Содержание

1	Основная теорема об интеграле Лебега от ограниченных функций	3
2	Линейность и монотонность интеграла Лебега	3
3	Интеграл Лебега как предел последовательности интегралов от срезок	5
4	σ -аддитивность интеграла Лебега	6
5	Абсолютная непрерывность интеграла Лебега	7
6	Теорема Лебега о предельном переходе под знаком интеграла	7
7	Теорема Леви	8
8	Теорема Фату	8
9	Корректность определения интеграла Лебега по множеству бесконечной меры	8
10	Вычисление меры с помощью кратных интегралов	9
11	Мера подграфика. Теорема Фубини	10
12	Замена переменных в одномерном интеграле Лебега	11
13	Теорема о разложении	12
14	Замена переменных в кратном интеграле Лебега (локальная версия)	12
15	Замена переменных в кратном интеграле Лебега (глобальная версия)	12
16	Критерий интегрируемости по Риману	14
17	Лемма Витали	15
18	Суммируемость произвольной монотонной функции	15
19	Производная неопределённого интеграла Лебега	16
20	Абсолютная непрерывность и неопределённый интеграл Лебега	18
21	Свойства внешнего умножения антисимметрических полилинейных форм	19
22	Свойства операции внешнего дифференцирования дифференциальных форм	20
23	Градиент, ротор дивергенция, их свойства	21
24	Замена переменных в лифференциальных формах, её свойства	22

25 Лемма Пуанкаре	22
${f 26}$ Следствие из леммы Пуанкаре для векторных полей в ${\Bbb R}^3$	24
27 Теорема Стокса-Пуанкаре для стандартного куба	24
28 Дифференцирование форм на клетке, независимость от параметризации	ı 25
29 Теорема Стокса-Пуанкаре для клетки	25
30 Формула Гаусса-Остроградского	26
31 Формула Стокса. Формула Грина	26
32 Форма ориентированного объёма на клетке	27
33 Поверхностные интегралы 1-го и 2-го рода	28
34 Криволинейные интегралы 1-го и 2-го рода	29
35 Интегрирование форм по дифференцируемому многообразию	30
36 Формула Стокса-Пуанкаре для ориентируемого многообразия с краем	31

1 Основная теорема об интеграле Лебега от ограниченных функций

Определение 1.1. Пусть f — ограниченная измеримая функция, определённая на измеримом по Лебегу множестве E. Будем обозначать $m=\inf_{x\in E}f(x), M=\sup_{x\in E}f(x)$. Также Q — разбиение области значений функции f

Определение 1.2.

$$S(Q, f, \{t_i\}) := \sum_{i=1}^{N} f(t_i) \cdot \mu(E_i)$$

, где $E_i = \{x \in E : f(x) \in [y_{i-1}, y_i)\}$

Теорема 1.1. Если f – ограниченная измеримая на измеримом по Лебегу множестве $E \subset \mathbb{R}^n$ функция, то она интегрируема по Лебегу (суммируема) на E, причём

$$\int_{E} f d\mu(x) = \lim_{\Delta(Q) \to 0} S(Q, f, \{t_i\})$$

Это значит

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall Q \,\Delta(Q) < \delta \,\forall \{t_i\}, t_i \in E_i : \left| S(Q, f, \{t_i\}) - \int_E f d\mu(x) \right| < \varepsilon$$

Доказательство. Если $P: E = \bigsqcup_{i=1}^N E_i$, то $L(P,f) \leqslant S(Q,f,\{t_i\}) \leqslant U(P,f)$ – очевидно из определения интегральных сумм.

Кроме того,
$$U(P,f)-L(P,f)=\sum\limits_{i=1}^{N}(M_{i}-m_{i})\mu(E_{i})\leqslant\sum\limits_{i=1}^{N}(y_{i}-y_{i-1})\mu(E_{i})\leqslant\Delta(Q)\sum\limits_{i=1}^{N}\mu(E_{i})=\Delta(Q)\mu(E)$$
 Значит, $\delta:=\frac{\varepsilon}{\mu(E)}$

2 Линейность и монотонность интеграла Лебега

Лемма 2.1. Признак суммируемости:

Если f(x) суммируема на измеримом по Лебегу множестве $E \subset \mathbb{R}^n$ конечной меры, а F измерима на E и $\forall x \in E : |F(x)| \leq f(x)$, то F суммируема на E

Доказательство.

$$\forall P: \ E = \bigsqcup_{i=0}^{\infty} E_i; \ \ U(P,|F|) \leqslant U(P,f)$$

$$\forall \varepsilon > 0 \ \exists P \ \ U(P,|F|) \leqslant U(P,f) \leqslant \int_E f d\mu(x) + \varepsilon < +\infty$$

$$U(P,|F|) < +\infty \Rightarrow \int_E |F| d\mu(x) = \inf_P U(P,|F|) < \infty$$

Значит |F| суммируема, но мы знаем, что |F| суммируема $\Leftrightarrow F$ суммируема, так как $F = F^+ - F^-$; $|F| = F^+ + F^-$, и мы можем применить предыдущее рассуждение к функциям F^\pm , которые тоже окажутся суммируемы.

- **Теорема 2.1.** 1. Если f_1, f_2 суммируемы на измеримом множестве $E \subset \mathbb{R}^n$ конечной меры, то $\forall c_1, c_2 \in \mathbb{R}: c_1 f_1 + c_2 f_2$ суммируема на E, причём $\int_E (c_1 f_1 + c_2 f_2) d\mu(x) = c_1 \int_E f_1 d\mu(x) + c_2 \int_E f_2 d\mu(x)$
 - 2. Если f_1, f_2 суммируемы на измеримом множестве $E \subset \mathbb{R}^n$ конечной меры $u \ \forall x \in E: f_1(x) \leqslant f_2(x), \ mo \int_E f_1 d\mu(x) \leqslant \int_E f_2 d\mu(x)$

Доказательство. 1. Пусть f_1, f_2 – ограниченные измеримые функции, тогда

$$\forall P: E = \bigsqcup_{i=1}^{N} E_i: L(P, f_1) + L(P, f_2) \leqslant L(P, f_1 + f_2) \leqslant U(P, f_1 + f_2) \leqslant U(P, f_1) + U(P, f_2)$$

$$\forall \varepsilon > 0 \,\exists P_1, P_2 : \, U(P_i, f_i) - L(P_i, f_i) < \varepsilon; \, i = 1, 2$$

Пусть
$$P = P_1 \sqcup P_2$$
, тогда $U(P, f_1) + U(P, f_2) - L(P, f_1) - L(P, f_2) < 2\varepsilon$

Получим, что $\forall \varepsilon > 0$: $\left| \int_E (f_1 + f_2) d\mu(x) - \left(\int_E f_1 d\mu(x) + \int_E f_2 d\mu(x) \right) \right| < 2\varepsilon$, так как эти интегралы будут зажаты между соответствующими верхними и нижними суммами Дарбу.

Предыдущее неравенство верно $\forall \varepsilon>0$, а значит $\int_E (f_1+f_2)d\mu(x)=\int_E f_1d\mu(x)+\int_E f_2d\mu(x)$

2. Пусть f_1, f_2 – неотрицательные суммируемые

Фактически, всё остаётся тем же самым, только $\forall P: E = \coprod_{i=0}^{\infty} E_i$, причём $E_0^{(i)} := \{x \in E: f_i(x) = +\infty\}, i = 1, 2$. Тогда, очевидно, $f_1(x) + f_2(x) = +\infty \Leftrightarrow x \in E_0^{(1)} \cup E_0^{(2)} =: E_0$ Каждая из функций суммируема, значит $\mu(E_0^{(i)}) = 0$, i = 1, 2. Тогда $\mu(E_0) \leqslant \mu(E_0^{(1)}) + \mu(E_0^{(2)}) = 0$, значит $\mu(E_0) = 0$ и у нас всё получилось.

3. Рассмотрим случай умножения на константу

$$\forall c>0:\ U(P,cf)=cU(P,f);\ L(P,cf)=cL(P,f)\Rightarrow \int_E cfd\mu(x)=c\int_E fd\mu(x)$$

$$\forall c<0:\ U(P,cf)=cL(P,f);\ L(P,cf)=cU(P,f)\Rightarrow \int_E cfd\mu(x)=c\int_E fd\mu(x)$$

4. Пусть f_1, f_2 – произвольные суммируемые функции.

 $|f_1(x) + f_2(x)| \le |f_1(x)| + |f_2(x)| \Rightarrow$ По предыдущей лемме $|f_1(x) + f_2(x)|$ суммируема

Тогда $f_1 = f_1^+ - f_1^-, f_2 = f_2^+ - f_2^- \Rightarrow f_1 + f_2 = (f_1 + f_2)^+ - (f_1 + f_2)^-$. Сложим части, перегруппируем и приравняем:

$$f_1^+ + f_2^+ + (f_1 + f_2)^- = f_1^- + f_2^- + (f_1 + f_2)^+$$

удовлетворяет пункту про неотрицательные суммируемые, значит

$$\int_{E} f_{1}^{+} d\mu(x) + \int_{E} f_{2}^{+} d\mu(x) + \int_{E} (f_{1} + f_{2})^{-} d\mu(x) = \int_{E} f_{1}^{-} d\mu(x) + \int_{E} f_{2}^{-} d\mu(x) + \int_{E} (f_{1} + f_{2})^{+} d\mu(x)$$

Перетасуем слагаемые и получим требуемое равенство.

5. Монотонность доказывается очевидно: рассмотрим неотрицательную функцию $f_2 - f_1$.

3 Интеграл Лебега как предел последовательности интегралов от срезок

Определение 3.1. Назовём срезкой

$$N \in \mathbb{N}: \ f_{[N]}(x) = \begin{cases} f(x), f(x) \leqslant N \\ N, f(x) > N \end{cases}$$

Теорема 3.1. Если $\forall x \in E \subset \mathbb{R}^n$: $f(x) \geqslant 0$ – измеримая функция, определённая на измеримом множестве конечной меры, то $\lim_{N \to \infty} \int_E f_{[N]} d\mu(x) = \int_E f d\mu(x)$

Доказательство.

$$\forall N \in \mathbb{N} : f_{[N]}(x) \leqslant f(x) \Rightarrow \int_{E} f_{[N]} d\mu(x) \leqslant \int_{E} f d\mu(x)$$
$$i := \lim_{N \to \infty} \int_{E} f_{[N]} d\mu(x); \quad i \leqslant \int_{E} f d\mu(x)$$

От противного: пусть

$$i < \int_E f d\mu(x) = \sup_P L(P, f) \Rightarrow \exists P_0 : i < L(P_0, f)$$

Рассмотрим $L(P_0, f) = \sum_{i=0}^{\infty} m_i \mu(E_i)$.

Пусть $\mu(E_0) > 0 \Rightarrow \forall x \in E_0$: $f_{[N]}(x) = N$. Тогда $\int_E f_{[N]} d\mu(x) \geqslant \int_{E_0} f_{[N]} d\mu(x) = N \mu(E_0)$ – неравенство выполнено по свойству конечной аддитивности, а интеграл раскрыли, так как это интеграл от константы.

Устремляя $N \to \infty$ получим, что $i=+\infty$, что противоречит с предположением, что $i<\int_E f d\mu(x)$. Значит $\mu(E_0)=0$.

Вернёмся к
$$L(P_0, f) = \sum_{i=0}^{\infty} m_i \mu(E_i) = \sum_{i=1}^{\infty} m_i \mu(E_i)$$
.

$$i < \sum_{i=1}^{\infty} m_i \mu(E_i) \Rightarrow \exists K : i < \sum_{i=1}^{K} m_i \mu(E_i)$$

$$N := \max(m_1, \dots, m_K) + 1; \ m_i = \inf_{x \in E_i} f(x) \Rightarrow m_i^{[N]} = \inf_{x \in E_i} f_{[N]}(x) = m_i$$

Тогда

$$\int_{E} f_{[N]} d\mu(x) \geqslant \sum_{i=1}^{K} \int_{E_{i}} f_{[N]} d\mu(x) \geqslant \sum_{i=1}^{K} m_{i}^{[N]} \mu(E_{i}) = \sum_{i=1}^{K} m_{i} \mu(E_{i})$$

Значит $i \geqslant \sum_{i=1}^{K} m_i \mu(E_i)$ – противоречие.

