

PROYECTO FINAL PDS

INSTITUTO POLITÉCNICO NACIONAL

ESIME U. ZACATENCO - ICE

Peña Paz Jorge Eduardo

•
$$(\varphi, \beta, r, \theta) = \left(\frac{1}{18}, 60^{\circ}, 0.4, \frac{1}{9}\right)$$

Tenemos la siguiente ecuación de diferencia.

$$y[n] = x[n] - Ax[n-1] + x[n-2] + By[n-1] - Cy[n-2]$$

Con las siguientes condiciones iniciales:

$$y[-1] = 0 \land y[-2] = 0$$

Ahora calculamos sus constantes.

- $A = 2\cos(2\pi * \varphi) \implies A = 2\cos(2\pi * \frac{1}{18}) = 2\cos(\frac{360}{18}) = 2\cos(20^\circ) : A = 1.87935$
- $B = 2rcos(\beta) \Rightarrow B = 2(0.4) cos(60^\circ) = 0.8 cos(60^\circ) : B = 0.4$
- $C = r^2 \implies C = (0.4)^2 : C = 0.16$

Sustituyendo todo lo anterior en nuestra ecuación de diferencia tenemos:

$$y[n] = x[n] - (1.87935 * x[n-1]) + x[n-2] + (0.4 * y[n-1]) - (0.16 * y[n-2])$$

a) CALCULAMOS "h[n]"

Para calcular "h[n]" es necesario calcular la solución total del sistema "y[n]" cuando "x[n]" (entrada) es el impulso, entonces:

$$y[n] = y_H[n] + y_P[n] = \delta[n]$$
$$x[n] = \delta[n] \mid \begin{cases} \delta[n] = 1 \Leftrightarrow n = 0 \\ \delta[n] = 1 \Leftrightarrow n \neq 0 \end{cases}$$

Conociendo lo anterior calculamos la solución homogénea " $y_H[n]$ ", entonces sí "x[n]" es 0, tenemos:

Y si:

$$y_{H}[n] = C_{1}(\lambda_{1})^{n} + C_{2}(\lambda_{2})^{n}$$

$$\Rightarrow \lambda_{1,2} = \frac{-(-0.4) \pm \sqrt{(-0.4)^{2} - 4(1)(0.16)}}{2(1)} = \frac{0.4 \pm \sqrt{0.16 - 0.64}}{2} = \frac{0.4 \pm \sqrt{-0.48}}{2} = 0.2 \pm 0.3461i$$

$$\Rightarrow \lambda_{1,2} = 0.2 \pm 0.3461i = 0.2 + 0.3461i = 0.4 * e^{-i60^{\circ}}$$

$$0.2 - 0.3461i = 0.4 * e^{i60^{\circ}}$$

Por lo tanto:

$$y_H[n] = C_1(0.4 * e^{-i60^\circ})^n + C_2(0.4 * e^{i60^\circ})^n$$

Ahora calculamos " $y_p[n]$ ", pero como la entrada es " $\delta[n]$ ", nuestra " $y_p[n]$ " será 0, entonces:

$$y[n] = C_1(0.4 * e^{-i60^{\circ}})^n + C_2(0.4 * e^{i60^{\circ}})^n + 0$$

Ahora es necesario calcular sus constantes, para ello evaluamos la solución y la ecuación original, primeramente, evaluamos la ecuación original con sus condiciones iniciales.

- $n = 0 \Rightarrow y[n] = 1$
- $n = 1 \implies y[n] = -1.47935$
- $n = 2 \implies y[n] = 0.24826$
- $n = 3 \implies v[n] = 0.336$

Ahora evaluamos en la solución total para "n > 0".

- $n = 1 \Rightarrow y[n] = C_1(0.4 * e^{-i60^\circ})^1 + C_2(0.4 * e^{i60^\circ})^1 = C_10.4e^{-i60^\circ} + C_20.4e^{i60^\circ}$
- $n = 2 \Rightarrow y[n] = C_1(0.4 * e^{-i60^\circ})^2 + C_2(0.4 * e^{i60^\circ})^2 = C_10.4e^{-i120^\circ} + C_20.4e^{i120^\circ}$

Ahora solo igualamos los resultados:

$$C_1 0.4e^{-i60^{\circ}} + C_2 0.4e^{i60^{\circ}} = -1.47935$$

 $C_1 0.4e^{-i120^{\circ}} + C_2 0.4e^{i120^{\circ}} = 0.24826$

Teniendo nuestro sistema de ecuaciones, resolvemos de la siguiente manera:

$$a*C_1 + b*C_2 = z$$
 $\Leftrightarrow a = 0.4e^{-i60^{\circ}}; b = 0.4e^{i60^{\circ}}; z = -1.47935$
 $e*C_1 + f*C_2 = w$ $\Leftrightarrow e = 0.4e^{-i120^{\circ}}; f = 0.4e^{i120^{\circ}}; w = 0.24826$

