3. Einführung in mehrdimensionale, insbesondere räumliche Zugriffsstrukturen

Ausgangspunkt: eine Datenbank, die eine Sammlung von *sehr vielen* mehrdimensionalen Objekten ist,

- z.B. von *points*, *lines*, *regions*-Objekten, möglichst mit ihren kleinsten umgebenden Rechtecken (*bounding boxes*),
- oder auf feinerer Ebene z.B. von unterliegenden Realm-Punkten und
 Segmenten.

Hauptanforderungen:

- \rightarrow Suchen nach mehreren Kriterien, z.B. nach den zwei (x, y)-Dimensionen
- → Indexierung von Punkten *und* von Objekten mit räumlicher Ausdehnung

Klassifikation von Anfragen

Definitionen:

- Ein Datenraum D ist eine Sammlung von N Sätzen des Typs R = (A₁,... A_n), wobei jeder Satz ein Punktobjekt durch ein geordnetes n-Tupel t = (a₁,a₂,... a_n) von Werten darstellt. Die Attribute A₁,..., A_k (k ≤ n) mögen den Schlüssel bilden.
- Eine Anfrage Q spezifiziert einige Bedingungen, die von den Schlüsselwerten der Sätze in der Treffermenge erfüllt sein müssen.
- <u>Schnittbildende Anfragen</u> (*intersection queries*): gesuchte Objekte überlappen mit dem Anfragebereich
- Enthaltenseins- oder Umschließungsanfragen (containment queries): gesuchte Objekte sind ganz im Anfragebereich enthalten oder enthalten diesen vollständig

⁰Die folgenden Folien basieren überwiegend auf Begleitmaterialien von Härder/Rahm zu Vorlesungen über ihr Buch "Datenbanksysteme - Konzepte und Techniken der Implementierung", erschienen in der 2. Auflage beim Springer-Verlag 2001.

Klassifikation der schnittbildenden Anfragen

1. **Exakte Anfrage** (exact match query):

spezifiziert für jeden Schlüssel einen Wert

$$Q = (A_1 = a_1) \land (A_2 = a_2) \land ... \land (A_k = a_k)$$

2. Partielle Anfrage (partial match query):

spezifiziert s < k Schlüsselwerte

Q =
$$(A_{i_1} = a_{i_1}) \land (A_{i_2} = a_{i_2}) \land ... \land (A_{i_s} = a_{i_s})$$

mit $1 \le s < k$ und $1 \le i_1 < i_2 < ... < i_s \le k$

3. **Bereichsanfrage** (range query):

spezifiziert einen Bereich $r_i = [l_i, u_i]$ für jeden Schlüssel A_i

Q =
$$(A_1 \in r_1) \land \dots \land (A_k \in r_k)$$

= $(A_1 \ge I_1) \land (A_1 \le u_1) \land \dots \land (A_k \ge I_k) \land (A_k \le u_k)$

4. Partielle Bereichsanfrage (partial range query):

spezifiziert für s < k Schlüssel einen Bereich r_{ii}

$$Q = (A_{i1} \in r_{i1}) \wedge ... \wedge (A_{is} \in r_{is})$$

Klassifikation von Anfragen (Forts.)

⇒ bei den schnittbildenden Anfragen lassen sich alle 4 Fragetypen als allg. Bereichsanfrage (3.) ausdrücken:

- genauer Bereich $[l_i = a_i = u_i]$ für Gleichheit $A_i = a_i$
- unendlicher Bereich $[-\infty, \infty]$ für ausgelassene Schlüssel A_i

Klassifikation der Enthaltenseins-Anfragen

- Punktanfrage (point query): Gegeben ist ein Punkt im Datenraum D.
 Finde alle Objekte, die ihn enthalten.
- *Gebietsanfrage* (*region [window] query*): Geg. ist ein Anfragegebiet [-fenster]. Finde alle Objekte, die es enthalten / darin enthalten sind .

Beispiele: Suche nach Rechtecken

Tabelle RECTANGLES (x1, y1, x2, y2)

a) Bestimme alle Rechtecke, die den Punkt (2,5) enthalten:

SELECT x1, y1, x2, y2

FROM RECTANGLES

WHERE $x_1 \le 2 \text{ AND } x_2 \ge 2 \text{ AND } y_1 \le 5 \text{ AND } y_2 \ge 5$

b) Bestimme die Rechtecke, deren Eckpunkt links unten in (0,0,10,10) liegt:

SELECT x1, y1, x2, y2

FROM RECTANGLES

WHERE x1 >= 0 AND x1 <= 10 AND y1 >= 10 AND y1 <= 10

das sind harmlose Fragen, die sogar im Relationenmodell mühelos beantwortet werden können

Klassifikation von Anfragen (Forts.)

Nächster-Nachbar-Anfragen (best match query, nearest neighbor query):

- gewünschtes Objekt nicht vorhanden
 - → Frage nach <u>möglichst ähnlichen</u> Objekten

• "best" wird bestimmt über eine Distanzfunktion.

• Beispiele:

- Punkt liegt in der Nähe eines Bezugspunktes.
- Objekt erfüllt nur 8 von 10 geforderten Eigenschaften.

• Bestimmung des nächsten Nachbarn:

d = Distanzfunktion geeignet zu definieren!

