. SYSTEM WEST RIVER FREE FLOW	DIST. SYSTEM WEST RIVER STANDING
ZINC (UG/L	METALS		DET'N LIMIT = 0.20		GUIDELINE = 5000 (A3)	\$
1991 JAN	5.800	1.600 <1			2.200	3.000
	2.800	2.800			2.500	2.500
1991 MAR	8,200	3.000			3.300	4.100
	16.000	3.300			3.600	2.400
1991 MAY	8.400	1,300 <t< td=""><td>•</td><td></td><td>2.300</td><td>2.200</td></t<>	•		2.300	2.200
1991 JUN	2.900	2,700			2.900	5.300
1991 JUL	3,900	3.500			9.400	7.900
1991 AUG	2.400	2,300			2.300	2.600
1991 SEP	3.200	1> 055.			. 700 <1	1.800 <t< td=""></t<>
1991 OCT	1.800 <1	1> 057.			T> 068.	
1991 NOV	3.000	2.300			1.800 <t< td=""><td></td></t<>	
1992 FEB	4.300	2.000 <t< td=""><td></td><td></td><td>1,200 < ₹</td><td>3.700</td></t<>			1,200 < ₹	3.700
1992 APR	2,700	1.400 <1				
1992 JUN	8.400	2.100				
4992 AUG	4.500	2.600				
1992 NOV	7.300	1> 050.	9.600	27.000		
1997 DEC	007.7	2,100		7.300	•	

CHLOROAROMATICS E (NG/L) BDL NE (NG/L) NE (NG/L) BDL NE (NG/L) NE (NG/L)	0 108 0 108	DET'N LIMIT = 1,000 GI BDL DET'N LIMIT = 5,000 GI BDL BDL BDL GG BDL GG GG GG GG GG GG GG GG GG	GUIDELINE = 450 (D4) GUIDELINE = N/A GUIDELINE = N/A BDL GUIDELINE = N/A BDL
	BDL	BDL DET'N LIMIT = 5.000 BDL	BDL GUIDELINE = 10000 (I)
	TOB	DET'N LIMIT = 1.000 BDL	GUIDELINE = 38000 (04)
	108	DET'N LIMIT = 5.000 BDL	GUIDELINE = N/A BOL
		DET'N LIMIT = 1.000 BDL	GUIDELINE = 10 (C1)

RAW	TREATMENT PLANT RAW	TREATMENT PLANT TREATED	DISI. SYSTEM SOUTH ST FREE FLOW	DIST. SYSTEM SOUTH ST STANDING	DIST. SYSTEM WEST RIVER FREE FLOW	DIST. SYSTEM WEST RIVER STANDING
CHLOS HEXACHLOROETHANE (NG/L	CHLOROAROMATICS NG/L)	CS	DET'N LIMIT = 1.000		GUIDELINE = 1900 (04)	
NAL 100	801	BOL		•	BDL	
	BDL	5,000 <t< td=""><td></td><td></td><td><u>.</u></td><td></td></t<>			<u>.</u>	
991 MAR	BDL	BDL			BDL	
991 APR	BOL	2.000 <⊺			5.000 <t< td=""><td></td></t<>	
991 MAY	- RE	100			001	
NOT 166	BDL	BDL			80r	
991 JUL	AM	IAW	•		IAU	
	- AN	IAW		•	i AW	
	AK.	i Av			'AN'	
1991 OCT	BDL	BDL	•		2,000 <1	
VON 1991	BDL	3.000 <1			BOL	
	BDL	2,000 <t< td=""><td></td><td></td><td>1.000 <1</td><td></td></t<>			1.000 <1	
992 APR	BOL	B0L		•	٠	
N111 200	BDI	BDI			•	
002 4116	108	80				
002 NOV	- PF	101	I PF		•	
992 DEC	80 F	3.000 <1	2,000 <1			
OCTACHLOROSTYRENE (NG/L	^		DET'N LIMIT = 1.000		GUIDELINE ≈ N/A	
32 SAMPLES	BOL	BDL	BDL	٠	BDL	
PENTACHLOROBENZENE (NG/L	^ ~		DET'N LIMIT = 1.000		GUIDELINE = 74000 (D4)	
32 SAMPLES	BD.L	108	108		BDL	
236-TRICHLOROTOLUENE (NG/L	NG/L	•	DET'N LIMIT = 5.000		GUIDELINE = N/A	
32 SAMPLES	BDL	108	108	٠	BDL	٠
245-TRICHLOROTOLUENE (NG/L	NG/L	•	DET'N LIMIT = 5.000		GUIDELINE = N/A	
32 SAMPLES	BDL	108	108	•	BDL	٠
26A-TRICHLOROTOLUENE (NG/L	NG/L	^	DET'N LIMIT = 5.000		GUIDELINE = N/A	
32 SAMPLES	BOL	BDL	BDL		BOL	

;		-				:		;		;		
DIST. SYSTEM WEST RIVER STANDING							(50)		(F		(A1)	
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 2600000 (D4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)	
DIST. SYSTEM SOUTH ST STANDING		1								•		
DIST. SYSTEM SOUTH ST FREE FLOW	.DET'N LIMIT = 100.0		DET'N LIMIT = 20.0	•	DET'N LIMIT = 10.0		DET'N LIMIT = 100.0		DET'N LIMIT = 20.0	٠	DET'N LIMIT = 10.00	
TREATMENT PLANT TREATED	1 1 1 1 1 1 1 1 1 1 1 1 1	BDL		BDL		BOL	1	BDL	1	BDL		BDL
TREATMENT PLANT RAW	CHLOROPHENOLS L (NG/L)	BDL	(NG/L)	108	1/9N)	BDL	(NG/L)	BDL	(NG/L)	BDL	46/L)	BDL
TREAT RAW	CHLOROPHENOL (NG/L	9 SAMPLES	2345-TETCHLOROPHENOL (NG/L	9 SAMPLES	2356-TETCHLOROPHENOL (NG/L	9 SAMPLES	245-TRICHLOROPHENOL (NG/L	9 SAMPLES	246-TRICHLOROPHENOL (NG/L	9 SAMPLES	PENTACHLOROPHENOL (NG/L	8 SAMPLES