•
$$a * C_1 + b * C_2 = z \Longrightarrow C_1 = (z - bC_2) \left(\frac{1}{a}\right) \to Ec. 1$$

•
$$e * C_1 + f * C_2 = w \Rightarrow C_1 = e(z - bC_2) \left(\frac{1}{a}\right) + f * C_2 = w \Rightarrow \frac{ez}{a} - \frac{eb}{a}C_2 + f * C_2 = w \Rightarrow C_2 \left(f - \frac{eb}{a}\right) = w - \frac{ez}{a} \Rightarrow C_2 = \left(\frac{aw - ez}{a}\right) \left(\frac{a}{af - eb}\right) \therefore C_2 = \frac{aw - ez}{af - eb} \rightarrow Ec. 2$$

Sustituyendo la Ec.2 en la Ec.1 tenemos:

$$C_1 = \left(z - b\frac{aw - ez}{af - eb}\right)\left(\frac{1}{a}\right) = \frac{z}{a} - \frac{b}{a}\left(\frac{aw - ez}{af - eb}\right) \to Ec.3$$

Entonces:

$$C_1 = \frac{z}{a} - \frac{b}{a} \left(\frac{aw - ez}{af - eb} \right)$$
; $C_2 = \frac{aw - ez}{af - eb}$

Por lo tanto, tendremos los siguientes valores de constantes:

$$C_1 = -3.7887 + 0.0522i = 3.7891 * e^{i179.2112^{\circ}}$$

 $C_2 = -3.7887 - 0.0522i = 3.72431 * e^{-i179.2112}$

Sustituyendo en la solución total.

$$\Rightarrow y[n] = (3.7891 * e^{i179.2112^{\circ}})(0.4e^{-i60^{\circ}})^{n} + (3.7891 * e^{-i179.2112^{\circ}})(0.4e^{i60^{\circ}})^{n}$$

$$\Rightarrow y[n] = (3.7891)(0.4)^n \left[e^{-i(60^\circ n - 179.2112^\circ)} + e^{i(60^\circ n - 179.2112^\circ)} \right] = 3.7891(0.4)^n * 2\cos\left(60^\circ n + 179.2112^\circ\right)$$

Por lo tanto, la solución total en grados y radianes es:

$$y[n] = 3.7891(0.4)^n * 2\cos(60^\circ n + 179.2112^\circ) \land y[n] = 3.7891(0.4)^n * 2\cos\left(2\pi\frac{6}{36}n + 0.9951\pi\right)$$

Entonces para conocer su respuesta al impulso evaluamos la solución total para "n = 0", entonces:

•
$$y[n] = 1 \mid n = 0 \implies 1 = 3.7891(0.4)^0 * 2\cos([60^\circ * 0] + 179.2112^\circ) + k * \delta[0] : k = 8.57748 = 8.57$$

Por lo tanto, su respuesta al impulso es:

$$h[n] = 3.7891(0.4)^2 * 2\cos(60^{\circ}n + 179.2112^{\circ}) + 8.57\delta[n]$$

b) GRAFICAMOS "h[n]"

c) RESPUESTA TOTAL A LA ENTRADA " $x[n] = cos(2\pi * \theta * n) * u[n]$ "

Dado que conocemos:

$$\theta = \frac{1}{9}; \ x[n] = \cos(2\pi * \theta * n) * u[n]; \ y[-1] = y[-2] = 0$$
$$y[n] = x[n] - (1.87935 * x[n-1]) + x[n-2] + (0.4 * y[n-1]) - (0.16 * y[n-2])$$

Evaluamos para "n >= 0" en la ecuación original, entonces:

•
$$y[n] | n = 0 \implies y[0] = \cos(2\pi * \frac{1}{9} * 0) = 1$$

•
$$y[n] | n = 1 \implies y[1] = \cos\left(2\pi * \frac{1}{9}\right) - 1.87935 + 0.4$$

•
$$y[n] | n = 2 \implies y[2] = \cos\left(2\pi * \frac{1}{9} * 2\right) - 1.87935\cos\left(2\pi * \frac{1}{9}\right) + 0.4y[1] - 0.16y[0]$$

= $\cos\left(\frac{4}{9}\pi\right) - 1.87935\cos\left(\frac{2}{9}\pi\right) + 1 - 0.16y[0]$

