Discussion Week 10

Reminders

- Project report/code due Sunday December 10 (11:59 PM)
- Final Exam: Wednesday December 13 (11:30 AM 2:30 PM)
 - Royce Hall 362

Bernoulli

Categorical

•X ~ Binomial(5,

•X ~ Binomial(5,

•X ~ Binomial(5,

• Pr(<3,2>; 5, 1/2 | 1/2 | x)?

• 0.3125

X ~ Multinomial(5,

X ~ Multinomial(5,

•Pr(<3,2,0,0,0,0>; 5,

X ~ Multinomial(5,

•Pr(<3,2,0,0,0,0>; 5,

• 0.001286008

Factory	% of total production	Pr of defective lamps
Α	0.35 = P(A)	0.015 = P(D A)
В	0.35 = P(B)	0.010 = P(D B)
С	0.30 = P(C)	0.020 = P(D C)

• P(C|D)?

Factory	% of total production	Pr of defective lamps
Α	0.35 = P(A)	0.015 = P(D A)
В	0.35 = P(B)	0.010 = P(D B)
С	0.30 = P(C)	0.020 = P(D C)

• $P(C|D) \propto 0.020 \cdot 0.30 = 0.006$

Factory	% of total production	Pr of defective lamps
Α	0.35 = P(A)	0.015 = P(D A)
В	0.35 = P(B)	0.010 = P(D B)
С	0.30 = P(C)	0.020 = P(D C)

- $P(C|D) \propto 0.020 \cdot 0.30 = 0.006$
- $P(B|D) \propto 0.010 \cdot 0.35 = 0.0035$
- $P(A|D) \propto 0.015 \cdot 0.35 = 0.00525$

Factory	% of total production	Pr of defective lamps
Α	0.35 = P(A)	0.015 = P(D A)
В	0.35 = P(B)	0.010 = P(D B)
С	0.30 = P(C)	0.020 = P(D C)

•
$$P(C|D) \propto 0.020 \cdot 0.30 = 0.006$$

•
$$P(B|D) \propto 0.010 \cdot 0.35 = 0.0035$$

•
$$P(A|D) \propto 0.015 \cdot 0.35 = 0.00525$$

•
$$P(A|D) = \frac{0.006}{0.006 + 0.0035 + 0.00525} = 0.40677966101$$

Factory	% of total production	Pr of defective lamps
Α	0.35 = P(A)	0.015 = P(D A)
В	0.35 = P(B)	0.010 = P(D B)
С	0.30 = P(C)	0.020 = P(D C)

- $P(C|D) \propto 0.020 \cdot 0.30 = 0.006$
- $P(B|D) \propto 0.010 \cdot 0.35 = 0.0035$
- $P(A|D) \propto 0.015 \cdot 0.35 = 0.00525$
- Most likely factory if defective?

Factory	% of total production	Pr of defective lamps
Α	0.35 = P(A)	0.015 = P(D A)
В	0.35 = P(B)	0.010 = P(D B)
С	0.30 = P(C)	0.020 = P(D C)

- $P(C|D) \propto 0.020 \cdot 0.30 = 0.006$
- $P(B|D) \propto 0.010 \cdot 0.35 = 0.0035$
- $P(A|D) \propto 0.015 \cdot 0.35 = 0.00525$
- Most likely factory if defective?
 - Maximum a posteriori

Factory	% of total production	Pr of defective lamps
Α	0.35 = P(A)	0.015 = P(D A)
В	0.35 = P(B)	0.010 = P(D B)
С	0.30 = P(C)	0.020 = P(D C)

- $P(C|D) \propto 0.020 \cdot 0.30 = 0.006$
- $P(B|D) \propto 0.010 \cdot 0.35 = 0.0035$
- $P(A|D) \propto 0.015 \cdot 0.35 = 0.00525$
- Most likely factory if defective?
 - Maximum a posteriori = C
 - Maximum likelihood

