

Theoretical Computer Science

Complexity Theory

Technische Hochschule Rosenheim Sommer 2022 Prof. Dr. Jochen Schmidt

Overview

- Time and space complexity
- Order of complexity, O-Notation
- Optimization using the example of divide and conquer
- Complexity Classes P, NP
- NP completeness & NP hard problems
- Other problem classes

Introduction

- Previous chapter: computability
 - is a problem in principle solvable with computers does an algorithm exist?
- Now: How much effort is required for solving a computable problem, in particular
 - Time complexity (how much computation time is required dependent on amount of input data?)
 - Space complexity (how much memory is required dependent on amount of input data?)
- In the following: Mainly time complexity
 - space complexity is considered using the same methods & notations
 - but is often less important in practice

Time Complexity

- Only a part of the computable problems is tractable
- The others take too long or require too much memory for practical purposes

We can consider the time complexity of

- a specific algorithm: Number of steps required to solve a problem.
- a problem: Time complexity required by an optimal algorithm for solving the problem.

Time Complexity – Variants

- Worst-case complexity
 - how "long" does the algorithm take maximum (for the "worst-case" structure of input data)
 - often: complexity = worst-case complexity
- Best-case complexity
 - how "long" does the algorithm take at least (with optimal structure of input data)
- Average-case complexity
 - expected complexity with a typical structure of data ("average runtime")

Example: Linked list containing 20 (or in general: n) family names, search for a name

Name is in last element \rightarrow 20 steps or n steps

Name is in first element \rightarrow 1 step

Name is in middle element \longrightarrow 10 steps or $\frac{n}{2}$ steps

Order of Complexity

Time Complexity – Objectives

- Dependent on the size of the input data → Parameter n
 - How does the algorithm behave when the amount of input data increases?
 - We want a function. Not a measured time.
- Omit "unimportant" constants
 - Constant factors such as: computer hardware used, programming language used and its compiler, or clock frequency of the CPU
 - Complexity should only depend on the algorithm, not on the hardware used
- We will look at an upper bound ("asymptotic time complexity")

O-Notation – Definition

- $O(f(n)) = \{g: \mathbb{N} \to \mathbb{N} \mid \exists m > 0, c > 0 \text{ where } \forall n \geq m: |g(n)| \leq c \cdot |f(n)| \}$
- i.e., O(f(n)) is the set of all functions g(n),
 - for which there exist the two constants m, c,
 - such that for all $n \ge m$ it holds that $|g(n)| \le c \cdot |f(n)|$
- in other words: g(n) grows at most as fast as f(n)
- and this applies asymptotically, i.e., from a certain point on, for $n \to \infty$
- Usual notation: g(n) = O(f(n))
 - e.g., $g(n) = O(n^2)$
 - technically not correct: "∈" should be used (it is a set)
 - Problem: The operator = is not symmetrical here: $O(n) = O(n^2)$ is true, but not $O(n^2) = O(n)$

O-Notation – Examples

•
$$f(n) = 50n + 3 = O(n)$$

•
$$c = 51, m = 3$$

•
$$f(n) = 2n^2 - 50n + 3 = O(n^2)$$

•
$$|2n^2 - 50n + 3| \le 2n^2 + |50n| + 3 \le 2n^2 + 50n^2 + 3n^2 = 55n^2 = |55n^2|$$

- therefore $|2n^2 50n + 3| \le 55 |n^2|$
- and thus: c = 55, m = 1

• In general:

- only the fastest growing term is relevant
- all slower growing terms and constant factors are omitted

•
$$f(n) = 3 \ln n = O(\ln n)$$

•
$$f(n) = In n^c = O(In n)$$

•
$$\ln n^c = c \ln n$$
 \rightarrow constant factor

•
$$f(n) = 3 \log_2 n = O(\ln n)$$

- $\log_2 n = \ln n / \ln 2 \longrightarrow \text{constant factor}$
- In general:
 - Base of a logarithm is irrelevant
 - Constant exponents under the logarithm are irrelevant

O-Notation – Examples

•
$$f(n) = log n - 3n + 2n^3 + 2^n = O(2^n)$$

•
$$f(n) = 50n + 3 = O(2^n)$$

•
$$f(n) = log n - 3n + 2n^3 + 10^n = O(10^n)$$

•
$$f(n) = 2n^2 - 50n + 3 = O(2^n)$$

•
$$f(n) = log n - 3n + 2n^3 + 2^n + 10^n = O(10^n)$$

•
$$f(n) = In n - 3n + 2n^3 = O(2^n)$$

In general:
 Changing the base of an exponential function is relevant

•
$$f(n) = 3 ln n = O(2^n)$$

- In general:
 - above statements are correct, but not very helpful
 - we are looking for a tight upper bound

