Do More People Die of Extreme Heat or Excessive Cold?

Jim Callahan

September 25, 2015

Synopsis: The question of "Do More People Die of Extreme Heat or Excessive Cold?" is addressed using the "R" statistical language and data from the National Oceanic and Atmospheric Administration (NOAA) "Storm Data" database.

Data Processing The **R** language is an open source version of the the **S** language developed at Bell Labs during the "golden age" that also produced the **Unix** operating system and the **C** programming language. See: https://www.R-project.org/

Unlike C, R is an interpretive command language where the user types commands at the command line and gets an immediate response:

2+2

[1] 4

sqrt(25)

[1] 5

GaussDidThisInHisHeadInElemetarySchool <- sum(1:100)
print(GaussDidThisInHisHeadInElemetarySchool)</pre>

[1] 5050

The last of these three examples is a problem solved by famous mathematician Carl Friedrich Gauss (1777-1855) while he was an eight year old child math prodigy in elementary school. He solved it in his head, amazing his teacher. For more of the story see: "Clever Carl" http://nrich.maths.org/2478/index?nomenu=1"

For those of us who are not (child or adult) math prodigies we can solve the problem with **R** by typing **sum(1:100)** at the command line. The "<-" assigns the result of the function to the variable name on the left.

The command line commands can be combined in simple text files "scripts" or combined with compliled programs, data and documentation to form complete "packages".

Many open source statistical "packages" have been written in **R** making the complete system, the base language plus the optional downloadable statistical packages more powerful than proprietary statistical systems such as SAS or SPSS which, depending on the license, whose base price can be as much as \$9,000 a seat. See: http://www.sas.com/store/products-solutions/cSoftware-p1.html

When we load the **NOAA** "Storm Data" data file into the R statistical system, we will also be using the "<-" to assign the result to the variable name on the left.

```
# Select Columns of interest:
       Primary key: REFNUM
        Date and Time: BGN_DATE, BGN_TIME, TIME_ZONE,
       Location: STATE, COUNTY, COUNTY END, LATITUDE, LONGITUDE,
#
        Type of Storm: EVTYPE,
        Damage: PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP,
#
                      FATALITIES, INJURIES
        Casualties:
columnsubset <- c("REFNUM", "BGN_DATE", "BGN_TIME", "TIME_ZONE",</pre>
                 "STATE", "COUNTY", "COUNTY_END", "LATITUDE", "LONGITUDE",
                 "EVTYPE", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP",
                 "FATALITIES", "INJURIES")
storms <- NOAA[, columnsubset]
str(storms)
## 'data.frame': 902297 obs. of 16 variables:
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
## $ BGN DATE : chr "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" .
## $ BGN TIME : chr "0130" "0145" "1600" "0900" ...
## $ TIME_ZONE : chr "CST" "CST" "CST" "CST" ...
## $ STATE : chr "AL" "AL" "AL" "AL" ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ EVTYPE : chr "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
## $ PROPDMG : num 25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 25 ...
## $ PROPDMGEXP: chr "K" "K" "K" "K" ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: chr "" "" "" ...
## $ FATALITIES: num 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
#### Select Rows of interest
#### Select years of interest (Since 2001 "21st Century Storms" or "last 25 years")
#### Step 1: Create a year variable from date
#### Read in the date.
#### NOAA's Time and time zone are in separate variables that we will ignore.
datetime = as.POSIXct(storms$BGN_DATE, "%m/%d/%Y %H:%M:%S", tz = "")
storms$year <- format(datetime, "%Y")</pre>
#### Step 2: Filter by year
storms <- storms[storms$year >= "2001", ]
#### Remove the original NOAA database
rm(NOAA)
#### Scale Property Damage and Crop Damage by thouands and millions
storms$PropertyDamage <- storms$PROPDMG</pre>
storms$CropDamage
                   <- storms$CROPDMG
```

Results

Tabulate Fatalities and Damage by Storm Type and Year

```
# What type of storms caused the most fatalities in the most recent year (2011)?
mostrecentyear <- max(stormtab$year)
stormsrankyear <- stormtab[stormtab$year == mostrecentyear, ]

# This is the sort -- rank by fatalities in the stormrankyear
deadlystorms <- stormsrankyear[order(-stormsrankyear$FATALITIES, na.last = NA), ]
# head(deadlystorms, 10)
print(deadlystorms[1:10, c("EVTYPE", "FATALITIES", "INJURIES", "PropertyDamage", "CropDamage")],
    justify = "left")</pre>
```

Health Impact

##		EVTYPE	FATALITIES	INJURIES	PropertyDamage	CropDamage
##	630	TORNADO	587	6163	155464.51	18374
##	603	FLASH FLOOD	68	30	82067.98	5530
##	609	HEAT	63	611	0.00	0
##	604	FLOOD	58	10	133748.97	25002
##	629	THUNDERSTORM WIND	54	373	243100.34	16955
##	601	EXCESSIVE HEAT	36	138	1143.20	0

##	624	RIP CURRENT	29	27	0.00	0
##	619	LIGHTNING	26	194	34491.42	112
##	595	COLD/WIND CHILL	21	1	70.00	0
##	612	HIGH SURF	11	11	222.00	0

What type of storms caused the most fatalities in the most recent year (2011)?
damagestorms <- stormsrankyear[order(-stormsrankyear\$PropertyDamage, na.last = NA),]
head(damagestorms, 10)</pre>

Property Damage

##		EVTYPE	year	FATALITIES	INJURIES	${\tt PropertyDamage}$	${\tt CropDamage}$
##	629	THUNDERSTORM WIND	2011	54	373	243100.34	16955
##	630	TORNADO	2011	587	6163	155464.51	18374
##	604	FLOOD	2011	58	10	133748.97	25002
##	603	FLASH FLOOD	2011	68	30	82067.98	5530
##	608	HAIL	2011	0	31	57214.06	26390
##	619	LIGHTNING	2011	26	194	34491.42	112
##	634	WILDFIRE	2011	6	116	33094.24	1805
##	613	HIGH WIND	2011	4	11	14728.25	1336
##	631	TROPICAL STORM	2011	4	1	11769.30	525
##	635	WINTER STORM	2011	1	0	11663.50	70

Event Descriptions indicating Hot or Cold Weather

COLD

COLD/WIND CHILL

COLD WIND CHILL TEMPERATURES

EXCESSIVE HEAT

EXTREME COLD

EXTREME COLD/WIND CHILL

EXTREME WINDCHILL

FREEZE

FREEZING DRIZZLE

FREEZING RAIN

FROST/FREEZE

HARD FREEZE

HEAT

RECORD WARMTH

UNSEASONABLY COLD

UNSEASONABLY COOL

UNSEASONABLY WARM

UNUSUALLY COLD WINTER STORM

WINTER WEATHER

WINTER WEATHER/MIX

END