PAC-Bayesian Learning and Neural Networks The Binary Activated Case

Pascal Germain^{1,2}

joint work with Gaël Letarte³, Benjamin Guedj^{1,2,4}, François Laviolette³

¹ Inria Lille - Nord Europe (équipe-projet MODAL)

² Laboratoire Paul Painlevé (équipe Probabilités et Statistique)

³ Université Laval (équipe GRAAL) ⁴ University College London (CSML group)

51es Journées de Statistique de la SFdS (Nancy)

- PAC-Bayesian Learning
- 2 Standard Neural Networks
- **3** Binary Activated Neural Networks
 - One Layer (Linear predictor)
 - Two Layers (shallow)
 - More Layers (deep)
- Empirical results

- PAC-Bayesian Learning
- 2 Standard Neural Networks
- Binary Activated Neural Networks
 - One Layer (Linear predictor)
 - Two Layers (shallow)
 - More Layers (deep)
- 4 Empirical results

Setting

Assumption: Learning samples are generated *iid* by a data-distribution *D*.

$$S = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \} \sim D^n$$

Objective

Given a loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, find a predictor $f \in \mathcal{F}$ that minimizes the **generalization loss** on D:

$$\mathcal{L}_D(f) \coloneqq \mathop{\mathbf{E}}_{(x,y)\sim D} \ell(f(x),y)$$

Challenge

The learning algorithm has only access to the **empirical loss** on S

$$\widehat{\mathcal{L}}_{\mathcal{S}}(f) := \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

PAC-Bayesian Theory

Pioneered by

SHAWE-TAYLOR et WILLIAMSON (1997), McAllester (1999) et Catoni (2003), the PAC-Bayesian theory give **PAC** generalization guarantees to "**Bayesian** like" algorithms.

PAC guarantees (Probably Approximately Correct)

With probability at least " $1-\delta$ ", the loss of predictor f is less than " ε "

$$\Pr_{S \sim D^n} \left(\mathcal{L}_D(f) \leq \varepsilon(\widehat{\mathcal{L}}_S(f), n, \delta, \ldots) \right) \geq 1 - \delta$$

Bayesian flavor

Given:

- A **prior** distribution P on \mathcal{F} .
- A **posterior** distribution Q on \mathcal{F} .

$$\Pr_{S \sim D^n} \left(\underset{f \sim Q}{\mathbf{E}} \mathcal{L}_D(f) \leq \varepsilon \left(\underset{f \sim Q}{\mathbf{E}} \widehat{\mathcal{L}}_S(f), n, \delta, P, \ldots \right) \right) \geq 1 - \delta$$

A Classical PAC-Bayesian Theorem

PAC-Bayesian theorem (adapted from McAllester 1999; McAllester 2003)

For any distribution P on \mathcal{F} , for any $\delta \in (0,1]$, we have,

$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{F} : \underset{f \sim Q}{\mathsf{E} \mathcal{L}_D(f)} \leq \underbrace{\underbrace{\frac{\mathsf{E} \widehat{\mathcal{L}}_S(f)}{f \sim Q}}_{\text{empirical loss}} + \underbrace{\sqrt{\frac{1}{2n} \left[\text{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta} \right]}}_{\text{complexity term}} \right) \geq 1 - \delta,$$

where
$$\mathrm{KL}(Q||P) = \mathop{\mathbf{E}}_{f \sim Q} \ln \frac{Q(f)}{P(f)}$$
 is the **Kullback-Leibler divergence**.

Training bound

• Gives generalization guarantees **not based on testing sample**.

Valid for all posterior Q on ${\mathcal F}$

• Inspiration for conceiving **new learning algorithms**.

- PAC-Bayesian Learning
- **2** Standard Neural Networks
- Binary Activated Neural Networks
 - One Layer (Linear predictor)
 - Two Layers (shallow)
 - More Layers (deep)
- 4 Empirical results

Standard Neural Networks (Multilayer perceptrons, or MLP)

Classification setting:

- $\mathbf{x} \in \mathbb{R}^d$
- $y \in \{-1, 1\}$

Architecture:

- L fully connected layers
- ullet denotes the number of neurons of the $k^{
 m th}$ layer
- ullet $\sigma: \mathbb{R} \to \mathbb{R}$ is the activation function

Parameters:

- $oldsymbol{W}_k \in \mathbb{R}^{d_k imes d_{k-1}}$ denotes the weight matrices.
- $\bullet \theta = \operatorname{vec}(\{\mathbf{W}_k\}_{k=1}^L) \in \mathbb{R}^D$

Prediction

$$f_{\theta}(\mathbf{x}) = \sigma(\mathbf{w}_{L}\sigma(\mathbf{W}_{L-1}\sigma(\ldots\sigma(\mathbf{W}_{1}\mathbf{x})))).$$

