MAE 290B. Final project

Winter 2019 Submission before March 19th, 5 PM

Note: Plots and sketches must be labeled and the axis well defined. Staple the report and number the pages. Torn-out pages are not allowed. Submit a hard copy including all the plots and codes in EBU2 238. Computer programs must be **written on your own**, included in the report and also submitted through TritonEd.

1. The two-dimensional unsteady diffusion equation with a heat source/sink is to be solved in the square domain $0 \le x \le 1$, $0 \le y \le 1$,

$$T_t = \alpha (T_{xx} + T_{yy}) + Q(x, y, t), \tag{1}$$

where Q(x,y,t) is the forcing term. The temperature at the four boundaries is T=0 and the initial temperature is also T=0. The source term is defined as

$$Q(x, y, t) = 2.5\sin(3\pi x)\sin(4\pi y)f(t),$$
(2)

where the time dependence is given by

$$f(t) = 1 - e^{-at}\cos(\Omega t)\cos(2\Omega t). \tag{3}$$

The ADI method will be used to obtain a time accurate solution for T(x, y, t). Use second-order FD and *your own Thomas algorithm* for inverting the tridiagonal matrix.

a) Perform an accuracy and stability analysis of the ADI method.

10 points

b) Implement the numerical method to obtain a time-accurate solution for T(x,y,t) with $N_x=N_y=81$, i.e. a uniform grid resolution of $\Delta x=\Delta y=0.0125$. Let $\alpha=0.1$, a=3 and $\Omega=30$. Explain with detail your choice of the time step Δt . Plot the time evolution of T(x=0.55,y=0.45,t) and obtain the required time to reach steady state. Plot the 2D-contour plot, T(x,y) at final time (Hint: you can use Matlab's *contourf* command).

50 points

c) At a given time, t_n , the solution is known as $T_n(x,y)$. The error during the time advance of the solution to t_{n+1} has to be smaller than a tolerance ε . Ignore the spatial discretization error for this part. Analytically, estimate the maximum value of the time step as a function of ε .

15 points

d) Explore the influence of varying Ω and α by comparing the time evolution of T(x=0.55,y=0.45,t).

10 points

e) Considering all the tools that you have learnt in this course, what is the most accurate numerical method that you could apply to this problem? Give *details* of your method. No programming required.

15 points