证券从业《金融市场基础知识》计算题公式汇总

1、简单公式

		c: 提现率=客户提取的现金/活期存款总额	
货币乘数	m=(c+1)/(c+r+e)	e: 超额准备金率	
		r: 法定存款准备金率	
<i>←</i>	$FV=PV\times(1+i)^n$	FV: 终值	
复利终值	若每期付息 m 次,则终值为:FV=PV×(1+i/m) ^{nm}	PV: 本金/现值	
与4月11117月	PV=FV/(1+i) ⁿ	i: 每期利率	
复利现值		n: 期数	

2、股票的绝对估值方法公式

		V: 价值
	$V = \sum_{t=0}^{\infty} \frac{CF_{t}}{T}$	t: 时期
通用公式	$V = \sum_{t=1}^{\infty} \frac{CF_{t}}{(1+r)^{t}}$	CF _t : 第 t 期的现金流
		r: 未来所有时期的平均贴现率
		V: 股票价值
		t: 时期
红利贴现	$V = \sum_{t=1}^{n} \frac{DPS_{t}}{(1+r)^{t}} + \frac{P_{n}}{(1+r)^{n}}$	DPS _t : 第 t 期的现金红利
模型		n: 详细预测期数
		r: 股权要求收益率
		Pn: 持有期末卖出股权时的预期价格
	$V = \sum_{t=1}^{n} \frac{FCFE_{t}}{(1+r)^{t}} + \frac{TV}{(1+r)^{n}}$	V:股票价值
股权自由		FCFEt: 第 t 期的股权自由现金流
现金流贴		n: 详细预测期数
现模型		r: 股权要求收益率
		TV: 股权自由现金流的终值
		EV:企业价值
	$rac{n}{\nabla} FCFF$, TV	FCFF _t : 第 t 期的企业自由现金流
	$EV = \sum_{t=1}^{n} \frac{1 C T_{t}}{(1 + WACC)^{t}} + \frac{1 V}{(1 + WACC)^{n}}$	n: 详细预测期数
 企业自由		WACC: 加权平均资本成本
现金流贴		TV:企业自由现金流的终值
现金加始		D: 付息债务的市场价值
	$WACC = \frac{D}{D+E} \times k_d \times (1-t) + \frac{D}{D+E} \times k_e$	E: 股权的市场价值
		K _d : 睡前债务成本
		K _e : 股权资本成本
		t: 所得税率

3、股票的相对估值方法公式

市盈率倍数法	市盈率倍数=每股市价/每股收益		
企业价值/息税前利润	EV=EBIT×EV/EBIT 倍数		
倍数法 息税前利润 (EBIT) =净利润 (E) +所得税+利息			

企业价值/息税折旧摊	业价值/息税折旧摊 EV=EBITDA×EV/EBITDA 倍数	
销前利润倍数法	息税折旧摊销前利润(EBITDA)=净利润(E)+所得税+利息+折旧+摊销	
市净率倍数法	市净率倍数=每股市价/每股净资产	
市销率倍数法	市销率倍数=每股市价/每股销售收入	

4、债券贴现率

债券必要回报率=真实无风险收益率+预期通货膨胀率+风险溢价

5、债券利息计算规则

	(1) 全年天数 360 天,半年天数 180 天
<i>k</i> =+□/± >/	(2) 实际天数计算有两种:
短期债券	①按实际天数计算:实际天数/360、实际天数/180
	②按每月 30 天计算:30/360、30/180
	(3) 累计天数算头不算尾
古 上 田 田 日	(1) 全年天数定为实际天数或者 365 天
中长期附息 债券	(2) 累计利息天数也分为:按实际天数计算、每月按 30 计算
加分	(3) 利息累计天数按实际天数计算,算头不算尾,闰年 2 月 29 日不计息
□ トェ□ - / / / / 	按实际天数计算利息,闰年 2 月 29 日也计利息
贴现式债券	应计利息额=(到期总付额-发行价格)/(起息日至到期日的天数)×起息日至结算日的天数

