

Hunting for Features that Matter

Bibor Szabo

Problem Statement

1. Which features of a home affect the sale price the most?

2. Which machine learning model predicts sale price better?

Data

Ames Housing Data

- Collected in Ames, Iowa
- By the Ames Assessor's Office
- Individual Residential Properties
- Sold between 2006 2010
- Number of observations: 2051
- Number of variables: 81

Features

Examples

- 23 nominal

- 23 ordinal

- 14 discrete

- 20 continuous

dependent variable continuous

Zoning Classification, Lot Shape, Neighborhood, etc.

Land Slope, Overall Quality, Overall Condition, etc.

Year Built, Month and Year Sold, Number of Bedrooms, etc.

Sales Price, Areas of Different Features

Sales Price

Challenges

- Number of Features
- Number of Categorical Variables
- Missing Values
- Outliers

Missing Data

Feature Engineering I.

(Porch Area, Pool Area)

Recoded Variables:

- Year Built	\rightarrow	Age when sold
--------------	---------------	---------------

- Area → Total Squarefeet

Dummies:

-	Nominal variables	\rightarrow	Binary by category
	(Zoning, Alley Type, Utilities)		

- Ordinal variables → Binary by category (Year Sold)
- Continuous variables \rightarrow Has Porch, Has Pool

Feature Engineering II.

Polynomial Features:

- Interaction variables
- Squared variables
- Excluded bias

Standard Scaler

Models

Unregularized:

Linear Regression

Regularized:

Ridge Regression

LASSO Regression

Model Evaluation I.

Linear Regression

Manually Selected Features

- Correlation Matrix (10 best)

- Train R-Squared: 78.2%

- Test R-Squared: 84%

- Cross-Val-Score: 76%

Linear Regression - Automated

SelectKBest Features (45 best)

- Train R-Squared: 87.9%

Test R-Squared: 87.4%

- Cross-Val-Score: -2.3x10^23

- 89.7%

- 85.6%

- 84.4%

- 44.1%

- -1.14x10^24

Model Evaluation II.

Ridge Regression (RidgeCV)

LASSO Regression (LassoCV)

- All original features (except Id and PID)
- All polynomial features
- Train R-Squared: 98.5%
- Test R-Squared: 90.4%
- Overfit

- All original features (except Id and PID)
- All polynomial features
- Train R-Squared: 99.9%
- Test R-Squared: 84.4%
- Overfit

Conclusion

- Models: more complex ≠ better
- Feature Selection: machine learning techniques ≠ better prediction

Recommendations

- Preference of Linear Regression Model

- Features:
 - Most effect: overall quality and total area of home
 - Machine aided intuitive feature selection

Condition Size

Features that Matter

Resources

http://jse.amstat.org/v19n3/decock/DataDocumentation.txt