Linear Regression Modeling of King County Real Estate Sale Prices

Authors: Aisha Baitemirova-Othman, Angela Kim, Steven Addison, Wahaj Dar

Instructor: David Elliott

Overview

This project analyzes residential real estate sales in King County, Washington, and uses the data to create a model that predicts price based on the parameters given.

Business Problem

Windermere Real Estate, based in Seattle, Washington, wants to better serve home buyers by being able to accurately present a price point using features of a house (ie. number of bedrooms) that buyers are looking for.

Data Understanding

This dataset contains information about residential real estate sales in King County between May 2014 - May 2015. It includes details such as number of bedrooms and bathrooms, square footage of the home, and various features regarding location.

Data Preparation

```
In [1]: import pandas as pd
        import numpy as np
        import scipy.stats as stats
        import seaborn as sns
        import matplotlib.pyplot as plt
        import warnings
        %matplotlib inline
        warnings.filterwarnings('ignore')
        !pip install geopy
        import geopy
        from geopy import distance
        import plotly.express as px
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        from statsmodels.formula.api import ols
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.model selection import train test split
        from sklearn.dummy import DummyRegressor
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_squared_error as mse
        from sklearn.model selection import cross val score
        from sklearn.model selection import cross validate
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.feature selection import RFE
```

Requirement already satisfied: geopy in /opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (2.2.0)
Requirement already satisfied: geographiclib<2,>=1.49 in /opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from geopy) (1.52)

Here we import our data and skim the first five rows to get a general idea of what the dataframe looks like. We also get an initial look at missing values and datatypes that need to be converted.

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
(7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO
2	2 5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO
3	3 2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO

5 rows × 21 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype							
0	id	21597 non-null	int64							
1	date	21597 non-null	object							
2	price	21597 non-null	float64							
3	bedrooms	21597 non-null	int64							
4	bathrooms	21597 non-null	float64							
5	sqft_living	21597 non-null	int64							
6	sqft_lot	21597 non-null	int64							
7	floors	21597 non-null	float64							
8	waterfront	19221 non-null	object							
9	view	21534 non-null	object							
10	condition	21597 non-null	object							
11	grade	21597 non-null	object							
12	sqft_above	21597 non-null	int64							
13	sqft_basement	21597 non-null	object							
14	<pre>yr_built</pre>	21597 non-null	int64							
15	<pre>yr_renovated</pre>	17755 non-null	float64							
16	zipcode	21597 non-null	int64							
17	lat	21597 non-null	float64							
18	long	21597 non-null	float64							
19	sqft_living15	21597 non-null	int64							
20	sqft_lot15	21597 non-null	int64							
dtyp	es: float64(6),	int64(9), objec	t(6)							
memo	memory usage: 3.5+ MB									

None

Cleaning & preparing the data.

```
In [3]: # Drop the 'id' and 'date' columns
        # Fill in missing data
        # Convert all object datatype columns to numeric
        df['yr_renovated'] = df['yr_renovated'].fillna(0)
        df['waterfront'] = df['waterfront'].fillna('NO')
        df['waterfront'] = df['waterfront'].str.replace('NO', '0')
        df['waterfront'] = df['waterfront'].str.replace('YES', '1')
        df['waterfront'] = pd.to numeric(df['waterfront'])
        df['view'] = df['view'].fillna('NONE')
        df['grade'] = df['grade'].str.replace('7 Average', '7')
        df['grade'] = df['grade'].str.replace('8 Good', '8')
        df['grade'] = df['grade'].str.replace('9 Better', '9')
        df['grade'] = df['grade'].str.replace('6 Low Average', '6')
        df['grade'] = df['grade'].str.replace('10 Very Good',
        df['grade'] = df['grade'].str.replace('11 Excellent', '11')
        df['grade'] = df['grade'].str.replace('5 Fair', '5')
        df['grade'] = df['grade'].str.replace('12 Luxury', '12')
        df['grade'] = df['grade'].str.replace('4 Low', '4')
        df['grade'] = df['grade'].str.replace('13 Mansion', '13')
        df['grade'] = df['grade'].str.replace('3 Poor', '3')
        df['grade'] = pd.to_numeric(df['grade'])
        if [df[df['sqft_basement'] == '?']]:
            df['sqft_basement'] = df['sqft_living'] - df['sqft_above']
        df['sqft basement'] = pd.to numeric(df['sqft basement'])
        df['bedrooms'].replace(33, 3, inplace=True)
        df['date'] = pd.to_datetime(df['date'])
        df['yr sold'] = df['date'].dt.year
        df['house_age'] = df['yr_sold'] - df['yr_built']
        df.drop(labels=['id', 'date'], axis=1, inplace=True)
```

```
In [4]: |# One-hot encoding 'condition' and 'view' columns
        condition = df[['condition']]
        ohe = OneHotEncoder(categories="auto", sparse=False, handle unknown="ignore
        ohe.fit(condition)
        condition enc = ohe.transform(condition)
        condition enc = pd.DataFrame(condition enc,
                                     columns=['cond avg','cond fair','cond good','c
                                     index=df.index)
        df.drop('condition', axis=1, inplace=True)
        df = pd.concat([df, condition_enc], axis=1)
        view = df[['view']]
        ohe.fit(view)
        view enc = ohe.transform(view)
        view enc = pd.DataFrame(view enc,
                                columns=['view_avg','view_excellent','view_fair','v
                                index=df.index)
        df.drop('view', axis=1, inplace=True)
        df = pd.concat([df, view enc], axis=1)
```

```
In [5]: # Create 'distance_from_bellevue' column

bellevue = (47.601, -122.2015)

def distancer(row):
        coords_1 = bellevue
        coords_2 = (row['lat'], row['long'])
        return geopy.distance.distance(coords_1, coords_2).miles

df['distance_from_bellevue'] = df.apply(distancer, axis=1)

# Plot distance map

distancemap = df[df['price'] <= 1000000]
fig = px.scatter_mapbox(data_frame = distancemap, lat='lat', lon='long', cofig.update_geos(resolution=50)
fig.update_layout(mapbox_style="carto-darkmatter")</pre>
```