4 σ -аддитивность интеграла Лебега

Теорема 4.1. Если f суммируема на измеримом множестве $E \subset \mathbb{R}^n$ конечной меры $u \ E = \bigsqcup_{k=1}^\infty E_k, \ E_k$ — измеримы, то f суммируема на всех E_k , причём $\int_E f d\mu(x) = \sum_{k=1}^\infty \int_{E_k} f d\mu(x)$. Обратно, если f суммируема на всех E_k и $\sum_{k=1}^\infty \int_{E_k} |f| d\mu(x)$ сходится, то f суммируема на $E = \bigsqcup_{i=1}^\infty E_k$, причём $\int_E f d\mu(x) = \sum_{k=1}^\infty \int_{E_k} f d\mu(x)$

Доказательство. Пусть f – ограниченная и измеримая, $E=E^1\sqcup E^2$

$$\inf_{x \in E} f(x) = m = y_0 < y_1 < \ldots < y_N = M = \sup_{x \in E} f(x); \ Q = \{y_0, y_1, \ldots, y_N\}$$

$$\int_E f d\mu(x) = \lim_{\Delta(Q) \to 0} S(Q, f, \{t_i\}) = \lim_{\Delta(Q) \to 0} L(P, f) = \lim_{\Delta(Q) \to 0} U(P, f)$$

$$\int_E f d\mu(x) - \varepsilon < S(Q, f, \{t_i\}) = \sum_{i=1}^N f(t_i)\mu(E_i) < \int_E f d\mu(x) + \varepsilon$$

$$U(P, f) = \sum_{i=1}^N M_i \mu(E_i) = \sum_{i=1}^K M_i (\mu(E_i \cap E^1) + \mu(E_i \cap E^2)) \geqslant U(E^1)(P, f) + U(E^2)(P, f)$$
 где $U(E^j)(P, f) := \sum_{i=1}^N \sup_{x \in E_i \cap E^j} f(x)\mu(E_i \cap E^j)$
$$\int_E f d\mu(x) - \varepsilon \leqslant L(E^1)(P, f) + L(E^2)(P, f) \leqslant U(E^1)(P, f) + U(E^2)(P, f) \leqslant \int_E f d\mu(x) + \varepsilon$$

$$\int_E f d\mu(x) - \varepsilon \leqslant L(P, f) \leqslant U(P, f) \leqslant \int_E f d\mu(x) + \varepsilon$$

Зажав сумму интегралов и интеграл объединения, получим конечную аддитивность для ограниченной и измеримой f.

Пусть f — неотрицательная измеримая.

Для $f_{[N]}$ выполнено $\int_E f_{[N]} d\mu(x) = \int_{E_1} f_{[N]} d\mu(x) + \int_{E_2} f_{[N]} d\mu(x)$. Предположение о суммируемости функции f приводит к тому, что предел в левой части конечен, а значит предел в правой части также существует.

Пусть f – измеримая произвольного знака. Доказывается через $f = f^+ - f^-$.

Переходим к σ -аддитивности $E=\bigsqcup_{i=1}^{\infty}E_{i}$

Пусть f – ограничена и измерима на E и $|f| \leqslant M$.

$$\mu(E) = \sum_{i=1}^{\infty} \mu(E_i) \Rightarrow \exists K : \sum_{i=K+1}^{\infty} \mu(E_i) < \frac{\varepsilon}{2M}; \quad R_K := \bigsqcup_{i=K+1}^{\infty} E_i \Rightarrow \mu(R_k) < \frac{\varepsilon}{2M}, E = \left(\bigsqcup_{i=1}^K E_i\right) \sqcup R_K$$

$$\int_E f d\mu(x) = \sum_{i=1}^K \int_{E_i} f d\mu(x) + \int_{R_K} f d\mu(x); \quad \left|\int_{R_K} f d\mu(x)\right| \leqslant \int_{R_K} |f| d\mu(x) \leqslant M\mu(R_K) < \frac{\varepsilon}{2}$$
 Значит
$$\int_E f d\mu(x) = \lim_{K \to \infty} \sum_{i=1}^K \int_{E_i} f d\mu(x).$$

Пусть f – неотрицательная и суммируемая.

$$\int_E f d\mu(x) = \lim_{N \to \infty} \int_E f_{[N]} d\mu(x) \Rightarrow \exists N : \int_E f d\mu(x) - \varepsilon < \int_E f_{[N]} d\mu(x) = \sum_{i=1}^\infty \int_{E_i} f_{[N]} d\mu(x) < \int_E f d\mu(x) + \varepsilon$$

$$\exists K: \int_E f d\mu(x) - \varepsilon < \sum_{i=1}^K \int_{E_i} f_{[N]} d\mu(x) \leqslant \int_E f d\mu(x)$$

Устремляя $N \to \infty$ получим:

$$\exists K: \int_{E} f d\mu(x) - \varepsilon < \sum_{i=1}^{K} \int_{E_{i}} f d\mu(x) \leqslant \int_{E} f d\mu(x)$$

Пусть f – неотрицательная измеримая, тогда в обоих частях неравенства будет стремление к бесконечности.

Пусть f – произвольная суммируемая. Докажем через $f=f^+-f^-$

5 Абсолютная непрерывность интеграла Лебега

Теорема 5.1. Если f суммируема на измеримом $E \subset \mathbb{R}^n$ конечной меры, то $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall$ измеримого $e \subset E, \mu(e) < \delta : |\int_{\varepsilon} f d\mu(x)| < \varepsilon$

Доказательство. Пусть f – ограниченная и измеримая и $|f| \leqslant M$

Тогда $\left| \int_e f d\mu(x) \right| \leqslant \int_e |f| d\mu(x) \leqslant M\mu(e)$. Значит $\delta := \frac{\varepsilon}{M}$

Пусть f — неотрицательная и измеримая $\forall \varepsilon > 0 \ \exists N \ 0 \leqslant \int_E f d\mu(x) - \int_E f_{[N]} d\mu < \frac{\varepsilon}{2}$. Из предыдущего пункта $\exists e, \mu(e) < \delta : \int_e f_{[N]} d\mu(x) < \frac{\varepsilon}{2}$. Тогда $\int_e f d\mu(x) = \int_e (f - f_{[N]}) d\mu(x) + \int_e f_{[N]} d\mu(x) < \varepsilon$

Пусть f – произвольная измеримая. Найдём δ_1, δ_2 для f^+, f^- и для f возьмём $\min(\delta_1, \delta_2)$.

6 Теорема Лебега о предельном переходе под знаком интеграла

Теорема 6.1. Если f_m измеримые на множестве $E \subset \mathbb{R}^n$ конечной меры, $\lim_{m \to \infty} f_m = f$ почти всюду на E, $u \mid f_m(x) \mid \leqslant F(x)$ при почти всех $x \in E$ при всех $m \in \mathbb{N}$, где F суммируема на E, то f суммируема на E, причём $\int_E f d\mu(x) = \lim_{m \to \infty} \int_E f_m d\mu(x)$

Доказательство. Если $f_m \to f$ почти всюду, то $f_m \Rightarrow f$. Значит $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mu(\{x \in E : \|f_m(x) - f(x)\| \geqslant \varepsilon\} := E_m) = 0$. Значит $\forall \delta > 0 \ \exists M \in \mathbb{N} \ \forall m > M : \ \mu(E_m) < \delta$

Из условия вытекает, что $|f(x)| \leqslant F(x)$ при почти всех $x \in E$. Значит f - суммируемая на E.

$$\left| \int_{E} (f - f_m) d\mu(x) \right| \leqslant \int_{E_m} |f_m - f| d\mu(x) + \int_{E \backslash E_m} |f_m - f| d\mu(x) \leqslant 2 \int_{E_m} F d\mu(x) + \varepsilon \mu(E \backslash E_m) < \varepsilon(\mu(E) + 2)$$

7 Теорема Леви

Теорема 7.1. Если последовательность неотрицательных измеримых на измеримом множестве $E \subset \mathbb{R}$ неубывающая при почти всех $x \in E$, то $\lim_{m \to \infty} \int_E f_m d\mu(x) = \int_E \lim_{m \to \infty} f_m d\mu(x)$

Доказательство. Если $f:=\lim_{m\to\infty} f_m$ — суммируема на E, то $0\leqslant f_m(x)\leqslant f(x)$ и мы ссылаемся на теорему Лебега.

Пусть

$$\int_E f d\mu(x) = +\infty \Rightarrow \lim_{N \to \infty} \int_E f_{[N]} d\mu(x) = +\infty \Rightarrow \forall K \ \exists N_0 \ \forall N \geqslant N_0 : \ \int_E f_{[N]} d\mu(x) > K$$

$$f_{m,[N_0]}(x) \to_{m \to \infty} f_{[N_0]}(x) \Rightarrow \lim_{m \to \infty} \int_E f_{m,[N_0]} d\mu(x) = \int_E f_{[N_0]} d\mu(x)$$

$$\exists m_0 \ \forall m > m_0 : \int_E f_{m,[N_0]} d\mu(x) > K \Rightarrow \int_E f_m d\mu(x) \geqslant \int_E f_{m,[N_0]} d\mu(x) > K$$
 Устремляя $K \to \infty$ получим, что $\int_E f_m d\mu(x) \to_{m \to \infty} \infty$

8 Теорема Фату

Теорема 8.1. Если $f_m(x) \geqslant 0$ при почти всех $x \in E \subset \mathbb{R}^n$ конечной меры, $\forall m \in \mathbb{N}$ f_m – измеримые на E, $\lim_{m \to \infty} f_m(x) = f(x)$ почти всюду на E, то $\int_E f d\mu(x) \leqslant \lim_{m \to \infty} \int_E f_m d\mu(x)$

Доказательство. Пусть $g_m(x) := \inf_{k \geqslant m} f_k(x)$. Тогда $\int_E \lim_{m \to \infty} g_m d\mu(x) = \lim_{m \to \infty} \int_E g_m d\mu(x)$. Но $\lim_{m \to \infty} g_m(x) = \lim_{m \to \infty} \inf_{k \geqslant m} f_k(x) = \lim_{m \to \infty} f_m(x) = f(x)$.

Остаётся заметить, что $\int_E g_m \overline{d\mu(x)} \leqslant \int_E f_k d\mu(x)$. В итоге получаем:

$$\int_E f d\mu(x) = \int_E \lim_{m \to \infty} g_m d\mu(x) = \lim_{m \to \infty} \int_E g_m d\mu(x) \leqslant \lim_{m \to \infty} \inf_{k \geqslant m} \int_E f_k d\mu(x) = \lim_{\underline{m} \to \infty} \int_E f_m d\mu(x)$$

9 Корректность определения интеграла Лебега по множеству бесконечной меры

Определение 9.1. Интегралом Лебега неотрицательной измеримой на $E \subset \mathbb{R}^n$, $\mu(E) = +\infty$, функции f(x) называется $\lim_{m\to\infty} \int_{E_m} f d\mu(x)$, где $E_1 \subset E_2 \subset \ldots$ – последовательность измеримых множеств конечной меры, такой что $\lim_{m\to\infty} E_m = E$

Теорема 9.1. Корректность определения интеграла Лебега по множеству бесконечной меры:

Eсли $f(x)\geqslant 0$, измеримая на $E\subset\mathbb{R}^n$, $\mu(E)=+\infty$, то \forall последовательностей неубывающих измеримых множеств $\{E_m\},\{E'_m\}$ конечной меры $\lim_{m\to\infty}E_m=\lim_{m\to\infty}E'_m=E$ выполняется: $\lim_{m\to\infty}\int_{E_m}fd\mu(x)=\lim_{m\to\infty}\int_{E'_m}fd\mu(x)$

Доказательство. От противного. Пусть $a:=\lim_{m\to\infty}\int_{E_m}fd\mu(x)>\lim_{m\to\infty}\int_{E_m'}fd\mu(x)=:b.$ Пусть $a<+\infty.$

$$\exists c: \ b < c < a; \ \exists m: \ \int_{E_m} f d\mu(x) > c$$

Очевидно

$$E_1' \cap E_m \subset E_2' \cap E_m \subset \ldots \Rightarrow \lim_{k \to \infty} (E_k' \cap E_m) = E \cap E_m = E_m \Rightarrow \lim_{k \to \infty} \mu(E_k' \cap E_m) = \mu(E_m)$$

$$\int_{E_m} f d\mu(x) = \int_{E_k' \cap E_m} f d\mu(x) + \int_{E_m \setminus (E_k' \cap E_m)} f d\mu(x) \Rightarrow \exists k_0 \forall k > k_0 : \int_{E_k'} f d\mu(x) > \int_{E_k' \cap E_m} f d\mu(x) > c$$

Пришли к противоречию с тем, что $\lim_{m \to \infty} \int_{E'_m} f d\mu(x) < c$

Пусть теперь
$$a = +\infty$$
, $+\infty > c > b \Rightarrow \exists m : \int_{E_m} f d\mu(x) > c + 1 \Rightarrow \exists N : \int_{E_m} f_{[N]} d\mu(x) > c \Rightarrow \exists k_0 \, \forall k > k_0 : \int_{E_k'} f_{[N]} d\mu(x) > c \Rightarrow \int_{E_k'} f d\mu(x) \geqslant \int_{E_k'} f_{[N]} d\mu(x) > c$

10 Вычисление меры с помощью кратных интегралов

Если $A \subset \mathbb{R}^n$ – измеримо, то

- 1. Для μ_X почти всех $x \in X$ сечения $A_Y(x)$ μ_Y -измеримы, причём $\mu(A) = \int_X \mu_Y(A_Y(x)) d\mu_X(x)$
- 2. Для μ_Y почти всех $y \in Y$ сечения $A_X(y)$ μ_X -измеримы, причём $\mu(A) = \int_Y \mu_X(A_X(y)) d\mu_Y(y)$

$$\mathcal{A}$$
оказательство. Этап 1. A – брус, то есть $A=\prod\limits_{j=1}^n\langle a_j,b_j\rangle$. Тогда $A_y(x)=\left\{egin{align*} \varnothing,x
ot\in\prod\limits_{j=1}^m\langle a_j,b_j\rangle\\ \prod\limits_{j=m+1}^n\langle a_j,b_j\rangle,x\in\prod\limits_{j=1}^m\langle a_j,b_j\rangle \end{array}\right.$

Очевидно,
$$\mu_Y(A_y(x)) = \begin{cases} 0, x \not\in \prod\limits_{j=1}^m \langle a_j, b_j \rangle \\ \prod\limits_{j=m+1}^n (b_j - a_j), x \in \prod\limits_{j=1}^m \langle a_j, b_j \rangle \end{cases}$$

Тогда
$$\int_X \mu_Y(A_Y(x)) d\mu_X(x) = \prod_{j=m+1}^n (b_j - a_j) \mu_X(\prod_{j=1}^m \langle a_j, b_j \rangle) = \mu(A)$$

Этап 2. A – элементарное множество, то есть $A = \bigcup_{j=1}^{N} A_{j}$, причём внутренности брусьев A_{j} не пересекаются.

