Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Logika pre informatikov a Úvod do matematickej logiky

Poznámky z prednášok

Ján Kľuka, Ján Mazák

Letný semester 2022/2023 Posledná aktualizácia: 22. februára 2023

Obsah

P1	Úv	od. Atomické formuly	3
0	Úvo	d .	3
	0.1	O logike	3
	0.2	O kurze	10
1	Aton	nické formuly	11
	1.1	Syntax atomických formúl	15
	1.2	Sémantika atomických formúl	19
	1.3	Zhrnutie	23

P2 Výrokovologické spojky				
2	Výrc	kovologické spojky	25	
	2.1	Boolovské spojky	26	
	2.2	Implikácia	31	
	2.3	Ekvivalencia	34	
	2.4	Syntax výrokovologických formúl	35	
	2.5	Sémantika výrokovologických formúl	43	
	2.6	Teórie a ich modely	45	
	2.7	Správnosť a vernosť formalizácie	47	

1. prednáška

Úvod

Atomické formuly

0 Úvod

0.1 O logike

Čo je logika

Logika je vedná disciplína, ktorá študuje usudzovanie.

Správne, racionálne usudzovanie je základom vedy a inžinierstva.

Vyžaduje rozoznať správne úsudky z predpokladaných princípov a pozorovania od chybných úvah a špekulácií.

Správnosť úsudkov, zdá sa, nie je iba vec konvencie a dohody.

Logika skúma, *aké* sú zákonitosti správneho usudzovania a *prečo* sú zákonitosťami.

Ako logika študuje usudzovanie

Logika má dva hlavné predmety záujmu:

Jazyk zápis pozorovaní, definície pojmov, formulovanie teórií

Syntax pravidlá zápisu tvrdení

Sémantika význam tvrdení

Usudzovanie (inferencia) odvodzovanie nových *logických dôsledkov* z doterajších poznatkov. Aký má vzťah s jazykom, štruktúrou tvrdení?

Jazyk, poznatky a teórie

Jazyk slúži na formulovanie tvrdení, ktoré vyjadrujú poznatky o svete (princípy jeho fungovania aj pozorované fakty).

Súboru poznatkov, ktoré považujeme za pravdivé, hovoríme teória.

Príklad 0.1 (Party time!). Máme troch nových známych — Kim, Jima a Sarah. Organizujeme párty a P0: chceme na ňu pozvať niekoho z nich. Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Možné stavy sveta a modely

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "V akých zostavách môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené?"

Priamočiaro (aj keď prácne) to zistíme tak, že:

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

K	J	S	P0	P1	P2	P3
n	n	n	n			
n	n	p	p	p	p	n
n	p	n	p	p p p	n	
n	p	p	p	p	n	
p	n	n	p	p n	p	p
p	n	p	p	n		
p	p	n	p	p n	p	p
p	p	p	p	n		

P0: Niekto z Kim, Jima, Sarah príde na párty.

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Možné stavy sveta a modely

Teória rozdeľuje možné stavy sveta (interpretácie) na:

⊧ stavy, v ktorých je pravdivá – *modely* teórie,

⊭ stavy, v ktorých je nepravdivá.

Tvrdenie aj teória môžu mať viacero modelov, ale aj žiaden.

Príklad 0.2. Modelmi teórie P0, P1, P2, P3 sú dve situácie: keď Kim príde na párty a ostatní noví známi nie, a keď Kim a Jim prídu na párty a Sarah nie.

Logické dôsledky

Často je zaujímavá iná otázka o teórii — musí byť nejaké tvrdenie pravdivé vždy, keď je pravdivá teória?

V našom príklade: Kto *musí* a kto *nesmie* prísť na párty, aby boli podmienky P0, ..., P3 splnené?

Logické dôsledky

Logickými dôsledkami teórie sú tvrdenia, ktoré sú pravdivé vo všetkých modeloch teórie.

Príklad 0.3. Logickými dôsledkami teórie P0, P1, P2, P3 sú napríklad:

- Kim príde na párty.
- Sarah nepríde na párty.

Logických dôsledkov je nekonečne veľa, môžu nimi byť ľubovoľne zložité tvrdenia:

• Na party príde Kim alebo Jim.

- Ak príde Sarah, tak príde aj Jim.
- Ak príde Jim, tak nepríde Sarah.

:

Logické usudzovanie

Preskúmať všetky stavy sveta je často nepraktické až nemožné.

Logické dôsledky ale môžeme odvodzovať usudzovaním (inferovať).

Pri odvodení vychádzame z *premís* (predpokladov) a postupnosťou *správnych úsudkov* dospievame k *záverom*.

Príklad 0.4. Vieme, že ak na párty pôjde Kim, tak nepôjde Sarah (P1), a že ak pôjde Jim, tak pôjde Kim (P2).

- 1. Predpokladajme, že na párty pôjde Jim.
- 2. Podľa 1. a P2 pôjde aj Kim.
- 3. Podľa 2. a P1 nepôjde Sarah.

Teda podľa uvedenej úvahy: Ak na párty pôjde Jim, tak nepôjde Sarah.

Dedukcia

Úsudok je správny (*korektný*) vtedy, keď v*ždy*, keď sú pravdivé jeho premisy, je pravdivý aj jeho záver.

Ak sú všetky úsudky v odvodení správne, záver *je logickým dôsledkom* premís a odvodenie je jeho *dôkazom* z premís.

Dedukcia je usudzovanie, pri ktorom sa používajú iba správne úsudky.

Logika študuje dedukciu, ale aj niektoré nededuktívne úsudky, ktoré sú vo všeobecnosti nesprávne, ale sú správne v špeciálnych prípadoch alebo sú užitočné:

- indukcia zovšeobecnenie;
- abdukcia odvodzovanie možných príčin z následkov;
- usudzovanie na základe analógie (podobnosti).

Kontrapríklady

Ak úsudok nie je správny, vieme nájsť *kontrapríklad* — stav sveta, v ktorom sú *predpoklady pravdivé*, ale *záver je nepravdivý*.

Príklad 0.5. Nesprávny úsudok: Ak platia tvrdenia teórie o party, na party príde Jim.

Kontrapríklad: Stav, kedy príde Kim, nepríde Jim, nepríde Sarah. Teória je pravdivá, výrok "na party príde Jim" nie je pravdivý.

Matematická logika

Matematická logika

- modeluje jazyk, jeho sémantiku a usudzovanie ako matematické objekty (množiny, postuposti, zobrazenia, stromy);
- rieši logické problémy matematickými metódami.

Rozvinula sa koncom 19. a v prvej polovici 20. storočia vďaka snahám vybudovať základy matematiky bez sporov a paradoxov, mechanizovať overovanie dôkazov alebo priamo matematických viet.

Matematická logika a informatika

Informatika sa vyvinula z matematickej logiky (von Neumann, Turing, Church, ...)

Väčšina programovacích jazykov obsahuje logické prvky:

• all(x > m for x in arr),

fragmenty niektorých sú priamo preložiteľné na logické formuly:

• select T1.x, T2.y from T1 inner join T2 on T1.z = T2.z where T1.z > 25,

niektoré (Prolog) sú podmnožinou logických jazykov.

Metódami logiky sa dá *presne špecifikovať*, čo má program robiť, *popísať*, čo robí, a *dokázať*, že robí to, čo bolo špecifikované.

Vo *výpočtovej logike* a umelej inteligencii sa metódy logiky používajú na riešenie rôznych ťažkých problémov (plánovanie, rozvrh, hľadanie a overovanie dôkazov matematických tvrdení, hľadanie vysvetlení, ...).

Formálne jazyky a formalizácia

Matematická logika nepracuje s prirodzeným jazykom, ale s jeho zjednodušenými modelmi — *formálnymi jazykmi*.

- Presne definovaná, zjednodušená syntax a sémantika.
- Obchádzajú problémy prirodzeného jazyka:
 viacznačnosť slov, nejednoznačné syntaktické vzťahy, zložitá syntaktickú analýzu, výminky, obraty s ustáleným významom, ...
- Niekoľko formálnych jazykov už poznáte: aritmetika, jazyky fyzikálnych a chemických vzorcov, programovacie jazyky, ...

Problémy z reálneho sveta opísané v prirodzenom jazyku musíme najprv *sformalizovať*, a potom naň môžeme použiť aparát matematickej logiky. Formalizácia vyžaduje cvik — trocha veda, trocha umenie.

Ťažkosti s prirodzeným jazykom

Prirodzený jazyk je problematický:

- Viacznačné slová: Milo je v posluchárni A.
- Viacznačné tvrdenia: Videl som dievča v sále s ďalekohľadom.
- Ťažko syntakticky analyzovateľné tvrdenia:

Vlastníci bytov a nebytových priestorov v dome prijímajú rozhodnutia na schôdzi vlastníkov dvojtretinovou väčšinou hlasov všetkých vlastníkov bytov a nebytových priestorov v dome, ak hlasujú o zmluve o úvere a o každom dodatku k nej, o zmluve o zabezpečení úveru a o každom dodatku k nej, o zmluve o nájme a kúpe veci, ktorú vlastníci bytov a nebytových priestorov v dome užívajú s právom jej kúpy po uplynutí dojednaného času užívania a o každom dodatku k nej, o zmluve o vstavbe alebo nadstavbe a o každom dodatku k nim, o zmene účelu užívania spoločných častí domu a spoločných zariadení domu a o zmene formy výkonu správy; ...

– Zákon č. 182/1993 Z. z. SR v znení neskorších predpisov

• Výnimky a obraty so špeciálnym ustáleným významom: *Ni*kto *nie* je dokonalý.

Formalizácia poznatkov

S formalizáciou ste sa už stretli – napríklad pri riešení slovných úloh:

Karol je trikrát starší ako Mária.
Súčet Karolovho a Máriinho veku je 12 rokov.
Koľko rokov majú Karol a Mária?

$$k = 3 \cdot m$$

 $k + m = 12$

Stretli ste sa už aj s formálnym jazykom výrokovej logiky.

Príklad 0.6. Sformalizujme náš párty príklad:

P0: Niekto z trojice Kim, Jim, Sarah pôjde na párty.

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Schéma riešenia problémov pomocou logiky

Logika prvého rádu

Jazyk logiky prvého rádu (FOL) je jeden zo základných formálnych jazykov, ktorým sa logika zaoberá.

