描述

AT8313提供三路可独立控制的半H桥驱动,每个半H桥可输出2.5A峰值电流或1.75A均方根(RMS)电流,可驱动一个三相直流无刷电机,也可用来驱动螺线管等其它感性负载。每个半H桥输出驱动级由两个N型功率MOSFET组成,其接地端子可外接检流电阻以检测输出电流值。

AT8313提供一个通用比较器,可用于限制输出电流。

内部关断功能包含过流保护,短路保护,欠压锁定保护和过温 保护,并提供一个故障检测输出管脚。

AT8313提供两种贴片封装,并都带有裸露的散热焊盘,能有效改善散热性能,一种是QFN36(6mm×6mm),另一种是ETSSOP28 (9.7mm×4.4mm)。两种封装均为无铅封装,符合环保标准。

应用

- HVAC 电机
- 消费类产品
- 办公自动化设备
- 工厂自动化
- 机器人

型号选择

订货型号	封装	包装
AT8313QNR	QFN6*6-36	编带,5000颗/盘
AT8313TPN	ETSSOP28	编带,3000颗/盘

特点

- ●三个半H桥电机驱动器
- ●驱动三相直流无刷电机 (BLDC)
- 独立半桥控制
- •三个独立用于电流检测的接地引脚
- ●低R_{DS(ON)}电阻, 0.45Ω(HS+LS)
- ●2.5A驱动输出
- ●宽电压供电,8V-35V
- ●一个通用比较器用来限流
- ●内置3.3V 10mA参考电压输出
- ●过温保护
- ●短路保护
- ●欠压锁定保护

封装形式

ETSSOP28

QFN36

典型应用原理图

版本更新记录

日期	版本	内容
2020.03	V1.0	初始版本
2020.05	V1.1	1. 更新工作电压上限;
		2. 更新工作温度上限;
		3. 更新包装尺寸。

管脚定义

TOP VIEW

管脚列表

管脚名 管脚序号			管脚描述	 外部元件与连接			
百四石	ETSSOP	QFN	首 牌 细 处	外部儿件与连接 			
电源与地							
GND	14、20、 28	3、17、20、 23、24、30、 31、32	芯片地	所有GND管脚和芯片裸焊盘需接到系统地			
VM	4、11	9、19	功率电源	所有VM管脚需接在一起,且做好电源滤波			
V3P3	15	25	3.3V整流输出	外接0.47uF电容到地做滤波			
CP1	1	5	山共石	两管脚间加0.01uF电容			
CP2	2	6	电荷泵	网官脚间加U.UIUF电谷			
VCP	3	7	电荷泵	外接0.1uF电容到VM			
			控制输入				
EN1	26	1					
EN2	24	35	使能控制输入	逻辑高电平,半H桥使能输出;逻辑低电平,半H桥输出关 闭;内置下拉电阻			
EN3	22	33		N; N且「拉屯田			
IN1	27	2					
IN2	25	36	通道控制输入	逻辑高电平,半H桥输出高;逻辑低电平,半H桥输出低;			
IN3	23	34		内置下拉电阻			

杭州中科徽电子有限公司

	פעוור ו ויקטער						
nSLEEP	17	27	休眠模式输入	逻辑高电平,芯片正常工作;逻辑低电平,芯片进入休眠模式。内置下拉电阻			
nRESET	16	26	复位输入	逻辑高电平,芯片正常工作;逻辑低电平,芯片进入复位状态。内置下拉电阻			
			状态指示	ਨ			
nFAULT	18	28	故障检测指示输出	开漏输出,若使用需外接上拉电阻。当出现过温、过流或 欠压时,输出低电平			
输出							
PGND1	6	11					
PGND2	7	12	半H桥低侧FET源端	直接接地或者接检流电阻到地			
PGND3	10	16					
OUT1	5	10					
OUT2	8	13	半H桥输出	接负载			
OUT3	9	15					
			比较器				
COMPP	12	21	比较器正端输入				
COMPN	13	22	比较器负端输入	内部比较器输入			
nCOMPO	19	29	比较器输出	内部比较器输出,开漏输出,外部需接上拉电阻			
NC	21	4、8、14、		悬空或接地			

功能模块框图

电路工作极限 at TA = 25°C

参数	符号	测试条件	范围	单位
功率电源	VM		-0.3 – 38	V
输出电流	I _{OUT}		±2.5	A
输出峰值电流	Іреак	I _{PEAK} 内部限制 >3		A
逻辑输入电压	V _{IN}		-0.3 to 7	V
半桥地端电压	PGNDx	PGNDx		V
工作温度	T_{A}		-40 to 125	°C
最大结温	T _J (max)		150	°C
储藏温度	T _{stg}		-55 to 150	°C

