

Pervious Pavement as Public Infrastructure

2013 ARM Convention & Annual Meeting December 3, 2013

Mark Maloney, Public Works Director City of Shoreview, MN

Presentation Outline

- Development of Pervious Concrete in Minnesota
- Details of Shoreview Projects
- Observations/Successful Implementations

Pervious Concrete History

- 1990's
 - Noise/Road Spray Research (FHWA, MnDOT)
 - High Speed, High Volume Applications
- 2000's
 - Green Road Initiatives
 - Low Volume Streets, Parking Lots

Minnesota Based Research

- Local Road Research Board
 - Inv. 879, Pervious Concrete (current)
 - Storm Water BMP Guide (2009)
 - Street Sweeping Best Practices (2008)
 - MnRoad Facility Testing (2005)
- Transportation Engineering & Road Research Alliance (TERRA)
 - Pervious Concrete Fact Sheet (2008)
- RMC Foundation
 - Performance Evaluation of Pervious Concrete Pavements in Cold Weather (2010)

Minnesota Examples

- At Least 50 Locations (public/private)
- Public Infrastructure
 - Minneapolis, Duluth, St. Cloud, Detroit Lakes, Richfield,
 Shoreview
- Options for environmental permitting
- Maintenance is a Mixed Bag

Shoreview, Minnesota

- •27,000 Pop.
- •12 Square Miles
- 33% Parks, Open Space &

Water Bodies

- •100 miles of Streets
- •Rapid Growth 1970/80's

Dale Street Alley (2007)

900' long, 12' wide (1,200 SY)
8" Pervious Concrete, 6" CA Filter, 12" Select Granular
Subgrade Drainage (low infiltration soils)
Rolled-in Joints, Poly Sheeting

Woodbridge Neighborhood Project

Residential Area 38 acres

- Fully Developed
- Adjacent to Impacted Water Body (Lake Owasso)

9,000 Sq. Yds. Of Existing Asphalt Roadway

Storm Drainage

- One (1) storm inlet for Neighborhood
- Direct Discharge to the Lake

Project Objectives

Remove and Replace Roadway

Upgrade Municipal Utilities Where Needed

Improve Storm Water Management

- Traditional Design vs. Creative Approaches (Infiltration)
- Leverage Recent Cold-Weather Research Initiatives
- Cost-effective, Life Cycle Approach
- Pervious Concrete Selected by City Council

Total Project Cost \$1.5M

Woodbridge Neighborhood (2009)

25' Wide Residential Streets (8,600 SY)

7" Pervious Concrete, 18"-30" CA Filter

No Storm Sewer or Sub drains (high infiltration soils)

Saw Joints, Curing Fabric

Selection of Pervious Concrete

- Elimination of discharge pipe to lake
- Underground pipes not required
 - Reduce impact on neighborhood character
- Past City experience
 - 2007 installed 900 x 12 foot alley
- Soil type perfect for infiltration
- Advancements in mix designs and placement techniques
- Could control maintenance schedule

Pervious Concrete Cost Comparison (Woodbridge Neighborhood 2009)

• Common Excavation – 11,000CY(\$6.00/CY)

• Fabric – 11,000SY(\$1.00/SY)

1-1/2" Crushed Rock – 5000CY(\$52.00/CY)

7" Pervious Concrete – 8470SY(\$46.50/SY)

Total Cost for Pervious Concrete System

Per SY Cost for Pervious Concrete System

*Average depth beneath concrete = 1.75-feet

Estimated Bituminous Road Cost

Estimated Underground Infiltration Cost

Total Est Cost – Bit Road & Infiltration

Per SY Est Cost – Bit Road & Infiltration

**8.5% Increased Cost for Pervious Concrete

= \$ 66,000*

= \$ 11,000

= \$260,000*

= \$394,000

= \$731,000

= \$ 86.30**

= \$257,000

= \$417,500

= \$674,000

= \$ 79.60**

Shoreview Maintenance Building (2011)

20 Vehicle Parking Lot (800 SY)
6" Pervious Concrete, 30" CA Filter Aggregate
Subgrade Drainage (low infiltration soils)
Saw Joints, Curing Fabric

Pervious Concrete Observations

- Mix Design
 - 125 pcf, 21% air voids +/- 3% (Avg)
- Joints
 - Saw cut joints 24-48 hrs after pour
 - Saw cut appears more durable than rolled-in
- Coarse Filter Aggregate
 - Angular vs. Rounded
 - 1-1/2" Railroad Ballast
 - Need 40% Void Space

Pervious Concrete Observations

- Concrete Curing
 - Fabric in lieu of poly sheeting
 - Very vulnerable to drying out (spalling)
- Placement
 - Roller tube paver provided tighter surface cores show top
 2 inches more consolidated
- Restoration behind curb

Keeping the Pavement Clean

Infiltration rates of 300–500in/hr – can live with some clogging

Clogging occurs in top ¼ inch

Need Vacuum/Regenerative air sweeper

- Best surface cleaning based on in-field tests
- Some areas require deeper cleaning
- Schedule of cleaning is a work in progress

Pervious Concrete Success Stories

- Leverage High Infiltration Soils
 - Cost-effective without drainage systems
- Creative Approach Preserves Character
 - Developed areas without room for ponds
- Maintenance Requirements Understood
 - Owner with training and equipment

Staying Green.....

- Winter Maintenance Philosophy (Shoreview)
 - Use zero salt
 - 1 ton PU for plowing
- Educating Residents
 - Need continued outreach effort
 - Focused Erosion Control/Grading Inspections
- Monitoring Wells/Rain Gauge

So How's It Working?

Minnesota's Experience.....

Soil Types Can Be A Significant Factor

Significant Resources Available

Can Be Built and Maintained Correctly

Pervious Pavements Do Work As Public Infrastructure

Contacts

Local Government- City of Shoreview, Minnesota

Woodbridge Project (www.shoreviewmn.gov)

Research Resources

- TERRA (terraroadalliance.org)
- Mn LRRB (Irrb.org)
- RMC Foundation (rmc-foundation.org)

Industry Certifications

- Nat'l Ready Mix Concrete Assn. (nrmca.org)
- Minnesota Aggregate Ready Mix Assn (armofmn.com)