Do dnešnej podoby sa vyvinul koncom 19. a v prvej polovici 20. storočia — G. Frege, G. Peano, C. S. Peirce.

Výrokové spojky + kvantifikátory \forall a \exists .

Dá sa v ňom vyjadriť veľa zaujímavých tvrdení, bežne sa používa v matematike.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \dots$$

Kalkuly – formalizácia usudzovania

Pre mnohé logické jazyky sú známe *kalkuly* — množiny usudzovacích pravidiel, ktoré sú

korektné – odvodzujú iba logické dôsledky,

úplné – umožňujú odvodiť všetky logické dôsledky.

Kalkuly sú bežné v matematike

- na počítanie s číslami, zlomkami (kalkul elementárnej aritmetiky),
- riešenie lineárnych rovníc (kalkul lineárnej algebry),
- derivovanie, integrovanie, riešenie diferenciálnych rovníc (kalkul matematickej analýzy)

:

Sú korektné, ale nie vždy úplné.

Poznáte už aj jeden logický kalkul – ekvivalentné úpravy.

0.2 O kurzoch LPI a UdML

Prístup k logike na tomto predmete

Stredoškolský prístup príliš *neoddeľuje jazyk* výrokov od jeho *významu* a vlastne ani jednu stránku *nedefinuje jasne*.

Prevedieme vás základmi matematickej a výpočtovej logiky pre (postupne čoraz zložitejšie) fragmenty jazykov logiky prvého rádu.

Pojmy z logiky (výrok, model, logický dôsledok, dôkaz, ...) budeme *definovať matematicky* (ako množiny, postupnosti, funkcie, ...) *zdanlivo* budeme ojednoduchých veciach hovoriť zložito, na praktických cvičeniach ako *dátové štruktúry*.

Budeme *dokazovať* ich vlastnosti a *programovať* algoritmy podľa konštruktívnych dôkazov.

Budeme vyjadrovať výpočtové problémy v logických jazykoch a hľadať ich riešenia pomocou hotových nástrojov na riešenie logických problémov.

Organizácia kurzu – rozvrh, kontakty, pravidlá

Organizácia predmetu — rozvrh, kontakty a pravidlá absolvovania — sú popísané na oficiálnej webovej stránke predmetov:

1-AIN-412 https://dai.fmph.uniba.sk/w/Course:Logic_for_CS

1-INF-210 http://www.dcs.fmph.uniba.sk/~mazak/vyucba/udml/

1 Atomické formuly

Jazyky logiky prvého rádu

Logika prvého rádu je trieda (rodina) formálnych jazykov. Zdieľajú:

- časti abecedy *logické symboly* (spojky, kvantifikátory)
- pravidlá tvorby *formúl* (slov)

Líšia sa v *mimologických symboloch* – časť abecedy, pomocou ktorej sa tvoria najjednoduchšie – *atomické formuly* (*atómy*).

Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú *pozitívnym jednoduchým vetám* o vlastnostiach, stavoch, vzťahoch a rovnosti *jednotlivých pomenovaných* objektov.

Príklady 1.1.

- Milo beží.
- Jarka vidí Mila.
- 😆 Milo beží, ale Jarka ho nevidí.

- Jarka vidí všetkých.
- Jarka dala Milovi Bobíka v sobotu.
- 🕴 Jarka nie je doma.
- Niekto je doma.
- ✓ Súčet 2 a 2 je 3.
- Prezidentkou SR je Zuzana Čaputová.

Indivíduové konštanty

Indivíduové konštanty sú symboly jazyka logiky prvého rádu, ktoré pomenúvajú jednotlivé, pevne zvolené objekty.

Zodpovedajú *približne* vlastným menám, jednoznačným pomenovaniam, niekedy zámenám; konštantám v matematike a programovacích jazykoch.

Príklady 1.2. Jarka, 2, Zuzana_Čaputová, sobota, π , ...

Indivíduové konštanty a objekty

Indivíduová konštanta

- vždy pomenúva skutočný, existujúci objekt (na rozdiel od vlastného mena Zeus);
- nikdy nepomenúva viac objektov (na rozdiel od vlastného mena Jarka).

Objekt

- môže byť pomenovaný aj viacerými indivíduovými konštantami (napr. Prezidentka_SR a Zuzana_Čaputová);
- nemusí mať žiadne meno.

Predikátové symboly

Predikátové symboly sú symboly jazyka logiky prvého rádu, ktoré vyjadrujú vlastnosti alebo vzťahy.

Jednoduché vety v slovenčine majú *podmetovú* (*subjekt*) a *prísudkovú* časť (*predikát*):

Jarka vidí Mila. podmet prísudok predmet podmetová časť prísudková časť

Do logiky prvého rádu prekladáme takéto tvrdenie pomocou predikátového symbolu vidí, ktorý má dva *argumenty* ("podmety"): indivíduové konštanty Jarka a Milo.

Úloha argumentu v predikáte je daná jeho poradím (podobne ako pozičné argumenty funkcií/metód v prog. jazykoch).

Arita predikátového symbolu

Predikátový symbol má pevne určený počet argumentov — *aritu*. *Vždy* musí mať práve toľko argumentov, aká je jeho arita.

Dohoda 1.3. Aritu budeme *niekedy* písať ako horný index symbolu. Napríklad beží¹, vidí², dal⁴, <².

Zamýšľaný význam predikátových symbolov

Unárny predikátový symbol (teda s aritou 1) zvyčajne označuje *vlastnosť*, druh, rolu, stav.

```
Príklady 1.4. pes(x) x je pes 
čierne(x) x je čierne 
beží(x) x beží
```

Binárny, *ternárny*, ... predikátový symbol (s aritou 2, 3, ...) zvyčajne označuje *vzťah* svojich argumentov.

```
Príklady 1.5. \operatorname{vid}(x, y)   x \operatorname{vid}(y)   \operatorname{dal}(x, y, z, t)   x \operatorname{dal}(a/o) \operatorname{objektu} y \operatorname{objekt} z \operatorname{v} \operatorname{case} t
```

Kategorickosť významu predikátových symbolov

V bežnom jazyku často nie je celkom jasné, či objekt má alebo nemá nejakú vlastnosť — kedy je niekto *mladý*?

Predikátové symboly predstavujú *kategorické* vlastnosti/vzťahy — pre každý objekt sa dá *jednoznačne rozhodnúť*, či má alebo nemá túto vlastnosť/vzťah s iným objektom či inými objektmi.

Význam predikátového symbolu preto často zodpovedá rovnakému slovenskému predikátu iba približne.

Príklad 1.6. Predikát mladší 2 môže označovať vzťah "x je mladší ako y" presne.

Predikát mladý 1 zodpovedá vlastnosti "x je mladý" iba približne.

Nekategorickými vlastnosťami sa zaoberajú *fuzzy* logiky. Predikáty v nich zachytávajú význam týchto vlastností presnejšie.

Atomické formuly

Atomické formuly majú tvar

 $predik \acute{a}t(argument_1, argument_2, ..., argument_k),$

alebo

$$argument_1 \doteq argument_2$$
,

pričom k je arita predikátu, a $argument_1, \ldots, argument_k$ sú (nateraz) indivíduové konštanty.

Atomická formula zodpovedá (jednoduchému) *výroku* v slovenčine, t.j. tvrdeniu, ktorého *pravdivostná hodnota* (pravda alebo nepravda) sa dá jednoznačne určiť, lebo predikát označuje kategorickú vlastnosť/vzťah a indivíduové konštanty jednoznačne označujú objekty.

Formalizácia jednoduchých výrokov

Formalizácia je preklad výrokov z prirodzeného jazyka do formálneho logického jazyka.

Nie je to jednoznačný proces.

Vopred daný prvorádový jazyk (konštanty a predikáty) sa snažíme využiť čo najlepšie.

Príklad 1.7. Sformalizujme v jazyku s konštantami Evka, Jarka a Milo a predikátom vyšší 2 výroky:

 A_1 : Jarka je vyššia ako Milo. \rightsquigarrow vyšši(Jarka, Milo)

 A_2 : Evka je nižšia ako Milo. \rightsquigarrow vyšší(Milo, Evka)

Zanedbávame nepodstatné detaily – pomocné slovesá, predložky, skloňovanie, rod, ...: x je vyšší/vyššia/vyššie ako $y \rightsquigarrow \text{vyš}$ ší(x, y).

Návrh jazyka pri formalizácii

Formalizácia spojená s *návrhom vlastného jazyka* je *iteratívna*: Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

Priklady 1.8. A_1 : Jarka dala Milovi Bobíka.

```
→ d(Jarka) dalBobíka(Jarka, Milo) dal(Jarka, Milo, Bobík)
```

A₂: Evka dostala Bobíka od Mila.

```
→ dalBobíka(Milo, Evka) dal(Milo, Evka, Bobík)
```

 A_3 : Evka dala Jarke Cilku.

```
→ dalCilku(Evka, Jarka) dal(Evka, Jarka, Cilka)
```

 A_4 : Bobík je pes.

→ pes(Bobík)

Návrh jazyka pri formalizácii

Minimalizujeme počet predikátov, uprednostňujeme flexibilnejšie, viacúčelovejšie (dal³ pred dalBobíka² a dalCilku²).

Dosiahneme

- expresívnejší jazyk (vyjadrí viac menším počtom prostriedkov),
- zrejmejšie logické vzťahy výrokov.

Podobné normalizácii databázových schém.

1.1 Syntax atomických formúl

Presné definície

Cieľom logiky je uvažovať o jazyku, výrokoch, vyplývaní, dôkazoch.

Výpočtová logika sa snaží automaticky riešiť konkrétne problémy vyjadrené v logických jazykoch.

Spoľahlivé a overiteľné úvahy a výpočty vyžadujú presnú dohodu na tom, o čom hovoríme — definíciu logických pojmov (jazyk, výrok, pravdivosť, ...).

Pojmy (napr. atomická formula) môžeme zadefinovať napríklad

- matematicky ako množiny, n-tice, relácie, funkcie, postupnosti, ...;
- *informaticky* tým, že ich *naprogramujeme*, napr. zadefinujeme triedu AtomickaFormula v Pythone.

Matematický jazyk je univerzálnejší ako programovací — abstraktnejší, menej nie až tak podstatných detailov.

