第 4 章 c: 实对称矩阵的特征值和特征向量

数学系 梁卓滨

2020-2021 学年 I

本节内容

- ◇ 向量的内积
- ♣ 正交向量组,施密特正交化方法
- ♡ 正交矩阵
- ♠ 对称矩阵可对角化

对称矩阵 1/33 ◁ ▷

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的**内积** 定义为:

$$\alpha^T \beta =$$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的**内积** 定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} =$$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的**内积** 定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

对称矩阵 2/33 ⊲ ▷

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的**内积** 定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是

对称矩阵 2/33 ⊲ ▷

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的**内积** 定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是

 $\alpha^T \beta$

对称矩阵 2/33 ⊲ ▷

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的**内积** 定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是
$$\alpha^T \beta = (-1\ 1\ 0\ 2) \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$$

2/33 ⊲ ⊳

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的**内积** 定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是
$$\alpha^T \beta = (-1\ 1\ 0\ 2) \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$$

$$= (-1) \times 2 + 1 \times 0 + 0 \times (-1) + 2 \times 3$$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的**内积** 定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1\\1\\0\\2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2\\0\\-1\\3 \end{pmatrix}$ 的内积是
$$\alpha^T\beta = (-1\ 1\ 0\ 2)\begin{pmatrix} 2\\0\\-1\\3 \end{pmatrix}$$

$$= (-1) \times 2 + 1 \times 0 + 0 \times (-1) + 2 \times 3 = 4$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4. $\alpha^T \alpha \ge 0$,并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

对称矩阵 3/33 < ▷

1.
$$\alpha^T \beta = \beta^T \alpha$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则

$$\alpha^T \beta =$$

$$\beta^T \alpha =$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha =$$

对称矩阵 4/33 ⊲ ▷

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则
$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

对称矩阵 4/33 < ▷

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则
$$\alpha^T \beta = (a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha = (b_1 \ b_2 \ \cdots \ b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1 a_1 + b_2 a_2 + \cdots + b_n a_n.$$

4/33 < ▷

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^{\mathsf{T}}\alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1a_1 + b_2a_2 + \cdots + b_na_n.$$

所以
$$\alpha^T \beta = \beta^T \alpha$$

1. $\alpha^T \beta = \beta^T \alpha$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a \end{pmatrix} = b_1 a_1 + b_2 a_2 + \cdots + b_n a_n.$$

所以
$$\alpha^T \beta = \beta^T \alpha$$

另证 $\alpha^T \beta = (\alpha^T \beta)^T =$

1. $\alpha^T \beta = \beta^T \alpha$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1 a_1 + b_2 a_2 + \cdots + b_n a_n.$$

所以 $\alpha^T \beta = \beta^T \alpha$

另证 $\alpha^T \beta = (\alpha^T \beta)^T = \beta^T (\alpha^T)^T =$

1. $\alpha^T \beta = \beta^T \alpha$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^{\mathsf{T}}\alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1a_1 + b_2a_2 + \cdots + b_na_n.$$

4/33 < ▷

所以 $\alpha^T \beta = \beta^T \alpha$

另证 $\alpha^T \beta = (\alpha^T \beta)^T = \beta^T (\alpha^T)^T = \beta^T \alpha$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

- 3. $(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$
- 4. $\alpha^T \alpha \ge 0$,并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. $(k\alpha)^T\beta = k\alpha^T\beta$, (k是实数)
- 3. $(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$
- 4. $\alpha^T \alpha \ge 0$,并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

证明

2. 显然

- 2. $(k\alpha)^T\beta = k\alpha^T\beta$, (k是实数)
- 3. $(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$
- 4. $\alpha^T \alpha \ge 0$,并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma =$

- 2. $(k\alpha)^T\beta = k\alpha^T\beta$, (k是实数)
- 3. $(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$
- 4. $\alpha^T \alpha \ge 0$,并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma = (\alpha^T + \beta^T) \gamma =$

- 2. $(k\alpha)^T\beta = k\alpha^T\beta$, (k是实数)
- 3. $(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$
- 4. $\alpha^T \alpha \ge 0$,并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma = (\alpha^T + \beta^T) \gamma = \alpha^T \gamma + \beta^T \gamma$

- 2. $(k\alpha)^T\beta = k\alpha^T\beta$, (k是实数)
- 3. $(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$
- 4. $\alpha^T \alpha \ge 0$,并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

证明

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma = (\alpha^T + \beta^T) \gamma = \alpha^T \gamma + \beta^T \gamma$

4.
$$\alpha^T \alpha = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = a_1^2 + a_2^2 + \cdots + a_n^2$$

对称矩阵 5/33 ⊲ ▷

- 2. $(k\alpha)^T\beta = k\alpha^T\beta$, (k是实数)
- 3. $(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$
- 4. $\alpha^T \alpha \ge 0$,并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

证明

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma = (\alpha^T + \beta^T) \gamma = \alpha^T \gamma + \beta^T \gamma$

4.
$$\alpha^{T}\alpha = (a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = a_1^2 + a_2^2 + \cdots + a_n^2 \ge 0$$

对称矩阵 5/33 ⊲ ▷

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$ 的长度。

对称矩阵 6/33 ⊲ ▷

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$ 的长度。

$$||\alpha|| =$$

$$||\beta|| =$$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$ 的长度。

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} =$$

 $||\beta|| =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$ 的长度。

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} =$$

 $||\beta|| =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$ 的长度。

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77}$$

 $||\beta|| =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$ 的长度。

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77}$$

$$||\beta|| = \sqrt{(-1)^2 + 3^2 + 1^2 + 5^2} =$$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$ 的长度。

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77}$$

 $||\beta|| = \sqrt{(-1)^2 + 3^2 + 1^2 + 5^2} = \sqrt{1 + 9 + 1 + 25} =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$ 的长度。

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77}$$

 $||\beta|| = \sqrt{(-1)^2 + 3^2 + 1^2 + 5^2} = \sqrt{1 + 9 + 1 + 25} = 6$

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

长度性质

1. $||\alpha|| \ge 0$,并且仅当 $\alpha = 0$ 时, $||\alpha|| = 0$

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

长度性质

- 1. $||\alpha|| \ge 0$,并且仅当 $\alpha = 0$ 时, $||\alpha|| = 0$
- 2. $||k\alpha|| = |k| \cdot ||\alpha||$,(k 是实数)

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

长度性质

- 1. $||\alpha|| \ge 0$,并且仅当 $\alpha = 0$ 时, $||\alpha|| = 0$
- 2. $||k\alpha|| = |k| \cdot ||\alpha||$,(k 是实数)
- 3. 对任意向量 α , β , 都成立

$$|\alpha^T \beta| \le ||\alpha|| \cdot ||\beta||$$

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

长度性质

- 1. $||\alpha|| \ge 0$,并且仅当 $\alpha = 0$ 时, $||\alpha|| = 0$
- 2. $||k\alpha|| = |k| \cdot ||\alpha||$,(k 是实数)
- 3. 对任意向量 α , β , 都成立

$$|\alpha^T \beta| \le ||\alpha|| \cdot ||\beta||$$

即

$$|a_1b_1 + \dots + a_nb_n| \le \sqrt{a_1^2 + \dots + a_n^2} \cdot \sqrt{b_1^2 + \dots + b_n^2}$$

● 定义 长度为1的向量称为单位向量。

- 定义 长度为 1 的向量称为单位向量。
- 例 向量

対量
$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$
非単位向量

都是单位向量

对称矩阵 8/33 < ▶

- 定义 长度为1的向量称为单位向量。
- 例 向量

対量
$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$
主
自分向量

都是单位向量

• 设 $\alpha \neq 0$,则 $||\alpha|| \neq 0$,

- 定义 长度为1的向量称为单位向量。
- 例 向量

河量
$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$

都是单位向量

• 设 $\alpha \neq 0$,则 $||\alpha|| \neq 0$,向量 $\frac{1}{||\alpha||} \alpha$ 是单位向量:

- 定义 长度为1的向量称为单位向量。
- 例 向量

可量
$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$

都是单位向量

• 设 $\alpha \neq 0$,则 $||\alpha|| \neq 0$,向量 $\frac{1}{||\alpha||} \alpha$ 是单位向量:

$$\left\|\frac{1}{||\alpha||}\alpha\right\| = \frac{1}{||\alpha||}||\alpha|| = 1$$

- 定义 长度为1的向量称为单位向量。
- 例 向量

可量
$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$

都是单位向量

• 设 $\alpha \neq 0$,则 $||\alpha|| \neq 0$,向量 $\frac{1}{||\alpha||} \alpha$ 是单位向量:

$$\left\|\frac{1}{||\alpha||}\alpha\right\| = \frac{1}{||\alpha||}||\alpha|| = 1$$

称 $\frac{1}{||\alpha||}\alpha$ 为 α 的 单位化

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

解

1.
$$||\alpha|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
,

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

解

1.
$$||\alpha|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
,所以的 α 单位化为:

$$\frac{1}{||\alpha||}\alpha = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{14}\\2/\sqrt{14}\\3/\sqrt{14} \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

解

1. $||\alpha|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$,所以的 α 单位化为:

$$\frac{1}{||\alpha||}\alpha = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{14}\\2/\sqrt{14}\\3/\sqrt{14} \end{pmatrix}$$

2.
$$||\beta|| = \sqrt{2^2 + 2^2 + 4^2 + 5^2} = \sqrt{49} = 7$$
,

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

解

1.
$$||\alpha|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
,所以的 α 单位化为:

$$\frac{1}{||\alpha||}\alpha = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{14}\\2/\sqrt{14}\\3/\sqrt{14} \end{pmatrix}$$

2.
$$||\beta|| = \sqrt{2^2 + 2^2 + 4^2 + 5^2} = \sqrt{49} = 7$$
,所以的 β 单位化为:

$$\frac{1}{||\beta||}\beta = \frac{1}{7} \begin{pmatrix} 2\\2\\4\\5 \end{pmatrix} = \begin{pmatrix} 2/7\\2/7\\4/7\\5/7 \end{pmatrix}$$

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交 (或垂直)

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交 (或垂直)

例 零向量与任意向量正交:

 $0^T \alpha$

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交 (或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \dots + 0 \cdot \alpha_n = 0$$

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \dots + 0 \cdot \alpha_n = 0$$

例
$$\alpha = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$
 与 $\beta = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 正交:

对称矩阵 10/33 ⊲ ▷

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \dots + 0 \cdot \alpha_n = 0$$

例
$$\alpha = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$
 与 $\beta = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 正交:

$$\alpha^{T}\beta = 2 \times 1 + 4 \times 2 + 5 \times (-2) = 0$$

对称矩阵 10/33 ◁ ▷

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \cdots + 0 \cdot \alpha_n = 0$$

例
$$\alpha = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$
 与 $\beta = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 正交:

$$\alpha^{T}\beta = 2 \times 1 + 4 \times 2 + 5 \times (-2) = 0$$

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 中的向量两两正交:

对称矩阵 10/33 ◁ ▷

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \cdots + 0 \cdot \alpha_n = 0$$

例
$$\alpha = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$
 与 $\beta = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 正交:

$$\alpha^{T}\beta = 2 \times 1 + 4 \times 2 + 5 \times (-2) = 0$$

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 中的向量两两正交:

$$\varepsilon_1^T \varepsilon_2 = 0$$
, $\varepsilon_1^T \varepsilon_3 = 0$, $\varepsilon_2^T \varepsilon_3 = 0$

对称矩阵

定义 若 \mathbb{R}^n 中向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 满足

- 1. 每个向量非零: $\alpha_i \neq 0$, i = 1, 2, ..., s
- 2. 两两正交: $\alpha_i^T \alpha_j = 0$, $i \neq j$

即则称该向量组为正交向量组。

对称矩阵 11/33 ◁ ▷

定义 若 \mathbb{R}^n 中向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 满足

- 1. 每个向量非零: $\alpha_i \neq 0$, i = 1, 2, ..., s
- 2. 两两正交: $\alpha_i^T \alpha_j = 0$, $i \neq j$

即则称该向量组为正交向量组。

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 是正交向量组

对称矩阵 11/33 ◁ ▷

定义 若 \mathbb{R}^n 中向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 满足

- 1. 每个向量非零: $\alpha_i \neq 0$, i = 1, 2, ..., s
- 2. 两两正交: $\alpha_i^T \alpha_j = 0$, $i \neq j$

即则称该向量组为正交向量组。

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 是正交向量组

例 向量组
$$\alpha = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$, $\gamma = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

对称矩阵 11/33 ⊲ ▷

定义 若 \mathbb{R}^n 中向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 满足

- 1. 每个向量非零: $\alpha_i \neq 0$, i = 1, 2, ..., s
- 2. 两两正交: $\alpha_i^T \alpha_j = 0$, $i \neq j$

即则称该向量组为正交向量组。

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 是正交向量组

例 向量组
$$\alpha = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$, $\gamma = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 是正交向量组

对称矩阵 11/33 ◁ ▷

定理 \mathbb{R}^n 中正交向量组 α_1 , α_2 , . . . , α_s 一定线性无关。 **证明** 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s)$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j}$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j} k_i \alpha_i^T \alpha_i$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j} k_i \underbrace{\alpha_i^T \alpha_i}_{\neq 0}$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

则

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j} k_i \underbrace{\alpha_i^T \alpha_i}_{\neq 0}$$

所以 $k_i = 0$ 。

$$k_1 = k_2 = \cdots = k_s = 0$$

对称矩阵 12/33 ◁ ▷

证明设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

则

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j} k_i \underbrace{\alpha_i^T \alpha_i}_{\neq 0}$$

所以 $k_i = 0$ 。由 i 的任意性

$$k_1 = k_2 = \cdots = k_s = 0$$

对称矩阵 12/33 ◁ ▷

正交化

 $\alpha_1, \alpha_2, \ldots, \alpha_s$ (线性无关) $\longrightarrow \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

 $\alpha_1, \alpha_2, \ldots, \alpha_s$ (线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

 $\alpha_1, \alpha_2, \ldots, \alpha_s$ (线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 =$$

$$\beta_2 =$$

$$\beta_3 =$$

$$\beta_s =$$

 $\alpha_1, \alpha_2, \ldots, \alpha_s$ (线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

$$\beta_3 =$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 =$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\mathbb{E}^{\infty} \ell} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{1}{||\beta_1||^2} \beta_1$$

$$\beta_3 =$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 =$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交}(\ell)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{1}{||\beta_1||^2} \beta_1 - \frac{\beta_2}{||\beta_1||^2} \beta_1 - \frac{\beta_2}{|\beta_1|}$$

:

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{2}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

:

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_s = \alpha_s - \dots - \beta_1 - \dots - \beta_2 - \dots - \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_s = \alpha_s - \frac{\beta_s - \beta_s - \beta_$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_{s} = \alpha_{s} - \frac{1}{||\beta_{1}||^{2}} \beta_{1} - \frac{1}{||\beta_{2}||^{2}} \beta_{2} - \dots - \beta_{s-1}$$

