Advance Calculus Exercise

Exercise 1 (Chapter 1)

1. A complex number z is said to be algebraic if there are integers a_0, \dots, a_n , not all zero, such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0.$$

Prove that the set of all algebraic numbers is countable.

Solution. Let A be the set of all algebraic numbers. We denoted some notation

- (a) $\mathbb{Z}[x]^X$: the set of all non-zero polynomials having coefficients in \mathbb{Z}
- (b) $Z_{p(x)}$: the set of all roots of p(x), where $p(x) \in \mathbb{Z}[n]^X$ Note that
 - (a) $A \subseteq U_{p(x) \in \mathbb{Z}[x]^X} Z_{p(x)}$ and $Z_{p(x)}$ is finite since a polynomial of degree n has at most n roots
 - (b) $\mathbb{Z}[x]^X = \bigcup_{\infty}^{n=1} F_n$, where $F_n \subseteq \mathbb{Z}[x]^X$ the set of polynomials in $\mathbb{Z}[x]^X$ of degree n

Claim $\mathbb{Z}[x]^X$ is countable. If we are done, then $\bigcup_{p(x)\in\mathbb{Z}[x]}Z_{p(x)}$ is countable union of finite set, it follows that A is countable.

To prove this claim, it satisfies to show that F_n is countable $\forall n \geq 0 (F_n = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n)$

Consider the map $G: F_n \to \mathbb{Z}^{n+1}$

$$G(a_0x^n + a_1x^{n+1} + \dots + a_{n-1}x + a_n) = (a_0, a_1, \dots, a_n)$$

Clearly, G is injective. This implies F_n is countable $\forall n \geq 0$

2. Prove that there exists real numbers which are not algebraic.

Solution. If not, $\forall r \in \mathbb{R}$, r is algebraic. This implies the set of all algebraic numbers is uncountable $(\rightarrow \leftarrow)$ to exercise 1.

3. Is the set of all irrational real numbers countable?

Solution. No! If it were, $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} - \mathbb{Q})$ is countable $(\to \leftarrow)$

4. Construct a bounded set of real numbers with exactly three limit points.

Solution. The idea come from the set $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ In fact, $\forall x \in \mathbb{R}$, the set

$$E = \{x + \frac{1}{n} \mid n \in \mathbb{N}\}$$

has exactly one limit point, namely, x. Clearly, x is a limit point of E. We prove that E does not have any other limit point.

Given $y \in \mathbb{R}$. If y < x or $y \ge x + 1$, then it is clear that y cannot be limit point.

If x < y < x + 1, then we have two cases

5. Let X be a metric space and $E \subset X$. Prove that E' is closed. Prove that E and \overline{E} have the same limit points. Do E and E' always have the same limit points?

Solution.

- *) E' is closed i.e. $(E')' \subseteq E'$ "Fact A is closed iff $A' \subseteq A$ ", given $p \in (E')'$ and r > 0 $B(p,r) \cap E' \{p\} \neq \emptyset$. Choose $q \in B(p,r) \cap E' \{p\}$. Since $q \in B(p,r) \exists \delta > 0 \ni B(q,\delta) \subseteq B(p,r)$. Also $B(q,\delta) \cap E \{q\} \subseteq B(p,r) \cap E \{q\}$. Since $q \in E'$, we get $B(q,\delta) \cap E \{q\} \neq \emptyset$ and it is an infinite set. This implies $B(p,r) \cap E \{p\} \neq \emptyset \implies p \in E'$. Hence, E' is closed.
- *) $(E)' = (\overline{E})'$. Clearly $(E)' \subseteq (\overline{E})'$ ($\because E \subseteq \overline{E}$) (\supseteq) If not, $\exists x \in (\overline{E})', x \notin E'$, i.e. $\exists r > 0, B(x,r) \cap E \{x\} = \emptyset$. Since $x \in (\overline{E})', B(x,r) \cap \overline{E} \{x\} \neq \emptyset$. Choose $y \in B(x,r) \cap \overline{E} \{x\}$. Since $y \in B(x,r) \exists \delta > 0 \ni B(y,\delta) \subseteq B(x,r)$ $B(y,\delta) \cap E \subseteq B(x,r) \cap E \subseteq \{x\} \implies B(y,\delta) \cap E \{y\}$ is a finite set $\implies y \notin E'$ From above, we get $y \notin E'$ and $y \in \overline{E}(\rightarrow \leftarrow)$ to $B(x,r) \cap E \{x\} = \emptyset$. Hence $E' = (\overline{E})'$

6. Let A_1, A_2, \cdots be subset of a metric space.

- (a) Prove that $\bigcup_{i=1}^n \overline{A_i} = \overline{\bigcup_{i=1}^n A_i} \ \forall n \in \mathbb{N}$
- (b) Prove that $\bigcup_{i=1}^{\infty} \subseteq \overline{\bigcup_{i=1}^{\infty}}$. Show by an example that this inclusion can be proper.