Syntax atomických formúl logiky prvého rádu

Najprv sa musíme dohodnúť na tom, aká je *syntax* atomických formúl logiky prvého rádu:

- z čoho sa skladajú,
- čím vlastne sú,
- akú majú štruktúru.

Symboly jazyka atomických formúl logiky prvého rádu

Z čoho sa skladajú atomické formuly?

Definícia 1.9. Symbolmi jazyka \mathcal{L} atomických formúl logiky prvého rádu sú mimologické, logické a pomocné symboly, pričom:

Mimologickými symbolmi sú

- indivíduové konštanty z nejakej neprázdnej spočítateľ nej množiny $\mathcal{C}_{\mathcal{L}}$
- a predikátové symboly z nejakej spočítateľnej množiny $\mathcal{P}_{\mathcal{L}}.$

Jediným *logickým symbolom* je ≐ (symbol rovnosti).

Pomocnými symbolmi sú (,) a , (ľavá, pravá zátvorka a čiarka).

Množiny $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ sú disjunktné. Pomocné symboly sa nevyskytujú v symboloch z $\mathcal{C}_{\mathcal{L}}$ ani $\mathcal{P}_{\mathcal{L}}$. Každému symbolu $P \in \mathcal{P}_{\mathcal{L}}$ je priradená arita ar $_{\mathcal{L}}(P) \in \mathbb{N}^+$.

Abeceda jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky/Formálnych jazykoch a automatoch by ste povedali, že *abecedou* jazyka \mathcal{L} atomických formúl logiky prvého rádu je $\Sigma_{\mathcal{L}} = \mathcal{C}_{\mathcal{L}} \cup \mathcal{P}_{\mathcal{L}} \cup \{ \doteq, (,), \}$.

V logike sa väčšinou pojem *abeceda* nepoužíva, pretože potrebujeme rozlišovať *rôzne druhy* symbolov.

Namiesto abeceda jazyka $\mathcal L$ hovoríme množina všetkých symbolov jazyka $\mathcal L$ alebo len symboly jazyka $\mathcal L$.

Na zápise množiny $\Sigma_{\mathcal{L}}$ však ľahko vidíme, čím sa rôzne jazyky atomických formúl logiky prvého rádu od seba líšia a čo majú spoločné.

Príklady symbolov jazykov atomických formúl logiky prvého rádu

Príklad 1.10. Príklad o deťoch a zvieratkách sme sformalizovali v jazyku \mathcal{L}_{dz} , v ktorom

$$\begin{split} &\mathcal{C}_{\mathcal{L}_{\mathrm{dz}}} = \{ \mathsf{Bob\acute{i}k}, \mathsf{Cilka}, \mathsf{Evka}, \mathsf{Jarka}, \mathsf{Milo} \}, \\ &\mathcal{P}_{\mathcal{L}_{\mathrm{dz}}} = \{ \mathsf{dal}, \mathsf{pes} \}, \quad \mathrm{ar}_{\mathcal{L}_{\mathrm{dz}}}(\mathsf{dal}) = 3, \quad \mathrm{ar}_{\mathcal{L}_{\mathrm{dz}}}(\mathsf{pes}) = 1. \end{split}$$

Príklad1.11. Príklad o návštevníkoch party by sme mohli sformalizovať v jazyku $\mathcal{L}_{\text{party}},$ kde

$$\begin{split} &\mathcal{C}_{\mathcal{L}_{\text{party}}} = \{\text{Kim, Jim, Sarah}\}, \\ &\mathcal{P}_{\mathcal{L}_{\text{party}}} = \{\text{pride}\}, \quad \text{ar}_{\mathcal{L}_{\text{party}}}(\text{pride}) = 1. \end{split}$$

Označenia symbolov

Keď budeme hovoriť o *ľubovoľnom* jazyku \mathcal{L} , často budeme potrebovať nejak označiť niektoré jeho konštanty alebo predikáty, aj keď nebudeme vedieť, aké konkrétne symboly to sú.

Na označenie symbolov použijeme *meta premenné*: premenné v (matematickej) slovenčine, pomocou ktorých budeme hovoriť *o* (po grécky *meta*) týchto symboloch.

Dohoda 1.12. Indivíduové konštanty budeme spravidla označovať meta premennými a, b, c, d s prípadnými dolnými indexmi.

Predikátové symboly budeme spravidla označovať meta premennými P, Q, R s prípadnými dolnými indexmi.

Atomické formuly jazyka

Čo sú atomické formuly?

Definícia 1.13. Nech \mathcal{L} je jazyk atomických formúl logiky prvého rádu.

Rovnostný atóm jazyka \mathcal{L} je každá postupnosť symbolov $c_1 \doteq c_2$, kde c_1 a c_2 sú indivíduové konštanty z $\mathcal{C}_{\mathcal{L}}$.

Predikátový atóm jazyka \mathcal{L} je každá postupnosť symbolov $P(c_1, ..., c_n)$, kde P je predikátový symbol z $\mathcal{P}_{\mathcal{L}}$ s aritou n a $c_1, ..., c_n$ sú indivíduové konštanty z $\mathcal{C}_{\mathcal{L}}$.

Atomickými formulami (skrátene *atómami*) jazyka \mathcal{L} súhrnne nazývame všetky rovnostné a predikátové atómy jazyka \mathcal{L} .

Množinu všetkých atómov jazyka \mathcal{L} označujeme $\mathcal{A}_{\mathcal{L}}$.

Slová jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky by ste povedali, že jazyk $\mathcal L$ atomických formúl logiky prvého rádu nad abecedou $\Sigma_{\mathcal L}=\mathcal C_{\mathcal L}\cup\mathcal P_{\mathcal L}\cup\{\doteq,(,),,\}$ je množina slov

$$\begin{aligned} \{ \, c_1 &\doteq c_2 \mid c_1 \in \mathcal{C}_{\mathcal{L}}, c_2 \in \mathcal{C}_{\mathcal{L}} \, \} \\ & \quad \cup \{ \, P(c_1, \dots, c_n) \mid P \in \mathcal{P}_{\mathcal{L}}, \mathrm{ar}_{\mathcal{L}}(P) = n, c_1 \in \mathcal{C}_{\mathcal{L}}, \dots, c_n \in \mathcal{C}_{\mathcal{L}} \, \}. \end{aligned}$$

V logike sa jazyk takto nedefinuje, pretože potrebujeme rozlišovať *rôzne druhy slov*.

Príklady atómov jazyka

 $Priklad\ 1.14.\ V$ jazyku $\mathcal{L}_{\rm dz}$, kde $\mathcal{C}_{\mathcal{L}_{\rm dz}} = \{ {\sf Bobík, Cilka, Evka, Jarka, Milo} \}, \mathcal{P}_{\mathcal{L}_{\rm dz}} = \{ {\sf dal, pes} \}, \, {\sf ar}_{\mathcal{L}_{\rm dz}}({\sf dal}) = 3, \, {\sf ar}_{\mathcal{L}_{\rm dz}}({\sf pes}) = 1, \, {\sf sú} \, \mathit{okrem iných} \, {\sf rovnostn\'e at\'omy:}$

a predikátové atómy:

pes(Cilka) dal(Cilka, Milo, Bobík) dal(Jarka, Evka, Milo).

1.2 Sémantika atomických formúl

Vyhodnotenie atomickej formuly

Ako zistíme, či je atomická formula pes(Bobík) pravdivá v nejakej situácii (napríklad u babky Evky, Jarky a Mila na dedine)?

Pozrieme sa na túto situáciu a zistíme:

- 1. aký objekt b pomenúva konštanta Bobík;
- 2. akú vlastnosť p označuje predikát pes;
- 3. či objekt *b* má vlastnosť *p*.

Vyhodnotenie atomickej formuly

Ako môžeme tento postup matematicky alebo informaticky modelovať? Potrebujeme:

• matematický/informatický model situácie (stavu vybranej časti sveta),

• postup na jeho použitie pri vyhodnocovaní pravdivosti formúl.

Matematický model stavu sveta

Ako môžeme matematicky popísať nejakú situáciu tak, aby sme pomocou tohto popisu mohli vyhodnocovať atomické formuly v nejakom jazyku logiky prvého rádu \mathcal{L} ?

Matematický model stavu sveta

Potrebujeme vedieť:

- ktoré objekty sú v popisovanej situácii prítomné,
- ▶ množina všetkých týchto objektov *doména*;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- ▶ interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka \mathcal{L} , ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka \mathcal{L} , ktoré objekty z domény majú vlastnosť označenú predikátom P,
- ▶ tvoria *podmnožinu* domény;
- pre každý n-árny predikát R z jazyka \mathcal{L} , n > 1, ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,
- ▶ tvoria *n-árnu reláciu* na doméne.

Štruktúra pre jazyk

Definícia 1.15. Nech \mathcal{L} je jazyk atomických formúl logiky prvého rádu. *Štruktúrou* pre jazyk \mathcal{L} (niekedy *interpretáciou* jazyka \mathcal{L}) nazývame dvojicu $\mathcal{M} = (D, i)$, kde D je ľubovoľná *neprázdna* množina nazývaná *doména* štruktúry \mathcal{M} ; i je zobrazenie, nazývané *interpretačná funkcia* štruktúry \mathcal{M} , ktoré

- každej indivíduovej konštante c jazyka \mathcal{L} priraďuje prvok $i(c) \in D$;
- každému predikátovému symbolu P jazyka \mathcal{L} s aritou n priraďuje množinu $i(P) \subseteq D^n$.

Dohoda 1.16. Štruktúry označujeme veľkými písanými písmenami $\mathcal{M}, \mathcal{N}, \dots$

Príklad štruktúry

Príklad 1.17.

$$\mathcal{M} = (D, i), \quad D = \left\{ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký informatický objekt sa podobá na štruktúru?

Databáza:

Predikátové symboly jazyka \sim veľmi zjednodušená schéma DB (arita \sim počet stĺpcov)

Interpretácia predikátových symbolov ~ konkrétne tabuľky s dátami

$i(pes^1)$
1
J. J.

	i(dal³)			
1	2	3		
Ť	÷	ħ		
ŧ	ŧ	Ħ		
*	ŧ	L		

Štruktúry — upozornenia

Štruktúr pre daný jazyk je nekonečne veľa.

