ITAI ARIELI (TECHNION)
YAKOV BABICHENKO (TECHNION)
FEDOR SANDOMIRSKIY (CALTECH)

PERSUASION AS TRANSPORTATION

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS? two agents, binary state

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

today: two agents, binary state

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

today: two agents, binary state

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

today: two agents, binary state

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

today: two agents, binary state

WHAT IS KNOWN?

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

today: two agents, binary state

WHAT IS KNOWN?

- N = 1 is easy: sender's value = cav[u](p)
 - Kamenica, Gentzkow (2011)

HOW TO SUPPLY INFORMATION OPTIMALLY TO MULTIPLE AGENTS?

today: two agents, binary state

WHAT IS KNOWN?

- N = 1 is easy: sender's value = cav[u](p)
 - Kamenica, Gentzkow (2011)
- $N \ge 2$ is hard: feasible distributions can be complex
 - Arieli, Babichenko, Sandomirskiy, Tamuz (2021), Brooks, Frankel, Kamenica (2022)

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p'_{1},p'_{2}) \sim \mu^{\theta}$ conditional on θ

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p'_{1},p'_{2}) \sim \mu^{\theta}$ conditional on θ

Remark: μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^\ell + p\mu^h$ for a feasible pair

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p'_{1},p'_{2})\sim \mu^{\theta}$ conditional on θ

- **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^\ell + p\mu^h$ for a feasible pair
- Why pairs? Feasibility of a pair is determined by marginals:

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^ℓ and μ^h on $[0,1]^2$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p_1',p_2') \sim \mu^\theta$ conditional on θ

- **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^\ell + p\mu^h$ for a feasible pair
- Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

 (μ^ℓ,μ^h) and (ν^ℓ,ν^h) with the same 1-dimensional marginals are feasible simultaneously

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p'_{1},p'_{2}) \sim \mu^{\theta}$ conditional on θ

- **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^\ell + p\mu^h$ for a feasible pair
- * Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

 (μ^ℓ,μ^h) and (ν^ℓ,ν^h) with the same 1-dimensional marginals are feasible simultaneously

Corollary: persuasion = nested optimisation over marginals and then over joint distributions with given marginals

CONDITIONING ON THE STATE SIMPLIFIES THE PROBLEM

DEFINITION

 μ^{ℓ} and μ^{h} on $[0,1]^{2}$ is a feasible pair of conditional distributions $\iff \exists$ information structure s.t. $(p'_{1},p'_{2}) \sim \mu^{\theta}$ conditional on θ

- **Remark:** μ on $[0,1]^2$ is unconditionally feasible if $\mu = (1-p)\mu^\ell + p\mu^h$ for a feasible pair
- * Why pairs? Feasibility of a pair is determined by marginals:

OBSERVATION

 (μ^ℓ,μ^h) and (ν^ℓ,ν^h) with the same 1-dimensional marginals are feasible simultaneously

Corollary: persuasion = nested optimisation over marginals and then over joint distributions with given marginals

MULTI-AGENT PERSUASION = OPTIMAL TRANSPORTATION PROBLEM!

Given:

- $\mu_1, \mu_2 \text{ on } [0,1]$
- utility u = u(x, y)

Given:

- $\mu_1, \mu_2 \text{ on } [0,1]$
- utility u = u(x, y)

Find:

$$T[u, \mu_1, \mu_2] = \max_{\gamma \text{ on } [0,1]^2} \int_{[0,1]^2} u(x, y) \, d\gamma(x, y)$$
marginals μ_1, μ_2

Given:

- $\mu_1, \mu_2 \text{ on } [0,1]$
- utility u = u(x, y)

Find:

$$T[u, \mu_1, \mu_2] = \max_{\gamma \text{ on } [0,1]^2} \int_{[0,1]^2} u(x, y) \, d\gamma(x, y)$$
marginals μ_1, μ_2

Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility

Given:

- $\mu_1, \mu_2 \text{ on } [0,1]$
- utility u = u(x, y)

Find:

$$T[u, \mu_1, \mu_2] = \max_{\gamma \text{ on } [0,1]^2} \int_{[0,1]^2} u(x, y) \, d\gamma(x, y)$$
marginals μ_1, μ_2

- Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility
- Remark: fractional maximal-weight matching

Given:

- $\mu_1, \mu_2 \text{ on } [0,1]$
- utility u = u(x, y)

Find:

$$T[u, \mu_1, \mu_2] = \max_{\gamma \text{ on } [0,1]^2} \int_{[0,1]^2} u(x, y) \, d\gamma(x, y)$$
marginals μ_1, μ_2

- Interpretation: given spacial distribution of production and consumption, minimise the cost of transportation / maximise the utility
- **Remark:** fractional maximal-weight matching
- Archetypal coupling problem, many econ applications:
 - Daskalakis et al. (2017), Kleiner, Manelli (2019), Boerma et al. (2021), Chiapporiet et al. (2010), Galichon (2021), Steinerberger, Tsyvinski (2019), Gensbittel (2015), Guo, Shmaya (2021), Cieslak, Malamud, Schrimpf (2011)

