Модели обнаружения связей между временными рядами в задачах прогнозирования

Карина Равилевна Усманова

Московский физико-технический институт Физтех-школа прикладной математики и информатики Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

Научный руководитель: д.ф.-м.н. В.В.Стрижов

Выпускная квалификационная работа бакалавра

Москва 2018

Обнаружение связей во временных рядах

Задача

Повысить качество прогноза временного ряда путем учета экзогенных факторов. Установить связи между временными рядами, с целью их включения в прогностическую модель.

Предлагается

Использовать метод сходящегося перекрестного отображения (ССМ). Считается, что два ряда связаны, если существуют их траекторные подпространства, проекции в которые связаны.

Решение

Проекции связаны, если окрестность фазовой траектории одного ряда отображается в окрестность фазовой траектории другого ряда. Отыскать траекторные подпространства, обнаруживающие эту связь.

2 / 15

Литература

- Sugihara G., May R., Ye H., Hsieh C., Deyle E., Fogarty M., and Munch S // Detecting causality in complex ecosystems. 2012.
- Sugihara G., May R. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series // Nature. 1990.
- Motrenko A. and Strijov V. Extracting fundamental periods to segment biomedical signals. 2015.
- Golyandina N. and Stepanov D. SSA-based approaches to analysis and forecast of multidimensional time series // 5th St. Petersburg workshop on simulation. 2005.

Постановка задачи обнаружения связи

Для временных рядов $\mathbf{x} = [x_1, ..., x_N]$ и $\mathbf{y} = [y_1, ..., y_N]$ установить наличие связи между ними.

Решение

Считаем, что ряд y зависит от ряда x, если существует липшицево отображение $\varphi:\mathbb{H}_{\mathbf{x}}\to\mathbb{H}_{\mathbf{v}}:$

$$ho_{\mathbb{H}_{\mathbf{y}}}\Big(arphi(\mathbf{x}_i),arphi(\mathbf{x}_j)\Big) \leq L \cdot
ho_{\mathbb{H}_{\mathbf{x}}}(\mathbf{x}_i,\mathbf{x}_j),$$
 для $\mathbf{x}_i,\mathbf{x}_j \in \mathbb{H}_{\mathbf{x}}.$

Траекторная матрица:

$$\mathbf{H}_{\mathbf{x}} = \begin{bmatrix} x_1 & \dots & x_{L-1} & x_L \\ x_2 & \dots & x_L & x_{L+1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{N-L+1} & \dots & x_{N-1} & x_N \end{bmatrix} = \begin{bmatrix} \mathbf{x}_L \\ \mathbf{x}_{L+1} \\ \vdots \\ \mathbf{x}_N \end{bmatrix},$$

где L – ширина окна, $\mathbf{x}_i = [x_{i-L+1}, \dots, x_{i-1}, x_i] \in \mathbb{H}_{\mathbf{x}}$, \mathbb{H}_{x} – траекторное пространство.

Построение сходящегося перекрестного отображения

- ullet Выбираем ${f x}_{t^*} = [x_{t^*-L+1}, \dots, x_{t^*-1}, x_{t^*}].$
- Пусть $\mathbf{x}_{t_1}, \dots, \mathbf{x}_{t_k} k$ ближайших соседей вектора \mathbf{x}_{t^*} в пространстве $\mathbb{H}_{\mathbf{x}}$. Тогда $\mathbf{y}_{t^*}, \mathbf{y}_{t_1}, \dots, \mathbf{y}_{t_k}$ строки матрицы $\mathbf{H}_{\mathbf{y}}$, соответствующие индексам t_1, \dots, t_k .

Выбор оптимальных траекторных подпространств

Анализ собственных подпространств

- Построим сингулярное разложение траекторной матрицы $\mathbf{H_x} = \mathbf{U_x} \mathbf{\Lambda_x} \mathbf{V_x}.$
- ullet Выберем $\mathcal{T}_{\mathbf{x}}$ некоторый набор индексов компонент ряда \mathbf{x}
- ullet Построим $\mathbb{H}_{\mathcal{T}_{\mathbf{x}}}\subset\mathbb{H}_{\mathbf{x}}$ траекторное подпространство
- ullet Проекция ряда ${f x}$ в подпространство $\mathbb{H}_{\mathcal{T}_{{f x}}}$, описывается траекторной матрицей ${f P}_{\mathcal{T}_{{f x}}} = {f U}_{{f x}} {f ilde{f \Lambda}}_{{f x}} {f V}_{{f x}}.$

