Manuel Schottdorf, PhD

Contact: maschott@udel.edu
Lab Website: https://schottdorflab.com

Psychological & Brain Sciences University of Delaware

Wolf Hall, Newark, DE 19716

ORCID-ID: 0000-0002-5468-4255

A. Education

Ph. D. in Physics. Summa cum laude. Göttingen University, Germany.
2/2016 Summer school in Biophysics. ICTP-SAIFR, São Paulo, Brazil.
6/2014 Summer school in Computational Neuroscience. OIST, Okinawa, Japan.
M. Sc. with honors. FOKUS Physik. University of Würzburg, Germany.
M. Sc. Physics. Rutgers, The State University of New Jersey, U.S.A.
B. Sc. Physics (minor Philosophy). University of Würzburg, Germany.

B. Appointments

1/2025 — present	Assistant Professor, University of Delaware, Psychological and Brain Sciences.
8/2022 — 1/2025	Associate Research Scholar, Princeton Neuroscience Institute (PNI), Princeton
	University, Princeton, NJ (Supervisors: David Tank, Carlos Brody)
8/2018 — 8/2022	Postdoctoral Research Associate, Princeton Neuroscience Institute (PNI), Princeton
	University, Princeton, NJ (Supervisors: David Tank, Carlos Brody)
2/2018 — 8/2018	Postdoctoral Research Associate, Neuroscience, Max Planck Institute for Dynamics
	and Self-Organization, Göttingen, Germany (Supervisors: Walter Stühmer, Fred Wolf)
2/2013 — 2/2018	Graduate student (PhD) at the Max Planck Institute (MPI) for Experimental Medicine
	(now MPI for Interdisciplinary Science) and the MPI for Dynamics and Self-Organization.
	Advisors: Fred Wolf & Walter Stühmer.
2011 — 2013	Graduate student (M. Sc.) in theoretical physics. MPI for Dynamics and
	Self-Organization. Advisor: Fred Wolf.
2010 — 2011	Graduate student (M. Sc.) in experimental condensed matter physics. Rutgers, the State
	University of New Jersey. Advisor: Eva Andrei.
2010	Undergraduate researcher in experimental biophysics at Jülich Research Center.
	Advisor: Bernhard Wolfrum.

C. Grants, Fellowships and Awards

2023 — 2028	Burroughs Wellcome CASI Award (awarded to 9 projects among 209 applicants — \$500k funding / 5 years faculty).
ongoing	C.V. Starr Fellowship (to researchers with "exceptional skills and potential" — awarded to ~1-2 postdocs / year at the Princeton Neuroscience Institute).
2018	Otto Hahn Medal of the Max Planck Society (awarded annually to ~30 out of ~5000 PhD students across all Institutes for "outstanding scientific achievements during the PhD").
2013 — 2015	Boehringer Ingelheim Fonds PhD Fellowship (one of the most prestigious and competitive international scholarships for PhD students in the life sciences).
2010 — 2012	Fellow of FOKUS Physik (A competitive and accelerated graduate program for "excellent and highly motivated students"; top ~5% of students).
2010	Invited to the 60 th Lindau Nobel Laureate Meeting.
2009 — 2013	Max Weber Scholarship by the German National Academic Foundation for "exceptionally gifted students" (top ~0.6% of students).

D. Scientific contributions

A. Preprints

- 1. S. Koukuntla, J.B. Julian, J. C. Kaminsky, **M. Schottdorf**, D.W. Tank, C.D. Brody, A.S. Charles: "Unsupervised discovery of the shared and private geometry in multi-view data", Arxiv https://arxiv.org/abs/2408.12091 (2024).
- 2. C. Gillon, C. Baker, R. Ly, E. Balzani, B. Brunton, **M. Schottdorf**, S. Ghosh, N. Dehghani: "*ODIN: Open Data In Neurophysiology: Advancements, Solutions & Challenges*", Arxiv https://arxiv.org/abs/2407.00976 (2024).
- 3. L. Brown, J. Cho, S. Bolkan, E. Nieh, **M. Schottdorf**, D. Tank, C. Brody, I. Witten, M. Goldman: "Neural circuit models for evidence accumulation through choice-selective sequences", BioRxiv https://doi.org/10.1101/2023.09.01.555612 (2023).