THEOREM

Value of a persuasion problem
$$(p, u^{\ell}, u^h)$$
 equals
$$\max_{\substack{\text{admissible} \\ \text{marginals}}} \left[(1-p) \cdot T \big[u^{\ell}, \mu_1^{\ell}, \mu_2^{\ell} \big] + p \cdot T \big[u^h, \mu_1^h, \mu_2^h \big] \right]$$

marginals

THEOREM

Value of a persuasion problem (p, u^{ℓ}, u^h) equals

$$\max_{\text{admissible}} \left[(1-p) \cdot T \big[u^\ell, \mu_1^\ell, \mu_2^\ell \big] + p \cdot T \big[u^h, \mu_1^h, \mu_2^h \big] \right]$$

 $(\mu_1^\ell,\mu_1^h),(\mu_2^\ell,\mu_2^h)$ are feasible pairs in 1-receiver problem

THEOREM

Value of a persuasion problem (p, u^{ℓ}, u^h) equals

$$\max_{\text{Imissible}} \left[(1-p) \cdot T \left[u^{\ell}, \mu_1^{\ell}, \mu_2^{\ell} \right] + p \cdot T \left[u^{h}, \mu_1^{h}, \mu_2^{h} \right] \right]$$

admissible marginals

 $(\mu_1^\ell,\mu_1^h),(\mu_2^\ell,\mu_2^h)$ are feasible pairs in 1-receiver problem

WHY USEFUL?

THEOREM

Value of a persuasion problem (p, u^{ℓ}, u^{h}) equals $\max_{\text{admissible}} \left[(1-p) \cdot T \left[u^{\ell}, \mu_{1}^{\ell}, \mu_{2}^{\ell} \right] + p \cdot T \left[u^{h}, \mu_{1}^{h}, \mu_{2}^{h} \right] \right]$

admissible marginals

 $(\mu_1^\ell,\mu_1^h),(\mu_2^\ell,\mu_2^h)$ are feasible pairs in 1-receiver problem

WHY USEFUL?

connection to extensive math transportation literature

THEORFM

Value of a persuasion problem (p, u^{ℓ}, u^{h}) equals $\max_{\text{admissible}} \left[(1-p) \cdot T \big[u^{\ell}, \mu_{1}^{\ell}, \mu_{2}^{\ell} \big] + p \cdot T \big[u^{h}, \mu_{1}^{h}, \mu_{2}^{h} \big] \right]$

$$(\mu_1^\ell,\mu_1^h),(\mu_2^\ell,\mu_2^h)$$
 are feasible pairs in 1-receiver problem

WHY USEFUL?

- connection to extensive math transportation literature
- simplification for particular classes of utilities
 - one-state, supermodular, submodular

THEORFM

Value of a persuasion problem (p, u^{ℓ}, u^h) equals $\max_{\text{admissible}} \left[(1-p) \cdot T \big[u^{\ell}, \mu_1^{\ell}, \mu_2^{\ell} \big] + p \cdot T \big[u^h, \mu_1^h, \mu_2^h \big] \right]$

admissible marginals

 $(\mu_1^\ell,\mu_1^h),(\mu_2^\ell,\mu_2^h)$ are feasible pairs in 1-receiver problem

WHY USEFUL?

- connection to extensive math transportation literature
- simplification for particular classes of utilities
 - one-state, supermodular, submodular
- tractable dual extending 1-receiver results:
 - $^{\bullet}$ cav[u]-theorem by Kamenica, Gentzkow (2011) and duality by Dworczak, Kolotilin (2017)

THEOREM

Value of a persuasion problem equals

$$\min_{\substack{\text{admissible}\\ \text{numbers}\\ V^l, V^h}} \left[(1-p) \cdot V^\ell + p \cdot V^h \right]$$

THEOREM

Value of a persuasion problem equals

$$\min \left[(1-p) \cdot V^{\ell} + p \cdot V^{h} \right]$$

admissible numbers

$$V^l, V^h$$

 V^l, V^h are admissible $\iff \exists$ functions α_1, α_2 on [0,1] s.t.

$$u^{\ell}(x, y) \le V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y)$$

$$u^{h}(x, y) \le V^{h} - (1 - x)\alpha_{1}(x) - (1 - y)\alpha_{2}(y)$$

THEOREM

Value of a persuasion problem equals

$$\min_{\substack{\text{admissible}}} \left[(1-p) \cdot V^{\ell} + p \cdot V^{h} \right]$$

numbers V^l, V^h

 V^l, V^h are admissible $\iff \exists$ functions α_1, α_2 on [0,1] s.t.

$$u^{\ell}(x, y) \le V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y)$$

$$u^{h}(x, y) \le V^{h} - (1 - x)\alpha_{1}(x) - (1 - y)\alpha_{2}(y)$$

THEOREM

Value of a persuasion problem equals

$$\min \left[(1-p) \cdot V^{\ell} + p \cdot V^{h} \right]$$

admissible numbers

$$V^l, V^h$$

 V^l, V^h are admissible $\iff \exists$ functions α_1, α_2 on [0,1] s.t.

$$u^{\ell}(x, y) \le V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y)$$

$$u^{h}(x, y) \le V^{h} - (1 - x)\alpha_{1}(x) - (1 - y)\alpha_{2}(y)$$

value of
$$(p, u^{\ell}, u^h)$$
 = minimal value of (p, v^{ℓ}, v^h)
s.t. $u^{\ell} \le v^{\ell}, \quad u^h \le v^h$
and non-revealing is optimal

THEOREM

Value of a persuasion problem equals

$$\min \left[(1-p) \cdot V^{\ell} + p \cdot V^{h} \right]$$

admissible numbers

$$V^l, V^h$$

 V^l, V^h are admissible $\iff \exists$ functions α_1, α_2 on [0,1] s.t.

$$u^{\ell}(x, y) \le V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y) = v^{\ell}$$

 $u^{h}(x, y) \le V^{h} - (1 - x)\alpha_{1}(x) - (1 - y)\alpha_{2}(y) = v^{h}$

value of
$$(p, u^{\ell}, u^h)$$
 = minimal value of (p, v^{ℓ}, v^h)
s.t. $u^{\ell} \le v^{\ell}, \quad u^h \le v^h$
and non-revealing is optimal

THEOREM

Value of a persuasion problem equals

$$\min_{\text{admissible}} \left[(1-p) \cdot V^{\ell} + p \cdot V^{h} \right]$$

numbers

$$V^l, V^h$$

 V^l, V^h are admissible $\iff \exists$ functions α_1, α_2 on [0,1] s.t.

$$u^{\ell}(x, y) \le V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y) = v^{\ell}$$

 $u^{h}(x, y) \le V^{h} - (1 - x)\alpha_{1}(x) - (1 - y)\alpha_{2}(y) = v^{h}$

Interpretation:

value of
$$(p, u^{\ell}, u^h)$$
 = minimal value of (p, v^{ℓ}, v^h)
s.t. $u^{\ell} \le v^{\ell}$, $u^h \le v^h$
and non-revealing is optimal

cav[u]-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal

THEOREM

Value of a persuasion problem equals

$$\min \left[(1-p) \cdot V^{\ell} + p \cdot V^{h} \right]$$

admissible numbers

$$V^l, V^h$$

 V^l, V^h are admissible $\iff \exists$ functions α_1, α_2 on [0,1] s.t.

$$u^{\ell}(x, y) \le V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y) = v^{\ell}$$

 $u^{h}(x, y) \le V^{h} - (1 - x)\alpha_{1}(x) - (1 - y)\alpha_{2}(y) = v^{h}$

value of
$$(p, u^{\ell}, u^h)$$
 = minimal value of (p, v^{ℓ}, v^h)
s.t. $u^{\ell} \le v^{\ell}$, $u^h \le v^h$
and non-revealing is optimal

- cav[u]-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal
- dual solution = certificate of optimality: verifies guessed solution to the primal

THEOREM

Value of a persuasion problem equals

$$\min \left[(1-p) \cdot V^{\ell} + p \cdot V^{h} \right]$$

admissible numbers

$$V^l, V^h$$

 V^l, V^h are admissible $\iff \exists$ functions α_1, α_2 on [0,1] s.t.

$$u^{\ell}(x, y) \le V^{l} + x \cdot \alpha_{1}(x) + y \cdot \alpha_{2}(y) = v^{\ell}$$

 $u^{h}(x, y) \le V^{h} - (1 - x)\alpha_{1}(x) - (1 - y)\alpha_{2}(y) = v^{h}$

value of
$$(p, u^{\ell}, u^h)$$
 = minimal value of (p, v^{ℓ}, v^h)
s.t. $u^{\ell} \le v^{\ell}$, $u^h \le v^h$
and non-revealing is optimal

- cav[u]-theorem has a similar form: convexity \Leftrightarrow a condition that non-revealing is optimal
- dual solution = certificate of optimality: verifies guessed solution to the primal
 - Gives a class of problems where full-information/partial-information signals are optimal

ullet Conditioning on heta helps in multi-agent persuasion

- ullet Conditioning on heta helps in multi-agent persuasion
 - Connects to optimal transport

- ullet Conditioning on heta helps in multi-agent persuasion
 - Connects to optimal transport
 - Connection enables rich math tools, including duality

- Conditioning on θ helps in multi-agent persuasion
 - Connects to optimal transport
 - Connection enables rich math tools, including duality
- Another confirmation:

information & mechanism design \simeq transportation

- Conditioning on θ helps in multi-agent persuasion
 - Connects to optimal transport
 - Connection enables rich math tools, including duality
- Another confirmation:

information & mechanism design \simeq transportation

THANK YOU!