HW 4

This assignment covers Linear Classification methods

DO NOT ERASE MARKDOWN CELLS AND INSTRUCTIONS IN YOUR HW submission

- **Q** QUESTION
- A Where to input your answer

Instructions

Keep the following in mind for all notebooks you develop:

- Structure your notebook.
- Use headings with meaningful levels in Markdown cells, and explain the questions each piece of code is to answer or the reason it is there.
- Make sure your notebook can always be rerun from top to bottom.
- Please start working on this assignment as soon as possible. If you are a beginner in
 Python this might take a long time. One of the objectives of this assignment is to help
 you learn python and scikit-learn package.
- See README.md for homework submission instructions

Related Tutorials

Refreshers

- Intro to Machine Learning w scikit-learn
- A tutorial on statistical-learning for scientific data processing

Classification Approaches

- Logistic Regression with Sklearn
- KNN with sklearn

Modeling

- Cross-validation
- Plot Confursion Matrix with Sklearn
- Confusion Matrix Display

Data Processing

Q1 Get training data from the dataframe

- 1. Load mobile_data.csv from ```data'' folder into the dataframe
- 2. Assign values of price_range column to y
- 3. Drop 'price_range' column from data frame,
- 4. Assign remaining df column values to x
- 5. Print the head of the dataframe

A1 Replace ??? with code in the code cell below

```
In []: import numpy as np
   import pandas as pd
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LogisticRegression
   from matplotlib import pyplot as plt
   from sklearn.preprocessing import StandardScaler

#Read the mobile_data.csv file using the appropriate separator as input to read_csv
   df = pd.read_csv('../data/mobile_data.csv', sep=',')

df.head()
```

Out[]:		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	$mobile_wt$	n_cor
	0	842	0	2.2	0	1	0	7	0.6	188	
	1	1021	1	0.5	1	0	1	53	0.7	136	
	2	563	1	0.5	1	2	1	41	0.9	145	
	3	615	1	2.5	0	0	0	10	0.8	131	
	4	1821	1	1.2	0	13	1	44	0.6	141	

5 rows × 21 columns

```
In [ ]: # Code to assign values of "price_range" column to y variable
    y = df.price_range.values

In [ ]: # Drop "price_range" column from dataframe
    df.drop(columns=['price_range'], inplace=True)

# Assign remaining columns to x variable
    x = df.values

In [ ]: # Show head of dataframe with "price_range" column dropped
    df.head()
```

Out[]:		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cor
	0	842	0	2.2	0	1	0	7	0.6	188	
	1	1021	1	0.5	1	0	1	53	0.7	136	
	2	563	1	0.5	1	2	1	41	0.9	145	
	3	615	1	2.5	0	0	0	10	0.8	131	
	4	1821	1	1.2	0	13	1	44	0.6	141	

Q2:

1. Check number of null values per column in the x dataframe.

A2 Replace ??? with code in the code cell below

```
In [ ]: # The provided code was to manipulate the x variable but I found using the "df" dat
        # Check for nan values in "df" dataframe
        df.isna().sum()
                         0
        battery_power
Out[]:
        blue
                         0
                         0
        clock_speed
        dual_sim
                         0
                         0
        fc
        four_g
                         0
        int_memory
        m_dep
        mobile_wt
                         0
        n_cores
                         0
        рс
        px_height
                         0
        px_width
                         0
        ram
        sc_h
        SC_W
        talk_time
                         0
        three_g
        touch_screen
                         0
        dtype: int64
```

Q3.1 Use seaborn heatmap chart to visualize the correlations between the columns. Replace ??? with code in the code cell below

A3.1

```
In []: import seaborn as sns

# Create new dataframe still containing price_range column for determining correlat
    df2 = pd.read_csv('../data/mobile_data.csv', sep=',')

# Create correlation matrix to fix heatmap to
    corr_matrix = df2.corr()

# Specify size of heatmap generated
    plt.figure(figsize=(18,12))

# generate heatmap
    sns.heatmap(corr_matrix, annot=True)
```

Out[]: <Axes: >

Q3.2 List columns that correlate the most with the 'price_range' column.

Note: For this dataset any column that has correlation factor over or near 0.1 can be considered as a good predictor/ feature.