13/33 ⊲ ⊳

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_s = \alpha_s - \frac{1}{||\beta_1||^2} \beta_1 - \frac{1}{||\beta_2||^2} \beta_2 - \dots - \frac{1}{||\beta_{s-1}||^2} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}' \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}' \beta_{1}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}' \beta_{1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_s = \alpha_s - \frac{\alpha_s^T \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_s^T \beta_2}{||\beta_2||^2} \beta_2 - \dots - \frac{||\beta_{s-1}||^2}{||\beta_{s-1}||^2} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\boldsymbol{\beta}_1^{\mathsf{T}} \boldsymbol{\beta}_2 = \boldsymbol{\beta}_1^{\mathsf{T}} \left(\alpha_2 - \frac{\alpha_2^{\mathsf{T}} \beta_1}{||\beta_1||^2} \beta_1 \right)$$

$$\beta_3 = \alpha_3 - \frac{\alpha_3^T \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_3^T \beta_2}{||\beta_2||^2} \beta_2$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_{1}^{T}\beta_{2} = \beta_{1}^{T} \left(\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}\right) = \beta_{1}^{T}\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1}$$
$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{\mathsf{T}} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{\mathsf{T}} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{\mathsf{T}} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_{1}^{T}\beta_{2} = \beta_{1}^{T}\left(\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}\right) = \beta_{1}^{T}\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1} = 0$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_{1}^{T}\beta_{2} = \beta_{1}^{T}\left(\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}\right) = \beta_{1}^{T}\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1} = 0$$

$$\beta_{1}^{T}\beta_{3} = \beta_{1}^{T}\left(\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}\right)$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_1^T \beta_2 = \beta_1^T \left(\alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1 \right) = \beta_1^T \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1^T \beta_1 = 0$$

$$\beta_{1}^{T}\beta_{3} = \beta_{1}^{T}\left(\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}\right) = \beta_{1}^{T}\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1}$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_{1}^{T}\beta_{2} = \beta_{1}^{T} \left(\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}\right) = \beta_{1}^{T}\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1} = 0$$

$$\beta_{1}^{T}\beta_{3} = \beta_{1}^{T} \left(\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}\right) = \beta_{1}^{T}\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1} = 0$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_{1}^{T}\beta_{2} = \beta_{1}^{T}\left(\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}\right) = \beta_{1}^{T}\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1} = 0$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_{1}^{T}\beta_{2} = \beta_{1}^{T}\left(\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}\right) = \beta_{1}^{T}\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1} = 0$$

$$\beta_{2}^{T}\beta_{3} = \beta_{2}^{T}\left(\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}\right)$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_1^T \beta_2 = \beta_1^T \left(\alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1 \right) = \beta_1^T \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1^T \beta_1 = 0$$

$$\beta_{2}^{T}\beta_{3} = \beta_{2}^{T}\left(\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}\right) = \beta_{2}^{T}\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}^{T}\beta_{2}$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_{1}^{T}\beta_{2} = \beta_{1}^{T} \left(\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}\right) = \beta_{1}^{T}\alpha_{2} - \frac{\alpha_{2}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1}^{T}\beta_{1} = 0$$

$$\beta_{2}^{T}\beta_{3} = \beta_{2}^{T} \left(\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{1}}{||\beta_{1}||^{2}}\beta_{1} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}\right) = \beta_{2}^{T}\alpha_{3} - \frac{\alpha_{3}^{T}\beta_{2}}{||\beta_{2}||^{2}}\beta_{2}^{T}\beta_{2} = 0$$

:

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤 (施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

例1 将线性无关组 $\alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2\\0\\6\\8 \end{pmatrix}$ 正交化

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 =$$

$$\beta_2 =$$

$$\beta_3 =$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

$$\beta_3 =$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 =$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{\alpha_3^T \beta_1}{||\beta_1||^2} \beta_1 - \dots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{\alpha_3^T \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_3^T \beta_2}{||\beta_2||^2} \beta_2$$

14/33 ⊲ ⊳

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix} - - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{1} = \begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ -2\\ -2 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{1} = \begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ -2\\ -2 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - - - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - - - - \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix}$$

对称矩阵

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{1} = \begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ -2\\ -2 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - \frac{2}{2} \begin{pmatrix} \frac{2}{2} \\ -\frac{2}{2} \\ -\frac{2}{2} \end{pmatrix}$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{1} = \begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ -2\\ -2 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$= \begin{pmatrix} -2\\0\\6\\8 \end{pmatrix} - \frac{12}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} - \dots - \begin{pmatrix} 2\\2\\-2\\-2 \end{pmatrix}$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{1} = \begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ -2\\ -2 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{12}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{16} \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix}$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{1} = \begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ -2\\ -2 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_2}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{12}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - \frac{-32}{16} \begin{pmatrix} \frac{2}{2} \\ \frac{-2}{2} \end{pmatrix}$$

例1 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{1} = \begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ -2\\ -2 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{12}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - \frac{-32}{16} \begin{pmatrix} \frac{2}{2} \\ -\frac{2}{2} \\ -\frac{2}{2} \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$$

对称矩阵

例 2 将线性无关组 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

对称矩阵

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 =$$

$$\beta_2 =$$

$$\beta_3 =$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

$$\beta_3 =$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 =$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - - \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{1}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{\beta_2} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 1 \\ -1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{\beta_2} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 1 \\ -1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_1 - \beta_2}$$

$$= \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix} - - \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix} - - \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix}$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 1 \\ -1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_1 - \beta_2}$$

$$= \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix} - \frac{1}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix} - - \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix}$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 1 \\ -1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_1 - \beta_2}$$

$$= \begin{pmatrix} \frac{2}{1} \\ \frac{1}{2} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix} - - \begin{pmatrix} \frac{1}{0} \\ \frac{1}{2} \end{pmatrix}$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ \frac{1}{-1} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_1 - \beta_2}$$

$$= \begin{pmatrix} \frac{2}{1} \\ \frac{1}{2} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix} - \frac{1}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix}$$

$$-\left(\begin{array}{c}1\\3\end{array}\right) \quad 3\left(\begin{array}{c}0\\1\end{array}\right) \quad 3\left(\begin{array}{c}1\\-1\end{array}\right)$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{2} - \frac{6}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix} - \frac{6}{3} \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_1 - \beta_2}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_1 - \beta_2}$$

$$= \begin{pmatrix} \frac{2}{1} \\ \frac{1}{3} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} - \frac{0}{3} \begin{pmatrix} \frac{1}{0} \\ 1 \\ -1 \end{pmatrix}$$

例 2 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 1 \\ -1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

$$= \begin{pmatrix} 2\\1\\1\\3 \end{pmatrix} - \frac{6}{3} \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} - \frac{0}{3} \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\-1\\1\\1 \end{pmatrix}$$

例 3 将线性无关组 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化

对称矩阵

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 =$$

$$\beta_2 =$$

$$\beta_3 =$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

$$\beta_3 =$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 =$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - - \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1 \\ \frac{1}{1} \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_3}$$

$$= \begin{pmatrix} -1 \\ 0 \\ \frac{1}{1} \end{pmatrix} - - \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - - \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1 \\ \frac{1}{1} \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

$$= \begin{pmatrix} -1 \\ 0 \\ \frac{1}{1} \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - - \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{\beta_2} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1 \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_1 - \beta_2}$$

$$= \begin{pmatrix} -1 \\ 0 \\ \frac{1}{1} \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - - \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_1 - \beta_2}$$

$$= \begin{pmatrix} -1 \\ 0 \\ \frac{1}{1} \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{\beta_3 - \beta_1 - \beta_2}$$

$$= \begin{pmatrix} -1 \\ 0 \\ \frac{1}{1} \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - \frac{2}{2} \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

例 3 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

$$= \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \\ -\frac{1}{4} \\ -\frac{1}{4} \\ \frac{3}{4} \end{pmatrix}$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

证明

1.
$$Q^TQ = I_n \Rightarrow$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

