

POMIARY REZYSTANCJI I IMPEDANCJI

<u>Ćwiczenie 4</u>

I. CEL ĆWICZENIA

Poznanie zasad pomiarów pośrednich i bezpośrednich rezystancji i impedancji. Pomiar impedancji elementów RLC – z zastosowanie napięcia i prądu zmiennego AC. Pomiary specjalizowanym miernikiem RLC.

II. ZAGADNIENIA DO PRZYGOTOWANIA

- Podstawy pomiaru prądu i napięcia AC / DC
- Układy pomiarowe
- Mierniki prądu DC i AC
- Dzielniki rezystancyjne prądowe i napięciowe metody obliczania
- Twierdzenie Thevenina i Nortona
- Impedancja elementów skupionych RLC (składowe impedancji: rezystancja, indukcyjność, pojemność
- Zapoznanie się z zasadami pomiaru rezystancji i impedancji
- Zasady obsługi multimetrów Instrukcje obsługi mierników i przyrządów dostępne w laboratorium i na wyposażeniu stanowiska *e-portal.pwr.edu.pl*

III. WYPOSAŻENIE POMIAROWE:

- Regulowane zasilacze DC (napięcia stałego)
- Generator funkcyjny (napięcia AC sinus, trójkąt, prostokąt)
- Mierniki prądu i napięcia VC8045 i VC8145
- Miernik RLC Hantek 1830C (wyciąg z instrukcji i parametry do obliczania niepewności na końcu niniejszej instrukcji)
- Moduły układów pomiarowych
- Elementy do pomiarów R, L i C Rezystory, Cewki i Kondensatory

Moduł-makieta do pomiarów RLC. Do wejścia AC podłączyć generator funkcyjny,

Do wejścia DC – zasilacz regulowany DO wejścia Miernik RLC – mostek Hantek 1830C

Przełącznik obrotowy – wybór elementu mierzonego

IV. PROGRAM ĆWICZENIA

ZADANIE 1 - POMIAR IMPEDANCJI — METODA POŚREDNIA, TECHNICZNA

W metodzie pośredniej – nazywanej też metodą techniczną impedancję wyznacza się pośrednio z pomiaru napięcia i prądu. W zależności od sposobu połączenia przyrządów rozróżnia się dwa układy pomiarowe: PPP (Poprawny Pomiar Prądu) i PPN (Poprawny Pomiar Napięcia) – układ pomiarowy dobiera się analizując wpływ impedancji mierników na błąd pomiaru. W większości przypadków mniejszy błąd występuje w układzie PPN i taki będzie stosowany w ćwiczeniu.

Jako sygnał pomiarowy w metodzie technicznej można stosować napięcie stałe DC albo napięcie przemienne sinusoidalne AC.

1A - POMIAR REZYSTANCJI PRZY NAPIĘCIU STAŁYM DC

- 1a.1. Podłączyć do modułu pomiarowego wybrany zestaw elementów RLC
- 1a.2. Zestawić układ pomiarowy zgodnie z rysunkiem 1, gdzie Rx jest rezystorem mierzonym na makiecie ustawić przełącznik AC/DC na DC, POMIAR POŚREDNI, Przełacznikiem obrotowym wybrać R1/R2
- 1a.3. Przełączyć amperomierz i woltomierz w tryb pracy DC.

Rys.1 Układ pomiaru rezystancji metodą techniczną.

- 1a.4. Pomiary wykonać dla co najmniej trzech różnych napięć zasilacza z zakresu między 1V a 15V.
- 1a.5. Po ustawieniu wybranego napięcia odczytać i zapisać prąd i napięcie.
- 1a.6. Pomiary powtórzyć dla drugiego rezystora w układzie.
- 1a.7. Włączyć cewkę jako element badany (Przełacznik obrotowy w pozycję L).
- 1a.8. Pomiary wykonać analogicznie jak dla rezystorów.

 Jest to pomiar <u>rezystancji szeregowej cewki</u> wartość niezbędna do późniejszego wyznaczenia indukcyjności cewki.

1B - POMIAR IMPEDANCJI PRZY NAPIĘCIU PRZEMIENNYM AC

- 1b.1. Zestawić układ pomiarowy zgodnie z rysunkiem 2, gdzie GS jest generatorem funkcyjnym, a Rx jest przykładowym elementem mierzonym
- 1b.2. Na makiecie AC/DC AC, POMIAR POŚREDNI,.