B. Peer reviewed publications

- 1. **M. Schottdorf**, P. Dylan Rich, E. Mika Diamanti, A. Lin, S. Tafazoli, E. Nieh, S. Thiberge: "*TWINKLE: An open-source two-photon microscope for teaching and research*" PLoS ONE in press (2025).
- 2. **M. Schottdorf**, G. Yu, Edgar Walker: "Data science and its future in large neuroscience collaborations", Neuron 112(18): 3007-3012 (2024).
- 3. J. LaChance*, **M. Schottdorf***, T. Zajdel, J. Saunders, S. Dvali, C. Marshall, L. Seirup, I. Sammour, R. Chatburn, D. Notterman, D. Cohen: "PVP1—The People's Ventilator Project: A fully open, low-cost, pressure-controlled ventilator research platform compatible with adult and pediatric uses", PLoS ONE 17(5): e0266810 (2022).
- 4. D. Suo, U. Ghai, E. Minasyan, P. Gradu, X. Chen, N. Agarwal, C. Zhang, K. Singh, J. LaChance, T. Zajdel, **M. Schottdorf**, D. Cohen & E. Hazan: "*Machine Learning for Medical Ventilator Control*", Machine Learning for Health (ML4H), available on arXiv: 2102.06779 (2022).
- 5. **M. Schottdorf** & B.B. Lee: "A quantitative description of macaque ganglion cell responses to natural scenes: the interplay of time and space", <u>Journal of Physiology</u> 599(12): 3169-3193 (2021).
- 6. E. Nieh*, **M. Schottdorf***, N. Freeman, R. Low, S. Lewallen, S.-A. Koay, L. Pinto, J. Gauthier, C. Brody & D. Tank: "Geometry of abstract learned knowledge in the hippocampus", Nature 595: 80–84 (2021).
- 7. C.L.A. Ho, R. Zimmermann, J.D.F. Weidinger, M. Prsa, **M. Schottdorf**, S. Merlin, T. Okamoto, K. Ikezoe, F. Pieri, F. Aujard, A. Angelucci, F. Wolf & D. Huber: "Orientation Preference Maps in Microcebus murinus Reveal Size-Invariant Design Principles in Primate Visual Cortex", Current Biology 31: 1-9 (2021).
- 8. D. B. Nestvogel, R. M. Merino, C. L. Pinzon, **M. Schottdorf**, C. Lee, C. Imig, N. Brose & J.-S. Rhee: "The Synaptic Vesicle Priming Protein CAPS-1 Shapes the Adaptation of Sensory Evoked Responses in Mouse Visual Cortex", Cell Reports 30: 3261-3269 (2020).
- 9. **M. Schottdorf**: "The reconstitution of visual cortical feature selectivity in vitro", PhD Thesis. Göttingen University. Available on: https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-002E-E348-B (2018)
- 10. M. Helmer, **M. Schottdorf**, A. Neef & D. Battaglia: "Gender bias in peer-review", eLife 6: e21718 (2017).
- R. Samhaber*, M. Schottdorf*, A. El Hady*, K. Bröking, A. Daus, C. Thielemann, W. Stühmer & F. Wolf: "Growing neuronal islands on multi-electrode arrays using an Accurate Positioning-μCP device", J. Neurosc. Methods 257(1): 194-203 (2016).
- 12. **M. Schottdorf**, W. Keil, D. Coppola, L. White & F. Wolf: "Random wiring, ganglion cell mosaics, and the functional architecture of the visual cortex", PLoS Comp. Bio. 11(11): e1004602 (2015).
- 13. **M. Schottdorf**, S. Eglen, F. Wolf & W. Keil: "Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?", PLoS ONE 9(1): e86139 (2014).

- 14. **M. Schottdorf**, B. Hofmann, E. Kätelhön, A. Offenhäusser & B. Wolfrum: "Frequency-dependent signal transfer at the interface between electrogenic cells and nanocavity electrodes", Phys. Rev. E 85: 031917 (2012).
- 15. B. Hofmann, E. Kätelhön, **M. Schottdorf**, A. Offenhäusser & B. Wolfrum: "*Nanocavity electrode array for recording from electrogenic cells*", Lab on a Chip 11: 1054-1058 (2011).
 - * denotes equally contributing first authors.