Landau Symbols

- introduced by Paul Bachmann 1894
- named after Edmund Landau (1877 1938)
- Here: Two other symbols in addition to O-notation (Ω, Θ)

g = O(f)	g grows at most as fast as f (upper bound)	$ g(n) \le c \cdot f(n) $
$g = \Omega(f)$	g grows at least as fast as f (lower bound)	$ g(n) \ge c \cdot f(n) $
$g = \Theta(f)$	g grows just as fast as f	$c_0 \cdot g(n) \le f(n) \le c_1 \cdot g(n) $

Typical Orders of Complexity

Name	Complexity	Rating	Examples	Typical Algorithm Structure	
Constant complexity	O(1)	optimal, rare	Hashing	Most statements are executed only once or a few times.	
Logarithmic complexity	O(log <i>n</i>)	very good	Binary search in sorted list	Solve a problem by converting it to a smaller one, while reducing the runtime by a constant proportion.	
Linear complexity	O(n)	good	Linear search in unsorted list	Optimal case for an algorithm that has to process <i>n</i> input data – each element must be touched exactly once (or constantly often).	
Log-linear or quasilinear complexity	O(<i>n</i> log <i>n</i>)	still good	Good sorting sort methods, e.g., Mergesort, Quicksort (on average); FFT	Solve a problem by splitting it into smaller problems that are solved independently and then combined.	
Quadratic complexity	O(n ²)	poor	Poor sorting methods, e.g., Bubblesort, Quicksort (worst case)	Typical for problems where all <i>n</i> elements need to be processed in pairs (2 nested for loops). Can only be used for relatively small problems.	
Cubic complexity	O(n ³)	poor	Matrix-Multiplication	3 nested for loops. Can only be used for small problems.	
Exponential complexity	O(<i>a</i> ⁿ)	disastrous	Travelling-Salesman (cleverly implemented)	Typical for brute-force solutions, e.g., trying out all possible variants. Only few algorithms	
Factorial complexity	O(n!)	even worse	Travelling-Salesman (brute-force)	of this complexity can be used in practice.	

Note: a^n grows faster than **any** polynomial n^k for any a > 1

O-Notation – Examples

n	O(n)	$O(n^2)$	O(2 ⁿ)
1	1 μsec	1 μsec	2 μsec
10	10 μsec	100 μsec	~ 1 msec
100	100 μsec	10 msec	~ 4 · 10 ¹⁶ years
1000	1 msec	1 sec	~ 8 · 10 ²⁸⁸ years

Caution: the O-notation applies only asymptotically for $n \to \infty$

n	$O(100\cdot n)=O(n)$	$O(0.1 \cdot n^2) = O(n^2)$	$O(0.0001 \cdot 2^n) = O(2^n)$
1	100 μsec	0.1 μsec	0.0002 μsec
10	1 msec	10 μsec	~ 0.1 µsec
100	10 msec	1 msec	~ 4 · 10 ¹² years
1000	100 msec	100 msec	~ 8 · 10 ²⁸⁴ years

Function Growth – Examples

Complexity in O-Notation from Code

Basic instructions (no function calls):

$$x = x * a;$$
 O(1)

If we combine these two instructions, we get O(1) + O(1) = O(2) = O(1)

No matter how many basic instructions, it's O(1)

Nested loops:

(n = amount of data, B = block of constant time complexity O(1))

```
for(int i = 0; i < n; i++) {
    B;
}
O(n)
```

```
for(int i = 0; i < n; i++) {
  for(int j = 0; j < n; j++) {
    B;
  }
}</pre>
O(n<sup>2</sup>)
```

```
for(int i = 0; i < n; i++) {
   for(int j = 0; j < i; j++) {
     B;
   }
}</pre>
O(n<sup>2</sup>)
```

```
for(int i = 0; i < n; i++) {
   for(int j = 0; j < 100; j++) {
     B;
   }
}</pre>
O(n)
```

Complexity in O-Notation from Code

Loop, changing loop counter using * or / instead of + or -:

```
i = 1;
while(i < n) {
    B;
    i = i * 2;
}</pre>
O(log<sub>2</sub> n) = O(log n)
```

