

INDEX OF AUTHORS

VOLUME LIII

TRANSACTIONS OF AMERICAN SOCIETY FOR METALS

1961

A

Achter, M. R. 817-836
Angerman, C. L. 433-446, (D) 933, 934
Averbach, B. L. (D) 910, 911

B

Bachofen, W. A. 55-73, (D) 952, 953
Bare, D. W. 1-12, (D) 883-885
Barrett, C. A. (D) 948, 949
Barton, P. J. (D) 916, 918
Bauer, Arthur A. 511-521, 837-842, (D) 939, 940
Beaudry, B. J. (D) 899-901
Beck, F. H. 793-803, (D) 971, 972
Bekebrede, W. R. 215-226, (D) 909
Bell, James F. (D) 926, 927
Benson, R. 227-232, (D) 911
Berg, T. G. Owe (D) 949, 976, 977
Berry, John T. (D) 942
Binstock, M. H. 29-41, (D) 888, 889
Blickwede, D. J. 683-695, (D) 958, 959
Borik, F. 447-463, (D) 936, 937
Bredig, M. A. (D) 938
Brey, Mary L. 415-431, (D) 933
Brown, H. A. 215-226, (D) 909
Bruckart, William L. (D) 907, 908

C

Campbell, Hallock C. (D) 953
Carlson, C. E. (D) 886
Carlson, O. N. 1-12, 501-510, (D) 883, 889, 963
Chandhok, V. K. 621-636
Chapman, R. D. 359-379, 447-463
Chubb, W. 465-478
Christakos, J. 187-198
Clark, J. B. 295-306
Cohen, Morris (D) 910, 911

(D) Discusser

Conrad, Hans (D) 896-898
Crossley, F. A. (D) 930, 931
Curtis, C. W. (D) 927

D

Daane, A. H. (D) 899-901
Darken, L. S. 187-198
Davis, G. L. (D) 960
Davis, H. M. 653-661, 853-869, 951, 952, 977-981
De Kazinczy, F. 55-73
Delgrossio, E. J. (D) 885-887
De Vries, Gerrit (D) 903-907
Dickerson, Ronald F. 511-521, 837-842
Domagala, R. F. 137-155, (D) 902, 903
Dorn, J. E. 123-135, 227-232, (D) 911
Douglass, D. L. 307-319
Dulis, E. J. 621-636, (D) 948
Dwight, A. E. 479-500

E

Ebner, M. L. (D) 952, 953
Elliott, Rodney P. 13-28, 321-329
Enrietto, J. F. (D) 954, 955
Eustice, A. L. 501-510

F

Farkas, M. S. 511-521
Feild, A. L., Jr. (D) 972
Fontana, M. G. 793-803
Frame, J. W. 683-695
France, Walter D. 968
Freche, John C. 523-537
Friske, W. H. 29-41

G

Gerard, George 381-406, (D) 929, 930
Gokcen, Nev A. 843-852
Grange, R. A. 157-185, (D) 905-907
Gray, T. H. (D) 890, 891
Gurry, R. W. 187-198

H

Hanlon, J. E. ^(D).....955-958
 Harmon, E. L.43-53
 Heckel, R. W.539-554
 Heller, W. R. ^(D).....951
 Hibbard, W. R., Jr.331-348, ^(D) 923, 924
 Hill, M. L. ^(D).....975, 976
 Hillert, Mats555-567
 Hirano, Ken-ichi ^(D).....910, 911
 Holden, F. C.805-816, ^(D) 973
 Hornbogen, E.569-589
 Hosoi, Yuzo591-602, ^(D) 946
 Hultgren, Ralph199-205, 207-214

I

Irwin, G. R. ^(D).....981
 Isseron, Saul ^(D).....939

J

Jaffee, R. I.637-652, 805-816, ^(D) 972
 Johnson, E. W. ^(D)....950, 951, 973-975
 Jones, R. B.603-620, 775-791, ^(D) 969

K

Kasak, A.621-636, ^(D) 948
 Kendall, W. B.199-205, 207-214
 Klier, E. P.75-93
 Kline, H. E.29-41
 Klodt, D. T.735-742, ^(D) 883-885, ^(D) 899-903
 Klopp, W. D.637-652, ^(D) 885-887
 Knapton, A. G. ^(D).....907-909
 Koistinen, D. P.743-752, ^(D) 965, 966
 Konoval, G.715-734
 Kotyk, Michael653-661, ^(D) 951, 952
 Kranzlein, P. M.433-446
 Kula, Eric B. ^(D).....942-944

L

La Belle, J. E. ^(D).....924, 925
 Larkin, C. F.349-358
 Larson, Frank R.663-682, ^(D) 953, 954
 Laxar, F. H.683-695, ^(D) 958, 959
 Leber, S.697-713, ^(D) 960-962
 Leeser, D. O. ^(D).....887-889
 Leslie, W. C.715-734, ^(D) 922, 923
 Levesque, P.215-226

Levinson, D. W.137-155, ^(D) 902, 903
 Libsch, J. F.753-764
 Lindsay, R. W. ^(D).....947, 948
 Littman, Walter E. ^(D).....935
 Loria, E. A.109-122, ^(D) 892-896
 Lundin, C. E., Jr.735-742, ^(D) 883, 899, 963, 964

M

McHenry, H. T. ^(D).....940
 Manning, G. K. ^(D).....903-907
 Mallet, M. W. ^(D).....967
 Marburger, R. E.743-752
 Maykuth, D. J.637-652
 Messner, A.227-232
 Michalak, J. T.331-348, ^(D) 923, 924
 Miller, Paul D. ^(D).....970
 Mitchell, J. B.157-185
 Moran, J. J. ^(D).....969, 970
 Moore, Thomas J. ^(D).....933
 Mote, J.123-135
 Mozley, P. P. ^(D).....89-896

N

Nachtman, Elliot ^(D).....944-946
 Nakashima, A.753-764
 Nunes, John663-682, ^(D) 953, 954

O

Ogden, H. R.805-816, ^(D) 972
 Ogilvie, Robert E. ^(D).....964, 965
 Olsen, K. M.349-358
 Olson, J. H.359-379, ^(D) 925
 Owen, C. V. ^(D).....963

P

Papirno, Ralph381-406, ^(D) 929, 930
 Parr, J. Gordon283-294
 Paxton, H. W.539-554
 Pennington, W. A.817-836
 Peretti, E. A.95-107, ^(D) 889
 Peterson, David T.765-773, ^(D) 967
 Phillips, Victor A.603-620, 775-791, ^(D) 969
 Phillips, W. M.465-478, ^(D) 938, 939
 Pickering, H. W.793-803, ^(D) 971, 972
 Picklesimer, M. L. ^(D).....932

Pinnow, Kenneth E. 591-602, ^(D) 946
 Purdy, G. R. 283-294

R

Raudebaugh, R. J. 233-250, ^(D) 914, 915
 Rausch, J. J. 137-155, ^(D) 902, 903
 Rickett, R. L. 715-734
 Rieck, G. D. ^(D) 960
 Riley, Thomas J. 523-537, ^(D) 940, 941
 Rudy, John F. ^(D) 930, 931
 Rundell, G. R. 233-250, ^(D) 914, 915

S

Schmidt, F. F. 805-816, ^(D) 973
 Schmitt, P. H., Jr. 349-358
 Schweitzer, Donald G. 251-258, 259-264, ^(D) 916, 917, 920-922
 Semchyshen, M. ^(D) 964, 972
 Shahinian, P. 817-836
 Simkovich, E. A. 109-122, ^(D) 892-896
 Sims, Chester T. ^(D) 907-909
 Spaeder, C. E. ^(D) 911-915
 Steur, R. W. ^(D) 889-896
 Storhok, Victor W. 837-842
 Strnat, Karl ^(D) 899-903
 Stroble, C. P. 715-734

T

Taggart, R. 283-294
 Tankins, Edwin S. 843-852
 Tanner, L. E. 407-414, ^(D) 931, 932
 Teitel, Robert J. ^(D) 915-917, 918, 920

Thomas, K. C. ^(D) 911-915
 Troiano, A. R. 43-53
 Trozera, T. A. 123-135

V

Van Orden, J. M. ^(D) 889-896
 Van Thyne, R. J. ^(D) 915-917, 918

W

Waters, William J. 523-537, ^(D) 940, 941
 Weeks, John R. 251-258, 259-264, ^(D) 916, 917, 920-922
 Weglein, E. B. ^(D) 911-915
 Weinberg, Alfred F. ^(D) 915, 917, 918
 Weiss, Volker ^(D) 981, 982
 Weissman, S. 265-281
 Werner, F. E. ^(D) 935, 936
 Werner, J. E. 853-869, ^(D) 977-981
 Westlake, Donald G. ^(D) 966
 White, Merit P. ^(D) 927-929
 Wiley, H. B. ^(D) 889-896
 Williams, Robin O. ^(D) 961, 962
 Wolf, J. D. ^(D) 955-958

Y

Yakymyshyn, F. W. 283-294
 Yeh, T. H. 75-93
 Yukawa, S. 871-881, ^(D) 982

Z

Zegler, S. Thomas ^(D) 887-889
 Zener, C. 1052-1068
 Zmeskal, Otto 415-431

SUBJECT INDEX

VOLUME LIII

TRANSACTIONS OF AMERICAN SOCIETY FOR METALS

Numbered alloys

H-11

See Cr-Mo-V steel

La Belle HT

effect of reduction on

properties 943, 944

A

AB compounds (transition elements)

axial ratio 488, 489, 492

contraction of A or

B 483, 486-489, 492

definition 480

radius ratio 483-489, 492, 499

zones of stability 490-498

AB₂ compounds (transition elements)

effective atomic size 483-489

interrelations of crystal

structure 481, 482

variation of radius ratios 484-487

AB₃ compounds (transition elements)

effective atomic size 483-489

factors controlling

occurrence 479-500

interrelations of crystal

structure 481, 482

variation of radius ratios 484-487

Absorption coefficient

determination 911

Acid solution calorimetry

of Fe-Mn alloys 199

Activation energies for basal

slip in magnesium single

crystals (A) 123-135

discussion 896-898

Activation energy

for basal slip in Mg

mathematical development 896, 897

difference of apparent and

true with temperature 898

(A) following an entry means it is an exact title of an article.

Activation energy

for basal slip in Mg (cont.)

for climb, in magnesium 133

for creep, in aluminum 128-131, 133

for creep, in magnesium 127-135

for cross-slip in magnesium 133

for diffusion, of C in Th 765-773

for jumps 956, 957

for nucleation 923, 924

for recrystallization 923

for self diffusion, in Mg 130, 134

for self diffusion, in Ni crystals 232

for slip, in zinc 133

of oxidation, of Cr in O₂ 415

of oxidation, of Zr in

O₂ 415, 424, 425

of peaks, in internal friction

tests on low-C

steel 688, 689, 690

Adsorption

nature of process 864

of H by Fe & Fe alloys 854

Age hardening

in 18% nickel-silver 782, 783

in Ti-Co alloys 292, 293

Age-hardening alloys

yield phenomena in 603-620

Alignment

of crystals in wire 701-712

Allotriomorphs, grain

boundary 546-548, 551

Allotropic transformation

in U C₂ 938

Allotropy in yttrium

..... 902

Alloying elements

effect on ductility of V 735-742

effect on high-temperature

creep-rupture of martensitic

steel 625-627

effect on oxidation of

tantalum (A) 637-652

discussion 948, 949

Alloying elements (cont.)

- ionic radius, correlation with oxidation of
- Ta 644-647, 652
- properties, correlation with oxidation of
- Ta 639, 644-650

Alloy steel

- bend strength and
- microstructure 872, 874-876
- 500° embrittlement, effect of induction 753-764
- interatomic bonding 199
- size effects in notched-bend tests 871-881
- transition temp. and size effects 876

Alpha Cu-Ni-Zn alloys

- yield point and order
- hardening phenomena in 775-791

Alpha iron

- precipitation of I^{\prime} from 569-589
- properties & structure, as

 - quenched 572
 - solubility of O_2 in 843

Aluminum

- deformation and growth 276-279
- effect on beta transformation of Ti-V alloy 47-53
- effect on strain aging and internal friction in low-C steel 683-695
- free energy of activation 278
- growth processes in

 - recrystallization 265-281
 - isothermal recrystallization 271-273
 - kinetic study of subgrain growth 271-273, 276, 280

- metallography of

 - recrystallization 266
 - micrographs 269, 279, 274-276
 - recrystallization 265-281
 - subgrain growth 265-270
 - tension impact experiments on pure 381-406
 - wear test on alodized and anodized 362, 369-371
 - wear tests on pure 369, 370
 - x-ray diffraction analysis 267-269

Aluminum, single crystal

 - activation energy for creep 128, 130, 131, 133

Aluminum alloys

 - wear test of Cr-plated 370

Aluminum alloys, specific types

 - 1100-0
 - static stress-strain characteristics 392, 393, 403

Aluminum-copper system

 - decomposition products in 50, 51

Aluminum-magnesium alloy

 - yield point 603

Aluminum-magnesium-zinc

 - See Magnesium-Al-Zn*

Aluminum—20% silicon alloy

 - wear tests 369

Aluminum-steel (1.83%)

 - internal friction 686-692
 - mechanisms underlying 4 peaks 692-694
 - stress induced diffusion jumps 692

Aluminum-uranium alloys

 - alloy preparation 837, 838
 - effect of Mg and Si on 838, 840
 - electrical resistivity 838, 839
 - liquidus study 837-842
 - metallography 841, 842
 - microstructure 840-842
 - phase diagram 839
 - study of liquidus (A) 837-842
 - thermal analysis 837-841

Anisotropy

 - in steel plate 55-57, 60-72

Annealing

 - of cold-rolled iron 334-337
 - of steel, effect on grain size and inclusions 69

