

Chapter 7

Analog to Digital conversion

Part 3 of 4

Pulse Code Modulation (PCM)

- Pulse code modulation (PCM) is the most common technique used today for analog to digital conversion
- PCM converts an analog signal to digital words allowing transmission of information in digital form as a serial bit stream.
- PCM applications: telephone networks, CD recording, DVD Recorder, PC audio – wav format, voice mail, etc

PCM system

PCM Transmitter

PCM system

PCM Transmitter

PCM system

PCM system

PCM system

PCM system

Minimum PCM transmission bandwidth

The minimum BW occupied by a PCM bit-stream is

BW = R/2

where R is the bit rate and assuming NRZ (non-return-to-zero) signalling format.

Minimum PCM transmission bandwidth

Example 7.6 – Determine the bandwidth required for transmitting a 4 kHz audio signal using 8-bit PCM.

Solution

Sampling frequency, $f_s = 2 \times 4 \text{ kHz} = 8 \text{ kHz}$.

Bit rate = f_s x no. of bits/sample = 8 kHz x 8 bits = 64 kbits/s

Assuming NRZ format,

BW = bit rate / 2 = 32 kHz

exceeds the bandwidth of a telephone voice channel (3.3 kHz).

Time Division Multiplexing of PCM signals

 When a large number of PCM signals are to be transmitted over a common channel, time division multiplexing (TDM) of these PCM signals is required.

Pulse Amplitude Modulation (PAM)-TDM system

- TDM is the time interleaving of samples from several sources so that the information from these sources can be transmitted serially over a single communication channel.
- A technique used to share a communication channel among multiple signals

Time Division Multiplexing of PCM signals

By sampling and TDM techniques, three signals can be transmitted over a single communication channel.

Time-division multiplexing of three signals

Time Division Multiplexing of PCM signals

Time interlacing of three baseband signals

Pulse from $S_1(t)$ Pulse from $S_2(t)$ Pulse from $S_3(t)$

T = sampling interval = time taken to go through one cycle

1/T = sampling frequency = commutator speed

Time Division Multiplexing of PCM signals

- The commutator performs both the sampling and multiplexing.
- The commutator must operate at rate that satisfies the sampling theorem for all signals.

The signal with highest frequency determines the commutator speed.

- Suppose the maximum frequencies for the three input signals are $f_1 = 4$ kHz, $f_2 = 12$ kHz, and $f_3 = 4$ kHz. Hence $f_{s1} = 8$ kHz, $f_{s2} = 24$ kHz, and $f_{s3} = 8$ kHz.
- The commutator speed must be 24 kHz.

Time Division Multiplexing of PCM signals

Hence, $T = 1/(24 \text{ kHz}) = 41.67 \mu \text{s}$

The gross channel pulse rate = 3 pulses/per cycle x 24 k cycles/s = 72 k pulses/s

3 pulses per cycle

Time Division Multiplexing of PCM signals

In general, the channel transmission pulse rate is given by:

Channel transmission pulse rate = number of signal inputs x commutator speed.

Time Division Multiplexing of PCM signals

- Multiplexing of many signals will require relatively high pulse rate/bitrate transmission systems.
- To minimize the transmission bandwidth required, an optimum commutator structure is necessary.

Generates the lowest pulse rate/bitrate

Time Division Multiplexing of PCM signals

An optimum Commutator structure for minimum channel pulse rate

Insertion of signals $S_1(t)$, $S_3(t)$, and a dummy between inputs of $S_2(t)$.

Time Division Multiplexing of PCM signals

An optimum Commutator structure for minimum channel pulse rate

Time Division Multiplexing of PCM signals

An optimum Commutator structure for minimum channel pulse rate

Time Division Multiplexing of PCM signals

The duration between two samples of s 2 = 1 /24 kHz = 41.67 μ s

One pulse duration = 41.67 / 2 pulses μ s = 20.835μ s

One cycle duration = $(20.835 \mu s) \times (5+1 \text{ pulses/cycle}) \mu s = 125 \mu s$

Commutator speed = 1/ One cycle duration = 8 kHz

Time Division Multiplexing of PCM signals

For signal
$$S_2(t)$$
 $cs = 8 \text{ kHz} \longrightarrow 1 \text{ second} \longrightarrow 8000 \text{ cycles}$
 $1 \text{ cycle} \longrightarrow 3 \text{ samples}$
 $1 \text{ second} \longrightarrow 8000 \text{ x } 3 = 24000 \text{ samples}$

Hence, sampling freq $f_s = 24000 \text{ samples/sec} = 24 \text{ kHz}$

Sampling frequency for a signal = commutator speed x no. of inputs for that signal.

$$f_{s2} = 8 \text{ kHz x } 3 = 24 \text{ kHz}$$

and, $f_{s1} = f_{s3} = 8 \text{ kHz x } 1 = 8 \text{ kHz}$

Time Division Multiplexing of PCM signals

- Channel pulse rate = 8 kHz x (5+1) pulses/cycles = 48 k pulses/s.
- Optimum vs basic configuration
 - Output: 48 kpulses/s vs 72 kpulses/s >>> smaller transmission bandwidth
 - Commutator speed: 8 kHz vs 24 kHz >>> power savings

Time Division Multiplexing of PCM signals

- Optimize a commutator structure with minimise channel pulse rate:
 - Choose a commutator speed (CS)/rotation rate that equals to the sampling rate of the signal with minimum bandwidth.
 - For signals with larger bandwidth, allocate multiple-equally-spaced inputs in one cycle of commutator rotation determined by sampling theorem.

The sampling rates of all the signals will be multiples of CS.

Note:

Decreasing the commutator speed will result in a more complex commutator structure.

Sometimes, it is necessary to trade-off between the channel pulse rate and the complexity of commutator structure.

Time Division Multiplexing of PCM signals

Example 7.7

A PAM-TDM system is used to multiplex four signals:

```
\begin{split} m_1(t) &= \cos w_0 t, \\ m_2(t) &= 0.5 \text{cos } w_0 t, \\ m_3(t) &= 2 \text{cos } 2 w_0 t, \\ m_4(t) &= \text{cos } 4 w_0 t, \text{ where } w_0 = 2000 \pi \text{ radians/s.} \end{split}
```

- a) If each signal is sampled at Nyquist rate, sketch the optimum commutator structure assuming uniform sampling.
- b) What is the commutator speed?

Time Division Multiplexing of PCM signals

Solution

$$w_0 = 2000\pi = 2\pi f_0 >>> f_0 = 1000 Hz$$

$$f_{m1} = 1000 Hz$$

$$f_{m2} = 1000 Hz$$

$$f_{m3} = 2000 Hz$$

$$f_{m4} = 4000 Hz$$

Time Division Multiplexing of PCM signals

Solution

<u>a)</u>

<u>Signal</u>	f _m (kHz)	<u>f_s(kHz)</u>
m ₁	1	2
m ₂	1	2
m ₃	2	4
m_4	4	8

Time Division Multiplexing of PCM signals

Solution

<u>a)</u>

No of inputs = f_s/cs

<u>Signal</u>	f _m (kHz)	f _s (kHz)
m ₁	1	2
m ₂	1	2
m ₃	2	4
m ₄	4	8

8/2 = 4

Total no of inputs = 8

Choose the lowest f_s in this column to be the cs

i.e.
$$cs = 2 kHz$$

Time Division Multiplexing of PCM signals

Solution

<u>a)</u>

Total no of inputs = 8

All 4 m₄ inputs should be evenly spaced which divides the commutator structure into 4 sections.

- Note that to get uniform sampling:
 - all the signal inputs should be evenly spaced.
 - for the same signal all inputs must be evenly.
 - total number of inputs is a multiple of 4.

Time Division Multiplexing of PCM signals

Solution

<u>a)</u>

Time Division Multiplexing of PCM signals

Solution

<u>a)</u>

b) commutator speed = 2 k cycles/s

Time Division Multiplexing of PCM signals

 TDM of PCM signals follows the same concepts as just an additional digital encoder is needed

Commutator structure for PCM-TDM signal

Time Division Multiplexing of PCM signals

The gross channel output bit rate is:

Gross channel output bit rate, R = commutator speed x no. of inputs x no. of bits per sample

Example 7.8

A 4 kHz signal is transmitted through a PCM system. The system employ a 8-bit quantiser which has a step size of 5 mV.

- a) Calculate the quantisation noise power and the maximum output signal-toquantisation noise ratio (in dB) of the system.
- b) If five similar systems are time-multiplexed, what is the minimum transmission bandwidth required by the multiplexed system?

Solution

a) Quantisation noise power =
$$N_q = \frac{q^2}{12} = \frac{(5 \times 10^{-3})^2}{12}$$

= 2.08 x 10⁻⁶ W

Signal-to-quantisation noise = $1.76 + 6B = 1.76 + 6 \times 8 dB = 49.76 dB$

b)
$$f_m = 4 \text{ kHz}$$
, $f_s = 2f_m = 8 \text{ kHz}$ For similar signals, $cs = f_s$

Gross output bit rate, R = commutator speed x no. of inputs x no. of bits per sample = $8000 \times 5 \times 8 = 320 \text{ kbps}$

Hence, minimum transmission bandwidth = R/2 = 320/2 = 160 kHz

END

CHAPTER 7

(Part 3 of 4)

