__ / 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [12 points] The following questions concern the function $f(x) = x^4 - 2x^3$. Note that the first and [12 points] The following questions second derivatives of f(x) are provided. $= 2x^{2}(2x-3) \qquad = l2\times(x-l)$ $f'(x) = 4x^{3} - 6x^{2}; \qquad f''(x) = 12x^{2} - 12x.$

$$= 2x^2(2x-3)$$

$$f'(x) = 4x^3 - 6x^2;$$

a. Identify all critical points of f(x).

b. Determine intervals where f(x) is increasing or decreasing.

$$---0$$
 $---0$ $+++$ 6-Sign of $f(x)$ is increasing on -1 0 1 $3/2$ 2 6 Sample $(\frac{3}{2}, 20)$ $(\frac{3}{2}, 20)$ $(\frac{3}{2}, 20)$ $(\frac{3}{2}, 20)$ $(\frac{3}{2}, 20)$

c. Identify the location (x-values) of any local maxima or minima of f(x).

$$f(x)$$
 has a local min at $x=3/2$. $f(x)$ has no local max.

d. Determine intervals where f(x) is concave up and concave down.

$$f''(x) = /2x(x-1)$$
 $f(x)$ is $c \in Ap$
 $f''=0$ when $x=0,1$
 $f(x)$ is $f(x)$

fex) is comp on (-00,0)U (1,00)

ccdown on

2. [8 points] Evaluate the limits below. You must justify your answer algebraically to receive full

a.
$$\lim_{x \to -\infty} \frac{4x^3 - x + 5}{12 - 3x - 7x^3}$$
 = $\lim_{x \to -\infty} \frac{4 - \frac{1}{2x} + \frac{5}{x^3}}{\frac{12}{x^3} - \frac{3}{x^2} - \frac{7}{4}} = -\frac{4}{7}$

b.
$$\lim_{x \to \infty} \frac{2x+2}{\sqrt{7x^2+4}} \cdot \frac{1}{x} = \lim_{x \to \infty} \frac{2 + \frac{2}{x}}{\sqrt{7x^2+4}} = \frac{2}{\sqrt{7}}$$

- **3.** [5 points] Let $f(x) = \frac{4x^2 15}{15x^2}$.
 - a. Identify any vertical asymptotes and justify your answer using limits.

$$\lim_{x \to 0^+} \frac{4x^2 - 15}{15x^2} = -\infty \quad \leftarrow \text{justification}$$

b. Identify any horizontal asymptotes justify your answer using limits.

$$\frac{4x^2-15}{15x^2} = \frac{4}{15}$$

lim
$$\frac{4x^2-15}{15x^2} = \frac{4}{15}$$
, So $y = \frac{4}{15}$ is a v.a.

Also check

lim $\frac{4x^2-15}{15x^2} = \frac{4}{15}$
 $\lim_{x \to -\infty} \frac{4x^2-15}{15x^2} = \frac{4}{15}$

lim as $x \to -\infty$

adds nothing new, inthis