The Saga Icelandic Contributions

R Usage in Iceland

in Ancient and Modern Times

Árni Magnússon

arnima@hafro.is

MRI, 28 August 2014

Scientific Work

Scientific Work

1600 - 1970

1970 onwards

The Saga

Prehistory, settlement, people

The Saga

Prehistory, settlement, people

Icelandic

Character encoding, literate data analysis

The Saga

Prehistory, settlement, people

Icelandic

Character encoding, literate data analysis

Contributions

Core functions, CRAN packages

The Saga

Prehistory, settlement, people

Icelandic

Character encoding, literate data analysis

Contributions

Core functions, CRAN packages

Mystery Guest

?

Bell Labs

Bell Laboratories Murray Hill, NJ 41°N 74°W

Bell Labs

1947	transistor	1976	S
1969	Unix	1985	C++
1973	С	1993	UTF-8

Bell Labs

1947	transistor	1976	S ←
1969	Unix	1985	C++
1973	С	1993	UTF-8

977

John W. Tukey

EXPLORATORY DATA ANALYSIS

THE FUTURE OF DATA ANALYSIS

1962

BY JOHN W. TUKEY

Princeton University and Bell Telephone Laboratories

- I. General Considerations
 1. Introduction
 - 2. Special growth areas
 - 3. How can new data analysis be initiated?
 - 4. Sciences, mathematics, and the arts

1965

The Technical Tools of Statistics

JOHN W. TUKEY Princeton University and Bell Telephone Laboratories

We are suthered here to look both forward and back. tions of statis

What have our technical tools been? What are they today? What can we see of what they are to become? The assessment of the future is always chancy. Who tions of statistics are many—as our recently departed colleague, Walter Willcox, who was only 23 years younger than our association, pointed out nearly 30 years ago.

The assessment of the future is always chancy, Who (1) knows this better than a statistician? Yet experience has From the days when "statenkunde" meant the art of

is better than a statistician? Let experience has

John W. Tukey

EXPLORATORY DATA ANALYSIS

THE	RITTIDE	OF	DATA	ANALVSIS

1962

By JOHN W THERY

- Princeton University and Bell Telephone Laboratories
- I. General Considerations 1. Introduction
 - 2. Special growth areas
 - 3. How can new data analysis be initiated?
 - 4. Sciences, mathematics, and the arts

The Technical Tools of Statistics

1965 JOHN W. TUKEY

Princeton University and Bell Telephone Laboratories

We are suthered here to look both forward and back. What have our technical tools been? What are they today? What can we see of what they are to become? The assessment of the future is always chancy, Who knows this better than a statistician? Yet experience has tions of statistics are many-as our recently departed colleague, Walter Willcox, who was only 23 years younger than our association, pointed out nearly 30 years are.

From the days when "statenkunde" meant the art of

EPILOGUE

The wo prove to b doubtless If a gener quired on take. We one who is user, or (

TOWARDS A SYSTEM

1975

1967

Announcement by the Working Party on Statistical Computing GLIM (Generalized Linear Interactive Modelling Program)

1984

Present Position and Potential Developments: Some Personal Views Statistical Computing

By, J. A. NELDER

John W. Tukey

EXPLORATORY DATA ANALYSIS

THE FITTIRE OF DATA ANALYSIS¹

- 1. Introduction
- 3. How can new data analysis be initiated?

The Technical Tools of Statistics

JOHN W. TUKEY Princeton University and Bell Telephone Laboratories

We are gathered here to look both forward and back. What have our technical tools been? What are they today? What can we see of what they are to become? The assessment of the future is always chancy. Who knows this better than a statistician? Yet experience has tions of statistics are many-as our recently departed colleague, Walter Willcox, who was only 23 years younger than our association, pointed out nearly 30 years are.