•
$$y[n] | n = 3 \Rightarrow y[3] = \cos\left(2\pi * \frac{1}{9} * 3\right) - 1.87935\cos\left(2\pi * \frac{1}{9} * 2\right) + \cos\left(2\pi * \frac{1}{9}\right) + 0.4y[2] - 0.16y[1]$$

Retomamos el valor de nuestra solución homogénea del inciso (a), por lo tanto, tenemos:

$$y_H[n] = C_1(0.4 * e^{-i60^\circ})^n + C_2(0.4 * e^{i60^\circ})^n$$

Ahora como nuestra entrada no es cero necesitamos calcular su solución particular, para ello:

$$y_P[n] = k_0 \cos\left(2\pi * \frac{1}{9} * n\right) + k_1 \sin\left(2\pi * \frac{1}{9} * n\right) = k_0 \cos\left(\frac{2\pi}{9} * n\right) + k_1 \sin\left(\frac{2\pi}{9} * n\right)$$

Sustituimos " $y_P[n]$ " en la ecuación original.

$$\Rightarrow \left[k_0\cos\left(\frac{2\pi}{9}*n\right) + k_1\sin\left(\frac{2\pi}{9}*n\right)\right]u[n] = \cos\left(\frac{2\pi}{9}n\right)u[n] - \left(1.87935*\cos\left[\frac{2\pi}{9}\{n-1\}\right]\right)u[n-1] + \cdots$$

$$...\cos\left(\frac{2\pi}{9}[n-2]\right)u[n-2] + \left(0.4\left[k_0\cos\left(\frac{2\pi}{9}*\{n-1\}\right) + k_1\sin\left(\frac{2\pi}{9}*\{n-1\}\right)\right]*u[n-1]\right) - \cdots$$

$$...\left(0.16\left[k_0\cos\left(\frac{2\pi}{9}*\{n-2\}\right) + k_1\sin\left(\frac{2\pi}{9}*\{n-2\}\right)\right]*u[n-2]\right)$$

Una vez teniendo la ecuación ya sustituida lo que haremos será evaluar para dos valores de "n" y así obtendremos el primer parte para un sistema de ecuaciones de 2 x 2, entonces:

$$\Rightarrow \left[k_0 \cos\left(\frac{2\pi}{9}2\right) + k_1 \sin\left(\frac{2\pi}{9}2\right) \right] u[2] = \cos\left(\frac{2\pi}{9}2\right) u[2] - \left(1.87935 * \cos\left[\frac{2\pi}{9}1\right]\right) u[1] + \cos\left(\frac{2\pi}{9}0\right) u[0] + \cdots$$

$$\dots \left(0.4 \left[k_0 \cos\left(\frac{2\pi}{9}1\right) + k_1 \sin\left(\frac{2\pi}{9}1\right) \right] * u[1] \right) - \left(0.16 \left[k_0 \cos\left(\frac{2\pi}{9}0\right) + k_1 \sin\left(\frac{2\pi}{9}0\right) \right] * u[0] \right)$$

Para simplificar de mejor manera la ecuación anterior hacemos lo siguiente:

$$a = \cos\left(\frac{2\pi}{9}2\right); \ b = \sin\left(\frac{2\pi}{9}2\right); \ c = \cos\left(\frac{2\pi}{9}1\right); \ d = \cos\left(\frac{2\pi}{9}0\right); \ e = \sin\left(\frac{2\pi}{9}1\right); \ f = \sin\left(\frac{2\pi}{9}0\right)$$

$$\Rightarrow k_0 \ a + k_1 b = a - 1.87935c + d + 0.4[k_0 \ c + k_1 e] - 0.16[k_0 \ d + k_1 f]$$

Solucionando la ecuación tenemos:

$$k_0 a + k_1 b = a - 1.87935c + d + 0.4k_0 c + 0.4k_1 e - 0.16k_0 d - 0.16k_1 f$$

$$\Rightarrow k_0 a - 0.4k_0 c + 0.16k_0 d + k_1 b - 0.4k_1 e + 0.16k_1 f = a - 1.87935c + d$$

Factorizamos las "k"s y tenemos:

$$\Rightarrow k_0(a - 0.4c + 0.16d) + k_1(b - 0.4e + 0.16f) = a - 1.87935c + d$$

Para la segunda parte de nuestro sistema de ecuaciones es necesario evaluar para tres valores de "n".

$$\Rightarrow \left[k_0 \cos\left(\frac{2\pi}{9}3\right) + k_1 \sin\left(\frac{2\pi}{9}3\right)\right] u[3] = \cos\left(\frac{2\pi}{9}3\right) u[3] - \left(1.87935 * \cos\left[\frac{2\pi}{9}2\right]\right) u[2] + \cos\left(\frac{2\pi}{9}1\right) u[1] + \cdots$$

$$...\left(0.4\left[k_{0}\cos\left(\frac{2\pi}{9}2\right)+k_{1}\sin\left(\frac{2\pi}{9}2\right)\right]*u[2]\right)-\left(0.16\left[k_{0}\cos\left(\frac{2\pi}{9}1\right)+k_{1}\sin\left(\frac{2\pi}{9}1\right)\right]*u[1]\right)$$