Solution.

- (a) Since $A_i \subseteq \overline{A_i} \forall i = 1, \dots, n \bigcup_{i=1}^n A_i \subseteq \bigcup_{i=1}^n \overline{A_i} \implies \overline{\bigcup_{i=1}^n A_i} \subseteq$ $\overline{\bigcup_{i=1}^{n} \overline{A_i}} = \bigcup_{i=1}^{n} \overline{A_i}$ Conversely, given $p \in \bigcup_{i=1}^n \overline{A_i}$, i.e. $p \in A_i$ for some $i = 1, \dots, n \ \forall r > 1$ $0, B(p,r) \cap A_i \neq \emptyset$ $\frac{B(p,r)\cap (\bigcup_{i=1}^n A_i)\neq\emptyset}{\bigcup_{i=1}^n A_i} \stackrel{}{\cap} (B(p,r)\cap A_i)\neq\emptyset \implies p\in$
- (b) Given $p \in \bigcup_{n=1}^{\infty} \overline{A_n}$, i.e. $p \in \overline{A_n}$ for some $n \in \mathbb{N} \ \forall r > 0, B(p,r) \cap$ $A_n \neq \emptyset \implies B(p,r) \cap (\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} (B(p,r) \cap A_n) \neq \emptyset \implies p \in \overline{\bigcup_{n=1}^{\infty}} A_n$ To prove that the inclusion might be strict e.g. $\bigcup_{q\in\mathbb{Q}}\{\overline{q}\}=\mathbb{Q}$ $\mathbb{R} = \overline{\mathbb{Q}} = \overline{\bigcup_{q \in \mathbb{Q}} \{q\}}$
- 7. Is every point of every open set $E \subseteq \mathbb{R}^2$ a limit point of a set E? Answer the same equation for closed sets in \mathbb{R}^2

Solution.

- 8. Let X be a metric space and $E \subseteq X$
- (a) Prove that E° is always open.
- (b) Prove that E is open if and only if $E^{\circ} = E$
- (c) If $G \subseteq E$ and G is open, prove that $G \subseteq E$
- (d) Prove that the complement of E° is the closure of the complement of E, i.e. $(E^{\circ})^c = \overline{E^c}$
- (e) Do E and \overline{E} always have the same interiors?
- (f) Do E and E° always have the same closures?
- 9. Let X be an infinite set. For $p, q \in X$, define

$$d(p,q) = \begin{cases} 1 & \text{if } p \neq q \\ 0 & \text{if } p = q \end{cases}$$

Prove that this is a metric. Which subset of the resulting metric space are open? Which are closed? Which are compact?

10. For $x, y \in \mathbb{R}$, define

a)
$$d_1(x,y) = (x-y)^2$$

b)
$$d_2(x,y) = \sqrt{|x-y|}$$

c)
$$d_3(x,y) = |x^2 - y^2|$$

d)
$$d_4(x,y) = |x - 2y|$$

e)
$$d_5(x,y) = \frac{|x-y|}{1+|x-y|}$$

Determine, for each of these, whether it is a metric or not.

11. Let $K = \{0\} \cup \{\frac{1}{n} \mid n \in N\} \subseteq \mathbb{R}$. Prove that K is compact directly from definition.

Solution. Give an open covering $\{U_{\alpha}\}_{{\alpha}\in I}$ of K

$$\exists r > 0 \ni (-r, r) \subseteq U_{\alpha_0}$$
.

Solution. Give an open covering
$$\{U_{\alpha}\}_{\alpha \in I}$$
 of K
 $0 \in K \implies 0 \in U_{\alpha_0}$ for some $\alpha_0 \in I$. Since U_{α_0} is open, $\exists r > 0 \ni (-r, r) \subseteq U_{\alpha_0}$.

By Archi, $\exists N \in \mathbb{N} \ni \frac{1}{N} < r$, $\forall n \geq N$, $\frac{1}{n} < \frac{1}{N} < r$.

