A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESH*

JIANXING HAN[†] AND MINGHUA CHEN[‡]

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 8 **Key words.** example, LATEX
- 9 **MSC codes.** ????????????????
- 10 **1. Introduction.** For $\Omega = (0, 2T), 1 < \alpha < 2$

11 (1.1)
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}}u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

12 where

$$(1.2) \qquad (-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

14

16

2

3

15 (1.3)
$$\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$$

- 2. Preliminaries: Numeric scheme and main results.
 - 2.1. Numeric Format.

17 (2.1)
$$x_i = \begin{cases} T\left(\frac{i}{N}\right)^r, & 0 \le i \le N \\ 2T - T\left(\frac{2N-i}{N}\right)^r, & N \le i \le 2N \end{cases}$$

where $r \geq 1$. And let

19 (2.2)
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let $\{\phi_j(x)\}_{j=1}^{2N-1}$ be standard hat functions, which are basis of the piecewise linear function space

$$\phi_{j}(x) = \begin{cases} \frac{1}{h_{j}}(x - x_{j-1}), & x_{j-1} \leq x \leq x_{j} \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_{j} \leq x \leq x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

And then, define the piecewise linear interpolant of the true solution u to be

24 (2.4)
$$\Pi_h u(x) := \sum_{j=1}^{2N-1} u(x_j) \phi_j(x)$$

^{*}Submitted to the editors DATE.

[†]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (hanjx2023@mail.lzu.edu.cn).

[‡]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (chen@mail.lzu.edu.cn).

For convience, we denote 25

26 (2.5)
$$I^{2-\alpha}u(x) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha}u(y)dy$$

and

28 (2.6)
$$D_h^2 u(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} u(x_{i-1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) u(x_i) + \frac{1}{h_{i+1}} u(x_{i+1}) \right)$$

Now, we discretise (1.1) by replacing u(x) by a continuous piecewise linear func-29

30 tion

31 (2.7)
$$u_h(x) := \sum_{j=1}^{2N-1} u_j \phi_j(x)$$

whose nodal values u_i are to be determined by collocation at each mesh point x_i for 32

i = 1, 2, ..., 2N - 1: 33

34 (2.8)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) := -\kappa_{\alpha} D_h^2 I^{2-\alpha} u_h(x_i) = f(x_i) =: f_i$$

Here.

36 (2.9)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{i=1}^{2N-1} -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i) \ u_j = \sum_{i=1}^{2N-1} a_{ij} \ u_j$$

where

38 (2.10)
$$a_{ij} = -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i)$$
 for $i, j = 1, 2, ..., 2N - 1$

We have replaced $(-\Delta)^{\alpha/2}u(x_i) = f(x_i)$ in (1.1) by $-\kappa_{\alpha}D_h^{\alpha}u_h(x_i) = f(x_i)$ in 39

(2.8), with truncation error

41 (2.11)
$$\tau_i := -\kappa_\alpha \left(D_h^\alpha \Pi_h u(x_i) - \frac{d^2}{dx^2} I^{2-\alpha} u(x_i) \right) \quad \text{for} \quad i = 1, 2, ..., 2N - 1$$

where
$$-\kappa_{\alpha}D_{h}^{\alpha}\Pi_{h}u(x_{i}) = \sum_{j=1}^{2N-1} -\kappa_{\alpha}D_{h}^{\alpha}\phi_{j}(x_{i})u(x_{j}) = \sum_{j=1}^{2N-1} a_{ij}u(x_{j}).$$
The discrete equation (2.8) can be written in matrix form

43

44 (2.12)
$$AU = F$$

where $A = (a_{ij}) \in \mathbb{R}^{(2N-1)\times(2N-1)}$, $U = (u_1, \dots, u_{2N-1})^T$ is unknown and $F = (f_1, \dots, f_{2N-1})^T$. 45

46

We can deduce a_{ij} . 47

$$a_{ij} = -\kappa_{\alpha} D_{h}^{2} I^{2-\alpha} \phi_{j}(x_{i})$$

$$= -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \tilde{a}_{i-1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

where 49

$$\tilde{a}_{ij} = I^{2-\alpha}\phi_i(x_i)$$

$$= \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_{j-1}|^{3-\alpha}}{h_j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) |x_i - x_j|^{3-\alpha} + \frac{|x_i - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

2.2. Regularity of the true solution. For any $\beta>0$, we use the standard notation $C^{\beta}(\Omega), C^{\beta}(\mathbb{R})$, etc., for Hölder spaces and their norms and seminorms. When no confusion is possible, we use the notation $C^{\beta}(\Omega)$ to refer to $C^{k,\beta'}(\Omega)$, where k is the greatest integer such that $k<\beta$ and where $\beta'=\beta-k$. The Hölder spaces $C^{k,\beta'}(\Omega)$ are defined as the subspaces of $C^k(\Omega)$ consisting of functions whose k-th order partial derivatives are locally Hölder continuous[1] with exponent β' in Ω , where $C^k(\Omega)$ is the set of all k-times continuously differentiable functions on open set Ω .

59 DEFINITION 2.1 (delta dependent norm [2]). ...

Theorem 2.2. Let $f \in C^{\beta}(\Omega), \beta > 2$ be such that $||f||_{\beta}^{(\alpha/2)} < \infty$, then for l = 0, 1, 2

63 (2.15)
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \begin{cases} x^{-l-\alpha/2}, & \text{if } 0 < x \le T \\ (2T-x)^{-l-\alpha/2}, & \text{if } T \le x < 2T \end{cases}$$

THEOREM 2.3 (Regularity up to the boundary [2]). Let Ω be a bounded domain, and $\beta > 0$ be such that neither β nor $\beta + \alpha$ is an integer. Let $f \in C^{\beta}(\Omega)$ be such that $\|f\|_{\beta}^{(\alpha/2)} < \infty$, and $u \in C^{\alpha/2}(\mathbb{R}^n)$ be a solution of (1.1). Then, $u \in C^{\beta+\alpha}(\Omega)$ and

68 (2.16)
$$||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left(||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$$

COROLLARY 2.4. Let u be a solution of (1.1) where $f \in L^{\infty}(\Omega)$ and $||f||_{\beta}^{(\alpha/2)} < \infty$. Then, for any $x \in \Omega$ and l = 0, 1, 2, 3, 4

71 (2.17)
$$|u^{(l)}(x)| \le ||u||_{\beta+\alpha}^{(-\alpha/2)} \begin{cases} x^{\alpha/2-l}, & \text{if } 0 < x \le T \\ (2T-x)^{\alpha/2-l}, & \text{if } T \le x < 2T \end{cases}$$

And in this paper bellow, without special instructions, we allways assume that

73 (2.18)
$$f \in L^{\infty}(\Omega) \cap C^{\beta}(\Omega)$$
 and $||f||_{\beta}^{(\alpha/2)} < \infty$, with $\alpha + \beta > 4$

2.3. Main results. Here we state our main results; the proof is deferred to section 3 and section 4.

Let's denote $h = \frac{1}{N}$, we have

THEOREM 2.5 (Local Truncation Error). If u(x) is a solution of the equation (1.1) where f satisfy the regular condition (2.18), then there exists $C_1(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$ and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$, such that the truncation error (2.11) satisfies

$$|\tau_{i}| := |-\kappa_{\alpha} D_{h}^{\alpha} \Pi_{h} u(x_{i}) - f(x_{i})|$$

$$\leq C_{1} h^{\min\{\frac{r_{\alpha}}{2}, 2\}} \begin{cases} x_{i}^{-\alpha}, & 1 \leq i \leq N \\ (2T - x_{i})^{-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

$$+ C_{2} (r - 1) h^{2} \begin{cases} |T - x_{i-1}|^{1-\alpha}, & 1 \leq i \leq N \\ |T - x_{i+1}|^{1-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

81

76

51

52

53

56

58

60

64

- Theorem 2.6 (Global Error). The discrete equation (2.8) has sulction and there 82
- exists a positive constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$ such that the error between the numerial solution U with the exact solution $u(x_i)$ satisfies 83

85 (2.20)
$$\max_{1 \le i \le 2N-1} |u_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

- That means the numerial method has convergence order $\min\{\frac{r\alpha}{2}, 2\}$.
 - 3. Local Truncation Error.
- **3.1. Proof of Theorem 2.5.** The truncation error of the discrete format can 88 89

(3.1)

$$-\kappa_{\alpha} D_{h}^{\alpha} \Pi_{h} u(x_{i}) - f(x_{i}) = -\kappa_{\alpha} (D_{h}^{2} I^{2-\alpha} \Pi_{h} u(x_{i}) - \frac{d^{2}}{dx^{2}} I^{2-\alpha} u(x_{i}))$$

$$= -\kappa_{\alpha} D_{h}^{2} I^{2-\alpha} (\Pi_{h} u - u)(x_{i}) - \kappa_{\alpha} (D_{h}^{2} - \frac{d^{2}}{dx^{2}}) I^{2-\alpha} u(x_{i})$$

91 92

90

87

- THEOREM 3.1. There exits a constant $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$ such that
- (3.2) $\left| -\kappa_{\alpha} (D_h^2 \frac{d^2}{dx^2}) I^{2-\alpha}(x_i) \right| \le Ch^2 \begin{cases} x_i^{-\alpha/2 2/r}, & 1 \le i \le N \\ (2T x_i)^{-\alpha/2 2/r}, & N \le i \le 2N 1 \end{cases}$
- *Proof.* Since $f \in C^2(\Omega)$ and 94
- $\frac{d^2}{dx^2}(-\kappa_{\alpha}I^{2-\alpha}(x)) = f(x), \quad x \in \Omega,$ 95
- we have $I^{2-\alpha} \in C^4(\Omega)$. Therefore, using equation (A.3) of Lemma A.1, for $1 \le i \le$ 96
- 2N-1, we have

$$-\kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}(x_{i}) = \frac{h_{i+1} - h_{i}}{3}f'(x_{i}) + \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} f''(y) \frac{(y - x_{i-1})^{3}}{3!} dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} f''(y) \frac{(y - x_{i+1})^{3}}{3!} dy\right)$$

where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. By Lemma B.2 and Theorem 2.2 we have 1.

$$\left| \frac{h_{i+1} - h_i}{3} f'(x_i) \right| \le \frac{C(r-1) \|f\|_{\beta}^{(\alpha/2)}}{3} h^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N - 1\\ 0, & i = N\\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i \le 2N - 1 \end{cases}$$

- 2. See Proof 25, there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that
- $\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \int_{x_{i-1}}^{x_i} f''(y) \frac{(y x_{i-1})^3}{3!} dy + \frac{1}{h_{i+1}} \int_{x_i}^{x_{i+1}} f''(y) \frac{(y x_{i+1})^3}{3!} dy \right)$ $\leq Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \leq i \leq N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i < 2N - 1 \end{cases}$
- Summarizes, we get the result.

104 And define

105 (3.7)
$$R_i := D_h^2 I^{2-\alpha} (u - \Pi_h u)(x_i)$$

We have some results about the estimate of R_i

THEOREM 3.2. For $1 \le i < N/2$, there exists $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

108 (3.8)
$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i) + \ln(N)), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}x_{i}^{-1-\alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

THEOREM 3.3. For $N/2 \le i \le N$, there exists constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$

111 such that

109

112 (3.9)
$$R_{i} \leq C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

And for $N < i \le 2N - 1$, it is symmetric to the previous case.

114 Combine Theorem 3.1, Theorem 3.2 and Theorem 3.3, the proof of Theorem 2.5

115 completed.

We prove Theorem 3.2 and Theorem 3.3 in next subsections below.

3.2. Proof of Theorem 3.2.

117 (3.10)
$$D_h^2 I^{2-\alpha} (u - \Pi_h u)(x_i) = D_h^2 (\int_0^{2T} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy)$$

118 For convience, let's denote

119 (3.11)
$$T_{ij} = \int_{x_{i-1}}^{x_j} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy, \quad i = 0, \dots, 2N, \ j = 1, \dots, 2N$$

120 Also for simplicity, we denote

Definition 3.4.

