# Raport 4

## Eksploracja danych

Mikołaj Langner, Marcin Kostrzewa nr albumów: 255716, 255749

### 2021-05-28

# Spis treści

| 1 | Wstęp                    | 1  |
|---|--------------------------|----|
|   | Zadanie 1         2.1 a) |    |
| 3 | Zadanie 2                | 11 |

## 1 Wstęp

Niniejszy raport zawiera rozwiązania rozwiązania zadań z listy 4.

W zadaniu pierwszym zastosujemy zaawansowane metody klasyfikacji:

- bagging,
- boosting,
- random forest,
- metodę wektorów nośnych (SVM),

W zadaniu drugim badamy jakość

## 2 Zadanie 1

### 2.1 a)

#### 2.1.1 Pojedyncze drzewo decyzyjne

Przypomnijmy najpierw jak radziła sobie metoda drzewa klasyfikacyjnego.

```
tree.model <- rpart(Type ~ ., data = train.subset, cp=0)</pre>
```

Wyglądało ono następująco — rysunek (??).



Rysunek 1: Pojedyncze drzewo decyzyjne.

Przypomnimy także jak wyglądały błędy klasyfikacji dla drzewa.

Wyniósł on 0.1179775.

### 2.1.2 Bagging

Najpierw skorzystamy z algorytmu bagging. Znajdziemy optymalną wartość dla parametru nbagg.



Rysunek 2: Wplyw ilosci replikacji na blad klasyfikacji.

Jak widać, najlepiej zbudować model dla nbagg równego 90.

Wyznaczymy dla tego modelu macierze pomyłek i wartości błędów klasyfkacji.

Błędy klasyfikacji to kolejno 0 i 0.05.

|                  | 1  | 2  | 3  |                   |   | 1  | 2  | 3  |
|------------------|----|----|----|-------------------|---|----|----|----|
| 1                | 36 | 0  | 0  |                   | 1 | 21 | 0  | 0  |
| 2                | 0  | 51 | 0  |                   | 2 | 2  | 19 | 0  |
| 3                | 0  | 0  | 31 |                   | 3 | 0  | 1  | 17 |
| (a) Zbior uczacy |    |    |    | (b) Zbior testowy |   |    |    |    |

Tabela 1: Macierze pomylek dla algorytmu bagging.

Wyznaczymy teraz dla tego modelu klasyfikacyjnego błąd predykcji — skorzystamy z 5-krotnej walidacji krzyżowej, metody bootstrap oraz .632+.

```
predictor <- function(model, newdata)</pre>
{predict(model, newdata=newdata, type = "class")}
bagging.predictor <- function(formula, data)</pre>
{bagging(formula, data = data, nbagg = choice, cp = 0)}
bagging.error.cv <- errorest(Type~., wine,</pre>
                                    model=bagging.predictor,
                                    predict=predictor, estimator="cv",
                                     est.para=control.errorest(k = 5))
bagging.error.boot <- errorest(Type~., wine,</pre>
                                       model=bagging.predictor,
                                       predict=predictor, estimator="boot",
                                       est.para=control.errorest(nboot = 25))
bagging.error.632 <- errorest(Type~., wine,</pre>
                                       model=bagging.predictor,
                                       predict=predictor, estimator="632plus",
                                       est.para=control.errorest(nboot = 25))
```

Błędy wyniosły kolejno 0.0561798, 0.0584677 oraz 0.0402642.

#### 2.1.3 Boosting

#### 2.1.4 Random Forest

Teraz wykorzystamy algorytm random forrest.

Postaramy się odpowiednio dobrać parametry ntree (ilość drzew) i mtry (ilość losowo wybieranych cech).



Rysunek 3: Wykresy zalezności bledu klasyfikacji od parametrow mtry i ntree.

Podobnie jak wcześniej wyznaczamy za pomocą modelu etykietki klas i wyznaczamy macierze pomyłek i błędy klasyfikacji.

Błędy klasyfikacji to kolejno 0 i 0.

Tak jak wcześniej wyznaczymy dla tego modelu błędy predykcji.

```
predictor <- function(model, newdata)
{ predict(model, newdata=newdata, type = "class") }</pre>
```

|    | 1                | 2  | 3  |  |                   | 1  | 2  | 3  |
|----|------------------|----|----|--|-------------------|----|----|----|
| 1  | 36               | 0  | 0  |  | 1                 | 23 | 0  | 0  |
| 2  | 0                | 51 | 0  |  | 2                 | 0  | 20 | 0  |
| 3  | 0                | 0  | 31 |  | 3                 | 0  | 0  | 17 |
| (a | (a) Zbior uczacy |    |    |  | (b) Zbior testowy |    |    |    |

Tabela 2: Macierze pomylek dla algorytmu randomForest.

Błędy wyniosły kolejno 0.005618, 0.0227064 oraz 0.0125766.

