

Task3:-

Objective:-

- •Analyze and transform large-scale multivariate time series data efficiently by:
- •Implementing vectorized rolling window statistics and EWMA.
- Performing spectral analysis via FFT and filtering.
- Comparing implementations: pure NumPy, pandas built-ins, and Numba-optimized or stride-trick-accelerated variants.
- •Selecting the fastest method dynamically based on input size.

Project Structure:-

```
Time_series_project/

— timeseries_utils.py  # Core transformation functions (NumPy, pandas, Numba)
— benchmark.py  # Benchmarks all implementations on synthetic datasets
— benchmark_results.csv  # Benchmark timing and memory usage results
— report.md / report.pdf  # Performance comparison and summary
— plots/  # Generated plots (speed, memory use, FFT visuals)
— data/  # Optionally, store large synthetic CSV datasets
```

Solution Component 1: Rolling Window Statistics

Target Functions:-

- Rolling_mean(x, window)
- Rolling_var(x, window)

Implementation Variants:-

Variant	Notes	
numpy_naive	Simple loop/vector approach	
stride_trick	C-contiguous memory view with as_strided	
numba_accel	Just-In-Time (JIT) accelerated with @njit	
pandas_rolling	<pre>df.rolling(window).me an() — simple but slower at scale</pre>	

S Component 2: Exponentially Weighted Moving Average (EWMA)

•Recursive definition:

 $\ y_t = \alpha x_t + (1 - \alpha)y_{t-1}$

★ Implementation Options:-

Variant Notes

Numpy_loop. Pure NumPy implementation (explicit recursion)

Numba_accel. JIT-accelerated for performance

Pandas_ewm df.ewm(alpha=α).mean() — clean but heavier on memory

Also include:-

•Ewma_cov(x, y, alpha): exponentially weighted covariance.

S Component 3: FFT Spectral Analysis & Filtering

- Use np.fft.rfft or scipy.signal for:
- •Power Spectral Density (PSD): visualize energy in frequency bands.
- •Band-pass filtering: retain frequencies in a defined range.

Functions:-

Def compute_psd(signal: np.ndarray, fs: float) -> Tuple[np.ndarray, np.ndarray]:

•••

Def bandpass_filter(signal: np.ndarray, fs: float, low: float, high: float) -> np.ndarray:

...

Component 4: Benchmarking & Auto-Selection

- Create benchmark.py to:
- •Generate synthetic time series data (1M+ rows)
- •Time each implementation (e.g., time.perf_counter)
- Record memory usage (e.g., tracemalloc, psutil)
- Save results to benchmark_results.csv

Also include:-

Def auto_select_method(data: np.ndarray, task: str) -> str:

66777

Returns 'numba', 'numpy', or 'pandas' depending on performance heuristics.

III Visualizations (in benchmark.py)

- •Runtime vs. Data Size (line plot)
- Memory usage comparison (bar plot)
- •FFT spectrum plots (log scale)
- •Use matplotlib or plotly.

Report Contents (report.md or .pdf)

Sections:-

- Introduction
- Task overview and motivation
 - Methodology
- Describe algorithms for each transformation
- Explanation of acceleration techniques (Numba, stride tricks)
 - Performance Analysis
- Runtime plots
- Memory consumption tables
- Auto-selection strategy
 - Conclusion & Recommendations