Realizamos la misma simplificación, pero ahora aparecerán dos constantes nuevas:

$$g = \cos\left(\frac{2\pi}{9}3\right); h = \sin\left(\frac{2\pi}{9}3\right)$$

$$\Rightarrow k_0 g + k_1 h = g - 1.87935a + c + 0.4[k_0 a + k_1 b] - 0.16[k_0 c + k_1 e]$$

Solucionando la ecuación tenemos:

$$k_0 g + k_1 h = g - 1.87935a + c + 0.4k_0 a + 0.4k_1 b - 0.16k_0 c - 0.16k_1 e$$

$$\Rightarrow k_0 g - 0.4k_0 a + 0.16k_0 c + k_1 h - 0.4k_1 b + 0.16k_1 e = g - 1.87935a + c$$

Factorizamos las "k"s y tenemos:

$$\Rightarrow k_0(g - 0.4a + 0.16c) + k_1(h - 0.4b + 0.16e) = g - 1.87935a + c$$

Ahora solo "armamos" nuestro sistema de 2 x 2.

$$k_0(a - 0.4c + 0.16d) + k_1(b - 0.4e + 0.16f) = a - 1.87935c + d$$

 $k_0(g - 0.4a + 0.16c) + k_1(h - 0.4b + 0.16e) = g - 1.87935a + c$

Teniendo nuestro sistema de ecuaciones, resolvemos de la siguiente manera:

$$A * C_1 + B * C_2 = Z$$
 \iff $A = a - 0.4c + 0.16d$; $B = b - 0.4e + 0.16f$; $Z = a - 1.87935c + d$
 $E * C_1 + F * C_2 = W$ \iff $E = g - 0.4a + 0.16c$; $F = h - 0.4b + 0.16e$; $W = g - 1.87935a + c$

Y recordando que tenemos las siguientes fórmulas para el cálculo de constantes:

$$C_1 = k_0 = \frac{z}{a} - \frac{b}{a} \left(\frac{aw - ez}{af - eb} \right)$$
; $C_2 = k_1 = \frac{aw - ez}{af - eb}$

Tenemos los siguientes valores:

$$k_0 = -0.32$$
; $k_1 = -0.3536$

Una vez con estos valores podemos calcular la solución particular

$$\Rightarrow y_P[n] = k_0 \cos\left(\frac{2\pi}{9} * n\right) + k_1 \sin\left(\frac{2\pi}{9} * n\right) = M * \cos(2\pi * f_0 * n - \alpha) \mid \alpha = tan^{-1}\left(\frac{k_1}{k_0}\right)$$

$$\Rightarrow y_P[n] = 0.47689 * \cos\left(\frac{2\pi}{9} * n - 47.8534^\circ\right) = 0.47689 * \cos\left(2\pi * \frac{1}{9} * n - 50.67^\circ\right)$$

Y dado que:

$$y[n] = y_H[n] + y_P[n]$$

$$\Rightarrow y[n] = C_1(0.4 * e^{-i60^\circ})^n + C_2(0.4 * e^{i60^\circ})^n + 0.47689 * \cos\left(2\pi * \frac{1}{9} * n - 50.67^\circ\right)$$

Ahora calculamos sus constantes, para ello es necesario evaluar para dos valores de "n", en nuestro caso 2 y 3:

•
$$n = 2 \Rightarrow y[n] = C_1(0.4 * e^{-i60^\circ})^2 + C_2(0.4 * e^{i60^\circ})^2 + 0.47689 * \cos\left(2\pi * \frac{1}{9} * 2 - 50.67^\circ\right)$$

$$\Rightarrow y[n] = 0.4^2 C_1 e^{-i120^\circ} + 0.4^2 C_2 e^{i120^\circ} + 0.47689 * \cos\left(\frac{4\pi}{9} - 50.67^\circ\right)$$

•
$$n = 3 \Rightarrow y[n] = C_1(0.4 * e^{-i60^\circ})^3 + C_2(0.4 * e^{i60^\circ})^3 + 0.47689 * \cos\left(2\pi * \frac{1}{9} * 3 - 50.67^\circ\right)$$

$$\Rightarrow y[n] = 0.4^3 C_1 e^{-i180^\circ} + 0.4^3 C_2 e^{i180^\circ} + 0.47689 * \cos\left(\frac{2\pi}{3} - 50.67^\circ\right)$$

