A REFERENCE BOOK

FOR THE MANUFACTURING AND MECHANICAL ENGINEER, DESIGNER, DRAFTER, METALWORKER, TOOLMAKER, MACHINIST, HOBBYIST, EDUCATOR, AND STUDENT

Machinery's Handbook Pocket Companion

Second Edition

 $Richard\,P.\,Pohanish\,And\,Christopher\,J.\,McCauley$

Laura Brengelman, Editor

Industrial Press, Inc.

INDUSTRIAL PRESS, INC.

32 Haviland Street, Suite 3 South Norwalk, Connecticut 06854 U.S.A. Phone: 203-956-5593 Toll-Free: 888-528-7852 Fax: 203-354-9391

Email: info@industrialpress.com

Title: Machinery's Handbook Pocket Companion, 2nd Edition
Authors and Compilers: Richard P. Pohanish and Christopher J. McCauley
Library of Congress Control Number: 2020931274

COPYRIGHT

© 2000, 2008, 2016, 2020 by Industrial Press, Inc.

ISBN PRINT: 978-0-8311-4431-9 ISBN ePDF: 978-0-8311-9567-0 ISBN ePub: 978-0-8311-9568-7 ISBN eMobi: 978-0-8311-9569-4

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher.

Limits of Liability and Disclaimer of Warranty

While every possible effort has been made to ensure the accuracy of all information presented herein, the publisher expresses no guarantee of the same, does not offer any warrant or guarantee that omissions or errors have not occurred, and may not be held liable for any damages resulting from use of this text. Readers accept full responsibility for their own safety and that of the equipment used in conjunction with this text.

Printed and bound in the United States of America

MACHINERY'S HANDBOOK
POCKET COMPANION
2ND EDITION
First Printing

books.industrialpress.com ebooks.industrialpress.com

FOREWORD

Twenty years ago, the first edition of the Machinery's Handbook Pocket Companion was developed for users of the Machinery's Handbook who could benefit by having a smaller, more convenient volume for bench- or desk-side quick reference. Containing key content from the Machinery's Handbook, it has evolved into a handy timesaver for anyone in manufacturing, metalworking, and related fields for whom convenient access to fundamental and reliable data is essential. Over the years, the Pocket Companion has been perennially popular with practitioners, educators, and students of the machine trades.

Å tool designed to provide years of use, this book provides detailed information in a concise package. The presented material has been carefully selected from current and former editions of *Machinery's Handbook*. Some of the subject matter has been reorganized, distilled, or simplified to increase the usefulness of this book without adding to its bulk—though this edition has grown, with replaced and extended material from the 31st edition and a new list of useful online resources (see page 345).

The intention has been to provide information of technical value where only a brief or no introduction and essential data are needed to save time and labor. To obtain the full value of this small handbook, the user must have sufficient knowledge about the subject to apply the tables, formulas, and other data where such information can be used with efficiency. The *Machinery's Handbook Pocket Companion* minimizes explanations of the various subjects, based on the assumption that its users are acquainted with information and procedures necessary for the safe operation and manipulation of machines and tools.

The Pocket Companion does not replace the Machinery's Handbook, 31st Edition, but instead serves as a handy and more portable distillation of just some of the Handbook's vastly larger collection of invaluable text, data, and standards. Readers who require in-depth information, background on manufacturing operations, and theory should refer to discussions in the 31st edition.

This book, like all of the *Machinery's Handbook* product family, is the result of collaborative efforts. Among those credited with the *Pocket Companion* becoming the valuable tool it is today are authors and compilers Richard P. Pohanish and Christopher J. McCauley, as well as Arief Era, John Carleo, Cara Chamberlain, Ken Evans, Robert Green, Steve Heather, Jason Hughes, Kathy McKenzie, Gerald Murray, Julia Phelps, Henry Ryffel, Industrial Press owner Alex Luchars, and the rest of the *Machinery's Handbook*, 31st Edition team.

Many of the American National Standards Institute (ANSI) standards that deal with mechanical engineering, extracts from which are included in the *Pocket Companion*, are published by the American Society of Mechanical Engineers (ASME). The editors thank ASME for its exceptional collaboration in helping to identify and bring essential data up to date, in both the *Machinery's Handbook*, 31st Edition, and this companion volume, according to the latest, definitive industry standards. Information concerning other standards and nomenclature also is included in this book. Official standards and related publications are copyrighted by the issuing organizations; contact them directly for further information regarding standards and to purchase copies. We also thank Carr-Lane Manufacturing, the Norton Company, Sandvik Coromant, and other referenced firms for permission to use their material.

Finally, we wish to thank all of the associations, societies, companies, professionals, hobbyists, scholars, educators, students, and other individuals who have provided invaluable material and input for this book and the 31st edition.

We encourage readers with suggestions for improving or adding to the *Pocket Companion* to send us your thoughts and feedback. We also encourage you to share with us how the *Machinery's Handbook* product family supports and enhances your involvement in this endlessly fascinating field.

Laura Brengelman Editor

xiii FOREWORD

MATHEMATICAL FORMULAS AND TABLES

- 1 Dimensions of Plane Figures
- 1 Square
- 1 Rectangle
- 1 Parallelogram
- 1 Triangle
- 2 Trapezoid and Trapezium
- 3 Regular Hexagon and Octagon
- 3 Circle
- 4 Cycloid
- 4 Circular Ring
- 5 Ellipse
- 5 Spandrel or Fillet
- 5 Parabola
- 6 Hyperbola
- 6 Regular Polygons
- 7 Segments of Circles
- 9 Diameters of Circles and Sides of Squares
- 10 Propositions of Geometry
- 15 Trigonometric Relationships and Functions
- 16 Useful Relationships Among Angles
- 16 Law of Sines
- 16 Law of Cosines
- 16 Trigonometric Functions and Identities
- 18 Solution of Triangles
- 21 Trigonometry Tables
- 24 Formulas for Compound Angles
- 25 Length of Chords for Spacing Off the Circumferences of Circles
- 26 Coordinates for Locating Equally-Spaced Holes

MATHEMATICAL FORMULAS AND TABLES

(Continued)

- 27 Decimal Equivalents, Squares, Cubes, Square Roots, Cube Roots, and Logarithms
- 29 Diameter, Circumference, and Area of Circles

MEASUREMENT AND INSPECTION

- 30 Sine-Bar
- 31 Calculations Using Sine-Bars
- 32 Measuring Tapers with V-Block and Sine-Bar
- 32 Using a Calculator to Determine Sine-Bar Constants
- 33 Setting a Sine-Bar
- 40 Measurement of Angles and Tapers
- 40 Rules for Figuring Tapers
- 41 Tapers per Foot and Corresponding Angles
- 43 Gage Block Sets—Inch Sizes
- 43 Measuring Dovetail Slides
- 44 Checking a V-Shaped Groove by Measurement Over Pins
- 45 Measuring American Standard and British Whitworth Screw Threads
- 45 Checking Pitch Diameters of Screw Threads by Three-Wire Method
- 47 Three-Wire Method Applied to Buttress Threads
- 48 Measuring Pitch Diameters of Inch and Metric Screws

STANDARD TAPERS

- 49 Morse Taper
- 49 Morse Standard Taper Shanks

(Continue	STANDARD TAPERS	FAS	STENER INFORMATION
50 51	Morse Stub Taper Shanks Morse Taper Sleeves	95	Grades and Mechanical Properties of Bolts and Screws
51 52	Jarno Taper Jarno Taper Shanks	96	Hexagon and Spline Keys and Bits
52 53	Brown & Sharpe Taper Brown & Sharpe Taper Shanks	97	Hexagon and Spline Socket Head Cap Screws
54	Spindle Noses for Milling Machines	98	Socket Head Cap Screws—Metric Series
56 57	Spindle Nose with Large Flange Tool Shanks for Milling	99	Hexagon and Spline Socket Set Screws
58	Machines V-Flange Tool Shanks	100	Drill and Counterbore Sizes for Socket Head Cap Screws
59	V-Flange Tool Shank Retention Knobs	101	Drill and Counterbore Sizes for Metric Socket Head Cap Screws
	THREADS	102	Hexagon and Spline Socket Flat
60 61	Thread Classes Sharp V-Thread		Countersunk Head Cap Screws
63	Unified Internal and External	103	Slotted Flat Countersunk Head Cap Screws
	Screw Thread Design Profiles	104	Hardened Ground Machine Dowel Pins
63 64	Fine-Thread Series Unified Screw Threads—	105	Hardened Ground Production Dowel Pins
72	Standard Series and Selected Combinations	106	Chamfered and Square End Straight Pins
73	Unified Screw Thread Calculations	106	Straight Pins
82	Taper Pipe Threads	106	Taper Pins
84	Metric Screw Threads—	108	Parallel Steel Dowel Pins
	M Profile	109	Spring Pins
85	M Profile Screw Thread Limiting	109	Slotted-Type Spring Pins
	Dimensions	110	Coiled-Type Spring Pins
87	Metric Thread—M Profile Data	111	T-Nuts
88	M Profile Internal Metric Thread	112	Wrench Openings for Nuts
90	M Profile External Metric	112	Open-End Engineers Wrenches
0.4	Thread	113	Single and Double Hexagon
94 94	Metric Spark Plug Threads		Socket Wrenches — Inch and Metric
94 94	British Standard for Spark Plugs SAE Spark Plug Screw Threads	117	Box Wrenches — Inch and Metric
7-1	5712 Spark Fing Serew Timeaus	11/	Box menenes menand wette

STENER INFORMATION		TAPPING
		Tapping Specific Materials
-		Tap Drill Sizes for Threads
		Tap Drills and Clearance Drills for
British Whitworth and Fine	172	Machine Screws
Machine Screws	142	Tap Drills for Pipe Taps
CUTTING FLUIDS	143	Tap Drill or Core Hole Sizes for
CUTINGFLUIDS		ISO Metric Threads
Recommendations for Machining,		SPEEDS AND FEEDS
and Tapping	144	Cutting Speeds for Plain Carbon and Alloy Steels
RILLING AND REAMING	146	Cutting Speeds for Ferrous Cast Metals
Generally Used Drill Point Angles	147	Cutting Speeds for Stainless Steels
US and Metric Size Commercial	148	Cutting Speeds for Tool Steels
Drills	149	Cutting Speeds for Light Metals
	149	Cutting Speeds for Titanium and
		Titanium Alloys
		Cutting Speeds for Superalloys
Counterboring	151	Cutting Speeds for Copper Alloys
Counterbores with	152	Adjustment Factors for Turning
Interchangeable Cutters and Guides	132	with High-Speed Steel Tools
Length of Point on Twist Drills	153	Feeds for Milling with High-
		Speed Steel Cutters
Solid Counterbores with Integral Pilot	155	RPM for Drills of Number and Letter Sizes
Solid Carbide Square Boring Tools	156	RPM for Various Cutting Speeds and Diameters—Inch
Reamers	158	RPM for Various Cutting Speeds
Common Reamer Difficulties	150	and Diameters—Metric
TAPPING	160	Speeds and Feeds in Diamond
Ton Terms and Designs	1.00	Grinding
1	160	Speeds, Feeds, and Teeth for
•		Drilling and Sawing Plastics
	Bolts and Screws Specification British Unified Machine Screws and Nuts British Whitworth and Fine Machine Screws CUTTING FLUIDS Recommendations for Machining, Turning, and Milling Recommendations for Drilling and Tapping RILLING AND REAMING Generally Used Drill Point Angles US and Metric Size Commercial Drills Common Drilling Difficulties Combined Drills and Countersinks— Plain and Bell Types Counterboring Counterbores with Interchangeable Cutters and Guides Length of Point on Twist Drills and Centering Tools Solid Counterbores with Integral Pilot Solid Carbide Square Boring Tools Reamers Common Reamer Difficulties	Bolts and Screws Specification British Unified Machine Screws and Nuts British Whitworth and Fine Machine Screws 142 CUTTING FLUIDS Recommendations for Machining, Turning, and Milling Recommendations for Drilling and Tapping RILLING AND REAMING Generally Used Drill Point Angles US and Metric Size Commercial Drills Common Drilling Difficulties Combined Drills and Countersinks— Plain and Bell Types Counterboring Counterbores with Interchangeable Cutters and Guides Length of Point on Twist Drills and Centering Tools Solid Counterbores with Integral Pilot Solid Carbide Square Boring Tools Reamers Common Reamer Difficulties TAPPING Tap Terms and Designs Tap Dimensions, Inch and Metric

	MILLING CUTTERS	(Continue	KEYS AND KEYSEATS
161	Milling Cutter Terms and Parts	177	Woodruff Keys and Keyseats
161	End Mill Terms and Parts	178	Keyseat Dimensions for
162	Wheels for Sharpening Milling		Woodruff Keys
	Cutters		BROACHING
163	Wheel Speeds and Feeds for		BROACHING
	Sharpening Milling Cutters	180	Types of Broaches
163	Clearance Angles for Milling	180	Pitch of Broach Teeth
	CutterTeeth	181	Data for Designing Surface
163	Rake Angles for Milling Cutters		Broaches
164	Set-Ups Used in Grinding	181	Broaching Pressure
	Clearance Angle on Milling	182	Common Causes of Broaching
165	Cutter Teeth		Difficulties
165	Multiple- and Two-Flute Single- End Helical End Mills		CUTTING TOOLS
166	Multiple-Flute Medium Helix		FOR TURNING
100	Single-End End Mills	183	Single Daint Truming Tools
167	Form Relieved Corner Rounding	183	Single-Point Turning Tools Chipbreakers
10,	Cutters	184	Identification System for
167	Two-Flute, High Helix Single-	104	Indexable Inserts
	End End Mills	186	Standard Shank Sizes for
168	Two-Flute, Medium Helix, Plain-	100	Indexable Insert Holders
	and Ball-End, Single-End	187	Letter Symbols for Qualification
	End Mills		of Tool Holders
169	Three- and Four-Flute, Medium	188	Numerical Control Tooling
	Helix, Center Cutting,	188	Insert-Radius Compensation
170	Single-End End Mills	191	Threading Tool Insert-Radius
170	60-Degree Single-Angle Milling Cutters		Compensation
170	Key Size Versus Shaft Diameter	191	Cemented Carbides
170	Keys and Keyways for Milling	192	ISO Classifications of Hardmetals
1/1	Cutters and Arbors	MA	CHINING OPERATIONS
172	Woodruff Keyseat Cutters		
		193	Machining Aluminum
]	KEYS AND KEYSEATS	194	Machining Magnesium
173	Depth Control Values for Shaft	195	Machining Zinc Alloy Die
175	and Hub	105	Castings Machining Manual and Nielsel
175	Fits for Parallel and Taper Keys	195	Machining Monel and Nickel Alloys
176	Plain and Gib Head Keys	196	Machining Copper Alloys
177	Depth of Keyseat	196	Machining Hard Rubber
111	2 op ar of Hojsour	170	

	CHINING OPERATIONS		GRINDING WHEELS
197 199 201	Tool Troubleshooting and Practical Tips Tool Troubleshooting Checklist Common Tool Faults, Failures, and Cures	218 228	Conventional Abrasives— Grinding Wheel Recommendations Shapes and Sizes of Grinding Wheels
	OMPUTER NUMERICAL	228	Shapes and Inch Size Ranges
	CONTROL	232	Shapes and Metric Size Ranges
		234	Shapes of Grinding Wheel Faces
204 205	Format Classification G-Code Addresses	235	Diamond Wheel Core Shapes and Designations
207 208	Letter Addresses Miscellaneous Function Words	235	Diamond Wheel Cross Sections and Designations
	GRINDING WHEELS	236	Location of Diamond Section on Wheel
209 209	Grinding Wheel Safety Handling, Storage, and Inspection	237	Letters for Diamond Wheel Modifications
209	Machine Conditions	238	Wheel Type Recommendations
209	Grinding Wheel Mounting	200	and Abrasive Specification
210	Safe Operating Speeds	239	Standard Shapes and Inch Sizes
211	RPM for Various Grinding Speeds and Wheel Diameters		of Mounted Wheels and Points
212	Portable Grinders	241	Standard Shapes and Metric Sizes
212	Maximum Peripheral Speeds for Grinding Wheels		of Mounted Wheels and Points
213	Principal Systems of Surface	242	Lapping Lubricants
	Grinding	242	Sharpening Carbide Tools
214	Periphery of Wheel	243	Silicon Carbide Wheels
214	Face (Side) of Wheel	243	Diamond Wheel Grits and
214	Wheel Recommendations for Surface Grinding		Grades
215	Data for Peripheral Surface	243	Diamond Concentration
213	Grinding	244	Dry versus Wet Grinding of
216	Common Faults and Possible		Carbide Tools
210	Causes in Surface Grinding	244	Coolants for Carbide Tool
217	Grinding Wheel Markings		Grinding
217	Sequence of Markings	244	Peripheral versus Flat Side
217	Composition of Diamond and		Grinding
	Cubic Boron Nitride	244	Lapping Carbide Tools
	Wheels	245	Chipbreaker Grinding

	GEARING		PROPERTIES OF MATERIALS					
246	Gear Teeth Nomenclature and	(Continue						
247	Comparative Size	263	Quick Reference Guide for Tool Steel Selection					
	Gear Tooth Forms	265						
248 249	Formulas for Standard Spur Gears Circular Pitch in Gears	265	Molybdenum High-Speed Steels					
250	Chordal Thicknesses and	266	Hot-Work Tool Steels					
250	Addenda of Gear Teeth and Milling Cutters	267	Tungsten High-Speed Tool Steel					
251	Series of Involute, Finishing Gear	268	Cold-Work Tool Steels					
	Milling Cutters	269	Shock-Resisting, Mold, and					
252	Gear Design Based upon Module System		Special-Purpose Tool Steels					
252	Tooth Form for Spur and Bevel	270	Phase Diagram of Carbon Steel					
	Gears	270	Temperature of Steel as Indicated by Color					
253	Tooth Dimensions Based Upon	272	Comparative Hardness Scales					
251	Module System	212	for Steel					
254	Rules for Module System of	275	Weights of Various Metals and					
0.5.5	Gearing	213	Shapes					
255	Equivalent Diametral Pitches, Circular Pitches, and Metric	277	Aluminum Alloy Properties and Designations					
	Modules	278	Typical Thermal Properties of					
256	Caliper Measurement of Gear Tooth		Various Metals					
256	Checking Spur Gear Size by	280	Characteristics of Plastics					
	Chordal Measurement	281	Working with Plastics					
257	Chordal Dimensions over Spur		STANDARDS FOR					
258	Gear Teeth Number of Teeth Included in		DRAWINGS					
230	Chordal Measurement	282	Shop Prints, Reading and					
258	Formulas for Chordal Dimension	202	Interpreting					
230	Formulas for Chordal Dimension	283	Symbols for Section Lining					
	PROPERTIES OF	284	ASME Geometric Symbols					
	MATERIALS	285	•					
		286	ISO Geometric Symbols					
259	Standard Steel Classification	280	Symbols for Datum Referencing					
259	Classification of Tool Steels		SURFACE TEXTURE					
260	System of Designating Carbon							
	and Alloy Steels	289	Surface Texture Symbols					
261	Classification, Compositions, and Properties of Tool and	290	Applying Surface Texture Symbols					
	Die Steels	290	Roughness Sampling Length					

(Continue	SURFACE TEXTURE		ALLOWANCES AND TOLERANCES
291	Roughness Average (Ra) Values	(Continue	d)
291 292	Waviness Height Values	316	Preferred Hole Basis Metric Clearance Fits
	Lay Symbols	318	Hole Basis Metric Transition and
292	Example Designations		Interference Fits
294295	Surface Characteristics Surface Roughness Produced	320	Preferred Shaft Basis Metric Clearance Fits
	by Common Production Methods	322	Preferred Shaft Basis Metric Transition and Interference
	CORROSION		Fits
	CORROSION	324	Gagemakers Tolerances
296	Types of Corrosion	325	Relation of Machining Processes
296	Methods of Protection		to IT Tolerance Grades
297	Galvanic Compatibility of Metals	325	Usage of International Tolerance
	in Select Environments		Grades
298	Sample Galvanic Series	C	ONVERSION FACTORS
298	Anodic Index	326	Metric Conversion Factors
	ALLOWANCESAND	332	Factors and Prefixes of SI Units
	TOLERANCES	333	Inch to Millimeter and Inch to Centimeter
299	Limits and Fits	334	Decimals of an Inch to Millimeters
299	Preferred Basic Sizes	336	Millimeters to Inches
299	Tolerances and Allowances	338	Fractional Inch to Millimeter and
300	Standard Tolerances		Feet to Millimeter
300	Relation of Machining Processes to Tolerance Grades	339	Thousandths of an Inch to Millimeters
301	Designation of Standard Fits	340	Rounding Off Numbers
303	Graphical Representation of	340	Fundamental Constants
505	Limits and Fits	340	Function of π
304	Running and Sliding Fits	341	Functions of g and e
306	0	341	Weights and Volumes
308	Transition Locational Fits	341	Roman Numerals
309	Interference Locational Fits	341	Greek Letters and Standard Abbreviations
310	Force and Shrink Fits	342	Conversion Factors
312		343	Temperature Conversion
313			
313	Preferred Fits	345	USEFUL ONLINE RESOURCES
315	Description of Preferred Fits	349	INDEX

MATHEMATICS

MATHEMATICAL FORMULAS AND TABLES

Dimensions of Plane Figures

Square:

$$A = s^2 = \frac{1}{2}d^2$$
$$s = 0.7071d = \sqrt{A}$$

$$d = 1.414s = 1.414\sqrt{A}$$

Example: Side s of a square is 15 in. Find the area of the square and the length of its diagonal.

$$A = s^2 = 15^2 = 225 \text{ in}^2$$

$$d = 1.414s = 1.414 \times 15 = 21.21$$
 in

Example: The area of a square is 625 cm². Find the length of side s and diagonal d.

$$s = \sqrt{A} = \sqrt{625} = 25$$
 cm

$$d = 1.414 \sqrt{A} = 1.414 \times 25 = 35.35$$
 cm

Rectangle:

$$A = ab = a\sqrt{d^2 - a^2} = b\sqrt{d^2 - b^2}$$

$$d = \sqrt{a^2 + b^2}$$
$$a = \sqrt{d^2 - b^2} = A/b$$

$$b = \sqrt{d^2 - a^2} = A/a$$

Example: Side a of a rectangle is 12 cm, and the area is 70.5 cm^2 . Find the length of side b and diagonal d.

$$b = A/a = 70.5/12 = 5.875 \text{ cm}$$

$$d = \sqrt{a^2 + b^2} = \sqrt{12^2 + 5.875^2} = \sqrt{178.516} = 13.361 \text{ cm}$$

Example: The sides of a rectangle are 30.5 and 11 cm. Find the area.

$$A = ab = 30.5 \times 11 = 335.5 \text{ cm}^2$$

Parallelogram:

$$A = ab$$

$$a = A/b$$

$$b = A/a$$

Note: The dimension a is the length of the vertical drawn at a right angle to side b. Dimension a is also considered the height of the parallelogram.

Example: Base b of a parallelogram is 16 ft. Height a is 5.5 ft. Find the area.

$$A = ab = 5.5 \times 16 = 88 \text{ ft}^2$$

Example: The area of a parallelogram is 12 in^2 . The height is 1.5 in. Find the length of the base b. b = A/a = 12/1.5 = 8 in.

Right Triangle (one angle is a 90-degree angle):

From the Pythagorean theorem, $a^2 + b^2 = c^2$, thus $A = \frac{ab}{2}$

$$c = \sqrt{a^2 + b^2}$$
 $a = \sqrt{c^2 - b^2}$ $b = \sqrt{c^2 - a^2}$

Example: Side a is 6 in. and side b is 8 in. Find side c and area A:

$$c = \sqrt{a^2 + b^2} = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \text{ in.}$$

$$A = \frac{ab}{2} = \frac{6 \times 8}{2} = \frac{48}{2} = 24 \text{ in}^2$$

Example: Side c = 10 and side a = 6. Find side b:

$$b \text{ in.} = \sqrt{c^2 - a^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \text{ in.}$$

Copyright 2020, Industrial Press, Inc.

ebooks.industrialpress.com

DIMENSIONS OF PLANE FIGURES

Acute Triangle (all three angles measure less than 90 degrees):

2

$$A = \frac{bh}{2}, \ h = \sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}, \quad \text{so} \quad A = \frac{b}{2}\sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}$$

$$A = \sqrt{S(S-a)(S-b)(S-c)}, \text{ where } S = \frac{a+b+c}{2}$$

Example: Side b = 7 inches, h = 4 inches, so $A = bh/2 = (7 \text{ in} \times 4 \text{ in})/2 = 28 \text{ in}^2/2 = 14 \text{ in}^2$ Example: Side a = 10 cm, b = 9 cm, and $c = 8 \text{ cm}^2$. Find the area.

$$A = \frac{b}{2} \sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2} = \frac{9}{2} \sqrt{10^2 - \left(\frac{10^2 + 9^2 - 8^2}{2 \times 9}\right)^2} = 4.5 \sqrt{100 - \left(\frac{117}{18}\right)^2}$$
$$= 4.5 \sqrt{100 - 42.25} = 4.5 \sqrt{57.75} = 4.5 \times 7.60 = 34.20 \text{ cm}^2$$

Obtuse Triangle (one angle measures greater than 90 degrees):

$$A = \frac{bh}{2}, \ h = \sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}, \text{ so } A = \frac{b}{2}\sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}$$

$$A = \sqrt{S(S-a)(S-b)(S-c)}, \text{ where } S = \frac{a+b+c}{2}$$

Example: If b = 5 cm and h = 3 cm, then $A = bh/2 = (5 \text{ cm} \times 3 \text{ cm})/2 = 15 \text{ cm}^2/2 = 7.5 \text{ cm}^2$

Example: Side a = 5 in., side b = 4 in., and side c = 8 in. Find the area.

$$S = (a+b+c)/2 = (5+4+8)/2 = 17/2 = 8.5$$

$$A = \sqrt{S(S-a)(S-b)(S-c)} = \sqrt{8.5(8.5-5)(8.5-4)(8.5-8)}$$

$$= \sqrt{8.5 \times 3.5 \times 4.5 \times 0.5} = \sqrt{66.937} = 8.18 \text{ in}^2$$

Trapezoid:

Area =
$$A = \frac{(a+b)h}{2}$$

Note: In Britain, this figure is called a *trapezium* and the figure below it is known as a *trapezoid*, which is the reverse of the US terms

Example: Side a = 23 meters, side b = 32 meters, and height h = 12 meters. Find the area.

$$A = \frac{(a+b)h}{2} = \frac{(23+32)\times 12}{2} = \frac{55\times 12}{2} = 330 \text{ m}^2$$

Trapezium:

Area =
$$A = \frac{(H+h)a + bh + cH}{2}$$

The area of a trapezium also can be found by dividing it into two triangles, as indicated by the dashed line. Each area is added to give the total area of the trapezium.

Example: Let a = 10 in., b = 2, c = 3 in., h = 8 in., and H = 12 in. Find the area.

$$A = \frac{(H+h)a+bh+cH}{2} = \frac{(12+8)\times 10 + (2\times 8) + (3\times 12)}{2}$$
$$= \frac{(20\times 10) + 16 + 36}{2} = \frac{252}{2} = 126 \text{ in}^2$$

Copyright 2020, Industrial Press, Inc.

DIMENSIONS OF PLANE FIGURES

Regular Hexagon:

$$A = 2.598s^2 = 2.598R^2 = 3.464r^2$$

R = s = radius of circumscribed circle = 1.155r

$$r = \text{radius of inscribed circle} = 0.866s = 0.866R$$

s = R = 1.155rExample: The side s of a regular hexagon is 40 millimeters. Find the area and the radius r of the inscribed (drawn inside) circle.

$$A = 2.598 s^2 = 2.598 \times 40^2 = 2.598 \times 1600 = 4156.8 \text{ mm}^2$$

 $r = 0.866 s = 0.866 \times 40 = 34.64 \text{ mm}$

Example: What is the length of the side of a hexagon circumscribed on (drawn around) a circle of 50 millimeters radius? In this case, because the hexagon is circumscribed on the circle, the circle is inscribed (drawn within) the hexagon. Hence, r = 50 mm and $s = 1.155 r = 1.155 \times 50 = 57.75 \text{ mm}$

Regular Octagon:

$$A = \text{area} = 4.828s^2 = 2.828R^2 = 3.314r^2$$

R = radius of circumscribed circle = 1.307s = 1.082r

$$r = \text{radius of inscribed circle} = 1.207s = 0.924R$$

s = 0.765R = 0.828r

 $\label{eq:continuous} Example: Find the area and the length of the side of an octagon inscribed (drawn inside) in a circle of 12 inches diameter.$

Diameter of circumscribed (drawn around) circle = 12 inches; hence. R = 6 in.

$$A = 2.828R^2 = 2.828 \times 6^2 = 2.828 \times 36 = 101.81 \text{ in}^2$$

 $s = 0.765R = 0.765 \times 6 = 4.590 \text{ in}.$

Circle:

Area =
$$A = \pi r^2 = 3.1416r^2 = 0.7854d^2$$

Circumference =
$$C = 2\pi r = 6.2832r = 3.1416d$$

$$r = C \div 6.2832 = \sqrt{A \div 3.1416} = 0.564 \sqrt{A}$$

$$d = C \div 3.1416 = \sqrt{A \div 0.7854} = 1.128 \sqrt{A}$$

Length of arc for center angle of $1^{\circ} = 0.008727d$

Length of arc for center angle of $n^{\circ} = 0.008727nd$

Example: Find area A and circumference C of a circle with a diameter of $2^{3}/_{4}$ inches.

$$A = 0.7854d^2 = 0.7854 \times 2.75^2 = 0.7854 \times 2.75 \times 2.75 = 5.9396 \text{ in}^2$$

$$C = 3.1416d = 3.1416 \times 2.75 = 8.6394$$
 in
Example: The area of a circle is 16.8 in². Find its diameter.

mpre. The area of a circle is 10.0 m . T ma its diameter.

$$d = 1.128\sqrt{A} = 1.128\sqrt{16.8} = 1.128 \times 4.099 = 4.624 \text{ in}.$$

Sector of a Circle:

Length of arc =
$$l = \frac{3.1416 \, r \, \alpha}{180} = 0.01745 \, r \alpha = \frac{2A}{r}$$

Area =
$$A = \frac{1}{2}rl = 0.008727\alpha r^2$$

Central angle, in degrees =
$$\alpha = \frac{57.296 \ l}{r}$$
, $r = \frac{2A}{l} = \frac{57.296 \ l}{\alpha}$

Example: The radius of a circle is 35 millimeters, and angle α of a sector of the circle is 60 degrees. Find the area of the sector and the length of arc l.

$$A = 0.008727 \alpha r^2 = 0.008727 \times 60 \times 35^2 = 641.41 \,\text{mm}^2 = 6.41 \,\text{cm}^2$$

$$l = 0.01745r\alpha = 0.01745 \times 35 \times 60 = 36.645 \text{ mm}$$

4

Segment of a Circle:

See also Segments of Circles starting on page 7.

Example: The radius r is 60 inches and the height h is 8 inches. Find the length of the chord c.

$$c = 2\sqrt{h(2r-h)} = 2\sqrt{8\times(2\times60-8)} = 2\sqrt{896} = 2\times29.93 = 59.86 \text{ in.}$$

Example: If c = 16, and h = 6 inches, what is the radius of the circle of which the segment is a part?

$$r = \frac{c^2 + 4h^2}{8h} = \frac{16^2 + 4 \times 6^2}{8 \times 6} = \frac{256 + 144}{48} = \frac{400}{48} = 8\frac{1}{3} \text{ in}.$$

Cycloid:

Area =
$$A = 3\pi r^2 = 9.4248r^2 = 2.3562d^2$$

= $3 \times$ area of generating circle
Length of cycloid = $l = 8r = 4d$

Example: The diameter of the generating circle of a cycloid is 6 inches. Find the length l of the cycloidal curve and the area enclosed between the curve and the base line.

$$l = 4d = 4 \times 6 = 24 \text{ in.}$$

$$A = 2.3562d^2 = 2.3562 \times 6^2 = 84.82 \text{ in.}^2$$

Circular Ring (Annulus):

Area =
$$A = \pi(R^2 - r^2) = 3.1416(R^2 - r^2)$$

= $3.1416(R + r)(R - r)$
= $0.7854(D^2 - d^2) = 0.7854(D + d)(D - d)$

Example: Let the outside diameter D = 12 centimeters and the inside diameter d = 8 centimeters. Find the area of the ring.

$$A = 0.7854(D^2 - d^2) = 0.7854(12^2 - 8^2) = 0.7854(144 - 64) = 0.7854 \times 80$$

= 62.83 cm²

By the alternative formula:

$$A = 0.7854(D+d)(D-d) = 0.7854(12+8)(12-8) = 0.7854 \times 20 \times 4$$

= 62.83 cm²

Sector of Circular Ring:

A = area,
$$\alpha$$
 = central angle, in degrees
$$A = \frac{\alpha \pi}{360} (R^2 - r^2) = 0.00873 \alpha (R^2 - r^2)$$

$$= \frac{\alpha \pi}{4 \times 360} (D^2 - d^2) = 0.00218 \alpha (D^2 - d^2)$$

Example: Find the area, if the outside radius R = 5 inches, the inside radius r = 2 inches, and $\alpha = 72$ degrees.

$$A = 0.00873\alpha(R^2 - r^2) = 0.00873 \times 72(5^2 - 2^2)$$

= 0.6286(25 - 4) = 0.6286 \times 21 = 13.2 in.²

Copyright 2020, Industrial Press, Inc.

DIMENSIONS OF PLANE FIGURES

Ellipse:

$$Area = A = \pi ab = 3.1416ab$$

An approximate formula for the perimeter is

Perimeter =
$$P = 3.1416\sqrt{2(a^2 + b^2)}$$

A closer approximation is
$$P = 3.1416 \sqrt{2(a^2 + b^2) - \frac{(a - b)^2}{2.2}}$$

Example: The larger, or major, axis is 200 millimeters. The smaller, or minor, axis is 150 millimeters. Find the area and the approximate circumference. Here, then, a = 100, and b = 75.

$$A = 3.1416ab = 3.1416 \times 100 \times 75 = 23,562 \text{ mm}^2 = 235.62 \text{ cm}^2$$

$$P = 3.1416\sqrt{2(a^2 + b^2)} = 3.1416\sqrt{2(100^2 + 75^2)} = 3.1416\sqrt{2 \times 15,625}$$

=
$$3.1416\sqrt{31,250}$$
 = 3.1416×176.78 = 555.37 mm = 55.537 cm

Spandrel or Fillet:

The shaded region is the spandrel (fillet).

Area =
$$A = r^2 - \frac{\pi r^2}{4} = 0.215r^2 = 0.1075c^2$$

Example: Find the area of a spandrel, the radius of which is 0.7 inch.

$$A = 0.215r^2 = 0.215 \times 0.7^2 = 0.105 \text{ in}^2$$

Example: If chord c were given as 2.2 inches, what would be the area?

$$A = 0.1075c^2 = 0.1075 \times 2.2^2 = 0.520 \text{ in}^2$$

Parabola:

Area =
$$A = \frac{2}{3}xy$$

The area of the shaded portion is equal to two-thirds of a rectangle which has x for its base and y for its height.

Example: Let x in the illustration be 15 centimeters, and y be 9 centimeters. Find the area of the shaded portion of the parabola.

$$A = \frac{2}{3}xy = \frac{2}{3} \times 15 \times 9 = 10 \times 9 = 90 \text{ cm}^2$$

Parabola:

$$l = \text{length of arc} = \frac{p}{2} \left[\sqrt{\frac{2x}{p}} \left(1 + \frac{2x}{p} \right) + \ln \left(\sqrt{\frac{2x}{p}} + \sqrt{1 + \frac{2x}{p}} \right) \right]$$

When x is small in proportion to y, the following is a close approximation:

$$l = y \left[1 + \frac{2}{3} \left(\frac{x}{y} \right)^2 - \frac{2}{5} \left(\frac{x}{y} \right)^4 \right]$$
 or $l = \sqrt{y^2 + \frac{4}{3}x^2}$

Example: If x = 2 feet and y = 24 feet, what is the approximate length l of the parabolic curve?

$$l = y \left[1 + \frac{2}{3} \left(\frac{x}{y} \right)^2 - \frac{2}{5} \left(\frac{x}{y} \right)^4 \right] = 24 \left[1 + \frac{2}{3} \left(\frac{2}{24} \right)^2 - \frac{2}{5} \left(\frac{2}{24} \right)^4 \right]$$

$$= 24 \times 1.0046 = 24.04 \text{ ft}$$

Hyperbola:

Area
$$BCD = A = \frac{xy}{2} - \frac{ab}{2} \ln \left(\frac{x}{a} + \frac{y}{b} \right)$$

Example: The half-axes a and b are 3 and 2 inches, respectively. Find the area shown shaded in the illustration for x = 8 inches and y = 5 inches.

Inserting the known values in the formula:

Area =
$$A = \frac{8 \times 5}{2} - \frac{3 \times 2}{2} \times \ln\left(\frac{8}{3} + \frac{5}{2}\right) = 20 - 3 \times \ln(5.167)$$

= $20 - 3 \times 1.6423 = 20 - 4.927 = 15.073 \text{ in}^2$

Formulas and Table for Regular Polygons.—The following formulas and table can be used to calculate the area, length of side, and radii of the inscribed and circumscribed circles of regular polygons (equal sided).

$$A = NS^2 \cot \alpha \div 4 = NR^2 \sin \alpha \cos \alpha = Nr^2 \tan \alpha$$

$$r = R\cos\alpha = (S\cot\alpha) \div 2 = \sqrt{(A\cot\alpha)/N}$$

$$R = S \div (2\sin\alpha) = r \div \cos\alpha = \sqrt{A/(N\sin\alpha\cos\alpha)}$$

$$S = 2R \sin \alpha = 2r \tan \alpha = 2\sqrt{(A \tan \alpha)/N}$$

where N = number of sides

S = length of side

R = radius of circumscribed circle

r = radius of inscribed circle

A = area of polygon

 $\alpha = 180^{\circ} \div N = \text{one-half center angle of one side}$

$Area, Length\ of\ Side, and\ Inscribed\ and\ Circumscribed\ Radii\ of\ Regular\ Polygons$

No. of Sides	$\frac{A}{S^2}$	$\frac{A}{R^2}$	$\frac{A}{r^2}$	$\frac{R}{S}$	$\frac{R}{r}$	$\frac{S}{R}$	$\frac{S}{r}$	$\frac{r}{R}$	$\frac{r}{S}$
3	0.4330	1.2990	5.1962	0.5774	2.0000	1.7321	3.4641	0.5000	0.2887
4	1.0000	2.0000	4.0000	0.7071	1.4142	1.4142	2.0000	0.7071	0.5000
5	1.7205	2.3776	3.6327	0.8507	1.2361	1.1756	1.4531	0.8090	0.6882
6	2.5981	2.5981	3.4641	1.0000	1.1547	1.0000	1.1547	0.8660	0.8660
7	3.6339	2.7364	3.3710	1.1524	1.1099	0.8678	0.9631	0.9010	1.0383
8	4.8284	2.8284	3.3137	1.3066	1.0824	0.7654	0.8284	0.9239	1.2071
9	6.1818	2.8925	3.2757	1.4619	1.0642	0.6840	0.7279	0.9397	1.3737
10	7.6942	2.9389	3.2492	1.6180	1.0515	0.6180	0.6498	0.9511	1.5388
12	11.196	3.0000	3.2154	1.9319	1.0353	0.5176	0.5359	0.9659	1.8660
16	20.109	3.0615	3.1826	2.5629	1.0196	0.3902	0.3978	0.9808	2.5137
20	31.569	3.0902	3.1677	3.1962	1.0125	0.3129	0.3168	0.9877	3.1569
24	45.575	3.1058	3.1597	3.8306	1.0086	0.2611	0.2633	0.9914	3.7979
32	81.225	3.1214	3.1517	5.1011	1.0048	0.1960	0.1970	0.9952	5.0766
48	183.08	3.1326	3.1461	7.6449	1.0021	0.1308	0.1311	0.9979	7.6285
64	325.69	3.1365	3.1441	10.190	1.0012	0.0981	0.0983	0.9988	10.178

SEGMENTS OF CIRCLES

Segments of Circles for Radius = 1 (US Customary or Metric Units)

Formulas for segments of circles are given on page 4. When the central angle α and radius r are known, the tables on these pages can be used to find the length of are l, height of segment h, chord length c, and segment area A. When angle α and radius r are not known, but segment height h and chord length c are known or can be measured, the ratio h/c can be used to enter the table and find α , l, and A by linear interpolation. Radius r is found by the formula on page 4. The value of l is then multiplied by the radius r and the area A by r^2 the source of the radius

by the radius r and the area A by r^2 , the square of the radius. Angle α can be found thus with an accuracy of about 0.001 degree; arc length l with an error of about 0.02 percent; and area A with an error ranging from about 0.02 percent for the highest entry value of hlc to about 1 percent for values of hlc of about 0.050. For lower values of hlc, and where greater accuracy is required, area A should be found by the formula on page 4.

					required	, area A	should be	found by	the formu	la on pag	e 4.
θ, Deg.	ı	h	с	Area A	h/c	θ, Deg.	l	h	с	Area A	h/c
1	0.01745	0.00004	0.01745	0.0000	0.00218	41	0.71558	0.06333	0.70041	0.0298	0.09041
2	0.03491	0.00015	0.03490	0.0000	0.00436	42	0.73304	0.06642	0.71674	0.0320	0.09267
3	0.05236	0.00034	0.05235	0.0000	0.00655	43	0.75049	0.06958	0.73300	0.0342	0.09493
4	0.06981	0.00061	0.06980	0.0000	0.00873	44	0.76794	0.07282	0.74921	0.0366	0.09719
5	0.08727	0.00095	0.08724	0.0001	0.01091	45	0.78540	0.07612	0.76537	0.0391	0.09946
6	0.10472	0.00137	0.10467	0.0001	0.01309	46	0.80285	0.07950	0.78146	0.0418	0.10173
7	0.12217	0.00187	0.12210	0.0002	0.01528	47	0.82030	0.08294	0.79750	0.0445	0.10400
8	0.13963	0.00244	0.13951	0.0002	0.01746	48	0.83776	0.08645	0.81347	0.0473	0.10628
9	0.15708	0.00308	0.15692	0.0003	0.01965	49	0.85521	0.09004	0.82939	0.0503	0.10856
10	0.17453	0.00381	0.17431	0.0004	0.02183	50	0.87266	0.09369	0.84524	0.0533	0.11085
11	0.19199	0.00460	0.19169	0.0006	0.02402	51	0.89012	0.09741	0.86102	0.0565	0.11314
12	0.20944	0.00548	0.20906	0.0008	0.02620	52	0.90757	0.10121	0.87674	0.0598	0.11543
13	0.22689	0.00643	0.22641	0.0010	0.02839	53	0.92502	0.10507	0.89240	0.0632	0.11773
14	0.24435	0.00745	0.24374	0.0012	0.03058	54	0.94248	0.10899	0.90798	0.0667	0.12004
15	0.26180	0.00856	0.26105	0.0015	0.03277	55	0.95993	0.11299	0.92350	0.0704	0.12235
16	0.27925	0.00973	0.27835	0.0018	0.03496	56	0.97738	0.11705	0.93894	0.0742	0.12466
17	0.29671	0.01098	0.29562	0.0022	0.03716	57	0.99484	0.12118	0.95432	0.0781	0.12698
18	0.31416	0.01231	0.31287	0.0026	0.03935	58	1.01229	0.12538	0.96962	0.0821	0.12931
19	0.33161	0.01371	0.33010	0.0030	0.04155	59	1.02974	0.12964	0.98485	0.0863	0.13164
20	0.34907	0.01519	0.34730	0.0035	0.04374	60	1.04720	0.13397	1.00000	0.0906	0.13397
21	0.36652	0.01675	0.36447	0.0041	0.04594	61	1.06465	0.13837	1.01508	0.0950	0.13632
22	0.38397	0.01837	0.38162	0.0047	0.04814	62	1.08210	0.14283	1.03008	0.0996	0.13866
23	0.40143	0.02008	0.39874	0.0053	0.05035	63	1.09956	0.14736	1.04500	0.1043	0.14101
24	0.41888	0.02185	0.41582	0.0061	0.05255	64	1.11701	0.15195	1.05984	0.1091	0.14337
25	0.43633	0.02370	0.43288	0.0069	0.05476	65	1.13446	0.15661	1.07460	0.1141	0.14574
26	0.45379	0.02563	0.44990	0.0077	0.05697	66	1.15192	0.16133	1.08928	0.1192	0.14811
27	0.47124	0.02763	0.46689	0.0086	0.05918	67	1.16937	0.16611	1.10387	0.1244	0.15048
28	0.48869	0.02970	0.48384	0.0096	0.06139	68	1.18682	0.17096	1.11839	0.1298	0.15287
29	0.50615	0.03185	0.50076	0.0107	0.06361	69	1.20428	0.17587	1.13281	0.1353	0.15525
30	0.52360	0.03407	0.51764	0.0118	0.06583	70	1.22173	0.18085	1.14715	0.1410	0.15765
31	0.54105	0.03637	0.53448	0.0130	0.06805	71	1.23918	0.18588	1.16141	0.1468	0.16005
32	0.55851	0.03874	0.55127	0.0143	0.07027	72	1.25664	0.19098	1.17557	0.1528	0.16246
33	0.57596	0.04118	0.56803	0.0157	0.07250	73	1.27409	0.19614	1.18965	0.1589	0.16488
34	0.59341	0.04370	0.58474	0.0171	0.07473	74	1.29154	0.20136	1.20363	0.1651	0.16730
35	0.61087	0.04628	0.60141	0.0186	0.07696	75	1.30900	0.20665	1.21752	0.1715	0.16973
36	0.62832	0.04894	0.61803	0.0203	0.07919	76	1.32645	0.21199	1.23132	0.1781	0.17216
37	0.64577	0.05168	0.63461	0.0220	0.08143	77	1.34390	0.21739	1.24503	0.1848	0.17461
38	0.66323	0.05448	0.65114	0.0238	0.08367	78	1.36136	0.22285	1.25864	0.1916	0.17706
39	0.68068	0.05736	0.66761	0.0257	0.08592	79	1.37881	0.22838	1.27216	0.1986	0.17952
40	0.69813	0.06031	0.68404	0.0277	0.08816	80	1.39626	0.23396	1.28558	0.2057	0.18199

Segments of Circles for Radius = 1 (US Customary or Metric Units) (Continued)

θ, Deg.	I	h	с	Area A	h/c	θ, Deg.	ı	h	с	Area A	h/c
81	1.41372	0.23959	1.29890	0.2130	0.18446	131	2.28638	0.58531	1.81992	0.7658	0.32161
82	1.43117	0.24529	1.31212	0.2205	0.18694	132	2.30383	0.59326	1.82709	0.7803	0.32470
83	1.44862	0.25104	1.32524	0.2280	0.18943	133	2.32129	0.60125	1.83412	0.7950	0.32781
84	1.46608	0.25686	1.33826	0.2358	0.19193	134	2.33874	0.60927	1.84101	0.8097	0.33094
85	1.48353	0.26272	1.35118	0.2437	0.19444	135	2.35619	0.61732	1.84776	0.8245	0.33409
86	1.50098	0.26865	1.36400	0.2517	0.19696	136	2.37365	0.62539	1.85437	0.8395	0.33725
87	1.51844	0.27463	1.37671	0.2599	0.19948	137	2.39110	0.63350	1.86084	0.8546	0.34044
88	1.53589	0.28066	1.38932	0.2682	0.20201	138	2.40855	0.64163	1.86716	0.8697	0.34364
89	1.55334	0.28675	1.40182	0.2767	0.20456	139	2.42601	0.64979	1.87334	0.8850	0.34686
90	1.57080	0.29289	1.41421	0.2854	0.20711	140	2.44346	0.65798	1.87939	0.9003	0.35010
91	1.58825	0.29909	1.42650	0.2942	0.20967	141	2.46091	0.66619	1.88528	0.9158	0.35337
92	1.60570	0.30534	1.43868	0.3032	0.21224	142	2.47837	0.67443	1.89104	0.9314	0.35665
93	1.62316	0.31165	1.45075	0.3123	0.21482	143	2.49582	0.68270	1.89665	0.9470	0.35995
94	1.64061	0.31800	1.46271	0.3215	0.21741	144	2.51327	0.69098	1.90211	0.9627	0.36327
95	1.65806	0.32441	1.47455	0.3309	0.22001	145	2.53073	0.69929	1.90743	0.9786	0.36662
96	1.67552	0.33087	1.48629	0.3405	0.22261	146	2.54818	0.70763	1.91261	0.9945	0.36998
97	1.69297	0.33738	1.49791	0.3502	0.22523	147	2.56563	0.71598	1.91764	1.0105	0.37337
98	1.71042	0.34394	1.50942	0.3601	0.22786	148	2.58309	0.72436	1.92252	1.0266	0.37678
99	1.72788	0.35055	1.52081	0.3701	0.23050	149	2.60054	0.73276	1.92726	1.0428	0.38021
100	1.74533	0.35721	1.53209	0.3803	0.23315	150	2.61799	0.74118	1.93185	1.0590	0.38366
101	1.76278	0.36392	1.54325	0.3906	0.23582	151	2.63545	0.74962	1.93630	1.0753	0.38714
102	1.78024	0.37068	1.55429	0.4010	0.23849	152	2.65290	0.75808	1.94059	1.0917	0.39064
103	1.79769	0.37749	1.56522	0.4117	0.24117	153	2.67035	0.76655	1.94474	1.1082	0.39417
104	1.81514	0.38434	1.57602	0.4224	0.24387	154	2.68781	0.77505	1.94874	1.1247	0.39772
105	1.83260	0.39124	1.58671	0.4333	0.24657	155	2.70526	0.78356	1.95259	1.1413	0.40129
106	1.85005	0.39818	1.59727	0.4444	0.24929	156	2.72271	0.79209	1.95630	1.1580	0.40489
107	1.86750	0.40518	1.60771	0.4556	0.25202	157	2.74017	0.80063	1.95985	1.1747	0.40852
108	1.88496	0.41221	1.61803	0.4669	0.25476	158	2.75762	0.80919	1.96325	1.1915	0.41217
109	1.90241	0.41930	1.62823	0.4784	0.25752	159	2.77507	0.81776	1.96651	1.2084	0.41585
110	1.91986	0.42642	1.63830	0.4901	0.26028	160	2.79253	0.82635	1.96962	1.2253	0.41955
111	1.93732	0.43359	1.64825	0.5019	0.26306	161	2.80998	0.83495	1.97257	1.2422	0.42328
112	1.95477	0.44081	1.65808	0.5138	0.26585	162	2.82743	0.84357	1.97538	1.2592	0.42704
113	1.97222	0.44806	1.66777	0.5259	0.26866	163	2.84489	0.85219	1.97803	1.2763	0.43083
114	1.98968	0.45536	1.67734	0.5381	0.27148	164	2.86234	0.86083	1.98054	1.2934	0.43464
115	2.00713	0.46270	1.68678	0.5504	0.27431	165	2.87979	0.86947	1.98289	1.3105	0.43849
116	2.02458	0.47008	1.69610	0.5629	0.27715	166	2.89725	0.87813	1.98509	1.3277	0.44236
117	2.04204	0.47750	1.70528	0.5755	0.28001	167	2.91470	0.88680	1.98714	1.3449	0.44627
118	2.05949	0.48496	1.71433	0.5883	0.28289	168	2.93215	0.89547	1.98904	1.3621	0.45020
119	2.07694	0.49246	1.72326	0.6012	0.28577	169	2.94961	0.90415	1.99079	1.3794	0.45417
120	2.09440	0.50000	1.73205	0.6142	0.28868	170	2.96706	0.91284	1.99239	1.3967	0.45817
121	2.11185	0.50758	1.74071	0.6273	0.29159	171	2.98451	0.92154	1.99383	1.4140	0.46220
122	2.12930	0.51519	1.74924	0.6406	0.29452	172	3.00197	0.93024	1.99513	1.4314	0.46626
123	2.14675	0.52284	1.75763	0.6540	0.29747	173	3.01942	0.93895	1.99627	1.4488	0.47035
124	2.16421	0.53053	1.76590	0.6676	0.30043	174	3.03687	0.94766	1.99726	1.4662	0.47448
125	2.18166	0.53825	1.77402	0.6813	0.30341	175	3.05433	0.95638	1.99810	1.4836	0.47865
126	2.19911	0.54601	1.78201	0.6950	0.30640	176	3.07178	0.96510	1.99878	1.5010	0.48284
127	2.21657	0.55380	1.78987	0.7090	0.30941	177	3.08923	0.97382	1.99931	1.5184	0.48708
128	2.23402	0.56163	1.79759	0.7230	0.31243	178	3.10669	0.98255	1.99970	1.5359	0.49135
129	2.25147	0.56949	1.80517	0.7372	0.31548	179	3.12414	0.99127	1.99992	1.5533	0.49566
130	2.26893	0.57738	1.81262	0.7514	0.31854	180	3.14159	1.00000	2.00000	1.5708	0.50000

SEGMENTS OF CIRCLES

Diameters of Circles and Sides of Squares of Equal Area (US Customary or Metric Units)

The table below will be found useful for determining the diameter of a circle of an area equal to that of a square, the side of which is known, or for determining the side of a square which has an area equal to that of a circle, the area or diameter of which is known. For example, if the diameter of a circle is 17½ inches, it is found from the table by reading across from the first column that the side of a square of the same area is 15.51 inches. And both have area 240.53 in².

			15.51 inches. And both have area 240.53 in ² .					
Dia. of Circle, D	Side of Square, S	Area of Circle or Square	Dia. of Circle, D	Side of Square, S	Area of Circle or Square	Dia. of Circle, D	Side of Square, S	Area of Circle or Square
1/2	0.44	0.196	201/,	18.17	330.06	40¹/,	35.89	1288.25
1	0.89	0.785	21	18.61	346.36	41	36.34	1320.25
11/,	1.33	1.767	211/,	19.05	363.05	411/2	36.78	1352.65
2	1.77	3.142	22	19.50	380.13	42	37.22	1385.44
21/2	2.22	4.909	221/2	19.94	397.61	421/2	37.66	1418.63
3	2.66	7.069	23	20.38	415.48	43	38.11	1452.20
31/2	3.10	9.621	231/2	20.83	433.74	431/2	38.55	1486.17
4	3.54	12.566	24	21.27	452.39	44	38.99	1520.53
41/2	3.99	15.904	241/2	21.71	471.44	441/2	39.44	1555.28
5	4.43	19.635	25	22.16	490.87	45	39.88	1590.43
51/2	4.87	23.758	251/2	22.60	510.71	451/2	40.32	1625.97
6	5.32	28.274	26	23.04	530.93	46	40.77	1661.90
61/2	5.76	33.183	261/2	23.49	551.55	461/2	41.21	1698.23
7	6.20	38.485	27	23.93	572.56	47	41.65	1734.94
71/2	6.65	44.179	271/2	24.37	593.96	471/2	42.10	1772.05
8	7.09	50.265	28	24.81	615.75	48	42.54	1809.56
81/2	7.53	56.745	281/2	25.26	637.94	481/2	42.98	1847.45
9	7.98	63.617	29	25.70	660.52	49	43.43	1885.74
91/2	8.42	70.882	291/2	26.14	683.49	491/2	43.87	1924.42
10	8.86	78.540	30	26.59	706.86	50	44.31	1963.50
101/2	9.31	86.590	301/2	27.03	730.62	501/2	44.75	2002.96
11	9.75	95.033	31	27.47	754.77	51	45.20	2042.82
111/2	10.19	103.87	311/2	27.92	779.31	511/2	45.64	2083.07
12	10.63	113.10	32	28.36	804.25	52	46.08	2123.72
121/2	11.08	122.72	321/2	28.80	829.58	521/2	46.53	2164.75
13	11.52	132.73	33	29.25	855.30	53	46.97	2206.18
131/2	11.96	143.14	331/2	29.69	881.41	531/2	47.41	2248.01
14	12.41	153.94	34	30.13	907.92	54	47.86	2290.22
141/2	12.85	165.13	341/2	30.57	934.82	541/2	48.30	2332.83
15	13.29	176.71	35	31.02	962.11	55	48.74	2375.83
151/2	13.74	188.69	351/2	31.46	989.80	551/2	49.19	2419.22
16	14.18	201.06	36	31.90	1017.88	56	49.63	2463.01
161/2	14.62	213.82	361/2	32.35	1046.35	561/2	50.07	2507.19
17	15.07	226.98	37	32.79	1075.21	57	50.51	2551.76
171/2	15.51	240.53	371/2	33.23	1104.47	571/2	50.96	2596.72
18	15.95	254.47	38	33.68	1134.11	58	51.40	2642.08
181/2	16.40	268.80	381/2	34.12	1164.16	581/2	51.84	2687.83
19	16.84	283.53	39	34.56	1194.59	59	52.29	2733.97
191/2	17.28	298.65	391/2	35.01	1225.42	591/2	52.73	2780.51
20	17.72	314.16	40	35.45	1256.64	60	53.17	2827.43

Propositions of Geometry

A triangle is a three-sided polygon. It is, in fact, the polygon with the least number of sides. The sides of a triangle meet at its vertices (singular vertex). The sum of the measures of all three angles of a triangle is 180 degrees. Hence, if the measures of any two angles are known, the third angle measure can always be found.

$$A+B+C=180^{\circ}$$

$$A = 180^{\circ} - (B+C)$$

$$B = 180^{\circ} - (A + C)$$

$$C = 180^{\circ} - (A + B)$$

AAS Proposition: If two angles and the non-included side of one triangle are congruent to the corresponding (similarly located) angles and sides of another triangle, the triangles are congruent.

Hence, if $a = a_1$, $A = A_1$, and $B = B_1$, the other corresponding side and angle are equal in measure, and thus the triangles are congruent.

SAS Proposition: If two sides and the included angle (the angle between the sides) of one triangle are congruent (equal in measure) to the corresponding (similarly located) sides and angle of another triangle, then the triangles are congruent.

Hence, in the figure, if $a = a_1$, $b = b_1$, and $A = A_1$, then the remaining side and angles also are equal in measure, and thus the triangles are congruent.

SSS Proposition: If all three sides of one triangle are congruent (equal in measure) to all three sides of another triangle, then the triangles are congruent. If the three sides in one triangle are equal in measure to the three sides of another triangle, then the angles in the two triangles are equal in measure.

If $a = a_1, b = b_1$, and $c = c_1$, then the corresponding angles are also equal in measure, and thus the triangles are congruent.

If the three sides of a triangle are proportional to corresponding sides of another triangle, then the triangles are *similar*, and the angles in the one are congruent (equal in measure) to the angles in the other.

Hence, if a/d = b/e = c/f then A = D, B = E, C = F

Similar triangles are ones whose corresponding angles are congruent. If this is true then the corresponding sides are proportional. If the angles of one triangle are congruent (equal in measure) to the angles of another triangle, then the triangles are similar and their corresponding sides are proportional.

Hence, if A = D, B = E, and C = F then a/d = b/e = c/f

Propositions of Geometry (Continued)

Propositions of Geometry (Continued)

Propositions of Geometry (Continued)

Propositions of Geometry (Continued)

 $a:A:: r^2:R^2$ so $a/A = r^2/R^2$

TRIGONOMETRY

Useful Trigonometric Relationships

The following formulas will provide the solutions for most triangular problems in the right-angle triangle FOG, $\overline{OF} = c$, $\overline{FG} = a$, and $\overline{OG} = b$

Signs of Trigonometric Functions

TRIGONOMETRY

Useful Relationships Among Angles

Angle Function	θ	-θ	90° ± θ	180° ± θ	270° ± θ	360° ± θ
sine	sin θ	-sin θ	+cos θ	∓sin θ	-cos θ	±sin θ
cosine	cos θ	+cos θ	∓sin θ	-cos θ	±sin θ	+cos θ
tangent	tan θ	-tan θ	∓cot θ	±tan θ	∓cot θ	±tan θ
cotangent	cot θ	-cot θ	∓tan θ	±cot θ	∓tan θ	±cot θ
secant	sec θ	+sec θ	∓csc θ	-sec θ	±csc θ	+sec θ
cosecant	csc θ	-csc θ	+sec θ	∓csc θ	-sec θ	±csc θ

Examples: $\cos (270^{\circ} - \theta) = -\sin \theta$; $\tan (90^{\circ} + \theta) = -\cot \theta$.

The Law of Sines.—In any triangle, any side is to the sine of the angle opposite that side as any other side is to the sine of the angle opposite that side. If a, b, and c are the sides, and A, B, and C their opposite angles, respectively, then:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}, \text{ so that:}$$

$$a = \frac{b \sin A}{\sin B} \quad \text{or} \quad a = \frac{c \sin A}{\sin C}$$

$$b = \frac{a \sin B}{\sin A} \quad \text{or} \quad b = \frac{c \sin B}{\sin C}$$

$$c = \frac{a \sin C}{\sin A} \quad \text{or} \quad c = \frac{b \sin C}{\sin B}$$

The Law of Cosines.—In any triangle, the square of any side is equal to the sum of the squares of the other two sides minus twice their product times the cosine of the included angle; or if a, b, and c are the sides and a, b, and b are the opposite angles, respectively, then:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos B$
 $c^{2} = a^{2} + b^{2} - 2ab \cos C$

These two laws, together with the proposition that the sum of the three angles equals 180 degrees, are the basis of all formulas relating to the solution of triangles.

Formulas for the solution of right-angled and oblique-angled triangles, arranged in tabular form, are given on the following pages.

Trigonometric Functions and Identities.—On page 15, a diagram, *Signs of Trigonometric Functions*, is given. This diagram shows the proper sign (+ or -) for the trigonometric functions of angles in each of the four quadrants, 0 to 90, 90 to 180, 180 to 270, and 270 to 360 degrees. Thus, the cosine of an angle between 90 and 180 degrees is negative; the sine of the same angle is positive.

Trigonometric identities are formulas that show the relationship between different trigonometric functions. They may be used to change the form of some trigonometric expressions to simplify calculations. For example, if a formula has a term, $2 \sin A \cos A$, the equivalent but simpler term $\sin 2A$ may be substituted. The identities that follow may themselves be combined or rearranged in various ways to form new identities.

Basic

$$\tan A = \frac{\sin A}{\cos A} = \frac{1}{\cot A}$$
 $\sec A = \frac{1}{\cos A}$ $\csc A = \frac{1}{\sin A}$

Negative Angle

$$\sin(-A) = -\sin A$$
 $\cos(-A) = \cos A$ $\tan(-A) = -\tan A$

Pythagorean

$$\sin^2 A + \cos^2 A = 1$$
 $1 + \tan^2 A = \sec^2 A$ $1 + \cot^2 A = \csc^2 A$

Sum and Difference of Angles

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \qquad \tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$\cot(A+B) = \frac{\cot A \cot B - 1}{\cot B + \cot A} \qquad \cot(A-B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \qquad \sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B \qquad \cos(A-B) = \cos A \cos B + \sin A \sin B$$

Double-Angle

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A \qquad \sin 2A = 2\sin A\cos A$$
$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A} = \frac{2}{\cot A - \tan A}$$

Half-Angle

$$\sin \frac{1}{2}A = \sqrt{\frac{1-\cos A}{1-\cos A}} \qquad \cos \frac{1}{2}A = \sqrt{\frac{1-\cos A}{1-\cos A}}
\tan \frac{1}{2}A = \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac{1-\cos A}{1+\cos A} = \frac{\sin A}{1+\cos A}$$

Product-to-Sum

$$sin A cos B = \frac{1}{2} [sin(A+B) + sin(A-B)]$$

$$cos A cos B = \frac{1}{2} [cos(A+B) + cos(A-B)]$$

$$sin A sin B = \frac{1}{2} [cos(A-B) - cos(A+B)]$$

$$tan A tan B = \frac{tan A + tan B}{cot A + cot B}$$

Sum and Difference of Functions

$$sin A + sin B = 2[sin \frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)]$$

$$sin A - sin B = 2[sin \frac{1}{2}(A-B)\cos\frac{1}{2}(A+B)]$$

$$cos A + cos B = 2[cos\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)]$$

$$cos A - cos B = -2[sin\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B)]$$

$$tan A + tan B = \frac{\sin(A+B)}{\cos A \cos B} \quad tan A - tan B = \frac{\sin(A-B)}{\cos A \cos B}$$

$$cot A + cot B = \frac{\sin(B+A)}{\sin A \sin B} \quad cot A - cot B = \frac{\sin(B-A)}{\sin A \sin B}$$

SOLUTION OF TRIANGLES

Solution of Right Triangles

The figure to the left shows right triangle ABC. Sides opposite corresponding angles are labeled a,b,c. The formulas in the table are for finding an unknown side or angle from given information and for calculating area. There are several ways to solve for the missing dimension using the three basic trigonometric functions.

Right angle C is always known (90°), thus, A = 90 - B and B = 90 - A.

and $D = 30 - M$.							
Sides and Angles Known		ulas for Sides an gles to be Found	ıd	Area			
Sides a and b	$c = \sqrt{a^2 + b^2}$	$A = \tan^{-1}(a/b)$	$B = 90^{\circ} - A$	$\frac{a \times b}{2}$			
Side <i>a</i> , hypotenuse <i>c</i>	$b = \sqrt{c^2 - a^2}$	$A = \sin^{-1}(a/c)$ or $A = \cos^{-1}(b/c)$	$B = 90^{\circ} - A$	$\frac{a \times \sqrt{c^2 - a^2}}{2}$			
Side b, hypotenuse c	$a = \sqrt{c^2 - b^2}$	$B = \sin^{-1}(b/c)$ or $B = \cos^{-1}(a/c)$	$A = 90^{\circ} - B$	$\frac{b \times \sqrt{c^2 - b^2}}{2}$			
Hypotenuse c , angle B	$b = c \sin B$ or $a = c \cos B$	$a = c \cos B$ or $b = c \sin B$	$A = 90^{\circ} - B$	$c^2 \times \sin B \times \cos B$			
Hypotenuse c , angle A	$b = c \cos A$ or $a = c \sin A$	$a = c \sin A$ or $b = c \cos A$	$B = 90^{\circ} - A$	$c^2 \times \sin A \times \cos A$			
Side b , angle B	$c = \frac{b}{\sin B}$ or $c = \frac{a}{\cos B}$	$a = \frac{b}{\tan B}$	$A = 90^{\circ} - B$	$\frac{b^2}{2 \times \tan B}$			
Side b , angle A	$c = \frac{b}{\cos A}$ or $c = \frac{a}{\sin A}$	$a = b \tan A$	$B = 90^{\circ} - A$	$\frac{b^2 \times \tan A}{2}$			
Side a , angle B	$c = \frac{a}{\cos B}$	$b = a \tan B$	$A = 90^{\circ} - B$	$\frac{a^2 \times \tan B}{2}$			
Side a , angle A	$c = \frac{a}{\sin A}$	$b = \frac{a}{\tan A}$	$B = 90^{\circ} - A$	$\frac{a^2}{2 \times \tan A}$			

Solution and Examples of Oblique Triangles (US Customary or Metric Units)

One Side and Two Excluded (Not Between) Angles Known (Law of Sines):

One Side and Two Excluded Angles Known

If side a, angle A opposite it, and angle B, are known:

$$C = 180^{\circ} - (A + B)$$

$$b = \frac{a \sin B}{a \sin A}$$

$$c = \frac{a \sin C}{\sin A}$$

$$b = \frac{a \sin B}{\sin A} \qquad c = \frac{a \sin C}{\sin A}$$
Area = $\frac{ab \sin C}{2}$

If angles B and C are known, but not A, then A = 180 - (B + C).

Two Sides and Included Angle Known:

Two Sides and One Included Angle Known

If sides a and b, and angle C between them are known:

$$\tan A = \frac{a \sin C}{b - (a \cos C)}, \operatorname{so} A = \tan^{-1} \frac{a \sin C}{b - (a \cos C)}$$

$$B = 180^{\circ} - (A+C) \qquad c = \frac{a\sin C}{\sin A}$$

Side c may also be found directly as below:

$$c = \sqrt{a^2 + b^2 - (2ab\cos C)}$$

Area =
$$\frac{ab\sin C}{2}$$

Two Sides and the Angle Opposite One of the Sides Known:

Two Sides and Angle Opposite One Side Known

If angle A, opposite side a, and other side b are known:

$$\sin B = \frac{b \sin A}{a}$$
 $C = 180^{\circ} - (A + B)$
 $c = \frac{a \sin C}{\sin A}$ Area $= \frac{ab \sin C}{2}$

$$C = 180^{\circ} - (A + B$$

$$c = \frac{a \sin C}{\sin A}$$

Area =
$$\frac{ab\sin C}{2}$$

If B > A but $< 90^{\circ}$, a second solution, B_2 , C_2 , c_3 , exists:

 $B_2 = 180^{\circ} - B$, $C_2 = 180^{\circ} - (A + B_2)$ $C_2 = (a \sin C_2)/\sin A$, area = $(ab \sin C_2)/2$

If $a \ge b \sin A$, then only the first solution exists. If $a < b \sin A$, then no solution exists.

All Three Sides Known:

If all three sides a, b, and c are known, then any angle can be found:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \qquad \qquad \sin B = \frac{b \sin A}{a}$$

$$\sin B = \frac{b \sin A}{a}$$

$$C = 180^{\circ} - (A + B)$$
 Area = $\frac{ab \sin C}{2}$

Area =
$$\frac{ab\sin C}{2}$$

SOLUTION OF TRIANGLES

Rapid Solution of Right and Oblique Triangles

TRIGONOMETRY TABLES

Trigonometric Values of Angles from 0° to 15° and 75° to 90°

Angle	sin	cos	tan	cot		Angle	sin	cos	tan	cot	
0° 0′	0.000000	1.000000	0.000000		90° 0′	7° 30′	0.130526	0.991445	0.131652	7.595754	82° 30′
10	0.002909	0.999996	0.002909	343,7737	50	40	0.130320	0.991443	0.134613		i
20	0.002909	0.9999983	0.002909	171.8854	40	50	0.136292	0.991061	0.134613	7.428706	20
						8° 0′				7.268725	10 82° 0′
30	0.008727	0.999962	0.008727	114.5887	30		0.139173	0.990268	0.140541	7.115370	
40	0.011635	0.999932	0.011636	85.93979	20	10	0.142053	0.989859	0.143508	6.968234	50
50	0.014544	0.999894	0.014545	68.75009	10	20	0.144932	0.989442	0.146478	6.826944	40
1° 0′	0.017452	0.999848	0.017455	57.28996	89° 0′	30	0.147809	0.989016	0.149451	6.691156	30
10	0.020361	0.999793	0.020365	49.10388	50	40	0.150686	0.988582	0.152426	6.560554	20
20	0.023269	0.999729	0.023275	42.96408	40	50	0.153561	0.988139	0.155404	6.434843	10
30	0.026177	0.999657	0.026186	38.18846	30	9° 0′	0.156434	0.987688	0.158384	6.313752	81° 0′
40	0.029085	0.999577	0.029097	34.36777	20	10	0.159307	0.987229	0.161368	6.197028	50
50	0.031992	0.999488	0.032009	31.24158	10	20	0.162178	0.986762	0.164354	6.084438	40
2° 0′	0.034899	0.999391	0.034921	28.63625	88° 0′	30	0.165048	0.986286	0.167343	5.975764	30
10	0.037806	0.999285	0.037834	26.43160	50	40	0.167916	0.985801	0.170334	5.870804	20
20	0.040713	0.999171	0.040747	24.54176	40	50	0.170783	0.985309	0.173329	5.769369	10
30	0.043619	0.999048	0.043661	22.90377	30	10° 0′	0.173648	0.984808	0.176327	5.671282	80° 0′
40	0.046525	0.998917	0.046576	21.47040	20	10	0.176512	0.984298	0.179328	5.576379	50
50	0.049431	0.998778	0.049491	20.20555	10	20	0.179375	0.983781	0.182332	5.484505	40
3° 0′	0.052336	0.998630	0.052408	19.08114	87° 0′	30	0.182236	0.983255	0.185339	5.395517	30
10	0.055241	0.998473	0.055325	18.07498	50	40	0.185095	0.982721	0.188349	5.309279	20
20	0.058145	0.998308	0.058243	17.16934	40	50	0.187953	0.982178	0.191363	5.225665	10
30	0.061049	0.998135	0.061163	16.34986	30	11° 0′	0.190809	0.981627	0.194380	5.144554	79° 0′
40	0.063952	0.997953	0.064083	15.60478	20	10	0.193664	0.981068	0.197401	5.065835	50
50	0.066854	0.997763	0.067004	14.92442	10	20	0.196517	0.980500	0.200425	4.989403	40
4° 0′	0.069756	0.997564	0.069927	14.30067	86° 0′	30	0.199368	0.979925	0.203452	4.915157	30
10	0.072658	0.997357	0.072851	13.72674	50	40	0.202218	0.979341	0.206483	4.843005	20
20	0.075559	0.997141	0.075775	13.19688	40	50	0.205065	0.978748	0.209518	4.772857	10
30	0.078459	0.996917	0.078702	12.70621	30	12° 0′	0.207912	0.978148	0.212557	4.704630	78° 0′
40	0.081359	0.996685	0.081629	12.25051	20	10	0.210756	0.977539	0.215599	4.638246	50
50	0.084258	0.996444	0.084558	11.82617	10	20	0.213599	0.976921	0.218645	4.573629	40
5° 0′	0.087156	0.996195	0.087489	11.43005	85° 0′	30	0.216440	0.976296	0.221695	4.510709	30
10	0.090053	0.995937	0.090421	11.05943	50	40	0.219279	0.975662	0.224748	4.449418	20
20	0.092950	0.995671	0.093354	10.71191	40	50	0.222116	0.975020	0.227806	4.389694	10
30	0.095846	0.995396	0.096289	10.38540	30	13° 0′	0.224951	0.974370	0.230868	4.331476	77° 0′
40	0.098741	0.995113	0.099226	10.07803	20	10	0.227784	0.973712	0.233934	4.274707	50
50	0.101635	0.994822	0.102164	9.788173	10	20	0.230616	0.973045	0.237004	4.219332	40
6° 0′	0.104528	0.994522	0.105104	9.514364	84° 0′	30	0.233445	0.972370	0.240079	4.165300	30
10	0.107421	0.994214	0.108046	9.255304	50	40	0.236273	0.971687	0.243157	4.112561	20
20	0.110313	0.993897	0.110990	9.009826	40	50	0.239098	0.970995	0.246241	4.061070	10
30	0.113203	0.993572	0.113936	8.776887	30	14° 0′	0.241922	0.970296	0.249328	4.010781	76° 0′
40	0.116093	0.993238	0.116883	8.555547	20	10	0.244743	0.969588	0.252420	3.961652	50
50	0.118982	0.992896	0.119833	8.344956	10	20	0.247563	0.968872	0.255516	3.913642	40
7° 0′	0.121869	0.992546	0.122785	8.144346	83° 0′	30	0.250380	0.968148	0.258618	3.866713	30
10	0.124756	0.992187	0.125738	7.953022	50	40	0.253195	0.967415	0.261723	3.820828	20
20	0.127642	0.991820	0.128694	7.770351	40	50	0.256008	0.966675	0.264834	3.775952	10
7° 30′	0.130526	0.991445	0.131652	7.595754	82° 30′	15° 0′	0.258819	0.965926	0.267949	3.732051	75° 0′
	cos	sin	cot	tan		Angle	cos	sin	cot	tan	Angle

For angles 0° to 15° 0' (angles found in a column to the left of the data), use the column labels at the top of the table; for angles 75° to 90° 0' (angles found in a column to the right of the data), use the column labels at the bottom of the table.

TRIGONOMETRY TABLES

Trigonometric Values of Angles from 15° to 30° and 60° to 75°

					_						
Angle	sin	cos	tan	cot		Angle	sin	cos	tan	cot	
15° 0′	0.258819	0.965926	0.267949	3.732051	75° 0′	22° 30′	0.382683	0.923880	0.414214	2.414214	67° 30′
10	0.261628	0.965169	0.271069	3.689093	50	40	0.385369	0.922762	0.417626	2.394489	20
20	0.264434	0.964404	0.274194	3.647047	40	50	0.388052	0.921638	0.421046	2.375037	10
30	0.267238	0.963630	0.277325	3.605884	30	23° 0′	0.390731	0.920505	0.424475	2.355852	67° 0′
40	0.270040	0.962849	0.280460	3.565575	20	10	0.393407	0.919364	0.427912	2.336929	50
50	0.272840	0.962059	0.283600	3.526094	10	20	0.396080	0.918216	0.431358	2.318261	40
16° 0′	0.275637	0.961262	0.286745	3.487414	74° 0′	30	0.398749	0.917060	0.434812	2.299843	30
10	0.278432	0.960456	0.289896	3.449512	50	40	0.401415	0.915896	0.438276	2.281669	20
20	0.281225	0.959642	0.293052	3.412363	40	50	0.404078	0.914725	0.441748	2.263736	10
30	0.284015	0.958820	0.296213	3.375943	30	24° 0′	0.406737	0.913545	0.445229	2.246037	66° 0′
40	0.286803	0.957990	0.299380	3.340233	20	10	0.409392	0.912358	0.448719	2.228568	50
50	0.289589	0.957151	0.302553	3.305209	10	20	0.412045	0.911164	0.452218	2.211323	40
17° 0′	0.292372	0.956305	0.305731	3.270853	73° 0′	30	0.414693	0.909961	0.455726	2.194300	30
10	0.295152	0.955450	0.308914	3.237144	50	40	0.417338	0.908751	0.459244	2.177492	20
20	0.297930	0.954588	0.312104	3.204064	40	50	0.419980	0.907533	0.462771	2.160896	10
30	0.300706	0.953717	0.315299	3.171595	30	25° 0′	0.422618	0.906308	0.466308	2.144507	65° 0′
40	0.303479	0.952838	0.318500	3.139719	20	10	0.425253	0.905075	0.469854	2.128321	50
50	0.306249	0.951951	0.321707	3.108421	10	20	0.427884	0.903834	0.473410	2.112335	40
18° 0′	0.309017	0.951057	0.324920	3.077684	72° 0′	30	0.430511	0.902585	0.476976	2.096544	30
10	0.311782	0.950154	0.328139	3.047492	50	40	0,433135	0.901329	0.480551	2.080944	20
20	0.314545	0.949243	0.331364	3.017830	40	50	0.435755	0.900065	0.484137	2.065532	10
30	0.317305	0.948324	0.334595	2.988685	30	26° 0′	0.438371	0.898794	0.487733	2.050304	64° 0′
40	0.320062	0.947397	0.337833	2,960042	20	10	0.440984	0.897515	0.491339	2.035256	50
50	0.322816	0.946462	0.341077	2.931888	10	20	0.443593	0.896229	0.494955	2.020386	40
19° 0′	0.325568	0.945519	0.344328	2.904211	71° 0′	30	0.446198	0.894934	0.498582	2.005690	30
10	0.328317	0.944568	0.347585	2.876997	50	40	0.448799	0.893633	0.502219	1.991164	20
20	0.331063	0.943609	0.350848	2.850235	40	50	0.451397	0.892323	0.505867	1.976805	10
30	0.333807	0.942641	0.354119	2.823913	30	27° 0′	0.453990	0.891007	0.509525	1.962611	63° 0′
40	0.336547	0.941666	0.357396	2.798020	20	10	0.456580	0.889682	0.513195	1.948577	50
50	0.339285	0.940684	0.360679	2.772545	10	20	0.459166	0.888350	0.516875	1.934702	40
20° 0′	0.342020	0.939693	0.363970	2,747477	70° 0′	30	0.461749	0.887011	0.520567	1.920982	30
10	0.344752	0.938694	0.367268	2.722808	50	40	0.464327	0.885664	0.524270	1.907415	20
20	0.347481	0.937687	0.370573	2.698525	40	50	0.466901	0.884309	0.527984	1.893997	10
30	0.350207	0.936672	0.373885	2.674621	30	28° 0′	0.469472	0.882948	0.531709	1.880726	62° 0′
40	0.352931	0.935650	0.377204	2.651087	20	10	0.472038	0.881578	0.535446	1.867600	50
50	0.355651	0.934619	0.380530	2.627912	10	20	0.474600	0.880201	0.539195	1.854616	40
21° 0′	0.358368	0.933580	0.383864	2.605089	69° 0′	30	0.477159	0.878817	0.542956	1.841771	30
10	0.361082	0.932534	0.387205	2.582609	50	40	0.479713	0.877425	0.546728	1.829063	20
20	0.363793	0.931480	0.390554	2.560465	40	50	0.482263	0.876026	0.550513	1.816489	10
30	0.366501	0.930418	0.393910	2.538648	30	29° 0′	0.484810	0.874620	0.554309	1.804048	61° 0′
40	0.369206	0.929348	0.397275	2.517151	20	10	0.487352	0.873206	0.558118	1.791736	50
50	0.371908	0.928270	0.400646	2.495966	10	20	0.489890	0.871784	0.561939	1.779552	40
22° 0′	0.374607	0.927184	0.404026	2.475087	68° 0′	30	0.492424	0.870356	0.565773	1.767494	30
10	0.377302	0.926090	0.407414	2.454506	50	40	0.494953	0.868920	0.569619	1.755559	20
20	0.379994	0.924989	0.410810	2.434217	40	50	0.497479	0.867476	0.573478	1.743745	10
22° 30′	0.382683	0.923880	0.414214	2.414214	67° 30′	30° 0′	0.500000	0.866025	0.577350	1.732051	60° 0′
	cos	sin	cot	tan	Angle		cos	sin	cot	tan	Angle
								_			

For angles 15° to 30° 0′ (angles found in a column to the left of the data), use the column labels at the top of the table; for angles 60° to 75° 0′ (angles found in a column to the right of the data), use the column labels at the bottom of the table.

TRIGONOMETRY TABLES

Trigonometric Values of Angles from 30° to 60°

Angle	sin	cos	tan	cot		A	sin	cos	tan	cot	
	0.500000	0.866025	0.577350	1.732051		Angle	0.608761	0.793353	0.767327	1.303225	
30° 0′	1				60° 0′	37° 30′					52° 30′
10	0.502517	0.864567	0.581235	1.720474	50	40	0.611067	0.791579	0.771959	1.295406	20
20	0.505030	0.863102	0.585134	1.709012	40	50	0.613367	0.789798	0.776612	1.287645	10
30	0.507538	0.861629	0.589045	1.697663	30	38° 0′	0.615661	0.788011	0.781286	1.279942	52° 0′
40	0.510043	0.860149	0.592970	1.686426	20	10	0.617951	0.786217	0.785981	1.272296	50
50	0.512543	0.858662	0.596908	1.675299	10	20	0.620235	0.784416	0.790697	1.264706	40
31° 0′	0.515038	0.857167	0.600861	1.664279	59° 0′	30	0.622515	0.782608	0.795436	1.257172	30
10	0.517529	0.855665	0.604827	1.653366	50	40	0.624789	0.780794	0.800196	1.249693	20
20	0.520016	0.854156	0.608807	1.642558	40	50	0.627057	0.778973	0.804979	1.242268	10
30	0.522499	0.852640	0.612801	1.631852	30	39° 0′	0.629320	0.777146	0.809784	1.234897	51° 0′
40	0.524977	0.851117	0.616809	1.621247	20	10	0.631578	0.775312	0.814612	1.227579	50
50	0.527450	0.849586	0.620832	1.610742	10	20	0.633831	0.773472	0.819463	1.220312	40
32° 0′	0.529919	0.848048	0.624869	1.600335	58° 0′	30	0.636078	0.771625	0.824336	1.213097	30
10	0.532384	0.846503	0.628921	1.590024	50	40	0.638320	0.769771	0.829234	1.205933	20
20	0.534844	0.844951	0.632988	1.579808	40	50	0.640557	0.767911	0.834155	1.198818	10
30	0.537300	0.843391	0.637070	1.569686	30	40° 0′	0.642788	0.766044	0.839100	1.191754	50° 0′
40	0.539751	0.841825	0.641167	1.559655	20	10	0.645013	0.764171	0.844069	1.184738	50
50	0.542197	0.840251	0.645280	1.549715	10	20	0.647233	0.762292	0.849062	1.177770	40
33° 0′	0.544639	0.838671	0.649408	1.539865	57° 0′	30	0.649448	0.760406	0.854081	1.170850	30
10	0.547076	0.837083	0.653551	1.530102	50	40	0.651657	0.758514	0.859124	1.163976	20
20	0.549509	0.835488	0.657710	1.520426	40	50	0.653861	0.756615	0.864193	1.157149	10
30	0.551937	0.833886	0.661886	1.510835	30	41° 0′	0.656059	0.754710	0.869287	1.150368	49° 0′
40	0.554360	0.832277	0.666077	1.501328	20	10	0.658252	0.752798	0.874407	1.143633	50
50	0.556779	0.830661	0.670284	1.491904	10	20	0.660439	0.750880	0.879553	1.136941	40
34° 0′	0.559193	0.829038	0.674509	1.482561	56° 0′	30	0.662620	0.748956	0.884725	1.130294	30
10	0.561602	0.827407	0.678749	1.473298	50 50	40	0.664796	0.747025	0.889924	1.123691	20
20	0.564007	0.825770	0.683007	1.464115	40	50	0.666966	0.745088	0.895151	1.117130	10
30	0.566406	0.824126	0.687281	1.455009	30	42° 0′	0.669131	0.743145	0.900404	1.110613	48° 0′
40	0.568801	0.822475	0.691572	1.445980	20	10	0.671289	0.741195	0.905685	1.104137	50
50	0.571191	0.820817	0.695881	1.437027	10	20	0.673443	0.739239	0.910994	1.097702	40
35° 0′	0.573576	0.819152	0.700208	1.428148	55° 0′	30	0.675590	0.737277	0.916331	1.091309	30
10	0.575957	0.817480	0.704551	1.419343	50	40	0.677732	0.735309	0.921697	1.084955	20
20	0.578332	0.815801	0.708913	1.410610	40	50	0.679868	0.733334	0.927091	1.078642	10
30	0.580703	0.814116	0.713293	1.401948	30	43° 0′	0.681998	0.731354	0.932515	1.072369	47° 0′
40	0.583069	0.812423	0.717691	1.393357	20	10	0.684123	0.729367	0.937968	1.066134	50
50	0.585429	0.810723	0.722108	1.384835	10	20	0.686242	0.727374	0.943451	1.059938	40
36° 0′	0.587785	0.809017	0.726543	1.376382	54° 0′	30	0.688355	0.725374	0.948965	1.053780	30
36°0	0.590136	0.807304	0.730996	1.367996	54°0	40	0.690462	0.723369	0.954508	1.047660	20
20	0.592482	0.805584	0.735469	1.359676	40	50	0.692563	0.721357	0.960083	1.041577	10
30	0.594823	0.803384	0.739961	1.351422	30		0.694658	0.719340	0.965689	1.035530	
40	0.594823	0.802123	0.739901	1.343233	20	44° 0′ 10	0.696748	0.717316	0.903089	1.033330	46° 0′ 50
50	0.599489	0.802123	0.749003	1.345255	10	20	0.698832	0.717316	0.971326	1.029520	40
	0.601815	0.798636	0.749003	1.327045		30	0.700909	0.713250	0.976996	1.023346	30
37° 0′					53° 0′				Į.		
10	0.604136	0.796882	0.758125	1.319044	50	40	0.702981	0.711209	0.988432	1.011704	20
20	0.606451	0.795121	0.762716	1.311105	40	50	0.705047	0.709161	0.994199	1.005835	10
37° 30′	0.608761	0.793353	0.767327	1.303225	52° 30′	45° 0′	0.707107	0.707107	1.000000	1.000000	45° 0′
	cos	sin	cot	tan	Angle		cos	sin	cot	tan	Angle

For angles 30° to 45°0′ (angles found in a column to the left of the data), use the column labels at the top of the table; for angles 45° to 60°0′ (angles found in a column to the right of the data), use the column labels at the bottom of the table.

Formulas for Compound Angles

For given angles *A* and *B*, find the resultant angle *C* in plane *x-x*. Angle *B* is measured in vertical plane *y-y* of midsection.

Fig. 1 $\tan C = \tan A \times \cos B$

Fig. 2 $\tan C = \frac{\tan A}{\cos B}$

Fig. 3 (Same formula as for Fig. 2)

Fig.4.

Fig. 4. In machining a plate to angles A and B, the plate is held at angle C in plane x-x. Angle of rotation R in plane parallel to base (or complement of R) is for locating plate so that plane x-x is perpendicular to axis of pivot on angle-plate or work-holding vise.

$$\tan R = \frac{\tan B}{\tan A}, \quad \tan C = \frac{\tan A}{\cos R}$$

Fig.5.

Fig. 5. Angle R in horizontal plane parallel to base is angle from plane x-x to side having angle A.

$$\tan R = \frac{\tan A}{\tan B}$$

 $\tan C = \tan A \times \cos R = \tan B \times \sin R$

Compound angle C is angle in plane x-x from base to corner formed by intersection of planes inclined to angles A and A. This formula for C may be used to find cotangent of complement of C_1 , Fig. 6.

Fig. 6. Angles A_1 and B_1 are measured in vertical planes of front and side elevations. Plane x-x is located by angle R from center-line or from plane of angle B_1 .

$$\tan R = \frac{\tan A_1}{\tan B_1}$$

$$\tan C_1 = \frac{\tan A_1}{\sin R} = \frac{\tan B_1}{\cos R}$$

The resultant angle C_1 would be required in drilling hole for pin.

LENGTHS OF CHORDS

Lengths of Chords for Spacing Off the Circumferences of Circles.—The table below, which may be used by toolmakers when setting "buttons" in circular formation, is intended to make possible the division of the periphery into a number of equal parts without trials with the dividers.

Example: Assume that it is required to divide the periphery of a circle of 20 inches diameter into thirty-two equal parts. From the table the length of the chord is found to be 0.098017 inch, if the diameter of the circle were 1 inch. With a diameter of 20 inches the length of the chord for one division would be $20 \times 0.098017 = 1.9603$ inches.

Example, Metric Units: For a 100 millimeter diameter requiring 5 equal divisions, the length of the chord for one division would be $100 \times 0.587785 = 58.7785$ millimeters.

Lengths of Chords for Spacing Off the Circumferences of Circles with a Diameter Equal to 1 (US Customary or Metric Units)

No. of	Length of						
Spaces	Chord	Spaces	Chord	Spaces	Chord	Spaces	Chord
3	0.866025	41	0.076549	79	0.039757	117	0.026848
4	0.707107	42	0.074730	80	0.039260	118	0.026621
5	0.587785	43	0.072995	81	0.038775	119	0.026397
6	0.500000	44	0.071339	82	0.038303	120	0.026177
7	0.433884	45	0.069756	83	0.037841	121	0.025961
8	0.382683	46	0.068242	84	0.037391	122	0.025748
9	0.342020	47	0.066793	85	0.036951	123	0.025539
10	0.309017	48	0.065403	86	0.036522	124	0.025333
11	0.281733	49	0.064070	87	0.036102	125	0.025130
12	0.258819	50	0.062791	88	0.035692	126	0.024931
13	0.239316	51	0.061561	89	0.035291	127	0.024734
14	0.222521	52	0.060378	90	0.034899	128	0.024541
15	0.207912	53	0.059241	91	0.034516	129	0.024351
16	0.195090	54	0.058145	92	0.034141	130	0.024164
17	0.183750	55	0.057089	93	0.033774	131	0.023979
18	0.173648	56	0.056070	94	0.033415	132	0.023798
19	0.164595	57	0.055088	95	0.033063	133	0.023619
20	0.156434	58	0.054139	96	0.032719	134	0.023443
21	0.149042	59	0.053222	97	0.032382	135	0.023269
22	0.142315	60	0.052336	98	0.032052	136	0.023098
23	0.136167	61	0.051479	99	0.031728	137	0.022929
24	0.130526	62	0.050649	100	0.031411	138	0.022763
25	0.125333	63	0.049846	101	0.031100	139	0.022599
26	0.120537	64	0.049068	102	0.030795	140	0.022438
27	0.116093	65	0.048313	103	0.030496	141	0.022279
28	0.111964	66	0.047582	104	0.030203	142	0.022122
29	0.108119	67	0.046872	105	0.029915	143	0.021967
30	0.104528	68	0.046183	106	0.029633	144	0.021815
31	0.101168	69	0.045515	107	0.029356	145	0.021664
32	0.098017	70	0.044865	108	0.029085	146	0.021516
33	0.095056	71	0.044233	109	0.028818	147	0.021370
34	0.092268	72	0.043619	110	0.028556	148	0.021225
35	0.089639	73	0.043022	111	0.028299	149	0.021083
36	0.087156	74	0.042441	112	0.028046	150	0.020942
37	0.084806	75	0.041876	113	0.027798	151	0.020804
38	0.082579	76	0.041325	114	0.027554	152	0.020667
39	0.080467	77	0.040789	115	0.027315	153	0.020532
40	0.078459	78	0.040266	116	0.027079	154	0.020399

The table is calculated for circles having a diameter equal to 1. For circles of other diameters, multiply given length by diameter of circle.

Coordinates for Locating Equally-Spaced Holes (US Customary or Metric Units)

The constants in the table are multiplied by the diameter of the bolt hole pitch circle to obtain the longitudinal and lateral adjustments of the right-angle slides of the jig borer in boring equally spaced holes. While holes may be located by these right-angle measurements, an auxiliary rotary table provides a more direct method. With a rotary table, the holes are spaced by precise angular movements after adjustment to the required radius.

DECIMAL EQUIVALENTS OF FRACTIONS

$Decimal \ Equivalents, Squares, Cubes, Square \ Roots, Cube \ Roots, and \ Logarithms of Fractions from \ {}^{1}\!\!/_{64}$ to 1, by 64ths

Frac-	Decimal Equiva- lent	Log	Square	Log of Square	Cube	Log of Cube	Square Root	Log of Square Root	Cube Root	Log of Cube Root
1/64	0.015625	-1.80618	0.00024	-3.61236	0.00000	-5.41854	0.12500	-0.90309	0.25000	-0.60206
1/32	0.031250	-1.50515	0.00098	-3.01030	0.00003	-4.51545	0.17678	-0.75257	0.31498	-0.50172
3/64	0.046875	-1.32906	0.00220	-2.65812	0.00010	-3.98718	0.21651	-0.66453	0.36056	-0.44302
1/16	0.062500	-1.20412	0.00391	-2.40824	0.00024	-3.61236	0.25000	-0.60206	0.39685	-0.40137
5/64	0.078125	-1.10721	0.00610	-2.21442	0.00048	-3.32163	0.27951	-0.55361	0.42749	-0.36907
3/32	0.093750	-1.02803	0.00879	-2.05606	0.00082	-3.08409	0.30619	-0.51402	0.45428	-0.34268
7/64	0.109375	-0.96108	0.01196	-1.92216	0.00131	-2.88325	0.33072	-0.48054	0.47823	-0.32036
1/8	0.125000	-0.90309	0.01563	-1.80618	0.00195	-2.70927	0.35355	-0.45155	0.50000	-0.30103
%4	0.140625	-0.85194	0.01978	-1.70388	0.00278	-2.55581	0.37500	-0.42597	0.52002	-0.28398
5/32	0.156250	-0.80618	0.02441	-1.61236	0.00381	-2.41854	0.39529	-0.40309	0.53861	-0.26873
11/64	0.171875	-0.76479	0.02954	-1.52958	0.00508	-2.29436	0.41458	-0.38239	0.55600	-0.25493
³/ ₁₆	0.187500	-0.72700	0.03516	-1.45400	0.00659	-2.18100	0.43301	-0.36350	0.57236	-0.24233
13/64	0.203125	-0.69224	0.04126	-1.38447	0.00838	-2.07671	0.45069	-0.34612	0.58783	-0.23075
7/32	0.218750	-0.66005	0.04785	-1.32010	0.01047	-1.98016	0.46771	-0.33003	0.60254	-0.22002
15/64	0.234375	-0.63009	0.05493	-1.26018	0.01287	-1.89027	0.48412	-0.31504	0.61655	-0.21003
1/4	0.250000	-0.60206	0.06250	-1.20412	0.01563	-1.80618	0.50000	-0.30103	0.62996	-0.20069
17/64	0.265625	-0.57573	0.07056	-1.15146	0.01874	-1.72719	0.51539	-0.28787	0.64282	-0.19191
%32	0.281250	-0.55091	0.07910	-1.10182	0.02225	-1.65272	0.53033	-0.27545	0.65519	-0.18364
19/64	0.296875	-0.52743	0.08813	-1.05485	0.02617	-1.58228	0.54486	-0.26371	0.66710	-0.17581
5/ ₁₆	0.312500	-0.50515	0.09766	-1.01030	0.03052	-1.51545	0.55902	-0.25258	0.67860	-0.16838
21/64	0.328125	-0.48396	0.10767	-0.96792	0.03533	-1.45188	0.57282	-0.24198	0.68973	-0.16132
11/32	0.343750	-0.46376	0.11816	-0.92752	0.04062	-1.39127	0.58630	-0.23188	0.70051	-0.15459
23/64	0.359375	-0.44445	0.12915	-0.88890	0.04641	-1.33336	0.59948	-0.22223	0.71097	-0.14815
3/8	0.375000	-0.42597	0.14063	-0.85194	0.05273	-1.27791	0.61237	-0.21299	0.72113	-0.14199
²⁵ / ₆₄	0.390625	-0.40824	0.15259	-0.81648	0.05960	-1.22472	0.62500	-0.20412	0.73100	-0.13608
13/32	0.406250	-0.39121	0.16504	-0.78241	0.06705	-1.17362	0.63738	-0.19560	0.74062	-0.13040
27/64	0.421875	-0.37482	0.17798	-0.74963	0.07508	-1.12445	0.64952	-0.18741	0.75000	-0.12494
7/16	0.437500	-0.35902	0.19141	-0.71804	0.08374	-1.07707	0.66144	-0.17951	0.75915	-0.11967
29/64	0.453125	-0.34378	0.20532	-0.68756	0.09304	-1.03135	0.67315	-0.17189	0.76808	-0.11459
15/32	0.468750	-0.32906	0.21973	-0.65812	0.10300	-0.98718	0.68465	-0.16453	0.77681	-0.10969
31/64	0.484375	-0.31482	0.23462	-0.62964	0.11364	-0.94446	0.69597	-0.15741	0.78535	-0.10494
1/2	0.500000	-0.30103	0.25000	-0.60206	0.12500	-0.90309	0.70711	-0.15052	0.79370	-0.10034

$\label{eq:continued} \textbf{Decimal Equivalents}, \textbf{Squares}, \textbf{Cubes}, \textbf{Square Roots}, \textbf{Cube Roots}, \\ \textbf{and Logarithms of Fractions from } \checkmark_{64} \textbf{to 1}, \textbf{by 64ths} (Continued)$

Frac- tion	Decimal Equiva- lent	Log	Square	Log of Square	Cube	Log of Cube	Square Root	Log of Square Root	Cube Root	Log of Cube Root
33/64	0.515625	-0.28767	0.26587	-0.57533	0.13709	-0.86300	0.71807	-0.14383	0.80188	-0.09589
17/32	0.531250	-0.27470	0.28223	-0.54940	0.14993	-0.82410	0.72887	-0.13735	0.80990	-0.09157
35/64	0.546875	-0.26211	0.29907	-0.52422	0.16356	-0.78634	0.73951	-0.13106	0.81777	-0.08737
% 16	0.562500	-0.24988	0.31641	-0.49976	0.17798	-0.74963	0.75000	-0.12494	0.82548	-0.08329
37/64	0.578125	-0.23798	0.33423	-0.47596	0.19323	-0.71394	0.76035	-0.11899	0.83306	-0.07933
19/32	0.593750	-0.22640	0.35254	-0.45279	0.20932	-0.67919	0.77055	-0.11320	0.84049	-0.07547
39/64	0.609375	-0.21512	0.37134	-0.43023	0.22628	-0.64535	0.78063	-0.10756	0.84780	-0.07171
5/8	0.625000	-0.20412	0.39063	-0.40824	0.24414	-0.61236	0.79057	-0.10206	0.85499	-0.06804
41/64	0.640625	-0.19340	0.41040	-0.38679	0.26291	-0.58019	0.80039	-0.09670	0.86205	-0.06447
21/32	0.656250	-0.18293	0.43066	-0.36586	0.28262	-0.54879	0.81009	-0.09147	0.86901	-0.06098
43/	0.671875	-0.17271	0.45142	-0.34542	0.30330	-0.51814	0.81968	-0.08636	0.87585	-0.05757
11/16	0.687500	-0.16273	0.47266	-0.32546	0.32495	-0.48818	0.82916	-0.08136	0.88259	-0.05424
45/64	0.703125	-0.15297	0.49438	-0.30594	0.34761	-0.45890	0.83853	-0.07648	0.88922	-0.05099
23/32	0.718750	-0.14342	0.51660	-0.28684	0.37131	-0.43027	0.84779	-0.07171	0.89576	-0.04781
47/64	0.734375	-0.13408	0.53931	-0.26816	0.39605	-0.40225	0.85696	-0.06704	0.90221	-0.04469
3/4	0.750000	-0.12494	0.56250	-0.24988	0.42188	-0.37482	0.86603	-0.06247	0.90856	-0.04165
49/64	0.765625	-0.11598	0.58618	-0.23197	0.44880	-0.34795	0.87500	-0.05799	0.91483	-0.03866
25/32	0.781250	-0.10721	0.61035	-0.21442	0.47684	-0.32163	0.88388	-0.05361	0.92101	-0.03574
51/64	0.796875	-0.09861	0.63501	-0.19722	0.50602	-0.29583	0.89268	-0.04931	0.92711	-0.03287
13/	0.812500	-0.09018	0.66016	-0.18035	0.53638	-0.27053	0.90139	-0.04509	0.93313	-0.03006
53/	0.828125	-0.08190	0.68579	-0.16381	0.56792	-0.24571	0.91001	-0.04095	0.93907	-0.02730
27/32	0.843750	-0.07379	0.71191	-0.14757	0.60068	-0.22136	0.91856	-0.03689	0.94494	-0.02460
55/64	0.859375	-0.06582	0.73853	-0.13164	0.63467	-0.19745	0.92703	-0.03291	0.95074	-0.02194
7/8	0.875000	-0.05799	0.76563	-0.11598	0.66992	-0.17398	0.93541	-0.02900	0.95647	-0.01933
57/64	0.890625	-0.05031	0.79321	-0.10061	0.70646	-0.15092	0.94373	-0.02515	0.96213	-0.01677
29/32	0.906250	-0.04275	0.82129	-0.08550	0.74429	-0.12826	0.95197	-0.02138	0.96772	-0.01425
⁵⁹ / ₆₄	0.921875	-0.03533	0.84985	-0.07066	0.78346	-0.10598	0.96014	-0.01766	0.97325	-0.01178
15/16	0.937500	-0.02803	0.87891	-0.05606	0.82397	-0.08409	0.96825	-0.01401	0.97872	-0.00934
61 _/	0.953125	-0.02085	0.90845	-0.04170	0.86586	-0.06255	0.97628	-0.01043	0.98412	-0.00695
31/32	0.968750	-0.01379	0.93848	-0.02758	0.90915	-0.04137	0.98425	-0.00689	0.98947	-0.00460
63/ 64	0.984375	-0.00684	0.96899	-0.01368	0.95385	-0.02052	0.99216	-0.00342	0.99476	-0.00228
1	1.000000	0.00000	1.00000	0.00000	1.00000	0.00000	1.00000	0.00000	1.00000	0.00000

DIAMETER, CIRCUMFERENCE, AND AREA OF CIRCLES

Diameter, Circumference, and Area of a Circle

Diameter	Circumfer- ence	Area	Diameter	Circumfer- ence	Area	Diameter	Circumfer- ence	Area
1/64	0.0491	0.0002	2	6.2832	3.1416	5	15.7080	19.635
64 1/ ₃₂	0.0982	0.0008	21/16	6.4795	3.3410	5½	15.9043	20.129
732 1/ 16	0.1963	0.0031	21/8	6.6759	3.5466	51/8	16.1007	20.629
716 3/ ₃₂	0.2945	0.0069	2 ³ / ₁₆	6.8722	3.7583	5 ³ / ₁₆	16.2970	21.135
732 1/8	0.3927	0.0123	21/4	7.0686	3.9761	5½	16.4934	21.648
5/ ₃₂	0.4909	0.0192	2 ⁵ / ₁₆	7.2649	4.2000	5½ 5½	16.6897	22.166
32 3/ ₁₆	0.5890	0.0276	23/8	7.4613	4.4301	5½ 5½	16.8861	22.691
	0.6872	0.0376	27/8	7.6576	4.6664	5½ 5½	17.0824	23.221
7/ ₃₂ 1/ ₄	0.7854	0.0491	21/2	7.8540	4.9087	51/2	17.2788	23.758
9/ ₃₂	0.8836	0.0621	2%	8.0503	5.1572	5% 5%	17.4751	24.301
732 5/ ₁₆	0.9817	0.0767	25%	8.2467	5.4119	5%	17.6715	24.850
116 11/ 32	1.0799	0.0928	211/16	8.4430	5.6727	511/16	17.8678	25.406
32 3/8	1.1781	0.1104	23/4	8.6394	5.9396	53/4	18.0642	25.967
'8 13/ 32	1.2763	0.1296	213/16	8.8357	6.2126	5 ¹³ / ₁₆	18.2605	26.535
7 ₃₂ 7 ₁₆	1.3744	0.1503	27/16	9.0321	6.4918		18.4569	27.109
16 15/ 32	1.4726	0.1726	215/16	9.2284	6.7771	5½ 5½	18.6532	27.688
1/ ₂	1.5708	0.1963	3	9.4248	7.0686	6	18.8496	28.274
17/32	1.6690	0.2217	31/16	9.6211	7.3662	61/8	19.2423	29.465
732 9/ ₁₆	1.7671	0.2485	31/8	9.8175	7.6699	61/4	19.6350	30.680
	1.8653	0.2769	l .	10.0138	7.9798	63/8	20.0277	31.919
19/ ₃₂ 5/ ₈	1.9635	0.3068	3 ³ / ₁₆ 3 ¹ / ₄	10.2102	8.2958	61/2	20.4204	33.183
21/32	2.0617	0.3382		10.4065	8.6179	65/8	20.8131	34.472
	2.1598	0.3712	3½ 3½	10.6029	8.9462	63/4	21.2058	35.785
11/ 16 23/	2.2580	0.4057	37/8	10.7992	9.2806	61/2	21.5984	37.122
²³ / ₃₂ ³ / ₄	2.3562	0.4418	31/2	10.9956	9.6211	7	21.9911	38.485
25/ ₃₂	2.4544	0.4794	-	11.1919	9.9678	71/8	22.3838	39.871
32 13/ 16	2.5525	0.5185	3% 3%	11.388	10.3206	71/4	22.7765	41.282
	2.6507	0.5591	311/16	11.585	10.6796	73/8	23.1692	42.718
27 _{/32} 7 _{/8}	2.7489	0.6013	33/4	11.781	11.0447	71/2	23.5619	44.179
'8 29/ ₃₂	2.8471	0.6450	313/16	11.977	11.4159	7 1/2	23.9546	45.664
15/ 16	2.9452	0.6903	37/16	12.174	11.7932	73/	24.3473	47.173
716 31/ 32	3.0434	0.7371	315/16	12.370	12.1767	7%	24.7400	48.707
⁷³²	3.1416	0.7854	4	12.566	12.5664	8	25.1327	50.265
11/16	3.3379	0.8866	41/16	12.763	12.9621	81/8	25.5254	51.849
11/8	3.5343	0.9940	41/8	12.959	13.3640	81/4	25.9181	53.456
1 ³ / ₁₆	3.7306	1.1075	4 ³ / ₁₆	13.155	13.7721	83/8	26.3108	55.088
11/4	3.9270	1.2272	41/4	13.352	14.1863	81/2	26.7035	56.745
15/16	4.1233	1.3530	45/16	13.548	14.6066	8½ 8½	27.0962	58.426
13/8	4.3197	1.4849	43/8	13.744	15.0330	8 ³ / ₄	27.4889	60.132
17/8	4.5160	1.6230	4½ 4½	13.941	15.4656	81/4	27.8816	61.862
11/2	4.7124	1.7671	41/2	14.137	15.9043	9	28.2743	63.617
1%	4.9087	1.9175	4% 4%	14.334	16.3492	91/8	28.6670	65.397
15/8	5.1051	2.0739	4 ⁷ 16 4 ⁵ / ₈	14.530	16.8002	91/4	29.0597	67.201
11/8	5.3014	2.2365	4½ 4½	14.726	17.2573	91/4	29.4524	69.029
1 ½ 1¾	5.4978	2.4053	4 16 43/4	14.720	17.7205	91/2	29.8451	70.882
	5.6941	2.5802		15.119	18.1899	9 1/2	30.2378	72.760
1 ¹³ / ₁₆	5.8905	2.7612	4 ¹³ / ₁₆		18.6655	ll "	30.6305	74.662
1 1/8	6.0868	2.7612	47/8	15.315 15.512	19.1471	93/4	31.0232	76.589
115/16	0.0000	2.7403	415/16	15.512	19.14/1	97/8	31.0232	70.569

MEASUREMENT AND INSPECTION

Sine-Bar

The sine-bar is used either for very accurate angular measurements or for locating work at a given angle as, for example, in surface grinding templates, gages, etc. The sine-bar is especially useful in measuring or checking angles when the limit of accuracy is 5 minutes or less. Some bevel protractors are equipped with verniers which read to 5 minutes, but the setting depends upon the alignment of graduations, whereas a sine-bar usually is located by positive contact with precision gage-blocks selected for whatever dimension is required for obtaining a given angle.

Types of Sine-Bars.—A sine-bar consists of a hardened, ground and lapped steel bar with very accurate cylindrical plugs of equal diameter attached to or near each end. The form illustrated by Fig. 1 has notched ends for receiving the cylindrical plugs so that they are held firmly against both faces of the notch. The standard center-to-center distance C between the plugs is either 5 or 10 inches. The upper and lower sides of sine-bars are parallel to the centerline of the plugs within very close limits.

The body of the sine-bar ordinarily has several through holes to reduce the weight. In the making of the sine-bar shown in Fig. 2, if too much material is removed from one locating notch, regrinding the shoulder at the opposite end would make it possible to obtain the correct center distance. That is the reason for this change in form. The type of sine-bar illustrated by Fig. 3 has the cylindrical disks or plugs attached to one side. These differences in form or arrangement do not, of course, affect the principle governing the use of the sine-bar. An accurate surface plate or master flat is always used in conjunction with a sine-bar in order to form the base from which the vertical measurements are made.

31

Setting a Sine-Bar to a Given Angle.—To find the vertical distance H, for setting a sine-bar to the required angle, convert the angle to decimal form on a pocket calculator, take the sine of that angle, and multiply by the distance between the cylinders. For example, if an angle of 31 degrees, 30 minutes is required, the equivalent angle is 31 degrees plus 30 /₆₀ = 31 + 0.5, or 31.5 degrees. The sine of 31.5 degrees is 0.5225 and multiplying this value by the sine-bar length gives 2.613 in. for the height H, Fig. 1 and 3, of the gage blocks.

Finding Angle when Height H of Sine-Bar is Known.—To find the angle equivalent to a given height H, reverse the above procedure. Thus, if the height H is 1.4061 in., dividing by 5 gives a sine of 0.28122, which corresponds to an angle of 16.333 degrees, or 16 degrees 20 minutes.

Checking Angle of Templet or Gage by Using Sine-Bar.—Place templet or gage on sine-bar as indicated by dotted lines, Fig. 1. Clamps may be used to hold work in place. Place upper end of sine-bar on gage blocks having total height H corresponding to the required angle. If upper edge D of work is parallel with surface plate E, then angle A of work equals angle A to which sine-bar is set. Parallelism between edge D and surface plate may be tested by checking the height at each end with a dial gage or some type of indicating comparator.

Measuring Angle of Templet or Gage with Sine-Bar.—To measure such an angle, adjust height of gage blocks and sine-bar until edge D, Fig. 1, is parallel with surface plate E; then find angle corresponding to height H of gage blocks. For example, if height H is 2.5939 inches when D and E are parallel, the calculator will show that the angle A of the work is 31 degrees, 15 minutes.

Checking Taper per Foot with Sine-Bar.—As an example, assume that the plug gage in Fig. 2 is supposed to have a taper of $6\frac{1}{8}$ inches per foot and taper is to be checked by using a 5-inch sine-bar. The table of *Tapers per Foot and Corresponding Angles* on page 41 shows that the included angle for a taper of $6\frac{1}{8}$ inches per foot is 28 degrees 38 minutes 1 second, or 28.6336 degrees from the calculator. For a 5-inch sine-bar, the calculator gives a value of 2.396 in. for the height H of the gage blocks. Using this height, if the upper surface F of the plug gage is parallel to the surface plate, the angle corresponds to a taper of $6\frac{1}{8}$ inches per foot.

Setting Sine-Bar Having Plugs Attached to Side.—If the lower plug does not rest directly on the surface plate, as in Fig. 3, the height *H* for the sine-bar is the difference between heights *x* and *y*, or the difference between the heights of the plugs; otherwise, the procedure in setting the sine-bar and checking angles is the same as previously described.

Checking Templets Having Two Angles.—Assume that angle a of templet, Fig. 4, is 9 degrees, angle b 12 degrees, and that edge G is parallel to the surface plate. For an angle b of 12 degrees, the calculator shows that the height H is 1.03956 inches. For an angle a of 9 degrees, the difference between measurements x and y when the sine-bar is in contact with the upper edge of the templet is 0.78217 inch.

Setting 10-Inch Sine-Bar to Given Angle.—A 10-inch sine-bar may sometimes be preferred because of its longer working surface or because the longer center distance is conducive to greater precision. To obtain the vertical distances H for setting a 10-inch sine-bar, multiply the sine of the angle by 10, by shifting the decimal point one place to the right.

For example, the sine of 39 degrees is 0.62932, hence the vertical height H for setting a 10-inch sine-bar is 6.2932 inches.

32

Measuring Tapers with V-Block and Sine-Bar.—The taper on a conical part may be checked or found by placing the part in a V-block which rests on the surface of a sine-plate or sine-bar as shown in the accompanying diagram. The advantage of this method is that the axis of the V-block may be aligned with the sides of the sine-bar. Thus when the tapered part is placed in the V-block it will be aligned perpendicular to the transverse axis of the sine-bar.

The sine-bar is set to angle B = (C + A/2) where A/2 is one-half the included angle of the tapered part. If D is the included angle of the precision V-block, the angle C is calculated from the formula:

$$\sin C = \frac{\sin(A/2)}{\sin(D/2)}$$

If dial indicator readings show no change across all points along the top of the taper surface, then this checks that the angle A of the taper is correct.

If the indicator readings vary, proceed as follows to find the actual angle of taper: 1) Adjust the angle of the sine-bar until the indicator reading is constant. Then find the new angle B' as explained in the paragraph Measuring Angle of Templet or Gage with Sine-Bar; and 2) Using the angle B' calculate the actual half-angle A'/2 of the taper from the formula:

$$\tan\frac{A'}{2} = \frac{\sin B'}{\csc\frac{D}{2} + \cos B'}$$

Using a Calculator to Determine Sine-Bar Constants for a Given Angle.—The constant required to set a given angle for a sine-bar of any length can be quickly determined by using a scientific calculator. The required formulas are as follows:

 angle A given in degrees and calculator is set to measure angles in radian a) angle A is given in radian, orb) angle A is given in degrees and calculator is set to measure angles in degrees

$$H = L \times \sin\left(A \times \frac{\pi}{180}\right)$$
 $H = L \times \sin(A)$

where L = length of the sine-bar A = angle to which the sine-bar is to be set H = vertical height to which one end of sine-bar must be set to obtain angle A = 3.141592654

In the previous formulas, the height H and length L must be given in the same units but may be in either metric or US units. Thus, if L is given in mm, then H is in mm; and, if L is given in inches, then H is in inches.

Constants for Setting a 5-Inch Sine-Bar for 1° to 7°

Min.	0°	1°	2°	3°	4°	5°	6°	7°
0	0.00000	0.08726	0.17450	0.26168	0.34878	0.43578	0.52264	0.60935
1	0.00145	0.08872	0.17595	0.26313	0.35023	0.43723	0.52409	0.61079
2	0.00291	0.09017	0.17740	0.26458	0.35168	0.43868	0.52554	0.61223
3	0.00436	0.09162	0.17886	0.26604	0.35313	0.44013	0.52698	0.61368
4	0.00582	0.09308	0.18031	0.26749	0.35459	0.44157	0.52843	0.61512
5	0.00727	0.09453	0.18177	0.26894	0.35604	0.44302	0.52987	0.61656
6	0.00873	0.09599	0.18322	0.27039	0.35749	0.44447	0.53132	0.61801
7	0.01018	0.09744	0.18467	0.27185	0.35894	0.44592	0.53277	0.61945
8	0.01164	0.09890	0.18613	0.27330	0.36039	0.44737	0.53421	0.62089
9	0.01309	0.10035	0.18758	0.27475	0.36184	0.44882	0.53566	0.62234
10	0.01454	0.10180	0.18903	0.27620	0.36329	0.45027	0.53710	0.62378
11	0.01600	0.10326	0.19049	0.27766	0.36474	0.45171	0.53855	0.62522
12	0.01745	0.10471	0.19194	0.27911	0.36619	0.45316	0.54000	0.62667
13	0.01891	0.10617	0.19339	0.28056	0.36764	0.45461	0.54144	0.62811
14	0.02036	0.10762	0.19485	0.28201	0.36909	0.45606	0.54289	0.62955
15	0.02182	0.10907	0.19630	0.28346	0.37054	0.45751	0.54433	0.63099
16	0.02327	0.11053	0.19775	0.28492	0.37199	0.45896	0.54578	0.63244
17	0.02473	0.11198	0.19921	0.28637	0.37344	0.46040	0.54723	0.63388
18	0.02618	0.11344	0.20066	0.28782	0.37489	0.46185	0.54867	0.63532
19 20	0.02763 0.02909	0.11489	0.20211 0.20357	0.28927 0.29072	0.37634 0.37779	0.46330 0.46475	0.55012 0.55156	0.63677 0.63821
20	0.02909	0.11634 0.11780	0.20357	0.29072	0.37779	0.46475	0.55301	0.63965
22	0.03034	0.11780	0.20502	0.29218	0.37924	0.46765	0.55445	0.64109
23	0.03200	0.11923	0.20047	0.29508	0.38214	0.46909	0.55590	0.64254
23	0.03343	0.12071	0.20793	0.29653	0.38214	0.47054	0.55734	0.64398
25	0.03636	0.12361	0.21083	0.29798	0.38505	0.47199	0.55879	0.64542
26	0.03782	0.12507	0.21228	0.29944	0.38650	0.47344	0.56024	0.64686
27	0.03927	0.12652	0.21374	0.30089	0.38795	0,47489	0.56168	0.64830
28	0.04072	0.12798	0.21519	0.30234	0.38940	0.47633	0.56313	0.64975
29	0.04218	0.12943	0.21664	0.30379	0.39085	0.47778	0.56457	0.65119
30	0.04363	0.13088	0.21810	0.30524	0.39230	0.47923	0.56602	0.65263
31	0.04509	0.13234	0.21955	0.30669	0.39375	0.48068	0.56746	0.65407
32	0.04654	0.13379	0.22100	0.30815	0.39520	0.48212	0.56891	0.65551
33	0.04800	0.13525	0.22246	0.30960	0.39665	0.48357	0.57035	0.65696
34	0.04945	0.13670	0.22391	0.31105	0.39810	0.48502	0.57180	0.65840
35	0.05090	0.13815	0.22536	0.31250	0.39954	0.48647	0.57324	0.65984
36	0.05236	0.13961	0.22681	0.31395	0.40099	0.48791	0.57469	0.66128
37	0.05381	0.14106	0.22827	0.31540	0.40244	0.48936	0.57613	0.66272
38	0.05527	0.14252	0.22972	0.31686	0.40389	0.49081	0.57758	0.66417
39	0.05672	0.14397	0.23117	0.31831	0.40534	0.49226	0.57902	0.66561
40	0.05818	0.14542	0.23263	0.31976	0.40679 0.40824	0.49370 0.49515	0.58046	0.66705 0.66849
41 42	0.05963 0.06109	0.14688 0.14833	0.23408 0.23553	0.32121 0.32266	0.40824	0.49515	0.58191 0.58335	0.66993
42	0.06109	0.14833	0.23553	0.32266	0.40969	0.49660	0.58335	0.66993
43	0.06234	0.14979	0.23844	0.32556	0.41114	0.49803	0.58624	0.67137
45	0.06545	0.15124	0.23989	0.32330	0.41239	0.50094	0.58769	0.67425
46	0.06690	0.15415	0.24134	0.32702	0.41549	0.50239	0.58913	0.67570
47	0.06836	0.15560	0.24134	0.32992	0.41549	0.50383	0.59058	0.67714
48	0.06981	0.15705	0.24425	0.33137	0.41839	0.50528	0.59202	0.67858
49	0.07127	0.15851	0.24570	0.33282	0.41984	0.50673	0.59346	0.68002
50	0.07272	0.15996	0.24715	0.33427	0.42129	0.50818	0.59491	0.68146
51	0.07417	0.16141	0.24861	0.33572	0.42274	0.50962	0.59635	0.68290
52	0.07563	0.16287	0.25006	0.33717	0.42419	0.51107	0.59780	0.68434
53	0.07708	0.16432	0.25151	0.33863	0.42564	0.51252	0.59924	0.68578
54	0.07854	0.16578	0.25296	0.34008	0.42708	0.51396	0.60068	0.68722
55	0.07999	0.16723	0.25442	0.34153	0.42853	0.51541	0.60213	0.68866
56	0.08145	0.16868	0.25587	0.34298	0.42998	0.51686	0.60357	0.69010
57	0.08290	0.17014	0.25732	0.34443	0.43143	0.51830	0.60502	0.69154
58	0.08435	0.17159	0.25877	0.34588	0.43288	0.51975	0.60646	0.69298
59	0.08581	0.17304	0.26023	0.34733	0.43433	0.52120	0.60790	0.69443
60	0.08726	0.17450	0.26168	0.34878	0.43578	0.52264	0.60935	0.69587

Constants for Setting a 5-Inch Sine-Bar for 8° to 15°

Min.	8°	9°	10°	11°	12°	13°	14°	15°
0	0.69587	0.78217	0.86824	0.95404	1.03956	1.12476	1.20961	1.29410
1	0.69731	0.78361	0.86967	0.95547	1.04098	1.12617	1.21102	1.29550
2	0.69875	0.78505	0.87111	0.95690	1.04240	1.12759	1.21243	1.29690
3	0.70019	0.78648	0.87254	0.95833	1.04383	1.12901	1.21384	1.29831
4	0.70163	0.78792	0.87397	0.95976	1.04525	1.13042	1.21525	1.29971
5	0.70307	0.78935	0.87540	0.96118	1.04667	1.13184	1.21666	1.30112
6	0.70451	0.79079	0.87683	0.96261	1.04809	1.13326	1.21808	1.30252
7	0.70595	0.79223	0.87827	0.96404	1.04951	1.13467	1.21949	1.30393
8	0.70739	0.79366	0.87970	0.96546	1.05094	1.13609	1.22090	1.30533
9	0.70883	0.79510	0.88113	0.96689	1.05236	1.13751	1.22231	1.30673
10	0.71027	0.79653	0.88256	0.96832	1.05378	1.13892	1.22372	1.30814
11	0.71171	0.79797	0.88399	0.96974	1.05520	1.14034	1.22513	1.30954
12	0.71314	0.79941	0.88542	0.97117	1.05662	1.14175	1.22654	1.31095
13	0.71458	0.80084	0.88686	0.97260	1.05805	1.14317	1.22795	1.31235
14	0.71602	0.80228	0.88829	0.97403	1.05947	1.14459	1.22936	1.31375
15	0.71746	0.80371	0.88972	0.97545	1.06089	1.14600	1.23077	1.31516
16	0.71890	0.80515	0.89115	0.97688	1.06231	1.14742	1.23218	1.31656
17	0.72034	0.80658	0.89258	0.97830	1.06373	1.14883	1.23359	1.31796
18	0.72178	0.80802	0.89401	0.97973	1.06515	1.15025	1.23500	1.31937
19	0.72322	0.80945	0.89544	0.98116	1.06657	1.15166	1.23640	1.32077
20 21	0.72466 0.72610	0.81089 0.81232	0.89687 0.89830	0.98258 0.98401	1.06799	1.15308	1.23781	1.32217
21 22	0.72610	0.81232	0.89830	0.98401	1.06941 1.07084	1.15449 1.15591	1.23922 1.24063	1.32357 1.32498
22 23	0.72754	0.81376	0.89973	0.98544	1.07084	1.15591	1.24063	1.32498
23	0.72898	0.81519	0.90117	0.98829	1.07226	1.15752	1.24204	1.32638
25	0.73185	0.81806	0.90200	0.98971	1.07510	1.16015	1.24486	1.32778
26	0.73103	0.81950	0.90546	0.99114	1.07652	1.16157	1.24627	1.33058
27	0.73473	0.82093	0.90689	0.99256	1.07794	1.16298	1.24768	1.33199
28	0.73617	0.82237	0.90832	0.99399	1.07936	1.16440	1.24908	1.33339
29	0.73761	0.82380	0.90975	0.99541	1.08078	1.16581	1.25049	1.33479
30	0.73905	0.82524	0.91118	0.99684	1.08220	1.16723	1.25190	1.33619
31	0.74049	0.82667	0.91261	0.99826	1.08362	1.16864	1.25331	1.33759
32	0.74192	0.82811	0.91404	0.99969	1.08504	1.17006	1.25472	1.33899
33	0.74336	0.82954	0.91547	1.00112	1.08646	1.17147	1.25612	1.34040
34	0.74480	0.83098	0.91690	1.00254	1.08788	1.17288	1.25753	1.34180
35	0.74624	0.83241	0.91833	1.00396	1.08930	1.17430	1.25894	1.34320
36	0.74768	0.83384	0.91976	1.00539	1.09072	1.17571	1.26035	1.34460
37	0.74911	0.83528	0.92119	1.00681	1.09214	1.17712	1.26175	1.34600
38	0.75055	0.83671	0.92262	1.00824	1.09355	1.17854	1.26316	1.34740
39	0.75199	0.83815	0.92405	1.00966	1.09497	1.17995	1.26457	1.34880
40	0.75343	0.83958	0.92547	1.01109	1.09639	1.18136	1.26598	1.35020
41 42	0.75487 0.75630	0.84101 0.84245	0.92690 0.92833	1.01251 1.01394	1.09781 1.09923	1.18278 1.18419	1.26738 1.26879	1.35160 1.35300
42	0.75630	0.84245	0.92833	1.01394	1.10065	1.18419	1.26879	1.35300
43	0.75774	0.84388	0.92976	1.01536	1.10065	1.18560	1.27020	1.35440
45	0.75918	0.84531	0.93119	1.01821	1.10207	1.18843	1.27100	1.35720
46	0.76205	0.84818	0.93202	1.01963	1.10349	1.18984	1.27442	1.35720
47	0.76349	0.84961	0.93548	1.02106	1.10632	1.19125	1.27582	1.36000
48	0.76493	0.85105	0.93691	1.02248	1.10774	1.19267	1.27723	1.36140
49	0.76637	0.85248	0.93834	1.02390	1.10916	1.19408	1.27863	1.36280
50	0.76780	0.85391	0.93976	1.02533	1.11058	1.19549	1.28004	1.36420
51	0.76924	0.85535	0.94119	1.02675	1.11200	1.19690	1.28145	1.36560
52	0.77068	0.85678	0.94262	1.02817	1.11342	1.19832	1.28285	1.36700
53	0.77211	0.85821	0.94405	1.02960	1.11483	1.19973	1.28426	1.36840
54	0.77355	0.85965	0.94548	1.03102	1.11625	1.20114	1.28566	1.36980
55	0.77499	0.86108	0.94691	1.03244	1.11767	1.20255	1.28707	1.37119
56	0.77643	0.86251	0.94833	1.03387	1.11909	1.20396	1.28847	1.37259
57	0.77786	0.86394	0.94976	1.03529	1.12050	1.20538	1.28988	1.37399
58	0.77930	0.86538	0.95119	1.03671	1.12192	1.20679	1.29129	1.37539
59	0.78074	0.86681	0.95262	1.03814	1.12334	1.20820	1.29269	1.37679
60	0.78217	0.86824	0.95404	1.03956	1.12476	1.20961	1.29410	1.37819

Constants for Setting a 5-Inch Sine-Bar for 16° to 23°

Min.	16°	17°	18°	19°	20°	21°	22°	23°
0	1.37819	1.46186	1.54509	1.62784	1.71010	1.79184	1.87303	1.95366
1	1.37958	1.46325	1.54647	1.62784	1.71010	1.79184	1.87438	1.95300
2	1.38098	1.46464	1.54785	1.63059	1.71283	1.79456	1.87573	1.95633
3	1.38238	1.46603	1.54923	1.63197	1.71420	1.79591	1.87708	1.95767
4	1.38378	1.46742	1.55062	1.63334	1.71557	1.79727	1.87843	1.95901
5	1.38518	1.46881	1.55200	1.63472	1.71693	1.79863	1.87977	1.96035
6	1.38657	1.47020	1.55338	1.63609	1.71830	1.79998	1.88112	1.96169
7	1.38797	1.47159	1.55476	1.63746	1.71966	1.80134	1.88247	1.96302
8	1.38937	1.47139	1.55615	1.63884	1.72103	1.80270	1.88382	1.96436
9	1.39076	1.47437	1.55753	1.64021	1.72240	1.80405	1.88516	1.96570
10	1.39216	1.47576	1.55891	1.64159	1.72376	1.80541	1.88651	1.96704
11	1.39356	1.47715	1.56029	1.64296	1.72513	1.80677	1.88786	1.96837
12	1.39496	1,47854	1.56167	1.64433	1.72649	1.80812	1.88920	1.96971
13	1.39635	1.47993	1.56306	1.64571	1.72786	1.80948	1.89055	1.97105
14	1.39775	1.48132	1.56444	1.64708	1.72922	1.81083	1.89190	1.97238
15	1.39915	1.48271	1.56582	1.64845	1.73059	1.81219	1.89324	1.97372
16	1.40054	1.48410	1.56720	1.64983	1.73195	1.81355	1.89459	1.97506
17	1.40194	1.48549	1.56858	1.65120	1.73331	1.81490	1.89594	1.97639
18	1.40333	1.48687	1.56996	1.65257	1.73351	1.81626	1.89728	1.97773
19	1.40473	1.48826	1.57134	1.65394	1.73604	1.81761	1.89863	1.97906
20	1.40613	1.48965	1.57272	1.65532	1.73741	1.81897	1.89997	1.98040
21	1.40752	1.49104	1.57272	1.65669	1.73741	1.82032	1.90132	1.98173
22	1.40892	1.49243	1.57548	1.65806	1.74013	1.82168	1.90266	1.98307
23	1.41031	1.49382	1.57687	1.65943	1.74150	1.82303	1.90401	1.98440
24	1.41171	1.49520	1.57825	1.66081	1.74286	1.82438	1.90535	1.98574
25	1.41171	1.49659	1.57963	1.66218	1.74280	1.82574	1.90670	1.98707
26	1.41450	1.49798	1.58101	1.66355	1.74559	1.82709	1.90804	1.98841
27	1.41589	1.49937	1.58238	1.66492	1.74695	1.82845	1.90939	1.98974
28	1.41729	1.50075	1.58376	1.66629	1.74831	1.82980	1.91073	1.99108
29	1.41729	1.50214	1.58514	1.66766	1.74967	1.83115	1.91073	1.99241
30	1.42008	1.50353	1.58652	1.66903	1.75104	1.83251	1.91342	1.99375
31	1.42147	1.50492	1.58790	1.67041	1.75240	1.83386	1.91476	1.99508
32	1.42287	1,50630	1.58928	1.67178	1.75376	1.83521	1.91610	1.99641
33	1.42426	1.50769	1.59066	1.67315	1.75512	1.83657	1.91745	1.99775
34	1.42565	1.50908	1.59204	1.67452	1.75649	1.83792	1.91879	1.99908
35	1.42705	1.51046	1.59342	1.67589	1.75785	1.83927	1.92013	2.00041
36	1.42844	1.51185	1.59480	1.67726	1.75921	1.84062	1.92148	2.00175
37	1.42984	1.51324	1.59617	1.67863	1.76057	1.84198	1.92282	2.00308
38	1.43123	1.51324	1.59755	1.68000	1.76193	1.84333	1.92416	2.00308
39	1.43262	1.51601	1.59893	1.68137	1.76329	1.84468	1.92550	2.00574
40	1.43402	1.51739	1.60031	1.68274	1.76465	1.84603	1.92685	2.00708
41	1.43541	1.51878	1.60169	1.68411	1.76601	1.84738	1.92819	2.00841
42	1.43680	1.52017	1.60307	1.68548	1.76737	1.84873	1.92953	2.00974
43	1.43820	1.52155	1.60444	1.68685	1.76873	1.85009	1.93087	2.01107
44	1.43959	1.52294	1.60582	1.68821	1.77010	1.85144	1.93221	2.01240
45	1.44098	1.52432	1.60720	1.68958	1.77146	1.85279	1.93355	2.01373
46	1.44237	1.52571	1.60857	1.69095	1.77282	1.85414	1.93490	2.01506
47	1.44377	1.52709	1.60995	1.69232	1.77418	1.85549	1.93624	2.01640
48	1.44516	1.52848	1.61133	1.69369	1.77553	1.85684	1.93758	2.01773
49	1.44655	1.52986	1.61271	1.69506	1.77689	1.85819	1.93892	2.01906
50	1.44794	1.53125	1.61408	1.69643	1.77825	1.85954	1.94026	2.02039
51	1.44934	1.53263	1.61546	1.69779	1.77961	1.86089	1.94160	2.02172
52	1.45073	1.53401	1.61683	1.69916	1.78097	1.86224	1.94294	2.02305
53	1.45212	1.53540	1.61821	1.70053	1.78233	1.86359	1.94428	2.02438
54	1.45351	1.53678	1.61959	1.70190	1.78369	1.86494	1.94562	2.02571
55	1.45490	1.53817	1.62096	1.70327	1.78505	1.86629	1.94696	2.02704
56	1.45629	1.53955	1.62234	1.70463	1.78641	1.86764	1.94830	2.02837
57	1.45769	1.54093	1.62371	1.70600	1.78777	1.86899	1.94964	2.02970
58	1.45908	1.54232	1.62509	1.70737	1.78912	1.87034	1.95098	2.03103
59	1.46047	1.54370	1.62647	1.70873	1.79048	1.87168	1.95232	2.03235
60	1.46186	1.54509	1.62784	1.71010	1.79184	1.87303	1.95366	2.03368

Constants for Setting a 5-Inch Sine-Bar for 24° to 31°

Min	24°	25°	26°	27°	28°	29°	30°	31°
Min.								
0	2.03368	2.11309	2.19186	2.26995	2.34736	2.42405	2.50000	2.57519
1	2.03501	2.11441	2.19316	2.27125	2.34864	2.42532	2.50126	2.57644
2	2.03634	2.11573	2.19447	2.27254	2.34993	2.42659	2.50252	2.57768
3	2.03767	2.11704	2.19578	2.27384	2.35121	2.42786	2.50378	2.57893
4	2.03900	2.11836	2.19708	2.27513	2.35249	2.42913	2.50504	2.58018
5	2.04032	2.11968	2.19839	2.27643	2.35378	2.43041	2.50630	2.58142
6	2.04165	2.12100	2.19970	2.27772	2.35506	2.43168	2.50755	2.58267
7	2.04298	2.12231	2.20100	2.27902	2.35634	2.43295	2.50881	2.58391
8	2.04431	2.12363	2.20231	2.28031	2.35763	2.43422	2.51007	2.58516
9	2.04563	2.12495	2.20361	2.28161	2.35891	2.43549	2.51133	2.58640
10	2.04696	2.12626	2.20492	2.28290	2.36019	2.43676	2.51259	2.58765
11	2.04829	2.12758	2.20622	2.28420	2.36147	2.43803	2.51384	2.58889
12	2.04962	2.12890	2.20753	2.28549	2.36275	2.43930	2.51510	2.59014
13	2.05094	2.13021	2.20883	2.28678	2.36404	2.44057	2.51636	2.59138
14	2.05227	2.13153	2.21014	2.28808	2.36532	2.44184	2.51761	2.59262
15	2.05359	2.13284	2.21144	2.28937	2.36660	2.44311	2.51887	2.59387
16	2.05492	2.13416	2.21275	2.29066	2.36788	2.44438	2.52013	2.59511
17	2.05625	2.13547	2.21405	2.29196	2.36916	2.44564	2.52138	2.59635
18	2.05757	2.13679	2.21536	2.29325	2.37044	2.44691	2.52264	2.59760
19	2.05890	2.13810	2.21666	2.29454	2.37172	2.44818	2.52389	2.59884
20	2.06022	2.13942	2.21796	2.29583	2.37300	2.44945	2.52515	2.60008
21	2.06155	2.14073	2.21927	2.29712	2.37428	2.45072	2.52640	2.60132
22	2.06287	2.14205	2.22057	2.29842	2.37556	2.45198	2.52766	2.60256
23	2.06420	2.14336	2.22187	2.29971	2.37684	2.45325	2.52891	2.60381
24	2.06552	2.14468	2.22318	2.30100	2.37812	2.45452	2.53017	2.60505
25	2.06685	2.14599	2.22448	2.30229	2.37940	2.45579	2.53142	2.60629
26	2.06817	2.14730	2.22578	2.30358	2.38068	2.45705	2.53268	2.60753
27	2.06950	2.14862	2.22708	2.30487	2.38196	2.45832	2.53393	2.60877
28	2.07082	2.14993	2.22839	2.30616	2.38324	2.45959	2.53519	2.61001
29	2.07214	2.15124	2.22969	2.30745	2.38452	2.46085	2.53644	2.61125
30	2.07347	2.15256	2.23099	2.30874	2.38579	2.46212	2.53769	2.61249
31	2.07479	2.15387	2.23229	2.31003	2.38707	2.46338	2.53894	2.61373
32	2.07611	2.15518	2.23359	2.31132	2.38835	2.46465	2.54020	2.61497
33	2.07744	2.15649	2.23489	2.31261	2.38963	2.46591	2.54145	2.61621
34	2.07876	2.15781	2.23619	2.31390	2.39091	2.46718	2.54270	2.61745
35	2.08008	2.15912	2.23749	2.31519	2.39218	2.46844	2.54396	2.61869
36	2.08140	2.16043	2.23880	2.31648	2.39346	2.46971	2.54521	2.61993
37	2.08273	2.16174	2.24010	2.31777	2.39474	2.47097	2.54646	2.62117
38	2.08405	2.16305	2.24140	2.31906	2.39601	2.47224	2.54771	2.62241
39	2.08537	2.16436	2.24270	2.32035	2.39729	2.47350	2.54896	2.62364
40	2.08669	2.16567	2.24400	2.32163	2.39857	2.47477	2.55021	2.62488
41	2.08801	2.16698	2.24530	2.32292	2.39984	2.47603	2.55146	2.62612
42	2.08934	2.16830	2.24660	2.32421	2.40112	2.47729	2.55271	2.62736
43	2.09066	2.16961	2.24789	2.32550	2.40239	2.47856	2.55397	2.62860
44	2.09198	2.17092	2.24919	2.32679	2.40367	2.47982	2.55522	2.62983
45	2.09330	2.17223	2.25049	2.32807	2.40494	2.48108	2.55647	2.63107
46	2.09462	2.17354	2.25179	2.32936	2.40622	2.48235	2.55772	2.63231
47	2.09594	2.17485	2.25309	2.33065	2.40749	2.48361	2.55896	2.63354
48	2.09726	2.17616	2.25439	2.33193	2.40877	2.48487	2.56021	2.63478
49	2.09858	2.17746	2.25569	2.33322	2.41004	2.48613	2.56146	2.63602
50	2.09990	2.17877	2.25698	2.33451	2.41132	2.48739	2.56271	2.63725
51	2.10122	2.18008	2.25828	2.33579	2.41259	2.48866	2.56396	2.63849
52	2.10254	2.18139	2.25958	2.33708	2.41386	2.48992	2.56521	2.63972
53	2.10386	2.18270	2.26088	2.33836	2.41514	2.49118	2.56646	2.64096
54	2.10518	2.18401	2.26217	2.33965	2.41641	2.49244	2.56771	2.64219
55	2.10650	2.18532	2.26347	2.34093	2.41769	2.49370	2.56895	2.64343
56	2.10782	2.18663	2.26477	2.34222	2.41896	2.49496	2.57020	2.64466
57	2.10914	2.18793	2.26606	2.34350	2.42023	2.49622	2.57145	2.64590
58	2.11045	2.18924	2.26736	2.34479	2.42150	2.49748	2.57270	2.64713
59	2.11177	2.19055	2.26866	2.34607	2.42278	2.49874	2.57394	2.64836
60	2.11309	2.19186	2.26995	2.34736	2.42405	2.50000	2.57519	2.64960

Constants for Setting a 5-Inch Sine-Bar for 32° to 39°

Min	32°	33°	34°	35°	36°	37°	38°	39°
Min.								
0	2.64960	2.72320	2.79596	2.86788	2.93893	3.00908	3.07831	3.14660
1	2.65083	2.72441	2.79717	2.86907	2.94010	3.01024	3.07945	3.14773
2	2.65206	2.72563	2.79838 2.79958	2.87026 2.87146	2.94128 2.94246	3.01140	3.08060	3.14886 3.14999
3	2.65330	2.72685				3.01256	3.08174	
4	2.65453	2.72807	2.80079	2.87265	2.94363	3.01372	3.08289	3.15112
5	2.65576	2.72929	2.80199	2.87384	2.94481	3.01488	3.08403	3.15225
6	2.65699	2.73051	2.80319 2.80440	2.87503	2.94598	3.01604	3.08518	3.15338
7 8	2.65822 2.65946	2.73173 2.73295	2.80440	2.87622 2.87741	2.94716 2.94833	3.01720	3.08632 3.08747	3.15451
9	2.65946	2.73295	2.80560	2.87741	2.94833	3.01836 3.01952	3.08747	3.15564 3.15676
10	2.66192	2.73538	2.80801	2.87978	2.94931	3.02068	3.08976	3.15789
11	2.66315	2.73660	2.80921	2.88097	2.95185	3.02068	3.08976	3.15789
12	2.66438	2.73782	2.81042	2.88216	2.95303	3.02300	3.09204	3.16015
13	2.66561	2.73903	2.81042	2.88335	2.95303	3.02300	3.09204	3.16127
13	2.66684	2.73903	2.81182	2.88454	2.95538	3.02531	3.09318	3.16240
15	2.66807	2.74023	2.81402	2.88573	2.95655	3.02647	3.09433	3.16240
16	2.66930	2.74147	2.81523	2.88691	2.95033	3.02647	3.09547	3.16465
17	2.67053	2.74268	2.81523	2.88810	2.95889	3.02763	3.09775	3.16578
18	2.67176	2.74590	2.81763	2.88929	2.95889	3.02878	3.09890	3.16578
19	2.67176	2.74511	2.81883	2.89048	2.96007	3.02994	3.10004	3.16803
20	2.67299	2.74633	2.81883	2.89048	2.96124	3.03110	3.10004	3.16803
20								
21 22	2.67545 2.67668	2.74876 2.74997	2.82123 2.82243	2.89285 2.89403	2.96358 2.96475	3.03341 3.03457	3.10232 3.10346	3.17028 3.17140
23	2.67791	2.75119	2.82364	2.89522	2.96592	3.03572	3.10340	3.17253
23	2.67913	2.75119	2.82364	2.89522	2.96709	3.03688	3.10460	3.17255
25	2.68036	2.75362	2.82604	2.89759	2.96827	3.03803	3.10574	3.17478
26	2.68159	2.75483	2.82723	2.89878	2.96944	3.03919	3.10802	3.17590
27	2.68282	2.75605	2.82843	2.89996	2.97061	3.04034	3.10916	3.17702
28	2.68404	2.75726	2.82963	2.90115	2.97178	3.04150	3.11030	3.17815
29	2.68527	2.75847	2.83083	2.90233	2.97294	3.04265	3.11143	3.17927
30	2.68650	2.75969	2.83203	2.90255	2.97411	3.04381	3.11257	3.18039
31	2.68772	2.76090	2.83323	2.90331	2.97528	3.04496	3.11371	3.18151
32	2.68895	2.76211	2.83443	2.90588	2.97645	3.04611	3.11485	3.18264
33	2.69018	2.76332	2.83563	2.90707	2.97762	3.04727	3.11599	3.18376
34	2.69140	2.76453	2.83682	2.90825	2.97879	3.04842	3.11712	3.18488
35	2.69263	2.76575	2.83802	2.90943	2.97996	3.04957	3.11826	3.18600
36	2.69385	2.76696	2.83922	2.91061	2.98112	3.05073	3.11940	3.18712
37	2,69508	2.76817	2.84042	2.91180	2.98229	3.05188	3.12053	3.18824
38	2.69630	2.76938	2.84161	2.91298	2.98346	3.05303	3.12167	3.18936
39	2.69753	2.77059	2.84281	2.91416	2.98463	3.05418	3.12281	3.19048
40	2.69875	2.77180	2.84401	2.91534	2.98579	3.05533	3.12394	3.19160
41	2.69998	2.77301	2.84520	2.91652	2.98696	3.05648	3.12508	3.19272
42	2.70120	2.77422	2.84640	2.91771	2.98813	3.05764	3.12621	3.19384
43	2.70243	2.77543	2.84759	2.91889	2.98929	3.05879	3.12735	3.19496
44	2.70365	2.77664	2.84879	2.92007	2.99046	3.05994	3.12848	3.19608
45	2.70487	2.77785	2.84998	2.92125	2.99162	3.06109	3.12962	3.19720
46	2.70610	2.77906	2.85118	2.92243	2.99279	3.06224	3.13075	3.19831
47	2.70732	2.78027	2.85237	2.92361	2.99395	3.06339	3.13189	3.19943
48	2.70854	2.78148	2.85357	2.92479	2.99512	3.06454	3.13302	3.20055
49	2.70976	2.78269	2.85476	2.92597	2.99628	3.06568	3.13415	3.20167
50	2.71099	2.78389	2.85596	2.92715	2.99745	3.06683	3.13529	3.20278
51	2.71221	2.78510	2.85715	2.92833	2.99861	3.06798	3.13642	3.20390
52	2.71343	2.78631	2.85834	2.92950	2.99977	3.06913	3.13755	3.20502
53	2.71465	2.78752	2.85954	2.93068	3.00094	3.07028	3.13868	3.20613
54	2.71587	2.78873	2.86073	2.93186	3.00210	3.07143	3.13982	3.20725
55	2.71709	2.78993	2.86192	2.93304	3.00326	3.07257	3.14095	3.20836
56	2.71831	2.79114	2.86311	2.93422	3.00443	3.07372	3.14208	3.20948
57	2.71953	2.79235	2.86431	2.93540	3.00559	3.07487	3.14321	3.21059
58	2.72076	2.79355	2.86550	2.93657	3.00675	3.07601	3.14434	3.21171
59	2.72198	2.79476	2.86669	2.93775	3.00791	3.07716	3.14547	3.21282
60	2.72320	2.79596	2.86788	2.93893	3.00908	3.07831	3.14660	3.21394

Constants for Setting a 5-Inch Sine-Bar for 40° to 47°

Min.	40°	41°	42°	43°	44°	45°	46°	47°
0	3.21394	3.28030	3.34565	3.40999	3.47329	3.53553	3.59670	3.65677
1	3.21505	3.28139	3.34673	3.41106	3.47434	3.53656	3.59771	3.65776
2	3.21617	3.28249	3.34781	3.41212	3.47538	3.53759	3.59872	3.65875
3	3.21728	3.28359	3.34889	3.41318	3.47643	3.53862	3.59973	3.65974
4	3.21839	3.28468	3.34997	3.41424	3.47747	3.53965	3.60074	3.66073
5	3.21951	3.28578	3.35105	3.41531	3.47852	3.54067	3.60175	3.66172
6	3.22062	3.28688	3.35213	3.41637	3.47956	3.54170	3.60276	3.66271
7	3.22173	3.28797	3.35321	3.41743	3.48061	3.54273	3.60376	3.66370
8	3.22284	3.28907	3.35429	3.41849	3.48165	3.54375	3.60477	3.66469
9	3.22395	3.29016	3.35537	3.41955	3.48270	3.54478	3.60578	3.66568
10	3.22507	3.29126	3.35645	3.42061	3.48374	3.54580	3.60679	3.66667
11	3.22618	3.29235	3.35753	3.42168	3.48478	3.54683	3.60779	3.66766
12	3.22729	3.29345	3.35860	3.42274	3.48583	3.54785	3.60880	3.66865
13	3.22840	3.29454	3.35968	3.42380	3.48687	3.54888	3.60981	3.66964
14	3.22951	3.29564	3.36076	3.42486	3.48791	3.54990	3.61081	3.67063
15	3.23062	3.29673	3.36183	3.42592	3.48895	3.55093	3.61182	3.67161
16	3.23173	3.29782	3.36291	3.42697	3.48999	3.55195	3.61283	3.67260
17	3.23284	3.29892	3.36399	3.42803	3.49104	3.55297	3.61383	3.67359
18	3.23395	3.30001	3.36506	3.42909	3.49208	3.55400	3.61484	3.67457
19 20	3.23506	3.30110 3.30219	3.36614	3.43015 3.43121	3.49312	3.55502	3.61584	3.67556 3.67655
20	3.23617 3.23728	3.30219	3.36721 3.36829	3.43121	3.49416 3.49520	3.55604 3.55707	3.61684 3.61785	3.67655
21 22	3.23728	3.30438	3,36936	3.43227	3.49520	3.55809	3.61885	3.67852
23	3.23949	3.30547	3.37044	3,43438	3.49624	3.55911	3.61986	3.67950
23	3.23949	3.30656	3.37151	3.43544	3.49728	3.56013	3.62086	3.68049
25	3.24171	3,30765	3.37259	3,43649	3,49936	3.56115	3.62186	3.68147
26	3.24281	3.30874	3.37366	3.43755	3,50039	3.56217	3.62286	3.68245
27	3.24392	3.30983	3.37473	3.43861	3.50143	3.56319	3.62387	3.68344
28	3.24503	3,31092	3.37581	3,43966	3.50247	3.56421	3.62487	3.68442
29	3.24613	3,31201	3,37688	3,44072	3,50351	3,56523	3.62587	3.68540
30	3.24724	3,31310	3,37795	3,44177	3,50455	3,56625	3,62687	3,68639
31	3.24835	3.31419	3.37902	3.44283	3.50558	3.56727	3.62787	3.68737
32	3.24945	3.31528	3.38010	3.44388	3.50662	3.56829	3.62887	3.68835
33	3.25056	3.31637	3.38117	3.44494	3.50766	3.56931	3.62987	3.68933
34	3.25166	3.31746	3.38224	3.44599	3.50869	3.57033	3.63087	3.69031
35	3.25277	3.31854	3.38331	3.44704	3.50973	3.57135	3.63187	3.69130
36	3.25387	3.31963	3.38438	3.44810	3.51077	3.57236	3.63287	3.69228
37	3.25498	3.32072	3.38545	3.44915	3.51180	3.57338	3.63387	3.69326
38	3.25608	3.32181	3.38652	3.45020	3.51284	3.57440	3.63487	3.69424
39	3.25718	3.32289	3.38759	3.45126	3.51387	3.57542	3.63587	3.69522
40	3.25829	3.32398	3.38866	3.45231	3.51491	3.57643	3.63687	3.69620
41	3.25939	3.32507	3.38973	3.45336	3.51594	3.57745	3.63787	3.69718
42	3.26049	3.32615	3.39080	3.45441	3.51697	3.57846	3.63886	3.69816
43	3.26159	3.32724	3.39187	3.45546	3.51801	3.57948	3.63986	3.69913
44	3.26270	3.32832	3.39294	3.45651	3.51904	3.58049	3.64086	3.70011
45	3.26380	3.32941	3.39400	3.45757	3.52007	3.58151	3.64186	3.70109
46 47	3.26490 3.26600	3.33049 3.33158	3.39507 3.39614	3.45862 3.45967	3.52111 3.52214	3.58252 3.58354	3.64285 3.64385	3.70207 3.70305
47	3.26600	3.33158	3.39614	3.45967	3.52214	3.58354	3.64484	3.70303
48	3.26820	3.33375	3.39721	3.46177	3.52420	3.58557	3.64584	3.70500
50	3.26930	3.33483	3.39934	3,46281	3.52523	3.58658	3.64683	3.70598
51	3.27040	3.33591	3.40041	3.46386	3.52627	3.58759	3.64783	3.70695
52	3.27150	3.33700	3.40147	3.46491	3.52730	3.58861	3.64882	3.70793
53	3.27260	3,33808	3,40254	3,46596	3.52833	3,58962	3.64982	3.70890
54	3.27370	3.33916	3.40360	3.46701	3.52936	3.59063	3.65081	3.70988
55	3.27480	3.34025	3.40467	3.46806	3.53039	3.59164	3.65181	3.71085
56	3.27590	3.34133	3.40573	3.46910	3.53142	3.59266	3.65280	3.71183
57	3.27700	3.34241	3.40680	3.47015	3.53245	3.59367	3.65379	3.71280
58	3.27810	3.34349	3.40786	3.47120	3.53348	3.59468	3.65478	3.71378
59	3.27920	3.34457	3.40893	3.47225	3.53451	3.59569	3.65578	3.71475
60	3.28030	3.34565	3.40999	3.47329	3.53553	3.59670	3.65677	3.71572

Constants for Setting a 5-Inch Sine-Bar for 48° to 55°

Min.	48°	49°	50°	51°	52°	53°	54°	55°
0	3.71572	3.77355	3.83022	3.88573	3.94005	3.99318	4.04508	4.09576
1	3.71670	3.77450	3.83116	3.88665	3.94095	3.99405	4.04594	4.09659
2	3.71767	3.77546	3.83209	3.88756	3.94184	3.99493	4.04679	4.09743
3	3.71864	3.77641	3.83303	3.88847	3.94274	3.99580	4.04765	4.09826
4	3.71961	3.77736	3.83396	3.88939	3.94363	3.99668	4.04850	4.09909
5	3.72059	3.77831	3.83489	3.89030	3.94453	3.99755	4.04936	4.09993
6	3.72156	3.77927	3.83583	3.89122	3.94542	3.99842	4.05021	4.10076
7	3.72253	3.78022	3.83676	3.89213	3.94631	3.99930	4.05106	4.10159
8	3.72350	3.78117	3.83769	3.89304	3.94721	4.00017	4.05191	4.10242
9	3.72447	3.78212	3.83862	3.89395	3.94810	4.00104	4.05277	4.10325
10	3.72544	3.78307	3.83956	3.89487	3.94899	4.00191	4.05362	4.10409
11	3.72641	3.78402	3.84049	3.89578	3.94988	4.00279	4.05447	4.10492
12	3.72738	3.78498	3.84142	3.89669	3.95078	4.00366	4.05532	4.10575
13	3.72835	3.78593	3.84235	3.89760	3.95167	4.00453	4.05617	4.10658
14	3.72932	3.78688	3.84328	3.89851	3.95256	4.00540	4.05702	4.10741
15	3.73029	3.78783	3.84421	3.89942	3.95345	4.00627	4.05787	4.10823
16	3.73126	3.78877	3.84514	3.90033	3.95434	4.00714	4.05872	4.10906
17	3.73222	3.78972	3.84607	3.90124	3.95523	4.00801	4.05957	4.10989
18	3.73319	3.79067	3.84700	3.90215	3.95612	4.00888	4.06042	4.11072
19	3.73416	3.79162 3.79257	3.84793	3.90306	3.95701	4.00975 4.01062	4.06127	4.11155 4.11238
20 21	3.73513 3.73609	3.79257	3.84886 3.84978	3.90397 3.90488	3.95790 3.95878	4.01062	4.06211 4.06296	4.11238
21 22	3.73706	3.79446	3.85071	3.90488	3.95967	4.01148	4.06296	4.11320
23	3.73700	3.79541	3.85164	3.90669	3.96056	4.01233	4.06466	4.11486
23	3.73899	3.79636	3.85257	3.90760	3.96145	4.01322	4.06550	4.11568
25	3.73996	3,79730	3.85349	3.90851	3,96234	4.01495	4.06635	4.11651
26	3.74092	3.79825	3.85442	3.90942	3,96322	4.01582	4.06720	4.11733
27	3.74189	3.79919	3.85535	3.91032	3.96411	4.01669	4.06804	4.11816
28	3.74285	3,80014	3.85627	3.91123	3,96500	4.01755	4.06889	4.11898
29	3,74381	3.80109	3.85720	3.91214	3.96588	4.01842	4.06973	4.11981
30	3.74478	3.80203	3.85812	3.91304	3.96677	4.01928	4.07058	4.12063
31	3.74574	3.80297	3.85905	3.91395	3.96765	4.02015	4.07142	4.12145
32	3.74671	3.80392	3.85997	3.91485	3.96854	4.02101	4.07227	4.12228
33	3.74767	3.80486	3.86090	3.91576	3.96942	4.02188	4.07311	4.12310
34	3.74863	3.80581	3.86182	3.91666	3.97031	4.02274	4.07395	4.12392
35	3.74959	3.80675	3.86274	3.91756	3.97119	4.02361	4.07480	4.12475
36	3.75056	3.80769	3.86367	3.91847	3.97207	4.02447	4.07564	4.12557
37	3.75152	3.80863	3.86459	3.91937	3.97296	4.02533	4.07648	4.12639
38	3.75248	3.80958	3.86551	3.92027	3.97384	4.02619	4.07732	4.12721
39	3.75344	3.81052	3.86644	3.92118	3.97472	4.02706	4.07817	4.12803
40	3.75440	3.81146	3.86736 3.86828	3.92208	3.97560 3.97649	4.02792 4.02878	4.07901	4.12885
41 42	3.75536 3.75632	3.81240 3.81334	3.86828	3.92298 3.92388	3.97649	4.02878	4.07985 4.08069	4.12967 4.13049
42	3.75728	3.81334	3.86920	3.92388	3.97/37	4.02964	4.08069	4.13049
43	3.75824	3.81522	3.87104	3.92568	3.97823	4.03030	4.08133	4.13131
45	3.75920	3.81522	3.87196	3.92568	3.98001	4.03130	4.08237	4.13213
46	3.76016	3.81710	3.87288	3.92748	3,98089	4.03308	4.08405	4.13377
47	3.76112	3.81804	3.87380	3.92839	3.98177	4.03394	4.08489	4.13459
48	3.76207	3.81898	3.87472	3.92928	3.98265	4.03480	4.08572	4.13540
49	3.76303	3.81992	3.87564	3.93018	3.98353	4.03566	4.08656	4.13622
50	3.76399	3.82086	3.87656	3.93108	3.98441	4.03652	4.08740	4.13704
51	3.76495	3.82179	3.87748	3.93198	3.98529	4.03738	4.08824	4.13785
52	3.76590	3.82273	3.87840	3.93288	3.98616	4.03823	4.08908	4.13867
53	3.76686	3.82367	3.87931	3.93378	3.98704	4.03909	4.08991	4.13949
54	3.76782	3.82461	3.88023	3.93468	3.98792	4.03995	4.09075	4.14030
55	3.76877	3.82554	3.88115	3.93557	3.98880	4.04081	4.09158	4.14112
56	3.76973	3.82648	3.88207	3.93647	3.98967	4.04166	4.09242	4.14193
57	3.77068	3.82742	3.88298	3.93737	3.99055	4.04252	4.09326	4.14275
58	3.77164	3.82835	3.88390	3.93826	3.99143	4.04337	4.09409	4.14356
59	3.77259	3.82929	3.88481	3.93916	3.99230	4.04423	4.09493	4.14437
60	3.77355	3.83022	3.88573	3.94005	3.99318	4.04508	4.09576	4.14519

Accurate Measurement of Angles and Tapers.—When great accuracy is required in the measurement of angles, or when originating tapers, disks are commonly used. The principle of the disk method of taper measurement is that if two disks of unequal diameters are placed either in contact or a certain distance apart, lines tangent to their peripheries will represent an angle or taper, the degree of which depends upon the diameters of the two disks and the distance between them.

