Task Assignment

Each student is requested implementing a command-line application in Java to solve a given Knapsack using Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO).

Given IntelliJ-project with base structure must be used.

After finishing the project/implementation a complete **archive [student_id]_[student_name].zip** must be created and **uploaded to Vula latest until October 15**th **2019**.

Specification

Programming language and IDE	
Programming language	Oracle JDK/JRE 12.0.2
Knapsack data instance [knapsack_instance.csv]	5.4505 55.1,401.2 = 2.101.2
Number of items	150
Search space	2 ¹⁵⁰ = 14272476927059600000000 000000000000000000000000
Maximum capacity	822
Maximum number of iterations	10000
Best-known optimum	1013
Command-line	
General	Command-line arguments in any arrangements
-algorithm [ga sa aco pso best-algorithm]	Select <i>Genetic Algorithm</i> <u>or</u> <i>Simulated</i>
	Annealing or Ant Colony Optimization
	or Particle Swarm Optimization or the
	best suitable from the four given algorithms.
-configuration [default best]	Configuration for each algorithm is
	stored in an XML-file , e.g. ga_default.xml.
	Parameter can only be used with
	-algorithm [ga sa aco pso].
	default solution quality: minimum 75%
	best solution quality: minimum 80%
-search_best_configuration	Search for the best configuration.
	Parameter can only be used with
	-algorithm [ga sa aco pso].
	Best configuration – with minimum 80%
	solution quality – is stored in an XML-file ,
	e.g. ga_best.xml.

Scores (maximum 50 points)

Genetic Algorithm (1st week)	Base [2 points]; One-point Crossover (1PX) [1 point];
[12 points]	Two-point Crossover (2PX) [1.5 points]; Roulette-Wheel
	Selection (RWS) [2 points]; Tournament-Selection (TS)
	[1 point]; Bit-Flip Mutation (BFM) [0.5 point]; Exchange
	Mutation (EXM) [0.5 point]; Inversion Mutation (IVM)
	[0.5 point]; Insertion Mutation (ISM) [0.5 point];
	Displacement Mutation (DPM) [0.5 point];
	Parameter Recommender* [2 points]
Simulated Annealing (2 nd week)	Algorithm [10 points];
[12 points]	Parameter Recommender* [2 points]
Ant Colony Optimization (3 rd week)	Algorithm [10 points];
[12 points]	Parameter Recommender* [2 points]
Particle Swarm Optimization	Algorithm [10 points];
(4 th week) [12 points]	Parameter Recommender* [2 points]
Best suitable algorithm selection	
and solution quality minimum 90%	-
(4 th week) [2 points]	

^{*} Parameter recommender ensures configuration with solution quality of minimum 80%.