Principal Space and Elasticity

강의명: 소성가공 (MSA0026)

정영웅

창원대학교 신소재공학부

YJEONG@CHANGWON.AC.KR

연구실: #52-208 전화: 055-213-3694

HOMEPAGE: http://youngung.github.lo

Outline

- ■Stress space를 이해한다.
- ■Principal space of stress space를 이해한다.
- ■Principal values를 구하는 법을 익힌다.
- ■Invariants를 이해한다.

Recap

- •Measurement of force and displacement from tension tests
- Physical quantity to remove the effect of geometry: engineering stress/engineering strain
- Two types of stress (strain):
 - Normal (tension + , or compression -)
 - Shear (forward +, backward -)
- ■There are three independent planes in 3D; On each plane 1 normal + 2 shears.
- Thus nine independent components comprise the stress (strain) state.
- Coordinate transformation (axes transformation)
 - Coordinate transformation does not change the physical quantity (stress, strain)
 - Coordinate transformation changes the values of components and the directions of planes associated with the stress (or strain).
- Practice coordinate transformation using the Excel, Fortran code, Python code.

Symmetries in stress/strain tensors

■변형률 텐서의 경우 본래 그 정의에의해 symmetry를 가진다.

$$\varepsilon_{ij} = \varepsilon_{ji}$$

$$\varepsilon_{ij} = \frac{1}{2} (d_{ij} + d_{ji})$$

$$\varepsilon_{ji} = \frac{1}{2} (d_{ji} + d_{ij})$$

■응력 텐서의 경우 force equilibrium 조건에 의해 symmetry를 가진다.

$$\sigma_{ij} = \sigma_{ji}$$

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{bmatrix}$$

Linear operations (mapping)

- ■Stress tensor는 두 벡터 공간 사이의 선형 변환을 한다.
- stress tensor는 한 벡터량을 또 다른 벡터량으로 변환 (transform, mapping) 해준다.
- ■벡터량으로 나타낼 수 있는 것 중에 하나가 *plane 이다
- ■한 물질점의 응력 상태를 알고 (즉 stress tensor), 그 물질점의 특정 면에 작용하는 힘(vector)을 알고 싶다면, 해당 특정면의 방향을 나타내는 벡터(n)와의 inner dot product를 얻으면 된다.
 - 2차 텐서와 1차 텐서간의 inner dot product는 다음과 같이 정의 된다:

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = \sigma_{ij} n_j$$

- $lacksymbol{\sigma} \cdot m{n}$ 의 결과는 해당 면에 작용하는 '힘' (force)가 된다.
- ■또 다른예: 한 결정립이 열처리후 잔류응력 σ 가 존재한다. 이때 특정 slip system에 작용하는 응력을 알고 싶다면?
 - 1. 특정 slip system의 slip plane을 나타내는 단위 벡터를 찾는다. (111) plane $\rightarrow \frac{1}{\sqrt{3}}[1,1,1]$
 - 2. 해당 벡터와 inner dot product를 실시하면 해당 면에 작용하는 force를 구할 수 있다.
 - 3. 다음으로 얻어진 force와 slip direction을 inner dot product하면, 해당면에서 해당 방향으로 작용하는 응력값(scalar value)을 구할 수 있다.
- * 예를 들어, 너비 1의 한 plane은 해당 plane의 수직 방향으로 크기가 1인 벡터로 나타낼 수 있다.

Stress tensor represented in other forms

- ■앞서 응력 텐서가 matrix의 형태로 표현되는 것을 보았다. 하지만 이는 온전히 '편리'를 위해서이다 –물론 많은 이점이 생긴다.
- ■하지만 때에 따라 응력 텐서를 다른 형태로 표기하기도 한다.
- ■예를 들어 Voigt notation은 매우 흔히 찾을 수 있는 응력텐서 표기 방법이다 3x3 matrix 대신 1x9 형태로 표현

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

■위의 symmetric tensor를 9개 component중 3개를 줄여 order를 낮출 수 있다.