From the days when "statenkunde" meant the art of

EPILOGUE

TOWARDS A SYSTEM

The wo prove to b doubtless If a gener onired on take. We one who is

user, or (

Announcement by the Working Party on Statistical Computing GLIM (Generalized Linear Interactive Modelling Program)

1984

1967

1967

1975

Present Position and Potential Developments: Some Personal Views Statistical Computing

By, J. A. NELDER

Some General Aspects of Statistical Computing

JOHN M. CHAMBERS

1980 Shiftital Computing

Statistical Computing: History and Trends

IOHN M CHAMBERS

and m

1999

oked clop-

Statistical Computing and Graphics

Computing With Data: Concepts and Challenges John CHAMBERS

Users, Programmers, and Statistical Software

John M. CHAMBERS

Statistical software provides essential support for statisticians and others who are analyzing data or doing research on new statistical techniques. Those supported typically regard themselves as "users" of the software, but as soon as they need to express their own ideas computationally, they in fact become "programmers." Nothing is more important for the success of statistical software than enabling this transition from user to programmer, and on to gradually more ambitious software design. What does the user need? How

1962

By JOHN W THERY

Princeton University and Bell Telephone Laboratories

I. General Considerations

2. Special growth areas

4. Sciences, mathematics, and the arts

1965

S

1976	1	John Chambers (Bell Labs), GCOS machine
1980	2	Unix, NA, for, while, brown book '84
1988	3	S3 classes, formulas, blue book '88, white book '92
1998	4	S4 classes, connections, green book '98

\rightarrow S-Plus

```
S
 1976
            John Chambers (Bell Labs), GCOS machine
 1980
            Unix, NA, for, while, brown book '84
 1988
        3
            S3 classes, formulas, blue book '88, white book '92
 1998
        4
            S4 classes, connections, green book '98
```

S-Plus

. . .

```
1988
       1
             Douglas Martin (U Washington)
             Statistical Sciences merge with Mathsoft
1995
             trellis
       3.3
1996
       3.4
             nlme
. . .
2001
       6
             S4 classes, Mathsoft becomes Insightful
             R packages, Tibco buys Insightful
```

$S \rightarrow S$ -Plus $\rightarrow R$

R		
1993	beta	Ross Ihaka & Robert Gentleman (U Auckland),
		paper in J. Comput. Graph. Stat. '96
1997	0.5	core team, CRAN
2000	1.0	

$S \rightarrow S$ -Plus $\rightarrow R$

R		
1993	beta	Ross Ihaka & Robert Gentleman (U Auckland), paper in J. Comput. Graph. Stat. '96
1997	0.5	core team, CRAN
2000	1.0	
2001	1.3	nlme
	1.4	S4 classes, mgcv
2002	1.5	lattice, Sweave
	1.6	namespace

$S \rightarrow S$ -Plus $\rightarrow R$

R		
1993	beta	Ross Ihaka & Robert Gentleman (U Auckland), paper in J. Comput. Graph. Stat. '96
1997	0.5	core team, CRAN
2000	1.0	
2001	1.3	nlme
	1.4	S4 classes, mgcv
2002	1.5	lattice, Sweave
	1.6	namespace
2005	2.1	UTF-8
2009	2.9	Matrix
2010	2.12	reference classes
2011	2.14	parallel computations, byte compilation

$\mathsf{S} \; o \; \mathsf{S} ext{-Plus} \; o \; \mathsf{R}$

```
R
               Ross Ihaka & Robert Gentleman (U Auckland),
 1993
        beta
               paper in J. Comput. Graph. Stat. '96
 1997
        0.5
               core team, CRAN
 2000
        1.0
 2001
        1.3
               nlme
        1.4
               S4 classes, mgcv
 2002
        1.5
               lattice, Sweave
        1.6
               namespace
               UTF-8
 2005
        2.1
        2.9
               Matrix
 2009
               reference classes
 2010
        2.12
 2011
        2.14
               parallel computations, byte compilation
```

User Interface

Emacs (ESS 1989), Tinn-R (2005), RStudio (2011), etc.

1997 www.r-project.org (Vienna)

2000 cran.r-project.org, 10 mirrors on four continents

1997 www.r-project.org (Vienna)
2000 cran.r-project.org, 10 mirrors on four continents

Packages

boot, coda, MASS, Imtest, nlme, rpart, tseries
ellipse, Matrix, mgcv, xtable
car, DBI, gdata, gplots, gtools, lattice, scatterplot3d

1997 www.r-project.org (Vienna)2000 cran.r-project.org, 10 mirrors on four continents

Packages

boot, coda, MASS, Imtest, nlme, rpart, tseries
ellipse, Matrix, mgcv, xtable
car, DBI, gdata, gplots, gtools, lattice, scatterplot3d
lme4, maps
rgl
gmt, plotMCMC, reshape2, sp

```
1997 www.r-project.org (Vienna)
2000 cran.r-project.org, 10 mirrors on four continents
```

