

Name:	
Teacher: _	
Class:	

FORT STREET HIGH SCHOOL

2012 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: TRIAL HSC

Mathematics Extension 1

Time allowed: 2 hours

(plus 5 minutes reading time)

Outcomes Assessed	Questions
Chooses and applies appropriate mathematical techniques in	1-10
order to solve problems effectively	
Manipulates algebraic expressions to solve problems from topic	11,12
areas such as inverse functions, trigonometry and polynomials	
Uses a variety of methods from calculus to investigate	14
mathematical models of real life situations, such as projectiles,	
kinematics and growth and decay	
Synthesises mathematical solutions to harder problems and	13
communicates them in appropriate form	

Total Marks 70

Section I 10 marks

Multiple Choice, attempt all questions, Allow about 15 minutes for this section **Section II 60 Marks**

Attempt Questions 11-14, Allow about 1 hour 45 minutes for this section

Section I	Total 10	Marks
Q1-Q10		
Section II	Total 60	Marks
Q11	/15	
Q12	/15	
Q13	/15	
Q14	/15	
	Percent	

General Instructions:

- Questions 11-14 are to be started in a new booklet
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used

CIRCLE CORRECT ANSWER

Question 1

Find $\int \frac{dx}{\sqrt{16-9x^2}}$

a)
$$sin^{-1}(\frac{3x}{4})$$

b)
$$cos^{-1}(\frac{3x}{4})$$

c)
$$\frac{1}{3} sin^{-1} (\frac{3x}{4})$$

d)
$$\frac{1}{4} sin^{-1} (\frac{3x}{4})$$

Question 2

Find $\int \frac{dx}{25+16x^2}$

a)
$$\frac{4}{5}tan^{-1}\left(\frac{5x}{4}\right)$$

b)
$$\frac{1}{40} tan^{-1} \left(\frac{4x}{5} \right)$$

c)
$$\frac{1}{5}tan^{-1}(\frac{5x}{4})$$

d)
$$\frac{1}{20} tan^{-1} (\frac{4x}{5})$$

Question 3

Find the domain of $y = cos^{-1}(\frac{2x}{3})$

a)
$$-3 \le x \le 3$$

b)
$$-\frac{2}{3} \le x \le \frac{2}{3}$$

c)
$$-2 \le x \le 2$$

d)
$$-\frac{3}{2} \le x \le \frac{3}{2}$$

Question 4

Find $\lim_{x\to 0} \left(\frac{\sin 3x}{2x}\right)$

- a) 1
- b) $\frac{3}{2}$
- c) $\frac{2}{3}$
- d) $\frac{1}{2}$

Question 5

In how many ways can a team of 8, 4 men and 4 women be formed from a group of 6 men and 8 women?

- a) 604800
- b) 85
- c) 1050
- d) 3003

Question 6

If $t = tan \frac{\theta}{2}$, then $tan \theta =$

- a) $\frac{2t}{1-t^2}$
- b) $\frac{1+t^2}{1-t^2}$
- c) $\frac{1-t^2}{1+t^2}$
- d) $\frac{2t+1}{1+t^2}$

Question 7

Given $P(x) = 3x^3 - 2x^2 - 4x$

What is the remainder when P(x)

Is divided by (x + 3).

- a) 78
- b) -87
- c) -78
- d) 87

Question 8

Evaluate $\int_{1}^{3} \frac{dx}{2x+1}$ to 3 decimal places.

- a) 0.424
- b) 4.236
- c) 0.242
- d) 0.538

Question 9

In how many ways can 6 people

be arranged in a circle?

- a) 720
- b) 120
- c) 6
- d) 500

Question 10

The solution to $(2x - 5)(x + 3)(6 - x) \le 0$ is

- a) $-2.5 \le x \le 3$, $x \ge 6$
- b) $3 \le x \le 6$, $x \le -2.5$
- c) $-3 \le x \le 2.5, x \ge 6$
- d) $2.5 \le x \le 3, x \ge -6$