Annual Meeting 1003, 1006-1043

Antiferromagnetic Néel temperature

 - for iron-manganese 211, 212

Armco iron

 - wear tests 366, 367, 373, 374

ASM-AEC Conference—Non-Oxide Compounds for Nuclear Fuels 1004

ASM Albert E. White Distinguished Teacher Award 988

ASM Annual Address of the President 1008-1017
ASM Annual Meeting 1003, 1006-1043
ASM Awards 984, 988, 1005, 1006
ASM Campbell Memorial Lecturers 984
ASM Chapter and Member Activity 1033
ASM Chapters and Officers 988-997
ASM Documentation and Information Searching 1035, 1036
ASM Distinguished Life Members 985, 986
ASM Education and Career Guidance 1034, 1035
ASM Election of Officers 1042
ASM Foundation for Education and Research 1038-1041
ASM Founder and Honorary Members 983
ASM Gold Medal 984, 985
ASM Henry Marion Howe Medalists 984
ASM Honorary Life Members 985
ASM Medal for the Advancement of Research 985
ASM Medalists 984
ASM Metals Engineering Program 1003, 1004
ASM Metal Shows 1036, 1037
ASM Officers, Trustees and Managing Director 983
ASM Past Presidents 983
ASM Periodical and Reference Publications 1033, 1034
ASM Proposed Constitution Changes 1041, 1042
ASM Report of Managing Director 1032-1038
ASM Sauveur Achievement Award 984
ASM Secretary's Report 1018-1025
ASM Seminar on Strengthening Mechanisms in Solids 988, 999
ASM Standing Committees 986-988
ASM Symposium for Steel Users 1004, 1005
ASM Technical Program and Reports of Officers, 42nd Annual Convention 998-1002
ASM Treasurer's Report 1026-1032
ASM William Hunt Eisenman Award for Engineering Achievement 988
Atomic jump mechanisms in low-C steel 692, 693, 954-959
Austenite
 distribution and solubility
 of B in 181-184
 in low-C 3.25% Si steel 715-733
 effect of C 719-732
 formation 721-723
 isothermal transformation 723-725, 727, 728
 in 4340 steel decomposition during cooling 75-93
 in hardenability tests 88, 89
 transformation in steel 75
 transformation in baron steel 173-178
Austenitic stainless steel
See Stainless steel, austenitic types
Austenitizing
 of 51100 steel 449, 450
 temperature for B steel 160-168
Avrami's Equation
 (Recrystallization) 337, 338
Axial ratio in AB compounds 488, 489, 492
Axial tension-tension fatigue tests 110, 111
Azimuthal reflection, definition 267

B
Bainite
 in B steels 178
 in 4340 steel 77-92
 in 51100 steel 447-450, 456-462
 fatigue strength and hardness 447, 456-462
 production procedure 449, 450
Banding ratio (steel)
 definition 58
 -grain size 58, 61

Basal slip
 activation energy in mathematical analysis 896, 897
 difference of apparent & true with temperature 898

Band ductility
 of Ta-base alloys 811, 812
 of V-Cb alloys 502-506, 509

Bend strength
 of Ni-Cr-Mo steel 876, 877
 of Ni-Cr-Mo-V steel 876, 877
 of Ni-Mo-V steel 872-876

Beryllium-copper
 yield point phenomena 603-620

Beta transformation characteristics of Ti alloyed with V and Al (A) 43-53

Bilinear material
 in wave propagation 926
 strain velocities in 389-392, 403, 404

Binary Ca Cu_x type phases 481

Binary Mg Cu_x-type laves phases 481

Binary Mg Ni_x-type phases 481

Binary Mg Zn_x-type phases 481

Bismuth
 purity and source 97, 252
 solubility of U in 251-258, 915-917

Bismuth-cadmium 95, 96, 104

Bismuth-Cd-In system 95-107

Bismuth-indium system
See Indium-bismuth

Bismuth₂ tellurium:
 mean free path 1066

Bismuth-uranium-zirconium
See Uranium-Zr-Bi

Blade life
 of modified Ni-base alloy 535, 536

Body-centered cubic metals
 cylindrical textures 697-713, 960, 963

Boltzmann statistics 1058, 1060

Boron
 as additive to Ni-base
 alloy 531, 532
 grain boundary absorption 903-906
 in steel
 effect on austenitizing 168-173
 effect on hardenability 157-185, 906
 nucleating effect 173, 175

Boron
 in steel (cont.)
 precipitation and austenite
 transformation 173-176
 solubility and distribution
 in austenite 181-184

Boron carbide in steel 168, 182

Boron steel
 austenitizing at high-temperature 168-173
 austenite transformation 173-178
 bainite in 178
 effect of C on precipitation of B 166, 168
 effect of hot working on B 182, 183
 electron micrograph showing carbides 947
 grain size 169
 hardenability 157-185, 906
 heat treatment 158-160, 179-181
 isothermal transformation 168-173
 microstructure 162

Bragg reflection 1065

Brittle-ductile transitions
 in binary alloys 501

Brittle fracture in steel plate 55-73
 effect of grain size 67, 72
 effect of low temperature 66-69
 microfissuring and 55, 70-72

Brittleness
 in high-P, iron-P alloys 572-574
 in high-purity nickel 354

"B" precipitate in boron steel
 160, 163-168, 173-179, 182-185

Brush surfindicator 110

Bulb-anneal method
 for Yt alloys 139

C

Cadmium, source and purity 97

Cadmium—bismuth system
 phases 95, 96, 104

Cadmium—bismuth—indium 95-107
 liquidus isotherms 101
 metallography 98, 102-104
 microstructure 102-106
 phase study method 98
 ternary diagram 96
 vertical sections 97-101

Campbell Memorial Lecture 1052-1068

Carbide coherency strains 937
 in 51100 steel 937

Carbide phase
 in Fe-C alloys, influence
 on H occlusion 654, 660
 in steel, mean free path 448
 in 4140 steel 819

Carbide precipitation
 in 316L stainless steel 913, 914

Carbides
 extracted from 1050 steel 187-198
 extracted from 1345 steel 187-198
 extracted from Mn-steel 187-198
 method of removal 188
 properties 187-198
 in boron steel 947, 948
 in low-C silicon steel
 electron micrograph 730
 isothermal precipitation 732
 kinetics of precipitation 728-732
 lenticular type 728, 730-733
 in martensitic steel
 621, 626, 627, 632, 634, 636
 in 51100 steel
 distribution and morphology
 448, 449, 461, 462
 fatigue strength 447, 448

Carbon
 as additive to Ni-base alloys 528-530
 diffusion in thorium 765-773, 967
 change in surface 769
 concentration-distance curves
 at 3 temperatures 766-768
 diffusion coefficients by 3
 methods 770-773
 increment vs. time and
 distance 771
 effect on proeutectoid
 cementite 542, 543, 553
 effect on strain aging of steel 683
 effect on strength of Ta 815
 in boron steel
 decrease in B with
 increase in C 178
 effect on hardenability 157-185
 effect on precipitation of B
 166, 168
 in low-C silicon steel
 effect on microstructure 715-734

Carbon (cont.)
 solid solubility in ferrite at 700°
 683, 685, 687, 691, 694, 695
 strengthener in Cb-base and
 Ta-base alloys 972

Carbon steel
 microconstituents of early
 developments 539, 540
 recrystallization 923

Carbon steel, hypereutectoid
 isothermal transformation
 diagram 542, 543
 heat treatment of 541
 metallography of 541, 542
 morphology of proeutectoid
 cementite in 539-554

Casting technique
 for Ni-base alloy series 526, 527

Cast iron
 cementite 555, 560-566
 effect of cooling rate on
 structure 555, 563, 564, 565
 effect of silicon on
 555, 558, 559, 565, 566
 graphite eutectic 555-566
 grey and white solidification 555-567
 inverse chill 555-557, 559, 564, 566
 inverse greyness 555-566
 ledeburite 555, 557-566
 nucleation of phases 560-566
 wear tests 362, 365-369, 371, 375

Cementite in cast iron 555, 560-566
 grain boundary
 540, 542, 543, 546, 547, 550, 553
 isothermal transformation 541-543

Cementite, proeutectoid
 effect of C concentration
 542, 543, 553
 effect of transformation
 temperature 541-543
 effect of transformation
 time 541-543
 microstructure 544-554

Charpy impact properties
 of steel, microstructure and 55-73

Chemisorption of hydrogen
 in cold-worked iron-carbon
 alloys 973, 977
 in iron 853, 854, 864-868
 microstructure 856, 859, 864, 866

Chemisorption of hydrogen (cont.)
in iron (cont.)
 reversibility 853, 854, 866, 867
 thickness of layer 865, 867

Chi phase in rhenium alloys 225, 909

Chromium
effect on oxidation of Ta
 alloys 641, 642, 646, 647
scavenging action of Y 963
source and purity 208

Chromium-copper
yield point phenomena 603-620

Chromium-hafnium
See Hafnium-chromium

Chromium-iron alloy (78-22)
heat content 207-214

Chromium-Mo-V steel sheet
decarburization tests .. 890, 892, 893
depth of decarburization and
 fatigue life 892-895
fatigue strength 109-122
high-temperature applications .. 109
microhardness of decarburized
..... 119, 120
microstructure of decarburization
..... 112, 113, 890, 894
S-N curves .. 113-116, 120, 121, 891
strength of decarburized
..... 114-116, 895
stress-relief temperature .. 890, 895
subsurface oxidation 890

Chromium plating
score resistance 925
wear tests .. 362, 368, 373, 375, 925

Classification system
for proeutectoid transformation
 products of steel 539, 541

Climb, in magnesium
activation energy for 133

Coalescence of grain boundary
carbide 947, 948

Cobalt
source and purity 208

Cobalt—hafnium
See Hafnium-cobalt

Cobalt-iron (31-69)
ferromagnetic property 210
heat content 207-214

Cobalt-titanium alloys
See Titanium-cobalt alloys

Coefficient of self diffusion
of nickel single crystal 911

Cold rolling
of V-Y alloys -
..... 735, 737, 740, 741-742

Cold work
effect on properties of metals 817
effect on 4140 steel at elevated
temperature 817-836

Columbium
analysis of 886, 887
contamination rate 949
cylindrical texture in,
 were 700, 701, 707, 708
ductility 507, 509

Columbium
effect on mechanical properties
 of Ta 805-816
effect on oxidation of
 Ta 639, 644, 648
impurities in 886, 887
oxidation behavior 949
solubility in Re in 215, 218
source and purity 216, 502
stabilizer for stainless steel 433

Columbium-base alloys
strengthening effect of C 972

Columbium carbides 13, 27, 28

Columbium-carbon system (A) 13-28
analysis of Cb 886, 887
arc-cast, microstructure
 discussion 885-887
heat treatment 15, 16
incipient melting 23, 24
metallography 16
microstructure 15, 16, 25, 26
phase diagram 27, 28
phase equilibria 13-28
production equipment for 14, 15
sintering process 15
solid solubility 21-23, 885, 886
x-ray diffraction analysis 16, 21, 22

Columbium oxides
formation 429, 430
x-ray diffraction analysis
..... 417, 419, 429, 430

Columbium-rhenium alloys
See Rhenium-Cb alloys

Columbium-vanadium
See Vanadium-Cb alloys

Columbium-zirconium alloys
oxidation at 525-1090 °C.....415-431
See also Zirconium-Cb alloys

Constitution of the partial system
UC₂UC₂ (A)465-478
discussion938, 939

Constitution of rhenium-Columbium alloys (A)215-226
discussion907-909

Constitution of Ti-Co alloys
mechanical properties and283-294

Containers for liquid metals256, 257

Contamination behavior (air)
of Ta642-644, 647-651
effective additions for reducing rate642, 647, 651, 652

Contamination hardening
of Ta & Ta alloys647, 651, 652

Contamination rates
of Ta and Cb949

Controlled rolling
of ship plate, definition56

Cooling rates
in solidification of cast iron555, 556, 560-566

Cooling transformation diagram
for steel75
for 4340 steel85, 86

Copper
wear test371-373

Copper-beryllium alloy
effect of aging on stress-strain curve618
effect of solution treatment on strain-aging behavior617
yield point phenomena603-620

Copper-chromium alloy
effect of heat treatment on stress-strain curve and strain-aging616, 617

Copper-Ni-Zn alloys
order-hardening775-771
yield point775-791

Copper-Ni-Zn (10% nickel silver)
analysis776
stress-strain curve777

Copper-Ni-Zn (18% nickel silver)
age hardening782, 783
analysis776
electrical resistivity785-788

Copper-Ni-Zn (18% nickel silver)
(cont.)
electron micrograph783, 784, 787
order hardening775, 788-790
quench aging780-784, 789
strain-aging behavior789
stress-strain curve779
yield strength783, 785

Cu-Ni-Zn (27% nickel silver)
analysis776
stress-strain curve778

Copper plate on copper plate
wear tests371, 372, 373

Copper-tin alloy
yield point phenomena603-620

Copper-yttrium system
See Yttrium-copper system

Cornish rule1061

Corrosion of stainless steel
welds433-446, 933, 934
areas involved933, 934
effect of carbides933
mechanism434, 437, 438
microstructure434, 438-444
rates435-437, 439
temperatures934

Corrosion of yttrium-Ti alloys9, 10

Corrosion inhibitors
for liquid-metal fuels259

Corrosion resistance
of U-Bi916
of U-Si and U-Zr alloys511
of U-Zr-Si vs Zr content939, 940

Corrosion tests
on stainless steel welds
procedure434, 435
rates436, 437

Corrosion tests (NaCl + O₂)
on various stainless steels795

Corrosive attack
in welds934

Corrosive media
for metal tests793, 794

Cottrell atmospheres of carbon atoms966

Counter diffractometer
hardness measurements with744

Creep curve for pure Mg127

Creep properties of
 OMR alloys 30-32, 35, 36

Creep rate in metals
 effect of time, temperature and
 stress 124

Creep resistance
 Uranium alloys 887, 888

Creep-rupture properties
 of martensitic steels 621-636
 effect of isothermal treat-
 ment 632, 633, 634
 of 4140 steel 821, 822, 823, 824
 with prior cold work 825, 826

Creep-rupture strength
 of austenitic stainless steel
 type of test bar 911, 912, 914