Doména štruktúry

- môže mať ľubovoľné prvky;
- nijak *nesúvisí* s intuitívnym významom interpretovaného jazyka;
- môže byť nekonečná.

Interpretácia symbolov konštánt:

- každej konštante je priradený objekt domény;
- nie každý objekt domény musí byť priradený nejakej konštante;
- rôznym konštantám môže byť priradený rovnaký objekt.

Interpretácie predikátových symbolov môžu byť nekonečné.

$$Priklad\ 1.18\ (\check{S}truktúra\ s\ nekonečnou\ doménou).$$
 $\mathcal{M}=(\mathbb{N},i)$ $i(\mathsf{pes})=\{2n\mid n\in\mathbb{N}\}$ $i(\mathsf{dal})=\{(n,m,n+m)\mid n,m\in\mathbb{N}\}$ $i(\mathsf{Bobík})=0$ $i(\mathsf{Cilka})=1$ $i(\mathsf{Evka})=3$ $i(\mathsf{Jarka})=5$ $i(\mathsf{Milo})=0$

Pravdivosť atomickej formuly v štruktúre

Ako zistíme, či je atomická formula pravdivá v štruktúre?

Definícia 1.19. Nech $\mathcal{M}=(D,i)$ je štruktúra pre jazyk \mathcal{L} atomických formúl jazyka logiky prvého rádu.

Rovnostný atóm $c_1 \doteq c_2$ jazyka \mathcal{L} je pravdivý v štruktúre \mathcal{M} vtedy a len vtedy, keď $i(c_1)=i(c_2)$.

Predikátový atóm $P(c_1, ..., c_n)$ jazyka \mathcal{L} je *pravdivý* v *štruktúre* \mathcal{M} vtedy a len vtedy, keď $(i(c_1), ..., i(c_n)) \in i(P)$.

Vzťah atóm A je pravdivý v štruktúre $\mathcal M$ skrátene zapisujeme $\mathcal M \models A$. Hovoríme aj, že $\mathcal M$ je modelom A.

Vzťah atóm A nie je pravdivý v štruktúre $\mathcal M$ zapisujeme $\mathcal M \not\models A$. Hovoríme aj, že A je nepravdivý v $\mathcal M$ a $\mathcal M$ nie je modelom A.

Príklad 1.20 (Určenie pravdivosti atómov v štruktúre).

$$\mathcal{M} = (D, i), \quad D = \left\{ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Atóm pes(Bobík) *je pravdivý* v štruktúre \mathcal{M} , t.j., $\mathcal{M} \models \text{pes(Bobík)}$, lebo objekt $i(\text{Bobík}) = \mathbf{k}$ je prvkom množiny $\{\mathbf{k}^*, \mathbf{k}^*\} = i(\text{pes})$.

Atóm dal(Evka, Jarka, Cilka) $je \ pravdiv \acute{y} \ v \ \mathcal{M}, t.j., \mathcal{M} \models dal(Evka, Jarka, Cilka),$ lebo $(i(Evka), i(Jarka), i(Cilka)) = \left(\underbrace{\bullet}, \ \overset{\bullet}{\bullet}, \ \overset{\bullet}{\bullet} \right) \in i(dal).$

Atóm Cilka \doteq Bobík *nie je pravdivý* v \mathcal{M} , t.j., $\mathcal{M} \not\models$ Cilka \doteq Bobík, lebo $i(\mathsf{Cilka}) = \biguplus \neq \biguplus = i(\mathsf{Bobík}).$

1.3 Zhrnutie

Zhrnutie

- Logika prvého rádu je rodina formálnych jazykov.
- Každý jazyk logiky prvého rádu je daný neprázdnou množinou indivíduových konštánt a množinou predikátových symbolov.
- Atomické formuly sú základnými výrazmi prvorádového jazyka.
 - Postupnosti symbolov $P(c_1, ..., c_n)$ (predikátové) a $c_1 \doteq c_2$ (rovnostné).
 - Zodpovedajú pozitívnym jednoduchým výrokom o vlastnostiach, stavoch, vzťahoch, rovnosti jednotlivých pomenovaných objektov.

- Význam jazyku dáva štruktúra matematický opis stavu sveta
 - Skladá sa z neprázdnej domény a z interpretačnej funkcie.
 - Konštanty interpretuje ako prvky domény.
 - Predikáty interpretuje ako podmnožiny domény/relácie na doméne.
- Pravdivosť atómu určíme interpretovaním argumentov a zistením, či je výsledná *n*-tica objektov prvkom interpretácie predikátu, resp. pri rovnostnom atóme, či sa objekty rovnajú.

2. prednáška

Výrokovologické spojky

Rekapitulácia

Minulý týždeň sme si povedali:

- čo sú symboly jazyka *atomických formúl* logiky prvého rádu;
- čo sú atomické formuly;
- · čo sú štruktúry:
 - modely stavu sveta,
 - neprázdna doména + interpretačná funkcia,
 - konštanty označujú objekty,
 - predikáty označujú vzťahy a vlastnosti;
- kedy sú atomické formuly pravdivé v danej štruktúre.
- Jazyk atomických formúl je oproti slovenčine veľmi slabý.
- Môžu byť pravdivé vo veľmi čudných štruktúrach.

2 Výrokovologické spojky

Výrokovologické spojky

Atomické formuly logiky prvého rádu môžeme spájať do zložitejších tvrdení výrokovologickými spojkami.

- Zodpovedajú spojkám v slovenčine, ktorými vytvárame súvetia.
- Významom spojky je vždy boolovská funkcia, teda funkcia na pravdivostných hodnotách spájaných výrokov. Pravdivostná hodnota zloženého výroku závisí iba od pravdivostných hodnôt podvýrokov.

Príklad 2.1. Negácia, konjunkcia, disjunkcia, implikácia, ekvivalencia, ...

Nevýrokovologické spojky

Negatívny príklad

Spojka pretože nie je výrokovologická.

Dôkaz. Uvažujme o výroku "Karol je doma, pretože Jarka je v škole".

Je pravdivý v situácii: Je 18:00 a Karol je doma, aby nakŕmil psíka. Ten by inak musel čakať na Jarku, ktorá šla dopoludnia do školy a vráti až o 19:30.

Nie je pravdivý v situácii: Jarka išla ráno do školy, ale Karol ostal doma, lebo je chorý. S Jarkinou prítomnosťou v škole to nesúvisí.

V oboch situáciách sú výroky "Karol je doma" aj "Jarka je v škole" pravdivé, ale pravdivostná hodnota zloženého výroku je rôzna. Nezávisí iba od pravdivostných hodnôt podvýrokov (ale od existencie vzťahu príčina-následok medzi nimi).

Spojka *pretože* teda nie je *funkciou* na pravdivostných hodnotách.

2.1 Boolovské spojky

Negácia

Negácia ¬ je *unárna* spojka − má jeden argument, formulu.

Zodpovedá výrazom nie, "nie je pravda, že ... ", predpone ne-.

Ľubovoľne vnárateľná.

Formula vytvorená negáciou sa nezátvorkuje.

Okolo argumentu negácie *nepridávame* zátvorky, ale môže ich mať on sám, ak to jeho štruktúra vyžaduje.

Priklad 2.2.

¬doma(Karol) Karol *nie* je doma. ¬Jarka ≐ Karol Jarka *nie* je Karol.

¬¬¬poslúcha(Cilka) Nie je pravda, že nie je pravda,

že Cilka neposlúcha.

(¬doma(Karol)) nesprávna ¬(doma(Karol)) syntax

Konjunkcia

Konjunkcia ∧ je *binárna* spojka.

Zodpovedá spojkám *a*, *aj*, *i*, *tiež*, *ale*, *avšak*, *no*, *hoci*, *ani*, *ba* (*aj/ani*), ... Formalizujeme ňou zlučovacie, stupňovacie a odporovacie súvetia:

- Jarka je doma aj Karol je doma. (doma(Jarka) ∧ doma(Karol))
- Jarka je v škole, no Karol je doma.
 (v_škole(Jarka) ∧ doma(Karol))
- Ani Jarka nie je doma, ani Karol tam nie je.
 (¬doma(Jarka) ∧ ¬doma(Karol))
- Nielen Jarka je chorá, ale aj Karol je chorý. (chorý(Jarka) ∧ chorý(Karol))

Zloženú formulu vždy zátvorkujeme.

Formalizácia viacnásobných vetných členov konjunkciou

Zlučovacie viacnásobné vetné členy tiež formalizujeme ako konjunkcie:

- Jarka aj Karol sú doma.
 (doma(Jarka) ∧ doma(Karol))
- Karol sa potkol a spadol.
 (potkol_sa(Karol) ∧ spadol(Karol))
- Jarka dostala Bobíka od mamy a otca.
 (dostal(Jarka, Bobík, mama) ∧ dostal(Jarka, Bobík, otec))

Podobne (jednoduché a viacnásobné zlučovacie) prívlastky vlastností:

- Eismann je ruský špión.
 (Rus(Eismann) ∧ špión(Eismann))
- Bobík je malý čierny psík.
 ((malý(Bobík) ∧ čierny(Bobík)) ∧ pes(Bobík))

Stratené v preklade

Zlučovacie súvetia niekedy vyjadrujú časovú následnosť, ktorá sa pri priamočiarom preklade do logiky prvého rádu *stráca*:

Jarka a Karol sa stretli a išli do kina. (stretli_sa(Jarka, Karol) ∧ (do_kina(Jarka) ∧ do_kina(Karol)))

 Jarka a Karol išli do kina a stretli sa. ((do_kina(Jarka)∧do_kina(Karol))∧ stretli sa(Jarka, Karol))

Disjunkcia

Disjunkcia v je binárna spojka, ktorá zodpovedá spojkám *alebo, či* v *inkluzívnom* význame (môžu nastať aj obe možnosti). Inkluzívnu disjunkciu vyjadruje tiež "*alebo aj/i*" a častice *respektíve*, *eventuálne*, *poprípade*, *prípadne*.

Disjunkciou formalizujeme vylučovacie súvetia s inkluzívnym významom:

- Jarka je doma alebo Karol je doma. (doma(Jarka) ∨ doma(Karol))
- Bobíka kúpe Jarka, prípadne ho kúpe Karol. (kúpe(Jarka, Bobík) V kúpe(Karol, Bobík))

Zloženú formulu vždy zátvorkujeme.