C. Data and Software publications

- 1. **M. Schottdorf**, J. Saunders et al. *PVP1: Code and Documentation (v1.0).* Zenodo. https://doi.org/10.5281/zenodo.5933282 (2022).
- 2. **M. Schottdorf** & B. Lee: *Macaque retinal ganglion cell responses to natural movies in vivo*, https://doi.gin.g-node.org/10.12751/g-node.xage77 (2021).
- 3. R. Samhaber*, **M. Schottdorf***, A. El Hady*, K. Bröking, A. Daus, C. Thielemann, W. Stühmer, F. Wolf: *Construction and use of an accurate positioning-μCP device*, https://doi.org/10.12751/g-node.1e7756 (2019).
- 4. **M. Schottdorf**, W. Keil, D. Coppola, L. White, F. Wolf: *A dataset of 151 visual cortical orientation preference maps from four species*, https://doi.org/10.12751/g-node.b4820c (2019).

D. Selected talks

- 1. MPI for Brain Research, Frankfurt, Germany, 4/2024
- 2. Rutgers, Department of Neuroscience and Cell Biology, New Brunswick, NJ, 2/2024
- 3. Ludwig-Maximilians-Universität, München, Germany, 1/2024
- 4. University of Delaware, Psychological & Brain Sciences, Newark, Delaware, USA 1/2024
- 5. Neuroscience Gateway Workshop, SfN, Washington DC, 11/2023
- 6. Retreat of the Princeton Neuroscience Institute, Vernon Township, NJ 5/2022
- 7. Bernstein Conference Workshop, Germany 9/2020
- 8. Cosyne Workshops, Breckenridge, Colorado, 3/2020.
- 9. Princeton Neuroscience Institute (PNI) Seminar, Princeton University, Princeton, NJ 11/2019.
- 10. Bernstein Seminar, Freiburg University, Freiburg, Germany, 6/2018.
- 11. Dynamics Symposium, Corvara, Italy, 3/2018.
- 12. Cosyne Workshops, Breckenridge, Colorado, USA, 3/2018
- 13. Max Planck Campus Seminar, Göttingen, Germany, 1/2018
- 14. 2nd Basel Computational Biology Conference, Basel, Switzerland, 9/2017
- 15. 3rd Ringberg Conference on Ion Channels, Ringberg, Germany, 10/2016
- 16. 1st ICMNS, Antibes, France, 6/2015
- 17. NeuroBioTheory Seminar Frankfurt Institute for Advanced Study, Host: Matthias Kaschube 12/2014
- 18. Univ. of Electro-Communications, Tokyo, Host: Shigeru Tanaka, 7/2014
- 19. Osaka University, Osaka, Japan, Host: Ichiro Fujita, 7/2014
- 20. Kyushu University, Fukuoka, Japan, Host: Tsuyoshi Okamoto, 7/2014
- 21. Kyushu University, Fukuoka, Japan, Host: Kenichi Ohki, 7/2014
- 22. Max Planck Campus Seminar, Göttingen, Germany 5/2014
- 23. 13th Gottingen Philosophical Seminar 'Unconscious Neuroscience' 5/2014
- 24. Columbia University, NY: Columbia Neurotheory Seminar, New York Host: Ken Miller 3/2014
- 25. The Seminar in Physics. Rutgers University, New Brunswick Host: Eva Andrei, 3/2014
- 26. Technion University, Haifa, Israel, Host: Shy Shoham, 8/2013
- 27. SUNY Center of Optometry, NY, USA, Host: Jose Manuel Alonso, 3/2013