Packages

```
boot, coda, MASS, Imtest, nlme, rpart, tseries
1999
2000
       ellipse, Matrix, mgcv, xtable
2001
       car, DBI, gdata, gplots, gtools, lattice, scatterplot3d
2003
       Ime4, maps
2004
       rgl
       gmt, plotMCMC, reshape2, sp
2005
2006
       data.table, ggplot2
2008
       plyr, Rcpp, roxygen2
2009
       stringr
2012
       knitr
2014
       dplyr, r2d2
```


Hafró	(Marine Research Institute)	
1989	S-Plus used in research GS, GÖ	
1992	S-Plus beta tests in cooperation w/Statistical Sciences	GS, G
	geo collection of functions to draw maps, course нв	
2002	geo S-Plus library нв	
	R installed on Linux and Solaris, later on Windows GÖ	

Hafró	(Marine Research Institute)
1989	S-Plus used in research GS, GÖ
1992	S-Plus beta tests in cooperation w/Statistical Sciences GS, GÖ
	geo collection of functions to draw maps, course HB
2002	geo S-Plus library нв
	R installed on Linux and Solaris, later on Windows GÖ
2007	geo R package, R usage increases нв
2010	staff encouraged to switch to R, course AM, HB
	standardized setup of libraries (core/site/user) GÖ, ÁM
	ora (R↔Oracle interface) ^{AM}
	hafroAssmt (basic tools for stock assessment) AM, SPJ, HB
2011	S-Plus license expires

Hafró	(Marine Research Institute)
1989	S-Plus used in research GS, GÖ
1992	S-Plus beta tests in cooperation w/Statistical Sciences GS, GÖ
	geo collection of functions to draw maps, course нв
2002	geo S-Plus library нв
	R installed on Linux and Solaris, later on Windows GÖ
2007	geo R package, R usage increases нв
2010	staff encouraged to switch to R, course AM, HB
	standardized setup of libraries (core/site/user) GÖ, ÁM
	ora (R↔Oracle interface) ^{ÁM}
	hafroAssmt (basic tools for stock assessment) AM, SPJ, HB
2011	S-Plus license expires
2013	R source repository with version control GÖ, ÁM
	package repository for in-house deployment дö, нв, sьл
	literate data analysis in stock assessment EH
2014	hafroDB (basic tools for database) AM, SPJ
	paper in Tölvumál on literate programming AM, SPJ

```
HÍ (University of Iceland)

1991 S-Plus used in research EÁ

1992 S-Plus used in teaching EÁ

1997 R used in research HT

1999 R used in teaching HT

2003 paper in RAUST on free software HT

2011 ctarma on CRAN HT

2014 Icelandic R User Group AHJ, BPE, SHL
```

```
HÍ (University of Iceland)
 1991 S-Plus used in research FA
 1992 S-Plus used in teaching EÁ
 1997 R used in research HT
 1999 R used in teaching HT
 2003
        paper in RAUST on free software HT
 2011
        ctarma on CRAN HT
 2014
        Icelandic R User Group AHJ, BPE, SHL
Vedurstofan (Icelandic Meteorological Office)
 1995
        S-Plus used in research TJ
 2004
        R usage increases HB, TJ
 2006 stinepack on CRAN TJ, HB
 2007 7 in-house packages: нв. тл
        - automatic computations on data streams
        - automatic updates of tables and plots
```

```
HÍ (University of Iceland)
 1991 S-Plus used in research FA
 1992 S-Plus used in teaching EÁ
 1997 R used in research HT
 1999 R used in teaching HT
 2003
        paper in RAUST on free software HT
 2011
        ctarma on CRAN HT
 2014
        Icelandic R User Group AHJ, BPE, SHL
Vedurstofan (Icelandic Meteorological Office)
 1995 S-Plus used in research TJ
 2004
        R usage increases нв. тл
 2006 stinepack on CRAN TJ, HB
 2007 7 in-house packages: нв. тл
        - automatic computations on data streams
        - automatic updates of tables and plots
```

... and many more institutes

Some Pioneers

First Users and Mentors

 $Gunnar \ Stefánsson \qquad \mathsf{Hafr} \acute{\mathsf{o}} \to \mathsf{H} \acute{\mathsf{l}} \ (\mathsf{statistics})$

Einar Árnason HÍ (biometry)

 $Helgi\ T\'omasson \qquad \qquad {\tt H\'I}\ ({\tt econometry})$

Some Pioneers

First Users and Mentors

 $Gunnar \ Stefánsson \qquad \mathsf{Hafr} \acute{\mathsf{o}} \to \mathsf{H} \acute{\mathsf{l}} \ (\mathsf{statistics})$