121 (3.12)
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

122 then

124

123 (3.13)
$$R_i = \sum_{j=1}^{2N} S_{ij}$$

LEMMA 3.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

127 (3.14)
$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 x_i^{-\alpha/2-2/r}$$

128 *Proof.* Let

$$K_y(x) = \frac{|y - x|^{1 - \alpha}}{\Gamma(2 - \alpha)}$$

130 For $\max\{2i+1,i+3\} \le j \le N$, by Lemma C.1 and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{y^{-1 - \alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} y^{-\alpha/2 - 2/r - 1} dy$$

132 Therefore,

$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le \frac{C}{\alpha/2 + 2/r} 2^{r(-\alpha/2-2/r)} h^2 x_i^{-\alpha/2-2/r}$$

134

Lemma 3.6. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le 136$ i < N/2,

137 (3.17)
$$\sum_{j=N+1}^{2N} S_{ij} \le \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

138 Proof. For $1 \le i < N/2, N+1 \le j \le 2N-1$, by equation (C.2) and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} y^{-1 - \alpha} dy$$

$$\leq Ch^2 T^{-1 - \alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

140

$$\sum_{j=N+1}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{x_N}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{(\alpha/2-2/r+1)} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{(\alpha/2-2/r+1)} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

142 And by Lemma A.3

143
$$S_{i,2N} \le CT^{-1-\alpha} h_{2N}^{\alpha/2+1} = CT^{-\alpha/2} h^{r\alpha/2+r}$$

144 And when $\alpha/2 - 2/r + 1 \ge 0$,

$$h^{r\alpha/2+r} \le h^2$$

146 Summarizes, we get the result.

147 For i = 1, 2.

LEMMA 3.7. By Lemma C.5, Lemma 3.5 and Lemma 3.6 we get

$$R_{1} = \sum_{j=1}^{3} S_{1j} + \sum_{j=4}^{2N} S_{1j}$$

$$\leq Ch^{2}x_{1}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

150

$$R_{2} = \sum_{j=1}^{4} S_{2j} + \sum_{j=5}^{2N} S_{2j}$$

$$\leq Ch^{2}x_{2}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

For $3 \le i < N/2$, we have a new separation of R_i , Let's denote $k = \lceil \frac{i}{2} \rceil$.

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{2i-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2i} + T_{i-1,2i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2i} \right)$$

$$+ \sum_{j=2i+1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

155

Lemma 3.8. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le 157$ $i \le N, k = \lceil \frac{i}{2} \rceil$

158 (3.22)
$$|I_1| = |\sum_{j=1}^{k-1} S_{ij}| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 x_i^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

159 Proof. by Lemma A.3, Lemma C.3

160 (3.23)
$$S_{i1} \le Cx_1^{\alpha/2}x_1x_i^{-1-\alpha} = Cx_1^{\alpha/2+1}x_i^{-1-\alpha} = CT^{\alpha/2+1}h^{r\alpha/2+r}x_i^{-1-\alpha}$$

161 For $2 \le j \le k-1$, by Lemma C.1 and Lemma C.3

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{x_i^{-1 - \alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 x_i^{-1 - \alpha} \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} dy$$

163 Therefore,

$$I_{1} = \sum_{j=1}^{k-1} S_{ij} = S_{i1} + \sum_{j=2}^{k-1} S_{ij}$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{2^{-r} x_{i}} y^{\alpha/2 - 2/r} dy$$

165 But

171

166 (3.26)
$$\int_{x_1}^{2^{-r}x_i} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r}x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0\\ \ln(2^{-r}x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0\\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

167 So we have

168 (3.27)
$$I_{1} \leq \begin{cases} \frac{C}{\alpha/2 - 2/r + 1} h^{2} x_{i}^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} x_{i}^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0\\ \frac{C}{|\alpha/2 - 2/r + 1|} h^{r\alpha/2 + r} x_{i}^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases} \square$$

Definition 3.9. For convience, let's denote

170 (3.28)
$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

Theorem 3.10. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

173 $3 \le i < N/2, k = \lceil \frac{i}{2} \rceil$,

174 (3.29)
$$I_3 = \sum_{i=k+1}^{2i-1} V_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

To estimete V_{ij} , we need some preparations.

LEMMA 3.11. For $y \in (x_{i-1}, x_i)$, we can rewrite

177 (3.30)
$$y = x_{i-1} + \theta h_i = (1 - \theta)x_{i-1} + \theta x_i =: y_i^{\theta}, \ \theta \in (0, 1)$$

178 by Lemma A.2,

$$T_{ij} = \int_{x_{j-1}}^{x_{j}} (u(y) - \Pi_{h}u(y)) \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_{0}^{1} (u(y_{j}^{\theta}) - \Pi_{h}u(y_{j}^{\theta})) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} h_{j} d\theta$$

$$= \int_{0}^{1} -\frac{\theta(1-\theta)}{2} h_{j}^{3} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{4} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) d\theta$$

- 180 where $\eta_{j1}^{\theta} \in (x_{j-1}, y_j^{\theta}), \eta_{j2}^{\theta} \in (y_j^{\theta}, x_j).$
- Now Let's construct a series of functions to represent T_{ij} .
- 182 Definition 3.12. For $2 \le i, j \le N 1$,

183 (3.32)
$$y_{j-i}(x) = (x^{1/r} + Z_{j-i})^r, \quad Z_{j-i} = T^{1/r} \frac{j-i}{N}$$

184

185 (3.33)
$$y_{i-i}^{\theta}(x) = (1-\theta)y_{i-1-i}(x) + \theta y_{i-i}(x)$$

186

187 (3.34)
$$h_{i-i}(x) = y_{i-i}(x) - y_{i-i-1}(x)$$

188 Now, we define

189 (3.35)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

190

191 (3.36)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

192 And now we can rewrite T_{ij}

193 LEMMA 3.13. For $2 \le i \le N, 2 \le j \le N$,

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{j-i}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} Q_{j-i}^{\theta}(x_{i}) (\theta^{2} u'''(\eta_{j,1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j,2}^{\theta})) d\theta$$

195 Immediately, we can see from (3.28) that

196 Lemma 3.14. For
$$3 \le i, j \le N - 1$$
,

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,1}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

To estimate V_{ij} , we first estimate $D_h^2 P_{j-i}^{\theta}(x_i)$, but By Lemma A.1, 198

199 (3.39)
$$D_h^2 P_{i-i}^{\theta}(x_i) = P_{i-i}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

- By Leibniz formula, we calculate and estimate the derivations of $h_{i-i}^3(x)$, $u''(y_{i-i}^\theta(x))$ 200
- and $\frac{|y_{j-i}^{\theta}(x)-x|^{1-\alpha}}{\Gamma(2-\alpha)}$ separately. Firstly, we have 201
- 202
- Lemma 3.15. There exists a constant C = C(T,r) such that For $3 \le i \le N$ 203
- $1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\}, \ \xi \in (x_{i-1}, x_{i+1}),$

$$205 (3.40) h_{i-i}^3(\xi) \le Ch^2 x_i^{2-2/r} h_i$$

206 (3.41)
$$(h_{i-i}^3(\xi))' \le C(r-1)h^2 x_i^{1-2/r} h_i$$

$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

- The proof of this theorem see Lemma C.6 and Lemma C.7 208
- Second, 209
- LEMMA 3.16. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For 210
- $3 \le i \le N 1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\}, \ \xi \in (x_{i-1}, x_{i+1})$ 211

212 (3.43)
$$u''(y_{i-i}^{\theta}(\xi)) \le Cx_i^{\alpha/2-2}$$

213 (3.44)
$$(u''(y_{j-i}^{\theta}(\xi)))' \le Cx_i^{\alpha/2-3}$$

214 (3.45)
$$(u''(y_{i-i}^{\theta}(\xi)))'' < Cx_i^{\alpha/2-4}$$

- The proof of this theorem see Proof 31 215
- And Finally, we have 216
- Lemma 3.17. There exists a constant $C = C(T, \alpha, r)$ such that For $3 \leq i \leq r$ 217

218
$$N-1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\}, \xi \in (x_{i-1}, x_{i+1}),$$

219 (3.46)
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_i^{\theta} - x_i|^{1-\alpha}$$

220 (3.47)
$$(|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_{i}^{\theta} - x_{i}|^{1-\alpha}x_{i}^{-1}$$

221 (3.48)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

222 where
$$y_j^{\theta} = \theta x_{j-1} + (1 - \theta)x_j$$

223 The proof of this theorem see Proof 32

224

LEMMA 3.18. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

226
$$3 \le i \le N-1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\},$$

227 (3.49)
$$D_h^2 P_{j-i}^{\theta}(x_i) \le Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

228 where
$$y_i^{\theta} = \theta x_{j-1} + (1 - \theta) x_j$$

229 Proof. Since Lemma A.1

230 (3.50)
$$D_h^2 P_{i-i}^{\theta}(x_i) = P_{i-i}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

From (3.35), using Leibniz formula and Lemma 3.15, Lemma 3.16 and Lemma $3.17\square$

232

LEMMA 3.19. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

234 $3 \le i < N, k = \lceil \frac{i}{2} \rceil$.

235 For $k \le j \le \min\{2i - 1, N - 1\}$,

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

237 And for $k + 1 \le j \le \min\{2i, N\}$,

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i)u'''(\eta_j^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_i} \right)$$

$$\leq Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

239 where $\eta_{j}^{\theta} \in (x_{j-1}, x_{j}).$

proof see Proof 33

241

LEMMA 3.20. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

243 $3 \le i < N, k = \lceil \frac{i}{2} \rceil, k+1 \le j \le \min\{2i-1, N-1\},\$

$$V_{ij} \le Ch^2 \int_0^1 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j d\theta$$

$$= Ch^2 \int_{x_{i-1}}^{x_j} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} dy$$

245 *Proof.* Since Lemma 3.14, by Lemma 3.18 and Lemma 3.19, we get the result 246 immediately.

Now we can prove Theorem 3.10 using Lemma 3.20, $k = \lceil \frac{i}{2} \rceil$

$$I_{3} = \sum_{k+1}^{2i-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{2i-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{2i-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

LEMMA 3.21.

250 (3.55)
$$D_h P_{j-i}^{\theta}(x_i) := \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} = P_{j-i}^{\theta'}(\xi), \quad \xi \in [x_i, x_{i+1}]$$

251 Then, for $3 \le i \le N - 1$, $k = \lceil \frac{i}{2} \rceil$,

252 (3.56)
$$D_h P_{k-i}^{\theta}(x_i) \le C h^2 x_i^{-\alpha/2 - 2/r} h_j$$

253

249

254 Proof. Using Leibniz formula, by Lemma 3.15, Lemma 3.16 and Lemma 3.17, we 255 take j = k + 1, i = i + 1, we get

$$D_{h}P_{k-i}^{\theta}(x_{i}) \leq Ch^{2}x_{i+1}^{\alpha/2-2/r-1}|y_{k+1}^{\theta} - x_{i+1}|^{1-\alpha}h_{j+1}$$

$$\leq Ch^{2}x_{i}^{\alpha/2-2/r-1}|y_{k}^{\theta} - x_{i}|^{1-\alpha}h_{j}$$

$$\leq Ch^{2}x_{i}^{-\alpha/2-2/r}h_{j}$$

257

LEMMA 3.22. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

 $3 \le i < N, k = \lceil \frac{i}{2} \rceil,$

$$I_{2} = \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,k} \right) \le Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

261 And for $3 \le i < N/2$,

$$I_4 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} (T_{i-1,2i} + T_{i-1,2i-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,2i} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

263 *Proof.* In fact,

$$\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k}
= \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) + \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) + (\frac{1}{h_{i+1}} - \frac{1}{h_i}) T_{i,k}$$

265 While, by Lemma A.2

$$\frac{1}{h_{i+1}}(T_{i+1,k} - T_{i,k}) = \int_{x_{k-1}}^{x_k} (u(y) - \Pi_h u(y)) \frac{|x_{i+1} - y|^{1-\alpha} - |x_i - y|^{1-\alpha}}{h_{i+1}\Gamma(2-\alpha)} dy$$

$$\leq \int_{x_{k-1}}^{x_k} h_k^2 u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy$$

$$\leq Ch_k h^2 x_k^{2-2/r} x_{k-1}^{\alpha/2-2} |x_i - x_k|^{-\alpha}$$

$$\leq Ch_k h^2 x_i^{-\alpha/2-2/r}$$

267 Thus,

268 (3.62)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

269 For (3.63)

$$\frac{1}{h_{i+1}}(T_{i+1,k+1} - T_{i,k}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,1}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,1}^{\theta})}{h_{i+1}} d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,2}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,2}^{\theta})}{h_{i+1}} d\theta$$

271 And by Lemma 3.21

272 (3.64)
$$\frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} \le Ch^2 x_i^{-\alpha/2 - 2/r} h_k$$

273 And with Lemma 3.19, we can get

274 (3.65)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

275 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,k} \le h_i^{-3} h^2 x_i^{1-2/r} h_k C h_k^2 x_{k-1}^{\alpha/2-2} |x_k - x_i|^{1-\alpha}$$

$$\le C h^2 x_i^{-\alpha/2-2/r}$$

277 Summarizes, we have

278 (3.67)
$$I_2 \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

The case for I_4 is similar.

Now combine Lemma 3.8, Lemma 3.22, Theorem 3.10, Lemma 3.5 and Lemma 3.6 to get the final result.

