USAAVLABS TECHNICAL REPORT 67-3

ANALYSIS OF ARMY FIXED-WING CARGO RESTRAINT DESIGN CRITERIA

By

James P. Avery Stuart Larsen

January 1967

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

CONTRACT DA 44-177-AMC-430(T)

AVIATION SAFETY ENGINEERING AND RESEARCH
A DIVISION OF
FLIGHT SAFETY FOUNDATION, INC.
PHOENIX, ARIZONA

Distribution of this document is unlimited

ARCHIVE COPY

DEPARTMENT OF THE ARMY U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA 23604

A requirement to determine analytically the accelerationtime relationships for the cargo compartments of CV-2 and CV-7 aircraft, when subjected to various crash conditions, and to determine the effect of these relationships on a load-limited restraint system provides the basis for this report. The techniques used in this report represent a logical extension of previous, similar programs; in the absence of test-crash data, the results contained herein may be used with a high degree of confidence.

The excessive load-limiter displacements (2 to 16 feet) indicated for certain crash conditions considered in this report are judged to be operationally unacceptable by this activity. However, the load-limiter concept represents a significant safety and operational improvement over the conventional restraint devices for most of the crash conditions considered. This activity suggests that a trade-off study be conducted to determine the maximum safety that can be achieved by load-limited restraints commensurate with acceptable operational factors.

Since the Army no longer has operational responsibility for the CV-2 and the CV-7 aircraft, this activity has not planned further effort in the area of this report. However, results of this contract will be forwarded to the appropriate Air Force agency for consideration.

Project 1F121401A254 Contract DA 44-177-AMC-430(T) USAAVLABS Technical Report 67-3 January 1967

ANALYSIS OF ARMY FIXED-WING CARGO RESTRAINT DESIGN CRITERIA

Final Report AvSER 66-21

By

James P. Avery Stuart Larsen

Prepared by

Aviation Safety Engineering and Research
Phoenix, Arizona
a Division of
Flight Safety Foundation, Inc.

for

U. S. Army Aviation Materiel Laboratories
Fort Eustis, Virginia

Distribution of this document is unlimited

SUMMARY

This report presents the findings of an investigation into the crash pulse of fixed-wing cargo aircraft and the resulting behavior of cargo restrained by load limiters.

A crash pulse simulator computer program was developed that obtains acceleration-time histories at selected stations in the cargo compartment and under various crash conditions. This simulator was employed to obtain crash pulses for a wide range of input parameters, both for the CV-2 and the CV-7 Army aircraft. The resulting acceleration pulses were studied to determine a suitable spectrum of realistic pulses.

The crash pulse program was subsequently modified to include a routine that would simulate cargo dynamic behavior during the crash sequence, employing the floor acceleration data as it is developed. This latter program was applied to CV-2 and CV-7 aircraft, under significant crash conditions, to obtain the dynamic response of cargo to the crash pulse.

BLANK PAGE

CONTENTS

														Page
SUMMARY	•	•	•	7	•		•	•	•	•	•	•	•	iii
LIST OF S	умво	LS	•	•	•	•	•	•	•	•		•	•	₹ş. Vİ.
INTRODUC	TION	•		•	•	•	•		•	•	•	-		1
CRASH PU	LSE S	IMU	LAT	OR	•	•		•	•	•		•	•	2
DEVELOP	MENT	OF	INP	UT I	DATA		•		•	•				5
APPLICAT	ION C	F C	RASI	H P	ULSE	SIM	ULA	TOR					•	10
CARGO SIN	MULA	ГOR	•	•	•		•		•	•	•		•	12
APPLICAT	ION C	F C	ARG	o si	MUL	ATIC	ON P	ROG	RAM	1.	•	•		14
RESULTS	•		•		•	•	•	•	•	•	•	•	•	17
APP ENDIX	ES													
I.					ıl at or		•					•	•	18
II.	Carg					•	•	•	•	•	•	•	•	26
III.	Soil l	_					•		•	•	•	•	•	29
IV.					ılator					_	•	•	•	33
v.	_				FORT			_		•	•	•	•	47
VI.	Prog	ram	VIB	RAI	FOR	TRA	N L	isting	ζ.	•	•	•	•	61
DISTRIBIII	rion													69

Figure 1. Sketch Illustrating Symbols.

*c	Longitudinal acceleration of cargo (ft/sec ²)
aFL' aFN	Longitudinal and normal accelerations respectively of cargo compartment floor (ft/sec)
ā, a	Rigid body acceleration components (transverse and longitudinal) at ith station (ft/sec2)
a REL	Relative cargo acceleration (ft/sec ²)
a _{Ti}	Total longitudinal acceleration at ith station (ft/sec ²)
a _{Vi}	Contribution to acceleration due to transverse vibration at i th station (ft/sec ²)
A _{jk}	Coefficients in polynominal expressions for functions of the angle θ

```
В
              Symbol for algebraic expression
C
              Longitudinal component of ground reaction (1b)
C_1 \dots C_4
              Soil parameters
DXF
              Algebraic expressions involving coordinates of points (ft)
DYR
              Symbol for algebraic expression
Den
              Flexural rigidity of fuselage (lb-ft<sup>2</sup>)
EI
f
              Coefficient of friction between aircraft and ground
              Coefficient of friction between cargo and cargo compartment
f<sub>C</sub>
              floor
              Normal and tangential components of ground reaction force (1b)
FNI
              Components of F<sub>N</sub> (1b)
F<sub>N2</sub>
F<sub>N3</sub>
              Components of F<sub>T</sub> (1b)
F<sub>T3</sub>
              Forward load-limiter limit acceleration (ft/sec<sup>2</sup>)
F<sub>LL</sub>
              Symbol for algebraic expression
G_1 \dots G_{10} Algebraic expressions
```

```
Symbols for unit of acceleration equivalent to 32, 2 feet per
G
             second per second
h_(t)
             Symbol for expression, function of time
H_1 \dots H_o
            Input parameters expressed as functions of the angle 6
            Mass moment of inertia of aircraft (slug ft<sup>2</sup>)
IA
             Mass moment of inertia of forward and of aft sections of
IF, IR
             aircraft
k
             Reduction factor
             Structural parameter
Κ,
L
             Length of fuselage (ft)
m<sub>A</sub>
             Mass of aircraft (slugs)
             Mass of forward and of rear sections of aircraft (slugs)
mR
             Generalized masses (for Lagrange's equations) (slugs)
M<sub>B</sub>
             Computed fuselage bending moment (ft-lb)
M<sub>H</sub>
             Yield hinge moment (ft-lb)
P
             Transverse component of soil reaction force (lb)
             Generalized coordinates (for Lagrange's equations) (ft)
q_1 \dots q_4
Q_1 \dots Q_A
             Generalized forces (for Lagrange's equations) (lb)
            Magnitude of space vector (ft)
R<sub>LL</sub>
             Rear load limiter limit acceleration (ft/sec<sup>2</sup>)
            Distance from nose as an independent variable (ft)
            Distance from nose to i station (ft)
8
```

```
Distance from nose to center of gravity (ft)
* B
<sup>8</sup>BF
             Distance from nose to center of gravity of forward and rear
             sections (ft)
<sup>8</sup>BR
             Distance from nose to J<sup>th</sup> station (ft)
s J
SC
             Scoop factor
             Time (sec)
             Relative cargo velocity (ft/sec)
VREI.
             Coordinates of aircraft center of gravity from x, y axis system
x, y
X, Y
             Coordinates of aircraft center of gravity from original point
             of contact (ft)
             Coordinates of centers of gravity of forward and rear sections,
             respectively (ft)
X_{H}, Y_{H}
             Coordinates of yield hinge (ft)
Z
             Interference of aircraft original contour with soil (ft)
             Actual penetration of ground by aircraft (ft)
X, Y, Z...
             Time derivatives of quantities X, Y, Z...
X, Y...
             Second time derivatives of quantities X, Y...
             Damping coefficient for longitudinal vibration
             Angle of impact of aircraft (rad)
             Attitude angle for forward and rear sections of aircraft, re-
             spectively (rad)
             Time increment (sec)
Δt
Δ()
             Change in quantity () during time increment & t
```

μį	Mass of ith discrete segment of fuselage (slugs)
V	Mass per unit length of suselage (slugs/ft)
* ₁ * ₄	Normal mode shapes for free vibrations
ω ₁ ω ₄	Natural angular frequencies (rad/sec)
$\bar{\omega}_1 \cdots \bar{\omega}_4$	Resonant frequencies with damping (rad/sec)
SUBSCRIPT	<u>es</u>
i	Associated with ith station or fuselage segment
n	Associated with nth generalized coordinate in Lagrange's equations
F	Associated with forward section of aircraft
R	Associated with rear section of aircraft
н	Associated with yield hinge
J	Associated with J th station

INTRODUCTION

This report represents a continutation of the analytical investigation of acceleration-time pulses for the CV-2 and CV-7 aircraft as described in USAAVLABS Technical Report 65-30, "Cargo Restraint Systems for Crash Resistance". The crash impact parameters and limits thereof used in this program were felt to represent the conditions most likely to be encountered in an accident for the aircraft involved. In addition, it was felt that all of these conditions represented a survivable accident.

CRASH PULSE SIMULATOR

DESCRIPTION

The computer program to simulate dynamic behavior of a fixed-wing aircraft accepts as input (1) accident configuration variables, (2) structural data for the specific aircraft, and (3) soil behavior parameters. The accident configuration variables consist of velocity, sink rate, impact angle, and angular velocity (if present). The structural input data include flexural and axial stiffness properties, mass distribution data, buckling, yield and failure criteria, and various geometric data. The soil reaction parameters relate the interaction forces between aircraft and ground to the depth of penetration, the rate of penetration, and the horizontal velocity.

The simulator output is in the form of computer-plotted acceleration-time curves for three stations in the cargo compartment. Additionally, the simulator displays the maximum plowing depth, the groove length, the maximum values of generalized coordinates for vibration modes excited by crash forces, the maximum stresses in the fuselage, and the kinematic data at the completion of rebound (or slide-out).

ANALYTICAL BASIS

The simulator operates in either of two general modes: the elastic mode or the plastic-hinge mode.

The elastic mode is assumed if fuselage (longitudinal) stresses are below buckling or plastic limits. In this mode the dynamic behavior of the aircraft is divided into two parts: First, the rigid body behavior is obtained from the soil-structure interaction forces and rigid body equations of motion. Second, the vibration modes excited both by the soil reaction forces and by the rigid body motion inertial forces are evaluated.

The vibration amplitudes are found by means of a normal mode analysis in which the first and second transverse and the first and second longitudinal modes of fuselage vibration are considered. The amplitudes of these four vibrational modes are taken as generalized coordinates in Lagrange's equations of motion for the aircraft. For the assumption that the damping coefficient is proportional to mass distribution along the

fuselage (an assumption which introduces little error), the Lagrange's equations reduce to a set of independent one-degree-of-freedom equations:

$$q_n + \beta q_n + \omega q_n^2 = \frac{Q_n}{m_n}$$

where

q_n, q_n, q_n = generalized coordinates and time derivatives

β = damping coefficient

 ω_n = natural angular frequency

Q = generalized force

m = generalized mass

$$Q_{n}(t) = \int_{0}^{L} p(x, t) \phi_{n}(x) dx + \sum_{i} P_{i}(t) \phi_{n}(x_{i})$$

$$m_{n} = \int_{0}^{L} \mu \phi_{n}^{2} dx$$

A solution satisfying initial conditions is found in the convolution integral:

$$q_n(x,t) = \frac{1}{m_n \bar{\omega}_n} \int_0^L Q_n(T) \exp \left[-\frac{8}{2} (t-T) \right] \sin \bar{\omega}_n(t-T) dT$$

which is evaluated numerically in the simulator program (reference Appendix I). With the generalized coordinates evaluated, the vibrational kinematics are determined and may be superimposed on the rigid body kinematics to obtain resultant accelerations. The maximum bending stresses are determined from the bending moments associated with the transverse vibrational modes of the fuselage.

The plastic-hinge mode of aircraft behavior is followed by the simulator, if at some fuselage station the effective buckling or the yield stress has been exceeded (when operating in the elastic mode). In the plastic-hinge mode, the aircraft is treated as two rigid bodies joined by a plastic "yield hinge" which may transmit hinge reactions as well as a plastic-hinge bending moment. In this mode, elastic vibrations are ignored, as they are con-

sidered to be negligible when compared with the large plastic deformations. Again, the equations of motion are solved by numerical integration.

The simulation is terminated by any of the following conditions:

- 1. The rebound has been completed; that is, the soil penetration has returned to zero.
- 2. The horizontal component of velocity has been reduced to zero.
- 3. The deflection angle at the plastic hinge has reached a critical value, implying a fuselage break.
- 4. The aircraft rotates outside a specified angular limit (implying an overturning).

A flow chart and an outline of computational operations of the simulator program are provided in Appendix I.

DEVELOPMENT OF INPUT DATA

The input data for crash simulation of the CV-2 and CV-7 Army aircraft are divided into three categories: accident configuration variables, structural data, and soil reaction parameters. An example of input data for a simulation run as developed for the CV-7 aircraft appears in Appendix IV.

ACCIDENT CONFIGURATION DATA

The accident configuration variables used were those specified in the contract statement of work.

STRUCTURAL DATA

The mass distribution data have been obtained from weight analyses made by the manufacturer. These data were adjusted in accordance with various cargo and fuel level conditions for several simulator runs.

The structural stiffness data may be conveniently separated into two groups: that which deals with the vibrational behavior of the aircraft, and that which relates imposed forces to structural deformation.

Consider, first, the vibrational behavior. The mode shapes and natural frequencies (for both longitudinal and transverse vibrations) have been obtained by means of a separate computer program employing standard techniques (see Appendix VI, Program VIBRAT). Flexural rigidities, longitudinal stiffness, and mass distribution are the input to this auxiliary program; these input data have been obtained from analyses performed by the manufacturer. The output of the auxiliary program becomes input for the simulator program and consists of normal mode shapes, natural frequencies, generalized masses, and, for the transverse vibration, normalized bending stresses.

