Lecture 6 Inductive Sets of Data & Recursive Procedures

T. METIN SEZGIN

Lecture 05 – Review Lists and recursion

T. METIN SEZGIN


```
It is " higher order procedure" Secause it takes "procedures" as input.
                  --- 100 = (100 · 101)/2
  tunction which is General-Sem for all series = 1, odd
                                                                      Hasan Buhurcu
                                                                      Arda Adalar
                                                                      Ali Avci
  ( define (sum term a next b)
      CIF (70b)
      (+ (terma)
        (sum term (next a) (next b))))
```



```
(define (sum-integers ab)
    (if ( > a b)
      0
      (+ a ( sum-integers
                                                            identity func.
             (+1a) b))))
(define (sum-squares a b)
                                     > (define (sum term a next b)
    (if ( > a b)
                                           (if (>ab)
      (+ (square a) (sum-squares (+1 a) b))))
                                             (+ (term a)
                                                (sum term (next a)
                                                     next b)
(define (pi-sum a b)
     (if ( > a b)
                                                             continue summing
      (+ (/1 (square a)) - (pi-sum (+ a 2) b))))
                                                         from the next element.
          (number → number, number, number → number, number) → number
               term
                                     next
                                Sum.
```

o Ceren Tarim


```
mapping:

(define (map proc lst) → define map func. takes 2 args: procedure (if null? lst) → if null, return nil.

(ist nil (cons (proc (car lst)) → if not, apply procedure to first element, then (map proc (cdr lst))))) return the rest of the list.

(map process of applying a proc. to each element of a list
```



```
filtering:
                               predicate
                                function.
   (define (filter pred 1st)
       ( cond (('null? 1s+) nil)←
                 (cons (car lst)) - not empty, applying predicate to the first eit. (cons (car lst)) (filter pred (cdr lst))) cons. a new list w/
                  (else (filter pred (car (st))) -
                                                                  the rest of the
                                                                                     elts.
filtering is a process of selecting a subset of items from a collection based on a specific criterion (predicate)
   accumulating:
                             init ISI)
  (define reduce op)
       Lif (null? 1st)
          init
         ( OP (car 1st)
                                                                      recursively calling
                (reduce op init (cdr (st)))))
                                                            op here
                                                                          here
 (8) accumulating is a process of applying the operation to a set of
 inputs.
```

Lecture 6 Inductive Sets of Data & Recursive Procedures

T. METIN SEZGIN

Lecture Nuggets

- Recursion is important
- We can specify data recursively
 - Inductive data specification
 - Defining sets using grammars
 - Induction
- We can prove properties of recursively defined data
- We can write programs recursively
 - Smaller sub-problem principle (wishful thinking)
 - Examples
 - Auxiliary procedures

Nugget

Recursion is important

Recursion is important

- Recursion is important
 - Syntax in programming languages is nested
- Data definitions can be recursive
- Procedure definitions can be recursive

```
Identifier:
    IDENTIFIER
OualifiedIdentifier:
    Identifier { . Identifier }
OualifiedIdentifierList:
    QualifiedIdentifier { , QualifiedIdentifier }
CompilationUnit:
    [[Annotations] package QualifiedIdentifier ;]
                                {ImportDeclaration} {TypeDeclaration}
ImportDeclaration:
   import [static] Identifier { . Identifier } [. *];
TypeDeclaration:
   ClassOrInterfaceDeclaration
ClassOrInterfaceDeclaration:
    {Modifier} (ClassDeclaration | InterfaceDeclaration)
ClassDeclaration:
    NormalClassDeclaration
   EnumDeclaration
InterfaceDeclaration:
   NormalInterfaceDeclaration
   AnnotationTypeDeclaration
NormalClassDeclaration:
    class Identifier [TypeParameters]
                                [extends Type] [implements TypeList] ClassBody
EnumDeclaration:
    enum Identifier [implements TypeList] EnumBody
NormalInterfaceDeclaration:
   interface Identifier [TypeParameters] [extends TypeList] InterfaceBody
AnnotationTypeDeclaration:
   @ interface Identifier AnnotationTypeBody
```

```
ClassBody:
    { { ClassBodyDeclaration } }
ClassBodyDeclaration:
    {Modifier} MemberDecl
    [static] Block
MemberDecl:
    MethodOrFieldDecl
    void Identifier VoidMethodDeclaratorRest
    Identifier ConstructorDeclaratorRest
    GenericMethodOrConstructorDecl
    ClassDeclaration
    InterfaceDeclaration
MethodOrFieldDecl:
    Type Identifier MethodOrFieldRest
MethodOrFieldRest:
    FieldDeclaratorsRest:
   MethodDeclaratorRest
FieldDeclaratorsRest:
    VariableDeclaratorRest { , VariableDeclarator }
MethodDeclaratorRest:
    FormalParameters {[]} [throws QualifiedIdentifierList] (Block | ;)
VoidMethodDeclaratorRest:
    FormalParameters [throws QualifiedIdentifierList] (Block | ;)
ConstructorDeclaratorRest:
    FormalParameters [throws QualifiedIdentifierList] Block
GenericMethodOrConstructorDecl:
    TypeParameters GenericMethodOrConstructorRest
GenericMethodOrConstructorRest:
    (Type | void) Identifier MethodDeclaratorRest
    Identifier ConstructorDeclaratorRest
```