For $3 \le i < N/2$

$$R_i = I_1 + I_2 + I_3 + I_4 + I_5$$

$$\leq Ch^2 x_i^{-\alpha/2 - 2/r} + \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & r\alpha/2 + r - 2 > 0 \\ Ch^2 (x_i^{-1 - \alpha} \ln(i) + \ln(N)), & r\alpha/2 + r - 2 = 0 \\ Ch^{\alpha/2 + r} x_i^{-1 - \alpha}, & r\alpha/2 + r - 2 < 0 \end{cases}$$

Combine with i = 1, 2, we get for $1 \le i < N/2$

285 (3.69)
$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & r\alpha/2+r-2>0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & r\alpha/2+r-2=0\\ Ch^{r\alpha/2+r}x_{i}^{-1-\alpha}, & r\alpha/2+r-2<0 \end{cases}$$

3.3. Proof of Theorem 3.3. For $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$, we have

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{N-1} + \sum_{j=N}^{N+1} + \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2N-\lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N-\lceil \frac{N}{2} \rceil}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,2N-\lceil \frac{N}{2} \rceil + 1} \right)$$

$$+ \sum_{j=2N-\lceil \frac{N}{2} \rceil + 2}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3}^{1} + I_{3}^{2} + I_{3}^{3} + I_{4} + I_{5}$$

We have estimate I_1 in Lemma 3.8 and I_2 in Lemma 3.22. We can control I_3 in similar with Theorem 3.10 by Lemma 3.20 where $2i - 1 \ge N - 1$

Lemma 3.23. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$,

$$I_{3} = \sum_{j=k+1}^{N-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{N-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{N-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2-2-2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2-2-2/r} = Ch^{2} x_{i}^{-\alpha/2-2/r}$$

Let's study I_5 before I_4 .

294 (3.72)
$$I_5 = \sum_{j=N+2}^{2N - \lceil \frac{N}{2} \rceil} V_{ij}$$

295 Similarly, Let's define a new series of functions

Definition 3.24. For $i < N, j \ge N$, with no confusion, we also denote in this section

298 (3.73)
$$y_{j-i}(x) = 2T - (Z_{2N-j+i} - x^{1/r})^r, \quad Z_{2N-j+i} = T^{1/r} \frac{2N-j+i}{N}$$

300 (3.74)
$$y_{i-i}'(x) = (2T - y_{i-i}(x))^{1-1/r} x^{1/r-1}$$

301 (3.75)
$$y_{j-i}''(x) = \frac{1-r}{r} (2T - y_{j-i}(x))^{1-2/r} x^{1/r-2} Z_{2N-j+i}$$

302 (3.76)

303

304 (3.77)
$$y_{j-i}^{\theta}(x) = (1-\theta)y_{j-i-1}(x) + \theta y_{j-i}(x)$$
305

(3.78)306

306 (3.78)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$
307

308 (3.79)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

310 (3.80)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Now we have, for $i < N, j \ge N + 2$. 311

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j,2}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

313 Similarly, we first estimate

314 (3.82)
$$D_h^2 P_{j-i}^{\theta}(\xi) = P_{j-i}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

Combine lemmas Lemma C.8, Lemma C.9 and Lemma C.10, we have 315

LEMMA 3.25. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For 316

 $N/2 \le i < N, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1, \xi \in (x_{i-1}, x_{i+1}), we have$

$$|P_{j-i}^{\theta}|''(\xi)| \leq Ch_{j}h^{2}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}) + |y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})^{2} + (r-1)|y_{i}^{\theta} - x_{i}|^{-\alpha})$$

- 319
- Lemma 3.26. There exists a constant $C = C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le i < N$, $\xi \in (x_{i-1},x_{i+1})$, we have for $N+1 \le j \le 2N \lceil \frac{N}{2} \rceil$ 320
- 321

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right)$$

$$\leq Ch^{2}h_{j}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}))$$

for $N+2 \leq j \leq 2N-\left\lceil \frac{N}{2}\right\rceil+1$

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2}h_{i}(|y_{i}^{\theta} - x_{i}|^{1-\alpha} + |y_{i}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{N}))$$

- The proof see Proof 37. 325
- Combine (3.81), Lemma 3.25 and Lemma 3.26, we have 326
- Theorem 3.27. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For 327
- $N/2 \le i < N, N+2 \le j \le 2N \lceil \frac{N}{2} \rceil + 1$ 328

$$V_{ij} \leq Ch^{2} \int_{x_{j-1}}^{x_{j}} (|y - x_{i}|^{1-\alpha} + |y - x_{i}|^{-\alpha} (|2T - x_{i} - y| + h_{N}) + |y - x_{i}|^{-1-\alpha} (|2T - x_{i} - y| + h_{N})^{2} + (r - 1)|y - x_{i}|^{-\alpha}) dy$$

- We can esitmate I_5 Now. 330
- THEOREM 3.28. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta + \alpha}^{(-\alpha/2)})$ such that For
- $N/2 \le i < N$, we have 332

333 (3.87)
$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij} \le Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

Proof.

$$I_{5} = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij}$$

$$\leq Ch^{2} \int_{x_{N+1}}^{x_{2N-i}} + \int_{x_{2N-i}}^{x_{2N-\lceil \frac{N}{2} \rceil}} (|y-x_{i}|^{1-\alpha} + |y-x_{i}|^{-\alpha} (|2T-x_{i}-y|+h_{N}) + |y-x_{i}|^{-1-\alpha} (|2T-x_{i}-y|+h_{N})^{2} + (r-1)|y-x_{i}|^{-\alpha}) dy$$

$$= J_{1} + J_{2}$$

While $x_{N+1} \le y \le x_{2N-i} = 2T - x_i$, 335

336 (3.89)
$$T - x_{i-1} < x_{N+1} - x_i < y - x_i < x_{2N-i} - x_i < 2(T - x_{i-1})$$

337 and

338 (3.90)
$$2T - x_i - y + h_N \le 2T - x_i - x_{N+1} + h_N = T - x_i \le T - x_{i-1}$$

339 **So**

$$J_{1} \leq Ch^{2}(x_{2N-i} - x_{N+1})(|T - x_{i-1}|^{1-\alpha} + (r-1)|T - x_{i-1}|^{-\alpha})$$

$$\leq Ch^{2}(|T - x_{i-1}|^{2-\alpha} + (r-1)|T - x_{i-1}|^{1-\alpha})$$

$$\leq Ch^{2}T^{2-\alpha} + C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha}$$

341 Otherwise, when $x_{2N-i} \leq y \leq x_{2N-\lceil \frac{N}{2} \rceil}$

342 (3.92)
$$x_i + y - 2T + h_N \le y - x_i$$

343

344 (3.93)
$$J_{2} \leq Ch^{2} \int_{x_{2N-i}}^{(2-2^{-r})T} |y-x_{i}|^{1-\alpha} + (r-1)|y-x_{i}|^{-\alpha}$$

$$\leq Ch^{2} (T^{2-\alpha} + (r-1)|x_{2N-i} - x_{i}|^{1-\alpha})$$

$$= Ch^{2} + C(r-1)h^{2}|T-x_{i}|^{1-\alpha} \leq Ch^{2} + C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha}$$

345 Summarizes two cases, we get the result.

- For I_4 , we have
- THEOREM 3.29. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that, for
- $348 \quad N/2 \le i \le N-1$

$$V_{iN} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,N+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,N} + \frac{1}{h_i} T_{i-1,N-1} \right)$$

$$< Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

- 350 Proof. We use the similar skill in the last section, but more complicated. for
- 351 j = N, Let

352 (3.95)
$$Ly_{N-1-i}(x) = (x^{1/r} + Z_{N-1-i})^r, \quad Z_{N-1-i} = T^{1/r} \frac{N-1-i}{N}$$

354 (3.96)
$${}_{0}y_{N-i}(x) = \frac{x^{1/r} - Z_{i}}{Z_{1}}h_{N} + T, \quad Z_{i} = T^{1/r}\frac{i}{N}, x_{N} = T$$

355 and

356 (3.97)
$$Ry_{N+1-i}(x) = 2T - (Z_{N-1+i} - x^{1/r})^r, \quad Z_{N-1+i} = T^{1/r} \frac{N-1+i}{N}$$

357 Thus,

358
$$Ly_{N-1-i}(x_{i-1}) = x_{N-2}, \quad Ly_{N-1-i}(x_i) = x_{N-1}, \quad Ly_{N-1-i}(x_{i+1}) = x_N$$

359
$$_{0}y_{N-i}(x_{i-1}) = x_{N-1}, \quad _{0}y_{N-i}(x_{i}) = x_{N}, \quad _{0}y_{N-i}(x_{i+1}) = x_{N+1}$$

360
$$Ry_{N+1-i}(x_{i-1}) = x_N, \quad Ry_{N+1-i}(x_i) = x_{N+1}, \quad Ry_{N+1-i}(x_{i+1}) = x_{N+2}$$

361 Then, define

362 (3.98)
$$Ly_{N-i}^{\theta}(x) = \theta_L y_{N-1-i}(x) + (1-\theta)_0 y_{N-i}(x)$$

363 (3.99)
$$Ry_{N+1-i}^{\theta}(x) = \theta_0 y_{N-i}(x) + (1-\theta)_R y_{N+1-i}(x)$$

364

365 (3.100)
$$Lh_{N-i}(x) = {}_{0}y_{N-i}(x) - Ly_{N-1-i}(x)$$

366 (3.101)
$$Rh_{N+1-i}(x) = Ry_{N+1-i}(x) - {}_{0}y_{N-i}(x)$$

367 We have

368 (3.102)
$$Ly_{N-1-i}'(x) = Ly_{N-1-i}^{1-1/r}(x)x^{1/r-1}$$

369 (3.103)
$$Ly_{N-1-i}''(x) = \frac{1-r}{r} Ly_{N-1-i}^{1-2/r}(x) x^{1/r-2} Z_{N-1-i}$$

370 (3.104)
$${}_{0}y_{N-i}'(x) = \frac{1}{r} \frac{h_{N}}{Z_{1}} x^{1/r-1}$$

371 (3.105)
$${}_{0}y_{N-i}''(x) = \frac{1-r}{r^{2}} \frac{h_{N}}{Z_{1}} x^{1/r-2}$$

372 (3.106)
$$Ry_{N+1-i}'(x) = (2T - Ry_{N+1-i}(x))^{1-1/r}x^{1/r-1}$$

373 (3.107)
$$Ry_{N+1-i}''(x) = \frac{1-r}{r} (2T - Ry_{N+1-i}(x))^{1-2/r} x^{1/r-2} Z_{N-1+i}$$

375 (3.108)
$${}_{L}P_{N-i}^{\theta}(x) = ({}_{L}h_{N-i}(x))^{3} \frac{|{}_{L}y_{N-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''({}_{L}y_{N-i}^{\theta}(x))$$

376 (3.109)
$${}_{R}P_{N+1-i}^{\theta}(x) = ({}_{R}h_{N+1-i}(x))^{3} \frac{|{}_{R}y_{N+1-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''({}_{R}y_{N+1-i}^{\theta}(x))$$

377 (3.110)
$${}_{L}Q_{N-i}^{\theta}(x) = ({}_{L}h_{N-i}(x))^{4} \frac{|{}_{L}y_{N-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

378 (3.111)
$${}_{R}Q_{N+1-i}^{\theta}(x) = ({}_{R}h_{N+1-i}(x))^{4} \frac{|{}_{R}y_{N+1-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Similar with Lemma 3.13, we can get for l = -1, 0, 1,

$$T_{i+l,N+l} = \int_0^1 -\frac{\theta(1-\theta)}{2} {}_L P_{N-i}^{\theta}(x_{i+l}) d\theta + \int_0^1 \frac{\theta(1-\theta)}{3!} {}_L Q_{N-i}^{\theta}(x_{i+l}) (\theta^2 u'''(\eta_{N+l,1}^{\theta}) - (1-\theta)^2 u'''(\eta_{N+l,2}^{\theta})) d\theta$$

381 (3.113)

$$T_{i+l,N+1+l} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} {}_{R}P_{N+1-i}^{\theta}(x_{i+l})d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} {}_{R}Q_{N+1-i}^{\theta}(x_{i+l})(\theta^{2}u'''(\eta_{N+1+l,1}^{\theta}) - (1-\theta)^{2}u'''(\eta_{N+1+l,2}^{\theta}))d\theta$$

383 So we have (3.114)

$$V_{i,N} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_{hL}^{2} P_{N-i}^{\theta}(x_{i}) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1})u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1})u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

385 N+1 is similar.

387

We estimate $D_{hL}^{2}P_{N-i}^{\theta}(x_{i}) = {}_{L}P_{N-i}^{\theta}(\xi), \xi \in (x_{i-1}, x_{i+1}),$

Lemma 3.30.