Einar Árnason HÍ (biometry)

Helgi Tómasson HÍ (econometry)

Others

Gunnar Örvarsson, Höskuldur Björnsson Hafró

Árni Magnússon UW → Hafró

Tómas Jóhannesson, Halldór Björnsson Veðurstofan

Gunnlaugur Þór Briem DataMarket

Sigurður Þ Jónsson, Einar Hjörleifsson Hafró

Anna H Jónsdóttir, Bjarki Þ Elvarsson, Sigrún H Lund HÍ (statistics)

Some Pioneers

First Users and Mentors

Gunnar Stefánsson Hafró \rightarrow HÍ (statistics)

Einar Árnason HÍ (biometry)

Helgi Tómasson HÍ (econometry)

Others

Gunnar Örvarsson, Höskuldur Björnsson Hafró

Árni Magnússon UW → Hafró

Tómas Jóhannesson, Halldór Björnsson Veðurstofan

Gunnlaugur Þór Briem DataMarket

Sigurður Þ Jónsson, Einar Hjörleifsson Hafró

Anna H Jónsdóttir, Bjarki Þ Elvarsson, Sigrún H Lund HÍ (statistics)

... and many others

Teaching and Learning

• Extremely valuable if new students know some programming

Teaching and Learning

• Extremely valuable if new students know some programming

Takes many years to become proficient

Teaching and Learning

Extremely valuable if new students know some programming

Takes many years to become proficient

How did kids learn programming 20–30 years ago?

Teaching and Learning

Extremely valuable if new students know some programming

Takes many years to become proficient

How did kids learn programming 20–30 years ago?

• What about today?

1983 Basic

1983 1993 Basic Pascal

1983 1993 1995Basic Pascal S

1983 1993 1995 1997 Basic Pascal S Java

1983 1993 1995 1997 2001 Basic Pascal S Java C++

 1983
 1993
 1995
 1997
 2001
 2003

 Basic
 Pascal
 S
 Java
 C++
 Lisp

 1983
 1993
 1995
 1997
 2001
 2003

 Basic
 Pascal
 S
 Java
 C++
 Lisp


```
1995 S-Plus 3 HÍ (Einar Árnason)
1997 S-Plus 4 Hafró (Gunnar Stefánsson)
1999 S-Plus 5 UW (Adrian Raftery)
```

```
1995 S-Plus 3 HÍ (Einar Árnason)
1997 S-Plus 4 Hafró (Gunnar Stefánsson)
1999 S-Plus 5
                  UW (Adrian Raftery)
2001
                  test R
       1.2
2002
       1.4
                  switch to R
       1.7
                  Args, env, is.what, keep, II, rich.colors (gdata, gplots)
2003
                  cumuplot (coda)
       1.8
2004
       1.9
                  bxp (graphics)
```

```
1995 S-Plus 3 Hİ
                     (Einar Árnason)
1997 S-Plus 4 Hafró (Gunnar Stefánsson)
1999 S-Plus 5
                  UW
                      (Adrian Raftery)
2001
                  test R
       1.2
2002
       1.4
                  switch to R
       1.7
2003
                  Args, env, is.what, keep, II, rich.colors (gdata, gplots)
                  cumuplot (coda)
       1.8
2004
       1.9
                  bxp (graphics)
                  gmt, plotMCMC, scape
2005
       2.1
```

```
1995 S-Plus 3 Hİ
                     (Einar Árnason)
1997 S-Plus 4 Hafró
                        (Gunnar Stefánsson)
1999 S-Plus 5
                  UW
                      (Adrian Raftery)
2001
                  test R
       1.2
2002
       1.4
                  switch to R
2003
       1.7
                  Args, env, is.what, keep, II, rich.colors (gdata, gplots)
                  cumuplot (coda)
       1.8
2004
       1.9
                  bxp (graphics)
                  gmt, plotMCMC, scape
2005
       2.1
2010
       2.10
                  ora, aggregate.formula (stats)
       2.11
                  hafroAssmt
2014
       3.0
                  r2d2
       3.1
                  hafroDB, ASCIIfy (gtools)
```

```
1995 S-Plus 3 HÍ (Einar Árnason)
1997 S-Plus 4 Hafró (Gunnar Stefánsson)
1999 S-Plus 5 UW (Adrian Raftery)
2001 1.2
                 test R
2002 1.4
                 switch to R
                 Args, env, is.what, keep, II, rich.colors (gdata, gplots)
2003 1.7
                 cumuplot (coda)
       1.8
2004
       1.9
                 bxp (graphics)
                 gmt, plotMCMC, scape
2005
       2.1
2010
       2.10
                 ora, aggregate.formula (stats)
       2.11
                 hafroAssmt
2014
       3.0
                 r2d2
       3.1
                 hafroDB, ASCIIfy (gtools)
```


