PHYS22040 Problem Set I

- 7. The HERA (Hadron-Elektron-Ring-Anlage) electron/positron proton collider in Hamburg collided beams of 820 GeV protons with 27.5 GeV electrons. What was the centre of mass energy of this accelerator?
- 10. Particle A with total energy E_A and mass m_A is incident on a stationary particle of mass m_B . The interaction produces a resonant state with mass m_C . Show that the mass of the produced resonance is given by

$$m_C = \sqrt{2E_a m_B + m_B^2 + m_A^2}$$

- 35. A pion beam is incident on stationary protons. In the process a Δ^{++} and a π^0 is produced. Calculate the minimum energy of the pions for this reaction to happen.
- 36. A Σ^+ with an energy of 1500 MeV decays into a n and a π^+ . The π^+ emerges under 90° with respect to the direction of the Σ^+ . The mass of a Σ^+ is 1189.4 MeV. Calculate the energy of the π^+ .
- 55. In the BaBar detector 9.0 GeV electrons collide head-on with 3.1 GeV positrons to produce an Υ (4s) which has a mass of 10.58 GeV. The electrons move in the +z-direction. The rest mass of the electron may be neglected. The $\Upsilon(4s)$ decays immediately into a B^0 - \overline{B}^0 pair (or a B^+ and B^- which we will not use in this question). The mass of the B^0 and \overline{B}^0 is 5.29 GeV. In an event the B^0 decays into $J/\psi K^+\pi^-$ and the \overline{B}^0 into $K^-\pi^+$. Subsequently, the J/ψ decays into a $\mu^+\mu^-$ pair. Six particles are measured by the detector. In GeV, their momenta are

$$p_1 = \begin{pmatrix} 0.810 \\ -0.676 \\ 0.300 \end{pmatrix} \qquad p_2 = \begin{pmatrix} -1.717 \\ -1.940 \\ 1.519 \end{pmatrix} \qquad p_3 = \begin{pmatrix} -0.094 \\ -0.076 \\ 1.303 \end{pmatrix} \tag{1}$$

$$p_4 = \begin{pmatrix} 2.000 \\ 1.723 \\ 1.4203 \end{pmatrix} \qquad p_5 = \begin{pmatrix} 0.685 \\ -0.427 \\ -0.177 \end{pmatrix} \qquad p_6 = \begin{pmatrix} -1.684 \\ 1.396 \\ 1.534 \end{pmatrix}$$
 (2)

and their energies are

$$E_1 = 1.102 E_2 = 3.044 E_3 = 1.316 (3)$$

$$E_1 = 1.102$$
 $E_2 = 3.044$ $E_3 = 1.316$ (3)
 $E_4 = 3.000$ $E_5 = 0.963$ $E_6 = 2.674$ (4)

Particle 1 and particle 6 are muons.

- (a) Calculate the energy and momentum of the $\Upsilon(4s)$ in the lab frame.
- (b) Calculate the invariant mass of the J/ψ .
- (c) Which two of these particles are the particles originating from the \overline{B}^0 decay? Explain your answer.
- (d) Calculate the energy and momentum of the ${\cal B}^0.$
- (e) Demonstrate that the B^0 and the \overline{B}^0 indeed originate from the $\Upsilon(4s)$.

The Fundamental Forces

Force	Gauge Boson	Mass (GeV/c ²)
Strong	Gluon	0
Weak	W, Z	80, 91
Electromagnetic	Photon	0
Gravity	Graviton	0

	The Leptons			The Quarks	
Flavour	Charge	Mass (GeV/c ²)	Flavour	Charge	Mass (GeV/c ²)
e^{-}	-1	5.11×10^{-4}	u	+2/3	< 0.01
$ u_e$	0	~ 0	d	-1/3	< 0.01
μ^-	-1	0.106	c	+2/3	≈ 1.1
$ u_{\mu}$	0	~ 0	s	-1/3	≈ 0.3
$ au^-$	-1	1.784	t	+2/3	≈ 172
$ u_{ au}$	0	~ 0	b	-1/3	≈ 5.4

	Mesons			Baryons	
Meson	Quarks	Mass (GeV/c^2)	Baryon	Quarks	Mass (GeV/c ²)
π^+	$u\overline{d}$	0.14	p	uud	0.938
π^0	$(u\overline{u} - d\overline{d})/\sqrt{2}$	0.13	n	udd	0.940
K^+	$u\overline{s}$	0.49	Λ^0	uds	1.116
K^0	$d\overline{s}$	0.50	Σ^+	uus	1.189
D^+	$c\overline{d}$	1.87	Σ^0	uds	1.193
D^0	$c\overline{u}$	1.86	Σ^{-}	dds	1.197
B^+	$u\overline{b}$	5.28	Δ^{++}	uuu	1.232
B^0	$d\overline{b}$	5.28	Λ_c^+	udc	2.285
J/ψ	$c\overline{c}$	3.10	Δ^{-}	ddd	1.232
Υ (1s)	$b\overline{b}$	9.46	Ξ_b^0	usb	5.788

Constants

$$\begin{array}{l} c = 2.998 \times 10^8 \ {\rm m \ s^{-1}} \\ \theta_c \approx 13^{\circ} \\ \alpha = \frac{e^2}{4\pi\hbar c\epsilon_0} \approx 1/137 \\ \alpha_s \approx 1/8 \\ G_F \approx 1.166 \times 10^{-5} \ {\rm GeV^{-2}} \\ {\rm 1 \ barn} = 10^{-28} \ {\rm m^2} \\ \hbar c = 197 \ {\rm MeV \ fm} \\ N_A = 6.0221 \times 10^{23} \ {\rm mol^{-1}} \\ \end{array}$$

Units

= 1 disintegration s^{-1} 1 Bq 1 Bq = 1 disintegration 1 Curie (Ci) = 3.7×10^{10} Bq

= 931.494 MeV/c²

pprox 1.66 $imes10^{-27}$ kg 1 amu

Atomic masses

Proton 1.007276 u

Neutron 1.008665 u

 ${}^1_1\mathsf{H}$ 1.007825 u

⁴₂He 4.002603 u

Magic numbers

2, 8, 20, 28, 50, 82, 126

Radioactive decay

$$N(t) = N_0 e^{-\lambda t}$$

Uncertainty principle

$\Delta E \Delta t > \frac{\hbar}{2}$ $\Delta p \Delta x > \frac{\hbar}{2}$

Rutherford scattering

$$\frac{d\sigma}{d\Omega} = \left(\frac{2Ze^2}{16\pi\varepsilon_0 K_\alpha}\right)^2 \frac{1}{\sin^4(\theta/2)}$$

Semi-empirical Mass Formula

$M(A,Z) = Zm_p + (A-Z)m_n + Zm_e$

Mass constants