

About the Beamer class in presentation making A short story

E. Cominato 137396¹

¹Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università degli studi di Udine

Very Large Conference, April 2013

Definition 1 (Plant)

A plant automaton is a tuple $\mathcal{P} = (Q, \Sigma_c, \delta, q)$ where Q is a finite set of states, Σ_c is a set of controller commands, $\delta: Q \times \Sigma_c \longmapsto 2^Q$ is the transition function and $q_o \in Q$ is an initial state.

Definition 2 (Controllers)

A controller (strategy) for a plant specified by $\mathcal{P} = (Q, \Sigma_c, \delta, q)$ is a function $C : Q^+ \longmapsto \Sigma_c$. A simple controller is a controller that can be written as a function $C : Q \longmapsto \Sigma_c$.

We are interested in the simpler cases of controllers that base their decisions on a finite memory.

Definition 3 (Trajectories)

Let \mathcal{P} be a plant and let $C: Q^+ \longmapsto \Sigma_c$ be a controller. An infinite sequence of states $\alpha: q[0], q[1], \ldots$ such that $q[0] = q_0$ is called a trajectory of \mathcal{P} if

$$q[i+1] \in \bigcup_{\sigma \in \Sigma_c} \delta(q[i], \sigma)$$

and a C-trajectory if $q[i+1] \in \delta(q[i], C[\alpha[0..i]])$ for every $i \ge 0$. The corresponding sets of trajectories are denoted by $L(\mathcal{P})$ and $L_{\mathcal{C}}(\mathcal{P})$.

For every infinite trajectory $\alpha \in L(\mathcal{P})$:

- $ightharpoonup Vis(\alpha)$ denote the set of all states appearing in α
- Inf(α) denote the set of all states appearing in α infinitely many times

Definition 4 (Acceptance Condition)

Let $\mathcal{P}=(Q,\Sigma_c,\delta,q)$ be a plant. An acceptance condition for \mathcal{P} is

$$\Omega \in \{(F, \square), (F, \lozenge), (F, \lozenge \square), (F, \square \lozenge), (\mathcal{F}, \mathcal{R}_n)\}$$

where $\mathcal{F} = \{(F_i, G_i)\}_{i=1}^n$ and F, F_i and G_i are certain subsets of Q referred as the good states. The set of sequences of \mathcal{P} that are accepted accordig to Ω is defined as follows:

$$\begin{array}{lll} L(\mathcal{P},F,\square) & \{\alpha\in L(\mathcal{P}): \textit{Vis}(\alpha)\subseteq F\} & \alpha \text{ always remains in } F \\ L(\mathcal{P},F,\diamondsuit) & \{\alpha\in L(\mathcal{P}): \textit{Vis}(\alpha)\cap F\neq\emptyset\} & \alpha \text{ eventually visits } F \\ L(\mathcal{P},F,\diamondsuit\square) & \{\alpha\in L(\mathcal{P}): \textit{Inf}(\alpha)\subseteq F\} & \alpha \text{ eventually remains in } F \\ L(\mathcal{P},F,\square\diamondsuit) & \{\alpha\in L(\mathcal{P}): \textit{Inf}(\alpha)\cap F\neq\emptyset\} & \alpha \text{ visits } F \text{ infinitely often} \\ & \{\alpha\in L(\mathcal{P}): \exists i\alpha\in \alpha \text{ eventually stays in } G_i \\ L(\mathcal{P},F,\mathcal{R}_n) & L(\mathcal{P},F_i,\square\diamondsuit)\cap L(\mathcal{P},G_i,\diamondsuit\square)\} & \text{and eventually stays in } G_i \\ \end{array}$$

Definition 5 (Controller Synthesis Problem)

For a plant \mathcal{P} and an acceptance condition Ω , the problem $\textbf{Synth}(\mathcal{P},\Omega)$ is: Find a controller C such that $L_C(\mathcal{P}) \subseteq L(\mathcal{P},\Omega)$ ot otherwise show that such a controller does not exists.

Definition 6 (Controllable Predecessors)

Let $\mathcal{P} = (Q, \Sigma_c, \delta, q)$ be a plant and a set of states $P \subseteq Q$. The controllable predecessors of P is the set of states from which the controller can "force" the plant into P in one step:

$$\{q: \exists \sigma \in \Sigma_c \cdot \delta(q, \sigma) \subseteq P\}$$

We define a function $\pi: 2^Q \longmapsto 2^Q$, mapping a set of states $P \subseteq Q$ into the set of its Controllable predecessors:

$$\pi(P) = \{q : \exists \sigma \in \Sigma_c \cdot \delta(q, \sigma) \subseteq P\}$$

Theorem 1

For every $\Omega \in \{(F, \Box), (F, \Diamond), (F, \Diamond \Box), (F, \Box \Diamond), (\mathcal{F}, \mathcal{R}_n)\}$ the problem **Synth** (\mathcal{P}, Ω) is solvable. Moreover, if (\mathcal{P}, Ω) is controllable then it is controllable by a simple controller.