Character Encoding

Example: b

Encoding	Bits per char	Charset	Code	Byte
ASCII (1963)	7	127		
Latin-1 (1985)	8	255	fe	fe
UTF-8 (1993)	8/16/32	>100 000	00fe	c3 b3

Tools

```
Encoding get
  x <- "porramatur"
  Encoding(x) # latin1 or UTF-8</pre>
```

Tools

```
Encoding get
    x <- "porramatur"
    Encoding(x) # latin1 or UTF-8

iconv, enc2utf8 set
    y <- iconv(x, to="UTF-8")
    z <- enc2utf8(x)</pre>
```

Tools

```
Encoding get
   x <- "borramatur"
   Encoding(x) # latin1 or UTF-8
iconv. enc2utf8 set
   y \leftarrow iconv(x, to="UTF-8")
   z \le enc2utf8(x)
ASCIIfy gtools
   y <- ASCIIfy(x, bytes=1) => \xfeorramatur
   z <- ASCIIfy(x, bytes=2)
                                => \u00feorramatur
```

Configuration

```
Bash
    export LANG=is_IS.UTF-8

Emacs
    (setq-default buffer-file-coding-system 'utf-8)
    (prefer-coding-system 'utf-8)

R
    getOption("encoding") # native.enc
    read.table("x.dat", fileEncoding="latin1")
    write.table(x, "x.dat", fileEncoding="UTF-8")
```

Configuration

```
Bash
   export LANG=is_IS.UTF-8
Fmacs
    (setq-default buffer-file-coding-system 'utf-8)
    (prefer-coding-system 'utf-8)
R
   getOption("encoding") # native.enc
   read.table("x.dat", fileEncoding="latin1")
   write.table(x, "x.dat", fileEncoding="UTF-8")
Sweave
   R CMD Sweave --encoding=UTF-8 x.Rnw
   Sweave("x.Rnw", encoding="UTF-8")
LATEX
    \usepackage[utf8]{inputenc}
```

Configuration

```
Bash
   export LANG=is_IS.UTF-8
Fmacs
    (setq-default buffer-file-coding-system 'utf-8)
    (prefer-coding-system 'utf-8)
R
   getOption("encoding") # native.enc
   read.table("x.dat", fileEncoding="latin1")
   write.table(x, "x.dat", fileEncoding="UTF-8")
Sweave?
   R CMD Sweave --encoding=UTF-8 x.Rnw
   Sweave("x.Rnw", encoding="UTF-8")
LATEX
    \usepackage[utf8]{inputenc}
```

Sweave

Literate Data Analysis

```
\documentclass[a4paper.twocolumn.12pt](article)
\usepackage[icelandic](babel)
\usepackage[noae,nogin]{Sweave}
\usepackage[utf8](inputenc)
\usepackage[T1](fontenc)
\begin(document)
<cecho+FALSE>>=
slod <- paste0("http://data.hafro.is/assmt/", ar, "/saithe/summary.csv")</pre>
ufsi <- read.csv(slod)
ufsi <- ufsi[!is.na(ufsi$SSB),]
nuna <- ufs1$SSB[ufs1$Year==ar
medaltal <- round(mean(ufsi$SSB))
Hrygningarstofn ufsa í ársbyrjum \Sexpr(ar) er metinm \Sexpr(nuna) þúsund tonn, en langtímameðaltal frá 1980 er \Sexpr(medaltal) búsund tonn (siá mynd).
<<echo+FALSE, fig=TRUE, height=3.2, width=3.2>>=
barolot(ufsi$SSB, names-ufsi$Year, col="peru", border="peru", space=0.
         ylab="Hrygningarstofn (bûs. t)")
abline(h-medaltal)
\end{document}
```


Literate Data Analysis

Tools: Sweave, knitr

Paper: Tölvumál (autumn 2014, in press)