The gage shown in the accompanying illustration, which is a form commonly used for originating tapers or measuring angles accurately, is set by means of disks. This gage consists of two adjustable straight edges A and A_1 , which are in contact with disks B and B_1 . The angle α or the taper between the straight edges depends, of course, upon the diameters of the disks and the center distance C, and as these three dimensions can be measured accurately, it is possible to set the gage to a given angle within very close limits. Moreover, if a record of the three dimensions is kept, the exact setting of the gage can be reproduced quickly at any time. The following rules may be used for adjusting a gage of this type, and cover all problems likely to arise in practice. Disks are also occasionally used for the setting of parts in angular positions when they are to be machined accurately to a given angle: the rules are applicable to these conditions also.

Rules for Figuring Tapers

 D_s = diameter of taper, small end

L =length of taper (inches)

TPF =taper per foot

TPI =taper per inch

T = taper in a certain length, in inches

Given	To Find	Rule
TPF	TPI	TPI=TPF/12
TPI	TPF	$TPF = TPI \times 12$
D_L, D_S, L	TPF	$TPF = 12 \frac{D_L - D_S}{L}$
$D_{_L}, L, TPF$	D_s	$D_S = D_L - \frac{TPF}{12} L$
D_s, L, TPF	D_L	$D_L = D_S + \frac{TPF}{12} L$
D_L, D_S, TPF	L	$L = (D_L - D_S) \frac{12}{TPF}$
L, TPF	T	$T = \frac{TPF}{12} \times L$

TAPERS 41

Tapers per Foot and Corresponding Angles

Taper								Taper							_
per		uded				ngle w		per		luded			Angle with		
Foot		ngle				enter I		Foot		ngle			_	nter Li	
1/ 64	0.074604°	0°	4'	29"	0°	2'	14"	17/8	8.934318°	8°	56′	4"	4°	28′	2"
1/ ₃₂	0.149208°	0	8	57	0	4	29	1 ¹⁵ / ₁₆ 2	9.230863°	9	13	51	4	36	56
1/16	0.298415	0	17	54	0	8	57		9.527283	9	31	38	4	45	49
3/32	0.447621	0	26	51	0	13	26	21/8	10.119738	10	7	11	5	3	36
1/8	0.596826	0	35	49	0	17	54	21/4	10.711650	10	42	42	5	21	21
5/32	0.746028	0	44	46	0	22	23	23/8	11.302990	11	18	11	5	39	5
3/ ₁₆	0.895228	0	53	43	0	26	51	21/2	11.893726	11	53	37	5	56	49
7/32	1.044425	1	2	40	0	31	20	25/8	12.483829	12	29	2	6	14	31
1/4	1.193619	1	11	37	0	35	49	23/4	13.073267	13	4	24	6	32	12
9/ ₃₂	1.342808	1	20	34	0	40	17	21/8	13.662012	13	39	43	6	49	52
5/16	1.491993	1	29	31	0	44	46	3	14.250033	14	15	0	7	7	30
11/32	1.641173	1	38	28	0	49	14	31/8	14.837300	14	50	14	7	25	7
3/8	1.790347	1	47	25	0	53	43	31/4	15.423785	15	25	26	7	42	43
13/32	1.939516	1	56	22	0	58	11	33//8	16.009458	16	0	34	8	0	17
7/16	2.088677	2	5	19	1	2	40	31/2	16.594290	16	35	39	8	17	50
15/32	2.237832	2	14	16	1	7	8	35/8	17.178253	17	10	42	8	35	21
1/2	2.386979	2	23	13	1	11	37	33/4	17.761318	17	45	41	8	52	50
17/32	2.536118	2	32	10	1	16	5	37/8	18.343458	18	20	36	9	10	18
%16	2.685248	2	41	7	1	20	33	4	18.924644	18	55	29	9	27	44
19/32	2.834369	2	50	4	1	25	2	41/8	19.504850	19	30	17	9	45	9
1 %	2.983481	2	59	1	1	29	30	41/4	20.084047	20	5	3	10	2	31
21/32	3.132582	3	7	57	1	33	59	$4\frac{3}{8}$	20.662210	20	39	44	10	19	52
11/	3.281673	3	16	54	1	38	27	41/2	21.239311	21	14	22	10	37	11
23/32	3.430753	3	25	51	1	42	55	45/8	21.815324	21	48	55	10	54	28
3/4	3.579821	3	34	47	1	47	24	43/4	22.390223	22	23	25	11	11	42
25/32	3.728877	3	43	44	1	51	52	41/8	22.963983	22	57	50	11	28	55
13/16	3.877921	3	52	41	1	56	20	5	23.536578	23	32	12	11	46	6
27/32	4.026951	4	1	37	2	0	49	51/8	24.107983	24	6	29	12	3	14
7/8	4.175968	4	10	33	2	5	17	51/4	24.678175	24	40	41	12	20	21
29/32	4.324970	4	19	30	2	9	45	53/8	25.247127	25	14	50	12	37	25
15/	4.473958	4	28	26	2	14	13	51/2	25.814817	25	48	53	12	54	27
31/32	4.622931	4	37	23	2	18	41	55/8	26.381221	26	22	52	13	11	26
1	4.771888	4	46	19	2	23	9	53/4	26.946316	26	56	47	13	28	23
11/16	5.069753	5	4	11	2	32	6	57/8	27.510079	27	30	36	13	45	18
11/8	5.367550	5	22	3	2	41	2	6	28.072487	28	4	21	14	2	10
13/16	5.665275	5	39	55	2	49	57	61/8	28.633518	28	38	1	14	19	0
11/4	5.962922	5	57	47	2	58	53	61/4	29.193151	29	11	35	14	35	48
15/16	6.260490	6	15	38	3	7	49	63/8	29,751364	29	45	5	14	52	32
13/8	6.557973	6	33	29	3	16	44	61/2	30,308136	30	18	29	15	9	15
17/16	6.855367	6	51	19	3	25	40	65/8	30.863447	30	51	48	15	25	54
11/2	7.152669	7	9	10	3	34	35	63/	31.417276	31	25	2	15	42	31
1%	7.449874	7	27	0	3	43	30	61/8	31.969603	31	58	11	15	59	5
15%	7.746979	7	44	49	3	52	25	7	32.520409	32	31	13	16	15	37
111/16	8.043980	8	2	38	4	1	19	71/8	33.069676	33	4	11	16	32	5
13/4	8.340873	8	20	27	4	10	14	71/4	33.617383	33	37	3	16	48	31
113/16	8,637654	8	38	16	4	19	8	73/8	34.163514	34	9	49	17	4	54
- ′16	0.05/054	Lo	20	10	_+	17	0	. '8	J4.103314	J4	9	77	1/	+	./4

Taper per foot represents inches of taper per foot of length.

42 TAPERS

To find angle α for given taper T in inches per foot.—

To find taper per foot T given angle α in degrees.—

$$T = 24 \tan(\alpha/2)$$
 inches per foot

To find angle a given dimensions D, d, and C.—Let K be the difference in the disk diameters divided by twice the center distance. K = (D - d)/(2C), then $\alpha = 2 \arcsin K$

To find taper T measured at right angles to a line through the disk centers given dimensions D, d, and distance C.—Find K using the formula in the previous example, then $T = 24K/\sqrt{1-K^2}$ inches per foot

To find center distance C for a given taper T in inches per foot.—

$$C = \frac{D-d}{2} \times \frac{\sqrt{1 + (T/24)^2}}{T/24}$$
 inches

To find center distance C for a given angle α and dimensions D and d.—

$$C = (D - d)/2\sin(\alpha/2)$$
 inches

To find taper T measured at right angles to one side.—When one side is taken as a base line and the taper is measured at right angles to that side, calculate K as explained above and use the following formula for determining the taper T:

To find center distance C when taper T is measured from one side.—

$$C = \frac{D-d}{\sqrt{2-2/\sqrt{1+(T/12)^2}}}$$
 inches

To find diameter D of a large disk in contact with a small disk of diameter d given angle α .—

Copyright 2020, Industrial Press, Inc.

ebooks.industrialpress.com

GAGE BLOCKS

Gage Block Sets — Inch Sizes Federal Specification GGG-G-15C

	Set Number 1 (81 Blocks)											
First Series: 0.0001 Inch Increments (9 Blocks)												
0.1001	0.1002	0.100	0.1003 0.1004 0.1005 0.1006 0.1007 0.1008 0						0.1009			
Second Series: 0.001 Inch Increments (49 Blocks)												
0.101	0.102	0.103	0.104	0.105	0.106	0.107	0.108	0.109	0.110			
0.111	0.112	0.113	0.114	0.115	0.116	0.117	0.118	0.119	0.120			
0.121	0.122	0.123	0.124	0.125	0.126	0.127	0.128	0.129	0.130			
0.131	0.132	0.133	0.134	0.135	0.136	0.137	0.138	0.139	0.140			
0.141	0.142	0.143	0.144	0.145	0.146	0.147	0.148	0.149				
			Third Series	s: 0.050 Inch	Increments	(19 Blocks))					
0.050	0.100	0.150	0.200	0.250	0.300	0.350	0.400	0.450	0.500			
0.550	0.600	0.650	0.700	0.750	0.800	0.850	0.900	0.950				
	Fourth Series: 1,000 Inch Increments (4 Blocks)											
	1.000		2.000			3.000		4.000)			

Set number 4 is not shown, and the Specification does not list a set 2 or 3.

Arranged here in incremental series for convenience of use.

Example, Making a Gage Block Stack: Determine the blocks required to obtain a dimension of 3.6742 inch.

- 1) Use the fewest numbers of blocks for a given dimension. Otherwise the chance of error can be increased by the wringing interval between blocks.
- 2) Block selection is based on successively eliminating the right-hand figure of the desired dimension.
 - 3) Stacks can be constructed with or without wear blocks.

3.6742

-0.100 Subtract 0.100 for the two 0.050 wear blocks

3.5742

-0.1002

Eliminate the 0.0002 with the 0.1002 block from the first series and subtract 3 4740

-0.124 Eliminate the 0.004 with the 0.124 block from the second series and subtract 3.3500

-0.350 Eliminate the 0.350 with the 0.350 block from the third series and eliminate $\underline{-3.0000}$ the 3.000 with the 3.0000 block from the fourth series and subtract

0.0000

The combined blocks are: 2 0.050 wear blocks

0.124 block

0.350 block

3.0000 block

Measuring Dovetail Slides.—Dovetail slides that must be machined accurately to a given width are commonly gaged by using pieces of cylindrical rod or wire and measuring as indicated by the dimensions x and y of the accompanying illustrations.

To obtain dimension x for measuring male dovetails, add 1 to the cotangent of one-half the dovetail angle α , multiply by diameter D of the rods used, and add the product to dimension a. To obtain dimension y for measuring a female dovetail, add 1 to the cotangent of one-half the dovetail angle α , multiply by diameter D of the rod used, and subtract the result from dimension b. Expressing these rules as formulas:

$$x = D(1 + \cot \frac{1}{2}\alpha) + a$$

$$y = b - D(1 + \cot \frac{1}{2}\alpha)$$

$$c = h \times \cot \alpha$$

The rod or wire used should be small enough so that the point of contact *e* is somewhat below the corner or edge of the dovetail.

Checking a V-Shaped Groove by Measurement Over Pins.—In checking a groove of the shape shown in Fig. 5, it is necessary to measure the dimension X over the pins of radius R. If values for the radius R, dimension Z, and the angles α and β are known, the problem is to determine the distance Y, to arrive at the required overall dimension for X. If a line AC is drawn from the bottom of the V to the center of the pin at the left in Fig. 5, and a line CB from the center of this pin to its point of tangency with the side of the V, a right-angled triangle is formed in which one side, CB, is known and one angle, CAB, can be determined. A line drawn from the center of a circle to the point of intersection of two tangents to the circle bisects the angle made by the tangent lines, and angle CAB therefore equals $\frac{1}{2}(\alpha + \beta)$. The length AC and the angle DAC can now be found, and with AC known in the right-angled triangle ADC, ADC, which is equal to Y, can be found.

Fig. 5.

The value for X can be obtained from the formula

$$X = Z + 2R\left(\csc\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2} + 1\right)$$

For example, if R = 0.500, Z = 1.824, $\alpha = 45$ degrees, and $\beta = 35$ degrees,

$$X = 1.824 + (2 \cdot 0.5) \left(\csc \frac{45^{\circ} + 35^{\circ}}{2} \cos \frac{45^{\circ} - 35^{\circ}}{2} + 1 \right)$$

$$X = 1.824 + \csc 40^{\circ} \cos 5^{\circ} + 1$$

$$X = 1.824 + 1.5557 \cdot 0.99619 + 1$$

$$X = 1.824 + 1.550 + 1 = 4.374$$

MEASURING SCREW THREADS

Diameters of Wires for Measuring American Standard and British Standard Whitworth Screw Threads

Threads	Pitch.	Wi	re Diameters Standard	for American Γhreads	Wir	e Diameters Standard	for Whitworth Threads
per Inch	Inch	Max.	Min.	Pitch Line Contact	Max.	Min.	Pitch Line Contact
4	0.2500	0.2250	0.1400	0.1443	0.1900	0.1350	0.1409
41/2	0.2222	0.2000	0.1244	0.1283	0.1689	0.1200	0.1253
5	0.2000	0.1800	0.1120	0.1155	0.1520	0.1080	0.1127
51/2	0.1818	0.1636	0.1018	0.1050	0.1382	0.0982	0.1025
6	0.1667	0.1500	0.0933	0.0962	0.1267	0.0900	0.0939
7	0.1428	0.1283	0.0800	0.0825	0.1086	0.0771	0.0805
8	0.1250	0.1125	0.0700	0.0722	0.0950	0.0675	0.0705
9	0.1111	0.1000	0.0622	0.0641	0.0844	0.0600	0.0626
10	0.1000	0.0900	0.0560	0.0577	0.0760	0.0540	0.0564
11	0.0909	0.0818	0.0509	0.0525	0.0691	0.0491	0.0512
12	0.0833	0.0750	0.0467	0.0481	0.0633	0.0450	0.0470
13	0.0769	0.0692	0.0431	0.0444	0.0585	0.0415	0.0434
14	0.0714	0.0643	0.0400	0.0412	0.0543	0.0386	0.0403
16	0.0625	0.0562	0.0350	0.0361	0.0475	0.0337	0.0352
18	0.0555	0.0500	0.0311	0.0321	0.0422	0.0300	0.0313
20	0.0500	0.0450	0.0280	0.0289	0.0380	0.0270	0.0282
22	0.0454	0.0409	0.0254	0.0262	0.0345	0.0245	0.0256
24	0.0417	0.0375	0.0233	0.0240	0.0317	0.0225	0.0235
28	0.0357	0.0321	0.0200	0.0206	0.0271	0.0193	0.0201
32	0.0312	0.0281	0.0175	0.0180	0.0237	0.0169	0.0176
36	0.0278	0.0250	0.0156	0.0160	0.0211	0.0150	0.0156
40	0.0250	0.0225	0.0140	0.0144	0.0190	0.0135	0.0141

Notation Used in Formulas for Checking Pitch Diameters of Screw Threads by Three-Wire Method

- A =one-half included thread angle in the axial plane
- A_n = one-half included thread angle in the normal plane or in plane perpendicular to sides of thread = one-half included angle of cutter when thread is milled (tan A_n = tan $A \times \cos B$)
 - (*Note*: Included angle of milling cutter or grinding wheel may n qual the nominal included angle of thread, or may be reduced to whatever normal angle is required to make the thread angle standard in the axial plane. In either case, A_{n} = one-half cutter angle.)
- B = lead angle at pitch diameter = helix angle of thread as measured from a plane perpendicular to the axis. Tan $B = L \div 3.1416E$
- D = basic major or outside diameter
- E = pitch diameter (basic, maximum, or minimum) for which M is required, or pitch diameter corresponding to measurement M
- H = helix angle at pitch diameter and measured from axis = $90^{\circ} B$ or $\tan H = \cot B$
- H_b = helix angle at R_b measured from axis
- $L = \text{lead of thread} = \text{pitch } P \times \text{number of threads } S$
- M = dimension over wires
- $P = pitch = 1 \div number of threads per inch$
- S = number of "starts" or threads on a multiple-threaded worm or screw
- T = 0.5 P = width of thread in axial plane at diameter E
- T =arc thickness on pitch cylinder in plane perpendicular to axis
- \hat{W} = wire or pin diameter

PITCH DIAMETER OF SCREW THREAD

Formulas for Checking Pitch Diameters of Screw Threads

The formulas below do not compensate for the effect of the lead angle upon measurement M, but they are sufficiently accurate for checking standard single-thread screws unless exceptional accuracy is required. See accompanying information on effect of lead angle; also matter relating to measuring wire sizes, accuracy required for such wires, and contact or measuring pressure. The approximate best wire size for pitch-line contact may be obtained by the formula

 $W = 0.5 \times \text{pitch} \times \text{sec} \frac{1}{2}$ included thread angle For 60-degree threads, $W = 0.57735 \times \text{pitch}$.

Form of Thread	Formulas for determining measurement M corresponding to correct pitch diameter and the pitch diameter E corresponding to a given measurement over wires.
	When measurement M is known.
American National	E = M + 0.86603P - 3W
Standard	When pitch diameter E is used in formula.
Unified	M = E - 0.86603P + 3W
	The American Standard formerly was known as US Standard.
	When measurement M is known.
British	E = M + 0.9605P - 3.1657W
Standard Whitworth	When pitch diameter E is used in formula.
Wintworth	M = E - 0.9605P + 3.1657W
	When measurement <i>M</i> is known.
British Association	E = M + 1.1363P - 3.4829W
Association	When pitch diameter E is used in formula.
	M = E - 1.1363P + 3.4829W
	When measurement M is known.
Lowenherz	E = M + P - 3.2359 W
Thread	When pitch diameter E is used in formula.
	M = E - P + 3.2359 W
	When measurement <i>M</i> is known.
Sharp	E = M + 0.86603P - 3W
V-Thread	When pitch diameter E is used in formula.
	M = E - 0.86603P + 3W
International Standard	Use the formula given above for the American National Standard Unified Thread.
Buttress Form of Thread	Various forms of buttress threads are used. See paragraph on <i>Three-Wire Method Applied to Buttress Threads</i> , on page 47.

 $^{^{*}}$ The wires must be lapped to a uniform diameter and it is very important to insert in the rule or formula the wire diameter as determined by precise means of measurement. Any error will be multiplied.

Three-Wire Method Applied to Buttress Threads.—The angles of buttress threads vary somewhat, especially on the front or load-resisting side. Formula (1), which follows, may be applied to any angles required. In this formula, M = measurement over wires when $pitch \ diameter \ E$ is correct; A = included angle of thread and thread groove; a = angle of front face or load-resisting side, measured from a line perpendicular to screw thread axis; P = pitch of thread; and W = wire diameter.

$$M = E - \left[\frac{P}{\tan a + \tan(A - a)} \right] + W \left[1 + \cos \frac{A}{2} - a \times \csc \frac{A}{2} \right]$$
 (1)

For given angles A and a, this general formula may be simplified as shown by Formulas (3) and (4). These simplified formulas contain constants with values depending upon angles A and a.

Wire Diameter: The wire diameter for obtaining pitch-line contact at the back of a buttress thread may be determined by the following general Formula (2):

$$W = P\left(\frac{\cos a}{1 + \cos A}\right) \tag{2}$$

45-Degree Buttress Thread: The buttress thread shown by the diagram at the left, has a front or load-resisting side that is perpendicular to the axis of the screw. Measurement M equivalent to a correct pitch diameter E may be determined by Formula (3):

$$M = E - P + (W \times 3.4142) \tag{3}$$

Wire diameter W for pitch-line contact at back of thread = $0.586 \times$ pitch.

50-Degree Buttress Thread with Front-face Inclination of 5 Degrees: This buttress thread form is illustrated by the diagram at the right. Measurement M equivalent to the correct pitch diameter E may be determined by Formula (4):

$$M = E - (P \times 0.91955) + (W \times 3.2235) \tag{4}$$

Wire diameter W for pitch-line contact at back of thread = $0.606 \times$ pitch. If the width of flat at crest and root = $\frac{1}{2} \times$ pitch, depth = $0.69 \times$ pitch.

American National Ŝtandard Buttress Threads ANSI/ASME B1.9-1973 (R2017): This buttress screw thread has an included thread angle of 52 degrees and a front face inclination of 7 degrees. Measurements M equivalent to a pitch diameter E may be determined by Formula (5):

$$M = E - 0.89064P + 3.15689W + c \tag{5}$$

The wire angle correction factor c is less than 0.0004 inch for recommended combinations of thread diameters and pitches and may be neglected. Use of wire diameter W = 0.54147P is recommended.

THREE-WIRE METHOD

Constants Used in Formulas for Measuring Pitch Diameters of Inch Screws by the Three-Wire System

No. of Threads per Inch	American Standard Unified and Sharp V-Thread 0.86603P	Whitworth Thread 0.9605P	No. of Threads per Inch	American Standard Unified and Sharp V-Thread 0.86603P	Whitworth Thread 0.9605P
21/4	0.38490	0.42689	18	0.04811	0.05336
23/2	0.36464	0.40442	20	0.04330	0.04803
21/2	0.34641	0.38420	22	0.03936	0.04366
25/8	0.32992	0.36590	24	0.03608	0.04002
23/4	0.31492	0.34927	26	0.03331	0.03694
27/8	0.30123	0.33409	28	0.03093	0.03430
3	0.28868	0.32017	30	0.02887	0.03202
31/4	0.26647	0.29554	32	0.02706	0.03002
31/2	0.24744	0.27443	34	0.02547	0.02825
4	0.21651	0.24013	36	0.02406	0.02668
41/2	0.19245	0.21344	38	0.02279	0.02528
5	0.17321	0.19210	40	0.02165	0.02401
51/2	0.15746	0.17464	42	0.02062	0.02287
6	0.14434	0.16008	44	0.01968	0.02183
7	0.12372	0.13721	46	0.01883	0.02088
8	0.10825	0.12006	48	0.01804	0.02001
9	0.09623	0.10672	50	0.01732	0.01921
10	0.08660	0.09605	52	0.01665	0.01847
11	0.07873	0.08732	56	0.01546	0.01715
12	0.07217	0.08004	60	0.01443	0.01601
13	0.06662	0.07388	64	0.01353	0.01501
14	0.06186	0.06861	68	0.01274	0.01412
15	0.05774	0.06403	72	0.01203	0.01334
16	0.05413	0.06003	80	0.01083	0.01201

Constants Used in Formulas for Measuring Pitch Diameters of Metric Screws by the Three-Wire System

Pitch in mm	0.86603P in Inches	W in Inches	Pitch in mm	0.86603P in Inches	W in Inches	Pitch in mm	0.86603P in Inches	W in Inches
0.2	0.00682	0.00455	0.75	0.02557	0.01705	3.5	0.11933	0.07956
0.25	0.00852	0.00568	0.8	0.02728	0.01818	4	0.13638	0.09092
0.3	0.01023	0.00682	1	0.03410	0.02273	4.5	0.15343	0.10229
0.35	0.01193	0.00796	1.25	0.04262	0.02841	5	0.17048	0.11365
0.4	0.01364	0.00909	1.5	0.05114	0.03410	5.5	0.18753	0.12502
0.45	0.01534	0.01023	1.75	0.05967	0.03978	6	0.20457	0.13638
0.5	0.01705	0.01137	2	0.06819	0.04546	8	0.30686	0.18184
0.6	0.02046	0.01364	2.5	0.08524	0.05683			
0.7	0.02387	0.01591	3	0.10229	0.06819			

This table may be used for American National Standard Metric Threads. The formulas for American Standard Unified Threads on page 47 are used. In the table above, the values of 0.86603P and W are in inches so that the values for E and M calculated from the formulas on page 47 are also in inches.

MORSE STANDARD TAPER SHANKS

STANDARD TAPERS

Morse Taper.—Dimensions relating to Morse standard taper shanks and sockets may be found in an accompanying table. The taper for different numbers of Morse tapers is slightly different, but it is approximately $\frac{1}{2}$ inch per foot in most cases. The table gives the actual tapers, accurate to five decimal places. Morse taper shanks are used on a variety of tools, and exclusively on the shanks of twist drills.

Table 1. Morse Standard Taper Shanks

MORSE STANDARD TAPER SHANKS

Table 2. Morse Stub Taper Shanks

9/16 All dimensions in inches.

3/8

4

5

Radius J is $\frac{3}{64}$, $\frac{1}{16}$, $\frac{5}{64}$, $\frac{3}{32}$, and $\frac{1}{8}$ inch respectively for Nos. 1, 2, 3, 4, and 5 tapers.

1%

115/16

17/...

113/16

 $1\frac{3}{32}$

119/3,

13/16

17/16

11/2

17/

17/32

25/32

 $1^{3}/_{_{8}}$

 $1^{3}/_{4}$

a These are basic dimensions.

b These dimensions are calculated for reference only.

MORSE STANDARD TAPER SLEEVES

A = No. Morse Taper Outside M →l E C-A В CD EF GН I K L M ⁷/₁₆ 2 0.700 1/4 0.475 0.213 1 39/16 5/8 $\frac{2^{3}}{16}$ 21/16 3/4 3 0.938 $\frac{2^{3}}{16}$ 0.475 0.213 1 315/ 1/4 5/16 5/16 3 47/16 0.938 3/, 25% 0.700 21/ 0.260 15/32 5/8 4 1 47/ 1.231 $\frac{2^{3}}{16}$ 0.475 $2^{1}/_{16}$ 3/4 0.213 5/8 7/8 4 2 47/ 1.231 15/32 25% 0.700 21/ 0.260 4 3 53/ 1.231 31/4 0.938 31/16 13/16 0.322 5 1 61/8 1.748 5/8 3/ $\frac{2^{3}}{16}$ 0.475 21/16 3/ 0.213 5 2 61/8 1.748 5/8 3/ 25/8 0.700 21/2 7/8 0.260 5 3 61/ 1.748 3/4 31/ 0.938 31/16 13/16 0.322 5 4 65% 1.748 3/ 5/8 3/ 41/ 1.231 37/ 11/4 0.478 6 85% 2.494 3/0 3/4 11/, 23/16 0.475 3/ 0.213 1 21/16 6 2 85/ 2.494 3/ 11/ 25/ 0.700 21/2 7/8 0.260 3 2.494 3/4 31/4 0.938 0.322 6 85% 11/8 31/16 $1^{3}/_{16}$ 4 2.494 3/ 1.231 0.478 6 85% 3/8 11/8 41/8 11/4 37/ 5 2.494 415/, 0.635 6 85/ 3/ 11/ 51/ 1.748 11/2 7 3 115% 3.270 11/ $1^{3}/_{\circ}$ 31/4 0.938 $1^{3}/_{16}$ 0.322 31/16 7 4 3.270 13/ 41/ 11/, 0.478 11% 11/0 1.231 37/ 7 0.635 115% 3.270 11/ $1^{3}/_{o}$ 51/4 1.748 415/16 11/2 7 3.270 11/4 $7^{3}/_{8}$ 2.494 $1^{3}/_{4}$ 0.760

Table 3. Dimensions of Morse Taper Sleeves

Jarno Taper. — The Jarno taper was originally proposed by Oscar J. Beale of the Brown & Sharpe Mfg. Co. This taper is based on such simple formulas that practically no calculations are required when the number of taper is known. The taper per foot of all Jarno taper sizes is 0.600 inch on the diameter. The diameter at the large end is as many eighths, the diameter at the small end is as many tenths, and the length as many half inches as are indicated by the number of the taper. (See Table 4 on page 52.) For example, a No. 7 Jarno taper is $\frac{7}{8}$ inch in diameter at the large end; $\frac{7}{10}$, or 0.700 inch at the small end; and $\frac{7}{2}$, or $\frac{37}{2}$ inches long; hence, diameter at large end = No. of taper + 8; diameter at small end = No. of taper \div 10; length of taper = No. of taper \div 2.

11/

 $1^{3}/_{o}$

The Jarno taper is used on various machine tools, especially profiling machines and die-sinking machines. It has also been used for the headstock and tailstock spindles of some lathes.

121/2

JARNO TAPER SHANKS

Table 4. Jarno Taper Shanks

Brown & Sharpe Taper.—This standard taper is used for taper shanks on tools such as end mills and reamers, the taper being approximately $\frac{1}{2}$ inch per foot for all sizes except for taper No. 10, where the taper is 0.5161 inch per foot. (See Table 5 on page 53.)

Brown & Sharpe taper sockets are used for many arbors, collets, and machine tool spindles, especially milling machines and grinding machines. In many cases there are a number of different lengths of sockets corresponding to the same number of taper; all these tapers, however, are of the same diameter at the small end.

BROWN & SHARPE TAPER SHANKS

Table 5. Brown & Sharpe Taper Shanks

	Drill P Reamer K S Plug Depth (Hole) Arbors Collets Taper 1 ¼" per Ft.												
		Dia. of	P	lug Depth	, <i>P</i>	Keyway		Length	Width	Length	Diame-	Thick-	
	Taper	Plug at Small		Mill.		from End of	Shank	of Key-	of Key-	of Arbor	ter of Arbor	ness of Arbor	
Num- ber of	per Foot	End	B & S ^b Stan-	Mach. Stan-		Spindle	Depth	way ^a	way	Tongue	Tongue	Tongue	
Taper	(inch)	D	dard	dard	Miscell.	K	S	L	W	T	d	t	
1°	.50200	.20000	15/			15/16	13/16	3/8	.135	3/ ₁₆	.170	1/8	
2°	.50200	.25000	13/16			111/64	11/2	1/2	.166	1/4	.220	5/32	
			11/2			115/32	17/8	5/8	.197	5/ 16	.282	3/16	
3°	.50200	.31250			13/4	$1^{23}/_{32}$	21/8	5/8	.197	5/16	.282	3/16	
					2	131/32	23/8	5/8	.197	5/ ₁₆	.282	3/16	
4	.50240	.35000		11/4		113/64	121/32	11/16	.228	11/32	.320	7/32	
Ľ.	150210	100000	111/16			141/64	23/32	11/16	.228	11/32	.320	7/32	
				13/4		111/16	$2^{3}/_{16}$	3/4	.260	3/8	.420	1/4	
5	.50160	.45000			2	115/16	21/16	3/4	.260	3/8	.420	1/4	
			21/8			21/16	29/16	3/4	.260	3/8	.420	1/4	
6	.50329	.50000	23/8			219/64	27/8	7∕8	.291	7/16	.460	9/32	
					21/2	213/32	31/32	15/16	.322	15/32	.560	5/ ₁₆	
7	.50147	.60000	27/8			225/32	313/32	15/	.322	15/32	.560	5/16	
				3		229/32	317/32	15/	.322	15/32	.560	5/ 16	
8	.50100	.75000	3%			329/64	41/8	1	.353	1/2	.710	11/32	
9	.50085	.90010		4		37/8	45/8	11/8	.385	9/16	.860	3/8	
			41/4			41/8	47/8	11/8	.385	9/ ₁₆	.860	3/8	
			5			427/32	5 ²³ / ₃₂	15/16	.447	21/32	1.010	7/ ₁₆	
10	.51612	1.04465		511/16		517/32	613/32	15/16	.447	21/32	1.010	7/ ₁₆	
					6½ ₃₂	61/16	615/16	15/16	.447	21/32	1.010	7/16	
11	.50100	1.24995	515/16		•••	525/32	621/32	15/16	.447	21/32	1.210	7/16	
-				63/4		619/32	715/32	15/16	.447	21/32	1.210	⁷ / ₁₆	
12	.49973	1.50010	71/8	71/8		615/16	715/16	11/2	.510	3/4	1.460	1/2	
12	50020	1.75005	73/		61/4	79/			510	37	1.710	1/	
13	.50020	1.75005 2.00000	73/4			7%	8%	11/2	.510	3/4	1.710	1/2	
15	.5000	2.25000	81/4	81/4		8 ¹ / ₃₂	9 ⁵ / ₃₂ 9 ²¹ / ₃₂	111/16	.572	27/32	2.210	9/ ₁₆	
16	.50000	2.50000	83/4			8 ¹⁷ / ₃₂		111/16	.635	27/ ₃₂	2.210	9/ ₁₆	
17	.50000	2.75000	91/4			-	101/4	17/8		15/16		5/8	
18	.50000	3,00000	93/4										
10	.50000	5.00000	101/4										

^a Special lengths of keyway are used instead of standard lengths in some places. Standard lengths need not be used when key way is for driving only and not for admitting key to force out tool.

b "B & S Standard" Plug Depths are not used in all cases.

^c Adopted by American Standards Association.

Key Construction

Table 6. Essential Dimensions of American National Standard Spindle Noses for Milling Machines ANSI/ASME B5.18-1972 (R2014) Face of column $\longrightarrow \frac{E}{\min}$ Slot and key location X | .002 total (M) -M→ Usable threads Standard steep machine taper 3.500 inch per ft K X See Note 3 **←**.015 Max variation from gage line D min gage -X-L min - Keyseat section Z-Z Key tight fit in slot when .0004 insert key is used |k====={ GSee note 4 Preferred Optional

Key Construction

SPINDLE NOSES

 ${\it Machinery's Handbook Pocket Companion}$

Table 6. (Continued) Essential Dimensions of American National Standard Spindle Noses for Milling Machines ANSI/ASME B5.18-1972 (R2014)

Size No.	Gage Dia. of Taper A	Dia. of Spindle B	Pilot Dia. C	Clearance Hole for Draw-in Bolt Min. D	Minimum Dimension Spindle End to Column E	Width of Driving Key F	Width of Keyseat F'	Maximum Height of Driving Key G	Minimum Depth of Keyseat G'	Distance from Center to Driving Keys H	Radius of Bolt Hole Circle J	Size of Threads for Bolt Holes UNC-2B	Full Depth of Arbor Hole in Spindle Min. L	Depth of Usable Thread for Bolt Hole M
30	1.250	2.7493 2.7488	0.692 0.685	0.66	0.50	0.6255 0.6252	0.624 0.625	0.31	0.31	0.660 0.654	1.0625 (Note 1)	0.375-16	2.88	0.62
40	1.750	3.4993 3.4988	1.005 0.997	0.66	0.62	0.6255 0.6252	0.624 0.625	0.31	0.31	0.910 0.904	1.3125 (Note 1)	0.500-13	3.88	0.81
45	2.250	3.9993 3.9988	1.286 1.278	0.78	0.62	0.7505 0.7502	0.749 0.750	0.38	0.38	1.160 1.154	1.500 (Note 1)	0.500-13	4.75	0.81
50	2.750	5.0618 5.0613	1.568 1.559	1.06	0.75	1.0006 1.0002	0.999 1.000	0.50	0.50	1.410 1.404	2.000 (Note 2)	0.625-11	5.50	1.00
60	4.250	8.7180 8.7175	2.381 2.371	1.38	1.50	1.0006 1.0002	0.999 1.000	0.50	0.50	2.420 2.414	3.500 (Note 2)	0.750-10	8.62	1.25

All dimensions are given in inches.

Tolerances:

Two-digit decimal dimensions ±0.010 unless otherwise specified.

A—Taper: Tolerance on rate of taper to be 0.001 inch per foot applied only in direction which decreases rate of taper.

F'—Centrality of keyway with axis of taper 0.002 total at maximum material condition. (0.002 Total indicator variation)

F—Centrality of solid key with axis of taper 0.002 total at maximum material condition. (0.002 Total indicator variation)

Note 1: Holes spaced as shown and located within 0.006 inch diameter of true position.

Note 2: Holes spaced as shown and located within 0.010 inch diameter of true position.

Note 3: Maximum turnout on test plug: 0.0004 at 1 inch projection from gage line. 0.0010 at 12 inch projection from gage line.

Note 4: Squareness of mounting face measured near mounting bolt hole circle.

Table 7. Essential Dimensions for American National Standard Spindle Nose with Large Flange ANSI/ASME B5.18-1972 (R2014)

All dimensions are given in inches.

Tolerances: Two-digit decimal dimensions ±0.010 unless otherwise specified.

A—Tolerance on rate of taper to be 0.001 inch per foot applied only in direction which decreases rate of taper.

F—Centrality of solid key with axis of taper 0.002 inch total at maximum material condition. (0.002 inch total indicator variation)

 F_1 —Centrality of keyseat with axis of taper 0.002 inch total at maximum material condition. (0.002 inch total indicator variation)

Note 1: Maximum runout on test plug:

^{0.0004} at 1 inch projection from gage line.

^{0.0010} at 12 inch projection from gage line.

Note 2: Squareness of mounting face measured near mounting bolt hole circle.

Note 3: Holes located as shown and within 0.010 inch diameter of true position.

TOOL SHANKS FOR MILLING MACHINES

Table 8. Essential Dimensions of American National Standard Tool Shanks for Milling Machines ANSI/ASME B5.18-1972 (R2014)

Size No.	Distance from Rear of Flange to End of Arbor	Clearance of Flange from Gage Diameter W	Tool Shank Centerline to Driving Slot	Width of Driving Slot Y	Distance from Gage Line to Bottom of C'bore Z	Depth of 60° Center K	Diameter of C'bore L
30	2.75	0.045 0.075	0.640 0.625	0.635 0.645	2.50	0.05 0.07	0.525 0.530
40	3.75	0.045 0.075	0.890 0.875	0.635 0.645	3.50	0.05 0.07	0.650 0.655
45	4.38	0.105 0.135	1.140 1.125	0.760 0.770	4.06	0.05 0.07	0.775 0.780
50	5.12	0.105 0.135	1.390 1.375	1.010 1.020	4.75	0.05 0.12	1.025 1.030
60	8.25	0.105 0.135	2.400 2.385	1.010 1.020	7.81	0.05 0.12	1.307 1.312

All dimensions are given in inches.

Tolerances: Two digit decimal dimensions ± 0.010 inch unless otherwise specified.

M—Permissible for Class 2B "No Go" gage to enter five threads before interference.

N—Taper tolerance on rate of taper to be 0.001 inch per foot applied only in direction which increases rate of taper.

Y—Centrality of drive slot with axis of taper shank 0.004 inch at maximum material condition. (0.004 inch total indicator variation)

Table 9. Essential Dimensions of V-Flange Tool Shanks ANSI/ASME B5.50-2015

Notes: Taper tolerance to be 0.001 in. in 12 in. applied in direction that increases rate of taper. Geometric dimensions symbols are to ANSI/ASME Y14.5-2018. Dimensions are in inches. Deburr all sharp edges. Unspecified fillets and radii to be $0.03 \pm 0.010R$, or $0.03 \pm 0.010 \times 45$ degrees. Data for size 60 are not part of Standard. For all sizes, the values for dimensions U (tol. ± 0.005) are 0.579: for V (tol. ± 0.010), 0.440; for W (tol. ± 0.002), 0.625; for X (tol. ± 0.005), 0.152; and for Y(tol. ± 0.002), 0.750.

0.020

0.040

0.040

0.040

0.040

1.38

1.38

1.38

1.38

1.500

2.176

2.863

3.613

4.238

5.863

0.590

0.720

0.850

1.125

1.375

0.652

0.880

1.233

1.427

2.309

1.250

1.750

2.250

2.750

4.250

30

40

45

50

60

1.250

1.750

2.250

2.750

4.250

0.645

0.645

0.770

1.020

1.020

1.812

2.500

3.250

3.875

5.500

TOOL SHANKS FOR MILLING MACHINES

Table 10. Essential Dimensions of V-Flange Tool Shank Retention Knobs ANSI/ASME B5.50-2015

	A	В	С	D	Е	F
Size/ Totals	UNC 2A	±0.005	±0.005	±0.040	±0.005	±0.005
30	0.500-13	0.520	0.385	1.10	0.460	0.320
40	0.625-11	0.740	0.490	1.50	0.640	0.440
45	0.750-10	0.940	0.605	1.80	0.820	0.580
50	1.000-8	1.140	0.820	2.30	1.000	0.700
60	1.250-7	1.460	1.045	3.20	1.500	1.080

	G	Н	J	K	L	М	R
Size / Totals	±0.010	±0.010	±0.010		+0.000 -0.010	±0.040	+0.010 -0.005
30	0.04	0.10	0.187	0.65 0.64	0.53	0.19	0.094
40	0.06	0.12	0.281	0.94 0.92	0.75	0.22	0.094
45	0.08	0.16	0.375	1.20 1.18	1.00	0.22	0.094
50	0.10	0.20	0.468	1.44 1.42	1.25	0.25	0.125
60	0.14	0.30	0.500	2.14 2.06	1.50	0.31	0.125

Notes: Dimensions are in inches. Material: low-carbon steel. Heat treatment: carburize and harden to 0.016 to 0.028 in. effective case depth. Hardness of noted surfaces to be Rockwell 56-60; core hardness Rockwell C35-45. Hole *J* shall not be carburized. Surfaces *C* and *R* to be free from tool marks. Deburr all sharp edges. Geometric dimension symbols are to ANSI/ASME Y14.5-2018. Data for size 60 are not part of Standard.

SCREW THREAD SYSTEMS

THREADS

Fig. 1. Basic Profile of UN and UNF Screw Threads

Thread Classes.—Thread classes are distinguished from each other by the amounts of tolerance and allowance. Classes identified by a numeral followed by the letters A and B are derived from certain Unified formulas (not shown here) in which the pitch diameter tolerances are based on increments of the basic major (nominal) diameter, the pitch, and the length of engagement. These formulas and the class identification or symbols apply to all of the Unified threads.

Classes 1A, 2A, and 3A apply to external threads only, and Classes 1B, 2B, and 3B apply to internal threads only. The disposition of the tolerances, allowances, and crest clearances for the various classes is illustrated on pages 61 and 62.

Classes 2A and 2B: Classes 2A and 2B are the most commonly used for general applications, including production of bolts, screws, nuts, and similar fasteners.

The maximum diameters of Class 2A (external) uncoated threads are less than basic by the amount of the allowance. The allowance minimizes galling and seizing in high-cycle wrench assembly, or it can be used to accommodate plated finishes or other coating. However, for threads with additive finish, the maximum diameters of Class 2A may be exceeded by the amount of the allowance. For example, the 2A maximum diameters apply to an unplated part or to a part before plating whereas the basic diameters (the 2A maximum diameter plus allowance) apply to a part after plating. The minimum diameters of Class 2B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance in assembly at maximum metal limits.

Class 2AG: Certain applications require an allowance for rapid assembly to permit application of the proper lubricant or for residual growth due to high-temperature expansion. In these applications, when the thread is coated and the 2A allowance is not permitted to be consumed by such coating, the thread class symbol is qualified by G following the class symbol.

Classes 3A and 3B: Classes 3A and 3B may be used if closer tolerances are desired than those provided by Classes 2A and 2B. The maximum diameters of Class 3A (external) threads and the minimum diameters of Class 3B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly of maximum metal components.

Classes 1A and 1B: Classes 1A and 1B threads replaced American National Class 1. These classes are intended for ordnance and other special uses. They are used on threaded components where quick and easy assembly is necessary and where a liberal allowance is required to permit ready assembly, even with slightly bruised or dirty threads.

Maximum diameters of Class 1A (external) threads are less than basic by the amount of the same allowance as applied to Class 2A. For the intended applications in American practice the allowance is not available for plating or coating. Where the thread is plated or coated, special provisions are necessary. The minimum diameters of Class 1B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly with maximum metal external thread components having maximum diameters which are basic.

Limits of Size Showing Tolerances, Allowances (Neutral Space), and Crest Clearances for Unified Classes 1A, 2A, 1B, and 2B

Sharp V-Thread.—The sides of the thread form an angle of 60 degrees with each other. The top and bottom of the thread are, theoretically, sharp, but in practice it is necessary to make the thread with a slight flat, owing to the difficulty of producing a perfectly sharp edge and because of the tendency of such an edge to wear away or become battered. There is no standard adopted for this flat, but it is usually made about one-twenty-fifth of the pitch. If p = pitch of thread, and d = depth of thread, then:

$$d = p \times \cos 30 \text{ deg.} = p \times 0.866 = \frac{0.866}{\text{no. of threads per inch}}$$

Some modified V-threads, for locomotive boiler taps particularly, have a depth of $0.8 \times$ pitch.

Limits of Size Showing Tolerances and Crest Clearances for Unified Classes 3A and 3B and American National Classes 2 and 3

UN External Screw Threads: A flat root contour is specified, but it is necessary to provide for some threading tool crest wear, hence a rounded root contour cleared beyond the 0.25P flat width of the Basic Profile is optional.

UNR External Screw Threads: To reduce the rate of threading tool crest wear and to improve fatigue strength of a flat root thread, the Design Profile of the UNR thread has a smooth, continuous, non-reversing contour with a radius of curvature not less than 0.108P at any point and blends tangentially into the flanks and any straight segment. At the maximum material condition, the point of tangency is specified to be at a distance not less than 0.625H (where H is the height of a sharp V-thread) below the basic major diameter.

UN and UNR External Screw Threads: The design profiles of both UN and UNR external screw threads have flat crests. However, in practice, product threads are produced with partially or completely rounded crests. A rounded crest tangent at 0.125P flat is shown as an option on page.

UN Internal Screw Thread: In practice it is necessary to provide for some threading tool crest wear; therefore the root of the design profile is rounded and cleared beyond the 0.125p flat width of the basic profile. There is no internal UNR screw thread.

SCREW THREAD SYSTEMS

Table 1. American National Standard Unified Internal and External Screw Thread Design Profiles (Maximum Material Condition)

Fine-Thread Series.—This series, UNF/UNRF, is suitable for the production of bolts, screws, and nuts and for other applications where the Coarse series is not applicable. External threads of this series have greater tensile stress area than comparable sizes of the Coarse series. The Fine series is suitable when the resistance to stripping of both external and mating internal threads equals or exceeds the tensile load carrying capacity of the externally threaded member. It is also used where the length of engagement is short, where a smaller lead angle is desired, where the wall thickness demands a fine pitch, or where finer adjustment is needed.

Table 2. Standard Series and Selected Combinations — Unified Screw Threads

		14	Die 2. St	muai u S	eries and	Selecte	u Combi	nations — t	Jiiiieu	Screw 1	in eaus			
M : 10:				Ex	ternal ^b						Ir	iternal ^b		
Nominal Size, Threads per Inch, and Series		Allow-	M	Iajor Diamete	er	Pitch D	iameter	UNR Minor Dia., Max		Minor I	Diameter	Pitch D	iameter	Major Diameter
Designation ^a	Class	ance	Max ^d	Min	Mine	Max ^d	Min	(Ref.)	Class	Min	Max	Min	Max	Min
0-80 UNF	2A	0.0005	0.0595	0.0563	_	0.0514	0.0496	0.0446	2B	0.0465	0.0514	0.0519	0.0542	0.0600
	3A	0.0000	0.0600	0.0568	_	0.0519	0.0506	0.0451	3B	0.0465	0.0514	0.0519	0.0536	0.0600
1-64 UNC	2A	0.0006	0.0724	0.0686	_	0.0623	0.0603	0.0538	2B	0.0561	0.0622	0.0629	0.0655	0.0730
	3A	0.0000	0.0730	0.0692	_	0.0629	0.0614	0.0544	3B	0.0561	0.0622	0.0629	0.0648	0.0730
1-72 UNF	2A	0.0006	0.0724	0.0689	_	0.0634	0.0615	0.0559	2B	0.0580	0.0634	0.0640	0.0665	0.0730
	3A	0.0000	0.0730	0.0695	_	0.0640	0.0626	0.0565	3B	0.0580	0.0634	0.0640	0.0659	0.0730
2-56 UNC	2A	0.0006	0.0854	0.0813	_	0.0738	0.0717	0.0641	2B	0.0667	0.0737	0.0744	0.0772	0.0860
	3A	0.0000	0.0860	0.0819	_	0.0744	0.0728	0.0647	3B	0.0667	0.0737	0.0744	0.0765	0.0860
2-64 UNF	2A	0.0006	0.0854	0.0816	_	0.0753	0.0733	0.0668	2B	0.0691	0.0752	0.0759	0.0786	0.0860
	3A	0.0000	0.0860	0.0822	_	0.0759	0.0744	0.0674	3B	0.0691	0.0752	0.0759	0.0779	0.0860
3-48 UNC	2A	0.0007	0.0983	0.0938	_	0.0848	0.0825	0.0735	2B	0.0764	0.0845	0.0855	0.0885	0.0990
	3A	0.0000	0.0990	0.0945	_	0.0855	0.0838	0.0742	3B	0.0764	0.0845	0.0855	0.0877	0.0990
3-56 UNF	2A	0.0007	0.0983	0.0942	_	0.0867	0.0845	0.0770	2B	0.0797	0.0865	0.0874	0.0902	0.0990
	3A	0.0000	0.0990	0.0949	_	0.0874	0.0858	0.0777	3B	0.0797	0.0865	0.0874	0.0895	0.0990
4-40 UNC	2A	8000.0	0.1112	0.1061	_	0.0950	0.0925	0.0814	2B	0.0849	0.0939	0.0958	0.0991	0.1120
	3A	0.0000	0.1120	0.1069	_	0.0958	0.0939	0.0822	3B	0.0849	0.0939	0.0958	0.0982	0.1120
4-48 UNF	2A	0.0007	0.1113	0.1068	_	0.0978	0.0954	0.0865	2B	0.0894	0.0968	0.0985	0.1016	0.1120
	3A	0.0000	0.1120	0.1075	_	0.0985	0.0967	0.0872	3B	0.0894	0.0968	0.0985	0.1008	0.1120
5-40 UNC	2A	0.0008	0.1242	0.1191	_	0.1080	0.1054	0.0944	2B	0.0979	0.1062	0.1088	0.1121	0.1250
	3A	0.0000	0.1250	0.1199	_	0.1088	0.1069	0.0952	3B	0.0979	0.1062	0.1088	0.1113	0.1250
5-44 UNF	2A	0.0007	0.1243	0.1195	_	0.1095	0.1070	0.0972	2B	0.1004	0.1079	0.1102	0.1134	0.1250
	3A	0.0000	0.1250	0.1202	_	0.1102	0.1083	0.0979	3B	0.1004	0.1079	0.1102	0.1126	0.1250
6-32 UNC	2A	0.0008	0.1372	0.1312	_	0.1169	0.1141	0.1000	2B	0.104	0.114	0.1177	0.1214	0.1380
	3A	0.0000	0.1380	0.1320	_	0.1177	0.1156	0.1008	3B	0.1040	0.1139	0.1177	0.1204	0.1380
6-40 UNF	2A	0.0008	0.1372	0.1321	_	0.1210	0.1184	0.1074	2B	0.111	0.119	0.1218	0.1252	0.1380
	3A	0.0000	0.1380	0.1329	_	0.1218	0.1198	0.1082	3B	0.1110	0.1186	0.1218	0.1243	0.1380
8-32 UNC	2A	0.0009	0.1631	0.1571	_	0.1428	0.1399	0.1259	2B	0.130	0.139	0.1437	0.1475	0.1640
	3A	0.0000	0.1640	0.1580	_	0.1437	0.1415	0.1268	3B	0.1300	0.1388	0.1437	0.1465	0.1640
8-36 UNF	2A	0.0008	0.1632	0.1577	_	0.1452	0.1424	0.1301	2B	0.134	0.142	0.1460	0.1496	0.1640
	3A	0.0000	0.1640	0.1585	_	0.1460	0.1439	0.1309	3B	0.1340	0.1416	0.1460	0.1487	0.1640

 ${\bf Table~2.} (Continued) {\bf Standard~Series~and~Selected~Combinations-Unified~Screw~Threads}$

M : 10:				Ex	ternal ^b						Ir	nternal ^b		
Nominal Size, Threads per Inch, and Series		Allow-	М	ajor Diamet	er	Pitch D	iameter	UNR Minor Dia., Max		Minor E	Diameter	Pitch D	iameter	Major Diamete
Designation ^a	Class	ance	Max ^d	Min	Mine	Max ^d	Min	(Ref.)	Class	Min	Max	Min	Max	Min
10-24 UNC	2A	0.0010	0.1890	0.1818	_	0.1619	0.1586	0.1394	2B	0.145	0.155	0.1629	0.1672	0.1900
	3A	0.0000	0.1900	0.1828	_	0.1629	0.1604	0.1404	3B	0.1450	0.1555	0.1629	0.1661	0.1900
10-28 UNS	2A	0.0010	0.1890	0.1825	_	0.1658	0.1625	0.1465	2B	0.151	0.160	0.1668	0.1711	0.1900
10-32 UNF	2A	0.0009	0.1891	0.1831	_	0.1688	0.1658	0.1519	2B	0.156	0.164	0.1697	0.1736	0.1900
	3A	0.0000	0.1900	0.1840	_	0.1697	0.1674	0.1528	3B	0.1560	0.1641	0.1697	0.1726	0.1900
10-36 UNS	2A	0.0009	0.1891	0.1836	_	0.1711	0.1681	0.1560	2B	0.160	0.166	0.1720	0.1759	0.1900
10-40 UNS	2A	0.0009	0.1891	0.1840	_	0.1729	0.1700	0.1593	2B	0.163	0.169	0.1738	0.1775	0.1900
10-48 UNS	2A	8000.0	0.1892	0.1847	_	0.1757	0.1731	0.1644	2B	0.167	0.172	0.1765	0.1799	0.1900
10-56 UNS	2A	0.0007	0.1893	0.1852	_	0.1777	0.1752	0.1680	2B	0.171	0.175	0.1784	0.1816	0.1900
12-24 UNC	2A	0.0010	0.2150	0.2078	_	0.1879	0.1845	0.1654	2B	0.171	0.181	0.1889	0.1933	0.2160
	3A	0.0000	0.2160	0.2088	_	0.1889	0.1863	0.1664	3B	0.1710	0.1807	0.1889	0.1922	0.2160
12-28 UNF	2A	0.0010	0.2150	0.2085	_	0.1918	0.1886	0.1725	2B	0.177	0.186	0.1928	0.1970	0.2160
	3A	0.0000	0.2160	0.2095	_	0.1928	0.1904	0.1735	3B	0.1770	0.1857	0.1928	0.1959	0.2160
12-32 UNEF	2A	0.0010	0.2150	0.2090	_	0.1947	0.1915	0.1778	2B	0.182	0.190	0.1957	0.1998	0.2160
	3A	0.0000	0.2160	0.2100	_	0.1957	0.1933	0.1788	3B	0.1820	0.1895	0.1957	0.1988	0.2160
12-36 UNS	2A	0.0009	0.2151	0.2096	_	0.1971	0.1941	0.1820	2B	0.186	0.193	0.1980	0.2019	0.2160
12-40 UNS	2A	0.0009	0.2151	0.2100	_	0.1989	0.1960	0.1853	2B	0.189	0.195	0.1998	0.2036	0.2160
12-48 UNS	2A	0.0008	0.2152	0.2107	_	0.2017	0.1990	0.1904	2B	0.193	0.198	0.2025	0.2060	0.2160
12-56 UNS	2A	0.0008	0.2152	0.2111	_	0.2036	0.2011	0.1939	2B	0.197	0.201	0.2044	0.2077	0.2160
1/4-20 UNC	1A	0.0011	0.2489	0.2367	_	0.2164	0.2108	0.1894	1B	0.196	0.207	0.2175	0.2248	0.2500
•	2A	0.0011	0.2489	0.2408	0.2367	0.2164	0.2127	0.1894	2B	0.196	0.207	0.2175	0.2224	0.2500
	3A	0.0000	0.2500	0.2419	_	0.2175	0.2147	0.1905	3B	0.1960	0.2067	0.2175	0.2211	0.2500
1/ ₄ -24 UNS	2A	0.0011	0.2489	0.2417	_	0.2218	0.2181	0.1993	2B	0.205	0.215	0.2229	0.2277	0.2500
1/ ₄ -27 UNS	2A	0.0010	0.2490	0.2423	_	0.2249	0.2214	0.2049	2B	0.210	0.219	0.2259	0.2304	0.2500
1/4-28 UNF	1A	0.0010	0.2490	0.2392	_	0.2258	0.2208	0.2065	1B	0.211	0.220	0.2268	0.2333	0.2500
	2A	0.0010	0.2490	0.2425	_	0.2258	0.2225	0.2065	2B	0.211	0.220	0.2268	0.2311	0.2500
	3A	0.0000	0.2500	0.2435	_	0.2268	0.2243	0.2075	3B	0.2110	0.2190	0.2268	0.2300	0.2500
1/4-32 UNEF	2A	0.0010	0.2490	0.2430	_	0.2287	0.2255	0.2118	2B	0.216	0.224	0.2297	0.2339	0.2500
4	3A	0.0000	0.2500	0.2440	_	0.2297	0.2273	0.2128	3B	0.2160	0.2229	0.2297	0.2328	0.2500

Table 2. (Continued) Standard Series and Selected Combinations — Unified Screw Threads

N : 10:				Ex	ternal ^b						Ir	nternal ^b		
Nominal Size, Threads per Inch, and Series		Allow-	М	ajor Diamet	er	Pitch D	iameter	UNR Minor Dia., Max		Minor I	Diameter	Pitch D	iameter	Major Diamete
Designation ^a	Class	ance	Max ^d	Min	Min ^e	Max ^d	Min	(Ref.)	Class	Min	Max	Min	Max	Min
1/ ₄ -36 UNS	2A	0.0009	0.2491	0.2436	_	0.2311	0.2280	0.2160	2B	0.220	0.227	0.2320	0.2360	0.2500
1/ ₄ -40 UNS	2A	0.0009	0.2491	0.2440	-	0.2329	0.2300	0.2193	2B	0.223	0.229	0.2338	0.2376	0.2500
1/ ₄ -48 UNS	2A	0.0008	0.2492	0.2447	_	0.2357	0.2330	0.2244	2B	0.227	0.232	0.2365	0.2401	0.2500
1/4-56 UNS	2A	0.0008	0.2492	0.2451	_	0.2376	0.2350	0.2279	2B	0.231	0.235	0.2384	0.2417	0.2500
5/16-18 UNC	1A	0.0012	0.3113	0.2982	_	0.2752	0.2691	0.2451	1B	0.252	0.265	0.2764	0.2843	0.3125
	2A	0.0012	0.3113	0.3026	0.2982	0.2752	0.2712	0.2451	2B	0.252	0.265	0.2764	0.2817	0.312
	3A	0.0000	0.3125	0.3038	_	0.2764	0.2734	0.2463	3B	0.2520	0.2630	0.2764	0.2803	0.312
5/ ₁₆ -20 UN	2A	0.0012	0.3113	0.3032	_	0.2788	0.2747	0.2518	2B	0.258	0.270	0.2800	0.2853	0.312
	3A	0.0000	0.3125	0.3044	-	0.2800	0.2770	0.2530	3B	0.2580	0.2680	0.2800	0.2840	0.312
5∕ ₁₆ -24 UNF	1A	0.0011	0.3114	0.3006	_	0.2843	0.2788	0.2618	1B	0.267	0.277	0.2854	0.2925	0.312
	2A	0.0011	0.3114	0.3042	_	0.2843	0.2806	0.2618	2B	0.267	0.277	0.2854	0.2902	0.312
£/ 25 TD 10	3A 2A	0.0000	0.3125 0.3114	0.3053	_	0.2854 0.2873	0.2827 0.2837	0.2629 0.2673	3B 2B	0.2670 0.272	0.2754 0.281	0.2854 0.2884	0.2890 0.2930	0.312 0.312
5/ ₁₆ -27 UNS					_									
⁵⁄ ₁₆ -28 UN	2A	0.0010	0.3115	0.3050	_	0.2883	0.2848	0.2690	2B	0.274	0.282	0.2893	0.2938	0.312
£/ 22 IN IEE	3A 2A	0.0000	0.3125 0.3115	0.3060	_	0.2893 0.2912	0.2867 0.2879	0.2700 0.2743	3B 2B	0.2740 0.279	0.2807 0.286	0.2893 0.2922	0.2927 0.2965	0.312:
5∕ ₁₆ -32 UNEF	3A	0.0000	0.3113	0.3065	_	0.2912	0.2879	0.2743	3B	0.279		0.2922	0.2963	0.312
5/16-36 UNS	2A	0.0009	0.3123	0.3063	_	0.2922	0.2897	0.2785	2B	0.2790	0.2846 0.289	0.2922	0.2934	0.312
10	2A	0.0009	0.3116	0.3065	_	0.2954	0.2924	0.2818	2B	0.285	0.291	0.2963	0.3002	0.312
5/16-40 UNS	2A	0.0009	0.3117	0.3072	_	0.2982	0.2954	0.2869	2B	0.290	0.295	0.2990	0.3026	0.312
5/16-48 UNS	1A	0.0008	0.3117	0.3595	_	0.3331	0.3266	0.2993	1B	0.307	0.293	0.3344	0.3429	0.312
⅓-16 UNC	2A	0.0013	0.3737	0.3643	0.3595	0.3331	0.3287	0.2993	2B	0.307	0.321	0.3344	0.3429	0.375
	2A 3A	0.0013	0.3737	0.3643	0.3595	0.3331	0.3287	0.2993	2B 3B	0.307	0.321	0.3344	0.3401	0.375
3/,-18 UNS	2A	0.0000	0.3737	0.3650	_	0.3376	0.3333	0.3075	2B	0.3070	0.3182	0.3344	0.3445	0.375
3/ ₈ -10 UN	2A	0.0012	0.3738	0.3657	_	0.3413	0.3372	0.3143	2B	0.321	0.332	0.3425	0.3479	0.3750
78-20 OIN	3A	0.0002	0.3750	0.3669	_	0.3425	0.3394	0.3155	3B	0.3210	0.3297	0.3425	0.3465	0.375

Machinery's Handbook Pocket Companion SCREW THREAD SYSTEMS

Table 2. (Continued) Standard Series and Selected Combinations — Unified Screw Threads

				Ex	ternal ^b						Ir	iternal ^b		
Nominal Size, Threads per Inch, and Series		Allow-	М	ajor Diamet	er	Pitch D	iameter	UNR Minor Dia., Max		Minor I	Diameter	Pitch D	iameter	Major Diameter
Designationa	Class	ance	Max ^d	Min	Mine	Max ^d	Min	(Ref.)	Class	Min	Max	Min	Max	Min
3/ ₈ -24 UNF	1A	0.0011	0.3739	0.3631	_	0.3468	0.3411	0.3243	1B	0.330	0.340	0.3479	0.3553	0.3750
	2A	0.0011	0.3739	0.3667	_	0.3468	0.3430	0.3243	2B	0.330	0.340	0.3479	0.3528	0.3750
	3A	0.0000	0.3750	0.3678	_	0.3479	0.3450	0.3254	3B	0.3300	0.3372	0.3479	0.3516	0.3750
3/ _e -27 UNS	2A	0.0011	0.3739	0.3672	_	0.3498	0.3462	0.3298	2B	0.335	0.344	0.3509	0.3556	0.3750
³/ ₈ -28 UN	2A	0.0011	0.3739	0.3674	_	0.3507	0.3471	0.3314	2B	0.336	0.345	0.3518	0.3564	0.3750
ū	3A	0.0000	0.3750	0.3685	_	0.3518	0.3491	0.3325	3B	0.3360	0.3426	0.3518	0.3553	0.3750
3/-32 UNEF	2A	0.0010	0.3740	0.3680	_	0.3537	0.3503	0.3368	2B	0.341	0.349	0.3547	0.3591	0.3750
•	3A	0.0000	0.3750	0.3690	_	0.3547	0.3522	0.3378	3B	0.3410	0.3469	0.3547	0.3580	0.3750
3/c-36 UNS	2A	0.0010	0.3740	0.3685	_	0.3560	0.3528	0.3409	2B	0.345	0.352	0.3570	0.3612	0.3750
3/ _s -40 UNS	2A	0.0009	0.3741	0.3690	_	0.3579	0.3548	0.3443	2B	0.348	0.354	0.3588	0.3628	0.3750
0.390-27 UNS	2A	0.0011	0.3889	0.3822	_	0.3648	0.3612	0.3448	2B	0.350	0.359	0.3659	0.3706	0.3900
7/16-14 UNC	1A	0.0014	0.4361	0.4206	_	0.3897	0.3826	0.3510	1B	0.360	0.376	0.3911	0.4003	0.4375
	2A	0.0014	0.4361	0.4258	0.4206	0.3897	0.3850	0.3510	2B	0.360	0.376	0.3911	0.3972	0.4375
	3A	0.0000	0.4375	0.4272	_	0.3911	0.3876	0.3524	3B	0.3600	0.3717	0.3911	0.3957	0.4375
7/16-16 UN	2A	0.0014	0.4361	0.4267	_	0.3955	0.3909	0.3617	2B	0.370	0.384	0.3969	0.4029	0.4375
	3A	0.0000	0.4375	0.4281	_	0.3969	0.3934	0.3631	3B	0.3700	0.3800	0.3969	0.4014	0.4375
$\frac{7}{16}$ -18 UNS	2A	0.0013	0.4362	0.4275	-	0.4001	0.3957	0.3700	2B	0.377	0.390	0.4014	0.4071	0.4375
7/16-20 UNF	1A	0.0013	0.4362	0.4240	_	0.4037	0.3974	0.3767	1B	0.383	0.395	0.4050	0.4131	0.4375
	2A	0.0013	0.4362	0.4281	_	0.4037	0.3995	0.3767	2B	0.383	0.395	0.4050	0.4104	0.4375
	3A	0.0000	0.4375	0.4294	_	0.4050	0.4019	0.3780	3B	0.3830	0.3916	0.4050	0.4091	0.4375
$\frac{7}{16}$ -24 UNS	2A	0.0012	0.4363	0.4291	-	0.4092	0.4053	0.3867	2B	0.392	0.402	0.4104	0.4154	0.4375
½-27 UNS	2A	0.0011	0.4364	0.4297	-	0.4123	0.4086	0.3923	2B	0.397	0.406	0.4134	0.4182	0.4375
7/16-28 UNEF	2A	0.0011	0.4364	0.4299	_	0.4132	0.4096	0.3939	2B	0.399	0.407	0.4143	0.4190	0.4375
	3A	0.0000	0.4375	0.4310	_	0.4143	0.4116	0.3950	3B	0.3990	0.4051	0.4143	0.4178	0.4375
7/16-32 UN	2A	0.0010	0.4365	0.4305	-	0.4162	0.4128	0.3993	2B	0.404	0.411	0.4172	0.4216	0.4375
	3A	0.0000	0.4375	0.4315	_	0.4172	0.4146	0.4003	3B	0.4040	0.4094	0.4172	0.4205	0.4375

Table 2. (Continued) Standard Series and Selected Combinations — Unified Screw Threads

				Ex	ternal ^b						Ir	iternal ^b		
Nominal Size, Threads per Inch, and Series		Allow-	M	Iajor Diamet	er	Pitch D	iameter	UNR Minor Dia., Max		Minor I	Diameter	Pitch D	iameter	Major Diamete
Designation ^a	Class	ance	Max ^d	Min	Mine	Max ^d	Min	(Ref.)	Class	Min	Max	Min	Max	Min
½-12 UNS	2A	0.0016	0.4984	0.4870	_	0.4443	0.4389	0.3992	2B	0.410	0.428	0.4459	0.4529	0.5000
	3A	0.0000	0.5000	0.4886	_	0.4459	0.4419	0.4008	3B	0.4100	0.4185	0.4459	0.4511	0.5000
1/2-13 UNC	1A	0.0015	0.4985	0.4822	_	0.4485	0.4411	0.4069	1B	0.417	0.434	0.4500	0.4597	0.5000
	2A	0.0015	0.4985	0.4876	0.4822	0.4485	0.4435	0.4069	2B	0.417	0.434	0.4500	0.4565	0.5000
	3A	0.0000	0.5000	0.4891	_	0.4500	0.4463	0.4084	3B	0.4170	0.4284	0.4500	0.4548	0.5000
½-14 UNS	2A	0.0015	0.4985	0.4882	_	0.4521	0.4471	0.4134	2B	0.423	0.438	0.4536	0.4601	0.5000
½-16 UN	2A	0.0014	0.4986	0.4892	_	0.4580	0.4533	0.4242	2B	0.432	0.446	0.4594	0.4655	0.5000
-	3A	0.0000	0.5000	0.4906	_	0.4594	0.4559	0.4256	3B	0.4320	0.4420	0.4594	0.4640	0.5000
1/2-18 UNS	2A	0.0013	0.4987	0.4900	_	0.4626	0.4582	0.4325	2B	0.440	0.453	0.4639	0.4697	0.500
½-20 UNF	1A	0.0013	0.4987	0.4865	_	0.4662	0.4598	0.4392	1B	0.446	0.457	0.4675	0.4759	0.500
2	2A	0.0013	0.4987	0.4906	_	0.4662	0.4619	0.4392	2B	0.446	0.457	0.4675	0.4731	0.500
	3A	0.0000	0.5000	0.4919	_	0.4675	0.4643	0.4405	3B	0.4460	0.4537	0.4675	0.4717	0.5000
1/2-24 UNS	2A	0.0012	0.4988	0.4916	_	0.4717	0.4678	0.4492	2B	0.455	0.465	0.4729	0.4780	0.500
1/2-27 UNS	2A	0.0011	0.4989	0.4922	_	0.4748	0.4711	0.4548	2B	0.460	0.469	0.4759	0.4807	0.500
1/2-28 UNEF	2A	0.0011	0.4989	0.4924	_	0.4757	0.4720	0.4564	2B	0.461	0.470	0.4768	0.4816	0.500
.2 == 01.1	3A	0.0000	0.5000	0.4935	_	0.4768	0.4740	0.4575	3B	0.4610	0.4676	0.4768	0.4804	0.500
1/2-32 UN	2A	0.0010	0.4990	0.4930	_	0.4787	0.4752	0.4618	2B	0.466	0.474	0.4797	0.4842	0.500
72	3A	0.0000	0.5000	0.4940	_	0.4797	0.4771	0.4628	3B	0.4660	0.4719	0.4797	0.4831	0,500
%-12 UNC	1A	0.0016	0.5609	0.5437	_	0.5068	0.4990	0.4617	1B	0.472	0.490	0.5084	0.5186	0.562
16	2A	0.0016	0.5609	0.5495	0.5437	0.5068	0.5016	0.4617	2B	0.472	0.490	0.5084	0.5152	0.562
	3A	0.0000	0.5625	0.5511	_	0.5084	0.5045	0.4633	3B	0.4720	0,4843	0,5084	0.5135	0.562
%-14 UNS	2A	0.0015	0.5610	0.5507	_	0.5146	0.5096	0.4759	2B	0.485	0.501	0.5161	0.5226	0.562
%-16 UN	2A	0.0014	0.5611	0.5517	_	0.5205	0.5158	0.4867	2B	0.495	0.509	0.5219	0.5280	0.562
16 511	3A	0.0000	0.5625	0.5531	_	0.5219	0.5184	0.4881	3B	0.4950	0.5041	0.5219	0.5265	0.562
%-18 UNF	1A	0.0014	0.5611	0.5480	_	0.5250	0.5182	0.4949	1B	0.502	0.515	0.5264	0.5353	0.562
16 10 014	2A	0.0014	0.5611	0.5524	_	0.5250	0.5205	0.4949	2B	0.502	0.515	0.5264	0.5323	0.562
	3A	0.0000	0.5625	0.5538	_	0.5264	0.5230	0.4963	3B	0.5020	0.5106	0.5264	0.5323	0.562

Nominal Size,

Threads per Inch,

and Series

Designation^a

%-20 UN

%,-24 UNEF

%-27 UNS

%-28 UN

%-32 UN

%-11 UNC

5/-12 UN

5/-14 UNS

5/-16 UN

5/-18 UNF

%-20 UN

%-24 UNEF

5/-27 UNS

%-28 UN

Allow-

ance

0.0013

0.0000

0.0012

0.0000

0.0011

0.0011

0.0000

0.0011

0.0000

0.0017

0.0017

0.0000

0.0016

0.0000

0.0015

0.0014

0.0000

0.0014

0.0014

0.0000

0.0013

0.0000

0.0012

0.0000

0.0011

0.0011

0.0000

0.6234

0.6250

0.6235

0.6236

0.6250

0.6236

0.6236

0.6250

0.6237

0.6250

0.6238

0.6250

0.6239

0.6239

0.6250

0.6120

0.6136

0.6132

0.6142

0.6156

0.6105

0.6149

0.6163

0.6156

0.6169

0.6166

0.6178

0.6172

0.6174

0.6185

_

_

_

_

_

_

_

_

_

_

0.5693

0.5709

0.5771

0.5830

0.5844

0.5875

0.5875

0.5889

0.5912

0.5925

0.5967

0.5979

0.5998

0.6007

0.6018

0.5639

0.5668

0.5720

0.5782

0.5808

0.5805

0.5828

0.5854

0.5869

0.5893

0.5927

0.5949

0.5960

0.5969

0.5990

0.5242

0.5258

0.5384

0.5492

0.5506

0.5574

0.5574

0.5588

0.5642

0.5655

0.5742

0.5754

0.5798

0.5814

0.5825

Class

2A

3A

2A

3A

2A

2A

3A

2A

3A

1A

2A

3A

2A

3A

2A

2A

3A

1A

2A

3A

2A

3A

2A

3A

2A

2A

3A

UNR Minor Major Diameter Pitch Diameter Minor Diameter Pitch Diameter Diameter Dia., Max Max^d Min Mine Max^d Min Min (Ref.) Class Min Max Max Min 0.5612 0.5531 0.5287 0.5244 0.5017 2B 0.508 0.520 0.5300 0.5356 0.5625 0.5625 0.5544 _ 0.5300 0.5268 0.5030 3B 0.5080 0.5161 0.5300 0.5342 0.5625 0.5613 0.5541 0.5302 0.5117 2B0.517 0.527 0.5354 0.5405 0.5625 _ 0.5342 0.5625 0.5553 0.5354 0.5324 0.5129 3B 0.5170 0.5244 0.5354 0.5393 0.5625 Machinery's Handbook Pocket Companion 0.5614 0.5547 0.5373 0.5335 0.5173 2B0.522 0.531 0.5384 0.5433 0.5625 _ 0.5614 0.5549 0.5382 0.5345 0.5189 2B 0.524 0.532 0.5393 0.5441 0.5625 _ SCREW THREAD SYSTEMS 0.5625 0.5560 0.5393 0.5365 0.5200 3B 0.5240 0.5301 0.5393 0.5429 0.5625 _ 0.5614 0.5554 0.5411 0.5376 0.5242 2B 0.529 0.536 0.5422 0.5468 0.5625 0.5625 0.5565 0.5422 0.5396 0.5253 3B 0.5290 0.5344 0.5422 0.5456 0.5625 _ 0.6233 0.6051 0.5643 0.5560 0.5150 1B 0.527 0.546 0.5660 0.5767 0.6250 _ 0.6233 0.6112 0.6052 0.5643 0.5588 0.5150 2B0.527 0.546 0.5660 0.5732 0.6250 0.6250 0.6129 0.5660 0.5619 0.5167 3B 0.5270 0.5391 0.5660 0.5714 0.6250

2B

3B

2B

2B

3B

1B

2B

3B

2B

3B

2B

3B

2B

2B

3B

0.535

0.5350

0.548

0.557

0.5570

0.565

0.565

0.5650

0.571

0.5710

0.580

0.5800

0.585

0.586

0.5860

0.553

0.5463

0.563

0.571

0.5662

0.578

0.578

0.5730

0.582

0.5786

0.590

0.5869

0.594

0.595

0.5926

0.5709

0.5709

0.5786

0.5844

0.5844

0.5889

0.5889

0.5889

0.5925

0.5925

0.5979

0.5979

0.6009

0.6018

0.6018

0.5780

0.5762

0.5852

0.5906

0.5890

0.5980

0.5949

0.5934

0.5981

0.5967

0.6031

0.6018

0.6059

0.6067

0.6055

Internal^b

Major

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

0.6250

Table 2. (Continued) Standard Series and Selected Combinations—Unified Screw Threads

External^b

Table 2. (Continued) Standard Series and Selected Combinations — Unified Screw Threads

70

				Ex	ternal ^b						Ir	nternal ^b		
Nominal Size, Threads per Inch, and Series		Allow-	М	ajor Diamet	er	Pitch D	iameter	UNR Minor Dia., Max		Minor D	iameter	Pitch D	iameter	Major Diameter
Designationa	Class	ance	Max ^d	Min	Mine	Max ^d	Min	(Ref.)	Class	Min	Max	Min	Max	Min
5/ ₈ -32 UN	2A	0.0011	0.6239	0.6179		0.6036	0.6000	0.5867	2B	0.591	0.599	0.6047	0.6093	0.6250
	3A	0.0000	0.6250	0.6190	_	0.6047	0.6020	0.5878	3B	0.5910	0.5969	0.6047	0.6082	0.6250
11/ ₁₆ -12 UN	2A	0.0016	0.6859	0.6745	_	0.6318	0.6263	0.5867	2B	0.597	0.615	0.6334	0.6405	0.6875
	3A	0.0000	0.6875	0.6761	_	0.6334	0.6293	0.5883	3B	0.5970	0.6085	0.6334	0.6387	0.6875
11/ ₁₆ -16 UN	2A	0.0014	0.6861	0.6767	_	0.6455	0.6407	0.6117	2B	0.620	0.634	0.6469	0.6532	0.6875
	3A	0.0000	0.6875	0.6781	_	0.6469	0.6433	0.6131	3B	0.6200	0.6284	0.6469	0.6516	0.6875
11/ ₁₆ -20 UN	2A	0.0013	0.6862	0.6781	_	0.6537	0.6493	0.6267	2B	0.633	0.645	0.6550	0.6607	0.6875
	3A	0.0000	0.6875	0.6794	_	0.6550	0.6517	0.6280	3B	0.6330	0.6411	0.6550	0.6593	0.6875
11/16-24 UNEF	2A	0.0012	0.6863	0.6791	_	0.6592	0.6552	0.6367	2B	0.642	0.652	0.6604	0.6657	0.6875
	3A	0.0000	0.6875	0.6803	_	0.6604	0.6574	0.6379	3B	0.6420	0.6494	0.6604	0.6643	0.6875
11/16-28 UN	2A	0.0011	0.6864	0.6799	_	0.6632	0.6594	0.6439	2B	0.649	0.657	0.6643	0.6692	0.6875
	3A	0.0000	0.6875	0.6810	_	0.6643	0.6614	0.6450	3B	0.6490	0.6551	0.6643	0.6680	0.6875
11/ ₁₆ -32 UN	2A	0.0011	0.6864	0.6804	_	0.6661	0.6625	0.6492	2B	0.654	0.661	0.6672	0.6719	0.6875
	3A	0.0000	0.6875	0.6815	_	0.6672	0.6645	0.6503	3B	0.6540	0.6594	0.6672	0.6707	0.6875
3/4-10 UNC	1A	0.0018	0.7482	0.7288	_	0.6832	0.6744	0.6291	1B	0.642	0.663	0.6850	0.6965	0.7500
	2A	0.0018	0.7482	0.7353	0.7288	0.6832	0.6773	0.6291	2B	0.642	0.663	0.6850	0.6927	0.7500
	3A	0.0000	0.7500	0.7371	_	0.6850	0.6806	0.6309	3B	0.6420	0.6545	0.6850	0.6907	0.7500
3/ ₄ -12 UN	2A	0.0017	0.7483	0.7369	_	0.6942	0.6887	0.6491	2B	0.660	0.678	0.6959	0.7031	0.7500
	3A	0.0000	0.7500	0.7386	_	0.6959	0.6918	0.6508	3B	0.6600	0.6707	0.6959	0.7013	0.7500
3/ ₄ -14 UNS	2A	0.0015	0.7485	0.7382	_	0.7021	0.6970	0.6634	2B	0.673	0.688	0.7036	0.7103	0.7500
3/4-16 UNF	1A	0.0015	0.7485	0.7343	_	0.7079	0.7004	0.6741	1B	0.682	0.696	0.7094	0.7192	0.7500
	2A	0.0015	0.7485	0.7391	_	0.7079	0.7029	0.6741	2B	0.682	0.696	0.7094	0.7159	0.7500
	3A	0.0000	0.7500	0.7406	_	0.7094	0.7056	0.6756	3B	0.6820	0.6909	0.7094	0.7143	0.7500
3/4-18 UNS	2A	0.0014	0.7486	0.7399	_	0.7125	0.7079	0.6824	2B	0.690	0.703	0.7139	0.7199	0.7500
3/4-20 UNEF	2A	0.0013	0.7487	0.7406	_	0.7162	0.7118	0.6892	2B	0.696	0.707	0.7175	0.7232	0.7500
•	3A	0.0000	0.7500	0.7419	_	0.7175	0.7142	0.6905	3B	0.6960	0.7036	0.7175	0.7218	0.7500
3/ ₄ -24 UNS	2A	0.0012	0.7488	0.7416	_	0.7217	0.7176	0.6992	2B	0.705	0.715	0.7229	0.7282	0.7500
³/ ₄ -27 UNS	2A	0.0012	0.7488	0.7421	_	0.7247	0.7208	0.7047	2B	0.710	0.719	0.7259	0.7310	0.7500

Table 2. (Continued) Standard Series and Selected Combinations—Unified Screw Threads

		Table 2.	Commu	(a) Stant	iai u Sei i	es and S	electeu (ombinauc	115-0	iiiieu Sc	iew ime	aus		
Nominal Size.				Ex	ternal ^b						Ir	iternal ^b		
Threads per Inch, and Series		Allow-	M	Iajor Diamet	er	Pitch D	iameter	UNR Minor Dia., Max		Minor I	Diameter	Pitch D	iameter	Major Diamete
Designationa	Class	ance	Max ^d	Min	Mine	Max ^d	Min	(Ref.)	Class	Min	Max	Min	Max	Min
3/ ₄ -28 UN	2A	0.0012	0.7488	0.7423	_	0.7256	0.7218	0.7063	2B	0.711	0.720	0.7268	0.7318	0.7500
	3A	0.0000	0.7500	0.7435	_	0.7268	0.7239	0.7075	3B	0.7110	0.7176	0.7268	0.7305	0.7500
3/ ₄ -32 UN	2A	0.0011	0.7489	0.7429	_	0.7286	0.7250	0.7117	2B	0.716	0.724	0.7297	0.7344	0.7500
	3A	0.0000	0.7500	0.7440	_	0.7297	0.7270	0.7128	3B	0.7160	0.7219	0.7297	0.7333	0.7500
13/ ₁₆ -12 UN	2A	0.0017	0.8108	0.7994	-	0.7567	0.7511	0.7116	2B	0.722	0.740	0.7584	0.7656	0.8125
	3A	0.0000	0.8125	0.8011	_	0.7584	0.7542	0.7133	3B	0.7220	0.7329	0.7584	0.7638	0.8125
13/ ₁₆ -16 UN	2A	0.0015	0.8110	0.8016	_	0.7704	0.7655	0.7366	2B	0.745	0.759	0.7719	0.7783	0.8125
	3A	0.0000	0.8125	0.8031	_	0.7719	0.7682	0.7381	3B	0.7450	0.7534	0.7719	0.7767	0.8125
13/16-20 UNEF	2A	0.0013	0.8112	0.8031	_	0.7787	0.7743	0.7517	2B	0.758	0.770	0.7800	0.7858	0.8125
	3A	0.0000	0.8125	0.8044	_	0.7800	0.7767	0.7530	3B	0.7580	0.7661	0.7800	0.7843	0.8125
13/16-28 UN	2A	0.0012	0.8113	0.8048	_	0.7881	0.7842	0.7688	2B	0.774	0.782	0.7893	0.7943	0.8125
	3A	0.0000	0.8125	0.8060	_	0.7893	0.7864	0.7700	3B	0.7740	0.7801	0.7893	0.7931	0.8125
13/16-32 UN	2A	0.0011	0.8114	0.8054	_	0.7911	0.7874	0.7742	2B	0.779	0.786	0.7922	0.7970	0.8125
	3A	0.0000	0.8125	0.8065	_	0.7922	0.7894	0.7753	3B	0.7790	0.7844	0.7922	0.7958	0.8125
½-9 UNC	1A	0.0019	0.8731	0.8523	_	0.8009	0.7914	0.7408	1B	0.755	0.778	0.8028	0.8151	0.8750
	2A	0.0019	0.8731	0.8592	0.8523	0.8009	0.7946	0.7408	2B	0.755	0.778	0.8028	0.8110	0.8750
	3A	0.0000	0.8750	0.8611	_	0.8028	0.7981	0.7427	3B	0.7550	0.7681	0.8028	0.8089	0.8750
$\frac{7}{8}$ -10 UNS	2A	0.0018	0.8732	0.8603	_	0.8082	0.8021	0.7541	2B	0.767	0.788	0.8100	0.8179	0.8750
7/ _s -12 UN	2A	0.0017	0.8733	0.8619	_	0.8192	0.8136	0.7741	2B	0.785	0.803	0.8209	0.8282	0.8750
a .	3A	0.0000	0.8750	0.8636	_	0.8209	0.8167	0.7758	3B	0.7850	0.7952	0.8209	0.8264	0.8750
%-14 UNF	1A	0.0016	0.8734	0.8579	_	0.8270	0.8189	0.7883	1B	0.798	0.813	0.8286	0.8392	0.8750
•	2A	0.0016	0.8734	0.8631	_	0.8270	0.8216	0.7883	2B	0.798	0.813	0.8286	0.8356	0.8750
	3A	0.0000	0.8750	0.8647	_	0.8286	0.8245	0.7899	3B	0.7980	0.8067	0.8286	0.8339	0.8750
½-16 UN	2A	0.0015	0.8735	0.8641	_	0.8329	0.8280	0.7991	2B	0.807	0.821	0.8344	0.8408	0.8750
	3A	0.0000	0.8750	0.8656	_	0.8344	0.8307	0.8006	3B	0.8070	0.8159	0.8344	0.8392	0.8750
%-18 UNS	2A	0.0014	0.8736	0.8649	_	0.8375	0.8328	0.8074	2B	0.815	0.828	0.8389	0.8450	0.875
½-20 UNEF	2A	0.0013	0.8737	0.8656	_	0.8412	0.8367	0.8142	2B	0.821	0.832	0.8425	0.8483	0.8750
=	3A	0.0000	0.8750	0.8669	_	0.8425	0.8391	0.8155	3B	0.8210	0.8286	0.8425	0.8469	0.8750

Table 2. (Continued) Standard Series and Selected Combinations — Unified Screw Threads

72

Machinery's Handbook Pocket Companion SCREW THREAD SYSTEMS

				Ex	ternal ^b						Ir	nternalb		
Nominal Size, Threads per Inch, and Series		Allow-	M	Iajor Diamet	er	Pitch D	iameter	UNR Minor Dia., Max		Minor I	Diameter	Pitch D	iameter	Major Diameter
Designationa	Class	ance	Max ^d	Min	Mine	Max ^d	Min	(Ref.)	Class	Min	Max	Min	Max	Min
½-24 UNS	2A	0.0012	0.8738	0.8666	_	0.8467	0.8425	0.8242	2B	0.830	0.840	0.8479	0.8533	0.8750
½-27 UNS	2A	0.0012	0.8738	0.8671	_	0.8497	0.8457	0.8297	2B	0.835	0.844	0.8509	0.8561	0.8750
½-28 UN	2A	0.0012	0.8738	0.8673	_	0.8506	0.8467	0.8313	2B	0.836	0.845	0.8518	0.8569	0.8750
-	3A	0.0000	0.8750	0.8685	_	0.8518	0.8489	0.8325	3B	0.8360	0.8426	0.8518	0.8556	0.8750
½-32 UN	2A	0.0011	0.8739	0.8679	_	0.8536	0.8499	0.8367	2B	0.841	0.849	0.8547	0.8595	0.8750
u u	3A	0.0000	0.8750	0.8690	_	0.8547	0.8519	0.8378	3B	0.8410	0.8469	0.8547	0.8583	0.8750
15/16-12 UN	2A	0.0017	0.9358	0.9244	_	0.8817	0.8761	0.8366	2B	0.847	0.865	0.8834	0.8907	0.9375
	3A	0.0000	0.9375	0.9261	_	0.8834	0.8792	0.8383	3B	0.8470	0.8575	0.8834	0.8889	0.9375
15/16-16 UN	2A	0.0015	0.9360	0.9266	_	0.8954	0.8904	0.8616	2B	0.870	0.884	0.8969	0.9033	0.9375
	3A	0.0000	0.9375	0.9281	_	0.8969	0.8932	0.8631	3B	0.8700	0.8784	0.8969	0.9017	0.9375
15/16-20 UNEF	2A	0.0014	0.9361	0.9280	_	0.9036	0.8991	0.8766	2B	0.883	0.895	0.9050	0.9109	0.9375
10	3A	0.0000	0.9375	0.9294	_	0.9050	0.9016	0.8780	3B	0.8830	0.8911	0.9050	0.9094	0.9375
15/16-28 UN	2A	0.0012	0.9363	0.9298	_	0.9131	0.9092	0.8938	2B	0.899	0.907	0.9143	0.9194	0.9375
	3A	0.0000	0.9375	0.9310	_	0.9143	0.9113	0.8950	3B	0.8990	0.9051	0.9143	0.9181	0.9375
15/16-32 UN	2A	0.0011	0.9364	0.9304	_	0.9161	0.9123	0.8992	2B	0.904	0.911	0.9172	0.9221	0.9375
10	3A	0.0000	0.9375	0.9315	_	0.9172	0.9144	0.9003	3B	0.9040	0.9094	0.9172	0.9209	0.9375
1-8 UNC	1A	0.0020	0.9980	0.9755	_	0.9168	0.9067	0.8492	1B	0.865	0.890	0.9188	0.9320	1.0000
	2A	0.0020	0.9980	0.9830	0.9755	0.9168	0.9101	0.8492	2B	0.865	0.890	0.9188	0.9276	1.0000
	3A	0.0000	1.0000	0.9850	_	0.9188	0.9137	0.8512	3B	0.8650	0.8797	0.9188	0.9254	1.0000
1-10 UNS	2A	0.0018	0.9982	0.9853	_	0.9332	0.9270	0.8791	2B	0.892	0.913	0.9350	0.9430	1.0000
1-12 UNF	1A	0.0018	0.9982	0.9810	_	0.9441	0.9353	0.8990	1B	0.910	0.928	0.9459	0.9573	1.0000
	2A	0.0018	0.9982	0.9868	_	0.9441	0.9382	0.8990	2B	0.910	0.928	0.9459	0.9535	1.0000
	3A	0.0000	1.0000	0.9886	_	0.9459	0.9415	0.9008	3B	0.9100	0.9198	0.9459	0.9516	1.0000

^a Use UNR designation instead of UN wherever UNR thread form is desired for external use.

For UNS threads and sizes above 1 inch see ASME/ANSI B1.1-1989 (R2001). Use UNS threads only if Standard Series do not meet requirements.

b Thread classes may be combined, for example, a Class 2A external thread may be used with a Class 1B, 2B, or 3B internal thread.

^cUN series external thread maximum minor diameter is basic for Class 3A and basic minus allowance for Classes 1A and 2A.

^d For Class 2A threads having an additive finish the maximum is increased, by the allowance, to the basic size, the value being the same as for Class 3A.

[°]For unfinished hot-rolled material not including standard fasteners with rolled threads.

All dimensions are in inches.

Table 3. External Inch Screw Thread Calculations for $^{1\!/}_{2}$ -28 UNEF-2A

Characteristic Description	Calculation	Notes
Basic major diameter, $d_{\rm bsc}$	$d_{bsc} = \frac{1}{2} = 0.5 = 0.5000$	d_{bsc} is rounded to four decimal places
Pitch, P	$P = \frac{1}{28} = 0.035714285714 = 0.03571429$	P is rounded to eight decimal places
Maximum external major diameter $(d_{max}) = $ basic major diameter $(d_{bsc}) - $ allowance (es)	$d_{max} = d_{bsc} - es$	es is the basic allowance
Basic major diameter (d_{bsc})	$d_{bsc} = 0.5000$	d_{bsc} is rounded to four decimal places
Allowance (es)	$es = 0.300 \times Td_2$ for Class 2A	Td_2 is the pitch diameter tolerance for Class 2A
External pitch diameter tolerance Td_2 = 0.0015 × 0 = 0.001191 +	$+0.0015\sqrt{LE} + 0.015\sqrt{\frac{2}{3}}$ $\frac{1}{5^{\frac{1}{3}}} + 0.0015\sqrt{9 \times 0.03571429} + 0.015(0.03571429)^{\frac{2}{3}}$ $-0.000850 + 0.001627 = 0.003668$	LE = 9P (length of engagement) Td_2 is rounded to six decimal places
Allowance (es)	$es = 0.300 \times 0.003668 = 0.0011004 = 0.0011$	es is rounded to four decimal places
$ \mathbf{Maximum\ external\ major\ diameter}\ (d_{\mathit{max}}) $	$d_{max} = d_{base} - es = 0.5000 - 0.0011 = 0.4989$	d_{max} is rounded to four decimal places
Minimum external major diameter $(d_{min}) = \max_{max} \max_{max} - \max_{max} (Td)$	$d_{min} = d_{max} - Td$	Td is the major diameter tolerance
Major diameter tolerance (Td)	$Td = 0.060\sqrt[3]{P^2} = 0.060 \times \sqrt[3]{0.03571429^2}$ $= 0.060 \times \sqrt[3]{0.001276} = 0.060 \times 0.108463$ $= 0.00650778 = 0.0065$	Td is rounded to four decimal places

 $\textbf{Table 3.} (Continued) \, \textbf{External Inch Screw Thread Calculations for } \frac{1}{2} \textbf{-28 UNEF-2A}$

` '	=	2
Characteristic Description	Calculation	Notes
$\label{eq:minimum} \textbf{Minimum external major diameter} \ (d_{\scriptscriptstyle min})$	$d_{min} = d_{max} - Td = 0.4989 - 0.006508$ $= 0.492392 = 0.4924$	d_{\min} is rounded to four decimal places
Maximum external pitch diameter $(d_{2max}) = \max \max \max \max \max \max \max \max (h_{nax}) - \min \min \min (h_{nax})$	$d_{2max} = d_{max} - 2 \times h_{as}$	h_{as} = external thread addendum
External thread addendum	$h_{as} = \frac{0.64951905P}{2} \qquad 2h_{as} = 0.64951905P$ $2h_{as} = 0.64951905 \times 0.03571429 = 0.02319711$ $= 0.023197$	$2h_{as}$ is rounded to six decimal places
	$d_{2max} = d_{max} - 2 \times h_{as} = 0.4989 - 0.23197$ $= 0.475703 = 0.4757$	$d_{2_{max}}$ is rounded to four decimal places
Minimum external pitch diameter $(d_{2pain}) =$ maximum external pitch diameter $(d_{2pain}) -$ external pitch diameter tolerance (Td_2)	$d_{2min} = d_{2max} - Td_2$	Td_2 = external pitch diameter tolerance (see previous Td_2 calculation in this table)
$ \begin{tabular}{ll} \bf Minimum\ external\ pitch\ diameter\ ($d_{\rm 2min}$) \\ \hline \end{tabular} $	$d_{2min} = d_{2max} - Td_2 = 0.4757 - 0.003668$ $= 0.472032 = 0.4720$	d_{2min} is rounded to four decimal places
	$d_{3max} = d_{max} - 2 \times h_s$	h_s = external UNR thread height
External UNR thread height (2h _s)	$2h_s = 1.19078493P = 1.19078493 \times 0.03571429$ $= 0.042528$	$2h_s$ rounded to six decimal places
	$d_{3max} = d_{max} - 2 \times h_s = 0.4989 - 0.042528$ $= 0.456372 = 0.4564$	d_{3max} is rounded to four decimal places

 $\textbf{Table 3.} (Continued) \ \textbf{External Inch Screw Thread Calculations for } \frac{1}{2} \textbf{-28 UNEF-2A}$

Characteristic Description	Calculation	Notes
	$d_{1\max} = d_{max} - 2 \times h_s$	For UN threads, $2h_s = 2h_n$
Double height of external UN thread $2h_s$	$2h_s = 1.08253175P$ = 1.08253175 × 0.03571429 = 0.03866185 = 0.038662	$2h_s$ is rounded to six decimal places
	$d_{1max} = d_{max} - 2 \times h_s$ = 0.4989 - 0.038662 = 0.460238 = 0.4602	d_{1max} is rounded to four decimal places

Table 4. Internal Inch Screw Thread Calculations for $^{1\!/}_{2}$ -28 UNEF-2B

Characteristic Description	Calculation	Notes
Basic major diameter, d_{bsc}	$d_{bsc} = \frac{1}{2} = 0.5 = 0.5000$	d_{bsc} is rounded to four decimal places
Pitch, P	$P = \frac{1}{28} = 0.035714285714 = 0.03571429$	P is rounded to eight decimal places
	$D_{1min} = D_{bsc} - 2h_n$	$2h_n$ is the double height of external UN thread
Double height of external UN thread $2h_s$	$2h_n = 1.08253175P = 1.08253175 \times 0.03571429$ $= 0.03866185 = 0.038662$	$2h_n$ is rounded to six decimal places
${\bf Minimum\ internal\ major\ diameter\ } (D_{1min})$	$D_{1_{min}} = D_{bsc} - 2 \times h_n = 0.5000 - 0.038662$ $= 0.461338 = 0.461$	For class 2B the value is rounded to three decimal places to obtain the final values

SCREW THREAD SYSTEMS

Table 4. (Continued) Internal Inch Screw Thread Calculations for $^1\!\!/_2$ -28 UNEF-2B

Characteristic Description	Calculation	Notes		
Maximum internal minor diameter $(D_{1max}) = $ minimum internal minor diameter $(D_{1min}) + $ internal minor diameter tolerance TD_1	$D_{lmax} = D_{lmin} + TD_1$	D_{lmin} is rounded to six decimal places		
Internal minor diameter tolerance TD_1	$TD_1 = 0.25P - 0.40P^2$ $= 0.25 \times 0.03571429 - 0.40 \times 0.03571429^2$ $= 0.008929 - 0.000510 = 0.008419 = 0.003127$	TD_1 is rounded to four decimal places		
	$D_{lmax} = D_{lmin} + TD_1 = 0.461338 + 0.008419$ $= 0.469757 = 0.470$ For the Class 2B thread D_{lmax} is rour decimal places to obtain final values and classes are expressed in four decimal places.			
$ \begin{aligned} & \textbf{Minimum internal pitch diameter} \ (D_{2min}) = \\ & \text{basic major diameter} \ (D_{b_{kc}}) - \\ & \text{twice the external thread addendum} \ (h_{b}) \end{aligned} $	$D_{2min} = D_{bsc} - h_b$	h_b = external thread addendum		
External thread addendum (h_b)	$h_b = 0.64951905P = 0.64951905 \times 0.03571429$ $= 0.02319711 = 0.023197$	h_b is rounded to six decimal places		
$ \ \textbf{Minimum internal pitch diameter} (D_{2min}) $	$D_{2min} = D_{bsc} - h_b = 0.5000 - 0.023197$ $= 0.476803 = 0.4768$	D_{2min} is rounded to four decimal places		
Maximum internal pitch diameter (D_{2max}) = minimum internal pitch diameter (D_{2min}) + internal pitch diameter tolerance (TD_2)	$D_{2max} = D_{2min} + TD_2$	TD_2 = external pitch diameter tolerance		
External pitch diameter tolerance TD_2	$TD_2 = 1.30 \times (Td_2 \text{ for Class } 2A) = 1.30 \times 0.003668$ = 0.0047684 = 0.0048	Constant 1.30 is for this Class 2B example, and will be different for Classes 1B and 3B. Td_2 for Class 2A (see Table 3) is rounded to six decimal places. TD_2 is rounded to four places		
	$D_{2max} = D_{2min} + TD_2 = 0.4768 + 0.0048 = 0.4816$	D_{2max} is rounded to four decimal places		

 $\textbf{Table 4.} (Continued) \textbf{Internal Inch Screw Thread Calculations for $^1_{2}$, $-28 UNEF-2B$}$

Characteristic Description	Calculation	Notes		
Minimum internal major diameter $(D_{min}) =$ basic major diameter (D_{bsc})	$D_{min} = D_{bsc} = 0.5000$	D_{\min} is rounded to four decimal places		

Table 5. External Inch Screw Thread Calculations for 19/64 -36 UNS-2A

Table 5. External men berew 1 media Calculations for 764-50 GHS-274					
Characteristic Description	Calculation	Notes			
Basic major diameter, d_{bsc}	$d_{bsc} = \frac{19}{64} = 0.296875 = 0.2969$	d_{bsc} is rounded to four decimal places			
Pitch, P	$P = \frac{1}{36} = 0.027777777778 = 0.02777778$	P is rounded to eight decimal places			
Maximum external major diameter $(d_{max}) =$ basic major diameter (d_{bsc}) – allowance (es)	$d_{max} = d_{bsc} - es$				
Allowance (es)	$es = 0.300 \times Td_2$ for Class 2A	Td_2 is Pitch diameter tolerance for Class 2A			
	$\overline{E} + 0.015P^{\frac{2}{3}}$ $0015\sqrt{9 \times 0.02777778} + 0.015(0.02777778)^{\frac{2}{3}}$ $75 + 0.001375803 = 0.003126482$	LE = 9P (length of engagement) Td_2 is rounded to six decimal places			
Allowance (es)	$es = 0.300 \times 0.003127 = 0.0009381 = 0.0009$	es is rounded to four decimal places			
Maximum external major diameter (d_{max})	$d_{max} = d_{bsc} - es = 0.2969 - 0.0009 = 0.2960$	d_{max} is rounded to four decimal places			

SCREW THREAD SYSTEMS

 ${\bf Table~5.} (Continued) \, {\bf External~Inch~Screw~Thread~Calculations~for~}^{19}\!\!{}_{64} \, - 36~UNS-2A$

Characteristic Description	Calculation	Notes		
Minimum external major diameter $(d_{min}) =$ maximum external major diameter $(d_{max}) -$ major diameter tolerance (Td)	$d_{min} = d_{max} - Td$	Td is the major diameter tolerance		
Major diameter tolerance (Td)	$Td = 0.060\sqrt[3]{P^2} = 0.060 \times \sqrt[3]{0.02777778^2}$ $= 0.060 \times \sqrt[3]{0.000772} = 0.060 \times 0.091736$ $= 0.00550416 = 0.0055$	Td is rounded to four decimal places		
	$d_{min} = d_{max} - Td = 0.2960 - 0.0055 = 0.2905$	d_{min} is rounded to four decimal places		
Maximum external pitch diameter $(d_{2max}) = \max$ maximum external major diameter $(d_{max}) - $ twice the external thread addendum	$d_{2max} = d_{max} - 2 \times h_{as}$	h_{as} = external thread addendum		
External thread addendum	$h_{as} = \frac{0.64951905P}{2} \qquad 2h_{as} = 0.64951905P$ $2h_{as} = 0.64951905 \times 0.02777778 = 0.0180421972$ $= 0.018042$	h_{as} is rounded to six decimal places		
	$d_{2max} = d_{max} - 2h_{as} = 0.2960 - 0.018042$ $= 0.277958 = 0.2780$	d_{2max} is rounded to four decimal places		
Minimum external pitch diameter (d_{2min}) = maximum external pitch diameter (d_{2max}) - external pitch diameter tolerance (Td_2)	$d_{2min} = d_{2max} - Td_2$	Td_2 = external pitch diameter tolerance (see previous Td_2 calculation in this table)		
	$d_{2min} = d_{2max} - Td_2 = 0.2780 - 0.003127$ $= 0.274873 = 0.2749$	d_{2min} is rounded to four decimal places		

78

 ${\bf Table~5.} (Continued) \, {\bf External~Inch~Screw~Thread~Calculations~for~}^{19}\!\!{}_{64} \, - 36~UNS-2A$

Characteristic Description	Calculation	Notes		
Maximum external UNR minor diameter $(d_{3max}) = $ maximum external major diameter $(d_{max}) - $ double height of external UNR thread $2hs$	$d_{3max} = d_{max} - 2h_s$	h_s = external UNR thread height		
External UNR thread height	$2h_s = 1.19078493P = 1.19078493 \times 0.02777778$ $= 0.033077362 = 0.033077$	$2h_s$ is rounded to six decimal places		
	$d_{3max} = d_{max} - 2h_s = 0.2960 - 0.033077$ $= 0.262923 = 0.2629$	d_{3max} is rounded to four decimal places		
Maximum external UN minor diameter $(d_{1max}) = \max$ maximum external major diameter $(d_{max}) - d$ double height of external UN thread $2h_i$	$d_{1max} = d_{max} - 2 \times h_s$	For UN threads, $2h_s = 2h_n$		
Double height of external UN thread $2h_{\rm s}$	$2h_s = 1.08253175P = 1.08253175 \times 0.02777778$ $= 0.030070329 = 0.030070$	For UN threads, $2h_s = 2h_n$ $2h_s$ is rounded to six decimal places		
	$d_{1max} = d_{max} - 2h_s = 0.2960 - 0.030070$ $= 0.265930 = 0.2659$	Maximum external UN minor diameter is rounded to four decimal places		

Table 6. Internal Inch Screw Thread Calculations for $^{19}\!\!_{64}$ -28 UNS-2B

Characteristic Description	Calculation	Notes		
$ \begin{aligned} & \textbf{Minimum internal minor diameter} \ (D_{1min}) = \\ & \text{basic major diameter} \ (D_{bsc}) - \\ & \text{double height of external UN thread } 2h_{\text{a}} \end{aligned} $	$D_{lmin} = D_{bsc} - 2h_n$	$2h_n$ is the double height of external UN threads		
Basic major diameter (D_{bsc})	$D_{bsc} = \frac{19}{64} = 0.296875 = 0.2969$	This is the final value of basic major diameter (given) and rounded to four decimal places		

 ${\bf Table\,6.} (Continued)\,{\bf Internal\,Inch\,Screw\,Thread\,Calculations\,for\,}^{19}\!\!{}_{64}\,{\bf -28\,UNS-2B}$

		04			
Characteristic Description	Calculation	Notes			
Double height of external UN thread $2h_{\rm s}$	$2h_n = 1.08253175P = 1.08253175 \times 0.02777778$ $= 0.030070329 = 0.030070$	P is rounded to eight decimal places			
${\bf Minimuminternalmajordiameter}(D_{{\scriptscriptstyle 1min}})$	$D_{lmin} = D_{bsc} - 2h_n = 0.2969 - 0.030070$ $= 0.266830 = 0.267$	For class 2B the value is rounded to three decimal places to obtain the final value; other sizes and classes are expressed in a four place decimal			
Maximum internal minor diameter $(D_{1_{minx}})$ = minimum internal minor diameter $(D_{1_{min}})$ + internal minor diameter tolerance TD_1	$D_{lmax} = D_{lmin} + TD_1$	D_{1min} is rounded to six decimal places			
Internal minor diameter tolerance TD_1	$TD_1 = 0.25P - 0.40P^2$ $= 0.25 \times 0.02777778 - 0.40 \times 0.02777778^2$ $= 0.006944 - 0.000309 = 0.006635 = 0.0066$	TD_1 is rounded to four decimal places.			
	$D_{lmax} = D_{lmin} + TD_1 = 0.266830 + 0.006635$ $= 0.273465 = 0.273$	For Class 2B thread the value is rounded to three decimal places to obtain the final values. Other sizes and classes are expressed to four decimal places			
$ \begin{aligned} & \textbf{Minimum internal pitch diameter} \ (D_{2min}) = \\ & \text{basic major diameter} \ (D_{b,c}) - \\ & \text{twice the external thread addendum} \ (h_b) \end{aligned} $	$D_{2min} = D_{1max} - h_b$	$h_b = { m external}$ thread addendum			
External thread addendum	$h_b = 0.64951905P = 0.64951905 \times 0.02777778$ = 0.018042197 = 0.018042	h_b is rounded to six decimal places			
Minimum internal pitch diameter (D_{2min})	$D_{2min} = D_{bsc} - h_b = 0.2969 - 0.018042$ $= 0.278858 = 0.2789$	$D_{2 min}$ is rounded to four decimal places			

Machinery's Handbook Pocket Companion SCREW THREAD SYSTEMS

 $Table \, 6. \, (Continued) \, Internal \, Inch \, Screw \, Thread \, Calculations \, for \, ^{19}\!\!_{64} - 28 \, UNS - 2B \,$

07					
Characteristic Description	Calculation	Notes			
	$D_{2max} = D_{2min} + TD_2$	TD_2 = external pitch diameter tolerance			
External pitch diameter tolerance TD_2	$TD_2 = 1.30 \times (Td_2 \text{ for Class } 2A)$ = 1.30 × 0.003127 = 0.0040651 = 0.0041	The constant 1.30 is for this Class 2B example, and will be different for Classes 1B and 3B. Td_2 for Class 2A (see calculation, Table 5) is rounded to six decimal places			
$\textbf{Maximum internal pitch diameter} \ (D_{2\textit{max}})$	$D_{2max} = D_{2min} + TD_2 = 0.2789 + 0.0041 = 0.2830$	D_{2max} is rounded to four decimal places			
Minimum internal major diameter $(D_{min}) =$ basic major diameter (D_{bsc})	$D_{min} = D_{bsc} = 0.2969$	D_{\min} is rounded to four decimal places			

Table 7. Number of Decimal Places for Intermediate and Final Calculations of Thread Characteristics

		Final				Inter	mediate	F	inal
Symbol	Dimensions	Inch	Metric	Symbol	Symbol Dimensions 1		Metric	Inch	Metric
d	Major diameter, external thread	4	3	LE	Length of thread engagement	6	N/A		
D	Major diameter, internal thread	4	3	P	Pitch			8	Note a
d_2	Pitch diameter, external thread	4	3	Td	Major diameter tolerance			4	3
D_2	Pitch diameter, internal thread	4	3	Td_2	Pitch diameter tolerance, external thread			6	3
$d_{_1}$	Minor diameter, external thread	4	3	TD_2	Pitch diameter tolerance, internal thread			4	3
d_3	Minor diameter, rounded root external thread	4	3	TD_1	Minor diameter tolerance, internal thread			4	3
$D_{_1}$	Minor diameter, internal threads for sizes 0.138 and larger for Classes 1B and 2B only	3	N/A	$h_b = 2h_{as}$	Twice the external thread addendum		N/A		
$D_{_1}$	Minor diameter, internal threads for sizes smaller than 0.138 for Classes 1B and 2B, and all sizes for Class 3B	4	N/A	2h _s	Double height of UNR external thread	6	N/A		
$D_{_1}$	Minor diameter, internal metric thread	N/A	3	$2h_{_{n}}$	Double height of internal thread and UN external thread	6	N/A		
es	Allowance at major pitch and minor diameters of external thread		3		Twice the external thread addendum	6	N/A		

^a Metric pitches are not calculated. They are stated in the screw thread designation and are to be used out to the number of decimal places as stated. Note: Constants based on a function of P are rounded to an 8-place decimal for inch threads and a 7-place decimal for metric threads.

Table 8. Basic Dimensions, American National Standard Taper Pipe Threads, NPT $ANSI/ASME\,B1.20.1-2013\,(R2018)$

For all dimensions, see corresponding reference letter in table.

Angle between sides of thread is 60 degrees. Taper of thread, on diameter, is $\frac{3}{4}$ inch per foot. Angle of taper with center line is $1^{\circ}47'$.

The basic maximum thread height, h, of the truncated thread is $0.8 \times$ pitch of thread. The crest and root are truncated a minimum of $0.033 \times$ pitch for all pitches.

				Pitch			Effective Thread,	
				Diameter	Handtight Engagement			ernal
	0	TTI I	D: 1	at Beginning	Length,a Dia.,b		Length, ^c	Dia.,
Nominal	Outside Dia. of	Threads per	Pitch of	of	$L_{_1}$	$E_{_1}$	L_2	E_2
Pipe	Pipe,	Inch,	Thread,	External				
Size	D	n	p	Thread, E_0	In	ch	Inch	
1/16	0.3125	27	0.03704	0.27118	0.160	0.28118	0.2611	0.28750
1/8	0.405	27	0.03704	0.36351	0.1615	0.37360	0.2639	0.38000
1/4	0.540	18	0.05556	0.47739	0.2278	0.49163	0.4018	0.50250
3/8	0.675	18	0.05556	0.61201	0.240	0.62701	0.4078	0.63750
1/2	0.840	14	0.07143	0.75843	0.320	0.77843	0.5337	0.79178
3/4	1.050	14	0.07143	0.96768	0.339	0.98887	0.5457	1.00178
1	1.315	111/,	0.08696	1.21363	0.400	1.23863	0.6828	1.25631
11/4	1.660	111/2	0.08696	1.55713	0.420	1.58338	0.7068	1.60131
11/2	1.900	111/,	0.08696	1.79609	0.420	1.82234	0.7235	1.84131
2	2.375	111/,	0.08696	2.26902	0.436	2.29627	0.7565	2.31630
21/2	2.875	8	0.12500	2.71953	0.682	2.76216	1.1375	2.79063
3	3.500	8	0.12500	3.34062	0.766	3.38850	1.2000	3.41563
31/2	4.000	8	0.12500	3.83750	0.821	3.88881	1.2500	3.91563
4	4.500	8	0.12500	4.33438	0.844	4.38712	1.3000	4.41563
5	5.563	8	0.12500	5.39073	0.937	5.44929	1.4063	5.47863
6	6.625	8	0.12500	6.44609	0.958	6.50597	1.5125	6.54063
8	8.625	8	0.12500	8.43359	1.063	8.50003	1.7125	8.54063
10	10.750	8	0.12500	10.54531	1.210	10.62094	1.9250	10.66563
12	12.750	8	0.12500	12.53281	1.360	12.61781	2.1250	12.66563
14 OD	14.000	8	0.12500	13.77500	1.562	13.87262	2.2500	13.91563
16 OD	16.000	8	0.12500	15.76250	1.812	15.87575	2.4500	15.91563
18 OD	18.000	8	0.12500	17.75000	2.000	17.87500	2.6500	17.91563
20 OD	20.000	8	0.12500	19.73750	2.125	19.87031	2.8500	19.91563
24 OD	24.000	8	0.12500	23.71250	2.375	23.86094	3.2500	23.91563

 $^{^{\}rm a} Also \, length \, of \, thin \, ring \, gage \, and \, length \, from \, gaging \, notch \, to \, small \, end \, of \, plug \, gage.$

^b Also pitch diameter at gaging notch (handtight plane).

Also length of plug gage.

AMERICAN STANDARD PIPE THREADS

Table 9. Basic Dimensions, American National Standard Taper Pipe Threads, NPT
ANSI/ASME B1.20.1-2013 (R2018)

	Wrench Makeup							
		or Internal			Nominal Perfect			Basic Minor
		or internal	Vanish	Overall	External			Dia. at
	- 11	iicau	Thread,		LACTIO	Tincaus	Height	Small
Nominal			(3.47	External			of	End of
Pipe	Length,c	Dia.,	thds.),	Thread,	Length,	Dia.,	Thread.	Pipe, ^b
Size	L_3	E_3	V	$L_{\scriptscriptstyle 4}$	L,	E_{s}	h	K_0
1/16	0.1111	0.26424	0.1285	0.3896	0.1870	0.28287	0.02963	0.2415
1/8	0.1111	0.35656	0.1285	0.3924	0.1898	0.37537	0.02963	0.3338
1/4	0.1667	0.46697	0.1928	0.5946	0.2907	0.49556	0.04444	0.4329
3/8	0.1667	0.60160	0.1928	0.6006	0.2967	0.63056	0.04444	0.5675
1						0.78286		
1/2	0.2143	0.74504	0.2479	0.7815	0.3909		0.05714	0.7014
3/4	0.2143	0.95429	0.2479	0.7935	0.4029	0.99286	0.05714	0.9106
1	0.2609	1.19733	0.3017	0.9845	0.5089	1.24543	0.06957	1.1441
11/4	0.2609	1.54083	0.3017	1.0085	0.5329	1.59043	0.06957	1.4876
11/2	0.2609	1.77978	0.3017	1.0252	0.5496	1.83043	0.06957	1.7266
2	0.2609	2.25272	0.3017	1.0582	0.5826	2.30543	0.06957	2.1995
21/2	0.2500 ^d	2.70391	0.4338	1.5712	0.8875	2.77500	0.100000	2.6195
3	0.2500 ^d	3.32500	0.4338	1.6337	0.9500	3.40000	0.100000	3.2406
31/2	0.2500	3.82188	0.4338	1.6837	1.0000	3.90000	0.100000	3.7374
4	0.2500	4.31875	0.4338	1.7337	1.0500	4.40000	0.100000	4.2343
5	0.2500	5.37511	0.4338	1.8400	1.1563	5.46300	0.100000	5.2907
6	0.2500	6.43047	0.4338	1.9462	1.2625	6.52500	0.100000	6.3460
8	0.2500	8.41797	0.4338	2.1462	1.4625	8.52500	0.100000	8.3335
10	0.2500	10.52969	0.4338	2.3587	1.6750	10.65000	0.100000	10.4453
12	0.2500	12.51719	0.4338	2.5587	1.8750	12.65000	0.100000	12.4328
14 OD	0.2500	13.75938	0.4338	2.6837	2.0000	13.90000	0.100000	13.6749
16 OD	0.2500	15.74688	0.4338	2.8837	2.2000	15.90000	0.100000	15.6624
18 OD	0.2500	17.73438	0.4338	3.0837	2.4000	17.90000	0.100000	17.6499
20 OD	0.2500	19.72188	0.4338	3.2837	2.6000	19.90000	0.100000	19.6374
24 OD	0.2500	23.69688	0.4338	3.6837	3.0000	23.90000	0.100000	23.6124

^a The length L_5 from the end of the pipe determines the plane beyond which the thread form is imperfect at the crest. The next two threads are perfect at the root. At this plane the cone formed by the crests of the thread intersects the cylinder forming the external surface of the pipe. $L_5 = L_5 - 2p$.

All dimensions given in inches.

Increase in diameter per thread is equal to 0.0625/n.

The basic dimensions of the ANSI Standard Taper Pipe Thread are given in inches to four or five decimal places. While this implies a greater degree of precision than is ordinarily attained, these dimensions are the basis of gage dimensions and are so expressed for the purpose of eliminating errors in computations.

^b Given as information for use in selecting tap drills.

^cThree threads for 2-inch size and smaller; two threads for larger sizes.

^d Military Specification MIL-P-7105 gives the wrench makeup as three threads for 3 in. and smaller. The E_3 dimensions are then as follows: Size $2\frac{1}{2}$ in., 2.69609 and size 3 in., 3.31719.

Metric Screw Threads - M Profile

 $H = \frac{\sqrt{3}}{2} \times P = 0.866025P$

0.125H = 0.108253P 0.250H = 0.216506P 0.375H = 0.324760P 0.625H = 0.541266P

Fig. 2. Basic M Thread Profile (ISO 68 Basic Profile)

Fig. 3. Internal Thread Design M Profile with No Allowance (Fundamental Deviation) (Maximum Material Condition). For Dimensions, see Table 10

Definitions.—The following definitions apply to metric screw threads—M profile.

Basic Thread Profile: The cyclical outline in an axial plane of the permanently established boundary between the provinces of the external and internal threads. All deviations are with respect to this boundary. (See Fig. 2 and 5.)

Design Profiles: The maximum material profiles permitted for external and internal threads for a specified tolerance class. (See Fig. 3 and 4.)

Fundamental Deviation: For Standard threads, the deviation (upper or lower) closer to the basic size. It is the upper deviation, es, for an external thread and the lower deviation, EI, for an internal thread. (See Fig. 5.)

Limiting Profiles: The limiting M profile for internal threads is shown in Fig. 6. The limiting M profile for external threads is shown in Fig. 7.

Fig. 4. External Thread Design M Profile with No Allowance (Fundamental Deviation) (Flanks at Maximum Material Condition). For Dimensions, see Table 10

Fig. 5. Metric Tolerance System for Screw Threads

Formulas for M Profile Screw Thread Limiting Dimensions.—The limiting dimensions for M profile screw threads are calculated from the following formulas.

Internal Threads:

 $Min \, major \, dia. =$ basic major dia. + EI

 $Min\,pitch\,dia$. = basic major dia. -0.6495191P + EI for D_{3}

 $Max pitch dia. = min pitch dia. + TD_{a}$

Max major dia. = max pitch dia. + 0.7938566P

 $Min \, min \, or \, dia. = \min \, major \, dia. -1.0825318P$

Max minor dia. = min minor dia. + TD

External Threads:

Max major dia. = basic major dia. - es (Note that es is an absolute value.)

 $Min \ major \ dia. = \max \ major \ dia. - Td$

Max pitch dia. = basic major dia. -0.6495191P - es for d

 $Min \, pitch \, dia. = \max \, pitch \, dia. - Td$

Max flat form minor dia. = max pitch dia. -0.433013PMax rounded root minor dia. = max pitch dia. $-2 \times max$ trunc. Min rounded root minor dia. = min pitch dia. -0.616025PMin root radius = 0.125P

Fig. 6. Internal Thread-Limiting M Profile. Tolerance Position H

*This dimension is used in the design of tools, etc. In dimensioning internal threads it is not normally specified. Generally, major diameter acceptance is based on maximum material condition gaging.

Fig. 7. External Thread - Limiting M Profile. Tolerance Position g

Machinery's Handbook Pocket Companion METRIC SCREW THREADS

Table 10. American National Standard Metric Thread—M Profile Data ANSI/ASME B1.13M-2005 (R2015)

	Truncation of Internal Thread Root and External Thread Crest	Addendum of Internal Thread and Truncation of Internal Thread	Dedendum of Internal Thread and Addendum External Thread	Difference	Height of Internal Thread and Depth of Thread Engagement		Twice the External Thread Addendum	Difference	Height of	Double Height of Internal Thread
Pitch	<u>H</u> 8	<u>H</u> 4	$\frac{3}{8}H$	$\frac{H}{2}$	$\frac{5}{8}H$	Difference ^b 0.711325H	$\frac{3}{4}H$	$\frac{11}{12}H$	Sharp V-Thread	$\frac{5}{4}H$
P	0.1082532P	0.2165064P	0.3247595P	0.4330127P	0.5412659P	0.6160254P	0.6495191P	0.7938566P	0.8660254P	1.0825318P
0.2	0.02165	0.04330	0.06495	0.08660	0.10825	0.12321	0.12990	0.15877	0.17321	0.21651
0.25	0.02706	0.05413	0.08119	0.10825	0.13532	0.15401	0.16238	0.19846	0.21651	0.27063
0.3	0.03248	0.06495	0.09743	0.12990	0.16238	0.18481	0.19486	0.23816	0.25981	0.32476
0.35	0.03789	0.07578	0.11367	0.15155	0.18944	0.21561	0.22733	0.27785	0.30311	0.37889
0.4	0.04330	0.08660	0.12990	0.17321	0.21651	0.24541	0.25981	0.31754	0.34641	0.43301
0.45	0.04871	0.09743	0.14614	0.19486	0.24357	0.27721	0.29228	0.35724	0.38971	0.48714
0.5	0.05413	0.10825	0.16238	0.21651	0.27063	0.30801	0.32476	0.39693	0.43301	0.54127
0.6	0.06495	0.12990	0.19486	0.25981	0.32476	0.36962	0.38971	0.47631	0.51962	0.64952
0.7	0.07578	0.15155	0.22733	0.30311	0.37889	0.43122	0.45466	0.55570	0.60622	0.75777
0.75	0.08119	0.16238	0.24357	0.32476	0.40595	0.46202	0.48714	0.59539	0.64952	0.81190
8.0	0.08660	0.17321	0.25981	0.34641	0.43301	0.49282	0.51962	0.63509	0.69282	0.86603
1	0.10825	0.21651	0.32476	0.43301	0.54127	0.61603	0.64952	0.79386	0.86603	1.08253
1.25	0.13532	0.27063	0.40595	0.54127	0.67658	0.77003	0.81190	0.99232	1.08253	1.35316
1.5	0.16238	0.32476	0.48714	0.64952	0.81190	0.92404	0.97428	1.19078	1.29904	1.62380
1.75	0.18944	0.37889	0.56833	0.75777	0.94722	1.07804	1.13666	1.38925	1.51554	1.89443
2	0.21651	0.43301	0.64952	0.86603	1.08253	1.23205	1.29904	1.58771	1.73205	2.16506
2.5	0.27063	0.54127	0.81190	1.08253	1.35316	1.54006	1.62380	1.98464	2.16506	2.70633
3	0.32476	0.64652	0.97428	1.29904	1.62380	1.84808	1.94856	2.38157	2.59808	3.24760
3.5	0.37889	0.75777	1.13666	1.51554	1.89443	2.15609	2.27332	2.77850	3.03109	3.78886
4	0.43301	0.86603	1.29904	1.73205	2.16506	2.46410	2.59808	3.17543	3.46410	4.33013
4.5	0.48714	0.97428	1.46142	1.94856	2.43570	2.77211	2.92284	3.57235	3.89711	4.87139
5	0.54127	1.08253	1.62380	2.16506	2.70633	3.08013	3.24760	3.96928	4.33013	5.41266
5.5	0.59539	1.19079	1.78618	2.38157	2.97696	3.38814	3.57236	4.36621	4.76314	5.95392
6	0.64952	1.29904	1.94856	2.59808	3.24760	3.69615	3.89711	4.76314	5.19615	6.49519
8	0.86603	1.73205	2,59808	3,46410	4.33013	4.92820	5.19615	6,35085	6.92820	8,66025

^a Difference between max theoretical pitch diameter and max minor diameter of external thread and between min theoretical pitch diameter and min minor diameter of internal thread.

^b Difference between min theoretical pitch diameter and min design minor diameter of external thread for 0.125*P* root radius. ^c Difference between max major diameter and max theoretical pitch diameter of internal thread.

All dimensions are in millimeters.

Table 11. Internal Metric Thread — M Profile Limiting Dimensions ANSI/ASME B1.13M-2005 (R2015)

		Minor Di	ameter D.	Pi	tch Diameter I	D ₂	Major Diameter D		
Basic Thread Designation	Toler. Class	Min	Max	Min	Max	Tol	Min	Maxa	
M1.6×0.35	6H	1.221	1.321	1.373	1.458	0.085	1.600	1.736	
M2×0.4	6H	1.567	1.679	1.740	1.830	0.090	2.000	2.148	
M2.5×0.45	6H	2.013	2.138	2.208	2.303	0.095	2.500	2.660	
M3×0.5	6H	2.459	2.599	2.675	2.775	0.100	3.000	3.172	
M3.5×0.6	6H	2.850	3.010	3.110	3.222	0.112	3.500	3.698	
M4×0.7	6H	3.242	3.422	3.545	3.663	0.118	4.000	4.219	
M5×0.8	6H	4.134	4.334	4.480	4.605	0.125	5.000	5.240	
M6×1	6H	4.917	5.153	5.350	5.500	0.150	6.000	6.294	
M8×1.25	6H	6.647	6.912	7.188	7.348	0.160	8.000	8.340	
M8×1	6H	6.917	7.153	7.350	7.500	0.150	8.000	8.294	
M10×0.75	6H	9.188	9.378	9.513	9.645	0.132	10.000	10.240	
M10×1	6H	8.917	9.153	9.350	9.500	0.150	10.000	10.294	
M10×1.5	6H	8.376	8.676	9.026	9.206	0.180	10.000	10.397	
M10×1.25	6H	8.647	8.912	9.188	9.348	0.160	10.000	10.340	
M12×1.75	6H	10.106	10.441	10.863	11.063	0.200	12.000	12.452	
M12×1.5	6H	10.376	10.676	11.026	11.216	0.190	12.000	12.407	
M12×1.25	6H	10.647	10.912	11.188	11.368	0.180	12.000	12.360	
M12×1	6H	10.917	11.153	11.350	11.510	0.160	12.000	12.304	
M14×2	6H	11.835	12.210	12.701	12.913	0.212	14.000	14.501	
M14×1.5	6H	12.376	12.676	13.026	13.216	0.190	14.000	14.407	
M15×1	6H	13.917	14.153	14.350	14.510	0.160	15.000	15.304	
M16×2	6H	13.835	14.210	14.701	14.913	0.212	16.000	16.501	
M16×1.5	6H	14.376	14.676	15.026	15.216	0.190	16.000	16.407	
M17×1	6H	15.917	16.153	16.350	16.510	0.160	17.000	17.304	
M18×1.5	6H	16.376	16.676	17.026	17.216	0.190	18.000	18.407	
M20×2.5	6H	17.294	17.744	18.376	18.600	0.224	20.000	20.585	
M20×1.5	6H	18.376	18.676	19.026	19.216	0.190	20.000	20.407	
M20×1	6H	18.917	19.153	19.350	19.510	0.160	20.000	20.304	
M22×2.5	6H	19.294	19.744	20.376	20.600	0.224	22.000	22.585	
M22×1.5	6H	20.376	20.676	21.026	21.216	0.190	22.000	22.407	
M24×3	6H	20.752	21.252	22.051	22.316	0.265	24.000	24.698	
M24×2	6H	21.835	22.210	22.701	22.925	0.224	24.000	24.513	
M25×1.5	6H	23.376	23.676	24.026	24.226	0.200	25.000	25.417	
M27×3	6H	23.752	24.252	25.051	25.316	0.265	27.000	27.698	
M27×2	6H	24.835	25.210	25.701	25.925	0.224	27.000	27.513	
M30×3.5	6H	26.211	26.771	27.727	28.007	0.280	30.000	30.786	
M30×2	6H	27.835	28.210	28.701	28.925	0.224	30.000	30.513	
M30×1.5	6H	28.376	28.676	29.026	29.226	0.200	30.000	30.417	
M33×2	6H	30.835	31.210	31.701	31.925	0.224	33.000	33.513	
M35×1.5	6H	33.376	33.676	34.026	34.226	0.200	35.000	35.417	
M36×4	6H	31.670	32.270	33.402	33.702	0.300	36.000	36.877	
M36×2	6H	33.835	34.210	34.701	34.925	0.224	36.000	36.513	

Table 11. (Continued) **Internal Metric Thread—M Profile** Limiting Dimensions ANSI/ASME B1.13M-2005 (R2015)

D : TI 1		Minor Di	ameter D ₁	Pi	itch Diameter I	D ₂	Major Di	ameter D
Basic Thread Designation	Toler. Class	Min	Max	Min	Max	Tol	Min	Maxa
M39×2	6H	36.835	37.210	37.701	37.925	0.224	39.000	39.513
M40×1.5	6H	38.376	38.676	39.026	39.226	0.200	40.000	40.417
M42×4.5	6Н	37.129	37.799	39.077	39.392	0.315	42.000	42.964
M42×2	6Н	39.835	40.210	40.701	40.925	0.224	42.000	42.513
M45×1.5	6H	43.376	43.676	44.026	44.226	0.200	45.000	45.417
M48×5	6H	42.587	43.297	44.752	45.087	0.335	48.000	49.056
M48×2	6H	45.835	46.210	46.701	46.937	0.236	48.000	48.525
M50×1.5	6H	48.376	48.676	49.026	49.238	0.212	50.000	50.429
M55×1.5	6Н	53.376	53.676	54.026	54.238	0.212	55.000	55.429
M56×5.5	6H	50.046	50.796	52.428	52.783	0.355	56.000	57.149
M56×2	6H	53.835	54.210	54.701	54.937	0.236	56.000	56.525
M60×1.5	6H	58.376	58.676	59.026	59.238	0.212	60.000	60.429
M64×6	6Н	57.505	58.305	60.103	60.478	0.375	64.000	65.241
M64×2	6H	61.835	62.210	62.701	62.937	0.236	64.000	64.525
M65×1.5	6H	63.376	63.676	64.026	64.238	0.212	65.000	65.429
M70×1.5	6H	68.376	68.676	69.026	69.238	0.212	70.000	70.429
M72×6	6Н	65.505	66.305	68.103	68.478	0.375	72.000	73.241
M72×2	6H	69.835	70.210	70.701	70.937	0.236	72.000	72.525
M75×1.5	6H	73.376	73.676	74.026	74.238	0.212	75.000	75.429
M80×6	6H	73.505	74.305	76.103	76.478	0.375	80.000	81.241
M80×2	6H	77.835	78.210	78.701	78.937	0.236	80.000	80.525
M80×1.5	6Н	78.376	78.676	79.026	79.238	0.212	80.000	80.429
M85×2	6H	82.835	83.210	83.701	83.937	0.236	85.000	85.525
M90×6	6H	83.505	84.305	86.103	86.478	0.375	90.000	91.241
M90×2	6H	87.835	88.210	88.701	88.937	0.236	90.000	90.525
M95×2	6H	92.835	93.210	93.701	93.951	0.250	95.000	95.539
M100×6	6H	93.505	94.305	96.103	96.503	0.400	100.000	101.266
M100×2	6H	97.835	98.210	98.701	98.951	0.250	100.000	100.539
M105×2	6H	102.835	103.210	103.701	103.951	0.250	105.000	105.539
M110×2	6H	107.835	108.210	108.701	108.951	0.250	110.000	110.539
M120×2	6H	117.835	118.210	118.701	118.951	0.250	120.000	120.539
M130×2	6H	127.835	128.210	128.701	128.951	0.250	130.000	130.539
M140×2	6H	137.835	138.210	138.701	138.951	0.250	140.000	140.539
M150×2	6H	147.835	148.210	148.701	148.951	0.250	150.000	150.539
M160×3	6H	156.752	157.252	158.051	158.351	0.300	160.000	160.733
M170×3	6H	166.752	167.252	168.051	168.351	0.300	170.000	170.733
M180×3	6H	176.752	177.252	178.051	178.351	0.300	180.000	180.733
M190×3	6H	186.752	187.252	188.051	188.386	0.335	190.000	190.768
M200×3	6H	196.752	197.252	198.051	198.386	0.335	200.000	200.768

^aThis reference dimension is used in design of tools, etc., and is not normally specified. Generally, major diameter acceptance is based upon maximum material condition gaging.

All dimensions are in millimeters.

Table 12. External Metric Thread — M Profile Limiting Dimensions ANSI/ASME B1.13M-2005 (R2015)

Limiting Dimensions ANSI/ASME B1.13M-2003 (R2013)									
			Major D		Pitc	h Diameter ^b	,c	Minor Dia. ^b d ₁	Minor Dia. ^d d_3
Basic Thread Designation	Tol. Class	Allowance ^a es	Max.	Min.	Max.	Min.	Tol.	Max.	Min.
M1.6×0.35	6g	0.019	1.581	1.496	1.354	1.291	0.063	1.202	1.075
M1.6×0.35	6h	0.000	1.600	1.515	1.373	1.310	0.063	1.221	1.094
M1.6×0.35	4g6g	0.019	1.581	1.496	1.354	1.314	0.040	1.202	1.098
M2×0.4	6g	0.019	1.981	1.886	1.721	1.654	0.067	1.548	1.408
M2×0.4	6h	0.000	2.000	1.905	1.740	1.673	0.067	1.567	1.427
M2×0.4	4g6g	0.019	1.981	1.886	1.721	1.679	0.042	1.548	1.433
M2.5×0.45	6g	0.020	2.480	2.380	2.188	2.117	0.071	1.993	1.840
M2.5×0.45	6h	0.000	2.500	2.400	2.208	2.137	0.071	2.013	1.860
M2.5×0.45	4g6g	0.020	2.480	2.380	2.188	2.143	0.045	1.993	1.866
M3×0.5	6g	0.020	2.980	2.874	2.655	2.580	0.075	2.438	2.272
M3×0.5	6h	0.000	3.000	2.894	2.675	2.600	0.075	2.458	2.292
M3×0.5	4g6g	0.020	2.980	2.874	2.655	2.607	0.048	2.438	2.299
M3.5×0.6	6g	0.021	3.479	3.354	3.089	3.004	0.085	2.829	2.634
M3.5×0.6	6h	0.000	3.500	3.375	3.110	3.025	0.085	2.850	2.655
M3.5×0.6	4g6g	0.021	3.479	3.354	3.089	3.036	0.053	2.829	2.666
M4×0.7	6g	0.022	3.978	3.838	3.523	3.433	0.090	3.220	3.002
M4×0.7	6h	0.000	4.000	3.860	3.545	3.455	0.090	3.242	3.024
M4×0.7	4g6g	0.022	3.978	3.838	3.523	3.467	0.056	3.220	3.036
M5×0.8	6g	0.024	4.976	4.826	4.456	4.361	0.095	4.110	3.868
M5×0.8	6h	0.000	5.000	4.850	4.480	4.385	0.095	4.134	3.892
M5×0.8	4g6g	0.024	4.976	4.826	4.456	4.396	0.060	4.110	3.903
M6×1	6g	0.026	5.974	5.794	5.324	5.212	0.112	4.891	4.596
M6×1	6h	0.000	6.000	5.820	5.350	5.238	0.112	4.917	4.622
M6×1	4g6g	0.026	5.974	5.794	5.324	5.253	0.071	4.891	4.637
M8×1.25	6g	0.028	7.972	7.760	7.160	7.042	0.118	6.619	6.272
M8×1.25	6h	0.000 0.028	8.000 7.972	7.788	7.188 7.160	7.070 7.085	0.118	6.647 6.619	6.300 6.315
M8×1.25	4g6g			7.760					
M8×1	6g 6h	0.026 0.000	7.974 8.000	7.794 7.820	7.324 7.350	7.212 7.238	0.112 0.112	6.891 6.917	6.596 6.622
M8×1 M8×1	4g6g	0.026	7.974	7.794	7.324	7.253	0.112	6.891	6.637
M10×1.5	4gog 6g	0.020	9.968	9.732	8.994	8.862	0.071	8.344	7.938
M10×1.5	6h	0.000	10.000	9.764	9.026	8.894	0.132	8.376	7.970
M10×1.5	4g6g	0.032	9.968	9.732	8,994	8.909	0.085	8.344	7.985
M10×1.25	6g	0.028	9.972	9.760	9.160	9.042	0.118	8.619	8.272
M10×1.25	6h	0.000	10.000	9.788	9.188	9.070	0.118	8.647	8.300
M10×1.25	4g6g	0.028	9.972	9.760	9.160	9.085	0.075	8.619	8.315
M10×1.25	6g	0.026	9.974	9.794	9.324	9.212	0.112	8.891	8.596
M10×1	6h	0.000	10.000	9.820	9.350	9.238	0.112	8.917	8.622
M10×1	4g6g	0.026	9.974	9.794	9.324	9.253	0.071	8.891	8.637
M10×0.75	6g	0.022	9.978	9.838	9.491	9.391	0.100	9.166	8.929
M10×0.75	6h	0.000	10.000	9.860	9.513	9.413	0.100	9.188	8.951
M10×0.75	4g6g	0.022	9.978	9.838	9.491	9.428	0.063	9.166	8.966
M12×1.75	6g	0.034	11.966	11.701	10.829	10.679	0.150	10.071	9.601
M12×1.75	6h	0.000	12.000	11.735	10.863	10.713	0.150	10.105	9.635
M12×1.75	4g6g	0.034	11.966	11.701	10.829	10.734	0.095	10.071	9.656
M12×1.5	6g	0.032	11.968	11.732	10.994	10.854	0.140	10.344	9.930
M12×1.5	6h	0.000	12.000	11.764	11.026	10.886	0.140	10.376	9.962
M12×1.5	4g6g	0.032	11.968	11.732	10.994	10.904	0.090	10.344	9.980
M12×1.25	6g	0.028	11.972	11.760	11.160	11.028	0.132	10.619	10.258
M12×1.25	6h	0.000	12.000	11.788	11.188	11.056	0.132	10.647	10.286
M12×1.25	4g6g	0.028	11.972	11.760	11.160	11.075	0.085	10.619	10.305
M12×1	6g	0.026	11.974	11.794	11.324	11.206	0.118	10.891	10.590
M12×1	6h	0.000	12.000	11.820	11.350	11.232	0.118	10.917	10.616
M12×1	4g6g	0.026	11.974	11.794	11.324	11.249	0.075	10.891	10.633
M14×2	6g	0.038	13.962	13.682	12.663	12.503	0.160	11.797	11.271
M14×2	6h	0.000	14.000	13.720	12.701	12.541	0.160	11.835	11.309
M14×2	4g6g	0.038	13.962	13.682	12.663	12.563	0.100	11.797	11.331
M14×1.5	6g	0.032	13.968	13.732	12.994	12.854	0.140	12.344	11.930
M14×1.5	6h	0.000	14.000	13.764	13.026	12.886	0.140	12.376	11.962
M14×1.5	4g6g	0.032	13.968	13.732	12.994	12.904	0.090	12.344	11.980
M15×1	6g	0.026	14.974	14.794	14.324	14.206	0.118	13.891	13.590
M15×1	6h	0.000	15.000	14.820	14.350	14.232	0.118	13.917	13.616
M15×1	4g6g	0.026	14.974	14.794	14.324	14.249	0.075	13.891	13.633

Table 12. (Continued) **External Metric Thread—M Profile** Limiting Dimensions ANSI/ASME B1.13M-2005 (R2015)

Limiting Dimensions ANSI/ASME B1.13M-2003 (R2013)										
			Major Di		Pito	h Diameter ^b	c	Minor Dia. ^b d ₁	Minor Dia. ^d d ₃	
Basic Thread Designation	Tol. Class	Allowance ^a es	Max.	Min.	Max.	Min.	Tol.	Max.	Min.	
M16×2	6g	0.038	15.962	15.682	14.663	14.503	0.160	13.797	13.271	
M16×2	6h	0.000	16.000	15.720	14.701	14.541	0.160	13.835	13.309	
M16×2	4g6g	0.038	15.962	15.682	14.663	14.563	0.100	13.797	13.331	
M16×1.5	6g	0.032	15.968	15.732	14.994	14.854	0.140	14.344	13.930	
M16×1.5	6h	0.000	16.000	15.764	15.026	14.886	0.140	14.376	13.962	
M16×1.5	4g6g	0.032	15.968	15.732	14.994	14.904	0.090	14.344	13.980	
M17×1	6g	0.026	16.974	16.794	16.324	16.206	0.118	15.891	15.590	
M17×1	6h	0.000	17.000	16.820	16.350	16.232	0.118	15.917	15.616	
M17×1	4g6g	0.026	16.974	16.794	16.324	16.249	0.075	15.891	15.633	
M18×1.5	6g	0.032	17.968	17.732	16.994	16.854	0.140	16.344	15.930	
M18×1.5	6h	0.000	18.000	17.764	17.026	16.886	0.140	16.376	15.962	
M18×1.5	4g6g	0.032	17.968	17.732	16.994	16.904	0.090	16.344	15.980	
M20×2.5	6g	0.042	19.958	19.623	18.334	18.164	0.170	17.251	16.624	
M20×2.5	6h	0.000	20.000	19.665	18.376	18.206	0.170	17.293	16.666	
M20×2.5	4g6g	0.042	19.958	19.623	18.334	18.228	0.106	17.251	16.688	
M20×1.5	6g	0.032	19.968	19.732	18.994	18.854	0.140	18.344	17.930	
M20×1.5	6h	0.000	20.000	19.764	19.026	18.886	0.140	18.376	17.962	
M20×1.5	4g6g	0.032	19.968	19.732	18.994	18.904	0.090	18.344	17.980	
M20×1.5	6g	0.026	19.974	19.794	19.324	19.206	0.118	18.891	18.590	
M20 × 1 M20 × 1	6h	0.000	20.000	19.794	19.324	19.232	0.118	18.917	18.616	
	4g6g	0.026	19.974	19.794	19.324	19.232	0.075	18.891	18.633	
M20×1					20.334	20.164	0.073	19.251		
M22×2.5	6g	0.042	21.958	21.623		20.104	0.170	19.231	18.624	
M22×2.5	6h	0.000	22.000	21.665	20.376		0.170		18.666	
M22×1.5	6g	0.032	21.968	21.732	20.994	20.854		20.344	19.930	
M22×1.5	6h	0.000	22.000	21.764	21.026	20.886	0.140	20.376	19.962	
M22×1.5	4g6g	0.032	21.968	21.732	20.994	20.904	0.090	20.344	19.980	
M24×3	6g	0.048	23.952	23.577	22.003	21.803	0.200	20.704	19.955	
M24×3	6h	0.000	24.000	23.625	22.051	21.851	0.200	20.752	20.003	
M24×3	4g6g	0.048	23.952	23.577	22.003	21.878	0.125	20.704	20.030	
M24×2	6g	0.038	23.962	23.682	22.663	22.493	0.170	21.797	21.261	
M24×2	6h	0.000	24.000	23.720	22.701	22.531	0.170	21.835	21.299	
M24×2	4g6g	0.038	23.962	23.682	22.663	22.557	0.106	21.797	21.325	
M25×1.5	6g	0.032	24.968	24.732	23.994	23.844	0.150	23.344	22.920	
M25×1.5	6h	0.000	25.000	24.764	24.026	23.876	0.150	23.376	22.952	
M25×1.5	4g6g	0.032	24.968	24.732	23.994	23.899	0.095	23.344	22.975	
M27×3	6g	0.048	26.952	26.577	25.003	24.803	0.200	23.704	22.955	
M27×3	6h	0.000	27.000	26.625	25.051	24.851	0.200	23.752	23.003	
M27×2	6g	0.038	26.962	26.682	25.663	25.493	0.170	24.797	24.261	
M27×2	6h	0.000	27.000	26.720	25.701	25.531	0.170	24.835	24.299	
M27×2	4g6g	0.038	26.962	26.682	25.663	25.557	0.106	24.797	24.325	
M30×3.5	6g	0.053	29.947	29.522	27.674	27.462	0.212	26.158	25.306	
M30×3.5	6h	0.000	30.000	29.575	27.727	27.515	0.212	26.211	25.359	
M30×3.5	4g6g	0.053	29.947	29.522	27.674	27.542	0.132	26.158	25.386	
M30×2	6g	0.038	29.962	29.682	28.663	28.493	0.170	27.797	27.261	
M30×2	6h	0.000	30.000	29.720	28.701	28.531	0.170	27.835	27.299	
M30×2	4g6g	0.038	29.962	29.682	28.663	28.557	0.106	27.797	27.325	
M30×1.5	6g	0.032	29.968	29.732	28.994	28.844	0.150	28.344	27.920	
M30×1.5	6h	0.000	30.000	29.764	29.026	28.876	0.150	28.376	27.952	
M30×1.5	4g6g	0.032	29.968	29.732	28.994	28.899	0.095	28.344	27.975	
M33×2	6g	0.038	32.962	32.682	31.663	31.493	0.170	30.797	30.261	
M33×2	6h	0.000	33.000	32.720	31.701	31.531	0.170	30.835	30.299	
M33×2	4g6g	0.038	32.962	32.682	31.663	31.557	0.106	30.797	30.325	
M35×1.5	6g	0.032	34.968	34.732	33.994	33.844	0.150	33.344	32.920	
M35×1.5	6h	0.000	35.000	34.764	34.026	33.876	0.150	33.376	32.952	
M36×4	6g	0.060	35.940	35.465	33.342	33.118	0.224	31.610	30.654	
M36×4	6h	0.000	36.000	35.525	33.402	33.178	0.224	31.670	30.714	
M36×4	4g6g	0.060	35.940	35.465	33.342	33.202	0.140	31.610	30.738	
M36×2	6g	0.038	35.962	35.682	34.663	34.493	0.170	33.797	33.261	
M36×2	6h	0.000	36.000	35.720	34.701	34.531	0.170	33.835	33.299	
M36×2	4g6g	0.038	35.962	35.682	34.663	34.557	0.106	33.797	33.325	
M39×2	6g	0.038	38.962	38.682	37.663	37.493	0.170	36.797	36.261	
M39×2	6h	0.000	39.000	38.720	37.701	37.531	0.170	36.835	36.299	
M39×2	4g6g	0.038	38.962	38.682	37.663	37.557	0.106	36.797	36.325	
M40×1.5	6g	0.032	39.968	39.732	38.994	38.844	0.150	38.344	37.920	
	og	0.002		1 5552	1 30.55 7	50.017	0.155	50511	323	

Table 12. (Continued) **External Metric Thread—M Profile** Limiting Dimensions ANSI/ASME B1.13M-2005 (R2015)

Emitting Dimensions Alvati Asia E B1.13 in 2003 (R2013)									
					D'.	h Diameter ^b		Minor Dia.b	Minor Dia.d
			Major D		Pitt	n Diameter d ₂		d ₁	d ₁
p						u ₂		u ₁	· · · 3
Basic Thread Designation	Tol. Class	Allowance ^a es	Max.	Min.	Max.	Min.	Tol.	Max.	Min.
M40×1.5	6h	0.000	40.000	39.764	39.026	38,876	0.150	38.376	37.952
M40×1.5	4g6g	0.032	39.968	39.732	38.994	38.899	0.095	38.344	37.975
M40×1.5 M42×4.5	6g	0.063	41.937	41.437	39.014	38.778	0.236	37.065	36.006
M42×4.5	6h	0.000	42.000	41.500	39.077	38.841	0.236	37.128	36.069
M42×4.5	4g6g	0.063	41.937	41.437	39.014	38.864	0.150	37.065	36.092
M42×2	6g	0.038	41.962	41.682	40.663	40.493	0.170	39.797	39.261
M42×2	6h	0.000	42.000	41.720	40.701	40.531	0.170	39.835	39.299
M42×2	4g6g	0.038	41.962	41.682	40.663	40.557	0.106	39.797	39.325
M45×1.5	6g	0.032	44.968	44.732	43.994	43.844	0.150	43.344	42.920
M45×1.5	6h	0.000	45.000	44.764	44.026	43.876	0.150	43.376	42.952
M45×1.5	4g6g	0.032	44.968	44.732	43.994	43.899	0.095	43.344	42.975
M48×5	6g	0.071	47.929	47.399	44.681	44.431	0.250	42.516	41.351
M48×5	6h	0.000	48.000	47.470	44.752	44.502	0.250	42.587	41.422
M48×5	4g6g	0.071	47.929	47.399	44.681	44.521	0.160	42.516	41.441
M48×2	6g	0.038	47.962	47.682	46.663	46.483	0.180	45.797	45.251
M48×2	6h	0.000	48.000	47.720	46.701	46.521	0.180	45.835	45.289
M48×2	4g6g	0.038	47.962	47.682	46.663	46.551	0.112 0.160	45.797	45.319
M50×1.5	6g 6h	0.032 0.000	49.968 50.000	49.732 49.764	48.994 49.026	48.834 48.866	0.160	48.344 48.376	47.910 47.942
M50×1.5 M50×1.5	4g6g	0.000	49.968	49.764	49.026	48.894	0.100	48.376	47.942
M50×1.5 M55×1.5	4g0g 6g	0.032	54.968	54.732	53.994	53.834	0.160	53.344	52.910
M55×1.5	6h	0.000	55.000	54.764	54.026	53.866	0.160	53.376	52.942
M55×1.5	4g6g	0.032	54.968	54.732	53.994	53.894	0.100	53.344	52.970
M56×5.5	6g	0.075	55.925	55.365	52.353	52.088	0.265	49.971	48.700
M56×5.5	6h	0.000	56.000	55.440	52.428	52.163	0.265	50.046	48.775
M56×5.5	4g6g	0.075	55.925	55.365	52.353	52.183	0.170	49.971	48.795
M56×2	6g	0.038	55.962	55.682	54.663	54.483	0.180	53.797	53.251
M56×2	6h	0.000	56.000	55.720	54.701	54.521	0.180	53.835	53.289
M56×2	4g6g	0.038	55.962	55.682	54.663	54.551	0.112	53.797	53.319
M60×1.5	6g	0.032	59.968	59.732	58.994	58.834	0.160	58.344	57.910
M60×1.5	6h	0.000	60.000	59.764	59.026	58.866	0.160	58.376	57.942
M60×1.5	4g6g	0.032	59.968	59.732	58.994	58.894	0.100	58.344	57.970
M64×6	6g	0.080	63.920	63.320	60.023	59.743	0.280	57.425	56.047
M64×6	6h	0.000	64.000	63.400	60.103	59.823	0.280	57.505	56.127
M64×6	4g6g	0.080	63.920	63.320	60.023	59.843	0.180	57.425	56.147
M64×2	6g	0.038	63.962	63.682	62.663	62.483	0.180	61.797	61.251
M64×2	6h	0.000	64.000	63.720	62.701	62.521	0.180	61.835	61.289
M64×2	4g6g	0.038	63.962	63.682	62.663	62.551	0.112	61.797	61.319
M65×1.5	6g	0.032	64.968	64.732	63.994	63.834	0.160	63.344	62.910
M65×1.5	6h	0.000	65.000	64.764	64.026	63.866	0.160	63.376	62.942
M65×1.5	4g6g	0.032 0.032	64.968 69.968	64.732 69.732	63.994 68.994	63.894 68.834	0.100 0.160	63.344 68.344	62.970 67.910
M70×1.5 M70×1.5	6g 6h	0.032	70.000	69.764	69.026	68.866	0.160	68.376	67.910
M70×1.5	4g6g	0.032	69.968	69.732	68.994	68.894	0.100	68.344	67.942
M70×1.5 M72×6	6g	0.032	71.920	71.320	68.023	67.743	0.100	65.425	64.047
M72×6	6h	0.000	72.000	71.400	68.103	67.823	0.280	65.505	64.127
M72×6	4g6g	0.080	71.920	71.320	68.023	67.843	0.180	65.425	64.147
M72×2	6g	0.038	71.962	71.682	70.663	70.483	0.180	69.797	69.251
M72×2	6h	0.000	72.000	71.720	70.701	70.521	0.180	69.835	69.289
M72×2	4g6g	0.038	71.962	71.682	70.663	70.551	0.112	69.797	69.319
M75×1.5	6g	0.032	74.968	74.732	73.994	73.834	0.160	73.344	72.910
M75×1.5	6h	0.000	75.000	74.764	74.026	73.866	0.160	73.376	72.942
M75×1.5	4g6g	0.032	74.968	74.732	73.994	73.894	0.100	73.344	72.970
M80×6	6g	0.080	79.920	79.320	76.023	75.743	0.280	73.425	72.047
M80×6	6h	0.000	80.000	79.400	76.103	75.823	0.280	73.505	72.127
M80×6	4g6g	0.080	79.920	79.320	76.023	75.843	0.180	73.425	72.147
M80×2	6g	0.038	79.962	79.682	78.663	78.483	0.180	77.797	77.251
M80×2	6h	0.000	80.000	79.720	78.701	78.521	0.180	77.835	77.289
M80×2	4g6g	0.038	79.962	79.682	78.663	78.551	0.112	77.797	77.319
M80×1.5	6g	0.032	79.968	79.732	78.994	78.834	0.160	78.344	77.910
M80×1.5	6h	0.000	80.000	79.764	79.026	78.866	0.160	78.376	77.942
M80×1.5	4g6g	0.032	79.968	79.732	78.994	78.894	0.100	78.344	77.970
M85×2	6g	0.038	84.962	84.682	83.663	83.483	0.180	82.797	82.251
M85×2	6h	0.000	85.000	84.720	83.701	83.521	0.180	82.835	82.289

Table 12. (Continued) **External Metric Thread—M Profile** Limiting Dimensions ANSI/ASME B1.13M-2005 (R2015)

		nting Dime	Major Di	iameter ^b	.c	Minor Dia.b	Minor Dia.d		
			d			d_2		$d_{_1}$	d_3
Basic Thread	Tol.	Allowance ^a					m .		
Designation	Class	es	Max.	Min.	Max.	Min.	Tol.	Max.	Min.
M85×2	4g6g	0.038	84.962	84.682	83.663	83.551	0.112	82.797	82.319
M90×6	6g	0.080	89.920	89.320	86.023	85.743	0.280	83.425	82.047
M90×6	6h	0.000	90.000	89.400	86.103	85.823	0.280	83.505	82.127
M90×6	4g6g	0.080	89.920	89.320	86.023	85.843	0.180	83.425	82.147
M90×2	6g	0.038	89.962	89.682	88.663	88.483	0.180	87.797	87.251
M90×2	6h	0.000	90.000	89.720	88.701	88.521	0.180	87.835	87.289
M90×2	4g6g	0.038	89.962	89.682	88.663	88.551	0.112	87.797	87.319
M95×2	6g	0.038	94.962	94.682	93.663	93.473	0.190	92.797	92.241
M95×2	6h	0.000	95.000	94.720	93.701	93.511	0.190	92.835	92.279
M95×2	4g6g	0.038	94.962	94.682	93.663	93.545	0.118	92.797	92.313
M100×6	6g	0.080	99.920	99.320	96.023	95.723	0.300	93.425	92.027
M100×6	6h	0.000	100.000	99.400	96.103	95.803	0.300	93.505	92.107
M100×6	4g6g	0.080	99.920	99.320	96.023	95.833	0.190	93.425	92.137
M100×2	6g	0.038	99.962	99.682	98.663	98.473	0.190	97.797	97.241
M100×2	6h	0.000	100.000	99.720	98.701	98.511	0.190	97.835	97.279
M100×2	4g6g	0.038	99.962	99.682	98.663	98.545	0.118	97.797	97.313
M105×2	6g	0.038	104.962	104.682	103.663	103.473	0.190	102.797	102.241
$M105 \times 2$	6h	0.000	105.000	104.720	103.701	103.511	0.190	102.835	102.279
$M105 \times 2$	4g6g	0.038	104.962	104.682	103.663	103.545	0.118	102.797	102.313
M110×2	6g	0.038	109.962	109.682	108.663	108.473	0.190	107.797	107.241
M110×2	6h	0.000	110.000	109.720	108.701	108.511	0.190	107.835	107.279
M110×2	4g6g	0.038	109.962	109.682	108.663	108.545	0.118	107.797	107.313
$M120 \times 2$	6g	0.038	119.962	119.682	118.663	118.473	0.190	117.797	117.241
$M120 \times 2$	6h	0.000	120.000	119.720	118.701	118.511	0.190	117.835	117.279
M120×2	4g6g	0.038	119.962	119.682	118.663	118.545	0.118	117.797	117.313
M130×2	6g	0.038	129.962	129.682	128.663	128.473	0.190	127.797	127.241
M130×2	6h	0.000	130.000	129.720	128.701	128.511	0.190	127.835	127.279
M130×2	4g6g	0.038	129.962	129.682	128.663	128.545	0.118	127.797	127.313
M140×2	6g	0.038	139.962	139.682	138.663	138.473	0.190	137.797	137.241
M140×2	6h	0.000	140.000	139.720	138.701	138.511	0.190	137.835	137.279
$M140 \times 2$	4g6g	0.038	139.962	139.682	138.663	138.545	0.118	137.797	137.313
$M150 \times 2$	6g	0.038	149.962	149.682	148.663	148.473	0.190	147.797	147.241
$M150 \times 2$	6h	0.000	150.000	149.720	148.701	148.511	0.190	147.835	147.279
$M150 \times 2$	4g6g	0.038	149.962	149.682	148.663	148.545	0.118	147.797	147.313
$M160 \times 3$	6g	0.048	159.952	159.577	158.003	157.779	0.224	156.704	155.931
$M160 \times 3$	6h	0.000	160.000	159.625	158.051	157.827	0.224	156.752	155.979
$M160 \times 3$	4g6g	0.048	159.952	159.577	158.003	157.863	0.140	156.704	156.015
$M170 \times 3$	6g	0.048	169.952	169.577	168.003	167.779	0.224	166.704	165.931
M170×3	6h	0.000	170.000	169.625	168.051	167.827	0.224	166.752	165.979
M170×3	4g6g	0.048	169.952	169.577	168.003	167.863	0.140	166.704	166.015
M180×3	6g	0.048	179.952	179.577	178.003	177.779	0.224	176.704	175.931
M180×3	6h	0.000	180.000	179.625	178.051	177.827	0.224	176.752	175.979
M180×3	4g6g	0.048	179.952	179.577	178.003	177.863	0.140	176.704	176.015
M190×3	6g	0.048	189.952	189.577	188.003	187.753	0.250	186.704	185.905
M190×3	6h	0.000	190.000	189.625	188.051	187.801	0.250	186.752	185.953
$M190 \times 3$	4g6g	0.048	189.952	189.577	188.003	187.843	0.160	186.704	185.995
M200×3	6g	0.048	199.952	199.577	198.003	197.753	0.250	196.704	195.905
M200×3	6h	0.000	200.000	199.625	198.051	197.801	0.250	196.752	195.953
$M200 \times 3$	4g6g	0.048	199.952	199.577	198.003	197.843	0.160	196.704	195.995

a es is an absolute value.