A3.2 The columns that most correlate with the "price_range" column are (from greatest to least correlated) ram (0.92), battery_power (0.2), px_width (0.17), and px_height (0.15). All other columns have a correlation to the "price_range" column that is less than |0.1| <- absolute value

- **Q3.3** Update the 'x' dataframe defined earlier in Q1 with your selected features/columns for 'price_range'.
- **A3.3** Replace ??? with code in the code cell below

```
In []: # A3 Part 3:

# Limit dataframe to 4 most correlated columns
df = df[['battery_power', 'px_height', 'px_width', 'ram']]

# verify dataframe contains only focus columns
print(df.head())

# reassign focus column values to x variable
x = df.values
```

	battery_power	px_height	px_width	ram
0	842	20	756	2549
1	1021	905	1988	2631
2	563	1263	1716	2603
3	615	1216	1786	2769
4	1821	1208	1212	1411

Q4: Use seaborn *histplot* to plot a distribution graph for the price_range column

A4 Replace ??? with code in the code cell below

```
In [ ]: plt.figure(figsize=(4,3),dpi=150)
    sns.histplot(data=df2['price_range'])
Out[ ]: <Axes: xlabel='price_range', ylabel='Count'>
```


Q5: Use seaborn *histplot* to present the relation between _price*range* and the *ram* of a mobile

A5 Replace ??? with code in the code cell below

```
In [ ]: | # I set the x-axis to measure "ram" and set the hue to "price_range",
        # and you can see from the resulting histplot does show that (generally
        # speaking), as the ram of the mobile increases, so too does the price_range
        sns.histplot(data=df2, x="ram", hue="price_range")
        <Axes: xlabel='ram', ylabel='Count'>
```

Out[]:

Q6:

- 1. Use StandardScaler from sklearn to transform the x dataframe.
- 2. Split dataset into train and test data use train_test_split with test_size = 0.2 and random_state = 42
- 3. Check the number of instance in the train and test set.
- 4. Check the number of instance per class in train and test set using ytrain and ytest

A6 Replace ??? with code in the code cell below

```
Out[]: (1600,)

In []: ytest.shape

Out[]: (400,)
```

Classification Model 1: Logistic Regression

Here, we fit Logistic Regression model to the train dataset using K-fold cross validation

Q7 Train Logistic Regression Model

- 1. Create a logistic regression model using sklearn linear_model library.
- 2. Fit the model with the train data
- 3. Get the score from the model using test data
- 4. Plot confusion matrix using ConfusionMatrixDisplay, see Visualization with Display Objects example.

A7 Replace ??? with code in the code cell below

```
In [ ]: from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay

# create a prediction to compare to true labels
y_pred = clf.predict(xtest)

# create confusion matrix comparing predictions to true labels
cm = confusion_matrix(ytest, y_pred, labels=clf.classes_)

# fit confusion matrix to a visual graph
matrix = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)
matrix.plot()

# tweak display graph appearance
plt.title("Logistic Reg. Model - Confusion Matrix")
plt.xticks([0,1,2,3], [0,1,2,3], fontsize=11)
plt.yticks([0,1,2,3], [0,1,2,3], fontsize=11)
plt.show()
```


Q8: Train Logistic Regression Model using cross-validation on *xtrain*, *ytrain* data.

- Apply K fold cross validation technique for the model training (cross_val_score), and set K to 5 or 10.
- Print the different scores from different folds

A8: Replace ??? with code in the code cell below

```
In [ ]: from sklearn.model_selection import cross_val_score

# Use sklearn for 5 fold cross validation

# create LR model and fit it to training data
scores_log = LogisticRegression()
scores_log.fit(xtrain, ytrain)

# print the scores from different folds
print('Score with 5 folds: ', cross_val_score(scores_log, xtrain, ytrain, cv=5))
print('Score with 10 folds: ', cross_val_score(scores_log, xtrain, ytrain, cv=10))

Score with 5 folds: [0.95625 0.953125 0.959375 0.95625 0.953125]
Score with 10 folds: [0.93125 0.96875 0.96875 0.95 0.95 0.98125 0.975 0.93
125 0.9375
0.95625]
```

Classification Model 2: K Nearest Neighbor Classifier

Here, we learn how to fit KNN on the train dataset using k-fold cross validation, and evaluate its classification accuracy on the train dataset using confusion matrix.