Creep-rupture testing
 of uranium alloys 31, 32, 35, 36

Creep tests, interrupted
 of 4140 steel 828, 829

Critical roughness value
 (steel) 119, 121

Cross slip in magnesium
 activation energy for 133

Crystals, single, creep in 123

Crystal structure
 during wire drawing 697-713
 of CaCu₆ 486
 of carbides in low-C Si
 steel 715, 732
 of gamma prime in Fe-P
 alloys 579
 of Laves phases in hafnium and
 other elements 321-329
 of Laves phases in transition
 elements 479-500
 of MgCu₆ Laves phase 482
 of MgZn₆ Laves phase 484, 485
 of phases in U-Zr-Si system 513
 of UC₂ 938
 of UNi₃ compound 482
 of UNi₃ compound 483

Crystallographic orientation
 in wire drawing 697, 711, 712

Curie point
 of extracted cementites from
 Mn steel 193, 194

Curie temperatures
 and heat content in alloys 212

Crucibles
 for solubility apparatus, materials
 for 256, 257
 graphite, in solubility study of
 U-Zr-Bi 260
 magnesium-oxide, presence of S
 in new 353

Cylindrical textures
 in B.C.C. and F.C.C. metals 962
 in tungsten and other B.C.C.
 metals (A) 697-713
 discussion 960-963
 in wire 697-713, 960-963
 definition 697
 in Cr, Mo and 1006 steel
 700, 701, 707, 708

D

Davenport-Bain dilatometer 76

Debye-Scherrer line for
 Al 267, 268, 270

Debye-Scherrer patterns
 of hafnium 323-329
 of tungsten wire 702, 703

Decarburization of H-11 tool
 steel 890

Decarburization of steel sheet
 controlled method 110, 111, 120
 depth and fatigue life 892-894
 effect on fatigue strength 109-122
 measurement of 119-121, 893, 894

Decomposition of austenite in
 4340 steel during cooling
 (A) 75-93

Deformation
 bands or strain markings in
 stainless steels 942, 946
 growth and, in aluminum 276-279
 in 410 stainless steel
 after martensite
 formation 596-599, 942, 944
 effect on
 properties 594, 595, 600, 601
 of metastable austenite 593-596
 in wire drawing, mechanism
 697, 699, 705, 708, 710-712
 textures in tungsten wire 697-712

Delta iron
 inclusions in 851

Delta iron (cont.)
 microstructure 850, 851
 solubility of oxygen in 843-852

Density
 of U-T, solid solutions 309, 310, 311

Derivimeter 127

Determination of hardness in
 steels from breadth of X-Ray
 diffraction lines (A) 743-752
 discussion 964-966

Die design
 in wire drawing
 pressure 697, 699, 708-710
 reason for various textures 962

Diffraction grating technique
 in stress-strain analysis 926
 accuracy of equipment 927

Diffraction lines
 for Y Ni₂ and Y₂ Ni₃ 900

Diffraction peaks
 in solid-solution alloys
 in pure metals

Diffractometer, counter
 hardness measurements 744

Diffusion coefficients
 for C in thorium
 by 3 methods 770-773, 967

Diffusion couples
 in U-C system 469-476

Diffusion of carbon in thorium
 (A) 765-773
 change in surface with time 769
 coefficients by three
 methods 770-773
 concentration vs. distance 766-768
 diffusion coefficients by
 three methods 770-773
 discussion 966, 967
 experimental procedure 765, 766
 increment vs. time and distance 771

Dilatometer, Davenport-Bain 76

Dilatometric analysis
 of Ti-V alloys 50-52
 of Ti-V-Al alloys 43-53

Dimensional stability
 of uranium 36-38, 888
 of U & U alloys 29-41, 888

Diphenyl ether drop-type
 calorimeter 207, 208, 212

Dislocation climb mechanism
 in magnesium 130

Dislocation, jogged screw
 in Mg 133-135

Dislocation theory
 of basal slip in Mg crystal 123-135

Distribution coefficient
 in Mn steel, between cementite
 and ferrite 187, 189-192

Doping of semi-conductors 1052, 1060, 1061

Drude's formula
 on conduction 1056

Ductile fracture in steel 67, 71

Ductile-to-brittle transition
 in steel plate, effect of grain
 size and fiberizing 57-59, 67-69

Dubé classification of proeutectoid
 transformation products 539, 540

Ductility
 of hydrogenated V-Cb
 alloys 501-510
 effect of temperature and
 composition 509
 of Re-Cb alloys 908
 of Ti-Co alloys 289, 293
 of W-Mo-30% Re alloy 908, 909
 of Vanadium
 effect of alloying 735-742
 illustration 741
 test on stainless steel 235

Dynamic stress-strain characteristics 382, 383, 402, 403

Dynamic stress-strain phenomena
 and plastic wave propagation
 metals (A) 381-406
 discussion 926-930

E

Effect of alloying on the oxidation
 behavior of tantalum
 (A) 637-652

Effect of aluminum on strain
 aging and internal friction in
 low-C steel (A) 683-695
 discussion 954-959

Effect of cold work and temperature on the strength and structure of steel
 (A) 817-836

Effect of decarburization and grinding conditions on fatigue strength of 5% Cr-Mo-V steel sheet (A) 109-122
 discussion 889-896

Effect of hot-rolling conditions on brittle fracture in steel plate (A) 55-73

Effect of induction on 500° embrittlement (A) 753-764

Effect of low-alloy additions on the properties of uranium
 (A) 29-41
 discussion 887-889

Effect of microstructure on fatigue strength of a high-carbon steel (A) 447-463
 discussion 935-937

Effect of phosphorus on the elevated-temperature strength and weldability of some low-C austenitic stainless steels
 (A) 233-250
 discussion 911-915

Effect of rolling procedure on the kinetics of recrystallization of cold-rolled iron (A) 331-348
 discussion 922-924

Elasto-plastic wave propagation
 dispersive features 929

Electrical resistivity
 of Al-U alloys 838, 839
 of 18% nickel silver 785-788

Electrolytic extraction of carbides from Mn steel 188

Electron diffraction analysis
 of Fe-1.8% P alloy 577-579

Electronic structure of Laves phases 479, 489-495

Electron metallography
 of stainless steel welds 433-446

Electron micrograph
 of boron steel, showing carbides 947
 of carbides in low-C Si steel 730
 of 18% nickel silver 783, 784, 787
 of 410 stainless steel (deformed) 597

Electron micrograph (cont.)
 of 3140 steel 760, 761
 of 4140 steel 819, 830
 of 51100 steel 449, 454-457

Electrons
 conversion of heat to electrical power 1052, 1053
 entropy formula 1058
 heat engine 1053-1055, 1059, 1067, 1068
 putting, to work 1052-1068
 thermal conductivity 1067
 wave packets 1057, 1058, 1064, 1067

Elongation
 of Ti-Co alloys 289

Brittleness in alloy steel
 effect of induction 753-764
 effect of Mg, Mn and O₂ 354-356
 effect of sulfur on 349-354
 in high-purity nickel (A) 349-354
 mechanism of 753, 761, 762

Endothermic occlusion of hydrogen
 in iron-carbon alloys
See Hydrogen occlusion in iron-carbon alloys

Endurance limit
 definition 111
 hardness for 51100 steel 459, 461

Enthalpy decrease with endothermic occlusion
 definition 975
 in Fe-C alloys 863, 866-868
 of H in Fe-C alloy 660, 661, 975-978

Enthalpy decrease with exothermic occlusion
 in Fe-C alloys 863, 866-868

Entropy decrease
 of H upon
 occlusion 863, 864, 867, 868

Entropy of one electron 1058

Epsilon iron carbide
 possible site of H storage 977, 980

Equilibration
 of Fe-C alloys with H
 gas 855-859, 865, 866

Etchants
 for Mg-Al-Zn alloy 297, 298

Eutectic reaction
 in Y-Ti alloys 3-5

Exothermic mechanism of occlusion
 of hydrogen in steel .853, 857-868
 enthalpy decrease863, 866-868
 reversibility
 853, 854, 861, 862, 866, 867

Extraction replicas
 of B-free and B steels.....947

F

Fabrication of Ta and Ta
 alloys806-809

Face-centered-cubic metals
 cylindrical textures in962

Factors controlling the occurrence
 of laves phases and AB_n
 compounds among transition
 elements (A)479-500

Fatigue limit
 effect of grinding conditions895

Fatigue strength
 of decarburized Cr-Mo-V
 steel114-121
 of steel, effect of decarburiza-
 tion on109
 of 5% Cr-Mo-V steel sheet ..109-22
 of 51100 steel
 effect of micro-
 structure ...447-463, 936, 937
 in reversed bending .459, 461, 462

Fatigue testing
 evaluation of methods115-117
 procedure for 51100
 steel449-453, 936

Fermi statistics1058, 1060

Ferrite
 banding in steel70
 in Fe-1.9% P alloy, lattice
 parameter581
 in low-C Si steel
 ..722, 724, 725, 727, 728, 732, 733
 in 4340 steel, reactions in
 hardenability tests82-90
 interstitial H content in973, 974
 in weld metal (for stainless
 steel)248, 249
 solid solubility of C at
 700° .683, 685, 687, 691, 694, 695
 solubility of H in950

Ferritic stainless steel
See Stainless steel, ferritic

Fibering in steel plate
 notch toughness and56, 57
 temp. dependence64-66
 transition temperature
 and56, 57, 71

Fiber texture
 definition697
 in wire697-699, 705, 706, 710

Finish
 effect of load on (wear
 test)363, 364, 377

Flow chart of phase reactions
 in Mg-Al-Zn system305, 306

Flow properties
 of heat-treated 4340 steel ...663-682

Flow stress in steel
 mathematical develop-
 ment673-675, 679

Formation
 of columbium oxides429, 430
 of zirconium oxides429, 430

Foundation for Education and
 Research1038-1041

Fracture
 areas in notched-bend tests982
 appearance transition
 temperature67
 energy balance concept878-880
 Griffith theory871, 878-880
 in 4340 steel663-682
 schematic classification953, 954
 strain in steel with
 temperature64-66

Fracturing anisotropy
 in metals56, 57
 in steel55-57, 60-72

Free energy-composition
 relationship in Ti-V system52

Freezing point data
 on Bi-rich U-Zr-Bi alloy921

Fuel alloys
 dimensional stability
 under irradiation29-41
 reactor251, 257, 259, 511, 837

G

Gamma iron
 solubility of O₂ in843

Geometric stability
See Dimensional stability

Germanium semi-conductors 1060, 1063, 1067
Gettering
 in a ternary alloy 948, 949
 in tantalum alloys 814, 815
Goldschmidt radii of elements 483, 484, 498, 499
Grain boundary absorption of boron
 questionability of technique 903, 904, 905
Grain boundary embrittlement in high-purity nickel 349-358
Grain growth in aluminum, mechanism
 of 265-281
Grain size
 -banding ratio in steel 58-60
 effect on yield phenomena 609-613
 ferritic, in steel 58-62
 in boron steel and austenitizing
 temperature 169
 in steel plate
 brittle fracture and 55-73
 fracturing
 anisotropy 60, 61, 63-69
 in Ti-Co alloys 292
Graphite
 effect on solubility of U in Bi 256, 257
Graphite crucibles
 in mutual solubility study 260
Graphite eutectic in cast iron 555-557, 559-566
 effect of Si on 558, 559, 565, 566
Grey and white solidification of cast iron (A) 555-567
Griffith-Irwin concept 982
Griffith theory of fracturing 871, 878-880
Grinding
 of decarburized steel sheet
 effect on fatigue strength 114-118, 121
 of 5% Cr-Mo-V steel
 effect on fatigue strength 109-122
Growth processes in the recrystallization of aluminum (A) 265-281
Growth rate in recrystallization of iron
 measurement of 342-345
 temperature dependence 344
Grüneisen formula 1064, 1065

H

Hadfield manganese steel
 wear tests 366, 367
Hafnium
 effect on mechanical properties of Ta 805-816
 effect on oxidation of Ta 638, 639, 642, 646, 648, 651
 Laves-type phases 321-329
 source and purity 321, 322
Hafnium-chromium
 crystal structure 324, 327
Hafnium-cobalt
 crystal structure 325, 327
Hafnium-iron₂
 crystal structure 324-328
Hafnium-manganese
 crystal structure 324-327
Hafnium-molybdenum
 crystal structure 326, 327
Hafnium-tungsten
 crystal structure 326, 327
Hafnium-vanadium
 crystal structure 323, 327
Hardenability
 large end-quench, bars 76, 77, 79-81
 factors for B and C 178
 of boron-free steel 177, 178
 of boron steel 177, 178
 of steel 75, 157-185
 by boron 157-185, 903-907
 depth vs. cooling rate 91
 of 4340 steel 75-93
 testing
 effect of size of specimen 76-81, 92
 effect of austenitizing temp. 79-81, 92
 effect of quenching 81, 82, 92
Hardening of Ta
 with oxidation 642, 643, 647-651

Hardness
 in a fully hardened steel, variation with structure 964, 965
 of Rockwell C test block 965, 966
 of iron-phosphorus alloy, changes during precipitation 572, 585
 of steel
 determination from breadth of x-ray diffraction lines 743-752
 of 3140 steel (tempered) 755-759
 of 4140 steel 819, 826-829
 of Ti-Co alloys 286, 290, 292
 of Ti-13V-11Cr-3Al 408-413
 of U-Mo alloys 39, 40
 of V-Y and V-RE alloys 739, 740
 of Y-Ti alloys 9, 10
 wear resistance and 365

Heat content
 experimental precision 212
 method of test 208
 of Co-Fe alloys 207-214
 of Cr-Fe alloys 207-214
 of Mn-Fe alloys 207-214
 of Si-Fe alloys 207-214
 of some binary iron alloys 207-214