Пусть
$$A = \bigcup_{j=1}^{M} (P_j \times Q_j)$$
, где $P_j = \prod_{i=1}^{m} [a_i^{(j)}, b_i^{(j)}]$, а Q_j – элементарные множества, это

каноническое представление элементарного множества A. Тогда $\mu(A) = \sum_{j=1}^{M} \mu(P_j \times Q_j) =$

$$\sum_{i=1}^{M} \int_{X} \mu_{Y}((P_{j} \times Q_{j})_{Y}(x)) d\mu_{X}(x) = \int_{X} \mu_{Y}(A_{Y}(x)) d\mu_{X}(x).$$

Этап 3. A – измеримое, конечной меры. Значит $A = \bigcap_{i=1}^{\infty} \bigcup_{j=1}^{\infty} A_{ij} \setminus A_0$, где $A_{i,1} \subset A_{i,2} \subset \ldots$ – открытые элементарные множества, $\mu(A_0) = 0$, $B_i = \bigcup_{j=1}^{\infty} A_{ij}$.

Мы знаем, что
$$\mu(A_{ij}) = \int_X \mu_Y(A_{ij}(x)) d\mu_X(x)$$
, $\lim_{j \to \infty} \mu(A_{ij}) = \mu(B_i)$. Также

$$A_{ij} \subset A_{i(j+1)} \Rightarrow \mu(A_{ij}) \leqslant \mu(A_{i(j+1)}) \Rightarrow (A_{ij})_Y(x) \subset (A_{i(j+1)})_Y(x) \Rightarrow \mu_Y((A_{ij})_Y(x)) \leqslant \mu_Y((A_{i(j+1)})_Y(x))$$

Применяя теорему Леви, получим

$$\mu(B_i) = \int_X \mu_Y((B_i)_Y(x)) d\mu(x) = \int_X \lim_{j \to \infty} \mu_Y((A_{ij})_Y(x)) d\mu_X(x) = \lim_{j \to \infty} \int_X \mu_Y((A_{ij})_Y(x)) d\mu_X(x)$$

Аналогично рассмотрим возрастающую последовательность $B_1 \setminus B_1 \subset B_1 \setminus B_2 \subset \dots$ Получили требуемое для пересечения объединений открытых элементарных множеств.

Рассмотрим A_0 , для него существует пересечение объединений $B_0 \supset A_0$ по доказанному ранее в этой теореме, причём $\mu(B_0) = 0$ и $\forall x \in X : (B_0)_Y(x) \supset (A_0)_Y(x) \Rightarrow \mu_Y((A_0)_Y(x)) = 0$ почти всюду. Значит

$$0 = \mu(B_0) = \int_X \mu_Y((B_0)_Y(x)) d\mu_X(x) = \int_X \mu_Y((A_0)_Y(x)) d\mu_X(x) = \mu(A_0) = 0$$

Для произвольного измеримого A рассмотрим возрастающую последовательность множеств конечной меры $A^{(1)} \subset A^{(2)} \subset \dots$, у которой $\bigcup A^{(i)} = A$.

Для них доказано $\mu(A^{(i)}) = \int_X \mu_Y(A_Y^{(i)}(x)) d\mu_X(x)$, перейдём к пределу в левой части благодаря непрерывности меры, а в правой части благодаря теореме Леви. То есть мы всё доказали.

11 Мера подграфика. Теорема Фубини

Определение 11.1. Подграфиком неотрицательной функции f(x), определённой на множестве $E \subset \mathbb{R}^n$ называется множество $D_{f,E} = \{(x,y): x \in E, y \in [0,f(x)]\}$

Лемма 11.1. О мере подграфика:

Если f – неотрицательная, суммируемая на измеримом множестве $E \subset \mathbb{R}^n$, функция, то её подграфик измерим, причём $\mu(D_{f,E}) = \int_E f d\mu(x) = \int_{[0,+\infty]} \mu_X(\{x: f(x) \geqslant y\}) d\mu_Y(y)$, где $X = \mathbb{R}^n$, $y = \mathbb{R}$

Доказательство. После доказательства измеримость $D_{f,E}$ лемма становится очевидной (показать на рисунке, что является X и Y сечениями подграфика).

Докажем измеримость подграфика.

Этап 1. Пусть $f(x) = \chi_{E_1}(x)$. Тогда $D_{f,E} = \{(x,0) : x \in E \setminus E_1\} \cup \{E_1 \times [0,1]\}$. Левое слагаемое имеет меру 0, то есть измеримо, а для правого справедливо рассуждение: $\forall \varepsilon > 0 \ \exists M : \mu(M \triangle E_1) < \varepsilon \Rightarrow$

$$\Rightarrow \mu^*((M \times [0,1]) \triangle (E_1 \times [0,1])) = \mu^*((M \triangle E_1) \times [0,1]) \leqslant \mu_X^*(M \triangle E_1) < \varepsilon$$

Этап 2. Докажем для ступенчатых функций $f(x) = \sum_{i=1}^{\kappa} c_i \chi_{E_i}(x)$. Их подграфик $D_{f,E} =$

 $\bigcup_{k=1}^{N} D_{c_k \chi_{E_k}, E}$ измерим, как объединение измеримых множеств.

Этап 3. Для неотрицательной суммируемой функции: представим её, как предел неубывающей последовательности измеримых функций, значит её подграфик будет пределом подграфиков этих ступенчатых функций.

Теорема 11.1. Теорема Фубини:

Если f суммируема на измеримом множестве $E \subset \mathbb{R}^n, X = \mathbb{R}^m, Y = \mathbb{R}^k, m+k=n$ (доопределим f(x,y) нулём во всех точках $(x,y) \notin E$), то

- 1. Для μ_X -почти всех x функция f(x,y) μ_Y -суммируема на своей области определения
- 2. $\int_Y f(x,y)d\mu_Y(y) \mu_X$ -суммируема
- 3. $\int_{E} f(x,y) d\mu(x,y) = \int_{X} \int_{Y} f(x,y) d\mu_{Y}(y) d\mu_{X}(x)$

Доказательство. Пусть $f(x,y) \geqslant 0$. Тогда $D_{f,E} = \{(x,y,z) : (x,y) \in E, z \in [0,f(x,y)]\}$. Возьмём $\mathbb{R}^{n+1} = X \times (Y \times \mathbb{R})$, по предыдущей лемме $\mu(D_{f,E}) = \int_X \mu_{Y \times \mathbb{R}}((D_{f,E})_{Y \times \mathbb{R}}(x)) d\mu_X(x)$.

 $(D_{f,E})_{Y \times \mathbb{R}}(x) = \{(y,z): y \in E_Y(x), z \in [0,f(x,y)]\}$, снова применяем предыдущую лемму $\mu_{Y \times \mathbb{R}}((D_{f,E})_{Y \times \mathbb{R}}(x)) = \int_Y f(x,y) d\mu_Y(y)$. Левая часть конечна при почти всех x, значит правая часть также почти всегда конечна, то есть первый пункт доказан.

Интеграл по X от $\int_Y f(x,y) d\mu_Y(y)$ конечен, так как f суммируема, доказали второй пункт.

Для доказательства третьего пункта вместо $X \times (Y \times \mathbb{R})$ возьмём $(X \times Y) \times \mathbb{R}$ и снова применим предыдущую лемму.

12 Замена переменных в одномерном интеграле Лебега

Теорема 12.1. Пусть f суммируема на отрезке $U \subset \mathbb{R}$, φ – диффеоморфизм отрезка V на U. Тогда $\int_U f(u) d\mu(u) = \int_V f(\varphi(v)) |\varphi'(v)| d\mu(v)$.

B частности, для любого измеримого множества $A\subset U$: $\mu(A)=\int\limits_{arphi^{-1}(A)}|arphi'(v)|d\mu(v)$

Доказательство. В начале докажем вторую формулу:

Когда A – отрезок, то ссылаемся к замене переменной в интеграле Римана.

Когда A – промежуток, то это отрезок без точек, которые никак не повлияют на интеграл Лебега.

Когда A – брус, то считаем интеграл из аддитивности промежутков.

Для любого измеримого A воспользуемся критерием измеримости: $\forall \varepsilon>0\ \exists M_\varepsilon\subset U: \mu(A\triangle M_\varepsilon)<\varepsilon$

Используя теорему о диффеоморфном образе измеримого множества: $\mu(\varphi^{-1}(A\triangle M_{\varepsilon})) \leqslant 2\max_{u\in U}|(\varphi^{-1})'(u)|\mu(A\triangle M_{\varepsilon}) = \frac{2\mu(A\triangle M_{\varepsilon})}{\min\limits_{v\in V}|\varphi'(v)|}$

$$\left|\mu(A) - \int_{\varphi^{-1}(A)} |\varphi'(v)| d\mu(v)\right| \leqslant |\mu(A) - \mu(M_{\varepsilon})| + \left|\mu(M_{\varepsilon}) - \int_{\varphi^{-1}(M_{\varepsilon})} |\varphi'(v)| d\mu(v)\right| + \left|\int_{\varphi^{-1}(M_{\varepsilon})} |\varphi'(v)| d\mu(v) - \int_{\varphi^{-1}(A)} |\varphi'(v)| d\mu(v)\right| < \varepsilon + 0 + \int_{\varphi^{-1}(M_{\varepsilon}) \triangle \varphi^{-1}(A)} |\varphi'(v)| d\mu(v) \leqslant \varepsilon + \max_{v \in V} |\varphi'(v)| \mu(\varphi^{-1}(M_{\varepsilon}) \triangle \varphi^{-1}(A)) \leqslant \varepsilon + \frac{2 \max_{v \in V} |\varphi'(v)| \varepsilon}{\min_{v \in V} |\varphi'(v)|}$$

Таким образом, мы доказали вторую формулу для произвольного измеримого множества *A*, переходим к доказательству первой формулы.

Пусть f неотрицательная измеримая, тогда из второй формулы мы можем получить первую формулу для ступенчатых функций.

Ну а произвольная неотрицательная функция представляется, как предел неубывающей последовательности неотрицательных ступенчатых функций. Используя теорему Леви, получим искомое. □

13 Теорема о разложении

Определение 13.1. Простым отображением окрестности нуля в \mathbb{R}^n назовём отображение $g: U \to \mathbb{R}^n$, такое, что $\exists j, 1 \leqslant j \leqslant n, g_i(x) = x_i, i \neq j$, и g – диффеоморфизм

Теорема 13.1. Если $\varphi: V \to \mathbb{R}^n$ — диффеоморфизм окрестности нуля V в \mathbb{R}^n , то в некоторой окрестности нуля $\widetilde{V} \subset V \varphi = g^{[n]} \circ B_n \circ \ldots \circ g^{[1]} \circ B_1$, где $g^{[i]}$ — простые отображения, меняющие только i-ую координату, B_i — линейные преобразования \mathbb{R}^n , переставляющие пару координат (возможно, тождественные).

Замечание.
$$\varphi(0) = 0, \forall i : \varphi^{[i]}(0) = 0$$

Доказательство. Построим $f^{[m]}$ — диффеоморфизм окрестности нуля, не меняющий первые m-1 координат.

 $f^{[1]} := \varphi$. Предположим, что $f^{[1]}, \ldots, f^{[m]}$ построены. Строим $f^{[m+1]}$. det $f^{[m]'}(0) \neq 0$. Найдём преобразование B_m , такое что $B_m f^{[m]'}(0)$ имеет главный минор m-го порядка $\neq 0$. То есть $\frac{\partial f_m^{[m]}(B_m x)}{\partial x_m} \neq 0$.

То есть $\frac{\partial f_m^{[m]}(B_m x)}{\partial x_m} \neq 0$. Пусть $g_i^{[m]}(x) = x_i, i \neq m, g_m^{[m]}(x) := f_m^{[m]}(B_m x)$. Тогда по теореме об обратном отображении $y = g^{[m]}(x) \Leftrightarrow x = (g^{[m]})^{-1}(y)$.

