Министерство образования и науки Российской Федерации

Санкт-Петербургский государственный архитектурно-строительный университет

Кафедра геотехники

Дисциплина: Механика грунтов

Отчет по лабораторным работам

ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ГРУНТОВ

выполнила сту	дентка
группы 13-С-3	
	_Кораблёва В.Р
	_
Принял препод	аватель
	_Гурский А. В.
	· -

Санкт-Петербург 2019

ОПРЕДЕЛЕНИЕ ГРАНУЛОМЕТРИЧЕСКОГО СОСТАВА ГРУНТА ПОЛЕВЫМ МЕТОДОМ

Цель работы: Определение гранулометрического состава грунта полевым методом.

Объект исследования – грунт нарушенной структуры, высушенный на воздухе при обычной температуре.

Материалы и оборудование: градуированные цилиндры объемом 100 мл - 2 шт.; раствор хлористого кальция (CaCl - 5 %); колба с водой; сосуд для слива суспензии; ложка; палочка с резиновым наконечником; секундомер.

Ход работы:

Определение содержания песчаных частиц:

Способ основан на разной скорости падения частиц грунта в воде в зависимости от их крупности (закон Стокса) и состоит в отмывании глинистых и пылеватых частиц от песчаных.

- Сухой грунт насыпают в цилиндр и уплотняют до 10см³
- Грунт разрыхляют и доливают воду до 50...60cм²
- Грунт перемешивают и доливают воду до 100см³
- Суспензию перемешивают и оставляют на 90с. После ²⁄₃ объема сливают. Процесс повторяют до практически полного осветления жидкости
- Уменьшают время до 30с и объём жидкости до 30см³. Сливают пока вода не станет прозрачной
- После отмучивания наливают воду в цилиндр до 100см³. Определяют объём песка, после его отстаивания

Результаты определения содержания песчаных частиц (размер от 0,05 до 2,0 мм)

Начальный объем грунта, см ³	Объем оставшегося грунта, см ³	Содержание песчаных частиц, %
10	4,5	45

Результаты определения содержания глинистых частиц (размер менее 0,002 мм)

Начальный объем	Объем набухшего	Приращение объема	Относительное приращение	Содержание глинистых
грунта V_1 ,	грунта V_2 ,	$V_2 - V_1$, cm ³	объема	частиц
cm ³	cm ³		$rac{V_2-V_1}{V_1}$	$\frac{V_2 - V_1}{V_1} K$, %
10	15	5	0,5	11,35

Примечание: K – эмпирический коэффициент, равный 22,7.

Результаты определения гранулометрического состава грунта

Частицы	Размер частиц, мм	Содержание, %
Песчаные	0,052,0	45
Пылеватые	0,0020,05	43,65
Глинистые	Менее 0,002	11,35

Вывод: используя гранулометрическую классификацию, т.к. содержание глинистых частиц в образце находится в диапазоне 10...30 (11,35), определяем, что наименование грунта — суглинок.

ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ГЛИНИСТОГО ГРУНТА МЕТОДОМ РЕЖУЩЕГО КОЛЬЦА (ГОСТ 5180–84)

Цель работы: определение плотности глинистого грунта методом режущего кольца

Объект исследования – образец глинистого грунта ненарушенной структуры.

Материалы и оборудование: режущее кольцо с паспортом, салфетка, нож, стекло, правило, весы.

Ход работы:

- Режущее кольцо устанавливают на поверхность монолита и погружают его на 2...3мм в грунт, срезая грунт с внешней стороны кольца
- Действие повторяют пока грунт не заполнит кольцо и выйдет из него на 1...2мм
- Образец грунта с кольцом извлекают и устанавливают на стекло вверх конусом.
- Поверхность грунта зачищают вровень с краями кольца
- Кольцо с грунтом переворачивают и тоже самое делают с другой стороны
- Кольцо с грунтом взвешивают и затем рассчитывают плотность и удельный вес

Результаты определения удельного веса грунта

Объем	Macca	Macca	Macca	Плотность	Удельный
кольца	кольца	кольца с	грунта	грунта	вес грунта
V, cm ³	m_1 , Γ	грунтом	$(m_2-m_1),$	$m_2 - m_1$	$\gamma = \rho g$,
		m_2 , Γ	Γ	$\rho = \frac{V}{V}$	кH/м ³
				г/ с м ³	
40	11,99	86,02	74,03	1,85	18,16

Примечание: $g = 9.81 \text{ м/c}^2$ – ускорение свободного падения.