Heats of formation of Fe-Mn alloys (A) 199-201
 method 199, 200

Heat of solution
 of Fe and Mn in HCl 201, 202

Heat treatment
 of age-hardening alloys
 effect on yield point 603-620
 of boron steels 158-160, 179-181
 of Cb-C alloys 15, 16
 of high-purity nickel
 effect on embrittlement 352, 353
 of hypereutectoid carbon steel 541
 of low-C Si steel 716, 717, 721, 724, 729, 732
 of low-C steel 685
 of martensitic steel 623, 626-635
 of Re-Cb alloys 217
 of 18-8 stainless steel 795
 of 4340 steel 91, 92, 664
 of Ti alloys 43, 44
 of Ti-Co alloys 284
 of Ti-V alloys 43, 44, 48
 of Ti-13V-11Cr-3Al 407, 408

Heat treatment (cont.)
 of U-Zr-Si alloys 514

High-C austenitic stainless steel
See Stainless steel, austenitic

High-C boron steel
 hardenability 179-181, 185

High-carbon steel
 effect of microstructure on fatigue strength 447-463

High-strength alloys
 of rhenium-columbium 907

High-strength martensitic steels for elevated temperature
 use (A) 621-636
 discussion 947, 948

High-strength steel 109

High-temperature alloys, nickel-base 523-537

High-temperature heat contents of some binary iron alloys (A) 207-214

High-temperature mechanical properties of Ta-base alloys 805-816

High-temperature oxidation
 of 18-8, by O₂ & dry NaCl 793-803

High temperature properties
 of martensitic steels 621-636
 of low-C austenitic stainless steels 233-250
 of Ni-8Mo-6Al-6Cr-1Z 524-537

High temperature tensile testing apparatus 285

Hildebrand's rule
 of liquid immiscibility 739

Homogenization treatment
 of nickel-base, high-temperature alloys 527

Hot ductility
 of P-modified stainless steels 243-246
 of stainless steel 235, 236

Hot rolling of steel plate 55-73

Hot working
 of boron steels 182-184

Hotwork tool steel 109

Hydrogen
 absorption and desorption 976, 977
 chemisorption on iron 853, 864-868
 endothermic mechanism 853, 857-868

Hydrogen

- chemisorption on iron (cont.)
 - exothermic mechanism 853, 857, 859-868
 - microstructure and 866
 - reversibility 853, 854, 866, 867
 - thickness of layer 865, 867
- in solid iron, explanation 853, 854
- in V-Cb alloys 503-506
- solution in ferrite
 - lattice 854, 864-868, 950, 975
- solution in Fe and Fe
 - alloys 854, 864, 865, 976

Hydrogen embrittlement in V-Cb alloys (A) 501-510

Hydrogen occlusion

- by pure iron 950
- by Fe-C alloys (annealed)
 - 653-661, 949-952, 977-980
- criticism of figures 950
- influence of carbide
 - phase 654, 660
 - microstructure 655, 659
 - mode of accommodation 949, 950
- by Fe-C alloys (annealed)
 - need of analytic method 950
 - reproducibility of data 951, 952
 - schematic of mechanism 656, 658
 - Sievert's method 654, 655
 - temperature effect 656, 657, 660
 - three carbide forms 656-660
- by Fe-C alloys (cold-worked) 853-869, 973-981
- chemisorption 853, 854, 864-868
- endothermic
 - 853, 857, 859-861, 864-868
- evolution and re-absorption
 - rates 858, 859
 - exothermic 853, 857, 859-868
 - method and materials 855, 856
 - microstructure 856-859, 864, 867, 869
 - reversibility
 - 853, 854, 861-863, 866, 867, 975
 - thermodynamics of 863-867
 - temperature effect 856-858, 973, 978
 - two mechanisms of 860-862, 868

I**Impact resistance**

- of Ni-base, high-temperature
 - alloys 532, 533, 940, 941
 - of 3140 steel (tempered) 755-757

Impact tests

- on 3140 steel
 - specimen size and heat treatment 754-756
 - tempering methods 754, 755
 - procedure 756, 757, 758

Improvement of the ductility of vanadium by alloying

- (A) 735-742
- discussion 963, 964

Impurities

- in columbium 886, 887

Incipient melting of Cb-C alloys

- 23, 24

Inclusions

- in delta iron in solubility study 851
- in steel
 - distribution and fracturing
 - anisotropy 62-72
 - nonmetallic 61-63, 67, 70-72

Indium

- source and purity 96, 97

Indium alloy systems

- 96

Indium-bismuth alloys, phases in

- 95

Indium-Bi-Cd system

- 95-107

Induction furnace for Cb-C alloys

- 14, 15

Induction heating

- effect on 500° embrittlement
 - of steel 753-764

- equipment for 754, 755

Induction tempering of 3140 steel

- crystal structure after 762, 763

- embrittlement and 753-764

Inert gas melting

- of high-temperature alloys 940, 941

Influence of hot-rolling conditions

- on brittle fracture in steel
 - plate (A) 55-73

Initial yield 603, 604
 suppression by quenching in
 phosphor bronze & Ni-Mn
 alloy 609, 610

Interatomic bonding
 in alloy steels 199

Intergranular corrosion
 in stainless steel welds .438, 439, 445

Intergranular oxidation
 of austenitic stainless steels .797-802
 of ferritic stainless
 steels 793, 797, 802
 of 18-8 stainless steel
 effect of variables on 796-799
 fused vs. dry salt 971, 972
 mechanism for ..793, 794, 799-803
 molten phase possibility ..969-971
 void formation 970, 971
 weight change measure-
 ment 970-972

Intermetallic compounds
 among transition elements ..479-500
 in hafnium and other
 elements 321-329
 in U-Zr-Bi system259-264, 919
 in Y-Cu system150-152
 in Y-Fe system140, 141
 in Y-Ni system146

Intermediate phase delta
 in Mg-Al-Zn system ...295, 297-305

Intermediate phase gamma
 in Mg-Al-Zn system
 formation 305, 306
 microstructure 298-304

Intermediate phases
 in Re-Cb alloys
 .218, 219, 220-222, 223, 224, 225

Internal friction
 apparatus 685, 686
 behavior of 1.83 Al steel 690
 behavior of low-C steel
 effect of aluminum 683-695
 effect of frequency on
 temperature 689
 mathematical analysis ..687, 688
 mechanisms underlying
 4 peaks 954

Interplanar spacings
 of Cb-C phases 22
 of Laves phases in Hf.....323, 234

Interstitial hydrogen
 in ferrite 973, 974

Interstitial solution
 of H in Fe-C alloys 660

Intragranular idiomorphs
 540, 545, 549, 551, 553

Intragranular Widmanstätten
 plates540, 545, 546, 549-553

Inverse chill in cast iron
 555-557, 559, 564, 566

Inverse grayness in cast iron
 555-559, 563-566
 complicated castings562, 563
 microstructure 557, 561

Inverse peritectic reaction
 in Y-Fe, Y-Ni & Y-Cu systems .899

Ionic radius
 of addition metal
 correlation with oxidation of
 Ta 644, 645-647, 652

Iron
 cooling curve of mottled ...559, 560
 hydrogen solubility in annealed .976
 occlusion of hydrogen .853, 854, 950
 source and purity 208
 wear test on sintered 373

Iron, cold-rolled
 annealing 334-337
 comparison of straight- and
 cross-rolling on prop-
 erties 332-334

effect of rolling procedure on
 kinetics of recrystalliza-
 tion 331-348

recrystallization334-337, 923

Iron, malleable wear tests ...362, 365

Iron, mottled
 cooling curve 559, 560

Iron, nodular
 wear tests 362

Iron alloys
 endothermic occlusion653, 654

Iron boron-carbides
 in steel 168

Iron-carbon alloys
 annealed hypoeutectoid
 occlusion of hydrogen in .653-661

cold-worked hypoeutectoid
 occlusion of hydrogen in ..853-869

Iron-carbon alloys (cont.)
 hydrogen occlusion by annealed,
 hypoeutectoid 653-661
 hydrogen occlusion by cold-worked
 hypoeutectoid 853-869

Iron-chromium (91-9)
 ferromagnetic property 210
 heat content 207-214

Iron-cobalt (69-31)
 ferromagnetic property 210
 heat content 207-214

Iron-hafnium
See Hafnium-iron

Iron-manganese alloys
 acid solution calorimetry 199
 antiferromagnetic Néel
 temperature 211, 212
 heat content 207-214
 heats of formation 199-205
 phase diagram 200
 x-ray powder patterns 199, 200

Iron-manganese (51-49) 207-214

Iron-manganese (70-30) 207-214

Iron phosphide, crystal structure .570

Iron-phosphorus alloys
 age hardening at 500° 585, 586
 analysis 570
 brittleness of high P 572-574
 crystal structure of gamma 579
 effect of P on precipitation
 hardening 585-588
 hardness 572, 585
 lattice parameters 573
 phase diagram of Fe-rich
 section 569-571
 single crystals 570, 571
 solution treatment 571
 stress-strain curves 583, 585
 structure 572-574
 yield point 585, 587

Iron-1.8% phosphorus alloy
 diffraction analysis of
 phases 577, 578
 growth of precipitated particles 579
 homogenization and working 574
 microstructure 575
 temp. dependence of hardening 586

Iron-1.9% phosphorus alloy
 crystal structure 575
 growth of precipitate 575

Iron-1.9% phosphorus alloy (cont.)
 lattice parameter with
 aging 576, 581
 precipitation hardening 576

Iron-silicon (88-12)
 heat content 207-214
 magnetic transformation 212
 order-disorder reaction 212

Iron-yttrium
See Yttrium-iron system

Irradiation of uranium 29

Isochronous stress-strain data
 on martensitic steels 627-630

Isoleth study of Cd-Bi-In 97-101

Isothermal annealing of Al
 schematic diagram 270-272

Isothermal diagram
 of 51100 steel 450, 451

Isothermal dilatation curves
 on 4340 steel, methods and
 tests 76-92

Isothermal grain growth
 in cold-rolled iron 923

Isothermal heat treatment
 of martensitic steels
 effect on properties 632-634
 effect on microstructure 634, 635

Isothermal precipitation of
 B in steels with temperature 159-167

Isothermal ternary sections
 of U-Zr-Si system at 4
 temperatures 515, 516

Isothermal transformation
 of boron steel 159-161, 165, 168-173
 of hypereutectoid steel 542, 543
 of low-C Si steel 722-724, 727, 728
 of 410 stainless steel 592
 of 4340 steel 82, 83
 of Ti-13V-11Cr-3 Al (A) 407-414
 discussion 930-932

J

Jogged screw dislocation in
Mg 133, 134, 135

Jominy Hardenability test
 effect of size of specimen
 76, 77, 80, 81, 92

K

Karman-Taylor plastic theory 384, 385, 387, 388
Kinetic study
 of subgrain growth in Al 271, 272, 273, 276-279
 mean strain-free energy 278, 279, 280

Kinetics of austenite transformation
 in 4340 steel 75
Kinetics of oxidation
 of Zr-Cb alloys 415-431
Kinetics of precipitation
 of B in steel 160-166
Kinetics of recrystallization
 of cold-rolled iron
 effect of rolling 331-348

L

Lacombe's (metallographic)
solution for Al 266
Lamination properties
 of steel, after rolling 56
Large end-quench hardenability
 bars 76, 77, 79-81
Lattice parameters
 of Cb-C phases 23
 of ferrite in Fe-1.8% P alloy 581
 of Fe-1.9% P alloy 575, 576
 of Fe-P alloys 573
 of Laves phases of Hf and
 other elements 323-326
 of U₂ Ti martensite 309, 310
Lattice spacings
 of Re-Cb alloys 220, 222
Lattice thermal con-
 ductivity 1063-1067
 designing from formula 1066
 dispersion curves for vibration 1066
 vibration 1064-1066
Laves phases
 definition 321
 of hafnium 321-329
 of transition elements 479-500
 atomic size 479, 483-489
 crystal structure and periodic
 table relationship 498
 crystal structure varia-
 tions 493-495

Laves phases (cont.)

of transition elements
 electronic structure 479, 489-495
 stacking geometry 479, 482

Laves-type phases of hafnium

(A) 321-329

Lead telluride

additions to make a p- or n-type
 conductor 1061, 1063

Lebedurite in cast iron 555, 557-566**Lindemann formula** 1064**Line intensity**

of Laves phases in Hf & other
 elements 323, 324, 326-328

Line-shape analysis

on 51100 steel 453

Liquid immiscibility

Hildebrand & Scott formula 739

Liquid-metal alloys

sampling 251, 254, 255
 solubility apparatus
 252, 253, 254, 255

Liquid-metal fuel constitution

I. The solubility of U in Bi 251-258
 discussion 915-917

II. Liquidus curves of

U-Zr-Bi 259-264
 discussion 917-922

Liquid-metal fuel reactors

fuels for 251, 257, 259, 511, 837

Liquidus curves of U-Zr-Bi

system (A) 259-264

Liquidus in Al-U alloys 837-842**Liquidus isotherms**

of Cd-Bi-In 101

Load (wear test)

effect of finish on 363, 364

Load-diameter curve

for 4340 steel 665, 666

Load vs. crosshead extension

for 4340 steel 666

Low-alloy steel

effect of cold work and
 temperature on strength and
 structure 817-836

Low-C austenitic stainless steels

effect of P on strength and
 weldability 233-250

Low-C austenitic stainless steels (cont.)
 microstructure 238-241
 stress-rupture properties 233-250
 weldability 233-250
 yield strength 236, 237
See also Stainless steels, austenitic

Low-C boron steels
 hardenability 179-181

Low-C iron-silicon alloy
 microstructure 715-734

Low-C 3.25% Si steel
 austenite in 715-717, 721-723, 732, 733
 carbides in 715, 716, 728-733
 ferrite in 722, 724, 725, 727, 728, 732, 733
 heat treatment 716, 717, 721, 724, 729, 732
 isothermal transformation 723-725, 727, 728
 microstructure 715-734
 phase diagram 718
 speckled constituent 715, 720, 721, 726-728, 730, 732, 733

