Math 3500 Assignment #6 Solutions University of Lethbridge, Fall 2014

Sean Fitzpatrick

October 29, 2014

- 1. (**Do not submit**) Let $f: D \to \mathbb{R}$ be continuous. For each of the following, prove the result, or give a counterexample.
 - (a) If D is open, then f(D) is open.

Let D = (0, 1) and define f(x) = 0 for all $x \in D$. Then D is open but $f(D) = \{0\}$ is closed.

(b) If D is closed, then f(D) is closed.

Let $D = \mathbb{N}$, and define f(x) = 1/x. Then D is closed (every $n \in \mathbb{N}$ is isolated, so \mathbb{N} has no limit points) but $f(D) = \{1/n : n \in \mathbb{N}\}$ is not closed, since 0 is a limit point of f(D) and $0 \notin f(D)$.

(c) If D is not open, then f(D) is not open.

Let $D = [-1,0) \cup (0,2)$ and define $f(x) = 1/x^2$. Then D is not open, since $-1 \in D$ is not interior an point, but $f(D) = [1,\infty) \cup (1/4,\infty) = (1/4,\infty)$ is open. (Here f has a discontinuity at 0, but $0 \notin D$, so f is continuous on D.)

(d) If D is not closed, then f(D) is not closed.

Let $D = (-\sqrt{3}, \sqrt{3})$, and define $f(x) = x^3 - 3x$. Then D is not closed, since it does not contain the limit points ± 3 , but f(D) = [-2, 2] is closed. (Here we have $f(\pm \sqrt{3}) = 0$ and f(0) = 0, and f has an absolute maximum at (-1, 2), and an absolute minimum at (1, -2).)

(e) If D is not compact, then f(D) is not compact.

Let D be any noncompact subset of \mathbb{R} , for example, $D = \mathbb{R}$, and let f be a constant function, say f(x) = 0 for all x. Then f(D) is compact, since it consists of a single point.

(f) If D is unbounded, then f(D) is unbounded.

Let $D = \mathbb{R}$ and take $f(x) = e^{-x^2}$. Then D is not bounded, but 0 < f(x) < 1 for all $x \in \mathbb{R}$, so f is bounded.

(g) If D is finite, then f(D) is finite.

This is true for any function, continuous or not: if $D = \{x_1, \ldots, x_n\}$, then $f(D) = \{f(x_1), \ldots, f(x_n)\}$, so the cardinality of f(D) is less than or equal to the cardinality of D (with equality if f is one-to-one).

(h) If D is infinite, then f(D) is infinite.

Let $D = \mathbb{R}$ and take f(x) = 0.

(i) If D is an interval, then f(D) is an interval.

This is true. Choose any points $u, v \in f(D)$, with u < v. Then u = f(x) and v = f(y) for some $x, y \in D$, and by the Intermediate Value Theorem, for any $w \in \mathbb{R}$ such that u < w < v, there exists some z between x and y ($z \in (x, y)$ if x < y or $z \in (y, x)$ if y < x) such that f(z) = w. It follows that f(D) is an interval.

(j) If D is an interval that is not open, then f(D) is an interval that is not open.

Let $D = [0, \infty)$, and let $f(x) = x \sin x$. Then D is an interval that is not open, since $0 \in D$ is not an interior point, but $f(D) = \mathbb{R}$, which is open.

(Note: this is problem 5.3.3 in the text, and there's a hint in the back.)

2. (a) Let $a \in \mathbb{R}$ and define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = |x - a|. Prove that f is continuous.

Let f(x) = |x - a|, and let $\epsilon > 0$ be given. Let $\delta = \epsilon$ and suppose that $|x - y| < \delta$. Then we have

$$|f(x) - f(y)| = ||x - a| - |y - a|| \le |x - a - (y - a)| = |x - y| < \delta = \epsilon,$$

using the inequality $||u| - |v|| \le |u - v|$ for all $u, v \in \mathbb{R}$.

(b) Let K be a nonempty compact subset of \mathbb{R} and let $a \in \mathbb{R}$. We define the distance from a to K by

$$d(a,K) = \inf\{|x-a| : x \in K\}.$$

(The infimum exists since $\{|x-a|:x\in K\}$ is bounded below by zero.) Prove that there exists a point $b\in K$ that is *closest* to a, in the sense that |b-a|=d(a,K).

Let $K \subseteq \mathbb{R}$ be compact, and let $a \in \mathbb{R}$. Define $f: K \to \mathbb{R}$ by f(x) = |x - a|. Then f is continuous, by part (a), so f has an absolute minimum by the Extreme Value Theorem, since K is compact. That is, there exists some $b \in K$ such that $|b - a| = f(b) \le f(x) = |x - a|$ for all $b \in K$. Since f(b) is the minimum of the set $\{|x - a| : a \in K\}$, it must be the infimum, and thus f(b) = d(a, K), as required.