Теперь можем построить $f^{[m+1]}(y) := f^{[m]}(B_m(g^{[m]})^{-1}(y))$. Проверим, что всё хорошо: для координат $i=1,\ldots,m-1$: $f_i^{[m+1]}=f^{[m]}(B_m(g^{[m]})^{-1}(y))=(B_m(g^{[m]})^{-1}(y))_i=((g^{[m]})^{-1}(y))_i=y_i$. Для m-ой координаты: $f_m^{[m+1]}=f_m^{[m]}(B_m(g^{[m]})^{-1}(y))=g_m^{[m]}((g^{[m]})^{-1}(y))=y_m$

Перепишем формулу $f^{[m+1]}(y):=f^{[m]}(B_m(g^{[m]})^{-1}(y))$. Получим, что $f^{[m]}=f^{[m+1]}\circ g^{[m]}\circ B_m$. Значит

$$f = f^{[1]} = f^{[2]} \circ g^{[1]} \circ B_1 = f^{[3]} \circ g^{[2]} \circ B_2 \circ g^{[1]} \circ B_1 = \dots = g^{[m]} \circ B_m \circ \dots \circ g^{[1]} \circ B_1$$

14 Замена переменных в кратном интеграле Лебега (локальная версия)

15 Замена переменных в кратном интеграле Лебега (глобальная версия)

Теорема 15.1. Пусть f суммируема на ограниченном измеримом множестве $U \subset \mathbb{R}^n$, $\varphi - \partial u \phi \phi$ еоморфизм на области $\Omega \supset$ замыкание V, $\varphi(V) = U$. Тогда $\int_U f(u) d\mu(u) = \int_V f(\varphi(v)) |\det \varphi'(v)| d\mu(v)$.

B частности, для любого измеримого множества $A\subset U$: $\mu(A)=\int\limits_{arphi^{-1}(A)}|\detarphi'(v)|d\mu(v)$

Доказательство. Если первая формула доказана для $\varphi:\Omega\supset\operatorname{cl} V,\psi:\widetilde{\Omega}\supset\operatorname{cl} W,\psi(W)=V,$ то первая формула верна для $\varphi\circ\psi:\widetilde{\Omega},\varphi\circ\psi(W)=U.$

$$\int_{U} f(u)d\mu(u) = \int_{V} f(\varphi(v))|\varphi'(v)|d\mu(v) = \int_{W} f(\varphi(\psi(w)))|\varphi'(\psi(w))||\psi'(w)|d\mu(w)$$

Утверждение становится очевидным, если мы вспомним, что $(\varphi \circ \psi)'(w) = \varphi'(\psi(w)) \cdot \psi'(w)$. **Локальная версия.** Пусть U лежит в окрестности точки $a \in \mathbb{R}^n$, причём $\varphi(v) - \varphi(0) = g^{[n]} \circ B_n \circ \ldots \circ g^{[1]} \circ B_1$ по теореме о разложении.

Докажем вторую формулу для простых $g^{[i]}$ и сдвигов B_i : пусть $g:=g^{[1]}$ Если представим $\mathbb{R}^n=\mathbb{R}\times\mathbb{R}^{n-1}=Y\times X$, то по теореме Фубини получим:

$$\mu(A) = \int_{\mathbb{R}} \mu_X(A_X(y)) d\mu(y) = \int_{\mathbb{R}} \mu_X(A_X(\tau(\widetilde{y}))) |\tau_X'(\widetilde{y})| d\mu(\widetilde{y})$$

Где $g((y,x))=(\tau_X(\widetilde{y}),x)$. Теперь рассмотрим $|\det g'(v)|=\left|\frac{\partial g_1}{\partial x_1}\right|=|\tau_X'(\widetilde{y})|$

$$\mu(A) = \int_{g^{-1}(A)} |\det g'(v)| d\mu(v) = \int_{g^{-1}(A)} |\tau_X'(\widetilde{y})| d\mu(v) = \int_{\mathbb{R}} \mu_X((g^{-1}(A))_X(\widetilde{y})) |\tau_X'(\widetilde{y})| d\mu(\widetilde{y})$$

Последний штрих – заметить, что $(g^{-1}(A))_X = g^{-1}(A_X) = A_X$.

По аналогии докажем, что при сдвигах B_i ничего не меняется, представив $\mathbb{R}^n=\mathbb{R}^2\times\mathbb{R}^{n-2}$.

Теперь очевидно, что мы можем доказать первую формулу по аналогии с одномерным случаем.

Глобальный вариант. Рассмотрим cl U – компактное множество. $\forall u \in \text{cl } U \exists U(u, \varepsilon_U) : \bigcup_{u \in \text{cl } U} U(u, \varepsilon_u) \supset \text{cl } U \Rightarrow \exists \{u_1, \ldots, u_N\} : \bigcup_{i=1}^k U(u_i, \varepsilon_{u_i}) \supset \text{cl } U.$

Теперь строим разбиение единицы, подчинённое покрытию $\bigcup_{i=1}^k U(u_i, \varepsilon_{u_i})$ – это набор функций $\{\zeta_i(u)\}_{i=1}^N$ таких, что

- 1. $\zeta_i(u) > 0, u \in U(u_i, \varepsilon_{u_i})$
- 2. $\zeta_i(u) = 0, u \notin U(u_i, \varepsilon_{u_i})$
- 3. $\forall u \in \operatorname{cl} U : \sum_{i=1}^{N} \zeta_i(u) = 1$
- 4. Все функции бесконечно дифференцируемые.

Рассмотрим функции $\eta_i(u) := \exp\left(\frac{-1}{(\varepsilon_{u_i}^2 - |u - u_i|^2)^2}\right)$, если $|u - u_i| < \varepsilon_{u_i}$ и $\eta_i(u) := 0, u \notin U(u_i, \varepsilon_{u_i})$

 $\sum\limits_{i=1}^{N}\eta_{i}(u)>0,u\in {
m cl}\ U\Rightarrow \exists \min_{u\in U}\sum\limits_{i=1}^{N}\eta_{i}(u)>0.$ Кроме того, $\sum\limits_{i=1}^{N}\eta_{i}(u)$ – также бесконечно дифференцируемая.

Таким образом, $\zeta_i(u) := \frac{\eta_i(u)}{\sum\limits_{i=1}^N \eta_i(u)}$.

Теперь

$$\int_{V} f(v)d\mu(v) = \int_{V} f(v) \sum_{i=1}^{N} \eta_{i}(\varphi^{-1}(v))d\mu(v) = \sum_{i=1}^{N} \int_{V} f(v)\zeta_{i}(\varphi^{-1}(v))d\mu(v) = \sum_{i=1}^{N} \int_{\varphi^{-1}(V)} f(\varphi(u))\zeta_{i}(u)|\det \varphi'(u)|d\mu(u) = \int_{\varphi^{-1}(V)} f(\varphi(u))|\det \varphi'(u)|d\mu(u)$$

Критерий интегрируемости по Риману 16

Теорема 16.1. Ограниченная функция f(x) интегрируема по Риману на [a,b] тогда и только тогда когда f непрерывна почти всюду на [a, b].

Доказательство. Вспомним теорему об интеграле, как пределе интегральных сумм

$$f \in R[a,b] \Leftrightarrow \exists \lim_{\Delta(P) \to 0} S(P,f,t_i) \Leftrightarrow \forall \{P_k\}_{k=1}^{\infty}, \Delta(P_k) \to_{k \to \infty} 0 : \exists \lim_{k \to \infty} U(P_k,f) = \lim_{k \to \infty} L(P_k,f)$$

Но мы можем поменять $\forall \{P_k\}_{k=1}^\infty, \Delta(P_k) \to_{k\to\infty} 0$ на $\exists \{P_k\}_{k=1}^\infty, \Delta(P_k) \to_{k\to\infty} 0, P_{k+1} \subset \mathbb{C}$

По мы можем поменять
$$\forall \{T_k\}_{k=1}, \Delta(T_k) \to_{k\to\infty} 0$$
 на $\exists \{T_k\}_{k=1}, \Delta(T_k) \to_{k\to\infty} 0, T_{k+1} \subset P_k$, опираясь на критерий интегрируемости. Построим функции $U_k(x) := \sup_{t \in [x_{i-1}^{(k)}, x_i^{(k)})} f(t), L_k(x) := \inf_{t \in [x_{i-1}^{(k)}, x_i^{(k)})} f(t)$. Заметим, что

 $\int_a^b U_k(x)dx = U(P_k,f), \int_a^b L_k(x)dx = L(P_k,f).$ Получили $L_{k+1} \geqslant L_k, U_{k+1} \leqslant U_k.$ Значит $\lim_{k \to \infty} L_k(x) = L(x), \lim_{k \to \infty} U_k(x) = U(x).$

$$L_1(x) \leqslant L_2(x) \leqslant \ldots \leqslant L(x) \leqslant f(x) \leqslant U(x) \leqslant \ldots \leqslant U_2(x) \leqslant U_1(x)$$

По теореме Леви

$$\lim_{k \to \infty} L(P_k, f) = \lim_{k \to \infty} \int_a^b L_k(x) d\mu(x) = \int_a^b L(x) d\mu(x) \le$$

$$\le \lim_{k \to \infty} \int_a^b U_k(x) d\mu(x) = \int_a^b U(x) d\mu(x) = \lim_{k \to \infty} U(P_k, f)$$

Получили новый критерий интерируемости по Риману:

$$f \in R[a,b] \Leftrightarrow \int_a^b L(x)d\mu(x) = \int_a^b U(x)d\mu(x) \Leftrightarrow L(x) \stackrel{\text{\tiny II.B.}}{=} U(x), x \in [a,b]$$

Доказательство теоремы будет завершено, когда мы докажем утверждение:

Утверждение 16.1. Если x – не точка какого-то разбиения, то $L(x) = U(x) \Leftrightarrow f \in C[x]$

Доказательство.
$$\Rightarrow x \in (x_{j-1}^{(k)}, x_k^{(k)}), L(x) = U(x) \Rightarrow \forall \varepsilon > 0 \ \exists k: \ U_k(x) - L_k(x) < \varepsilon$$
 Возьмём $\delta := \min(x - x_{j-1}^{(k)}, x_j^{(k)} - x) > 0$. Значит

$$\forall \widetilde{x}, |x - \widetilde{x}| < \delta : |f(\widetilde{x}) - f(x)| \le U_k(x) - L_k(x) < \varepsilon$$

Обратно доказывается точно так же.

Лемма Витали 17

Определение 17.1. Говорят, что система промежутков \mathcal{T} покрывает множество $E \subset \mathbb{R}$ в смысле Витали, если $\forall \varepsilon > 0 \ \forall x \in E \ \exists I \in \mathcal{T} : x \in E, |I| < \varepsilon$

Пемма 17.1. Если ограниченное множество E покрыто системой промежутков $\mathcal T$ в смысле Витали, то $\forall \varepsilon > 0 \; \exists \{I_1, \ldots, I_n\} \subset \mathcal{T} : \; \mu^*(E \setminus \bigsqcup_{i=1}^N I_i) < \varepsilon$

Доказательство. $\mu^*(E) < +\infty \Rightarrow \exists G$ - открытое, $G \supset E, \mu^*(G) < +\infty$. Будем считать, что \mathcal{T} – система отрезков, содержащаяся в G.

Построим последовательность непересекающихся отрезков $\{I_i\}$ в \mathcal{T} . I_1 – произвольный. Если I_1,\ldots,I_n построили, то положим $k_n:=\sup\{|I|:\ I\cap I_i=\varnothing,i=1,\ldots,n\}\Rightarrow |I_{n+1}|>$ $\frac{k_n}{2}, I_{n+1} \cap I_i, i = 1, \dots, n.$

$$\sum_{i=1}^{\infty} |I_i| = \mu \left(\bigsqcup_{i=1}^{\infty} I_i \right) \leqslant \mu(G) < +\infty \Rightarrow \exists N \sum_{i=N+1}^{\infty} |I_i| < \frac{\varepsilon}{5}$$

Пусть $R := E \setminus \bigsqcup_{i=1}^{N} I_i$. Если $x \in R \Rightarrow \exists I \in \mathcal{T} : x \in I, I \cap \bigsqcup_{i=1}^{N} I_i = \emptyset$.

Ряд $\sum_{i=1}^{\infty} |I_i|$ сходится, значит $|I_i| \to_{i\to\infty} 0 \Rightarrow k_n \to_{n\to\infty} 0$. Обозначим через m – такое,

что $I \cap I_j = \emptyset, j = 1, \dots, m-1$, но $I \cap I_m \neq \emptyset$. Тогда расстояние от x до центра $I_m \leqslant \frac{|I_m|}{2} + |I| \leqslant \frac{|I_m|}{2} + k_{m-1} < \frac{5|I_m|}{2}$. Пусть J_m – отрезок с центром I_m , $|J_m| = 5|I_m|$. Тогда $x \in J_m$.