1.
$$Q^TQ = I_0 \Rightarrow |I_0| = |Q^TQ|$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

证明

1.
$$Q^T Q = I_0 \implies 1 = |I_0| = |Q^T Q|$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

证明

1.
$$Q^TQ = I_0 \implies 1 = |I_0| = |Q^TQ| = |Q^T| \cdot |Q|$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

证明

1.
$$Q^TQ = I_D \Rightarrow 1 = |I_D| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

证明

1.
$$Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^T$;

证明

1.
$$Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^T$;

证明

- 1. $Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^T$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

证明

- 1. $Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

- 1. $Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然
- 3. $(PQ)^{T}(PQ) =$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是 正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^T$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

- 1. $Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然
- 3. $(PQ)^{T}(PQ) = Q^{T}P^{T}PQ =$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是 正交矩阵。

$$\mathbf{M} Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^T$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

- 1. $Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然
- 3. $(PQ)^{T}(PQ) = Q^{T}P^{T}PQ = Q^{T}I_{n}Q =$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是 正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^T$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

- 1. $Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然
- 3. $(PQ)^{T}(PQ) = Q^{T}P^{T}PQ = Q^{T}I_{n}Q = Q^{T}Q =$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是 正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^T$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

- 1. $Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然
- 3. $(PQ)^T(PQ) = Q^T P^T P Q = Q^T I_n Q = Q^T Q = I_n$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是: Q 的列(行)向量组是单位正交向量组。

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n})$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} \\ & & \\ & & \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

材称矩阵 18/33 ⊲ ▷

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & & & \\ & & & & \end{pmatrix}$$

材称矩阵 18/33 ⊲ ▷

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & & & \\ & & & & \end{pmatrix}$$

材称矩阵 18/33 ⊲ ▷

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \end{pmatrix}$$

对称矩阵 18/33 ⊲ ▷

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & & & \end{pmatrix}$$

材称矩阵 18/33 ⊲ ▷

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & & \end{pmatrix}$$

对称矩阵 18/33 ⊲ ▷

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

材称矩阵 18/33 ⊲ ▷

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

所以

$$O^TO = I$$

对称矩阵 18/33 ◁ ▷

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

所以

$$Q^{T}Q = I \quad \Longleftrightarrow \quad \begin{cases} \alpha_{i}^{T}\alpha_{i} = 1, \\ \alpha_{i}^{T}\alpha_{i} = 0, \end{cases}$$

对称矩阵

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

所以

$$Q^{T}Q = I \iff \begin{cases} \alpha_{i}^{T}\alpha_{i} = 1, & (i = 1, 2, ..., n) \\ \alpha_{i}^{T}\alpha_{j} = 0, & (i \neq j; i, j = 1, 2, ..., n) \end{cases}$$

对称矩阵 18/33 ◁ ▷

$$A_1 = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}, \quad A_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix},$$

对称矩阵 19/33 ⊲ ▷

$$A_1 = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}, \quad A_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix},$$

提示 验证: 列向量组是单位正交向量组

$$A_1 = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}, \quad A_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix},$$

提示 验证: 列向量组是单位正交向量组

答案 A_1 是正交矩阵

$$A_1 = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}, \quad A_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix},$$

提示 验证: 列向量组是单位正交向量组

答案 A_1 是正交矩阵, A_2 不是正交矩阵

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

$$M A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是

$$0 = |\lambda I - A| =$$

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

$$M A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} =$$

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

例
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

所以特征值是 $\lambda_1 = -\sqrt{-1}$, $\lambda_2 = \sqrt{-1}$ 。

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值 (计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

$$M A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

所以特征值是 $\lambda_1 = -\sqrt{-1}$, $\lambda_2 = \sqrt{-1}$ 。

- 对实对称矩阵,总成立:
 - 1. 定理 实对称矩阵的特征值都是实数。
 - 2. 定理 实对称矩阵一定可以对角化。

对称矩阵

也就是:设A为实对称矩阵,则一定存在可逆矩阵P,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$$

也就是:设A为实对称矩阵,则一定存在可逆矩阵P,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$$

事实上,还可以进一步要求 P 是正交矩阵:

也就是:设A为实对称矩阵,则一定存在可逆矩阵P,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$$

事实上,还可以进一步要求 P 是正交矩阵:

定理 设 A 为实对称矩阵,则一定存在正交矩阵 O ,使得

$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$$

也就是:设A为实对称矩阵,则一定存在可逆矩阵P,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$$

事实上,还可以进一步要求 P 是正交矩阵:

定理 设A为实对称矩阵,则一定存在正交矩阵O,使得

$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$$

也就是:设A为实对称矩阵,则一定存在可逆矩阵P,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$$

事实上,还可以进一步要求 P 是正交矩阵:

定理 设 A 为实对称矩阵,则一定存在正交矩阵 Q ,使得

$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$$

注 由于正交矩阵满足
$$Q^{-1} = Q^T$$
,上述等价于 $Q^T A Q = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}$

证明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_1 = \lambda_1 \alpha_1$$
$$A\alpha_2 = \lambda_2 \alpha_2$$

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_1 = \lambda_1 \alpha_1 \quad \Rightarrow \quad \alpha_2^T A \alpha_1 = \lambda_1 \ \alpha_2^T \alpha_1$$

 $A\alpha_2 = \lambda_2 \alpha_2$

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_1 = \lambda_1 \alpha_1 \implies \alpha_2^T A \alpha_1 = \lambda_1 \alpha_2^T \alpha_1$$

 $A\alpha_2 = \lambda_2 \alpha_2 \implies \alpha_1^T A \alpha_2 = \lambda_2 \alpha_1^T \alpha_2$

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_1 = \lambda_1 \alpha_1 \quad \Rightarrow \quad \alpha_2^T A \alpha_1 = \lambda_1 \alpha_2^T \alpha_1$$

$$A\alpha_2 = \lambda_2 \alpha_2 \quad \Rightarrow \quad \alpha_1^T A \alpha_2 = \lambda_2 \alpha_1^T \alpha_2$$

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \Rightarrow \alpha_{2}^{T}A\alpha_{1} = \lambda_{1}\alpha_{2}^{T}\alpha_{1}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \Rightarrow \alpha_{1}^{T}A\alpha_{2} = \lambda_{2}\alpha_{1}^{T}\alpha_{2}$$

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_1 = \lambda_1 \alpha_1 \quad \Rightarrow \quad \alpha_2^T A \alpha_1 = \lambda_1 \alpha_2^T \alpha_1$$

$$A\alpha_2 = \lambda_2 \alpha_2 \quad \Rightarrow \quad \alpha_1^T A \alpha_2 = \lambda_2 \alpha_1^T \alpha_2$$

注意
$$\alpha_2^T A \alpha_1 = (\alpha_2^T A \alpha_1)^T =$$

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_1 = \lambda_1 \alpha_1 \quad \Rightarrow \quad \alpha_2^T A \alpha_1 = \lambda_1 \quad \alpha_2^T \alpha_1$$

$$A\alpha_2 = \lambda_2 \alpha_2 \quad \Rightarrow \quad \alpha_1^T A \alpha_2 = \lambda_2 \quad \alpha_1^T \alpha_2$$

注意
$$\alpha_2^T A \alpha_1 = (\alpha_2^T A \alpha_1)^T = \alpha_1^T A^T (\alpha_2^T)^T =$$

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_1 = \lambda_1 \alpha_1 \quad \Rightarrow \quad \alpha_2^T A \alpha_1 = \lambda_1 \quad \alpha_2^T \alpha_1$$

$$A\alpha_2 = \lambda_2 \alpha_2 \quad \Rightarrow \quad \alpha_1^T A \alpha_2 = \lambda_2 \quad \alpha_1^T \alpha_2$$