388 (3.115)
$$Lh_{N-i}^3(\xi) \le Ch_N^3 \le Ch^3$$

389 (3.116)
$$Rh_{N+1-i}^{3}(\xi) \le Ch_{N}^{3} \le Ch^{3}$$

390 (3.117)
$$(Lh_{N-i}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

391 (3.118)
$$(Rh_{N+1-i}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

392 (3.119)
$$(Lh_{N-i}^3(\xi))'' \le C(r-1)h^2$$

393 (3.120)
$$(Rh_{N+1-i}^3(\xi))'' \le C(r-1)h^2$$

Proof.

394 (3.121)
$$Lh_{N-i}(\xi) \le 2h_N, \quad _Rh_{N+1-i}(\xi) \le 2h_N$$

395

$$(Lh_{N-i}^{l}(\xi))' = l_{L}h_{N-i}^{l-1}(\xi)({}_{0}y_{N-i}'(\xi) - {}_{L}y_{N-1-i}'(\xi))$$

$$= l_{L}h_{N-i}^{l-1}(\xi)x_{i}^{1/r-1}(\frac{1}{r}\frac{h_{N}}{Z_{1}} - {}_{L}y_{N-1-i}^{1-1/r}(\xi))$$

397 while (3.123)

$$\left|\frac{1}{r}\frac{h_{N}}{Z_{1}} - Ly_{N-1-i}^{1-1/r}(\xi)\right| = \left|\frac{1}{r}\frac{x_{N} - (x_{N}^{1/r} - Z_{1})^{r}}{Z_{1}} - \eta^{1-1/r}\right| \quad \eta \in [x_{N-2}, x_{N}]$$

$$= T^{1-1/r}\left|\left(\frac{N-t}{N}\right)^{r-1} - \left(\frac{N-s}{N}\right)^{r-1}\right| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r}\left|1 - \left(\frac{N-2}{N}\right)^{r-1}\right| \leq CT^{1-1/r}(r-1)\frac{2}{N}$$

399 Thus,

400 (3.124)
$$(Lh_{N-i}^{l}(\xi))' \le C(r-1)h_{N}^{l-1}x_{i}^{1/r-1}h$$

$$(Rh_{N+1-i}^{l}(\xi))' = l_R h_{N+1-i}^{l-1}(\xi) (Ry_{N+1-i}'(\xi) - 0y_{N-i}'(\xi))$$

$$= l_R h_{N+1-i}^{l-1}(\xi) x_i^{1/r-1} ((2T - Ry_{N+1-i}(\xi))^{1-1/r} - \frac{1}{r} \frac{h_N}{Z_1})$$

402 Similarly, (3.126)

$$|(2T - Ry_{N+1-i})^{1-1/r} - \frac{1}{r} \frac{h_N}{Z_1}| = |\eta^{1-1/r} - \frac{1}{r} \frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1}| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r} |(\frac{N-s}{N})^{r-1} - (\frac{N-t}{N})^{r-1}| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r} |(\frac{N-2}{N})^{r-1} - 1| \leq CT^{1-1/r} (r-1) \frac{2}{N}$$

404 And

$$(Lh_{N-i}^{3}(\xi))'' = 3_L h_{N-i}^2(\xi)_L h_{N-i}''(\xi) + 6_L h_{N-i}(\xi) (Lh_{N-i}'(\xi))^2$$

$$\leq Ch_N^2 \frac{1-r}{r} x_i^{1/r-2} (\frac{1}{r} \frac{h_N}{Z_1} - Ly_{N-1-i}^{1-2/r}(\xi) Z_{N-1-i}) + Ch_N(r-1)^2 h^2 x_i^{2/r-2}$$

$$\left| \frac{h_N}{rZ_1} - {}_L y_{N-1-i}^{1-2/r}(\xi) Z_{N-1-i} \right| \le T^{1-1/r} + C x_N^{1-2/r} x_N^{1/r} = C T^{1-1/r}$$

407 So

$$(Lh_{N-i}^{3}(\xi))'' \leq Ch_{N}^{2} \frac{1-r}{r} x_{i}^{1/r-2} + C(r-1)^{2} h_{N} x_{i}^{2/r-2} h^{2}$$

$$\leq C(r-1)h_{N}^{2}$$

409 $Rh_{N+1-i}^3(\xi)$ is similar.

Lemma 3.31.

410 (3.129)
$$u''(Ly_{N-i}^{\theta}(\xi)) \le Cx_{N-2}^{-\alpha/2-2} \le C$$

411 (3.130)
$$(u''(_L y_{N-i}^{\theta}(\xi)))' \le C$$

412 (3.131)
$$(u''({}_{L}y_{N-i}^{\theta}(\xi)))'' \le C$$

Proof.

$$(u''(_{L}y_{N-i}^{\theta}(\xi)))' = u'''(_{L}y_{N-i}^{\theta}(\xi))_{L}y_{N-i}^{\theta}(\xi)$$

$$\leq C(\theta_{L}y_{N-1-i}'(\xi) + (1-\theta)_{0}y_{N-i}'(\xi))$$

$$\leq Cx_{i}^{1/r-1}(\theta_{L}y_{N-1-i}^{1-1/r}(\xi) + (1-\theta)\frac{h_{N}}{rZ_{1}})$$

$$\leq Cx_{i}^{1/r-1}x_{N}^{1-1/r}$$

414 And
$$(3.133) \qquad \square$$

$$(u''(_{L}y_{N-i}^{\theta}(\xi)))'' = u''''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi$$

Lemma 3.32.

416 (3.134)
$$|Ly_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

417 (3.135)
$$(|_L y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

418 (3.136)
$$(|_L y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_N^{\theta} - x_i|^{-\alpha} + |y_N^{\theta} - x_i|^{1-\alpha}$$

Proof.

$$(3.137) (Ly_{N-i}^{\theta}(\xi) - \xi)' = (\theta(Ly_{N-1-i}(\xi) - \xi) + (1 - \theta)(0y_{N-i}(\xi) - \xi))'$$

$$= \theta(Ly_{N-1-i}'(\xi) - 1) + (1 - \theta)(0y_{N-i}'(\xi) - 1)$$

$$= \theta\xi^{1/r-1}(Ly_{N-1-i}^{1-1/r}(\xi) - \xi^{1-1/r}) + (1 - \theta)\xi^{1/r-1}(\frac{h_N}{rZ_i} - \xi^{1-1/r})$$

420

$$(Ly_{N-i}^{\theta}(\xi) - \xi)'' = \theta(Ly_{N-1-i}''(\xi)) + (1-\theta)({}_{0}y_{N-i}''(\xi))$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta_{L}y_{N-1-i}^{1-2/r}(\xi)Z_{N-1-i} + (1-\theta)\frac{h_{N}}{rZ_{1}}) \le 0$$

422 And

423 (3.139)
$$|(_L y_{N-i}^{\theta}(\xi) - \xi)''| \le C(r-1)\xi^{1/r-2}T^{1-1/r}$$

424 We have known

425 (3.140)
$$C|x_{N-1} - x_i| \le |Ly_{N-1-i}(\xi) - \xi| \le C|x_{N-1} - x_i|$$

426 If
$$\xi \le x_{N-1}$$
, then $({}_{0}y_{N-i}(\xi) - \xi)' \ge 0$, so

427 (3.141)
$$C|x_N - x_i| \le |x_{N-1} - x_{i-1}| \le |Ly_{N-i}^{\theta}(\xi) - \xi| \le |x_{N+1} - x_{i+1}| \le C|x_N - x_i|$$

428 If i = N - 1 and $\xi \in [x_{N-1}, x_N]$, then $y_{N-i}(\xi) - \xi$ is concave, bigger than its two

429 neighboring points, which are equal to h_N , so

430 (3.142)
$$h_N = |x_N - x_{N-1}| \le |y_{N-i}(\xi) - \xi| \le |x_{N+1} - x_{N-1}| = 2h_N$$

431 So we have

432 (3.143)
$$|Ly_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

433 While

434 (3.144)
$$Ly_{N-1-i}^{1-1/r}(\xi) - \xi^{1-1/r} \le (Ly_{N-1-i}(\xi) - \xi)\xi^{-1/r}$$

435 and

$$\left|\frac{h_N}{rZ_1} - \xi^{1-1/r}\right| \le \max\{\left|\frac{h_N}{rZ_1} - x_{i-1}^{1-1/r}\right|, \left|\frac{h_N}{rZ_1} - x_{i+1}^{1-1/r}\right|\}$$

436
$$\leq \max \begin{cases} T^{1-1/r} - x_{i-1}^{1-1/r} \leq |x_N - x_{i-1}| T^{-1/r} \leq C |x_N - x_i| \\ |x_{i+1}^{1-1/r} - x_{N-1}^{1-1/r}| \leq |x_{i+1} - x_{N-1}| |x_{N-1}^{-1/r} \leq C |x_N - x_i| \end{cases}$$

437 So we have

438
$$(3.146)$$
 $(_L y_{N-i}^{\theta}(\xi) - \xi)' \le C|y_N^{\theta} - x_i|$

439

$$(|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = |_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-\alpha}(_{L}y_{N-i}^{\theta}(\xi) - \xi)'$$

$$\leq |y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

441 Finally,

$$(|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-\alpha}(_{L}y_{N-i}^{\theta}(\xi) - \xi)''$$

$$+ \alpha(\alpha - 1)|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-1-\alpha}((_{L}y_{N-i}^{\theta}(\xi) - \xi)')^{2} \quad \Box$$

$$\leq C(r-1)|y_{N}^{\theta} - x_{i}|^{-\alpha} + C|y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

By the three lemmas above, for $N/2 \le i \le N-1$, we have

Lemma 3.33.

(3.149)

$$D_{hL}^{2}P_{N-i}^{\theta}(x_{i}) = {}_{L}P_{N-i}^{\theta}{}''(\xi) \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq Ch^{3}|y_{N}^{\theta} - x_{i}|^{1-\alpha} + C(r-1)(h^{3}|y_{N}^{\theta} - x_{i}|^{-\alpha} + h^{2}|y_{N}^{\theta} - x_{i}|^{1-\alpha})$$

445 And

Lemma 3.34.

446 (3.150)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{{}_{L}Q_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1}^{\theta}) - {}_{L}Q_{N-i}^{\theta}(x_i)u'''(\eta_N^{\theta})}{h_{i+1}} \right) \\ \leq Ch^3 |y_N^{\theta} - x_i|^{1-\alpha}$$

447 And immediately, For $N/2 \le i \le N-2$

$$V_{iN} \leq C \int_{x_{N-1}}^{x_N} h^2 |y - x_i|^{1-\alpha} + C(r-1)h^2 |y - x_i|^{-\alpha} + h|y - x_i|^{1-\alpha} dy$$

$$\leq Ch^2 h_N |T - x_i|^{1-\alpha} + C(r-1)h^2 |x_{N-1} - x_i|^{1-\alpha} + Chh_N |T - x_i|^{1-\alpha}$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

But expecially, when i = N - 1,

$$V_{N-1,N} = \int_{0}^{1} -\frac{\theta^{2-\alpha}(1-\theta)}{2} \frac{2}{h_{N-1} + h_{N}} \left(\frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - (\frac{1}{h_{N-1}} + \frac{1}{h_{N}}) h_{N}^{4-\alpha} u''(y_{N}^{\theta}) + \frac{1}{h_{N}} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1}) u'''(\eta_{N+1,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1}) u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

while combine Lemma 3.30

$$\frac{2}{h_{N-1} + h_N} \left(\frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - \left(\frac{1}{h_{N-1}} + \frac{1}{h_N} \right) h_N^{4-\alpha} u''(y_N^{\theta}) + \frac{1}{h_N} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) \\
= D_h^2 (h_{N-1 \to N}^{4-\alpha} (x_i) u''(y_{N-1 \to N}^{\theta} (x_i))) \\
\leq C h_N^{4-\alpha} + C(r-1) h_N^{3-\alpha} \leq C h^{4-\alpha} + C(r-1) h^2 |T - x_{N-1-1}|^{1-\alpha}$$

453 454 Similarly with j = N + 1.

$$I_6$$
, I_7 is easy. Similar with Lemma 3.22 and Lemma 3.6, we have

Theorem 3.35. There is a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that For

458 $N/2 \le i \le N$,

$$I_{6} = \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2N - \lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N - \lceil \frac{N}{2} \rceil}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,2N - \lceil \frac{N}{2} \rceil + 1} \right)$$

$$\leq Ch^{2}$$

460 *Proof.* In fact, let
$$l = 2N - \lceil \frac{N}{2} \rceil + 1$$

$$\frac{1}{h_i}(T_{i-1,l} + T_{i-1,l-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}})T_{i,l}
= \frac{1}{h_i}(T_{i-1,l} - T_{i,l}) + \frac{1}{h_i}(T_{i-1,l-1} - T_{i,l}) + (\frac{1}{h_i} - \frac{1}{h_{i+1}})T_{i,l}$$

