

Modeling future heat pump integration in a power radial

Konstantin Filonenko, Christian Veje

Energy Informatics, University of Southern Denmark

American Modelica Conference 2020

Mikkel Copeland, Klaus Jespersen

EWII Energi A/S
Denmark

September 23, 2020

Modeling future heat pump integration in a power radial

Konstantin Filonenko, Christian Veje

Energy Informatics, University of

Southern Denmark

Mikkel Copeland, Klaus Jespersen

EWII Energi A/S
Denmark

September 23, 2020

Modeling future heat pump integration in a power radial

Konstantin Filonenko, Christian Veje

Energy Informatics, University of Southern Denmark

ENERGY INFORMATICS

Mikkel Copeland, Klaus Jespersen EWII Energi A/S Denmark

September 23, 2020

Team: SDU Center for Energy Informatics

Adopt and apply Modelica tools for Danish district energy simulation

Team: EWII

- Energy consultance, technology and optimization
- Renewable energy production, distribution and storage
- Internet, fibernet, electricity and district heating provider

Objectives of the modeling

- Cable box model
- Validate simulations with measured transformer current
- Estimate current flow in year 2030

Modeling: Cablebox

Konstantin Filonenko kfi@mmmi.sdu.dk

Modeling: Photovoltaics

Buildings.Electrical.AC.ThreePhasesBalanced.Sources.PVSimple

$$P = I_s A f \eta \eta_c$$

$$I = \frac{P}{pf U}$$

Modeling: Load

Buildings. Electrical. AC. Three Phases Balanced. Loads. Inductive

$$I = \frac{P}{pf \ U}$$

$$I_r = I \sin(a\cos(pf))$$

Modeling: Distribution cables

Buildings. Electrical. AC. Three Phases Balanced. Lines. Line

$$I = \frac{P}{pf U}$$

$$\Delta U_f = I l_c (r pf + x \sin(\arccos(pf)))$$

$$x \sin(\arccos(pf)))$$

$$\frac{4.94}{4.92}$$

$$\frac{4.92}{4.86}$$

$$4.86$$

$$x \sin(\arccos(pf)))$$

$$4.84$$

$$0.15$$

$$0.00$$

$$0.90$$

$$0.92$$

$$0.94$$

$$0.96$$

$$0.98$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

Modeling: Heat pump consumption

$$COP(T) = (-4.2E-5)T^3 + (4.9E-4)T^2 + (6.9E-2)T + 2.4$$

$$SH = -0.16 T + 2700$$

$$W = (DHW + SH)/COP$$

$$W = \frac{4000}{50}$$

$$\frac{3000}{100}$$

$$\frac{3000}{150}$$

$$\frac{15}{200}$$

$$\frac{15}{100}$$

$$\frac{15}{100}$$

$$\frac{15}{100}$$

$$\frac{15}{100}$$

$$\frac{15}{100}$$

$$\frac{15}{100}$$

Time, Days

Radial branch model

Validation: March 2019

DEA-based HP scenarios for 2030

E-net stays underloaded in 2030

Heat Pumps + Electric vehicles

Buildings. Electrical. AC. Three Phases Balanced. Storage. Battery

Scenario (HP/EV/PV)	Line capacity exceeded	i_max/i_capacity
23%/7.45%/0%	No	37%
100%/7.45%/0%	No	53%
23%/7.45%/50%	Short-term	44%
23%/24.7%/0% (2040)	No	42.8%
23%/65%/0% (2040)	Short-term	112%
100%/65%/0% (2040)	Long-term	140%

Mikkel Copeland & Klaus Jespersen, Master thesis, Syddansk Universitet, 2020

Conclusions

- The simulated transformer current with no heat pumps is close to the rolling average of the measured current
- No threat to cables in 2030 in all heat pump scenarios
- Long term stress in 2040 with 100% HPs and 65% EVs

Contact information

Konstantin	Filonen	ko
------------	---------	----

Adjunkt, SDU

Campusvej 55, 5230

Odense M, Denmark

kfi@mmmi.sdu.dk

+4565508975

+4529992209

Mikkel Copeland

Konsulent, Teknologisk Institut

Kongsvang Allé 29, 8000

Aarhus C, Denmark

mico@teknologisk.dk

Christian Veje

Professor, SDU

veje@mmmi.sdu.dk

Campusvej 55, 5230

Odense M, Denmark

+4565501607

+4520585161

Klaus Jespersen

Energirådgiver, EWII

Kokbjerg 30, 6000

Kolding, Denmark

klj@slukefter.dk