Вывод: в данной работе методом режущего кольца была определена масса и рассчитана плотность грунта, которая составила $1,85 \text{ г/см}^3$ и удельный вес грунта $18,16 \text{ кH/m}^3$

ОПРЕДЕЛЕНИЕ ПРИРОДНОЙ ВЛАЖНОСТИ ГЛИНИСТОГО ГРУНТА МЕТОДОМ ВЗВЕШИВАНИЯ (ГОСТ 5180–84)

Цель работы: определение природной влажности глинистого грунта методом взвешивания.

Объект исследования – образец глинистого грунта.

Материалы и оборудование: бюкс, нож, весы, шкаф сушильный с термометром.

Ход работы:

- Четверть грунта, оставшегося в кольце (после определения плотности в лабораторной работе № 2), помещают в бюкс и взвешивают
- Помещают в термостат, где он высушивается при температуре 105 °C в течение 4...6 ч затем снова взвешивают
- Далее влажность вычисляют по формулам

Результаты определения природной влажности грунта

Номер	Macca	Масса бюкса с	Масса бюкса с	Влажность
бюкса	бюкса	влажным	сухим	грунта
	m_1 , Γ	грунтом	грунтом	$w = \frac{m_2 - m_3}{m_2 - m_3}$
		m_2 , Γ	m_3 , Γ	$m_{3} - m_{1}$
242	21,96	43,34	39,18	0,24

Дополнительные характеристики грунта

Плотность сухого грунта

$$\rho_d = \frac{\rho}{1+w} = \frac{1,85}{1+0,24} = 1,49 \text{ г/см}^3$$

Относительное содержание твердых частиц (скелетность)

$$m = \frac{\rho_d}{\rho_s} = \frac{1,49}{2,70} = 0,55208$$

где $\rho_s = 2,70 \text{ г/см}^3$ – плотность частиц суглинка*;

Пористость

$$n = 1 - m = 1 - 0.55208 = 0,44792$$

Коэффициент пористости грунта

$$e = \frac{n}{m} = \frac{0,44792}{0,55208} = 0,811$$

Влажность при полном насыщении пор водой

4

$$w_{sat} = \frac{n \rho_w}{m \rho_s} = \frac{0,44792 \cdot 1}{0,55208 \cdot 2,71} = 0,3004$$

где ρ_w – плотность воды, ρ_w = 1,0 г/см³.

Коэффициент водонасыщения

$$S_r = \frac{w}{w_{sat}} = \frac{0.24}{0.3004} = 0.8003$$

Вывод: в ходе выполнения данной работы была определена влажность глинистого грунта, а также дополнительные физические характеристики образца грунта после его высушивания при температуре $105\ ^{0}$ С в сушильном шкафу.

ОПРЕДЕЛЕНИЕ ХАРАКТЕРНЫХ ВЛАЖНОСТЕЙ ГЛИНИСТОГО ГРУНТА (ГОСТ 5180–84)

Объект исследования — образец глинистого грунта нарушенной структуры (в виде пасты и сухой в виде порошка).

Материалы и оборудование: балансирный конус с металлическим стаканчиком и подставкой; технический вазелин; салфетка; нож; бюкс -2 шт.; весы; шкаф сушильный с термометром.

Ход работы:

Определение влажности на границе текучести w_L:

Определение границы текучести состоит в подборе соответствующей влажности испытываемого грунта

- Грунт в виде порошка смешивают с водой, получая грунтовое тесто, которым заполняют металлический стаканчик
- Острие конуса подносят к поверхности грунта и мгновенно опускают. Через 5с отмечают положение круговой черты
- Если погружение менее 10мм добавляют воду, если более сухой грунт.
- Отбирают пробу грунта и помещают в бюкс. Определяют влажность w_L, как описано в лабораторной работе № 3

Определение влажности на границе пластичности w_p

Определение границы раскатывания состоит в подборе (путем подсушивания) соответствующей влажности грунта.