	R WTP
	RIVER
	BELLE
	1 AND 1992
	AND
	1991
TABLE 4	PROGRAM
	SURVEILLANCE
	WATER
	DRINKING WATER

ALOREN (NG/L) PESTICIDES AND POB DETIN LIMIT = 1,000 GUIDELINE = 700 (A1) 32 SAMPLES				FREE FLOW	STANDING	STANDING FREE FLOW	STANDING
BDL BDL BDL	ہے :	PESTICIDES AND	PCB .	DET'N LIMIT = 1.00		SUIDELINE = 700 (A1)	
2.000 <t 1.000="" 1.0<="" 2.000="" <t="" td=""><td>ES</td><td>BDL</td><td>108</td><td>BDL</td><td>٠</td><td>BDL</td><td></td></t>	ES	BDL	108	BDL	٠	BDL	
1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,000 < 1 1,00	NG/L	^		DET'N LIMIT = 1.00		SUIDELINE = 700 (G)	
1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1		2,000 <1	1,000 <1		•	1.000 <1	
1000 ct 1000		2.000 <1	1.000 <1		•	118	
BDL	. ~	1.000 <t< td=""><td>2.000 <t< td=""><td>•</td><td>٠</td><td>BDL</td><td></td></t<></td></t<>	2.000 <t< td=""><td>•</td><td>٠</td><td>BDL</td><td></td></t<>	•	٠	BDL	
Solution	~	BDL	BDL	•	•	108 108	
BDL IAM	MAY	. E	9	•	•	00	
A	NOC	BDL	BDL		•	108	
A	기	. AM	i An	٠	•	MY.	•
1	9	i AW	AM		•	AY.	•
1.000 <	۵	HA!	AM.	i		A	
1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,000 <7 1,0	OCT	1.000 <1	BDL		•	108	
BDL PE PE PE PE PE PE PE P	>	1.000 <1	1.000 <1	•	•	2.000 <1	
BDL	80	BDL	BDL	•	•	BDL	
BDL PE PE PE PE PE PE PE PE PE	œ	108	BDL	•	•		
PBDL PPE	z	BDL	B 01	•	•	•	
PE	و	801	BDL			•	•
1,000 <t 1,000="" <t="" td="" ="" <=""><td>></td><td>J.</td><td>3d i</td><td>E PE</td><td>•</td><td></td><td></td></t>	>	J.	3d i	E PE	•		
DETIN LIMIT = 1.00 1	ပ	1,000 <t< td=""><td>1.000 <1</td><td>1,000 <1</td><td>•</td><td></td><td>٠</td></t<>	1.000 <1	1,000 <1	•		٠
BDL BDL BDL	NG/L	(DET'N LIMIT = 1.00		GUIDELINE = 300 (G)	
) DETIN LIMIT = 1.000 80L	LES	BDL	108	108	•	BDL	٠
BDL	AMMA	BHC) (NG/L)		DET'N LIMIT = 1.00	; ; ; ; ;	GUIDELINE = 4000 (A1	c
1,000 <t 1,000="" 1,0<="" <t="" td=""><td>2</td><td>BDL</td><td>80F</td><td></td><td>٠</td><td>BDL</td><td></td></t>	2	BDL	80F		٠	BDL	
1.000 <t 1.000="" 1.0<="" <t="" td=""><td>8</td><td>BDL</td><td>BDL</td><td></td><td>•</td><td>118</td><td></td></t>	8	BDL	BDL		•	118	
1	يم	1.000 <t< td=""><td>1.000 <t< td=""><td></td><td></td><td>BDL</td><td></td></t<></td></t<>	1.000 <t< td=""><td></td><td></td><td>BDL</td><td></td></t<>			BDL	
RE 100	œ	80 L	BDL	•	•	BDL	
BDL	> -	iRE	9		٠	No.i	
i AW	NON	BOL	BOL		•	BDL	
AW AW AW AW AW AW AW AW	=	i AW	i AW	•	•	AM	
i AN	2	i Au	i AW		•	AM	
90; 90; 90; 90; 90; 90; 90; 90; 90; 90;		IAW	I AM	•	•	A C	•
Adi 3di 3di 3di 3di 3di 3di 3di 3di 3di 3	Ε.	BOL	BDL		•	BOL	
3di 3di 3di 108 108 108 108 108 108 108 108 108 108	>	BDL	BDL	٠	•	108	
1,000 <t 991="" bbl="" bdl="" bpl="" bpl<="" td=""><td>80</td><td>BDL</td><td>BOL</td><td></td><td>٠</td><td>BDL</td><td></td></t>	80	BDL	BOL		٠	BDL	
3di 108 108 108 108	œ	1,000 <t< td=""><td>BDL</td><td></td><td>•</td><td>•</td><td></td></t<>	BDL		•	•	
3di 3di 108 108	2	108	BDL		•		
3di 3di	5	BDL	BOL		•	٠	
	>	101	101	301			

Σ.	-		1				1		,		1		1		,		1	•	* * * * * * * * * * * * * * * * * * *		† 1 1 1		1	
DIST. SYSTEM WEST RIVER STANDING					,		11)		9		9				1									
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 7000 (A1)	BDL	GUIDELINE = 7000 (A1)	BDL	GUIDELINE = 700 (A1)	108	GUIDELINE = 900000 (A1)	108	GUIDELINE = 74000 (D4)	. 801	GUIDELINE = 74000 (D4)	BDL	GUIDELINE = 1600 (03)	BDL	GUIDELINE = N/A	BDL	GUIDELINE = 3000 (A1)	BDL	GUIDELINE = 3000 (A1)	BDL	GUIDELINE = N/A	108	GUIDELINE = N/A	BDL
DIST. SYSTEM SOUTH ST STANDING	1 1 1 1 1 1 1 1		5		5		5		3			•	1	٠	์ ช	٠	* * * * * * * * * * * * * * * * * * *		ō	• .			ថ	
DIST. SYSTEM D SOUTH ST FREE FLOW S	DET*N LIMIT = 2.000	801	DET'N LIMIT = 2.00	108	DET'N LIMIT = 2.00	108	DET'N LIMIT = 5.0	. 108	DET'N LIMIT = 2.00	BDL	DET'N LIMIT = 5.000	108	DET'N LIMIT = 5.000	108	DET'N LIMIT = 5.00	BDL	DET'N LIMIT = 1.000	708	DET'N LIMIT = 1.000	108	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 2.000	108
TREATMENT PLANT TREATED	PCB .	BDL	e t t t t t t t t t t t t t t t t t t t	BDĽ	1	BDL		BDL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108		108	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	BDL		108		108		108		BDL
TREATMENT PLANT T RAW T	PESTICIDES AND PCB G/L)	BDL		BDL	1	BDL	^	BDL	(BDL		BOL		BDL	()	BDL	, ,	BDL		BDL			^	BDL
TREATME RAW	PEST ALPHA CHLORDANE (NG/L	32 SAMPLES	GAMMA CHLORDANE (NG/L	32 SAMPLES	DIELDRIN (NG/L)	32 SAMPLES	METHOXYCHLOR (NG/L	32 SAMPLES	ENDOSULFAN 1 (NG/L	32 SAMPLES	ENDOSULFAN II (NG/L	32 SAMPLES	ENDRIN (NG/L)	32 SAMPLES	ENDOSULFAN SULPHATE (NG/L	32 SAMPLES	HEPTACHLOR EPOXIDE (NG/L	21 SAMPLES	HEPTACHLOR (NG/L)	32 SAMPLES	MIREX (NG/L)	32 SAMPLES	OXYCHLORDANE (NG/L	32 SAMPLES

MPLES	· œ	RAW	TREATED	SOUTH ST SOUTH ST FREE FLOW STANDING	ING FREE FLOW STANDING
BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL C T'N LIMIT = 5.000 BDL BDL BDL C T'N LIMIT = 5.000 BDL BDL BDL C T'N LIMIT = 5.000 C T'N LIMIT	DDT (NG/L	PESTICIDES AN	D PCB	DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)
BDL	52 SAMPLES	BOL	B0L	BOL	. Bol
BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	(NG/L)			DET'N LIMIT = 20.00	GUIDELINE = 3000 (A2)
BDL BDL BDL BDL	52 SAMPLES	108	BOL	. 801	· 108
BDL BDL BDL BDL BDL BDL BDL BDL	DDD (NG/L	^		DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)
) BDL BDL BDL BDL) DET'N LIMIT = 5.000 (10.000 <1 270.000 <1 80L 200.000 <1 240.000 <1 80L 200.000 <1 240.000 <1 80L 200.000 <1 80L 80L BDL 80L BDL 80L BDL 80L BDL 170.000 <1 140.000 <1 80L 80L BDL 170.000 <1 140.000 <1 140.000 <1 180L 80L BDL 170.000 <1 140.000 <1 140.000 <1 180L 170.000 <1 140.000 <1 140.000 <1 180L 170.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000 <1 140.000	S SAMPLES	BDL	108	108	108
BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL 100.000 <t 200.000="" 270.000="" <t="" <t<="" td=""><td>DDE (NG/L</td><td></td><td>• • • • • • • • • • • • • • • • • • •</td><td>DET'N LIMIT = 1.000</td><td>GUIDELINE = 30000 (A1)</td></t>	DDE (NG/L		• • • • • • • • • • • • • • • • • • •	DET'N LIMIT = 1.000	GUIDELINE = 30000 (A1)
BDL BDL BDL	S SAMPLES	BDL	108	. 801	. 80L
BDL BDL BDL	DDT (NG/L	(DET'N LIMIT = 5.000	GUIDELINE = 30000 (A1)
BDL BDL BDL	S SAMPLES	BDL	BDL	BDL	. 80L
BDL BDL BDL	PHENE (NG/L	(DET'N LIMIT = 500.0	GUIDELINE = 5000 (A1)
) DET'N LIMIT = \$0.0 60L	4 SAMPLES	BDL	BOL	108	108
\$\) \text{410.000} < \tau \text{460.000} < \tau \text{60.000} < \tau \te	RINE (NG/L	^		DET'N LIMIT = 50.0	GUIDELINE = 300000 (D3)
(10.000 < 7	8 SAMPLES	BDL	BDL		٠
FEB 801 (10.000 <1 MAR 10.000 <1 MAR 200.000 <1 MAR 200.000 <1 MAY 11S	ZINE (NG/L	(DET'N LIMIT = 50.0	GUIDELINE = 60000 (A2)
HARR 100.000 <1 MARR 200.000 <1 JUN 15 JUN 260.000 <1 SEP 90.000 <1 BDL BBL BBL BBL BBL BBL BBL BBL BBL BBL		410.000 <1	1> 000.097		
MARR 100.000 <1 MAY 115. JULN 18 1. JULG 260.000 <7 SEP 90.000 <7 SEP 90.000 <7 SEP 80.000 <7 SEP 80.000 <7 MAY 1750.000 <7 JULY 1750.000 <7		801	BDL		
JUNY 11S 200.00 41 11S 600.00		100.000 <1	2/0.000 <1		
JUN. 1AW		1. 000.002	12 000.042 BDL		
JUL 260.000 <7 ANG 260.000 <7 OCT 8DL 8DL NOV 8DL 8DL ANG 170.000 <7 APR 170.000 <7 JUN 130.000 <7 ISO.000 <7 ISO.000 <7 ISO.000 <7			I AN		
AUG 260.000 <1 SEP 90.000 <1 NOV BDL FEB 170.000 <1 JUN 130.000 <1 JUN 130.000 <1 NOV 130.000 <1		' AM	A .		
SEP 90.000 <1 OCT BDL BDL BDL BDL APR 170.000 <1 JUN 130.000 <1 NOV 130.000 <1		260.000 <1	BDL		
OCT 80L FEB 80L APR 170.000 <7 JUN 130.000 <7 AUG 1090.000 <7		90.000 <t< td=""><td>801</td><td></td><td></td></t<>	801		
MOV BOL APR 170.000 <1 JUN 130.000 <1 AUG 1990.000 <1 NOV 130.000 <1		30.0	108	•	
APR 170,000 <1 JUN 130,000 <1 AUG 1090,000 NOV 130,000 <1		BUL	901	•	
JUN 130.000 <t 1090.000="" 109<="" <t="" td=""><td></td><td>170 000 <t< td=""><td>140 000 <1</td><td></td><td></td></t<></td></t>		170 000 <t< td=""><td>140 000 <1</td><td></td><td></td></t<>	140 000 <1		
AUG 1090.000 NOV 130.000 <t< td=""><td></td><td></td><td>70.000 <1</td><td></td><td></td></t<>			70.000 <1		
NOV 130,000 <t< td=""><td></td><td>1090.000</td><td></td><td></td><td></td></t<>		1090.000			
		130.000 <t< td=""><td>200.000 <t< td=""><td>٠.</td><td></td></t<></td></t<>	200.000 <t< td=""><td>٠.</td><td></td></t<>	٠.	

