Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Высшая школа теоретической механики

Лабораторная работа №2

Уравнение колебаний струны. Вариант 6.

Студент: Преподаватель: А.А. Дурнев Е.Ю.Витохин

Содержание

1	Постановка задачи
2	Описание метода
3	Описание результатов
4	Приложение

1 Постановка задачи

Необходимо, используя метод конечных разностей, составить решение уравнения колебания струны вида:

$$\frac{\partial^2 U}{\partial t} = \frac{\partial^2 U}{\partial x^2}, \ x \in [0; 1], \ t \in [0; 0.5]$$
 (1)

где x - пространственная координата, t - время.

Граничные условия:

$$U(0,t) = 0, T(1;t) = 1.2(t+1)$$
 (2)

Начальные условия:

$$U(x,0) = (x+0.2)sin(\frac{\pi x}{2}), \ \dot{U}(x,0) = 1 + x^2$$
(3)

Для численного решения уравнения будет использоваться явная схема метода конечных разностей. Решением будет являться сеточная функция U(x,t) - распределение перемещения, заданная на двумерной сетке.

2 Описание метода

Задаём сетки по осям x и t:

$$t_k = k\Delta t, \ k = 0, \dots, K \tag{4}$$

$$x_i = ih, \ i = 0, \dots, N \tag{5}$$

 Δt и h - шаг сетки по осям t и x соответственно, K и N - количество узлов сетки по осям t и x соответственно.

Производные приближаем конечными разностями:

$$\frac{\partial^2 U(t_k, x_i)}{\partial t} = \frac{U(t_{k+1}, x_i) - 2U(t_k, x_i) + U(t_{k-1}, x_i)}{\Delta t^2}$$
 (6)

$$\frac{\partial^2 U(t_k, x_k)}{\partial x^2} = \frac{U(t_k, x_{i-1}) - 2U(t_k, x_k) + U(t_k, x_{i+1})}{h^2}$$
(7)

Используя уравнение Даламбера выводим рекурентное соотношение:

$$\frac{\partial^2 U(t_k, x_k)}{\partial x^2} - \frac{\partial^2 U(t_k, x_i)}{\partial t} = 0$$
 (8)

Подставляем (6) и (7) в (8) и получаем:

$$U(t_{k+1}, x_i) = (U(t_k, x_{i+1}) - 2U(t_k, x_i) + U(t_k, x_{i-1})) \frac{\Delta t^2}{h^2} + 2U(t_k, x_i) - U(t_{k-1}, x_i)$$
(9)

Выражение (8) позволяется получать значение функции U(x,t) на k+1 слое, использую значения с k-ого и k-1-го слоя сетки (схема-крест). Начальные значения на сетке инициа-лизируются при помощи (2) и (3).

Чтобы заполнить 1-ый слой по времения используем соотношение:

$$U(t_1, x_i) = U(0, x_i) + \dot{U}(0, x_i)\Delta t + \frac{\Delta t^2}{2h^2} (U(0, x_{i+1}) - 2U(0, x_i) + U(0, x_{i-1}))$$
(10)

Оно позволяет нам сохранить 2 порядок точности метода.

3 Описание результатов

В качестве шагов для сетки берём: $\Delta t = 0.01, \ h = 0.1.$ Полученное решение представлено на Рис.1:

Зависимость перемещения от координаты и времени

Рис. 1:

Изобразим проекции решения на плоскости:

Рис. 2:

4 Приложение

Далее представлен код программы на Python:

Листинг 1: Insert code directly in your document

```
import math
import numpy
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator,
    FormatStrFormatter
import numpy as np
import pandas as pd
\mathbf{import} \ \mathbf{warnings}
warnings.filterwarnings("ignore")
\# u(x;0) = (x + 0.2) * sin(pi * x / 2)
\# du/dt(x;0) = 1 + x^2
\# u(0;t) = 0
\# u(1;t) = 1.2 * (t + 1)
\# x in [0;1]
\# h = 0.1
# t in [0; 0.5]
h = 0.1
l = 1
```

```
N = round(l / h) + 1
t \quad 0 \ = \ 0.5
dt = 0.01
K = round(t 0 / dt) + 1
x i = lambda i : i * h
t j = lambda j: j * dt
U = \begin{tabular}{ll} U = \begin{tabular}{ll} [ \begin{tabular}{ll} None & \begin{tabular}{ll} for & \begin{tabular}{ll} in & \begin{tabular}{ll} range & \begin{tabular}{ll} (K) \end{tabular} ] \end{tabular}
\# set u(x;0) = (x + 0.2) * sin(pi * x / 2)
f = lambda x: (x + 0.2) * math. sin(math. pi * x / 2)
for i in range (len(U[0])):
     U[0][i] = f(x i(i))
\# set u(0;t) = 0
for i in range(len(U)):
     U[i][0] = 0
\# set u(1;t) = 1.2 * (t + 1)
for i in range(len(U)):
     U[i][-1] = 1.2 * (t j(i) + 1)
f\_1 \,=\, \textbf{lambda} \ x \colon \ (x \,+\, 0.2) \ * \ math. \, sin \, (math. \, pi \ * \ x \ / \ 2)
f\_2 = \mathbf{lambda} \ x \colon \ 1 \ + \ x \ ** \ 2
for i in range (1, len(U[0]) - 1):
     U\,[\,1\,]\,[\,i\,] \ = \ f\,\_\,1\,(\,x\,\_\,i\,(\,i\,)\,) \ + \ f\,\_\,2\,(\,x\,\_\,i\,(\,i\,)\,) \ * \ dt \ +
           (dt ** 2) / (2 * h ** 2) * (f_1(x_i(i+1)) -
                 2 * f_1(x_i(i)) + f_1(x_i(i-1))
for k in range (1, K-1):
      for i in range (1, N-1):
           U\,[\,\,k+1\,]\,[\,\,i\,\,] \ = \ (\,\,d\,t\ \ **\ \ 2\,) \ \ / \ \ (\,h\ \ **\ \ 2\,) \ \ * \ \ (\,U\,[\,\,k\,\,]\,[\,\,i+1\,] \ \ -
             2 * U[k][i] + U[k][i-1]) + 2 * U[k][i] - U[k-1][i]
fig = plt.figure(figsize = (16, 9))
ax = fig.gca(projection='3d')
\# Make data.
X = np.arange(0, l + h/10, h)
t = np.arange(0, t_0 + dt/10, dt)
X, t = np. meshgrid(X, t)
U = np.array(U)
\# Plot the surface.
ax.plot surface(X, t, np.array((U)), cmap='cool')
ax.plot wireframe(X, t, np.array((U)), color='black')
ax.set\_xlabel("x", fontsize=20)
ax.set\_ylabel("t", fontsize=20)

ax.set\_zlabel("U", fontsize=20)
ax. view init (30, 230)
fig.suptitle('', fontsize=20)
```

```
fig = plt.figure(figsize = (16, 9))
plt.grid()
plt. title (',', fontsize =20)
plt.xlabel('x', fontsize=20)
plt.ylabel ('U', fontsize=20)
x = np.arange(0, l + h/10, h)
y1 = np.array(U[0])
\label{eq:plt_splot} \mbox{plt.plot}\left(\,x\,,\ y1\,,\ \mbox{linewidt}\,h\,{=}2,\right.
     label='t\_=\_\%.3f'\% t\_j(0), linestyle='-', marker='o')
y2 = np.array(U[15])
\label{eq:plt_splot} \mbox{plt.plot}\left(\,x\,,\ y2\;,\ \mbox{linewidt}\,h\,{=}2,\right.
     label='t\_=\_\%.3f' \% t\_j(15), linestyle='-', marker='o')
y3 = np.array(U[27])
plt.plot(x, y3, linewidth=2,
     label='t_=_%.3f' % t_j(27), linestyle='-', marker='o')
y4 = np.array(U[50])
plt.plot(x, y4, linewidth=2,
     label='t\_=\_\%.3f' \% t\_j(50), linestyle='-', marker='o')
plt.legend (fontsize=16)
```

Табличное представление полученного решения:

	0	1	2	3	4	5	6	7	8	9	10
0	0.0	0.047	0.124	0.227	0.353	0.495	0.647	0.802	0.951	1.086	1.2
1	0.0	0.057	0.134	0.238	0.364	0.508	0.661	0.817	0.967	1.104	1.212
2	0.0	0.068	0.145	0.249	0.376	0.52	0.674	0.832	0.984	1.122	1.224
3	0.0	0.078	0.156	0.261	0.388	0.533	0.688	0.846	1.0	1.139	1.236
4	0.0	0.089	0.167	0.272	0.4	0.546	0.702	0.861	1.016	1.156	1.248
5	0.0	0.099	0.179	0.284	0.413	0.559	0.716	0.876	1.031	1.173	1.26
6	0.0	0.109	0.191	0.296	0.425	0.572	0.729	0.89	1.047	1.189	1.272
7	0.0	0.119	0.203	0.309	0.438	0.585	0.743	0.905	1.063	1.204	1.284
8	0.0	0.129	0.215	0.321	0.451	0.598	0.757	0.919	1.078	1.219	1.296
9	0.0	0.138	0.228	0.334	0.464	0.612	0.771	0.934	1.093	1.233	1.308
10	0.0	0.147	0.24	0.347	0.477	0.625	0.785	0.948	1.108	1.246	1.32
11	0.0	0.155	0.253	0.361	0.491	0.639	0.799	0.963	1.123	1.259	1.332
12	0.0	0.163	0.266	0.374	0.504	0.653	0.813	0.977	1.137	1.271	1.344
13	0.0	0.17	0.279	0.388	0.518	0.667	0.827	0.992	1.151	1.282	1.356
14	0.0	0.176	0.292	0.402	0.532	0.68	0.841	1.006	1.165	1.293	1.368
15	0.0	0.182	0.305	0.416	0.546	0.695	0.855	1.02	1.179	1.304	1.38
16	0.0	0.187	0.318	0.431	0.561	0.709	0.869	1.034	1.192	1.314	1.392
17	0.0	0.192	0.33	0.445	0.575	0.723	0.883	1.048	1.205	1.323	1.404
18	0.0	0.196	0.343	0.46	0.59	0.738	0.898	1.062	1.218	1.332	1.416
19	0.0	0.199	0.355	0.475	0.605	0.752	0.912	1.076	1.23	1.341	1.428
20	0.0	0.203	0.366	0.489	0.62	0.767	0.926	1.09	1.242	1.35	1.44

Таблица 1: U(t,x)