**Olist – Customer Segmentation** 

**Author: Kimberly Cable (November 2022)** 

Introduction

Olist is a Brazilian e-commerce company that connects small businesses to a larger

marketplace. It gives these small businesses a way to manage their products, shipping, and

online payments. They have approximately 200,000 users in about 180 countries.

With any online retailer, retaining customers is key but knowing who may leave and who stays

could be guesswork. Understanding how and why customers stay and shop and why they leave

is pivotal to a company's business.

Knowing who your customers are and how and why they shop or do not return plays a big part

in customer service which ultimately enhances a customer's satisfaction level. A high

satisfaction level could lead to overall better reviews and with these good reviews, their sellers

will see more new sales.

This study will hope to find similar traits among its customers. This will help the marketing

team know who best to send offers to or to whom might they need to send a discount coupon

because it looks like they haven't purchased in a while.

The data has been sourced from Kaggle which has 100,000 online orders from 2016 to 2018.

The data consists of records with products, customers, and review information for each

transaction provided by Olist.

The data consists of the following datasets (see Figure 1):

- **Customers**: This dataset has information about the customer and their location.
- **Geolocation**: This dataset has information about the Brazilian zip codes and their latitude/longitude coordinates.
- Order Items: This dataset has information about the items purchased within each order.
- Order Payments: This dataset has information about the order payment options.
- Order Reviews: This dataset has information about the reviews made by the customers.
- Orders: This dataset has information about all customer orders.
- Products: This dataset has information about all the products sold by Olist.
- Sellers: This dataset has information about the sellers that fulfilled the orders made at Olist.
- Category Name Translation: This dataset has English/Portuguese translations for all products sold at Olist.



Figure 1: Data Schema

# Methods/Results

## **Data Prepping:**

#### **Customers:**

The customer's dataset consists of a unique customer identifier and the city/state/zip of each customer. As all customers resided in Brazil, I only kept the customer identifier and state for determining where most of the customers originated from.

### **Orders:**

The order's dataset consists of a unique customer identifier along with order details such as the status of the order, the date of purchase, the order approved date, and the order delivered date. All dates were converted to a DateTime type.

Looking at the graph of orders over time, I noticed little to no orders in 2016 and little after August 2018 so I dropped those orders (see Figure 2).



Figure 2: Number of Orders over Time

There were 82 empty values in the order\_approved\_at column. I looked at the order\_status of each of the 82 values. 63 were 'canceled', 14 were 'delivered', and 5 were 'created'. The 'delivered' status should not have any empty order\_approved\_at values so I replaced the null values with the order\_purchase\_timestamp.

There were 1,602 empty values in the order\_delivered\_carrier\_date column. The order status for 'delivered' was only 2 and the rest had status' that were okay for this field. I replaced the 2 empty values with the order\_approved\_at date.

There were 2,727 empty values in the order\_delivered\_customer\_date column. The order status of 'delivered' was only 8 and the rest had status' that were okay for that field. Looking at the histogram, I saw that it was skewed left so to replace this field, I got the difference between the order\_delivered\_customer\_date and the order\_delivered\_carrier\_date. Then I took the median number of days. I added the number of days to the order\_delivered\_carrier\_date to get the new order\_delivered\_customer\_date for those empty values. In this case, the median difference was 7 days which was added to the order\_delivered\_carrier\_date.

Final Dataset: 92, 580 rows and 8 columns

#### **Order Items:**

The order items dataset consists of an order identifier along with specifics about each item purchased in the order like the product identifier, the seller identifier, and the freight value.

#### **Order Reviews:**

The order review dataset consists of a review identifier along with the review score and comments. Only the review identifier, order identifier, and review score were kept as the other information will not be needed for customer segmentation.

#### **Products:**

The product dataset consists of the product identifier and the category the product belongs to.

The other information in the dataset, like specific product information, was dropped as it was not needed for customer segmentation.

### Sellers, Order Payments, and Geolocation:

These datasets were not needed for the customer segmentation model and therefore dropped.