Q9 Build a KNN Classification Model for the dataset as following:

- 1. Create a KNN model using sklearn library, and initialize n_neighbors as described in documentation.
- 2. Fit the model with the train data
- 3. Predict the values from test data
- 4. Print out the score from training and test data
- 5. Repeat Step 1.- 4. for a range of n_neighbors values (k in kNN) from 1 to 30.

A9 Replace ??? with code in the code cell below

```
In [ ]: from sklearn.neighbors import KNeighborsClassifier

# Define KNN model
for k in range(1,31):

knn = KNeighborsClassifier(n_neighbors=k)

#Fit KNN model on xtrain, ytrain from above
knn.fit(xtrain, ytrain)
#predict y values from xtest
y_pred = knn.predict(xtest)

#print score for test data
print("K: ",k,"Train Score: ",knn.score(xtrain, ytrain), "Test Score: ",knn.sco
```

```
1 Train Score: 1.0 Test Score: 0.8875
K: 2 Train Score: 0.933125 Test Score: 0.8675
K: 3 Train Score: 0.955 Test Score: 0.915
K: 4 Train Score: 0.92625 Test Score: 0.895
K: 5 Train Score: 0.930625 Test Score: 0.915
K: 6 Train Score: 0.92 Test Score: 0.91
K: 7 Train Score: 0.924375 Test Score: 0.91
  8 Train Score: 0.91875 Test Score: 0.9175
K: 9 Train Score: 0.92625 Test Score: 0.9225
K: 10 Train Score: 0.91875 Test Score: 0.9175
K: 11 Train Score: 0.9225 Test Score: 0.925
K: 12 Train Score: 0.92 Test Score: 0.9225
K: 13 Train Score: 0.924375 Test Score: 0.93
K: 14 Train Score: 0.92 Test Score: 0.91
K: 15 Train Score: 0.923125 Test Score: 0.915
K: 16 Train Score: 0.921875 Test Score: 0.915
K: 17 Train Score: 0.9225 Test Score: 0.915
K: 18 Train Score: 0.92 Test Score: 0.9025
K: 19 Train Score: 0.919375 Test Score: 0.9125
K: 20 Train Score: 0.9175 Test Score: 0.905
  21 Train Score: 0.91875 Test Score: 0.9
K: 22 Train Score: 0.92 Test Score: 0.9075
K: 23 Train Score: 0.916875 Test Score: 0.915
K: 24 Train Score: 0.92 Test Score: 0.9
K: 25 Train Score: 0.920625 Test Score: 0.9125
K: 26 Train Score: 0.92375 Test Score: 0.9125
K: 27 Train Score: 0.921875 Test Score: 0.915
K: 28 Train Score: 0.920625 Test Score: 0.9125
K: 29 Train Score: 0.91875 Test Score: 0.92
K: 30 Train Score: 0.913125 Test Score: 0.91
```

Q9 Part 2:

What is the best n_neighbors ? Why?

A9 The "n_neighbors" with the best test score was 13 neighbors (0.93)

Q10.

- 1. Create a KNN Classifier model using the best value of k found from previous question.
- 2. Train the model using xtrain, ytrain values.
- 3. Plot confusion matrix for the xtest and ytest, using ConfusionMatrixDisplay, see Visualization with Display Objects example.

A10 Replace ??? with code in the code cell below

```
In [ ]: y_pred = knn_best.predict(xtest)

cm = confusion_matrix(ytest, y_pred, labels=knn_best.classes_)

#plt.figure()
matrix = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=knn_best.classe matrix.plot()
plt.title("KNN Classifier Model - Confusion Matrix")
plt.xticks([0,1,2,3], [0,1,2,3], fontsize=11)
plt.yticks([0,1,2,3], [0,1,2,3], fontsize=11)
plt.show()
```


Q11 Train KNN classifier using cross-validation approach, sklearn.cross_validation tutorial.

Note:

Try a range of n neighbors values (k in kNN) from 1 to 30.

