Área e volume do tetraedro

Escreva o programa exer0.f90 para executar as tarefas previstas no exercício.

Leia, a partir do **terminal**, quatro vetores com as coordenadas dos vértices de um tetraedro \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , \vec{v}_4 (com coordenadas x_1 , y_1 , z_1 , x_2 , y_2 , z_2 , etc.). Os quatro vetores devem ser lidos separadamente, com as três coordenadas de cada um em uma linha, separadas por espaços em branco, i.e.

$$\begin{array}{ccccc} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ x_4 & y_4 & z_4 \end{array}$$

- 1. Determine o volume e a área de cada uma das faces do tetraedro.
- 2. Determine quantos valores distintos de área existem no tetraedro.
- 3. Coloque as áreas distintas em ordem crescente.

Escreva o volume em uma linha, a soma das áreas das quatro faces na segunda e, em ordem crescente de valor, cada uma das áreas distintas em uma nova linha de um arquivo com o nome tetra_out.dat.

Exemplo	Entrada (terminal)	Saída (tetra_out.dat)
1	0 0 0	0.16666667
	100	2.36602545
	0 1 0	0.50000000
	0 0 1	0.86602539
2	0 0 0	1.33333333
	$2\ 0\ 0$	9.46410179
	0 2 0	2.00000000
	$0\ 0\ 2$	3.46410179
		1.00000000
3	0 0 0	8.41110229
	$1 \ 0 \ 0$	1.00000000
	0 2 0	1.50000000
	$0\ 0\ 3$	2.00000000
		3.91110229

Tabela 1: Exemplos de entrada e saída gerada no arquivo tetra_out.dat.

Relembrando:

 \bullet O produto escalar de dois vetores $\vec{a}, \vec{b} \in R^3$ é

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z.$$

• O produto vetorial de dois vetores $\vec{a}, \vec{b} \in \mathbb{R}^3$ é

$$ec{a} imes ec{b} = egin{array}{ccc} ec{i} & ec{j} & ec{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{pmatrix},$$

resultando em um vetor ortogonal a \vec{a} e \vec{b} . A **área de uma face triangular** com vértices $\vec{p}_1, \vec{p}_2, \vec{p}_3$ é

$$A = \frac{1}{2} \| (\vec{p}_2 - \vec{p}_1) \times (\vec{p}_3 - \vec{p}_1) \|.$$

• O **produto misto** de três vetores $\vec{a}, \vec{b}, \vec{c} \in R^3$ é

$$[\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}),$$

cujo valor absoluto representa o volume do paralelepípedo gerado por esses vetores. O ${\bf volume}$ do ${\bf tetraedro}$ é

$$V = \frac{1}{6} \left| (\vec{v}_2 - \vec{v}_1) \cdot \left((\vec{v}_3 - \vec{v}_1) \times (\vec{v}_4 - \vec{v}_1) \right) \right| = \frac{1}{6} \left| [\vec{v}_2 - \vec{v}_1, \, \vec{v}_3 - \vec{v}_1, \, \vec{v}_4 - \vec{v}_1] \right|.$$