AOI 312

Group Number: 34

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Group Members:

Pankaj Kumar - 2022346 Harshit Sagar - 2022210 Md Sarfaraz Anwar - 2022291 Aditya Kamble - 2022599

Schematic + Sizing

COMPLEX Sizing-ALL PMOS: 0.81u A1,A2,A3 NMOS: 0.405u B1 NMOS: 0.135u C1,C2 NMOS: 0.270u NON COMPLEX Sizing-A1,A2,A3,C1,C2 PMOS: 0.27u B1 PMOS:0.81 A1,A2,A3 NMOS: 0.405u B1 NMOS: 0.135u C1,C2 NMOS: 0.270u

 $Y = \overline{A1*A2*A3+C1*C2+B1}$

COMPLEX

NON COMPLEX

Schematic + Sizing

COMPLEX

Schematic + Sizing

NON COMPLEX

Area = 2.6*3.7 = 9.62 um2

LAYOUT FOR NON COMPLEX

Area = 2.6*6 = 15.6 um2

DRC, LVS, PEX Results

Complex

bits) by the product Unicad Product Information 1.3.3

The executable piIsKey is not supported in this particular platform (Linux >2, 6

4 bits) by the product Unicad Product Information 1.3.3 The executable piIsKey is not supported in this particular platform (Linux >2, 6

4 bits) by the product Unicad Product Information 1.3.3

The executable piIsKev is not supported in this particular platform (Linux >2, 6 4 bits) by the product Unicad Product Information 1.3.3

[harshit22210@edatools-server1 cmos65]\$ cd pex

[harshit22210@edatools-server1 pex]\$ gates2.cir

gates2.cir: Command not found.

[harshit22210@edatools-server1 pex]\$ source run.csh

WARNING: Contact layer CB metal cannot appear as one of the connected layers on CONNECT statement. CONNECT statement ignored.

WARNING: Contact layer NSTRAP FINAL cannot appear as one of the connected layers on CONNECT statement. CONNECT statement ignored. WARNING: Contact layer PSTRAP_FINAL cannot appear as one of the connected layers

on CONNECT statement. CONNECT statement ignored. WARNING: Contact layer SUBTIE FINAL cannot appear as one of the connected layers

on CONNECT statement, CONNECT statement ignored. WARNING: Redundant RESISTANCE RHO/SHEET definition found for layer SALI FINAL -

WARNING: No ground net name defined in PEX NETLIST statement and "0" will be use d in the netlist.

[harshit22210@edatools-server1 pex]\$

Non Complex

File Edit View Search Terminal Help

he executable piIsKey is not supported in this particular platform (Linux >2, bits) by the product Unicad Product Information 1.3.3

he executable piIsKey is not supported in this particular platform (Linux >2,

bits) by the product Unicad Product Information 1.3.3 he executable piIsKey is not supported in this particular platform (Linux >2,

bits) by the product Unicad Product Information 1.3.3

he executable piIsKev is not supported in this particular platform (Linux >2. bits) by the product Unicad Product Information 1.3.3

pankaj22346@edatools-server1 cmos65]\$ cd pex

pankaj22346@edatools-server1 pex]\$ source run.csh

ARNING: Contact layer CB metal cannot appear as one of the connected layers on ONNECT statement. CONNECT statement ignored.

VARNING: Contact layer NSTRAP FINAL cannot appear as one of the connected layer on CONNECT statement. CONNECT statement ignored.

VARNING: Contact layer PSTRAP FINAL cannot appear as one of the connected layer on CONNECT statement. CONNECT statement ignored. VARNING: Contact layer SUBTIE FINAL cannot appear as one of the connected layer

on CONNECT statement. CONNECT statement ignored. VARNING: Redundant RESISTANCE RHO/SHEET definition found for layer SALI FINAL

Stimuli For Verification & Verification Plan

A1	A2	A3	C1	C2	B1	AND1	AND2	OR	Υ
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	1	0	0	1	0
0	0	0	0	1	0	0	0	0	1
0	0	0	0	1	1	0	0	1	0
0	0	0	1	0	0	0	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	0	1	1	0	0	1	1	0
0	0	0	1	1	1	0	1	1	0

