Let $|\Psi\rangle$ be a coherent state where \bar{n} is the expected number of photons.

$$|\Psi\rangle = \sum_{n=0}^{\infty} \sqrt{\frac{\bar{n}^n \exp(-\bar{n})}{n!}} \exp\left(-i\left(n + \frac{1}{2}\right)\omega t\right) |n\rangle$$

It can be shown that

$$\hat{a}|\Psi\rangle = \sqrt{\bar{n}} \exp(-i\omega t)|\Psi\rangle$$

It follows that

$$\langle \Psi | \hat{a}^{\dagger} = (\hat{a} | \Psi \rangle)^{\dagger} = \sqrt{\bar{n}} \exp(i\omega t) \langle \Psi |$$

Let \hat{E} be the electric field operator

$$\hat{E} = i\sqrt{\frac{\hbar\omega}{2\epsilon_0}}(\hat{a} - \hat{a}^\dagger)$$

The expected electric field is

$$\langle \hat{E} \rangle = \langle \Psi | \hat{E} | \Psi \rangle = i \sqrt{\frac{\hbar \omega}{2\epsilon_0}} \langle \Psi | (\hat{a} - \hat{a}^{\dagger}) | \Psi \rangle$$

By distributive law

$$\langle \hat{E} \rangle = i \sqrt{\frac{\hbar \omega}{2\epsilon_0}} \left(\langle \Psi | \hat{a} | \Psi \rangle - \langle \Psi | \hat{a}^{\dagger} | \Psi \rangle \right)$$

Substitute eigenvalues for operators.

$$\langle \hat{E} \rangle = i \sqrt{\frac{\hbar \omega}{2\epsilon_0}} \left(\sqrt{\bar{n}} \exp(-i\omega t) \langle \Psi | \Psi \rangle - \sqrt{\bar{n}} \exp(i\omega t) \langle \Psi | \Psi \rangle \right)$$

By $\langle \Psi | \Psi \rangle = 1$ we have

$$\langle \hat{E} \rangle = i \sqrt{\frac{\hbar \omega}{2\epsilon_0}} \left(\sqrt{\bar{n}} \exp(-i\omega t) - \sqrt{\bar{n}} \exp(i\omega t) \right)$$

Recalling that

$$2\sin(\omega t) = i\exp(-i\omega t) - i\exp(i\omega t)$$

we have

$$\langle \hat{E} \rangle = \sqrt{\frac{2\bar{n}\hbar\omega}{\epsilon_0}} \sin(\omega t)$$

Let \hat{B} be the magnetic field operator

$$\hat{B} = \sqrt{\frac{\hbar\omega\mu_0}{2}}(\hat{a} + \hat{a}^{\dagger})$$

Then by similar arguments the expected magnetic field is

$$\langle \hat{B} \rangle = \sqrt{2\bar{n}\hbar\omega\mu_0}\cos(\omega t)$$

The total energy per unit volume is

$$U = \frac{\epsilon_0}{2} |\mathbf{E}|^2 + \frac{1}{2\mu_0} |\mathbf{B}|^2$$

For linearly polarized light and a suitable rotation matrix R we have

$$R\mathbf{E} = \begin{pmatrix} E_x \\ 0 \\ 0 \end{pmatrix}, \quad R\mathbf{B} = \begin{pmatrix} 0 \\ B_y \\ 0 \end{pmatrix}$$

Hence in the rotated frame

$$U = \frac{\epsilon_0}{2} E_x^2 + \frac{1}{2\mu_0} B_y^2$$

For the quantum field we have

$$U = \frac{\epsilon_0}{2} \langle \hat{E}_x^2 \rangle + \frac{1}{2\mu_0} \langle \hat{B}_y^2 \rangle$$

where

$$\hat{E}_x = i\sqrt{\frac{\hbar\omega}{2\epsilon_0}}(\hat{a} - \hat{a}^{\dagger}), \quad \hat{B}_y = \sqrt{\frac{\hbar\omega\mu_0}{2}}(\hat{a} + \hat{a}^{\dagger})$$

For the coherent state we have

$$\langle \Psi | \hat{a} \hat{a} | \Psi \rangle = \left(\sqrt{\bar{n}} \exp(-i\omega t) \right)^{2} = \bar{n} \exp(-2i\omega t)$$

$$\langle \Psi | \hat{a} \hat{a}^{\dagger} | \Psi \rangle = \langle \Psi | (\hat{a}^{\dagger} \hat{a} + 1) | \Psi \rangle = \bar{n} + 1$$

$$\langle \Psi | \hat{a}^{\dagger} \hat{a} | \Psi \rangle = \left(\sqrt{\bar{n}} \exp(i\omega t) \right) \left(\sqrt{\bar{n}} \exp(-i\omega t) \right) = \bar{n}$$

$$\langle \Psi | \hat{a}^{\dagger} \hat{a}^{\dagger} | \Psi \rangle = \left(\sqrt{\bar{n}} \exp(i\omega t) \right)^{2} = \bar{n} \exp(2i\omega t)$$