3. Prove that if $f:[a,b]\to\mathbb{R}$ is continuous and $f(x)\in\mathbb{Q}$ for all $x\in[a,b]$, then f is constant.

Since $f:[a,b] \to \mathbb{R}$ is continuous, it satisfies the Intermediate Value Theorem on [a,b]. If there exist $x,y \in [a,b]$ with f(x) < f(y), then we can find an irrational number $z \in \mathbb{R}$ with f(x) < z < f(y), and then we would have to have z = f(c) for some c between x and y. But this is impossible, since $f(x) \in \mathbb{Q}$ for all $x \in [a,b]$. Thus, f must have the same value at every point, which is to say that f is constant.

4. Suppose f is continuous on [0,2], and f(0)=f(2). Prove that there exist $x,y \in [0,2]$ with |y-x|=1 and f(x)=f(y).

Hint: Consider g(x) = f(x+1) - f(x) on [0,1].

Let f be a continuous function on [0,2] with f(0)=f(2), and let g(x)=f(x+1)-f(x), with $x \in [0,1]$. Then g is continuous on [0,1] (the function $h(x):[0,1] \to [1,2]$ given by h(x)=x+1 is continuous, so $f \circ h(x)=f(x+1)$ is continuous on [0,1] since it's the composition of continuous functions, and thus g is the difference of two continuous functions.

Let a = f(0) = f(2), and let b = f(1). If a = b, we're done, since we can take x = 0 and y = 1. If not, we note that

$$g(0) = f(1) - f(0) = b - a,$$

and

$$g(1) = f(2) - f(1) = a - b = -(b - a).$$

Since we're assuming that $b-a \neq 0$ we must have either g(0) < 0 < g(1) or g(1) < 0 < g(0). Thus, there exists some $c \in [0,1]$ such that g(c) = 0, by the intermediate value theorem. But then we have 0 = g(c) = f(c+1) - f(c), so we can take x = c and y = c + 1.

5. Prove that each of the following functions is uniformly continuous on the specified set using the ϵ - δ definition of uniform continuity:

(a)
$$f(x) = x^2$$
 on $[0, 3]$

Let $\epsilon > 0$ be given, and let $\delta = \epsilon/6$. Then for any $x, y \in [0, 3]$ we have $0 \le x + y \le 6$, so if $|x - y| < \delta$, then

$$|f(x) - f(y)| = |x^2 - y^2| = |x - y||x + y| < \delta \cdot 6 = \epsilon.$$

(b)
$$g(x) = \frac{1}{x} \text{ on } [\frac{1}{2}, \infty)$$

Let $\epsilon > 0$ be given, and let $\delta = 4\epsilon$. For $x, y \ge 1/2$, we have $1/x, 1/y \le 2$, so if $|x - y| < \delta$, then

$$|g(x) - g(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y - x}{xy}\right| < \frac{\delta}{2 \cdot 2} = \epsilon.$$

6. (**Do not submit**) Prove that if f is uniformly continuous on a bounded set $D \subseteq \mathbb{R}$, then f is bounded on D.

Hint: If f is not bounded on D, you can find some sequence (a_n) in D with $|f(a_n)| \ge n$ for all $n \in \mathbb{N}$. But since D is bounded, (a_n) is a bounded sequence and therefore has a convergent subsequence. We also know that if f is uniformly continuous and (x_n) is a Cauchy sequence, then $(f(x_n))$ is also a Cauchy sequence.

Following the hint, suppose that f is not bounded on D. Then for each $n \in \mathbb{N}$ there exists some $a_n \in D$ such that $|f(a_n)| \geq n$. Let (a_n) be the resulting sequence. Since D is bounded, and $a_n \in D$ for all $n \in \mathbb{N}$, (a_n) is bounded, so there must be a convergent subsequence (a_{n_k}) . Since this subsequence converges, it must be a Cauchy sequence, and since f is uniformly continuous on D, it follows that $(f(a_{n_k}))$ is a Cauchy sequence. But then it must be the case that $(f(a_{n_k}))$ is a bounded sequence, which contradicts the assumption that $|f(a_{n_k})| \geq n_k \geq k$ for all $k \in \mathbb{N}$. Thus, f must be bounded on D.

7. Prove that $f(x) = \sin x$ is uniformly continuous on \mathbb{R} .

Hint: First use the Mean Value Theorem to prove that $|\sin x - \sin y| \le |x - y|$ for all $x, y \in \mathbb{R}$.

Let $\epsilon > 0$ be given, and let $\delta = \epsilon$. Choose any $x, y \in \mathbb{R}$ with $|x - y| < \delta$. Assume without loss of generality that x, y. Since $f(x) = \sin x$ is continuous on [x, y] and differentiable on (x, y), there exists some $c \in (x, y)$ such that

$$f'(c) = \cos c = \frac{\sin y - \sin x}{y - x}$$
 and thus $\left| \frac{\sin y - \sin x}{y - x} \right| = \left| \cos c \right| \le 1$.

It follows that

$$|f(x) - f(y)| = |\sin x - \sin y| \le |x - y| < \delta = \epsilon.$$