462 While, by Lemma A.2

$$\frac{1}{h_{i}}(T_{i-1,l} - T_{i,l}) = \int_{x_{l-1}}^{x_{l}} (u(y) - \Pi_{h}u(y)) \frac{|x_{i-1} - y|^{1-\alpha} - |x_{i} - y|^{1-\alpha}}{h_{i}\Gamma(2-\alpha)} dy$$

$$\leq C \int_{x_{l-1}}^{x_{l}} h_{l}^{2}u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy$$

$$\leq C h_{l}^{3} x_{l-1}^{\alpha/2-2} T^{-\alpha}$$

$$\leq C h_{l}^{3}$$

464 Thus,

465 (3.157)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l} - T_{i,l}) \le Ch_l^2$$

466 For

(3.158)

$$467 \quad \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{h_{l-1}^3 |y_{l-1}^\theta - x_{i-1}|^{1-\alpha} u''(\eta_{l-1}^\theta) - h_l^3 |y_l^\theta - x_i|^{1-\alpha} u''(\eta_l^\theta)}{h_i} d\theta$$

468 And Similar with Lemma 3.19, we can get

$$469 \quad (3.159) \quad \frac{h_{l-1}^3 |y_{l-1}^{\theta} - x_{i-1}|^{1-\alpha} u''(\eta_{l-1}^{\theta}) - h_l^3 |y_l^{\theta} - x_i|^{1-\alpha} u''(\eta_l^{\theta})}{(h_i + h_{i+1}) h_i} \le C h_l^2 |y_l^{\theta} - x_i|^{1-\alpha} u''(\eta_l^{\theta})$$

470 So

471 (3.160)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) \le Ch^2$$

472 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

(3.161)
$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,l} \le h_i^{-3} h^2 x_i^{1-2/r} h_l C h_l^2 x_{l-1}^{\alpha/2-2} |x_l - x_i|^{1-\alpha} < C h^2$$

474 Summarizes, we have

475 (3.162)
$$I_6 \le Ch^2$$

476 And

LEMMA 3.36. There is a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le 478$ $i \le N$,

479 (3.163)
$$I_{7} = \sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N} S_{ij}$$

$$\leq \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^{2} \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

480 *Proof.* For $i \leq N, j \geq 2N - \lceil \frac{N}{2} \rceil + 2$, we have

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} |y - x_{i+1}^{-1-\alpha} dy$$

$$\leq Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

482

$$\sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{(2-2^{-r})T}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(2^{-r}T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

Now we can conclude a part of the theorem Theorem 3.3 at the beginning of this section.

 $\,$ By Lemma 3.8 Lemma 3.22 Lemma 3.23 Theorem 3.29 Theorem 3.28 Theorem 3.35 Lemma 3.36 , we have

Theorem 3.37. there exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for N/2 < i < N,

$$R_{i} = \sum_{j=1}^{7} I_{j}$$

$$\leq C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

And what we left is the case i = N. Fortunately, we can use the same department of R_i above, and it is symmetric. Most of the item has been esitmated by Lemma 3.8 and Theorem 3.35, we just need to consider I_3 , I_4 .

494

Theorem 3.38. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

496 (3.166)
$$I_3 = \sum_{j=\lceil \frac{N}{2} \rceil + 1}^{N-1} V_{Nj} \le Ch^2 + C(r-1)h^2 |T - x_{N-1}|^{1-\alpha}$$

497 Proof. Definition 3.39. For $N/2 \le j < N$, Let's define

498 (3.167)
$$y_j(x) = \left(\frac{Z_1}{h_N}(x - x_N) + Z_j\right)^r, \quad Z_j = T^{1/r} \frac{j}{N}$$

We can see that is the inverse of the function $_{0}y_{N-i}(x)$ defined in Theorem 3.29.

500 (3.168)
$$y'_j(x) = y_j^{1-1/r}(x) \frac{rZ_1}{h_N}$$

501 (3.169)
$$y_j''(x) = y_j^{1-2/r}(x) \frac{r(r-1)Z_1}{h_N}$$

With the scheme we used several times, we can get

LEMMA 3.40. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le j < N, \xi \in [x_{N-1}, x_{N+1}],$

505 (3.170)
$$h_i(\xi)^3 \le Ch^3$$

506
$$(3.171)$$
 $(h_i^3(\xi))' \le C(r-1)h^3$

507 (3.172)
$$(h_j^3(\xi))'' \le C(r-1)h^3$$

508

509 (3.173)
$$u''(y_i^{\theta}(\xi)) \le C$$

510 (3.174)
$$(u''(y_j^{\theta}(\xi)))' \le C$$

511
$$(3.175)$$
 $(u''(y_i^{\theta}(\xi)))'' \leq C$

512

513
$$(3.176)$$
 $|\xi - y_j^{\theta}(\xi)|^{1-\alpha} \le C|x_N - y_j^{\theta}|^{1-\alpha}$

514 (3.177)
$$(|\xi - y_i^{\theta}(\xi)|^{1-\alpha})' \le C|x_N - y_i^{\theta}|^{1-\alpha}$$

515 (3.178)
$$(|\xi - y_i^{\theta}(\xi)|^{1-\alpha})'' \le C|x_N - y_i^{\theta}|^{1-\alpha} + C(r-1)|x_N - y_i^{\theta}|^{-\alpha}$$

Lemma 3.41. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le j < N$,

518 (3.179)
$$V_{Nj} \le Ch^2 \int_{x_{j-1}}^{x_j} |x_N - y|^{1-\alpha} + (r-1)|x_N - y|^{-\alpha} dy$$

519 Therefore,

$$I_{3} \leq Ch^{2} \int_{x_{\lceil \frac{N}{2} \rceil}}^{x_{N-1}} |x_{N} - y|^{1-\alpha} + (r-1)|x_{N} - y|^{-\alpha} dy$$

$$\leq Ch^{2} (|T - x_{N-1}|^{2-\alpha} + (r-1)|T - x_{N-1}|^{1-\alpha})$$

For
$$j = N$$
,

LEMMA 3.42.

$$V_{N,N} = \frac{1}{h_N^2} \left(T_{N-1,N-1} - 2T_{N,N} + T_{N+1,N+1} \right) \le Ch^2 + C(r-1)h^2 |T - x_{N-1}|^{1-\alpha}$$

$$\begin{split} &Proof.\\ &(3.182)\\ &V_{N,N} = \int_{0}^{1} -\frac{\theta(1-\theta)^{2-\alpha}}{2} \frac{1}{h_{N}^{2}} \left(h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - 2 h_{N}^{4-\alpha} u''(y_{N}^{\theta}) + h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) d\theta \\ &+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{N\to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{N}} \right) d\theta \\ &- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N}) u'''(\eta_{N,1}^{\theta}) - Q_{N\to N}^{\theta}(x_{N-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{N}} \right) d\theta \\ &- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N}) u'''(\eta_{N+1,2}^{\theta}) - Q_{N\to N}^{\theta}(x_{N}) u'''(\eta_{N,2}^{\theta})}{h_{N}} \right) d\theta \\ &+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N}) u'''(\eta_{N,2}^{\theta}) - Q_{N\to N}^{\theta}(x_{N-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{N}} \right) d\theta \end{split}$$

So combine Lemma 3.8, Theorem 3.35, Theorem 3.38, Lemma 3.42 We have Lemma 3.43.

$$R_N \le C(r-1)h^2|T-x_{N-1}|^{1-\alpha} + \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

and with Theorem 3.37 we prove the Theorem 3.3

- 527 4. Convergence analysis.
- **4.1. Properties of some Matrices.** Review subsection 2.1, we have got (2.10).
- Definition 4.1. We call one matrix an M matrix, which means its entries are
- 530 positive on major diagonal and nonpositive on others, and strictly diagonally dominant
- 531 in rows.
- Now we have
- Lemma 4.2. Matrix A defined by (2.12) where (2.13) is an M matrix. And there
- exists a constant $C_A = C(T, \alpha, r)$ such that

535 (4.1)
$$S_i := \sum_{j=1}^{2N-1} a_{ij} \ge C_A (x_i^{-\alpha} + (2T - x_i)^{-\alpha})$$

536 Proof. From (2.14), we have

$$\sum_{j=1}^{2N-1} \tilde{a}_{ij} = \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_0|^{3-\alpha} - |x_i - x_1|^{3-\alpha}}{h_1} + \frac{|x_{2N} - x_i|^{3-\alpha} - |x_{2N-1} - x_i|^{3-\alpha}}{h_{2N}} \right)$$

- 538 Let
- 539 (4.3) $g(x) = g_0(x) + g_{2N}(x)$
- 540 where

$$g_0(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x-x_0|^{3-\alpha} - |x-x_1|^{3-\alpha}}{h_1}$$

$$g_{2N}(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x_{2N} - x|^{3-\alpha} - |x_{2N-1} - x|^{3-\alpha}}{h_{2N}}$$

543 Thus

$$-\kappa_{\alpha} \sum_{j=1}^{2N-1} \tilde{a}_{ij} = g(x_i)$$

545 Then

$$S_{i} := \sum_{j=1}^{2N-1} a_{ij}$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= D_{h}^{2} g_{0}(x_{i}) + D_{h}^{2} g_{2N}(x_{i})$$

547 When i = 1

$$D_h^2 g_0(x_1) = \frac{2}{h_1 + h_2} \left(\frac{1}{h_2} g_0(x_2) - (\frac{1}{h_1} + \frac{1}{h_2}) g_0(x_1) + \frac{1}{h_1} g_0(x_0) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_1^{3-\alpha} + h_2^{3-\alpha} + 2h_1^{2-\alpha} h_2 - (h_1 + h_2)^{3-\alpha}}{(h_1 + h_2) h_1 h_2}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_1^{3-\alpha} + h_2^{3-\alpha} + 2h_1^{2-\alpha} h_2 - (h_1 + h_2)^{3-\alpha}}{(h_1 + h_2) h_1^{1-\alpha} h_2} h_1^{-\alpha}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{1 + (2^r - 1)^{3-\alpha} + 2(2^r - 1) - (2^r)^{3-\alpha}}{2^r (2^r - 1)} h_1^{-\alpha}$$

549 but

550 (4.6)
$$1 + (2^r - 1)^{3-\alpha} + 2(2^r - 1) - (2^r)^{3-\alpha} > 0$$

551 While for $i \geq 2$

$$D_h^2 g_0(x_i) = g_0''(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

$$= -\kappa_\alpha \frac{|\xi - x_0|^{1-\alpha} - |\xi - x_1|^{1-\alpha}}{\Gamma(2-\alpha)h_1}$$

$$= \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} |\xi - \eta|^{-\alpha}, \quad \eta \in [x_0, x_1]$$

$$\geq \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} x_{i+1}^{-\alpha} \geq \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} 2^{-r\alpha} x_i^{-\alpha}$$

553 So

554 (4.8)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_0(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_0(x_i) + \frac{1}{h_i} g_0(x_{i-1}) \right) \ge C x_i^{-\alpha}$$

555 symmetricly,

$$\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_{2N}(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_{2N}(x_i) + \frac{1}{h_i} g_{2N}(x_{i-1}) \right) \ge C(\alpha, r) (2T - x_i)^{-\alpha}$$

557 Let

558 (4.10)
$$g(x) = \begin{cases} x, & 0 < x \le T \\ 2T - x, & T < x < 2T \end{cases}$$

559 And define

560 (4.11)
$$G = \operatorname{diag}(q(x_1), ..., q(x_{2N-1}))$$

561 Then

LEMMA 4.3. The matrix B := AG, the major diagnal is positive, and nonpositive

on others. And there is a constant
$$C_{AG}$$
, $C = C(\alpha, r)$ such that

$$564 \quad (4.12) \quad M_i := \sum_{j=1}^{2N-1} b_{ij} \ge -C_{AG}(x_i^{1-\alpha} + (2T - x_i)^{1-\alpha}) + C \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

Proof.

$$565 b_{ij} = a_{ij}g(x_j) = -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{a}_{i+1,j} - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) \tilde{a}_{i,j} + \frac{1}{h_i} \tilde{a}_{i-1,j} \right) g(x_j)$$

