MODELO PARA ENTREGA DO RELATÓRIO FINAL

Disciplina PSI 3451 - Projeto de Circuitos Lógicos Integrados

DUPLA

(1) NOME: Lucas Paiva da Costa

(2) #USP: 10335465

(1) NOME: Gabriel Lujan Bonassi

(2) #USP: 11256816

1. Dados da Execução da Simulação da Dupla

(mostrar valores, cálculos e resultados)

$$N2 = [(No USP A + No USP B) mod 3] + 1 = 1$$

Preencha com a sua velocidade do discípulo e com a sequência para as <u>rodadas</u> <u>especificadas</u>

Rodada		1	2	3	4
Sequência da Velocidade	N1= 4	N.A.	X1	Х8	X2
Sequência de casos	N2= 1	а	b	С	d

Com a realização da simulação com o testbench global, as solicitações (itens) das seções a seguir deverão ser atendidas.

2. Geração de Número Aleatório da Máquina do Discípulo

Nome do aluno cujo número USP é utilizado para obtenção do polinômio característico (incluir aqui): <u>Lucas Paiva da Costa</u>

Número USP utilizado (incluir aqui): <u>10335465</u>

Preencher a tabela com os primeiros 10 valores gerados pelo software de **leventozturk.com** a partir da semente 111.....1 (em hexadecimal) e respectivos valores utilizados para o endereço do discípulo (2 bits).

	Números pseudoaleatórios (hexa)	Endereços (2 bits)
1	62D	01
2	C5A	10
3	167	11
4	2CE	10
5	59C	00
6	B38	00

7	FA3	11
8	695	01
9	D2A	10
10	387	11

ATENCÃO: o arquivo **run_sim.text** fornecido deve ser modificado de tal forma a possibilitar <u>adicionalmente</u> a visualização no Wave do **Modelsim** dos números aleatórios gerados **LFSR Galois**, dentro do módulo **num_gen**

- a) Subir imagem(ns) do ModelSim, <u>evidenciando com anotações</u> enumere a(s) imagen(s) como item_2a_1, item_2a_2, etc...:
 - o valor da semente (após o reset)
 - os primeiros 10 valores aleatórios
 - os 10 endereços correspondentes de memória formados no módulo num_gen.
 - o(s) estado(s) da FSM_main na geração dos 10 primeiros números.

b) Compare os valores com os obtidos por software.

Podemos ver que os 10 valores gerados condizem com os valores gerados pelo sofrware.

c) Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

	reset	seed	1º no. aleatório	10º no. aleatório
Tempo (colocar unidade)	5,201 ns	11,865 ns	21,943 ns	111,99 ns

3. Simulação Geral com Todas as Quatro Rodadas (seguindo a tabela da seção 1)

Preencha com a sua velocidade do discípulo e com a sequência para as <u>rodadas</u> <u>simuladas</u>. Para cada caso diferente da especificada (como na tabela da seção 1), justificar a mudança

Rodada		1	2	3	4
Sequência da Velocidade	N1=4	X4	X1	Х8	X2
Sequência de casos	N2=1	а	b	С	d

Para as suas quatro (4) rodadas simuladas:

- a) Anexe o arquivo de estímulos do testbench onde a sequência de velocidades do discípulo está programada (denominar como item_3a)
 - **Obs.** O arquivo deve estar comentado com os inícios e finais de cada rodada, além de eventos que considerarem importantes.
- b) Anexe o arquivo de mapas resultante da simulação com os estímulos do item a). Não realize edições nele, exceto a identificar a sequência de rodadas para cada cenário+velocidade (denominar como item_3b).
 - **Obs.** O arquivo deve estar comentado com os inícios e finais de cada rodada e com a velocidade do discípulo (exceto para a rodada do **caso a**).

