SSD1289

Advance Information

240 RGB x 320 TFT LCD Controller Driver integrated Power Circuit, Gate and Source Driver with built-in RAM

This document contains information on a new product. Specifications and information herein are subject to change without notice.

CONTENTS

1	GENERAL DESCRIPTION	5
2	FEATURES	6
3	ORDERING INFORMATION	7
4	BLOCK DIAGRAM	8
5	DIE PAD FLOOR PLAN	9
6	PIN DESCRIPTION	17
7	BLOCK FUNCTION DESCRIPTION	21
8	COMMAND TABLE	24
9	COMMAND DESCRIPTION	
10	GAMMA ADJUSTMENT FUNCTION	53
11	MAXIMUM RATINGS	
12	DC CHARACTERISTICS	
13	AC CHARACTERISTICS	62
14	GDDRAM ADDRESS	68
15	INTERFACE MAPPING	69
16	DISPLAY SETTING SEQUENCE	72
17	POWER SUPPLY BLOCK DIAGRAM	75
18	SSD1289 OUTPUT VOLTAGE RELATIONSHIP	
19	APPLICATION CIRCUIT	77
20	PACKAGE INFORMATION	81

TABLES

Table 3-1 - Ordering Information	7
Table 5-1 - SSD1289 Bump Pad Coordinate (Bump Center)	10
Table 6-1- Power Supply Pins	17
Table 6-2 - Interface Logic Pins	18
Table 6-3 - Mode Selection Pins	19
Table 6-4 - Driver Output Pins	20
Table 6-5 - Miscellaneous Pins	20
Table 7-1 - Data bus selection modes	22
Table 7-2 - RGB signal matching in data bus	22
Table 8-1 - Command Table	24
Table 8-2 - Gamma Registers POR value	26
Table 8-3 - Registers POR value at GAMAS[2:0] = 000,100	26
Table 8-4 - Registers POR value at GAMAS[2:0] = 001,101	26
Table 8-5 - Registers POR value at GAMAS[2:0] = 010,110	26
Table 8-6 - Registers POR value at GAMAS[2:0] = 011,111	26
Table 9-1 - 3-field interlace driving	31
Table 13-1 - Parallel 6800 Timing Characteristics	62
Table 13-2 - Parallel 8080 Timing Characteristics	63
Table 13-3 - Serial Timing Characteristics	65
Table 15-1 - Interface setting and data bus setting	69
Table 15-2 - The Function of 6800-series parallel interface	69
Table 15-3 - Interface Mode Selection	70

SSD1289 Rev 1.3 P 3/82 Apr 2007 **Solomon Systech**

FIGURES

Figure 4-1 - SSD1289 Block Diagram Description	8
Figure 5-1 - SSD1289 Pad Arrangement (Bump face up)	9
Figure 7-1 - Read Display Data	21
Figure 9-1 - gate output timing in 3-field interlacing driving	31
Figure 9-2 - Line Inversion AC Driver	32
Figure 9-3 - OTP circuitry	48
Figure 13-1 - Parallel 6800-series Interface Timing Characteristics	
Figure 13-2 - Parallel 8080-series Interface Timing Characteristics	64
Figure 13-3 - 4 wire Serial Timing Characteristics	65
Figure 13-4 - Pixel Clock Timing in RGB interface mode	66
Figure 19-1 - Booster Capacitors	77
Figure 19-2 - Filtering and charge sharing capacitors	
Figure 19-3 - Power supply pin connection	78
Figure 19-4 - Panel Connection Example	79
Figure 19-5 - ITO and FPC connection example	

 Solomon Systech
 Apr 2007
 P 4/82
 Rev 1.3
 SSD1289

1 GENERAL DESCRIPTION

SSD1289 is an all in one TFT LCD Controller Driver that integrated the RAM, power circuits, gate driver and source driver into a single chip. It can drive up to 262k color amorsphous TFT panel with resolution of 240 RGB x 320.

It also integrated the controller function and consists of 172,800 bytes (240 x 320 x 18 / 8) Graphic Display Data RAM (GDDRAM) such that it interfaced with common MPU through 8-/9-/16-/18-bit 6800-series / 8080-series compatible parallel interface or serial peripheral interface and stored the data in the GDDRAM. Auxiliary 18-bit video interface (VSYNC, HSYNC, DOTCLK, DEN) are integrated into SSD1289 for animation image display.

SSD1289 embeds DC-DC Converter and Voltage generator to provide all necessary voltage required by the driver with minimum external components. A Common Voltage Generation Circuit is included to drive the TFT-display counter electrode. An Integrated Gamma Control Circuit is also included that can be adjusted by software commands to provide maximum flexibility and optimal display quality.

SSD1289 can be operated down to 1.4V and provide different power save modes. It is suitable for any portable battery-driven applications requiring long operation period and compact size.

2 FEATURES

- 240RGBx320 single chip controller driver IC for 262k color amorphous TFT LCD
- Power Supply
 - VDDEXT = 1.4V 3.6V (Internal Logic)
 - VDDIO = 1.4V 3.6V (I/O Interface)
 - VCI = 2.5V 3.6V (power supply for internal analog circuit)
- Output Voltages
 - Gate Driver:
 - $VGH-GND = 9V \sim 15V$
 - VGL-GND = -7 \sim -15V
 - VGH-VGL = 30Vp-p
 - Source Driver:
 - V0 V63 = 0 5V
 - Typical Source Output Voltage variation: ±10 mV
 - VCOM drive:
 - VCOMH = $3.0V \sim 5.0V$
 - $VCOML = -2.0V \sim -3.0V$
 - VCOMHA = 5.5V
- System Interface
 - High-speed interface by 8-/9-/16-/18-bit 6800-series / 8080-series parallel ports
 - Serial Peripheral Interface (SPI)
 - Moving picture display interface
 - 18-bit RGB interface (DEN, DOTCLK, HSYNC, VSYNC, DB17-0)
 - VSYNC interface (system interface + VSYNC)
 - WSYNC interface (system interface + WSYNC)
- Support low power consumption:
 - Low voltage supply
 - Low current sleep mode
 - 8-color display mode for power saving
 - Charge sharing function for step-up circuits
- High-speed RAM addressing functions
 - RAM write synchronization function
 - Window address function
 - Display by RAM data and generic data selectively and simultaneously
 - Vertical scrolling function
 - Picture in Picture mode
 - Partial display mode
- Internal power supply circuit
 - Voltage generator
 - DC-DC converter up to 6x/-6x
- Built-in internal oscillator
- Internal GDDRAM capacity: 172800Byte
- Support Frame and Line inversion AC drive
- TFT storage capacitance: Cs on common and Cs on gate
- Support source and gate scan direction control
- Programmable gamma correction curve
- 4 Preset gamma correction curve
- Built-in Non Volatile Memory for VCOM calibration Display Size: 240 RGB x 320
- Support flexible arrangement of gate circuits on both sides of the glass substrate

Solomon Systech Apr 2007 | P 6/82 | Rev 1.3 | SSD1289

3 ORDERING INFORMATION

Table 3-1 – Ordering Information

Ordering Part Number	Source	Gate	Package Form	Reference
SSD1289Z	240 x 3 (720)	320	Gold Bump Die	

SSD1289 Rev 1.3 P 7/82 Apr 2007 **Solomon Systech**

4 BLOCK DIAGRAM

Figure 4-1 - SSD1289 Block Diagram Description

 Solomon Systech
 Apr 2007
 P 8/82
 Rev 1.3
 SSD1289

5 **DIE PAD FLOOR PLAN**

Figure 5-1 - SSD1289 Pad Arrangement (Bump face up)

Die Size	23.984 x 1.600 mm ²
Die Thickness	$406 \pm 25 \text{ um}$
Typical Bump Height	15 um
Bump Co-planarity (within die)	≤ 3 um
Bump Size 1	55 x 117 μm ² (Pin 58-300)
Pad Pitch 1	85 μm
Bump Size 2	22 x 115 µm ² (Pin 1-57, 301-357, 358-1336)
Pad Pitch 2	24 μm stagger

(-11802,715.5) 100 x 100 μm²

P 9/82 SSD1289 Rev 1.3 Apr 2007 Solomon Systech

Table 5-1 - SSD1289 Bump Pad Coordinate (Bump Center)

Note: IC material temperature expansion factor is 2.6ppm per degree, customer should take into account during panel design

		P	-punsion iu	etor 15 210p	pm per deg	100,00000	er phound t	une mee ue	ount uurn	8 F	-8
Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos
	- U	_									
1	NC	-11928	-547.5	68	C2N	-9435	-701.5	135	D17	-3740	-701.5
2	NC	-11904	-702.5	69	C2N	-9350	-701.5	136	D16	-3655	-701.5
3	NC	-11880	-547.5	70	C1P	-9265	-701.5	137	D16	-3570	-701.5
4	NC	-11856	-702.5	71	C1P	-9180	-701.5	138	D15	-3485	-701.5
5				72							-701.5
	NC	-11808	-702.5		C1N	-9095	-701.5	139	D15	-3400	
6	NC	-11760	-702.5	73	C1N	-9010	-701.5	140	D14	-3315	-701.5
7	NC	-11712	-702.5	74	CP	-8925	-701.5	141	D14	-3230	-701.5
8	NC	-11664	-702.5	75	CP	-8840	-701.5	142	D13	-3145	-701.5
9	THROUGH1	-11640	-547.5	76	CN	-8755	-701.5	143	D13	-3060	-701.5
10	THROUGH2	-11616	-702.5	77	CN	-8670	-701.5	144	D12	-2975	-701.5
11	G87	-11592	-547.5	78	C3P	-8585	-701.5	145	D12	-2890	-701.5
12	G85	-11568	-702.5	79	C3P	-8500	-701.5	146	D11	-2805	-701.5
13	G83	-11544	-547.5	80	C3P	-8415	-701.5	147	D11	-2720	-701.5
14	G81	-11520	-702.5	81	C3P	-8330	-701.5	148	D10	-2635	-701.5
15	G79	-11496	-547.5	82	C3N	-8245	-701.5	149	D10	-2550	-701.5
16	G77	-11472	-702.5	83	C3N	-8160	-701.5	150	D9	-2465	-701.5
17	G75	-11448	-547.5	84	C3N	-8075	-701.5	151	D9	-2380	-701.5
18	G73	-11424	-702.5	85	C3N	-7990	-701.5	152	D8	-2295	-701.5
19	G71	-11400	-547.5	86	VCI	-7905	-701.5	153	D8	-2210	-701.5
20	G69	-11376	-702.5	87	VCI	-7820	-701.5	154	D7	-2125	-701.5
21	G67	-11352	-547.5	88	VCI	-7735	-701.5	155	D7	-2040	-701.5
22	G65	-11328	-702.5	89	VCI	-7650	-701.5	156	D6	-1955	-701.5
23	G63	-11304	-547.5	90	VGL	-7565	-701.5	157	D6	-1870	-701.5
24	G61	-11280	-702.5	91	VGL	-7480	-701.5	158	D5	-1785	-701.5
25	G59	-11256	-547.5	92	VCHS	-7395	-701.5	159	D5	-1700	-701.5
26	G57	-11232	-702.5	93	VCHS	-7310	-701.5	160	D4	-1615	-701.5
27	G55	-11208	-547.5	94	VCHS	-7225	-701.5	161	D4	-1530	-701.5
28	G53	-11184	-702.5	95	VDDIO	-7140	-701.5	162	D3	-1445	-701.5
29	G51	-11160	-547.5	96	GD	-7055	-701.5	163	D3	-1360	-701.5
30	G49	-11136	-702.5	97	VSS	-6970	-701.5	164	D2	-1275	-701.5
31	G47	-11112	-547.5	98	CAD	-6885	-701.5	165	D2	-1190	-701.5
		-11088		99							
32	G45		-702.5		VDDIO	-6800	-701.5	166	D1	-1105	-701.5
33	G43	-11064	-547.5	100	REV	-6715	-701.5	167	D1	-1020	-701.5
34	G41	-11040	-702.5	101	VSS	-6630	-701.5	168	D0	-935	-701.5
35	G39	-11016	-547.5	102	GAMAS0	-6545	-701.5	169	D0	-850	-701.5
36	G37	-10992	-702.5	103	VDDIO	-6460	-701.5	170	/RD	-765	-701.5
37	G35	-10968	-547.5	104	GAMAS1	-6375	-701.5	171	/RD	-680	-701.5
38	G33	-10944	-702.5	105	VSS	-6290	-701.5	172	/WR	-595	-701.5
39	G31	-10920	-547.5	106	GAMAS2	-6205	-701.5	173	/WR	-510	-701.5
40	G29	-10896	-702.5	107	VDDIO	-6120	-701.5	174	DC	-425	-701.5
41	G27	-10872	-547.5	108	BGR	-6035	-701.5	175	DC	-340	-701.5
42	G25	-10848	-702.5	109	VSS	-5950	-701.5	176	SDO	-255	-701.5
43	G23	-10824	-547.5	110	TB	-5865	-701.5	177	SDO	-170	-701.5
44	G21	-10800	-702.5	111	VDDIO	-5780	-701.5	178	SDI	-85	-701.5
45	G21	-10776	-547.5	112	RL	-5695	-701.5	179	SDI	0	-701.5
46	G17	-10752	-702.5	113	VSS	-5610	-701.5	180	SCK	85	-701.5
47	G15	-10728	-547.5	114	REGVDD	-5525	-701.5	181	SCK	170	-701.5
48	G13	-10704	-702.5	115	VDDIO	-5440	-701.5	182	/CS	255	-701.5
49	G11	-10680	-547.5	116	PS2	-5355	-701.5	183	/CS	340	-701.5
50	G9	-10656	-702.5	117	VSS	-5270	-701.5	184	WSYNC	425	-701.5
51	G7	-10632	-547.5	118	PS1	-5185	-701.5	185	WSYNC	510	-701.5
52	G5	-10608	-702.5	119	VDDIO	-5100	-701.5	186	TESTA	595	-701.5
53	G3	-10584	-547.5	120	PS0	-5015	-701.5	187	TESTB	680	-701.5
54	G1	-10560	-702.5	121	PS3	-4930	-701.5	188	TESTC	765	-701.5
55	DUMMY	-10536	-547.5	122	SHUT	-4845	-701.5	189	EXTCLK	850	-701.5
56	NC	-10512	-702.5	123	CM	-4760	-701.5	190	VREGC	935	-701.5
57	NC	-10488	-547.5	124	/RES	-4675	-701.5	191	VREGC	1020	-701.5
58	DUMMY	-10285	-701.5	125	/RES	-4590	-701.5	192	VCORE	1105	-701.5
59	VCOM	-10200	-701.5	126	VSYNC	-4505	-701.5	193	VCORE	1190	-701.5
60	VCOM	-10115	-701.5	127	VSYNC	-4420	-701.5	194	VREGR	1275	-701.5
61	NC	-10030	-701.5	128	HSYNC	-4335	-701.5	195	VREGR	1360	-701.5
62	VGH	-9945	-701.5	129	HSYNC	-4250	-701.5	196	VRAM	1445	-701.5
63	VGH	-9860	-701.5	130	DOTCLK	-4165	-701.5	197	VRAM	1530	-701.5
64	VGH	-9775	-701.5	131	DOTCLK	-4080	-701.5	198	VDDEXT	1615	-701.5
65	VGH	-9690	-701.5	132	DEN	-3995	-701.5	199	VDDEXT	1700	-701.5
66	C2P	-9605	-701.5	133	DEN	-3910	-701.5	200	VDDEXT	1785	-701.5
67	C2P	-9520	-701.5	134	D17	-3825	-701.5	201	VDDEXT	1870	-701.5

 Solomon Systech
 Apr 2007
 P 10/82
 Rev 1.3
 SSD1289

Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos
202	VSSRC	1955	-701.5	269	VCIX2	7650	-701.5	336	G64	11328	-702.5
203	VSSRC	2040	-701.5	270	CYP	7735	-701.5	337	G66	11352	-547.5
204	CDUM0	2125	-701.5	271	CYP	7820	-701.5	338	G68	11376	-702.5
205	CDUM0	2210	-701.5	272	CYP	7905	-701.5	339	G70	11400	-547.5
206 207	CDUM1 CDUM1	2295 2380	-701.5 -701.5	273 274	CYP CYP	7990 8075	-701.5 -701.5	340 341	G72 G74	11424 11448	-702.5 -547.5
207	VSS	2465	-701.5	274	CYP	8160	-701.5	342	G76	11448	-702.5
209	VSS	2550	-701.5	276	CYN	8245	-701.5	343	G78	11496	-547.5
210	VSS	2635	-701.5	277	CYN	8330	-701.5	344	G80	11520	-702.5
211	VSS	2720	-701.5	278	CYN	8415	-701.5	345	G82	11544	-547.5
212	VSS	2805	-701.5	279	CYN	8500	-701.5	346	G84	11568	-702.5
213	VSS	2890	-701.5	280	CYN	8585	-701.5	347	G86	11592	-547.5
214	VSS	2975	-701.5	281	CYN	8670	-701.5	348	THROUGH3	11616	-702.5
215	VSS	3060	-701.5	282	VCHS	8755	-701.5	349	THROUGH4	11640	-547.5
216	AVSS	3145	-701.5	283	VCHS	8840	-701.5	350	NC NC	11664	-702.5
217 218	AVSS AVSS	3230 3315	-701.5 -701.5	284 285	VCHS VCHS	8925 9010	-701.5 -701.5	351 352	NC NC	11712 11760	-702.5 -702.5
219	AVSS	3400	-701.5	286	VCHS	9095	-701.5	353	NC NC	11808	-702.5
220	AVSS	3485	-701.5	287	VCHS	9180	-701.5	354	NC	11856	-702.5
221	AVSS	3570	-701.5	288	CXN	9265	-701.5	355	NC	11880	-547.5
222	VDDIO	3655	-701.5	289	CXN	9350	-701.5	356	NC	11904	-702.5
223	VDDIO	3740	-701.5	290	CXN	9435	-701.5	357	NC	11928	-547.5
224	VDDIO	3825	-701.5	291	CXP	9520	-701.5	358	DUMMY	11736	702.5
225	VDDIO	3910	-701.5	292	CXP	9605	-701.5	359	VGL	11712	547.5
226	VCI	3995	-701.5	293	CXP	9690	-701.5	360	DUMMY	11688	702.5
227	VCI	4080	-701.5	294	VGOFFH	9775	-701.5	361	DUMMY	11664	547.5
228	VCI	4165	-701.5	295	VGOFFH	9860	-701.5	362	THROUGH5	11640	702.5
229	VCI VCI	4250 4335	-701.5 -701.5	296 297	VCOM VCOM	9945 10030	-701.5 -701.5	363 364	THROUGH6 G88	11616 11592	547.5 702.5
231	VCI	4420	-701.5	298	VCOM	10115	-701.5	365	G90	11568	547.5
232	VCIP	4505	-701.5	299	VCOM	10200	-701.5	366	G92	11544	702.5
233	VCIP	4590	-701.5	300	VCOMR	10285	-701.5	367	G94	11520	547.5
234	VCIP	4675	-701.5	301	NC	10488	-547.5	368	G96	11496	702.5
235	VCIP	4760	-701.5	302	NC	10512	-702.5	369	G98	11472	547.5
236	VGOFFHL	4845	-701.5	303	GTESTR	10536	-547.5	370	G100	11448	702.5
237	VGOFFHL	4930	-701.5	304	G0	10560	-702.5	371	G102	11424	547.5
238	NC	5015	-701.5	305	G2	10584	-547.5	372	G104	11400	702.5
239	NC VI CDC2	5100	-701.5	306	G4	10608	-702.5	373	G106	11376	547.5
240 241	VLCD63 VLCD63	5185 5270	-701.5 -701.5	307 308	G6 G8	10632 10656	-547.5 -702.5	374 375	G108 G110	11352 11328	702.5 547.5
242	VLCD63	5355	-701.5	309	G10	10680	-547.5	376	G110 G112	11304	702.5
243	VLCD63	5440	-701.5	310	G12	10704	-702.5	377	G114	11280	547.5
244	VCOML	5525	-701.5	311	G14	10728	-547.5	378	G116	11256	702.5
245	VCOML	5610	-701.5	312	G16	10752	-702.5	379	G118	11232	547.5
246	VCOML	5695	-701.5	313	G18	10776	-547.5	380	G120	11208	702.5
247	VCOML	5780	-701.5	314	G20	10800	-702.5	381	G122	11184	547.5
248	VCOMH	5865	-701.5	315	G22	10824	-547.5	382	G124	11160	702.5
249	VCOMH	5950	-701.5	316	G24	10848	-702.5	383	G126	11136	547.5
250	VCOMH	6035	-701.5	317	G26	10872	-547.5	384	G128	11112	702.5
251 252	VCOMH VCIM	6120 6205	-701.5 -701.5	318 319	G28 G30	10896 10920	-702.5 -547.5	385 386	G130 G132	11088 11064	547.5 702.5
252	VCIM	6290	-701.5	320	G30 G32	10920	-547.5 -702.5	387	G134	11064	702.5 547.5
254	VCIM	6375	-701.5	321	G32 G34	10944	-547.5	388	G136	11040	702.5
255	VCIM	6460	-701.5	322	G36	10992	-702.5	389	G138	10992	547.5
256	NC	6545	-701.5	323	G38	11016	-547.5	390	G140	10968	702.5
257	NC	6630	-701.5	324	G40	11040	-702.5	391	G142	10944	547.5
258	VCI	6715	-701.5	325	G42	11064	-547.5	392	G144	10920	702.5
259	VCI	6800	-701.5	326	G44	11088	-702.5	393	G146	10896	547.5
260	VCI	6885	-701.5	327	G46	11112	-547.5	394	G148	10872	702.5
261	VCI	6970	-701.5	328	G48	11136	-702.5	395	G150	10848	547.5
262	VCIX2J	7055	-701.5	329	G50	11160	-547.5	396	G152	10824	702.5
263 264	VCIX2J VCIX2G	7140 7225	-701.5 -701.5	330 331	G52 G54	11184 11208	-702.5 -547.5	397 398	G154 G156	10800 10776	547.5 702.5
265	VCIX2G VCIX2G	7310	-701.5	331	G54 G56	11208	-547.5 -702.5	398	G158	10776	702.5 547.5
266	VCIX2G VCIX2	7310	-701.5	333	G58	11256	-547.5	400	G160	10732	702.5
	VCIX2	7480	-701.5	334	G60	11280	-702.5	401	G162	10704	547.5
267											