$$m{\sigma} = egin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix}$$
의 1x6 array로 표현; 6차원 공간상의 vector 형태가 된다: $m{\sigma}_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix}$

Stress Space

- ■Stress tensor의 각 independent 값들이 하나의 '공간' 축을 형성하는 공간.
- ■가령 stress tensor의 symmetry 덕분에 stress state는 일반적으로 각 성분이 축이 되는 6차원 공간에 표현이 가능하다.
- ■하지만 stress tensor의 구성성분중 shear component가 모두 0이 되는 Cartesian coordinate로 표현되는 공간을 얻을 수도 있는데, 이 방법에 대해 간략하게 알아보도록 하겠다.
- ■예1) 알루미늄을 일축 인장 시편을 위해 가공한후, 해당 시편의 길이/폭/두께 방향이 주어진 coordinate system의 \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 basis vector방향과 평행할때, 응력 상태를 측정하여 다음과 같이 나타낼 수 있었다.

$$\mathbf{\sigma} = \begin{bmatrix} -30 & 25 & 11 \\ 25 & 1 & -9 \\ 11 & -9 & 17 \end{bmatrix}$$

- ■해당 응력 텐서의 principal space는?
- \blacksquare A) 주어진 coordinate system을 $\phi_1 = -1.4^\circ$, $\Phi = 24.86^\circ$, $\phi_2 = -30.59^\circ$ 을 통해 변환시켜 얻은 coordinate system이 해당 응력의 principal space 이다.

Stress Space (확인)

More examples

$$\bullet \boldsymbol{\sigma} = \begin{bmatrix} 100 & 300 & 30 \\ 300 & 5 & 25 \\ 30 & 25 & 3 \end{bmatrix}$$

The principal space of the above tensor can be obtained by

$$\Phi_1 = -49.5^{\circ}, \Phi = 96.23^{\circ}, \phi_2 = -0.11^{\circ}$$

- And the principal values?
 - **-** -251.2, -1.2, 360.5

How did I obtain this?

- •An analytical method to obtain 'principal' values:
 - Find the eigenvalues and eigenvectors of 3x3 matrix form of the stress tensor
 - That can be done by following
 - 1. Define a new 3x3 matrix

$$A_{ij} = \sigma_{ij} - \lambda \delta_{ij}$$
 $\delta_{ij} = 1 \text{ (if } i = j)$
= 0 (or if $i \neq j$)

• 2. Solve the case of λ when det(A)=0.

$$\mathbf{A} = \begin{bmatrix} \sigma_{11} - \lambda & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} - \lambda & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} - \lambda \end{bmatrix}$$

3. That's actually solving

$$\lambda^3 - I_1\lambda^2 - I_2\lambda - I_3 = 0$$

Where

$$I_1 = \sigma_{11} + \sigma_{22} + \sigma_{33}$$

$$I_2 = (\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{13}^2 - \sigma_{11}\sigma_{22} - \sigma_{22}\sigma_{33} - \sigma_{33}\sigma_{11})$$

$$I_3 = \sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{13}\sigma_{23} - \sigma_{11}\sigma_{23}^2 - \sigma_{22}\sigma_{13}^2 - \sigma_{33}\sigma_{12}^2$$

How did I obtain this?

- Okay, we learned how to get eigenvalues. Next question is how we can obtain eigenvectors.
- Once you found the eigenvalues, you solve the equations given by

$$\mathbf{A} \cdot \mathbf{v} = A_{ij} v_j = 0$$

Example:

For a 2nd rank tensor B =
$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$
,
$$\det(B_{ij} - \lambda \delta_{ij}) = \det\begin{bmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{bmatrix} = -\lambda^3 + 12\lambda + 16 = -(\lambda - 4)(\lambda + 2)^2$$

 $\det(B_{ij} - \lambda \delta_{ij}) = 0$: The solution of these equations is $\lambda = 4$, $\lambda = -2$ and $\lambda = -2$ (repeated).