Out[6]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	grade
price	nan	nan	nan	nan	nan	nan	nan	nan
bedrooms	0.32	nan	nan	nan	nan	nan	nan	nan
bathrooms	0.53	0.53	nan	nan	nan	nan	nan	nan
sqft_living	0.70	0.59	0.76	nan	nan	nan	nan	nan
sqft_lot	0.09	0.03	0.09	0.17	nan	nan	nan	nan
floors	0.26	0.18	0.50	0.35	-0.00	nan	nan	nan
waterfront	0.26	-0.00	0.06	0.10	0.02	0.02	nan	nan
grade	0.67	0.37	0.67	0.76	0.11	0.46	0.08	nan
sqft_above	0.61	0.49	0.69	0.88	0.18	0.52	0.07	0.76
sqft_basement	0.32	0.31	0.28	0.44	0.02	-0.25	0.08	0.17
yr_built	0.05	0.16	0.51	0.32	0.05	0.49	-0.02	0.45
yr_renovated	0.12	0.02	0.05	0.05	0.00	0.00	0.07	0.02
zipcode	-0.05	-0.16	-0.20	-0.20	-0.13	-0.06	0.03	-0.19
lat	0.31	-0.01	0.02	0.05	-0.09	0.05	-0.01	0.11
long	0.02	0.14	0.22	0.24	0.23	0.13	-0.04	0.20
sqft_living15	0.59	0.40	0.57	0.76	0.14	0.28	0.08	0.71
sqft_lot15	0.08	0.03	0.09	0.18	0.72	-0.01	0.03	0.12
yr_sold	0.00	-0.01	-0.03	-0.03	0.01	-0.02	-0.01	-0.03
house_age	-0.05	-0.16	-0.51	-0.32	-0.05	-0.49	0.02	-0.45
cond_avg	0.01	0.01	0.19	0.10	-0.01	0.32	-0.02	0.20
cond_fair	-0.05	-0.05	-0.08	-0.06	0.04	-0.06	-0.00	-0.08
cond_good	-0.03	-0.01	-0.17	-0.08	0.01	-0.26	0.01	-0.14
cond_poor	-0.02	-0.03	-0.04	-0.03	0.01	-0.02	0.01	-0.05
cond_verygood	0.06	0.02	-0.03	-0.02	-0.01	-0.12	0.01	-0.08
view_avg	0.15	0.05	0.09	0.13	0.04	0.01	0.00	0.12
view_excellent	0.30	0.03	0.11	0.17	0.02	0.03	0.57	0.15

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	grade
view_fair	0.09	0.02	0.04	0.07	-0.01	-0.02	-0.01	0.05
view_good	0.18	0.05	0.11	0.16	0.07	0.02	0.04	0.14
view_none	-0.36	-0.08	-0.18	-0.27	-0.07	-0.02	-0.25	-0.24
distance_from_bellevue	-0.40	-0.06	-0.06	-0.11	0.18	-0.03	-0.01	-0.16

'sqft_living' has the highest correlation with 'price' at 0.70. We also see high multicollinearity.

In [8]: heatmap = df[['price','sqft_living','grade','sqft_above','distance_from_bel
heatmap

Out[8]:

	price	sqft_living	grade	sqft_above	distance_from_bellevue	view_none	house_age	zipo
0	221900.0	1180	7	1180	6.724913	1.0	59	98
1	538000.0	2570	7	2170	9.940080	1.0	63	98
2	180000.0	770	6	770	9.571487	1.0	82	98
3	604000.0	1960	7	1050	10.530416	1.0	49	98
4	510000.0	1680	8	1680	7.392620	1.0	28	98
21592	360000.0	1530	8	1530	9.572031	1.0	5	98
21593	400000.0	2310	8	2310	9.760026	1.0	1	98
21594	402101.0	1020	7	1020	4.578875	1.0	5	98
21595	400000.0	1600	8	1600	7.712755	1.0	11	98
21596	325000.0	1020	7	1020	4.580999	1.0	6	98

21597 rows × 8 columns

Scatter matrix shows many non-normal distributions.