Задача поиска подпространств $\mathbb{H}_{\mathcal{T}_{\mathbf{x}}}$ и $\mathbb{H}_{\mathcal{T}_{\mathbf{y}}}$ эквивалентна поиску номеров главных компонент $(\mathcal{T}_{\mathbf{x}},\mathcal{T}_{\mathbf{y}})$

$$\begin{split} S(\mathbf{x}, \mathbf{y}, \mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}}) &= \frac{\mathsf{dist}(\mathbf{x}, \mathcal{T}_{\mathbf{x}})}{\mathsf{dist}(\mathbf{y}, \mathcal{T}_{\mathbf{y}})} \cdot \frac{|\mathcal{T}_{\mathbf{y}}|}{|\mathcal{T}_{\mathbf{x}}|}, \quad \mathsf{dist}(\mathbf{x}, \mathcal{T}_{\mathbf{x}}) &= \frac{1}{k} \sum_{i=1}^{k} ||\mathbf{x}_{t^*} - \mathbf{x}_{t_i}||_2 \\ (\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}}) &= \arg\max_{\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{x}}} S(\mathbf{x}, \mathbf{y}, \mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}}) \end{split}$$

Если $S(\mathbf{x}, \mathbf{y}, \mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}})$ больше некоторого порога s, то ряд \mathbf{y} зависит от ряда \mathbf{x} .

Эксперимент на искусственных данных

Эксперимент проводился на двух зашумленных синусах с разным периодом.

$$\begin{aligned} \mathbf{x} &= \sin t + 2 \sin \frac{t}{2} + \sigma_{x}^{2} \varepsilon, \quad \sigma_{x}^{2} = 0.3, \quad \varepsilon \in \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ \mathbf{y} &= \sin(2t + 5) + \sigma_{y}^{2} \varepsilon, \quad \sigma_{y}^{2} = 0.25, \quad \varepsilon \in \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{aligned}$$

Ближайшие соседи на фазовых траекториях

Найденные ближайшие соседи

Для $t^*=15$ найдем ближайших соседей векторов \mathbf{x}_{t^*} и \mathbf{y}_{t^*} в траекторных пространствах $\mathbb{H}_{\mathbf{x}}$ и $\mathbb{H}_{\mathbf{y}}$. Изобразим соответствующие им моменты времени на рядах \mathbf{x} и \mathbf{y} .

Эксперимент на данных потребления электроэнергии

- Эксперимент проводился на данных потребления электроэнергии **х** и температуры **у** в течение года.
- Для приведения ряда температуры к стационарной форме используется ряд длины светового дня **z**.
- Нормированные ряды потребления электроэнергии, температуры и длины светового дня:

Кросс-корреляция температуры и длины светового дня

Найдем сдвиг h рядя длины светового дня \mathbf{z} относительно ряда температуры \mathbf{y} .

Максимум кросс-корреляции достигается при h=560. Ряд температуры, приведенный к стационарной форме имеет вид:

$$\mathbf{y}(t) := \mathbf{y}(t) - \mathbf{z}(t - 560)$$

Ближайшие соседи на фазовых траекториях

Решение задачи выбора траекторных подпространств

Рассмотрим различные подпространства $\mathbb{H}_{\mathbf{x}}$ и $\mathbb{H}_{\mathbf{y}}$. Для каждой пары компонент $(\mathcal{T}_{\mathbf{x}},\mathcal{T}_{\mathbf{y}})$ найдем значение $S(\mathbf{x},\mathbf{y},\mathcal{T}_{\mathbf{x}},\mathcal{T}_{\mathbf{y}})$

Оптимальные подпространства задаются номерами компонент $\mathcal{T}_{\mathbf{x}} = \{0,3\}, \quad \mathcal{T}_{\mathbf{y}} = \{0,2\}$

Построение прогноза

- Сравним качество прогноза ряда х только по собственной истории с качеством прогноза, использующим историю ряда у.
- Построим прогноз с использованием первых главных компонент ряда **у**

Результаты

- Предложен способ обнаружения связи между компонентами временных рядов.
- Проведен вычислительный эксперимент по обнаружению связи между искусственными временными рядами.
- С помощью метода ССМ исследованы связи между рядами потребления электроэнергии и температуры.
- Исследована связь между проекциями этих рядов в различные подпространства.

Публикация ВАК

К. Р. Усманова, С. П. Кудияров, Р. В. Мартышкин, А. А. Замковой, В. В. Стрижов. Анализ зависимостей между показателями при прогнозировании объема грузоперевозок // Системы и средства информатики, 2018.

15 / 15