

# LINGUAGENS FORMAIS E AUTÓMATOS / COMPILADORES

AUTÓMATOS FINITOS (AF)

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt>

DETI, Universidade de Aveiro

## **S**UMÁRIO

- AUTÓMATO FINITO DETERMINISTA (AFD)
- REDUÇÃO DE AUTÓMATO FINITO DETERMINISTA
- 3 AUTÓMATO FINITO NÃO DETERMINISTA (AFND)
- 4 EQUIVALÊNCIA ENTRE AFD E AFND
- OPERAÇÕES SOBRE AUTÓMATOS FINITOS
- 6 EQUIVALÊNCIA ENTRE ER E AFND
  - Conversão de uma ER num AFND
  - Autómato finito generalizado (AFG)
  - Conversão de um AFG numa ER

## **AUTÓMATO FINITO**

Um autómato finito é um mecanismo reconhecedor das palavras de uma linguagem regular



- A unidade de controlo é baseada na noção de estado e na de transição entre estados
  - número finito de estados
- A fita de entrada é só de leitura, com acesso sequencial
- A saída indica se a palavra é ou não aceite

#### AUTÓMATO FINITO DETERMINISTA

#### Um autómato finito determinista é um autómato finito



#### onde

- as transições estão associadas a símbolos individuais do alfabeto;
- de cada estado sai uma e uma só transição por cada símbolo do alfabeto;
- há um estado inicial;
- há 0 ou mais estados de aceitação, que determinam as palavras aceites;
- uma dada palavra sobre o alfabeto faz o sistema avançar do estado inicial a um estado final, determinando este a aceitação ou rejeição da palavra.

## EXEMPLO DE AUTÓMATO FINITO DETERMINISTA

Que palavras binárias são reconhecidas pelo autómato seguinte?



R Todas as palavras terminadas em 11.

# EXEMPLO DE AUTÓMATO FINITO DETERMINISTA (2)

Que palavras binárias são reconhecidas pelo autómato seguinte?



 ${\cal R}$  Todas as palavras com 1 ou 2 zeros.

## EXEMPLO DE AUTÓMATO FINITO DETERMINISTA

Que palavras binárias são reconhecidas pelo autómato seguinte?



R as sequências binárias com um número par de zeros.

# DEFINIÇÃO DE AUTÓMATO FINITO DETERMINISTA

- $\mathcal{D}$  Um autómato finito determinista (AFD) é um quíntuplo  $M = (A, Q, q_0, \delta, F)$ , em que:
  - A é o alfabeto de entrada;
  - Q é um conjunto finito não vazio de estados;
  - $q_0 \in Q$  é o estado inicial;
  - $\delta: Q \times A \to Q$  é uma função que determina a transição entre estados; e
  - F ⊆ Q é o conjunto dos estados de aceitação.
- $\mathcal{Q}$  Como representar a função  $\delta$  ?
  - Conjunto de triplos  $\in Q \times A \times Q$
  - Matriz de |Q| linhas por |A| colunas. As células contêm elementos de Q.

## EXEMPLO DE AUTÓMATO FINITO DETERMINISTA

Q Represente textualmente o AFD seguinte.



$$\mathcal{R}$$
  $M = (A, Q, q_0, \delta, F)$  com

- $A = \{0, 1\}$
- $Q = \{A, B, C, D\}$
- $q_0 = A$
- F = {B, C}

- $\delta = \{ (A, 0, B), (A, 1, A), \}$ 
  - (B,0,C),(B,1,B),(C,0,D),(C,1,C),
  - (D,0,D),(D,1,D)

| • | Ò |
|---|---|
|   |   |

|   | 0 | 1 |
|---|---|---|
| Α | В | Α |
| В | С | В |
| C | D | С |
| D | D | D |

# EXEMPLO DE AUTÓMATO FINITO DETERMINISTA (2)

Q Represente textualmente o AFD seguinte.



$$\mathcal{R}$$
  $M = (A, Q, q_0, \delta, F)$  com

- $A = \{0, 1\}$
- $\bullet \ \ Q = \{A,B,C\}$
- $q_0 = A$
- *F* = {*C*}

- $\delta = \{ (A, 0, A), (A, 1, B), (B, 1, B), ($ 
  - (B,0,A),(B,1,C),
  - (C, 0, A), (C, 1, C),

| $\delta =$ |   | 0 | 1 |
|------------|---|---|---|
|            |   | 0 |   |
|            | Α | Α | В |
|            | В | A | C |
|            | C | Α | С |

