Analysis Of Computer Network Routing Algorithms

Junbin Yang, Jerry Zhang, William Hudson

What does Routing have to do with Computer Networks?

- Determines how packets are moved between computers and routers
- Has a <u>source</u> and <u>destination</u>
- A part of the Network Layer of the OSI Model
 - Layer 3

A simple analogy to routing

How would you send mail from Georgia to California?

Types of Routing Algorithms

1. Adaptive

- a. Considers changes in network topology
 - i. Hot Potato Routing
 - ii. Backwards Learning (In paper)

2. Non-Adaptive

- a. Decides algorithm at boot time
 - i. Flooding Algorithm
 - ii. Random Walk Algorithm (In paper)

3. Hybrid

- a. A mix of both!
 - i. Link State Algorithm
 - ii. Distance Vector Algorithm

Hot Potato Routing

- Adaptive Routing
- Get the packet out as quickly as possible by putting it on the shortest queue out
- Deflection:
 - Packet going non-optimal path
 - Conflict resolution
 - Minimal Advance
 - Weakly Stable
 - Stable
 - Maximum Advance
 - Livelock

Flooding Algorithm

- Non-Adaptive
- Every router that receives a packet sends to all their neighbors
 - "Floods the network"
- Similar to Breadth First Search
 - Explores all routers at the present depth before moving on
- Optimizations?
 - o Bit state
 - Hop count

Link State Algorithm

- The LSA is a hybrid routing algorithm
- Discovers network topology by collecting info about neighboring routers and the links between them
- Link State Advertisement: floods network with packets containing information about itself and its neighbors
- Each router builds a database from the packets received
- Information in this database is utilized to calculate and create a routing table (important for considering how packets are routed)
 - o Application of Dijkstra's Algorithm for pathfinding
- Update propagation: Monitors network topology for changes, if there are, Link State Advertisement are recreated and flood the network

Link State Routing Protocol

Link-State Routing Protocols

Distance Vector Algorithm

- Same as the Bellman-Ford Algorithm
 - Uses Bellman-Ford Equation:

$$D_{x}(y) = \min_{v} \{c_{x,v} + Dv(y)\}$$

min_v: min taken over all neighbors v of x

 $c_{x,v}$: is the direct cost from x to v $D_v(y)$: v's estimated least-cost-path cost to y

- Every router has its own Distance Vector Table
 - Has distance from itself to every other router
 - Shares distance vector table with its neighbors

Distance Vector Table

Georgia Tech's ISP

