

L26 - Electrical Power system components & Transformers

Basic Electrical Technology

[ELE 1051]

Outline

Power System Components

- Generation
- Transmission, Distribution
- Protection & Control

Types of Loads

Power System Background

Branch of Electrical Sciences dealing with *Generation*, *Transmission* & *Distribution* of electrical energy.

Pearl Street Station in New York City, 1882

- "Illuminating Companies" by Thomas A Edison
- Concept of DC power generation

Three phase AC power system, 1896

2 generators and a transmission line @ 25 Hz.

Power System Components

Generation subsystem

Transmission subsystem

Sub-transmission subsystem

Distribution subsystem

Protection and Control subsystem

Primary Sources of Energy

- Fossil Fuel
 - Coal, Oil, Natural Gas
- Renewable Energy
 - Water, Solar, Wind, Tidal, Geo-thermal etc.
- Nuclear Energy

Coal Fired Power plant

UPCL, Padubidri, Mangalore

Thermal Power Stations

- Coal Fired
 - Turbo alternators driven by steam turbine
- Oil Fired
 - Crude oil or Residual oil
- Gas Fired
 - Combined cycle- First stage: Gas turbine, Second stage: Steam Turbine
- Diesel Fired
 - Internal Combustion engines as prime mover
 - Standby power plants

Hydroelectric Power Station

- Salient Pole alternators driven by turbines.
- Turbines: Impulse Turbine & Reaction Turbine
- Pumped storage plants

Nuclear Power Plant

- Fissile Material
- $^{235}_{92}U$, $^{239}_{94}Pu$
- Moderator
 - D2O, Graphite
 - Control rods
 - Boron OR Cadmium
- Fast Breeder Reactors
 - Liquid metal (alloy of Na & K) is coolant

$$^{238}_{92}U + ^{1}_{0}n \rightarrow ^{239}_{92}U - \beta \rightarrow ^{239}_{93}Np - \beta \rightarrow ^{239}_{94}Pu$$

Non-Conventional Power Stations

- Wind Power Stations
- Solar Power Stations
- Micro-Hydel Power Stations
- Bio-Mass Power Stations
- Geothermal Power Stations

Wind Farm in Karnataka

Solar Park, Charanka Village, Gujarat

IMW hydro plant, HP

Bio-mass Plant, Chattisgarh

Transmission, Sub-transmission & Distribution Subsystems

Transmission networks- EHV AC or HVDC

 \circ Operates @765 kV/400 kV/ 220 kV AC or \pm 500 kV DC.

AC Sub-Transmission networks

Operates @ I32 kV/ II0kV/ 66 kV/ 33 kV

AC Distribution Network

Primary side: I I kV

Secondary side: 415 V, 4 Wire

Share of Renewable resources in India

Resource	Potential	Upto 9 th	Upto I0th	I I th Plan	Upto	Cumulative	I 2 th Plan	13 th Plan
Resource	(MW)	Plan	Plan	Target	30.09.10	Achievement	Projection (2017)	Projection (2022)
Wind Power	48,500	1,667	5,427	9,000	4,714	12,809	27,300	38,500
Small Hydro Power	15,000	1,438	538	1,400	759	2,823	5,000	6,600
Bio Power	23,700	390	795	1,780	1,079	2,505	5,100	7,300
Solar Power	20-30 MW/sq km	2	I	50	8	18	4,000	20,000
Total		3,497	6,761	12,230	6,560	18,155	41,400	72,400

Source: Ministry of New & Renewable Energy, Govt. of India

Transmission Network – A Glance

Substation

Substation Components

- Lightning Arrester
- Carrier line communication equipment (Wave Trap)
- Instrument Transformers (CT, PT)
- Circuit Breakers
- Isolators
- Bus Bars
- Power Transformers
- Control Room

Fail free power is Hypothetical.

Faults: Open Circuit & Short Circuit

Faults detection: Relays.

Fault Isolation: Circuit Breakers

Modern Trend: Supervisory Control And Data Acquisition (SCADA) systems.