#### LINGUAGEM RECONHECIDA POR UM AFD

- Diz-se que um AFD  $M=(A,Q,q_0,\delta,F)$ , aceita uma palavra  $u\in A^*$  se u se puder escrever na forma  $u=u_1u_2\cdots u_n$  e existir uma sequência de estados  $s_0,s_1,\cdots,s_n$ , que satisfaça as seguintes condições:

  - ② qualquer que seja o  $i = 1, \dots, n, \quad s_i = \delta(s_{i-1}, u_i);$
  - $\circ$   $s_n \in F$ .

Caso contrário diz-se que *M* rejeita a sequência de entrada.

- Seja  $\delta^*: Q \times A^* \to Q$  a extensão de  $\delta$  definida indutivamente por
- M aceita u se  $\delta^*(q_0, u) \in F$ .
- $L(M) = \{u \in A^* : M \text{ aceita } u\} = \{u \in A^* : \delta^*(q_0, u) \in F\}$

## PROJETO DE AUTÓMATO FINITO DETERMINISTA

 $\mathcal Q$  Projete um AFD que reconheça as sequências definidas sobre o alfabeto  $A=\{a,b,c\}$  que satisfazem o requisito de qualquer b ter um a imediatamente à sua esquerda e um c imediatamente à sua direita.



# PROJETO DE AUTÓMATO FINITO DETERMINISTA (2)

**Q** Sobre o alfabeto  $A = \{a, b, c\}$  considere a linguagem  $L = \{\omega \in A^* : (\omega_i = a) \Rightarrow (\omega_{i+2} \neq b)\}$  Projecte um autómato que reconheça L.

# PROJETO DE AUTÓMATO FINITO DETERMINISTA (2)

 $\mathcal{Q}$  Sobre o alfabeto  $A = \{a,b,c\}$  considere a linguagem  $L = \{\omega \in A^* : (\omega_i = a) \Rightarrow (\omega_{i+2} = b)\}$  Projecte um autómato que reconheça L.

# REDUÇÃO DE AUTÓMATO FINITO DETERMINISTA

Q Considere o autómato seguinte e compare os estados A e D. Que pode concluir ?



 ${\cal R}$  São equivalentes. Podem ser fundidos...

# REDUÇÃO DE AUTÓMATO FINITO DETERMINISTA (2)

R ... O que resulta em



Este, pode provar-se que não tem estados equivalentes.

# ALGORITMO DE REDUÇÃO DE AFD

Pretende-se reduzir o AFD



R Primeiro, dividem-se os estados em aceitação e não-aceitação.

# ALGORITMO DE REDUÇÃO DE AFD (2)

 $\mathcal{R}$  Obtêm-se 2 classes,  $C_1 = \{A, B, C, D, E, F\}$  e  $C_2 = \{G\}$ .



A classe  $C_1$  tem que ser dividida.

# ALGORITMO DE REDUÇÃO DE AFD (3)

 $\mathcal{R}$  Dividindo  $C_1$  em  $\{A, B, C, F\}$  e  $\{D, E\}$  obtem-se



### AUTÓMATO FINITO NÃO DETERMINISTA

Um autómato finito não determinista é um autómato finito



#### onde

- $\bullet$  as transições estão associadas a símbolos individuais do alfabeto ou a  $\varepsilon;$
- de cada estado saem zero ou mais transições por cada símbolo do alfabeto ou ε;
- há um estado inicial;
- há 0 ou mais estados de aceitação, que determinam as palavras aceites;
- uma dada palavra sobre o alfabeto faz o sistema avançar do estado inicial a zero ou mais estados finais, determinando estes a aceitação ou rejeição da palavra.
- As transições múltiplas permitem alternativas de reconhecimento.
- As transições ausentes representam quedas num estado de morte (estado não representado).

## **AFND: CAMINHOS ALTERNATIVOS**

Q abab  $\in L$ ?



R Há 3 caminhos alternativos:

## **AFND: CAMINHOS ALTERNATIVOS**

Q abab  $\in L$ ?