注意
$$\alpha_2^T A \alpha_1 = (\alpha_2^T A \alpha_1)^T = \alpha_1^T A^T (\alpha_2^T)^T = \alpha_1^T A \alpha_2$$

$$\alpha_2^T \alpha_1 = 0$$

 $\overline{\mathbf{u}}$ 明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \quad \Rightarrow \quad \alpha_{2}^{T}A\alpha_{1} = \lambda_{1} \quad \alpha_{2}^{T}\alpha_{1}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \quad \Rightarrow \quad \alpha_{1}^{T}A\alpha_{2} = \lambda_{2} \quad \alpha_{1}^{T}\alpha_{2}$$

注意
$$\alpha_2^T A \alpha_1 = \left(\alpha_2^T A \alpha_1\right)^T = \alpha_1^T A^T \left(\alpha_2^T\right)^T = \alpha_1^T A \alpha_2$$
,两式相减得
$$0 = (\lambda_1 - \lambda_2) \alpha_2^T \alpha_1$$

$$\alpha_2^T \alpha_1 = 0$$

证明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \quad \Rightarrow \quad \alpha_{2}^{T}A\alpha_{1} = \lambda_{1}\alpha_{2}^{T}\alpha_{1}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \quad \Rightarrow \quad \alpha_{1}^{T}A\alpha_{2} = \lambda_{2}\alpha_{1}^{T}\alpha_{2}$$

注意
$$\alpha_2^T A \alpha_1 = \left(\alpha_2^T A \alpha_1\right)^T = \alpha_1^T A^T \left(\alpha_2^T\right)^T = \alpha_1^T A \alpha_2$$
,两式相减得
$$0 = (\lambda_1 - \lambda_2) \alpha_2^T \alpha_1$$

由于 $\lambda_1 \neq \lambda_2$,所以

$$\alpha_2^T \alpha_1 = 0$$

定理 设 A 为实对称矩阵,则存在正交矩阵 Q,使得 $Q^{-1}AQ$ 为对角矩阵。

解释示意图

不同 特征值	重 数	正交化	单位化
λ_1	n_1		
λ_2	n_2		
:	÷		
λ_{s}	ns		
	共n		

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

解释示意图

	不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化
:	λ_1	n ₁			
	λ_2	n_2			
	÷	÷			
	λ_{s}	ns			
		共n			

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

	不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化				
	λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$						
	λ_2	n_2							
	:	:							
	λ_{s}	ns							
		共n							
_	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

	不同 評征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化				
	λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$						
	λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$						
	:	÷							
	λ_s	ns							
		共n							
$- \lambda I $	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化					
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$							
λ_2	n ₂	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$							
÷	÷	÷							
λ_{s}	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$							
	共n								
$ \lambda I - A $	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

-	不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化				
	λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$						
	λ_2	n_2	$\alpha_1^{(2)},\cdots,\alpha_{n_2}^{(2)}$						
	÷	÷	÷						
	λ_s	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$						
-		共n	共 n 个无关特征向量						
_	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化					
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$							
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$							
÷	÷	÷							
λ_{s}	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$							
	共n	共 n 个无关特征向量							
$ \lambda I - A =$	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

•
$$\Leftrightarrow P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)}), \ \mathbb{M} \ P^{-1}AP = \Lambda_o$$

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化					
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$							
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$							
÷	:	÷							
$\lambda_{\scriptscriptstyle \mathcal{S}}$	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$							
	共n	共 n 个无关特征向量							
$ \lambda I - A =$	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化	单位化				
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$					
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$							
:	÷	i i							
$\lambda_{\scriptscriptstyle \mathcal{S}}$	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$							
	共n	共n个无关特征向量							
$ \lambda I - A =$	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化			
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$			
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$							
÷	÷	÷ :							
λ_{s}	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$							
	共n	共n个无关特征向量							
$ \lambda I - A =$	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$
λ_2	n ₂	$\alpha_1^{(2)},\cdots,\alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)}$		
÷	÷	:				
λ_s	n _s	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$				
	共n	共				

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化		
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$		
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)}$	\Rightarrow	$\gamma_1^{(2)}, \cdots, \gamma_{n_2}^{(2)}$		
÷	:	÷				:		
λ_{s}	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$						
	共n	共n个无关特征向量						
$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化		
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$		
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)}$	\Rightarrow	$\gamma_1^{(2)}, \cdots, \gamma_{n_2}^{(2)}$		
÷	÷	÷ :		÷		:		
$\lambda_{\scriptscriptstyle S}$	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$	\Rightarrow	$\beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)}$				
	共n	共 n 个无关特征向量						
$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$
λ_2	n ₂	$\alpha_1^{(2)},\cdots,\alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)}$	\Rightarrow	$\gamma_1^{(2)}, \cdots, \gamma_{n_2}^{(2)}$
÷	÷	:		:		: :
λ_s	n _s	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$	\Rightarrow	$\beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)}$	\Rightarrow	$\gamma_1^{(s)}, \cdots, \gamma_{n_s}^{(s)}$
	共n	共				

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

对称矩阵

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化		
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$		
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)}$	\Rightarrow	$\gamma_1^{(2)}, \cdots, \gamma_{n_2}^{(2)}$		
:	÷	÷		÷		:		
λ_{s}	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$	\Rightarrow	$\beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)}$	\Rightarrow	$\gamma_1^{(s)}, \cdots, \gamma_{n_s}^{(s)}$		
	共n	共n个无关特征向量				构成单位正交特征 向量		
$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$								

• 令 $P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$,则 $P^{-1}AP = \Lambda$ 。但一般地,P 不是正交 矩阵。

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化		
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$		
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)}$	\Rightarrow	$\gamma_1^{(2)}, \cdots, \gamma_{n_2}^{(2)}$		
÷	:	÷		<u>:</u>		:		
λ_{s}	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$	\Rightarrow	$\beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)}$	\Rightarrow	$\gamma_1^{(s)}, \cdots, \gamma_{n_s}^{(s)}$		
	共n	共n个无关特征向量				构成单位正交特征 向量		
$ \lambda I - A =$	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$							

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

$$\bullet \Leftrightarrow Q = (\gamma_1^{(1)}, \cdots, \gamma_{n_s}^{(n_s)}),$$

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化		
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$		
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)}$	\Rightarrow	$\gamma_1^{(2)},\cdots,\gamma_{n_2}^{(2)}$		
÷	:	÷		÷		:		
$\lambda_{\scriptscriptstyle S}$	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$	⇒	$\beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)}$	\Rightarrow	$\gamma_1^{(s)}, \cdots, \gamma_{n_s}^{(s)}$		
	共n	共n个无关特征向量				构成单位正交特征 向量		
$ \lambda I - A =$	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$							

• 令
$$P = (\alpha_1^{(1)}, \dots, \alpha_{n_s}^{(n_s)})$$
,则 $P^{-1}AP = \Lambda$ 。但一般地, P 不是正交 矩阵。

• 令 $Q = (\gamma_1^{(1)}, \dots, \gamma_{n_c}^{(n_s)})$,则 Q 是正交矩阵,

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化		
λ_1	n ₁	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$		
λ_2	n_2	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)}$	⇒	$\gamma_1^{(2)},\cdots,\gamma_{n_2}^{(2)}$		
÷	÷	÷		÷		:		
$\lambda_{\scriptscriptstyle S}$	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$	\Rightarrow	$\beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)}$	⇒	$\gamma_1^{(s)}, \cdots, \gamma_{n_s}^{(s)}$		
	共n	共n个无关特征向量				构成单位正交特征 向量		
$ \lambda I - A =$	$ \lambda I - A = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$							

矩阵。

• 令 $P = (\alpha_1^{(1)}, \dots, \alpha_n^{(n_s)})$,则 $P^{-1}AP = \Lambda$ 。但一般地,P 不是正交