Next, consider the load deformation input parameters for the structure. A double modulus relationship has been postulated between crushing force and structural deformation in the local area of contact between the ground and the aircraft. The crushing force moduli have been obtained by computing average local plastic buckling loads for those structural members that fail by local instability and by adding an appropriate percentage for the resistance offered by bending of longitudinal members. Based upon observed behavior of a plastically deformed structure, an estimate has

been made of plausible "springback" deformation associated with unloading. A range of 10- to 20- percent springback was postulated for a 2-to 3- foot depth of structural crushing in the region of the underside of the nose. The springback is obtained in the simulator program by employing a greater modulus for unloading as well as for initial loading below a critical force (marking the onset of plastic crushing).

Figure 2. Plot of Normal Force Versus Structural Deformation

The onset of plastic crushing is signaled by a critical value of applied normal force (see Figure 2). This critical value is estimated considering those members that would first undergo general buckling; however, this value must also be consistent with the elastic modulus for deformation, the plastic modulus, and the assumed points through which the curves must pass.

The simulator program computes compressive bending stresses along the top of the fuselage for each time increment. When a critical effective buckling stress is reached at a given station, a "yield hinge" is considered to be formed in the fuselage and the mode of simulation changes. The critical fuselage buckling stress has been computed on the basis of the critical stress for a longitudinally stiffened curved panel. The computed value has been increased by an estimated factor to account for the dynamic overload capability associated with short-duration pulses and redistribution of stress as a plastic hinge is formed.

Once a yield hinge forms, a plastic-hinge moment offers substantially constant resistance to further bending at the hinge. This plastic-hinge moment has been computed on the basis of resistance offered to continuation of buckling and crushing of skin and longitudinal members.

In addition to the structural data described above, geometric input defining the longitudinal contour of the underside of the fuselage is required. These data were obtained from scale drawings provided by the manufacturer.

GROUND PARAMETERS

It should be noted that an accident can occur in a wide variety of soils whose properties may vary considerably. Consequently, the ground parameters were varied over practical ranges for a number of simulator runs.

The normal soil reaction force, F_N , was considered to be composed of several components. First, the essentially elastic behavior provides a contribution that increases with penetration. However, as both surface contact area and ground resistance per unit area are roughly proportional to depth of penetration, the assumed relationship is:

$$F_{N1} = C_1 Z_G^2$$

where

Z_G = ground penetration

C₁ = soil elastic modulus

The constant C₁ has been estimated for a typical soil.

A second contribution to normal force is associated with the phenomenon of planing (hydroplaning) is associated both with horizontal velocity and depth of soil penetration. The relationship is:

$$F_{N2} = C_2 Z_G X$$

where

X = horizontal component of aircraft
velocity

C₂ = planing parameter

The planing coefficient C_2 has been roughly estimated for various soils, based upon momentum exchange and soil compressive resistance. The degree to which the nose of the aircraft remains a "plane" as opposed to

a "scoop" would further affect this parameter. In the computer simulation runs, a range of practical values was used for this parameter.

The third contribution to the normal force component is that of the direct momentum exchange effect. As the aircraft penetrates the ground, it accelerates soil mass to its velocity. A momentum exchange relationship leads to

$$\mathbf{F_{N3}} = \mathbf{C_3} \mathbf{Z_G^2} \mathbf{Z_G^2}$$

where

Z_C = time rate of soil penetration

C₃ = soil impact parameter

The parameter C_3 is approximately equal to the mass density of the soil multiplied by the contact area and divided by the penetration Z_{C} .

The total normal component is the sum of the three separate contributions:

$$F_{N} = F_{N1} + F_{N2} + F_{N3}$$

The tangential component of the soil reaction force is similarly composed of separate contributions. The first of these is simple friction.

$$\mathbf{F}_{\mathbf{T}\mathbf{1}} = \mathbf{f}\mathbf{F}_{\mathbf{N}}$$

where

f = coefficient of friction

To the extent that the soil has been penetrated and some manner of scoop has been formed at the nose of the aircraft, two additional contributions to the tangential force would exist. The first of these is associated with soil "drag" or "plowing" action and is proportional to the horizontal velocity and ground penetration:

$$F_{T2} = C_4 XZ_C$$

The plowing coefficient for a given soil can only be determined experimentally. For this purpose a simple experiment was designed and conducted to provide a rough separation of the plowing and friction phenomena with two extremes of scoop conditions. The results of this

experiment were employed to provide order-of-magnitude values for the soil reaction parameters f, C_2 , and C_4 . The experiment is described in Appendix III. The other contribution associated directly with the scoop effect is the horizontal momentum exchange. It would thus vary with soil penetration and with the velocity squared; that is,

$$\mathbf{F}_{\mathbf{T}3} = \mathbf{C}_{5}\dot{\mathbf{x}}^{2}\mathbf{Z}_{\mathbf{G}}$$

The coefficient C₅ would depend upon effective scoop area and soil density and has been roughly computed. In simulation runs, this parameter will be varied considerably to simulate conditions ranging from a definite scoop in a freshly plowed field to the other extreme of planing over hardpan soil or a concrete ramp. The total tangential force is then the sum of the individual contributions:

$$\mathbf{F}_{\mathbf{T}} = \mathbf{F}_{\mathbf{T}1} + \mathbf{F}_{\mathbf{T}2} + \mathbf{F}_{\mathbf{T}3}$$

APPLICATION OF CRASH PULSE SIMULATOR

The CV-2 and CV-7 aircraft crash pulses were developed by the simulator program for combinations of the following parameters: velocity, sink rate, attitude angle at impact, soil conditions, and aircraft weight conditions.

- 1. Velocity was varied from 80 to 120 feet per second.
- 2. Sink rate was varied from 10 to 30 feet per second.
- 3. Attitude angle was varied from 3 to 15 degrees.
- 4. Two basic soil conditions were considered: hardpan, and a soft soil equivalent to a cultivated field.
- 5. For each aircraft, two weight conditions were considered: operational light and operational heavy.

A summary of significant results is contained in the following tables, which relate maximum cargo compartment acceleration (excluding short-duration peaks), time duration of pulse, and velocity change to the various input parameters.

An example input to the simulator program and developed output is contained in Appendix IV.

TABLE I RESPONSE TO IMPACT VELOCITY

Velocity (ft/sec)	Soil Condition	Maximum Acceleration (G)	Pulse Duration (sec)	Velocity Change (ft/sec)
80	Hardpan	6. 1	. 138	12
100	Hardpan	6.4	.140	12
120	Hardpan	7.0	. 144	13
80	Soft Soil	9.4	. 188	26
100	Soft Soil	11.4	. 200	33
120	Soft Soil	12.7	. 220	42

CV-7 Aircraft, operational light.

Sink rate = 20 fps; impact angle = 12 degrees

TABLE II
RESPONSE TO SINK RATE

Sink Rate (ft/sec)	Soil Condition	Maximum Acceleration (G)	Pulse Duration (sec)	Velocity Change (ft/sec)
10	Hardpan	3.5	. 126	7
20	Hardpan	6.4	. 140	12
30	Hardpan	9. 1	. 266	26
10	Soft Soil	6. 9	. 248	26
20	Soft Soil	14,4	. 200	33
30	Soft Soil	14.4	. 268	54

CV-7 Aircraft, operational light.

Velocity = 100 fps; impact angle = 12 degrees

TABLE III
RESPONSE TO IMPACT ANGLE

Impact Angle (deg)	Soil Condition	Maximum Acceleration (G)	Pulse Duration (sec)	Velocity Change (ft/sec)
3	Hardpan	6. 1	. 126	11
9	Hardpan	6. 2	. 124	11
12	Hardpan	6.4	.140	12
15	Hardpan	7.2	. 150	14
3	Soft Soil	9.0	. 144	19
9	Soft Soil	10.6	. 70	26
12	Soft Soil	11,4	. 200	33
15	Soft Soil	12.2	. 244	41 .

CV-7 Aircraft, operational light.

Velocity = 100 fps; sink rate = 20 fps

CARGO SIMULATOR

DESCRIPTION

The computer program to simulate cargo restraint systems is designed to obtain the dynamic response of a cargo retention system (employing) load limiters) to an applied acceleration pulse. The cargo simulation is accomplished not as a separate computer program but rather as a subroutine appended to the crash pulse simulator program. As the specific crash pulse is generated, it becomes input (internally) to the cargo simulation subroutine.

MATHEMATICAL MODEL

The cargo is assumed to rest on the cabin floor (with a suitable friction coefficient between cargo and floor), restrained fore and aft by load limiters as illustrated in Figure 3.

Figure 3. Cargo Restraint by Load Limiters

Each load limiter provides unidirectional restraint; the aft load limiter, for example, offers restraint to forward displacement of the cargo relative to the floor (when slack is taken up).

The longitudinal force applied to the cargo is transmitted from the aircraft through either the aft or the forward load limiter, as well as through the cargo floor by means of friction. The maximum value that this force may assume is the load-limiter limit force plus the coefficient of friction times the normal force between floor and cargo. (The normal floor force, in turn, depends upon the normal component of floor acceleration.)

At each time increment, the subroutine accepts as input the generated acceleration components (longitudinal and normal) of the floor at the cargo location. For the case of zero relative velocity (of cargo to floor), the cargo mass times the longitudinal acceleration is compared with the computed maximum possible longitudinal force. If the former is less than the computed limiting value, no relative acceleration occurs. Otherwise, the cargo acceleration is the computed limiting longitudinal force divided by cargo mass. The resulting relative acceleration is then the difference between the floor acceleration and the absolute cargo acceleration.

For the case in which the cargo has a relative velocity, the applied cargo force becomes the load-limiter load plus the computed friction force (assuming tie-down slack is not present). Again, the applied cargo force determines the absolute cargo acceleration and in turn the relative acceleration.

Numerical integration of the kinematic relationships is used to obtain relative cargo velocity and displacement (at each time increment) from the above-computed relative acceleration. The load-limiter stroke is finally obtained as the maximum cargo displacement.

A flow chart and computational relationships for the cargo simulation subroutine are given in Appendix II.

APPLICATION OF CARGO SIMULATION PROGRAM

The cargo simulation program was employed for ten representative crash pulses (as shown in Table IV). For each pulse, the load-limiter stroke was computed for five different load-limiter limit forces, corresponding to 2G, 4G, 6G, 8G, and 10G limiting accelerations. The resulting limiter strokes are tabulated in Table IV along with the input conditions for each simulation run. (The center of the cargo compartment was selected as a representative location.)

A family of curves showing load-limiting force versus cargo displacement appears in Figure 4.

Appendix V shows typical output sheets from the cargo simulation program.

TABLE IV
RESULTS OF CARGO SIMULATION

-								
Aircraft								
Configur-								
ation		Sink	Impact	Max.	Pulse	Velocity	Load	Cargo
and Soil	Velocity	Rate	Angle	G	Duration	Change	Limiter	Displ.
Condition	(ft/sec)	(ft/sec)	(deg)	(G)	(sec)	(ft/sec)	(G)	(ft)
	120	30	15	20	. 214	60	2	16. 67
		17-5	-				4	7.66
Ħ							6	4, 22
) pro							8	2, 41
1							10	1,40
e	90	20	9	11.6	. 158	26	2	2,56
io	,,,		•				4	0.91
CV-2 Operational Light Soft Soil							6	0.29
¥ .0							8	0,08
ō"							10	0,00
Ŋ	80	10	6	5 67	. 128	12	2	0, 43
;		••	·	3, 0,			4	0.05
U							6	0.00
1							8	0.00
1	ľ						10	0. 00
		<u> </u>						0.00
	100	30	15	7.4	. 300	25	2	1.33
							4	0.33
>							6	0.05
>							8	0.00
CV-7 Operational Heavy Hardpan							10	0.00
=	120	30	12	7.5	. 300	27	2	1.28
erationa Hardpan							4	0, 32
d tie							6	0.03
2 4							8	0,00
8 E							10	0,00
0	120	30	6	6.0	. 240	21	2	0.68
							4	0, 13
· .							6	0.00
•							8	0.00
	•						10	0.00
								-
	120	30	12	14.2	. 300	64	2	13.10
_							4	5.01
\$							6	2.04
<u>.</u>							8	0, 78
= =	120	10			100		10	0.21
[a] ii	120	30	9	13.2	. 198	37	2	5.20
So							4	2, 02
7 4							6	0, 84
Operational Heavy Soft Soil							8	0. 29
ö		2.0	,				10	0.08
۲.	120	30	6	11.0	. 242	44	2	4.67
CV-7							4	1.66
U							6	0,55
							8	0, 12
							10	0.01
7	80	30	3	8.6	.112	20	2	0.58
<u> </u>			•	3. 0			4	0.18
, # × &							6	0.02
CV-2 Operational Heavy Hardpan							8	0.02
0044								
COEE							10	0.00

Legend	Weight Condition	Soil Condition	Velocity (ft/sec)	Sink Rate (ft/sec)	Impact Angle (deg)	
(1)	Heavy	Soft Soil	120	30	12	
(2)	Heavy	Soft Soil	120	30	9	
(3)	Heavy	Soft Soil	120	30	6	
(4)	Heavy	Hardpan	100	30	15	
(5)	Heavy	Hardpan	120	30	6	
(6)	Light	Soft Soil	120	30	15	
(7)	Light	Soft Soil	90	20	9	
(8)	Heavy	Hardpan	80	30	3	

Figure 4. Plots of Load-Limiter Force Versus Cargo Displacement

RESULTS

The investigation has led to the development of a crash pulse computer simulator (Appendix IV) providing an analytical tool for the study of crash pulse time histories of fixed-wing aircraft. This tool was applied to the CV-7 aircraft to obtain tabulated acceleration data (Tables I, II, III) for variations of pertinent input parameters, including soil conditions and accident configurations.

In addition, the investigation has led to the development of a cargo simulator program (Appendix V) to serve as an analytical tool to study cargo acceleration levels and displacements during a crash sequence. This simulator was applied to obtain tabular data and plots (Table IV and Figure 4) relating cargo displacements to load-limiter values for various crash conditions.

It should be pointed out that all of the acceleration-time pulses generated in this program fall within the human tolerance limits.