^bCoated threads with tolerance classes 6g or 4g6g.

^c Functional diameter size includes the effects of all variations in pitch diameter, thread form, and profile. The variations in the individual thread characteristics such as flank angle, lead, taper, and roundness on a given thread, cause the measurements of the pitch diameter and functional diameter to vary from one another on most threads. The pitch diameter and the functional diameter on a given thread are equal to one another only when the thread form is perfect. When required to inspect either the pitch diameter, the functional diameter, or both, for thread acceptance, use the same limits of size for the appropriate thread size and class.

^d Dimension used in the design of tools, etc.; in dimensioning external threads it is not normally specified. Generally, minor diameter acceptance is based on maximum material condition gaging. All dimensions are in millimeters.

Metric Spark Plug Threads

British Standard for Spark Plugs BS 45:1972 (withdrawn).—This revised British Standard refers to spark plugs used in automobiles and industrial spark ignition internal combustion engines. The basic thread form is that of the ISO metric. In assigning tolerances, consideration has been given to the desirability of achieving the closest possible measure of interchangeability between British spark plugs and engines, and those made to standards of other ISO Member Bodies. The dimensions below are given in millimeters.

Basic Thread Dimensions for Spark Plug and Tapped Hole in Cylinder Head

Nom.				Major Dia.		Dia.	Minor Dia.	
Size	Pitch	Thread	Max.	Min.	Max.	Min.	Max.	Min.
14	1.25	Plug	13.937a	13.725	13.125	12.993	12.402	12.181
14	1.25	Hole		14.00	13.368	13.188	12.912	12.647
18	1.5	Plug	17.933a	17.697	16.959	16.819	16.092	15.845
18	1.5	Hole		18.00	17.216	17.026	16.676	16.376

a Not specified

The tolerance grades for finished spark plugs and corresponding tapped holes in the cylinder head are: for 14 mm size, 6e for spark plugs and 6H for tapped holes which gives a minimum clearance of 0.063 mm; and for 18 mm size, 6e for spark plugs and 6H for tapped holes which gives a minimum clearance of 0.067 mm. These minimum clearances help prevent seizure due to combustion deposits on the bare threads, when removing the spark plugs; this applies to both ferrous and nonferrous materials. They also should enable spark plugs with threads in accordance with this standard to fit into existing holes.

SAE Spark Plug Screw Threads.—The SAE Standard includes the following sizes: $\frac{7}{4}$ -inch nominal diameter with 18 threads per inch: 18-millimeter nominal diameter with a 18-millimeter nominal diameter with 1.5-millimeter pitch; 14-millimeter nominal diameter with a 1.25-millimeter pitch; 10-millimeter nominal diameter with a 1.0 millimeter pitch; $\frac{7}{4}$ -inch nominal diameter with 24 threads per inch; and $\frac{7}{4}$ -inch nominal diameter with 32 threads per inch. During manufacture, in order to keep the wear on the threading tools within permissible limits, the threads in the spark plug GO (ring) gage should be truncated to the maximum minor diameter of the spark plug; and in the tapped hole GO (plug) gage to the minimum major diameter of the tapped hole.

SAE Standard Threads for Spark Plugs

	SA.	E Standard	i iireaus ioi	Spark Flug	s	
Size ^a	Major I	Diameter	Pitch D	iameter	Minor I	Diameter
Nom.×Pitch	Max.	Min.	Max. Min.		Max.	Min.
		Spark Plug	g Threads, mm (i	nches)		
M18×1.5	17.933	17.803	16.959	16.853	16.053	
	(0.7060)	(0.7009)	(0.6677)	(0.6635)	(0.6320)	
M14×1.25	13.868	13.741	13.104	12.997	12.339	
	(0.5460)	(0.5410)	(0.5159)	(0.5117)	(0.4858)	
M12×1.25	11.862	11.735	11.100	10.998	10.211	
	(0.4670)	(0.4620)	(0.4370)	(0.4330)	(0.4020)	
$M10 \times 1.0$	9.974	9.794	9.324	9.212	8.747	
	(0.3927)	(0.3856)	(0.3671)	(0.3627)	(0.3444)	
		Tapped Ho	le Threads, mm	(inches)		
M18×1.5		18.039	17.153	17.026	16.426	16.266
M18 × 1.3		(0.7102)	(0.6753)	(0.6703)	(0.6467)	(0.6404)
3.61.41.25		14.034	13.297	13.188	12.692	12.499
M14×1.25		(0.5525)	(0.5235)	(0.5192)	(0.4997)	(0.4921)
M12 v 1 25		12.000	11.242	11.188	10.559	10.366
M12×1.25		(0.4724)	(0.4426)	(0.4405)	(0.4157)	(0.4081)
MIOVIO		10.000	9.500	9.350	9.153	8.917
$M10 \times 1.0$		(0.3937)	(0.3740)	(0.3681)	(0.3604)	(0.3511)

^a M14 and M18 are preferred for new applications.

Reprinted with permission © 1990 Society of Automotive Engineers, Inc.

FASTENERS

FASTENER INFORMATION

Table 1. Grade Identification Marks and Mechanical Properties of Bolts and Screws

		a.	Min.	Strength (1	O³ psi)	Material
Identifier	Grade	Size (in.)	Proof	Tensile	Yield	& Treatment
	SAE Grade 1	1/4 to 11/2	33	60	36	1
	ASTM A307	1/4 to 11/2	33	60	36	3
A	SAEC1-2	1/4 to 3/4	55	74	57	1
	SAE Grade 2	½ to 1½	33	60	36	1
	SAE Grade 4	1/4 to 11/2	65	115	100	2, a
	SAE Grade 5, ASTM A449	1/ ₄ to 1	85	120	92	
В	ASTM A449	11/8 to 11/2	74	105	81	2,b
	ASTM A449	13/4 to 3	55	90	58	
C	SAE Grade 5.2	1/4 to 1	85	120	92	4,b
D	ASTM A 225 Time 1	½ to 1	85	120	92	2 h
Б	ASTM A325, Type 1	11/8 to 11/2	74	105	81	2,b
Е	A STEM A 205 To 2	½ to 1	85	120	92	4.1
E	ASTM A325, Type 2	11/8 to 11/2	74	105	81	4,b
F	ASTM A325, Type 3	½ to 1	85	120	92	5, b
Г	A31W1A323, 1ype 3	11/8 to 11/2	74	105	81	3,0
G	ASTM A254 Creede BC	1/4 to 21/2	105	125	109	5 h
G	ASTM A354, Grade BC	25/8 to 4	95	115	99	5,b
Н	SAE Grade 7	1/4 to 11/2	105	133	115	7,b
	SAE Grade 8	1/4 to 11/2	120	150	130	7,b
I	ASTM A354, Grade BD	1/4 to 21/2	120	150	130	6,b
	ASTM ASS4, Grade BD	25/ ₈ to 4	105	140	115	0,0
J	SAE Grade 8.2	1/4 to 1	120	150	130	4,b
K L	ASTM A490, Type 1 ASTM A490, Type 3	½ to 1½	120	150	130	6,b 5,b
	A31W1A490, 1ype 3					5,0

Material Steel: 1—low or medium carbon; 2—medium carbon; 3—low carbon; 4—low-carbon martensite; 5—weathering steel; 6—alloy steel; 7—medium-carbon alloy. Treatment: a—cold drawn; b—quench and temper.

Table 2. Applicability of Hexagon and Spline Keys and Bits

	ninal or Bit	Cap Screws 1960 Series	Flat Countersunk Head Cap Screws	Button Head Cap Screws	Shoulder Screws	Set Screws
	ze			ninal Screw Sizes	-	-
			HEXAGON KEYS			
0.028						0
0.035			0	0		1 & 2
0.050		0	1 & 2	1 & 2		3 & 4
1/16	0.062	1	3 & 4	3 & 4		5 & 6
5/64	0.078	2 & 3	5 & 6	5 & 6		8
3/32	0.094	4 & 5	8	8		10
7/64	0.109	6				
1/8	0.125		10	10	1/4	1/4
9/64	0.141	8				
5/32	0.156	10	1/4	1/4	5/16	5/16
3/ ₁₆	0.188	1/4	5/ ₁₆	5/ ₁₆	3/8	3/8
7/ ₃₂	0.219	´4	716 3/ ₈	16 3/8	´8	7/16
	0.250			i .	1	
1/4	0.230	5/ ₁₆	7/16		1/2	1/2
5/ ₁₆		3/8	1/2	1/2	5/ ₈	5/8
3/8	0.375	7/ ₁₆ & 1/ ₂	5½ 8	5/ ₈	3/4	3/4
⁷ / ₁₆	0.438					
1/2	0.500	⁵ / ₈	3/4		1	7∕8
9/16	0.562		7∕8			1 & 11/8
5/8	0.625	3/4	1		11/4	11/4 & 13/8
3/4	0.750	½ & 1	11/8			11/2
7/8	0.875	11/8 & 11/4	11/4 & 13/8		11/2	
1	1.000	13/8 & 11/2	11/2		13/4	13/4 & 2
11/4	1.250	13/4			2	
11/2	1.500	2				
13/4	1.750	21/4 & 21/,				
2	2.000	23/4				
21/4	2.250	3 & 31/4				
23/4	2.750	31/2 & 33/4				
3	3,000	4				
			SPLINE KEYS AT			
0.0	033					0 & 1
0.0	048		0	0		2 & 3
0.0		0	1 & 2	1 & 2		4
	072	1	3 & 4	3 & 4		5 & 6
)96	2 & 3	5 & 6	5 & 6		8
0.1	133	4 & 5 6	8	8		10
	145	i	10	10		
	168	 8				1/4
	183	10	1/4	1/4		5/ ₁₆
	216		5/ ₁₆			
0.2		1/4		5/ ₁₆		3/ ₈
			3/ ₈	3/8		7/16
0.2		5/16	7/16			1/2
).372 ³ / ₈		1/2	1/2		5/8
	154	7/ ₁₆ & 1/ ₂	5/ ₈ & 3/ ₄	5/ ₈		3/4
	595	⁵ / ₈				7∕8
	520	3/4				
	598	7/8				
0.7	790	1				

 $Source: Appendix \ to \ American \ National \ Standard \ ANSI/ASME \ B18.3-2012.$

CAPSCREWS

Table 3. American National Standard Hexagon and Spline Socket Head Cap Screws ANSI/ASME B18.3-2012

Height, H

Socket^a

Socket

Ext., F

Engage-

Nominai		ameter, D		eter, A	пеід		Socker		cket	EXt., F	Engage-
Size	Max.	Min.	Max.	Min.	Max.	Min.	Size, M ^b		ze, J	Max.	ment,ª T
0	0.0600	0.0568	0.096	0.091	0.060	0.057	0.060		050	0.007	0.025
1	0.0730	0.0695	0.118	0.112	0.073	0.070	0.072	1/16	0.062	0.007	0.031
2	0.0860	0.0822	0.140	0.134	0.086	0.083	0.096	5/64	0.078	0.008	0.038
3	0.0990	0.0949	0.161	0.154	0.099	0.095	0.096	5/64	0.078	0.008	0.044
4	0.1120	0.1075	0.183	0.176	0.112	0.108	0.111	3/32	0.094	0.009	0.051
5	0.1250	0.1202	0.205	0.198	0.125	0.121	0.111	3/32	0.094	0.010	0.057
6	0.1380	0.1329	0.226	0.218	0.138	0.134	0.133	7/64	0.109	0.010	0.064
8	0.1640	0.1585	0.270	0.262	0.164	0.159	0.168	9/64	0.141	0.012	0.077
10	0.1900	0.1840	0.312	0.303	0.190	0.185	0.183	5/32	0.156	0.014	0.090
1/4	0.2500	0.2435	0.375	0.365	0.250	0.244	0.216	3/16	0.188	0.014	0.120
5/16	0.3125	0.3053	0.469	0.457	0.312	0.306	0.291	1/4	0.250	0.017	0.151
3/8	0.3750	0.3678	0.562	0.550	0.375	0.368	0.372	5/16	0.312	0.020	0.182
7/16	0.4375	0.4294	0.656	0.642	0.438	0.430	0.454	3/8	0.375	0.023	0.213
1/2	0.5000	0.4919	0.750	0.735	0.500	0.492	0.454	3/8	0.375	0.026	0.245
5/,	0.6250	0.6163	0.938	0.921	0.625	0.616	0.595	1/2	0.500	0.032	0.307
3/4	0.7500	0.7406	1.125	1.107	0.750	0.740	0.620	5/8	0.625	0.039	0.370
7/.	0.8750	0.8647	1.312	1.293	0.875	0.864	0.698	3/4	0.750	0.044	0.432
7/8 1	1.0000	0.9886	1.500	1.479	1.000	0.988	0.790	3/4	0.750	0.050	0.495
11/8	1.1250	1.1086	1.688	1.665	1.125	1.111		1/8	0.875	0.055	0.557
11/4	1.2500	1.2336	1.875	1.852	1.250	1.236		7/8	0.875	0.060	0.620
13/8	1.3750	1.3568	2.062	2.038	1.375	1.360		1	1.000	0.065	0.682
11/2	1.5000	1.4818	2.250	2.224	1.500	1.485		1	1.000	0.070	0.745
13/4	1.7500	1.7295	2.625	2.597	1.750	1.734		11/4	1.250	0.080	0.870
2	2.0000	1.9780	3.000	2.970	2.000	1.983		11/2	1.500	0.090	0.995
21/4	2.2500	2.2280	3.375	3.344	2.250	2.232		13/4	1.750	0.100	1.120
21/,	2.5000	2.4762	3.750	3.717	2.500	2.481		13/4	1.750	0.110	1.245
23/4	2.7500	2.7262	4.125	4.090	2.750	2.730		2	2.000	0.120	1.370
3	3.0000	2.9762	4.500	4.464	3.000	2.979		21/	2.250	0.130	1.495
31/4	3.2500	3.2262	4.875	4.837	3.250	3.228		21/4	2.250	0.140	1.620
31/2	3.5000	3.4762	5.250	5.211	3.500	3.478		23/4	2.750	0.150	1.745
33/.	3.7500	3.7262	5.625	5.584	3.750	3.727		23/4	2.750	0.160	1.870
3 ³ / ₄ 4	4.0000	3.9762	6.000	5.958	4.000	3.976		3	3.000	0.170	1.995
9.17		. 1 .1			C 1:						

^a Key engagement depths are minimum. Spline socket sizes are nominal.

All dimensions in inches. The body length L_{B} of the screw is the length of the unthreaded cylindrical portion of the shank. The length of thread, $L_{T_{1}}$ is the distance from the extreme point to the last complete (full form) thread. Standard length increments for screw diameters up to 1 inch are V_{16} inch for lengths V_{8} through V_{4} inch, V_{8} inch for lengths V_{8} through 1 inch, V_{8} inch for lengths 1 through 1 inch, V_{8} inch for lengths 3 V_{2} through 7 inches, 1 inch for lengths 7 through 10 inches and for diameters over 1 inch are V_{2} inch for lengths 1 through 7 inches, 1 inch for lengths 7 through 10 inches, and 2 inches for lengths over 10 inches.

Heads may be plain or knurled, and chamfered to an angle E of 30 to 45 degrees with the surface of the flat. The thread conforms to the Unified Standard with radius root, Class 3A UNRC and UNRF for screw sizes No.0 through 1 inch inclusive, Class 2A UNRC and UNRF for over 1 inch through 1 $\frac{1}{2}$ inches inclusive, and Class 2A UNRC for larger sizes. For details not shown, including materials, see ANSI/ASME B18.3-2012 and ANSI/ASME B18.3-1998 (for Spline driven fasteners).

Body Diameter, D

Diameter. A

 $^{^{\}rm b}$ Spline driven fasteners are removed from the latest revision. For additional information on these fasteners, see ANSI/ASME B18.3-1998.

Table 4. American National Standard Socket Head Cap Screws—Metric Series ANSI/ASME B18.3.1M-1986 (Withdrawn)

^a See also Table 2.

 $^{^{}b}$ The M14×2 size is not recommended for use in new designs.

All dimensions are in millimeters. *LG* is grip length and *LB* is body length. For additional manufacturing and acceptance specifications, see ASME B18.3.1M (Withdrawn).

SET SCREWS

Table 5. Hexagon and Spline Socket Set Screws *ANSI/ASME B18.3-2012 and ANSI/ASME B18.3-1998 (for Spline-Driven Fasteners)*

) D			M D Z	N → I J → I J → E P		→		CX	-	Flat Poin	<u>+</u> C
Cone	Point		Hal	f Dog			Cup Poi	nt	(Oval Poi	nt
		Sock	et Size	G	Flat Point	Half Do	og Point	Oval Point		. Key	
	minal	Hex.	Spl.	Cup and Dian		Dia.	Lgth.	Radius		ement pth	Lgth. Limit for
	lize Basic	Nom.	Nom.	Max.	Min.	Max.	Max.	Basic	Hex.	Spl.	Angle
	Diameter	J	M	(7	P	Q	R	$T_{H^{a}}$	T_S^a	Yb
0	0.0600	0.028	0.033	0.033	0.027	0.040	0.017	0.045	0.050	0.026	0.09
1	0.0730	0.035	0.033	0.040	0.033	0.049	0.021	0.055	0.060	0.035	0.09
2	0.0860	0.035	0.048	0.047	0.039	0.057	0.024	0.064	0.060	0.040	0.13
3	0.0990	0.050	0.048	0.054	0.045	0.066	0.027	0.074	0.070	0.040	0.13
4	0.1120	0.050	0.060	0.061	0.051	0.075	0.030	0.084	0.070	0.045	0.19
5	0.1250	1/16	0.072	0.067	0.057	0.083	0.033	0.094	0.080	0.055	0.19
6	0.1380	1/16	0.072	0.074	0.064	0.092	0.038	0.104	0.080	0.055	0.19
8	0.1640	5/64	0.096	0.087	0.076	0.109 0.043 0.123			0.090	0.080	0.25
10	0.1900	3/32	0.111	0.102	0.088	0.127	0.049	0.142	0.100	0.080	0.25
1/4	0.2500	1/8	0.145	0.132	0.118	0.156	0.067	0.188	0.125	0.125	0.31
5/16	0.3125	5/32	0.183	0.172	0.156	0.203	0.082	0.234	0.156	0.156	0.38
3/8	0.3750	3/16	0.216	0.212	0.194	0.250	0.099	0.281	0.188	0.188	0.44
7/16	0.4375	7/32	0.251	0.252	0.232	0.297	0.114	0.328	0.219	0.219	0.50
1/2	0.5000	1/4	0.291	0.291	0.270	0.344	0.130	0.375	0.250	0.250	0.57
5/8	0.6250	5/16	0.372	0.371	0.347	0.469	0.164	0.469	0.312	0.312	0.75
3/4	0.7500	3/8	0.454	0.450	0.425	0.562	0.196	0.562	0.375	0.375	0.88
7/8	0.8750	1/2	0.595	0.530	0.502	0.656	0.227	0.656	0.500	0.500	1.00
i	1.0000	9/16		0.609	0.579	0.750	0.260	0.750	0.562		1.13
11/4	1.1250	9/16		0.689	0.655	0.844	0.291	0.844	0.562		1.25
11/4	1.2500	5/8		0.767	0.733	0.938	0.323	0.938	0.625		1.50
13/2	1.3750	5/8		0.848	0.808	1.031	0.354	1.031	0.625		1.63
11/,	1.5000	3/4		0.926	0.886	1.125	0.385	1.125	0.750		1.75
13/	1.7500	1		1.086	1.039	1.312	0.448	1.321	1.000		2.00
2	2.0000	1		1.244	1.193	1.500	0.510	1.500	1.000		2.25

^a Reference should be made to the Standard for shortest optimum nominal lengths to which the minimum key engagement depths T_u and T_s apply.

 $^{^{\}rm b}$ Cone point angle Y is 90 degrees plus or minus 2 degrees for these nominal lengths or longer and 118 degrees plus or minus 2 degrees for shorter nominal lengths.

All dimensions are in inches. The thread conforms to the Unified Standard, Class 3A, UNC and UNF series. The socket depth T is included in the Standard and some are shown here. The nominal length L of all socket-type set screws is the total or overall length. For nominal screw lengths of $\frac{1}{16}$ through $\frac{3}{16}$ inch (0 through 3 sizes incl.) the standard length increment is 0.06 inch; for lengths $\frac{1}{8}$ through 1 inch the increment is $\frac{1}{8}$ inch; for lengths 1 through 2 inches the increment is $\frac{1}{4}$ inch; for lengths 2 through 6 inches the increment is $\frac{1}{2}$ inch; for lengths 6 inches and longer the increment is 1 inch.

 $Length Tolerance: The allowable tolerance on length L for all set screws of the socket type is \pm 0.01 inch for set screws up to <math display="inline">\frac{5}{8}$ inch long; ± 0.02 inch for screws over $\frac{5}{8}$ to 2 inches long; ± 0.03 inch for screws over 2 to 6 inches long and ± 0.06 inch for screws over 6 inches long. For manufacturing details, including materials, not shown, see American National Standard ANSI/ASME B18.3-2 and ASNI/ASME B18.3-1998 (for Spline driven fasteners).

Table 6. Drill and Counterbore Sizes for Socket Head Cap Screws (1960 Series)

			Nominal	Drill Size			
No	minal	Close	Fit ^b	Normal	Fit ^c		
or S	Size Basic crew	Number or Fractional Size	Decimal Size	Number or Fractional Size	Decimal Size	Counterbore Diameter	Countersink Diameter ^a
Dia	meter			1		В	С
0	0.0600	51	0.067	49	0.073	1/8	0.074
1	0.0730	46	0.081	43	0.089	5/32	0.087
2	0.0860	3/32	0.094	36	0.106	3/ ₁₆	0.102
3	0.0990	36	0.106	31	0.120	7/32	0.115
4	0.1120	1/8	0.125	29	0.136	7/32	0.130
5	0.1250	%	0.141	23	0.154	1/4	0.145
6	0.1380	23	0.154	18	0.170	9/32	0.158
8	0.1640	15	0.180	10	0.194	5/16	0.188
10	0.1900	5	0.206	2	0.221	3/8	0.218
1/4	0.2500	17/64	0.266	9/32	0.281	7/ ₁₆	0.278
5/16	0.3125	21/64	0.328	11/32	0.344	17/32	0.346
3/8	0.3750	25/	0.391	13/32	0.406	5/8	0.415
7/16	0.4375	29/64	0.453	15/32	0.469	23/32	0.483
1/2	0.5000	33/	0.516	17/32	0.531	13/16	0.552
5/8	0.6250	41/64	0.641	21/32	0.656	1	0.689
3/4	0.7500	49/64	0.766	25/32	0.781	13/16	0.828
7/8	0.8750	57/64	0.891	29/32	0.906	13/8	0.963
1	1.0000	11/64	1.016	11/32	1.031	15/8	1.100
11/4	1.2500	1 %	1.281	1 5/16	1.312	2	1.370
11/2	1.5000	117/32	1.531	1%	1.562	23/8	1.640
13/4	1.7500	125/32	1.781	113/16	1.812	23/4	1.910
Ž	2.0000	21/32	2.031	21/16	2.062	31/8	2.180

^a Countersink: It is considered good practice to countersink or break the edges of holes smaller than $(D \operatorname{Max} + 2F \operatorname{Max})$ in parts having a hardness which approaches, equals, or exceeds the screw hardness. If such holes are not countersunk, the heads of screws may not seat properly or the sharp edges on holes may deform the fillets on screws, thereby making them susceptible to fatigue in applications involving dynamic loading. The countersink or corner relief, however, should not be larger than is necessary to insure that the fillet on the screw is cleared.

All dimensions in inches.

Source: Appendix to American National Standard ANSI/ASME B18.3-2012 and ANSI/ASME B18.3-1998 (for Spline driven fasteners).

^bClose Fit: The close fit is normally limited to holes for those lengths of screws which are threaded to the head in assemblies where only one screw is to be used or where two or more screws are to be used and the mating holes are to be produced either at assembly or by matched and coordinated tooling.

^c Normal Fit: The normal fit is intended for screws of relatively long length or for assemblies involving two or more screws where the mating holes are to be produced by conventional tolerancing methods. It provides for the maximum allowable eccentricity of the longest standard screws and for certain variations in the parts to be fastened, such as: deviations in hole straightness, angularity between the axis of the tapped hole and that of the hole for the shank, differences in center distances of the mating holes, etc.

Table 7. Drill and Counterbore Sizes for Metric Socket Head Cap Screws

Nominal Size or Basic	Nominal D	rill Size, A	Counterbore Diameter,	Countersink Diameter,
Screw Diameter	Close Fitb	Normal Fit ^c	X	Y Y
M1.6	1.80	1.95	3.50	2.0
M2	2.20	2.40	4.40	2.6
M2.5	2.70	3.00	5.40	3.1
M3	3.40	3.70	6.50	3.6
M4	4.40	4.80	8.25	4.7
M5	5.40	5.80	9.75	5.7
M6	6.40	6.80	11.25	6.8
M8	8.40	8.80	14.25	9.2
M10	10.50	10.80	17.25	11.2
M12	12.50	12.80	19.25	14.2
M14	14.50	14.75	22.25	16.2
M16	16.50	16.75	25.50	18.2
M20	20.50	20.75	31.50	22.4
M24	24.50	24.75	37.50	26.4
M30	30.75	31.75	47.50	33.4
M36	37.00	37.50	56.50	39.4
M42	43.00	44.00	66.00	45.6
M48	49.00	50.00	75.00	52.6

^a Countersink: It is considered good practice to countersink or break the edges of holes which are smaller than B Max. (see Table 21, page 117) in parts having a hardness which approaches, equals, or exceeds the screw hardness. If such holes are not countersunk, the heads of screws may not seat properly or the sharp edges on holes may deform the fillets on screws, thereby making them susceptible to fatigue in applications involving dynamic loading. The countersink or corner relief, however, should not be larger than is necessary to ensure that the fillet on the screw is cleared. Normally, the diameter of countersink does not have to exceed B Max. Countersinks or corner reliefs in excess of this diameter reduce the effective bearing area and introduce the possibility of embedment where the parts to be fastened are softer than the screws or of brinnelling or flaring the heads of the screws where the parts to be fastened are harder than the screws.

^b Close Fit: The close fit is normally limited to holes for those lengths of screws which are threaded to the head in assemblies where only one screw is to be used or where two or more screws are to be used and the mating holes are to be produced either at assembly or by matched and coordinated tooling.

^c Normal Fit: The normal fit is intended for screws of relatively long length or for assemblies involving two or more screws where the mating holes are to be produced by conventional tolerancing methods. It provides for the maximum allowable eccentricity of the longest standard screws and for certain variations in the parts to be fastened, such as: deviations in hole straightness, angularity between the axis of the tapped hole and that of the hole for shank, differences in center distances of the mating holes, etc.

All dimensions are in millimeters.

CAPSCREWS

Table 8. American National Standard Hexagon and Spline Socket Flat Countersunk Head Cap Screws ANSI/ASME B18.3-2012

			Dian		Height		Hexagon	Key
	Bo	dy	Theoretical			Spline	Socket	Engage-
		néter	Sharp	Abs.		Socket	Size	ment
Nominal	Max.	Min.	Max.	Min.	Reference	Size	Nom.	Min.
Size	1		A		Н	M	J	T
0	0.0600	0.0568	0.138	0.117	0.044	0.048	0.035	0.025
1	0.0730	0.0695	0.168	0.143	0.054	0.060	0.050	0.031
2	0.0860	0.0822	0.197	0.168	0.064	0.060	0.050	0.038
3	0.0990	0.0949	0.226	0.193	0.073	0.072	1/16	0.044
4	0.1120	0.1075	0.255	0.218	0.083	0.072	1/16	0.055
5	0.1250	0.1202	0.281	0.240	0.090	0.096	5/64	0.061
6	0.1380	0.1329	0.307	0.263	0.097	0.096	5/64	0.066
8	0.1640	0.1585	0.359	0.311	0.112	0.111	3/32	0.076
10	0.1900	0.1840	0.411	0.359	0.127	0.145	1/8	0.087
1/4	0.2500	0.2435	0.531	0.480	0.161	0.183	5/32	0.111
5/16	0.3125	0.3053	0.656	0.600	0.198	0.216	3/16	0.135
3/8	0.3750	0.3678	0.781	0.720	0.234	0.251	7/32	0.159
7/16	0.4375	0.4294	0.844	0.781	0.234	0.291	1/4	0.159
1/2	0.5000	0.4919	0.938	0.872	0.251	0.372	5/16	0.172
5/8	0.6250	0.6163	1.188	1.112	0.324	0.454	3/8	0.220
3/4	0.7500	0.7406	1.438	1.355	0.396	0.454	1/2	0.220
7/8	0.8750	0.8647	1.688	1.604	0.468		9/16	0.248
1	1.0000	0.9886	1.938	1.841	0.540		5/8	0.297
11/8	1.1250	1.1086	2.188	2.079	0.611		3/4	0.325
11/4	1.2500	1.2336	2.438	2.316	0.683		7/8	0.358
13/8	1.3750	1.3568	2.688	2.553	0.755		7/8	0.402
11/2	1.5000	1.4818	2.938	2.791	0.827		1	0.435

All dimensions in inches.

The body of the screw is the unthreaded cylindrical portion of the shank where not threaded to the head, the shank being the portion of the screw from the point of juncture of the conical bearing surface and the body to the flat of the point. The length of thread LT is the distance measured from the extreme point to the last complete (full form) thread.

Standard length increments of No. 0 through 1-inch sizes are as follows: $\frac{1}{16}$ inch for nominal screw lengths of $\frac{1}{8}$ through $\frac{1}{4}$ inch; $\frac{1}{8}$ inch for lengths of $\frac{1}{4}$ through 1 inch; $\frac{1}{4}$ inch for lengths of 1 inch through 3 $\frac{1}{4}$ inches; $\frac{1}{4}$ inch for lengths of 3 $\frac{1}{4}$ through 10 inches, and 1 inch for lengths of 7 through 10 inches, incl. For screw sizes over 1 inch, length increments are: $\frac{1}{4}$ inch for nominal screw lengths of 1 inch through 7 inches; 1 inch for lengths of 7 through 10 inches; and 2 inches for lengths over 10 inches.

Threads shall be Unified external threads with radius root; Class 3A UNRC and UNRF series for sizes No. 0 through 1 inch and Class 2A UNRC and UNRF series for sizes over 1 inch to 1½ inches, incl.

For manufacturing details not shown, including materials, see ANSI/ASME B18.3-2012 and ANSI/ASME B18.3-1998 (for Spline driven fasteners).

CAP SCREWS

Table 9. American National Standard Slotted Flat Countersunk Head Cap Screws ANSI/ASME B18.6.2-1998 (R2010)

				Head	Dia., A						
					Edge	Head					Fillet
	ominal	Во		Edge	Rnd'd.	Hgt.,		ot	SI	ot	Rad.,
	Sizea	Dia	ı., <i>E</i>	Sharp	or Flat	Н	Wid	th, J	Dep	th, T	U
	Basic			l		l					
Scr	ew Dia.	Max.	Min.	Max.	Min.	Ref.	Max.	Min.	Max.	Min.	Max.
1/4	0.2500	.2500	.2450	.500	.452	.140	.075	.064	.068	.045	.100
5/16	0.3125	.3125	.3070	.625	.567	.177	.084	.072	.086	.057	.125
3/8	0.3750	.3750	.3690	.750	.682	.210	.094	.081	.103	.068	.150
⁷ / ₁₆	0.4375	.4375	.4310	.812	.736	.210	.094	.081	.103	.068	.175
1/2	0.5000	.5000	.4930	.875	.791	.210	.106	.091	.103	.068	.200
%16	0.5625	.5625	.5550	1.000	.906	.244	.118	.102	.120	.080	.225
5/8	0.6250	.6250	.6170	1.125	1.020	.281	.133	.116	.137	.091	.250
3/4	0.7500	.7500	.7420	1.375	1.251	.352	.149	.131	.171	.115	.300
7/8	0.8750	.8750	.8660	1.625	1.480	.423	.167	.147	.206	.138	.350
1	1.0000	1.0000	.9900	1.875	1.711	.494	.188	.166	.240	.162	.400
11/8	1.1250	1.1250	1.1140	2.062	1.880	.529	.196	.178	.257	.173	.450
11/4	1.2500	1.2500	1.2390	2.312	2.110	.600	.211	.193	.291	.197	.500
13/8	1.3750	1.3750	1.3630	2.562	2.340	.665	.226	.208	.326	.220	.550
11/2	1.5000	1.5000	1.4880	2.812	2.570	.742	.258	.240	.360	.244	.600

^aWhen specifying a nominal size in decimals, the zero preceding the decimal point is omitted as is any zero in the fourth decimal place.

All dimensions are in inches. Threads: Threads are Unified Standard Class 2A; UNC, UNF and $8\,UN$ Series or UNRC, UNRF, and $8\,UNR$ Series.

Table 10. American National Standard Hardened Ground Machine Dowel Pins ANSI/ASME B18.8.2-2000 (R2010)

104

Machinery's Handbook Pocket Companion
DOWEL PINS

	ninal Size ^a	Sta	ndard Series		meter, A	ersize Series	Pins		oint eter, B	Crown Height, C	Crown Radius, R	Range of	Single Shear Load, for Carbon	Sugg Hole D	ested ameter
	ominal Pin iameter	Basic	Max	Min	Basic	Max	Min	Max	Min	Max	Min	Preferred Lengths,b L	or Alloy Steel, Calculated, lb	Max	Min
1/ 16 5/ d	0.0625 0.0781	0.0627 0.0783	0.0628 0.0784	0.0626 0.0782	0.0635 0.0791	0.0636 0.0792	0.0634	0.058 0.074	0.048 0.064	0.020 0.026	0.008 0.010	3/ ₁₆ -3/ ₄	400 620	0.0625 0.0781	0.0620 0.0776
3/32	0.0938	0.0940	0.0941	0.0939	0.0948	0.0949	0.0947	0.089	0.079	0.031	0.012	5/ ₁₆ -1	900	0.0937	0.0932
1/8	0.1250	0.1252	0.1253	0.1251	0.1260	0.1261	0.1259	0.120	0.110	0.041	0.016	³/ ₈ -2	1,600	0.1250	0.1245
5/3ª	0.1562	0.1564	0.1565	0.1563	0.1572	0.1573	0.1571	0.150	0.140	0.052	0.020		2,500	0.1562	0.1557
3/16	0.1875	0.1877	0.1878	0.1876	0.1885	0.1886	0.1884	0.180	0.170	0.062	0.023	1/,-2	3,600	0.1875	0.1870
1/4	0.2500	0.2502	0.2503	0.2501	0.2510	0.2511	0.2509	0.240	0.230	0.083	0.031	1/2-21/,	6,400	0.2500	0.2495
5/16	0.3125	0.3127	0.3128	0.3126	0.3135	0.3136	0.3134	0.302	0.290	0.104	0.039	1/2-21/2	10,000	0.3125	0.3120
3/8	0.3750	0.3752	0.3753	0.3751	0.3760	0.3761	0.3759	0.365	0.350	0.125	0.047	1/2-3	14,350	0.3750	0.3745
7/16	0.4375	0.4377	0.4378	0.4376	0.4385	0.4386	0.4384	0.424	0.409	0.146	0.055	⁷ / ₈ -3	19,550	0.4375	0.4370
1/2	0.5000	0.5002	0.5003	0.5001	0.5010	0.5011	0.5009	0.486	0.471	0.167	0.063	³/₄, 1-4	25,500	0.5000	0.4995
5/8	0.6250	0.6252	0.6253	0.6251	0.6260	0.6261	0.6259	0.611	0.595	0.208	0.078	11/,-5	39,900	0.6250	0.6245
3/4	0.7500	0.7502	0.7503	0.7501	0.7510	0.7511	0.7509	0.735	0.715	0.250	0.094	11/2-6	57,000	0.7500	0.7495
7/8	0.8750	0.8752	0.8753	0.8751	0.8760	0.8761	0.8759	0.860	0.840	0.293	0.109	2,21/2-6	78,000	0.8750	0.8745
l ĭ	1.0000	1.0002	1.0003	1.0001	1.0010	1.0011	1.0009	0.980	0.960	0.333	0.125	2 21/-5 6	102.000	1.0000	0.9995

^a Where specifying nominal size as basic diameter, zeros preceding decimal and in the fourth decimal place are omitted.

b Lengths increase in $\frac{1}{16}$ -inch steps up to $\frac{3}{8}$ inch, in $\frac{1}{8}$ -inch steps from $\frac{3}{8}$ inch to 1 inch, in $\frac{1}{4}$ -inch steps from 1 inch to $\frac{21}{2}$ inches, and in $\frac{1}{2}$ -inch steps above $\frac{21}{2}$ inches. Tolerance on length is ± 0.010 inch.

^cThese hole sizes have been commonly used for press fitting Standard Series machine dowel pins into materials such as mild steels and cast iron. In soft materials such as aluminum or zinc die castings, hole size limits are usually decreased by 0.0005 inch to increase the press fit.

d Nonpreferred sizes, not recommended for use in new designs.

All dimensions are in inches.

American National Standard Hardened Ground Production Dowel Pins.—Hardened ground production dowel pins have basic diameters that are 0.0002 inch over the nominal pin diameter.

Preferred Lengths and Sizes: The preferred lengths and sizes of these pins are given in Table 10. Other sizes and lengths are produced as required by the purchaser.

Table 11. American National Standard Hardened Ground Production Dowel Pins ANSI/ASME B18.8.2-2000 (R2010)

	$ \begin{array}{c c} & \downarrow \\ & \downarrow \\$												
Nominal Size ^a or Nominal Pin	Г	Pin Diameter,	A	Cor	rner us, R	Range of Preferred Lengths, ^b	Single Shear Load, Carbon	H	ested ole neter				
Diameter	Basic	Max	Min	Max	Min	Ĺ	Steel	Max	Min				
1/16 0.0625	0.0627	0.0628	0.0626	0.020	0.010	³ / ₁₆ -1	395	0.0625	0.0620				
³ / ₃₂ 0.0938	0.0939	0.0940	0.0938	0.020	0.010	³ / ₁₆ -2	700	0.0937	0.0932				
7/ ₆₄ 0.1094	0.1095	0.1096	0.1094	0.020	0.010	³ / ₁₆ -2	950	0.1094	0.1089				
1/8 0.1250	0.1252	0.1253	0.1251	0.020	0.010	³ / ₁₆ -2	1,300	0.1250	0.1245				
5/32 0.1562	0.1564	0.1565	0.1563	0.020	0.010	³ / ₁₆ -2	2,050	0.1562	0.1557				
³ / ₁₆ 0.1875	0.1877	0.1878	0.1876	0.020	0.010	³ / ₁₆ -2	2,950	0.1875	0.1870				
7/32 0.2188	0.2189	0.2190	0.2188	0.020	0.010	1/4-2	3,800	0.2188	0.2183				
1/4 0.2500	0.2502	0.2503	0.2501	0.020	0.010	1/4-11/2, 13/4, 2-21/2	5,000	0.2500	0.2495				
5/ ₁₆ 0.3125	0.3127	0.3128	0.3126	0.020	0.010	5/16-11/2, 13/4, 2-21/2	8,000	0.3125	0.3120				
3/ ₈ 0.3750	0.3752	0.3753	0.3751	0.020	0.010	³ / ₈ -1 ¹ / ₂ , 1 ³ / ₄ , 2-3	11,500	0.3750	0.3745				

^a Where specifying nominal pin size in decimals, zeros preceding decimal and in the fourth decimal place are omitted.

All dimensions are in inches.

Size: These pins have basic diameters that are 0.0002 inch over the nominal pin diameter. The diameter shall be ground, or ground and lapped, to within ± 0.0001 inch of the basic diameter as specified in Table 10.

Roundness, Straightness, and Surface Roughness: These standard pins shall conform to true round within 0.0001 inch; straightness over that portion of the length not affected by the rounded ends, within an accumulative total of 0.005 inch per inch of length for mominal lengths up to 4 inches, and within 0.002 inch total for all nominal lengths over 4 inches; roughness shall not exceed 8 microinches (μ in.) over the cylindrical portion of the pin, nor over 125 μ in. on all other surfaces.

Designation: These pins are designated by the following data in the sequence shown: Product name (noun first), nominal pin diameter (fraction or decimal equivalent), length (fraction or decimal equivalent), material, and protective finish, if required.

Examples: Pins, Hardened Ground Production Dowel, $\frac{1}{\sqrt{8}} \times \frac{3}{\sqrt{4}}$, Steel, Phosphate Coated Pins, Hardened Ground Production Dowel, 0.375 × 1.500, Steel

^bLengths increase in $\frac{1}{16}$ -inch steps up to 1 inch; in $\frac{1}{8}$ -inch steps from 1 inch to 2 inches; and then are $\frac{2}{16}$, $\frac{2}{16}$, and 3 inches.

^cThese hole sizes have been commonly used for press fitting production dowel pins into materials such as mild steels and cast iron. In soft materials such as aluminum or zinc die castings, hole size limits are usually decreased by 0.0005 inch to increase the press fit.

STRAIGHT PINS

Table 12. American National Standard Chamfered and Square End Straight Pins ANSI/ASME B18.8.2-2000 (R2010)

	Contour of chamfer surface optional Contour of chamfer or chamfer												
CHAMFERED STRAIGHT PIN SQUARE END STRAIGHT PIN													
Nominal Size ^a		in eter, A		mfer gth, C	Nominal Size ^a		in eter, A		mfer gth, C				
or Basic Pin Diameter	Max	Min	Max	Min	or Basic Pin Diameter	Max	Min	Max	Min				
1/10.062	0.0625	0.0605	0.025	0.005	5/ ₁₆ 0.312	0.3125	0.3105	0.040	0.020				
³/ ₃₂ 0.094	0.0937	0.0917	0.025	0.00	³/ ₈ 0.375	0.3750	0.3730	0.040	0.020				
7/ ₆₄ 0.109	0.1094	0.1074	0.025	0.005	7/16 0.438	0.4375	0.4355	0.040	0.020				
1/8 0.125	0.1250	0.1230	0.025	0.005	1/2 0.500	0.5000	0.4980	0.040	0.020				
5/ ₃₂ 0.156	0.1562	0.1542	0.025	0.005	5/ 0.625	0.6250	0.6230	0.055	0.035				
³ / ₁₆ 0.188	0.1875	0.1855	0.025	0.005	³/ ₄ 0.750	0.7500	0.7480	0.055	0.035				
7/ ₃₂ 0.219	0.2187	0.2167	0.025	0.005	√ ₈ 0.875	0.8750	0.8730	0.055	0.035				
1/4 0.250	1/ ₄ 0.250 0.2500 0.2480 0.025 0.005 1 1.000 1.0000 0.9980 0.055 0.035												

^a In the Standard, zeros preceding decimal and in the fourth decimal place are omitted, when specifying nominal size in decimals. Here, they are included.

All dimensions are in inches.

American National Standard Straight Pins.—The diameter of both chamfered and square end straight pins is that of the commercial wire or rod from which the pins are made. The tolerances shown in Table 12 are applicable to carbon steel and some deviations in the diameter limits may be necessary for pins made from other materials.

Length Increments: Lengths are as specified by the purchaser; however, it is recommended that nominal pin lengths be limited to increments of not less than 0.062 inch.

Material: Straight pins are normally made from cold-drawn steel wire or rod having a maximum carbon content of 0.28 percent having a maximum hardness of R_c 32. Where required, pins may also be made from corrosion-resistant steel, brass, or other metals.

Designation: Straight pins are designated by the following data, in the sequence shown: Product name (noun first), nominal size (fraction or decimal equivalent), material, and protective finish, if required.

Examples: Pin, Chamfered Straight, 1/8 × 1.500, Steel

Pin, Square End Straight, 0.250 × 2.250, Steel, Zinc Plated

American National Standard Taper Pins.—Taper pins have a uniform taper over the pin length with both ends crowned. Most sizes are supplied in commercial and precision classes, the latter having generally tighter tolerances and being more closely controlled in manufacture.

Diameters: The major diameter of both commercial and precision classes of pins is the diameter of the large end and is the basis for pin size. The diameter at the small end is computed by multiplying the nominal length of the pin by the factor 0.02083 and subtracting the result from the basic pin diameter.

^b Nonpreferred sizes, not recommended for use in new designs.

Taper: The taper on commercial-class pins is 0.250 ± 0.006 inch per foot and on the precision-class pins is 0.250 ± 0.004 inch per foot of length.

Materials: Unless otherwise specified, taper pins are made from AISI 1211 steel or cold-drawn AISI 1212 or 1213 steel or equivalents, and no mechanical property requirements apply.

Hole Sizes: Under most circumstances, holes for taper pins require taper reaming. Sizes and lengths of taper pins for which standard reamers are available are given in Table 13. Drilling specifications for taper pins are given below.

Table 13. American National Standard Taper Pins *ANSI/ASME B18.8.2-2000 (R2010)*

			_ K	*			X		
		-(∠) ‡		
		Ma	jor Diameter	r (Large End	I), <i>A</i>	End (Crown		
D	in Size	Commer			on Class		us, R	Range of I	engths,bL
Nur Ba	nber and asic Pin ameter ^a	Max	Min	Max	Min	Max	Min	Stand. Reamer Avail.	Other
7/0	0.0625	0.0638	0.0618	0.0635	0.0625	0.072	0.052		1/4-1
%	0.0780	0.0793	0.0773	0.0790	0.0780	0.088	0.068		1/4-1/2
5%	0.0940	0.0953	0.0933	0.0950	0.0940	0.104	0.084	1/4-1	11/4, 11/5
4/0	0.1090	0.1103	0.1083	0.1100	0.1090	0.119	0.099	1/4-1	11/4-2
3/0	0.1250	0.1263	0.1243	0.1260	0.1250	0.135	0.115	1/4-1	11/4-2
2/0	0.1410	0.1423	0.1403	0.1420	0.1410	0.151	0.131	1/2-11/4	11/2-21/2
ő	0.1560	0.1573	0.1553	0.1570	0.1560	0.166	0.146	1/2-11/4	11/2-3
1	0.1720	0.1733	0.1713	0.1730	0.1720	0.182	0.162	3/4-11/4	11/2-3
2	0.1930	0.1943	0.1923	0.1940	0.1930	0.203	0.183	3/4-11/2	$1\frac{3}{4} - 3$
3	0.2190	0.2203	0.2183	0.2200	0.2190	0.229	0.209	3/4-13/4	2–4
4	0.2500	0.2513	0.2493	0.2510	0.2500	0.260	0.240	3/4-2	21/4-4
5	0.2890	0.2903	0.2883	0.2900	0.2890	0.299	0.279	1-21/2	23/4-6
6	0.3410	0.3423	0.3403	0.3420	0.3410	0.351	0.331	11/4-3	31/4-6
7	0.4090	0.4103	0.4083	0.4100	0.4090	0.419	0.399	11/4-33/4	4–8
8	0.4920	0.4933	0.4913	0.4930	0.4920	0.502	0.482	11/4-41/	43/4-8
9	0.5910	0.5923	0.5903	0.5920	0.5910	0.601	0.581	11/4-51/4	51/2-8
10	0.7060	0.7073	0.7053	0.7070	0.7060	0.716	0.696	11/2-6	61/4-8
11	0.8600	0.8613	0.8593			0.870	0.850		2-8
12	1.0320	1.0333	1.0313			1.042	1.022		2–9
13	1.2410	1.2423	1.2403			1.251	1.231		3-11
14	1.5230	1.5243	1.5223			1.533	1.513		3-13

^a In the Standard, zeros preceding decimal and in the fourth decimal place are omitted, when specifying nominal pin size in decimals. Here, they are included.

All dimensions are in inches.

For nominal diameters, B, see Table 12.

Designation: Taper pins are designated by the following data in the sequence shown: Product name (noun first), class, size number (or decimal equivalent), length (fraction or three-place decimal equivalent), material, and protective finish, if required.

Examples: Pin, Taper (Commercial Class) No. 0 × 3/4, Steel Pin, Taper (Precision Class) 0.219 × 1.750, Steel, Zinc Plated

^b Lengths increase in 1/8-inch steps up to 1 inch and in 1/4-inch steps above 1 inch.

 $[^]c\,Standard\,reamers\,are\,available\,for\,pin\,lengths\,in\,this\,column.\,All\,dimensions\,are\,in\,inches.$

DOWEL PINS

Table 14. British Standard Parallel Steel Dowel Pins — Metric Series

BS 1804 · Part 2 · 1968

			D U			L—) a		₹ 0°- 40 ₹)°			
Nominal Diameter D, mm														
Nom.	1	1.5	2	2.5	3	4	5	6	8	10	12	16	20	25
Length L, mm							amfer a N							
mm	0.3	0.3	0.3	0.4	0.45	0.6	0.75	0.9	1.2	1.5	1.8	2.5	3	4
	Standard Sizes													
4														
6	•	•	•	•										
8	•	•	•	•	•									
10		•	•	•	•	•								
12		•	•	•	•	•	•	١.						
16			•	•	•	•	•	•	•					
20				•	•	•	•	•	•	•				
25					•	•	•	•	•	•	•			
30						•	•	•	•	•	•	•		
35							•	•	•	•	•	•		
40							•	•	•	•	•	•	•	
45								•	•	•	•	•	•	
50									•	•	•	•	•	•
60									•	•	•	•	•	•
70										•	•	•	•	•
80										•	•	•	•	•
90											•	•	•	•
100														
110												•	•	•
120			<u></u>							<u> </u>			•	•
	Limits of Tolerance on Diameter													
	Grade				1				2				3	
Tol	Grade* 1 2 3 Tolerance Zone m5 h7 h11													

		Limit	s of Tolerance	on Diameter							
Gra	ade ^a	1	l		2	3	3				
Toleran	ce Zone	m	15	h	7	h11					
Nom. D	ia., mm										
Over	To & Incl.		Limits of Tolerance, 0.001 mm								
	3	+7	+2	0	-12 ^b	0	-60				
3	6	+9	+4	0	-12	0	-75				
6	10	+12	+6	0	-15	0	-90				
10	14	+15	+7	0	-18	0	-110				
14	18	+15	+7	0	-18	0	-110				
18	24	+17	+8	0	-21	0	-130				
24	30	+17	+8	0	-21	0	-130				

^a The limits of tolerance for grades 1 and 2 dowel pins have been chosen to provide satisfactory assembly when used in standard reamed holes (H7 and H8 tolerance zones). If the assembly is not satisfactory, refer to BS 1916: Part 1, Limits and Fits for Engineering, and select a different class of fit

^b This tolerance is larger than that given in BS 1916, and has been included because the use of a closer tolerance would involve precision grinding by the manufacturer, which is uneconomic for a grade 2 dowel pin.

The tolerance limits on the overall length of all grades of dowel pin up to and including 50 mm long are +0.5, -0.0 mm, and for pins over 50 mm long are +0.8, -0.0 mm. The Standard specifies that the roughness of the cylindrical surface of grades 1 and 2 dowel pins, when assessed in accordance with BS 1134, shall not be greater than 0.4 µm CLA (16 CLA).

SPRING PINS

American National Standard Spring Pins.—These pins are made in two types: one type has a slot throughout its length; the other is shaped into a coil.

Preferred Lengths and Sizes: The preferred lengths and sizes in which these pins are normally available are given in Table 15 and Table 16.

Materials: Spring pins are normally made from AISI 1070-1095 carbon steel, AISI 6150 H alloy steel, AISI Types 410 through 420 and 302 corrosion-resistant steels, and beryllium copper alloy, heat treated or cold worked to attain the hardness and performance characteristics set forth in ANSI/ASME B18.8.2-2000 (R2010).

Table 15. American National Standard Slotted-Type Spring Pins ANSI/ASME~18.8.2-2000~(R2010)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
	•	45°	45°	Bre:			nfer both f chamf			_			
						St	yle 1				Style	2	
or	ominal Size ^a Basic Pin ameter	P	rage in neter,	Cham- fer Dia., B	Len	mfer gth,	Stock Thick- ness, F	Recomi Ho Si		SAE 1070, 1095, and SAE 51420	SAE 30302 and 30304	Beryl- lium Copper	Range of Practical Lengths ^b
Max. Min. Max. Min. Basic Max. Min. Double Shear Load, Min., lb													
$\frac{1}{1_{16}}$ 0.062 0.069 0.066 0.059 0.028 0.007 0.012 0.065 0.062 430 250 270 $\frac{3}{1_{16}}$													
$\frac{1}{2} \frac{1}{4} = \frac{1}{4} $													
3/32	0.094	0.103	0.099	0.091	0.038	0.008	0.022	0.097	0.094	1,150	670	710	³ / ₁₆ -1 ¹ / ₂
1/8	0.125	0.135	0.131	0.122	0.044	0.008	0.028	0.129	0.125	1,875	1,090	1,170	5/16-2
9/64	0.141	0.149	0.145	0.137	0.044	0.008	0.028	0.144	0.140	2,175	1,260	1,350	³ / ₈ -2
5/32	0.156	0.167	0.162	0.151	0.048	0.010	0.032	0.160	0.156	2,750	1,600	1,725	7/16-21/2
3/16	0.188	0.199	0.194	0.182	0.055	0.011	0.040	0.192	0.187	4,150	2,425	2,600	1/2-21/2
7/32	0.219	0.232	0.226	0.214	0.065	0.011	0.048	0.224	0.219	5,850	3,400	3,650	1/2-3
1/4	0.250	0.264	0.258	0.245	0.065	0.012	0.048	0.256	0.250	7,050	4,100	4,400	1/2-31/2
5/16	0.312	0.330	0.321	0.306	0.080	0.014	0.062	0.318	0.312	10,800	6,300	6,750	3/4-4
3/8	0.375	0.395	0.385	0.368	0.095	0.016	0.077	0.382	0.375	16,300	9,500	10,200	$\frac{3}{4}, \frac{7}{8}, 1, 1\frac{1}{4}, 1\frac{1}{2}, 1\frac{3}{4}, 2-4$
7/16	0.438	0.459	0.448	0.430	0.095	0.017	0.077	0.445	0.437	19,800	11,500	12,300	$1, 1\frac{1}{4}, 1\frac{1}{2}, \\ 1\frac{3}{4}, 2-4$
1/2	0.500	0.524	0.513	0.485	0.110	0.025	0.094	0.510	0.500	27,100	15,800	17,000	1½, 1½, 1½, 1½, 1¾, 2-4
5/8	0.625	0.653	0.640	0.608	0.125	0.030	0.125	0.636	0.625	46,000	18,800		2-6
3/4	0.750	0.784	0.769	0.730	0.150	0.030	0.150	0.764	0.750	66,000	23,200		2-6

^a Where specifying nominal size in decimals, zeros preceding decimal point are omitted.

^b Length increments are $\frac{1}{16}$ inch from $\frac{1}{8}$ to 1 inch; $\frac{1}{8}$ from 1 inch to 2 inches; and $\frac{1}{4}$ inch from 2 inches to 6 inches.

All dimensions are in inches.

Table 16. American National Standard Coiled-Type Spring Pins ANSI/ASME B18.8.2-2000 (R2010)

110

Machinery's Handbook Pocket Companion

SPRING PINS

^a Sizes ½ inch through 0.052 inch are not available in SAE 1070-1095 carbon steel.

All dimensions are in inches.

b Sizes $\frac{3}{8}$ inch and larger are produced from SAE 6150H alloy steel, not SAE 1070-1095 carbon steel. Practical lengths, L, for sizes $\frac{1}{32}$ through 0.052 inch are $\frac{1}{32}$ through $\frac{3}{32}$ inch and for the $\frac{3}{32}$, inch and for the $\frac{3}{32}$ through $\frac{1}{32}$ inches. For lengths of other sizes see Table 10.

 $\textbf{Table 17. American National Standard T-Nuts} \ ANSI/ASME\ B5.1M-1985\ (R2014)$

						. / · Aillei											`						
								→ 			W =	V ₃	A_3		R_3	$\begin{array}{c c} & \uparrow \\ \hline \uparrow & K_3 \\ C_3 & \downarrow \\ \hline \end{array}$							
				th of		Tap fo			Width	of			Height	of		Tot	al			Ro	ounding	of Corne	rs
Nomir				gue l ₃		Stuc E_3	i		Nut B_3				Nut C_3			Thick Include		Leng		F	2,	И	, 3
T-Bol Size		in			m	inch	mm	inc		m	m	in	ch	п	nm	Tong K		of N	uta	inch	mm	inch	mı
inch	mm	max	min	max	min	UNC-3B	ISOb	max	min	max	min	max	min	max	min	inch	mm	inch	mm	max	max	max	ma
	4																						
	5																						
0.250	6																						
0.312	8	0.330	0.320	8.7	8.5	0.250-20	M6	0.562	0.531	15	14	0.188	0.172	6	5.6	0.281	9	0.562	18	0.02	0.5	0.03	0.8
0.375	10	0.418	0.408	11	10.75	0.312-18	M8	0.688	0.656	18	17	0.250	0.234	7	6.6	0.375	10.5	0.688	20	0.02	0.5	0.03	0.8
0.500	12	0.543	0.533	13.5	13.25	0.375-1	6M10	0.875	0.844	22	21	0.312	0.297	8	7.6	0.531	12	0.875	23	0.02	0.5	0.06	1.5
0.625	16	0.668	0.658	17.25	17	0.500-13	M12	1.125	1.094	28	27	0.406	0.391	10	9.6	0.625	15	1.125	27	0.03	0.8	0.06	1.3
0.750	20	0.783	0.773	20.5	20.25	0.625-11	M16	1.312	1.281	34	33	0.531	0.500	14	13.2	0.781	21	1.312	35	0.03	0.8	0.06	1.3
1.000	24	1.033	1.018	26.5	26	0.750-10	M20	1.688	1.656	43	42	0.688	0.656	18	17.2	1.000	27	1.688	46	0.03	0.8	0.06	1.
1.250	30	1.273	1.258	33	32.5	1.000-8	M24	2.062	2.031	53	52	0.938	0.906	23	22.2	1.312	34	2.062	53	0.03	0.8	0.06	1.
1.500	36	1.523	1.508	39.25	38.75	1.250-7	M30	2.500	2.469	64	63	1.188	1.156	28	27.2	1.625	42	2.500	65	0.03	0.8	0.06	1.
	42			46.75	46.25		M36			75	74			32	30.5		48		75		1		2
	48			52.5	51.75		M42			85	84			36	34.5		54		85		1		2

^a No tolerances are given for "Total Thickness" or "Nut Length" as they need not be held to close limits.

Machinery's Handbook Pocket Companion
T-NUTS

^b Metric tapped thread grade and tolerance position is 5H.

WRENCH OPENINGS

Table 18. Wrench Openings for Nuts ANSI/ASME B18.2.2-2015, Appendix

Max.ª Width	Wrench (Opening ^b	Max.ª Width	Wrench	Opening ^b	Max.ª Width	Wrench	Opening ^b
Across Flats of Nut	Min.	Max.	Across Flats of Nut	Min.	Max.	Across Flats of Nut	Min.	Max.
5/32	0.158	0.163	11/4	1.257	1.267	215/16	2.954	2.973
3/16	0.190	0.195	15/16	1.320	1.331	3	3.016	3.035
7/32	0.220	0.225	13/8	1.383	1.394	31/8	3.142	3.162
1/4	0.252	0.257	17/16	1.446	1.457	33/8	3.393	3.414
9/32	0.283	0.288	11/2	1.508	1.520	31/2	3.518	3.540
5/16	0.316	0.322	15/8	1.634	1.646	33/4	3.770	3.793
11/32	0.347	0.353	111/16	1.696	1.708	37/8	3.895	3.918
3/8	0.378	0.384	113/16	1.822	1.835	41/8	4.147	4.172
7/ ₁₆	0.440	0.446	17/8	1.885	1.898	41/4	4.272	4.297
1/2	0.504	0.510	2	2.011	2.025	41/,	4.524	4.550
9/16	0.566	0.573	21/16	2.074	2.088	45/8	4.649	4.676
9/ 16 5/ ₈	0.629	0.636	23/16	2.200	2.215	47/8	4.900	4.928
11/16	0.692	0.699	21/4	2.262	2.277	5	5.026	5.055
3/,	0.755	0.763	23/8	2.388	2.404	51/4	5.277	5.307
13/16	0.818	0.826	27/16	2.450	2.466	53/8	5.403	5.434
1/8	0.880	0.888	29/16	2.576	2.593	5 ⁵ / ₈	5.654	5.686
15/16	0.944	0.953	25/8	2.639	2.656	53/4	5.780	5.813
1	1.006	1.015	23/4	2.766	2.783	6	6.031	6.157
11/16	1.068	1.077	213/16	2.827	2.845	61/8	6.065	6.192
11/8	1.132	1.142						

^a Wrenches are marked with the "Nominal Size of Wrench," which is equal to the basic or maximum width across flats of the corresponding nut. Minimum wrench opening is (1.005W + 0.001). Tolerance on wrench opening is (0.005W + 0.004) from minimum, where W equals nominal size of wrench.

All dimensions given in inches.

Table 19. Clearances for Open-End Engineers Wrenches (15°)

Nomina	al Wrench	A	B^{a}	С	D	E	F ^b	G	H ^c	J Min.d
S	ize	Min. (in.)	Max. (in.)	Min. (in.)	Min. (in.)	Min. (in.)	Max. (in.)	Ref. (in.)	Max.(in.)	inlbf
5/32	0.156	0.220	0.250	0.390	0.160	0.250	0.200	0.030	0.094	35
3/16	0.188	0.250	0.280	0.430	0.190	0.270	0.230	0.030	0.172	45
1/4	0.250	0.280	0.340	0.530	0.270	0.310	0.310	0.030	0.172	67
5/16	0.313	0.380	0.470	0.660	0.280	0.390	0.390	0.050	0.203	138
11/32	0.344	0.420	0.500	0.750	0.340	0.450	0.450	0.050	0.203	193
3/8	0.375	0.420	0.500	0.780	0.360	0.450	0.520	0.050	0.219	275
7/16	0.438	0.470	0.590	0.890	0.420	0.520	0.640	0.050	0.250	413
1/2	0.500	0.520	0.640	1.000	0.470	0.580	0.660	0.050	0.266	550
9/16	0.563	0.590	0.770	1.130	0.520	0.660	0.700	0.050	0.297	770
5/8	0.625	0.640	0.830	1.230	0.550	0.700	0.700	0.050	0.344	1100
11/16	0.688	0.770	0.920	1.470	0.660	0.880	0.800	0.060	0.375	1375
3/4	0.750	0.770	0.920	1.510	0.670	0.880	0.800	0.060	0.375	1650
13/16	0.813	0.910	1.120	1.660	0.720	0.970	0.860	0.060	0.406	2200
7/8	0.875	0.970	1.150	1.810	0.800	1.060	0.910	0.060	0.438	2475
15/16	0.938	0.970	1.150	1.850	0.810	1.060	0.950	0.060	0.438	3025
1	1.000	1.050	1.230	2.000	0.880	1.160	1.060	0.060	0.500	3575
11/16	1.063	1.090	1.250	2.100	0.970	1.200	1.200	0.080	0.500	3850
11/2	1.125	1.140	1.370	2.210	1.000	1.270	1.230	0.080	0.500	4400
11/4	1.250	1.270	1.420	2.440	1.080	1.390	1.310	0.080	0.562	5775
1 1/16	1.313	1.390	1.690	2.630	1.170	1.520	1.340	0.080	0.562	6600
17/16	1.438	1.470	1.720	2.800	1.250	1.590	1.340	0.090	0.641	8250
11/2	1.500	1.470	1.720	2.840	1.270	1.590	1.450	0.090	0.641	8500
1 1 1/8	1.625	1.560	1.880	3.100	1.380	1.750	1.560	0.090	0.641	9000

 $^{^{}a}B$ = arc radius created by the swing of the wrench.

 $[^]b$ Openings for $^{\prime}_{32}$ to $^{\prime}_{38}$ widths from old ASA B18.2-1960 and italic values are from former ANSI B18.2-2-1972.

 $^{{}^{}b}F$ = inside arc radius of part.

^cH=thickness of wrench head. (Dimension line not shown.)

 $^{^{\}rm d}$ J = torque that wrench will with stand in inch-pounds. Values updated from ANSI/ASME B107.100-2010, Wrenches.

WRENCH CLEARANCES

Fig. 1. Clearances for Open-End Engineers Wrench (See Table 19)

Proof Torque P (lbf-in.) Min. Counter-Bore Square Drive. Dia, K Min. Drive End Dia. D2 Max. Table 20a. Clearances for Single and Double Hexagon Socket Wrenches, Regular Length — Inch Series Ë Nut End Dia. D1 Max. Length L Max. Proof Torque P (lbf-in.) Min. Drive, O Counter-Bore 0.970 0.970 1.000 0.970 0.970 Dia, K Min. Drive End Dia. 0.940 0.940 0.940 0.970 D2 Max. 1/2 in. Nut End Dia. 0.655 0.730 0.775 0.845 0.942 D1 Max. 1.572 Length L Max. See Fig. 2, page 113 for Dimensions Proof Torque 270 350 ₹ 550 99 930 240 P (lbf-in.) Min. Counter-Bore 0.720 0.910 0.910 0.920 Dia, K Min. Square 0.690 Drive End Dia. 069.0 0.690 0.690 0.690 0.690 0.880 0.880 0.890 D2 Max. 0.814 0.890 0.683 3/8 in. Nut End Dia. 0.472 0.496 0.567 0.613 0.521 0.751 D1 Max. 260 Length L Max. Proof Torque 8 320 50 135 8 8 500 500 P (lbf-in.) Min C-Bore Dia 0.540 0.540 0.577 0.627 0.713 0.727 K Min. 0 Square Drive, Drive End Dia. 0.510 0.547 0.597 0.697D2 Max. /4 in. Nut End 0.382 0.425 0.457 0.510 0.547 0.597 0.683 769.0 Dia. D1 Max. 010.1 010.1 010.1 010.1 010.1 010 010.1 Length L Max. Radial Clearance 0.030 0.030 (0.250)(0.313)(0.344) (0.375) (0.219)(0.281)(0.438)(0.500)Nominal Opening

Copyright 2020, Industrial Press, Inc.

Table 20a. (Continued) Clearances for Single and Double Hexagon Socket Wrenches, Regular Length — Inch Series

	Table .	20a.(C	опипиес	i) Clear	ances	101 91	ingle	mu De	Jubie	, iexaş	zon so	CKEL V	WI EIIC	nes, r	teguia	ii ren	igiii—	IIICII A	sei ies		
							Se	ee Fig. 2	, page 1	13 for D	imensio	ns									
			1/4 in. Sc	quare Drive	e, Q			3/8 in. 5	Square I					Square I				3/4 in.	Square I		
Nominal Opening	Radial Clear- ance C Ref. ^a	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	C-Bore Dia. K Min.	Proof Torque P (lbf-in.) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	Counter-Bore Dia. K Min.	Proof Torque P (lbf-in.) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	Counter-Bore Dia. K Min.	Proof Torque P (lbf-in.) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	Counter-Bore Dia. K Min.	Proof Torque P (lbf-in.) Min.
11/16 (0.688)	0.030						1.260	0.968	0.968	0.998	2200	1.572	1.010	1.010	1.040	4100					
³ / ₄ (0.750)	0.030						1.260	1.110	1.110	1.140	2200	1.572	1.080	1.080	1.110	5000	2.000	1.285	1.450	1.480	6000
¹³ / ₁₆ (0.813)	0.030						1.406	1.141	1.141	1.171	2200	1.635	1.145	1.145	1.175	5000	2.000	1.300	1.450	1.480	6800
⁷ / ₈ (0.875)	0.030						1.406	1.250	1.250	1.280	2200	1.760	1.218	1.218	1.248	5000	2.010	1.385	1.575	1.605	7700
15/ ₁₆ (0.938)	0.030						1.650	1.310	1.310	1.340	2200	1.760	1.300	1.300	1.330	5000	2.010	1.450	1.575	1.605	8700
1 (1.000)	0.030						1.650	1.380	1.380	1.410	2200	1.760	1.375	1.375	1.405	5000	2.072	1.520	1.575	1.605	9700
11/16 (1.063)	0.030											1.853	1.480	1.480	1.510	5000	2.200	1.595	1.595	1.625	10,800
11/8 (1.125)	0.030											1.947	1.540	1.540	1.570	5000	2.322	1.600	1.680	1.710	11,900
1 ³ / ₁₆ (1.188)	0.030											1.947	1.675	1.675	1.705	5000	2.322	1.735	1.735	1.765	13,000
11/4 (1.250)	0.030											2.015	1.750	1.750	1.780	5000	2.385	1.870	1.870	1.900	14,200
15/16 (1.313)	0.030											2.015	1.820	1.820	1.850	5000	2.510	1.920	1.920	1.950	15,400
13/8 (1.375)	0.030											2.155	1.885	1.885	1.915	5000	2.635	1.980	1.980	2.010	16,700
17/16 (1.438)	0.030											2.295	1.955	1.955	1.985	5000	2.635	2.075	2.075	2.105	18,000
11/2 (1.500)	0.030											2.295	2.025	2.025	2.055	5000	2.635	2.145	2.145	2.175	18,000
15/8 (1.625)	0.030																2.760	2.260	2.260	2.290	18,000
13/4 (1.750)	0.030																2.760	2.325	2.325	2.355	18,000
113/16 (1.813)	0.030																3.135	2.400	2.400	2.430	18,000
1 1/8 (1.875)	0.030																3.135	2.510	2.510	2.540	18,000
2 (2.000)	0.030																3.260	2.575	2.575	2.605	18,000
21/16 (2.063)	0.030																3.385	2.695	2.695	2.725	18,000
21/8 (2.125)	0.030																3.510	2.885	2.885	2.915	18,000
23/16 (2.188)	0.030																3.697	3.025	3.025	3.055	18,000
21/4 (2.250)	0.030																3.697	3.075	3.075	3.105	18,000

WRENCH CLEARANCES

^a From the SAE Aeronautical Drafting Manual All dimensions are in inches. For details not shown and additional socket sizes, see ANSI/ASME B107.1-2002, Socket Wrenches, Hand (Inch Series).

ebooks.industrialpress.com

22 0.762

23 0.762

			Ta	ble 20t	o. Clea	rance	s for S	ingle a	nd Do	uble H	exagoi	1 Sock	et, Reş	gular L	ength	-Met	ric Se	ries			
								(See Fig.	2, page 1	13 for Di	mension	is)								
			6.3 mm	Square I	Drive Q			10 mm	Square I	Drive Q			12.5 mr	n Square	Drive Q			20 mm	Square I	Orive Q	
Nominal Opening	Radial Clearance CRef ^a	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia D2 Max.	C-Bore Dia. K Min.	Proof Torque P(N-m) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	Counter-Bore Dia. K Min.	Proof Torque P(N-m) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	Counter-Bore Dia. K Min.	Proof Torque P(N-m) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	Counter-Bore Dia. K Min.	Proof Torque P(N-m) Min.
3.2	0.762	26	6.10	12.95	14.47	7															
4	0.762	26	7.10	12.95	14.47	8															
4.5	0.762	26	7.60	12.95	14.47	9															
5	0.762	26	8.15	12.95	14.47	10															
5.5	0.762	26	8.90	12.95	14.47	14	32	10.10	17.60	19.124	270										
6	0.762	26	9.90	12.95	14.47	16	32	10.10	17.60	19.124	350										
6.3	0.762	26	9.90	12.95	14.47	21	32	10.10	17.60	19.124	440										
7	0.762	26	10.90	12.95	14.47	27	32	11.05	17.60	19.124	550										
8	0.762	26	12.20	12.95	14.47	38	32	12.20	17.60	19.124	660	39	14.00	23.87	25.39	80					
9	0.762	26	13.45	13.45	14.97	49	32	13.60	17.60	19.124	930	39	15.10	23.87	25.39	110					
10	0.762	26	14.75	14.75	16.27	63	32	15.00	17.60	19.124	1240	39	16.80	23.87	25.39	153					
11	0.762	26	16.00	16.00	17.52	68	32	16.75	17.60	19.124	1610	39	18.20	23.87	25.39	170					
12	0.762	26	17.30	17.30	18.82	68	32	17.80	22.40	23.924	200	39	18.70	23.87	25.39	203					
13	0.762	26	18.55	18.55	20.07	68	32	18.80	22.40	23.924	2200	39	20.25	23.87	25.39	249					
14	0.762	26	19.80	19.80	21.32	68	32	20.00	22.40	23.924	2200	39	21.80	23.87	25.39	282					
15	0.762	26	21.50	21.50	23.02	68	32	22.40	22.40	23.924	2200	40	22.40	23.87	25.39	339					
16	0.762	26	22.00	22.00	23.52	68	32	22.50	22.50	24.024	2200	40	23.87	23.87	25.39	407					
17	0.762						32	23.80	23.80	25.324	2200	40	24.75	24.75	26.27	475					
18	0.762						32	24.60	24.60	26.124	2200	40	26.14	26.14	27.66	542					
19	0.762						32	25.70	25.70	27.224		40	27.20	27.20	28.72	575	51	30.50	33.00	33.76	780
20	0.762						32	27.76	27.76	29.284		42	27.95	27.95	29.47	570					
21	0.762						34	28.80	28.80	30.324		42	28.95	28.95	30.47	570	51	33.00	33.00	33.76	930

31.524

30.00

31.30 32.824

34 30.00

35 31.30 30.20

31.25 31.25

45 30.20

45

570 51

570 51 35.05 38.10 38.86

36.10 39.10 39.86

31.72

32.77

972

1015

Table 20b. (Continued) Clearances for Single and Double Hexagon Socket, Regular Length - Metric Series

Opening Opening Opening	2	6.3 mm Nut End Dia. D1 Max.	Square I Drive End Dia D2 Max.	Orive Q C-Bore Dia. K Min.	Proof Torque P(N-m) Min.	Length L Max.		See Fig. 7 Square I Drive End Dia. D2 Max.	2, page 1 Drive Q Counter-Bore Dia. K Min.			12.5 mn	n Square		Pro P(l	Lei		Square I		Pro
0	2 2	Nut End Dia. D1 Max.	Drive End Dia D2 Max.	C-Bore K Min.	Proof Torque P(N-m) Min.	Length L Max.				Proo P(N:	Len				Pro P()	Lei				Pro P(
0	2 2	Max.		C-Bore Dia. K Min.	Proof Torque P(N-m) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive Enc D2 Max.	Counte Dia.K	Proo P(N.	Len	DΥ	모모	Di C	Pro P(l	Lei	D _I V	Dri D2	Cor Dia	P _{rc}
24 0.762	2							l Dia.	r-Bore Min.	Proof Torque P(N-m) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	Counter-Bore Dia. K Min.	Proof Torque P(N-m) Min.	Length L Max.	Nut End Dia. D1 Max.	Drive End Dia. D2 Max.	Counter-Bore Dia. K Min.	Proof Torque P(N-m) Min.
						36	32.50	32.50	34.024		45	32.15	32.15	33.67	570	51	37.00	40.00	40.76	1085
25 0.762						38	33.00	33.00	34.524		45	33.40	33.40	34.92	570	52	37.85	40.00	40.76	1160
26 0.762	2					38	35.00	35.00	36.524		48	35.05	35.05	36.57	570	53	38.85	40.00	40.76	1240
27 0.762	2										48	36.75	36.75	38.27	570	54	41.00	41.00	41.76	1330
28 0.762	2										50	37.80	37.80	39.32	570	57	41.00	41.00	41.76	1420
29 0.762	2										50	39.50	39.50	41.02	570	59	42.10	42.10	42.86	1520
30 0.762	2										50	42.40	42.40	43.92	570	59	43.00	43.00	43.76	1640
31 0.762	2										50	43.20	43.20	44.72	570	60	45.10	45.10	45.86	1730
32 0.762	2										51	44.05	44.05	45.57	570	60	47.05	47.05	47.81	1820
34 0.762	2															64	49.00	49.00	49.76	2000
35 0.762	2															67	50.40	50.40	51.16	2030
36 0.76	2															67	51.80	51.80	52.56	2030
38 0.76	2															67	54.10	54.10	54.86	2030
40 0.76	2															70	57.65	57.65	58.41	2030
41 0.76	2															70	58.80	58.80	59.56	2030
42 0.762	2															70	58.80	58.80	59.56	2030
46 0.762	2															83	65.40	65.40	66.16	2030
50 0.762	2															89	72.15	72.15	72.91	2030
54 0.762					l											94	78.10	78.10	78.86	2030
55 0.762	2				l l					l l						95	79.10	79.10	79.86	2030
58 0.762																97	80.00	80.00	80.76	2030
60 0.762	2				l l					l l						100	84.45	84.45	85.21	2030

Machinery's Handbook Pocket Companion
WRENCH CLEARANCES

^aConverted from inch dimensions given in the SAE Aeronautical Drafting Manual.
All dimensions are in mm. For details not shown and additional socket sizes, see ANSI/ASME B107.5M-2002, Socket Wrenches, Hand (Metric Series).

WRENCH CLEARANCES

Table 21. Clearances for Box Wrenches — 12 Point Inch and Metric Series

			+ + A +	A		ninal ench Open		-				
-		USC	Customary	(inch)					Metri	c (mm)		
		0.51	Justomary	(inci)	ness (.	9	(ii		Wetri	(IIIII)	m)	s
Nominal	wrench Opening (in.)	AMin. (in.)	B Min. (in.)	CRef.a (in.)	Head Thickness D Max., (in.)	Proof Torque (lbf-in.)	Nominal Wrench Opening (mm)	AMin. (mm)	B Min. (mm)	CRef.b (mm)	Head Thickness D Max., (mm)	Proof Torque (N-m)
1/8	(0.125)	0.179	0.219	0.030	0.172	60	4	4.56	6.03	0.762	4.0	12
5/32	(0.156)	0.187	0.244	0.030	0.172	90	5	5.26	7.29	0.762	4.6	17
3/16	(0.188)	0.218	0.301	0.030	0.203	150	5.5	6.66	8.97	0.762	6.0	18
7/32	(0.219)	0.233	0.325	0.030	0.234	165	6	7.11	9.69	0.762	7.4	20
1/4	(0.250)	0.269	0.378	0.030	0.295	220	7	7.91	11.05	0.762	7.7	27
9/32	(0.281)	0.280	0.407	0.030	0.280	248	8	8.26	11.98	0.762	8.2	30
5/16	(0.313)	0.316	0.461	0.030	0.330	275	9	9.46	13.76	0.762	9.0	40
11/22	(0.344)	0.336	0.499	0.030	0.335	275	10	10.16	15.04	0.762	9.0	71
3/	(0.375)	0.362	0.543	0.030	0.344	605	11	10.71	16.15	0.762	10.0	80
7/16	(0.438)	0.395	0.612	0.030	0.391	715	12	11.46	17.47	0.762	10.0	91
1/2	(0.500)	0.442	0.694	0.030	0.394	1020	13	12.31	18.89	0.762	10.5	115
9/16	(0.563)	0.492	0.779	0.030	0.425	1500	14	12.96	20.10	0.762	11.5	158
716 5/ ₈	(0.625)	0.530	0.853	0.030	0.500	2200	15	13.76	21.46	0.762	11.5	200
11/16	(0.688)	0.577	0.935	0.030	0.535	2640	16	14.26	22.53	0.762	12.1	248
716 3/ ₄	(0.750)	0.618	1.012	0.030	0.594	2860	17	15.41	24.25	0.762	12.7	267
13/16	(0.813)	0.702	1.132	0.030	0.609	3300	18	15.41	24.83	0.762	12.7	304
7,	(0.075)	0.710	1.102	0.020	0.600	2620	10	16.26	26.25	0.762	140	222
7/ ₈	(0.875)	0.718 0.765	1.183 1.266	0.030	0.688	3630	19 20	16.36 17.21	26.35	0.762 0.762	14.8	323
15/ ₁₆	(0.938) (1.000)	0.796	1.330	0.030 0.030	0.701 0.719	4510 5390	20	17.21	27.77 28.79	0.762	14.8 16.3	347 372
11/16	(1.063)	0.790	1.445	0.030	0.719	5940	22	18.56	30.27	0.762	16.3	408
1 1/8	(1.125)	0.892	1.498	0.030	0.860	6430	23	19.41	31.69	0.762	16.5	455
1 1											İ	
13/16	(1.188)	0.937	1.579	0.030	0.890	7200	24	19.81	32.65	0.762	17.8	509
11/4	(1.250)	0.983	1.661	0.030	0.940	7920	25	20.86	34.24	0.762	17.9	559
1 1/16	(1.313)	1.062	1.775	0.030	0.940	8400	26	12.86	26.79	0.762	18.0	608
1 3/ ₈ 1 7/ ₁₆	(1.375) (1.438)	1.087 1.144	1.836 1.929	0.030 0.030	0.940 0.953	8970 9240	27 28	22.86 23.41	37.37 38.49	0.762 0.762	19.8 19.8	671 710
1 1/2	(1.500)	1.228	2.049	0.030	1.008	10,365	29	23.41	39.06	0.762	19.8	750
1 1/2	(1.563)	1.249	2.104	0.030	1.031	11,495	30	24.51	40.73	0.762	20.0	795
1 1/16	(1.625)	1.351	2.241	0.030	1.063	12,800	31	25.06	41.85	0.762	20.5	850
111/8	(1.688)	1.425	2.351	0.030	1.063	13,570	32	25.66	43.03	0.762	22.0	905
1 3/4	(1.750)	1.499	2.461	0.030	1.125	14,300	33	25.91	43.84	0.762	22.3	950
1 13/16	(1.813)	1.499	2.496	0.030	1.125	15,100	34	26.76	45.26	0.762	23.2	994
17/	(1.875)	1.593	2.625	0.030	1.125	15,900	36	28.81	48.47	0.762	25.1	1165
1 1/8 2	(2.000)	1.593	2.696	0.030	1.125	17,400	41	32.21	54.68	0.762	25.3	1579
21/16	(2.063)	1.687	2.825	0.030	1.234	18,200	46	34.76	60.06	0.762	25.8	2067
2 1/8	(2.125)	1.687	2.861	0.030	1.234	19,000	50	38.76	66.33	0.762	27.6	2512
2 3/16	(2.188)	1.687	2.896	0.030	1.234	19,700						
2 1/4	(2.250)	1.687	2.931	0.030	1.234	20,500				•••		

^a From SAE Aeronautical Drafting Manual

Converted from SAE Aeronautical Drafting Manual. For details not shown, including material, see ANSI/ASME B107.100-2010 Wrenches

Bolts and Screws Specification

The following definitions are based on Specification for Identification of Bolts and Screws, ANSI/ASME B18.2.1-2012. This specification establishes a recommended procedure for determining the identity of an externally threaded fastener as a bolt or as a screw.

Bolt: A bolt is an externally threaded fastener designed for insertion through the holes in assembled parts, and is normally intended to be tightened or released by torquing a nut.

Screw: A screw is an externally threaded fastener capable of being inserted into holes in assembled parts, of mating with a preformed internal thread or forming its own thread, and of being tightened or released by torquing the head.

Primary Criteria.—1) A bolt is an externally threaded fastener that, because of head design or other feature, is prevented from being turned during assembly and can be tightened or released only by torquing a nut. *Example:* Round head bolts, track bolts, plow bolts.

- 2) A screw is an externally threaded fastener that has a thread form which prohibits assembly with a nut having a straight thread of multiple pitch length. *Example:* Wood screws, tapping screws.
- 3) A bolt is an externally threaded fastener that must be assembled with a nut to perform its intended service. *Example:* Heavy hex structural bolt.
- 4) A screw is an externally threaded fastener that must be torqued by its head into a tapped or preformed hole to perform its intended service. *Example:* Square head set screw.

British Unified Machine Screws and Nuts.—Identification: As revised by Amendment No. 1 in February 1955, this standard now requires that the above-mentioned screws and nuts that conform to this standard should have a distinguishing feature applied to identify them as Unified. All recessed head screws are to be identified as Unified by a groove in the form of four arcs of a circle in the upper surface of the head. All hexagon head screws are to be identified as Unified by: 1) a circular recess in the upper surface of the head; 2) a continuous line of circles indented on one or more of the flats of the hexagon and parallel to the screw axis; and 3) at least two contiguous circles indented on the upper surface of the head. All machine screw nuts of the pressed type shall be identified as Unified by means of the application of a groove indented in one face of the nut approximately midway between the major diameter of the thread and flats of the square or hexagon. Slotted head screws shall be identified as Unified either by a circular recess or by a circular platform or raised portion on the upper surface of the head. Machine screw nuts of the precision type shall be identified as Unified by either a groove indented on one face of the front approximately midway between the major diameter of the thread and the flats of the hexagon or a continuous line of circles indented on one or more of the flats of the hexagon and parallel to the nut axis.

Identification Markings for British Standard Unified Machine Screws

Table 22. British Standard Machine Screws and Nuts BS 450:1958 (obsolescent) and BS 1981:1953

*Countersinks to suit the screws should have a maximum angle of 80° (Unified) or 90° (BSF and BSW) with a negative tolerance.

†Unified countersunk and raised countersunk head screws 2 inches long and under are threaded right up to the head. Other Unified, BSW and BSF machine screws 2 inches long and under have an unthread shank equal to twice the pitch. All Unified, BSW and BSF machine screws longer than 2 inches have a minimum thread length of 1½ inches.

Table 23. British Standard Unified Machine Screws and Nuts BS 1981:1953 (R2004)

Nom. Size	Basic	Threads	per Inch	Dia. of	Head A	Depth of	f Head B	Width o	of Slot H	Depth of
of Screw	Dia. D	UNC	UNF	Max.	Min.	Max.	Min.	Max.	Min.	Slot J
				80° Cou	ntersunk Hea	d Screws ^{a,b}				
4	0.112	40		0.211	0.194	0.067		0.039	0.031	0.025
6	0.138	32		0.260	0.242	0.083		0.048	0.039	0.031
8	0.164	32		0.310	0.291	0.100		0.054	0.045	0.037
10	0.190	24°	32	0.359	0.339	0.116		0.060	0.050	0.044
1/4	0.250	20	28	0.473	0.450	0.153		0.075	0.064	0.058
5/16	0.3125	18	24	0.593	0.565	0.191		0.084	0.072	0.073
3/8	0.375	16	24	0.712	0.681	0.230		0.094	0.081	0.086
7/16	0.4375	14	20	0.753	0.719	0.223		0.094	0.081	0.086
1/2	0.500	13	20	0.808	0.770	0.223		0.106	0.091	0.086
5/8	0.625	11	18	1.041	0.996	0.298		0.133	0.116	0.113
7/ 16 1/ 2 5/ ₈ 3/ ₄	0.750	10	16	1.275	1.223	0.372		0.149	0.131	0.141
				P	an Head Scre	ws ^b				
4	0.112	40		0.219	0.205	0.068	0.058	0.039	0.031	0.036
6	0.138	32		0.270	0.256	0.082	0.072	0.048	0.039	0.044
8	0.164	32		0.322	0.306	0.096	0.085	0.054	0.045	0.051
10	0.190	24°	32	0.373	0.357	0.110	0.099	0.060	0.050	0.059
1/4	0.250	20	28	0.492	0.473^{d}	0.144	0.130	0.075	0.064	0.079
5/16	0.3125	18	24	0.615	0.594	0.178	0.162	0.084	0.072	0.101
5/ ₁₆ 3/ ₈	0.375	16	24	0.740	0.716	0.212	0.195	0.094	0.081	0.122
7/16 1/2 5/8	0.4375	14	20	0.863	0.838	0.247	0.227	0.094	0.081	0.133
1/2	0.500	13	20	0.987	0.958	0.281	0.260	0.106	0.091	0.152
5/8	0.625	11	18	1.125	1.090	0.350	0.325	0.133	0.116	0.189
3/4	0.750	10	16	1.250	1.209	0.419	0.390	0.149	0.131	0.226
				Raised	Cheese-Head	Screws ^b				
4	0.112	40		0.183	0.166	0.107	0.088	0.039	0.031	0.042
6	0.138	32		0.226	0.208	0.132	0.111	0.048	0.039	0.053
8	0.164	32		0.270	0.250	0.156	0.133	0.054	0.045	0.063
10	0.190	24°	32	0.313	0.292	0.180	0.156	0.060	0.050	0.074
1/4	0.250	20	28	0.414	0.389	0.237	0.207	0.075	0.064	0.098
5/16	0.3125	18	24	0.518	0.490	0.295	0.262	0.084	0.072	0.124
3/8	0.375	16	24	0.622	0.590	0.355	0.315	0.094	0.081	0.149
7/16	0.4375	14	20	0.625	0.589	0.368	0.321	0.094	0.081	0.153
1/2	0.500	13	20	0.750	0.710	0.412	0.362	0.106	0.091	0.171
7/16 1/2 5/8 3/4	0.625	11	18	0.875	0.827	0.521	0.461	0.133	0.116	0.217
3/4	0.750	10	16	1.000	0.945	0.612	0.542	0.149	0.131	0.254

^a All dimensions, except J, given for the No. 4 to ½-inch sizes, incl., also apply to all the 80° Raised Countersunk Head Screws given in the Standard.

^b Also available with recessed heads.

^c Non-preferred.

^d By arrangement procedure to 1.0.4.00°

^d By arrangement may also be 0.468.

	Basic	Thi	eads		Width Acı	oss	Head I	Depth B	Washe	r Face
Nom.	Dia.	per	Inch	Fla	ts A	Corners C	Nut Tl	hick. E	Dia	a. F
Size	D	UNC	UNF	Max.	Min.	Max.	Max.	Min.	Max.	Min.
				Н	exagon Hea	d Screws			•	
4	0.112	40		0.1875	0.1835	0.216	0.060	0.055	0.183	0.173
6	0.138	32		0.2500	0.2450	0.289	0.080	0.074	0.245	0.235
8	0.164	32		0.2500	0.2450	0.289	0.110	0.104	0.245	0.235
10	0.190	24°	32	0.3125	0.3075	0.361	0.120	0.113	0.307	0.297
			Hexa	gon Machin	ne Screw Nu	ts-Precision Ty	pe			
4	0.112	40		0.1875	0.1835	0.216	0.098	0.087		
6	0.138	32		0.2500	0.2450	0.269	0.114	0.102		
8	0.164	32		0.3125	0.3075	0.361	0.130	0.117		
10	0.190	24°		0.3125	0.3075	0.361	0.130	0.117		
			Hex	agon Mach	ine Screw N	uts - Pressed Typ	be			
4	0.112	40		0.2500	0.2410	0.289	0.087	0.077		
6	0.138	32		0.3125	0.3020	0.361	0.114	0.102		
8	0.164	32		0.3438	0.3320	0.397	0.130	0.117		
10	0.190	24°	32	0.3750	0.3620	0.433	0.130	0.117		
1/4	0.250	20	28	0.4375	0.4230	0.505	0.193	0.178		
5/16	0.3125	18	24	0.5625	0.5450	0.649	0.225	0.208		
3/8	0.375	16	24	0.6250	0.6070	0.722	0.257	0.239		

All dimensions in inches. See page 119 for a pictorial representation and letter dimensions.

Table 24. British Standard Whitworth (BSW) and Fine (BSF) Machine Screws	
BS 450:1958 (obsolescent)	

	N. C.	n .	T1 1		_	11 14		CII I D	337 141	C C1 + 11	ъ .
	Nom. Size of Screw	Basic Dia. D	Threads BSW	BSF		Head A		f Head B		of Slot H	Depth of Slot J
			40		Max.	Min.	Max.	Min.	Max.	Min.	
og P	1/8	0.1250	1	 32°	0.219	0.201	0.056		0.039	0.032	0.027
l s	3/ 16	0.1875	24		0.328	0.307	0.084	•••	0.050	0.042	0.041
Ş	7/ ₃₂ 1/ ₄	0.2188		28°	0.383	0.360	0.098		0.055	0.046	0.048
ad	1/4	0.2500	20	26	0.438	0.412	0.113	•••	0.061	0.051	0.055
±	5/16	0.3125	18	22	0.547	0.518	0.141		0.071	0.061	0.069
#	-7 ₈	0.3750	16	20	0.656	0.624	0.169		0.082	0.072	0.083
l sis	7/16	0.4375	14	18	0.766	0.729	0.197		0.093	0.082	0.097
l š	1/2	0.5000	12	16	0.875	0.835	0.225		0.104	0.092	0.111
90° Countersunk Head Screws ^{a h}	9/16	0.5625	12°	16°	0.984	0.941	0.253		0.115	0.103	0.125
è	5/ ₈	0.6250	11	14	1.094	1.046	0.281		0.126	0.113	0.138
5	3/4	0.7500	10	12	1.312	1.257	0.338		0.148	0.134	0.166
	1/8	0.1250	40		0.219	0.206	0.087	0.082	0.039	0.032	0.048
	3/16	0.1875	24	32°	0.328	0.312^{d}	0.131	0.124	0.050	0.042	0.072
-gs	7/32	0.2188		28°	0.383	0.365	0.153	0.145	0.055	0.046	0.084
8	7/ ₃₂ 1/ ₄	0.2500	20	26	0.438	0.417	0.175	0.165	0.061	0.051	0.096
Round Head Screws ^b	5/ ₁₆	0.3125	18	22	0.547	0.524	0.219	0.207	0.071	0.061	0.120
ad	3/8	0.3750	16	20	0.656	0.629	0.262	0.249	0.082	0.072	0.144
Ĕ	7/ ₁₆	0.4375	14	18	0.766	0.735	0.306	0.291	0.093	0.082	0.168
Ĭ	1/2	0.5000	12	16	0.875	0.840	0.350	0.333	0.104	0.092	0.192
8	9/16	0.5625	12°	16c	0.984	0.946	0.394	0.375	0.115	0.103	0.217
	5/8	0.6250	11	14	1.094	1.051	0.437	0.417	0.126	0.113	0.240
	3/4	0.7500	10	12	1.312	1.262	0.525	0.500	0.148	0.134	0.288
	1/8	0.1250	40		0.245	0.231	0.075	0.065	0.039	0.032	0.040
	3/ ₁₆	0.1875	24	32°	0.373	0.375	0.110	0.099	0.050	0.042	0.061
	7/32	0.2188		28°	0.425	0.407	0.125	0.112	0.055	0.046	0.069
MS _p	1/4	0.2500	20	26	0.492	0.473°	0.144	0.130	0.061	0.051	0.078
cre	5/16	0.3125	18	22	0.615	0.594	0.178	0.162	0.071	0.061	0.095
Sp	3/8	0.3750	16	20	0.740	0.716	0.212	0.195	0.082	0.072	0.112
Pan Head Screws ^b	7/16	0.4375	14	18	0.863	0.838	0.247	0.227	0.093	0.082	0.129
l a	1/2	0.5000	12	16	0.987	0.958	0.281	0.260	0.104	0.092	0.145
<u>a</u>	9/16	0.5625	12°	16°	1.031	0.999	0.315	0.293	0.115	0.103	0.162
	5/ ₈	0.6250	11	14	1.125	1.090	0.350	0.325	0.126	0.113	0.179
	3/4	0.7500	10	12	1.250	1.209	0.419	0.390	0.148	0.134	0.213
	1/8	0.1250	40		0.188	0.180	0.087	0.082	0.039	0.032	0.039
	3/ ₁₆	0.1875	24	32°	0.281	0.270	0.131	0.124	0.050	0.042	0.059
-Sp	7/2	0.2188		28°	0.328	0.315	0.153	0.145	0.055	0.046	0.069
8	7/ ₃₂ 1/ ₄	0.2500	20	26	0.375	0.360	0.175	0.165	0.061	0.051	0.079
Scr	5/ ₁₆	0.3125	18	22	0.469	0.450	0.219	0.207	0.071	0.061	0.098
ad	716 3/ ₈	0.3750	16	20	0.562	0.540	0.262	0.249	0.082	0.072	0.118
¥	7/ ₁₆	0.4375	14	18	0.656	0.630	0.306	0.291	0.093	0.082	0.138
ssc	1/ ₂	0.5000	12	16	0.750	0.720	0.350	0.333	0.104	0.092	0.157
Cheese Head Screws ^b	9/ ₁₆	0.5625	12°	16°	0.844	0.810	0.394	0.375	0.115	0.103	0.177
	716 5/8	0.6250	11	14	0.938	0.900	0.437	0.417	0.126	0.113	0.197
	3/ ₄	0.7500	10	12	1.125	1.080	0.525	0.500	0.148	0.134	0.236
	1/8	0.1250	40		0.289	0.272	0.078	0.066	0.043	0.035	0.040
Mushroom Head Screws ^b	3/8	0.1236	24	32°	0.448	0.425	0.118	0.103	0.060	0.050	0.061
Scre	3/ ₁₆ 1/ ₄	0.2500	20	26	0.573	0.546	0.150	0.133	0.075	0.064	0.079
Mushroom lead Screws	5/ ₁₆	0.3125	18	22	0.698	0.666	0.183	0.162	0.084	0.072	0.096
≥ ₹	16 3/ ₈	0.3750	16	20	0.823	0.787	0.215	0.191	0.094	0.081	0.112
	/8				1					501	

 $[^]a$ All dimensions, except J, given for the $^{1}\!/_{\!8}^-$ through $^3\!/_{\!8}^-$ inch sizes also apply to all the 90° Raised Countersunk Head Screw dimensions given in the Standard.

^bThese screws are also available with recessed heads; dimensions of recess are not given here but may be found in the Standard.

^c Non-preferred size; avoid use whenever possible.

^d By arrangement may also be 0.309.

^e By arrangement may also be 0.468.

All dimensions in inches.

See diagram on page 119 for a pictorial representation of screws and letter dimensions.

CUTTING FLUIDS

CUTTING FLUIDS

Cutting Fluids Recommended for Machining Operations.—Soluble Oils: Types of oils paste compounds that form emulsions when mixed with water: Soluble oils are used extensively in machining both ferrous and nonferrous metals when the cooling quality is paramount and the chip-bearing pressure is not excessive. Care should be taken in selecting the proper soluble oil for precision grinding operations. Grinding coolants should be free from fatty materials that tend to load the wheel, thus affecting the finish on the machined part. Soluble coolants should contain rust preventive constituents to prevent corrosion

Mineral Oils: This group includes all types of oils extracted from petroleum such as paraffin oil, mineral seal oil, and kerosene. Mineral oils are often blended with base stocks, but they are generally used in the original form for light machining operations on both free-machining steels and nonferrous metals. The coolants in this class should be of a type that has a relatively high flash point. Care should be taken to see that they are nontoxic, so that they will not be injurious to the operator. The heavier mineral oils (paraffin oils) usually have a viscosity of about 100 seconds at 100 degrees F. Mineral seal oil and kerosene have a viscosity of 35 to 60 seconds at 100 degrees F.

Cutting Fluids Recommended for Turning and Milling Operations

		, 8 1
Material to be Cut	Turning	Milling
	Mineral Oil with 10% Fat	Soluble Oil (96% Water)
Aluminuma	(or) Soluble Oil	(or) Mineral Seal Oil
	(or) Soluble Off	(or) Mineral Oil
Alloy Steels ^b	25% Sulfur-Based Oil ^b with 75% Mineral Oil	10% Lard Oil with 90% Mineral Oil
Brass	Mineral Oil with 10% Fat	Soluble Oil (96% Water)
Tool Steels and Low- Carbon Steels	25% Lard Oil with 75% Mineral Oil	Soluble Oil
Copper	Soluble Oil	Soluble Oil
Monel Metal	Soluble Oil	Soluble Oil
Cast Iron ^c	Dry	Dry
Malleable Iron	Soluble Oil	Soluble Oil
Bronze	Soluble Oil	Soluble Oil
Magnesium ^d	10% Lard Oil with 90% Mineral Oil	Mineral Seal Oil

^a In machining aluminum, several varieties of coolants may be used. For rough machining, where the stock removal is sufficient to produce heat, water soluble mixtures can be used with good results to dissipate the heat. Other oils that may be recommended are straight mineral seal oil; a 50–50 mixture of mineral seal oil and kerosene; a mixture of 10 percent lard oil with 90 percent kerosene; and a 100-second mineral oil cut back with mineral seal oil or kerosene.

 $^{^{\}rm b}$ The sulfur-based oil referred to contains $4V_2$ percent sulfur compound. Base oils are usually dark in color. As a rule, they contain sulfur compounds resulting from a thermal or catalytic refinery process. When so processed, they are more suitable for industrial coolants than when they have had such compounds as flowers of sulfur added by hand. The adding of sulfur compounds by hand to the coolant reservoir is of temporary value only, and the non-uniformity of the solution may affect the machining operation.

^c A soluble oil or low-viscosity mineral oil may be used in machining cast iron to prevent excessive metal dust.

^d When a cutting fluid is needed for machining magnesium, low or nonacid mineral seal or lard oils are recommended. Coolants containing water should not be used because of the fire danger when magnesium chips react with water, forming hydrogen gas.

CUTTING FLUIDS

Cutting Fluids Recommended for Drilling and Tapping Operations

Material to be Cut		Drilling		Tapping
		Soluble Oil (75 to 90% Water)		Lard Oil
		Soluble Oil (73 to 90% water)	(or)	Sperm Oil
Aluminuma		10% Lard Oil with	(or)	Wool Grease
	(Or)	90% Mineral Oil	(or)	25% Sulfur-Based Oil ^b Mixed with Mineral Oil
Alloy Steels ^b		Soluble Oil		30% Lard Oil with 70% Mineral Oil
Brass		Soluble Oil (75 to 90% Water)		10 to 20% Lard Oil with Mineral
Drass	(Or) 30% Lard Oil with 70% Mineral Oil			Oil
Tool Steels and		5111.07		25 to 40% Lard Oil with Mineral Oil
Low-Carbon Steels		Soluble Oil	(or)	25% Sulfur-Based Oil ^b with 75% Mineral Oil
Copper		Soluble Oil		Soluble Oil
Monel Metal		Soluble Oil		25 to 40% Lard Oil Mixed with Mineral Oil
Monei Metai		Soluble Oil	(or)	Sulfur-Based Oil ^b Mixed with Mineral Oil
				Dry
Cast Iron ^c		Dry	(or)	25% Lard Oil with 75% Mineral Oil
Malleable Iron		Soluble Oil		Soluble Oil
Bronze		Soluble Oil		20% Lard Oil with 80% Mineral Oil
Magnesium ^d		60-Second Mineral Oil		20% Lard Oil with 80% Mineral Oil

^a Sulfurized oils ordinarily are not recommended for tapping aluminum; however, for some tapping operations they have proved very satisfactory, although the work should be rinsed in a solvent right after machining to prevent discoloration.

See additional notes following previous table.

Base Oils: Various types of highly sulfurized and chlorinated oils containing inorganic, animal, or fatty materials. This "base stock" usually is "cut back" or blended with a lighter oil, unless the chip-bearing pressures are high, as when cutting alloy steel. Base oils usually have a viscosity range of from 300 to 900 seconds at 100 degrees F.

Grinding: Soluble oil emulsions or emulsions made from paste compounds are used extensively in precision grinding operations. For cylindrical grinding, 1 part oil to 40 to 50 parts water is used. Solution-type fluids and translucent grinding emulsions are particularly suited for many fine–finish grinding applications. Mineral-oil-based grinding fluids are recommended for many applications where a fine surface finish is required on the ground surface. Mineral oils are used with vitrified wheels but are not recommended for wheels with rubber or shellac bonds. Under certain conditions the oil vapor mist caused by the action of the grinding wheel can be ignited by the grinding sparks and explode. To quench the grinding spark a secondary coolant line to direct a flow of grinding oil below the grinding wheel is recommended.

Broaching: For steel, a heavy mineral oil such as sulfurized oil of 300 to 500 Saybolt viscosity at 100 degrees F can be used to provide both adequate lubricating effect and a dampening of the shock loads. Soluble oil emulsions may be used for the lighter broaching operations.

DRILL POINTS

DRILLING AND REAMING

Generally Used Values for Drill Points

Work Material	Point Angle	Comments
General work	118°	Lip relief angle 10°–15° Helix angle 24°–32°
High-strength (tough) steels	118°-135°	Lip relief angle ^a 7°–12° Helix angle 24°–32°
Aluminum alloys, cast iron	90°-140°	Lip relief angle ^a 10°–15°
Magnesium and copper alloys	70°–118°	Lip relief angle ^a 10°–15° Helix angle 10°–30°
Deep holes (various materials) or drilling stainless steel, titanium alloys, high- temperature alloys, nickel alloys, very high-strength materials, tool steels	118° Split point or crankshaft drill point	Lip relief angle 9° Chisel edge is entirely eliminated

^aThe lower values of these angle ranges are used for drills of larger diameter, the higher values for the smaller diameters. For drills of diameter less than 1/4-in, the lip relief angles are increased beyond the listed maximum value up to 24°. For soft and free-machining materials, 12° to 18° except for diameters less than 1/4 inch, 20° to 26°.

Note: Improperly sharpened twist drills, that is, those with unequal edge length or asymmetrical point angle, will tend to produce holes with poor diameter and directional control.

ANSI Standard Twist Drill Nomenclature

Fig. 1. Elements of Twist Drill Tool Geometry

Table 1. US and Metric Size Commercial Drills

	1	able 1. US a	na men	DIZE COMM			
Fraction		Equiv	alent	Fraction		Equiv	alent
No. or				No. or			
Letter	mm	Inch	mm	Letter	mm	Inch	mm
80		0.0135	0.343	57		0.0430	1.092
	0.35	0.0138	0.350		1.10	0.0433	1.100
79		0.0145	0.368		1.15	0.0453	1.150
	0.38	0.0150	0.380	56		0.0465	1.181
1/64		0.0156	0.396	3/64		0.0469	1.191
	0.40	0.0157	0.400		1.20	0.0472	1.200
78		0.0160	0.406		1.25	0.0492	1.250
	0.42	0.0165	0.420		1.30	0.0512	1.300
	0.45	0.0177	0.450	55		0.0520	1.321
77		0.0180	0.457		1.35	0.0531	1.350
	0.48	0.0189	0.480	54		0.0550	1.397
	0.50	0.0197	0.500		1.40	0.0551	1.400
76		0.0200	0.508		1.45	0.0571	1.450
75		0.0210	0.533		1.50	0.0591	1.500
	0.55	0.0217	0.550	53		0.0595	1.511
74		0.0225	0.572		1.55	0.0610	1.550
	0.60	0.0236	0.600	1/16		0.0625	1.588
73		0.0240	0.610		1.60	0.0630	1.600
72		0.0250	0.635	52		0.0635	1.613
	0.65	0.0256	0.650		1.65	0.0650	1.650
71		0.0260	0.660		1.70	0.0669	1.700
	0.70	0.0276	0.700	51		0.0670	1.702
70		0.0280	0.711		1.75	0.0689	1.750
69		0.0292	0.742	50		0.0700	1.778
	0.75	0.0295	0.750		1.80	0.0709	1.800
68		0.0310	0.787		1.85	0.0728	1.850
1/32		0.0312	0.792	49		0.0730	1.854
32	0.80	0.0315	0.800		1.90	0.0748	1.900
67	0.00	0.0320	0.813	48	1.50	0.0760	1.930
66		0.0330	0.838		1.95	0.0768	1.950
	0.85	0.0335	0.850	5/64	1.55	0.0781	1.984
65	0.05	0.0350	0.889	47		0.0785	1.994
0.5	0.90	0.0354	0.889	4/	2.00	0.0783	2.000
64	0.90	0.0354	0.899		2.00	0.0787	2.050
63		0.0360	0.914	46	2.03	0.0807	2.050
33	0.95	0.0370	0.940	45		0.0810	2.037
62	0.75	0.0374	0.965	""	2.10	0.0820	2.100
61		0.0380	0.903		2.15	0.0827	2.150
01	1.00	0.0390	1.000	44	2.13	0.0840	2.130
60	1.00	0.0394	1.016	""	2.20	0.0866	2.200
59		0.0400	1.041		2.25	0.0886	2.250
"	1.05	0.0413	1.050	43	2.2.7	0.0890	2.261
58	1.05	0.0413	1.067	1 43	2.30	0.0890	2.300
50		0.0120	1.007		2.35	0.0925	2.350
		1	I	I	2.55	0.0725	2.550

Table 1. (Continued) US and Metric Size Commercial Drills

Fraction		Equiv	alent	Fraction		Equiv	alent
No. or Letter	mm	Inch	mm	No. or Letter	mm	Inch	mm
42		0.0935	2.375	21		0.1590	4.039
3/32		0.0938	2.383	20		0.1610	4.089
	2.40	0.0945	2.400		4.10	0.1614	4.100
41		0.0960	2.438		4.20	0.1654	4.200
	2.46	0.0965	2.450	19		0.1660	4.216
40		0.0980	2.489		4.30	0.1693	4.300
	2.50	0.0984	2.500	18		0.1695	4.305
39		0.0995	2.527	11/64		0.1719	4.366
38		0.1015	2.578	17		0.1730	4.394
	2.60	0.1024	2.600		4.40	0.1732	4.400
37		0.1040	2.642	16		0.1770	4.496
	2.70	0.1063	2.700		4.50	0.1772	4.500
36		0.1065	2.705	15		0.1800	4.572
7/64		0.1094	2.779		4.60	0.1811	4.600
35		0.1100	2.794	14		0.1820	4.623
	2.80	0.1102	2.800	13	4.70	0.1850	4.700
34		0.1110	2.819	3/16		0.1875	4.762
33		0.1130	2.870	12	4.80	0.1890	4.800
	2.90	0.1142	2.900	11		0.1910	4.851
32		0.1160	2.946		4.90	0.1929	4.900
	3.00	0.1181	3.000	10		0.1935	4.915
31		0.1200	3.048	9		0.1960	4.978
	3.10	0.1220	3.100		5.00	0.1969	5.000
1/8		0.1250	3.175	8		0.1990	5.054
	3.20	0.1260	3.200		5.10	0.2008	5.100
30		0.1285	3.264	7		0.2010	5.105
	3.30	0.1299	3.300	13/64		0.2031	5.159
	3.40	0.1339	3.400	6		0.2040	5.182
29	2110	0.1360	3.454		5.20	0.2047	5.200
	3.50	0.1378	3,500	5		0.2055	5.220
28		0.1405	3.569		5.30	0.2087	5.300
9/64		0.1406	3.571	4		0.2090	5.309
64	3.60	0.1417	3,600		5.40	0.2126	5.400
27	2.00	0.1440	3.658	3	50	0.2130	5.410
	3.70	0.1457	3.700		5.50	0.2165	5,500
26		0.1470	3.734	7/32		0.2188	5.558
25		0.1495	3.797	32	5.60	0.2205	5.600
	3.80	0.1496	3.800	2	2.00	0.2210	5.613
24		0.1520	3.861	_	5.70	0.2244	5.700
23		0.1540	3.912	1		0.2280	5.791
5/32		0.1562	3.967		5.80	0.2283	5.800
22		0.1570	3.988		5.90	0.2323	5.900
	4.00	0.1575	4.000	A	3.50	0.2340	5.944
	1.00	0.1373	1.000	1.	L	0.2510	5.511

Table 1. (Continued) US and Metric Size Commercial Drills

Fraction		Equiv	alent	Fraction		Equiv	alent
No. or Letter	mm	Inch	mm	No. or Letter	mm	Inch	mm
15/64		0.2344	5.954	P		0.3230	8.204
64	6.00	0.2362	6.000		8.30	0.3268	8.300
В		0.2380	6.045	21/64		0.3281	8.334
	6.10	0.2402	6.100		8.40	0.3307	8.400
C		0.2420	6.147	Q		0.3320	8.433
	6.20	0.2441	6.200		8.50	0.3346	8.500
D		0.2460	6.248		8.60	0.3386	8.600
	6.30	0.2480	6.300	R		0.3390	8.611
E, 1/4		0.2500	6.350		8.70	0.3425	8.700
	6.40	0.2520	6.400	11/32		0.3438	8.733
	6.50	0.2559	6.500		8.80	0.3465	8.800
F		0.2570	6.528	S		0.3480	8.839
	6.60	0.2598	6.600		8.90	0.3504	8.900
G		0.2610	6.629		9.00	0.3543	9.000
	6.70	0.2638	6.700	T		0.3580	9.093
17/64		0.2656	6.746		9.10	0.3583	9.100
Н		0.2660	6.756	23/64		0.3594	9.129
	6.80	0.2677	6.800		9.20	0.3622	9.200
	6.90	0.2717	6.900		9.30	0.3661	9.300
I		0.2720	6.909	U		0.3680	9.347
	7.00	0.2756	7.000		9.40	0.3701	9.400
J		0.2770	7.036		9.50	0.3740	9.500
	7.10	0.2795	7.100	3/8		0.3750	9.525
K		0.2810	7.137	V		0.3770	9.576
9/32		0.2812	7.142		9.60	0.3780	9.600
	7.20	0.2835	7.200		9.70	0.3819	9.700
	7.30	0.2874	7.300		9.80	0.3858	9.800
L		0.2900	7.366	W		0.3860	9.804
	7.40	0.2913	7.400		9.90	0.3898	9.900
M		0.2950	7.493	25/64		0.3906	9.921
	7.50	0.2953	7.500		10.00	0.3937	10.000
19/64		0.2969	7.541	X		0.3970	10.084
	7.60	0.2992	7.600		10.20	0.4016	10.200
N		0.3020	7.671	Y		0.4040	10.262
	7.70	0.3031	7.700	13/32		0.4062	10.317
	7.80	0.3071	7.800	Z		0.4130	10.490
	7.90	0.3110	7.900		10.50	0.4134	10.500
5/16		0.3125	7.938	27/64		0.4219	10.716
	8.00	0.3150	8.000		10.80	0.4252	10.800
О		0.3160	8.026		11.00	0.4331	11.000
	8.10	0.3189	8.100	7/16		0.4375	11.112
	8.20	0.3228	8.200		11.20	0.4409	11.200

Table 1. (Continued) US and Metric Size Commercial Drills

Fraction		Equiv	alent	Fraction		Equiv	alent
No. or Letter	mm	Inch	mm	No. or Letter	mm	Inch	mm
	11.50	0.4528	11.500	43/64		0.6719	17.066
29/64		0.4531	11.509		17.25	0.6791	17.250
	11.80	0.4646	11.800	11/16		0.6875	17.462
15/32		0.4688	11.908		17.50	0.6890	17.500
	12.00	0.4724	12.000	45/64		0.7031	17.859
	12.20	0.4803	12.200	04	18.00	0.7087	18.000
31/64		0.4844	12.304	23/32		0.7188	18.258
	12.50	0.4921	12.500		18.50	0.7283	18.500
1/2		0.5000	12.700	47/ 64		0.7344	18.654
_	12.80	0.5039	12.800		19.00	0.7480	19.000
	13.00	0.5118	13.000	3/4		0.7500	19.050
33/64		0.5156	13.096	49/64		0.7656	19.446
	13.20	0.5197	13.200		19.50	0.7677	19.500
17/32		0.5312	13.492	25/32		0.7812	19.845
	13.50	0.5315	13.500		20.00	0.7879	20.000
	13.80	0.5433	13.800	51/64		0.7969	20.241
35/64		0.5469	13.891		20.50	0.8071	20.500
	14.00	0.5512	14.000	13/		0.8125	20.638
	14.25	0.5610	14.250		21.00	0.8268	21.000
9/16		0.5625	14.288	53/64		0.8281	21.034
	14.50	0.5709	14.500	27/32		0.8438	21.433
37/64		0.5781	14.684		21.50	0.8465	21.500
	14.75	0.5807	14.750	55/64		0.8594	21.829
	15.00	0.5906	15.000		22.00	0.8661	22.000
19/32		0.5938	15.083	7/8		0.8750	22.225
	15.25	0.6004	15.250		22.50	0.8858	22.500
39/64		0.6094	15.479	57/64		0.8906	22.621
	15.50	0.6102	15.500		23.00	0.9055	23.000
	15.75	0.6201	15.750	29/32		0.9062	23.017
5/8		0.6250	15.875	59/64		0.9219	23.416
	16.00	0.6299	16.000		23.50	0.9252	23.500
	16.25	0.6398	16.250	15/16		0.9375	23.812
	16.50	0.4528	11.500		24.00	0.9449	24.000
41/64		0.6406	16.271	61/64		0.9531	24.209
	16.50	0.6496	16.500		24.50	0.9646	24.500
21/32		0.6562	16.669	31/32		0.9688	24.608
	16.75	0.6594	16.750		25.00	0.9843	25.000
	17.00	0.6693	17.000	63/		0.9844	25.004
				1		1.0000	25.400

DRILLS & COUNTERBORES

Table 2. Common Drilling Difficulties

Drill split at the web	Too much feed or insufficient lip clearance at center due to improper grinding.
Rapid wear of extreme outer corners of the cutting edges	Speed too high; excessive speed will draw the temper.
Chipping or breaking out at the cutting edges	Feed is too heavy or drill ground with too much lip clearance.
Checking of high-speed drill.	Cold water hitting heated drill. It is equally bad to plunge drill into cold water after the point has been heated in use.
Drill Breaks	Insufficient speed when drilling small holes with hand feed increases risk of breakage, especially at the moment the drill is breaking through the further side of the work. Small drills have heavier webs and smaller flutes in proportion to their size than do larger drills, and breakage due to clogging of chips in the flutes is more likely to occur.
Drill binds on one side and wears on one side, resulting in a hole larger than the drill.	The point is on center but the cutting edges have been ground at different angles.
Drill press spindle wobbles and weaves, resulting in a hole larger than the drill.	Angles of the chisel edge are equal but lips are of different lengths.
"Accuracy of drilled holes"	Influenced by many factors, which include: Accuracy of the drill point drill size length and shape of the chisel edge whether or not a bushing is used to guide the drill length of the drill runout of the spindle and the chuck rigidity of the machine tool, workpiece, and the setup the cutting fluid, if any work material

Note: When drilling holes deeper than three times the diameter of the drill, it is advisable to withdraw the drill at intervals to remove chips and permit coolant to reach the drill tip.

Table 3. American National Standard Combined Drills and Countersinks— Plain and Bell Types ANSI B94.11M-1993

Size	Body L	Diameter	Drill L	Diameter	Drill	Length	Overall Length		
Designa-		A		D		C		L	
tion	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters	
00	3/ ₃₂	2.38	0.025	0.64	0.030	0.76	11/8	29	
0	3/32	2.38	1/32	0.79	0.038	0.97	11/8	29	
1	1/8	3.18	3/64	1.19	3/64	1.19	11/4	32	
2	3/16	4.76	5/64	1.98	5/64	1.98	17/8	48	
3	1/4	6.35	7/64	2.78	7/64	2.78	2	51	
4	5/16	7.94	1/8	3.18	1/8	3.18	21/8	54	
5	7/16	11.11	3/16	4.76	3/ ₁₆	4.76	23/4	70	
6	1/2	12.70	7/32	5.56	7/32	5.56	3	76	
7	5/8	15.88	1/4	6.35	1/4	6.35	31/4	83	
8	3/4	19.05	5/ ₁₆	7.94	5/ ₁₆	7.94	31/2	89	

COUNTERBORES

Table 3b. American National Standard Combined Drills and Countersinks, Bell Type ANSI B94.11M-1993

				,	J I								
	Bell Type												
	Body D	iameter	Drill I	Diameter	Bell I	Bell Diameter		Drill Length		ll Length			
Size	. A	4		D		E		C		L			
Designation	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm			
11	1/8	3.18	3/64	1.19	0.10	2.5	3/64	1.19	11/4	32			
12	3/16	4.76	1/16	1.59	0.15	3.8	1/16	1.59	17/8	48			
13	1/4	6.35	3/32	2.38	0.20	5.1	3/32	2.38	2	51			
14	5/16	7.94	7/64	2.78	0.25	6.4	7/64	2.78	21/8	54			
15	7/16	11.11	5/32	3.97	0.35	8.9	5/32	3.97	23/4	70			
16	1/2	12.70	3/16	4.76	0.40	10.2	3/16	4.76	3	76			
17	5/8	15.88	7/32	5.56	0.50	12.7	7/32	5.56	31/4	83			
18	3/4	19.05	1/4	6.35	0.60	15.2	1/4	6.35	31/2	89			

Counterboring.—Counterboring (called spot-facing if the depth is shallow) is the enlargement of a previously formed hole. Counterbores for screw holes are generally made in sets. Each set contains three counterbores; one with the body of the size of the screw head and the pilot the size of the hole to admit the body of the screw; one with the body the size of the head of the screw and the pilot the size of the tap drill; and the third with the body the size of the body of the screw and the pilot the size of the tap drill. Counterbores are usually provided with helical flutes to provide positive effective rake on the cutting edges. The four flutes are so positioned that the end teeth cut ahead of center to provide a shearing action and eliminate chatter in the cut. Three designs are most common: solid, two-piece, and three-piece. Solid designs have the body, cutter, and pilot all in one piece. Two-piece designs have an integral shank and counterbore cutter, with an interchangeable pilot, and provide true concentricity of the cutter diameter with the shank, but allowing use of various pilot diameters. Three-piece counterbores have separate holder. counterbore cutter, and pilot, so that a holder will take any size of counterbore cutter. Each counterbore cutter, in turn, can be fitted with any suitable size diameter of pilot. Counterbores for brass are fluted straight.

Small counterbores are often made with three flutes, but should then have the size plainly stamped on them before fluting, as they cannot afterwards be conveniently measured. The flutes should be deep enough to come below the surface of the pilot. The counterbore should be relieved on the end of the body only, and not on the cylindrical surface. To facilitate the relieving process, a small neck is turned between the guide and the body for clearance. The amount of clearance on the cutting edges is, for general work, from 4 to 5 degrees. The accompanying table gives dimensions for straight shank counterbores.

Table 4. Counterbores with Interchangeable Cutters and Guides

Machinery's Handbook Pocket Companion
COUNTERBORES

Table 5. Length of Point on Twist Drills and Centering Tools

	Table 3. Length of 1 one on Twist Drins and Centering Tools														
Size of Drill	Decimal Equiva- lent	Length of Point when Included Angle =90°	Length of Point when Included Angle =118°	Size of Drill	Decimal Equiva- lent	Length of Point when Included Angle =90°	Length of Point when Included Angle =118°	Size or Dia. of Drill	Decimal Equivalent	Length of Point when Included Angle =90°	Length of Point when Included Angle =118°	Dia. of Drill	Decimal Equiva- lent	Length of Point when Included Angle =90°	Length of Point when Included Angle =118°
60	0.0400	0.020	0.012	37	0.1040	0.052	0.031	14	0.1820	0.091	0.055	3/8	0.3750	0.188	0.113
59	0.0410	0.021	0.012	36	0.1065	0.054	0.032	13	0.1850	0.093	0.056	25/64	0.3906	0.195	0.117
58	0.0420	0.021	0.013	35	0.1100	0.055	0.033	12	0.1890	0.095	0.057	13/32	0.4063	0.203	0.122
57	0.0430	0.022	0.013	34	0.1110	0.056	0.033	11	0.1910	0.096	0.057	27/64	0.4219	0.211	0.127
56	0.0465	0.023	0.014	33	0.1130	0.057	0.034	10	0.1935	0.097	0.058	7/ ₁₆	0.4375	0.219	0.131
55	0.0520	0.026	0.016	32	0.1160	0.058	0.035	9	0.1960	0.098	0.059	29/64	0.4531	0.227	0.136
54	0.0550	0.028	0.017	31	0.1200	0.060	0.036	8	0.1990	0.100	0.060	15/32	0.4688	0.234	0.141
53	0.0595	0.030	0.018	30	0.1285	0.065	0.039	7	0.2010	0.101	0.060	31/64	0.4844	0.242	0.145
52	0.0635	0.032	0.019	29	0.1360	0.068	0.041	6	0.2040	0.102	0.061	1/2	0.5000	0.250	0.150
51	0.0670	0.034	0.020	28	0.1405	0.070	0.042	5	0.2055	0.103	0.062	33/64	0.5156	0.258	0.155
50	0.0700	0.035	0.021	27	0.1440	0.072	0.043	4	0.2090	0.105	0.063	17/32	0.5313	0.266	0.159
49	0.0730	0.037	0.022	26	0.1470	0.074	0.044	3	0.2130	0.107	0.064	35/64	0.5469	0.273	0.164
48	0.0760	0.038	0.023	25	0.1495	0.075	0.045	2	0.2210	0.111	0.067	9/16	0.5625	0.281	0.169
47	0.0785	0.040	0.024	24	0.1520	0.076	0.046	1	0.2280	0.114	0.068	³⁷ / ₆₄	0.5781	0.289	0.173
46	0.0810	0.041	0.024	23	0.1540	0.077	0.046	15/64	0.2344	0.117	0.070	19/32	0.5938	0.297	0.178
45	0.0820	0.041	0.025	22	0.1570	0.079	0.047	1/4	0.2500	0.125	0.075	³⁹ / ₆₄	0.6094	0.305	0.183
44	0.0860	0.043	0.026	21	0.1590	0.080	0.048	17/64	0.2656	0.133	0.080	5/8	0.6250	0.313	0.188
43	0.0890	0.045	0.027	20	0.1610	0.081	0.048	9/32	0.2813	0.141	0.084	41/64	0.6406	0.320	0.192
42	0.0935	0.047	0.028	19	0.1660	0.083	0.050	19/64	0.2969	0.148	0.089	21/32	0.6563	0.328	0.197
41	0.0960	0.048	0.029	18	0.1695	0.085	0.051	5/16	0.3125	0.156	0.094	43/64	0.6719	0.336	0.202
40	0.0980	0.049	0.029	17	0.1730	0.087	0.052	21/64	0.3281	0.164	0.098	11/16	0.6875	0.344	0.206
39	0.0995	0.050	0.030	16	0.1770	0.089	0.053	11/32	0.3438	0.171	0.103	23/32	0.7188	0.359	0.216
38	0.1015	0.051	0.030	15	0.1800	0.090	0.054	23/	0.3594	0.180	0.108	3/,	0.7500	0.375	0.225

COUNTERBORES

Table 6. Solid Counterbores with Integral Pilot

	1	Pilot Diameters			Overall	Length
Counterbore Diameters	Nominal	+1/64	Straight Shank Diameter		Short	Long
13/32	1/4	17/64	9/32	3/8	31/2	51/2
1/2	5/ ₁₆	21/64	11/32	³ / ₈	31/2	51/2
19/32	3/8	²⁵ / ₆₄	13/32	1/2	4	6
11/16	√ ₁₆	29/64	15/32	1/2	4	6
25/32	1/2	33/64	17/32	1/2	5	7
0.110	0.060	0.076		7/64	21/2	
0.133	0.073	0.089		1/8	21/2	
0.155	0.086	0.102		5/32	21/2	
0.176	0.099	0.115		11/64	21/2	
0.198	0.112	0.128		3/ ₁₆	21/2	
0.220	0.125	0.141		3/ ₁₆	21/2	
0.241	0.138	0.154		7/32	21/2	
0.285	0.164	0.180		1/4	21/2	
0.327	0.190	0.206		9/32	23/4	
0.372	0.216	0.232		5/ ₁₆	23/4	

All dimensions are in inches.

Table 7. American National Standard Solid Carbide Square Boring Tools—Style SSC for 60° Boring Bar and Style SSE for 45° Boring Bar $ANSI\,B212.1-2002\,(R2007)$

	Boring Bar	Shank I	Dimensions	, Inches	Side Cutting	End Cutting	Shoulder	
Tool Designation	Angle, Deg. from Axis	Width Height Length A B C		Length C	Edge Angle E, Deg.	Edge Angle G, Deg.	Angle F, Deg.	
SSC-58	60	5./	5./	1	30	38	60	
SSE-58	45	5/32	5/32	1	45	53	45	
SSC-610	60	37	37	11/	30	38	60	
SSE-610	45	3/ ₁₆	3/16	11/4	45	53	45	
SSC-810	60	17	1,	11/	30	38	60	
SSE-810	45	1/4	1/4	11/4	45	53	45	
SSC-1012	60	57	5,	11/	30	38	60	
SSE-1012	45	5/ ₁₆	5/ ₁₆	11/2	45	53	45	

Hand Reamers.—Hand reamers are made with both straight and helical flutes. Helical flutes provide a shearing cut and are especially useful in reaming holes having keyways or grooves, as these are bridged over by the helical flutes, thus preventing binding or chattering. Hand reamers are made in both solid and expansion forms. The American standard dimensions for solid forms are given in the accompanying table. The expansion type is useful whenever, in connection with repair or other work, it is necessary to enlarge a reamed hole by a few thousandths of an inch. The expansion form is split through the fluted section and a slight amount of expansion is obtained by screwing in a tapering plug. The diameter increase may vary from 0.005 to 0.008 inch for reamers up to about 1 inch diameter and from 0.010 to 0.012 inch for diameters between 1 and 2 inches. Hand reamers are tapered slightly on the end to facilitate starting them properly. The actual diameter of the shanks of commercial reamers may be from 0.002 to 0.005 inch under the reamer size. That part of the shank that is squared should be turned smaller in diameter than the shank itself, so that, when applying a wrench, no burr may be raised that may mar the reamed hole if the reamer is passed clear through it.

When fluting reamers, the cutter is so set with relation to the center of the reamer blank that the tooth gets a slight negative rake; that is, the cutter should be set ahead of the center, as shown in the illustration accompanying the table giving the amount to set the cutter ahead of the radial line. The amount is so selected that a tangent to the circumference of the reamer at the cutting point makes an angle of approximately 95 degrees with the front face of the cutting edge.

Illustrations of Terms Applying to Reamers

REAMERS

Table 8. Common Reamer Difficulties

Problem	Possible Cause	Solution
Chatter	Lack of rigidity in the machine, spindle, reamer or workpiece.	Reduce the feed. Increase the feed. Chamfer hole before reaming. Reduce clearance angle on the reamer's cutting edge. Using a reamer with a pilot and guide bushings. Note: Any amount of chatter may cause carbide-tipped reamer edges to chip, especially as the reamer initially enters the hole.
Oversize Holes	Wrong reamer for the workpiece material used. Inadequate workpiece support. Inadequate or worn guide bushings. Loose spindle bearings. Misalignment of the spindles, bushings or workpiece or runout of the spindle or reamer holder. The reamer may be defective due to chamfer runout or runout of the cutting end due to a bent or nonconcentric reamer shank. Workpiece material forming a built-up edge on reamer.	Reduce the reamer margin widths to about 0.005 to 0.010 inch. Use hard case surface treatments on high-speed reamers, either alone or in combination with black oxide treatments. Use high-grade finish on the reamer faces, margins, and chamfer relief surfaces. Check and possibly change cutting fluid or coolant.
Bell- mouth Holes	Misalignment of the cutting portion of the reamer with respect to the hole.	Provide improved guiding of the reamer by the use of accurate bushings and pilot surfaces. If the reamer is cutting in a vertical position, use a floating holder so that it has both radial and axial movement.
Bell- mouth holes in horizontal setups	Misalignment exerts a sideways force on the reamer as it is fed to depth, resulting in a tapered hole.	Shorten the bearing length of the cutting portion of the reamer. The following modifications reduce the length of the reamer tooth that caused the condition. Method 1: Reduce the reamer diameter by 0.010 to 0.030 inch, depending on size and length, behind a short full-diameter section 1/8 to inch long according to length and size, following chamfer, or Method 2: Grind a high-back taper 0.008 to 0.015 inch per inch, behind the short full-diameter section.
Poor Finish		Reduce the reamer feed per revolution. Feeds as low as 0.0002 to 0.0005 inch per tooth have been used successfully, but reamer life will be better if the maximum feasible feed is used. The minimum practical amount of stock allowance will often improve finish by reducing the volume of chips and heat generated on the cutting portion of the chamfer. Too small a stock allowance may prevent the reamer teeth from cutting freely and will deflect the work material out of the way and cause rapid reamer wear. Not enough cutting fluid or coolant being applied during reaming.
Reamer breaks	Feed too fast. Dull edges.	Slow feed. Hone edges.

TAPS AND THREADING DIES

TAPPING

Tap Terms and Designs

Table 1. Standard Tap Dimensions (Ground and Cut Thread) ANSI/ASME B94.9-2008 (R2018)

		Table 1. Sta	ndard Ta	p Dimensions (G	round and Cut	Thread) AA	SI/ASME I	394.9-2008	(R2018)		
	Diameter	Nominal Diame	eter, inch	Nominal Met	tric Diameter		Tap Dimensions, inch				
Over	e, inch To	Machine Screw Size No. and Fractional Sizes	Decimal Equiv.	mm	inch	Blank Design No.	Overall Length L	Thread Length I	Square Length I ₂	Shank Diameter d_I	Size of Square a
0.052	0.065	0	(0.0600)	M1.6	0.0630	1	1.63	0.31	0.19	0.141	0.110
0.065	0.078	1	(0.0730)	M1.8	0.0709	1	1.69	0.38	0.19	0.141	0.110
0.078	0.091	2	(0.0860)	M2.0	0.0787	1	1.75	0.44	0.19	0.141	0.110
				M2.2	0.0866						
0.091	0.104	3	(0.0990)	M2.5	0.0984	1	1.81	0.50	0.19	0.141	0.110
0.104	0.117	4	(0.1120)			1	1.88	0.56	0.19	0.141	0.110
0.117	0.130	5	(0.1250)	M3.0	0.1182	1	1.94	0.63	0.19	0.141	0.110
0.130	0.145	6	(0.1380)	M3.5	0.1378	1	2.00	0.69	0.19	0.141	0.110
0.145	0.171	8	(0.1640)	M4.0	0.1575	1	2.13	0.75	0.25	0.168	0.131
0.171	0.197	10	(0.1900)	M4.5	0.1772	1	2.38	0.88	0.25	0.194	0.152
				M5	0.1969						
0.197	0.223	12	(0.2160)	***		1	2.38	0.94	0.28	0.220	0.165
0.223	0.260	1/4	(0.2500)	M6	0.2363	2	2.50	1.00	0.31	0.255	0.191
0.260	0.323	5/16	(0.3125)	M7	0.2756	2	2.72	1.13	0.38	0.318	0.238
				M8	0.3150						
0.323	0.395	3/8	(0.3750)	M10	0.3937	2	2.94	1.25	0.44	0.381	0.286
0.395	0.448	7/16	(0.4375)			3	3.16	1.44	0.41	0.323	0.242
0.448	0.510	1/2	(0.5000)	M12	0.4724	3	3.38	1.66	0.44	0.367	0.275
0.510	0.573	9/16	(0.5625)	M14	0.5512	3	3.59	1.66	0.50	0.429	0.322
0.573	0.635	5/8	(0.6250)	M16	0.6299	3	3.81	1.81	0.56	0.480	0.360
0.635	0.709	11/16	(0.6875)	M18	0.7087	3	4.03	1.81	0.63	0.542	0.406
0.709	0.760	3/4	(0.7500)			3	4.25	2.00	0.69	0.590	0.442
0.760	0.823	13/16	(0.8125)	M20	0.7874	3	4.47	2.00	0.69	0.652	0.489
0.823	0.885	7/8	(0.8750)	M22	0.8661	3	4.69	2.22	0.75	0.697	0.523

Machinery's Handbook Pocket Companion
TAPS AND THREADING DIES

Table 1. (Continued) Standard Tap Dimensions (Ground and Cut Thread) ANSI/ASME B94.9-2008 (R2018)

	Table 1. (Communa d'Imponibilisions (Ground and Cut Tineau) AIVSI/ASME D94.9-2000 (R2010)												
	Diameter	Nominal Diame	eter, inch	Nominal Met	tric Diameter			Tap	Dimensions, i	nch			
Over	e, inch To	Machine Screw Size No. and Fractional Sizes	Decimal Equiv.	mm	inch	Blank Design No.	Overall Length L	Thread Length	Square Length I ₂	Shank Diameter d ₁	Size of Square a		
0.885	0.948	15/16	(0.9375)	M24	0.9449	3	4.91	2.22	0.75	0.760	0.570		
0.948	1.010	1	(1.0000)	M25	0.9843	3	5.13	2.50	0.81	0.800	0.600		
1.010	1.073	11/16	(1.0625)	M27	1.0630	3	5.13	2.50	0.88	0.896	0.672		
1.073	1.135	11/8	(1.1250)			3	5.44	2.56	0.88	0.896	0.672		
1.135	1.198	13/16	(1.1875)	M30	1.1811	3	5.44	2.56	1.00	1.021	0.766		
1.198	1.260	11/4	(1.2500)		***	3	5.75	2.56	1.00	1.021	0.766		
1.260	1.323	15/16	(1.3125)	M33	1.2992	3	5.75	2.56	1.06	1.108	0.831		
1.323	1.385	13/8	(1.3750)		***	3	6.06	3.00	1.06	1.108	0.831		
1.358	1.448	17/16	(1.4375)	M36	1.4173	3	6.06	3.00	1.13	1.233	0.925		
1.448	1.510	11/2	(1.5000)		***	3	6.38	3.00	1.13	1.233	0.925		
1.510	1.635	15/8	(1.6250)	M39	1.5353	3	6.69	3.19	1.13	1.305	0.979		
1.635	1.760	13/4	(1.7500)	M42	1.6535	3	7.00	3.19	1.25	1.430	1.072		
1.760	1.885	17/8	(1.8750)		***	3	7.31	3.56	1.25	1.519	1.139		
1.885	2.010	2	(2.0000)	M48	1.8898	3	7.63	3.56	1.38	1.644	1.233		

Tap sizes 0.395 inch and smaller have an external center on the thread end (may be removed on bottom taps). Sizes 0.223 inch and smaller have an external center on the shank end. Sizes 0.224 inch through 0.395 inch have truncated partial cone centers on the shank end (of diameter of shank). Sizes greater than 0.395 inch have internal centers on both the thread and shank ends.

Table 2. General Threading Formulas

	Table 2: Gen	Tai Till Cauling I of illula		
			$\frac{D_m - S}{1.0825 - P} = \% \text{ of full thread (Unified Threads)}$	
Tap Drill Sizes	$S=D_m - 1.0825 \times P \times \%$ (Unified Threads) $S=D_m - 1.2990 \times P \times \%$ (American Standard Threads) $S=D_m - 1.0825 \times P \times \%$ (ISO Metric Threads)	Percentage of Full Thread	$\frac{D_m - S}{1.2990 - P} = \% \text{ of full thread (American Standard Threads)}$	
	$S = D_m - 1.0023 \times F \times \%$ (ISO Wedge Tilleaus)		$\frac{D_m - S}{1.0825 - P} = \% \text{ of full thread (ISO Metric Thread)}$	

TAPS AND THREADING DIES

TAPPING SPECIFIC MATERIALS

Table 3. General Threading Formulas

	-
Determining Machine Screw Sizes	$N = \frac{D_m - 0.060}{0.013}$
	$D_m = N \times 0.013 + 0.060$

All dimensions in mm

Courtesy of the Society of Manufacturing Engineers

Table 4. Tapping Specific Materials

Table 4. Tapping Specific Materials											
Material	Rake Angle, degrees	Speeds ft/min	Lubricant	Comments							
Alloys, High- Temperature, Nickel or Cobalt Base Nonferrous	0–10	5–10	Sulfur-chlorinated mineral lard oil	Nitrided tap or one made from M41, M42, M43, or M44 Steel recommended. Use plug tap having 3-5 chamfered threads. To reduce rubbing of the lands, eccentric or con-eccentric relieved land should be used. To control a continuous chip use a spiral pointed tap for through holes; use low-helix angle spiral-fluted taps for blind holes. Oxide-coated tap recommended.							
Aluminum	8-20 (10-15 recomended)	90–100	Heavy-duty water soluble oil or light base mineral oil	Spiral pointed tap for through holes; spiral-fluted tap for blind holes							
Brass	2–7	90–100	10-20% lard oil with mineral oil	Use interrupted thread tap to reduce jamming; straight-fluted tap for machine tapping. For red brass, yellow brass, and similar alloys containing more than 35% zinc, use a fluted tap for hand tapping; spiral pointed or spiral-fluted tap for machine tapping.							
Brass, Naval, Leaded and Cast	5–10		Soluble oil	Interrupted thread tap used to reduce jamming. Straight-fluted tap for machine tapping.							
Bronze, Phosphor	5–12	30-60	Soluble oil								
Bronze, Manganese	5–12		Light base oil								
Bronze, Tobin	5–8		Soluble oil								
Copper	10–18		Medium heavy-duty mineral lard oil or soluble oil	For beryllium copper and silicon bronzes use plug-type taps, and keep taps as sharp as possible.							
Iron, Cast (Gray)	0-3	90 for softer grades 30 for harder grades	Dry or soluble oils or chemical emulsions	Microstructure in a single casting can vary in tensile strength. Oxide-coated taps are helpful. Straight-fluted taps should be used for all applications.							
Iron, Malleable	5–8	60–90 (ferritic) 40–50 (pearlitic) 30–50 (martensitic)	Soluble oil martensitic: sulfur-based oil	Microstructure tends to be uniform. Standard taps can be used.							
Iron, Ductile or Nodular		15 (martensitic) 60 (ferritic)	Soluble oil	Oxide-coated tap recommended							
Magnesium	10-20	20-50	20% lard oil with 80% mineral oil	Use no water due to fire or explosion hazard							
Monel Metal	9–12	20–25% lard oil mixed with mineral oil, or sulfur-based oil									

 D_m = major diameter; P = pitch;% = percentage of full thread; S = size of selected tap drill; N = number of machine screw

TAPPING SPECIFIC MATERIALS

Table 4. (Continued) **Tapping Specific Materials**

		· '	, II 8 I	
Material	Rake Angle, degrees	Speeds ft/min	Lubricant	Comments
Plastics, Thermo- Plastics	5–8 thermoplastics 0–3 thermosetting	50; 25 filled material. Reduce speeds for deep and blind holes, and when percentage of thread is greater than 65–75%.	Dry or forced air jet	Taps should be of M10, M7, or M1 molybdenum high-speed steet, with finish-ground and polished flutes. Two-flute taps are recommended for holes up to 0.125 inch diameter. Oversize taps may be required to make up for the elastic recovery of the plastics.
Rubber, Hard	0-3		Dry or air jet	
Steel, Free- Machining		60–80	Soluble oil	Sulfur, lead or phosphorus added to improve machinability. Usually standard tap can be used.
Steel, High-Tensile Strength (40–55 Rc)	at or near zero	do not exceed 10	Active sulfur- chlorinated oil	Taps with concentric lands; 6 to 8 chamfered threads on the end to reduce chip load per tooth. Keep chamfer relief to a minimum. Load on tap should be kept to a minimum: use largest possible tap drill size; keep hole depth to a minimum; avoid bottoming holes; and, in larger sizes, use fine instead of coarse pitches. Oxide-coated or nitrided tap to reduce tap wear.
Steel, Low- Carbon (up to 0.15% C)	5–12	40-60	Sulfur-based oil	Spiral pointed taps for through holes. Spiral-fluted tap for blind holes. Oxide-coated tap recommended.
Steel, Low Carbon (up to 0.15–0.30% C)	5–12	40–60	Sulfur-based oil	Oxide-coated tap recommended for low-carbon range.
Steel, Medium- Carbon, Annealed (0.30-0.60% C)	5–10	30–50	Sulfur-based oil	Cutting speed dependent on C content and heat treatment. Slowly tap higher C, especially if heat treatment produced pearlitic microstructure. A spheroidized microstructure will result in ease of tapping.
Steel, Heat-Treated, 225–283 Brinell (0.30 to 0.60% C)	0–8	25–35	Sulfur-based oil	
Steel, High- Carbon (More Than 0.6% C)	0–5 do not exceed	25–35	Activated sulfur-chlorinated	Use concentric tap.
Steel, High-Speed	0–5	25–35	Sulfur-based oil	
Steel, Molybdenum		10-35	Sulfur-based oil	
Steel, Stainless	8–15 10–15 Austenitic	10-35	Ferritic and martensitic: molybdenum disulfide or other sulfur-based oil. Austenitic: sulfur-chlorinated mineral lard or heavy- duty soluble oils	Ferritic and martensitic: Standard rake angle oxide-coated taps are recommended. Austenitic: Use plut gap having 3–5 chamfered threads. To reduce rub, use an eccentric or con-eccentric relieved land.
Titanium and Alloys	6–10	40–10 depends on composition of alloy	Special	Oxide-coated taps are recommended to minimize galling and welding. An eccentric or con-eccentric relief land should be used. Taps with interrupted threads are sometimes helpful. Pure Ti is comparatively easy to tap; alloys are difficult.

TAP DRILL SIZES

Table 5. American National and Unified Coarse and Fine Thread Dimensions and Tap Drill Sizes

	11110	au Dimensions	ana tap Driii	DIECS	
	D	Die L. F.	D. C. F.	T. 1:11 C 750	Decimal
Thread size and threads per inch	Basic major diameter inches	Pitch diameter inches	Root diameter inches	Tap drill for 75% theoretical thread	equivalent of tap drill inches
· ·	0.0600	0.0519	0.0438		0.0469
0×80	0.0730	0.0629	0.0527	3/ ₆₄ " 53	0.0595
1×64	0.0730	0.0640	0.055	53	
1×72				50	0.0595
2×56	0.0860	0.0744	0.0628		0.0700
2×64	0.0860	0.0759	0.0657	50	0.0700
3×48	0.0990	0.0855	0.0719	47	0.0785
3×56	0.0990	0.0874	0.0758	46	0.0810
4×40	0.1120	0.0958	0.0795	43	0.0890
4×48	0.1120	0.0985	0.0849	42	0.0935
5×40	0.1250	0.1088	0.0925	38	0.1015
5×44	0.1250	0.1102	0.0955	37	0.1040
6×32	0.1380	0.1177	0.0974	36	0.1065
6×40	0.1380	0.1218	0.1055	33	0.1130
8×32	0.1640	0.1437	0.1234	29	0.1360
8×36	0.1640	0.1460	0.1279	29	0.1360
10×24	0.1900	0.1629	0.1359	26	0.1470
10×32	0.1900	0.1697	0.1494	21	0.1590
12×24	0.2160	0.1889	0.1619	16	0.1770
12×28	0.2160	0.1928	0.1696	15	0.1800
1/4"×20	0.2500	0.2175	0.185	7	0.2010
1/4"×28	0.2500	0.2268	0.2036	3	0.2130
5/16"×18	0.3125	0.2764	0.2403	F	0.2570
5/16"×24	0.3125	0.2854	0.2584	I	0.2720
3/8"×16	0.3750	0.3344	0.2938	5/16"	0.3125
3/8"×24	0.3750	0.3479	0.3209	16 Q	0.332
7/16"×14	0.4375	0.3911	0.3447	U	0.368
7/16"×20	0.4375	0.4050	0.3726	²⁵ / ₆₄ "	0.3906
1/2"×13	0.5000	0.4500	0.4001	27/64"	0.4219
1/2"×20	0.5000	0.4675	0.4351	29/64"	0.4531
9/16"×12	0.5625	0.5084	0.4542	31/ ₆₄ "	0.4844
9/16"×18	0.5625	0.5264	0.4903	33/64	0.5156
5/8"×11	0.6250	0.5660	0.5069	17/32	0.5312
5/8"×18	0.6250	0.5889	0.5528	37/ " 64	0.5781
3/4"×10	0.7500	0.6850	0.6201	21/32"	0.6562
3/4"×16	0.7500	0.7094	0.6688	11/ "	0.6875
7/8"×9	0.8750	0.8028	0.7307	16 49/ " 13/ "	0.7656
7/8"×14	0.8750	0.8286	0.7822	13/ ₁₆ "	0.8125
1"×8	1.0000	0.9188	0.8376	7/ ₈ "	0.8750
1"×12	1.0000	0.9459	0.8917	59/ " 64	0.9219
1-1/8"×7	1.1250	1.0322	0.9394	64 63/ "	0.9844
1-1/8"×12	1.1250	1.0709	1.0168	1 ⁶⁴	1.0469
1-1/8 × 12 1-1/4"×7	1.2500	1.1572	1.0644	1 ³ / ₆₄ " 1 ⁷ / ₆₄ "	1.1094
1-1/4 × 7 1-1/4"×12	1.2500	1.1959	1.1418	111/ "	1.1719
1-1/4 × 12 1-3/8"×6	1.3750	1.2667	1.1585	111/16"	1.2187
1-3/8"×6 1-3/8"×12	1.3750	1.3209	1.2668	17/32	1.2969
1-3/8" × 12 1-1/2" × 6	1.5000	1.3917	1.2835	119/64	1.3437
1-1/2"×6 1-1/2"×12	1.5000	1.4459	1.3918	1 ¹¹ / ₃₂ " 1 ²⁷ / ⁶⁴ "	1.4219
1-3/4"×5	1.7500	1.6201	1.4902		1.5625
2"×4-1/2	2.0000	1.8557	1.7113	19/ ₁₆ " 1 ²⁵ / ₂₂ "	1.7812
2 × 4-1/2	2.0000	1.020.1	1./113	12/32	1./014

Root Diameter = Nominal Diameter -2(0.75 H) = Nominal Diameter $-2(0.75 \times 0.866025 \times \text{P})$

TAP DRILL SIZES

Table 6. Tap Drill Sizes for Threads of American National Form

Screw Thread			nercial Drills ^a	Screw T	'hread	Comn Tap I	nercial Drills ^a
Outside Diam. Pitch	Root Diam.	Size or Number	Decimal Equiv.	Outside Diam. Pitch	Root Diam.	Size or Number	Decimal Equiv.
1/16-64	0.0422	3/ ₆₄	0.0469	27	0.4519	15/32	0.4687
72	0.0445	3/64	0.0469	% ₁₆ -12	0.4542	31/64	0.4844
⁵ / ₆₄ -60	0.0563	1/16	0.0625	18	0.4903	33/64	0.5156
72	0.0601	52	0.0635	27	0.5144	17/32	0.5312
³ / ₃₂ -48	0.0667	49	0.0730	⁵ / ₈ -11	0.5069	17/32	0.5312
50	0.0678	49	0.0730	12	0.5168	35/64	0.5469
7/ ₆₄ -48	0.0823	43	0.0890	18	0.5528	37/64	0.5781
1/8-32	0.0844	3/32	0.0937	27	0.5769	19/32	0.5937
40	0.0925	38	0.1015	11/ ₁₆ -11	0.5694	19/32	0.5937
%4-40	0.1081	32	0.1160	16	0.6063	5/8	0.6250
5/ ₃₂ -32	0.1157	1/8	0.1250	³ / ₄ -10	0.6201	21/32	0.6562
36	0.1202	30	0.1285	12	0.6418	43/64	0.6719
11/64-32	0.1313	9/64	0.1406	16	0.6688	11/16	0.6875
³ / ₁₆ -24	0.1334	26	0.1470	27	0.7019	23/32	0.7187
32	0.1469	22	0.1570	13/ ₁₆ -10	0.6826	23/32	0.7187
13/ ₆₄ -24	0.1490	20	0.1610	½-9	0.7307	49/64	0.7656
7/ ₃₂ -24	0.1646	16	0.1770	12	0.7668	51/64	0.7969
32	0.1782	12	0.1890	14	0.7822	13/16	0.8125
15/64-24	0.1806	10	0.1935	18	0.8028	53/64	0.8281
1/4-20	0.1850	7	0.2010	27	0.8269	27/32	0.8437
24	0.1959	4	0.2090	15/ ₁₆ -9	0.7932	53/64	0.8281
27	0.2019	3	0.2130	1 – 8	0.8376	7/8	0.8750
28	0.2036	3	0.2130	12	0.8918	59/64	0.9219
32	0.2094	7/32	0.2187	14	0.9072	15/16	0.9375
⁵ / ₁₆ -18	0.2403	F	0.2570	27	0.9519	31/32	0.9687
20	0.2476	17/64	0.2656	11/8-7	0.9394	63/64	0.9844
24	0.2584	I	0.2720	12	1.0168	13/64	1.0469
27	0.2644	J	0.2770	11/4-7	1.0644	17/64	1.1094
32	0.2719	9/32	0.2812	12	1.1418	111/64	1.1719
³⁄ ₈ −16	0.2938	5/16	0.3125	13/8-6	1.1585	17/32	1.2187
20	0.3100	21/64	0.3281	12	1.2668	119/64	1.2969
24	0.3209	Q	0.3320	11/2-6	1.2835	111/32	1.3437
27	0.3269	R	0.3390	12	1.3918	127/64	1.4219
7/ ₁₆ -14	0.3447	U	0.3680	15/8-21/5	1.3888	129/64	1.4531
20	0.3726	25/64	0.3906	13/4-5	1.4902	1%	1.5625
24	0.3834	X	0.3970	17/8-5	1.6152	111/16	1.6875
27	0.3894	Y	0.4040	2-41/2	1.7113	1 ²⁵ / ₃₂	1.7812
1/2-12	0.3918	27/64	0.4219	21/8-41/2	1.8363	129/32	1.9062
13	0.4001	27/64	0.4219	21/4-41/2	1.9613	21/32	2.0312
20	0.4351	29/64	0.4531	23/8-4	2.0502	21/8	2.1250
24	0.4459	29/64	0.4531	21/2-4	2.1752	21/4	2.2500

^a These tap drill diameters allow approximately 75 percent of a full thread to be produced. For small thread sizes in the first column, the use of drills to produce the larger hole sizes will reduce defects caused by tap problems and breakage.