• 令 $Q = (\gamma_1^{(1)}, \dots, \gamma_{n_c}^{(n_s)})$,则 Q 是正交矩阵,且 $Q^{-1}AQ = \Lambda_o$

$$Q^{-1}AQ = \left(\begin{array}{c} * \\ * \end{array}\right)$$

解

特征方程: 0 = |λI − A|

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} =$$

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^2 - 1$

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$

$$\bullet \ \lambda_1 = 1$$

$$\lambda_2 = 3$$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

$$\bullet \ \lambda_1 = 1$$

$$\lambda_2 = 3$$

解

- 特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 2 & -1 \\ -1 & \lambda 2 \end{vmatrix} = (\lambda 1)(\lambda 3)$
- $\lambda_1 = 1$, \overline{x} $\mathbb{R}(\lambda_1 I A)x = 0$:

• $\lambda_2 = 3$, \overline{x} $\mathbb{R}(\lambda_2 I - A)x = 0$:

$$Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$

• $\lambda_1 = 1$, \overline{x} M ($\lambda_1 I - A$)X = 0:

$$(1I-A:0) = \begin{pmatrix} -1-1 & 0 \\ -1-1 & 0 \end{pmatrix}$$

•
$$\lambda_2 = 3$$
,求解 $(\lambda_2 I - A)x = 0$:

 $Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$

• $\lambda_1 = 1$, \overline{x} M ($\lambda_1 I - A$)X = 0:

$$(1I - A : 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

$$Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

• $\lambda_1 = 1$, \overline{x} M ($\lambda_1 I - A$)X = 0:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 & -1 & | & 0 \\ -1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ x_1 + x_2 = 0 \\ x_1 + x_2 = 0 \end{array}$$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

$$Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

• $\lambda_1 = 1$, \overline{x} M ($\lambda_1 I - A$)X = 0:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 & -1 & | & 0 \\ -1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{array}$$

• $\lambda_2 = 3$, \overline{x} M ($\lambda_2 I - A$)X = 0:

 $Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$

• $\lambda_1 = 1$, \overline{x} $\mathbb{R}(\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & | & 0 \\ -1 - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = & 0 \\ & \downarrow & \\ x_1 & = & -x_2 \end{matrix}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

• $\lambda_2 = 3$, $x \neq (\lambda_2 I - A)x = 0$:

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

• $\lambda_1 = 1$, $x \in (\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & | & 0 \\ -1 - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 & = 0 \\ & \downarrow \\ x_1 & = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

• $\lambda_2 = 3$, \overline{x} $\mathbf{R}(\lambda_2 I - A)\mathbf{x} = 0$:

$$Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

• $\lambda_1 = 1$, $x \in (\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & | & 0 \\ -1 - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 & = 0 \\ \downarrow & \downarrow \\ x_1 & = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

● $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

$$(3I - A \stackrel{\cdot}{\cdot} 0) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

• $\lambda_1 = 1$, $x \in (\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 & -1 & | & 0 \\ -1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

$$(3I - A : 0) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

• $\lambda_1 = 1$, $x \in (\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & | & 0 \\ -1 - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 单位化 $\gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

• $\lambda_2 = 3$, \overline{x} M ($\lambda_2 I - A$)X = 0:

$$(3I - A : 0) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ \end{array}$$

$$Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

• $\lambda_1 = 1$, \vec{x} \vec{x} \vec{x} \vec{y} $\vec{y$

$$(1I - A \vdots 0) = \begin{pmatrix} -1 & -1 & | & 0 \\ -1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{array}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 3$$
,求解 $(\lambda_2 I - A)x = 0$:

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ x_1 = x_2 \end{array}$$

例1 将矩阵 $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ 正交对角化。

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

• $\lambda_1 = 1$, \overline{x} M ($\lambda_1 I - A$)X = 0:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 & -1 & | & 0 \\ -1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = & 0 \\ & \downarrow & \\ x_1 & = & -x_2 \end{matrix}$$

•)。-3 · 世報()。/ _ /)v - 0

•
$$\lambda_2 = 3$$
, \vec{x} \vec

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

基础解系:
$$\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

例1 将矩阵 $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ 正交对角化。

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\xrightarrow{\text{单位化}}$ $\gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

● $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 & -1 & | & 0 \\ -1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = & 0 \\ & \downarrow & \\ x_1 & = & -x_2 \end{matrix}$$

•
$$\lambda_2 = 3$$
, \vec{x} \vec{x} \vec{x} \vec{x} $(\lambda_2 I - A)x = 0$:

$$(3I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 & = & 0 \\ x_1 & = & x_2 \end{array}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

例 1 将矩阵
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 正交对角化。

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

所以取 $Q = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$,则 $Q^{-1}AQ = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

 $(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & | & 0 \\ -1 - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = & 0 \\ x_1 & = & -x_2 \end{matrix}$

 $(3I - A \vdots 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 - x_2 & = 0 \\ \downarrow & & \downarrow \end{matrix}$

24/33 ⊲ ⊳

● $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$:

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

解

特征方程: 0 = |λI − A|

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} =$

25/33 ⊲ ⊳

時 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - (-2)^2$$

25/33 ⊲ ⊳

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

$$\bullet \ \lambda_1 = -1$$

•
$$\lambda_2 = 3$$

对称矩阵

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$

 $Q^{-1}AQ = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

 \bullet $\lambda_1 = -1$

$$\lambda_2 = 3$$

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$

•
$$\lambda_1 = -1$$
, \overline{x} M ($\lambda_1 I - A$) $X = 0$:

•
$$\lambda_2 = 3$$
,求解 $(\lambda_2 I - A)x = 0$:

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$

•
$$\lambda_1 = -1$$
, \overline{x} M ($\lambda_1 I - A$) $X = 0$:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & | & 0 \\ -2 & -2 & | & 0 \end{pmatrix}$$

•
$$\lambda_2 = 3$$
, \overline{x} M ($\lambda_2 I - A$) $X = 0$:

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

• $\lambda_1 = -1$, \vec{x} \vec{x} \vec{x} \vec{y} $\vec{$

$$(-I - A : 0) = \begin{pmatrix} -2 & -2 & | & 0 \\ -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

• $\lambda_1 = -1$, \vec{x} \vec{x} \vec{y} $\vec{$

$$(-I - A : 0) = \begin{pmatrix} -2 - 2 & 0 \\ -2 - 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $x_1 + x_2 = 0$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

解

• 特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$

• $\lambda_1 = -1$, \overline{x} M ($\lambda_1 I - A$)X = 0:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 - 2 & | & 0 \\ -2 - 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = & 0 \\ & \downarrow & \\ x_1 & = & -x_2 \end{matrix}$$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

● $λ_1 = -1$, 求解 $(λ_1I - A)x = 0$:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & | & 0 \\ -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{array}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 3$$
, $x \neq (\lambda_2 I - A)x = 0$:

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

• $\lambda_1 = -1$, \overline{x} $\mathbb{R}(\lambda_1 I - A)x = 0$:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & | & 0 \\ -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

• $\lambda_2 = 3$, \overline{x} $\mathbb{R}(\lambda_2 I - A)x = 0$:

例 2 将矩阵
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 正交。

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

• $\lambda_1 = -1$, \overline{X} M ($\lambda_1 I - A$)X = 0:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 - 2 & | & 0 \\ -2 - 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = & 0 \\ x_1 & = & -x_2 \end{matrix}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

$$(3I - A \stackrel{?}{\cdot} 0) = \begin{pmatrix} 2 & -2 & | 0 \\ -2 & 2 & | 0 \end{pmatrix}$$

例 2 将矩阵
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 正交。

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

• $\lambda_1 = -1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & | & 0 \\ -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