COMPUTATIONAL OPERATIONS (Refer to List of Symbols)

1. Geometric, structural, and soil parameters that depend upon the angle 0 are computed as polynominals:

$$H_n = A_{n1} + A_{n2} + A_{n3} + A_{n4} + A_{n4}$$

2. The coordinates x and y are found:

$$x = H_2 \sin \theta - (s_B - \frac{1}{H_1}) \cos \theta$$

$$y = (s_B - \frac{1}{H_1}) \sin \theta + H_2 \cos \theta$$

3. The interference, Z, and its time derivative, Z, are found:

$$Z = Y - y$$
 , $Z = \Delta Z/\Delta t$

4. The normal force, F_N is computed:

a. For positive Z and F_N less than critical F_N ,

$$F_{N} = K_{1} (Z - Z_{G})$$

where

$$Z_{G} = \sqrt{\frac{K_{1}}{g}} Z + B^{2} - B$$

$$g = C_{1} + (Z_{G})^{2} C_{2}$$

$$Z_{G} = ^{\Delta} Z_{G} / ^{\Delta} t$$

$$B = \frac{(1 - S_{C}) H_{8} X + K_{1}}{2g}$$

and

$$F_{N} \text{ critical} = \frac{1+8e^{2}}{H_{6}}$$

$$K_{1} = \frac{1+4e^{2}}{H_{3}}$$

$$C_{1} = \frac{1+4e^{2}}{H_{4}}$$

$$C_2 = \frac{1}{H_5}$$

 $S_C = scoop factor (varying from 0 to 1)$

b. For $F_N > F_N$ critical, Z positive,

$$\Delta F_N = kK_1 (\Delta Z - \Delta Z_G)$$

where

$$^{\Delta Z}_{G} = \frac{^{\Delta Z}}{[2gZ_{G} + (1 - S_{C}) H_{8}X] kK_{1} + 1}$$

k = reduction factor for modulus K₁

c. For Z negative,

$$\Delta F_N = K_1 (\Delta Z - \Delta Z_G)$$

where

$$\Delta Z_{G} = \Delta Z \frac{Z_{G}}{Z}$$

5. The tangential force is computed:

$$F_{T} = fF_{N} + S_{C} \left[H_{8} \dot{x} + H_{9} \dot{x}^{2} \right] Z_{G}$$

where

f = effective coefficient of friction

6. Accelerations are computed:

$$\ddot{X} = F_N/m_A$$
, $\ddot{Y} = F_T/m_A$
 $\ddot{\theta} = [F_Nx + F_T(y + \frac{Z_G}{2})]/I_A$

where

m_A = aircraft mass

IA = aircraft mass moment of inertia

7. Generalized forces for vibration modes are computed:

$$Q_{1} = P \phi_{1}(s_{J}) + M \frac{d \phi_{1}}{d_{s}}(s_{J}) - \sum_{i} \tilde{a}_{i} \mu_{i} \phi_{1}(s_{i})$$

$$Q_{2} = P \phi_{2}(s_{J}) + M \frac{d \phi_{1}}{ds}(s_{J}) - \sum_{i} \tilde{a}_{i} \mu_{i} \phi_{2}(s_{i})$$

$$Q_{3} = C \phi_{3}(s_{J}) - \sum_{i} a_{i} \mu_{i} \phi_{3}(s_{i})$$

$$Q_{4} = C \phi_{4}(s_{J}) - \sum_{i} a_{i} \mu_{i} \phi_{4}(s_{i})$$

where

$$P = F_{N} \cos \theta - F_{T} \sin \theta$$

$$C = F_T \cos \theta + F_N \sin \theta$$

$$M = C \left[\left(y + \frac{Z_G}{2} \right) \sin \theta + x \cos \theta \right]$$

 $\phi_1 \dots \phi_4$ = normalized vibration modes as functions of s

s_J = distance along fuselage axis to center of force application (from nose)

 $\bar{a}_i, a_i = \text{rigid body acceleration components (transverse and longitudinal at station } s_i$

ν_i = mass associated with ith finite subdivision of fuselage

8. Generalized coordinates are evaluated:

$$q_{n}(t + \Delta t) = \exp\left(-\frac{R}{2}\Delta t\right) \left\{q_{n}(t)\cos\overline{\omega}_{n}\Delta t + \left[h_{n}(t) + \frac{Q_{n}(t)\Delta t}{m_{n}\overline{\omega}_{n}}\right]\sin\overline{\omega}_{n}\Delta t\right\}$$

where

n = varies from 1 to 4

\$ = damping coefficient

$$m_n = \text{generalized mass} = \int_0^L \mu \phi_n^2 dx$$

$$\mathbf{a}_{n} = \sqrt{\frac{2}{\omega_{n}^{2} - \frac{\beta^{2}}{4}}}$$

$$\mathbf{a}_{n} = \text{natural frequency}$$

and h (t) is found from:

$$h_{n}(t + \Delta t) = \exp\left(-\frac{\beta}{2}\Delta t\right) \left\{ \left[h_{n}(t) + \frac{Q_{n}(t) \Delta t}{m_{n}\overline{\omega}_{n}}\right] \cos \overline{\omega}_{n} \Delta t - q_{n}(t) \sin \overline{\omega}_{n} \Delta t \right\}$$

9. The bending moment is computed:

$$\dot{M}_{B}(s_{i}) = EI(s_{i}) \left[q_{1} \frac{d^{2} \phi_{1}}{ds^{2}} (s_{i}) + q_{2} \frac{d^{2} \phi_{2}}{ds^{2}} (s_{i}) \right]$$

where

$$EI(s_i) = Flexural rigidity at s = s_i$$

10. The longitudinal acceleration is computed

$$a_{Ti} = a_i + a_{Vi}$$

where

a_{Ti} = total longitudinal acceleration at s = s_i
a_i = rigid body acceleration at s = s_i

 a_{Vi} = relative acceleration from longitudinal vibration $a_{Vi} = q_3 \frac{d^2 \phi_3}{d^2 (s_i)} + q_4 \frac{d^2 \phi_4}{d^2 (s_i)}$

11. Components of velocity and displacements are computed from kinematic relationships:

$$\Delta \dot{X} = (\ddot{X} - \frac{\Delta \ddot{X}}{2}) \Delta t$$

where

X = updated acceleration (that is, acceleration at end of time interval, Δt)

ΔY, Δe are found similarly.

$$\Delta X = (\dot{X} - \frac{\Delta X}{2}) \Delta t$$

where X = updated velocity

ΔY, Δθ are found similarly.

12. For the "yield-hinge" mode of aircraft deformation, rigid body accelerations are computed as follows: The angular acceleration, $\theta_{F'}$ of the forward portion of the aircraft and the angular acceleration, θ_R , of the rear portion (aft of the yield hinge) are each computed:

$$\ddot{\theta}_{F} = \frac{G_3 \cdot G_5 - G_2 \cdot G_6}{Den}$$

$$\ddot{\theta}_{F} = \frac{G_1 \cdot G_6 - G_3 \cdot G_4}{Den}$$

where

$$G_1 = \left(\frac{I_F}{m_F} + \frac{m_R}{m_A} r_F^2\right) \frac{m_A}{m_F}$$

$$G_2 = G_4 \frac{m_R}{m_E}$$

$$G_{3} = \frac{M_{H}^{m}_{A}}{m_{R}^{m}_{F}} + F_{n} \left(\frac{X_{H}^{m}_{A}}{m_{F}^{2}} + \frac{D_{XF}}{m_{F}} \right)$$

$$+ F_{T} \left[\frac{\left(Y_{H} + \frac{Z}{2} \right) m_{A}}{m_{F}^{2}} - \frac{D_{YF}}{m_{F}} \right] + \frac{m_{R}}{m_{F}} G_{D}$$

$$G_4 = D_{XF} \cdot D_{XR} + D_{YF} \cdot D_{YR}$$

$$G_5 = \left(\frac{I_R}{m_R} + \frac{m_F}{m_A} r_R^2\right) \frac{m_F}{m_A}$$

$$G_6 = -\frac{M_H^m A}{m_R^m F} - F_n \frac{D_{XF}}{m_F} + F_T \frac{D_{YR}}{m_H} + G_D$$

$$Den = G_1 \cdot G_5 - G_4 \cdot G_2$$

$$G_{D} = D_{XR}(D_{YF} \cdot \theta_{F}^{2} + D_{YR} \cdot \theta_{R}^{2}) - D_{YR}(D_{XF} \cdot \theta_{F}^{2} + D_{YF} \cdot \theta_{R}^{2})$$

I_F, I_R = mass moments of inertia

mA, mF, mB = masses

X_H, Y_H = coordinates of yield hinge

M_H = yield-hinge moment

 $D_{XF} = X_F - X_H$

 $X_{F}, Y_{F} = coordinates of forward center of gravity$

$$D_{YF}$$
, D_{XR} , D_{YR} = similar to D_{XF}

$$r_F^2 = D_{XF}^2 + D_{YF}^2$$

$$r_R^2 = \text{similar to } r_F^2$$

13. Acceleration components, X_F, Y_F, X_R, Y_R, of forward and aft section center of gravity are computed:

$$\ddot{\mathbf{X}}_{\mathbf{F}} = -\frac{\mathbf{F}_{\mathbf{T}} + \mathbf{m}_{\mathbf{R}}^{\mathbf{G}_{7}}}{\mathbf{m}_{\mathbf{A}}} - \frac{\mathbf{m}_{\mathbf{R}}}{\mathbf{m}_{\mathbf{A}}^{\mathbf{G}_{9}}}$$

$$\ddot{Y}_{F} = \frac{F_{N} - m_{R}G_{8}}{m_{A}} - \frac{m_{R}}{m_{A}G_{10}}$$

$$\bar{X}_{R} = \frac{F_{T} - m_{F}G_{7}}{m_{A}} + \frac{m_{F}}{m_{A}G_{Q}}$$

$$Y_R = \frac{F_n - m_F G_8}{m_A} + \frac{m_F}{m_A G_{10}}$$

where

$$G_7 = \theta_F^2 D_{XF} + \theta_R^2 D_{XR}$$

$$G_{8} = \theta_{F}^{2} D_{YF} + \theta_{R}^{2} D_{YR}$$

$$G_{9} = D_{YF} \cdot \theta_{F} + D_{YR} \cdot \theta_{R}$$

$$G_{10} = D_{YF} \cdot \theta_{F} + D_{YR} \cdot \theta_{R}$$

14. Velocity and displacement components are updated from kinematic relationships:

$$\dot{X}_{F} = (X_{F} - \frac{\Delta X_{F}}{2}) \Delta t$$

where

$$\dot{X}_{F}$$
 = updated acceleration $\dot{\Delta Y}_{F}$, $\dot{\Delta \theta}_{F}$, $\dot{\Delta X}_{R}$, $\dot{\Delta Y}_{R}$, $\dot{\Delta \theta}_{R}$ are found similarly.
$$\dot{\Delta X}_{F} = (\dot{X}_{F} - \frac{\dot{\Delta X}_{F}}{2})\Delta t$$

where

 ΔY_F , $\Delta \theta_F$, ΔX_R , ΔY_R , $\Delta \theta_R$ are found similarly.

APPENDIX II CARGO SIMULATOR

COMPUTATIONAL OPERATIONS FOR CARGO SUBROUTINE

- 1. Longitudinal acceleration is computed by crash pulse program.
- 2. Normal acceleration (augmented by an equivalent acceleration for weight) is computed:

$$a_{FN} = X \sin \theta + Y \cos \theta - \theta s_{T} + 32.2 \cos \theta$$

where

 s_J = Distance from center of gravity to the cargo location

3. If cargo relative velocity (relative to the floor) is zero at beginning of time interval & t, cargo acceleration is computed as follows:

$$a_C = a_F$$
 for $(-F_{LL} - f_C a_{FN}) < a_F < (R_{LL} + f_C a_{FN})$

$$a_{C} = -F_{LL} - f_{C}a_{FN}$$
 for $a_{F} < (-F_{LL} - f_{C}a_{FN})$

$$a_{C} = R_{LL} + f_{C}a_{FN}$$
 for $a_{F} \rightarrow (R_{LL} + f_{C}a_{FN})$

where

a_C = cargo acceleration

a_F = floor acceleration (longitudinal)

a_{FN} = Floor acceleration (normal)

f_C = coefficient of friction between floor and cargo

R_{LL} = rear load-limiter limit load (in the form of equivalent cargo acceleration)

F_{LL} = forward load-limiter limit load (equivalent acceleration)

4. If the cargo has a relative velocity, cargo acceleration is computed as follows:

$$a_C = R_{LL} + f_C a_{FN}$$
 for $v_{REL} > 0$ and no slack

$$a_C = -F_{LL} - f_{C}a_{FN}$$
 for $v_{REL} < 0$ and no slack

5. If slack is present in system, the cargo acceleration is:

$$a_{C} = a_{F}$$
 for $-f_{C}a_{FN} < a_{F} < f_{C}a_{FN}$

$$a_{C} = -f_{C}a_{FN}$$
 for $a_{F} < -f_{C}a_{FN}$

$$a_{C} = f_{C}a_{FN}$$
 for $a_{F} > +f_{C}a_{FN}$

6. The relative cargo acceleration is computed as:

7. Relative velocity and relative displacement are computed by numerical integration:

$$\Delta v_{REL} = (a_{REL} - \frac{\Delta a_{REL}}{2}) \Delta t$$

 $\Delta s_{REL} = (v_{REL} - \frac{\Delta v_{REL}}{2}) \Delta t$

where

APPENDIX III

SOIL DRAG EXPERIMENT

An experiment designed to separate phenomena involved in the longitudinal resistance offered by the soil (during a crash) and to establish relative magnitudes of significant parameters was conducted using a typical claysand soil.

DESCRIPTION

An instrumented "shoe" was attached to the underside of a heavy cart. The cart was towed at various speeds over a trough of prepared soil, with the shoe set at a level for a given penetration of the soil. (See Figure 5.)

Figure 5. Soil Drag Experiment.

Instrumentation provided a history of normal and tangential forces for each run. Six runs were accomplished (and duplicated); they consisted of three velocities with the shoe orientated in each direction, i. e., with the sloped edge forward and the blunt edge forward.