Factory	% of total production	Pr of defective lamps
Α	0.35 = P(A)	0.015 = P(D A)
В	0.35 = P(B)	0.010 = P(D B)
С	0.30 = P(C)	0.020 = P(D C)

- $P(C|D) \propto 0.020 \cdot 0.30 = 0.006$
- $P(B|D) \propto 0.010 \cdot 0.35 = 0.0035$
- $P(A|D) \propto 0.015 \cdot 0.35 = 0.00525$
- Most likely factory if defective?
 - Maximum a posteriori = C
 - Maximum likelihood = D

Example

• Data:

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Vocabulary:

Index	1	2	3	4	5	6
Word	Chinese	Beijing	Shanghai	Macao	Tokyo	Japan

Learned parameters (with smoothing):

$$\hat{\beta}_{c1} = \frac{5+1}{8+6} = \frac{3}{7} \qquad \hat{\beta}_{j1} = \frac{1+1}{3+6} = \frac{2}{9}$$

$$\hat{\beta}_{c2} = \frac{1+1}{8+6} = \frac{1}{7} \qquad \hat{\beta}_{j2} = \frac{0+1}{3+6} = \frac{1}{9}$$

$$\hat{\beta}_{c3} = \frac{1+1}{8+6} = \frac{1}{7} \qquad \hat{\beta}_{j3} = \frac{0+1}{3+6} = \frac{1}{9}$$

$$\hat{\beta}_{c4} = \frac{1+1}{8+6} = \frac{1}{7} \qquad \hat{\beta}_{j4} = \frac{0+1}{3+6} = \frac{1}{9}$$

$$\hat{\beta}_{c5} = \frac{0+1}{8+6} = \frac{1}{14} \qquad \hat{\beta}_{j5} = \frac{1+1}{3+6} = \frac{1}{9}$$

$$\hat{\beta}_{c6} = \frac{0+1}{8+6} = \frac{1}{14} \qquad \hat{\beta}_{j6} = \frac{1+1}{3+6} = \frac{2}{9}$$

Maximum Likelihood Estimation

 Since objects are assumed to be generated independently, for a data set D = {x₁, ..., x_n}, we have,

$$P(D) = \prod_{i} P(x_i) = \prod_{i} \sum_{j} w_j f_j(x_i)$$

$$P(D) = \sum_{i} \log P(x_i) = \sum_{j} \log \sum_{i} w_j f_j(x_i)$$

$$\Rightarrow log P(D) = \sum_{i} log P(x_i) = \sum_{i} log \sum_{j} w_j f_j(x_i)$$

Task: Find a set C of k probabilistic clusters
 s.t. P(D) is maximized

Gaussian Mixture Model

- Generative model
 - For each object:
 - Pick its cluster, i.e., a distribution component: $Z \sim Multinoulli(w_1, ..., w_k)$
 - Sample a value from the selected distribution: $X|Z\sim N\left(\mu_Z,\sigma_Z^2\right)$
- Overall likelihood function

•
$$L(D|\theta) = \prod_i \sum_j w_j p(x_i|\mu_j, \sigma_j^2)$$

s.t. $\sum_j w_j = 1$ and $w_j \ge 0$

Multinomial Mixture Model

- For documents with bag-of-words representation
 - $x_d = (x_{d1}, x_{d2}, ..., x_{dN}), x_{dn}$ is the number of words for nth word in the vocabulary
- Generative model
 - For each document
 - Sample its cluster label $z \sim Multinoulli(\pi)$
 - $\pi = (\pi_1, \pi_2, ..., \pi_K), \pi_K$ is the proportion of kth cluster
 - $p(z=k)=\pi_k$
 - Sample its word vector $x_d \sim multinomial(\beta_z)$
 - $\pmb{\beta}_Z=(\beta_{Z1},\beta_{Z2},\dots,\beta_{ZN}),\beta_{ZN}$ is the parameter associate with nth word in the vocabulary

•
$$p(\mathbf{x}_d|z=k) = \frac{(\sum_n x_{dn})!}{\prod_n x_{dn}!} \prod_n \beta_{kn}^{x_{dn}} \propto \prod_n \beta_{kn}^{x_{dn}}$$