# **Final Dataset**

After initially prepping each dataset during the preliminary analysis, I merged all datasets using the following keys:

 $\text{Order Reviews} \leftarrow \text{order\_id} \ \, \boldsymbol{\rightarrow} \ \, \text{Orders} \ \, \leftarrow \ \, \text{order\_id} \ \, \boldsymbol{\rightarrow} \ \, \text{Order Items} \ \, \boldsymbol{\leftarrow} \ \, \text{product\_id}$ 

Once merged, the dataset had 104,782 rows and 15 columns.

# **Visualizations:**

## **Order Purchases Timeframes:**



The number of orders grew between 2017 to 2018. November and January had the highest number of orders probably due to the holidays. March, April, and May were also good purchasing months. Weekdays were also more popular purchasing days as the beginning of the week was best probably due to items needed from the weekend. and early evenings.

# **Categories**





Most items that were purchased were from the Bed, Bath & Table category but the top category in the amount purchased was Health & Beauty. Most customers purchased items in the bedroom/bathroom area or that were used in the bedroom/bathroom area.





Looking at both the number of items purchased and the amount spent, the Security and Services and Children's clothes categories are at the bottom. It could be that there are not many sellers of these items or more marketing needs to be allotted for these bottom categories.

### States



The top State was São Paulo by far compared to the other States in Brazil. Marketing may investigate advertising more in States other than Sao Paulo.

#### **Review Score**



The review score of 5 is by far the most used by Olist customers which is a good sign.



Looking at the review score based on the order status does show purchases that were delivered by far getting a review score of 5 and the other statuses, not surprisingly, were lower.

### Customers

|       | customer_id                      | review_score | order_status | price  | freight_value | product_category_name | cust_delivery_diff | est_delivery_diff |
|-------|----------------------------------|--------------|--------------|--------|---------------|-----------------------|--------------------|-------------------|
| 4201  | d6646ea91d8cd9fc7e6882a7068779d4 | 5            | delivered    | 81.99  | 14.51         | computers_accessories | 7                  | 20                |
| 4350  | 679f84ceb2ee4ca5bca0c3ea34647746 | 5            | delivered    | 59.90  | 17.67         | garden_tools          | 20                 | 4                 |
| 13293 | b4afeb58ac51bc903c5362286c6a5cfe | 5            | delivered    | 19.30  | 11.73         | drinks                | 11                 | 5                 |
| 49414 | 10de381f8a8d23fff822753305f71cae | 5            | delivered    | 65.49  | 16.22         | furniture_decor       | 19                 | 5                 |
| 54499 | b7770073b02ed1d626a027ce86a4ff82 | 5            | delivered    | 66.90  | 31.65         | sports_leisure        | 10                 | 44                |
| 67152 | 0d93f21f3e8543a9d0d8ece01561f5b2 | 5            | delivered    | 20.70  | 16.11         | housewares            | 8                  | 8                 |
| 67939 | 1ff773612ab8934db89fd5afa8afe506 | 5            | delivered    | 284.99 | 16.87         | drinks                | 14                 | 18                |
| 77657 | 20c93357daf05d1c3a092be59aea2c2b | 5            | delivered    | 20.50  | 16.91         | drinks                | 10                 | 14                |
| 90355 | 0e772d9e02b17408e716f35cd1dcc222 | 5            | delivered    | 36.99  | 11.85         | bed_bath_table        | 10                 | 13                |
| 96279 | adb32467ecc74b53576d9d13a5a55891 | 5            | delivered    | 51.00  | 1.20          | garden_tools          | 14                 | 20                |

This chart shows an example of customers that gave Olist a review score of 5 and how much they spent along with the difference in days from estimated delivery to actual delivery and the difference in days between estimated delivery and actual delivery.