R Que se podem representar de forma arbórea



#### EXEMPLO DE AFND

Q Que palavras são reconhecidas pelo autómato seguinte?



$$\label{eq:lambda} \mathcal{R} \ L = \{\omega \mathbf{a} \mathbf{x} \, : \, \omega \in \mathit{A}^* \, \land \, \mathbf{x} \in \{\mathbf{b}, \mathbf{c}\}\}.$$

# AFND: EXEMPLO COM TRANSIÇÕES- $\varepsilon$

*Q* 1011 ∈ *L* ?



- 2 1011 pertence à linguagem descrita pelo AFND ?
- R Há 4 caminhos possíveis.

Há um caminho que conduz a D, logo pertence.

# AFND: EXEMPLO (2)



#### EXEMPLO DE AFND

Q Que palavras são reconhecidas pelo autómato seguinte?



 $\mathcal{R}$   $L = \{\omega \in (0,1)^* : \omega \text{ termina em 11 ou 101}\}.$ 

# AFND: DEFINIÇÃO

- Um autómato finito não determinista (AFND) é um quíntuplo  $M = (A, Q, q_0, \delta, F)$ , em que:
  - A é o alfabeto de entrada;
  - Q é um conjunto finito não vazio de estados;
  - $q_0 \in Q$  é o estado inicial;
  - $\delta\subseteq (Q\times A_{\varepsilon}\times Q)$  é a relação de transição entre estados, com  $A_{\varepsilon}=A\cup\{\varepsilon\};$
  - F ⊆ Q é o conjunto dos estados de aceitação.
- Apenas a definição de δ difere em relação aos AFD.
- Se se representar δ na forma de uma tabela, as células são preenchidas com elementos de ℘(Q), ou seja, sub-conjuntos de Q.

## AFND: EXEMPLO (3)

Q Represente analiticamente o AFND



- $Rac{R}{\sim} A = \{0, 1\}$ 
  - $\bullet \ \ Q = \{A,B,C,D\}$
  - $q_0 = A$
  - $F = \{D\}$
  - $\delta = \{(A, 0, A), (A, 1, A), (A, 1, B), (B, \varepsilon, C), (B, 0, C), (C, 1, D)\}$

#### AFND: LINGUAGEM RECONHECIDA

- Diz-se que um AFND  $M=(A,Q,q_0,\delta,F)$ , aceita uma palavra  $u\in A^*$  se u se puder escrever na forma  $u=u_1u_2\cdots u_n$ , com  $u_i\in A_\varepsilon$ , e existir uma sequência de estados  $s_0,s_1,\cdots,s_n$ , que satisfaça as seguintes condições:

  - ② qualquer que seja o  $i = 1, \dots, n, (s_{i-1}, u_i, s_i) \in \delta$ ;
  - $\circ$   $s_n \in F$ .
- Caso contrário diz-se que M rejeita a entrada.
- Note que n pode ser maior que |u|, porque alguns dos  $u_i$  podem ser  $\varepsilon$ .
- Usar-se-á a notação  $q_i \xrightarrow{u} q_j$  para representar a existência de uma palavra u que conduza do estado  $q_i$  ao estado  $q_i$ .
- Usando esta notação tem-se  $L(M) = \{u : q_0 \xrightarrow{u} q_f \land q_f \in F\}.$

- A classe das linguagens cobertas por um AFD é a mesma que a classe das linguagens cobertas por um AFND
- Se M é um AFD, então  $\exists_{M' \in AFND} : L(M') = L(M)$ .
- Se M é um AFND, então  $\exists_{M' \in AFD} : L(M') = L(M)$ .
- Como determinar um AFND equivalente a um AFD dado ?
- Como determinar um AFD equivalente a um AFND dado ?
- Pelas definições de AFD e AFND, um AFD é um AFND.
  - Q, q<sub>0</sub> e F têm a mesma definição.
  - Nos AFD  $\delta: Q \times A \rightarrow Q$ .
  - Nos AFND  $\delta \subset Q \times A_{\varepsilon} \times Q$
  - Mas, se  $\delta: Q \times A \to Q$  então  $\delta \subset Q \times A \times Q \subset Q \times A_{\varepsilon} \times Q$
  - Logo, um AFD é um AFND

Q Como determinar um AFD equivalente ao AFND seguinte ?