Spare Working Area

Question 11 (15 Marks) Use a SEPARATE writing booklet

a) Solve the inequality
$$\frac{3x+4}{x-5} \ge 2$$

b) Evaluate
$$\int_1^5 \frac{x dx}{\sqrt{4x+5}}$$
 using $u = \sqrt{4x+5}$

- c) Captain Barbossa is walking along a straight pier and observes a mast

 Bearing 040°T with an angle of elevation of 15°, after walking 100 metres
 along the pier the same mast is on a bearing of 300°T and an angle of
 elevation of 18°. Find the height of the mast to the nearest metre.
- d) Draw a neat half page sketch of the $y=3\sin^{-1}(\frac{x}{2}-1)$ 3 Stating the domain and range.
- e) The curves $y = x^2$ and $y = x^3$ intersect at A(0,0) and B(1,1). 2 Find the size of the acute angle between these curves at the Point B, to the nearest minute.

Question 12 (15 Marks) Use a SEPARATE writing booklet

Marks

- a) Express $\sqrt{3} \sin x + \cos x$ in the form $A\sin(x+\infty)$ Where ∞ is in radians and A>0. Hence or otherwise,
- 2
- (i) Sketch the graph of $y = \sqrt{3} \sin x + \cos x$ for $0 \le x \le 2\pi$.
- 2
- (ii) Solve the equation $\sqrt{3} \sin x + \cos x = \frac{\pi}{3}$ Correct to 4 decimal places.
- 2
- b) At the Cafe at the end of the pier Captain Barbossa ordered a Cup of coffee, the cooling of which follows the following Differential equation

$$\frac{dT}{dt} = -k(T - E)$$

Where T is temperature of the coffee and E is the temperature of the environment . Temperature is measured in degrees Celsius and the time t is in minutes. The environment temperature is a cool 16°C

- (i) The coffee at 92°C was left to stand on the table for 3 minutes after which it had cooled to 72°C, Derive a solution to this differential equation and calculate the value of k Correct to 4 decimal places.
- 4
- (ii) If Captain Barbossa can drink the coffee at 55°C, how Long does he have to wait?(Correct to the nearest minute)
- 2

3

c) Consider the equation

$$x^3 + 6x^2 - x - 30 = 0$$

One of the roots of this equation is equal to the sum of the other two roots. Find the values of the three roots.

Question 13 (15 Marks) Use a SEPARATE writing booklet

Marks

- a) Two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.
 - (i) Derive the the equation of the tangent to the parabola at P. 1

 - (iii) Given the tangents intersect at T(a(p+q), apq)Find the locus of T as P moves on the parabola 2 $x^2 = 4ay$
- b) At the Aquarium in the middle of the pier there is a tank of
 8 Clownfish, and another tank of 7 Blue tang.
 Captain Jack Sparrow wants his fish tank to contain 6 fish.
 Fish are selected at random from both tanks.
 What is the probability Jack's tank will contain at least 4 clownfish?
- c) Prove by mathematical induction $47^n + 53 \times 147^{n-1} \text{ is divisible by 100 for all integers } n \geq 1.$
- d) One solution of the equation $2\cos 2x = x + 1$ is close to x = 0.4 3 Use one application of Newton's Method to find another approximation to this solution. Give your answer correct to 4 decimal places.

e) 3

Two circles C_1 and C_2 intersect at P and Q as shown in the diagram. The tangent TP to C_2 at P meets C_1 at K. The line KQ meets C_2 at M. The line MP meets C_1 at L.

Copy or trace the diagram into your writing booklet.

Prove that $\triangle PKL$ is isosceles.