Literate Data Analysis

```
\documentclass[a4paper,twocolumn,12pt]{article}
\usepackage[icelandic]{babel}
\usepackage[noae,nogin]{Sweave}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\begin{document}
<<echo=FALSE>>=
ar <- 2014
slod <- paste0("http://data.hafro.is/assmt/", ar, "/saithe/summarv.csv")</pre>
ufsi <- read.csv(slod)
ufsi <- ufsi[!is.na(ufsi$SSB),]
nuna <- ufsi$SSB[ufsi$Year==ar]
medaltal <- round(mean(ufsi$SSB))
Hrygningarstofn ufsa í ársbyrjun \Sexpr{ar} er metinn \Sexpr{nuna} þúsund
tonn, en langtímameðaltal frá 1980 er \Sexpr{medaltal} þúsund tonn (sjá mynd).
<<echo=FALSE, fig=TRUE, height=3.2, width=3.2>>=
barplot(ufsi$SSB, names=ufsi$Year, col="peru", border="peru", space=0,
        vlab="Hrvgningarstofn (bús. t)")
abline(h=medaltal)
\end{document}
```

Literate Data Analysis

```
\documentclass[a4paper.twocolumn.12pt]{article}
\usepackage[icelandic]{babel}
\usepackage[noae,nogin]{Sweave}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\begin{document}
<<echo=FALSE>>=
ar <- 2014
slod <- paste0("http://data.hafro.is/assmt/", ar, "/saithe/summarv.csv")</pre>
ufsi <- read.csv(slod)
ufsi <- ufsi[!is.na(ufsi$SSB),]
nuna <- ufsi$SSB[ufsi$Year==ar]
medaltal <- round(mean(ufsi$SSB))
Hrygningarstofn ufsa í ársbyrjun \Sexpr{ar} er metinn \Sexpr{nuna} þúsund
tonn, en langtímameðaltal frá 1980 er \Sexpr{medaltal} þúsund tonn (sjá mynd).
<<echo=FALSE, fig=TRUE, height=3.2, width=3.2>>=
barplot(ufsi$SSB, names=ufsi$Year, col="peru", border="peru", space=0,
        vlab="Hrvgningarstofn (bús. t)")
abline(h=medaltal)
\end{document}
```

Hrygningarstofn ufsa í ársbyrjun 2014 er metinn 150 þúsund tonn, en langtímameðaltal frá 1980 er 121 þúsund tonn (sjá mynd).

Icelandic Contributions to Core R Functions

boxplot graphical parameters 2004

help(bxp)

widths boxwex, staplewex, outwex

box boxlty, boxlwd, boxcol, boxfill

median medlty, medlwd, medpch, medcex, medcol, medbg

whiskers whisklty, whisklwd, whiskcol quartiles staplelty, staplelwd, staplecol

outliers outlty, outlwd, outpch, outcex, outcol, outbg

Icelandic Contributions to Core R Functions

boxplot graphical parameters 2004

help(bxp)

```
widths boxwex, staplewex, outwex box boxltv. boxlwd. boxcol. boxfill
```

median medlty, medlwd, medpch, medcex, medcol, medbg

whiskers whisklty, whisklwd, whiskcol quartiles staplelty, staplelwd, staplecol

outliers outlty, outlwd, outpch, outcex, outcol, outbg

aggregate formula interface 2010

help(aggregate.formula)

```
aggregate(weight \sim feed, chickwts, mean) aggregate(breaks \sim wool+tension, warpbreaks, median) aggregate(cbind(Ozone,Temp) \sim Month, airquality, max) aggregate(. \sim Species, iris, mean) aggregate(len \sim ., ToothGrowth, mean) ag <- aggregate(len \sim ., ToothGrowth, mean) xtabs(len \sim ., ag)
```

Icelandic Contributions to Core R Functions

```
boxplot graphical parameters 2004 — with Martin Mächler
```

help(bxp)

```
widths boxwex, staplewex, outwex box boxlty, boxlwd, boxcol, boxfill
```

median medlty, medlwd, medpch, medcex, medcol, medbg

whiskers whisklty, whisklwd, whiskcolquartiles staplelty, staplelwd, staplecol

outliers outlty, outlwd, outpch, outcex, outcol, outbg

aggregate formula interface 2010 — with Kurt Hornik

help(aggregate.formula)

```
aggregate(weight \sim feed, chickwts, mean) aggregate(breaks \sim wool+tension, warpbreaks, median) aggregate(cbind(Ozone,Temp) \sim Month, airquality, max) aggregate(. \sim Species, iris, mean) aggregate(len \sim ., ToothGrowth, mean) ag <- aggregate(len \sim ., ToothGrowth, mean) xtabs(len \sim ., ag)
```