- Dado um AFND  $M = (A, Q, q_0, \delta, F)$ , considere o AFD  $M' = (A, Q', q'_0, \delta', F')$  onde:
  - $Q' = \wp(Q)$
  - $q_0'$  é o subconjunto de Q constituído pelo estado inicial de M mais todos os alcançáveis a partir dele por ocorrências de  $\varepsilon$ s
  - $F = \{f' \in \wp(Q) : f' \cap F \neq \emptyset\}$
  - $\delta' = \wp(Q) \times A \rightarrow \wp(Q)$ , com  $\delta'(q', a) = \bigcup_{q \in q'} \{\delta(q, a)\}$  fechado em  $\varepsilon$ .
- M e M' reconhecem a mesma linguagem.

Q Determinar um AFD equivalente ao AFND seguinte ?



 $\bullet$   $\delta' =$ 

| estado                 | 0                     | 1                     | estado                | 0                     | 1                      |
|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|
| <i>X</i> <sub>0</sub>  | <i>X</i> <sub>0</sub> | <i>X</i> <sub>0</sub> | <i>X</i> <sub>1</sub> | <i>X</i> <sub>1</sub> | <i>X</i> <sub>7</sub>  |
| $X_2$                  | $X_4$                 | $X_0$                 | <i>X</i> <sub>3</sub> | <i>X</i> <sub>5</sub> | <i>X</i> <sub>7</sub>  |
| $X_4$                  | <i>X</i> <sub>0</sub> | <i>X</i> <sub>8</sub> | <i>X</i> <sub>5</sub> | <i>X</i> <sub>1</sub> | <i>X</i> <sub>15</sub> |
| <i>X</i> <sub>6</sub>  | <i>X</i> <sub>4</sub> | <i>X</i> <sub>8</sub> | <i>X</i> <sub>7</sub> | <i>X</i> <sub>5</sub> | <i>X</i> <sub>15</sub> |
| <i>X</i> <sub>8</sub>  | <i>X</i> <sub>0</sub> | $X_0$                 | <b>X</b> <sub>9</sub> | <i>X</i> <sub>1</sub> | <i>X</i> <sub>7</sub>  |
| <i>X</i> <sub>10</sub> | $X_4$                 | <i>X</i> <sub>0</sub> | X <sub>11</sub>       | <i>X</i> <sub>5</sub> | <i>X</i> <sub>7</sub>  |
| X <sub>12</sub>        | <i>X</i> <sub>0</sub> | <i>X</i> <sub>8</sub> | X <sub>13</sub>       | <i>X</i> <sub>1</sub> | <i>X</i> <sub>15</sub> |
| X <sub>14</sub>        | $X_4$                 | <i>X</i> <sub>8</sub> | X <sub>15</sub>       | <i>X</i> <sub>5</sub> | <i>X</i> <sub>15</sub> |

Q Determinar um AFD equivalente ao AFND seguinte ?



M' =



Q Determinar um AFD equivalente ao AFND seguinte ?



# OPERAÇÕES SOBRE AFD E AFND

- Os automátos finitos são fechados sobre as operações de:
  - Reunião
  - Concatenação
  - Fecho
  - Interceção
  - Complementação

#### EXEMPLO

Q Sobre o alfabeto  $A = \{a, b, c\}$ , sejam  $L_1$  e  $L_2$  as duas linguagens seguintes:

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$
$$L_2 = \{ \omega a \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça  $L = L_1 \cup L_2$ .







 $\mathcal{D}$  Seja  $M_1=(A,Q_1,q_1,\delta_1,F_1)$  e  $M_2=(A,Q_2,q_2,\delta_2,F_2)$  dois autómatos (AFD ou AFND) quaisquer. O AFND  $M=(A,Q,q_0,\delta,F)$ , onde

$$Q = Q_1 \cup Q_2 \cup \{q_0\}, \quad \text{com } q_0 \notin Q_1 \land q_0 \notin Q_2$$
 $F = F_1 \cup F_2$ 
 $\delta = \delta_1 \cup \delta_2 \cup \{(q_0, \varepsilon, q_1), (q_0, \varepsilon, q_2)\}$ 

implementa a reunião de  $M_1$  e  $M_2$ , ou seja,  $L(M) = L(M_1) \cup L(M_2)$ .

#### EXEMPLO

Q Sobre o alfabeto  $A = \{a, b, c\}$ , sejam  $L_1 = \{a\omega \mid \omega \in A^*\}$  e  $L_2 = \{\omega a \mid \omega \in A^*\}$ . Determine um AFD ou AFND que reconheça  $L = L_1 \cup L_2$ .