Low-C steels
 atomic jump mechanisms 692, 693, 955-958, 959
 effect of Al on C in solution 693, 694
 effect of Al on strain aging and internal friction in 683-695
 effect of C and N on strain aging 683-686
 heat treatment 685, 687
 internal friction effects 686-690
 strain aging behavior 693, 694

Low-temperature flow and fracture
tension properties of heat-treated SAE 4340 steel
 (A) 663-682
 discussion 952-954

Low-temperature tensile deformation in steel 63-66

Lubricants in wear tests 359-361, 368, 373-378, 925

Lüders bands in nickel silver, 18% 968, 969

M**Macrostresses**

in surface of fatigue test samples 454, 457, 458

Magnesium

as deoxidant 256, 257
 effect on Al-V alloys 838, 840
 effect on embrittlement in nickel 354-357
 effect on U-Zr-Bi system 259-264, 917, 920
 wear tests on pure 371, 372

Magnesium, single crystal

activation energy for basal slip 123-135
 activation energy for climb 133
 activation energy for creep 127-135
 activation energy for cross slip 133
 activation energy for self-diffusion 130, 134
 creep curve 127-130
 creep from 77 to 668° K 125-127
 preparation 125
 slip behavior 123-135
 strain measurement 125, 126

Magnesium, polycrystalline

slip behavior 124, 125

Magnesium-Al-Zn system

delta phase in 295, 297-305
 flow chart of phase reactions 305, 306
 gamma phase in 298-306
 phase relations in Mg-rich area of phase diagram 295-306

Magnetic susceptibility-temperature

for Mn steels 193, 194

Malleable iron, wear tests 362, 365**Managing Director Report** 1032-1038**Manganese**

effect on embrittlement of nickel 354-357
 source and purity 208

Manganese-hafnium

See Hafnium-Manganese

Manganese-iron alloys

See Iron-manganese alloys

Manganese steel

distribution coefficient between cementite and ferrite 187-192

Manganese steel (cont.)
 magnetic susceptibility vs.
 temperature 193, 194
 properties of carbides
 extracted from 187-198

Manganic nickel
 yield point phenomena 603-620

Martensite
 diffraction line 744, 745
 in 4340 steel, reactions in
 hardenability test 82-92
 of U_2Ti , structure and
 properties 307-319

Martensitic stainless steel
See Stainless steel, martensitic types

Martensitic structure
 in 51100 steel
 fatigue strength and hard-
 ness 447, 452, 453, 459-462
 production procedure 451, 452

Martensitic transformation of 410 stainless steel
 deformed before and after, tensile
 properties 591-602

Mean free path
 of $BizTea$ 1066
 of carbide phase in steel 448
 of ferrite in 4140 steel 819, 829-834
 of phonons of 7 elements 1063-1067

Mechanism of corrosion
 for 18-8 stainless steel 793, 794, 799-803

Mechanism of grain growth in Al 265

Mechanical properties of tantalum-base alloys (A) 805-816
 discussion 972, 973

Mechanical properties
 of Ti-Co alloys, constitution
 and 283-294
 of U_2Ti martensites 307-319

Melting point
 determinations on Re-Cb
 alloys 217, 218, 221
 of Y and Y-Ni 901

Metallography
 of Al-U alloys 841-842
 of Cd-Bi-In 98, 102-104
 of Cb-C alloys 16

Metallography (cont.)
 of high-U alloys of U-Zr-Si
 system 514, 517-519
 of hypereutectoid carbon
 steel 542, 542
 of recrystallization of Al 266
 of Re-Cb alloys 218
 of steel plate 58
 of 51100 steel 453, 454
 of Ti-13 V-11 Cr-3 Al 409, 930, 931
 of uranium alloys 32, 33
 of uranium carbides 467
 of U-3.5 Mo alloy 38-40
 of Y-Cu, Y-Fe and Y-Ni 138
 of Y-Ti alloys 3-5

Metallography, electron
 of stainless steel welds 433-446

Metals Engineering
 Institute 1034, 1035

Metals Engineering Program 1003, 1004

Metal wear by scoring (A) 359-379
 discussion 924, 925

Microconstituents of carbon steel
 early developments 539, 540

Microfinish
 on fatigue test samples
 of 51100 steel 936

Microfissuring in steel plate
 at notch root 55, 72
 brittle fracture and 70, 72
 criterion for 55
 inclusions and 55, 70-72

Microhardness
 of decarburized Cr-Mo-V
 steel 119, 120
 of Re-Cb alloys 218, 223, 224
 variation in results 908, 910

Microstrains in 51100 steel
 measurement 453-456

Microstresses
 in U-Ti solid solution 312, 313, 315, 318

Microstructure
 of alloy steels
 bend strength and 872, 874-876
 of Al-U alloys 840-842
 of boron steels 162
 of brittle fracture in Ni 352
 of Cd-Bi-In 102-106

Microstructure (cont.)

- of cold-rolled iron 332-334
- of Cb-C alloys 15-21, 25, 26
- of decarburized Cr-Mo-V steel 112, 113, 894
- of delta iron 850, 851
- of inverse grayness in cast iron 557, 558
- of Fe-C alloys 655, 659
- of Fe-C alloys in H occlusion experiments 856-859, 864, 866, 867
- of Fe-1.8% P alloy 575
- of low-C austenitic stainless steel effect of P on 238-241, 913
- of low-C 3.25% silicon steel (A) 715-734
- of martensitic steel 634, 635
- of Ni-base high-temp. alloy 535, 536
- of oxidized Ta alloys 649
- of phases in Mg-Al-Zn system 298-304
- of proeutectoid cementite 544-554
- of Re-Cb alloys 220-223, 225
- of stainless steel weld corrosion 434, 438-444
- of stainless steel 304L (intergranular corrosion) 796, 797, 801
- of stainless steel 410, deformed 57% 597, 599
- of 4140 steel, quenched and tempered 819, 830-835
- of 4340 during hardening 77-92
- of 8620 & 86B20 181
- of 86B80 182, 183
- of 51100 steel bainitic type 456-462
- effect on fatigue strength 447-463, 936, 937
- martensitic type 452, 453, 459-462
- pearlitic 448, 458, 462
- of subgrain growth in aluminum 274-276
- of Ti-Co alloys 290, 291, 292, 293, 294
- of Ti-13 V-11 Cr-3 Al 408-412
- of uranium carbides 467-476
- of U-Mo-Al 38-40
- of U-Mo-Si 38-40

Microstructure (cont.)

- of U-3.5 a/o Ti alloy 316, 317
- of U₂Ti martensites 307-319
- of U-Zr-Al 38-40
- of U-Zr-Bi 263, 919-922
- of U-Zr-Si alloys 519, 520
- of V-Cb alloys 508, 509
- of V-Y system 738
- of Y-Cu system 152, 153
- of Y-Fe system 141-143
- of Y-Ni system 146, 147
- of Y-Ti alloys 4-7, 884, 885
- temperature and, of size effects in notched-bend tests of alloy steels 871-881

Mild steel

See Steel, mild

Mobility of heterophase interfaces .553**Molybdenum**

- cylindrical texture in, wire 700, 701, 707, 708
- effect on mechanical properties of tantalum 805-816
- effect on oxidation of Ta 639, 642, 646-648
- effect on properties of U 29-41
- wear test on, rider 376

Molybdenum-Hafnium

See Hafnium-Molybdenum

Morphology

- of ferrite 540, 541
- of proeutectoid cementite 539-554
- zig-zag in transformation of steel 544-547, 553

Ms temperature of boron steel

- effect of boron on 159, 160

Mottled iron

See Iron, mottled

Mutual solubility vs. temperature

- in U-Zr-Bi system 260, 261

N**Necking**

- in tensile tests on steel 673-675, 679

Neel temperature

- for iron-manganese 211, 212

Neutron capture properties

- of uranium alloys 29-41

New series of nickel-base alloys for advanced temperature applications (A) 523-537
discussion 940, 941

Nickel
in austenitic stainless steel
effect of content on
properties 242-244, 246, 247
properties of, 63 227
self-diffusion vs. temp. 231

Nickel, high-purity
brittleness 354
chemical analysis for S in 350
effect of heat treatments 352, 353
effect of S on embrittlement 349-358
embrittlement 349-358
improved ductility when S is
0.0005% or less 356
microstructure of brittle
fracture 352
recrystallization affected by
S, Mn, Mg and O₂ 349-356
tensile and ductility recrys-
talization curves 350, 351

Nickel, single crystal
activation energy 232
self-diffusion in 227-232, 910, 911
volume diffusivity of Ni
63 into 227-232

Nickel alloys, specific types
X-40, impact resistance 533
Guy, impact resistance 533
Nicrotung
impact resistance 533
stress-rupture properties 532
tensile and hardness data 533, 534
S-816 plus boron
impact resistance 533
Udimet 500, properties
. 527, 528, 535
Udimet 600, properties
. 527, 528, 534
Udimet 700, properties 532, 534

Nickel-base alloys
effect of additions of B & Zr on
high temperature prop-
erties 524
for high-temperature applica-
tions 523-537
improvement by heat treating 940

Nickel-base alloys (cont.)
vacuum-melting techniques 524, 940

Nickel cathodes in vacuum tubes
influence of minor constituents
on 349, 350

Nickel-Cr-Mo steel
influence of variables on
bend strength 876, 877

Nickel-Cr-Mo-V steel
influence of variables on
bend strength 876, 877

Nickel-manganese alloy
effect of grain size on yield 611-613
suppression of initial yield
by quenching 609, 610
yield point phenomena 603-620
effect of cooling rate 615
effect of strain-aging
temperature 614, 615

Ni-8 Mo-6 Cr-6 Al-1 Zr
effect of additions on high
temperature properties 524-537
impact-resistance 528, 532, 533
oxidation resistance 528
stress-rupture properties
. 527, 528, 532

Ni-8Mo-6Cr-6Al-1Zr+1.5Ti+
0.125C
stress-rupture properties 532

Ni-Mo-V Steel
effect of variables on
bend strength 872-876

Ni-Mo-4W+2.5V+0.125C
stress-rupture properties 532

Nickel-phosphorus plating
(electroless)
wear tests 362, 370, 375, 376

Nickel silver alloys
Lüders bands in 18% 968, 969
order-hardening phenomena 775-791
three alloys, analysis 776
yield point phenomena 775-791

Nickel-Yttrium
See Yttrium-nickel

Niobium
See Columbium

Nitrogen
effect on strain aging in steel 683

Nodular iron
See Iron, nodular

Non-destructive hardness
measured by X-ray methods .743-752

Non-Oxide Compounds for Nuclear Fuels 1004

Notched-bar transition temperature
in steel, microfissuring and .71, 72

Notched bend tests
on some alloy steels
importance of size effects 871-881, 981, 982

Notch toughness
in steel plate 55, 56, 59, 71, 72
in 3140 steel 753, 761-763

N-type thermoelectric materials 1056, 1059, 1060

Nuclear Fuels, Non-oxide compounds for 1004

Nuclear power reactor
liquid-metal fuels 251, 257, 259, 511, 837

Nucleation
activation energy for
in iron & carbon steel 923
growth and, in Al, mathematical
development 277-279
of phases in cast iron 560-566
Widmanstätten 552

Nucleation frequency
in recrystallization of Fe 399-341, 922, 924
temperature dependence 342
with variation in rolling .340, 341

O

Oclusion
definition 653
kinetics of 653
Sievert's law 654

Oclusion of hydrogen
See Hydrogen occlusion

Oclusion of hydrogen by annealed hypoeutectoid iron-carbon alloys (A) 653-661
discussion 949-952

Oclusion of hydrogen by cold-worked hypoeutectoid iron-carbon alloys (A) 853-869
discussion 973-981

OMR fuel alloys
creep properties 30-32, 35, 36
fuel plate, illustration 30
mechanical test specimen 31
tensile properties 30-34

On the hardenability effect of boron
on steel (A) 157-185
discussion 903-907

On the mechanism of occlusion of hydrogen by cold-worked hypoeutectoid iron-carbon alloys (A) 853-869

On the morphology of proeutectoid cementite (A) 639-654

Optimum charge carrier density 1059-1063

Order-hardening
in alpha Cu-Ni-Zn alloys 775-791

Ordering
in Cu₂-Ni-Zn alloy 788-790
in 18% nickel silver 788-790

Organic moderated reactor fuel alloys
See OMR fuel alloys

Oxidation of zirconium-columbium alloys in oxygen at 525° C. (A) 415-431
discussion 932, 933
effect of temperature on 423, 428
equipment for 417, 418
measurements 419-423
reproducibility 428, 429

Oxidation behavior
of columbium 949
of tantalum
effect of alloying 637-652
of tantalum alloys 638-642
binary 638-640
ternary 641, 642

Oxidation properties
of Y-Ti alloys 9, 10

Oxidizing environment
for Cr-Mo-V-steel 890, 892, 893, 894

Oxygen
absorbed by Zn-Cb alloys 423
effect on embrittlement in
Ni 354-357
solubility in phases of Fe 843-852

P

Parabola-fitting technique
 in residual stress measurement 744-747
 formula 745, 746, 747
 half-headth 957-959

Pearlite
 in 51100 steel, fatigue strength 448, 458, 462
 in transformation of steel 542, 543

Periodic table
 crystal structure and, relationship 498
 position of partner elements in 495
 radial form 496, 497

Peritectic reaction
 in Y-Ti alloys 3-5, 884

Phase analysis
 of Cd-Bi-In, method 98
 of Cb-C 10-28
 of high U alloys of U-Zr-Si system 511-521
 of Re-Cb alloys 215-226
 of steel, rate of growth 553
 of Ti-Co alloys 290-292
 of Ti-V alloys 43-53
 of uranium-Zr-Bi 918-922
 of Y-Fe, Y-Cu systems 899
 of zirconium-oxygen 932
 of zirconium-columbium 932

Phase diagram
 of Al-U alloys 839
 of Cb-C alloys 27, 28
 of Fe-Mn alloys 200
 of Fe-P system (partial) 569-571
 of low-C 3.25% Si steel 718
 of Mg-Al-Zn system 295-306
 of Re-Cb alloys 219
 of U-C system 477, 938, 939
 of Y-Cu 151
 of Y-Fe 140
 of Y-Ni 145
 of Y-Ti (proposed) 2, 3, 5, 883
 of Y-V system 737

Phase equilibria
 of Y-Fe, Y-Ni & Y-Cu 899-903
 of Y-Ti alloys 1-12

Phase equilibria and properties of yttrium-titanium alloys (A) 1-12
 discussion 883-885

Phase identification
 in stainless steel welds
 sigma phase 436, 441, 442, 444, 445
 in Ti-13V-11Cr-3Al 411

Phase relations in the Mg-rich region of the Mg-Al-Zn phase diagram 295-306

Phase relationships
 in U-C system 465-478
 in V-Y system 737, 738
 in Y-Cu system 150-155
 in Y-Fe system 137-144
 in Y-Ni system 145-150

Phase transformations
 in stainless steels 247
 in uranium alloys under thermal cycling 36-38

Phonon
 definition 1064
 mean free path of, of 7 elements 1065-1067

Phosphate treatments, wear tests 373, 374

Phosphides
 growth of 581
 habit planes of, from alpha Fe 580

Phosphorus
 effect on high-temperature strength and microstructure of low-C austenitic stainless steels 233-250
 effect on plastic deformation in steel 569-589
 effect on precipitation hardening of Fe-P alloys 585-588
 effect on properties of iron 569-589
 effect on weldability of low-C austenitic stainless steels 233-250
 precipitation from alpha iron 569-589

Phosphor bronze
 effect of grain size on yield 609, 611-613
 effect of quenching and strain-aging temperatures on yield 610, 611
 size of initial yield in 609

Phosphor bronze (cont.)

