Seguendo lo schema indicato in figura scrivere la funzione di trasferimento W(s)=• (s)/U(s) dove • è la velocità del volano

(Secondo modulo)

A Dato il processo p(s) descritto dalla seguente funzione di trasferimento, $\frac{5(s+3)(1-s)}{s^3+3s^2+2s+3}$ con poli a parte reale negativa:

Sintetizzare il sistema di controllo C(S), utilizzando il minimo numero di poli in zero , in modo che:

- Il guadagno a ciclo chiuso sia pari a 10
- L'errore per un ingresso a rampa u(t)=3t sia inferiore a **0.5**
- L'effetto sull'uscita del disturbo $z(t)=2\delta_{-1}(t)$ sia nullo

B Dato il processo p(s) descritto dalla seguente funzione di

trasferimento,
$$\frac{200}{s(s+1)(s^2+20s+100)}$$
:

Sintetizzare il sistema di controllo in figura (kd=1) in modo che:

- $M_{\omega} > 50^{\circ}$
- • t <3rad/sec
- calcolare fino a quale pulsazione l'errore di riproduzione di una sinusoide sin(• t) sia inferiore a 0.5

\mathbf{FI}	OT de	lla rete	scelta	a:		

C Discretizzare con il metodo di tustin ,tc=0.1, la seguente funzione di trasferimento $\frac{2}{(s+5)(s+10)}$ e calcolare i primi 5 campioni dell'uscita per un ingresso a gradino.

D (facoltativa) Identificare i coefficienti a,b,c,d della seguente fdt $\frac{a+bz^{-1}}{1+cz^{-1}+dz^{-2}}$ sapendo che alla successione di campioni dell'ingresso u=[1,2,1,0] corrisponde l'uscita y=[2,7,5,-15]

Seguendo lo schema indicato in figura scrivere la funzione di trasferimento W(s)=I(s)/U(s) dove I è la corrente che scorre nel motore

(Secondo modulo)

A Dato il processo p(s) descritto dalla seguente funzione di trasferimento, $\frac{s+6}{2*(2s^3+4s^2+2s+3)}$ con

poli a parte reale negativa:

Sintetizzare il sistema di controllo C(S), utilizzando il minimo numero di poli in zero, in modo che:

- Il guadagno a ciclo chiuso sia pari a 4
- L'errore per un ingresso a gradino $u(t)=2\delta_{-1}(t)$ sia inferiore a **0.5**
- L'effetto sull'uscita del disturbo $z(t)=3\delta_{-1}(t)$ sia inferiore a **0.1**

B Dato il processo p(s) descritto dalla seguente funzione di trasferimento, $\frac{40*(s+2)}{s(s+0.5)(s^2+10s+25)}$:

Sintetizzare il sistema di controllo in figura (kd=1) in modo che:

- M_o>50°
- $\cdot_{t} > 3 \text{rad/sec}$
- calcolare fino a quale pulsazione l'errore di riproduzione di una sinusoide sin(• t) sia inferiore a 0.1

C Discretizzare con il metodo di tustin ,tc=0.1,la seguente funzione di trasferimento $\frac{1}{(s+2)(s+4)}$

e calcolare i primi 5 campioni dell'uscita per un ingresso a gradino.

D (facoltativa)

Identificare i coefficienti a,b,c,d della seguente fdt $\frac{a+bz^{-1}+cz^{-2}}{1+dz^{-1}}$ sapendo che alla successione di campioni dell'ingresso u=[2,1,0,0] corrisponde l'uscita y=[4,12,27,28]

Seguendo lo schema indicato in figura scrivere la funzione di trasferimento W(s)=I(s)/D(s) dove I è la corrente , D è una coppia di disturbo applicata al volano

(Secondo modulo)

A Dato il processo p(s) descritto dalla seguente funzione di trasferimento, $\frac{2(s+2)(3-s)}{s^3+3s^2+2s+3}$ con poli a

parte reale negativa: Sintetizzare il sistema di controllo C(S), utilizzando il minimo numero di poli in zero , in modo che:

- Il guadagno a ciclo chiuso sia pari a 2
- L'errore per un ingresso a rampa u(t)=2t sia inferiore a **0.1**
- L'effetto sull'uscita del disturbo z(t)=3δ₋₁(t) sia nullo

<u>C(s):</u>			

B Dato il processo p(s) descritto dalla seguente funzione di trasferimento, $\frac{3200*(s+20)}{s(s+10)(s^2+40s+400)}$:

Sintetizzare il sistema di controllo in figura (kd=1) in modo che:

- $M_{\omega} > 30^{\circ}$
- • $_{\rm t} > 10 \text{rad/sec}$
- calcolare fino a quale pulsazione l'errore di riproduzione di una sinusoide sin(• t) sia inferiore a 0.2

FDT	della r	ete sce	lta:		

C Discretizzare con il metodo di tustin ,tc=0.1, la seguente funzione di trasferimento $\frac{2}{(2s+4)(s+1)}$ e calcolare i primi 5 campioni dell'uscita per un ingresso a gradino.

D (facoltativa) Identificare i coefficienti a,b,c,d della seguente fdt $\frac{a+bz^{-1}+cz^{-2}}{1+dz^{-1}}$ sapendo che alla successione di campioni dell'ingresso u=[1,2,1,0] corrisponde l'uscita y=[1,2,0,0]

Seguendo lo schema indicato in figura scrivere la funzione di trasferimento W(s)=V(s)/D(s) dove V è la tensione di alimentazione del motore , D è una coppia di disturbo applicata al volano

(Secondo modulo)

A Dato il processo p(s) descritto dalla seguente funzione di trasferimento, $\frac{s+10}{5*(3s^3+2s^2+2s+1)}$ con poli

a parte reale negativa:

Sintetizzare il sistema di controllo C(S), utilizzando il minimo numero di poli in zero , in modo che:

- Il guadagno a ciclo chiuso sia pari a 3
- L'errore per un ingresso a gradino $u(t)=3\delta_{-1}(t)$ sia inferiore a **0.6**
- L'effetto sull'uscita del disturbo $z(t)=2\delta_{-1}(t)$ sia inferiore a **0.3**

B Dato il processo p(s) descritto dalla seguente funzione di trasferimento, $\frac{80*(20-s)}{s(s^2+30s+225)}$:

Sintetizzare il sistema di controllo in figura (kd=1) in modo che:

- $M_{\phi}>45^{\circ}$
- • $_{\rm t} > 5 \, {\rm rad/sec}$
- calcolare fino a quale pulsazione l'errore di riproduzione di una sinusoide sin(• t) sia inferiore a 0.4

C Discretizzare con il metodo di tustin ,tc=0.1,la seguente funzione di trasferimento $\frac{4}{(4s+2)(s+1)}$ e calcolare i primi 5 campioni dell'uscita per un ingresso a gradino.

D (facoltativa) Identificare i coefficienti a,b,c,d della seguente fdt $\frac{a+bz^{-1}}{1+cz^{-1}+dz^{-2}}$ sapendo che alla successione di campioni dell'ingresso u=[1,2,1,0] corrisponde l'uscita y=[1,3,0,-4]

Esercizio A

Kd=4

Kc1>60 e=2*
$$\frac{{K_d}^2}{{K_d} + {K_c}{K_p}} < 0.5$$

Kc2>116 $Y_d = \frac{3}{1 + {Kc_c}{K_p} \frac{1}{{K_d}}} < 0.1$

Esercizio B

Kp=6.4(16.4Db) Poli in 0,-0.5,-5,-5 Zeri in -2

Bode Diagrams

Esercizio C

Transfer function: $0.001894 \text{ z}^2 + 0.003788 \text{ z} + 0.001894$

 $z^2 - 1.485 z + 0.5455$

 $z^2 + 2z + 1$

528z^2 - 748 z + 288

0.0019

0.0085

0.0192

0.0314

0.0437

0.0554

Esercizio D

D:A=2, B=1,C=1,D=-2