Recursion:

```
int factorial(int n) {
  if (n == 0)
    return 1;
  else
    return n * factorial(n-1);
}
```

int doSomething(int a, int b) {
// Pre-condition: a < b
 if (a == b)
 return 0;
else
 return (doSomething(a+1, b) - doSomething(a, b-1));</pre>

O(n)

Recursion is often hard to analyze

 $O(2^n)$ (this recursion results in a binary call-tree)

Recursion

- Typical variants of recursion are considered in the following
 - see also: Divide-and-Conquer formula later in this set of slides
- Formulas for calculating complexity C_n are given independently of a specific algorithm
- It holds: n = amount of input data, $C_n =$ number of steps required in total, $C_0 = 0$
- Variant 1
 - Loop over input data in each step
 - One element is removed before recursive call

$$C_n = C_{n-1} + n$$

unfold recursion:

$$C_n = 0 + 1 + 2 + ... + (n-3) + (n-2) + (n-1) + n = \frac{1}{2} n(n+1) = O(n^2 / 2) = O(n^2)$$

Recursion

- Variant 2
 - Loop over input data in each step
 - Input data are halved before recursion

$$C_n = C_{n/2} + n$$

 $C_n = ... + n/8 + n/4 + n/2 + n =$
 $= (... + 1/8 + 1/4 + 1/2 + 1) n$
 $= O(2n) = O(n)$

- Variant 3
 - Effort within a step is constant (= independent of input data size)
 - Input data are halved before recursion

$$C_n = C_{n/2} + 1$$

 $C_n = 1 + 1 + ... + 1 = O(\log_2 n) = O(\log n)$
 $\log_2 n \text{ times}$

- Variant 4
 - Loop over input data in each step
 - Input data are split into two halves before recursion

$$C_n = 2C_{n/2} + n$$

$$C_n = O(n \log n)$$

- Variant 5
 - Effort within a step is constant (= independent of input data size)
 - Input data are split into two halves before recursion

$$C_n = 2C_{n/2} + 1$$

 $C_n = O(2n) = O(n)$

Calculation Rules for O-Notation

Let c and a_i be constants.

•
$$c = O(1)$$

•
$$c \cdot f(n) = O(f(n))$$

•
$$O(f(n)) + O(f(n)) = O(f(n))$$

•
$$O(O(f(n))) = O(f(n))$$

•
$$g(n) = a_k \cdot n^k + a_{k-1} \cdot n^{k-1} + ... + a_0 = O(n^k)$$

• O(
$$f(n)$$
) · O($g(n)$) = O($f(n)$ · $g(n)$)

•
$$O(f(n)) + O(g(n)) = O(\max\{f(n), g(n)\})$$

Application to Analysis of Algorithms: How to obtain the total complexity from parts?

Basic instructions are O(1)

Iteration n-times in a loop with body O(alg): $O(n \cdot alg)$

Sequences alg1; alg2; alg3;

 $O(alg1) + O(alg2) + O(alg3) = O(max{alg1, alg2, alg3})$

IF THEN alg 1 ELSE alg2
O(max{alg1, alg2})

Algorithm Optimization Using the Example of Divide and Conquer

Objective

- Find a better algorithm to solve a given problem
 - better = lower time (or sometimes space) complexity
- Optimization is problem dependent,
- and also, what we count as a relevant operation for time complexity
 - Mathematical algorithms (as the following example): Number of arithmetic operations
 - We'll count multiplications and additions
 - In the past, typically only multiplications were counted (as they used to be many times slower)
 - For searching and sorting: Count number of comparisons required

Example: Evaluation of Polynomials

- How can we compute the value of a polynomial function f(x) at b, i.e., f(b)? $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$
- Complexity "naïve" method for calculating f(b):
 - Calculation of powers x², ..., xⁿ:
 - 2 + 3 + 4 + ... + n = n (n + 1) / 2 1 multiplications: $O(n^2/2)$
 - n multiplications by coefficients a_i
 - n additions
 - result: $n(n + 1) / 2 1 + 2n = O(n^2/2 + 2n) = O(n^2)$
- Re-using powers that have already been calculated
 - in each step only one additional multiplication, total: n-1
 - results in 2n 1 multiplications and n additions
 - total: 3n 1 = O(3n) = O(n)