E. Poster

- 1. **M. Schottdorf**, C. Brody, D. Tank: *Low-dimensional manifolds in frontal cortex and hippocampus during spatial cognition*. <u>SfN</u> Chicago (2024)
- 2. J. Kaminsky, K. Julian, **M. Schottdorf,** J. Yanar, D. Tank, C. Brody: *The emergence of task representations within the medial prefrontal cortex during associative and reversal learning*. <u>SfN</u> Chicago (2024)
- 3. E. Diamanti, O. Karniol-Tambour, L. Pinto, **M. Schottdorf**, S. Thiberge, C. Brody, J. Pillow, D. Tank: *Task-dependent neuronal interactions across cortical areas*. <u>SfN</u> Chicago (2024).
- 4. R. Cho, S. Bolkan, L. Brown, J. Lopez-Luna, **M. Schottdorf**, A. Bondy, B. McMannon, R. Fetcho, C. Zimmerman, A. Pan Vazquez, M. Siniscalchi, I. Witten: *Striatum-to-cortex interactions support evidence-guided decisions*. SfN Chicago (2024).
- 5. L. Brown, R. Cho, S. Bolkan, E. Nieh, **M. Schottdorf**, S.-A. Koay, D. Tank, C. Brody, I. Witten, M. Goldman: *Neural choice-selective sequences across regions align with sequential evidence accumulation models*. Cosyne Lisbon, Portugal (2024)
- 6. **M. Schottdorf,** J. Julian, J. Kaminsky, C. Brody, D. Tank: *Coordinated geometric representations of learned knowledge in hippocampus and frontal cortex.* <u>SfN</u> Washington DC (2023)
- 7. J. Julian, J. Kaminsky, **M. Schottdorf**, C. Brody, D. Tank: *Coordinated hippocampal-prefrontal theta-paced flickering of place cell maps during decision-making*. <u>SfN</u> Washington DC (2023)
- 8. S. Bolkan, R. Cho, **M. Schottdorf**, A. Brondy, J. Lopez-Luna, A. Luna, B. McMannon, C. Zimmerman, R. Fetcho, A. Pan Vazquez, L. Brown, Y. El-Jayyousi, I. Stone, I. Witten: *Latent behavioral states reorganize decision-making neural dynamics in a prefrontal-striatal circuit*. <u>SfN</u> Washington DC (2023)
- M. Schottdorf, J. Julian, J. Kaminsky, C. Brody, D. Tank: Coordinated geometric representations of learned knowledge in hippocampus and frontal cortex. <u>Bernstein Conference</u> Berlin, Germany 10.12751/nncn.bc2023.241 (2023)
- 10. **M. Schottdorf**, J. Julian, J. Kaminsky, C. Brody, D. Tank: *Coordinated geometric representations of learned knowledge in hippocampus and frontal cortex*. <u>Cosyne</u> Montreal, Canada (2023)
- 11. **M. Schottdorf**, C. Brody, D. Tank: *Geometric representations of knowledge by neural manifolds across brain areas.* Bernstein Conference Berlin, Germany doi:10.12751/nncn.bc2022.265 (2022)
- 12. L. S. Brown, J. R. Cho, S. S. Bolkan, E. H. Nieh, **M. Schottdorf**, S.-A. Koay, D. W. Tank, C. D. Brody, I. B. Wittten, M. S. Goldman: *Neural circuit models for accumulating evidence through sequences in a navigation-based, decision-making task*. <u>SfN</u> San Diego (2022)
- 13. J. Julian, **M. Schottdorf**, E. Fonseca, D. W. Tank, C. D. Brody: *Hippocampal contributions to context-dependent decision-making*. <u>SfN</u> San Diego (2022)
- 14. L. Brown, J. Ryan Cho, S. Bolkan, E. Nieh, M. Schottdorf, S.-A. Koay, D. Tank, C. Brody, I. Witten, M. Goldman: Model architectures for choice-selective sequences in a navigation-based, evidence accumulation task. Cosyne Lisbon, Portugal (2022)
- 15. E. Nieh, **M. Schottdorf**, N. W. Freeman, E. J. Low, S. Lewallen, S.-A. Koay, L. Pinto, S. C. Venditto, J. L. Gauthier, C. D. Brody, D. W. Tank: *Low-dimensional neural manifolds in the hippocampus contain geometric representations of learned knowledge*. SfN online-only (2021)
- F. Schwarz, M. Schottdorf, J. Franz, J. Vogel, W. Stühmer, C. Stadelmann-Nessler, F. Wolf, A. Neef: Chronic optogenetic stimulation regularizes collective activity of neuronal cultures. <u>Bernstein</u> <u>Conference</u> online-only doi:10.12751/nncn.bc2021.p087 (2021)
- 17. J. Vogel, J. Franz, **M. Schottdorf**, S. Shoham, W. Stühmer, F. Wolf: *Recapitulating the evolutionary transformation of visual cortex architecture in a tabletop experiment.* Bernstein Conference online-only doi:10.12751/nncn.bc2021.p205 (2021)
- 18. J. Vogel, J. Franz, **M. Schottdorf,** S. Shoham, W. Stühmer, F. Wolf: *A synthetic biology approach to the evolutionary transformation of visual cortex architecture*. Bernstein Conference online-only doi: 10.12751/nncn.bc2020.0277 (2020)
- 19. E. Nieh, **M. Schottdorf**, N. Freeman, S.-A. Koay, L. Pinto, J. Gauthier, C. Brody, D. Tank: Geometric representation of abstract learned knowledge by neural manifolds in hippocampus. Cosyne Denver, CO (2020)
- 20. **M. Schottdorf**, E. Nieh, N. Freeman, J. Gauthier, M. Ioffe, S.-A. Koay, L. Pinto, C. Brody, D. Tank: *Characterization of hippocampal neural activity in evidence accumulation and decision-making*. <u>Brain initiative meeting</u> Washington DC, USA (2019)