Simulation Waveforms

WAVEFORM FOR COMPLEX CIRCUIT

Simulation Waveforms

WAVEFORM FOR NON COMPLEX CIRCUIT

Complex pre and post layout

PVT CORNER	T-FALL (pre layout)	T-RISE (pre layout)	T-CD (pre layout)	T-PD (pre layout)	T-FALL (post layout)	T-RISE (post layout)	T-CD (post layout)	T-PD (post layout)
SS 1.08 125	11.0470	5.4219	0.12131	0.17112	10.4823	5.4281	0.12539	0.17526
SS 1.08 25	10.4261	5.3935	0.10134	0.15486	10.4301	5.3999	0.10635	0.15879
SS 1.08 -40	10.3831	5.3608	0.09725	0.13912	10.3870	5.3678	0.09928	0.14253
TT 1.32 125	10.3230	5.2619	0.07321	0.10455	10.3270	5.2676	0.07436	0.10710
FF 1.32 125	10.2580	5.2160	0.06479	0.08606	10.2640	5.2188	0.06796	0.08866
FF 1.32 -40	10.2040	5.1783	0.04351	0.06898	10.2060	5.1810	0.04813	0.06940

Scale: Nano Seconds

Non Complex pre and post layout

PVT CORNER	T-FALL (pre layout)	T-RISE (pre layout)	T-CD (pre layout)	T-PD (pre layout)	T-FALL (post layout)	T-RISE (post layout)	T-CD (post layout)	T-PD (post layout)
SS 1.08 125	10.4460	5.6358	0.21621	0.24802	10.4491	5.6401	0.21653	0.24835
SS 1.08 25	10.4120	5.5817	0.20326	0.22771	10.4168	5.5887	0.20257	0.23197
SS 1.08 -40	10.3680	5.5371	0.18244	0.20830	10.3702	5.5411	0.18279	0.21223
TT 1.32 125	10.3040	5.3878	0.12780	0.14841	10.3075	5.3899	0.12819	0.15313
FF 1.32 125	10.2440	5.3314	0.10329	0.12396	10.2461	5.3378	0.10364	0.12630
FF 1.32 -40	10.1990	5.2601	0.06988	0.09900	10.2011	5.2641	0.07125	0.10031

Scale: Nano Seconds

Complex v/s Non Complex Design

	COMPLEX	NON-COMPLEX	REMARK
Area	9.62um2	15.6um2	1.62 times area increase for non complex
Fall and Rise Delay	SS 1.08 125	SS 1.08 125	Not much change in T_rise and T_fall from complex to non complex
Contamination Delay	FF 1.32 -40	FF 1.32 -40	Contamination delay increased in Non Complex by 14%
Propagation Delay	SS 1.08 125	SS 1.08 125	Propagation delay increased in Non Complex by 15%

Leakage and power analysis

FF 1.32 125	СОМ	PLEX	NON-COMPLEX		
	Pre layout	Post layout	Pre layout	Post layout	
LEAKAGE CURRENT	106.70nA	111.85nA	151.02nA	155.02nA	
STATIC POWER	20.695nW	24.93nW	46.47nW	51.23nW	
DYNAMIC POWER	2.2798uW	2.3153uW	2.36uW	2.42uW	

- Pre Layout vs Post Layout
 - Not much change in Leakage and Power between pre and post layout simulations.
 - Compared to complex designs, non-complex designs exhibit static and leakage power that is nearly 1.5 to 2 times higher, with a slight increase in dynamic power as well.

Conclusion

- The design area has been minimized through a compact layout.
- Minimum design rule checks (DRCs) have been prioritized to lower the overall horizontal width of the layout, contributing to area reduction.
- Non-complex logic requires a greater number of transistors, resulting in increased delays when transitioning from complex to non-complex designs.
- The Contamination And propagation delays are increased for Non-Complex Design
- Complex designs demonstrate greater power efficiency compared to non-complex designs.

Work Distribution

Pankaj Kumar:

- Design and development of non-complex schematic and layout.
- Completion of DRC and LVS checks for non-complex design.

2. Harshit Sagar:

Analysis and generation of **output waveforms**, **pre- and post-layout simulations** of **complex design**, X-circuit design and presentation.

3. Md Sarfaraz Anwar:

 Analysis and generation of output waveforms and pre- and post-layout simulations of non-complex design.

4. Aditya Kamble:

- Design and development of complex schematic and layout.
- Completion of DRC and LVS checks for complex design.

Thank you