HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG BỘ MÔN TOÁN RỜI RẠC 1

BÀI LẬP TRÌNH SỐ 1

Nhóm: 14 – Tổ 3

Giảng viên : Nguyễn Thị Mai Trang

Ngày: 27/10/2023

Điểm:

Thành viên nhóm:

1. Lê Ngọc Đức	B22DCAT092
2. Phạm Hồng Dương	B22DCAT068
3. Đỗ Quốc Trung	B22DCAT306
4. Nguyễn Thị Thùy Linh	B22DCAT176
5. Nguyễn Minh Lương	B22DCPT155

BÀI TOÁN MA TRẬN SỐ NGUYÊN TỐ

ĐỀ BÀI:

Cho hình vuông gồm 25 hình vuông đơn vị. Hãy điền các số từ 0 đến 9 vào các hình vuông đơn vị sao cho những điều kiện sau được thỏa mãn: a, Đọc từ trái sang phải theo hang ta nhận được 5 số nguyên tố có 5 chữ số;

- b, Đọc từ trên xuống dưới theo cột ta nhận được 5 số nguyên tố có 5 chữ số;
- c, Đọc theo 2 đường chéo chính ta nhận được 2 số nguyên tố có 5 chữ số;
- d, Tổng các chữ số trong mỗi số nguyên tố đều là S cho trước. Ví dụ hình vuông dưới đây có S = 11.