Example: Evaluation of Polynomials

- Horner's method
 - factoring out: $f(x) = a_0 + x (a_1 + x (a_2 + x (a_3 + ... + x (a_{n-1} + a_n x)...)$
- Complexity
 - n multiplications and n additions
 - (due to O-notation it doesn't matter whether it is actually n-1 or n-2 or ...)
 - total: O(2n) = O(n)
- Note: The Fast Fourier Transform (FFT) is better still:
 It can be used to evaluate a polynomial at n positions in parallel with O(n log n)

Divide and Conquer (*Teile und Herrsche*)

Divide and Conquer:

- A very important algorithm development paradigm
- Break down a problem into non-overlapping sub-problems
- Combine the individual solutions to a complete solution
- Do this recursively

• Often:

- Divide data into two parts
- process these separately

Examples

- Quicksort, Mergesort
- Karatsuba's method for multiplying long integers
- Fast Fourier transform (FFT)

Divide and Conquer – How to Obtain the Complexity

• Effort to break down a problem of size n into a sub-problems of size n/b:

$$C(n) = a \ C(n/b) + \Theta(n^k)$$
 for $a \ge 1, \ b, n > 1$
 $C(1) = 1$

- $\Theta(n^k)$: Effort for splitting and combining data in each step
- C(n) can be estimated as follows:

$$C(n) = \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^{\log_b a}) & \text{if } a > b^k \end{cases}$$

Divide and Conquer – Complexity Examples

$$C(n) = a C(n/b) + \Theta(n^k)$$

$$C(n) = \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^{\log_b a}) & \text{if } a > b^k \end{cases}$$

•
$$C(n) = 2 C(n/2) + O(n) \longrightarrow O(n \log n)$$

•
$$C(n) = 2 C(n/2) + O(n^2) \rightarrow O(n^2)$$

•
$$C(n) = 8 C(n/3) + O(n^2) \longrightarrow O(n^2)$$

•
$$C(n) = 9 C(n/3) + O(n^2) \longrightarrow O(n^2 \log n)$$

•
$$C(n) = 10 \ C(n/3) + O(n^2) \longrightarrow O(n^{\log_3 10}) = O(n^{2.09})$$

Example: Integer Multiplication

Multiplication of two integers with n digits each as taught in school

• Example:

Complexity: $O(n^2)$ – corresponds to the size of the table

Can we do better?

Karatsuba's Integer Multiplication

- by Karatsuba and Ofman (1962)
- Idea: Split the n-digit integers A and B into two parts:
 - In the middle, at position n/2
- $A = a_1 10^{n/2} + a_2$ and $B = b_1 10^{n/2} + b_2$
- Product:

AB =
$$(a_1 10^{n/2} + a_2) (b_1 10^{n/2} + b_2)$$

= $a_1 b_1 10^n + (a_1 b_2 + a_2 b_1) 10^{n/2} + a_2 b_2$

- 4 n/2-digit multiplications
- Combination of results:
 - Shift by n/2 and n digits, respectively
 - Addition

A: a₁ a₂
B: b₁ b₂

Complexity: C(n) = 4 C(n/2) + O(n) $C(n) = a C(n/b) + \Theta(n^k)$

$$C(n) = \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^{\log_b a}) & \text{if } a > b^k \end{cases}$$

 $\log_2 4 = 2 \longrightarrow O(n^2)$ – same as before...

Karatsuba's Integer Multiplication

Further re-formulization:

AB =
$$(a_1 10^{n/2} + a_2) (b_1 10^{n/2} + b_2)$$

= $a_1 b_1 10^n + (a_1 b_2 + a_2 b_1) 10^{n/2} + a_2 b_2$
= $a_1 b_1 10^n + ((a_1 + a_2)(b_1 + b_2) - a_1 b_1 - a_2 b_2) 10^{n/2} + a_2 b_2$

- 3 n/2-digits multiplications (instead of 4)
- Combination of results:
 - Shift by n/2 and n digits, respectively
 - Addition