Rys.2 Układ pomiaru impedancji metodą techniczną (G_S - generator sygnałowy).

- 1b.3. Amperomierz i woltomierz przełączyć w tryb pracy AC.
- 1b.4. Pomiary wykonać dla częstotliwości między 10Hz a 30kHz co dekadę (np. 20Hz, 200Hz, 2kHz, 20kHz) dla częstotliwości zadanych przez prowadzącego.

Uwaga: Częstotliwości zmienia się skokowo się przyciskami góra-dół **RANG** i płynnie pokrętłem **FREQ**

- 1b.5. Do układu podłączyć rezystor R1
- 1b.6. Wykonać pomiary dla wszystkich częstotliwości z podpunktu **1b.3**.
- 1b.7. Analogicznie powtórzyć pomiary dla pozostałych elementów: R2, L i C.

Uwagi do sprawozdania:

- Wyliczyć rezystancję rezystorów R1 i R2 oraz oszacować niepewność dla każdego pomiaru zarówno dla pomiarów dla napięć stałych DC jak i dla napięć przemiennych AC. Porównać i przeanalizować uzyskane wyniki. Wyciągnąć wnioski.
- Na podstawie informacji zawartych w Dodatku informacyjnym na końcu sprawozdania wyznaczyć pojemność kondensatora C i indukcyjność cewki L – oszacować niepewność. Obliczenia przeprowadzić dla każdej częstotliwości pomiarowej. Porównać i przeanalizować uzyskane wyniki. Wyciągnąć wnioski.
- Wyznaczyć **moduł impedancji** kondensatora C i cewki L (z uwzględnieniem rezystancji szeregowej cewki) w funkcji częstotliwości.
- Wyznaczoną wartość porównać z obliczeniami teoretycznymi na podstawie zależności z dodatku informacyjnego na końcu instrukcji

<u>Uwaga : dla każdej metody pomiarowej w sprawozdaniu należy podać przykład obliczeń</u> <u>wartości wyznaczanej i niepewności</u>

ZADANIE 2 - POMIAR IMPEDANCII - METODA BEZPOŚREDNIA - MIERNIK RLC

W metodzie bezpośredniej pomiaru impedancji wykorzystuje się układy mierników RLC. Są to układy o różnym skomplikowaniu i możliwościach pomiarowych. Uproszczone rozwiązania stosuje się jako jedną z funkcji multimetrów uniwersalnych. W ćwiczeniu wykorzystany zostanie specjalizowany miernik RLC Hantek 1830C.

- 2.1. Na makiecie przełączyć na POMIAR BEZPOŚREDNI
- 2.2. Przełacznikiem obrotowym wybrać właściwy element badany R1, R2, L i C dla którego będzie prowadzony pomiar.
- 2.3. Włączyć miernik RLC Hantek1800C.

- 2.4. Do każdego pomiaru dobrać właściwy zakres pomiarowy miernika RLC na podstawie instrukcji obsługi miernika.
- 2.5. Określić jakie parametry badanego elementu zostały zmierzone. Odpowiednie tryby pracy i zakresy pomiarowe ustawia się na klawiaturze miernika

Setting: Main: *Auto* – Automatyczny dobór trybu pracy (nie zalecane)

R – pomiar rezystancji (do pomiaru rezystancji i rezystancji szeregowej cewki)

L – pomiar indukcyjności

C – pomiar pojemności

Z – pomiar modułu impedancji

Slave – proponuje się X – składowa urojona impedancji (tylko informacyjnie)

Parameter – Freq - Częstotliwość sygnału pomiarowego miedzy 100Hz a 40kHz

Range – zakres pomiarowy ustawić na Auto

S/P – ustawić SER

2.6. Pomiary przeprowadzić dla minimum 4 wybranych częstotliwości pomiarowych – wybór z menu miernika RLC, parametr **Freq**

Dla rezystorów – pomiar **R** i **Z**

Dla cewki – pomiar L i Z

Dla kondensatora – pomiar C i Z

Uwaga: w sprawozdaniu przedstawić wyniki pomiarów w powiązaniu z nastawami/zakresami miernika RLC, oszacować niepewność pomiaru i porównać wyniki uzyskane w Zadaniu 2 z wynikami z Zadania 1. Przeanalizować wyniki i wyciągnąć wnioski.