#### EXEMPLO

**Q** Sobre o alfabeto  $A = \{a, b, c\}$ , sejam  $L_1$  e  $L_2$  as duas linguagens seguintes:

$$L_1 = \{a\omega \mid \omega \in A^*\}$$
$$L_2 = \{\omega a \mid \omega \in A^*\}$$

Determine um AFND que reconheça  $L = L_1 \cdot L_2$ .





 ${\mathcal D}$  Seja  $M_1=(A,Q_1,q_1,\delta_1,F_1)$  e  $M_2=(A,Q_2,q_2,\delta_2,F_2)$  dois autómatos (AFD ou AFND) quaisquer. O AFND  $M=(A,Q,q_0,\delta,F)$ , onde

$$egin{aligned} Q &= Q_1 \cup Q_2 \ q_0 &= q_1 \ F &= F_2 \ \delta &= \delta_1 \cup \delta_2 \cup \left(F_1 imes \left\{arepsilon
ight\} imes \left\{q_2
ight\}
ight) \end{aligned}$$

implementa a concatenação de  $M_1$  e  $M_2$ , ou seja,  $L(M) = L(M_1) \cdot L(M_2)$ .

#### EXEMPLO

Q Determine o AFND que reconhece a linguagem constituída pelos literais da linguagem de programação C que representam constantes numéricas reais.

# OPERAÇÕES SOBRE AFD E AFND: FECHO

#### EXEMPLO

Q Sobre o alfabeto  $A = \{a, b, c\}$ , seja

$$L_1 = \{a\omega \mid \omega \in A^*\}$$

Determine o AFND que reconhece a linguagem  $L_1^*$ .

# OPERAÇÕES SOBRE AFD E AFND: FECHO



Note que em geral não se pode fundir o novo estado inicial com o antigo.

# OPERAÇÕES SOBRE AFD E AFND: FECHO

 $\mathcal{D}$  Seja  $M_1 = (A, Q_1, q_1, \delta_1, F_1)$  um autómato (AFD ou AFND) qualquer. O AFND  $M = (A, Q, q_0, \delta, F)$ , onde

$$\begin{aligned} Q &= Q_1 \cup \{q_0\} \\ F &= F_1 \cup \{q_0\} \\ \delta &= \delta_1 \cup (F_1 \times \{\varepsilon\} \times \{q_1\}) \cup \{(q_0, \varepsilon, q_1)\} \end{aligned}$$

implementa o fecho de  $M_1$ , ou seja,  $L(M) = L(M_1)^*$ .

# OPERAÇÕES SOBRE AFD E AFND: INTERSECÇÃO

#### EXEMPLO

Q Sobre o alfabeto  $A = \{a, b, c\}$ , sejam  $L_1$  e  $L_2$  as duas linguagens seguintes:

$$L_1 = \{a\omega \mid \omega \in A^*\}$$
$$L_2 = \{\omega a \mid \omega \in A^*\}$$

Determine um AFD ou AFND que reconheça  $L = L_1 \cap L_2$ .

# OPERAÇÕES SOBRE AFD E AFND: INTERSECÇÃO

 $\mathcal{D}$  Seja  $M_1 = (A, Q_1, q_1, \delta_1, F_1)$  e  $M_2 = (A, Q_2, q_2, \delta_2, F_2)$  dois autómatos (AFD ou AFND) quaisquer. O AFND  $M = (A, Q, q_0, \delta, F)$ , onde

$$egin{aligned} Q &= Q_1 imes Q_2 \ q_0 &= (q_1, q_2) \ F &= F_1 imes F_2 \ \delta &\subseteq (Q_1 imes Q_2) imes A_{arepsilon} imes (Q_1 imes Q_2) \end{aligned}$$

sendo  $\delta$  definido de modo que  $((q_i, q_j), a, (q_i', q_j')) \in \delta$  se e só se  $(q_i, a, q_i') \in \delta_1$  e  $(q_j, a, q_j') \in \delta_2$ , implementa intersecção de  $M_1$  e  $M_2$ , ie.,  $L(M) = L(M_1) \cap L(M_2)$ .