Inferential Modeling

```
In [11]: # Analyzing OLS results

outcome = 'price'
dfx = df.drop('price', axis=1)
predictors = '+'.join(dfx.columns)
formula = outcome + '~' + predictors
model = ols(formula=formula, data=df).fit()
model.summary()
```

Out[11]: OLS Regression Results

Dep. Variable:priceR-squared:0.725Model:OLSAdj. R-squared:0.724Method:Least SquaresF-statistic:2270.Date:Fri, 19 Nov 2021Prob (F-statistic):0.00

Time: 12:15:12 **Log-Likelihood:** -2.9347e+05

No. Observations: 21597 **AIC:** 5.870e+05

Df Residuals: 21571 **BIC:** 5.872e+05

Df Model: 25

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2.869e+07	4.53e+06	-6.328	0.000	-3.76e+07	-1.98e+07
bedrooms	-4.093e+04	1899.880	-21.544	0.000	-4.47e+04	-3.72e+04
bathrooms	4.038e+04	3139.238	12.864	0.000	3.42e+04	4.65e+04
sqft_living	111.5017	2.194	50.811	0.000	107.200	115.803
sqft_lot	0.2136	0.046	4.639	0.000	0.123	0.304
floors	2372.2405	3463.560	0.685	0.493	-4416.592	9161.073
waterfront	5.355e+05	1.96e+04	27.378	0.000	4.97e+05	5.74e+05
grade	8.844e+04	2087.403	42.369	0.000	8.43e+04	9.25e+04
sqft_above	78.3929	2.171	36.108	0.000	74.137	82.648
sqft_basement	33.1190	2.548	12.999	0.000	28.125	38.113
yr_built	8639.5763	939.648	9.194	0.000	6797.797	1.05e+04
yr_renovated	24.9298	3.824	6.520	0.000	17.435	32.425
zipcode	-507.6069	31.836	-15.944	0.000	-570.008	-445.206
lat	3.072e+05	1.26e+04	24.379	0.000	2.83e+05	3.32e+05
long	-1.492e+05	1.27e+04	-11.719	0.000	-1.74e+05	-1.24e+05
sqft_living15	8.8410	3.328	2.656	0.008	2.318	15.364
sqft_lot15	-0.1242	0.071	-1.759	0.079	-0.263	0.014
yr_sold	1.954e+04	1877.232	10.410	0.000	1.59e+04	2.32e+04

house_age	1.09e+04	938.899	11.611	0.000	9061.481	1.27e+04
cond_avg	-5.748e+06	9.07e+05	-6.337	0.000	-7.53e+06	-3.97e+06
cond_fair	-5.746e+06	9.07e+05	-6.334	0.000	-7.52e+06	-3.97e+06
cond_good	-5.725e+06	9.07e+05	-6.314	0.000	-7.5e+06	-3.95e+06
cond_poor	-5.785e+06	9.07e+05	-6.376	0.000	-7.56e+06	-4.01e+06
cond_verygood	-5.686e+06	9.07e+05	-6.272	0.000	-7.46e+06	-3.91e+06
view_avg	-5.792e+06	9.07e+05	-6.387	0.000	-7.57e+06	-4.01e+06
view_excellent	-5.552e+06	9.07e+05	-6.121	0.000	-7.33e+06	-3.77e+06
view_fair	-5.765e+06	9.07e+05	-6.356	0.000	-7.54e+06	-3.99e+06
view_good	-5.714e+06	9.07e+05	-6.300	0.000	-7.49e+06	-3.94e+06
view_none	-5.867e+06	9.07e+05	-6.472	0.000	-7.64e+06	-4.09e+06
distance_from_bellevue	-1.331e+04	328.984	-40.459	0.000	-1.4e+04	-1.27e+04

Omnibus: 19227.699 **Durbin-Watson:** 1.989

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 2315048.410

Skew: 3.794 **Prob(JB):** 0.00

Kurtosis: 53.150 **Cond. No.** 1.01e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.16e-18. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

The p-values for 'floors' and 'sqft_lot15' are not statistically significant. JB is very high, indicating non-normal distributions. There is strong multicollinearity.

Previously, we saw that 'price' and 'sqft_living' have the strongest correlation, but the scatter matrix reveals that they are not normally distributed.

```
In [12]: # OLS between 'price' and 'sqft_living'
f = 'price~sqft_living'
model = ols(f, df).fit()
model.summary()
```

Out[12]:

OLS Regression Results

Dep. Variable: price R-squared: 0.493 OLS 0.493 Model: Adj. R-squared: Method: Least Squares 2.097e+04 F-statistic: **Date:** Fri, 19 Nov 2021 Prob (F-statistic): 0.00 12:15:12 Log-Likelihood: -3.0006e+05 Time: No. Observations: 21597 AIC: 6.001e+05 **Df Residuals:** 21595 BIC: 6.001e+05

Df Model: 1

Covariance Type: nonrobust

coef std err P>|t| [0.025 0.975] Intercept -4.399e+04 4410.023 -9.975 0.000 -5.26e+04 -3.53e+04 sqft_living 280.8630 1.939 144.819 0.000 277.062 284.664

Omnibus: 14801.942 **Durbin-Watson:** 1.982

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 542662.604

Skew: 2.820 **Prob(JB):** 0.00

Kurtosis: 26.901 **Cond. No.** 5.63e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [13]: fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(model, 'sqft_living', fig=fig);
```


Plots show heteroscedasticity.