Formalizácia viacnásobných vetných členov disjunkciou

Viacnásobné vetné členy s vylučovacou spojkou (v inkluzívnom význame) tiež prekladáme ako disjunkcie:

- Doma je Jarka alebo Karol. (doma(Jarka) ∨ doma(Karol))
- Jarka je doma alebo v škole. (doma(Jarka) ∨ v_škole(Jarka))
- Jarka dostala Bobíka od mamy alebo otca. (dostal(Jarka, Bobík, mama) v dostal(Jarka, Bobík, otec))
- Bobík je čierny či tmavohnedý psík. ((čierny(Bobík)∨tmavohnedý(Bobík))∧ pes(Bobík))

Exkluzívna disjunkcia

Konštrukcie "bud'..., alebo...", "bud'..., bud'...", "alebo..., alebo..." spravidla (v matematike vždy) vyjadrujú exkluzívnu disjunkciu.

• Buď je batéria vybitá alebo svieti kontrolka.

Exkluzívnu disjunkciu môžeme vyjadriť zložitejšou formulou:

```
((vybitá(batéria) ∨ svieti(kontrolka)) ∧ ¬(vybitá(batéria) ∧ svieti(kontrolka))).
```

Niekedy aj samotné *alebo* spája možnosti, o ktorých vieme, že sú vzájomne výlučné (na základe znalostí o fungovaní domény alebo z kontextu):

 Jarka sa nachádza doma alebo v škole. (Nemôže byť súčasne na dvoch miestach.)

Viď Znalosti na pozadí ďalej.

Jednoznačnosť rozkladu

Formuly s binárnymi spojkami sú vždy uzátvorkované. Dajú sa jednoznačne rozložiť na podformuly a interpretovať.

Slovenské tvrdenia so spojkami nie sú vždy jednoznačné:

- Karol je doma a Jarka je doma alebo je Bobík šťastný.
 - $((doma(Karol) \land doma(Jarka)) \lor šťastný(Bobík))$
 - $(doma(Karol) \land (doma(Jarka) \lor šťastný(Bobík)))$
- Karol je doma alebo Jarka je doma a Bobík je šťastný.
 - ($(doma(Karol) \lor doma(Jarka)) \land šťastný(Bobík)$
 - $(doma(Karol) \lor (doma(Jarka) \land šťastný(Bobík)))$

Jednoznačnosť rozkladu v slovenčine

Slovenčina má prostriedky podobné zátvorkám:

- Viacnásobný vetný člen (+obaja, niekto z):
 - Karol aj Jarka sú (obaja) doma alebo je Bobík šťastný.
 ((doma(Karol) ∧ doma(Jarka)) ∨ šťastný(Bobík))
 - Doma je Karol alebo Jarka a Bobík je šťastný.
 Niekto z dvojice Karol a Jarka je doma a Bobík je šťastný.
 ((doma(Karol) ∨ doma(Jarka)) ∧ šťastný(Bobík))

- Kombinácie spojok *buď* ..., *alebo* ...; *alebo* ...; *aj* ...; *ani* ...; a pod.
 - Karol je doma a buď je doma Jarka, alebo je Bobík šťastný, alebo jedno aj druhé. Aj Karol je doma, aj Jarka je doma alebo je Bobík šťastný.

```
(doma(Karol) \land (doma(Jarka) \lor šťastný(Bobík)))
```

Alebo je doma Karol, alebo je doma Jarka a Bobík je šťastný,
 alebo aj aj. (doma(Karol) ∨ (doma(Jarka) ∧ šťastný(Bobík)))

Oblasť platnosti negácie

Výskyt negácie sa vzťahuje na *najkratšiu nasledujúcu formulu – oblasť platnosti* tohto výskytu.

- $((\neg \frac{doma(Karol)}{\wedge} \land doma(Jarka)) \lor šťastný(Bobík))$
- (¬(doma(Karol) ∧ doma(Jarka)) ∨ šťastný(Bobík))

Argument negácie je *uzátvorkovaný práve vtedy*, keď je *priamo* vytvorený binárnou spojkou:

Interakcia negácie s alebo v slovenčine

Zamyslite sa 2.1

Ako by ste sformalizovali: "Doma nie je Jarka alebo Karol"?

- A. (¬doma(Jarka) ∨ ¬doma(Karol))
- B. $\neg(doma(Jarka) \lor doma(Karol))$

Zvyčajné chápanie v slovenčine je A. Formalizácii B zodpovedá "Nie je pravda, že Jarka alebo Karol je doma."

Negácia rovnostného atómu

Rovnosť nie je spojka, preto:

- ¬ Jarka ≐ Karol Jarka nie je Karol.

Zátvorky sú zbytočné, lebo čítanie "«Nie je pravda, že Jarka» sa rovná Karol" je nezmyselné:

- 1. Syntakticky: Negácia sa vzťahuje na formulu. Konštanta nie je formula, rovnosť s oboma argumentmi je.
- Sémanticky: Negácia je funkcia na pravdivostných hodnotách. Konštanty označujú objekty domény. Objekty nie sú pravdivé ani nepravdivé.

Dohoda 2.3. Formulu $\neg \tau \doteq \sigma$ budeme skrátene zapisovať $\tau \neq \sigma$.

2.2 Implikácia

Implikácia

Implikácia \rightarrow je binárna spojka približne zodpovedajúca podmienkovému podraďovaciemu súvetiu $ak\ldots$, $tak\ldots$

Vo formule $(A \rightarrow B)$ hovorime podformule A antecedent a podformule B konzekvent.

Formula vytvorená implikáciou je *nepravdivá* v *jedinom* prípade: antecedent je pravdivý a konzekvent nepravdivý.

1 Tomuto významu nezodpovedajú všetky súvetia ak..., tak...:

Napr. veta "Ak by Sarah prišla, Jim by prišiel tiež" je nepravdivá, keď ňou chceme povedať, že si myslíme, že išli rovnakým autobusom, ale v skutočnosti Jim išiel iným a zmeškal ho. Implikácia plne nevystihuje prípady, keď ak …, tak … vyjadruje (neboolovský) vzťah príčina-následok (ako pretože).

Ked'..., potom... má často význam časovej následnosti, ktorý implikácia tiež nepostihuje.

Nutná a postačujúca podmienka

Implikáciu vyjadrujú aj súvetia:

Jim príde, *ak* príde Kim. Jim príde, *iba ak* príde Kim.

Vedľajšie vety (*príde Kim*) sú *podmienkami* hlavnej vety (*Jim príde*). Ale je medzi nimi *podstatný rozdiel*:

Postačujúca podmienka

Jim príde, *ak* príde Kim.

- Na to, aby prišiel Jim, stačí, aby prišla Kim.
- Teda, ak príde Kim, tak príde aj Jim.
- Nepravdivé, keď Kim príde, ale Jim *ne*príde.
- Zodpovedá teda (príde(Kim) → príde(Jim)).

Vo všeobecnosti:

$$A$$
, ak B . \rightsquigarrow $(B \to A)$

Iné vyjadrenia:

• Jim príde, pokiaľ príde Kim.

Nutná podmienka

Jim príde, *iba ak* príde Kim.

- Na to, aby prišiel Jim, *je nevyhnutné*, aby prišla Kim, ale nemusí to stačiť.
- Teda, ak Jim príde, tak príde aj Kim.
- Nepravdivé, keď Jim príde, ale Kim *ne*príde.
- Zodpovedá teda (príde(Jim) → príde(Kim)).

Vo všeobecnosti:

$$A$$
, iba ak B . \rightsquigarrow $(A \rightarrow B)$

Iné vyjadrenia:

- Jim príde, iba pokiaľ s Kim.
- Jim príde *iba* spolu s Kim.
- Jim nepríde bez Kim.

Nutná a postačujúca podmienka rukolapne

Určite by sa vám páčilo, keby z pravidiel predmetu vyplývalo:

Z logiky prejdete, ak prídete na písomnú aj ústnu skúšku.

Stačilo by prísť na obe časti skúšky a nebolo by nutné urobiť nič iné.

Žiaľ, z našich pravidiel vyplýva:

Z logiky prejdete, *iba ak* prídete na písomnú aj ústnu skúšku.

Prísť na obe časti skušky je nutné, ale na prejdenie to nestačí.

Súvetia formalizované implikáciou

 $(A \rightarrow B)$ formalizuje (okrem iných) zložené výroky:

- Ak A, tak B.
- Ak *A*, tak aj *B*.
- Ak A, B.
- Pokiaľ *A*, [tak (aj)] *B*.
- *A*, iba/len/jedine ak/pokiaľ(/keď) *B*.
- *A* nastane iba spolu s *B*.
- A nenastane bez B.
- B, ak/pokiaľ(/keď) A.

2.3 Ekvivalencia

Ekvivalencia

Ekvivalencia ↔ vyjadruje, že ňou spojené výroky majú rovnakú pravdivostnú hodnotu.

Zodpovedá slovenským výrazom *ak a iba ak*; *vtedy a len vtedy, keď*; *práve vtedy, keď*; *rovnaký* ... *ako* ...; *taký* ... *ako*

- Jim príde, ak a iba ak príde Kim. (príde(Jim) ↔ príde(Kim))
- Číslo n je párne práve vtedy, keď n^2 je párne. (párne(n) \leftrightarrow párne(n²))
- Müller je taký Nemec, ako je Stirlitz Rus. (Nemec(Müller) ↔ Rus(Stirlitz))

Ekvivalencia

Ekvivalencia $(A \leftrightarrow B)$ zodpovedá tvrdeniu, že A je nutnou aj postačujúcou podmienkou B.

Budeme ju preto považovať za skratku za formulu

$$((A \to B) \land (B \to A)).$$

Ďalšie spojky a vetné konštrukcie

V slovenčine a iných prirodzených aj umelých jazykoch sa dajú tvoriť aj oveľa komplikovanejšie podmienené tvrdenia:

- Karol je doma, *ak* je Jarka v škole, *inak* má Jarka obavy.
- Karol je doma, ak je Jarka v škole, inak má Jarka obavy, okrem prípadov, keď je Bobík s ním.

Výrokovologické spojky sa dajú vytvoriť aj pre takéto konštrukcie, ale väčšinou sa to nerobí.