Значит

$$R \subset \bigsqcup_{m=N+1}^{\infty} J_m \Rightarrow \mu^*(R) \leqslant \mu^*(\bigsqcup_{i=N+1}^{\infty} J_i) = \sum_{i=N+1}^{\infty} |J_i| = 5 \sum_{i=N+1}^{\infty} |I_i| < \varepsilon$$

Суммируемость произвольной монотонной функции 18

Теорема 18.1. Если f – неубывающая на [a,b], то она дифференцируема почти всюду на [a,b], f' суммируема на [a,b], $\int_{[a,b]} f'(x) d\mu(x) \leqslant f(b) - f(a)$.

Доказательство. Докажем, что $\overline{f'_+}(x) = f'_-(x)$ почти всюду на [a,b]. Обозначим $E = \{x \in A_+ \}$

 $[a,b]: \overline{f'_+}(x) > \underline{f'_-}(x)\} = \bigcup_{u>v,\,u,\,v\in\mathbb{Q}} \left(\{x\in[a,b]:\overline{f'_+}(x)>u>v>\underline{f'_-}(x)\}=:E_{u,\,v}\right)$ Пусть $\mu^*(E_{u,\,v})=s\Rightarrow \forall \varepsilon>0$ $\exists G$ - открытое $E_{u,\,v}\in G$: $\mu(G)< s+\varepsilon$. $\underline{f'_-}=\lim_{\delta\to+0}\inf_{0< h<\delta}\frac{f(x)-f(x-h)}{h}$. Значит $x\in E_{u,\,v}\Rightarrow \forall \widetilde{h}>0$ $\exists h,0< h<\widetilde{h}:\frac{f(x)-f(x-h)}{h}<0$ $v,[x-h,x]\subset G$.

Тогда $\bigcup_{x \in E_{u,v}, h} [x - h, x] \supset E_{u,v}$. По лемме Витали $\exists \{I_1, \dots, I_N\} : \mu^*(E_{u,v} \setminus \bigsqcup_{i=1}^N I_i) < \varepsilon$.

Пусть $A := E_{u,v} \cap \bigsqcup_{i=1}^N I_i$ Значит $s = \mu^*(E_{u,v}) \leqslant \mu^*(E_{u,v} \setminus \bigsqcup_{i=1}^N I_i) + \mu^*(A) \Rightarrow \mu^*(A) > s - \varepsilon$.

Рассмотрим $y \in A, \overline{f'_+}(y) = \lim_{\delta \to +0} \sup_{0 < h < \delta} \frac{f(y+h)-f(y)}{h}. \ y \in A \Rightarrow \forall \widetilde{k} > 0 \ \exists k, 0 < k < \widetilde{k} : \frac{f(y+k)-f(y)}{k} > u, [y,y+k] \subset \text{int } I_i.$

Вновь имеем $\bigcup_{y\in A,\,k}[y,y+k]\supset A$. Применяя лемму Витали, $\exists\{J_1,\,\ldots,J_M\}:\mu^*(Aigcap_{i=1}^MJ_i)<\varepsilon$. Значит $\mu^*(A\cap \bigsqcup_{i=1}^MJ_i)>s-2\varepsilon$.

$$I_i = [x_i - h_i, x_i] : \sum_{i=1}^{N} f(x_i) - f(x_i - h_i) < v \sum_{i=1}^{N} h_i < v\mu(G) < v(s + \varepsilon)$$

$$J_i = [y_i, y_i + k_i] : \sum_{i=1}^{M} (f(y_i + k_i) - f(y_i)) > u \sum_{i=1}^{M} k_i \ge u\mu(A \cap \bigsqcup J_i) \ge u(s - 2\varepsilon)$$

$$\sum_{j: J_j \subset I_i} f(y_j + k_j) - f(y_j) \leqslant f(x_i) - f(x_i - h_i) \Rightarrow \sum_{j=1}^M f(y_j + k_j) - f(y_j) \leqslant \sum_{i=1}^N f(x_i) - f(x_i - h_i)$$

$$\forall \varepsilon > 0 : u(s - 2\varepsilon) < v(s + \varepsilon) \Rightarrow u \leqslant v \Rightarrow \forall u, v : \mu(E_{u,v}) = 0$$

Значит $\exists f'$ почти всюду на [a,b]. Пусть $f'(x) = \lim_{n \to \infty} (n(f(x+\frac{1}{n})-f(x))=:f_n(x))$. По теореме Фату

$$\int_{[a,b]} f'(x)d\mu(x) \leqslant \lim_{\underline{n} \to \infty} \int_{[a,b]} f_n(x)d\mu(x) = \lim_{\underline{n} \to \infty} \left(n \int_{[a,b]} f\left(x + \frac{1}{n}\right) d\mu(x) - n \int_{[a,b]} f(x)d\mu(x) \right) =$$

$$= \lim_{\underline{n} \to \infty} \left(n \int_{b}^{b + \frac{1}{n}} f\left(x + \frac{1}{n}\right) dx - n \int_{a}^{a + \frac{1}{n}} f(x)dx \right) \leqslant f(b) - f(a)$$

19 Производная неопределённого интеграла Лебега

Определение 19.1. Неопределённым интегралом Лебега называется функция вида

$$F(x) = F(a) + \int_{[a,x]} f(t)d\mu(t)$$

, где f суммируема на [a,b].

Лемма 19.1. Если f – суммируема на [a,b], то $F(x) = \int_{[a,x]} f(t) d\mu(t)$ – непрерывная функция ограниченной вариации на [a,b].

Доказательство.

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x < t < x + \delta : \, |F(t) - F(x)| = \left| \int_{[x,t]} f(\tau) d\mu(\tau) \right| < \varepsilon$$

Как мы видим, непрерывность следует из абсолютной непрерывности интеграла Лебега.

Для установления ограниченной вариации необходимо установить ограниченность сумм вида

$$\sum_{i=1}^{n} |F(x_i) - F(x_{i-1})| = \sum_{i=1}^{n} \left| \int_{[x_i, x_{i-1}]} f(t) d\mu(t) \right| \leqslant \sum_{i=1}^{n} \int_{[x_i, x_{i-1}]} |f(t)| d\mu(t) = \int_{[a, b]} |f(t)| d\mu(t)$$

Лемма 19.2. Если f – ограниченной вариации на [a,b], то f дифференцируема почти всюду u f' - суммируема на [a, b].

 Доказательство. $f=f_1-f_2$ — свойство функций ограниченной вариации, где f_1,f_2 неубывающие. Отсюда лемма становится очевидной, опираясь на предыдущий билет.

Теорема 19.1. Неопределённый интеграл Лебега дифференцируем почти всюду на [a,b]u F'(x) = f(x) почти всюду.

 $Доказательство. \ F$ — дифференцируема почти всюду (по двум предыдущим леммам).

Рассмотрим f – ограниченная измеримая на [a,b] и $|f| \leq K$. Доопределим $f \ \forall x > b$:

 $f_n(x):=n\left(F\left(x+rac{1}{n}
ight)-F(x)
ight), |f_n(x)|=n\left|\int_{[x,\,x+rac{1}{n}]}f(t)d\mu(t)
ight|\leqslant K.$ Причём $\lim_{n o\infty}f_n(x)=$ F'(x) почти всюду на [a,b].

По теореме Лебега

$$\forall c \in (a, b] : \lim_{n \to \infty} \int_{[a, c]} f_n(x) d\mu(x) = \int_{[a, c]} F'(x) d\mu(x) = \lim_{n \to \infty} n \left(\int_a^c F(x + 1/n) dx - \int_a^c F(x) dx \right) = \lim_{n \to \infty} n \left(\int_c^{c + \frac{1}{n}} F(x) dx - \int_a^{a + \frac{1}{n}} F(x) dx \right) = \lim_{n \to \infty} n \left(\int_c^{c + \frac{1}{n}} F(x) dx - \int_a^{a + \frac{1}{n}} F(x) dx \right) = F(c) - F(a) = \int_{[a, c]} f(x) d\mu(x)$$

Мы доказали, что

$$\forall c \in (a,b]: \int_{[a,c]} (F'(x) - f(x)) d\mu(x) = 0 \Rightarrow F'(x) \stackrel{\text{\tiny I.B.}}{=} f(x)$$

Пусть $f(x) \ge 0$ на [a, b].

Введём срезки $f_{[N]}(x)$. Мы доказали, что $\frac{d}{dx}\int_{[a,x]}f_{[N]}(t)d\mu(t)=f_{[N]}(x)$ почти всюду на

Теперь рассмотрим $G_N(x) = \int_{[a,x]} (f(t) - f_{[N]}(t)) d\mu(t)$ – неубывающая. $G'_N(x) = F'(x) - f_{[N]}(x)$. Значит $F'(x) = G'_N(x) + f_{[N]}(x) \geqslant f_{[N]}(x)$ почти всюду. Устремляя $N \to \infty$ получим $F'(x) \geqslant f(x)$ почти всюду.

$$\int_{[a,b]} F'(x) d\mu(x) \geqslant \int_{[a,b]} f(x) d\mu(x) = F(b) - F(a)$$

 Но мы знаем, что F(x) неубывающая, значит $\int_{[a,b]} F'(x) d\mu(x) \leqslant F(b) - F(a)$. Таким образом, $F'(x) \stackrel{\text{п.в.}}{=} f(x)$.

20 Абсолютная непрерывность и неопределённый интеграл Лебега

Определение 20.1. f абсолютно непрерывна на [a,b], если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \bigsqcup_{i=1}^{N} [x_i, y_i] \subset [a, b], \ \sum_{i=1}^{N} (y_i - x_i) < \delta : \ \sum_{i=1}^{N} |f(y_i) - f(x_i)| < \varepsilon$$

Лемма 20.1. Если f – абсолютно непрерывна на [a,b], то f ограниченной вариации Доказательство.

$$\varepsilon := 1; \ K := \left[\frac{b-a}{\delta}\right] + 1$$

Берём произвольное разбиение P отрезка [a,b]. Добавим к нему точек так, чтобы было K частей, каждая из которой будет меньше, чем δ .

Сумма разностей значений на каждом из отрезков будет меньше, чем ε . Значит вся сумма будет ограниченна значением εK .

Лемма 20.2. Если f абсолютно непрерывна на [a,b] и f'(x) = 0 почти всюду на [a,b], то f постоянна на [a,b].

Доказательство. $\forall c \in (a, b] \ \forall \varepsilon > 0 \ \forall \eta > 0 : \ f(c) = f(a)$. Рассмотрим отрезок [a, c]. Обозначим $E := \{x \in [a, c] : \ f'(x) = 0\} \Rightarrow \mu(E) = c - a$.

$$x \in E \Rightarrow \exists \widetilde{h} > 0 \ \forall h, 0 < h < \widetilde{h} : |f(x+h) - f(x)| < \eta h$$

Это значит, что $\bigcup_{x \in E,\, h} [x,x+h] \supset E$ в смысле Витали. По лемме Витали $y_i := x_i + x_i$

 $h_i \exists \bigsqcup_{i=1}^n [x_i, y_i] : \mu(E \setminus \bigsqcup_{i=1}^n [x_i, y_i]) = \mu([a, c] \setminus \bigsqcup_{i=1}^n [x_i, y_i]) < \delta$. Где δ берём из определения абсолютной непрерывности.

$$y_0 = a \leqslant x_1 < y_1 \leqslant x_2 < \dots < y_n \leqslant c = x_{n+1}$$

$$|f(c) - f(a)| = \left| \sum_{i=1}^{n+1} (f(x_i) - f(y_{i-1})) + \sum_{i=1}^{n} (f(y_i) - f(x_i)) \right| \le$$

$$\le \sum_{i=1}^{n+1} |f(x_i) - f(y_{i-1})| + \sum_{i=1}^{n} |f(y_i) - f(x_i)| < \varepsilon + \sum_{i=1}^{n} \eta h_i \le \varepsilon + \eta(c - a)$$

|f(c)-f(a)| меньше произвольного числа, значит f(c)=f(a)

Теорема 20.1. F – неопределённый интеграл Лебега $\Leftrightarrow F$ абсолютно непрерывна на [a,b] Доказательство. Если F – неопределённый интеграл Лебега, то абсолютная непрерыв-

ность F следует из абсолютной непрывности интеграла Лебега. Пусть F – абсолютно непрерывная. Тогда F ограниченной вариации, значит она дифференцируема почти всюду и F' суммируема.

Пусть $f(x) := F'(x), G(x) := \int_{[a,x]} f(t) d\mu(t)$ по предыдущему билету G'(x) = f(x) почти всюду, то есть G'(x) = F'(x) почти всюду. А это значит по предыдущей лемме, что G(x) = F(x).

21 Свойства внешнего умножения антисимметрических полилинейных форм

Определение 21.1. Симметризация формы $W \in \Omega_p^0$: sym $W = \frac{1}{p!} \sum_{\pi_p \in S_p} \pi_p W$ Антисимметризация формы $W \in \Omega_p^0$: asym $W = \frac{1}{p!} \sum_{\pi_p \in S_p} \operatorname{sgn} \pi_p \cdot \pi_p W$

Определение 21.2. Если $U \in \Omega^0_p, V \in \Omega^0_q$ – антисимметрические, то их внешним произведением называется $U \wedge V = \frac{(p+q)!}{p!q!}$ asym $(U \otimes V)$.