Eigen vectors can be found from

$$(A - \lambda I) \cdot x = 0$$

How did I obtain this? (continued)

$$(\mathbf{A} - \lambda \mathbf{I}) \cdot \mathbf{x} = 0$$

Put the each of the three eigenvalues you obtained in the above to obtain three eigenvectors $(x^{(1)}, x^{(2)}, x^{(3)})$. You'll get

$$(\mathbf{A} - 4\mathbf{I}) \cdot \mathbf{x}^{(1)} = 0 \tag{1}$$

$$(\mathbf{A} + 2\mathbf{I}) \cdot \mathbf{x}^{(2)} = 0 \tag{2}$$

$$(\mathbf{A} + 2\mathbf{I}) \cdot \mathbf{x}^{(3)} = 0 \tag{3}$$

For instance, solution of (1) gives

$$x_1^{(1)} - \frac{1}{2}x_3^{(1)} = 0 \rightarrow x_1^{(1)} = \frac{1}{2}x_3^{(1)}$$

 $x_2^{(1)} - \frac{1}{2}x_3^{(1)} = 0 \rightarrow x_2^{(1)} = \frac{1}{2}x_3^{(1)}$

Therefore, eigenvector associated with eigenvalue 4 is: $x_3^{(1)} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}$ (with any arbitrary $x_3^{(1)}$ value). You could do the same for (2) condition, which results in

with eigenvalue 4 is:
$$x_3^{(1)} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}$$
 (with any arbitrary $x_3^{(1)}$) condition, which results in

$$\mathbf{x}^{(2)} = x_3^{(2)} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + x_2^{(2)} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

How did I obtain this? (continued)

- ■일단 eigenvector들이 구성된다면 이를 토대로 transformation matrix를 얻을 수 있다.
- ■다음으로 transformation matrix를 Euler angles로 변환가능
- ■물론 저도 이 모든 과정을 연필과 종이로 풀지 않는다.
- ■저의 경우 LAPACK으로 eigenvalue와 eigenvector를 수치적으로 얻고, 이를 바탕으로 transformation matrix를 구해서, 다시 Euler angle로 변환하였다.
- ■https://youngung.github.io/principal/ 참조

Principal values / principal space

- ■어디에 쓰이나?
- ■Principal space에 응력을 표현하면 문제가 매우 간단해 진다!
- ■왜? 일단 생각해야할 component의 수가 줄어든다. 따라서 6D stress space가 3D stress space로 줄어든다 3D space는 간단히 Cartesian coordinate로 표현할 수 있다. (시각적으로, 그리고 수치해석적으로도) 6차원 보다는 매우 편리하다.

■다른 예?

Application: Forming limit diagram

성형 한계 다이아그램은 금속 판재의 성형성을 간단히 나타낼 수 있다.

전통적으로 fracture가 일어난 판재의 minor/major strain을 측정하여 모아 곡선으로 표현한다. 여기서 minor/major strain들은 principal space의 strain component를 의미한다.

어쩌다가 principal space로 표현하게 되었을까? - FLD 측정 방식에서 유래 (다음장)

Application: Forming limit diagram

Minor strain (%)
Fig 33: Forming limit diagram of (a) IF steel (b) AA5754-H22 and (c)
AA5182-O sheet of thickness Imm.

Principal space를 사용한다면?

■응력과 변형률 텐서가 모두 같은 principal space에 표현이 되는 상태라면,

■이를 간단히 Voigt notation을 차용한다면 3차원 문제가 된다. 따라서

$$lacksymbol{\sigma} = egin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix}$$
 그리고 $m{\varepsilon} = egin{bmatrix} arepsilon_1 \\ arepsilon_2 \\ arepsilon_3 \end{bmatrix}$ 로 표현 가능하다. (각 성분의 첨자가 하나로 줄었다)

-때로는 principal space에 표현된 응력의 성분임을 좀 더 명확히 하기 위해 로마자 첨자를 사용한다. Ex. $m{\sigma} = \begin{bmatrix} \sigma_I \\ \sigma_{II} \\ \sigma_{II} \end{bmatrix}$

