Cheatsheet di Analisi Matematica

Federico Matteoni

Indice

1	Intervalli	2
	1.1 Estremi	6

1 Intervalli

Intervallo $I = [x_1, x_2] \subset \mathbb{R} = ((\forall x_1, x_2 \in I : x_1 \leq x_2) \land (\forall x \in \mathbb{R} : x_1 \leq x \leq x_2)) \Rightarrow x \in I$ [n, m]: chiuso, con estremi compresi
]n, m[o (n, m): aperto, con estremi non compresi
[n, m[o [n, m): semiaperto o semichiuso

1.1 Estremi

- Estremo superiore L è estremo superiore se L maggiorante di X \forall x \in X \Rightarrow L \geq x

L è il minore dei maggioranti $\forall \epsilon > 0 \ \exists \overline{x} \in X : L - \epsilon < \overline{x}$

- **Estremo inferiore** l'è estremo inferiore se l'maggiorante di X \forall x \in X \Rightarrow l \leq x \land l'è il minore dei maggioranti $\forall \epsilon > 0 \ \exists \overline{x} \in X : L + \epsilon > \overline{x}$