Evolutionary Intrusion Detection System

By Jared Clark

Overview

- Objective
- Background
- Implementation
- Results
- Future Work

Objective

Research Goal

Determine if effective rules for a CAN-based Intrusion Detection System (IDS) can be created via evolution

Background

Intrusion Detection System

- Observes network traffic
- Determine if traffic matches rules to detect suspicious behavior
- TCP/IP solutions usually resolve problems by aborting/rejecting connections

Evolutionary Computation (EC)

- 1. Possible solutions are encoded as a genome (think DNA)
- 2. A population of individuals exist with their own DNA
- 3. Must be able to quantify performance of individuals (fitness)
- 4. Progress towards optimal solution comes from evolution and natural selection
 - a. Evolution: new DNA created with mutations and reproduction
 - b. Natural Selection: Individuals that perform better are more likely to survive

Genetic Algorithms

- Evolves a solution to a problem
- Example: sensor placement

Genetic Programming

- Evolves code
- Example: Evolving rules for an IDS

if (rule violated)

perform action

Using Genetic Algorithms for Network Intrusion Detection [1]

- Evolving rules for an IDS
- Focus was TCP/IP network connection data
- Features
 - Source/Destination IP and port
 - Duration of connection
 - Protocol Used
 - Amount of data sent by sender and receiver
- No implementation, only idea

Implementation

Source code

- Python
- DEAP [2]
- Organization:
 - "Individual" class
 - Function to run evolutions and log (and compress) data
 - Scripts to create graphs
 - Scripts to compute train and test accuracy

Data

- Labeled CAN attack datasets [3]
- CAN data logged from real vehicle
- DoS and fuzzy attack datasets used
 - DoS dataset: 3.7 million CAN messages
 - Fuzzy dataset: 3.8 million CAN messages
- Fields: timestamp, arbitration field, message data (0-8 bytes), label
- Datasets processed to only keep unique messages (excluding timestamp)
 - DoS dataset: 24,273 unique messages
 - Fuzzy dataset: 82,773 unique messages

Genome

- Binary genome
 - One bit for every bit in a CAN message
 - Goal is to match with CAN attack data
 - Genome also evolves which bits of data to ignore

CAN Data	Bit 1		Bi		
Genome	Important?	Value	Important?	Value	

Training Loop

- 1. Evaluate individuals
- 2. Log individuals, their fitnesses, max, min and average overall fitness
- 3. Copy n best individuals without modification to new population
- 4. Select which of the remaining individuals will advance based on fitness
- 5. Perform random crossover between advancing individuals
- 6. Perform random mutations on advancing individuals
- 7. Create new individuals to bring population up to correct size

Fitness Function

```
for can_message in CAN_data
    match level = 0
    for bit in can message
        if (bit == important) and (bit == genome)
             match level += 1
    if can message is malicious
         total fitness += match level
    else
         total fitness -= match level
```

Mutation

Mutation rate was varied per evolutionary run

for bit in genome

if random_value < mutation_rate

bit = not bit

Crossover

- Crossover is when two individuals swap sections of their genome
- Random crossover was performed between neighboring individuals
- Crossover point was picked at random

Parent A						
Parent B						
Child A						
Child B						

Dealing with Data

- Using all data to evaluate every individual took way too long
- Picking a random subset of the data did not yield good results

Decision: pick a subset of data to use for the entire evolutionary run

Results

Fuzzy Results 1

Accuracies

	Train	Test
1	.721	.729
2	.685	.688
3	.713	.705
4	.552	.561
5	.551	.576

Data: Fuzzy_3000.pkl, Pop: 250,

Test Size: -1, Mutation: 0.0625, Keep Best: 3

Fuzzy Results 2

Accuracies

	Train	Test
1	.691	.681
2	.691	.681
3	.672	.663
4	.691	.681
5	.672	.681

Data: Fuzzy_3000.pkl, Pop: 250, Test Size: -1, Mutation: 0.0125, Keep Best: 3

DoS Results

Accuracies

	Train	Test
1	.500	.500
2	.500	.500
3	.500	.500
4	.500	.500
5	.500	.500

Data: DoS_synthetic_3000.pkl, Pop: 200, Test Size: -1, Mutation: 0.01, Keep Best: 5

Future Work

Future Work Directions

- Rerun Denial of Service experiments with non-binary genome
- Adjust mutation rate during runs
- Implement parallel fitness evaluation

References

- Li, W. (2004). Using genetic algorithm for network intrusion detection.
 Proceedings of the United States Department of Energy Cyber Security Group, 1, 1-8.
- https://github.com/deap/deap
- 3. http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

Questions?