3	5	1	1	1
5	0	0	3	3
1	0	3	4	3
1	3	4	2	1
1	3	3	1	3


```
CHƯƠNG TRÌNH TRÊN C++
```

```
#include "iostream"
     #include "vector"
     #include "cmath"
     #include "fstream"
     using namespace std;
     fstream fio ("SAVE.txt",fstream::out); //Tao file "save.txt" để lưu
cấu hình
     struct cau truc so { //lưu số thoả mãn thành các phần tử riêng lẻ
để dễ tham chiếu điều kiên
       int a[5];
     };
     vector<cau truc so> ds (0); //Tao danh sách lưu các số dưới dạng
cấu trúc như trên
     int MT[5][5],dem=0,tt[11];
     //Chương trình con kiểm số nguyên tố kiểu int
     bool ktra_nto(int x) {
       if (x%2==0) return 0; //Nếu chia hết cho 2 thì x không phải số
nguyên tố
       //Nếu không thì kiểm tra tính chia hết cho các số lẻ từ 3 đến căn
2 của số đó
       for (int i=3;i < sqrt(x);i+=2)
          if (x\%i==0) return 0;
       return 1;
     }
     //Chương trình lập danh sách các số nguyên tố có 5 chữ số, tổng
các chữ số bằng S
     //Các phần tử được lưu dưới dang cau truc so
```

```
void lap ds(int S) {
        for (int i=10000;i<=100000;i++)
          if (ktra_nto(i)==1) {
            int t=i;
            cau truc so X;
            for (int i=4;i>=0;i--) { //chuyển số nguyên tố i kiểu int thành
kiểu cau_truc_so
              X.a[i]=t%10;
              t/=10;
            }
            if (X.a[0]+X.a[1]+X.a[2]+X.a[3]+X.a[4]==S) //Kiểm tra tổng
các chữ số có bằng S không
              ds.push back(X); //Đúng thì cho vào cuối danh sách
          }
     }
     //Chương trình con kiểm tra ma trận có thoả mãn hay không
     bool ktra() {
        int test=0;
       for (int i=0;i<ds.size();i++) {
          //Kiểm tra đường chéo có nằm trong danh sách không
          if (ds[i].a[0]==MT[0][0] && ds[i].a[1]==MT[1][1] &&
ds[i].a[2]==MT[2][2] \&\& ds[i].a[3]==MT[3][3] \&\& ds[i].a[4]==MT[4][4])
test++;
          //Kiểm tra cột 5 có nằm trong danh sách không
          if (ds[i].a[0]==MT[0][4] \&\& ds[i].a[1]==MT[1][4] \&\&
ds[i].a[2]==MT[2][4] \&\& ds[i].a[3]==MT[3][4] \&\& ds[i].a[4]==MT[4][4])
test++;
        if (test==2) //test=2 <=> Cột ả 2 điều kiện trên đúng, trả về 1
          return 1;
```

```
return 0; //Nếu không thì ma trận không thoả mãn trả về 0
      }
     //Chương trình con tìm phần tử ở cột/hàng/đường thứ x
     //các cột/hàng/đường được đánh số theo thứ tự ưu tiên tìm phần
tử thoả mãn
     //Nếu tìm thấy phần tử thoả mãn thì trả về 1, nếu không thì trả về
0
      int lap_day (int x) {
        if (x==1) { //x=1 tương đương hàng 1
          for (tt[x];tt[x]<ds.size();tt[x]++)
            if (ds[tt[x]].a[1]!=0 \&\& ds[tt[x]].a[2]!=0 \&\& ds[tt[x]].a[3]!=0)
{
               MT[0][0]=ds[tt[x]].a[0];
               MT[0][1]=ds[tt[x]].a[1];
               MT[0][2]=ds[tt[x]].a[2];
               MT[0][3]=ds[tt[x]].a[3];
               MT[0][4]=ds[tt[x]].a[4];
               return 1;
            }
          return 0;
        if (x==2) { //x=2 tương đương cột 1
          for (tt[x];tt[x]<ds.size();tt[x]++)
            if (ds[tt[x]].a[0]==MT[0][0] \&\& ds[tt[x]].a[1]!=0 \&\&
ds[tt[x]].a[2]!=0 && ds[tt[x]].a[3]!=0) {
               MT[1][0]=ds[tt[x]].a[1];
               MT[2][0]=ds[tt[x]].a[2];
               MT[3][0]=ds[tt[x]].a[3];
               MT[4][0]=ds[tt[x]].a[4];
```

```
return 1;
             }
          return 0;
        if (x==3) { //x=3 tương đương đường chéo chính 2
          for (tt[x];tt[x]<ds.size();tt[x]++)
             if (ds[tt[x]].a[0]==MT[0][4] \&\& ds[tt[x]].a[4]==MT[4][0]) {
               MT[1][3]=ds[tt[x]].a[1];
               MT[2][2]=ds[tt[x]].a[2];
               MT[3][1]=ds[tt[x]].a[3];
               return 1;
             }
          return 0;
        if (x==4) { //x=4 tương đương hàng 2
          for (tt[x];tt[x]<ds.size();tt[x]++)
             if (ds[tt[x]].a[0]==MT[1][0] \&\& ds[tt[x]].a[3]==MT[1][3]) {
               MT[1][1]=ds[tt[x]].a[1];
               MT[1][2]=ds[tt[x]].a[2];
               MT[1][4]=ds[tt[x]].a[4];
               return 1;
             }
          return 0;
        if (x==5) { //x=5 tương đương cột 2
          for (tt[x];tt[x]<ds.size();tt[x]++)
