Si se transmite una señal de 6 bits por carácter con un pulso de arranque de 10 ms, pulsos de información de 10 ms y un pulso de parada de 30 ms.

Pregunta: cual es el régimen de bps (bits por segundo)

Datos:

Información: 6 bits de 10 ms cada uno

Arranque: 1 bit de 10 ms

Parada: 1 bit de 30 ms.

¿ Sincrónico o asincrónico?

Pulso	A.	i	i	i	i	i	i	Р		
tiempo	10 ms	10ms	30 ms	\longrightarrow	= 100 ms					

Total de la señal en tiempo: 100 ms = 0,1 segundo

Calcular el tiempo de transmisión en milisegundos de la señal típica del Servicio Te código Baudot (1 bit de arranque + 5 bits de información +1 bit de parada) con puls del pulso de arranque.

Datos:

Vm= 50 baudios

Código Baudot = 1 pulso + 5 + 1,5 pulso -

CALCULOS AUXILIARES

Vm = 1/t

t = 1 / Vm

 $t = \underline{1}$

50 1/seg

t = 0.02 seg

t = 20 ms

Total de pulsos : 7,5

Primera forma de resolución

Arranque	i	i	i	i	i	Parada
20 ms	20 ms	20 ms	20 ms	20 ms	20 ms	30 ms

PARADA

PULSO= 1,5 * pulso inf

PULSO= 1,5 * 20 ms

PULSO= 30 ms

TOTAL = 150 ms

Segunda forma de resolución

Con los datos del ejercicio anterior, calcular la cantidad de caracteres que se trasmiten en dos minutos si se supone que los mismos se envían uno a continuación del otro.

Datos:

Un caracter. = 150 ms

Pregunta:

¿Cuantos caracteres en 2 minutos?..

CALCULOS AUXILIARES

150 ms = 0,15 seg 2 minutos = 120 seg

0,15 seg . 1 carácter
120 Seg
$$x = 120 \text{ seg } x = 120 \text{ seg}$$
 $x = 120 \text{ seg}$ x

Calcular el rendimiento de una transmisión asincrónica de una señal basada en un código de 6 bits, con un bit de arranque, dos de parada y un bit de paridad.

- a) 0,7
- b) 70%
- c) 80 %
- d) 60%
- e) 90%

Rendimiento = (Informa	ción / totales) * :	100

Α	1	1	1	1	1	I	Paridad	Parada	Parada
	Bit info	Bit info	Bit info	Bit info	Bit info	Bit info	Bit info		

Total bits de información = 6 bits + 1 paridad = 7 bits. Total bits mandados = 10 bits.

Rendimiento = (Información / totales) * 100= (7 bits / 10 bits) * 100 = 70 %

Resuelto en clases

¿Cuál es el rendimiento de un canal de comunicación que recibe 8000 bits válidos sobre 10000 bits transmitidos?

- a) 0,7
- b) 70%
- c) 80 %
- d) 60%
- e) 90 %

Rendimiento = Información / Recibidos

Rendimiento = (8000 bits./ 10000 bits) * 100% = 80 %.

Resuelto en clases

Un canal posee un rendimiento del 75%. Si se han enviado 10000 bits, ¿cuántos bits válidos se esperan recibir?

- a) 75%
- b) 7500 caracteres
- c) 7500 bits
- d) 6000 bits
- e) 10000 bits

Rendimiento = Información / Recibidos

Información = Rendimiento * Recibidos

Información = $\frac{75}{100}$ * 10.000bits = 7.500 bits.

Calcular el rendimiento de una trasmisión asincrónica que utiliza un código que tiene un bit de arranque, dos de parada, uno de paridad y 7 de información.

Rendimiento = Información / Recibidos Rendimiento = (8 /11) * 100 = 72,72 %

Ejercicio 10

Calcular el rendimiento de una trasmisión sincrónica cuando se envían bloques de datos de 1024 bytes y se utilizan 6 bytes de cabecera y 10 bytes de terminación.

Rendimiento= Información / Recibidos = 1024 bytes / (1024 + 6 + 10) bytes= 98,46%

- a) 98%
- b) 98,5%
- c) 99%
- d) 95%
- e) 60%

RTA: ninguna