

Redes Neurais

Retropropagação

Alcione de Paiva - DPI/UFV

REDES NEURAIS -BP

Introdução

- As redes neurais pertencem a um ramo da inteligência artificial que busca inspiração na fisiologia do cérebro para construir dispositivos inteligentes.
- Ela parte do pressuposto que se construirmos mecanismos que simulem o funcionamento cérebro, então estes mecanismos serão capazes de aprender e desenvolver suas representações internas do conhecimento.
- Uma comparação entre o cérebro e o computador sugere que este pode ser um caminho promissor:

Introdução

	Cérebro	Computador
Número de Componentes	100 bilhões	milhões
Velocidade	KHz Ciclo de milisegundos	GHz Ciclo de nanosegundos
Arquitetura	Massivamente	Basicamente
	Paralela	sequencial
Robustez	Tolerante a falhas	Pouco tolerante a falhas

REDES NEURAIS - BP

Histórico

- As pesquisas sobre computação neural foram iniciadas por volta de 1940 (McCulloch e Pitts em 1943).
- No entanto, poucos estudos ocorreram até a introdução dos perceptron por Rosenblatt 1958.
- Em 1969 Minsky e Papert mostraram que as redes neurais desenvolvidas até aquele período eram capazes de computar apenas problemas linearmente separáveis e portanto tinham pouca utilidade para modelar o comportamento humano.
- As redes neurais de múltiplas camadas eram capazes de resolver problemas não linearmente separáveis, mas não possuíam algoritmos de aprendizado.
- Nos anos 80 as redes neurais ressurgiram com força devido ao surgimento de algoritmos de aprendizado para redes de múltiplas camadas.

Alcione de Paiva - DPI/UFV

Perceptrons (Rosenblatt -1962)

Os perceptrons foi um dos primeiros modelos de redes neurais e foi inspirado no neurônio.

Perceptrons (Rosenblatt -1962)

Os perceptrons foi um dos primeiros modelos de redes neurais e foi inspirado no neurônio.

Alcione de Paiva - DPI/UFV

Perceptrons (Rosenblatt -1962)

- Adequadas para problemas separáveis linearmente
- Vários perceptrons podem ser combinados para computar funções mais complexas
- O algoritmo de aprendizagem por perceptrons é um algoritmo de busca.
- A redução pelo gradiente é idêntica à estratégia de subida da encosta.

Perceptrons (Rosenblatt -1962)

REDES NEURAIS -BP

Perceptrons (Aprendizado)

- O perceptrons são atraentes por possuírem um algoritmo de aprendizado.
- Com isso a rede pode aprender e melhorar seu desempenho.
- O algoritmo de aprendizado funciona por ciclos. Em cada ciclo é aplicado um conjunto de exemplos e calculado erro em relação ao resultado esperado.
- O erro é usado para calcular novos pesos e então um novo ciclo é aplicado.
- A fase de aprendizado termina quando a rede consegue exibir respostas corretas não só para os exemplos como um conjunto de testes.

Perceptrons (Aprendizado)

Perceptrons

Atribuir pesos aleatórios para as conexões; Enquanto erro maior que erro mínimo e faça Para cada conjunto de treinamento Xi faça Aplicar cada conjunto de treinamento Xi e obter o erro Fim para Ajustar os pesos usando a fórmula

$$W_{t+1} = W_t + \eta \nabla J(w)$$

Fim enquanto

$$\eta$$
 = taxa de aprendizado $\nabla J(w)$ = Gradiente do erro

Perceptrons (Aprendizado)

O Teorema da Convergência de Perceptrons (Rosenblatt, 1962): não há mínimos locais que não correspondam ao mínimo global.

Perceptrons (Aprendizado)

Alcione de Paiva - DPI/UFV

Perceptrons (Rosenblatt -1962)

O problema do **ou** exclusivo

Os perceptrons não são capazes de separar os dois conjuntos da figura pois ela lida apenas com problemas linearmente separáveis.

Alcione de Paiva - DPI/UFV

Perceptrons (Rosenblatt -1962)

Um perceptron multicamada que soluciona o problema do XOR

No entanto, a inexistência de um algoritmo de aprendizado para os perceptrons multicamada fez com que o financiamento de pesquisas em redes neurais fossem interrompidos.

