Отчет по лабораторной работе по предмету Научное программирование

Лабораторная работа №5. Подгонка полиномиальной кривой. Матричные преобразования.

Никита Андреевич Топонен

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	13
Список литературы		14

Список иллюстраций

3.1	Вращение относительно начала координат	7
3.2	Отражение относительно прямой	8
3.3	Дилатация	8
4.1	Набор точек	9
4.2	Подгонка прямой "в ручную"	10
4.3	Подгонка прямой с помощью Octave	10
4.4	Граф домика	11
4.5	Графы после вращения	11
4.6	Граф после отражения	12
4.7	Граф после дилатации	12

Список таблиц

1 Цель работы

• Научиться подгонке полиномиальной кривой и матричным преобразованиям в Octave.

2 Задание

• Повторить примеры подгонки полиномиальной кривой и матричные преобразования с помощью Octave.

3 Теоретическое введение

- В статистике часто рассматривается проблема подгонки прямой линии к набору данных. Имея набор данных (точек) необходимо построить полиномиальную кривую, наиболее приближающуюся к данным точкам.
- Матрицы и матричные преобразования играют ключевую роль в компьютерной графике. Существует несколько способов представления изображения в виде матрицы. Подход, который мы здесь используем, состоит в том, чтобы перечислить ряд вершин, которые соединены последовательно, чтобы получить ребра простого графа. Мы записываем это как матрицу 2*n, где каждый столбец представляет точку на рисунке.
- Вращения могут быть получены с использованием умножения на специальную матрицу. Вращение точки (x,y) относительно начала координат определяется как:

$$R\begin{pmatrix}x\\y\end{pmatrix},$$
 где
$$R=\begin{pmatrix}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{pmatrix},$$

heta – угол поворота (измеренный против часовой стрелки).

Рис. 3.1: Вращение относительно начала координат

• Если l – прямая, проходящая через начало координат, то отражение точки (x,y) относительно прямой l определяется как:

$$R\begin{pmatrix} x \\ y \end{pmatrix}$$
,

где

$$R = \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix},$$

 θ – угол между прямой l и осью абсцисс (измеренный против часовой стрелки).

Рис. 3.2: Отражение относительно прямой

• Дилатация (то есть расширение или сжатие) также может быть выполнено путём умножения матриц. Пусть

$$T = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix},$$

Рис. 3.3: Дилатация

Тогда матричное произведение TD будет преобразованием дилатации D с коэффициентом k.

4 Выполнение лабораторной работы

Повторял примеры из материалов лабораторной работы.

Построил график точек, по которым будем строить полином.

Рис. 4.1: Набор точек

Построил уравнение вида $y=ax^2+bx+c$. Решил его и построил график полинома и точек, к которым мы приводили полином.

Рис. 4.2: Подгонка прямой "в ручную"

Проделал ту же подгонку с помощью функций Octave (polyfit и polyval).

Рис. 4.3: Подгонка прямой с помощью Octave

Нарисовал граф домика по точкам.

Рис. 4.4: Граф домика

Выполнил вращение с помощью матрицы вращения. Нарисовал на одном полотне начальный граф, а также графы повернутые на 90 и 225 градусов вокруг начала координат.

Рис. 4.5: Графы после вращения

Выполнил отражение домика относительно прямой.

Рис. 4.6: Граф после отражения

Выполнил дилатацию, увеличив домик в 2 раза.

Рис. 4.7: Граф после дилатации

5 Выводы

В результате выполнения данной работы я:

• Научился подгонке полиномиальной кривой и матричным преобразованиям в Octave.

Список литературы