<u>Da każdej metody pomiarowej w sprawozdaniu należy podać przykład obliczeń wartości wyznaczanej i niepewności</u>

DODATEK INFORMACYJNY – OPRACOWANIE DR INŻ. MAREK ZARADNY

ZADANIE 1.1 POMIARY REZYSTANCJI – METODA POŚREDNIA, TECHNICZNA

W metodzie pośredniej – nazywanej też metodą techniczną rezystancję wyznacza się pośrednio z pomiaru napięcia i prądu. W zależności od sposobu połączenia przyrządów rozróżnia się dwa układy pomiarowe: PPP (Poprawny Pomiar Prądu) i PPN (Poprawny Pomiar Napięcia), odpowiednio rysunek 1a) i 1b). W trakcie pośredniego pomiaru rezystancji, w sensie metrologicznym, nie jest możliwy jednoczesny dokładny pomiar prądu Ix płynącego przez Rx i dokładny napięcia Ux panującego na nim. Mają na to wpływ niezerowa rezystancja amperomierza i skończona rezystancja woltomierza [3]. Stąd też istnieją dwie metody opisane na rysunkach 1a) i 1b).

Metody pośrednie stosuje się głównie do pomiaru rezystancji elementów oporowych pasywnych, liniowych, skupionych i stacjonarnych. W przypadku oporników liniowych wyznacza się rezystancję statyczną (Rx=Ux/Ix), a dynamiczna (dU/dI=const) jest stała.

Rys.1. Układy do pomiaru rezystancji metodą techniczną, a) PPP *–poprawny pomiar prądu*, b) PPN *– poprawny pomiar napięcia. Rr - rezystancja wewnętrzna "zródła"*

Zgodnie z oznaczeniami przyjętymi na rys.1, rezystancję Rx wyznacza się na podstawie prawa Ohma: Rx=Ux/Ix

W układzie PPN

$$R_{X} = \frac{U}{I - I_{V}} = \frac{U}{I - \frac{U}{R_{V}}}$$
 (1.1.1)

w którym Rv – rezystancja wewnętrzna woltomierza.

W układzie PPP

$$R_{X} = \frac{U - I_{X}R_{A}}{I_{Y}} \tag{1.1.2}$$

w którym R_A – rezystancja wewnętrzna amperomierza.

Rezystancja wyznaczona bezpośrednio ze wskazań przyrządu pomiarowego

$$R_{X}' = \frac{U}{I} \tag{1.1.3}$$

różni się od rezystancji Rx - dla obu przypadków. Różnicę tę nazywa się poprawką i oznacza symbolem "p". Gdzie p=Rx-Rx, natomiast $R_X=p+R_X$

W układzie PPN, poprawka p wynosi

$$p_{PPN} = \frac{U^2}{I^2 R_V - UI}$$
 (1.1.4)

Natomiast w układzie PPP

$$p_{PPN} = \frac{U_X - U}{I} = -R_A$$
 (1.1.5)

Do pomiaru rezystancji metodą techniczną należy zawsze dobierać ten układ pomiarowy, dla którego poprawka jest najmniejsza. Zwykle układ PPN stosuje się do pomiaru małych rezystancji i średnich, a układ PPP do pomiaru dużych i średnich wartości rezystancji. Oba układy zarówno PPP jak i PPN dają wynik obarczony tym samym błędem wówczas, gdy,

$$R_{X} = \sqrt{R_{A}R_{V}} \tag{1.1.6}$$

Błędy względne w układach wynoszą, z PPN:

$$\begin{split} \delta_{pN} &= \frac{R_X^{'} - R_X}{R_X} = \frac{-1}{1 + \frac{R_V}{R_X}} \\ &\delta_{pN_{RV}>>RX} = -\frac{R_X}{RV} \\ z \text{ PPP:} \\ \delta_{pP} &= \frac{R_X^{'} - R_X}{R_X} = \frac{1}{\frac{R_X}{R_A} - 1} \quad \delta_{pP_{RA}<$$

Wykres błędu względnego $|\delta_{pN,P}|$

ZADANIE 1.2 POMIARY IMPEDANCJI RLC – METODA POŚREDNIA, TECHNICZNA

Pomiary impedancji są istotne ze względu na wyznaczanie wartości elementów skupionych L i C – inercyjnych, czyli tworzących obwody zależne od częstotliwości. Pomiar wykonujemy **metodą pośrednią – techniczną** w zakresie m.cz.