Table 7. Tap Drills and Clearance Drills for Machine Screws with American National Thread Form

Size of Screw			Тар	Drills		Clearance	Hole Drills	
No.		No. of Threads			Cl	ose Fit	Fi	ee Fit
or Diam.	Decimal Equiv.	per Inch	Drill Size	Decimal Equiv.	Drill Size	Decimal Equiv.	Drill Size	Decimal Equiv.
0	0.060	80	3/64	0.0469	52	0.0635	50	0.0700
1	0.073	64 72	53 53	0.0595 0.0595	48	0.0760	46	0.0810
2	0.086	56 64	50 50	0.0700 0.0700	43	0.0890	41	0.0960
3	0.099	48 56	47 45	0.0785 0.0820	37	0.1040	35	0.1100
4	0.112	36ª 40 48	44 43 42	0.0860 0.0890 0.0935	32	0.1160	30	0.1285
5	0.125	40 44	38 37	0.1015 0.1040	30	0.1285	29	0.1360
6	0.138	32 40	36 33	0.1065 0.1130	27	0.1440	25	0.1495
8	0.164	32 36	29 29	0.1360 0.1360	18	0.1695	16	0.1770
10	0.190	24 32	25 21	0.1495 0.1590	9	0.1960	7	0.2010
12	0.216	24 28	16 14	0.1770 0.1820	2	0.2210	1	0.2280
14	0.242	20 ^a 24 ^a	10 7	0.1935 0.2010	D	0.2460	F	0.2570
1/4	0.250	20 28	7 3	0.2010 0.2130	F	0.2570	Н	0.2660
⁵ / ₁₆	0.3125	18 24	F I	0.2570 0.2720	P	0.3230	Q	0.3320
3/8	0.375	16 24	5/ ₁₆ Q	0.3125 0.3320	w	0.3860	х	0.3970
7/ ₁₆	0.4375	14 20	U 25/ 64	0.3680 0.3906	29/	0.4531	15/32	0.4687
1/2	0.500	13 20	27/ 64 29/ 64	0.4219 0.4531	33/64	0.5156	17/32	0.5312

^a These screws are not in the American Standard but are from the former A.S.M.E. Standard.

Table 8. Tap Drills for Pipe Taps

Size of Tap	Drills for Briggs Pipe Taps	Drills for Whitworth Pipe Taps	Size of Tap	Drills for Briggs Pipe Taps	Drills for Whitworth Pipe Taps	Size of Tap	Drills for Briggs Pipe Taps	Drills for Whitworth Pipe Taps			
1/8	11/32	5/ ₁₆	11/4	11/2	115/32	31/4		31/2			
1/4	7/16	27/64	11/2	123/32	125/32	31/2	33/4	33/4			
3/8	19/32	9/ ₁₆	13/4		115/16	33/4		4			
1/2	23/32	11/16	2	23/16	25/32	4	41/4	41/4			
5/8		25/32	21/4		213/32	41/2	43/4	43/4			
3/4	15/16	29/32	21/2	25/8	225/32	5	55/16	51/4			
7∕8		11/16	23/4		31/32	51/2		53/4			
1	15/32	11/8	3	31/4	3%	6	63/8	61/4			

All dimensions are in inches.

To secure the best results, the hole should be reamed before tapping with a reamer having a taper of $\frac{1}{4}$ inch per foot.

TAP DRILL SIZES

Table 9. British Standard Tapping Drill Sizes for ISO Metric Coarse Pitch Series Threads BS 1157:2004

		Standard	Drill S	izesª			Standard I	Drill Size	es ^a
	Reco	mmended	Al	ternative		Reco	mmended	Alte	rnative
Nominal Size and Thread Diam.	Size	Theoretical Radial Engagement with Ext.Thread (Percent)	Size	Theoretical Radial Engagement with Ext. Thread (Percent)	Nominal. Size and Thread Diam.	Size	Theoretical Radial Engagement with Ext. Thread (Percent)	Size	Theoretical Radial Engagement with Ext. Thread (Percent)
M 1	0.75	81.5	0.78	71.7	M 12	10.20	83.7	10.40	74.5 ^b
M 1.1	0.85	81.5	0.88	71.7	M 14	12.00	81.5	12.20	73.4b
M 1.2	0.95	81.5	0.98	71.7	M 16	14.00	81.5	14.25	71.3°
M 1.4	1.10	81.5	1.15	67.9	M 18	15.50	81.5	15.75	73.4°
M 1.6	1.25	81.5	1.30	69.9	M 20	17.50	81.5	17.75	73.4°
M 1.8	1.45	81.5	1.50	69.9	M 22	19.50	81.5	19.75	73.4°
M 2	1.60	81.5	1.65	71.3	M 24	21.00	81.5	21.25	74.7 ^b
M 2.2	1.75	81.5	1.80	72.5	M 27	24.00	81.5	24.25	74.7 ^b
M 2.5	2.05	81.5	2.10	72.5	M 30	26.50	81.5	26.75	75.7 ^b
M 3	2.50	81.5	2.55	73.4	M 33	29.50	81.5	29.75	75.7b
M 3.5	2.90	81.5	2.95	74.7	M 36	32.00	81.5		
M 4	3.30	81.5	3.40	69.9 ^b	M 39	35.00	81.5		
M 4.5	3.70	86.8	3.80	76.1	M 42	37.50	81.5		
M 5	4.20	81.5	4.30	71.3b	M 45	40.50	81.5		
M 6	5.00	81.5	5.10	73.4	M 48	43.00	81.5		
M 7	6.00	81.5	6.10	73.4	M 52	47.00	81.5		
M 8	6.80	78.5	6.90	71.7 ^b	M 56	50.50	81.5		
M 9	7.80	78.5	7.90	71.7ь	M 60	54.50	81.5		
M 10	8.50	81.5	8.60	76.1	M 64	58.00	81.5		
M 11	9.50	81.5	9.60	76.1	M 68	62.00	81.5		

^a These tapping drill sizes are for fluted taps only.

Drill sizes are given in millimeters.

Table 10. Tap Drill or Core Hole Sizes for Cold Form Tapping ISO Metric Threads

	-		11 8				
Nominal Size of Tap	Pitch	Recommended Tap Drill Size	Nominal Size of Tap	Pitch	Recommended Tap Drill Size		
1.6 mm	0.35 mm	1.45 mm	4.0 mm	0.70 mm	3.7 mm		
1.8 mm	0.35 mm	1.65 mm	4.5 mm	0.75 mm	4.2 mm ^a		
2.0 mm	0.40 mm	1.8 mm	5.0 mm	0.80 mm	4.6 mm		
2.2 mm.	0.45 mm	2.0 mm	6.0 mm	1.00 mm	5.6 mm ^a		
2.5 mm	0.45 mm	2.3 mm	7.0 mm	1.00 mm	6.5 mm		
3.0 mm	0.50 mm	2.8 mm ^a	8.0 mm	1.25 mm	7.4 mm		
3.5 mm	0.60 mm	3.2 mm	10.0 mm	1.50 mm	9.3 mm		

^a These diameters are the nearest stocked drill sizes and not the theoretical hole size, and may not produce 60 to 75 percent full thread.

^b For tolerance class 6H and 7H threads only. ^c For tolerance class 7H threads only.

The sizes are calculated to provide 60 to 75 percent of full thread.

144 CUTTING SPEEDS FOR PLAIN CARBON AND ALLOY STEELS

SPEEDS AND FEEDS

Table 1. Recommended Cutting Speeds in Feet per Minute for Turning, Milling, Drilling and Reaming Plain Carbon and Alloy Steels

27	Treuming Financeur Son		Cutting Speed, fpm HSS				
Material	Hardness	Material			· •		
AISI and SAE Steels	BHN ^a	Condition	Turning	Milling	Drilling	Reaming	
Free-M	lachining Plain	Carbon Steels (Re	sulfurized)			
1212,1213,1215	100-150	HR,A	150	140	120	80	
	150-200	CD	160	130	125	80	
1108, 1109, 1115, 1117, 1118, 1120,	100-150	HR,A	130	130	110	75	
1126, 1211	150-200	CD	120	115	120	80	
	175–225	HR,A,N,CD	120	115	100	65	
1132, 1137, 1139, 1140, 1144, 1146,	275–325	Q and T	75	70	70	45	
1151	325–375	Q and T	50	45	45	30	
	375–425	Q and T	40	35	35	20	
Free	-Machining Pla	in Carbon Steels (Leaded)				
	100-150	HR,A,N,CD	140	140	130	85	
11L17, 11L18, 12L13, 12L14	150-200	HR,A,N,CD	145	130	120	80	
	200-250	N,CD	110	110	90	60	
	Plain (Carbon Steels					
1005 1000 1000 1010 1012 1015	100-125	HR,A,N,CD	120	110	100	65	
1006, 1008, 1009, 1010, 1012, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1513,	125-175	HR,A,N,CD	110	110	90	60	
	175–225	HR,N,CD	90	90	70	45	
1514	225–275	CD	70	65	60	40	
	125-175	HR,A,N,CD	100	100	90	60	
4025 4020 4022 4025 4025 4025	175-225	HR,A,N,CD	85	85	75	50	
1027, 1030, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043,	225-275	N, CD, Q, and T	70	70	60	40	
1045, 1046, 1048, 1049, 1050, 1052,	275-325	Q and T	60	55	50	30	
1152, 1524, 1526, 1527, 1541	325-375	Q and T	40	35	35	20	
	375-425	Q and T	30	25	25	15	
	125-175	HR,A,N,CD	100	90	85	55	
	175-225	HR,A,N,CD	80	75	70	45	
1055, 1060, 1064, 1065, 1070, 1074,	225–275	N, CD, Q, and T	65	60	50	30	
1078, 1080, 1084, 1086, 1090, 1095, 1548, 1551, 1552, 1561, 1566	275-325	Q and T	50	45	40	25	
	325-375	Q and T	35	30	30	20	
	375-425	Q and T	30	15	15	10	
Fre	ee-Machining A	lloy Steels (Resulf	urized)				
	175–200	HR,A,N,CD	110	100	90	60	
	200-250	HR,N,CD	90	90	80	50	
4140,4150	250-300	Q and T	65	60	55	30	
	300-375	Q and T	50	45	40	25	
	375-425	Q and T	40	35	30	15	
	Free-Machining	Alloy Steels (Lea	ded)			•	
	150-200	HR,A,N,CD	120	115	100	65	
	200-250	HR, N, CD	100	95	90	60	
41L30,41L40,41L47,41L50,43L47, 51L32,52L100,86L20,86L40	250-300	Q and T	75	70	65	40	
51L52, 32L100, 00L20, 00L40	300-375	Q and T	55	50	45	30	
	375-425	Q and T	50	40	30	15	

CUTTING SPEEDS FOR PLAIN CARBON AND ALLOY STEELS

Table 1.(Continued) Recommended Cutting Speeds in Feet per Minute for Turning, Milling, Drilling and Reaming Plain Carbon and Alloy Steels

			Cutting Speed, fpm HSS				
Material AISI and SAE Steels	Hardness BHN ^a	Material Condition	Turning	Milling	Drilling	Reaming	
	All	oy Steels				,	
	125–175	HR,A,N,CD	100	100	85	55	
4012,4023,4024,4028,4118,4320,	175–225	HR,A,N,CD	90	90	70	45	
4419,4422,4427,4615,4620,4621, 4626,4718,4720,4815,4817,4820,	225–275	CD, N, Q and T	70	60	55	35	
5015,5117,5120,6118,8115,8615, 8617,8620,8622,8625,8627,8720,	275–325	Q and T	60	50	50	30	
8822,94B17	325–375	Q and T	50	40	35	25	
	375–425	Q and T	35	25	25	15	
1330, 1335, 1340, 1345, 4032, 4037,	175–225	HR,A,N,CD	85	75	75	50	
4042,4047,4130,4135,4137,4140, 4142,4145,4147,4150,4161,4337, 4340,50B44,50B46,50B50, 50B60,5130,5132,5140,5145, 5147,5150,5160,51B60,6150, 81B45,8630,8635,8637,8640,	225–275	N, CD, Q and T	70	60	60	40	
	275–325	N, Q and T	60	50	45	30	
	325–375	N, Q and T	40	35	30	15	
8642, 8645, 8650, 8655, 8660, 8740, 9254, 9255, 9260, 9262, 94B30	375–425	Q and T	30	20	20	15	
	175–225	HR,A,CD	70	65	60	40	
	225–275	N, CD, Q and T	65	60	50	30	
E51100, E52100	275–325	N, Q and T	50	40	35	25	
	325–375	N, Q and T	30	30	30	20	
	375–425	Q and T	20	20	20	10	
1	Ultra-High-Stre	ngth Steels (Not A	ASI)				
	220-300	A	65	60	50	30	
AMS 6421 (98B37 Mod.), AMS 6422 (98BV40), AMS 6424, AMS 6427,	300-350	N	50	45	35	20	
AMS 6428, AMS 6430, AMS 6432, AMS 6433, AMS 6434, AMS 6436,	350-400	N	35	20	20	10	
AMS 6442, 300M, D6ac	43–48 RC	Q and T	25				
	48–52 RC	Q and T	10				
	Maraging	Steels (Not AISI)					
18% Ni Grade 200, 18% Ni Grade 250,	250-325	A	60	50	50	30	
18% Ni Grade 300, 18% Ni Grade 350	50–52 RC	Maraged	10				
	Nitriding	Steels (Not AISI)				r	
Nitralloy 125, Nitralloy 135, Nitralloy 135 Mod., Nitralloy 225,	200-250	A	70	60	60	40	
Nitralloy 230, Nitralloy N, Nitralloy EZ, Nitrex I	300–350	N, Q and T	30	25	35	20	

^aAbbreviations designate: HR, hot-rolled; CD, cold-drawn; A, annealed; N, normalized; Q and T, quenched and tempered; BHN, Brinell Hardness Number; RC, Rockwell C scale hardness number; HSS, high-speed steel.

Speeds for turning based on a feed rate of 0.012 inch per revolution and a depth of cut of 0.125 inch.

Table 2. Recommended Cutting Speeds in Feet per Minute for Turning, Milling,
Drilling and Reaming Ferrous Cast Metals

	Hardness	Material	С	utting Spe	ed, fpm F	ISS
Material	BHNa	Condition	Turning	Milling	Drilling	Reaming
	Gray (Cast Iron				•
ASTM Class 20	120-150	A	120	100	100	65
ASTM Class 25	160-200	AC	90	80	90	60
ASTM Class 30, 35, and 40	190-220	AC	80	70	80	55
ASTM Class 45 and 50	220-260	AC	60	50	60	40
ASTM Class 55 and 60	250-320	AC, HT	35	30	30	20
ASTM Type 1, 1b, 5 (Ni Resist)	100-215	AC	70	50	50	30
ASTM Type 2, 3, 6 (Ni Resist)	120-175	AC	65	40	40	25
ASTM Type 2b, 4 (Ni Resist)	150-250	AC	50	30	30	20
	Mallea	ble Iron				
(Ferritic), 32510, 35018	110–160	MHT	130	110	110	75
(Pearlitic), 40010, 43010, 45006,	160-200	MHT	95	80	80	55
45008,48005,50005	200-240	MHT	75	65	70	45
(Martensitic), 53004, 60003, 60004	200-255	MHT	70	55	55	35
(Martensitic), 70002, 70003	220-260	MHT	60	50	50	30
(Martensitic), 80002	240-280	MHT	50	45	45	30
(Martensitic), 90001	250-320	MHT	30	25	25	15
	Nodular (l	Ouctile) Iro	n			
(Ferritic), 60-40-18, 65-45-12	140-190	A	100	75	100	65
(F. W. D. 1W.) 90.55.06	190-225	AC	80	60	70	45
(Ferritic-Pearlitic), 80-55-06	225–260	AC	65	50	50	30
(Pearlitic-Martensitic), 100-70-03	240-300	HT	45	40	40	25
(Martensitic), 120-90-02	270-330	HT	30	25	25	15
(Martensitic), 120-90-02	330-400	HT	15	_	10	5
	Cast	Steels				
(Low-Carbon), 1010, 1020	100-150	AC,A,N	110	100	100	65
	125-175	AC,A,N	100	95	90	60
(Medium-Carbon), 1030, 1040, 1050	175–225	AC,A,N	90	80	70	45
	225-300	AC, HT	70	60	55	35
(Low-Carbon Alloy), 1320, 2315,	150-200	AC,A,N	90	85	75	50
2320, 4110, 4120, 4320, 8020,	200–250	AC,A,N	80	75	65	40
8620	250-300	AC,HT	60	50	50	30
(Madium Carbon Allay) 1320	175–225	AC,A,N	80	70	70	45
(Medium-Carbon Alloy), 1330, 1340, 2325, 2330, 4125, 4130,	225–250	AC,A,N	70	65	60	35
4140, 4330, 4340, 8030, 80B30,	250-300	AC, HT	55	50	45	30
8040, 8430, 8440, 8630, 8640, 9525, 9530, 9535	300-350	AC, HT	45	30	30	20
7525,7550,7555	350-400	HT	30		20	10

^a Abbreviations designate: A, annealed; AC, as cast; N, normalized; HT, heat-treated; MHT, malleabilizing heat treatment; and BHN, Brinell Hardness Number.

Speeds for turning based on a feed rate of 0.012 inch per revolution and a depth of cut of 0.125 inch.

CUTTING SPEEDS FOR STAINLESS STEELS

Table 3. Recommended Cutting Speeds in Feet per Minute for Turning, Milling,
Drilling and Reaming Stainless Steels

			1			
	Hard- ness	Material	C	utting Spe	ed, fpm HS	SS
Material	BHN ^a	Condition	Turning	Milling	Drilling	Reaming
Free	Machinin	g Stainless St	eels (Ferri	tic)		
430F, 430F Se	135–185	A	110	95	90	60
(Austenitic), 203EZ, 303,	135–185	A	100	90	85	55
303Se, 303MA, 303Pb, 303Cu, 303 Plus X	225–275	CD	80	75	70	45
	135–185	A	110	95	90	60
(Martensitic), 416, 416Se,	185–240	A,CD	100	80	70	45
416Plus X, 420F, 420FSe, 440F, 440FSe	275–325	Q and T	60	50	40	25
	375–425	Q and T	30	20	20	10
	S	tainless Steels				
(Ferritic), 405, 409, 429, 430, 434, 436, 442, 446, 502	135–185	A	90	75	65	45
(Austenitic), 201, 202, 301, 302,	135–185	A	75	60	55	35
304,304L,305,308,321,347, 348	225–275	CD	65	50	50	30
(Austenitic), 302B, 309, 309S, 310, 310S, 314, 316, 316L, 317, 330	135–185	A	70	50	50	30
	135–175	A	95	75	75	50
(Martensitic), 403, 410, 420,	175–225	A	85	65	65	45
501	275–325	Q and T	55	40	40	25
	375–425	Q and T	35	25	25	15
	225–275	A	60	55	50	30
(Martensitic), 414, 431, Greek Ascoloy	275–325	Q and T	50	45	40	25
	375–425	Q and T	30	25	25	15
	225–275	A	55	50	45	30
(Martensitic), 440A, 440B, 440C	275–325	Q and T	45	40	40	25
	375–425	Q and T	30	20	20	10
(Precipitation-Hardening),	150-200	A	60	60	50	30
15-5PH, 17-4PH, 17-7PH, AF-71, 17-14CuMo, AFC-77,	275–325	Н	50	50	45	25
AM-350, AM-355, AM-362, Custom 455, HNM, PH13-8,	325–375	Н	40	40	35	20
PH14-8Mo, PH15-7Mo, Stainless W	375–450	Н	25	25	20	10

^a Abbreviations designate: A, annealed; CD, cold-drawn: N, normalized; H, precipitation-hardened; Q and T, quenched and tempered; and BHN, Brinell Hardness Number.
Speeds for turning based on a feed rate of 0.012 inch per revolution and a depth of cut of

0.125 inch.

Table 4. Recommended Cutting Speeds in Feet per Minute for Turning, Milling,
Drilling and Reaming Tool Steels

				utting Spe	ed, fpm H	25
Material Tool Steels (AISI Types)	Hardness BHN ^a	Material Condition	Turning	Milling	Drilling	Reaming
						Ŭ
Water-Hardening W1, W2, W5	150-200	A	100	85	85	55
Shock-Resisting S1, S2, S5, S6, S7	175–225	A	70	55	50	35
Cold-Work, Oil-Hardening O1, O2, O6, O7	175–225	A	70	50	45	30
Cold-Work, High-Carbon High-Chromium D2, D3, D4, D5, D7	200–250	A	A 100 85 85 A 70 55 50 A 70 50 45 A 45 40 30 A 55 45 45 A 45 40 30 A 80 60 60 A 65 50 50 Q and T 50 30 30 Q and T 20 Q and T 10 Q and T		20	
Cold-Work, Air-Hardening A2, A3, A8, A9, A10	200-250	A	70	50	50	35
A4,A6	200-250	A	55	45	45	30
A7	225–275	A	45	40	30	20
	150-200	A	80	60	60	40
	200-250	A	65	50	50	30
Hot-Work, Chromium-Type H10, H11, H12, H13, H14,	325–375	Q and T	50	30	30	20
	48–50 RC	Q and T	20			
H19	50–52 RC	Q and T	10			
	52–54 RC	Q and T				
	54–56 RC	Q and T				
Hot-Work, Tungsten-Type	150-200	A	60	55	55	35
H21,H22,H23,H24,H25, H26	200-250	A	50	45	40	25
Hot-Work, Molybdenum-Type	150-200	A	55	55	45	30
H41,H42,H43	200-250	A	45	45	35	20
Special-Purpose, Low-Alloy L2, L3, L6	150-200	A	75	65	60	40
Mold P2, P3, P4, P5, P6	100-150	A	90	75	75	50
P20, P21	150-200	A	80	60	60	40
High-Speed Steel M1, M2, M6, M10, T1, T2, T6	200–250	A	65	50	45	30
M3-1, M4, M7, M30, M33, M34, M36, M41, M42, M43, M44, M46, M47, T5, T8	225–275	A	55	40	35	20
T15, M3-2	225–275	A	45	30	25	15

 $^{^{}a}$ Abbreviations designate: A, annealed; Q and T, quenched and tempered; BHN, Brinell Hardness Number; and RC, Rockwell C scale hardness number.

Speeds for turning based on a feed rate of 0.012 inch per revolution and a depth of cut of 0.125 inch.

CUTTING SPEEDS FOR LIGHT METALS

Table 5. Recommended Cutting Speeds in Feet per Minute for
Turning, Milling, Drilling, and Reaming Light Metals

Material	Material	Cutting Speed, fpm HSS						
Light Metals	Condition ^a	Turning	Milling	Drilling	Reaming			
All Wrought Aluminum Alloys	CD	600	600	400	400			
All Wrought Aluminum Alloys	Material Conditiona	350	350					
All Aluminum Sand and	AC	750	750	500	500			
Permanent Mold Casting Alloys	ST and A	600	600	350	350			
All Aluminum Die Casting Alloys	AC	125	125	300	300			
All Aluminium Die Casung Alloys	ST and A	100	100	70	70			
Except Alloys 390.0 and 392.0	AC	80	80	125	100			
Except Alloys 390.0 and 392.0	ST and A	60	60	45	40			
All Wrought Magnesium Alloys	A, CD, ST, and A	800	800	500	500			
All Cast Magnesium Alloys	A, AC, ST, and A	800	800	450	450			

 $[^]a Abbreviations \ designate: A, annealed; AC, as \ cast; CD, cold \ drawn; ST \ and \ A, solution-treated \ as \ aged.$

Table 6. Recommended Cutting Speeds in Feet per Minute for Turning and Drilling Titanium and Titanium Alloys

Titanium and Titanium Alloys Conditiona BHNa HSS			•	
99.5 Ti				Speed, fpm
99.1 Ti, 99.2 Ti 99.0 Ti A 180–240 90 99.0 Ti Low Alloyed 99.5 Ti-0.15 Pd 99.2 Ti-0.15 Pd, 98.9 Ti-0.8 Ni-0.3 Mo A 180–250 85 Alpha Alloys and Alpha-Beta Alloys 5Al-2.5 Sn, 8Mn, 2Al-11Sn-5Zr-1Mo, 4Al-3Mo-1V, 5Al-6Sn-2Zr-1Mo, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si 6Al-4V A 310–350 40 6Al-4V A 320–370 30 8V-5Fe-1Al A 320–380 20 6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si ST and A 320–380 40 6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si ST and A 375–420 20 1Al-8V-5Fe Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275–350 25	Commercially Pure			
Page	99.5 Ti	A	110-150	110
Low Alloyed Section 2015 A 110-150 100	99.1 Ti, 99.2 Ti	A	180-240	90
99.5 Ti-0.15 Pd	99.0 Ti	A	250-275	70
99.2 Ti-0.15 Pd, 98.9 Ti-0.8 Ni-0.3 Mo Alpha Alloys and Alpha-Beta Alloys Alpha Alloys and Alpha-Beta Alloys 5Al-2.5 Sn, 8Mn, 2Al-11Sn-5Zr-1Mo, 4Al-3Mo-1V, 5Al-6Sn-2Zr-1Mo, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si 6Al-4V A 310-350 40 6Al-6V-2Sn, 7Al-4Mo, 8Al-1Mo-1V A 320-370 30 8V-5Fe-1Al A 320-380 20 6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si ST and A 320-380 40 4Al-3Mo-1V, 6Al-6V-2Sn, 7Al-4Mo ST and A 375-420 20 1Al-8V-5Fe Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275-350 25	Low Alloyed			
Alpha Alloys and Alpha-Beta Alloys 5Al-2.5 Sn, 8Mn, 2Al-11Sn-5Zr-1Mo, 4Al-3Mo-1V, 5Al-6Sn-2Zr-1Mo, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si 6Al-4V A 310–350 40 6Al-6V-2Sn, 7Al-4Mo, 8Al-1Mo-1V A 320–370 30 8V-5Fe-1Al A 320–380 20 6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si ST and A 320–380 40 40-3Mo-1V, 6Al-6V-2Sn, 7Al-4Mo ST and A 375–420 20 1Al-8V-5Fe Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275–350 25	99.5 Ti-0.15 Pd	A	110-150	100
5Al-2.5 Sn, 8Mn, 2Al-11Sn-5Zr-1Mo, 4Al-3Mo-1V, 5Al-6Sn-2Zr-1Mo, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si 6Al-4V A 310–350 40 6Al-6V-2Sn, 7Al-4Mo, 8Al-1Mo-1V A 320–370 30 8V-5Fe-1Al A 320–380 20 6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si 4Al-3Mo-1V, 6Al-6V-2Sn, 7Al-4Mo ST and A 375–420 20 A 375–420 20 Beta Alloys Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275–350 25	99.2 Ti-0.15 Pd, 98.9 Ti-0.8 Ni-0.3 Mo	A	180-250	85
5Al-6Sn-2Zr-1Mo, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si A 300-350 50 6Al-4V A 310-350 40 6Al-6V-2Sn, 7Al-4Mo, 8Al-1Mo-1V A 320-370 30 8V-5Fe-1Al A 320-380 20 6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si ST and A 320-380 40 4Al-3Mo-1V, 6Al-6V-2Sn, 7Al-4Mo ST and A 375-420 20 1Al-8V-5Fe ST and A 375-440 20 Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275-350 25	Alpha Alloys and Alpha-Bet	a Alloys		
6Al-6V-2Sn, 7Al-4Mo, 8Al-1Mo-1V A 320–370 30 8V-5Fe-1Al A 320–380 20 6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si ST and A 375–420 20 4Al-3Mo-1V, 6Al-6V-2Sn, 7Al-4Mo ST and A 375–440 20 Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275–350 25		A	300–350	50
8V-5Fe-1Al A 320–380 20 6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si ST and A 320–380 40 4Al-3Mo-1V, 6Al-6V-2Sn, 7Al-4Mo ST and A 375–420 20 1Al-8V-5Fe ST and A 375–440 20 Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275–350 25	6Al-4V	A	310-350	40
6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si ST and A 320–380 40 4Al-3Mo-1V, 6Al-6V-2Sn, 7Al-4Mo ST and A 375–420 20 1Al-8V-5Fe ST and A 375–440 20 Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275–350 25	6Al-6V-2Sn, 7Al-4Mo, 8Al-1Mo-1V	A	320-370	30
6Al-2Sn-4Zr-2Mo-0.25Si	8V-5Fe-1Al	A	320-380	20
1Al-8V-5Fe ST and A 375–440 20 Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275–350 25	6Al-4V, 6Al-2Sn-4Zr-2Mo, 6Al-2Sn-4Zr-6Mo, 6Al-2Sn-4Zr-2Mo-0.25Si	ST and A	320–380	40
Beta Alloys 13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A,ST 275–350 25	4Al-3Mo-1V, 6Al-6V-2Sn, 7Al-4Mo	ST and A	375-420	20
13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr, A, ST 275–350 25	1Al-8V-5Fe	ST and A	375-440	20
15 V Tree Shi, Shi o V See Shi, Shi o V Ger into 121,	Beta Alloys			
11.5Mo-6Zr-4.5Sn ST and A 350–440 20	13V-11Cr-3Al, 8Mo-8V-2Fe-3Al, 3Al-8V-6Cr-4Mo-4Zr,	A,ST	275-350	25
	11.5Mo-6Zr-4.5Sn	ST and A	350-440	20

^a Abbreviations designate: A, annealed; ST, solution treated; ST and A, solution-treated as aged; and BHN, Brinell Hardness Number.

CUTTING SPEEDS FOR SUPERALLOYS

Table 7. Recommended Cutting Speeds in Feet per Minute for Turning, Milling, and Drilling*Superalloys

Material	Cutting S H	peed, fpm SS	Material	Cutting S H	peed, fpm SS
Superalloys	Roughing	Finishing	Superalloys	Roughing	Finishing
A-286	30–35	35–40	Mar-M200, M246, M421, and M432	8–10	10–12
AF ₂ -1DA	8–10	10–15	Mar-M905, and M918	15-20	20–25
Air Resist 213	15–20	20–25	Mar-M302, M322, and M509	10–12	10–15
Air Resist 13, and 215	10–12	10–15	N-12M	8–12	10–15
Astroloy	5–10	5–15	N-155	15-20	15-25
B-1900	8–10	8–10	Nasa C-W-Re	10-12	10–15
CW-12M	8–12	10–15	Nimonic 75, and 80	15-20	20-25
Discalloy	15–35	35-40	Nimonic 90, and 95	10-12	12–15
FSH-H14	10–12	10–15	Refractaloy 26	15-20	20-25
GMR-235, and 235D	8–10	8–10	Rene 41	10–15	12-20
Hastelloy B, C, G, and X (wrought)	15–20	20–25	Rene 80, and 95	8–10	10–15
Hastelloy B, and C (cast)	8–12	10–15	S-590	10–20	15–30
Haynes 25, and 188	15–20	20–25	S-816	10–15	15–20
Haynes 36, and 151	10–12	10–15	T-D Nickel	70–80	80-100
HS 6, 21, 2, 31(X40), 36, and 151	10–12	10–15	Udimet 500, 700, and 710	10–15	12–20
IN 100, and 738	8–10	8–10	Udimet 630	10-20	20-25
Incoloy 800, 801, and 802	30–35	35–40	Unitemp 1753	8–10	10–15
Incoloy 804, and 825	15–20	20–25	V-36	10–15	15–20
Incoloy 901	10–20	20-35	V-57	30-35	35-40
Inconel 625, 702, 706, 718 (wrought), 721, 722, X750, 751, 901, 600, and 604	15–20	20–25	W-545	25–35	30–40
Inconel 700, and 702	10–12	12–15	WI-52	10-12	10–15
Inconel 713C, and 718 (cast)	8–10	8–10	Waspaloy	10-30	25–35
J1300	15–25	20-30	X-45	10–12	10–15
J1570	15–20	20–25	16-25-6	30-35	35-40
M252 (wrought)	15–20	20–25	19-9DL	25–35	30–40
M252 (cast)	8–10	8–10			

*For milling and drilling, use the cutting speeds recommended under roughing.

CUTTING SPEEDS FOR COPPER ALLOYS

Table 8. Cutting Feeds and Speeds for Turning, Drilling, and Reaming Copper Alloys

Group 1

Architectural bronze (C38500); Extra-high-leaded brass (C35600); Forging brass (C37700); Free-cutting phosphor bronze, B2 (C54400); Free-cutting brass (C36000); Free-cutting Muntz metal (C37000); High-leaded brass (C33200; C34200); High-leaded brass (C33200; C34200); Leaded commercial bronze (C31400); Leaded naval brass (C48500); Medium-leaded brass (C34000)

Group 2

Aluminum brass, arsenical (C68700); Cartridge brass, 70% (C26000); High-silicon bronze, B (C65500); Admiralty brass (inhibited) (C44300, C44500); Jewelry bronze, 87.5% (C22600); Leaded Muntz metal (C36500, C36800); Leaded inckel silver (C79600); Low brass, 80% (C24000); Low-leaded brass (C33500); Low-silicon bronze, B (C65100); Manganese bronze, A (C67500); Muntz metal, 60% (C28000); Nickel silver, 55-18 (C77000); Red brass, 85% (C23000); Yellow brass (C26800)

Group 3

Aluminum bronze, D (C61400); Beryllium copper (C17000, C17200, C17500); Commercial bronze, 90% (C22000); Copper nickel, 10% (C70600); Copper nickel, 30% (C71500); Electrolytic tough pitch copper (C11000); Guilding, 95% (C21000); Nickel silver, 65-10 (C74500); Nickel silver, 65-12 (C75700); Nickel silver, 65-15 (C75400); Nickel silver, 65-18 (C75200); Oxygen-free copper (C10200); Phosphor bronze, 1.25% (C50200); Phosphor bronze, 10% D (C52400); Phosphor bronze, 5% A (C51000); Phosphor bronze, 8% C (C52100); Phosphorus deoxidized copper (C12200)

Wrought Alloys		Cutt	ing Speed HSS	, fpm
Description and UNS Alloy Numbers	Material Condition	Turning	Drilling	Reaming
Group 1	A	300	160	160
	CD	350	175	175
Group 2	A	200	120	110
	CD	250	140	120
Group 3	A	100	60	50
	CD	110	65	60

Abbreviations designate: A, annealed; CD, cold-drawn.

Table 9. Cutting Speed Adjustment Factors for Turning with High-Speed Steel Tools

Fee		Feed Factor	Depth		Depth-of-Cut Factor
in.	mm	F_f	in.	mm	$F_{_d}$
0.002	0.05	1.50	0.005	0.13	1.50
0.003	0.08	1.50	0.010	0.25	1.42
0.004	0.10	1.50	0.016	0.41	1.33
0.005	0.13	1.44	0.031	0.79	1.21
0.006	0.15	1.34	0.047	1.19	1.15
0.007	0.18	1.25	0.062	1.57	1.10
0.008	0.20	1.18	0.078	1.98	1.07
0.009	0.23	1.12	0.094	2.39	1.04
0.010	0.25	1.08	0.100	2.54	1.03
0.011	0.28	1.04	0.125	3.18	1.00
0.012	0.30	1.00	0.150	3.81	0.97
0.013	0.33	0.97	0.188	4.78	0.94
0.014	0.36	0.94	0.200	5.08	0.93
0.015	0.38	0.91	0.250	6.35	0.91
0.016	0.41	0.88	0.312	7.92	0.88
0.018	0.46	0.84	0.375	9.53	0.86
0.020	0.51	0.80	0.438	11.13	0.84
0.022	0.56	0.77	0.500	12.70	0.82
0.025	0.64	0.73	0.625	15.88	0.80
0.028	0.71	0.70	0.688	17.48	0.78
0.030	0.76	0.68	0.750	19.05	0.77
0.032	0.81	0.66	0.812	20.62	0.76
0.035	0.89	0.64	0.938	23.83	0.75
0.040	1.02	0.60	1.000	25.40	0.74
0.045	1.14	0.57	1.250	31.75	0.73
0.050	1.27	0.55	1.250	31.75	0.72
0.060	1.52	0.50	1.375	34.93	0.71

For use with HSS tool data only from Tables 1 through 8. Adjusted cutting speed $V = V_{HSS} \times F_f \times F_d$, where V_{HSS} is the tabular speed for turning with high-speed tools.

FEED FOR MILLING HSS CUTTERS Machinery's Handbook Pocket Companion

Table 10. Recommended Feed in Inches per Tooth (f) for Milling with High-Speed Steel Cutters

		End Mills										
		Depth of Cut, .250 in Depth of Cut, .050 in		Plain		Face Mills	Slotting					
		Cı	ıtter Diar	n., in		Cutter l	Diam., in		or Slab	Form Relieved	and Shell End	and Side
	Hardness.	1/2	3/4	1 and up	1/4	1/2	3/4	1 and up	Mills	Cutters	Mills	Mills
Material	BHN											
Free-machining plain carbon steels	100-185	.001	.003	.004	.001	.002	.003	.004	.003008	.005	.004012	.00200
Plain carbon steels, AISI 1006 to 1030;	100-150	.001	.003	.003	.001	.002	.003	.004	.003008	.004	.004012	.00200
1513 to 1522	150-200	.001	.002	.003	.001	.002	.002	.003	.003008	.004	.003012	.00200
	120-180	.001	.003	.003	.001	.002	.003	.004	.003008	.004	.004012	.00200
AISI 1033 to 1095; 1524 to 1566 {	180-220	.001	.002	.003	.001	.002	.002	.003	.003008	.004	.003012	.00200
	220-300	.001	.002	.002	.001	.001	.002	.003	.002006	.003	.002008	.00200
Alloy steels having less than 3% carbon.	125–175	.001	.003	.003	.001	.002	.003	.004	.003008	.004	.004012	.00200
Typical examples: AISI 4012, 4023, 4027, 4118, 4320 4422, 4427, 4615, 4620, 4626,	175–225	.001	.002	.003	.001	.002	.003	.003	.003008	.004	.003012	.00200
4720, 4820, 5015, 5120, 6118, 8115, 8620,	225–275	.001	.002	.003	.001	.001	.002	.003	.002006	.003	.003008	.00200
8627, 8720, 8820, 8822, 9310, 93B17	275–325	.001	.002	.002	.001	.001	.002	.002	.002005	.003	.002008	.00200
Alloy steels having 3% carbon or more. Typical	175-225	.001	.002	.003	.001	.002	.003	.004	.003008	.004	.003012	.00200
examples: AISI 1330, 1340, 4032, 4037, 4130,	225–275	.001	.002	.003	.001	.001	.002	.003	.002006	.003	.003010	.00200
4140, 4150, 4340, 50B40, 50B60, 5130, 51B60, 6150, 81B45, 8630, 8640, 86B45, 8660, 8740,	275–325	.001	.002	.002	.001	.001	.002	.003	.002005	.003	.002008	.00200
94B30	325–375	.001	.002	.002	.001	.001	.002	.002	.002004	.002	.002008	.00200
Tl-+l	150-200	.001	.002	.002	.001	.002	.003	.003	.003008	.004	.003010	.00200
Tool steel	200-250	.001	.002	.002	.001	.002	.002	.003	.002006	.003	.003008	.00200
	120-180	.001	.003	.004	.002	.003	.004	.004	.004012	.005	.005016	.00201
Gray cast iron	180-225	.001	.002	.003	.001	.002	.003	.003	.003010	.004	.004012	.00200
	225-300	.001	.002	.002	.001	.001	.002	.002	.002006	.003	.002008	.00200
Free malleable iron	110-160	.001	.003	.004	.002	.003	.004	.004	.003010	.005	.005016	.00201

Machinery's Handbook Pocket Companion
FEED FOR MILLING HSS CUTTERS

Table 10. (Continued) Recommended Feed in Inches per Tooth (f.) for Milling with High-Speed Steel Cutters

Table 10. Commu	Ĺ				End Mil		v ľ		9 "	•		
		Dept	th of Cut,	.250 in		Depth of	Cut, .050	in	Plain		Face Mills	Slotting
		Cı	ıtter Diar	n., in		Cutter l	Diam., in		or Slab	Form Relieved	and Shell End	and Side
	Hardness.	1/2	3/4	1 and up	1/4	1/2	3/4	1 and up	Mills	Cutters	Mills	Mills
Material	BHN]	Feed per Too	oth, inch			
	160-200	.001	.003	.004	.001	.002	.003	.004	.003010	.004	.004012	.002018
Pearlitic-Martensitic malleable iron	200-240	.001	.002	.003	.001	.002	.003	.003	.003007	.004	.003010	.002006
	240-300	.001	.002	.002	.001	.001	.002	.002	.002006	.003	.002008	.002005
	100-180	.001	.003	.003	.001	.002	.003	.004	.003008	.004	.003012	.002008
Cast steel	180-240	.001	.002	.003	.001	.002	.003	.003	.003008	.004	.003010	.002006
	240-300	.001	.002	.002	.005	.002	.002	.002	.002006	.003	.003008	.002005
Zinc alloys (die castings)		.002	.003	.004	.001	.003	.004	.006	.003010	.005	.004015	.002012
Copper alloys (brasses & bronzes)	100-150	.002	.004	.005	.002	.003	.005	.006	.003015	.004	.004020	.002010
Copper alloys (brasses & bronzes)	150-250	.002	.003	.004	.001	.003	.004	.005	.003015	.004	.003012	.002008
Free cutting brasses & bronzes	80-100	.002	.004	.005	.002	.003	.005	.006	.003015	.004	.004015	.002010
Cast aluminum alloys—as cast		.003	.004	.005	.002	.004	.005	.006	.005016	.006	.005020	.004012
Cast aluminum alloys—hardened		.003	.004	.005	.002	.003	.004	.005	.004012	.005	.005020	.004012
Wrought aluminum alloys — cold drawn		.003	.004	.005	.002	.003	.004	.005	.004014	.005	.005020	.004012
Wrought aluminum alloys—hardened		.002	.003	.004	.001	.002	.003	.004	.003012	.004	.005020	.004012
Magnesium alloys		.003	.004	.005	.003	.004	.005	.007	.005016	.006	.008020	.005012
Ferritic stainless steel	135-185	.001	.002	.003	.001	.002	.003	.003	.002006	.004	.004008	.002007
Austenitic stainless steel	135-185	.001	.002	.003	.001	.002	.003	.003	.003007	.004	.005008	.002007
Austenitic stainless steel	185-275	.001	.002	.003	.001	.002	.002	.002	.003006	.003	.004006	.002007
	135-185	.001	.002	.002	.001	.002	.003	.003	.003006	.004	.004010	.002007
Martensitic stainless steel	185-225	.001	.002	.002	.001	.002	.002	.003	.003006	.004	.003008	.002007
	225-300	.0005	.002	.002	.0005	.001	.002	.002	.002005	.003	.002006	.002005
Monel	100-160	.001	.003	.004	.001	.002	.003	.004	.002006	.004	.002008	.002006

Table 11. Cutting Speeds and Equivalent RPM for Drills of Number and Letter Sizes

			27111		Cutting S _I	eed, Feet p					
	30'	40'	50'	60′	70'	80'	90′	100′	110′	130′	150′
Size No.				Revo	l olutions per	Minute fo	r Number	Sizes	1		
1	503	670	838	1005	1173	1340	1508	1675	1843	2179	2513
2	518	691	864	1037	1210	1382	1555	1728	1901	2247	2593
4	548	731	914	1097	1280	1462	1645	1828	2010	2376	2741
6	562	749	936	1123	1310	1498	1685	1872	2060	2434	2809
8	576	768	960	1151	1343	1535	1727	1919	2111	2495	2879
10	592	790	987	1184	1382	1579	1777	1974	2171	2566	2961
12	606	808	1010	1213	1415	1617	1819	2021	2223	2627	3032
14	630	840	1050	1259	1469	1679	1889	2099	2309	2728	3148
16	647	863	1079	1295	1511	1726	1942	2158	2374	2806	3237
18	678	904	1130	1356	1582	1808	2034	2260	2479	2930	3380
20	712	949	1186	1423	1660	1898	2135	2372	2610	3084	3559
22	730	973	1217	1460	1703	1946	2190	2433	2676	3164	3649
24	754	1005	1257	1508	1759	2010	2262	2513	2764	3267	3769
26	779	1039	1299	1559	1819	2078	2338	2598	2858	3378	3898
28	816	1088	1360	1631	1903	2175	2447	2719	2990	3534	4078
30 32	892 988	1189 1317	1487 1647	1784 1976	2081 2305	2378 2634	2676 2964	2973 3293	3270 3622	3864 4281	4459 4939
32 34	1032		1721	2065	2409	2753	3097	3442	3785	4474	5162
36	1032	1376 1435	1794	2152	2511	2870	3228	3587	3945	4663	5380
38	1129	1505	1882	2258	2634	3010	3387	3763	4140	4892	5645
40	1169	1559	1949	2339	2729	3118	3508	3898	4287	5067	5846
42	1226	1634	2043	2451	2860	3268	3677	4085	4494	5311	6128
44	1333	1777	2043	2665	3109	3554	3999	4442	4886	5774	6662
46	1415	1886	2358	2830	3301	3773	4244	4716	5187	6130	7074
48	1508	2010	2513	3016	3518	4021	4523	5026	5528	6534	7539
50	1637	2183	2729	3274	3820	4366	4911	5457	6002	7094	8185
52	1805	2406	3008	3609	4211	4812	5414	6015	6619	7820	9023
54	2084	2778	3473	4167	4862	5556	6251	6945	7639	9028	10417
Size				Rev	olutions pe			izes			
A	491	654	818	982	1145	1309	1472	1636	1796	2122	2448
В	482	642	803	963	1124	1284	1445	1605	1765	2086	2407
C	473	631	789	947	1105	1262	1420	1578	1736	2052	2368
D	467	622	778	934	1089	1245	1400	1556	1708	2018	2329
E	458	611	764	917	1070	1222	1375	1528	1681	1968	2292
F	446	594	743	892	1040	1189	1337	1486	1635	1932	2229
G	440	585	732	878	1024	1170	1317	1463	1610	1903	2195
Н	430	574	718	862	1005	1149	1292	1436	1580	1867	2154
I	421	562	702	842	983	1123	1264	1404	1545	1826	2106
J	414	552	690	827	965	1103	1241	1379	1517	1793	2068
K	408 395	544 527	680 659	815 790	951 922	1087 1054	1223 1185	1359	1495 1449	1767	2039 1976
L M	1	ı	l		922	l		1317		1712	I
M N	389 380	518 506	648 633	777 759	907 886	1036 1012	1166 1139	1295 1265	1424 1391	1683 1644	1942 1897
O O	363	484	605	725	846	967	1088	1209	1391	1571	1897
P	355	484	592	710	828	967	1065	1183	1301	1571	1774
P Q	345	460	575	690	805	920	1005	1150	1266	1496	1774
R	338	451	564	676	789	902	1014	1127	1239	1465	1690
S	329	439	549	659	769	878	988	1098	1207	1427	1646
T	320	426	533	640	746	853	959	1066	1173	1387	1600
U	311	415	519	623	727	830	934	1038	11/3	1349	1557
v	304	405	507	608	709	810	912	1013	1114	1317	1520
w	297	396	495	594	693	792	891	989	1088	1286	1484
X	289	385	481	576	672	769	865	962	1058	1251	1443
Y	284	378	473	567	662	756	851	945	1040	1229	1418
Z	277	370	462	555	647	740	832	925	1017	1202	1387

For fractional drill sizes, use Tables 12a and 12b.

Table 12a. Revolutions per Minute for Various Cutting Speeds and Diameters

					Cutti	ng Speed,	Feet per N	linute				
Diame- ter,	40	50	60	70	80	90	100	120	140	160	180	200
Inches					R	evolution	s per Minu	te				
1/4	611	764	917	1070	1222	1376	1528	1834	2139	2445	2750	3056
5/16	489	611	733	856	978	1100	1222	1466	1711	1955	2200	2444
3/8	408	509	611	713	815	916	1018	1222	1425	1629	1832	2036
7/ ₁₆	349	437	524	611	699	786	874	1049	1224	1398	1573	1748
1/2	306	382	459	535	611	688	764	917	1070	1222	1375	1528
9/ ₁₆ 5/ ₈	272	340	407	475	543	611	679	813	951	1086	1222	1358
3/8	245 222	306 273	367 333	428 389	489 444	552 500	612 555	736 666	857 770	979 888	1102 999	1224 1101
11/ ₁₆ 3/	203	254	306	357	408	458	508	610	711	813	914	1016
3/ ₄ 13/ ₁₆	190	237	284	332	379	427	474	569	664	758	853	948
	175	219	262	306	349	392	438	526	613	701	788	876
15/ ₁₆ 1	163	204	244	285	326	366	407	488	570	651	733	814
1	153	191	229	267	306	344	382	458	535	611	688	764
11/16	144	180	215	251	287	323	359	431	503	575	646	718
11/8	136	170	204	238	272	306	340	408	476	544	612	680
13/16	129	161	193	225	258	290	322	386	451	515	580	644
11/4	123 116	153 146	183 175	214 204	245 233	274 262	306 291	367 349	428 407	490 466	551 524	612 582
15/ ₁₆ 13/ ₄	111	139	167	195	233	250	278	334	389	445	500	556
17/ ₈	106	133	159	186	212	239	265	318	371	424	477	530
11/2	102	127	153	178	204	230	254	305	356	406	457	508
1%	97.6	122	146	171	195	220	244	293	342	390	439	488
15/	93.9	117	141	165	188	212	234	281	328	374	421	468
111/16	90.4	113	136	158	181	203	226	271	316	362	407	452
13/,	87.3	109	131	153	175	196	218	262	305	349	392	436
113/16	84.3	105	126	148	169	190	211	253	295	337	379	422
17/8	81.5	102	122	143	163	184	204	244	286	326	367	408
1 ¹⁵ / ₁₆ 2	78.9	98	118	138	158	177	197	237	276	315	355	394
21/8	76.4 72.0	95.5 90.0	115 108	134 126	153 144	172 162	191 180	229 216	267 252	306 288	344 324	382 360
21/4	68.0	85.5	102	119	136	153	170	204	238	272	306	340
23/	64.4	80.5	96.6	113	129	145	161	193	225	258	290	322
21/2	61.2	76.3	91.7	107	122	138	153	184	213	245	275	306
25/8	58.0	72.5	87.0	102	116	131	145	174	203	232	261	290
23/4	55.6	69.5	83.4	97.2	111	125	139	167	195	222	250	278
2 ⁷ / ₈	52.8	66.0	79.2	92.4	106	119	132	158	185	211	238	264
	51.0	63.7	76.4	89.1	102 97.6	114	127	152	178	203	228	254 244
3½ 3½	48.8 46.8	61.0 58.5	73.2 70.2	85.4 81.9	93.6	110 105	122 117	146 140	171 164	195 188	219 211	234
33/8	45.2	56.5	67.8	79.1	90.4	103	113	136	158	181	203	226
31/2	43.6	54.5	65.5	76.4	87.4	98.1	109	131	153	174	196	218
35/8	42.0	52.5	63.0	73.5	84.0	94.5	105	126	147	168	189	210
33/4	40.8	51.0	61.2	71.4	81.6	91.8	102	122	143	163	184	205
37/8	39.4	49.3	59.1	69.0	78.8	88.6	98.5	118	138	158	177	197
4	38.2	47.8	57.3	66.9	76.4	86.0	95.6	115	134	153	172	191
41/4	35.9	44.9	53.9	62.9	71.8	80.8	89.8	108	126	144	162	180
41/2	34.0 32.2	42.4 40.2	51.0 48.2	59.4 56.3	67.9 64.3	76.3 72.4	84.8 80.4	102 96.9	119 113	136 129	153 145	170 161
4 ³ / ₄	30.6	38.2	48.2	53.5	61.1	68.8	76.4	91.7	107	129	138	153
51/4	29.1	36.4	43.6	50.9	58.2	65.4	72.7	87.2	102	116	131	145
51/,	27.8	34.7	41.7	48.6	55.6	62.5	69.4	83.3	97.2	111	125	139
53/4	26.6	33.2	39.8	46.5	53.1	59.8	66.4	80.0	93.0	106	120	133
6	25.5	31.8	38.2	44.6	51.0	57.2	63.6	76.3	89.0	102	114	127
61/4	24.4	30.6	36.7	42.8	48.9	55.0	61.1	73.3	85.5	97.7	110	122
61/2	23.5 22.6	29.4 28.3	35.2 34.0	41.1 39.6	47.0 45.3	52.8 50.9	58.7 56.6	70.4 67.9	82.2 79.2	93.9 90.6	106 102	117 113
6¾ 7	21.8	28.3	32.7	38.2	43.3	49.1	54.6	65.5	76.4	90.6 87.4	98.3	109
71/4	21.1	26.4	31.6	36.9	42.2	47.4	52.7	63.2	73.8	84.3	94.9	105
71/2	20.4	25.4	30.5	35.6	40.7	45.8	50.9	61.1	71.0	81.4	91.6	102
73/,	19.7	24.6	29.5	34.4	39.4	44.3	49.2	59.0	68.9	78.7	88.6	98.4
8	19.1	23.9	28.7	33.4	38.2	43.0	47.8	57.4	66.9	76.5	86.0	95.6

Table 12b. Revolutions per Minute for Various Cutting Speeds and Diameters

					Cutti	ng Speed.	Feet per M	linute				
Diame-	225	250	275	300	325	350	375	400	425	450	500	550
ter, Inches							per Minu					
1/4	3438	3820	4202	4584	4966	5348	5730	6112	6493	6875	7639	8403
5/ ₁₆	2750	3056	3362	3667	3973	4278	4584	4889	5195	5501	6112	6723
716 3/ ₈	2292	2546	2801	3056	3310	3565	3820	4074	4329	4584	5093	5602
7/16	1964	2182	2401	2619	2837	3056	3274	3492	3710	3929	4365	4802
1/2	1719	1910	2101	2292	2483	2675	2866	3057	3248	3439	3821	4203
9/ ₁₆ 5/ ₈	1528	1698	1868	2037	2207	2377	2547	2717	2887	3056	3396	3736
5/8	1375	1528	1681	1834	1987	2139	2292	2445	2598	2751	3057	3362
11/ ₁₆	1250	1389	1528	1667	1806	1941	2084	2223	2362	2501	2779	3056
'A	1146 1058	1273 1175	1401 1293	1528 1410	1655 1528	1783 1646	1910 1763	2038 1881	2165 1998	2292 2116	2547 2351	2802 2586
13/ ₁₆	982	1091	1293	1310	1419	1528	1637	1746	1855	1965	2183	2401
15/8	917	1019	1120	1222	1324	1426	1528	1630	1732	1834	2038	2241
15/ ₁₆ 1	859	955	1050	1146	1241	1337	1432	1528	1623	1719	1910	2101
11/16	809	899	988	1078	1168	1258	1348	1438	1528	1618	1798	1977
11/8	764	849	933	1018	1103	1188	1273	1358	1443	1528	1698	1867
13/16	724	804	884	965	1045	1126	1206	1287	1367	1448	1609	1769
11/4	687 654	764 727	840 800	917 873	993 946	1069 1018	1146 1091	1222 1164	1299 1237	1375 1309	1528 1455	1681 1601
15/ ₁₆ 13/ ₈	625	694	764	833	903	972	1091	1111	1181	1250	1389	1528
17/8 17/16	598	664	730	797	863	930	996	1063	1129	1196	1329	1461
11/2	573	636	700	764	827	891	955	1018	1082	1146	1273	1400
19/16	550	611	672	733	794	855	916	978	1039	1100	1222	1344
15%	528	587	646	705	764	822	881	940	999	1057	1175	1293
111/16	509	566	622	679	735	792	849	905	962	1018	1132	1245
13/4	491	545	600	654	709	764	818	873	927	982	1091	1200
113/16	474	527	579	632	685	737	790	843	895	948	1054	1159
17/8	458 443	509 493	560 542	611 591	662 640	713 690	764 739	815 788	866 838	917 887	1019 986	1120 1084
1½ 1½/ ₁₆ 2	429	477	525	573	620	668	716	764	811	859	955	1050
21/8	404	449	494	539	584	629	674	719	764	809	899	988
21/4	382	424	468	509	551	594	636	679	721	764	849	933
23/8	362	402	442	482	522	563	603	643	683	724	804	884
21/2	343	382	420	458	496	534	573	611	649	687	764	840
25/8	327	363	400	436	472	509	545	582	618	654	727	800
2 ³ / ₄ 2 ⁷ / ₈	312 299	347 332	381 365	416 398	451 431	486 465	520 498	555 531	590 564	625 598	694 664	763 730
3	286	318	350	381	413	445	477	509	541	572	636	700
31/8	274	305	336	366	397	427	458	488	519	549	611	672
31/4	264	293	323	352	381	411	440	470	499	528	587	646
33/8	254	283	311	339	367	396	424	452	481	509	566	622
31/2	245	272	300	327	354	381	409	436	463	490	545	600
35/8	237 229	263 254	289 280	316 305	342 331	368 356	395 382	421 407	447 433	474 458	527 509	579 560
33/4	229	254	280	305 295	320	345	369	394	433	458	493	542
3½ 4	214	238	262	286	310	334	358	382	405	429	477	525
41/4	202	224	247	269	292	314	337	359	383	404	449	494
41/2	191	212	233	254	275	297	318	339	360	382	424	466
43/4	180	201	221	241	261	281	301	321	341	361	402	442
5	171 163	191 181	210 199	229 218	248 236	267 254	286 272	305 290	324 308	343 327	382 363	420 399
5½ 5½	156	173	199	208	225	242	260	277	294	312	347	381
53/4	149	166	182	199	215	232	249	265	282	298	332	365
6	143	159	174	190	206	222	238	254	270	286	318	349
61/4	137	152	168	183	198	213	229	244	259	274	305	336
61/2	132	146	161	176	190	205	220	234	249	264	293	322
6¾ 7	127	141	155	169	183	198	212	226	240	254	283	311
7 7¼	122 118	136 131	149 144	163 158	177 171	190 184	204 197	218 210	231 223	245 237	272 263	299 289
71/2	114	127	139	152	165	178	190	203	216	229	254	279
73/4	111	123	135	148	160	172	185	197	209	222	246	271
8	107	119	131	143	155	167	179	191	203	215	238	262

Table 13a. Revolutions per Minute for Various Cutting Speeds and Diameters (Metric Units)

				(Cutting S	Speed. N	leters n	er Minu	te			
Diam.,	5	6	8	10	12	16	20	25	30	35	40	45
mm					Rev	olution		inute				
5	318	382	509	637	764	1019	1273	1592	1910	2228	2546	2865
6	265	318	424	530	637	849	1061	1326	1592	1857	2122	2387
8	199	239	318	398	477	637	796	995	1194	1393	1592	1790
10	159	191	255	318	382	509	637	796	955	1114	1273	1432
12	133	159	212	265	318	424	531	663	796	928	1061	1194
16	99.5	119	159	199	239	318	398	497	597	696	796	895
20	79.6	95.5	127	159	191	255	318	398	477	557	637	716
25	63.7	76.4	102	127	153	204	255	318	382	446	509	573
30	53.1	63.7	84.9	106	127	170	212	265	318	371	424	477
35	45.5	54.6	72.8	90.9	109	145	182	227	273	318	364	409
40	39.8	47.7	63.7	79.6	95.5	127	159	199	239	279	318	358
45	35.4	42.4	56.6	70.7	84.9	113	141	177	212	248	283	318
50	31.8	38.2	51	63.7	76.4	102	127	159	191	223	255	286
55	28.9	34.7	46.3	57.9	69.4	92.6	116	145	174	203	231	260
60	26.6	31.8	42.4	53.1	63.7	84.9	106	133	159	186	212	239
65	24.5	29.4	39.2	49	58.8	78.4	98	122	147	171	196	220
70	22.7	27.3	36.4	45.5	54.6	72.8	90.9	114	136	159	182	205
75	21.2	25.5	34	42.4	51	68	84.9	106	127	149	170	191
80	19.9	23.9	31.8	39.8	47.7	63.7	79.6	99.5	119	139	159	179
90	17.7	21.2	28.3	35.4	42.4	56.6	70.7	88.4	106	124	141	159
100	15.9	19.1	25.5	31.8	38.2	51	63.7	79.6	95.5	111	127	143
110	14.5	17.4	23.1	28.9	34.7	46.2	57.9	72.3	86.8	101	116	130
120	13.3	15.9	21.2	26.5	31.8	42.4	53.1	66.3	79.6	92.8	106	119
130	12.2	14.7	19.6	24.5	29.4	39.2	49	61.2	73.4	85.7	97.9	110
140	11.4	13.6	18.2	22.7	27.3	36.4	45.5	56.8	68.2	79.6	90.9	102
150	10.6	12.7	17	21.2	25.5	34	42.4	53.1	63.7	74.3	84.9	95.5
160	9.9	11.9	15.9	19.9	23.9	31.8	39.8	49.7	59.7	69.6	79.6	89.5
170	9.4	11.2	15	18.7	22.5	30	37.4	46.8	56.2	65.5	74.9	84.2
180	8.8	10.6	14.1	17.7	21.2	28.3	35.4	44.2	53.1	61.9	70.7	79.6
190	8.3	10	13.4	16.8	20.1	26.8	33.5	41.9	50.3	58.6	67	75.4
200	8	9.5	12.7	15.9	19.1	25.5	31.8	39.8	47.7	55.7	63.7	71.6
220	7.2	8.7	11.6	14.5	17.4	23.1	28.9	36.2	43.4	50.6	57.9	65.1
240	6.6	8	10.6	13.3	15.9	21.2	26.5	33.2	39.8	46.4	53.1	59.7
260	6.1	7.3	9.8	12.2	14.7	19.6	24.5	30.6	36.7	42.8	49	55.1
280	5.7	6.8	9.1	11.4	13.6	18.2	22.7	28.4	34.1	39.8	45.5	51.1
300	5.3	6.4	8.5	10.6	12.7	17	21.2	26.5	31.8	37.1	42.4	47.7
350	4.5	5.4	7.3	9.1	10.9	14.6	18.2	22.7	27.3	31.8	36.4	40.9
400	4	4.8	6.4	8	9.5	12.7	15.9	19.9	23.9	27.9	31.8	35.8
450	3.5	4.2	5.7	7.1	8.5	11.3	14.1	17.7	21.2	24.8	28.3	31.8
500	3.2	3.8	5.1	6.4	7.6	10.2	12.7	15.9	19.1	22.3	25.5	28.6

Table 13b. Revolutions per Minute for Various Cutting Speeds and Diameters (Metric Units)

					Cutting S	Speed, M	leters p	er Minu	te			
Diam. mm	50	55	60	65	70	75	80	85	90	95	100	200
			,		Rev	olutions	s per Mi	nute				
5	3183	3501	3820	4138	4456	4775	5093	5411	5730	6048	6366	12,732
6	2653	2918	3183	3448	3714	3979	4244	4509	4775	5039	5305	10,610
8	1989	2188	2387	2586	2785	2984	3183	3382	3581	3780	3979	7958
10	1592	1751	1910	2069	2228	2387	2546	2706	2865	3024	3183	6366
12	1326	1459	1592	1724	1857	1989	2122	2255	2387	2520	2653	5305
16	995	1094	1194	1293	1393	1492	1591	1691	1790	1890	1989	3979
20	796	875	955	1034	1114	1194	1273	1353	1432	1512	1592	3183
25	637	700	764	828	891	955	1019	1082	1146	1210	1273	2546
30	530	584	637	690	743	796	849	902	955	1008	1061	2122
35	455	500	546	591	637	682	728	773	819	864	909	1818
40	398	438	477	517	557	597	637	676	716	756	796	1592
45	354	389	424	460	495	531	566	601	637	672	707	1415
50	318	350	382	414	446	477	509	541	573	605	637	1273
55	289	318	347	376	405	434	463	492	521	550	579	1157
60	265	292	318	345	371	398	424	451	477	504	530	1061
65	245	269	294	318	343	367	392	416	441	465	490	979
70	227	250	273	296	318	341	364	387	409	432	455	909
75	212	233	255	276	297	318	340	361	382	403	424	849
80	199	219	239	259	279	298	318	338	358	378	398	796
90	177	195	212	230	248	265	283	301	318	336	354	707
100	159	175	191	207	223	239	255	271	286	302	318	637
110	145	159	174	188	203	217	231	246	260	275	289	579
120	133	146	159	172	186	199	212	225	239	252	265	530
130	122	135	147	159	171	184	196	208	220	233	245	490
140	114	125	136	148	159	171	182	193	205	216	227	455
150	106	117	127	138	149	159	170	180	191	202	212	424
160	99.5	109	119	129	139	149	159	169	179	189	199	398
170	93.6	103	112	122	131	140	150	159	169	178	187	374
180	88.4	97.3	106	115	124	133	141	150	159	168	177	354
190	83.8	92.1	101	109	117	126	134	142	151	159	167	335
200	79.6	87.5	95.5	103	111	119	127	135	143	151	159	318
220	72.3	79.6	86.8	94	101	109	116	123	130	137	145	289
240	66.3	72.9	79.6	86.2	92.8	99.5	106	113	119	126	132	265
260	61.2	67.3	73.4	79.6	85.7	91.8	97.9	104	110	116	122	245
280	56.8	62.5	68.2	73.9	79.6	85.3	90.9	96.6	102	108	114	227
300	53.1	58.3	63.7	69	74.3	79.6	84.9	90.2	95.5	101	106	212
350	45.5	50	54.6	59.1	63.7	68.2	72.8	77.3	81.8	99.1	91	182
400	39.8	43.8	47.7	51.7	55.7	59.7	63.7	67.6	71.6	75.6	79.6	159
450	35.4	38.9	42.4	46	49.5	53.1	56.6	60.1	63.6	67.2	70.7	141
500	31.8	35	38.2	41.4	44.6	47.7	50.9	54.1	57.3	60.5	63.6	127

Speeds and Feeds in Diamond Grinding.—General recommendations are as follows:

Wheel Speeds: The generally recommended wheel speeds for diamond grinding are in the range of 5000 to 6000 surface feet per minute, with this upper limit as a maximum to avoid harmful "overspeeding." Exceptions from that general rule are diamond wheels with coarse grains and high concentration (100 percent) where the wheel wear in dry surface grinding can be reduced by lowering the speed to 2500–3000 sfpm. However, this lower speed range can cause rapid wheel breakdown in finer grit wheels or in those with reduced diamond concentration.

Work Speeds: In diamond grinding, work rotation and table traverse are usually established by experience, adjusting these values to the selected infeed so as to avoid excessive wheel wear.

Infeed per Pass: Often referred to as downfeed and usually a function of the grit size of the wheel. The following are general values which may be increased for raising the productivity, or lowered to improve finish or to reduce wheel wear.

Wheel Grit Size Range	Infeed per Pass
100 to 120	0.001 inch
150 to 220	0.0005 inch
250 and finer	0.00025 inch

Table 14. Suggested Approximate Speeds and Feeds for Drilling Various Thermoplastics^a

	1/16 in. l	Diameter	1/4 in. D	iameter	1 in. Diameter		
Material	Speed (RPM)	Feed (in/rev)	Speed (RPM)	Feed (in/rev)	Speed (RPM)	Feed (in/rev)	
ABS	6000	0.015	2000	0.040	500	0.080	
Acetal (POM)	12000	0.010	4000	0.030	1000	0.060	
Acrylic (PMMA)	9000	0.010	3000	0.030	750	0.060	
Polyamide, Nylon 6/6 and PA6	6000	0.010	2000	0.030	500	0.060	
Polycarbonate (PC)	9000	0.010	3000	0.030	750	0.060	
Polyester (PET)	9000	0.007	3000	0.020	750	0.040	
Polyether ether ketone (PEEK)	12000	0.005	4000	0.015	1000	0.030	
Polyethylene (PE)	12000	0.015	4000	0.040	1000	0.080	
Polyphenylene sulfide (PPS)	3000	0.010	1000	0.030	250	0.060	
Polypropylene (PP)	12000	0.015	4000	0.040	1000	0.080	
Polystyrene (PS)	6000	0.007	2000	0.020	500	0.040	
Polytetrafluoroethylene (PTFE)	9000	0.007	3000	0.020	750	0.040	
Polyvinyl chloride (PVC)	12000	0.007	4000	0.020	1000	0.040	
Ultem polyetherimide (PEI)	12000	0.010	4000	0.030	1000	0.040	

a Using a two-fluted drill.

Table 15. Speeds and Numbers of Teeth for Sawing Plastics Materials with High-Carbon Steel Saw Blades

				Periph	eral Speed		
	terial kness	Number of Teeth/inch on	0	set Cast r Plastics	Thermoplastics (and Epoxy, Melamine, Phenolic and Allyl Thermo		
(inch)	(mm)	Blade	(ft/min)	(m/min)	(ft/min)	(m/min)	
0-0.5	0-13	8-14	2000-3000	607-914	4000-5000	1219-1524	
0.5-1	13-25	6–8	1800-2200	549-671	3500-4300	1067-1311	
1-3	25-76	3	1500-2200	475-671	3000-3500	914-1067	
>3	>76	>3	1200-1800	366-549	2500-3000	762-914	

MILLING CUTTERS

Milling Cutter Terms and Parts

End Mill Terms and Parts

Enlarged Section of End Mill Tooth

MILLING CUTTERS

End Mill Terms and Parts (Continued)

Enlarged Section of End Mill

Wheels for Sharpening Milling Cutters.—Milling cutters may be sharpened either by using the periphery of a disk wheel or the face of a cup wheel. The latter grinds the lands of the teeth flat, whereas the periphery of a disk wheel leaves the teeth slightly concave back of the cutting edges. The concavity produced by disk wheels reduces the effective clearance angle on the teeth, the effect being more pronounced for wheels of small diameter than for wheels of large diameter. For this reason, large diameter wheels are preferred when sharpening milling cutters with disk-type wheels. Irrespective of what type of wheel is used to sharpen a milling cutter, any burrs resulting from grinding should be carefully removed by a hand-stoning operation. Stoning also helps to reduce the roughness of grinding marks and improves the quality of the finish produced on the surface being machined. Unless done very carefully, hand stoning may dull the cutting edge. Stoning may be avoided and a sharper cutting edge produced if the wheel rotates toward the cutting edge, which requires that the operator maintain contact between the tool and the rest while the wheel rotation is trying to move the tool away from the rest. Though slightly more difficult, this method will eliminate the burr.

Table 1. Specifications of Grinding Wheels for Sharpening Milling Cutters

Cutter		G	rinding Wheel		
Material	Operation	Abrasive Material	Grain Size	Grade	Bond
Carbon Tool Steel	Roughing Finishing	Aluminum Oxide Aluminum Oxide	46–60 100	K H	Vitrified Vitrified
High-Speed Steel:					
18-4-1 {	Roughing	Aluminum Oxide	60	K,H	Vitrified
18-4-1 {	Finishing	Aluminum Oxide	100	Н	Vitrified
18-4-2 {	Roughing	Aluminum Oxide	80	F,G,H	Vitrified
18-4-2 {	Finishing	Aluminum Oxide	100	Н	Vitrified
Cast Nonferrous Tool Material	Roughing Finishing	Aluminum Oxide Aluminum Oxide	46 100–120	H,K,L,N H	Vitrified Vitrified
Sintered Carbide	Roughing after Brazing Roughing	Silicon Carbide Diamond	60	G	Vitrified Resinoid
	Finishing	Diamond	Up to 500	a	Resinoid
Carbon Tool Steel and High-Speed Steel ^b	Roughing Finishing	Cubic Boron Nitride Cubic Boron Nitride	80–100 100–120	R,P S,T	Resinoid Resinoid

a Not indicated in diamond wheel markings.

^b For hardnesses above Rockwell C 56.

Wheel Speeds and Feeds for Sharpening Milling Cutters.—Relatively low cutting speeds should be used when sharpening milling cutters to avoid tempering and heat checking. Dry grinding is recommended in all cases except when diamond wheels are employed. The surface speed of grinding wheels should be in the range of 4500 to 6500 feet per minute for grinding milling cutters of high-speed steel or cast nonferrous tool material. For sintered carbide cutters, 5000 to 5500 feet per minute should be used.

The maximum stock removed per pass of the grinding wheel should not exceed about 0.0004 inch for sintered carbide cutters; 0.003 inch for large high-speed steel and cast nonferrous tool material cutters; and 0.0015 inch for narrow saws and slotting cutters of high-speed steel or cast nonferrous tool material. The stock removed per pass of the wheel may be increased for backing-off operations such as the grinding of secondary clearance behind the teeth since there is usually a sufficient body of metal to carry off the heat.

Clearance Angles for Milling Cutter Teeth.—The clearance angle provided on the cutting edges of milling cutters has an important bearing on cutter performance, cutting efficiency, and cutter life between sharpenings. It is desirable in all cases to use a clearance angle as small as possible so as to leave more metal back of the cutting edges for better heat dissipation and to provide maximum support. Excessive clearance angles not only weaken the cutting edges but also increase the likelihood of "chatter," which will result in poor finish on the machined surface and reduce the life of the cutter. According to The Cincinnati Milling Machine Co., milling cutters used for general purpose work and having diameters from I_8 to 3 inches should have clearance angles from 13 to 5 degrees, respectively, decreasing proportionately as the diameter increases. General purpose cutters over 3 inches in diameter should be provided with a clearance angle of 4 to 5 degrees. The land width is usually $\frac{1}{16}$, $\frac{1}{16}$, and $\frac{1}{16}$ inch, respectively, for small, medium, and large cutters.

The primary clearance or relief angle for best results varies according to the material being milled about as follows: low-carbon, high-carbon, and alloy steels, 3 to 5 degrees; cast iron and medium and hard bronze, 4 to 7 degrees; brass, soft bronze, aluminum, magnesium, plastics, etc., 10 to 12 degrees. When milling cutters are resharpened, it is customary to grind a secondary clearance angle of 3 to 5 degrees behind the primary clearance angle to reduce the land width to its original value and thus avoid interference with the surface to be milled. A general formula for plain milling cutters, face mills, and form relieved cutters which gives the clearance angle C, in degrees, necessitated by the feed per revolution F, in inches, the width of land L, in inches, the depth of cut d, in inches, the cutter diameter D, in inches, and the Brinell Hardness Number (BHN) B of the work being cut is:

$$C = \frac{45860}{DB} \ 1.5L + \frac{F}{\pi D} \sqrt{d(D-d)}$$

Rake Angles for Milling Cutters.—In peripheral milling cutters, the rake angle is generally defined as the angle in degrees that the tooth face deviates from a radial line to the cutting edge. In face milling cutters, the teeth are inclined with respect to both the radial and axial lines. These angles are called radial and axial rake, respectively. The radial and axial rake angles may be positive, zero, or negative.

Positive rake angles should be used whenever possible for all types of high-speed steel milling cutters. For sintered carbide-tipped cutters, zero and negative rake angles are frequently employed to provide more material back of the cutting edge to resist shock loads.

Rake Angles for High-Speed Steel Cutters: Positive rake angles of 10 to 15 degrees are satisfactory for milling steels of various compositions with plain milling cutters. For softer materials such as magnesium and aluminum alloys, the rake angle may be 25 degrees or more. Metal slitting saws for cutting alloy steel usually have rake angles from 5 to 10 degrees, whereas zero and sometimes negative rake angles are used for saws to cut copper and other soft nonferrous metals to reduce the tendency to "hog in." Form relieved cutters usually have rake angles of 0, 5, or 10 degrees. Commercial face milling cutters

CUTTER GRINDING

usually have 10 degrees positive radial and axial rake angles for general use in milling cast iron, forged and alloy steel, brass, and bronze; for milling castings and forgings of magnesium and free-cutting aluminum and their alloys, the rake angles may be increased to 25 degrees positive or more, depending on the operating conditions; a smaller rake angle is used for abrasive or difficult to machine aluminum alloys.

Cast Nonferrous Tool Material Milling Cutters: Positive rake angles are generally provided on milling cutters using cast nonferrous tool materials although negative rake angles may be used advantageously for some operations such as those where shock loads are encountered or where it is necessary to eliminate vibration when milling thin sections.

Sintered Carbide Milling Cutters: Peripheral milling cutters, such as slab mills, slotting cutters, saws, etc., tipped with sintered carbide, generally have negative radial rake angles of 5 degrees for soft low-carbon steel and 10 degrees or more for alloy steels. Positive axial rake angles of 5 and 10 degrees, respectively, may be provided, and for slotting saws and cutters, 0 degree axial rake may be used. On soft materials, such as free-cutting aluminum alloys, positive rake angles of 10 to so degrees are used. For milling abrasive or difficult to machine aluminum alloys, small positive or even negative rake angles are used.

Various Set-Ups Used in Grinding the Clearance Angle on Milling Cutter Teeth

Table 2. Distance to Set Center of Wheel Above the Cutter Center (Disk Wheel)

					Desired	d Clearanc	e Angle, I	Degrees				
Dia.of Wheel.	1	2	3	4	5	6	7	8	9	10	11	12
Inches			a	Distance t	o Offset W	/heel Cent	ter Above	Cutter Ce	nter, Inche	es		
3	0.026	0.052	0.079	0.105	0.131	0.157	0.183	0.209	0.235	0.260	0.286	0.312
4	0.035	0.070	0.105	0.140	0.174	0.209	0.244	0.278	0.313	0.347	0.382	0.416
5	0.044	0.087	0.131	0.174	0.218	0.261	0.305	0.348	0.391	0.434	0.477	0.520
6	0.052	0.105	0.157	0.209	0.261	0.314	0.366	0.417	0.469	0.521	0.572	0.624
7	0.061	0.122	0.183	0.244	0.305	0.366	0.427	0.487	0.547	0.608	0.668	0.728
8	0.070	0.140	0.209	0.279	0.349	0.418	0.488	0.557	0.626	0.695	0.763	0.832
9	0.079	0.157	0.236	0.314	0.392	0.470	0.548	0.626	0.704	0.781	0.859	0.936
10	0.087	0.175	0.262	0.349	0.436	0.523	0.609	0.696	0.782	0.868	0.954	10.040

^aCalculated from the formula: Offset = Cutter Diameter $\times \frac{1}{2} \times \text{Sine of Clearance Angle}$.

Table 3. Distance to Set Center of Wheel Below the Cutter Center (Disk Wheel)

					Desired	d Clearanc	e Angle, I	Degrees				
Dia.of Cutter.	1	2	3	4	5	6	7	8	9	10	11	12
Inches			a	Distance to	o Offset W	/heel Cen	ter Below	Cutter Ce	nter, Inche	s		
2	0.017	0.035	0.052	0.070	0.087	0.105	0.122	0.139	0.156	0.174	0.191	0.208
3	0.026	0.052	0.079	0.105	0.131	0.157	0.183	0.209	0.235	0.260	0.286	0.312
4	0.035	0.070	0.105	0.140	0.174	0.209	0.244	0.278	0.313	0.347	0.382	0.416
5	0.044	0.087	0.131	0.174	0.218	0.261	0.305	0.348	0.391	0.434	0.477	0.520
6	0.052	0.105	0.157	0.209	0.261	0.314	0.366	0.417	0.469	0.521	0.572	0.624
7	0.061	0.122	0.183	0.244	0.305	0.366	0.427	0.487	0.547	0.608	0.668	0.728
8	0.070	0.140	0.209	0.279	0.349	0.418	0.488	0.557	0.626	0.695	0.763	0.832
9	0.079	0.157	0.236	0.314	0.392	0.470	0.548	0.626	0.704	0.781	0.859	0.936
10	0.087	0.175	0.262	0.349	0.436	0.523	0.609	0.696	0.782	0.868	0.954	10.040

END MILLS

Distance to Set Tooth Rest Below Center Line of Wheel and Cutter.—When the clearance angle is ground with a disk-type wheel by keeping the center-line of the wheel in line with the centerline of the cutter, the tooth rest should be lowered by an amount given by the following formula:

Offset = Wheel Diam. × Cutter Diam. × Sine of One-half the Clearance Angle
Wheel Diam. + Cutter Diam.

Distance to Set Tooth Rest Below Cutter Center When Cup Wheel is Used.—When the clearance is ground with a cup wheel, the tooth rest is set below the center of the cutter the same amount as given in Table 3.

Table 4. American National Standard Multiple- and Two-Flute Single-End Helical End Mills with Plain Straight and Weldon Shanks ANSI/ASME B94.19-1997 (R2019)

\$) - J D -	- <u>s</u> t			-D- (}}-						
_ `_ \			_₁ ↑			Ť						
(Cutter Diameter, D Shank Diameter, S Length Length											
Nom.	Max.	Min.	Max.	Min.	of Cut, W	Overall, L						
		Multiple-Flut	e with Plain Str	aight Shanks								
1/8	.130	.125	.125	.1245	5/16	11/4						
³ / ₁₆	.1925	.1875	.1875	.1870	1/2	13/8						
1/4	.255	.250	.250	.2495	5/8	111/16						
3/8	.380	.375	.375	.3745	3/4	113/16						
1/2	.505	.500	.500	.4995	15/16	21/4						
3/4	.755	.750	.750	.7495	11/4	25/8						
	Two	-Flute for Key	way Cutting wi	th Weldon Shar	ıks							
1/8	.125	.1235	.375	.3745	3/8	25/16						
3/16	.1875	.1860	.375	.3745	7/16	25/16						
1/4	.250	.2485	.375	.3745	1/2	25/16						
5/16	.3125	.3110	.375	.3745	9/16	25/16						
3/8	.375	.3735	.375	.3745	9/16	25/16						
1/2	.500	.4985	.500	.4995	1	3						
5/8	.625	.6235	.625	.6245	15/16	37/16						
3/4	.750	.7485	.750	.7495	15/16	3%						
7/8	.875	.8735	.875	.8745	11/,	33/4						
1	1.000	.9985	1.000	.9995	15/8	41/8						
11/4	1.250	1.2485	1.250	1.2495	15/8	41/8						
11/2	1.500	1.4985	1.250	1.2495	15/8	41/8						

 $All \, dimensions \, are \, in \, inches. \, All \, cutters \, are \, high-speed \, steel. \, Right-hand \, cutters \, with \, right-hand \, helix \, are \, standard.$

The helix angle is not less than 10 degrees for multiple-flute cutters with plain straight shanks; the helix angle is optional with the manufacturer for two-flute cutters with Weldon shanks. Tolerances: On $W, \pm \frac{1}{32}$ inch; on $L, \pm \frac{1}{16}$ inch.

Copyright 2020, Industrial Press, Inc.

Table 5. ANSI Regular-, Long-, and Extra-Long-Length, Multiple-Flute Medium Helix Single-End End Mills with Weldon Shanks ANSI/ASME B94.19-1997 (R2019)

		├												
		W_												
				_		—w-		\rightarrow						
			_		_	_	_			!				
	$\frac{1}{S}$	1	_			\mathscr{M}			<u>1</u>	Δ	λ			
	Ş -	+		太		Z ,	7	}	- Ď	- \ ₩	> -			
									1 <u> </u>					
Cutter		Regular Mills Long Mills							Extra-Long Mills					
Dia.,														
D	S	W	L	N ^a	S	W	L	Na	S	W	L	N ^a		
1/8 p	3/8	3/8	25/16	4										
3/16 b	3/8	1/2	23/8	4										
1/ ₄ b	3/8	5/8	27/16	4	3/8	11/4	31/16	4	3/8	13/4	39/16	4		
5/16 b	3/8	3/4	21/2	4	3/8	13/8	31/8	4	3/8	2	33/4	4		
3/8 b	3/ ₈	3/4	21/2	4	3/8	11/2	31/4	4	3/8	21/2	41/4	4		
7/16	3/ ₈	1	211/16	4	1/2	13/4	33/4	4	1/		 5	4		
1/2	3/8		211/16	4	1/2				1/2	3				
1/ ₂ b	1/2	11/4	31/4	4										
9/ ₁₆ 5/ ₈	1/2	13/8	3 ³ / ₈ 3 ³ / ₈	4	 5/ ₈	21/,	45/8	4	5/8	4	61/8	4		
	1/2	13/8	_	4		-			l					
11/ ₁₆	1/2	15/ ₈ 15/ ₈	35/ ₈ 35/ ₈	4	3/4	3	51/4	4	3/4	4	61/4	4		
5/ b	5/ ₈	15/8	33/4	4	,,,				4					
11/16	/8 5/ ₈	15/8	33/4	4										
16 3/ b	/8 5/ ₈	15/8	33/4	4										
13/16	/8 5/ ₈	17/8	4	6										
716 7/8	/8 5/ ₈	17/8	4	6	7/8	31/2	53/4	4	7/8	5	71/4	4		
1	5/8	17/8	4	6	1	4	61/2	4	1	6	81/2	4		
7/8	7/8	17/8	41/8	4										
1	7/8	17/8	41/8	4										
11/8	7/8	2	41/4	6	1	4	61/2	6						
11/4	7/8	2	41/4	6	1	4	61/2	6	11/4	6	81/2	6		
1	1	2	41/2	4										
11/8	1	2	41/2	6										
11/4	1	2	41/2	6										
13/8	1	2	41/2	6										
11/2	1	2	41/2	6	1	4	61/2	6						
11/4	11/4	2	41/2	6	11/4	4	61/2	6						
11/2	11/4	2	41/2	6	11/4	4	61/2	6	11/4	8	101/2	6		
13/4	11/4	2	41/2	6	11/4	4	61/2	6						
2	11/4	2	41/2	8	11/4	4	61/2	8						

 $^{^{}a}N =$ Number of flutes.

Tolerances: On D, +0.003 inch; on S, -0.0001 to -0.0005 inch; on W, $\pm \frac{1}{2}$ inch; on L, $\pm \frac{1}{16}$ inch.

^b In this size of regular mill a left-hand cutter with left-hand helix is also standard.

All dimensions are in inches. All cutters are high-speed steel. Helix angle is greater than 19 degrees but not more than 39 degrees. Right-hand cutters with right-hand helix are standard.

As indicated in the table, shank diameter S may be larger, smaller, or the same as the cutter diameter D.

END MILLS

Table 6. American National Standard Form Relieved Corner Rounding Cutters with Weldon Shanks ANSI/ASME B94.19-1997 (R2019)

All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters are standard. Tolerances: On $D,\pm 0.010$ inch; on diameter of circle, $2R,\pm 0.001$ inch for cutters up to and including $\frac{1}{3}$ -inch radius, +0.002, -0.001 inch for cutters over $\frac{1}{3}$ -inch radius; on S,-0.0001 to -0.0005 inch; and on $L,\pm \frac{1}{3}$ _{Li} inch.

Table 7. ANSI Two-Flute, High Helix, Regular-, Long-, and Extra-Long-Length, Single-End End Mills with Weldon Shanks $ANSI/ASME\,B94.19-1997\,(R2019)$

All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right-hand helix are standard. Helix angle is greater than 39 degrees.

4

61/,

11/,

11/,

2

41/

2

Tolerances: On D, +0.003 inch; on S, -0.0001 to -0.0005 inch; on W, $\pm \frac{1}{32}$ inch; and on L, $\pm \frac{1}{16}$ inch.

Table 8. American National Standard Stub- and Regular-Length, Two-Flute, Medium Helix, Plain- and Ball-End, Single-End End Mills with Weldon Shanks ANSI/ASME B94.19-1997 (R2019)

All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right-hand helix are standard. Helix angle is greater than 19 degrees but not more than 39 degrees.

Tolerances: On C and D, -0.0015 inch for stub-length mills, +0.003 inch for regular-length mills; on S, -0.0001 to -0.0005 inch; on W, $\pm \frac{1}{12}$ inch; and on L, $\pm \frac{1}{16}$ inch.

The following single-end end mills are available in premium high-speed steel: ball end, two flute, with D ranging from $\frac{1}{8}$ to $\frac{1}{8}$ inches; ball end, multiple flute, with D ranging from $\frac{1}{8}$ to $\frac{1}{8}$ inches; ball end, multiple flute, with D ranging from $\frac{1}{8}$ to $\frac{1}{8}$ inches.

Table 9. American National Standard Regular-, Long-, and Extra Long-Length, Three- and Four-Flute, Medium Helix, Center Cutting, Single-End End Mills with Weldon Shanks ANSI/ASME B94.19-1997 (R2019)

	**	ciuon Si	iaiiks.	ANSIIASI	ME B94.19	7-1997 (1	(2019)		
		* S * * * * * * * * * * * * * * * * * *		L_ L_	w → D- -w → D-				
		<u>+</u>							
				Four					
Dia.,		Regular Leng			Long Length		Extra Long Length		
D	S	W	L	S	W	L	S	W	L
V, 8 V, 10 V, 6 V, 6 V, 8 V, 8 V, 8 V, 8 V, 8 V, 8 V, 8 V, 8	3/8 3/8 3/8 3/8 3/8 3/8 1/2 5/8 3/4 7/8 1 1 11/4 11/4	3/ ₈ 1/ ₂ 5/ ₈ 3/ ₄ 3/ ₄ 11/ ₄ 11/ ₈ 12/ ₈ 12/ ₈ 12/ ₈ 2 2 2	2½, 2½, 2½, 2½, 2½, 3½, 3¾, 3¾, 43, 4½, 4½, 4½, 4½, 4½, 4½,		11/4 11/8 11/2 2 22/2 3 31/2 4 4	31/16 31/8 31/4 4 44/8 51/4 61/2 61/2	3/8 3/8 3/8 3/8 11/2 5/2 5/8 3/4 7/4 8 1 11/4	 1 ³ / ₄ 2 2 ¹ / ₂ 3 4 4 5 6 	3 ³ / ₁₆ 3 ³ / ₄ 4 ⁴ / ₂ 5 6 ¹ / ₈ 6 ¹ / ₄ 7 ¹ / ₄ 8 ¹ / ₂ 8 ¹ / ₂
				Three	Flute				
Dia.,D	S	1	V	L	Dia., D	S		W	L
	Regul	lar Length				Regula	r Length (cont.)	
1/8 3/16 1/4 5/16 3/8 7/16 1/2	3/ ₈		3/8 1/2 5/8 3/4 3/4 1 1	$2^{5}/_{16}$ $2^{3}/_{8}$ $2^{7}/_{16}$ $2^{1}/_{2}$ $2^{1}/_{2}$ $2^{11}/_{16}$ $2^{11}/_{16}$	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{1}{4}$ $1\frac{1}{4}$ 2	1	1 1 1 1 1/4 1/4 1/4	2 2 2 2 2 2 2 2	4½ 4½ 4½ 4½ 4½ 4½ 4½ 4½
1/2	1/2 1/4 31/4 Long Length								
7/16 5/8 5/4 5/4 5/8 5/4 7/8 1 1 1 1	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	1 1 1 1 1 1 1	****\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3½ 8 3½ 8 3½ 8 3½ 8 3½ 4 3½ 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1/4 5/16 3/8 7/16 1/2 5/8 3/4 1 11/4 11/2 13/4 2	1	% 8 % 8 % 8 % 8 % 8 % 8 % 8 % 8 % 8 % 8	11/ ₄ 13/ ₈ 11/ ₂ 13/ ₄ 2 21/ ₂ 3 4 4 4 4	3½, 3½, 3½, 3¾, 4 4½, 5½, 6½, 6½, 6½, 6½, 6½,

All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters with right-hand

helix are standard. Helix angle is greater than 19 degrees but not more than 39 degrees. Tolerances: On D, +0.003 inch; on S, -0.0001 to -0.0005 inch; on W, $\pm \frac{1}{4}$, inch; and on L, $\pm \frac{1}{16}$ inch.

The following center-cutting, single-end end mills are available in premium high-speed steel: regular length, multiple flute, with D ranging from $\frac{1}{3}$ to $\frac{11}{3}$ inches; long length, multiple flute, with D ranging from $\frac{3}{3}$ to $\frac{11}{4}$ inches; and extra long-length, multiple flute, with D ranging from $\frac{3}{3}$ to $\frac{11}{4}$ inches.

END MILLS

Table 10. American National Standard 60-Degree Single-Angle Milling Cutters with Weldon Shanks ANSI/ASME B94.19-1997 (R2019)

All dimensions are in inches. All cutters are high-speed steel. Right-hand cutters are standard. Tolerances: On $D, \pm 0.015$ inch; on S, -0.0001 to -0.0005 inch; on $W, \pm 0.015$ inch; and on L, $\pm \frac{1}{16}$ inch.

Table 11. Key Size Versus Shaft Diameter ANSI B17 1-1967 (R2013)

Table 11. Key Size versus Shaft Diameter ANSI B17.1-1907 (K2013)									
Nominal Shaft Diameter		N	ominal Key	Normal Keyseat Depth					
			Height, H		H/2				
Over	To (Incl.)	Width, W	Square Rectangular		Square	Rectangular			
5/16	7/16	3/32	3/32		3/64				
7/16	9/ ₁₆	1/8	1/8	3/32	1/16	3/64			
9/ ₁₆	7/8	³ / ₁₆	3/16	1/8	3/32	1/16			
7/8	11/4	1/4	1/4	³ / ₁₆	1/8	3/32			
$1\frac{1}{4}$	13/8	5/16	5/16	1/4	5/32	1/8			
$1\frac{3}{8}$	13/4	3/8	3/8	1/4	3/16	1/8			
13/4	21/4	1/2	1/2	3/8	1/4	3/ ₁₆			
21/4	23/4	5/8	5/8	7/ ₁₆	5/16	7/32			
23/4	31/4	3/4	3/4	1/2	3/8	1/4			
31/4	33/4	7/8	7/8	5/8	7/16	5/16			
$3\frac{3}{4}$	41/2	1	1	3/4	1/2	3/8			
41/2	51/2	11/4	11/4	7/8	5/8	7/ ₁₆			
51/2	61/2	11/2	11/2	1	3/4	1/2			
61/2	71/2	13/4	13/4	1½ a	7/8	3/4			
71/2	9	2	2	11/2	1	3/4			
9	11	21/2	21/2	13/4	11/4	7/8			

^a Some key standards show $1\frac{1}{4}$ inches; preferred height is $1\frac{1}{2}$ inches. All dimensions are given in inches. For larger shaft sizes, see section ANSI Standard Woodruff Keys and Keyseats on page 177.

Square keys preferred for shaft diameters above heavy line; rectangular keys, below.

Machinery's Handbook Pocket Companion KEYS AND KEYWAYS

Table 12. American National Standard Keys and Keyways for Milling Cutters and Arbors ANSI/ASME B94.19-1997 (R2019)

Tai	Die 12. Al	nerican P	vational s	standard	Keys and	ı Keyway	S IOF MIII	iing Cutt	ers and A	Arbors Ar	SIASME	D94.19-	1997 (K20	119)
	Arbor and Keyseat					Rad	ner	THE REAL PROPERTY.	→ ↑ H D		Corner - Radius	E	F	
		Arbor and	d Keyseat			(Cutter Hole	and Keywa	y		A	rbor and K	ey	
Nom.			Arbor and Keyseat Arbor and Keyseat				H	Hole and Keywa	ay				and Key	
Arbor and	Nom. Size													
Cutter	Key	A	A	В	В	C	C	D^a	Н	Corner	E	E	F	F
Hole Dia.	(Square)	Max.	Min.	Max.	Min.	Max.	Min.	Min.	Nom.	Radius	Max.	Min.	Max.	Min.
1/2	3/32	0.0947	0.0937	0.4531	0.4481	0.106	0.099	0.5578	3/64	0.020	0.0932	0.0927	0.5468	0.5408
5/8	1/8	0.1260	0.1250	0.5625	0.5575	0.137	0.130	0.6985	1/16	1/32	0.1245	0.1240	0.6875	0.6815
3/4	1/8	0.1260	0.1250	0.6875	0.6825	0.137	0.130	0.8225	1/16	1/32	0.1245	0.1240	0.8125	0.8065
7/8	1/8	0.1260	0.1250	0.8125	0.8075	0.137	0.130	0.9475	1/16	1/32	0.1245	0.1240	0.9375	0.9315
1	1/4	0.2510	0.2500	0.8438	0.8388	0.262	0.255	1.1040	3/32	3/64	0.2495	0.2490	1.0940	1.0880
11/4	5/16	0.3135	0.3125	1.0630	1.0580	0.343	0.318	1.3850	1/8	1/16	0.3120	0.3115	1.3750	1.3690
11/2	3/8	0.3760	0.3750	1.2810	1.2760	0.410	0.385	1.6660	5/ ₃₂	1/16	0.3745	0.3740	1.6560	1.6500
13/4	7/16	0.4385	0.4375	1.5000	1.4950	0.473	0.448	1.9480	3/16	1/16	0.4370	0.4365	1.9380	1.9320
2	1/2	0.5010	0.5000	1.6870	1.6820	0.535	0.510	2.1980	3/16	1/16	0.4995	0.4990	2.1880	2.1820
21/2	5/8	0.6260	0.6250	2.0940	2.0890	0.660	0.635	2.7330	7/32	1/16	0.6245	0.6240	2.7180	2.7120
3	3/4	0.7510	0.7500	2.5000	2.4950	0.785	0.760	3.2650	1/4	3/32	0.7495	0.7490	3.2500	3.2440
31/2	7/8	0.8760	0.8750	3.0000	2.9950	0.910	0.885	3.8900	3/8	3/32	0.8745	0.8740	3.8750	3.8690
4	1	1.0010	1.0000	3.3750	3.3700	1.035	1.010	4.3900	3/8	3/32	0.9995	0.9990	4.3750	4.3690
4½ 5	11/8	1.1260	1.1250	3.8130	3.8080	1.160	1.135	4.9530	7/ ₁₆	1/8	1.1245	1.1240	4.9380	4.9320
5	11/4	1.2510	1.2500	4.2500	4.2450	1.285	1.260	5.5150	1/2	1/,	1.2495	1.2490	5.5000	5.4940

^aD max. is 0.010 inch larger than D min. All dimensions given in inches.

KEYS AND KEYWAYS

Table 13. American National Standard Woodruff Keyseat Cutters—Shank-Type Straight-Teeth and Arbor-Type Staggered-Teeth ANSI/ASME B94.19-1997 (R2019)

	Straight-Teeth and Albor-Type Staggered-Teeth ANSIIASIIL D74.17-1777 (R2017)													
L W Diam.														
	Shank-type Cutters													
Cutter Number	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
202	1/4	1/16	21/16	506	3/4	5/32	25/32	809	11/8	1/4	21/4			
2021/2	4 16 16 4 32 32 8 4 4													
3021/2	5/ ₁₆	3/32	23/32	806	3/4	1/4	21/4	610	11/4	3/16	23/16			
203	3/8	1/16	21/16	507	7/8	5/32	25/32	710	11/4	7/32	27/32			
303	3/8	3/32	23/32	607	7/8	3/16	23/16	810	11/4	1/4	21/4			
403	3/8	1/8	21/8	707	7/8	7/32	27/32	1010	11/4	5/ ₁₆	25/16			
204	1/2	1/16	21/16	807	7/8	1/4	21/4	1210	11/4	3/8	23/8			
304	1/2	3/32	23/32	608	1	3/ ₁₆	23/16	811	13/8	1/4	21/4			
404	1/2	1/8	21/8	708	1	7/32	27/32	1011	13/8	5/16	25/16			
305	5/8	3/32	23/32	808	1	1/4	21/4	1211	13/8	3/8	23/8			
405	5/8	1/8	21/8	1008	1	5/16	25/16	812	11/2	1/4	21/4			
505	5/8	5/32	25/32	1208	1	3/8	23/8	1012	11/2	5/16	25/16			
605	5/8	3/ ₁₆	23/16	609	11/8	3/16	23/16	1212	11/2	3/8	23/8			
406	3/4	1/8	21/8	709	11/8	7/ ₃₂	21/32							
					Arbor-typ	e Cutters								
	Nom. Dia. of				Nom. Dia. of				Nom. Dia. of					
Cutter Number	Cutter,	Width of Face, W	Dia. of Hole, H	Cutter Number	Cutter,	Width of Face, W	Dia. of Hole, H	Cutter Number	Cutter,	Width of Face, W	Dia. of Hole, H			
617														
817	21/8	16 1/ ₄	^{'4} ³ / ₄	1222	23/4	16 3/ ₈	1	1828	31/2	9/ ₁₆	1			
1017	21/8	5/ ₁₆	3/ ₄	1422	23/4	7/16	1	2028	31/,	716 5/ ₈	1			
1217	21/8	3/8	3/4	1622	23/4	1/2	1	2428	31/2	3/4	1			

All dimensions are given in inches. All cutters are high-speed steel. Cutter numbers indicate nominal key dimensions or cutter sizes.

Shank-type cutters are standard with right-hand cut and straight teeth. All sizes have ½-inch diameter straight shank. Arbor-type cutters have staggered teeth.

For Woodruff key and key-slot dimensions, see page 178.

Tolerances: Face with *W* for shank-type cutters: $\frac{1}{16}$ to $\frac{1}{32}$ -inch face, +0.0000, -0.0005; $\frac{3}{16}$ to $\frac{1}{32}$, -0.0002, -0.0007; $\frac{1}{4}$, -0.0003, -0.0008; $\frac{1}{16}$, -0.0004, -0.0009; $\frac{3}{8}$, -0.0005, -0.0010 inch. Face width *W* for arbor-type cutters; $\frac{1}{16}$ -inch face, -0.0002, -0.0007; $\frac{1}{4}$, -0.0003, -0.0008; $\frac{5}{16}$, -0.0004, -0.0009; $\frac{3}{8}$ and over, -0.0005, -0.0010 inch. Hole size *H*: +0.00075, -0.0000 inch. Diameter *D* for shank-type cutters: $\frac{1}{4}$ -through $\frac{1}{4}$ -inch diameter; +0.010, +0.015, $\frac{7}{8}$ through $\frac{1}{8}$, +0.012, +0.017; $\frac{1}{4}$ through $\frac{1}{2}$, +0.015, +0.020 inch. These tolerances include an allowance for sharpening. For arbor-type cutters, diameter *D* is furnished $\frac{1}{32}$ inch larger than listed and a tolerance of ±0.002 inch applies to the oversize diameter.

KEYS AND KEYSEATS

Table 1. Depth Control Values S and T for Shaft and Hub ANSIB17.1-1967 (R2013) (See figures at end of table)

		el and Taper		Parallel		Taper
Nominal Shaft	Square	Rectangular	Square	Rectangular	Square	Rectangular
Diameter	S	S	T	T	T	T
1/2	0.430	0.445	0.560	0.544	0.535	0.519
9/16	0.493	0.509	0.623	0.607	0.598	0.582
5/8	0.517	0.548	0.709	0.678	0.684	0.653
11/16	0.581	0.612	0.773	0.742	0.748	0.717
3/4	0.644	0.676	0.837	0.806	0.812	0.781
13/16	0.708	0.739	0.900	0.869	0.875	0.844
7/8	0.771	0.802	0.964	0.932	0.939	0.907
15/16	0.796	0.827	1.051	1.019	1.026	0.994
1	0.859	0.890	1.114	1.083	1.089	1.058
11/16	0.923	0.954	1.178	1.146	1.153	1.121
11/8	0.986	1.017	1.241	1.210	1.216	1.185
13/16	1.049	1.080	1.304	1.273	1.279	1.248
11/4	1.112	1.144	1.367	1.336	1.342	1.311
15/16	1.137	1.169	1.455	1.424	1.430	1.399
13/8	1.201	1.232	1.518	1.487	1.493	1.462
17/16	1.225	1.288	1.605	1.543	1.580	1.518
11/2	1.289	1.351	1.669	1.606	1.644	1.581
1%	1.352	1.415	1.732	1.670	1.707	1.645
15/8	1.416	1.478	1.796	1.733	1.771	1.708
111/16	1.479	1.541	1.859	1.796	1.834	1.771
13/4	1.542	1.605	1.922	1.860	1.897	1.835
113/16	1.527	1.590	2.032	1.970	2.007	1.945
17/8	1.591	1.654	2.096	2.034	2.071	2.009
1 ¹⁵ / ₁₆	1.655	1.717	2.160	2.097	2.135	2.072
2	1.718	1.781	2.223	2.161	2.198	2.136
21/16	1.782	1.844	2.287	2.224	2.262	2.199
21/8	1.845	1.908	2.350	2.288	2.325	2.263
23/16	1.909	1.971	2.414	2.351	2.389	2.326
21/4	1.972	2.034	2.477	2.414	2.452	2.389
25/16	1.957	2.051	2.587	2.493	2.562	2.468
23/8	2.021	2.114	2.651	2.557	2.626	2.532
27/16	2.084	2.178	2.714	2.621	2.689	2.596
21/2	2.148	2.242	2.778	2.684	2.753	2.659
29/16	2.211	2.305	2.841	2.748	2.816	2.723
25/8	2.275	2.369	2.905	2.811	2.880	2.786
211/16	2.338	2.432	2.968	2.874	2.943	2.849
23/4	2.402	2.495	3.032	2.938	3.007	2.913
213/16	2.387	2.512	3.142	3.017	3.117	2.992
27/8	2.450	2.575	3.205	3.080	3.180	3.055
215/16	2.514	2.639	3.269	3.144	3.244	3.119
3	2.577	2.702	3.332	3.207	3.307	3.182
31/16	2.641	2.766	3.396	3.271	3.371	3.246
31/8	2.704	2.829	3.459	3.334	3.434	3.309
33/16	2.768	2.893	3.523	3.398	3.498	3.373
31/4	2.831	2.956	3.586	3.461	3.561	3.436
35/16	2.816	2.941	3.696	3.571	3.671	3.546

Table 1. (Continued) Depth Control Values S and T for Shaft and Hub $ANSI\,B17.1-1967\,(R2013)$ (See figures at end of table)

		el and Taper		Parallel		Taper
Nominal Shaft	Square	Rectangular	Square	Rectangular	Square	Rectangular
Diameter	S	S	T	T	T	T
33/8	2.880	3.005	3.760	3.635	3.735	3.610
37/16	2.943	3.068	3.823	3.698	3.798	3.673
31/2	3.007	3.132	3.887	3.762	3.862	3.737
39/16	3.070	3.195	3.950	3.825	3.925	3.800
35/8	3.134	3.259	4.014	3.889	3.989	3.864
311/16	3.197	3.322	4.077	3.952	4.052	3.927
33/4	3.261	3.386	4.141	4.016	4.116	3.991
313/16	3.246	3.371	4.251	4.126	4.226	4.101
37/8	3.309	3.434	4.314	4.189	4.289	4.164
	3.373	3.498	4.378	4.253	4.353	4.228
3 ¹⁵ / ₁₆ 4	3.436	3.561	4.376	4.316	4.333	4.228
4 ³ / ₁₆	3.627	3.752	4.632	4.507	4.607	4.482
4 ¹ / ₄	3.690	3.815	4.695	4.570	4.670	4.545
	3.817	3.942	4.822	4.697	4.797	4.672
43/8	3.880	4.005	4.885	4.760	4.860	4.735
47/16	3.944	4.069	4.949	4.824	4.924	4.799
41/2	4.041	4.229	5.296	5.109	5.271	5.084
43/4						
47/8	4.169	4.356	5.424	5.236	5.399	5.211
415/16	4.232	4.422	5.487	5.300	5.462	5.275
5	4.296	4.483	5.551	5.363	5.526	5.338
53/16	4.486	4.674	5.741	5.554	5.716	5.529
51/4	4.550	4.737	5.805	5.617	5.780	5.592
57/16	4.740	4.927	5.995	5.807	5.970	5.782
51/2	4.803	4.991	6.058	5.871	6.033	5.846
53/4	4.900	5.150	6.405	6.155	6.380	6.130
515/16	5.091	5.341	6.596	6.346	6.571	6.321
6	5.155	5.405	6.660	6.410	6.635	6.385
61/4	5.409	5.659	6.914	6.664	6.889	6.639
61/2	5.662	5.912	7.167	6.917	7.142	6.892
63/4	5.760	⁴5.885	7.515	≈7.390	7.490	*7.365
7	6.014	*6.139	7.769	°7.644	7.744	≈7.619
71/4	6.268	ª6.393	8.023	≈7.898	7.998	≈7.873
71/2	6.521	ª6.646	8.276	a8.151	8.251	a8.126
73/4	6.619	6.869	8.624	8.374	8.599	8.349
8	6.873	7.123	8.878	8.628	8.853	8.603
9	7.887	8.137	9.892	9.642	9.867	9.617
10 11	8.591 9.606	8.966 9.981	11.096 12.111	10.721 11.736	11.071 12.086	10.696 11.711
12	10.309	10.809	13.314	12.814	13.289	12.789
13	11.325	11.825	14.330	13.830	14.305	13.805
14	12.028	12.528	15.533	15.033	15.508	15.008
15	13.043	13.543	16.548	16.048	16.523	16.023

 $^{^{}a} 1^{3}/_{4} \times 1^{1}/_{2}$ inch key.

All dimensions are given in inches. See Table 2 for tolerances.

Table 2. ANSI Standard Fits for Parallel and Taper Keys ANSI B17.1-1967 (R2013)

Type of		Key	Width		Side Fit			Top and	Bottom Fit	
Table Control Contro	T			Width To	olerance		De			
New Over O			To			Fit				Fit
		Over		Key	Keyseat		Key			
No.					Class 1 Fit f	or Parallel Key	/s			
				+0.000	+0.002	0.004 CL	+0.000	+0.000	+0.010	0.032 CL
Name			1/2	-0.002	-0.000	0.000	-0.002	-0.015	-0.000	0.005 CL
Square 1		١.,.				0.005 CL				0.032 CL
Square		1/2	3/4	-0.002	-0.000	0.000	-0.002	-0.015	-0.000	0.005 CL
Square 1 1/2 +0.000 +0.000 +0.000 -0.0013 -0.001 0.000 cm -0.001 -0.000 0.000 cm -0.000 -0.000 0.000 cm 0.000 cm -0.000 -0.000 0.000 cm -0.000 -0.000 -0.000 0.005 CL -0.000 -0		٠				0.006 CL	+0.000		+0.010	0.033 CL
Square	_	3/4	1	-0.003	-0.000	0.000	-0.003	-0.015	-0.000	0.005 CL
1	Square	١.				0.007 CL				0.033 CL
11/2 21/2 -0.004 -0.004 0.008 CL -0.000 -0.005 -0.000 0.005 CL 21/2 31/2 -0.006 -0.000 0.000 -0.006 -0.015 -0.000 0.005 CL 21/2 31/2 -0.006 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.005 CL 21/2 -0.003 -0.000 0.000 -0.		1	11/2	-0.003	-0.000	0.000	-0.003	-0.015	-0.000	0.005 CL
1						0.008 CL				0.034 CL
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11/2	21/2	-0.004	-0.000	0.000	-0.004	-0.015		0.005 CL
1						0.010 CL				0.036 CL
Note		21/2	31/2	-0.006	-0.000	0.000	-0.006	-0.015	-0.000	0.005 CL
1						0.005 CL				
1			1/2	-0.003	-0.000	0.000	-0.003	-0.015	-0.000	0.005 CL
No.						0.006 CL				
Parallel		1/2	3/4							
Parallel 11/4 3 -0.004 -0.000 0.000 -0.004 -0.015 -0.000 0.005 CL										
Rectangular		3/4	1							
Rectangular										
gular 11/2	Dacton	1	11/2							
11/2 3										
3	8	11/2	3							
1										
A		3	4							
A										
Parallel Rectangular 11/4 3 -0.000 -0.		4	6							
Class 2 Fit for Parallel and Taper Keys -0.000										
Class 2 Fit for Parallel and Taper Keys		6	7							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-0.013	-0.000	0.003 CE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.000	0.010	0.020.67
Parallel Square			11/,							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11/,	3							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Square	4								
Parallel Rectangular 3 7 -0.000 -0.000 0.002 CL +0.005 +0.000 +0.010 0.035 CL Rectangular 3 7 -0.000 -0.000 0.002 CL +0.005 +0.000 +0.010 0.035 CL +0.000 +0.010 0.005 CL +0.000 0.005 CL +0.00		3	31/2							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.2							
Parallel Rectangular			1½							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dorollol		4							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1½	3							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 4								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	7							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Taper $1\frac{1}{4}$ 3 -0.000 -0.000 0.002 INT -0.000 -0.015 -0.000 0.005 CL -0.000 -0.005 $-0.$		l	11/							
Taper 11/4 3 -0.000 -0.000 0.002 INT -0.000 -0.015 -0.000 0.025 INT 3 +0.003 +0.002 0.002 CL +0.005 +0.000 +0.010 0.005 CL			1/4							
	Taper	11/	3	+0.002	+0.002		+0.005	+0.000		
	Taper	1/4								
-0.000 -0.000 0.003 INT -0.000 -0.015 -0.000 0.025 INT		3	ь	+0.003	+0.002		+0.005	+0.000	+0.010	
0.000 0.000 0.000 0.010 -0.000				-0.000	-0.000	0.003 INT	-0.000	-0.015	-0.000	0.025 INT

^a Limits of variation. CL = Clearance; INT = Interference.

b To (incl.) $3\frac{1}{2}$ -inch square and 7-inch rectangular key widths. All dimensions are given in inches. See also text on page 177.

Table 3. ANSI Standard Plain and Gib Head Keys ANSI B17.1-1967 (R2013)

Tabl	e J. A	14919	tanua	ara Fi	am ai	ia G	ib Head	1 1/4	eys An	SIDI	/.1-1	907 (F	2015	,
:	Plain an	d gib he	ad taper	Hu	b Leng	8" tape	er in 12"	w w	Gib Hub I	Head Ta	-W -B aper -W*-	B/2 Appr 45° ↑ ↑ *	70X	
					Non		Cey Size							
		V			0	Width			W: J	L 117	Tolera		.:-bs 11	
		Key			Ov	_	To (Incl.)	,,	0.001	th, W	-	+0.001	eight, H	
			ν.	waterel-			11/4			-0.0				0.000
			Ke	ystock				l			- 1			0.000
		Keystock $1\frac{1}{4}$ 3 $+0.002$ -0.000 $+0.002$ 3 $3\frac{1}{2}$ $+0.003$ -0.000 $+0.003$											-(0.000
	Square						3/	+(000.0	-0.0	02	+0.000	-(0.002
			Ba	3 3½ +0.003 -0.000 +0.003 -0.0 ¾ +0.000 -0.002 +0.000 -0.0										0.003
				ar Stock $\frac{3}{4}$ $\frac{1}{2}$ +0.000 -0.003 +0.000 -0.0										
				ar Stock $\frac{3}{4}$ $1\frac{1}{2}$ $+0.000$ -0.003 $+0.000$ -0.00										
D 11.1						_								
Parallel			K.	eystock			11/4		0.001	-0.0	00	+0.005	-(0.005
			1.0	ystock	11		3		0.002	-0.0		+0.005		0.005
			_			3	7	+(0.003	-0.0	00	+0.005	(0.005
	Rectan	milar					3/4	+(000.0	-0.0	03	+0.000	-(0.003
	Rectan	guiai			3,	4	11/,	+(0.000	-0.0	- 1	+0.000		0.004
			Ba	r Stock	11/2	- 1	3	+(0.000	-0.0	- 1	+0.000		0.005
						3	4	+(000.0	-0.0	- 1	+0.000		0.006
						4	6		000.0	-0.0	08	+0.000	-(800.0
					_	6	7	_	0.000	-0.0		+0.000		0.013
Taper		r Gib He					11/4		0.001	-0.0	- 1	+0.005		0.000
Tapei	Square	or Rect	angular		15	3	3 7		0.002	-0.0	- 1	+0.005		0.000
	<u> </u>					_				-0.0	00 [+0.003	(0.000
N	1	C					ninal Dim		ns	C		В		
Nominal Key Size	-	Square		Re	ctangu	ıar	Nomin Key S			Square		Re	ectangul	ar
Width, W	Н	A	В	Н	A	В	Width		Н	A	В	Н	A	В
1/8	1/8	1/4	1/4	3/32	3/ ₁₆	1/8	1		1	15/8	11/8	3/4	11/4	7/8
3/ ₁₆	$ \begin{vmatrix} 3 \\ 16 \end{vmatrix} \begin{vmatrix} 5 \\ 16 \end{vmatrix} \begin{vmatrix} 5 \\ 16 \end{vmatrix} \begin{vmatrix} 5 \\ 16 \end{vmatrix} \begin{vmatrix} 1 \\ 8 \end{vmatrix} \begin{vmatrix} 1 \\ 4 \end{vmatrix} \begin{vmatrix} 2 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \begin{vmatrix} 2 \\ 8 \end{vmatrix} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \begin{vmatrix} 1 \\ 8 \end{vmatrix} $										1			
1/4	1/4	7/16	3/8	3/16	5/16	5/16	11/2		11/2	23/8	13/4	1	15/8	11/8
5/16	5/16	1/2	7/16	1/4	7/16	3/8	13/4		13/4	23/4	2	11/2	23/8	13/4
3/8	3/8	5/8	1/2	1/4	7/ 16	3/8	2		2	31/2	21/4	11/2	23/8	13/4
1/2	1/2	7/8	5/ ₈	3/ ₈	5/ ₈	1/2	21/2		21/2	4 5	3	13/4	23/4	2
5/ ₈	8 4 16 4 16								21/4					
3/ ₄ 7/ ₈	3/ ₄ 7/ ₈	1½ 1½	7/8 1	1/ ₂ 5/	√ ₈ 1	5/ ₈ 3/	31/2		31/2			21/2		
′8	' 8	1 '8							L					

All dimensions are given in inches.

 $^{{}^{\}circ}$ For locating position of dimension H. Tolerance does not apply.

For larger sizes the following relationships are suggested as guides for establishing A and B: A = 1.8H and B = 1.2H.

Table 4. Finding Depth of Keyseat and Distance from Top of Key to Bottom of Shaft

For milling keyseats, the total depth to feed cutter in from outside of shaft to bottom of keyseat is M + D, where D is depth of keyseat.

For checking an assembled key and shaft, caliper measurement J between top of key and bottom of shaft is used.

$$J = S - (M + D) + C$$

where C is depth of key. For Woodruff keys, dimensions C and D can be found in Table 5. Assuming shaft diameter S is normal size, the tolerance on dimension J for Woodruff keys in keyslots are +0.000, -0.010 inch.

Dia. of							Width	of Keys	seat, E						
Shaft,	1/16	3/32	1/8	5/32	3/16	7/32	1/4	5/ ₁₆	3/8	7/16	1/2	9/16	5/8	11/16	3/4
Inches							Dime	nsion M	, Inch						
0.3125	.0032														
0.3437	.0029	.0065													
0.3750	.0026	.0060	.0107												
0.4060	.0024	.0055	.0099												
0.4375	.0022	.0051	.0091												
0.4687	.0021	.0047	.0085	.0134											
0.5000	.0020	.0044	.0079	.0125											
0.5625		.0039	.0070	.0111	.0161										
0.6250		.0035	.0063	.0099	.0144	.0198									
0.6875		.0032	.0057	.0090	.0130	.0179	.0235								
0.7500		.0029	.0052	.0082	.0119	.0163	.0214	.0341							
0.8125		.0027	.0048	.0076	.0110	.0150	.0197	.0312							
0.8750		.0025	.0045	.0070	.0102	.0139	.0182	.0288							
0.9375			.0042	.0066	.0095	.0129	.0170	.0263	.0391						
1.0000			.0039	.0061	.0089	.0121	.0159	.0250	.0365						
1.0625			.0037	.0058	.0083	.0114	.0149	.0235	.0342						
1.1250			.0035	.0055	.0079	.0107	.0141	.0221	.0322	.0443					
1.1875			.0033	.0052	.0074	.0102	.0133	.0209	.0304	.0418					
1.2500			.0031	.0049	.0071	.0097	.0126	.0198	.0288	.0395					
1.3750				.0045	.0064	.0088	.0115	.0180	.0261	.0357	.0471				
1.5000				.0041	.0059	.0080	.0105	.0165	.0238	.0326	.0429				
1.6250				.0038	.0054	.0074	.0097	.0152	.0219	.0300	.0394	.0502			
1.7500					.0050	.0069	.0090	.0141	.0203	.0278	.0365	.0464			
1.8750					.0047	.0064	.0084	.0131	.0189	.0259	.0340	.0432	.0536		
2.0000					.0044	.0060	.0078	.0123	.0177	.0242	.0318	.0404	.0501		
2.1250						.0056	.0074	.0116	.0167	.0228	.0298	.0379	.0470	.0572	.0684
2.2500							.0070	.0109	.0157	.0215	.0281	.0357	.0443	.0538	.0643
2.3750								.0103	.0149	.0203	.0266	.0338	.0419	.0509	.0608
2.5000									.0141	.0193	.0253	.0321	.0397	.0482	.0576
2.6250									.0135	.0184	.0240	.0305	.0377	.0457	.0547
2.7500										.0175	.0229	.0291	.0360	.0437	.0521
2.8750										.0168	.0219	.0278	.0344	.0417	.0498
3.0000											.0210	.0266	.0329	.0399	.0476

ANSI Standard Woodruff Keys and Keyseats.—American National Standard B17.2 was approved in 1967, and reaffirmed in 2013. Data from this standard are shown in Tables below. The following definitions are given in this standard:

Woodruff Key: A Remountable machinery part which, when assembled into keyseats, provides a positive means for transmitting torque between the shaft and hub.

 ${\it Woodruff Key Number:} \ {\rm An\, identification\, number\, by\, which\, the\, size\, of\, key\, may\, be\, readily\, determined.}$

Woodruff Keyseat—Shaft: The circular pocket in which the key is retained.

Woodruff Keyseat—Hub: An axially located rectangular groove in a hub. (This has been referred to as a keyway.)

 $Woodruff Keyseat Milling \ Cutter: An arbor-type \ or shank-type \ milling \ cutter \ normally used for milling \ Woodruff keyseats in shafts.$

 $\begin{array}{l} \textbf{Table 5. ANSI Keyseat Dimensions for Woodruff Keys} \\ ANSI B17.2-1967 (R2013) \end{array}$

				517.2-17			Key		
	Nominal		K	eyseat—Sha	aft		Above Shaft	Keysea	t—Hub
Key No.	Size Key	Wi		Depth B		neter	Height C	Width D	Depth E
		Min.	Max.	+0.005 -0.000	Min.	Max.	+0.005 -0.005	+0.002 -0.000	+0.005 -0.000
202	1/ ₁₆ ×1/ ₄	0.0615	0.0630	0.0728	0.250	0.268	0.0312	0.0635	0.0372
202.5	1/ ₁₆ ×5/ ₁₆	0.0615	0.0630	0.1038	0.312	0.330	0.0312	0.0635	0.0372
302.5	3/ ₃₂ × 5/ ₁₆	0.0928	0.0943	0.0882	0.312	0.330	0.0469	0.0948	0.0529
203	1/ ₁₆ × 3/ ₈	0.0615	0.0630	0.1358	0.375	0.393	0.0312	0.0635	0.0372
303	3/ ₃₂ × 3/ ₈	0.0928	0.0943	0.1202	0.375	0.393	0.0469	0.0948	0.0529
403	1/ ₈ × 3/ ₈	0.1240	0.1255	0.1045	0.375	0.393	0.0625	0.1260	0.0685
204	1/ ₁₆ × 1/ ₂	0.0615	0.0630	0.1668	0.500	0.518	0.0312	0.0635	0.0372
304	3/32 × 1/2	0.0928	0.0943	0.1511	0.500	0.518	0.0469	0.0948	0.0529
404	1/ ₈ × 1/ ₂	0.1240	0.1255	0.1355	0.500	0.518	0.0625	0.1260	0.0685
305	3/ ₃₂ × 5/ ₈	0.0928	0.0943	0.1981	0.625	0.643	0.0469	0.0948	0.0529
405	1/ ₈ ×5/ ₈	0.1240	0.1255	0.1825	0.625	0.643	0.0625	0.1260	0.0685
505	5/ ₃₂ × 5/ ₈	0.1553	0.1568	0.1669	0.625	0.643	0.0781	0.1573	0.0841
605	3/ ₁₆ ×5/ ₈	0.1863	0.1880	0.1513	0.625	0.643	0.0937	0.1885	0.0997
406	1/ ₈ × 3/ ₄	0.1240	0.1255	0.2455	0.750	0.768	0.0625	0.1260	0.0685
506	5/32 × 3/4	0.1553	0.1568	0.2299	0.750	0.768	0.0781	0.1573	0.0841
606	3/ ₁₆ × 3/ ₄	0.1863	0.1880	0.2143	0.750	0.768	0.0937	0.1885	0.0997
806	1/4 × 3/4	0.2487	0.2505	0.1830	0.750	0.768	0.1250	0.2510	0.1310
507	5/ ₃₂ × 7/ ₈	0.1553	0.1568	0.2919	0.875	0.895	0.0781	0.1573	0.0841
607	3/ ₁₆ × 7/ ₈	0.1863	0.1880	0.2763	0.875	0.895	0.0937	0.1885	0.0997
707	7/32 × 7/8	0.2175	0.2193	0.2607	0.875	0.895	0.1093	0.2198	0.1153
807	1/4 × 7/8	0.2487	0.2505	0.2450	0.875	0.895	0.1250	0.2510	0.1310
608	3/ ₁₆ ×1	0.1863	0.1880	0.3393	1.000	1.020	0.0937	0.1885	0.0997
708	7/32×1	0.2175	0.2193	0.3237	1.000	1.020	0.1093	0.2198	0.1153
808	1/4×1	0.2487	0.2505	0.3080	1.000	1.020	0.1250	0.2510	0.1310
1008	5/ ₁₆ ×1	0.3111	0.3130	0.2768	1.000	1.020	0.1562	0.3135	0.1622
1208	³½×1	0.3735	0.3755	0.2455	1.000	1.020	0.1875	0.3760	0.1935
609	3/16×11/8	0.1863	0.1880	0.3853	1.125	1.145	0.0937	0.1885	0.0997
709	7/ ₃₂ × 11/ ₈	0.2175	0.2193	0.3697	1.125	1.145	0.1093	0.2198	0.1153
809	1/ ₄ × 11/ ₈	0.2487	0.2505	0.3540	1.125	1.145	0.1250	0.2510	0.1310
1009	5/ ₁₆ × 1 ¹ / ₈	0.3111	0.3130	0.3228	1.125	1.145	0.1562	0.3135	0.1622
610	3/ ₁₆ × 1 ¹ / ₄	0.1863	0.1880	0.4483	1.250	1.273	0.0937	0.1885	0.0997
710	7/ ₃₂ × 11/ ₄	0.2175	0.2193	0.4327	1.250	1.273	0.1093	0.2198	0.1153

Table 5. (Continued) ANSI Keyseat Dimensions for Woodruff Keys ANSI B17.2-1967 (R2013)

	Nominal		K	eyseat—Sha	aft		Key Above Shaft	Keysea	t—Hub
Key No.	Size Key	Wi	dth I ^a	Depth B		neter	Height C	Width D	Depth E
		Min.	Max.	+0.005 -0.000	Min.	Max.	+0.005 -0.005	+0.002 -0.000	+0.005 -0.000
810	1/ ₄ × 11/ ₄	0.2487	0.2505	0.4170	1.250	1.273	0.1250	0.2510	0.1310
1010	5/16 × 11/4	0.3111	0.3130	0.3858	1.250	1.273	0.1562	0.3135	0.1622
1210	3/ ₈ × 1 ¹ / ₄	0.3735	0.3755	0.3545	1.250	1.273	0.1875	0.3760	0.1935
811	1/4 × 13/6	0.2487	0.2505	0.4640	1.375	1.398	0.1250	0.2510	0.1310
1011	5/ ₁₆ × 13/ ₈	0.3111	0.3130	0.4328	1.375	1.398	0.1562	0.3135	0.1622
1211	3/ ₈ × 13/ ₈	0.3735	0.3755	0.4015	1.375	1.398	0.1875	0.3760	0.1935
812	1/ ₄ × 11/ ₂	0.2487	0.2505	0.5110	1.500	1.523	0.1250	0.2510	0.1310
1012	5/ ₁₆ × 1 ¹ / ₂	0.3111	0.3130	0.4798	1.500	1.523	0.1562	0.3135	0.1622
1212	3/ ₈ × 1 ¹ / ₂	0.3735	0.3755	0.4485	1.500	1.523	0.1875	0.3760	0.1935
617-1	3/ ₁₆ × 21/ ₈	0.1863	0.1880	0.3073	2.125	2.160	0.0937	0.1885	0.0997
817-1	1/4×21/8	0.2487	0.2505	0.2760	2.125	2.160	0.1250	0.2510	0.1310
1017-1	5/16 × 21/8	0.3111	0.3130	0.2448	2.125	2.160	0.1562	0.3135	0.1622
1217-1	3/ ₈ × 21/ ₈	0.3735	0.3755	0.2135	2.125	2.160	0.1875	0.3760	0.1935
617	3/16×21/8	0.1863	0.1880	0.4323	2.125	2.160	0.0937	0.1885	0.0997
817	1/4×21/8	0.2487	0.2505	0.4010	2.125	2.160	0.1250	0.2510	0.1310
1017	5/16 × 21/8	0.3111	0.3130	0.3698	2.125	2.160	0.1562	0.3135	0.1622
1217	3/ ₈ × 21/ ₈	0.3735	0.3755	0.3385	2.125	2.160	0.1875	0.3760	0.1935
822-1	1/4 × 23/4	0.2487	0.2505	0.4640	2.750	2.785	0.1250	0.2510	0.1310
1022-1	5/16 × 23/4	0.3111	0.3130	0.4328	2.750	2.785	0.1562	0.3135	0.1622
1222-1	3/ ₈ × 2 ³ / ₄	0.3735	0.3755	0.4015	2.750	2.785	0.1875	0.3760	0.1935
1422-1	$\frac{7}{16} \times \frac{23}{4}$	0.4360	0.4380	0.3703	2.750	2.785	0.2187	0.4385	0.2247
1622-1	1/2 × 23/4	0.4985	0.5005	0.3390	2.750	2.785	0.2500	0.5010	0.2560
822	1/4 × 23/4	0.2487	0.2505	0.6200	2.750	2.785	0.1250	0.2510	0.1310
1022	5/ ₁₆ × 2 ³ / ₄	0.3111	0.3130	0.5888	2.750	2.785	0.1562	0.3135	0.1622
1222	3/8 × 23/4	0.3735	0.3755	0.5575	2.750	2.785	0.1875	0.3760	0.1935
1422	$\frac{7}{16} \times \frac{2^{3}}{4}$	0.4360	0.4380	0.5263	2.750	2.785	0.2187	0.4385	0.2247
1622	1/2 × 23/4	0.4985	0.5005	0.4950	2.750	2.785	0.2500	0.5010	0.2560
1228	3/ ₈ × 31/ ₂	0.3735	0.3755	0.7455	3.500	3.535	0.1875	0.3760	0.1935
1428	7/ ₁₆ × 31/ ₂	0.4360	0.4380	0.7143	3.500	3.535	0.2187	0.4385	0.2247
1628	1/ ₂ × 31/ ₂	0.4985	0.5005	0.6830	3.500	3.535	0.2500	0.5010	0.2560
1828	% ₁₆ × 3½,	0.5610	0.5630	0.6518	3.500	3.535	0.2812	0.5635	0.2872
2028	5/ ₈ × 31/ ₂	0.6235	0.6255	0.6205	3.500	3.535	0.3125	0.6260	0.3185
2228	11/ ₁₆ × 31/ ₂	0.6860	0.6880	0.5893	3.500	3.535	0.3437	0.6885	0.3497
2428	3/ ₄ × 31/ ₂	0.7485	0.7505	0.5580	3.500	3.535	0.3750	0.7510	0.3810

^a These Width A values were set with the maximum keyseat (shaft) width as that figure which will receive a key with the greatest amount of looseness consistent with assuring the key's sticking in the keyseat (shaft). Minimum keyseat width is that figure permitting the largest shaft distortion acceptable when assembling maximum key in minimum keyseat. Dimensions A, B, C, D are taken at side intersection.

All dimensions are given in inches.

BROACHING

BROACHING

Fig. 1. Types of Broaches

Pitch of Broach Teeth.—The pitch of broach teeth depends upon the depth of cut or chip thickness, length of cut, the cutting force required, and power of the broaching machine. In the pitch formulas which follow

- L = length, in inches, of layer to be removed by broaching
- d = depth of cut per tooth as shown by Table 1 (For internal broaches, d = depth of cut as measured on one side of broach or one-half difference in diameters of successive teeth in case of a round broach.)
- F =a factor (For brittle types of material, F =3 or 4 for roughing teeth, and 6 for finishing teeth. For ductile types of material, F =4 to 7 for roughing teeth and 8 for finishing teeth.)
- b = width of inches, of layer to be removed by broaching

BROACHING

P = pressure required in tons per square inch, of an area equal to depth of cut times width of cut, in inches (Table 2)

T = usable capacity, in tons, of broaching machine = 70 percent of maximum tonnage

Table 1.	Data for	Desig	ning	Surface	Broaches

	Dep	th of Cut per	Гооth		Face	Clearanc	e Angle
	Roughi	ngª	Finisl	hing	Angle or Rake.	Deg	
Material to be Broached	inch	mm	inch	mm	Degrees	Rough	Finish
Steel, High Tensile Strength	0.0015-0.002	0.04-0.05	0.0005	0.013	10-12	1.5-3	0.5-1
Steel, Med.Tensile Strength	0.0025-0.005	0.06-0.13	0.0005	0.013	14-18	1.5-3	0.5-1
Cast Steel	0.0025-0.005	0.06-0.13	0.0005	0.013	10	1.53	0.5
Malleable Iron	0.0025-0.005	0.06-0.13	0.0005	0.013	7	1.5-3	0.5
Cast Iron, Soft	0.006-0.010	0.15-0.25	0.0005	0.013	10-15	1.5-3	0.5
Cast Iron, Hard	0.003-0.005	0.08-0.13	0.0005	0.013	5	1.5-3	0.5
Zinc Die Castings	0.005-0.010	0.13-0.25	0.0010	0.025	12 ^b	5	2
Cast Bronze	0.010-0.025	0.25-0.64	0.0005	0.013	8	0	0
Wrought Aluminum Alloys	0.005-0.010	0.13-0.25	0.0010	0.025	15 ^b	3	1
Cast Aluminum Alloys	0.005-0.010	0.13-0.25	0.0010	0.025	12 ^b	3	1
Magnesium Die Castings	0.010-0.015	0.25-0.38	0.0010	0.025	20 ^b	3	1

^a The lower depth-of-cut values for roughing are recommended when work is not very rigid, the tolerance is small, a good finish is required, or length of cut is comparatively short.

Table 2. Broaching Pressure P for Use in Pitch Formulas (1) and (2)

			D	epth d	f Cut p									
	0.024	4 (0.60)	0.01	(0.25)	0.004	(0.10)	0.002	(0.05)	0.001	(0.025)	Sid	e-Cutti	ng Broa	ches
					Pre	ssure, P					Press	ure, P	Cut	, d
	Ton/in2	MPa	Ton/in²	MPa	Ton/in²	MPa	Ton/in²	MPa	Ton/in²	MPa	Ton/in²	MPa		
Material to be Broached	ř	Σ	T _C	Σ	Tc	Σ	Tc	Σ	Tc	Σ	Tc	Σ	inch	mm
Steel, High Tensile Strength							250	3447	312	4302	200	2758	0.004	0.10
Steel, Med. Tensile Strength					158	2179	185	2551	243	3351	143	1972	0.006	0.15
Cast Steel					128	1765	158	2179			115	1586	0.006	0.15
Malleable Iron					108	1489	128	1765			100	1379	0.006	0.15
Cast Iron			115	1586	115	1586	143	1972			115	1586	0.020	0.51
Cast Brass			50	689	50	689								
Brass, Hot-pressed			85	1172	85	1172								
Zinc Die Castings			70	965	70	965								
Cast Bronze	35	483	35	483										
Wrought Aluminum			70	965	70	965								
Cast Aluminum			85	1172	85	1172								
Magnesium Alloy	35	483	35	483										

The minimum pitch shown by Formula (1) is based upon the receiving capacity of the chip space. The minimum, however, should not be less than 0.2 inch unless a smaller pitch is required for exceptionally short cuts to provide at least two teeth in contact simultaneously, with the part being broached. A reduction below 0.2 inch is seldom required in surface broaching, but it may be necessary in connection with internal broaching.

$$Minimum pitch = 3\sqrt{LdF}$$
 (1)

Whether the minimum pitch may be used or not depends upon the power of the available machine. The factor F in the formula provides for the increase in volume as the material is broached into chips. If a broach has adjustable inserts for the finishing teeth, the pitch

^b In broaching these materials, smooth surfaces for tooth and chip spaces are especially recommended.

of the finishing teeth may be smaller than the pitch of the roughing teeth because of the smaller depth d of the cut. The higher value of F for finishing teeth prevents the pitch from becoming too small, so that the spirally curled chips will not be crowded into too small a space. The pitch of the roughing and finishing teeth should be equal for broaches without separate inserts (notwithstanding the different values of d and F) so that some of the finishing teeth may be ground into roughing teeth after wear makes this necessary.

Allowable pitch =
$$\frac{dLbP}{T}$$
 (2)

If the pitch obtained by Formula (2) is larger than the minimum obtained by Formula (1), this larger value should be used because it is based upon the usable power of the machine. As the notation indicates, 70 percent of the maximum tonnage *T* is taken as the usable capacity. The 30 percent reduction is to provide a margin for the increase in broaching load resulting from the gradual dulling of the cutting edges.

Table 3. Common Causes of Broaching Difficulties

Broaching Difficulty	Possible Causes
Stuck broach	Insufficient machine capacity; dulled teeth; clogged chip gullets; failure of power during cutting stroke. To remove a stuck broach, workpiece and broach are removed from the machine as a unit; never try to back out broach by reversing machine. If broach does not loosen by tapping workpiece lightly and trying to slide it off its starting end, mount workpiece and broach in a lathe and turn down workpiece to the tool surface. Workpiece may be sawed longitudinally into several sections in order to free the broach. Check broach design, perhaps tooth relief (back off) angle is too small or depth of cut per tooth is too great.
Galling and pickup	Lack of homogeneity of material being broached—uneven hardness, porosity; improper or insufficient coolant; poor broach design, mutilated broach; dull broach; improperly sharpened broach; improperly designed or outworn fixtures. Good broach design will do away with possible chip build-up on tooth faces and excessive heating. Grinding of teeth should be accurate so that the correct gullet contour is maintained. Contour should be fair and smooth.
Broach breakage	Overloading; broach dullness; improper sharpening; interrupted cutting stroke; backing up broach with workpiece in fixture; allowing broach to pass entirely through guide hole; ill-fitting and/or sharp-edged key; crooked holes; untrue locating surface; excessive hardness of workpiece; insufficient clearance angle; sharp corners on pull end of broach. When grinding bevels on pull end of broach, use wheel that is not too pointed.
Chatter	Too few teeth in cutting contact simultaneously; excessive hardness of material being broached; loose or poorly constructed tooling; surging of ram due to load variations. Chatter can be alleviated by changing the broaching speed, by using shear cutting teeth instead of right-angle teeth, and by changing the coolant and the face and relief angles of the teeth.
Drifting or misalignment of tool during cutting stroke	Lack of proper alignment when broach is sharpened in grinding machine, which may be caused by dirt in the female center of the broach; inadequate support of broach during the cutting stroke, on a horizontal machine especially; body diameter too small; cutting resistance variable around I.D. of hole due to lack of symmetry of surfaces to be cut; variations in hardness around I.D. of hole; too few teeth in cutting contact.
Streaks in broached surface	Lands too wide; presence of forging, casting or annealing scale; metal pickup; presence of grinding burrs and grinding and cleaning abrasives.
Rings in the broached hole	Due to surging resulting from uniform pitch of teeth; presence of sharpening burrs on broach; tooth clearance angle too large; locating face not smooth or square; broach not supported for all cutting teeth passing through the work. The use of differential tooth spacing or shear cutting teeth helps in preventing surging. Sharpening burrs on a broach may be removed with a wood block.

CUTTING TOOLS FOR TURNING

Fig. 1. Terms Applied to Single-Point Turning Tools

Fig. 2. Lead Angle on Single-Point Turning Tool

Fig. 3. Different Forms of Chipbreakers for Turning Tools

Chipbreakers.—Angular Shoulder Type: As shown in Fig. 3A, angle a between the shoulder and cutting edge may vary from 6 to 15 degrees or more, 8 degrees being a fair average. The ideal angle, width W and depth G, depends upon the speed and feed, the depth of cut, and the material. As a general rule, width W, at the end of the tool, varies from $\frac{3}{42}$ inch, and the depth G may range from $\frac{1}{64}$ to $\frac{1}{16}$ inch. The shoulder radius equals depth G.

If the tool has a large nose radius, the corner of the shoulder at the nose end may be beveled off, as illustrated in Fig. 3B, to prevent it from coming into contact with the work. The width K for type B should equal approximately 1.5 times the nose radius.

Parallel Shoulder Type: Fig. 3C shows a design with a chipbreaking shoulder that is parallel with the cutting edge. With this form, the chips are likely to come off in short curled sections. The parallel form may also be applied to straight tools which do not have a side cutting edge angle. The tendency with this parallel shoulder form is to force the chips against the work and damage it.

Groove Type: This type (see Fig. 3D) has a groove in the face of the tool produced by grinding. Between the groove and the cutting edge, there is a land L. Under ideal conditions, this width L, the groove width W, and the groove depth G, would be varied to suit the feed, depth of cut and material. For average use, L is about $\frac{1}{\sqrt{2}}$ inch; G, $\frac{1}{\sqrt{2}}$ inch; and W, $\frac{1}{\sqrt{6}}$ inch. There are differences of opinion concerning the relative merits of the groove type and the shoulder type. Both types have proved satisfactory when properly proportioned for a given class of work.

Chipbreaker for Light Cuts: Fig. 3E illustrates a form of chipbreaker that is sometimes used on tools for finishing cuts having a maximum depth of about $\frac{1}{2}$ inch. This chipbreaker is a shoulder type having an angle of 45 degrees and a maximum width of about $\frac{1}{16}$ inch. It is important in grinding all chipbreakers to give the chip-bearing surfaces a fine finish, such as would be obtained by honing. This finish greatly increases the life of the tool.

Identification System for Indexable Inserts.—The size of indexable inserts is determined by the diameter of an inscribed circle (L.C.), except for rectangular and parallelogram inserts where the length and width dimensions are used. To describe an insert in its entirety, a standard ANSI B212.4-2002 identification system is used where each position number designates a feature of the insert. The ANSI Standard includes items now commonly used and facilitates identification of items not in common use. Identification consists of up to ten positions; each position defines a characteristic of the insert as shown below:

1	2	3	4	5	6	7	8ª	9ª	10 ^a
T	N	M	G	5	4	3			A

^a Eighth, Ninth, and Tenth Positions are used only when required.

Shape: The shape of an insert is designated by a letter: **R** for round; **S**, square; **T**, triangle; **A**, 85° parallelogram; **B**, 82° parallelogram; **C**, 80° diamond; **D**, 55° diamond; **E**, 75° diamond; **H**, hexagon; **K**, 55° parallelogram; **L**, rectangle; **M**, 86° diamond; **O**, octagon; **P**, pentagon; **V**, 35° diamond; and **W**, 80° trigon.

Relief Angle (Clearances): The second position is a letter denoting the relief angles; N for 0° , A, 3° , B, 5° ; C, 7° ; P, 11° ; D, 15° ; E, 20° ; F, 25° ; G, 30° ; H, 0° & 11^{o° ; J, 0° & 14^{o° ; K, 0° & 17^{o° ; L, 0° & 20^{o° ; M, 11° & 14^{o° ; R, 11° & 17^o ; S, 11° & 20^{o° . When mounted on a holder, the actual relief angle may be different from that on the insert.

Tolerances: The third position is a letter and indicates the tolerances that control the indexability of the insert. Tolerances specified do not imply the method of manufacture.

Type: The type of insert is designated by a letter. A, with hole; B, with hole and countersink; C, with hole and two countersinks; F, chip grooves both surfaces, no hole; G, same

^{*}Second angle is secondary facet angle, which may vary by ±1°.

as **F** but with hole; **H**, with hole, one countersink, and chip groove on one rake surface; **J**, with hole, two countersinks and chip grooves on two rake surfaces; **M**, with hole and chip groove on one rake surface; **N**, without hole; **Q**, with hole and two countersinks; **R**, without hole but with chip groove on one rake surface; **T**, with hole, one countersink, and chip groove on one rake face; **U**, with hole, two countersinks, and chip grooves on two rake faces; and **W**, with hole and one countersink. *Note:* a dash may be used after position 4 to separate the shape-describing portion from the following dimensional description of the insert and is not to be considered a position in the standard description.

Size: The size of the insert is designated by a one- or a two-digit number. For regular polygons and diamonds, it is the number of eighths of an inch in the nominal size of the inscribed circle, and will be a one- or two-digit number when the number of eighths is a whole number. It will be a two-digit number, including one decimal place, when it is not a whole number. Rectangular and parallelogram inserts require two digits: the first digit indicates the number of eighths of an inch width and the second digit, the number of quarters of an inch length.

Thickness: The thickness is designated by a one- or two-digit number, which indicates the number of sixteenths of an inch in the thickness of the insert. It is a one-digit number when the number of sixteenths is a whole number; it is a two-digit number carried to one decimal place when the number of sixteenths of an inch is not a whole number.

Cutting Point Configuration: The cutting point, or nose radius, is designated by a number representing $\frac{1}{64}$ ths of an inch; a flat at the cutting point or nose, is designated by a letter: $\mathbf{0}$ for sharp corner; $\mathbf{1}$, $\frac{1}{64}$ -inch radius; $\mathbf{2}$, $\frac{1}{32}$ -inch radius; $\mathbf{3}$, $\frac{3}{64}$ -inch radius; $\mathbf{4}$, $\frac{1}{16}$ -inch radius; $\mathbf{5}$, $\frac{3}{64}$ -inch radius; $\mathbf{6}$, $\frac{3}{32}$ -inch radius; $\mathbf{7}$, $\frac{7}{64}$ -inch radius; $\mathbf{8}$, $\frac{1}{8}$ -inch radius; \mathbf{A} , square insert with 45° chamfer; \mathbf{D} , square insert with 30° chamfer; \mathbf{E} , square insert with 30° double chamfer; \mathbf{L} , square insert with 15° double chamfer; \mathbf{M} , square insert with 3° double chamfer; \mathbf{N} , truncated triangle insert; and \mathbf{P} , flatted corner triangle insert.

Special Cutting Point Definition: The eighth position, if it follows a letter in the 7th position, is a number indicating the number of $\frac{1}{64}$ ths of an inch measured parallel to the edge of the facet.

Hand: **R**, right; **L**, left; to be used when required in ninth position.

Other Conditions: The tenth position defines special conditions (such as edge treatment, surface finish) as follows: **A**, honed, 0.005 inch to less than 0.003 inch; **B**, honed, 0.003 inch to less than 0.005 inch; **J**, polished, 4 microinch arithmetic average (AA) on rake surfaces only; **T**, chamfered, manufacturer's standard negative land, rake face only.

	Tolerance (± from	n Nominal)		Tolerance (± from	n Nominal)
Symbol	Inscribed Circle, Inch	Thickness, Inch	Symbol	Inscribed Circle, Inch	Thickness, Inch
A	0.001	0.001	H	0.0005	0.001
В	0.001	0.005	J	0.002-0.005	0.001
С	0.001	0.001	K	0.002-0.005	0.001
D	0.001	0.005	L	0.002-0.005	0.001
E	0.001	0.001	M	0.002-0.004a	0.005
F	0.0005	0.001	U	0.005-0.010 ^a	0.005
G	0.001	0.005	N	0.002-0.004a	0.001

^a Exact tolerance is determined by size of insert. See ANSI B94.25.

Table 1. Standard Shank Sizes for Indexable Insert Holders

	- C		A A	-		В
		Shank Dim	ensions for I	ndexable Ins	ert Holders	
Basic Shank	A	A	F	3	(Ţa
Size	inch	mm	inch	mm	inch	mm
1/2 × 1/2 × 41/2	0.500	12.70	0.500	12.70	4.500	114.30
$\frac{5}{8} \times \frac{5}{8} \times 4^{1}/_{2}$	0.625	15.87	0.625	15.87	4.500	114.30
$\frac{5}{8} \times 1^{1}/_{4} \times 6$	0.625	15.87	1.250	31.75	6.000	152.40
$\frac{3}{4} \times \frac{3}{4} \times \frac{41}{2}$	0.750	19.05	0.750	19.05	4.500	114.30
$\frac{3}{4} \times 1 \times 6$	0.750	19.05	1.000	25.40	6.000	152.40
$\frac{3}{4} \times 1\frac{1}{4} \times 6$	0.750	19.05	1.250	31.75	6.000	152.40
1×1×6	1.000	25.40	1.000	25.40	6.000	152.40
$1 \times 1^{1} /_{4} \times 6$	1.000	25.40	1.250	31.75	6.000	152.40
$1 \times 1^{1} \frac{1}{2} \times 6$	1.000	25.40	1.500	38.10	6.000	152.40
$1\frac{1}{4} \times 1\frac{1}{4} \times 7$	1.250	31.75	1.250	31.75	7.000	177.80
$1\frac{1}{4} \times 1\frac{1}{2} \times 8$	1.250	31.75	1.500	38.10	8.000	203.20
$1\frac{3}{8} \times 2\frac{1}{16} \times 6\frac{3}{8}$	1.375	34.92	2.062	52.37	6.380	162.05
$1\frac{1}{2} \times 1\frac{1}{2} \times 7$	1.500	38.10	1.500	38.10	7.000	177.80
$1\frac{3}{4} \times 1\frac{3}{4} \times 9\frac{1}{2}$	1.750	44.45	1.750	44.45	9.500	241.30
2×2×8	2.000	50.80	2.000	50.80	8.000	203.20

^a Holder length; may vary by manufacturer. Actual shank length depends on holder style.

Identification System for Indexable Insert Holders: The following identification system conforms to the American National Standard, ANSI B212.5-2002, Metric Holders for Indexable Inserts.

Each position in the system designates a feature of the holder in the following sequence:

1	2	3	4	5	_	6	_	7	_	8 ^a	_	9	_	10^{a}
C	Т	N	Α	R	_	85	_	25	_	D	_	16	_	0

- 1) Method of Holding Horizontally Mounted Insert: The method of holding or clamping is designated by a letter: C, top clamping, insert without hole; M, top and hole clamping, insert with hole; P, hole clamping, insert with hole; S, screw clamping through hole, insert with hole: W, wedge clamping.
- 2) Insert Shape: The insert shape is identified by a letter: **H**, hexagonal; **O**, octagonal; **P**, pentagonal; **S**, square; **T**, triangular; **C**, rhombic, 80° included angle; **D**, rhombic, 55° included angle; **E**, rhombic, 75° included angle; **M**, rhombic, 86° included angle; **V**, rhombic, 35° included angle; **W**, hexagonal, 80° included angle; **L**, rectangular; **A**, parallelogram, 85° included angle; **B**, parallelogram, 82° included angle; **K**, parallelogram, 55° included angle; **R**, round. The included angle is always the smaller angle.
- 3) Holder Style: The holder style designates the shank style and the side cutting edge angle, or end cutting edge angle, or the purpose for which the holder is used. It is designated by a letter: A, for straight shank with 0° side cutting edge angle; B, straight shank

with 15° side cutting edge angle; **C**, straight-shank end cutting tool with 0° end cutting edge angle; **D**, straight shank with 45° side cutting edge angle; **E**, straight shank with 30° side cutting edge angle; **F**, offset shank with 0° end cutting edge angle; **G**, offset shank with 0° side cutting edge angle; **J**, offset shank with negative 3° side cutting edge angle; **K**, offset shank with 15° end cutting edge angle; **L**, offset shank with negative 5° side cutting edge angle angle angle; angle; **M**, straight shank with 40° side cutting edge angle; angle; **N**, straight shank with 15° side cutting edge angle; a

- 4) Normal Clearances: The normal clearances of inserts are identified by letters: **A**, 3°; **B**, 5°; **C**, 7°; **D**, 15°; **E**, 20°; **F**, 25°; **G**, 30°; **N**, 0°; **P**, 11°.
- 5) H and of T ool: The hand of the tool is designated by a letter: \mathbf{R} for right-hand; \mathbf{L} , left-hand; and \mathbf{N} , neutral, or either hand.
- 6) Tool Height for Rectangular Shank Cross Sections: The tool height for tool holders with a rectangular shank cross section and the height of cutting edge equal to shank height is given as a two-digit number representing this value in millimeters. For example, a height of 32 mm would be encoded as 32; 8 mm would be encoded as 08, where the one-digit value is preceded by a zero.
- 7) Tool Width for Rectangular Shank Cross Sections: The tool width for tool holders with a rectangular shank cross section is given as a two-digit number representing this value in millimeters. For example, a width of 25 mm would be encoded as 25; 8 mm would be encoded as 08, where the one-digit value is preceded by a zero.
- 8) *Tool Length*: The tool length is designated by a letter: **A**, 32 mm; **B**, 40 mm; **C**, 50 mm; **D**, 60 mm; **E**, 70 mm; **F**, 80 mm; **G**, 90 mm; **H**, 100 mm; **J**, 110 mm; **K**, 125 mm; **L**, 140 mm; **M**, 150 mm; **N**, 160 mm; **P**, 170 mm; **Q**, 180 mm; **R**, 200 mm; **S**, 250 mm; **T**, 300 mm; **U**, 350 mm; **V**, 400 mm; **W**, 450 mm; **X**, special length to be specified; **Y**, 500 mm.
- 9) Indexable Insert Size: The size of indexable inserts is encoded as follows: For insert shapes C, D, E, H, M, O, P, R, S, T, V, the side length (the diameter for R inserts) in millimeters is used as a two-digit number, with decimals being disregarded. For example, the symbol for a side length of 16.5 mm is 16. For insert shapes A, B, K, L, the length of the main cutting edge or of the longer cutting edge in millimeters is encoded as a two-digit number, disregarding decimals. If the symbol obtained has only one digit, then it should be preceded by a zero. For example, the symbol for a main cutting edge of 19.5 mm is 19; for an edge of 9.5 mm, the symbol is 09.
- 10) Special Tolerances: Special tolerances are indicated by a letter: \mathbf{Q} , back and end qualified tool; \mathbf{F} , front and end qualified tool; \mathbf{B} , back, front, and end qualified tool. A qualified tool is one that has tolerances of ± 0.08 mm for dimensions F, G, and C. (See Table 2.)

Table 2. Letter Symbols for Qualification of Tool Holders — Position 10

ANSI B 212.5-2002

Indexable Insert Holders for Numerical Control: Indexable insert holders for numerical control lathes are usually made to more precise standards than ordinary holders. Where applicable, reference should be made to American National Standard B212.3-1986, "Precision Holders for Indexable Inserts." This standard covers the dimensional specifications, styles, and designations of precision holders for indexable inserts, which are defined as tool holders that locate the gage insert (a combination of shim and insert thicknesses) from the back or front and end surfaces to a specified dimension with a ± 0.003 inch (± 0.08 mm) tolerance. In NC programming, the programmed path is that followed by the center of the tool tip, which is the center of the point, or nose radius, of the insert. The surfaces produced are the result of the path of the nose and the major cutting edge, so it is necessary to compensate for the nose or point radius and the lead angle when writing the program. Table 3, from B212.3, gives the compensating dimensions for different holder styles. The reference point is determined by the intersection of extensions from the major and minor cutting edges, which would be the location of the point of a sharp pointed tool. The distances from this point to the nose radius are L-1 and \hat{D} -1; L-2 and \hat{D} -2 are the distances from the sharp point to the center of the nose radius. Threading tools have sharp corners and do not require a radius compensation. Other dimensions of importance in programming threading tools are also given in Table 4; the data were developed by Kennametal, Inc.

