Exercício: Considere as seguintes observações:

Operador	у	X ₁	X 2
1	12	18	2
2	3	16	3
3	11	25	2
4	1	12	3
5	13	20	3
6	20	35	2
7	2	17	1.5
8	25	25	5
9	26	39	1
10	15	20	2.5
11	1	18	2
12	15	29	3.5
13	11	20	5
14	5	16	1
15	7	29	1.5

Onde:

y: número de itens produzidos com defeito, em certo dia.

x₁: produção média por hora

x₂: tempo, em semanas, decorrido desde o último reparo na máquina

Pede-se:

- a) Ajuste um modelo para o número de itens produzidos com defeito em função da produção média por hora e do tempo decorrido desde o último reparo na máguina.
 - $y=\beta_0+\beta_1 x_1+\beta_2 x_2+\epsilon$. Represente-o matricialmente.
- b) Pode se afirmar que há evidências suficientes de que o modelo encontrado em (a) contribui na predição de y?
- c) Encontre o valor de R² e o R² ajustado. Interprete o valor de R².
- d) Teste os coeficientes de regressão individualmente.
- e) Intervalo de Confiança para os Coeficientes de Regressão.
- f) Intervalo de Confiança para a resposta esperada x₁=13 e x₂=3.2