Problem 1. Let A be a $m \times n$ matrix. For $\lambda > 0$, what are the ranks of (a) $A^T A + \lambda I$ and (b) $AA^T + \lambda I$. In addition, (c) express trace($A^T A$) in terms of the singular values of A.

Problem 2. Suppose that A has the inverse matrix A^{-1} . Then, the first column of A^{-1} is orthogonal to the space spanned by which rows of A?

Problem 3. Suppose that A and B are $m \times n$ and $m \times l$ matrices, respectively. If $A^TB = 0$, show that $rank(A) + rank(B) \leq m$.

Problem 4. (A) We define a function $f: \mathbb{R}^n \to \mathbb{R}^m$ by f(x) = Ax where A is a $m \times n$ matrix. Show that df = Adx.

(B) We consider a differentiable function $g: \mathbb{R}^m \to \mathbb{R}^l$, and define a differentiable function $h: \mathbb{R}^n \to \mathbb{R}^l$ by h(x) = g(f(x)). Show that dh = JAdx where $J_{ij} = \partial_j g_i(Ax)$.

Problem 5. Show that the matrix of any connected graph with n-nodes and m-edges (in pset 6) has rank n-1. Also, show that if the graph is planar then we can find m-n+1 independent loop vectors.