Modeling Runners' Times in the Cherry Blossom Race

Justin Howard, Stuart Miller, Paul Adams

September 22, 2020

1 Introduction

The internet is a vast open resource for data, but internet data can be messy and difficult to wrangle. In this case study we collect data on participants of the Cherry Blossom Race from the event website¹. We find that there are a number of issues present in the data, including inconsistent web addressing formatting, inconsistent formatting, and missing data. We collect and clean this data to provide the Men's and Women's information in a format suitable for analysis.

2 Methods

2.1 Data

2.1.1 Data Collection

In this case study, we collected data on participants in the Cherry Blossom Race. We scraped the data for men and women from 1999 to 2012. The data was stored under the base address in the following form, where the year is between 1999 and 2012 and page is a specific page name.

http://www.cherryblossom.org/results/<year>/<page>

The specific addresses where the data is stored are given in table 1. While the structure follows results/<year> consistently, the page naming for each year is not consistent. In some cases, the names for the men's and women's pages are men and women, respectively. In other cases, a code is used such as cb99m and cb99f in 1999 for men and women respectively.

¹See http://www.cherryblossom.org/.

Table 1. Web Pages

Year	Men's Pages	Women's Pages
1999	results/1999/cb99m.html	results/1999/cb99f.html
2000	results/2000/Cb003m.htm	results/2000/Cb003f.htm
2001	results/2001/oof_m.html	results/2001/oof_f.html
2002	results/2002/oofm.htm	results/2002/ooff.htm
2003	results/2003/CB03-M.HTM	results/2003/CB03-F.HTM
2004	results/2004/men.htm	results/2004/women.htm
2005	results/2005/CB05-M.htm	results/2005/CB05-F.htm
2006	results/2006/men.htm	results/2006/women.htm
2007	results/2007/men.htm	results/2007/women.ht
2008	results/2008/men.htm	results/2008/women.htm
2009	results/2009/09cucb-M.htm	results/2009/09cucb-F.htm
2010	results/2010/2010cucb10m-m.htm	results/2010/2010cucb10m-F.htm
2011	results/2011/2011cucb10m-m.htm	results/2011/2011cucb10m-F.htm
2012	results/2012/2012cucb10m-m.htm	results/2012/2012cucb10m-F.htm

2.1.2 Data Cleaning

This section refers to code in Appendix A

The data are successfully scraped from the urls that are given and we observe that the number of participants in the Cherry Blossom race has increased steadily from 1999 to 2012. We can use the extractResTable function to exptract all of the results, or to specify a single set of results.

We observe the formatting of the text data, such as the use of the = character can be used to transform the lines of text into a a matrix. We will used this pattern to identify the boundary between the headering and the body of the data. Once we defined the column names, we were free to use the text structure, such as the spacing of column names and data, to identify datapoints. We started with age, which denoted by the "ag" identifier. After we successfully used the structure of the text data to identify an index location for "ag" data points. We expanded the search to include the spacing of text data to identify other data points. The spacing indices were used in a funtion that compiled a matrix of data points across the entire list of tables.

A function findColLocs was defined to use these space indices to locate the begin points for data throughout the extracted text data. selectCols is a tool that uses findColLocs to locate the data points for each column throughout the text for all of the race years. Our functions extracted almost all of the age data fomr the text, which aided in the identification errors within the dataset. To generalize this method, we defined a function, extractVariables, that combined the various processes we used to preprocess the data into a more machine readable format.

The execution of the helper functions helped transform the original text data into a much more machine readable format. To perform statistical analyses on the numeric data, we performed datatype transformations, converting relevant data from a character format into a numeric format.

This transformation revealed anomalies in the data for the year 2003. After an examination of the original

data table, we found that the spacing in the year 2003 data is not the same as the other years. We adjusted our selectCols function to better capture the data for 2003. We also observe anomalies in the formatting of the year 2001. We introduced fixes and re-scraped the data once more to form the list of matrices called menResMat.

Anomalies in Age Data

After these anomalies were corrected, we reformatted the datatypes. The "ag" data was changed to a numeric format for analysis, which revealed *more* anomalies. We observed suspiciously young ages between the years 2001 and 2003. These ages were revealed to be *erroneous* upon closer examination. These values were removed from the dataset.