# OPERAÇÕES SOBRE AFD E AFND: INTERSECÇÃO

### **EXERCÍCIO**

**Q** Sobre o alfabeto  $A = \{a, b, c\}$ , sejam  $L_1$  e  $L_2$  as duas linguagens seguintes:

$$\begin{split} L_1 &= \{v\omega \mid v \in \{\texttt{a},\texttt{b}\} \ \land \ \omega \in \textit{A}^*\} \\ L_2 &= \{\omega \in \textit{A}^* \mid \#(\texttt{a},\omega)\%2 = 0\} \end{split}$$

Determine um AFD ou AFND que reconheça  $L = L_1 \cap L_2$ .

# OPERAÇÕES SOBRE AFD E AFND: COMPLEMENTAÇÃO

#### **EXEMPLO**

Q Sobre o alfabeto  $A = \{a, b, c\}$ , seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND ou AFD que reconhece a linguagem  $\overline{L_1}$ .

 $\mathcal{R}$  Determina-se o AFD de  $L_1$  e complementa-se o conjunto de aceitação.

### CONVERSÃO DE UMA ER NUM AFND

Dada uma expressão regular qualquer ela é:

- ou um elemento primitivo;
- ou uma expressão do tipo e\*, sendo e uma expressão regular qualquer;
- ou uma expressão do tipo e<sub>1</sub>.e<sub>2</sub>, sendo e<sub>1</sub> e e<sub>2</sub> duas expressões regulares quaisquer;
- ou uma expressão do tipo e<sub>1</sub>|e<sub>2</sub>, sendo e<sub>1</sub> e e<sub>2</sub> duas expressões regulares quaisquer;

Se se identificar os autómatos equivalentes das expressões primitivas, tem-se o problema da conversão de uma expressão regular para um autómato finito resolvido, visto que se sabe como fazer a reunião, a concatenação e o fecho de autómatos.

## CONVERSÃO DE UMA ER NUM AFND

### AUTÓMATOS DOS ELEMENTOS PRIMITIVOS

| expressão regular | autómato finito                                     |
|-------------------|-----------------------------------------------------|
| ()                | $\rightarrow$                                       |
| arepsilon         | <b>→</b>                                            |
| а                 | $\longrightarrow \bigcirc \longrightarrow \bigcirc$ |

• Na realidade, o autómato referente a  $\varepsilon$  pode ser obtido aplicando o fecho ao autómato de ().

## CONVERSÃO DE UMA ER NUM AFND

### ALGORITMO DE CONVERSÃO

- Se a expressão regular é do tipo primitivo, o autómato correspondente pode ser obtido da tabela anterior.
- Se é do tipo e\*, aplica-se este mesmo algoritmo na obtenção de um autómato equivalente à expressão regular e e, de seguida, aplica-se o fecho de autómatos.
- Se é do tipo e<sub>1</sub>.e<sub>2</sub>, aplica-se este mesmo algoritmo na obtenção de autómatos para as expressões e<sub>1</sub> e e<sub>2</sub> e, de seguida, aplica-se a concatenação de autómatos.
- Sinalmente, se é do tipo e₁ e₂, aplica-se este mesmo algoritmo na obtenção de autómatos para as expressões e₁ e e₂ e, de seguida, aplica-se a reunião de autómatos.
  - Na realidade, o algoritmo corresponde a um processo de decomposição arbórea a partir da raiz seguido de um processo de construção arbórea a partir das folhas.

## EXEMPLO DE CONVERSÃO DE UMA ER NUM AFND

Q Construa um autómato equivalente à expressão regular  $e = a|a(a|b|c)^*a$ .

 $\mathcal{R}$ 

Decomposição:





 $com x = \{a, b, c\}$ 

## Exemplo de conversão de uma ER num AFND

O Reunião para obter (a|b|c)



Simplificando



## Exemplo de conversão de uma ER num AFND



Simplificando



Concatenação (já com simplificação) para obter a(a|b|c)\*a



## Exemplo de conversão de uma ER num AFND

Finalmente obtenção de a|a(a|b|c)\*a



## AUTÓMATO FINITO GENERALIZADO (AFG)

- $\mathcal{D}$  Um autómato finito generalizado (AFG) é um quíntuplo  $M = (A, Q, q_0, \delta, F)$ , em que:
  - A é o alfabeto de entrada;
  - Q é um conjunto finito não vazio de estados;
  - $q_0 \in Q$  é o estado inicial;
  - δ ⊆ (Q × E × Q) é a relação de transição entre estados, sendo E o conjunto das expressões regulares definidas sobre A; e
  - F ⊆ Q é o conjunto dos estados de aceitação.
- A diferença em relação ao AFND está na definição da relação  $\delta$ . Neste caso as etiquetas são *expressões regulares*.
- Com base nesta definição os automátos finitos deterministas e não deterministas são autómatos finitos generalizados.