SSD1289 Rev 1.3 P 11/82 Apr 2007 **Solomon Systech**

Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos
403	G166	10656	547.5	470	G300	9048	702.5	537	S669	7440	547.5
404	G168	10632	702.5	471	G302	9024	547.5	538	S668	7416	702.5
405	G170	10608	547.5	472	G304	9000	702.5	539	S667	7392	547.5
406 407	G172 G174	10584	702.5	473 474	G306	8976	547.5	540	S666	7368	702.5
407	G174 G176	10560 10536	547.5 702.5	474	G308 G310	8952 8928	702.5 547.5	541 542	S665 S664	7344 7320	547.5 702.5
409	G178	10530	547.5	476	G310	8904	702.5	543	S663	7296	547.5
410	G180	10488	702.5	477	G314	8880	547.5	544	S662	7272	702.5
411	G182	10464	547.5	478	G316	8856	702.5	545	S661	7248	547.5
412	G184	10440	702.5	479	G318	8832	547.5	546	S660	7224	702.5
413	G186	10416	547.5	480	DUMMY	8808	702.5	547	S659	7200	547.5
414	G188	10392	702.5	481	DUMMY	8784	547.5	548	S658	7176	702.5
415 416	G190 G192	10368 10344	547.5 702.5	482 483	VCOM VCOM	8760 8736	702.5 547.5	549 550	S657 S656	7152 7128	547.5 702.5
417	G192 G194	10344	547.5	484	DUMMY	8712	702.5	551	S655	7128	547.5
418	G196	10296	702.5	485	DUMMY	8688	547.5	552	S654	7080	702.5
419	G198	10272	547.5	486	DUMMY	8664	702.5	553	S653	7056	547.5
420	G200	10248	702.5	487	S719	8640	547.5	554	S652	7032	702.5
421	G202	10224	547.5	488	S718	8616	702.5	555	S651	7008	547.5
422	G204	10200	702.5	489	S717	8592	547.5	556	S650	6984	702.5
423 424	G206 G208	10176 10152	547.5 702.5	490 491	S716	8568 8544	702.5 547.5	557	S649 S648	6960	547.5 702.5
424	G208 G210	10152	702.5 547.5	491	S715 S714	8544 8520	702.5	558 559	S648 S647	6936 6912	702.5 547.5
426	G210 G212	10128	702.5	493	S714 S713	8496	547.5	560	S646	6888	702.5
427	G214	10080	547.5	494	S712	8472	702.5	561	S645	6864	547.5
428	G216	10056	702.5	495	S711	8448	547.5	562	S644	6840	702.5
429	G218	10032	547.5	496	S710	8424	702.5	563	S643	6816	547.5
430	G220	10008	702.5	497	S709	8400	547.5	564	S642	6792	702.5
431	G222	9984	547.5	498	S708	8376	702.5	565	S641	6768	547.5
432 433	G224 G226	9960 9936	702.5 547.5	499 500	S707 S706	8352 8328	547.5 702.5	566 567	S640 S639	6744 6720	702.5 547.5
434	G228	9930	702.5	501	S705	8304	547.5	568	S638	6696	702.5
435	G230	9888	547.5	502	S704	8280	702.5	569	S637	6672	547.5
436	G232	9864	702.5	503	S703	8256	547.5	570	S636	6648	702.5
437	G234	9840	547.5	504	S702	8232	702.5	571	S635	6624	547.5
438	G236	9816	702.5	505	S701	8208	547.5	572	S634	6600	702.5
439	G238	9792	547.5	506	S700	8184	702.5	573	S633	6576	547.5
440	G240	9768	702.5	507	S699	8160	547.5	574	S632	6552	702.5
441 442	G242 G244	9744 9720	547.5 702.5	508 509	S698 S697	8136 8112	702.5 547.5	575 576	S631 S630	6528 6504	547.5 702.5
443	G246	9696	547.5	510	S696	8088	702.5	577	S629	6480	547.5
444	G248	9672	702.5	511	S695	8064	547.5	578	S628	6456	702.5
445	G250	9648	547.5	512	S694	8040	702.5	579	S627	6432	547.5
446	G252	9624	702.5	513	S693	8016	547.5	580	S626	6408	702.5
447	G254	9600	547.5	514	S692	7992	702.5	581	S625	6384	547.5
448	G256	9576	702.5	515	S691	7968	547.5	582	S624	6360	702.5
449 450	G258 G260	9552 9528	547.5 702.5	516 517	S690 S689	7944 7920	702.5 547.5	583 584	S623 S622	6336 6312	547.5 702.5
451	G262	9504	547.5	518	S688	7896	702.5	585	S621	6288	547.5
452	G264	9480	702.5	519	S687	7872	547.5	586	S620	6264	702.5
453	G266	9456	547.5	520	S686	7848	702.5	587	S619	6240	547.5
454	G268	9432	702.5	521	S685	7824	547.5	588	S618	6216	702.5
455	G270	9408	547.5	522	S684	7800	702.5	589	S617	6192	547.5
456	G272 G274	9384 9360	702.5 547.5	523 524	S683	7776	547.5	590 591	S616 S615	6168 6144	702.5
457 458	G274 G276	9360	702.5	524 525	S682 S681	7752 7728	702.5 547.5	591	S615 S614	6144	547.5 702.5
459	G278	9312	547.5	526	S680	7704	702.5	593	S613	6096	547.5
460	G280	9288	702.5	527	S679	7680	547.5	594	S612	6072	702.5
461	G282	9264	547.5	528	S678	7656	702.5	595	S611	6048	547.5
462	G284	9240	702.5	529	S677	7632	547.5	596	S610	6024	702.5
463	G286	9216	547.5	530	S676	7608	702.5	597	S609	6000	547.5
464	G288	9192	702.5	531	S675	7584	547.5	598	S608	5976	702.5
465 466	G290 G292	9168 9144	547.5 702.5	532 533	S674 S673	7560 7536	702.5 547.5	599 600	S607 S606	5952 5928	547.5 702.5
467	G292 G294	9120	547.5	534	S672	7512	702.5	601	S605	5904	547.5
468	G296	9096	702.5	535	S671	7488	547.5	602	S604	5880	702.5
469	G298	9072	547.5	536	S670	7464	702.5	603	S603	5856	547.5

 Solomon Systech
 Apr 2007
 P 12/82
 Rev 1.3
 SSD1289

Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos
604	S602	5832	702.5	671	S535	4224	547.5	738	S468	2616	702.5
605	S601	5808	547.5	672	S534	4200	702.5	739	S467	2592	547.5
606	S600	5784	702.5	673	S533	4176	547.5	740	S466	2568	702.5
607	S599 S598	5760 5736	547.5 702.5	674 675	S532 S531	4152 4128	702.5 547.5	741 742	S465 S464	2544 2520	547.5 702.5
609	S597	5712	547.5	676	S530	4104	702.5	742	S463	2496	547.5
610	S596	5688	702.5	677	S529	4080	547.5	744	S462	2472	702.5
611	S595	5664	547.5	678	S528	4056	702.5	745	S461	2448	547.5
612	S594	5640	702.5	679	S527	4032	547.5	746	S460	2424	702.5
613	S593	5616	547.5	680	S526	4008	702.5	747	S459	2400	547.5
614	S592 S591	5592 5568	702.5 547.5	681 682	S525 S524	3984 3960	547.5 702.5	748 749	S458 S457	2376 2352	702.5 547.5
616	S590	5544	702.5	683	S523	3936	547.5	750	S456	2328	702.5
617	S589	5520	547.5	684	S522	3912	702.5	751	S455	2304	547.5
618	S588	5496	702.5	685	S521	3888	547.5	752	S454	2280	702.5
619	S587	5472	547.5	686	S520	3864	702.5	753	S453	2256	547.5
620	S586	5448	702.5	687	S519	3840	547.5	754	S452	2232	702.5
621 622	S585 S584	5424 5400	547.5 702.5	688 689	S518 S517	3816 3792	702.5 547.5	755 756	S451 S450	2208 2184	547.5 702.5
623	S583	5376	547.5	690	S516	3768	702.5	757	S449	2160	547.5
624	S582	5352	702.5	691	S515	3744	547.5	758	S448	2136	702.5
625	S581	5328	547.5	692	S514	3720	702.5	759	S447	2112	547.5
626	S580	5304	702.5	693	S513	3696	547.5	760	S446	2088	702.5
627	S579	5280	547.5	694	S512	3672	702.5	761	S445	2064	547.5
628 629	S578 S577	5256 5232	702.5 547.5	695 696	S511 S510	3648 3624	547.5 702.5	762 763	S444 S443	2040 2016	702.5 547.5
630	S576	5208	702.5	697	S509	3600	547.5	764	S442	1992	702.5
631	S575	5184	547.5	698	S508	3576	702.5	765	S441	1968	547.5
632	S574	5160	702.5	699	S507	3552	547.5	766	S440	1944	702.5
633	S573	5136	547.5	700	S506	3528	702.5	767	S439	1920	547.5
634	S572	5112	702.5	701	S505	3504	547.5	768	S438	1896	702.5
635	S571 S570	5088 5064	547.5 702.5	702 703	S504 S503	3480 3456	702.5 547.5	769 770	S437 S436	1872 1848	547.5 702.5
637	S569	5040	547.5	704	S503	3432	702.5	771	S435	1824	547.5
638	S568	5016	702.5	705	S501	3408	547.5	772	S434	1800	702.5
639	S567	4992	547.5	706	S500	3384	702.5	773	S433	1776	547.5
640	S566	4968	702.5	707	S499	3360	547.5	774	S432	1752	702.5
641	S565	4944	547.5	708	S498	3336	702.5	775	S431	1728	547.5
642	S564 S563	4920 4896	702.5 547.5	709 710	S497 S496	3312 3288	547.5 702.5	776 777	S430 S429	1704 1680	702.5 547.5
644	S562	4872	702.5	710	S495	3264	547.5	778	S429 S428	1656	702.5
645	S561	4848	547.5	712	S494	3240	702.5	779	S427	1632	547.5
646	S560	4824	702.5	713	S493	3216	547.5	780	S426	1608	702.5
647	S559	4800	547.5	714	S492	3192	702.5	781	S425	1584	547.5
648	S558	4776	702.5	715	S491	3168	547.5	782	S424	1560	702.5
649 650	S557 S556	4752 4728	547.5 702.5	716 717	S490 S489	3144 3120	702.5 547.5	783 784	S423 S422	1536 1512	547.5 702.5
651	S555	4728	547.5	717	S489 S488	3096	702.5	785	S422 S421	1488	547.5
652	S554	4680	702.5	719	S487	3072	547.5	786	S420	1464	702.5
653	S553	4656	547.5	720	S486	3048	702.5	787	S419	1440	547.5
654	S552	4632	702.5	721	S485	3024	547.5	788	S418	1416	702.5
655	S551	4608	547.5 702.5	722	S484	3000	702.5	789	S417	1392	547.5 702.5
656 657	S550 S549	4584 4560	702.5 547.5	723 724	S483 S482	2976 2952	547.5 702.5	790 791	S416 S415	1368 1344	702.5 547.5
658	S549 S548	4580	702.5	724	S482 S481	2932	547.5	791	S413 S414	1344	702.5
659	S547	4512	547.5	726	S480	2904	702.5	793	S413	1296	547.5
660	S546	4488	702.5	727	S479	2880	547.5	794	S412	1272	702.5
661	S545	4464	547.5	728	S478	2856	702.5	795	S411	1248	547.5
662	S544	4440	702.5	729	S477	2832	547.5	796	S410	1224	702.5
663	S543 S542	4416 4392	547.5 702.5	730 731	S476 S475	2808 2784	702.5 547.5	797 798	S409 S408	1200 1176	547.5 702.5
665	S542 S541	4392	547.5	731	S473 S474	2760	702.5	798	S408 S407	1176	547.5
666	S540	4344	702.5	733	S473	2736	547.5	800	S406	1128	702.5
667	S539	4320	547.5	734	S472	2712	702.5	801	S405	1104	547.5
668	S538	4296	702.5	735	S471	2688	547.5	802	S404	1080	702.5
669	S537	4272	547.5	736	S470	2664	702.5	803	S403	1056	547.5
670	S536	4248	702.5	737	S469	2640	547.5	804	S402	1032	702.5

SSD1289 Rev 1.3 P 13/82 Apr 2007 **Solomon Systech**

Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos
805	S401	1008	547.5	872	S335	-600	702.5	939	S268	-2208	547.5
806	S400	984	702.5	873	S334	-624	547.5	940	S267	-2232	702.5
807	S399	960	547.5	874	S333	-648	702.5	941	S266	-2256	547.5
808	S398	936	702.5	875	S332	-672	547.5	942	S265	-2280	702.5
809	S397	912	547.5	876	S331	-696	702.5	943	S264	-2304	547.5
810	S396	888	702.5	877	S330	-720	547.5	944	S263	-2328	702.5
811 812	S395 S394	864 840	547.5 702.5	878 879	S329 S328	-744 -768	702.5 547.5	945 946	S262 S261	-2352 -2376	547.5 702.5
812	S394 S393	816	547.5	880	S328 S327	-768 -792	702.5	946	S260	-2376	702.5 547.5
814	S392	792	702.5	881	S326	-816	547.5	948	S259	-2424	702.5
815	S391	768	547.5	882	S325	-840	702.5	949	S258	-2448	547.5
816	S390	744	702.5	883	S324	-864	547.5	950	S257	-2472	702.5
817	S389	720	547.5	884	S323	-888	702.5	951	S256	-2496	547.5
818	S388	696	702.5	885	S322	-912	547.5	952	S255	-2520	702.5
819	S387	672	547.5	886	S321	-936	702.5	953	S254	-2544	547.5
820	S386	648	702.5	887	S320	-960	547.5	954	S253	-2568	702.5
821	S385	624	547.5	888	S319	-984	702.5	955	S252	-2592	547.5
822	S384	600	702.5	889	S318	-1008	547.5	956	S251	-2616	702.5
823	S383	576	547.5	890	S317	-1032	702.5	957	S250	-2640	547.5
824 825	S382 S381	552 528	702.5 547.5	891 892	S316 S315	-1056 -1080	547.5 702.5	958 959	S249 S248	-2664 -2688	702.5 547.5
825 826	S380	528	702.5	892 893	S313 S314	-1080	702.5 547.5	960	S248 S247	-2088	702.5
827	S379	480	547.5	894	S314 S313	-1104	702.5	961	S247	-2712	547.5
828	S378	456	702.5	895	S312	-1152	547.5	962	S245	-2760	702.5
829	S377	432	547.5	896	S311	-1176	702.5	963	S244	-2784	547.5
830	S376	408	702.5	897	S310	-1200	547.5	964	S243	-2808	702.5
831	S375	384	547.5	898	S309	-1224	702.5	965	S242	-2832	547.5
832	S374	360	702.5	899	S308	-1248	547.5	966	S241	-2856	702.5
833	S373	336	547.5	900	S307	-1272	702.5	967	S240	-2880	547.5
834	S372	312	702.5	901	S306	-1296	547.5	968	S239	-2904	702.5
835	S371	288	547.5	902	S305	-1320	702.5	969	S238	-2928	547.5
836	S370	264	702.5	903 904	S304	-1344	547.5	970 971	S237	-2952	702.5
837 838	S369 S368	240 216	547.5 702.5	904	S303 S302	-1368 -1392	702.5 547.5	971	S236 S235	-2976 -3000	547.5 702.5
839	S367	192	547.5	906	S302	-1392	702.5	973	S234	-3024	547.5
840	S366	168	702.5	907	S300	-1440	547.5	974	S233	-3048	702.5
841	S365	144	547.5	908	S299	-1464	702.5	975	S232	-3072	547.5
842	S364	120	702.5	909	S298	-1488	547.5	976	S231	-3096	702.5
843	S363	96	547.5	910	S297	-1512	702.5	977	S230	-3120	547.5
844	S362	72	702.5	911	S296	-1536	547.5	978	S229	-3144	702.5
845	S361	48	547.5	912	S295	-1560	702.5	979	S228	-3168	547.5
846	S360	24	702.5	913	S294	-1584	547.5	980	S227	-3192	702.5
847 848	DUMMY S359	-24	547.5	914 915	S293	-1608	702.5	981 982	S226	-3216 -3240	547.5
849	S359 S358	-24 -48	702.5 547.5	915	S292 S291	-1632 -1656	547.5 702.5	982	S225 S224	-3240	702.5 547.5
850	S357	-72	702.5	917	S290	-1680	547.5	984	S223	-3288	702.5
851	S356	-96	547.5	918	S289	-1704	702.5	985	S222	-3312	547.5
852	S355	-120	702.5	919	S288	-1728	547.5	986	S221	-3336	702.5
853	S354	-144	547.5	920	S287	-1752	702.5	987	S220	-3360	547.5
854	S353	-168	702.5	921	S286	-1776	547.5	988	S219	-3384	702.5
855	S352	-192	547.5	922	S285	-1800	702.5	989	S218	-3408	547.5
856	S351	-216	702.5	923	S284	-1824	547.5	990	S217	-3432	702.5
857	S350	-240	547.5	924	S283	-1848	702.5	991	S216	-3456	547.5
858	S349	-264	702.5	925	S282	-1872	547.5	992	S215	-3480	702.5
859 860	S348 S347	-288	547.5 702.5	926 927	S281	-1896 -1920	702.5	993 994	S214 S213	-3504 -3528	547.5 702.5
860 861	S347 S346	-312 -336	702.5 547.5	927	S280 S279	-1920 -1944	547.5 702.5	994	S213 S212	-3528 -3552	702.5 547.5
862	S345	-360	702.5	928	S279 S278	-1944	547.5	993	S212 S211	-3576	702.5
863	S344	-384	547.5	930	S277	-1992	702.5	997	S211	-3600	547.5
864	S343	-408	702.5	931	S276	-2016	547.5	998	S209	-3624	702.5
865	S342	-432	547.5	932	S275	-2040	702.5	999	S208	-3648	547.5
866	S341	-456	702.5	933	S274	-2064	547.5	1000	S207	-3672	702.5
867	S340	-480	547.5	934	S273	-2088	702.5	1001	S206	-3696	547.5
868	S339	-504	702.5	935	S272	-2112	547.5	1002	S205	-3720	702.5
869	S338	-528	547.5	936	S271	-2136	702.5	1003	S204	-3744	547.5
870	S337	-552	702.5	937	S270	-2160	547.5	1004	S203	-3768	702.5
871	S336	-576	547.5	938	S269	-2184	702.5	1005	S202	-3792	547.5