4. Simulação da Rodada 1 (seguindo as tabelas das seções 1 e 3)

Condição a)- guru termina e discípulo não se mexe

a) Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, <u>os sinais importantes</u> para a realização e verificação da condição da rodada. Enumere a(s) imagen(s) como **item_4a_1**, **item 4a_2**, **etc**...:

ATENÇÃO: Todos os sinais citados acima devem ser RESSALTADOS na(s) própria(s) imagen(s). Garanta que os itens da tabela da próxima sub-seção estjam na(s) imagen(s)...

b) Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

	Início da rodada	Fim da rodada	end_of _guru	Retorno ao estado de espera de nova rodada no FSM_main
Tempo (colocar unidade)	2740 ns	90750 ns	90760 ns	91660 ns

c) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item a) evidenciam a condição pretendida.

Como o estado da FMS_GURU chegou em LAST, e o sinal DUO_FORMED não está ativo, significa que o guru chegou ao final do tabuleiro e não encontrou o discípulo, e o sinal button_enable = 0, então na verdade o discípulo nunca nem andou.

5. Simulação da Rodada 2 (seguindo a tabela da seção 3)

(deixe apenas a condição abaixo, referente à sua rodada 2)

Condição b)- guru e discípulo sem interação entre si

a) Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, <u>os sinais importantes</u> para a realização e verificação da condição da rodada. Enumere a(s) imagen(s) como **item_5a_1**, **item 5a_2**, **etc**...:

ATENÇÃO: Todos os sinais citados acima devem ser RESSALTADOS na(s) própria(s) imagen(s). Garanta que os itens da tabela da próxima sub-seção estejam na(s) imagen(s).

b) Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

Início da rodad	Fim da rodada	end_of _guru	end_ of _disci ple	duo_f orme d (se for o	guru_ right _behi nd	Ativa ção do enabl	Ativa ção da veloci	Retorno ao estado de
-----------------------	------------------	-----------------	-----------------------------	---------------------------------	-------------------------------	-----------------------------	------------------------------	-------------------------------

				caso)	(se	е	dade	espera
					for o	para	para	de nova
					caso)	discíp	0	rodada
						ulo	discíp	no
							ulo	FSM_ma
								in
Tempo (colocar	91670	16643	1952 30,15			1150 20 ns	1150 20 ns	195240
unidade)	ns	0 ns	ns					ns

c) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item a) evidenciam a condição pretendida.

As imagens já são autoexplicativas, mas, como ambos o guru e discípulo atingiram o final do tabuleiro sem levantar a flag duo_formed, significa que ambos não se encontraram (isso pode ser verificado muito mais facilmente percorrendo a simulação no modelsim).

d) Subam imagem(ns) do ModelSim, evidenciando com anotações, o valor aleatório pela saída do módulo rand_num (para a posição inicial do discípulo), o valor escrito na memória, o estado de geração aleatória da máquina do discípulo; o qual deve ser compatível com o mapa de posições._Enumere a(s) imagen(s) como item_5d_1, item 5d_2, etc...:

e) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item d) evidenciam o número aleatório sendo usado como ponto de partida do discípulo.

(escrever aqui- use o espaço necessário)

6. Simulação da Rodada 3 (seguindo a tabela da seção 3)

(deixe apenas a condição abaixo, referente à sua rodada 3)

Condição c)- guru e discípulo com encontro formando duo

a) Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, <u>os sinais importantes</u> para a realização e verificação da condição da rodada. Enumere a(s) imagen(s) como **item_6a_1**, **item 6a_2**, **etc...**:

ATENÇÃO: Todos os sinais citados acima devem ser RESSALTADOS na(s) própria(s) imagen(s). Garanta que os itens da tabela da próxima sub-seção estejam na(s) imagen(s)..

WRITE_DUO acontecendo, indicando que guru e

b) Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

	Início da rodada	Fim da rodada	end_of _guru	end_ of _disci ple	duo_f orme d (se for o caso)	guru_ right _behi nd (se for o caso)	Ativa ção do enabl e para discíp ulo	Ativa ção da veloci dade para o discíp ulo	Retorno ao estado de espera de nova rodada no FSM_ma in
Tempo (colocar unidade)	42446 0 ns		48643 0 ns	4736 30,15 ns	4682 50,15 ns	4879 80 ns	3541 70 ns	3541 70 ns	488470 ns

c) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item a) evidenciam a condição pretendida.

