Star Formation

Stars form in dense, dusty gas

Giant molecular cloud	~50 pc	~10 ⁵ M _⊙	~10 ⁸ m ⁻³
Dense core of GMC	~1 pc	~100 M _•	~10 ¹⁴ m ⁻³
Bok globule	~1 pc	~10 M⊙	~10 ¹² m ⁻³

Sun: ~10⁻⁸ pc, ~10³² m⁻³

Stars form by gravitational collapse

- A necessary condition for gravitational collapse
- The Jeans criterion (1877-1946)
- Stable, gravitationally bound system satisfies the virial theorem $E_{kin} + \frac{1}{2}E_{pot} = 0$
- The cloud will collapse only if $E_{kin} + \frac{1}{2}E_{pot} < 0$

$$E_{\text{pot}} = -\frac{3}{5} \frac{GM^2}{R}$$
 $E_{\text{kin}} = \frac{3}{2} NkT = \frac{3}{2} \frac{M}{\mu m_H} kT$

$$E_{\rm kin} < -\frac{E_{\rm pot}}{2} \longrightarrow M_J = \left(\frac{5kT}{G\mu m_H}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2}$$

Stars Form by Gravitational Collapse

Knowing the temperature and density of a cloud, we know the minimum mass it has to have in order to collapse under its own weight

$$M_J \propto T^{3/2} \rho^{-1/2}$$

Hotter → more pressure support → need more mass

Denser → need less mass

Diffuse hydrogen cloud, typically < 10 ² M⊙	T ~ 50 K	n ~ 5 x 10 ⁸ m ⁻³	M _J ~ 1500 M⊙
GMC dense core, typically 10 ² M _☉	T ~ 150 K	n ~ 10 ¹⁴ m ⁻³	M _J ~ 17 M⊙
Barnard 68 Dark cloud, ~ 3 M⊙	T ~ 10 K	n ~ 10 ¹² m ⁻³	M _J ~ 3 M⊙

What happens during collapse?

- First stage: free-fall (dynamical timescale)
- gravity overcomes the pressure support
- nearly free-fall collapse, $t \sim t_{dyn} \sim (G\rho)^{-1/2} \sim 10^3$ yr for dense core of GMC
 - center of the cloud higher density → collapse faster → central cusp
 - temperature of the cloud remains ~ constant (isothermal)
 - gravitational energy release is lost to the outside
 - this is possible as long as the cloud is still transparent to its own radiation
- fragmentation occurs due to decreasing Jeans mass: $M_J \propto T^{3/2}
 ho^{-1/2}$

The Cygnus Wall of Star Formation

Credit & Copyright: Michael Sherick

Cloud fragmentation

collapse is isothermal (constant temperature)

density increases

Jeans mass decreases,

$$M_J \propto T^{3/2} \rho^{-1/2}$$

smaller parts of cloud become unstable, can collapse

What happens during collapse?

- Second stage: pre-main-sequence (thermal timescale)
 - further contraction, cloud becomes optically thick (heat not lost instantly)
 - free-fall and fragmentation stop, contracts slowly as heat diffuses out
 - $t_{KH} \sim E/L \sim 10^7 \text{ yr for } 1 \text{ M}_{\odot}$
 - longer or shorter for higher/lower mass stars?
 - Kelvin-Helmholtz timescale: gravitational potential energy is the source of luminosity, released over time
 - tKH >> tff
 - timescale is longer for low mass stars, shorter for higher mass stars
 - strong stellar wind (~10⁻³ M⊙/yr)
 - high angular momentum material forms disk
 - viscosity in the disk moves material inward
 - jets, stellar UV photons and winds disperse disk/cloud
- Third stage: main-sequence stars (nuclear timescale)
 - central temperature so hot that H burning starts, t ~ t_{nuc} ~ Mc²/L

Distribution of stellar masses

- Star formation tends to form low mass stars
- Final stellar mass is not the initial M_J
- Fragmentation
 - Isothermal collapse phase, T constant, ρ increases $\rightarrow M_J$ decreases
 - An initially collapsing cloud can fragment → lighter stars
 - Fragmentation stops when isothermal phase stops
- Angular momentum
 - $d \sim 1 \text{ pc} \rightarrow d \sim 10^{-8} \text{ pc}$
 - forming binary stars, triple stars....
- Observed:
 - 20 times as many stars $< 1~M_{\odot}$ than $> 1~M_{\odot}$ (to 0.1 M_{\odot})
 - Average mass of a star ~ 0.3 M₀
 - Distribution of stellar masses is called the initial mass function (IMF)

Star formation in galaxies

- The Milky Way is forming stars at a rate of ~1 M_☉/yr
- Each star takes ~10⁶ yr to mature to main sequence
- $10^{10} \,\mathrm{M}_{\odot}$ of gas, turned into stars at ~1 $\,\mathrm{M}_{\odot}$ /yr, can last $10^{10} \,\mathrm{yrs}$
 - Star formation can last longer why?
- Some galaxies form stars at much higher rates, > 100 M_☉/yr
 - "starburst galaxies"