|        | customer_id                      | review_score | order_status | price  | freight_value | product_category_name | cust_delivery_diff | est_delivery_diff |
|--------|----------------------------------|--------------|--------------|--------|---------------|-----------------------|--------------------|-------------------|
| 6639   | 91f92cfee46b79581b05aa974dd57ce5 | 1            | delivered    | 108.00 | 15.52         | watches_gifts         | 11                 | 13                |
| 19725  | d5f2b3f597c7ccafbb5cac0bcc3d6024 | 1            | delivered    | 59.00  | 13.43         | garden_tools          | 14                 | 10                |
| 24699  | 4a60b2ce1ee8c7b828e4bbcca5b86b41 | 1            | delivered    | 137.90 | 38.81         | computers_accessories | 14                 | 1                 |
| 25887  | be1c4e52bb71e0c54b11a26b8e8d59f2 | 1            | delivered    | 49.99  | 7.10          | bed_bath_table        | 5                  | 11                |
| 37089  | 78fc46047c4a639e81ff65f0396e02fe | 1            | delivered    | 109.97 | 34.04         | furniture_living_room | 5                  | 13                |
| 46421  | be1b70680b9f9694d8c70f41fa3dc92b | 1            | delivered    | 100.00 | 10.12         | computers_accessories | 10                 | 2                 |
| 68674  | cb87122c4871e202777cf243fbea2d12 | 1            | delivered    | 149.91 | 0.14          | computers_accessories | 11                 | 23                |
| 77621  | a7693fba2ff9583c78751f2b66ecab9d | 1            | delivered    | 29.99  | 7.78          | telephony             | 8                  | 5                 |
| 102470 | fc3d1daec319d62d49bfb5e1f83123e9 | 1            | delivered    | 1.20   | 7.89          | health_beauty         | 14                 | -4                |
| 102724 | 9eb3d566e87289dcb0acf28e1407c839 | 1            | delivered    | 5.31   | 15.23         | housewares            | 10                 | 9                 |

This chart shows an example of customers that gave Olist a review score of 1.

Looking at the two charts, you can't distinguish between those that gave a high review score to those that gave a low review score.

#### **Final Dataset for Model**

I dropped all columns that were not needed for the Recency, Frequency, Monetary Analysis, and K-Means Clustering analysis.

The final dataset includes the following columns:

customer\_id, order\_id, order\_purchase\_timestamp, and the price.

|        | customer_id                      | $order\_purchase\_timestamp$ | order_id                         | price  |
|--------|----------------------------------|------------------------------|----------------------------------|--------|
| 0      | 9ef432eb6251297304e76186b10a928d | 2017-10-02 10:56:33          | e481f51cbdc54678b7cc49136f2d6af7 | 29.99  |
| 1      | a20e8105f23924cd00833fd87daa0831 | 2017-08-15 18:29:31          | 128e10d95713541c87cd1a2e48201934 | 29.99  |
| 2      | 26c7ac168e1433912a51b924fbd34d34 | 2017-08-02 18:24:47          | 0e7e841ddf8f8f2de2bad69267ecfbcf | 29.99  |
| 3      | 53904ddbea91e1e92b2b3f1d09a7af86 | 2017-10-23 23:26:46          | bfc39df4f36c3693ff3b63fcbea9e90a | 29.99  |
| 4      | b0830fb4747a6c6d20dea0b8c802d7ef | 2018-07-24 20:41:37          | 53cdb2fc8bc7dce0b6741e2150273451 | 118.70 |
|        |                                  |                              |                                  |        |
| 104777 | 609b9fb8cad4fe0c7b376f77c8ab76ad | 2017-08-10 21:21:07          | e8fd20068b9f7e6ec07068bb7537f781 | 356.00 |
| 104778 | 609b9fb8cad4fe0c7b376f77c8ab76ad | 2017-08-10 21:21:07          | e8fd20068b9f7e6ec07068bb7537f781 | 356.00 |
| 104779 | a2f7428f0cafbc8e59f20e1444b67315 | 2017-12-20 09:52:41          | cfa78b997e329a5295b4ee6972c02979 | 55.90  |
| 104780 | 39bd1228ee8140590ac3aca26f2dfe00 | 2017-03-09 09:54:05          | 9c5dedf39a927c1b2549525ed64a053c | 72.00  |
| 104781 | edb027a75a1449115f6b43211ae02a24 | 2018-03-08 20:57:30          | 66dea50a8b16d9b4dee7af250b4be1a5 | 68.50  |

104782 rows  $\times$  4 columns

# Model

I chose to use Recency, Frequency, and Monetary Value (RFM) Analysis and K-mean clustering analysis to group customers for the company to better distinguish between the various customers and better serve them.

