Algoritmica Grafurilor Tema 2

Iordache Iustin-Ionut Grupa B2 Vascan Dumitru Grupa B2

7 Ianuarie 2014

Problema 1

Pentru a demonstra ca doar una dintre proprietati a sau b pot avea loc, vom demonstra ca $(a) \Rightarrow !(b)$ si $(b) \Rightarrow !(a)$

$$(a) \Rightarrow !(b)$$

$$l(e) \le f(e) \le u(e) \Rightarrow \begin{cases} l(e) \le f(e) \Rightarrow \sum_{e \in \delta^{-}(X)} l(e) \le \sum_{e \in \delta^{-}(X)} f(e) & (1) \\ f(e) \le u(e) \Rightarrow \sum_{e \in \delta^{+}(X)} f(e) \le \sum_{e \in \delta^{+}(X)} u(e) & (2) \end{cases}$$

$$\begin{cases} \sum_{e \in \delta^{-}(v)} f(e) = \sum_{e \in \delta^{+}(v)} f(e) \\ v \in V s i X \subseteq V \end{cases} \Rightarrow \sum_{e \in \delta^{-}(X)} f(e) = \sum_{e \in \delta^{+}(X)} f(e) (3)$$

Din (1), (2) si (3)
$$\Rightarrow \sum_{e \in \delta^-(X)} l(e) \leq \sum_{e \in \delta^+(X)} u(e)$$

$$(b) \Rightarrow !(a)$$

Stim din ipoteza ca
$$l(e) \le u(e)$$
 pentru orice arc $e \in E \Rightarrow$

$$\Rightarrow \begin{cases} \sum_{e \in \delta^{-}(X)} l(e) \le \sum_{e \in \delta^{-}(X)} u(e) & (4) \\ \sum_{e \in \delta^{+}(X)} l(e) \le \sum_{e \in \delta^{+}(X)} u(e) & (5) \end{cases}$$

$$Din (4), (5) si (b) \Rightarrow \sum_{e \in \delta^{-}(X)} l(e) \le \sum_{e \in \delta^{-}(X)} u(e) < \sum_{e \in \delta^{+}(X)} l(e) \le \sum_{e \in \delta^{+}(X)} u(e) \quad (6)$$

$$\Rightarrow \begin{cases} \sum_{e \in \delta^{-}(X)} l(e) \leq \sum_{e \in \delta^{-}(X)} f(e) \leq \sum_{e \in \delta^{-}(X)} u(e) & (7) \\ \sum_{e \in \delta^{+}(X)} l(e) \leq \sum_{e \in \delta^{+}(X)} f(e) \leq \sum_{e \in \delta^{+}(X)} u(e) & (8) \end{cases}$$

Din (6), (7) si (8) $\Rightarrow \sum_{e \in \delta^-(X)} f(e) < \sum_{e \in \delta^+(X)} f(e)$, ceea ce contrazice ipoteza.

Problema 2

a) Notam cu V_i a i-ea componenta conexa a grafului V.

Cum componentele conexe sunt arbori, iar un arbore cu k varfuri are k-1 muchii, si cum arborele V_i este e-par daca are un numar par de muchii $\Rightarrow |V_i| \equiv 1 (mod 2)$.

$$eh(V) = |V_1|(mod 2) + |V_2|(mod 2) + ... + |V_n|(mod 2)$$
 (1)

$$|V| = |V_1| + |V_2| + \dots + |V_n|$$

 $|V|(mod2) = (|V_1| + |V_2| + \dots + |V_n|)(mod2) = (|V_1|(mod2) + |V_2|(mod2) + \dots + |V_n|(mod2))(mod2)$ (2)

Din (1), (2)
$$\Rightarrow eh(V) \equiv V(mod)$$

Problema 4

Consideram n=4, si $D=\{3,3,3,3\}$.

Vom construi graful M_D astfel :

- 1. Construim subgrafurile $C_i, 1 \leq i \leq n$ ca fiind induse de $R_i \bigcup S_i$
- 2. Unim componentele $C_i, 1 \leq i \leq n$ si construim muchi
ile $\{r_{i,j}, r_{j,i}\}$ pentru $i, j \in \{1,, n\}$ si $i \neq j$

Construim C_1

- 2
- 3
- 4

Construim C_2

Construim C_3

Construim C_4

Avand C_1,C_2,C_3,C_4 vom construi graful ${\cal M}_D$ unind varfurile din R_i cu cele din R_j cum am scris la 2.

" \Leftarrow "Se observa pe reprezentarea de mai sus ca graful M_D are un cuplaj perfect, iar gradele varfurilor sale sunt d_i

" \Rightarrow " In reprezentarea de mai sus, fiecare din componentele C_1, C_2, C_3, C_4 este un subgraf format dupa constructia enuntata, iar fiecare din varfurile acestori subgrafuri este unit cu cate un varf din alte subgrafuri, la fel urmand regula de constructie a muchiilor.