热阻特性 at T_A = 25°C

热计量	QFN	ETSSOP	单位	
2007年	36PINS	28PINS	平世	
θ _{JA} - 硅核到环境的热阻系数 ^(*)	31	33	°C/W	

(*) 自然对流条件下硅核到环境的热阻系数是通过在 JESD51-7 中所指定的 JEDEC 标准高 K 值电路板上进行实际测试获得,环境条件如 JESD51-2a 中所述。

推荐工作条件 at TA = 25°C

参数	符号	最小	典型	最大	单位
功率电源(1)	VM	8	-	35	V
逻辑输入电压	V _{IN}	0	-	5.25	V
连续输出电流(2)	I _{OUT}	0	-	2.0	A
ENx、INx PWM 信号	fрwм	0	-	250	kHz
PGNDx 管脚电压	Vpgnd	-500	-	500	mV
V3P3 负载电流	Iv3P3	0	-	10	mA

- (1) 所有VM管脚必须连接到同一个供电电源。
- (2) 芯片大电流工作时,做好芯片散热。

电气特性 at T_A = 25°C, VM= 24 V

参数		测试条件	最小	典型	最大	单位
电源供电	3					
I_{VM}	VM 静态工作电流	f _{PWM} < 50 kHz	-	3	5	mA
I_{VMQ}	VM 休眠电流	nSLEEP = 0 V	-	350	800	uA
V_{UVLO}	VM 欠压锁定值	VM 上升	-	6.5	8	V
内部整洲	范器(V3P3)					
V3P3	3.3V 整流	$I_{OUT} = 0$ to 10 mA	3.1	3.3	3.5	V
逻辑输入						
V_{IL}	逻辑输入低电压		-	0.6	0.7	V
$V_{ m IH}$	逻辑输入高电压		2.2	-	5.25	V
V_{HYS}	逻辑输入迟滞		50	-	600	mV
$I_{\rm IL}$	逻辑输入电流_低电平	VIN = 0 V	-2	-	2	uA
I _{IH}	逻辑输入电流_高电平	VIN = 3.3 V	-	33	100	uA
R _{PD}	输入内部下拉电阻		-	100	-	kΩ
nFAULT	Γ、COMPO 输出 (开漏输出)					
Vol	输出低电平	$I_{\rm O} = 5 \text{ mA}$	-	-	0.5	V
Іон	输出高电平漏电流	$V_0 = 3.3 \text{ V}$	-	-	1	uA
比较器	(COMPP, COMPN, COMPO)		·			
Vcm	输入共模电压范围		0	-	4	V
Vio	输入失调电压		-10	-	10	mV
IIB	输入偏置电流		-1	-	1	uA
tr	响应时间	100mV step with 10mV overdrive	-	-	2	us
H 桥 FE	TS		•			
	高侧 FET 导通电阻	$I_{O} = 1A$, $T_{J} = 25^{\circ}C$	-	230	-	O
R _{DS(ON)}	低侧 FET 导通电阻	$I_{O} = 1A$, $T_{J} = 25^{\circ}C$	-	220	-	mΩ
I_{OFF}	输出关断漏电流		-2	-	2	uA
保护电路	<u> </u>					
I_{OCP}	过流峰值		3	-	-	A

杭州中科微电子有限公司

2.5A 三路半桥集成驱动芯片

$t_{ m DEG}$	OCP 防抖动延时		-	5	-	us	
t_{TSD}	过温阈值	结温	150	170	180	°C	
t _{HYS}	过温迟滞		-	45	-	°C	
休眠模式	休眠模式						
t _{WAKE}	休眠唤醒时间	nSLEEP 上升到半 H 桥开启	-	500	1000	us	

动态时序

 $T_A = 25$ °C, VM = 24 V, $R_L = 20$ Ω

参数	测试条件	最小	典型	最大	单位
t_I 延时, ENx 升高到 OUTx 升高	INx = 1	100	-	300	ns
t2 延时, ENx 降低到 OUTx 降低	INx = 1	175	-	375	ns
t3 延时,ENx 升高到 OUTx 降低	INx = 0	50	-	200	ns
t4 延时, ENx 降低到 OUTx 升高	INx = 0	100	-	300	ns
t5 延时, INx 升高到 OUTx 升高	ENx = 1	300	-	500	ns
t6 延时, INx 降低到 OUTx 降低	ENx = 1	275	-	475	ns
t_r 输出上升时间,接阻性负载到 GND		30	-	150	ns
t_f 输出下降时间,接阻性负载到 GND		30	-	150	ns
t_{DEAD} Output dead time		-	150	-	ns