- Best approach per task/data size
- •When pandas is better vs. Custom

% Dependencies:-

Bash-

Pip install numpy pandas numba matplotlib psutil

Optional-

Bash-

Pip install plotly seaborn scipy memory_profiler

✓ 1. Starter timeseries_utils.py-


```
Strides = (x.strides[0], x.strides[0])
  Rolled = as strided(x, shape=shape, strides=strides)
  Return rolled.mean(axis=1)
# Rolling Mean - Numba JIT
# -----
@njit
Def rolling_mean_numpy(x: np.ndarray, window: int) -> np.ndarray:
  Result = np.empty(x.size - window + 1)
  For i in range(result.size):
    Result[i] = np.mean(x[i:i+window])
  Return result
# -----
# EWMA – NumPy
# -----
Def ewma numpy(x: np.ndarray, alpha: float) -> np.ndarray:
  Result = np.zeros_like(x)
  Result[0] = x[0]
  For t in range(1, len(x)):
    Result[t] = alpha * x[t] + (1 - alpha) * result[t - 1]
  Return result
# -----
# EWMA – Numba
# -----
@njit
Def ewma_numba(x: np.ndarray, alpha: float) -> np.ndarray:
  Result = np.empty_like(x)
  Result[0] = x[0]
  For t in range(1, len(x)):
    Result[t] = alpha * x[t] + (1 - alpha) * result[t - 1]
  Return result
```

2. Ready-made benchmark.py Script-

benchmark.py

Import numpy as np Import time Import pandas as pd


```
Import matplotlib.pyplot as plt
from timeseries_utils.py import (
  Rolling mean numpy,
  Rolling mean stride,
  Rolling mean numpy,
  Ewma numpy,
  Ewma numba
)
Window = 50
Alpha = 0.1
Sizes = [10 000, 100 000, 1 000 000]
Methods = {
  "rolling numpy": rolling mean numpy,
  "rolling stride": rolling mean stride,
  "rolling_numba": rolling_mean_numba,
  "ewma_numpy": ewma_numpy,
  "ewma numba": ewma numba
}
Results = []
For size in sizes:
  X = np.random.rand(size)
  For name, func in methods.items():
     Try:
       T0 = time.perf_counter()
       If "rolling" in name:
         Func(x, window)
       Else:
         Func(x, alpha)
       Elapsed = time.perf counter() - t0
       Results.append((name, size, elapsed))
     Except Exception as e:
       Results.append((name, size, np.nan))
Df = pd.DataFrame(results, columns=["Method", "DataSize", "TimeSeconds"])
Df.to_csv("benchmark_results.csv", index=False)
# Plot
Plt.figure(figsize=(10, 6))
For method in df["Method"].unique():
  Subset = df[df["Method"] == method]
  Plt.plot(subset["DataSize"], subset["TimeSeconds"], label=method)
Plt.xlabel("Data Size")
```


Plt.ylabel("Time (s)")
Plt.title("Benchmark: Rolling Mean & EWMA")
Plt.legend()
Plt.grid(True)
Plt.tight_layout()
Plt.savefig("plots/benchmark_plot.png")
Plt.show()

✓ 3. Template: report.md-

High-Performance Time Series Transformations

Overview

This report evaluates several approaches to compute rolling means and exponentially weighted moving averages (EWMA) on large time series datasets using NumPy, pandas, stride tricks, and Numba.

III Methods Compared

Method	Backend	Optimized Fo	Optimized For	
rolling_nump	y NumPy	Simplicity		
rolling_stride	NumPy	Memory effi	ciency	
rolling_numba	a Numba	Speed (JI	T compiled)	
ewma_nump	y NumP	y Recursiv	/e updates	
ewma numba	a Numb	a High pei	formance	

Penchmarking

Dataset

Synthetic univariate time series generated with:

- Sizes: 10K, 100K, 1M
- Distribution: Uniform [0, 1]

Results

![Benchmark Plot](plots/benchmark_plot.png)

Observations

- **Stride tricks** outperform basic NumPy for rolling windows on medium sizes but scale poorly with massive data due to cache/memory pressure.
- **Numba** significantly speeds up recursive operations like EWMA.
- **NumPy** is sufficient for small datasets (<50K).
- **pandas** (not benchmarked yet here) is great for convenience but lags on performance.

Recommendations

- Use **Numba** for any recursive or cumulative statistics.
- Use **stride tricks** where vectorization is possible and memory alignment is good.
 - For streaming or real-time data, favor `ewma_numba()`.

🗁 Files

- `timeseries_utils.py`: All methods
- `benchmark.py`: Test runner and visualizer
- `benchmark_results.csv`: Timings
- `plots/benchmark plot.png`: Performance chart

<a> Next Steps

- Package all this into a ZIP file?
- Add FFT analysis and band-pass filtering as the next step?

