Séries entières - Démonstrations

<u>Lemme d'Abel</u>: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. Soit $z_0\in\mathbb{C}$ tel que la suite $(a_nz_0^n)_{n\in\mathbb{N}}$ est bornée. Alors pour tout $z\in\mathbb{C}$ tel que $|z|<|z_0|$, la série numérique $\sum\limits_{n\in\mathbb{N}}a_nz^n$ converge absolument.

Démonstration : 🖈

- Si $z_0=0, \exists z \in \mathbb{C}$ tel que $|z|<|z_0|$, donc la propriété est vérifiée.
- Si $z_0 \neq 0$, soit $z \in \mathbb{C}$ tel que $|z| < |z_0|$. Comme la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée, $\exists M \in \mathbb{R}_+, \forall n \in \mathbb{N}, |a_n z_0^n| < M$

Alors
$$\forall n \in \mathbb{N}, 0 \le |a_n z^n| = |a_n||z|^n = |a_n z_0^n| \times \left(\frac{|z|}{|z_0|}\right)^n \le M \times \left(\frac{|z|}{\frac{|z_0|}{|z_0|}}\right)^n$$

Or la série géométrique $\sum \left(\frac{|z|}{|z_0|}\right)^n$ CV, donc par comparaison de SATP, $\sum |a_nz^n|$ CV, donc la série numérique $\sum a_nz^n$ CVA

<u>Propriété</u>: Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Soit $z \in \mathbb{C}$

- (i) Si |z| < R, la série numérique $\sum a_n z^n$ CVA
- (ii) Si |z| > R, la série numérique $\sum a_n z^n$ DVG

<u>Démonstration</u>: **★**

- (i) Si R=0, $\nexists z\in\mathbb{C}$ tel que |z|< R. On suppose donc R>0 Comme |z|< R, z n'est pas un majorant de $\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}$ Donc il $\exists r_0\in\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}$ vérifiant $|z|< r_0$ On peut alors appliquer le Lemme d'Abel (car $(a_nr_0^n)_n$ est born\'ee, et donc la série $\sum a_nz^n$ CVA.
- (ii) Si $|z| > R = \sup\{r \in \mathbb{R}_+ | (a_n r^n) \text{ est bornée}\} \text{ donc } |z| \notin \{r \in \mathbb{R}_+ | (a_n r^n) \text{ est bornée}\}$ C'est-à-dire que $(a_n |z|^n)_n$ est non bornée, or $\forall n \in \mathbb{N}, |a_n z^n| = |a_n||z^n| = |a_n||z|^n|$ Donc $(a_n z^n)_n$ est non bornée.

Alors la série $\sum a_n z^n$ DVG

Règle de d'Alembert

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes tels que $\exists n_0\in\mathbb{N}, \forall n\geq n_0, a_n\neq 0$.

Si $\frac{|a_{n+1}|}{|a_n|} \xrightarrow[n \to +\infty]{} l \in \mathbb{R}_+ \cup \{+\infty\}$, alors le rayon de convergence R de la S.E. $\sum a_n z^n$ vérifie $R = \frac{1}{l}$, avec les conventions $\frac{1}{0} = +\infty$ et $\frac{1}{+\infty} = 0$

<u>Démonstration</u>: **★**

Soit
$$z \in \mathbb{C}$$
, posons $\forall n \in \mathbb{N}$, $u_n = a_n z^n$, alors $|u_n| = \underbrace{|a_n|}_{\neq 0} |z|^n > 0 \ \forall n \geq n_0$

$$\operatorname{Et} \frac{|u_{n+1}|}{|u_n|} = \frac{|a_{n+1}|}{|a_n|} \times |z| \xrightarrow[n \to +\infty]{} l|z|. \text{ De plus, } l|z| < 1 \iff |z| < \frac{1}{l}$$

Ainsi par la règle d'Alembert appliquée à la série numérique $\sum |u_n|$:

- Si $|z| < \frac{1}{l}$, l|z| < 1, donc la série numérique $\sum |u_n|$ CV, donc $\sum a_n z^n$ CV(A) Donc $|z| \le R$, ceci $\forall z \in \mathbb{C}^*$, $|z| < \frac{1}{l}$, donc $\frac{1}{l} < R$
- Si $|z|>rac{1}{l'}$ alors l|z|>1 donc la série numérique $\sum |u_n|$ DVG donc la série numérique $\sum a_n z^n$ DVG aussi.
- Donc $\forall z \in \mathbb{C}^*$ tel que $|z| > \frac{1}{l}$, $|z| \ge R$ d'où en faisant tendre |z| vers $\frac{1}{l} : \frac{1}{l} \ge R$

D'où R =
$$\frac{1}{l}$$

Règle de Cauchy:

Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe. Si $|a_n|^{\frac{1}{n}} \xrightarrow[n \to +\infty]{} l \in \mathbb{R}_+ \cup \{+\infty\}$, alors le rayon de convergence R de la S.E. $\sum a_n z^n$ vérifie $R = \frac{1}{l}$, avec les conventions $\frac{1}{0} = +\infty$ et $\frac{1}{+\infty} = 0$.

<u>Démonstration</u>:

Soit $z \in \mathbb{C}$, on étudie la nature de la série numérique $\sum a_n z^n$.

$$\forall n \in \mathbb{N}^*, \left(|a_n|^{\frac{1}{n}}|z|\right)^n = |a_n z^n| \text{ et } |a_n|^{\frac{1}{n}}|z| \xrightarrow[n \to +\infty]{} l|z|$$

- Si $|z|>\frac{1}{l}$, alors l|z|>1, donc comme $|a_n|^{\frac{1}{n}}|z|\xrightarrow[n\to+\infty]{}l|z|>1$, par définition de la limite,

$$\exists n_0 \in \mathbb{N}, \forall n > n_0, |a_n|^{\frac{1}{n}}|z| > 1$$

 $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, |a_n|^{\frac{1}{n}}|z| \geq 1$ Et donc $|a_nz^n| \geq 1^n = 1$, donc $|a_nz^n|$ ne tend pas vers 0.

Donc la série numérique $\sum a_n z^n$ DVG, donc $R \leq \frac{1}{L}$

- Si $|z| < \frac{1}{l}$, alors l|z| < 1 et $|a_n|^{\frac{1}{n}}|z| \xrightarrow[n \to +\infty]{} l|z| > 1$ Donc par définition de la limite.

$$\exists q \text{ tel que } 0 < q < 1 \text{ et } \exists n_0 \in \mathbb{N}, \forall n \geq n_0, |a_n|^{\frac{1}{n}}|z| \leq q$$
 D'où par croissance de $t \mapsto t^n, |a_n z^n| \leq q^n$

Donc par comparaison de SATP, la série numérique $\sum |a_n z^n|$ CV,

D'où
$$\sum a_n z^n$$
 CVA, ceci $\forall z \in \mathbb{C}$ tel que $|z| < \frac{1}{l}$

Donc
$$\frac{1}{l} \le R$$
, donc par double inégalité, $R = \frac{1}{l}$

<u>Théorème</u>: Soit $\sum a_n z^n$ une série entière de rayon de convergence R>0. La série entière $\sum a_n z^n$ converge normalement sur tout disque fermé $\overline{D(0;r)}$ de centre O et de rayon r, $0 \le r < R$.

Démonstration : 🖈

Soit r tel que $0 \le r < R$

Notons $\forall n \in \mathbb{N}, u_n : z \mapsto a_n z^n$. Soit $n \in \mathbb{N}$,

$$\forall z \in \overline{D(0;r)}, |u_n(z)| = |a_n||z|^n \le |a_n|r^n$$

Ainsi la fonction u_n est bornée sur $\overline{D(0;r)}$ et puisque la borne supérieure d'un ensemble est le + petit majorant de cet ensemble,

$$0 \le ||u_n||_{\infty,\overline{D(0;r)}} = \sup_{z \in \overline{D(0;r)}} |u_n(z)| \le |a_n|r^n$$

Mais r < R, donc la série numérique $\sum a_n r^n$ CVA. Ainsi par comparaison de SATP, la série $\sum \|u_n\|_{\infty}$ CV, d'où $\sum u_n$ CVN sur $\overline{D(0;r)}$.