פתרון לוגיקה מתמטית - תרגיל 9

- ר באינדוקציה על המבנה של שם העצם r. . א.
- בסיס: r משתנה אישי או קבוע אישי.

-ש אזי $\mathbf{r} = \mathbf{x}$ או ל- \mathbf{t} . בכל מקרה מקבלים ש .s*(r)=s(x)=s*(r< t>)

.s*(r) = s*(r < t >) ולכן r = r < t > אוי $r \neq x$ אוי ר

אזי $\mathbf{r} = \mathbf{f}(\mathbf{t}_1, \dots, \mathbf{t}_n)$ אזי -

לפי הנחת האינדוקציה. $r < t > = f(t_1 < t > ..., t_n < t >)$

:ולכן i לכל $s*(t_i)=s*(t_i < t > t)$

$$s*(r)=s*(f(t_1,...,t_n)=f^{M}(s*(t_1),...,s*(t_n))==f^{M}(s*(t_1),...,s*(t_n))=s*(f(t_1,...,t_n))=s*(r)$$

- באינדוקציה על המבנה של הנוסחה φ. ב.
- $s*(t_i)=s*(t_i< t>)$ אמיתית ϕ אמיתית (לבי $s*(t_i)=s*(t_i< t>)$ לפי א $\phi=R(t_1,...,t_n)$ -אם ורק אם <t> אמיתית.
 - צעד האינדוקציה: אם $\mathbf{\phi} = \mathbf{\phi}_1 * \mathbf{\phi}_2$ או $\mathbf{\phi} = \mathbf{\phi}_0$ כאשר * פעולות דו -מקומיות של תחשיב הפסוקים אז בהסתמך על הנחת האינדוקציה לא קשה לראות ש- 🛭 אמיתית אם ורק אם אמיתית. **φ<t>**
- אם $\exists x \phi = \phi < t$ אוי $\phi = \forall x \phi$ אין הופעות $\phi = \exists x \phi$ חופשיות של $\mathbf{v} < \mathbf{t}$ אמיתית אם ורק אם $\mathbf{v} < \mathbf{t}$ אמיתית. s אם $\phi = \exists y$ כאשר ϕ שונה מ ϕ אזי לכל השמה ϕ $\mathbf{\phi}_1 < t >$ פרט אולי על \mathbf{v} מתקיים ש $\mathbf{\phi}_1$ אמיתית ב \mathbf{v} אם ורק אם אז זה x, אז מדוע? אם לא הצבנו בשום מופע של s'. (אחרת ההצבה אינה כשרה) \mathbf{t} - מיידי; ואם כן, אז \mathbf{v} אינו מופיע s' ומותר להסתמך על הנחת האינדוקציה עבור s'(x)=s'*(x)
 - אם $\mathbf{\phi} = \mathbf{\nabla} \mathbf{v}$ אז באותו נימוק כמו במקרה של כמת ישי מקבלים \mathbf{s} -ט אמיתית ב-s אם ורק אם $\mathbf{\phi}$ אמיתית ב-s ש

.s-ב אם ורק אם ϕ אמיתית ב-s אם ורק אם ϕ אמיתית ב- ϕ .

נניח M מבנה וs השמה כלשהם. ٦.

. א. 2

- אז הנוסחה אמיתית. $\mathbf{M} \not\models_{\mathbf{s}} \mathbf{x} = \mathbf{t}$ -
- $\mathbf{M} \models_{\mathbf{s}} \mathbf{\phi} \rightarrow \mathbf{\phi} < t >$ אז מתקיימות ההנחות של סעיף ב ולכן אז מתקיימות ה והנוסחה שוב אמיתית.

מכיוון שהנוסחה אמיתית לכל מבנה ולכל השמה אז היא אמיתית לוגית.

$$\phi_1 = \forall x R(x,x)$$

$$\phi_2 = \forall x \forall y (R(x,y) \rightarrow R(y,x))$$

$$\phi_3 = \forall x \forall y \forall z ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$$

$$\phi_4 = \forall x (R(x,c) \rightarrow x = c)$$

$$\phi_5 = \forall x (\neg x = c \rightarrow \exists y (R(x,y) \land \neg y = x))$$

$$\phi_6 = \forall x \forall y \forall z ((R(x,y) \land R(y,z)) \rightarrow (x = y \lor y = z \lor x = z))$$
 פתרון: $\phi_6 = \forall x \forall y \forall z (R(x,y) \land R(y,z)) \rightarrow (x = y \lor y = z \lor x = z)$ פתרון: $\phi_6 = \forall x \forall y \forall z (R(x,y) \land R(y,z)) \rightarrow (x = y \lor y = z \lor x = z)$ למחלקה אחת בגודל 1 שמכילה את פירוש הקבוע האישי $\phi_6 = \phi_6 \land \phi_6 = \phi_6 \land \phi_$

:אפשרות אחרת

 $f(c)=c \land \forall x (\ f(x)=x \to x=c\) \land \forall x \forall y (\ f(x)=y \to x=f(y)\)$ פונקציה סימטרית (ולכן חח"ע ועל) שמעבירה רק את פירוש הקבוע האישי $\mathbf{c}^{\mathbf{M}}$