Complexity:
$$C(n) = 3 C(n/2) + O(n)$$

$$C(n) = a C(n/b) + O(n^k)$$

$$C(n) = \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^{\log_b a}) & \text{if } a > b^k \end{cases} 3 > 2^1$$

$$\log_2 3 = 1.585 \longrightarrow O(n^{1.585})$$

Karatsuba's Integer Multiplication – Notes

- Of course, this applies to any number system
 - and is typically implemented in base 2
- You can still do better:
 - does not have a big impact in practice, however
 - Schönhage-Strassen (1971): O(n log n log log n)
 - Fürer (2007): O(n ld n 2^{O(ld* n)})
 - where Id* n = the smallest i, for which Id Id ... Id n ≤ 1, where i = #times Id (base 2 log) has been used
 - Examples:
 - $Id^* 2 = 1$, $Id^* 4 = 2$, $Id^* 16 = 3$, $Id^* 65536 = 4$
 - Publication: https://wwwmath.uni-muenster.de/u/cl/WS2007-8/mult.pdf
 - Covanov and Thomé (2016): O(n ld n 2^{2ld* n})
 - Publication: https://arxiv.org/abs/1502.02800
 - Harvey and van der Hoeven (2018):
 O(n ld n 2^{2ld* n}) is a lower bound for complexity
 - Publication: https://arxiv.org/abs/1802.07932

Complexity Classes P – NP

Introduction

- The existence of an algorithm is no guarantee that the problem can be solved in practice
 - · computation time or memory (space complexity) may be too high to be useful
- Questions:
 - Which complexity orders are still acceptable?
 - Can we define a class of tractable problems?

Introduction

Problem size that can be handled in 1 hour

Complexity	Problem Size Today	Using a 100x Faster Computer	Using a 1000x Faster Computer
n	N_1	100 N ₁	1000 N ₁
n^2	N_2	10 N ₂	32 N ₂
n^3	N_3	4,6 N ₃	10 N ₃
n ⁵	N_4	2,5 N ₄	4 N ₄
2 ⁿ	N ₅	N ₅ + 6,6	N ₅ + 10
3 ⁿ	N_6	$N_6 + 4.2$	$N_6 + 6.3$

Observation: With exponential complexity, a faster computer is practically useless!

Complexity Class P

- A decision problem is called efficiently solvable (or tractable) if there is an algorithm with time complexity O(p(n))
 - p(n) is a polynomial of any degree
 - i.e., algorithms with polynomial runtime

• Class P contains all decision problems that can be solved by a deterministic Turing Machine in polynomial time, i.e., all tractable problems

Class NP

- Class NP contains all decision problems that can be solved by a nondeterministic Turing Machine in polynomial time
- NP stands for Nondeterministic Polynomial time
- obviously: $P \subseteq NP$
 - any deterministic TM is also a nondeterministic TM that has no choice in state transitions
 - however, a nondeterministic TM can, in polynomial time
 - "Guess" an exponential number of solutions
 - and check them in parallel
- NP contains all efficiently verifiable decision problems
 - the nondeterministic TM "guesses" the solution in polynomial time
 - which can then be checked for correctness in polynomial time by a deterministic TM

Example: Prime Factorization

- Given: A natural number n
- Sought: Decomposition into prime factors
 - or, weaker: Integer Factorization decomposition into integer factors
- Factorization is time-consuming: What are the prime factors of 8633?
- Verification of a solution is easy:
 - Factors: $89 \cdot 97 = 8633$

• Notes:

- The problem above is not a decision problem, but can easily be formulated as one:
 Does n have a prime factor smaller than some integer k?
- Whether prime factorization actually is difficult is an open problem ... it's probably not in P, but also not as complicated as some other problems (the NP-complete ones)

Example: Boolean Satisfiability Problem (SAT)

- Erfüllbarkeitsproblem der Aussagenlogik
- Given: Propositional logic formula ((*Aussagen-)logischer Ausdruck*): AND ∧, OR ∨, NOT ¬
- Sought: Are there variable values for which the expression is "true"?
- Searching is time-consuming: $(\neg x_1 \lor x_2) \land x_3 \land (x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$
- Checking is easy: $x_1 = 0, x_2 = 1, x_3 = 1$
- Note: this problem is proven to be difficult...

P vs NP Problem: P = NP?