### EXEMPLOS DE AFG

• O AFG seguinte representa o conjunto das palavras, definidas sobre o alfabeto  $A = \{a, b, c\}$ , que contêm a sub-palavra *aba*.



### EXEMPLOS DE AFG

• O AFG seguinte representa as constantes reais em C.



#### AFG REDUZIDO

**D** UM AFG com a forma



designa-se por autómato finito generalizado reduzido.

- Note que:
  - O estado A não é de aceitação e não tem transições a chegar.
  - O estado B é de aceitação e não tem transições a sair.
- Se se reduzir um AFG à forma anterior a expressão e é uma expressão regular equivalente ao autómato.

 $\mathcal{E}$  O AFG seguinte representa o conjunto das palavras, definidas sobre o alfabeto  $A = \{a, b, c\}$ , que contêm a sub-palavra aba.



Q Como converter este autómato à forma reduzida?

### ALGORITMO DE CONVERSÃO

- transformação de um AFG noutro cujo estado inicial não tenha transições a chegar.
  - Se necessário, acrescenta-se um novo estado inicial com uma transição em  $\varepsilon$  para o antigo.
- transformação de um AFG noutro com um único estado de aceitação, sem transições de saída.
  - Se necessário, acrescenta-se um novo estado, que passa a ser o único de aceitação, que recebe transições em ε dos anteriores estados de aceitação, que deixam de o ser.
- Eliminação dos restantes estados.
  - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência.

#### ALGORITMO DE CONVERSÃO

- transformação de um AFG noutro cujo estado inicial não tenha transições a chegar.
  - Se necessário, acrescenta-se um novo estado inicial com uma transição em  $\varepsilon$  para o antigo.

antes





#### ALGORITMO DE CONVERSÃO

- transformação de um AFG noutro com um único estado de aceitação e sem transições de saída.
  - Se necessário, acrescenta-se um novo estado, que passa a ser o único de aceitação, que recebe transições em ε dos anteriores estados de aceitação, que deixam de o ser.

#### antes





#### ALGORITMO DE CONVERSÃO

- Eliminação dos restantes estados.
  - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência: estado A.

antes





#### ALGORITMO DE CONVERSÃO

- Eliminação dos restantes estados.
  - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência: estado B.

antes



## ALGORITMO DE ELIMINAÇÃO DE UM ESTADO

Considere que pretende eliminar o estado B



- Para ir de  $A_i$  para  $C_j$  através de B é preciso uma palavra que encaixe na expressão regular  $(e_{a,i})(e_{b,j})$ .
- Então, se se retira B, é preciso acrescentar uma transição de  $A_i$  para  $C_j$  com etiqueta  $(e_{a,i})(e_{b,j})$ .
- Esta transição pode ficar em paralelo com um que já exista.

## ALGORITMO DE ELIMINAÇÃO DE UM ESTADO (2)

Considere que pretende eliminar o estado B



- Para ir de  $A_i$  para  $C_j$  através de B é preciso uma palavra que encaixe na expressão regular  $(e_{a,i})(e_c)^*(e_{b,j})$ .
- Então, se se retira B, é preciso acrescentar uma transição de  $A_i$  para  $C_j$  com etiqueta  $(e_{a,i})(e_c)^*(b,j)$ .
- Esta transição pode ficar em paralelo com um que já exista.

## EXEMPLO DE CONVERSÃO DE UM AFG NUMA ER

Q Obtenha uma ER equivalente ao AF seguinte



- R Aplique-se passo a passo o algoritmo anterior.
- Porque o estado inicial possui uma transição a chegar, deve-se acrescentar um novo estado inicial:



## Exemplo de conversão de um AFG numa ER

 Porque o estado aceitação possui uma transição a sair, deve-se acrescentar um novo estado de aceitação



Eliminando o estado A obtém-se



Eliminando o estado B obtém-se 0\* 1 (0 | 10\*1)\*.