Problem Set 7

Ryan Coyne

October 31, 2023

- 1. Prove: the product of an irrational number and a nonzero rational number is irrational. Proof: Suppose that xy = z, for some $x, z \in \mathbb{Q}$ and $y \in \mathbb{R} \mathbb{Q}$. By definition, $x = \frac{a}{b}$ and $z = \frac{a'}{b'}$, for some $a, a', b, b' \in \mathbb{Z}$, with $a, a', b, b' \neq 0$. Then, $\frac{a}{b}y = \frac{a'}{b'}$, and so, $y = \frac{a'b}{b'a}$. Now, a'b and b'a, are integers, and so y must be rational by definition. This contradicts the initial assumption that y is irrational. Thus, the product of an irrational and a nonzero rational number, cannot be rational and must therefore be rational. \blacksquare
- 2. Prove: $\sqrt{2} + \sqrt{3}$ is an irrational number. Proof: Suppose that $\sqrt{2} + \sqrt{3}$ is rational, then $(\sqrt{2} + \sqrt{3})^2$ must also be rational. Now, $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$. If $\sqrt{6}$ is irrational, then $5 + 2\sqrt{6}$ is also irrational. Suppose that $\sqrt{6}$ is rational. Let $\sqrt{6} = \frac{a}{b}$, for some $a, b \in \mathbb{Z}$, with a and b being coprime. Then, $6 = \frac{a^2}{b^2}$, and so $b^2 = \frac{a^2}{6}$. Since, b is an integer, b^2 is also an integer. Thus, $6|a^2$. It follows that 6|a since $\sqrt{6} \notin \mathbb{Z}$. By definition, a = Now, return to the equation $6 = \frac{a^2}{b^2}$.