Problem 1

- 1. True. For S to generate V, span(S) = V; then by definition $\forall \vec{x} \in V$, $\vec{x} \in span(S)$ so by definition of span they each can be written as a linear combination of vectors in S.
- 2. False. At least one vector in S must be linear combination of other vectors in S, not all.
- 3. True. By definition of linear independence.
- 4. False. For example, the vector space P(F), the set of polynomials over a field F, has an infinite dimensional basis.
- 5. False. The basis is simply \varnothing .
- 6. False. Many bases can exist. It is easy to see that for \mathbb{R}^2 , the standard basis $\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\}$ and a similar but distinct basis $\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\}$ exist.
- 7. False. $\dim(P_n(\mathbb{R})) = n+1$, since there are n powers of X and a constant value.

Problem 2

Suppose $\mathcal B$ is a basis for V. Then by definition, $\mathcal B$ is linearly independent and spans V. Then (1) is immediately satisfied. Assume by contradiction that $\exists \vec x \in \mathcal B$ such that $\mathcal B \setminus \{\vec x\}$ spans V. Since $\vec x \in \mathcal B$ and $\mathcal B$ is a basis for V, then $\vec x \in V$. But $\mathcal B \setminus \{\vec x\}$ spans V, i.e. $span(\mathcal B \setminus \{\vec x\}) = V$, hence $\vec x \in span(\mathcal B \setminus \{\vec x\})$. But by the Theorem on Equivalent Definitions for Linear Dependence, if $\exists \vec x \in \mathcal B$ such that $\vec x \in span(\mathcal B \setminus \{\vec x\})$, then $\mathcal B$ is linearly dependent, contradiction; hence $\forall \vec x \in \mathcal B$, $\mathcal B \setminus \{\vec x\}$ does not span V.

Suppose $\mathcal B$ spans V and $\forall \vec x \in \mathcal B$, $\mathcal B\setminus \{\vec x\}$ does not span V. To be a basis, we need $\mathcal B$ spans V and $\mathcal B$ is linearly independent. The first is satisfied by assumption. Assume by contradiction that $\mathcal B$ is linearly dependent, or by Theorem on Equivalent Definitions for Linear Dependence $\exists \vec x \in \mathcal B$ such that $\vec x \in span(\mathcal B\setminus \{\vec x\})$. But since $\vec x \in span(\mathcal B\setminus \{\vec x\})$, we must have that $span(\mathcal B\setminus \{\vec x\}) = span(\mathcal B\setminus \{\vec x\}) = span(\mathcal B) = V$. But $\forall \vec x \in \mathcal B$, $\mathcal B\setminus \{\vec x\}$ does not span V, contradiction. Hence $\mathcal B$ is also linearly independent and thus a basis for V.

Problem 3

The Basis Reduction Theorem guarantees that if a finite set of vectors G spans V, then there exists a basis for V, \mathcal{B} , such that $\mathcal{B} \subseteq G$. In this case, the subset $\{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_5}\}$ is a basis for \mathbb{R}^3 .

Problem 4

We saw that $\dim(P_n)=n+1$. Since $W=\{f\in P_n(\mathbb{R})\,|\,f(0)=0\}$, where $f=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$, we have an extra constraint that $f(0)=a_0=0$. Then the constant factor is always fixed to 0, so we only need to worry about the n powers of x. Thus $\dim(W)=n$.

Problem 5

Since 0 and 1 are in every field, we can tweak the standard basis for F^5 to satisfy the specific constraints of W_1 and W_2 . For W_1 , we see that the constraint is effectively $a_1=a_3+a_4$. Then take $\mathcal{B}=\{(0,1,0,0,0),(1,0,1,0,0),(1,0,0,1,0),(0,0,0,0,1)\}$ as the basis. It is easy to see that the set is linearly independent. Also, for $\vec{x}\in W_1$, $\vec{x}=(a_3+a_4,a_2,a_3,a_4,a_5)$, and we see that $\vec{x}=a_2(0,1,0,0,0)+a_3(1,0,1,0,0)+a_4(1,0,0,1,0)+a_5(0,0,0,0,1)$. Then \vec{x} can be expressed as a linear combination of vectors in \mathcal{B} , hence by definition $\vec{x}\in span(\mathcal{B})$. Since \vec{x} was an arbitrary vector in W_1 , this is true for all $\vec{x}\in W_1$, hence $span(\mathcal{B})=W_1$ and \mathcal{B} is a basis by definition.