Industrial Loads

- 3 Phase
- Complex Tariff Structure

Domestic Loads/Commercial Loads

- I Phase//
- Tariff based on energy consumed- kWH

Domestic Loads and Power Ratings

Incandescent lamps - (5 W to 100 W)

Fluorescent lamps - (20 W & 40 W); CFL - (5 W to 25 W)

LED Lamps-(IW to I00W)

Air Conditioner (I.5T) - I800 W

Electric Iron - 750 W

Heaters/ Geysers – 2000 W

Ceiling Fan – 60 W

Washing Machine (with heater) – 2.5 kW

Refrigerator – 160 W

PC - 200 W, Laptop - 40 W

Reduce Electricity bill by minimizing the use of heating / environmental conditioning gadgets

Indian Power Sector – A Glance

Sector	MW	Percentage
State	1,03617	27.7
Central	93,927	25.1
Private	1,76,655	47.2
	Total 3,74,199	100.0

As on 17/12/2020

Source: Ministry of Power, Govt. of India

Indian Power Sector - A Glance

Fuel	MW	P ercentage
Total Thermal	2,31,321	61.8
Coal	1,99,595	53.3
Lignite	6,260	1.7
Gas	24,957	6.7
Oil	510	0.1
Hydro (Renewable)	45699	12.2
Nuclear	6,780	1.8
RES*(MNRE)	90,399	24.2
Tot	al 3,74,199	100

^{*}RES include small hydro, bio-mass, urban and industrial waste power and wind energy

As on 17/12/2020

Source: Ministry of Power, Govt. of India

Detailed discussion of various power generating sources.

Different levels of voltages at transmission, sub-transmission and distribution stage.

Types of loads.

Indian Power Sector

Basic Electrical Technology

[ELE 1051]

L26 – Transformers

Contents

Introduction

Operation /

Representation

Emf Equation /

Construction

- Core Type /
- Shell Type /

Losses & Efficiency /

Auto Transformer

3 Phase Transformer

Applications_

Introduction

Static device with AC excitation

Transfers energy between two or more magnetically coupled circuits without change in frequency.

Principle of operation: *Electromagnetic Induction*

Electric circuits are linked by a common ferromagnetic core.

Ferromagnetic core ensures maximum magnetic flux linkag

Applications:

- Electric power systems.
- Power transmission, distribution networks.
- Electronic circuits./
- Electric traction.

Types

Based on Construction	Based on Function	Based on Windings
Core Type /	Step Up	Single Winding —
Shell Type /	Step Down	2 or 3 Windings

Operation of Transformer

- Magnetic Core : Flux path
- Flux Linkages : Primary & Secondary
- Induced Emf:
 - Primary Self Induced Emf
 - Secondary Mutually Induced Emf

Emf Equation of Transformer

(ful vis my = (RV

Core flux,
$$\emptyset = \emptyset_m Sin\omega t$$

w= 2 nf

Induced Emf,
$$e = -N \frac{d\emptyset}{dt} = N\omega \emptyset_m Sin(\omega t - 90^\circ)$$

 $e = E_m Sin(\omega t - 90^\circ)$

where, $E_m = N\omega \phi_m \rightarrow Maximum \ value \ of \ self \ induced \ emf$

RMS value of self induced emf,
$$E = \frac{E_m}{\sqrt{2}} = \frac{N\omega \emptyset_m}{\sqrt{2}} = \frac{2\pi f N \emptyset_m}{\sqrt{2}}$$

Primary Induced Emf, $E_1 = 4.44 N_1 f \emptyset_m$ **Secondary Induced Emf**, $E_2 = 4.44 N_2 f \emptyset_m$

Emf Equation of Ideal Transformer...

$$\frac{V_1}{V_2} \cong \frac{E_1}{E_2} = \frac{I_2}{I_1} = \frac{N_1}{N_2} = a = Turns Ratio$$

where, $V_1 \& V_2$ are the terminal voltages, $E_1 \& E_1$ are the induced RMS voltages,

Construction- Core Type

Construction- Shell Type

Losses & Efficiency

Core Loss

- Hysteresis Loss
- Eddy Current Loss
- Depends on flux which is constant hence the loss is constant
- Minimized using high graded core material and lamination

Copper Loss

- Winding Resistance (in primary and secondary)
- Current (or Load) dependent, hence variable loss

Total Loss = Core Loss + Copper Loss

Efficiency: Very high 97% to 99% (since it is a static device)

Auto Transformer

One winding transformer

Part of winding common to primary & secondary circuits

One winding wound over the entire core

Secondary winding can be varied using variable point

Used in power applications to interconnect systems operating at different voltage classes, for example 138 kV to 66 kV for transmission

Auto Transformer- Types

3 Phase Transformer

3 primary coils & 3 secondary coils.

Possible connections of primary & secondary windings:

- star/star
- star/delta
- delta/delta
- delta/star

3 single-phase transformers of similar ratings can be connected to form a 3 phase transformer

Power Transformer: Used in electric transmission network

Distribution Transformer: Used in electric distribution networks

Instrument Transformers (PT & CT): Used for high voltage & current measurement

Isolation Transformer: 1:1 transformers used in circuits to provide electrical isolation.

Constant Voltage Transformer: Used as voltage regulators

High frequency Transformer: Transformers designed for operating with high frequency – ferrite core