- Arguably the most important question of theoretical computer science: Is P = NP?
 - are the two problem classes perhaps not different at all?
 - this problem has been open since the 1970s and has not yet been solved
 - it was added to the list of Millennium Problems in 2000
 - contains 7 unsolved problems of mathematics (6 of them still open)
 - a prize money of 1 million US dollars is offered for the proof https://www.claymath.org/millennium-problems/p-vs-np-problem
- Significance
 - there are a lot of problems
 - of which you can easily show that they are in NP
 - for which, however, no polynomial algorithm is known so far
 - it could be that we just have not found one yet (P = NP)
 - This would mean: All efficiently verifiable decision problems are efficiently solvable
 - or hat none exists (P ≠ NP)
- General belief: P ≠ NP

Assumption: P ≠ NP

NP-hard & NP-complete

- A problem X is called NP-hard (NP-schwer) if it is at least as difficult as any problem in NP
 - i.e., for all problems $L \in NP$: $L \leq_p X$ (polynomial-time reduction)
- A problem X is called NP-complete (NP-vollständig) if it is NP-hard and is in NP
- Polynomial-time Reduction (polynomielle Reduktion)
 - A decision problem A is called polynomial-time reducible to B if there is an algorithm f with polynomial complexity that transforms an input x of A into an input f(x) of B, such that both result in the same output:

 We can solve A by transforming its input it in polynomial time to B, and then solve B instead.
 - Notation: $A \leq_p B$
 - In particular, this means:
 - if $A \leq_n B$ and B is efficiently solvable $(B \in P)$, then A is also efficiently solvable $(A \in P)$
 - if $A \leq_p B$ and B is efficiently verifiable (B \in NP), then A is also efficiently verifiable (A \in NP)
- Note:
 - no exact equivalence transformation of problems A and B is required
 - but: both give the same solution, i.e., a "yes" or "no" answer (A & B are decision problems)

NP-hard & NP-complete

Assumption: P ≠ NP

- NP-complete = the most difficult problems of class NP
- If there is even a single NP-complete problem in P, then P = NP
 - as all problems in NP can then be reduced to it polynomially
 - proof of a problem as being NP-complete thus is practically synonymous with the fact that there are (likely) no efficient algorithms for this problem
- if we have a first NP-complete problem C, we can show the NP-completeness of other problems X by polynomial-time reduction of X to C: $C \le_p X$

- Do NP-complete problems exist at all?
- Yes: Boolean Satisfiability Problem (SAT)
 - the first problem proven to be NP-complete
 - Proof 1971 by S. Cook
 - "The Complexity of Theorem Proving Procedures"
 - In 1982 he received the Turing Award
- Given: Propositional logic formula F
- Sought: Is F satisfiable? I.e., are there
 variable values from {0, 1} for which F is 1?

- Proof consists of two parts
 - SAT ∈ NP (not so complicated)
 - Principle: NTM "guesses" solution and checks its correctness (in polynomial time)
 - SAT is NP-hard (more difficult...)
 - For details see literature

Consequences of SAT being NP-complete

- Any problem in NP is polynomial-time reducible to SAT: $X \leq_p SAT$, $X \in NP$
- Deterministic algorithms for solving SAT have exponential complexity 2^{O(n)}
 - typical brute-force solution: try all variable combinations
 - this results in an upper bound for the complexity of all problems in NP of 2^{p(n)}
 - p(n) is a polynomial

• Note:

- We consider decision problems here
 - i.e., problems that can be answered by "yes" or "no"
- Finding the actual solution can be even more difficult

Consequences of SAT being NP-complete

- We can now easily show that other problems X are also NP-complete: Reduce SAT to X
 - SAT $\leq_p X$ (= solve SAT by transforming its input to X, then solve X)
 - X is at least as hard as SAT, but still in NP (it's a polynomial-time transformation!)
- Several thousand NP-complete problems are known, from various domains
- A selection can be found, e.g., here: http://en.wikipedia.org/wiki/List_of_NP-complete_problems
- If you find an algorithm with polynomial time complexity for any one of them, then you
 - automatically have a polynomial algorithm for all problems in NP
 - have proven that P = NP
- If you can show of any one of them that it is not in P, then
 - none of them is in P
 - and we have P ≠ NP

Karp's NP-complete Problems

3-SAT

Restriction of SAT

Given: Propositional logical formula F in conjunctive normal form (CNF)

with a maximum of 3 variables per term

• Sought: Is F satisfiable? I.e., are there variable values from {0, 1} for which F is 1?

• It can be shown: SAT \leq_p 3-SAT \longrightarrow 3-SAT is NP-complete

- Notes:
 - any logical formula formula can be transformed into CNF
 - however, this requires exponential effort, and we need a polynomial reduction
 - Luckily, polynomial reduction does not require exact equivalence,
 - but only: if F can be fulfilled, then the transformed formula F' can also be fulfilled (and vice versa)
- all k-SAT problems with k ≥ 3 are NP-complete
- 2-SAT, on the other hand, is in P

Map Coloring

Is it possible to color a map with k colors in such a way that neighboring countries always have different colors?

