NAME: Miklas Kampe.
ISMT S-136 Time Series Analysis with Python
Part I of Assignment 7

Let x_t be an AR(2)-ARCH(1) process:

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + r_t,$$

 $r_t = \sigma_t \varepsilon_t$, where $\varepsilon_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1),$
 $\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2.$

Suppose we observe x_1 , x_2 , and x_3 , i.e. n = 3.

- (a) Here, we assume that we know φ₁, φ₂, α₀, and α₁. Assume r_t is independent of x_{t-1}, x_{t-2},... for all t. Find the minimum mean square error predictor x₄³ (the superscript "3" here indicates that the predictor is based on x₁, x₂, x₃) of x₄, i.e. the predictor that minimizes E [(x₄ x₄³)²].
- (b) Assume the process x_t follows AR(2)-ARCH(1) with unknown parameters. Does fitting AR(2)-ARCH(1) provide any advantage comparable to just using AR(2) model for this process x_t? Please be specific.
 Hint: In practice, one needs to estimate the parameters first.

SOLUTION:

b) The main advantage of fitting on AR(2)-ARCH(1) model against fitting an AR(2) model is the advantage of being able to correctly model the non-constant variance (dependent on past realitations / variances in time). Using an AR(2) model always implies a constant variance which is not appropriate for the process xt. The ARCH(1) extension therefore allows to count for the advergressive error terms.