Square Profile Turning 15° Lead Angle D-2 Rad. L-1 L-2D-10.0035 0.0191 0.0009 0.0110 1/64 B Style^a Also Applies 1/32 0.0070 0.0383 0.0019 0.0221 to R Style 3/64 0.0105 0.0574 0.0028 0.0331 0.0140 0.0765 0.0038 0.0442 1/16 Turning 45° Lead Angle D-2Rad. L-1 L-2D-11/64 0.0065 0.0221 0.0065 0 D Stylea; 0.0129 0.0442 0.0129 0 Also Applies 1/32 to S Style ³/₆₄ 0.0194 0.0663 0.0194 0 0.0884 0.0259 0.0259 0 Facing 15° Lead Angle L-2 D-2 Rad. L-1 D - 11/64 0.0009 0.0110 0.0035 0.0191 1/32 0.0019 0.0221 0.0070 0.0383 K Style^a 3/64 0.0028 0.0331 0.0105 0.0574 0.0038 0.0442 0.0140 0.0765 1/16 Triangle Profile Turning 0° Lead Angle D-2 Rad. L-1L-2D-10.0271 0.0156 1/64 0.0114 0 G Style^a 1/32 0.0229 0.0541 0 0.0312 3/64 0.0343 0.0812 0.0469 0

Table 3. Insert-Radius Compensation ANSI B212.3-1986

n

0.0625

0.1082

0.0458

NUMERICAL CONTROL TOOLING

Table 3. (Continued) Insert-Radius Compensation ANSI B212.3-1986

		file				Square Profile						
	*		ning and l	Facing 15	° Lead Ar	ole						
	L-1→	Rad.	L-1	L-2	D-1	D-2						
B Style ^a ;	F	1/64	0.0146	0.0302	0.0039	0.0081						
Also Applies	↓ <u>↓</u> ↓	1/32	0.0291	0.0604	0.0078	0.0162						
to R Style		3/64	0.0437	0.0906	0.0117	0.0243						
	D-2 L-2		0.0582	0.1207	0.0156	0.0324						
	15°	1/16	0.0302	0.1207	0.0150	0.0521						
	l ← C			90° Lead								
		Rad.	L-1	L-2	D-1	D-2						
	$_{\rm F}$	1/64	0	0.0156	0.0114	0.0271						
F Style ^a	1 90° 1-2→	1/32	0	0.0312	0.0229	0.0541						
	L-1-1-	3/64	0	0.0469	0.0343	0.0812						
	<u>** </u>	1/16	0	0.0625	0.0458	0.1082						
	D-2 D-1											
	├ -C	Tu	ırning & I	Facing 3°	Lead Ang	le						
		Rad.	L-1	L-2	D-1	D-2						
	F	1/64	0.0106	0.0262	0.0014	0.0170						
J Style ^a	<u> </u>	1/32	0.0212	0.0524	0.0028	0.0340						
	<u> </u>	3/64	0.0318	0.0786	0.0042	0.0511						
	D-1 - L-2 - L-1	1/16	0.0423	0.1048	0.0056	0.0681						
	000 F1											
	80° Diamond											
	<u> </u>		irning & I	Facing 0° L-2								
		Rad.	L-1 0.0030	0.0186	D-1 0	D-2 0.0156						
		1/64	0.0030	0.0180	0	0.0130						
G Style ^a		1/32										
	!! 	3/64	0.0090	0.0559	0	0.0469						
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/16	0.0120	0.0745	0	0.0625						
	D-1 L-1 — 1 2											
	⊢ C	Turnin	o & Facir	ng 5° Rev	erse I ead	Angle						
	С	Turnin Rad.	ng & Facir	ng 5° Rev	erse Lead	Angle D-2						
		Rad.										
	F S	Rad.	L-1	L-2	D-1	D-2						
L Style ^a		Rad.	<i>L</i> -1 0.0016	<i>L</i> -2 0.0172	<i>D</i> -1 0.0016	D-2 0.0172						
L Style ^a	F D-2	Rad. 1/64 1/32 3/64	L-1 0.0016 0.0031 0.0047	L-2 0.0172 0.0344 0.0516	D-1 0.0016 0.0031 0.0047	D-2 0.0172 0.0344 0.0516						
L Style ^a	F D-2	Rad.	L-1 0.0016 0.0031	L-2 0.0172 0.0344	D-1 0.0016 0.0031	D-2 0.0172 0.0344						
L Style ^a	F D-2	Rad. 1/64 1/32 3/64	L-1 0.0016 0.0031 0.0047	L-2 0.0172 0.0344 0.0516	D-1 0.0016 0.0031 0.0047	D-2 0.0172 0.0344 0.0516						
L Style ^a	D-2	Rad. 1/64 1/32 3/64	L-1 0.0016 0.0031 0.0047 0.0062	L-2 0.0172 0.0344 0.0516 0.0688	D-1 0.0016 0.0031 0.0047 0.0062	D-2 0.0172 0.0344 0.0516						
L Style ^a	$ \begin{array}{c c} F \\ \downarrow D \cdot 2 \\ \hline D \cdot 1 \\ \hline D \cdot 1 \\ \hline D \cdot 2 \\ \hline D \cdot 2 \\ \hline D \cdot 2 \\ \hline D \cdot 3 \\ \hline D \cdot 4 \\ \hline D \cdot 5 \\ \hline \end{array} $	Rad. 1/64 1/32 3/64	L-1 0.0016 0.0031 0.0047 0.0062	L-2 0.0172 0.0344 0.0516	D-1 0.0016 0.0031 0.0047 0.0062	D-2 0.0172 0.0344 0.0516						
L Style ^a	D-2	Rad. 1/64 1/32 3/64 1/16 Rad.	L-1 0.0016 0.0031 0.0047 0.0062	L-2 0.0172 0.0344 0.0516 0.0688	D-1 0.0016 0.0031 0.0047 0.0062	D-2 0.0172 0.0344 0.0516 0.0688						
	F 0° C	Rad. 1/64 1/32 3/64 1/16 Rad.	L-1 0.0016 0.0031 0.0047 0.0062 Facing L-1	L-2 0.0172 0.0344 0.0516 0.0688	D-1 0.0016 0.0031 0.0047 0.0062 Angle D-1	D-2 0.0172 0.0344 0.0516 0.0688						
L Style ^a F Style ^a	D-2	Rad. 1/64 1/32 3/64 1/16 Rad. 1/64 1/32	L-1 0.0016 0.0031 0.0047 0.0062 Facing L-1 0	L-2 0.0172 0.0344 0.0516 0.0688 2 0° Lead L-2 0.0156	D-1 0.0016 0.0031 0.0047 0.0062 Angle D-1 0.0030	D-2 0.0172 0.0344 0.0516 0.0688 D-2 0.0186						
	$\begin{array}{c c} F & D \cdot 2 \\ \hline \downarrow & \downarrow & \downarrow \\ D \cdot 1 & \uparrow & \downarrow \\ D \cdot 1 & \downarrow & \downarrow \\ D \cdot 2 & \downarrow & \downarrow \\ \end{array}$	Rad. 1/64 1/32 3/64 1/16 Rad. 1/64 1/32 3/64 1/32 3/64	L-1	L-2 0.0172 0.0344 0.0516 0.0688 20° Lead L-2 0.0156 0.0312 0.0469	D-1 0.0016 0.0031 0.0047 0.0062 Angle D-1 0.0030 0.0060 0.0090	D-2 0.0172 0.0344 0.0516 0.0688 D-2 0.0186 0.0372 0.0559						
	F 0° C	Rad. 1/64 1/32 3/64 1/16 Rad. 1/64 1/32	L-1 0.0016 0.0031 0.0047 0.0062 Facing L-1 0	L-2 0.0172 0.0344 0.0516 0.0688 20° Lead L-2 0.0156 0.0312	D-1 0.0016 0.0031 0.0047 0.0062 Angle D-1 0.0030 0.0060	D-2 0.0172 0.0344 0.0516 0.0688 D-2 0.0186 0.0372						

NUMERICAL CONTROL TOOLING

Table 3. (Continued) Insert-Radius Compensation ANSI B212.3-1986

Square Profile						
		Turning 15° Lead Angle				
	F	Rad.	L-1	L-2	D-1	D-2
	_{D-1}	1/64	0.0011	0.0167	0.0003	0.0117
R Style ^a		1/32	0.0022	0.0384	0.0006	0.0234
KStyle		3/64	0.0032	0.0501	0.0009	0.0351
	D-2 - L-1	1/16	0.0043	0.0668	0.0012	0.0468
	L-2 — 15° C	16				
			Facing	15° Lead	Angle	,
		Rad.	L-1	L-2	D-1	D-2
	F 15° \	1/64	0.0003	0.0117	0.0011	0.0167
K Style ^a	D-1	1/32	0.0006	0.0234	0.0022	0.0334
Rotyle		3/64	0.0009	0.0351	0.0032	0.0501
	_	1/16	0.0012	0.0468	0.0043	0.0668
	D-2 —— L-2 —— C					
	, -					
	55° Profil					
	$ \begin{array}{c c} F & D-2 \\ \hline \end{array} $		rofiling 3°			
		Rad.	0.0135	L-2 0.0292	D-1 0.0015	D-2 0.0172
		1/64	0.0133	0.0292	0.0013	0.0172
J Style ^a		1/32	0.0271	0.0383	0.0031	0.0543
		3/64	0.0406	0.0875	0.0046	0.0519
	D-1 -3 V	1/16	0.0341	0.1100	0.0062	0.0687
	——————————————————————————————————————					
	35° Profil					
	 ←C		rofiling 3°			
J Style ^a ;		Rad.	L-1 0.0330	L-2 0.0487	D-1 0.0026	D-2 0.0182
Negative rake	F <u> </u>	1/64	0.0330	0.0487	0.0026	0.0182
holders have 6°back rake		1/32	0.0661	0.0973	0.0051	0.0364
and 6°side	* * * * * * * * * * * * * * * * * * * 	3/64	0.0991	0.1460	0.0077	0.0346
rake	D-2 → -1 -1 -3° +	1/16	0.1322	0.1947	0.0103	0.0728
	→ ←L-2					
	l ← −C		Profilir	g 5° Lead	l Angle	
	F	Rad.	L-1	L-2	D-1	D-2
1.6.1.	D-2	1/64	0.0324	0.0480	0.0042	0.0198
L Style ^a		1/32	0.0648	0.0360	0.0086	0.0398
	₹ † ↓ ↓ ↓ ↓	3/64	0.0971	0.1440	0.0128	0.0597
	→ ←L-2	1/16	0.1205	0.1920	0.0170	0.0795

 $^{^{}a}L$ -1 and D-1 over sharp point to nose radius; and L-2 and D-2 over sharp point to center of nose radius. The D-1 dimension for the B, E, D, M, P, S, T, and V-style tools are over the sharp point of insert to a sharp point at the intersection of a line on the lead angle on the cutting edge of the insert and the C dimension. The L-1 dimensions on K-style tools are over the sharp point of insert to sharp point intersection of lead angle and F dimensions.

All dimensions are in inches.

NT

NUMERICAL CONTROL TOOLING

Threading Insert Size R H Y X 7. 0.075 2 3/2, Wide 0.040 0.040 0.024 0.140 3 3/16 Wide 0.046 0.098 0.054 0.031 0.183 4 0.053 0.128 0.054 0.049 0.239 1/, Wide 5 3/ Wide 0.099 0.190

Table 4. Threading Tool Insert-Radius Compensation for NC Programming

All dimensions are given in inches. Courtesy of Kennametal, Inc.

Table 5. Cemented Carbides

Table 5. Cemented Carbides						
Composition	Features	Comments				
Tungsten Carbide/Cobalt (WC/Co)	No porosity should be visible under the highest magnification. Has the greatest resistance to simple abrasive wear.	Hardness and abrasion resistance increases as the Co content is lowered (minimum 2–3%). Tougher and less hard grades are obtained as carbide grain or cobalt content are both increased.				
Tungsten-Titanium Carbide/ Cobalt (WC/TiC/Co)	Used to cut steels and other ferrous alloys. Considerably more brittle and less abrasion resistant than tungsten carbide.	Resists the high-temperature diffusive attack that causes chemical breakdown and cratering.				
Tungsten-Titanium-Tantalum (-Niobium) Carbide/Cobalt	Used mainly for cutting steels. Improve on the best features of WC/TiC/Co. Can undertake very heavy cuts at high speeds on all types of steels, including austenitic stainless. Also operate well on ductile cast irons and nickel-base super alloys.	Except for coated carbides these could be the most popular class of hardmetals. Do not have the resistance to abrasive wear possessed by micrograin straight tungsten carbide grades nor the good resistance to cratering of coated grades and titanium carbide-based cermets.				
Steel- and Alloy-Bonded Titanium Carbide	Used for stamping, blanking and drawing dies, machine components, and similar items where the ability to machine before hardening reduces production costs substantially.	Characterized by high binder contents (typically 50-60% by volume) and lower hardness, compared with the more usual hardmetals, and by great variation in properties obtained by heat treatment. Consists primarily of titianium carbide bonded with heat-treated steel, but some grades also contain tungsten carbide or are bonded with hickel- or copper-based alloys.				

Table 6. ISO Classifications of Hardmetals (Cemented Carbides and Carbonitrides) by Application

Main Type	es of Chip Removal		Group	s of Applications	Dec	ction of crease acteristic
Symbol and Color	Broad Categories of Materials to be Machined	Designa- tion (Grade)	Specific Material to be Machined	Use and Working Conditions	of cut	of carbid
		P01	Steel, steel castings	Finish turning and boring; high cutting speeds, small chip sections, accurate dimensions, fine finish, vibration-free operations	↑ speed	wear resist
		P10		Turning, copying, threading, milling; high cutting speeds; small or medium chip sections		
P Blue	Ferrous with long chips	P20	Steel, steel castings, ductile cast iron with long chips	Turning, copying, milling; medium cutting speeds and chip sections, planing with small chip sections	↓ feed	tougl
Diuc	Blue long chips			Turning, milling, planing; medium or large chip sections, unfavorable machining conditions		
		P40	Steel, steel castings with sand inclusions and cavities	Turning, planing, slotting; low cutting speeds, large chip sections, with possible large cutting angles, unfavorable cutting conditions, and work on automatic machines		
		P50	Steel, steel castings of medium or low tensile strength, with sand inclusions and cavities	Operations demanding very tough carbides; turning, planing, slotting; low cutting speeds, large chip sections, with possible large cutting angles, unfavorable conditions and work on automatic machines		
		M10	Steel, steel castings, manganese steel, gray cast iron, alloy cast iron	Turning; medium or high cutting speeds, small or medium chip sections		
M	Ferrous metals with long or short chips,	M20	Steel, steel castings, austenitic or manganese steel, gray cast iron	Turning, milling; medium cutting speeds and chip sections		
Yellow	and nonferrous metals	M30	Steel, steel castings, austenitic steel, gray cast iron, high-temperature-resistant alloys	Turning, milling, planing; medium cutting speeds, medium or large chip sections		
		M40	Mild, free-cutting steel, low-tensile steel, nonferrous metals and light alloys	Turning, parting off; particularly on automatic machines		
		K01	Very hard gray cast iron, chilled castings over 85 Shore, high-silicon aluminum alloys, hardened steel, highly abrasive plastics, hard cardboard, ceramics	Turning, finish turning, boring, milling, scraping		
K Red	Ferrous metals with short chips, nonferrous metals	K10	Gray cast iron over 220 Brinell, malleable cast iron with short chips, hardened steel, silicon-aluminum and copper alloys, plastics, glass, hard rubber, hard cardboard, porcelain, stone	Turning, milling, drilling, boring, broaching, scraping		
	and non-metallic materials	K20	Gray cast iron up to 220 Brinell, nonferrous metals, copper, brass, aluminum	Turning, milling, planing, boring, broaching, demanding very tough carbide		
		K30 K40	Low-hardness gray cast iron, low-tensile steel, compressed wood Softwood or hard wood, nonferrous metals	Turning, milling, planing, slotting, unfavorable conditions, and possibility of large cutting angles		

Machinery's Handbook Pocket Companion
HARDMETAL CUTTING TOOL INSERTS

MACHINING ALUMINUM

MACHINING OPERATIONS

Machining Aluminum.—Some of the alloys of aluminum have been machined successfully without any lubricant or cutting compound, but some form of lubricant is desirable to obtain the best results. For many purposes, a soluble cutting oil is good.

Tools for aluminum and aluminum alloys should have larger relief and rake angles than tools for cutting steel. For high-speed steel turning tools the following angles are recommended: relief angles, 14 to 16 degrees; back rake angle, 5 to 20 degrees; side rake angle, 15 to 35 degrees. For very soft alloys even larger side rake angles are sometimes used. High-silicon aluminum alloys and some others have a very abrasive effect on the cutting tool. While these alloys can be cut successfully with high-speed steel tools, cemented carbides are recommended because of their superior abrasion resistance. The tool angles recommended for cemented carbide turning tools are: relief angles, 12 to 14 degrees; back rake angle, 0 to 15 degrees; side rake angle, 8 to 30 degrees.

Cutoff tools and necking tools for machining aluminum and its alloys should have from 12 to 20 degrees back rake angle and the end relief angle should be from 8 to 12 degrees. Excellent threads can be cut with single-point tools in even the softest aluminum. Experience seems to vary somewhat regarding the rake angle for single-point thread cutting tools. Some prefer to use a rather large back and side rake angle although this requires a modification in the included angle of the tool to produce the correct thread contour. When both rake angles are zero, the included angle of the tool is ground equal to the included angle of the thread. Excellent threads have been cut in aluminum with zero rake angle thread-cutting tools using large relief angles, which are 16 to 18 degrees opposite the front side of the thread and 12 to 14 degrees opposite the back side of the thread. In either case, the cutting edges should be ground and honed to a keen edge. It is sometimes advisable to give the face of the tool a few strokes with a hone between cuts when chasing the thread to remove any built-up edge on the cutting edge.

Fine surface finishes are often difficult to obtain on aluminum and aluminum alloys, particularly the softer metals. When a fine finish is required, the cutting tool should be honed to a keen edge and the surfaces of the face and the flank will also benefit by being honed smooth. Tool wear is inevitable, but it should not be allowed to progress too far before the tool is changed or sharpened. A sulphurized mineral oil or a heavy-duty soluble oil will sometimes be helpful in obtaining a satisfactory surface finish. For best results, however, a diamond cutting tool is recommended. Excellent surface finishes can be obtained on even the softest aluminum and aluminum alloys with these tools.

Although ordinary milling cutters can be used successfully in shops where aluminum parts are only machined occasionally, the best results are obtained with coarse-tooth, large helix-angle cutters having large rake and clearance angles. Clearance angles up to 10 to 12 degrees are recommended. When slab milling and end milling a profile, using the peripheral teeth on the end mill, climb milling (also called down milling) will generally produce a better finish on the machined surface than conventional (or up) milling. Face milling cutters should have a large axial rake angle. Standard twist drills can be used without difficulty in drilling aluminum and aluminum alloys although high helix-angle drills are preferred. The wide flutes and high helix-angle in these drills helps to clear the chips. Sometimes split-point drills are preferred. Carbide-tipped twist drills can be used for drilling aluminum and its alloys and may afford advantages in some production applications. Ordinary hand and machine taps can be used to tap aluminum and its alloys although spiral-fluted ground thread taps give superior results. Experience has shown that such taps should have a right-hand ground flute when intended to cut right-hand threads and the helix angle should be similar to that used in an ordinary twist drill.

Machining Magnesium.—Magnesium alloys are readily machined and with relatively low power consumption per cubic inch of metal removed. The usual practice is to employ high cutting speeds with relatively coarse feeds and deep cuts. Exceptionally fine finishes can be obtained so that grinding to improve the finish usually is unnecessary. The horse-power normally required in machining magnesium varies from 0.15 to 0.30 per cubic inch per minute. While this value is low, especially in comparison with power required for cast iron and steel, the total amount of power for machining magnesium usually is high because of the exceptionally rapid rate at which metal is removed.

Carbide tools are recommended for maximum efficiency, although high-speed steel frequently is employed. Tools should be designed so as to dispose of chips readily or without excessive friction, by employing polished chip-bearing surfaces, ample chip spaces, large clearances, and small contact areas. *Keen-edged tools should always be used*. In machining magnesium, it is the general but not invariable practice in the United States to use a cutting fluid. In other places, magnesium may be machined dry, except where heat generated by high cutting speeds would not be dissipated rapidly enough without a cutting fluid. This condition may exist when, for example, small tools without much heat-conducting capacity are employed on automatics. The cutting fluid for magnesium should be an anhydrous oil having, at most, a very low acid content. Various mineral-oil cutting fluids are used.

Feeds and Speeds for Magnesium: Speeds ordinarily range up to 5000 feet per minute for rough- and finish-turning, up to 3000 feet per minute for rough-milling, and up to 9000 feet per minute for finish-milling. For rough-turning, the following combinations of speed in feet per minute, feed per revolution, and depth of cut are recommended: Speed 300 to 600 feet per minute—feed 0.030 to 0.100 inch, depth of cut 0.5 inch; speed 600 to 1000—feed 0.020 to 0.080, depth of cut 0.4; speed 1000 to 1500—feed 0.010 to 0.060, depth of cut 0.3; speed 1500 to 2000—feed 0.010 to 0.040, depth of cut 0.2; speed 2000 to 5000—feed 0.010 to 0.030, depth of cut 0.15.

Lathe Tool Angles for Magnesium: The true or actual rake angle resulting from back and side rakes usually varies from 10 to 15 degrees. Back rake varies from 10 to 20, and side rake from 0 to 10 degrees. Reduced back rake may be employed to obtain better chip breakage. The back rake may also be reduced to from 2 to 8 degrees on form tools or other broad tools to prevent chatter.

Parting Tools: For parting tools, the back rake varies from 15 to 20 degrees, the front end relief 8 to 10 degrees, the side relief measured perpendicular to the top face 8 degrees, the side relief measured in the plane of the top face from 3 to 5 degrees.

Milling Magnesium: In general, the coarse-tooth type of cutter is recommended. The number of teeth or cutting blades may be one-third to one-half the number normally used; however, the two-blade fly cutter has proved to be very satisfactory. As a rule, the land relief or primary peripheral clearance is 10 degrees followed by secondary clearance of 20 degrees. The lands should be narrow, the width being about $\frac{3}{64}$ to $\frac{1}{16}$ inch. The rake, which is positive, is about 15 degrees.

For rough-milling and speeds in feet per minute up to 900—feed, inch per tooth, 0.005 to 0.025, depth of cut up to 0.5; for speeds 900 to 1500—feed 0.005 to 0.020, depth of cut up to 0.375; for speeds 1500 to 3000—feed 0.005 to 0.010, depth of cut up to 0.2.

Drilling Magnesium: If the depth of a hole is less than five times the drill diameter, an ordinary twist drill with highly polished flutes may be used. The included angle of the point may vary from 70 degrees to the usual angle of 118 degrees. The relief angle is about 12 degrees. The drill should be kept sharp and the outer corners rounded to produce a smooth finish and prevent burr formation. For deep hole drilling, use a drill having a helix angle of 40 to 45 degrees with large polished flutes of uniform cross section throughout the drill

MACHINING ZINC ALLOYS

length to facilitate the flow of chips. A pyramid-shaped "spur" or "pilot point" at the tip of the drill will reduce the "spiraling or run-off."

Drilling speeds vary from 300 to 2000 feet per minute with feeds per revolution ranging from 0.015 to 0.050 inch.

Reaming Magnesium: Reamers up to 1 inch in diameter should have four flutes; larger sizes, six flutes. These flutes may be either parallel with the axis or have a negative helix angle of 10 degrees. The positive rake angle varies from 5 to 8 degrees, the relief angle from 4 to 7 degrees, and the clearance angle from 15 to 20 degrees.

Tapping Magnesium: Standard taps may be used unless Class 3B tolerances are required, in which case the tap should be designed for use in magnesium. A high-speed steel concentric type with a ground thread is recommended. The concentric form, which eliminates the radial thread relief, prevents jamming of chips while the tap is being backed out of the hole. The positive rake angle at the front may vary from 10 to 25 degrees and the "heel rake angle" at the back of the tooth from 3 to 5 degrees. The chamfer extends over two to three threads. For holes up to $\frac{1}{4}$ inch in diameter, two-fluted taps are recommended; for sizes from $\frac{1}{2}$ to $\frac{3}{4}$ inch, three flutes; and for larger holes, four flutes. Tapping speeds ordinarily range from 75 to 200 feet per minute, and mineral oil cutting fluid should be used.

Threading Dies for Magnesium: Threading dies for use on magnesium should have about the same cutting angles as taps. Narrow lands should be used to provide ample chip space. Either solid or self-opening dies may be used. The latter type is recommended when maximum smoothness is required. Threads may be cut at speeds up to 1000 feet per minute.

Grinding Magnesium: As a general rule, magnesium is ground dry. The highly inflammable dust should be formed into a sludge by means of a spray of water or low-viscosity mineral oil. Accumulations of dust or sludge should be avoided. For surface grinding, when a fine finish is desirable, a low-viscosity mineral oil may be used.

Machining Zinc Alloy Die Castings.—Machining of zinc alloy die castings is mostly done without a lubricant. For particular work, especially deep drilling and tapping, a lubricant such as lard oil and kerosene (about half and half) or a 50-50 mixture of kerosene and machine oil may be used to advantage. A mixture of turpentine and kerosene has been found effective on certain difficult jobs.

Reaming: In reaming, tools with six straight flutes are commonly used, although tools with eight flutes irregularly spaced have been found by some to yield better results. Many standard reamers have a land that is too wide for best results. A land about 0.015 inch wide is recommended, but this may often be ground down to around 0.007 or even 0.005 inch to obtain freer cutting, less tendency to loading, and reduced heating.

Turning: Tools of high-speed steel are commonly employed although the application of Stellite and carbide tools, even on short runs, is feasible. For steel or Stellite, a positive top rake of from 0 to 20 degrees and an end clearance of about 15 degrees are commonly recommended. Where side cutting is involved, a side clearance of about 4 degrees minimum is recommended. With carbide tools, the end clearance should not exceed 6 to 8 degrees, and the top rake should be from 5 to 10 degrees positive. For boring, facing, and other lathe operations, rake and clearance angles are about the same as for tools used in turning.

Machining Monel and Nickel Alloys.—These alloys are machined with high-speed steel and with cemented carbide cutting tools. High-speed steel lathe tools usually have a back rake of 6 to 8 degrees, a side rake of 10 to 15 degrees, and relief angles of 8 to 12 degrees. Broad-nose finishing tools have a back rake of 20 to 25 degrees and an end relief

angle of 12 to 15 degrees. In most instances, standard commercial cemented-carbide tool holders and tool shanks can be used which provide an acceptable tool geometry. Honing the cutting edge lightly will help if chipping is encountered.

The most satisfactory tool materials for machining Monel and the softer nickel alloys, such as Nickel 200 and Nickel 230, are M2 and T5 for high-speed steel and crater-resistant grades of cemented carbides. For the harder nickel alloys such as K Monel, Permanickel, Duranickel, and Nitinol alloys, the recommended tool materials are T15, M41, M42, M43, and for high-speed steel, M42. For carbides, a grade of crater-resistant carbide is recommended when the hardness is less than 300 Bhn, and when the hardness is more than 300 Bhn, a grade of straight tungsten carbide will often work best, although some crater-resistant grades will also work well.

A sulfurized oil or a water-soluble oil is recommended for rough and finish turning. A sulfurized oil is also recommended for milling, threading, tapping, reaming, and broaching. Recommended cutting speeds for Monel and the softer nickel alloys are 70 to 100 fpm for high-speed steel tools and 200 to 300 fpm for cemented carbide tools. For the harder nickel alloys, the recommended speed for high-speed steel is 40 to 70 fpm for a hardness up to 300 Bhn and for a higher hardness, 10 to 20 fpm; for cemented carbides, 175 to 225 fpm when the hardness is less than 300 Bhn and for a higher hardness, 30 to 70 fpm.

Nickel alloys have a high tendency to work harden. To minimize work hardening caused by machining, the cutting tools should be provided with adequate relief angles and positive rake angles. Furthermore, the cutting edges should be kept sharp and replaced when dull to prevent burnishing of the work surface. The depth of cut and feed should be sufficiently large to ensure that the tool penetrates the work without rubbing.

Machining Copper Alloys.—Copper alloys can be machined by tooling and methods similar to those used for steel, but at higher surface speeds. Machinability is based on a rating of 100 percent for the free-cutting alloy C35000, which machines with small, easily broken chips. As with steels, copper alloys containing lead have the best machining properties, with alloys containing tin, and lead, having machinability ratings of 80 and 70 percent. Tellurium and sulphur are added to copper alloys to increase machinability with minimum effect on conductivity. Lead additions are made to facilitate machining, as their effect is to produce easily broken chips.

Copper alloys containing silicon, aluminum, manganese, and nickel become progressively more difficult to machine, and produce long, stringy chips, the latter alloys having only 20 percent of the machinability of the free-cutting alloys. Although copper is frequently machined dry, a cooling compound is recommended. Other lubricants that have been used include tallow for drilling, gasoline for turning, and beeswax for threading.

Machining Hard Rubber.—Tools suitable for steel may be used for hard rubber, with no top or side rake angles and 10 to 20 deg. clearance angles, of high-speed steel or tungsten carbide. Without coolant, surface speeds of about 200 ft./min. are recommended for turning, boring, and facing, and may be increased to 300 surface ft./min. with coolant.

Drilling of hard rubber requires high-speed steel drills of 35 to 40 deg. helix angle to obtain maximum cutting speeds and drill life. Feed rates for drilling range up to 0.015 in./ rev. Deep-fluted taps are best for threading hard rubber, and should be 0.002 to 0.005 in. oversize if close tolerances are to be held. Machine oil is used for a lubricant. Hard rubber may be sawn with band saws having 5 to 10 points per inch, running at about 3000 ft./min. or cut with abrasive wheels. Use of coolant in grinding rubber gives a smoother finish.

Piercing and blanking of sheet rubber is best performed with the rubber or dies heated. Straightening of the often-distorted blanks may be carried out by dropping them into a pan of hot water.

 $Table \ 1a. \ Tool \ Troubleshooting \ and \ Practical \ Tips$

Problems		Causes	Remedy
	a. Rapid flank wear causing poor surface finish or out of tolerance.	a. Cutting speed too high or insuffi- cient wear resis- tance.	Reduce the cutting speed. Select a more wear- resistant grade.
a b	b/c. Notch wear causing poor surface finish and risk of edge breakage.	b/c. Oxidation	Select Al ₂ O ₃ coated grade. For work hardening materials select a larger lead angle or a more wear-resistant grade.
Flank and notch wear		b/c. Attrition	Reduce the cutting speed. (When machining heat-resistant material with ceramics increase cutting speed.)
		c. Oxidation	Select a cermet grade
Crater wear	Excessive crater wear causing a weakened edge. Cutting- edge break- through on the training edge causes poor surface finish.	Diffusion wear due to high cutting tempera- tures on the rake face.	Select Al ₂ O ₃ coated grade. Select a positive insert geometry. First reduce the speed to obtain a lower temperature, then reduce the feed.
	Plastic deformation a. Edge		Select a more wear- resistant grade. a. Reduce speed
a	depression b. Flank impression		b. Reduce feed
b	Leading to poor chip control and poor surface finish. Risk of excessive flank wear	Cutting tempera- ture too high combined with a	
Plastic deformation	leading to insert breakage	high pressure.	

Table 1a. (Continued) Tool Troubleshooting and Practical Tips

Problems		Causes	Remedy
Built-up edge (B.U.E)	Built-up edge causing poor surface and cutting-edge frittering when the B.U.E. is torn away.	Workpiece material is welded to the insert due to: Low cutting speed. Negative cutting geometry.	Increase cutting speed. Select a positive geometry.
Chip hammering	The part of the cutting edge not in cut is damaged through chip hammering. Both the top side and the support for the insert can be damaged.	The chips are deflected against the cutting edge.	Change the feed. Select an alternative insert geometry.
Frittering	Small cutting- edge fractures (frittering) causing poor surface finish and excessive flank wear.	Grade too brittle Insert geometry too weak. Built-up edge	Select a tougher grade. Select an insert with a stronger geometry (bigger chamfer for ceramic inserts). Increase cutting speed or select a positive geometry. Reduce feed at beginning of cut.
Thermal crack	Small cracks perpendicu- lar to the cutting edge causing frittering and poor surface finish.	Thermal cracks due to temperature variations caused by: -Intermittent machining -Varying coolant supply.	Select a tougher grade. -Turn off coolant or -Flood coolant

Table 1a. (Continued) Tool Troubleshooting and Practical Tips

Problems		Causes	Remedy
Insert breakage	Insert breakage that damages not only the insert but also the shim and workpiece.	Grade too brittle. Excessive load on the insert. Insert geometry too weak.	Select a tougher grade. Reduce the feed and/or the depth of cut. Select a stronger geometry, preferably a single-sided insert. Select a thicker
		too small.	larger insert.
		Excessive tool presssure.	Reduce the feed. Select a tougher grade. Select an insert with smaller chamfer.
Slice fracture—Ceramics			

Table 1b. Tool Troubleshooting Checklist

Table 16. 1001 Froubleshooting Checklist				
Problem	Tool Material	Remedy		
Excessive flank	Carbide	Change to harder, more wear-resistant grade		
wear—tool life too short		2. Reduce the cutting speed		
too snort		Reduce the cutting speed and increase the feed to maintain production		
		4. Reduce the feed		
		5. For work-hardenable materials—increase the feed		
		6. Increase the lead angle		
		7. Increase the relief angles		
	HSS	1. Use a coolant		
		2. Reduce the cutting speed		
		Reduce the cutting speed and increase the feed to maintain production		
		4. Reduce the feed		
		For work-hardenable materials—increase the feed Increase the lead angle		
		7. Increase the relief angle		
Excessive cratering	Carbide	Use a crater-resistant grade		
		2. Use a harder, more wear-resistant grade		
		3. Reduce the cutting speed		
		4. Reduce the feed		
		5. Widen the chip breaker groove		
	HSS	1. Use a coolant		
		2. Reduce the cutting speed		
		3. Reduce the feed		
		4. Widen the chip breaker groove		
L				

Table 1b. (Continued) Tool Trouble shooting Checklist

Problem	Tool Material	Remedy	
Cutting-edge	Carbide	1. Increase the cutting speed	
chipping		2. Lightly hone the cutting edge	
		3. Change to a tougher grade	
		4. Use negative-rake tools	
		5. Increase the lead angle	
		6. Reduce the feed	
		7. Reduce the depth of cut	
		8. Reduce the relief angles	
		9. If low cutting speed must be used, use a high-additive EP cutting fluid	
	HSS	1. Use a high-additive EP cutting fluid	
		2. Lightly hone the cutting edge before using	
		3. Increase the lead angle	
		4. Reduce the feed	
		5. Reduce the depth of cut	
		6. Use a negative rake angle	
		7. Reduce the relief angles	
	Carbide and HSS	1. Check the setup for cause if chatter occurs	
		2. Check the grinding procedure for tool overheating	
		3. Reduce the tool overhang	
Cutting-edge deformation	Carbide	1. Change to a grade containing more tantalum	
deformation		2. Reduce the cutting speed	
		3. Reduce the feed	
Poor surface finish	Carbide	1. Increase the cutting speed	
		2. If low cutting speed must be used, use a high-additive EP cutting fluid	
		4. For light cuts, use straight titanium carbide grade	
		5. Increase the nose radius	
		6. Reduce the feed	
		7. Increase the relief angles	
		8. Use positive rake tools	
	HSS	1. Use a high-additive EP cutting fluid	
		2. Increase the nose radius	
		3. Reduce the feed	
		4. Increase the relief angles	
		5. Increase the rake angles	
	Diamond	1. Use diamond tool for soft materials	
Notching at the	Carbide and HSS	1. Increase the lead angle	
depth of cut line		2. Reduce the feed	

Table 1c. Common Tool Faults, Failures, and Cures

	Common room aunts, runur	-,
Fault Description	Probable Failure	Possible Cure
	Improper Tool Design	
Drastic section changes— widely different thicknesses of adjacent wall sections or protruding elements	In liquid quenching, the thin section will cool and then harden more rapidly than the adjacent thicker section, setting up stresses that may exceed the strength of the steel.	Make such parts of two pieces or use an air-hardening tool steel that avoids the harsh action of a liquid quench.
Sharp corners on shoulders or in square holes	Cracking can occur, particularly in liquid quenching, due to stress concentrations.	Apply fillets to the corners and/or use an air-hardening tool steel.
Sharp cornered keyways	Failure may arise during service, and is usually considered to be caused by fatigue.	The use of round keyways should be preferred when the general configuration of the part makes it prone to failure due to square keyways.
Abrupt section changes in battering tools	Due to impact in service, pneumatic tools are particularly sensitive to stress concentra- tions that lead to fatigue failures.	Use taper transitions, which are better than even generous fillets.
Functional inadequacy of tool design — e.g., insufficient guidance for a punch	Excessive wear or breakage in service may occur.	Assure solid support, avoid unnecessary play, adapt travel length to operational conditions (e.g., punch to penetrate to four-fifths of thickness in hard work material).
Improper tool clearance, such as in blanking and punching tools	Deformed and burred parts may be produced; excessive tool wear or breakage can result.	Adapt clearances to material conditions and dimensions to reduce tool load and to obtain clean sheared surfaces.
Faulty	y Condition or Inadequate Grade of	Tool Steel
Improper tool steel grade selection	Typical failures: Chipping — in- sufficient toughness. Wear — poor abrasion resistance. Softening — inadequate "red hardness."	Choose the tool steel grade by following recommendations and improve selection when needed, guided by property ratings.
Material defects—voids, streaks, tears, flakes, surface cooling cracks, etc.	When not recognized during material inspection, tools made of defective steel often prove to be useless.	Obtain tool steels from reliable sources and inspect tool material for detectable defects.
Decarburized surface layer ("bark") in rolled tool steel bars	Cracking may originate from the decarburized layer or it will not harden ("soft skin").	Provide allowance for stock to be removed from all surfaces of hot-rolled tool steel. Recommended amounts are listed in tool steel catalogs and vary according to section size, generally about 10 percent for smaller and 5 percent for larger diameters.
Brittleness caused by poor carbide distribution in high-alloy tool steels	Excessive brittleness can cause chipping or breakage during service.	Bars with large diameter (above about 4 inches) tend to be prone to nonuniform carbide distribution. Choose upset forged discs instead of large-diameter bars.

Table 1c. (Continued) Common Tool Faults, Failures, and Cures

·	Probable Failure	Possible Cure	
Fault Description			
(Continued) Faulty Condition or Inadequate Grade of Tool Steel			
Unfavorable grain flow	Improper grain flow of the steel used for milling cutters and similar tools can cause teeth to break out.	Upset forged discs made with an upset ratio of about 2 to 1 (starting to upset thickness) display radial grain flow. Highly stressed tools, such as gear-shaper cutters, may require the cross forging of blanks.	
	Heat Treatment Faults		
Improper preparation for heat treatment. Certain tools may require stress relieving or annealing, and often preheating, too	Tools highly stressed during machining or forming, unless stress relieved, may aggravate the thermal stresses of heat treatment, thus causing cracks. Excessive temperature gradients developed in nonpreheated tools with different section thicknesses can cause warpage.	Stress relieve, when needed, before hardening. Anneal prior to heavy machining or cold forming (e.g., hobbing). Preheat tools (a) having substantial section thickness variations or (b) requiring high quenching temperatures, as those made of high-speed tool steels.	
Overheating during hardening: quenching from too high a temperature	Causes grain coarsening and a sensitivity to cracking that is more pronounced in tools with drastic section changes.	Overheated tools have a characteristic microstructure that aids recognition of the cause of failure and indicates the need for improved temperature control.	
Low hardening temperature	The tool may not harden at all, or in its outer portion only, thereby setting up stresses that can lead to cracks.	Controlling both the temperature of the furnace and the time of holding the tool at quenching temperature will prevent this infrequent deficiency.	
Inadequate composition or condition of the quenching media	Water-hardening tool steels are particularly sensitive to inadequate quenching media, which can cause soft spots or even violent cracking.	For water-hardening tool steels, use water free of dissolved air and contaminants, also assure sufficient quantity and proper agitation of the quench.	
Improper handling during and after quenching	Cracking, particularly of tools with sharp corners, during the heat treatment can result from holding the part too long in the quench or incorrectly applied tempering.	Following the steel producer's specifications is a safe way to assure proper heat treatment handling. In general, the tool should be left in the quench until it reaches a temperature of 150 to 200°F, and should then be transferred promptly into a warm tempering furnace.	
Insufficient tempering	Omission of double tempering for steel types that require it may cause early failure by heat checking in hot-work steels or make the tool abnormally sensitive to grinding checks.	Double temper highly alloyed tool steel of the high-speed, hotwork, and high-chromium categories, to remove stresses caused by martensite formed during the first tempering phase. Second temper also increases hardness of most high-speed steels.	

Table 1c. (Continued) Common Tool Faults, Failures, and Cures

	nueu) Common Tool Faults, P	·
Fault Description	Probable Failure	Possible Cure
Decarburization and carburization	Unless hardened in a neutral atmosphere the original carbon content of the tool surface may	Heating in neutral atmosphere or well-maintained salt bath and controlling the furnace
	be changed: Reduced carbon (decarburization) causes a soft layer that wears rapidly. Increased carbon (carburiza- tion) when excessive may cause brittleness.	temperature and the time during which the tool is subjected to heating can usually keep the carbon imbalance within acceptable limits.
	Grinding Damages	
Excessive stock removal rate causing heating of the part surface beyond the applied tempering temperature	Scorched tool surface displaying temper colors varying from yellow to purple, depending on the degree of heat, causes softening of the ground surface. When coolant is used, a local rehardening can take place, often resulting in cracks.	Prevention: by reducing speed and feed, or using coarser, softer, more open structured grinding wheel, with ample coolant. Correction: eliminate the discolored layer by subsequent light stock removal. Not always a cure, because the effects of abusive grinding may not be corrected.
Improper grinding wheel specifications; grain too fine or bond too hard	Intense localized heating during grinding may set up surface stresses causing grinding cracks. These cracks are either parallel but at right angles to the direction of grinding or, when more advanced, form a network. May need cold etch or magnetic particle testing to become recognizable.	Prevention: by correcting the grinding wheel specifications. Correction: in shallow (0.002-to 0.004-inch) cracks, by removing the damaged layer, when permitted by the design of the tool, using very light grinding passes.
Incorrectly dressed or loaded grinding wheel	Heating of the work surface can cause scorching or cracking. Incorrect dressing can also cause a poor finish of the ground work surface.	Dress wheel with sharper diamond and faster diamond advance to produce coarser wheel surface. Alternate dressing methods, like crush-dressing, can improve wheel surface conditions. Dress wheel regularly to avoid loading or glazing of the wheel surface.
Inadequate coolant, with regard to composition, amount, distribution, and cleanliness	Introducing into the tool surface heat that is not adequately dissipated or absorbed by the coolant can cause softening, or even the development of cracks.	Improve coolant supply and quality, or reduce stock removal rate to reduce generation of heat in grinding.
Damage caused by abusive abrasive cutoff	The intensive heat developed during this process can cause a hardening of the steel surface, or may even result in cracks.	Reduce rate of advance; adopt wheel specifications better suited for the job. Use ample coolant or, when harmful effect not eliminated, replace abrasive cutoff by some cooler-acting stock separation method (e.g., sawing or lathe cutoff) unless damaged surface is being removed by subsequent machining.

Note: Illustrated examples of tool failures from causes such as those listed above may be found in "The Tool Steel Trouble Shooter" handbook, published by Bethlehem Steel Corporation.

NUMERICAL CONTROL

COMPUTER NUMERICAL CONTROL

Format Classification.—The format classification sheet completely describes the format requirements of a control system and gives other important information required to program a particular control including: the type of machine, the format classification shorthand and format detail, a listing of specific letter address codes recognized by the system (for example, G-codes: G01, G02, G17, etc.) and the range of values the available codes may take (S range: 10 to 1800 rpm, for example), an explanation of any codes not specifically assigned by the Standard ANSI/EIA RS-274-D-1980, and any other unique features of the system.

The format classification shorthand is a nine- or ten-digit code that gives the type of system, the number of motion and other words available, the type and format of dimensional data required by the system, the number of motion control channels, and the number of numerically controlled axes of the system.

The format detail very succinctly summarizes details of the machine and control system. This NC shorthand gives the letter address words and word lengths that can be used to make up a block. The format detail defines the basic features of the control system and the type of machine tool to which it refers. For example, the format detail

N4G2X+24Y+24Z+24B24I24J24F31T4M2

specifies that the NC machine is a machining center (has X-, Y-, and Z-axes) and a tool changer with a four-digit tool selection code (T4); the three linear axes are programmed with two digits before the decimal point and four after the decimal point (X + 24Y + 24Z + 24) and can be positive or negative; probably has a horizontal spindle and rotary table (B24 = rotary motion about the Y-axis); has circular interpolation (I24J24); has a feed rate range in which there are three digits before and one after the decimal point (F31); and can handle a four-digit sequence number (N4), two-digit G-words (G2), and two-digit miscellaneous words (M2). The sequence of letter addresses in the format detail is also the sequence in which words with those addresses should appear when used in a block.

The information given in the format shorthand and format detail is especially useful when programs written for one machine are to be used on different machines. Programs that use the variable block data format described in RS-274-D can be used interchangeably on systems that have the same format classification, but for complete program compatibility between machines, other features of the machine and control system must also be compatible, such as the relationships of the axes and the availability of features and control functions.

Control systems differ in the way that the numbers may be written. Most newer CNC machines accept numbers written in a decimal-point format; however, some systems require numbers to be in a fixed-length format that does not use an explicit decimal point. In the latter case, the control system evaluates a number based on the number of digits it has, including zeros.

Zero suppression in a control system is an arrangement that allows zeros before the first significant figure to be dropped (leading zero suppression) or allows zeros after the last significant figure to be dropped (trailing zero suppression). An X-axis movement of 05.3400, for example, could be expressed as 053400 if represented in the full field format, 53400 (leading zero suppression), or 0534 (trailing zero suppression). With decimal-point programming, the above number is expressed simply as 5.34. To ensure program compatibility between machines, all leading and trailing zeros should be included in numbers unless decimal-point programming is used.

NUMERICAL CONTROL

Table 1. G-Code Addresses

	Tuble 110 CC	de l'Idiai ebbe.	
Code	Description	Code	Description
G00abc	Rapid traverse, point to point (M,L)	G34 ^{abc}	Thread cutting, increasing lead (L)
G01 ^{abc}	Linear interpolation (M,L)	G35abc	Thread cutting, decreasing lead (L)
G02abc	Circular interpolation—clockwise	G36-G39ab	Permanently unassigned
G03 ^{abc}	movement (M,L) Circular interpolation—counterclockwise movement (M,L)	G36°	Used for automatic acceleration and deceleration when the blocks are short (M,L)
G04 ^{ab}	Dwell—a programmed time delay (M,L)	G37, G37.1, G37.2,	Used for tool gaging (M,L)
G05ab	Unassigned	G37.3G37.4	
G06 ^{abc}	Parabolic interpolation (M,L)	G38	Used for probing to measure the diameter and center of a hole (M)
G07°	Used for programming with cylindrical diameter values (L)	G38.1	Used with a probe to measure the parallelness of a part with respect to an
G08ab	Programmed acceleration (M,L). Also for lathe programming with cylindrical diameter values	G39, G39.1	axis (M) Generates a nonprogrammed block to improve cycle time and corner cutting
G09ab	Programmed deceleration (M,L). dUsed to stop the axis movement at a precise location (M,L)	gan	quality when used with cutter compensation (M)
		G39	Tool tip radius compensation with linear generated block (L)
G10-G12ab	Unassigned. dSometimes used for machine lock and unlock devices	G39.1	Tool tip radius compensation used with circular generated block (L)
G13-G16ac	Axis selection (M,L)	G40 ^{abc}	Cancel cutter compensation/offset (M)
G13-G16 ^b	Unassigned	G41 ^{abc}	Cutter compensation, left (M)
G13	Used for computing lines and circle intersections (M,L)	G42abc	Cutter compensation, right (M)
G14,G14.1°	Used for scaling (M,L)	G43abc	Cutter offset, inside corner (M,L)
G15-G16°	Polar coordinate programming (M)	G44abc	Cutter offset, outside corner (M,L)
G15, G16.1°	Cylindrical interpolation—C axis (L)	G45-G49ab	Unassigned
G16.2c	End face milling—C axis (L)	G50-G59 ^a	Reserved for adaptive control (M,L)
G17–G19 ^{abc}	X-Y, X-Z, Y-Z plane selection, respectively (M,L)	G50 ^{bb}	Unassigned
G20	Unassigned	G50.1°	Cancel mirror image (M,L)
G22-G32ab	Unassigned	G51.1°	Program mirror image (M,L)
G22-G23°	Defines safety zones in which the machine axis may not enter (M,L)	G52 ^b	Unassigned
G22.1, G233.1°	Defines safety zones in which the cutting tool may not exit (M,L)	G52	Used to offset the axes with respect to the coordinate zero point (see G92) (M,L)
G24°	Single-pass rough-facing cycle (L)	G53bc	Datum shift cancel
G27-G29	Used for automatically moving to and returning from home position (M,L)	G53c	Call for motion in the machine coordinate system (M,L)
		G54–G59bc	Datum shifts (M,L)
G30	Return to an alternate home position (M,L)	G54–G59.3°	Allows for presetting of work coordinate systems (M,L)
G31, G31.1, G31.2, G31.3, G31.4	External skip function, moves an axis on a linear path until an external signal aborts the move (M,L)	G61°	Modal equivalent of G09 except that rapid moves are not taken to a complete stop before the next motion block is executed (M,L)
G33abc	Thread cutting, constant lead (L)	G60-G62abc	Unassigned

NUMERICAL CONTROL

Table 1. (Continued) G-Code Addresses

	Table 1. (Commueu)	0 00001200	ar copen
Code	Description	Code	Description
G62°	Automatic corner override, reduces the feed rate on an inside corner cut (M,L)	G80 ^{abc}	Cancel fixed cycles
G63ª	Unassigned	G81 ^{abc}	Drill cycle, no dwell and rapid out (M,L)
G63bc	Tapping mode (M,L)	G82abc	Drill cycle, dwell and rapid out (M,L)
G64–G69abc	Unassigned	G83abc	Deep hole peck drilling cycle (M,L)
G64°	Cutting mode, usually set by the system installer (M,L)	G84 ^{abc}	Right-hand tapping cycle (M,L)
G65°	Calls for a parametric macro (M,L)	G84.1°	Left-hand tapping cycle (M,L)
G66°	Calls for a parametric macro. Applies to motion blocks only (M,L)	G85 ^{abc}	Boring cycle, no dwell, feed out (M,L)
G66.1°	Same as G66 but applies to all blocks (M,L)	G86 ^{abc}	Boring cycle, spindle stop, rapid out (M,L)
G67°	Stop the modal parametric macro (see G65, G66, G66.1) (M,L)	G87 ^{abc}	Boring cycle, manual retraction (M,L)
G68°	Rotates the coordinate system (i.e., the axes) (M)	G88 ^{abc}	Boring cycle, spindle stop, manual retraction (M,L)
G69°	Cancel axes rotation (M)	G88.1	Pocket milling (rectangular and circular), roughing cycle (M)
G70 ^{abe}	Inch programming (M,L)	G88.2	Pocket milling (rectangular and circular), finish cycle (M)
G71 ^{abc}	Metric programming (M,L)	G88.3	Post milling, roughs out material around a specified area (M)
G72ac	Circular interpolation CW (three-dimensional) (M)	G88.4	Post milling, finish cuts material around a post (M)
G72 ^b	Unassigned	G88.5	Hemisphere milling, roughing cycle (M)
G72°	Used to perform the finish cut on a turned part along the Z-axis after the roughing cuts initiated under G73, G74,	G88.6	Hemisphere milling, finishing cycle (M)
	or G75 codes (L)	G89 ^{abc}	Boring cycle, dwell and feed out (M,L)
G73 ^b	Unassigned	G89.1	Irregular pocket milling, roughing cycle (M)
G73°	Deep hole peck drilling cycle (M); OD and ID roughing cycle, running parallel	G89.2	Irregular pocket milling, finishing cycle (M)
	to the Z-axis (L)	G90abe	Absolute dimension input (M,L)
G74ac	Cancel multiquadrant circular interpolation (M,L)	G91 ^{abc}	Incremental dimension input (M,L)
G74 ^{bc}	Move to home position (M,L)	G92 ^{abc}	Preload registers, used to shift the coordinate axes relative to the current tool position (M,L)
G74°	Left-hand tapping cycle (M)	G93abc	Inverse time feed rate (velocity/ distance) (M,L)
G74	Rough facing cycle (L)	G94°	Feed rate in inches or millimeters per minute (ipm or mpm) (M,L)
G75 ^{ac}	Multiquadrant circular interpolation (M,L)	G95abc	Feed rate given directly in inches or millimeters per revolution (ipr or mpr) (M,L)
G75 ^b	Unassigned	G96 ^{abc}	Maintains a constant surface speed, feet (meters) per minute (L)
G75	Roughing routine for castings or forgings (L)	G97 ^{abc}	Spindle speed programmed in rpm (M,L)
G76-G79ab	Unassigned	G98–99ab	Unassigned

^a Adheres to ANSI/EIA RS-274-D.

NUMERICAL CONTROL

 $^{\rm b}$ Adheres to ISO 6983/1,2,3 Standards; where both symbols appear together, the ANSI/EIA and ISO standard codes are comparable;

^c This code is modal. All codes that are not identified as modal are non-modal, when used according to the corresponding definition.

^d Indicates a use of the code that does not conform with the Standard.

Symbols following a description: (M) indicates that the code applies to a mill or machining center; (L) indicates that the code applies to turning machines; (M,L) indicates that the code applies to both milling and turning machines.

Codes that appear more than once in the table are codes that are in common use, but are not defined by the Standard or are used in a manner that is different than that designated by the Standard (e.g., see G61).

Table 2. Letter Addresses Used in Numerical Control

Letter		
Address	Description	Refers to
A	Angular dimension about the X-axis, measured in decimal parts of a degree	Axis nomenclature
В	Angular dimension about the <i>Y</i> -axis, measured in decimal parts of a degree	Axis nomenclature
С	Angular dimension about the Z-axis, measured in decimal parts of a degree	Axis nomenclature
D	Angular dimension about a special axis, or third feed function, or tool function for selection of tool compensation	Axis nomenclature
Е	Angular dimension about a special axis or second feed function	Axis nomenclature
F	Feed word (code)	Feed words
G	Preparatory word (code)	Preparatory words
Н	Unassigned	
I	Interpolation parameter or thread lead parallel to the X-axis	Circular interpolation and threading
J	Interpolation parameter or thread lead parallel to the Y-axis	Circular interpolation and threading
K	Interpolation parameter or thread lead parallel to the Z-axis	Circular interpolation and threading
L	Unassigned	g
M	Miscellaneous or auxilliary function	Miscellaneous functions
N	Sequence number	Sequence number
О	Sequence number for secondary head only	Sequence number
P	Third rapid-traverse dimension or tertiary-motion dimension parallel to \boldsymbol{X}	Axis nomenclature
Q	Second rapid-traverse dimension or tertiary-motion dimension parallel to Y	Axis nomenclature
R	First rapid-traverse dimension or tertiary-motion dimension parallel to Z or radius for constant surface-speed calculation	Axis nomenclature
S	Spindle-speed function	Spindle speed
Т	Tool function	Tool function
U	Secondary-motion dimension parallel to X	Axis nomenclature
V	Secondary-motion dimension parallel to Y	Axis nomenclature
W	Secondary-motion dimension parallel to Z	Axis nomenclature
X	Primary X-motion dimension	Axis nomenclature
Y	Primary Y-motion dimension	Axis nomenclature
Z	Primary Z-motion dimension	Axis nomenclature

NUMERICAL CONTROL

Miscellaneous Functions (M–Words).—Miscellaneous functions, or M-codes, also reffered to as auxiliary functions, constitute on/off-type commands. M functions are used to control actions such as starting and stopping of motors, turning coolant on and off, changing tools, and clamping and unclamping parts. M functions are made up of the letter M followed by a two-digit code.

Table 3. Miscellaneous Function Words from ANSI/EIA Standard RS-274-D

Code	Description
M00	Automatically <i>stops</i> the machine. The operator must push a button to continue with the remainder of the program.
M01	An optional stop acted upon only when the operator has previously signaled for this command by pushing a button. The machine will automatically stop when the control system senses the M01 code.
M02	This <i>end-of-program</i> code stops the machine when all commands in the block are completed. May include rewinding of tape.
M03	Start spindle rotation in a clockwise direction—looking out from the spindle face.
M04	Start spindle rotation in a counterclockwise direction—looking out from the spindle face.
M05	Stop the spindle in a normal and efficient manner.
M06	Command to <i>change a tool</i> (or tools) manually or automatically. Does not cover tool selection, as is possible with the T-words.
M07 to M08	M07 (coolant 2) and M08 (coolant 1) are codes to turn on coolant. M07 may control flood coolant and M08 mist coolant.
M09	Shuts off the coolant.
M10 to M11	M10 applies to automatic <i>clamping</i> of the machine slides, workpiece, fixture spindle, etc. M11 is an unclamping code.
M12	An inhibiting code used to synchronize multiple sets of axes, such as a four-axis lathe having two independently operated heads (turrets).
M13	Starts CW spindle motion and coolant on in the same command.
M14	Starts CCW spindle motion and coolant on in the same command.
M15 to M16	Rapid traverse of feed motion in either the +(M15) or -(M16) direction.
M17 to M18	Unassigned.
M19	Oriented spindle stop. Causes the spindle to stop at a predetermined angular position.
M20 to M29	Permanently unassigned.
M30	An <i>end-of-tape</i> code similar to M02, but M30 will also rewind the tape; also may switch automatically to a second tape reader.
M31	A command known as <i>interlock bypass</i> for temporarily circumventing a normally provided interlock.
M32 to M35	Unassigned.
M36 to M39	Permanently unassigned.
M40 to M46	Used to signal gear changes if required at the machine; otherwise, unassigned.
M47	Continues program execution from the start of the program unless inhibited by an interlock signal.
M48 to M49	M49 deactivates a manual spindle or feed override and returns the parameter to the programmed value; M48 cancels M49.
M50 to M57	Unassigned.
M58 to M59	Holds the rpm constant at the value in use when M59 is initiated; M58 cancels M59.
M60 to M89	Unassigned.
M90 to M99	Reserved for use by the machine user.

Safety in Operating Grinding Wheels.—Grinding wheels are prone to damage caused by improper handling and operation. Vitrified wheels, comprising the major part of grinding wheels used in industry, are held together by an inorganic bond which is actually a type of pottery product and therefore brittle and breakable.

It must also be understood that during the grinding process very substantial forces act on the grinding wheel, including the centrifugal force due to rotation, the grinding forces resulting from the resistance of the work material, and shocks caused by sudden contact with the work. To be able to resist these forces, the grinding wheel must have a substantial minimum strength throughout that is well beyond that needed to hold the wheel together under static conditions.

A damaged grinding wheel can disintegrate during grinding, which normally is constrained, thus presenting great hazards to both operator and equipment. Safeguards have been formulated into rules and regulations and are set forth in the ANSI B7.1-2017, entitled the "American National Standard Safety Requirements for the Use, Care, and Protection of Abrasive Wheels." All operators should be familiar with the rules.

Handling, Storage, and Inspection. — Grinding wheels should be hand carried, or transported, with proper support. A grinding wheel must not be rolled around on its periphery. The storage area, positioned near the grinding machines, should be free from excessive temperature variations and humidity. Specially built racks are recommended on which the smaller or thin wheels are stacked lying on their sides and the larger wheels in an upright position on two-point cradle supports consisting of appropriately spaced wooden bars. Partitions should separate either the individual wheels or a small group of identical wheels. Good accessibility to the stored wheels reduces the need for undesirable handling.

Inspection will primarily be directed at detecting visible damage, mostly originating from handling and shipping. Cracks that are not obvious can usually be detected by "ring testing," which consists of suspending the wheel from its hole and tapping it with a non-metallic implement. Heavy wheels may be allowed to rest vertically on a clean, hard floor while this test is performed. A clear metallic tone, a "ring," should be heard, a dead sound being indicative of a possible crack or cracks in the wheel.

Machine Conditions.—The general design of grinding machines must ensure safe operation under normal conditions. The bearings and grinding wheel spindle must be dimensioned to withstand the expected forces and ample driving power should be provided to ensure maintenance of the rated spindle speed. For the protection of the operator, stationary machines used for dry grinding should have provision made for connection to an exhaust system and, when used for offhand grinding, a work support must be available.

Wheel guards are particularly important protection elements, and their material specifications, wall thicknesses, and construction principles should agree with the Standard's specifications. The exposure of the wheel should be just enough to avoid interference with the grinding operation. The need for access of the work to the grinding wheel will define the boundary of guard opening, particularly in the direction of the operator.

Grinding Wheel Mounting.—The mass and speed of the operating grinding wheel makes it particularly sensitive to imbalance. Vibrations that result from such conditions are harmful to the machine, particularly the spindle bearings, and they also affect the ground surface, i.e., wheel imbalance causes chatter marks and interferes with size control. Grinding wheels are shipped from the manufacturer's plant in a balanced condition, but retaining the balanced state after mounting the wheel is quite uncertain. Balancing of the mounted wheel is thus required, and is particularly important for medium and large size wheels, as well as for producing accurate and smooth surfaces. The most common way of balancing mounted wheels is by using balancing flanges with adjustable weights.

The wheel and balancing flanges are mounted on a short balancing arbor, the two concentric and round stub ends of which are supported in a balancing stand.

Such stands are of two types: 1) the parallel straight-edged, which must be set up precisely level; and 2) the disk type having two pairs of ball bearing mounted overlapping disks, which form a V for containing the arbor ends without hindering the free rotation of the wheel mounted on that arbor.

The wheel will then rotate only when it is out of balance and its heavy spot is not in the lowest position. Rotating the wheel by hand to different positions will move the heavy spot, should such exist, from the bottom to a higher location where it can reveal its presence by causing the wheel to turn. Having detected the presence and location of the heavy spot, its effect can be cancelled by displacing the weights in the circular groove of the flange until a balanced condition is accomplished.

Flanges are commonly used means for holding grinding wheels on the machine spindle. For that purpose, the wheel can either be mounted directly through its hole or by means of a sleeve that slips over a tapered section of the machine spindle. Either way, the flanges must be of equal diameter, usually not less than one-third of the new wheel's diameter. The purpose is to securely hold the wheel between the flanges without interfering with the grinding operation even when the wheel becomes worn down to the point where it is ready to be discarded. Blotters or flange facings of compressible material should cover the entire contact area of the flanges.

One of the flanges is usually fixed while the other is loose and can be removed and adjusted along the machine spindle. The movable flange is held against the mounted grinding wheel by means of a nutengaging a threaded section of the machine spindle. The sense of that thread should be such that the nut will tend to tighten as the spindle revolves. In other words, to remove the nut, it must be turned in the direction that the spindle revolves when the wheel is in operation.

Safe Operating Speeds.—Safe grinding processes are predicated on the proper use of the previously discussed equipment and procedures, and are greatly dependent on the application of adequate operating speeds. The Standard establishes maximum speeds at which grinding wheels can be operated, assigning the various types of wheels to several classification groups. Different values are listed according to bond type and to wheel strength, distinguishing between low-, medium- and high-strength wheels.

For the purpose of general information, the accompanying table shows an abbreviated version of the Standard's specification. The maximum operating speeds indicated on the wheel's tag must never be exceeded. All grinding wheels of 6 inches or greater diameter must be test run in the wheel manufacturer's plant at a speed that for all wheels having operating speeds in excess of 5000 sfpm is 1.5 times the maximum speed marked on the tag of the wheel.

The table shows the permissible wheel speeds in surface feet per minute (sfpm) units, whereas the tags on the grinding wheels state, for the convenience of the user, the maximum operating speed in revolutions per minute (rpm). The sfpm unit has the advantage of remaining valid for worn wheels whose rotational speed may be increased to the applicable sfpm value. The conversion from either one to the other of these two kinds of units is a matter of simple calculation using the formulas:

$$sfpm = rpm \times \frac{D}{12} \times \pi$$
 or $rpm = \frac{sfpm \times 12}{D \times \pi}$

Where $D = \max$ maximum diameter of the grinding wheel, in inches. Table 1, showing the conversion values from surface speed into rotational speed, can be used for the direct reading of the rpm values corresponding to several different wheel diameters and surface speeds.

Table 1. Revolutions per Minute for Various Grinding Speeds and Wheel Diameters (Based on ANSI B7.1-2017)

5500 6000 6 1008 12918 2 10094 14459 1 7003 7639 8 4202 5720 5730 4202 5824 58 2801 3820 28 2802 2846 2 2803 2846 2 2901 2864 2 1751 1901 230 1801 1637 143 1167 143 1442 1167 146 88 88 881 881 750 819 66 618 674 88 618 674 88 808 881 88 808 881 88 808 881 88 808 881 88 808 881 88 808 881 88 809 83 84		Peripheral (Surface) Speed, Feet per Minute	race) speed, ree	t per Minute								Wheel
15279 1789 17809 21008 22018 23 5693 8730 666 7003 7630 8 3056 4297 4775 5252 5730 6 2546 2865 318 3801 3802 4 1910 2875 3801 3801 3874 4 1910 2875 3801 3802 4 4 1108 2456 2728 3001 3746 2 1173 1149 2187 2646 2 4 1173 1128 136 1491 1313 1432 1 1173 1128 136 1701 1313 1432 1 1173 1128 136 1313 1432 1 1 849 859 955 1060 1146 1 1 1 1 1 1 1 1 1 1 1 1 1 </th <th>0009</th> <th>7500</th> <th>8000 8500</th> <th>0006</th> <th>9500</th> <th>10000</th> <th>12000</th> <th>14200</th> <th>16000</th> <th>16500</th> <th>17000</th> <th>Diame-</th>	0009	7500	8000 8500	0006	9500	10000	12000	14200	16000	16500	17000	Diame-
15279 17189 19999 21008 22918 234 5039 8824 4949 10394 14394 15384 5036 3482 4375 5352 5730 636 3056 3483 3820 3820 4324 218 2466 2772 3801 3820 434 1910 2149 2187 2626 2246 1528 1779 1910 2191 2292 224 1528 1779 1910 2191 2292 224 1528 1779 1910 2101 2292 224 1528 1779 1910 2101 2292 224 1528 1779 1910 2101 2292 224 1528 1779 1910 2101 2294 244 1528 1779 1910 2101 2294 244 1528 1749 1194 1313 1432 1146 1528 1749 1940 175 1940 244 1528 1749 1868 955 1042 1146 1528 1749 1868 955 1042 144 1528 1749 806 805 801 1528 1740 477 821 821 1529 1740 447 821 821 1529 1740 447 447 447 447 1520 1740 447 447 447 447 1520 1740 447 447 447 1520 1740 447 447 447 1520 1740 447 447 447 1520 1740 447 447 448 1520 1740 447 447 448 1520 1740 447 447 448 1520 1740 447 448 1520 1740 447 448 1520 1740 447 448 1520 1740 447 1520 1740 447 1520 1740 447 1520 1740 1520 1740 447 1520 1740 1520 1740 447 1520 1740 15		Revo	Revolutions per Minute	2								ter, Inch
763 8894 9540 10304 11459 1 5093 5730 6766 703 7639 8 3820 4273 4775 525 7730 6 3056 3483 3820 4202 484 4 2186 2266 2783 3801 3820 4 218 2466 778 3031 3820 4 1190 2119 2122 234 246 2 1158 1910 2122 284 2 2 1158 1432 1910 2102 2292 2 1158 1432 1344 134 134 144 1 1091 1228 1364 144 1 1 1 1 1 1194 134 134 134 144 1 1 1 1 1 1 1 1 1 1 1 1 <td< th=""><th>22918</th><th>28648</th><th>30558 32468</th><th>34377</th><th>36287</th><th>38197</th><th>45837</th><th>54240</th><th>61115</th><th>63025</th><th>64935</th><th>_</th></td<>	22918	28648	30558 32468	34377	36287	38197	45837	54240	61115	63025	64935	_
8093 5770 6866 7003 7639 88 3800 4237 4775 5789 68 3056 2286 388 380 4202 4789 6 2546 2865 3183 3301 3820 4 4 1910 2149 2728 2734 286 2 4 4 11528 1910 2122 234 2546 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 3 4 2 4 3 4	11459	14324	5279 16234	17189	18144	19099	22918	27120	30558	31513	32468	2
38.20 4.297 4175 535.2 573.0 30.56 34.84 44.75 535.2 573.0 6 2.46 3.86 3.83 3.901 387.4 4 4 2.18 2.46 2.72 3.801 387.4 4	7639	9549	0186 10823	11459	12096	12732	15279	18080	20372	21008	21645	3
25.6 34.8 38.20 45.8 25.6 28.6 31.83 30.0 45.8 21.8 24.6 77.8 30.0 37.4 24.8 21.8 21.4 23.8 30.0 37.4 24.8 37.4 24.8 37.4 24.8 27.8 30.0 37.4 27.4 27.8 20.2 28.6 37.4 27.4 27.8 </td <td>5730</td> <td>35 7162</td> <td>7639 8117</td> <td>8594</td> <td>9072</td> <td>9549</td> <td>11459</td> <td>13560</td> <td>15279</td> <td>15756</td> <td>16234</td> <td>4</td>	5730	35 7162	7639 8117	8594	9072	9549	11459	13560	15279	15756	16234	4
25.46 28.65 318.3 330.1 382.0 47.1 47.1 47.1 47.1 47.1 47.1 47.1 47.2	4584	8 2730	6112 6494	6875	7257	7639	9167	10848	12223	12605	12987	S
218 245 7728 3001 3374 3374 1910 2149 2387 265 254 256 154 154 154 154 254 154 143 144 14	3820	66 4775	5093 5411	5730	8409	9989	7639	9040	10186	10504	10823	9
1910 2149 2387 2565 2865 346 1568 1910 2122 2234 2246 2	3274	10 4093	4365 4638	4911	5184	5457	6548	7749	8731	9004	9276	7
1688 1910 2122 2334 2346 246	2865	12 3581	3820 4058	4297	4536	4775	5730	08/9	7639	7878	8117	∞
1538 1719 1910 2010 2020 2021 2022	2546	71 3183	3395 3608	3820	4032	4244	5093	6027	6791	7003	7215	6
1273 1422 1592 1751 1910 2 955 1024 1313 1432 1761 1597 1761 1597 1761 1762	2292	74 2865	3056 3247	3438	3629	3820	4584	5424	6112	6303	6494	10
109	1910	2387	2546 2706	2865	3024	3183	3820	4520	5093	5252	5411	12
955 1074 1194 1313 1432 1764 859 955 1061 1167 1273 176 859 955 1060 1146 176 176 176 176 176 176 176 176 176 17	1637	.0 2046	2183 2319	2456	2592	2728	3274	3874	4365	4502	4638	14
849 955 1061 1167 1273 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1432	1790	1910 2029	2149	2268	2387	2865	3390	3820	3939	4058	16
764 889 955 1050 1146 1 694 776 868 1050 1146 1 677 716 868 875 955 1 588 661 735 889 881 569 773 687 958 1 449 873 637 700 764 449 876 852 618 674 449 876 852 618 674 449 876 847 873 863 440 477 831 834 874 382 430 447 875 873 384 437 874 477 821 382 374 415 477 821 388 388 398 434 477 286 318 350 382 382	1273 1379	485 1592	1698 1804	1910	2016	2122	2546	3013	3395	3501	3008	18
694 781 868 955 1042 1 688 661 736 875 995 1 588 661 736 881 881 546 614 682 736 819 477 537 897 677 716 449 806 852 618 674 402 407 531 834 607 402 407 531 834 603 382 430 447 825 873 344 477 825 874 447 347 408 448 447 447 348 349 441 447 448 348 374 415 467 498 388 334 348 447 498 286 318 350 348 437 287 368 348 432 432	1146 1241 1	337 1432	1528 1623	1719	1814	1910	2292	2712	3056	3151	3247	20
637 716 796 875 955 588 614 872 598 881 546 614 882 789 881 509 573 637 700 764 477 537 637 706 764 424 477 531 584 637 402 452 503 535 603 382 490 477 521 646 347 391 447 477 521 372 374 415 477 521 382 374 415 477 521 382 374 415 477 521 288 388 398 497 498 286 318 350 382 382	1042 1129 1	215 1302	1389 1476	1563	1649	1736	2083	2465	2778	2865	2952	22
588 661 735 808 881 546 614 682 730 881 509 573 637 700 764 449 876 873 677 706 449 876 873 674 716 402 477 831 844 677 382 430 477 823 603 344 477 821 846 347 404 447 821 348 374 415 447 498 382 374 415 447 498 288 388 398 380 382 286 318 350 382 382	955 1035	1114 1194	1273 1353	1432	1512	1592	1910	2260	2546	2625	2706	24
546 614 682 750 819 509 577 687 706 819 477 577 667 716 424 578 582 618 674 402 472 531 583 603 402 477 523 573 603 342 404 477 524 496 343 301 444 477 521 348 374 415 467 498 288 398 398 434 477 286 318 350 382 382	881 955	1028 1102	1175 1249	1322	1396	1469	1763	2086	2351	2424	2498	56
509 573 637 700 764 477 587 677 716 449 586 587 716 424 477 531 584 657 402 472 531 584 657 382 403 477 521 584 384 409 477 521 546 377 391 434 477 521 382 374 415 477 498 288 338 438 438 286 318 350 396 396 285 318 350 382	819 887	955 1023	_	1228	1296	1364	1637	1937	2183	2251	2319	28
477 537 597 657 716 424 976 582 674 674 424 477 531 584 674 402 452 503 553 603 382 430 447 525 573 347 391 445 477 521 382 374 415 457 498 288 338 398 434 477 286 318 350 382 382	764 828		1019 1082	1146	1210	1273	1528	1808	2037	2101	2165	30
449 306 562 618 674 420 477 531 584 603 402 422 803 583 603 382 430 477 525 573 347 391 434 477 521 332 374 415 447 498 331 374 415 447 498 382 374 415 447 498 288 324 306 396 442 255 286 318 382 382	716 776	_	_	1074	1134	1194	1432	1695	1910	1970	2029	32
424 477 531 584 637 402 462 593 583 603 382 460 455 800 546 347 391 434 477 521 332 374 415 457 498 318 374 415 457 498 288 324 306 396 447 288 324 306 396 432 255 286 318 350 382	674 730	_		1011	1067	1123	1348	1595	1798	1854	1910	34
402 472 503 553 603 382 430 477 521 573 364 409 477 501 546 37 391 434 477 521 312 374 415 457 498 318 332 344 415 447 498 288 338 398 398 347 432 255 286 318 350 382	. 630 (83		849 902	955	1008	1061	1273	1507	1698	1751	1804	36
382 430 477 525 573 347 391 434 477 521 332 374 415 457 498 318 338 447 228 324 360 396 443 225 286 318 350 382	603 653	704 754		905	955	1005	1206	1427	1608	1659	1709	38
364 409 455 800 546 347 391 434 477 521 318 358 398 438 477 288 324 360 396 432 255 286 318 350 382	573 621	912 899	764 812	829	200	955	1146	1356	1528	1576	1623	40
347 391 434 477 521 332 378 415 477 521 288 324 369 437 255 286 318 350 382	546 591	637 682		819	864	606	1001	1291	1455	1500	1546	42
332 374 415 457 498 318 358 398 438 477 228 324 360 396 432 255 286 318 350 382	521 564	608 651	694 738	781	825	898	1042	1233	1389	1432	1476	4
318 358 398 438 477 288 324 360 396 432 255 286 318 350 382	498 540	581 623	_	747	789	830	966	1179	1329	1370	1412	46
255 286 318 350 382 4 255 286 318 350 382 4	477 517	_		716	756	962	955	1130	1273	1313	1353	48
255 286 318 350 382	432 468		577 613	649	685	721	865	1023	1153	1189	1225	53
	382 414	446 477		573	909	637	764	904	1019	1050	1082	09
212 239 265 292 318	345		424 451	477	504	531	637	753	849	875	902	72

Portable Grinders.—The above discussed rules and regulations, devised primarily for stationary grinding machines, apply also to portable grinders. In addition, the details of various other regulations, specially applicable to different types of portable grinders, are discussed in the Standard, which should be consulted, particularly for safe applications of portable grinding machines.

Table 2. Maximum Peripheral Speeds for Grinding Wheels (*Based on ANSI 7.1-2017*)

Maximum Operating Speeds Depending on Strength of Bond						
Classification Number and Types of Wheels ^a Inorganic Bond	ls Organi	c Bonds				
crassification Number and Types of wheels-	min sfpm	m/min				
Straight wheels—Type 1, except classifi- cations 6, 9, 11, and 12, 13, and 14 below; recessed wheels—Types 5 and 7 Type 20, 21, 22, 23, 24, 25, 26	-2590 6500-9500	1980–2895				
and plugs—Types 16, 17, 18, 19	-1980 6500-9500	1980–2895				
	-1830 5000-7000	1525–2135				
11 (for fixed base machines)	-1830 6000-8500	1830-2590				
(for portable machines)	-1980 6000 - 9500	1830–2895				
solid and segmental	-1980 5500 - 8500	1675–2590				
(depending on diameter and thickness)	9500–16000	2895-4875				
Type 1 wheels for bench and pedestal grinders, Types 1,5 and 7 also in certain sizes for surface grinders Type 1 wheels for bench and pedestal grinders, 5500–7550 1675-	-2300 6500-9500	1980–2895				
Diamond and cubic boron nitride wheels to 6500 to 1	980 to 9500	to 2895				
8 Metal bond to 3	6660					
Steel centered cutting off to 16000 to 4	875 to 16000	to 4875				
diameter (including reinforced organic)	14200– 20000	4330–6100				
9 diameter (including reinforced organic)	9500–16000	2895–4875				
Cutting-off wheels—larger than 16-inch diameter (including reinforced organic)	9500–14200	2895–4330				
Non-reinforced, all diameters	9500–14200	2895-4330				
Thread and flute grinding wheels 8000–12000 2440-	-3660 10000- 12000	3050-3660				
11 Crankshaft and camshaft grinding wheels 8500–12000 2590-	-3660 6500–9500	1980-2895				
grinders	12500	3810				
Snagging wheels 16-inch or larger (including reinforced organic)—used on semi-automatic snagging grinders	16500	5030				
13 Internal wheels—Type 1 and 4, maximum diameter 6-inch 5500–8500 1675-	-2590 6500-9500	1980–2895				
14 Mounted wheels 10000 30	50 10000	3050				

^a See Tables 7a and 7b starting on page 228.

^b Non-standard shape. For snagging wheels, 16 inches and larger—Type 1, internal wheels—Types 1 and 5, and mounted wheels, see ANSI B7.1-2017. Under no conditions should a wheel be operated faster than the maximum operating speed established by the manufacturer.

Values in this table are for general information only.

Table 3. Principal Systems of Surface Grinding

Principles of Operations

Periphery of Wheel.—*Reciprocating:* Work is mounted on the horizontal machine table that is traversed in a reciprocating movement at a speed generally selected from a steplessly variable range. The transverse movement, called cross feed of the table or of the wheel slide, operates at the end of the reciprocating stroke and assures the gradual exposure of the entire work surface, which commonly exceeds the width of the wheel. The depth of the cut is controlled by the downfeed of the wheel, applied in increments at the reversal of the transverse movement.

Rotary: Work is mounted, usually on the full-diameter magnetic chuck of the circular machine table that rotates at a preset constant or automatically varying speed, the latter maintaining an approximately equal peripheral speed of the work surface area being ground. The wheelhead, installed on a cross slide, traverses over the table along a radial path, moving in alternating directions, toward and away from the center of the table. Infeed is by vertical movement of the saddle along the guideways of the vertical column, at the end of the radial wheelhead stroke. The saddle contains the guideways along which the wheelhead slide reciprocates.

Face (Side) of Wheel.—Reciprocating: Operation is similar to the reciprocating table-type peripheral surface grinder, but grinding is with the face, usually with the rim of a cup-shaped wheel, or a segmental wheel for large machines. It is capable of covering a much wider area of the work surface than the peripheral grinder, thus frequently there is no need for cross feed. It also provides efficient stock removal, but is less adaptable than the reciprocating table-type peripheral grinder.

Rotary: The grinding wheel, usually of segmental type, is set in a position to cover either an annular area near the periphery of the table or, more commonly, to reach beyond the table center. A large circular magnetic chuck generally covers the entire table surface and facilitates the mounting of workpieces, even of fixtures, when needed. The uninterrupted passage of the work in contact with the large wheel face permits a very high rate of stock removal, and the machine, with single or double wheelhead, can be adapted also to automatic operation with continuous part feed by mechanized work handling.

Traverse Along Straight or Arcuate Path: Operates with practically the entire face of the wheel, which is designated as an abrasive disc (hence "disc grinding") because of its narrow width in relation to the large diameter. Built either for one or, more frequently, for two discs operating with opposed faces for the simultaneous grinding of both sides of the workpiece. The parts pass between the operating faces of the wheel (a) pushed-in and retracted by the drawerlike movement of a feed slide; (b) in an arcuate movement carried in the nests of a rotating feed wheel; (c) nearly diagonally advancing along a rail. Very well adapted to fully mechanized work handling.

Table 3a. Grinding Wheel Recommendations for Surface Grinding Using Type 2 Cylinder Wheels, Type 6 Cup Wheels, and Wheel Segments

Material	Type 2 Cylinder Wheels	Type 6 Cup Wheels	Wheel Segments
High-tensile cast iron and nonferrous metals	37C24-HKV	37C24-HVK	37C24-HVK
Soft steel, malleable cast iron, steel castings, boiler plate	23A24-I8VBE or 23A30-G12VBEP	23A24-I8VBE	23A24-I8VSM or 23A30-H12VSM
Hardened steel — broad contact	32A46-G8VBE or 32A36-E12VBEP	32A46-G8VBE or 32A60-E12VBEP	32A36-G8VBE or 32A46-E12VBEP
Hardened steel—narrow contact or interrupt cut	32A46-H8VBE	32A60-H8VBE	32A46-G8VBE or 32A60-G12VBEP
General-purpose use	23A30-H8VBE or 23A30-E12VBEP		23A30-H8VSM or 23A30-G12VSM

The wheel markings in the tables are those used by the Norton Co., complementing the basic standard markings with Norton symbols. The complementary symbols used in these tables, that is, those preceding the letter designating A (aluminum oxide) or C (silicon carbide), indicate the special type of basic abrasive that has the friability best suited for particular work materials. Those preceding A (aluminum oxide) are

- 57—a versatile abrasive suitable for grinding steel in either a hard or soft state.
- 38—the most friable abrasive.
- 32—the abrasive suited for tool steel grinding.
- 23—an abrasive with intermediate grinding action, and
- 19—the abrasive produced for less heat-sensitive steels.

Those preceding C (silicon carbide) are

- 37—a general application abrasive, and
- 39—an abrasive for grinding hard cemented carbide.

Table 4. Basic Process Data for Peripheral Surface Grinding on Reciprocating Table Surface Grinders

			Wheel	Table		ownfeed, per pass	Crossfeed per pass,
Work		Material	Speed,	Speed,	111	. per pass	fraction of
Material	Hardness	Condition	fpm	fpm	Rough	Finish	wheel width
Plain	52 RC max.	Annealed, Cold drawn	5500- 6500	50–100	0.003	0.0005 max.	1/4
carbon steel	52 to 65 RC	Carburized and/or quenched and tempered	5500– 6500	50–100	0.003	0.0005 max.	1/10
Alloy steels	52 RC max.	Annealed or quenched and tempered	5500– 6500	50–100	0.003	0.001 max.	1/4
Alloy steels	52 to 65 RC	Carburized and/or quenched and tempered	5500– 6500	50–100	0.003	0.0005 max.	1/10
Tool steels	150 to 275 BHN	Annealed	5500- 6500	50–100	0.002	0.0005 max.	1/5
Tool steels	56 to 65 RC	Quenched and tempered	5500- 6500	50–100	0.002	0.0005 max.	1/10
Nitriding	200 to 350 BHN	Normalized, annealed	5500- 6500	50-100	0.003	0.001 max.	1/4
steels	60 to 65 RC	Nitrided	5500- 6500	50-100	0.003	0.0005 max.	1/10
	52 RC max.	Normalized, annealed	5500- 6500	50–100	0.003	0.001 max.	1/4
Cast steels	Over 52 RC	Carburized and/or quenched and tempered	5500– 6500	50–100	0.003	0.0005 max.	1/10
Gray irons	52 RC max.	As cast, annealed, and/or quenched and tempered	5000– 6500	50–100	0.003	0.001 max.	1/3
Ductile irons	52 RC max.	As cast, annealed or quenched and tempered	5500– 6500	50–100	0.003	0.001 max.	1/5
Stainless steels.	135 to 235 BHN	Annealed or cold drawn	5500- 6500	50-100	0.002	0.0005 max.	1/4
martensitic	Over 275 BHN	Quenched and tempered	5500- 6500	50-100	0.001	0.0005 max.	1/8
Aluminum alloys	30 to 150 BHN	As cast, cold drawn or treated	5500– 6500	50–100	0.003	0.001 max.	1/3

Table 5. Common Faults and Possible Causes in Surface Grinding

216

Machinery's Handbook Pocket Companion
GRINDING WHEELS

		Tabl	e 5. Coi	nmon Fa	ults and P	ossible C	auses	ın Suri	ace Grin	ding					
		V	Vork Dime	nsion	Metallurgio	al Defects		Surfac	e Quality		Who	eel Conditi	ion	Work R	etainment
Causes	Faults	Work not flat	Work not parallel	Poor size holding	Burnishing of work	Burning or checking	Feed lines	Chatter marks	Scratches on surface	Poor finish	Wheel loading	Wheel glazing	Rapid wheel wear	Not firmly seated	Work sliding on chuck
С	Heat-treat stresses	1													
Work	Work too thin	1	/												
Work Condition	Work warped	1												1	
Ħ	Abrupt section changes	1	/												
	Grit too fine				/	/					1	/			
_	Grit too coarse									1					
≨ii	Grade too hard	1			1	1		1			1	1			
Grinding Wheel	Grade too soft			1				1	/				1		
0.0	Wheel not balanced							1							
	Dense structure										1	/			
	Improper coolant										/				
	Insufficient coolant	1	/		/	1						/			
C 7	Dirty coolant								/		1				
Tooling And Coolant	Diamond loose or chipped	1	/						/						
E - 6	Diamond dull			1						1	1	/			
	No or poor magnetic force			/					/					/	/
	Chuck surface worn or burred	/	/						/					/	
Machine And Setup	Chuck not aligned	1	1												
Aachir And Setup	Vibrations in machine							1							
₽ Hie	Plane of movement out of parallel	1	/												
	Too low work speed										/				
	Too light feed											/			
	Too heavy cut	1			/					1					
0.0	Chuck retained swarf	1	1												/
Operational Conditions	Chuck loading improper	1	/												1
itio	Insufficient blocking of parts								/						
nal ms	Wheel runs off the work		1	1		1							1		
	Wheel dressing too fine	1													
	Wheel edge not chamfered						1								
	Loose dirt under guard								/						

American National Standard Grinding Wheel Markings.—ANSI Standard B74.13-2016 "Markings for Identifying Grinding Wheels and Other Bonded Abrasives," applies to grinding wheels and other bonded abrasives, segments, bricks, sticks, hones, rubs, and other shapes that are used to remove material or produce a desired surface or dimension. It does not apply to specialities such as sharpening stones and provides only a standard system of markings. Wheels having the same standard markings but made by different wheel manufacturers may not—and probably will not—produce exactly the same grinding action. This desirable result cannot be obtained because of the impossibility of closely correlating any measurable physical properties of bonded abrasive products in terms of their grinding action.

Sequence of Markings.—The accompanying illustration taken from ANSI B74.13-2016 shows the makeup of a typical wheel or bonded abrasive marking.

The meaning of each letter and number in this or other markings is indicated by the following complete list.

- 1) Abrasive Letters: The letter (A) is used for aluminum oxide, (C) for silicon carbide, and (Z) for aluminum zirconium. The manufacturer may designate some particular type in any one of these broad classes by using its own symbol as a prefix (example, 51).
- 2) *Grain Size:* The grain sizes commonly used and varying from coarse to very fine are indicated by the following numbers: 8, 10, 12, 14, 16, 20, 24, 30, 36, 46, 54, 60, 70, 80, 90, 100, 120, 150, 180, and 220. The following additional sizes are used occasionally: 240, 280, 320, 400, 500, and 600. The wheel manufacturer may add to the regular grain number an additional symbol to indicate a special grain combination.
- 3) *Grade:* Grades are indicated by letters of the alphabet from A to Z in all bonds or processes. Wheel grades from A to Z range from soft to hard.
- 4) Structure: The use of a structure symbol is optional. The structure is indicated by numbers 1 to 16 (or higher, if necessary) with progressively higher numbers indicating a progressively wider grain spacing (more open structure).
- 5) Bond or Process: Bonds are indicated by the following letters: V, vitrified; S, silicate; E, shellac or elastic; R, rubber; RF, rubber reinforced; B, resinoid (synthetic resins); BF, resinoid reinforced; O, oxychloride.
- 6) Manufacturer's Record: The sixth position may be used for manufacturer's private factory records; this is optional.

Composition of Diamond and Cubic Boron Nitride Wheels.—According to American National Standard ANSI B74.13-2016, a series of symbols is used to designate the composition of these wheels. An example is shown below.

Prefix	Abrasive	Grain Size	Grade	Concentration	Bond Type	Bond Modifi- cation	Depth of Abrasive	Manufacturer's Identification Symbol
M	D	120	R	100	В	56	1/8	*

Designation Symbols for Composition of Diamond and Cubic Boron Nitride Wheels

The meaning of each symbol is indicated by the following list:

- 1) *Prefix*: The prefix is a manufacturer's symbol indicating the exact kind of abrasive. Its use is optional.
 - 2) Abrasive Type: The letter (B) is used for cubic boron nitride and (D) for diamond.

- 3) *Grain Size:* The grain sizes commonly used and varying from coarse to very fine are indicated by the following numbers: 8, 10, 12, 14, 16, 20, 24, 30, 36, 46, 54, 60, 70, 80, 90, 100, 120, 150, 180, and 220. The following additional sizes are used occasionally: 240, 280, 320, 400, 500, and 600. The wheel manufacturer may add to the regular grain number an additional symbol to indicate a special grain combination.
- 4) *Grades*: Grades are indicated by letters of the alphabet from A to Z in all bonds or processes. Wheel grades from A to Z range from soft to hard.
- 5) Concentration: The concentration symbol is a manufacturer's designation. It may be a number or a symbol.
- 6) Bond: Bonds are indicated by the following letters: B, resinoid; V, vitrified; M, metal.
- 7) Bond Modification: Within each bond type a manufacturer may have modifications to tailor the bond to a specific application. These modifications may be identified by either letters or numbers.
- 8) Abrasive Depth: Abrasive section depth, in inches or millimeters (inches illustrated), is indicated by a number or letter which is the amount of total dimensional wear a user may expect from the abrasive portion of the product. Most diamond and CBN wheels are made with a depth of coating on the order of $\frac{1}{1_0}$ in., $\frac{1}{2_0}$ in., or more as specified. In some cases the diamond is applied in thinner layers, as thin as one thickness of diamond grains. The L is included in the marking system to identify a layered-type product.
 - $9) {\it Manufacturer's Identification Symbol:} \ {\it The use of this symbol is optional.}$

Table 6. Conventional Abrasives—Grinding Wheel Recommendations

Characteristics Recommendations					
	Alnico				
Offhand	23AC36=N5B5				
Cylindrical	3SGP60=IVS or 53A60=I8V127				
Surfacing (Straight Wheel)	3SGP60-IVS or 86A60-H10VH				
Surfacing (Segments)	86A46-D12VBEP				
Centerless	57A60-K8VCN or 53A60-K8VCN				
Internal	32A60-J6VBE				
A	luminum				
Cylindrical	86A54-J8V127, 53A54-J8VBE or 37C54-KVK				
Centerless (Hard)	32A46-L7VBE or 86A46-LV127				
Centerless (Soft)	37C46-LVK or 23AC46-LB24				
Bars	32AC54-QB				
Surfacing (Straight Wheel)	37C36–J8V				
Surfacing (Segments)	5SG46-E12VSP, 86A46-D12VBEP, or Pacesetter 30E				
Internal	37C36-K5V				
Mounted Wheels	WNA25				
Floor Stands	AC202-Q5B38S				
Portable Grinders	AC24–P				
Alum	ninum Alloys				
Cylindrical	37C54–JVK #12 Treat				
Bolts (Sc	rews and Studs)				
Cylindrical	64A60-M8V127				
Centerless (Shoulder Grinder)	57A60-M8VCN				
Brass a	nd Soft Bronze				
Centerless	37C36-LVK				
Cylindrical	37C36-KVK				
Internal	37C36-K8VK or 37C46-J5V				
Surfacing ^a (Straight Wheels)	37C36-J8V				
Surfacing ^a (Cylinder, Cups)	37C24-H8V				
Surfacing ^a (Segments)	Pacesetter 30G				
Snagging (Floor Stands) up to 12,500 SFPM	AC202–Q5B38S				
В	Broaches				
Sharpening	5SG60-LVS or 5SG60-JVSP				
Backing Off	5SG46-KVS				

Table 6. (Continued)	Conventional Abr	asives — Gri	nding W	/heel Recon	ımendations

Characteristics	Recommendations
Bro	nze (Hard)
Centerless	57A46-L8VCN, 64A46-MCVE, or AC46-PB24X813
Cylinder, Cups	53A30-G12VBEP
Segments ^a	Pacesetter 30G
Cylindrical	64A46–K8V127 or 57A46–L8VBE
Internal ^a	57A60-LVFL
Portable	AC24-P
Snagging (Floor Stands)	AC24-F
up to 12,500 SFPM	AC202–Q5B38S
Cutting off (Dry)	4NZ24-VB65B or 4NZ24-ZBNC
Surfacing (Straight Wheels)	53A36–K8VBE
Bushings ((Hardened Steel)
Hardened Steel	
Centerless	57A60-L8VCN or 86A60-L8VCN
Cylindrical	3SGP60-LVS, 86A60-KV8127, or 23A60-L5VBE
Internal	53A60-K6VBE
Bronze, Centerless	37C46-OVK
Cast Iron	
Cylindrical	3A46-J8BVE, 86A46-I8V127, or 37C46-KVK
Internal	37C46-J5V or 32A60-K6VBE
Toolroom	32A60-H8VBE or 39C60-I8VK
Surface (Dry)	38A46-H8VBE
	Cast Iron
Cam Grinding	
Roughing	3SGP60-L10VH or 57A54-L8V127
Finishing	57A80-L8V127
Dual Cycle	57A60-M8V128
Regrinding	57A54-L8V127
	3/A34-L8V12/
Crankshaft Grinding Pins	06460 NUE
	86A60–NVS
Bearings	86A60-MVS
Center Thrust Bearing	86A60-MVS
Centerless	3SG46-T23B80, 37C46-LVK, 64A60-LVCE, 57A54- K8VCN, or 32AC54-QB
Cylindrical	37C46-JVK, 86A46-I8V127, or 32A46-J8VBE
Internal ^a	37C46-J5V or 53A60-JVFL
Offhand (Rough Blending), Mounted Wheels	A36-SB or 3NZG36-WB25
Surfacing	
Cylinders, Cups (Ductile, Gray)	53A30-G12VBEP
Cylinders, Cups (Chilled)	37C24-H8V
Cylinders, Cups (Ni Hard)	53A30-G12VBEP
Segments ^a , Ductile, Gray, Ni Hard	Pacesetter 30G
Snagging	Tubesetter 500
Floor Stands, up to 12,500 SFPM	
Light Pressure	4ZF1634-Q5B38S
Heavy Pressure	4ZF1434-R5B38S
Swing Frame, up to 12,500 SFPM	TEL ITST KSBS03
Light Pressure	4ZF1634–R5B38S
Heavy Pressure	4ZF1234–R5B38S
Portable Grinder	ANZI COA DEDGI VOAG
Type 01, up to 9500 SFPM	4NZ1634-R5BSLX348
Type 06 & 11	4NZ1634–R5BX348
	ome Plating
Internal (Cmall Dorta)	
	37C80-KVK, 5SGG80-KVS, or 32A100-JVFL
Internal (Large Parts)	3SG80-KVS, 32A80-112VBEP, or 53A80-K6VBE
Internal (Large Parts) Surfacing (Straight Wheels)	3SG80-KVS, 32A80-112VBEP, or 53A80-K6VBE 32A80-I8VBE, 5SG80-IVS, or 3SG80-GVSP
Internal (Large Parts) Surfacing (Straight Wheels) Cylindrical (Commercial Finish)	3SG80-KVS, 32A80-112VBEP, or 53A80-K6VBE 32A80-18VBE, 5SG80-IVS, or 3SG80-GVSP 3SGP80-JVS or 53A80-J8V127
Internal (Small Parts) Internal (Large Parts) Surfacing (Straight Wheels) Cylindrical (Commercial Finish) Cylindrical (Good Commercial Finish) Cylindrical (High Finish Reflective)	3SG80-KVS, 32A80-112VBEP, or 53A80-K6VBE 32A80-I8VBE, 5SG80-IVS, or 3SG80-GVSP

Table 6. (Continued) Conventional Abrasives-Grinding Wheel Recommendations

Characteristics	Recommendations
	Copper
Cylindrical	37C60-KVK
Cylindrical (Cups and Cylinders)	37C16-JVK
	Copper Alloys
Cylindrical	37C46-KVK
Surfacing (Horizontal Spindle)	39C36–I8V #12 Treat
Surfacing (Vertical Spindle)	
Roughing	57AC46-JB24
Finishing	57AC60-JB24
	on Steel and Stainless Steel
Butcher, Hemming and Klotz Machines	53A120-OP1
Kitchen, Hemming Machines	53A801-UP1
Hollow Grinding	A60-F2RR
	s (Air Craft) Internal ^a
Molybdenum Steel	(
Roughing	53A80-JVFL or 5TG120-JVFL
Finishing	32A100–JVFL or 53A100–JVFL
Regrinding	5TG120-JVFL
Nitrided	
Before Nitriding	37C80-I5V
After Nitriding	32A80–JVFL
Regrinding	37C80–J5V
	ng and Drawing) Internal ^a
Carbon Steel	5TG120-KVFL or 53A80-KVFL
High-Carbon, High-Chrome	3SG80–KVS or 53A80–K6VBE
	Die Forging
Offhand–Portable Grinding Mounted Points and Who	0 0
Coarse	5SG60-PVS or 38A80-PVME
Medium	5SG90-QVS or 38A90-QVME
Fine	5SG120–SVS or 38A120–QVM
Straight Wheels, Roughing	330120-3 V3 01 38A120-Q VWI
5000 – 6500 SFPM	23A46-OVBE
7000 – 9500 SFPM	A36-Q2BH
	s (Steel) Drawing
Surfacing-(Hardened)	(Steel) Drawing
Straight Wheels (Dry)	5SG60-GVSP, 5SG60-IVS, 32A60-F12VBEP,
Straight Wheels (Bry)	32AA60–HVTRP, or 32A46–H8VBE
Straight Wheels (Fast, Traverse, Wet)	5SG60-IVS, 32A60-I8VBE, or 32AA60-IVTR
Cup Wheels (Wet)	38A46-G8VBE
Segments ^a	5SG46-DVSP
Surfacing-(Annealed)	
Straight Wheels (Dry)	5SG60-JVS, 5SG60-HVSP, or 32AA60-IVTRP
Cup Wheels (Wet)	32A24-H8VBE
Segments ^a	86A30-F12VBEP or 5SG30-FVSP
-	s (Manufacturing)
Cylindrical	57A60–L8V127
Centerless (Soft)	57A60-M8VCN
Centerless (Hard)	53A60-L8VCN or 57A60-L8VCN
Fluting	57A1001-UB467
Pointing	57A1003-T9BX340
Grinding Relief	57A100-R4R30
	s (Resharpening)
1/," and smaller	
Machine	5SG100-IVS
Offhand	57A80-L5VBE
1/" to 1"	
Machine	5SG54-LVS
	1

Table 6. (Continued)	Conventional Abr	asives — Gri	nding W	/heel Recon	ımendations

Characteristics	Recommendations
	narpening) (Continued)
Offhand	5SG60-LVS
	5SG46-HVSP
1" and larger—Machine Winslowmatic Machine	33040-11731
Web Thinning	23A60-L7B5
Pointing	23A70-M7B5 or 5SGP80-KVSB
Hi-Production	25A70=W7B5 01 5301 00=K V3B
5 hp Machine	57A1003-R9BX340
30 hp Machine	57A1003-T9BX340
•	Ductile Iron
General Reinforced Cutoff	U57A244–VB65B or U57A244 –TBNC
Surfacing (Segments)	See Cast Iron
	steners (Steel)
Centerless	57A80–M8VCN
Centeriess	Forgings
Centerless	57A60-M8VCN
Cylindrical	64A54–L8V127 or 57A54–M8VBE
Cymurca	Gages
Plug	Ougo
Cylindrical	64A80–J8V127 or 57A80–K8VBE
Cylindrical, High-Finish	37C500-J9E
Thread	376330 372
Threads, 12-pitch and coarser	32A100-K8VBE or 32A100-KBVH
Threads, 13–20-pitch	32A120-K8VBE or 32A120-L8VH
Threads, 24-pitch and finer	32A180-N9VG or 32A180-N10VH
Ring	
Internal (Roughing)	5TG120-KVFL or 63A80-LVFL
Internal (Finishing)	32A120-JVFL
Internal (Fine Finishing)	37C320-J9E
-	Gears
Case Hardened, Precut	
18-20 DP	A120-K8BL or 32A120-K9VG
5-18 DP	A80-I8BL or 32A60-J8VG
2-5 DP	32A60-J8VG
Case Hardened from a Solid, 18 DP or finer	A120-K8BL
Cast Iron, cleaning between teeth (offhand)	37C24-T6R30
Hardened Steel	
Internal ^a	3SG60-KVS or 53A60-K6VBE
Surfacing (Cups and Cylinders)	32A36-I8VBE
Surfacing (Segments) ^a	86A36-E12VBEP
Surfacing (Straight Wheels)	5SG60–JVS, 3SGP60–JVS, 5SG60–H12VSP, 3SG60–
	H12VSP, or 32A46–J8VBE
0. 5 :	Hastelloy
Surfacing Standard Wheel	96446 C10VIII 20460 F25VCD
Straight Wheel	86A46–G10VH or 32A60 –E25VCP 38A80–E19VCF2 or 38A80–F16VCF2
Straight Wheel (Creep Feed)	5SG46-EVSP
Segments ^a Internal ^a	
Internal* Cylindrical	5TG120–KVFL or 32A80–KVFL 5SGP80–JVS or 86A80–J8V127
Centerless	53A60–J8VCN or 57A54–K8VCN
	th heavy-duty soluble or straight oil)
Surfacing Incone or Incone X (with	ui neavy-uuty sotubie or straight oii)
Straight Wheel	3SGP60-H10VH, 32A60-F19VCP, 32AA60-IVTR, or 86A60-H10VH
Straight Wheel (Creep Feed)	38A60-E25VCF2 or 38A602-F25VCF2
Segments ^a	5SG46-EVSP
Form Grinding	3SGP60–J8VH or 53A60–J8VJN
Internal ^a	5TG120–KVFL or 32A80–JVFL

 ${\bf Table\,6.} (Continued)\,{\bf Conventional\,Abrasives-Grinding\,Wheel\,Recommendations}$

Characteristics	Recommendations		
	ty soluble or straight oil) (Continued)		
Cylindrical	3SGP60–I10VH or 86A80–J8V127		
Centerless	5SG60-LVS or 57A60-K8VCN		
Offhand (Blending Mounted Wheels)	5SG90–QVS or 5SG90–RVH		
Thread	38A180–N10VH or 38A180–N9VG		
Cutting Off (Dry)	4NZ30-TB65W		
Cutting Off (Wet)	A461-P4R55		
Jet E	Blades		
Form Grinding	38A602-F16VCF2		
Aerospace Alloys, Cutting Off Investment Casting Gates & Risers			
Chop Stroke	90A244-VB97B		
Locked Head-Push Thru	90A244-VB97N		
General Industrial	4NZ30-TB65N		
Lapping (Ger	neral Purpose)		
Aluminum	39C280-JVX142C		
Brass	37C180-J9V		
Cast Iron	37C180-J9V		
Copper	39C320-JVX142C		
Stainless	39C280-JVX142C		
Steel	39C220-I9V		
	Mowers		
Resharpening	53A60-M8VBE		
	cite		
Centerless	37C60-MVK		
	um Alloys		
Cylindrical	37C60-KVK		
-	e Castings		
Portable Cutoff	U57A244_TB25N		
General Reinforced Cutoff	U57A244-TB25N or U57A244-TBNC		
Floor Stands and Swing Frames Up to 12,500 SFPM	477E1 424 OFFI20E		
Light Pressure	4ZF1434—Q5B38S		
Heavy Pressure	4ZF1434–R5838S		
Portable Grinders Type 01, up to 9500 SFPM	4NZ1634-R5BSLX348		
Portable Grinders Types 06 & 11	4NZ1634-R5SBX348		
	idary (Offhand)		
Moh's Hardness 7 or less			
Roughing	37C100-NVK		
Finishing	37C220-LVK		
Moh's Hardness over 7			
Roughing	37C100-MVK		
Finishing	37C220-K8V		
Cutting off (Wet)			
Molyb	denuma		
Cylindrical	57A60-K8V127		
Surfacing	5SG60-IVS		
Surfacing (Segments)	5SG46-DVSP		
	l Metal		
Portable Cutoff	U57A244-TB25N		
General Reinforced Cutoff	U57A244-VB65B		
Internal	37C60–K6V		
Cylindrical	37C60-JVK		
3			
Nickel-Based Superalloys			
Surfacing	32A60-E25VCP		
Cutting Off (Dry) Chop Stroke	90A244_VB97B		
Cutting Off (Dry) Lcked Hd. Push Thru	90A244-VB97N		

Table 6. (Continued) Conventional Abrasives-Grinding Wheel Recommendations

Characteristics Recommendations	
Surfacing (Straight Wheel) 37C60-H8V Surfacing (Creep Feed) 32A60-D28VCF2 Nickel Rods and Bars General Reinforced Cutoff 90A244-VB97B Ni Hard Centerless 53A80-K8VCN Cylindrical 3SGP80-JVS or 86A80-J8V127	
Surfacing (Creep Feed) 32A60–D28VCF2 Nickel Rods and Bars 90A244–VB97B Surfacing (Creep Feed) Ni Hard Centerless 53A80–K8VCN Cylindrical 3SGP80–JVS or 86A80–J8V127	
Nickel Rods and Bars	
General Reinforced Cutoff 90A244-VB97B Ni Hard Centerless 53A80-K8VCN Cylindrical 3SGP80-JVS or 86A80-J8V127	
Ni Hard Centerless 53A80–K8VCN Cylindrical 3SGP80–JVS or 86A80–J8V127	
Centerless 53A80–K8VCN Cylindrical 3SGP80–JVS or 86A80–J8V127	
Cylindrical 3SGP80–JVS or 86A80–J8V127	
Surfacing Wheels 32A46–I8VBE	
Surfacing Segments Pacesetter 30G	
Cutting Off (General Reinforced) U57A244–TBNC or 90A304–RB97B	
Nitralloy (Cylindrical)	
Before Nitriding 86A60–K8V127	
After Nitriding Commercial Finish 35GP80–JVS or 86A80–J8V127	
After Nitriding High-Finish 37C100–IVK	
After Nitriding Reflective Finish 37C500–19E	
Pipe	
Cast Iron	
Cleaning Inside 4ZF1434–R5B38SL	
General Reinforced Cutoff 3NZF244–ZB65N	
Steel, Finish Unimportant	
Cutting Off (General Reinforced) 90A244–VB97N	
Pipe Balls	
Centerless 57A30–T5VBE	
Regrind 57A24–Q5VBE	
Pistons	
Aluminum	
Cylindrical 86A46–H8V127 or 53A46–18V127 Centerless 37C46–KVK	
Regrinding 86A46–H8V127	
Cast Iron	
Cylindrical 39C46–J8VK or 37C36–KVK	
Centerless 37C46–KVK	
Regrinding 23A46–I8VBE or 53A46–18V127	
Piston Pins	
Centerless Machine Roughing 5SG60–JVS, 32A54–QB, or 57A60–M8VCN	
Centerless Machine Semi-finishing 57A70–RB24X813 or 57A80–M8VCN	
Piston Rings	
Cast Iron	
Surfacing Rough (Cylinders) 32A30–H8VBE	
Surfacing (Straight Wheels) 32A80–K8VBE or 5SGG80–KVS	
Internal (Snagging) 5SGG46–KVS	
Plasma Spray — Carbides, Chrome	
Centerless	
Roughing and Finishing 39C80–H8VK	
Finishing 37C80–PB24	
Plastics	
Cylindrical (Thermoplastics) Wet 37C46–JVK or 32A46–I12VBEP	
Wet 37C46–JVK or 32A46–I12VBEP 37C36–I5B	
Thermosetting 37C30–15B	
Surfacing (Straight Wheel), Thermoplastic 37C46–JVK	
Nylon 37C40–37K	
Centerless 37C46–KVK or 37C46–LVK	
Surfacing 23A36–L8VBE	
Plexiglass	
Cutoff (Wet) 37C60–M4R55	

Table 6. (Continued) Conventional Abrasives — Grinding Wheel Recommendations

Characteristics	Recommendations
Plastic	s (Continued)
Surfacing	38A46-H12VBEP
Polystyrene, Centerless	37C46-KVK
Propeller Hubs	(Cone Seals) Internal
Rough and Finish	38A60-K6VBE
Fine Finish	A120-M2R30
Pulley	s (Cast Iron)
Cylindrical	37C36-JVK
	Rails
Surfacing, Welds up to 9500 SFPM	
Cup Wheels	4NZ1634-R5BX348
Straight Wheels	4NZ1634-R5BSX348
Removing Corrugations	4NZ1634–R5BSX348
F	Reamers
Backing Off	32A46-K5VBE or 5SG46-K6VH
Cylindrical	57A60-L8VBE
	Rene
Surfacing (Form Grinding)	5SG60-JVS, 3SG60-J10VH, or 53A60-J8VJN
Straight Wheel (Creep Feed)	38A80-F19VCF2
Cutting Off	90A244-RB97B
	(Centerless)
Miscellaneous Steel	57A60–M8VCN or 32A54–QB
300 Series Stainless	37C54-NVK, 86A60-L8V127, 53A60-L8VCN, or
Nitralloy (Before Nitriding)	32AC54–QB 57A60–L8VCN
Silichrome Steel	57A60–M8VCN or 32AC54–SB
Brass and Bronze	37C60-KVK
Hard Rubber	37C30-KVR
Carbon	37C36-NVK
Plastic	32A80-N7VBE
Roller	Bearing Cups
Centerless O.D.	57A60-M8VCN or 64A60-NVCE
Internal	5TG120-KVFL or 53A80-LVFL
Rollers	s for Bearings
Rollers (Cylinders)	
Small Large	57A100-RB24
Fine Finish	57A80-NB24
Rollers (Needle)	A100-R2R30
Up to 1/8" diameter	57AC120-TB24
Over 1/8 to 3/8" diameter	5780-QB17X344
	nated) (Cylindrical)
Roughing	86A100-H8V127 or 57A100-I8VBE
Finishing	37C500-G9E
Rul	ober (Soft)
Cylindrical (Dry)	23A20-K5B7 or 32A46-G12VBEP
	ber (Hard)
Cylindrical	37C36–J5V
	rs and Shears
Cast Iron, Surfacing Sides of Blades	37C100–S8V
Steel, Resharpening, Small Wheels	32A120-M7VBE
Steel, Resharpening, Large Wheels	57A901-MV5
Shafts	(Centerless)
Pinion	57A60–L8VCN or 32A54–QB
Spline	57A60-M8VCN
Shear Blades (Power Metal Shears)
Sharpening (Segments)	23A30-H8VBE

Table 6. (Continued) Conventional Abrasives-Grinding Wheel Recommendations

Characteristics	Recommendations			
Spline	Shafts			
Centerless	57A60-M8VCN or 64A60-NVCE			
Cylindrical	86A60-M8V 127			
Grinding Splines	23A60-L5VBE			
Steel Castings (Low Carbon)				
Cutting Off (Reinforced)	90A244-TB97B or U57A244-XBNC			
Floorstands up to 12,500	4ZF1434-Q5B38S			
SFPM Light Pressure	421 1434—Q3B363			
Floorstands up to 12,500 SFPM Heavy Pressure	4ZF1434–R5B38S			
Portable Grinders Type 01	4NZ1634-R5BSX348			
Portable Grinders Types 06 & 11	4NZ1634-R5BX348			
~	s (Manganese)			
Floorstands up to 12,500 SFPM Light Pressure	4ZF1634–Q5838S			
Floorstands up to 12,500 SFPM Heavy Pressure	4ZF1434–R5B38S			
Portable Grinders Type 01	4NZ1634–R5BSX348			
Portable Grinders Types 06 & 11	4NZ1634–R5BX348			
Portable Internal — Rough Grinding up to 9500 SFPM	Gemini			
General Reinforced Cutoff	90A244-TB97B or U57A244-XBNC			
	gings (Disc)			
Small—Light Work	23A16–JB14			
Large—Heavy Work	23A30-QB14			
	c 45 and harder) ^b			
Centerless (Fine Finish)	A120-P4R30			
Centerless (Commercial Finish)	53A60-K8VCN			
Centerless (Feed Wheel)	A8O-RR51			
Cylindrical Parts smaller than 1" diameter	3SGP80–JVS or 86A80–J8V127			
Cylindrical Parts 1" diameter & larger	35GP60-JVS or 86A60-J8V127			
Internal	5TG120-KVFL or 53A80-KVFL			
Surfacing (Straight Wheels)	5SG60–GVSP, 5SG46–IVS, 35GP60–JVS, 32A46–IVTR, 32A46–I8VBE, 86A60–F25VCP, or 32AA46–HVTRP			
Surfacing (Segments) ^a broad area of contact	5SG30-EVSP, 86A30-EL2VBEP, or Pacesetter 30G			
Surfacing (Segments) ^a	5SG30-FVSP, 86A30-F12VBEP			
medium area of contact	or Pacesetter 30F			
Surfacing (Segments) ^a narrow area of contact	5SG30-GVSP, 86A30-G12VBEP or Pacesetter 30G			
Surfacing (Cylinders)	38A46–G8VBE			
	(Up to Rc 45)			
Portable Cutoff	U57A244-TB25N			
General Reinforced Cutoff	90A244-TB97B			
	57A60-L8V127			
Cylindrical 1" diameter and less	57A54–K8V127			
Cylindrical Over 1" diameter Internal				
	32A60–KVBE or 53A80–KVFL 53A36–K8VBE			
Surfacing Straight Wheel Surfacing Segments	86A30–F12VBEP, Pacesetter 30G, or 5SG30–GVSP			
	gh Speed)°			
Centerless Commercial Finish Centerless Fine Finish	57A60–K8VCN			
	A120-P4R30			
Feed Wheel	A8O-RR51 or A80-SR51			
Cylindrical 14" and smaller	3SGP60-LVS, 53A60-L5VBE, or 32A46-HI2VBEP			
Cylindrical 16" and larger	3SGP60–MVS or 86A60–L8V127			
Internal	5TG120-KVFL, 3SG60-KVS, 3SG60-FVSP, or 53A80- JVFL			
Surfacing (Straight Wheels)	5SG60-GVSP, 32AA60-HVTRP, 32A60-G25VCF2			
Surfacing (Cylinders)	38A46-G8VBE			
Surfacing (Segments)	86A46–DI2VBEP or 55G46–EVSP			

Table 6. (Continued) Conventional Abrasives — Grinding Wheel Recommendations

Characteristics	Recommendations			
	ninless 17–4 PH) ^d			
,	3SGP6O-IVS, 32A60-I8VBE, 32A60-F25VCP, or			
Surfacing Straight Wheel	37C60–JVK			
Internal	23A60-K6VBE or 37C60-K6V			
Cylindrical	86A60-J8V127, 37C54-KVK, or 57A60-K5VBE			
Centerless	57A60-K8VCN			
Steel (Stair	nless — 300 Series)			
Centerless	53A54-K8VCN or 64A60-KVCE			
Centerless (Feed Wheel)	A80-RR51			
Cylindrical	37C54-JVK or 86A54-18V127			
Internal	37C46-JVK			
Offhand (Rough Blending) Mounted Wheels	4NZ36-WB25 or 3NZG36-WB25			
Surfacing (Straight Wheels)	5SG60–IVSP, 3SGP60–IVSP, 32A46–J8VBE, or			
0.6.1.40	32AA46–JVTR			
Surfacing (Creep Feed)	32A80–E19VCF2 or 39C80–F24VCC			
Surfacing (Cups)	38A46-I8VBE			
Surfacing (Cylinders)	32A46-G8VBE			
Surfacing (Segments) Surfacing (Form Grinding)	86A46–D12VBEP, 5SG46–DVSP, or 57AC46–FB17 53A60–J8VJN			
	al — 400 Series Hardened) ^d			
Centerless Commercial Finish Centerless Fine Finish	57A60–K8VCN or 64A60–LVCE A120–P4R30			
Centerless Fine Finish Centerless Feed Wheel	A80–RR51 or ASO–SR51			
Cylindrical Small Wheel	53A60-K8VBE			
Cylindrical Large Wheel	86A60–J8V127			
Internal	5TG120-KVFL or 53A80-KVFL			
Offhand (Rough Blending) Mounted Wheels	4NZ36-UB25 or 3NZG36-UB25			
Surfacing (Straight Wheels)	5SG60-IVS, 32A46-IVS, or 32AA46-IVTR			
High-Speed	5SG60–IVS or 32A46–H8VBE			
Surfacing (Creep Feed)	38A60–F19VCF2 or 86A60–F25VCP			
Surfacing (Cylinders)	32A36–G8VBE			
Surfacing (Segments)	5SG30–FVSP, 86A30–E12VBEP, or Pacesetter 305			
Surfacing (Form Grinding)	3SG60–I10VH, 53A60–I8VJN, or 53A60–J8VJN			
	Rexalloy, Tantung)			
Cylindrical	3SGP80–JVS, 38A80–J8V127, or 86A80–J8V127			
Cutter Grinding	5SG46–JVS, 32A46–J8VBE, or 32AA46–JVTR			
Internal	3SG60–JVS or 53A60–J6VBE			
Surfacing (Cups and Cylinders)	32A46-G8VBE or 5SG46-IVS			
Surfacing (Straight Wheels)	5SG60-IVS, 5SG60-GVSP, 32A46-H8VBE, or			
	32AA46–IVTR			
Tools Offhand	57A46-NSVBE			
Tools Machine	5SG46-LVS, 32A46-L8VBE, or 32A46-LVTR			
7	l'antalum et al.			
Cylindrical	86A60-J8V127			
Surfacing	23A46-J8VBE			
Тарре	ts (Centerless)			
Steel Roughing	57A60-M8VCN			
Steel Finishing	57A80-M8VCN			
Cast Iron Roughing	37C46-NVK			
Cast Iron Finishing	37C80-MVK			
Taps				
Fluting (Taps)	57A1003-UB354			
Grinding Relief	5SG60-KVS or 32A60-K8VBE			
Squaring Ends	32A801–Q8B5 or 5SG80–JVS			
Shanks (Cylindrical)	5SG80–LVS or 57A80–L8V127			
	Precision Grinding			
Surfacing, Straight Wheel, Rust Inhibitor Coolant				
2000 SFPM	32A60-L8VBE or 5SGG60-LVS			
5500 SFPM	5SG60–JVS, 39C60–J8VK, or 5SGG60–JVS			

Table 6. (Continued) Conventional Abrasives — Grinding Wheel Recommendations

Characteristics	Recommendations			
Titanium Precis	sion Grinding (Continued)			
Vertical Spindle	39C80–I8VK			
Offhand (Blending) Mounted Wheels	5SG60-QVS or TG60-QVH			
Cylindrical	37C60-JVK			
Centerless	37C54-LVK or 37C54-PB24			
Creep Feed	39C46-G24VX530			
	t Carbon and High-Speed Steel			
Offhand Grinding				
Bench and Pedestal Grinders				
Coarse	57A36-O5VBE or General Purpose Coarse			
Fine	57A60-M5VBE or General Purpose Fine			
Combination (Roughing and Finishing)	57A46-N5VBE or General Purpose Medium			
Wet Tool Grinders	· ·			
12" to 24" diameter wheels	57A36-O5VBE			
Over 24" diameter wheels	57A24-M5VBE			
Machine Grinding				
Straight Wheels				
15" diameter wheels	23A46-L5VBE			
24" diameter wheels	23A24-M5VBE			
Cup or Cylinder Wheels	38A46-K5VBE			
	Tungsten			
Cylindrical, Rolled Tungsten	86A54-K8V127			
Cylindrical, Sintered Tungsten	37C60-JVK			
Centerless, Rolled Tungsten	32A46-N5VBE			
Centerless, Sintered Tungsten	37C601-KVK			
Internal	5SG60-IVS			
Surfacing 2000 SFPM	23A46–J8VBE			
Surfacing 5000 SFPM	37C46-J8V			
	Udimet			
Surfacing (Form Grinding)	3SG60-J8VH, 5SG60-JVS, or 53A60-J8VJN			
	es (Automotive)			
Refacing	37C80-NVK or 57A80-J5VBE			
Stems Centerless	3TG120/3-P8VH, 3SGP70-OVH, or 57A60-M8VCN			
Waspallo	y (with Straight Oil)			
Surfacing (Form Grinding)	53A60-J8VJN, 5SG60-JVS or 3SG60-K8VH			
Surfacing (Straight Wheels)	5SG60-JVS, 3SGP60-JVS, 32A60-F19VCP,			
	32A46-IBVBE, or 32AA46-IVTR			
Vertical Spindle	32A36-E19VBEP or 32A46-E19VCP			
Internal	3SG60-JVS or 32A60-J6VBE			
Cylindrical	3SGP60-JVS, 86A60-J8VBE, or 53A60-J8VBE			
Centerless	53A60-J8VCN or 86A60-JV127			
Cutting Off (General Reinforced)	90A244-TB97B			
Welds (Carbon Alloy Steels)				
Portable Grinders Type 01 (to 9,500 SFPM)	4NZ1634-Q5BSX348			
Portable Grinders Type 27 (to 16,000 SFPM)	NORZON			
Stainless Steel Offhand (Rough	4N/720 WD25 2N/7/220 WD25			
Blending) Mounted Wheels	4NZ30-WB25 or 3NZG30-WB25			
Portable Grinders Type 01 (9,500 SFPM)	4NZ1634-Q5BSX348			
Portable Grinders Type 27 (to 16,000 SFPM)	NORZON			
& Lice of way stick recommended				

- a Use of wax stick recommended
- ^b CBN wheels are recommended for hard steel where tolerance, productivity, and/or problems exist with conventional abrasives
 - °CBN wheels have successfully ground HSS under certain conditions
 - ^dCBN wheels successfully grind stainless under certain conditions

In addition to the abrasive specifications in this table, so-called super abrasives are available for special applications involving difficult to grind materials and where specific surface finish requirements must be met. Consult grinding wheel manufacturers for specific recommendations concerning super abrasives.

American National Standard Shapes and Sizes of Grinding Wheels.-ANSI Standard B74.2-2003 includes shapes and sizes of grinding wheels and gives a wide variety of grinding wheel shape and size combinations suitable for the majority of applications. Although grinding wheels can be manufactured to shapes and dimensions different from those listed, it is advisable, for reasons of cost and inventory control, to avoid using special shapes and sizes, unless technically warranted.
Standard shapes and size ranges as given in this Standard together with typical applica-

tions are shown in Table 7a for inch dimensions and in Table 7b for metric dimensions.

Table 7a. Standard Shapes and Inch Size Ranges of Grinding Wheels ANSI B74.2-2003

Grinding wheels.			
	Size Ranges of Principal Dimensions, Inches		
Applications	D = Dia.	T = Thick.	H = Hole
← D → ↓ 	Type 1. Straight Wheel For peripheral grinding.		
Cylindrical	Grinding		
Between centers	12 to 48	½, to 6	5 to 20
Centerless grinding wheels	14 to 30	1 to 20	5 or 12
Centerless regulating wheels	8 to 14	1 to 12	3 to 6
Offhand Grinding, Grin	ding on the Perip	hery	
General purpose	6 to 36	½, to 4	½ to 3
For wet tool grinding only	30 or 36	3 or 4	20
Snagg	ging		
Floor stand machines	12 to 24	1 to 3	11/4 to 21/2
Floor stand machines (organic bond, wheel speed over 6500 sfpm)	20 to 36	2 to 4	6 or 12
Mechanical grinders (organic bond, wheel speed up to 16,500 sfpm)	24	2 to 3	12
Portable machines	3 to 8	1/ ₄ to 1	3/ ₈ to 5/ ₈
Portable machines (reinforced organic bond, 17,000 sfpm)	6 or 8	³∕₄ or 1	1
Swing frame machines	12 to 24	2 to 3	3½ to 12
Oth	er		
Cutting off, organic bonds only	1 to 48	1/64 to 3/8	1/ ₁₆ to 6
Internal grinding	1/ ₄ to 4	1/4 to 2	3/3, to 7/8
Saw gumming, F-type face	6 to 12	½ to 1½,	½ to 1½
Surface grinding, horizontal spindle machines	6 to 24	½ to 6	1½ to 12
Tool grinding, broaches, cutters, mills, reamers, taps, etc.	6 to 10	1/ ₄ to 1/ ₂	5/ ₈ to 5
$\longrightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Type 2. Cylindrical Wheel Side grinding wheel — mounted on the diameter may also be mounted in a chuck or on a plate.		
			W = Wall
Surface Grinding, vertical spindle machines	8 to 20	4 or 5	1 to 4

Table 7a.(Continued) Standard Shapes and Inch Size Ranges of Grinding Wheels ANSI B74.2-2003

Gimenig (Theelisin) 12 2005					
	Size Ranges of Principal Dimensions, Inches				
Applications	D = Dia.	T = Thick.	H = Hole		
$\begin{array}{c c} & D & & \downarrow \\ & P & FF & \downarrow \\ \hline & \uparrow & & \downarrow \\ & \vdash H \rightarrow \mid \stackrel{\downarrow}{E} & \uparrow \end{array}$	Type 5. Wheel, Recessed One Side For peripheral grinding. Allows wider faced wheels than the available mounting thickness, also grinding clearance for the nut and flange.				
Cylindrical grinding, between centers	12 to 36	1½ to 4	5 or 12		
Cylindrical grinding, centerless regulating wheel	8 to 14	3 to 6	3 or 5		
Internal grinding	³ / ₈ to 4	³ / ₈ to 2	1/ ₈ to 7/ ₈		
Surface grinding, horizontal spindle machines	7 to 24	³ / ₄ to 6	1½ to 12		
→ ←W D T T	Side grinding w wall thickness diameter of th threaded for the	6. Straight-Cup theel, in whose d s (W) takes prece e recess. Hole is e snagging whee e tool grinding w	imensioning the dence over the $\frac{5}{8}$ -11UNC-2B ls and $\frac{1}{2}$ or $\frac{1}{4}$ "		
1 22 1			W = Wall		
Snagging, portable machines, organic bond only	4 to 6	2	3/ ₄ to 11/ ₂		
Tool grinding, broaches, cutters, mills, reamers, taps, etc.	2 to 6	1 1/4 to 2	⁵ / ₁₆ or ³ / ₈		
	Type 7. Wheel, Recessed Two Sides Peripheral grinding. Recesses allow grinding clearance for both flanges and narrower mounting thickness than overall thickness.				
Cylindrical grinding, between centers	12 to 36	1½ to 4	5 or 12		
Cylindrical grinding, centerless regulating wheel	8 to 14	4 to 20	3 to 6		
Surface grinding, horizontal spindle machines	12 to 24	2 to 6	5 to 12		
$\begin{array}{c c} \longrightarrow & \longleftarrow & D \\ \hline \longrightarrow & \longleftarrow & \downarrow \\ \hline \longleftarrow & K \\ \hline \longrightarrow & \downarrow \\ \hline \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \hline \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \hline \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow &$	Type 11. Flaring-Cup Wheel Side grinding wheel with wall tapered outward from the back; wall generally thicker in the back.		apered outward		
Snagging, portable machines, organic bonds only, threaded hole	4 to 6	2	⁵⁄ ₈ -11 UNC-2B		
Tool grinding, broaches, cutters, mills, reamers, taps, etc.	2 to 5	1 1/4 to 2	½ to 1 ¼		

Table 7a.(Continued) Standard Shapes and Inch Size Ranges of
Grinding Wheels ANSI B74.2-2003

| Size Ranges of Principal Dimensions Inches

Type 12. Dish Wheel Grinding on the side or on the U-face of the wheel, the U-face being always present in this type. Tool grinding, broaches, cutters, mills, reamers, taps, etc. Type 13. Saucer Wheel Peripheral grinding wheel, resembling the shape of a saucer, with cross section equal throughout. Saw gumming, saw-tooth shaping and sharpening Type 13. Saucer Wheel Peripheral grinding wheel, resembling the shape of a saucer, with cross section equal throughout. Type 16. Cone, Curved Side Type 17. Cone, Straight Side, Square Tip Type 17R. Cone, Straight Side, Round Tip (Tip Radius R = J/2) Snagging, portable machine, threaded holes Type 18. Plug, Square End Type 19. Plugs, Conical End, Square Tip Type 19. Plugs, Conical End, Round Tip (Tip Radius R = J/2) Type 19. Plugs, Conical End, Round Tip (Tip Radius R = J/2) Type 19. Plugs, Conical End, Round Tip (Tip Radius R = J/2) Type 19. Plugs, Conical End, Round Tip Type 19. Plugs, Conical End, Square Tip Type 19. Plugs, Conical End,		Size Ranges of Principal Dimensions, Inches		
Type 12. Dish Wheel Grinding on the side or on the U-face of the wheel, the U-face being always present in this type. Tool grinding, broaches, cutters, mills, reamers, taps, etc. Top 13. Saucer Wheel Peripheral grinding wheel, resembling the shape of a saucer, with cross section equal throughout. Saw gumming, saw-tooth shaping and sharpening Saw gumming, saw-tooth shaping shapening Saw guming, saw-tooth shaping shapening Saw guming, saw-tooth shaping shapening Saw guming, saw-tooth shaping shapening Say guming, saw-tooth shaping shapening S	Applications	D = Dia.	T = Thick.	H = Hole
Type 13. Saucer Wheel Peripheral grinding wheel, resembling the shape of a saucer, with cross section equal throughout. Saw gumming, saw-tooth shaping and sharpening	$\longrightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Grinding on the side or on the U-face of the wheel, the U-face being always present in t		U-face of the
Type 13. Saucer Wheel Peripheral grinding wheel, resembling the shape of a saucer, with cross section equal throughout. Saw gumming, saw-tooth shaping and sharpening 8 to 12 Type 16. Cone, Curved Side Type 17. Cone, Straight Side, Square Tip Type 17R. Cone, Straight Side, Square Tip Type 17R. Cone, Straight Side, Round Tip (Tip Radius $R = J/2$) Snagging, portable machine, threaded holes 11/4 to 3 2 to 31/2 Type 18. Plug, Square End Type 18R. Plug, Round End $R = D/2$ Type 19. Plugs, Conical End, Square Tip Type 19R. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Snagging, portable machine, threaded holes 11/4 to 3 2 to 31/2 Type 19. Plugs, Conical End, Square Tip Type 19R. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Type 19. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$)		3 to 8 ½ or ¾ ½ to 1 ¼		
Type 16. Cone, Curved Side Type 17. Cone, Straight Side, Square Tip Type 17. Cone, Straight Side, Round Tip (Tip Radius $R = J/2$) Snagging, portable machine, threaded holes $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \downarrow & \longleftarrow K & \downarrow \\ \hline U & R & \longleftarrow K \\ \hline \downarrow U & R & \longleftarrow K \\ \hline \downarrow U = E & \downarrow \downarrow \\ \hline U = E & \downarrow \downarrow \\ \hline \end{array}$	Peripheral grinding wheel, resembling the shape		
Type 17R. Cone, Straight Side, Round Tip Type 17R. Cone, Straight Side, Round Tip (Tip Radius $R = J/2$) Snagging, portable machine, threaded holes $ 1 \frac{1}{4} \text{ to } 3 \qquad 2 \text{ to } 3 \frac{1}{2} \text{ so } 3 1$	Saw gumming, saw-tooth shaping and sharpening	8 to 12	1/2 to 1 3/4 <i>U</i> & <i>E</i> 1/4 to 11/2	³ / ₄ to 1 ¹ / ₄
Type 18. Plug, Square End Type 18R. Plug, Round End $R = D/2$ Type 19. Plugs, Conical End, Square Tip Type 19R. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Snagging, portable machine, threaded holes $1 \frac{1}{4} \text{ to } 3 \qquad 2 \text{ to } 3\frac{1}{4} = 24 \text{ UNF-2B}$ $\frac{3}{4} = 24 \text{ UNF-2B}$ $\frac{3}{4} = 24 \text{ UNF-2B}$ $\frac{3}{4} = 11 \text{ UNC-2B}$ Type 20. Wheel, Relieved One Side Peripheral grinding wheel, one side flat, the other side relieved to a flat.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type 16. Cone, Curved Side Type 17. Cone, Straight Side, Square Tip Type 17R. Cone, Straight Side, Round Tip		
Type 18. Plug, Square End Type 18R. Plug, Round End $R = D/2$ Type 19. Plugs, Conical End, Square Tip Type 19R. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Snagging, portable machine, threaded holes $1 \frac{1}{4} \text{ to } 3 \qquad 2 \text{ to } 3 \frac{1}{2} \qquad \frac{1}{8} \text{ -24UNF-2B}$ to $\frac{1}{8} \text{ -11UNC-2B}$ Type 20. Wheel, Relieved One Side Peripheral grinding wheel, one side flat, the other side relieved to a flat.	Snagging, portable machine, threaded holes	$1\frac{1}{4}$ to 3	2 to 3½	3/ ₈ -24UNF-2B to 5/ ₈ -11UNC-2B
Type 19R. Plugs, Conical End, Round Tip (Tip Radius $R = J/2$) Snagging, portable machine, threaded holes $ 1\frac{1}{4} \text{ to 3} \qquad 2 \text{ to } 3\frac{1}{2} \qquad \frac{3}{4} = 24 \text{UNF-2B} \text{ to } \frac{3}{4} = 11 \text{UNC-2B} $ Type 20. Wheel, Relieved One Side Peripheral grinding wheel, one side flat, the other side relieved to a flat.	$\begin{array}{c c} H & H \\ \hline \uparrow \dot{\uparrow} \\ D \dot{\uparrow} \\ \hline B & & T \\ \hline \end{array} \begin{array}{c} H \\ D \dot{\uparrow} \\ \hline B & & T \\ \hline \end{array} \begin{array}{c} H \\ D \dot{\uparrow} \\ \hline \end{array} \begin{array}{c} R \\ D \dot{\uparrow} \\ \hline \end{array}$	Type 18. Plug, Square End		
Type 20. Wheel, Relieved One Side Peripheral grinding wheel, one side flat, the other side relieved to a flat.	D T T	Type 19R. Plugs, Conical End, Round Tip		
Peripheral grinding wheel, one side flat, the other side relieved to a flat.	Snagging, portable machine, threaded holes	1½ to 3	2 to 3½	³ / ₈ -24UNF-2B to ⁵ / ₈ -11UNC-2B
Cylindrical grinding, between centers $12 \text{ to } 36$ $\frac{3}{4} \text{ to } 4$ 5 to 20	$ \begin{array}{c c} & \downarrow & \downarrow \\ $	Peripheral grinding wheel, one side flat, the		
	Cylindrical grinding, between centers	12 to 36	³ / ₄ to 4	5 to 20

Table 7a. (Continued) Standard Shapes and Inch Size Ranges of Grinding Wheels ANSI B74.2-2003

	Size Ranges of Principal Dimensions, Inches		
Applications	D = Dia. $T = Thick$. $H = Hole$		
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	Type 21. Wheel, Relieved Two Sides Both sides relieved to a flat.		
$\begin{array}{c c} & D \\ \hline \downarrow & K \\ \hline \downarrow & \downarrow \\ \downarrow & \downarrow \\ \hline \downarrow & \downarrow \\ \downarrow & \downarrow \\ \hline \downarrow & \downarrow \\ \downarrow & \downarrow \\ \hline \downarrow & \downarrow \\ \downarrow & \downarrow \\ \hline \downarrow & \downarrow \\ \hline \downarrow & \downarrow \\ \downarrow \\$	Type 22. Wheel, Relieved One Side, Rec Other Side One side relieved to a flat.		
$\begin{array}{c c} & D \\ \hline +A & F_7 P_{FN} \\ \hline \downarrow E \uparrow \\ \hline +H \rightarrow \end{array}$	Type 23. Wheel, Relieved and Recessed Same Side The other side is straight.		
Cylindrical grinding, between centers, with wheel periphery	20 to 36 2 to 4 12 or 20		12 or 20
$\begin{array}{c c} & D \\ & P \\ $	Type 24. Wheel, Relieved and Recessed One Side, Recessed Other Side One side recessed, the other side is relieved to a recess.		
$\begin{array}{c c} & D \\ \hline \downarrow +A & F_1 & F_N \\ \hline \downarrow E & \downarrow \\ \hline \downarrow C & \downarrow \\ \hline \downarrow K & \\ \hline \end{array}$	Type 25. Wheel, Relieved and Recessed One Side, Relieved Other Side One side relieved to a flat, the other side relieved to a recess.		
	Type 26. Wheel, Relieved and Recessed Both Sides		
Cylindrical grinding, between centers, with the periphery of the wheel	20 to 36	2 to 4	12 or 20

Table 7a. (Continued) Standard Shapes and Inch Size Ranges of Grinding Wheels ANSI B74.2-2003

	Size Ranges of Principal Dimensions, Inches		
Applications	D = Dia.	T = Thick.	H = Hole
$\begin{array}{c c} 27 & & & & & & & & & & & & & & & & & & &$	Types 27 & 27A. Wheel, Depressed Center 27. Portable grinding: Grinding normally done by contact with work at approx. a 15° angle with face of the wheel. 27A. Cutting off: Using the periphery as grinding face.		
Cutting off, reinforced organic bonds only	16 to 30	$U = E = \frac{5}{4}$ to	1 or 1 ½
Snagging, portable machine	3 to 9	U = Uniform thick. $\frac{1}{8}$ to $\frac{3}{8}$	³ / ₈ or ⁷ / ₈
$U = E \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Type 28. Wheel, Depressed Center (Saucer Shaped Grinding Face) Grinding at approx. 15° angle with wheel face.		
Snagging portable machine	7 or 9	U = Uniform thickness $\frac{1}{4}$	7/8

 $Throughout \, {\color{red}{\bf Table}} \, {\color{blue}{\bf 7}}, large \, open-head \, arrows \, indicate \, grinding \, surfaces.$

Table 7b. Standard Shapes and Metric Size Ranges of Grinding Wheels $ANSI\,B74.2\text{-}2003$

ANSI D/4.2	2003		
	Size Ranges of Principal Dimensions, Millimeters		
Applications	D = Diam.	T = Thick.	H = Hole
Type 1. Straight Wheel			
Cutting off (nonreinforced and reinforced organic bonds only)	150 to 1250	0.8 to 10	16 to 152.4
Cylindrical grinding, between centers	300 to 1250	20 to 160	127 to 508
Cylindrical grinding, centerless grinding wheels	350 to 750	25 to 500	127 or 304.8
Cylindrical grinding, centerless regulating wheels	200 to 350	25 to 315	76.2 to 152.4
Internal grinding	6 to 100	6 to 50	2.5 to 25
Offhand grinding on the periphery			
— General purpose	150 to 900	13 to 100	20 to 76.2
For wet tool grinding only	750 or 900	80 or 100	508
Saw gumming (F-type face)	150 to 300	6 to 40	32
Snagging, floor stand machines	300 to 600	25 to 80	32 to 76.2
Snagging, floor stand machines (organic bond, wheel speed over 33 meters per second)	500 to 900	50 to 100	152.4 or 304.8

Table 7b. (Continued) Standard Shapes and Metric Size Ranges of Grinding Wheels ANSI B74.2-2003

THIS BY THE	Size Ranges of Principal Dimensions, Millimeters		
Applications	D = Diam.	T = Thick.	H = Hole
Snagging, mechanical grinders (organic bond, wheel speed up to 84 meters per second)	600	50 to 80	304.8
Snagging, portable machines	80 to 200	6 to 25	10 to 16
Snagging, swing frame machines (organic bond)	300 to 600	50 to 80	88.9 to 304.8
Surface grinding, horizontal spindle machines	150 to 600	13 to 160	32 to 304.8
Tool Grinding, Broaches, cutters, mills, reamers, taps, etc.	150 to 250	6 to 20	32 to 127
Type 2. Cylindrical Wheel			W = Wall
Surface grinding, vertical spindle machines	200 to 500	100 or 125	25 to 100
Type 5. Wheel, recessed one side			
Cylindrical grinding, between centers	300 to 900	40 to 100	127 or 304.8
Cylindrical grinding, centerless regulating wheels	200 to 350	80 to 160	76.2 or 127
Internal grinding	10 to 100	10 to 50	3.18 to 25
Type 6. Straight-Cup Wheel			W = Wall
Snagging, portable machines, organic bond only (hole is ½ 11 UNC-2B)	100 to 150	50	20 to 40
Tool grinding, broaches, cutters, mills, reamers, taps, etc. (Hole is 13 to 32 mm)	50 to 150	32 to 50	8 or 10
Type 7. Wheel, recessed two sides			
Cylindrical grinding, between centers	300 to 900	40 to 100	127 or 304.8
Cylindrical grinding, centerless regulating wheels	200 to 350	100 to 500	76.2 to 152.4
Type 11. Flaring-Cup Wheel			
Snagging, portable machines, organic bonds only, threaded hole	100 to 150	50	5⁄ ₈ -11 UNC-2B
Tool grinding, broaches, cutters, mills, reamers, taps, etc.	50 to 125	32 to 50	13 to 32
Type 12. Dish Wheel			
Tool grinding, broaches, cutters, mills, reamers, taps, etc.	80 to 200	13 or 20	13 to 32
Type 27 and 27A. Wheel, depressed center			
Cutting off, reinforced organic bonds only	400 to 750	U=E=6	25.4 or 38.1
Snagging, portable machines	80 to 230	U = E = 3.2 to 10	9.53 or 22.23

All dimensions in millimeters.

See Table 7a for diagrams and descriptions of each wheel type.

The operating surface of the grinding wheel is often referred to as the wheel face. In the majority of cases it is the periphery of the grinding wheel which, when not specified otherwise, has a straight profile. However, other face shapes can also be supplied by the grinding wheel manufacturers, and also reproduced during usage by appropriate truing. ANSI B74.2-2003 standard offers 15 different shapes for grinding wheel faces, which are shown in Table 8.

Table 8. Standard Shapes of Grinding Wheel Faces ANSI B74.2-2003

Table 9. Diamond Wheel Core Shapes and Designations ANSI B74.3-2003 (R2014)

 $\begin{array}{c} \textbf{Table 10. Diamond Cross Sections and Designations} \\ ANSI B74.3-2003 \left(R2014\right) \end{array}$

$\begin{tabular}{ll} \textbf{Table 11. Designations for Location of Diamond Section on} \\ \textbf{Diamond Wheel} \ ANSIB74.3-2003 \ (R2014) \\ \end{tabular}$

Designation No. and Location	Description	Illustration
1 — Periphery	The diamond section shall be placed on the periphery of the core and shall extend the full thickness of the wheel. The axial length of this section may be greater than, equal to, or less than the depth of diamond, measured radially. A hub or hubs shall not be considered as part of the wheel thickness for this definition.	
2 — Side	The diamond section shall be placed on the side of the wheel and the length of the diamond section shall extend from the periphery toward the center. It may or may not include the entire side and shall be greater than the diamond depth measured axially. It shall be on the side of the wheel that is commonly used for grinding purposes.	
3 — Both Sides	The diamond sections shall be placed on both sides of the wheel and shall extend from the periphery toward the center. They may or may not include the entire sides, and the radial length of the diamond section shall exceed the axial diamond depth.	
4 — Inside Bevel or Arc	This designation shall apply to the general wheel types 2, 6, 11, 12, and 15 and shall locate the diamond section on the side wall. This wall shall have an angle or are extending from a higher point at the wheel periphery to a lower point toward the wheel center	
5 — Outside Bevel or Arc	This designation shall apply to the general wheel types, 2, 6, 11, and 15 and shall locate the diamond section on the side wall. This wall shall have an angle or are extending from a lower point at the wheel periphery to a higher point toward the wheel center.	
6 — Part of Periphery	The diamond section shall be placed on the periphery of the core but shall not extend the full thickness of the wheel and shall not reach to either side	
7 — Part of Side	The diamond section shall be placed on the side of the core and shall not extend to the wheel periphery. It may or may not extend to the center.	
8 — Throughout	Designates wheels of solid diamond abrasive section without cores.	
9 — Corner	Designates a location that would commonly be considered to be on the periphery except that thediamond section shall be on the corner but shall not extend to the other corner.	
10 — Annular	Designates a location of the diamond abrasive section on the inner annular surface of the wheel.	

 $\begin{tabular}{ll} \textbf{Table 12. Designation Letters for Modifications of Diamond Wheels} \\ ANSI B74.3-2003 (R2014) \end{tabular}$

	AIV31 B74.3-2003 (K2014)	
Designation Letter	Description	Illustration
B — Drilled and Counterbored	Holes drilled and counterbored in core.	6A2B
C — Drilled and Countersunk	Holes drilled and countersunk in core.	6A2C
F — Hub	Hub on basic wheel cover	Hub 6A2F
H — Plain Hole	Straight hole drilled in core.	6A2H
J — Recess One Side		IAIJ
JJ — Recess Two Sides		IAIJJ
K — Keyway	Arbor hole with keyway	6A2K
M — Holes Plain and Threaded	Mixed holes, some plain, some threaded, are in core.	GA2M
N — Nonsteel Core	Nonsteel core for 1A1R and related shapes	
P — Relieved One Side	Core relieved on one side of wheel. Thickness of core is less than wheel thickness.	IAIP
R — Relieved Two Sides	Core relieved on both sides of wheel. Thickness of core is less than wheel thickness.	IAIR
S — Segmented- Diamond Section	Wheel has segmental diamond section mounted on core. (Clearance between segments has no bearing on definition.)	IAIS
SS — Segmental and Slotted	Wheel has separated segments mounted on a slotted core.	IAISS

Table 12. (Continued) Designation Letters for Modifications of Diamond Wheels

ANSI R74-3-2003 (R2014)

	ANSI B/4.3-2003 (R2014)	
Designation Letter	Description	Illustration
T — Threaded Holes	Threaded holes are in core.	6A2T
Q — Diamond Inserted	Three surfaces of the diamond section are partially or completely enclosed by the core.	IA6Q
V — Diamond Inverted	Any diamond cross section that is mounted on the core so that the interior point of any angle, or the concave side of any arc, is exposed shall be considered inverted. Exception: Diamond cross section AH shall be placed on the core with the concave side of the arc exposed.	IEEIV
W — Wheels Affixed on a Mandrel		IASW
Y — Diamond Inserted and Inverted	See definitions for Q and V.	IEE6Y

Table 13. General Diamond Wheel Recommendations for Wheel Type and Abrasive Specification

for wheel Type an	id That day to b	pecimention	
Typical Applications or Operation	Basic Wheel Type	Abrasive	Specification
Single-Point Tools (offhand grinding)	D6A2C	Rough: Finish:	MD100-N100-B ¹ / ₈ MD220-P75-B ¹ / ₈
Single-Point Tools (machine ground)	D6A2H	Rough: Finish:	MD180-J100-B ¹ / ₈ MD320-L75-B ¹ / ₈
Chip Breakers	D1A1		MD150-R100-B ¹ / ₈
Multitooth Tools and Cutters (face mills, end mills, reamers, broaches, etc.) Sharpening and Backing Off	D11V9	Rough: Combination: Finish:	MD100-R100-B ¹ / ₈ MD150-R100-B ¹ / ₈ MD220-R100-B ¹ / ₈
Multitooth Tools and Cutters (face mills, end mills, reamers, broaches, etc.) Fluting	D12A2		MD180-N100-B ¹ / ₈
Saw Sharpening	D12A2		MD180-R100-B ¹ / ₈
Surface Grinding (horizontal spindle)	D1A1	Rough: Finish:	MD120-N100-B ¹ / ₈ MD240-P100-B ¹ / ₈
Surface Grinding (vertical spindle)	D2A2T		MD80-R75-B ¹ / ₈
Cylindrical or Centertype Grinding	D1A1		MD120-P100-B ¹ / ₈
Internal Grinding	D1A1		MD150-N100-B ¹ / ₈
Slotting and Cutoff	D1A1R		MD150-R100-B ¹ / ₄
Lapping	Disc		MD400-L50-B ¹ / ₁₆
Hand Honing	DH1, DH2	Rough: Finish:	MD220-B ¹ / ₁₆ MD320-B ¹ / ₆

MOUNTED WHEELS

Table 14a. Standard Shapes and Inch Sizes of Mounted Wheels and Points ANSI B74.2-2003

The maximum speeds of mounted vitrified wheels and points of average grade range from about 38,000 to 152,000 rpm for diameters of 1 inch down to $\frac{1}{4}$ inch. However, the safe operating speed usually is limited by the critical speed (speed at which vibration or whip tends to become excessive) which varies according to wheel or point dimensions, spindle diameter, and overhang.

MOUNTED WHEELS

Table 14b. Standard Shapes and Inch Sizes of Mounted Wheels and Points $ANSI\,B74.2-2003$

MOUNTED WHEELS

Table 15. Standard Shapes and Metric Sizes of Mounted Wheels and Points ANSI B74.2-2003

Abrasive Shape No.a	Abrasive S	Shape Size	Abrasive Shape No. ^a	Abrasive Shape Size	
Abrasive snape No.	Diameter	Thickness	Adiasive Shape No.	Diameter	Thickness
A 1	20	65	A 24	6	20
A3	22	70	A 25	25	
A4	30	30	A 26	16	
A 5	20	28	A 31	35	26
A 11	21	45	A 32	25	20
A 12	18	30	A 34	38	10
A 13	25	25	A 35	25	10
A 14	18	22	A 36	40	10
A 15	6	25	A 37	30	6
A 21	25	25	A 38	25	25
A 23	20	25	A 39	20	20
B 41	16	16	B 97	3	10
B 42	13	20	B 101	16	18
B 43	6	8	B 103	16	5
B 44	5.6	10	B 104	8	10
B 51	11	20	B 111	11	18
B 52	10	20	B 112	10	13
B 53	8	16	B 121	13	
B 61	20	8	B 122	10	
B 62	13	10	B 123	5	
B 71	16	3	B 124	3	
B 81	20	5	B 131	13	13
B 91	13	16	B 132	10	13
B 92	6	6	B 133	10	10
B 96	3	6	B 135	6	13
W 144	3	6	W 196	16	26
W 145	3	10	W 197	16	50
W 146	3	13	W 200	20	3
W 152	5	6	W 201	20	6
W 153	5	10	W 202	20	10
W 154	5	13	W 203	20	13
W 158	6	3	W 204	20	20
W 160	6	6	W 205	20	25
W 162	6	10	W 207	20	40
W 163	6	13	W 208	20	50
W 164	6	20	W 215	25	3
W 174	10	6	W 216	25	6
W 175	10	10	W 217	25	10
W 176	10	13	W 218	25	13
W 177	10	20	W 220	25	25
W 178	10	25	W 221	25	40
W 179	10	30	W 222	25	50
W 181	13	1.5	W 225	30	6
W 182	13	3	W 226	30	10
W 183	13	6	W 228	30	20
W 184	13	10	W 230	30	30
W 185	13	13	W 232	30	50
W 186	13	20	W 235	40	6
W 187	13	25	W 236	40	13
W 188	13	40	W 237	40	25
W 189	13	50	W 238	40	40
W 195	16	20	W 242	50	25

^a See shape diagrams on pages 239 and 240. All dimensions are in millimeters.

LAPPING LUBRICANTS

Table 16. Lapping Lubricants

Lubricant	Use
	Machine and lard oil are the best lubricants for use with copper and steel laps, but the least effective with a cast-iron lap.
Lard Oil and Machine Oil	Lard oil gives the higher rate of cutting. In general, the initial rate of cutting is higher with machine oil, but falls off more rapidly as work continues. With lard oil, the highest results are obtained with a carborundum-charged steel lap. Lowest results were obtained with machine oil when using an emery-charged, cast-iron lap.
	Gasoline and kerosene are the best lubricants for use with cast- iron laps, and the poorest on steel.
Gasoline and	Gasoline is superior to any lubricant tested on cast-iron laps.
Kerosene	Kerosene is used with rotary diamond lap for finishing very small holes. Values obtained with carborundum were higher than those obtained with emery, except when used on a copper lap.
Turpentine	Turpentine was found to work well with carborundum on any lap and works fairly well with emery on copper laps, but it was inferior with emery on cast-iron and steel laps.
Soda Water	Medium results with any combination of abrasives; best on copper and poorest on steel. Better than machine or lard oil on cast iron, but not as effective as gasoline or kerosene. Highest result when used with aluminum on copper lap.

Notes: The initial rate of cutting does not greatly differ for different abrasives. There is no advantage in using an abrasive coarser than No. 150. The rate of cutting is practically proportional to the pressure.

Sharpening Carbide Tools.—Cemented carbide indexable inserts are usually not resharpened, but sometimes they require a special grind in order to form a contour on the cutting edge to suit a special purpose. Brazed-type carbide cutting tools are resharpened after the cutting edge has become worn. On brazed carbide tools the cutting-edge wear should not be allowed to become excessive before the tool is resharpened. One method of determining when brazed carbide tools need resharpening is by periodic inspection of the flank wear and the condition of the face. Another method is to determine the amount of production normally obtained before excessive wear has taken place, or to determine the equivalent period of time. One disadvantage of this method is that slight variations in the work material will often cause the wear rate not to be uniform and the number of parts machined before regrinding to be different each time. Usually, sharpening should not require the removal of more than 0.005 to 0.010 inch of carbide.

General Procedure in Carbide Tool Grinding: The general procedure depends upon the kind of grinding operation required. If the operation is to resharpen a dull tool, a diamond wheel of 100- to 120-grain size is recommended although a finer wheel—up to 150-grain size—is sometimes used to obtain a better finish. If the tool is new or is a "standard" design and changes in shape are necessary, a 100-grit diamond wheel is recommended for roughing and a finer grit diamond wheel can be used for finishing. Some shops prefer to rough grind the carbide with a vitrified silicon carbide wheel, the finish grinding being done with a diamond wheel. A final operation commonly designated as lapping may or may not be employed for obtaining an extra-fine finish.

Wheel Speeds: The speed of silicon carbide wheels usually is about 5000 feet per minute. The speeds of diamond wheels generally range from 5000 to 6000 feet per minute; yet lower speeds (550 to 3000 fpm) can be effective.

Offhand Grinding: In grinding single-point tools (excepting chip breakers) the common practice is to hold the tool by hand, press it against the wheel face and traverse it continuously across the wheel face while the tool is supported on the machine rest or table, which is adjusted to the required angle. This is known as "offhand grinding" to distinguish it from the machine grinding of cutters as in regular cutter grinding practice. The selection of wheels adapted to carbide tool grinding is very important.

SILICON CARBIDE WHEELS

Silicon Carbide Wheels.—The green colored silicon carbide wheels generally are preferred to the dark gray or gray-black variety, although the latter are sometimes used.

Grain or Grit Sizes: For roughing, a grain size of 60 is very generally used. For finish grinding with silicon carbide wheels, a finer grain size of 100 or 120 is common. A silicon carbide wheel such as C60-I-7V may be used for grinding both the steel shank and carbide tip. However, for under-cutting steel shanks up to the carbide tip, it may be advantageous to use an aluminum oxide wheel suitable for grinding softer, carbon steel.

Grade: According to the standard system of marking, different grades from soft to hard are indicated by letters from A to Z. For carbide tool grinding fairly soft grades such as G, H, I, and J are used. The usual grades for roughing are I or J and for finishing H, I, and J. The grade should be such that a sharp free-cutting wheel will be maintained without excessive grinding pressure. Harder grades than those indicated tend to overheat and crack the carbide

Structure: The common structure numbers for carbide tool grinding are 7 and 8. The larger cup-wheels (10 to 14 inches) may be of the porous type and be designated as 12P. The standard structure numbers range from 1 to 15 with progressively higher numbers indicating less density and more open wheel structure.

Diamond Wheels.—Wheels with diamond-impregnated grinding faces are fast and cool cutting and have a very low rate of wear. They are used extensively both for resharpening and for finish grinding of carbide tools when preliminary roughing is required. Diamond wheels are also adapted for sharpening multi-tooth cutters such as milling cutters and reamers, which are ground in a cutter grinding machine.

Resinoid bonded wheels are commonly used for grinding chip breakers, milling cutters, reamers, or other multi-tooth cutters. They are also applicable to precision grinding of carbide dies, gages, and various external, internal and surface grinding operations. Fast, cool cutting action is characteristic of these wheels.

Metal bonded wheels are often used for offhand grinding of single-point tools, especially when durability or long life and resistance to grooving of the cutting face are considered more important than the rate of cutting. Vitrified bonded wheels are used both for roughing of chipped or very dull tools and for ordinary resharpening and finishing. They provide rigidity for precision grinding, a porous structure for fast cool cutting, sharp cutting action and durability.

Diamond Wheel Grit Sizes.—For roughing with diamond wheels a grit size of 100 is the most common both for offhand and machine grinding.

Grit sizes of 120 and 150 are frequently used in offhand grinding of single-point tools 1) for resharpening; 2) for a combination roughing and finishing wheel; and 3) for chip-breaker grinding.