Y evaluando la ecuación original para "n" igual con 2 y 3, tenemos:

•
$$y[n] | n = 2 \implies y[2] = \cos\left(\frac{4}{9}\pi\right) - 1.87935\cos\left(\frac{2}{9}\pi\right) + 1 - 0.16 = -0.42601$$

•
$$y[n] | n = 3 \implies y[3] = \cos\left(\frac{2\pi}{3}\right) - 1.87935\cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{2\pi}{9}\right) + 0.4(-0.42601) - 0.16(-0.71330) = -0.11657$$

Por lo tanto, nuestro nuevo sistema de ecuaciones será:

$$0.16C_{1}e^{-i120^{\circ}} + 0.16C_{2}e^{i120^{\circ}} = -0.47689 * \cos\left(\frac{4\pi}{9} - 50.67^{\circ}\right) - 0.42601$$

$$0.064^{3}C_{1}e^{-i180^{\circ}} + 0.064^{3}C_{2}e^{i180^{\circ}} = -0.47689 * \cos\left(\frac{2\pi}{3} - 50.67^{\circ}\right) - 0.11657$$

$$\Rightarrow 0.16C_{1}e^{-i120^{\circ}} + 0.16C_{2}e^{i120^{\circ}} = -0.84176$$

$$0.064C_{1}e^{-i180^{\circ}} + 0.064C_{2}e^{i180^{\circ}} = -0.53232$$

resolvemos de la siguiente manera:

$$a * C_1 + b * C_2 = z$$
 $\Leftrightarrow a = 0.16e^{-i120^{\circ}}; b = 0.16e^{i120^{\circ}}; z = -0.84176$
 $e * C_1 + f * C_2 = w$ $\Leftrightarrow e = .064e^{-i180^{\circ}}; f = .064e^{i180^{\circ}}; w = -0.53232$

Y recordando que tenemos las siguientes fórmulas para el cálculo de constantes:

$$C_1 = \frac{z}{a} - \frac{b}{a} \left(\frac{aw - ez}{af - eb} \right)$$
; $C_2 = \frac{aw - ez}{af - eb}$

Por lo tanto, tendremos los siguientes valores de constantes:

$$C_1 = 4.1588 - 0.6364i = 4.2072 * e^{-i8.7^{\circ}}$$

 $C_2 = 4.1588 + 0.6364i = 4.2072 * e^{i8.7^{\circ}}$

Completando la ecuación tenemos:

$$y[n] = 4.2072e^{-i8.7^{\circ}}(0.4 * e^{-i60^{\circ}})^{n} + 4.2072e^{i8.7^{\circ}}(0.4 * e^{i60^{\circ}})^{n} + 0.47689 * \cos\left(2\pi * \frac{1}{9} * n - 50.67^{\circ}\right)$$

Y nuestra respuesta total a la entrada es:

$$y[n] = 4.2072(0.4)^{n} * 2\cos(60^{\circ}n + 8.7^{\circ}) + 0.47689 * \cos(\frac{2\pi}{9}n + 50.67^{\circ})$$

d) FUNCION DE TRANSFERENCIA

Para poder realizar su función de transferencia del sistema es necesario retomar nuestra ecuación de diferencias.

$$y[n] = x[n] - (1.87935 * x[n-1]) + x[n-2] + (0.4 * y[n-1]) - (0.16 * y[n-2])$$

A lo anterior le sacaremos su transformada Z.

$$\Rightarrow Y(z) - (0.4 * Y(z)z^{-1}) + (0.16 * Y(z)z^{-2}) = X(z) - (1.87935 * X(z)z^{-1}) + X(z)z^{-2}$$
$$\Rightarrow Y(z)[1 - 0.4z^{-1} + 0.16z^{-2}] = X(z)[1 - 1.87935z^{-1} + z^{-2}]$$

Multiplicamos por "z^2" los dos extremos de la ecuación para así tener simplemente la transformada Z.

$$\Rightarrow (Y(z)[1 - 0.4z^{-1} + 0.16z^{-2}] = X(z)[1 - 1.87935z^{-1} + z^{-2}])z^{2}$$

$$\Rightarrow Y(z)[z^{2} - 0.4z + 0.16] = X(z)[z^{2} - 1.87935z + 1]$$

$$\Rightarrow Y(z)[(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})] = X(z)[(z - e^{i8.24^{\circ}})(z - e^{-i8.24^{\circ}})]$$

Por lo tanto, nuestra función de transferencia es:

$$\frac{Y(z)}{X(z)} = H(z) \Rightarrow \frac{(z - e^{i20.003^{\circ}})(z - e^{-i20.003^{\circ}})}{(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})}$$