- 21. E. Nieh, **M. Schottdorf**, N. Freeman, J. Gauthier, M. Ioffe, S.-A. Koay, L. Pinto, C.Brody, D. W. Tank: *Characterization of hippocampal neural activity in evidence accumulation and decision-making*. Cosyne Lisbon, Portugal (2019)
- 22. J. Vogel, **M. Schottdorf**, J. Franz, S. Shoham, W. Stühmer, F. Wolf: *A synthetic biology approach to the evolutionary transformation of visual cortex architecture*. Bernstein Conference Berlin, Germany doi: 10.12751/nncn.bc2019.0113 (2019)
- 23. E. Nieh, **M. Schottdorf**, N. Freeman, J. Gauthier, S.-A. Koay, L. Pinto, M. Ioffe, D. Tank, C. Brody: *Hippocampal Representation of Cognitive Space in Evidence Accumulation and Decision-making*. Bernstein Conference Berlin, Germany 2019. doi: 10.12751/nncn.bc2019.0183 (2019)
- 24. J. Franz, **M. Schottdorf**, J. Weidinger, F. Wolf: *Optimal positioning of metabolic compartments in V1*. Bernstein Conference Berlin, Germany. doi:10.12751/nncn.bc2018.0129 (2018)
- 25. J. Franz, J. Liedtke, J. Weidinger, **M. Schottdorf,** B. Feulner, L. Reichl, W. Keil, F. Wolf F: *A symmetry based parametrization of candidate optimization principles for functional architecture of the primary visual cortex.* Bernstein Conference Göttingen, Germany doi: 10.12751/nncn.bc2017.0115 (2017)
- 26. **M. Schottdorf**, J. Liedtke, J. Flórez Weidinger, F. Wolf: *Challenges for a colorful brain:the integration of shape and color in the primary visual cortex*. <u>Bernstein Conference</u> Göttingen, Germany. doi:10.12751/nncn.bc2017.0202 (2017).
- 27. **M. Schottdorf**, J Vogel, H. Schrobsdorff, W. Stühmer, F. Wolf: *Spontaneous emergence of structured responses in a random neural network in-vitro*. <u>SfN</u> San Diego, CA (2016)
- 28. **M. Schottdorf**, J Vogel, H. Schrobsdorff, W. Stühmer, F. Wolf: *Orientation selectivity in neural networks in-vitro*. Bernstein Conference Berlin, Germany doi:10.12751/nncn.bc2016.0176 (2016)
- 29. B. B. Lee, **M. Schottdorf**: Responses of macaque ganglion cells to natural scenes: spatial and temporal factors, <u>European Conference on Visual Perception (ECVP)</u> Barcelona, Spain (2016)
- 30. J. Liedtke, **M. Schottdorf**, F. Wolf: *Maximum entropy models for 3D layouts of orientation selectivity,* CNS Jeju, Korea (2016)
- 31. **M. Schottdorf**, H. Schrobsdorff, W. Stühmer, F. Wolf: *Computer generated holography for optogenetic modulation of neural network activity in-vitro*. <u>Maps Conference</u>, Strasbourg, France (2015)
- 32. **M. Schottdorf**, H. Schrobsdorff, W. Stühmer, F. Wolf: *Spontaneous emergence of structured responses in a random neural network in-vitro*. <u>Bernstein Conference</u> Heidelberg, Germany doi:10.12751/nncn.bc2015.0206 (2015)
- 33. **M. Schottdorf**, H. Schrobsdorff, W. Stühmer, F. Wolf: *Orientation selectivity in a network of cortical neurons in-vitro*, 11th Meeting of the German Neuroscience Society, Göttingen, Germany (2015)
- 34. **M. Schottdorf**, H. Schrobsdorff, W. Stühmer, F. Wolf: *Computer generated holography for optogenetic modulation of neural network activity in vitro*. <u>DPG Spring Meeting of the German Physical Society</u> Bochum, Germany (2015)
- 35. **M. Schottdorf**, W. Keil, J. D. Florez-Weidinger, D. M. Coppola, A. Grinvald, K. Ikezoe, Z. F. Kisvarday, T. Okamoto, D. B. Omer, L. White, F. Wolf: *How did the evolution of color vision impact V1 functional architecture?* International Conference on Mathematical Neuroscience Antibes, France (2015)
- 36. **M. Schottdorf**, W. Keil, J. D. Florez-Weidinger, D. M. Coppola, A. Grinvald, K. Ikezoe, Z. F. Kisvarday, T. Okamoto, D. B. Omer, L. White, F. Wolf: *How did the evolution of color vision impact V1 functional architecture?* Cosyne Salt Lake City, Utah (2015)
- 37. **M. Schottdorf**, H. Schrobsdorff, W. Stühmer, F. Wolf: *Response of neural networks to spatially structured optogenetic input in-vitro*. Channelrhodopsin Meeting Würzburg, Germany (2014)
- 38. **M. Schottdorf**, H. Schrobsdorff, W. Stühmer, F. Wolf: *Response of neural networks to spatially structured optogenetic input in-vitro*. <u>Bernstein Conference</u> Göttingen, Germany doi: 10.12751/nncn.bc2014.0161 (2014)
- 39. **M. Schottdorf**, W. Stühmer, F. Wolf: *Reconstituting the emergence of visual cortical feature selectivity in-vitro*. Maps Conference Edinburgh, United Kingdom (2014)
- 40. **M. Schottdorf**, S. J. Eglen, F. Wolf, W. Keil: *Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?* Cosyne Salt Lake City, Utah (2014)
- 41. L. Somers, **M. Schottdorf**, M. Wanunu, E. Y. Andrei: *Tunneling Currents through DNA Bases Tightly Constrained in a Fluid Channel*. APS March meeting Denver, CO (2014)