첨자를 사용한다. Ex.
$$oldsymbol{\sigma} = egin{bmatrix} \sigma_{II} \ \sigma_{III} \end{bmatrix}$$

Principal space and Hooke's law (1)

- ■응력과 변형률간의 관계는 Hooke's law를 따르며, 그 둘간 '선형' 관계를 설명하는 법칙이다.
- ■Principal space의 e_1 방향으로의 가상 '일축 인장' 실험을 생각해보자. 해당 방향에서의 stress component와 해당 방향에서의 strain component 간에는 '선형' 관계가 지켜진다. 이는
- $\blacksquare \sigma_1 = \mathbb{E} \varepsilon_1$ 로 표현가능 여기서 \mathbb{E} 는?
- ■나머지 principal space의 \mathbf{e}_2 축과 \mathbf{e}_3 축에서는 '수축' 변형이 발생한다. 만약시편이 'isotropic' 하다면, 그 수축 변형량은 동일하다. 이는
- $\mathbf{e}_1 = \mathbf{e}_2 = -\nu \mathbf{e}_1$ 으로 표현가능 여기서 ν 는?

Principal space and Hooke's law (2)

■앞서 '일축' 인장에 적용된 예들을 좀 더 확장 시켜 '삼축' 모두에 arbitrary한 응력이 걸렸을 경우를 표현할 수 있는 방법이 있다. 이는

$$\blacksquare \mathbb{E} \varepsilon_1 = [\sigma_1 - \nu(\sigma_2 + \sigma_3)]$$

■앞서 우리는 principal space에서 '축약'된 Hooke's law를 살펴보았다. 사실 Full tensor를 사용하면 Hooke's law는 ...

$$\mathbf{\sigma}_{ij} = \mathbb{E}_{ijkl} \mathbf{\epsilon}_{kl}$$
 혹은 $\mathbf{\epsilon}_{ij} = \mathbb{C}_{ijkl} \mathbf{\sigma}_{kl}$ (여기서 $\mathbb{C} = \mathbb{E}^{-1}$)

- ■위를 이용하여
- $\mathbf{e}_{11} = \mathbb{C}_{11kl}\sigma_{kl}$
- $\mathbf{\varepsilon}_{22} = \mathbb{C}_{22kl} \sigma_{kl}$
- $\mathbf{e}_{12} = \mathbb{C}_{12kl} \mathbf{\sigma}_{kl}$

Boundary condition

- ■재료 역학 문제를 효율적으로 해결하기 위해서는 적절한 boundary condition (경계조건)을 찾아내고 올바르게 설정하는 것이 매우 중요하다. 이를 위해 몇몇 유익한 hints를 꼽자면
 - 자유 표면에 수직한 응력은 0 이다. 재료의 가장 바깥 표면에 응력을 전달하는 다른물질이 없이 대기중에 노출되어 있으면, 해당 표면의 방향과 관계된 응력 성분들은 0이다. 예를 들어, 한 물질점이 free surface에 해당하고 z축방향으로 그 법선이 향한다면, σ_{zz} , σ_{yz} , σ_{xz} 모두 0이다.
 - 마찰이 없는 면에서 전단응력들은 0이다. 해당면이 (위의 예와 유사하게) z축방향으로 그 법선이 향한다면, σ_{yz} , σ_{xz} 모두 0이다.
 - 힘평형 상태에서는 물체의 모든 면에서 힘의 균형이 존재한다.
 - St. Venant 원리 (교제에서 한번 읽어보세요...)

Plane stress condition and free surface

■Plane stress condition을 더 자세히 설명하기에 앞서 free surface를 이해해보자.