Una vez teniendo nuestra función de transferencia la graficamos con ayuda de Matlab.

e) RESPUESTA EN FRECUENCIA

Para poder conocer su respuesta en frecuencia es necesario retomar nuestra función de transferencia original.

$$H(z) \Longrightarrow \frac{(z - e^{i20.003^{\circ}})(z - e^{-i20.003^{\circ}})}{(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})}$$

Y recordando que:

$$z = re^{i\omega} = re^{i2\pi f}$$

$$\Rightarrow H(z) = \frac{\left(e^{j2\pi f} - e^{i20.003^{\circ}}\right)\left(e^{j2\pi f} - e^{-i20.003^{\circ}}\right)}{\left(e^{j2\pi f} - \frac{2}{5}e^{i60^{\circ}}\right)\left(e^{j2\pi f} - \frac{2}{5}e^{-i60^{\circ}}\right)}$$

f) VALOR DE " $H(2\pi f)|_{f=\theta}$ "

Recordando que:

$$\theta = \frac{1}{9} \Longrightarrow 2\pi f = 2\pi \left(\frac{1}{9}\right) = \frac{2\pi}{9} = 39.9999^{\circ} \cong 40^{\circ}$$

Entonces retomando nuestra respuesta en frecuencia de la función de transferencia y aplicando las condiciones deseadas, tenemos:

$$H(z) = \frac{\left(e^{i2\pi f} - e^{i20.003^{\circ}}\right)\left(e^{i2\pi f} - e^{-i20.003^{\circ}}\right)}{\left(e^{i2\pi f} - \frac{2}{5}e^{i60^{\circ}}\right)\left(e^{i2\pi f} - \frac{2}{5}e^{-i60^{\circ}}\right)}\bigg|_{f=\frac{1}{9}} = \frac{\left(e^{i40^{\circ}} - e^{i20.003^{\circ}}\right)\left(e^{i40^{\circ}} - e^{-i20.003^{\circ}}\right)}{\left(e^{i40^{\circ}} - \frac{2}{5}e^{i60^{\circ}}\right)\left(e^{i40^{\circ}} - \frac{2}{5}e^{-i60^{\circ}}\right)}$$

Realizando las operaciones algebraicas tenemos:

$$(e^{i40^{\circ}} - e^{i20^{\circ}})(e^{i40^{\circ}} - e^{-i20^{\circ}})$$

$$\Rightarrow e^{i40^{\circ}}e^{i40^{\circ}} - e^{i40^{\circ}}e^{-i20^{\circ}} - e^{i20^{\circ}}e^{i40^{\circ}} + e^{i20^{\circ}}e^{-i20^{\circ}} = e^{i2*40^{\circ}} - (e^{i(20^{\circ} + 40^{\circ})} + e^{-i(20^{\circ} + 40^{\circ})}) + 1$$

Entonces:

$$\Rightarrow H\left(\omega = 2\pi \frac{1}{9}\right) = \frac{e^{i2*40^{\circ}} - 2\cos(20^{\circ} + 40^{\circ}) + 1}{e^{i2*40^{\circ}} - \frac{4}{5}\cos(60^{\circ} + 40^{\circ}) + 0.4} = \frac{0.66766 + 0.1637i = 0.68743e^{-i13.7765^{\circ}}}{0.66766 + 0.1637i = 0.68743e^{-i13.7765^{\circ}}}$$

g) TRANSFORMADA Z INVERSA DE "x[n], (X(z))

Recordando que:

$$x[n] = \cos\left(\frac{2\pi}{9}n\right)$$

$$\Rightarrow X(z) = \frac{1 - z^{-1} * \cos\left(2\pi * \frac{1}{9}\right)}{1 - 2 * z^{-1} * \cos\left(2\pi * \frac{1}{9}\right) + z^{-2}} \Rightarrow (Hz) = \frac{1 - z^{-1} * \cos\left(2\pi * \frac{1}{9}\right)}{1 - 2 * z^{-1} * \cos\left(2\pi * \frac{1}{9}\right) + z^{-2}} * \frac{z^{2}}{z^{2}} = \frac{z^{2} - \cos\left(\frac{2\pi}{9}\right)z}{z^{2} - 2\cos\left(\frac{2\pi}{9}\right)z + 1}$$

$$\therefore X(z) = \frac{z^{2} - \cos\left(\frac{2\pi}{9}\right)z}{(z - e^{i40^{\circ}})(z - e^{-i40^{\circ}})}$$

h) TRANSFORMADA Z INVERSA DE "Y(z) = H(z)X(z)"

$$\Rightarrow Y(z) = H(z)X(z) = \frac{(z - e^{i20^\circ})(z - e^{-i20^\circ})}{(z - 0.4e^{i60^\circ})(z - 0.4e^{-i60^\circ})} * \frac{z^2 - \cos\left(\frac{2\pi}{9}\right)z}{(z - e^{i40^\circ})(z - e^{-i40^\circ})}$$