- 42. M. Schottdorf, F. Wolf, W. Keil: Inferring retinal ganglion cell mosaics from realistic orientation preference maps in cat V1. Bernstein Conference Tübingen, Germany doi:10.12751/nncn.bc2013.0123 (2013)
- 43. M. Schottdorf, W. Keil, F. Wolf: Ganglion Cell mosaics and their Potential Influence on Orientation Preference Maps. 10th Meeting of the German Neuroscience Society Göttingen, Germany (2013)
- 44. M. Schottdorf, W. Keil, M. Schnabel, D. M. Coppola, S. Löwel, L. E. White, M. Kaschube, F. Wolf: Do orientation preference maps arise from hexagonal retinal ganglion cell mosaics? Cosyne Salt Lake City, Utah (2013)
- 45. L. Somers, M. Schottdorf, C. Farina, M. Wanunu, E. Y. Andrei: A Fluid Channel Coincident With Graphene Tunneling Leads for DNA sequencing. APS March meeting Baltimore, Maryland (2013)
- 46. M. Schottdorf, J. Meyerson, A. M. B. Goncalves, E. Y. Andrei: A nanochannel with an embedded transverse graphene tunneling electrode for molecular probing. Gordon Conference on Correlated Electron Systems Mount Holyoke College, South Hadley, MA (2012)
- 47. M. Schottdorf, A. M. B. Goncalves, E. Y. Andrei: Graphene nanogaps as molecular probes. Gotham Metro Condensed Matter Meeting of the NY Academy of Science New York, NY (2011)
- 48. B. Hofmann, M. Schottdorf, E. Kätelhön, A. Offenhäusser, B. Wolfrum: Nanofluidic micro-electrode array for interfacing of individual electrogenic cells. Nanobio Europe Münster, Germany (2010)