Questi	on 14 (15 Marks) Use a SEPARATE writing booklet		Mark	
a)	harmo tempe the do The te	mperature in the captain's cabin obeys the laws of simple nic motion. The door can only be opened when the rature reaches 22°C in the cabin, below this temperature or expands and cannot be opened. Emperature in the cabin was at a minimum C at 6am by noon it was at a maximum of 30°C.		
	(i)	Find an expression for the rise and fall of the temperature in the cabin.	1	
	(ii)	At what time, to the nearest minute, can Jack Sparrow first enter the captain's cabin (after 6am)?	2	
	(iii)	How long can Jack remain in the cabin, to the nearest minute, before the door jams shut?	2	
b)	it was Jack d the loc	captain's cabin is a sea water spa, containing 800 litres, leaking 10 litres per minute. To keep the water in the spa level, ecides to pump in sea water at 10 litres per minute; all sea water has a salinity of 950grams/litre. a initially contained 750kgs of salt.		
	(i)	Is the amount of salt in the spa increasing or decreasing over time?	1	
	(ii)	Set up a differential equation and derive a solution to the amount of salt in the spa at any time,	2	
	(iii)	How much salt is in the spa after 5 hours? Answer to the nearest gram.	2	
c)	There' Barbo from w Simult The pa	is captain Barbossa? Jack wandered the deck of the Black Pearl; s Barbossa 30 metres up the perpendicular mast, in the crow's nest. ssa throws a gold coin upwards at 20m/sec at 45° to the horizontal, where he is in the crow's nest 30m above the ship's deck. caneously a parrot was released from the base of the mast. rrot flew in a straight line at an angle of 30° to the horizontal ught the coin.		
	(i)	Derive the projectile motion equations using $g=10ms^{-2}$ for the x and y coordinates of the coin.	2	
	(ii)	What was the speed the parrot needed to fly, to the nearest km/hr, to catch that gold coin?	3	

Section 1 Solutions trial 2012 Ext 1 FSHS

W/C R/-10 | each

By let
$$u = 3x$$
, $du = 3dx$, C

$$= \frac{1}{3} \int \frac{du}{4^{2}-u^{2}} = \frac{1}{3} \sin^{-1} \frac{u}{4}$$
 $0z$ let $u = 4x$ $\frac{1}{3} du = dx$

$$= \frac{1}{4} \int \frac{du}{5^{2}+u^{2}} = \frac{1}{4} \int \frac{1}{5} \tan^{-1} \frac{u}{5}$$

$$= \frac{1}{20} \int \frac{du}{4^{2}-u^{2}} = \frac{1}{4} \int \frac{1}{5} \tan^{-1} \frac{u}{5}$$
 $0z$ let $u = 4x$ $\frac{1}{3} du = dx$

$$= \frac{1}{4} \int \frac{du}{5^{2}+u^{2}} = \frac{1}{4} \int \frac{1}{5} \tan^{-1} \frac{u}{5}$$

$$= \frac{1}{20} \int \frac{du}{4x} = \frac{1}{2} \int \frac{1}{2} dx$$
 $0z$ $0z$ $0z$ $0z$ $0z$

$$= \frac{1}{2} \int \frac{1}{3} dx$$
 $0z$ $0z$ $0z$

$$= \frac{1}{2} \int \frac{1}{3} dx$$

$$= \frac{1}{3} \int \frac{1}{3} dx$$

$$= \frac{1}{3}$$

$$\frac{3}{2} = \frac{3(-3) - 2(-3)}{4x^{-3}} = \frac{4x^{-3}}{8}$$

$$= -8/ - 18 + 12 = -87$$

$$\frac{1}{2} \ln(2x + 1) = \frac{1}{3} = \frac{1}{3} \ln \frac{7}{3}$$

$$= 0.424$$

$$\frac{3}{2} = \frac{1}{2} = \frac{1}{3} = \frac{1}{3} \ln \frac{7}{3}$$

$$= 0.424$$

$$\frac{3}{2} = \frac{1}{2} = \frac{1}{3} = \frac{1}{3} \ln \frac{7}{3}$$

$$= \frac{1}{3} = \frac{1}{3} \ln \frac{7}{3}$$

$$= \frac{1}{3} = \frac{1}{3} \ln \frac{7}{3}$$

$$= \frac{1}{3} \ln \frac{7}{3}$$

$$=$$

d)
$$y = 3 \sin^{-1} \left(\frac{\chi}{2} - 1 \right)$$

e)
$$y = x^{2}$$
 $y = x^{3}$
 $y' = 2\pi$ $y' = 3x^{2}$ $tan \theta = \left| \frac{m_{1} + m_{2}}{1 + m_{1} m_{2}} \right|$
 $m_{1} = 2$ $m_{2} = 3$ $= \left| \frac{2 - 3}{1 + 6} \right| = \frac{1}{7}$