Na ich vyjadrenie stačia aj základné spojky. Mohli by sme pre ne vymyslieť označenie a považovať aj ako skratky, podobne ako ekvivalenciu.

2.4 Syntax výrokovologických formúl

Syntax a sémantika formúl s výrokovologickými spojkami

Podobne ako pri atomických formulách, aj pri formulách s výrokovologickými spojkami potrebujeme *zadefinovať* – presne a záväzne – ich *syntax* (skladbu) a *sémantiku* (význam).

Niektoré definície preberieme, iné rozšírime alebo modifikujeme, ďalšie pridáme.

Syntax výrokovologických formúl logiky prvého rádu špecifikuje:

- z čoho sa skladajú,
- čím sú a akú majú štruktúru.

Symboly výrokovologickej časti logiky prvého rádu

Definícia 2.4. Symbolmi jazyka \mathcal{L} výrokovologickej časti logiky prvého rádu sú:

mimologické symboly, ktorými sú

- indivíduové konštanty z nejakej neprázdnej spočítateľnej množiny $\mathcal{C}_{\mathcal{L}}$
- a predikátové symboly z nejakej spočítateľnej množiny $\mathcal{P}_{\mathcal{L}}$;

logické symboly, ktorými sú

- výrokovologické spojky ¬, ∧, ∨, → (nazývané, v uvedenom poradí, symbol negácie, symbol konjunkcie, symbol disjunkcie, symbol implikácie);
- a symbol rovnosti ≐;

pomocné symboly (,) a , (ľavá zátvorka, pravá zátvorka a čiarka).

Množiny $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ sú disjunktné. Pomocné ani logické symboly sa nevyskytujú v symboloch z $\mathcal{C}_{\mathcal{L}}$ ani $\mathcal{P}_{\mathcal{L}}$. Každému symbolu $P \in \mathcal{P}_{\mathcal{L}}$ je priradená arita ar $_{\mathcal{L}}(P) \in \mathbb{N}^+$.

Atomické formuly

Definícia atomických formúl je takmer rovnaká ako doteraz:

Definícia 2.5. Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu. *Rovnostný atóm* jazyka \mathcal{L} je každá postupnosť symbolov $c_1 \doteq c_2$, kde c_1 a c_2 sú indivíduové konštanty z $\mathcal{C}_{\mathcal{L}}$.

Predikátový atóm jazyka \mathcal{L} je každá postupnosť symbolov $P(c_1, ..., c_n)$, kde P je predikátový symbol z $\mathcal{P}_{\mathcal{L}}$ s aritou n a $c_1, ..., c_n$ sú indivíduové konštanty z $\mathcal{C}_{\mathcal{L}}$.

 $Atomickými \ formulami$ (skrátene atómami) jazyka $\mathcal L$ súhrnne nazývame všetky rovnostné a predikátové atómy jazyka $\mathcal L$.

Množinu všetkých atómov jazyka \mathcal{L} označujeme $\mathcal{A}_{\mathcal{L}}$.

Čo sú výrokovologické formuly?

Majme jazyk \mathcal{L} , kde $\mathcal{C}_{\mathcal{L}} = \{\text{Kim, Jim, Sarah}\}\ a\ \mathcal{P}_{\mathcal{L}} = \{\text{príde}^1\}.$ Čo sú formuly tohto jazyka?

- Samotné atómy, napr. príde(Sarah).
- Negácie atómov, napr. ¬príde(Sarah).
- Atómy alebo aj ich negácie spojené spojkou, napr. (¬príde(Kim)∨príde(Sarah)).
- Ale negovať a spájať spojkami môžeme aj zložitejšie formuly, napr. (¬(príde(Kim) ∧ príde(Sarah)) → (¬príde(Kim) ∨ ¬príde(Sarah))).

Ako to presne a úplne popíšeme?

Čo sú výrokovologické formuly?

Ako presne a úplne popíšeme, čo je formula? *Induktívnou* definíciou:

- 1. Povieme, čo sú základné formuly, ktoré sa nedajú rozdeliť na menšie formuly.
 - ▶ Podobne ako báza pri matematickej indukcii.
- 2. Opíšeme, ako sa z jednoduchších formúl skladajú zložitejšie.
 - ▶ Podobne ako indukčný krok pri matematickej indukcii.
- 3. Zabezpečíme, že nič iné nie je formulou.

Formuly jazyka výrokovologickej časti logiky prvého rádu

Definícia 2.6. Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu. *Množina* $\mathcal{E}_{\mathcal{L}}$ *formúl jazyka* \mathcal{L} je (3.) *najmenšia* množina postupností symbolov, ktorá spĺňa všetky nasledujúce podmienky:

- 1. Každý atóm z $\mathcal{A}_{\mathcal{L}}$ je formulou z $\mathcal{E}_{\mathcal{L}}$.
- 2.1. Ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov $\neg A$ patrí do $\mathcal{E}_{\mathcal{L}}$ a nazývame ju *negácia* formuly A.
- 2.2. Ak A a B sú v $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosti symbolov $(A \wedge B)$, $(A \vee B)$ a $(A \rightarrow B)$ patria do $\mathcal{E}_{\mathcal{L}}$ a nazývame ich postupne *konjunkcia*, *disjunkcia* a *implikácia* formúl A a B.

Každý prvok A množiny $\mathcal{E}_{\mathcal{L}}$ nazývame formulou jazyka \mathcal{L} .

Dohody · Vytvorenie formuly

Dohoda 2.7. Formuly označujeme meta premennými A, B, C, X, Y, Z, podľa potreby aj s dolnými indexmi.

Dohoda 2.8. Pre každú dvojicu formúl $A, B \in \mathcal{E}_{\mathcal{L}}$ je zápis $(A \leftrightarrow B)$ *skratka* za formulu $((A \to B) \land (B \to A))$.

Technicky $(\cdot \leftrightarrow \cdot)$: $\mathcal{E}_{\mathcal{L}} \times \mathcal{E}_{\mathcal{L}} \to \mathcal{E}_{\mathcal{L}}$ je funkcia na formulách definovaná ako $(A \leftrightarrow B) = ((A \to B) \land (B \to A))$ pre každé dve formuly A a B.

Priklad 2.9. Ako by sme podľa definície 2.6 mohli dokázať, že (¬príde(Kim) → (príde(Jim) ∨ príde(Sarah))) je formula? Teda, ako by sme ju podľa definície 2.6 mohli *vytvoriť*?

Vytvárajúca postupnosť

Definícia 2.10. *Vytvárajúcou postupnosťou* nad jazykom \mathcal{L} výrokovologickej časti logiky prvého rádu je ľubovoľná konečná postupnosť A_0, \ldots, A_n postupností symbolov, ktorej každý člen

- je atóm z $\mathcal{A}_{\mathcal{L}}$, alebo
- má tvar $\neg A$, pričom A je niektorý predchádzajúci člen postupnosti, alebo

• má jeden z tvarov $(A \land B)$, $(A \lor B)$, $(A \to B)$, kde A a B sú niektoré predchádzajúce členy postupnosti.

Vytvárajúcou postupnosťou pre X je ľubovoľná vytvárajúca postupnosť, ktorej posledným prvkom je *X*.

Indukcia na konštrukciu formuly

Veta 2.11 (Princíp indukcie na konštrukciu formuly). *Nech P je ľubovoľná vlastnosť formúl* ($P \subseteq \mathcal{E}_{\mathcal{L}}$). *Ak platí súčasne*

- 1. každý atóm z A_L má vlastnosť P,
- 2.1. ak formula A má vlastnosť P, tak aj $\neg A$ má vlastnosť P,
- 2.2. ak formuly A a B majú vlastnosť P, tak aj každá z formúl $(A \land B)$, $(A \lor B)$ a $(A \to B)$ má vlastnosť P,

tak všetky formuly majú vlastnosť $P(P = \mathcal{E}_{\mathcal{L}})$.

Formula a existencia vytvárajúcej postupnosti

Tvrdenie 2.12. Postupnosť symbolov A je výrokovologickou formulou vtt existuje vytvárajúca postupnosť pre A.

Osnova dôkazu. (⇒) Indukciou na konštrukciu formuly (⇐) Indukciou na dĺžku vytvárajúcej postupnosti

vtt skracuje "vtedy a len vtedy, ked".

Vytvárajúcu postupnosť by sme mohli použiť na alternatívnu definíciu formúl.

(Ne)jednoznačnosť rozkladu formúl výrokovej logiky

Čo keby sme zadefinovali "formuly" takto?

Definícia "formúl"

Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu. Množina $\mathcal{E}_{\mathcal{L}}$ "formúl" jazyka \mathcal{L} je (3.) *najmenšia* množina postupností symbolov, ktorá spĺňa všetky nasledujúce podmienky:

- 1. Každý atóm z $\mathcal{A}_{\mathcal{L}}$ je "formulou" z $\mathcal{E}_{\mathcal{L}}.$
- 2.1. Ak *A* patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov $\neg A$ patrí do $\mathcal{E}_{\mathcal{L}}$.
- 2.2. Ak A a B sú v $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosti symbolov $A \wedge B$, $A \vee B$ a $A \to B$ patria do $\mathcal{E}_{\mathcal{L}}$.
- 2.3. ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov (A) je v $\mathcal{E}_{\mathcal{L}}$.

Každý prvok A množiny $\mathcal{E}_{\mathcal{L}}$ nazývame "formulou" jazyka \mathcal{L} .

Čo znamená "formula" (príde(Jim) \rightarrow príde(Kim) \rightarrow ¬príde(Sarah))? Formulu by sme mohli čítať ako $A = (\text{príde}(\text{Jim}) \rightarrow (\text{príde}(\text{Kim})) \rightarrow \text{¬príde}(\text{Sarah})))$ alebo ako $B = ((\text{príde}(\text{Jim}) \rightarrow \text{príde}(\text{Kim})) \rightarrow \text{¬príde}(\text{Sarah})).$

Čítanie *A* hovorí, že Sarah nepríde, ak prídu Jim a Kim súčasne. To neplatí v *práve jednej* situácii: keď všetci prídu.

Čítanie *B* hovorí, že Sarah nepríde, ak alebo nepríde Jim alebo príde Kim. To však neplatí *v aspoň dvoch* rôznych situáciách: keď prídu všetci a keď príde Sarah a Kim, ale nie Jim.