	MIP
	RIVER
	BELLE
	1992
	AND
	1991
ABLE 4	PROGRAM
	SURVE ILLANCE
	WATER
	DRINKING

	RAW	TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST RIVER FREE FLOW	WEST RIVER STANDING
ATRATONE (NG/L	PESTICIDES AND PCB) PCB	DET'N LIMIT = 50.0		GUIDELINE = N/A	
28 SAMPLES	BOL	BOL				
CYANAZINE (BLADEX) (NG/L	() (NG/L)		DET'N LIMIT = 100.0		GUIDELINE = 10000 (A2)	12)
28 SAMPLES	801	B0L				
DESETHYL ATRAZINE (NG/L	VE (NG/L)		DET'N LIMIT = 200.0	1 1 1 1 1 1 1	GUIDELINE = 60000 (A2)	42)
1991 JAN	108	BOL				
	BDL	BOL	•			
	BOL		٠			
1991 APR	80L	Z6U.U0U <t< td=""><td></td><td>•</td><td></td><td></td></t<>		•		
		- 0 E				•
	I AW	MA	,			
1991 AUG	108	108				
	108	108				
1991 OCT	B0L 861	801				
	80r 80i	108	•	•	•	
	108 801	801		•		•
1992 JUN	108	108				
	410.000 <t< td=""><td>•</td><td></td><td></td><td></td><td>•</td></t<>	•				•
1992 NOV	901	BOL	•			
	80L	BOL				•
DESETHYL SIMAZINE (NG/L	IE (NG/L)		DET'N LIMIT = 200.0	1	GUIDELINE = 10000 (A2)	. (2)
28 SAMPLES	108	BOL				
PROMETONE (NG/L	^		DET'N LIMIT = 50.000		GUIDELINE = 52500 (03)	03.)
28 SAMPLES	BOL	108	•			
PROPAZINE (NG/L	^		DET'N LIMIT = 50,000		GUIDELINE = 700000 (03)	(03)
28 SAMPLES	108	108	,			
PROMETRYNE (NG/L			DET'N LIMIT = 50.000		GUIDELINE = 1000 (A2)	(2
28 SAMPLES	108	BOL	•			
METRIBUZIN (SENCOR) (NG/L	OR) (NG/L)	; ; ; ; ; ; ; ; ; ; ;	DET'N LIMIT = 100.0		GUIDELINE = 80000 (A1)	71)
28 CAMPLES	801	BDL		. •		

	RAW	TREATED	SOUTH ST FREE FLOW	STANDING	WEST RIVER FREE FLOW	WEST KIVER STANDING
SIMAZINE (NG/L	PESTICIDES AND PCB	D PC8	DET'N LIMIT = 50.00	* * * * * * * * * * * * * * * * * * *	GUIDELINE = 10000 (A2)	2)
1991 JAN	801	BDL	٠		٠	
1991 FEB	B01	108				
	BDL	BDL				•
	108	BD1				
1991 MAY	STi	BDL				
NUL 1661	•	I AW				
1991 JUL	I AW	'AM				
	108	BDL				•
1991 SEP	108	108				
1991 OCT	108	BDL				
1991 NOV	BDL	BDL				
1992 FEB	BDL	BDL				
1992 APR	BDL	BDL				
1992 JUN	901	BDL			•	•
	50.000 <1					•
992 NOV	108	BDL	•			
	108	· BDL		•		•
HLOR (LA	ALACHLOR (LASSO) (NG/L)		DET'N LIMIT = 500.0	5 5 6 1 8 1 1 1 1	GUIDELINE = 5000 (A2)	G
28 SAMPLES	S BDL	BDL		٠		
METOLACHLOR (NG/L	(NG/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 500.0		GUIDELINE = 50000 (A2)	(2)
1991 JAN	BDL	BDL				•
	BDL	BOL		•		
	BDL	BDL				•
	BDL	108				
	SI i	108				•
NUL 199		- AM		•		•
1991 JUL	HA	HAH				•
	108	108				
	108	BOL				•
991 OCT	108	108				
991 NOV	BDL	108				•
1992 FEB	BOL	BDL		•		
	108	108				•
1992 JUN	108	108				
1992 AUG	920.000 <1	٠				
1992 NOV	BDL	BDL	•			•

	DIST. SYSTEM WEST RIVER STANDING	(04)	٠																
72 BELLE RIVER WIF	DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 206000 (04)	108	~	50.000 <1	99.000	3	1> 000°97	AM	AM	AM.	18.000 <t< td=""><td>13.000 <1</td><td>24.000 <1</td><td></td><td>•</td><td></td><td></td><td></td></t<>	13.000 <1	24.000 <1		•			
TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WIP	DIST. SYSTEM SOUTH ST STANDING						•								•				
TAB SURVEILLANCE PRO	DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 5.00		•														3di	No i
DRINKING WATER	TREATMENT PLANT TREATED	10 PCB	BDL	Z0.000 <t< td=""><td>BDL</td><td>74,000</td><td>70</td><td>47.000 <t< td=""><td>i AW</td><td>i AW</td><td>I AW</td><td>12,000 <t< td=""><td>17,000 <t< td=""><td>10.000 <t< td=""><td>no:</td><td>no i</td><td>100</td><td>i PE</td><td>noi</td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	74,000	70	47.000 <t< td=""><td>i AW</td><td>i AW</td><td>I AW</td><td>12,000 <t< td=""><td>17,000 <t< td=""><td>10.000 <t< td=""><td>no:</td><td>no i</td><td>100</td><td>i PE</td><td>noi</td></t<></td></t<></td></t<></td></t<>	i AW	i AW	I AW	12,000 <t< td=""><td>17,000 <t< td=""><td>10.000 <t< td=""><td>no:</td><td>no i</td><td>100</td><td>i PE</td><td>noi</td></t<></td></t<></td></t<>	17,000 <t< td=""><td>10.000 <t< td=""><td>no:</td><td>no i</td><td>100</td><td>i PE</td><td>noi</td></t<></td></t<>	10.000 <t< td=""><td>no:</td><td>no i</td><td>100</td><td>i PE</td><td>noi</td></t<>	no:	no i	100	i PE	noi
	TREATMENT PLANT RAW	PESTICIDES AND PCB TADIEN (NG/L)	BDL	BOL	BDL	BDL	I RE	80L	' AW	I AW	I AW	BDL	801	BOL	no:	no i	no i	Jd i	∩ o ∔
		HEXACLCYCLOPENTADIEN (NG/L	1991 JAN		1991 MAR								1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 NOV	1992 DEC