             if (ds[tt[x]].a[0]==MT[0][1] \&\& ds[tt[x]].a[1]==MT[1][1] \&\&
ds[tt[x]].a[3]==MT[3][1]) {
               MT[2][1]=ds[tt[x]].a[2];
               MT[4][1]=ds[tt[x]].a[4];
```

```
return 1;
             }
          return 0;
        if (x==6) { //x=6 tương đương hàng 3
          for (tt[x];tt[x]<ds.size();tt[x]++)
             if (ds[tt[x]].a[0]==MT[2][0] \&\& ds[tt[x]].a[1]==MT[2][1] \&\&
ds[tt[x]].a[2]==MT[2][2]) {
               MT[2][3]=ds[tt[x]].a[3];
               MT[2][4]=ds[tt[x]].a[4];
               return 1;
             }
           return 0;
        if (x==7) { //x=7 tương đương cột 3
          for (tt[x];tt[x]<ds.size();tt[x]++)
             if (ds[tt[x]].a[0]==MT[0][2] \&\& ds[tt[x]].a[1]==MT[1][2] \&\&
ds[tt[x]].a[2]==MT[2][2]) {
               MT[3][2]=ds[tt[x]].a[3];
               MT[4][2]=ds[tt[x]].a[4];
               return 1;
             }
          return 0;
        if (x==8) { //x=8 tương đương hàng 4
          for (tt[x];tt[x]<ds.size();tt[x]++)
             if (ds[tt[x]].a[0]==MT[3][0] \&\& ds[tt[x]].a[1]==MT[3][1] \&\&
ds[tt[x]].a[2]==MT[3][2]) {
               MT[3][3]=ds[tt[x]].a[3];
               MT[3][4]=ds[tt[x]].a[4];
```

```
return 1;
             }
          return 0;
        if (x==9) { //x=9 tương đương cột 4
          for (tt[x];tt[x]<ds.size();tt[x]++)
             if (ds[tt[x]].a[0]==MT[0][3] \&\& ds[tt[x]].a[1]==MT[1][3] \&\&
ds[tt[x]].a[2]==MT[2][3] && ds[tt[x]].a[3]==MT[3][3]) {
               MT[4][3]=ds[tt[x]].a[4];
               return 1;
             }
          return 0;
        if (x==10) { //x=10 tương đương hàng 5
          for (tt[x];tt[x]<ds.size();tt[x]++)
             if (ds[tt[x]].a[0]==MT[4][0] \&\& ds[tt[x]].a[1]==MT[4][1] \&\&
ds[tt[x]].a[2]==MT[4][2] && ds[tt[x]].a[3]==MT[4][3]) {
               MT[4][4]=ds[tt[x]].a[4];
               return 1;
             }
          return 0;
        return 0;
      }
     //Chương trình con in cấu hình được lưu trong file
     void xuat toan bo cau hinh() {
        std::cout << "Tong cau hinh: " << dem << '\n';
        for (int t=0;t<dem;t++) {
          cout << "Cau hinh: " << t+1 << '\n';
          for (int i=0,x;i<5;i++) {
```

```
for (int j=0; j<5; j++) {
               fio >> x;
               cout << x << ' ';
             }
             cout << '\n';
          }
        }
        fio.close();
     //Chương trình con lưu cấu hình hiện tại
     void luu_ma_tran() {
        for (int i=0;i<5;i++) {
          for (int j=0; j<5; j++)
             fio << MT[i][i] << ' ';
          fio << '\n';
        dem++;
     int main() {
        cout << "nhap gia tri S: ";
        int S;
        cin >> S;
        lap ds(S);
        //tt[] là mảng lưu vị trí hiện tại trong danh sách các số nguyên tố
trên ma trận, ứng với 5 hàng, 4 cột, 1 đường chéo
        //tt[1] <=> Hàng 1 | tt[2] <=> Cột 1 | tt[3] <=> Chéo 2 | tt[4] <=>
Hàng 2 | tt[5] <=> Cột 2
        //tt[6] <=> Hàng 3 | tt[7] <=> Cột 3 | tt[8] <=> Hàng 4 | tt[9] <=>
Côt 4 | tt[10] <=> Hàng 5
```

```
for (int i=0;i<11;i++)
          tt[i]=0; //khởi tao tất cả về 0
        int i=1,n=ds.size();
        //Lặp đến khi hết phần tử để điền vào hàng 1
        while (tt[0]==0) {
          int k=lap day(i); //lấp đầy cột/hàng i
          if (k==0) { //k=0 -> không tìm được số thoả mãn cột/hàng i
            tt[i]=0; //vị trí cột/hàng i về 0, để tìm lại từ đầu trong danh
sách
            tt[--i]++; //vi trí côt/hàng i-1 tăng thêm 1, để tìm lại từ phần
từ kế tiếp trong danh sách
          else if (i==10) { //i=10 tương đương hàng cuối cùng cần tìm
            while (lap_day(i)==1) { //nếu vẫn còn số nguyên tố trong
danh sách thoả mãn hàng cuối
              if (ktra()==1)
                 luu ma tran(); //néu ma trận thoả mãn thì lưu ma trận
vào file
              tt[i]++; //tăng vị trí để tìm phần tử kế tiếp
            }
            i--; //nếu hết phần tử thì quay lại bước tìm phần tử
hàng/cột thứ 9
          else i++; //Tìm phần tử kế tiếp
        fio.close();
       fio.open("SAVE.txt",fstream::in); //mở file vừa lưu ma trận và
đọc
        xuat toan bo cau hinh(); //xuất ma trân đã lưu ra màn hình}
```