Fonte: www.din.uem.br/ia/neurais/

O desenvolvimento de um algoritmo de aprendizado para as redes multicamadas contornou este problema e fez ressurgir o interesse em redes neurais.

saída =
$$1/(1+e^{-soma})$$

O algoritmo de aprendizado das redes multicamadas se baseia na derivação da função de saída. Portanto, é preciso usar uma função derivável, como a função sigmóide.

REDES NEURAIS - BP

Batch mode ou Online

(estocástico)?

Redes de retropropagação (Aprendizado)

Para cada exemplo (Ou grupo) e faça $\hat{y} = \text{saida da rede}(e) \# \text{calcula a saida}$ $E_i^e = l(y_i, \hat{y}_i)$ # calcula o Erro # Distribui a culpa pelo erro Para cada nó na camada de saída faça $\Delta_i = E_i^e \sigma'(z_i)$ Para cada camada interior faça Para cada nó i da camada faça $\Delta_{i} = \sigma'(z_{i}) \sum_{i} w_{i,i} \Delta_{i}$ # Atualiza os pesos Para cada peso w_{ii} faça $w_{ij} = w_{ij} + \alpha \ a_{ij} \ \Delta_{ij}$ até a rede convergir

Layer 3 Layer 2 Laver 1 Layer 4

Adaptado de Russell e Norvig

Teorema: Qualquer função limitada pode ser aproximada, com uma precisão arbitrária, por uma rede neural com um número finito de neurônios oculto.

Número de camadas:

- Redes que possuem apenas a camada de entrada e a de saída são úteis apenas para saídas que podem ser separadas de forma linear. Foi o primeiro perceptron.
- Redes com apenas uma camada oculta podem calcular uma função arbitrária qualquer (classificação simples).
- Usa-se pelo menos duas camadas ocultas quando os valores de saída variam de forma contínua.

Estrutura	Regiões de Decisão	Problema Ou Exclusivo	Definição de Classes	Formatos mais Gerais
	Meio Plano Limitado por Hiperplano	(a) (b)	A B	
	Regiões Convexas Abertas ou Fechadas	B A	B	
	Arbitrárias: Complexidade Depende do № de nós	(A) (B) (A) (B) (A) (B) (B) (A) (B) (B) (A) (B) (B) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	BA	

Número de neurônios nas camadas:

- Hecht-Nielsen / Kolmogrov: uma rede com 3 camadas pode modelar funções matemáticas contínuas desde que a camada oculta contenha 2xI+1 neurônios.
- Kudricky: numa rede com 2 camadas ocultas, obtém-se um desempenho ótimo quando há uma taxa de 3:1 entre o número de neurônios da 1ª e 2ª camadas ocultas.
- Lippmann: em redes com 2 camadas ocultas, a segunda camada deve ter 2xO neurônios. Se a rede possuir apenas uma camada oculta, ela deverá ter Ox(I+1) neurônios.
- $H_{\text{max}} = c/[10x(I+O)] H = (OxI)^{\frac{1}{2}}$

Treinamento

Treinamento

- A explicação para o grafo é que a partir de certo ponto a rede "decorou" os exemplos e não generalizou mais. Desta forma ela passa a ter um desempenho pior nos casos de teste.
- Uma solução para isso é interromper o treinamento quando o platô for atingido.
- Outra solução é diminuir o número de elementos da camada intermediária, impedindo que ela utilize o grande número de pesos à sua disposição para memorizar os exemplos. (Dropout)
- Pode-se usar normalização (L1, L2)

Redes Neurais -BP

Redes de retropropagação

https://playground.tensorflow.org/

Topologia

Classificação: Kain e Mao (1996)

Alcione de Paiva - DPI/UFV

REDES NEURAIS - BP

Links interessantes para redes neurais

- https://sefiks.com/2017/01/21/the-math-behind-backpropagation/
- https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications
- http://www.deeplearningbook.org/
- http://deeplearningbook.com.br/

- http://parrt.cs.usfca.edu/doc/matrix-calculus/index.html?utm_campaign=Artificial%2BIntelligence%2BWeekly&utm_medium=web&utm_source=Artificial_Intelligence Weekly 75
- https://alonalj.github.io/2016/12/10/What-is-Backpropagation/

Livros

Russel S. & Norvig P. Inteligência Artificial, Campus; ISBN: 8535211772, 2010. Terceira Ed.

Haykin, Simon. Neural networks and learning machines. 3 ed. Pearson Education Ed. 2009.