	Ϋ́	
	RIVER	
	BELLE	
	1992 E	
	AND	
	1991	
	_	
ABLE 4	PROGRAM 1	
I ABLE 4	_	
HABLE 4	SURVEILLANCE PROGRAM	
HABLE 4	PROGRAM	

DIST. SYSTEM WEST RIVER STANDING																		•
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = N/A						•											
DIST. SYSTEM SOUTH ST STANDING	0.2 GUI							•										
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT =	٠																٠
TREATMENT PLANT TREATMENT PLANT RAW TREATED		1.000	108	T> 008.	T> 009.	BDL	1.400	108	T> 004.	108	108	T> 008.	T> 009.	1.600	T> 009.	1> 009.	108	BDL
REATMENT PLANT	PHENOLICS)	.800 <1	1>, 009.	1> 009	T> 004.	BOL	T> 008.	BDL	1> 007.	BOL	BDL	1> 007	1> 007.	1.800	801	BDL	T> 009.	T> 004
<i>←</i> Œ	PHENOLICS (UG/L	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 NOV	1002 DEC

DIST. SYSTEM DIST. SYSTEM DIST. SYSTEM SOUTH ST WEST RIVER WEST RIVER STANDING FREE FLOW STANDING	GUIDELINE = N/A	. BDL .	GUIDELINE = N/A	. BDL,	GUIDELINE = 42000 (D4)	BDL	GUIDELINE = N/A	· 108	GUIDELINE = N/A	. BDL .	GUIDELINE = N/A		GUIDELINE = N/A	. 80L .	GUIDELINE = N/A	. BDL .	GUIDELINE = N/A	. 801	GUIDELINE = N/A	. 108	GUIDELINE = N/A	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 10.0		DET'N LIMIT = 1.0		DET'N LIMIT = 20.0	:	DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 50.0		DET'N LIMIT = 5.0		DET'N LIMIT = 50.0		DET'N LIMIT = 10.0		DET'N LIMIT = 10.0	•	DET'N LIMIT = 1.0	
TREATMENT PLANT TREATED	HYDROCARBONS	BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOB .		BDL	, , , , , , , , , , , , , , , , , , ,	BDL	(BDL		BDL	^	BOL		BDL	(JQ B
TREATMENT PLANT RAW	POLYAROMATIC HYDROCARBONS PHENANTHRENE (NG/L)	19 SAMPLES BDL	ANTHRACENE (NG/L)	19 SAMPLES BDL	FLUORANTHENE (NG/L)	19 SAMPLES BDL	PYRENE (NG/L)	19 SAMPLES BDL	BENZO(A)ANTHRACENE (NG/L)	19 SAMPLES BDL	CHRYSENE (NG/L)	19 SAMPLES BDL	DIMETH. BENZ(A)ANTHR (NG/L	19 SAMPLES BDL	BENZO(E) PYRENE (NG/L)	19 SAMPLES BDL	BENZO(B) FLUORANTHEN (NG/L	19 SAMPLES BDL	PERYLENE (NG/L)	19 SAMPLES BDL	BENZO(K) FLUORANTHEN (NG/L	10 SAMPLES

DIST. SYSTEM DIST. SYSTEM WEST RIVER WEST RIVER . FREE FLOW STANDING	GUIDELINE = N/A		GUIDELINE = N/A	BDL	GUIDELINE = N/A	BOL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	. 108
DIST. SYSTEM SOUTH ST STANDING		•.			1					
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 20.0		DET'N LIMIT = 10.0		DET'N LIMIT = 20.0		DET'N' LIMIT = 2.0		DET'N LIMIT = 10.0	•
TREATMENT PLANT TREATMENT PLANT RAW TREATED	POLYAROMATIC HYDROCARBONS EN (NG/L)	BOL	(BDL		BDL		BDL		BDI
TENT PLANT	YAROMATIC (NG/L	108	CNG/L	BDL	CNG/L	108	3/1)	108		BDI
TREATM RAW	POLYAROMA BENZO(G, H, I) PERYLEN (NG/L	19 SAMPLES	DIBENZO(A, H) ANTHRAC (NG/L	19 SAMPLES	INDENO(1,2,3-C,D) PY (NG/L	19 SAMPLES	BENZO(B) CHRYSENE (NG/L	19 SAMPLES	CORONENE (NG/L)	19 SAMPLES

	TREATMENT PLANT RAW	TREATED .	DIST. SYSTEM DIST. SYSTEM SOUTH ST FREE FLOW STANDING	DIST. SYSTEM WEST RIVER FREE FLOW	DISI: STSIEM WEST RIVER STANDING
TOXAPHENE (NG/L	SPECIFIC PESTICIDES	ICIDES	DET'N LIMIT = 500.0	GUIDELINE = 5000 (A1)	
8 SAMPLES	BDL	108		. BDL	٠
2,4,5-T (NG/L	***************************************		DET*N LIMIT = 50.0	GUIDELINE = 280000 (A1)	· · · · · · · · · · · · · · · · · · ·
9 SAMPLES	BDL	BDL			
2,4-D (NG/L	^		DET'N LIMIT = 100.0	GUIDELINE = 100000 (A1)	1
9 SAMPLES	BDL	BDL			
2,4-DB (NG/L	^	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DET'N LIMIT = 200.0	GUIDELINE = N/A	1
9 SAMPLES	BDL	BDL			٠
2,4 D PROPIONIC ACID (NG/L	ACID (NG/L		DET'N LIMIT = 100.0	GUIDELINE = N/A	1
9 SAMPLES	BOL	108			
DICAMBA (NG/L	^		DET'N LIMIT = 50.0	GUIDELINE = 120000 (A1)	1
Nil. 1991	130.000 <i< td=""><td>120.000 <t< td=""><td></td><td></td><td></td></t<></td></i<>	120.000 <t< td=""><td></td><td></td><td></td></t<>			
1991 AUG	BDL	ilA			
1991 NOV	801 801	80f.	•		•
1992 NOV	BDL	108			
2,4,5-TP (SILVEX) (NG/L	() (NG/L)		DET'N LIMIT = 20.00	GUIDELINE = 10000 (A1)	
9 SAMPLES	108	B01			٠
DIAZINON (NG/L	() 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 20.0	GUIDELINE = 20000 (A1)	
4 SAMPLES	BOL	108	•		٠
DICHLOROVOS (NG/L	ال)		DET'N LIMIT = 20.0	GUIDELINE = N/A	1
4 SAMPLES	BDL	BDL	•		٠
CHLORPYRIFOS (NG/L	3/1)		DET'N LIMIT = 20.0	GUIDELINE = N/A	1
4 SAMPLES	BDL	108			٠
ETHION (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = 35000 (G)	1
4 SAMPLES	108	S		,	

