PROGRAMA ACADÉMICO DE LA MATERIA OPTATIVA DE INTRODUCCIÓN A LA ASTRONOMÍA

Duración: 1 Semestre.- 4 horas de clase por semana

3 de teoría y una de práctica.

1) INTRODUCCIÓN

El Universo: Panorama General

Noción de escalas

El valor de la Astronomía

2) INTRODUCCIÓN A LOS PLANETAS Y LA LUNA

Fases de la luna y los planetas

El movimiento de los planetas.- Una breve historia.

La apariencia de la luna

Exploración de la luna

Resultados del proyecto Apolo.

- a) Composición de la superficie lunar
- b) Cronología de la luna
- c) Origen de la luna

El valor de la investigación con naves espaciales.

3) MERCURIO, VENUS, TIERRA Y MARTE

Generalidades de Mercurio
Mariner X
Generalidades de Venus
La superficie de Venus
Observaciones desde el espacio con sondas

La tierra

Características de Marte

Vikingo I y II

4) JÚPITER Y LOS PLANETAS EXTERIORES

Propiedades fundamentales de Júpiter Observaciones espaciales Saturno Urano y Neptuno Plutón

5) COMETAS, METEORITOS Y ASTEROIDES

Cometas.

- a) Composición y origen
- b) Cometa Halley
- c) Cometas: Kohutek, West, Ikeya-Seki y Levy

Meteoritos Asteroides

6) LAS ESTRELLAS

Color de las estrellas Ley de Planck y Cuerpos negros Diferentes tipos de espectro Paralelaje

7) OBSERVACION DE LAS ESTRELLAS

La utilidad del telescopio Diferentes tipos de telescopio óptico Espectroscopía El calendario

8) ESTRELLAS VARIABLES Y GRUPOS ESTELARES

Estrellas binarias Estrellas variables

- a) Cefeidas
- b) Tipo RR lyra

Cúmulos y poblaciones estelares

- a) Diagrama H.R para cúmulos galacticos (abiertos)
- b) Diagrama H-R para cúmulos globulares
- c) Cúmulos globulares, Jets de rayos X y Hoyos negros

9) EL SOL

Estructura básica Eclipses solares

- a) Observación de eclipses
- b) Expediciones para los eclipses

Manchas solares y otras actividades

- a) Manchas solares
- b) Ráfagas
- c) Areas brillantes, filamentos y protuberancias

10) SECUENCIA PRINCIPAL DE LAS ESTRELLAS

Camino de evolución Generación de energía en las estrellas Etapa final de las estrellas

11) GIGANTES ROJAS Y ENANAS BLANCAS

Gigantes rojas Enanas blancas Observación de enanas blancas

12) SUPERNOVAS Y ESTRELLAS DE NEUTRONES

Supergigantes rojas Estrellas de neutrones

13) PULSARES

Descubrimiento de los pulsares Pulsares de Rayos X

14) HOYOS NEGROS

Formación estelar de un hoyo negro Evento horizontal Hoyos negros no estelares Ondas gravitacionales

15) LA VIDA EN EL UNIVERSO

El origen de la vida ¿Otros sistemas estelares?
Posibilidades estadísticas de vida inteligente extraterrestre Búsqueda de vida
Ovnis y Principio de simplicidad

16) COMPONENTES DE LA VÍA LÁCTEA

El medio interestelar

Estructura espiral de las galaxias

- a) Líneas brillantes de la estructura espiral
- b) Rotación diferencial
- c) Teoría de ondas densas

17) RADIO ASTRONOMÍA

Radioastronomía

Líneas espectrales de radio del hidrógeno interestelar

18) LINEAS DEL ESPECTRO DE RADIACIÓN

Hidrógeno molecular

Líneas espectrales de radio de moléculas

19) ASTRONOMÍA EN INFRAROJO Y ALTA ENERGÍA

Observaciones en el infrarrojo Astronomía de alta energía

20) DESARROLLO HISTÓRICO DE LAS GALAXIAS Y SU CLASIFICACIÓN

Galaxias y más

Tipos de galaxias

- a) Elípticas
- b) Espirales
- c) Irregulares
- d) Peculiares
- e) Clasificación de Hubble

21) CUMULUS DE GALAXIAS Y EXPANSIÓN DEL UNIVERSO

Cúmulos de galaxias

- a) Grupo local
- b) Cúmulos lejanos

La expansión del universo

Radiogalaxias

Observaciones de baja resolución de radiogalaxias.

22) QUASARES

El descubrimiento de los quasares Importancia de los quasares El problema de la energía Quasares y galaxias

23) COSMOLOGÍA

Paradoja de Olbers Teoría del Bing Bang Teoría del universo estacionario

24) RADIACIÓN DE FONDO, ORIGEN DE LOS ELEMENTOS Y FUTURO DEL UNIVERSO

La radiación de fondo primitiva La creación de los elementos El futuro del universo

25) EL FUTURO DE LA ASTRONOMÍA

Planes y proyectos actuales El proyecto científico Instituciones La nueva astronomía

Número de horas de clase teórica: 45

Número de horas de práctica: 10 (en el Planetario)

Número de horas de video: <u>5</u>

BIBLIOGRAFÍA:

Pasachoff M. Jay.- Astronomy Now.- Saunders Golden Sunbust Series Zeilik Michael.- ASTRONOMY The Envolving Universe.- Harper & Row Publishers. 2nd. Edition