Characteristic Polynomial

Definition: Characteristic Polynomial

Let $A \in M_n(\mathbb{C})$. The *characteristic polynomial* of A is given by:

$$p_A(t) = \det(tI_n - A)$$

Thus, the eigenvalues are the zeros of the characteristic polynomial.

Properties

- 1). $p_A(t)$ is monic
- 2). For \mathbb{C} , $1 \leq |\sigma(A)| \leq n$

Definition: Algebraic Multiplicity

The *algebraic multiplicity* of an eigenvalue λ for a matrix A, denoted $a_A(\lambda)$ is the multiplicity of λ as a zero of the characteristic polynomial for A.

Thus:

$$\sum_{\lambda \in \sigma(A)} a_A(\lambda) = n$$

Definition: Spectrum

The *spectrum* of a matrix A, denoted $\operatorname{Sp}(A)$, is the collection of eigenvalues for A with each eigenvalue repeated according to its algebraic multiplicity.

Thus, finding $\mathrm{Sp}(A)$ requires finding all of the zeros for the characteristic polynomial, which is usually very hard and requires numerical methods.

Recall that to find the characteristic equation:

$$a_{n-k} = (-1)^k S_k(\lambda_1, \dots, \lambda_n)$$

where S_k is the symmetric function given by:

$$S_k(\lambda_1, \dots, \lambda_n) = \sum_{\mathcal{P}_k[n]} \prod_{i=1}^k \lambda_i$$

Theorem

Let $A \in UT(n)$:

$$Sp(A) = \{A_{kk} \mid 1 \le k \le n\}$$

In other words, the diagonal entries.

Proof

Note that
$$tI_n-A$$
 is also in $UT(n)$ where $(tI_n-A)_{kk}=t-A_{kk}$, so: $p_A(t)=\det(tI_n-A)=\prod_{k=1}^n(t-A_{kk})$ $\therefore \operatorname{Sp}(A)=\{A_{kk}\mid 1\leq k\leq n\}.$

Definition

Let $A \in M_n(\mathbb{C})$. A *principle minor* of A is a $k \times k$ matrix $(1 \le k \le n)$ where the same row and column numbers are selected.

Thus, there are $\binom{n}{k}$ principle minors for each k.