Partie I: Préliminaires

Soient q, k, p trois entiers tels que $0 \le q \le k \le p$.

- **1.** Montrer que $\binom{p}{k} \cdot \binom{k}{q} = \binom{p}{q} \cdot \binom{p-q}{p-k}$.
- **2.** En déduire $\sum_{\ell=q}^{p} (-1)^{p-\ell} {p \choose \ell} {\ell \choose q} = \delta_{p,q}$, où $\delta_{p,q} = 0$ si et seulement si $p \neq q$.
- 3. Soient n un entier naturel, $(a_k)_{k\in \llbracket 0,n\rrbracket}$ et $(b_k)_{k\in \llbracket 0,n\rrbracket}$ deux familles de réels. On suppose que pour tout entier $p \in [0,n]$, $\sum_{q=0}^{p} {p \choose q} a_q = b_p$. Pour tout entier $p \in [0, n]$, exprimer $\sum_{k=0}^{p} (-1)^{p-k} {p \choose k} b_k$ en fonction de a_p .

Partie II : Nombre de surjections

Pour tout $(n,p) \in (\mathbb{N}^*)^2$, on note S_n^p le nombre d'applications surjectives de $\llbracket 1, n \rrbracket$ dans $\llbracket 1, p \rrbracket$. Par convention, on pose $S_n^0 = S_0^n = 0$ et $S_0^0 = 1$.

- **4.** Soit $n \in \mathbb{N}^*$.
 - a) Déterminer S_n^1 , S_n^2 , S_n^n .
 - **b)** Soit p > n. Déterminer S_n^p .
 - c) Montrer que pour tout $p \in \mathbb{N}^*$, $p^n = \sum_{k=1}^{p} {p \choose k} S_n^k$.
 - **d)** On suppose n différent de 0. En déduire que

$$\forall \ p \in [1, n], \ S_n^p = \sum_{k=1}^p (-1)^{p-k} \binom{p}{k} k^n.$$

5. a) On suppose que $2 \le p \le n$. En considérant la restriction à [1, n-1]d'une surjection de [1, n] dans [1, p], montrer que

$$S_n^p = p \left(S_{n-1}^p + S_{n-1}^{p-1} \right).$$

- **b)** Cette relation est-elle encore vraie lorsque $1 \le p \le n$?
- c) En déduire que, pour tout entier naturel n, $S_{n+1}^n = \frac{n}{2}(n+1)!$.

Partie III : Nombre de partitions

Soit n un entier naturel quelconque, E un ensemble de cardinal n et kun entier naturel non nul. On dit que $\{A_1, \ldots, A_k\}$ est une partition de E en k classes si et seulement si

$$(i). \bigcup_{i=1}^{k} A_i = E,$$

- $(ii). \ \forall \ i \in [1, k], \ A_i \neq \emptyset.$
- (iii). $\forall i, j \in [1, k], A_i \cap A_j = \emptyset$

On note R_n^k le nombre de partitions de E en k classes. On convient que $R_n^0 = 0$ si $n \ge 1$ et $R_0^0 = 1$. On note R(n) le nombre de partitions de Eet on convient que R(0) = 1.

- **6.** Montrer que pour tout $(n,k) \in \mathbb{N}^2$ tel que n < k, alors $R_n^k = 0$.
- **7. a)** Montrer que pour tout entier naturel n, $R(n) = \sum_{k=0}^{n} R_n^k$.
 - **b)** Montrer que pour tout entier naturel n, $R(n+1) = \sum_{k=0}^{n} {n \choose k} R(k)$.
 - c) Calculer R(n) pour $n \in [1, 6]$.
 - **d)** Montrer que pour tout entier $n \ge 5$, alors $R(n) \ge 2^n$.
 - e) Montrer que pour tout entier naturel $n, R(n) \leq n^n$.
- **8.** Montrer que pour tout $(n,k) \in \mathbb{N}^2$, $R_n^k = \frac{S_n^k}{k!}$.