_	TREATMENT PLANT RAW	IREAIMENI PLANI TREATED	SOUTH ST FREE FLOW	SOUTH ST STANDING	WEST R	WEST RIVER FREE FLOW	WEST RIVER STANDING
MALATHION (NG/L	SPECIFIC PESTICIDES	ICIDES	DET'N LIMIT = 20.0	3 4 7 8 8 8 8 9	GUIDELINE =	= 190000 (A1)	0
4 SAMPLES	108	108					•
MEVINPHOS (NG/L	•		DET'N LIMIT = 20.0		GUIDELINE =	= N/A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 SAMPLES	108	108		٠			
METHYL PARATHION (NG/L	(NG/L)		DET'N LIMIT = 50.0	0 0 1 0 1 0 0 1 0 0	GUIDELINE =	= 9000 (D3)	9 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
4 SAMPLES	BDL	108		•			
METHYLTRITHION (NG/L	NG/L)		DET'N LIMIT = 20.0	1	GUIDELINE =	= N/A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 SAMPLES	BDL	108					
PARATHION (NG/L		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 20.0	1	GUIDELINE =	= 50000 (A1)	,
4 SAMPLES	. 801	108					•
PHORATE (NG/L		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 20.0	6 6 7 9 9 9	GUIDELINE =	= 2000 (A2)	6 5 7 9 9 9 9 9 9 5 4 9 9 9 9 9 9 9 9 9 9 9 9
4 SAMPLES	B0L	108		٠			٠
RELDAN (NG/L	^		DET'N LIMIT = 20.0		GUIDELINE =	= N/A	
4 SAMPLES	108	108		•			
RONNEL (NG/L	^		DET'N LIMIT = 20.0		GUIDELINE =	= N/A	
4 SAMPLES	901	80f		٠			٠
CARBOFURAN (NG/L	^		DET'N LIMIT = 2000.0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE =	= 90000 (A1)	
7 SAMPLES	BDL	108					
CHLORPROPHAM (CIPC) (NG/L	IPC) (NG/L)	1	DET'N LIMIT = 2000.0) 1 1 1 1 1 1 1 1	GUIDELINE =	= 350000 (6)	
7 SAMPLES	B0L	BOL		•			
DIALLATE (NG/L	^		DET'N LIMIT = 2000.0		GUIDELINE =	= N/A	
7 SAMPLES	BOL	108		•			
EPTAM (NG/L	•		DET*N LIMIT = 2000.0		GUIDELINE =	= N/A	* * * * * * * * * * * * * * * * * * *
7 SAMPLES	BDL	BDL					

	TREATMENT PLANT RAW	PLAN		DIST. SYSTEM SOUTH ST STANDING	DIST. SYSTEM WEST RIVER FREE FLOW	DIST. SYSTEM WEST RIVER STANDING
1/5(NG/L	SPECIFIC PESTICIDES		DET'N LIMIT = 2000.0	_	GUIDELINE = N/A	
7 SAMPLES	BDL	BDL				1
PROPOXUR (NG/L	^		DET'N LIMIT = 2000.0		GUIDELINE = 140000 (D3)	(D3)
7 SAMPLES	BDL	BOL				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CARBARYL (NG/L	^		DET'N LIMIT = 200.0		GUIDELINE = 90000 (A1)	A1)
7 SAMPLES	BDL .	BDL				
BUTYLATE (NG/L	(DET'N LIMIT = 2000.0		GUIDELINE = 245000 (D3)	(D3)
7 SAMPIFS	108	BDL				

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP

YSTEM Ver IG				٠					•														•	•	·	•	•		•	•	•					
DIST. SYSTEM WEST RIVER STANDING																						_								_	_					
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 5 (A1)	IG	108	108	BDL	108	BDL	BOL	BDL	BOL	108	BDL	1> 050.		•				GUIDELINE = 24 (A3)	1> 001.	150 <1	. 100	108	108	108	108	108	108	. 050.	1> 001.	. 100 -					
DIST. SYSTEM SOUTH ST STANDING									•		•	•					•			•	•	•	•	•		•		•	•	•	•	•	•	•		
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05			. •					٠	•			•	•	•		BDL	108	DET'N LIMIT = 0.05		•			•	•		•	•			•	•			T> 050.	
TREATMENT PLANT TREATED		ica	BDF .	BDL	BDL	BDL	108	BDL	108	BDL	BDL	108	T> 050.	108	BDL	108	108	BOL		1> 050.	150 <1	1> 001.	BDL	T> 050.	T> 050.	108	1> 050.	B01	T> 050.	. 150 <t< td=""><td>. 100 ×T</td><td>T> 050.</td><td>T> 050.</td><td>BDL</td><td>T> 050.</td><td>15.050</td></t<>	. 100 ×T	T> 050.	T> 050.	BDL	T> 050.	15.050
TREATMENT PLANT RAW	VOLATILES	ā	NO.	BDL	BDL	BDL	BDL	BDL	BDL	108	BDL	BDL	T> 050.	108	108	BDL	108	BDL	•	BDL	1> 001.	BDL	BDL	BDL	80r	80F	BDL	BDL	BDL	301	T> 050.	BDL	108	108	108	ica
	BENZENE (UG/L	1001		1991 MAR	1991 APR	1991 MAY	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 001					1992 AUG	1992 NOV	1992 DEC	TOLUENE (UG/L	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUN		1991 AUG	1991 SEP	1991 OCT							

	:																			:			1 6																	
DIST. SYSTEM WEST RIVER STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										,						•			. !										.•								•		
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 2.4 (A3)	iua	150 cT	, 900	1,000	1, 000.			. 050 ×T	. 100 <t< td=""><td>. 100 <t< td=""><td>T> 050.</td><td>1> 001.</td><td>T> 050.</td><td>•</td><td>•</td><td></td><td>•</td><td>•</td><td></td><td>GUIDELINE = 300 (A3*)</td><td>108</td><td>GUIDELINE = 300 (A3*)</td><td>100 <1</td><td>. 100 <t< td=""><td>. 200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>•</td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>T> 050.</td><td>1> 001.</td><td>T> 050.</td><td>•</td><td>•</td><td></td><td>•</td><td>•</td><td></td><td>GUIDELINE = 300 (A3*)</td><td>108</td><td>GUIDELINE = 300 (A3*)</td><td>100 <1</td><td>. 100 <t< td=""><td>. 200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>•</td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	T> 050.	1> 001.	T> 050.	•	•		•	•		GUIDELINE = 300 (A3*)	108	GUIDELINE = 300 (A3*)	100 <1	. 100 <t< td=""><td>. 200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>•</td><td></td><td></td><td></td><td></td></t<></td></t<>	. 200 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>•</td><td></td><td></td><td></td><td></td></t<>	BOL	BOL	BOL	BDL	BDL	BDL	BDL	BOL	BOL	•				
DIST. SYSTEM SOUTH ST STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•		•							٠		•		•		•						•			•		٠		,		•	•	•				•	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05		•	••					•					•		•	•	· lua	.050 <1		DET'N LIMIT = 0.10	BOL	DET'N LIMIT = 0.10		•										•	٠		•	BDL	80ľ
TREATMENT PLANT TREATED	1 1 1 1 1 1 1 1 1 1 1	150 <1	100 cT					1. 002.			.100 <t< td=""><td>B0L</td><td>T> 050.</td><td>1> 001.</td><td>100 <1</td><td>T> 001.</td><td>DS0 <t< td=""><td>i Ga</td><td>30C 80L</td><td></td><td></td><td>BDL</td><td></td><td>.100 <1</td><td>100 <1</td><td>.100 <t< td=""><td>. 100 <t< td=""><td></td><td>.300 <t< td=""><td>108</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BDL</td><td>901</td><td>BDL</td><td>BDL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	B0L	T> 050.	1> 001.	100 <1	T> 001.	DS0 <t< td=""><td>i Ga</td><td>30C 80L</td><td></td><td></td><td>BDL</td><td></td><td>.100 <1</td><td>100 <1</td><td>.100 <t< td=""><td>. 100 <t< td=""><td></td><td>.300 <t< td=""><td>108</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BDL</td><td>901</td><td>BDL</td><td>BDL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	i Ga	30C 80L			BDL		.100 <1	100 <1	.100 <t< td=""><td>. 100 <t< td=""><td></td><td>.300 <t< td=""><td>108</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BDL</td><td>901</td><td>BDL</td><td>BDL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td></td><td>.300 <t< td=""><td>108</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BDL</td><td>901</td><td>BDL</td><td>BDL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td></t<></td></t<></td></t<></td></t<></td></t<>		.300 <t< td=""><td>108</td><td>.200 <t< td=""><td>.100 <t< td=""><td>BDL</td><td>901</td><td>BDL</td><td>BDL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td></t<></td></t<></td></t<></td></t<>	108	.200 <t< td=""><td>.100 <t< td=""><td>BDL</td><td>901</td><td>BDL</td><td>BDL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td></t<></td></t<></td></t<>	.100 <t< td=""><td>BDL</td><td>901</td><td>BDL</td><td>BDL</td><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td></t<></td></t<>	BDL	901	BDL	BDL	.100 <t< td=""><td>BOL</td><td>BOL</td><td>BDL</td></t<>	BOL	BOL	BDL
TREATMENT PLANT RAW	VOLATILE\$	UB	050 ×T	100	108	2 2	108	BUL	BOL	10 8	BDL	BDL	BDL	BDL	BDL	BOL	IOB	300	80r		•	BDL	^	108	108	B0L	108	B01	BDL	B0L	108	BDL	30F	BDL	BDL	BOL	BOL	108	BDL	BOL
	ETHYLBENZENE (UG/L	1001	1001 FFR					NOC 1661		1991 AUG			1991 NDV	1992 FEB	1992 APR	1992 JUN					P-XYLENE (UG/L	48 SAMPLES	M-XYLENE (UG/L	1991 JAN	1991 FEB	1991 MAR			1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT		1992 FEB					1992 DEC