- stress-strain curves 608, 609
- suppression of initial yield
 - by quenching 609, 610
 - yield point phenomena 603-620

Plastic deformation

- effect of P precipitated from
 - alpha iron on 569-589
 - in wire drawing 697-703
 - of Fe-P alloys 572, 582-585
 - of tungsten wire 697-713
 - of U₃Ti martensite 316, 317

Plastic flow

- in metals 663
- in 4340 steel 663-682

Plasticity of creep in Mg 123-135

Plastic strain propagation

- velocity 927, 928

Plastic wave propagation

- 381-406, 926-930
- apparatus and instrumentation 393-396
- compression and tension tests 926, 927
- dynamic data reduction 396-402
- in an elasto-plastic bar 929
- large pulse tests 397-403, 929
- one-dimensional approach
 - 383-385, 387
- research objectives 387, 388
- separation of waves 390-392, 404
- magnitude of strains 927
- objectives 387-388
- separation of waves 390-392, 404
- small pulse tests 397-403, 929
- strain rates 401, 402
- theory and experiments 388, 389
- three-dimensional approach 385-387
- velocity of incremental waves 926

Plate butt-weld test

- on stainless steel 243

Pole figures

- of iron, cross-rolled 334, 337
- of iron, straight-rolled 333, 336
- of tungsten wire 706, 707

Precipitation hardening

- in Fe-P alloys 570, 572, 575-588

Precipitation kinetics

- of boron in steel 160-166

Precipitation of phosphorus from alpha iron and its effect on plastic deformation (A) 569-589

Preferential corrosion of stabilized stainless steel welds (A) 433-446

- discussion 933, 934

President's Address 1008-1017

Primary recrystallization, definition 266

Proeutectoid cementite

- microstructure of 544-554

Proeutectoid ferrite

- existence diagram for
 - formation 540
 - morphology 540

P-type thermoelectric materials 1055, 1059, 1060

Putting electrons to work (A) 1052-1068

Q

Quantum mechanics

- application to crystals 1057, 1059

Quench aging

- of 18% nickel silver 780-784, 789

Quenching

- media in Hardenability tests 81, 82
- of Ti-V alloys 48

R

Radius ratio

- in AB compounds 483-489, 492, 499
- ideal 484, 486, 489, 498

Rapid intergranular oxidation of 18-8 stainless steels by oxygen and dry sodium chloride at elevated temperatures (A) 793-803

- discussion 969-972

Rare-earth metals

- effect on ductility of V 735-742

Rare-earth transition type phases 481

Rate studies

- solubility of O₂ in delta iron 846-848

Reactor fuel alloys

- 251, 257, 259, 511, 837, 916

Reactor fuel alloys (cont.)
 dimensional stability under
 irradiation 29-41

Reactor materials
 Y-Ti alloys 1

Recrystallization
 in aluminum
 growth processes in 265-281
 in situ 279, 280
 in carbon steel 923
 in cold-rolled iron
 Avrami's equation 337
 deformation and texture 345, 346
 effect of annealing 334-337
 effect of rolling
 procedure 331-348
 growth rates 342-345, 347
 in cold-rolled iron
 kinetic behavior 346, 922-924
 nucleation frequency 339-342, 347
 rate equation 922, 923
 time dependence 335-338
 in high-purity nickel
 effect of Mg, Mn and O₂ 354-356
 effect of S 349-354
 in 4140 steel 833
 in Ta-base alloys 809-811
 mechanism of 266
 method of crystal growth 960

Recrystallization curves
 for high-purity nickel 350, 351
 for iron, cross-and straight-
 rolled 338

Recrystallization treatment
 of tungsten rods 705, 706, 709, 710

Reduction
 of stainless steel
 effect on yield and tensile
 strength 943
 of V-Re alloys 741
 of V-Y alloys 737, 740-742

**Relationship between the constitution
 and mechanical properties of**
Ti-rich alloys of Ti and
Co (A) 283-294

Relative intensity
 of Laves phases in Hafnium and
 other elements 323, 324, 326-328

**Residual stresses in hardened
 metals**
 parabola fitting technique 743-746
 counter deffractometer 744
 graph for SAE 52100 751

Rhenium
 solubility of Cb in 215, 223
 source and purity 216

Rhenium-columbium alloys
 constitution 215-226, 907-909
 ductility 908, 909
 heat treatment 217
 high strength 907
 intermediate phases
 218-225, 908, 909
 lattice spacings 220, 222
 melting point determina-
 tions 216-218
 metallography 218
 microhardness 218, 223, 224
 microstructure 220, 221, 223
 phase diagram 219
 phase study 215-226, 908, 909
 x-ray diffraction analysis 218

Rhenium-molybdenum
 chi phase in 225

Rhenium-tantalum
 sigma phase in 225

Rhenium-tungsten
 chi phase in 225

Rockwell C test blocks
 hardness from breadth of x-ray
 diffraction lines 965, 966

Rocking curves (x-ray diffraction)
 of subgrain growth of Al 267-270

Rolling of steel
 effect on fracture 63-70

Rolling procedure
 effect on kinetics of recrystallization
 of cold-rolled iron 331-348

Roughness of surface
 and fatigue strength 119

Runout endurance limit 111

S

Sampling of liquid-metals 252-255

Scavenging action
 of Y on V 735, 736, 739, 963
 of rare-earth metals on V 739

Score loads in wear test 364-367
 for carburized samples 366
 for unhardened ferrous samples 367
 for iron riders on various
 metals 365
 for metals of various finish 364

Score resistance
 effect of smoothness and
 roughness 925

Score tests
 on chromium plating 925

Scoring
 from loss of lubricating film 368
 resistance tests 360
 wear 359-379

Scuffing tests on steels 377

Secretary's Report 1018-1025

Segregation
 mechanism of S and P in Fe 574

Self diffusion
 effect of strain rate
 227, 228, 231, 232
 in magnesium, activation
 energy for 130, 134
 in nickel single crystals (A)
 227-232, 910, 911
 discussion 910-911

Semiconductors 1052, 1060
 doping of 1060, 1061
 germanium 1060, 1063, 1067

"Sensitized" steel, definition 433

Sheet rolling texture
..... 697, 698, 700, 702, 708, 709

Ship plate, brittle fracture 55-73

Sievert's law on occlusion 654

Sigma phase
 in Re-Cb alloys 908, 909
 in Re-Ta alloys 225

Silicon
 effect on Al-U alloys 838, 840
 effect on solidification of
 cast iron 555
 effect on thickness of graphite
 eutectic in cast iron
 558, 559, 565, 566
 purity 208, 513, 514

Silicon-iron alloys
 See Iron-silicon alloys

Silicon steel (3.25%)
 microstructure of low-C 715-734

Silver, wear tests 371-373

Sintering of Cb-C alloys 14, 15

Size effect sensitivity
 in alloy steel, mechanical properties
 and 872
 in mild steel 878
 in notched-bend tests
 871-881, 981, 982

in steel, V-notch Charpy 50%
 fibrous transition temp. 875-880

**Size, manganese content and Curie
 point of carbides extracted from
 manganese steel (A)** 187-198

Skalak elastic theory
..... 385-388, 403, 404, 926, 928

Slip behavior
 in polycrystalline Mg 124, 125
 in single crystal Mg 123-135

S-N curves
 for Cr-Mo-V steel
 113, 114, 116, 120, 121
 for 4330 M steel 892
 for H 11 tool steel 891
 for Vasco Jet 1000 steel 891

Sodium
 effect on solubility of U in fuel
 reactor study 917, 918

Sodium chloride-oxygen system
 corrosion behavior on 18-8
 stainless steel 793-803

Sodium fluoride and bromide-O₂
 corrosion behavior on stainless
 steel 793, 794, 798

Solidification of cast iron 555-567

Solid solubility
 of C in Cb 24-27
 of C in ferrite at 700°
 683, 685, 687, 691, 694, 695
 of Cb - C alloys 21-23
 of Cu in Y 150
 of Fe in Y 139
 of Ni in Y 146
 of Y in Fe 141
 of Y in Ni 146
 of Y-Ti alloys 6, 7

Solid solution alloys
 yield point phenomena 607, 608, 619

Solid-solution hardening
 of Ta alloys 814, 815

Solid-state constitution of high-uranium alloys of the uranium-zirconium-silicon system (A) 511-521
discussion 939, 940

Solidus temperature analysis of Y alloys 138, 139

Solubility
apparatus for liquid metals 252-254
effect of container materials 256, 257
equipment and furnace 844, 845
of C in Cb 885-887
of H in Fe and its alloys 854, 864, 865
of H in Fe-C 658-660
of oxygen in delta iron (A) 843-852
equipment and furnace 844, 845
mathematical approach 847-850
procedure and rate studies 845-848
variation of equilibrium constant 849

of thorium carbide in Th 769, 770

of uranium in bismuth 251-259, 915-917
effect of Zr on 259
temperature 916, 917

Solution hardening
in 51100 steel
inhomogeneity of matrix 937

Solution treatment of Fe-P alloys 571

Speckled aggregate in low-C Si steel 715, 720, 721, 726-730, 733

Sprayed metal coatings, wear tests 376

Sprayed molybdenum rider, wear test 376

Stabilization of stainless steels 433

Stainless steel
corrosion of welds 433-446
effect of alloying elements on elev. temp. properties 233, 234
effect of C, Ni and P on weldability 247, 248
electron metallography of welds 433-446
hypothetical peritectic field 247, 248
stabilization 433

Stainless steel, austenitic type
creep-rupture test bar 911, 912, 914
effect of P on high-C 235
hypothetical peritectic field 247
intergranular corrosion 433
intergranular oxidation by O₂ and dry NaCl 793-803

Stainless steel, ferritic
intergranular oxidation 793, 797, 802

Stainless steel, martensitic type
deformation at elevated temperature 942, 944, 946
strengthening treatments for 591-602

Stainless steel, specific types
18-8
correlation tests at high-temperature 795-802
heat treatment 795
high-temp. oxidation by O₂ and dry NaCl 793-803
intergranular oxidation at high-temp. 793-803, 969-971
molten phase possibility 969-971
stress corrosion tests 795
sublimation tests 795, 799
wear tests 367, 368

302
wear tests 362, 368

304
corrosion rates of welded 435
corrosion tests 795, 797
effect of P on high-temperature properties 233-250
effect of P and Ni on weldability 240-243
heat treatment 795
microstructure of corrosion 443

304L
corrosion tests 795, 797, 800, 801
microstructure 796, 797, 801

308 L
welding rods 435, 437, 441, 445

309 S Cb
corrosion of weldments 435-438, 441

310
effect of P on high-temperature properties 233-250

Stainless steel, specific types (cont.)