Wykorzystamy teraz algorytm random forest do wyznaczenia rankingu cech (variable importance).

Widzimy, że ...

#### 2.1.5 Wnioski

## 2.2 b)

```
wine <- wine %>% select(c(Type, Alcohol, Flavanoids))

## Setting default kernel parameters

% latex table generated in R 4.1.0 by xtable 1.8-4 package % Sat Jun 19 15:24:45 2021

% latex table generated in R 4.1.0 by xtable 1.8-4 package % Sat Jun 19 15:24:48 2021
```



Rysunek 4: Wykres wazności zmiennych.



Rysunek 5: Dokładność klasyfikatora od parametru kosztu



Rysunek 6: Obszary decyzyjne dla  ${\cal C}=0.1$ 



Rysunek 7: Obszary decyzyjne dla C=1



Rysunek 8: Obszary decyzyjne dla  ${\cal C}=10$ 



Rysunek 9: Obszary decyzyjne dla  ${\cal C}=100$ 



Rysunek 10: Obszary decyzyjne dla C=1000



Rysunek 11: Mapa ciepła dokładności klasyfikatora

| linear | polynomial | radial |
|--------|------------|--------|
| 0.928  | 0.933      | 0.938  |

Tabela 3: Porównanie klasyfikatorów dla różnych jąder

| sigma | С      |
|-------|--------|
| 0.10  | 100.00 |

Tabela 4: Parametry dla najlepszego klasyfikatora

## 3 Zadanie 2

```
##
## Clustering Methods:
    agnes pam
##
## Cluster sizes:
    2 3 4 5 6 7 8 9 10
##
##
## Validation Measures:
##
                              2
                                      3
                                                       5
                                                               6
                                                                        7
                                                                                8
                                                                                        9
##
## agnes Connectivity
                         4.4925
                                 8.0972 12.8210 17.7913 21.4591 22.9877 25.8044 30.6730 3
         Dunn
##
                         0.0374
                                 0.0227
                                         0.0417
                                                  0.0347
                                                          0.0368
                                                                  0.0544
                                                                           0.0561
                                                                                   0.0656
##
         Silhouette
                         0.6413 0.5419
                                         0.5336
                                                 0.4806
                                                          0.4824
                                                                  0.5075
                                                                           0.5055
                                                                                   0.5024
                         1.5286 5.1048 16.2798 20.0643 23.1155 27.8393 31.0163 33.5841 3
## pam
         Connectivity
##
         Dunn
                         0.0434
                                0.0229
                                         0.0340
                                                0.0340
                                                          0.0233
                                                                  0.0502
                                                                           0.0478
                                                                                   0.0359
##
         Silhouette
                         0.6494 0.5708
                                        0.5620
                                                 0.5469
                                                          0.5414
                                                                  0.5622
                                                                           0.5401
                                                                                   0.5353
##
## Optimal Scores:
##
##
                       Method Clusters
                Score
## Connectivity 1.5286 pam
                               2
## Dunn
                0.0776 agnes
                               10
## Silhouette
                0.6494 pam
                               2
##
                     Score Method Clusters
## Connectivity 1.52857143
                               pam
## Dunn
                                         10
                0.07755693
                             agnes
## Silhouette
                0.64936476
                                          2
                               pam
## Using cluster as id variables
## Using cluster as id variables
## Using cluster as id variables
## Cases in matched pairs: 80.9 %
```



Rysunek 12: Skupienia dla metody PAM



Rysunek 13: Skupienia dla metody AGNES z single-linkage



Rysunek 14: Skupienia dla metody AGNES z complete-linkage



Rysunek 15: Wskaźniki wewnętrzne dla PAM i AGNES z complete-linkage



Rysunek 16: Porównanie wskaźników zewnętrznych

## 1 2 3 ## 1 2 3



Page 1



Page 2



% latex table generated in R 4.1.0 by x table 1.8-4 package % Sat Jun 19 15:24:53 2021

|                 | 1     | 2     | 3     |
|-----------------|-------|-------|-------|
| Alcohol         | 0.59  | -0.92 | 0.39  |
| Malic           | -0.47 | -0.54 | 0.81  |
| Ash             | 0.16  | -0.90 | 0.05  |
| Alcalinity      | 0.30  | -0.15 | 0.60  |
| Magnesium       | 0.02  | -1.38 | -0.54 |
| Phenols         | 0.65  | -1.03 | -0.58 |
| Flavanoids      | 0.95  | 0.00  | -1.27 |
| Nonflavanoids   | -0.82 | 0.07  | 0.71  |
| Proanthocyanins | 0.47  | 0.07  | -0.60 |
| Color           | 0.02  | -0.72 | 1.45  |
| Hue             | 0.36  | 0.19  | -1.78 |
| Dilution        | 1.21  | 0.79  | -1.40 |
| Proline         | 0.55  | -0.75 | -0.31 |

Tabela 5: Medoidy dla metody PAM przy K=3