Schemat zastępczy cewki indukcyjnej (rys.2a) w zakresie m.cz., przedstawia się w postaci dwójnika RL, czyli o impedancji $\mathbf{Z_{Lx}} = \mathbf{Rx} + \mathbf{j}\omega\mathbf{Lx}$ (gdzie $\omega = 2\pi \cdot \mathbf{f}$), która reprezentuje główne straty oporowe DNE – drutu nawojowego. Wartość rezystancji Rx może być, zatem zmierzona prądem stałym DC.

Rys. 2. Schemat obwodu zastępczego: a) cewki i b) kondensatora w zakresie m.cz.

Rezystancję Rx możemy wyznaczyć mierząc prąd poprzez napięcie na rezystorze wzorcowym Rw, i napięcie na impedancji \mathbf{Z}_{LX} przy prądzie stałym ($\boldsymbol{\omega} = \mathbf{0}$). Zatem, zgodnie z rys. 3, Rx = U/Ix

Rys. 3. Układ do pomiar parametrów a) cewki indukcyjnej – powietrznej i b) kondensatora. Obwody pomiarowe w zakresie m.cz.

Zasilając napięciem zmiennym sinusoidalnym "E" - układ z rys. 3a), impedancja wzrasta ze wzrostem $\omega > 0$. Wówczas przy danej pulsacji $\omega = 2\pi f$ wyznaczymy moduł $|\mathbf{Z}_{LX}(\omega)| = \mathbf{U}(\omega)/\mathbf{I}(\omega) \approx \mathbf{U}(\omega)/\mathbf{I}_X(\omega)$. Skoro,

$$|Z_{LX}(\omega)| = \sqrt{R_X^2 + \omega^2 L_X^2}$$
 (1.2.1)

to Lx można obliczyć ze wzoru:

$$L_{X} = \frac{1}{\omega} \sqrt{|Z_{LX}(\omega)|^{2} - R_{X}^{2}} = \frac{1}{2\pi \cdot f} \sqrt{|Z_{LX}(f)|^{2} - R_{X}^{2}}$$
(1.2.2)

Błąd pomiaru indukcyjności wyznacza się z relacji,

$$\delta L_{X} = \left[\frac{\left| Z_{LX}(\omega) \right|}{\sqrt{\left| Z_{LX}(\omega) \right|^{2} - R_{X}^{2}}} \right]^{2} \delta Z_{LX} + \left[\frac{R_{X}}{\sqrt{\left| Z_{LX}(\omega) \right|^{2} - R_{X}^{2}}} \right]^{2} \delta R_{X} + \frac{\delta \omega}{2\pi}$$

$$(1.2.3)$$

W dokładniejszych pomiarach należy uwzględnić poprawki na ΔUv i ΔIA.

Podobnie jak w przypadku pomiarów cewek, dokonujemy pomiarów kondensatorów. Z tą jednak różnicą, że impedancja \mathbf{Z}_{CX} na zaciskach pomiarowych kondensatora jest największa przy prądzie stałym ($\boldsymbol{\omega}$ =0). Admitancja kondensatora wyraża się wzorem \mathbf{Y}_{CX} = \mathbf{G}_{X} + \mathbf{j}_{ω} Cx - (rys. 2b) i jest ona odwrotnością impedancji \mathbf{Z}_{CX} , czyli \mathbf{Z}_{CX} =1/ \mathbf{Y}_{CX} . Gwoli przypomnienia konduktancja \mathbf{G}_{X} jest odwrotnością rezystancji, zatem \mathbf{G}_{X} =1/ \mathbf{R}_{X} . Z reguły straty związane z rezystancją doprowadzeń, okładzin i upływnością dielektryka są na tyle małe, że \mathbf{G}_{X} jest bliskie "zeru", czyli rezystancja równoległa strat \mathbf{R}_{X} =1/ \mathbf{G}_{X} jest bardzo wielka. Moduł impedancji przy $\boldsymbol{\omega}$ > 0 jest, dany wzorem

$$|Z_{CX}(\omega)| = \frac{1}{\sqrt{G_X^2 + \omega^2 C_X^2}} = \frac{R_X}{\sqrt{1 + \omega^2 R_X^2 C_X^2}},$$
 (1.2.4)

zatem

$$C_{X} = \frac{\sqrt{1 - G_{X}^{2} \left| Z_{CX}(\omega) \right|^{2}}}{\left| Z_{CX}(\omega) \right| \omega}$$
(1.2.5)

