Лабораторная работа 3.4.2: Закон Кюри-Вейсса

Дроздов Т. А. Кириллов М. А. Ахмадеева Д. М. Б03-202

09.2023

Мы исследовали зависимостьпериода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотометру, а температуру T - по показаниям дисплея термостата и цифрового вольтметра. Все полученные данные мы записали в таблицу. Так же мы переписали с установки температурный коэффициент термопары k и период колебаний τ_0 без образца.

T,°C	V, was	T, seec	Jo = 6,9092 unc
14,3	5	4,9180	Kny = 24 °C/uB
16,13	2	7,8#5	
17,13	1	4,828	
18,1	1	7,167	
19,11	1	7,619	
20,11	0	7,376	Sprigot Ituragen
25, 12	-2	7,174	beginnet Manue
30,15	-4	7,076	Exmagela luana
35,07	-5	7,038	01.03.2023

Далее мы рассчитали температуру Т образца с учётом термопары:

$$T = T_0 + k * V$$

Затем мы построили график зависимости

$$f(T) = \frac{1}{\tau^2 - \tau_0^2}$$

После этого мы экстраполировали полученную пряму к оси абсцисс и определили положение феррамагнитной и парамагнитной точек Кюри.

Погрешность точек Кюри расчитывалась по формуле

$$\sigma\Theta = \sqrt{\sigma T^2 + \sigma V^2}$$

Полученные значения точек Кюри составляют:

$$\Theta_p = (289.74 \pm 7.55)^{\circ} C$$

$$\Theta_k = (279.63 \pm 22.98)^{\circ}C$$