E. Professional Service

2023 — 2024	Co-directing the NIH U19 Data science consortium, and leading the "Data Sharing" subgroup.
2022 — 2023	Co-organizer of the Princeton Neuroscience Institute's Seminar Series.
2019 — 2021	During the COVID-19 pandemic, administrating and directing the People's Ventilator Project.
3/2018	Co-organizer of the Cosyne Workshop The perturbing approach to understanding the brain Breckenridge, Colorado, USA.
9/2016	Main organizer of the PhD student organized 2-week <u>Advanced Computational</u> <u>Neuroscience Summer School (2nd aCNS)</u> , Göttingen, Germany.
6/2016	Main organizer of the student <u>retreat of the graduate program Physics of Theoretical and Computational Neuroscience (PTCN)</u> , Goslar, Germany.
9/2015	Main organizer of the 1st aCNS summer school, Göttingen, Germany.
7/2015	Main organizer of the PTCN retreat, Burg Ludwigstein, Germany.
3/2014	Organized the <u>2014 Dynamics Symposium</u> , a 1-week retreat for Max Planck researchers, Mandarfen, Austria.
9/2014	Main organizer of the <u>Bernstein Conference's PhD student organized event</u> : Can the problem of consciousness be solved?
4/2013	Organized the 2013 Dynamics Symposium, Corvara, Italy.
2013 — 2017	Elected <u>PTCN student representative</u> . For 4 years, I was the main contact person between students and university to articulate grievances, and represent student interests.
Reviewing:	Cosyne; Frontiers; IEEE; J Neuroscience; J Physiology; J of Women's Health; Nature

Communications; NBDT; Neural Networks; Plos CB; Progress in Neurobiology; Vision

Research

Guest Editor at Plos CB **Editing:** Membership: Society for Neuroscience

F. Teaching

Spring 2025 UD PSYC209 — Statistics and measurement

11/2021	Taught class on Persistent Neural Activity for graduate students on behalf of Prof. Dr. Carlos Brody, Princeton course #501A, Princeton University.
Winter 2015/16	Organized and taught the Advanced Python Programming Course, Göttingen University.
Summer 2015	Organized a seminar on Plasticity in Neural Networks , Department of Physics, Göttingen University.
Summer 2015	Directed a Student-organized Tools Seminar, and gave lectures on advanced
	programming concepts, signal processing and best practices for paper writing.
Winter 2014/15	Organized a seminar on Information Theory in Dynamical Systems, Department of
	Physics, Göttingen University.
Summer 2014	Organized and taught Python Programming for Neuroscience Graduate Students.
Winter 2013/14	Organized and taught a seminar on the Physics of Vision , Department of Physics,
	Göttingen University.
Winter 2011/12	TA for Theoretical Physics IV: Statistics and Thermodynamics . Organized by Prof. Dr.
	Reinhold Oppermann, Department of Physics, Würzburg University.
Winter 2009/10	TA for Computational Physics . Organized by Prof. Dr. Haye Hinrichsen, Department of
	Physics, Würzburg University.
Summer 2009	TA Computational Methods for Physicists. Organized by Prof. Dr. Haye Hinrichsen,
	Department of Physics, Würzburg University.

G. Public Outreach

A. Overview

2024/2	Young Scientist Symposium 2024. PNI: Lab tours, conversations, round table for
	high school students.
2012 — ongoing	I am contributing author and editor for Wikipedia (~20 new articles, ~500 edits).
	Articles to which I am the main contributor were viewed >250k times. Seven of
	these articles were also voted by the community to be featured on the main page.
2012— ongoing	I wrote multiple popular science articles (see below)
2019/5	Presenting at the Philly Science Festival (1 day) with Princeton's Molecular
	Biology Outreach Program.
2019/3	Judge at the Hopewell Elementary school STEM Fair.
2015/7	Presenting the Max Planck Science Tunnel at the IdeenExpo; one week (211.).
2015/1	Presenting at the Göttingen Night of Science.
2014/9	Speaker at the Bernstein Conference's Public Evening Event.
2014/6	Presenting at the Göttingen Night of Science.
2012/9	Presenting "Rätsel der Materie"; three days (1922.), Göttingen, Germany

B. Interviews and Press Coverage

- a. Press releases:
 - i. Google Blog: "Machine Learning for Mechanical Ventilation Control" 2/2022 [link]
 - ii. Brian DePasquale: The Manifold Mind. 10/2021 [link]
- b. Simons Foundation Blog:
 - i. Brian DePasquale: Searching for Shapes in Neural Activity. 4/2022 [link]
 - ii. Emily Singer: Practicing Neuroscience During a Pandemic. 4/2020 [link]
 - iii. Emily Singer: The Data-Sharing Problem in Neuroscience. 10/2019 [link]
 - iv. Emily Singer: Taming the Wild Data World of Neuroscience. 10/2019 [link]
- c. Work at Max Planck
 - i. Carolin Hoffrogge-Lee: Success story at MPI continues. 6/2018 [link]
 - ii. Carolin Hoffrogge-Lee: No cable spaghetti in the brain. 11/2015 [link]