Question 12 15 Marks

a)
$$\sqrt{3}\sin x + \cos x = A\left[\sin x \cos x + \cos x \sin x\right]$$

$$A\cos x = \sqrt{3} \qquad A = \sqrt{(3)^2 + 1^2} = 2$$

$$\tan x = \frac{1}{\sqrt{3}} \qquad x = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \overline{1}$$

$$\sqrt{3}\sin x + \cos x = 2\sin\left(x + \overline{1}\right)$$

b)
$$\frac{dT}{dt} = -k(T-E)$$
 $\frac{dT}{T-E} = -kdt$ integrale b.s
 $ln(T-E) = -kt + C \implies T-E = e^{-kt + C}$ let $e^{C} = A$
 $T-E = Ae^{-kt}$ $t = 0$ $T = 92°C$ $E = 16°$
 $T = 16 + 76e^{-kt}$ Now $t = 3 mins$ $T = 72$
(i) $T_2 = 16 + 76e^{-3k}$ $t = 6.554$ $t = 16.554$ $t = 16.554$

V 39 = e 3/1 % E

 $x^3 + 6x^2 - x - 30 = 0$ one rook is sum of other 2 let rook be L, p, 8 ZL = -6 = -6 : X+B+X=-6 2×=-6 ∴ ×=-3 ∑ xi xj = c/a = -1 : dg + dx+ px = -1 $\times(\beta+X)+\beta X=-1$ $4^2 + \beta 8 = -1$ · 9 + BX = -1 ~ BX = -10 Zdidjdk = -d = 30 : LBX = 30 -. BX = →0 Product -10 ty = -2, B= 5 no as & \$ 13+8 $\alpha = -3, \beta = 5, X = +2$

Extension 1 Trial HSC 2012 Marker Notes - Q12.
a) (i) generally well done
(ii) many did not read the domain requirement of 0 < x ≤ 2π.
· many could not interpret the phase shift of & correctly; frequent errors
were the graph of $y = 2 \sin(x - \frac{\pi}{6})$ or the graph of $y = 2 \cos x$.
· several student had the correct starting point of (0,1), but then had
the mans/min points still at $x = \frac{\pi}{2}$, $x = \frac{\pi}{2}$ (while managing to get $y = 0$ when $x = \frac{5\pi}{6}$ and $x = \frac{4\pi}{6}$)!
· many sketches were very poor in terms of neathers
· frequently intercepts were not shown (x-asis). It is not difficult
to find - ie when is sin x=0? ans: when x=0, TT, 20T
So when is sin (x+ = 0 ano: when 2 = = 0, π, 2π
U Z= = T T = T Z = T = T = T = T = T = T
= 11 51 <u>111</u> = 6, 6, 6
out of domain 0 = x < 2,
similarly, when is sin x = 1? and: x = \frac{1}{2}, \frac{1}{2}
similarly, when is sun $x = 1$? and $x = \frac{\pi}{2}$, $\frac{3\pi}{2}$ so when is sin $(x+\frac{\pi}{6})=1$ and $x+\frac{\pi}{6}=\frac{\pi}{2}$, $\frac{3\pi}{2}$
7-26,26
= \frac{1}{3} (for max/min pts)
(iii) many only found one solution - there are 2 polutions on 0 < x < 27! common error was sin' (=) = = !! and sin' (=) calculated with
· common error was Sun (6) = 2 -, and sun (6) calculated with
degrees set on the calculator.
b) (1) · you must derive from the given equation when asked (you can only state T= 16 + Ae kt as a soln when asked to show it satisfies!)
· only one or 2 students were able to show E=16 (in T->16 as t->10)
· the solution to the differential equation is of the form T= (1)
(too many left to the subject), which also caused many errors with
how the to was handled.
(ii) · generally well done c) (ii) · many left 2α+2β=-6, instead of α+β=-3 (caused issers in later substitutions)
c) (aused mension
· many nums nonviews)
· several alternature solutions were presented (quadratic, poly division) apart from the one given - marked for equivalence
from the one guest - must near goo expression

