Asignatura:	Curso:	Grupo:

Ampliación de Matemáticas (Versión 1)

D. Considérese la ecuación diferencial

1 🗀

3 🗀

6 — 7 — 8 —

9 ___

10 🗀

11 ==

12 ==

13 ==

14 ==

15 — 16 — 17 — 18 —

19 =

20 ==

21 ==

22 =

23 ==

25 ===

26 ==

27

28

29 🖂

31 ==

34 🗀

35 🗀

36 ==

37

38 ==

39 ===

40 ===

41 💳

42 ==

43 ==

44 🗀

45 🗀

46 ===

47 ==

48 ===

49 ===

50 ===

51 ===

54 ===

55 🗀

56 =

57 ==

58 ===

59 ===

60 💳

61 🗀

62 ===

63 🗀

64 🗀

$$z\frac{d^2w}{dz^2} + \frac{dw}{dz} - \frac{(1+z)^2}{2\sin(z)}w = 0.$$

Sobre las soluciones de la ecuación anterior, en $D \subset \mathbb{C}$, puede afirmarse que:

- (13) Existe una solución de la ecuación del enunciado, $w_2(z)$, tal que $\lim_{z\to 0} \frac{w_2(z)}{\ln(z)} = 1.$
- (14) Existe una solución de la ecuación del enunciado, $w_1(z)$, tal que $\lim_{z \to 0} \frac{w_1(z) z^{\frac{\sqrt{2}}{2}}}{z^{\frac{\sqrt{2}}{2}}} = 0.$
- (15) Existe una solución de la ecuación del enunciado, $w_1(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_1(z)}{z^{\frac{\sqrt{2}}{2}}} = 0$.
- (16) No es cierta ninguna de las otras tres respuestas.
- E. Considérese la ecuación diferencial

$$\frac{1}{x^4} \frac{\mathrm{d}}{\mathrm{d}x} (x^4 \frac{\mathrm{d}w}{\mathrm{d}x}) + 4w = 0, \quad \text{en }]0, +\infty[.$$

Sobre las soluciones reales de la ecuación anterior, $w:]0, +\infty[\to \mathbb{R},$ que además cumplen la condición $|\lim_{x\to 0^+} w(x)| < +\infty$ puede afirmarse que:

- (17) Existen y son de la forma $w(x) = \frac{C}{x\sqrt{x}}J_{\frac{3}{2}}(2x)$ donde $C \in \mathbb{R}$.
- (18) Existen y son de la forma $w(x) = \frac{C}{x^2 \sqrt{x}} J_{\frac{3}{2}}(x)$ donde $C \in \mathbb{R}$.
- (19) Existen y son de la forma $w(x) = C\sqrt{x}J_{-\frac{3}{2}}(2x)$ donde $C \in \mathbb{R}$.
- (20) No es cierta ninguna de las otras tres respuestas.

Nombre:

Fecha:

Firma:

Así no marque

Marque así

D.N.I

EXPEDIENTE

Curso

1 2 3 4 5

Grupo

1 2 3 4 5 6 7 8 9 10 A B C D E F G H L J

Auxiliar

1 a b c d e
2 a b c d e
3 a b c d e
5 a b c d e
6 a b c d e
7 a b c d e
8 a b c d e
9 a b c d e
10 a b c d e

Ampliación de Matemáticas (Versión 1),

(22-12-2017)

A. Sea $u: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución problema de Cauchy definido por

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + (1+2t)u \quad \text{en}(x,t) \in \mathbb{R} \times]0, +\infty[,$$

 $u(x,0) = x \exp(-x^2)$ $x \in \mathbb{R}$, u(x,t) acotada en \mathbb{R} para cada $t \in]0,+\infty[$.

Sea $\hat{u}: \mathbb{R} \times]0, +\infty[\to \mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. Sobre la función \hat{u} se puede afirmar que:

(1)
$$\hat{u}(1,1) = -\frac{i\sqrt{\pi}}{4}\exp(\frac{3}{2}).$$
 (2) $\hat{u}(2,2) = -i\sqrt{\pi}\exp(-3).$

(3) $\hat{u}(4,4) = -i2\sqrt{\pi} \exp(-24)$. (4) No es cierta ninguna de las otras tres respuestas.

Nota.
$$\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$$
, donde $b \in \mathbb{R}$ y $b > 0$.

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2}(t) + 4\frac{\mathrm{d}w}{\mathrm{d}t}(t) + 8w(t) = g(t) \text{ en }]0, +\infty[, \ w(0) = 0, \ \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1,$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por g(t)=t(t-1) si $t\in[0,1[$ y g(t)=0 si $t\in[1,+\infty[$. Sobre la transformada de Laplace de la función $w:[0,+\infty[\to\mathbb{R}$ se puede afirmar que:

(5)
$$\mathcal{L}[w(t)](2) = \frac{2 - \exp(-2)}{40}$$
. (6) $\mathcal{L}[w(t)](2) = \frac{1}{20}$.

(7)
$$\mathcal{L}[w(t)](2) = \frac{\exp(-2)}{40}$$
. (8) No es cierta ninguna de las otras tres respuestas.

C. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dz^2} - (iz^2 + z^4)w = 0 \text{ en } \mathbb{C}, \ w(0) = 0, \ \frac{dw}{dz}(0) = i.$$

La solución del problema anterior es una función entera $w:\mathbb{C}\to\mathbb{C}$, cuyo desarrollo en serie de Taylor es $w(z)=\sum\limits_{k=0}^{+\infty}c_kz^k$. Sobre la función w y los coeficientes c_k de su desarrollo se puede afirmar que:

- (9) Los coeficientes c_j , verifican la igualdad $c_{j+2} = \frac{\mathrm{i} c_{j-2} + c_{j-4}}{(j+2)(j+1)}$ para todo $j \in \mathbb{N}$, con $j \geq 5$ y $\mathrm{Re}(w(x)) = 0$ para todo $x \in \mathbb{R}$.
- (10) Los coeficientes c_{2j} , para todo $j \in \mathbb{N}$, son nulos y $\operatorname{Re}(c_{2j+1}) = 0$ para todo $j \in \mathbb{N}$, y $\operatorname{Re}(w(x)) = 0$ para todo $x \in \mathbb{R}$.
- para todo $j \in \mathbb{N}$, y $\operatorname{Re}(w(x)) = 0$ para todo $x \in \mathbb{N}$.

 Los coeficientes c_j , verifican la igualdad $c_{j+2} = \frac{\mathrm{i} c_{j-2} + c_{j-4}}{(j+2)(j+1)}$ para todo $j \in \mathbb{N}$, con $j \geq 5$ y existe al menos un $x_0 \in \mathbb{R}$ tal que $\operatorname{Re}(w(x_0)) \neq 0$.
- (12) No es cierta ninguna de las otras tres respuestas.