CHAY KÉT QUẢ

```
Tong cau hinh: 6
Cau hinh: 1
1 1 3 5 1
1 4 0 3 3
3 0 3 2 3
5 3 2 0 1
1 3 3 1 3
Cau hinh: 2
1 1 3 5 1
3 3 2 0 3 3 0 3 2 3
1 4 0 3 3
3 3 3 1 1
Cau hinh: 3
1 3 3 1 3
1 3 0 4 3
3 2 3 0 3
5 0 2 3 1
1 3 3 3 1
Cau hinh: 4
2 1 5 2 1
5 0 4 1 1
12161
27011
11117
Cau hinh: 5
3 5 1 1 1
5 0 0 3 3
1 0 3 4 3
1 3 4 2 1
1 3 3 1 3
Cau hinh: 6
5 1 1 3 1
1 0 4 3 3
1 4 3 0 3
3 3 0 2 3
1 3 3 3 1
```

BÀI TOÁN SINH XÂU NHỊ PHÂN

ĐÈ BÀI

Liệt kê (duyệt) các xâu có độ dài n . Xâu X = (x1x2...xn), xi = 0,1; i = 1,2,...n được gọi là xâu nhị phân có độ dài n . Ví dụ, n = 4 ta có 16 xâu nhị phân dưới đây:

STT	X = (x1x2xn)	F(x)	STT	X = (x1x2xn)	F(x)
1	0000	0	9	1000	8
2	0001	1	10	1001	9
3	0010	2	11	1010	10
4	0011	3	12	1011	11
5	0100	4	13	1100	12
6	0101	5	14	1101	13
7	0110	6	15	1110	14
8	0111	7	16	1111	15

LƯU ĐỒ :

CHƯƠNG TRÌNH C++:

#include<bits/stdc++.h>

```
using namespace std;
int a[23]={0};
int n; //n = 4
int save[1000][20];
bool check;
void khoitao(int &count, int &n)
{
      for(int i=0;i<n;i++)</pre>
      {
            a[i] = 0;
            save[count][i] = a[i];
      }
}
void sinhnhiphan(int &count, int &n)
{
            int i = n-1;
            while(i>=0 && a[i])
            {
                  a[i] = 0;
                  i--;
            }
            if(i \ge 0)
```

```
{
                  a[i] = 1;
                  for(int index = 0; index < n; index++)</pre>
                  {
                         save[count][index] = a[index];
                  }
                  count++;
            }
            else check = false;
}
void in(int &count, int &n)
{
      int tt=1;
      for(int i=0;i<count;i++)</pre>
      {
            cout<<"xau thu "<<tt<<": ";
            for(int j=0;j<n;j++)
            {
                  cout<<save[i][j];</pre>
            cout<<endl;
            tt++;
```

```
}
}
int main()
{
     ios_base::sync_with_stdio(0);
     cin.tie(0); cout.tie(0);
     cout<<"Nhap so n la:"<<endl;
     cin>>n;
     int count = 0;
     khoitao(count, n);
     count++;
     check = true;
     while(check){
           sinhnhiphan(count,n);
     }
     cout<<"Tong so xau n la: "<<count<<endl;</pre>
     in(count,n);
}
```

CHẠY CHƯƠNG TRÌNH C++

```
Nhap so n la:
Tong so xau n la: 16
xau thu 1: 0000
xau thu 2: 0001
xau thu 3: 0010
xau thu 4: 0011
xau thu 5: 0100
xau thu 6: 0101
xau thu 7: 0110
xau thu 8: 0111
xau thu 9: 1000
xau thu 10: 1001
xau thu 11: 1010
xau thu 12: 1011
xau thu 13: 1100
xau thu 14: 1101
xau thu 15: 1110
xau thu 16: 1111
Process exited after 9.001 seconds with return value 0
Press any key to continue . . .
```