

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

AD-A210 062 DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY ELECTE		3. DISTRIBUTION/AVAILABILITY OF REPORT DISTRIBUTION UNLIMITED			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE 05 1989		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) FJSRL-JR-89-0008		6a. NAME OF PERFORMING ORGANIZATION F.J. Seiler Research Laboratory			
		6b. OFFICE SYMBOL <i>(If applicable)</i> FJSRL/NC			
6c. ADDRESS (City, State, and ZIP Code) USAF Academy Colorado 80840-6528		7a. NAME OF MONITORING ORGANIZATION			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION AF Office of Scientific Research		8b. OFFICE SYMBOL <i>(If applicable)</i> AFOSR			
8c. ADDRESS (City, State, and ZIP Code) Bldg 410 Bolling AFB DC 20332		9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
		10. SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO 61102F	PROJECT NO. 2303	TASK NO F3	WORK UNIT ACCESSION NO 07
11. TITLE (Include Security Classification) Molecular Structure and Vibrational Analysis of 2,4,6-Trinitro-luene and 2,4,6-Trinitrotoluene-a-d₃					
12. PERSONAL AUTHOR(S) C.P. Nash, T.E.Nelson, J.J.P. Stewart and W.R. Carper					
13a. TYPE OF REPORT Journal Article	13b. TIME COVERED FROM _____ TO _____		14. DATE OF REPORT (Year, Month, Day) 88 November		15. PAGE COUNT 4
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES			18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)		
FIELD	GROUP	SUB-GROUP			
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The x-ray structures of 2,4,6-trinitrotoluene and 2,4,6-trinitrotoluene-a-d₃ have been determined at 130K. The molecular structure and vibrational spectra are calculated by the MNDO-PM3 method and are in agreement with experimental results. The short intra-and intermolecular hydrogen contacts correlate with the known thermal and ionization degradation pathways of 2,4,6-trinitrotoluene.					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS			21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED		
22a. NAME OF RESPONSIBLE INDIVIDUAL ALAN A. SHAFFER, Major, USAF			22b. TELEPHONE (Include Area Code) (719) 472-2655		22c. OFFICE SYMBOL FJSRL/NC

Molecular structure and vibrational analysis of 2,4,6-trinitrotoluene and 2,4,6-trinitrotoluene- α -d₃

C. P. NASH, T. E. NELSON, J. J. P. STEWART* and W. R. CARPENTER†

Department of Chemistry, University of California, Davis, CA 95616, U.S.A.; *Frank J. Seiler Research Laboratory, United States Air Force Academy, Colorado Springs, CO 80840, U.S.A.; and †Department of Chemistry, Wichita State University, Wichita, KS 67208, U.S.A.

(Received 18 October 1988; in final form 23 November 1988; accepted 25 November 1988)

Abstract The X-ray structures of 2,4,6-trinitrotoluene and 2,4,6-trinitrotoluene- α -d₃ have been determined at 130 K. The molecular structure and vibrational spectra are calculated by the MNDO-PM3 method, and are in agreement with experimental results. The short intra- and intermolecular hydrogen contacts correlate with the known thermal and ionization degradation pathways of 2,4,6-trinitrotoluene.

INTRODUCTION

In earlier studies [1-3], the vibrational spectra of 2,4,6-trinitrotoluene (TNT) in solid, liquid, and vapor phases have been compared with vibration frequencies calculated by using semi-empirical quantum mechanical models. The structures predicted theoretically were in reasonable agreement with that found in a room temperature X-ray diffraction study [4] for the average of the two independent molecules (designated forms A and B both here and in Ref. [4]) in the unit cell. The experimental structures, however, showed unreasonably large variations in both the C-C (1.364–1.408 Å) and C-N (1.443–1.496 Å) bond distances, which prompted the low temperature (130 K) redetermination of the crystal structure which we now report. We have also determined the structure of TNT- α -d₃ at 130 K to obtain additional verification on the short inter- and intramolecular hydrogen contacts (potential hydrogen bonds) that were reported in the previous study [4]. Finally, we have recalculated both the predicted molecular structure and the predicted gas-phase vibration spectrum using the MNDO-PM3 [5, 6] method.

