Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec

2º Semestre de 2006/2007

Exercícios de Revisão

Soluções e algumas resoluções abreviadas

- 1. a) sen(2a) = sen(a+a) = cos a sen a + sen a cos a = 2 sen a cos a;
 - b) De $\cos(2a) = 2\cos^2 a 1$, para qualquer $a \in \mathbb{R}$, temos

$$\cos(a) = 2\cos^2\left(\frac{a}{2}\right) - 1 \Leftrightarrow \cos^2\left(\frac{a}{2}\right) = \frac{1 + \cos a}{2}.$$

- 2. a) $\operatorname{sen}(\pi) = \operatorname{sen}\left(2\frac{\pi}{2}\right) = 2\operatorname{sen}\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right) = 0.$
 - b) $\sin^2 \frac{\pi}{4} = \frac{1-\cos \frac{\pi}{2}}{2} = \frac{1}{2} \Leftrightarrow \sin \frac{\pi}{4} = \pm \frac{\sqrt{2}}{2}$. Como $\sin x > 0$, para $x \in]0, \pi[$, tem-se $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.
 - c) Usar sen(a + b), com $b = 2\pi$.
 - d) Usar sen(a+b), com $b=\frac{\pi}{2}$.
- 3. De Ex.1.c):

$$\operatorname{sen} a - \operatorname{sen} b = 2 \operatorname{sen} \left(\frac{a-b}{2} \right) \cos \left(\frac{a+b}{2} \right).$$

Se $a,b \in [0,\frac{\pi}{2}]$, com a > b, então $0 < \frac{a-b}{2} \le \frac{\pi}{4}$, e $0 < \frac{a+b}{2} \le \frac{\pi}{2}$, logo $\cos\left(\frac{a+b}{2}\right) > 0$ e sen $\left(\frac{a-b}{2}\right) > 0$ (de $\cos x > 0$ para $x \in]-\frac{\pi}{2},\frac{\pi}{2}[$ e de $\sin(a+\frac{\pi}{2})=\cos a$ tem-se sen x>0, para $]0,\pi[$). Logo, $\sin a - \sin b > 0 \Leftrightarrow \sin a > \sin b$, e sen é estritamente crescente.

- 4. a) Escreva sen(3x) = sen(2x + x) e use as expressões para sen(2x), cos(2x) e a fórmula fundamental da trigonometria.
 - b) De $\cos 3x = 4\cos^3 x 3\cos x$, temos

$$\cos \frac{\pi}{2} = 4\cos^3 \frac{\pi}{6} - 3\cos \frac{\pi}{6} \iff \cos \frac{\pi}{6} \left(4\cos^2 \frac{\pi}{6} - 3 \right) = 0$$

$$\Leftrightarrow \cos \frac{\pi}{6} = 0 \lor \cos^2 \frac{\pi}{6} = \frac{3}{4}$$

$$\Leftrightarrow \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

uma vez que $\cos x > 0$ para $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[.$

Usando a fórmula fundamental da trigonometria, temos sen $\frac{\pi}{6} = \frac{1}{2}$.

- 5. a) $1 + \operatorname{tg}^2 x = 1 + \frac{\sin^2 x}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$;
 - b) Escreva $tg(x-y) = \frac{sen(x-y)}{cos(x-y)}$ e use as expressões para sen(x-y) e cos(x-y) em função de sen x, cos x, sen y, cos y.
- 6. a) $e^{b \log a} = (e^{\log a})^b = a^b;$
 - b) Uma vez que $y=a^x$ sse $x=\log_a(y)$, para vermos que $\log_a y=\frac{\log y}{\log a}$, é suficiente mostrar que $a^{\frac{\log y}{\log a}}=y$. Então, de a),

$$a^{\frac{\log y}{\log a}} = e^{\frac{\log y}{\log a} \cdot \log a} = e^{\log y} = y.$$