- Небольшой комочек грунтового теста (диаметром 10 мм) раскатывают на ладони до образования жгута диаметром около 3 мм
- Если жгут не распадается на куски, его скатывают в шарик и снова раскатывают в жгут до указанного диаметра. Раскатывание продолжают до тех пор, пока жгут при диаметре 3 мм не покроется сетью трещин и не начнет распадаться на отдельные кусочки длиной 3...8 мм
- Полученные кусочки грунта помещают в бюкс и взвешивают. Необходимо набрать не менее 10 г грунта
- Определяют влажность wp, как описано в лабораторной работе № 3

_

Результаты определения характерных влажностей

Характерная влажность грунта	Номер бюкса	Масса бюкса <i>m</i> ₁ , г	Масса бюкса с влажным грунтом m_2 , г	Масса бюкса с сухим грунтом <i>m</i> ₃ , г	Влажность грунта $w = \frac{m_2 - m_3}{m_3 - m_1}$
w_L	202	22,42	34,88	32,09	0,288
W_p	242	21,96	32,52	30,9	0,181

Влажность на границе текучести
$$w_L = \frac{34,\!88-32,\!09}{32,\!09-22,\!24} = 0,\!288 \text{д. ед.} = 28,\!8\%$$

Влажность на границе раскатывания (пластичности)

$$w_P = \frac{32,52 - 30,9}{30,9 - 21,96} = 0,18$$
д. ед. = 18%

Число пластичности

$$I_P = w_L - w_P = 28.8 - 18 = 10.8\%$$

Показатель текучести

$$I_L = \frac{w - w_P}{w_L - w_P} = \frac{0,24 - 0,18}{0,288 - 0,18} = 0,56$$

Вывод: по ГОСТ 25100-2011 исследованный грунт является суглинком мягкопластичным, легкий песчанистый.

Согласно табл. 2 и 3 прил. 1 СНиП 2.02.01-83* исследованному грунту с e = 0.76 соответствуют механические характеристики:

удельное сцепление $c_n = 18$ кПа;

угол внутреннего трения $\phi_n = 17^\circ$;

модуль деформации $E = 10 \text{ M}\Pi \text{a}$.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОРИСТОСТИ ПЕСКА В ПРЕДЕЛЬНО РЫХЛОМ И ПРЕДЕЛЬНОМ ПЛОТНОМ СЛОЖЕНИИ

Цель работы - определить коэффициент пористости песка и установить его плотность.

Объект исследования – песок средней крупности.

Материалы и оборудование: цилиндр с днищем; ложка; воронка; резиновый молоточек; правило; весы.

Ход работы:

- Взвешивают цилиндр с днищем и ставят на поддон, наполняя песком
- Для получения предельно рыхлого сложения, песок насыпают тонкой струйкой с высоты 5...10 см без уплотнения, срезая избыток и взвешивают
- Для получения предельно плотного сложения цилиндр заполняют песком, насыпая его слоями толщиной 1...2 см с уплотнением каждого слоя. Лишний песок срезают и взвешивают
- Вычисляют коэффициент пористости е

Результаты исследования песка средней крупности

Сложение песка	Масса цилиндра m_1 , Γ	Масса цилиндра с грунтом <i>т</i> 2, г	Масса песка $(m_2 - m_1)$, г	Объем цилиндра $V, { m cm}^3$	Плотность р, г/см³	Коэффициент пористости <i>е</i>
Предельно рыхлое	317,15	719,09	401,94	250	1,607	0,6482
Предельно плотное	317,15	758,2	441,05	250	1,7642	0,502

Плотность

$$\rho = \frac{m_2 - m_1}{V}.$$

Так как опыт проводится с песком в воздушно-сухом состоянии, то, пренебрегая его гигроскопичной влажностью (т.е., считая w = 0), определяем плотность грунта ρ и приравниваем ее к плотности сухого грунта ρ_d :

$$\rho_d = \rho$$
.

Коэффициент пористости

$$e = \frac{\rho_s - \rho_d}{\rho_d},$$

 $e = \frac{\rho_s - \rho_d}{\rho_d},$ где $\rho_s = 2,65$ г/см³— плотность частиц песка*; ρ_d — плотность сухого грунта.

Вывод: в ходе данной работы был определён коэффициент пористости песка в предельно рыхлом состоянии (0,65), и в предельно плотном (0,51). В данной работе опыт выполняют с песком средней крупности.

9

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ФИЛЬТРАЦИИ ПЕСКА (ГОСТ 25584–90)

Цель работы - определить коэффициент фильтрации грунта.

Объект исследования – песок средней крупности.

Материалы и оборудование: фильтрационный прибор (КФ-1 или трубка СПЕЦГЕО); мерный сосуд Мариотта; цилиндр с днищем, крышкой (муфтой) и латунными сетками), колба с водой, секундомер.