```
In [14]: f = 'price~distance_from_bellevue'
    model = ols(f, df).fit()
    model.summary()
```

Out[14]:

OLS Regression Results

Dep. Variable: price 0.158 R-squared: Model: OLS Adj. R-squared: 0.158 Least Squares 4062. Method: F-statistic: **Date:** Fri, 19 Nov 2021 0.00 Prob (F-statistic): -3.0553e+05 Time: 12:15:17 Log-Likelihood: No. Observations: 6.111e+05 21597 AIC: **Df Residuals:** 21595 BIC: 6.111e+05 1 **Df Model: Covariance Type:** nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	8.254e+05	5026.642	164.200	0.000	8.16e+05	8.35e+05
distance from hellevue	-2.677e+04	420.035	-63.734	0.000	-2.76e+04	-2.59e+04

 Omnibus:
 20006.141
 Durbin-Watson:
 1.969

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1572480.456

 Skew:
 4.233
 Prob(JB):
 0.00

 Kurtosis:
 43.936
 Cond. No.
 26.4

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [15]: fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(model, "distance_from_bellevue", fig=fi
plt.show()
```



```
In [16]: # Normalizing distribution using log transformation

df0 = df.copy()
    df0['price_log'] = np.log(df0['price'])
    df0['sqft_living_log'] = np.log(df0['sqft_living'])
    df0 = df0.drop(['price', 'sqft_living'], axis=1)

# OLS between 'price_log' and 'sqft_living_log'

f = 'price_log~sqft_living_log'
    model = ols(f, df0).fit()
    model.summary()
```

Out[16]: OLS Regression Results

Dep. Variable: 0.455 price_log R-squared: Model: OLS Adj. R-squared: 0.455 Method: Least Squares F-statistic: 1.805e+04 **Date:** Fri, 19 Nov 2021 Prob (F-statistic): 0.00 Time: 12:15:20 Log-Likelihood: -10231. No. Observations: 21597 AIC: 2.047e+04 BIC: 2.048e+04 **Df Residuals:** 21595 **Df Model:** 1 nonrobust Covariance Type: coef std err t P>|t| [0.025 0.975] Intercept 6.7234 0.047 142.612 0.000 6.631 6.816 0.006 134.368 0.000 0.825 0.850 sqft living log 0.8376 **Omnibus:** 123.577 **Durbin-Watson:** 1.977 114.096 Prob(Omnibus): 0.000 Jarque-Bera (JB): Skew: 0.143 Prob(JB): 1.68e-25

2.787

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

137.

```
In [17]: fig = plt.figure(figsize=(15,8))
fig = sm.graphics.plot_regress_exog(model, 'sqft_living_log', fig=fig);
```


When 'price' and 'sqft_living' undergo log transformation, they are more normally distributed and more homoscedastic, making them better for modeling.

Predictive Modeling

Baseline Model & First Simple Linear Regression Model

```
In [18]: # df0 has original price & sqft living removed, has price log & sqft living
         X = df0[['sqft living log']]
         y = df0[['price_log']]
         X_train, X_test, y_train, y_test = train_test_split(X, y)
         # baseline
         baseline = DummyRegressor()
         baseline.fit(X train, y train)
         print('Baseline Train R\u00b2:', baseline.score(X_train, y_train))
         print('Baseline Test R\u00b2:', baseline.score(X_test, y_test))
         print()
         # simple lr
         lr = LinearRegression()
         lr.fit(X_train, y_train)
         y hat train = lr.predict(X train)
         y_hat_test = lr.predict(X_test)
         train_rmse = mse(y_train, y_hat_train, squared=False)
         test_rmse = mse(y_test, y_hat_test, squared=False)
         print('Simple LR Train R\u00b2:', lr.score(X_train, y_train))
         print('Simple LR Test R\u00b2:', lr.score(X_test, y_test))
         print('Simple LR Train RMSE:', train_rmse)
         print('Simple LR Test RMSE:', test_rmse)
         y_test_pred = lr.predict(X_test)
         plt.scatter(y_test_pred, y_test)
         plt.scatter(y_test, y_test);
```

Baseline Train R²: 0.0

Baseline Test R²: -5.5961729294118356e-05

Simple LR Train R²: 0.4603990854859664

Simple LR Test R²: 0.43954158799876863

Simple LR Train RMSE: 0.3883567577431248

Simple LR Test RMSE: 0.38933804308730074

First Multiple Linear Regression Model

Model with all untouched predictor variables.

```
In [19]: # df1 = original df
         df1 = df.copy()
         X1 = df1.drop(['price'], axis=1)
         y1 = df1[['price']]
         X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1)
         lr1 = LinearRegression()
         lr1.fit(X1_train, y1_train)
         y1 hat train = lr1.predict(X1 train)
         y1_hat_test = lr1.predict(X1_test)
         train1_rmse = mse(y1_train, y1_hat_train, squared=False)
         test1_rmse = mse(y1_test, y1_hat_test, squared=False)
         print('LR1 Train R\u00b2:', lr1.score(X1_train, y1_train))
         print('LR1 Test R\u00b2:', lr1.score(X1_test, y1_test))
         print('LR1 Train RMSE:', train1_rmse)
         print('LR1 Test RMSE:', test1_rmse)
         y1_test_pred = lr1.predict(X1_test)
         plt.scatter(y1_test_pred, y1_test)
         plt.scatter(y1_test, y1_test);
```