Nugget

We can define data recursively

Recursion example

• Inductive specification of a subset of natural numbers $N = \{0, 1, 2, ...\}$

Definition 1.1.1 A natural number n is in S if and only if

- 1. n = 0, or
- 2. $n-3 \in S$.
- Which subset of *N* is this?
- Is 6 in S?

Simple procedure for testing membership

- Write a procedure that follows the definition
- Remember the definition

```
Definition 1.1.1 A natural number n is in S if and only if 1. n = 0, or 2. n - 3 \in S.
```

And the procedure

Simple procedure for testing membership

- More about the procedure
 - Contract
 - Domain
 - o Co-Domain (range)
 - Usage
 - Argument

Alternative definition of S

Definition 1.1.2 *Define the set S to be the smallest set contained in N and satisfying the following two properties:*

- *1.* 0 ∈ S, and
- 2. *if* n ∈ S, *then* n + 3 ∈ S.

- Show that "the smallest set" constraint is needed
- Show that there is only one set that is smallest

Yet another way of defining S

- Rule of Inference
- Concepts
 - Hypothesis (antecedent)
 - Conclusion (consequent)
 - Implies
 - o Implicit AND
 - Axiom

$$0 \in S$$

$$\frac{n \in S}{(n+3) \in S}$$

Three different ways of defining S

- Top-down
 - The recursion ends at the base case
- Bottom-up
 - Induction starts at the base case
- Rules-of-inference
 - Must find a sequence of derivations

Defining list of integers

Definition 1.1.3 (list of integers, top-down) A Scheme list is a list of integers if and only if either

- 1. it is the empty list, or
- 2. it is a pair whose car is an integer and whose cdr is a list of integers.

Definition 1.1.4 (list of integers, bottom-up) The set List-of-Int is the smallest set of Scheme lists satisfying the following two properties:

- 1. () \in List-of-Int, and
- 2. if $n \in Int$ and $l \in List$ -of-Int, then $(n \cdot l) \in List$ -of-Int.

Definition 1.1.5 (list of integers, rules of inference)

$$() \in \textit{List-of-Int}$$

$$\frac{n \in Int \qquad l \in List\text{-}of\text{-}Int}{(n . l) \in List\text{-}of\text{-}Int}$$

Example

• Show that (-7 3 14) is a list of integers:

```
(-7 . (3 . (14 . ())))
```

Example

• Show that (-7 3 14) is a list of integers:

Derivation (deduction tree)

Defining Sets Using Grammars

```
List-of-Int ::= ()

List-of-Int ::= (Int . List-of-Int)
```

- Components of a grammar
 - Terminals
 - Non-terminals (syntactic categories)
 - Productions (no context)
 - Optional bits
 - \circ Naming conventions $e \in Expression$
- BNF, CNF
- Kleene notation
 - Star {<exp>}*, Plus {<exp>}+, Separated list Plus {<exp>}+(,)

S-lists

Definition 1.1.6 (s-list, s-exp)

$$S$$
-list ::= ($\{S$ -exp $\}$ *)
 S -exp ::= S ymbol | S -list

- Examples
- S-list -> ()
- S-exp -> x
- S-list -> (x)
- S-exp -> (x)
- S-list -> ((x) x (x) ((x) x (x)))

Binary Trees

Definition 1.1.7 (binary tree)

Bintree ::= Int | (Symbol Bintree Bintree)

Examples

Lambda Calculus

Definition 1.1.8 (lambda expression)

```
LcExp ::= Identifier

::= (lambda (Identifier) LcExp)

::= (LcExp LcExp)
```

where an identifier is any symbol other than lambda.

- Examples
- (lambda (x) x)
- (lambda (x) (lambda (y) z))

Lambda Calculus

Definition 1.1.8 (lambda expression)

```
LcExp ::= Identifier

::= (lambda (Identifier) LcExp)

::= (LcExp LcExp)
```

where an identifier is any symbol other than lambda.

