Systèmes Linéaires Continus Invariants

1 Packages requis

- ifthen: Package pour faire des compilations conditionnelles (if...then...else....)
- \bullet mathrsfs : Notation mathématiques (notamment l'opérateur ${\mathscr L}$ de transformée de Laplace)
- xargs : Pour créer des commandes avec plusieurs arguments optionnels
- **bodegraph**: Pour créer facilement des diagrammes de Bode, Black et Nyquist (nécessite en particulier GNU Plot. Chez moi, il faut créer un dossier *gnuplot* dans le dossier du source.)
- schemabloc : Pour dessiner facilement des schéma-blocs via Tikz (juste pour l'avoir sous la main. En soit, il ne sert pas aux commandes suivantes).
- Raf_Notations_Maths: Notations mathématiques

2 Appel du package

Le package est appelé en début de document par la commande :

\usepackage{Raf_Notations_SLCI}

Par défaut, ce package utilise un certain nombre de notations raccourcies, susceptibles de rentrer en conflit avec d'autres packages (mais tellement plus rapide à taper !). De plus, certaines commandes ont été rebaptisées. Ces raccourcis et renommages seront cités ((Raccourci) ou (Renommé)) dans les tableaux suivants. Pour ne pas créer ces raccourcis/renommage, il faut rentre l'option noRaccourci à l'appel du package.

usepackage[noRaccourci]{Raf_Notations_SLCI}

3 Transformation

	\mathscr{L}	Opérateur transformée de
1		Laplace
\transfoLaplace{f}	$\mathscr{L}[f]$	Transformation d'une fonction
1	[9]	$\int f$
\transfoLaplace[2]{f}	$\mathscr{L}^{2}[f]$	Opérateur transformée de
		Laplace avec exposant
	\mathscr{L}^{-1}	Opérateur transformée inverse
		de Laplace
\transfoLaplaceInv{f}	$\mathscr{L}^{-1}[f]$	Transformation inverse d'une
		function f
	\mathscr{L}	Identique à \transfoLaplace
		(Raccourci)(Renommé)
\L{f}	$\mathscr{L}[f]$	Identique à \transfoLaplace
		(Raccourci)(Renommé)
\L[-1]{f}	$\mathscr{L}^{-1}[f]$	Identique à \transfoLaplace
		(Raccourci)(Renommé)
	\mathscr{L}^{-1}	Identique à
		\transfoLaplaceInv{f}
		(Raccourci)
\LInv{f}	$\mathscr{L}^{-1}[f]$	Identique à
		\transfoLaplaceInv{f}
		(Raccourci)

4 Abréviations

Commandes	Rendus	
\TOR	tout-ou-rien	
\FTB0	fonction de transfert en boucle ouverte	
\FTBF	fonction de transfert en boucle fermée	

5 Signaux

Commandes	Rendus	Commentaires
\echelon	u(t)	Échelon unitaire
\echelon[t-\tau]	$\mathbf{u}(\mathbf{t}- au)$	Échelon unitaire avec paramètre différent
\dirac	$\delta(\mathbf{t})$	Dirac
\dirac[t-\tau]	$\delta(\mathbf{t}- au)$	Dirac avec paramètre différent
\rampe	r(t)	Rampe
\rampe[t-\tau]	r(t)	Rampe avec paramètre différent

6 Formes canoniques

Commandes	Rendus	Commentaires
\canonique1	$\begin{array}{ c c }\hline K\\\hline 1+\tau p\\\hline 1.2\\ \end{array}$	Forme canonique du 1^{er} ordre.
\canonique1[1.2]	$\frac{1.2}{1+\tau p}$	Forme canonique du 1^{er} ordre
		avec gain paramétré.
\canonique1[1.2][5]	$\frac{1.2}{1+5p}$	Forme canonique du 1 ^{er} or-
	1 + op	dre avec gain et constante de
		temps paramétrés.
\canonique2	$\frac{K}{\frac{1}{\omega_0^2}p^2 + \frac{2z}{\omega_0}p + 1}$	Forme canonique du 2^{eme} or-
	$\omega_0^{2p} + \omega_0^{p+1}$	dre.
\canonique2[1.2]	$\frac{1.2}{\frac{1}{\omega_0^2}p^2 + \frac{2z}{\omega_0}p + 1}$	Forme canonique du 2^{eme} ordre
	$\omega_0^{2p} + \omega_0^{p+1}$	avec gain paramétré.
\canonique2[1.2][10]	$\frac{1.2}{\frac{1}{10^2}p^2 + \frac{2z}{10}p + 1}$	Forme canonique du 2^{eme} ordre
	$\frac{10^{2}p}{10^{2}} + \frac{10}{10}p + 1$	avec gain et pulsation propre
		paramétrés.
\canonique2[1.2][10]	$\frac{1.2}{\frac{1}{10^2}p^2 + \frac{2\pi}{10}p + 1}$	Forme canonique du 2^{eme} ordre
[\pi]	$\frac{10^2 p + 10}{10} + \frac{10}{10} + \frac{1}{10} $	avec gain et pulsation propre
		et amortissement paramétrés.