Grit sizes of 220 or 240 are used for ordinary finish grinding all types of tools (offhand and machine) and also for cylindrical, internal, and surface finish grinding. Grits of 320 and 400 are used for "lapping" to obtain very fine finishes, and for hand hones. A grit of 500 is for lapping to a mirror finish on such work as carbide gages and boring or other tools for exceptionally fine finishes.

Diamond Wheel Grades.—Diamond wheels are made in several different grades to better adapt them to different classes of work. The grades vary for different types and shapes of wheels. Standard Norton grades are H, J, and L, for resinoid bonded wheels; grade N for metal bonded wheels; and grades J, L, N, and P, for vitrified wheels. Harder and softer grades than standard may at times be used to advantage.

Diamond Concentration.—The relative amount (by carat weight) of diamond in the diamond section of the wheel is known as the "diamond concentration." Concentrations of 100 (high), 50 (medium) and 25 (low) ordinarily are supplied. A concentration

DIAMOND WHEELS

of 50 represents one-half the diamond content of 100 (if the depth of the diamond is the same in each), and 25 equals one-fourth the content of 100 or one-half the content of 50 concentration.

100 Concentration: Generally interpreted to mean 72 carats of diamond/in.³ of abrasive section. (A 75 concentration indicates 54 carats/in.³.) Recommended (especially in grit sizes up to about 220) for general machine grinding of carbides, and for grinding cutters and chip breakers. Vitrified and metal bonded wheels usually have 100 concentration.

50 Concentration: In the finer grit sizes of 220, 240, 320, 400, and 500, a 50 concentration is recommended for offhand grinding with resinoid bonded cup-wheels.

25 Concentration: A low concentration of 25 is recommended for offhand grinding with resinoid bonded cup-wheels with grit sizes of 100, 120 and 150.

Depth of Diamond Section: The radial depth of the diamond section usually varies from ¹/₁₆ to ¹/₄ inch. The depth varies somewhat according to the wheel size and type of bond.

Dry versus Wet Grinding of Carbide Tools.—In using silicon carbide wheels, grinding should be done either absolutely dry or with enough coolant to flood the wheel and tool. Satisfactory results may be obtained either by the wet or dry method. However, dry grinding is the most prevalent usually because, in wet grinding, operators tend to use an inadequate supply of coolant to obtain better visibility of the grinding operation and avoid getting wet; hence checking or cracking is more likely to occur in wet grinding than in dry grinding.

Wet Grinding with Silicon Carbide Wheels: One advantage commonly cited in connection with wet grinding is that an ample supply of coolant permits using wheels about one grade harder than in dry grinding thus increasing the wheel life. Plenty of coolant also prevents thermal stresses and the resulting cracks, and there is less tendency for the wheel to load. A dust exhaust system also is unnecessary.

Wet Grinding with Diamond Wheels: In grinding with diamond wheels the general practice is to use a coolant to keep the wheel face clean and promote free cutting. The amount of coolant may vary from a small stream to a coating applied to the wheel face by a felt pad.

Coolants for Carbide Tool Grinding.—In grinding either with silicon carbide or diamond wheels a coolant that is used extensively consists of water plus a small amount either of soluble oil, sal soda, or soda ash to prevent corrosion. One prominent manufacturer recommends for silicon carbide wheels about 1 ounce of soda ash per gallon of water and for diamond wheels, kerosene. The use of kerosene is quite general for diamond wheels and is usually applied to the wheel face by a felt pad. Another coolant recommended for diamond wheels consists of 80 percent water and 20 percent soluble oil.

Peripheral versus Flat Side Grinding.—In grinding single-point carbide tools with silicon carbide wheels, the roughing preparatory to finishing with diamond wheels may be done either by using the flat face of a cup-shaped wheel (side grinding) or the periphery of a "straight" or disk-shaped wheel. Even where side grinding is preferred, the periphery of a straight wheel may be used for heavy roughing as in grinding back chipped or broken tools (see left-hand diagram on page 245). Reasons for preferring peripheral grinding include faster cutting with less danger of localized heating and checking especially in grinding broad surfaces. The advantages usually claimed for side grinding are that proper rake or relief angles are easier to obtain and the relief or land is ground flat. The diamond wheels used for tool sharpening are designed for side grinding. (See right-hand diagram on page 245.)

Lapping Carbide Tools.—Carbide tools may be finished by lapping, especially if an exceptionally fine finish is required on the work as, for example, tools used for precision boring or turning nonferrous metals. If the finishing is done by using a diamond wheel of very fine grit (such as 240, 320, or 400), the operation is often called "lapping." A second lapping method is by means of a power-driven lapping disk charged with diamond dust,

Norbide powder, or silicon carbide finishing compound. A third method is by using a hand lap or hone usually of 320 or 400 grit. In many plants the finishes obtained with carbide tools meet requirements without a special lapping operation. Any feather edge which may be left on tools should always be removed, and it is good practice to bevel the edges of roughing tools at 45 degrees to leave a chamfer 0.005 to 0.010 inch wide. This is done by hand honing and the object is to prevent crumbling or flaking off at the edges when hard scale or heavy chip pressure is encountered.

Hand Honing: The cutting edge of carbide tools, and tools made from other tool materials, is sometimes hand honed before it is used in order to strengthen the cutting edge. When interrupted cuts or heavy roughing cuts are to be taken, or when the grade of carbide is slightly too hard, hand honing is beneficial because it will prevent chipping, or even possibly, breakage of the cutting edge. Whenever chipping is encountered, hand honing the cutting edge before use will be helpful. It is important, however, to hone the edge lightly and only when necessary. Heavy honing will always cause a reduction in tool life. Normally, removing 0.002 to 0.004 inch from the cutting edge is sufficient. When indexable inserts are used, the use of pre-honed inserts is preferred to hand honing although sometimes an additional amount of honing is required. Hand honing of carbide tools in between cuts is sometimes done to defer grinding or to increase the life of a cutting edge on an indexable insert. If correctly done, so as not to change the relief angle, this procedure is sometimes helpful. If improperly done, it can result in a reduction in tool life.

Chipbreaker Grinding.—For this operation a straight diamond wheel is used on a universal tool and cutter grinder, a small surface grinder, or a special chipbreaker grinder. A resinoid bonded wheel of the grade J or N commonly is used, and the tool is held rigidly in an adjustable holder or vise. The width of the diamond wheel usually varies from $\frac{1}{4}$ inch. A vitrified bond may be used for wheels as thick as $\frac{1}{4}$ inch, and a resinoid bond for relatively narrow wheels.

Summary of Miscellaneous Points.—In grinding a single-point carbide tool, traverse it across the wheel face continuously to avoid localized heating. This traverse movement should be quite rapid in using silicon carbide wheels and comparatively slow with diamond wheels. A hand traversing and feeding movement, whenever practicable, is generally recommended because of greater sensitivity. In grinding, maintain a constant, moderate pressure. Manipulating the tool so as to keep the contact area with the wheel as small as possible will reduce heating and increase the rate of stock removal. Never cool a hot tool by dipping it in a liquid, as this may crack the tip. Wheel rotation should preferably be against the cutting edge or from the front face toward the back. If the grinder is driven by a reversing motor, opposite sides of a cup wheel can be used for grinding right-and left-hand tools and with rotation against the cutting edge. If it is necessary to grind the top face of a single-point tool, this should precede the grinding of the side and front relief, and top-face grinding should be minimized to maintain the tip thickness. In machine grinding with a diamond wheel, limit the feed per traverse to 0.001 inch for 100 to 120 grit; 0.0005 inch for 150 to 240 grit; and 0.0002 inch for 320 grit and finer.

GEARING

Nomenclature and Comparative Sizes of Gear Teeth

American National Standard and Former American Standard Gear Tooth Forms ANSI B6.1-1968 (R1974) and ASA B6.1-1932

Table 1. Formulas for Dimensions of Standard Spur Gears

No.	To Find	Formula	No. To Find Formula				
		General l	Formula	l is			
1	Base Circle Diameter	$D_B = D\cos\phi$	6a	Number of Teeth	$N = P \times D$		
2a	Circular Pitch	$p = \frac{3.1416D}{N}$	6b	Number of Teeth	$N = \frac{3.1416D}{p}$		
2b	Circular Pitch	$p = \frac{3.1416}{P}$	7a	Outside Diameter (Full-depth Teeth)	$D_O = \frac{N+2}{P}$		
3a	Center Distance	$C = \frac{N_P(m_G + 1)}{2P}$	7b	Outside Diameter (Full-depth Teeth)	$D_O = \frac{(N+2)p}{3.1416}$		
3b	Center Distance	$C = \frac{D_P + D_G}{2}$	8a	Outside Diameter (Amer. Stnd. Stub Teeth)	$D_O = \frac{N+1.6}{P}$		
3c	Center Distance	$C = \frac{N_G + N_P}{2P}$	8b	Outside Diameter (Amer. Stnd. Stub Teeth)	$D_O = \frac{(N+1.6)p}{3.1416}$		
3d	Center Distance	$C = \frac{(N_G + N_P)p}{6.2832}$	9	Outside Diameter	$D_O = D + 2a$		
4a	Diametral Pitch	$P = \frac{3.1416}{p}$	10a	Pitch Diameter	$D = \frac{N}{P}$		
4b	Diametral Pitch	$P = \frac{N}{D}$	10b	Pitch Diameter	$D = \frac{Np}{3.1416}$		
4c	Diametral Pitch	$P = \frac{N_P(m_G + 1)}{2C}$	11	Root Diameter	$D_R = D - 2b$		
5	Gear Ratio	N_G	12	Whole Depth	a + b		
		$m_G = \frac{N_G}{N_P}$	13	Working Depth	$a_G + a_P$		
		Nota	ntion				
	ϕ = Pressure Angle a = Addendum = $1/P$ a_G = Addendum of Ge a_p = Addendum of Pir b = Dedendum c = Clearance C = Center Distance D = Pitch Diameter of D_g = Pitch Diameter of D_p = Pitch Diameter of D_p = Pitch Diameter of D_p = Base Circle Dian	ar nion f Gear f Pinion		D_o = Outside Diamete D_a = Root Diameter F = Face Width h_k = Working Depth of h_i = Whole Depth of m_G = Gear Ratio N = Number of Teeth N_p = Number of Teeth N_p = Number of Teeth N_p = Number of Teeth N_p = Diametral Pitch N_p = Diametral Pitch	of Tooth Tooth 1 1 in Gear		

Table 2. Circular Pitch in Gears -Pitch Diameters, Outside Diameters, and Root Diameters

For any particular circular pitch and number of teeth, use the table as shown in the example to find the pitch diameter, outside diameter, and root diameter. Example: Pitch diameter for 57 teeth of 6-inch circular pitch = $10 \times$ pitch diameter given under factor for 5 teeth plus pitch diameter given under factor for 7 teeth. $(10 \times 9.5493) + 13.3690 = 108.862$ inches.

Outside diameter of gear equals pitch diameter plus outside diameter factor from next-to-last column in table = 108.862 + 3.8197

Root diameter of gear equals pitch diameter minus root diameter factor from last column in table = 108.862 - 4.4194 = 104.443 inches.

inches											
itch					r for Numb					, ja	5 L
rcular Pit in Inches	1	2	3	4	5	6	7	8	9	tside D Factor	Root Diameter Factor
Circular Pitch in Inches		1	Pitch Diam	eter Corres	ponding to	Factor for N	umber of Te	eth		Outside Dia. Factor	Dig H
6	1.9099	3.8197	5.7296	7.6394	9.5493	11.4591	13.3690	15.2788	17.1887	3.8197	4.4194
51/2	1.7507	3.5014	5.2521	7.0028	8.7535	10.5042	12.2549	14.0056	15.7563	3.5014	4.0511
5	1.5915	3.1831	4.7746	6.3662	7.9577	9.5493	11.1408	12.7324	14.3239	3.1831	3.6828
41/2	1.4324	2.8648	4.2972	5.7296	7.1620	8.5943	10.0267	11.4591	12.8915	2.8648	3.3146
4	1.2732	2.5465	3.8197	5.0929	6.3662	7.6394	8.9127	10.1859	11.4591	2.5465	2.9463
31/2	1.1141	2.2282	3.3422	4.4563	5.5704	6.6845	7.7986	8.9127	10.0267	2.2282	2.5780
3	0.9549	1.9099	2.8648	3.8197	4.7746	5.7296	6.6845	7.6394	8.5943	1.9099	2.2097
21/2	0.7958	1.5915	2.3873	3.1831	3.9789	4.7746	5.5704	6.3662	7.1620	1.5915	1.8414
2	0.6366	1.2732	1.9099	2.5465	3.1831	3.8197	4.4563	5.0929	5.7296	1.2732	1.4731
17/8	0.5968	1.1937	1.7905	2.3873	2.9841	3.5810	4.1778	4.7746	5.3715	1.1937	1.3811
13/4	0.5570	1.1141	1.6711	2.2282	2.7852	3.3422	3.8993	4.4563	5.0134	1.1141	1.2890
15/8	0.5173	1.0345	1.5518	2.0690	2.5863	3.1035	3.6208	4.1380	4.6553	1.0345	1.1969
11/2	0.4775	0.9549	1.4324	1.9099	2.3873	2.8648	3.3422	3.8197	4.2972	0.9549	1.1049
17/16	0.4576	0.9151	1.3727	1.8303	2.2878	2.7454	3.2030	3.6606	4.1181	0.9151	1.0588
13/8	0.4377	0.8754	1.3130	1.7507	2.1884	2.6261	3.0637	3.5014	3.9391	0.8754	1.0128
15/16	0.4178	0.8356	1.2533	1.6711	2.0889	2.5067	2.9245	3.3422	3.7600	0.8356	0.9667
11/4	0.3979	0.7958	1.1937	1.5915	1.9894	2.3873	2.7852	3.1831	3.5810	0.7958	0.9207
13/16	0.3780	0.7560	1.1340	1.5120	1.8900	2.2680	2.6459	3.0239	3.4019	0.7560	0.8747
11/8	0.3581	0.7162	1.0743	1.4324	1.7905	2.1486	2.5067	2.8648	3.2229	0.7162	0.8286
11/16	0.3382	0.6764	1.0146	1.3528	1.6910	2.0292	2.3674	2.7056	3.0438	0.6764	0.7826
1	0.3183	0.6366	0.9549	1.2732	1.5915	1.9099	2.2282	2.5465	2.8648	0.6366	0.7366
15/16	0.2984	0.5968	0.8952	1.1937	1.4921	1.7905	2.0889	2.3873	2.6857	0.5968	0.6905
7/8	0.2785	0.5570	0.8356	1.1141	1.3926	1.6711	1.9496	2.2282	2.5067	0.5570	O.6445
13/16	0.2586	0.5173	0.7759	1.0345	1.2931	1.5518	1.8104	2.0690	2.3276	0.5173	0.5985
3/4	0.2387	0.4475	0.7162	0.9549	1.1937	1.4324	1.6711	1.9099	2.1486	0.4775	0.5524
11/16	0.2188	0.4377	0.6565	0.8754	1.0942	1.3130	1.5319	1.7507	1.9695	0.4377	0.5064
2/3	0.2122	0.4244	0.6366	0.8488	1.0610	1.2732	1.4854	1.6977	1.9099	0.4244	0.4910
5/8	0.1989	0.3979	0.5968	0.7958	0.9947	1.1937	1.3926	1.5915	1.7905	0.3979	0.4604
9/16	0.1790	0.3581	0.5371	0.7162	0.8952	1.0743	1.2533	1.4324	1.6114	0.3581	0.4143
1/2	0.1592	0.3183	0.4775	0.6366	0.7958	0.9549	1.1141	1.2732	1.4324	0.3183	0.3683
7/16	0.1393	0.2785	0.4178	0.5570	0.6963	0.8356	0.9748	1.1141	1.2533	0.2785	0.3222
3/8	0.1194	0.2387	0.3581	0.4775	0.5968	0.7162	0.8356	0.9549	1.0743	0.2387	0.2762
1/3	0.1061	0.2122	0.3183	0.4244	0.5305	0.6366	0.7427	0.8488	0.9549	0.2122	0.2455
5/16	0.0995	0.1989	0.2984	0.3979	0.4974	0.5968	0.6963	0.7958	0.8952	0.1989	0.2302
1/4	0.0796	0.1592	0.2387	0.3183	0.3979	0.4775	0.5570	0.6366	0.7162	0.1592	0.1841
3/16	0.0597	0.1194	0.1790	0.2387	0.2984	0.3581	0.4178	0.4775	0.5371	0.1194	0.1381
1/8	0.0398	0.0796	0.1194	0.1592	0.1989	0.2387	0.2785	0.3183	0.3581	0.0796	0.0921
1/16	0.0199	0.0398	0.0597	0.0796	0.0995	0.1194	0.1393	0.1592	0.1790	0.0398	0.0460
16											1

Table 3a. Chordal Thicknesses and Chordal Addenda of Milled, Full-Depth Gear Teeth and of Gear Milling Cutters

T = chordal thickness of gear tooth and cutter tooth at pitch line; H = chordal addendum for full-depth gear tooth; A = chordal addendum of cutter = (2.157 + diametral pitch) - H

= $(0.6866 \times \text{circular pitch}) - \text{H}$.

्र ।	ou		Number of	Gear Cutter	and Corres	ponding Nu	mber of Tee	th	
Diametral Pitch	Dimension	No. 1 135 Teeth	No. 2 55 Teeth	No. 3 35 Teeth	No. 4 26 Teeth	No. 5 21 Teeth	No. 6 17 Teeth	No. 7 14 Teeth	No. 8 12 Teeth
1	T	1.5707	1.5706	1.5702	1.5698	1.5694	1.5686	1.5675	1.5663
1 1	Н	1.0047	1.0112	1.0176	1.0237	1.0294	1.0362	1.0440	1.0514
11/	T	1.0471	1.0470	1.0468	1.0465	1.0462	1.0457	1.0450	1.0442
11/2	Н	0.6698	0.6741	0.6784	0.6824	0.6862	0.6908	0.6960	0.7009
2	T	0.7853	0.7853	0.7851	0.7849	0.7847	0.7843	0.7837	0.7831
-	Н	0.5023	0.5056	0.5088	0.5118	0.5147	0.5181	0.5220	0.5257
21/	T	0.6283	0.6282	0.6281	0.6279	0.6277	0.6274	0.6270	0.6265
21/2	Н	0.4018	0.4044	0.4070	0.4094	0.4117	0.4144	0.4176	0.4205
3	T	0.5235	0.5235	0.5234	0.5232	0.5231	0.5228	0.5225	0.5221
3	Н	0.3349	0.3370	0.3392	0.3412	0.3431	0.3454	0.3480	0.3504
21/	T	0.4487	0.4487	0.4486	0.4485	0.4484	0.4481	0.4478	0.4475
31/2	Н	0.2870	0.2889	0.2907	0.2919	0.2935	0.2954	0.2977	0.3004
,	T	0.3926	0.3926	0.3926	0.3924	0.3923	0.3921	0.3919	0.3915
4	Н	0.2511	0.2528	0.2544	0.2559	0.2573	0.2590	0.2610	0.2628
_	T	0.3141	0.3141	0.3140	0.3139	0.3138	0.3137	0.3135	0.3132
5	Н	0.2009	0.2022	0.2035	0.2047	0.2058	0.2072	0.2088	0.2102
	T	0.2618	0.2617	0.2617	0.2616	0.2615	0.2614	0.2612	0.2610
6	Н	0.1674	0.1685	0.1696	0.1706	0.1715	0.1727	0.1740	0.1752
_	T	0.2244	0.2243	0.2243	0.2242	0.2242	0.2240	0.2239	0.2237
7	Н	0.1435	0.1444	0.1453	0.1462	0.1470	0.1480	0.1491	0.1502
8	T	0.1963	0.1963	0.1962	0.1962	0.1961	0.1960	0.1959	0.1958
	Н	0.1255	0.1264	0.1272	0.1279	0.1286	0.1295	0.1305	0.1314
9	T	0.1745	0.1745	0.1744	0.1744	0.1743	0.1743	0.1741	0.1740
9	Н	0.1116	0.1123	0.1130	0.1137	0.1143	0.1151	0.1160	0.1168
10	T	0.1570	0.1570	0.1570	0.1569	0.1569	0.1568	0.1567	0.1566
10	Н	0.1004	0.1011	0.1017	0.1023	0.1029	0.1036	0.1044	0.1051
11	T	0.1428	0.1428	0.1427	0.1427	0.1426	0.1426	0.1425	0.1424
11	Н	0.0913	0.0919	0.0925	0.0930	0.0935	0.0942	0.0949	0.0955
12	T	0.1309	0.1309	0.1308	0.1308	0.1308	0.1307	0.1306	0.1305
12	Н	0.0837	0.0842	0.0848	0.0853	0.0857	0.0863	0.0870	0.0876
14	T	0.1122	0.1122	0.1121	0.1121	0.1121	0.1120	0.1119	0.1118
14	Н	0.0717	0.0722	0.0726	0.0731	0.0735	0.0740	0.0745	0.0751
16	T	0.0981	0.0981	0.0981	0.0981	0.0980	0.0980	0.0979	0.0979
10	Н	0.0628	0.0632	0.0636	0.0639	0.0643	0.0647	0.0652	0.0657
10	T	0.0872	0.0872	0.0872	0.0872	0.0872	0.0871	0.0870	0.0870
18	Н	0.0558	0.0561	0.0565	0.0568	0.0571	0.0575	0.0580	0.0584
20	T	0.0785	0.0785	0.0785	0.0785	0.0784	0.0784	0.0783	0.0783
20	Н	0.0502	0.0505	0.0508	0.0511	0.0514	0.0518	0.0522	0.0525

Table 3b. Chordal Thicknesses and Chordal Addenda of Milled, Full-Depth Gear Teeth and of Gear Milling Cutters

Circu-		Number of Gear Cutter and Corresponding Number of Teeth							
lar	Dimen-	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8
Pitch	sion	135 Teeth	55 Teeth	35 Teeth	26 Teeth	21 Teeth	17 Teeth	14 Teeth	12 Teeth
1/4	T	0.1250	0.1250	0.1249	0.1249	0.1249	0.1248	0.1247	0.1246
	Н	0.0799	0.0804	0.0809	0.0814	0.0819	0.0824	0.0830	0.0836
5/16	T	0.1562	0.1562	0.1562	0.1561	0.1561	0.1560	0.1559	0.1558
	H	0.0999	0.1006	0.1012	0.1018	0.1023	0.1030	0.1038	0.1045
8/8	T	0.1875	0.1875	0.1874	0.1873	0.1873	0.1872	0.1871	0.1870
7.	H T	0.1199 0.2187	0.1207 0.2187	0.1214 0.2186	0.1221 0.2186	0.1228 0.2185	0.1236 0.2184	0.1245 0.2183	0.1254 0.2181
7/16	H	0.1399	0.2187	0.2186	0.1425	0.2183	0.2184	0.2183	0.2181
1/,	T	0.1399	0.1408	0.1416	0.1423	0.1433	0.1445	0.1433	0.1404
^{'2}	H	0.1599	0.1609	0.1619	0.1629	0.1638	0.1649	0.1661	0.1673
9/16	T	0.2812	0.2812	0.2811	0.2810	0.2810	0.2808	0.2806	0.2804
16	Н	0.1799	0.1810	0.1821	0.1832	0.1842	0.1855	0.1868	0.1882
5/8	T	0.3125	0.3125	0.3123	0.3123	0.3122	0.3120	0.3118	0.3116
	H	0.1998	0.2012	0.2023	0.2036	0.2047	0.2061	0.2076	0.2091
11/16	T	0.3437	0.3437	0.3436	0.3435	0.3434	0.3432	0.3430	0.3427
	H T	0.2198	0.2213 0.3750	0.2226 0.3748	0.2239 0.3747	0.2252 0.3747	0.2267 0.3744	0.2283 0.3742	0.2300 0.3740
3/4	H	0.3750 0.2398	0.3730	0.3748	0.2443	0.3747	0.3744	0.3742	0.3740
13/16	T	0.2398	0.4062	0.2428	0.2443	0.4059	0.2473	0.4054	0.2509
16	H	0.2598	0.2615	0.2631	0.2647	0.2661	0.2679	0.2699	0.2718
7/8	T	0.4375	0.4375	0.4373	0.4372	0.4371	0.4368	0.4366	0.4362
8	Н	0.2798	0.2816	0.2833	0.2850	0.2866	0.2885	0.2906	0.2927
15/16	T	0.4687	0.4687	0.4685	0.4684	0.4683	0.4680	0.4678	0.4674
1	Н	0.2998	0.3018	0.3035	0.3054	0.3071	0.3092	0.3114	0.3137
1	T H	0.5000	0.5000	0.4998	0.4997	0.4996	0.4993	0.4990	0.4986 0.3346
11/2	T	0.3198 0.5625	0.3219 0.5625	0.3238 0.5623	0.3258 0.5621	0.3276 0.5620	0.3298 0.5617	0.3322 0.5613	0.5610
1/8	H	0.3597	0.3621	0.3642	0.3665	0.3685	0.3710	0.3737	0.3764
11/4	T	0.6250	0.6250	0.6247	0.6246	0.6245	0.6241	0.6237	0.6232
- 74	н	0.3997	0.4023	0.4047	0.4072	0.4095	0.4122	0.4152	0.4182
18/8	T	0.6875	0.6875	0.6872	0.6870	0.6869	0.6865	0.6861	0.6856
	Н	0.4397	0.4426	0.4452	0.4479	0.4504	0.4534	0.4567	0.4600
11/2	T	0.7500	0.7500	0.7497	0.7495	0.7494	0.7489	0.7485	0.7480
	H	0.4797	0.4828	0.4857	0.4887	0.4914	0.4947	0.4983	0.5019
13/4	T	0.8750 0.5596	0.8750 0.5633	0.8746 0.5666	0.8744	0.8743 0.5733	0.8737 0.5771	0.8732 0.5813	0.8726 0.5855
2	H T	1.0000	1.0000	0.5666	0.5701 0.9994	0.5733	0.57/1	0.5813	0.5855
1	Ĥ	0.6396	0.6438	0.6476	0.6516	0.6552	0.6596	0.6644	0.6692
21/4	Т	1.1250	1.1250	1.1246	1.1242	1.1240	1.1234	1.1226	1.1220
1	Н	0.7195	0.7242	0.7285	0.7330	0.7371	0.7420	0.7474	0.7528
21/2	Т	1.2500	1.2500	1.2494	1.2492	1.2490	1.2482	1.2474	1.2464
	H	0.7995	0.8047	0.8095	0.8145	0.8190	0.8245	0.8305	0.8365
3	T H	1.5000 0.9594	1.5000 0.9657	1.4994 0.9714	1.4990 0.9774	1.4990 0.9828	1.4978 0.9894	1.4970 0.9966	1.4960 1.0038
	l n	0.5394	0.5037	0.5/14	0.5//4	0.7020	0.7094	0.5900	1.0036

Table 4. Series of Involute, Finishing Gear Milling Cutters for Each Pitch

	_	_	
Number of Cutter	Will cut Gears from	Number of Cutter	Will cut Gears from
1	135 teeth to a rack	5	21 to 25 teeth
2	55 to 134 teeth	6	17 to 20 teeth
3	35 to 54 teeth	7	14 to 16 teeth
4	26 to 34 teeth	8	12 to 13 teeth

The regular cutters listed above are used ordinarily. The cutters listed below (an intermediate series having half numbers) may be used when greater accuracy of tooth shape is essential in cases where the number of teeth is between the numbers for which the regular cutters are intended.

Number of Cutter	Will cut Gears from	Number of Cutter	Will cut Gears from
11/,	80 to 134 teeth	51/2	19 to 20 teeth
21/,	42 to 54 teeth	61/2	15 to 16 teeth
31/,	30 to 34 teeth	71/,	13 teeth
41/,	23 to 25 teeth		

Roughing cutters are made with No. 1 form only.

MODULE SYSTEM GEARING

Gear Design Based upon Module System.—The module of a gear is equal to the pitch diameter divided by the number of teeth, whereas diametral pitch is equal to the number of teeth divided by the pitch diameter. The module system (see accompanying table and diagram) is in general use in countries that have adopted the metric system; hence, the term "module" is usually understood to mean the pitch diameter in millimeters divided by the number of teeth. The module system, however, may also be based on inch measurements, and then it is known as the English module to avoid confusion with the metric module. Module is an actual dimension, whereas diametral pitch is only a ratio. Thus, if the pitch diameter of a gear is 50 millimeters and the number of teeth 25, the module is 2, which means that there are 2 millimeters of pitch diameter for each tooth. The table Tooth Dimensions Based Upon Module System shows the relation among module, diametral pitch, and circular pitch.

Module x 3.1416

Module

 $\textbf{Table 5. German Standard Tooth Form for Spur and Bevel Gears} \, DIN\,867$

The flanks or sides are straight (involute system) and the pressure angle is 20 degrees. The shape of the root clearance space and the amount of clearance depend upon the method of cutting and special requirements. The amount of clearance may vary from $0.1 \times \text{module}$ to $0.3 \times \text{module}$.

To Find	Module Known	Circular Pitch Known	
Addendum	Equals module	0.31823 × Circular pitch	
Dedendum	1.157 × module* 1.167 × module**	0.3683 × Circular pitch* 0.3714 × Circular pitch**	
Working Depth	2×module	0.6366 × Circular pitch	
Total Depth	2.157 × module* 2.167 × module**	0.6866 × Circular pitch* 0.6898 × Circulate pitch**	
Tooth Thickness on Pitch Line	1.5708 × module	0.5 × Circular pitch	

Formulas for dedendum and total depth, marked (*) are used when clearance equals $0.157 \times \text{module}$. Formulas marked (**) are used when clearance equals one-sixth module. It is common practice among American cutter manufacturers to make the clearance of metric or module cutters equal to $0.157 \times \text{module}$.

MODULE SYSTEM GEARING

Table 6. Tooth Dimensions Based Upon Module System

Module,		Circula	r Pitch				
DIN	Equivalent			i		Whole	Whole
Standard	Diametral			Addendum,	Dedendum,	Depth, ^a	Depth,b
Series	Pitch	Millimeters	Inches	Millimetersa	Millimetersa	Millimeters	Millimeters
0.3	84.667	0.943	0.0371	0.30	0.35	0.650	0.647
0.4	63.500	1.257	0.0495	0.40	0.467	0.867	0.863
0.5	50.800	1.571	0.0618	0.50	0.583	1.083	1.079
0.6	42.333	1.885	0.0742	0.60	0.700	1.300	1.294
0.7	36.286	2.199	0.0865	0.70	0.817	1.517	1.510
0.8	31.750	2.513	0.0989	0.80	0.933	1.733	1.726
0.9	28.222	2.827	0.1113	0.90	1.050	1.950	1.941
1	25.400	3.142	0.1237	1.00	1.167	2.167	2.157
1.25	20.320	3.927	0.1546	1.25	1.458	2.708	2.697
1.5	16.933	4.712	0.1855	1.50	1.750	3.250	3.236
1.75	14.514	5.498	0.2164	1.75	2.042	3.792	3.774
2	12.700	6.283	0.2474	2.00	2.333	4.333	4.314
2.25	11.289	7.069	0.2783	2.25	2.625	4.875	4.853
2.5	10.160	7.854	0.3092	2.50	2.917	5.417	5.392
2.75	9.236	8.639	0.3401	2.75	3.208	5.958	5.932
3	8.466	9.425	0.3711	3.00	3.500	6.500	6.471
3.25	7.815	10.210	0.4020	3.25	3.791	7.041	7.010
3.5	7.257	10.996	0.4329	3.50	4.083	7.583	7.550
3.75	6.773	11.781	0.4638	3.75	4.375	8.125	8.089
4	6.350	12.566	0.4947	4.00	4.666	8.666	8.628
4.5	5.644	14.137	0.5566	4.50	5.25	9.750	9.707
5	5.080	15.708	0.6184	5.00	5.833	10.833	10.785
5.5	4.618	17.279	0.6803	5.50	6.416	11.916	11.864
6	4.233	18.850	0.7421	6.00	7.000	13.000	12.942
6.5	3.908	20.420	0.8035	6.50	7.583	14.083	14.021
7	3.628	21.991	0.8658	7	8.166	15.166	15.099
8	3.175	25.132	0.9895	8	9.333	17.333	17.256
9	2.822	28.274	1.1132	9	10.499	19.499	19.413
10	2.540	31.416	1.2368	10	11.666	21.666	21.571
11	2.309	34.558	1.3606	11	12.833	23.833	23.728
12	2.117	37.699	1.4843	12	14.000	26.000	25.884
13	1.954	40.841	1.6079	13	15.166	28.166	28.041
14	1.814	43.982	1.7317	14	16.332	30.332	30.198
15	1.693	47.124	1.8541	15	17.499	32.499	32.355
16	1.587	50.266	1.9790	16	18.666	34.666	34.512
18	1.411	56.549	2.2263	18	21.000	39.000	38.826
20	1.270	62.832	2.4737	20	23.332	43.332	43.142
22	1.155	69.115	2.7210	22	25.665	47.665	47.454
24	1.058	75.398	2.9685	24	28.000	52.000	51.768
27	0.941	84.823	3.339	27	31.498	58.498	58.239
30	0.847	94.248	3.711	30	35.000	65.000	64.713
33	0.770	103.673	4.082	33	38.498	71.498	71.181
36	0.706	113.097	4.453	36	41.998	77.998	77.652
39	0.651	122.522	4.824	39	45.497	84.497	84.123
42	0.605	131.947	5.195	42	48.997	90.997	90.594
45	0.564	141.372	5.566	45	52.497	97.497	97.065
50	0.508	157.080	6.184	50	58.330	108.330	107.855
55	0.462	172.788	6.803	55	64.163	119.163	118.635
60	0.423	188.496	7.421	60	69.996	129.996	129.426
65	0.391	204.204	8.040	65	75.829	140.829	140.205
70	0.363	219.911	8.658	70	81.662	151.662	150.997
75	0.339	235.619	9.276	75	87.495	162.495	161.775

 $^{^{}a}$ Dedendum and total depth when clearance = 0.1666 × module, or one-sixth module.

 $^{^{\}rm b}$ Total depth equivalent to American standard full-depth teeth. (Clearance = 0.157 × module.)

MODULE SYSTEM GEARING

Table 7. Rules for Module System of Gearing

To Find	Rule
Metric Module	Rule 1: To find the metric module, divide the pitch diameter in millimeters by the number of teeth. Example 1: The pitch diameter of a gear is 200 millimeters and the number of teeth, 40; then
Note: The module system is usually applied when gear dimensions expressed in millimeters, but module may also be based on inch mear Rule: To find the English module, divide pitch diameter in inches b number of teeth. Example: A gear has 48 teeth and a pitch diameter of 12 inches. Module = $\frac{12}{48} = \frac{1}{4}$ module or 4 diametral pitch	
Metric Module Equivalent to Diametral Pitch	Rule: To find the metric module equivalent to a given diametral pitch, divide 25.4 by the diametral pitch. Example: Determine metric module equivalent to 10 diameteral pitch. Equivalent module = $\frac{25.4}{10}$ = 2.54 Note: The nearest standard module is 2.5.
Diametral Pitch Equivalent to Metric Module	Rule: To find the diametral pitch equivalent to a given module, divide 25.4 by the module. (25.4 = number of millimeters per inch.) Example: The module is 12; determine equivalent diametral pitch. Equivalent diametral pitch = $\frac{25.4}{12}$ = 2.117 Note: A diametral pitch of 2 is the nearest standard equivalent.
Pitch Diameter	Rule: Multiply number of teeth by module. Example: The metric module is 8 and the gear has 40 teeth; then $D = 40 \times 8 = 320$ millimeters = 12.598 inches
Outside Diameter Rule: Add 2 to the number of teeth and multiply sum by the module. Example: A gear has 40 teeth and module is 6. Find outside or blank d Outside diameter = $(40 + 2) \times 6 = 252$ millimeters	

For tooth dimensions, see table *Tooth Dimensions Based Upon Module System*; also see formulas in *German Standard Tooth Form for Spur and Bevel Gears DIN 867*.

PITCHES AND MODULES

Table 8. Equivalent Diametral Pitches, Circular Pitches, and Metric Modules
Commonly Used Pitches and Modules in Bold Type

Diametral Pitch	Circular Pitch, Inches	Module Millimeters	Diametral Pitch	Circular Pitch, Inches	Module Millimeters	Diametral Pitch	Circular Pitch, Inches	Module Millime- ters
1/2	6.2832	50.8000	2.2848	13/ ₈	11.1170	10.0531	5/ ₁₆	2.5266
0.5080	6.1842	50	2.3091	1.3605	11	10.1600	0.3092	21/2
0.5236	6	48.5104	21/2	1.2566	10.1600	11	0.2856	2.3091
0.5644	5.5658	45	2.5133	11/4	10.1063	12	0.2618	2.1167
0.5712	51/2	44.4679	2.5400	1.2368	10	12.5664	1/4	2.0213
0.6283	5	40.4253	23/4	1.1424	9.2364	12.7000	0.2474	2
0.6350	4.9474	40	2.7925	11/8	9.0957	13	0.2417	1.9538
0.6981	41/2	36.3828	2.8222	1.1132	9	14	0.2244	1.8143
0.7257	4.3290	35	3	1.0472	8.4667	15	0.2094	1.6933
3/4	4.1888	33.8667	3.1416	1	8.0851	16	0.1963	1.5875
0.7854	4	32.3403	3.1750	0.9895	8	16.7552	3/16	1.5160
0.8378	33/4	30.3190	3.3510	15/16	7.5797	16.9333	0.1855	11/,
0.8467	3.7105	30	31/2	0.8976	7.2571	17	0.1848	1.4941
0.8976	31/2	28.2977	3.5904		7.0744	18	0.1745	1.4111
0.9666	31/4	26.2765	3.6286	7/ ₈ 0.8658	7	19	0.1653	1.3368
1	3.1416	25.4000	3.8666	13/16	6.5691	20	0.1571	1.2700
1.0160	3.0921	25	3.9078	0.8040	61/2	22	0.1428	1.1545
1.0472	3	24.2552	4	0.7854	6.3500	24	0.1309	1.0583
1.1424	23/4	22.2339	4.1888	3/4	6.0638	25	0.1257	1.0160
11/4	2.5133	20.3200	4.2333	0.7421	6	25.1328	1/8	1.0106
1.2566	21/2	20.2127	4.5696	11/16	5.5585	25.4000	0.1237	1
1.2700	2.4737	20	4.6182	0.6803	51/2	26	0.1208	0.9769
1.3963	21/4	18.1914	5	0.6283	5.0800	28	0.1122	0.9071
1.4111	2.2263	18	5.0265	5/8	5.0532	30	0.1047	0.8467
11/2	2.0944	16.9333	5.0800	0.6184	5	32	0.0982	0.7937
1.5708	2	16.1701	5.5851	9/16	4.5478	34	0.0924	0.7470
1.5875	1.9790	16	5.6443	0.5566	41/2	36	0.0873	0.7056
1.6755	11/8	15.1595	6	0.5236	4.2333	38	0.0827	0.6684
1.6933	1.8553	15	6.2832	1/2	4.0425	40	0.0785	0.6350
13/4	1.7952	14.5143	6.3500	0.4947	4	42	0.0748	0.6048
1.7952	13/4	14.1489	7	0.4488	3.6286	44	0.0714	0.5773
1.8143	1.7316	14	7.1808	7/16	3.5372	46	0.0683	0.5522
1.9333	15/8	13.1382	7.2571	0.4329	31/2	48	0.0654	0.5292
1.9538	1.6079	13.1302	8	0.3927	3.1750	50	0.0628	0.5080
2	1.5708	12.7000	8.3776	3/8	3.0319	50.2656	1/16	0.5053
2.0944	11/2	12.1276	8.4667	0.3711	3	50.8000	0.0618	1/2
2.1167	1.4842	12	9	0.3491	2.8222	56	0.0561	0.4536
21/4	1.3963	11.2889	10	0.3142	2.5400	60	0.0524	0.4233

The module of a gear is the pitch diameter divided by the number of teeth. The module may be expressed in any units; but when no units are stated, it is understood to be in millimeters. The metric module, therefore, equals the pitch diameter in millimeters divided by the number of teeth. To find the metric module equivalent to a given diametral pitch, divide 25.4 by the diametral pitch. To find the diametral pitch equivalent to a given module, divide 25.4 by the module. (25.4 = number of millimeters per inch.)

CHORDAL MEASUREMENTS

Caliper Measurement of Gear Tooth.—In cutting gear teeth, the general practice is to adjust the cutter or hob until it grazes the outside diameter of the blank; the cutter is then sunk to the total depth of the tooth space plus whatever slight additional amount may be required to provide the necessary play or backlash between the teeth. If the outside diameter of the gear blank is correct, the tooth thickness should also be correct after the cutter has been sunk to the depth required for a given pitch and backlash. However, it is advisable to check the tooth thickness by measuring it, and the vernier gear-tooth caliper (see illustration) is commonly used in measuring the thickness.

Method of Setting a Gear Tooth Caliper

The vertical scale of this caliper is set so that when it rests upon the top of the tooth as shown, the lower ends of the caliper jaws will be at the height of the pitch circle; the horizontal scale then shows the chordal thickness of the tooth at this point. If the gear is being cut on a milling machine or with the type of gear-cutting machine employing a formed milling cutter, the tooth thickness is checked by first taking a trial cut for a short distance at one side of the blank; then the gear blank is indexed for the next space and another cut is taken far enough to mill the full outline of the tooth. The tooth thickness is then measured.

Before the gear-tooth caliper can be used, it is necessary to determine both the correct chordal thickness and the chordal addendum (or "corrected addendum," as it is sometimes called). The vertical scale is set to the chordal addendum, thus locating the ends of the jaws at the height of the pitch circle. The rules or formulas to use in determining the chordal thickness and chordal addendum will depend upon the outside diameter of the gear; for example, if the outside diameter of a small pinion is enlarged to avoid undercut and improve the tooth action, this must be taken into account in figuring the chordal thickness and chordal addendum as shown by the accompanying rules. The detail of a gear tooth, included with the gear-tooth caliper illustration, represents the chordal thickness T, the addendum S, and the chordal addendum H.

Checking Spur Gear Size by Chordal Measurement Over Two or More Teeth.—Another method of checking gear sizes that is generally available is illustrated by the diagram accompanying Table 9. A vernier caliper is used to measure the distance *M* over two or more teeth. The diagram illustrates the measurement over two teeth (or with one intervening tooth space), but three or more teeth might be included, depending upon the pitch. The jaws of the caliper are merely held in contact with the sides or profiles of the teeth and perpendicular to the axis of the gear. Measurement *M* for involute teeth of the correct size is determined as follows

CHORDAL MEASUREMENTS

Table 9. Chordal Dimensions over Spur Gear Teeth of 1 Diametral Pitch

Find value of M under pressure angle and opposite number of teeth; divide M by diametral pitch of gear to be measured and then subtract one-half total backlash to obtain a measurement M equivalent to given pitch and backlash. The number of teeth to gage or measure over is shown by the next Table 10

			\sim					
Number of Gear Teeth	M in Inches for 1 D.P.	Number of Gear Teeth	M in Inches for 1 D.P.	Number of Gear Teeth	M in Inches for 1 D.P.	Number of Gear Teeth	M in Inches for 1 D.P.	
	Pressure Angle, 141/, Degrees							
12	4.6267	37	7.8024	62	14.0197	87	20.2370	
13	4,6321	38	10.8493	63	17.0666	88	23,2838	
14	4,6374	39	10.8547	64	17.0720	89	23,2892	
15	4,6428	40	10.8601	65	17.0773	90	23,2946	
16	4,6482	41	10.8654	66	17.0827	91	23,2999	
17	4.6536	42	10.8708	67	17.0881	92	23.3053	
18	4.6589	43	10.8762	68	17.0934	93	23.3107	
19	7.7058	44	10.8815	69	17.0988	94	23.3160	
20	7.7112	45	10.8869	70	17.1042	95	23.3214	
21	7.7166	46	10.8923	71	17.1095	96	23.3268	
22	7.7219	47	10.8976	72	17.1149	97	23.3322	
23	7.7273	48	10.9030	73	17.1203	98	23.3375	
24	7.7326	49	10.9084	74	17.1256	99	23.3429	
25	7.7380	50	10.9137	75	17.1310	100	23.3483	
26	7.7434	51	13.9606	76	20.1779	101	26.3952	
27	7.7488	52	13.9660	77	20.1833	102	26.4005	
28	7.7541	53	13.9714	78	20.1886	103	26,4059	
29	7,7595	54	13,9767	79	20.1940	104	26.4113	
30	7,7649	55	13.9821	80	20.1994	105	26.4166	
31	7.7702	56	13.9875	81	20.2047	106	26.4220	
32	7.7756	57	13.9929	82	20.2101	107	26.4274	
33	7.7810	58	13.9982	83	20.2155	108	26.4327	
34	7.7683	59	14.0036	84	20.2208	109	26.4381	
35	7.7917	60	14.0090	85	20.2262	110	26.4435	
36	7.7971	61	14.0143	86	20.2316			
	,		Pressure Ang	le, 20 Degrees	,			
12	4.5963	30	10.7526	48	16.9090	66	23.0653	
13	4.6103	31	10.7666	49	16.9230	67	23.0793	
14	4.6243	32	10.7806	50	16.9370	68	23.0933	
15	4.6383	33	10.7946	51	16.9510	69	23.1073	
16	4.6523	34	10.8086	52	16.9650	70	23.1214	
17	4.6663	35	10.8226	53	16.9790	71	23.1354	
18	4.6803	36	10.8366	54	16.9930	72	23.1494	
19	7.6464	37	13.8028	55	19.9591	73	26.1155	
20	7.6604	38	13.8168	56	19.9731	74	26.1295	
21	7.6744	39	13.8307	57	19.9872	75	26.1435	
22	7.6884	40	13.8447	58	20.0012	76	26.1575	
23	7.7024	41	13.8587	59	20.0152	77	26.1715	
24	7.7165	42	13.8727	60	20.0292	78	26.1855	
25	7.7305	43	13.8867	61	20.0432	79	26.1995	
26	7.7445	44	13.9007	62	20.0572	80	26.2135	
27	7.7585	45	13.9147	63	20.0712	81	26.2275	
28	10.7246	46	16.8810	64	23.0373			
29	10.7386	47	16.8950	65	23.0513			

CHORDAL MEASUREMENTS

Table for Determining the Chordal Dimension: Table 9 above gives the chordal dimensions for one diametral pitch when measuring over the number of teeth indicated in the next Table. To obtain any chordal dimension, it is simply necessary to divide chord M in the table (opposite the given number of teeth) by the diametral pitch of the gear to be measured and then subtract from the quotient one-half the total backlash between the mating pair of gears. Where a small pinion is used with a large gear and all of the backlash is to be obtained by reducing the gear teeth, the total amount of backlash is subtracted from the chordal dimension of the gear and nothing from the chordal dimension of the pinion. The application of the tables will be illustrated by an example.

Tooth Range Tooth Range Number of Tooth Range Tooth Range Number of for 14½° Pressure for 20° Pressure for 20° Pressure Teeth to for 14½ Pressure Teeth to Ängle Gage Over Gage Over Angle Angle Angle 12 to 18 12 to 18 2 63 to 75 46 to 54 6 19 to 37 19 to 27 3 76 to 87 55 to 63 7 38 to 50 28 to 36 4 88 to 100 64 to 72 8 51 to 62 37 to 45 5 101 to 110 73 to 81 9

Table 10. Number of Teeth Included in Chordal Measurement

This table shows the number of teeth to be included between the jaws of the vernier caliper in measuring dimension *M* as explained in connection with Table 9.

Example: Determine the chordal dimension for checking the size of a gear having 30 teeth of 5 diametral pitch and a pressure angle of 20 degrees. A total backlash of 0.008 inch is to be obtained by reducing equally the teeth of both mating gears.

Table 9 shows that the chordal distance for 30 teeth of one diametral pitch and a pressure angle of 20 degrees is 10.7526 inches; one-half of the backlash equals 0.004 inch; hence,

Chordal dimension =
$$\frac{10.7526}{5} - 0.004 = 2.1465$$
 inches

Table 10 shows that this is the chordal dimension when the vernier caliper spans four teeth, this being the number of teeth to gage over whenever gears of 20-degree pressure angle have any number of teeth from 28 to 36, inclusive. If it is considered necessary to leave enough stock on the gear teeth for a shaving or finishing cut, this allowance is simply added to the chordal dimension of the finished teeth to obtain the required measurement over the teeth for the roughing operation. It may be advisable to place this chordal dimension for rough machining on the detail drawing.

Formulas for Chordal Dimension *M.*—The required measurement *M* over spur gear teeth may be obtained by the following formula in which R = pitch radius of gear, A = pressure angle, T = tooth thickness along pitch circle, N = number of gear teeth, S = number of tooth *spaces* between caliper jaws, F = a factor depending on the pressure angle = 0.01109 for $14\frac{1}{2}$ °; = 0.01973 for $17\frac{1}{2}$ °; = 0.0298 for 20°; = 0.04303 for $22\frac{1}{2}$ °; = 0.05995 for 25°. This factor F equals twice the involute function of the pressure angle.

$$M = R \times \cos A \times \frac{T}{R} + \frac{6.2832 \times S}{N} + F$$

Example: A spur gear has 30 teeth of 6 diametral pitch and a pressure angle of $14\frac{1}{2}$ degrees. Determine measurement M over three teeth, there being two intervening tooth spaces.

The pitch radius = $2\frac{1}{2}$ inches, the arc tooth thickness equivalent to 6 diametral pitch is 0.2618 inch (if no allowance is made for backlash) and factor F for $14\frac{1}{2}$ degrees = 0.01109 inch.

$$M = 2.5 \times 0.96815 \times \frac{0.2618}{2.5} + \frac{6.2832 \times 2}{30} + 0.01109 = 1.2941$$
 inches

PROPERTIES OF MATERIALS

Table 1. Standard Steel Classification

Main Group	Content	Comments
Carbon Steels	When maximum content of the main elements does not exceed the following: Mn ≤ 1.65% Si ≤ 0.60% C ≤ 0.60%	May be used with or without final heat treatment. May be annealed, normalized, case hardened, or quenched and tempered. May be killed*, semikilled, capped, or rimmed, and, when necessary, the method of deoxidation may be specified.
Alloy Steels	The maximum range of elements exceeds the above amounts. Steels containing up to 3.99% Cr, and smaller amounts (generally 1-4%) of other alloying elements.	Alloy steels are always killed, but special deoxidation or melting practices, including vacuum, may be specified for special critical applications.
Stainless Steels	Generally contains at least 10% Cr, with or without other elements. Few contain more than 30% Cr or less than 50% Fe. In the US the stainless steel classification includes those steels containing 4% Cr.	In the broadest sense, this category can be divided into three groups based on structure: austenitic-(400 Series) nonmagnetic in the annealed condition. Nonhardenable; can be hardened by cold working. The general purpose grade is widely known as 18-8 (Cr-Ni). Ferritic-(400 Series) always magnetic and contain Cr but no Ni. Basic grade contains 17% Cr. This group also contains a 12% Cr steel with other elements, such as Al or Ti, added to prevent hardening. Martensitic-(300 Series) Magnetic and can be hardened by quenching and tempering. Basic grade contains 12% Cr. This series contains more than 10 standard compositions that include small amounts of Ni and other elements.

^a Killed (defined)-Deoxidized with a strong deoxidizing agent such as silicon, aluminum, or manganese in order to reduce the oxygen content to such a level that no reaction occurs between carbon and oxygen during solidification.

Cr-chromium; Fe-iron; Si-silicon; C-copper; Mn-manganese; Ni-nickel; Ti-titanium

Table 2. Classification of Tool Steels

Category Designation	Letter Symbol	Group Designation	Application Type
	M	Molybdenum types	
High-speed tool steels	M50-M52	Intermediate types	Cutting tools
	T	Tungsten types	
	H1–H19	Chromium types	
Hot-work tool steels	H20-H39	Tungsten types	Hot-work
	H40-H59	Molybdenum types	
	D	High-carbon, high-chromium types	
Cold-work tool steels	A	Medium-alloy, air-hardening types	Cold-work
	0	Oil-hardening types	
Shock-resistant tool steels	S	_	Cold-work; hot-work (some grades)
Low-carbon tool and mold steels	P	_	Cold-work
Si-l	L	Low-alloy types	Cold-work
Special-purpose tool steels	F	Carbon-tungsten types	Colu-Work
Water-hardening tool steels	W	_	Cold-work

The following detailed discussion of tool steels will be in agreement with these categories, showing for each type the percentages of the major alloying elements. However, these values are for identification only; elements in tool steels of different producers in the mean analysis of the individual types may deviate from the listed percentages.

Table 3. AISI-SAE System of Designating Carbon and Alloy Steels

AISI-SAE Designation ^a	Type of Steel and Nominal Alloy Content (%)
	Carbon Steels
10xx	Plain Carbon (Mn 1.00% max.)
11xx	Resulfurized
12xx	Resulfurized and Rephosphorized
15xx	Plain Carbon (Max. Mn range 1.00 to 1.65%)
	Manganese(Mn) Steels
13xx	Mn 1.75
	Nickel(Ni) Steels
23xx	Ni 3.50
25xx	Ni 5.00
	Nickel(Ni)-Chromium(Cr) Steels
31xx	Ni 1.25; Cr 0.65 and 0.80
32xx	Ni 1.75; Cr 1.07
33xx	Ni 3.50; Cr 1.50 and 1.57
34xx	Ni 3.00; Cr 0.77
	Molybdenum (Mo) Steels
40xx	Mo 0.20 and 0.25
44xx	Mo 0.40 and 0.52
	Chromium(Cr)-Molybdenum(Mo) Steels
41xx	Cr 0.50, 0.80, and 0.95; Mo 0.12, 0.20, 0.25, and 0.30
	Nickel(Ni)-Chromium(Cr)-Molybdenum(Mo) Steels
43xx	Ni 1.82; Cr 0.50 and 0.80; Mo 0.25
43BVxx	Ni 1.82; Cr 0.50; Mo 0.12 and 0.35; V 0.03 min.
47xx	Ni 1.05; Cr 0.45; Mo 0.20 and 0.35
81xx	Ni 0.30; Cr 0.40; Mo 0.12
86xx	Ni 0.55; Cr 0.50; Mo 0.20
87xx	Ni 0.55; Cr 0.50; Mo 0.25
88xx	Ni 0.55; Cr 0.50; Mo 0.35
93xx	Ni 3.25; Cr 1.20; Mo 0.12
94xx	Ni 0.45; Cr 0.40; Mo 0.12
97xx	Ni 0.55; Cr 0.20; Mo 0.20
98xx	Ni 1.00; Cr 0.80; Mo 0.25
	Nickel(Ni)-Molybdenum(Mo) Steels
46xx	Ni 0.85 and 1.82; Mo 0.20 and 0.25
48xx	Ni 3.50; Mo 0.25
	Chromium(Cr) Steels
50xx	Cr 0.27, 0.40, 0.50, and 0.65
51xx	Cr 0.80, 0.87, 0.92, 0.95, 1.00, and 1.05
50xxx	Cr 0.50; C 1.00 min.
51xxx	Cr 1.02; C 1.00 min.
52xxx	Cr 1.45; C 1.00 min.
	Chromium(Cr)-Vanadium(V) Steels
61xx	Cr 0.60, 0.80, and 0.95; V 0.10 and 0.15 min
5144	Tungsten(W)-Chromium(V) Steels
72xx	W 1.75; Cr 0.75
1244	Silicon(Si)-Manganese(Mn) Steels
92xx	Si 1.40 and 2.00; Mn 0.65, 0.82, and 0.85; Cr 0.00 and 0.65
3244	High-Strength Low-Alloy Steels
9xx	Various SAE grades
xxBxx	B denotes boron steels
xxLxx	L denotes leaded steels
AISI SAE	Stainless Steels
2xx 302xx	Chromium(Cr)-Manganese(Mn)-Nickel(Ni) Steels
3xx 303xx	Chromium(Cr)=Wanganese(Wh)=Wickel(W) Steels Chromium(Cr)=Nickel(Ni) Steels
4xx 514xx	Chromium(Cr) Steels
5xx 515xx	Chromium(Cr) Steels
34A 313AA	Circumatin(Cr) Stools

^a xx in the last two digits of the carbon and low-alloy designations (but not the stainless steels) indicates that the carbon content (in hundredths of a percent) is to be inserted.

Table 4. Classification, Approximate Compositions, and Properties Affecting Selection of Tool and Die Steels
(From SAF Recommended Practice)

		(Fr	om SA	E Reco	ommended	Practi	ce)						
			C	hemical C	omposition ^a				Non-	Safety		D 1 6	Wear
Type of Tool Steel	С	Mn	Si	Cr	V	W	Mo	Со	warping Prop.	in Hardening	Tough- ness	Depth of Hardening	Resis- tance
Water-Hardening													
0.80 Carbon	70-0.85	ь	ь	ь					Poor	Fair	Good	Shallow	Fair
0.90 Carbon	0.85-0.95	ь	ь	ь					Poor	Fair	Good	Shallow	Fair
1.00 Carbon	Carbon 0.95-1.10 b b b								Poor	Fair	Good	Shallow	Good
1.20 Carbon	1.10-1.30	ь	ь	ь					Poor	Fair	Good	Shallow	Good
0.90 Carbon-V	0.85-0.95	ь	ь	ь	0.15-0.35				Poor	Fair	Good	Shallow	Fair
1.00 Carbon-V	0.95-1.10	ь	ь	ь	0.15-0.35				Poor	Fair	Good	Shallow	Good
1.00 Carbon-VV	0.90-1.10	ь	ь	ь	0.35-0.50				Poor	Fair	Good	Shallow	Good
Oil-Hardening													
Low-Manganese	0.90	1.20	0.25	0.50	0.20 ^d	0.50			Good	Good	Fair	Deep	Good
High-Manganese	0.90	1.60	0.25	0.35 ^d	0.20 ^d		0.30 ^d		Good	Good	Fair	Deep	Good
High-Carbon, High-Chromium ^e	2.15	0.35	0.35	12.00	0.80 ^d	0.75 ^d	0.80 ^d		Good	Good	Poor	Through	Best
Chromium	1.00	0.35	0.25	1.40			0.40		Fair	Good	Fair	Deep	Good
Molybdenum Graphitic	1.45	0.75	1.00				0.25		Fair	Good	Fair	Deep	Good
Nickel-Chromium ^f	0.75	0.70	0.25	0.85	0.25 ^d		0.50 ^d		Fair	Good	Fair	Deep	Fair
Air Hardening													
High-Carbon, High-Chromium	1.50	0.40	0.40	12.00	0.80 ^d		0.90	0.60d	Best	Best	Fair	Through	Best
5 Percent Chromium	1.00	0.60	0.25	5.25	0.40 ^d		1.10		Best	Best	Fair	Through	Good
High-Carbon, High-Chromium-Cobalt	1.50	0.40	0.40	12.00	0.80 ^d		0.90	3.10	Best	Best	Fair	Through	Best
Shock-Resisting													
Chromium-Tungsten	0.50	0.25	0.35	1.40	0.20	2.25	0.40 ^d		Fair	Good	Good	Deep	Fair
Silicon-Molybdenum	0.50	0.40	1.00		0.25d		0.50		Poorg	Poor ^h	Best	Deep	Fair
Silicon-Manganese	0.55	0.80	2.00	0.30 ^d	0.25 ^d		0.40 ^d		Poorg	Poorh	Best	Deep	Fair
Hot-Work													
Chromium-Molybdenum-Tungsten	0.35	0.30	1.00	5.00	0.25d	1.25	1.50		Good	Good	Good	Through	Fair
Chromium-Molybdenum-V	0.35	0.30	1.00	5.00	0.40		1.50		Good	Good	Good	Through	Fair
Chromium-Molybdenum-VV	0.35	0.30	1.00	5.00	0.90		1.50		Good	Good	Good	Through	Fair

Table 4. (Continued) Classification, Approximate Compositions, and Properties Affecting Selection of Tool and Die Steels
(From SAE Recommended Practice)

(From 6712 Recommended Fractice)													
			С	hemical C	omposition ^a				Non-	Safety			Wear
Type of Tool Steel	С	Mn	Si	Cr	V	W	Mo	Со	warping Prop.	in Hardening	Tough- ness	Depth of Hardening	Resis- tance
Tungsten	0.32	0.30	0.20	3.25	0.40	9.00			Good	Good	Good	Through	Fair
High-Speed													
Tungsten, 18-4-1	0.70	0.30	0.30	4.10	1.10	18.00			Good	Good	Poor	Through	Good
Tungsten, 18-4-2	0.80	0.30	0.30	4.10	2.10	18.50	0.80		Good	Good	Poor	Through	Good
Tungsten, 18-4-3	1.05	0.30	0.30	4.10	3.25	18.50	0.70		Good	Good	Poor	Through	Best
Cobalt-Tungsten, 14-4-2-5	0.80	0.30	0.30	4.10	2.00	14.00	0.80	5.00	Good	Fair	Poor	Through	Good
Cobalt-Tungsten, 18-4-1-5	0.75	0.30	0.30	4.10	1.00	18.00	0.80	5.00	Good	Fair	Poor	Through	Good
Cobalt-Tungsten, 18-4-2-8	0.80	0.30	0.30	4.10	1.75	18.50	0.80	8.00	Good	Fair	Poor	Through	Good
Cobalt-Tungsten, 18-4-2-12	0.80	0.30	0.30	4.10	1.75	20.00	0.80	12.00	Good	Fair	Poor	Through	Good
Molybdenum, 8-2-1	0.80	0.30	0.30	4.00	1.15	1.50	8.50		Good	Fair	Poor	Through	Good
Molybdenum-Tungsten, 6-6-2	0.83	0.30	0.30	4.10	1.90	6.25	5.00		Good	Fair	Poor	Through	Good
Molybdenum-Tungsten, 6-6-3	1.15	0.30	0.30	4.10	3.25	5.75	5.25		Good	Fair	Poor	Through	Best
Molybdenum-Tungsten, 6-6-4	1.30	0.30	0.30	4.25	4.25	5.75	5.25		Good	Fair	Poor	Through	Best
Cobalt-Molybdenum-Tungsten, 6-6-2-8	0.85	0.30	0.30	4.10	2.00	6.00	5.00	8.00	Good	Fair	Poor	Through	Good

^aC = carbon; Mn = manganese; Si = silicon; Cr = chromium; V = vanadium; W = tungsten; Mo = molybdenum; Co = cobalt.

b Carbon tool steels are usually available in four grades or qualities: Special (Grade 1)—The highest quality water-hardening carbon tool steel, controlled for hardenability, chemistry held to closest limits, and subject to rigid tests to ensure maximum uniformity in performance; Extra (Grade 2)—A high-quality water-hardening carbon tool steel, controlled for hardenability, subject to tests to ensure good service; Standard (Grade 3)—A good-quality water-hardening carbon tool steel, not controlled for hardenability, recommended for application where some latitude with respect to uniformity is permissible; Commercial (Grade 4)—A commercial-quality water-hardening carbon tool steel, not controlled for hardenability, not subject to special tests. On special and extra grades, limits on manganese, silicon, and chromium are not generally required if Shepherd hardenability limits are specified. For standard and commercial grades, limits are 0.35 max. each for Mn and Si; 0.15 max. Cr for standard; 0.20 max. Cr for commercial.

[°] Toughness decreases somewhat when depth of hardening is increased.

^d Optional element. Steels have found satisfactory application either with or without the element present. In silicon-manganese steel listed under Shock-Resisting Steels, if chromium, vanadium, and molybdenum are not present, then hardenability will be affected.

eThis steel may have 0.50 percent nickel as an optional element. The steel has been found to give satisfactory application either with or without the element present.

^f Approximate nickel content of this steel is 1.50 percent.

⁸ Poor when water quenched, fair when oil quenched.

h Poor when water quenched, good when oil quenched.

Table 5. Quick Reference Guide for Tool Steel Selection

		Table 5. Quick	Reference Guide	for Tool Steel S	election		
			Tool Steel Cate	gories and AISI Lette	r Symbol		
Application Areas	High-Speed Tool Steels, M and T	Hot-Work Tool Steels, H	Cold-Work Tool Steels, D, A, and O	Shock-Resisting Tool Steels, S	Mold Steels,	Special-Purpose Tool Steels, L and F	Water-Hardening Tool Steels, W
			Examples of Typical Ap	pplications			
Cutting Tools Single-point types (lathe, planer, boring) Milling cutters Drills Reamers Taps Threading dies Form cutters	General purpose production tools: M2, T1 For increased abrasion resistance M3,M4, and M10 Heavy-duty work calling for high hot T5, T15 Heavy-duty work calling for high abrasion resistance: M42, M44		Tools with keen edges (knives, razors). Tools for operations where no high-speed is involved, yet stability in heat treatment and substantial abrasion resistance are needed	Pipe cutter wheels			Uses that do not require hot hardness or high abrasion resistance. Examples with carbon content of applicable group: Taps (1.051.10% C) Reamers (1.104.15% C) Twist drills (1.201.25% C) Files (1.351.40% C)
Hot Forging Tools and Dies Dies and inserts Forging machine plungers and pierces	To combine hot hardness with high abrasion resistance: M2, T1	Dies for presses and hammers: H20, H21 For severe conditions over extended service periods: H22 to H26, also H43	Hot trimming dies: D2	Hot trimming dies Blacksmith tools Hot swaging dies			Smith's tools (1.650.70% C) Hot chisels (0.700.75% C) Drop forging dies (0.904.00% C) Applications limited to short run production
Hot Extrusion Tools and Dies Extrusion dies and mandrels Dummy blocks Valve extrusion tools	Brass extrusion dies: T1	Extrusion dies and dummy blocks: H20 to H26 For tools that are exposed to less heat: H10 to H19		Compression molding: S1			

 ${\bf Table\,5.} (Continued)\,{\bf Quick\,Reference\,Guide\,for\,Tool\,Steel\,Selection}$

264

	Ta	ble 5. (Continued) Q	Quick Reference (Guide for Tool S	Steel Selection	n	
			Tool Steel Cate	gories and AISI Lette	r Symbol		
Application Areas	High-Speed Tool Steels, M and T	Hot-Work Tool Steels, H	Cold-Work Tool Steels, D, A, and O	Shock-Resisting Tool Steels, S	Mold Steels,	Special-Purpose Tool Steels, L and F	Water-Hardening Tool Steels, W
			Examples of Typical Ap	pplications			
Cold-Forming Dies Bending, forming, drawing, and deep drawing dies and punches	Burnishing tools: M1,T1	Cold heading: die- casting dies: H13	Drawing dies: 01 Coining tools: O1, D2 Forming and bending dies: A2 Thread rolling dies: D2	Hobbing and short-run applications:S1, S7 Rivet sets and rivet busters		Blanking, forming, and trimmer dies when toughness has precedence over abrasion resistance: L6	Cold-heading dies: W1 or W2 (C \cong 1.00%) Bending dies: W1 (C \cong 1.00%)
Shearing Tools Dies for piercing, punching, and trimming Shear blades	Special dies for cold- and hot- work: T1 For work requiring high abrasion resistance: M2, M3	For shearing knives: H11, H12 For severe hot shearing applications: M21, M25	Dies for medium runs: A2, A6 also O1 and O4 Dies for long runs: D2, D3 Trimming dies (also for hot trimming): A2	Cold and hot shear blades Hot punching and piercing tools Boilermaker's tools		Knives for work requiring high toughness: L6	Trimming dies (0.90/0.95% C) Cold blanking and punching dies (1.00% C)
Die-Casting Dies and Plastics Molds		For aluminum and lead: H11and H13 For brass: H21	A2 and A6 O1		Plastics molds: P2 to P4, and P20		
Structural Parts for Severe Service Conditions	Roller bearings for high-temperature environment: T1 Lathe centers: M2 and T1	For aircraft components (landing gear, arrester hooks, rocket cases): H11	Lathe centers: D2, D3 Arbors: O1 Bushings: A4 Gages: D2	Pawls Clutch parts		Spindles, clutch parts (where high toughness is needed): L6	Spring steel (1.10/1.15% C)
Battering Tools for Hand and Power Tool Use				Pneumatic chisels for cold-work: S5 For higher performance: S7			For intermittent use: W1 (0.80% C)

Machinery's Handbook Pocket Companion

	Table 6. Molybdenum High-Speed Steels Identifying Chemical Composition and Typical Heat-Treatment Data																				
					Id	entifyin	g Chemi	ical Con	position	and Typ	oical Hea	t-Treatn	nent Dat	a							
	AIS	SI Type		M1	M2	M3 Cl. 1	M3 Cl. 2	M4	M6	M7	M10	M30	M33	M34	M36	M41	M42	M43	M44	M46	M47
Identifying		С		0.80	0.85 1.00	1.05	1.20	1.30	0.80	1.00	0.85 1.00	0.80	0.90	0.90	0.80	1.10	1.10	1.20	1.15	1.25	1.10
Chemical		W		1.50	6.00	6.00	6.00	5.50	4.00	1.75		2.00	1.50	2.00	6.00	6.75	1.50	2.75	5.25	2.00	1.50
Elements in Percent	1	Mo		8.00	5.00	5.00	5.00	4.50	5.00	8.75	8.00	8.00	9.50	8.00	5.00	3.75	9.50	8.00	6.25	8.25	9.50
T Green		Cr		4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.25	3.75	3.75	4.25	4.00	3.75
		V		1.00	2.00	2.40	3.00	4.00	1.50	2.00	2.00	1.25	1.15	2.00	2.00	2.00	1.15	1.60	2.25	3.20	1.25
		Co							12.00			5.00	8.00	8.00	8.00	5.00	8.00	8.25	12.00	8.25	5.00
	Hardening Ter Rang		°F	2150- 2225	2175- 2225	2200- 2250	2200- 2250	2200- 2250	2150- 2200	2150- 2225	2150- 2225	2200- 2250	2200- 2250	2200- 2250	2225- 2275	2175- 2220	2175- 2210	2175- 2220	2190- 2240	2175- 2225	2150- 2200
	Kang	ge	°C	1177- 1218	1191– 1218	1204- 1232	1204- 1232	1204- 1232	1177- 1204	1177- 1218	1177- 1218	1204- 1232	1204- 1232	1204- 1232	1218- 1246	1191– 1216	1191- 1210	1191– 1216	1199– 1227	1191– 1218	1177- 1204
Treatment	Heat- Treatment Tempering Data Temperature Range		°F	1000- 1100	1000- 1160	1000- 1100	950- 1100	950– 1100	1000- 1160	975– 1050	975- 1100										
Data		°C	538- 593	538– 627	538- 593	538- 593	538– 593	538- 593	538– 593	538– 593	538- 593	538- 593	538- 593	538- 593	538– 593	510- 593	510- 593	538– 627	524– 566	524– 594	
	Approx. Tem RC (Rock	npered Hard well C scal		65–60	65–60	66–61	66–61	66–61	66–61	66–61	65–60	65–60	65–60	65–60	65–60	70–65	70-65	70-65	70–62	69–67	70-65
						Rel	ative Ra	tings of	Properti	es (A = g	greatest t	o E = lea	nst)								
	Safety in	n Hardening	<u> </u>	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
	Depth of	f Hardening	g	A	A	A	A	A	A	A	A	A	A	A	A	A	Α	A	A	A	A
Characteristics	Resistance to	Decarburiz	ation	С	В	В	В	В	С	С	C	С	С	С	С	C	С	С	С	С	С
in Heat Treatment	Stability of Quench- Shape in ing	Air or Salt	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	
	Heat Treatment	Medium	Oil	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
	Mach	ninability		D	D	D	D/E	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Service		Hardness		В	В	В	В	В	A	В	В	A	A	A	A	A	A	A	A	A	A
Properties		Resistance		В	В	В	В	A	В	В	В	В	В	В	В	В	В	В	В	В	В
	Toughness			Е	E	E	E	Е	Е	E	E	E	E	E	E	E	E	E	Е	E	Е

Table 7. Hot-Work Tool Steels

266

						Table	7. Hot	-Work	Tool S	teels								
				Ide	entifying	Chemical	Compos	ition and	Typical H	eat-Treati	ment Data	ı						
AISI		Group				Chromiu	ım Types					Tungste	n Types			Moly	bdenum '	Гуреs
		Туре		H10	H11	H12	H13	H14	H19	H21	H22	H23	H24	H25	H26	H41	H42	H43
		С		0.40	0.35	0.35	0.35	0.40	0.40	0.35	0.35	0.35	0.45	0.25	0.50	0.65	0.60	0.55
Identifying		W				1.50		5.00	4.25	9.00	11.00	12.00	15.00	15.00	18.00	1.50	6.00	
Chemical		Mo		2.50	1.50	1.50	1.50									8.00	5.00	8.00
Elements in Percent		Cr		3.25	5.00	5.00	5.00	5.00	4.25	3.50	2.00	12.00	3.00	4.00	4.00	4.00	4.00	4.0
reicent		V		0.40	0.40	0.40	1.00		2.00						1.00	1.00	2.00	2.0
		Со							4.25									
	Hardening To Ran		°F	1850– 1900	1825– 1875	1825– 1875	1825- 1900	1850– 1950	2000– 2200	2000- 2200	2000– 2200	2000– 2300	2000– 2250	2100- 2300	2150– 2300	2000– 2175	2050– 2225	200 217
Heat-Treatment Data	Tamparing Tamparatura		°C	1010- 1038	996– 1024	996– 1024	996- 1038	1010- 1066	1093- 1204	1093- 1204	1093- 1204	1093- 1260	1093- 1232	1149– 1260	1177- 1260	1093- 1191	1121- 1218	109: 119:
	Tempering Temperature Range		°F	1000- 1200	1000- 1200	1000- 1200	1000- 1200	1100- 1200	1000- 1300	1100- 1250	1100- 1250	1200- 1500	1050- 1200	1050- 1250	1050- 1250	1050- 1200	1050- 1200	105 120
			°C	538- 649	538- 649	538- 649	538- 649	593- 649	538- 704	593- 677	593– 677	649– 816	566- 649	566- 677	566– 677	566- 649	566- 649	566- 649
	Approx. Tempered Hardness, RC (Rockwell C scale)			56–39	54–38	55–38	53–38	47–40	59–40	54–36	52–39	47–30	55–45	44–35	58–43	60–50	60-50	58-4
					Relat	ive Rating	gs of Prop	erties (A	= greates	to D = le	ast)							
	Safety	in Hardening	g	A	A	A	A	A	В	В	В	В	В	В	В	С	С	С
	Depth	of Hardening	g	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
Characteristics	Resistance	to Decarburi	zation	В	В	В	В	В	В	В	В	В	В	В	В	С	В	С
in Heat Treatment	Stability of Shape in Heat	Quenching Medium	Air or Salt	В	В	В	В	С	С	С	С		С	С	С	С	С	С
	Treatment	cuium	Oil						D	D	D	D	D	D	D	D	D	D
	Ma	chinability		C/D	C/D	C/D	C/D	D	D	D	D	D	D	D	D	D	D	D
	Но	t Hardness		С	С	С	С	С	С	С	С	В	В	В	В	В	В	В
Service Properties	Wea	r Resistance		D	D	D	D	D	C/D	C/D	C/D	C/D	С	D	С	С	С	C
	T	oughness		С	В	В	В	С	С	С	С	D	D	С	D	D	D	D

Table 8. Tungsten High-Speed Tool Steels — Identifying Chemical Composition and Typical Heat-Treatment Data

	AISI Type		T1	T2	T4	T5	Т6	Т8	T15
			Identifying Chen	nical Elements in	Percent				
	С		0.75	0.80	0.75	0.80	0.80	0.75	1.50
	W		18.00	18.00	18.00	18.00	20.00	14.00	12.00
	Cr		4.00	4.00	4.00	4.00	4.50	4.00	4.00
	V		1.00	2.00	1.00	2.00	1.50	2.00	5.00
	Co				5.00			5.00	5.00
			Heat-T	reatment Data					
Hardening Temperate	ure Range	°F	2300-2375	2300-2375	2300-2375	2325-2375	2325–2375	2300-2375	2200-2300
		℃	1260-1302	1260-1302	1260-1302	1274-1302	1274–1302	1260-1302	1204-1260
Tempering Temperat	ure Range	°F	1000-1100	1000-1100	1000-1100	1000-1100	1000-1100	1000-1100	1000-1200
		°C	538-593	538-593	538-593	538-593	538-593	538-593	538-649
Approx. Tempered H	lardness, RC (Rockwell	C scale)	65-60	66-61	66-62	65-60	65-60	65-60	68-63
			Characteristi	cs in Heat Treatm	ent ^a	,			,
Safe	ty in Hardening		С	С	D	D	D	D	D
Dept	h of Hardening		A	A	A	A	A	A	A
Resistanc	e to Decarburization		A	A	В	С	С	В	В
Stability of Shape	Quenching	Air or Salt	С	С	С	С	С	С	С
in Heat Treatment	Medium	Oil	D	D	D	D	D	D	D
			Servi	ce Properties					
M	Iachinability		D	D	D	D	D/E	D	D/E
H	ot Hardness		В	В	A	A	A	A	A
We	ar Resistance		В	В	В	В	В	В	A
	Toughness		Е	Е	Е	Е	Е	Е	Е

^a Relative Ratings of Properties (A = greatest to E = least)

Table 9. Cold-Work Tool Steels

	Table 9. Cold-Work Tool Steels Identifying Chemical Composition and Typical Heat-Treatment Data																		
					,	0 -	cal Comp	position a	and Typic	al Heat-	Treatmen	nt Data							
AISI	Group				gh-Carbo hromiun				N	Aedium	Alloy, Ai	r-Harden	ing Type	:s		C	il-Harde	ning Typ	es
	Types		D2	D3	D4	D5	D7	A2	A3	A4	A6	A7	A8	A9	A10	01	O2	O6	07
	С		1.50	2.25	2.25	1.50	2.35	1.00	1.25	1.00	0.70	2.25	0.55	0.50	1.35	0.90	0.90	1.45	1.20
	Mn									2.00	2.00				1.80	1.00	1.60		
Identifying	Si														1.25			1.00	
Chemical	W											1.00	1.25			0.50			1.75
Elements in	Mo		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.25	1.00	1.25	1.40	1.50			0.25	
Percent	Cr		12.00	12.00	12.00	12.00	12.00	5.00	5.00	1.00	1.00	5.25	5.00	5.00		0.50			0.75
	V		1.00				4.00		1.00			4.75		1.00					
	Со					3.00													
	Ni													1.50	1.80				
	Hardening	°F	1800- 1875	1700- 1800	1775- 1850	1800- 1875	1850- 1950	1700- 1800	1750- 1850	1500- 1600	1525- 1600	1750- 1800	1800- 1850	1800- 1875	1450- 1500	1450- 1500	1400- 1475	1450- 1500	1550- 1525
Heat-Treatment Data	_	°C	982- 1024	927- 982	968– 1010	982- 1024	1010- 1066	927- 982	954– 1010	816– 871	829- 871	954– 982	982- 1010	982- 1024	788– 816	788– 816	760- 802	788– 816	843- 829
	Quenching Medium		Air	Oil	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Oil	Oil	Oil	Oil
	Tempering	°F	400- 1000	400- 1000	400- 1000	400- 1000	300- 1000	350- 1000	350- 1000	350- 800	300- 800	300- 1000	350- 1100	950- 1150	350- 800	350- 500	350- 500	350- 600	350- 550
	Temperature Range	°C	204– 538	204– 538	204– 538	204- 538	149- 538	177- 538	177- 538	177- 427	149- 427	149- 538	177- 593	510- 621	177- 427	177- 260	177- 260	177- 316	177- 288
	Approx. Tempered Har RC (Rockwell C sca		61–54	61–54	61–54	61–54	65–58	62–57	65–57	62–54	60–54	67–57	60–50	56–35	62–55	62–57	62–57	63–58	64–58
					Re	lative Ra	tings of F	roperties	(A = gre	atest to E	E = least)								
	Safety in Hardening		A	С	A	A	A	A	A	A	A	A	A	A	A	В	В	В	В
	Depth of Hardening		A	A	A	A	A	A	A	A	A	A	A	A	A	В	В	В	В
Characteristics in Heat	Resistance to Decarburization		В	В	В	В	В	В	В	A/B	A/B	В	В	В	A/B	A	A	A	A
Treatment	Stability of Shape in Heat Treatment		A	В	A	A	A	A	A	A	A	A	A	A	A	В	В	В	В
	Machinability		Е	Е	Е	Е	Е	D	D	D/E	D/E	Е	D	D	C/D	С	С	В	С
Service	Hot Hardness		С	С	С	С	С	С	С	D	D	С	С	С	D	Е	Е	Е	Е
Properties	Wear Resistance		B/C	В	В	B/C	A	С	В	C/D	C/D	A	C/D	C/D	С	D	D	D	D
•	Toughness		Е	Е	Е	Е	Е	D	D	D	D	Е	С	С	D	D	D	D	С

Table 10. Shock-Resisting, Mold, and Special-Purpose Tool Steels

	Iable 10. Snock-Resisting, Moid, and Special-Purpose 1001 Steels Identifying Chemical Composition and Typical Heat-Treatment Data																		
					I	dentifyin	g Chemic	al Compo	sition and T	ypical Hea	t-Treatmen	t Data							
	Ca	itegory		Shoc	k-Resisti	ng Tool S	teels			N	Aold Steels				S	pecial-Pu	rpose Too	ol Steels	
AISI	Т	Types		S1	S2	S5	S7	P2	P3	P4	P5	P6	P20	P21a	L2b	L3b	L6	Fl	F2
		С		0.50	0.50	0.55	0.50	0.07	0.10	0.07	0.10	0.10	0.35	0.20	0.50/1.10	1.00	0.70	1.00	1.25
		Mn				0.80													
**		Si			1.00	2.00													
Identifying Elements		W		2.50														1.25	3.50
in Percent		Mo			0.50	0.40	1.40	0.20		0.75			0.40				0.25		
in rescent		Cr		1.50			3.25	2.00	0.60	5.00	2.25	1.50	1.25		1.00	1.50	0.75		
		V													0.20	0.20			
		Ni						0.50	1.25			3.50		4.00			1.50		
	Hardeni	nø	°F	1650- 1750	1550- 1650	1600- 1700	1700- 1750	1525- 1550°	1475- 1525°	1775- 1825°	1550- 1600°	1450- 1500°	1500- 1600°	Soln. treat.	1550- 1700	1500- 1600	1450- 1550	1450- 1600	1450- 1600
	Temperat			899-	843-	871-	927-	829-	802-	968-	843-	788-	816-	Soln.	843-	816-	788-	788-	788-
	Heat-		°C	954	899	927	955	843c	829c	996c	871c	816c	871c	treat.	927	871	843	871	871
		mering	°F	400-	350-	350-	400-	350-	350-	350-	350-	350-	900-	Aged	350-	350-	350-	350-	350-
Data	Temperi		Г	1200	800	800	1150	500	500	900	500	450	1100	Ageu	1000	600	1000	500	500
	Temp. Ra	inge	°C	204- 649	177- 427	177- 427	204- 621	177- 260	177- 260	177– 482	177- 260	177- 232	482- 593	Aged	177- 538	177– 316	177- 538	177- 260	177- 260
	Approx. Temp (Rockw	ered Hardn vell C scale)		58-40	60-50	60–50	57–45	64–58 ^d	64–58 ^d	64–58 ^d	64–58 ^d	61–58 ^d	37-28 ^d	40-30	63-45	63–56	62–45	64–60	65-62
						Rel	ative Rati	ings of Pro	perties (A =	greatest to	E = least)								
	Safety in	n Hardening	g	С	E	С	B/C	С	C	С	C	С	С	A	D	D	C	E	E
Characteristics	Depth o	f Hardening	g	В	В	В	A	Be	Be	Be	Be	Ac	В	A	В	В	В	C	С
in Heat	Resist.	to Decarb.		В	C	С	В	A	A	A	A	A	A	A	A	A	A	A	A
Treatment	Stability of	O	Air				A			В		В	C	A					
	Shape in Heat Quench.	Oil	D		D	С	C	C		C	С		A	D	D	C			
	Treatment		Water		E						E				E	E		E	E
		ninability		D	C/D	C/D	D	C/D	D	D/E	D	D	C/D	D	С	С	D	С	D
Service		Hardness		D	E	E	С	Е	E	D	E	E	Е	D	E	E	E	E	E
Properties		Resistance		D/E	D/E	D/E	D/E	D	D	C	D	D	D/E	D	D/E	D	D	D	B/C
	Tot	ighness		В	A	A	В	C	C	C	C	C	C	D	В	D	В	E	E

^aContains also about 1.20 percent A1. Solution treated in hardening.

^bQuenched in oil.

^cAfter carburizing. ^dCarburized case.

^eCore hardenability. ^fSometimes brine is used.

Fig. 1. Phase Diagram of Carbon Steel

Table 11. Temperature of Steel as Indicated by Color Related to Heat Treatment of Steel Cutting Tools

Temp	erature		
°F	°C	Color of Steel	Processes and Tool Tempering Temperatures
420	216	Faint yellow	Carbon tool steel tempering (300–1050°F), hammer heads, thin knife blades, razors, wood engraving burins, scribes.
430	221	Very pale yellow	Carbon tool steel tempering, reamers, hollow mills (solid type) for roughing on automatic screw machines, forming tools for automatic screw machines, cut off tools for automatic screw machines, formed milling cutters.
440	227	Light yellow	Carbon tool steel tempering, lathe tools, milling cutters, reamers, profile cutters for milling machines (440–450°F), drill bits (400–445°F)

Table 11.(Continued) Temperature of Steel as Indicated by Color Related to Heat Treatment of Steel Cutting Tools

Temp	erature	10 11041 1104	timent of Steef Cutting Tools
°F	°C	Color of Steel	Processes and Tool Tempering Temperatures
450	232	Pale straw-yellow	Carbon tool steel tempering, razors, twist drills for hard service, centering tools for automatic screw machines, hatchets and axes
460	238	Straw-yellow	Carbon tool steel tempering, drill bits, dies, punches, reamers, thread rolling dies, counterbores and countersinks, snaps for pneumatic hammers (harden full length, temper to 460°F, then bring point to \$20°F).
470	243	Deep straw-yellow	Carbon tool steel tempering, various kinds of wood cutting tools (470–490°F)
480	249	Dark yellow	Carbon tool steel tempering, drills, taps, knurls (485°F), cutters for tube or pipe-cutting machines.
490	254	Yellowish-brown	Carbon tool steel tempering. Thread dies for tool steel or steel tube (495°F), cold chisels, stone carving tools, punches, dies.
500	260	Brown-yellow	Carbon tool steel tempering, wood (chipping) chisels, saws, drifts, thread dies for general work, taps 1 inch or over, for use on automatic screw machines, nut taps 1 inch and under.
510	266	Spotted red-brown	Carbon tool steel tempering, taps 1 inch and under, for use on automatic screw machines (515–520°F)
520	271	Brown-purple	Carbon tool steel tempering
530	277	Light purple	Carbon tool steel tempering, percussive tools, thread dies to cut thread close to shoulder (525–530°F), dies for bolt threader threading to shoulder (525–540°F)
540	282	Full purple	Carbon tool steel tempering, punches (center), wood-carving gouges
550	288	Dark purple/violet	Carbon tool steel tempering, spatulas, table knives, shear blades
560	293	Full blue	Carbon tool steel tempering, gears, screwdriver blades, springs
570	299	Dark blue	Carbon tool steel tempering, springs
600	316	Medium blue	Carbon tool steel tempering, springs, spokeshave blades, scrapers, thin knife blades (580–650°F), rivet snaps (575–600°F)
640	338	Light blue	Carbon tool steel tempering, springs (650–900°F), for hard parts
700–800	371–427	Black-red — visible in low light or dark	Carbon tool steel tempering
885	474	Red—visible at twilight	Carbon tool steel tempering
975	523.9	Red—visible in daylight	Carbon tool steel tempering
1000	538	Very dark red— visible in daylight	Carbon tool steel tempering, high-speed steel tempering (1000–1100°F)
1100	593	Dark red—visible in sunlight	High-speed steel tempering
1300	704	Dark red	
1400	760	Dark cherry-red	Carbon tool steel hardening (1350–1550°F)
1475	802	Dull cherry-red	Carbon tool steel hardening
1550	843	Light cherry-red	Alloy tool steel hardening (1500–1950°F)
1650	899	Cherry-red	Alloy tool steel hardening
1800	982	Orange-red Yellow	Alloy tool steel hardening
2000 2300	1093 1260	Yellow-white	High and death and air a (2250, 24009F)
2400	1316	White	High-speed steel hardening (2250–2400°F) High-speed steel hardening
2500	1371	White	Welding
2750	1590	Brilliant white	
3000	1649	Dazzling blue-white	

Table 12. Comparative Hardness Scales for Steel

Brinell Hardness Rockwell Rockwell										
	Number 10-mm Ball.					twell Iness		Shore		
	D: 1	3000-kaf Load		Number		Hardness Number Superficial Diam. Penetrator			Sclero-	
Rockwell	Diamond Pyramid				A-Scale	D-Scale	15-N	30-N	45-N	scope Hard-
C-Scale	Hardness			Tungsten	60-kgf	100-kgf	Scale	Scale	Scale	ness
Hardness	Number	Standard	Hultgren	Carbide	Load Diam.	Load Diam.	15-kgf	30-kgf	45-kgf	Num-
Number	Vickers	Ball	Ball	Ball	Penetrator	Penetrator	Load	Load	Load	ber
68	940				85.6	76.9	93.2	84.4	75.4	97
67	900				85.0	76.1	92.9	83.6	74.2	95
66	865				84.5	75.4	92.5	82.8	73.3	92
65 64	832 800			(739)	83.9 83.4	74.5 73.8	92.2 91.8	81.9 81.1	72.0 71.0	91 88
63	772			(722) (705)	83.4 82.8	73.0	91.8	80.1	69.9	87
62	746			(688)	82.3	72.2	91.1	79.3	68.8	85
61	720			(670)	81.8	71.5	90.7	78.4	67.7	83
60	697		(613)	(654)	81.2	70.7	90.2	77.5	66.6	81
59	674		(599)	(634)	80.7	69.9	89.8	76.6	65.5	80
58	653		(587)	615	80.1	69.2	89.3	75.7	64.3	78
57	633		(575)	595	79.6	68.5	88.9	74.8	63.2	76
56	613		(561)	577	79.0	67.7	88.3	73.9	62.0	75
55	595		(546)	560	78.5	66.9	87.9	73.0	60.9	74
54 53	577 560		(534) (519)	543 525	78.0 77.4	66.1 65.4	87.4 86.9	72.0 71.2	59.8 58.6	72 71
53 52	560 544	(500)	(519)	525 512	76.8	65.4 64.6	86.9 86.4	70.2	58.6 57.4	69
51	528	(487)	(494)	496	76.3	63.8	85.9	69.4	56.1	68
50	513	(475)	(481)	481	75.9	63.1	85.5	68.5	55.0	67
49	498	(464)	(469)	469	75.2	62.1	85.0	67.6	53.8	66
48	484	(451)	(455)	455	74.7	61.4	84.5	66.7	52.5	64
47	471	442	443	443	74.1	60.8	83.9	65.8	51.4	63
46	458	432	432	432	73.6	60.0	83.5	64.8	50.3	62
45	446	421	421	421	73.1	59.2	83.0	64.0	49.0	60
44	434	409	409	409	72.5	58.5	82.5	63.1	47.8	58
43 42	423 412	400 390	400 390	400 390	72.0 71.5	57.7 56.9	82.0 81.5	62.2 61.3	46.7 45.5	57 56
42	402	381	381	381	70.9	56.2	80.9	60.4	45.5	55
40	392	371	371	371	70.4	55.4	80.4	59.5	43.1	54
39	382	362	362	362	69.9	54.6	79.9	58.6	41.9	52
38	372	353	353	353	69.4	53.8	79.4	57.7	40.8	51
37	363	344	344	344	68.9	53.1	78.8	56.8	39.6	50
36	354	336	336	336	68.4	52.3	78.3	55.9	38.4	49
35	345	327	327	327	67.9	51.5	77.7	55.0	37.2	48
34	336	319	319	319	67.4	50.8	77.2	54.2	36.1	47
33	327	311	311	311	66.8	50.0	76.6	53.3	34.9	46
32 31	318 310	301 294	301 294	301 294	66.3 65.8	49.2 48.4	76.1 75.6	52.1 51.3	33.7 32.5	44 43
30	302	286	286	286	65.3	47.7	75.0	50.4	31.3	42
29	294	279	279	279	64.7	47.0	74.5	49.5	30.1	41
28	286	271	271	271	64.3	46.1	73.9	48.6	28.9	41
27	279	264	264	264	63.8	45.2	73.3	47.7	27.8	40
26	272	258	258	258	63.3	44.6	72.8	46.8	26.7	38
25	266	253	253	253	62.8	43.8	72.2	45.9	25.5	38
24	260	247	247	247	62.4	43.1	71.6	45.0	24.3	37
23 22	254 248	243 237	243 237	243 237	62.0 61.5	42.1 41.6	71.0 70.5	44.0 43.2	23.1 22.0	36 35
22	248	237	237	237	61.5	40.9	69.9	43.2	20.7	35
20	238	231	226	226	60.5	40.9	69.4	41.5	19.6	34
(18)	230	219	219	219						33
(16)	222	212	212	212						32
(14)	213	203	203	203						31
(12)	204	194	194	194						29
(10)	196	187	187	187						28
(8)	188	179	179	179						27
(6)	180	171	171	171						26
(4)	173	165	165	165						25 24
(2)	166 160	158 152	158 152	158 152						24
(0)	100	132	132	132						24

Note: The values in this table shown in **boldface** type correspond to those shown in American Society for Testing and Materials Specification E140-67. Values in () are beyond the normal range and are given for information only.

 $Table~13.~Comparative~Hardness~Scales~for~Unhardened~Steel,\\ Soft-Temper~Steel,~Grey~and~Malleable~Cast~Iron,~and~Nonferrous~Alloys$

Rockwell Superficial Brinell Hardness										
Rockwel	l Hardness	Number	Hardness Number			Rockwell Hardness Number			Number	
Rockwell B scale 1/2, Ball Penetrator 100-kg Load	Rockwell F scale 1/2 "Ball Penetrator 60-kg Load	Rockwell G scale 150-kg Load	Rockwell Superficial 15-T scale 1/6 "Ball Penetrator 15-kg Load	Rockwell Superficial 30-T scale 1/2 "Ball Penetrator 30-kg Load	Rockwell Superficial 45-T scale 1/2 "Ball Penetrator 45-kg Load	Rockwell E scale 1/8" Ball Penetrator 100-kg Load	Rockwell K scale 150-kg Load	Rockwell A scale "Brale" Penetrator 60-kg Load	Brinell Scale 10-mm Standard Ball 500-kg Load	Brinell Scale 10-mm Standard Ball 3000-kg Load
100		82.5	93.0	82.0	72.0			61.5	201	240
99		81.0	92.5	81.5	71.0			61.0	195	234
98		79.0		81.0	70.0			60.0	189	228
97		77.5	92.0	80.5	69.0			59.5	184	222
96		76.0	 91.5	80.0	68.0			59.0	179	216
95 94		74.0 72.5	91.5	79.0 78.5	67.0 66.0			58.0 57.5	175 171	210 205
93		71.0	91.0	78.0	65.5			57.0	167	200
92		69.0	90.5	77.5	64.5		100	56.5	163	195
91		67.5		77.0	63.5		99.5	56.0	160	190
90		66.0	90.0	76.0	62.5		98.5	55.5	157	185
89		64.0	89.5	75.5	61.5		98.0	55.0	154	180
88		62.5		75.0	60.5		97.0	54.0	151	176
87 86		61.0 59.0	89.0 88.5	74.5 74.0	59.5 58.5		96.5 95.5	53.5 53.0	148 145	172 169
85		57.5		73.5	58.0		94.5	52.5	143	165
84		56.0	88.0	73.0	57.0		94.0	52.0	140	162
83		54.0	87.5	72.0	56.0		93.0	51.0	137	159
82		52.5		71.5	55.0		92.0	50.5	135	156
81		51.0	87.0	71.0	54.0		91.0	50.0	133	153
80		49.0	86.5	70.0	53.0		90.5	49.5	130	150
79 78		47.5 46.0	86.0	69.5 69.0	52.0 51.0		89.5 88.5	49.0 48.5	128 126	147 144
77		44.0	85.5	68.0	50.0		88.0	48.0	126	144
76		42.5		67.5	49.0		87.0	47.0	122	139
75	99.5	41.0	85.0	67.0	48.5		86.0	46.5	120	137
74	99.0	39.0		66.0	47.5		85.0	46.0	118	135
73	98.5	37.5	84.5	65.5	46.5		84.5	45.5	116	132
72	98.0	36.0	84.0	65.0	45.5		83.5	45.0	114	130
71 70	97.5 97.0	34.5 32.5	83.5	64.0 63.5	44.5 43.5	100 99.5	82.5 81.5	44.5 44.0	112 110	127 125
69	96.0	31.0	83.0	62.5	42.5	99.0	81.0	43.5	109	123
68	95.5	29.5		62.0	41.5	98.0	80.0	43.0	107	121
67	95.0	28.0	82.5	61.5	40.5	97.5	79.0	42.5	106	119
66	94.5	26.5	82.0	60.5	39.5	97.0	78.0	42.0	104	117
65	94.0	25.0		60.0	38.5	96.0	77.5		102	116
64 63	93.5 93.0	23.5 22.0	81.5 81.0	59.5 58.5	37.5 36.5	95.5 95.0	76.5 75.5	41.5 41.0	101 99	114 112
62	93.0	20.5	81.0	58.5 58.0	35.5	95.0	74.5	40.5	99	112
61	92.0	19.0	80.5	57.0	34.5	94.5	74.0	40.3	96	108
60	91.0	17.5		56.5	33.5	93.0	73.0	39.5	95	107
59	90.5	16.0	80.0	56.0	32.0	92.5	72.0	39.0	94	106
58	90.0	14.5	79.5	55.0	31.0	92.0		71.0	38.5	92
57	89.5	13.0		54.5	30.0	91.0		70.5	38.0	91
56	89.0	11.5	79.0	54.0	29.0	90.5		69.5	27.5	90
55 54	88.0 87.5	10.0 8.5	78.5	53.0 52.5	28.0 27.0	90.0 89.5		68.5 68.0	37.5 37.0	89 87
53	87.5 87.0	8.5 7.0	78.0	52.5 51.5	26.0	89.5 89.0		67.0	36.5	87 86
52	86.5	5.5	77.5	51.0	25.0	88.0		66.0	36.0	85
51	86.0	4.0		50.5	24.0	87.5		65.0	35.5	84
50	85.5	2.5	77.0	49.5	23.0	87.0		64.5	35.0	83
50	85.5	2.5	77.0	49.5	23.0	87.0		64.5	35.0	83
49	85.0	1.0	76.5	49.0	22.0	86.5		63.5		82

Table 13.(Continued) Comparative Hardness Scales for Unhardened Steel, Soft-Temper Steel, Grey and Malleable Cast Iron, and Nonferrous Alloys

	Temper Steel, Grey and Malleable Cast Iron, and Nonferrous Alloys										
Rockwel	Rockwell Superficial Rockwell Hardness Number Hardness Number					Rockwell Hardness Number			Brinell Hardness Number		
Rockwell B scale ''," Ball Penetrator 100-kg Load	Rockwell F scale V ₁₆ " Ball Penetrator 60-kg Load	Rockwell G scale 150-kg Load 150-kg Load	Rockwell Superficial 15-T scale 16" Ball Penetrator 15-kg Load	Rockwell Superficial 30-T scale 16 Mall Penetrator 30-kg Load	Rockwell Superficial 45-T scale 16" Ball Penetrator 45-kg Load	Rockwell E scale 1/8" Ball Penetrator 100-kg Load	Rockwell K scale 1/8" Ball Penetrator 150-kg Load	Rockwell A scale "Brale" Penetrator 60-kg Load	Brinell Scale 10-mm Standard Ball 500-kg Load	Brinell Scale 10-mm Standard Ball 3000-kg Load	
48	84.5			48.5	20.5	85.5		62.5	34.5	81	
47	84.0		76.0	47.5	19.5	85.0		61.5	34.0	80	
46	83.0		75.5	47.0	18.5	84.5		61.0	33.5		
45	82.5			46.0	17.5	84.0		60.0	33.0	79	
44	82.0		75.0	45.5	16.5	83.5		59.0	32.5	78	
43	81.5		74.5	45.0	15.5 14.5	82.5 82.0		58.0	32.0 31.5	77 76	
42 41	81.0 80.5		74.0	44.0 43.5	13.5	81.5		57.5 56.5	31.0	75	
40	79.5		73.5	43.0	12.5	81.0		55.5			
39	79.0			42.0	11.0	80.0		54.5	30.5	74	
38	78.5		73.0	41.5	10.0	79.5		54.0	30.0	73	
37	78.0		72.5	40.5	9.0	79.0		53.0	29.5	72	
36	77.5			40.0	8.0	78.5	100	52.0	29.0		
35	77.0		72.0	39.5	7.0	78.0	99.5	51.5	28.5	71	
34	76.5		71.5	38.5	6.0	77.0	99.0	50.5	28.0	70	
33	75.5			38.0	5.0	76.5		49.5		69	
32	75.0		71.0	37.5	4.0	76.0	98.5	48.5	27.5		
31	74.5			36.5	3.0	75.5	98.0	48.0	27.0	68	
30	74.0		70.5	36.0	2.0	75.0		47.0	26.5	67	
29	73.5		70.0	35.5	1.0	74.0	97.5	46.0	26.0		
28 27	73.0 72.5		69.5	34.5 34.0		73.5 73.0	97.0 96.5	45.0 44.5	25.5 25.0	66	
26	72.0		69.0	33.0		72.5	90.5	43.5	24.5	65	
25	71.0			32.5		72.0	96.0	42.5	24.5	64	
24	70.5		68.5	32.0		71.0	95.5	41.5	24.0		
23	70.0		68.0	31.0		70.5		41.0	23.5	63	
22	69.5			30.5		70.0	95.0	40.0	23.0		
21	69.0		67.5	29.5		69.5	94.5	39.0	22.5	62	
20	68.5			29.0		68.5		38.0	22.0		
19	68.0		67.0	28.5		68.0	94.0	37.5	21.5	61	
18	67.0		66.5	27.5		67.5	93.5	36.5			
17	66.5			27.0		67.0	93.0	35.5	21.0	60	
16	66.0		66.0	26.0		66.5		35.0	20.5		
15 14	65.5 65.0		65.5	25.5 25.0		65.5 65.0	92.5 92.0	34.0 33.0	20.0	59	
13	64.5		65.0	24.0		64.5		32.0		 58	
12	64.0		64.5	23.5		64.0	 91.5	31.5			
11	63.5			23.0		63.5	91.0	30.5			
10	63.0		64.0	22.0		62.5	90.5	29.5		57	
9	62.0			21.5		62.0		29.0			
8	61.5		63.5	20.5		61.5	90.0	28.0			
7	61.0		63.0	20.0		61.0	89.5	27.0		56	
6	60.5			19.5		60.5		26.0			
5	60.0		62.5	18.5		60.0	89.0	25.5		55	
4	59.5		62.0	18.0		59.0	88.5	24.5			
3	59.0			17.0		58.5	88.0	23.5			
2	58.0		61.5	16.5		58.0		23.0		54	
1 0	57.5 57.0		61.0	16.0		57.5 57.0	87.5	22.0		52	
U	57.0			15.0		57.0	87.0	21.0		53	

Not applicable to annealed metals of high B-scale hardness such as austenitic stainless steels, nickel and high-nickel alloys nor to cold-worked metals of low B-scale hardness such as aluminum and the softer alloys.

(Compiled by Wilson Mechanical Instrument Co.)

MATERIALS

Machinery's Handbook Pocket Companion

Table 14. Weights of Various Metals and Shapes in Pounds per Linear Foot

Steel, Stainless 300 series 2.700 \times D ² 3.437 \times D ² 2.977 \times D ² 2.847 \times D ² 3.437 \times T \times W 10.787 \times (OD-w) \times v 10.787 \times (OD-w)							
Sizel, Stainless 400 series 2,700 x D 3,437 x D 2,977 x D 2,847 x D 3,437 x X W 10,787 x (DD w) x x Aluminum 1100 0.925 x D 1,180 x D 1,200 x D 1,180 x D 1,200 x D 1,180 x	Metal	Rounds	Squares	Hexagons	Octagons	Flats	Round Tubing
Steel, Stainless 400 series	Steel, Carbon & Alloy	2.673×D ²	3.403 × D ²	2.947 × D ²	2.819×D ²	3.403×T×W	10.680×(OD-w)×v
Aluminum 100	Steel, Stainless 300 series	2.700 × D ²	$3.437 \times D^{2}$	2.977 × D ²	2.847 × D ²	3.437×T×W	10.787 × (OD-w) × v
Aluminum 2011	Steel, Stainless 400 series	2.673×D ²	$3.403 \times D^{2}$	2.947 × D ²	2.819 × D ²	3.403×T×W	10.680×(OD-w)×v
Aluminum 2014 0.954 \times D	Aluminum 1100	$0.925 \times D^2$	$1.180 \times D^{2}$	1.020 × D ²	$0.976 \times D^2$	1.180×T×W	3.700×(OD-w)×w
Aluminum 2017 Aluminum 2017	Aluminum 2011	0.963 × D ²	$1.227 \times D^2$	1.062 × D ²	1.016 × D ²	1.227×T×W	3.849×(OD-w)×w
Aluminum 2024 Aluminum 2024 0.954 x P	Aluminum 2014	0.954 × D ²	$1.214 \times D^2$	$1.052 \times D^2$	$1.006 \times D^2$	1.214×T×W	3.811×(OD-w)×w
Aluminum 3003	Aluminum 2017	0.954×D ²	$1.214 \times D^2$	1.052 × D ²	$1.006 \times D^2$	1.214×T×W	3.811×(OD-w)×w
Aluminum 500.5 1.178 \times \text{D} 1.166 \times \text{D} 1.164 \times	Aluminum 2024	0.954×D ²	$1.214 \times D^2$	1.052 × D ²	$1.006 \times D^2$	1.214×T×W	3.811×(OD-w)×w
Aluminum 5052	Aluminum 3003	$0.935 \times D^2$	$1.190 \times D^2$	1.031×D ²	$0.986 \times D^2$	1.190×T×W	3.736×(OD-w)×w
Aluminum 5056 0.897 x D² 1.142 x D² 0.989 x D² 0.946 x D² 1.142 x T x W 3.584 x (OD.w) x w 3.582 x	Aluminum 5005	$0.925 \times D^2$	$1.178 \times D^{2}$	1.020 × D ²	0.976×D ²	1.178×T×W	3.697 × (OD-w) × w
Aluminum 5083 0.907 × D² 1.154 × D² 1.000 × D² 0.956 × D² 0.956 × D² 1.154 × T × W 3.623 × (OD-w) × w 3.624 × (OD-w) × w 3.624 × (OD-w) × w 3.624 × (OD-w) × w 3.625 × D² 3.625 ×	Aluminum 5052	0.916×D ²	$1.166 \times D^2$	1.010×D ²	$0.966 \times D^2$	1.166×T×W	3.660×(OD-w)×w
Aluminum 5086	Aluminum 5056	$0.897 \times D^2$	$1.142 \times D^2$	$0.989 \times D^2$	$0.946 \times D^2$	1.142×T×W	3.584×(OD-w)×w
Aluminum 6061 0.925 × D² 1.178 × D² 1.166 × D² 1.214 × T × W 3.869 × (OD-w) × w 3.811 × (OD-w) × w 3.821 × (OD-w) × w 3.821 × (OD-w) × w 3.822 × T × W 3.832 × T × W 3.833 × T × W 3.834 × D × A334 ×	Aluminum 5083	$0.907 \times D^2$	$1.154 \times D^2$	1,000 × D ²	$0.956 \times D^2$	1.154×T×W	3.623 × (OD-w) ×w
Aluminum 6063 0.916 × D²	Aluminum 5086	0.907 × D ²	1.154×D ²	1,000 × D ²	0.956 × D ²	1.154×T×W	3.623×(OD-w)×w
Aluminum 7075 0.954 × D² 1.214 × D² 1.227 × D² 1.052 × D² 1.006 × D² 1.214 × T×W 3.811 × (OD.w) × w 3.811 × (OD.w) × w 3.811 × (OD.w) × w 3.813 × (OD.w) × w 3.849 × (OD.w) × w	Aluminum 6061	0.925×D ²	1.178 × D ²	1.020 × D ²	0.976×D ²	1.178×T×W	3.697 × (OD-w) × w
Aluminum 7178	Aluminum 6063	0.916×D ²	$1.166 \times D^2$	$1.010 \times D^2$	$0.966 \times D^2$	1.166×T×W	3.660×(OD-w)×w
Beryllium 0.631 × D² 0.803 × D² 0.808 × D² 0.696 × D² 0.665 × D² 0.665 × D² 0.803 × T × W 2.520 × (OD.w) ×	Aluminum 7075	0.954 × D ²	$1.214 \times D^2$	1.052 × D ²	$1.006 \times D^2$	1.214×T×W	3.811×(OD-w)×w
Brass 2.897 × D² 3.689 × D² 3.195 × D² 3.056 × D² 3.689 × T × W 11.577 × (OD-w) × Cast Iron 2.435 × D² 3.100 × D² 2.685 × D² 2.568 × D² 3.100 × T × W 9.779 × (OD-w) × Copper 3.058 × D² 3.372 × D² 3.225 × D² 3.255 × D² 3.893 × T × W 12.218 × (OD-w) × Gold 6.591 × D² 8.392 × D² 7.268 × D² 6.950 × D² 8.392 × T × W 26.337 × (OD-w) × Lead 3.870 × D² 4.928 × D² 4.082 × D² 4.928 × T × W 15.465 × (OD-w) × Magnesium 0.612 × D² 0.779 × D² 0.675 × D² 0.646 × D² 0.779 × T × W 2.446 × (OD-w) × Molybdenum 3.483 × D² 4.434 × D² 3.840 × D² 3.674 × D² 4.434 × T × W 13.916 × (OD-w) × Nickel 3.039 × D² 3.869 × D² 3.195 × D² 3.206 × D² 3.689 × T × W 11.577 × (OD-w) × Silver 3.579 × D² 4.557 × D² 3.946 × D² 3.775 × D² 4.557 × T× W 14.301 × (OD-w) × Tin 2.491 × D² 3.172 × D	Aluminum 7178	0.963 × D ²	$1.227 \times D^2$	1.062 × D ²	1.016 × D ²	1.227×T×W	3.849×(OD-w)×w
Cast Iron 2.435 × D² 3.100 × D² 2.685 × D² 3.100 × T × W 9.729 × (OD · w) × w Copper 3.058 × D² 3.893 × D² 3.372 × D² 3.225 × D² 3.893 × T × W 12.218 × (OD · w) × w Gold 6.591 × D² 8.392 × D² 7.268 × D² 6.950 × D² 8.392 × T × W 26.337 × (OD · w) × w Lead 3.870 × D² 4.928 × D² 4.268 × D² 4.928 × D² 4.928 × T × W 15.465 × (OD · w) × w Magnesium 0.612 × D² 0.779 × D² 0.675 × D² 0.646 × D² 0.779 × T × W 2.446 × (OD · w) × w Molybdenum 3.483 × D² 4.434 × D² 3.840 × D² 3.674 × D² 4.434 × T × W 13.916 × (OD · w) × w Monel 2.897 × D² 3.689 × D² 3.195 × D² 3.056 × D² 3.669 × T × W 11.577 × (OD · w) × w Nikel 3.039 × D² 3.869 × D² 3.351 × D² 3.206 × D² 3.869 × T × W 11.577 × (OD · w) × w Silver 3.579 × D² 4.557 × D² 3.946 × D² 3.775 × D² 4.557 × T× W 14.301 × (OD · w) × w Tantalum <t< td=""><td>Beryllium</td><td>0.631×D²</td><td>$0.803 \times D^2$</td><td>$0.696 \times D^2$</td><td>$0.665 \times D^2$</td><td>0.803×T×W</td><td>2.520×(OD-w)×w</td></t<>	Beryllium	0.631×D ²	$0.803 \times D^2$	$0.696 \times D^2$	$0.665 \times D^2$	0.803×T×W	2.520×(OD-w)×w
Copper 3.058 × D² 3.893 × D² 3.372 × D² 3.225 × D² 3.893 × T × W 12.218 × (OD-w) × Gold 6.591 × D² 8.392 × D² 7.268 × D² 6.950 × D² 8.392 × T × W 26.337 × (OD-w) × Lead 3.870 × D² 4.928 × D² 4.268 × D² 4.082 × D² 4.928 × T × W 15.465 × (OD-w) × Magnesium 0.612 × D² 0.779 × D² 0.675 × D² 0.646 × D² 0.779 × T × W 2.446 × (OD-w) × Molybdenum 3.483 × D² 4.434 × D² 3.840 × D² 3.674 × D² 4.434 × T × W 13.916 × (OD-w) × Monel 2.897 × D² 3.689 × D² 3.195 × D² 3.056 × D² 3.689 × T × W 11.577 × (OD-w) × Nickel 3.039 × D² 3.869 × D² 3.351 × D² 3.206 × D² 3.869 × T × W 12.143 × (OD-w) × Silver 3.579 × D² 4.557 × D² 3.946 × D² 3.775 × D² 4.557 × T× W 14.301 × (OD-w) × Tin 2.491 × D² 3.172 × D² 2.747 × D² 2.628 × D² 3.172 × T× W 9.953 × (OD-w) × Tinanium 1.537 × D² </td <td>Brass</td> <td>2.897 × D²</td> <td>$3.689 \times D^2$</td> <td>3.195 × D²</td> <td>$3.056 \times D^{2}$</td> <td>3.689×T×W</td> <td>11.577×(OD-w)×</td>	Brass	2.897 × D ²	$3.689 \times D^2$	3.195 × D ²	$3.056 \times D^{2}$	3.689×T×W	11.577×(OD-w)×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cast Iron	2.435×D ²	$3.100 \times D^{2}$	2.685 × D ²	2.568 × D ²	3.100×T×W	9.729×(OD-w)×w
Lead 3.87 × D² 4.928 × D² 4.268 × D² 4.928 × D² 4.928 × T×W 15.465 × (OD-w) × Magnesium 0.612 × D² 0.779 × D² 0.675 × D² 0.646 × D² 0.779 × T×W 2.446 × (OD-w) × Monel 2.897 × D² 3.689 × D² 3.840 × D² 3.674 × D² 4.434 × T×W 11.916 × (OD-w) × Nickel 3.039 × D² 3.689 × D² 3.195 × D² 3.068 ∨ D² 3.689 × T×W 11.577 × (OD-w) × Silver 3.579 × D² 4.557 × D² 3.946 × D² 3.775 × D² 4.557 × T×W 12.143 × (OD-w) × Tantalum 5.667 × D² 7.215 × D² 6.248 × D² 5.977 × D² 7.215 × T×W 22.642 × (OD-w) × Vin 2.491 × D² 1.575 × D² 1.695 × D² 1.621 × D² 1.957 × T×W 6.141 × (OD-w) × Tinanium 1.537 × D² 1.575 × D² 1.695 × D² 1.621 × D² 1.957 × T×W 6.141 × (OD-w) × Zine 2.435 × D² 3.100 × D² 2.685 × D² 2.568 × D² 3.100 × T×W 9.729 × (OD-w) ×	Copper	$3.058 \times D^2$	$3.893 \times D^{2}$	3,372×D ²	3.225 × D ²	3.893×T×W	12.218×(OD-w)×
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gold	6.591×D ²	$8.392 \times D^2$	7.268 × D ²	6.950 × D ²	8.392×T×W	26.337×(OD-w)×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lead	$3.870 \times D^{2}$	$4.928 \times D^{2}$	4.268 × D ²	$4.082 \times D^{2}$	4.928×T×W	15.465×(OD-w)×
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Magnesium	$0.612 \times D^2$	$0.779 \times D^2$	$0.675 \times D^2$	$0.646 \times D^2$	0.779×T×W	2.446×(OD-w)×w
Nickel $3339 \times D^2$ $3.869 \times D^2$ $3.351 \times D^2$ $3.206 \times D^2$ $3.869 \times T \times W$ $12.143 \times (OD-w) \times Silver$ $3.579 \times D^2$ $4.557 \times$	Molybdenum	$3.483 \times D^2$	$4.434 \times D^{2}$	$3.840 \times D^{2}$	$3.674 \times D^{2}$	4.434×T×W	13.916×(OD-w)×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Monel	$2.897 \times D^{2}$	$3.689 \times D^{2}$	$3.195 \times D^2$	$3.056 \times D^{2}$	3.689×T×W	11.577×(OD-w)×
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nickel	$3.039 \times D^2$	$3.869 \times D^{2}$	$3.351 \times D^2$	$3.206 \times D^2$	3.869×T×W	12.143×(OD-w)×
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Silver	$3.579 \times D^2$	$4.557 \times D^{2}$	3.946 × D ²	$3.775 \times D^{2}$	4.557×T×W	14.301×(OD-w)×
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tantalum	5.667 × D ²	$7.215 \times D^2$	6.248 × D ²	5.977 × D ²	7.215×T×W	22.642×(OD-w)×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tin	2.491 × D ²	$3.172 \times D^2$	$2.747 \times D^2$	$2.628 \times D^{2}$	3.172×T×W	9.953×(OD-w)×w
Zinc $2.435 \times D^2$ $3.100 \times D^2$ $2.685 \times D^2$ $2.568 \times D^2$ $3.100 \times T \times W$ $9.729 \times (OD-w) \times w$	Titanium	1.537 × D ²	$1.575 \times D^{2}$	1.695 × D ²	$1.621 \times D^2$	1.957×T×W	6.141×(OD-w)×w
2.133 AD 2.103 AD 2.100 AD		6.580 × D ²	$8.379 \times D^2$	7.256 × D ²	6.941 × D ²	8.379×T×W	26.294×(OD-w)×
Zirconium $2.170 \times D^2$ $0.763 \times D^2$ $0.393 \times D^2$ $0.289 \times D^2$ $0.763 \times T \times W$ $8.672 \times (OD-w) \times W$		2.435 × D ²	$3.100 \times D^2$	2.685 × D ²	2.568 × D ²	3.100×T×W	9.729×(OD-w)×w
	Zirconium	$2.170 \times D^2$	$0.763 \times D^2$	$0.393 \times D^2$	$0.289 \times D^2$	0.763×T×W	8.672×(OD-w)×w

 $Based \ on information \ from \ Steel \ and \ Aluminum \ Stock \ List \ and \ Reference \ Book \ published \ by \ Earle \ M. \ Jorgensen \ Co.$ $D=Diameter \ or \ Distance \ across \ flats, OD=Outside \ Diameter \ (0.000), T=Thickness \ in inches, W=Width \ in inches, w=wall \ thickness \ (0.000)$

Table 15. Weight of Round, Square, Hexagonal, and Octagonal Carbon Bar Steel Weight in Pounds per Linear foot, from V_{16} to 3 inch Diameter

weight in Founds per Effical foot, from 7 ₁₆ to 3 filed Diameter								
Size or diameter inches	Round	Square	Hexagonal	Octagonal				
1/16	0.010	0.013	0.011	0.016				
1/8	0.042	0.053	0.046	0.044				
3/16	0.094	0.119	0.104	0.099				
1/4	0.167	0.212	0.183	0.176				
5/16	0.261	0.333	0.288	0.276				
3/8	0.376	0.478	0.414	0.397				
7/16	0.511	0.651	0.564	0.540				
1/2	0.667	0.85	0.736	0.705				
9/ ₁₆	0.845	1.076	0.932	0.892				
5/8	1.043	1.328	1.150	1.101				
11/16	1.262	1.607	1.392	1.331				
3/4	1.502	1.913	1.656	1.586				
13/16	1.763	2.245	1.944	1.861				
7/8	2.044	2.603	2.254	2.159				
15/ ₁₆ 1	2.347	2.989	2.588	2.478				
	2.670	3.401	2.944	2.819				
11/16	3.014	3.838	3.324	3.183				
11/8	3.379	4.303	3.727	3.569				
13/16	3.766	4.795	4.152	3.976				
11/,	4.173	5.313	4.601	4.405				
15/16	4.600	5.857	5.069	4.856				
13/8	5.049	6.428	5.567	5.331				
17/16	5.518	7.026	6.075	5.826				
11/2	6.008	7.651	6.625	6.344				
1%	6.520	8.301	7.182	6.883				
15/8	7.051	8.978	7.775	7.445				
111/16	7.604	9.682	8.378	8.028				
13/4	8.178	10.413	9.018	8.633				
113/16	8.773	11.170	9.673	9.261				
17/8	9.388	11.953	10.355	9.911				
1 ¹⁵ / ₁₆ 2	10.024	12.763	11.053	10.574				
	10.682	13.601	11.778	11.276				
21/16	11.360	14.463	12.526	11.988				
21/8	12.059	15.353	13.296	12.724				
23/16	12.778	16.27	14.085	13.478				
21/4	13.519	17.217	14.907	14.264				
25/16	14.280	18.185	15.746	15.083				
23/8	15.068	19.178	16.609	15.893				
27/16	15.866	20.201	17.495	16.752				
21/2	16.690	21.250	18.407	17.619				
29/16	17.534	22.326	19.342	18.505				
25/8	18.401	23.428	20.294	19.436				
211/16	19.287	24.557	21.272	20.364				
23/4	20.195	25.713	22.268	21.301				
213/16	21.123	26.895	23.293	22.310				

 $\textbf{Table 15.} (Continued) \textbf{Weight of Round, Square, Hexagonal, and Octagonal Carbon} \\ \textbf{Bar Steel Weight in Pounds per Linear foot, from } Y_{i6} \text{ to } 3 \text{ inch Diameter}$

Size or diameter				
inches	Round	Square	Hexagonal	Octagonal
27/8	22.072	28.103	24.336	23.302
2 ¹⁵ / ₁₆	23.043	29.339	25.404	24.325
3	24.034	30.601	26.504	25.38
31/16	25.045	31.889		
31/8	26.078	33.204		
33/16	27.132	34.545		
31/4	28.206	35.913		
35/16	28.301	37.308		
33/8	30.417	38.729		
37/16	31.554	40.176		
31/2	32.712	41.651		
3%	33.891	43.151		
35/8	35.091	44.679		
311/16	36.311	46.233		
33/4	37.552	47.813		
313/16	38.815	49.420		
37/8	40.098	51.054		
315/16	41.401	52.714		
4	42.726	54.401		

Table 16. Aluminum Allov Properties and Designations

Ci C		C
Series Group	Alloying Elements	Comments
1 xxx	See notes below	High corrosion resistance; high thermal and electrical conductivity, low mechanical properties and good workability.
2 xxx	Copper	Require solution heat treatment to obtain optimum properties. In some cases artificial aging can further increase mechanical properties.
3 xxx	Manganese	Generally not heat treatable. 3003 is used for moderate strength applications requiring good workability.
4 xxx	Silicon	Most alloys in this series are not heat treatable.
5 xxx	Magnesium	Good welding characteristics and resistance to corrosion in marine atmospheres.
6 xxx	Magnesium and Silicon	Capable of being heat treated; may be formed in the -T4 temper and then reach full -T6 properties by artificial aging. Good formability and corrosion resistance with medium strength.
7 xxx	Zinc	When coupled with a smaller percentage of magnesium results in heat treatable alloys of very high strength. Usually other elements such as Copper and Chromium are added in small quantities.
8 xxx	Other Elements	
9 xxx		Unused Series (not currently assigned)

 $1000\,series-1$ indicates an Al of 99.00% or greater purity. The last two of the four digits indicate to the nearest hundredth the amount of Al above 99.00%.

 $2000{-}8000$ series—The last two of the four digit series have no significance but are used to identify different alloys in the group.

The second digit indicates alloy modification, or special control of impurities. If the second digit is zero, it indicates no special control of impurities, or the original alloy.

Table 17. Typical Thermal Properties of Various Metals

Table 17. Typical Thermal Toperties of Various Metals									
	Density,	Melting	Point, °F	Conductivity,	Specific	Coeff. of Expansion,			
Material and Alloy Designation ^a	ρ lb/in³	solidus	liquidus	k, Btu/hr-ft-°F	Heat, C, Btu/lb/°F	αμin./ in°F			
Aluminum Alloys									
2011	0.102	995	1190	82.5	0.23	12.8			
2017	0.101	995	1185	99.4	0.22	13.1			
2024	0.100	995	1180	109.2	0.22	12.9			
3003	0.099	1190	1210	111	0.22	12.9			
5052	0.097	1100	1200	80	0.22	13.2			
5086	0.096	1085	1185	73	0.23	13.2			
6061	0.098	1080	1200	104	0.23	13.0			
7075	0.101	890	1180	70	0.23	13.1			
	Сорг	er-Base A	lloys						
Manganese Bronze	0.302	1590	1630	61	0.09	11.8			
C11000 (Electrolytic tough pitch)	0.321	1941	1981	226	0.09	9.8			
C14500 (Free-machining Cu)	0.323	1924	1967	205	0.09	9.9			
C17200, C17300 (Beryllium Cu)	0.298	1590	1800	62	0.10	9.9			
C18200 (Chromium Cu)	0.321	1958	1967	187	0.09	9.8			
C18700 (Leaded Cu)	0.323	1750	1975	218	0.09	9.8			
C22000 (Commercial bronze, 90%)	0.318	1870	1910	109	0.09	10.2			
C23000 (Red brass, 85%)	0.316	1810	1880	92	0.09	10.4			
C26000 (Cartridge brass, 70%)	0.313	1680	1750	70	0.09	11.1			
C27000 (Yellow brass)	0.306	1660	1710	67	0.09	11.3			
C28000 (Muntz metal, 60%)	0.303	1650	1660	71	0.09	11.6			
C33000 (Low-leaded brass tube)	0.310	1660	1720	67	0.09	11.2			
C35300 (High-leaded brass)	0.306	1630	1670	67	0.09	11.3			
C35600 (Extra-high-leaded brass)	0.307	1630	1660	67	0.09	11.4			
C36000 (Free-machining brass)	0.307	1630	1650	67	0.09	11.4			
C36500 (Leaded Muntz metal)	0.304	1630	1650	71	0.09	11.6			
C46400 (Naval brass)	0.304	1630	1650	67	0.09	11.8			
C51000 (Phosphor bronze, 5% A)	0.320	1750	1920	40	0.09	9.9			
C54400 (Free cutting phos. bronze)	0.321	1700	1830	50	0.09	9.6			
C62300 (Aluminum bronze, 9%)	0.276	1905	1915	31.4	0.09	9.0			
C62400 (Aluminum bronze, 11%)	0.269	1880	1900	33.9	0.09	9.2			
C63000 (Ni-Al bronze)	0.274	1895	1930	21.8	0.09	9.0			
Nickel-Silver	0.314	1870	2030	17	0.09	9.0			
	Nick	el-Base Al	loys						
Nickel 200, 201, 205	0.321	2615	2635	43.3	0.11	8.5			
Hastelloy C-22	0.314	2475	2550	7.5	0.10	6.9			
Hastelloy C-276	0.321	2415	2500	7.5	0.10	6.2			
Inconel 718	0.296	2300	2437	6.5	0.10	7.2			
Monel	0.305	2370	2460	10	0.10	8.7			
Monel 400	0.319	2370	2460	12.6	0.10	7.7			
Monel K500	0.306	2400	2460	10.1	0.10	7.6			
Monel R405	0.319	2370	2460	10.1	0.10	7.6			

MATERIALS

Table 17. (Continued) **Typical Thermal Properties of Various Metals**

Material and Alloy Designation ^a	Density,	Melting	Point, °F	Conductivity, k, Btu/hr-ft-°F	Specific Heat, C, Btu/lb/°F	Coeff. of Expansion, α μin./	
				Btw/III-It- F	Btu/Ib/ F	in°F	
Stainless Steels							
S30100	0.290	2550	2590	9.4	0.12	9.4	
\$30200, \$30300, \$30323	0.290	2550	2590	9.4	0.12	9.6	
S30215	0.290	2500	2550	9.2	0.12	9.0	
S30400, S30500	0.290	2550	2650	9.4	0.12	9.6	
S30430	0.290	2550	2650	6.5	0.12	9.6	
S30800	0.290	2550	2650	8.8	0.12	9.6	
S30900, S30908	0.290	2550	2650	9.0	0.12	8.3	
S31000, S31008	0.290	2550	2650	8.2	0.12	8.8	
S31600, S31700	0.290	2500	2550	9.4	0.12	8.8	
S31703	0.290	2500	2550	8.3	0.12	9.2	
S32100	0.290	2550	2600	9.3	0.12	9.2	
S34700	0.290	2550	2650	9.3	0.12	9.2	
S34800	0.290	2550	2650	9.3	0.12	9.3	
S38400	0.290	2550	2650	9.4	0.12	9.6	
\$40300, \$41000, \$41600, \$41623	0.280	2700	2790	14.4	0.11	5.5	
S40500	0.280	2700	2790	15.6	0.12	6.0	
S41400	0.280	2600	2700	14.4	0.11	5.8	
S42000, S42020	0.280	2650	2750	14.4	0.11	5.7	
S42200	0.280	2675	2700	13.8	0.11	6.2	
S42900	0.280	2650	2750	14.8	0.11	5.7	
S43000, S43020, S43023	0.280	2600	2750	15.1	0.11	5.8	
S43600	0.280	2600	2750	13.8	0.11	5.2	
S44002, S44004	0.280	2500	2700	14.0	0.11	5.7	
S44003	0.280	2500	2750	14.0	0.11	5.6	
S44600	0.270	2600	2750	12.1	0.12	5.8	
S50100, S50200	0.280	2700	2800	21.2	0.11	6.2	
	Casi	t Iron and S	steel	l .			
Malleable Iron, A220	0.265			29.5	0.12	7.5	
(50005, 60004, 80002)					, i		
Grey Cast Iron	0.25	liquidus		28.0	0.25	5.8	
Ductile Iron, A536 (120-90-02)	0.25	approxi			0.16	5.9-6.2	
Ductile Iron, A536 (100-70-03)	0.25	2100 to dependi		20.0	0.16	5.9-6.2	
Ductile Iron, A536 (80-55-06)	0.25	composi		18.0	0.15	5.9-6.2	
Ductile Iron, A536 (65-45-120)	0.25			20.8	0.15	5.9-6.2	
Ductile Iron, A536 (60-40-18)	0.25				0.12	5.9-6.2	
Cast Steel, 3%C	0.25	liquidus	, 2640	28.0	0.12	7.0	
	Tit	anium Allo	oys				
Commercially Pure	0.163	3000	3040	9.0	0.12	5.1	
Ti-5Al-2.5Sn	0.162	2820	3000	4.5	0.13	5.3	
Ti-8Mn	0.171	2730	2970	6.3	0.19	6.0	
				L		1	

^a Alloy designations correspond to the Aluminum Association numbers for aluminum alloys and to the unified numbering system (UNS) for copper and stainless steel alloys. A220 and A536 are ASTM specified irons.

PLASTICS

Table 18. Characteristics of Important Plastics Families

ABS (acrylonitrile- butadiene-styrene)	Rigid, relatively low-cost thermoplastic, easily machined and thermoformed.
Acetal, POM	Engineering thermoplastic with good strength, wear resistance, and dimensional stability. More dimensionally stable than nylon under wet and humid conditions.
Acrylic, PMMA	Clear, transparent, strong, break-resistant thermoplastic with excellent chemical resistance and weatherability.
CPVC (chlorinated PVC)	Thermoplastic with properties similar to PVC, but operates to a 40–60°F (14–16°C) higher temperature.
Fiberglass	Thermosetting composite with high strength-to-weight ratio, excellent dielectric properties, and unaffected by corrosion.
Liquid crystal polymer (LCP)	Aromatic, highly inert polymer, with excellent mechanical properties, as well as chemical, fire, and temperature resistance.
Nylon	Thermoplastic with excellent impact resistance, ideal for wear applications such as bearings and gears, self-lubricating under some circumstances.
PEEK (polyetherether- ketone)	Engineering thermoplastic, excellent temperature resistance, suitable for continuous use above 500°F (260°C), excellent flexural and tensile properties.
Polyester, PET (polyethylene- terephthalate)	Dimensionally stable thermoplastic with superior machining characteristics compared to acetal.
Phenolic	Thermosetting family of plastics with minimal thermal expansion, high compressive strength, excellent wear and abrasion resistance, and a low coefficient of friction. Used for bearing applications and molded parts.
Polycarbonate, PC	Transparent tough thermoplastic with high impact strength, excellent chemical resistance and electrical properties, and good dimensional stability.
Polypropylene, PP	Good chemical resistance combined with low moisture absorption and excellent electrical properties, retains strength up to $250^{\circ}F$ ($120^{\circ}C$).
Polystyrene, PS	Transparent, colorless, and relatively low-cost amorphous thermoplastic. Relatively rigid with good electrical properties but brittle with poor chemical and ultraviolet properties.
Polysulfone, PSU	Durable thermoplastic, good electrical properties, operates at temperatures in excess of 300°F (150°C).
Polyurethane	Thermoplastic, excellent impact and abrasion resistance, resists sunlight and weathering.
Teflon, PTFE (polytetrafluoro- ethylene)	Thermoplastic, low coefficient of friction, withstands up to 500°F (260°C), inert to chemicals and solvents, self-lubricating with a low thermal-expansion rate.
PVC (polyvinyl chloride)	Thermoplastic, resists corrosive solutions and gases both acid and alkaline, good stiffness.
PVDF (polyvinylidene- fluoride)	Thermoplastic, outstanding chemical resistance, excellent substitute for PVC or polypropylene. Good mechanical strength and dielectric properties.

PLASTICS

Table 19. Working with Plastics

Properties	Comments
Thermal expansion	10 times higher than metals; more heat generated. Adequate tool clearance must be provided to minimize heating. Heat must be removed by air blast or liquid coolant
Elasticity	Modulus is 10–60 times smaller than for metals; this resilience permits much greater deflection. Reduce chatter by close chucking and follow rests. Drilled or tapped holes may end up tapered or of smaller diameter than the tool.
Support	Must be firm to prevent distortion. Sharp tools are essential to keep cutting forces to a minimum.
Safety	Requires dust control, adequate ventilation, safety guards and eye protection.
	Work
Cutting Off	Speed 500–800 ft/min. Use tools with greater front and side clearance than are needed for metal. Cutting speeds: about half those used for turning operations.
Drilling	Chip flow in drilling is poor; the rake angles are insufficient and cutting speeds vary from the periphery of the drill, imposing severe loading on the workpiece. Use drills of high-speed steel or premium high-speed steel (T15, M33, or M41–M47) with low helix angles and wide, highly polished flutes. Point angles:70–120; for rigid polyvinyl chloride and acrylic use 120. Clearance angles: 9–15; for acrylic material use 12–20.
Milling	Generally use high-speed tools (M2, M3, M7, or T15). Carbide C2 is recommended for glass-reinforced nylon, silicone, polyimide, and alloy. Speeds: 800–1400 ft/min for peripheral end milling of many thermoplastics; 400–800 ft/min. for many thermosets. However, slower speeds are generally used for other milling operations: 300–500 ft/min. for some thermoplastics; 150–300 ft/min. for some thermosets.
Sawing	See Speeds and Feeds section of this book
Tapping and Threading	Taps should be M10, M7, or M1, molybdenum high-speed steel, with finish-ground and polished flutes. Two flute taps are recommended for holes up to 0.125 in. diameter. Speed: 50 ft/min. for throughholes in thin cast, molded or extruded thermoplastics and thermosets; 25 ft/min. for filled materials. Reduce speeds for deep or blind holes, and when the percentage of thread is 65–75%.
Turning	Use high-speed steel and carbide tools. Cutting speeds: 200–500 ft/min. Box tools are good for long, thin parts.

DRAFTING PRACTICES

STANDARDS FOR DRAWINGS

Shop Prints, Reading and Interpreting

${\bf Table \, 1. \, American \, National \, Standard \, Lines \, for \, Engineering \, Drawings} \\ ANSI/ASME \, Y14.2-2014$

	AIV51/A5ME 114.2-2014
Visible Line	тніск
Hidden Line	<u>THIN</u>
Section Line	THIN
Center Line	THIN
Symmetry Line	
Dimension Line Extension Line And Leader	Leader Extension Line Dimension Line THIN
Cutting-Plane Line or Viewing-Plane Line	THICK THICK
Break Line	THICK Short Breaks THIN Long Breaks
Phantom Line	
Stitch Line	THIN THIN
Chain Line	

DRAFTING PRACTICES

 ${\bf Table~2.~American~National~Standard~Symbols~for~Section~Lining} \\ ANSI~Y14.2M-1979, R1987^a$

	Cast and malleable iron (Also for general use of all materials)		Titanium and refractory material
	Steel		Electric windings, electro magnets, resistance, etc.
	Bronze, brass, copper, and compositions	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Concrete
	White metal, zinc, lead, babbitt, and alloys		Marble, slate, glass, porcelain, etc.
	Magnesium, aluminum, and aluminum alloys		Earth
	Rubber, plastic electrical insulation	TETETE	Rock
	Cork, felt, fabric, leather, fiber		Sand
9/9/9/9	Sound insulation		Water and other liquids
	Thermal insulation		Wood—across grain Wood—with grain

^a This table has been removed from the current version of standard and is retained here for reference.

Table 3. ASME Geometric Symbols *ASME Y14.5-2018*

Symbol for		Symbol for	
Straightness		Diameter	Ø
Flatness		Basic Dimension	50
Circularity	C	Reference Dimension	(50)
Cylindricity	Ø	Datum Feature (triangle may be filled in or not)	A
Angularity	~	Dimension Origin	+
Perpendicularity	4	Feature Control Frame	⊕ Ø 0.5 M A B C
Parallelism	//	Conical Taper	\rightarrow
Position	+	Slope	
Profile of a Line		Counterbore	
Profile of a Surface	0	Spotface	<u>ISFI</u>
Circular Runout (arrowhead may be filled in or not)	A	Countersink	~
Total Runout (arrowheads may be filled in or not)	27	Depth/Deep	$\overline{\mathbf{v}}$
All Around	4	Square	
All Over	~	Dimension Not to Scale	<u>15</u>
At Maximum Material Condition	(M)	Number of Places	8X
At Maximum Material Boundary	M	Arc Length	105
At Least Material Condition	(L)	Radius	R
At Least Material Boundary	(L)	Spherical Radius	SR
Projected Tolerance Zone	(Spherical Diameter	sø
Tangent Plane	Ŧ	Controlled Radius	CR
Free State	Ē	Between (arrowheads may be filled in or not)	*
Unequally Disposed Profile	(Statistical Tolerance	(ST)
Envelope Principle	Default	Continuous Feature	⟨CF⟩
Independency	(I)	Datum Target	
Dynamic Profile Tolerance	Δ	Movable Datum Target	A1
Translation	\triangleright	Target Point	$ $ \times
From / To	-		

Table 4. ISO Geometric Symbols ISO 1101:2017

Symmetry = Conical Taper Profile of a Line	Symbol for		Symbol for	
Circularity Cylindricity Angularity Angularity Cylindricity Angularity Angularity Cylindricity Angularity Cylindricity Angularity Cylindricity Angularity Cylindricity Angularity Cylindricity Angularity Ang	Straightness	_	Independency	Default
Cylindricity Angularity Angularity Auxiliary Dimension (50) Parallelism // Datum Feature (triangle may be filled in or not) Position Position Dimension Origin Position Positio	Flatness	\Box	Dynamic Profile Tolerance	Δ
Angularity Perpendicularity Auxiliary Dimension (50) Parallelism // Datum Feature (triangle may be filled in or not) Position Position Dimension Origin Position Position Position Concentricity and Coaxiality Feature Control Frame Foolial Taper Conical Taper Profile of a Line Slope Profile of a Surface Square Circular Runout Mumber of Places All Around All Around All Over Radius R At Least Material Condition Spherical Radius At Least Material Condition Projected Tolerance Zone Between (arrowheads may be filled in or not) Free State Free State Free State Datum Target Target Point Auxiliary Dimension (50) All Concentricity and Coaxiality Feature Control Frame Free State Theoretically Exact Dimension (50) Feature Control Frame Free State Theoretically Exact Dimension (50) Feature Control Frame Free State Theoretically Exact Dimension (50) Feature Control Frame Free State Theoretically Exact Dimension (50) Feature Control Frame Free State Theoretically Exact Dimension (50) Feature Control Frame Free State Theoretical Palare Free State Theoretically Exact Dimension (50) Feature Control Frame Free State Theoretical Palare Free State Theoretically Exact Dimension (50) Feature Control Frame Free State Theoretical Palare Free State Theoretical Palare Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State Theoretical Palare Free State The	Circularity	0	From / To	
Perpendicularity Auxiliary Dimension (50) Parallelism // Criangle may be filled in or not) Position Dimension Origin Feature Control Frame Frofile of a Line Concentricity and Coaxiality Feature Control Frame Conical Taper Conical Taper Frofile of a Line Slope Circular Runout Mumber of Places Ax All Around Arc Length Arc Length All Over At Maximum Material Condition Myspherical Radius At Least Material Condition Tangent Plane To Datum Target Free State Free State Free State Find Auxiliary Dimension (50) Auxiliary Dimension (60) Auxiliary Auxiliary (60) Auxiliary Auxiliary (60) Auxiliary Auxiliary	Cylindricity	<i>[</i> /	Diameter	φ
Parallelism // Concentricity and Coaxiality Profile of a Line Profile of a Surface Circular Runout Total Runout All Around All Around All Around At Maximum Material Condition At Least Material Condition At Least Material Condition Tangent Plane Free State Free State Movable Datum Target Control Frame Control Fra	Angularity	_	Theoretically Exact Dimension	50
Parallelism // (triangle may be filled in or not) Position Dimension Origin Feature Control Frame Feature Control Frame Concentricity and Coaxiality Feature Control Frame Feature Control Fautre Feat	Perpendicularity	丄	Auxiliary Dimension	(50)
Concentricity and Coaxiality Feature Control Frame Frofile of a Line Conical Taper Conical Taper Concentricity and Coaxiality Frofile of a Line Slope Frofile of a Surface Square Circular Runout Mumber of Places Radius All Around All Over At Maximum Material Condition Spherical Radius At Least Material Condition Spherical Diameter Spherical Tolerance Zone Projected Tolerance Zone Between (arrowheads may be filled in or not) Tangent Plane Tolerance Movable Datum Target Unequally Disposed Profile UZ Target Point	Parallelism	//	(triangle may be filled in	A
Symmetry = Conical Taper Profile of a Line	Position	+	Dimension Origin	♦
Profile of a Line Profile of a Surface Square Circular Runout Mumber of Places 8x All Around Arc Length At Maximum Material Condition Spherical Radius At Least Material Condition Projected Tolerance Zone Tangent Plane Free State E Movable Datum Target Square Dimension Not to Scale 15 8x At Least Material Condition Radius R Spherical Radius SR SR Sherical Diameter Spherical Diam	Concentricity and Coaxiality	0	Feature Control Frame	ф Ø 0.5 M A В С
Profile of a Surface	Symmetry	=	Conical Taper	\rightarrow
Circular Runout Dimension Not to Scale 15	Profile of a Line)	Slope	
Total Runout Mumber of Places 8x All Around Arc Length 105 All Over Radius R At Maximum Material Condition Spherical Radius SR At Least Material Condition Spherical Diameter Spherical Diameter Spherical Tolerance Zone Projected Tolerance Zone Between (arrowheads may be filled in or not) Tangent Plane To Datum Target Free State Free State Find Movable Datum Target Uz Target Point	Profile of a Surface	٥	Square	
All Around Arc Length Arc Length Arc Length Radius R At Maximum Material Condition M Spherical Radius SR At Least Material Condition C Spherical Diameter Spherical Diameter Spherical Diameter Projected Tolerance Zone Projected Tolerance Zone D Between (arrowheads may be filled in or not) Tangent Plane D Datum Target Free State Movable Datum Target Uz Target Point	Circular Runout	1	Dimension Not to Scale	<u>15</u>
All Over All Over Radius R At Maximum Material Condition M Spherical Radius SR At Least Material Condition C Spherical Diameter Spherical Diameter Spherical Diameter Spherical Diameter Spherical Diameter To patum Target Tangent Plane To patum Target Tree State Movable Datum Target Unequally Disposed Profile UZ Target Point	Total Runout	11	Number of Places	8x
At Maximum Material Condition At Least Material Condition Description Frojected Tolerance Zone Projected Tolerance Zone Description Projected Tolerance Zone Description Tangent Plane To Datum Target Description Target Plane To Datum Target Description Target Plane To Datum Target	All Around	b	Arc Length	<u></u>
At Least Material Condition (L) Spherical Diameter Spherical Dia	All Over	•	Radius	R
Projected Tolerance Zone Projected Tolerance Zone Projected Tolerance Zone Datum Target Free State Movable Datum Target Unequally Disposed Profile Datum Target Target Point Datum Target Target Point	At Maximum Material Condition	M	Spherical Radius	SR
Projected Tolerance Zone (P) (arrowheads may be filled in or not) Tangent Plane (T) Datum Target (F) Movable Datum Target Unequally Disposed Profile (Inequally Disposed Profile)	At Least Material Condition	۵	Spherical Diameter	SΦ
Tangent Plane ① Datum Target ② 6 A1 or A1 Free State ② Movable Datum Target Unequally Disposed Profile UZ Target Point	Projected Tolerance Zone	P	(arrowheads may be filled	*
Unequally Disposed Profile UZ Target Point	Tangent Plane	Ŧ	Datum Target	
	Free State	Ē	Movable Datum Target	A1
Envelope Principle (E)	Unequally Disposed Profile	UZ	Target Point	\times
	Envelope Principle	(E)		

Note: This table includes the most commonly used symbols; for additional symbols, refer to the standard.

Table 5. American National Standard Symbols for Datum Referencing in Engineering Drawing ASME Y14.5-2018

Fig. 3. Dimension Origin Symbol

Dimension origin symbol

Fig. 4. Feature Control Frame and Datum Order of Precedence

 $\textbf{20} \pm \textbf{0.3}$

Table 5. (Continued) American National Standard Symbols for Datum Referencing in Engineering Drawing ASME Y14.5-2018

Fig. 5. Datum Target Symbols

Fig. 6. Order of Precedence of Datum References

Table 5. (Continued) American National Standard Symbols for Datum Referencing in Engineering Drawing ANSI/ASME Y14.5-2018

Fig. 7. Projected Tolerance Zone Application

Fig. 8. Tangent Plane Modifier

F	\bigcirc	(L)	\bigcirc	P	$\langle ST \rangle$
Free State	MMC	LMC	Tangent Plane	Projected Tolerance Zone	Statistical Tolerance

Fig. 9. Tolerance Modifiers

SURFACE TEXTURE

Surface Texture Symbols.—The symbol used to designate control of surface irregularities is shown in Fig. 1a. Where surface texture values other than roughness average are specified, the symbol must be drawn with the horizontal extension as shown in Fig. 1e.

Table 1. Surface Texture Symbols and Construction

Symbol	Meaning					
Fig. 1a.	Basic Surface Texture Symbol. Surface may be produced by any method except when the bar or circle (Fig. 1b or 1d) is specified.					
Fig. 1b.	Material Removal By Machining Is Required. The horizontal bar indicates that material removal by machining is required to produce the surface and that material must be provided for that purpose.					
3.5 V Fig. 1c.	Material Removal Allowance. The number indicates the amount of stock to be removed by machining in millimeters (or inches). Tolerances may be added to the basic value shown or in a general note.					
Fig. 1d.	Material Removal Prohibited. The circle in the V-shape indicates that the surface must be produced by processes such as casting, forging, hot finishing, cold finishing, die casting, powder metallurgy or injection molding without subsequent removal of material.					
Fig. 1e.	Surface Texture Symbol. To be used when any surface characteristics are specified above the horizontal line or the right of the symbol. Surface may be produced by any method except when the bar or circle (Fig. 1b and 1d) is specified.					
$ \begin{array}{c c} & 3X \\ \hline & 1.5X \\ \hline & 00 \\ \hline & 00 \\ \hline & 00 \\ \hline & 00 \\ \hline & 1.5X \\ \hline & 0.00 \\ \hline & 1.5X \\ \hline & 0.00 \\ \hline & 1.5X \\ \hline & Letter Height = X \end{array} $ Letter Height = X						
Fig. 1f.						

Use of Surface Texture Symbols: When required from a functional standpoint, the desired surface characteristics should be specified. Where no surface texture control is specified, the surface produced by normal manufacturing methods is satisfactory provided it is within the limits of size (and form) specified in accordance with ANSI/ASME Y14.5-2018, "Dimensioning and Tolerancing." This is not viewed as good practice; there should always be some maximum value, either specifically or by default (for example, in the manner of the note shown in Fig. 2).

Material Removal Required or Prohibited: The surface texture symbol is modified when necessary to require or prohibit removal of material. When it is necessary to indicate that a surface must be produced by removal of material by machining, apply the symbol shown in Fig. 1b. When required, the amount of material to be removed is specified as shown in Fig. 1c, in millimeters for metric drawings and in inches for nonmetric drawings. Tolerance for material removal may be added to the basic value shown or specified in a general note. When it is necessary to indicate that a surface must be produced without material removal, use the machining prohibited symbol as shown in Fig. 1d.

Fig. 2. Application of Surface Texture Symbols

Proportions of Surface Texture Symbols: The recommended proportions for drawing the surface texture symbol are shown in Fig. 1f. The letter height and line width should be the same as that for dimensions and dimension lines.

Applying Surface Texture Symbols.—The point of the symbol should be on a line representing the surface, an extension line of the surface, or to a leader line directed to the surface. The symbol may be specified following a diameter dimension. The long leg (and extension) shall be to the right as the drawing is read. For parts requiring extensive and uniform surface roughness control, a general note may be added to the drawing which applies to each surface texture symbol specified without values as shown in Fig. 2.

When the symbol is used with a dimension it affects the entire surface defined by the dimension. Areas of transition, such as chamfers and fillets, shall conform with the roughest adjacent finished area unless otherwise indicated.

Surface texture values, unless otherwise specified, apply to the complete surface. Drawings or specifications for plated or coated parts shall indicate whether the surface texture values apply before plating, after plating, or both before and after plating.

Include in the symbol only those values required to specify and verify the required texture characteristics. Values should be in metric units for metric drawings and nonmetric units for nonmetric drawings.

Roughness and waviness measurements, unless otherwise specified, apply in the direction that gives the maximum reading; generally across the lay.

Cutoff or Roughness Sampling Length: Standard values are listed in Table 2. When no value is specified, the value 0.8 mm (0.030 in.) applies.

Table 2. Standard Roughness Sampling Length (Cutoff) Values

mm	in.	mm	in.
0.08	0.003	2.5	0.1
0.25	0.010	8.0	0.3
0.80	0.030	25.0	1.0

Roughness Average (Ra): The preferred series of specified roughness average values is given in Table 3.

μm	μin	μm	μin
0.012	0.5	1.25	50
0.025a	1ª	1.60ª	63ª
0.050a	2ª	2.0	80
0.075ª	3	2.5	100
0.10^{a}	4ª	3.2ª	125ª
0.125	5	4.0	160
0.15	6	5.0	200
0.20a	8 ^a	6.3ª	250ª
0.25	10	8.0	320
0.32	13	10.0	400
0.40a	16a	12.5ª	500a
0.50	20	15	600
0.63	25	20	800
0.80^{a}	32ª	25ª	1000 ^a
1.00	40		

Table 3. Preferred Series Roughness Average (Ra) Values

Waviness Height: The preferred series of maximum waviness height values is listed in Table 4. Waviness is not currently shown in ISO Standards. It is included here to follow present industry practice in the United States.

mm	in.	mm	in.	mm	in.
0.00002	0.00002	0.008	0.0003	0.12	0.005
0.00003	0.00003	0.012	0.0005	0.20	0.008
0.00005	0.00005	0.020	0.0008	0.25	0.010
0.00008	0.00008	0.025	0.001	0.38	0.015
0.0001	0.0001	0.05	0.002	0.50	0.020
0.0002	0.0002	0.08	0.003	0.80	0.030

Table 4. Preferred Series Maximum Waviness Height Values

Lay: Symbols for designating the direction of lay are shown and interpreted in Table 5.

Metric Dimensions on Drawings: The length units of the metric system that are most generally used in connection with any work relating to mechanical engineering are the meter (39.37 inches) and the millimeter (0.03937 inch). One meter equals 1000 millimeters. On mechanical drawings, all dimensions are generally given in millimeters, no matter how large the dimensions may be. In fact, dimensions of such machines as locomotives and large electrical apparatus are given exclusively in millimeters. This practice is adopted to avoid mistakes due to misplacing decimal points, or misreading dimensions when other units are used as well. When dimensions are given in millimeters, many of them can be given without resorting to decimal points, as a millimeter is only a little more than $\frac{1}{12}$ inch. Only dimensions of precision need be given in decimals of a millimeter; such dimensions are generally given in hundredths of a millimeter—for example, 0.02 millimeter, which is equal to 0.0008 inch. As 0.01 millimeter is equal to 0.0004 inch, dimensions are seldom given with greater accuracy than to hundredths of a millimeter.

Scales of Metric Drawings: Drawings made to the metric system are not made to scales of $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, etc., as with drawings made to the English system. If the object cannot be drawn full size, it may be drawn $\frac{1}{2}$, $\frac{1}{2}$,

^a Recommended

Table 5. Lay Symbols

Lay Symbol	Meaning	Example Showing Direction of Tool Marks
=	Lay approximately parallel to the line representing the surface to which the symbol is applied.	
Т	Lay approximately perpendicular to the line representing the surface to which the symbol is applied.	
X	Lay angular in both directions to line representing the surface to which the symbol is applied.	\sqrt{x}
М	Lay multidirectional	
С	Lay approximately circular relative to the center of the surface to which the symbol is applied.	<u>√</u> c
R	Lay approximately radial relative to the center of the surface to which the symbol is applied.	√ _R
P	Lay particulate, non-directional, or protuberant.	\sqrt{P}

 $\begin{tabular}{ll} \textbf{Example Designations.-Table 6} & illustrates examples of designations of roughness, waviness, and lay by insertion of values in appropriate positions relative to the symbol. \\ \end{tabular}$

Table 6. Application of Surface Texture Values to Symbol

1.6/	Roughness average rating is placed at the left of the long leg. The specification of only one rating shall indicate the maximum value and any lesser value shall be acceptable. Specify in micrometers (microinch).	3.5	Material removal by machining is required to produce the surface. The basic amount of stock provided for material removal is specified at the left of the short leg of the symbol. Specify in millimeters (inch).
0.8	The specification of maximum and minimum roughness average values indicates permissible range of roughness. Specify in micrometers (microinch).	1.6	Removal of material is prohibited.
0.8	Maximum waviness height rating is the first rating place above the horizontal extension. Any lesser rating shall be acceptable. Specify in millimeters (inch). Maximum waviness spacing rating is the second rating placed above the horizontal extension and to the right of the waviness height rating. Any lesser rating shall be acceptable. Specify in millimeters (inch).	0.8 1 0.8 2.5	Lay designation is indicated by the lay symbol placed at the right of the long leg. Roughness sampling length or cutoff rating is placed below the horizontal extension. When no value is shown, 0.80 mm (0.030 inch) applies. Specify in millimeters (inch). Where required maximum roughness spacing shall be placed at the right of the lay symbol. Any lesser rating shall be acceptable. Specify in millimeters (inch).

Examples of Special Designations

Fig. 4. Pictorial Display of Surface Characteristics

Table 7. Surface Roughness Produced by Common Production Methods

CORROSION

Types of Corrosion.—Corrosion is a process by which a material and/or its properties deteriorate due to interaction with one or more external substances. Environmental conditions, surface conditions, and stresses can initiate or accelerate effects of corrosion, ranging from aesthetic changes to interference with electrical connections and weakening of a structural or mechanical part that can lead to failure.

Uniform (General) Corrosion: This process describes a chemical or electrochemical attack that affects an entire exposed surface. The corroding part will thin; corrosive substances may accumulate on the surface.

Chemical Corrosion: In most cases, chemical damage is the destructive reaction of a contacting substance acting directly on and degrading a material, such as acid affecting a metal. Chemical corrosion also may result in oxide formation or deposition of other surface coatings.

Dry and High-Temperature Corrosion: Also called scaling, this is caused by chemicals (gases, molten salts, or solids) on a surface in a dry atmosphere; particulate abrasion may be involved. High temperatures accelerate the process and cause oxidation, carburization, chlorination, and sulfidation.

Electrochemical Corrosion: Electrically active material exposed to an electrolyte can form an electrical cell where ionization occurs and electrons move from an anodic (active) material to a cathodic (noble) material. The anode corrodes through oxidation faster or differently than when alone; oxygen deprivation may result in pockets of increased corrosion. The cathode experiences reduction and may develop a protective oxide layer. Wet and damp/atmospheric corrosion occurs when water and contaminants in the environment form an electrolyte liquid or damp film on the surface of a part.

Methods of Protection.—These include material choice, passivation, polishing, coatings and other barriers, environmental controls, reducing stresses on components, separating incompatible materials from each other, or electrolyte solutions. To minimize corrosion, fully research interactions between dissimilar metals before using them in an assembly, match potentials of part(s) to the environment, use barriers, and add auxiliary anodes or cathodes.