• $\lambda_2 = 3$, \overline{x} $\mathbb{R}(\lambda_2 I - A)x = 0$:

$$(3I - A : 0) = \begin{pmatrix} 2 & -2 & | & 0 \\ -2 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

• $\lambda_1 = -1$, \overline{x} $\mathbf{R}(\lambda_1 I - A)\mathbf{x} = 0$:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 - 2 & 0 \\ -2 - 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = 0 \\ \downarrow \\ x_1 & = -x_2 \end{matrix}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 3$$
,求解 $(\lambda_2 I - A)x = 0$:

$$(3I - A \vdots 0) = \begin{pmatrix} 2 & -2 & | & 0 \\ -2 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ \end{array}$$

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

例 2 将矩阵
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 正交。

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

• $\lambda_1 = -1$, \overline{x} $\mathbb{R}(\lambda_1 I - A)x = 0$:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & | & 0 \\ -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

$$(3I - A \vdots 0) = \begin{pmatrix} 2 & -2 & | & 0 \\ -2 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 - x_2 & = & 0 \\ x_1 & = & x_2 \end{matrix}$$

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\xrightarrow{\text{单位化}}$ $\gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

● $\lambda_1 = -1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 - 2 & 0 \\ -2 - 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{matrix}$$

•
$$\lambda_2 = 3$$
. 求解 $(\lambda_2 I - A) \gamma = 0$

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

$$(3I - A \vdots 0) = \begin{pmatrix} 2 & -2 & | & 0 \\ -2 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 & = 0 \\ x_1 & = x_2 \end{array}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

解

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\xrightarrow{\text{单位化}}$ $\gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

• $\lambda_1 = -1$, \overline{x} M ($\lambda_1 I - A$)X = 0:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & | & 0 \\ -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = & 0 \\ & & \downarrow \\ & x_1 & = & -x_2 \end{matrix}$$

• $\lambda_2 = 3$, \overline{x} $\mathbb{R}(\lambda_2 I - A)x = 0$:

$$(3I - A \vdots 0) = \begin{pmatrix} 2 & -2 & | & 0 \\ -2 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 - x_2 & = & 0 \\ x_1 & = & x_2 \end{matrix}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 单位化 $\gamma_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

例 2 将矩阵
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 正交。

• 特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda + 1)(\lambda - 3)$$

● $\lambda_1 = -1$, 求解 $(\lambda_1 I - A)x = 0$:

• $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

 $(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & | & 0 \\ -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = & 0 \\ x_1 & = & -x_2 \end{matrix}$

 $(3I - A : 0) = \begin{pmatrix} 2 & -2 & | & 0 \\ -2 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{matrix} x_1 - x_2 & = & 0 \\ & & \downarrow \end{matrix}$

25/33 ⊲ ⊳

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\xrightarrow{\text{单位化}}$ $\gamma_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

所以取 $Q = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$,则 $Q^{-1}AQ = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$

$$Q^{-1}AQ = \begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}$$

对称矩阵

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

$$Q^{-1}AQ = \begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}$$

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

$$\bullet \ \lambda_1 = -1,$$

•
$$\lambda_2 = 2$$
,

$$\bullet \ \lambda_3 = 5,$$

$$Q^{-1}AQ = \begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}$$

对称矩阵

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

$$\bullet \ \lambda_1 = -1,$$

$$\lambda_2 = 2$$

$$\bullet \ \lambda_3 = 5,$$

$$Q^{-1}AQ = \begin{pmatrix} -1 & 2 & 1 \\ & 2 & 5 \end{pmatrix}$$

对称矩阵

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

•
$$\lambda_1 = -1$$
, 特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$

$$\lambda_2 = 2$$
,

$$\bullet \ \lambda_3 = 5,$$

$$Q^{-1}AQ = \begin{pmatrix} -1 & & \\ & 2 & \\ & 5 \end{pmatrix}$$

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

•
$$\lambda_1 = -1$$
, 特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 2$$
, 特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$

 $\bullet \ \lambda_3 = 5,$

$$Q^{-1}AQ = \begin{pmatrix} -1 & & \\ & 2 & \\ & & 5 \end{pmatrix}$$

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

•
$$\lambda_1 = -1$$
, 特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 2$$
, 特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$

•
$$\lambda_3 = 5$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 & 2 & 1 \\ & 2 & 5 \end{pmatrix}$$

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
, 特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$

•
$$\lambda_3 = 5$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 & 2 & 1 \\ & 2 & 5 \end{pmatrix}$$

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ $\xrightarrow{\text{单位化}}$ $\gamma_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}$

•
$$\lambda_3 = 5$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 & & \\ & 2 & \\ & & 5 \end{pmatrix}$$

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ 单位化 $\gamma_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}$

•
$$\lambda_3 = 5$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 & 2 & 1 \\ & 2 & 5 \end{pmatrix}$$

例 3
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ 单位化 $\gamma_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}$

•
$$\lambda_3 = 5$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}$

所以取
$$Q = \underbrace{\begin{pmatrix} 2/3 & 2/3 & 1/3 \\ 2/3 & -1/3 & -2/3 \\ 1/3 & -2/3 & 2/3 \end{pmatrix}}_{Q: \ \mathbb{E}$$
 , 则 $Q^{-1}AQ = \begin{pmatrix} -1 & 2 & 1 \\ & 2 & 5 \end{pmatrix}$

(9) 4
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$

$$Q^{-1}AQ = \begin{pmatrix} * \\ * \\ * \end{pmatrix}$$

对称矩阵

例 4 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

$$Q^{-1}AQ = \begin{pmatrix} * \\ * \\ * \end{pmatrix}$$

对称矩阵 27/33 ⊲ ▷

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$
• $\lambda_1 = 1$ (二重)

• $\lambda_3 = 10$

$$Q^{-1}AQ = \begin{pmatrix} * & * \\ & * \end{pmatrix}$$

对称矩阵

$$\lambda_3 = 10$$

例 4 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2(\lambda - 10)$

$$Q^{-1}AQ = \begin{pmatrix} 1 & 1 \\ 1 & 10 \end{pmatrix}$$

27/33 ⊲ ⊳

*λ*₁ = 1 (二重)

例 4
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

• $\lambda_1=1$ (二重),特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}
\end{cases}$$

•
$$\lambda_3 = 10$$

$$Q^{-1}AQ = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

对称矩阵

例 4
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2(\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix} \end{cases}$$

•
$$\lambda_3 = 10$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

27/33 ⊲ ⊳

例 4
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} & \xrightarrow{\mathbb{E}^{2}} \begin{cases}
\beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} & \beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix}
\end{cases}$$

•
$$\lambda_3 = 10$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

27/33 ⊲ ⊳

例 4
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重) ,特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} & \xrightarrow{\mathbb{E}^{\frac{1}{\sqrt{5}}}} \begin{cases} \beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} & \xrightarrow{\text{where}} \begin{cases} \gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \end{cases} \\ \alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} & \beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix} \end{cases} \begin{cases} \gamma_2 = \frac{5}{3\sqrt{5}} \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix} \end{cases}$$

• $\lambda_3 = 10$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

对称矩阵 27/33 ⊲ ▷

例 4
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2(\lambda - 10)$

入1 = 1 (二重) ,特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} & \xrightarrow{\mathbb{E}^2 \times \mathbb{N}} \begin{cases} \beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} & \xrightarrow{\text{where}} \begin{cases} \gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} & \beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix} \end{cases} \\ \beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix}$$

•
$$\lambda_3 = 10$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} 1 \\ 1 \\ 10 \end{pmatrix}$$

