Lecture 08

Resuming...

With time series, two problems appear:

- Correlation among errors: $corr(u_t u_s) \neq 0$, $t \neq s$.
 - This is usually an inefficiency problem.
- Correlation of RHS variables with error terms.
 - This is usually a bias/inconsistency problem.

The model:

$$y_t = \beta_1 + \beta_2 x_{2t} + u_t, \quad u_t = \rho u_{t-1} + e_t$$

features correlation among the errors, when $\rho \neq 0$.

- This incurs a loss of efficiency.
 - In this case, inefficiency expresses itself through small standard errors.
 - The results are very large t and F statistics.
 - It might give the impression of statistical significance, when there is actually not.
 - Then again, it is still unbiased and consistent.
- Note that in this case x_{2t} is not a random variable, it is given.
 - Since there is no randomness in x_{2t} , it cannot be correlated with the randomness if u_t .

For the model:

$$y_t = \beta_1 + \beta_2 x_{2t} + u_t, \quad x_{2t} = y_{t-1}$$

- There is no correlation among the errors: $u_t \perp u_s, \ \forall \ t \neq s$.
- ullet We know that $\hat{eta}_2^{ ext{OLS}}=eta_2+rac{\sum(x_{2t}-ar{x}_2)u_t}{\sum(x_{2t}-ar{x}_2)^2}.$

$$ullet \ a_t := rac{x_{2t} - ar{x}_2}{\sum (x_{2t} - ar{x}_2)^2} \quad \Rightarrow \quad \hat{eta}_2^{ ext{OLS}} = eta_2 + \sum a_t u_t.$$

- ullet In order to \hat{eta}_2 to be unbiased, $\mathrm{E}(\hat{eta}_2) = \mathrm{E}ig(eta_2 + \sum a_t u_tig) \quad \Rightarrow \quad \mathrm{E}ig(\sum a_t u_tig) = 0.$
 - If $a_t \perp u_t$, then $\mathrm{E} ig(\sum a_t u_t ig) = \sum ig[\mathrm{E}(a_t) \mathrm{E}(u_t) ig]$.
 - lacksquare Given that $\mathrm{E}(u_t)=0$, then $\mathrm{E}ig(\sum a_t u_tig)=0$, as long as a_t and u_t are uncorrelated.
 - Since a_t depends upon on all x_t (due to its denominator), the lack of correlation between a_t and u_t means a lack of correlation between the <u>RHS</u> variables and the error terms.
- However, y_t depends on y_{t-1} , which in turn is correlated with u_{t-1} :

$$y_{t-1} = \beta_1 + \beta_2 y_{t-2} + u_{t-1}.$$

- This means that there is correlation between a RHS variable ($x_{2t} = y_{t-1}$) and an error term (u_{t-1}).
- This is not a correlation between contemporaneous RHS terms, though.
 - $x_{2t} = y_{t-1}$ and u_t are not correlated.

- This results in the presence of bias and might incur in loss of efficiency.
 - The estimator is still consistent, however.
- Note that in this case $x_{2t} = y_{t-1}$ is a random variable.
 - \circ When the randomness of x_{2t} is correlated with the randomness of u_t , a problem arises
 - \circ Given that in this model $x_{2t} = y_{t-1}$, we know that correlation exists.

For the model:

$$y_t = \beta_1 + \beta_2 x_{2t} + u_t, \qquad x_{2t} = y_{t-1}, \ u_t = \rho u_{t-1} + e_t$$

- There is correlation among the errors, for $\rho \neq 0$.
- There is also a <u>contemporaneous correlation between the RHS variables and the error terms</u>.
 - $\circ y_{t-1}$ is correlated with u_{t-1} , as is u_t .
 - Then there is correlation between non-contemporaneous ($x_{2t} = y_{t-1}$ and u_{t-1}) and contemporaneous terms ($x_{2t} = y_{t-1}$ and u_t).
- In this case, there is bias, inconsistency and inefficiency.
 - \circ Consequently, the estimated residuals \hat{u}_t will be biased.
 - $\circ \ \ \text{The statistic for the Durbin-Watson test } d = \frac{\displaystyle\sum_{t=2}^T \big(\hat{u}_t \hat{u}_{t-1}\big)^2}{\displaystyle\sum_{t=1}^T \hat{u}_t^2} \ \text{will thus be biased as}$

well.

■ Durbin's *h* statistic (further explained next) should be used instead.