For W_2 , our constraint is $a_2=a_3=a_4$ and $a_1=-a_5$, where $-a_5$ denotes the additive inverse of a_5 . Then we can take our basis to be $\mathcal{B}=\{(1,0,0,0,-1),(0,1,1,1,0)\}$. Again it is easy to see that these vectors are linearly independent. For $\vec{x}\in W_2$, $\vec{x}=(a_1,a_2,a_2,a_2,-a_1)$, hence $\vec{x}=a_1(1,0,0,0,-1)+a_2(0,1,1,1,0)$. Again this expresses \vec{x} as a linear combination of vectors in \mathcal{B} , so $\vec{x}\in span(\mathcal{B})$; this is true for arbitrary $\vec{x}\in W_2$, so $W_2=span(\mathcal{B})$ and \mathcal{B} is a basis.

Then, by definition of dimension, we see that $\dim(W_1) = 4$ and $\dim(W_2) = 2$.

Problem 6

1. We see that $\dim(V) = 3$. Since $|\mathcal{B}| = 3$, then we only need that \mathcal{B} is linearly independent or \mathcal{B} spans V for it to be a basis by Theorem 5. We show that \mathcal{B} is linearly independent. Consider a(1,2,1) + b(2,1,0) + c(1,-2,2) = (0,0,0). We see this

results in the system of equations $\begin{cases} a+2b=0\\ 2a+b-2c=0 \end{cases}$. Solving, we see that a+2c=0

$$\begin{cases} a+2b=0\\ 2a+b-2c=0 \Rightarrow \begin{cases} 2b-2c=0\\ 2a+b-2c=0 \Rightarrow \end{cases} \begin{cases} b=c\\ 2a+3c=0 \Rightarrow \begin{cases} b=c\\ -c=0 \Rightarrow \end{cases} \begin{cases} b=0\\ c=0 \text{ . Hence the } \\ a+2c=0 \end{cases}$$

only solution is the trivial linear combination, and so $\ensuremath{\mathcal{B}}$ is linearly independent and thus a basis.

2. Once again, $\dim(Mat(2,\mathbb{R})) = 2 \cdot 2 = 4$, and $|\mathcal{B}| = 4$, so we only need to show \mathcal{B} is linearly independent. However, we see that $\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$ can be expressed as a linear

combination of the other three vectors: $\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix} = a \begin{pmatrix} 3 & -3 \\ 0 & 2 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ -5 & 2 \end{pmatrix} + c \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$

$$\begin{cases} 3a-c=-1 \\ -3a+c=1 \\ -5b=2 \\ 2a+2b-c=1 \end{cases} \Rightarrow \begin{cases} 3a-c=-1 \\ -3a+c=1 \\ b=-2/5 \\ 2a-c=9/5 \end{cases} \Rightarrow \begin{cases} 3a-c=-1 \\ a=-14/5 \\ b=-2/5 \\ 2a-c=9/5 \end{cases} \Rightarrow \begin{cases} c=-37/5 \\ a=-14/5 \\ b=-2/5 \end{cases}. \text{ Then }$$

$$a \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix} + b \begin{pmatrix} 3 & -3 \\ 0 & 2 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ -5 & 2 \end{pmatrix} + d \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ has a solution where not all }$$

coefficients are 0, namely a=-1, b=-14/5, c=-2/5, d=-37/5. Then by definition \mathcal{B} is not linearly independent and so is not a basis.

- 3. We see that $\dim(\mathbb{Q}^3) = 3$, but $|\mathcal{B}| = 4$. By definition of dimension, if \mathcal{B} is a basis then $\dim(\mathbb{Q}^3) = |\mathcal{B}|$, but $3 \neq 4$, hence \mathcal{B} is not a basis.
- 4. $\dim(P_2(\mathbb{R})) = 2+1=3$ and $|\mathcal{B}|=3$, so we only need to show that \mathcal{B} is linearly independent. Consider $a(x^2+2x-1)+b(3x-x+2)+c(x^2+x+1)=0$. Then,

$$\begin{cases} a+c=0\\ 2a-b+c=0\\ -a+2b+c=0 \end{cases} \Rightarrow \begin{cases} a=-c\\ -2c-b+c=0\\ c+2b+c=0 \end{cases} \begin{cases} a=-c\\ b=-c \text{ . But we see that } a=-1,b=-1,c=1 \text{ is a } b=-c \end{cases}$$

solution to the system, and not all coefficients are zero; then by definition $\mathcal B$ is linearly dependent and thus not a basis.