The results are tabulated as follows:

TABLE V EXPERIMENTAL DATA

Velocity (fps)	Shoe Orientation	Tangential Force (lb)	Norma Force (lb)					
4	Slope Forward	550	800					
22	Slope Forward	520	700					
38	Slope Forward	750	750					
4	Blunt Forward	500	550					
22	Blunt Forward	400	400					
38	Blunt Forward	450	350					

If a mathematical model for the tangential force is postulated as

$$F_{T} = fF_{N} + vA_{s}X,$$

ranges for the coefficients f and ν may be computed consistent with the above data. These ranges are found to be:

f varies from . 3 to . 9

v varies from 10 to 46 (lb-sec/ft³)

where

 A_s is the total contact surface (ft²)

INPUT NOTATION FOR COMPUTER PROGRAMS

INPUT

NOTATION

- A(I, J) (I=1, 3; J=1, 4) Coefficients describing contour coordinates (ft)
- A(I, J) (I=3, 9; J=1, 4) Coefficients describing ground-aircraft interaction
- AS(J) Area of structural cross section (ft²)
- BETA Longitudinal vibration damping factor
- CDTH Critical angle of plastic hinge rotation (rad)
- CIA Mass moment of inertia of aircraft about "Y" axis (slug ft²)
- CIM(J) Mass moment of inertia per section (slug ft²)
- CLN Station for cargo attachment
- CMA Total mass of aircraft (ft-lb)
- CMU(J) Mass per section (lb sec²/ft)
- CM(I) (I=1, 4) Generalized masses (lb sec²/ft)
- CNS, NS Number of fuselage sections
- DF(J) Fuselage depth from longitudinal axis (ft)
- DS Length of a section (ft)
- DT Time increment (sec)
- ECA(J) Normalized stresses for first and second bending vibration ECB(J) modes (lb/ft²)
- EC(J) Structural parameter (lb/ft)
- EI(J) Flexural rigidity of fuselage (lb ft²)

EPS - Error factor

FLL - Forward load-limiter limit acceleration (G)

FMU - Friction coefficient

MSW - Program switch code

OM(J) - Frequencies of vibrations (rad/sec)

PH1(J)
PH2(J)
PH3(J)
PH4(J)
- Normalized deflections of first and second vibration modes

RLL - Rear load-limiter limit acceleration (G)

RPM - Reduction factor to plastic-hinge moment

SB - Location of center of gravity (ft)

SNK - Sink velocity of aircraft (ft/sec)

STRB - Buckling stress (lb/ft²)

THT - Angle of impact (rad)

THTD - Angular velocity (rad/sec)

VEL - Velocity at aircraft (ft/sec)

ZM(J) - Section moduli (ft³)

APPENDIX IV CRASH PULSE SIMULATOR FORTRAN LISTING

PROGRAM CRASH
DIMENSION V(10) .PV(10) .A(9.4) .H(9) .WDD(30) .Q(20) .
1PQ(20) • PH1(32) • PH2(32) • PH3(32) • PH4(32) • CMU(32) • ECA(32) • ECH(32
10F(22) • CIM(32) • AC(32) • U(21) • PU(21)
10M(4) + CM(4) + SND(4) + CSD(4) + CMOM(4) + PLUT(71) + RT(4) + QMX(4) + ZM(32
10 FORMAT(8F10.6)
READ 10. VEL.SNK.THT.THTD
RFAD 10, ((A([,J),J=1,4),[=1,9)
READ 10.CMA.CIA.SP.STRR.CDTH.RPM.CNS.DS.EMU.DT
RFAD 10 + CMU + CIM+DF + PH1 + PH2 + PH3 + PH4 + ECA + ECB + ZM
READ 10.0M.CM.BETA
RFAD 300 + (PLOT(J) + J=1+71) + BLNK+PRD+AST+EQ+PLS
330 FORMAT (71A1.5A1) READ 9.MNTH.NDAY.NYR.NRUN
9 FORMAT (415)
SC=•75
11 DO 12, J=1, 10
12 V(J)=0.
V(3)=THT
V(4)=SQRTF(VEL*VFL-SNK*SNK)
V(5)=-SNK
V(A)=THTD
PO 14 I=1.2
$14 V(T) = \Delta(T,T)+THT*(\Delta(T,T)+THT*(\Delta(T,T)+THT*\Delta(T,4)))$
FN=9.
IF (THT) 70•71•71
70 V(1)=1./(1./A(1.1)-600.*THT)
71 T1=58-1./V(1)
T2=V(2)*SINF(THT)-T1*COSF(THT) V(2)=V(2)*COSF(THT)+T1*SINF(THT)
V(1)=T2
FT=FN
MXT=1
NCR=1
MRTN=1
THTP = THT
no 17 (=3.9
17 H(T) = A(T+1)+THT*(A(T+2)+THT*(A(T+3)+THT*A(T+4)))
H3P=H(3)/(1.+4.*THT*THT)
H4P=().+4.*THT*THT)/H(4)
H5P = H(5)
H6P=H(6)/(1.+8.*THT*THT)
H7P=H(8)
H8P=H(9) H1P=V(1)
13 Q(J)=0.
T=0.
10

```
NS=CNS
    OM(3) = OM(3) - RETA + RETA/4.0
    OM(4) = OM(4) - RETA * RETA/4.0
DO 15 T = 1.4
    MX(1)=0.
    CMOM(I) = SQRTF(OM(I)) *CM(I)
    SND(1)=SINF(SQRTF(OM(1))*DT)
 15 (SD(I)=COSF(SQRTF(OM(I))*NT)
    SWCH= -1.0
    00 301 J = 1.NS
101 AC(J) = 0.

00 16 I = 3.4
    SNO (1) = FXPF(-RFTA/2. * DT) * SND(1)
 16 (SO(1) = FXPF(-9FT4/2. * DT) * (SO(1)
    PT(1)=0.
    PT(2)=0.
    PT(3)=BFTA
    PT(4)=PFTA
    ZG = 0.
    FNC = 0.0
    FC=5.0
    FU = 2.0
    SH=40.
    ZDG = 0.
    ZGM = 0.
    STRM = 0.
    PRINT 200 - MNTH - NDAY - NYR - NRUN
200 FORMAT(1H1+20X+6H DATE +314+20X+5H RUN +15//)
    PRINT 201
201 FORMAT(SX+48H TIME
                          STA. A STA. P STA. C (ACCFL. G UNITS)/)
    M5W = 1
    STRL=0.
    00 112 [=1+3
112 V(!)=V(3+[)*DT+V(])
110 PFN=FN
    00 111 1=1.10
111 PV(1)=V(1)
    THT=V(3)
    DO 113 I=1.9
112 H(T)=A([+1)+THT*(A([+2)+THT*(A([+3)+THT*A([+4)))
    IF (THT) 117.118.118
117 H(1)=SH
118 T1=58-1./H(1.)
    H(4)=1./H(4)
    T2=H(2) MSTNF(THT)-T1*COSF(THT)
    H(2)=H(2)*COSF(THT)+T1*SINF(THT)
    H(1) = 12
    V(10)=H(2)-V(2)
    Zn=(V(10)-PV(10))/DT
    Z=V(10)
```

127 [F(T3) 1:10.700.700
180 [F(V(4)) 1]A+114+181
181 [F(2) 114.114.182
182 [F(V(3)8) 115.700.700
114 PRINT 116
116 FORMAT(18H REBOUND COMPLETE)
GO TO 700
115 SWCH = -1.0 * SWCH
1F (SWCH) 318+321+322
321 STOP
322 GA=AC(B)/32.2
N=GA+21 • 5
IF (N) 302,302,303
303 JF (N-71) 304,304,302
304 PLOT (N) = AST
3-2 GR=AC(13)/32.2
K = GB + 26.5
IF (K) 305,305,306
306 IF (K-71) 307.307.305
307 PLOT (K) = EQ
305 GC=AC(18)/32.2
L=GC+31.5
IF (L) 308,308,209
309 [F (L-7]) 310,310,308
310 PLOT (L) = PLS
308 PLOT (26) = PRD
PLOT(21)=PRD
PLOT(31)=PRD
PRINT 311+T+GA+GR+GC+PLOT
311 FORMAT (5X+F5+3+3F8+2+71A1)
IF (N) 312+312+313
313 IF (N-71) 314+314+312
314 PLOT (N) = BLNK
312 IF (K) 315,315,316
316 IF (K-71) 317+317+315
317 PLOT (K) = BLNK
315 IF (L) 318,318,319
319 [F (L-71) 320,320,318
320 PLOT (L) = BLNK
318 CONTINUE
30 DZ=ZD*DT
COF=1+4+*THT*THT
H(3)=H(3)/COF
H(4)=H(4)*COF
H(K)=H(K)/(2.*COF-1.)
IF(ZG - ZGM) 411,411,412
412 ZGM=ZG
ZSP=Z-ZG
411 PZG = ZG
IF (DZ) 119.120.120
·

```
120 GO TO (800.801). MSW
8JO FUH=H(4)+ZnG # ZnG/H(5)
    CK=((1.0-SC)*H(8)*V(4)+1.0/H(3))/(2.0 * FUH)
    ZG=SQRTF(Z/(H(3)*FUH)+CK*CK)-CK
    25 = 2 - 26
    FN = ZS/H(3)
    IF (FN-1./H(6)) 803,803,802
802 MSW = 2
801 FUH = H(4) + ZDG # ZDG /H(5)
    IF (FN - 1./H(6)) 804,805,805
804 FCH = H(3)
    GO TO 806
805 \text{ FCH} = \text{FC} * \text{H}(3)
806 PZG=DZ/((?.*FUH*ZG+(1.-SC)*H(R)*V(4))*FCH+1.0)
899 ZG=ZG+DZG
    775 = PZ - DZG
    DEN = DZS/FCH
    FN=PFN+DFN
    GO TO 303
119 DZG=DZ*ZG/(Z-DZ)
    FCH = H(3)
    GO TO 899
803 FNSC=(1.-SC)+H(8)+V(4)+ZG
    IF (FN-FNSC) 808+121+121
808 FN=FNSC
121 FT = FMU * FN + (H(8) + V(4) + H(9) + V(4) + V(4)) + ZG * SC
    Zng = (ZG - PZG)/NT
    CTH=COSF(V(3))
    STH=SINF(V(3))
    P= FN*CTH-FT*STH
    C = FT + CTH + FN + STH
123 GO TO (126.165) MRTN
126 V(7)=-FT/CMA
    PNCR = NCR
    V(8) = FN/CMA
    V(0)=(FN+H(1)+FT+(V(2)+ZG/2.))/CIA
    no 130 I=1.3
    V(3+1)= V(3+1)+(V(6+1)+PV(6+1))*DT/2.
130 V(1)=V(1 + (V(3+1)+PV(3+1))*DT/2.
    SJ=05/2.
    DO 131 J=1.NS
    Wnn(J)=V(7) #STH+V(R) #CTH-V(9) #(SR-SJ)
131 5J=5J+D5
    00 \ 132 \ I = 1.20
132 PQ(I)=Q(I)
    SP=SB-(V(2)+ZG/2.)*STH+H(1)*CTH
    CMM=C+((V(2)+ZG/2.)*CTH+H(1)*STH)
    J=SP/0S+1.0
    Q(1) = P * PH1(J) + CMM * (PH1(J+1)-PH1(J))/DS
    O(2) = P* PH2(J) + CMM * (PH2(J+1)-PH2(J))/DS
```

William Control of the Control of th
O(3)=C*PH3(J)
Q(4)=C*PH4(J)
ACFL = V(A) * STH - V(7) * CTH
SJ = SR - DS/2
THSQ=V(6)*V(6)
NO 133 J=1.NS
O(1) = Q(1) - CMU(J) * WDD(J) * PH1(J)
Q(2) = Q(2) - CMU(J) + WDD(J) + PH2(J)
Q(3) = Q(3) - CMU(J) * (ACFL + THSQ * SJ) * PH3(J)
C(4) = Q(4) - CMU(J) * (ACFL + THSQ * SJ) * PH4(J)
133 SJ = SJ - DS
DO 212 I = 1.4
IF(T-DT/2.) 210.210.211
210 O(4 + 1) = Q(1) * DT * DT/(6. * CM(1))
Q(16 + 1) = Q(4 + 1) *3./(SQRTF(OM(1)) * DT)
GO TO 213
$211 \text{ QT} = PQ(16 + J_2) + PQ(1)/CMOM(1)*DT$
Q(4 + 1) = PQ(4 + 1) * (SD(1) + QT * SND(1)
O(16 + 1) = OT * CSD(1) - PQ(4 + 1) * SND(1)
213 Q(12+1)=Q(1)/CM(1)-(3M(1)+RT(1)*RT(1)/4.)*Q(4+1)-RT(1)*PQ(8+1)
IF(ABSF(Q(4+1))-QMX(1)) 212.212.214
214 QMX(1)=ARSF(Q(4+1+1)
212 Q(8 + 1) = PQ(8) + (Q(12 + 1) + PQ(12 + 1)) * DT/2.0
PSTR=0.
PPSTR=0.
CMNT = CMA - CMU(1)/2.0
SJ = SR - DS/2.
PSHR=0.
RMM=-CMM
NPP=1
DO 400 J = 1.NS
AC(J)=ACFL+THSQ*SJ+Q(15)*PH3(J)+Q(16)*PH4(J)
GO TO (143,144), MXT
147 ACN=V(7)*STH+V(8)*CTH-V(9)*SJ
SHR=PSHR+CMU(J) *ACN
GO TO(401.402) NPP
401 [F (SP-SR+SJ-DS/2.) 403.403.402
403 NPP=2
SHR=SHR-P
402 RMM=BMM-(PSHR+SHR)*DS/2.+CIM(J)*V(9)
PSHR=SHR
STR=ECA(J)*Q(5)+FCR(J)*Q(6)
STRN=(3.*STR+6.*PSTR-PPSTR)/8.
IF(STRL-STRN) 191+191+190
190 STRL=STRN
JSTL=J
191 IF(STRN-STRM) 4(3.414.414
414 STRM = STRN
JST=J
413 IF(STRN - STRB) 140+141+141