- 316
 - effect of high-ferrite weld
 - metal 248, 249
 - effect of P on high-temperature properties 233-250
 - effect of P on microstructure 238-241, 243-245
 - effect of P on weldability 243-245
- 316 L
 - carbide precipitation 913, 914
 - effect of aging and temperature on yield strength 912, 913
 - microstructure 913
 - notch sensitivity 914
 - stress rupture at 1200°F. 914
- 321
 - corrosion of weldments 435-437, 441
- 347
 - corrosion of weldments 435-439, 445
 - corrosion tests 795, 797
 - effect of high-ferrite weld
 - metal 249
 - hot cracking in welded 233
- 410
 - effect of reduction on properties 943, 944
 - effect of tempering temperature on properties 594-601
 - effect of warm working on properties and microstructure 946
- electron micrograph 597
- influence of deformation before and after martensitic transformation on tensile properties 591-602
- isothermal transformation 592
- microstructure 597, 600, 946
- properties of untempered but deformed 593, 594
- properties of tempered and deformed 594-599
- strengthening treatments 591-602
- tensile properties of, deformed before and after martensite transformation 591-602

Stainless steel, specific types

- 410 (cont.)
 - working and heat treatment to improve 942
- 430
 - corrosion tests 795, 797

Steel

- effect of B and C content on hardenability 157-185
- fatigue strength 109
- hardenability effect of B and C 157-185
- hardness determination from breadth of x-ray diffraction lines 743-752
- solubility of B in
 - commercial 181, 182
- solubility of H in cold-worked 976
- wear tests on carburized 374, 375

Steel, martensitic type

- carbides in 621, 626, 627, 632, 634, 636
- creep-rupture properties 621-636
- effect of alloying elements on
 - creep-rupture properties 625-627, 631
- hardness and x-ray diffraction
 - line breadth 750-752
- heat treatment
 - 623, 626-629, 631-635
- high-strength 621-636
- high-temperature
 - properties 621-636
- isochronous stress-strain data 627-630
- microstructure 634, 635

Steel, mild

- size-effect sensitivity 871, 878

Steel plate

- anisotropy 55-57, 60-72
- banding ratio-grain size 58, 61
- effect of grain size on
 - transition temperature 55-75
- effect of hot rolling on brittle fracture 55-73
- effect of inclusions in 62-68
- metallography 58
- microfissuring 55, 72
- nonmetallic inclusions 61-62, 70-72
- notch sensitivity 56, 70-72
- notch toughness 55, 56, 59, 70-72

Steel sheet
 effect of decarburization and
 grinding on fatigue
 strength of 109-122

Steels, AISI-SAE types
 1006, cylindrical texture 700, 701, 707, 708
 1017, wear tests 362, 375
 1050, properties of extracted
 carbides from 187-198
 C1080, yield and tensile
 properties with different
 working 945
 1345, properties of extracted
 carbides from 187-198
 281A1, wear tests .362, 370, 371, 375
 3140
 crystal structure after
 tempering 762-764
 electron micrograph 760, 761
 500° embrittlement 753-764
 hardness and impact resistance
 of tempered 754-759
 induction tempering and
 embrittlement 753-764
 notch toughness 753, 761-763
 transition temperature
 755, 758, 759
 x-ray diffraction analysis
 757, 760-762

4028
 wear tests on carburized
 362, 363, 366, 375

4140
 carbide phase in 819
 creep-rupture properties .. 821-826
 creep tests, interrupted .. 828, 829
 effect of cold work and
 temperature on strength
 and structure 817-836
 electron microscopy 819, 830
 hardness 819, 826-829
 mean-free ferrite path
 819, 829-834
 recrystallization 833
 strain aging .827, 828, 832, 834, 835
 strain aging hardening
 827, 828, 832
 tensile properties ..818, 820, 821

Steels, AISI-SAE types
 4140 (cont.)
 work-softening phenomena
 819, 827, 830-834
 x-ray diffraction analysis
 819, 829, 830, 832
 4330 M, S-N curve 892
 4340
 austenite in 88, 89
 bainite in 77-92
 cooling transformation
 diagram 85, 86
 decomposition of austenite
 during cooling 75-93
 effect of reduction on
 properties 943, 944
 effect of temperature on true-
 stress, true-strain
 properties 668-682
 ferrite reactions in
 hardenability tests 82-90
 fracture tension
 properties 663-682
 hardenability 75-93
 heat treatment 91, 92, 664
 isothermal dilatation 76-92
 isothermal transformation .. 82, 83
 load-diameter curve 665, 666
 low-temp. flow and fracture-
 tension properties 663-682
 martensite reactions 82-92
 microstructure during harden-
 ability tests 77-79, 90-92
 mode of fracture in tensile
 separation 952, 953
 plastic flow 663-682
 standard hardenability curve ... 78
 strain hardening 676, 678-680
 strength and ductility at
 room-temperature 667
 temperature dilatation
 curves 87-91
 tension properties of
 heat-treated 663-682
 true-stress true-strain tension
 properties 65-67, 663-682
 yield points 679
 yield stresses 673
 8600 and 86B00,
 hardenability 157-185

Steels, AISI-SAE types (cont.)	
8620 and 86B20	
isothermal transformation 160, 170-173
microstructure 181
wear tests 362
8650 and 86B50	
effect of austenitizing	
temperature upon	
transformation 174-177
hardenability vs.	
austenitizing temp. 180
isothermal transformation	
..... 161, 170-173	
microstructure 162, 164
8680 and 86B80	
hardenability 180
isothermal transformation	
..... 161, 170-173	
microstructure 183
94B17	
wear tests on carburized	
..... 362, 363, 366, 375	
51100	
austenitizing 449, 450
bainitic structure	
..... 447, 449, 450, 456-462	
effect of microstructure on	
fatigue strength 447-463
endurance limit-hardness 459, 461
fatigue strength and	
tests 449-453, 459, 461, 462
hardness and microstrains	
..... 477, 453-458, 460-462	
isothermal diagram 450, 451
line-shape analysis 453
martensitic structure and	
properties	
..... 447, 451-453, 459-462	
metallurgy 453, 454
need of internal stress profile	
of fatigue samples 936
pearlite structure and	
properties 448, 458, 462
x-ray diffraction analysis	
..... 449, 453-457	
wear tests 362-376
52100	
hardness of fully-hardened 964, 965
Steels, AISI-SAE types	
52100 (cont.)	
hardness vs. x-ray diffraction	
line 747, 750, 751
peak breadth with hardness 747-749, 750, 751
residual stress distribution	
beneath surface 751
Steels, special types	
La Belle H T	
effect of reduction on	
properties 943, 944
Vasco Jet 1000	
S-N curve 891
Stepped austenitization of 4340 steel 75-93
Stepped heat treating sequence	in hardenability tests 77-81
Step-quenching of Ti-V alloys 48
Strain age hardening	
in 4140 steel 827, 828, 832
Strain aging	
effect on yield phenomena 613-616
in Cu-Zn-Ni alloys 779, 789
in high and low Al steels	
..... 683, 694, 695	
in low-C steel, effect of	
Al, C and N 683-695
in 4140 steel 827, 828, 832, 834, 835
in thorium carbon alloy 966
tests 686
Strain distribution in bar after velocity impact 386
Strain energy	
in internal friction measurement 957, 958
Strain-hardening	
in 4340 steel 676-680, 952-954
exponent, minimum for 952, 953
exponent vs. 1/K 678, 679
Strain markings or "deformation bands" 942
in stainless steels 946
Strain rate	
discrepancies between theory	
and experiment 928, 929, 930
Strain velocities in bilinear material 389-392, 403, 404
Strengthening mechanisms	
for Ni-base alloys 940

Strengthening treatments for stainless steel 591-602, 942

Stress concentration factor in notched-bend tests 981

Stress-corrosion cracking in austenitic stainless steels 794, 795

Stress distribution at neck of tension specimen 673-675, 679 in decarburized steel sheet 116-118 in surface layer of high-C steel 935, 936

Stress gradient in notched-bend tests 981, 982

Stress relieving in steel triaxiality 55, 70-72 temperature for Cr-Mo-V steel 890

Stress-rupture ductility of austenitic stainless steel 241-249, 914

Stress-rupture properties of austenitic stainless steels 233-250 of nickel-base, high-temp. alloys 527, 528 of Ni-Mo-4W-2.5V-0.125C 532 of Ni-8Mo-6Cr-6Al-1Z-1.5Ti-0.125C 531, 532 of Nicrotung and Udimet alloys 528, 532

Stress-strain analysis general characteristics 381-383, 403 of three Cu₂-Ni-Zn alloys 776-779 of martensitic steels 627-630 of nickel silver alloys 776-779 of 4340 steel 663-682 of tantalum alloys 814

Stress-strain curves of Fe-P alloys 583, 585 of phosphor bronze 608, 609 schematic 607

Stress-strain phenomena in 1100 aluminum 392, 403 in metals 381-406

Stretcher-strain markings in alpha Cu-Ni-Zn alloys 775 in 18% nickel silver 968, 969

Structure and mechanical properties of U₂Ti martensites (A) 307-319

Study of the liquidus in aluminum-uranium alloys (A) 837-842

Subgrain growth in recrystallization of Al 265-281 at higher annealing temp. 274-276 conclusions 280 equipment 266-268 kinetic study 271-273, 276-280 mathematical development 274-276 micrographs 274-276 size vs. time 273

Sublimation tests on stainless steels 795, 799

Subsurface oxidation in H-11 tool steel 890

Sulfur effect on embrittlement of high-purity nickel 349-354 wear test on, coatings 362, 373

Super alloys, nickel-base 523-537

Surface finish effect of smoothness and roughness 925

Surface hardness technique for decarburization 119, 120

Surface monitoring technique 227, 228

Surface texture in sheet metal 961, 962

Surfindicator, Brush 119

Swelling resistance of U-Mo alloys 888

"Sympathetic nucleation" in transformation of steel 541, 546, 548

Systems, Y-Fe, Y-Ni and Y-Cu (A) 137-155 discussion 899-903

T

Tantalum contamination behavior in air 642-644, 647-652, 949 effects of alloying on oxidation behavior 637-652 hardening 642, 643, 647, 649-651 possible pickup from heating elements 907, 909

Tantalum, high-purity	
effect of C on strength	815
fabrication	806, 807, 809
properties	805
Tantalum alloys	
contamination hardening	647, 651, 652
microstructure of oxidized	649
oxidation behavior	637-652
Tantalum-base alloys	
bend ductility	811, 812
chemical analyses before and after alloying	972, 973
effect of Cr, Hf, Mo, V, W, Zr on properties	805-816
fabrication	806
gettering elements for	814, 815
mechanical properties	805-816, 972, 973
recrystallization behavior	809-811
strengthening effect of C	972
stress-strain analysis	814
tensile properties	811-814
Tantalum binary alloys	
fabrication	806, 807, 809
mechanical properties	805-816
recrystallization	808
solid solution hardening	814, 815
Tantalum-columbium alloys	
effect of elements on oxidation behavior	639-644
Tantalum-hafnium alloys	
oxidation behavior	638, 639, 642, 646, 647, 651
Tantalum-10Hf-5W	
properties	814
Tantalum ternary alloys	
fabrication	806, 807, 809
mechanical properties	805-816
recrystallization	808
Tantalum-titanium alloys	
oxidation behavior	638-641, 646, 651
Tantalum-tungsten alloys	
oxidation behavior	639-641, 645
Tantalum-vanadium alloys	
oxidation behavior	639, 641, 643, 647
Tantalum-zirconium alloys	
oxidation behavior	638-639, 641, 646, 651
Technical Program	999-1002
Temperature and microstructure	
dependence of size effects in notched-bend tests of some alloy steels (A)	871-881
discussion	981, 982
Tempering	
curves for Ti-Co alloys	286-288
temperatures for 410 stainless steels and properties	594-596, 599, 601
Tensile-fracture stress in steel	
effect of grain size and banding ..	61
temperature dependence	64-66
Tensile properties	
of Cr-Mo-V steel	895
of low-C austenitic stainless steel	235-237
of martensitic steels	621-636
of Nicrotung	533, 534
of OMR alloys	30-34
of 410 stainless steel before and after martensite transformation (A)	591-602
discussion	942-946
of 4140 steel	818, 820, 821
of 4340 steel	663-682
of tantalum-base alloys	810-814
of Ti-Co alloys	285, 289, 290, 293
of Udimet 600 and 700	534
of V-Cb alloys	506-509
Tensile testing	
at low temperature for steel	63
equipment	605, 606
Tension-impact experiments on pure aluminum	381-406
Tension-tension fatigue tests	110, 111
The ternary system, cadmium-Bi-In (A)	95-107
discussion	889
Textures in wire drawing	
reasons for (3)	962
Thermal analysis	
of Al-U alloys	837-841
of Mg-Al-Zn	296-300
of high-U alloys of U-Zr-Si	513, 515-518

Thermal conductivity
of base metal in score tests 925

Thermal cycling tests
on uranium alloys 31, 32, 36-38

Thermal stability
See also Dimensional Stability
of uranium alloys 29-41
of uranium-Mo 36-40

Thermocouples
of n & p type conductors 1054-1056, 1059, 1067

Thermodynamic analysis
of alloys 199

Thermodynamics of occlusion of H by Fe-C alloys 863-867

Thermoelastic coupling factor
..... 1055, 1058-1060

Thermoelectric couples
formula 1058
N and P types 1054-1056, 1059

Thermoelectric coupling factor
..... 1053-1056, 1059, 1063
definition 1054
effect of temperature 1059

Thermoelectric materials
development of 1059-1067

Thorium
diffusion of C in 765-773, 967
effect of C on properties 765, 966

Thorium-carbon alloys
strain aging 966

Tie lines
definition 919
in diagram of U-Zr-Bi 918, 919, 920

Time-temperature-transformation
See T-T-T curves

Tin-steel composite, wear test 371, 372

Titanium
alpha-beta transformation 8
as additive to Ni-base
alloys 528, 529
as stabilizer for stainless steel 433
cladding of Y metal 1
effect on oxidation of Ta 638-641, 646, 648, 651

Titanium alloys
heat treatment 43, 44

Titanium-6Al-4V
corrosion tests 794-796

Titanium-cobalt alloys
activation energy for nucleation 285
age hardening 292, 293
ductility 289, 293
elongation 289
grain size 292
hardness 286, 290, 292
heat treatment 284
high-temperature tensile strength 285, 289
phases 290-292
relationship between constitution and mechanical properties 283-294
tempering curves for various 286-288
ultimate tensile properties 289, 290, 293

Titanium plus carbon
as additive to Ni-base
alloys 527-530

Titanium-vanadium alloys
effect of Al and V on
transformation 47-53
heat treatment 43, 44, 48
step quenching 48
transformation 47-53
hardness 408-413
heat treatment 407, 408
isothermal transformation 407-414
metallography 409, 930, 931
microstructure 408-412
phase identification 411

Titanium-13V-11 Cr-3Al
tentative TTT diagram 931
transformation on aging 930, 931
x-ray diffraction analysis 409

Titanium-16V-2.5Al
transformation 43-53
TTT diagrams 47-50
x-ray diffraction analysis 43-53

Titanium-20V
dilation vs. time 51
TTT diagrams 46, 51

Titanium-yttrium alloys
phase equilibria
and properties 1-12

Tool steel, hot-work 109

Tool steels, special types
H11
See Cr-Mo-V steel sheet

Transconductors
 synthesis 1060-1063, 1068

Transformation
 beta, in V-Al-Ti 43-53
 effect of, temperature and time
 on morphology of
 proeutectoid cementite .541, 542
 in 4340 steel, effect of stepped
 austenitizing 90-92
 in titanium 8
 in titanium-vanadium alloys ..45-47
 in Ti-V-Al alloys 47-53
 in uranium 307, 311-313, 316
 in yttrium 8, 9, 883
 in Y-Fe, Y-Ni & Y-Cu
 systems 899-903