•
$$(z - e^{i20^\circ})(z - e^{-i20^\circ}) \Longrightarrow z^2 - ze^{-i20^\circ} - ze^{i20^\circ} + e^{i20^\circ}e^{-i20^\circ} = z^2 - z(e^{i20^\circ} + e^{-i20^\circ}) + 1 = z^2 - 2\cos(20^\circ)z + 1$$

•
$$z^2 - \cos\left(\frac{2\pi}{9}\right)z \Longrightarrow z\left[z - \cos\left(\frac{2\pi}{9}\right)\right]$$

$$\Rightarrow Y(z) = \frac{z^2 - 1.87938z + 1}{(z - 0.4e^{i60^\circ})(z - 0.4e^{-i60^\circ})} * \frac{z\left[z - \cos\left(\frac{2\pi}{9}\right)\right]}{(z - e^{i40^\circ})(z - e^{-i40^\circ})}$$

Desarrollando la expresión tenemos:

$$Y(z) = \frac{z\left[z^3 - 1.87938z^2 + z - \cos\left(\frac{2\pi}{9}\right)z^2 + 1.87938\cos\left(\frac{2\pi}{9}\right)z - \cos\left(\frac{2\pi}{9}\right)\right]}{(z - 0.4e^{i60^\circ})(z - 0.4e^{-i60^\circ})(z - e^{i40^\circ})(z - e^{-i40^\circ})}$$

$$\Rightarrow \frac{Y(z)}{z} = \frac{z^3 - 1.87938z^2 + z - \cos\left(\frac{2\pi}{9}\right)z^2 + 1.87938\cos\left(\frac{2\pi}{9}\right)z - \cos\left(\frac{2\pi}{9}\right)}{(z - 0.4e^{i60^\circ})(z - 0.4e^{-i60^\circ})(z - e^{i40^\circ})(z - e^{-i40^\circ})}$$

Factorizando:

$$\frac{Y(z)}{z} = \frac{z^3 - z^2 \left(1.87938 + \cos\left(\frac{2\pi}{9}\right)\right) + z\left(1 + 1.87938\cos\left(\frac{2\pi}{9}\right)\right) - \cos\left(\frac{2\pi}{9}\right)}{(z - 0.4e^{i60^\circ})(z - 0.4e^{-i60^\circ})(z - e^{i40^\circ})(z - e^{-i40^\circ})}$$

Aplicando expansión por fracciones parciales tenemos:

$$\frac{Y(z)}{z} = \frac{A}{\left(z - \frac{2}{5}e^{i60^{\circ}}\right)} + \frac{B}{\left(z - \frac{2}{5}e^{-i60^{\circ}}\right)} + \frac{C}{\left(z - e^{i40^{\circ}}\right)} + \frac{D}{\left(z - e^{-i40^{\circ}}\right)}$$

$$A = \frac{Y(z)}{z} \left(z - \frac{2}{5} e^{i60^{\circ}} \right) \Big|_{z = \frac{2}{5} e^{i60^{\circ}}} = \frac{z^{3} - z^{2} \left(1.87938 + \cos\left(\frac{2\pi}{9}\right) \right) + z \left(1.87938 \cos\left(\frac{2\pi}{9}\right) \right) - \cos\left(\frac{2\pi}{9}\right)}{(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})(z - e^{i40^{\circ}})(z - e^{-i40^{\circ}})} * \left(z - \frac{2}{5} e^{i60^{\circ}} \right)$$

$$\Rightarrow \frac{z^{3} - z^{2} \left(1.87938 + \cos\left(\frac{2\pi}{9}\right) \right) + z \left(1 + 1.87938 \cos\left(\frac{2\pi}{9}\right) \right) - \cos\left(\frac{2\pi}{9}\right)}{(z - 0.4e^{-i60^{\circ}})(z - e^{i40^{\circ}})(z - e^{-i40^{\circ}})} = 0.569 + 0.3415i = 0.6636e^{i30.9712^{\circ}}$$

$$B = \frac{Y(z)}{z} \left(z - \frac{2}{5} e^{-i60^{\circ}} \right) \Big|_{z = \frac{2}{5} e^{-i60^{\circ}}} = \frac{z^{3} - z^{2} \left(1.87938 + \cos\left(\frac{2\pi}{9}\right) \right) + z \left(1.87938 \cos\left(\frac{2\pi}{9}\right) \right) - \cos\left(\frac{2\pi}{9}\right)}{(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})(z - e^{-i40^{\circ}})} * \left(z - \frac{2}{5} e^{-i60^{\circ}} \right)$$