Ход работы:

- Корпус прибора заполняют на ²/₃ объема водой. Цилиндр с песком устанавливают на подвижную площадку, опускают его в воду и выдерживают до полного водонасыщения песка.
- Цилиндр вынимают из корпуса прибора, воду выливают, а подвижную площадку поднимают в верхнее положение
- На поверхность песка кладут латунную сетку, на цилиндр надевают крышку и цилиндр с песком устанавливают на площадку.
- Мерный сосуд заполняют водой, зажимают отверстие сосуда пальцем, быстро поворачивают его вниз дном и вставляют в крышку прибора так, чтобы стекло касалось латунной сетки.
- После появления пузырьков воздуха в мерном сосуде берут отсчет по его шкале, замечают время по секундомерной стрелке часов и принимают его за t = 0; второй отсчет по часам берут, когда уровень воды совпадет с делением шкалы 90 см³
- Не извлекая песок, выполняют опыт еще два раза и затем вычисляют коэффициент фильтрации

Результаты исследования водопроницаемости песка с коэффициентом пористости e = 0.67

Номер опыта	Начальный отсчет по шкале мерного сосуда Q_1 , см 3	Конечный отсчет по шкале мерного сосуда Q_2 , см 3	Объем профильтровавшейся воды $Q = Q_2 - Q_1$, см 3	Продолжительность фильтрации <i>t</i> , с	Гидравлический градиент <i>I</i>	Площадь сечения ${ m грунта}A,{ m cm}^2$	Коэффициент ϕ ильтрации $K_{\Phi}, { m cM/c}$	Средний коэффициент фильтрации K_{Φ} , см/с
1	0	90	90	68	1	25	0,0529	0.04842
2	0	90	90	74	1	25	0,0486	0,04842

3 0 90	90	82	1 25	0,0439	
--------	----	----	------	--------	--

Коэффициент фильтрации

$$K_{\Phi} = \frac{Q}{A I t},$$

где Q — объем профильтровавшейся воды, см 3 ; A — площадь поперечного сечения образца грунта, см 2 ; I — гидравлический градиентt — время фильтрации, с.

Вывод: для песка средней крупности с коэффициентом пористости e=0,6482 коэффициент фильтрации равен 0,04842 см/с.

ОПРЕДЕЛЕНИЕ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК ГЛИНИСТОГО ГРУНТА (ГОСТ 12248–2010)

Цель работы - определить удельное сцепление и угол внутреннего трения пылевато-глинистого грунта.

Объект исследования — образцы глинистого грунта ненарушенной структуры (монолиты) в кольцах.

Материалы и оборудование: сдвиговые приборы $\Pi C\Gamma$ -2 — 3 шт. с наборами гирь, секундомер.

Краткий ход работы:

- 1. Образец грунта выдерживают под нагрузкой N до стабилизации (прекращения) вертикального смещения. Начало полной стабилизации считают с момента, когда скорость вертикального смещения штампа будет не более 0,01 мм/сут
- 2. Стопорные винты, соединяющие верхнюю и нижнюю обоймы срезывателя, вывинчивают так, чтобы концы их на 3...5 мм не доходили до выступов нижней обоймы.
- 3. Придерживая винт за утолщенную часть с накаткой, обе гайки одновременно поворачивают на один-два оборота так, чтобы между верхней и нижней обоймами образовался зазор 1...2 мм.
- 4. Прикладывают гири первой ступени q1 сдвигающей силы. Укладывается на подвеску плавно, без удара, гири, замеряется время.
- 5. Вторую и все последующие ступени сдвигающей нагрузки прикладывают и выдерживают так же, как и первую ступень.
- 6. Сдвигающую нагрузку увеличивают до разрушения (сдвига) образца. Разрушение фиксируют по незатухающей или увеличивающейся скорости горизонтального смещения δ верхней обоймы при постоянной нагрузке F.