B = Sammlung von Punkten im k-dim. Raum

Gesucht: nächster Nachbar von p (in B)

Der nächste Nachbar ist q, wenn

 $(\forall r \in B) [d(r,p) \ge d(q,p)]$

Grundprobleme/-anforderungen an Speicherung

1. Erhaltung der topologischen Struktur (Clusterbildung)

2. Anpassung an stark variierende Dichte der Objekte

Starke Änderung der räumlichen Belegung über die Zeit

keine regelmäßige Aufteilung von D

→ aber: gleiche Bucketgrößen

3. Verschiedene Objektrepräsentationen

- Punktobjekte
- Objekte mit Ausdehnung

4. Reorganisation bei dynamisch veränderlichem Datenbestand

⇒ balancierte Zugriffsstrukturen:

- beliebige Belegungen und Einfüge-/Löschreihenfolgen
- Garantie eines gleichförmigen Zugriffs → 2 oder 3 Externspeicherzugriffe

Mehrattributzugriff über eindimensionale Zugriffspfade

• bisher:

Indexierung (Invertierung) einer Dimension, z. B. B*-Baum

• Zerlegungsprinzip des Schlüsselraumes beim B*-Baum (2-dim.):

B*-Baum (Key1)

→ Partitionierung des Raumes nach Werten von Key1

• zusätzlicher B*-Baum möglich:

B*-Baum (Key2)

→ Partitionierung des Raumes nach Werten von Key2

Mehrattributzugriff über eindimensionale Zugriffspfade (Forts.)

• Zugriff nach (Key1= k1i)
$${OR \atop -}$$
 (Key2 = k2j) Separate Schlüssel

- Zeigerliste für k1i: aus B*-Baum (Key1)

- Zeigerliste für k2j : aus B*-Baum (Key2)

→ Mischen von Zeiger-(TID-)Listen + Zugriff auf Ergebnistupel

→ große Zeigerlisten und Zwischenergebnisse!

Simulation des mehrdimensionalen Zugriffs mit einem B*-Baum?

Idee: Konkatenierte Schlüssel: Key1 Key2 Konkatenierte Werte: k11 k21 k11 k22 k11 k2m k12 k21 k12 k22 k12 k2m k13 k21 k1n k2m

Unterstützung von Suchoperationen?

- (Key1 = k1i) AND (Key2 = k2j) ? ja
- Key2 = k2j ? nein
- Key1 = k1i? ja
- OR-Verknüpfung? nein

aber:

keine Erhaltung von Nachbarschaften, also immer noch schlechte Unterstützung von Bereichsanfragen

Mehrdimensionale Verfahren zur Organisation der Datensätze Quad-Tree (Quadranten-Baum)

• Speicherungsstruktur für 2-dimensionalen Mehrattributzugriff:

Ziel: Berücksichtigung von Nachbarschaftsbeziehungen

Zerlegungsprinzip des Datenraumes D:

rekursive Partitionierung durch Quadranten

- Realisierung als Generalisierung des Binärbaumes:
 - jeder Knoten enthält einen Satz
 - Grad eines Knotens: max. 4
 - Wurzel teilt 2-dim. Raum in 4 Quadranten auf
 - rekursive Aufteilung jedes Quadranten durch Wurzel eines Unterbaumes
 - i-ter Unterbaum eines Knotens enthält Punkte im i-ten Quadranten

• Bsp.: geographische Daten: x, y - Koordinaten

Aufteilung:

• Verallgemeinerung:

k-dimensionaler Schlüssel \Rightarrow Grad jedes Knotens: 2^k k=2: [point] quad-tree k=3: oct-tree k=4: hex-tree $\frac{3.14}{4}$

Abb. 9.5: Zerlegungsprinzip für D und Struktur des zugehörigen Quadranten-Baums

Figure 14. Point quadtree.

Quad-Tree (Forts.)

• Beispiel: räumliche Aufteilung --> Baumstruktur (zur Übung)

- Eigenschaften: Suchen nur bei exakter Anfrage einfach, sonst komplex
 - Baumstruktur abhängig von Einfügereihenfolge (unbalanciert)
 - Löschen von Zwischenknoten schwierig (Neueinfügen der Unterbäume)
 - keine Erhaltung der Topologie nur inter
- nur interne Datenstruktur

Mehrdimensionale binäre Suchbäume (k-d-Bäume)

andere Erweiterung des Binärbaumes

- Berücksichtigung von k Schlüsseln bzw. Dimensionen: k-d-Baum
- alle Datensätze werden mit Hilfe der Baumstruktur organisiert: knotenorientiert (homogen)
- Wartungsoperationen wie beim binären Suchbaum, aber
- auf jeder Ebene erfolgt Schlüsselvergleich für einen der k Schlüssel

Diskriminator legt den Schlüssel auf jeder Ebene fest

- zyklische Variation des Diskriminators d:
 für alle Knoten der Baumebene i gilt: d = (i mod k) + 1
- der linke (rechte) Nachfolger zu einem Knoten enthält alle Sätze mit kleineren (größeren) Werten für das Diskriminatorattribut

$$\forall Q \in LEFT(P)$$
: $A_d(Q) \le A_d(P)$
 $\forall R \in RIGHT(P)$: $A_d(R) > A_d(P)$

• Eigenschaften:

- Baumstruktur abhängig von Einfügereihenfolge (unbalancierter Baum)
- Eingrenzung des Suchraumes für Partial-Match- und Bereichsanfragen komplex
- Löschen ist sehr schwierig
- nur interne Datenstruktur

Weitere Variante des k-d-Baumes

- blattorientiert (heterogen, Speicherung der Sätze in Buckets = Blätter)

Abb. 9.7: Organisation der Datensätze beim homogenen k-d-Baum

3.21

Beispiel: Tabelle --> 3-d-Baum (Übung)

Alter	Gehalt	Ort
35	17K	KL
28	40K	F
29	15K	DA
25	45K	KL
40	12K	SB
29	16K	DA
30	17K	F
42	100K	F
29	14K	DA

