

Denoising Score Matching for Online Change Point Detection:

Spatial-Temporal Extension and Case Study on Noto Earthquakes

Wenbin Zhou¹ (wenbinz2@andrew.cmu.edu), Xu Si², Liyan Xie³, Zhigang Peng², Shixiang Zhu¹

¹Carnegie Mellon University, ²Georgia Institute of Technology, ³University of Minnesota

Abstract

- 1. Proposes a machine-learning framework for automated precursor detection in high dimensional setting
- 2. The framework provides not only the estimated precursor time but also the corresponding geographic region in a principled manner.
- 3. Studies precursors the 2018 2024 Noto JMA earthquake catalog using the developed framework

Introduction: Precursors

What are precursors: Measurable physical phenomena that occur before an earthquake and may signal that an earthquake is about to happen

Figure 1: 2024 M7.5 Noto earthquake swarm region identified through inspecting relocated seismicity, inferred fluid migration [Peng et.al.

Figure 2: The inter-event recurrence time following the time of the relocated catalog in the whole region from January 2018 to February 2024

Research Questions

- 1. Can precursor detection be automated for high-dimensional setting?
- 2. Can precursor detection identify both alarm time [2] and region-at-risk?
- 3. Other concerns: (i) Computation efficiency, (ii) Detection effectiveness

Methodology Overview

Key idea: Detect distribution discrepancy for catalog events across different spatio-temporal domains

Novelties

(a) Instead of estimating intensity, we estimate the Stein score function (gradient of log density). (Zhou et. al. 2025)

Proposed Algorithm

Figure 3: The algorithmic flowchart of the proposed framework

Key features:

- 1. Unsupervised learning on events
- 2. Recurrent algorithmic structure
- 3. End-to-end pipeline

Benefits:

- 1. Abundance of data in practice
- 2. Real-time detection and fast response
- 3. Fully automated detection with less human intervention

Numerical Experiments and Results

Figure 4: Magnitude versus date of Noto JMA Catalog (2018 - 2024). The blue curve is the estimated (whole region) CUSUM statistics by date produced by our algorithm

Figure 5: Geographical view of the spatial-temporal detected region-at-risk (red dashed circles) and the swarm region identified in Peng et. al. 2025.

Subplots (a) (b) (c) and (d) correspond to timestamps marked in Figure 4

The earliest correct detection time for the swarm region is around August 2021.

Figure 6: Similar plot to Figure 4, but the pre-change model is trained with finegrained catalog data within 2021-2022.

Conclusion

- 1. Proposed a principled spatio-temporal change point detection framework, facilitating earthquake early warning
- 2. Captures anomalous events in the 2021 2023 swarm period
- 3. Pin-points the exact location of the swarm region

Future directions: more complete evaluation of the method to make it trustworthy.

References

[1] Peng, Z., Lei, X., Wang, Q. Y., Wang, D., Mach, P., Yao, D., ... & Campillo, M. (2025). The evolution process between the earthquake swarm beneath the noto peninsula, central japan and the 2024 m 7.6 noto hanto earthquake sequence. Earthquake Research Advances, 5(1), 100332.

[2] Zhou, W., Xie, L., Peng, Z., & Zhu, S. (2025). Sequential Change Point Detection via Denoising Score Matching. arXiv preprint arXiv:2501.12667.

Appendix: Mathematical Details

Addressing Challenge 3(i): Approximation via truncated likelihood

$$\overline{\ell}(\mathcal{H}_t,
u,t)pprox \int_{[
u,t) imes\mathcal{M}}\log p_i(x|\mathcal{H}_{t(x)})\mathrm{d}\mathbb{N}(x)$$
 Counting measure $\ell-\overline{\ell}=\int_{[t_n,t(x))}\lambda_i(u|\mathcal{H}_{t(u)})\mathrm{d}u$

Drastically reduce computation load without sacrificing too much modeling accraucy

Solution to Challenge 3(ii): Use Stein score function instead of intensity function

$$\widehat{\lambda}_{ heta}^{(i)}(x|\mathcal{H}_{t(x)}) \qquad \qquad \widehat{s}_{ heta}^{(i)}(x|\mathcal{H}_{t(x)}) :=
abla_x \log p_i(x|\mathcal{H}_{t(x)})$$

Benefits: (a) Flexible parameterization; (b) Accurate estimation

Proposed scoring rule: Weighted Hyvarinen score (WHS)

$$H_{\mathbf{w}}^{(i)}(x|\mathcal{H}_{t(x)}) = \left\| \mathbf{w}(x) \odot \hat{s}_{ heta}^{(i)}(x|\mathcal{H}_{t(x)})
ight\|_{2}^{2} + \operatorname{Tr}\left(
abla_{x} \left[\mathbf{w}(x) \odot \hat{s}_{ heta}^{(i)}(x|\mathcal{H}_{t(x)})
ight]
ight)$$

Weighting function

Parametrized score model

Why weighting? "Correct" for boundary conditions to become a proper scoring rule

Weighted Hyvarinen Score CUSUM statistics:

Exceed
$$au$$
:

Hypothesis class of regions-at-risk

 $T_{ au} = \inf \left\{ t : \exists S \in \mathcal{R} \text{ s.t. } z(S,t) \geq au
ight\},$
 $\mathcal{S}_{ au} = \left\{ S : z(S,T) \geq au
ight\}.$