Cathodic Protection: Adding one or more sacrificial anodes (a part or a coating) to a system can protect a part that would be the anode in an electrochemical reaction. Adding a DC power supply improves system performance and extends anode life. Cathodic protection is not for all corrosive environments; it can accelerate hydrogen embrittlement.

Anodic Protection: This newer method employs additional cathodes and an applied current to shift the target material's potential into the passive range. It works in more corrosive environments and can be achieved with much lower current density than cathodic protection but is limited to materials that exhibit active-passive behavior (surfaces that can change from active to passive when exposed to oxidizers or applied current).

Galvanic Corrosion: Sometimes called bi-metallic corrosion, in this process dissimilar metals or alloys interact when in contact with or electrically coupled by a conductive fluid. Corrosion depends on metal composition, differences in electrochemical potential and distance between them, wetted surface areas, conductivity and pH of fluid, oxygenation, films or deposits, passive film stability, and exposure of metals to processes such as welding. The US military published empirical compatibility information in MIL-STD-889B, "Dissimilar Metals" (Table 1). Many factors influence galvanic corrosion, so use all such data only as a general guide.

A useful method of comparing electrochemical potentials of metals is referencing a galvanic series. A useful standard is ASTM G82-98 (2014), "Standard Guide for Development and Use of a Galvanic Series for Predicting Galvanic Corrosion Performance." Table 2 is based on Army Missile Command Report S-T-67-11, "Practical Galvanic Series." Materials closer in the series have less corrosion inducing potential; polarity reversals can occur. Another galvanic compatibility guide is an anodic index (Table 3). Table 3 is an example based on data in US military specification MIL-14072F, "Finishes for Ground Based Electronic Equipment," relative to a gold reference.

Table 1. Galvanic Compatibility of Metals in Select Environments

	·	П	Active	(Anod	ic) —														-	➤ Not	ble (Ca	thodic)
												Metal o	or Alloy	_								
	Metal or Alloy		A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T
Active	Magnesium	Α	C,C,C	C,C,I	C,C,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I						
(Anodic)	Zine	В		C,C,C	C,C,C	C,C,I	C,C,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I
	Cadmium, Beryllium	С			C,C,C	C,C,I	C,C,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I
	Aluminum, Al-Zn, Al-Mg	D				C,C,C	C,C,C	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I
	Aluminum-Copper	Е					C,C,C	7.7	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I
	Carbon Steels, Low-Alloy Steels	F						C,C,C	C,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	C,C,I	I,I,I	I,I,I	I,I,I	I,I,I
	Lead	G							C,C,C	C,C,C	C,C,I	C,C,I	C,C,I	C,C,I	I,I,I	C,I,I	C,I,I	C,I,I	C,I,I	C,C,I	C,I,I	C,I,I
	Tin, Tin-Lead, Indium	Н								C,C,C	I,I,I	C,I,I	C,I,I	C,C,I	C,C,I	C,C,I	C,C,I	C,C,C	C,I,C	C,C,C	I,I,I	I,I,I
	Martensitic Stainless Steels (includes 420), Ferritic Stainless Steels	Ι									C,C,C	C,I,I	I,I,I	I,I,I	C,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I	I,I,I
	Chromium, Molybdenum, Tungsten	J										C,C,C	C,C,C	C,C,I	C,I,I	I,I,I	C,C,I	C,C,I	C,C,I	C,C,I	C,C,I	C,C,I
	Austenitic Stainless Steels (includes 200 and 300 Series), PH Stainless Steels, Super Strength Stainless Steels, Heat-Resistant Stainless Steel	K											C,C,C	I,I,I	I,I,I	I,I,I	C,C,I	C,C,I	C,C,I	C,C,I	C,C,I	C,C,I
	Lead Brass, Bronze	L												C,C,C	C,C,I	C,C,I	C,I,I	C,C I	C,I,I	C,C,I	C,C,I	C,C,I
	Low Copper Brass, Low Copper Bronze	М													C,C,C	C,C,I	C,C,I	C,C,I	C,I,I	C,C,I	C,I,I	C,I,I
	High Copper Brass, High Copper Bronze	N														C,C,C	C,I,I	C,C,I	C,I,I	C,C,I	C,I,I	C,I,I
	Copper-High Nickel, Monel	О															C,C,C	C,C,I	C,C,I	C,C,I	C,C,I	C,C,I
	Nickel, Cobalt	P																C,C,C	C,C,I	C,C,I	C,C,I	C,C,I
	Titanium	Q																	C,C,C	C,C,I	C,C,I	C,C,I
*	Silver	R																		C,C,C	C,C,C	C,C,I
Noble	Palladium, Rhodium, Gold, Platinum	S																			C,C,C	C,C,C
(Cathodic)	Graphite	T																				C,C,C

Values

I = Incompatible (risk of significant galvanic interaction) C = Compatible (negligible galvanic interaction likely)

Position of Compatibility Values (1,2,3)

1 = Industrial atmosphere

2 = Marine atmosphere

3 = Seawater immersion

Example: C,C,I = Compatible in industrial atmosphere (1)
Compatible in marine atmosphere (2)
Incompatible in seawater immersion (3)

Machinery's Handbook Pocket Companion CORROSION

CORROSION

Table 2. Sample Galvanic Series, General Seawater Environment

Table 3. Anodic Index (Gold Reference)

Table 5.7 mode mack (Gold Reference)		
M. J. 118	Anodic Index	
Metals and Alloys	(V)	
Gold, Gold-Platinum Alloys, Wrought Platinum	-0.00	Cathodic
Rhodium Plated on Silver-Plated Copper	-0.10	(Noble)
Silver, High Silver Alloys	-0.15] ≱
Nickel, Monel, High Nickel-Copper Alloys, Titanium Alloys	-0.30	1
Copper, Low Brasses or Bronzes, Silver Solder, High Copper-Nickel-Zinc Alloys,		1
Nickel-Chromium Alloys	-0.35	
Yellow Brasses and Bronzes	-0.40	1
High Brasses and Bronzes, Naval Brass, Muntz Metal	-0.45	1
18% Chromium-type Stainless Steels (includes 300 Series)	-0.50	1
Chromium Plated, Tin Plated, 12% Chromium-type Stainless Steels (some 400 Series Steels)	-0.60	1
Tin Plate, Tin-Lead Solder, Terneplate (Lead-Tin Alloy)	-0.65	1
Lead, High Lead Alloys	-0.70	
2000 Series Wrought Aluminum	-0.75	1
Plain Carbon Steels, Low Alloy Steels, Wrought Iron, Gray Malleable Iron	-0.85	1
Wrought Aluminum Alloys other than 2000 Series, Cast Aluminum-Silicon Alloys	-0.90	
Cast Aluminum Alloys other than Silicon Type, Cadmium, Cadmium Chromate	-0.95	1
Hot-Dip Zinc Plate, Galvanized Steel	-1.20	1
Wrought Zinc, Zinc Die-Casting Alloys, Zinc Plate	-1.25	1
Magnesium, Magnesium Alloys	-1.75	Anodic
Beryllium	-1.85	(Active)

Evaluation of Galvanic Couples in Various Environments

	Maximum Differential
Environmental Conditions	(V)
Controlled: Temperature and humidity are controlled, as in laboratory or office spaces.	0.50
Normal: Industrial environments like warehouses where temperature and humidity are not controlled.	0.25
Harsh: Outdoors, high humidity, or salt exposure environments.	0.15

Subtract one index value from another to determine the electrochemical potential difference between the metals.

ANSI Standard Limits and Fits (ANSI/ASME B4.1-1967 [2009; out of print]).—This American National Standard for Preferred Limits and Fits for Cylindrical Parts presents definitions of terms applying to fits between plain (non-threaded) cylindrical parts and makes recommendations on preferred sizes, allowances, tolerances, and fits for use wherever they are applicable. This standard is in accord with the recommendations of American-British-Canadian (ABC) conferences for diameters of up to 20 inches. They should have application for a wide range of products.

Preferred Basic Sizes.—In specifying fits, the basic size of mating parts may be chosen from the decimal series or the fractional series in the following Table 1.

Table 1. Preferred Basic Sizes ANSI/ASME B4.1-1967 (2009: out of print)

			-	CS 711 VS1/71SIVI			, our of p.	,
	Decimal				Fract	ional		
0.010	2.00	8.50	1/64	0.015625	21/4	2.2500	91/2	9.5000
0.012	2.20	9.00	1/32	0.03125	21/2	2.5000	10	10.0000
0.016	2.40	9.50	1/16	0.0625	23/4	2.7500	101/,	10.5000
0.020	2.60	10.00	3/32	0.09375	3	3.0000	11	11.0000
0.025	2.80	10.50	1/8	0.1250	31/4	3.2500	111/,	11.5000
0.032	3.00	11.00	5/32	0.15625	31/2	3.5000	12	12.0000
0.040	3.20	11.50	3/16	0.1875	33/4	3.7500	121/2	12.5000
0.05	3.40	12.00	1/4	0.2500	4	4.0000	13	13.0000
0.06	3.60	12.50	5/16	0.3125	41/4	4.2500	131/2	13.5000
0.08	3.80	13.00	3/8	0.3750	41/2	4.5000	14	14.0000
0.10	4.00	13.50	7/16	0.4375	43/4	4.7500	141/,	14.5000
0.12	4.20	14.00	1/2	0.5000	5	5.0000	15	15.0000
0.16	4.40	14.50	9/16	0.5625	51/4	5.2500	151/,	15.5000
0.20	4.60	15.00	5/8	0.6250	51/2	5.5000	16	16.0000
0.24	4.80	15.50	11/16	0.6875	53/4	5.7500	161/,	16.5000
0.30	5.00	16.00	3/4	0.7500	6	6.0000	17	17.0000
0.40	5.20	16.50	7/8	0.8750	61/2	6.5000	171/,	17.5000
0.50	5.40	17.00	1	1.0000	7	7.0000	18	18.0000
0.60	5.60	17.50	11/4	1.2500	71/2	7.5000	181/,	18.5000
0.80	5.80	18.00	11/,	1.5000	8	8.0000	19	19.0000
1.00	6.00	18.50	13/4	1.7500	81/2	8.5000	191/2	19.5000
1.20	6.50	19.00	2	2.0000	9	9.0000	20	20.0000
1.40	7.00	19.50						
1.60	7.50	20.00		All d	limension	are in inch	es.	
1.80	8.00							

Table 2. Preferred Series of Tolerances and Allowances (In thousandths of an inch) ANSI/ASME~B4.1-1967~(2009;out~ofprint)

0.1	1	10	100	0.3	3	30	
	1.2	12	125		3.5	35	
0.15	1.4	14		0.4	4	40	
	1.6	16	160		4.5	45	
	1.8	18		0.5	5	50	
0.2	2	20	200	0.6	6	60	
	2.2	22		0.7	7	70	
0.25	2.5	25	250	0.8	8	80	
	2.8	28		0.9	9		

Standard Tolerances.—The series of standard tolerances shown in Table 3 are so arranged that for any one grade they represent approximately similar production difficulties throughout the range of sizes. This table provides a suitable range from which appropriate tolerances for holes and shafts can be selected and enables standard gages to be used. The tolerances shown in Table 3 have been used in the succeeding tables for different classes of fits.

Table 3a. ANSI/ASME Standard Tolerances ANSI/ASME B4.1-1967 (2009; out of print)

			= 151/1151/12 B 1:1 1507 (2005, 0 at 0) prata)											
Nomin	al Size,					Gr	ade							
Inc	hes	4	5	6	7	8	9	10	11	12	13			
Over	To				Tolerano	es in thou	sandths o	f an inch						
0	0.12	0.12	0.15	0.25	0.4	0.6	1.0	1.6	2.5	4	6			
0.12	0.24	0.15	0.20	0.3	0.5	0.7	1.2	1.8	3.0	5	7			
0.24	0.40	0.15	0.25	0.4	0.6	0.9	1.4	2.2	3.5	6	9			
0.40	0.71	0.2	0.3	0.4	0.7	1.0	1.6	2.8	4.0	7	10			
0.71	1.19	0.25	0.4	0.5	0.8	1.2	2.0	3.5	5.0	8	12			
1.19	1.97	0.3	0.4	0.6	1.0	1.6	2.5	4.0	6	10	16			
1.97	3.15	0.3	0.5	0.7	1.2	1.8	3.0	4.5	7	12	18			
3.15	4.73	0.4	0.6	0.9	1.4	2.2	3.5	5	9	14	22			
4.73	7.09	0.5	0.7	1.0	1.6	2.5	4.0	6	10	16	25			
7.09	9.85	0.6	0.8	1.2	1.8	2.8	4.5	7	12	18	28			
9.85	12.41	0.6	0.9	1.2	2.0	3.0	5.0	8	12	20	30			
12.41	15.75	0.7	1.0	1.4	2.2	3.5	6	9	14	22	35			
15.75	19.69	0.8	1.0	1.6	2.5	4	6	10	16	25	40			
19.69	30.09	0.9	1.2	2.0	3	5	8	12	20	30	50			
30.09	41.49	1.0	1.6	2.5	4	6	10	16	25	40	60			
41.49	56.19	1.2	2.0	3	5	8	12	20	30	50	80			
56.19	76.39	1.6	2.5	4	6	10	16	25	40	60	100			
76.39	100.9	2.0	3	5	8	12	20	30	50	80	125			
100.9	131.9	2.5	4	6	10	16	25	40	60	100	160			
131.9	171.9	3	5	8	12	20	30	50	80	125	200			
171.9	200	4	6	10	16	25	40	60	100	160	250			

^a All tolerances above the heavy line are in accordance with American-British-Canadian (ABC) agreements.

Table 3b. Relation of Machining Processes to Tolerance GradesANSI/ASME B4.1-1967 (2009; out of print)

Table 4. Designation of Standard Fits

Letter Sym- bols	Definition of Fits	Description
RC	Running and Sliding Clearance	Intended to provide a similar running performance, with suitable lubrication allowance, throughout the range of sizes.
RC 1	Close Sliding	Intended for the accurate location of parts that must be assembled without perceptible play. ^a
RC 2	Sliding	Intended for accurate location, but with greater maximum clearance than class RC 1. Parts made to this fit move and turn easily but are not intended to run freely, and in large sizes may seize with small temperature changes. ^a
RC 3	Precision Running	The closest fits that can be expected to run freely, intended for precision work at slow speeds and light journal pressures, but are not suitable where appreciable temperature differences are likely to be encountered.
RC4	Close Running	Intended chiefly for running fits on accurate machinery with moderate surface speeds and journal pressures, where accurate location and minimum play are desired.
RC 5 & RC 6	Medium Running	Intended for higher running speeds, or heavy journal pressures, or both.
RC7	Free Running	Intended for use where accuracy is not essential, or where large temperature variations are likely to be encountered, or under both conditions.
RC 8 & RC 9	Loose Running	Intended for use where wide commercial tolerances may be necessary, together with an allowance on the external member.
LC	Locational Clearance	Intended to determine only the location of the mating parts; they may provide rigid or accurate location, as with interference fits, or provide some freedom of location, as with clearance fits.
LC	Locational Clearance	Intended for parts that are normally stationary, but that can be freely assembled. They range from snug fits for parts requiring accuracy of location, through the medium clearance fits for parts such as spigots, to the looser fastener fits where freedom of assembly is of importance.
LT	Locational Transitional	A compromise between clearance and interference fits, for applications where accuracy of location is important, but a small amount of clearance or interference is permissible.

Table 4. (Continued) Designation of Standard Fits

	Table 4. (Commi	tea) Designation of Standard Fits
Letter Sym- bols	Definition of Fits	Description
LN	Locational Interference	Used where accuracy of location is of prime importance, and for parts requiring rigidity and alignment with no special requirements for bore pressure. Not intended for parts designed to transmit frictional loads from one part to another by virtue of the tightness of fit. These conditions are covered by force fits.
FN	Force or Shrink	A special type of interference fit, normally characterized by maintenance of constant bore pressures throughout the range of sizes. The interference therefore varies almost directly with the diameter, and the difference between its minimum and maximum value is small, to maintain the resulting pressures within reasonable limits.
FN 1	Light Drive	Requiring light assembly pressures, and producing more or less permanent assemblies. They are suitable for the thin sections or long fits, or in cast-iron external members.
FN 2	Medium Drive	Suitable for ordinary steel parts, or for shrink fits on light sections. The tightest fits that can be used with high-grade cast iron external members.
FN 3	Heavy Drive	Suitable for heavier steel parts or for shrink fits in medium sections.
FN 4 & FN 5	Force	Suitable for parts that can be highly stressed, or for shrink fits where the heavy pressing forces required are impractical.
В	Bilateral Hole (Modified Standard Fit)	The symbols used for these fits are identical with those used for standard fits; thus, LC 4 B is a clearance locational fit, Class 4, except it is produced with a bilateral hole.
S	Basic Shaft (Modified Standard Fit)	The symbols used for these fits are identical with those used for standard fits; thus, LC 4 S is a clearance locational fit, Class 4, except it is produced on a basic shaft basis.

 $^{^{\}rm a}$ Note: The clearances, used chiefly as slide fits, increase more slowly with the diameter than for other classes, so that accurate location is maintained even at the expense of free relative motion.

Graphical Representation of Limits and Fits.—A visual comparison of the hole and shaft tolerances and the clearances or interferences provided by the various types and classes of fits can be obtained from the following diagrams. These show disposition of hole and shaft tolerances (in thousandths of an inch) with respect to basic size (0) for a nominal diameter of 1 inch, per ANSI/ASME B4.1-1967 (R2009; out of print).

Table 5. American National Standard Running and Sliding Fits ANSI/ASME B4.1-1967 (2009; out of print)

		Class RC 1			Class RC 2		1	Class RC 3		Class RC 4				
Nominal		Stand Tolerance				dard ce Limits		Stan Tolerand			dard e Limits			
Size Range, Inches	Clear- ance	Hole H5	Shaft g4	Clearan- ce ^a	Hole H6	Shaft g5	Clearan- cea	Hole H7	Shaft f6	Clearan- cea	Hole H8	Shaft f7		
Over To					Values	shown below are	in thousand	lths of an inch						
	0.1	+0.2	-0.1	0.1	+0.25	-0.1	0.3	+0.4	-0.3	0.3	+0.6	-0.3		
0 - 0.12	0.45	0	-0.25	0.55	0	-0.3	0.95	0	-0.55	1.3	0	-0.7		
0.12 - 0.24	0.15	+0.2	-0.15	0.15	+0.3	-0.15	0.4	+0.5	-0.4	0.4	+0.7	-0.4		
0.12 - 0.24	0.5	0	-0.3	0.65	0	-0.35	1.12	0	-0.7	1.6	0	-0.9		
0.24 - 0.40	0.2	+0.25	-0.2	0.2	+0.4	-0.2	0.5	+0.6	-0.5	0.5	+0.9	-0.5		
0.24 - 0.40	0.6	0	-0.35	0.85	0	-0.45	1.5	0	-0.9	2.0	0	-1.1		
0.40 - 0.71	0.25	+0.3	-0.25	0.25	+0.4	-0.25	0.6	+0.7	-0.6	0.6	+1.0	-0.6		
0.40 - 0.71	0.75	0	-0.45	0.95	0	-0.55	1.7	0	-1.0	2.3	0	-1.3		
0.71 - 1.19	0.3	+0.4	-0.3	0.3	+0.5	-0.3	0.8	+0.8	-0.8	0.8	+1.2	-0.8		
0.71 - 1.19	0.95	0	-0.55	1.2	0	-0.7	2.1	0	-1.3	2.8	0	-1.6		
1.19 - 1.97	0.4	+0.4	-0.4	0.4	+0.6	-0.4	1.0	+1.0	-1.0	1.0	+1.6	-1.0		
1.15	1.1	0	-0.7	1.4	0	-0.8	2.6	0	-1.6	3.6	0	-2.0		
1.97 - 3.15	0.4	+0.5	-0.4	0.4	+0.7	-0.4	1.2	+1.2	-1.2	1.2	+1.8	-1.2		
1.57 - 5.15	1.2	0	-0.7	1.6	0	-0.9	3.1	0	-1.9	4.2	0	-2.4		
3.15 - 4.73	0.5	+0.6	-0.5	0.5	+0.9	-0.5	1.4	+1.4	-1.4	1.4	+2.2	-1.4		
5.15 - 4.75	1.5	0	-0.9	2.0	0	-1.1	3.7	0	-2.3	5.0	0	-2.8		
4.73 - 7.09	0.6	+0.7	-0.6	0.6	+1.0	-0.6	1.6	+1.6	-1.6	1.6	+2.5	-1.6		
5 7.05	1.8	0	-1.1	2.3	0	-1.3	4.2	0	-2.6	5.7	0	-3.2		
7.09 - 9.85	0.6	+0.8	-0.6	0.6	+1.2	-0.6	2.0	+1.8	-2.0	2.0	+2.8	-2.0		
7.05	2.0	0	-1.2	2.6	0	-1.4	5.0	0	-3.2	6.6	0	-3.8		
9.85 - 12.41	0.8	+0.9	-0.8	0.8	+1.2	-0.8	2.5	+2.0	-2.5	2.5	+3.0	-2.5		
9.05 - 12.41	2.3	0	-1.4	2.9	0	-1.7	5.7	0	-3.7	7.5	0	-4.5		
12.41 - 15.75	1.0	+1.0	-1.0	1.0	+1.4	-1.0	3.0	+2.2	-3.0	3.0	+3.5	-3.0		
12.41 - 15./5	2.7	0	-1.7	3.4	0	-2.0	6.6	0	-4.4	8.7	0	-5.2		
15.75 - 19.69	1.2	+1.0	-1.2	1.2	+1.6	-1.2	4.0	+2.5	-4.0	4.0	+4.0	-4.0		
15.75 - 19.69	3.0	0	-2.0	3.8	0	-2.2	8.1	0	-5.6	10.5	0	-6.5		

^a Pairs of values shown represent minimum and maximum amounts of clearance resulting from application of standard tolerance limits.

Table 6. American National Standard Running and Sliding Fits ANSI/ASME B4.1-1967 (2009: out of print)

			140			nonai s	tandara 1		anu Si			MIL D7			oj prini			
				Class RC 5			Class RC 6			Class RC 7			Class RC 8		Class RC 9			
				Standard T			Standard T			Standard T			Standard T			Standard Tolerance		
No	omin	al		Lim	its		Lim	its		Lim	its		Lim	its		Lim	its	
	Ran		Clear-	Hole	Shaft	Clear-	Hole	Shaft	Clear-	Hole	Shaft	Clear-	Hole	Shaft	Clear-	Hole	Shaft	
	nche		ance	H8	e7	ance	Н9	e8	ance	Н9	d8	ancea	H10	c9	ancea	H11	- Onuit	
Over		To						Values	shown be	low are in tho	usandths of	an inch						
0		0.12	0.6	+0.6	-0.6	0.6	+1.0	-0.6	1.0	+1.0	-1.0	2.5	+1.6	-2.5	4.0	+2.5	-4.0	
U	_	0.12	1.6	0	- 1.0	2.2	0	-1.2	2.6	0	-1.6	5.1	0	-3.5	8.1	0	- 5.6	
0.12		0.24	0.8	+0.7	-0.8	0.8	+1.2	-0.8	1.2	+1.2	-1.2	2.8	+1.8	-2.8	4.5	+3.0	-4.5	
0.12	_	0.24	2.0	0	-1.3	2.7	0	-1.5	3.1	0	-1.9	5.8	0	-4.0	9.0	0	-6.0	
0.24		0.40	1.0	+0.9	-1.0	1.0	+1.4	-1.0	1.6	+1.4	-1.6	3.0	+2.2	-3.0	5.0	+3.5	- 5.0	
0.24	_	0.40	2.5	0	-1.6	3.3	0	-1.9	3.9	0	- 2.5	6.6	0	-4.4	10.7	0	-7.2	
0.40	_	0.71	1.2	+1.0	-1.2	1.2	+1.6	-1.2	2.0	+1.6	- 2.0	3.5	+2.8	- 3.5	6.0	+4.0	-6.0	
0.40		0.71	2.9	0	- 1.9	3.8	0	-2.2	4.6	0	-3.0	7.9	0	- 5.1	12.8	0	-8.8	
0.71	_	1.19	1.6	+1.2	-1.6	1.6	+2.0	-1.6	2.5	+2.0	-2.5	4.5	+3.5	-4.5	7.0	+5.0	-7.0	
0.71		1.17	3.6	0	-2.4	4.8	0	-2.8	5.7	0	-3.7	10.0	0	-6.5	15.5	0	-10.5	
1.19	_	1.97	2.0	+1.6	- 2.0	2.0	+2.5	-2.0	3.0	+2.5	-3.0	5.0	+4.0	- 5.0	8.0	+6.0	-8.0	
1.17		1.57	4.6	0	- 3.0	6.1	0	-3.6	7.1	0	-4.6	11.5	0	-7.5	18.0	0	-12.0	
1.97	_	3.15	2.5	+1.8	-2.5	2.5	+3.0	-2.5	4.0	+3.0	-4.0	6.0	+4.5	-6.0	9.0	+7.0	- 9.0	
			5.5	0	- 3.7	7.3	0	-4.3	8.8	0	- 5.8	13.5	0	- 9.0	20.5	0	-13.5	
3.15	_	4.73	3.0 6.6	+2.2	-3.0	3.0 8.7	+3.5	-3.0	5.0 10.7	+3.5	- 5.0	7.0 15.5	+5.0	-7.0	10.0 24.0	+9.0 0	-10.0	
				_	-4.4		-	- 5.2		_	-7.2		_	-10.5		_	-15.0	
4.73	_	7.09	3.5	+2.5	-3.5	3.5	+4.0	-3.5	6.0	+4.0	-6.0	8.0	+6.0	-8.0	12.0	+10.0	-12.0	
			7.6 4.0	0 +2.8	-5.1	10.0	0 +4.5	-6.0	12.5 7.0	0 +4.5	-8.5	18.0 10.0	0 +7.0	-12.0	28.0 15.0	0 +12.0	-18.0	
7.09	_	9.85			-4.0			-4.0	14.3		-7.0			-10.0		+12.0	-15.0	
,,,,,		3.05	8.6	0	-5.8	11.3	0	-6.8		0	- 9.8	21.5	0	-14.5	34.0		-22.0	
9.85	_	12.41	5.0	+3.0	-5.0	5.0	+5.0	-5.0	8.0	+5.0	-8.0	12.0	+8.0	-12.0	18.0	+12.0	-18.0	
7.05		12.41	10.0	0	-7.0	13.0	0	-8.0	16.0	0	-11.0	25.0	0	-17.0	38.0	0	-26.0	
12.41		15.75	6.0	+3.5	-6.0	6.0	+6.0	-6.0	10.0	+6.0	-10.0	14.0	+9.0	-14.0	22.0	+14.0	-22.0	
12.41	_	13.73	11.7	0	-8.2	15.5	0	-9.5	19.5	0	-13.5	29.0	0	-20.0	45.0	0	-31.0	
15.75		19.69	8.0	+4.0	-8.0	8.0	+6.0	-8.0	12.0	+6.0	-12.0	16.0	+10.0	-16.0	25.0	+16.0	-25.0	
15.75	_	19.09	14.5	0	-10.5	18.0	0	-12.0	22.0	0	-16.0	32.0	0	-22.0	51.0	0	-35.0	

Tolerance limits given in body of table are added to or subtracted from basic size (as indicated by + or - sign) to obtain maximum and minimum sizes of mating parts. All data above heavy lines are in accord with ABC agreements. Symbols H5, g4, etc., are hole and shaft designations in ABC system. Limits for sizes above 19.69 inches are also given in the ANSI Standard.

Table 7. American National Standard Clearance Locational Fits ANSI/ASME B4.1-1967 (2009; out of print)

			Table	e 7. Ameri	ican Nati	ional S	tandard C	learanc	e Locai	tional Fits	ANSI/AS	SME B4	1.1-1967 (2	2009; out	of prin	t)	
				Class LC 1			Class LC 2			Class LC 3			Class LC 4		Class LC 5		
				Standard T			Standard T			Standard T	olerance		Standard T			Standard Tolerance	
N	lomin:	al		Lim	its		Lim			Lim	its		Lim			Lim	
	ze Ran		Clear-	Hole	Shaft	Clear-	Hole	Shaft	Clear-	Hole	Shaft	Clear-	Hole	Shaft	Clear-	Hole	Shaft
	Inches		ance ^a											H7	g6		
Over		То						Valu	es shown b	elow are in thou	sandths of a	n inch					
0	_	0.12	0	+0.25	0	0	+0.4	0	0	+0.6	0	0	+1.6	0	0.1	+0.4	-0.1
U	-	0.12	0.45	0	-0.2	0.65	0	-0.25	1	0	-0.4	2.6	0	-1.0	0.75	0	-0.35
0.12		0.24	0	+0.3	0	0	+0.5	0	0	+0.7	0	0	+1.8	0	0.15	+0.5	-0.15
0.12	-	0.24	0.5	0	-0.2	0.8	0	-0.3	1.2	0	-0.5	3.0	0	-1.2	0.95	0	-0.45
0.24		0.40	0	+0.4	0	0	+0.6	0	0	+0.9	0	0	+2.2	0	0.2	+0.6	-0.2
0.24	-	0.40	0.65	0	-0.25	1.0	0	-0.4	1.5	0	-0.6	3.6	0	-1.4	1.2	0	-0.6
0.40		0.71	0	+0.4	0	0	+0.7	0	0	+1.0	0	0	+2.8	0	0.25	+0.7	-0.25
0.40	-	0.71	0.7	0	-0.3	1.1	0	-0.4	1.7	0	-0.7	4.4	0	-1.6	1.35	0	-0.65
0.71		1.19	0	+0.5	0	0	+0.8	0	0	+1.2	0	0	+3.5	0	0.3	+0.8	-0.3
0.71	-	1.19	0.9	0	-0.4	1.3	0	-0.5	2	0	-0.8	5.5	0	-2.0	1.6	0	-0.8
1.19		1.97	0	+0.6	0	0	+1.0	0	0	+1.6	0	0	+4.0	0	0.4	+1.0	-0.4
1.19	-	1.97	1.0	0	-0.4	1.6	0	-0.6	2.6	0	-1	6.5	0	-2.5	2.0	0	-1.0
1.97		3.15	0	+0.7	0	0	+1.2	0	0	+1.8	0	0	+4.5	0	0.4	+1.2	-0.4
1.97	-	3.13	1.2	0	-0.5	1.9	0	-0.7	3	0	-1.2	7.5	0	-3	2.3	0	-1.1
2.15		4.73	0	+0.9	0	0	+1.4	0	0	+2.2	0	0	+5.0	0	0.5	+1.4	-0.5
3.15	-	4./3	1.5	0	-0.6	2.3	0	-0.9	3.6	0	-1.4	8.5	0	-3.5	2.8	0	-1.4
4.73		7.09	0	+1.0	0	0	+1.6	0	0	+2.5	0	0	+6.0	0	0.6	+1.6	-0.6
4./3	-	7.09	1.7	0	-0.7	2.6	0	-1.0	4.1	0	-1.6	10.0	0	-4	3.2	0	-1.6
7.09		9.85	0	+1.2	0	0	+1.8	0	0	+2.8	0	0	+7.0	0	0.6	+1.8	-0.6
7.09	-	9.85	2.0	0	-0.8	3.0	0	-1.2	4.6	0	-1.8	11.5	0	-4.5	3.6	0	-1.8
0.05		10.41	0	+1.2	0	0	+2.0	0	0	+3.0	0	0	+8.0	0	0.7	+2.0	-0.7
9.85	-	12.41	2.1	0	-0.9	3.2	0	-1.2	5	0	-2.0	13.0	0	-5	3.9	0	-1.9
12.41		15.75	0	+1.4	0	0	+2.2	0	0	+3.5	0	0	+9.0	0	0.7	+2.2	-0.7
12.41	-	15./5	2.4	0	-1.0	3.6	0	-1.4	5.7	0	-2.2	15.0	0	-6	4.3	0	-2.1
			0	+1.6	0	0	+2.5	0	0	+4	0	0	+10.0	0	0.8	+2.5	-0.8
15.75	-	19.69	2.6	0	-1.0	4.1	0	-1.6	6.5	0	-2.5	16.0	0	-6	4.9	0	-2.4

^a Pairs of values shown represent minimum and maximum amounts of interference resulting from application of standard tolerance limits.

Table 8. American National Standard Clearance Locational Fits ANSI/ASMF B4.1-1967 (2009: out of print)

			Tabl	e o. An	iei icai	Manoi	iai Stai	iuai u v	Jear ar	ice Loc	ational	FILSA	VSI/ASI	VIL D4.	1-1907	2009,	ош ој р	iiii)		
				Class LC 6	5		Class LC 7			Class LC 8			Class LC 9	,	(Class LC 1	0	(Class LC 1	i
	Std. Tolerance					Std. To			Std. Tolerance			Std. Tolerance		Std. Tolerance				lerance		
	Nomin							nits		Lin		ļ		nits			nits			nits
	ze Ran		Clearan-	Hole	Shaft	Clearan-	Hole	Shaft	Clearan-	Hole	Shaft	Clearan-	Hole	Shaft	Clearan-	Hole		Clearan-	Hole	
	Inche		cea	H9	f8	cea	H10	e9	ceª	H10	d9	ceª	H11	c10	ce ^a	H12	Shaft	cea	H13	Shaft
Over		To									below are	in thousand		nch						
0	_	0.12	0.3	+1.0	-0.3	0.6	+1.6	-0.6	1.0	+1.6	- 1.0	2.5	+2.5	- 2.5	4	+4	-4	5	+6	- 5
U	_	0.12	1.9	0	-0.9	3.2	0	-1.6	2.0	0	- 2.0	6.6	0	-4.1	12	0	-8	17	0	- 11
0.12		0.24	0.4	+1.2	-0.4	0.8	+1.8	-0.8	1.2	+1.8	-1.2	2.8	+3.0	- 2.8	4.5	+5	-4.5	6	+7	-6
0.12	_	0.24	2.3	0	-1.1	3.8	0	- 2.0	4.2	0	- 2.4	7.6	0	-4.6	14.5	0	- 9.5	20	0	-13
0.24	_	0.40	0.5	+1.4	-0.5	1.0	+2.2	- 1.0	1.6	+2.2	-1.6	3.0	+3.5	-3.0	5	+6	- 5	7	+9	-7
0.24	_	0.40	2.8	0	-1.4	4.6	0	- 2.4	5.2	0	- 3.0	8.7	0	- 5.2	17	0	-11	25	0	-16
0.40		0.71	0.6	+1.6	-0.6	1.2	+2.8	-1.2	2.0	+2.8	- 2.0	3.5	+4.0	- 3.5	6	+7	-6	8	+10	-8
0.40	_	0.71	3.2	0	-1.6	5.6	0	- 2.8	6.4	0	- 3.6	10.3	0	-6.3	20	0	-13	28	0	-18
0.71	_	1.19	0.8	+2.0	-0.8	1.6	+3.5	-1.6	2.5	+3.5	- 2.5	4.5	+5.0	-4.5	7	+8	-7	10	+12	-10
0.71		1.17	4.0	0	-2.0	7.1	0	- 3.6	8.0	0	-4.5	13.0	0	-8.0	23	0	-15	34	0	-22
1.19	_	1.97	1.0	+2.5	-1.0	2.0	+4.0	- 2.0	3.6	+4.0	- 3.0	5.0	+6	-5.0	8	+10	-8	12	+16	-12
1.15	_	1.97	5.1	0	-2.6	8.5	0	- 4.5	9.5	0	- 5.5	15.0	0	-9.0	28	0	-18	44	0	-28
1.97	_	3.15	1.2	+3.0	-1.0	2.5	+4.5	- 2.5	4.0	+4.5	-4.0	6.0	+7	-6.0	10	+12	-10	14	+18	-14
1.57		5.15	6.0	0	-3.0	10.0	0	- 5.5	11.5	0	- 7.0	17.5	0	-10.5	34	0	-22	50	0	-32
3.15	_	4.73	1.4	+3.5	-1.4	3.0	+5.0	- 3.0	5.0	+5.0	- 5.0	7	+9	-7	11	+14	-11	16	+22	-16
5.15		4.75	7.1	0	-3.6	11.5	0	- 6.5	13.5	0	- 8.5	21	0	-12	39	0	-25	60	0	-38
4.73	_	7.09	1.6	+4.0	-1.6	3.5	+6.0	- 3.5	6	+6	-6	8	+10	-8	12	+16	-12	18	+25	-18
4.75		7.05	8.1	0	-4.1	13.5	0	- 7.5	16	0	-10	24	0	-14	44	0	-28	68	0	-43
7.09	_	9.85	2.0	+4.5	-2.0	4.0	+7.0	-4.0	7	+7	-7	10	+12	-10	16	+18	-16	22	+28	-22
7.05		7.05	9.3	0	-4.8	15.5	0	- 8.5	18.5	0	-11.5	29	0	-17	52	0	-34	78	0	-50
9.85	_	12.41	2.2	+5.0	-2.2	4.5	+8.0	- 4.5	7	+8	-7	12	+12	-12	20	+20	-20	28	+30	-28
5.05		12.41	10.2	0	-5.2	17.5	0	- 9.5	20	0	-12	32	0	-20	60	0	-40	88	0	-58
12.41	_	15.75	2.5	+6.0	-2.5	5.0	+9.0	- 5	8	+9	-8	14	+14	-14	22	+22	-22	30	+35	-30
12.71			12.0	0	-6.0	20.0	0	-11	23	0	-14	37	0	-23	66	0	-44	100	0	-65
15.75	_	19.69	2.8	+6.0	-2.8	5.0	+10.0	- 5	9	+10	-9	16	+16	-16	25	+25	-25	35	+40	-35
13./3	_	19.09	12.8	0	-6.8	21.0	0	-11	25	0	-15	42	0	-26	75	0	-50	115	0	-75

Tolerance limits given in body of table are added or subtracted to basic size (as indicated by + or - sign) to obtain maximum and minimum sizes of mating parts. All data above heavy lines are in accordance with American-British-Canadian (ABC) agreements. Symbols H6, H7, s6, etc., are hole and shaft designations in ABC system. Limits for sizes above 19.69 inches are not covered by ABC agreements but are given in the ANSI Standard.

Nominal Size Range,

Inches

To

0.12

0.24

0.40 +0.8

0.71

1.19

1.97 +1.3

3.15

4.73

7.09

9.85

12.41

15.75 +2.9

19.69

Over

0.12

0.24

0.40

0.71

1.19

1.97

3.15

4.73

7.09

9.85

15.75

Fita

-0.12

+0.52

-0.15

+0.65

-0.2

-0.2

+0.9

-0.25

+1.05

-0.3

-0.3

+1.5

-0.4

+1.8

-0.5

+2.1

-0.6

+2.4

-0.6

+2.6

-0.7

-0.8

+1.4

0

+1.6

0

+1.8

0

+2.0

0

+2.2

0

+2.5

+0.4

-0.4

+0.5

-0.5

+0.6

-0.6

+0.6

-6.6

+0.7

-0.7

+0.8

-0.8

-0.7

+2.9

-0.8

+3.3

-0.9

+3.7

-1.0

+4.0

-1.0

+4.5

-1.2

+5.2

+2.2

0

+2.5

0

+2.8

0

+3.0

0

+3.5

+4.0

+0.7

-0.7

+0.8

-0.8

+0.9

-0.9

+1.0

-1.0

+1.0

-1.0

+1.2

-1.2

-1.0

+1.3

-1.1

+1.5

-1.4

+1.6

-1.4

+1.8

-1.6

+2.0

-1.8

+2.3

+1.4

0

+1.6

0

+1.8

0

+2.0

0

0

+2.5

+1.0

+0.1

+1.1

+0.1

+1.4

+0.2

+1.4

+0.2

+1.6

+0.2

+1.8

+0.2

-1.5

+2.1

-1.7

+2.4

-2.0

+2.6

-2.2

+2.8

-2.4

+3.3

-2.7

+3.8

+2.2

0

+2.5

0

+2.8

0

+3.0

0

+3.5

0

+4.0

+1.5

+0.1

+1.7

+0.1

+2.0

+0.2

+2.2

+0.2

+2.4

+0.2

+2.7

+0.2

-1.9

+0.4

-2.2

+0.4

-2.6

+0.4

-2.6

+0.6

-3.0

+0.6

-3.4

+0.7

+1.4

0

+1.6

0

+1.8

0

+2.0

0

+2.2

0

+2.5

0

+1.9

+1.0

+2.2

+1.2

+2.6

+1.4

+2.6

+1.4

+3.0

+1.6

+3.4

+1.8

-2.4

+0.4

-2.8

+0.4

-3.2

+0.4

-3.4

+0.6

-3.8

+0.6

-4.3

+0.7

+1.4

0

+1.6

0

+1.8

0

+2.0

0

+2.2

0

+2.5

+2.4

+1.0

+2.8

+1.2

+3.2

+1.4 +3.4

+1.4

+3.8

+1.6

+4.3

+1.8

Class LT 3 Class LT 1 Class LT 2 Class LT 4 Class LT 5 Class LT 6 Std. Std. Std. Std. Std. Std. Tolerance Tolerance Tolerance Tolerance Tolerance Tolerance Limits Limits Limits Limits Limits Limits Hole Shaft Hole Shaft Hole Shaft Hole Shaft Hole Shaft Hole Shaft H7 js6 Fita H8 js7 Fita k6 Fita H8 Fita H7 Fita H7 n7 Values shown below are in thousandths of an inch +0.4 +0.12+0.6 +0.2 +0.4 +0.5 +0.4 +0.65 -0.2-0.5-0.650 -0.12+0.8 0 -0.2+0.150 +0.25 +0.15 0 +0.25 Machinery's Handbook Pocket Companion ALLOWANCES AND TOLERANCES +0.5 +0.15 +0.7 +0.25 +0.5 +0.6 +0.5 +0.8 -0.25-0.6-0.80 +0.95 0 +0.20 +0.3 +0.20 +0.3 -0.15-0.25+0.6 +0.2 +0.9 +0.3 +0.6 +0.5 +0.9 +0.7+0.6 +0.8+0.6 +1.0-0.3-0.5-0.7-0.8-1.00 +1.2 0 +0.5 0 +0.1 +0.8 0 +0.1+0.20 +0.4+0.20 +0.4-0.2-0.3+0.7 +0.2 +1.0 +0.35 +0.7 +0.5 +0.8 +0.7 +0.9 +0.7 +1.2 -0.35-0.5-0.8+1.0-0.9 -1.20 +1.35 0 0 +0.1+0.9 0 +0.1+0.2 0 +0.5 +0.20 +0.5 -0.2-0.35+0.6+0.25 +1.2 +1.2 +1.4 +0.8-0.4+0.4-0.6+0.8+0.6-0.9+0.9-1.1+0.8+1.1-1.4+0.80 +1.6 0 +0.70 +0.1 +1.10 +0.1+0.20 +0.6 +0.20 +0.6 -0.25-0.4+1.0 +0.3 -0.5+1.6 +0.5-0.7+1.0 +0.7 -1.1+1.6 +1.1-1.3+1.0 +1.3 -1.7+1.0 +1.7 0 -0.3+2.10 -0.5 +0.9 0 +0.1+1.5 0 +0.1+0.3 0 +0.7 +0.3 0 +0.7 +1.2+0.3 +1.8+0.6 +1.2+0.8 +1.8 +1.3 +1.2+1.5+1.2+2.0-0.6-0.8-1.3-1.5-2.00 +2.4 0 +1.10 +0.1+1.7 0 +0.1+0.40 +0.8+0.40 +0.8-0.3-0.6

^a Pairs of values shown represent maximum amount of interference (–) and maximum amount of clearance (+) resulting from application of standard tolerance limits. All data above heavy lines are in accord with ABC agreements. Symbols H7, is6, etc., are hole and shaft designations in the ABC system.

Table 9. ANSI/ASME Standard Transition Locational Fits ANSI/ASME B4.1-1967 (2009; out of print)

Table 10. ANSI/ASME Standard Interference Locational Fits *ANSI/ASME B4.1-1967 (2009; out of print)*

	(Class LN	1	(Class LN	2	Class LN 3				
Nominal	Limits	Stan Lin	dard nits	Limits	Stan Lin	dard nits	Limits		dard nits		
Size Range, Inches	Inter- ference	Hole H6	Shaft n5	Inter- ference	Hole H7	Shaft p6	Inter- ference	Hole H7	Shaft r6		
Over To	Values shown below are in thousandths of an inch										
0-0.12	0	+0.25	+0.45	0	+0.4	+0.65	0.1	+0.4	+0.75		
0 = 0.12	0.45	0	+0.25	0.65	0	+0.4	0.75	0	+0.5		
0.12 - 0.24	0	+0.3	+0.5	0	+0.5	+0.8	0.1	+0.5	+0.9		
	0.5	0	+0.3	0.8	0	+0.5	0.9	0	+0.6		
0.24 - 0.40	0	+0.4	+0.65	0	+0.6	+1.0	0.2	+0.6	+1.2		
0.24 - 0.40	0.65	0	+0.4	1.0	0	+0.6	1.2	0	+0.8		
0.40 - 0.71	0	+0.4	+0.8	0	+0.7	+1.1	0.3	+0.7	+1.4		
0.40 = 0.71	0.8	0	+0.4	1.1	0	+0.7	1.4	0	+1.0		
0.71 – 1.19	0	+0.5	+1.0	0	+0.8	+1.3	0.4	+0.8	+1.7		
0.71 - 1.19	1.0	0	+0.5	1.3	0	+0.8	1.7	0	+1.2		
1.19 – 1.97	0	+0.6	+1.1	0	+1.0	+1.6	0.4	+1.0	+2.0		
1.19 = 1.97	1.1	0	+0.6	1.6	0	+1.0	2.0	0	+1.4		
1.97 – 3.15	0.1	+0.7	+1.3	0.2	+1.2	+2.1	0.4	+1.2	+2.3		
1.97 = 3.13	1.3	0	+0.8	2.1	0	+1.4	2.3	0	+1.6		
3.15 – 4.73	0.1	+0.9	+1.6	0.2	+1.4	+2.5	0.6	+1.4	+2.9		
3.13 - 4.73	1.6	0	+1.0	2.5	0	+1.6	2.9	0	+2.0		
4.73 – 7.09	0.2	+1.0	+1.9	0.2	+1.6	+2.8	0.9	+1.6	+3.5		
4.73 = 7.09	1.9	0	+1.2	2.8	0	+1.8	3.5	0	+2.5		
7.09 – 9.85	0.2	+1.2	+2.2	0.2	+1.8	+3.2	1.2	+1.8	+4.2		
7.09 = 9.03	2.2	0	+1.4	3.2	0	+2.0	4.2	0	+3.0		
9.85 – 12.41	0.2	+1.2	+2.3	0.2	+2.0	+3.4	1.5	+2.0	+4.7		
9.65 - 12.41	2.3	0	+1.4	3.4	0	+2.2	4.7	0	+3.5		
12.41 – 15.75	0.2	+1.4	+2.6	0.3	+2.2	+3.9	2.3	+2.2	+5.9		
12.41 - 13.73	2.6	0	+1.6	3.9	0	+2.5	5.9	0	+4.5		
15.75 – 19.69	0.2	+1.6	+2.8	0.3	+2.5	+4.4	2.5	+2.5	+6.6		
15.75 - 15.09	2.8	0	+1.8	4.4	0	+2.8	6.6	0	+5.0		

Tolerance limits given in body of table are added or subtracted to basic size (as indicated by + or - sign) to obtain maximum and minimum sizes of mating parts.

All data in this table are in accordance with American-British-Canadian (ABC) agreements.

Limits for sizes above 19.69 inches are not covered by ABC agreements but are given in the ANSI Standard.

Symbols H7, p6, etc., are hole and shaft designations in the ABC system.

ebooks.industrialpress.com

Table 11. ANSI/ASME Standard Force and Shrink Fits ANSI/ASME B4.1-1967 (2009; out of print)

				ANSI/A				MIII IIIK			r					
			Class FN 1			Class FN 2			Class FN 3			Class FN 4		Class FN 5		
	Standard Tolerance Limits				Standard Tolerance Limits			Standard Tolerance Limits				Tolerance nits		Standard To Limi		
	ominal			liits							Ŧ.,					
	Range,	Interfer- ence	Hole H6	Shaft	Inter- ference ^a	Hole H7	Shaft s6	Inter- ference ^a	Hole H7	Shaft t6	Inter- ference ^a	Hole H7	Shaft u6	Inter- ference ^a	Hole H8	Shaft x7
Over	To		110	Jimir	Terence			shown belo					uo	rerence	110	
Over	- 10	0.05	+0.25	+0.5	0.2	+0.4	+0.85	Shown belo	w are in the	usanutiis or	0.3	+0.4	+0.95	0.3	+0.6	+1.3
0	- 0.12	0.5	0	+0.3	0.85	0	+0.6				0.95	0	+0.7	1.3	0	+0.9
		0.1	+0.3	+0.6	0.2	+0.5	+1.0				0.4	+0.5	+1.2	0.5	+0.7	+1.7
0.12	- 0.24	0.6	0	+0.4	1.0	0	+0.7				1.2	0	+0.9	1.7	0	+1.2
		0.1	+0.4	+0.75	0.4	+0.6	+1.4				0.6	+0.6	+1.6	0.5	+0.9	+2.0
0.24	- 0.40	0.75	0	+0.5	1.4	0	+1.0				1.6	0	+1.2	2.0	0	+1.4
		0.1	+0.4	+0.8	0.5	+0.7	+1.6				0.7	+0.7	+1.8	0.6	+1.0	+2.3
0.40	- 0.56	0.8	0	+0.5	1.6	0	+1.2				1.8	0	+1.4	2.3	0	+1.6
0.56	0.71	0.2	+0.4	+0.9	0.5	+0.7	+1.6				0.7	+0.7	+1.8	0.8	+1.0	+2.5
0.56	- 0.71	0.9	0	+0.6	1.6	0	+1.2		•••		1.8	0	+1.4	2.5	0	+1.8
0.71	- 0.95	0.2	+0.5	+1.1	0.6	+0.8	+1.9				0.8	+0.8	+2.1	1.0	+1.2	+3.0
0./1	- 0.93	1.1	0	+0.7	1.9	0	+1.4	•••	•••		2.1	0	+1.6	3.0	0	+2.2
0.95	- 1.19	0.3	+0.5	+1.2	0.6	+0.8	+1.9	0.8	+0.8	+2.1	+1.0	+0.8	+2.3	1.3	+1.2	+3.3
0.93	- 1.19	1.2	0	+0.8	1.9	0	+1.4	2.1	0	+1.6	2.3	0	+1.8	3.3	0	+2.5
1.19	- 1.58	0.3	+0.6	+1.3	0.8	+1.0	+2.4	1.0	+1.0	+2.6	1.5	+1.0	+3.1	1.4	+1.6	+4.0
1.19	- 1.56	1.3	0	+0.9	2.4	0	+1.8	2.6	0	+2.0	3.1	0	+2.5	4.0	0	+3.0
1.58	- 1.97	0.4	+0.6	+1.4	0.8	+1.0	+2.4	1.2	+1.0	+2.8	1.8	+1.0	+3.4	2.4	+1.6	+5.0
		1.4	+0.7	+1.0	2.4	+1.2	+1.8	2.8	0	+2.2	3.4	+1.2	+2.8	5.0	0	+4.0
1.97	- 2.56	0.6 1.8	+0.7	+1.8	2.7	+1.2	+2.7	3.2	+1.2	+3.2	4.2	+1.2	+4.2	6.2	+1.8	+6.2 +5.0
		0.7	+0.7	+1.3	1.0	+1.2	+2.0	1.8	+1.2	+2.5	2.8	+1.2	+3.5	4.2	0 +1.8	+5.0
2.56	- 3.15	1.9	0	+1.9	2.9	+1.2	+2.9	3.7	0 +1.2	+3.7	4.7	0 +1.2	+4.7	7.2	11.8	+7.2
		0.9	+0.9	+1.4	1.4	+1.4	+2.2	2.1	+1.4	+3.0	3.6	+1.4	+4.0	4.8	+2.2	+8.4
3.15	- 3.94	2.4	0	+1.8	3.7	0	+3.7	4.4	0	+3.5	5.9	0	+5.0	8.4	0	+7.0
		1.1	+0.9	+2.6	1.6	+1.4	+3.9	2.6	+1.4	+4.9	4.6	+1.4	+6.9	5.8	+2.2	+9.4
3.94	- 4.73	2.6	0	+2.0	3.9	0	+3.0	4.9	0	+4.0	6.9	0	+6.0	9.4	0	+8.0
		2.0	l "	1 12.0	1 5.5		15.0	7.7	l "	17.0	0.5	ı	10.0	1 7.7	1 "	10.0

ALLOWANCES AND TOLERANCES Machinery's Handbook Pocket Companion

ALLOWANCES AND TOLERANCES

Table 11. (Continued) ANSI/ASME Standard Force and Shrink Fits ANSI/ASME B4.1-1967 (2009; out of print)

			Class FN 1			Class FN 2			Class FN 3			Class FN 4		Class FN 5		
Nominal Size Range, Inches			Standard Tolerance Limits			Standard Tolerance Limits			Standard Tolerance Limits			Standard Tolerance Limits			Standard Tolerance Limits	
		Interfer- ence ^a	Hole H6	Shaft	Inter- ference ^a	Hole H7	Shaft s6	Inter- ference ^a	Hole H7	Shaft t6	Inter- ference ^a	Hole H7	Shaft u6	Inter- ference ^a	Hole H8	Shaft x7
Over	To						Values	shown belo	wn below are in thousandths of an inch							
4.73	- 5.52	1.2 2.9	+1.0	+2.9 +2.2	1.9 4.5	+1.6 0	+4.5 +3.5	3.4 6.0	+1.6 0	+6.0 +5.0	5.4 8.0	+1.6 0	+8.0 +7.0	7.5 11.6	+2.5	+11.6
5.52	- 6.30	1.5	+1.0	+3.2	2.4	+1.6	+5.0	3.4	+1.6	+6.0	5.4	+1.6	+8.0	9.5	+2.5	+13.6
3.32	- 0.50	3.2	0	+2.5	5.0	0	+4.0	6.0	0	+5.0	8.0	0	+7.0	13.6	0	+12.0
6.30	- 7.09	1.8	+1.0	+3.5	2.9	+1.6	+5.5	4.4	+1.6	+7.0	6.4	+1.6	+9.0	9.5	+2.5	+13.6
0.50	- 7.03	3.5	0	+2.8	5.5	0	+4.5	7.0	0	+6.0	9.0	0	+8.0	13.6	0	+12.0
7.09	- 7.88	1.8	+1.2	+3.8	3.2	+1.8	+6.2	5.2	+1.8	+8.2	7.2	+1.8	+10.2	11.2	+2.8	+15.8
1.09	- 7.00	3.8	0	+3.0	6.2	0	+5.0	8.2	0	+7.0	10.2	0	+9.0	15.8	0	+14.0
7.88	- 8.86	2.3	+1.2	+4.3	3.2	+1.8	+6.2	5.2	+1.8	+8.2	8.2	+1.8	+11.2	13.2	+2.8	+17.8
7.00	- 0.00	4.3	0	+3.5	6.2	0	+5.0	8.2	0	+7.0	11.2	0	+10.0	17.8	0	+16.0
8.86	- 9.85	2.3	+1.2	+4.3	4.2	+1.8	+7.2	6.2	+1.8	+9.2	10.2	+1.8	+13.2	13.2	+2.8	+17.8
0.00	- 9.65	4.3	0	+3.5	7.2	0	+6.0	9.2	0	+8.0	13.2	0	+12.0	17.8	0	+16.0
9.85	- 11.03	2.8	+1.2	+4.9	4.0	+2.0	+7.2	7.0	+2.0	+10.2	10.0	+2.0	+13.2	15.0	+3.0	+20.0
7.05	11.03	4.9	0	+4.0	7.2	0	+6.0	10.2	0	+9.0	13.2	0	+12.0	20.0	0	+18.0
11.03	- 12.41	2.8	+1.2	+4.9	5.0	+2.0	+8.2	7.0	+2.0	+10.2	12.0	+2.0	+15.2	17.0	+3.0	+22.0
11.05	- 12.41	4.9	0	+4.0	8.2	0	+7.0	10.2	0	+9.0	15.2	0	+14.0	22.0	0	+20.0
12.41	- 13.98	3.1	+1.4	+5.5	5.8	+2.2	+9.4	7.8	+2.2	+11.4	13.8	+2.2	+17.4	18.5	+3.5	+24.2
12.71	15.50	5.5	0	+4.5	9.4	0	+8.0	11.4	0	+10.0	17.4	0	+16.0	24.2	0	+22.0
13.98	- 15.75	3.6	+1.4	+6.1	5.8	+2.2	+9.4	9.8	+2.2	+13.4	15.8	+2.2	+19.4	21.5	+3.5	+27.2
15.70	15.75	6.1	0	+5.0	9.4	0	+8.0	13.4	0	+12.0	19.4	0	+18.0	27.2	0	+25.0
15.75	- 17.72	4.4	+1.6	+7.0	6.5	+2.5	+10.6	+9.5	+2.5	+13.6	17.5	+2.5	+21.6	24.0	+4.0	+30.5
15.75	17.72	7.0	0	+6.0	10.6	0	+9.0	13.6	0	+12.0	21.6	0	+20.0	30.5	0	+28.0
17.72	- 19.69	4.4	+1.6	+7.0	7.5	+2.5	+11.6	11.5	+2.5	+15.6	19.5	+2.5	+23.6	26.0	+4.0	+32.5
17.72	- 19.09	7.0	0	+6.0	11.6	0	+10.0	15.6	0	+14.0	23.6	0	+22.0	32.5	0	+30.0

^a Pairs of values shown represent minimum and maximum amounts of interference resulting from application of standard tolerance limits.

All data above heavy lines are in accordance with American-British-Canadian (ABC) agreements. Symbols H6, H7, s6, etc., are hole and shaft designations in the ABC system. Limits for sizes above 19.69 inches are not covered by ABC agreements but are given in the ANSI standard.

American National Standard Preferred Metric Limits and Fits.—This standard ANSI/ASME B4.2-1978 (R2009) describes the ISO system of metric limits and fits for mating parts as approved for general engineering usage in the United States. It establishes: (1) the designation symbols used to define dimensional limits on drawings, material stock, related tools, gages, etc.; (2) the preferred basic sizes (first and second choices); (3) the preferred tolerance zones (first, second, and third choices); (4) the definitions of related terms; and (5) the preferred limits and fits for sizes (first choice only) up to and including 500 millimeters.

The general terms "hole" and "shaft" can also be taken to refer to the space containing or contained by two parallel faces of any part, such as the width of a slot, or the thickness of a key.

Fig. 1. Illustration of Definitions

Definitions.—The most important terms relating to limits and fits are shown in Fig. 1 and are defined as follows:

Basic Size: The size to which limits of deviation are assigned. The basic size is the same for both members of a fit. For example, it is designated by the numbers 40 in 40H7.

Deviation: The algebraic difference between a size and the corresponding basic size. Upper Deviation: The algebraic difference between the maximum limit of size and the corresponding basic size.

Table 12. American National Standard Preferred Metric Sizes	
ANSI/ASME B4.2-1978 (R2009)	

	Size,		Size,		Size, m	Basic Size, mm		
1st	2nd	1st	2nd	1st	2nd	1st	2nd	
Choice	Choice	Choice	Choice	Choice	Choice	Choice	Choice	
1		6		40		250		
	1.1		7		45		280	
1.2		8		50		300		
	1.4		9		55		350	
1.6		10		60		400		
	1.8		11		70		450	
2		12		80		500		
	2.2		14		90		550	
2.5		16		100		600		
	2.8		18		110		700	
3		20		120		800		
	3.5		22		140		900	
4		25		160		1000		
	4.5		28		180			
5		30		200				
	5.5		35		220			

Preferred Fits.—First-choice tolerance zones are used to establish preferred fits in the Standard for Preferred Metric Limits and Fits, ANSI/ASME B4.2, as shown in Figs. 2 and 3. A complete listing of first-, second-, and third-choice tolerance zones is given in the Standard.

Fig. 2. Preferred Hole Basis Fits

Fig. 3. Preferred Shaft Basis Fits

Hole basis fits have a fundamental deviation of H on the hole, and shaft basis fits have a fundamental deviation of h on the shaft and are shown in Fig. 2 for hole basis and Fig. 3 for shaft basis fits. A description of both types of fits, which have the same relative fit condition, is given in Table 13. Normally, the hole basis system is preferred; however, when a common shaft mates with several holes, the shaft basis system should be used.

The hole basis and shaft basis fits shown in Table 13 are combined with the first-choice sizes shown in Table 12 to form Tables 14, 15, 16, and 17, where specific limits as well as the resultant fits are tabulated.

If the required size is not tabulated in Tables 14 through 17, then the preferred fit can be calculated from numerical values given in an appendix of ANSI/ASME B4.2-1978 (R2009). It is anticipated that other fit conditions may be necessary to meet special requirements, and a preferred fit can be loosened or tightened simply by selecting a standard tolerance zone as given in the Standard. Information on how to calculate limit dimensions, clearances, and interferences for nonpreferred fits and sizes can also be found in an appendix of this Standard.

By combining the IT grade number and the tolerance position letter, the tolerance symbol is established that identifies the actual maximum and minimum limits of the part. The tolerances size is thus defined by the basic size of the part followed by a symbol composed of a letter and a number, such as 40H7. 40f7, etc.

Machinery's Handbook Pocket Companion
ALLOWANCES AND TOLERANCES

Table 13. Description of Preferred Fits

	ISO SY	MBOL		
	Hole Basis	Shaft Basis	DESCRIPTION	
	H11/c11	C11/h11	Loose running fit for wide commercial tolerances or allowances on external members.	
	H9/d9	D9/h9	Free running fit not for use where accuracy is essential, but good for large temperature variations, high running speeds, or heavy journal pressures.	
Clearance Fits	H8/f7	F8/h7	Close Running fit for running on accurate machines and for accurate moderate speeds and journal pressures.	↑ More Clearance
	H7/g6	G7/h6	Sliding fit not intended to run freely, but to move and turn freely and locate accurately.	Cicarance
	H7/h6	H7/h6	Locational clearance fit provides snug fit for locating stationary parts; but can be freely assembled and disassembled.	
Transition	H7/k6	K7/h6	Locational transition fit for accurate location, a compromise between clearance and interference.	
Fits	H7/n6	N7/h6	Locational transition fit for more accurate location where greater interference is permissible.	
	H7/p6ª	P7/h6	Locational interference fit for parts requiring rigidity and alignment with prime accuracy of location but without special bore pressure requirements.	More Interferenc
Interference Fits	H7/s6	S7/h6	Medium drive fit for ordinary steel parts or shrink fits on light sections; the tightest fit usable with cast iron.	
	H7/u6	U7/h6	Force fit suitable for parts that can be highly stressed or for shrink fits where the heavy pressing forces required are impractical.	

^a Transition fit for basic sizes in range from 0 through 3 mm.

ebooks.industrialpress.com

Table 14. American National Standard Preferred Hole Basis Metric Clearance Fits ANSI/ASME B4.2-1978 (R2009)

		I	oose Runnin	g	1	Free Running	Ţ.		Close Running	g		Sliding		Loca	ational Clear	nce
Basic Size ^a		Hole H11	Shaft c11	Fit ^b	Hole H9	Shaft d9	Fit ^b	Hole H8	Shaft f7	Fitb	Hole H7	Shaft g6	Fit ^b	Hole H7	Shaft h6	Fitb
	Max	1.060	0.940	0.180	1.025	0.980	0.070	1.014	0.994	0.030	1.010	0.998	0.018	1.010	1.000	0.01
1	Min	1.000	0.880	0.060	1.000	0.995	0.020	1.000	0.984	0.006	1.000	0.992	0.002	1.000	0.994	0.00
	Max	1.260	1.140	0.180	1.225	1.180	0.070	1.214	1.194	0.030	1.210	1.198	0.018	1.210	1.200	0.01
1.2	Min	1.200	1.080	0.060	1.200	1.155	0.020	1.200	1.184	0.006	1.200	1.192	0.002	1.200	1.194	0.00
	Max	1.660	1.540	0.180	1.625	1.580	0.070	1.614	1.594	0.030	1.610	1.598	0.018	1.610	1.600	0.01
1.6	Min	1.600	1.480	0.060	1.600	1.555	0.020	1.600	1.584	0.006	1.600	1.592	0.002	1.600	1.594	0.00
	Max	2.060	1.940	0.180	2.025	1.980	0.070	2.014	1.994	0.030	2.010	1.998	0.018	2.010	2.000	0.01
2	Min	2.000	1.880	0.060	2.000	1.955	0.020	2.000	1.984	0.006	2.000	1.992	0.002	2.000	1.994	0.00
	Max	2.560	2.440	0.180	2.525	2.480	0.070	2.514	2.494	0.030	2.510	2.498	0.018	2.510	2.500	0.01
2.5	Min	2.500	2.380	0.060	2.500	2.455	0.020	2.500	2.484	0.006	2.500	2.492	0.002	2.500	2.494	0.00
	Max	3.060	2.940	0.180	3.025	2.980	0.070	3.014	2.994	0.030	3.010	2.998	0.018	3.010	3.000	0.01
3	Min	3.000	2.880	0.060	3.000	2.955	0.020	3.000	2.984	0.006	3.000	2.992	0.002	3.000	2.994	0.00
	Max	4.075	3.930	0.220	4.030	3.970	0.090	4.018	3.990	0.040	4.012	3.996	0.024	4.012	4.000	0.02
4	Min	4.000	3.855	0.070	4.000	3.940	0.030	4.000	3.978	0.010	4.000	3.988	0.004	4.000	3.992	0.00
	Max	5.075	4.930	0.220	5.030	4.970	0.090	5.018	4.990	0.040	5.012	4.996	0.024	5.012	5.000	0.02
5	Min	5.000	4.855	0.070	5.000	4.940	0.030	5.000	4.978	0.010	5.000	4.988	0.004	5.000	4.992	0.00
	Max	6.075	5.930	0.220	6.030	5.970	0.090	6.018	5.990	0.040	6.012	5.996	0.024	6.012	6.000	0.02
6	Min	6.000	5.855	0.070	6.000	5.940	0.030	6.000	5.978	0.010	6.000	5.988	0.004	6.000	5.992	0.00
	Max	8.090	7.920	0.260	8.036	7.960	0.112	8.022	7.987	0.050	8.015	7.995	0.029	8.015	8.000	0.02
8	Min	8.000	7.830	0.080	8.000	7.924	0.040	8.000	7.972	0.013	8.000	7.986	0.005	8.000	7.991	0.00
	Max	10.090	9.920	0.260	10.036	9.960	0.112	10.022	9.987	0.050	10.015	9.995	0.029	10.015	10.000	0.02
10	Min	10.000	9.830	0.080	10.000	9.924	0.040	10.000	9.972	0.013	10.000	9.986	0.005	10.000	9.991	0.00
	Max	12.110	11.905	0.315	12.043	11.956	0.136	12.027	11.984	0.061	12.018	11.994	0.035	12.018	12.000	0.02
12	Min	12.000	11.795	0.095	12.000	11.907	0.050	12.000	11.966	0.016	12.000	11.983	0.006	12.000	11.989	0.00
1.0	Max	16.110	15.905	0.315	16.043	15.950	0.136	16.027	15.984	0.061	16.018	15.994	0.035	16.018	16.000	0.02
16	Min	16.000	15.795	0.095	16.000	15.907	0.050	16.000	15.966	0.016	16.000	15.983	0.006	16.000	15.989	0.00
20	Max	20.130	19.890	0.370	20.052	19.935	0.169	20.033	19.980	0.074	20.021	19.993	0.041	20.021	20.000	0.03
20	Min	20.000	19.760	0.110	20.000	19.883	0.065	20.000	19.959	0.020	20.000	19.980	0.007	20.000	19.987	0.00
25	Max	25.130	24.890	0.370	25.052	24.935	0.169	25.033	24.980	0.074	25.021	24.993	0.041	25.021	25.000	0.03
25	Min	25.000	24.760	0.110	25.000	24.883	0.065	25.000	24.959	0.020	25.000	24.980	0.007	25.000	24.987	0.00

ALLOWANCES AND TOLERANCES Machinery's Handbook Pocket Companion

Table 14. (Continued) American National Standard Preferred Hole Basis Metric Clearance Fits ANSI/ASME B4.2-1978 (R2009)

	Iubic I		ucu) Aiii								carance		1771017112	T		
		I	.oose Runnin	g	1	Free Running		(Close Running	ğ		Sliding		Loc	ational Clear	ınce
Basic		Hole	Shaft		Hole	Shaft		Hole	Shaft		Hole	Shaft		Hole	Shaft	
Sizea		H11	c11	Fit ^b	H9	d9	Fit ^b	H8	f7	Fitb	H7	g6	Fit ^b	H7	h6	Fitb
30	Max	30.130	29.890	0.370	30.052	29.935	0.169	30.033	29.980	0.074	30.021	29.993	0.041	30.021	30.000	0.034
50	Min	30.000	29.760	0.110	30.000	29.883	0.065	30.000	29.959	0.020	30.000	29.980	0.007	30.000	29.987	0.000
40	Max	40.160	39.880	0.440	40.062	39.920	0.204	40.039	39.975	0.089	40.025	39.991	0.050	40.025	40.000	0.041
40	Min	40.000	39.720	0.120	40.000	39.858	0.080	40.000	39.950	0.025	40.000	39.975	0.009	40.000	39.984	0.000
50	Max	50.160	49.870	0.450	50.062	49.920	0.204	50.039	49.975	0.089	50.025	49.991	0.050	50.025	50.000	0.041
30	Min	50.000	49.710	0.130	50.000	49.858	0.080	50.000	49.950	0.025	50.000	49.975	0.009	50.000	49.984	0.000
	Max	60.190	59.860	0.520	60.074	59.900	0.248	60.046	59.970	0.106	60.030	59.990	0.059	60.030	60.000	0.049
60	Min	60.000	59.670	0.140	60.000	59.826	0.100	60.000	59.940	0.030	60.000	59.971	0.010	60.000	59.981	0.000
	Max	80.190	79.850	0.530	80.074	79.900	0.248	80.046	79.970	0.106	80.030	79.990	0.059	80.030	80.000	0.049
80	Min	80.000	79.660	0.150	80.000	79.826	0.100	80.000	79.940	0.030	80.000	79.971	0.010	80.000	79.981	0.000
	Max	100.220	99.830	0.610	100.087	99.880	0.294	100.054	99.964	0.125	100.035	99.988	0.069	100.035	100.000	0.057
100	Min	100.000	99.610	0.170	100.000	99.793	0.120	100.000	99.929	0.036	100.000	99.966	0.012	100.000	99.978	0.000
120	Max	120.220	119.820	0.620	120.087	119.880	0.294	120.054	119.964	0.125	120.035	119.988	0.069	120.035	120.000	0.057
120	Min	120.000	119.600	0.180	120.000	119.793	0.120	120.000	119.929	0.036	120.000	119.966	0.012	120.000	119.978	0.000
	Max	160.250	159.790	0.710	160.100	159.855	0.345	160.063	159.957	0.146	160.040	159.986	0.079	160.040	160.000	0.065
160	Min	160.000	159.540	0.210	160.000	159.755	0.145	160.000	159.917	0.043	160.000	159.961	0.014	160.000	159.975	0.000
	Max	200.290	199.760	0.820	200.115	199.830	0.400	200.072	199.950	0.168	200.046	199.985	0.090	200.046	200.000	0.075
200	Min	200.000	199.470	0.240	200.000	199.715	0.170	200.000	199.904	0.050	200.000	199.956	0.015	200.000	199.971	0.000
	Max	250.290	249.720	0.860	250.115	249.830	0.400	250.072	249.950	0.168	250.046	249.985	0.090	250.046	250.000	0.075
250	Min	250.000	249.430	0.280	250.000	249.715	0.170	250.000	249.904	0.050	250.000	249.956	0.015	250.000	249.971	0.000
	Max	300.320	299.670	0.970	300.130	299.810	0.450	300.081	299.944	0.189	300.052	299.983	0.101	300.052	300.000	0.084
300	Min	300.000	299.350	0.330	300.000	299.680	0.190	300.000	299.892	0.056	300.000	299.951	0.017	300.000	299.968	0.000
	Max	400.360	399.600	1.120	400.140	399.790	0.490	400.089	399.938	0.208	400.057	399.982	0.111	400.057	400.000	0.093
400	Min	400.000	399.240	0.400	400.000	399.650	0.210	400.000	399.881	0.062	400.000	399.946	0.018	400.000	399.964	0.000
	Max	500.400	499.520	1.280	500.155	499.770	0.540	500.097	499.932	0.228	500.063	499.980	0.123	500.063	500.000	0.103
500	Min	500,000	499 120	0.480	500,000	499 615	0.230	500,000	499 869	0.068	500,000	499 940	0.020	500,000	499 960	0.000

^{*}The sizes shown are first-choice basic sizes (see Table 12). Preferred fits for other sizes can be calculated from data given in ANSI B4.2-1978, R2004.

^b All fits shown in this table have clearance.

All dimensions are in millimeters.

Table 15. American National Standard Preferred Hole Basis Metric Transition and Interference Fits ANSI/ASME 84.2-1978 (R2009)

318

Machinery's Handbook Pocket Companion ALLOWANCES AND TOLERANCES

Ia	bie 15. A	merican	Nationa	u Standa	ard Prefe	errea Ho	de Basis	Metric 1	ransitio	n and In	terieren	ce Fits A	NSI/ASI	1E B4.2-1	9/8(R2	(009
		Loca	tional Trans	ition	Loca	tional Trans	ition	Locat	ional Interfe	rence	N	Medium Driv	e		Force	
Basic Size ^a		Hole H7	Shaft k6	Fit ^b	Hole H7	Shaft n6	Fit ^b	Hole H7	Shaft p6	Fitb	Hole H7	Shaft s6	Fitb	Hole H7	Shaft u6	Fitb
1	Max	1.010	1.006	+0.010	1.010	1.010	+0.006	1.010	1.012	+0.004	1.010	1.020	-0.004	1.010	1.024	-0.00
1	Min	1.000	1.000	-0.006	1.000	1.004	-0.010	1.000	1.006	-0.012	1.000	1.014	-0.020	1.000	1.018	-0.02
1.2	Max	1.210	1.206	+0.010	1.210	1.210	+0.006	1.210	1.212	+0.004	1.210	1.220	-0.004	1.210	1.224	-0.00
1.2	Min	1.200	1.200	-0.006	1.200	1.204	-0.010	1.200	1.206	-0.012	1.200	1.214	-0.020	1.200	1.218	-0.02
1.6	Max	1.610	1.606	+0.010	1.610	1.610	+0.006	1.610	1.612	+0.004	1.610	1.620	-0.004	1.610	1.624	-0.00
1.0	Min	1.600	1.600	-0.006	1.600	1.604	-0.010	1.600	1.606	-0.012	1.600	1.614	-0.020	1.600	1.618	-0.02
2	Max	2.010	2.006	+0.010	2.010	2.010	+0.006	2.010	2.012	+0.004	2.010	2.020	-0.004	2.010	2.024	-0.00
2	Min	2.000	2.000	-0.006	2.000	2.004	-0.010	2.000	2.006	-0.012	2.000	2.014	-0.020	2.000	2.018	-0.02
2.5	Max	2.510	2.506	+0.010	2.510	2.510	+0.006	2.510	2.512	+0.004	2.510	2.520	-0.004	2.510	2.524	-0.00
2.3	Min	2.500	2.500	-0.006	2.500	2.504	-0.010	2.500	2.506	-0.012	2.500	2.514	-0.020	2.500	2.518	-0.02
3	Max	3.010	3.006	+0.010	3.010	3.010	+0.006	3.010	3.012	+0.004	3.010	3.020	-0.004	3.010	3.024	-0.00
3	Min	3.000	3.000	-0.006	3.000	3.004	-0.010	3.000	3.006	-0.012	3.000	3.014	-0.020	3.000	3.018	-0.02
4	Max	4.012	4.009	+0.011	4.012	4.016	+0.004	4.012	4.020	0.000	4.012	4.027	-0.007	4.012	4.031	-0.01
4	Min	4.000	4.001	-0.009	4.000	4.008	-0.016	4.000	4.012	-0.020	4.000	4.019	-0.027	4.000	4.023	-0.03
5	Max	5.012	5.009	+0.011	5.012	5.016	+0.004	5.012	5.020	0.000	5.012	5.027	-0.007	5.012	5.031	-0.01
3	Min	5.000	5.001	-0.009	5.000	5.008	-0.016	5.000	5.012	-0.020	5.000	5.019	-0.027	5.000	5.023	-0.03
6	Max	6.012	6.009	+0.011	6.012	6.016	+0.004	6.012	6.020	0.000	6.012	6.027	-0.007	6.012	6.031	-0.01
0	Min	6.000	6.001	-0.009	6.000	6.008	-0.016	6.000	6.012	-0.020	6.000	6.019	-0.027	6.000	6.023	-0.03
8	Max	8.015	8.010	+0.014	8.015	8.019	+0.005	8.015	8.024	0.000	8.015	8.032	-0.008	8.015	8.037	-0.01
٥	Min	8.000	8.001	-0.010	8.000	8.010	-0.019	8.000	8.015	-0.024	8.000	8.023	-0.032	8.000	8.028	-0.03
10	Max	10.015	10.010	+0.014	10.015	10.019	+0.005	10.015	10.024	0.000	10.015	10.032	-0.008	10.015	10.034	-0.01
10	Min	10.000	10.001	-0.010	10.000	10.010	-0.019	10.000	10.015	-0.024	10.000	10.023	-0.032	10.000	10.028	-0.03
12	Max	12.018	12.012	+0.017	12.018	12.023	+0.006	12.018	12.029	0.000	12.018	12.039	-0.010	12.018	12.044	-0.01
12	Min	12.000	12.001	-0.012	12.000	12.012	-0.023	12.000	12.018	-0.029	12.000	12.028	-0.039	12.000	12.033	-0.04
16	Max	16.018	16.012	+0.017	16.018	16.023	+0.006	16.018	16.029	0.000	16.018	16.039	-0.010	16.018	16.044	-0.01
10	Min	16.000	16.001	-0.012	16.000	16.012	-0.023	16.000	16.018	-0.029	16.000	16.028	-0.039	16.000	16.033	-0.04
20	Max	20.021	20.015	+0.019	20.021	20.028	+0.006	20.021	20.035	-0.001	20.021	20.048	-0.014	20.021	20.054	-0.02
20	Min	20.000	20.002	-0.015	20.000	20.015	-0.028	20.000	20.022	-0.035	20.000	20.035	-0.048	20.000	20.041	-0.05
25	Max	25.021	25.015	+0.019	25.021	25.028	+0.006	25.021	25.035	-0.001	25.021	25.048	-0.014	25.021	25.061	-0.02
2.3	Min	25.000	25.002	-0.015	25.000	25.015	-0.028	25.000	25.022	-0.035	25.000	25.035	-0.048	25.000	25.048	-0.06

Table 15.(Continued) American National Standard Preferred Hole Basis Metric Transition and Interference Fits ANSI/ASME B4.2-1978 (R2009)

		Loc	ational Transi	ition	Loca	ational Trans	ition	Loca	tional Interfe	rence	N	Aedium Driv	e		Force	
Basic Size ^a		Hole H7	Shaft k6	Fitb	Hole H7	Shaft n6	Fitb	Hole H7	Shaft p6	Fitb	Hole H7	Shaft s6	Fitb	Hole H7	Shaft u6	Fitb
30	Max	30.021	30.015	+0.019	30.021	30.028	+0.006	30.021	30.035	-0.001	30.021	30.048	-0.014	30.021	30.061	-0.02
30	Min	30.000	30.002	-0.015	30.000	30.015	-0.028	30.000	30.022	-0.035	30.000	30.035	-0.048	30.000	30.048	-0.06
40	Max	40.025	40.018	+0.023	40.025	40.033	+0.008	40.025	40.042	-0.001	40.025	40.059	-0.018	40.025	40.076	-0.03
40	Min	40.000	40.002	-0.018	40.000	40.017	-0.033	40.000	40.026	-0.042	40.000	40.043	-0.059	40.000	40.060	-0.07
50	Max	50.025	50.018	+0.023	50.025	50.033	+0.008	50.025	50.042	-0.001	50.025	50.059	-0.018	50.025	50.086	-0.04
.50	Min	50.000	50.002	-0.018	50.000	50.017	-0.033	50.000	50.026	-0.042	50.000	50.043	-0.059	50.000	50.070	-0.08
60	Max	60.030	60.021	+0.028	60.030	60.039	+0.010	60.030	60.051	-0.002	60.030	60.072	-0.023	60.030	60.106	-0.05
00	Min	60.000	60.002	-0.021	60.000	60.020	-0.039	60.000	60.032	-0.051	60.000	60.053	-0.072	60.000	60.087	-0.10
80	Max	80.030	80.021	+0.028	80.030	80.039	+0.010	80.030	80.051	-0.002	80.030	80.078	-0.029	80.030	80.121	-0.07
80	Min	80.000	80.002	-0.021	80.000	80.020	-0.039	80.000	80.032	-0.051	80.000	80.059	-0.078	80.000	80.102	-0.12
100	Max	100.035	100.025	+0.032	100.035	100.045	+0.012	100.035	100.059	-0.002	100.035	100.093	-0.036	100.035	100.146	-0.08
100	Min	100.000	100.003	-0.025	100.000	100.023	-0.045	100.000	100.037	-0.059	100.000	100.071	-0.093	100.000	100.124	-0.14
120	Max	120.035	120.025	+0.032	120.035	120.045	+0.012	120.035	120.059	-0.002	120.035	120.101	-0.044	120.035	120.166	-0.10
120	Min	120.000	120.003	-0.025	120.000	120.023	-0.045	120.000	120.037	-0.059	120.000	120.079	-0.101	120.000	120.144	-0.16
160	Max	160.040	160.028	+0.037	160.040	160.052	+0.013	160.040	160.068	-0.003	160.040	160.125	-0.060	160.040	160.215	-0.15
100	Min	160.000	160.003	-0.028	160.000	160.027	-0.052	160.000	160.043	-0.068	160.000	160.100	-0.125	160.000	160.190	-0.21
200	Max	200.046	200.033	+0.042	200.046	200.060	+0.015	200.046	200.079	-0.004	200.046	200.151	-0.076	200.046	200.265	-0.19
200	Min	200.000	200.004	-0.033	200.000	200.031	-0.060	200.000	200.050	-0.079	200.000	200.122	-0.151	200.000	200.236	-0.26
250	Max	250.046	250.033	+0.042	250.046	250.060	+0.015	250.046	250.079	-0.004	250.046	250.169	-0.094	250.046	250.313	-0.23
250	Min	250.000	250.004	-0.033	250.000	250.031	-0.060	250.000	250.050	-0.079	250.000	250.140	-0.169	250.000	250.284	-0.31
300	Max	300.052	300.036	+0.048	300.052	300.066	+0.018	300.052	300.088	-0.004	300.052	300.202	-0.118	300.052	300.382	-0.29
500	Min	300.000	300.004	-0.036	300.000	300.034	-0.066	300.000	300.056	-0.088	300.000	300.170	-0.202	300.000	300.350	-0.38
400	Max	400.057	400.040	+0.053	400.057	400.073	+0.020	400.057	400.098	-0.005	400.057	400.244	-0.151	400.057	400.471	-0.37
400	Min	400.000	400.004	-0.040	400.000	400.037	-0.073	400.000	400.062	-0.098	400.000	400.208	-0.244	400.000	400.435	-0.47
500	Max	500.063	500.045	+0.058	500.063	500.080	+0.023	500.063	500.108	-0.005	500.063	500.292	-0.189	500.063	500.580	-0.47
300	Min	500.000	500.005	-0.045	500.000	500.040	-0.080	500.000	500.068	-0.108	500.000	500.252	-0.292	500.000	500.540	-0.58

^aThe sizes shown are first-choice basic sizes (see Table 12). Preferred fits for other sizes can be calculated from data given in ANSI B4.2-1978, R2004.

ALLOWANCES AND TOLERANCES ${\it Machinery's Handbook Pocket Companion}$

^b A plus sign indicates clearance; a minus sign indicates interference. All dimensions are in millimeters.

Table 16. American National Standard Preferred Shaft Basis Metric Clearance Fits ANSI/ASME B4.2-1978 (R2009)

		r			ai Standa						1			· ` ·		
			oose Runnin	g		Free Running			Close Runnin	g		Sliding			ational Clear	ance
Basic Size ^a		Hole C11	Shaft h11	Fit ^b	Hole D9	Shaft h9	Fit ^b	Hole F8	Shaft h7	Fitb	Hole G7	Shaft h6	Fit ^b	Hole H7	Shaft h6	Fitb
	Max	1.120	1.000	0.180	1.045	1.000	0.070	1.020	1.000	0.030	1.012	1.000	0.018	1.010	1.000	0.016
1	Min	1.060	0.940	0.060	1.020	0.975	0.020	1.006	0.990	0.006	1.002	0.994	0.002	1.000	0.994	0.000
	Max	1.320	1.200	0.180	1.245	1.200	0.070	1.220	1.200	0.030	1.212	1.200	0.018	1.210	1.200	0.016
1.2	Min	1.260	1.140	0.060	1.220	1.175	0.020	1.206	1.190	0.006	1.202	1.194	0.002	1.200	1.194	0.000
	Max	1.720	1.600	0.180	1.645	1.600	0.070	1.620	1.600	0.030	1.612	1.600	0.018	1.610	1.600	0.016
1.6	Min	1.660	1.540	0.060	1.620	1.575	0.020	1.606	1.590	0.006	1.602	1.594	0.002	1.600	1.594	0.000
_	Max	2.120	2.000	0.180	2.045	2.000	0.070	2.020	2.000	0.030	2.012	2.000	0.018	2.010	2.000	0.016
2	Min	2.060	1.940	0.060	2.020	1.975	0.020	2.006	1.990	0.006	2.002	1.994	0.002	2.000	1.994	0.000
2.5	Max	2.620	2.500	0.180	2.545	2.500	0.070	2.520	2.500	0.030	2.512	2.500	0.018	2.510	2.500	0.016
2.5	Min	2.560	2.440	0.060	2.520	2.475	0.020	2.506	2.490	0.006	2.502	2.494	0.002	2.500	2.494	0.000
	Max	3.120	3.000	0.180	3.045	3.000	0.070	3.020	3.000	0.030	3.012	3.000	0.018	3.010	3.000	0.016
3	Min	3.060	2.940	0.060	3.020	2.975	0.020	3.006	2.990	0.006	3.002	2.994	0.002	3.000	2.994	0.000
	Max	4.145	4.000	0.220	4.060	4.000	0.090	4.028	4.000	0.040	4.016	4.000	0.024	4.012	4.000	0.020
4	Min	4.070	3.925	0.070	4.030	3.970	0.030	4.010	3.988	0.010	4.004	3.992	0.004	4.000	3.992	0.000
	Max	5.145	5.000	0.220	5.060	5.000	0.090	5.028	5.000	0.040	5.016	5.000	0.024	5.012	5.000	0.020
5	Min	5.070	4.925	0.070	5.030	4.970	0.030	5.010	4.988	0.010	5.004	4.992	0.004	5.000	4.992	0.000
	Max	6.145	6.000	0.220	6.060	6.000	0.090	6.028	6.000	0.040	6.016	6.000	0.024	6.012	6.000	0.020
6	Min	6.070	5.925	0.070	6.030	5.970	0.030	6.010	5.988	0.010	6.004	5.992	0.004	6.000	5.992	0.000
_	Max	8.170	8.000	0.260	8.076	8.000	0.112	8.035	8.000	0.050	8.020	8.000	0.029	8.015	8.000	0.024
8	Min	8.080	7.910	0.080	8.040	7.964	0.040	8.013	7.985	0.013	8.005	7.991	0.005	8.000	7.991	0.000
	Max	10.170	10.000	0.260	10.076	10.000	0.112	10.035	10.000	0.050	10.020	10.000	0.029	10.015	10.000	0.024
10	Min	10.080	9.910	0.080	10.040	9.964	0.040	10.013	9.985	0.013	10.005	9.991	0.005	10.000	9.991	0.000
	Max	12.205	12.000	0.315	12.093	12.000	0.136	12.043	12.000	0.061	12.024	12.000	0.035	12.018	12.000	0.029
12	Min	12.095	11.890	0.095	12.050	11.957	0.050	12.016	11.982	0.016	12.006	11.989	0.006	12.000	11.989	0.000
	Max	16.205	16.000	0.315	16.093	16.000	0.136	16.043	16.000	0.061	16.024	16.000	0.035	16.018	16.000	0.029
16	Min	16.095	15.890	0.095	16.050	15.957	0.050	16.016	15.982	0.016	16.006	15.989	0.006	16.000	15.989	0.000
20	Max	20.240	20.000	0.370	20.117	20.000	0.169	20.053	20.000	0.074	20.028	20.000	0.041	20.021	20.000	0.034
20	Min	20.110	19.870	0.110	20.065	19.948	0.065	20.020	19.979	0.020	20.007	19.987	0.007	20.000	19.987	0.000
25	Max	25.240	25.000	0.370	25.117	25.000	0.169	25.053	25.000	0.074	25.028	25.000	0.041	25.021	25.000	0.034
25	Min	25.110	24.870	0.110	25.065	24.948	0.065	25.020	24.979	0.020	25.007	24.987	0.007	25.000	24.987	0.000

Table 16. (Continued) American National Standard Preferred Shaft Basis Metric Clearance Fits ANSI/ASME B4.2-1978 (R2009)

		I	oose Runnin	g	1	Free Running		(lose Runnin	g		Sliding		Loc	ational Clear	ance
Basic Size ^a		Hole C11	Shaft h11	Fit ^b	Hole D9	Shaft h9	Fit ^b	Hole F8	Shaft h7	Fit ^b	Hole G7	Shaft h6	Fit ^b	Hole H7	Shaft h6	Fitb
	Max	30.240	30.000	0.370	30.117	30.000	0.169	30.053	30.000	0.074	30.028	30.000	0.041	30.021	30.000	0.034
30	Min	30.110	29.870	0.110	30.065	29.948	0.065	30.020	29.979	0.020	30.007	29.987	0.007	30.000	29.987	0.000
	Max	40.280	40.000	0.440	40.142	40.000	0.204	40.064	40.000	0.089	40.034	40.000	0.050	40.025	40.000	0.041
40	Min	40.120	39.840	0.120	40.080	39.938	0.080	40.025	39.975	0.025	40.009	39.984	0.009	40.000	39.984	0.000
	Max	50.290	50.000	0.450	50.142	50.000	0.204	50.064	50.000	0.089	50.034	50.000	0.050	50.025	50.000	0.041
50	Min	50.130	49.840	0.130	50.080	49.938	0.080	50.025	49.975	0.025	50.009	49.984	0.009	50.000	49.984	0.000
	Max	60.330	60.000	0.520	60.174	60.000	0.248	60.076	60.000	0.106	60.040	60.000	0.059	60.030	60.000	0.049
60	Min	60.140	59.810	0.140	60.100	59.926	0.100	60.030	59.970	0.030	60.010	59.981	0.010	60.000	59.981	0.000
	Max	80.340	80.000	0.530	80.174	80.000	0.248	80.076	80.000	0.106	80.040	80.000	0.059	80.030	80.000	0.049
80	Min	80.150	79.810	0.150	80.100	79.926	0.100	80.030	79.970	0.030	80.010	79.981	0.010	80.000	79.981	0.000
	Max	100.390	100.000	0.610	100.207	100.000	0.294	100.090	100.000	0.125	100.047	100.000	0.069	100.035	100.000	0.057
100	Min	100.170	99.780	0.170	100.120	99.913	0.120	100.036	99.965	0.036	100.012	99.978	0.012	100.000	99.978	0.000
	Max	120.400	120.000	0.620	120.207	120.000	0.294	120.090	120.000	0.125	120.047	120.000	0.069	120.035	120.000	0.057
120	Min	120.180	119.780	0.180	120.120	119.913	0.120	120.036	119.965	0.036	120.012	119.978	0.012	120.000	119.978	0.000
	Max	160.460	160.000	0.710	160.245	160.000	0.345	160.106	160.000	0.146	160.054	160.000	0.079	160.040	160.000	0.065
160	Min	160.210	159.750	0.210	160.145	159.900	0.145	160.043	159.960	0.043	160.014	159.975	0.014	160.000	159.975	0.000
200	Max	200.530	200.000	0.820	200.285	200.000	0.400	200.122	200.000	0.168	200.061	200.000	0.090	200.046	200.000	0.075
200	Min	200.240	199.710	0.240	200.170	199.885	0.170	200.050	199.954	0.050	200.015	199.971	0.015	200.000	199.971	0.000
250	Max	250.570	250.000	0.860	250.285	250.000	0.400	250.122	250.000	0.168	250.061	250.000	0.090	250.046	250.000	0.075
250	Min	250.280	249.710	0.280	250.170	249.885	0.170	250.050	249.954	0.050	250.015	249.971	0.015	250.000	249.971	0.000
200	Max	300.650	300.000	0.970	300.320	300.000	0.450	300.137	300.000	0.189	300.069	300.000	0.101	300.052	300.000	0.084
300	Min	300.330	299.680	0.330	300.190	299.870	0.190	300.056	299.948	0.056	300.017	299.968	0.017	300.000	299.968	0.000
400	Max	400.760	400.000	1.120	400.350	400.000	0.490	400.151	400.000	0.208	400.075	400.000	0.111	400.057	400.000	0.093
400	Min	400.400	399.640	0.400	400.210	399.860	0.210	400.062	399.943	0.062	400.018	399.964	0.018	400.000	399.964	0.000
500	Max	500.880	500.000	1.280	500.385	500.000	0.540	500.165	500.000	0.228	500.083	500.000	0.123	500.063	500.000	0.103
500	Min	500.480	499.600	0.480	500.230	499.845	0.230	500.068	499.937	0.068	500.020	499.960	0.020	500.000	499.960	0.000

^aThe sizes shown are first-choice basic sizes (see Table 12). Preferred fits for other sizes can be calculated from data given in ANSI/ASME B4.2-1978 (R2009).

Machinery's Handbook Pocket Companion ALLOWANCES AND TOLERANCES

^b All fits shown in this table have clearance.

Table 17. American National Standard Preferred Shaft Basis Metric Transition and Interference Fits ANSI/ASME B4.2-1978 (R2009)

322

Machinery's Handbook Pocket Companion ALLOWANCES AND TOLERANCES

		Loc	ational Trans	ition	Loc	ational Trans	ition	Loca	tional Interfe	rence	N	Medium Driv	re		Force	
Basic Size ^a		Hole K7	Shaft h6	Fit ^b	Hole N7	Shaft h6	Fit ^b	Hole P7	Shaft h6	Fit ^b	Hole S7	Shaft h6	Fit ^b	Hole U7	Shaft h6	Fitb
	Max	1.000	1.000	+0.006	0.996	1.000	+0.002	0.994	1.000	0.000	0.986	1.000	-0.008	0.982	1.000	-0.01
1	Min	0.990	0.994	-0.010	0.986	0.954	-0.014	0.984	0.994	-0.016	0.976	0.994	-0.024	0.972	0.994	-0.02
	Max	1.200	1.200	+0.006	1.196	1.200	+0.002	1.194	1.200	0.000	1.186	1.200	-0.008	1.182	1.200	-0.01
1.2	Min	1.190	1.194	-0.010	1.186	1.194	-0.014	1.184	1.194	-0.016	1.176	1.194	-0.024	1.172	1.194	-0.02
	Max	1.600	1.600	+0.006	1.596	1.600	+0.002	1.594	1.600	0.000	1.586	1.600	-0.008	1.582	1.600	-0.01
1.6	Min	1.590	1.594	-0.010	1.586	1.594	-0.014	1.584	1.594	-0.016	1.576	1.594	-0.024	1.572	1.594	-0.02
	Max	2.000	2.000	+0.006	1.996	2.000	+0.002	1.994	2.000	0.000	1.986	2.000	-0.008	1.982	2.000	-0.01
2	Min	1.990	1.994	-0.010	1.986	1.994	-0.014	1.984	1.994	-0.016	1.976	1.994	-0.024	1.972	1.994	-0.02
	Max	2.500	2.500	+0.006	2.496	2.500	+0.002	2.494	2.500	0.000	2.486	2.500	-0.008	2.482	2.500	-0.01
2.5	Min	2.490	2.494	-0.010	2.486	2.494	-0.014	2.484	2.494	-0.016	2.476	2.494	-0.024	2.472	2.494	-0.02
	Max	3.000	3.000	+0.006	2.996	3.000	+0.002	2.994	3.000	0.000	2.986	3.000	-0.008	2.982	3.000	-0.01
3	Min	2.990	2.994	-0.010	2.986	2.994	-0.014	2.984	2.994	-0.016	2.976	2.994	-0.024	2.972	2.994	-0.02
	Max	4.003	4.000	+0.011	3.996	4.000	+0.004	3.992	4.000	0.000	3.985	4.000	-0.007	3.981	4.000	-0.01
4	Min	3.991	3.992	-0.009	3.984	3.992	-0.016	3.980	3.992	-0.020	3.973	3.992	-0.027	3.969	3.992	-0.03
_	Max	5.003	5.000	+0.011	4.996	5.000	+0.004	4.992	5.000	0.000	4.985	5.000	-0.007	4.981	5.000	-0.01
5	Min	4.991	4.992	-0.009	4.984	4.992	-0.016	4.980	4.992	-0.020	4.973	4.992	-0.027	4.969	4.992	-0.03
	Max	6.003	6.000	+0.011	5.996	6.000	+0.004	5.992	6.000	0.000	5.985	6.000	-0.007	5.981	6.000	-0.01
6	Min	5.991	5.992	-0.009	5.984	5.992	-0.016	5.980	5.992	-0.020	5.973	5.992	-0.027	5.969	5.992	-0.03
	Max	8.005	8.000	+0.014	7.996	8.000	+0.005	7.991	8.000	0.000	7.983	8.000	-0.008	7.978	8.000	-0.01
8	Min	7.990	7.991	-0.010	7.981	7.991	-0.019	7.976	7.991	-0.024	7.968	7.991	-0.032	7.963	7.991	-0.03
10	Max	10.005	10.000	+0.014	9.996	10.000	+0.005	9.991	10.000	0.000	9.983	10.000	-0.008	9.978	10.000	-0.01
10	Min	9.990	9.991	-0.010	9.981	9.991	-0.019	9.976	9.991	-0.024	9.968	9.991	-0.032	9.963	9.991	-0.03
	Max	12.006	12.000	+0.017	11.995	12.000	+0.006	11.989	12.000	0.000	11.979	12.000	-0.010	11.974	12.000	-0.01
12	Min	11.988	11.989	-0.012	11.977	11.989	-0.023	11.971	11.989	-0.029	11.961	11.989	-0.039	11.956	11.989	-0.04
	Max	16.006	16.000	+0.017	15.995	16.000	+0.006	15.989	16.000	0.000	15.979	16.000	-0.010	15.974	16.000	-0.01
16	Min	15.988	15.989	-0.012	15.977	15.989	-0.023	15.971	15.989	-0.029	15.961	15.989	-0.039	15.956	15.989	-0.04
20	Max	20.006	20.000	+0.019	19.993	20.000	+0.006	19.986	20.000	-0.001	19.973	20.000	-0.014	19.967	20.000	-0.02
20	Min	19.985	19.987	-0.015	19.972	19.987	-0.028	19.965	19.987	-0.035	19.952	19.987	-0.048	19.946	19.987	-0.05
25	Max	25.006	25.000	+0.019	24.993	25.000	+0.006	24.986	25.000	-0.001	24.973	25.000	-0.014	24.960	25.000	-0.02
25	Min	24.985	24.987	-0.015	24.972	24.987	-0.028	24.965	24.987	-0.035	24.952	24.987	-0.048	24.939	24.987	-0.06

Table 17. (Continued) American National Standard Preferred Shaft Basis Metric Transition and Interference Fits ANSI/ASME B4.2-1978 (R2009)

		Loc	ational Trans	ition	Loca	ational Trans	ition	Loca	tional Interfe	rence	N	Medium Driv	e		Force	
Basic		Hole	Shaft		Hole	Shaft		Hole	Shaft		Hole	Shaft		Hole	Shaft	
Sizea		K7	h6	Fit ^b	N7	h6	Fitb	P7	h6	Fitb	S7	h6	Fit ^b	U7	h6	Fitb
30	Max	30.006	30.000	+0.019	29.993	30.000	+0.006	29.986	30.000	-0.001	29.973	30.000	-0.014	29.960	30.000	-0.02
30	Min	29.985	29.987	-0.015	29.972	29.987	-0.028	29.965	29.987	-0.035	29.952	29.987	-0.048	29.939	29.987	-0.06
40	Max	40.007	40.000	+0.023	39.992	40.000	+0.008	39.983	40.000	-0.001	39.966	40.000	-0.018	39.949	40.000	-0.03
40	Min	39.982	39.984	-0.018	39.967	39.984	-0.033	39.958	39.984	-0.042	39.941	39.984	-0.059	39.924	39.984	-0.07
50	Max	50.007	50.000	+0.023	49.992	50.000	+0.008	49.983	50.000	-0.001	49.966	50.000	-0.018	49.939	50.000	-0.04
50	Min	49.982	49.984	-0.018	49.967	49.984	-0.033	49.958	49.984	-0.042	49.941	49.984	-0.059	49.914	49.984	-0.08
	Max	60.009	60.000	+0.028	59.991	60.000	+0.010	59.979	60.000	-0.002	59.958	60.000	-0.023	59.924	60.000	-0.08
60	Min	59.979	59.981	-0.021	59.961	59.981	-0.039	59.949	59.981	-0.051	59.928	59.981	-0.072	59.894	59.981	-0.10
	Max	80.009	80.000	+0.028	79.991	80.000	+0.010	79.979	80.000	-0.002	79.952	80.000	-0.029	79.909	80.000	-0.07
80	Min	79.979	79.981	-0.021	79.961	79.981	-0.039	79.949	79.981	-0.051	79.922	79.981	-0.078	79.879	79.981	-0.12
100	Max	100.010	100.000	+0.032	99.990	100.000	+0.012	99.976	100.000	-0.002	99.942	100.000	-0.036	99.889	100.000	-0.08
100	Min	99.975	99.978	-0.025	99.955	99.978	-0.045	99.941	99.978	-0.059	99.907	99.978	-0.093	99.854	99.978	-0.14
120	Max	120.010	120.000	+0.032	119.990	120.000	+0.012	119.976	120.000	-0.002	119.934	120.000	-0.044	119.869	120.000	-0.10
120	Min	119.975	119.978	-0.025	119.955	119.978	-0.045	119.941	119.978	-0.059	119.899	119.978	-0.101	119.834	119.978	-0.16
160	Max	160.012	160.000	+0.037	159.988	160.000	+0.013	159.972	160.000	-0.003	159.915	160.000	-0.060	159.825	160.000	-0.15
160	Min	159.972	159.975	-0.028	159.948	159.975	-0.052	159.932	159.975	-0.068	159.875	159.975	-0.125	159.785	159.975	-0.21
200	Max	200.013	200.00	+0.042	199.986	200.000	+0.015	199.967	200.000	-0.004	199.895	200.000	-0.076	199.781	200.000	-0.19
200	Min	199.967	199.971	-0.033	199.940	199.971	-0.060	199.921	199.971	-0.079	199.849	199.971	-0.151	199.735	199.971	-0.26
250	Max	250.013	250.000	+0.042	249.986	250.000	+0.015	249.967	250.000	-0.004	249.877	250.000	-0.094	249.733	250.000	-0.23
230	Min	249.967	249.971	-0.033	249.940	249.971	-0.060	249.921	249.971	-0.079	249.831	249.971	-0.169	249.687	249.971	-0.31
200	Max	300.016	300.000	+0.048	299.986	300.000	+0.018	299.964	300.000	-0.004	299.850	300.000	-0.118	299.670	300.000	-0.29
300	Min	299.964	299.968	-0.036	299.934	299.968	-0.066	299.912	299.968	-0.088	299.798	299.968	-0.202	299.618	299.968	-0.38
400	Max	400.017	400.000	+0.053	399.984	400.000	+0.020	399.959	400.000	-0.005	399.813	400.000	-0.151	399.586	400.000	-0.37
400	Min	399.960	399.964	-0.040	399.927	399.964	-0.073	399.902	399.964	-0.098	399.756	399.964	-0.244	399.529	399.964	-0.47
500	Max	500.018	500.000	+0.058	499.983	500.000	+0.023	499.955	500.000	-0.005	499.771	500.000	-0.189	499.483	500.000	-0.47
500	Min	499 955	499 960	-0.045	499 920	499.960	-0.080	499 892	499.960	-0.108	499 708	499.960	-0.292	499.420	499 960	-0.58

^aThe sizes shown are first-choice basic sizes (see Table 12). Preferred fits for other sizes can be calculated from data given in ANSI/ASME B4.2-1978 (R2009).

^b A plus sign indicates clearance; a minus sign indicates interference.

All dimensions are in millimeters.

Table 18. American National Standard Gagemakers Tolerances ANSI/ASME B4.4M-1981 (R2014)

(agemaker	s Tolerance		Workpiece Tolerance
	Class	ISO Symbol ^a	IT Grade	Recommended Gage Usage
poo e	ZM	0.05 IT11	IT11	Low-precision gages recommended to be used to inspect workpieces held to internal (hole) tolerances C11 and H11 and to external (shaft) tolerances c11 and h11.
Rejection of Good Parts Increase	YM	0.05 IT9	IT9	Gages recommended to be used to inspect workpieces held to internal (hole) tolerances D9 and H9 and to external (shaft) tolerances d9 and h9.
l 1	XM	0.05 IT8	IT8	Precision gages recommended to be used to inspect workpieces held to internal (hole) tolerances F8 and H8.
Gage Cost Increase	XXM	0.05 IT7	IT7	Recommended to be used for gages to inspect workpieces held to internal (hole) tolerances G7,H7,K7,N7,P7,S7, and U7, and to external (shaft) tolerances f7 and h7.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	XXXM	0.05 IT6	IT6	High-precision gages recommended to be used to inspect workpieces held to external (shaft) tolerances g6, h6, k6, n6, p6, s6, and u6.

^a Gagemakers tolerance is equal to 5 percent of workpiece tolerance or 5 percent of applicable IT grade value. See table *American National Standard Gagemakers Tolerances ANSI/ASME B4.4M-1981 (R2014).*

For workpiece tolerance class values, see previous Tables 14, 15, 16, and 17.

Table 19. American National Standard Gagemakers Tolerances *ANSI/ASME B4.4M-1981 (R2014)*

Basic	Size	Class ZM	Class YM	Class XM	Class XXM	Class XXXM
Over	То	(0.05 IT11)	(0.05 IT9)	(0.05 IT8)	(0.05 IT7)	(0.05 IT6)
0	3	0.0030	0.0012	0.0007	0.0005	0.0003
3	6	0.0037	0.0015	0.0009	0.0006	0.0004
6	10	0.0045	0.0018	0.0011	0.0007	0.0005
10	18	0.0055	0.0021	0.0013	0.0009	0.0006
18	30	0.0065	0.0026	0.0016	0.0010	0.0007
30	50	0.0080	0.0031	0.0019	0.0012	8000.0
50	80	0.0095	0.0037	0.0023	0.0015	0.0010
80	120	0.0110	0.0043	0.0027	0.0017	0.0011
120	180	0.0125	0.0050	0.0031	0.0020	0.0013
180	250	0.0145	0.0057	0.0036	0.0023	0.0015
250	315	0.0160	0.0065	0.0040	0.0026	0.0016
315	400	0.0180	0.0070	0.0044	0.0028	0.0018
400	500	0.0200	0.0077	0.0048	0.0031	0.0020

All dimensions are in millimeters. For closer gagemakers tolerance classes than Class XXXM, specify 5 percent of IT5, IT4, or IT3 and use the designation $0.05\,\mathrm{IT5}, 0.05\,\mathrm{IT4}, \mathrm{etc}$.

Fig. 4. Relationship between Gagemakers Tolerance, Wear Allowance, and Workpiece Tolerance

Relation of Machining Processes to IT Tolerance Grades

Practical Usage of International Tolerance Grades

CONVERSION FACTORS

In the table of conversion factors that follows, the symbols for SI units, multiples, and submultiples are given in parentheses in the right hand column.

Table 1. Metric Conversion Factors

Multiply	Ву	To Obtain
	Length	
centimeter centimeter fathom	0.03280840 0.3937008 1.8288 ^a	foot inch meter (m)
foot	0.3048a	meter (m)
foot	30.48a	centimeter (cm)
foot	304.8ª	millimeter (mm)
inch	0.0254a	meter (m)
inch	2.54ª	centimeter (cm)
inch	25.4ª	millimeter (mm)
kilometer	0.6213712	mile [US statute]
meter meter meter meter meter meter	39.37008 0.5468066 3.280840 0.1988388 1.093613 0.0006213712	inch fathom foot rod yard mile [US statute]
microinch	0.0254ª	micrometer [micron] (µm)
micrometer [micron]	39.37008	microinch
mile [US statute]	1609.344a	meter (m)
mile [US statute]	1.609344ª	kilometer (km)
millimeter	0.003280840	foot
millimeter	0.03937008	inch
rod	5.0292ª	meter (m)
yard	0.9144a	meter (m)
	Area	
acre	4046.856	meter ² (m ²)
acre	0.4046856	hectare inch ²
centimeter ² centimeter ²	0.1550003 0.001076391	foot ²
foot ²	0.09290304 ^a	meter ² (m ²)
foot ²	929.0304ª	centimeter ² (cm ²)
foot ²	92,903.04°	millimeter ² (mm ²)
hectare	2.471054	acre
inch ²	645.16 ^a	millimeter ² (mm ²)
inch ²	6.4516a	centimeter ² (cm ²)
inch ²	0.00064516 ^a	meter ² (m ²)
meter ²	1550.003	inch ²
meter ²	10.763910	foot ²
meter ²	1.195990	yard ²
meter ²	0.0002471054	acre

Table 1.(Continued) Metric Conversion Factors

Multiply	Ву	To Obtain
mile ²	2.5900	kilometer ²
millimeter ²	0.00001076391	foot ²
millimeter ²	0.001550003	inch ²
yard ²	0.8361274	meter ² (m ²)
	Volume (including Capacity)	
centimeter ³	0.06102376	inch ³
foot ³	28.31685	liter
foot ³	28.31685	liter
gallon [UK liquid]	0.004546092	meter ³ (m ³)
gallon [UK liquid]	4.546092	liter
gallon [US liquid]	0.003785412	meter ³ (m ³)
gallon [US liquid]	3.785412	liter
inch ³	16,387.06	millimeter3 (mm3)
inch ³	16.38706	centimeter3 (cm3)
inch ³	0.00001638706	meter ³ (m ³)
liter	0.001a	meter3 (m3)
liter	0.2199692	gallon [UK liquid]
liter	0.2641720	gallon [US liquid]
liter	0.03531466	foot ³
meter ³	219.9692	gallon [UK liquid]
meter ³	264.1720 35.31466	gallon [US liquid] foot ³
meter ³ meter ³	1.307951	vard ³
meter ³	1.507951 1000.ª	liter
meter ³	61.023.76	inch ³
millimeter ³	0.00006102376	inch ³
	0.946	liter
quart [US liquid] quart [UK liquid]	1.136	liter
vard ³	0.7645549	meter ³ (m ³)
yaid	Velocity, Acceleration, and Flov	
centimeter / second	1.968504	foot / minute
centimeter/second	0.03280840	foot / minute foot / second
centimeter / second	0.3937008	inch / minute
foot / hour	0.00008466667	meter / second (m / s)
foot/hour	0.00508 ^a	meter / minute
foot / hour	0.3048ª	meter / hour
foot / minute	0.508 ^a	centimeter / second
foot / minute	18.288ª	meter / hour
foot / minute	0.3048 ^a	meter / minute
foot / minute	0.00508 ^a	meter / second (m / s)
foot / second	30.48 ^a	centimeter / second
foot / second	18.288ª	meter / minute
foot / second	0.3048 ^a	meter / second (m / s)
foot / second ²	0.3048a	$meter / second^2 (m / s^2)$
foot ³ / minute	28.31685	liter / minute
L	1	

Table 1.(Continued) Metric Conversion Factors

	OMINUCA) Metric Conversi	ř
Multiply	By	To Obtain
foot ³ / minute	0.0004719474	meter ³ / second (m ³ / s)
gallon [US liquid] / min.	0.003785412	meter ³ / minute
gallon [US liquid] / min.	0.00006309020	meter ³ / second (m ³ / s)
gallon [US liquid] / min.	0.06309020	liter / second
gallon [US liquid] / min.	3.785412	liter / minute
gallon [UK liquid] / min.	0.004546092	meter ³ / minute
gallon [UK liquid] / min.	0.00007576820	meter3 / second (m3 / s)
	25.4ª	711
inch / minute	2.54ª	millimeter / minute centimeter / minute
inch / minute	0.0254ª	meter / minute
inch / second ²	0.0254ª	meter / second ² (m / s ²)
kilometer / hour	0.6213712	mile / hour [US statute]
liter / minute	0.03531466	foot ³ / minute
liter / minute	0.2641720	gallon [US liquid] / minute
liter / second	15.85032	gallon [US liquid] / minute
mile / hour	1.609344ª	kilometer / hour
millimeter / minute	0.03937008	inch / minute
meter / second	11,811.02	foot / hour
meter / second	196.8504	foot / minute
meter / second	3.280840	foot / second
meter / second ²	3.280840	foot / second ²
meter / second ²	39.37008	inch/second ²
	2 2000 40	6
meter / minute meter / minute	3.280840 0.05468067	foot / minute foot / second
meter / minute	39.37008	inch / minute
meter/hour	3.280840	foot/hour
meter / hour	0.05468067	foot / minute
meter3 / second	2118.880	foot ³ / minute
meter3 / second	13,198.15	gallon [UK liquid] / minute
meter3 / second	15,850.32	gallon [US liquid] / minute
meter ³ / minute	219.9692	gallon [UK liquid] / minute
meter ³ / minute	264.1720	gallon [US liquid] / minute
	Mass and Density	<u> </u>
grain [½,000 1b avoirdupois]	0.06479891	gram (g)
gram	15.43236	grain
gram	0.001a	kilogram (kg)
gram	0.03527397	ounce [avoirdupois]
gram	0.03215074	ounce [troy]
gram / centimeter ³	0.03612730	pound / inch ³
hundredweight [long]	50.80235	kilogram (kg)
hundredweight [short]	45.35924	kilogram (kg)
kilogram	1000.a	gram (g)
kilogram	35.27397	ounce [avoirdupois]
kilogram	32.15074	ounce [troy]

Table 1.(Continued) Metric Conversion Factors

Multiply	By	To Obtain
kilogram	2.204622	pound [avoirdupois]
kilogram	0.06852178	slug
kilogram	0.0009842064	ton [long]
kilogram	0.001102311	ton [short]
kilogram	0.001a	ton [metric]
kilogram	0.001a	tonne
kilogram	0.01968413	hundredweight [long]
kilogram	0.02204622	hundredweight [short]
kilogram / meter ³	0.06242797	pound / foot ³
kilogram / meter ³	0.01002242	pound / gallon [UK liquid]
kilogram / meter ³	0.008345406	pound / gallon [US liquid]
ounce [avoirdupois]	28.34952	gram (g)
ounce [avoirdupois]	0.02834952	kilogram (kg)
ounce [troy]	31.10348	gram (g)
ounce [troy]	0.03110348	kilogram (kg)
pound [avoirdupois]	0.4535924	kilogram (kg)
pound / foot ³	16.01846	kilogram / meter ³ (kg / m ³)
pound / inch ³	27.67990	gram / centimeter ³ (g / cm ³)
*		
pound / gal [US liquid]	119.8264	kilogram / meter³ (kg / m³)
pound / gal [UK liquid]	99.77633	kilogram / meter ³ (kg / m ³)
slug	14.59390	kilogram (kg)
ton [long 2240 lb]	1016.047	kilogram (kg)
ton [short 2000 lb]	907.1847	kilogram (kg)
ton [metric]	1000.ª	kilogram (kg)
ton [Metric]	0.9842	ton [long 2240 lb]
ton [Metric]	1.1023	ton [short 2000 lb]
tonne	1000.ª	kilogram (kg)
tome	Force and Force / Length	miogram (ng)
dyne	0.00001a	newton (N)
kilogram-force	9.806650°	newton (N)
kilopound	9.806650°	newton (N)
*		
newton	0.1019716	kilogram-force
newton	0.1019716	kilopound
newton	0.2248089	pound-force
newton	100,000.ª	dyne
newton	7.23301	poundal
newton	3.596942	ounce-force
newton / meter	0.005710148	pound / inch
newton / meter	0.06852178	pound / foot
ounce-force	0.2780139	newton (N)
pound-force	4.448222	newton (N)
poundal	0.1382550	newton (N)
pound / inch	175.1268	newton / meter (N / m)
pound / foot	14.59390	newton / meter (N / m)
F	1.155550	
	l	l

Table 1.(Continued) Metric Conversion Factors

Sending Moment or Torque dyne-centimeter 0.00000011 newton-meter (N·m) newton-meter no.007061552 newton-meter (N·m) newton-meter (N·m) newton-meter (N·m) newton-meter no.1019716 kilogram-meter ounce-inch newton-meter no.1416119 newton-meter (N·m) newton-meter no.1416119 newton-meter (N·m) newton (N·m) newton-meter (N·m) newton (N·m) newton-meter (N·m) newton-m	Multiply	By	To Obtain		
kilogram-meter 9.806650° newton-meter (N · m) ounce-inch 7.061552 newton-meter (N · m) newton-meter 0.007061552 newton-meter (N · m) newton-meter 0.7375621 pound-foot newton-meter 0.1019716 kilogram-meter newton-meter 141.6119 ounce-inch newton-millimeter 0.1416119 ounce-inch newton-meter (N · m) ounce-inch noment or inertia [kg · m²] 3.355818 newton-meter (N · m) Moment of inertia [kg · m²] 3417.171 pound-foot² moment of inertia [kg · m²] 0.04214011 kilogram-meter² (kg · m²) moment of inertia [lb · inch²] 0.008630975 meter⁴ (m²) moment of section [inch⁴] 0.008630975 meter⁴ (m²) moment of section [centimeter⁴] 115.8618 foo⁴ moment of section [neter⁴] 0.02831685 meter³ (m³) section modulus [foot²] 0.02831685 meter³ (m³) section modulus [meter³] 35.31466 foo² section modulus [meter³] 36.79614 po		Bending Moment or Torque			
ounce-inch ounce-inch ounce-inch ounce-inch ounce-inch ounce-inch ounce-inch ounce-inch ounce-inch newton-meter (N·m) 7.061552 newton-meter (N·m) newton-meter (N·m) ound-foot dyne-centimeter (N·m) ounce-inch ounce-inch ounce-inch ounce-inch newton-meter (N·m) newton-meter newton-meter newton-meter (N·m) 0.1019716 kilogram-meter ounce-inch ounce-inch newton-meter (N·m) newton-meter newton-meter (N·m) 0.1416119 ounce-inch newton-meter (N·m) moment of inertia [kg·m²] nound-foot 23.73036 pound-foot² pound-foot² pound-inch² kilogram-meter² (kg·m²) moment of inertia [lb·inch²] nound-1601 pound-inch² newton-meter² (kg·m²) nound-1601 pound-inch² newton-meter² (kg·m²) nound-1601 pound-1601 po	dyne-centimeter	0.0000001 ^a	newton-meter (N·m)		
ounce-inch 0.007061552 newton-meter (N · m) newton-meter 0.7375621 pound-foot newton-meter 0.1019716 kilogram-meter newton-meter 0.1019716 kilogram-meter newton-meter 141.6119 ounce-inch newton-millimeter 0.1416119 ounce-inch pound-foot newton-meter (N · m) Moment of inertia [kg · m²] moment of inertia [kg · m²] 3417.171 pound-foot² moment of inertia [lb · ft²] 0.04214011 kilogram-meter² (kg · m²) moment of inertia [lb · ft²] 0.04214011 kilogram-meter² (kg · m²) moment of section [foot¹] 0.008630975 meter² (m³) moment of section [meter⁴] 0.02402510 inch⁴ moment of section [meter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [meter³] 35.31466 foot³ section modulus [meter³] 35.31466 foot³ section modulus [meter³] 61,023.76 meter³ (m³) section modulus [meter³	kilogram-meter	9.806650 ^a	newton-meter $(N \cdot m)$		
newton-meter	ounce-inch	7.061552	newton-millimeter		
newton-meter 10,000,000.° dyne-centimeter newton-meter 0.1019716 kilogram-meter 141.6119 ounce-inch ounce-inch newton-meter 1.355818 newton-meter (N·m)	ounce-inch	0.007061552	newton-meter $(N \cdot m)$		
newton-meter newton-meter newton-meter newton-millimeter pound-foot Moment Of Inertia and Section Modulus	newton-meter		1		
newton-meter 141.6119 ounce-inch newton-millimeter 0.1416119 ounce-inch pound-foot Noment Of Inertia and Section Modulus moment of inertia [kg · m²] 23.73036 pound-foot² moment of inertia [kg · m²] 3417.171 pound-inch² moment of inertia [lb · inch²] 0.04214011 kilogram-meter² (kg · m²) moment of inertia [lb · inch²] 0.002926397 kilogram-meter² (kg · m²) moment of section [foot⁴] 0.008630975 meter⁴ (m⁴) moment of section [inch⁴] 41.62314 centimeter⁴ moment of section [centimeter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [meter³] 35.31466 foor³ section modulus [meter³] 35.31466 foor³ section modulus [meter³] 41.023.76 meter³ (m³) section modulus [meter³] 47.233011 pound-foot / second kilogram-meter / second 86.79614 pound-foot / second pound-foot/ second 0.01152125 kilogram-meter / second (kg · m / s	newton-meter				
newton-millimeter pound-foot 0.1416119 1.355818 ounce-inch newton-meter (N ⋅ m) Moment of inertia [kg ⋅ m²] moment of inertia [kg ⋅ m²] 3417.171 23.73036 pound-foot² pound-inch² willogram-meter² (kg ⋅ m²) willogram-meter² (kg ⋅ m²) moment of inertia [lb ⋅ ft²] 0.04214011 pound-inch² kilogram-meter² (kg ⋅ m²) moment of section [foot⁴] 0.008630975 meter⁴ (m⁴) centimeter⁴ moment of section [meter⁴] 115.8618 foot⁴ moment of section [centimeter⁴] 0.02402510 inch⁴ moment of section [centimeter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [meter³] 35.31466 foor³ meter³ (m³) section modulus [meter³] 35.31466 foor³ inch³ meter³ (m³) section modulus [meter³] 61,023.76 inch³ Momentum kilogram-meter / second (kg ⋅ m / s) kilogram-meter / second (kg ⋅ m / s) hord foot / second (kg ⋅ m / s) bound-inch / second (kg ⋅ m / s) pound-inch / second kilogram-meter / second (kg ⋅ m / s) pound-inch / second (kg ⋅ m / s) pound-i			8		
Dound-foot 1.355818 newton-meter (N · m)	newton-meter	141.6119	ounce-inch		
Moment Of Inertia and Section Modulus					
moment of inertia [kg · m²] 23.73036 pound-foot² moment of inertia [kg · m²] 3417.171 pound-inch² moment of inertia [lb · ft²] 0.04214011 kilogram-meter² (kg · m²) moment of inertia [lb · inch²] 0.0002926397 kilogram-meter² (kg · m²) moment of section [foot⁴] 0.008630975 meter⁴ (m⁴) moment of section [inch⁴] 41.62314 centimeter⁴ moment of section [meter⁴] 115.8618 foot⁴ moment of section [meter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [meter³] 35.31466 foot³ kilogram-meter / second 86.79614 pound-foot / second kilogram-meter / second 0.1382550 kilogram-meter / second kilogram-meter / second (kg · m / s) kilogram-meter / second kilogram-meter / second (kg · m / s) kilogram-meter / second <td>*</td> <td></td> <td>` '</td>	*		` '		
moment of inertia [kg·m²] 3417.171 pound-inch² moment of inertia [lb·ft²] 0.04214011 kilogram-meter² (kg·m²) moment of inertia [lb·inch²] 0.0002926397 kilogram-meter² (kg·m²) moment of section [foot⁴] 0.008630975 meter⁴ (m⁴) moment of section [inch⁴] 41.62314 centimeter⁴ moment of section [meter⁴] 115.8618 foot⁴ moment of section [centimeter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter² (m³) section modulus [meter³] 35.31466 foot³ section modulus [meter³] 35.31466 foot³ section modulus [meter³] 61,023.76 inch³ Momentum kilogram-meter / second kilogram-meter / second 86.79614 pound-foot / second kilogram-meter / second 0.1382550 kilogram-meter / second kilogram-meter / second (kg·m/s) kilogram-meter / second bar 100,000.² pascal (Pa) bar 100,000.² pascal (Pa) bar 10	Mo	ment Of Inertia and Section Mod			
moment of inertia [Ib· ft²] 0.04214011 kilogram-meter² (kg· m²) moment of inertia [Ib· inch²] 0.0002926397 kilogram-meter² (kg· m²) moment of section [foot⁴] 0.008630975 meter⁴ (m⁴) moment of section [meter⁴] 41.62314 centimeter⁴ moment of section [meter⁴] 115.8618 foot⁴ moment of section [centimeter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [meter³] 35.31466 foot³ section modulus [meter³] 35.31466 foot³ section modulus [meter³] 61,023.76 inch³ Momentum kilogram-meter/ second kilogram-meter/ second 86.79614 pound-foot/ second pound-foot / second 0.1382550 kilogram-meter/ second kilogram-meter / second 0.01152125 kilogram-meter/ second pound-inch / second 0.01152125 kilogram-meter / second kilogram-meter / second neval pascal (Pa) paar 100,000.³ pascal (Pa)		23.73036			
moment of inertia [lb·inch²] 0.0002926397 kilogram-meter² (kg·m²) moment of section [foot⁴] 0.008630975 meter⁴ (m⁴) moment of section [inch⁴] 41.62314 centimeter⁴ moment of section [centimeter⁴] 115.8618 foot⁴ moment of section [centimeter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [meter³] 35.31466 foot³ section modulus [meter³] 35.31466 foot³ section modulus [meter³] 61,023.76 inch³ Momentum kilogram-meter/ second kilogram-meter/ second 86.79614 pound-foot / second pound-foot / second 0.1382550 kilogram-meter / second kilogram-meter / second 0.01152125 kilogram-meter / second pound-inch / second 0.01152125 kilogram-meter / second kilogram and Stress pascal (Pa) atmosphere [14.6959 lb / inch²] 101,325. pascal (Pa) bar 100,000.² pascal (Pa) bar 100,000.² <td></td> <td>3417.171</td> <td>1</td>		3417.171	1		
moment of section [foot¹] 0.008630975 meter⁴ (m⁴) moment of section [inch⁴] 41.62314 centimeter⁴ moment of section [meter⁴] 115.8618 foot⁴ moment of section [centimeter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [mete³] 0.00001638706 meter³ (m³) section modulus [meter³] 35.31466 foot³ Momentum Momentum Momentum kilogram-meter/second kilogram-meter/second 7.233011 pound-foot/second kilogram-meter/second 86.79614 pound-inch/second kilogram-meter/second kilogram-meter/second kilogram-meter/second pound-inch/second 0.01152125 kilogram-meter/second pound-inch/second 0.01152125 pascal (Pa) bar 100,000.³ pascal (Pa) bar 14.50377 pound/inch² bar 100,000.³ newton/meter² (N/m²) bar 0.6474898 ton [long] / inch					
moment of section [inch²] 41.62314 centimeter⁴ moment of section [meter⁴] 115.8618 foot⁴ moment of section [centimeter⁴] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [mete³] 35.31466 foot³ section modulus [meter³] 35.31466 foot³ Momentum Momentum kilogram-meter/second kilogram-meter/second 7.233011 pound-foot/second kilogram-meter/second 86.79614 pound-inch/second pound-foot/second 0.1382550 kilogram-meter/second kilogram-meter/second kilogram-meter/second (kg·m/s) Pressure and Stress atmosphere [14.6959 lb/inch²] 101,325. pascal (Pa) bar 100,000.° pascal (Pa) bar 100,000.° pascal (Pa) bar 0.6474898 ton [long] / inch² bar 0.6474898 ton [long] / inch² kilogram/meter² 9.806650° newton/meter² (N/m²)	moment of inertia [lb · inch2]	0.0002926397	kilogram-meter ² (kg · m ²)		
moment of section [meter ⁴] 115.8618 foot ⁴ moment of section [centimeter ⁴] 0.02402510 inch ⁴ section modulus [foot ³] 0.02831685 meter ³ (m³) section modulus [meter³] 35.31466 foot³ section modulus [meter³] 35.31466 foot³ Momentum kilogram-meter / second kilogram-meter / second 7.233011 pound-foot / second pound-foot / second 0.1382550 kilogram-meter / second kilogram-meter / second 0.01152125 kilogram-meter / second pound-inch / second 0.01152125 kilogram-meter / second (kg·m/s) kilogram-meter / second bar 100,000.³ pascal (Pa) bar 14.50377 pound / inch² bar 100,000.³ newton / meter² (N / m²) bar 100,000.³ newton / meter² (N/m²) <	moment of section [foot4]	0.008630975	()		
moment of section [centimeter³] 0.02402510 inch⁴ section modulus [foot³] 0.02831685 meter³ (m³) section modulus [inch²] 0.00001638706 meter³ (m³) section modulus [meter³] 35.31466 foot³ Momentum kilogram-meter / second kilogram-meter / second 7.233011 pound-foot / second kilogram-meter / second 0.1382550 kilogram-meter / second kilogram-meter / second (kg·m/s) kilogram-meter / second var 0.01152125 kilogram-meter / second kilogram-meter / second (kg·m/s) Pressure and Stress atmosphere [14.6959 lb / inch²] 101,325. pascal (Pa) bar 100,000.a pascal (Pa) bar 100,000.a pascal (Pa) bar 100,000.a pound / inch²	moment of section [inch4]				
Section modulus [foot³] 0.02831685 meter³ (m³)	moment of section [meter ⁴]	115.8618	foot ⁴		
section modulus [inch³] 0.00001638706 meter³ (m³) section modulus [meter³] 35.31466 foot³ Momentum kilogram-meter / second kilogram-meter / second 7.233011 pound-foot / second pound-foot / second 86.79614 pound-inch / second pound-inch / second 0.1382550 kilogram-meter / second (kg·m/s) kilogram-meter / second (kg·m/s) pound-inch / second 10.0152125 pascal (Pa) bar 100,000.³ pascal (Pa) bar 100,000.³ pascal (Pa) bar 100,000.³ pound / inch² bar 100,000.³ newton / meter² (N / m²) bar 100,000.³ newton / meter² (N/m²)	moment of section [centimeter ⁴]	0.02402510	inch ⁴		
Section modulus [meter³] 35.31466 foot³ inch³	section modulus [foot3]	0.02831685	meter3 (m3)		
Section modulus [meter³] 61,023.76 inch³	section modulus [inch3]	0.00001638706	meter3 (m3)		
Momentum	section modulus [meter3]	35.31466	foot ³		
kilogram-meter/second 7.233011 pound-foot/second kilogram-meter/second 86.79614 pound-inch/second pound-foot/second 0.1382550 kilogram-meter/second pound-inch/second 0.01152125 kilogram-meter/second kilogram-meter/second (kg·m/s) Pressure and Stress atmosphere [14.6959 lb/inch²] 101,325. pascal (Pa) bar 100,000.° pascal (Pa) bar 14.50377 pound/inch² bar 0.6474898 ton [long] / inch² kilogram/centimeter² 14.22334 pound/inch² kilogram/meter² 9.806650° newton/meter² (N/m²) kilogram/meter² 9.806650° pascal (Pa) kilogram/meter² 0.2048161 pound/foot² kilonewton/meter² 0.1450377 pound/inch² newton/centimeter² 1.450377 pound/inch²	section modulus [meter ³]	61,023.76	inch ³		
kilogram-meter / second pound-foot / second 86.79614 pound-inch / second kilogram-meter / second (kg·m/s) pound-inch / second kilogram-meter / second (kg·m/s) pound-inch / second 0.01152125 kilogram-meter / second (kg·m/s) Pressure and Stress atmosphere [14.6959 lb / inch²] 101,325. pascal (Pa) bar 100,000.³ pascal (Pa) bar 14.50377 pound / inch² bar 100,000.³ newton / meter² (N / m²) bar 104,20374 pound / inch² newton / meter² (N/m²) kilogram / centimeter² 14.22334 pound / inch² newton / meter² (N/m²) kilogram / meter² 9.806650° pascal (Pa) kilogram / meter² 0.2048161 pound / foot² kilonewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²		Momentum			
Dound-foot / second D.1382550 kilogram-meter / second (kg· m / s)	kilogram-meter / second	7.233011	pound-foot / second		
	kilogram-meter / second	86.79614	pound-inch / second		
Dound-inch Second Dound-inch Second Rilogram-meter Second Rilogram-meter Second Rilogram-meter Second Right Rilogram-meter Second Right Rilogram-meter Second Right Rilogram Rilogram Dound Rilogram Dound Rilogram Dound Rilogram Dound Rilogram Dound Rilogram Rilogram Dound Rilogram Rilog	pound-foot / second	0.1382550			
Ressure and Stress		0.01152125			
Pressure and Stress	pound-inch / second	0.01152125			
atmosphere [14.6959 lb / inch²] 101,325. pascal (Pa) bar 100,000.a pascal (Pa) bar 14.50377 pound / inch² bar 100,000.a newton / meter² (N / m²) hectobar 0.6474898 ton [long] / inch² kilogram / centimeter² 14.22334 pound / inch² kilogram / meter² 9.806650a newton / meter² (N / m²) kilogram / meter² 9.806650a pascal (Pa) kilogram / meter² 0.2048161 pound / foot² kilomewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²		Pressure and Stress	(kg iii/ s)		
bar 100,000.a pascal (Pa) bar 14.50377 pound / inch² bar 100,000.a newton / meter² (N / m²) hectobar 0.6474898 ton [long] / inch² kilogram / centimeter² 14.22334 pound / inch² kilogram / meter² 9.806650a newton / meter² (N / m²) kilogram / meter² 9.806650a pascal (Pa) kilogram / meter² 0.2048161 pound / foot² kilonewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²	atmosphere [14 6959 lb / inch²]		nascal (Pa)		
bar 14.50377 pound / inch² bar 100,000.a newton / meter² (N / m²) hectobar 0.6474898 ton [long] / inch² kilogram / centimeter² 14.22334 pound / inch² kilogram / meter² 9.806650a newton / meter² (N / m²) kilogram / meter² 9.806650a pascal (Pa) kilogram / meter² 0.2048161 pound / foot² kilonewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²	-	,	•		
bar 100,000.° newton/meter² (N/m²) hectobar 0.6474898 ton [long] / inch² kilogram/centimeter² 14.22334 pound/inch² kilogram/meter² 9.806650° newton/meter² (N/m²) kilogram/meter² 9.806650° pascal (Pa) kilogram/meter² 0.2048161 pound/foot² kilonewton/meter² 0.1450377 pound/inch² newton/centimeter² 1.450377 pound/inch²		· · · · · · · · · · · · · · · · · · ·			
hectobar 0.6474898 ton [long] / inch² kilogram / centimeter² 14.22334 pound / inch² kilogram / meter² 9.806650a newton / meter² (N / m²) kilogram / meter² 9.806650a pascal (Pa) kilogram / meter² 0.2048161 pound / foot² kilonewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²			1		
kilogram/centimeter² 14.22334 pound/inch² kilogram/meter² 9.806650a newton/meter² (N/m²) kilogram/meter² 9.806650a pascal (Pa) kilogram/meter² 0.2048161 pound/foot² kilonewton/meter² 0.1450377 pound/inch² newton/centimeter² 1.450377 pound/inch²	bar	100,000.4	newton / meter ² (N / m ²)		
kilogram / meter² 9.806650a newton / meter² (N / m²) kilogram / meter² 9.806650a pascal (Pa) kilogram / meter² 0.2048161 pound / foot² kilonewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²	hectobar	0.6474898	ton [long] / inch2		
kilogram / meter² 9.806650 ^a pascal (Pa) kilogram / meter² 0.2048161 pound / foot² kilonewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²	kilogram / centimeter ²	14.22334	pound / inch ²		
kilogram / meter² 0.2048161 pound / foot² kilonewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²		9.806650ª	$newton / meter^2 (N / m^2)$		
kilonewton / meter² 0.1450377 pound / inch² newton / centimeter² 1.450377 pound / inch²		9.806650 ^a			
newton / centimeter ² 1.450377 pound / inch ²	kilogram / meter ²	0.2048161	pound / foot ²		
	kilonewton / meter ²	0.1450377	pound / inch ²		
newton / meter ² 0.00001 ^a bar	newton / centimeter ²	1.450377	pound / inch2		
		0.00001a	bar		
newton / meter ² 1.0 ^a pascal (Pa)	newton / meter ²	1.0ª	pascal (Pa)		

Table 1. (Continued) Metric Conversion Factors

Multiply	By	To Obtain		
newton / meter ²	0.0001450377	pound / inch ²		
newton / meter ²	0.1019716	kilogram / meter ²		
newton / millimeter ²	145.0377	pound / inch ²		
		1		
pascal	0.00000986923	atmosphere		
pascal	0.00001a	bar		
pascal	0.1019716	kilogram / meter ²		
pascal	1.0a	newton / meter ² (N / m ²)		
pascal	0.02088543	pound / foot ²		
pascal	0.0001450377	pound / inch ²		
pound / foot ²	4.882429	kilogram / meter ²		
pound / foot ²	47.88026	pascal (Pa)		
pound / inch ²	0.06894757	bar		
pound / inch ²	0.07030697	kilogram / centimeter ²		
pound / inch ²	0.6894757	newton / centimeter ²		
pound / inch ²	6.894757	kilonewton / meter ²		
pound / inch ²	6894.757	newton / meter ² (N / m ²)		
pound / inch ²	0.006894757	newton / millimeter ² (N / mm ²)		
pound / inch ²	6894.757	pascal (Pa)		
•				
ton [long] / inch ²	1.544426	hectobar		
	Energy and Work			
Btu [International Table]	1055.056	joule (J)		
Btu [mean]	1055.87	joule (J)		
calorie [mean]	4.19002	joule (J)		
foot-pound	1.355818	joule (J)		
foot-poundal	0.04214011	joule (J)		
joule	0.0009478170	Btu [International Table]		
joule	0.0009470863	Btu [mean]		
joule	0.2386623	calorie [mean]		
joule	0.7375621	foot-pound		
joule	23.73036	foot-poundal		
joule	0.9998180	joule [International US]		
joule	0.9999830	joule [US legal, 1948]		
joule [International US]	1.000182	joule (J)		
joule [US legal, 1948]	1.000017	joule (J)		
joule	.0002777778	watt-hour		
watt-hour	3600.ª	joule (J)		
	Power	1		
Btu [International Table] / hour	0.2930711	watt (W)		
foot-pound / hour	0.0003766161	watt (W)		
foot-pound / minute	0.0003760101	watt (W)		
•				
horsepower [550 ft-lb/s]	0.7456999	kilowatt (kW)		
horsepower [550 ft-lb/s]	745.6999	watt (W)		
horsepower [electric]	746.ª	watt (W)		
horsepower [metric]	735.499	watt (W)		
horsepower [UK]	745.70	watt (W)		
kilowatt	1.341022	horsepower [550 ft-lb/s]		
	1.5.1.022			

Table 1.(Continued) Metric Conversion Factors

Multiply	By	To Obtain
watt	2655.224	foot-pound / hour
watt	44.25372	foot-pound / minute
watt	0.001341022	horsepower [550 ft-lb/s]
watt	0.001340483	horsepower [electric]
watt	0.001359621	horsepower [metric]
watt	0.001341022	horsepower [UK]
watt	3.412141	Btu [International Table] / hour
	Viscosity	
centipoise	0.001a	pascal-second (Pa · s)
centistoke	0.000001 ^a	meter ² / second (m ² / s)
meter ² / second	1,000,000.ª	centistoke
meter ² / second	10,000.a	stoke
pascal-second	1000.ª	centipoise
pascal-second	10.ª	poise
poise	0.1a	pascal-second (Pa · s)
stoke	0.0001 ^a	meter ² / second (m ² / s)
	Temperature	
To Convert From	То	Use Formula
temperature Celsius, t_C	temperature Kelvin, t_K	$t_K = t_C + 273.15$
temperature Fahrenheit, t_F	temperature Kelvin, t _K	$t_{K} = (t_{F} + 459.67) / 1.8$
temperature Celsius, t _C	temperature Fahrenheit, t_F	$t_F = 1.8 t_C + 32$
temperature Fahrenheit, t_F	temperature Celsius, t _C	$t_C = (t_F - 32) / 1.8$
temperature Kelvin, t_K	temperature Celsius, t _C	$t_C = t_K - 273.15$
temperature Kelvin, t_K	temperature Fahrenheit, t_F	$t_F = 1.8 t_K - 459.67$
temperature Kelvin, t_K	temperature Rankine, t_R	$t_R = 9/5 t_K$
temperature Rankine, t_R	temperature Kelvin, t _K	$t_K = 5/9 t_R$

^aThe figure is exact.

Table 2. Factors and Prefixes for Forming Decimal Multiples and Sub-Multiples of the SI Units

Number	Power	Prefix	Subdivisions or Multiples	Example based on meter	Symbol
1E-06	10-6	micro	one-millionth	micrometer	μ
0.001	10-3	milli	one-thousandth	millimeter	m
0.01	10-2	centi	one-hundredth	centimeter	с
0.1	10-1	deci	one-tenth	decimeter	d
1	10°		one	meter	
10	10¹	deka	ten	dekameter	da
100	10^{2}	hecto	one hundred	hectometer	h
1,000	10^{3}	kilo	one thousand	kilometer	k
1,000,000	10 ⁶	mega	one million	megameter	M
1,000,000,000	10°	giga	one billion	gigameter	G
1,000,000,000,000	1012	tera	one trillion	terameter	T

The right-hand column shows symbols of SI units, multiples, and sub-multiples in parentheses.

Use of Conversion Tables.—On this and following pages, tables are given that permit conversion between English and metric units over a wide range of values. Where the desired value cannot be obtained directly from these tables, a simple addition of two or more values taken directly from the table will suffice as shown in the following examples:

Example 1: Find the millimeter equivalent of 0.4476 inch.

Example 2: Find the inch equivalent of 84.9 mm.

Table 3. Inch–Millimeter and Inch–Centimeter Conversion Table(Based on 1 inch = 25.4 millimeters, exactly)

	Inches To Millimeters											
in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	
10	254.00000	1	25.40000	0.1	2.54000	.01	0.25400	0.001	0.02540	0.0001	0.00254	
20	508.00000	2	50.80000	0.2	5.08000	.02	0.50800	0.002	0.05080	0.0002	0.00508	
30	762.00000	3	76.20000	0.3	7.62000	.03	0.76200	0.003	0.07620	0.0003	0.00762	
40	1,016.00000	4	101.60000	0.4	10.16000	.04	1.01600	0.004	0.10160	0.0004	0.01016	
50	1,270.00000	5	127.00000	0.5	12.70000	.05	1.27000	0.005	0.12700	0.0005	0.01270	
60	1,524.00000	6	152.40000	0.6	15.24000	.06	1.52400	0.006	0.15240	0.0006	0.01524	
70	1,778.00000	7	177.80000	0.7	17.78000	.07	1.77800	0.007	0.17780	0.0007	0.01778	
80	2,032.00000	8	203.20000	0.8	20.32000	.08	2.03200	0.008	0.20320	0.0008	0.02032	
90	2,286.00000	9	228.60000	0.9	22.86000	.09	2.2860	0.009	0.22860	0.0009	0.02286	
100	2,540.00000	10	254.00000	1.0	25.40000	.10	2.54000	0.010	0.25400	0.0010	0.02540	
Millimeters To Inch						hes						
mm	in.	mm	in.	mm	in	mm	in.	mm	in.	mm	in.	
100	3.93701	10	0.39370	1	0.03937	0.1	0.00394	0.01	.000039	0.001	0.00004	
200	7.87402	20	0.78740	2	0.07874	0.2	0.00787	0.02	.00079	0.002	80000.0	
300	11.81102	30	1.18110	3	0.11811	0.3	0.01181	0.03	.00118	0.003	0.00012	
400	15.74803	40	1.57480	4	0.15748	0.4	0.01575	0.04	.00157	0.004	0.00016	
500	19.68504	50	1.96850	5	0.19685	0.5	0.01969	0.05	.00197	0.005	0.00020	
600	23.62205	60	2.36220	6	0.23622	0.6	0.02362	0.06	.00236	0.006	0.00024	
700	27.55906	70	2.75591	7	0.27559	0.7	0.02756	0.07	.00276	0.007	0.00028	
800	31.49606	80	3.14961	8	0.31496	0.8	0.03150	0.08	.00315	0.008	0.00031	
900	35.43307	90	3.54331	9	0.35433	0.9	0.03543	0.09	.00354	0.009	0.00035	
1,000	39.37008	100	3.93701	10	0.39370	1.0	0.03937	0.10	.00394	0.010	0.00039	

For inches to centimeters, shift decimal point in mm column one place to left and read centimeters, thus:

$$40 \text{ in.} = 1016 \text{ mm} = 101.6 \text{ cm}$$

For centimeters to inches, shift decimal point of centimeter value one place to right and enter mm column, thus:

$$70 \text{ cm} = 700 \text{ mm} = 27.55906 \text{ inches}$$

Table 4. Decimals of an Inch to Millimeters (Based on 1 inch = 25.4 millimeters, exactly)

				ii i iiicii		IIIIIII CCC				
Inches	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
					Millir	neters				
0.000		0.0254	0.0508	0.0762	0.1016	0.1270	0.1524	0.1778	0.2032	0.2286
0.010	0.2540	0.2794	0.3048	0.3302	0.3556	0.3810	0.4064	0.4318	0.4572	0.4826
0.020	0.5080	0.5334	0.5588	0.5842	0.6096	0.6350	0.6604	0.6858	0.7112	0.7366
0.030	0.7620	0.7874	0.8128	0.8382	0.8636	0.8890	0.9144	0.9398	0.9652	0.9906
0.040	1.0160	1.0414	1.0668	1.0922	1.1176	1.1430	1.1684	1.1938	1.2192	1.2446
0.050	1.2700	1.2954	1.3208	1.3462	1.3716	1.3970	1.4224	1.4478	1.4732	1.4986
0.060	1.5240	1.5494	1.5748	1.6002	1.6256	1.6510	1.6764	1.7018	1.7272	1.7526
0.070	1.7780	1.8034	1.8288	1.8542	1.8796	1.9050	1.9304	1.9558	1.9812	2.0066
0.080	2.0320	2.0574	2.0828	2.1082	2.1336	2.1590	2.1844	2.2098	2.2352	2.2606
0.090	2.2860	2.3114	2.3368	2.3622	2.3876	2.4130	2.4384	2.4638	2.4892	2.5146
0.100	2.5400	2.5654	2.5908	2.6162	2.6416	2.6670	2.6924	2.7178	2.7432	2.7686
0.110	2.7940	2.8194	2.8448	2.8702	2.8956	2.9210	2.9464	2.9718	2.9972	3.0226
0.120	3.0480	3.0734	3.0988	3.1242	3.1496	3.1750	3.2004	3.2258	3.2512	3.2766
0.130	3.3020	3.3274	3.3528	3.3782	3.4036	3.4290	3.4544	3.4798	3.5052	3.5306
0.140	3.5560	3.5814	3.6068	3.6322	3.6576	3.6830	3.7084	3.7338	3.7592	3.7846
0.150	3.8100	3.8354	3.8608	3.8862	3.9116	3.9370	3.9624	3.9878	4.0132	4.0386
0.160	4.0640	4.0894	4.1148	4.1402	4.1656	4.1910	4.2164	4.2418	4.2672	4.2926
0.170	4.3180	4.3434	4.3688	4.3942	4.4196	4.4450	4.4704	4.4958	4.5212	4.5466
0.180	4.5720	4.5974	4.6228	4.6482	4.6736	4.6990	4.7244	4.7498	4.7752	4.8006
0.190	4.8260	4.8514	4.8768	4.9022	4.9276	4.9530	4.9784	5.0038	5.0292	5.0546
0.200	5.0800	5.1054	5.1308	5.1562	5.1816	5.2070	5.2324	5.2578	5.2832	5.3086
0.210	5.3340	5.3594	5.3848	5.4102	5.4356	5.4610	5.4864	5.5118	5.5372	5.5626
0.210	5.5880	5.6134	5.6388	5.6642	5.6896	5.7150	5.7404	5.7658	5.7912	5.8166
0.230	5.8420	5.8674	5.8928	5.9182	5.9436	5.9690	5.9944	6.0198	6.0452	6.0706
0.240	6.0960	6.1214	6.1468	6.1722	6.1976	6.2230	6.2484	6.2738	6.2992	6.3246
0.250	6.3500	6.3754	6.4008	6.4262	6.4516	6.4770	6.5024	6.5278	6.5532	6.5786
0.260	6.6040	6.6294	6.6548	6.6802	6.7056	6.7310	6.7564	6.7818	6.8072	6.8326
0.270	6.8580	6.8834	6.9088	6.9342	6.9596	6.9850	7.0104	7.0358	7.0612	7.0866
0.270	7.1120	7.1374	7.1628	7.1882	7.2136	7.2390	7.0104	7.2898	7.3152	7.3406
0.290	7.3660	7.1374	7.1028	7.1662	7.4676	7.4930	7.5184	7.5438	7.5692	7.5946
0.300	7.6200	7.6454	7.6708	7.6962	7.7216	7.7470	7.7724	7.7978	7.8232	7.8486
0.310	7.8740	7.8994	7.9248	7.9502	7.7216	8.0010	8.0264	8.0518	8.0772	8.1026
0.310	8.1280	8.1534	8.1788	8.2042	8.2296	8.2550	8.2804	8.3058	8.3312	8.3566
0.320	8.3820	8.4074	8.4328	8.4582	8.4836	8.5090	8.5344	8.5598	8.5852	8.6106
0.340	8.6360	8.6614	8.6868	8.7122	8.7376	8.7630	8.7884	8.8138	8.8392	8.8646
1										ı
0.350	8.8900 9.1440	8.9154 9.1694	8.9408 9.1948	8.9662 9.2202	8.9916 9.2456	9.0170 9.2710	9.0424 9.2964	9.0678 9.3218	9.0932 9.3472	9.1186 9.3726
0.360	9.1440	9.1694	9.1948	9.2202	9.2456	9.2710	9.2964	9.5758	9.3472	9.5726
0.370	9.3980	9.4234	9.4488	9.4742	9.4996	9.5250	9.5504	9.5758	9.8552	9.8806
0.380	9.6520	9.6774	9.7028	9.7282		10.0330	10.0584	10.0838	10.1092	10.1346
					10.0076					1
0.400	10.1600	10.1854	10.2108	10.2362	10.2616	10.2870	10.3124	10.3378	10.3632	10.3886
0.410	10.4140	10.4394	10.4648	10.4902	10.5156	10.5410	10.5664	10.5918	10.6172	10.6426
0.420	10.6680	10.6934	10.7188	10.7442	10.7696	10.7950	10.8204	10.8458	10.8712	10.8966
0.430	10.9220	10.9474	10.9728	10.9982	11.0236	11.0490	11.0744	11.0998	11.1252	11.1506
0.440	11.1760	11.2014	11.2268	11.2522	11.2776	11.3030	11.3284	11.3538	11.3792	11.4046
0.450	11.4300	11.4554	11.4808	11.5062	11.5316	11.5570	11.5824	11.6078	11.6332	11.6586
0.460	11.6840	11.7094	11.7348	11.7602	11.7856	11.8110	11.8364	11.8618	11.8872	11.9126
0.470	11.9380	11.9634	11.9888	12.0142	12.0396	12.0650	12.0904	12.1158	12.1412	12.1666
0.480	12.1920	12.2174	12.2428	12.2682	12.2936	12.3190	12.3444	12.3698	12.3952	12.4206
0.490	12.4460	12.4714	12.4968	12.5222	12.5476	12.5730	12.5984	12.6238	12.6492	12.6746
0.500	12.7000	12.7254	12.7508	12.7762	12.8016	12.8270	12.8524	12.8778	12.9032	12.9286
0.510	12.9540	12.9794	13.0048	13.0302	13.0556	13.0810	13.1064	13.1318	13.1572	13.1826

Table 4. (Continued) Decimals of an Inch to Millimeters
(Based on 1 inch = 25.4 millimeters, exactly)

		(Based or	n I inch:	= 25.4 m	ıllımetei	rs,exact	y)		
Inches	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
					Millir	neters				
0.520	13.2080	13.2334	13.2588	13.2842	13.3096	13.3350	13.3604	13.3858	13.4112	13.4366
0.530	13.4620	13.4874	13.5128	13.5382	13.5636	13.5890	13.6144	13.6398	13.6652	13.6906
0.540	13.7160	13.7414	13.7668	13.7922	13.8176	13.8430	13.8684	13.8938	13.9192	13.9446
0.550	13.9700	13.9954	14.0208	14.0462	14.0716	14.0970	14.1224	14.1478	14.1732	14.1986
0.560	14.2240	14.2494	14.2748	14.3002	14.3256	14.3510	14.3764	14.4018	14.4272	14.4526
0.570	14.4780	14.5034	14.5288	14.5542	14.5796	14.6050	14.6304	14.6558	14.6812	14.7066
0.580	14.7320	14.7574	14.7828	14.8082	14.8336	14.8590	14.8844	14.9098	14.9352	14.9606
0.590	14.9860	15.0114	15.0368	15.0622	15.0876	15.1130	15.1384	15.1638	15.1892	15.2146
0.600	15.2400	15.2654	15.2908	15.3162	15.3416	15.3670	15.3924	15.4178	15.4432	15.4686
0.610	15.4940	15.5194	15.5448	15.5702	15.5956	15.6210	15.6464	15.6718	15.6972	15.7226
0.620	15.7480	15.7734	15.7988	15.8242	15.8496	15.8750	15.9004	15.9258	15.9512	15.9766
0.630	16.0020	16.0274	16.0528	16.0782	16.1036	16.1290	16.1544	16.1798	16.2052	16.2306
0.640	16.2560	16.2814	16.3068	16.3322	16.3576	16.3830	16.4084	16.4338	16.4592	16.4846
0.650	16.5100	16.5354	16.5608	16.5862	16.6116	16.6370	16.6624	16.6878	16.7132	16.7386
0.660	16.7640	16.7894	16.8148	16.8402	16.8656	16.8910	16.9164	16.9418	16.9672	16.9926
0.670	17.0180	17.0434	17.0688	17.0942	17.1196	17.1450	17.1704	17.1958	17.2212	17.2466
0.680	17.2720	17.2974	17.3228	17.3482	17.3736	17.3990	17.4244	17.4498	17.4752	17.5006
0.690	17.5260	17.5514	17.5768	17.6022	17.6276	17.6530	17.6784	17.7038	17.7292	17.7546
0.700	17.7800	17.8054	17.8308	17.8562	17.8816	17.9070	17.9324	17.9578	17.9832	18.0086
0.710	18.0340	18.0594	18.0848	18.1102	18.1356	18.1610	18.1864	18.2118	18.2372	18.2626
0.720	18.2880	18.3134	18.3388	18.3642	18.3896	18.4150	18.4404	18.4658	18.4912	18.5166
0.730	18.5420	18.5674	18.5928	18.6182	18.6436	18.6690	18.6944	18.7198	18.7452	18.7706
0.740	18.7960	18.8214	18.8468	18.8722	18.8976	18.9230	18.9484	18.9738	18.9992	19.0246
0.750	19.0500	19.0754	19.1008	19.1262	19.1516	19.1770	19.2024	19.2278	19.2532	19.2786
0.760	19.3040	19.3294	19.3548	19.3802	19.4056	19.4310	19.4564	19.4818	19.5072	19.5326
0.770	19.5580	19.5834	19.6088	19.6342	19.6596	19.6850	19.7104	19.7358	19.7612	19.7866
0.780	19.8120	19.8374	19.8628	19.8882	19.9136	19.9390	19.9644	19.9898	20.0152	20.0406
0.790	20.0660	20.0914	20.1168	20.1422	20.1676	20.1930	20.2184	20.2438	20.2692	20.2946
0.800	20.3200	20.3454	20.3708	20.3962	20.4216	20.4470	20.4724	20.4978	20.5232	20.5486
0.810	20.5740	20.5994	20.6248	20.6502	20.6756	20.7010	20.7264	20.7518	20.7772	20.8026
0.820	20.8280	20.8534	20.8788	20.9042	20.9296	20.9550	20.9804	21.0058	21.0312	21.0566
0.830	21.0820	21.1074	21.1328	21.1582	21.1836	21.2090	21.2344	21.2598	21.2852	21.3106
0.840	21.3360	21.3614	21.3868	21.4122	21.4376	21.4630	21.4884	21.5138	21.5392	21.5646
0.850	21.5900	21.6154	21.6408	21.6662	21.6916	21.7170	21.7424	21.7678	21.7932	21.8186
0.860	21.8440	21.8694	21.8948	21.9202	21.9456	21.9710	21.9964	22.0218	22.0472	22.0726
0.870	22.0980	22.1234	22.1488	22.1742	22.1996	22.2250	22.2504	22.2758	22.3012	22.3266
0.880	22.3520	22.3774	22.4028	22.4282	22.4536	22.4790	22.5044	22.5298	22.5552	22.5806
0.890	22.6060	22.6314	22.6568	22.6822	22.7076	22.7330	22.7584	22.7838	22.8092	22.8346
0.900	22.8600	22.8854	22.9108	22.9362	22.9616	22.9870	23.0124	23.0378	23.0632	23.0886
0.910	23.1140	23.1394	23.1648	23.1902	23.2156	23.2410	23.2664	23.2918	23.3172	23.3426
0.920	23.3680	23.3934	23.4188	23.4442	23.4696	23.4950	23.5204	23.5458	23.5712	23.5966
0.930	23.6220	23.6474	23.6728	23.6982	23.7236	23.7490	23.7744	23.7998	23.8252	23.8506
0.940	23.8760	23.9014	23.9268	23.9522	23.9776	24.0030	24.0284	24.0538	24.0792	24.1046
0.950	24.1300	24.1554	24.1808	24.2062	24.2316	24.2570	24.2824	24.3078	24.3332	24.3586
0.960	24.3840	24.4094	24.4348	24.4602	24.4856	24.5110	24.5364	24.5618	24.5872	24.6126
0.970	24.6380	24.6634	24.6888	24.7142	24.7396	24.7650	24.7904	24.8158	24.8412	24.8666
0.980	24.8920	24.9174	24.9428	24.9682	24.9936	25.0190	25.0444	25.0698	25.0952	25.1206
0.990	25.1460	25.1714	25.1968	25.2222	25.2476	25.2730	25.2984	25.3238	25.3492	25.3746
1.000	25.4000									

Use Table 3 to obtain whole inch equivalents to add to decimal equivalents above. All values given in this table are exact; figures to the right of the last place figures are all zeros.

