Classifying Polarized Satellite Images of Iceberg and Ship

A Combination of Transfer Learning with Traditional Approaches Ashish Poigal

Student ID: 17211775

MCM (Data Analytics) Module - CA640

Dublin City University

- Supervised by

Dr. Duc-Tien Dang Nguyen

Outline

Introduction Previous Work Purpose Data Collected Discussion Implications Conclusion Appendix

Introduction

- Drifting icebergs
- Titanic and Hans Hedtoft disaster
- International Ice Patrol and Greenland Ice Service
- Synthetic Aperture Radar(SAR)
- Integration of data analytics
- Reduce the risk, cost and carbon footprint

Data

- C-band dual-polarization images
- Two channels:
 - HH (transmit and receive horizontally)
 - HV (transmit horizontally and receive vertically)
- Can See through cloud, fog, rain and even darkness.

The Challenge!

ship_HV

ship_HH

ship_HV

ship_HH

iceberg_HV

iceberg_HH

Previous work

- Data
 - ENVISAT
 - RADARSAT-2
 - TerraSAR-X
 - Urban Atlas
- Methods
 - Traditional
 - ANN, CNN
- Evaluation
 - Accuracy, F1

Purpose

Hypothesis

Transfer Learning + Traditional Features
Improves performance

Object Detection - noisy images

Applications

- Atmospheric observation
- Earth remote sensing
- Medical diagnosis
- Surveillance and reconnaissance
- Image de-hazing and 3D reconstruction

Data Collected

Statoil/C-CORE on Kaggle

1604 Samples

- Iceberg 753
- Ship 851
- json

Each Sample

- HH & HV
- 75 X 75 pixels
- decibels (-45, 34)
- hand label

Proposed Methods

Traditional Transfer Learning Object Detection Classifier Features Features + PCA Shape Traditional Center Resnet Transfer Statistical Enhance VGG16 Learning Traditional + Thresholding Texture VGG19 Transfer Learning InceptionV3

Object Detection - Overview

Object Detection - Sample

Transfer Leaning – PCA

- Architectures
 - Resnet
 - VGG16
 - VGG19
 - InceptionV3
- Embeddings > 25,000
- 50 comp > 97% variance explained

Classifier

- Logistic Regression
 - Regularization(Lasso)
- Train 80%
 - 10-fold validation
- Test 20%
- Evaluation AUC

Features	Count	Train AUC	Test AUC
Traditional	38	0.9	0.88
Resnet	50	0.84	0.76
VGG16	50	0.84	0.79
VGG19	50	0.77	0.72
InceptionNet	50	0.88	0.86
Traditional + Resnet	88	0.92	0.89
Traditional + VGG16	88	0.92	0.89
Traditional + VGG19	88	0.9	0.89
Traditional + InceptionNet	88	0.94	0.92

Results

Discussion

- Generalized Object Detection Noisy Image
- InceptionV3 better feature representation
- Feature not problem-independent
- Logistic regression with L1 regularization
 - Handles Multicollinearity
 - Feature Selection

Limitations

- Traditional Features Specific to domain
- Identify Right Features
- Transfer Learning
 - Assumption
 - More data to fine-tune network
 - Trial/Error layers

Implications

• Object Detection for Medical Imaging

Reliable Object Detection

Traditional methods

Transfer Learning (InceptionV3)

Combined - Improve Predictability (AUC – 4%)

Safe navigation & serve maritime security

Questions?

Thank You