6、债券估值模型

一般计算公式	$P = \sum_{t=1}^{T} \frac{C_t}{(1+y_t)^t}$	P: 债券理论价格 T: 债券距到期日时间长短(通常按年计算) t: 现金流到达的时间 C: 现金流金融 y: 贴现率(通常为年利率)
零息债券定价	$P = \frac{FV}{(1+y_T)^T}$	FV:零息债券的面值
附息债券定价	$P = \frac{C}{1+r} + \frac{C}{(1+r)^2} + + \frac{C}{(1+r)^t} + \frac{M}{(1+r)^t}$ P: 债券理论价格	
累息债券定价	视为面值等于到期还本付息额的零息债券,按零息债券定价公式定价	

7、债券收益率

		Y: 当期收益率
当期收益率	Y=C/P×100%	C: 每年利息收益
		P:债券价格
	T	P:债券价格
到期收益率	$P = \sum_{t=1}^{\infty} \frac{C}{(1+y)^t}$	C: 现金流金额
	t=1 (1+y)	y: 到期收益率

		T:债券期限 (期数)
		t: 现金流到达时间 (期)
		P:债券买入时价格
		P⊤:债券卖出时价格
北大田山石光弦	$P = \sum_{t=0}^{T} \frac{C_t}{t} + \frac{P_t}{T}$	y _h :持有期收益率
持有期收益率	$P = \sum_{t=1}^{\infty} \frac{1}{(1+y_h)^t} + \frac{1}{(1+y_h)^T}$	C:债券每期付息金额
		T: 债券期限 (期数)
		t: 现金流到达时间
		P:发行价格
ᄜᆂᇋᆒᄼᅷᅷᆓ	$P = \sum_{t=1}^{n} \frac{C}{(1+y)^{t}} + \frac{M}{(1+y)^{n}}$	n: 直到第一个赎回日的年数
赎回收益率	$\int_{t=1}^{T} (1+y)^{t} (1+y)^{n}$	M: 赎回价格
		C: 每年利息收益

8、开放式基金认购份额的计算

净认购金额=认购金额/(1+认购费率)

认购费用=认购金额-净认购金额

9、基金资产估值

10、基金业绩评价指标

认购份额	购份额=(净认购金额+认购利息)/基金份额初始面值		
9、基金	基金资产估值		
基金资产	基金资产净值=基金资产总值-基金负债		
基金份额	净值=基金资产	争值/基金总份额	
10、基金	业绩评价指标		
	$T_{\cdot} = \frac{\overline{R_{\rm i}} - \overline{R_{\rm f}}}{\overline{R_{\rm f}}}$	T _i : 特雷诺绩效指标	
特雷诺	$\beta_{\rm i}$	R_i : i基金在样本期内的平均收益率	
指数	- 1111	$R_{\rm f}$: 样本期内的平均无风险收益率	
JHXX	A A	$R_i - R_f$: i基金在样本期内的平均风险溢价	
		$eta_{ m i}$:基金投资组合所承担的系统风险	
	$\frac{\overline{R}}{R} - \frac{\overline{R}}{R}$	S_i : 夏普绩效指标	
	$S_{i} = \frac{\alpha_{i} - \alpha_{i}}{\sigma_{i}}$	R_i : i基金在样本期内的平均收益率	
夏普指	1	$R_{\rm f}$: 样本期内的平均无风险收益率	
数		σ_{i} : i 基金的收益率的标准差,即基金投资组合所承担的总风险	
		$\overline{R_i} - \overline{R_f}$: i基金在样本期内的平均风险溢酬	
		$\alpha_J = \overline{R_i} - [\overline{R_f} + \beta_{iM} (\overline{R_M} - \overline{R_f})]$	
詹森指		α_{J} : 詹森绩效指标	
数		R_i : i基金在样本期内的平均收益率	
		$\overline{R_{\rm f}}$: 样本期内的平均无风险收益率	
		$\overline{R_{\scriptscriptstyle M}}$: 市场平均收益率	