566 Since

$$567 \quad (4.13) \qquad \qquad g(x) \equiv \Pi_h g(x)$$

568 by ??, we have

$$\tilde{M}_{i} := \sum_{j=1}^{2N-1} \tilde{b}_{ij} = \sum_{j=1}^{2N-1} \tilde{a}_{ij} g(x_{j})$$

$$= \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} \Pi_{h} g(y) dy = \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} g(y) dy$$

$$= \frac{-2}{\Gamma(4-\alpha)} |T - x_{i}|^{3-\alpha} + \frac{1}{\Gamma(4-\alpha)} (x_{i}^{3-\alpha} + (2T - x_{i})^{3-\alpha})$$

$$:= w(x_{i}) = p(x_{i}) + q(x_{i})$$

570 Thus,

573

574

$$M_{i} := \sum_{j=1}^{2N-1} b_{ij} = \sum_{j=1}^{2N-1} a_{ij} g(x_{j})$$

$$= -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{M}_{i+1} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) \tilde{M}_{i} + \frac{1}{h_{i}} \tilde{M}_{i-1} \right)$$

$$= D_{h}^{2} (-\kappa_{\alpha} p)(x_{i}) - \kappa_{\alpha} D_{h}^{2} q(x_{i})$$

572 for $1 \le i \le N - 1$, by Lemma A.1 (4.16)

$$D_h^2(-\kappa_{\alpha}p)(x_i) := -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} p(x_{i+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) p(x_i) + \frac{1}{h_i} p(x_{i-1}) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} |T - \xi|^{1-\alpha} \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\geq \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} |T - x_{i-1}|^{1-\alpha}$$

$$(4.17) D_h^2(-\kappa_{\alpha}p)(x_N) := -\kappa_{\alpha} \frac{2}{h_N + h_{N+1}} \left(\frac{1}{h_{N+1}} p(x_{N+1}) - (\frac{1}{h_N} + \frac{1}{h_{N+1}}) p(x_N) + \frac{1}{h_N} p(x_{N-1}) \right)$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4-\alpha)h_N^2} h_N^{3-\alpha}$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4-\alpha)} (T - x_{N-1})^{1-\alpha}$$

Symmetricly for $i \geq N$, we get

577 (4.18)
$$D_h^2(-\kappa_{\alpha}p)(x_i) \ge \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

578 Similarly, we can get

$$D_h^2 q(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} q(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) q(x_i) + \frac{1}{h_i} q(x_{i-1}) \right)$$

$$\leq \frac{2^{r(\alpha - 1) + 1}}{\Gamma(2 - \alpha)} (x_i^{1 - \alpha} + (2T - x_i)^{1 - \alpha}), \quad i = 1, \dots, 2N - 1$$

580 So, we get the result.

Notice that

582 (4.20)
$$x_i^{-\alpha} \ge (2T)^{-1} x_i^{1-\alpha}$$

583 We can get

THEOREM 4.4. There exists a real $\lambda = \lambda(T, \alpha, r) > 0$ and $C = C(T, \alpha, r) > 0$ such that $B := A(\lambda I + G)$ is an M matrix. And

586 (4.21)
$$M_i := \sum_{j=1}^{2N-1} b_{ij} \ge C(x_i^{-\alpha} + (2T - x_i)^{-\alpha}) + C \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

587 Proof. By Lemma 4.2 with C_A and Lemma 4.3 with C_{AG} , it's sufficient to take

588 $\lambda = (C + 2TC_{AG})/C_A$, then

589 (4.22)
$$M_i \ge C \left((x_i^{-\alpha} + (1 - x_i)^{-\alpha}) + \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases} \right)$$

590 **4.2. Proof of Theorem 2.6.** For equation

591 (4.23)
$$AU = F \Leftrightarrow A(\lambda I + G)(\lambda I + G)^{-1}U = F$$
 i.e. $B(\lambda I + G)^{-1}U = F$

592 which means

593 (4.24)
$$\sum_{j=1}^{2N-1} b_{ij} \frac{\epsilon_j}{\lambda + g(x_j)} = -\tau_i$$

594 where $\epsilon_i = u(x_i) - u_i$.

595 And if

596 (4.25)
$$|\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| = \max_{1 \le i \le 2N-1} |\frac{\epsilon_i}{\lambda + g(x_i)}|$$

Then, since $B = A(\lambda I + G)$ is an M matrix, it is Strictly diagonally dominant. Thus,

$$|\tau_{i_0}| = |\sum_{j=1}^{2N-1} b_{i_0,j} \frac{\epsilon_j}{\lambda + g(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_j}{\lambda + g(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

$$= \sum_{j=1}^{2N-1} b_{i_0,j} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

$$= M_{i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

By Theorem 2.5 and Theorem 4.4,

We knwn that there exists constants $C_1(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{\beta}^{(\alpha/2)})$,

and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

602 (4.27)
$$|\frac{\epsilon_i}{\lambda + a(x_i)}| \le |\frac{\epsilon_{i_0}}{\lambda + a(x_{i_0})}| \le C_1 h^{\min\{\frac{r\alpha}{2}, 2\}} + C_2(r-1)h^2$$

A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MES \$B

603 as
$$\lambda + g(x_i) \le \lambda + T$$

605 (4.28)
$$|\epsilon_i| \le C(\lambda + T)h^{\min\{\frac{r\alpha}{2}, 2\}}$$

- The convergency has been proved.
- Remarks:

- 5. Experimental results.
- 609 **5.1.** $f \equiv 1$.
- 5.2. $f = x^{\gamma}, \gamma < 0$. Appendix A. Approximate of difference quotients.
- LEMMA A.1. If $g(x) \in C^2(\Omega)$, there exists $\xi \in (x_{i-1}, x_{i+1})$ such that

$$D_h^2 g(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right)$$

$$= g''(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

(A.2)
$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} g''(y) (y - x_{i-1}) dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} g''(y) (x_{i+1} - y) dy \right)$$

615 And if $g(x) \in C^4(\Omega)$, then
(A 3)

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= g''(x_{i}) + \frac{h_{i+1} - h_{i}}{3} g'''(x_{i}) + \frac{1}{4!} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} g''''(\eta_{1}) + h_{i+1}^{3} g''''(\eta_{2}))$$

617 where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}].$ Proof.

618
$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in (x_{i-1}, x_i)$$

619
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in (x_i, x_{i+1})$$

620 Substitute them in the left side of (A.1), we have

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{h_{i}}{h_{i} + h_{i+1}} g''(\xi_{1}) + \frac{h_{i+1}}{h_{i} + h_{i+1}} g''(\xi_{2})$$

Now, using intermediate value theorem , there exists $\xi \in [\xi_1, \xi_2]$ such that

623
$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

624 For the second equation, similarly

625
$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \int_{x_{i-1}}^{x_i} g''(y)(y - x_{i-1})dy$$

626
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \int_{x_i}^{x_{i+1}} g''(y)(x_{i+1} - y)dy$$

627 And the last equation can be obtained by

$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$629 g(x_{i+1}) = g(x_i) + h_{i+1}g'(x_i) + \frac{h_{i+1}^2}{2}g''(x_i) + \frac{h_{i+1}^3}{3!}g'''(x_i) + \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

630 Expecially,

$$\int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy = \frac{h_i^4}{4!} g''''(\eta_1)$$

$$\int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy = \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

where $\eta_1 \in (x_{i-1}, x_i), \eta_2 \in (x_i, x_{i+1})$. Substitute them to the left side of (A.3), we can

633 get the result.

634 LEMMA A.2. Denote
$$y_j^{\theta} = \theta x_{j-1} + (1-\theta)x_j, \theta \in [0,1],$$

635 (A.5)
$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

636 (A.6)

637
$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!} h_j^3 ((1-\theta)^2 u'''(\eta_1) - \theta^2 u'''(\eta_2))$$

638 where
$$\eta_1 \in [x_{j-1}, y_i^{\theta}], \eta_2 \in [y_i^{\theta}, x_j].$$

639 *Proof.* By Taylor expansion, we have

640
$$u(x_{j-1}) = u(y_j^{\theta}) - (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in [x_{j-1}, y_j^{\theta}]$$

641
$$u(x_j) = u(y_j^{\theta}) + \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in [y_j^{\theta}, x_j]$$

642 Thus

$$u(y_{j}^{\theta}) - \Pi_{h}u(y_{j}^{\theta}) = u(y_{j}^{\theta}) - \theta u(x_{j-1}) - (1 - \theta)u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}((1 - \theta)u''(\xi_{1}) + \theta u''(\xi_{2}))$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(\xi), \quad \xi \in [\xi_{1}, \xi_{2}]$$

644 The second equation is similar,

$$u(x_{j-1}) = u(y_j^{\theta}) - (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{(1 - \theta)^3 h_j^3}{3!} u'''(\eta_1)$$

$$u(x_j) = u(y_j^{\theta}) + \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{\theta^3 h_j^3}{3!} u'''(\eta_2)$$

647 where $\eta_1 \in [x_{j-1}, y_j^{\theta}], \eta_2 \in [y_j^{\theta}, x_j]$. Thus

$$u(y_{j}^{\theta}) - \Pi_{h}u(y_{j}^{\theta}) = u(y_{j}^{\theta}) - \theta u(x_{j-1}) - (1 - \theta)u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(y_{j}^{\theta}) + \frac{\theta(1 - \theta)}{3!}h_{j}^{3}((1 - \theta)^{2}u'''(\eta_{1}) - \theta^{2}u'''(\eta_{2}))$$

649 LEMMA A.3. For $x \in [x_{j-1}, x_j]$

$$|u(x) - \Pi_h u(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

If $x \in [0, x_1]$, with Corollary 2.4, we have 651

652 (A.8)
$$|u(x) - \Pi_h u(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2}$$

Similarly, if $x \in [x_{2N-1}, 1]$, we have 653

654 (A.9)
$$|u(x) - \Pi_h u(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} x_1^{\alpha/2}$$

Lemma A.4

655 (A.10)
$$b^{1-\theta}|a^{\theta}-b^{\theta}| \le |a-b|$$
 (also $a^{1-\theta}|a^{\theta}-b^{\theta}| \le |a-b|$), $a,b \ge 0, \ \theta \in [0,1]$

Appendix B. Inequality. For convenience, we use the notation and \simeq . That 656 $x_1 \simeq y_1$, means that $c_1x_1 \leq y_1 \leq C_1x_1$ for some constants c_1 and c_1 that are 657 independent of mesh parameters. 658

659

Lemma B.1.

660 (B.1)
$$h_i \le rT^{1/r}h \begin{cases} x_i^{1-1/r}, & 1 \le i \le N \\ (2T - x_{i-1})^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

661

662 (B.2)
$$h_i \ge rT^{1/r}h \begin{cases} x_{i-1}^{1-1/r}, & 1 \le i \le N \\ (2T - x_i)^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

Proof. For $1 \le i \le N$, 663

$$h_{i} = T\left(\left(\frac{i}{N}\right)^{r} - \left(\frac{i-1}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{i}{N}\right)^{r-1} = rT^{1/r}hx_{i}^{1-1/r}$$

665 666

670

$$h_i \ge rT\frac{1}{N} \left(\frac{i-1}{N}\right)^{r-1} = rT^{1/r}hx_{i-1}^{1-1/r}$$

For $N < i \le 2N$, 667

$$h_{i} = T\left(\left(\frac{2N - i + 1}{N}\right)^{r} - \left(\frac{2N - i}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{2N - i + 1}{N}\right)^{r-1} = rT^{1/r}h(2T - x_{i-1})^{1-1/r}$$

$$h_{i} \geq rT\frac{1}{N}\left(\frac{2N - i}{N}\right)^{r-1} = rT^{1/r}h(2T - x_{i})^{1-1/r}$$

This manuscript is for review purposes only.

671

672 Lemma B.2. There is a constant $C=2^{|r-2|}r(r-1)T^{2/r}$ such that for all $i\in\{1,2,\cdots,2N-1\}$

674 (B.3)
$$|h_{i+1} - h_i| \le Ch^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

Proof.