Jeśli **konduktancja** Gx << 1, przy pomiarze prądem stałym DC lub jako część rzeczywista $Re(Z_{CX})$, czyli około 10^{-6} , lub mniej, a fakt, że stoi w kwadracie może być nieuwzględniana, wówczas C_x jest wprost dana wzorem

$$C_{X} = \frac{1}{|Z_{CX}(\omega)|\omega} = \frac{1}{|Z_{CX}(f)|2\pi \cdot f}$$
(1.2.6)

Błąd pomiaru C wyznacza się z relacji różniczki zupełnej dla δCx podobnie jak dla δLx, wg wzoru (1.2.3)

$$\delta C_{X} = \left[\frac{1}{\sqrt{1 - \left| Z_{CX}(\omega) \right|^{2} G_{X}^{2}}} \right]^{2} \delta Z_{CX} + \left[\frac{G_{X} \left| Z_{CX}(\omega) \right|}{\sqrt{1 - \left| Z_{CX}(\omega) \right|^{2} G_{X}^{2}}} \right]^{2} \delta G_{X} + \frac{\delta \omega}{2\pi}$$
(1.2.7)

W dokładniejszych pomiarach, należy uwzględnić poprawki na ΔUv i ΔI_A.

Uzasadnienie pomiaru uproszczonego Cx wg wzoru (1.2.6):

Przykładowo kondensator typu X2 o pojemności 22nF/275VAC, zmierzony mostkiem RLC o klasie 0.1, ma następujące parametry Cx=21.5nF+0.1nF - w zakresie od 50Hz do 100kHz, $ReZ_{CX}(50Hz,1kHz,100kHz)=48M\Omega$, $10M\Omega$, $45k\Omega$. a DCR jest > $100M\Omega$ z błędem 10%. Zatem Cx, w obliczu $Gx=1/ReZ_{CX}$, np. dla 100kHz ($Gx=1/45k\Omega$) wynosi 21.499997nF - zakładając że mierzymy Cx przy b. niskiej częstotliwości i wynik był równy 21.5nF - zatem $Gx\approx0$ - jest wówczas prawie zerowe. Zatem akceptowalny jest błąd w zakresie wartości zmierzonej $Cx+\Delta Cx$ w całym zakresie m.cz., który nie przekracza, dokładnych wyników pomiarów uzyskanych za pomocą cyfrowego mostka RLC w szerokim zakresie częstotliwości – lub inaczej, błąd pomiaru uzyskany metodą uproszczoną w węższym zakresie częstotliwości, mieści się w błędzie pomiaru dokładnego wykonanego w szerszym zakresie częstotliwości.

BIBLIOGRAFIA

- 1. Instrukcje laboratoryjne. Laboratorium Miernictwa. Raport Katedry Telekomunikacji i Teleinformatyki Politechniki Wrocławskiej praca zbiorowa Paweł Bieńkowski, **Marek Zaradny**, Ewa Frączek, Raport Ser. PRE nr 58, 50 s., Wrocław 2019
- 2. Ćwiczenia Miernictwo Elektroniczne i elektryczne, praca zbiorowa pod red. **Ireny Frankiewicz**, Wydawnictwo PWr., Wrocław 1992
- 3. Ćwiczenia Laboratoryjne z Miernictwa Elektronicznego, **op. Andrzej Jellonek**, B. Kasprzak, A. Lesisz, P. Ruszel, Z. Szreter, Wydawnictwo PWr., Wrocław 1974

WYCIAG Z INSTRUKCJI MIERNIKA RLC – HANTEK 11830C

- 1. Display: 2.8 inch TFT LCD screen, which display all functions of the instrument.
- 2. R-X shortcut key: Select the main parameter as R and the secondary parameter as X directly.
- 3. C-D shortcut key: Select the main parameter as C and the secondary parameter as D directly.
- 4. L-Q shortcut key: Select the main parameter as L and the secondary parameter as Q directly.
- 5. Data holding recording key: Turn on or off the data holding function.
- 6. Frequency key: Switch to fixed frequency quickly.
- 7. Range key: Switch to the required range quickly. You can select Auto, 10Ω , 100Ω , $1k\Omega$, $10k\Omega$ and $100k\Omega$ in turn. Auto is the automatic range, LCR will automatically select the appropriate hardware range according to the current tested component, and the other ranges are the fixed gear position.