Concepts

- Variables
- Bound variable

Nugget

We can use prove properties of recursively defined data

Induction

- A method for formal proofs
- Steps
 - o Define an induction hypothesis IH: Int → bool
 - Prove base case IH(o)
 - o Prove that $IH(k) \rightarrow IH(k+1)$
 - \times or more generally IH(k') for k'<=k \rightarrow IH(k+1)

Structural Induction

- A method for formal proofs
- Steps
 - o Define an induction hypothesis IH: Int → bool
 - Prove base case IH(o)
 - \circ Prove that IH(k) \rightarrow IH(k+1)
 - \times or more generally IH(k') for k'<=k \rightarrow IH(k+1)

Proof by Structural Induction

To prove that a proposition IH(s) is true for all structures s, prove the following:

- 1. IH is true on simple structures (those without substructures).
- 2. If IH is true on the substructures of s, then it is true on s itself.

Induction Example

- Prove that binary trees have odd number of nodes
 - Use structural induction
- Define IH(k)
 - Any tree of size k has odd number of elements
- Prove
 - o base case
 - o inductive step

Definition 1.1.7 (binary tree)

 $Bintree ::= Int \mid (Symbol \ Bintree \ Bintree)$

Nugget

We can solve problems using recursion

Deriving Recursive Programs

- Recursive programs are easy to write if you follow two principles
 - o Smaller-sub-problem principle (aka divide and conquer).
 - o Follow the Grammar principle

The Smaller-Subproblem Principle

If we can reduce a problem to a smaller subproblem, we can call the procedure that solves the problem to solve the subproblem.

Follow the Grammar!

When defining a procedure that operates on inductively defined data, the structure of the program should be patterned after the structure of the data.

Recursive Procedure Example

- Write a new function list-length
- Everyone should be able to go this far

• Let the definition of list guide you

```
List ::= () | (Scheme value . List)
```

```
list-length : List \rightarrow Int
usage: (list-length l) = the length of l
(define list-length
   (lambda (lst)
        (if (null? lst)
        0
        ...)))
```



```
list-length : List \rightarrow Int
usage: (list-length l) = the length of l
(define list-length
   (lambda (lst)
        (if (null? lst)
        0
        (+ 1 (list-length (cdr lst))))))
```

Another Example

Implement occurs-free?

occurs-free?

The procedure occurs-free? should take a variable var, represented as a Scheme symbol, and a lambda-calculus expression exp as defined in definition 1.1.8, and determine whether or not var occurs free in exp. We say that a variable occurs free in an expression exp if it has some occurrence in exp that is not inside some lambda binding of the same variable.

Such that

```
> (occurs-free? 'x 'x)
#t
> (occurs-free? 'x 'y)
#f
> (occurs-free? 'x '(lambda (x) (x y)))
#f
> (occurs-free? 'x '(lambda (y) (x y)))
#t
> (occurs-free? 'x '((lambda (x) x) (x y)))
#t
> (occurs-free? 'x '(lambda (y) (lambda (z) (x (y z)))))
#t
```

The rules of occurs-free?

```
> (occurs-free? 'x 'x)
#t
> (occurs-free? 'x 'y)
#f
> (occurs-free? 'x '(lambda (x) (x y)))
#f
> (occurs-free? 'x '(lambda (y) (x y)))
#t
> (occurs-free? 'x '((lambda (x) x) (x y)))
#t
> (occurs-free? 'x '((lambda (y) (lambda (z) (x (y z)))))
#t
```

- If the expression e is a variable, then the variable x occurs free in e if and only if x is the same as e.
- If the expression e is of the form (lambda (y) e'), then the variable x occurs free in e if and only if y is different from x and x occurs free in e'.
- If the expression e is of the form (e₁ e₂), then x occurs free in e if and only if it occurs free in e₁ or e₂. Here, we use "or" to mean inclusive or, meaning that this includes the possibility that x occurs free in both e₁ and e₂. We will generally use "or" in this sense.

How do we go about the implementation?

The Smaller-Subproblem Principle

If we can reduce a problem to a smaller subproblem, we can call the procedure that solves the problem to solve the subproblem.

Follow the Grammar!

When defining a procedure that operates on inductively defined data, the structure of the program should be patterned after the structure of the data.

How do we go about the implementation?

The grammar

The procedure

```
occurs-free? : Sym \times LcExp \rightarrow Bool
         returns #t if the symbol var occurs free
usage:
         in exp, otherwise returns #f.
(define occurs-free?
  (lambda (var exp)
    (cond
       ((symbol? exp) (eqv? var exp))
       ((eqv? (car exp) 'lambda)
        (and
          (not (eqv? var (car (cadr exp))))
          (occurs-free? var (caddr exp))))
      (else
         (or
           (occurs-free? var (car exp))
           (occurs-free? var (cadr exp)))))))
```