LR1 Train R²: 0.7252891338790399 LR1 Test R²: 0.7215939504683346 LR1 Train RMSE: 191506.27076791142 LR1 Test RMSE: 196932.5740261702

There are outliers in our dataset affecting our model.

```
In [20]: plt.figure(figsize=(15,8))
sns.histplot(df['price'], kde=True);
```



```
In [21]: plt.figure(figsize=(15,8))
sns.histplot(df['sqft_living'], kde=True);
```



```
In [22]: plt.figure(figsize =(15,8))
sns.histplot(df['distance_from_bellevue'], kde=True);
```


The three histograms above show heavy right skew.

Second Multiple Linear Regression Model

Model with price, sqft_living, distance_from_bellevue, and other continuous variable outliers removed.

```
In [23]: price_low = df1["price"].quantile(0.023)
    price_hi = df1["price"].quantile(0.977)

sqft_low = df1['sqft_living'].quantile(0.023)
    sqft_hi = df1['sqft_living'].quantile(0.977)

distance_hi = df1['distance_from_bellevue'].quantile(0.99)

df2 = df1.copy()
    df2 = df2[(df2["price"] < price_hi) & (df2["price"] > price_low)]
    df2 = df2[(df2['sqft_living'] < sqft_hi) & (df2['sqft_living'] > sqft_low)]
    df2 = df2[(df2['distance_from_bellevue'] < distance_hi)]</pre>
```

```
In [24]: X2 = df2.drop(['price'], axis=1)
         y2 = df2[['price']]
         X2 train, X2 test, y2 train, y2 test = train_test_split(X2, y2)
         lr2 = LinearRegression()
         lr2.fit(X2_train, y2_train)
         y2_hat_train = lr2.predict(X2_train)
         y2_hat_test = lr2.predict(X2_test)
         train2 rmse = mse(y2 train, y2 hat train, squared=False)
         test2_rmse = mse(y2_test, y2_hat_test, squared=False)
         print('LR2 Train R\u00b2:', lr2.score(X2_train, y2_train))
         print('LR2 Test R\u00b2:', lr2.score(X2_train, y2_train))
         print('LR2 Train RMSE:', train2_rmse)
         print('LR2 Test RMSE:', test2_rmse)
         y2 test pred = lr2.predict(X2 test)
         plt.scatter(y2_test_pred, y2_test)
         plt.scatter(y2_test, y2_test);
```

LR2 Train R²: 0.7198195176766033 LR2 Test R²: 0.7198195176766033 LR2 Train RMSE: 126331.89233509479 LR2 Test RMSE: 124371.53184994315

Third Multiple Linear Regression Model

Second model with log transformed price, sqft_living, and distance_from_bellevue, and other continuous variables.

```
In [25]: df3 = df2.copy()
    df3['price_log'] = np.log(df2['price'])
    df3['sqft_living_log'] = np.log(df3['sqft_living'])
    df3['distance_from_bellevue_log'] = np.log(df3['distance_from_bellevue'])
    df3['sqft_lot_log'] = np.log(df2['sqft_lot'])
    df3 = df3.drop(['price', 'sqft_living', 'distance_from_bellevue','sqft_lot'
```

```
In [26]: X3 = df3.drop(['price_log'], axis=1)
         y3 = df3[['price_log']]
         X3_train, X3_test, y3_train, y3_test = train_test_split(X3, y3)
         1r3 = LinearRegression()
         lr3.fit(X3_train, y3_train)
         y3_hat_train = lr3.predict(X3_train)
         y3_hat_test = lr3.predict(X3_test)
         train3 rmse = mse(y3 train, y3 hat train, squared=False)
         test3_rmse = mse(y3_test, y3_hat_test, squared=False)
         print('LR3 Train R\u00b2:', lr3.score(X3_train, y3_train))
         print('LR3 Test R\u00b2:', lr3.score(X3_test, y3_test))
         print('LR3 Train RMSE:', train3_rmse)
         print('LR3 Test RMSE:', test3_rmse)
         y3 test pred = lr3.predict(X3 test)
         plt.scatter(y3_test_pred, y3_test)
         plt.scatter(y3_test, y3_test);
```

```
LR3 Train R<sup>2</sup>: 0.7694868743494628

LR3 Test R<sup>2</sup>: 0.7714920558138721

LR3 Train RMSE: 0.21237417722684118

LR3 Test RMSE: 0.20747599993248741
```


Fourth Multiple Linear Regression Model

Third model with multicollinear variables removed.