First PAC-Bayesian bounds for Stochastic Neural Networks

"(Not) Bounding the True Error" (LANGFORD et CARUANA 2001)

- Shallow networks (L=2)
- Sigmoid activation functions

"Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks (DZIUGAITE et ROY 2017)

- Deep networks (L > 2)
- ReLU activation functions

Idea: Bound the expected loss of the network under a Gaussian perturbation of the weights

Empirical loss : $\mathbb{E}_{\theta' \sim \mathcal{N}(\theta, \Sigma)} \widehat{\mathcal{L}}_{\mathcal{S}}(f_{\theta'}) \longrightarrow \text{estimated by sampling}$

Complexity term : $\mathrm{KL}(\mathcal{N}(\theta, \Sigma) || \mathcal{N}(\theta_p, \Sigma_p)) \longrightarrow \mathsf{closed}$ form

- PAC-Bayesian Learning
- 2 Standard Neural Networks
- **3** Binary Activated Neural Networks
 - One Layer (Linear predictor)
 - Two Layers (shallow)
 - More Layers (deep)
- 4 Empirical results

Binary Activated Neural Networks

Classification setting:

- $\mathbf{x} \in \mathbb{R}^d$
- $y \in \{-1, 1\}$

Architecture:

- L fully connected layers
- ullet denotes the number of neurons of the $k^{
 m th}$ layer
- sgn(a) = 1 if a > 0 and sgn(a) = -1 otherwise

Parameters:

- $oldsymbol{W}_k \in \mathbb{R}^{d_k imes d_{k-1}}$ denotes the weight matrices.
- $\bullet \theta = \operatorname{vec}(\{\mathbf{W}_k\}_{k=1}^L) \in \mathbb{R}^D$

Prediction

$$f_{\theta}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}_{L}\operatorname{sgn}(\mathbf{W}_{L-1}\operatorname{sgn}(\ldots\operatorname{sgn}(\mathbf{W}_{1}\mathbf{x})))),$$

- PAC-Bayesian Learning
- 2 Standard Neural Networks
- **3** Binary Activated Neural Networks
 - One Layer (Linear predictor)
 - Two Layers (shallow)
 - More Layers (deep)
- Empirical results

One Layer

"PAC-Bayesian Learning of Linear Classifiers"

(GERMAIN et al. 2009)

$$f_{\mathbf{w}}(\mathbf{x}) := \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x})$$
, with $\mathbf{w} \in \mathbb{R}^d$.

One Layer

"PAC-Bayesian Learning of Linear Classifiers"

(GERMAIN et al. 2009)

$$f_{\mathbf{w}}(\mathbf{x}) := \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x})$$
, with $\mathbf{w} \in \mathbb{R}^d$.

PAC-Bayes analysis:

- ullet Space of all linear classifiers $\mathcal{F}_d \coloneqq \{f_{f v} | {f v} \in \mathbb{R}^d\}$
- Gaussian posterior $Q_{\mathbf{w}} \coloneqq \mathcal{N}(\mathbf{w}, I_d)$ over \mathcal{F}_d
- Gaussian prior $P_{\mathbf{w}_0} \coloneqq \mathcal{N}(\mathbf{w}_0, I_d)$ over \mathcal{F}_d
- Predictor

$$F_{\mathbf{w}}(\mathbf{x}) \coloneqq \underset{\mathbf{v} \sim Q_{\mathbf{w}}}{\mathbf{E}} f_{\mathbf{v}}(\mathbf{x}) = \operatorname{erf}\left(\frac{\mathbf{w} \cdot \mathbf{x}}{\sqrt{d} \|\mathbf{x}\|}\right)$$

Bound minimization — under the linear loss $\ell(y, y') \coloneqq \frac{1}{2}(1 - yy')$

$$C \, n \, \widehat{\mathcal{L}}_{S}(F_{\mathbf{w}}) + \mathrm{KL}(Q_{\mathbf{w}} \| P_{\mathbf{w}_{0}}) \, = \, C \, \frac{1}{2} \sum_{i=1}^{n} \mathrm{erf} \left(-y_{i} \, \frac{\mathbf{w} \cdot \mathbf{x}_{i}}{\sqrt{d} \|\mathbf{x}_{i}\|} \right) + \frac{1}{2} \|\mathbf{w} - \mathbf{w}_{0}\|^{2} \, .$$

- PAC-Bayesian Learning
- 2 Standard Neural Networks
- **3** Binary Activated Neural Networks
 - One Layer (Linear predictor)
 - Two Layers (shallow)
 - More Layers (deep)
- Empirical results

Two Layers

Posterior $Q_{\theta} = \mathcal{N}(\theta, I_D)$, over the family of all networks $\mathcal{F}_D = \{f_{\tilde{\theta}} \mid \tilde{\theta} \in \mathbb{R}^D\}$, where

$$f_{\theta}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}_2 \cdot \operatorname{sgn}(\mathbf{W}_1 \mathbf{x}))$$
.

