

Agilent HCPL-817 Phototransistor Optocoupler High Density Mounting Type Data Sheet

Description

The HCPL-817 contains a light emitting diode optically coupled to a phototransistor. It is packaged in a 4-pin DIP package and available in wide-lead spacing option and lead bend SMD option. Input-output isolation voltage is 5000 Vrms. Response time, $t_{\rm r}$, is typically 4 μs and minimum CTR is 50% at input current of 5 mA.

Functional Diagram

PIN NO. AND INTERNAL

1. ANODE 3. EMITTER 2. CATHODE 4. COLLECTOR

Ordering Information

Specify part number followed by Option Number (if desired).

HCPL-817-XXXE
Lead Free
Option Number

000 = No Options

060 = IEC/EN/DIN EN 60747-5-2 Option

W00 = 0.4" Lead Spacing Option

300 = Lead Bend SMD Option 500 = Tape and Reel Packaging

Option

00A = Rank Mark A

00B = Rank Mark B

00C = Rank Mark C

00D = Rank Mark D 00L = Rank Mark L

Schematic

Features

- Current Transfer Ratio (CTR: min. 50% at I_F = 5 mA, V_{CE} = 5 V)
- High input-output isolation voltage (V_{iso} = 5000 Vrms)
- Response time (t_r : typ., 4 μs at $V_{CE} = 2 \text{ V}$, $I_C = 2 \text{ mA}$, $R_L = 100 \Omega$)
- Compact dual-in-line package
- UL approved
- · CSA approved
- IEC/EN/DIN EN 60747-5-2 approved
- · Options available:
 - Leads with 0.4" (10.16 mm) spacing (W00)
 - Leads bends for surface mounting (300)
 - Tape and reel for SMD (500)
 - IEC/EN/DIN EN 60747-5-2 approvals (060)

Applications

- Signal transmission between circuits of different potentials and impedances
- I/O interfaces for computers
- Feedback circuit in power supply

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Package Outline Drawings HCPL-817-000E

HCPL-817-060E

HCPL-817-W00E

HCPL-817-300E

DIMENSIONS IN MILLIMETERS AND (INCHES)

Solder Reflow Temperature Profile

- 1) One-time soldering reflow is recommended within the condition of temperature and time profile shown at right.
- 2) When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of (1) above.

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

Storage Temperature, T _S	–55°C to +125°C
Operating Temperature, T _A	–30°C to +100°C
Lead Solder Temperature, max. (1.6 mm below seating plane)	260°C for 10 s
Average Forward Current, I _F	50 mA
Reverse Input Voltage, V _R	6 V
Input Power Dissipation, P _I	70 mW
Collector Current, I _C	50 mA
Collector-Emitter Voltage, V _{CEO}	35 V
Emitter-Collector Voltage, V _{ECO}	6 V
Collector Power Dissipation	150 mW
Total Power Dissipation	200 mW
Isolation Voltage, V _{iso} (AC for 1 minute, R.H. = 40 ~ 60%)	5000 Vrms

Electrical Specifications ($T_A = 25^{\circ}C$)

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Forward Voltage	V _F	_	1.2	1.4	V	$I_F = 20 \text{ mA}$
Reverse Current	I _R	_	_	10	μΑ	V _R = 4 V
Terminal Capacitance	Ct	_	30	250	pF	V = 0, f = 1 KHz
Collector Dark Current	I _{CEO}	_	_	100	nA	V _{CE} = 20 V
Collector-Emitter Breakdown Voltage	BV _{CEO}	35	_	_	V	$I_C = 0.1 \text{ mA}$
Emitter-Collector Breakdown Voltage	BV _{ECO}	6	_	_	V	I _E = 10 μA
Collector Current	Ic	2.5	_	30	mA	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V},$
*Current Transfer Ratio	CTR	50	_	600	%	 R _{BE} = ∞
Collector-Emitter Saturation Voltage	V _{CE(sat)}	_	0.1	0.2	V	$I_F = 20 \text{ mA}, I_C = 1 \text{ mA}$
Response Time (Rise)	t _r	_	4	18	μs	$V_{CC} = 2 \text{ V, } I_C = 2 \text{ mA}$
Response Time (Fall)	t _f	_	3	18	μs	$R_L = 100 \Omega$
Cut-off Frequency	f _c	_	80	_	KHz	$V_{CC} = 5 \text{ V, } I_C = 2 \text{ mA}$ $R_L = 100 \Omega, -3 \text{ dB}$
Isolation Resistance	R _{iso}	5 x 10 ¹⁰	1 x 10 ¹¹	_	Ω	DC 500 V 40 ~ 60% R.H.
Floating Capacitance	Cf	_	0.6	1.0	pF	V = 0, f = 1 MHz

* CTR =
$$\frac{I_C}{I_F}$$
 x 100%

Rank Mark	CTR (%)	Conditions
L	50~100	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$
Α	80~160	
В	130~260	
С	200~400	
D	300~600	

0 2 4 6 8 10 12 14 16 18 20

IF - FORWARD CURRENT - MA

Figure 1. Forward current vs. temperature.

Figure 2. Collector power dissipation vs. temperature.

Figure 3. Collector-emitter saturation voltage vs. forward current.

% 200 V_{CE} = 5 V CTR - CURRENT TRANSFER RATIO -180 T_A = 25°C 160 140 120 100 80 60 40 20 0 10 20 50 IF - FORWARD CURRENT - mA

Figure 4. Forward current vs. forward voltage.

Figure 5. Current transfer ratio vs. forward current.

Figure 6. Collector current vs. collectoremitter voltage.

Figure 7. Relative current transfer ratio vs. temperature.

Figure 8. Collector-emitter saturation voltage vs. temperature.

Figure 9. Collector dark current vs. temperature.

Figure 10. Response time vs. load resistance.

Figure 11. Frequency response.

Test Circuit for Response Time

Test Circuit for Frequency Response

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or

(916) 788-6763

Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394

India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only)

Korea: (+65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044

Taiwan: (+65) 6755 1843

Data subject to change.

Copyright © 2004 Agilent Technologies, Inc.

Obsoletes 5989-0293EN

October 27, 2004

5989-1734EN