RFM Analysis looks at historical customer behavior to predict how might a new customer act in the future. It looks at three key items:

- 1. How recently a customer has purchased
- 2. How many orders did a customer purchase
- 3. How much money a customer has spent

Once I have the three key factors of recency, frequency, and monetary value, I will use the three groups in a k-means clustering model to better distinguish the customer segments. This will allow the company to target different groups of customers depending on how much they spend, how frequently they shop, and how many items they typically purchase.

**Recency:** To get recency, I found the most recent purchase date and calculated the number of days other customers had purchased from and compared it to this date. I did this because the data I was using was from 2017 and 2018.

|   | customer_id                      | last_purchase_date  | Recency |
|---|----------------------------------|---------------------|---------|
| 0 | 00012a2ce6f8dcda20d059ce98491703 | 2017-11-14 16:08:26 | 259     |
| 1 | 000161a058600d5901f007fab4c27140 | 2017-07-16 09:40:32 | 380     |
| 2 | 0001fd6190edaaf884bcaf3d49edf079 | 2017-02-28 11:06:43 | 518     |
| 3 | 0002414f95344307404f0ace7a26f1d5 | 2017-08-16 13:09:20 | 349     |
| 4 | 000379cdec625522490c315e70c7a9fb | 2018-04-02 13:42:17 | 120     |

**Frequency:** To get frequency, I totaled up the number of orders a customer had purchased.

|   | customer_id                      | Frequency |
|---|----------------------------------|-----------|
| 0 | 00012a2ce6f8dcda20d059ce98491703 | 1         |
| 1 | 000161a058600d5901f007fab4c27140 | 1         |
| 2 | 0001fd6190edaaf884bcaf3d49edf079 | 1         |
| 3 | 0002414f95344307404f0ace7a26f1d5 | 1         |
| 4 | 000379cdec625522490c315e70c7a9fb | 1         |

**Monetary:** To get monetary, I totaled up the amount of each order ordered.

|   | customer_id                      | Monetary |
|---|----------------------------------|----------|
| 0 | 00012a2ce6f8dcda20d059ce98491703 | 89.80    |
| 1 | 000161a058600d5901f007fab4c27140 | 54.90    |
| 2 | 0001fd6190edaaf884bcaf3d49edf079 | 179.99   |
| 3 | 0002414f95344307404f0ace7a26f1d5 | 149.90   |
| 4 | 000379cdec625522490c315e70c7a9fb | 93.00    |

I then merged the recency, frequency, and monetary datasets into one to get a better understanding of the different groups.

|                                  | Recency | Frequency | Monetary |
|----------------------------------|---------|-----------|----------|
| customer_id                      |         |           |          |
| 00012a2ce6f8dcda20d059ce98491703 | 259     | 1         | 89.80    |
| 000161a058600d5901f007fab4c27140 | 380     | 1         | 54.90    |
| 0001fd6190edaaf884bcaf3d49edf079 | 518     | 1         | 179.99   |
| 0002414f95344307404f0ace7a26f1d5 | 349     | 1         | 149.90   |
| 000379cdec625522490c315e70c7a9fb | 120     | 1         | 93.00    |

#### **Examining the RFM Analysis**

|       | Recency      | Frequency    | Monetary     |
|-------|--------------|--------------|--------------|
| count | 91182.000000 | 91182.000000 | 91182.000000 |
| mean  | 225.794137   | 1.149152     | 138.491396   |
| std   | 144.446134   | 0.554204     | 210.737977   |
| min   | 0.000000     | 1.000000     | 0.850000     |
| 25%   | 107.000000   | 1.000000     | 45.950000    |
| 50%   | 204.000000   | 1.000000     | 87.990000    |
| 75%   | 331.000000   | 1.000000     | 149.990000   |
| max   | 572.000000   | 22.000000    | 13440.000000 |
|       |              |              |              |



The average number of days customers recently purchased is 226 days, the customers mostly only purchased one time and the average amount a customer spent was R\$138.50. Since most of the customers only purchased one time, I dropped the frequency column and only used the recency and monetary columns for the k-means clustering analysis.