模块功能描述

AT8313 集成三个独立的半 H 桥,提供 2.5A 的峰值输出,8V-35V 单电源供电。

输出级

AT8313包含三路半H桥驱动器,半H桥的下管MOSFET的S端为各自独立管脚(PGND1、PGND2、PGND3),这样就可接3个独立的检流电阻。用户也可将此3管脚连一起,通过一个检流电阻到地;如果不需要检流的话,此3个管脚直接接地。

如果使用检流电阻,请保证此 3 管脚(PGND1、PGND2、PGND3)的电压不超过±500mV。 AT8313 有两个 VM 管脚,请将这两管脚一起接到电机电源。

H 桥控制逻辑

输入管脚 INx 直接控制半 H 桥的输出状态 OUTx, ENx 控制半 H 桥的使能。

ENx	INx	OUTx
0	X	Z
1	1	Н
1	0	L

半 H 桥控制逻辑表

电荷泵

由于输出级使用 NMOS,所以驱动此器件需要一个比电机电源电压 VM 更高的栅极电压。AT8313 内置电荷泵电路,来产生此电压。

电荷泵电路需要外置两电容来实现功能。详见下原理图。

当 nSLEEP 管脚输入低电平,电荷泵电路是不工作的。

AT8313 电荷泵电路

比较器

AT8313 内置一个通用比较器,可用来限制输出电流。

下图给出了利用此比较器进行电流检测来限流的功能。采用一个检流电阻来检测流过 3 个半 H 桥下管的电流,此电阻上的电压与一个设定好的参考电平做比较,当检流电压超过设定值,一个限流指示信号输出给主控制器。内置的 3.3V 参考电压可用来生成此比较器的参考电平。

比较器用作电流检测

nSLEEP、nRESET 输入逻辑

nRESET 管脚输入低电平时,芯片复位内部逻辑,同时禁止半 H 桥输出,所有逻辑输入被忽略。

nSLEEP 管脚输入为低电平时,器件将进入休眠模式,从而大大降低器件的功耗。进入休眠模式后,器件的 H 桥被禁止,电荷泵电路停止工作,同时内部所有时钟也是停止工作的,所有逻辑输入都被忽略。当其输入翻转 为高电平时,系统恢复到正常状态。为了保证内部电荷泵电压稳定建立,在 nSLEEP 恢复高电平并延时 1ms 后再进行正常操作。注意:休眠模式下,3.3V 整流电路仍是工作的。

保护电路

AT8313 有过流保护,过温保护和欠压保护。

过流保护 (OCP)

在每一个 MOSFET 上有一个限流电路,此电路检测流过 MOSFET 的电流。如果此电流达到过流阈值且维持时间超过 OCP 屏蔽时间,半 H 桥内所有 MOSFET 输出关断,nFAULT 管脚输出低电平。若要恢复正常工作,需 RESET 一下或者 SLEEP 一下或者重新上电。

半 H 桥上管和下管的过流条件是被独立检测的。对地短路,对 VM 短路,输出之间短路,都会触发过流关断。

过温保护 (TSD)

如果结温超过安全阈值,半 H 桥的 MOSFET 被禁止导通,nFAULT 管脚输出低电平。一旦结温降到一个安全水平,芯片会自动恢复正常。

欠压锁定保护(UVLO)

在任何时候,如果 VM 管脚上的电压降到低于欠压锁定阈值,内部所有电路会被禁止工作,全部进入复位。当 VM 上的电压上升到 UVLO 以上,所有功能自动恢复。当欠压情况出现时 nFAULT 管脚输出低电平。

电路应用信息

AT8313 可以驱动直流无刷电机、有刷直流电机或者其它感性负载。

直流无刷电机控制

直流无刷电机一般工作在一个确定的电压,例如 12V 或者 24V。对于获得相同的功率来说,工作电压越高,所需要的电流就相对越小。更高的工作电压也容易获得更高的转速。AT8313 推荐工作的最高电压为 35V。

一般来说,工作在相对低的电压,容易获得更精准的电流控制。AT8313 最低支持 8V 工作。

通过控制独立的 3 个半 H 桥,AT8313 可以实现梯形(120°)或者正弦(180°)输出。同时,AT8313 既可实现同步整流,也可异步整流。同步整流通过在 INx 加入 PWM 实现,异步整流在 ENx 加入 PWM 实现。

状态	OUT1 (PHASE U)		OUT2 (PHASE V)			OUT3 (PHASE W)			
1八心	IN1	EN1	OUT1	IN2	EN2	OUT2	IN3	EN3	OUT3
1	X	0	Z	1	1	Н	0	1	L
2	1	1	Н	X	0	Z	0	1	L
3	1	1	Н	0	1	L	X	0	Z
4	X	0	Z	0	1	L	1	1	Н
5	0	1	L	X	0	Z	1	1	Н
6	0	1	L	1	1	Н	X	0	Z
刹车	0	1	L	0	1	L	0	1	L
滑行	X	0	Z	X	0	Z	X	0	Z

