Algorithme de Newton-Raphson - plus de détails

On rappel l'estimation de Taylor :

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

Pour l'algorithme, on utilise la fonction de Score $S(\beta) = \ell(\beta; y_1, ..., y_n)$ autour d'un point arbitraire $\beta^{(0)}$:

$$\dot{\ell}(\boldsymbol{\beta}) \approx \dot{\ell}(\boldsymbol{\beta}^{(0)}) + \ddot{\ell}(\boldsymbol{\beta}^{(0)})(\boldsymbol{\beta} - \boldsymbol{\beta}^{(0)})
\Rightarrow \boldsymbol{\beta} = \boldsymbol{\beta}^{(0)} + \left\{ \ddot{\ell}(\boldsymbol{\beta}^{(0)}) \right\}^{-1} \left[\dot{\ell}(\boldsymbol{\beta}) - \dot{\ell}(\boldsymbol{\beta}^{(0)}) \right].$$

Lorsque β est inconnu, il est estimé avec l'**EMV** $\hat{\beta}$:

$$\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}^{(0)} + \left\{ \ddot{\ell}(\hat{\boldsymbol{\beta}}^{(0)}) \right\}^{-1} \left[\dot{\ell}(\hat{\boldsymbol{\beta}}) - \dot{\ell}(\hat{\boldsymbol{\beta}}^{(0)}) \right];$$

Ici, $\dot{\ell}(\hat{\pmb{\beta}})=0$ par définition puisque la méthode du MV pose la dérivée égale à 0 pour maximiser la fonction.