140	PPSTR=PSTR
1 44	PSTR=STR
	60 TO 144
141	
141	JH=J-1 SH = SP - SJ -DS/2.0
	PRINT 142.JH
143	FORMAT(21H YIELD HINGE AT STA. +13)
147	MXT=2
144	CMNT = CMNT - (CMU(J) + CMU(J + 1))/2.0
	SJ = SJ - DS
	FORMAT (1X+10F11+4/)
	T=T+DT
	GO TO (110.149).MXT
149	CMF=0.
	T=T-DT
	00 150 N=1+JH
150	CMF=CMF+CMU(N)
•	CMR=CMA-CMF
	CLM=CMR/CMA
	TM=CMF/CMA
	RM=CMR/CMF
	SJ=nS/2.
	SRF=0.
-	
	DO 152 N=1+JH
150	SRF=SRF+CMU(N)*SJ
152	SJ=SJ+DS
	SRF=SRF/CMF SRR=(CMA+SR-CMF+SRF1/CMR
	DSF#SR-SRF
	DSR=SRR-SB
	U(1)=V(1)+DSF*CTH
	U(2)=V(2)-DSF*STH
	U(3)=V(3)
	U(4)=V(1)-DSR*CTH
	U(5)=V(2)+DSR*STH
	U(6)=V(3)
	DO 151 I=1+3
	U(6+1)=V(3+1)
	U(9+1)=V(3+1)
	U(12+1)=V(6+1)
151	U(15+1)=V(6+1)
******	(1(10)=V(1)+(5B-SH)*CTH-DF(JH)*STH
	U(20)=V(2)-(SR-SH)*STH-DF(JH)*CTH
	U(21)=V(10)
	RF=(SRF-SH)*(SRF-SH)+DF(JH)*DF(JH)
	RR=(SBR-SH)+(SBR-SH)+DF(JH)+DF(JH)
	SJ=DS/2.
	(IF=U.
	DO 153 N=1+JH

CIF=CIF+CIM(N)+CMU(N)*SJ*SJ
153 SJ=SJ+DS
CIF=CIF-CMF*SRF*SBF
CIR=CIA-CIF-CMF*(SR-SRF)*(SR-SRF)-CMR*(SR-SRR)*(SR-SRR)
G]=(CIF/CMF+CLM*RF)/TM
G5=(CIR/CMR+TM#RR)/TM
NXF=U(1)-U(19)
DYF=U(20)-U(2)
MRTN=?
DTH=0.
160 PDTH = DTH
PFN=FN
no 161 I=1,21
161 PU(1)=U(1)
DO 162 I=1•6
U(6+I)=U(6+I)+(U(12+I)+PU(12+I))*nT/2.
162 U(I) = PU(I) + (U(6+I) + PU(6+I)) + DT/2
THT=U(3)
no 163 I=1.9
163 H(I)=A([+])+THT*(A([+2)+THT*(A([+3)+T+T*A([+4)])
STH=SINF(THT)
CTH=COSF(THT)
'
157 H(1)=SH
158 T1=SB-1•/H(1)
H(4)=1./H(4) T2=H(2)*STH-T1*CTH
H(2)=H(2)*CTH+T]*STH
H(1)=T2
STHR=SINF(U(6))
CTHR=(OSF(U(6))
U(21)=H(2)-DSF*STH-U(2)
Z=U(21)
ZD=(U(21)-PU(21))/DT
DO 164 I=1,2
U(19)=PU(19)+(U(7)+PU(7)+(U(9)+PU(9))*DYF)*DT/2.
U(20) = PU(20) + (U(R) + PU(R) + (U(9) + PU(9)) + DXF) + DT/2
DXF=U(1)-U(19)
MYF=U(20)-U(2)
NXR=U(19)-U(4)
164 DYR=U(5)-U(20)
V(1) = U(1)
V(2) = U(2)
V(3)=U(3)
V(4)=U(7)
V(5) = U(8)
V(6) = U(9)
T=T+DT
GO TO 127
165 DTH=U.(6;-U(3)

1F(ABSF(NTH)-CNTH) 166+167+167
167 PRINT 168
168 FORMAT (15H FUSFLAGE BREAK)
60 TO 700
166 PHM=STRR+ZM(JH)+(.5-11.1+DTH+DTH)
[F(NTH-PNTH) 169,171,171
169 PHM=-RPM*PHM
17] G4=(DXF#DXR+DYF#DYR)
G2=G4*RM
F1=U(9)*U(9)
F2=U(12)*U(12)
Fa=DXR*(F1*DYF+F2*DYR)-DYR*(F1*DXF+F2*DXR)
G3=PHM/(CMF*TM)+FN*(U(19)/(CMF*TM)+DXF/CMF)+FT*((U(20)+.5*Z)/
1 (CMF#TM) -DYF/CMF1+RM*F3
GA=-PHM/(CMR*IM)-FN*DXF/CMF+FT*DYR/CMF+F3
PFN=G1*G5-G4*G2
U(15)=(G3*G5-G2*G6)/DEN
U(18)=(G1*G6-G3*G4)/DFN
F4=F1*DXF+F2*DXR
F5=F1*DYF+F2*DYR
F6=DYF*U(15)
F7=DYR*U(18)
FR=DXF*U(15)
F9=DXR*U(18)
U(13)=-(FT+CMR*F4)/CMA-CLM*(F6+F7)
U(16)=-(FT-CMF*F4)/CMA+TM*(F6+F7)
U(14)=(FN+CMR*F5)/CMA-CLM*(F8+F9)
U(17)=(FN-CMF*F5)/CMA+TM*(F8+F9)
SJ=NS/2.
00 173 J=1•NS
1F (J-JH) 174,174,175
174 AC(J)=-U(12)*CTH+U(14)*STH+U(9)*U(9)*(SRF-SJ)
GO TO 173
175 AC(J)=-U(16)*CTHR+U(17)*STHR+U(12)*U(12)*(SRR-SJ) 173 SJ=SJ+DS
GO TO 160
700 PRINT 203, NRUN
203 FORMAT(1H1,20X,15H INPUT DATA RUN,15//) PRINT 204, VEL, SNK, THIP, FMU
204 FORMAT (4H VFL+F7+2+6X+4H SNK+F6+2+
16X+4H THT+F6.3+6X+11H FRICT COFF+F5.2/)
PRINT 205+STRB+CDTH+BETA
205 FORMAT(11H CR STRESS +F10.3.6X.7H CR ANG.F6.3.6X.
112H DAMP FACTOR+F7.3/)
PRINT 206+H3P+H4P+H5P
206 FORMAT(8H FN1=ZS/+E10.4+10X+11H FN2=ZG*ZG*+E10.4+10X+
116H FN3=ZG+ZGD+ZGD/+E10.4/)
PRINT 207.0H6P.0H7P.0H8P
207 FORMAT (7H FNC=1/+F10.4+10X+11H FT1=XD+ZG++F10.4+10X+
114H FT2=XD*XD*ZG*+E10.4//)
11411 - (2-00-00-20-20-20-70-70-70-70-70-70-70-70-70-70-70-70-70

PRINI 208
208 FORMAT(20X+15H DEVELOPED DATA//)
PRINT 209, (V(1), [=],6)
209 FORMATISH X +F7.2+5X+3H Y +F6.2+5X+5H THETA+F6.2+5X5H XDOT+F7.2+
15X+5H YDOT+F7+2+5X+9H THETADOT+F6+2/1
ZS=ZSP
GL=V(1)-H1P
PRINT 410.ZG.ZS.ZGM.GL.STRM
410 FORMAT(12H GRND DEFORM, F5.2, 5X, 9H FUS DEFL, F5.2, 5X,
115H MAX GRND DEFRM.F6.2.5X.7H GROOVF.F7.2.5X.10H MAXSTRESS.E9.2/1
PRINT 409 (QMX(I) + I = 1 + 4) + JST
409 FORMAT(29H GENERALIZED COORDINATES Q1=+F10+5+3X+4H Q2=+F10+5+3X+
14H Q3=+F10.5+3X+4H Q4=+F10.5+3X+12H MAX STR LOC+15)
STRL=ABSF(STRL)
PRINT 192.STRL.JSTL
192 FORMAT (10X+16H MAX TENS STRESS+E9-2+3X+16H LOCATION NUMBER+15)
PRINT 40
40 FORMAT (1H1+1H INPUT DATA) PRINT 145+((A(I+J)+J=1+4)+I=1+9)
PRINT 145. FC.SC PRINT 145. CMA.CIA.SP.STRB.CDTH.RPM.CNS.DS.FMU.DT
NRUN=NRUN+1
READ 10.VEL.SNK.THT
[F(E0F,60) 999,1]
999 STOP
FND

INPUT DATA FOR CRASH PULSE SIMULATOR

Aircraft - CV-7 (Operational Light)

= 120.0 VEL

= 20.0 SNK

0.2094 THT

0. THTD =

A(I, J):

		A (I, J)	
	1	2	3	4
ı	. 03704	3, 1196	-8, 557	11.005
2	4. 64	- 1, 672	0.0	0.0
3	8.0×10^{-7}	0.0	8.0×10^{-6}	0.0
4	1.924 x 10	0.0	33.6×10^{-6}	0.0
5	8.0 x 10 ⁻⁴	0.0	135.0×10^{-4}	0.0
6	2.0×10^{-5}	0.0	42.2×10^{-5}	0.0
7	0.0	0.0	0.0	0.0
8	40000.	-2400.	0.0	0.0
9	20.0	0.0	0.0	0.0
СМА	A = 900.0		CDTH = 0.30	

 1.53×10^5 CIA

RPM = 50

27.0 SB

= 26.0 CNS

 $STRB = 7.0 \times 10^7$

BETA = 40.0

DS = 26.

FMU = 0.75

DT = .001

OUTPUT OF PROGRAM VIBRAT (REFER TO APPENDIX VI)

CMU, CIM, AS, DF:

	СМИ	CIM	ZM	ĎF
1	9.0	200	. 050	2.0
2	24.5	250	.050	3.0
3	28.5	480	.050	4.0
4	24.5	390	.0608	4.5
5	14.0	250	. 1544	4.5
6	8.9	250	. 1831	4.5
7	19.0	254	. 1821	4.5
8	211.3	340	.1731	4.5
9	210.3	250	. 288	4.5
10	208.0	198	. 252	4.5
11	18.5	240	. 2375	4.5
12	19. 5	380	. 2282	4.5
13	22.0	413	. 242	4.5
14	10.0	320	. 1748	4.5
15	8.0	310	.180	3.30
16	4.0	110	. 185	3.10
17	4.0	65	.150	3.0
18	1.5	48	.1168	3.0
19	3.0	48	.112	2.5
20	4.5	27	. 092	2.5
21	4,5	20	. 0767	2.5
22	19.0	20	. 0767	2, 5
23	19.5	950	. 60	2.5
24	4.5	3500	. 520	2.5
25	1.0	3500	.10	2, 5
26	1.25	3	. 10	2.5

Developed Data For Crash Pulse Simulator

Final coordinates: (at rebound)

X = -2.37 ft

Y = 7.45 ft

 $\theta = 0.13 \text{ rad}$

Final velocities and accelerations:

X = 78.59 ft/sec

Y = -2.17 ft/sec

 $\theta = -0.50 \text{ rad/sec}$

Fuselage deflection = 0.78 ft

Maximum ground deformation = 0.45 ft

Length of groove formed between

contact and rebound = 20.8 ft

BLANK PAGE

SIMULATOR PLOT OF ACCELERATION-TIME HISTORIES

99

DATE

RUN 2000

					• 10	•	•	•	•	•	•	•		:	•	•		•	•	•	• •	•	•			•		•	•		*	•	•	•	• •	. 18	
•		•		•		•	•	•		•	•			•	•	•		•		•					•	**	•			•		•	•				
		0.10	0.10	4.04	4.93	7.56		11.70			5.50	5.52		5.49		11.78	200	9.		10.75	7.01		8.70	1 7A	13.01	3.7	•	10° 00° 00° 00° 00° 00° 00° 00° 00° 00°	12.52	12.10	8	11.60		11.31	11.52	11.52	
19-27	-		72	80	02	• 0 •			-		.78	500	91	. 43		5.5			0.81	1.29	1.51	11.06	10.66	10.43	1.02	1.77	2.3	13.17	3.1	2.6	11.99	4.1	٠ ٠	11.19	11.08	2.4	12.68
00.0	_	-1.27	9	n a		•					w.		•		٥	O		-	7	→ ·																1	
00.	. 73	.57	3.60 0.9	•	-	•	•;			•	•	• •				•	9 1 '	.20	9.89	99.0	1.32	1.00	1.80	 	: :	1		•	2.18	2.23	2.22	oi.	o o	70	, ,	2	4

H

45

	* * · · ·		+ -					•				÷ 2	• H • • •	+ H		• " • • •	• H. • • •	The state of the s	•	• • •	•) • () N		•	• • •					+	•• • •	• • •		• • • • • • • • • • • • • • • • • • • •		• • • • •					• • • •	•••••		• • • •					• • • •	n (**	
	11.3.	11.52						12.17		10.26	9 10	7.19	20.0	20.0	0.14	6:13	6.28	6.18	•	•		•	9	•	2.88		5.26	5.97	5.26		S	2	0.0	2	2.14		3.0		70	2.2	1.54	1.09	0.00	-	1.06	1.24	4.43	1.03	1.40	1.34	1.27	60.0	h r
			12.68								9.10	0.70	700	0.4.7	1.39	6.77	6.11	2.47	4.77	3.68	3.87	N. 47	4.10	4.66	4.93	4.85	•	Ď. 1	. 0		3,13	*	N. 10			7	7	•	7		S			7	4		1	1.59	4.69	1.63	1.45))
,	8	2	11.85	1	-	i		-	30	7		7,13	7.0	0 1		9.84	6.10	5.40	4.84	4.71	4.72	4 6	4.95	4.83	4.54	4.13	3.70	40.0	7 + 5	7	3.50	3.66	3.00	3.29	2.94	2.60	2.35	22.2	2000	2.5	2,32	2.27	2.16	2.00	1.83	1.68	1.48	1.41	40.4	1.24	1.13	1.02	?
****	0.088	0.000	0.092	0.094	960.0		0 0	0.100	704.0	101.0		97.0	0110	0.116	0.114	0.116	0.118	0.120	0.122	0.124	126	0.130	0.132	0.134	0.136	0.138	0.140	0.140	44.	0.148	0.150	0.152	6.134	0.158	0.160	0.162	9.164	901.0	0 1 70	0.170	0.174	0.176	0.178	0.180	0.182	100	0.188	0.190	0.192	0.194	0.196	0000) 1

B

1

. .

