

Classificação de SPAM usando Naive Bayes e SVM

Marcos Treviso

07 de novembro de 2015

Aprendizado de Máquina - Universidade Federal do Pampa

- Multinomial Naive Bayes
- Ambiente de Teste
- Resultados
- Conclusão

- Multinomial Naive Bayes
- Ambiente de Teste
- Resultados
- Conclusão

Multinomial Naive Bayes

- Indicado para classificação de documentos
- Captura a frequência das palavras
- Assume indepência entre palavras

Multinomial Naive Bayes

$$P(x|y) = \prod_{j=i}^{V} P(w_j|y)^{n_j(x)}$$

$$\hat{P}(y_k) = \frac{|J_k|}{M}, \qquad \hat{P}(w_j|y_k) = \frac{\sum_{m \in J_k} n_j(x^m)}{\sum_{i=1}^{V} \sum_{m \in J_k} n_i(x^m)}$$

- Aplicando log: soma de probabilidades
- M = número de documentos
- V = tamanho do vocabulário
- $x^i = i$ -ésimo documento
- $y^i = \text{classe de } x^i$
- J_k = indíces das instâncias pertencendo a k-ésima classe
- $n_j(x) =$ número de occorências da palavra w_j no documento x

5

- Multinomial Naive Bayes
- Ambiente de Teste
- Resultados
- Conclusão

Ambiente de Teste

• Dell Inspiron 7348

Processador	Intel i7-5500U 2.40GHz - 4 cores
Memória Principal	8 GB RAM DDR3
Cache	L3 Cache 4 MB
Processador	Intel Xeon X5690 3.40GHz - 24 cores
Memória Principal	64 GB RAM DDR3
Cache	L3 Cache 12 MB

- Python 3.4.3
- Numpy 1.9.2

Ambiente de Teste

- Multinomial Naive Bayes:
 - $smooth de 10^{-9}$
 - Palavras em *lowercase*
 - Números para NUMBER
 - Endereços web para URL
 - Emails web para EMAIL
 - \$ web para DOLLAR
 - Remoção de HTML e pontuação

Redes Neurais

- Regularização de 0.1
- Palavras em lowercase
- Números para NUMBER
- Endereços web para URL
- Emails web para EMAIL
- \$ web para DOLLAR
- Remoção de HTML e pontuação

3

- Multinomial Naive Bayes
- Ambiente de Teste
- Resultados
- Conclusão

Resultados - Acurácia

• Média de 10 execuções

Alg.	Enron1		Enron2		Enron3	
	Treino	Teste	Treino	Teste	Treino	Teste
MNV SVM	99.25% 98.68%	98.56% 98.12%	99.04% 98.28%	98.64% 97.87%	98.88% 98.27%	98.53% 97.94%

Alg.	Enr	on4	Enron5		
	Treino	Teste	Treino	Teste	
MNV SVM	99.12% 98.26%	98.83% 96.10%	99.33% 97.44%	99.18% 96.17%	

Resultados - Pontuação F1

• Média de 10 execuções

Alg.	Enron1		Enron2		Enron3	
	Treino	Teste	Treino	Teste	Treino	Teste
MNV	0.99%	0.99%	0.98% 0.94%	0.98%	0.98%	0.99 %
SVIVI	0.96%	0.95%	0.94%	0.91%	0.94%	0.89%

Alg.	Enron4		Enron5	
	Treino	Teste	Treino	Teste
MNV SVM			0.98%	

- Multinomial Naive Bayes
- Ambiente de Teste
- Resultados
- Conclusão

Conclusão

- MNB parece ser muito bom para a tarefa
- MNB é bem mais rápido para treinar que o SVM
- A acurácia de ambos ficou boa
- Os filtros de pré-processamento ajudam a deixar o probleam mais fácil
- O código do trabalho está em: https://github.com/meitcher/spam-classification

Referências

- LxMLS Lab Guide, Jul, 19, 2015. Lisboa, Portugal.
- Machine Learning, Andrew Ng. Coursera.

Classificação de SPAM usando Naive Bayes e SVM

Marcos Treviso

Aprendizado de Máquina

7 de novembro de 2015

Universidade Federal do Pampa