Dueshion 13 15 Mm/ks

1) (i)
$$P(2ap, ap^{2})$$
 $\chi^{2} = 4ay$: $y = \frac{\chi^{2}}{4\pi} : y' = \frac{2\chi}{4\pi} = \frac{\chi}{4\pi}$

$$\frac{dy}{dx} \int_{\mathcal{H}=2ap} = \frac{2ap}{2a} = P$$
 is $M = P$

[]
$$y = p_1 - ap^2$$
 $y - y_1 = m(x - x_1)$ $y - ap^2 = p(x - 2ap)$

b) (ii) tanger at Q is q (simlarly)

i.
$$tan 60 = \frac{P-q}{1+pq}$$
 using $tan \theta = \frac{M_1-M_2}{1+m_1m_2}$
 $tan 60 = \sqrt{3}$
 T
 $tan 60 = \sqrt{3}$
 $tan 60 = \sqrt{3}$
 $tan 60 = \sqrt{3}$

(ii)
$$T(a(p+q), apq)$$
 given $\sqrt{3}(1+pq) = p-q$
 $X = a(p+q)$, $y = apq$... $pq = \frac{y}{q}$
... $\sqrt{3}(1+\frac{y}{a}) = p-q$
V from $x = p+q$ $(p-q)^2 = p^2+q^2-2pq$

$$\frac{1}{4} = p^{2}q^{2} + p^{2} + 2pq^{2}$$

$$(\frac{1}{4})^{2} = p^{2} + q^{2} + 2pq$$

$$-4pq + (\frac{1}{4})^{2} = p^{2} + q^{2} + 2pq - [4pq]$$

$$(p-q)^{2} = (\frac{1}{4})^{2} - 4pq = (\frac{1}{4})^{2} - 4\frac{1}{4}$$

$$3(1+\frac{4}{a})^{2} = (\frac{x}{a})^{2} - \frac{4y}{a}$$

$$3a^{2} + 10ay + 3y^{2} = x^{2}$$

$$x^{2} - y(y - 10a) = 3a^{2}$$
10 cms
meny
.

c)
$$47^{n} + 53 \times 147^{n-1} = 100 \times R \text{ (kinteger)}$$

SI $n=1$ $47^{i} + 53 \times 147^{n} = 100 \text{ which is divisible}$
by 100

52 Assume frue for
$$n=K$$

ie $47^{k}+53\times147^{k-1}=100P$. $47^{k}=100P-53\times147^{k-1}$
53 Prove frue for $n=K+1$ (Pinhaps)

$$i$$
 $47^{KH} + 53 \times 147^{K} = 100 Q$

LHS $47 \times 47^{K} + 53 \times 147^{K}$ using assumption

 $47 \left[100P - 53 \times 147^{K-1} \right] + 53 \times 147^{K}$
 $47 \left[100P - 47 \times 53 \times 147^{K-1} \right] + 53 \times 147^{K}$
 $47 \left[100P - 47 \times 53 \times 147^{K-1} \right] + 53 \times 147 \times 147^{K-1}$
 $= 100 \left[47P + 53 \times 147^{K-1} \right]$ integer

 $= 100 Q$ where $Q = 47P + 53 \times 147^{K-1}$

Onestron 13 cont.

$$f(n) = 2\cos 2n - n - 1 \quad \text{Newtons Method}$$

$$f'(n) = -4\sin 2n - 1 \quad \chi_{2} = 2l_{1} - \frac{1}{2}(\frac{1}{2})$$

$$N_{\text{NN}} \quad \chi_{1} = 0.4$$

$$2l_{2} = 0.4 - \frac{1}{2}(0.4) = 0.4 - \frac{1}{2}\cos(0.8) - 0.4 - 1$$

$$2l_{2} = 0.4 + \frac{2\cos(0.8) - 0.4 - 1}{4\sin(0.8) + 1}$$

$$\chi_{2} = 0.3983 \quad (4DP)$$

LTPM= LLPK (verheally opposite) LTPM = LPQM (angles in alternate segment

: LLPK = LPQM

Now LPRM = LPLK

(opposite angles of a cyclic quad we supplementing)

: LLPK = LPLK

: DPKL is 1805 celes (base angles cqual)

Question 11_ Comments

- a) Most people × (21-5)2>0 but forgot 21 \$ 5
- 5) Integral transformed reasonably well some people forgot to change bounds, some mistakes with substitutions
- c) Diagram mostly ok, Many people tried to use the sine rule, however cosine rule needed to

- di Investing graph overall well done some domain errors.
- Angle between my=2, mx=3 will done some excors with formula

a) is Some people only found gradient m= P, nots the tangents eqn. Question 13 Commens

- (ii) Well done are all
- Lows not well done 3a2+10ay+3y2= 212 (refu answers) Needed to use part (ii) \(\J3(1+pq) = P-q \)
- b) Fish tank reasonably well done some people used promototions?
- c) Induction middle port messed up, assumption not well used, some conclusions not correct.
- d) $z_2 = 1$, $-\frac{f(z_1)}{f'(z_2)}$ well done, substitutions poor (calcurring mode)
- e) Circle geometry fairly well done.