Capacitance C and dissipation D

■ 100Hz/120Hz/400Hz

Range	Range of display	Accuracy Ce	Accuracy De	Equivalent mode recommended
20mF	4.000mF~20.000mF	8.00%+5 digits	0.0800	Series
4mF	400.0µF~3.9999mF	2.00%+3 digits	0.0200	Series
400µF	40.00µF~399.99µF	0.60%+2 digits	0.0060	Series
40µF	4.000µF~39.999µF	0.40%+2 digits	0.0040	Series
4µF	400.0nF~3.9999µF	0.40%+2 digits	0.0040	
400nF	40.00nF~399.99nF	0.4%+2 digits	0.0040	Parallel
40nF	4.000nF~39.999nF	0.5%+3 digits	0.0050	Parallel
4nF	0pF~3.999nF	1.5%+5 digits		Parallel

■ 1kHz/4KHz

Range	Range of display	Accuracy Ce	Accuracy De	Equivalent mode recommended
1000uF	400.0uF~999.9uF	3.00%+5 digits	0.0300	Series
400µF	40.00μF~399.99μF	1.50%+3 digits	0.0150	Series
40µF	4.000µF~39.999µF	0.60%+2 digits	0.0060	Series
4µF	400.0nF~3.9999µF	0.40%+2 digits	0.0040	
400nF	40.00nF~399.99nF	0.4%+2 digits	0.0040	Parallel
40nF	4.000nF~39.999nF	0.6%+3 digits	0.0060	Parallel
4nF	400.0pF~3.9999nF	0.6%+3 digits	0.0060	Parallel
400pF	0.0pF~399.9pF	3%+5 digits		Parallel

■ 10kHz

Range	Range of display	Accuracy Ce	Accuracy De	Equivalent mode recommended
100µF	40.00μF~100.00μF	4.00%+5 digits	0.0400	Series
40µF	4.000µF~39.999µF	2.0%+3 digits	0.0200	Series
4µF	400.0nF~3.9999µF	0.60%+2 digits	0.0060	Series
400nF	40.00nF~399.99nF	0.4%+2 digits	0.0040	Series
40nF	4.000nF~39.999nF	0.4%+2 digits	0.0040	
4nF	400.0pF~3.9999nF	0.4%+2 digits	0.0040	Parallel
400pF	40.00pF~399.99pF	0.6%+3 digits	0.0060	Parallel
40pF	0.00pF~39.99pF	2.5%+5 digits		Parallel

■ 40kHz/50KHz

Range	Range of display	Accuracy Ce	Accuracy De	Equivalent mode recommended
100µF	40.00μF~100.00μF	6.00%+5 digits	0.0600	Series
40µF	4.000μF~39.999μF	4.0%+3 digits	0.0400	Series
4µF	400.0nF~3.9999µF	1.0%+2 digits	0.0100	Series
400nF	40.00nF~399.99nF	0.6%+2 digits	0.0060	Series

Resistance: 0.25%

Inductance L and quality factor

■ 100Hz/120Hz/400Hz

Range	Range of display	Accuracy Le	Accuracy De*	Equivalent mode recommended
1000H	400.0H~999.9H	2.00%+3 digits	0.0200	Parallel
400H	40.00H~399.99H	0.60%+2 digits	0.0060	Parallel
40H	4.000H~39.999H	0.40%+2 digits	0.0040	Parallel
4H	400.0mH~3.9999H	0.40%+2 digits	0.0040	
400mH	40.00mH~399.99mH	0.4%+2 digits	0.0040	Series
40mH	4.000mH~39.999mH	0.6%+3 digits	0.0060	Series
4mH	0uH~3.999mH	3.0%+5 digits		Series

