Examen la Calcul numeric

7 iunie 2024

Setul 1

Problema 1. Presupunem că ecuația $f(x) = 0, f \in C^3(I)$ are o rădăcină simplă α și $f''(\alpha) = 0$ și $f'''(\alpha) \neq 0$. Arătați că în acest caz metoda secantei converge pătratic. (2p)

Problema 2. Considerăm formula de cuadratură Gauss-Cebîşev de speța I

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) dt = \sum_{k=1}^{n} \frac{\pi}{n} f(t_k) + R(f).$$
 (1)

(a) Demonstrați că polinoamele Cebîsev de speța I verifică relația de ortogonalitate discretă

$$(T_k, T_\ell) = \begin{cases} 0, & k \neq \ell \\ n+1, & k=\ell=0 \\ \frac{n+1}{2}, & k=\ell \neq 0 \end{cases}$$

unde produsul scalar este dat de

$$(u,v) = \sum_{i=0}^{n} u(x_k)v(x_k),$$

iar x_k sunt rădăcinile polinomului T_{n+1} . (*Indicație*: puteți folosi (1).) (1p)

(b) Se consideră aproximanta discretă în sensul celor mai mici pătrate $f(x) \approx \varphi(x) = \frac{c_0}{2} T_0(x) + \sum_{k=0}^{n} c_k T_k(x)$, relativă la sistemul ortogonal $(T_k)_{k=\overline{0,n}}$ și produsul scalar de la punctul (a). Arătaţi că

$$c_j = \frac{2}{n+1} \sum_{k=0}^{n} f(x_k) T_j(x_k).$$

(1p)

(c) Calculați $\int_{-1}^{1} T_k(x) dx$. (1p)

(d) Integrând termen cu termen aproximația de la punctul (b) și folosind rezultatul de la (c) stabiliți formula de cuadratura

$$\int_{-1}^{1} f(x)dx \approx \sum_{\substack{k=0\\k \text{ par}}} \frac{2c_k}{1 - k^2}.$$

(1p)

(e) Implementați metoda de la punctul (d) în MATLAB ((pentru o precizie dată) și calculați

$$\int_{-1}^{1} e^x \sin x^2 dx.$$

(3p)

1 Setul 2

Problema 3. (a) Determinați o metodă pentru rezolvarea ecuației neliniare folosind interpolarea inversă Lagrange de gradul II, in forma Newton. (1p)

(b) Determinați ordinul de convergență al metodei. (1p)

Problema 4. Considerăm formula de cuadratură Gauss-Cebîşev-Lobatto de speța I

$$\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) dt = \frac{\pi}{2(n+1)} [f(-1) + f(1)] + \frac{\pi}{n+1} \sum_{k=1}^{n} f\left(\cos\frac{n+1-k}{n+1}\right) + R(f) \quad (2)$$

(a) Demonstrați că polinoamele Cebîsev de speța I verifică relația de ortogonalitate discretă

$$(T_k, T_\ell) = \begin{cases} 0, & k \neq \ell \\ n, & k = \ell = 0 \\ \frac{n}{2}, & k = \ell \neq 0 \end{cases}$$

unde produsul scalar este dat de

$$(u,v) = \frac{1}{2}u(x_0)v(x_0) + \sum_{i=1}^{n-1}u(x_k)v(x_k) + \frac{1}{2}u(x_n)v(x_n),$$

iar x_k sunt extremele polinomului T_n , $x_k = \cos \frac{k\pi}{n}$, $k = 0, \ldots, n$. (Indicație: puteți folosi (2).) (1p)

(b) Se consideră aproximanta discretă în sensul celor mai mici pătrate $f(x) \approx \varphi(x) = \frac{c_0}{2} T_0(x) + \sum_{k=0}^n c_k T_k(x)$, relativă la sistemul ortogonal $(T_k)_{k=\overline{0,n}}$ și produsul scalar de la punctul (a). Arătaţi că

$$c_j = \frac{2}{n} \sum_{k=0}^{n} f(x_k) T_j(x_k).$$

(1p)

- (c) Calculați $\int_{-1}^{1} T_k(x) dx$. (1p)
- (d) Integrând termen cu termen aproximația de la punctul (b) și folosind rezultatul de la (c) stabiliți formula de cuadratura

$$\int_{-1}^{1} f(x)dx \approx \sum_{\substack{k=0\\k \text{ par}}} \frac{2c_k}{1 - k^2}.$$

(1p)

(e) Implementați metoda de la punctul (d) în MATLAB (pentru o precizie dată) și calculați

$$\int_{-1}^{1} e^x \cos x^2 dx.$$

(3p)