To make the remaining analyses easier, we transformed the data structure from a list of matrices into a dataframe. Combining the data into a single dataframe facilitated the cleaning of the columns containing the time data for each runner. These values were stored as characters and were in an HR:MIN:SEC format. We can separate the values and convert them all into a standard time format, minutes. We defined a function that converts the time into a minute format. The end result was a dataframe called menDF. With this process complete, we simply re-used the functions on the women's data.

In preparation for further analysis, the values for 'home' needed to be updated. First, 12 runners were identified as having at least one iteration of a bad address. Based on state codes provided with those addresses, alternative addresses used by those runners in other races were applied in place of the bad addresses.

Additionally, because most of the addresses were not in standard format, we converted home names to ISO standards for national naming. For example, we converted 'Rep Of S.africa' to the iso3166-recognized 'South

Africa'. The names were originally given ISO Name values for analysis and reporting, then converted to ISO 3-byte country codes for cross-walking into the map's visual abstraction. All runners with specified nations (whether by ISO code or name) were listed with their nation while all others were listed as 'United States.' For cross-walking locations to states, we identified 7,398 records where a state was given, ending in value such as 'AK', 'AK', where 'AK' is 'Alaska'. This information was processed in creating Fig. 1 and Fig. 2.

Our dataset is complete, clean, and ready for further analysis.

##		year	sex		name	home age	runTime
##	1	1999	M	Worku Bikila	Ethiopia	. 28	46.98333
##	2	1999	M	Lazarus Nyakeraka	Kenya	24	47.01667
##	3	1999	M	James Kariuki	Kenya	27	47.05000
##	4	1999	M	William Kiptum	Kenya	28	47.11667
##	5	1999	M	Joseph Kimani	Kenya	26	47.51667
##	6	1999	M	Josphat Machuka	Kenya	25	47.55000

3 Results

3.1 Race Results by Geographic Location

As visualized in Fig. 1, Results from analyzing geographic runner information identified that the nations with the fastest run times, represented by average, were from Tanzania, Morocco, Ethiopia, Kenya and Mexico. The nations with the slowest average run times were Ireland, Slovenia, Lebanon, Republic of Korea, and Jordan.

Top 5 Fastest Nations	Overall Race Completion Time
Tanzania	46.067
Morocco	46.817
Ethiopia	46.983
Kenya	47.017
Mexico	47.317

Top 5 Slowest Nations	Overall Race Completion Time
Ireland	121.42
Slovenia	108.25
Lebanon	103.95
Republic of Korea	100.733
Jordan	100.067

Average Race Completion Time, by Country

Figure 1: Global Race Completion Times

As visualized in Fig. 2, the states represented by the fastest overall runners - based on average race completion time - are Nevada, Colorado, Delaware, Idaho, and New Mexico. The states with the slowest average race completion times are North Dakota, Kentucky, Hawaii, Oklahoma, and Oregon.

Top 5 Fastest States	Overall Race Completion Time
Nevada	76.269
Colorado	82.400
Delaware	83.019
Idaho	83.157
New Mexico	83.208

Top 5 Slowest States	Overall Race Completion Time
North Dakota	109.517
Kentucky	98.602
Hawaii	98.467
Oklahoma	97.837
Oregon	97.760

Average Race Completion Time, by US State

Figure 2: Statewide Race Completion Times

3.2 Trends over time

The Cherry Blossom race has experienced growth since the year 2000 as indicated by the linear trend line in Fig. 3, below.

Figure 3: Cherry Blossom race participation with linear trend line

The average race completion time for all ages and genders has also experienced a positive trend. The correlation between race participation and the average race completion time is 92.78%. This is indicated in Fig. 4, below.

Figure 4: Average race finish time with linear trend line

4 Conclusion

These web-scraping methods proved useful for identifying the times of race completion per runner from year 1999 through 2012. From this information we were able to identify average race completion times, by nation and by state. However, documentation methodology and format varied over the years, which presented issues where data was required to be dropped - often as a result of missing information or incorrect information, such as children as young as 1 competing in the race - which impacted the results we were able to identify. National information was relatively reliable, but the state-level information was heavily under-represented.

Because of the level of missing, unrecoverable information, we did not feel inferential analysis based on geographic location would have been useful. However, linear trajectory analysis proved useful when assessing racer count data over time; there is a clear indication race popularity - at least from the measure of race participant count - increased over the time spanning 1999 to 2012. Although with larger variance along the mean over time, there still appears to be a strong indication race completion time - measured in minutes - also been increased over the same years. That is, to say, during the same time period racer participation increased, race completion time increased as well.

A Code

The code is cooool