

Trabajo práctico Nº2

• Autores:

- Gonzalo Ezequiel Filsinger Leg. 403797 (Coordinador)
- Ignacio Ismael Perea Leg. (Doc)
- Mariano Alberto Condori Leg. (Operador)
- Marcos Acevedo Leg. (Doc)
- **Curso:** 3R1
- **Asignatura:** Dispositivos Electrónicos.
- Institución: Universidad Tecnológica Nacional Facultad Regional de Córdoba.

<u>Índice</u>

	Actividad 1: Tansistor en zona de corte	1
	1.1. Actividad de Simulación	1
2.	Actividad 2: Polarización de la juntura BE	1
	2.1. Materiales usados:	
	2.2. Mediciones:	1
3.	Actividad 3: Curva Característica	2
	3.1. Objetivo:	2
	3.2. Tablas de medición	2
4.	Actividad 4: Característica de transferencia de corriente	2
5.	Actividad 5: Interpretación de las especificaciones del fabricante	3

1. Actividad 1: Tansistor en zona de corte

1.1. Actividad de Simulación

Para la simulacion implementamos el circuito presente

2. Actividad 2: Polarización de la juntura BE

Armar el circuito en una plataforma de simulación con el objetivo de observar la curva de la corriente de base a medida que aumenta la tensión de polarización de la juntura base-emisor. Es importante identificar el codo de la corriente y la estabilidad de la tensión VBE una vez polarizada la juntura. Podría, sí le parece, hacer simulaciones modificando otros parámetros que en el circuito básico se encuentran fijos como VCC(V2) o la temperatura ambiente simulada.

2.1. Materiales usados:

- Transistor BC546/7/8/9.
- Resistores $R_s = 10 \text{ k}\Omega$, $R_c = 560 \Omega$.
- Fuentes de alimentación.

2.2. Mediciones:

Mantenemos la $V_{CC} = 10V$, realizamos un barrido de 0V a 10V de V_{BB} para completar la siguiente tabla:

V_{BB}	500mV	1 <i>V</i>	2V	3V	4V	5 <i>V</i>
I_B	, . F.	$30,43\mu A$				
V_{BE}	0,493V	0,682V	0,73V	0,74V	0,74V	0,75V

Figura 1: Curva de I_B en función de V_{BE}

3. Actividad 3: Curva Característica

3.1. Objetivo:

Obtener las diferentes curvas características del transistor NPN utilizando dos fuentes variables que permitirán obtener las diferentes corrientes y tensiones del transistor.

3.2. Tablas de medición

	$I_B = 10 \mu A$		$I_B = 15 \mu A$	
V_{CC}	$V_{BB}=1,6V$		$V_{BB}=2,2V$	
[V]	I_C	V_{CE}	I_C	V_{CE}
0,25	$339,95\mu A$	59,65mV	$358,29\mu A$	49,37mV
0,5	$743,75\mu A$	83,49mV	$768,11\mu A$	69,85mV
1	1,57mA	116 <i>mV</i>	1,61 <i>mA</i>	95,94mV
2	2,95mA	347,25mV	3,32mA	138,53 <i>mV</i>
5	3mA	3,26V	4,88mA	2,26V
10	3,34 <i>mA</i>	8,12V	5,27mA	7,04V

	$I_B = 20\mu A$		$I_B = 25 \mu A$	
V_{CC}	$V_{BB}=2,6V$		$V_{BB}=3,2V$	
[V]	I_C	V_{CE}	I_C	V_{CE}
0,25	$366,27\mu A$	44,9mV	$375,06\mu A$	39,97 <i>mV</i>
0,5	$778,46\mu A$	64,06mV	$789,82\mu A$	57,7mV
1	1,62 <i>mA</i>	88,19mV	1,64 <i>mA</i>	80mV
2	3,35mA	123,46mV	3,37mA	110,52mV
5	5,98mA	1,64V	7,53 <i>mA</i>	783,2 <i>mV</i>
10	6,46 <i>mA</i>	6,37V	8,13 <i>mA</i>	5,44V

4. Actividad 4: Característica de transferencia de corriente

Objetivo

Se propondrá una práctica de laboratorio que nos permitirá observar sí la relación entre la I_C e I_B se mantiene constante en diferentes regiones de trabajo del transistor. Esta relación es la ganancia de corriente (β).

$I_B [\mu A]$	I_C (@ $V_{CE(inicial)} = 2V$)	I_C (@ $V_{CE(inicial)} = 5V$)	I_C (@ $V_{CE(inicial)} = 8V$)
5	1,76mA	1,85mA	1,94mA
7	2,4mA	2,52mA	2,64mA
10	3,5mA	3,67mA	3,85mA
20	6,31mA	6,63mA	6,94mA

5.	Actividad 5: Interpretación de las especificaciones del fabricante			