21CST701

B. E. Degree (Autonomous) Seventh Semester End Examination (SEE), Jan 2025

BIG DATA ANALYTICS

(Model Question Paper - II)

Time: 3 Hours] [Maximum Marks: 100

Instructions to students

1. Answer FIVE FULL Questions.

Q.No.	Questions	Marks	Course Outcome	RBT Level			
1 (a)	Explain Structured, Semi-structured and Unstructured data with examples.	(12 Marks)	CO1	L2			
1 (b)	What is Data warehouse? Explain the key components in typical data warehouse environment.	(08 Marks)	CO1	L2			
OR							
2 (a)	Explain Challenges with Big data.	(10 Marks)	CO1	L2			
2 (b)	What is Business Intelligence? How it is different from big data.	(10 Marks)	CO1	L2			
3 (a)	Explain in brief the core components of Hadoop ecosystem.	(12 Marks)	CO2	L2			
3 (b)	Explain the structure and functionality of the Mapper class in a Java-based MapReduce program. Provide a code snippet as an example.	(8 Marks)	CO3	L3			
OR							
4 (a)	Explain the architecture and working of Hadoop YARN. Discuss its main components and how it improves the functionality of Hadoop MapReduce.	(10 Marks)	CO2	L2			
4 (b)	Illustrate with example how files are stored in HDFS. Also, justify how HDFS is fault tolerant.	(10 Marks)	CO2	L3			
		I	ı				
5 (a)	Describe the role of the Mapper in the MapReduce framework. Explain its different phases with example.	(10 Marks)	CO2	L2			
5 (b)	Write a MapReduce program to search an employee name in the following data: Input: 001,chp 002,vr 003,pnr 004,prp	(10 Marks)	CO4	L2			
OR							

6 (a)	Explain the following terminology of Big Data	(12 Marks)	CO3	L3	
	a. In-Memory Analytics	, ,			
	b. In-Database processing				
	c. Symmetric Mulit-processor system				
	d. Massively parallel processing				
	e. Shared nothing architecture				
	f. CAP Theorem				
6 (b)	Identify and discuss the greatest challenges faced in Big Data	(8 Marks)	CO2	L2	
	analytics.				
7 (a)	Discuss the architecture of Hive and explain its key components.	(10 Marks)	CO3	L2	
7 (b)	Create a data file for below schemas:	(10 Marks)	CO4	L3	
	Order: CustomerId, ItemId, ItemName, OrderDate,	,			
	DeliveryDate				
	Customer: Customerld, CustomerName, Address, City, State,				
	Country				
	i. Create a table for Order and Customer Data.				
	ii. Write a HiveQL to find number of items bought by each				
	customer.				
	OR	l			
8 (a)	Define the following key data processing operators in Pig	(10 Marks)	CO4	L3	
	Latin: LOAD, FILTER, FOREACH, GROUP, and JOIN.	, ,			
	Explain each operator with an example.				
8 (b)	Explain the following relational operators in Pig Latin with an	(10 Marks)	CO4	L3	
	example for each:				
	a) FILTER b)GROUP BY c)JOIN d)UNION e)SPLIT				
	· · · · · · · · · · · · · · · · · · ·		. !		
9 (a)	Explain the apache spark architecture. Explain about the different Cluster Managers in Apache Spark?	(10 Marks)	CO3	L2	
9 (b)	Compare Hadoop and Spark.	(5 Marks)	CO2	L2	
9 (c)	Compare batch processing and real time processing.	(5 Marks)	CO2	L2	
OR					
10 (a)	Explain lazy evaluation, narrow transformation, wide transformation.	(10 Marks)	CO3	L2	
10 (b)	Write a Spark program(in python) that reads a file with over	(10 Marks)	CO4	L3	
10 (0)	100,000 entries (where each row or line has a <state,< td=""><td>(10 Mai KS)</td><td> 004</td><td>LJ</td></state,<>	(10 Mai KS)	004	LJ	
	mnm_color, count>) and computes and aggregates the counts				
	for each color and state.				
	101 Each color and State.				
