On computing the physical sources of jet noise

Samuel Sinayoko, Anurag Agarwal

Southampton

Institute of Sound and Vibration Research

16th AIAA Aeroacoustics Conference, Stockholm 7 June 2010

Introduction

Objective

To understand the physical sources of jet noise.

Introduction

Objective

To understand the physical sources of jet noise.

Motivation

- By-pass ratio is limited
- We need alternative strategies

Introduction

Objective

To understand the physical sources of jet noise.

Motivation

- By-pass ratio is limited
- We need alternative strategies

Methods

- Goldstein's theory
- Direct Numerical Simulation

Part I

Theory

Sources definition

Sources definition

Physical sound sources

$$f_{i} = -\frac{\partial}{\partial x_{j}} \left(\overline{\rho} \, \widetilde{v_{i}} \widetilde{v_{j}} \, \right)' \tag{1}$$

$$\widetilde{\nu_i} = \overline{\rho \nu_i}/\overline{\rho}$$

Flow decomposition

Space-time domain

$$\overline{q} = w * q$$

Wavenumber-frequency domain

$$\overline{Q} = W \times Q$$

Flow decomposition

Space-time domain

$$\overline{q} = w * q$$

Wavenumber-frequency domain

$$\overline{Q} = W \times Q$$

Part II

Numerical experiment

Mean flow

$$\omega_1=2.2\,$$

$$\omega_2 = 3.4$$

Pressure snapshot

Flow decomposition

Filter definition

$$k_{\alpha c} = \Delta \omega/c_{\infty}$$

Flow decomposition

Results

Flow decomposition Results

Flow decomposition Results

Sound sources

Snapshot

Sound sources

Power spectum density

Validation

Validation

Acoustic analogy sources

Validation

Validation

Conclusion

Results

- Use convolution filters
- Physical sound sources can be computed

Conclusion

Results

- Use convolution filters
- Physical sound sources can be computed

Future work

- Model the sound sources
- Understand the physical mechanisms

Acknowledgements

Thank you!

Filtering of a two-dimensional shear layer

Flow description

Filtering of a two-dimensional shear layer problem Pressure field

Filtering of a two-dimensional shear layer

Gaussian filter

$$W(\mathbf{k}, \omega) = \exp\left(-\frac{(k_x - k_0)^2}{2\sigma^2}\right) + \exp\left(-\frac{(k_x + k_0)^2}{2\sigma^2}\right)$$

 $k_0 = 0.41459, \quad \sigma = 0.1$

Filtering of a two-dimensional shear layer Results

Filter of a two-dimensional shear layer problem Results