675
$$h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

676 For i = 1,

677
$$h_2 - h_1 = T(2^r - 2) \left(\frac{1}{N}\right)^r = (2^r - 2)T^{2/r}h^2x_1^{1 - 2/r}$$

For $2 \le i \le N - 1$, by Lemma A.1, we have

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2}, \quad \eta \in \left[\frac{i-1}{N}, \frac{i+1}{N}\right]$$
$$= C(r-1)h^2 x_i^{1-2/r}$$

680 Summarizes the inequalities, we can get

681 (B.4)
$$|h_{i+1} - h_i| \le 2^{|r-2|} r(r-1) T^{2/r} h^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

682 Appendix C. Proofs of some technical details.

Additional proof of Theorem 3.1. For $2 \le i \le N-1$,

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

$$\leq C \frac{2}{h_i + h_{i+1}} (h_i^3 x_{i-1}^{-2-\alpha/2} + h_{i+1}^3 x_i^{-2-\alpha/2})$$

$$\leq 2C (h_i^2 x_{i-1}^{-2-\alpha/2} + h_{i+1}^2 x_i^{-2-\alpha/2})$$

There is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

686
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le C h^2 x_i^{-\alpha/2 - 2/r}, \quad 2 \le i \le N - 1$$

687 For i = 1, by (A.4)

$$\frac{1}{4!} \frac{2}{h_1 + h_2} (h_1^3 f''(\eta_1) + h_2^3 f''(\eta_2))$$

$$= \frac{2}{h_1 + h_2} \left(\frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy + \frac{1}{4!} h_2^3 f''(\eta_2) \right)$$

689 We have proved above that

$$\frac{2}{h_1 + h_2} h_2^3 f''(\eta_2) \le C h^2 x_1^{-\alpha/2 - 2/r}$$

and we can get

$$\int_0^{x_1} f''(y) \frac{y^3}{3!} dy \le C \frac{1}{3!} \int_0^{x_1} y^{1-\alpha/2} dy$$

$$= C \frac{1}{3!(2-\alpha/2)} x_1^{2-\alpha/2}$$

693 SC

696

$$694 \qquad \frac{2}{h_1 + h_2} \frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy = \frac{C2^{1-r}}{3!(2 - \alpha/2)} x_1^{-\alpha/2} = \frac{C2^{1-r}}{3!(2 - \alpha/2)} T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

695 And for i = N, we have

$$\frac{2}{h_N + h_{N+1}} (h_N^3 f''(\eta_1) + h_{N+1}^3 f''(\eta_2))$$

$$= h_N^2 (f''(\eta_1) + f''(\eta_2))$$

$$\leq r^2 T^{2/r} h^2 x_N^{2-2/r} 2C x_{N-1}^{-2-\alpha/2}$$

$$\leq 2r^2 T^{2/r} C 2^{-r(-2-\alpha/2)} h^2 x_N^{-\alpha/2-2/r}$$

697 Finally, $N+1 \le i \le 2N-1$ is symmetric to the first half of the proof, so we can

698 conclude that

699
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N \le i \le 2N - 1 \end{cases}$$

Lemma C.1. By a standard error estimate for linear interpolation, and Corol-

lary 2.4, There is a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ for $2 \le j \le N$,

702 (C.1)
$$|u(y) - \Pi_h u(y)| \le Ch^2 y^{\alpha/2 - 2/r}, \quad \text{for } y \in [x_{j-1}, x_j]$$

symmetricly, for $N < j \le 2N - 1$, we have

704 (C.2)
$$|u(y) - \Pi_h u(y)| \le Ch^2 (2T - y)^{\alpha/2 - 2/r}$$

LEMMA C.2. There is a constant $C = C(\alpha, r)$ such that for all $1 \le i < N/2$,

706 $\max\{2i+1, i+3\} \le j \le 2N$, we have

707 (C.3)
$$D_h^2 K_y(x_i) \le C \frac{y^{-1-\alpha}}{\Gamma(-\alpha)}, \quad y \in [x_{j-1}, x_j]$$

708 *Proof.* Since $y \ge x_{i-1} > x_{i+1}$, by Lemma A.1, if j - 1 > i + 1

$$D_{h}^{2}K_{y}(x_{i}) = K_{y}''(\xi) = \frac{|y - \xi|^{-1 - \alpha}}{\Gamma(-\alpha)}, \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq \frac{(y - x_{i+1})^{-1 - \alpha}}{\Gamma(-\alpha)}$$

$$\leq (1 - (\frac{2}{3})^{r})^{-1 - \alpha} \frac{y^{-1 - \alpha}}{\Gamma(-\alpha)}$$

LEMMA C.3. There is a constant $C = C(\alpha, r)$ such that for all $3 \le i \le N, k = \lceil \frac{i}{2} \rceil$, $1 \le j \le k-1$ and $y \in [x_{j-1}, x_j]$, we have

712 (C.4)
$$D_h^2 K_y(x_i) \le C \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

713 Proof. Since $y \le x_j < x_{i-1}$, by Lemma A.1,

$$D_h^2 K_y(x_i) = \frac{|\xi - y|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq \frac{(x_{i-1} - x_j)^{-1-\alpha}}{\Gamma(-\alpha)} \leq \frac{(x_{i-1} - x_{k-1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq ((\frac{2}{3})^r - (\frac{1}{2})^r)^{-1-\alpha} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

715

The Lemma C.4. While $0 \le i < N/2$, By Lemma A.3

$$|T_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} \frac{|x_i - y|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$
717 (C.5)
$$= C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2} \left| x_i^{2-\alpha} - |x_i - x_1|^{2-\alpha} \right|$$

$$\le C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2+2-\alpha} = C \frac{1}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \quad 0 < 2 - \alpha < 1$$

718 For $2 \le j \le N$, by Lemma A.2 and Corollary 2.4

$$|T_{ij}| \leq \frac{C}{4} \int_{x_{j-1}}^{x_j} h_j^2 x_{j-1}^{\alpha/2-2} \frac{|y-x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$\leq \frac{C}{4\Gamma(3-\alpha)} h_j^2 x_{j-1}^{\alpha/2-2} \left| |x_j - x_i|^{2-\alpha} - |x_{j-1} - x_i|^{2-\alpha} \right|$$

LEMMA C.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

721 (C.7)
$$\sum_{j=1}^{3} S_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

722

723 (C.8)
$$\sum_{j=1}^{4} S_{2j} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

724

Proof.

$$S_{1j} = \frac{2}{x_2} \left(\frac{1}{x_1} T_{0j} - \left(\frac{1}{x_1} + \frac{1}{h_2} \right) T_{1j} + \frac{1}{h_2} T_{2j} \right)$$

726 So, by Lemma C.4

$$S_{11} \le \frac{2}{x_2 x_1} 4 \frac{C}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \le C x_1^{-\alpha/2}$$

728
$$S_{12} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_2^2 x_1^{\alpha/2-2} \left(x_2^{2-\alpha} + 2h_2^{2-\alpha} + h_2^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

730
$$S_{13} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_3^2 x_2^{\alpha/2-2} \left(x_3^{2-\alpha} + 2x_3^{2-\alpha} + h_3^{2-\alpha}\right) \le C x_1^{-\alpha/2}$$

732 But

733
$$x_1^{-\alpha/2} = T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

734
$$i=2$$
 is similar.

735

The Lemma C.6. There exists a constant C = C(T, r, l) such that For $3 \le i \le N - 1$, $k = \lceil \frac{i}{2} \rceil, k \le j \le \min\{2i - 1, N - 1\}$,

738 when $\xi \in (x_{i-1}, x_{i+1})$,

739 (C.9)
$$(h_{j-i}^3(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j$$

740

741 (C.10)
$$(h_{j-i}^4(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j^2$$

742 *Proof.* From (3.32)

743 (C.11)
$$y'_{j-i}(x) = y_{j-i}^{1-1/r}(x)x^{1/r-1}$$

744 (C.12)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

745 For $\xi \in (x_{i-1}, x_{i+1})$ and $2 \le k \le j \le \min\{2i - 1, N - 1\}$, using Lemma B.1

746
$$\xi \simeq x_i \simeq x_j$$

747

$$h_{j-i}(\xi) \simeq h_j \simeq hx_j^{1-1/r} \simeq hx_i^{1-1/r}$$

749 (C.13)
$$h'_{j-i}(\xi) = y'_{j-i}(\xi) - y'_{j-i-1}(\xi) \\ = \xi^{1/r-1} (y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi))$$

750 Since

$$y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi) \le x_{j+1}^{1-1/r} - x_{j-2}^{1-1/r}$$

$$= T^{1-1/r}N^{1-r}((j+1)^{r-1} - (j-2)^{r-1})$$

$$\le C(r-1)j^{r-2}N^{1-r}$$

$$= C(r-1)hx_j^{1-2/r}$$

752 Therefore,

753 (C.15)
$$h'_{i-i}(\xi) \le Cx_i^{1/r-1}(r-1)hx_i^{1-2/r} \simeq (r-1)hx_i^{-1/r}$$

for
$$l = 3, 4$$

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h'_{j-i}(\xi)$$

$$\leq Ch_{j-i}^{l-1}(\xi)(r-1)hx_{i}^{-1/r}$$

$$\simeq Ch_{j}^{l-2}hx_{j}^{1-1/r}(r-1)hx_{i}^{-1/r}$$

$$\simeq C(r-1)h^{2}x_{i}^{1-2/r}h_{j}^{l-2}$$

Meanwhile, we can get

757 (C.17)
$$h_{j-i}^{3}(\xi) \simeq h_{j}^{3} \leq Ch^{2}x_{i}^{2-2/r}h_{j}$$
758 (C.18)
$$h_{j-i}^{4}(\xi) \simeq h_{j}^{4} \leq Ch^{2}x_{i}^{2-2/r}h_{j}^{2}$$

759

The Lemma C.7. There exists a constant C = C(T, r, l) such that For $3 \le i \le N - 1$, $\lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\}$,

762 $when \xi \in (x_{i-1}, x_{i+1}),$

763 (C.19)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

Proof.

764 (C.20)
$$(h_{j-i}^3(\xi))'' = 6h_{j-i}(\xi)(h'_{j-i}(\xi))^2 + 3h_{j-i}^2(\xi)h''_{j-i}(\xi)$$

765 By (C.15)

766 (C.21)
$$h_{j-i}(\xi)(h'_{j-i}(\xi))^2 \le Ch_j(r-1)^2 h^2 x_i^{-2/r}$$

767 For the second partial

$$h_{j-i}''(\xi) = y_{j-i}''(\xi) - y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (y_{j-i}^{1-2/r}(\xi) Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi) Z_{j-i-1})$$

$$= \frac{1-r}{r} \xi^{1/r-2} ((y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi)) Z_{j-i} + y_{j-i-1}^{1-2/r}(\xi) Z_1)$$

769 but

$$|y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi)| \le |x_{j+1}^{1-2/r} - x_{j-2}^{1-2/r}|$$

$$= T^{1-2/r}N^{2-r}|(j+1)^{r-2} - (j-2)^{r-2}|$$

$$\le C|r-2|N^{2-r}j^{r-3}$$

$$= C|r-2|hx_j^{1-3/r}$$

771 So we can get

772 (C.24)
$$|h_{j-i}''(\xi)| \le C(r-1)x_i^{1/r-2}(|r-2|hx_i^{1-3/r}x_i^{1/r} + x_i^{1-2/r}h)$$

$$\le C(r-1)hx_i^{-1-1/r}$$

773 Summarizes, we have

774 (C.25)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_i$$

775 proof of Lemma 3.16. From (3.32)

776 (C.26)
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

777 (C.27)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

778 Since

$$y_{j-i}^{\theta}(\xi) \simeq x_j \simeq x_i$$

780 We have known

781 (C.28)
$$u''(y_{i-i}^{\theta}(\xi)) \le C(y_{i-i}^{\theta}(\xi))^{\alpha/2-2} \simeq x_i^{\alpha/2-2} \simeq x_i^{\alpha/2-2}$$

782

$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$

$$\leq Cx_{i}^{\alpha/2-3}\xi^{1/r-1}y_{j-i}^{1-1/r}(\xi)$$

$$\simeq x_{i}^{\alpha/2-3}x_{i}^{1/r-1}x_{i}^{1-1/r} = Cx_{i}^{\alpha/2-3}$$

784

$$(u''(y_{j-i}^{\theta}(\xi)))'' = u''''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^{2} + u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-4} + Cx_{i}^{\alpha/2-3}\frac{r-1}{r}x_{i}^{1-2/r}x_{i}^{1/r-2}Z_{|j-i|+1}$$

$$\leq Cx_{i}^{\alpha/2-4} + C\frac{r-1}{r}x_{i}^{\alpha/2-3}x_{i}^{-1-1/r}x_{i}^{1/r}$$

$$= Cx_{i}^{\alpha/2-4}$$

Proof of Lemma 3.17.

786 (C.31)
$$|y_{j-i}^{\theta}(\xi) - \xi| = |\theta(y_{j-i-1}(\xi) - \xi) + (1 - \theta)(y_{j-i}(\xi) - \xi)|$$
$$= \theta|y_{j-i-1}(\xi) - \xi| + (1 - \theta)|y_{j-i}(\xi) - \xi|$$

where $y_{j-i-1}(\xi) - \xi$ and $y_{j-i}(\xi) - \xi$ have the same sign (≥ 0 or ≤ 0), independent

788 with ξ .