Durbin h statistic

The statistic is calculated as follows:

$$h = \hat{
ho} \sqrt{rac{T}{1 - T \cdot \widehat{\mathrm{Var}}(\hat{eta})}}$$

- $oldsymbol{\hat{
 ho}}=1-rac{1}{2}d$, where d is the statistic for the Durbin-Watson test.
- $\widehat{\mathrm{Var}}(\hat{\beta})$ is the variance of the parameter $\hat{\beta}$ associated with y_{t-1} .
- The statistic follows a standard normal distribution: $h \sim \mathcal{N}(0,1)$.
- Note that this test will only work if $T \cdot \widehat{\mathrm{Var}}(\hat{\beta}) < 1$.

$$\circ$$
 Otherwise, $\sqrt{rac{T}{1-T\widehat{\mathrm{Var}}(\hat{eta})}}
otin\mathbb{R} \,\Rightarrow\, h
otin\mathbb{R}.$

Suppose a time series in which there is seasonality:

- For instance, the data for each month are very similar, throughout the years.
 - \circ That would translate to $u_t =
 ho u_{t-4} + e_t$, for quarterly data.
- Being a AR(1), the Durbin-Watson test would not be able to capture that behavior.
 - A more general test is needed.

Breusch-Godfrey LM Test

Consider the model:

$$y_t = \beta_1 + \beta_2 x_{2t} + \dots + \beta_k x_{kt} + u_t$$

 $u_t = \rho_1 u_{t-1} + \dots + \rho_p u_{t-p} + e_t$

Hypotheses:

$$H_0: \rho_1 = \rho_2 = \ldots = \rho_p = 0$$

 $H_1: \exists \ \rho_i \neq 0, \ j = 1, 2, \ldots, p$

Steps:

- 1. Estimate y_t by OLS, save \hat{u}_t .
- 2. Regress \hat{u}_t on constant, $x_{2t}, \dots x_{kt}$ and $\hat{u}_{t-1}, \dots, \hat{u}_{t-p}$.
 - \circ The number of observations will be T-p: we will need to start from the $(p+1)^{ ext{th}}$ observation.
- 3. Compute $(T-p) \cdot R^2$ (number of observations times the coefficient of determination), that will follow a χ^2 distribution with p restrictions (degrees of freedom).

More on the Breusch-Godfrey test here.

Correcting autocorrelation (quasi differencing):

For the model:

$$y_t = \beta_1 + \beta_2 x_{2t} + u_t, \quad u_t = \rho u_{t-1} + e_t$$

Lag the model one step back and multiply both sides by ρ :

$$\rho y_{t-1} = \rho \beta_1 + \rho \beta_2 x_{2,t-1} + \rho u_{t-1}$$

Now subtract the result from the original model:

$$y_t - \rho y_{t-1} = \beta_1 - \rho \beta_1 + \beta_2 x_{2t} - \rho \beta_2 x_{2t-1} + u_t - \rho u_{t-1}$$

Since $u_t = \rho u_{t-1} + e_t$, it can be rewritten as:

$$y_t = \rho y_{t-1} + \beta_1 (1-\rho) + \beta_2 x_{2t} - \rho \beta_2 x_{2t-1} + e_t$$

- Now, there is not serial correlation among the errors any more.
- On the other hand, due to the interaction of ρ with the other terms, the model is no longer linear in the parameters.
 - This violates one of the Gauss-Markov assumptions (see Lecture 01).
 - Then, OLS should not be used to estimate the parameters.
 - Non-linear Least Squares (NLLS) should be used instead to estimate $\hat{\rho}$, $\hat{\beta}_1$ e $\hat{\beta}_2$.
 - For more on NLLS, see this and this link.
- Were ρ known, the problem could be solved transforming the variables:
 - o The model $(y_t \rho y_{t-1}) = \beta_1 (1 \rho) + \beta_2 (x_{2t} \rho x_{2,t-1}) + e_t$ could be rewritten as $y_t^* = \beta_1 (1 \rho) + \beta_2 x_{2t}^* + e_t$.
 - $\beta_1(1-\rho)$ can also be rewritten as β_1^* .
 - \circ Without the non-linearity that stems from not knowing ρ (and consequently having to estimate it), the transformed model can be estimated using OLS.

- The transformed model has a different intercept $(\beta_1(1-\rho))$ rather than β_1 , but the same slope (β_2) .
- Due to the absence of serial correlation in the transformed model, the errors e_t are random whereas the residuals u_t were not.

The same is applicable for higher-order autoregressive models:

- ullet For instance, let the residuals be $u_t = \sum_{j=1}^p (
 ho_j \cdot u_{t-j}) + e_t$.
- Then, for each ρ_j , we will lag the original model one step further back and subtract all the resultant p lagged models from the original.
 - The result will look like this:

$$y_t = \sum_{j=1}^p (
ho_j \cdot y_{t-j}) + eta_1 igg(1 - \sum_{j=1}^p
ho_j igg) + igg[eta_2 - \sum_{j=1}^p (
ho_j \cdot x_{2,t-j}) igg] + igg[u_t - \sum_{j=1}^p (
ho_j \cdot u_{t-j}) igg].$$

 \circ This could also be rewritten as $y_t = \sum_{j=1}^p (
ho_j \cdot y_{t-j}) + \ldots + oldsymbol{e}_t.$