Methods for Data-driven Model Predictive Control

Application to intelligent building control

Achin Jain, Truong X. Nghiem, Manfred Morari, and Rahul Mangharam POC: A. Jain (achinj@seas.upenn.edu)

May 20, 2019

- physics-based modeling not suitable in applications like building control
- need for cost reduction in order to deploy MPC at scale
 - this work explores the use of machine learning based models
- how is machine learning used in a traditional sense?
 - what are the requirements for predictive control?
 - predictive dynamical model
 - performance guarantees for control
- outline of the work

10

14

20

22

24

- economic MPC
- what we don't do

Inversion of machine learning models for control

- challenges with constrained optimization using ML models
 - hard because of non-convexities, non-differentiabilities, non-closed form solution, give examples with trees, forests, Gaussian processes, neural networks
 - cannot use RL, we want model-based
- traditionally optimization in ML unconstrained
 - for control we need constrained optimization
- examples of different applications building will be main focus

Application - building control and demand response

- intro to building control and demand response
 - need for model predictive control
 - energy efficiency, energy flexibility -> energy savings, cost savings
 - so we need models, why is traditional way of modeling hard
- model capture using historical data

- change in material properties
- model heterogeneity
 - Practical challenges

8

10

12

- quality of historical data, need for new experiments, sensor failure
 - computational complexity of control/optimization algorithms, real-time control
- performance guarantees and robustness
 - model adaptability
 - indicator for deterioration, when to update, use statistics of error in prediction
 - A concrete example that describes the modeling and control problem
 - description of building: different types of buildings like RTU, central heating/cooling, impact of thermal inertia
 - goals for modeling types of models to be identified
 - goals for control cost minimization, energy minimization, thermal comfort bounds

14 Conclusion

Example of Sidebar

References

2

- [S1] Random reference number one generated for a sidebar, 2016
- 4 [S2] Random reference number two generated for a sidebar, 2016

Example of Sidebar

References

2

- [S1] Random reference number one generated for a sidebar, 2016
- 4 [S2] Random reference number two generated for a sidebar, 2016

Author Biography

Insert the author bios here.