Graph Coloring

This is the graph coloring (*Graphfärbung*) problem:

- the vertices are colored,
- the edges define neighborhood.

Graph Coloring

- General graphs
 - k-coloring for k ≥ 3 is NP-complete
 - 2-coloring is in P
- Planar graphs
 - 2-coloring is in P
 - 3-coloring is in NP-complete
 - k-coloring for k ≥ 4 has constant runtime!
- Reminder:
 We consider the decision problem:
 Can the graph be colored using k colors?

The Four Color Theorem

- 4 colors are always sufficient to color a planar graph (map)
- Assumption existed since 1852
- One of the first problems proven with the help of a computer system (1976)
- A formal proof with the help of a theorem prover followed in 2004

Four Color Theorem

Coloring using 5 colors...

...but 4 suffice.

Graph Coloring – Applications

In addition to coloring maps, many other applications

- Scheduling
 - Scheduling processes in operating systems
 - Assignment of aircraft to flights
 - Allocation of bandwidth to radio/television stations, mobile communications, ...
 - Creating class schedules (with constraints regarding rooms, students, teachers)
- Compilers
 - which variable values are kept in registers?
- Sudoku
 - special graph, 81 nodes, 9 colors

Travelling Salesman Problem (TSP)

- Given: n cities, as well as the distances (km, time, cost, ...) in between
- Sought: Which sequence of cities is the shortest round trip?
 - all cities should be included exactly once
 - as a decision problem: Is there a round trip with a length smaller than a given constant k?
- Corresponds to Hamilton circles in graphs
 - each city is a vertex
 - every connection between cities is an edge
 - the distance corresponds to an edge weight

Travelling Salesman Problem (TSP)

- TSP (decision problem) is NP-complete
 - the time complexity of the naïve solution is even O(n!)
 - this would not be in NP; remember: an upper bound for the complexity of all problems in NP is O(2^{p(n)})
 - good algorithms reduce this to O(2ⁿ)
- TSP (actual solution) is NP-hard
- How hard it is O(n!)?
 - suppose you need a computation time of 1 second for the shortest round trip through 10 cities
 - then, for 20 cities, 670 442 572 800 seconds are needed = 21259 **years**

TSP – Example

- Round trip through the 15 largest cities in Germany
- There are 14! / 2 different round trips
 - 14! / 2 = 43 589 145 600
- The one shown is the shortest round trip

TSP – Examples

- Round trip through 15,112 German cities (2001)
 - Use of 110 CPUs
 - equivalent computing time (500MHz Alpha CPU): **22.6 years**
- Round trip through 24,978 Swedish cities (2004)
 - Length: 72,500 km
 - Linux-Cluster with 96 Intel Xeon 2.8GHz CPUs (dual core)
 - equivalent computing time (2.8GHz dual core Xeon): 84.8 years
- Layout of electronic circuits
 - 85,900 nodes (2005/06) the current record for TSP
 - equivalent computing time (2.4GHz AMD Opteron): 136 years

https://www.math.uwaterloo.ca/tsp/gallery/itours/d15112.htm

For more examples & data see: http://www.math.uwaterloo.ca/tsp/optimal/index.html

What to do in Practice?

- We do not have any efficient algorithms to find optimal solutions to problems like TSP or creating class schedules
 - Highly likely, these do not exist (assumption: P ≠ NP)
 - Note: Even if P = NP, we would not have an efficient algorithm for round trips, as we are not
 interested in the decision problem but rather the actual round trip (which is NP-hard but not NPC)
- In practice: Find approximations using optimization algorithms
 - these find suboptimal solutions, but much faster
 - based, e.g., on (non-linear) numerical optimization, statistics, or probabilistic algorithms
 - in some cases, like TSP, we can establish lower bounds and give estimates on the solution's quality

TSP-Approximations – Example: World TSP

- 1,904,711 city locations throughout the world
- Best tour found so far (15 Feb 2021): 7,515,755,956 m
 - not starting from scratch,
 - but based on a tour of length 7,515,767,286 m on 11 Feb 2021
 - difference: 11,330 m
 - this is considered a huge improvement!
- Improvement between Oct 2011 and June 2020: 7,604 m
- A lower bound for the tour is 7,512,218,268 m
 - difference to best solution so far: 3,549,018 m (= 0.0471%)