 Solomon Systech
 Apr 2007
 P 14/82
 Rev 1.3
 SSD1289

	Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos
1009 S169 3386 3722 1075 S112 5-547 S115 142 S85 7-700 7025 1010 S107 3912 7025 1077 S110 5-550 5075 1144 S83 7-7128 7025 1011 S106 3936 3788 S475 1078 S129 5-550 5-75 1144 S83 7-7128 7025 1012 S105 3960 7025 1079 S128 5-588 5475 1146 S81 7-776 7025 1013 S104 3984 3475 1009 S128 5-588 5475 1146 S81 7-776 7025 1013 S104 3984 3715 1000 S127 S592 7025 1147 S80 7-776 7025 1014 S105 3-900 7025 1079 S128 5-588 5475 1146 S80 7-776 7025 1015 S107 4-005 7-725 1078 S129 S592 7025 1147 S80 7-724 7025 1016 S107 4-005 7-725 1078 S128 S592 7025 1147 S80 7-724 7025 1017 S109 4-005 7-725 1085 S128 S592 7025 S117 S50 S77 S772 7-705 1018 S109 4-006 5475 1084 S123 S588 7025 S118 S58 4-724 S70 S70 1019 S188 4-104 7-725 1085 S124 S70 S70 S71 S72 S70 S	1006	S201	-3816	702.5	1073	S134	-5424	547.5	1140	S67	-7032	702.5
1909 S188												
1910												
1012 S194 -3940 702.5 1079 S128 -5568 547.5 1140 S51 -7176 702.5 1014 S194 -3948 547.5 1014 S195 -4008 702.5 1081 S126 -5592 702.5 1148 S59 -7224 702.5 1015 S192 -4002 547.5 1082 S125 -5640 702.5 1148 S58 -7224 702.5 1016 S191 -4056 702.5 1083 S124 -5664 547.5 1148 S58 -7224 702.5 1016 S191 -4056 702.5 1083 S124 -5664 547.5 1190 S58 -7226 547.5 1016 S191 -4056 547.5 1084 S122 -5712 -570.5 1191 S55 -7220 547.5 1018 S180 -4010 702.5 1085 S122 -5712 -5712 -5715 -1152 S55 -7200 547.5 1018 S180 -4010 702.5 1085 S122 -5712 -5712 -5715 -1152 -555 -7200 -7216 -7												
1014 S192												
1016 S192	1013	S194	-3984	547.5	1080	S127	-5592	702.5	1147	S60	-7200	547.5
1016												
1017 S190 4-090 5475 1084 S123 5-6888 702.5 1331 S56 7-7206 547.5 1018 S189 4-104 702.5 1085 S122 5-571.5 547.5 133 S54 7-7206 702.5 1019 S188 4-128 547.5 1086 S121 5-736 702.5 133 S54 7-7208 702.5 1021 S186 4-176 547.5 1088 S119 5-776 702.5 153 S52 7-7368 702.5 1021 S186 4-176 547.5 1088 S119 5-784 702.5 1155 S52 7-7308 702.5 1022 S186 4-176 547.5 1089 S118 5-888 547.5 1156 S52 7-740 702.5 1023 S184 4-224 547.5 1090 S117 5-852 702.5 1157 S50 7-740 702.5 1023 S184 4-224 547.5 1090 S117 5-852 702.5 1157 S50 7-740 702.5 1023 S183 4-228 702.5 1091 S116 5-858 547.5 1158 S49 7-746 702.5 1025 S182 4-272 547.5 1092 S115 5-8580 702.5 1159 S48 7-788 547.5 1022 S185 4-288 547.5 1092 S114 5-904 547.5 1100 S47 7-7512 702.5 1027 S180 4-320 547.5 1093 S114 5-904 547.5 1100 S47 7-7512 702.5 1028 S179 4-344 702.5 1095 S112 5-952 5-47.5 1102 S46 7-7560 702.5 1020 S178 4-368 547.5 1096 S111 5-976 702.5 1103 S44 7-7580 702.5 1021 S177 4-342 702.5 1097 S110 6-600 547.5 1104 S43 7-758 5-766 702.5 1022 S175 4-440 702.5 1099 S108 6-608 5-47.5 1106 S47 7-766 702.5 5-761 7												
1018				i								
1019												
1021 S186												
1022 S185 -4200 702.5 1089 S118 -5868 S47.5 1156 S51 -7416 702.5 1024 S183 -4248 547.5 1090 S117 558.2 702.5 1157 S50 -7440 702.5 1024 S183 -4248 702.5 1091 S116 -5856 S47.5 1158 S49 -7464 702.5 1025 S181 -4296 702.5 1092 S115 -5860 702.5 1159 S48 -7488 S47.5 1026 S47.5 1026 S47.5 S4	1020	S187	-4152	702.5	1087	S120	-5760	547.5	1154	S53	-7368	702.5
1021 S184 4224 547.5 1090 S11.7 -5832 702.5 1157 S80 -7.440 547.5 1021 1021 1023 S182 4272 547.5 1022 S11.6 -585.6 547.5 1158 S80 -7.464 702.5 1025 S182 4272 547.5 1022 S11.6 -585.6 547.5 1158 S80 -7.464 702.5 1025 S181 4-70.6												
1024 S183 4-248 702.5 1091 S11.6 -585.6 S47.5 1159 S48 -7.464 702.5 1005 S182 4-272 S47.5 1092 S11.5 -588.0 702.5 1159 S48 -7.488 S47.5 1006 S18 4-296 702.5 1091 S11.4 -590.4 S47.5 1160 S47 -7.512 702.5 1038 S179 4-344 702.5 1093 S11.3 -599.2 702.5 1161 S46 -7.53.6 -7.55.6 702.5 1038 S179 4-344 702.5 1093 S11.2 -595.2 702.5 1161 S45 -7.55.6 702.5 1038 S178 4-368 547.5 1096 S11.1 -597.6 702.5 1161 S45 -7.55.6 702.5 1039 S178 4-368 547.5 1096 S11.1 -597.6 702.5 1161 S45 -7.56.6 702.5 1039 S177 4-392 702.5 1097 S11.0 -600.0 547.5 1161 S41.3 -7.668 702.5 1031 S176 4-416 547.5 1098 S109 -602.4 702.5 1165 S42 -7.56.6 702.5 1031 S176 4-446 547.5 1098 S109 -602.4 702.5 1165 S42 -7.65.6 702.5 1033 S174 4-464 547.5 1100 S107 -6072 702.5 1165 S41. -7.660 702.5 1033 S174 4-464 S47.5 1100 S107 -6072 702.5 1165 S41. -7.660 547.5 1003 S172 4-342 547.5 1100 S106 6-006 547.5 1168 S39 7.704 702.5 1005 S172 4-342 547.5 1102 S105 6-100 547.5 1169 S38 7.7228 547.5 1005 S171 4-560 547.5 1104 S103 6-160 702.5 1171 S10.6 7.775 7												
1026 SIR2												
1006												
1028 S179												
1029 S178	1027	S180	-4320	547.5	1094	S113	-5928	702.5	1161	S46	-7536	547.5
1030												
1031 S176												
1032 S175 -4440 702.5 1099 S108 -6048 547.5 1166 S41 -7656 702.5 1033 S174 -4464 547.5 1100 S107 -6072 702.5 1167 S40 -7680 547.5 1034 S173 -4488 702.5 1101 S106 -6096 547.5 1168 S39 -7704 702.5 1035 S172 -4512 547.5 1102 S105 -6120 702.5 1169 S38 -7728 547.5 1036 S171 -4536 702.5 1103 S104 -6144 547.5 1107 S37 -7752 7752 702.5 1037 S170 -4560 547.5 1104 S103 -6168 702.5 1171 S36 -7776 547.5 1038 S169 -4584 702.5 1105 S102 -6192 S47.5 1171 S36 -7776 547.5 1038 S169 -4584 702.5 1105 S102 -6192 S47.5 1172 S35 -7800 702.5 1039 S168 -4608 547.5 1106 S101 -4216 702.5 1173 S34 -7824 547.5 1044 S166 -4656 547.5 1106 S101 -4216 702.5 1173 S34 -7824 547.5 1042 S165 -4680 702.5 1109 S98 -6288 547.5 1176 S31 -7896 702.5 1043 S163 -4704 547.5 1110 S97 -6312 702.5 1176 S31 -7896 702.5 1044 S163 -4728 702.5 1111 S96 -6336 547.5 1180 S29 -7944 702.5 1044 S163 -4728 702.5 1111 S96 -6336 547.5 1180 S27 -7992 702.5 1047 S160 -4800 547.5 1114 S93 -6408 702.5 1180 S27 -7992 702.5 1047 S160 -4800 547.5 1114 S93 -6408 702.5 1181 S26 -8046 547.5 1180 S27 -7992 702.5 1047 S160 -4800 547.5 1116 S91 -6456 702.5 1183 S24 -8064 547.5 1046 S150 -4800 547.5 1116 S91 -6456 702.5 1183 S24 -8064 547.5 1046 S150 -4800 547.5 1116 S91 -6456 702.5 1183 S24 -8064 547.5 1046 S150 -4800 547.5 1116 S91 -6456 702.5 1183 S24 -8064 547.5 1053 S154 -4944 547.5 1116 S91 -6456 702.5 1189 S18 -8800 547.5 1053 S154 -4944 547.5 1120 S87 -6504 702.5 1189 S18 -8800 547.5 1055 S151 -5016 702.5 1117 S80 -670.5 547.5 11				i								
1033 S174 -4464 547.5 1100 S107 -6072 702.5 1167 S40 -7680 547.5 1034 S173 -4488 702.5 1101 S106 -6096 547.5 1169 S38 -7704 702.5 702.5 1035 S172 -4512 547.5 1102 S105 -6120 702.5 1169 S38 -7728 547.5 1036 S171 -4536 702.5 1103 S104 -6144 547.5 1170 S37 -7752 702.5 702.5 703.5												
1034 S173				i								
1036	1034		-4488		1101	S106	-6096		1168	S39	-7704	
1037												
1038												
1039												
1040												
1041 S166												
1043 S164												
1044 S163 -4728 702.5 1111 S96 -6336 S47.5 11178 S29 -7944 702.5 1045 S162 -4752 S47.5 1112 S95 -6360 702.5 1179 S28 -7968 S47.5 1046 S161 -4776 702.5 1113 S94 -6384 S47.5 11180 S27 -7992 702.5 1047 S160 -4800 S47.5 1114 S93 -6408 702.5 1181 S26 -8016 S47.5 1048 S159 -4824 702.5 1115 S92 -6432 S47.5 1182 S25 -8040 702.5 1049 S158 -4824 702.5 1115 S92 -6432 S47.5 1182 S25 -8040 702.5 1050 S157 -4872 702.5 1117 S90 -6480 S47.5 1184 S23 -8088 702.5 1051 S156 -4896 S47.5 1118 S89 -6504 702.5 1185 S22 -8112 S47.5 1052 S155 -4920 702.5 1119 S88 -6504 702.5 1185 S22 -8112 S47.5 1053 S154 -4944 S47.5 1120 S87 -6552 702.5 1187 S20 -8160 S47.5 1054 S153 -4996 702.5 1121 S86 -6576 S47.5 1188 S19 -8184 702.5 1055 S151 -5016 702.5 1123 S84 -6604 702.5 1199 S18 -8208 S47.5 1056 S151 -5016 702.5 1123 S84 -6604 702.5 1190 S17 -8232 702.5 1057 S150 -5040 S47.5 1124 S83 -6660 702.5 1191 S16 -8256 S47.5 1059 S148 -5088 S47.5 1126 S81 -6696 702.5 1193 S14 -8304 S47.5 1060 S147 -5112 702.5 1127 S80 -6702 S47.5 1194 S13 -8328 702.5 1061 S146 -5136 547.5 1128 S79 -6744 702.5 1199 S16 -8256 547.5 1062 S145 -5160 702.5 1129 S78 -6768 S47.5 1199 S1 -8424 702.5 1063 S144 -5134 S47.5 1132 S75 -6840 702.5 1199 S1 -8424 702.5 1064 S143 -5256 702.5 1133 S74 -6884 547.5 1199 S1 -8424 702.5 1065 S142 -5232 547.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S130 -5340 702.5 1133 S74 -6860 547.5 1200 S				702.5	1109		-6288	547.5	1176	S31		702.5
1045 S162												
1046 S161		i		i								
1047 S160		i										
1048 S159 -4824 702.5 1115 S92 -6432 547.5 1182 S25 -8040 702.5 1049 S158 -4848 547.5 1116 S91 -6456 702.5 1183 S24 -8064 547.5 1050 S157 -4872 702.5 1117 S90 -6480 547.5 1184 S23 -8088 702.5 1051 S156 -4896 547.5 1118 S89 -6504 702.5 1185 S22 -8112 547.5 1052 S155 -4920 702.5 1119 S88 -6528 547.5 1186 S21 -8136 702.5 1053 S154 -4944 547.5 1120 S87 -6552 702.5 1187 S20 -8160 547.5 1053 S153 -4968 702.5 1121 S86 -6576 547.5 1188 S19 -8184 702.5 1055 S152 -4992 547.5 1122 S85 -6600 702.5 1189 S18 -8208 547.5 1056 S151 -5016 702.5 1123 S84 -6624 547.5 1190 S17 -8232 702.5 1057 S150 -5040 547.5 1124 S83 -6648 702.5 1191 S16 -8256 547.5 1059 S148 -5064 702.5 1125 S82 -6672 547.5 1192 S15 -8280 702.5 1059 S148 -5064 702.5 1126 S81 -6696 702.5 1193 S14 -8304 547.5 1060 S147 -5112 702.5 1127 S80 -6720 547.5 1194 S13 -8328 702.5 1061 S146 -5136 547.5 1126 S81 -6696 702.5 1193 S14 -8304 547.5 1061 S146 -5136 547.5 1128 S79 -6744 702.5 1195 S12 -8352 547.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1199 S8 -8448 547.5 1066 S141 -5232 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1066 S141 -5232 547.5 1134 S73 -6888 702.5 1199 S8 -8448 547.5 1066 S141 -5232 547.5 1134 S73 -6888 702.5 1199 S8 -8448 547.5 1066 S141 -5232 547.5 1133 S74 -6864 547.5 1200 S7 -8496 547.5 1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1069 S138 -5328 547.5 1137 S70 -6960 547.5 1201 S6 -8496 547.5 1069 S137 -5336 702.												
1050												
1051 S156 -4896 547.5 1118 S89 -6504 702.5 1185 S22 -8112 547.5 1052 S155 -4920 702.5 1119 S88 -6528 547.5 1186 S21 -8136 702.5 1053 S154 -4944 547.5 1120 S87 -6552 702.5 1187 S20 -8160 547.5 1054 S153 -4968 702.5 1121 S86 -6576 547.5 1188 S19 -8184 702.5 1055 S152 -4992 547.5 1122 S85 -6600 702.5 1189 S18 -8208 547.5 1056 S151 -5016 702.5 1123 S84 -6624 547.5 1190 S17 -8232 702.5 1057 S150 -5040 547.5 1124 S83 -6648 702.5 1191 S16 -8256 547.5 1058 S149 -5064 702.5 1125 S82 -6672 547.5 1192 S15 -8280 702.5 1059 S148 -5088 547.5 1126 S81 -6696 702.5 1193 S14 -8304 547.5 1060 S147 -5112 702.5 1127 S80 -6720 547.5 1194 S13 -8328 702.5 1061 S146 -5136 547.5 1128 S79 -6744 702.5 1195 S12 -8352 547.5 1062 S143 -5160 702.5 1129 S78 -6768 547.5 1196 S11 -8376 702.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1066 S141 -5256 702.5 1133 S74 -6840 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6880 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1200 S7 -8472 702.5 1069 S148 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1069 S149 -5256 702.5 1131 S76 -6840 702.5 1201 S6 -8496 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1136 S71 -6936 702.5 1201 S6 -8496 547.5 1069 S137 -5352 702.5 1137 S70 -6960 547.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8	1049	S158	-4848	547.5	1116	S91	-6456	702.5	1183	S24	-8064	547.5
1052 S155 -4920 702.5 1119 S88 -6528 547.5 1186 S21 -8136 702.5 1053 S154 -4944 547.5 1120 S87 -6552 702.5 1187 S20 -8160 547.5 1054 S153 -4968 702.5 1121 S86 -6576 547.5 1188 S19 -8184 702.5 1055 S152 -4992 547.5 1122 S85 -6600 702.5 1189 S18 -8208 547.5 1056 S151 -5016 702.5 1123 S84 -6624 547.5 1190 S17 -8232 702.5 1057 S150 -5040 547.5 1124 S83 -6648 702.5 1191 S16 -8256 547.5 1058 S149 -5064 702.5 1125 S82 -6672 547.5 1192 S15 -8280 702.5 1059 S148 -5088 547.5 1126 S81 -6696 702.5 1193 S14 -8304 547.5 1060 S147 -5112 702.5 1127 S80 -6720 547.5 1194 S13 -8328 702.5 1061 S146 -5136 547.5 1128 S79 -6744 702.5 1195 S12 -8352 547.5 1062 S143 -5208 702.5 1129 S78 -6768 547.5 1196 S11 -8376 702.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S140 -5280 547.5 1134 S73 -6888 702.5 1200 S7 -8472 702.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1200 S7 -8472 702.5 1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1072 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -85												
1053 S154												
1054 S153 -4968 702.5 1121 S86 -6576 547.5 1188 S19 -8184 702.5 1055 S152 -4992 547.5 1122 S85 -6600 702.5 1189 S18 -8208 547.5 1056 S151 -5016 702.5 1123 S84 -6624 547.5 1190 S17 -8232 702.5 1057 S150 -5040 547.5 1124 S83 -6648 702.5 1191 S16 -8256 547.5 1058 S149 -5064 702.5 1125 S82 -6672 547.5 1192 S15 -8280 702.5 1059 S148 -5088 547.5 1126 S81 -6666 702.5 1193 S14 -8304 547.5 1060 S147 -5112 702.5 1127 S80 -6720 547.5 1194 S13 -8328 702.5 1061 S146 -5136 547.5 1128 S79 -6744 702.5 1195 S12 -8352 547.5 1062 S145 -5160 702.5 1129 S78 -6768 547.5 1196 S11 -8376 702.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S142 -5232 547.5 1132 S75 -6840 702.5 1199 S8 -8448 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1072 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1072 S174 -5076 -5076 -5076 -5076 -5076 -5076 -5076 -5076												
1055 S152 -4992 547.5 1122 S85 -6600 702.5 1189 S18 -8208 547.5 1056 S151 -5016 702.5 1123 S84 -6624 547.5 1190 S17 -8232 702.5 1057 S150 -5040 547.5 1124 S83 -6648 702.5 1191 S16 -8256 547.5 1058 S149 -5064 702.5 1125 S82 -6672 547.5 1192 S15 -8280 702.5 1059 S148 -5088 547.5 1126 S81 -6696 702.5 1193 S14 -8304 547.5 1060 S147 -5112 702.5 1127 S80 -6720 547.5 1194 S13 -8328 702.5 1061 S146 -5136 547.5 1128 S79 -6744 702.5 1195 S12 -8352 547.5 1062 S145 -5160 702.5 1129 S78 -6768 547.5 1196 S11 -8376 702.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S142 -5232 547.5 1132 S75 -6840 702.5 1199 S8 -8488 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1072 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1072 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5 1072 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592												
1056												
1058 S149 -5064 702.5 1125 S82 -6672 547.5 1192 S15 -8280 702.5		i				S84			1190			
1059 S148 -5088 547.5 1126 S81 -6696 702.5 1193 S14 -8304 547.5 1060 S147 -5112 702.5 1127 S80 -6720 547.5 1194 S13 -8328 702.5 1061 S146 -5136 547.5 1128 S79 -6744 702.5 1195 S12 -8352 547.5 1062 S145 -5160 702.5 1129 S78 -6768 547.5 1196 S11 -8376 702.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1063 S144 -5184 547.5 1130 S77 -6816 547.5 1198 S9 -8424 702.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S142 -5232 547.5 1132 S75 -6840 702.5 1199 S8 -8448 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5												
1060 S147 -5112 702.5 1127 S80 -6720 547.5 1194 S13 -8328 702.5 1061 S146 -5136 547.5 1128 S79 -6744 702.5 1195 S12 -8352 547.5 1062 S145 -5160 702.5 1129 S78 -6768 547.5 1196 S11 -8376 702.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S142 -5232 547.5 1132 S75 -6840 702.5 1199 S8 -8448 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067												-
1061 S146 -5136 547.5 1128 S79 -6744 702.5 1195 S12 -8352 547.5 1062 S145 -5160 702.5 1129 S78 -6768 547.5 1196 S11 -8376 702.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S142 -5232 547.5 1132 S75 -6840 702.5 1199 S8 -8448 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6864 547.5 1200 S7 -8472 702.5 1067				i								
1062 S145 -5160 702.5 1129 S78 -6768 547.5 1196 S11 -8376 702.5 1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S142 -5232 547.5 1132 S75 -6840 702.5 1199 S8 -8448 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1069 <												
1063 S144 -5184 547.5 1130 S77 -6792 702.5 1197 S10 -8400 547.5 1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S142 -5232 547.5 1132 S75 -6840 702.5 1199 S8 -8448 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
1064 S143 -5208 702.5 1131 S76 -6816 547.5 1198 S9 -8424 702.5 1065 S142 -5232 547.5 1132 S75 -6840 702.5 1199 S8 -8448 547.5 1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
1066 S141 -5256 702.5 1133 S74 -6864 547.5 1200 S7 -8472 702.5 1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5	1064					S76						
1067 S140 -5280 547.5 1134 S73 -6888 702.5 1201 S6 -8496 547.5 1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5												
1068 S139 -5304 702.5 1135 S72 -6912 547.5 1202 S5 -8520 702.5 1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5												
1069 S138 -5328 547.5 1136 S71 -6936 702.5 1203 S4 -8544 547.5 1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5												
1070 S137 -5352 702.5 1137 S70 -6960 547.5 1204 S3 -8568 702.5 1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5												
1071 S136 -5376 547.5 1138 S69 -6984 702.5 1205 S2 -8592 547.5												
												-

SSD1289 Rev 1.3 P 15/82 Apr 2007 **Solomon Systech**

Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos	Pad#	Signal	X-pos	Y-pos
1207	S0	-8640	547.5	1274	G201	-10248	702.5				
1208	NC	-8664	702.5	1275	G199	-10272	547.5				
1209	DUMMY	-8688	547.5	1276	G197	-10296	702.5				
1210	DUMMY	-8712	702.5	1277	G195	-10320	547.5				
1211 1212	VCOM VCOM	-8736 -8760	547.5 702.5	1278 1279	G193 G191	-10344 -10368	702.5 547.5			-	4
1212	DUMMY	-8784	547.5	1280	G191	-10308	702.5				+
1214	GTESTL	-8808	702.5	1281	G187	-10416	547.5				
1215	G319	-8832	547.5	1282	G185	-10440	702.5				1
1216	G317	-8856	702.5	1283	G183	-10464	547.5				
1217	G315	-8880	547.5	1284	G181	-10488	702.5				
1218	G313	-8904	702.5	1285	G179	-10512	547.5				
1219	G311	-8928	547.5	1286	G177	-10536	702.5				4
1220	G309	-8952	702.5	1287	G175	-10560	547.5				4
1221 1222	G307 G305	-8976 -9000	547.5 702.5	1288 1289	G173 G171	-10584 -10608	702.5 547.5			-	4
1223	G303	-9000	547.5	1290	G1/1	-10632	702.5				+
1224	G301	-9048	702.5	1291	G167	-10656	547.5				
1225	G299	-9072	547.5	1292	G165	-10680	702.5				1
1226	G297	-9096	702.5	1293	G163	-10704	547.5				
1227	G295	-9120	547.5	1294	G161	-10728	702.5				
1228	G293	-9144	702.5	1295	G159	-10752	547.5				
1229	G291	-9168	547.5	1296	G157	-10776	702.5				
1230	G289	-9192	702.5	1297	G155	-10800	547.5				4
1231	G287	-9216	547.5	1298	G153	-10824	702.5				
1232 1233	G285 G283	-9240 -9264	702.5 547.5	1299 1300	G151 G149	-10848 -10872	547.5 702.5			-	4
1233	G283 G281	-9288	702.5	1300	G149 G147	-10872	547.5				+
1235	G279	-9312	547.5	1302	G147	-10920	702.5			1	•
1236	G277	-9336	702.5	1303	G143	-10944	547.5				
1237	G275	-9360	547.5	1304	G141	-10968	702.5				
1238	G273	-9384	702.5	1305	G139	-10992	547.5				
1239	G271	-9408	547.5	1306	G137	-11016	702.5				
1240	G269	-9432	702.5	1307	G135	-11040	547.5				
1241	G267	-9456	547.5	1308	G133	-11064	702.5				4
1242 1243	G265 G263	-9480 -9504	702.5 547.5	1309 1310	G131 G129	-11088 -11112	547.5 702.5				4
1243	G263 G261	-9528	702.5	1310	G129 G127	-11112	547.5				1
1245	G259	-9552	547.5	1312	G125	-11160	702.5				
1246	G257	-9576	702.5	1313	G123	-11184	547.5				1
1247	G255	-9600	547.5	1314	G121	-11208	702.5				
1248	G253	-9624	702.5	1315	G119	-11232	547.5				
1249	G251	-9648	547.5	1316	G117	-11256	702.5				
1250	G249	-9672	702.5	1317	G115	-11280	547.5				
1251	G247	-9696	547.5	1318	G113	-11304	702.5				
1252 1253	G245 G243	-9720 -9744	702.5 547.5	1319 1320	G111 G109	-11328 -11352	547.5 702.5			 	+
1253	G243 G241	-9744 -9768	702.5	1320	G109 G107	-11352	547.5				+
1255	G239	-9792	547.5	1322	G107	-11400	702.5			<u> </u>	
1256	G237	-9816	702.5	1323	G103	-11424	547.5				
1257	G235	-9840	547.5	1324	G101	-11448	702.5				
1258	G233	-9864	702.5	1325	G99	-11472	547.5				
1259	G231	-9888	547.5	1326	G97	-11496	702.5				
1260	G229	-9912	702.5	1327	G95	-11520	547.5			ļ	
1261	G227	-9936	547.5	1328	G93	-11544	702.5		}	ļ	4
1262 1263	G225 G223	-9960 -9984	702.5 547.5	1329 1330	G91 G89	-11568 -11592	547.5 702.5			 	+
1263	G223 G221	-10008	702.5	1331	THROUGH7	-11592	547.5			 	+
1265	G221	-10032	547.5	1332	THROUGH8	-11640	702.5				
1266	G217	-10056	702.5	1333	DUMMY	-11664	547.5			†	
1267	G215	-10080	547.5	1334	DUMMY	-11688	702.5				
1268	G213	-10104	702.5	1335	VGL	-11712	547.5				
1269	G211	-10128	547.5	1336	DUMMY	-11736	702.5				
1270	G209	-10152	702.5								
1271	G207	-10176	547.5							<u> </u>	ļ
1272	G205	-10200	702.5						}	ļ	4
1273	G203	-10224	547.5	I	<u> </u>				<u> </u>	<u> </u>	<u> </u>

 Solomon Systech
 Apr 2007
 P 16/82
 Rev 1.3
 SSD1289

PIN DESCRIPTION 6

Remark:

I = Input; O = Output; IO = Bi-directional; P = Power; VCC = System VDD; GND = System VSS;

Table 6-1: Power Supply Pins

Name	Type	Connect to	Function	Description	When not in use
V_{SS}		GND		System ground pin of the IC.	-
AV_{SS}	1	GND	Ground of	Grounding for analog circuit.	-
$V_{\rm SSRC}$	P	GND	the Power Supply	Grounding for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages.	-
V_{CHS}	1	AV_{SS}		Grounding for booster circuit.	-
V _{CI}		Power Supply	Power Supply for	Booster input voltage pin Connect to voltage source between 2.5V to 3.6V	-
V_{CIP}	Р	$ m V_{CI}$	Analog Circuits	Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages Connect to same source of $V_{\rm CI}$	-
V_{CIM}	0	Stabilizing capacitor	Booster	Negative voltage of V _{CI} .	-
V_{CIX2}		Stabilizing capacitor	voltages	Equals to 2x V _{CI}	-
V_{CIX2J}	P	V _{CIX2} on FPC	Voltage for	They are the power supply used by on chip analog blocks and VGH/VGL	-
V_{CIX2G}	Р	V _{CIX2} on FPC	analog	dede.	-
V _{COMR}	I	External voltage source or Open	External Reference	This pin provides voltage reference for internal voltage regulator when register VDV[4:0] of Power Control 4 set to "01111". - Connect to an external voltage source for reference	Open
V_{COMH}	0	Stabilizing capacitor	Voltages for	This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation.	-
V _{COML}	О	Stabilizing capacitor	VCOM Signal	This pin indicates a LOW level of VCOM generated in driving the VCOM alternation.	-
V _{LCD63}		Stabilizing capacitor		This pin is the maximum source driver voltage.	-
V_{GH}		Stabilizing capacitor		A positive power output pin for gate driver. This pin is ESD sensitive. It can achieve 2000V ESD (HBM) with connection of external components in application circuit.	-
V_{GL}	О	Stabilizing capacitor	LCD	A negative power output pin for gate driver.	-
$V_{ m GOFFH}$		Stabilizing capacitor or open	Driving Voltages	When the VGOFF alternation is driven, this pin indicates a high level of VGOFF. - Connect a capacitor for stabilization if Cs on gate structure is used - This pin can be open if Cs on common structure is used	Open
V_{GOFFHL}	I	Stabilizing capacitor to V_{COM} or open		- Connect a capacitor to V_{COM} if Cs on gate application.	Open
CXP		Booster		- Connect a capacitor to CXN	i
CXN]	capacitor]	- Connect a capacitor to CXP	-
CYP]	Booster		- Connect a capacitor to CYN	-
CYN]	capacitor]	- Connect a capacitor to CYP	-
CP]	Booster		- Connect a capacitor to CN	-
CN]	capacitor]	- Connect a capacitor to CP	-
C1P]	ъ .	Booster and	- Connect a capacitor to C1N	-
C1N		Booster capacitor	Stabilization Capacitors	Connect a capacitor to C1P This pin is ESD sensitive. It can achieve 2000V ESD (HBM) with connection of external components in application circuit.	-
C2P	I		1	- Connect a capacitor to C2N	_
C2N	-	Booster capacitor		- Connect a capacitor to C2P This pin is ESD sensitive. It can achieve 2000V ESD (HBM) with connection of external	-
907	4		4	components in application circuit.	
C3P	4	Booster		- Connect a capacitor to C3N	-
C3N	1	capacitor		- Connect a capacitor to C3P	-
CDUM0		Stabilizing capacitor	Stabilization	- Connect a capacitor to V_{SS}	Open
CDUM1		Stabilizing capacitor	Capacitors	- Connect a capacitor to V_{SS}	Open
EXTCLK	I	V_{SS}	OSC input	A clock input pin for internal oscillator. Connect to V_{SS} when using the internal oscillator.	GND

Rev 1.3 P 17/82 SSD1289 Apr 2007 Solomon Systech

REGVDD	I	V _{DDIO} or V _{SS}	Logic Control	$\label{eq:local_problem} Input pin to enable internal vdd regulation. \\ - Connect to V_{DDIO} if system Vdd > 1.95V or system Vdd < 1.65V, \\ internal Vdd regulator will be enabled \\ - Connect to V_{SS} if system Vdd is 1.65V - 1.95V. Internal vdd regulator will be disabled. $	GND
V_{CORE}	P	Stablilizing capacitor	Power for Core Logic	Vdd for core use. Connect a capacitor for stabilization	-
$V_{ m REGC}$	Р	$V_{\rm CORE}$	Regulator output for logic circuits	Regulator output for V_{CORE} use.	-
V_{RAM}	P	Stablilizing capacitor	Power for RAM	Vdd for RAM use. Connect a capacitor for stabilization	-
V_{REGR}	P	V_{RAM}	Regulator output for RAM	Regulator output for RAM use.	-
$V_{ ext{ddext}}$	P	Power Supply	Power for internal V _{DD} regulator	Voltage input pin for internal logic, connect to system VDD Connect to voltage source between 1.4V to 3.6V	-
$V_{ m DDIO}$	P	Voltage input pin for logic I/O, connect to system VDD Connect to voltage source between 1.4V to 3.6V	-		

Table 6-2 - Interface Logic Pins

Name	Type	Connect to	Function	Description	When not in use
DEN		MPU		Display enable pin from controller. Data will be treated as dummy regardless the DEN status during front/back porch setting at registers R16 and R17.	$V_{ m DDIO}$
VSYNC	I	MPU	Display Timing	Frame synchronization signal. - Fixed to V_{DDIO} or V_{SS} if not used	V_{DDIO} or V_{ss}
HSYNC	1	MPU	Signals	Line synchronization signal Fixed to V_{DDIO} or V_{SS} if not used	V_{DDIO} or V_{ss}
DOTCLK		MPU		Dot-clock signal and oscillator source. A non-stop external clock must be provided to that pin even at front or black porch non-display period.	V_{DDIO} or V_{ss}
SHUT	I	V_{DDIO} or V_{SS}	Logic Control	When using the RGB interface, it is a input pin put the driver into sleep mode. A sharp falling edge must be provided to such pin when IC power on. - Connect to V_{DDIO} for sleep mode - Connect to V_{SS} for normal operating mode This pin has no effect in system interface and should be connected to V_{DDIO}/V_{SS}	V_{DDIO} or V_{ss}
DC		MPU		Data or command	V _{DDIO} or V _{ss}
E(RD)	I	MPU	Logic	6800-system : E (enable signal)	V_{DDIO} or V_{ss}
R/\overline{W} (\overline{WR})	1	MPU	Control		V_{DDIO} or V_{ss}
D0-D17	Ю	MPU	Data bus	For parallel mode, $8/9/16/18$ bit interface. For generic mode, RGB interface. Please refer to Section 15 Interface Mapping for definition. Unused pins must be float or connect to $V_{\rm SS}$.	V_{SS}
WSYNC	О	MPU	Logic Control	Ram Write Synchronization output	Open
RES	I	MPU	System Reset	System reset pin Connect to V_{DDIO} when not used	$V_{ m DDIO}$
CS		MPU		Chip select pin of serial interface Leave it OPEN when not used	Open
SCK	I	MPU	Serial	Clock pin of serial interface Leave it OPEN when not used	Open
SDI		MPU	Interface	Data input pin in serial mode Leave it OPEN when not used	Open
SDO	О	MPU		Data output pin in serial mode Leave it OPEN when not used	Open

 Solomon Systech
 Apr 2007
 P 18/82
 Rev 1.3
 SSD1289

Table 6-3: Mode Selection Pins

Name	Type	Connect to	Function	Description										
СМ	I	V_{DDIO} or V_{SS}	Logic Control	When using the RGB interface, it is a input pin to select 262k-color or 8-color display mode. After entered 8-color display mode, the driver will switch to Frame-Inversion-Mode, and only MSB of the data Red, Green and Blue will be considered Connect to V_{DDIO} for 8-color display mode - Connect to V_{SS} for 262k-color display mode This pin has no effect in system interface and should be connected to V_{DDIO} / V_{SS}	V _{DDIO} or V _{ss}									
RL		V_{DDIO} or V_{SS}		Input pin to select the Source driver data shift direction. - Connect to V _{DDIO} for display first RGB data at S0-S2 - Connect to V _{SS} for display first RGB data at S719-S717	V_{DDIO} or V_{ss}									
GD		V_{DDIO} or V_{SS}		Input pin to select the 1st output Gate GD = '0', G0 is 1st output Gate, Gate sequence G0, G1, G2, G3,, G318, G319 GD = '1', G1 is 1st output Gate, Gate sequence G1, G0, G3, G2,, G319, G318	V_{DDIO} or V_{ss}									
ТВ		V_{DDIO} or V_{SS}	Panel	Input pin to select the Gate driver scan direction. - Connect to V _{DDIO} for Gate scan from G0 to G319 - Connect to V _{SS} for Gate scan from G319 to G0	V_{DDIO} or V_{ss}									
BGR	I	$V_{ m DDIO}$ or $V_{ m SS}$	Mapping Controls	Input pin to select the color mapping. - Connect to V _{DDIO} for Blue-Green-Red mapping - Connect to V _{SS} for Red-Green-Blue mapping (Refer to S0-S719 pin description on Page 19 for details)	V_{DDIO} or V_{ss}									
REV		V_{DDIO} or V_{SS}		Input pin to select the display reversion. - Connect to V _{DDIO} mapping data "0" to maximum pixel voltage for normal white panel - Connect to V _{SS} mapping data "0" to minimum pixel voltage for normal black panel	V_{DDIO} or V_{ss}									
CAD		$V_{ m DDIO}$ or $V_{ m SS}$		Panel structure selection pin. - Connect to V_{DDIO} if Cs on gate structure is used - Connect to V_{SS} if Cs on common structure is used	V_{DDIO} or V_{ss}									
PS0		V_{DDIO} or V_{SS}		PS3 PS2 PS1 PS0 Interface Mode 1 1 1 3-wire SPI 1 1 1 0 4-wire SPI	-									
PS1		V_{DDIO} or V_{SS}	Interface	1 0 1 1 16-bit 6800 parallel interface 1 0 1 0 8-bit 6800 parallel interface 1 0 0 1 16-bit 8080 parallel interface 1 0 0 0 8-bit 8080 parallel interface	-									
PS2	I	$V_{ m DDIO}$ or $V_{ m SS}$	Selection	0 1 1 1 8-bits 6800 parallel interface 0 1 1 0 9-bits 6800 parallel interface 0 1 0 1 18-bit 8080 parallel interface 0 1 0 0 9-bit 8080 parallel interface 0 0 1 1 Reserved	-									
PS3		V_{DDIO} or V_{SS}		0 0 1 1 Reserved 0 0 1 0 Reserved 0 0 0 1 18-bit RGB interface + 4-wire SPI	-									
GAMAS0		V _{DDIO} or V _{SS}	Lagia	Gamma selection pin. This pin should be connected to $V_{\text{DDIO}}/V_{\text{SS}}$	V _{DDIO} or V _{SS}									
GAMAS1	I	$V_{\rm DDIO}$ or $V_{\rm SS}$	Logic Control	Gamma selection pin. This pin should be connected to V_{DDIO} / V_{SS}	V_{DDIO} or V_{SS} V_{DDIO} or									
GAMAS2		V _{SS}		Gamma selection pin. This pin should be connected to $V_{\text{DDIO}}/V_{\text{SS}}$	V _{SS}									

SSD1289 Rev 1.3 P 19/82 Apr 2007 **Solomon Systech**

Table 6-4: Driver Output Pins

Name	Туре	Connect to	Function	Description	When not in use				
VCOM		LCD		A power supply for the TFT-display common electrode.	Open				
G0-G319		LCD		Gate driver output pins. These pins output V_{GH} , V_{GL} or V_{GOFFH} level.	Open				
GTESTR		LCD	LCD	Gate driver output test pins, leave these pins no connection when using Cs on common					
GTESTL	ESTL O LCD Driving			Gate driver output test phils, reave these phils no connection when using es on common					
S0-S719		LCD	Signals	Source driver output pins. S(3n): display Red if BGR = LOW, Blue if BGR = HIGH. S(3n+1): display Green. S(3n+2): display Blue if BGR = LOW, Red if BGR = HIGH.	Open				

Table 6-5: Miscellaneous Pins

Name	Туре	Connect to	Function	Description	When not in use
NC	-	-	-	These pins must be left open and cannot be connected together	Open
THROUGH1	-	-	-	Dummy pads. Used to measure the COG contact resistance.	Open
THROUGH7	-	-	-	These two pads are short circuited within the chip	Open
THROUGH2	-	-	-	Dummy pads. Used to measure the COG contact resistance.	Open
THROUGH8	-	-	-	These two pads are short circuited within the chip	Open
THROUGH3	-	-	-	Dummy pads. Used to measure the COG contact resistance.	Open
THROUGH5	-	-	-	These two pads are short circuited within the chip	Open
THROUGH4	-	-	-	Dummy pads. Used to measure the COG contact resistance.	Open
THROUGH6	-	-	-	These two pads are short circuited within the chip	Open
DUMMY	-	-	-	Floating pins and no connection inside the IC. These pins should be open.	Open
TESTA		FPC	IC	Test pin of the internal circuit Leave this pin open and insert test point in FPC	Open
TESTB	IO	FPC	Testing Signal	Test pin of the internal circuit Leave this pin open and insert test point in FPC	Open
TESTC		FPC	Signai	Test pin of the internal circuit Leave this pin open and insert test point in FPC	Open

 Solomon Systech
 Apr 2007
 P 20/82
 Rev 1.3
 SSD1289

7 BLOCK FUNCTION DESCRIPTION

7.1 System Interface

The System Interface unit consists of three functional blocks for driving the 6800-series parallel interface, 8080-series high speed parallel interface, 3-lines serial peripheral interface and 4-lines serial peripheral interface. The selection of different interface is done by PS3, PS2, PS1 and PS0 pins. Please refer to the pin descriptions on page 19.

a) MPU Parallel 6800-series Interface

The parallel Interface consists of 18 bi-directional data pins D[17:0], R/\overline{W} , D/\overline{C} , E and \overline{CS} . R/\overline{W} input high indicates a read operation from the Graphical Display Data RAM (GDDRAM) or the status register. R/\overline{W} input low indicates a write operation to Display Data RAM or Internal Command Registers depending on the status of D/\overline{C} input. The E input serves as data latch signal (clock) when high provided that \overline{CS} is low. Please refer to Parallel Interface Timing Diagram of 6800-series microprocessors. In order to match the operating frequency of the GDDRAM with that of the MCU, pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in the following diagram.

Figure 7-1 - Read Display Data

b) MPU Parallel 8080-series Interface

The parallel interface consists of 18 bi-directional data pins D[17:0], \overline{RD} , \overline{WR} , D/ \overline{C} and \overline{CS} . \overline{RD} input serves as data read latch signal (clock) when low provided that \overline{CS} is low. Whether reading the display data from GDDRAM or reading the status from the status register is controlled by D/ \overline{C} . \overline{WR} input serves as data write latch signal (clock) when low provided that \overline{CS} is low. Whether writing the display data to the GDDRAM or writing the command to the command register is controlled by D/ \overline{C} . A dummy read is also required before the first actual display data read for 8080-series interface. Please refer Figure 7-1.

c) MPU 4-lines Serial Peripheral Interface

The 4-lines serial peripheral Interface consists of serial clock SCK, serial data SDI, D/\overline{C} and \overline{CS} . SDI is shifted into 8-bit shift register on every rising edge of SCK in the order of data bit 7, data bit 6 data bit 0. D/\overline{C} is sampled on every eighth clock to determine whether the data byte in the shift register is written to the Display Data RAM or command register at the same clock.

SSD1289 | Rev 1.3 | P 21/82 | Apr 2007 | **Solomon Systech**

d) MPU 3-lines Serial Peripheral Interface

The operation is similar to 4-lines serial peripheral interface while D/\overline{C} is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/\overline{C} bit, D7 to D0 bit. The D/\overline{C} bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/\overline{C} bit = 1) or the command register (D/\overline{C} bit = 0).

	6800 – series Parallel Interface	8080 – series Parallel Interface	MCU Serial Interface
Data Read	18/16/9/8-bits	18/16/9/8-bits	No
Data Write	18/16/9/8-bits	18/16/9/8-bits	8-bits
Command Read	Status only	Status only	No
Command Write	Yes	Yes	8-bits

Table 7-1 - Data bus selection modes

7.2 RGB Interface

SSD1289 supports RGB interface and VSYNC interface as the moving display interace to display animation image. RGB interface unit consists of D[17:0], HSYNC, VSYNC, DOTCLK and DEN signals for display moving pictures. When the RGB interface is selected, the display operation is synchronized with external control signals (HSYNC, VSYNC and DOTCLK). In this operation, Data D[17:0,] will be treated as RR[5:0], GG[5:0] and BB[0:5], is written in synchronization with the control signals when DEN is enabled for write operation in order to avoid flicker or tearring effect while updating display data.

Table 7-2: RGB signal matching in data bus

Data Bus	RGB signals
D[17:12]	RR[5:0]
D[11:6]	GG[5:0]
D[5:0]	BB[0:5]

In VSYNC interface operation, the display operation is synchronized with the internal clock, which synchronizes the display operation with the VSYNC signal. The display data is written to the GDDRAM through the system interface. When writing data via VSYNC interface, the speed of writing data in the internal RAM is faster from the falling edge of frame synchronous (VSYNC) than calculated minimum speed. The display may be updated even the data written in the RAM is not completed. In this operation, some restrictions in setting the frequency and the method to write data to the internal RAM are required.

7.3 Address Counter (AC)

The address counter (AC) assigns address to the GDDRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing into the GRAM, the AC is automatically incremented by 1 (or decremented by 1). After reading the data, the AC is not updated. A window address function allows for data to be written only to a window area specified by GRAM.

7.4 Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 240 RGB x $320 \times 18 / 8 = 172,800$ bytes. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Please refer to the command "Data Output/Scan direction" for detail description.

Four pages of display data forms a RAM address block and stored in the GDDRAM. Each block will form the fundamental units of scrolling addresses. Various types of area scrolling can be performed by software program according to the command "Set area Scroll" and "Set Scroll Start".

Solomon Systech Apr 2007 | P 22/82 | Rev 1.3 | **SSD1289**

7.5 Gamma/Grayscale Voltage Generator

The grayscale voltage circuit generates a LCD driver circuit that corresponds to the grayscale levels as specified in the grayscale gamma adjustment resister. 262,144 possible colors can be displayed when 1 pixel = 18 bit. For details, see the gamma adjustment register.

7.6 Booster and Regulator Circuit

These two functional blocks generate the voltage of VGH, VGL, VCOM levels and VLCD0~63 which are necessary for operating a TFT LCD.

7.7 Timing Generator

The timing generator generates a timing signal for the operation of internal circuit such as the internal RAM accessing, date output timing etc.

7.8 Oscillation Circuit (OSC)

This module is an on-chip low power RC oscillator circuitry. The oscillator generates the clock for the DC-DC voltage converter. This clock is also used in the display timing generator.

7.9 Data Latches

This block is a series of latches carrying the display signal information. These latches hold the data, which will be fed to the HV Buffer Cell and Level Selector to output the required voltage level.

7.10 Liquid Crystal Driver Circuit

SSD1289 consists of a 720-output source driver (S0-S719) and a 320-output gate driver (G0-G319). The display image data is latched when 720 bits of data are inputted. The latched data control the source driver and output drive waveforms. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the source driver can be changed by setting the RL bit and the shift direction of gate output from the gate driver can be changed by setting the TB bit. The scan mode by the gate driver can be changed by setting the SM bit. Sets the gate driver pin arrangement in combination with the TB bit to select the operimal scan mode for the module.