901 100 47 100 4	DET'N LIMIT = 0.05 BBL BBL 601 601	GUIDELINE = 300 (A3*) 0.050 <t 0.050="" 0.0<="" <t="" th=""><th></th></t>	
801 801 801 801 801 801 801 801 801 801	BDL BDL 1081 - 0.05	.050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <1 .050 <	
801 801 801 801 801 801 801 801 801 801	8DL 8DL 9DL 1081 = 0.05	0.050 <1 0.050	
801	80.0 80.0 80.1 80.0 80.0 80.0 80.0 80.0	.050 c1 .050 c	
801 801 100 47 1	801 801 801 1081 -	6010 (01) 6010 611 6010 611 6010 611 6010 611 6010 611 6010 611	
801 801 801 801 801 801 801 801 801 801	80.1 80.1 80.1 80.1 80.1	.000 c1 .100 c1 .801 .801 .801 .801 .801 .801 .801	
801	801 801 801 801		
801, 1700 < 7 801, 801, 100 (1 801, 801, 801, 801, 801, 801, 801, 801,	801 801 801 1081 -	0.100 (1) 0.100 (1) 0.100 (1) 0.100 (1) 0.100 (1)	
801 801 801 801 801 801 801 801 801 801	80.1 80.1 80.1 80.1 80.0 80.0 80.0 80.0	601 801 801 801 801 801 801 801 8	
801 801 801 801 801 801 801 801 801 801	BDL BDL BOL 	601 801 801 801 801 801 6010611ME = 100 (01)	
801 801 801 801 801 801 801 801 801 801	80. 80. 80. 1081 = 0.05	801 801 801 801 	
801 801 801 801 801 801 801 801 801 801	80.0 80.0 80.1 80.0 80.0 80.0 80.0 80.0	801 801 801 60106ELINE = 100 (01)	
801 801 801 801 801 801 801 801 801 801	BDL BDL BOL 11MI7 = 0.05	80L 80L 6UIDELINE = 100 (01)	
901 901 901 901 901 901 901 901	801 801 801 801 801 801	BDL GUIDELINE = 100 (01) BDL	
801 801 801 801 801 801 801 801 801 801	801 801 801 4 LIMIT = 0.05	GUIDELINE = 100 (01)	
100	80.1 80.1 80.1 4 LIMIT = 0.05	GUIDELINE = 100 (01)	
801 801 801 801 801 801 801 801 801 801	801 801 801 4 LIMIT = 0.05	GUIDELINE = 100 (01) BDL	
801 801 801 801 801 801 801 801 801 801	80.1 80.1 4 LIMIT = 0.05	GUIDELINE = 100 (01)	
901 901 901 901 901 901 901 901 901 901	801 801 	GUIDELINE = 100 (D1)	
901 901 902 903 904 904 904 904 904 904 904 904	B01 4 LIMIT = 0.05	GUIDELINE = 100 (01)	
150 <1 801 801 801 801 801 801 801 8	4 LIMIT = 0.05	GUIDELINE = 100 (01)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
801 801 801 801 801 801 801 801 801 801	N LIMIT = 0.05	GUIDELINE = 100 (01)	
108 108 108 108 108 108 108 108		. 801	
\$ 0.00			•
801 801 801 801 801 801 100 100 100 100		1> 001.	
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
108 108 109 108 109 108 109 108 109 108 109 108 109 109 109 109 109 109 109 109 109 109		100 <t< td=""><td></td></t<>	
	•	1> 050	
108 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		150 /1	
900 - 100 -		1, 001.	
801 801 100 <1 801 801 801 801		. 150 <1	
. 108 100 100 100 100 100 100 100 100 100	•	1> 002.	
80L 100 <1 80L 80L 80L			
. 100 < 1 80L 80L 80L 80L		. 200 <1	
		. 150 <t< td=""><td>•</td></t<>	•
801 801	•		
108 80 80 80 80	•		
BOL			•
- Ca			•
מאר	RDL		•
DEC 801 801	.100 <1		
1,1-DICHLOROETHYLENE (UG/L) DET'N	DET'N LIMIT = 0.100	GUIDELINE = 7 (D1)	· · · · · · · · · · · · · · · · · · ·
48 SAMPLES BOL BOL	BDL	. BOL	
METHYLENE CHLORIDE (UG/L) DET'N	DET'N LIMIT = 0.50	GUIDELINE = 50 (A1)	•
100	IOR	BDI	

																				:															
DIST. SYSTEM WEST RIVER STANDING			; ; ; ; ;	٠			•		٠	٠	.•					•		•	,		٠			•				٠					• •		
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 70 (D1)	BDL	GUIDELINE = N/A	BDL	GUIDELINE = 350 (A1+)	19.700	13.200	39.600	20.200	16.700	11.000	0.700	10.400	8.100	8.900				,	GUIDELINE = 200 (D1)	108	1> 090.	T> 090.	.040 <t< td=""><td>30 10 10</td><td>108 BDL</td><td>801</td><td>BDL</td><td>1> 040.</td><td>BDI.</td><td></td><td></td><td></td><td></td><td>•</td></t<>	30 10 10	108 BDL	801	BDL	1> 040.	BDI.					•
DIST. SYSTEM SOUTH ST STANDING			; ; ; ; ;						٠	٠	•	•			٠					1	٠	•	•	•	•			•		•			•	.•	
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.100	BDL	DET'N LIMIT = 0.10							•						20.600	26.200	DET'N LIMIT = 0.02	•		•					.,		•				108 100	BDL
TREATMENT PLANT TREATED		BDL		108		23.700	27.000	48.300	34.000	24.900	24.700	17.100	16.200	13.600	11.700	29.200	009.02	21.200	47.000			T> 090.	T> 060.	. 060.	> 040.	80F	BDL	108	80L 020 7	. 040.		801	108	108	80F
TREATMENT PLANT RAW	VOLATILES LENE (UG/L)	BDL	NE (UG/L)	BDL	^	BDL	80F	80L	BOL	108	801	BOL	BOL	108	801	108	80L	108	108	ANE (UG/L)	BDL	BDL	T> 090.	30F	BUL	801	BOL	B0L	BUL BUL	BOL	80L	30F	B0L	108	BDL
⊢ α	VOLATILE T12-DICHLOROETHYLENE (UG/L	48 SAMPLES	1,1-DICHLOROETHANE (UG/L	48 SAMPLES	CHLOROFORM (UG/L		1991 FEB					1991 AUG		1991 NOV	1992 FEB	1992 APR	1992 JUN 1992 AllG	1992 NOV	1992 DEC	111, TRICHLOROETHANE (UG/L	1991 JAN	1991 FEB	1991 MAR	1991 APR	1991 MAY	1991 JUL		1991 SEP	1001	1992 FEB	1992 APR	1992 JUN		1992 NOV	