Since
$$|y_{j-i}(\xi) - \xi| = \operatorname{sign}(j-i)(y_{j-i}(\xi) - \xi)$$
 is increasing with ξ ,

790
$$(\frac{i-1}{i})^r |x_j - x_i| \le |x_{j-1} - x_{i-1}| \le |y_{j-i}(\xi) - \xi| \le |x_{j+1} - x_{i+1}| \le (\frac{i+1}{i})^r |x_j - x_i|$$

791 we have

792 (C.33)
$$|y_{i-i}(\xi) - \xi| \simeq |x_i - x_i|$$

793 Similarly, $|y_{j-1-i}(\xi) - \xi| \simeq |x_{j-1} - x_i|$. Thus, with (C.31), (C.33) and (3.30) we get

794 (C.34)
$$|y_{i-i}^{\theta}(\xi) - \xi| \simeq |y_{i}^{\theta} - x_{i}|$$

Next, since $|y_{i-i}^{\theta}(\xi) - \xi| = \text{sign}(j - i - 1 + \theta)(y_{i-i}^{\theta}(\xi) - \xi)$, so we can derivate it.

796 (C.35)
$$|(|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha})'| = (\alpha - 1)|y_{i-i}^{\theta}(\xi) - \xi|^{-\alpha}|(y_{i-i}^{\theta}(\xi))' - 1|$$

797 While, similar with (C.31), we have

798 (C.36)
$$|(y_{i-i}^{\theta}(\xi))' - 1| = (1 - \theta)|y_{i-i-1}'(\xi) - 1| + \theta|y_{i-i}'(\xi) - 1|$$

799 By Lemma A.4 and (C.33), we have

$$|y'_{j-i}(\xi) - 1| = \xi^{1/r-1} |y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

$$\leq \xi^{-1} |y_{j-i}(\xi) - \xi|$$

$$\simeq x_i^{-1} |x_j - x_i|$$

801 So similar with (C.34), we can get

802 (C.38)
$$|(y_{j-i}^{\theta}(\xi))' - 1| \le Cx_i^{-1}|y_j^{\theta} - x_i|$$

803 Combine with (C.34), we get

804 (C.39)
$$|(|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha})'| \le C|y_i^{\theta} - x_i|^{-\alpha} x_i^{-1} |y_i^{\theta} - x_i| = C|y_i^{\theta} - x_i|^{1-\alpha} x_i^{-1} |y_i^{\theta} - x_i| = C|y_i^{\theta} - x_i|^{1-\alpha} x_i^{-1} |y_i^{\theta} - x_i|^{1-\alpha} |y_i^{\theta} - x_i|^{1-$$

805 Finally, we have

806 (C.40)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1}((y_{j-i}^{\theta}(\xi))' - 1)^{2}$$
$$+ \operatorname{sign}(j - i - 1 + \theta)(1 - \alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi))''$$

807 For

808 (C.41)
$$(y_{i-i}^{\theta}(\xi))'' = (1-\theta)y_{i-i-1}''(\xi) + \theta y_{i-i}''(\xi)$$

809 and

810 (C.42)
$$y_{j-i}''(\xi) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$
$$\simeq \frac{1-r}{r} x_j^{1-2/r} x_i^{1/r-2} Z_{j-i}$$

811 while by Lemma A.4

812 (C.43)
$$|Z_{j-i}| = |x_j^{1/r} - x_i^{1/r}| \le |x_j - x_i| x_i^{1/r-1}$$

813 we have

814 (C.44)
$$|y_{j-i}''(\xi)| \le C(r-1)x_i^{-2}|x_j - x_i|$$

815 Therefore

816 (C.45)
$$|(y_{j-i}^{\theta}(\xi))''| \le C(r-1)x_i^{-2}|y_j^{\theta} - x_i|$$

817 Then, combine with (C.38),

818 (C.46)
$$|(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})''| \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

819 proof of Lemma 3.19. For $k \le j < \min\{2i - 1, N - 1\}$

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$
820 (C.47)
$$\frac{Q_{j-i}^{\theta}(x_{i+1}) - Q_{j-i}^{\theta}(x_{i})}{h_{i+1}}u'''(\eta_{j+1}^{\theta}) + Q_{j-i}^{\theta}(x_{i})\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

$$\leq Q_{j-i}^{\theta'}(\xi)Cx_{j}^{\alpha/2-3} + Q_{j-i}^{\theta}(x_{i})Cu''''(\eta)\frac{h_{i} + h_{i+1}}{h_{i+1}}$$

821 where $\xi \in [x_i, x_{i+1}], \eta \in [x_{j-1}, x_{j+1}].$

From (3.36), by Lemma C.6 and Lemma 3.17, we have

$$Q_{j-i}^{\theta'}(\xi) \leq Ch^2 \frac{|y_{j+1}^{\theta} - x_{i+1}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i+1}^{1-2/r} h_{j+1}^2$$

$$\leq Ch^2 \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{1-2/r} h_{j}^2$$

824 And by defination

825 (C.49)
$$Q_{j-i}^{\theta}(x_i) = h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} \le Ch^2 x_i^{2-2/r} \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j^2$$

826 With, we have

827 (C.50)
$$4^{-r}x_i \le x_{k-1} \le x_{j-1} < x_j \le x_{2i-1} \le 2^r x_i$$

828 So we have

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \\
\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{1-2/r} h_{j}^{2} x_{i}^{\alpha/2-3} + Ch^{2} x_{i}^{2-2/r} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} h_{j}^{2} x_{j-1}^{\alpha/2-4} \\
= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}^{2}$$

830 while

831
$$h_i \le h_{2i-1} \le 2^r h_i$$

832 Substitute into the inequality above, we get the goal

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right)$$
833 (C.52)
$$\leq \frac{1}{h_{i}}Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j} 2^{r} h_{i}$$

$$= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

834 While, the later is similar.

Lemma C.8. There exists a constant
$$C = C(T,r)$$
 such that For $N/2 \le i < N$,

837
$$N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1, \ l=3,4, \ \xi \in (x_{i-1},x_{i+1}), \ we \ have$$

838 (C.53)
$$h_{i-i}^{l}(\xi) \le Ch_{i}^{l} \le Ch^{2}h_{i}^{l-2}$$

839 (C.54)
$$(h_{i-i-1}^{l}(\xi))' \le C(r-1)h^2 h_i^{l-2}$$

840 (C.55)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2h_i$$

Proof.

(C.56)
$$(h_{j-i}(\xi))' = y_{j-i}'(\xi) - y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1} ((2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}) \le 0$$

842 Thus,

843 (C.57)
$$Ch_j \le h_{j+1} \le h_{j-i}(\xi) \le h_{j-i}(x_{i-1}) = h_{j-1} \le Ch_j$$

844 So as
$$4^{-r}T \le 2T - x_i \le T, 2^{-r}T \le x_i \le T$$
, we have

845 (C.58)
$$h_{j-i}^{l}(\xi) \le Ch_{j}^{l} \le Ch^{2}(2T - x_{j})^{2-2/r}h_{j}^{l-2} \le Ch^{2}h_{j}^{l-2}$$

846 Since

$$|(2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}|$$

$$= |(Z_{2N-(j-i)} - \xi^{1/r})^{r-1} - (Z_{2N-(j-1-i)} - \xi^{1/r})^{r-1}|$$

$$= (r-1)Z_1(Z_{2N-(j-i-\gamma)} - \xi^{1/r})^{r-2} \quad \gamma \in [0, 1]$$

$$\leq C(r-1)h(2T - x_j)^{1-2/r}$$

848 we have

849 (C.60)
$$|(h_{j-i}(\xi))'| \le C(r-1)h(2T-x_j)^{1-2/r}x_i^{1/r-1}$$

850 And

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h_{j-i}'(\xi)$$

$$\leq C(r-1)h_{j}^{l-1}h(2T-x_{j})^{1-2/r}x_{i}^{1/r-1}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}(2T-x_{j})^{2-3/r}x_{i}^{1-1/r}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}$$

$$(C.62) \qquad (D.62) \qquad (C.62) \qquad (D.62) \qquad ($$

Lemma C.9. There exists a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that For

855
$$N/2 \le i < N, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1, \xi \in (x_{i-1}, x_{i+1}), we have$$

856 (C.63)
$$u''(y_{i-i}^{\theta}(\xi)) \le C$$

857 (C.64)
$$(u''(y_{j-i}^{\theta}(\xi)))' \le C$$

858 (C.65)
$$(u''(y_{i-i}^{\theta}(\xi)))'' \le C$$

Proof.

859 (C.66)
$$x_{i-2} \le y_{i-i}^{\theta}(\xi) \le x_{i+1} \Rightarrow 4^{-r}T \le 2T - y_{i-i}^{\theta}(\xi) \le T$$

860 Thus, for l = 2, 3, 4,

861 (C.67)
$$u^{(l)}(y_{j-i}^{\theta}(\xi)) \le C(2T - y_{j-i}^{\theta}(\xi))^{\alpha/2 - l} \le C$$

862 and

$$(y_{j-i}^{\theta}(\xi))' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i-1}'(\xi)$$
863 (C.68)
$$= \xi^{1/r-1} (\theta(2T - y_{j-1-i}(\xi))^{1-1/r} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-1/r})$$

$$< C(2T - x_{j-2})^{1-1/r} < C$$

864 With

865 (C.69)
$$Z_{2N-j-i} \le 2T^{1/r}$$

866 (C.70)

$$(y_{j-i}^{\theta}(\xi))'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T-y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)} + (1-\theta)(2T-y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)})$$

$$\leq C(r-1)$$

868 Therefore,

(C.71)
$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$

$$< C$$

870

(C.72)
$$(u''(y_{j-i}^{\theta}(\xi)))'' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^2 + u''''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq C + C(r-1) = C$$

872

LEMMA C.10. There exists a constant $C = C(T, \alpha, r)$ such that

874 (C.73)
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_i^{\theta} - x_i|^{1-\alpha}$$

875 (C.74)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_j^{\theta}| + h_N)$$

(C.75)

876
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_j^{\theta} - x_i|^{-\alpha} + C|y_j^{\theta} - x_i|^{-1-\alpha}(|2T - x_i - y_j^{\theta}| + h_N)^2$$

Proof.

877 (C.76)
$$(y_{j-i}^{\theta}(\xi) - \xi)' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i}'(\xi) - 1$$

878

(C.77)
$$|y_{j-i}'(\xi) - 1| = \xi^{1/r-1} |(2T - y_{j-i}(\xi))^{1-1/r} - \xi^{1-1/r}|$$
$$\leq \xi^{1/r-1} |2T - \xi - y_{j-i}(\xi)| \xi^{-1/r}$$

880

881 (C.78)
$$|2T - \xi - y_{j-i}(\xi)| \le \max \begin{cases} |2T - x_{i-1} - x_{j-1}| \\ |2T - x_{i+1} - x_{j+1}| \end{cases}$$
$$\le |2T - x_i - x_j| + h_{i+1} + h_{i+1}$$

882 (C.79)

$$(y_{j-i}^{\theta}(\xi) - \xi)'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T - y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)}) \le 0$$

884 It's concave, so

885 (C.80)
$$y_{i-i}(\xi) - \xi \ge \min\{x_{i+1} - x_{i+1}, x_{i-1} - x_{i-1}\} \ge C(x_i - x_i)$$

886 We have

887 (C.81)
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_i^{\theta} - x_i|^{1-\alpha}$$

888

(C.82)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{i+1} + h_{j-1})$$

(C.83)

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'' + \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-1-\alpha}(y_{j-i}^{\theta}'(\xi) - 1)^{2}$$

$$\leq C(r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha} + C|y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{i+1} + h_{j-1})^{2}$$

Proof. From (3.24), by Lemma C.8 and Lemma C.10, we have $\xi \in [x_i, x_{i+1}]$

893 (C.84)
$$Q_{i-i}^{\theta'}(\xi) \le Ch^2 h_i^2((r-1)|y_i^{\theta} - x_i|^{1-\alpha} + |y_i^{\theta} - x_i|^{-\alpha}(|2T - x_i - y_i^{\theta}| + h_N))$$

894

895 (C.85)
$$Q_{j-i}^{\theta}(\xi) \le Ch^2 h_j^2 |y_j^{\theta} - x_i|^{1-\alpha}$$

896 So use the skill in Proof 33 with Lemma C.9

897 (C.86)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\ \leq Ch^2 h_j (|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_j^{\theta}| + h_N))$$

Acknowledgments. We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement.

900	REFERENCES
901 902 903 904 905 906 907	 D. GILBARG AND N. S. TRUDINGER, Poisson's Equation and the Newtonian Potential, Springer Berlin Heidelberg, Berlin, Heidelberg, 1977, pp. 50–67, https://doi.org/10.1007/ 978-3-642-96379-7-4, https://doi.org/10.1007/978-3-642-96379-7-4. X. ROS-OTON AND J. SERRA, The dirichlet problem for the fractional laplacian: Regular- ity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), pp. 275-302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://www. sciencedirect.com/science/article/pii/S0021782413000895.