A11 Replace ??? with code in the code cell below **

```
In []: # Define KNN model
from sklearn.model_selection import cross_val_score

for k in range(1, 31):
    #Define KNN model
    knn_crossval = KNeighborsClassifier(n_neighbors=k)
    knn_crossval.fit(xtrain, ytrain)

# Use sklearn for 5 fold cross validation
    scores_cv= cross_val_score(knn_crossval, xtrain, ytrain, cv=5)

# print the scores from different folds
    print('Score with ', k, ' folds: ', scores_cv)
```

```
Score with 1 folds: [0.834375 0.8375 0.865625 0.859375 0.865625]
Score with 2 folds: [0.85 0.85 0.84375 0.84375 0.85
Score with 3 folds: [0.88125 0.878125 0.85
                                              0.846875 0.85625 ]
Score with 4 folds: [0.875 0.865625 0.846875 0.853125 0.85
Score with 5 folds: [0.8625 0.890625 0.8625 0.86875 0.85625 ]
Score with 6 folds: [0.86875 0.890625 0.865625 0.878125 0.85
Score with 7 folds: [0.88125 0.8875 0.865625 0.865625]
Score with 8 folds: [0.8875 0.871875 0.88125 0.865625 0.859375]
Score with 9 folds: [0.875 0.88125 0.890625 0.8625 0.878125]
Score with 10 folds: [0.86875 0.890625 0.896875 0.871875 0.86875 ]
Score with 11 folds: [0.859375 0.909375 0.903125 0.884375 0.86875 ]
Score with 12 folds: [0.8625 0.8875 0.9125 0.878125 0.86875 ]
Score with 13 folds: [0.875 0.890625 0.915625 0.875
                                                       0.88125 ]
Score with 14 folds: [0.859375 0.903125 0.915625 0.8625
                                                       0.86875 ]
Score with 15 folds: [0.875 0.903125 0.921875 0.871875 0.86875 ]
Score with 16 folds: [0.875 0.9
                                     0.909375 0.8625
                                                       0.871875]
Score with 17 folds: [0.8875 0.915625 0.909375 0.878125 0.871875]
Score with 18 folds: [0.8875 0.909375 0.896875 0.871875 0.88125 ]
Score with 19 folds: [0.8875 0.915625 0.890625 0.875
                                                       0.884375]
Score with 20 folds: [0.890625 0.90625 0.890625 0.875
                                                       0.86875 ]
Score with 21 folds: [0.884375 0.925
                                       0.89375 0.88125 0.8875 ]
Score with 22 folds: [0.89375 0.915625 0.8875 0.878125 0.865625]
Score with 23 folds: [0.88125 0.91875 0.890625 0.9
                                                       0.865625]
Score with 24 folds: [0.896875 0.90625 0.884375 0.890625 0.8625 ]
Score with 25 folds: [0.8875 0.915625 0.89375 0.90625 0.8625 ]
Score with 26 folds: [0.884375 0.903125 0.884375 0.89375 0.875
Score with 27 folds: [0.890625 0.91875 0.90625 0.9
                                                       0.878125]
Score with 28 folds: [0.884375 0.909375 0.890625 0.8875
                                                       0.88125 ]
Score with 29 folds: [0.884375 0.909375 0.9 0.890625 0.890625]
Score with 30 folds: [0.890625 0.90625 0.884375 0.884375 0.88125 ]
```

Comparison

Q12 Compare the two models (trained using xtrain,ytrain) in terms of score.

- Train two different models on Train data
- Predict xtest using the trained models
- Make a correlation matrix between ytest and predicted ytest values from the two Models
- Your resulting matrix should be 3x3 correlation matrix for xtest, ytest data
 - The matrix is symmetric
 - It will provide the correlation between two models predictions plus ytest
 - Hint: You can create a new dataframe using these values and use corr() function for creating the corelation matrix. Use meaningful column name while creating the dataframe.

A12 Replace ??? with code in the code cell below

```
import matplotlib.pyplot as plt
In [ ]:
        import seaborn as sns
        # Predict Train dataset using logistic reg
        clf= LogisticRegression()
        clf.fit(xtrain, ytrain)
        ypred_clf = clf.predict(xtest)
        # Predict Train dataset using KNN
        knn = KNeighborsClassifier(n_neighbors=29)
        knn.fit(xtrain, ytrain)
        ypred_knn = knn.predict(xtest)
        print(ytest.shape, ypred_clf.shape, ypred_knn.shape)
        # Create a dataframe using the predicted results from the models
        df = pd.DataFrame({'Logistic Regression':ypred_clf, 'KNN':ypred_knn, 'Actual':ytest
        # compute correlation
        corr_matrix = df.corr()
        # Now use seaborn library to plot the heatmap correlation matrix
        plt.figure(figsize=(8,8))
        sns.heatmap(corr_matrix, annot=True)
        (400,) (400,) (400,)
        <Axes: >
Out[ ]:
```