	• • • •	• • • •	• 8	• • • •	• • • • •	+ 'R	• • •	• • •	• • • • •	• • •					+	•••••	••••••	+' B '+	*. n · • ·	• • • • • •	• • • • ·	• • • • •	• • • • •		* · · · · ·	• • • •	+ a a a				•	** B' * '												• • • •			•	
0.10	5.77	•	3.94	•	2.03	4	•	•	4	9.26	•			•	•	•	5.	4	•	4	4	•	•	5	o.	2,21	4	•	0		1.24	7) + · ·	2.		***	1.2.	4 .		*	•	1.0	~	0.2	*		0	00
2.47	4.77	3.68	3.07	•	•	4.10	4.66	4.93	4.85	4.47			-	•				٠,	•	•	. T.	•	•	. •	•	5.69	. f.	•	M.	:	1.08	1	•	1.09	•	•	7	<u> </u>	•	0.33	•	0.27	•		97.0		0.39	0.25
2.40	•			•	4.92	9	•	N	4	1	7	7	7	•	"	9			'n	٠,	익	•	2	4	S	ا ن	7		! =			J	Υ,	•	3,0			70					9		7	,	7	0.29
4.124																																																0.216

3

 \bigcirc

i

to other presidence for the

APPENDIX V CARGO SIMULATOR FORTRAN LISTING

	PROGRAM CRASH
	DIMFNSION V(10) +PV(10) +A(9+4) +H(9) +WDD(30) +Q(20) +
	1PQ(30) .PH1(32) .PH2(32) .PH4(32) .PH4(32) .CMU(32) .ECA(32) .ECB(32)
	1NF(32), C[M(32), AC(32), U(2), PU(2), OM(4), CM(4), SND(4), CSD(4),
	1CMOM(4) .PLOT(71) .PT(4) .OMX(4) .ZM(32)
10	FORMAT(8F10.6)
	READ 10. VEL.SNK.THT.THTD
	RFAD 1C. ((A(I.J).J=1.4).I=1.9)
	READ 10 + CMA + CIA + SR + STRB + CDTH + RPM + CNS + DS + FMU + DT
	READ 10.CMU.CIM.DF.PH1.PH2.PH3.PH4.ECA.ECB.ZM
	READ 10.0M.CM.RETA
	PFAN 300.(PLOT(J).J=1.71).RLNK.PRD.AST.FQ.PLS
300	FORMAT (7141.541)
	RFAD 10+CLN+RLL+FLL
	READ 9.MNTH.NDAY.NYR.NRUN
9	FORMAT (415)
	\$MU=0.5
	SC=•75
11	no 12,J=1,10
12	V(J)=0.
	RLL=RLL * 32 • 2
	FLL=FLL+32.2
	LN=CLN
	V(3)=THT
	V(4)=SQRTF(VEL*VFL-SNK*SNK)
	V(5)=-SNK
	V(6)=THTD
	PO 14 I=1•2
1.4	V(1) = A(1,1) + T'+T'+(A(1,2) + T+T'+(A(1,3) + T+T+A(1,4))
, 4	FN=9.
	IF (THT) 70•71•71
	V(1)=1-/(1-/A(1-1)-600-#THT)
71	T1=SB-1./V(1)
	T2=V(2)*SINF(THT)-T1*COSF(THT) V(2)=V(2)*COSF(THT)+T1*SINF(THT)
	V(1)=T2 FT=FN
	MXT=1
	NCR=1
	MRTN=1
	THIP = THI
	DO 17 I=3.9
17	$H(\uparrow) = A(\uparrow \bullet \uparrow) + THT + (A(\uparrow \bullet 2) + THT + (A(\uparrow \bullet 3) + THT + A(\uparrow \bullet 4)))$
	H3P=H(3)/(1.+4.*THT*THT)
	H4P=(1.+4.*THT*THT)/H(4)
	H5F = H(5)
	H6P=H(6)7(1.+8.*THT*THT)
	H7P≈H(8)
	1100-11101
	H8P=H(9) H1P=V(1)

```
00 13 J = 1.20
 13 Q(J)=0.
    T=0.
    NS=CNS
    OM(3) = OM(3) - RETA + RETA/4.0
    OM(4) = OM(4) - RETA * RETA/4.0
    00 15 I = 1+4
    QMX([)=0.
    CMOM(I) = SQRTF(OM(I)) *CM(I)
     SND(1)=SINF(SQRTF(OM(1))+DT)
 15 CSD([)=COSF(SQRTF(OM([))*DT)
    SWCH= -1.0
DO 301 J = 1.NS
201 AC(J) = 0.

DO 16 I = 3.4

SND (I) = EXPF(-BETA/2. * DT) * SND(I)

16 CSD(I) = EXPF(-BETA/2. * DT) * CSD(I)
    9T(1)=0.
    RT(2)=0.
    RT(3)=BFTA
    RT(4)=BFTA
    ZG = 0.
    FNC = 0.0
    FC=5.0
    FU = 2.0
    SH=40.
    ZDG = 0.
    7.GM = 0.
    PRINT 200+MNTH+NDAY+NYR+NRUN
200 FORMAT(1H1+20X+6H DATE +314+20X+5H RUN +15//)
PRINT 201
201 FORMAT (5X+31H TIME 123H(*) FLOOR+ (=)
                              CARGO ACEL
                                              FLOOR ACEL, 3X,
                             CARGO1
    MSW = 1
    PVR = 0.
    VR = 0.
    PAR = C.
    SR = 0.
    SRM = 0.
    STRL=0.
    AR=0.
    MCR=1
    DO 112 I=1+3
112 V([)=V(3+[]+DT+V(])
110 PFN=FN
    DO 111 I=1+10
111 PV([)=V([)
    THT=V(3)
```

00 113 1=1.9
113 H([1=A([+])+THT*(A(!+2)+THT*(A([+3)+THT*A([+4)))
IF (THT) 117,118,118
117 H(1)=SH
118 T1=58-1./H(1)
H(4)=1./H(4)
T2=H(2) + SINF(THT) - T1 + COSF(THT)
H(2)=H(2)#COSF(THT)+T1#SINF(THT)
H(1)=T2
V(10)=H(2)-V(2)
Zn=(V(10)-PV(10))/DT
Z=V(10)
127 [F(T-•3) 180•700•700
18C IF(V(4)) 114.114.181
181 [F(Z) 114•114•182
182 [F(V(3)8) 115.700.700
114 PRINT 116
116 FORMAT(18H REBOUND COMPLETE)
GO TO 700
115 SWCH = -1.0 * SWCH
[F(ACLN), 570.571.57]
570 ACLN=0.
571 [F(VR) 500,501,502
501 JF (AC(LN)) 503.504.504
504 [F (SRM - SR) 505,505,506
505 IF (AC(LN) - RLL) 600,600,507
507 AR = AC(LN) - RLL
508 IF (VR) 517.518.519
517 AR = AR + SMU * ACLN
GO TO 520
519 AR = AR - SMU * ACLN
GO TO 520
518 IF (ARSF(AR) - SMU * ACLN) 521,521,522
521 AR = 0
GO TO 514
522 AR = AR * (1 SMU * ACLN/ABSF(AR))
520 VR = PVR + (AR + PAR) + DT/2.
TF (VR * PVR) 509+510+510
509 VR = 0.
AR=0.
60 TO 514
510 SR = SR + (VR + PVR) * DT/2.
IF (SR - SRM) 511,511,512
512 SRM = SR
511 IF (SR - ORL) 514 A14.514
513 SRL = SR
514 PVR = VR
PAR = Ai'
60 TO 600
506 AR = AC(LN)

```
GO TO 508
503 JF (SR - SRL) 515+515+506
515 JF (- AC(LN) - FLL) 600+600+516
516 AR = AC(LN) + FLL
     GO TO 508
502 [F (SRM - SR) 507,507,506
500 JF (SR - SRL) 516,516,506
600 IF (SWCH) 318,530,531
530 STOP
531 GB = (AC(LN) - AR)/32.2
    K = GR + 26.5
    IF (K) 305 . 305 . 306
306 IF (K-71) 307,307,305
307 PLOT (K) = EQ
305 GC = AC(LN)/32.2
     L = GC + 26.5
IF (L) 308.308.309
309 IF (L-71) 310,310,308
310 PLOT (L) = AST
308 \text{ PLOT } (26) = PRD
     PRINT 311+T+GB+GC+PLOT
311 FORMAT (5X.F5.3.2F12.2.71A1)
312 IF (K) 315,315,316
316 IF (K-71) 317,317,315
317 PLOT (K) = BLNK
315 IF (L) 318.318.319
319 [F (L-71) 320,320,318
320 PLOT (L) = BLNK
318 GO TU(523,524),MCR
523 DZ=ZD#DT
    COF=1.+4.*THT*THT
     H(3)=H(3)/COF
     H(4)=H(4)*COF
    H(K)=H(6)/(2.#COF-1.)
     IF(ZG - ZGM) 411,411,412
412 ZGM=ZG
     ZSP=Z-ZG
411 PZG = ZG
     IF (DZ) 119+120+120
120 GO TO (800,801), MSW
800 FUH=H(4)+ZDG * ZDG/H(5)
    CK=((1.0-SC)*H(8)*V(4)+1.0/H(3))/(7.0 * FUH)
     ZG=SQRTF(Z/(H(3)*FUH)+CK*CK)-CK
    ZS = Z - ZG
    FN = ZS/H(3)
     IF (FN-1./H(6)) 803,803,802
802 MSW = 2
801 FUH = H(4) + ZDG + ZDG /H(5)
     IF (FN - 1./H(6)) 804.805.805
804 FCH = H(3)
```

```
GO TO 806
805 FCH = FC + H(3)
806 DZG=DZ/((2.*FUH*ZG+(1.-SC)*H(8)*V(4))*FCH+1.0)
899 ZG=ZG+DZG
    DZS = DZ - DZG
DFN = DZS/FCH
    FN=PFN+DFN
    GO TO 803
119 DZG=DZ*ZG/(Z-DZ)
    FCH = H(3)
    GO TO 899
803 FNSC=(1.-SC)*H(8)*V(4)*ZG
IF (FN-FNSC) 808+121+121
808 FN=FNSC
121 FT = FMU * FN + (H(8) * V(4) + H(9) * V(4) * V(4)) * ZG * SC
    ZDG = (ZG - PZG)/DT
    CTH=COSF(V(3))
    STH=SINF(V(3))
    P= FN*CTH-FT*STH
    C = FT # CTH + FN # STH
123 GO TO (126,165) MRTN
126 V(7)=-FT/CMA
    PNCR = NCR
    V(8) = FN/CMA
    V(9)=(FN*H(1)+FT*(V(2)+ZG/2.))/CIA
    00 130 I=1.3
    V(3+1)=V(3+1)+(V(6+1)+PV(6+1))*DT/2.
130 V(11=V([])+(V(3+])+PV(3+[])*DT/2.
    5J=05/2.
    DO 131 J=1+NS
WDD(J)=V(7)*STH+V(R)*CTH-V(9)*(SB-SJ)
131 SJ=SJ+DS
    00 \ 132 \ I = 1.20
132 PQ(1)=Q(1)
    SP=SB-(V(2)+ZG/2.)*STH+H(1)*CTH
    CMM=C*((V(2)+ZG/2.)*CTH+H(1)*STH)
    J=SP/DS+1.0
Q(1) = P * PH1(J) + CMM * (PH1(J+1)-PH1(J))/DS
    Q(2) = P + PH2(J) + CMM + (PH2(J+1)-PH2(J))/DS
    Q(3)=C*PH3(J)
    Q(4)=C*PH4(J)
    ACFL = V(8) * STH - V(7) * CTH
    SJ = SB - DS/2.
    TH50=V(6)*V(6)
    DO 133 J=1+NS
    Q(1) = Q(1) - CMU(J) + WDD(J) + PH1(J)
    Q(2) = Q(2) - CMU(J) + WDD(J) + PH2(J)
    Q(3) = Q(3) - CMU(J) + (ACEL + THSQ + SJ) + PH3(J)
    Q(4) = Q(4) - CMU(J) + (ACFL + THSQ + SJ) + PH4(J)
133 SJ = SJ - DS
    00 \ 212 \ 1 = 1.4
```

```
IF(T-DT/2.) 210.210.211
210 0(4 + 1) = Q(1) + DT + DT/(6. + CM(1))
    O(16 + 1) = O(4 + 1) +3./(SQRTF(OM(1)) + DT)
    GO TO 213
211 QT = PQ(16 + 1) + PQ(1)/CMOM(1)*DT
    O(4 + 1) = PO(4 + 1) + CSO(1) + QT + SNO(1)
    Q(16 + 1) = QT + CSD(1) - PQ(4 + 1) + SND(1)
213 O(12+1)=Q(1)/CM(1)-(OM(1)+RT(1)*RT(1)/4.)*Q(4+1)-RT(1)*PQ(8+1)
    IF(ABSF(Q(4+1))-QMX(1)) 212+212+214
214 QMX(1)=A9SF(Q(4+1))
212 Q(8 + 1) = PO(8 + 1) + (Q(12 + 1) + PQ(12 + 1)) * DT/2.0
    PSTR=0.
    PPSTR=0.
    CMNT = CMA - CMU(1)/2.0
    SJ = SR - DS/2.
    PSHR=0.
    BMM=-CMM
    NPP=1
    no 400 J = 1.NS
    AC(J)=ACFL+THSQ*SJ+Q(15)*PH3(J)+Q(16)*PH4(J)
    GO TO (143.)44), MXT
147 ACN=V(7) #STH+V(A) #CTH-V(9) #SJ
    IF (J - LN) 146,147,146
147 ACLN = ACN+32.2*CTH
146 SHR=PSHR+CMU(J) #ACN
    GO TU(401,402) NPP
401 [F (SP-SR+SJ-DS/2.) 403,403,402
403 NPP=2
    SHR=SHR-P
402 RMM=RMM-(PSHR+SHR)*DS/2.+CIM(J)*V(9)
    PSHR=SHR
    STR=ECA(J) *Q(5)+ECB(J) *Q(6)
    STRN=(3. #STR+6. #PSTR-PPSTR)/8.
    IFISTRL-STRN) 191,191,190
190 STRL=STRN
    JSTL=J
191 [F(STRN-STRM) 413,414,414
414 STRM = STRN
    IST=J
413 IF(STRN - STRB) 140+141+141
140 PPSTR=PSTR
    PSTR=STR
    GO TO 144
141 JH=J-1
    SH = SR - SJ -DS/2.0
    PRINT 142.JH
142 FORMAT(21H YIELD HINGE AT STA. . 13)
    MXT=2
144 CMNT = CMNT - CMU(J) + CMU(J + 1))/2.0
400 SJ = SJ - DS
145 FORMAT (1X+10E11-4/)
```