$$\begin{split} F_{\theta}(\mathbf{x}) &= \underset{\tilde{\theta} \sim Q_{\theta}}{\mathbf{E}} f_{\tilde{\theta}(\mathbf{x})} \\ &= \int_{\mathbb{R}^{d_1 \times d_0}} Q_1(\mathbf{V}_1) \int_{\mathbb{R}^{d_1}} Q_2(\mathbf{v}_2) \mathrm{sgn}(\mathbf{v}_2 \cdot \mathrm{sgn}(\mathbf{V}_1 \mathbf{x})) d\mathbf{v}_2 d\mathbf{V}_1 \\ &= \int_{\mathbb{R}^{d_1 \times d_0}} Q_1(\mathbf{V}_1) \operatorname{erf}\left(\frac{\mathbf{w}_2 \cdot \mathrm{sgn}(\mathbf{V}_1 \mathbf{x})}{\sqrt{2} \| \mathrm{sgn}(\mathbf{V}_1 \mathbf{x}) \|}\right) d\mathbf{V}_1 \\ &= \sum_{\mathbf{s} \in \{-1,1\}^{d_1}} \operatorname{erf}\left(\frac{\mathbf{w}_2 \cdot \mathbf{s}}{\sqrt{2d_1}}\right) \int_{\mathbb{R}^{d_1 \times d_0}} \mathbb{1}[\mathbf{s} = \mathrm{sgn}(\mathbf{V}_1 \mathbf{x})] Q_1(\mathbf{V}_1) d\mathbf{V}_1 \\ &= \sum_{\mathbf{s} \in \{-1,1\}^{d_1}} \underbrace{\operatorname{erf}\left(\frac{\mathbf{w}_2 \cdot \mathbf{s}}{\sqrt{2d_1}}\right)}_{F_{\mathbf{w}_2}(\mathbf{s})} \underbrace{\prod_{i=1}^{d_1} \left[\frac{1}{2} + \frac{\mathbf{s}_i}{2} \operatorname{erf}\left(\frac{\mathbf{w}_i^i \cdot \mathbf{x}}{\sqrt{2} \|\mathbf{x}\|}\right)\right]}_{Pr(\mathbf{s} | \mathbf{x}, \mathbf{W}_1)}. \end{split}$$

PAC-Bayesian Ingredients

Empirical loss

$$\widehat{\mathcal{L}}_{S}(F_{\theta}) = \mathop{\mathbf{E}}_{\theta' \sim Q_{\theta}} \widehat{\mathcal{L}}_{S}(f_{\theta'}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{2} - \frac{1}{2} y_{i} F_{\theta}(\mathbf{x}_{i}) \right].$$

Complexity term

$$\mathrm{KL}(Q_{\theta}\|P_{\theta_0}) = \frac{1}{2}\|\theta - \theta_0\|^2$$
.

Derivatives

Chain rule.

$$\frac{\partial \widehat{\mathcal{L}}_{S}(F_{\theta})}{\partial \theta} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell(F_{\theta}(\mathbf{x}_{i}), y_{i})}{\partial \theta} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial F_{\theta}(\mathbf{x}_{i})}{\partial \theta} \ell'(F_{\theta}(\mathbf{x}_{i}), y_{i}),$$

Hidden layer partial derivatives.

$$\frac{\partial}{\partial \mathbf{w}_{1}^{k}} F_{\theta}(\mathbf{x}) = \frac{\mathbf{x}}{2^{\frac{3}{2}} \|\mathbf{x}\|} \operatorname{erf}' \left(\frac{\mathbf{w}_{1}^{k} \cdot \mathbf{x}}{\sqrt{2} \|\mathbf{x}\|} \right) \sum_{\mathbf{s} \in \{-1,1\}^{d_{1}}} s_{k} \operatorname{erf} \left(\frac{\mathbf{w}_{2} \cdot \mathbf{s}}{\sqrt{2d_{1}}} \right) \left[\frac{\operatorname{Pr}(\mathbf{s}|\mathbf{x}, \mathbf{W}_{1})}{\operatorname{Pr}(s_{k}|\mathbf{x}, \mathbf{w}_{1}^{k})} \right],$$
with $\operatorname{erf}'(\mathbf{x}) := \frac{2}{\sqrt{\pi}} e^{-\mathbf{x}^{2}}.$

Stochastic Approximation

$$F_{ heta}(\mathbf{x}) = \sum_{\mathbf{s} \in \{-1,1\}^{d_1}} F_{\mathbf{w}_2}(\mathbf{s}) \operatorname{Pr}(\mathbf{s}|\mathbf{x}, \mathbf{W}_1)$$

Monte Carlo sampling

We generate T random binary vectors $\{\mathbf{s}^t\}_{t=1}^T$ according to $\Pr(\mathbf{s}|\mathbf{x},\mathbf{W}_1)$

Prediction.

$$F_{\theta}(\mathbf{x}) pprox rac{1}{T} \sum_{t=1}^{T} F_{\mathbf{w}_2}(\mathbf{s}^t)$$
.