Icelandic Packages on CRAN

2005	95 gmt draw maps		ÁM
	plotMCMC	plot MCMC chains	ÁM, IS
	scape	stock assessment	ÁM
2006	stinepack	interpolation	TJ, HB

Icelandic Packages on CRAN

2005	gmt	draw maps	ÁM
	plotMCMC	plot MCMC chains	ÁM, IS
	scape	stock assessment	ÁM
2006	stinepack	interpolation	TJ, HB
2010	ora	Oracle interface	ÁM
	rdatamarket	DataMarket interface	GÞB
2011	ctarma	time series analysis	НТ
2014	r2d2	bivariate conf regions	ÁM, JB

The Saga

Prehistory, settlement, people

Icelandic

Character encoding, literate data analysis

Contributions

Core functions, CRAN packages

1600 - 1970

1970 onwards

The Saga

Prehistory, settlement, people

Icelandic

Character encoding, literate data analysis

Contributions

Core functions, CRAN packages

Mystery Guest

?

Mystery Guest

Mystery Guest

.989	S-Plus used in research GS, GÖ
.992	S-Plus beta tests in cooperation with Statistical Sciences GS, GÖ
2002	R installed on Linux and Solaris, later on Windows GÖ
2010	standardized setup of libraries (core/site/user) GÖ, ÁM
2013	source repository with version control GÖ, ÁM
	package repository for in-house deployment GÖ, SÞJ, НВ

Mystery Guest

Gunnar Örvarsson

```
S-Plus used in research as co
1989
       S-Plus beta tests in cooperation with Statistical Sciences GS, GÖ
       R installed on Linux and Solaris, later on Windows GO
2002
       standardized setup of libraries (core/site/user) GÖ, ÁM
2010
2013
       source repository with version control GÖ, ÁM
       package repository for in-house deployment GÖ, SPJ, HB
2014 ?
```

CRAN Using

CRAN Mirror in Iceland

cran.hafro.is

Gunnar Örvarsson

gunnaro@hafro.is

MRI, 28 August 2014

CRAN

Main site: http://cran.r-project.org
 Wirtschaftsuniversität Wien, Austria

98 CRAN mirrors in 47 countries

CRAN

Main site: http://cran.r-project.org
 Wirtschaftsuniversität Wien, Austria

• 98 CRAN mirrors in 47 countries

Setup

Current disk space requirement: 113 GB

Apache web server, rsync synchronization

Easy installation in a GNU/Linux based environment

CRAN Iceland

• http://cran.hafro.is

Location: MRI Server Room, Skúlagata 4

CRAN Iceland

http://cran.hafro.is
 Location: MRI Server Room, Skúlagata 4

The Icelandic University Research Network (RHnet)
 MRI – RHnet link: 10 Gb/s

CRAN Iceland

• http://cran.hafro.is

Location: MRI Server Room, Skúlagata 4

The Icelandic University Research Network (RHnet)
 MRI – RHnet link: 10 Gb/s

Hardware

IBM BladeCenter-H 3 × HS22v blades 6 CPUs, 432 GB memory Storwize V7000 Storage System IBM 249824E SAN Switches VMware vSphere 5.5 Enterprise CentOS Linux 6.5, 64-bit

MRI Server

MRI Server

Apache Virtual Host

Nightly updates using cron

```
rsync -rtlz -delete cran.r-project.org::CRAN /opt/cran
```

Using the Mirror

Download R from local mirror

Open http://cran.hafro.is in web browser

Using the Mirror

Download R from local mirror

Open http://cran.hafro.is in web browser

Download packages from local mirror

Manually: select Iceland (cran.hafro.is) each time

Automatically: customize .Rprofile in home directory to options(repos="http://cran.hafro.is")

Using the Mirror

Download R from local mirror

Open http://cran.hafro.is in web browser

Download packages from local mirror

Manually: select Iceland (cran.hafro.is) each time

Automatically: customize .Rprofile in home directory to options(repos="http://cran.hafro.is")

- Benefits
 - fast download
 - 2 reduce load from mirrors in other countries (.no .dk .uk)
 - update R without affecting download limit