 Λ_p – линейное пространство антисимметрических форм $\in \Omega^0_p$

Лемма 21.1. $U \in \Omega_p^0, V \in \Omega_q^0$: asym (asym $u \otimes W$) = asym ($U \otimes asym V$) = asym ($U \otimes V$) Доказательство.

$$\operatorname{asym} \ (\operatorname{asym} \ U \otimes V) = \operatorname{asym} \ \left(\frac{1}{p!} \sum_{\pi_p \in S_p} \operatorname{sgn} \ \pi_p \cdot \pi_p U \otimes V \right) = \frac{1}{p!} \sum_{\pi_p \in S_p} \operatorname{sgn} \ \pi_p \cdot \operatorname{asym} \ ((\pi_p U) \otimes V)$$

Рассмотрим

$$(\pi U) \otimes V(x_1, \dots, x_{p+q}) = (\pi U)(x_1, \dots, x_p)V(x_{p+1}, \dots, x_{p+q}) = U(\pi(x_1), \dots, \pi(x_p))V(x_{p+1}, \dots, x_{p+q}) = \varpi(U \otimes V)(x_1, \dots, x_{p+q})$$

, где $\varpi(i) = \pi(i), i = 1, \dots, p; \ \varpi(i) = i, i = p + 1, \dots, p + q.$

$$\frac{1}{p!} \sum_{\pi_p \in S_p} \operatorname{sgn} \pi_p \cdot \operatorname{asym} ((\pi_p U) \otimes V) = \frac{1}{p!} \sum_{\pi \in S_p} \operatorname{sgn} \pi \cdot \operatorname{asym} (\varpi(U \otimes V)) =$$

$$= \frac{1}{p!} \sum_{\pi \in S_p} \operatorname{sgn} \pi \cdot \operatorname{sgn} \varpi \cdot \operatorname{asym} (U \otimes V) = \operatorname{asym} (U \otimes V)$$

Теорема 21.1. Основные свойства внешнего произведения:

1. $(\alpha_1 U_1 + \alpha_2 U_2) \wedge V = \alpha_1 (U_1 \wedge V) + \alpha_2 (U_2 \wedge V); \quad U \wedge (\alpha_1 V_1 + \alpha_2 V_2) = \alpha_1 U \wedge V_1 + \alpha_2 U \wedge V_2; \quad \forall \alpha_1, \alpha_2 \in \mathbb{R}, U_1, U_2, U \in \Lambda_q, V_1, V_2, V \in \Lambda_p$

2.
$$(U \wedge V) \wedge W = U \wedge (V \wedge W) = \frac{(p+q+r)!}{p!q!r!} asym (U \otimes V \otimes W); \forall U \in \Lambda_p, V \in \Lambda_q, W \in \Lambda_m$$

3.
$$U \wedge V = (-1)^{pq} V \wedge U$$
; $\forall U \in \Lambda_p, V \in \Lambda_q$

Доказательство. 1. Следует из линейности тензорного произведения и линейности антисимметризации

2. $(U \wedge V) \wedge W = \frac{(p+q)+r!}{(p+q)!r!}$ аsym $(\frac{(p+q)!}{p!q!}$ аsym $(U \otimes V) \otimes W) = \frac{(p+q+r)!}{p!q!r!}$ аsym (asym $(U \otimes V) \otimes W) = \frac{(p+q+r)!}{p!q!r!}$ аsym $(U \otimes V \otimes W)$ – по предыдущей лемме.

3.
$$U \wedge V = \frac{(p+q)!}{p!q!}$$
аsym $(U \otimes V) = \frac{1}{p!q!} \sum_{\pi \in S_{p+q}} \operatorname{sgn} \pi \cdot (\pi(U \otimes V))$
Введём $\pi' : \pi'(i) = \pi(p+i), i = 1, \dots, q; \ \pi'(i) = \pi(i-q), i = q+1, \dots, p+q$. Значит
$$\frac{1}{p!q!} \sum_{\pi \in S_{p+q}} \operatorname{sgn} \pi \cdot (\pi(U \otimes V)) = \frac{1}{p!q!} \sum_{\pi' \in S_{p+q}} \operatorname{sgn} \pi \cdot (\pi'(V \otimes U)) = \frac{(-1)^{pq}}{p!q!} \sum_{\pi' \in S_{p+q}} \operatorname{sgn} \pi' \cdot (\pi'(V \otimes U))$$

Последнее выражение как раз яляется $(-1)^{pq}V \wedge U$.

22 Свойства операции внешнего дифференцирования дифференциальных форм

Определение 22.1. p-формой (дифференциальной формой валентности p) на U называется отображение $\Omega: U \to \Lambda_p$.

$$\Omega(x) = \sum_{1 \leqslant i_1 < \dots < i_p \leqslant n} \omega_{i_1, \dots, i_p}(x) f^{i_1} \wedge \dots \wedge f^{i_p}$$

Определение 22.2. Внешнее дифференцирование p-формы определяется, как (p+1)-форма $d\Omega: U \to \Lambda_{p+1}$, по правилу $d\Omega = (p+1)$ asym Ω'

$$\Omega': U \to \mathcal{L}(E \to \Lambda_p), \text{ то есть } \Omega'(x) \in \mathcal{L}(E \to \Lambda_p) = \Lambda_{1,p} \subset \Omega^0_{p+1}$$

Теорема 22.1. Основные свойства операции внешнего дифференцирования:

1.
$$d(\alpha\Omega + \beta\Pi) = \alpha d\Omega + \beta d\Pi; \ \alpha, \beta \in \mathbb{R}, \Omega, \Pi \in \Lambda_p^{(1)}(U)$$

2.
$$d(\Omega \wedge \Pi) = d\Omega \wedge \Pi + (-1)^p \Omega \wedge d\Pi; \ \Omega \in \Lambda_p^{(1)}(U), \Pi \in \Lambda_q^{(1)}(U)$$

3.
$$d(d\Omega) = 0; \ \Omega \in \Lambda_p^{(2)}(U)$$

Доказательство. 1. Линейность следует из линейность антисимметризации и линейности производной.

2. Фиксируем базис, в котором $\Omega(x) = \omega(x) dx^{i_1} \wedge \ldots \wedge dx^{i_p}; \ \Pi(x) = \pi(x) dx^{j_1} \wedge \ldots \wedge dx^{j_q}$.

$$\begin{split} d(\Omega \wedge \Pi) &= d(\omega(x)\pi(x)dx^{i_1} \wedge \ldots \wedge dx^{i_p} \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_q}) = \\ &= d(\omega(x)\pi(x)) \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p} \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_q} = \\ &= \pi(x) \sum_{i=1}^n \frac{\partial \omega}{\partial x_i}(x) dx^i \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p} \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_q} + \\ &+ \omega(x) \sum_{i=1}^n \frac{\partial \pi}{\partial x_i}(x) dx^i \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p} \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_q} = \\ &= d\Omega(x) \wedge \Pi(x) + (-1)^p \Omega(x) \wedge d\Pi(x) \end{split}$$

3.

$$d(d\Omega) = d\left(\sum_{j \neq i_k} \frac{\partial \omega}{\partial x_j} dx^j \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p}\right) = \sum_{l \neq j, i_k} \sum_{j \neq i_k} \frac{\partial^2 \omega}{\partial x^l \partial x^j} dx^l \wedge dx^j \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p} = \sum_{j < l, j, l \neq i_k} \left(\frac{\partial^2 \omega}{\partial x^j \partial x^l} - \frac{\partial^2 \omega}{\partial x^l \partial x^j}\right) dx^j \wedge dx^l \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p} = 0$$

23 Градиент, ротор дивергенция, их свойства

Определение 23.1. Операция дополнения (звёздочка Ходжа) задаётся на базисных формах $*(\omega(x)dx^{i_1}\wedge\ldots\wedge dx^{i_p})=\omega(x)(-1)^{[\vec{i},\vec{j}]}dx^{j_1}\wedge\ldots\wedge dx^{j_{n-p}},$ где $(-1)^{[\vec{i},\vec{j}]}$ – знак перестановки $(i_1,\ldots,i_p,j_1,\ldots,j_{n-p}).$

Определение 23.2. Если $(\vec{e}_1, \ldots, \vec{e}_n)$ – ортонормированный базис евклидово пространства \mathbb{R}^n , то операции соответствия векторных полей и дифференциальных форм валентности n определяется так:

$$(\vec{a})^{\#} = a_1(x)dx^1 + \ldots + a_n(x)dx^n; \quad (\Omega)^{\flat} = \omega^1 \vec{e_1} + \ldots + \omega^n \vec{e_n}$$

Определение 23.3. В \mathbb{R}^3 удобно использовать оператор набла $\nabla := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$

Определение 23.4. Пусть f(x) – 0-форма. Тогда градиентом называется

grad
$$f := (df)^{\flat} = \frac{\partial f}{\partial x_1} \vec{e}_1 + \dots + \frac{\partial f}{\partial x_n} \vec{e}_n = \nabla f$$

Определение 23.5. Пусть \vec{a} – векторное поле. Тогда ротором называется

$$\text{rot } \vec{a} := (*d(\vec{a}^{\#}))^{\flat} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k} = (\nabla, \vec{a})$$

Определение 23.6. Пусть \vec{a} – векторное поле. Тогда дивергенцией называется

$$\operatorname{div} \vec{a} := *d(*(\vec{a}^{\#})) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = [\nabla, \vec{a}]$$

Лемма 23.1. Свойства градиента, ротора и дивергенции:

$$rot \ (grad \ f) = (*d(grad \ f^{\#}))^{\flat} = (*d(((df)^{\flat})^{\#}))^{\flat} = 0$$

$$div (rot \vec{a}) = *d(*(((*d(\vec{a}^{\#}))^{\flat})^{\#})) = 0$$

24 Замена переменных в дифференциальных формах, её свойства

Определение 24.1. $\Omega(x)$ – дифференциальная p-форма в области $U \subset \mathbb{R}^n$, $\varphi: V \to U$ – диффеоморфизм области $V \subset \mathbb{R}^n$ на U. $x = \varphi(y).$ $\varphi^*\Omega(y)$ – дифференциальная p-форма в области V, определяемая на любом наборе p-векторов из \mathbb{R}^n ; b_1, \ldots, b_p , как

$$\varphi^*\Omega(y) := \Omega(\varphi(y))(\varphi'(y)b_1, \ldots, \varphi'(y)b_p)$$

Утверждение 24.1. Правило подсчёта:

$$\varphi^*\Omega(y) = \sum_{1 \leqslant i_1 < \dots < i_p \leqslant n} \omega_{i_1, \dots, i_p}(\varphi(y)) d\varphi^{i_1}(y) \wedge \dots \wedge \varphi^{i_p}(y)$$

Лемма 24.1. Свойства операции замены переменных:

1.
$$\varphi^*(\alpha\Omega + \beta\Pi) = \alpha\varphi^*\Omega + \beta\varphi^*\Pi$$

2.
$$\varphi^*(\Omega \wedge \Pi) = \varphi^*(\Omega) \wedge \varphi^*(\Pi)$$

3.
$$\varphi^*(d\Omega) = d(\varphi^*\Omega)$$

Доказательство. 1. Очевидно из правила подсчёта

- 2. Также очевидно из правила подсчёта и дистрибутивности внешнего умножения
- 3. Считаем $\varphi^*d\Omega(y)$, потом считаем $d\varphi^*\Omega(y)$, пользуясь правилом Лейбница и видим, что получается то же самое.

25 Лемма Пуанкаре

Определение 25.1. Область называется звёздной, если найдётся такая точка, из которой можно провести отрезки до всех точек этой области, причём эти отрезки должны полностью лежать внутри области.

Определение 25.2. Область называется звёздообразной, если она является диффеоморфным образом звёздной области.

Определение 25.3. $\varphi(x,t)=x_0+(1-t)(x-x_0)$ – непрерывное отображение из $D\times[0,1]$ в D называется прямым стягиванием. Для звёздной области оно, очевидно, корректно определяется.