Out[27]:

	bedrooms	hathrooms	floors	waterfront	arade	sqft_above	saft hasen
bedrooms	nan	nan	nan	nan	nan	nan	- oqre_baccii
bathrooms	0.47	nan	nan	nan	nan	nan	
floors	0.13	0.49	nan	nan	nan	nan	
waterfront	-0.03	0.00	-0.00	nan	nan	nan	
	0.27	0.58	0.44	0.00			
grade		0.61	0.44		nan 0.69	nan	
sqft_above	0.44			-0.01		nan	
sqft_basement	0.26	0.19	-0.33	0.03	0.04	-0.22	
yr_built	0.11	0.51	0.49	-0.04	0.45	0.43	-1
yr_renovated	0.01	0.04	-0.00	0.08	-0.00	0.00	
zipcode	-0.13	-0.19	-0.05	0.05	-0.17	-0.26	1
lat	-0.04	-0.02	0.02	-0.04	0.08	-0.05	1
long	0.13	0.23	0.12	-0.05	0.21	0.38	-1
sqft_living15	0.35	0.50	0.24	0.02	0.67	0.70	1
sqft_lot15	0.01	0.05	-0.04	0.04	0.09	0.17	-1
yr_sold	-0.01	-0.03	-0.02	-0.01	-0.03	-0.03	-1
house_age	-0.11	-0.51	-0.49	0.04	-0.45	-0.43	1
cond_avg	-0.01	0.20	0.33	-0.01	0.21	0.21	-
cond_fair	-0.02	-0.06	-0.04	-0.00	-0.06	-0.04	-1
cond_good	-0.00	-0.18	-0.27	0.01	-0.15	-0.16	1
cond_poor	-0.02	-0.03	-0.02	0.03	-0.04	-0.02	-1
cond_verygood	0.03	-0.04	-0.13	0.01	-0.10	-0.11	1
view_avg	0.03	0.06	-0.01	0.01	0.10	0.04	1
view_excellent	0.00	0.04	-0.00	0.48	0.06	0.02	1
view_fair	0.01	0.02	-0.03	-0.00	0.04	0.01	1
view_good	0.02	0.07	-0.00	0.04	0.11	0.05	1
view_none	-0.04	-0.10	0.02	-0.19	-0.16	-0.06	-1
price_log	0.26	0.43	0.26	0.08	0.62	0.50	1
sqft_living_log	0.59	0.71	0.32	0.01	0.67	0.81	1
. = 0= •0							

	bedrooms	bathrooms	floors	waterfront	grade	sqft_above	sqft_basen
distance_from_bellevue_log	-0.06	-0.02	0.02	0.03	-0.12	0.03	-1
sqft_lot_log	0.17	0.03	-0.29	0.06	0.13	0.29	1

Out[29]:

	price_log	sqft_living_log	distance_from_bellevue_log	sqft_lot_log	waterf
price_log	nan	nan	nan	nan	_
sqft_living_log	0.59	nan	nan	nan	
distance_from_bellevue_log	-0.49	-0.05	nan	nan	
sqft_lot_log	0.08	0.30	0.18	nan	
waterfront	0.08	0.01	0.03	0.06	
yr_renovated	0.10	0.03	-0.05	0.01	
house_age	-0.01	-0.31	-0.20	0.04	
view_none	-0.27	-0.18	0.05	-0.07	-

```
In [30]: X4 = df4.drop(['price_log'], axis=1)
         y4 = df4[['price log']]
         X4 train, X4 test, y4 train, y4 test = train test split(X4, y4)
         lr4 = LinearRegression()
         lr4.fit(X4_train, y4_train)
         y4_hat_train = lr4.predict(X4_train)
         y4_hat_test = lr4.predict(X4_test)
         train4 rmse = mse(y4 train, y4 hat train, squared=False)
         test4_rmse = mse(y4_test, y4_hat_test, squared=False)
         print('LR4 Train R\u00b2:', lr4.score(X4_train, y4_train))
         print('LR4 Test R\u00b2:', lr4.score(X4_test, y4_test))
         print('LR4 Train RMSE:', train4_rmse)
         print('LR4 Test RMSE:', test4_rmse)
         y4 test pred = lr4.predict(X4 test)
         plt.scatter(y4_test_pred, y4_test)
         plt.scatter(y4_test, y4_test);
```

LR4 Train R²: 0.5953521487730509 LR4 Test R²: 0.5761276051781581 LR4 Train RMSE: 0.28135365640413407 LR4 Test RMSE: 0.28263608097796394

Fifth Multiple Linear Regression Model

Fourth model with several predictor variables scaled.

```
In [32]: X5 = df5.drop(['price_log'], axis=1)
         y5 = df5[['price_log']]
         X5_train, X5_test, y5_train, y5_test = train_test_split(X5, y5)
         lr5 = LinearRegression()
         lr5.fit(X5_train, y5_train)
         y5_hat_train = lr5.predict(X5_train)
         y5_hat_test = lr5.predict(X5_test)
         train5 rmse = mse(y5 train, y5 hat train, squared=False)
         test5_rmse = mse(y5_test, y5_hat_test, squared=False)
         print('LR5 Train R\u00b2:', lr5.score(X5_train, y5_train))
         print('LR5 Test R\u00b2:', lr5.score(X5_test, y5_test))
         print('LR5 Train RMSE:', train5_rmse)
         print('LR5 Test RMSE:', test5_rmse)
         y5 test pred = lr5.predict(X5 test)
         plt.scatter(y5_test_pred, y5_test)
         plt.scatter(y5_test, y5_test);
```

