

Lab Final Quiz Integral Calculus & Differential Equations (MAT120)

Time: 40 minutes, Total Marks: 20

	Name:							
St	udent ID:		Section:					
	MCQ:				Marks: 10×1			
1.	Which of the following of the sympy.derivative(sympy.dfdx()			
2.	. When Simpson's rule is used to approximate the definite integral, it is necessary that the number of points be — O an odd number O even number O either an even or an odd number O a multiple of 3							
3.	Suppose you need to create a NumPy Array for x in interval $[0,1]$ with step-size, $h=0.1$. Which of the following statements generates this? Onumpy.arange(0, 1, 0.01) Onumpy.arange(0, 1, 0.1) Onumpy.arange(0, 1, 1) Onumpy.arange(0, 1, 10)							
4.	4. Which one is the correct way to use sympy.integrate() to solve the integral $\int_0^\infty x^3 e^{-x} dx$? \bigcirc integrate(x*3*exp(-x), (x, oo, 0)) \bigcirc integrate(x**3*exp(-x), (x, 0, oo)) \bigcirc integrate(x*3*exp(-x), (x, oo, 0))							
5.	. Choose the correct way to define the dependent variable using sympy for this ODE: $y \frac{dm}{dn} + n^2 x = 0$ $y = \text{sympy.Function('y')(x)} $							
6.	How many initial condition 1	itions are needed in a fin 2	·	ferential equation? 4	?			
7.	<pre>f = 1 + sin(x) - cos(x) roots = solveset(f, x, Interval(0, 2*pi))</pre>							
	Which of the following	i de la companya de	coots? 2π	\bigcirc 5π				
8.	In trapezoidal rule, if the $\bigcirc 10^{-1}$	the step size is 0.1 ($h = 0.10^{-2}$	0.1), the order of error 0.10^{-3}	or of the integral $\bigcirc 10^{-4}$.	$\int_0^1 x^x dx$ should be			
9.	Which Matplotlib function is used to show the labels of different plots in a graph? ○ pyplot.show() ○ pyplot.label() ○ pyplot.grid() ○ pyplot.legend()							
10.	Simpson's rule uses —in each sub-interval to approximate the curve. O straight line O parabola O hyperbola O exponential							

Fill in the blanks

11. The following code part tries to solve the ODE $\frac{dy}{dx} = 0.1y/x^2$ with the initial condition y(0) = 1. Fill in the gaps with appropriate code parts.

12. The following code part tries to generate the equation: $x^2 - y^2 = \frac{\tan(x)}{1-xy}$. Fill in the gaps with appropriate code parts. (2)

```
import sympy as sp
x, y = sp.symbols('x y')
equation = sp.Eq( ______, _____)
```

Written Part

13. Write down the differential equation and the initial conditions which the following code tries to solve.

```
from sympy import *
x, y, z = symbols('x y z')
v = symbols('v', cls = Function)(z)
ode = Eq(diff(v), z**2*x*y)
dsolve(ode, ics = {v.subs(z,0): 1})
```

(3)

(3)

14. See the table, the function f(x) is continuous on the closed interval [0, 3] and has values as shown the table below. Using three subintervals, what is the approximation of $\int_0^3 f(x)dx$ found by using the Trapezoid rule?

Х	0	1	2	3
f(x)	1	0.5	0.2	0.1