Данные хода опыта по определению предельной сдвигающей нагрузки при нормальном напряжении $\sigma = 100~\mathrm{kHa}$

Номер ступени нагрузки	Величина Q_i , Н	Суммарная нагрузка от начала опыта $F = \sum Q_i$, H	Время от начала опыта <i>t</i> , мин	Отсчет по индикатору, мм	Приращение деформации сдвига за минуту,	Деформация сдвига от начала опыта д, мм
0			0	8,14	0	0
			1	7,81	0,33	0,33
1	8	8	2	7,79	0,02	0,35
			3	7,77	0,02	0,37
			1	7,16 7,11	0,61 0,05	0,98 1,03
2	4	12	2	7,11	0,05	1,03
2	4	12	3	7,07	0,04	1,07
			4	7,06	0,01	1,08
	2 2		1	6,85	0,21	1,29 1,34 1,38
2		14	2	6,80	0,05	1,34
3 2		14	3	6,76	0,04	1,38
		4	6,75	0,01	1,39	

Данные хода опыта по определению предельной сдвигающей нагрузки при нормальном напряжении $\sigma = 200~\mathrm{kHa}$

Номер ступени нагрузки	Величина c тупени нагрузки Q_i , H	Суммарная нагрузка от начала опыта $F = \sum Q_i$, H	Время от начала опыта <i>t</i> , мин	Отсчет по индикатору, мм	Приращение деформации сдвига за минуту,	Дефс сдвига опы
0			0	7,37	0	0
			0	7,20	0,17	0,17
1	16	16	1	7,15	0,05	0,22
1	10	10	1 2 3 0 1	7,15 7,13	0,02	0,22 0,24 0,25
			3	7,12	0,01	0,25
			0	7,12 6,52 6,24 6,15	0,6	0,85 1,13 1,22 1,28 1,32
			1	6,24	0,28	1,13
			2	6,15	0,09	1,22
2	8	24	2 3 4 5 6	6,09	0,06	1,28
			4	6,05	0,04	1,32
			5	6,03	0,02	1,34 1,36 1,72
				6,01	0,02	1,36
			0 1 2 3	5,65	0,36	1,72
			1	4,72	0,93	2,65 2,76 2,85
			2	4,61	0,11	2,76
			3	4,52	0,09	2,85
3	4	28	4	4,41	0,11	2,96
			4 5 6	4,36	0,05	2,96 3,01 3,06
				4,31	0,05	3,06
			7	4,27	0,04	3,10 3,13
			8	4,24	0,03	3,13

Данные хода опыта по определению предельной сдвигающей нагрузки при нормальном напряжении $\sigma = 300~\mathrm{kHa}$

Номер ступени нагрузки	Величина c тупени нагрузки Q_i , H	Суммарная нагрузка от начала опыта $F = \sum Q_i$, H	Время от начала опыта <i>t</i> , мин	Отсчет по индикатору, мм	Приращение деформации сдвига за минуту,	Деформация сдвига от начала опыта δ, мм
0				8,105	0	0
	24	24	0	7,140	0,965	0,965
			1	7,105	0,035	1
1			2	7,095	0,01	1,01
1			3	7,086	0,009	1,019
			4	7,080	0,006	1,025
			5	7,075	0,005	1,03
	12	36	0	6,600	0,475	1,505
			1	6,570	0,03	1,535
2			2	6,540	0,03	1,565
			3	6,525	0,015	1,580
			4	6,510	0,015	1,595
	6		0	6,230	0,28	1,875
3				0,05	1,925	
		42	2	6,140	0,04	1,965
5		72	3	6,115	0,025	1,990
			4	6,095	0,02	2,01
			5	6,080	0,015	2,025

Рис. 1. График хода опыта по определению предельной сдвигающей нагрузки при различных нормальных напряжениях

За предельную сдвигающую нагрузку F_u принимают горизонтальную нагрузку перед разрушением образца (без последней ступени):

$$F_{u} = \sum_{i=1}^{n-1} Q_{i} = 10 \sum_{i=1}^{n-1} q_{i},$$

где Q_i — величина i-й ступени сдвигающей нагрузки; q_i — вес гирь на подвеске рычага для создания сдвигающей нагрузки Q_i ; 10 — передаточное число рычага сдвигающей нагрузки.

Касательное напряжение τ в плоскости сдвига, соответствующее нагрузке F_u , принимают равным сопротивлению грунта сдвигу при данном нормальном напряжении σ :

$$\tau_u = \frac{F_u}{A}$$

где A — площадь поверхности сдвига, равная 40 см^2 .