Podemos observar que button_enable = 1 e velocidade = 2 (diferente dos itens anteriores), isso faz com que o discípulo caminhe junto ao guru. Podemos observar que o discípulo encontra o guru na primeira linha do tabuleiro na posição 5, assim

duo_formed é setado para indicar o encontro. O discípulo, então, incrementa para fora e indica final da rodada para ele com end_disc = 1, mas não apaga a posição anterior que foi escrita com duo, pois o duo seguirá no tabuleiro de acordo com o passo do guru. Quando o guru (com duo) passa pelo final do tabuleiro, guru indica final da rodada com end_guru = 1.

d) Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, o valor aleatório pela saída do módulo **rand_num** (para a posição inicial do discípulo), o valor escrito na memória, o estado de geração aleatória da máquina do discípulo; o qual deve ser compatível com o mapa de posições._Enumere a(s) imagen(s) como **item_6d_1**, **item 6d_2**, **etc.**..:

Endereço de memória gerado (acima) Valor aleatório gerado (abaixo)

e) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item d) evidenciam o número aleatório sendo usado como ponto de partida do discípulo.

(escrever aqui- use o espaço necessário)

7. Simulação da Rodada 4 (seguindo a tabela da seção 3)

(deixe apenas a condição abaixo, referente à sua rodada 4)

Condição d)- guru e discípulo com "guru right behind"

a) Subam imagem(ns) do **ModelSim**, <u>evidenciando com anotações</u>, <u>os sinais importantes</u> para a realização e verificação da condição da rodada. Enumere a(s) imagen(s) como **item_7a_1**, **item 7a_2**, **etc**...:

ATENÇÃO: Todos os sinais citados acima devem ser RESSALTADOS na(s) própria(s) imagen(s). Garanta que os itens da tabela da próxima sub-seção estejam na(s) imagen(s)..

Guru chega ao fim do tabuleiro, indicando fim da rodada, com DUO_FORMED = 0 e GURU_RIGHT_BEHIND = 1

b) Preencha tabela com os tempos (não esquecer as unidades) no Wave em que ocorrem os eventos na simulação

Γ	Início	Fim da	end of	end_	duo_f	guru_	Ativa	Ativa	Retorno
		rodada	guru	of	orme	right	ção	ção	ao
	da		_0.		d (se	_behi	do	da	estado

	rodada			ple	for o	nd	enabl	veloci	de
					caso)	(se	е	dade	espera
						for o	para	para	de nova
						caso)	discíp	О	rodada
							ulo	discíp	no
								ulo	FSM_ma
									in
Tempo				5376		5642	3541	3541	
(colocar	48848	59038	58883	30,15		50,15	70 ns	70 ns	590860
unidade)	0 ns	0 ns	0 ns	ns		ns	, 5 115	, 5 115	
umadac)				113		113			

c) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item a) evidenciam a condição pretendida.

Podemos observar que button_enable = 0 e velocidade = 4 inicialmente, isso faz com que o guru caminhe sozinho por um trecho, até que faz-se button_enable = 1 e velocidade = 8, isso faz com que o discípulo caminhe 8x mais rápido que o guru, assim o discípulo ultrapassa o guru exatamente na casa da frente e sai do tabuleiro quando o guru está atrás dele, isso faz com que guru_behind seja setado para indicar que o guru está chegando na posição de saída do discípulo, em seguida o discipulo incrementa para fora e indica final da rodada para ele com end_disc = 1, mas não apaga a posição anterior que foi escrita com guru..Quando o guru passa pelo final do tabuleiro, guru indica final da rodada com end_guru = 1.

d) Subam imagem(ns) do ModelSim, evidenciando com anotações, o valor aleatório pela saída do módulo rand_num (para a posição inicial do discípulo), o valor escrito na memória, o estado de geração aleatória da máquina do discípulo; o qual deve ser compatível com o mapa de posições._Enumere a(s) imagen(s) como item_7d_1, item 7d_2, etc...:

e) Faça uma explicação/justificativa detalhada de como <u>os sinais</u> da(s) curva(s) do item d) evidenciam o número aleatório sendo usado como ponto de partida do discípulo.

(escrever aqui- use o espaço necessário)