Лемма 25.1. Если Ω – гладкая p-форма в $D \times [0,1]$, то $(dK\Omega + Kd\Omega)(x) = \Omega(x,1) - \Omega(x,0)$, где K – линейная операция, заданная на базисных слагаемых, как

$$K(a(x,t)dx^{i_1}\wedge\ldots\wedge dx^{i_p})=0;\ K(b(x,t)dt\wedge dx^{i_1}\wedge\ldots\wedge dx^{i_{p-1}})=\left(\int_0^1b(x,t)d\mu(t)\right)dx^{i_1}\wedge\ldots\wedge dx^{i_{p-1}}$$

Доказательство. Рассмотрим $\Omega = a(x,t)dx^{i_1} \wedge \ldots \wedge dx^{i_p}$

$$K\Omega = 0, d\Omega = \frac{\partial a}{\partial t} dt \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p} + \sum_{k=1}^n \frac{\partial a(x,t)}{\partial x^k} dx^k \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p}$$

$$Kd\Omega = \left(\int_0^1 \frac{\partial a(x,t)}{\partial t} \mu(t)\right) dx^{i_1} \wedge \ldots \wedge dx^{i_p} = (a(x,1) - a(x,0)) dx^{i_1} \wedge \ldots \wedge dx^{i_p} \Rightarrow$$

$$\Rightarrow Kd\Omega + dK\Omega = \Omega(x,1) - \Omega(x,0)$$

Рассмотрим $\Omega = b(x,t)dt \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_{p-1}}$

$$K\Omega = \left(\int_0^1 b(x,t)d\mu(t)\right) dx^{i_1} \wedge \dots \wedge dx^{i_{p-1}}$$

$$dK\Omega = \sum_{i=1}^n \int_0^1 \frac{\partial b(x,t)}{\partial x^i} d\mu(t) dx^i \wedge dx^{i_1} \wedge \dots \wedge dx^{i_{p-1}}$$

$$d\Omega = -\sum_{k=1}^n \frac{\partial b(x,t)}{\partial x^k} dt \wedge dx^k \wedge dx^{i_1} \wedge \dots \wedge dx^{i_{p-1}}$$

$$Kd\Omega = -\sum_{k=1}^n \int_0^1 \frac{\partial b(x,t)}{\partial x^k} d\mu(t) dx^k \wedge dx^{i_1} \wedge \dots \wedge dx^{i_{p-1}}$$

$$dK\Omega + Kd\Omega = 0 = \Omega(x,1) - \Omega(x,0) = 0 - 0$$

Теорема 25.1. Лемма Пуанкаре: Каждая замкнутая в звездообразной области D форма точна в ней.

Доказательство. Пусть D – звёздная область. φ – прямое стягивание. Рассмотрим $\varphi^*\Omega$ в $D \times [0,1].$

 Ω – замкнутая $\Rightarrow d\Omega = 0 \Rightarrow d\varphi^*\Omega = \varphi^*d\Omega = 0 \Rightarrow \varphi^*\Omega$ – замкнута в $D \times [0,1]$. Тогда по Лемме $dK\varphi^*\Omega = -Kd\varphi^*\Omega + \varphi^*\Omega(x,1) - \varphi^*\Omega(x,0) = \varphi^*\Omega(x,1) - \varphi^*\Omega(x,0)$.

$$\varphi^*\Omega = \sum_{1 \leqslant i_1 < \dots < i_p \leqslant n} \omega_{i_1, \dots, i_p}(\varphi(x, t)) d\varphi^{i_1}(x, t) \wedge \dots \wedge d\varphi^{i_p}(x, t)$$

$$d\varphi^j(x,t) = -(x^j - x_0^j)dt + (1-t)dx^j \Rightarrow \varphi^*\Omega(x,1) = 0; \ \varphi^*\Omega(x,0) = \Omega(x)$$

Значит $\Omega = -dK\varphi^*\Omega$, то есть она точная.

Пусть $D = \psi(G)$, где G – звёздная, ψ – диффеоморфизм.

В D есть замкнутая форма Ω . Рассмотрим $\psi^*\Omega$ – форма в G. Она замкнутая, так как $d\psi^*\Omega = \psi^*d\Omega = 0$. По уже доказанному, $\Pi = -K\varphi^*\psi^*\Omega$ является первообразной, т.е $d\Pi = \psi^*\Omega$. Тогда для $(\psi^{-1})^*\Pi$ справедливо $d((\psi^{-1})^*\Pi) = (\psi^{-1})^*d\Pi = (\psi^{-1})^*\psi^*\Omega = \Omega$

26 Следствие из леммы Пуанкаре для векторных полей в \mathbb{R}^3

Определение 26.1. Векторное поле \vec{a} называется потенциальным, если найдётся функция f (скалярное поле) такая, что $\vec{a} = \operatorname{grad} f$. Векторное поле \vec{B} называется соленоидальным, если найдётся векторное поле \vec{A} такое, что $\vec{B} = \operatorname{rot} \vec{A}$

Следствие. Для заданных в звездообразной области векторных полей \vec{A}, \vec{B}

- ullet Из тождественного равенства rot $ec{A}=ec{0}$ следует потенциальность поля $ec{A}.$
- ullet Из тождественного равенства $div\ ec{A}=0$ следует соленоидальность поля $ec{B}$.

27 Теорема Стокса-Пуанкаре для стандартного куба

Определение 27.1. $K_{j,\alpha} := \{0 < x_0^i < 1; i \neq j, x_0^j = \alpha\}$

Определение 27.2. Грань $K_{j,\alpha}$ ориентирована положительным базисом пространства $E_j = \{(x_0^1, \dots, x_0^{j-1}, x_0^{j+1}, \dots, x_0^n)\}$ таким, что, дополнив его первым вектором, являющимся нормалью к грани $K_{j,\alpha}$, выходящей из куба K, получим положительный базис \mathbb{R}^n

Теорема 27.1. Если Ω – гладкая n-1 форма, заданная на замыкании куба $K \subset \mathbb{R}^n$, то

$$\int_{\partial K} \Omega = \int_K d\Omega$$

Доказательство. $\Omega(x) = \alpha(x)V_i$. Тогда

$$d\Omega(x) = d\alpha(x) \wedge V_j = \frac{\partial \alpha}{\partial x_0^j} dx_0^j \wedge V_j = (-1)^{j-1} \frac{\partial \alpha}{\partial x_0^j} V_{e_0} \Rightarrow$$

$$\Rightarrow \int_{K} d\Omega = (-1)^{j-1} \int_{K} \frac{\partial \alpha}{\partial x_{0}^{j}} d\mu(x_{0}) = (-1)^{j-1} \int_{K \cap E_{0}} \int_{[0,1]} \frac{\partial \alpha}{\partial x_{0}^{j}} dx_{0}^{j} d\mu_{n-1}(y) =$$

$$= (-1)^{j-1} \int_{E_{0} \cap K} (\alpha(y,1) - \alpha(y,0)) d\mu_{n-1}(y)$$

$$\int_{\partial K} \alpha(x) V_{j} = \int_{(-1)^{j+1} K_{j,\,1} + (-1)^{j} K_{j,\,0}} \alpha(x) V_{j} = (-1)^{j+1} \int_{(-1)^{j+1} K_{j,\,1}} \alpha(x) V_{j,\,1} + (-1)^{j} \int_{(-1)^{j} K_{j,\,0}} \alpha(x) V_{j,\,0} = (-1)^{j-1} \left(\int_{K_{j,\,1}} \alpha(y,1) d\mu_{n-1}(y) - \int_{K_{j,\,0}} \alpha(y,0) d\mu_{n-1}(y) \right)$$

28 Дифференцирование форм на клетке, независимость от параметризации

Определение 28.1. Касательным пространством к клетке M в точке x называется $\varphi'(u)(E)$, где $u = \psi(x), E = \mathbb{R}^m$.

Обозначение — T(x)

Определение 28.2. Дифференциальная *p*-форма на клетке – это отображение Ω такое, что $\Omega(x) \in \Lambda_p(T(x))$

Определение 28.3. Пусть Ω – гладкая p-форма на клетке M с параметризацией φ . Тогда $d\Omega:=\psi^*d\varphi^*\Omega$

Утверждение 28.1. Определение дифференцирования форм корректно

Доказательство. Пусть $d_{\varphi}\Omega = \psi^* d\varphi^* \Omega$; $d_{\widehat{\varphi}}\Omega = \widehat{\psi}^* d\widehat{\varphi}^* \Omega$.

 $\pi := \psi \circ \widehat{\varphi}$. Мы утверждаем, что $\pi^* = \widehat{\varphi}^* \psi^*$. Проверим на какой-то форме Ω_1 :

$$\pi^*\Omega_1(v)(H_1,\ldots,H_p) = \Omega_1(\pi(v))(\pi'(v)H_1,\ldots,\pi'(v)H_p) =$$

$$= \Omega_1(\psi(\widehat{\varphi}(v)))(\psi'(\widehat{\varphi}(v))\widehat{\varphi}'(v)H_1,\ldots,\psi'(\widehat{\varphi}(v))\widehat{\varphi}'(v)H_p) = \psi^*\Omega_1(\widehat{\varphi}(v)))(\widehat{\varphi}'(v)H_1,\ldots,\widehat{\varphi}'(v)H_p) =$$

$$= \widehat{\varphi}^*\psi^*\Omega_1(v)(H_1,\ldots,H_p)$$

$$\widehat{\varphi} = \varphi \circ \pi \Rightarrow \widehat{\varphi}^* = \pi^* \circ \varphi^*; \ \widehat{\psi} = \pi^{-1} \circ \psi \Rightarrow \widehat{\psi}^* = \psi^* \circ (\pi^{-1})^*.$$

$$d_{\widehat{\varphi}}\Omega = \psi^*(\pi^{-1})^* d\pi^* \varphi^* \Omega = \psi^*(\pi^{-1})^* \pi^* d\varphi^* \Omega = \psi^* d\varphi^* \Omega = d_{\varphi}\Omega$$

29 Теорема Стокса-Пуанкаре для клетки

Определение 29.1. Формой ориентированного объёма на клетке назовём $\varphi^*V_{e_0}$, где e_0 – положительный ортонормированный базис \mathbb{R}^m .

Каждая m-форма на клетке может быть представлена, как: $\Omega = \alpha(x)V_M(x)$, где $V_M(x)$ – форма ориентированного объёма клетки M.

Определение 29.2. Для m-формы $\Omega(x)$:

$$\int_{M} \Omega = \int_{K} \psi^* \Omega$$

Определение 29.3. Границей клетки M называется

$$\partial M = \varphi(\partial K) = \sum_{i=1, \alpha=0, 1}^{m} (-1)^{i+j} \varphi(K_{i,j})$$

Теорема 29.1. Теорема Стокса-Пуанкаре для клетки:

Eсли Ω – гладкая m-1-форма, заданная в окрестности m-мерной клетки M, то

$$\int_{\partial M} \Omega = \int_{M} d\Omega$$

Доказательство.

$$\int_{\partial M} \Omega = \int_{\partial K} \psi^* \Omega = \int_{K} d\psi^* \Omega = \int_{K} \psi^* d\Omega = \int_{M} d\Omega$$

30 Формула Гаусса-Остроградского

Теорема 30.1. Формула Гаусса-Остроградского: Пусть $m=3, n=3; \ \Omega=Pdy \wedge dz+Qdz \wedge dx+Rdx \wedge dy; \ d\Omega=(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dx \wedge dy \wedge dz.$ Тогда

$$\int_{\partial M} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy = \int_{M} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx \wedge dy \wedge dz$$

Теорема 30.2. Если A = Pi + Qj + Rk – гладкое векторное поле, заданное в окрестности трёхмерной клетки M в \mathbb{R}^3 , то

$$\iint_{\partial M} (A,n) dS = \iiint_{M} div \ A d\mu(x,y,z)$$

, где граница клетки ∂M ориентирован вектором внешней нормали n.

Доказательство. Здесь достаточно доказать, что граница клетки действительно ориентирована вектором внешней нормали n, для этого рисуем куб и его образ, помахав руками, что нормаль куба, направленная вовне после применения φ также будет направлена вовне.

31 Формула Стокса. Формула Грина

Теорема 31.1. Формула Стокса:

Пусть $m=2, n=3; \ \Omega=Pdx+Qdy+Rdz; \ d\Omega=(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})dy \wedge dz+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})dz \wedge dx+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dx \wedge dy.$ Тогда

$$\int_{\partial M} P dx + Q dy + R dz = \int_{M} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy$$

Теорема 31.2. Формула Стокса:

Если M_0 – двумерная клетка в \mathbb{R}^3 , граница которой ∂M_0 ориентирована по правилу правого винта (штопора), то для любого гладкого векторного поля $\vec{A} = P\vec{i} + Q\vec{j} + R\vec{k}$, заданного на M_0 справедлива формула Стокса

$$\int_{\partial M_0} (\vec{A}, d\vec{r}) = \iint_M (rot \ \vec{A}, \vec{n}) dS$$

циркуляция вдоль ∂M_0 поля \vec{A} равна потоку ротора этого поля через M_0 Доказательство.

$$\int_{\partial M_0} (\vec{A}, d\vec{r}) = \int_{\partial M_0} P dx + Q dy + R dz = \int_{\partial M_0} \vec{A}^{\#} = \int_{M_0} d\vec{A}^{\#} = \int_{M_0} * \operatorname{rot} \vec{A}^{\#} = \int_{M_0} (\operatorname{rot} \vec{A}, \vec{n}) dS$$

Теорема 31.3. *Формула Грина:*

Пусть $m=2, n=2; \ \Omega=Pdx+Qdy; \ d\Omega=(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dx\wedge dy.$ Тогда

$$\int_{\partial M} P dx + Q dy = \int_{M} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy$$

32 Форма ориентированного объёма на клетке

Определение 32.1. Римановой метрикой на клетке M называется непрерывная положительно определённая билинейная форма $\langle \cdot, \cdot \rangle_x$, заданная на T(x)

M тогда называется Римановым многообразием.