Problem 7

1. Let $\mathcal{B} = \{\overrightarrow{x_1}, ..., \overrightarrow{x_n}\}$ be a basis for $W_1 \cap W_2$. By definition, \mathcal{B} must be linearly independent, and since $\mathcal{B} \subset W_1 \cap W_2 \subset W_1, W_2$, we can apply the basis extension theorem, i.e. there exists bases \mathcal{B}_1 for W_1 and \mathcal{B}_2 for W_2 such that $\mathcal{B} \subset \mathcal{B}_1$ and $\mathcal{B} \subset \mathcal{B}_2$. Let $\mathcal{B}_1 = \{\overrightarrow{x_1},...,\overrightarrow{x_n},\overrightarrow{y_1},...,\overrightarrow{y_k}\}$ and $\mathcal{B}_2 = \{\overrightarrow{x_1},...,\overrightarrow{x_n},\overrightarrow{z_1},...,\overrightarrow{z_m}\}$. We see that $\mathcal{B}_1 \cup \mathcal{B}_2 = \{\overrightarrow{x_1},...,\overrightarrow{x_n},\overrightarrow{y_1},...,\overrightarrow{y_k},\overrightarrow{z_1},...,\overrightarrow{z_m}\}$. Also, by definition, if $\vec{x} \in W_1 + W_2$, then $\vec{x} = \overrightarrow{w_1} + \overrightarrow{w_2}$, where $\overrightarrow{w_1} \in W_1$ and $\overrightarrow{w_2} \in W_2$. But since \mathcal{B}_1 is a basis for W_1 and \mathcal{B}_2 for W_2 , we have $\overrightarrow{w_1} = \sum_{i=1}^n a_i \overrightarrow{x_i} + \sum_{i=1}^k b_i \overrightarrow{y_i}$ and $\overrightarrow{w_2} = \sum_{i=1}^n c_i \overrightarrow{x_i} + \sum_{i=1}^m d_i \overrightarrow{z_i}$. Then $\vec{x} = \sum_{i=1}^{n} (a_i + c_i) \vec{x_i} + \sum_{i=1}^{k} b_i \vec{y_i} + \sum_{i=1}^{m} d_i \vec{z_i}$, a linear combination of exactly the vectors in $\mathcal{B}_1 \cup \mathcal{B}_2$; hence $W_1 + W_2 = span(\mathcal{B}_1 \cup \mathcal{B}_2)$. To show that $\mathcal{B}_1 \cup \mathcal{B}_2$ is linearly independent, we consider $\sum_{i=1}^{n} a_i \overrightarrow{x_i} + \sum_{i=1}^{k} b_i \overrightarrow{y_i} + \sum_{i=1}^{m} d_i \overrightarrow{z_i} = \overrightarrow{0}$. Then, $\sum_{i=1}^{n} a_i \overrightarrow{x_i} + \sum_{i=1}^{k} b_i \overrightarrow{y_i} = -\sum_{i=1}^{m} d_i \overrightarrow{z_i}$. We see that the left hand side is in $span(\mathcal{B}_1) = W_1$, while the right is in W_2 . Then, $-\sum_{i=1}^m d_i \overrightarrow{z_i} \in W_1 \cap W_2$, or $-\sum_{i=1}^m d_i \overrightarrow{z_i} = \sum_{i=1}^r e_i \overrightarrow{x_i}$; then $\sum_{i=1}^r e_i \overrightarrow{x_i} - \sum_{i=1}^m d_i \overrightarrow{z_i} = \overrightarrow{0}$. But this is exactly a linear combination of vectors from \mathcal{B}_2 , so $e_i = d_i = 0$. Then $\sum_{i=1}^n a_i \overrightarrow{x_i} + \sum_{i=1}^k b_i \overrightarrow{y_i} = \overrightarrow{0}$; but again this is a linear combination of vectors from \mathcal{B}_1 , so $a_i = b_i = 0$. Then $\mathcal{B}_1 \cup \mathcal{B}_2$ is linearly independent and thus a basis for $W_1 + W_2$. Finally, we see that $\dim(V) = |\mathcal{B}_1 \cup \mathcal{B}_2| = |\mathcal{B}_1| + |\mathcal{B}_2| - |\mathcal{B}_1 \cap \mathcal{B}_2| = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

2. Suppose $V = W_1 \oplus W_2$. Then $W_1 \cap W_2 = \{\vec{0}\}$ by definition. From the above, $\dim(V) = \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$ $= \dim(W_1) + \dim(W_2) - \dim(\{\vec{0}\})$ $= \dim(W_1) + \dim(W_2) - 0 = \dim(W_1) + \dim(W_2)$

Suppose $\dim(W_1)+\dim(W_2)=\dim(V)=\dim(W_1+W_2)$. From the above, we see that for this to hold true we must have $\dim(W_1\cap W_2)=0$. The only vector space with a dimension of 0 is $\{\vec{0}\}$; then $W_1\cap W_2=\{\vec{0}\}$, which combined with the assumption that $V=W_1+W_2$ yields $V=W_1\oplus W_2$ by definition.