This entire question was very budly done 1) T=-10 cos (Ft)+29 (ii) Solve 2=-10c03(Et) +t : = cos-(+) 6 My 8:15 12 Ncon pr t= \$\frac{1}{2} \cos^{-1}(2) = 3.38456... n = 2I = II = Iamphinde = 10 t=3hrs:23min 5sec (iii) Tack can first entrabin 9:23 an Jack can remain in cabin for 5 hr + 14 mins / (time subtraction or symmetry). 1) Ariginal Salimby 750 kg /L 0.9375kg /L
Inflow 950 gm/L is 937.5gm/L

Salimby gradually increasing over time (ii) de = inflow - outflow $= 10 \times .950 - 10 \times \frac{0}{800} = 9.5 - \frac{0}{800}$ $\frac{dQ}{dt} = \frac{760-Q}{80} : dt = \frac{80dQ}{760-Q} : integrating$ t=-80 ln (760-0)+c t=0 0=750 $0 = -80 \ln (760 - 750) + C = +80 \ln 10$: t = -80/n (760-0)+80/n10 $t = 80 \ln \left(\frac{10}{760 - 0} \right)$ $\frac{1}{80} = \ln \left(\frac{10}{760 - 0} \right)$ $e^{\frac{1}{80}} = \frac{10}{760-Q} \quad \text{or} \quad e^{-\frac{1}{80}} = \frac{760-Q}{10}$ $10e^{-\frac{1}{80}} = 760-Q \quad \text{or} \quad Q = \frac{760-Q}{10}$

(iii) $5hrs \rightarrow 5\times60 = 300mm$ $1 d = 760 - 10e^{-\frac{305}{80}} = 760 - 0.235 = 759.76 k.$

students got the formula wrong. There is a fide question which resemble this in the ext! Fitzpetrick.

- many students did not solve this by booking at the symmetry.

-> students and not set up the equation which was very dissapointing. Since there was a question in the testbook.

i= 20 x 1/2 = 10 \(2 m/s $\dot{y} = -10$ x = 0y = 30x = 10/2 m/s $x = c_2$: y = -10+ Cr i = 1052 m/s t=0 $\dot{y}=C_1=1052$ i = 1052 : y = -10t+1012 4=30 y = -5t2 HO 52t + C} x = 1052t + Ca t=0 y=30 . C3 = 30 $\chi = 0$: $C_4 = 0$ (1) $y = -5t^2 + 10\sqrt{2}t + 30$ $tan30 = \frac{y}{y} = \frac{1}{\sqrt{3}}$ $1 = \sqrt{3}y$ is sor time for parrok is same at time to get to A(x, y) $t = \frac{2L}{1062} = \frac{\sqrt{3}y}{1062} \times \frac{62}{12} = \frac{\sqrt{6}y}{20}$ $y = -5\left(\frac{16y}{20}\right)^2 + 10(2+16y + 30) = \frac{-38y^2}{4va} + \sqrt{3}y + 30$ $40y = -3y^2 + 40\sqrt{3}y + 1200$ $3y^2 + 40(1-13)y - 1200 = 0$ y = using pos care $y = -40(1-53) \pm \sqrt{(40(1-53))^2 - 4x3x-1200}$. $y = 29.28 \pm 123.52099$ take t = 164 = 3.11907 sein $d = \sqrt{32^2 + y^2} = 50.9343 \text{ m m } 3.11907 \text{ s.cs}$ $V = 16.329 \text{ m/s} \implies 58.7877 \text{ km/hr} \qquad 59 \text{ km/kr}$

- students derived the formulae, but did not sub in the values of V=20, x=45 - Once the initial formulae are incorrect, to becomes very hard to continue