Predicting Auto Insurance Outcomes with Machine Learning

Agile Insurance Consultancy

Yuma Teshirogi, Joey Shum, Noah Nguyen, Quang Bui

01.

Background and objectives

Our objective

- Objective: Predict auto insurance claims over \$1000
- Model construction and analysis based on 7,290 records of auto insurance claims with 29 total features
- Focused on developing a model with both high accuracy and strong explainability

02.

Technical analysis

Structure Feature engineering Data processing Feature selection Tuning

Feature Engineering

Derive Average Metrics

- Avg CLV = CLV / Months since Policy Inception
- Avg Complaints = Complaints / Policy

Reformat **Policy Age**

- Given date format MM/DD/YY
- Converted to a numerical column for easier interpretation

Create **Expected Claim Size**

Structure

- Created Expected Claim Size (ECS) utilizing existing features (CLV, Months since Last Claim, Months since Inception, Number of Policies)
- ECS = CLV * (MSLC / MSI) * log(1 + Policies)

Data Processing

Index Column

One Hot Encoding

Standard Scaler

Robust Scaler

Structure

Feature Selection

SHAP Chart

Feature Importance Chart

Exploratory Data Analysis (EDA)

Hyperparameter Tuning

learning_rate

max_depth

n_estimators

Reg_alpha (l1)

Reg_lambda (l2)

Data Processing

Index Column

One Hot Encoding

Standard Scaler

Robust Scaler

Feature Selection

SHAP Chart

Feature Importance Chart

Exploratory Data Analysis (EDA)

Hyperparameter Tuning

learning_rate

max_depth

n_estimators

Reg_alpha (l1)

Reg_lambda (l2)

Algorithm \ Metric	Recall	F1 Score	ROC-AUC	Accuracy
CatBoost	0.567	0.662	0.775	0.934
XGBoost	0.559	0.642	0.760	0.929
LightGBM	0.565	0.647	0.773	0.930

- Metrics and learning curves are obtained using 5-folds stratified cross-validation
 - Recall, F1 score, ROC-AUC, Accuracy
- **Learning Curves**: training size progressively increases from 10% to 100%
- Confusion Matrix: based on result of first fold

XGBoost

		Pre	dict
		0	1
Actual	0	1262	30
	1	77	89

Structure

CatBoost

		Pre	dict
		0	1
Actual	0	1257	35
	1	77	89

Data processing

LightGBM

		Pre	dict
		0	1
Actual	0	1269	23
	1	76	90

Algorithm \ Metric	Recall	F1 Score	ROC-AUC	Accuracy
CatBoost	0.567	0.662	0.775	0.934
XGBoost	0.559	0.642	0.760	0.929
LightGBM	0.565	0.647	0.773	0.930

- Metrics and learning curves are obtained using 5-folds stratified cross-validation
 - Recall, F1 score, ROC-AUC, Accuracy
- **Learning Curves**: training size progressively increases from 10% to 100%
- Confusion Matrix: based on result of first fold

Data processing

Feature importance chart

Irrelevant features and features with low importance are removed to minimize noise.

Data processing

Feature engineering

Data Processing

Index Column

One Hot Encoding

Standard Scaler

Robust Scaler

Feature Selection

SHAP Chart

Feature Importance Chart

Exploratory Data Analysis (EDA)

Hyperparameter Tuning

learning_rate

max_depth

n_estimators

Reg_alpha (l1)

Reg_lambda (l2)

Data Processing

Index Column

One Hot Encoding

Standard Scaler

Robust Scaler

Feature Selection

SHAP Chart

Feature Importance Chart

Exploratory Data Analysis (EDA)

Hyperparameter Tuning

learning_rate

max_depth

n_estimators

Reg_alpha (l1)

Reg_lambda (l2)

Feature engineering

After tuning, we achieve best F1 scores of **0.6435** for XGBoost, **0.6518** for LGBM, and an accuracy of **0.9298** for CatBoost.

The 3 models are combined to create a well-rounded stacked model.

Structure Feature engineering

Stacking / Ensemble

Algorithm \ Metric	Recall	F1 Score	ROC-AUC	Accuracy
CatBoost (Default parameters)	0.560	0.659	0.771	0.934
LightGBM (Default parameters)	0.563	0.654	0.771	0.932
Stacked Model	0.529	0.641	0.757	0.933
Ensemble Model	0.560	0.663	0.772	0.935

		Pre	dict
		0	1
Actual	0	1272	20
	1	77	89

Data processing

03.

Contributions to the business

Main areas of contribution

Pricing Segmentation

- **Adverse selection:** When individuals with a higher risk of making a claim are more likely to purchase insurance, while those with lower risk may opt out
- The main goal of insurance pricing is to **segment** risk effectively and avoid adverse selection
- Leveraging policy data and ML models enables insurers to develop more refined pricing structures
- This leads to several benefits:

Increases profitability

Minimizing high-risk exposure may lead to increased profitability

Improves customer retention

Lower premiums for low-risk individuals will improve retention of desired customers

Increases competitiveness

Lower premiums can contribute to a more competitive position for the insurer

Underwriting performance

- Underwriters assess variables such as age, gender and education to decide whether an individual is insurable
- ML models can improve risk classification accuracy, reducing high-risk policies and boosting profitability for insurers

Traditional methods

Considers limited number of variables

High explainability

Standard predictability

Machine learning methods

Can consider larger number of variables

Lower explainability

High predictability

KPI Monitoring

Risk-adjusted Lifetime Value		MSLC	
		High	Low
	High	Desired	Monitor average CLV
CLV	Low	Monitor customer history	Undesired

Monitor metrics for business goals - customer retention and profitability considerations.

Potential Risks & Concerns

Privacy concerns

- Only collect and store information necessary for the construction and maintaining of the model
- Limit access to the database adequately to reduce risk of a major data breach

Fairness and bias

- Establish a system for frequent and adequate maintenance of the model
- Follow the E-23 Model Risk Management guideline to ensure that the model follows industry standards

Explainability

- Analyze SHAP values to see the overall importance of each variable
- Utilize graphs to visualize individual trees within the model

Thank you!

Any questions?

Model's performance after feature selection

Algorithm \ Metric	Recall	F1 Score	ROC-AUC	Accuracy
LightGBM	0.5228	0.6196	0.9116	0.9274
CatBoost	0.5275	0.6266	0.9176	0.9288
XGBoost	0.5226	0.6027	0.9005	0.9222

XGBoost

		Pre	dict
		0	1
Actual	0	629	17
	1	34	49

CatBoost

		Pre	dict
		0	1
Actual	0	635	11
	1	35	48

LightGBM

			dict
		0	1
Actual	0	632	14
	1	37	46

Model's performance after feature selection

Algorithm \ Metric	Recall	F1 Score	ROC-AUC	Accuracy
LightGBM	0.5228	0.6196	0.9116	0.9274
CatBoost	0.5275	0.6266	0.9176	0.9288
XGBoost	0.5226	0.6027	0.9005	0.9222

XGBoost

CatBoost

LightGBM