LR5 Train R²: 0.5928583773386145 LR5 Test R²: 0.5837221735060115 LR5 Train RMSE: 0.2814435882651718 LR5 Test RMSE: 0.2824652820120836


```
In [33]: selector = RFE(lr5, n_features_to_select=4)
    selector = selector.fit(X5, y5)
    print(selector.support_)
    display(X5)
```

[True True False True False False True]

	sqft_living_log	distance_from_bellevue_log	sqft_lot_log	waterfront	yr_renovated	house_age
0	-1.315688	-0.597021	-0.361090	0	-0.184258	0.561359
1	0.813688	0.124814	-0.080384	0	5.412837	0.698607
3	0.072443	0.231388	-0.499291	0	-0.184258	0.218238
4	-0.349253	-0.422152	0.043429	0	-0.184258	-0.502317
6	-0.292847	1.503457	-0.148440	0	-0.184258	-0.811126
21592	-0.605104	0.055117	-2.180001	0	-0.184258	-1.291496
21593	0.521912	0.091045	-0.328929	0	-0.184258	-1.428745
21594	-1.714298	-1.307050	-1.979851	0	-0.184258	-1.291496
21595	-0.482724	-0.343840	-1.334912	0	-0.184258	-1.085623
21596	-1.714298	-1.306193	-2.236372	0	-0.184258	-1.257184

19733 rows × 7 columns

Selector selects sqft_living_log, distance_from_bellevue_log, waterfront, & view_none.

Sixth Multiple Linear Regression Model

Fifth model using recursive feature elimination.

```
In [34]: df6 = df5.copy()
         X6 = df6[['sqft living log', 'distance from bellevue log', 'waterfront', 'v
         y6 = df6[['price_log']]
         X6_train, X6_test, y6_train, y6_test = train_test_split(X6, y6)
         lr6 = LinearRegression()
         lr6.fit(X6_train, y6_train)
         y6_hat_train = lr6.predict(X6_train)
         y6 hat test = lr6.predict(X6 test)
         train6_rmse = mse(y6_train, y6_hat_train, squared=False)
         test6_rmse = mse(y6_test, y6_hat_test, squared=False)
         print('LR6 Train R\u00b2:', lr6.score(X6_train, y6_train))
         print('LR6 Test R\u00b2:', lr6.score(X6_test, y6_test))
         print('LR6 Train RMSE:', train6_rmse)
         print('LR6 Test RMSE:', test6_rmse)
         y6_test_pred = lr6.predict(X6_test)
         plt.scatter(y6_test_pred, y6_test)
         plt.scatter(y6_test, y6_test);
```

LR6 Train R²: 0.5850359670236334 LR6 Test R²: 0.5870529875220447 LR6 Train RMSE: 0.28342757017777953 LR6 Test RMSE: 0.28345492090205016

Seventh Multiple Linear Regression Model

Sixth model using stepwise selection to choose significant features.

```
In [35]: def stepwise_selection(X, y,
                                 initial list=[],
                                 threshold in=0.01,
                                 threshold_out = 0.05,
                                 verbose=True):
             """ Perform a forward-backward feature selection
             based on p-value from statsmodels.api.OLS
             Arguments:
                 X - pandas.DataFrame with candidate features
                 y - list-like with the target
                 initial list - list of features to start with (column names of X)
                 threshold in - include a feature if its p-value < threshold in
                 threshold out - exclude a feature if its p-value > threshold out
                 verbose - whether to print the sequence of inclusions and exclusion
             Returns: list of selected features
             Always set threshold in < threshold out to avoid infinite looping.
             See https://en.wikipedia.org/wiki/Stepwise regression for the details
             included = list(initial list)
             while True:
                 changed=False
                 # forward step
                 excluded = list(set(X.columns)-set(included))
                 new pval = pd.Series(index=excluded)
                 for new column in excluded:
                     model = sm.OLS(y, sm.add constant(pd.DataFrame(X[included+[new_
                     new pval[new column] = model.pvalues[new column]
                 best pval = new pval.min()
                 if best pval < threshold in:</pre>
                     best feature = new pval.idxmin()
                     included.append(best feature)
                     changed=True
                     if verbose:
                         print('Add {:30} with p-value {:.6}'.format(best feature, b
                 # backward step
                 model = sm.OLS(y, sm.add constant(pd.DataFrame(X[included]))).fit()
                 # use all coefs except intercept
                 pvalues = model.pvalues.iloc[1:]
                 worst pval = pvalues.max() # null if pvalues is empty
                 if worst pval > threshold out:
                     changed=True
                     worst feature = pvalues.argmax()
                     included.remove(worst feature)
                     if verbose:
                         print('Drop {:30} with p-value {:.6}'.format(worst feature,
                 if not changed:
                     break
             return included
         result = stepwise selection(X5, y5, verbose=True)
         print('resulting features:')
         print(result)
         Add sqft living log
                                             with p-value 0.0
         Add distance from bellevue log
                                             with p-value 0.0
```