Jednoznačnosť rozkladu formúl výrokovej logiky

Pre našu definíciu formúl platí:

Tvrdenie 2.13 (o jednoznačnosti rozkladu). *Pre každú formulu X* $\in \mathcal{E}_{\mathcal{L}}$ v jazyku \mathcal{L} platí práve jedna z nasledujúcich možností:

- X je atóm $z \mathcal{A}_{\mathcal{L}}$.
- Existuje práve jedna formula $A \in \mathcal{E}_{\mathcal{L}}$ taká, že $X = \neg A$.
- Existujú práve jedna dvojica formúl $A, B \in \mathcal{E}_{\mathcal{L}}$ a jedna spojka $b \in \{\land, \lor, \to\}$ také, že $X = (A \ b \ B)$.

Problémy s vytvárajúcou postupnosťou

Vytvárajúca postupnosť popisuje konštrukciu formuly podľa definície formúl:

```
príde(Jim), príde(Sarah), \negpríde(Jim), príde(Kim), \negpríde(Sarah), (\negpríde(Jim) \land príde(Kim)), ((\negpríde(Jim) \land príde(Kim)) \rightarrow \negpríde(Sarah))
```

ale

- môže obsahovať "zbytočné" prvky;
- nie je jasné *ktoré* z predchádzajúcich formúl sa *bezprostredne* použijú na vytvorenie nasledujúcej formuly.

Akou "dátovou štruktúrou" vieme vyjadriť konštrukciu formuly bez týchto problémov?

Vytvárajúci strom

Konštrukciu si vieme predstaviť ako strom:

Takéto stromy voláme vytvárajúce.

Ako ich *presne* a *všeobecne* popíšeme — zadefinujeme? Podobne ako sa definuje napr. binárny vyhľadávací strom.

Vytvárajúci strom formuly

Definícia 2.14. Vytvárajúci strom T pre formulu X je binárny strom obsahujúci v každom vrchole formulu, pričom platí:

- v koreni T je formula X,
- ak vrchol obsahuje formulu $\neg A$, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu (A b B), kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce atómy sú listami.

Syntaktické vzťahy formúl

Uvažujme formulu:

$$((\neg pride(Jim) \land pride(Kim)) \rightarrow \neg pride(Sarah))$$

Ako nazveme formuly, z ktorých vznikla?

Ako nazveme formuly, z ktorých bezprostredne/priamo vznikla?

$$(\neg pride(Jim) \land pride(Kim))$$
 a $\neg pride(Sarah)$

Ako tieto pojmy presne zadefinujeme?

Podformuly

Definícia 2.15 (Priama podformula). Pre všetky formuly *A* a *B*:

- Priamou podformulou $\neg A$ je formula A.
- Priamymi podformulami $(A \land B)$, $(A \lor B)$ a $(A \to B)$ sú formuly A ($l'av\acute{a}$ priama podformula) a B ($prav\acute{a}$ priama podformula).

Definícia 2.16 (Podformula). Vzťah *byť podformulou* je najmenšia relácia na formulách spĺňajúca pre všetky formuly X, Y a Z:

- X je podformulou X.
- Ak *X* je priamou podformulou *Y*, tak *X* je podformulou *Y*.
- Ak X je podformulou Y a Y je podformulou Z, tak X je podformulou Z.

Formula X je vlastnou podformulou formuly Y práve vtedy, keď X je podformulou Y a $X \neq Y$.

Meranie syntaktickej zložitosti formúl

Miera zložitosti/veľkosti formuly:

- Jednoduchá: dĺžka, teda počet symbolov
 - Počíta aj pomocné symboly.
 - Nič nemá mieru 0, ani atómy.
- Lepšia: počet netriviálnych krokov pri konštrukcii formuly
 - pridanie negácie,
 - spojenie formúl spojkou.

Túto lepšiu mieru nazývame stupeň formuly.

Príklad 2.17. Aký je stupeň formuly ((príde(Jim)∨¬príde(Kim))∧¬(príde(Sarah) \rightarrow pr

Meranie syntaktickej zložitosti formúl

Ako stupeň zadefinujeme?

Podobne ako sme zadefinovali formuly — induktívne:

- 1. určíme hodnotu stupňa pre atomické formuly,
- 2. určíme, ako zo stupňa priamych podformúl vypočítame stupeň z nich zloženej formuly.

Stupeň formuly

Definícia 2.18 (Stupeň formuly). Pre všetky formuly A a B a všetky n, $n_1, n_2 \in \mathbb{N}$:

- Atomická formula je stupňa 0.
- Ak *A* je formula stupňa *n*, tak $\neg A$ je stupňa n + 1.
- Ak A je formula stupňa n_1 a B je formula stupňa n_2 , tak $(A \wedge B)$, $(A \vee B)$ a $(A \rightarrow B)$ sú stupňa $n_1 + n_2 + 1$.

Definícia 2.18 (Stupeň formuly presnejšie a symbolicky). *Stupeň* $\deg(X)$ formuly $X \in \mathcal{E}_{\mathcal{L}}$ definujeme pre všetky formuly $A, B \in \mathcal{E}_{\mathcal{L}}$ nasledovne:

- deg(A) = 0, ak $A \in \mathcal{A}_{\mathcal{L}}$,
- $deg(\neg A) = deg(A) + 1$,
- $\deg((A \land B)) = \deg((A \lor B)) = \deg((A \to B)) = \deg(A) + \deg(B) + 1.$

Indukcia na stupeň formuly

Pomocou stupňa vieme indukciu na konštrukciu formuly zredukovať na špeciálny prípad matematickej indukcie:

Veta 2.19 (Princíp indukcie na stupeň formuly). *Nech P je ľubovoľná vlastnosť formúl* ($P \subseteq \mathcal{E}_{\mathcal{L}}$). *Ak platí súčasne*

- 1. báza indukcie: každá formula stupňa 0 má vlastnosť P,
- 2. indukčný krok: pre každú formulu X z predpokladu, že všetky formuly menšieho stupňa ako deg(X) majú vlastnosť P, vyplýva, že aj X má vlastnosť P,

tak všetky formuly majú vlastnosť $P(P = \mathcal{E}_{\mathcal{L}})$.

2.5 Sémantika výrokovologických formúl

Sémantika výrokovej logiky

Význam formúl výrokovologickej časti logiky prvého rádu popíšeme podobne ako význam atomických formúl pomocou *štruktúr*.

Štruktúra pre jazyk

Definícia štruktúry takmer nemení:

Definícia 2.20. Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu. Štruktúrou pre jazyk \mathcal{L} nazývame dvojicu $\mathcal{M}=(D,i)$, kde D je ľubovoľná neprázdna množina nazývaná doména štruktúry \mathcal{M} ; i je zobrazenie, nazývané interpretačná funkcia štruktúry \mathcal{M} , ktoré

- každému symbolu konštanty c jazyka \mathcal{L} priraďuje prvok $i(c) \in D$;
- každému predikátovému symbolu P jazyka \mathcal{L} s aritou n priraďuje množinu $i(P) \subseteq D^n$.

Pravdivosť formuly v štruktúre

Definícia 2.21. Nech $\mathcal{M}=(D,i)$ je štruktúra pre jazyk \mathcal{L} výrokovologickej časti logiky prvého rádu. Reláciu *formula A je pravdivá v štruktúre* \mathcal{M} ($\mathcal{M} \models A$) definujeme *induktívne* pre všetky arity n > 0, všetky predikátové symboly P s aritou n všetky konštanty c_1, c_2, \ldots, c_n , a všetky formuly A, B jazyka \mathcal{L} nasledovne:

- $\mathcal{M} \models c_1 \doteq c_2 \text{ vtt } i(c_1) = i(c_2),$
- $\mathcal{M} \models P(c_1, \dots, c_n)$ vtt $(i(c_1), \dots, i(c_n)) \in i(P)$,
- $\mathcal{M} \models \neg A \text{ vtt } \mathcal{M} \not\models A$,
- $\mathcal{M} \models (A \land B)$ vtt $\mathcal{M} \models A$ a zároveň $\mathcal{M} \models B$,
- $\mathcal{M} \models (A \lor B)$ vtt $\mathcal{M} \models A$ alebo $\mathcal{M} \models B$,
- $\mathcal{M} \models (A \rightarrow B)$ vtt $\mathcal{M} \not\models A$ alebo $\mathcal{M} \models B$,

kde $\mathcal{M} \not\models A$ skracuje A nie je pravdivá v \mathcal{M} .

Vyhodnotenie pravdivosti formuly

 $Priklad\ 2.22$ (Vyhodnotenie pravdivosti formuly v štruktúre). Majme štruktúru $\mathcal{M}=(D,i)$ pre jazyk o party, kde $D=\{0,1,2,3\},i(\mathsf{Kim})=1,i(\mathsf{Jim})=2,i(\mathsf{Sarah})=3,i(\mathsf{pride})=\{1,3\}.$

Formuly vyhodnocujeme podľa definície postupom zdola nahor (od atómov cez zložitejšie podformuly k cieľovej formule):

$$\mathcal{M} \not\models (\neg(\mathsf{pride}(\mathsf{Jim}) \lor \neg \mathsf{pride}(\mathsf{Kim})) \to \neg \mathsf{pride}(\mathsf{Sarah}))$$

$$\mathcal{M} \models \neg(\mathsf{pride}(\mathsf{Jim}) \lor \neg \mathsf{pride}(\mathsf{Kim})) \qquad \mathcal{M} \not\models \neg \mathsf{pride}(\mathsf{Sarah})$$

$$\mathcal{M} \not\models (\mathsf{pride}(\mathsf{Jim}) \lor \neg \mathsf{pride}(\mathsf{Kim})) \qquad \mathcal{M} \models \mathsf{pride}(\mathsf{Sarah})$$

$$\mathcal{M} \not\models \mathsf{pride}(\mathsf{Jim}) \qquad \mathcal{M} \not\models \neg \mathsf{pride}(\mathsf{Kim}) \qquad i(\mathsf{Sarah}) \in i(\mathsf{pride})$$

$$\downarrow i(\mathsf{Jim}) \not\in i(\mathsf{pride}) \qquad \mathcal{M} \models \mathsf{pride}(\mathsf{Kim}) \qquad 3 \in \{1,3\}$$

$$\downarrow i(\mathsf{Kim}) \in i(\mathsf{pride})$$

$$\downarrow 1 \in \{1,3\}$$

Vyhodnotenie pravdivosti formuly

Príklad 2.23 (Vyhodnotenie pravdivosti formuly v štruktúre). Majme štruktúru $\mathcal{M} = (D, i)$ pre jazyk o party, kde $D = \{0, 1, 2, 3\}$, $i(\mathsf{Kim}) = 1$, $i(\mathsf{Jim}) = 2$, $i(\mathsf{Sarah}) = 3$, $i(\mathsf{príde}) = \{1, 3\}$.