			:		:		:		:																			
DIST. SYSTEM WEST RIVER STANDING		٠	1		1		1			,																		
DIST. SYSTEM WEST RIVER FREE FLOW	GUIDELINE = 5 (A1)	BDL	GUIDELINE = 5 (A1)	BDL	GUIDELINE = 5 (D1)	BDL	GUIDELINE = 50 (A1)	BDL	GUIDELINE = 350 (A1+)	5.950	9,000	7.800	11.050	11,400	10,100	8.750	7.800	7.800	5.100	4.550	5,450						GUIDELINE = 0.6 (D4)	BDL
DIST. SYSTEM SOUTH ST STANDING	9		9		9		9	•	9	,		•		•	•			•	•	•	•	•	•	•			9	
JE.	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.20	BDL	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.05	,							٠.								5.800	0.130	DET'N LIMIT = 0.05	108
	DET'N		DET 'N		DET'N		DET'N		DET'N																		OET'N	
TREATMENT PLANT TREATED		108		108	,	108		BOL		10.150	14.700	13.700	15.700	17.400	13.200	13.250	13.300	11.700	9.300	8.800	10.900	15.300	14.150	21.400	8.150	16.20		B0L
	LES)	BD.L	(7/	108	'L)	108	^	801	3/1	ē	108	ğ	20.	301	30	ž S	BOL	<u>ت</u>	<u>ت</u> و	פֿבר	<u>ت</u> و	7 :	BOL	105	80F	SUL	ر ر	. 108
TREATMENT PLANT RAW	VOLATILES IANE (UG/L	u	ORIDE (UC	w.	DPANE (UG,	ш	NE (UG/L	u	THANE (UC				u u	w.	w.		ш									-	THANE (UG)	.
	VOLATII	48 SAMPLES	CARBON TETRACHLORIDE (UG/L	48 SAMPLES	1,2-DICHLOROPROPANE (UG/L	48 SAMPLES	TRICHLOROETHYLENE (UG/L	48 SAMPLES	DICHLOROBROMOMETHANE (UG/L	1001	1991 FEB			1991 MAY	1991 JUN						1992 FEB	1992 APK			1992 NOV		112-TRICHLOROETHANE (UG/L	48 SAMPLES

DIST. SYSTEM WEST RIVER STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																			1	,																
DIST. SYSTEM DIST. SYSTEM WEST RIVER FREE FLOW STANDING	GUIDELINE = 350 (A1+)	003	000.1	7.500	2.000	2.200	7.000	7.400	7.600	4.100	7.700	1.900	1.800	2.900	•		•			GUIDELINE = 65 (A5)	108	108	901	.050 <1	BDL	BDL	1> 050.	.050 ×T	BDL	BDL	BDL	, BDL	•				
DIST. SYSTEM DIST, SYSTEM SOUTH ST SOUTH ST SOUTH ST FREE FLOW STANDING	.DET'N LIMIT = 0.10								•									1.100	1.700	DET'N LIMIT = 0.05	٠															. BDL	
TREATMENT PLANT TREATED	, DET	2000	000.7	4.900	3.000	3.400	5.700	5.600	6.200	6.700	009.9	3.800	3.300	5.800	5.300	7.300	7.200	1.300	2.900	4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	801	1050.	1> 050	100 <t< td=""><td>3DL</td><td>B0L</td><td>.050 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>80r</td><td>, 050 <t< td=""><td>108</td><td>BDL</td><td>-</td></t<></td></t<></td></t<></td></t<>	3 DL	B0L	.050 <t< td=""><td>.050 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>80r</td><td>, 050 <t< td=""><td>108</td><td>BDL</td><td>-</td></t<></td></t<></td></t<>	.050 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>80r</td><td>, 050 <t< td=""><td>108</td><td>BDL</td><td>-</td></t<></td></t<>	BDL	BDL	BDL	BDL	80r	, 050 <t< td=""><td>108</td><td>BDL</td><td>-</td></t<>	108	BDL	-
TREATMENT PLANT RAW	VOLATILES CHLORODIBROMOMETHANE (UG/L		BUL 55:										v 8DL				G 80L		C 8DL	TETRACHLOROETHYLENE (UG/L)	N BDL		BDL									3 8DL				1 BDL	
	CHLOROD I BR												1991 NOV				1992 AUG		1992 DEC	ETRACHLOR	1991 JAN	1991 FFR					1991 JUL			1991 OCT					1992 AUG	1992 NOV	2001

FREE FLOW DET'N LIMIT = 0.20
ļ.
108
UEI'N LIMII = 0.03
BDL
DET'N LIMIT = 0.100
DET'N LIMIT = 0.100
DET'N LIMIT = 0.10
DET'N LIMIT = 0.10
DET'N LIMIT = 0.10
DET'N LIMIT = 0.05

	DIST. SYSTEM WEST RIVER
2 BELLE RIVER WTP	DIST. SYSTEM. WEST RIVER
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 BELLE RIVER WTP	DIST. SYSTEM
SURVEILLANCE PR	DIST. SYSTEM
DRINKING WATER	TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM
	TREATMENT PLANT

;		;	`																	
DIST. SYSTEM WEST RIVER STANDING		٠																		
DIST. SYSTEM. WEST RIVER FREE FLOW	GUIDELINE = 50 (D1)	BDL	GUIDELINE = 350 (A1)	27.150	22.050	35.650	52.800	35.600	31.200	25.150	23.200	22.800	17.400	14.450	17.250					
DIST. SYSTEM SOUTH ST STANDING							•	•	٠	•		•								
DIST. SYSTEM SOUTH ST FREE FLOW	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.50			•	•			•						•			27.500	36.050
TREATMENT PLANT TREATMENT PLANT RAW . TREATED	1	BDL		35.900	47.050	58.050	67.550	57.500	43.700	44.750	43.100	36.300	29.300	25.700	. 58.400	49.800	45.650	71.000	30.650	66.150
TREATMENT PLANT RAW .	VOLATILES 1DE (UG/L)	108	HANES (UG/L	BD1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL							
	VOLATI VOLATI ETHYLENE DIBROMIDE (UG/L	48 SAMPLES	TOTL TRIHALOMETHANES (UG/L	1991 JAN								1991 SEP								

DIST. SYSTEM WEST RIVER HEST RIVER FREE FLOW STANDING	= N/A		= N/A		GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (D1)		= N/A		GUIDELINE = 40000 (A1)		GUIDELINE = 10 (A1)	
	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE		GUIDELINE		GUIDELINE = N/A		GUIDELINE	. , .	GUIDELINE	
DIST. SYSTEM DIST. SYSTEM SOUTH ST SOUTH ST FREE FLOW STANDING	DET'N LIMIT = 0.70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.70	٠	DET'N LIMIT = 0.04	• • •	DET'N LIMIT = 0.04		DET'N LIMIT = 7.00		DET'N LIMIT = 0.70	
TREATMENT PEANT TREATED		BOL		BDL		108	5 5 5 5 7 7 7 7 7	8DL .040 .060		.100.070.	• • • • • • • • • • • • • • • • • • •	9.000 BDL 8.000		
TREATMENT PLANT RAW	RADIONUCLIDES)	BDL	•	BDL	(BDL	r (80/L)	80L .040 .060	(BQ/L)	.120	^	8DL 8DL 55,000	^	
TRE/ RAU	COBALT 60 (80/L	6 SAMPLES	CESIUM 134 (80/L	6 SAMPLES	CESIUM 137 (80/L	6 SAMPLES	GROSS ALPHA COUNT (BQ/L	1991 FEB 1991 SEP 1992 APR	GROSS BETA COUNT (BQ/L	1991 FEB 1991 SEP 1992 APR	TRITIUM (80/L	1991 FEB 1991 SEP 1992 APR	1001NE 131 (BQ/L	

BACTERIOLOGICAL FECAL COLIFORM MEMBRANE FILTRATION CT/100ML 0 0 (A1 STANDARD PLATE COUNT MEMBRANE FILT. CT/ML 0 500/ML (A3 TOTAL COLIFORM BACKGROUND MF CT/100ML 0 N/A TOTAL COLIFORM MEMBRANE FILTRATION CT/100ML 0 5/100ML (A1 CHENISTRY (FLD) FIELD COMBINED CHLORINE RESIDUAL MG/L 0 N/A	
STANDARD PLATE COUNT MEMBRANE FILT. CT/ML 0 500/ML (A3 TOTAL COLIFORM BACKGROUND MF CT/100ML 0 N/A TOTAL COLIFORM MEMBRANE FILTRATION CT/100ML 0 5/100ML (A1 CHEMISTRY (FLD) FIELD COMBINED CHLORINE RESIDUAL MG/L 0 N/A	
CHEMISTRY (FLD) FIELD COMBINED CHLORINE RESIDUAL MG/L 0 N/A	
FIELD COMBINED CHLORINE RESIDUAL MG/L 0 N/A)
TIEED COMBINED CHECKING REGIDENCE	
FIELD TOTAL CHLORINE RESIDUAL MG/L 0 N/A	
FIELD PH DMNSLESS N/A 6.5-8.5 (A4	
FIELD TEMPERATURE DEG.C N/A 15.0 (A3 FIELD TURBIDITY FTU N/A 1.0 (A1	
CHEMISTRY (LAB)	
ALKALINITY MG/L 0.20 30-500 (A4 AMMONIUM TOTAL MG/L 0.002 0.05 (F2	
CALCIUM MG/L 0.20 100.0 (F2	2)
COLOUR TCU 0.50 5.0 (A3	()
CONDUCTIVITY UMHO/CM 1.00 400.0 (FZ CYANIDE MG/L 0.001 0.2 (A1)
DISSOLYED ORGANIC CARBON MG/L 0.10 5.0 (A3 FLUORIDE MG/L 0.01 1.5* (A1	
HARDNESS MG/L 0.50 80-10D (A4 IONCAL DMNSLESS N/A N/A	.)
LANGELIERS INDEX DMNSLESS N/A N/A MAGNESIUM MG/L 0.10 30.0 (FZ	2)
NITRATES (TOTAL) MG/L 0.005 10.0 (A1 NITRITE MG/L 0.001 1.0 (A1	
NITROGEN TOTAL KJELDAHL MG/L 0.02 N/A	
PHOSPHORUS FIL REACT MG/L 0.0005 N/A	
PHOSPHORUS TOTAL MG/L 0.002 0.4 (FZ POTASSIUM MG/L 0.010 10.0 (FZ	2)
RESIDUE FILTRATE (CALCULATED TDS) MG/L N/A 500.0 (A3 SODIUM MG/L 0.20 200.0 (A4	
SULPHATE MG/L 0.20 500.0 (A4 TURBIDITY FTU 0.05 1.0 (A1	