梯形控制

带电流检测的直流无刷控制

在此示例中,当 COMPP 与 COMPN 出现相同电位时,COMPO 电平出现一个跳变。峰值电流按下公式计算:

$$I_{\mathit{TRIP}} = \frac{COMPN}{R_{\mathit{SENSE}}}$$

假设目标峰值电流为 2.5A,取 R_{SENSE} 为 200 $m\Omega$,这样,COMPN 的电压需设置为 0.5V。0.5V 从 V3P3 (3.3V) 分压,这样 R1 取 56k Ω , R2 取 10k Ω 。

SENSE 电阻的选用:

表面贴封装, 低感性, 足够的功率, 靠近芯片管脚摆放。

由于功率电阻体积大,且价格贵,另一种做法是采用3个小体积电阻并联来实现。

有刷电机和螺线管负载控制

EN1	IN1	EN2	IN2	OUT1	OUT2	功能
1	0	1	1	L	Н	反向
1	0	1	0	L	L	刹车 (低侧慢衰减)
1	1	1	1	Н	Н	高侧慢衰减
0	X	0	X	Z	Z	滑行

有刷电机控制真值表

三个螺线管负载

IN2	EN2	OUT2	功能
X	0	Z	关断 (滑行)
1	1	Н	刹车
0	1	L	开启

高侧负载控制

IN1	EN1	OUT1	功能
X	0	Z	关断 (滑行)
1	1	Н	开启
0	1	L	刹车

低侧负载控制

版图注意事项

PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

对电极电源 VM,应该连接不小于 47uF 的电解电容对地耦合,电容应尽可能的靠近器件摆放。

为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

地线设置

芯片所有的地线都应连接在一起,且连线还应改尽可能的短。一个位于器件下的星状发散的地线覆设,将 是一个优化的设计。

在覆设的地线下方增加一个铜散热片会更好的优化电路性能。

电流取样设置

为了减小因为地线上的寄生电阻引起的误差,马达电流的取样电阻 RS 接地的地线要单独设置,减小其他因素引起的误差。单独的地线最终要连接到星状分布的地线总线上,该连线要尽可能的短,对小阻值的 Rs,由于 Rs 上的压降 $V = I \times R_c$ 为 0.5V,PCB 上的连线压降与 0.2V 的电压将显得不可忽视,这一点要考虑进去。

PCB 尽量避免使用测试转接插座,测试插座的连接电阻可能会改变 Rs 的大小,对电路造成误差。Rs 值的选择遵循下列公式:

$$R_S = 0.5 / I_{TRIPmax}$$

热保护

当内部电路结温超过 170℃时,过温模块开始工作,关断内部所有驱动电路。过温保护电路只保护电路温度过高产生的问题,而不应对输出短路的情况产生影响。热关断的阈值窗口大小为 45℃。

PCB 版图示例

PCB 版图示例

编带料盘信息

Α0	料槽宽度			
В0	料槽长度			
K0	料槽厚度			
W	载带整体宽度			
P1	相邻槽中心间距			

编带 PIN1 方位象限分配

器件	封装 类型	封装 标识	管脚 数	SPQ	料盘 直径 (mm)	料盘 宽度 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限
AT8313QNR	QFN	QNR	36	5000	330	12	6.3	6.35	1.27	8	12	Q2
AT8313TPN	ETSSOP	TPN	28	3000	330	16	6.8	10.1	1.6	8	16	Q1

编带料盘包装尺寸

器件	封装类型	封装标识	管脚数	SPQ	长度(mm)	宽度(mm)	高度(mm)
AT8313QNR	QFN	QNR	36	5000	362	340	50
AT8313TPN	ETSSOP	TPN	28	3000	362	340	50

封装信息

ETSSOP28

<i>⁄</i> ∕⁄ □	毫米((mm)		
符号	最小	最大		
D	9.60	9.80		
D1	5.4	5.6		
Е	6.20	6.60		
E1	4.30	4.50		
E2	2.60	2.80		
А	-	1.20		
A1	0.05	0.15		
A2	0.80	1.00		
b	0.20	0.29		
С	0.13	0.18		
е	0.65((BSC)		
L	0.45	0.75		
Н	0.25(TYP)			
θ	0°	8°		

QFN36

BOTTOM VIEW

が ロ	毫米(mm)				
符号	MIN	MAX			
Α	0.70	0.80			
A1	0.00	0.05			
A2	0.203	(REF)			
D	5.95	6.05			
D2	4.05	4.25			
E	5.95	6.05			
E2	4.05	4.25			
b	0.20	0.30			
е	0.50(TYP)				
k	0.375(REF)				
L	0.50	0.60			