تمرین سری دوم_ پیاده سازی فلیپ فلاپ ها با Verilog

نام و نام خانوادگی دانشجو: مهدیه کاریزی شماره دانشجویی: 40213041054030

تحلیل و پیاده سازی فلیپ فلاپ (SR(set-Reset : SR(set-Reset

S	R	Q	Q'		
0	0	0	1		
0	1	0	1		
1	0	1	0		
1	1	œ	œ		

فلیپ فلاپ SR از دو گیت NAND یا گیت NOR ساخته می شود و دو ورودی (S) Set (S) و Reset (R) و (R) دارد.

- اگر S=1 و R=0 باشد، فلیپفلاپ مقدار 1 را ذخیره میکند.
 - اگر S=0 و R=1 باشد، مقدار 0 را ذخیره میکند.
 - اگر S=0 و R=0 باشد، مقدار قبلی حفظ میشود.
- اگر S=1 و R=1 باشد، خروجی نامشخص خواهد شد(در مدل NOR)، که یک مشکل است.

مدار فلیپ فلاپ SR با گیت Nor شامل دو گیت NOR است که به به یکدیگر متصل شده اند. کارپرد: این فلیپفلاپ در حافظه های ابتدایی و مدار های کنترلی ساده استفاده می شود.

تحلیل و پیاده سازی فلیپ فلاپ JK:

فلیپفلاپ JK مشکل فلیپ فلاپ SR که میگفت اگر هم زمان S=1 و S=1 باشند، خروجی نامشخص میشود ، را حل میکند.

این فلیپفلاپ دو ورودی دارد رو ای

- اگر 1=1 و 0=K باشد، خروجی 1 میشود مانند Set در (SR)
- اگر J=0 و K=1 باشد، خروجی 0 میشود مانند Reset در (SR)
 - اگر J=0 و K=0 باشد، مقدار قبلی حفظ می شود.
- اگر 1=1 و K=1 باشد، خروجی معکوس میشود(Toggle Mode).

کاربرد: فلیپفلاپ JK در شمارنده های باینری و مدار های کنترلکننده ترتیبی کاربرد دارد.

تحلیل و پیاده سازی فلیپ فلاپ (T(Toggle :

Т	Q	Q (t+1)	
0	0	0	
1	0	1	
0	1	1	
1	1	0	

فليپ فلاپ T با هر پالس كلاك، مقدار خود را برعكس ميكند.

- اگر T=0 باشد، خروجی بدون تغییر باقی میماند.
 - اگر T=1 باشد، خروجی برعکس میشود.

کاربرد: در شمارنده های باینری و تقسیمکننده های فرکانس از آن استفاده میشود و همچنین برای ساخت فلیپفلاپ T ایجاد می شود).

تحلیل و پیاده سازی فلیپ فلاپ (Delay :

Clock	D	Q	Q'	
↓ » 0	0	0	1	
↑ » 1	0	0	1	
↓ » 0	1	0	1	
↑ » 1	1	1	0	

در مدارهای ترتیبی، ما معمولاً میخواهیم که مقدار ورودی را بدون پیچیدگیهای اضافی مستقیماً در خروجی ذخیره کنیم که فلیپ فلاپ D همین کار را انجام میدهد و از فلیپ فلاپ SR ساخته میشود، اما به گونهای که همیشه S و R مکمل یکدیگر باشند.

- اگر D=1 باشد، خروجی 1 میشود.
- اگر D=0 باشد، خروجی 0 میشود.
- مقدار ذخیره شده تا پالس بعدی کلاک حفظ میشود.

كاربرد: فليپفلاپ D به دليل سادگى، در رجيسترها، حافظهها، و لچها (Latch) كاربرد دارد.

نقش کلاک (Clock) در فلیپفلاپها:

تمام فليپفلاپها معمولاً با يك پالس كلاك (CLK) كنترل مىشوند.

- لبه بالارونده (Rising Edge): وقتى سيكنال از 0 به 1 تغيير مىكند.
- لبه پایین رونده (Falling Edge): وقتی سیگنال از 1 به 0 تغییر میکند.
- سطح بالا یا پایین :در برخی موارد، تغییرات زمانی اتفاق میافتد که کلاک روی 1 یا 0 باشد.

انواع تحریک فلیپفلاپها:

- 1. تحریک لبهای (Edge Triggered): تغییرات فقط در لحظهی تغییر لبه کلاک اتفاق میافتد.
- 2. تحریک سطحی(Level Triggered): خروجی در تمام مدت سطح بالا یا پایین بودن کلاک تغییر میکند.

كاربردهای فلیپفلاپها در مدارهای دیجیتال:

- ذخيره اطلاعات: فليپ فلاپ D در حافظه ها و رجيستر ها استفاده مي شود.
- شمارنده ها: فلیپفلاپ T و JK برای ساخت شمارنده های باینری به کار می روند.
- مدارهای ترتیبی: مثل ماشینهای حالت، کنترلکنندههای دیجیتال و پردازندهها.
- تقسیم فرکانس: فلیپفلاپ T می تواند فرکانس یک سیگنال را نصف کند (مثلاً یک سیگنال MHz10 را به MHz5 تبدیل کند).