Определение 32.2. Риманов объём призмы lin (G_1, \ldots, G_m) , где G_1, \ldots, G_m – векторы из T(x), равен

$$|\pi| = \sqrt{\det\langle G_i, G_j\rangle_x}$$

Определение 32.3. Формой ориентированного объёма на римановом многообразии M называется такая m-форма V, что $\forall G_1, \ldots, G_m \in T(x)$:

$$V(x)(G_1, \ldots, G_m) = \pm |\text{lin } (G_1, \ldots, G_m)|$$

, причём знак выбирается в соответствии с ориентацией базиса (G_1, \ldots, G_m) пространства T(x).

Утверждение 32.1. Если φ -положительная параметризация риманова многообразия M (рассматриемого с индуцированной стандартным скалярным произведением в \mathbb{R}^n римановой метрикой), то форма ориентированного объема имеет вид:

$$V(x) = \sqrt{\det\left(\frac{\partial \varphi}{\partial u^i}, \frac{\partial \varphi}{\partial u^j}\right)} \psi^*(du^1 \wedge \ldots \wedge du^m)$$

Доказательство. Форма ориентированного объёма должна выглядеть, как

$$V(x) = \alpha(x)\psi^*(du^1, \dots, du^m)$$

, так как пространство m-форм одномерно.

Найдём коэфициент, подставив какие-то векторы G_1, \ldots, G_m :

$$V(x)(G_1, \ldots, G_m) = \alpha(x)\psi^*(du^1 \wedge \ldots \wedge du^m)(G_1, \ldots, G_m) =$$

= $\alpha(x)du^1 \wedge \ldots \wedge du^m(\psi'G_1, \ldots, \psi'G_m) = \alpha(x)\det((\psi'G_i)^j)$

С другой стороны,

$$V(x)(G_1, \ldots, G_m) = \sqrt{\det(G_i, G_j)}$$

Теперь пусть $G_i = \varphi'(u)e_1^0, i = 1, \dots, m; \ x = \varphi(u)$. Значит

$$V(x)(G_1, \ldots, G_m) = \alpha(x) = \sqrt{\det(\varphi'(u)e_i^0, \varphi'(u)e_j^0)} = \sqrt{\det\left(\frac{\partial \varphi}{\partial u^i}, \frac{\partial \varphi}{\partial u^j}\right)}$$

33 Поверхностные интегралы 1-го и 2-го рода

Определение 33.1. Пусть M-m-мерная клетка в $\mathbb{R}^m, m \leq n$. Тогда

$$\forall G \in T(x) : dx^{i}|_{M}(G) := dx^{i}(G); i = 1, \dots, n$$

Также, сужение формы на клетку можно задать, как

$$\forall G \in T(x_0), G = \varphi'(x_0)H, H \in \mathbb{R}^m : dx^i|_M(G) = dx^i(\varphi'(u_0)H) = (\varphi'(u_0)H)^i = \sum_{j=1}^m \frac{\partial \varphi^i}{\partial u^j}(u_0)H^j$$

Но тогда

$$\varphi^*(dx^i|_M) = \sum_{j=1}^m \frac{\partial \varphi^i}{\partial u^j}(u_0)du^j \Rightarrow dx^i|_M = \psi^* \left(\sum_{j=1}^m \frac{\partial \varphi^i}{\partial u^j}(u_0)du^j\right)$$

Определение 33.2. Положительной нормалью к поверхности в точке x называется единичный вектор, ортогональный T(x) и такой, что $n, e_1(x), e_2(x)$ – положительный базис в \mathbb{R}^3

Утверждение 33.1. Если n – положительная нормаль κ поверхности M, то

$$dy \wedge dz|_{M}(\vec{x}) = \cos(n,i)V(\vec{x}); \ dz \wedge dx|_{M}(\vec{x}) = \cos(n,j)V(\vec{x}); \ dx \wedge dy|_{M}(\vec{x}) = \cos(n,k)V(\vec{x})$$

, где $V(\vec{x})$ – форма ориентированного объёма многообразия M в точке \vec{x} , а i,j,k – орты в \mathbb{R}^3

Доказательство.

$$dx \wedge dy|_{M} = \psi^{*} \left(\left(\frac{\partial \varphi^{1}}{\partial u^{1}} du^{1} + \frac{\partial \varphi^{1}}{\partial u^{2}} du^{2} \right) \wedge \left(\frac{\partial \varphi^{2}}{\partial u^{1}} du^{1} + \frac{\partial \varphi^{2}}{\partial u^{2}} du^{2} \right) \right) =$$

$$= \left(\frac{\partial \varphi^{1}}{\partial u^{1}} \cdot \frac{\partial \varphi^{2}}{\partial u^{2}} - \frac{\partial \varphi^{1}}{\partial u^{2}} \cdot \frac{\partial \varphi^{2}}{\partial u^{1}} \right) \psi^{*} (du^{1} \wedge du^{2}) = \left(\left[\frac{\partial \varphi}{\partial u^{1}}, \frac{\partial \varphi}{\partial u^{2}} \right], k \right) \psi^{*} (du^{1} \wedge du^{2}) =$$

$$= \cos(n, k) \cdot \left| \left[\frac{\partial \varphi}{\partial u^{1}}, \frac{\partial \varphi}{\partial u^{2}} \right] \right| \psi^{*} (du^{1} \wedge du^{2}) = \cos(n, k) V(\vec{x})$$

Определение 33.3. Поверхностным интегралом 1-го рода называется

$$\iint_{M} f(x,y,z)dS = \int_{M} f(x,y,z)d\mu_{M} = \int_{M} f(x,y,z)V(x,y,z)$$

Он равен:

$$\iint_{K} f(x(u,z), y(u,v), z(u,v)) \sqrt{EG - F^{2}} d\mu(u,v)$$

, где

$$E = \left| \frac{\partial \varphi}{\partial u} \right|^2 = \left(\frac{\partial \varphi^1}{\partial u} \right)^2 + \left(\frac{\partial \varphi^2}{\partial u} \right)^2 + \left(\frac{\partial \varphi^3}{\partial u} \right)^2$$

$$G = \left| \frac{\partial \varphi}{\partial v} \right| = \left(\frac{\partial \varphi^1}{\partial v} \right)^2 + \left(\frac{\partial \varphi^2}{\partial v} \right)^2 + \left(\frac{\partial \varphi^3}{\partial v} \right)^2$$

$$F = \left(\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v} \right) = \frac{\partial \varphi^1}{\partial u} \cdot \frac{\partial \varphi^1}{\partial v} + \frac{\partial \varphi^2}{\partial u} \cdot \frac{\partial \varphi^2}{\partial v} + \frac{\partial \varphi^3}{\partial u} \cdot \frac{\partial \varphi^3}{\partial v}$$

Определение 33.4. Для векторного поля A=(P,Q,R) поверхностный интеграл 2-го рода по поверхности M определяется, как

$$\int_{M} *A^{\#} = \int_{M} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy =: \iint_{M} P dy dz + Q dz dx + R dx dy$$

Следствие из утверждения о сужении базисных 2-форм:

$$\iint_{M} P dy dz + Q dz dx + R dx dy = \iint_{M} (P \cos(n, i) + Q \cos(n, j) + R \cos(n, k)) dS = \iint_{M} (A, n) dS =$$

- поток векторного поля A через поверхность M в направлении n.

34 Криволинейные интегралы 1-го и 2-го рода

Утверждение 34.1. Если τ -положительный единичный касательный вектор к одномерному многообразию (кривой), то

$$dx|_{M}(x) = \cos(\tau, i)V(x); dy|_{M}(x) = \cos(\tau, j)V(x); dz_{M}(x) = \cos(\tau, k)V(x)$$

Доказательство.

$$dx|_{M} = \psi^{*} \left(\frac{\partial \varphi^{1}}{\partial u} du \right) = \frac{\partial \varphi^{1}}{\partial u} \psi^{*}(du) = \left(\left| \frac{\partial \varphi}{\partial u} \right|, i \right) \psi^{*}(du) = \cos(\tau, i) \left| \frac{\partial \varphi}{\partial u} \right| \psi^{*}(du) = \cos(\tau, i) V(x)$$

Определение 34.1. Криволинейным интегралом 1-го рода называется

$$\int_{M} f(x,y,z)ds = \int_{M} f(x,y,z)d\mu_{M} = \int_{M} f(x,y,z)V(x,y,z)$$

Он равен:

$$\int_{K} f(x(t), y(t), z(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} d\mu(t)$$

И для отрицательной параметризации знак не меняется.

Определение 34.2. Для векторного поля A=(P,Q,R) криволинейный интеграл 2-го рода по кривой M определяется как

$$\int_{M} A^{\#} = \int_{M} Pdx + Qdy + Rdz$$

Следствие из утверждения о сужении базисных 1-форм:

$$\int_{M} Pdx + Qdy + Rdz = \int_{M} (P\cos(\tau, i) + Q\cos(\tau, j) + R\cos(\tau, k))ds = \int_{M} (A, \tau)ds$$

для замкнутого контура M называется циркуляцией поля A вдоль контура M.

35 Интегрирование форм по дифференцируемому многообразию

Определение 35.1. Две клетки M(i), M(j) называются сцепленными, если $M(ij) := M(i) \cap M(j) \neq \varnothing$ и $K(ij) = \psi(i)M(ij), K(ji) = \psi(j)M(ij)$ – открытые подмножества параметризующих кубов

$$K(ij) \subset K(i) = \psi(i)M(i); K(ji) \subset K(j) = \psi(j)M(j)$$

Определение 35.2. Диффеоморфизмы $\pi(ij) = \psi(i) \circ \varphi(j)$ и $\pi(ji) = \psi(j) \circ \varphi(i)$ называются сцеплениями

Определение 35.3. Набор клеток называется связным, если для любой пары M, M' клеток этого набора найдётся конечное множество клеток $\{M(i)\}_{i=1}^N$ данного набора такое, что $M(i), M(i+1), i=1,\ldots,N-1$ сцеплены. M(1)=M, M(N)=M'

Определение 35.4. Гладким многообразием называется связный набор клеток, попарно сцепленных в случае их пересечения.

Набор $\{(M(i), \psi(i))\}_{i=1}^N$ называется атласом.

Определение 35.5. Многообразие называется ориентируемым, если все его составляющие клетки можно ориентировать согласованно (в случае их сцепления).

Теорема 35.1. Для любого гладкого многообразия существует разбиение единицы, подчинённое его атласу

Доказательство. $K(i) = \{0 < u^s(i) < 1 : s = 1, ..., m\}$

$$\widehat{\eta}(i)(u) := \begin{cases} \exp(-\frac{1}{\prod_{s=1}^{m} u^{s}(1-u^{s})}), u \in K(i) \\ 0, u \notin K(i) \end{cases}$$

$$\eta(i)(x) := \begin{cases} \eta(i)(\psi(i)x), x \in M(i) \\ 0, x \notin M(i) \end{cases}$$

$$\zeta(i)(x) := \frac{\eta(i)(x)}{\sum_{i=1}^{m} \zeta(i)(x)}$$

Определение 35.6. Если многообразие ориентируемо, то форма ориентированного объёма на нём может быть определена, как

$$V_M(x) = \sum_{i=1}^{N} \zeta_i(x) V_{M(i)}(x)$$

, где $\{\zeta_i\}$ – разбиение единицы, подчинённое атласу $\{(M(i),\psi(i))\}_{i=1}^N$, а $V_{M(i)}(x)$ – форма ориентируемого объёма на клетке M(i)

Определение 35.7. Если Ω – дифференциальная m–форма на ориентированном многообразии M, то

$$\int_{M} \Omega = \sum_{i=1}^{N} \int_{M(i)} \zeta(i) \Omega$$

36 Формула Стокса-Пуанкаре для ориентируемого многообразия с краем

Определение 36.1. Клетка M(i) называется сингулярной клеткой многообразия M, если некоторая граничная клетка $M^k_{\alpha}(i) \not\subset M$.

Будем считать, что в каждой сингулярной клетке лишь одна граничная клетка обладает этим свойством, причём $\forall x \in M^k_\alpha(i): x \notin M.$ Будем считать, что сцепленные сингулярные клетки таковы, что соответствующие гра-

ничные клетки $M_{\alpha}^{k}(i), M_{\beta}^{l}(j)$ также сцеплены.

Определение 36.2. Границей многообразия будет называться объединение всех таких граничных клеток.

Теорема 36.1. Формула Стокса-Пуанкаре:

Eсли M – гладкое, ориентированное многообразие c краем ∂M , ориентированным согласованным с ним, и Ω – гладкая m-форма на M, то

$$\int_{\partial M} \Omega = \int_{M} d\Omega$$

Доказательство.

$$\int_{M} d\Omega = \sum_{i=1}^{N} \int_{M} d(\zeta(i)\Omega) = \sum_{i=1}^{N} \int_{M(i)} d(\zeta(i)\Omega) = \sum_{i=1}^{N} \int_{\partial M(i)} \zeta(i)\Omega = \int_{\partial M} \Omega$$