This implies $\forall n \geq N, \frac{1}{n} \in (-r, r) \subseteq U_{\alpha_0}$. Finally, for $1 \leq i \leq N-1, \frac{1}{i} \in U_{\alpha_i}$ for some $\alpha \in I$. Therefore, $K \subseteq U_{i=0}^{N-1}U_{\alpha_i}$, i.e. K is compact

$$\{x\} \cup \{x_n \mid n \in \mathbb{N}\} \ x_n \to x \text{ as } n \to +\infty$$

- 12. Prove the following results
- (a) Construct a sequence $\{K_n\}$ of closed sets in \mathbb{R} with $K_{n+1}\subseteq K_n\ni$ $\bigcap_{i=1}^{\infty} K_n = \emptyset$
- (b) Construct a sequence $\{K_n\}$ of bounded sets in \mathbb{R} with $K_{n+1} \subseteq$ $K_n \ni \bigcap_{n=1}^{\infty} K_n = \emptyset$

Solution. (a) For each $n \in \mathbb{N}$, set

$$K_n = \{n, n+1, \cdots, n+k, \cdots\}$$

is closed and $K_{n+1} \subseteq K_n$. Now, to prove $\bigcap_{n=1}^{\infty} K_n = \emptyset$. If not, $\exists x \in \bigcap_{n=1}^{\infty} K_n$. Then x must be an integer but $x \notin K_{x+1}$

(b) For each $n \in \mathbb{N}$ set

$$K_n = \{\frac{1}{n}, \frac{1}{n+1}, \cdots, \frac{1}{n+k}, \cdots\}$$

is bounded and $K_{n+1} \subseteq K_n$. For the same argument, $\bigcap_{n=1}^{\infty} K_n = \emptyset$

13.

- (a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.
- (b) Prove the same of disjoint open sets.
- (c) Fix $p \in X, \delta > 0$. Define

$$A = \{ q \in X \mid d(p, q) < \delta \}$$

and

$$B = \{q \in X \mid d(p,q) > \delta\}$$

Prove that A and B are separated

- (d) Prove that every connected metric space with at least two points is uncountable.
- 14. Let A and B be separated subsets of some \mathbb{R}^k , suppose $a \in A, b \in B$, and define

$$p(t) = (1 - t)a + tb$$

for $t \in \mathbb{R}$. Put $A_0 = p^{-1}(A)$, $B_0 = p^{-1}(B)$.

- (a) Prove that A_0 and B_0 are separated subsets of \mathbb{R}
- (b) Prove that there exists $t_0 \in (0,1)$ such that $p(t_0) \notin A \cup B$.
- (c) Prove that every convex subset of \mathbb{R}^k is connected.

15. A metric space X is called separable if it contains a countable dense subset. Show that \mathbb{R}^k is separable

Proof. Claim
$$\overline{\mathbb{Q}^k} = \mathbb{R}^k$$

Given
$$x = (x_1, \dots, x_k) \in \mathbb{R}^k$$
, $\forall r > 0$, we must prove that $B(x, r) \cap \mathbb{Q}^k \neq \emptyset$. Consider $x' = (x_1 + \frac{r}{2\sqrt{k}}, \dots, x_k + \frac{r}{2\sqrt{k}})$. Then $||x - x'|| = \frac{r}{2} < r \implies x' \in B(x, r)$. Now, for each $1 \leq i \leq k$, $\exists y \in \mathbb{Q} \ni y_i \in (x_i, x_i + \frac{r}{2\sqrt{k}})$. Thus, $y = (y_1, y_2, \dots, y_k) \in \mathbb{Q}^k \cap B(x, r)$, i.e. $B(x, r) \cap \mathbb{Q}^k \neq \emptyset$, i.e. $x \in \overline{\mathbb{Q}^k}$

- 16. Assume that $S \subseteq \mathbb{R}^n$. A point $x \in \mathbb{R}^n$ is said to be a condensation point of S if every r > 0, $B(x,r) \cap S$ is uncountable. Prove the following statements:
- (a) If for every $x \in S$, there is a $r_x > 0$ such that $B(x, r_x) \cap S$ is countable then S is countable.
- (b) If S is not countable, then there exists a point $x \in S$ such that x is a condensation point of S.
- 17. A set in \mathbb{R}^n is called perfect if S = S', that is, S is a closed set which contains no isolated points. Prove the following Cantor-Bendoxon: Every uncountable closed set F in \mathbb{R}^n can be expressed in the form $F = A \cup B$, where A is perfect and B is countable.