

Analisis Regresi Spasial Peubah-Peubah yang Mempengaruhi Kemiskinan di Pulau Sumatera Tahun 2023

Kelompok 2

Muhammad Jodi At-Takbir G1401221024
Elke Frida Rahmawati G1401221025
Faiz Aji Muzakki G1401221058
Muhammad Ryan Azahran G1401221080
Ria Yunita G1401221115
Rizky Kurniawan G1401221901

Dibimbing Oleh:

Prof.Dr.Ir. Anik Djuraidah M.S. Prof.Dr.Ir. Muhammad Nur Aidi M.S. Rahma Anisa S.Stat., M.Si.

OUTLINE

01

PENDAHULUAN

Latar Belakang, Tujuan

02

METODOLOGI

Data, Prosedur Analisis

03

HASIL & PEMBAHASAN

Eksplorasi Data, Hasil & Pembahasan

04

KESIMPULAN

Kesimpulan

PENDAHULUAN

- Menentukan model regresi spasial terbaik untuk memprediksi tingkat kemiskinan di Provinsi Sumatera.
- Mengidentifikasi
 peubah-peubah
 signifikan yang
 memengaruhi
 kemiskinan di
 wilayah tersebut.

LATAR BELAKANG

Analisis regresi spasial diperlukan untuk memahami pola kemiskinan dengan memperhitungkan lokasi dan keterkaitan antar wilayah.

METODOLOGI PENELITIAN

Sumber Data

Data Badan Pusat
Statistika (BPS) Tahun
2023

154 kota/kabupaten amatan dari seluruh provinsi di Pulau Sumatera

Peubah	Nama Peubah	Satuan
Y	Presentase Penduduk Miskin	Persen
X1	Rata - Rata Lama Sekolah	Tahun
X2	Tingkat Pengangguran Terbuka	Persen
X3	Persentase rumah tangga yang memiliki akses terhadap air minum layak	Persen
X4	Persentase rumah tangga yang memiliki akses terhadap sanitasi layak	Persen
X5	Log (Pendapatan Domestik Regional Bruto)	Log (Miliar Rupiah)

PROSEDUR PENELITIAN

Berdasarkan Boxplot, persentase penduduk miskin cenderung menjulur ke kanan dengan kisaran persentase 5 sampai 15 persen. Namun dapat diamati bahwa terdapat amatan dengan nilai melebihi pagar atas Boxplot atau terindikasi amatan pencilan.

Berdasarkan sebaran spasial, persentase penduduk miskin sudah tersebar cukup merata yang ditandai dengan warna yang cenderung sama. Namun dapat diamati bahwa masih terdapat amatan kota/kabupaten dengan perbedaan warna yang signifikan

Secara umum, terdapat hubungan negatif antara Y dengan semua peubah prediktor. Kekuatan hubungan ini bervariasi, dengan hubungan terkuat antara Y dengan X4 dan X5.

Hasil Pemodelan Regresi Berganda

Peubah	Koefisien	p-value
Intersep	19,045	2.21e-14***
X1	-1,060	0.002**
X2	0,099	0.501
X3	0,065	0.063
X4	-0,054	0.035*
log X5	-1,496	2.81e-05***

Intersep dan peubah penjelas X1, X4, log X5 signifikan pada taraf 5%

Uji Asumsi

Asumsi	Jenis Uji	p-value
Normalitas	Anderson- Darling	0,105
Homogenitas Ragam	Breusch Pagan	0.271
Autokorelasi	Indeks Moran	0.029

VIF	X1	X2	X3	X4	Log X5
Score	2.038	1.554	1.921	1.594	1.328

Asumsi normalitas, homogenitas ragam, autokorelasi dan multikolinearitas terpenuhi.

Uji Autokorelasi

Peubah	Indeks Moran	p-value
Y	0,070	0,018*
X1	-0,025	0,550
X2	0,048	0,091
X3	0,031	0,247
X4	-0,013	0,839
log X5	0,007	0,663
Sisaan	0,070	0,018*

Terdapat autokorelasi spasial positif pada peubah Y dan sisaan.