■ 1kHz/4KHz

Range	Range of display	Accuracy Le	Accuracy De*	Equivalent mode recommended
1H	400.0mH~999.9mH	1.50%+3 digits	0.0150	Parallel
400mH	40.00mH~399.99mH	0.4%+2 digits	0.0040	Parallel
40mH	4.000mH~39.999mH	0.4%+2 digits	0.0040	
4mH	400.0uH~3.9999mH	0.4%+2 digits	0.0040	Series
400uH	40.00uH~399.99uH	0.8%+3 digits	0.0080	Series
40uH	0.0uH~39.9uH	3.0%+5 digits		Series

■ 10kHz/40KHz

Range	Range of display	Accuracy Le	Accuracy De*	Equivalent mode recommended
100H	40.00H~100.00H	2.0%+3 digits	0.0200	Parallel
40H	4.000H~39.999H	0.60%+2 digits	0.0060	Parallel
4H	400.0mH~3.9999H	0.40%+2 digits	0.0040	Parallel
400mH	40.00mH~399.99mH	0.4%+2 digits	0.0040	
40mH	4.000mH~39.999mH	0.4%+2 digits	0.0040	Series
4mH	400.0uH~3.9999mH	1%+3 digits	0.0100	Series
400uH	0.00uH~399.99uH	3.0%+5 digits		Series

■ 40kHz/50KHz

Range	Range of display	Accuracy Le	Accuracy De*	Equivalent mode recommended
1H	400.0mH~999.9mH	2.0%+4 digits	0.0200	Parallel
400mH	40.00mH~399.99mH	0.8%+2 digits	0.0080	Parallel
40mH	4.000mH~39.999mH	0.8%+2 digits	0.0080	
4mH	400.0uH~3.9999mH	0.8%+2 digits	0.0080	Series
400uH	40.00uH~399.99uH	1.5%+3 digits	0.0150	Series
40uH	0.000uH~39.999uH	4.0%+5 digits		Series

40nF	4.000nF~39.999nF	0.6%+2 digits	0.0060	
4nF	400.0pF~3.9999nF	0.6%+2 digits	0.0060	Parallel
400pF	40.00pF~399.99pF	1%+3 digits	0.0100	Parallel
40pF	0.000pF~39.999pF	3%+5 digits		Parallel

Impedance Z and phase angle $\boldsymbol{\theta}$

■ 100Hz/120Hz/400Hz/1kHz/4KHz/10kHz

Range	Range of display	Accuracy Ze	Accuracy θ_e	Equivalent mode recommended
20ΜΩ	4.000ΜΩ~20.000ΜΩ	3.0%+10 digits	3.4°	Parallel
4ΜΩ	400.0kΩ~3.9999MΩ	1.2%+3 digits	0.7°	Parallel
400kΩ	40.00kΩ~399.99kΩ	0.3%+3 digits	0.2°	Parallel
40kΩ	4.000kΩ~39.999kΩ	0.25%+2 digits	0.1°	
4kΩ	400.0Ω~3.9999kΩ	0.25%+2 digits	0.1°	Series
400Ω	40.00Ω~399.99Ω	0.25%+2 digits	0.1°	Series
40Ω	4.000Ω~39.999Ω	0.5%+3 digits	0.3°	Series
4Ω	0.4000Ω~3.9999Ω	2.0%+3 digits	1.1°	Series
0.4Ω	0.0000Ω~0.3999Ω	4.0%+3 digits		Series

■ 40kHz/50KHz

Range	Range of display	Accuracy Ze	Accuracy θ_e	Equivalent mode recommended
20ΜΩ	4.000ΜΩ~20.000ΜΩ	7.0%+41 digits	4.0°	Parallel
4ΜΩ	400.0kΩ~3.9999MΩ	2.5%+3 digits	1.4°	Parallel
400kΩ	40.00kΩ~399.99kΩ	1.0%+4 digits	0.6°	Parallel
40kΩ	4.000kΩ~39.999kΩ	1.0%+4 digits	0.6°	
4kΩ	400.0Ω~3.9999kΩ	0.5%+3 digits	0.3°	Series
400Ω	40.00Ω~399.99Ω	0.5%+3 digits	0.3°	Series
40Ω	4.000Ω~39.999Ω	0.7%+4 digits	0.4°	Series
4Ω	0.4000Ω~3.9999Ω	2.0%+6 digits	1.1°	Series
0.4Ω	0.0000Ω~0.3999Ω	5.0%+10 digits		Series