Vyhodnotenie pravdivosti môžeme zapísať aj tabuľkou:

kde p = príde, K = Kim, J = Jim a S = Sarah.

Všimnite si, že v záhlaví tabuľky je vytvárajúca postupnosť vyhodnocovanej formuly.

Hľadanie štruktúry

Príklad 2.24 (Nájdenie štruktúry, v ktorej je formula pravdivá). *V akej štruktúre* $\mathcal{M} = (D, i)$ je pravdivá formula $\mathcal{M} \models (\neg(\mathsf{príde}(\mathsf{Jim}) \lor \neg\mathsf{príde}(\mathsf{Kim})) \to \neg\mathsf{príde}(\mathsf{Sarah}))?$

Na zodpovedanie je dobré postupovať podľa definície pravdivosti zhora nadol (od cieľovej formuly cez podformuly k atómom):

 $\mathcal{M} \models (\neg(\mathsf{pride}(\mathsf{Jim}) \lor \neg \mathsf{pride}(\mathsf{Kim})) \to \neg \mathsf{pride}(\mathsf{Sarah})) \, \mathsf{vtt} \, \mathcal{M} \not\models \neg(\mathsf{pride}(\mathsf{Jim}) \lor \neg \mathsf{pride}(\mathsf{Kim})) \, \mathsf{alebo} \, \mathcal{M} \models \neg \mathsf{pride}(\mathsf{Sarah}) \, \mathsf{vtt} \, \mathcal{M} \models (\mathsf{pride}(\mathsf{Jim}) \lor \neg \mathsf{pride}(\mathsf{Kim})) \, \mathsf{alebo} \, \mathcal{M} \not\models \mathsf{pride}(\mathsf{Sarah}) \, \mathsf{vtt} \, \mathcal{M} \models \mathsf{pride}(\mathsf{Jim}) \, \mathsf{alebo} \, \mathcal{M} \models \neg \mathsf{pride}(\mathsf{Kim}) \, \mathsf{alebo} \, \mathcal{M} \not\models \mathsf{pride}(\mathsf{Sarah}) \, \mathsf{vtt} \, i(\mathsf{Jim}) \in i(\mathsf{pride}) \, \mathsf{alebo} \, i(\mathsf{Kim}) \not\in i(\mathsf{pride}) \, \mathsf{alebo} \, i(\mathsf{Sarah}) \not\in i(\mathsf{pride}).$

2.6 Teórie a ich modely

Teórie v neformálnej logike

Medzi základnými logickými pojmami z úvodnej prednášky boli teória a model.

Neformálne je teória súbor tvrdení, ktoré pokladáme za pravdivé.

Zvyčajne popisujú našu predstavu o zákonitostiach platných v nejakej časti sveta a pozorovania o jej stave.

Príklad 2.25. Máme troch nových známych — Kim, Jima a Sarah. Organizujeme párty a P0: chceme, aby na ňu prišiel niekto z nich. Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

P1: Sarah nepríde na párty, ak príde Kim.

P2: Jim príde na párty, len ak príde Kim.

P3: Sarah nepríde bez Jima.

Výrokovologické teórie

V logike prvého rádu tvrdenia zapisujeme formulami. Teóriu preto budeme chápať ako súbor (čiže množinu) formúl.

Definícia 2.26. Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu. Každú množinu formúl jazyka $\mathcal L$ budeme nazývať *teóriou* v jazyku $\mathcal L$.

Príklad 2.27.

$$\begin{split} T_{\text{party}} &= \{ ((\text{pride}(\text{Kim}) \vee \text{pride}(\text{Jim})) \vee \text{pride}(\text{Sarah})), \\ & (\text{pride}(\text{Kim}) \rightarrow \neg \text{pride}(\text{Sarah})), \\ & (\text{pride}(\text{Jim}) \rightarrow \text{pride}(\text{Kim})), \\ & (\text{pride}(\text{Sarah}) \rightarrow \text{pride}(\text{Jim})) \} \end{split}$$

Modely teórií

Neformálne je *modelom* teórie stav vybranej časti sveta, v ktorom sú všetky tvrdenia v teórii pravdivé.

Pre logiku prvého rádu stavy sveta vyjadrujú štruktúry.

Príklad 2.28 (Model teórie o party).

$$\mathcal{M} = (\{\mathsf{k},\mathsf{j},\mathsf{s},\mathsf{e},\mathsf{h}\},i), \\ i(\mathsf{Kim}) = \mathsf{k}, \qquad i(\mathsf{Jim}) = \mathsf{j}, \qquad i(\mathsf{Sarah}) = \mathsf{s}, \\ i(\mathsf{pr}(\mathsf{ide}) = \{\mathsf{k},\mathsf{j},\mathsf{e}\}; \\ \mathcal{M} \models ((\mathsf{pr}(\mathsf{ide}(\mathsf{Kim}) \lor \mathsf{pr}(\mathsf{ide}(\mathsf{Jim})) \lor \mathsf{pr}(\mathsf{ide}(\mathsf{Sarah}))) \\ \mathcal{M} \models (\mathsf{pr}(\mathsf{ide}(\mathsf{Kim}) \to \mathsf{pr}(\mathsf{ide}(\mathsf{Sarah}))) \\ \mathcal{M} \models (\mathsf{pr}(\mathsf{ide}(\mathsf{Jim}) \to \mathsf{pr}(\mathsf{ide}(\mathsf{Kim}))) \\ \mathcal{M} \models (\mathsf{pr}(\mathsf{ide}(\mathsf{Sarah}) \to \mathsf{pr}(\mathsf{ide}(\mathsf{Jim}))) \\ \end{pmatrix} \mathcal{M} \models (\mathsf{pr}(\mathsf{ide}(\mathsf{Sarah}) \to \mathsf{pr}(\mathsf{ide}(\mathsf{Jim})))$$

Model teórie

Definícia 2.29 (Model). Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu a nech T je teória v jazyku \mathcal{L} a \mathcal{M} je štruktúra pre jazyk \mathcal{L} .

Teória T je pravdivá v \mathcal{M} , skrátene $\mathcal{M} \models T$, vtt každá formula X z T je pravdivá v \mathcal{M} (teda $\mathcal{M} \models X$).

Hovoríme tiež, že \mathcal{M} je modelom T.

Teória T je *nepravdivá* v \mathcal{M} , skrátene $\mathcal{M} \not\models T$, vtt T nie je pravdivá v \mathcal{M} .

2.7 Správnosť a vernosť formalizácie

Skúška správnosti formalizácie

Správnou formalizáciou výroku je taká formula, ktorá je pravdivá za tých istých okolností ako formalizovaný výrok.

Formuly dokážeme vyhodnocovať iba v štruktúrach.

Preto za tých istých okolností znamená v tých istých štruktúrach.

Vernosť formalizácie

Výrok "Nie je pravda, že Jarka a Karol sú doma" sa dá správne formalizovať ako

$$\neg$$
(doma(Jarka) \land doma(Karol)),

ale rovnako správna je aj formalizácia

$$(\neg doma(Jarka) \lor \neg doma(Karol)),$$

lebo je pravdivá v rovnakých štruktúrach.

Pri formalizácii sa snažíme o správnosť, ale zároveň *uprednostňujeme* formalizácie, ktoré *vernejšie* zachytávajú štruktúru výroku.

Zvyšuje to pravdepodobnosť, že sme neurobili chybu, a uľahčuje hľadanie chýb.

Prvá formalizácia je vernejšia ako druhá, a preto ju uprednostníme.

Znalosti na pozadí

Na praktických cvičeniach ste sa stretli so *znalosťami na pozadí* (background knowledge): vzájomná výlučnosť vlastností *je Nemec* a *je Rus*, ktorá v úlohe nebola explicitne uvedená.

Uprednostňujeme ich vyjadrovanie *samostatnými formulami*. Rovnaké dôvody ako pre vernosť.

Skutočné súčasti významu a konverzačné implikatúry

Niektoré tvrdenia vyznievajú silnejšie, ako naozaj sú:

- "*Prílohou sú zemiaky* alebo *šalát"* môže niekomu znieť ako exkluzívna disjunkcia.
- "Prejdete, ak všetky úlohy vyriešite na 100 %" znie mnohým ako ekvivalencia.

Skutočnú časť významu tvrdenia *nemôžeme poprieť* v dodatku k pôvodnému tvrdeniu bez sporu s ním.

• Keď k tvrdeniu "*Karol a Jarka sú doma*" dodáme "*Ale Karol nie je doma*," dostaneme sa do sporu.

Takže "Karol je doma" je skutočne časťou významu pôvodného výroku.

Skutočné súčasti významu a konverzačné implikatúry

Časť významu tvrdenia, ktorú *môžeme poprieť* dodatkami bez sporu s pôvodným tvrdením, sa nazýva *konverzačná implikatúra* (H. P. Grice). *Nie je skutočnou časťou významu* pôvodného tvrdenia.

- Prílohou sú zemiaky alebo šalát. Ale môžete si (pol na pol alebo za príplatok) dať aj oboje.
 - Dodatok popiera exkluzívnosť, ale nie je v spore s tvrdením. Takže exkluzívnosť nie je súčasťou významu základného tvrdenia, je to iba konverzačná implikatúra.
- Prejdete, ak všetky úlohy vyriešite na 100 %. *Ale nemusíte mať všetko na 100 %, aby ste prešli.*
 - Dodatok popiera implikáciu "*Prejdete*, iba ak *všetky úlohy vyriešite na 100 %*, " ale nie je v spore s pôvodným tvrdením. Táto implikácia teda nie je skutočne časťou významu základného tvrdenia, je to len konverzačná implikatúra.

Literatúra