SSD1289 | Rev 1.3 | P 23/82 | Apr 2007 | **Solomon Systech**

8 COMMAND TABLE

Table 8-1 - Command Table

Reg#	Register	R/W	D/C	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	Index	0	0	0	0	0	0	0	0	0	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
SR	Status Read	1	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0
R00h	Oscillation Start	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	OSCE N
110011	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R01h	Driver output control	0	1	0	RL	REV	CAD	BGR	SM	ТВ	MUX8	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
	[0XXX][X0X1]3F			0	Χ	Χ	Χ	Χ	0	Х	1	0	0	1	1	1	1	1	1
R02h	LCD drive AC control	0	1	0	0	0	FLD	ENWS	B/C	EOR	WSMD	NW7	NW6	NW5	NW4	NW3	NW2	NW1	NW0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R03h	Power control (1)	0	1	DCT3	DCT2	DCT1	DCT0	BT2	BT1	BT0	0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0
	All GAMAS[2:0] setting 8 color (6A64h)			0	1	1	0	1	0	1	0	0	1	1	0	0	1	0	0
R05h	Compare register (1)	0	1	CPR5	CPR4	CPR3	CPR2	CPR1	CPR0	0	0	CPG5	CPG4	CPG3	CPG2	CPG1	CPG0	0	0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R06h	Compare register (2)	0	1	0	0	0	0	0	0	0	0	CPB5	CPB4	CPB3	CPB2	CPB1	CPB0	0	0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R07h	Display control	0	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	CM	0	D1	D0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R0Bh	Frame cycle control	0	1	NO1	NO0	SDT1	SDT0	0	EQ2	EQ1	EQ0	DIV1	DIV0	SDIV	SRTN	RTN3	RTN2	RTN1	RTN0
	(5308h)			0	1	0	1	0	0	1	1	0	0	0	0	1	0	0	0
R0Ch	Power control (2)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VRC2	VRC1	VRC0
	(0004h)			0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
R0Dh	Power control (3)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	VRH3	VRH2	VRH1	VRH0
R0Eh	Power control (4)	0	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
R0Fh	Gate scan start position	0	1	0	0	0	0	0	0	0	SCN8	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R10h	Sleep mode	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SLP
	(0001h)	_		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R11h	Entry mode (6830h)	0	1	VS mode 0	DFM1	DFM0	TRANS 0	OEDef 1	WMode 0	DMode1 0	DMode0 0	TY1 0	TY0 0	1D1	1D0	AM 0	LG2	LG1 0	LG0
R12h	Optimize Access Speed 3 (6CEBh)	0	1	0	1	1	0	1	1	0	0	1	1	1	0	1	0	1	1
R15h	Generic Interface Contrl	0	1	0	0	0	0	0	0	0	0	1	1	0	1	INVDOT	INVDEN	INNVHS	INVVS
	(00D0h)			0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0
R16h	Horizontal Porch	0	1	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	HBP7	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
	(EF1Ch)			1	1	1	0	1	1	1	1	0	0	0	1	1	1	0	0
R17h	Vertical Porch	0	1	VFP7	VFP6	VFP5	VFP4	VFP3	VFP2	VFP1	VFP0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
	(0103h)			0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1

 Solomon Systech
 Apr 2007
 P 24/82
 Rev 1.3
 SSD1289

(continued)

(contin	1			I	1											T	T		T
Reg#	Register	R/W	D/C	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R1Eh	Power control (5)	0	1	0	0	0	0	0	0	0	0	nOTP	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
R22h	RAM data write	0	1						Data[17:0)] mappii	na deper	nds on th	e interfa	ce settino	נ				
	RAM data read	1	1							1 -11	3			,	,				
Dool	RAM write data mask (1)	0	1	WMR5	WMR4	WMR3	WMR2	WMR1	WMR0	0	0	WMG5	WMG4	WMG3	WMG2	WMG1	WMG0	0	0
R23h	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RAM write data	_	_						-					-					
R24h	mask (2)	0	1	0	0	0	0	0	0	0	0	WMB5	WMB4	WMB3	WMB2	WMB1	WMB0	0	0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R25h	Frame Frequency	0	1	OSC3	OSC2	OSC1	OSC0	0	0	0	0	0	0	0	0	0	0	0	0
	(8000h)			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R28h	VCOM OTP (000Ah)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
	Optimize Access																		
R28h	Speed 1 (0006h)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
R29h	VCOM OTP (80C0h)	0	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
R2Fh	Optimize Access Speed 2 (12BEh)	0	1	0	0	0	1	0	0	1	0	1	0	1	1	1	1	1	0
R30h	γ control (1)	0	1	0	0	0	0	0	PKP12	PKP11	PKP10	0	0	0	0	0	PKP02	PKP01	PKP00
R31h	γ control (2)	0	1	0	0	0	0	0	PKP32	PKP31	PKP30	0	0	0	0	0	PKP22	PKP21	PKP20
R32h	γ control (3)	0	1	0	0	0	0	0	PKP52	PKP51	PKP50	0	0	0	0	0	PKP42	PKP41	PKP40
R33h	γ control (4)	0	1	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	0	PRP02	PRP01	PRP00
R34h	γ control (5)	0	1	0	0	0	0	0	PKN12	PKN11	PKN10	0	0	0	0	0	PKN02	PKN01	PKN00
R35h	γ control (6)	0	1	0	0	0	0	0	PKN32	PKN31	PKN30	0	0	0	0	0	PKN22	PKN21	PKN20
R36h	γ control (7)	0	1	0	0	0	0	0	PKN52	PKN51	PKN50	0	0	0	0	0	PKN42	PKN41	PKN40
R37h	γ control (8)	0	1	0	0	0	0	0	PRN12	PRN11	PRN10	0	0	0	0	0	PRN02	PRN01	PRN00
R3Ah	γ control (9)	0	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	VRP00
R3Bh	γ control (10)	0	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRN00
R41h	Vertical scroll control (1)	0	1	0	0	0	0	0	0	0	VL18	VL17	VL16	VL15	VL14	VL13	VL12	VL11	VL10
1.4111	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vertical scroll	0	1	0	0	0	0	0	0	0	VL28	VL27	VL26	VL25	VL24	VL23	VL22	VL21	VL20
R42h	control (2)	U																	
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R44h	Horizontal RAM address position	0	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
	(EF00h)			1	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0
	Vertical RAM	0	4					_			VC * 0	VC 4.7	VC * ^	VC 4.5	VC**	VC**	V(C * 0	1/014	V(C.1.0
R45h	address start position	0	1	0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R46h	Vertical RAM address end position	0	1	0	0	0	0	0	0	0	VEA8	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
	(013Fh)			0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1
R48h	First window start	0	1	0	0	0	0	0	0	0	SS18	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
N40[]	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DANL	First window end	0	1	0	0	0	0	0	0	0	SE18	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10
R49h	(013Fh)			0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1
	Second window	0	1	0	0	0	0	0	0	0	SS28	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20
R4Ah	start	5																	
	(0000h)		4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R4Bh	Second window end	0	1	0	0	0	0	0	0	0	SE28	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20
	(013Fh)			0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1
R4Eh	Set GDDRAM X address counter	0	1	0	0	0	0	0	0	0	0	XAD7	XAD6	XAD5	XAD4	XAD3	XAD2	XAD1	XAD0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D 4 FL	Set GDDRAM Y	0	1	0	0	0	0	0	0	0	YAD8	YAD7	YAD6	YAD5	YAD4	YAD3	YAD2	YAD1	YAD0
R4Fh	address counter			n	0	0	0	n	0	0	n	n	0	0	n	0	n	n	0
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U

Note: In R01h, bits REV, CAD, BGR, TB, RL, CM will override the corresponding hardware pins settings. Setting R28h as 0x0006 is required before setting R25h and R29h registers.

SSD1289 Rev 1.3 P 25/82 Apr 2007 **Solomon Systech**

Table 8-2 – Gamma Registers POR value

Command R30h-R3Bh	GAMAS[2:0]	GAMAS[2:0]	GAMAS[2:0]	GAMAS[2:0] 011, 111
	000, 100	001, 101	010, 110	
PKP0	000	000	000	000
PKP1	000	000	000	000
PKP2	111	101	111	111
PKP3	111	100	111	111
PKP4	110	101	110	110
PKP5	100	010	100	100
PRP0	000	000	000	000
PRP1	000	010	000	000
VRP0	0100	1101	0100	0000
VRP1	00100	10110	00100	11110
PKN0	011	101	011	011
PKN1	001	010	001	001
PKN2	000	010	000	000
PKN3	000	001	000	000
PKN4	111	101	111	111
PKN5	111	110	111	111
PRN0	000	010	000	000
PRN1	000	000	000	000
VRN0	0110	1010	0110	1111
VRN1	00000	00111	00000	00000

Table 8-3: Registers POR value at GAMAS[2:0] = 000,100

Reg#	Register	Hex code	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R03h	Power control (1)	6664	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0
R0Dh	Power control (3)	0009	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
R0Eh	Power control (4)	3200	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
R1Eh	Power control (5)	0029	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1

Table 8-4: Registers POR value at GAMAS[2:0] = 001,101

Reg#	Register	Hex code	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R03h	Power control (1)	6A64	0	1	1	0	1	0	1	0	0	1	1	0	0	1	0	0
R0Dh	Power control (3)	000A	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
R0Eh	Power control (4)	2C00	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0
R1Eh	Power control (5)	0034	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0

Table 8-5: Registers POR value at GAMAS[2:0] = 010,110

Reg#	Register	Hex code	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R03h	Power control (1)	6264	0	1	1	0	0	0	1	0	0	1	1	0	0	1	0	0
R0Dh	Power control (3)	0009	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
R0Eh	Power control (4)	3200	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
R1Eh	Power control (5)	002F	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1

Table 8-6: Registers POR value at GAMAS[2:0] = 011,111

Reg#	Register	Hex code	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R03h	Power control (1)	6464	0	1	1	0	0	1	0	0	0	1	1	0	0	1	0	0
R0Dh	Power control (3)	000A	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
R0Eh	Power control (4)	3000	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
R1Eh	Power control (5)	0031	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1

 Solomon Systech
 Apr 2007
 P 26/82
 Rev 1.3
 SSD1289

9 COMMAND DESCRIPTION

Index (IR)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	0	0	0	0	0	0	0	0	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

The index instruction specifies the RAM control indexes (R00h to RFFh). It sets the register number in the range of 000000000 to 111111111 in binary form. But do not access to Index register and instruction bits which do not have it's own index register.

Device Code Read (R00h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	1	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	1

If this register is read forcibly, 8989h is read.

Oscillator (R00h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	OSCEN
P	OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OSCEN: The oscillator will be turned on when OSCEN = 1, off when OSCEN = 0.

Driver Output Control (R01h) (POR = [0XXXX0X1]3Fh)

ľ	PC)R	0	Х	Х	Х	Х	0	Х	1	0	0	1	1	1	1	1	1
Ī	W	1	0	RL	REV	CAD	BGR	SM	ТВ	MUX8	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0

Note: The POR value of REV, CAD, BGR, TB and RL are determined by the corresponding hardware pin state. The software bit setting will override hardware setting if this command is sent.

REV: Displays all character and graphics display sections with reversal when REV = "1". Since the grayscale level can be reversed, display of the same data is enabled on normally white and normally black panels. Source output level is indicated below.

REV	RGB data	Source O	utput level
		Vcom = "L"	Vcom = "H"
	00000H	V63	V0
0	:	:	:
	3FFFFH	V0	V63
	00000H	V0	V63
1	:	:	:
	3FFFFH	V63	V0

CAD: Set up based on retention capacitor configuration of the TFT panel.

CAD	Retention capacitor configuration
0	Cs on Common
1	Cs on Gate

BGR: Selects the order from RGB to BGR in writing 18-bit pixel data in the GDDRAM.

When BGR = "0" <R><G> color is assigned from S0.

When BGR = "1" <G><R> color is assigned from S0.

SSD1289 | Rev 1.3 | P 27/82 | Apr 2007 | **Solomon Systech**

SM: Change scanning order of gate driver.

SM	Gate scan squence (GD='0')
0	G0, G1, G2, G3G219 (left and right gate interlaced)
1	G0, G2,G318, G1, G3,G319

See "Scan mode setting" on next page.

TB: Selects the output shift direction of the gate driver.

When TB = 1, G0 shifts to G319.

When TB = 0, G319 shifts to G0.

RL: Selects the output shift direction of the source driver.

When RL = "1", S0 shifts to S719 and <R><G> color is assigned from S0.

When RL = "0", S719 shifts to S0 and <R><G> color is assigned from S719.

Set RL bit and BGR bit when changing the dot order of R, G and B. RL setting will be ignored when display with RAM (Dmode[1:0] = 00).

MUX[8:0]: Specify number of lines for the LCD driver. MUX[8:0] settings cannot exceed 319. Remark: When using the partial display, the output for non-display area will be minimum voltage.

Solomon Systech Apr 2007 | P 28/82 | Rev 1.3 | SSD1289

Rev 1.3 P 29/82 SSD1289 Apr 2007 Solomon Systech

Apr 2007 | P 30/82 | Rev 1.3 SSD1289 Solomon Systech

LCD-Driving-Waveform Control (R02h) (POR = 0000h)

	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
Γ	W	1	0	0	0	FLD	ENWS	B/C	EOR	WSMD	NW7	NW6	NW5	NW4	NW3	NW2	NW1	NW0
	PC	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FLD: Set display in interlace drive mode to protect from flicker. It splits one frame into 3 fields and drive.

When FLD = 1, it is 3 field driving, which also limit VBP = 1 and cannot be used for Cs on gate panel type. That is CAD = 1 & FLD = 1 cannot be coexist.

When FLD = 0, it is normal driving.

The following figure shows the gate selection when the 3-field invension is enabled and the output waveform of the 3-field interlaced driving.

Table 9-1: 3-field interlace driving

TB = 1			TB = 0		
Gate	FLD = 0	FLD = 1	Gate	FLD = 0	FLD = 1
G0	X		G319	X	
G1	X		G318 ¦	X	
G2	X	X	G317	X	X
G3	X		G316	X	
G4	X		G315 ¦	X	
	X	X		X	X
	X			X	
	X			X	
G317 ¦	X		G2 ¦	X	
G318	X		G1	X	
G319 🕁	X	X	G0 🗼	X	X

Figure 9-1: gate output timing in 3-field interlacing driving

 SSD1289
 Rev 1.3
 P 31/82
 Apr 2007
 Solomon Systech

B/C: Select the liquid crystal drive waveform VCOM.

When B/C = 0, frame inversion of the LCD driving signal is enabled.

When B/C = 1, a N-line inversion waveform is generated and alternates in a N-line equals to NW[7:0]+1.

EOR: When B/C = 1 and EOR = 1, the odd/even frame-select signals and the N-line inversion signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the lines of the LCD driven and the N-lines.

NW[7:0]: Specify the number of lines that will alternate at the N-line inversion setting (B/C = 1). N-line is equal to NW[7:0]+1.

Figure 9-2: Line Inversion AC Driver

Solomon Systech Apr 2007 | P 32/82 | Rev 1.3 | SSD1289

ENWS: When ENWS = 1, it enables WSYNC output pin. Mode1 or Mode2 is selected by WSMD. When ENWS = 0(POR), it disables WSYNC feature, the WSYNC output pin will be high-impedance.

WSMD = 0 is **mode1**, the waveform of WSYNC output will be:

tn is the time when there is No Update of LCD screen from on-chip ram content. **tu** is the time when the LCD screen is updating based on on-chip ram content. e.g. fosc = 510 KHz, for 320mux, for = 282 us (6 lines), for = 15.06 ms (320 lines)

WSMD = 1 is **mode2**, the waveform of WSYNC output will be:

For fast write MCU: MCU should start to write new frame of ram data just after rising edge of long WSYNC pulse and should be finished well before the rising edge of the next long WSYNC pulse.
e.g. 5MHz 8 bit parallel write cycle for 18 bit color depth, or 3MHz 8 bit parallel write cycle for 16 bit color depth.

For slow write MCU (Half the write speed of fast write): MCU should start to write new frame ram data after the rising edge of the first short WSYNC pulse and must be finished within 2 frames time. e.g. 2.5MHz 8 bit parallel write cycle for 18 bit color depth.

* Usually, mode2 is for slower MCU, while mode1 is for fast MCU.

SSD1289 | Rev 1.3 | P 33/82 | Apr 2007 | **Solomon Systech**

Power control 1 (R03h) (POR = 6664h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	DCT3	DCT2	DCT1	DCT0	BT2	BT1	BT0	0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0
PC)R	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0

^{*}note: this POR value is for GAMAS[2:0] = 000, for POR values of all GAMAS[2:0] setting please refer to Table 5.

DCT[3:0]: Set the step-up cycle of the step-up circuit for 8-color mode (CM = $V_{\rm DDIO}$). When the cycle is accelerated, the driving ability of the step-up circuit increases, but its current consumption increases too. Adjust the cycle taking into account the display quality and power consumption.

DCT3	DCT2	DCT1	DCT0	Step-up cycle
0	0	0	0	Fline × 24
0	0	0	1	Fline × 16
0	0	1	0	Fline × 12
0	0	1	1	Fline × 8
0	1	0	0	Fline × 6
0	1	0	1	Fline × 5
0	1	1	0	Fline × 4
0	1	1	1	Fline × 3
1	0	0	0	Fline × 2
1	0	0	1	Fline × 1
1	0	1	0	fosc / 4
1	0	1	1	fosc / 6
1	1	0	0	fosc / 8
1	1	0	1	fosc / 10
1	1	1	0	fosc / 12
1	1	1	1	fosc / 16

Fline = Line frequency fosc = Internal oscillator frequency (~510KHz)

BT[2:0]: Control the step-up factor of the step-up circuit. Adjust the step-up factor according to the power-supply voltage to be used.

BT2	BT1	BT0	V _{GH} output	V _{GL} output	V _{GH} booster ratio	V _{GL} booster ratio
0	0	0	V_{CIX2} +4 x V_{CI}	$-(V_{CIX2} \times 3) + V_{CI}$	+6	-5
0	0	1	V_{CIX2} +4 x V_{CI}	$-(V_{GH}) + V_{Cix2}$	+6	-4
0	1	0	V_{CIX2} +4 x V_{CI}	-(V _{GH})	+6	-6
0	1	1	V _{CI} x 5	-(V _{GH})	+5	-5
1	0	0	V _{CI} x 5	$-(V_{GH}) + V_{CI}$	+5	-4
1	0	1	V _{CI} x 5	$-(V_{GH}) + V_{Cix2}$	+5	-3
1	1	0	V _{CI} x 4	-(V _{GH})	+4	-4
1	1	1	V _{CI} x 4	$-(V_{GH}) + V_{CI}$	+4	-3

Apr 2007 | P 34/82 | Rev 1.3 SSD1289 Solomon Systech

DC[3:0]: Set the step-up cycle of the step-up circuit for 262k-color mode (CM = V_{SS}). When the cycle is accelerated, the driving ability of the step-up circuit increases, but its current consumption increases too. Adjust the cycle taking into account the display quality and power consumption.

DC3	DC2	DC1	DC0	Step-up cycle
0	0	0	0	Fline × 24
0	0	0	1	Fline × 16
0	0	1	0	Fline × 12
0	0	1	1	Fline × 8
0	1	0	0	Fline × 6
0	1	0	1	Fline × 5
0	1	1	0	Fline × 4
0	1	1	1	Fline × 3
1	0	0	0	Fline × 2
1	0	0	1	Fline × 1
1	0	1	0	fosc / 4
1	0	1	1	fosc / 6
1	1	0	0	fosc / 8
1	1	0	1	fosc / 10
1	1	1	0	fosc / 12
1	1	1	1	fosc / 16

^{*} Fline = Line frequency

fosc = Internal oscillator frequency (~510KHz)

AP[2:0]: Adjust the amount of current from the stable-current source in the internal operational amplifier circuit. When the amount of current becomes large, the driving ability of the operational-amplifier circuits increase. Adjust the current taking into account the power consumption. During times when there is no display, such as when the system is in a sleep mode.

AP2	AP1	AP0	Op-amp power				
0	0	0	Least				
0	0	1	Small				
0	1	0	Small to medium				
0	1	1	Medium				
1	0	0	Medium to large				
1	0	1	Large				
1 1		0	Large to Maximum				
1	1	1	Maximum				

Compare register (R05h-R06h) (POR = 0000h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R05h	W	1	CPR5	CPR4	CPR3	CPR2	CPR1	CPR0	0	0	CPG5	CPG4	CPG3	CPG2	CPG1	CPG0	0	0
Kusii	P	OR .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R06h	W	1	0	0	0	0	0	0	0	0	CPB5	CPB4	CPB3	CPB2	CPB1	CPB0	0	0
KUOII	P)R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CPR[5:0], CPB[5:0], CPB[5:0]: Set the value for the compare register, of which the data read out from the GDDRAM or data written to the GDDRAM by the microcomputer are compared. This function is not available in the external display interface mode. In the external display mode, make sure LG[2:0] = "000". CPR[5:0] compares the pins RR[5:0], CPG[5:0] compares the pins GG[5:0], and CPB[5:0] compares the pins BB[5:0]. Refer to Section 14 Interface Mapping for writing methods in RGB data.

Display Control (R07h) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	CM	0	D1	D0
PC	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PT[1:0]: Normalize the source outputs when non-displayed area of the partial display is driven.

VLE[2:1]: When VLE1 = 1 or VLE2 = 1, a vertical scroll is performed in the 1st screen by taking data VL17-0 in R41h register. When VLE1 = 1 and VLE2 = 1, a vertical scroll is performed in the 1^{st} and 2^{nd} screen by VL1[8:0] and VL2[8:0] respectively.

SPT: When SPT = "1", the 2-division LCD drive is performed.

CM: 8-color mode setting.

When CM = 1, 8-color mode is selected.

When CM = 0, 8-color mode is disable.

GON: Gate off level becomes VGH when GON = "0".

DTE: When GON = "1" and DTE = "0", all gate outputs become VGL. When GON = "1" and DTE = "1", selected gate wire become VGH, and non-selected gate wires become VGL.

D[1:0]: Display is on when D1 = "1" and off when D1 = "0". When off, the display data remains in the GDDRAM, and can be displayed instantly by setting D1 = "1". When D1= "0", the display is off with all of the source outputs set to the GND level. Because of this, the driver can control the charging current for the LCD with AC driving. When D[1:0] = "01", the internal display is performed although the display is off. When D[1:0] = "00", the internal display operation halts and the display is off. Control the display on/off while control GON and DTE.

GON	DTE	D1	D0	Internal Display Operation	Source output	Gate output
0	0	0	0	Halt	GND	V_{GH}
0	0	0	1	Operation	GND	V_{GH}
1	0	0	1	Operation	GND	V_{GOFFL}
1	0	1	1	Operation	Grayscale level output	V_{GOFFL}
1	1	1	1	Operation	Grayscale level output	Selected gate line: V _{GH} Non-selected gate line: V _{GOFFL}

Frame Cycle Control (R0Bh) (POR = 5308h)

	•			,	`		,										
R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	NO1	NO0	SDT1	SDT0	0	EQ2	EQ1	EQ0	DIV1	DIV0	SDIV	SRTN	RTN3	RTN2	RTN1	RTN0
P	OR .	0	1	0	1	0	0	1	1	0	0	0	0	1	0	0	0

NO[1:0]: Sets amount of non-overlap of the gate output.

		1	0		2 clock cycle	
		1	1		3 clock cycle	
	•	← 1 Lir	ne period	-	■ 1 Line period ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	•
Gn						
,		_				
Gn+1		Non-ove	rlap period	d →	—	<u> </u>

Solomon Systech Apr 2007 | P 36/82 | Rev 1.3 | SSD1289

SDT[1:0]: Set delay amount from the gate output signal falling edge of the source outputs.

SDT1	SDT0	Delay amount of the source output
0	0	0 clock cycle
0	1	1 clock cycle (POR)
1	0	2 clock cycle
1	1	3 clock cycle

EQ[2:0]: Sets the equalizing period.

EQ2	EQ1	EQ0	EQ period
0	0	0	No EQ
0	0	1	2 clock cycle
0	1	0	3 clock cycle
0	1	1	4 clock cycle
1	0	0	5 clock cycle
1	0	1	6 clock cycle
1	1	0	7 clock cycle
1	1	1	8 clock cycle

DIV[1:0]: Set the division ratio of clocks for internal operation. Internal operations are driven by clocks which frequency is divided according to the DIV1-0 setting.

DIV1	DIV0	Division Ratio
0	0	1
0	1	2
1	0	4
1	1	8

^{*} fosc = internal oscillator frequency, ~510kHz

SDIV: When SDIV = 1, DIV1-0 value will be count. When SDIV = 0, DIV1-0 value will be auto determined.

SRTN: When SRTN = 1, RTN3-0 value will be count. When SRTN = 0, RTN3-0 value will be auto determined.

RTN[3:0]: Set the no. of clocks in each line. The total number will be the decimal value of RTN3-0 plus 16. e.g. if RTN3-0 = "1010h", the total number of clocks in each line = 10 + 16 = 26 clocks.