Uji Lagrange Multiplier

	Statistik	p-value
LM SEM	3,612	0,05 .
RLM SEM	0,842	0,35
LM SAR	5,254	0,02*
RLM SAR	2,484	0,11
SARMA	6,096	0,04*

LM SAR dan SARMA signifikan pada taraf 5%, dan SEM signifikan pada taraf 10% sehingga akan dilakukan pemodelan dengan SAR dan SEM.

Note: Hasil uji BP pada saat pengecekan asumsi OLS menunjukan tidak ada efek heterogenitas spasial.

Hasil Pemodelan SAR

Peubah	Koefisien	p-value
ho	0,314	0,042
Intersep	19,045	$2,859 imes 10^{-11}$
X1	-1,060	0,001
X2	0,099	0,614
X3	0,065	0,057
X4	-0,054	0,024
log X5	-1,496	$1,819\times10^{-5}$

Peubah penjelas X1,X4, log X5, dan parameter rho signifikan pada taraf 5%

Uji Asumsi Model SAR

Peubah	Koefisien	p-value
Normalitas	Anderson- Darling	0,275
Homogenitas Ragam	Breusch Pagan	0,487
Autokorelasi	Indeks Moran	0,824

Asumsi normalitas, homogenitas ragam, dan autokorelasi terpenuhi.

Hasil Pemodelan SEM

Peubah	Koefisien	p-value
λ	0,317	0,06 .
Intersep	21,931	$2,2\times 10^{-16}$
X1	-1,004	0,002
X2	0,068	0,733
X3	0,062	0,074
X4	-0,054	0,025
log X5	-1,437	$4,381\times10^{-5}$

Peubah penjelas X1,X4, log X5, dan parameter lamda signifikan pada taraf 10%

Uji Asumsi Model SEM

Peubah	Koefisien	p-value
Normalitas	Anderson- Darling	0,298
Homogenitas Ragam	Breusch Pagan	0,394
Autokorelasi	Indeks Moran	0,690

Asumsi normalitas, homogenitas ragam, dan autokorelasi terpenuhi.

MODEL TERBAIK

Model	AIC
OLS (Regresi Klasik)	870,66
SAR	868,55
SEM	869,32

Persamaan Model Regresi SAR

$$y = 19,045 + 0,314Wy - 1,060X1 \ +0,099X2 + 0,065X3 \ -0,054X4 - 1,496logX5$$

Model regresi SAR merupakan model regresi spasial terbaik karena memiliki nilai AIC terkecil.

Efek Marginal SAR

Peubah	Efek langsung	Efek tidak langsung	Efek total
X1	-1,0709	-0,475	-1.546
X2	0,1008	0,044	0,145
X3	0,0659	0,029	0,095
X4	-0,054	-0,024	-0,079
log X5	-1,510	-0,670	-2,181

INTERPRETASI MODEL

Peningkatan Rata-Rata Lama Sekolah

Menurunkan Persentase Penduduk Miskin

Wilayah tertuju 1,07%

Keseluruhan 1,55%

Wilayah lain 0,48%

Peningkatan Persentase Akses Sanitasi Layak

Menurunkan Persentase Penduduk Miskin

Wilayah tertuju 0,05%

Keseluruhan Wilayah lain 0,08% 0,02%

Peningkatan Log PDRB

Menurunkan Persentase Penduduk Miskin

Wilayah tertuju Keseluruhan Wilayah lain 1,51% 2,18% 0,67%

KESIMPULAN

Terdapat efek dependensi spasial pada persentase penduduk miskin di Pulau Sumatera

Model dependensi spasial terbaik dalam melakukan pemodelan persentase penduduk miskin di Pulau Sumatera adalah SAR

Terdapat tiga peubah yang mempengaruhi persentase penduduk miskin di Pulau Sumatera secara signifikan, yaitu rata-rata lama sekolah, persentase akses sanitasi layak, dan produk domestik regional bruto

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World