Derivatives.

$$\frac{\partial}{\partial \mathbf{w}_1^k} F_{\theta}(\mathbf{x}) \approx \frac{\mathbf{x}}{2^{\frac{3}{2}} \|\mathbf{x}\|} \mathrm{erf}' \left(\frac{\mathbf{w}_1^k \cdot \mathbf{x}}{\sqrt{2} \|\mathbf{x}\|} \right) \frac{1}{T} \sum_{t=1}^T \frac{s_k^t}{\mathsf{Pr}(s_k^t | \mathbf{x}, \mathbf{w}_1^k)} F_{\mathbf{w}_2}(\mathbf{s}^t) \,.$$

- PAC-Bayesian Learning
- 2 Standard Neural Networks
- **3** Binary Activated Neural Networks
 - One Layer (Linear predictor)
 - Two Layers (shallow)
 - More Layers (deep)
- Empirical results

More Layers

$$F_1^{(j)}(\mathbf{x}) = \operatorname{erf}\left(\frac{\mathbf{w}_1^{j} \cdot \mathbf{x}}{\sqrt{2}\|\mathbf{x}\|}\right), \qquad F_{k+1}^{(j)}(\mathbf{x}) = \sum_{\mathbf{s} \in \{-1,1\}^{d_k}} \operatorname{erf}\left(\frac{\mathbf{w}_{k+1}^{j} \cdot \mathbf{s}}{\sqrt{2d_k}}\right) \prod_{i=1}^{d_k} \left(\frac{1}{2} + \frac{1}{2} s_i \times F_k^{(i)}(\mathbf{x})\right)$$

- PAC-Bayesian Learning
- 2 Standard Neural Networks
- **Binary Activated Neural Networks**
 - One Layer (Linear predictor)
 - Two Layers (shallow)
 - More Layers (deep)
- 4 Empirical results

Model name	Cost function	Train split	Valid split	Model selection	Prior
MLP–tanh PBGNet PBGNet	linear loss, L2 regularized linear loss, L2 regularized PAC-Bayes bound	80% 80% 100 %	20% 20% -	valid linear loss valid linear loss PAC-Bayes bound	random init random init
PBGNet _{pre} – pretrain – final	linear loss (20 epochs) PAC-Bayes bound	50% 50%	-	- PAC-Bayes bound	random init pretrain

Dataset	MLP-tanh	$PBGNet_\ell$	<u>PBGNet</u>	PBGNet _{pre}
	$E_{\mathcal{S}} E_{\mathcal{T}}$	$E_S E_T$	$E_{\mathcal{S}} E_{\mathcal{T}} \; Bound$	$E_{\mathcal{S}} = E_{\mathcal{T}} \; Bound$
ads	0.021 0.037	0.018 0.032	0.024 0.038 0.283	0.034 0.033 0.058
adult	0.128 0.149	0.136 0.148	0.158 0.154 0.227	0.153
mnist17	0.003 0.004	0.008 0.005	0.007 0.009 0.067	0.003 0.005 0.009
mnist49	0.002 0.013	0.003 0.018	0.034 0.039 0.153	0.018 0.021 0.030
mnist56	0.002 0.009	0.002 0.009	0.022 0.026 0.103	0.008 0.008 0.017
mnistLH	0.004 0.017	0.005 0.019	0.071 0.073 0.186	0.026 0.026 0.033

Perspectives

- Transfer learning
- Multiclass
- CNN

Merci!

https://arxiv.org/abs/1905.10259

References

- SHAWE-TAYLOR, John et Robert C. WILLIAMSON (1997). "A PAC Analysis of a Bayesian Estimator". In: COLT.
- MCALLESTER, David (1999). "Some PAC-Bayesian Theorems". In: Machine Learning 37.3.
- CATONI, Olivier (2003). "A PAC-Bayesian approach to adaptive classification". In : preprint 840.
- MCALLESTER, David (2003). "PAC-Bayesian Stochastic Model selection". In: *Machine Learning* 51.1.
- LANGFORD, John et Rich CARUANA (2001). "(Not) Bounding the True Error". In: NIPS. MIT Press, p. 809-816.
- DZIUGAITE, Gintare Karolina et Daniel M. Roy (2017). "Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data". In: UAI. AUAI Press.
- GERMAIN, Pascal et al. (2009). "PAC-Bayesian learning of linear classifiers". In: *ICML*. ACM, p. 353-360.