SSD1289 | Rev 1.3 | P 37/82 | Apr 2007 | **Solomon Systech**

Frame frequency calculation

For DMode[1:0] = '00'

$$Frame_frequency = \frac{Fosc}{div \times (rtn + 16) \times (mux + vbp + vfp + 3)}$$

where Fosc = internal oscillator frequency

div = Division ratio determined by DIV[1:0]

rtn = RTN[3:0]

mux = MUX[8:0]

vbp = VBP[7:0]

vfp = VFT[7:0]

for default values of SSD1289

Fosc = \sim 510KHz, DIV[1:0] = '00', RTN[3:0] = 8, MUX[8:0] = 319, VBP[7:0] = 3, VFP[7:0] = 1,

Frame frequency =
$$\frac{510K}{1\times(8+16)\times(319+3+1+3)} = \frac{510K}{1\times24\times326} = 65Hz$$

Power Control 2 (R0Ch) (POR = 0004h)

R/	W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
٧	٧	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VRC2	VRC1	VRC0
	POR	٧	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

VRC[2:0]: Adjust VCIX2 output voltage. The adjusted level is indicated in the chart below VRC2-0 setting.

VRC2	VRC1	VRC0	VCIX2 voltage
0	0	0	5.1V
0	0	1	5.2V
0	1	0	5.3V
0	1	1	5.4V
1	0	0	5.5V
1	0	1	5.6V
1	1	0	5.7V
1	1	1	5.8V

Note: The above setting is valid when VCI has high enough voltage supply for boosting up the required voltage. The above setting is assumed 100% booster efficiency. Please refer to DC Characteristics for detail.

Solomon Systech Apr 2007 | P 38/82 | Rev 1.3 | SSD1289

Power Control 3 (R0Dh) (POR = 0009h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	VRH3	VRH2	VRH1	VRH0
PO	R*	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

^{*}note: this POR value is for GAMAS[2:0] = 000, for POR values of all GAMAS[2:0] setting please refer to Table 5.

VRH[3:0]: Set amplitude magnification of V_{LCD63} . These bits amplify the V_{LCD63} voltage 1.54 to 2.725 times the Vref voltage set by VRH[3:0].

VRH3	VRH2	VRH1	VRH0	V _{LCD63} Voltage
0	0	0	0	Vref x 1.540
0	0	0	1	Vref x 1.620
0	0	1	0	Vref x 1.700
0	0	1	1	Vref x 1.780
0	1	0	0	Vref x 1.850
0	1	0	1	Vref x 1.930
0	1	1	0	Vref x 2.020
0	1	1	1	Vref x 2.090
1	0	0	0	Vref x 2.165
1	0	0	1	Vref x 2.245
1	0	1	0	Vref x 2.335
1	0	1	1	Vref x 2.400
1	1	0	0	Vref x 2.500
1	1	0	1	Vref x 2.570
1	1	1	0	Vref x 2.645
1	1	1	1	Vref x 2.725

^{*}Vref is the internal reference voltage equals to 2.0V.

Power Control 4 (R0Eh) (POR = 3200h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
PO	R*	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0

^{*}note: this POR value is for GAMAS[2:0] = 000, for POR values of all GAMAS[2:0] setting please refer to Table 5.

VcomG: When VcomG = "1", it is possible to set output voltage of VcomL to any level, and the instruction (VDV4-0) becomes available. When VcomG = "0", VcomL output is fixed to Hi-z level, VCIM output for VcomL power supply stops, and the instruction (VDV4-0) becomes unavailable. Set VcomG according to the sequence of power supply setting flow as it relates with power supply operating sequence.

VDV[4:0]: Set the alternating amplitudes of Vcom at the Vcom alternating drive. These bits amplify 0.6 to 1.23 times the VLCD63 voltage. When VcomG = "0", the settings become invalid. External voltage at VcomR is referenced when VDH = "01111".

VCOML = 0.9475*VCOMH - VCOMA

VDV4	VDV3	VDV2	VDV1	VDV0	Vcom Amplitude							
0	0	0	0	0	0 VLCD63 x 0.60 1 VLCD63 x 0.63 0 VLCD63 x 0.66 : Step = 0.03 : 1 VLCD63 x 0.99 0 VLCD63 x 1.02 Reference from external variable resistor 0 VLCD63 x 1.05 1 VLCD63 x 1.08 : Step = 0.03 : 1 VLCD63 x 1.20 0 VLCD63 x 1.20							
0	0	0	0	1	VLCD63 x 0.63							
0	0	0	1	0	VLCD63 x 0.66							
		:			:							
		:			Step = 0.03							
		:			:							
0	1	1	0	1	VLCD63 x 0.99							
0	1	1	1	0	VLCD63 x 1.02							
				Reference from external variable								
0	1	1	1	1	external variable							
				1 1 external variabl resistor								
1	0	0	0	0	VLCD63 x 1.05							
1	0	0	0	1	VLCD63 x 1.08							
		:			:							
		:			Step = 0.03							
		:			:							
1	0	1	0	1	VLCD63 x 1.20							
1	0	1	1	0	VLCD63 x 1.23							
1	0	1	1	1	Reserved							
1	1	*	*	*	Reserved							
·	T 7	144 1			·							

Note: Vcom amplitude < 5.5V

SSD1289 | Rev 1.3 | P 39/82 | Apr 2007 | **Solomon Systech**

Gate Scan Position (R0Fh) (POR = 0000h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	SCN8	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
PC	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SCN[8:0]: Set the scanning starting position of the gate driver. The valid range is from 0 to 319.

Sleep mode (R10h) (POR = 0001h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SLP
Р	OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

SLP: Sleep mode enable bit. In the sleep mode, the internal display operations are halted except the R-C oscillator to reduce current consumption. No change in the GDDRAM data or instructions during the sleep mode is made, although it is retained.

When SLP = 1, the driver enters into the sleep mode.

When SLP = 0, the driver leaves the sleep mode.

Entry Mode (R11h) (POR = 6830h)

R/V	N	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	'	1	VSMode	DFM1	DFM0	TRANS	OEDef	WMode	DMode1	DMode0	TY1	TY0	ID1	ID0	AM	LG2	LG1	LG0
	PO	R	0	1	1	0	1	0	0	0	0	0	1	1	0	0	0	0

VSMode: When VSMode = 1 at DMode[1:0] = "00", the frame frequency will be dependent on VSYNC.

In VSYNC interface operation, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM at faster than the calculated minimum speed (internal display oerpation speed + buffer), it becomes possible to rewrite the moving picture data without flickering the display and display a moving picture via system interface.

The display operation is performed in synchronization with the internal clock signal generated from the internal oscillator and the VSYNC signal. The display data is written in the internal RAM so that the SSD1289 rewrites the data only within the moving picture area and minimize the number of data transfer required for moving picture display. Therefore, the SSD1289 can write data via VSYNC interface in high speed with low power consumption.

Solomon Systech Apr 2007 | P 40/82 | Rev 1.3 | **SSD1289**

The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which must be more than the values calculated from the following formulas, respectively.

Fosc[
$$Hz$$
] = Frame $_$ frequency *($mux + vfp + vbp + 3$)*($rtn + 16$)*(div)

RAMWriteSpeed(min)[Hz] > $\frac{240 * mux}{}$

$$RAMWriteSpeed(min)[~Hz~] > \frac{240*mux}{(~vbp + mux - m~arg~ins~)*(~rtn + 16~)*\frac{1}{fosc}}$$

where Fosc = internal oscillator frequencydiv = Division ratio determined by DIV[1:0]rtn = RTN[3:0]mux = MUX[8:0]vbp = VBP[7:0]

Note: When RAM write operation is not started right after the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account.

DFM[1:0]: Set the color display mode.

vfp = VFT[7:0]

	DFM1	DFM0	Color mode
	1	1	65k color (POR)
Г	1	0	262k color

TRANS: When TRANS = 1, transparent display is allowed during DMode[1:0] = "1x".

OEDef:

When OEDef = 1, OE defines the display window. When OEDef = 0, the display window is defined by R4Eh and R4Fh.

WMode: Select the source of data to write in the RAM.

WMode	Write RAM from
0	Normal data bus (POR)
1	Generic interface

DMode[1:0]: SSD1289 allows data display from RAM data or from generic input data. When DMode[1:0] = "00", it displays the ram content. When DMode[1:0] = "01", it displays from generic input data.

DMode1	DMode0	Display	Remark
0	0	Ram (POR)	Frame frequency depends on Fosc (POR)
0	1	Generic input	Frame frequency depends on VSYNC, default DMode setting in RGB interface
1	0	RAM and Generic data	In this case, generic data is shown in the display window
1	1	RAM and Generic data	In this case, RAM data is shown in the display window

Rev 1.3 P 41/82 SSD1289 Apr 2007 Solomon Systech

Picture In Picture Function

TY[1:0]: In 262k color mode, 16 bit parallel interface, there are three types of methods in writing data into the ram, Type A, B and C are described as below.

TY1	TY0	Writing mode
0	0	Type A
0	1	Туре В
1	0	Type C

										Ha	rdwa	are pi	ins							
Interface	Color mode	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	262k Type A	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	G4	B3	B2	B1	B0	Х	Х		R5	R4	R3	R2	R1	R0	Х	Х	
		3 rd	G5	G4	G3	G2	G1	G0	Х	Х		B5	G4	В3	B2	B1	B0	Х	Х	
16 bit	262k Type B	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	Х	Х	Х	Х	Х	Х	Х	Х		B5	G4	В3	B2	B1	B0	Х	Х	
	262k Type C	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	G4	ВЗ	B2	B1	B0	Χ	Х		Х	Х	Х	Х	Х	Χ	Х	Х	

Remark : x Don't care bits
Not connected pins

 Solomon Systech
 Apr 2007 | P 42/82 | Rev 1.3 |
 SSD1289

ID[1:0]: The address counter is automatically incremented by 1, after data are written to the GDDRAM when ID[1:0] = "1". The address counter is automatically decremented by 1, after data are written to the GDDRAM when ID[1:0] = "0". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data are written to the GDDRAM is set with AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the GDDRAM. When AM = "0", the address counter is updated in the horizontal direction. When AM = "1", the address counter is updated in the vertical direction. When window addresses are selected, data are written to the GDDRAM area specified by the window addresses in the manner specified with ID1-0 and AM bits.

LG[2:0]: Write data to the GDDRAM after comparing the write data written to the GDDRAM by the microcomputer with the values in the compare registers (CPR[5:0], CPG[5:0]) and performing a logical and arithmetic operation on them.

Generic Interface Control (R15h) (POR = 00d0h)

	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
Γ	W	1	0	0	0	0	0	0	0	0	1	1	0	1	INVDOT	INVDEN	INVHS	INVVS
	PC	R	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0

INVDOT: sets the signal polarity of DOTCLK pin. When INVDOT = 1, set DOTCLK is negative edge trigger.

INVDEN: sets the signal polarity of DEN pin. When INVDEN = 1, set DEN is active low.

INVHS: sets the signal polarity of HSYNC pin. When INVHS = 1, set inverse polarity of HSYNC.

INVVS: sets the signal polarity of VSYNC pin.When INVVS = 1, set inverse polarity of VSYNC.

SSD1289 | Rev 1.3 | P 43/82 | Apr 2007 | **Solomon Systech**

Horizontal Porch (R16h) (POR = EF1Ch)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	HBP7	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0

XL[7:0]: Set the number of valid pixel per line. Number of valid pixel per line is equal to XL[7:0] + 1

XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	No. of pixel per line
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
				: : :				: Step = 1 :
1	1	1	0	1	1	1	0	239
1	1	1	0	1	1	1	1	240 (POR)
1	1	1	1	0	0	0	0	Reserved
1	1	1	1	*	*	*	*	Reserved

HBP[7:0]: Set the delay period from falling edge of HSYNC signal to first valid data. The pixel data exceed the range set by XL[7:0] and before the first valid data will be treated as dummy data.

НВР7	HBP6	HBP5	HBP4	НВР3	HBP2	HBP1	HBP0	No. of clock cycle of DOTCLK
0	0	0	0	0	0	0	0	2
0	0	0	0	0	0	0	1	3
				:				: Step = 1 :
0	0	0	1	1	0	1	0	28
0	0	0	1	1	0	1	1	29
0	0	0	1	1	1	0	0	30 (POR)
0	0	0	1	1	1	0	1	31
0	0	0	1	1	1	1	0	32
				:				: Step = 1 :
1	1	1	1	1	1	1	0	256
1	1	1	1	1	1	1	1	257

Solomon Systech Apr 2007 | P 44/82 | Rev 1.3 | SSD1289

Vertical Porch (R17h) (POR = 0103h)

F	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	VFP6	VFP5	VFP4	VFP3	VFP2	VFP1	VFP0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
	PC	R	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1

VFP[6:0]: Set the delay period from the last valid line to the falling edge of VSYNC of the next frame. The line data within this delay period will be treated as dummy line.

VFP6	VFP5	VFP4	VFP3	VFP2	VFP1	VFP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	2 (POR)
:	:						: Step = 1 :
1	1	1	1	1	1	0	127
1	1	1	1	1	1	1	128

VBP[7:0]: Set the delay period from falling edge of VSYNC to first valid line. The line data within this delay period will be treated as dummy line.

SSD1289 | Rev 1.3 | P 45/82 | Apr 2007 | **Solomon Systech**

Power Control 5 (R1Eh) (POR = 0029h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	nOTP	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
PO	R*	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1

^{*}note: this POR value is for GAMAS[2:0] = 000, for POR values of all GAMAS[2:0] setting please refer to Table 5.

nOTP: nOTP equals to "0" after power on reset and VcomH voltage equals to programmed OTP value. When nOTP set to "1", setting of VCM[5:0] becomes valid and voltage of VcomH can be adjusted.

VCM[5:0]: Set the VcomH voltage if nOTP = "1". These bits amplify the VcomH voltage 0.35 to 0.99 times the VLCD63 voltage. Default value is "101001" when power on reset.

VCM5	VCM4	VCM3	VCM2	VCM1	VCM0	VcomH
0	0	0	0	0	0	VLCD63 x 0.35
0	0	0	0	0	1	VLCD63 x 0.36
						: Step = 0.01 :
1	1	1	1	1	0	VLCD63 x 0.98
1	1	1	1	1	1	VLCD63 x 0.99

Write Data to GRAM (R22h)

R/W	DC	D[17:0]
W	1	WD[17:0] mapping depends on the interface setting

WD[17:0]: Transforms all the GDDRAM data into 18-bit, and writes the data. Format for transforming data into 18-bit depends on the interface used. SSD1289 selects the grayscale level according to the GDDRAM data. After writing data to GDDRAM, address is automatically updated according to AM bit and ID bit. Access to GDDRAM during stand-by mode is not available.

Read Data from GRAM (R22h)

R/W	DC	D[17:0]
R	1	RD[17:0] mapping depends on the interface setting

RD[17:0]: Read 18-bit data from the GDDRAM. When the data is read to the microcomputer, the first-word read immediately after the GDDRAM address setting is latched from the GDDRAM to the internal read-data latch. The data on the data bus (DB17–0) becomes invalid and the second-word read is normal. When bit processing, such as a logical operation, is performed, only one read can be processed since the latched data in the first word is used.

RAM write data mask (R23h - R24h) (POR = 0000h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R23h	W	1	WMR5	WMR4	WMR3	WMR2	WMR1	WMR0	0	0	WMG5	WMG4	WMG3	WMG2	WMG1	WMG0	0	0
KZJII	P	OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R24h	W	1	0	0	0	0	0	0	0	0	WMB5	WMB4	WMB3	WMB2	WMB1	WMB0	0	0
KZ4II	P	OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

WMR[5:0], WMG[5:0], WMB[5:0]: In writing to the GDDRAM, these bits write-mask the data to be written to the GDDRAM by a bit unit. For example, if WMR5 = 1, the WMR5 write-mask is enabled and data RR5 will be masked and not write into the GDDRAM. WMR[5:0] mask pins RR[5:0], WMG[5:0] mask pins GG[5:0], and WMB[5:0] mask pins BB[5:0]. For writing GDDRAM methods, refer to Section 14 Interface Mapping".

 Solomon Systech
 Apr 2007
 P 46/82
 Rev 1.3
 SSD1289

Frame Frequency Control (R25h) (POR = 8000h)

F	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	OSC3	OSC2	OSC1	OSC0	0	0	0	0	0	0	0	0	0	0	0	0
	РО	R*	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OSC[3:0]: Set the frame frequency by OSC[3:0]

OSC[3:0]	Internal Oscillator Frequency (Hz)	Corresponding Frame Freq (Hz) (other registers are at POR value)
0000	390K	50
0010	430K	55
0101	470K	60
1000	510K	65
1010	548K	70
1100	587K	75
1110	626K	80

Vcom OTP (R28h - R29h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R28h	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
R29h	W	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0

When OTP is access, these registers must be set accordantly.

OTP programming sequence

Step		Oper	ation											
1			•	DDIO = 1.8V. ode (displaying a test										
	pattern if any).		.,	I' (' \/ONTE 01										
2	Set nOTP to "1" (R1E (R1Eh).	=h) and optimiz	es VoomH by a	idjusting VCM[5:0]										
3	Power down the who													
4	Connect a supply to the module at VCI = 2.7V, VDDEXT = VDDIO = 1.8V Write below commands for OTP initialization and wait for 200ms for													
	Write below commands for OTP initialization and wait for 200ms for activate the OTP :													
		Index	Value											
5		R00h	0x0001											
		R28h	0x0006											
		R29h	0x80C0											
	Connect a 14.5V sup	ply to VGH thre	ough a current	limiting resistor, see										
	figure below.													
6	Write the optimized v	alue found in S	Step 2 to VCM[5	5:0] (R1Eh) and set										
0	nOTP to "1".													
7	Fire the OTP by write	e HEX code "00	00Ah" to registe	r R28h.										
8	Wait 500ms.													
9	OTP complete. Power	er down the wh	ole module and	remove 14.5V										
9	supply.	OTTD												

Note: nOTP must set to "0" to activate the OTP effect.

Precaution:

- 1. All capacitors on OTP machine should be discharged completely before placing the LCD module.
- 2. The OTP programming voltage should not be applied when placing and removing the LCD module.
- 3. The OTP programming voltage should not be applied before VDDIO/VDDEXT/VCI.
- 4. After OTP is finished, the capacitors at VGH and VCIX2 must be discharged completely before removing the LCD module.

SSD1289 | Rev 1.3 | P 47/82 | Apr 2007 | **Solomon Systech**

Figure 9-3 – OTP circuitry

Gamma Control (R30h to R3Bh)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R30h	w	1	0	0	0	0	0	PKP 12	PKP 11	PKP 10	0	0	0	0	0	PKP 02	PKP 01	PKP 00
R31h	w	1	0	0	0	0	0	PKP 32	PKP 31	PKP 30	0	0	0	0	0	PKP 22	PKP 21	PKP 20
R32h	W	1	0	0	0	0	0	PKP 52	PKP 51	PKP 50	0	0	0	0	0	PKP 42	PKP 41	PKP 40
R33h	W	1	0	0	0	0	0	PRP 12	PRP 11	PRP 10	0	0	0	0	0	PRP 02	PRP 01	PRP 00
R34h	W	1	0	0	0	0	0	PKN 12	PKN 11	PKN 10	0	0	0	0	0	PKN 02	PKN 01	PKN 00
R35h	w	1	0	0	0	0	0	PKN 32	PKN 31	PKN 30	0	0	0	0	0	PKN 22	PKN 21	PKN 20
R36h	w	1	0	0	0	0	0	PKN 52	PKN 51	PKN 50	0	0	0	0	0	PKN 42	PKN 41	PKN 40
R37h	w	1	0	0	0	0	0	PRN 12	PRN 11	PRN 10	0	0	0	0	0	PRN 02	PRN 01	PRN 00
R3Ah	w	1	0	0	0	VRP 14	VRP 13	VRP 12	VRP 11	VRP 10	0	0	0	0	VRP 03	VRP 02	VRP 01	VRP 00
R3Bh	w	1	0	0	0	VRN 14	VRN 13	VRN 12	VRN 11	VRN 10	0	0	0	0	VRN 03	VRN 02	VRN 01	VRN 00

Note: please refer to table 5 for POR values.

PKP[52:00]: Gamma micro adjustment register for the positive polarity output

PRP[12:00]: Gradient adjustment register for the positive polarity output

VRP[14:00]: Adjustment register for amplification adjustment of the positive polarity output

PKN[52:00]: Gamma micro adjustment register for the negative polarity output

PRN[12:00]: Gradient adjustment register for the negative polarity output

VRN[14:00]: Adjustment register for the amplification adjustment of the negative polarity output. (For details, see the Section 11 Gamma Adjustment Function).

Solomon Systech Apr 2007 | P 48/82 | Rev 1.3 | SSD1289

Vertical Scroll Control (R41h-R42h) (POR =0000h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
D41h	W	1	0	0	0	0	0	0	0	VL18	VL17	VL16	VL15	VL14	VL13	VL12	VL11	VL10
R41h	PC)R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D 42h	W	1	0	0	0	0	0	0	0	VL28	VL27	VL26	VL25	VL24	VL23	VL22	VL21	VL20
R42h -	PC	OR .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VL1[8:0]: Specify scroll length at the scroll display for vertical smooth scrolling. Any raster-row from the first to 320^{th} can be scrolled for the number of the raster-row. After 320^{th} raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL1[8:0]) is valid when VLE1 = "1" or VLE2 = "1". The raster-row display is fixed when VLE[2:1] = "00".

VL2[8:0]: Specify scroll length at the scroll display for vertical smooth scrolling at 2^{nd} screen. The display-start rasterrow (VL2[8:0]) is valid when VLE1 = "1" and VLE2 = "1".

Horizontal RAM address position (R44h) (POR = EF00h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
P	OR	1	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0

HSA[7:0]/HEA[7:0]: Specify the start/end positions of the window address in the horizontal direction by an address unit. Data are written to the GDDRAM within the area determined by the addresses specified by HEA[7:0] and HSA[7:0]. These addresses must be set before the RAM write. In setting these bits, make sure that "00" h \leq HSA[7:0] \leq "EF"h.

Vertical RAM address position (R45h-R46h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
D45h	W	1	0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
R45h	P	OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R46h	W	1	0	0	0	0	0	0	0	VEA8	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
K4011	P	OR	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1

VSA[8:0]/VEA[8:0]: Specify the start/end positions of the window address in the vertical direction by an address unit. Data are written to the GRAM within the area determined by the addresses specified by VEA[8:0] and VSA[8:0]. These addresses must be set before the RAM write. In setting these bits, make sure that "00" $h \le VSA[8:0] \le VEA[8:0] \le "13F$ "h.

1st Screen driving position (R48h-R49h)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R48h	W	1	0	0	0	0	0	0	0	SS18	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
14011	PC)R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R49h	W	1	0	0	0	0	0	0	0	SE18	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10
K4911	PC)R	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1

SS1[8:0]: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the set gate driver, i.e. the first driving Gate is G_0 if G_0 if

SE1[8:0]: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the set gate driver. For instance, when SS1[8:0] = "07"H and SE1[8:0] = "10"H are set, the LCD driving is performed from G7 to G16, and non-selection driving is performed for G1 to G6, G17, and others. Ensure that $SS1[8:0] \le SE1[8:0] \le 13FH$.