Mixture of Unigrams

- For documents represented by a sequence of words
 - $\mathbf{w}_d = (w_{d1}, w_{d2}, ..., w_{dN_d}), N_d$ is the length of document d, w_{dn} is the word at the nth position of the document
- Generative model
 - For each document
 - Sample its cluster label $z \sim Multinoulli(\pi)$
 - $\pi = (\pi_1, \pi_2, ..., \pi_K), \pi_k$ is the proportion of kth cluster
 - $p(z=k)=\pi_k$
 - For each word in the sequence
 - Sample the word $w_{dn} \sim Multinoulli(\boldsymbol{\beta}_z)$
 - $p(w_{dn}|z=k) = \beta_{kw_{dn}}$

Question

 Are multinomial mixture model and mixture of unigrams model equivalent?
 Why?

Likelihood Function

For a set of M documents

$$L = \prod_{d} p(x_d) = \prod_{d} \sum_{k} p(x_d, z = k)$$

$$= \prod_{d} \sum_{k} p(x_d | z = k) p(z = k)$$

$$\propto \prod_{d} \sum_{k} p(z = k) \prod_{n} \beta_{kn}^{x_{dn}}$$

Likelihood Function

For a set of M documents

$$L = \prod_{d} p(\mathbf{w}_{d}) = \prod_{d} \sum_{k} p(\mathbf{w}_{d}, z = k)$$

$$= \prod_{d} \sum_{k} p(\mathbf{w}_{d} | z = k) p(z = k)$$

$$= \prod_{d} \sum_{k} p(z = k) \prod_{n} \beta_{kw_{dn}}$$

Generative Model for pLSA

- Describe how a document is generated probabilistically
 - For each position in d, $n = 1, ..., N_d$
 - Generate the topic for the position as $z_n \sim Multinoulli(\boldsymbol{\theta}_d)$, i. e., $p(z_n = k) = \theta_{dk}$ (Note, 1 trial multinomial, i.e., categorical distribution)
 - Generate the word for the position as

$$w_n \sim Multinoulli(\boldsymbol{\beta}_{z_n}), i.e., p(w_n = w) = \beta_{z_n w}$$

Graphical Model

Note: Sometimes, people add parameters such as θ and β into the graphical model

Two documents, two topics

- Vocabulary: {data, mining, frequent, pattern, web, information, retrieval}
- At some iteration of EM algorithm, E-step

word (w)	word count in Document 1 ($c(w, d_1)$)	$p(z=1 w,d_1)$
data	5	0.8
mining	4	0.8
frequent	3	0.6
pattern	2	0.8
web	2	0.5
information	1	0.2

7.1		
word (w)	word count in Document 2 ($c(w, d_2)$)	$p(z=1 w,d_2)$
information	5	0.2
retrieval	4	0.2
web	3	0.1
mining	3	0.5
frequent	2	0.6
data	2	0.5

M-step

$$\beta_{11} = \frac{0.8 * 5 + 0.5 * 2}{11.8 + 5.8} = 5/17.6$$

$$\beta_{12} = \frac{0.8 * 4 + 0.5 * 3}{11.8 + 5.8} = 4.7/17.6$$

$$\beta_{13} = 3/17.6$$

$$\beta_{14} = 1.6/17.6$$

$$\beta_{15} = 1.3/17.6$$

$$\beta_{16} = 1.2/17.6$$

$$\beta_{17} = 0.8/17.6$$

•Q2: In pLSA, For the same word in different positions in a document, do they have the same conditional probability p(z|w,d)?

•Q2: In pLSA, For the same word in different positions in a document, do they have the same conditional probability p(z|w,d)?

word (w)	word count in Document 1 ($c(w,d_1)$)	$p(z=1 w,d_1)$
data	5	0.8
mining	4	0.8
frequent	3	0.6
pattern	2	0.8
web	2	0.5
information	1	0.2