	T=T+DT
	GO TO (110+149)+MXT
149	(MF=0.
	T=T-DT
	DC 150 N=1+JH
150	CMF=CMF+CMU(N)
	CMR=CMA-CMF
	CLM=CMR/CMA
	TM=CMF/CMA
	RM=CMR/CMF
	SJ=n5/2.
	SRF=0.
	DO 152 N=1+JH
	SRF=SRF+CMU(N)*SJ
152	SJ=SJ+DS
	SRF=SRF/CMF
	SRR=(CMA*SB+CMF*SRF)/CMR
	DSF=SB-SBF
	DSR=SRR-SR
	U(1)=V(1)+DSF*CTH
	U(2)=V(2)-DSF*STH
	U(3)=V(3)
	U(4)=V(1)-DSR*CTH
	U(5)=V(2)+DSR*STH
	U(6)=V(3)
	00 151 1=1+3
	U(6+1)=V(3+1)
	U(9+1)=V(3+1)
	U(12+1)=V(6+1)
151	U(15+1)=V(6+1)
	U(19)=V(1)+(SB-SH)*CTH-DF(JH)*STH
	U(20)=V(2)-(SB-SH)*STH-DF(JH)*CTH
	U(21)=V(10)
	RF=(5RF-SH)*(SRF-SH)+DF(JH)*DF(JH)
	RR=(SBR-SH)*(SBR-SH)+DF(JH)*DF(JH)
	SJ=n5/2.
	CIF=0.
	00 153 N=1•JH
	CTF=CIF+CIM(N)+CMU(N)*SJ*SJ
153	SJ=SJ+DS
	CIF=CIF-CMF#SBF#SRF
	CIR=CIA-CIF-CMF*(SR-SBF)*(SR-SBF)-CMR*(SR-SBR)+(SR-SBR)
	G1=(CIF/CMF+CLM*RF)/TM
	G5=(CTR/CMR+TM*RR)/TM ·
	NXF=U(1)-U(19)
	NYF=U(20)-U(2)
	MRTN=2
	DTH=0.
160	PDTH = DTH
	PFN=FN

```
161 PU(1)=U(1)
    00 162 1=1.6
    U(6+1)=PU(6+1)+PU(12+1)*DT
162 U(1) = PU(1) + (U(6+1) + PU(6+1))*DT/2.
    THT=U(3)
    DO 163 I=1.9
167 H([)=A([+1)+THT*(A([+2)+THT*(A([+3)+(HT*A([+4)))
    STH=SINF(THT)
    CTH=COSF(THT)
    IF (THT) 157.158.158
157 H(1)=SH
158 T1=5B-1./H(1)
    H(4)=]./H(4)
    T2=H(2) #STH-T1 #CTH
    H(2)=H(2)*CTH+T1*STH
    H(1) = T2
    STHR=SINF (U+6-))
    CTHR=COSF(U(6))
    U(21)=H(2)-DSF*STH-U(2)
    Z=U(21)
    Zn=(U(21)-PU(21))/DT
    DO 164 I=1.2
    U(19)=PU(19)+(U(7)+PU(7)+(U(9)+PU(9))*DYF)*DT/2.
    U(20)=PU(20)+(U(8)+PU(8)+(U(9)+PU(9);*DXF)*DT/2.
    DXF=U(1)-U(19)
    DYF=U(20)-U(2)
    DXR=U(19)-U(4)
164 DYR=U(5)-U(20)
    V(1) = U(1)
    V(2) = U(2)
    V(3)=U(3)
    V(4)=U(7)
    V(5). = U(8)
    V(6) = U(9)
   T=T+DT
    GO TO 127
165 DTH=U(6)-U(3)
    IF(ABSF(DTH)-CDTH) 166,167,167
167 PRINT 168
168 FORMAT (15H FUSELAGE BREAK)
    GO TO 700
166 PHM=STRB*ZM(JH)*(.5-11.1*DTH*DTH)
   IF(DTH-PDTH) 169+171+171
169 PHM=-RPM#PHM
171 G4=(DXF*DXR+DYF*DYR)
   G2=G4*RM
   F1=U(9)*U(9)
   F2=U(12)*U(12)
   F3=DXR*(F1*DYF+F2*DYR)-DYR*(F1*DXF+F2*DXR)
   G3=PHM/(CMF*TM)+FN*(U(19)/(CMF*TM)+DXF/CMF)+FT*((U(20)+.5*Z)/
```

1 (CMF*TM)-DYF/CMF)+RM*F3
G6=-PHM/(CMR*TM)-FN*DXF/CMF+FT*DYR/CMF+F3
DEN=G1*G5-G4*G2
U(15,)=(G3*G5-G2*G6)/DEN
U(18)=(G1*G6-G3*G4)/DEN
F4=F1*DXF+F2*DXR
F5=F1*DYF+F2*DYR
F6=DYF*U(15)
F7=DYR*U(18)
FR=DXF+U(15)
F9=DXR+U(18)
U(13)=-(FT+CMR*F4)/CMA-CLM*(F6+F7)
U(16 =- (FT-CMF*F4)/CMA+TM*(F6+F7)
U(14)=(FN+CMR*F5)/CMA-CLM*(F8+F9)
U(17)=(FN-CMF*F5)/CMA+TM*(F8+F9)
\$J=n\$/?.
DO 173 J=1•NS
IF (J-JH) 174.174.175
174 AC(J)=-U(13)*CTH+U(14)*STH+U(9)*U(9)*(SBF-SJ)
GO T() 173
175 AC(J)=-U(16)*CTHR+U(17)*STHR+U(12)*U(12)*(SBR-SJ)
173 SJ=SJ+DS
IF(CLN*3SH) 572.572.573
572 ACLN=U(13)*STH+(U(14)+32.2)*CTH-U(15)*(SRF-CLN*3.)
GO 10 160
573 ACLN=U(16) *STH+(U(17)+32.2) *CTH-U(18)*(SRR-CLN*3.)
GO TO 160
700 AC(LN)=0.
T=T+DT
MCR=2
ACLN=32.2
GO TO 115
524 T=T+DT
IF(VR) 525,525,115
525 PRINT 203. NRUN
203 FORMAT(1H1•20X•15H INPUT DATA RUN•15//)
PRINT 204. VEL. SNK. THTP. FMU
204.FORMAT(4H VEL+F7.2+6X+4H SNK+F6.2+
16X+4H THT+F6+3+6X+11H FRICT COEF+F5+2/)
PRINT 205+STRB+CDTH+BETA
205 FORMAT(11H CR STRESS +F10.3+6X+7H CR ANG+F6.3+6X+
112H DAMP FACTOR+F7.3/)
PRINT 206+H3P+H4P+H5P
206 FORMAT(8H FN1=ZS/+E10.4+10X+11H FN2=ZG*ZG*+E10.4+10X+
116H FN3=ZG*ZGD*ZGD/9E10.4/)
PRINT 207.06P.04P.00P.06P.0
207 FORMAT (7H FNC=1/+E10+4+10X+11H FT1=XD+ZG++E10+4+10X+
1)4H FT2=XD+XD+ZG++E10+4//)
PRINT 208
208 FORMAT(20X+15H DEVELOPED DATA//) PRINT 209+(V(I)+I=1+6)
209 FORMAT(3H X +F7.2+5X+3H Y +F6.2+5X+6H THETA+F6.2+5X5H XDOT+F7.2+

15X+5H YDOT+F7+2+5X+9H THETADOT+F6+2/)
ZS=ZSP
GL=V(1)-H1P
PRINT 410.ZG.ZS.ZGM.GL.STRM
410 FORMAT(12H GRND DEFORM.F5.2.5X.9H FUS DEFL.F5.2.5X.
115H MAX GRND DEFRM.F6.2.5X.7H GROOVE.F7.2.5X.10H MAXSTRESS.E9.2/)
PRINT 409 (QMX(1) , [=1,4) , JST
409 FORMAT(29H GENERALIZED COORDINATES Q1=+F10+5+3X+4H Q2=+F10+5+3X+
14H Q3=+F10+5+3X+4H Q4=+F10+5+3X+12H MAX STR LOC+15)
STRL=ARSF(STRL)
PRINT 192.STRL.JSTL
192 FORMAT (10X+16H MAX TENS STRESS+E9+2+3X+16H LOCATION NUMBER+15)
PRINT 193
193 FORMAT(1H0,5X+13HREAR LOAD LIM+5X+13H FWD LOAD LIM+4X+
114H MAX FWD DISPL+4X+14H MAX AFT DISPL+4X+9H SECT LOC)
PRINT 194+RLL+FLL+SRM+SRL+LN
194 FORMAT(8X+F8.2+10X+F8.2+10X+F8.2+10X+F8.2+9X+13///)
PRINT 40
40 FORMAT (1H1+11H INPUT DATA)
PRINT 145 ((A(I + J) + J = 1 + 4) + I = 1 + 9)
PRINT 145. FC.SC
PRINT 145. CMA.CIA.SP.STRB.CDTH.RPM.CNS.DS.FMU.DT
NRUN=NRUN+1
READ 10. VEL.SNK.THT.CLN.RLL.FLL
1F(FOF,60) 999,11
999 STOP
FND

INPUT DATA FOR CARGO SIMULATOR

Aircraft - CV-7 (Operational Light)

The input data is the same as that for the crash simulator, (refer to Appendix IV) plus the following:

CLN = 13.

RLL = 8.

FLL = 4.

Developed Data For Cargo Simulator

Same as for crash simulator, plus:

Maximum forward displacement of cargo relative to floor = 0.33 ft

ACN 34	NO 0		•	•					•			•	•	•	•		• (• •		:	• *	:	• 4 • 1		» «	•		•					•	•		» (*	•	•
	(e) FLOOR, (e) CA	and the second s		•								A. e																										0	•					
E 9 7 65	FLOOR ACEL		-1.27		0.94	9.0		8.12	. 4	0 10	NP	9 4	. 4		- ⊕	0	6	T.	ry u	r w	1	100	-	ام،	11,51	•	-1-		-1	_		1 .			9	0	7	7	41	3	11,98	200	36	
DATE	4		4		-	•	2.90	0.02	***	0 0	7.28	9 4	7 · 4 ·	5.78	9 9	7.98	16.0	9.05	9.01	•	86.8			_	8.93	8.92	٦.			-	•	-	8.77		8.74		1	0.70	8.68	9	60 90 90 90 90 90 90 90 90 90 90 90 90 90	•	0.02 A.66	
	I	000	35			=	Ξ	Ξ	5	5	3			3 2	6			0	0	0	> C		0	0	0	0	d	5 C		0	0	9		•	0	0	0	9		٦	٠.	•		•

•				•	•	* 8	•	• !									•	•	•				•	AR	20	AC	CEL		ATI		AC	CEI	ER	AT:	IO				_				* £	**	•		· · · · · · · · · · · · · · · · · · ·	
•		•	• •		•	•	•	•		•	•		•		•	•	•	•	•				**	•	•				• •	• •			•			•	•	•			•				•	•		は、ない人の変異ない語が
																												The second secon						An if					4				eži je e j	, 185 , 185				The state of the s
	9	5 0		0	~	9	41	-	4	. ~	2 1	•	1		9.	•	ď		27.	0		4		ù	4	•	7	4	.01	10	10	7		ů٠		5	4		. 28	4		"			10	.88	200	The state of the s
-4 •		4 +	47	-	7					, a				2	~	_	6		, 97		Y 0			e (8	•	.01	0	4	0		o σ	.0	· ~		•	D 1	60		6			10	.88		
000	76	70		00	02 8	9	90		12 A	•			•	6	•	•	8				•					0	20		7 2 6	-	. ~	2	R (•														一方震いる
) C				0.1	.0	0.0	r	7.	4 T C			0.1	1.0	0	0.1	1.0	7.0	r.	r .		-	0.1	1.0	r. 0			0	0	0. t. c.		0.0	0.1	0			0	0	0		0	0	0		9 6	 	0.5		

B

• •	•	•	•		•	» «			100		•	EL		.00		AC	CEI	E	LAT	PIO	N •	•	• •				•	•			•	•		•	•	•	•	•	•	•	•
				14.								The second of th																						3	•					3.	
8.08 000	3.04		-	6.00			100		-	•	•	- 1		•				•		•	•	•	4		•	ei •		-	•	1.42						•	•	•			
9.00		8.08	8.97	90.0		6.92	10.0	8.90		•	•	┥.	•	•	•	•			•	4	•	•	4	•	D	4 .	•	•	•	1.42	•	•	•	•	•	•	•	•			4
0.126	- 3			71			-				_	- 44		•	N4	_		_	-4				_			4	-		 	هـ ام	_		•	-	. امت	~ .			-		