Table 5. Millimeters to Inches (Based on 1 inch = 25.4 millimeters, exactly)

		` `			- 23.411					
Millimeters	0	1	2	3	4	5	6	7	8	9
						Inches				
0		0.03937	0.07874	0.11811	0.15748	0.19685	0.23622	0.27559	0.31496	0.35433
10	0.39370	0.43307	0.47244	0.51181	0.55118	0.59055	0.62992	0.66929	0.70866	0.74803
20	0.78740	0.82677	0.86614	0.90551	0.94488	0.98425	1.02362	1.06299	1.10236	1.14173
30	1.18110	1.22047	1.25984	1.29921	1.33858	1.37795	1.41732	1.45669	1.49606	1.53543
40	1.57480	1.61417	1.65354	1.69291	1.73228	1.77165	1.81102	1.85039	1.88976	1.92913
50	1.96850	2.00787	2.04724	2.08661	2.12598	2.16535	2.20472	2.24409	2.28346	2.32283
60	2.36220	2.40157	2.44094	2.48031	2.51969	2.55906	2.59843	2.63780	2.67717	2.71654
70	2.75591	2.79528	2.83465	2.87402	2.91339	2.95276	2.99213	3.03150	3.07087	3.11024
80	3.14961	3.18898	3.22835	3.26772	3.30709	3.34646	3.38583	3.42520	3.46457	3.50394
90	3.54331	3.58268	3.62205	3.66142	3.70079	3.74016	3.77953	3.81890	3.85827	3.89764
100	3.93701	3.97638	4.01575	4.05512	4.09449	4.13386	4.17323	4.21260	4.25197	4.29134
110	4.33071	4.37008	4.40945	4.44882	4.48819	4.52756	4.56693	4.60630	4.64567	4.68504
120	4.72441	4.76378	4.80315	4.84252	4.88189	4.92126	4.96063	5.00000	5.03937	5.07874
130	5.11811	5.15748	5.19685	5.23622	5.27559	5.31496	5.35433	5.39370	5.43307	5.47244
140	5.51181	5.55118	5.59055	5.62992	5.66929	5.70866	5.74803	5.78740	5.82677	5.86614
150	5.90551	5.94488	5.98425	6.02362	6.06299	6.10236	6.14173	6.18110	6.22047	6.25984
160	6.29921	6.33858	6.37795	6.41732	6.45669	6.49606	6.53543	6.57480	6.61417	6.65354
170	6.69291	6.73228	6.77165	6.81102	6.85039	6.88976	6.92913	6.96850	7.00787	7.04724
180	7.08661	7.12598	7.16535	7.20472	7.24409	7.28346	7.32283	7.36220	7.40157	7.44094
190	7.48031	7.51969	7.55906	7.59843	7.63780	7.67717	7.71654	7.75591	7.79528	7.83465
200	7.87402	7.91339	7.95276	7.99213	8.03150	8.07087	8.11024	8.14961	8.18898	8.22835
210	8.26772	8.30709	8.34646	8.38583	8.42520	8.46457	8.50394	8.54331	8.58268	8.62205
220	8.66142	8.70079	8.74016	8.77953	8.81890	8.85827	8.89764	8.93701	8.97638	9.01575
230	9.05512	9.09449	9.13386	9.17323	9.21260	9.25197	9.29134	9.33071	9.37008	9.40945
240	9.44882	9.48819	9.52756	9.56693	9.60630	9.64567	9.68504	9.72441	9.76378	9.80315
250	9.84252	9.88189	9.92126	9.96063	10.0000	10.0394	10.0787	10.1181	10.1575	10.1969
260	10.2362	10.2756	10.3150	10.3543	10.3937	10.4331	10.4724	10.5118	10.5512	10.5906
270	10.6299	10.6693	10.7087	10.7480	10.7874	10.8268	10.8661	10.9055	10.9449	10.9843
280	11.0236	11.0630	11.1024	11.1417	11.1811	11.2205	11.2598	11.2992	11.3386	11.3780
290	11.4173	11.4567	11.4961	11.5354	11.5748	11.6142	11.6535	11.6929	11.7323	11.7717
300	11.8110	11.8504	11.8898	11.9291	11.9685	12.0079	12.0472	12.0866	12.1260	12.1654
310	12.2047	12.2441	12.2835	12.3228	12.3622	12.4016	12.4409	12.4803	12.5197	12.5591
320	12.5984	12.6378	12.6772	12.7165	12.7559	12.7953	12.8346	12.8740	12.9134	12.9528
330	12.9921	13.0315	13.0709	13.1102	13.1496	13.1890	13.2283	13.2677	13.3071	13.3465
340	13.3858	13.4252	13.4646	13.5039	13.5433	13.5827	13.6220	13.6614	13.7008	13.7402
350	13.7795	13.8189	13.8583	13.8976	13.9370	13.9764	14.0157	14.0551	14.0945	14.1339
360	14.1732	14.2126	14.2520	14.2913	14.3307	14.3701	14.4094	14.4488	14.4882	14.5276
370	14.5669	14.6063	14.6457	14.6850	14.7244	14.7638	14.8031	14.8425	14.8819	14.9213
380	14.9606	15.0000	15.0394	15.0787	15.1181	15.1575	15.1969	15.2362	15.2756	15.3150
390	15.3543	15.3937	15.4331	15.4724	15.5118	15.5512	15.5906	15.6299	15.6693	15.7087
400	15.7480	15.7874	15.8268	15.8661	15.9055	15.9449	15.9843	16.0236	16.0630	16.1024
410	16.1417	16.1811	16.2205	16.2598	16.2992	16.3386	16.3780	16.4173	16.4567	16.4961
420	16.5354	16.5748	16.6142	16.6535	16.6929	16.7323	16.7717	16.8110	16.8504	16.8898
430	16.9291	16.9685	17.0079	17.0472	17.0866	17.1260	17.1654	17.2047	17.2441	17.2835
440	17.3228	17.3622	17.4016	17.4409	17.4803	17.5197	17.5591	17.5984	17.6378	17.6772
450	17.7165	17.7559	17.7953	17.8346	17.8740	17.9134	17.9528	17.9921	18.0315	18.0709
460	18.1102	18.1496	18.1890	18.2283	18.2677	18.3071	18.3465	18.3858	18.4252	18.4646
470	18.5039	18.5433	18.5827	18.6220	18.6614	18.7008	18.7402	18.7795	18.8189	18.8583
480	18.8976	18.9370	18.9764	19.0157	19.0551	19.0945	19.1339	19.1732	19.2126	19.2520
490	19.2913	19.3307	19.3701	19.4094	19.4488	19.4882	19.5276	19.5669	19.6063	19.6457

Table 5. (*Continued*) **Millimeters to Inches** (Based on 1 inch = 25.4 millimeters, exactly)

510 20.0787 20.1181 20.1575 20.1969 20.2362 20.2756 20.3150 20.3543 20.3937 20.433 520 20.4742 20.5118 20.5512 20.5906 20.6693 20.0689 20.7087 20.7480 20.7874 20.856 530 20.8661 20.9055 20.9449 20.9843 21.0236 21.0630 21.1024 21.1417 21.1811 21.226 540 21.2598 21.2992 21.3386 21.3717 21.8110 21.8504 21.8989 21.9291 21.9685 22.007 560 22.0472 22.0866 22.1020 22.1517 22.5197 22.5914 22.2047 22.2441 22.8328 22.3228 22.3228 22.5197 22.5913 22.9584 22.6378 22.6772 22.7166 22.7559 22.3400 590 23.2283 23.2677 23.3071 23.3465 23.3858 23.4872 23.4664 23.5039 23.1496 23.189 610 24.0157 24.64882			(Da	sed on	i ilicii -	- 20.11		ters, ex	actij)		
500	Millimeters	0	1	2	3	4	5	6	7	8	9
510 20.0787 20.1181 20.1575 20.1969 20.2362 20.2756 20.3150 20.3543 20.3937 20.433 520 20.4724 20.5118 20.5112 20.5906 20.6299 20.6693 20.7087 20.7480 20.7874 20.856 530 20.8661 20.9055 20.9449 20.9843 21.0236 21.0630 21.1024 21.1417 21.1811 21.2598 21.5748 21.5748 21.5748 21.5748 21.5754 21.5754 21.5754 21.5754 21.5748 21.6614 22.0471 22.4410 22.1866 22.1777 21.8110 21.8504 21.8898 21.9291 21.9685 22.007 570 22.4409 22.4803 22.5197 22.5917 22.5919 22.5984 22.6378 22.6772 22.7165 22.7559 22.5964 22.6378 22.6772 22.7166 22.7559 23.1896 23.2283 23.2672 23.071 23.3465 23.3889 23.5932 23.5433 23.582 23.4025 23.4646							Inches				
520 20.4724 20.5118 20.5512 20.5906 20.6299 20.6693 20.7087 20.7480 20.7874 20.8265 530 20.8661 20.9055 20.9449 20.9843 21.0236 21.0630 21.1042 21.1417 21.1811 21.2598 21.2598 21.2598 21.3780 21.4173 21.4567 21.4961 21.554 21.5748 21.5174 21.4567 21.4961 21.5554 21.5748 21.5174 22.2047 22.441 22.835 22.3228 22.3622 22.401 570 22.4409 22.4803 22.5170 22.5581 22.5584 22.6378 22.6772 22.7165 22.7559 22.5894 590 23.28346 22.8770 22.3014 22.9528 22.9291 23.0318 23.0709 23.1062 23.4496 23.4496 23.5896 600 23.6220 23.5614 23.7080 23.7765 23.8189 23.8583 23.8976 23.976 23.976 23.976 24.40157 24.0551 24.0945 <	500	19.6850	19.7244	19.7638	19.8031	19.8425	19.8819	19.9213	19.9606	20.0000	20.0394
530 20.8661 20.9055 20.9449 20.9843 21.0262 21.1024 21.1417 21.1811 21.2208 540 21.2598 21.2992 21.3386 21.3780 21.4173 21.4867 21.4961 21.5534 21.5748 21.6145 550 21.6535 21.6929 21.7323 21.7717 21.8110 21.8504 21.8898 21.9291 21.9685 22.0077 560 22.0447 22.2440 22.4409 22.4803 22.5197 22.5591 22.5984 22.6378 22.6772 22.7165 22.7559 22.795 580 22.8446 22.8400 22.9134 22.9528 22.9921 23.0315 23.0709 23.1102 23.1496 23.3589 590 23.2823 23.2677 23.0701 23.4652 23.3888 23.4929 23.3019 23.1102 23.1496 23.3589 600 23.6202 23.6614 23.7008 23.7402 23.7795 23.8189 23.83976 23.39370 23.4362	510	20.0787	20.1181	20.1575	20.1969	20.2362	20.2756	20.3150	20.3543	20.3937	20.4331
540 21.2598 21.2992 21.3386 21.3780 21.4173 21.4567 21.4961 21.5354 21.5748 21.614 550 21.6535 21.6992 21.7323 21.7717 21.8110 21.8898 21.9291 21.9685 22.007 560 22.0472 22.0866 22.1664 22.2047 22.2441 22.2835 22.3228 22.3622 22.401 570 22.4409 22.4803 22.5197 22.5598 22.6378 22.6772 22.7165 22.27559 22.5984 22.6378 22.67165 22.2767 22.4101 22.2160 22.2461 22.2840 22.8440 22.8409 22.588 22.6372 22.7165 22.2755 22.755 22.756 22.3288 23.6772 22.7165 22.2755 22.755 22.302 23.2883 23.852 23.4840 23.30370 23.3433 23.582 23.4823 23.8876 23.39370 23.3770 23.3770 23.3771 23.3462 24.7404 24.4084 24.4882 24.5276 24.5669	520	20.4724	20.5118	20.5512	20.5906	20.6299	20.6693	20.7087	20.7480	20.7874	20.8268
550 21.6535 21.6929 21.7323 21.717 21.8110 21.8504 21.8898 21.9291 21.9685 22.007 560 22.0472 22.0866 22.1661 22.2047 22.24803 22.3162 22.1664 22.2074 22.2411 22.2835 22.3228 22.3022 22.401 570 22.4803 22.8740 22.9134 22.9584 22.6378 22.6772 22.7165 22.7559 580 22.8346 22.8740 22.9134 22.9582 22.921 23.0315 23.0709 23.102 23.1496 23.1496 600 23.6220 23.6614 23.7008 23.7402 23.7795 23.8189 23.8583 23.8976 23.9370 23.976 610 24.0157 24.0551 24.0943 24.1339 24.1732 24.2162 24.2500 24.2913 24.303 24.7244 24.763 630 24.8031 24.8819 24.9213 24.9063 24.6063 24.6174 24.6850 24.7244 24.7363 </td <td>530</td> <td>20.8661</td> <td>20.9055</td> <td>20.9449</td> <td>20.9843</td> <td>21.0236</td> <td>21.0630</td> <td>21.1024</td> <td>21.1417</td> <td>21.1811</td> <td>21.2205</td>	530	20.8661	20.9055	20.9449	20.9843	21.0236	21.0630	21.1024	21.1417	21.1811	21.2205
560 22.0472 22.0866 22.1260 22.16154 22.0471 22.2441 22.2835 22.3228 22.3622 22.401 570 22.4409 22.4803 22.5197 22.5591 22.5591 22.5848 22.6772 22.7165 22.759 22.759 580 22.8346 22.8740 22.9134 22.9528 22.9921 23.0315 23.0709 23.1102 23.1496 23.189 590 23.2283 23.2677 23.071 23.3071 23.3652 23.4464 23.5039 23.5433 23.5433 23.5433 23.5676 610 24.0157 24.0515 24.0945 24.1339 24.1732 24.2126 24.2520 24.2913 24.3070 24.3704 630 24.8031 24.48819 24.9213 24.9060 25.0000 25.0394 25.0787 25.1818 25.5118 25.5118 25.5118 25.5118 25.5118 25.5118 25.518 25.944 26.2598 26.2999 26.6338 26.0276 26.1417 26.1417	540	21.2598	21.2992	21.3386	21.3780	21.4173	21.4567	21.4961	21.5354	21.5748	21.6142
570 22.4409 22.4803 22.5197 22.5591 22.5984 22.6772 22.7165 22.7559 22.7559 580 22.8346 22.8740 22.9134 22.9528 22.9921 23.0152 23.0709 23.1102 23.1496 23.189 590 23.2283 23.2677 23.3701 23.3465 23.3858 23.4522 23.4646 23.5039 23.5433 23.5826 600 23.6220 23.6614 23.7008 23.7402 23.7795 23.8189 23.8833 23.8976 23.9370 23.976 610 24.0157 24.0551 24.0945 24.1339 24.1732 24.2126 24.2520 24.2913 24.3037 24.3763 620 24.4049 24.4882 24.8213 24.9606 25.0000 25.0394 25.0787 25.1181 25.1518 25.5756 25.3150 25.3542 25.0000 25.0394 25.0787 25.1181 25.5118 25.5118 25.518 25.5966 25.5906 25.6299 25.6693 25.70	550	21.6535	21.6929	21.7323	21.7717	21.8110	21.8504	21.8898	21.9291	21.9685	22.0079
580 22.8346 22.8740 22.9134 22.9528 22.921 23.015 23.0709 23.1102 23.1496 23.189 590 23.2283 23.2677 23.3071 23.3465 23.3858 23.4522 23.4646 23.039 23.5433 23.582 600 23.6220 23.6614 23.7008 23.7402 23.7795 23.8189 23.8583 23.8576 23.9370 23.976 610 24.0157 24.0551 24.0945 24.1339 24.1732 24.2126 24.2502 24.2913 24.3307 24.3703 62.24.094 24.4488 24.4822 24.5276 24.5669 24.6063 24.6457 24.6850 24.7244 24.763 640 25.1969 25.2362 25.2756 25.3150 25.3543 25.3937 25.4371 25.5118 25.5118 25.5118 25.551 660 25.9843 26.0236 26.6030 26.1024 26.1417 26.1810 26.5693 26.6967 26.4961 26.5354 26.5748 26.6142 26	560	22.0472	22.0866	22.1260	22.1654	22.2047	22.2441	22.2835	22.3228	22.3622	22.4016
590 23.2283 23.2677 23.3071 23.3465 23.3858 23.4252 23.4646 23.5039 23.5433 23.582 600 23.6202 23.6614 23.7008 23.7702 23.7795 23.8189 23.8883 23.8976 23.9370 23.976 610 24.0157 24.0551 24.0948 24.41732 24.2126 24.2520 24.2913 24.307 24.370 620 24.4094 24.4488 24.8819 24.9213 24.6063 24.6057 24.5680 24.7244 24.736 640 25.1969 25.2362 25.2756 25.3150 25.3543 25.0394 25.0787 25.1181 25.157 650 25.5906 25.6299 25.6693 25.7087 25.7480 25.8268 25.8661 25.9055 25.5118 25.511 660 25.9843 26.0236 26.0330 26.1024 26.1417 26.1811 26.2598 26.2992 26.338 670 27.1654 27.017 27.412 27.244	570	22.4409	22.4803	22.5197	22.5591	22.5984	22.6378	22.6772	22.7165	22.7559	22.7953
600 23.6220 23.6614 23.7008 23.7402 23.7775 23.8189 23.8583 23.8976 23.9370 23.976 610 24.0157 24.0545 24.0345 24.1339 24.1732 24.2126 24.2520 24.2913 24.3307 24.370 620 24.4094 24.4488 24.4822 24.5276 24.5669 24.6653 24.6850 24.7244 24.763 630 24.8031 24.8425 24.8819 24.9213 24.9000 25.0000 25.0394 25.0787 25.1181 25.551 640 25.1969 25.2362 25.2756 25.3150 25.3480 25.8268 25.8661 25.9055 25.944 660 25.9843 26.0236 26.0303 26.01024 26.1417 26.1811 26.2598 26.2991 26.6935 25.0555 26.538 26.2598 26.2992 26.6929 26.388 670 26.3780 26.4173 26.4567 26.4611 26.5346 26.5748 26.1417 26.4629	580	22.8346	22.8740	22.9134	22.9528	22.9921	23.0315	23.0709	23.1102	23.1496	23.1890
610	590	23.2283	23.2677	23.3071	23.3465	23.3858	23.4252	23.4646	23.5039	23.5433	23.5827
620 24.4094 24.4488 24.4882 24.5276 24.5669 24.6063 24.6457 24.6850 24.7244 24.763 630 24.8031 24.8425 24.8819 24.9213 24.9606 25.0090 25.0394 25.0787 25.1181 25.551 640 25.1969 25.2362 25.2756 25.3150 25.3543 25.3937 25.4331 25.4724 25.5118 25.5551 660 25.9843 26.0236 26.0630 26.1024 26.1417 26.1811 26.2558 25.8661 22.5995 26.2992 26.338 670 26.3780 26.4173 26.4567 26.4961 26.5354 26.6142 26.6535 26.6992 26.338 680 26.7717 26.8110 26.8504 26.8989 26.9291 26.9685 27.0079 27.0472 27.0866 27.126 690 27.1654 27.2047 27.2441 27.2835 27.3228 27.3622 27.4016 27.4400 27.24803 27.5191 <	600	23.6220	23.6614	23.7008	23.7402	23.7795	23.8189	23.8583	23.8976	23.9370	23.9764
630 24,8031 24,8425 24,8819 24,9213 24,9606 25,0000 25,0394 25,0787 25,1181 25,157 640 25,1969 25,2362 25,2756 25,3150 25,3343 25,4724 25,5118 25,551 650 25,5906 25,6299 25,6693 25,0787 25,7880 25,7882 25,8661 25,955 25,9244 660 25,9843 26,0236 26,0630 26,1024 26,1417 26,1811 26,2525 26,2588 26,2992 26,338 670 26,3780 26,4173 26,4567 26,4961 26,5354 26,5748 26,6142 26,6535 26,6929 26,732 680 26,7117 26,8110 28,8542 26,8898 26,9291 26,9685 27,0079 27,0472 27,0866 27,126 690 27,1654 27,0972 27,2412 27,2835 27,3252 27,07165 27,7593 27,8346 27,8770 27,5191 710 27,5591 27,9582 27	610	24.0157	24.0551	24.0945	24.1339	24.1732	24.2126	24.2520	24.2913	24.3307	24.3701
640 25.1969 25.2362 25.2756 25.3150 25.3543 25.3937 25.4331 25.4724 25.5118 25.5511 650 25.5906 25.6299 25.6693 25.7087 25.7480 25.8268 25.8661 25.9055 25.944 660 25.9843 26.0236 26.0630 26.1024 26.1417 26.8111 26.2298 26.2992 26.338 670 26.3780 26.4173 26.4567 26.4961 26.5354 26.5748 26.6142 26.6535 26.6929 26.338 680 26.7717 26.8110 26.8504 26.8898 26.9291 26.9685 27.0079 27.0472 27.0866 27.126 690 27.1654 27.2047 27.2441 27.2835 27.3252 27.0616 27.4016 27.4409 27.4803 27.519 710 27.5591 27.5984 27.6378 27.6772 27.7165 27.7595 27.7953 27.8346 27.8740 27.913 28.26777 28.307 28.3465	620	24.4094	24.4488	24.4882	24.5276	24.5669	24.6063	24.6457	24.6850	24.7244	24.7638
650 25.5906 25.6299 25.6693 25.7087 25.7480 25.7874 25.8268 25.8661 25.9955 25.944 660 25.9843 26.0236 26.0300 26.1024 26.1417 26.1811 26.2205 26.2598 26.2992 26.338 670 26.3780 26.4173 26.4567 26.4961 26.5354 26.5794 26.6535 26.6535 26.6535 26.6535 26.6535 26.6535 26.6535 26.6929 26.6853 26.6929 26.9685 27.0709 27.0472 27.2866 27.1264 27.2047 27.2441 27.2835 27.3228 27.3622 27.4016 27.4409 27.4803 27.519 700 27.5591 27.9921 28.0315 28.0709 28.1102 28.1496 28.1893 28.2828 28.2283 28.2677 28.346 27.8740 27.913 29.803 28.5433 28.5877 28.6220 22.86614 28.795 28.614 28.795 28.614 28.795 28.614 29.913 29.913	630	24.8031	24.8425	24.8819	24.9213	24.9606	25.0000	25.0394	25.0787	25.1181	25.1575
660 25,9843 26,0236 26,030 26,1024 26,11024 26,1417 26,1811 26,2205 26,2598 26,2992 26,338 670 26,3780 26,4173 26,4867 26,4961 26,5354 26,5748 26,6142 26,5535 26,6992 26,338 680 26,7717 26,8110 26,8504 26,8898 26,9291 26,9685 27,0079 27,0472 27,8666 27,126 690 27,1654 27,2047 27,2441 27,2835 27,3228 27,3622 27,4016 27,4400 27,1893 27,5191 710 27,5591 27,5984 27,6378 27,6772 27,7165 27,7559 27,9733 27,8346 27,8740 27,913 710 27,5581 27,9912 28,0152 28,0702 28,1102 28,1496 28,1890 28,2827 28,6220 28,6614 28,700 730 28,3465 28,3189 28,8583 28,8762 28,9370 28,9764 29,0157 29,0551 29,0494	640	25.1969	25.2362	25.2756	25.3150	25.3543	25.3937	25.4331	25.4724	25.5118	25.5512
670 26,3780 26,4173 26,4567 26,4961 26,5354 26,5748 26,6142 26,6535 26,6929 26,732 680 26,7117 26,8110 26,8504 26,8898 26,9291 26,9852 27,0079 27,0472 27,0866 27,126 690 27,1654 27,2047 27,2441 27,2835 27,3228 27,3622 27,4016 27,4409 27,4803 27,519 700 27,5591 27,5984 27,6378 27,6772 27,7165 27,7559 27,7953 27,8340 27,913 710 27,9528 27,9921 28,0315 28,0790 28,1102 28,1496 28,1890 28,2283 28,2677 28,307 730 28,7402 28,7952 28,8189 28,8583 28,8970 28,9764 29,0157 29,0517 29,0517 29,0133 29,126 29,2520 29,213 29,3063 29,6457 29,6669 29,6663 29,6457 29,6850 29,7244 29,7638 29,8011 29,8425 29,881 <t< td=""><td>650</td><td>25.5906</td><td>25.6299</td><td>25.6693</td><td>25.7087</td><td>25.7480</td><td>25.7874</td><td>25.8268</td><td>25.8661</td><td>25.9055</td><td>25.9449</td></t<>	650	25.5906	25.6299	25.6693	25.7087	25.7480	25.7874	25.8268	25.8661	25.9055	25.9449
680 26.7717 26.8110 26.8504 26.8898 26.9291 26.9685 27.0079 27.0472 27.0476 27.126 690 27.1654 27.2047 27.2441 27.2835 27.3228 27.3622 27.4016 27.4409 27.4803 27.519 700 27.5591 27.5984 27.6378 27.6772 27.7165 27.7559 27.7953 27.8346 27.8740 27.913 710 27.5581 27.9921 28.0315 28.0707 28.1496 28.1890 28.2283 28.2677 28.3657 28.8189 28.8583 28.8976 28.9370 28.9764 29.0157 29.051 29.094 740 29.1339 29.1732 29.2126 29.2520 29.2913 29.304 29.4188 29.881 760 29.95276 29.5669 29.6063 29.6457 29.6850 29.7244 29.7638 29.8031 29.8425 29.881 760 29.913 29.9484 29.613 29.8425 29.881 760 29.913 30.3480	660	25.9843	26.0236	26.0630	26.1024	26.1417	26.1811	26.2205	26.2598	26.2992	26.3386
690 27.1654 27.2047 27.2441 27.2835 27.3228 27.3622 27.4016 27.4409 27.4803 27.519 700 27.5591 27.5984 27.6378 27.6772 27.7165 27.7559 27.8346 27.8740 27.913 710 27.5528 27.9921 28.0315 28.0709 28.1102 28.1466 28.1892 28.2283 28.2671 28.307 720 28.3465 28.3858 28.4252 28.4646 28.5039 28.5433 28.5877 28.6220 22.86614 28.007 740 29.1339 29.1732 29.2126 29.2520 29.2913 29.3701 29.4084 29.488 29.488 750 29.5276 29.5669 29.6063 29.6457 29.6850 29.7244 29.7638 29.8031 29.8425 29.881 760 29.9213 29.9606 30.0000 30.0347 30.1181 30.1575 30.7960 30.6299 30.669 780 30.7087 30.7480 30.7	670	26.3780	26.4173	26.4567	26.4961	26.5354	26.5748	26.6142	26.6535	26.6929	26.7323
700 27.5591 27.5984 27.6378 27.6772 27.7165 27.7559 27.7953 27.8346 27.8740 27.913 710 27.9528 27.9911 28.0315 28.0709 28.1102 28.1496 28.1890 28.2283 28.2272 28.6014 28.700 720 28.3465 28.3858 28.4252 28.6464 28.5039 28.5433 28.5827 28.6220 28.6614 28.700 730 28.7402 28.7795 28.8189 28.8583 28.8976 28.9370 28.9764 29.0157 29.0551 29.094 740 29.1339 29.1732 29.2162 29.2520 29.2913 29.3701 29.4094 29.4488 29.488 750 29.5276 29.5660 29.6667 29.6550 29.7244 29.7638 29.8011 29.8425 29.881 760 29.9213 29.9660 30.0000 30.0394 30.718 30.5150 30.2629 30.669 780 30.7687 30.7480 30.78	680	26.7717	26.8110	26.8504	26.8898	26.9291	26.9685	27.0079	27.0472	27.0866	27.1260
710 27,9528 27,9921 28,0315 28,0709 28,1102 28,1496 28,1890 28,2283 28,2677 28,307 720 28,3465 28,3858 28,4252 28,4646 28,5039 28,5433 28,5827 28,620 28,6614 28,700 730 28,7402 28,7795 28,8189 28,8583 28,8876 28,9370 28,9764 29,0157 29,0517 29,0517 29,0517 29,0517 29,0517 29,0517 29,0517 29,0517 29,0517 29,0663 29,6457 29,6850 29,7244 29,7638 29,8031 29,4488 29,488 760 29,9213 29,9606 30,0000 30,0394 30,0787 30,1181 30,1557 30,1969 30,2362 30,275 770 30,3150 30,3543 30,3937 30,4313 30,4724 30,5118 30,5512 30,5966 30,669 30,669 30,661 30,9055 30,9494 30,9843 31,0236 31,033 31,1811 31,2259 31,2992 31,3386 31,3780	690	27.1654	27.2047	27.2441	27.2835	27.3228	27.3622	27.4016	27.4409	27.4803	27.5197
720 28.3465 28.3858 28.4252 28.4646 28.5039 28.5433 28.5827 28.6220 28.6614 28.700 730 28.7402 28.7795 28.8189 28.8583 28.8976 28.9760 29.0157 29.0151 29.094 740 29.1339 29.1732 29.2126 29.2520 29.2913 29.307 29.3701 29.4094 29.4488 29.488 750 29.5276 29.5669 29.6063 29.6457 29.6850 29.7244 29.7638 29.8031 29.8425 29.812 760 29.9213 29.9606 30.0000 30.034 30.0787 30.1181 30.1575 30.1969 30.2362 30.275 770 30.3150 30.3543 30.3937 30.8268 30.8661 30.9055 30.999 30.8343 31.0236 31.0639 780 31.0874 31.1417 31.1811 31.2598 31.6929 31.7380 31.717 31.8110 31.456 810 31.8898 31.921<	700	27.5591	27.5984	27.6378	27.6772	27.7165	27.7559	27.7953	27.8346	27.8740	27.9134
730 28.7402 28.7795 28.8189 28.8583 28.8976 28.9764 29.0157 29.0551 29.094 740 29.1339 29.1732 29.2126 29.2520 29.2913 29.3701 29.4094 29.4888 29.488 29.488 29.488 29.881 750 29.5266 29.6663 29.6457 29.6850 29.7244 29.7638 29.8031 29.8425 29.881 760 29.9213 29.9060 30.0000 30.0387 30.1181 30.1575 30.1969 30.2362 30.2757 770 30.3150 30.7480 30.7874 30.8268 30.8661 30.9055 30.9949 30.9843 31.0236 31.063 790 31.1024 31.1417 31.1811 31.2598 31.2992 31.3386 31.3780 31.4173 31.816 810 31.8898 31.9291 31.9685 32.0079 32.0472 32.0866 32.1260 32.1654 32.2047 32.244 820 32.2835 32.3228	710	27.9528	27.9921	28.0315	28.0709	28.1102	28.1496	28.1890	28.2283	28.2677	28.3071
740 29.1339 29.1732 29.2126 29.2520 29.2913 29.3071 29.4094 29.4488 29.4888 750 29.5276 29.5660 29.6663 29.6457 29.6850 29.7244 29.7638 29.8031 29.8215 29.821 760 29.9213 29.9660 30.0000 30.0087 30.1181 30.1575 30.1969 30.2362 30.275 770 30.3150 30.3483 30.9397 30.431 30.5118 30.5152 30.5906 30.6299 30.669 780 31.1024 31.1417 31.1811 31.1205 31.2598 31.2992 31.3386 31.3780 31.4173 31.456 800 31.4961 31.554 31.5748 31.6142 31.6535 31.6929 31.7323 31.7717 31.8110 31.850 810 31.8898 31.9291 31.9685 32.0472 32.0866 32.1260 32.1654 32.2047 32.2447 820 32.2835 32.3762 32.7959 32.9	720	28.3465	28.3858	28.4252	28.4646	28.5039	28.5433	28.5827	28.6220	28.6614	28.7008
750 29,5276 29,5669 29,6063 29,6457 29,6850 29,7244 29,7638 29,8031 29,8425 29,881 760 29,9213 29,9606 30,0000 30,0394 30,0787 30,1181 30,1575 30,1969 30,2362 30,275 770 30,3150 30,3543 30,3937 30,4331 30,4724 30,5118 30,5916 30,699 30,6299 30,669 780 31,1024 31,1417 31,1811 31,2292 31,3386 31,3780 31,4173 31,461 800 31,4961 31,534 31,5748 31,6142 31,6535 31,6929 31,7323 31,7717 31,8110 31,850 810 31,8898 31,9291 31,9685 32,0079 32,0472 32,0866 32,1260 32,1654 32,2047 32,244 830 32,6772 32,7165 32,7559 32,7953 32,8409 32,8403 32,5197 32,5591 32,5984 32,9921 33,345 32,9921 33,345 <	730	28.7402	28.7795	28.8189	28.8583	28.8976	28.9370	28.9764	29.0157	29.0551	29.0945
760 29.9213 29.9606 30.0000 30.0394 30.0787 30.1181 30.1575 30.1969 30.2362 30.275 770 30.3150 30.3543 30.3937 30.4331 30.4724 30.5118 30.5512 30.5906 30.6299 30.669 780 30.7087 30.7874 30.8268 30.8661 30.9055 30.949 30.9843 31.0236 31.036 790 31.1024 31.1417 31.8111 31.2253 31.2992 31.3836 31.3780 31.4173 31.456 800 31.4961 31.5748 31.6142 31.6535 31.6929 31.7323 31.7717 31.8110 31.8110 31.8110 31.8110 31.8898 31.9291 31.9685 32.0079 32.0472 32.0866 32.1260 32.1654 32.2047 32.244 820 32.2873 32.2757 32.7559 32.9852 32.9517 32.5984 32.9528 32.9921 33.031 840 33.0709 33.1496 33.8980 33.2677 33.3071	740	29.1339	29.1732	29.2126	29.2520	29.2913	29.3307	29.3701	29.4094	29.4488	29.4882
770 30.3150 30.3543 30.3937 30.4331 30.4724 30.5118 30.5512 30.5906 30.6999 30.6699 780 30.7087 30.7480 30.7874 30.8268 30.8661 30.9055 30.949 30.9843 31.026 31.036 790 31.1024 31.1417 31.1811 31.2598 31.2992 31.3386 31.3780 31.4173 31.4156 810 31.8898 31.9291 31.9685 32.0079 32.0472 32.0866 32.1260 32.1654 32.2047 32.244 820 32.2835 32.3228 32.7559 32.7953 32.8846 32.8740 32.9528 32.9528 32.9528 32.9528 32.9921 33.013 840 33.0709 33.1496 33.1890 33.2873 33.2677 33.3071 33.3465 33.3485 33.3455 33.3486 33.3486 33.3486 33.3486 33.3486 33.4858 33.4456 33.3486 33.4858 33.4553 33.4496 33.4873 33.4654	750	29.5276	29.5669	29.6063	29.6457	29.6850	29.7244	29.7638	29.8031	29.8425	29.8819
780 30.7087 30.7480 30.7874 30.8268 30.8661 30.9055 30.949 30.9843 31.0236 31.036 790 31.1024 31.1417 31.811 31.2205 31.2598 31.2992 31.386 31.3780 31.4173 31.456 800 31.4961 31.5354 31.5748 31.6142 31.6353 31.6929 31.7323 31.7717 31.810 31.890 810 31.8898 31.9291 31.9685 32.0079 32.0472 32.0866 32.1654 32.2047 32.2480 820 32.2835 32.3228 32.3622 32.4016 32.4803 32.5197 32.5984 32.5984 32.593 840 33.0709 33.1102 33.1496 33.1890 33.2283 33.2713 33.3465 33.3858 33.492 850 33.4646 33.5093 33.5433 33.8827 33.6227 34.0157 34.0945 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3307	760	29.9213	29.9606	30.0000	30.0394	30.0787	30.1181	30.1575	30.1969	30.2362	30.2756
780 30.7087 30.7480 30.7874 30.8268 30.8661 30.9055 30.949 30.9843 31.0236 31.036 790 31.1024 31.1417 31.811 31.2205 31.2598 31.2992 31.386 31.3780 31.4173 31.456 800 31.4961 31.5354 31.5748 31.6142 31.6353 31.6929 31.7323 31.7717 31.810 31.890 810 31.8898 31.9291 31.9685 32.0079 32.0472 32.0866 32.1654 32.2047 32.2480 820 32.2835 32.3228 32.3622 32.4016 32.4803 32.5197 32.5984 32.5984 32.593 840 33.0709 33.1102 33.1496 33.1890 33.2283 33.2713 33.3465 33.3858 33.492 850 33.4646 33.5093 33.5433 33.8827 33.6227 34.0157 34.0945 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3307	770	30.3150	30.3543	30.3937	30.4331	30.4724	30.5118	30.5512	30.5906	30.6299	30.6693
800 31.4961 31.5354 31.5748 31.6142 31.6535 31.6929 31.7323 31.7717 31.8110 31.850 810 31.8898 31.9291 31.9685 32.0079 32.0472 32.0460 32.1260 32.1654 32.2047 32.244 820 32.2835 32.3228 32.3622 32.4016 32.409 32.4803 32.5197 32.5591 32.5984 32.637 840 33.0709 33.1102 33.1496 33.1890 33.2873 33.2677 33.3071 33.3588 33.4858 33.4813 34.4813 34.4904 34.4882 34.5276 34.5669 34.6669 34.666 34.6660 34.5276 34.6850 34.7244 34.7638 34.8031 34.8425 34.8821 34.5276 34.5669	780	30.7087	30.7480	30.7874	30.8268	30.8661	30.9055	30.949	30.9843	31.0236	31.0630
810 31.8898 31.9291 31.9685 32.0079 32.0472 32.0866 32.1260 32.1654 32.2047 32.244 820 32.2835 32.3228 32.3622 32.4016 32.409 32.4803 32.5197 32.5591 32.5984 32.637 840 33.0709 33.1102 33.1496 33.1890 33.2283 33.2677 33.3071 33.3465 33.3858 33.455 850 33.4646 33.5039 33.5976 33.9764 34.0157 34.0551 34.0945 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3307 34.7011 34.4094 34.4882 34.5276 34.5669 34.666 880 34.6457 34.6850 34.7244 34.7683 34.8031 34.8425 34.8919 34.9006 35.090 890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.393	790	31.1024	31.1417	31.1811	31.2205	31.2598	31.2992	31.3386	31.3780	31.4173	31.4567
820 32.2835 32.3228 32.3622 32.4016 32.4409 32.4803 32.5197 32.5591 32.5984 32.637 830 32.6772 32.7165 32.7559 32.7953 32.8346 32.8740 32.9134 32.9528 32.9921 33.031 840 33.0709 33.1102 33.1496 33.1890 33.2823 33.6277 33.3071 33.3465 33.3858 33.425 850 33.4646 33.5039 33.5433 33.5827 33.6220 33.6061 33.7008 33.7082 33.7795 33.818 860 33.8583 33.8976 33.9370 33.9764 34.0157 34.0551 34.0945 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3307 34.3701 34.4094 34.4488 34.8822 34.5276 34.5669 34.606 38.00 880 34.6457 34.6850 34.7244 34.7638 34.8031 34.8425 34.8819 34.9213 34.9606 35.000 <td>800</td> <td>31.4961</td> <td>31.5354</td> <td>31.5748</td> <td>31.6142</td> <td>31.6535</td> <td>31.6929</td> <td>31.7323</td> <td>31.7717</td> <td>31.8110</td> <td>31.8504</td>	800	31.4961	31.5354	31.5748	31.6142	31.6535	31.6929	31.7323	31.7717	31.8110	31.8504
830 32.6772 32.7165 32.7559 32.7953 32.8346 32.8740 32.9134 32.9528 32.9921 33.031 840 33.0709 33.1102 33.1496 33.1890 33.2283 33.2677 33.3071 33.3465 33.3858 33.425 850 33.4646 33.5093 33.5433 33.5827 33.6220 33.6614 33.7008 33.7402 33.7795 33.818 860 33.8583 33.8976 33.9370 34.0157 34.0951 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3307 34.3701 34.4094 34.4882 34.5276 34.5669 34.666 880 34.6457 34.6850 34.7244 34.7688 34.8425 34.8913 34.9606 35.000 890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.3833	810					1				l	32.2441
840 33.0709 33.1102 33.1496 33.1890 33.2283 33.2677 33.3071 33.3465 33.3858 33.425 850 33.4646 33.5039 33.5433 33.5827 33.6220 33.6614 33.7008 33.7492 33.7795 33.818 860 33.8583 33.8976 33.9764 34.0157 34.0551 34.0945 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3307 34.3701 34.4094 34.4882 34.5276 34.5669 34.666 880 34.6457 34.6850 34.7244 34.7683 34.8031 34.8425 34.819 34.9213 34.9606 35.000 890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.393	820	32.2835	32.3228	32.3622	32.4016	32.4409	32.4803	32.5197	32.5591	32.5984	32.6378
840 33.0709 33.1102 33.1496 33.1890 33.2283 33.2677 33.3071 33.3465 33.3858 33.425 850 33.4646 33.5093 33.5433 33.8827 33.6220 33.6614 33.7008 33.7095 33.7195 33.818 860 33.8583 33.8976 33.9370 34.0157 34.051 34.0945 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3307 34.3701 34.4094 34.4882 34.5276 34.5669 34.666 880 34.6457 34.6850 34.7244 34.7683 34.8031 34.8425 34.8191 34.9006 35.000 890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.393	830	32.6772	32.7165	32.7559	32.7953	32.8346	32.8740	32.9134	32.9528	32.9921	33.0315
850 33.4646 33.5039 33.5433 33.5827 33.6220 33.6614 33.7008 33.7402 33.7795 33.818 860 33.8583 33.8976 33.9764 34.0157 34.0551 34.0945 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3307 34.3701 34.4094 34.4488 34.882 34.5276 34.5669 34.606 880 34.6457 34.6850 34.7244 34.7683 34.8031 34.8425 34.819 34.9213 34.9606 35.000 890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.393			1		1	1					33.4252
860 33.8583 33.8976 33.9370 33.9764 34.0157 34.0551 34.0945 34.1339 34.1732 34.212 870 34.2520 34.2913 34.3371 34.3701 34.4094 34.488 34.882 34.5276 34.5669 34.606 880 34.6457 34.6850 34.7244 34.7638 34.8031 34.8425 34.819 34.9213 34.906 35.000 890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.393											33.8189
870 34.2520 34.2913 34.3307 34.3701 34.4094 34.4488 34.4882 34.5276 34.5669 34.606 880 34.6457 34.6850 34.7244 34.7638 34.8031 34.8425 34.819 34.9213 34.9066 35.000 890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.393	860	33.8583	33.8976	33.9370	!	34.0157	34.0551	34.0945	34.1339	34.1732	34.2126
890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.393	870	34.2520	34.2913	34.3307	34.3701	34.4094	34.4488	34.4882	34.5276	34.5669	34.6063
890 35.0394 35.0787 35.1181 35.1575 35.1969 35.2362 35.2756 35.3150 35.3543 35.393				!	!	!				!	35.0000
				!	!	!					35.3937
	900	35.4331	35.4724	35.5118	35.5512	35.5906	35.6299	35.6693	35.7087	35.7480	35.7874
	910										36.1811
			36.2598	!	!	!				!	36.5748
930 36.6142 36.6535 36.6929 36.7323 36.7717 36.8110 36.8504 36.8898 36.9291 36.968	930	36.6142	36.6535	36.6929	36.7323	36.7717	36.8110	36.8504	36.8898	36.9291	36.9685
	940	37.0079	37.0472					37.2441	37.2835		37.3622
				!	!	!				!	37.7559
					!	!					38.1496
	970		38.2283			!			38.4646	38.5039	38.5433
			1								38.9370
											39.3307
1000 39.3701											

Table 6. Fractional Inch–Millimeter and Feet–Millimeter Conversions (Based on 1 inch = 25.4 millimeters, exactly)

	Fractional Inch to Millimeters							
in.	mm	in.	mm	in.	mm	in.	mm	
1/64	0.397	17/64	6.747	33/64	13.097	49/64	19.447	
1/32	0.794	9/32	7.144	17/32	13.494	25/32	19.844	
3/64	1.191	19/64	7.541	35/64	13.891	51/64	20.241	
1/16	1.588	5/ ₁₆	7.938	9/16	14.288	13/16	20.638	
5/64	1.984	21/64	8.334	37/64	14.684	53/64	21.034	
3/32	2.381	11/32	8.731	19/32	15.081	27/32	21.431	
7/64	2.778	23/64	9.128	³⁹ / ₆₄	15.478	55/64	21.828	
1/8	3.175	3/8	9.525	5/8	15.875	7/8	22.225	
9/64	3.572	25/64	9.922	41/64	16.272	57/64	22.622	
5/32	3.969	13/32	10.319	21/32	16.669	29/32	23.019	
11/64	4.366	27/64	10.716	43/64	17.066	59/64	23.416	
3/16	4.762	7/16	11.112	11/16	17.462	15/	23.812	
13/64	5.159	²⁹ / ₆₄	11.509	45/64	17.859	61/64	24.209	
7/32	5.556	15/32	11.906	23/32	18.256	31/32	24.606	
15/64	5.953	31/64	12.303	47/64	18.653	63/64	25.003	
1/4	6.350	1/2	12.700	3/4	19.050	1	25.400	

	Inches to Millimeters										
in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
1	25.4	3	76.2	5	127.0	7	177.8	9	228.6	11	279.4
2	50.8	4	101.6	6	152.4	8	203.2	10	254.0	12	304.8

	Feet to Millimeters								
ft	mm	ft	mm	ft	mm	ft	mm	ft	mm
100	30,480	10	3,048	1	304.8	0.1	30.48	0.01	3.048
200	60,960	20	6,096	2	609.6	0.2	60.96	0.02	6.096
300	91,440	30	9,144	3	914.4	0.3	91.44	0.03	9.144
400	121,920	40	12,192	4	1,219.2	0.4	121.92	0.04	12.192
500	152,400	50	15,240	5	1,524.0	0.5	152.40	0.05	15.240
600	182,880	60	18,288	6	1,828.8	0.6	182.88	0.06	18.288
700	213,360	70	21,336	7	2,133.6	0.7	213.36	0.07	21.336
800	243,840	80	24,384	8	2,438.4	0.8	243.84	0.08	24.384
900	274,320	90	27,432	9	2,743.2	0.9	274.32	0.09	27.432
1,000	304,800	100	30,480	10	3,048.0	1.0	304.80	0.10	30.480

Example 1: Find millimeter equivalent of 293 feet, 547/64 inches.

			. 04	
200 ft		=	60,960. m	m
90 ft		=	27,432. m	m
3 ft		=	914.4 m	m
	5 in.	=	127.0 m	m
	47/ ₆₄ in.	=	18.653 m	m
293 ft	5 ⁴⁷ / ₆₄ in.	=	89,452.053 m	m

Example 2: Find millimeter equivalent of 71.86 feet. 70. ft = 21,336

70.	ft	=	21,336.	mm
1.	ft	=	304.8	mm
.80) ft	=	243.84	mm
.06	ft	=	18.288	mm
71.86	ft	=	21.902.928	mm

Machinery's Handbook Pocket Companion
METRIC EQUIVALENTS

Table 7. Thousandths of an Inch to Millimeters Conversion Table

	Table 7. I nousandthis of an inch to whitinieter's Conversion Table									
					Millin	neters				
Inch	0	1	2	3	4	5	6	7	8	9
0.001	0.02540	0.02794	0.03048	0.03302	0.03556	0.03810	0.04064	0.04318	0.04572	0.04826
0.002	0.05080	0.05334	0.05588	0.05842	0.06096	0.06350	0.06604	0.06858	0.07112	0.07366
0.003	0.07620	0.07874	0.08128	0.08382	0.08636	0.08890	0.09144	0.09398	0.09652	0.09906
0.004	0.10160	0.10414	0.10668	0.10922	0.11176	0.11430	0.11684	0.11938	0.12192	0.12446
0.005	0.12700	0.12954	0.13208	0.13462	0.13716	0.13970	0.14224	0.14478	0.14732	0.14986
0.006	0.15240	0.15494	0.15748	0.16002	0.16256	0.16510	0.16764	0.17018	0.17272	0.17526
0.007	0.17780	0.18034	0.18288	0.18542	0.18796	0.19050	0.19304	0.19558	0.19812	0.20066
0.008	0.20320	0.20574	0.20828	0.21082	0.21336	0.21590	0.21844	0.22098	0.22352	0.22606
0.009	0.22860	0.23114	0.23368	0.23622	0.23876	0.24130	0.24384	0.24638	0.24892	0.25146
0.01	0.25400	0.25654	0.25908	0.26162	0.26416	0.26670	0.26924	0.27178	0.27432	0.27686
0.02	0.50800	0.53340	0.55880	0.58420	0.60960	0.63500	0.66040	0.68580	0.71120	0.73660
0.03	0.76200	0.78740	0.81280	0.83820	0.86360	0.88900	0.91440	0.93980	0.96520	0.99060
0.04	1.01600	1.04140	1.06680	1.09220	1.11760	1.14300	1.16840	1.19380	1.21920	1.24460
0.05	1.27000	1.29540	1.32080	1.34620	1.37160	1.39700	1.42240	1.44780	1.47320	1.49860
0.06	1.52400	1.54940	1.57480	1.60020	1.62560	1.65100	1.67640	1.70180	1.72720	1.75260
0.07	1.77800	1.80340	1.82880	1.85420	1.87960	1.90500	1.93040	1.95580	1.98120	2.00660
0.08	2.03200	2.05740	2.08280	2.10820	2.13360	2.15900	2.18440	2.20980	2.23520	2.26060
0.09	2.28600	2.31140	2.33680	2.36220	2.38760	2.41300	2.43840	2.46380	2.48920	2.51460
0.1	2.54000	2.56540	2.59080	2.61620	2.64160	2.66700	2.69240	2.71780	2.74320	2.76860
0.2	5.08000	5.10540	5.13080	5.15620	5.18160	5.20700	5.23240	5.25780	5.28320	5.30860
0.3	7.62000	7.64540	7.67080	7.69620	7.72160	7.74700	7.77240	7.79780	7.82320	7.84860
0.4	10.16000	10.18540	10.21080	10.23620	10.26160	10.28700	10.31240	10.33780	10.36320	10.38860
0.5	12.70000	12.72540	12.75080	12.77620	12.80160	12.82700	12.85240	12.87780	12.90320	12.92860
0.6	15.24000	15.26540	15.29080	15.31620	15.34160	15.36700	15.39240	15.41780	15.44320	15.46860
0.7	17.78000	17.80540	17.83080	17.85620	17.88160	17.90700	17.93240	17.95780	17.98320	18.00860
0.8	20.32000	20.34540	20.37080	20.39620	20.42160	20.44700	20.47240	20.49780	20.52320	20.54860
0.9	22.86000	22.88540	22.91080	22.93620	22.96160	22.98700	23.01240	23.03780	23.06320	23.08860
1.0	25.40000									

VARIOUS FUNCTIONS

Rounding Off Numbers

Rules	E	xample	es
When the last digit is followed by a 0,1,2,3,4, it is retained and	3.60040	=	3.600
unchanged. This is known as rounding down.	3.60027	=	3.600
When the last digit is followed by a 5,6,7,8 or 9, it is increased	3.60070	=	3.601
by 1.This is known as rounding up.	3.60056	=	3.601
When the first digit neglected is a 5 followed by zeros the	0.12500	=	0.12
rounding is exactly equal to half a unit of the last digit	0.15500	=	0.16
retained. However, the last digit retained is then the	3.60350	=	3.604
closest even number.	3.60450	=	3.604

Table 8. Fundamental Constants

Table 8. Fundamental Constants							
		Value					
Constant	Symbol	SI Units	Other Units				
Electronic Charge	e	1.60210 × 10 ⁻¹⁹ C	4.80298 × 10 ⁻¹⁰ e.s.u.				
Electronic rest mass	m _e	9.1091×10^{-31} kilogram	5.48597 × 10 ⁻⁴ a.m.u				
Electronic radius	r _e	2.81777×10^{-15} meter					
Proton rest mass	m _p	1.67252 × 10 ⁻²⁷ kilogram	1.00727663 a.m.u				
Neutron rest mass	m _n	1.67482 × 10 ⁻²⁷ kilogram	1.0086654 a.m.u				
Planck's constant	h	6.62559×10^{-34} joule-second	6.62559 × 10 ⁻²⁷ erg second				
Velocity of light	С	2.997925 × 108 meters/s	186281 miles/s				
Avogadro's constant	L, N_{A}	6.02252 × 10 ²³ per mole					
Loschmidt's constant	N_{l}	$2.68719 \times 10^{25} \mathrm{m}^{-3}$	2.68719 × 10 ¹⁹ cm ⁻³				
Gas constant	R	8.3143 J K ⁻¹ mol ⁻¹	1.9858 calories °C-1mol-1				
Boltzmann's constant	$\kappa = \frac{R}{N_A}$	$1.38054 \times 10^{-23} \text{J K}^{-1}$	3.29729 × 10 ⁻²⁴ calories °C ⁻¹				
Faraday's constant	F	9.64870 × 10 ⁴ Coulomb mol ⁻¹	2.89261 × 10 ¹⁴ e.s.u mol ⁻¹				
Stefan-Boltzman Constant	σ	5.6697 × 10 ⁻⁸ W m ⁻² K ⁴	5.6697 × 10 ⁻⁵ e.s.u. mol ⁻¹				
Gravitational constant	G	$6.670 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	$6.670 \times 10^{-11} \text{dyne cm}^2 \text{g}^{-2}$				
Electrical permeability	μ_{o}	$4\pi \times 10^{-7} \ H \ m^{-1}$					
Magnetic permeability	ε	$8.85418 \times 10^{-12} \mathrm{F m^{-1}}$					
Euler's constant	γ	0.5772					
Golden ratio	Φ	1.6180					

Table 9. Functions of π

	THOSE STE MILENSING OF IV						
Constant	Numerical Value	Logarithm	Constant	Numerical Value	Logarithm		
π	3.141593	0.49715	2π	6.283185	0.79818		
3π	9.424778	0.97427	4π	12.566370	1.09921		
$2\pi/3$	2.094395	0.32105	4π/3	4.188790	0.62209		
$\pi \div 2$	1.570796	0.19611	π ÷ 3	1.047197	0.02003		
$\pi \div 4$	0.785398	-0.10491	π ÷ 6	0.523598	-0.28100		
$\pi \sqrt{2}$	4.442882	0.64766	π√3	5.441398	0.73571		
$\pi/\sqrt{2}$	2.221441	0.34663	$\pi/\sqrt{3}$	1.813799	0.25859		
π^2	9.869604	0.99430	$1 \div \pi^{2}$	0.101321	-0.99430		
1 ÷ π	0.318310	-0.49715	1 ÷2π	0.159155	-0.79818		
$1 \div \pi^{3}$	0.032252	-1.49145	π^3	31.006277	1.49145		
$\sqrt{\pi}$	1.772454	0.24858	$\sqrt[3]{\pi}$	1.464592	0.16572		

VARIOUS FUNCTIONS

Table 10. Functions of g

Constant	Numerical Value, ft/s ²	Numerical Value, m/s ²	Constant	Numerical Value	Numerical Value, m/s ²
g	32.16	9.81	g^2	1034.266	96.2361
2g	64.32	19.62	1 ÷ 2g	0.01555	0.101936
$\sqrt{2g}$	8.01998	4.43	$1 \div \sqrt{g}$	0.17634	0.319275
$\pi \div \sqrt{g}$	0.55398	1.00	$\pi \div (2\sqrt{g})$	0.39172	0.70916

Table 11. Functions of e

Constants	Numerical value	Constants	Numerical value
e	2.71828	1/e	0.3679
1/e ²	0.13534	e^{π}	23.141

Table 12. Weights and Volumes

Constant	Numerical Value	Logarithm
Weight in pounds of:		
Water column, $1'' \times 1'' \times 1$ ft.	0.4335	-0.36301
1 US gallon of water, 39.1°F.	8.34	0.92117
1 cu. ft. of water, 39.1° F.	62.4245	1.79536
1 cu. in. of water, 39.1°F.	0.0361	-1.44249
1 cu. ft. of air, 32°F., atmospheric pressure	0.08073	-1.09297
Volume in cu. ft. of:		
1 pound of water, 39.1°F	0.01602	-1.79534
1 pound of air, 32°F., atmospheric pressure	12.387	1.09297
Volume in gallons of 1 pound of water, 39.1°F	0.1199	-0.92118
Volume in cu. in. of 1 pound of water, 39.1 °F	27.70	1.44248
Gallons in one cu. ft.	7.4805	0.87393
Atmospheric pressure in pounds per sq. inch	14.696	1.16720

Roman Numerals

I	1	VI	6	XX	20	LX	60	CC	200	DC	600	MM	2000
II	2	VII	7	XXX	30	LXX	70	CCC	300	DCC	700	IMM	1999
III	3	VIII	8	XL	40	LXXX	80	CD	400	DCCC	800	IL	49
IV	4	IX	9	XLV	45	XC	90	ID	499	CM	900	IC	99
V	5	X	10	L	50	С	100	D	500	M	1000		

Greek Letters and Standard Abbreviations

The Greek letters are frequently used in mathematical expressions and formulas. The Greek alphabet is given below.

Α	α	Alpha	Н	η	Eta	N	ν	Nu	Т	τ	Tau
В	β	Beta	Θ	ΰθ	Theta	Ξ	ع	Xi	Υ	υ	Upsilon
Γ	γ	Gamma	I	ι	Iota	О	0	Omicron	Φ	φ	Phi
Δ	δ	Delta	K	κ	Kappa	П	π	Pi	Ξ	χ	Chi
Е	ε	Epsilon	$ _{\Lambda}$	λ	Lambda	P	ρ	Rho	Ψ	Ψ	Psi
Z	ζ	Zeta	M	μ	Mu	Σ	σς	Sigma	Ω	ω	Omega

CONVERSION FACTORS

Table 13. Conversion Factors

Multiply	Ву	To Obtain
Celsius	C×1.8+32	Fahrenheit
Celsius	C+273.15	Kelvin
Circumference	6.2832	radians
Degrees/second (angular)	0.002778	revolutions/sec
Degrees (angular)	60	minutes
Degrees (angular)	0.01111	quadrants
Degrees/second (angular)	0.01745	radians/sec
Degrees (angular)	3600	seconds
Degrees (angular)	0.01745	radians
Degrees/second (angular)	0.1667	revolutions/min (rpm)
Fahrenheit	F + 459.67	Rankine
Fahrenheit	[F - 32]×5/9	Celsius
Horsepower	0.7457	kilowatts
Horsepower	33.000	foot-pounds/min
Horsepower	550	foot-pounds/sec
Horsepower	745.7	watts
Horsepower-hr		
•	2.6845 × 10 ¹³ 0.7457	ergs kilowatt-hrs
Horsepower-hr		
Horsepower-hr	1.98×10 ⁶	foot-pounds
Minutes (angular)	60	seconds
Minutes (angular)	2.909×10^{-4}	radians
Minutes (angular)	1.852 × 10⁻⁴	quadrants
Minutes (angular)	0.01667	degrees
Quadrants (angular)	5400	minutes
Quadrants (angular)	1.571	radians
Quadrants (angular)	90	degrees
Radians/sec	57.3	degrees/sec
Radians/sec	9.549	revolutions/min
Radians/sec	0.1592	revolutions/sec
Radians	0.6366	quadrants
Radians	57.3	degrees
Radians	3438	minutes
Rankine	R-459.67	Fahrenheit
Revolutions/min	0.1047	radians/sec
Revolutions/min	0.01667	revolutions/sec
Revolutions/sec	360	degrees/sec
Revolutions/sec	6.283	radians/sec
Revolutions/min	6	degrees/sec
Revolutions/sec	60	revolutions/sec
Revolutions	6.283	radians
Revolutions	4	quadrants
Revolutions	360	degrees
Seconds (angular)	4.848 × 10 ⁻⁶	radians
Seconds (angular)	3.087×10^{-6}	quadrants
Seconds (angular)	0.01667	minutes
Seconds (angular)	2.778×10 ⁻⁴	degrees

CONVERSION FACTORS

Table 14. $^{\circ}C \rightarrow ^{\circ}F$ and $^{\circ}R$	Temperature Conversion	$^{\circ}F \rightarrow ^{\circ}C$ and K
---	------------------------	---

	_			_			_		_					
K	°C		°F	°R	K	°C		°F	°R	K	°C		°F	°R
0.0	-273.2	-459.7			261.5	-11.7	11	51.8	511.5	293.7	20.6	69	156.2	615.9
5.4	-267.8	-450			262.0	-11.1	12	53.6	513.3	294.3	21.1	70	158.0	617.7
10.9	-262.2	-440			262.6	-10.6	13	55.4	515.1	294.8	21.7	71	159.8	619.5
16.5	-256.7	-430			263.2	-10.0	14	57.2	516.9	295.4	22.2	72	161.6	621.3
								59.0		295.9	22.8			
22.0	-251.1	-420			263.7	-9.4	15		518.7			73	163.4	623.1
27.6	-245.6	-410			264.3	-8.9	16	60.8	520.5	296.5	23.3	74	165.2	624.9
33.2	-240.0	-400			264.8	-8.3	17	62.6	522.3	297.0	23.9	75	167.0	626.7
38.7	-234.4	-390			265.4	-7.8	18	64.4	524.1	297.6	24.4	76	168.8	628.5
44.3	-228.9	-380			265.9	-7.2	19	66.2	525.9	298.2	25.0	77	170.6	630.3
49.8	-223.3	-370			266.5	-6.7	20	68.0	527.7	298.7	25.6	78	172.4	632.1
55.4	-217.8	-360			267.0	-6.1	21	69.8	529.5	299.3	26.1	79	174.2	633.9
60.9	-212.2	-350			267.6	-5.6	22	71.6	531.3	299.8	26.7	80	176.0	635.7
66.5	-206.7	-340			268.2	-5.0	23	73.4	533.1	300.4	27.2	81	177.8	637.5
72.0	-201.1	-330	i .		268.7	-4.4	24	75.2	534.9	300.9	27.8	82	179.6	639.3
					269.3		25	77.0		301.5	28.3	83		641.1
77.6	-195.6	-320			ll .	-3.9		1	536.7				181.4	
83.2	-190.0	-310			269.8	-3.3	26	78.8	538.5	302.0	28.9	84	183.2	642.9
88.7	-184.4	-300			270.4	-2.8	27	80.6	540.3	302.6	29.4	85	185.0	644.7
94.3	-178.9	-290			270.9	-2.2	28	82.4	542.1	303.2	30.0	86	186.8	646.5
99.8	-173.3	-280			271.5	-1.7	29	84.2	543.9	303.7	30.6	87	188.6	648.3
103.6	-169.5	-273.2	-459.7	0.0	272.0	-1.1	30	86.0	545.7	304.3	31.1	88	190.4	650.1
105.4	-167.8	-270	-454.0	5.7	272.6	-0.6	31	87.8	547.5	304.8	31.7	89	192.2	651.9
110.9	-162.2	-260	-436.0	23.7	273.2	0.0	32	89.6	549.3	305.4	32.2	90	194.0	653.7
116.5	-156.7	-250	-418.0	41.7	273.7	0.6	33	91.4	551.1	305.9	32.8	91	195.8	655.5
122.0	-151.1	-240	-400.0	59.7	274.3	1.1	34	93.2	552.9	306.5	33.3	92	197.6	657.3
127.6	-145.6	-230	-382.0	77.7	274.8	1.7	35	95.0	554.7	307.0	33.9	93	199.4	659.1
133.2			l	95.7	275.4	2.2	36	96.8	556.5	307.6	34.4	94	201.2	660.9
	-140.0	-220	-364.0											
138.7	-134.4	-210	-346.0	113.7	275.9	2.8	37	98.6	558.3	308.2	35.0	95	203.0	662.7
144.3	-128.9	-200	-328.0	131.7	276.5	3.3	38	100.4	560.1	308.7	35.6	96	204.8	664.5
149.8	-123.3	-190	-310.0	149.7	277.0	3.9	39	102.2	561.9	309.3	36.1	97	206.6	666.3
155.4	-117.8	-180	-292.0	167.7	277.6	4.4	40	104.0	563.7	309.8	36.7	98	208.4	668.1
160.9	-112.2	-170	-274.0	185.7	278.2	5.0	41	105.8	565.5	310.4	37.2	99	210.2	669.9
166.5	-106.7	-160	-256.0	203.7	278.7	5.6	42	107.6	567.3	310.9	37.8	100	212.0	671.7
172.0	-101.1	-150	-238.0	221.7	279.3	6.1	43	109.4	569.1	311.5	38.3	101	213.8	673.5
177.6	-95.6	-140	-220.0	239.7	279.8	6.7	44	111.2	570.9	312.0	38.9	102	215.6	675.3
183.2	-90.0	-130	-202.0	257.7	280.4	7.2	45	113.0	572.7	312.6	39.4	103	217.4	677.1
188.7	-84.4	-120	-184.0	275.7	280.9	7.8	46	114.8	574.5	313.2	40.0	104	219.2	678.9
194.3	-78.9		-166.0	293.7	281.5	8.3	47	116.6	576.3	313.7	40.6	105	221.0	680.7
		-110	l											
199.8	-73.3	-100	-148.0	311.7	282.0	8.9	48	118.4	578.1	314.3	41.1	106	222.8	682.5
205.4	-67.8	-90	-130.0	329.7	282.6	9.4	49	120.2	579.9	314.8	41.7	107	224.6	684.3
210.9	-62.2	-80	-112.0	347.7	283.2	10.0	50	122.0	581.7	315.4	42.2	108	226.4	686.1
216.5	-56.7	-70	-94.0	365.7	283.7	10.6	51	123.8	583.5	315.9	42.8	109	228.2	687.9
222.0	-51.1	-60	-76.0	383.7	284.3	11.1	52	125.6	585.3	316.5	43.3	110	230.0	689.7
227.6	-45.6	-50	-58.0	401.7	284.8	11.7	53	127.4	587.1	317.0	43.9	111	231.8	691.5
233.2	-40.0	-40	-40.0	419.7	285.4	12.2	54	129.2	588.9	317.6	44.4	112	233.6	693.3
238.7	-34.4	-30	-22.0	437.7	285.9	12.8	55	131.0	590.7	318.2	45.0	113	235.4	695.1
244.3	-28.9	-20	-4.0	455.7	286.5	13.3	56	132.8	592.5	318.7	45.6	114	237.2	696.9
249.8	-23.3	-10	14.0	473.7	287.0	13.9	57	134.6	594.3	319.3	46.1	115	239.0	698.7
255.4	-17.8	0	32.0	491.7	287.6	14.4	58	136.4	596.1	319.8	46.7	116	240.8	700.5
255.9	-17.8	1	33.8	493.5	288.2	15.0	59	138.2	597.9	320.4	47.2	117	242.6	702.3
1			l		ll .									
256.5	-16.7	2	35.6	495.3	288.7	15.6	60	140.0	599.7	320.9	47.8	118	244.4	704.1
257.0	-16.1	3	37.4	497.1	289.3	16.1	61	141.8	601.5	321.5	48.3	119	246.2	705.9
257.6	-15.6	4	39.2	498.9	289.8	16.7	62	143.6	603.3	322.0	48.9	120	248.0	707.7
258.2	-15.0	5	41.0	500.7	290.4	17.2	63	145.4	605.1	322.6	49.4	121	249.8	709.5
258.7	-14.4	6	42.8	502.5	290.9	17.8	64	147.2	606.9	323.2	50.0	122	251.6	711.3
259.3	-13.9	7	44.6	504.3	291.5	18.3	65	149.0	608.7	323.7	50.6	123	253.4	713.1
259.8	-13.3	8	46.4	506.1	292.0	18.9	66	150.8	610.5	324.3	51.1	124	255.2	714.9
260.4	-12.8	9	48.2	507.9	292.6	19.4	67	152.6	612.3	324.8	51.7	125	257.0	716.7
260.9	-12.2	10	50.0	509.7	293.2	20.0	68	154.4	614.1	325.4	52.2	126	258.8	718.5
200.9	12.2	10	20.0	507.1	275.2	20.0	00	1.77.4	017.1	323.4	22.2	120	220.0	/10.5

CONVERSION FACTORS

Table 14. (Continued) $^{\circ}$ C $\rightarrow ^{\circ}$ F and $^{\circ}$ R	Temperature Conversion	${}^{\circ}F \rightarrow {}^{\circ}C$ and K
	remperature conversion	1 / Canaix

New New	lab	ie 14. (Conn	nued)	*C →	r an	a K	16	mpera	ature (onve	rsion	*F-	→°C a	na K
33.2 128 62.4 72.1 38.2 85.0 185 36.0 82.4 75.4 48.2 900 162.0 211.7 327.6 53.9 129 264.2 72.3 38.3 86.1 187 368.6 828.3 78.2 50.0 13.2 269.6 72.7 39.9 86.1 183 30.0 87.0 190.0 182.0 202.0 220.7 328.2 55.0 13.2 269.7 72.3 30.8 87.8 190 374.0 81.3 100 183.2 220.0 183.2 220.0 183.2 220.0 183.2 220.0 183.2 220.0 183.2 200.0 183.3 32.7 86.0 180.0 180.0 220.2 281.3 320.0 87.8 31.3 30.2 80.0 180.2 280.2 183.2 40.0 20.0 20.2 281.3 33.2 60.0 180.2 280.2 281.3 33.2 80.0 280.2 281.2	K	°C		°F	°R	K	°C		°F	°R	K	°C		°F	°R
33.2 128 62.4 72.1 38.2 85.0 185 36.0 82.4 75.4 48.2 900 162.0 211.7 327.6 53.9 129 264.2 72.3 38.3 86.1 187 368.6 828.3 78.2 50.0 13.2 269.6 72.7 39.9 86.1 183 30.0 87.0 190.0 182.0 202.0 220.7 328.2 55.0 13.2 269.7 72.3 30.8 87.8 190 374.0 81.3 100 183.2 220.0 183.2 220.0 183.2 220.0 183.2 220.0 183.2 220.0 183.2 200.0 183.3 32.7 86.0 180.0 180.0 220.2 281.3 320.0 87.8 31.3 30.2 80.0 180.2 280.2 183.2 40.0 20.0 20.2 281.3 33.2 60.0 180.2 280.2 281.3 33.2 80.0 280.2 281.2	325,9	52.8	127	260.6	720.3	357.6	84.4	184	363.2	822.9	741.5	468.3	875	1607.0	2066.7
3270 339 129 2642 239 3837 850 186 368 285 693 694.3 690 7970 2150 293 170 2202 3287 55.6 132 2696 7293 3804 872 189 3722 8119 8109 3578 100 1232 291.7 2329.7 3287 55.6 132 2696 7293 360.8 872 189 372.2 813.9 810.9 357.8 100 1820 2291.7 3298 56.7 134 273.2 881.8 183.7 856.6 80.8 183 816 86.8 183 81.8 81.8 180.2 741.9 362.8 89.4 183 284.7 183.2 860.9 183 842.7 741.3 362.8 90.1 183.2 860.9 183 284.7 741.3 363.8 91.7 97.6 744.3 363.2 91.7 97.8 183.2 89								185					900		
3226 544 130 2660 7257 393 86.1 187 386.2 88.3 88			!	!		ll .		1	1		1		925	!	
328.2 55.6 132 267.8 727.5 393.8 867.1 188 372.2 831.0 970.9 232.9 975.1 1787.0 224.7 329.3 56.1 133.2 271.4 731.1 360.9 878.8 190.3 374.8 833.7 836.5 160.0 1820.2 221.7 329.8 56.7 134.2 273.2 732.9 361.5 883.8 191.3 375.6 835.5 866.5 893.3 110.0 1202.0 2471.7 330.9 78.8 136.2 276.8 736.5 895.9 19.3 737.6 837.3 804.3 811.0 1200.2 2471.7 332.6 69.9 130.2 282.2 741.9 364.3 91.1 19.3 842.1 100.5 732.2 130.2 202.0 282.0 2821.7 333.2 60.6 141.2 285.8 745.3 365.9 92.8 199.3 280.2 889.1 100.9 282.0 100															
328.7 55.6 132 290.6 729.3 30.4 87.2 189 372.2 33.9 83.87 565.6 105 1922.0 238.17 329.8 56.7 134 273.2 73.92 361.5 88.3 191 375.8 835.5 866.5 593.3 1100 2012.0 2471.7 330.9 57.8 136 276.8 736.5 366.8 89.4 193 379.4 830.1 621.0 120.0 260.2 261.7 331.5 58.3 137 278.6 783.3 363.2 90.0 194 381.2 840.9 949.8 676.7 1250 2282.0 2741.1 332.6 58.9 138 280.4 740.1 363.3 91.1 196 384.8 484.5 100.5 742.2 138 240.2 193.3 383.6 160.5 743.3 365.9 28.8 199 300.2 849.9 100.5 441.2 2150.0 200.2 391															
329.8 56.7 134 271.4 731.1 360.9 87.8 190 374.0 833.7 88.5 56.6 108.0 912.0 2281.7 329.8 56.7 134 273.2 732.9 361.8 88.3 191 375.8 835.3 866.5 593.3 100 2012.0 261.1 330.9 57.8 136 276.8 736.3 362.6 89.4 193 379.4 839.1 920.0 648.9 120.0 2120.0 252.0 2741.7 332.0 58.9 138 280.4 740.1 363.7 90.6 195 383.0 842.7 070.0 740.0 240.0 220.0 221.7 333.6 60.4 141 288.0 749.7 364.8 91.7 197 386.8 845.1 100.5 732.0 280.0 291.0 333.7 60.6 141 288.0 740.7 364.8 92.2 198.0 388.4 848.1 100.0 </td <td></td>															
329 8 56,7 134 273.2 73.9 361.5 88.9 192 377.6 837.3 894.3 621.1 1150 201.02 257.1 330.9 57.8 136 275.6 738.5 362.2 88.9 193 379.4 839.1 922.0 648.9 1200 2192.0 256.1 331.5 83.8 137 278.6 738.3 363.2 90.0 194 381.2 840.9 949.8 676.7 120.0 220.2 271.7 283.1 332.6 80.9 139 282.2 741.9 364.3 91.1 196 384.8 844.5 100.0 737.8 140.0 252.0 291.3 333.7 60.6 141 285.8 745.5 365.4 92.2 199 300.2 849.9 108.0 787.8 140.0 252.0 301.3 400.0 737.8 140.0 252.0 301.3 30.0 81.1 140.0 732.0 301.2 30		I													
3304 572 135 275.0 734.7 320.0 889.4 192 377.6 837.3 894.3 621.1 115.0 202.0 2651.7 330.5 58.3 137 278.6 738.3 362.2 90.0 194 381.2 80.90 949.8 676.7 1250 292.0 261.7 704.4 130.0 2372.0 281.7 274.1 333.2 88.9 138 280.4 740.1 363.7 90.6 195 383.8 842.7 970.6 704.4 130.0 2372.0 281.1 233.7 36.8 813.8 848.1 100.0 787.8 145.0 262.0 201.1 333.7 60.6 141 288.8 745.2 383.8 848.8 181.0 100.9 787.8 145.0 260.0 301.1 303.6 60.0 141 288.7 474.1 365.0 92.8 190.0 382.2 818.1 100.0 382.0 301.2 889.1 183.2 889.1 160.0 3															
330.5 57.8 136 276.8 738.3 362.2 90.0 194 381.2 80.9 94.98 676.7 126.0 2282.0 274.1 331.5 58.3 137 278.6 738.3 363.2 90.0 195 383.0 84.7 977.6 704.6 130.2 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2282.0 2283.7 2283.7 2383.7 30.6 140 2284.0 743.3 365.8 91.7 197.8 386.6 846.3 1033.2 760.0 140 2252.0 301.7 333.3 60.6 141 288.8 745.5 365.4 922.1 198.3 848.4 846.1 100.0 787.8 145.0 202.2 303.2 851.7 116.5 843.3 150.0 202.2 338.7 356.0 33.3 362.6 33.3 156.															
331.5 58.3 137 278.6 738.3 26.2 790.6 194 381.2 840.9 99.8 676.7 1250 2282.0 2741.7 332.6 58.9 138 280.4 740.1 364.3 91.1 196 383.8 844.5 1005.4 732.2 1360 221.2 283.1 333.2 60.0 141 285.8 745.5 365.4 92.2 198 388.4 848.1 100.9 787.8 1450 252.0 301.7 334.8 61.7 141 285.6 747.3 365.9 92.8 199 302.8 849.9 1088.7 815.6 1500 273.0 3191.7 334.8 61.7 144 291.2 750.9 30.9 28.1 355.5 1141.3 817.6 201.20 3371.7 33.9 82.8 142.9 80.2 138.0 365.0 33.1 140.9 204.0 750.3 88.9 122.6 95.2 300.1 3		I	l	l		ll .									
332.6 58.9 138 280.4 74.19 364.3 91.1 196 384.8 844.5 197.6 704.4 1300 2372.0 283.1 731.9 282.2 741.9 364.8 91.7 197 386.6 846.3 1033.2 760.0 140 284.0 743.7 364.8 91.7 197 386.6 846.3 1033.2 760.0 140 286.0 303.0 302.8 848.1 1060.9 787.8 145.0 263.0 301.3 361.1 142 287.6 747.3 366.5 92.8 199 390.2 849.1 1080.9 787.8 145.0 260.2 301.3 361.7 741.1 116.5 843.2 301.1 100.0 291.2 391.3 381.4 841.1 290.0 747.2 366.0 439.2 201.3 393.8 851.5 1144.3 871.1 1000.0 291.2 393.1 393.8 481.2 390.0 460.2 887.1 1199.8 92.0 1000.0															
332.6 59.4 139 282.2 74.9 36.3 91.1 196 38.48 84.5. 1005.4 732.2 136.0 292.0 292.0 233.3 60.6 141 285.8 745.5 365.4 92.2 198 388.4 848.1 1060.9 787.8 145.0 252.0 3101.7 334.3 61.1 143 289.4 749.1 366.5 92.8 199 390.2 89.9 1088.7 81.50 120.0 2732.0 319.1 334.6 61.7 143 289.1 750.9 367.0 93.9 201 393.8 853.5 1141.6 83.3 155.0 292.0 391.7 335.6 63.3 146 294.6 754.5 368.7 95.0 204 399.2 859.9 1227.6 954.7 1700 390.2 361.7 337.6 64.9 149 300.2 767.1 370.4 97.2 207 406.4 864.3 131.0 180															
333.2 60.0 140 284.0 743.7 364.8 91.7 197 386.6 846.3 1033.2 760.0 140 255.2 3011.7 334.3 61.1 142 287.6 747.3 365.9 92.8 199 390.2 849.9 1088.7 815.6 120.0 2732.0 311.7 334.8 61.1 142 287.6 747.3 365.9 92.8 199 390.2 851.7 1116.5 843.3 150.0 2732.0 311.7 335.4 62.2 144 291.2 750.9 367.0 93.9 201 393.6 853.5 1141.2 1600 302.0 331.7 336.5 63.3 146 294.8 758.1 368.2 96.0 203 397.4 857.1 1190.8 926.7 1700 390.2 351.7 366.1 133.8 66.6 150 303.0 368.7 95.6 204 399.2 862.5 128.9 129.2 1		I				ll .			l		1		l .	l	
333.7 60.6 141 285.8 745.5 365.4 92.2 198 388.4 848.1 1060.9 787.8 1450 2642.0 3101.7 334.8 61.7 143 289.7 739.1 366.5 93.3 200 392.0 819.9 10887.8 81.5 1160.8 283.3 1550.2 322.0 3281.7 335.6 63.3 146 294.8 754.5 368.2 95.0 201 393.6 855.3 1172.0 899.0 1600 292.0 3371.7 337.6 63.3 146 294.8 754.3 368.2 95.0 203 397.4 857.1 1199.8 926.7 1700 392.0 361.7 337.6 64.4 148 294.6 756.3 368.7 95.6 204.8 862.5 1283.2 1010.0 362.2 180.0 372.0 373.1 338.2 65.0 150 300.2 761.7 370.4 97.2 207 404.6															
334.3 61.1 142 287.6 747.3 365.9 92.8 199 390.2 849.9 1088.7 815.6 150 273.2 3191.7 334.8 61.7 143 2894.7 749.1 365.9 93.3 200 383.5 162.8 144 291.2 750.9 367.0 93.9 201 393.8 853.5 1143.4 871.1 160 291.20 331.7 337.0 63.9 147 296.0 756.3 368.7 95.0 203 397.4 857.1 1199.8 926.7 1700 390.2 351.7 337.0 63.9 147 296.0 756.3 368.7 95.6 204 399.2 285.9 127.6 94.1 390.2 381.2 361.0 180.0 372.0 331.7 363.8 165.0 130.0 737.0 373.0 369.2 206.4 402.8 862.5 128.2 100.0 182.0 342.0 341.7 342.0 341.7															
334.8 61.7 143 289.4 749.1 366.5 93.3 200 392.0 851.7 1116.5 84.3 1550 2822.0 3321.7 335.9 62.2 144 291.2 750.9 367.6 94.4 202 395.6 85.53 1117.0 889.9 165.0 300.2 341.7 336.5 63.3 146 294.8 754.5 368.2 95.0 203 397.4 857.1 1199.8 92.6 170 3092.0 355.1 337.6 64.4 148 298.4 758.1 360.3 66.1 60.0 80.2 180.0 361.7 361.0 401.0 860.7 125.4 982.2 180.0 3322.0 332.0 361.7 370.4 97.2 207 404.6 864.3 131.0 30.3 361.1 332.0 88.0 466.4 864.3 165.0 193.2 332.0 392.0 404.5 862.1 138.3 165.0 302.0 3452.0			l	l		ll .			l					l	
335.4 62.2 144 291.2 750.9 367.0 93.9 201 393.8 853.5 114.3 871.1 1600 291.20 3371.7 335.9 62.8 145 293.0 752.7 367.6 94.4 202 395.6 855.1 1172.0 898.9 1650 300.0 3461.7 337.0 63.9 147 296.6 756.3 368.2 95.0 204 499.2 858.9 1227.6 954.4 1750 392.0 351.7 337.6 64.4 148 298.4 758.1 369.3 96.7 206 402.8 862.5 1232.2 1010.0 1850 3362.0 382.7 338.7 65.6 150 302.0 761.7 370.4 97.2 207 404.6 864.1 1338.7 105.6 155.3 371.5 98.3 209 408.2 867.9 1364.0 165.2 100.3 320.0 3632.0 391.7 340.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
335.9 62.8 145 293.0 752.7 367.6 94.4 202 395.6 855.3 I172.0 898.9 1650 3002.0 3461.7 336.5 63.3 146 294.8 754.5 368.2 95.0 203 397.4 871.1 1199.8 920.7 1700 302.0 351.7 337.6 64.4 148 298.4 758.1 369.3 96.1 206 402.8 862.5 125.4 982.2 1800 3272.0 331.7 338.7 65.6 150 303.0 761.7 370.4 972.2 207 404.6 866.1 133.0 100.0 352.0 391.7 339.8 66.7 152 305.6 765.3 371.5 98.3 209 408.2 867.0 133.3 101.0 180.5 1930.2 382.0 391.4 261.1 303.8 165.6 109.3 200 363.2 391.7 401.0 303.8 160.1 1419.8			!			ll .									
336.5 63.3 146 294.8 754.5 368.2 95.0 203 397.4 857.1 1199.8 926.7 1700 3092.0 3551.7 337.6 63.9 147 296.6 756.3 368.7 95.6 204 399.2 858.9 1227.6 954.4 1750 3182.0 3617.7 338.7 65.6 149 300.2 759.9 369.8 96.7 206 402.8 862.5 128.2 1010.0 1850 3362.0 3272.0 331.7 338.7 65.5 151 303.8 763.5 371.5 98.9 204 408.4 861.1 1338.7 105.6 109.3 392.0 362.0 4001.7 340.9 67.8 154 305.6 765.3 371.5 98.2 210 410.0 867.9 1366.5 109.3 200 362.0 4091.7 340.9 67.8 154 309.2 788.7 372.6 94.2 211 4		I	l	l		ll .		1	l					l	
337.0 63.9 147 296.6 756.3 368.7 95.6 204 399.2 88.89 127.6 95.4 1750 318.20 364.17 337.6 64.4 148 298.4 758.1 369.3 96.1 205 401.0 860.7 1255.4 982.2 1800 327.20 3731.7 338.7 65.6 150 302.0 761.7 370.4 97.2 207 404.6 864.1 131.09 103.78 190 3452.0 3911.7 339.8 66.7 152 305.6 765.3 371.5 98.3 209 408.2 867.9 1366.5 1903.3 200 362.0 409.7 340.9 67.8 154 309.2 768.9 372.6 99.4 211 411.8 871.5 148.2 200 381.5 148.9 210.0 382.1 148.9 116.0 320.0 362.0 481.7 342.6 68.9 156 312.8 773.3															
337.6 64.4 148 298.4 758.1 369.3 96.1 205 401.0 860.7 125.4 98.2.2 180 3272.0 373.17 338.7 65.6 150 303.0 761.7 370.4 972.2 207 404.6 864.3 131.39 103.78 190.0 3452.0 3911.7 339.3 66.1 151 303.8 765.5 370.9 97.8 209 408.2 867.0 153.3 100.0 352.0 390.7 367.1 98.3 209 408.2 867.0 153.3 300.4 675.1 372.0 98.9 210 400.0 869.7 130.33 101.2 205.0 402.1 480.6 141.2 141.8 210.0 869.7 134.5 176.2 480.0 480.1 480.1 480.1 480.1 480.1 480.2 480.2 480.2 480.2 480.2 480.2 480.2 480.2 480.2 480.2 480.2 480.2 480.2 4			!	!		ll .								!	l
338.2 65.0 149 300.2 750.9 369.8 96.7 206 402.8 862.5 128.3 1010.0 1850 3362.0 3821.7 338.7 65.6 151 303.8 763.5 370.9 97.8 208 406.4 866.1 1338.7 105.5 1950 3342.0 3911.7 339.8 66.7 152 305.6 765.3 371.5 98.9 210 410.0 869.7 1365.5 1093.3 2000 3632.0 4091.7 340.9 67.8 154 309.2 768.9 372.6 98.9 210 410.0 869.7 1342.0 1149.2 1148.8 117.6 1422.0 139.2 1491.7 341.5 68.3 155 311.0 707.7 373.2 100.0 212 413.6 873.3 1449.8 117.6 210.0 390.0 4821.7 342.0 68.9 158 314.6 776.1 388.7 115.6 242.0	337.0	63.9	147	296.6	756.3	368.7	95.6	204	399.2	858.9	1227.6	954.4	1750	3182.0	
338.7 65.6 150 302.0 761.7 370.4 97.2 207 404.6 864.3 131.09 1037.8 190 3452.0 3911.7 339.8 66.1 151 303.8 763.5 370.9 97.8 208 406.4 866.1 1338.7 1065.6 152.3 305.6 765.3 371.5 98.3 209 408.2 867.9 1365.5 1030.3 2040.0 491.7 340.0 67.8 154 309.2 768.9 372.6 99.4 211 411.8 871.5 142.0 1148.9 210.0 381.0 420.1 431.0 436.8 373.3 1448.9 1167.6 2150 392.0 4361.7 342.6 68.9 156 312.8 777.2 377.6 104.4 220 428.0 887.7 1477.6 124.2 214.0 461.0 902.7 1505.4 1232.2 2250 4861.0 4361.7 342.0 66.9 158 318.2 777		64.4					96.1								
339.3 66.1 151 303.8 763.5 370.9 97.8 208 406.4 866.1 133.8.7 1065.6 1950 3542.0 4001.7 339.8 66.7 152 305.6 765.3 371.5 98.3 209 408.2 867.9 13343 1121.1 2050 3722.0 489.7 340.9 67.8 154 309.2 768.9 372.6 99.4 211 411.8 871.5 1422.0 1148.9 210.0 382.0 482.7 341.5 68.9 156 313.28 772.5 377.6 104.4 220 428.0 887.7 1477.6 1204.2 2200 392.0 451.7 342.6 68.9 156 313.2 777.0 383.2 110.0 230 446.0 99.57 150.54 123.2 220 408.0 431.7 342.6 68.9 156 318.2 777.0 138.2 777.0 408.2 135.9 165.2	338.2	65.0	149	300.2	759.9	369.8	96.7	206	402.8	862.5	1283.2	1010.0	1850	3362.0	3821.7
339.8 66.7 152 305.6 765.3 371.5 98.3 209 408.2 867.9 136.5 109.3 200 3632.0 4091.7 340.9 67.8 153 307.4 767.1 372.0 98.9 210 410.0 869.7 1394.3 121.1 200 312.2 481.7 341.5 68.3 155 311.0 770.7 373.2 100.0 212 413.6 873.3 1449.8 117.6 2150 3902.0 481.7 342.0 68.9 156 312.8 772.5 377.6 104.4 220 897.7 1477.6 104.4 220 390.0 4851.7 342.0 68.9 158 316.4 776.1 388.7 115.6 240 640.0 923.7 1505.4 123.2 2250 4082.0 435.3 343.7 70.6 158 316.4 323.0 719.7 408.2 153.0 270.0 183.8 131.5 23	338.7	65.6	150	302.0	761.7	370.4	97.2	207	404.6	864.3	1310.9	1037.8	1900	3452.0	3911.7
340,4 67.2 153 307,4 767,1 372,0 98.9 210 410,0 869,7 139,3 1121,1 205 3722,0 4181,7 340,9 67.8 154 309,2 768,9 372,6 99.4 211 411.8 871.5 1422.0 1148,9 1167,2 2150 302,0 436,17 342,0 68.9 156 312.8 772.5 377.6 104.4 220 428.0 887.7 1477.6 1204.4 220 3992.0 451.7 342,6 69.4 157 314.6 774.3 383.2 110.0 230 460.0 905.7 1505.4 1232.2 2250 4802.0 461.7 343.2 70.0 158 318.2 777.9 394.3 121.1 250 482.0 941.7 1560.9 1287.8 2350 475.0 482.0 481.7 1560.9 1287.8 2350 475.0 481.7 481.7 481.7 481.7 481.7	339.3	66.1	151	303.8	763.5	370.9	97.8	208	406.4	866.1	1338.7	1065.6	1950	3542.0	4001.7
340.9 67.8 154 309.2 768.9 372.6 99.4 211 411.8 871.5 142.0 114.9 210 381.0 270.0 320.0 421.7 341.5 68.3 155 311.0 707.0 373.2 100.0 212 413.6 873.3 1449.8 1176.7 2150 309.0 4351.7 342.6 69.4 157 314.6 774.3 383.2 110.0 230 446.0 905.7 150.5 123.2 2250 4082.0 451.7 343.2 70.0 158 316.4 776.1 388.7 115.6 240 404.0 923.7 1533.2 1260.0 2300 417.0 441.7 344.3 71.1 160 320.0 779.7 408.2 135.0 257.0 986.7 158.7 131.5 240.0 4352.0 481.7 344.5 71.2 162 323.6 783.1 452.0 482.1 350.0 572.0 <t< td=""><td>339.8</td><td>66.7</td><td>152</td><td>305.6</td><td>765.3</td><td>371.5</td><td>98.3</td><td>209</td><td>408.2</td><td>867.9</td><td>1366.5</td><td>1093.3</td><td>2000</td><td>3632.0</td><td>4091.7</td></t<>	339.8	66.7	152	305.6	765.3	371.5	98.3	209	408.2	867.9	1366.5	1093.3	2000	3632.0	4091.7
341.5 68.3 155 311.0 770.7 373.2 100.0 212 413.6 873.3 1449.8 1176.7 2150 3902.0 4361.7 342.0 68.9 156 312.8 772.5 377.6 104.4 220 485.0 887.7 1477.6 1204.4 220 3902.0 4451.7 343.2 70.0 158 316.4 776.1 388.7 115.6 240 464.0 923.7 1533.2 1260.0 230 4451.7 343.7 70.6 159 318.2 777.9 394.3 121.1 250 482.0 941.7 150.09 1287.8 2350 422.0 471.7 344.3 71.1 161 321.8 781.5 422.0 148.9 300 572.0 1031.7 1616.5 133.3 240 4421.0 4901.7 344.5 72.2 162 323.6 783.3 455.9 162.8 325.6 162.0 121.7 1767.6	340.4	67.2	153	307.4	767.1	372.0	98.9	210	410.0	869.7	1394.3	1121.1	2050	3722.0	4181.7
342.0 68.9 156 312.8 772.5 377.6 104.4 220 428.0 887.7 1477.6 120.4 220 342.6 69.4 157 314.6 774.3 383.2 110.0 230 446.0 905.7 1505.4 123.2 2250 308.0 451.7 343.7 70.6 159 318.2 777.9 394.3 121.1 250 482.0 941.7 1560.9 128.78 2350 420.4 440.9 95.7 1560.9 128.78 2350 420.2 448.17 344.3 71.1 160 320.0 797.7 408.2 135.0 275 527.0 986.7 158.7 1315.6 2400 432.0 491.7 344.8 71.7 161 321.8 785.1 448.9 160.8 325.0 175.0 165.3 325.0 478.1 49.8 176.7 350.6 662.0 1121.7 1672.0 1398.9 255.0 462.0 591.7	340.9	67.8	154	309.2	768.9	372.6	99.4	211	411.8	871.5	1422.0	1148.9	2100	3812.0	4271.7
342.6 69.4 157 314.6 774.3 383.2 110.0 230 446.0 923.7 150.54 123.2 225.0 4082.0 4541.7 343.2 700.6 158 316.4 776.1 388.7 115.6 240 464.0 923.7 1535.2 1260.0 2300 4172.0 4321.7 344.3 71.1 160 320.0 779.7 408.2 135.0 275. 527.0 986.7 158.7 1315.6 240.0 432.0 442.0 401.7 344.8 71.7 161 321.8 781.5 422.0 188.9 300 572.0 1031.7 1616.5 1343.3 2450 442.0 491.7 345.9 72.8 163 325.4 785.1 449.8 176.7 350 662.0 1121.7 1672.0 139.9 250 482.0 901.7 347.0 739 165 339.0 785.1 449.8 176.7 326.0 827.0 1256.7 <td>341.5</td> <td>68.3</td> <td>155</td> <td>311.0</td> <td>770.7</td> <td>373.2</td> <td>100.0</td> <td>212</td> <td>413.6</td> <td>873.3</td> <td>1449.8</td> <td>1176.7</td> <td>2150</td> <td>3902.0</td> <td>4361.7</td>	341.5	68.3	155	311.0	770.7	373.2	100.0	212	413.6	873.3	1449.8	1176.7	2150	3902.0	4361.7
342.6 69.4 157 314.6 774.3 383.2 110.0 230 446.0 923.7 150.54 123.2 225.0 4082.0 4541.7 343.2 700.6 158 316.4 776.1 388.7 115.6 240 464.0 923.7 1535.2 1260.0 2300 4172.0 4321.7 344.3 71.1 160 320.0 779.7 408.2 135.0 275. 527.0 986.7 158.7 1315.6 240.0 432.0 442.0 401.7 344.8 71.7 161 321.8 781.5 422.0 188.9 300 572.0 1031.7 1616.5 1343.3 2450 442.0 491.7 345.9 72.8 163 325.4 785.1 449.8 176.7 350 662.0 1121.7 1672.0 139.9 250 482.0 901.7 347.0 739 165 339.0 785.1 449.8 176.7 326.0 827.0 1256.7 <td>342.0</td> <td>68.9</td> <td></td> <td></td> <td>772.5</td> <td></td> <td>104.4</td> <td>220</td> <td>428.0</td> <td></td> <td>1477.6</td> <td>1204.4</td> <td>2200</td> <td>3992.0</td> <td></td>	342.0	68.9			772.5		104.4	220	428.0		1477.6	1204.4	2200	3992.0	
343.2 70.0 158 316.4 776.1 388.7 115.6 240 464.0 92.37 153.3.2 126.0 2300 4172.0 4631.7 343.7 70.6 158 318.2 777.9 394.3 121.1 250 482.0 941.7 150.90 1287.8 2350 426.0 472.0 482.0 348.7 75.7 986.7 1588.7 131.6 240.0 4352.0 481.7 344.8 71.7 161 321.8 781.5 422.0 148.9 300 752.0 1031.7 1616.5 134.3 2450 4422.0 490.7 345.9 72.8 163 325.4 785.1 162.8 325 617.0 1076.7 164.3 1371.1 2500 4322.0 4991.7 345.5 73.3 164 327.2 786.9 463.7 190.6 375 707.0 1166.7 169.8 1426.7 2500 782.0 282.0 982.1 313.7 342.0<		69.4					110.0	230	446.0				2250	4082.0	
343.7 70.6 159 318.2 77.7 934.3 121.1 250 482.0 941.7 1560.9 128.7.8 235.0 4262.0 4721.7 344.8 71.1 160 320.0 797.7 408.2 135.0 275 527.0 986.7 1588.7 1315.6 2400 432.0 481.7 344.8 71.7 161 323.8 781.5 422.0 148.9 300 572.0 1031.7 1616.5 133.3 245.0 449.0 73.3 445.2 489.8 162.8 325 617.0 1076.7 1644.3 1371.1 250 4532.0 491.7 345.5 73.3 164 327.2 786.9 463.7 190.6 375 707.0 1166.7 163.3 250 462.0 508.1 471.2 508.1 471.2 508.1 471.2 240.4 400 752.0 1211.7 1727.0 1256.7 255.0 462.7 260.0 471.2 514.4 40															
344.3 71.1 160 320.0 779.7 408.2 135.0 275. 98.7 158.7 1315.6 240 4352.0 4811.7 344.8 71.7 161 321.8 781.5 422.0 148.9 300 572.0 103.7 1616.5 1343.3 2450 444.0 4901.7 345.9 72.2 162 323.6 783.1 449.8 176.7 350 662.0 1121.7 1672.0 139.9 255.0 4622.0 5081.7 346.5 73.3 165 329.0 788.7 477.6 204.4 400 752.0 1211.7 1672.0 139.9 250.0 482.0 5081.7 347.0 73.9 165 330.8 790.5 491.5 218.3 425 797.0 1256.7 175.6 144.2 450 482.0 1211.7 172.6 144.4 450.0 252.1 480.2 150.0 275.0 482.0 532.1 480.2 150.0 482.0 </td <td></td>															
344.8 71.7 161 321.8 781.5 422.0 148.9 300 572.0 103.17 161.65 134.3.3 245.0 449.1.7 345.4 72.2 162 323.6 783.3 435.9 162.8 325.6 617.0 1076.7 164.3 137.1 2500 4532.0 4901.7 345.9 72.8 163 325.4 785.1 449.8 176.7 350 662.0 1121.7 1672.0 138.9 2550 4622.0 5081.7 347.6 73.4 166 330.8 790.5 491.5 218.3 425 797.0 1166.7 1789.6 462.0 200.0 252.1 341.7 348.2 75.0 167 332.6 792.3 505.4 232.2 450 82.0 1301.7 178.2 151.0 2750 482.0 531.7 348.2 75.0 167 338.0 797.7 519.2 246.1 475 887.0 1301.7 178.3								1							
345,4 72.2 162 323.6 783.3 435.9 162.8 325. 617.0 1076.7 164.3 1371.1 250 4532.0 4991.7 345.9 72.8 163 325.4 785.1 449.8 176.7 350 662.0 1121.7 1672.0 1398.9 2550 4622.0 5081.7 347.0 73.9 165 329.0 788.7 477.6 204.4 400 752.0 1211.7 1727.6 1454.4 2650 4802.0 5261.7 347.6 74.4 166 330.8 790.5 491.5 218.3 425 797.0 1256.7 1755.4 1482.2 2700 4892.0 5351.7 348.2 75.0 168 334.4 794.1 519.3 2461. 475 887.0 1346.7 1810.0 2750 4892.0 5351.7 349.3 76.1 169 336.2 795.9 533.2 260.0 500 980.0 1346.7 1880.5<															
345.9 72.8 163 325.4 785.1 449.8 176.7 350 662.0 1121.7 1672.0 138.9 255.0 4622.0 5081.7 346.5 73.3 164 327.2 786.9 463.7 190.6 375 707.0 1166.7 169.2 2500 471.20 5171.7 517.1 1727.6 144.4 265.0 480.2 5261.7 347.6 74.4 166 330.8 790.5 491.5 218.3 425 797.0 1256.7 1755.4 1482.2 270 4892.0 5351.7 348.7 75.6 168 334.4 794.1 159.3 246.1 475 887.0 1340.7 1810.9 1537.8 2800 5072.0 531.7 349.8 76.1 169 336.2 795.9 533.2 260.0 500 932.0 1391.7 183.7 2800 502.0 531.7 350.4 77.2 171 339.8 795.7 547.0								1							
346.5 73.3 164 37.2 78.6 946.7 190.6 375 707.0 116.67 169.8 142.6.7 2600 4712.0 517.7 347.6 73.9 165 329.0 788.7 477.6 204.4 400 752.0 1211.7 1727.6 1454.4 2650 480.0 526.7 347.6 74.4 166 333.8 790.5 491.5 218.3 425 790.0 125.6 1755.4 1482.2 2700 4892.0 5351.7 348.2 75.0 167 332.6 792.3 505.4 232.2 450 82.0 1301.7 178.3 151.0 2750 4982.0 541.7 349.3 76.1 169 336.2 795.9 353.2 200.0 500.9 320.1 1391.7 183.87 1565.6 2850 5162.0 5621.7 349.8 76.7 170 338.0 797.7 547.0 273.9 52.5 977.0 1436.7		I	l	l		ll .		I	l						
347.0 73.9 165 329.0 78.7 477.6 204.4 400 752.0 1211.7 1727.6 1454.4 2650 4802.0 5261.7 347.6 74.4 166 330.8 790.5 491.5 218.3 425 797.0 1256.7 1755.4 1482.2 2700 4892.0 5351.7 348.2 75.0 167 333.4 794.1 519.3 246.1 475 887.0 1346.7 1810.9 153.7.8 2800 5072.0 5531.7 349.8 76.7 170 338.0 797.7 547.0 273.9 525 977.0 1436.7 1865.5 2850 512.0 551.7 350.4 77.2 171 339.8 795.5 560.9 287.8 550 1022.0 1481.7 189.3 290.0 5252.0 5711.7 350.4 77.2 171 339.8 799.5 560.9 287.8 550 1022.0 1481.7 189.3 260.0 </td <td></td> <td></td> <td>l</td> <td></td>			l												
347.6 74.4 166 330.8 790.5 491.5 218.3 425 797.0 1256.7 175.4 148.2 270 4892.0 5351.7 348.7 75.6 168 334.4 794.1 159.3 246.1 475 887.0 1346.7 1181.9 1537.8 2800 5072.0 5341.7 349.3 76.1 169 336.2 795.9 533.2 260.0 500 932.0 1391.7 1838.7 156.6 2850 5062.0 5621.7 349.8 76.7 170 338.0 797.7 547.0 273.9 525 977.0 1436.7 1884.3 1621.1 2950 5342.0 5801.7 350.4 77.2 171 339.8 795.5 560.9 287.8 550 1022.0 1481.7 1894.3 1621.1 2950 5342.0 5801.7 351.5 78.3 173 341.6 803.1 588.7 315.6 600 112.0 1571.7 <td></td>															
348.2 75.0 168 332.6 792.3 505.4 232.2 450 842.0 1301.7 178.3 1510.0 2750 4982.0 5441.7 348.7 75.6 168 334.4 794.1 519.3 246.1 475 887.0 1346.7 1810.9 1537.8 2800 9572.0 5521.7 349.8 76.1 169 338.0 797.7 547.0 273.9 525 977.0 1436.7 1866.5 1593.3 2900 5252.0 5711.7 350.9 77.8 172 341.6 801.3 574.8 301.7 575 1670.0 1526.7 1922.0 1648.9 3000 532.0 5891.7 351.5 78.3 173 343.4 803.1 588.7 315.6 600 1112.0 1571.7 203.2 176.0 3000 532.0 5891.7 352.6 78.9 174 343.7 80.6 165.2 343.3 560 120.0 1661.7 <td></td> <td>I</td> <td>l</td> <td>l</td> <td></td> <td>ll .</td> <td></td> <td>I</td> <td>l</td> <td></td> <td>1</td> <td></td> <td></td> <td>l</td> <td></td>		I	l	l		ll .		I	l		1			l	
348.7 75.6 168 334.4 794.1 519.3 246.1 475 887.0 1346.7 1810.9 153.7.8 2800 5072.0 5531.7 349.8 76.1 169 336.2 795.9 533.2 260.0 500 932.0 1391.7 1838.7 1565.6 2850 1510.0 5621.7 349.8 76.7 170 338.0 797.7 547.0 273.9 525 970.1 1436.7 1866.5 1593.3 2900 5252.0 5711.7 350.9 77.2 171 339.8 799.5 560.9 287.8 550 1022.0 1481.7 1894.3 1621.0 2950 5342.0 5801.7 351.5 78.3 173 343.6 803.1 588.7 315.6 600 1112.0 1571.7 203.2 166.0 320.0 599.0 651.7 352.0 78.9 174 345.2 804.9 602.6 3294.6 625 1157.0 1616.7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
349.3 76.1 169 336.2 795.9 533.2 260.0 500 932.0 1391.7 1838.7 156.6 2850 5162.0 5621.7 349.8 76.7 170 338.0 797.7 547.0 273.9 525 977.0 1436.7 1866.5 1893.3 2900 5252.0 5711.7 350.9 77.8 172 341.6 801.3 574.8 301.7 575 1067.0 1526.7 1922.0 1648.9 300 5432.0 5891.7 351.5 78.3 173 343.4 803.1 588.7 315.6 600 1112.0 1571.7 2033.2 1760.0 3200 5720.0 651.7 352.0 78.9 174 345.2 804.9 602.6 329.4 625 1157.0 1616.7 233.1 340.0 6152.0 6611.7 353.2 80.0 176 348.8 805.5 630.4 3572.2 675.1 1224.0 1766.7 22															
349.8 76.7 170 338.0 797.7 547.0 273.9 525 977.0 1436.7 1866.5 1593.3 290 525.2 571.7 350.9 77.8 172 341.6 801.3 574.8 317. 575 1607.0 1526.7 192.20 1648.9 3000 5432.0 5891.7 351.5 78.3 173 343.4 803.1 588.7 315.6 600 1112.0 1571.7 203.2 176.0 3200 5432.0 5891.7 352.6 78.9 174 345.2 804.9 602.6 329.4 625 1157.0 1661.7 214.3 1871.1 3400 551.20 6617.7 353.2 80.0 176 348.8 808.5 630.4 357.2 675 1247.0 1706.7 2366.5 2093.3 3800 6872.0 7331.7 353.4 81.1 178 352.4 81.2 88.2 480.3 737.1 700 1292.0		I	l	l		ll .		1	l		1			l	
350.4 77.2 171 339.8 799.5 560.9 287.8 550 1022.0 1481.7 1894.3 1621.1 2950 5342.0 5801.7 350.9 77.8 172 341.6 801.3 574.8 301.7 575 1067.0 1526.7 1922.0 1648.9 3000 5342.0 5891.7 352.0 78.9 174 345.2 804.9 602.6 3294 625 1157.0 1616.7 2144.3 1871.1 3400 6512.0 6611.7 352.6 79.4 175 347.0 806.7 616.5 343.3 650 1020.0 1661.7 2255.4 1982.2 3600 6512.0 6971.7 353.7 80.6 176 338.0 810.5 644.3 371.1 700 1292.0 175.1 2204.4 4000 723.0 7691.7 354.3 81.1 178 352.4 812.1 658.2 385.0 725 1337.0 1796.7 258															
350.9 77.8 172 341.6 801.3 574.8 301.7 575 1067.0 1526.7 192.0 1648.9 300 5432.0 5891.7 351.5 78.9 174 343.4 803.1 588.7 315.6 600 1112.0 1571.7 2033.2 1760.0 3200 5792.0 651.7 352.6 78.9 175 347.0 806.7 616.5 343.3 650 1202.0 1661.7 2255.4 1982.2 360 6512.0 691.7 353.2 80.0 176 348.8 808.5 630.4 3572.6 75 1247.0 1760.7 2366.5 2093.3 3800 6512.0 691.7 353.7 80.6 177 350.6 810.3 464.3 371.1 700 1292.0 1751.7 2477.6 2204.4 400 7322.0 7691.7 354.3 81.1 178 352.4 812.1 685.2 385.0 725 133.0 1766.7 </td <td></td> <td></td> <td>!</td> <td>!</td> <td></td> <td>ll .</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>!</td> <td></td>			!	!		ll .		1	1					!	
351.5 78.3 173 343.4 803.1 588.7 315.6 600 1112.0 1571.7 203.3.2 176.0 3200 5792.0 6251.7 352.6 79.4 175 347.0 806.7 616.5 343.3 650 120.0 1616.7 214.3 1871.1 3400 6152.0 6611.7 353.2 80.0 176 348.8 808.5 630.4 357.2 675 1247.0 1706.7 2366.5 2093.3 3800 6872.0 7331.7 353.7 80.6 177 350.6 810.3 644.3 371.1 700 1292.0 1751.7 2477.6 2204.4 4000 7322.0 7691.7 354.3 81.1 178 352.4 812.1 688.2 385.0 725 1382.0 1796.7 2588.7 2315.6 4200 7592.0 8051.7 354.8 81.7 179 354.2 813.9 672.0 398.9 750 1382.0 1841.7 2699.8 242.6 4400 7952.0 8411.7 355.4 82.2 818 356.0 815.7 685.9 412.8 775 427.0 1886.7 2810.9 2537.8 4600 812.0 8711.7 355.6 83.3 812 359.6 819.3 713.7 440.6 825 1517.0 1976.7 3033.2 276.0 5000 9032.0 9491.7			l	l		ll .		1	l		1				l
352.0 78.9 174 345.2 80.9 602.6 329.4 625 1157.0 1616.7 2144.3 1871.1 3400 6152.0 6611.7 352.6 794 175 347.0 806.7 616.5 343.3 650 1202.0 1661.7 2255.4 1882.2 3600 6812.0 6971.7 353.7 80.6 177 350.6 810.3 644.3 371.1 700 1292.0 1751.7 2477.6 2204.4 4000 723.20 7691.7 354.3 81.1 178 352.4 812.1 658.2 385.0 725 1337.0 1796.7 2288.7 2315.6 4200 7592.0 861.7 354.8 81.7 179 354.2 813.9 672.0 389.9 750 1886.7 2810.9 2537.8 4600 7952.0 8411.7 355.4 82.2 180 356.0 815.7 685.9 412.8 775 1427.0 1886.7 281															
352.6 79.4 175 347.0 806.7 616.5 343.3 650 1202.0 1661.7 2255.4 1982.2 360.0 6512.0 6971.7 353.7 80.6 177 350.6 810.3 644.3 371.1 700 1292.0 1751.7 2477.6 2204.4 4000 7232.0 7691.7 354.3 81.1 178 352.4 812.1 658.2 385.0 725 133.7 179.7 2588.7 231.5 400 7592.0 8611.7 354.8 81.7 179 354.2 815.7 675.9 412.8 775 1427.0 1886.7 2810.9 2426.7 4400 7952.0 8311.7 355.4 82.2 188 356.8 815.7 685.9 412.8 775 1427.0 1886.7 2810.9 2537.8 4600 8312.0 871.7 355.9 82.8 181 357.8 817.5 699.8 426.7 800 1472.0 1931			!	!		ll .		1	1		1			!	l
353.2 80.0 176 348.8 80.5 630.4 357.2 675 1247.0 176.7 2366.5 2093.3 3800 6872.0 7331.7 353.7 80.6 177 350.6 810.3 644.3 371.1 700 1292.0 1751.7 2270.6 2204.4 400 732.2 7691.7 354.3 81.1 178 352.4 812.1 888.0 725 137.0 1796.7 2588.7 2315.6 4200 7592.0 8051.7 355.4 82.2 1810 356.0 815.7 685.9 412.8 775 1427.0 1886.7 289.8 2426.7 4400 7952.0 8411.7 355.9 82.8 181 357.8 81.7 689.8 426.7 800 1472.0 1886.7 2810.9 237.8 4600 8712.0 8711.7 355.9 82.8 181 359.6 819.3 713.7 440.6 825 1517.0 1976.7 303.3<		I	l	l		ll .		1	l		1			l	l
35.7. 80.6 177 350.6 810.3 644.3 371.1 700 1292.0 1751.7 2477.6 2204.4 400 7232.0 7691.7 354.8 81.1 178 352.4 812.1 658.2 385.0 725 1337.0 1796.7 2588.7 2315.6 4200 7592.0 8051.7 354.8 81.7 179 354.9 750 1382.0 1841.7 269.8 2426.7 400 752.0 8411.7 355.4 82.2 180 356.0 815.7 685.9 426.7 800 147.0 1931.7 2922.0 2618.9 4600 8312.0 871.7 355.9 82.8 181 357.8 817.5 699.8 426.7 800 147.0 1931.7 2922.0 2648.9 4800 8672.0 1931.7 356.5 83.3 182 359.6 819.3 713.7 440.6 825 1517.0 1976.7 3033.2 276.0 5000<															
354.3 81.1 178 352.4 812.1 658.2 385.0 725 1337.0 1796.7 2588.7 2315.6 4200 7592.0 8051.7 354.8 81.7 179 354.2 813.9 672.0 398.9 750 182.0 1841.7 2699.8 2426.7 4400 7952.0 8411.7 355.4 82.2 180 356.0 815.7 685.9 412.8 775 1427.0 1886.7 2810.9 2537.8 4000 872.0 871.7 355.9 82.8 181 357.8 817.5 699.8 426.7 800 1472.0 1931.7 2922.0 2648.9 4800 8672.0 9131.7 356.5 83.3 182 359.6 819.3 713.7 440.6 825 1517.0 1976.7 3033.2 276.0 5000 9032.0 9491.7			!	!		ll .		1	l		1			!	
354.8 81.7 179 354.2 813.9 672.0 398.9 750 182.0 1841.7 2699.8 2426.7 4400 7952.0 8411.7 355.9 82.2 181 357.8 817.5 685.9 412.8 775 1427.0 1886.7 2810.9 2357.8 4600 8121.0 8711.7 355.9 82.8 181 357.8 817.5 699.8 426.7 800 1470.9 1931.7 292.0 2648.9 4800 8672.0 9191.7 356.5 83.3 182 359.6 819.3 713.7 440.6 825 1517.0 1976.7 3033.2 276.0 500 9032.0 9491.7		I	l	l				1							
355.4 82.2 180 356.0 815.7 685.9 412.8 775 1427.0 1886.7 2810.9 2537.8 4600 8312.0 8771.7 355.9 82.8 181 357.8 817.5 699.8 426.7 800 1472.0 1931.7 2922.0 2648.9 4800 8672.0 9131.7 356.5 83.3 182 359.6 819.3 713.7 440.6 825 1517.0 1976.7 3033.2 2760.0 5000 9032.0 9491.7															
355.9 82.8 181 357.8 817.5 699.8 426.7 800 1472.0 1931.7 2922.0 2648.9 4800 8672.0 9131.7 356.5 83.3 182 359.6 819.3 713.7 440.6 825 1517.0 1976.7 3033.2 2760.0 5000 9032.0 9491.7			!	!		ll .		1	l		1			!	
356.5 83.3 182 359.6 819.3 713.7 440.6 825 1517.0 1976.7 3033.2 2760.0 5000 9032.0 9491.7				l				1							
			1	!		ll .		1	!					!	
357.0 83.9 183 361.4 821.1 727.6 454.4 850 1562.0 2021.7	356.5	83.3	182	359.6	819.3	713.7	440.6	1	1517.0	1976.7	3033.2	2760.0	5000	9032.0	9491.7
	357.0	83.9	183	361.4	821.1	727.6	454.4	850	1562.0	2021.7					

Table converts ${}^{\circ}C \rightarrow {}^{\circ}F$ and ${}^{\circ}R$, or ${}^{\circ}F \rightarrow {}^{\circ}C$ and K. Find "convert from" temperature in **bold** column and read result from ${}^{\circ}F$ and ${}^{\circ}R$ or ${}^{\circ}C$ and K columns. Example 1: 183 ${}^{\circ}C = 361.4 {}^{\circ}F$ and 821.1 ${}^{\circ}R$. Example 2: 183 ${}^{\circ}F = 83.9 {}^{\circ}C$ and 357.0 K.

Professional Organizations and Government Agencies	Websites
Aerospace Industries Association (AIA)	www.aia-aerospace.org
America Makes	www.americamakes.us
American Bearing Manufacturers Association (ABMA)	www.americanbearings.org
American Bureau of Shipping (ABS)	ww2.eagle.org
American Coatings Association (ACA)	www.paint.org
American Composites Manufacturers Association (ACMA)	acmanet.org
American Institute of Aeronautics and Astronautics (AIAA)	www.aiaa.org
American Institute of Architects (AIA)	www.aia.org
American Institute of Steel Construction (AISC)	www.aisc.org
American Iron and Steel Institute	www.steel.org
American Mold Builders Association (AMBA)	amba.org
American National Standards Institute (ANSI)	www.ansi.org
American Petroleum Institute (API)	www.api.org
American Society for Engineering Education (ASEE)	www.asee.org
American Society for Metals (ASM)	www.asminternational.org
American Society for Testing and Materials (ASTM)	www.astm.org
American Society of Civil Engineers (ASCE)	www.asce.org
American Society of Mechanical Engineers (ASME)	www.asme.org
American Welding Society (AWS)	www.aws.org
American Wire Producers Association (AWPA)	www.awpa.org
The Association for Manufacturing Technology (AMT)	www.amtonline.org
Association of Professional Model Makers (APMM)	www.modelmakers.org
British Engineering Manufacturers Association (BEMA)	www.bema.co.uk
British Plastics Federation (BPF)	www.bpf.co.uk

Professional Organizations and Government Agencies	Websites
British Standards Institution (BSI)	www.bsigroup.com
Canadian Tooling & Machining Association (CTMA)	www.ctma.com
Deutsches Institut für Normung (DIN)	www.din.de
European Power Metallurgy Association (EPMA)	www.epma.com
Federal Aviation Administration (FAA)	www.faa.gov
Industrial Fasteners Institute (IFI)	www.indfast.org
Institute of Electrical and Electronics Engineers (IEEE)	www.ieee.org
Institute of Measurement and Control (INSTMC)	www.instmc.org
Institution of Engineering and Technology (IET)	www.theiet.org
International Association of Machinists and Aerospace Workers (IAM)	www.goiam.org
International Organization for Standardization (ISO)	www.iso.org
Laser Institute of America (LIA)	www.lia.org
Machinery and Allied Products Institute (MAPI)	www.mapi.net
The Manufacturers' Association (MA)	www.mascpa.org
Mechanical Contractors Association of America (MCAA)	www.mcaa.org
National Aeronautics and Space Administration (NASA)	www.nasa.gov
National Association for Surface Finishing (NASF)	nasf.org
National Association of Manufacturers (NAM)	www.nam.org
National Center for Manufacturing Sciences (NCMS)	www.ncms.org
National Electrical Manufacturers Association (NEMA)	www.nema.org
National Fire Protection Association (NFPA)	www.nfpa.org
National Institute for Metalworking Skills (NIMS)	www.nims-skills.org
National Institute of Standards and Technology (NIST)	www.nist.gov
National Math Foundation (NMF)	nationalmathfoundation.org

Professional Organizations and Government Agencies	Websites
The National Network for Manufacturing Innovation (NNMI)	www.energy.gov/eere/amo/national -network-manufacturing-innovation
National Science Foundation (NSF)	www.nsf.gov
National Society of Professional Engineers (NSPE)	www.nspe.org
The National STEM Foundation (N-STEM)	n-stem.org
National Tooling & Machining Association (NTMA)	ntma.org
Naval Facilities Engineering Command (NAVFAC)	www.navfac.navy.mil
Plant Engineering and Maintenance Association of Canada (PEMAC)	www.pemac.org
Precision Machined Products Association (PMPA)	www.pmpa.org
Precision Metalforming Association (PMA)	www.pma.org
Product Development & Management Association (PDMA)	www.pdma.org
Robotics Industries Association (RIA)	www.robotics.org
SAE International	www.sae.org
SkillsUSA	www.skillsusa.org
Society for Mining, Metallurgy & Exploration (SME)	www.smenet.org
Society of Manufacturing Engineers (SME)	www.sme.org
Society of Plastic Engineers (SPE)	www.4spe.org
The World Foundry Organization (WFO)	www.thewfo.com
Uni-Bell PVC Pipe Association	www.uni-bell.org
United Abrasives Manufacturers' Association	uama.org
US Air Force	www.af.mil
US Army Corps of Engineers	www.usa.gov/federal-agencies/u-s-army -corps-of-engineers
US Department of Education, Office of Educational Technology	tech.ed.gov
US Government Printing Office	www.gpo.gov
US National Laboratories	www.usa.gov/federal-agencies/national -laboratories
US STEM Foundation (US STEM)	www.usstem.org
World Steel Association	www.worldsteel.org

Other Industry Sources and Publications	Websites
AutoDesk	www.autodesk.com
Business Industrial Network	bin95.com
CAD Innovation	cadinnovation.com
CADdigest	www.caddigest.com
Cutting Tool Engineering	www.ctemag.com
Demand Driven Institute	www.demanddriveninstitute.com
Digital Machinist	www.digitalmachinist.net
Eastec: A Manufacturing Technology Series Event	easteconline.com
Engineers Edge	www.engineersedge.com
Haas Technical Education Center	www.haascnc.com/htec.html
The Home Shop Machinist	www.homeshopmachinist.net
Industrial Press, home of Machinery's Handbook	books.industrialpress.com
Industry Week	www.industryweek.com
International Manufacturing Technology Show (MTS)	www.imts.com
Lifetime Reliability Solutions	www.lifetime-reliability.com
Lloyd's Register North America	www.lr.org/en-us
MachineTools.com	www.machinetools.com
Machinio.com	www.machinio.com
Make	makezine.com
Manufacturing.net	www.manufacturing.net
Modern Machine Shop	www.mmsonline.com
MSC Direct	www.mscdirect.com
New Equipment Digest	www.newequipment.com
Photonics	www.photonics.com
Plastics Machinery Magazine	www.plasticsmachinerymagazine.com
PlumbingSupply.com	www.plumbingsupply.com
Tech Briefs	www.techbriefs.com
Tech Directions	www.techdirections.com
Travers Tools	www.travers.com
Westec: A Manufacturing Technology Series Event	westeconline.com

Note: The above list includes selected entities and websites that the Machinery's Handbook team deem potentially useful to readers at the time of publication. Suggestions for additions to this list can be emailed to us at MHT@industrialpress.com. For further related resources and information, please visit us at books.industrialpress.com.

INDEX

	ANSI or ANSI/ASME Standard (continued)
\mathbf{A}	drawing and drafting practices
	symbols
ABS plastics 280	statistical tolerance 284
Acetal plastics 280	total runout 284
Acrylic plastics 280	engineering drawings 282
Addendum, chordal 250	gagemakers, tolerances 324
Addresses, letter, NC 207	gear tooth forms 247
Allowances and tolerances for	geometric characteristic symbols
cylindrical fits 299–325	284–288
fits, preferred basic sizes and series 299	geometric dimensioning and
standard fits 301-323	tolerancing 286
tolerances and grades 300,324-325	grinding wheel safety 209
Alloy steels 259	grinding wheels and abrasives 217
AISI-SAE designations 260	hexagon and spline socket set screws 99,
selection for making tools 263–264	102
Aluminum	keys and keyseats 170–179
alloy properties and designations 277	keys and keyways for milling cutters and
machining 193	arbors 171
melting point 278	limits and fits 299
Angles	metric screw threads, M profile 84–93
cutting tool 183	metric screws 98
sine-bar for measuring 30–32	milling cutters 161–171
taper per foot corresponding to 41	pins 104–110
to find, for given taper per foot 40	pins 104–110 pipe thread 82–83
Anodic index 298	preferred
ANSI or ANSI/ASME Standard	basic sizes 313
datum referencing symbols 286–288	fits 313
diamond wheels 235–238	metric limits and fits 312
drawing and drafting practices 282,286	
symbols	metric sizes 313
between 284	screws, metric 98
controlled radius 284	section lining symbols 283
datum referencing 286–288	set screws socket type 99
diameter 284	socket head cap screws 97–98,
ISO 285	100–102
parallelism 284	spur gear tooth forms 247
perpendicularity 284	surface texture 289–295
position 284	surface texture symbols 289–293
runout 284	taps and threading dies 135
section lining 283	T-nuts 111

350

INDEX

ANSI or ANSI/ASME Standard (continued) British Standard tolerances 300 countersunk head screws 119-121 and allowances 299-325 dowel pins, metric 108 ISO metric tapping drill sizes 143 gagemakers 324 symbols 284-288 metric dowel pins 108 spark plugs 94 twist drills 131 Unified machine screws and nuts Unified screw threads 64-72 118-120 Woodruff keys 178-179 Unified screws and nuts 119 wrench openings 112 Broaches See also standards data and tables clearance angles for teeth 180 throughout book depth of teeth 180 Arbors face angle or rake 180 keys and keyways for 171 land width 180 standard milling machine 54-55 pitch of teeth 180-182 Arc, checking radius of 44 radius of tooth fillet 180 Area of plane figures 1-6 surface 181 Austenite 270 total length 180 Broaching 180-182 depth of cut per teeth 180 difficulties 182 B pressure 181 Brown & Sharpe taper 52-53 Base circle, spur gear, diameter 246 Buttress threads, wire method of Base oils for metal cutting 122 measuring 47 Bevel gearing tooth form 252 Block, NC 204 Bolt head markings, inch 95 wrench and socket clearances 112-113 Bolt hole circles, coordinates for 26 Calculator, using to determine sine-bar Bolts and nuts constants for a given angle 32 ANSI/ASME inch dimensions, Caliper, gear tooth 256 T-nuts 111 Cap screws 97-103 grade markings for steel 95 drill and counterbore sizes for 100 wrench clearances 112-113 flat head 102 wrench openings 112 hexagon socket type 97, 102 Box wrench clearances 117 spline socket type 97, 102 Briggs (now ANSI/ASME) standard pipe Carbide threads 83 cemented 191 Brinell Hardness Number (BHN) 163, titanium 191 272 - 274tungsten 191 Brinell-Rockwell hardness conversion tungsten-titanium 191 tables 272-274 tungsten-titanium-tantalum 191

Carbide tools	Circumference, chords for dividing 25
grinding 242,244	Clearance
insert holders 186-188	angles, milling cutters 163
insert type 184	drill sizes, machine screw 142
materials for 192	British Standard 143
sharpening 242	for wrench 112-114
Carbides and carbonitrides 192	CNC programming 204–208
Carbon and alloy steels, AISI-SAE	Coiled-type spring pins 110
designations 260	Cold form tapping 143
Carbon steels 259	Compensation, insert radius, NC 188–191
Carbonitrides and carbides 192	Computer numerical control, CNC,
Cemented carbide 191	programming 204–208
Cemented carbide tools	Conductivity, thermal 278–279
grinding 243–244	Conversion tables 326–344
Centering tools, length of point 131	cutting speed and diameter to rpm
Centimeter–inch conversion tables 333	155–159
Centipoises 332	hardness 273-274
Centistokes 332	See also other tables
Checking radius of arc 44	Coolants for machining
Chipbreakers 184	aluminum 193
grinding 245	magnesium 194-195
Chord length for given number of	tool sharpening 244
divisions 25	zinc alloys 195
Chordal thickness milled, full-depth gear	Coordinates, for jig boring 26
teeth 250-251	Copper, linear expansion 278
Circle	Core drills 130
area 3,29	Corner-rounding milling cutters 167
chords for dividing circumference of 25	Corrosion 296–298
circumference 3,29	types of 296
diameter 3,29	protection 296
geometry of 12	Counterbores 132
lengths of chords for dividing 25	Countersunk head
Circular	screws 102
pitch gears, diameters of 249	screws, British Standard 119-121
ring, area 4	CPVC plastics 280
ring sector, area 4	Cross section lining, ANSI Standard for
sector segment 25	drawings 283
Circular sector	Cutter
angles 3	clearance angles 163
area 3	compensation, NC 188-191
length of arc 3	grinding 162–164
Circular segment	rake angles 163
angles 4	tooth rest positions 164
area 4	wheels for sharpening milling
length of arc 4	cutters 162–163

Cutters	Cutting speeds and feeds (continue	d)
angular, milling 161-162	reaming	
milling 161-170	copper alloys 151	
milling, steels for 263-264	ferrous cast metals 146	
Woodruff keyseat 172	light metals 149	
Cutting	plain carbon and alloy steels 144-14	.5
abrasive 241	stainless steels 147	
fluids 122	superalloys 150	
chlorinated oils 123	tool steels 148	
mineral oil 122	rpm for different speeds and	
selection 122-123	diameters 156-160	
sulfurized oils 123	tool angles 183–184	
various alloys 122–123	tool inserts 192	
tools 183–187	tool life, adjusting factors 152	
Cutting speeds and feeds 155–160	turning	
cutting speed calculations 152	copper alloys 151	
cutting tool materials 263–269	ferrous cast metals 146	
drilling	light metals 149	
copper alloys 151	plain carbon and alloy steels	
ferrous cast metals 146	144–145	
light metals 149	stainless steels 147	
plain carbon and alloy steels	superalloys 150	
144–145	titanium and titanium alloys 149	
stainless steels 147	tool steels 148	
superalloys 150	Cutting tools 183–187	
titanium and titanium alloys	angles 183–187	
149	application codes, ISO 192	
tool steels 148	carbide grade selection 192	
equivalent	cemented carbides 192	
rpm for given cutting speed	grades 192	
155–160	inserts 188	
rpm for given drill sizes and	single point 183–184	
speed 155	specifications, ISO 192	
formulas for 152	troubleshooting checklist 199–200	
milling		
feeds for high-speed steel cutters		
153		
ferrous cast metals 146	D	
light metals 149	Datum referencing 286–288	
plain carbon and alloy steels 144	Decimal equivalents	
stainless steels 147	cube roots 27	
superalloys 150	cubes 27	
tool steels 148	logarithms of fractions 27	
1001310013 170	logarithms of fractions 27	

Decimal equivalents	(continued)	D imensions of plane figures (continued)		
square roots 27	(sector of a circle 3		
squares 27		sector of a circular ring 4		
Density, metals 278–279		segment of a circle 4		
Diameters of circles of equal are	·a 9	spandrel 5		
Diametral	, u	square 1		
equivalent circular pitch and	tooth	trapezium 2		
proportions 255	toour	trapezoid 2		
equivalent modules 255		Dimensioning and tolerancing,		
pitch, gear teeth sizes 246–2	248	geometric 286		
Diamond	240	Double angle milling cutters 161		
grinding wheels 160, 236, 2	38	Dovetail slides, measuring 43–44		
wheels 160, 235–244	.56	D owel pins 104–105, 108		
designation symbols 23:	5 229	designation 105		
diamond concentration		hardened ground production 105		
grades, grit sizes 243	243-244	metric 108		
modifications 237		shear strength 105		
selection of 238		Drawing and drafting practices 282–288		
shapes of standard 235–	226	ANSI/ASME Standard line		
speeds and feeds 160	230	conventions 282		
Die blocks, steels for 261				
,		line conventions 282		
Dies and taps		symbols		
tap drill size 141–143		ANSI/ASME Standard section		
metric 143		lining 283		
Unified 141–142		datum referencing 286–288		
Dies, sheet metal		geometric 284		
heat treatment, steels for 26		ISO 285		
steels for various classes of o		lines 282		
Dimensions of plane figures 1–	6	materials 283		
acute triangle 2		surface texture symbols 289 –293		
circle 3		D rill, sizes for tapping 141–143		
circular ring 4		Drilling		
cycloid 4		cutting speeds for		
ellipse 5		copper alloys 151		
fillet 5		ferrous cast metals 146		
hyperbola 6		light metals 149		
obtuse triangle 2		plain carbon and alloy steels		
parabola 5		144–145		
parallelogram 1		stainless steels 147		
rectangle 1		superalloys 150		
regular hexagon 3		titanium and titanium alloys 149		
regular octagon 3		tool steels 148		
right triangle 1		difficulties 129		

Drills Flat angle of cutting point 124 head cap screws 102 combined drills and countersinks Forced fits, allowances 310 Format 129 classification 204 counterbore sizes 101 cutting speeds and equivalent rpm detail, NC 204 word address, NC 204 155 Formulas 1 4 1 diameters of tap 141-143 for taper pin reamers 107 compound angles 24 geometrical 1-6 length of point 131 sharpening 242 trigonometric 16 straight-shank drill sizes 125-128 tap and clearance hole sizes 142 Drop-forging dies, steels for 263–264 G Duranickel, machining 195-196 Gage blocks, precision 43 inch sizes 43 E-FGagemakers tolerances 324-325 Gages usage, ANSI/ASME Standard 324 Ellipse Galvanic compatibility 297 area 5 Galvanic series 298 perimeter 5 G-code programming, NC 204–208 End mills, ANSI/ASME Standard Gear tooth caliper, vernier 256-257 169 Gearing 246-254 Expansion coefficient of (linear) metals calculating spur gears 248 278-279 chordal measurement of teeth 250-251. Feet per minute into rpm 155 Fiberglass 280 geometry of gear teeth 246 Fits, cylindrical measuring 256-257 allowances and tolerances module system 252-255 299-325 Geometric symbols for drawings. See ANSI/ASME Standard 299-325 Drawing and drafting practices British Standard 325

Geometrical

formulas 1-6 propositions 10-14

Geometrical dimensioning and

tolerancing 286

German standard gear tooth form 252

Gib head keys 176

Grade identification marks 95

Grade markings on bolts and nuts

ASTM and SAE 95

inch 95

Copyright 2020, Industrial Press, Inc.

graphical representation 303

tolerances designation 313

clearance 303

definitions 312

preferred series 299

shrinkage 303,310

transition 303,308

forced 310

running 303

Fits and limits

ebooks.industrialpress.com

G	G	
Greek letters 341	Grinding wheel	(continued)
Grinders, safety for 209	material	
Grinding 209–238	brass 218	
abrasives 217	chrome plating 219	
carbide tools 242,244	copper 220	
chip breakers 245	copper alloys 220	
diagram 213	cutlery 220	
diamond wheel 160, 236–244	cylinders 220	
milling cutters 162–163	die forging 220	
silicon carbide wheels 243 surface 214–216	dies 220	
	drills	
tools, carbide 242, 244	manufacturing 220	
wheel safety 209	resharpening 220	
handling 209	ductile iron 221	
portable grinders 212	fasteners 221	
storage 209	forgings 221	
wheels 209–238	gages	
abrasive materials for 217	plug 221	
CBN 217	ring 221	
faces, shapes of 234	thread 221	
markings, standard 217	gears, hardened steel 22	1
mounted wheels and points	Hastelloy 221	
239–241	Inconel 221	
shapes and sizes, standard	jet blades 222	
228–233	lapping 222	
wheel markings 217 Grinding wheel	lawn mowers 222	
characteristics	Lucite 222	
bars 218–227	magnesium alloys 222	
centerless	malleable castings 222	
hard 218–227	minerals—lapidary 222	
soft 218–227	molybdenum 222	
cylindrical 218–227	Monel 222	
floor stands 218–227	Ni Hard 223	
internal 218–227	nickel-based superalloys	222
mounted wheels 218–227	nickel plate, rods, and ba	
offhand 218–227	Nitralloy 223	
portable grinders 218–227	pipe 223	
surfacing	pistons 223	
segments 218–227	rotors 224	
straight wheel 218–227	rubber hard 224	
material	rubber soft 224	
alnico 218	scissors and shears 224	
aluminum 218	shafts 224	
atuffillulli 210	SHAITS 224	

INDEX

Grinding wheel (continued) Honing process, carbide tools 245 material Horsepower equivalents 331 shear blades 224 Hot-working, tool steels for 266 spline shafts 225 HSLA steels 260 steel 225 steel castings 225 steel forgings 225 I-K stellite 226 tappets 226 Identities, trigonometric 16 taps 226 tantalum 226 Inch, decimals of, into millimeters 333-337 titanium 226-227 Inch, fractional, into decimals 338 G-word, NC 205 Inches into centimeters and millimeters 333 Indexable H carbide inserts 184 insert holders, NC 186-190 Hard rubber, machining 196 inserts, single-point tools 184-187 Hardened ground machine dowel Insert holders for NC 188-190 pins 104 Insert-radius compensation, NC 191 Hardmetals 192 Inserts, hardmetal materials 192 ISO classifications 192 Inserts, indexable 184-190 Hardness Inspection methods testing 272-274 grinding wheels 209 Brinell 272-274 using sine-bars 30-32 diamond pyramid 272 ISO Standard, tapping drills for 143 Hultgren ball 272 Jarno taper 51–52 Rockwell 272-274 Jig boring equally spaced holes 26 Shore scleroscope 272 Keys and keyseats ANSI/ASME Standard 171-179 Vickers 272 tool steels 266-268 depths for milling keyseats Hastelloy 150, 221, 278 173-177 Heat treatment fitting 175 steel 270 gib-head keys 176 steel quenching 270 key fitting 175 Helical gearing chordal thickness and keyseat milling cutters, Woodruff addendum 250 High-speed steels 265, 267 keyseats, depth of 173-177 molybdenum 265 parallel 173-176 tungsten 267 plain 176 High-strength, low-alloy (HSLA) size versus shaft diameter 170 steels 260 taper 173-175 Holders for NC, insert 188–190 Woodruff 178-179

Machining

L

Lapping carbide tools 244 Lapping lubricants 242 Law of cosines 16 Law of sines 16 Lead angles of cutting tools 183-190 Letter addresses, NC 207 Light metals, speeds for drilling, reaming, turning, and milling 149 Limits and fits cylindrical fits 299-312 definitions 312 gages, plain 324 graphical representation 303 holes and shafts 318 metric 312-323 preferred metric 312-325 tolerance designation 313 Line, geometry of 12 Line of action, gearing 246 Linear expansion metals 278-279 Liquid crystal polymers 280 Lubricants cutting 122 gasoline 242 kerosene 242 lapping 242 lard oil 242 machine oil 242

M

Machine screw taps 135
Machine screws
BSW and BSF 119, 121
British Metric 119
British Unified 118–119
tap and clearance drills 142
tap drill sizes 142
taps for 135

soda water 242

aluminum 193 copper alloys 196 hard rubber 196 magnesium 194–195 Monel and nickel alloys 195–196 nonferrous metals 193–196 zinc alloy die castings 195 Machining processes effect on surface roughness 295 tolerance grade relationships 300, 325

cutting fluids for 194–195 machining 194–195 **M**-codes (M-words), NC 208

Magnesium allovs

Measurement of angles and tapers 40

Measuring angles with sine-bar 30–39 dovetail slides 43

instruments and gaging methods 30,41,43,289,293 radius or arc, over rolls 44

surface roughness 295 tapers 32,40–42

gear size 257

threads buttress 47

by screw thread gage 46–47 by three-wire method 47

V-shaped groove, over pins 44

Mechanical properties bolts and screws 95

steel 261

 \mathbf{M} elting points, various metals

278-279

Metal

bonded grinding wheels 243 melting points 278–279 specific gravity and properties 278–279 See also specific metals

Copyright 2020, Industrial Press, Inc.

Metric Milling cutters (continued) conversion factors 326-339 steels for 263-264 tables 333-337 terminology 161 dimensions on drawings 291 Milling machine dowel pins, British Standard 108 spindle noses 54-55 equivalents 326-339 tapers for 54 fasteners, ANSI/ASME 98 tool shanks 57 ISO limits and fits 325 V-flange, NC 58-59 module, gear cutter teeth 252-255 Miscellaneous functions (M-words), Metric screw threads NC 208 design profile 84 fundamental deviation 84 Module system of gear teeth 252–255 limiting dimensions 86 Molds, steels for permanent 269 limiting profile 84 Molvbdenum steels major diameter 60,84 AISI-SAE 260 minor diameter 60,84 high-speed 265 M-profile 84 Monel metals, machining 195-196 pitch diameter 60 Morse tapers 49-53 profile 84 stub taper shanks 50 sharp V-thread 61 Mounted wheels and points 239-241 thread class 60 M-words, NC 208 Millimeters decimals of an inch, into 334-335 hundreds of, into inches 333 inches into 333 N into inches 336-338 Milling, feeds for high-speed steel NC programming 204-208 cutters 153 Nickel, melting point 278 Milling cutters 161–172 Nickel alloys, machining 195-196 angle 161 Nitinol, machining 195-196 arbor keys and keyways 171 corner rounding 167 Nonferrous alloys, machining 193-196 double angle 161 Numbering systems for steel 260 elements of 161 Numerical control, NC. end mills 169 addresses, letter 207 grinding or sharpening 162-163 block 204, 207 keys and keyways for 171 cutter compensation 188-191 rake angles 163 cutter location data 204 setting angles for milling teeth in 163 G-code addresses 205 single angle 161 insert holders for NC 188, 191 spline shaft 162 standard 161-172 insert-radius compensation 191

Numerical control, NC Pin method for checking (continued) letter addresses 207 V-shaped grooves 44 miscellaneous functions (M-Words) Pins 208 dowel 104-105, 108 part programming 204 spring 109-110 postprocessor 204 straight 106 preparatory word 205 taper 106-107 programming NC 191, 204-208 Pipe and pipe fittings tooling 188-191 dryseal taper 82 V-flange tool shanks 58-59 taps, dimensions Nut taps 135 British Standard 143 Nuts straight 135 ANSI/ASME, inch dimensions, taper 135 T-type 111 threads, American National Standard 82 British Standard Pitch fine 121 broach teeth 180-181 metric 119 circular, of gears 248 Unified 120 diameters, gears Whitworth 121 method of checking 258 wrench clearances 113 pitch 221, 246-249 wrench openings 112 spur 248-249 Nylon 280 diameters, thread M profile 86 diameters, thread checking 46 O-Pdiameters, threads, Unified 64 diametral, of gears 248 gear 248 Oils and compounds, machining 122, Plastics materials 280 193-196 Plastics properties mineral 122 elasticity 281 sulfurized and chlorinated 122 safety 281 Online resources 345 support 281 Open-end wrench clearances 112 thermal expansion 281 Parabola, length of arc 5 Plastics work Parallel steel dowel pins 108 cutting off 281 Parallelogram, geometry of 12 drilling 281 Pearlite 270 milling 281 PEEK plastics 280 Permanickel, machining 195-196 sawing 281 PET plastics 280 tapping and threading 281 Phenolic plastics 280 turning 281

Poise 332 Rake angles, turning tool 183 Polycarbonate plastics 280 Rapid solutions of triangles 20 Polygon See also Solutions of triangles Reamer difficulties, causes, and area 6 solutions 134 radii 6 Reamers length of side 6 drills for taper pin 107 Polypropylene plastics 280 steels for 263-264 Polystyrene plastics 280 taper pin reamers, drills for 106-107 Polysulfone plastics 280 Reaming, cutting speeds for Polyurethane plastics 280 copper alloys 151 Postprocessor, NC 204 ferrous cast metals 146 Precision gage blocks 43 light metals 149 Preferred plain carbon and alloy steels 144 basic sizes ANSI/ASME Standard 313 stainless steels 147 fits, ANSI/ASME Standard 313-314 tool steels 148 hole basis metric fits 313-323 Relationships among angles 16 metric sizes, ANSI/ASME Resinoid bonded wheels 243 Standard 312-313 Retention knobs, V-flange tool shanks 59 series for tolerances and allowances 299 Rockwell hardness test 272-274 shaft basis metric fits 315-323 Rockwell-Brinell hardness conversion Preparatory word (G-word), NC 204-206 tables 272-274 Pressure angle, gearing 246 Roughness Pressure unit conversion 331 control of 289-294 Programming cutoff 290 G-code 205-208 symbols indicating degree of 294 numerical control 205-208 Round head machine screws 119 Properties of materials Rpm for various cutting speeds and standard steels 259-260 diameters thermal 278-279 inch units 156-157 tool steels 261-269 metric units 158-159 PTFE plastics 280 Rpm for various grinding speeds and Pulleys (sheaves) speeds, rpm into feet per diameters 211 minute 156 Running fits, allowances 304–305 Punches and dies, steel for 263-264 PVC plastics 280 PVDF plastics 280 SAE Standards

R

Rack gear 247 Radius of arc, checking 44 steel specification numbers 260 threads, spark plugs 94 See also standards data and tables throughout book

SAE steels	Screws
compositions 260	British Standard inch 119-121
numbering system for 260	British Standard Whitworth 121
Scleroscope 272	British Unified 120
Screw machines drills 125–128	cap 97, 100-101
Screw threads and systems 60–81,	grade markings for steel 95
84–86	set 99
ANSI/ASME M-profile 84–93	tap drills 141–143
allowances 85	Unified Standard 120
basic profile 84	See also Screw threads and systems
•	Section lining, standard for drawings 283
coarse pitch 84	Segments of circles 7–8
crest and root form 84	Set screws
design profile, M series 84	American National Standard 99
limits of size 86	fluted socket type 99
tolerance grades 85	hexagon socket type 99
ANSI Unified 61–63	spline socket type 99
standard series, tables of	Shafts, allowances and tolerances for
64–72	fits 300
classes of tolerance 61-62	Shanks, taper 49–53
limits	Shapes of grinding wheels 228–233
Class 2A and 2B 65	Shapes of mounted wheels and points
Class 3A and 3B 65	239–241
measuring 46	Sharpening
metric series threads	carbide tools 242
ANSI M profile 84–86	drills 124
pipe, taper 82	Shears, steel for hot-working 266 Shock 269
tap drill sizes 141–143	Shore scleroscope 272
Unified	Shrink fits 303,310
allowances 61-62,65	Sides of squares of equal area 9
coarse thread series 60-63	Signs of trigonometric functions 15
coated 61-62	Silicon carbide grinding wheels 243
crest clearances 61-62	Sine-bar
designation of threads 61,65	checking angle of templet 31
dimensions 65	checking taper per foot 31
fine and extra-fine series 63	finding angle when height is known 31
limits 61–62,65	gage 31
thread classes 61–62	measuring angle of templet 31
tolerances 61–62	setting to a given angle 31
wire method of checking 46–47	10-inch 31
	use of 30,32
Screw threads, wires for measuring 45	Single-angle milling cutters 161

C:1:	Speeds and feeds, machining (continued)
Single-point cutting tools 183–185	
chipbreakers 184	grinding with diamond wheels 160 milling
definitions and terms 183	ferrous cast metals 146
indexable inserts 184–187	
insert toolholders 186–190	light metals 149
lead angles 183	plain carbon and alloy steels 144
nose radius 183	stainless steels 147
numerical control tool compensation	superalloys 150
191	tool steels 148
side cutting edge angles 183	nonferrous metals 193-196
tool contour 183	reaming
Sleeves, Morse taper 51	copper alloys 151
Socket	ferrous cast metals 146
head, screw type	light metals 149
cap 97–103	plain carbon and alloy steels 144
drill and counterbore sizes for 100	stainless steels 147
keys and bits for 96	superalloys 150
set 87	tool steels 148
taper shank 49–53	surface grinding 215-216
wrench clearances 113	tool life, adjusting factors 152
	turning
Solutions of triangles	copper alloys 151
oblique 19,20	ferrous cast metals 146
right 18,20	light metals 149
Spacing holes on jig borer 26	plain carbon and alloy steels 144
Spandrel or fillet area 5	stainless steels 147
Speeds	superalloys 150
calculating cutting speeds 155–160	titanium and titanium alloys 149
rpm for different diameters and cutting	tool steels 148
speeds 155–160	Spindle noses 54–56
Speeds and feeds, machining	Splines, involute
cutting 155-160	milling 162
drilling	socket keys and bits 96
copper alloys 151	Spring pins 109–110
ferrous cast metals 146	coiled type 110
light metals 149	Spur gearing 246–251
plain carbon and alloy steels 144	American National Standard tooth
stainless steels 147	forms 247
superalloys 150	caliper measurement of tooth 256
titanium and titanium alloys 149	checking gear size 256–258
tool steels 148	chordal addenda and thicknesses for
drilling and cutting rpm 155-160	milled full-depth teeth 250-251

Spur gearing	(continued)	Standard steels 259–260		
chordal addendum measuren	nent	classification of tool steels 259-260,		
256–258		261–262		
chordal thickness 250-251		Steel		
circular pitch system 249		AISI-SAE compositions 260		
composite teeth 247-248		AISI-SAE specification numbers 260 carbon steel structure 270		
diametral pitch 246				
dimensions, formulas for 24	8	compositions for tools 269 compositions of AISI-SAE 260		
full-depth, teeth 247, 251		heat treatment 270		
gear milling cutters, series of	251	high-speed 259		
gear tooth parts 247-248		high-strength, low-alloy 260		
checking 257–258		hot-working, for dies, shears 266		
German standard tooth form	252	manganese, compositions 260		
measurement of tooth with ca	aliper	molybdenum, high-speed 265		
256	•	molybdenum compositions 260		
module system 252-255		molybdenum nickel 260		
outside and root diameters 2	49	molybdenum nickel-chromium 260 numbering systems for 260		
pitch diameters, tabulated 24	19	properties of heat-treated 261		
pressure angles 246, 248		stainless 259		
root and outside diameters 2	49	taps 263-264		
tooth forms and dimensions	247	tool 259–269		
tooth thickness measurement	247, 251,	tool and die 261-262		
258		tools of different types 263-264		
Standard fits 301-302		tungsten		
basic shaft 302		compositions 267		
bilateral hole 302		high-speed 267 Stoke 332		
close running 301		Straight pins 106		
close sliding 301		Stub tooth gearing 247		
force or shrink 302		former American Standard 247		
free running 301		outside and root diameters 248		
heavy drive 302		Superalloys, speeds for drilling, turning, and		
light drive 302		milling 150		
locational clearance 301		Surface		
locational interference 302		grinding 214–216		
locational transitional 301		common faults and possible causes		
loose running 301		in 216		
medium drive 302		principal systems 214 process data for 215		
medium running 301		selection of grinding wheels		
precision running 301		for 214–234		
running and sliding clearance	e 301	roughness 294,295		

Surface	(continued)
speeds, diameters and rpm	T
cutting speeds formula	
155–160	Tap dimensions
grinding wheels 211	cut thread 135, 136
texture	ground thread 135,136
applying symbols 289–2	Tap drill diameters 141–143
drawing practices for syn	nbols cold form tapping 143
289	machine screw sizes 142
S ymbols	Tap drill sizes 141
ANSI Y14.2M-1979, R1987	Taper pins, standard 107
applying surface texture	drills for 107
290-294	pipe threads 82–83
ASME Y14.5-2018 284	Tapers
between 284	applications of standard 49
concentricity 285	Brown & Sharpe 53
controlled radius 284	Jarno 52
diameter 284	keys 173–175
diamond wheel marking 235	-
drawing practices for surface	
289–290	measuring with V-block and sine-
geometric 284-288	bar 32
grinding wheel markings 21	7 milling machine spindles, arbors, and
lines for drawings 282	spindle noses 54–56
parallelism 284	Morse 49–51
perpendicularity 284	per foot and corresponding angles 41
runout 284	rules for figuring 40
section lining	Tapping
aluminum 283	alloys 138
bronze 283	aluminum 138
cast and malleable iron 2	brass 138
earth 283	bronze 138
insulation 283	copper 138
magnesium 283	high speed 139
rock 283	cast 138
sand 283	ductile 138
steel 283	malleable 138
white metal 283	nodular 138
statistical tolerance 284	magnesium 138
surface profile 284	Monel metal 138
surface texture 289–293	plastics 139
total runout 284	rubber 139

Tapping	(continued)	Three-wire method	(continued)
steel		helix angle 45	
high speed 139		lead angle 45	
molybdenum 139		measuring pitch diameter	48
stainless 139		inch screws 48	
titanium 139		metric screws 48	
Tapping and thread cutting		thread angle 45	
141–143		Titanium and titanium alloys,	speeds for
British Standard drill sizes	143	turning and drilling 1	49
cold form 143		Titanium carbides as cutting to	ool
tap drills		materials 192	
clearance drills for mach	ine	T-nuts, ANSI/ASME Standard	1 111
screws 142	_	Tolerance grades, relative to m	
for American form threa 141–142	ds	processes 300,325	g
for ISO metric threads	43	Tolerances	
Taps		ANSI/ASME Standard 30	0
hand, types of 135		symbols 284	
nut 135		cylindrical fits 299-325	
pipe 135		designation of limits and fit	ts 313
pulley 135		indicating on drawings 286	6
spiral pointed 135		keys and keyways 176, 17	8
types of 135		obtainable by various opera	ations
Teflon 280		300	
Temperature		preferred series of 299	
critical, heat treating of stee	1 270	relationship to surface roug	hness
melting point, metals 278-2	279	295	
Thermal		symbols 284	
conductivity 278-279		taps 135	
expansion coefficients		Tolerancing and geometric	
278–279		dimensioning 286	
Thread dimensions, spark plugs	s 94	Tool	
Threads and threading		compensation, NC 191	
ANSI/ASME Standard M p	rofile thread	contour, cutting tools 183	
data 87		grinding, angles 183–184	
limiting dimensions 88		holders 186–187	
pipe taper 83		indexable inserts 184–190	1
Three-wire measurement of scr	ew	materials 192	
threads 47–48		NC machines 188–191	
Three-wire method		nose radius compensation,	NC 101
buttress threads 47		shanks. ANSI/ASME Stand	
formulas for checking pitch		,	Jaiu IOF
diameter 45		milling machines 57	

INDEX

Tool (continued) Turning sharpening built-up edge 198 carbide tools 242 chip hammering 198 grinding wheels 242, 244 crater wear 197 grinding wheels for 243-244 cutting speeds for twist drills 124, 242 copper alloys 151 single point 183-184 ferrous cast metals 146 steels 259 light metals 149 air hardening 268 plain carbon and alloy steels carbon 261 144-145 chromium types 266 stainless steels 147 classification of 259-262 superalloys 150 faults and failures, common 201 titanium and titanium alloys 149 hot-work 266 tool steels 148 mold 269 flank and notch wear 197 molybdenum types 265 frittering 198 oil hardening 268 selection of 263-264 grinding tools for 183-184 shock resisting 269 insert breakage 199 special purpose 269 problems, causes, and remedies 197 tungsten types 267 slice fracture 199 Tool life, adjusting factors 152 thermal crack 198 Tool steels, speeds for drilling, reaming, Turning, cutting feeds and speeds for copper turning, and milling 148 alloys 151 Tool troubleshooting 199-203 Twist drill 125-130 Tooling, carbide 192 equivalent of gage or letter size 125 Tooth rest position, milling cutter grinding (sharpening) 124 grinding 164 Triangle, geometry of 10 Triangles solution 18-20 Trigonometric II-Vformulas 16 functions and identities 15.16 Unified internal and external thread 63 relationships 15 Unified screw thread standard 64-72 Troubleshooting Useful online resources 345 broaching 182 Velocity converting to rpm 155–160 tools 199-203 V-flange tool shanks and retention Tungsten carbide tools, grinding knobs 58-59 243-244 Vickers hardness 272 Tungsten steels 267 Vitrified bonded wheels 243 compositions 262 tool steels 267 V-shaped groove, checking by pins 44

Websites, list of useful 345 Weights and measures 326-339 Weights of carbon bar steel hexagonal shape 276-277 octagonal shape 276-277 round shape 276-277 square shape 276-277 Weights of various metals aluminum 275 beryllium 275 brass 275 cast iron 275 copper 275 gold 275 lead 275 magnesium 275 molybdenum 275 Monel 275 nickel 275 silver 275 steel 275 tantalum 275 tin 275 titanium 275 tungsten 275 zinc 275

zirconium 275

Weights of various shapes flat shape 275 hexagon shape 275 octagon shape 275 round shape 275 round tubing 275 square shape 275 Weldon shanks, dimensions of 169 Wheels abrasive cutting 241 diamond 160, 209-245 grinding 160, 209-238 silicon carbide 243 Whitworth standard screws 121 Wire checking screw threads 46 buttress threads 47 Woodruff key 177-179 number 177 seat 177 seat milling cutter 177 Woodruff keyseat cutters 172 Word address format, NC 204, 208 Wrench clearances box wrenches 117 open-end wrenches 112 socket wrenches 113 spacing of bolts 112-113 Wrench openings, ANSI/ASME Standard 112