Other Problem Classes

NP-hard Problems Outside of NP

- Proof that problems lie in NP is not possible here
- so these are even more difficult than NP-complete problems
- Examples:
 - Word problem for type-1 languages
 - Inequivalence of regular expressions
 - and thus: for regular grammars or nondeterministic finite automata
 - Note: Equivalence of deterministic finite automata is in P
 - Conversion nondeterministic → deterministic requires construction of the power set
 - and thus has exponential complexity

co-NP

- co-NP: Set of decision problems whose complements are contained in NP
- Example: The PRIMES problem
 - "Is a number prime?" is in NP
 - "Is a number not prime (= composed)? " is in co-NP
- Since P is closed with regard to complement, we do know for sure: P = co-P
- General belief: NP ≠ co-NP
 - if it can be proven for any NP-complete problem that it is in both, NP and co-NP:
 NP = co-NP
 - so far none has been found, hence the general belief
 - in the case of P = NP: NP = co-NP holds
- By the way, PRIMES is in NP and co-NP
 - this is a very strong indication that a problem is not NP-complete
 - and in fact, PRIMES is in P
 - a polynomial algorithm was published in 2002

EXPTIME and **NEXPTIME**

EXPTIME

- Set of all decision problems that can be solved by a deterministic TM in time O(2^{p(n)})
 - p(n) is a polynomial
- there are EXPTIME-complete problems, e.g.,
 - modified halting problem: Does a deterministic TM halt after at most k steps?
 - Position analysis for generalized chess, checkers, go (arbitrary number of pieces on arbitrary sized board)

NEXPTIME

- corresponding class for nondeterministic TM
- Remarks
 - if P = NP, then EXPTIME = NEXPTIME

PSPACE and **NPSPACE**

- PSPACE
 - Set of all decision problems that can be solved by a deterministic TM with polynomial space
- NPSPACE
 - corresponding class for nondeterministic TM
- Obviously: P ⊆ PSPACE and NP ⊆ NPSPACE
 - a TM can write at most polynomial many symbols to the tape in a polynomial number of steps (time)
- It can be proven: PSPACE = NPSPACE
- There are PSPACE-complete problems, e.g.,
 - Word problem for type-1 languages
 - Satisfiability of Boolean formulas with quantifiers (\forall, \exists)

EXPSPACE and **NEXPSPACE**

- EXPSPACE
 - Set of all decision problems that can be solved by a deterministic TM with space O(2^{p(n)})
 - p(n) is a polynomial
- NEXPSPACE
 - corresponding class for nondeterministic TM
- It holds
 - EXPSPACE = NEXPSPACE
 - PSPACE ⊊ EXPSPACE
 - EXPTIME ⊆ EXPSPACE (likely: EXPTIME ⊊ EXPSPACE)
- There are EXPSPACE-complete problems, e.g.,
 - Do two given regular expressions define different languages?

Complexity Classes – Overview

And there are more..., e.g.,

- for probabilistic algorithms
- below P
- for quantum computers
- to consider the calculation of a solution instead of the decision problem (the functional problem)

Summary

- Order of complexity: O-Notation
 - is asymptotic
 - efficiency: separation between polynomial and exponential complexity
 - in practice, it will already get hard from approx. O(n⁴)
- Complexity Classes
 - P: Decision problems that can be solved by a deterministic TM in polynomial time
 - NP: as P for deterministic TM \rightarrow O(2^{p(n)}) for deterministic algorithms
- NP-completeness
 - Problems that are NP-hard and completely contained in NP
 - They are all connected by polynomial-time reduction
 - Whether P = NP is one of the great unsolved problems of computer science
 - Belief, based on many indications: P ≠ NP
 - There are a lot of NP-complete problems with practical relevance

Sources

- H. Ernst, J. Schmidt und G. Beneken: *Grundkurs Informatik*. Springer Vieweg, 7. Aufl., 2020.
- Schöning, U.: Theoretische Informatik kurz gefasst. Spektrum Akad. Verlag (2008)
- Hopcroft, J.E., Motwani, R. und Ullmann, J.D.: Einführung in die Automatentheorie, formalen Sprachen und Komplexitätstheorie. Pearson Studium (2002)
- Sedgewick, R.: *Algorithmen in C++*, Addison-Wesley (1992)