The expectation $\bar{n} + 1$ for $\hat{a}\hat{a}^{\dagger}$ is from the commutator

$$\hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} = 1$$

Hence

$$\langle \hat{E}_x^2 \rangle = \langle \Psi | \hat{E}_x \hat{E}_x | \Psi \rangle = -\frac{\hbar \omega}{2\epsilon_0} \langle \Psi | (\hat{a} - \hat{a}^{\dagger}) (\hat{a} - \hat{a}^{\dagger}) | \Psi \rangle$$
$$= -\frac{\hbar \omega}{2\epsilon_0} \left(\bar{n} \exp(-2i\omega t) + \bar{n} \exp(2i\omega t) - 2\bar{n} - 1 \right)$$

and

$$\langle \hat{B}_{y}^{2} \rangle = \langle \Psi | \hat{B}_{y} \hat{B}_{y} | \Psi \rangle = \frac{\hbar \omega \mu_{0}}{2} \langle \Psi | (\hat{a} + \hat{a}^{\dagger}) (\hat{a} + \hat{a}^{\dagger}) | \Psi \rangle$$
$$= \frac{\hbar \omega \mu_{0}}{2} \left(\bar{n} \exp(-2i\omega t) + \bar{n} \exp(2i\omega t) + 2\bar{n} + 1 \right)$$

Noting that

$$4\sin(\omega t)^2 = -\exp(-2i\omega t) - \exp(2i\omega t) + 2$$
$$4\cos(\omega t)^2 = \exp(-2i\omega t) + \exp(2i\omega t) + 2$$

we have

$$\langle \hat{E}_x^2 \rangle = \frac{2\bar{n}\hbar\omega}{\epsilon_0} \sin(\omega t)^2 + \frac{\hbar\omega}{2\epsilon_0}$$
$$\langle \hat{B}_y^2 \rangle = 2\bar{n}\hbar\omega\mu_0 \cos(\omega t)^2 + \frac{\hbar\omega\mu_0}{2}$$

Rewrite as

$$\frac{\epsilon_0}{2} \langle \hat{E}_x^2 \rangle = \bar{n}\hbar\omega \sin(\omega t)^2 + \frac{\hbar\omega}{4}$$
$$\frac{1}{2\mu_0} \langle \hat{B}_y^2 \rangle = \bar{n}\hbar\omega \cos(\omega t)^2 + \frac{\hbar\omega}{4}$$

Hence the total energy per unit volume is

$$U = \frac{\epsilon_0}{2} \langle \hat{E}_x^2 \rangle + \frac{1}{2\mu_0} \langle \hat{B}_y^2 \rangle = \left(\bar{n} + \frac{1}{2} \right) \hbar \omega$$

Checking physical dimensions we have

$$\hbar\omega = h\nu \propto \text{joule second} \times \frac{1}{\text{second}} = \text{joule}$$

We will now show that

$$\hat{a}|\Psi\rangle = \sqrt{\bar{n}} \exp(-i\omega t)|\Psi\rangle$$

Apply operator \hat{a} to coherent state $|\Psi\rangle$ to obtain

$$\hat{a}|\Psi\rangle = \sum_{n=0}^{\infty} \sqrt{\frac{\bar{n}^n \exp(-\bar{n})}{n!}} \exp\left(-i\left(n + \frac{1}{2}\right)\omega t\right) \sqrt{n}|n-1\rangle$$

The n=0 term vanishes hence the sum can start from n=1.

$$\hat{a}|\Psi\rangle = \sum_{n=1}^{\infty} \sqrt{\frac{\bar{n}^n \exp(-\bar{n})}{n!}} \exp\left(-i\left(n + \frac{1}{2}\right)\omega t\right) \sqrt{n}|n-1\rangle$$

The \sqrt{n} cancels with n factorial.

$$\hat{a}|\Psi\rangle = \sum_{n=1}^{\infty} \sqrt{\frac{\bar{n}^n \exp(-\bar{n})}{(n-1)!}} \exp\left(-i\left(n + \frac{1}{2}\right)\omega t\right)|n-1\rangle$$

Factor out $\sqrt{\bar{n}} \exp(-i\omega t)$.

$$\hat{a}|\Psi\rangle = \sqrt{\bar{n}}\exp(-i\omega t)\sum_{n=1}^{\infty} \sqrt{\frac{\bar{n}^{n-1}\exp(-\bar{n})}{(n-1)!}}\exp\left(-i\left(n-\frac{1}{2}\right)\omega t\right)|n-1\rangle$$

Substitute n + 1 for index n.

$$\hat{a}|\Psi\rangle = \sqrt{\bar{n}}\exp(-i\omega t)\sum_{n=0}^{\infty}\sqrt{\frac{\bar{n}^n\exp(-\bar{n})}{n!}}\exp\left(-i\left(n+\frac{1}{2}\right)\omega t\right)|n\rangle$$

Hence

$$\hat{a}|\Psi\rangle = \sqrt{\bar{n}} \exp(-i\omega t)|\Psi\rangle$$