Problema: determinar a potência do raio de radiação refletido a partir da densidade de potência do raio incidente e o ângulo de incidência.

Figura 1: Incidência de um raio de luz com densidade transversal de potência I_0 .

Na figura (1) olhamos para como o tamanho da seção transversal \overline{QR} do feixe de radiação incidente pode ser relacionado com o tamanho \overline{PR} do espelho por uma analise trigonométrica do triângulo PQR o que conduz à expressão (1)

$$\overline{QR} = \overline{PR}\operatorname{sen}(\alpha) = \overline{PR}\operatorname{cos}(\theta). \tag{1}$$

Já que a potência carregada pelo feixe deve ser um produto da sua densidade transversal de potência multiplicada pela área da seção transversal temos:

$$P = I_0 \cdot \overline{QR} = I_0 \cdot \overline{PR} \cos(\theta). \tag{2}$$

Se pensarmos agora que se trata de um espelho infinitesimal de área orientada $d\vec{a} = \hat{n}da$ temos que a potência infinitesimal transferida ao espelho é dada por

$$dP = I_0 da \cos(\theta) = -\vec{I_0} \cdot d\vec{a} \tag{3}$$

onde \vec{I}_0 é o vetor fluxo de radiação.

Sendo (3) a contribuição infinitesimal da potência, temos que a potência total P captada numa superfície de dimensões finitas deve ser dada por uma integral de superfície do fluxo de potência $\vec{I_0}$ ao longo da superfície que recebe este fluxo. Assim,

$$P = \int \vec{I_0} \cdot d\vec{a}. \tag{4}$$

onde $d\vec{a}$ é o elemento de área da superfície sobre a qual o fluxo do radiação incide. Considerando uma superfície plana, que faz um ângulo θ com o raio de radiação incidente, temos que a potência dissipada na superfície é dada por

$$P = I_0 A \cos(\theta) , \qquad (5)$$

onde A é a área finita da superfície.