7 Caractéristiques

Commandes	Rendus	Commentaires
\erreurStatique	$arepsilon_S$	Erreur statique
\eStatique	$arepsilon_S$	idem version courte
\erreurTrainage	$arepsilon_V$	Erreur de trainage
\eTrainage	$arepsilon_V$	idem version courte
\erreurDynamique	ε_S	Erreur dynamique
\eDynamique	ε_S	idem version courte
\tempsReponse	$t_r^{5\%}$	temps de réponse à 5%
\tReponse	$t_r^{5\%}$	idem version courte

8 Fonctions pré-définies dans le domaine temporel

Commandes	Rendus	Commentaires
\Fst	S(t)	
\Fstc	$\underline{S}(t)$	
\Fet	e(t)	
\Fetc	$\underline{e}(t)$	
\Fpt	p(t)	
\Fyt	y(t)	
\Fxt	$\mathcal{X}(t)$	
\Fit	i(t)	
\Fumt	$u_{m}(t)$	
\Fcmt	$C_m(t)$	
\Fwt	$\omega(t)$	
\Fwmt	$\omega_m(t)$	

9 Fonctions pré-définies dans le domaine de Laplace

Commandes	Rendus	Commentaires
\FFp	F(p)	
\FYp	Y(p)	
\FXp	$X_{(p)}$	
\FSp	S(p)	
\FEp	E(p)	
\FDp	D(p)	
\FNp	N(p)	
\FHp	H(p)	
\Hjw	$H(j\omega)$	
\FGp	$G_{(p)}$	
\FCp	C(p)	
\FUp	U(p)	
\FUmp	$U_m(p)$	
\FVp	$V_{(p)}$	
\FTp	T(p)	
\FWp	$\Omega(p)$	
\FWmp	$\Omega_m(p)$	
\FWrp	$\Omega_r(p)$	
\Fepsp	$\varepsilon(p)$	
\FTBFp	FTBF(p)	
\FTB0p	FTBO(p)	

10 Schéma-bloc

\blocSeul{a} {b}{c}	$\begin{array}{c} a \\ \hline \end{array} \begin{array}{c} b \\ \hline \end{array}$	Schéma-bloc à un seul bloc
\blocSeul{a} [2]{b}[3]{c}	$\begin{array}{c c} a \\ \hline b \\ \hline \end{array}$	idem avec espace- ment des flèches en option (en em)

11 Fonctions fréquentielles

\jw	$oldsymbol{j}\omega$	j (nombre complexe) fois la	
		pulsation (Raccourci)	
\Gw	$G(\omega)$	Gain	
\Gw[25]	G(25)	Gain avec paramètre person-	
		nalisé	
\Gwc	$G(\omega_c)$	Gain pour la pulsation de	
		coupure	
\Gdbw	$G_{db}(\omega)$	Gain en dB	
\Gdbw[25]	G_{db} (25)	Gain en dB avec paramètre	
		personnalisé	
\Gdbwc	$G_{db}(\omega_c)$	Gain en dB pour la pulsation	
		de coupure	
\phiw	$\phi(\omega)$	Phase	
\phiw[25]	ϕ (25)	Phase avec paramètre person-	
		nalisé	
\phiwc	$\phi(\omega_c)$	Phase pour la pulsation de	
		coupure	
\wCoupure	ω_c	Pulsation de coupure	
\wCoupure[1]	ω_{c1}	Pulsation de coupure avec in-	
		dice	
\wC	ω_c	Identique à \wCoupure (Rac-	
		courci)	
\wResonance	ω_r	Pulsation de résonance	
\wResonance[1]	ω_{r1}	Pulsation de résonance avec in-	
		dice	
\wR	ω_r	Identique à \wResonance	
		(Raccourci)	
\wMPhase	ω_{0dB}	Pulsation pour un gain à $0 dB$	
\wMGain	$\omega_{-180\mathrm{deg}}$	Pulsation pour une phase à	
		$0 \deg$	

12 Diagramme de Bode

(Raccourci du package bodegraph. Voir la doc associée).

12.1 Gain en dB

\begin{bodeGain}

 $\label{local_bode_amp[samples=100]} $$ \end{bode_Gain} $$ \end{bode_Gain} $$$

%Graphe pour omega entre 10^-3 et 10^2, %et pour un gain en dB entre -30 et +30. %Echelle en x de 2.5, échelle en y de 0.1

\begin{bodeGain}[-3][2][-30][30][2.5][0.1] \BodeAmp[samples=100]{-3:2}{\SOAmp{3.0}{0.4}{18.0}} \end{bodeGain}

12.2 Phase

 $\label{local-sum} $$ \end{bode} \end{bode} $$ \end{bode} $$ \end{bode} $$ \end{bode} $$$

%Graphe pour omega entre 10^0 et 10^3,
%et pour une phase entre -200 et +10.
%Echelle en x de 3, échelle en y de 0.02

\begin{bodePhase}[0][3][-200][10][3][0.02] \BodeArg[samples=100]{0:3}{\SOArg{3.0}{0.4}{18.0}} \end{bodePhase}