Transformation kinetics
 of boron steels 168-173
 of carbon steels 542-544
 of Ti-V alloys 43-53
 of Ti-13 V-11 Cr-3Al .407-414, 930

Transition elements
 effect in alloying with Ta 815
 Laves-type phases and AB₅
 compounds in 479-500

Transitions in uranium carbide
 effect of trace elements 938, 939

Transition temperature
 effect of grain size 55-60, 71, 72
 of alloy steels, size-effect
 sensitivity and 876
 of 3140 steels of different
 tempering history .755, 758, 759

Treasurer's Report 1026-1032

True stress and true strain properties
 of 4340 steel 663-682
 effect of temperature 668-677

T T T diagrams
 for Ti-13 V-11 Cr-3 Al
 407, 413, 414, 931
 for Ti-16 V-2.5 Al 47-50
 for Ti-20V 46

Tungsten
 as additive to Ni-base, high
 temperature alloy 531
 cylindrical textures 697-713

Tungsten (cont.)
 effect on mechanical properties
 of Ta 805-816
 effect on oxidation of Ta
 639-641, 645-648

Tungsten-hafnium
See Hafnium-tungsten

Tungsten-Mo-30% Re alloy
 ductility 908, 909

Tungsten wire
 alignment of crystals 701, 702
 cylindrical textures .697-700, 706-710
 Debye-Scherrer patterns ...702, 703
 effect of deformation and posi-
 tion on rotational alignment .704
 fiber texture .697, 698, 705, 706, 710
 pole figures 706, 707
 schematic of cube on edge 710
 textures during fabrication .701-703
 x-ray diffraction analysis
 702, 703, 711, 712

Turbine blades
 nickel-base alloys 523, 524
 tests on 525, 534, 535

U

Upper yield point 604

Uranium
 dimensional stability 29-41, 888
 effect of irradiation 29
 effect of Mo on properties 29-41
 mutual solubility (with Zr)
 in bismuth 918, 919
 purity 252
 purity of biscuit grade 513, 514
 solubility as affected by Na .917, 920
 solubility in bismuth
 251-258, 915-920

Uranium, alpha
 interatomic distances 313-315
 strain energy 315, 316
 trigonal bipyramidal 315

Uranium alloys
 effect of low alloy additions
 on properties 29-41
 metallography 32, 33
 parasitic neutron capture
 properties 29
 thermal cycling tests ..31, 32, 36-38

Uranium-aluminum alloys
 study of liquidus 837-842
See also Aluminum-uranium
 alloys

Uranium-bismuth, freezing point .255

Uranium carbides
 constitution of partial system
 UC-UC₂ 465-478, 938-940
 diffusion couples 467
 metallography 467
 microstructure 467-470, 472-476, 938
 miscibility gap UC-UC₂ 465, 469
 preparation and purity 466, 467
 transitions in 938

Uranium-carbon
 diffusion in 469-476
 phase diagram 477, 938, 939
 phase relationships in 465-478

Uranium-molybdenum alloys
 properties 33-40, 887, 888

Uranium-3.5% molybdenum alloy
 dimensional stability 29-41
 effect of Al and Si on 29-41
 metallography 38-40
 microstructure 38-40

Uranium-Mo-Al alloys
 desirable properties for fuel
 alloys 40
 microstructure 38-40
 properties 33-40

Uranium-Mo-Si alloy
 microstructure 38-40
 properties 33-40

Uranium-silicon alloys
 corrosion resistance 511

Uranium-3.5% titanium alloy
 microstructure 317

Uranium-titanium martensite
 effect of Ti on properties 308
 lattice parameter 309, 310
 microstructure 307-309
 plastic deformation 316, 317
 structure and mechanical
 properties 307-319
 x-ray diffraction analysis 309-313

Uranium-Ti solid solutions
 density 309-311
 effect of Ti on properties 308, 309
 hardness 318

Uranium-Ti solid solutions (cont.)
 lattice parameters vs.
 composition 310, 311
 microstresses 312-315, 318
 plastic deformation 317, 318
 transformation sequence 311, 312
 volume changes during
 transformation 312, 313
 x-ray line broadening 312, 315, 318

Uranium-zirconium alloys
 corrosion resistance 511

Uranium-2.0Zr-0.1Al
 microstructure 38-40
 properties 33, 36-40

Uranium-Zr-Bi system
 effect of Mg on 259-264
 extrapolation of tie lines 262
 freezing point data 921
 intermetallic compounds 259-264
 liquidus curves 259-264
 microstructure 263
 mutual solubility vs.
 temperature 260, 261
 phase analysis 918, 920
 tie lines 918

Uranium-Zr-Si system
 corrosion resistance with
 Zr 939, 940
 crystal structure of phases 513
 effect of magnesium 917, 920
 heat treatment 514
 liquidus study 917, 920
 metallography 514, 517-519
 microstructure 519, 520
 phase relations at 5
 temperatures 515, 516
 reactions in 520, 521
 thermal analysis 513, 515-518
 x-ray diffraction analysis 515-520

V

Vacuum melting
 of high-temperature alloys 940, 941

Vanadium
 ductility 503
 effect of alloying on
 ductility 735-742
 effect on mechanical properties
 and oxidation of
 tantalum 805-816

Vanadium (cont.)	
fabricability	735
impurities	735, 736
purity	502
scavenging action of Y	963, 964
with C as additive to Ni-base	
alloys	529-531
Vanadium-Al-Ti alloy	
beta transformation in	43-53
Vanadium-columbium alloys	
bend ductility	503-506, 509
brittle-ductile transitions	501
ductility	501-510
hydrogen in	503-506
hydrogen embrittlement	501-510
microstructure	508, 509
tensile properties	506-509
Vanadium-Hafnium	
<i>See Hafnium-Vanadium</i>	
Vanadium-rare-earth alloys	
cold reduction data	741
hardness	740
Vanadium-titanium alloys	
transformation kinetics	43-53
<i>See also Titanium-uranium alloys</i>	
Vanadium-yttrium system	
cold reduction	735, 737, 740-742
cold rolling	735, 737, 740-742
hardness on alloying	739, 740
microstructure	738
phase diagram	737
Vibration	
of lattice	1064-1066
V-notch Charpy 50% fibrous transition temperature	
size-effect sensitivity in steel	
and	871, 875-878
Volume diffusivity	
of Ni-63 into Ni single crystal	227-232
W	
Warm working of stainless steel	
as strengthener	943-946
Wave propagation	..381-406, 926-930
apparatus and instrumentation	393-396
compression and tension tests	926, 927
Wave propagation (cont.)	
dynamic data reduction	396-402
in an elasto-plastic bar	929
large pulse tests	397-403, 929
magnitude of strains	927
one-dimensional approach	
.....	383-385, 387
objectives	387, 388
separation of waves	390-392, 404
strain rates	385, 401, 402
small pulse tests	397-403, 929
theory and experiment	388, 389
three-dimensional approach	385-387
velocity of incremental waves	926
Wear and surface damage	
effect of hardness and work	
hardening on	367
Wear by scoring359-379
Wear machine	
materials tested	362
operation	361, 362
schematic drawing	360, 361
Wear tests	
effect of finish on rider	
temperature	361
effect of load and finish	363, 364
lubricants for	359-361, 368, 373-378
on aluminum and alloys	
.....	362, 369-371
on copper	371-373
on irons	362, 365-376
on Ag, Mg and Mn	371-376
on steels	362, 363, 366-368,
.....	370, 371, 375
on surface treatments	362, 369-376
Weight change measurements	
in oxidation of stainless steel	970-972
Weldability	
of austenitic stainless steels	
effect of P on	233-250
effect of alloying elements	248
test for stainless steel	234, 235
Weldments of stainless steel	
areas involved	933, 934
carbides formed	933
corrosion of	433-446, 933, 934
Weld metal for austenitic stainless steel248

White solidification
of cast iron 555-567

Widmanstätten morphologies
in hypereutectoid carbon
steel 542-554

Widmanstätten nucleation 552

Widmanstätten patterns
in Cb-C alloys 20

Widmanstätten side plates
..... 540, 545-548, 550, 552, 553

Wiedemann & Franz law .. 1056, 1057

Wire
crystal structure 697-713
cylindrical texture
..... 697-700, 706, 708-710
fiber texture . 697-699, 705, 706, 710

Wire drawing
cylindrical and fiber
textures 960-963
deformation in. 697, 699, 705, 708-712
die pressure 697, 699, 708-710
plastic deformation. 697, 705, 708-712
stresses in 697, 699, 708-710

Work softening phenomena at
elevated temperature in 4140
steel 819, 827, 830, 833, 834

X

X-ray diffraction analysis
of aluminum
azimuthal and equatorial
reflection 268, 269
multiple exposure
diagram 267, 268
rocking curve analysis 267, 268
of Cb-C alloys 16, 21, 22
of Hf and other elements 323-329
of Laves phases 480
of Mg-Al-Zn system 296-298
of martensite line half-
breadth 743, 744
of parabola fitting 744-747
of recrystallization 266
of Re-Cb alloys 218
of stainless steel welds 436
of steel, hardness from
breadth of lines 743-752
of 3140 steels (tempered
differently) 757, 760-762

X-ray diffraction analysis (cont.)
of 4140 steel 819, 829, 830, 832
of 51100 steel 449, 453-457
of Ti-V-Al alloy 43-53
of Ti-13V-11Cr-3Al .. 409, 411, 413
of U-Ti martensite 309-313
of U-Zr-Si system 515-518, 520
of W wire 702, 703, 711, 712
of Y-Cu 152-154
of Y-Fe 144
of Y-Ni 148-150
of Zr-Cb alloys and oxides . 415-431

X-ray line broadening in heat-
treated steel 935, 936

X-ray microscopy
of recrystallization 266

X-ray powder patterns
of Fe-Mn alloys 199, 200
of Mg-Al-Zn 296-298
of Ti-13V-11Cr-3Al .. 409, 411, 413

X-ray reflection micrographs
of aluminum crystals
grain growth 274-276
rocking curve analysis 268-276

X-ray residual stress
technique 744, 745
application to 52100 steel .. 749-752
formula 745, 746, 747
half height of parabola 745, 746

X-weldability test
for stainless steel 234

Y

Yield and tensile properties
in stainless steel, vs. reduction .. 943
in C 1080 steel, with different heat
treatment and working 945

Yield point and order hardening
phenomena in some com-
mercial nickel silver alloys
(A) 775-791
discussion 968, 969

Yield point phenomena in a
number of commercial copper
alloys and one nickel-base
alloy (A)
effect of grain size. 603-620, 611-613
effect of strain aging 613-616

Yield point phenomena (cont.)	
suppression of initial, by	
quenching	609-611
transcience	607, 608
Yield points	
in Fe-P alloys, changes during	
precipitation	585, 587
in 4340 steel	679
in nickel silver alloys	775-791
in thorium effect of C.....	966
Yield strength	
of 18% nickel silver	783, 785
of low-C austenitic stainless	
steel, effect of P	236, 237
of 316 L stainless steel	912, 913
Yield stress	
of steel, temperature,	
dependence	64-66
of 4340 steel (-196° -200°C) ..	673
Yttrium	
affinity for oxygen	8
allotropy in	902
as scavenger for O, N, V	
and Cr	735, 736, 739, 963
effect of Cu on melting point ..	150
effect of Fe on melting point ..	139
effect of nickel on melting point ..	146
effect on ductility of V	735-742
high-temperature transforma-	
tion	901
melting point	139, 140, 901
reaction with quartz and	
Vycor	901, 903
source and purity	137, 138
transformation	8, 9, 883
Yttrium and its alloys,	
applications	1
Yttrium-copper system	
intermetallic compounds	146
inverse peritectic reaction	899
metallography	138
microstructure	152, 153
phase relationships	
.....150-155, 899-903	
x-ray analysis	152-154
Yttrium-iron system	
intermetallic compounds	
.....140, 141, 901, 902	
inverse peritectic reaction	899
metallography	138
Yttrium-iron system (cont.)	
microstructure	141-143
phase relationships	137-144, 899-903
x-ray analysis	144
Yttrium-nickel system	
intermetallic compounds	146
inverse peritectic reaction	899
metallography	138
melting point	901
microstructure	146, 147
phase relationships	145-150, 899-903
x-ray analysis	148-150, 900
Yttrium-titanium alloys	
discussion	883-885
hardness	9, 10
metallography	3-5
microstructure	4-7, 884, 885
oxidation properties	9, 10
peritectic reaction	3-5, 884
phase diagram	883
phase equilibria and	
properties (A)	1-12
solid solubility	6, 7
Yttrium-vanadium system	
phase diagram	737
See also Vanadium-yttrium system	
Z	
Zig-zag morphology	
in transformation of steel	
.....544-547, 553	
Zinc	
activation energy for prismatic	
slip	133
Zinc-aluminum magnesium	
See Magnesium-aluminum-zinc	
Zirconium	
as corrosion inhibitor in	
U-Bi	256, 257, 916
effect on mass transfer of Fe	
and Cr from piping for	
liquid-metal fuel	259
effect on mechanical properties	
of Ta	805-816
effect on oxidation of Ta	
.....638, 639, 641, 646, 648, 651	
effect on solubility of U in	
Bi	259, 261

Zirconium (cont.)
inhibitor for U-graphite
 reactions 256, 257
inhibitor in liquid-metal
 fuel 259, 261
mutual solubility (with U)
 in bismuth 918, 919
purity 513, 514
Zirconium-columbium alloys
oxidation (525-1090°C.) ... 415-431
phase analysis 932

Zirconium oxides
formation 429, 430
x-ray diffraction analysis
..... 417, 419, 429, 430

Zirconium-oxygen
phase analysis 932

Zirconium-uranium-bismuth
See Uranium-zirconium-bismuth

Zones of stability
for AB compounds 490, 491, 493-498