with p-value 7.06227e-222

Add view none

```
Add house age
                                            with p-value 1.9158e-40
         Add waterfront
                                            with p-value 8.52867e-30
         Add yr renovated
                                            with p-value 4.12047e-11
         Add sqft lot log
                                            with p-value 6.57435e-09
         resulting features:
         ['sqft_living_log', 'distance_from_bellevue_log', 'view_none', 'house_ag
         e', 'waterfront', 'yr renovated', 'sqft lot log']
In [36]: df7 = df6.copy()
         X7 = df7[['distance from bellevue log', 'view none', 'sqft living log', 'ho
         y7 = df7[['price_log']]
         X7_train, X7_test, y7_train, y7_test = train_test_split(X7, y7)
         lr7 = LinearRegression()
         lr7.fit(X7_train, y7_train)
         y7_hat_train = lr7.predict(X7_train)
         y7 hat test = lr7.predict(X7 test)
         train7 rmse = mse(y7 train, y7 hat train, squared=False)
         test7_rmse = mse(y7_test, y7_hat_test, squared=False)
```

print('LR7 Train R\u00b2:', lr7.score(X7_train, y7_train))
print('LR7 Test R\u00b2:', lr7.score(X7_test, y7_test))

LR7 Train R²: 0.5889029655704165 LR7 Test R²: 0.5962276283602786 LR7 Train RMSE: 0.2829314101404769 LR7 Test RMSE: 0.2778441592085275

print('LR7 Train RMSE:', train7_rmse)
print('LR7 Test RMSE:', test7_rmse)
y7_test_pred = lr7.predict(X7_test)
plt.scatter(y7_test_pred, y7_test)
plt.scatter(y7_test, y7_test);

Model Visualizations

```
In [37]:
         baseline = baseline.score(X_test, y_test)
         simple = lr.score(X test, y test)
         first = lr1.score(X1_test, y1_test)
         second = lr2.score(X2_test, y2_test)
         third = lr3.score(X3_test, y3_test)
         fourth = lr4.score(X4_test, y4_test)
         fifth = lr5.score(X5_test, y5_test)
         sixth = lr6.score(X6 test, y6 test)
         seventh = lr7.score(X7_test, y7_test)
         barchart = pd.DataFrame({'Model':['baseline', 'simple', 'first', 'second',
                                            'third', 'fourth', 'fifth', 'sixth', 'sev
                                   'R\u00b2':[baseline, simple, first, second, third,
         plt.figure(figsize=(15,10), dpi=300)
         ax = sns.barplot(x=barchart['Model'], y=barchart['R\u00b2'], palette="mako"
         plt.title("Models with their R\u00b2 Values", fontsize=20)
         ax.set_xlabel('Model Number', fontsize=16)
         ax.set_ylabel('R\u00b2 Value', fontsize=16)
         plt.xticks(fontsize=12)
         plt.yticks(fontsize=12);
```


Bar chart showing R² values of all of our models.

```
In [38]: |lr7.coef_
Out[38]: array([[-0.19132927, -0.2134266, 0.25331088, 0.02843826,
                                                                       0.36880234,
                  0.01449829, -0.01372193]
In [39]: plotdf = pd.DataFrame({'Predictor':['distance_from_bellevue_log', 'view_non
                                              'house age', 'waterfront', 'yr renovate
                                'Coefficient':[-0.19245633, -0.19812453, 0.25314856,
                                               0.38718511, 0.01240198, -0.01416162]}
         plotdf = plotdf.sort_values(by=['Coefficient'])
In [40]: fig, ax = plt.subplots(figsize=(16,10), dpi=300)
         ax = sns.barplot(x=plotdf['Predictor'], y=plotdf['Coefficient'], palette="m
         ax.set_title('Top House Price Predictors', fontsize=20)
         ax.set_xlabel('Predictor', fontsize=16)
         ax.set_ylabel('Coefficient', fontsize=16)
         labels = ['No View', 'Distance from Bellevue', 'Sqft Lot', 'Year Renovated'
         ax.set_xticklabels(labels, fontsize=12);
```


Bar chart of best predictor variables.

Conclusions

After preparing the data, we made seven multiple linear regression models. Our final model was our best performing model with an R2 value of 0.592, RMSE of 0.282, and Condition Number of 23.73. Our strongest predictor variables that will increase house prices are square footage of the house and whether the home is located on a waterfront. The strongest predictors that will decrease cost are homes with no view and being farther located from the city of Bellevue.

Through multiple iterations of our model, we came to the conclusion that linear regression is not the best method to make a predictive model with this dataset. Linear regression is ill suited for a dataset with many categorical variables, as is the case with this dataset.

Our next steps would include gathering more data such as more recent home sales and expanding beyond single family homes into condos and apartments. We would also explore more complex modeling algorithms.