SSD1289 | Rev 1.3 | P 49/82 | Apr 2007 | **Solomon Systech**

2nd Screen driving position (R4Ah-R4Bh)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R4Ah	W	1	0	0	0	0	0	0	0	SS28	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20
K4AII	P	OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R4Bh	W	1	0	0	0	0	0	0	0	SE28	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20
K4DII	P	OR	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1

SS2[8:0]: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the set gate driver. The second screen is driven when SPT = "1".

SE2[8:0]: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the set gate driver. For instance, when SPT = "1", SS2[8:0] = "20"H, and SE2[8:0] = "2F"H are set, the LCD driving is performed from G32 to G47. Ensure that $SS1[8:0] \le SE1[8:0] \le SE2[8:0] \le SE2[8:0] \le 13FH$.

RAM address set (R4Eh-R4Fh)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R4Eh	W	1	0	0	0	0	0	0	0	0	XAD7	XAD6	XAD5	XAD4	XAD3	XAD2	XAD1	XAD0
K4EII	PC	DR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R4Fh	W	1	0	0	0	0	0	0	0	YAD8	YAD7	YAD6	YAD5	YAD4	YAD 3	YAD 2	YAD 1	YAD 0
K4FII	PC)R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

XAD[7:0]: Make initial settings for the GDDRAM X address in the address counter (AC). **YAD[8:0]:** Make initial settings for the GDDRAM Y address in the address counter (AC).

After GDDRAM data are written, the address counter is automatically updated according to the settings with AM, I/D bits and setting for a new GDDRAM address is not required in the address counter. Therefore, data are written consecutively without setting an address. The address counter is not automatically updated when data are read out from the GDDRAM. GDDRAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses.

Optimize data access speed (R28 + R2F + R12)

Reg#	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R28h	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
R2Fh	W	1	0	0	0	1	0	0	1	0	1	0	1	1	1	1	1	0
R12h	W	1	0	1	1	0	1	1	0	0	1	1	1	0	1	0	1	1

For video application, data access speed optimization may necessary in order to generate smooth display during the high speed RAM update.

The data access speed optimization function is only valid by using three set (R28, R2F, R12) of commands together with correct sequence.

Solomon Systech Apr 2007 | P 50/82 | Rev 1.3 | SSD1289

Window Address Function

The window address function enables writing display data sequentially in a window address area made in the internal GDDRAM. The window address area is made by setting the horizontal address register (start: HSA7-0, end: HEA 7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0 bits). The AM and ID[1:0] bits set the transition direction of RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables the SSD1289 to write data including image data sequentially without taking the data wrap position into account. The window address area must be made within the GDDRAM address map area.

Condition:

 $00h \le HSA[7:0] \le HEA[7:0] \le EFh$ $00h \le VSA[8:0] \le VEA[8:0] \le 13Fh$ AM and ID[1:0] refer to R11h

Window address setting area: HSA[7:0] = 3Bh; HEA[7:0] = B3h VSA[8:0] = 8Bh; VEA[8:0] = B3h AM = "0" and ID[1;]] = "11"

SSD1289 | Rev 1.3 | P 51/82 | Apr 2007 | **Solomon Systech**

Partial Display Mode

The SSD1289 enables to selectively drive two screens at arbitrary positions with the screen-driving position registers (R48h to R4Bh). Only the lines required to display two screens at arbitrary positions are selectively driven to reduce the power consumption.

The first screen driving position registers (R48 and R49) specifies the start line (SS18-10) and the end line (SE18-10) for displaying the first screen. The second screen driving position register (R4A) specifies the start line (SS28-20) and the end line (SE28-20) for displaying the second screen. The second screen control is effective when the SPT bit is set to 1. The total number of lines driven for displaying the first and second screens must be less than the number of lines to drive the LCD.

Condition:

 $SS1[8:0] \leq SE1[8:0] \leq 13FH$

 $SS1[8:0] \le SE1[8:0]$

 $SS2[8:0] \le SE2[8:0] \le 13FH$

The number of driven display lines: MUX[8:0] = 13F (319+1 lines)

 1^{st} screen setting: SS[18:10] = 00h, SE[18:10] = 09h

 2^{nd} screen seeting: SS[28:10] = 96h, SE[28:10] = 9Fh

Solomon Systech Apr 2007 | P 52/82 | Rev 1.3 | SSD1289

10 GAMMA ADJUSTMENT FUNCTION

The SSD1289 incorporates gamma adjustment function for the 262,144-color display. Gamma adjustment is implemented by deciding the 8-grayscale levels with angle adjustment and micro adjustment register. Also, angle adjustment and micro adjustment is fixed for each of the internal positive and negative polarity. Set up by the liquid crystal panel's specification.

SSD1289 | Rev 1.3 | P 53/82 | Apr 2007 | **Solomon Systech**

10.1 Structure of Grayscale Amplifier

Below figure indicates the structure of the grayscale amplifier. It determines 8 levels (VIN0-VIN7) by the gradient adjuster and the micro adjustment register. Also, dividing these levels with ladder resistors generates V0 to V63.

Solomon Systech Apr 2007 | P 54/82 | Rev 1.3 | **SSD1289**

SSD1289 | Rev 1.3 | P 55/82 | Apr 2007 | **Solomon Systech**

10.2 Gamma Adjustment Register

This block is the register to set up the grayscale voltage adjusting to the gamma specification of the LCD panel. This register can independent set up to positive/negative polarities and there are three types of register groups to adjust gradient, amplitude, and micro-adjustment on number of the grayscale, characteristics of the grayscale voltage. (Using the same setting for Reference-value and R.G.B.) Following graphics indicates the operation of each adjusting register.

10.2.1 Gradient adjusting register

The gradient-adjusting resistor is to adjust around middle gradient, specification of the grayscale number and the grayscale voltage without changing the dynamic range. To accomplish the adjustment, it controls the variable resistors in the middle of the ladder resistor by registers (PRP(N)0 / PRP(N)1) for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities in order for corresponding to asymmetry drive.

10.2.2 Amplitude adjusting register

The amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it controls the variable resistors in the boundary of the ladder resistor by registers (VRP(N)0 / VRP(N)1) for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities as well as the gradient-adjusting resistor.

10.2.3 Micro adjusting register

The micro-adjusting register is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it controls each reference voltage level by the 8 to 1 selector towards the 8-level reference voltage generated from the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting resistors.

Solomon Systech Apr 2007 | P 56/82 | Rev 1.3 | SSD1289

10.3 Ladder Resistor / 8 to 1 selector

This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable resistor and the 8 to 1 selector selecting voltage generated by the ladder resistor. The gamma registers control the variable resistors and 8 to 1 selector resistors.

Variable Resistor

There are 3 types of the variable resistors that are for the gradient and amplitude adjustment. The resistance is set by the resistor (PRP(N)0 / PRP(N)1) and (VRP(N)0 / VRP(N)1) as below.

PRP(N)[0:1]	Resistance
000	0R
001	4R
010	8R
011	12R
100	16R
101	20R
110	24R
111	28R

Resistance									
0R									
2R									
0010 4R									
: Step = 2R :									
28R									
30R									

VRP(N)1	Resistance								
00000	0R								
00001	1R								
00010	2R								
: Step = 1R :									
11110	30R								
11111	31R								

8 to 1 selecter

In the 8 to 1 selector, a reference voltage VIN can be selected from the levels which are generated by the ladder resistors. There are six types of reference voltage (VIN1 to VIN6) and totally 48 divided voltages can be selected in one ladder resistor. Following figure explains the relationship between the micro-adjusting register and the selecting voltage.

	Postive polarity								Negative polarity						
Registor	Selected voltage					Registor Selected voltage									
PKP[2:0]	VINP1	VINP2	VINP3	VINP4	VINP5	VINP6	PKN[2:0]	VINN1	VINN2	VINN3	VINN4	VINN5	VINN6		
000	KVP1	KVP9	KVP17	KVP25	KVP33	KVP41	000	KVN1	KVN9	KVN17	KVN25	KVN33	KVN41		
001	KVP2	KVP10	KVP18	KVP26	KVP34	KVP42	001	KVN2	KVN10	KVN18	KVN26	KVN34	KVN42		
010	KVP3	KVP11	KVP19	KVP27	KVP35	KVP43	010	KVN3	KVN11	KVN19	KVN27	KVN35	KVN43		
011	KVP4	KVP12	KVP20	KVP28	KVP36	KVP44	011	KVN4	KVN12	KVN20	KVN28	KVN36	KVN44		
100	KVP5	KVP13	KVP21	KVP29	KVP37	KVP45	100	KVN5	KVN13	KVN21	KVN29	KVN37	KVN45		
101	KVP6	KVP14	KVP22	KVP30	KVP38	KVP46	101	KVN6	KVN14	KVN22	KVN30	KVN38	KVN46		
110	KVP7	KVP15	KVP23	KVP31	KVP39	KVP47	110	KVN7	KVN15	KVN23	KVN31	KVN39	KVN47		
111	KVP8	KVP16	KVP24	KVP32	KVP40	KVP48	111	KVN8	KVN16	KVN24	KVN32	KVN40	KVN48		

Grayscale voltage	Formula	Grayscale voltage	Formula	Grayscale voltage	Formula
V0	VINP(N)0	V22	V43+(V20-V43)*(21/23)	V44	V55+(V43-V55)*(22/24)
V1	VINP(N)1	V23	V43+(V20-V43)*(20/23)	V45	V55+(V43-V55)*(20/24)
V2	V8+(V1-V8)*(30/48)	V24	V43+(V20-V43)*(19/23)	V46	V55+(V43-V55)*(18/24)
V3	V8+(V1-V8)*(23/48)	V25	V43+(V20-V43)*(18/23)	V47	V55+(V43-V55)*(16/24)
V4	V8+(V1-V8)*(16/48)	V26	V43+(V20-V43)*(17/23)	V48	V55+(V43-V55)*(14/24)
V5	V8+(V1-V8)*(12/48)	V27	V43+(V20-V43)*(16/23)	V49	V55+(V43-V55)*(12/24)
V6	V8+(V1-V8)*(8/48)	V28	V43+(V20-V43)*(15/23)	V50	V55+(V43-V55)*(10/24)
V7	V8+(V1-V8)*(4/48)	V29	V43+(V20-V43)*(14/23)	V51	V55+(V43-V55)*(8/24)
V8	VINP(N)2	V30	V43+(V20-V43)*(13/23)	V52	V55+(V43-V55)*(6/24)
V9	V20+(V8-V20)*(22/24)	V31	V43+(V20-V43)*(12/23)	V53	V55+(V43-V55)*(4/24)
V10	V20+(V8-V20)*(20/24)	V32	V43+(V20-V43)*(11/23)	V54	V55+(V43-V55)*(2/24)
V11	V20+(V8-V20)*(18/24)	V33	V43+(V20-V43)*(10/23)	V55	VINP(N)5
V12	V20+(V8-V20)*(16/24)	V34	V43+(V20-V43)*(9/23)	V56	V62+(V55-V62)*(44/48)
V13	V20+(V8-V20)*(14/24)	V35	V43+(V20-V43)*(8/23)	V57	V62+(V55-V62)*(40/48)
V14	V20+(V8-V20)*(12/24)	V36	V43+(V20-V43)*(7/23)	V58	V62+(V55-V62)*(36/48)
V15	V20+(V8-V20)*(10/24)	V37	V43+(V20-V43)*(6/23)	V59	V62+(V55-V62)*(32/48)
V16	V20+(V8-V20)*(8/24)	V38	V43+(V20-V43)*(5/23)	V60	V62+(V55-V62)*(25/48)
V17	V20+(V8-V20)*(6/24)	V39	V43+(V20-V43)*(4/23)	V61	V62+(V55-V62)*(18/48)
V18	V20+(V8-V20)*(4/24)	V40	V43+(V20-V43)*(3/23)	V62	VINP(N)6
V19	V20+(V8-V20)*(2/24)	V41	V43+(V20-V43)*(2/23)	V63	VINP(N)7
V20	VINP(N)3	V42	V43+(V20-V43)*(1/23)		
V21	V43+(V20-V43)*(22/23)	V43	VINP(N)4		

SSD1289 | Rev 1.3 | P 57/82 | Apr 2007 | **Solomon Systech**

Reference voltage of positive polarity:

Reference	Formula	Micr0-adjusting rgister	Reference voltage
KVP0	VLCD63 - ΔV x VRP0 / SUMRP		VINP0
KVP1	VLCD63 - ΔV x (VRP0 + 5R) / SUMRP	PKP0[2:0] = "000"	
KVP2	VLCD63 - ΔV x (VRP0 + 9R) / SUMRP	PKP0[2:0] = "001"	
KVP3	VLCD63 - ΔV x (VRP0 + 13R) / SUMRP	PKP0[2:0] = "010"	
KVP4	VLCD63 - ΔV x (VRP0 + 17R) / SUMRP	PKP0[2:0] = "011"	
KVP5	VLCD63 - Δ V x (VRP0 + 21R) / SUMRP	PKP0[2:0] = "100"	VINP1
KVP6	VLCD63 - ΔV x (VRP0 + 25R) / SUMRP	PKP0[2:0] = "101"	
KVP7	VLCD63 - Δ V x (VRP0 + 29R) / SUMRP	PKP0[2:0] = "110"	
KVP8	VLCD63 - ΔV x (VRP0 + 33R) / SUMRP	PKP0[2:0] = "111"	
KVP9	VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP1[2:0] = "000"	
KVP10	VLCD63 - ΔV x (VRP0 + 34R + VRHP) / SUMRP	PKP1[2:0] = "001"	
KVP11	VLCD63 - Δ V x (VRP0 + 35R + VRHP) / SUMRP	PKP1[2:0] = "010"	
KVP12	VLCD63 - ΔV x (VRP0 + 36R + VRHP) / SUMRP	PKP1[2:0] = "011"	
KVP13	VLCD63 - ΔV x (VRP0 + 37R + VRHP) / SUMRP	PKP1[2:0] = "100"	VINP2
KVP14	VLCD63 - ΔV x (VRP0 + 38R + VRHP) / SUMRP	PKP1[2:0] = "101"	
KVP15	VLCD63 - ΔV x (VRP0 + 39R + VRHP) / SUMRP	PKP1[2:0] = "110"	
KVP16	VLCD63 - ΔV x (VRP0 + 40R + VRHP) / SUMRP	PKP1[2:0] = "111"	
KVP17	VLCD63 - ΔV x (VRP0 + 45R + VRHP) / SUMRP	PKP2[2:0] = "000"	
KVP18	VLCD63 - ΔV x (VRP0 + 46R + VRHP) / SUMRP	PKP2[2:0] = "001"	
KVP19	VLCD63 - ΔV x (VRP0 + 47R + VRHP) / SUMRP	PKP2[2:0] = "010"	
KVP20	VLCD63 - ΔV x (VRP0 + 48R + VRHP) / SUMRP	PKP2[2:0] = "011"	
KVP21	VLCD63 - ΔV x (VRP0 + 49R + VRHP) / SUMRP	PKP2[2:0] = "100"	VINP3
KVP22	VLCD63 - ΔV x (VRP0 + 50R + VRHP) / SUMRP	PKP2[2:0] = "101"	
KVP23	VLCD63 - ΔV x (VRP0 + 51R + VRHP) / SUMRP	PKP2[2:0] = "110"	
KVP24	VLCD63 - ΔV x (VRP0 + 52R + VRHP) / SUMRP	PKP2[2:0] = "111"	
KVP25	VLCD63 - ΔV x (VRP0 + 68R + VRHP) / SUMRP	PKP3[2:0] = "000"	
KVP26	VLCD63 - ΔV x (VRP0 + 69R + VRHP) / SUMRP	PKP3[2:0] = "001"	
KVP27	VLCD63 - ΔV x (VRP0 + 70R + VRHP) / SUMRP	PKP3[2:0] = "010"	
KVP28	VLCD63 - ΔV x (VRP0 + 71R + VRHP) / SUMRP	PKP3[2:0] = "011"	
KVP29	VLCD63 - ΔV x (VRP0 + 72R + VRHP) / SUMRP	PKP3[2:0] = "100"	VINP4
KVP30	VLCD63 - ΔV x (VRP0 + 73R + VRHP) / SUMRP	PKP3[2:0] = "101"	
KVP31	VLCD63 - ΔV x (VRP0 + 74R + VRHP) / SUMRP	PKP3[2:0] = "110"	
KVP32	VLCD63 - ΔV x (VRP0 + 75R + VRHP) / SUMRP	PKP3[2:0] = "111"	
KVP33	VLCD63 - ΔV x (VRP0 + 80R + VRHP) / SUMRP	PKP4[2:0] = "000"	
KVP34	VLCD63 - ΔV x (VRP0 + 81R + VRHP) / SUMRP	PKP4[2:0] = "001"	
KVP35	VLCD63 - ΔV x (VRP0 + 82R + VRHP) / SUMRP	PKP4[2:0] = "010"	
KVP36	VLCD63 - ΔV x (VRP0 + 83R + VRHP) / SUMRP	PKP4[2:0] = "011"	
KVP37	VLCD63 - ΔV x (VRP0 + 84R + VRHP) / SUMRP	PKP4[2:0] = "100"	VINP5
KVP38	VLCD63 - ΔV x (VRP0 + 85R + VRHP) / SUMRP	PKP4[2:0] = "101"	
KVP39	VLCD63 - ΔV x (VRP0 + 86R + VRHP) / SUMRP	PKP4[2:0] = "110"	
KVP40	VLCD63 - ΔV x (VRP0 + 87R + VRHP) / SUMRP	PKP4[2:0] = "111"	
KVP41	VLCD63 - ΔV x (VRP0 + 87R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "000"	
KVP42	VLCD63 - ΔV x (VRP0 + 91R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "001"	
KVP43	VLCD63 - ΔV x (VRP0 + 95R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "010"	
KVP44	VLCD63 - Δ V x (VRP0 + 99R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "011"	
KVP45	VLCD63 - ΔV x (VRP0 + 103R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "100"	VINP6
KVP46	VLCD63 - ΔV x (VRP0 + 107R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "101"	
	, ,	PKP5[2:0] = "110"	
K\/P47			
KVP47 KVP48	VLCD63-ΔV x (VRP0 + 111R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "111"	

SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP0 + VRP1 ΔV : Voltage difference between VLCD63 and of GND.

Apr 2007 | P 58/82 | Rev 1.3 SSD1289 **Solomon Systech**

Reference voltage of negative polarity:

Reference	Formula	Micr0-adjusting rgister	Reference voltage
KVN0	VLCD63 - ΔV x VRN0 / SUMRN		VINN0
KVN1	VLCD63 - ΔV x (VRN0 + 5R) / SUMRN	PKN0[2:0] = "000"	711110
KVN2	VLCD63 - ΔV x (VRN0 + 9R) / SUMRN	PKN0[2:0] = "001"	
KVN3	VLCD63 - ΔV x (VRN0 + 13R) / SUMRN	PKN0[2:0] = "010"	
KVN4	VLCD63 - ΔV x (VRN0 + 17R) / SUMRN	PKN0[2:0] = "011"	
KVN5	VLCD63 - ΔV x (VRN0 + 21R) / SUMRN	PKN0[2:0] = "100"	VINN1
KVN6	VLCD63 - ΔV x (VRN0 + 25R) / SUMRN	PKN0[2:0] = "101"	
KVN7	VLCD63 - ΔV x (VRN0 + 29R) / SUMRN	PKN0[2:0] = "110"	
KVN8	VLCD63 - ΔV x (VRN0 + 33R) / SUMRN	PKN0[2:0] = "111"	
KVN9	VLCD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN	PKN1[2:0] = "000"	
KVN10	VLCD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN	PKN1[2:0] = "001"	
KVN11	VLCD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN	PKN1[2:0] = "010"	
KVN12	VLCD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN	PKN1[2:0] = "011"	
KVN13	VLCD63 - ΔV x (VRN0 + 30R + VRHN) / SUMRN	PKN1[2:0] = "100"	VINN2
KVN13 KVN14	, ,	PKN1[2:0] = "101"	
	VLCD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN	• •	
KVN15 KVN16	VLCD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN VLCD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN	PKN1[2:0] = "110" PKN1[2:0] = "111"	
	,	PKN2[2:0] = "000"	
KVN17	VLCD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN		
KVN18	VLCD63 - ΔV x (VRN0 + 46R + VRHN) / SUMRN	PKN2[2:0] = "001"	
KVN19	VLCD63 - ΔV x (VRN0 + 47R + VRHN) / SUMRN	PKN2[2:0] = "010"	
KVN20	VLCD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN	PKN2[2:0] = "011"	VINN3
KVN21	VLCD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN2[2:0] = "100"	
KVN22	VLCD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN2[2:0] = "101"	
KVN23	VLCD63 - ΔV x (VRN0 + 51R + VRHN) / SUMRN	PKN2[2:0] = "110"	
KVN24	VLCD63 - ΔV x (VRN0 + 52R + VRHN) / SUMRN	PKN2[2:0] = "111"	
KVN25	VLCD63 - ΔV x (VRN0 + 68R + VRHN) / SUMRN	PKN3[2:0] = "000"	
KVN26	VLCD63 - ΔV x (VRN0 + 69R + VRHN) / SUMRN	PKN3[2:0] = "001"	
KVN27	VLCD63 - ΔV x (VRN0 + 70R + VRHN) / SUMRN	PKN3[2:0] = "010"	
KVN28	VLCD63 - ΔV x (VRN0 + 71R + VRHN) / SUMRN	PKN3[2:0] = "011"	VINN4
KVN29	VLCD63 - ΔV x (VRN0 + 72R + VRHN) / SUMRN	PKN3[2:0] = "100"	
KVN30	VLCD63 - ∆V x (VRN0 + 73R + VRHN) / SUMRN	PKN3[2:0] = "101"	
KVN31	VLCD63 - ∆V x (VRN0 + 74R + VRHN) / SUMRN	PKN3[2:0] = "110"	
KVN32	VLCD63 - ∆V x (VRN0 + 75R + VRHN) / SUMRN	PKN3[2:0] = "111"	
KVN33	VLCD63 - ∆V x (VRN0 + 80R + VRHN) / SUMRN	PKN4[2:0] = "000"	
KVN34	VLCD63 - ∆V x (VRN0 + 81R + VRHN) / SUMRN	PKN4[2:0] = "001"	
KVN35	VLCD63 - ∆V x (VRN0 + 82R + VRHN) / SUMRN	PKN4[2:0] = "010"	
KVN36	VLCD63 - ΔV x (VRN0 + 83R + VRHN) / SUMRN	PKN4[2:0] = "011"	VINN5
KVN37	VLCD63 - ∆V x (VRN0 + 84R + VRHN) / SUMRN	PKN4[2:0] = "100"	VIIVIVO
KVN38	VLCD63 - ∆V x (VRN0 + 85R + VRHN) / SUMRN	PKN4[2:0] = "101"	
KVN39	VLCD63 - ∆V x (VRN0 + 86R + VRHN) / SUMRN	PKN4[2:0] = "110"	
KVN40	VLCD63 - ∆V x (VRN0 + 87R + VRHN) / SUMRN	PKN4[2:0] = "111"	
KVN41	VLCD63 - ∆V x (VRN0 + 87R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "000"	
KVN42	VLCD63 - ∆V x (VRN0 + 91R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "001"	
KVN43	VLCD63 - ΔV x (VRN0 + 95R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "010"	
KVN44	VLCD63 - ΔV x (VRN0 + 99R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "011"	VINING
KVN45	VLCD63 - ΔV x (VRN0 + 103R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "100"	VINN6
KVN46	VLCD63 - ΔV x (VRN0 + 107R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "101"	
KVN47	VLCD63-ΔV x (VRN0 + 111R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "110"	
KVN48	VLCD63 - ΔV x (VRN0 + 115R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "111"	
KVN49	VLCD63 - ΔV x (VRN0 + 120R + VRHN + VRLN) / SUMRN		VINN7

SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN0 + VRN1 ΔV : Voltage difference between VLCD63 and of GND.