Результаты определения сопротивления грунта сдвигу

Номер	Нормальное	Величина	Сопротивление
прибора	напряжение	предельной	грунта сдвигу
	в плоскости	горизонтальной	τ_u , κ Π a
	сдвига σ, кПа	нагрузки F_u , Н	
1	100	160	35
2	200	280	70
3	300	420	105

Рис. 2. График предельного сопротивления грунта сдвигу

Вывод: в ходе выполнения данной лабораторной работы были определены прочностные характеристики грунта: коэффициент трения грунта f= tg $\phi=0.35$, угол внутреннего трения грунта $\phi=$ arctg (0.35)=19.29 $^{\circ}$ удельное сцепление грунта c=0 кПа

ОПРЕДЕЛЕНИЕ МОДУЛЯ ДЕФОРМАЦИИ ПЕСКА И ГЛИНИСТОГО ГРУНТА (ГОСТ 12248–2010)

Цель работы - определить модуль деформации песчаного и глинистого грунтов. Изучить характер развития осадки песка и глинистого грунта во времени.

Объект исследования — образцы песка и глинистого грунта ненарушенной структуры (монолиты) в кольцах.

Материалы и оборудование: одометр с глинистым грунтом -2 шт., одометр с песком -2 шт., рычажные прессы для приложения нагрузки, индикаторы перемещений, секундомер.

Краткий ход работы:

- 1. Уплотнение образцов грунта происходит в металлических рабочих кольцах одометров без возможности его бокового расширения. Высота образца грунта h=20 мм, а площадь торцевой поверхности A=60 см²
- 2. При подготовке опыта из монолитов грунта в кольца были отобраны образцы песка и глинистого грунта ненарушенной структуры, а в бюксы взяты пробы грунта для определения влажности.
- 3. Переносят показания индикаторов при p0 = 0 кПа в табл. Эти же отсчеты дублируют в следующей строке при p1 = 50 кПа и t = 0.
- 4. Прикладывают (добавляют) вторую ступень нагрузки к образцу глинистого грунта. Для этого на подвеску рычага плавно опускают гири весом 90 Н в этот момент замечают время по секундной стрелке.
- 5. Через 1 мин берут первый отсчет одновременно по двум индикаторам. Точно так же берут последующие отсчеты в моменты времени, указанные в табл.

Результаты наблюдения за деформациями глинистого грунта

N нтенсивность давления p , к Π а	ения и	Отсчеты по индикаторам, мм			ации ни м	ция
	Время от приложения данной ступени давления <i>t</i>	Левый	Правый	Среднее значение	Прирост деформации от второй ступени давления s, мм	Полная деформация при данном давлении, мм
$p_0 = 0$	_				_	$\Delta h_0 = 0$
n - 50	0	0	0	0		$\Delta h_1 = 0,5$
$p_1 = 50$	24 ч.	1,221	5,821	3,521	_	
	0	1,221	5,821	3,521	0,000	
	1 мин	2,191	6,580	4,386	0,865	
$p_2 = 200$	2 мин	2,228	6,612	4,420	0,899	
	3 мин	2,312	6,633	4,473	0,952	$\Delta h_2 = 1,839$
	5 мин	2,369	6,658	4,514	0,993	
	10 мин	2,465	6,700	4,583	1,062	
	20 мин	2,610	6,751	4,681	1,160	
	30 мин	2,691	6,789	4,740	1,219	
	60 мин	2,862	6,851	4,860	1,339	

Результаты наблюдения за деформациями песка

<u> </u>	ной ия <i>t</i>	Отсчеты по индикаторам, мм			ации ени м	иция 1
Интенсивность давления р, кПа	Время от приложения данной ступени давления <i>t</i>	Левый	Правый	Среднее значение	Прирост деформации от второй ступени давления s, мм	Полная деформация при данном давлении, мм
$p_0 = 0$	_	0	0	0		$\Delta h_0 = 0.0$
n = 50	0	0	0	0		$\Delta h_1 = 0,5$
$p_1 = 50$	24 ч.	0,109	0,051	0,080		
	0	0,109	0,051	0,080	0,000	$\Delta h_2 = 0.752$
$p_2 = 200$	1 мин	0,441	0,200	0,321	0,241	
	2 мин	0,442	0,204	0,323	0,243	
	3 мин	0,442	0,205	0,324	0,244	
	5 мин	0,442	0,208	0,325	0,245	
	10 мин	0,443	0,210	0,327	0,247	
	20 мин	0,445	0,215	0,330	0,250	
	30 мин	0,446	0,217	0,332	0,252	