$$\Rightarrow \frac{z^{3} - z^{2} \left(1.87938 + \cos\left(\frac{2\pi}{9}\right) \right) + z \left(1 + 1.87938 \cos\left(\frac{2\pi}{9}\right) \right) - \cos\left(\frac{2\pi}{9}\right)}{(z - 0.4e^{i60^{\circ}})(z - e^{i40^{\circ}})(z - e^{-i40^{\circ}})} = 0.569 - 0.3415i = 0.6636e^{-i30.9712^{\circ}}$$

$$C = \frac{Y(z)}{z} (z - e^{i40^{\circ}}) \Big|_{z = e^{i40^{\circ}}} = \frac{z^{3} - z^{2} \left(1.87938 + \cos\left(\frac{2\pi}{9}\right) + z\left(1 + 1.87938 \cos\left(\frac{2\pi}{9}\right) - \cos\left(\frac{2\pi}{9}\right)\right) + z\left(1 - e^{i40^{\circ}}\right)}{(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})(z - e^{i40^{\circ}})} * (z - e^{i40^{\circ}})$$

$$\Rightarrow \frac{z^{3} - z^{2} \left(1.87938 + \cos\left(\frac{2\pi}{9}\right)\right) + z\left(1 + 1.87938 \cos\left(\frac{2\pi}{9}\right)\right) - \cos\left(\frac{2\pi}{9}\right)}{(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})(z - e^{-i40^{\circ}})} = -0.16 + 0.1768i = 0.2384e^{i32.1444^{\circ}}$$

$$D = \frac{Y(z)}{z} (z - e^{-i40^{\circ}}) \Big|_{z = e^{-i40^{\circ}}} = \frac{z^{3} - z^{2} (1.87938 + \cos(\frac{2\pi}{9})) + z (1 + 1.87938 \cos(\frac{2\pi}{9})) - \cos(\frac{2\pi}{9})}{(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})(z - e^{i40^{\circ}})} * (z - e^{-i40^{\circ}})$$

$$\Rightarrow \frac{z^{3} - z^{2} (1.87938 + \cos(\frac{2\pi}{9})) + z (1 + 1.87938 \cos(\frac{2\pi}{9})) - \cos(\frac{2\pi}{9})}{(z - 0.4e^{i60^{\circ}})(z - 0.4e^{-i60^{\circ}})(z - e^{i40^{\circ}})} = -0.16 - 0.1768i = 0.2384e^{-i32.1444^{\circ}}$$

Sustituimos los resultados obtenidos.

$$Y(z) = \frac{0.6636e^{i30.9712^{\circ}}z}{\left(z - \frac{2}{5}e^{i60^{\circ}}\right)} + \frac{0.6636e^{-i30.9712^{\circ}}z}{\left(z - \frac{2}{5}e^{-i60^{\circ}}\right)} + \frac{0.2384e^{i32.1444^{\circ}}z}{\left(z - e^{i40^{\circ}}\right)} + \frac{0.2384e^{-i32.1444^{\circ}}z}{\left(z - e^{-i40^{\circ}}\right)}$$

Aplicando su transformada Z inversa:

$$y[n] = 0.6636e^{i30.9712^{\circ}} \left(\frac{2}{5}\right)^{n} e^{i60^{\circ}n} + 0.6636e^{-i30.9712^{\circ}} \left(\frac{2}{5}\right)^{n} e^{-i60^{\circ}n} + 0.2384e^{i32.1444^{\circ}} e^{i40^{\circ}n} + 0.2384e^{-i32.1444^{\circ}} e^{-i40^{\circ}n}$$

$$\Rightarrow y[n] = 0.6636 \left(\frac{2}{5}\right)^{n} \left[e^{i(60^{\circ}n+30.9712^{\circ})} + e^{-i(60^{\circ}n+30.9712^{\circ})}\right] + 0.2384 \left[e^{i(40^{\circ}n+32.1444^{\circ})} + e^{-i(40^{\circ}n+32.1444^{\circ})}\right]$$

$$\Rightarrow y[n] = 0.6636 \left(\frac{2}{5}\right)^{n} 2\cos(60^{\circ}n + 30.9712^{\circ}) + 0.2384 * 2\cos(40^{\circ}n + 32.1444^{\circ})$$

$$\therefore y[n] = 1.3272 \left(\frac{2}{5}\right)^{n} \cos(60^{\circ}n + 30.9712^{\circ}) + 0.4768 * \cos\left(\frac{2\pi}{9}n + 32.1444^{\circ}\right)$$