Identity linear transformation let V be a real vector space $I:V\to V$ defined by I(V)=V is called as identity linear transformation.

Zero lirear transformation let V and W be two real vector spaces

T:V->W defined by $t(v)=0_W$ is called a zero linear transformation

Example:— let $A = \begin{pmatrix} 3 & -1 \\ 2 & 5 \end{pmatrix}$. Construct a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 using A.

 $\underline{Soln!-} + : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \quad \text{by} \quad + \begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} \chi \\ y \end{pmatrix}$

(67) $T(x_{1}y) = (3x - y, 2x + 5y)$ Theck, Tie a linear transformation)

Remark!— Let A be a mxn matrix. Then the linear transformation defined using A is $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by T(x) = Ax.

Theorem: Let $T: V \to W$ be a linear transformation of an n-dimensional vector space V into a Vector space W. If $S = \{v_1, v_2, \dots, v_n\}$ be a basis of V and $U = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$ for some $k_1 k_2 \dots k_n \in \mathbb{R}$. Hen $T(U) = k_1 T(v_1) + k_2 T(v_2) + \dots + k_n T(v_n)$.

Pb:1 let T: P2(R) -> P3(R) be a linear transformation for which we know that T(1)=1; $T(t)=t^2$; $T(t^2)=t^2+t$ - Find $(a)T(at^{2}+bt+c)$ (b) $T(2t^{2}-5t+3)$ $\underline{Soln:}$ we know $\int_{1}^{1} |t_{1}t^{2}| \int_{1}^{2} forms a basis of <math>P_{2}(R)$ Then $at^2 + bt + C = a \cdot t^2 + b \cdot t + C \cdot t$ By the previous theorem, $T(at^2+bt+c)=aT(t^2)+bT(t)+cT(1)$ $= a(t^{2}+t)+bt^{2}+c.1$ Thus $T(at^2+bt+c) = at^2+bt^2+at+c$ $T(2t^2-5t+3) = 2t^3-5t^2+2t+3$ Hence,

Pb: 2 let T: R3 -> R3 be a linear transformation Such that T(1,0,0)=(3,2,1); T(1,1,0)=(0,1,1); T(1,1,1)=(0,0,2)find T(x,y,z) soln: Consider the allection $S = \{(1,0,0), (1,1,0), (1,1,1)\}$ Jf R1(1,0,0)+ R2(1,1,0)+ R3(1,1,1)=(0,0,0) Thus six a linearly independent set and so it forms a basis. Since (x,y,z) = (x-y)(1,0,0) + (y-z)(1,1,0) + z(1,1,1)Now, $T(x_1, z) = (x-y) T(1_10_10) + (y-z) T(1_10_1) + z T(1_11_1)$ = (x-y)(3,211) + (y-z)(0,11) + z(0,0,2)=(3x-3y, 2x-2y+y-z, 7-y+y-z+2z)= (3x-3y, 2x-y-z, x+z)

 $T(x_1, z) = (3x-3y, 2x-y-z, x+z)$

$$P_{b:3}$$
 Let $T: P_{1}(R) \longrightarrow P_{2}(R)$ defined by $T(t+1)=t^{2}-1$; $T(t-1)=t^{2}+t$

$$\frac{50|n:-}{} \text{ Since } k_{1}(t+1)+k_{2}(t-1)=0 =) (k_{1}+k_{2})t+(k_{1}-k_{2})=0$$

$$=) k_{1}+k_{2}=0 \qquad k_{1}=0$$

$$k_{1}-k_{2}=0 \qquad k_{2}=0$$

Hence { (t+1), t-13 is a linearly independent Set and so it forms a basis.

Now,
$$ab+b = \frac{a+b}{2}(b+1) + \frac{a-b}{2}(b+1)$$

 $T(ab+b) = \frac{a+b}{2}T(b+1) + \frac{a-b}{2}T(b+1)$
 $= \frac{a+b}{2}(b^2-1) + \frac{a-b}{2}(b^2+b)$
 $= ab^2 + \frac{a-b}{2}b + \frac{a+b}{2}$

and so
$$T(7t+3) = 7t^2 + (\frac{7-3}{2})^{t} - (\frac{7+3}{2})$$

= $7t^2 + 2t - 5$.