I chose to use the k-means clustering method because it will allow me to identify groups of customers within the recency and monetary columns that have similar traits. This should help marketing or other business units better understand their customers and better serve them.

The k-means clustering method requires us to first determine the optimal number of clusters to group the customers into. To do this I will use the silhouette method and the elbow method.

The silhouette score determines how similar an object is to its current cluster and the other clusters. Scores range from -1 to 1 where the higher value indicates that the object is similar to its own cluster. I chose to test out the silhouette method with clusters from 2 – 6 to see how

the scores measured. Looking at the scores, clusters 3 and 4 were both high and looked promising.

```
For n_clusters = 2. The average silhouette score is 0.46731442416207347

For n_clusters = 3. The average silhouette score is 0.5010325943820231

For n_clusters = 4. The average silhouette score is 0.5111099455792638

For n_clusters = 5. The average silhouette score is 0.4311208168994719

For n_clusters = 6. The average silhouette score is 0.43634171713433667
```

To verify the optimal number of clusters, I then used an elbow method to see what it determined the optimal number of clusters. Again, using clusters 2 – 7 this time the elbow method calculated the optimal number of clusters was 3.



Because the silhouette method had 3 very close to four, I determined that 3 would be the optimal number of clusters to use with the k-means clustering method.

The results of the k-means clustering method grouped the customers into the 3 optimal segments.



Looking at the two graphs, we can see the differences between the different clusters.

- Group 1: Customers that haven't purchased items in a long time and their purchases amount to a very low dollar amount.
- Group 2: Customers that have purchased recently but their purchases amount to a very low dollar amount
- Group 3: These are customers that have purchased items somewhat recently but these customers' purchases amount to a very high dollar amount.

# Conclusion

With these 3 groups of customers, the marketing team will be able to target advertising, coupons, and new products to each group individually to help drive higher profits, customer satisfaction with high review scores, and better customer service. For example, to get the Group 1 customers back, marketing may target them with sales or coupons to draw them in and to purchase items. Group 2 could be targeted with advertising for items that go with their

purchase of buy one get one sale. Finally, group 3 could be targeted with things like a frequent purchaser card hoping they will come back and purchase a lot more.

The current model deals with historical data from about 5 years ago with customers that have only purchased once. To create a deployment model, I think more data is needed for customers that purchased multiple times to get a better frequency feature to add to the k-means model. I think this will create more groups of customers with more specific traits to help marketing better serve the customers ultimately creating more sales and high review scores.

With this project, I have learned a lot about how to analyze retail customers based on how they purchase. Doing the explanatory data analysis showed me the different ways you can look at the data. After looking at customer segmentation, I would like to see about predicting review scores or even product sales. It was a very interesting experience and I'm glad I chose it.

### References

- Arvai, K. (n.d.). *K-Means Clustering in Python: A Practical Guide*. Retrieved from Real Python: https://realpython.com/k-means-clustering-python/
- Begam, S. (2021). Customer Profiling and Segmentation An Analytical Approach To Business Strategy In Retail Banking. Retrieved from Analytics Vidhya:

  https://www.analyticsvidhya.com/blog/2021/03/customer-profiling-and-segmentation-ananalytical-approach-to-business-strategy-in-retail-banking/
- Kaggle. (n.d.). *Brazilian E-Commerce Public Dataset by Olist*. Retrieved from https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce
- Pagan Research. (n.d.). Retrieved from olist: https://paganresearch.io/company/olist
- Selvaraj, N. (2022). How to Build Customer Segmentation Models in Python? Retrieved from 365 Data Science: https://365datascience.com/tutorials/python-tutorials/build-customer-segmentation-models/
- Wright, G. (n.d.). *RFM analysis (recency, frequency, monetary)*. Retrieved from TechTarget: https://www.techtarget.com/searchdatamanagement/definition/RFM-analysis