27/33 ⊲ ⊳

例 4 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

• $\lambda_1 = 1$ (二重),特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{正交化}} \begin{cases} \beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{单位化}} \begin{cases} \gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \end{cases} \\ \alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} & \begin{cases} \beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{cases} \end{cases} \end{cases} \begin{cases} \gamma_2 = \frac{5}{3\sqrt{5}} \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{cases} \end{cases}$$

$$\bullet \ \lambda_3 = 10, \ \text{特征向量} \\ \alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \\ \gamma_3 \end{pmatrix} \xrightarrow{\text{单位化}} \quad \gamma_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$$

$$\text{所以取 } Q = \begin{pmatrix} -2/\sqrt{5} \ 2/3 \sqrt{5} \ 1/3 \\ 1/\sqrt{5} \ 4/3 \sqrt{5} \ 2/3 \\ 0 \ \sqrt{5}/3 \ -2/3 \end{pmatrix}, \ \mathbb{Q}Q^{-1}AQ = \begin{pmatrix} 1 \\ 1 \\ 10 \end{pmatrix}$$

O: 正交阵

对你和中

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,

$$Q^{-1}AQ = \begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}$$

对称矩阵

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| =$

$$Q^{-1}AQ = \begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}$$

对称矩阵

$$Q^{-1}AQ = \begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}$$

对称矩阵 28/33 < ▷

$$\lambda_2 = 5$$

$$Q^{-1}AQ = \begin{pmatrix} * & & \\ & * & \\ & & * \end{pmatrix}$$

对称矩阵

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ • Det • $\lambda_1 = -1$ (二重)

$$\lambda_2 = 5$$

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix}$$

对称矩阵 28/33 ✓ ▷

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det

•
$$\lambda_1 = -1$$
 (二重) ,特征向量: • Detail
$$\begin{cases} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\lambda_2 = 5$$

$$Q^{-1}AQ = \begin{pmatrix} -1 & \\ & -1 & \\ & 5 \end{pmatrix}$$

对称矩阵

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ **Del**

• $\lambda_1 = -1$ (二重) ,特征向量: • Detail $\begin{cases} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 5$$
,特征向量: • Det $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix}$$

对称矩阵 28/33 ⊲ ▷

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ **Det**

• $\lambda_1 = -1$ (二重),特征向量: • Detail $\begin{cases}
\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} & \xrightarrow{\mathbb{E}^{\mathbb{R}^{\mathbb{R}}}} \\
\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}
\end{cases}$

$$\left(\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}\right) \quad \text{Det}$$

•
$$\lambda_2 = 5$$
,特征向量: • Det $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix}$$

对称矩阵 28/33 ⊲ ⊳

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det $\lambda_1 = -1$ (二重) ,特征向量: Detail

 $\begin{cases} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\mathbb{E}^{\times} \mathbb{K}} \begin{cases} \beta_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$

$$\lambda_2=5$$
,特征向量: $\alpha_3=\begin{pmatrix}1\\1\end{pmatrix}$

•
$$\lambda_2 = 5$$
,特征向量: • Det $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 & \\ -1 & \\ 5 \end{pmatrix}$$

对称矩阵 28/33 ⊲ ⊳

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det $\lambda_1 = -1$ (二重) ,特征向量: Detail

•
$$\lambda_1 = -1$$
 ($\subseteq 2$ 1), $\gamma_1 = 0$ ($\gamma_1 = 0$), $\gamma_2 = 0$
• $\lambda_1 = -1$ ($\subseteq 2$ 1), $\gamma_2 = 0$

$$\begin{cases} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} & \text{if } \beta_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} & \text{if } \beta_2 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} & \text{if } \beta_2 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} & \text{if } \beta_2 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$$

$$\begin{cases} \gamma_1 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} & \text{if } \beta_2 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} & \text{if } \beta_2 = \begin{pmatrix} -1/2 \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{pmatrix}$$

•
$$\lambda_2 = 5$$
,特征向量: • Det $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix}$$

对称矩阵 28/33 ⊲ ⊳

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det

•
$$\lambda_2 = 5$$
,特征向量: Det $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_3 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$

$$Q^{-1}AQ = \begin{pmatrix} -1 & \\ -1 & \\ 5 \end{pmatrix}$$

对称矩阵 28/33 ⊲ ▷

例 5
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det $\lambda_1 = -1$ (二重) ,特征向量: • Detail

•
$$\lambda_1 = -1$$
 (二重) ,特征向量: • Detail
$$\begin{cases} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} & \text{ E文化} \\ \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} & \text{ Det} \end{cases} \begin{cases} \beta_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} & \text{ E文化} \\ \beta_2 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} & \text{ Argument of } \end{cases} \begin{cases} \gamma_1 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} & \text{ Argument of } \end{cases}$$

O: 正交阵

-----The End-----

$$0 = |\lambda I - A| =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{=} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{C_2 + C_3}{=}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + c_3}{=} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

→ Back

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \xrightarrow{c_2 + c_3} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

▶ Back

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + c_3}{=} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

$$= (\lambda + 1)(\lambda^2 - 4\lambda - 5)$$

→ Back

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \xrightarrow{c_2 + c_3} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

$$= (\lambda + 1)(\lambda^2 - 4\lambda - 5)$$

$$= (\lambda + 1)^2(\lambda - 5)$$

→ Back

• 当 $\lambda_1 = -1$,求解 $(\lambda_1 I - A)x = 0$:

$$(-I - A : 0) =$$

对称矩阵

• 当 $\lambda_1 = -1$,求解 $(\lambda_1 I - A)x = 0$:

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & 0 \\ -2 & -2 & -2 & 0 \\ -2 & -2 & -2 & 0 \end{pmatrix} \rightarrow$$

对称矩阵 31/33 ⊲ ▷

• 当 $\lambda_1 = -1$,求解 $(\lambda_1 I - A)x = 0$:

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

对称矩阵 31/33 ⊲ ▷

• $\exists \lambda_1 = -1$, \vec{x} \vec{x} \vec{x} \vec{x} \vec{y} \vec{y}

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0$$

→ Back

• $\exists \lambda_1 = -1$, \vec{x} \vec{x} \vec{x} \vec{x} \vec{y} \vec{y}

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

• $\exists \lambda_1 = -1$, \vec{x} \vec{x} \vec{x} \vec{x} \vec{y} \vec{y}

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• 当 $\lambda_1 = -1$,求解 $(\lambda_1 I - A)x = 0$:

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• 当 $\lambda_1 = -1$,求解 $(\lambda_1 I - A)x = 0$:

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

• $\exists \lambda_2 = 5$, \vec{x} \vec{x} \vec{x} \vec{x} \vec{y} \vec

$$(5I - A : 0) =$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix}$$

$$(5I-A:0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$r_1 \leftrightarrow r_3$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array}\right) \xrightarrow[r_3 - 2r_1]{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array}\right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right) \xrightarrow{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array} \right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

对称矩阵

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right) \xrightarrow{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array} \right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{r_1 - r_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(5I - A : 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & -3 & 3 & | & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\text{MU}$$

$$(5I-A:0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & -3 & 3 & | & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$
所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

$$(5I-A:0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & -3 & 3 & | & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$
所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -x_3 = 0 & (x_1 = x_3) \end{cases}$$

所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix}
1 & 1 & -2 & | & 0 \\
0 & 1 & -1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix}
1 & 0 & -1 & | & 0 \\
0 & 1 & -1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\int x_1 - x_3 = 0 \qquad \int x_1 = x_3$$

所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$$

基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

对称矩阵

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 =$$

$$\beta_2 =$$

Pack

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \dots - \beta_1$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0\end{array}\right)$$

$$\beta_2 = \alpha_2 - \dots - \beta_1$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0 \end{array}\right)$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - - \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0 \end{array}\right)$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{-1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0\end{array}\right)$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0\end{array}\right)$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$$