Результаты определения коэффициентов пористости

Грунт	Интенсивность Полная		Изменение	Коэффициент
	давления p ,	деформация	коэффициента	пористости
	кПа	при данном	пористости	$e_i = e_0 - \Delta e_i$
		давлении Δh_i	$\Delta e_i = \frac{\Delta h_i}{h} (1 + e_0)$	
Гли-	$p_0 = 0$	$\Delta h_0 = 0,000$	0,000	$e_0 = 1,100$
нистый грунт	$p_1 = 50$	$\Delta h_1 = 0,500$	0,042	$e_1 = 1,058$
	$p_2 = 200$	$\Delta h_2 = 1,839$	0,154	$e_2 = 0.946$
	$p_0 = 0$	$\Delta h_0 = 0,000$	0,000	$e_0 = 0.800$
Песок	$p_1 = 50$	$\Delta h_1 = 0,500$	0,036	$e_1 = 0.764$
	$p_2 = 200$	$\Delta h_2 = 0,752$	0,054	$e_2 = 0.746$

Примечания: 1. Высота образца грунта до приложения нагрузки h=25 мм. 2. Коэффициенты пористости грунтов до приложения нагрузки: $e_0=0.8$ – для песка; $e_0=1.1$ – для глинистого грунта.

Рис. 3. Компрессионные кривые для песка (———) и глинистого грунта (———)

Время t, мин

Рис. 4. Графики развития осадок для песка (———) и глинистого грунта (———)

Деформационные характеристики глинистого грунта

Относительные вертикальные деформации

$$\epsilon_1 = \frac{\Delta h_1}{h} = \frac{0.5}{25} = 0.02;$$

$$\epsilon_2 = \frac{\Delta h_2}{h} = \frac{1.839}{25} = 0.0336.$$

Коэффициент сжимаемости

$$m_0 = \frac{e_1 - e_2}{p_2 - p_1} = \frac{1,058 - 0,946}{0,15} = 0,747 \text{ M}\Pi\text{a}^{-1}.$$

Относительный коэффициент сжимаемости

$$m_v = \frac{m_0}{1+e_0} = \frac{0.747}{1+1.1} = 0.356 \text{ M}\Pi\text{a}^{-1}.$$

Модуль деформации по данным компрессионных испытаний

$$E = \frac{\beta}{m_{\nu}} = \frac{0.6}{0.356} = 1.685 \text{ M}\Pi a,$$

где β — коэффициент учитывающий невозможность бокового расширения грунта в компрессионном приборе и зависящий от коэффициента относительной поперечной деформации грунта ν

$$\beta = 1 - \frac{2v^2}{1 - v}.$$

Для суглинков при отсутствии экспериментальных данных допускается принимать $\beta = 0.6$.

Согласно ГОСТ 25100–2011 глинистый грунт – очень сильно деформируемый

Деформационные характеристики песка

Относительные вертикальные деформации

$$\epsilon_1 = \frac{\Delta h_1}{h} = \frac{0.5}{25} = 0.02;$$

$$\epsilon_2 = \frac{\Delta h_2}{h} = \frac{0.752}{25} = 0.030.$$

Коэффициент сжимаемости

$$m_0 = \frac{e_1 - e_2}{p_2 - p_1} = \frac{0.764 - 0.746}{0.15} = 0.120 \text{ M}\Pi\text{a}^{-1}.$$

Относительный коэффициент сжимаемости

$$m_v = \frac{m_0}{1+e_0} = \frac{0.120}{1+0.8} = 0.067 \text{ M}\Pi\text{a}^{-1}.$$

Модуль деформации по данным компрессионных испытаний

$$E = \frac{\beta}{m_{\nu}} = \frac{0.8}{0.067} = 11.94 \text{ M}\Pi a,$$

где β — коэффициент учитывающий невозможность бокового расширения грунта в компрессионном приборе и зависящий от коэффициента относительной поперечной деформации грунта ν

$$\beta = 1 - \frac{2v^2}{1 - v}.$$

Для песков при отсутствии экспериментальных данных допускается принимать $\beta = 0.8$.

Согласно ГОСТ 25100-2011 песок - деформируемый

Вывод: в ходе данной лабораторной работы были определены модули деформации песка и глинистого грунта в условиях компрессионного сжатия, при котором деформирование грунта происходит в вертикальном направлении без возможности горизонтального расширения. Исходя из значений модуля деформации, было определено, что глинистый грунт — очень сильно деформируемый (E=1,685Mna), а песок — деформируемый (E=11,94Mna).

Также были построены компрессионные кривые для песка и глинистого грунта и графики развития осадок для песка и глинистого грунта.