Университет ИТМО

Факультет ПИиКТ

Системы искусственного интеллекта

Лабораторная работа №2

Алгоритмы поиска

Выполнила: Наумова Н.А.

Группа Р33022

Преподаватель: Бессмертный И.А.

Санкт-Петербург 2020 г.

Цель работы:

исследовать алгоритмы решения задач методом поиска.

Вариант: $(21 + 09) \mod 10 + 1 = 1$

Задание:

Описание предметной области. Имеется транспортная сеть, связывающая города СНГ. Сеть представлена в виде таблицы связей между городами. Связи являются двусторонними, т.е. допускают движение в обоих направлениях. Необходимо проложить маршрут из одной заданной точки в другую.

Этап 1. Неинформированный поиск. На этом этапе известна только топология связей между городами. Выполнить:

- 1) поиск в ширину;
- 2) поиск глубину;
- 3) поиск с ограничением глубины;
- 4) поиск с итеративным углублением;
- 5) двунаправленный поиск.

Отобразить движение по дереву на его графе с указанием сложности каждого вида поиска. Сделать выводы.

Этап 2. Информированный поиск. Воспользовавшись информацией о протяженности связей от текущего узла, выполнить:

- 1) жадный поиск по первому наилучшему соответствию;
- 2) затем, использую информацию о расстоянии до цели по прямой от каждого узла, выполнить поиск методом минимизации суммарной оценки A^* .

Отобразить на графе выбранный маршрут и сравнить его сложность с неинформированным поиском. Сделать выводы.

Выполнение работы:

Неинформированный поиск:

• поиск в ширину (желтый цвет означает город, который был посещен ранее, а, значит, на этом шаге мы туда не пойдем)

Путь: Мурманск -> Санкт-Петербург -> Витебск -> Вильнюс -> Киев -> Одесса Сложность - (b) $^{(d+1)}$, b - коэф.ветвления, d- самое поверхностное решение (глубина)

• поиск в глубину

Путь: Мурманск -> Санкт-Петербург -> Витебск -> Брест -> Вильнюс -> Киев -> Одесса Сложность - b^m, m - тах глубина

• поиск с ограничением глубины

Путь: Мурманск -> Санкт-Петербург -> Витебск -> Брест -> Вильнюс -> Киев -> Одесса Сложность - b^e , e - предел глубины

• поиск с итеративным углублением

Путь: Мурманск -> Санкт-Петербург -> Витебск -> Вильнюс -> Киев -> Одесса Сложность - b^d , d - самое поверхностное решение (глубина)

Путь: Мурманск -> Санкт-Петербург-> Витебск -> Вильнюс -> Киев -> Одесса Сложность - $b^{(d/2)}$, d - самое поверхностное решение (глубина)

Информированный поиск:

• жадный поиск по первому наилучшему соответствию

• поиск методом минимизации суммарной оценки А* (красным цветом обозначен город, в который мы не идем, так как уже есть этот город с меньшим расстоянием, серым - тупик)

Путь: Мурманск -> Санкт-Петербург-> Витебск -> Вильнюс -> Киев -> Одесса

Вывод:

проделав данную работу, я реализовала информированный и неинформированный поиск в дереве решений и пришла к выводу, что информированный поиск должен быстрее работать в теории, но на практике так будет не всегда.

Метод	Полнота	Временная сложность	Затраты памяти	Оптимальность
Поиск в ширину	Да	b^(d+1)	b^(d+1)	Да
Поиск по критерию стоимости	Да	b^(1+C/n)	b^(1+C/n)	Да
Поиск в глубину	Нет	b^m	b^m	Нет
Поиск с ограничением глубины	Нет	b^e	b^e	Нет
Поиск с итеративным углублением	Да	b^d	b^d	Да
Двунаправленный поиск	Да	b^(d/2)	b^(d/2)	Да
Жадный поиск по первому наилучшему соответствию	Нет	b^m	b^m	Нет
Поиск методом минимизации суммарной оценки А*	Да	b^a	a*m	Да

Обозначения:

- b коэффициент ветвления;
- d глубина самого поверхностного решения;
- т максимальная глубина дерева;
- е предел глубины;
- С стоимость решения;
- а кол-во городов;
- \bullet n – средняя стоимость одного шага.