FUNDAMENTOS DE INTELIGÊNCIA ARTIFICIAL

Aula 6:

MinMax

Prof. Dr. Rodrigo Xavier de Almeida Leão Cientista de Dados e Big Data

SEMELHANTE A UMA BUSCA

EXISTEM:

- AÇÕES
- CENÁRIOS
- TRANSIÇÃO

PROCURA-SE O MELHOR CAMINHO, MAS EXISTE UM ADVERSÁRIO TENTANDO EVITAR ESTE RESULTADO.

ALGORITMO MINMAX

 COMO EXPRESSAR O DESEJO DE GANHAR PARA O COMPUTADOR?

COMO TRADUZIR EM NÚMEROS?

 DEVEMOS DAR VALOR A CADA ESTADO POSSÍVEL DO JOGO.

ALGORITMO MINMAX

-1

0

1

JOGADOR X -> MAX PLAYER TENTA MAXIMIZAR O VALOR DO JOGO

JOGADOR O -> MIN PLAYER TENTA MINIMIZAR O VALOR DO JOGO

PLANEJANDO O ALGORITMO JOGO

1. S -> Estado do jogo → SO -> Estado inicial

2. Player (S) -> Retorna quem joga no estado S

3. Ação (S) -> Retorna as ações possíveis no estado S

4. Resultado (S, A) -> Retora o resultado da Ação 'a' no estado 'S

5. Terminal (S) -> Indica se o estado S é terminal (fim do jogo)

6. Utilidade (S) -> Atribui um valor numérico ao estado terminal

Initial State

PLAYER(s)

PLAYER(
$$\frac{1}{x}$$
) = x

PLAYER($\frac{1}{x}$) = x

Actions(s)

RESULT(s, a)

12

TERMINAL(s)

13

UTILITY(s)

$$\begin{array}{c|cccc}
 & o & x \\
\hline
 & o & x \\
\hline
 & x & o & x
\end{array}) = 1$$

$$\begin{array}{c|cccc}
 & o & x & x \\
\hline
 & x & o & x
\end{array}) = -1$$

$$\begin{array}{c|cccc}
 & o & x & x \\
\hline
 & x & o & x
\end{array}) = -1$$

FUNÇÃO UTILIDADE

COMO FUNICONA A FUNÇÃO UTILIDADE SE O JOGO AINDA NÃO TERMINOU?

DEVEMOS CONSIDERAR AS AÇÕES POSSÍVEIS E A QUAIS ESTADOS ELAS NOS LEVARÃO.

PLAYER(s) = O

Jogador 'o' escolherá o caminho de menor valor.

DADO UM ESTADO 'S':

'MAX' ESCOLHE A AÇÃO 'A' DENTRO DE AÇÃO(S) QUE PRODUZ O MAIOR VALOR PARA MIN-VALUE (RESULTADO (S, A))

'MIN' ESCOLHE A AÇÃO 'A' DENTRO DE AÇÃO(S) QUE PRODUZ O MENOR VALOR PARA

MAX-VALUE (RESULTADO (S, A)).

COMO CALCULAR O VALOR DE UM ESTADO SE ESTAMOS TENTANDO MAXIMIZAR OU MINIMIZAR SEU VALOR?

Max

```
function MAX-VALUE (state):
 if TERMINAL (state):
  return UTILITY (state)
                           #menor valor possível para o estado
 v = -inf
 for action in ACTIONS (state):
   v = MAX (v, MIN-VALUE (RESULT (state, action))
 return v
```

Min

```
function MIN-VALUE (state):
 if TERMINAL (state):
  return UTILITY (state)
 v = +inf
                            #maior valor possível para o estado
 for action in ACTIONS (state):
   v = MIN (v, MAX-VALUE (RESULT (state, action))
 return v
```

A APLICAÇÃO DOS ALGORITMOS Min <-> Max APRESENTADOS PERMITEM APLICAR AS FUNÇÕES MIN e MAX RECURSIVAMENTE ATÉ SE ATINGIR UM ESTADO TERMINAL.

Quantos são os estados possíveis do jogo

da velha?

27

OTIMIZAÇÕES POSSÍVEIS?

Como gastar menos espaço ou tempo para

atingir o estado desejado?

28

Alpha-Beta Pruning

Quantos são os estados possíveis do jogo

da velha?

255.168

Quantos são os estados possíveis do jogo de

Xadrez após 4 movimentos de cada jogador?

288 Bi

Quantos são os estados possíveis do jogo de

Xadrez?

Pelo menos 10 exp 29000

Deep Limited MiniMax

- A previsão é encerrada após certo número rodadas, mesmo sem atingir um estado terminal.
- •É necessário dar valor a um estado não terminal do jogo.

EVALUATION FUNCTION

Retorna o valor estimado da função utilidade para um estado do jogo.

Quanto maior a precisão ao estimar o valor da função utilidade, melhor será a IA.

YOUR MOVE IS GIVEN BY THE POSITION OF THE LARGEST RED SYMBOL ON THE GRID. WHEN YOUR OPPONENT PICKS A MOVE, ZOOM IN ON THE REGION OF THE GRID WHERE THEY WENT. REPEAT.

MAP FOR X:

