

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Semantic Image Segmentation Training

Bastian Lampe

Institute for Automotive Engineering

RWTHAACHEN UNIVERSITY

Network Architecture Details

- Downsampling (Encoder)
 - Convolutions with stride and padding
 - Pooling Operations

Network Architecture Details

- Upsampling (Decoder)
 - Unpooling Operations
 - Transpose Convolutions with stride

Network Architecture Details

Skip Connections

- Copies the intermediate representations from encoder layers to decoder layers
- Downsampling loses high-resolution information
- Use skip connections to preserve this higher-resolution information

RWTHAACHEN UNIVERSITY

Softmax

Softmax Activation Function

- Final prediction layer
- Input: Computed "logits" from the network
- Computes the class probabilities for each pixel
- Output Shape: [Height, Width, Number of Classes]

Loss Function

Loss Function

- Computes the error between model output and ground truth label
- Multi-Class Categorical Cross-Entropy
- Input: Probabilities from the Softmax activation and Ground Truth label

$$CE = -\sum_{i}^{C} t_{i} \log(p_{i})$$

- with t_i as the ground truth label (as one-hot encoding) and p_i as probability for each class i in C (set of all classes)
- Compute this error for all pixels
- Use this error and propagate it back to the network
- Determine the gradients and use gradient descent to train the network

Training

Hyperparameters

- Batch size
- Epochs
- Number of filters
- Learning rate
- Input image size
- ...

Dataset

- E.g. Cityscapes
 - 3000 Training Samples
 - 500 Validation Samples
- Test Video: Aachen downtown

Inference

 E.g. 78 % MIoU on the validation data with a pretrained Xception network

Video: ika

RWTHAACHEN UNIVERSITY

Summary

- Network architecture
 - Encoder: downsampling of the input
 - Decoder: upsampling of the intermediate representations
 - **Skip Connections**: Preserve higher-resolution information
 - Softmax Activation: Compute class probabilities for each pixel

Source: ika

- Loss Function
 - Categorical Cross-Entropy: Compute the classification error
- Training
 - The network is trained with Gradient Descent
 - Many different hyperparameters can be tuned

$$CE = -\sum_{i}^{C} t_{i} \log(p_{i})$$