EXPERIMENTAL

The synthesis of 2,4,6-trinitrotoluene and 2,4,6-trinitrotoluene- α -d₃ have been described elsewhere [7]. Crystals of each compound suitable for X-ray analysis were cut from larger ones grown by the slow evaporation of solutions of the compounds in n-propanol (TNT) or n-propanol-OD (TNT-d₃). Data were collected at 130 K on a low temperature-accessorized Syntex P2₁ diffractometer.

THEORETICAL

The calculations were accomplished with the MOPAC program [8] using the MNDO-PM3 method [5, 6]. The MNDO-PM3 method uses optimized parameters that represent a considerable im-

provement over those parameters used with AM1 [9] and other semi-empirical methods. Typically, use of these parameters results in a significant decrease in heats of formation errors [6]. All ground state geometries were optimized using the BFGS function minimization procedure [10-13]. The Hessian matrix for the normal coordinate analysis was calculated as described previously [1].

RESULTS AND DISCUSSION

The heavy atom bond distances and bond angles obtained from the low temperature X-ray structures of 2,4,6-trinitrotoluene and 2,4,6-trinitrotoluene- α -d₃, and the corresponding dimensions of TNT calculated by the MNDO-PM3 method are given in Tables 1 and 2. The estimated standard deviations of the heavy-atom dimensions are: angles 0.4 (TNT) or 0.4–0.5 (TNT-d₃); C-C bonds 0.006–0.007 Å (TNT) or 0.007 Å (TNT-d₃); C-N and N-O bonds 0.005–0.006 Å (TNT) or 0.006–0.007 Å (TNT-d₃).

In general, the bond distances found in the present low temperature studies are in better agreement with those calculated by the MNDO-PM3 method than are the corresponding distances obtained in the previous room temperature structure determination [4]. The ring C-C bond distances span a much narrower range in the low temperature structures and the C-N bond distances are also closely similar.

The dihedral angles between the ring planes and the nitro groups differ by only a few degrees from those found in the earlier study, as shown in Table 3. The oxygen atoms on the o-nitro groups that are nearest the methyl group lie on the same side of the ring plane. In the calculated structure (gas phase) the 4-nitro group is almost coplanar with the phenyl ring, stabilized by hydrogen interactions as shown in Fig. 1, while those in the 2- and 6-positions are significantly twisted out of this plane.

The present study confirms the existence of the various short intra- and intermolecular hydrogen contacts (hydrogen bonds?) identified in the earlier

*Author to whom correspondence should be addressed.

Table 1. Bond distances (\AA) and bond angles (degrees) for form A TNT and TNT- d_3

Distance*	TNT		TNT- d_3		TNT		TNT- d_3	
	Obs.	Calc.	Obs.	Angle	Obs.	Calc.	Obs.	
C1-C2	1.509	1.487	1.495	C1-C2-C3	123.7	120.7	123.7	
C2-C3	1.403	1.408	1.394	C2-C3-C4	124.3	121.3	124.5	
C3-C4	1.390	1.395	1.396	C3-C4-C5	117.4	119.9	116.7	
C4-C5	1.378	1.397	1.366	C4-C5-C6	122.7	119.8	123.3	
C5-C6	1.389	1.396	1.372	C5-C6-C7	116.4	119.9	116.7	
C6-C7	1.382	1.396	1.379	C6-C7-C2	125.7	121.3	125.2	
C7-C2	1.399	1.405	1.394	C7-C2-C3	113.6	117.7	113.4	
C3-N1	1.475	1.516	1.470	C2-C3-N1	119.6	121.8	119.9	
C5-N2	1.475	1.510	1.483	C4-C3-N1	116.1	116.9	115.6	
C7-N3	1.475	1.517	1.485	C2-C7-N3	118.9	121.8	118.6	
(N-O) _{ave}	1.225(6)	1.211	1.218(9)	C6-C7-N3	115.6	116.9	116.1	
				C4-C5-N2	119.0	119.1	118.0	
				C6-C5-N2	118.3	120.1	118.7	
				(C-N-O) _{ave}	117.5(6)	118.5	117.5(9)	
				(O-N-O) _{ave}	125.0(3)	123.0	124.9(3)	

* Atom designations as in Ref. [4].

Table 2. Bond distances (\AA) and bond angles (degrees) for form B TNT and TNT- d_3

Distance*	TNT		TNT- d_3		TNT		TNT- d_3	
	Obs.	Calc.	Obs.	Angle	Obs.	Calc.	Obs.	
C8-C9	1.494	1.487	1.492	C8-C9-C10	124.4	120.7	124.9	
C9-C10	1.404	1.408	1.397	C9-C10-C11	124.7	121.3	125.1	
C10-C11	1.380	1.395	1.379	C10-C11-C12	117.4	119.9	117.0	
C11-C12	1.381	1.397	1.390	C11-C12-C13	122.8	119.8	123.0	
C12-C13	1.379	1.396	1.376	C12-C13-C14	116.1	119.9	115.9	
C13-C14	1.375	1.396	1.386	C13-C14-C9	126.4	121.3	126.1	
C14-C9	1.400	1.405	1.403	C14-C9-C10	112.6	117.7	112.9	
C10-N4	1.482	1.516	1.488	C9-C10-N4	119.5	121.8	119.5	
C12-N5	1.467	1.510	1.464	C11-C10-N4	115.8	116.9	115.5	
C14-N6	1.486	1.517	1.474	C9-C14-N6	117.8	121.8	118.0	
(N-O) _{ave}	1.228(4)	1.211	1.221(3)	C14-C12-N5	115.8	116.9	115.8	
				C11-C12-N5	119.8	119.1	118.3	
				C13-C12-N5	118.4	120.1	118.6	
				(C-N-O) _{ave}	117.4(5)	118.5	117.3(5)	
				(O-N-O) _{ave}	125.2(4)	123.0	125.4(8)	

* Atom designation as in Ref. [4].

Table 3. Dihedral angles (degrees) between nitro groups and the plane of the ring in 2,4,6-trinitrotoluene isotopomers

Molecular form	Nitro group		
	2	4	6
A (Ref. [4])	51	24	43
A (this work)	52.0	22.3	43.4
A- d_3 (this work)	51.8	23.0	42.3
B (Ref. [4])	60	30	45
B (this work)	58.7	33.0	39.6
B- d_3 (this work)	58.9	33.0	39.5
Calc. (this work)	55.1	9.3	76.2

Fig. 1. Calculated molecular structure of 2,4,6-trinitrotoluene. The atom designation is that of TNT structure A in Ref. [4], and distances are in \AA .

work. We observe O-H hydrogen contacts between two A molecules (O5 H2) and an A and a B molecule (O4 H10) that approximate distances of 2.5 \AA . Only the first of these involves the kind of methyl-

hydrogen-to-nitro-oxygen interaction that has been implicated in the thermal degradation of TNT. Of greater significance is the complete lack of hydrogen bonding involving the para-nitro groups. Such

absences are consistent with the *para*-nitro group being unreactive in the thermal or ionization breakdown of TNT [14-16].

Tables 4 and 5 contain the calculated [5, 6] and observed [1, 3] vibration frequencies of TNT and TNT-d₃. The symmetry designations [1] are based on the nominal C_{2v} symmetry of the calculated structure, with the principal axis in the z-direction and the y-direction orthogonal to the plane of the ring. The A₂ and B₁ vibrations are out-of-plane; A₂ vibrations are i.r. inactive if the molecule has genuine C_{2v} symmetry, but such is not the case in the present instance and at least some of the A₂-species vibrations may become observable.

In correlating calculated vibrational frequencies to those observed, emphasis was placed on absorption intensities and isotopic substitution [3]. In the majority of cases, calculated absorption frequencies with large transition dipoles were identified with the more intense absorption bands. The major improvement in the calculations occurs in the NO₂ v_{sym} and v_{asym} stretching frequencies, where the error compared to previous calculations [3] decreases from 34% to 22%. The C-H stretching frequencies in the 2800-3100 cm⁻¹ range are reproduced with an average error of 1.3% vs 3.0% using the AM1 method. The remaining frequencies over the range of 400-1800 cm⁻¹ are reproduced with an average error

Table 4. Observed and calculated frequencies (cm⁻¹) for 2,4,6-trinitrotoluene

KBr	Vapour	v _{obs} ^a	v _{calc}	Symmetry	Assignment†	Transition dipole
465		444	B ₁ , B ₂	11, 14		0.10
467		480	B ₂	12		0.28
565		533	B ₁	12		0.34
579		558	B ₂	15		0.21
639		634	A ₂	5, 12		1.40
664		669	A ₁	17		2.37
664		673	A ₁	17		2.10
704, 720	705, 721	743	A ₂	17		0.78
		745	A ₂	15		0.06
735	730	749	B ₁	15		0.56
793	792	769	B ₂	15		1.15
		805	B ₁	15		0.13
		868	A ₁	12		1.21
909, 940	907, 938	939	B ₂	16		1.32
		971	A ₂	13		0.11
		990	B ₁	6		0.10
		995	A ₁	16		1.93
1026	1028, 1067	1032	B ₁	12, 13		0.30
1086	1075	1049	B ₂	4, 6		0.75
1171		1182	A ₁	10		0.40
1208	1217, 1230	1247	B ₂	10, 12		0.12
		1271	A ₁	12		0.05
		1334	B ₂	9		0.19
		1360	A ₁	4		0.15
1356	1352	1581	A ₁	19		5.90
1356	1352	1589	B ₂	19		5.90
1356	1352	1604	A ₁	19		0.80
		1376	B ₂	4		0.09
1406	1420	1414	A ₁	9, 16		0.62
1437, 1466	1437, 1457	1449	A ₁	7, 11		0.28
		1551	B ₂	9		1.43
1541	1508	1918	A ₂	18		3.51
1541	1539	1921	B ₂	18		7.58
1541	1539	1925	B ₂	18		7.26
1603, 1619	1617	1614	A ₁	8, 9		1.12
		1734	B ₂	9		1.19
		1790	A ₁	9		2.67
2955	2901	2983	B ₂	1		0.50
3015	2971	2991	A ₁	1		0.42
3058	2991	3057	B ₂	2		0.25
3087	3085	3070	A ₁	2		0.18
3096	3096	3176	A ₁	3		0.30

*Data from Ref. [1, 3].

†Assignments of vibrational frequencies: 1. Ring C-H stretch; 2. Methyl C-H asym. stretch; 3. Methyl C-H sym. stretch; 4. Methyl H-C-H asym. bend; 5. Methyl H-C-H sym. bend; 6. Methyl rock; 7. Methyl umbrella; 8. C-C stretch: methyl to ring; 9. C-C ring stretch; 10. Ring H-C-C in plane bend; 11. Methyl ring CCC in-plane bend; 12. Ring CCC bend; 13. Out-of-plane bend of ring H; 14. Out-of-plane bend of methyl C; 15. C-N bend; 16. C-N stretch; 17. C-N-O bend; 18. NO₂ asym. stretch; 19. NO₂ sym. stretch.

Accession For	
NTIS CRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution /	
Availability Codes	
Dist	Avail and/or Special
A-1 20	

Table 5. Observed and calculated frequencies (cm^{-1}) for 2,4,6-trinitrotoluene- α -d₃

KBr	v_{obs}	v_{calc}	Symmetry	Assignment†	Transition dipole
457, 471		465	B_1	12	0.30
563		527	B_1	12	0.29
573		554	B_2	15	0.20
625		623	A_1	5, 15	1.28
677		666	B_2	15	1.65
677		672	B_1	15	2.35
718	718	694	A_2, B_2	4	0.41
733	731	730	A_2	17	0.68
—	749	743	A_1	17	0.86
758	758	749	A_2	15	0.65
775	778	769	B_1	15	0.84
826	826	804	A_1	15	0.84
826	826	819	B_2	15	0.79
872, 909	907	894	B_1	12	0.19
938	938	971	A_2	13	0.13
938	938	982	B_2	16	2.51
938	938	989	A_1	16	2.49
1030		1009	B_1	13	0.23
1030		1017	B_1	13	0.31
1030		1025	B_1	4	0.35
1057, 1095	1057, 1067	1070	A_1	7	0.09
1179, 1198		1186	A_1	10	0.40
1219, 1264	1254	1245	B_2	10	0.14
1302		1307	A_1	8	0.17
		1333	B_2	9	0.18
1354	1352	1581	A_1	19	5.89
1354	1352	1589	B_2	19	5.91
1354	1352	1604	A_1	19	0.85
1410		1418	A_1	9, 16	1.06
1539	1508	1918	A_2	18	3.50
1541	1539	1921	B_2	18	7.61
1541	1539	1925	B_2	18	7.23
1599		1550	B_2	9	1.46
1619		1613	A_1	8, 9	1.13
		1768	B_2	9	1.21
		1790	A_1	19	2.67
2275		2258	B_1	2	0.38
2325		2273	B_2	2	0.22
2325		2293	A_1	3	0.26
3058	2907	2983	B_2	1	0.50
3096, 3087	2971	2991	A_1	1	0.42

*Data from Refs [1, 3].

†Assignments of vibrational frequencies. See Table 4.

of less than 21 cm^{-1} , down slightly from the 24 cm^{-1} with the AM1 method [3].*

Acknowledgements — The authors wish to thank H. HOPE, in whose laboratory the X-ray work was done. W. R. C. wishes to acknowledge the NRC for fellowships and the generous support of the Frank J. Seiler Research Laboratory.

REFERENCES

- [1] J. J. P. STEWART, S. R. BOSCO and W. R. CARPER, *Spectrochim. Acta* **42A**, 13 (1986).
- [2] W. R. CARPER, S. R. BOSCO and J. J. P. STEWART, *Spectrochim. Acta* **42A**, 461 (1986).
- [3] W. R. CARPER and J. P. STEWART, *Spectrochim. Acta* **43A**, 1249 (1987).
- [4] W. R. CARPER, L. P. DAVIS and M. W. EXTINE, *J. phys. Chem.* **86**, 459 (1982).
- [5] J. J. P. STEWART, *J. comp. Chem.* **10**, 209 (1989).
- [6] J. J. P. STEWART, *J. comp. Chem.* **10**, 221 (1989).
- [7] R. C. DOREY and W. R. CARPER, *J. Chem. Eng. Data* **29**, 93 (1984).
- [8] J. J. P. STEWART, MOPAC, Quantum Chemistry Prog. Exch. No. 455 (1983).
- [9] M. J. S. DEWAR, E. G. ZOEBISCH, E. F. HEALY and J. J. P. STEWART, *J. Am. chem. Soc.* **107**, 3902 (1985).
- [10] C. G. BRODYN, *J. Inst. Math. App.* **6**, 222 (1970).
- [11] R. FLETCHER, *Comp. J.* **13**, 317 (1980).
- [12] D. GOLDFARB, *Math. Comput.* **24**, 23 (1970).
- [13] D. F. SHANNO, *Math. Comput.* **24**, 647 (1970).
- [14] T. M. MCKINNEY, L. F. WARREN, I. B. GOLDBERG and J. T. SWANSON, *J. phys. Chem.* **90**, 1008 (1986).
- [15] J. T. SWANSON, L. P. DAVIS, R. C. DOREY and W. R. CARPER, *Magn. Reson. Chem.* **24**, 762 (1986).
- [16] W. R. CARPER, R. C. DOREY, K. B. TOMER and F. W. CROW, *Org. Mass Spectrom.* **19**, 623 (1984).

*Tables of positional and thermal parameters and structure factors are available from the Directory of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K. The request should be accompanied by the full literature citations for this report.