DYNAMICAL SYSTEMS MÀSTER EN MATEMÀTICA AVANÇADA Year 2023-2024, Fall semester

Problem set #2. Due December 8th, 2023

- 1 (3p) Let $P(z) = (z \alpha)(z \beta)$ where $\alpha, \beta \in \mathbb{C}$, with $\alpha \neq \beta$. Let $N_P(z) = z \frac{P(z)}{P'(z)}$ be the Newton's method of P. Describe precisely (with proofs) the basins of attraction of α and β , the Fatou set and the Julia set. What can you say about the dynamics on the Julia set? (Hint: Conjugate N_P (on the whole Riemann sphere) by the Möbius transformation $M(z) = \frac{z-\alpha}{z-\beta}$ and see what the resulting map is.)
 - OPTIONAL (1p): Make a program that draws the basins of attraction of Newton's method of the cubic polynomial P(z) = z(z-1)(z-i). (Please include the code and the image in the same pdf file where the rest of the problems are).
- **2 The quadratic family** $Q_c(z) = z^2 + c$. Let $A_c(\infty)$ denote the basin of attraction of ∞ for Q_c , and $K_c := \mathbb{C} \setminus A_c(\infty)$ denote the filled Julia set.
 - (a) (1p) Prove that $K_c \subset \overline{D(0,R)}$ where $R = \max\{|c|,2\}$.
 - (b) (0,5p) Deduce that if |c| > 2 then the orbit of the critical point z = 0 escapes to infinity.
 - (c) (0,5p) Show that for every value of $c \in \mathbb{C}$, Q_c has at most one attracting cycle.
 - (d) (1p) Calculate and draw the sets

$$\Omega_1 := \{ c \in \mathbb{C} \mid Q_c \text{ has an attracting fixed point} \}$$

and

$$\Omega_2 := \{ c \in \mathbb{C} \mid Q_c \text{ has an attracting 2-cycle} \}.$$

3 (4p) Let R be a rational function and suppose that C is a round circle such that $R^{-1}(C) \subset C$. Prove that J(R) = C or J(R) is a totally disconnected subset of C. Hint: There are several ways of solving this problem. Some key words that **might** be related to possible solutions are: conjugacy, unit circle, Schwarz reflection, invariance, Denjoy-Wolff, normality...