Rev 1.3 P 59/82 Apr 2007 SSD1289 **Solomon Systech**

11 MAXIMUM RATINGS

Maximum Ratings (Voltage Referenced to V_{SS})

Symbol	Parameter	Value	Unit
VDDIO	Supply Voltage	-0.3 to +4.0	V
VDDEXT		-0.3 to +4.0	V
VCI	Input Voltage	VSS - 0.3 to 5.0	V
1	Current Drain Per Pin Excluding V_{DDIO} and V_{SS}	25	mA
T _A	Operating Temperature	-20 to +70	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, strong electric fields, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. It is advised that proper precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that VCI and Vout be constrained to the range VSS < VDDIO \leq VCI < V_{OUT}. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either VSS or VDDIO). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

12 DC CHARACTERISTICS

DC Characteristics (Unless otherwise specified, Voltage Referenced to V_{SS} , $V_{DDIO} = 1.65$ to 3.6V, $T_A = -20$ to $70^{\circ}C$)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
VDDIO	Power supply pin of IO pins	Recommend Operating Voltage Possible Operating Voltage	1.4	-	3.6	V
VDDEXT	Auxiliary power supply pin for VDD	Recommend Operating Voltage Possible Operating Voltage	1.4	-	3.6	V
VCI	Booster Reference Supply Voltage Range	Recommend Operating Voltage Possible Operating Voltage	2.5 or VDDIO whichever is higher	-	3.6	V
VGH	Gate driver High Output Voltage Booster efficiency	No panel loading; 4x or 5x booster; ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	88	90	-	%
	Voltage booster enrolency	No panel loading; 6x booster; ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	82	84	-	%
VCIX2	VCIX2 primary booster efficiency	No panel loading, ITO for CYP, CYN, VCIX2, VCI and VCHS = 10 Ohm	83	85	-	%
VGH	Gate driver High Output Voltage		9	-	15	V
VGL	Gate driver Low Output Voltage		-15	-	-7	V
VcomH	Vcom High Output Voltage		-	-	5	V
VcomL	Vcom Low Output Voltage		-V _{CIM} +0.5	-	-	V
VLCD63	Max. Source Voltage		-	-	5	V
ΔVLCD63	Source voltage variation		-2		2	%
V _{OH1}	Logic High Output Voltage	Iout=-100μA	0.9* VDDIO	-	VDDIO	V
V _{OL1}	Logic Low Output Voltage	lout=100μA	0	-	0.1*VDDIO	V
V _{IH1}	Logic High Input voltage	·	0.8*VDDIO	-	VDDIO	V
V_{IL1}	Logic Low Input voltage]	0	-	0.2*VDDIO	V
I _{OH}	Logic High Output Current Source	Vout = V _{DDIO} -0.4V	50	-	_	μΑ
I _{OL}	Logic Low Output Current Drain	Vout = 0.4V	-	-	-50	μΑ

Solomon Systech Apr 2007 | P 60/82 | Rev 1.3 | SSD1289

I _{OZ}	Logic Output Tri-state Current Drain Source			-1	-	1	μΑ
I _{IL} /I _{IH}	Logic Input Current			-1	-	1	μΑ
C _{IN}	Logic Pins Input Capacitance			-	5	7.5	pF
f _{DOTCLK}	DOTCLK frequency	Display is ON		1		8.22	MHz
R _{SON}	Source drivers output resistance	-	1	-	kΩ		
R _{GON}	Gate drivers output resistance			-	500	-	Ω
R _{CON}	Vcom output resistance			-	200	-	Ω
		Vddio=Vddext = 1.8V, Vci = 2.8V. 5x/-5x	lvdd	-	150	300	uA
I _{dp} (262k)	Display current for 262k	booster ratio. Full color current consumption, without panel loading	Ivci	-	2.5	8	mA
	Display current for 8 color	Current consumption for	lvdd	-	120	300	μΑ
I _{dp} (8 color)	mode	8 color partial display, without panel loading	Ivci	-	1	5	mA
I _{slp}	Sleep mode current	Oscillator off, no source/gate output, Ram read write halt. Send command R10-0001	lvdd	-	30	100	μΑ
		(sleep mode), R00-0000 (stop osc)	Ivci	-	40	200	μА

Remark: Ivdd = Ivddio + Ivddext

SSD1289 Rev 1.3 P 61/82 Apr 2007 **Solomon Systech**

13 AC CHARACTERISTICS

Table 13-1 – Parallel 6800 Timing Characteristics (T_A = -20 to 70°C, V_{DDIO} = 1.4V to 3.6V, V_{DDEXT} = 1.4V – 1.95V, REGVDD='L')

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	100	-	-	ns
t _{cycle}	Clock Cycle Time (read cycle)	1000	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Data Setup Time	5	-	-	ns
t_{DHW}	Data Hold Time	5	-	-	ns
t _{ACC}	Data Access Time	250	-	-	ns
t _{OH}	Output Hold time	100	-	-	ns
PWCS _L	Pulse width /CS low (write cycle)	50	-	-	ns
PWCS _H	Pulse width /CS high (write cycle)	50	-	-	ns
PWCS _L	Pulse width /CS low (read cycle)	500	-	-	ns
PWCS _H	Pulse width /CS high (read cycle)	500	-	-	ns
t _R	Rise time	-	-	4	ns
t _F	Fall time	-	-	4	ns

Figure 13-1 -Parallel 6800-series Interface Timing Characteristics

 Solomon Systech
 Apr 2007 | P 62/82 | Rev 1.3 |
 SSD1289

Table 13-2 – Parallel 8080 Timing Characteristics

 $(T_A = -20 \text{ to } 70^{\circ}\text{C}, V_{DDIO} = 1.65\text{V to } 3.6\text{V}, V_{DDEXT} = 1.65\text{V to } 1.95\text{V}, REGVDD = 'L')$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	100	-	-	ns
t _{cycle}	Clock Cycle Time (read cycle)	1000	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Data Setup Time	5	-	-	ns
t _{DHW}	Data Hold Time	5	-	-	ns
t _{ACC}	Data Access Time	250	-	-	ns
t _{OH}	Output Hold time	100	-	-	ns
W_H	Width high	20			ns
PW_L	Pulse Width low (write cycle)	50	-	-	ns
PW_H	Pulse Width high (write cycle)	50	-	-	ns
PW_L	Pulse Width low (read cycle)	500	-	-	ns
PW _H	Pulse Width high (read cycle)	500	-	-	ns
t_R	Rise time	-	-	4	ns
t _F	Fall time	-	-	4	ns

SSD1289 Rev 1.3 P 63/82 Apr 2007 **Solomon Systech**

Figure 13-2 –Parallel 8080-series Interface Timing Characteristics

 Solomon Systech
 Apr 2007
 P 64/82
 Rev 1.3
 SSD1289

Table 13-3 - Serial Timing Characteristics

 $(T_A = -20 \text{ to } 70^{\circ}\text{C}, V_{DDIO} = 1.65\text{V to } 3.6\text{V}, V_{DDEXT} = 1.65\text{V to } 1.95\text{V}, REGVDD = 'L')$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	77	-	-	ns
f _{CLK}	Serial Clock Cycle Time SPI Clock tolerance = +/- 2 ppm	-	-	13	MHz
t _{AS}	Register select Setup Time	4	-	-	ns
t _{AH}	Register select Hold Time	5	-	-	ns
t _{CSS}	Chip Select Setup Time	2	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	5	-	-	ns
t _{OHW}	Write Data Hold Time	10	-	-	ns
t _{CLKL}	Clock Low Time	38	-	-	ns
t _{CLKH}	Clock High Time	38	-	-	ns
t _R	Rise time	-	-	4	ns
t _F	Fall time	-	-	4	ns

Figure 13-3 – 4 wire Serial Timing Characteristics

 SSD1289
 Rev 1.3
 P 65/82
 Apr 2007
 Solomon Systech

Figure 13-4 - Pixel Clock Timing in RGB interface mode

Characteristics	Symbol	Min	Тур	Max	Units
DOTCLK Frequency	f _{DOTCLK}	-	5.5	8.22	MHz
DOTCLK Period	t _{DOTCLK}	122	182	-	nSec
Vertical Sync Setup Time	t _{vsys}	20	-	-	nSec
Vertical Sync Hold Time	t _{vsyh}	20	-	-	nSec
Horizontal Sync Setup Time	t _{hsys}	20	-	-	nSec
Horizontal Sync Hold Time	t _{hsyh}	20	-	-	nSec
Phase difference of Sync Signal Falling Edge	t _{hv}	0	-	240	t _{DOTCLK}
DOTCLK Low Period	t _{CKL}	61	-	-	nSec
DOTCLK High Period	t _{CKH}	61	-	-	nSec
Data Setup Time	t _{ds}	40	-	-	nSec
Data hold Time	t _{dh}	40	-	-	nSec

 Solomon Systech
 Apr 2007
 P 66/82
 Rev 1.3
 SSD1289

Figure 0-5 - Pixel Clock Timing in RGB interface mode

Characteristics	Symbol	Min	Тур	Max	Unit
DOTCLK Frequency	f _{DOTCLK}	-	5.5	8.22	MHz
DOTCLK Period	t _{DOTCLK}	122	182	-	nSec
Horizontal Frequency (Line)	f _H	-	19.6	29.3	kHz
Vertical Frequency (Refresh)	f _V	-	60	90	Hz
Horizontal Back Porch	t _{HBP}	-	30	-	t _{DOTCLK}
Horizontal Front Porch	t _{HFP}	-	10	-	t _{DOTCLK}
Horizontal Data Start Point	t _{HBP}	-	30	-	t _{DOTCLK}
Horizontal Blanking Period	t _{HBP} + t _{HFP}	-	40	-	t _{DOTCLK}
Horizontal Display Area	HDISP	-	240	-	t _{DOTCLK}
Horizontal Cycle	H _{cycle}	-	280	-	t _{DOTCLK}
Vertical Back Porch	t_{VBP}	-	4	-	Line
Vertical Front Porch	t _{VFP}	-	2	-	Line
Vertical Data Start Point	t_{VBP}	-	4	-	Line
Vertical Blanking Period	t _{VBP} + t _{VFP}	-	6	-	Line
Vertical Display Area	VDISP	-	320	-	Line
Vertical Cycle	V_{cycle}	=	326	-	Line

SSD1289 Rev 1.3 P 67/82 Apr 2007 **Solomon Systech**

14 GDDRAM ADDRESS

	RL=1	S0	S1	S2	S3	S4	S5	S6	S7	S8		S714	S715	S716	S717	S718	S719	
	RL=0	S719	S718	S717	S716	S715	S714	S713	S712	S711	:	S5	S4	S3	S2	S1	S0	
	BGR=0	R	G	В	R	G	В	R	G	В		R	G	В	R	G	В	Vertical
	BGR=1	В	G	R	В	G	R	В	G	R		В	G	R	В	G	R	address
TB=1	TB=0																	. =
G0	G319	000	00H,000	HOO	000	0H, 00	01H	000	0H, 00	10H		000	0H, 00E	EEH	000	0H, 00	EFH	0
G1	G318	000	01H,000	HOC	000	1H, 00	01H	000	1H, 00	10H		000	1H, 00I	EEH	000	1H, 00	EFH	1
G2	G317	001	10H,000	HOC	001	0H, 00	01H	001	0H, 00	10H		001	0H, 00E	EEH	001	0H, 00	EFH	2
G3	G316	001	11H,000	HOC	001	1H, 00	D1H	001	1H, 00	10H		001	1H, 00I	EEH	001	1H, 00	EFH	3
G4	G315	010	00H,000	H00	010	0H, 00	01H	010	0H, 00	10H	:	010	0H, 00I	EEH	010	0H, 00	EFH	4
						-			-									
G316	G3	013	CH, 00	00H	013	CH, 00	01H	013	CH, 00	10H		013	CH, 00I	EEH	013	CH, 00	EFH	316
G317	G2	013	DH, 00	H00	013	DH, 00	01H	013	DH, 00	10H		013	DH, 00I	EEH	013	DH, 00	EFH	317
G318	G1	013	EH, 00	00H	013	EH, 00	01H	013	EH, 00	10H		013	EH, 00I	EEH	013	EH, 00	EFH	318
G319	G0	013	BFH, 00	00H	013	FH, 00	01H	013	FH, 00	10H		013	FH, 00I	EEH	013	FH, 00	EFH	319
Horizontal	Horizontal address 0					1			2				238			239		

Remark: The address is in 00xxH,0yyyH format, where yyy is the vertical address and xx is the horizontal address

 Solomon Systech
 Apr 2007
 P 68/82
 Rev 1.3
 SSD1289

15 INTERFACE MAPPING

15.1 Interface Setting

Table 15-1: Interface setting and data bus setting

PS3	PS2	PS1	PS0	Interface Mode	Data bus
1	1	1	1	3-wire SPI	
1	1	1	0	4-wire SPI	
1	0	1	1	16-bit 6800 parallel interface	D[17:10], D[8:1]
1	0	1	0	8-bit 6800 parallel interface	D[8:1]
1	0	0	1	16-bit 8080 parallel interface	D[17:10], D[8:1]
1	0	0	0	8-bit 8080 parallel interface	D[8:1]
0	1	1	1	18-bits 6800 parallel interface	D[17:0]
0	1	1	0	9-bits 6800 parallel interface	D[8:0]
0	1	0	1	18-bit 8080 parallel interface	D[17:0]
0	1	0	0	9-bit 8080 parallel interface	D[8:0]
0	0	1	1	Reserved	Reserved
0	0	1	0	Reserved	Reserved
0	0	0	1	18-bit RGB interface + 4-wire SPI	D[17:0],

15.1.1 6800-series System Bus Interface

Table 15-2 – The Function of 6800-series parallel interface

PS3	PS2	PS1	PS0	Interface Mode	Data bus	R/W	Е	D/C	/CS	Operation
1	0	1	1			1	Ţ	0	0	Read 8-bit command
				16-bit 6800 parallel interface	D[17:10],	1	Ţ	1	0	Read 8-bit parameters or status*
				10-bit 6800 paramet interface	D[8:1]	0	Ţ	0	0	Write 8-bit command
						0	Ţ	1	0	Write 16-bit display data
1	0	1	0			1	Ţ	0	0	Read 8-bit command
				8-bit 6800 parallel interface	D[8:1]	1	Ţ	1	0	Read 8-bit parameters or status*
				8-bit 0800 paraner interface	D[6.1]	0	Ţ	0	0	Write 8-bit command
						0	Ţ	1	0	Write 8-bit display data
0	1	1	1		D[17.0]	1	Ţ	0	0	Read 8-bit command
				18-bits 6800 parallel interface	D[17:0]	1	Ţ	1	0	Read 8-bit parameters or status*
				18-bits 6800 paratier interface		0	Ţ	0	0	Write 8-bit command
						0	Ţ	1	0	Write 18-bit display data
0	1	1	0			1	Ţ	0	0	Read 8-bit command
				9-bits 6800 parallel interface	D[8:0]	1	Ţ	1	0	Read 8-bit parameters or status*
				9-0113 0000 paraties interface	الا.ماط	0	Ţ	0	0	Write 8-bit command
						0	Ţ	1	0	Write 9-bit display data

^{*} A dummy read is required before the first actual display data read

SSD1289 Rev 1.3 P 69/82 Apr 2007 **Solomon Systech**

15.1.2 8080-series System Bus Interface

Table 15-3 – Interface Mode Selection

PS3	PS2	PS1	PS0	Interface Mode	Data bus	/WR	/RD	D/C	/CS	Operation						
1	0	0	1			1	0	0	0	Read 8-bit command						
				16-bit 8080 parallel interface	D[17:10],	1	0	1	0	Read 8-bit parameters or status*						
				10-bit 8080 paramet interface	D[8:1]	0	1	0	0	Write 8-bit command						
						0	1	1	0	Write 16-bit display data						
1	0	0	0			1	0	0	0	Read 8-bit command						
				8-bit 8080 parallel interface	D[8:1]	1	0	1	0	Read 8-bit parameters or status*						
				6-bit 6060 paraner interface		D[0.1]	0	1	0	0	Write 8-bit command					
						0	1	1	0	Write 8-bit display data						
0	1	0	1			0	1	0	0	Read 8-bit command						
				18-bit 8080 parallel interface	D[17:0]	1	0	1	0	Read 8-bit parameters or status*						
				18-bit 8080 paramet interface	D[17:0]	D[17.0]	D[17:0]	D[17.0]	D[17.0]	D[17.0]	D[17:0]	0	1	0	0	Write 8-bit command
						0	1	1	0	Write 18-bit display data						
0	1	0	0			1	0	0	0	Read 8-bit command						
				9-bit 8080 parallel interface	D[6:0]	1	0	1	0	Read 8-bit parameters or status*						
				9-011 0000 paraties interface	[0:8]ט	[8:0]	D[8:0]	D[8:0]	D[8:0]	0	1	0	0	Write 8-bit command		
						0	1	1	0	Write 9-bit display data						

^{*} A dummy read is required before the first actual display data read

15.1.3 Generic Bus Interface

 Solomon Systech
 Apr 2007 | P 70/82 | Rev 1.3 |
 SSD1289

15.2 Mapping for Writing an Instruction

									H	ardwa	are pir	าร							
Interface	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
18 bits		IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	Χ	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	Х
16 bits		IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8		IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
9 bits	1 st										IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	Х
3 Dits	2 nd										IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	Х
8 bits	1 st										IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	
o bits	2 nd										IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	

Remark:

X

Don't care bits
Not connected pins

15.3 Mapping for Writing Pixel Data

				Hardware pins																
Interface	Color mode	Cycle	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
18 bits	262k		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	262k	1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
		2 nd	B5	B4	B3	B2	B1	B0	Х	Х		R5	R4	R3	R2	R1	R0	Х	Х	
l		3 rd	G5	G4	G3	G2	G1	G0	Х	Х		B5	B4	B3	B2	B1	B0	Х	Х	
16 bits		1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	G0	Х	Х	
10 Dits		2 nd	Х	Х	Х	Х	Х	Х	Х	Х		B5	B4	В3	B2	B1	B0	Х	Х	
		1 st	R5	R4	R3	R2	R1	R0	Х	Х		G5	G4	G3	G2	G1	GO	Х	Х	
		2 nd	B5	B4	B3	B2	B1	B0	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	
	65k		R4	R3	R2	R1	R0	G5	G4	G3		G2	G1	G0	B4	В3	B2	B1	B0	
9 bits	262k	1 st										R5	R4	R3	R2	R1	R0	G5	G4	G3
3 Dits		2 nd										G2	G1	G0	B5	B4	В3	B2	B1	B0
	262k	1 st										R5	R4	R3	R2	R1	R0	Х	Х	
8 bits		2 nd										G5	G4	G3	G2	G1	G0	Х	Х	
		3 rd										B5	B4	В3	B2	B1	B0	Х	Х	
	65k	1 st										R4	R3	R2	R1	R0	G5	G4	G3	
		2 nd										G2	G1	G0	B4	B3	B2	B1	B0	

Remark:

Х

Don't care bits Not connected pins

15.4 Mapping for Writing Pixel Data in generic mode

									Н	ardwa	re pin	s							
Interface	Color mode	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
18-bit RGB	262k	RR5	RR4	RR3	RR2	RR1	RR0	GG5	GG4	GG3	GG2	GG1	GG0	BB0	BB1	BB2	BB3	BB4	BB5

If displaying 65K color in generic mode, interface mode selection should be set to 18-bit RGB Interface. The RR0 and BB0 are suggested to connect to RR5 and BB5 representively.

SSD1289 Rev 1.3 | P 71/82 | Apr 2007 **Solomon Systech**

DISPLAY SETTING SEQUENCE

15.5 Display ON Sequence

 Solomon Systech
 Apr 2007 | P 72/82 | Rev 1.3 |
 SSD1289

15.6 Display OFF Sequence

1. VDDIO should be the last to fall, or VCI/VDDEXT/VDDIO could be power off at the same time
2. If OTP is active in the application, the OTP programming voltage should be turned off and capacitors at VGH and VCIX2 discharged before VCI/VDDEXT/VDDIO are turned off.

Rev 1.3 P 73/82 SSD1289 Apr 2007 Solomon Systech

15.7 Sleep Mode Display Sequence

 Solomon Systech
 Apr 2007
 P 74/82
 Rev 1.3
 SSD1289

16 POWER SUPPLY BLOCK DIAGRAM

SSD1289 | Rev 1.3 | P 75/82 | Apr 2007 | **Solomon Systech**

17 SSD1289 OUTPUT VOLTAGE RELATIONSHIP

 Solomon Systech
 Apr 2007
 P 76/82
 Rev 1.3
 SSD1289

18 APPLICATION CIRCUIT

Figure 18-1 - Booster Capacitors

Figure 18-2 – Filtering and charge sharing capacitors

SSD1289 | Rev 1.3 | P 77/82 | Apr 2007 | Solomon Systech

Figure 18-3 – Power supply pin connection

 Solomon Systech
 Apr 2007 | P 78/82 | Rev 1.3 |
 SSD1289

Figure 18-4 – Panel Connection Example

SSD1289 Rev 1.3 | P 79/82 | Apr 2007 **Solomon Systech**

Solomon Systech Apr 2007 | P 80/82 | Rev 1.3 | SSD1289

19 PACKAGE INFORMATION

19.1 DIE TRAY DIMENSIONS

SSD1289 Rev 1.3 | P 81/82 | Apr 2007 **Solomon Systech**

Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.
http://www.solomon-systech.com

 Solomon Systech
 Apr 2007
 P 82/82
 Rev 1.3
 SSD1289