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS

1.2.3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1.2.3.4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.0	38000	(04)
1.3.5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2.3.6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.4.5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2.6A-TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTAD IENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
2.3.4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2.3.5.6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER .	UNIT	DETECTION LIMIT	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10	25	(A1)
BARIUM	UG/L	0.05	1000	(A2)
BERYLLIUM	UG/L	0.05	6800	(D4)
BORON CADMIUM	UG/L	2.00	5000	(A1)
CHROMIUM	UG/L UG/L	0.05 0.50	5 50	(A1)
COBALT	UG/L	0.02	N/A	(AI)
COPPER	UG/L	0.50	1000	(A3)
IRON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	50	(A3)
MERCURY	UG/L	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM	UG/L	0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM URANIUM	UG/L	0.50	N/A	
VANADIUM	UG/L UG/L	0.05 0.05	100 N/A	(A1)
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS	00/1	0.20	3000	(,,,)
POLITHUCEEAR AROMATIC HIDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A	
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A	
BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G,H,I) PERYLENE BENZO(K) FLUORANTHENE	NG/L	20.0	N/A	
CHRYSENE	NG/L NG/L	1.0 50.0	N/A N/A	
CORONENE	NG/L	10.0	N/A N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A	
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE .	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE	NG/L	50.0	300000	(D3)
ATRATONE	NG/L	50.0	N/A	
ATRAZINE DESETHAL ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L NG/L	200.0 1.0	60000 300	(A2)
CYANAZINE (BLADEX)	NG/L NG/L	100.0.	10000	(G) (A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A	

		DETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
ENDRIN'	NG/L	5.0	1600	(D3)
GAMMA CHLORDANE	NG/L	2.0	7000	(A1)
HEPTACHLOR .	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L NG/L	1.0 5.0	3000 206000	(A1) (D4)
HEXACHLOROCYCLOPENTADIENE LINDANE (GAMMA BHC)	NG/L	1.0	4000	(A1)
METHOXYCHLOR	NG/L	5.0	900000	(A1)
METOLACHLOR	NG/L	500.0	50000	(A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000	(A1)
MIREX	NG/L	5.0	· N/A	
P,P-DDD	NG/L	5.0	30000	(A1)
O,P-DDT P,P-DDT	NG/L NG/L	5.0 5.0	30000 30000	(A1) (A1)
P.P-DDE	NG/L	1.0	30000	(A1)
OXYCHLORDANE	NG/L	2.0	N/A	(///
PCB	NG/L	20.0	3000	(A2)
PROMETONE	NG/L	50.0	52500	(D3)
PROMETRYNE	NG/L	50.0	1000	(A2)
PROPAZINE	NG/L	50.0	700000	(03)
SIMAZINE DESETHYL SIMAZINE	NG/L NG/L	50.0 200.0	10000 10000	(A2) (A2)
TOXAPHENE	NG/L	500.0	5000	(A2)
	, c	300.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****
PHENOLICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A	
SPECIFIC PESTICIDES				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB) 2,4,5-TP (SILVEX)	NG/L NG/L	200.0 20.0	N/A 10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000	(D3)
CARBARYL (SEVIN)	NG/L	200.0	90000	(A1)
CARBOFURAN	NG/L	2000.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	
DIALLATE	NG/L	2000.0	N/A	
DIAZINON DICAMBA	NG/L	20.0 50.0	20000	(A1)
DICHLOROVOS	NG/L NG/L	20.0	120000 N/A	(A1)
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	
MALATHION	NG/L	20.0		(A1)
METHYL PARATHION METHYLTRITHION	NG/L	50.0	9000	(D3)
MEVINPHOS	NG/L NG/L	20.0 20.0	N/A N/A	
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000	(D3)
RELDAN RONNEL	NG/L NG/L	20.0 20.0	N/A N/A	
VOLATILES	NG/L	20.0	N/A	
1,1-DICHLOROETHANE	UG/L	0.10	N/A	
1,1-DICHLOROETHYLENE 1,2-DICHLOROBENZENE	UG/L	0.10	7	(D1)
1,2-DICHLOROETHANE	UG/L UG/L	0.05 0.05	' 200 5	(A1) (A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5	(D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750	(D3)
1,4-DICHLOROBENZENE	UG/L	0.10	5	(A1)
1, 1, 1-TRICHLOROETHANE	UG/L	0.02	200	(D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.	
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.	17 (D4)

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE
BENZENE	UG/L	0.05	5 (A1)
BROMOFORM	UG/L	0.20	350 (A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5 (A1)
CHLOROBENZENE	UG/L	0.10	1510 (D3)
CHLOROD I BROMOMETHANE	UG/L	0.10	350 (A1+)
CHLOROFORM	UG/L	0.10	350 (A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350 (A1+)
ETHYLENE DIBROMIDE	UG/L.	0.05	50 (D1)
ETHYLBENZENE	UG/L	0.05	2.4 (A3)
M-XYLENE	UG/L	0.10	300 (A3*)
METHYLENE CHLORIDE	UG/L	0.50	50 (A1)
O-XYLENE	UG/L	0.05	300 (A3*)
P-XYLENE	UG/L	0.10	300 (A3*)
STYRENE	UG/L	0.05	100 (D1)
TETRACHLOROETHYLENE	UG/L	0.05	65 (A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70 (D1)
TOLUENE	UG/L	0.05	24 (A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350 (A1)
TRICHLOROETHYLENE	UG/L	0.10	50 (A1)
VINYL CHLORIDE	UG/L	0.10	2 (D1)
RAD I ONUCL I DES			
TRITIUM	BQ/L	7.0	40000 (A1)
GROSS ALPHA COUNT	BQ/L	0.04	0.55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A
COBALT 60	BQ/L	0.70	N/A
CESIUM 134	BO/L	0.70	N/A
CESIUM 137	BQ/L	0.70	50 (A1) °
IODINE 131	BQ/L	0.70	10 (A1)

[#] Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- ${\rm i}/{\rm the}$ sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

 C_6H_6

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS:

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO, is corrosive)

Volatiles (duplicates)

-45 mL glass vial with septum (OPOPUP)

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

-1 L amber glass bottle per scan (OWOC), (OWTRI)

-do not rinse bottle -fill to 2 cm from top

Specific Pesticides

-as per Organics (OWCP), (PEOP), (PECAR) -three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only) -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

-250 mL glass bottle Mercury

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃) and potassium dichromate (K2Cr2O7)

(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols -250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

-4 L plastic jug

Radionuclides

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization

(GC/MS - once per year)
(PBVOL),(PBEXT)

-1 L amber glass bottle; instructions

as per organic -250 mL glass bottlė -do <u>not</u> rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)
 (Caution: HNO₃ is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

-250 mL plastic bottle with white seal on cap Bacteriological

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNOz (Caution: HNO, is corrosive)

-45 mL glass vial with septum Volatiles (duplicate)

(OPOPUP) (teflon side must be in contact with sample)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

-1 L amber glass bottle per scan Organics

-do not rinse bottle (OWOC)

-fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

			- 11
	1		