Plane theory (2D approximation)

- ■재료의 기계적 거동을 설명할때, 구조물의 모습과 기대되는 응력/변형률에 의해한 방향으로의 구성성분들이 다른 성분들과 비교해 '매우매우매우' 작을 때가 있다.
- ■그럴때는 full tensor component를 모두 고려하기 보다는 매우 작은 성분들을 'zero'로 가정하여 문제를 간단화 시키기도 한다.
- ■이를 통해, 문제의 복잡성을 줄이고, 수치해석시간(컴퓨터 계산 시간)도 줄어들수 있다. 그 뿐만 아니라, 수식도 매우 간편해진다!
- ●응력을 예로 들자면, 서로 수직하는 세면중 한면과 관련된 응력 성분들이 모두 zero인 상태 (혹은 그렇게 모사된 상태) 를 일컬어 plane stress condition 즉 평면 응력상태라고 한다.
- ■변형률 텐서를 예로 들자면 세 기본 길이 방향중, 한방향과 관련한 normal/shear components가 모두 zero인 상태... plane strain condition (평면 변형률 상태)라고한다.

Plane stress condition

Plane stress where the components associated with \mathbf{e}_3 basis vector are zero: $\begin{bmatrix} \sigma_{11} & \sigma_{12} & 0 \\ \sigma_{12} & \sigma_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$egin{bmatrix} \sigma_{11} & \sigma_{12} & 0 \ \sigma_{12} & \sigma_{22} & 0 \ 0 & 0 & 0 \end{bmatrix}$$

따라서, 이를 2x2 matrix로 표현 가능하다: $\begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix}$ 단지 세개의 component만

meaningful. 더욱 축약하여 $\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}$ 의 형태로 표현 가능하다.

이경우 principal stress와 principal space도 매우 간단히 구해진다.

$$\begin{split} \sigma_1 &= \frac{\sigma_{11} + \sigma_{22}}{2} + \sqrt{\left(\frac{\sigma_{11} - \sigma_{22}}{2}\right)^2 + \sigma_{12}^2} \\ \sigma_2 &= \frac{\sigma_{11} + \sigma_{22}}{2} - \sqrt{\left(\frac{\sigma_{11} - \sigma_{22}}{2}\right)^2 + \sigma_{12}^2} \\ \text{Principal space} &= 구하기 위해서는... \end{split}$$

 $\theta = \frac{1}{2} \tan^{-1} \left(\frac{2\sigma_{12}}{\sigma_{11} - \sigma_{22}} \right)$ 로 얻어진 값으로 회전...

Plane strain condition

평면 응력상태와 유사한듯 다르게

$$\begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & 0 \\ \varepsilon_{12} & \varepsilon_{22} & 0 \\ 0 & 0 & \varepsilon_{33} \end{bmatrix}$$

Some times, even under plane strain condition, ε_{33} is not zero. 하지만 이럴 경우에도 응력해석에서는 non-zero ε_{33} 를 무시하여도 무방한 경우가 있다.

예제 1-11

 e_2 축으로 strain이 없는 plane-strain condition

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \varepsilon_{33} \end{bmatrix}$$

위의 변형률 텐서를 살피면, 해당 좌표계가 principal space를 나타냄을 알 수 있다.

- 1. 시편 전체에 '균일한' 변형이 작용하였다고 가정했다.
- 2. 변형전 시편의 가운데 면이 변형후에도 '총' 길이 변화가 없다 (중립축; neutral axis). 그리고 중립축이 시편의 두께 방향 중간에 위치한다. 시편의 두께 변화가 없다. 굽힘 후의 곡률 ρ 는 시편의 두께에 비해 매우 크다 ($\rho\gg t$)
- 3. 굽힘의 양이 적어, engineering strain을 변형률로 사용한다.

공칭 변형률의 정의 $\varepsilon = \frac{l_1 - l_0}{l_0}$ 을 통해 시편 바깥쪽 면의 변형률을 구하고, Hooke's law를 사용하여 해당면의 응력상태를 곡률과 두께 그리고 modulus, strain및 Poisson ratio로 표현해보자.

왼쪽의 좌표계 공간이 단순 굽힘 환경에서의 응력을 표현하는 principal space가 된다.

시편 바깥쪽의 최종 길이를 θ 와 ρ , 그리고 두께 t 에 대한 함수로 표현할 수 있다.