B

APPENDIX VI PROGRAM VIBRAT FORTRAN LISTING

```
PROGRAM VIRRAT
    DIMENSIUM PH(32) + EI(32) + EC(32) + PHA(32) + PLOT(71) + CHU(32) + V(32) +
    1 RM(32), CF(32),AS(22)
  9 FORMAT(8F10.4)
  4 READ 9. DS. FPS. NS. MSW
  9 FORYAT(2F10.4.2T10)
    DEAD & AS.FT.FC.CMU
    PEAR 7, (PLAT(J), J=1,71), PLNY, STAR, DRO
  7 FORMAT (7141,341)
    F= 1500000000.0
    CMS=NS
    COF = 6.24 / (CMS*DS)
    SJ=NS/2.
    PH(J)= COSF(COF*SJ)
890 SJ=SJ + DS
    POM = 0.
    SJ = DS/2.
    F1 = CMU(1) * SJ/4.

F2 = (5. * CMU(1) - CMU(21)/8.
    F2 = F1 * DS/4.
    FA = F2 * 05/4
    no one J = 2, NS
    DE1 = CMU(J - 11 * SJ
    SJ = SJ + DS
    DF1 = (DF1 + CMU(J) * SJ) /2.
    F1 = F1 + DF1

F3 = F3 + (F1 - DF1/2.) * DS
    DE2 = (CMU(J - 11 + CMU(J1)/2.
F2 = F2 + DF2
900 FA = FA + (F2 - DF2/2.1 * DS
    DF1 = (CMIJ(NS) * (SJ + DS/4.1)/2.
    F1 = F1 + DF1
    F3 = F3 + (F1 - DF1/2.) * DS/2.
    DF2 = CMU(NS)/2.
    F2 = F2 + DF2
    F4 = F4 + (F2 - DF2/2.) * DS/2.
    MXT = 1
901 V(1)=(5.*CMU(1)*PH(1)-CMU(2)*PH(2))/8.
    PM(1) = V(1) * 75/4.
    nn 902 J = 2.NS
    DV=(CMU(J-1)*PH(J-1)+CMU(J)*PH(J))/2.
    V(J) = V(J - 1) + nV
972 PM(J) = RM(J - 1) + (V(J) - 7V/2.) * DS
    GO TO (903,904) MXT
002 DV=(5.*CM)(NS)*PH(NS)-CM)(NS-1)*PH(NS-1))/8.
    VF = V(NS) + DV
    PME = PM(MS) + (V(MS) + DV/2.) * DS/2.
    DEN = F1 * F4 - F2 * F3
C1 = (F2 * BMF - F4 * VF)/DEN
```

MICHARA

```
- (F2 * VF - * PMF1/DEN
    OM = 1./(PH(1) + C1 * SJ + C2)
    nn c. 3 J = 1.NS
    PH(J) = PH(J) + (1 * 5J + 52
03# SJ = 5J + DS
    MXT = 2
    GO TO (018,919), MSW
011 DUD = (DM(1)/FI(1)) * DS/4.
    DH(1) = PHP * DS/4.
    00 907 J = 2.NS
    DPHP = (PM(J - 1)/FI(J - 1) + BM(J)/EI(J)) * DS/2.
    PHP = PHP + DPHP
907 PH(J) = PH(J - 1) + (PHP - DPHP/2.) * DS
    PRINT 90,PH
    GO TO 901
904 DOM=ARSE(OM-POM)
    POM = OM
    MXT = 1
    IF (DOM - FPS) 908,908,911
908 PO 909 J = 1.NS
    PLOT (36)=PRD
    IF(ARSF(PH(J))-1.7) 502,502,502
502 PHT=35.+PH(J)*20.
    N = PHI + 1.5
    PLOT(N) = STAR
5 2 PRINT 10,J,PH(J),PLOT
10 FORMAT (13,4X,F8,4,10X,7141//)
900 PLOT(N) = BLNK
    PRINT 11. OM
 11 FORMAT(1H1,10X,F12,3///)
    no 910 J = 1.45
    FCPH = RM(J) * FC(J)/FI(J) * OM
910 PRINT 12, FCPH, J
 12 FORMAT (20X+F10.3+13)
    GO TO (921,922), MSW
921 MSW = 2
    POM=C.
    FPS=1.0
    CM1 = 0.
    00 914 J = 1.NS
    CM1 = CM1 + CMU(J) * PH(J) * PH(J)
914 PHA(J) = PH(J)
    PRINT 14, CM1
PRINT 13
 13 FORMAT(1H1,12H SECOND MODE)
    SJ=DS/2.
    COF=9.42 / (CNS*DS)
    DO 915 J=1 ,NS
```

```
PHLJ) = COSF (COF*SJ)
 915 SJ=SJ+DS
     CM = 0
     00 916 J = 1.NS
 016 CM = CM + CMU(J) * PH(J) * PHA(J)
     \Lambda = CM/CM1
     DO 917 J = 1.NS
 917 PH(J) = PH(J) - A * PHA(J)
     GO TO (901,918),MXT
 918 FACT=1./PH(1)
     00 920 J=1.NS
 920 PH(J)=PH(J)*FACT
  99 FORMAT (5X.10F11.4)
 922 CM=1.
     FPS=.0001
     00 950 J=1.NS
 950 CM=CM + CMU(J)*PH(J)*PH(J)
     DRINT 14 . CM
     MSW = 1
     COF=COF/3.
 947 CJ=05/2.
     POM=U.
     DO 930 J=1.NS
     PH(J)=COSF(COF*SJ)
930 SJ=SJ + DS
     PRIMT 99,PH
921 CNUM= (5.*CMU(1)*PH(1)-CMU(2)*PH(2))/8.
     nn 022 J=2,NS
     DCNUM=(CMU(J-1)*PH(J-1) + CMU(J)*PH(J1)/2.
 932 CNUM=CNUM + DCNUM
     DCNUM= (5.*CMU(NS)*PH(NS)-CMU(NS-1)*PH(NS-1))/8.
     C1=(CNUM + DCNUM)/F2
     OM=1. / (PH(1)-C1)
     GO TO (927,9381. MSW
037 DO 032 J=1,NS
932 PH(J)=(PH(J)-C1)*OM
949 DOM=DM-POM
    PRINT 99 . CNUM . C1 . OM . A . CM . CM ]
     POM=OM
     PRINT 90,PH
    IF(ABSF(DOM/OM)-FPS) 934,934,935
935 CF(11= (5.*CMU(1)*PH(1) - CMU(2)*PH(2)1/9.
     DO 036 J=2,NS
     DCF= (CMU(J-1)*PH(J-1) + CMU(J)*PH(J)1/2.
936 CF(J)= CF(J-1) + DCF
     PRINT 99.CF
     PH(1) = CF(1)*DS / (4.*F*AS(1))
     DO 939 J=2.NS
     PH= (CF(J-1) / AS(J-1) + (F(J) / AS(J)) *NS / (2.*F)
```

```
030 PU(J)= PH(J-1) + PDH
    PRINT GO.PH
    GO TO 030
038 CM=0 ..
    00 040 J=1.NS
    DH(J)=P4(J)-C1
040 CV=CM + CMU(J)*PH(J)*PHA(J)
    1=C" / CM1
     OM=1./(PH(1)-A*PHA(1))
    00 941 J=1 NS
MO*((J)AH9*A-(J)H9)=(PH(J)+9*PHA(J))*OM
    GO TO 049
034 NO 042 J=1.NS
    IF(ABSF(PH(J))-1.7) 500,500,501
FOO DUT=35.+PU(J)*20.
    M=DHJ + 1.5
    DIOT (N) = STAR
   PLOT (361=P3D
501 PRINT 10.J.PH(J).PLUT
942 PLOT (N) = PL MK
    OM=ARSE(OM)
    DRINT 11.04
    nn 942 J=1.NS
    SC=CE(J) * OM / AS(J)
042 PRINT 12,56,J
    GO TO (944,945), MSW
044 1154=2
    CM1=0.
    00 046 J=1.NS
CM1=CM1 + CMU(J1*PH(J1*PH(J)
OLA DHA (JI=PH(J)
    COF=COF # 2.
    PRIMI 14,CM1
    PRINT 13
    GO TO 947
14 FORMAT (18H GENERALIZED MASS .F12.2)
   .00 948 J=1 NS
048 CM=CM + CMII(J)*PH(J)*PH(J)
    PRINT 14.CM
    GO TO 6
    FND
```

INPUT FOR PROGRAM VIBRAT

DS = 3.0

EPS = 0.10

NS = 26.

MSW = 1

CMU = refer to Appendix IV

	AS	EI	EC
1	. 05	. 7E8	4.33E9
2	. 037	1.455E8	5.76E9
3	. 037	3.0E8	5.76E9
4	. 033	4.89E8	7.74E9
5	.1190	15.20E8	9.48E8
6	.1122	17.5E8	9.17E9
7	. 1165	17.6E8	9. 28E9
8	.1118	15.8E8	8.80E9
9	. 1360	29.3E8	9.97E9
10	. 1360	29.3E8	11.25E9
11	. 1124	24. 2E8	9.80E9
12	. 1228	27.4E8	11.52E9
13	.1110	23.0E8	8.8E9
14	. 0971	15.8E8	8.8E9
15	.0784	8.85E8	4.8E9
16	. 0735	8.48E8	4.4E9
17	. 0686	6.64E8	4.32E9
18	. 0660	5.15E8	4.36E9
19	.0610	4.13E8	3.60E9
20	. 0680	3.21E8	3.60E9
21	. 0631	2.82E8	3.60E9
22	. 20	2.82E8	3.60E9
23	. 20	22.1E8	3.60E9
24	. 20	19.2E8	3.60E9
25	. 20	1.77E8	3.60E9
26	. 20	1.49E8	3.60E9

OUTPUT OF PROGRAM VIBRAT

OM(1) = 3573.09

OM(2) = 21774.42

OM(3) = 59345.91

OM(4) = 106076.68

	PH1	PH2	РН3	PH4
1	1.0	1.0	1.0	1.0
2	. 8192	. 6066	. 9664	. 9403
3	. 6456	. 2713	. 8666	. 7681
4	. 4840	. 0249	. 7209	. 5252
5	. 3359	1321	. 6059	. 3405
6	. 1991	2223	. 5215	. 2123
7	. 0737	-, 2535	. 4270	. 0763
8	0366	2156	. 3081	0575
9	1299	1114	. 1587	1596
10	-, 2082	. 0367	0063	2027
11	-, 2724	. 2081	1952	1961
12	3214	. 3904	3897	1674
13	3550	.5713	5770	1322
14	3715	. 7379	7762	0876
15	3647	.8723	-1.0014	0313
16	-, 3273	. 9547	-1.2483	. 0338
17	2567	. 9728	-1.5021	. 1031
18	1510	.9177	-1.7613	. 1753
19	0079	. 7820	-2.0282	. 2505
20	. 1735	. 5664	-2.2802	. 3221
21	. 3909	. 2848	-2.5099	. 3879
22	. 6374	0311	-2.6511	. 4285
23	. 9011	3493	-2.6904	. 4399
24	1.1703	6589	-2.7065	. 4445
25	1.4424	9253	-2.7116	. 4460
26	1.7212	-1.0710	-2.7136	. 4465

ECA(J), ECB(J):

	ECA	ECB
1	5.165E5	3.806E6
2	4.737E6	2.760E7
3	7.910E6	4.016E7
4	1.406E7	6.318E7
5	9.295E6	3.747E7
6	1.132E7	4.142E7
7	1.511E7	5.038E7
8	1.979E7	5.679E7
9	1.390E7	2.996E7
10	1.715E7	2.424E7
11	1.805E7	1.454E7
12	1.802E7	5.221E6
13	1.618E7	-2.359E6
14	2.082E7	-9.837E6
15	1.834E7	-1.292E7
16	1.576E7	-1.361E7
17	1.687E7	-1.620E7
18	1.830E7	-1.830E7
19	1.538E7	-1.504E7
20	1.513E7	-1.266E7
21	1.203E7	-4.982E6
22	7.407E6	5.394E6
23	5.370E5	1.852E6
24	3.941E5	2.989E6
25	3.356E6	3.741E7
26	3.563E6	4.793E7

Unclassified

Security Classification

(Security classification of title, body of abstract and inde	zing annotation must be	entered when	the overall report is classified)						
Aviation Safety Engineering and Research Division of Flight Safety Foundation, Inc. Phoenix, Arizona		20 REPORT SECURITY CLASSIFICATION Unclassified 25 GROUP							
						3. REPORT TITLE			
						ANALYSIS OF ARMY FIXED-WING C	ARGO RESTRA	AINT DE	SIGN CRITERIA
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)									
Final Report									
S. AUTHOR(5) (Last name, first name, initial)									
Avery, James P.									
Larsen, Stuart									
6 REPORT DATE January 1967	7ª TOTAL NO OF	PAGES	76 NO OF REFS						
Be CONTRACT OR GRANT NO		SA ORIGINATOR'S REPORT NUMBER(S)							
DA 44-177-AMC-430(T) B PROJECT NO	USAAVLABS Technical Report 67-3								
1F121401A254	96 OTHER REPORT NO(S) (Any other numbers that may be essigned this import) AVSER 66-21								
7.20									
10 A VAILABILITY/LIMITATION NOTICES	AVSER 00	-61							
Distribution of this document is unlim	nited.								
11 SUPPLEMENTARY NOTES	12. SPONSORING MI	12. SPONSORING MILITARY ACTIVITY							
		US Army Aviation Materiel Laboratorie Fort Eustis, Virginia							
13 ABSTRACT									
This report presents the findings of a	n investigation	into the	crash pulse of fixed-						
wing cargo aircraft and the resulting	behavior of ca	rgo rest	rained by load limiters						
A crash pulse simulator computer protime histories at selected stations in crash conditions. This simulator was range of input parameters, both for the resulting acceleration pulses were streatistic pulses.	the cargo comes employed to he CV-2 and the	partment obtain cr e CV-7	t and under various cash pulses for a wide Army aircraft. The						

The crash pulse program was subsequently modified to include a routine that would simulate cargo dynamic behavior during the crash sequence, employing the floor acceleration data as it is developed. This latter program was applied to CV-2 and CV-7 aircraft, under significant crash conditions, to obtain the dynamic response of cargo to the crash pulse.

DD 15084. 1473

Unclassified

Unclassified

Security Classification

14. KEY WORDS	LIN	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	₩T	ROLE	wT	
A							
Aircraft Cargo Restraint			1		l :		
Load Limiter	1						
CV-2, CV-7 Army Aircraft							
, , , , , , , , , , , , , , , , , , , ,					!		
		1					
	!						
			i i				
· ·							
1310	THICTIONS						

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9s. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the aponsor), also enter this number(s).

- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements.
 - "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directl, from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual, summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Unclassified Security Classification

413-67