:אפשרות אחרת

 $f(c)=c \land \forall x((P(x) \lor x=c) \equiv \neg P(f(x))) \land \forall x \forall y(f(x)=f(y) \to x=y)$ פונקציה שמעבירה את הקבוצה \mathbf{P}^M על \mathbf{P}^M \\{ \mathbf{c}^M \\} שייך לתוך \mathbf{W}^M \\P^M\\

:אפשרות אחרת

$$\begin{split} \phi_1 &= \forall x \forall y \forall z (\ f(f(x,y),z) = f(x,f(y,z))\) \\ \phi_2 &= \forall x (\ f(x,e) = x \land f(e,x) = x \land f(x,g(x)) = e\) \\ \phi_3 &= \forall x (\ f(x,x) = e \rightarrow x = e\) \end{split}$$

.2 מסדר אין איבר מסדר , $\phi_1 \wedge \phi_2 \wedge \phi_3$ פתרון:

$$\begin{split} \phi_1 &= \forall z \exists x \exists y (\ R(x) \land R(y) \land f(x,y) = z\) \\ \phi_2 &= \forall x_1 \forall x_2 \forall y_1 \forall y_2 (\ [\ R(x_1) \land R(x_2) \land R(y_1) \land R(y_2) \land \\ f(x_1,y_1) = f(x_2,y_2)\] \rightarrow [\ x_1 = x_2 \land y_1 = y_2\]\) \\ \phi_1 \land \phi_2 : \exists x_1 \forall x_2 \forall y_1 \forall y_2 \in A_1 \land A_2 \land A_2 \land A_2 \land A_3 \land A_4 \land A_4$$

$$\begin{split} \phi_1 &= \forall z \exists x \exists y (\ R_1(x) \land R_2(y) \land f(x,y) = z\) \\ \phi_2 &= \forall x_1 \forall x_2 \forall y_1 \forall y_2 (\ [\ R_1(x_1) \land R_1(x_2) \land R_2(y_1) \land R_2(y_2) \land \\ f(x_1,y_1) = f(x_2,y_2)\] \rightarrow [\ x_1 = x_2 \land y_1 = y_2\]\) \\ \phi_3 &= \exists x (\ \neg R_1(x)\) \land \exists y (\ \neg R_2(y)\) \\ \phi_4 &= \forall x \forall y (\ x = y\) \\ \left(\phi_1 \land \phi_2 \land \phi_3 \right) \lor \phi_4 : \exists \exists \exists x \in A_1(x) \land A_2(y) \land A_2($$

: שדה $\mathbf{d}^{\mathbf{M}}$ חיבור, $\mathbf{g}^{\mathbf{M}}$ אפס, $\mathbf{g}^{\mathbf{M}}$ כפל, $\mathbf{f}^{\mathbf{M}}$ יחידה):

$$\phi_{1} = \forall x (f(x,c)=x)$$

$$\phi_{2} = \forall x \exists y (f(x,y)=c)$$

$$\phi_{3} = \forall x \forall y (f(x,y)=f(y,x))$$

$$\phi_{4} = \forall x \forall y \forall z (f(f(x,y),z)=f(x,f(y,z)))$$

$$\phi_{5} = \forall x (g(x,d)=x)$$

$$\phi_{6} = \forall x \exists y (\neg (x=c) \rightarrow g(x,y)=d)$$

$$\phi_{7} = \forall x \forall y (g(x,y)=g(y,x))$$

$$\phi_{8} = \forall x \forall y \forall z (g(g(x,y),z)=g(x,g(y,z)))$$

$$\phi_{9} = \forall x \forall y \forall z (g(x,f(y,z))=f(g(x,y),g(x,z)))$$

$$\phi_{10} = \neg c=d$$

$$\uparrow_{1 \leq i \leq 10} \phi_{i} : | 1 \sqcap 1 \exists$$

- 1. א. כן. נשים לב ש $P(x) \lor R(x)$ שקול לוגית ל $P(x) \to R(x) \to R(x)$ ווה פקול לוגית ל $P(x) \to P(x) \to P(x) \to P(x)$ מכיוון שהעולם לא ריק אז ברור $P(x) \to P(x) \to P(x) \to P(x)$ אמיתית לוגית ולכן הנוסחה ש-($P(x) \to P(x) \to P(x) \to P(x) \to P(x)$ אמיתית לוגית ולכן הנוסחה הנתונה אמיתית לוגית.
 - $.\mathbf{P}^{\mathrm{M}}=\mathbf{R}^{\mathrm{M}}=\{\,\mathbf{1}\,\}\;,\mathbf{W}^{\mathrm{M}}=\{\,\mathbf{1},\,\mathbf{2}\,\}$ ב. לא. דוגמה נגדית:
 - $.\mathbf{P}^{\mathbf{M}} = \mathbf{R}^{\mathbf{M}} = \mathbf{\emptyset}$, $\mathbf{W}^{\mathbf{M}} = \{\ 1\ \}$ ג. דוגמה נגדית:
- . $\mathbf{W}^{\mathbf{M}}\mathbf{x}...\mathbf{x}\mathbf{W}^{\mathbf{M}} \supseteq \mathbf{R}^{\mathbf{M}}$ אזי תמיד \mathbf{R} , אזי תמיד \mathbf{M} וטימן יחט \mathbf{n} וטימן יחט ח-מקומי \mathbf{n}