 \mathbf{e}_1 방향으로의 본래 길이는 중립축 선상의 길이로 볼 수 있다. 따라서 변형전 길이는 $\theta\left(\rho+\frac{t}{2}\right)$ 비슷한 방법으로 바깥표면의 굽힘 후 길이는 $\theta(\rho+t)$

따라서
$$\varepsilon_1 = \frac{l_1 - l_0}{l_0} = \frac{\theta(\rho + t) - \theta\left(\rho + \frac{t}{2}\right)}{\theta\left(\rho + \frac{t}{2}\right)} = \frac{t/2}{\rho + t/2}$$

여기서, 앞서 주어진 조건 $\rho\gg t$ 를 사용하면 $\varepsilon_1\approx \frac{t/2}{\rho}$. 앞서 우리는 다음과 같은 관계식을 배웠다.

 $\mathbb{E}\varepsilon_1=[\sigma_1-\nu(\sigma_2+\sigma_3)]$ 그리고 plane-strain condition에 의해 $\mathbb{E}\varepsilon_2=[\sigma_2-\nu(\sigma_1+\sigma_3)]=0$ 그런데 제일 바깥쪽 면은 free surface; 즉 $\sigma_3=0$. 따라서

$$\mathbb{E}\varepsilon_1 = [\sigma_1 - \nu\sigma_2]$$
 그리고 $[\sigma_2 - \nu\sigma_1] = 0 : \sigma_2 = \nu\sigma_1$

따라서 $\varepsilon_1=rac{1}{\mathbb{E}}[\sigma_1u^2\sigma_1]=rac{\sigma_1}{\mathbb{E}}(1u^2)$. 재배치를 하면 $\sigma_1=rac{\mathbb{E}\varepsilon_1}{(1u^2)}$. $arepsilon_1=rac{t/2}{
ho}$ 대입하면

$$\sigma_1 = \frac{t}{2\rho} \frac{\mathbb{E}\varepsilon_1}{(1-\nu^2)}$$
 그리고 $\sigma_2 = \nu \sigma_1$ 를 사용하여 $\sigma_2 = \frac{t}{2\rho} \frac{\nu \mathbb{E}\varepsilon_1}{(1-\nu^2)}$

탄성과 탄성일(탄성변형 에너지)

- ■길이 x 단면적 A인 봉이 일축인장력 F_x
- ■로 인해, dx 만큼 변화되었다. 이에 따른 미소(infinitesimal) 일(work) dW은?
- $dW = F_x dx$
- ■단위 부피당 미소 일은?

$$dw = \frac{dW}{Volume} = \frac{dW}{xA} = \frac{F_x}{A} \left(\frac{dx}{x}\right) = \sigma_x d\varepsilon_x$$

- \blacksquare 앞서 다루었던 Hooke's law에 의해 $\sigma_{x}=\mathbb{E}\epsilon_{x}$
- $\mathbf{w} = \int d\mathbf{w} = \int \sigma_{\mathbf{x}} d\varepsilon_{\mathbf{x}} = \int \mathbb{E}\varepsilon_{\mathbf{x}} d\varepsilon_{\mathbf{x}}$ $= \mathbb{E}\int_{0}^{\varepsilon_{\mathbf{x}}} \mathbf{x} d\mathbf{x} = \frac{\mathbb{E}\varepsilon_{\mathbf{x}}^{2}}{2} = \frac{\sigma_{\mathbf{x}}\varepsilon_{\mathbf{x}}}{2}$
- ■같은 아이디어를 general한 텐서에 적응하면...
- $\mathbf{w} = \frac{1}{2} (\sigma_{ij} \varepsilon_{ij})$

References and acknowledgements

References

- An introduction to Continuum Mechanics M. E. Gurtin
- Metal Forming W.F. Hosford, R. M. Caddell (번역판: 금속 소성 가공 허무영)
- Fundamentals of metal forming (R. H. Wagoner, J-L Chenot)
- http://www.continuummechanics.org (very good on-line reference)

Acknowledgements

Some images presented in this lecture materials were collected from Wikipedia.