

NGS: Read Mapping to Reference Genome

Daniel Sobral / José Ferrão

Learning Objectives

- Overal understanding of the data preprocessing steps
 - Alignment of NGS reads (fastq) to a reference sequence
 - The SAM / BAM format
 - Secondary and supplementary alignments
 - Marking Duplicates
 - Base Quality Recalibration
- Visualizing results and assessing quality

Whole Genome

DNA Extraction

Eg. TruSight One Enrichment Panel

How to calculate coverage

- WGS 30x coverage, 150bp read pairs
 - $-30 \times 3 \times 10^9 / (150 \times 2) = 3 \times 10^8 = 300$ million read pairs
- WES (~1-2% genome) 30x coverage, 150bp read pairs
 - 6 million read pairs (theoretical minimum, but usually more)

Genome (WGS) vs Exome (WES)

Advantages of WES over WGS

- WES only focus on potentially actionable regions
 - WES is more economic and less compute intensive

Disadvantages of WES

- WES can have primer-derived artifacts
 - eg. amplification bias, primer dimers, kit-dependent
- WES is very limited for structural variants

Raw Unmapped Reads

uBAM or FASTQ

TGCTCAGTTA TGAC ATGGAGT TTT CGTTGT ("raw" fastQ)

Raw Unmapped Reads

uBAM or FASTQ

(fasta file)

Reference Genome

Raw Unmapped Reads uBAM or FASTO

geneB geneA geneC AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC

What genome reference to use?

- GRCh37 (hg19)
 - The "classical", for which most resources were built (1000 genomes, etc...)
- GRCh38 (hg38)
 - The recommended one. Most resources have been converted to this now
- T2T-CHM13
 - Most complete genome, but will take time for resources to be available

Future: pangenome graphs

A lot of investment is going here, but several challenges remain Mostly relevant for Structural Variants

What genome reference to use?

Things to consider:

- Mask PAR regions in Y chromosome
- Include decoys (eg. EBV sequences)
- Include alternative sequences such as HLA loci
 - Though these may need to be analized specifically

https://gatk.broadinstitute.org/hc/en-us/articles/360035890951-Human-genome-reference-builds-GRCh38-or-hg38-b37-hg19

https://gatk.broadinstitute.org/hc/en-us/articles/360035890951

Raw Unmapped Reads uBAM or FASTO (fasta file)

Reference Genome

TGCTCAGTT

geneA

geneB

geneC

AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC

DNA Extraction

Sequencing

Alignment

TGCTCAGTT

TGAC ATGGAGT

GTTGT

("clean" fastQ)

("raw" fastQ)

TGCTCAGTTA TGAC ATGGAGT TTT CGTTGT

(fasta file)

Reference Genome

Raw Unmapped Reads uBAM or FASTO

TGCTCAGTT

geneA

geneB

geneC

AAGCGATGACTGCATGCACAGTTGTGTTT

Primary Alignment

Secondary Alignment

DNA Extraction

TGCTCAGTT

TGAC **ATGGAGT**

GTTGT

("clean" fastQ)

QC and pre-processing

TGCTCAGTTA TGAC ATGGAGT TTT CGTTGT

("raw" fastQ)

(fasta file)

Reference Genome

Raw Unmapped Reads

uBAM or FASTQ

Raw Unmapped Reads uBAM or FASTO

(fasta file)

Reference Genome

SAM/BAM format

A file format to represent alignments BAM -> binary form of SAM

```
Coor
        12345678901234 5678901234567890123456789012345
        AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
ref
+r001/1
              TTAGATAAAGGATA*CTG
             aaaAGATAA*GGATA
+r002
+r003
           gcctaAGCTAA
+r004
                         ATAGCT.....TCAGC
-r003
                                ttagctTAGGC
-r001/2
                                              CAGCGGCAT
```

```
@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
                                    39 TTAGATAAAGGATACTG
r001
      99 ref 7 30 8M2I4M1D3M = 37
r002
       0 ref 9 30 3S6M1P1I4M * 0
                                     O AAAAGATAAGGATA
       0 ref 9 30 5S6M
                                     O GCCTAAGCTAA
r003
       0 ref 16 30 6M14N5M
r004
                                     O ATAGCTTCAGC
                                     O TAGGC
r003 2064 ref 29 17 6H5M
r001 147 ref 37 30 9M
                              = 7 -39 CAGCGGCAT
```

https://samtools.github.io/hts-specs/SAMv1.pdf

www.insa.pt

How alignment is made in practice

BWA (Burrows-Wheeler Aligner) is the most popular tool for WGS/WES

Align millions of short reads to a human-sized genome in minutes

It is based on the FM-index of the Burrows-Wheeler Transform

https://en.wikipedia.org/wiki/FM-index

How alignment is made in practice

Genome BWT FM-index needs to be created (only once)

\$ bwa index genome.fasta

(genome.fasta file)

How alignment is made in practice

Basic command to generate alignments with BWA:

\$ bwa mem genome.fasta reads_R1.fastq(.gz) reads_R2.fastq(.gz)>output.sam

reads_R2.fastq

BWT

\$ a b c d

	C[c]				0	•	1	6		8	9	'	10
		а	r	d	\$	r	С	а	а	а	а	b	b
1		1	2	3	ŀ.	5	6	7	8	9	10	11	12
	\$	0	0	0	1	1	1	1	1	1	1	1	1
1	а	1	1	1	1	1	1	2	3	4	5	5	5
	b	0	0	0	0	0	0	0	0	0	0	1	2
	С	0	0	0	0	0	1	1	1	1	1	1	1
	d	0	0	1	1	1	1	1	1	1	1	1	1
	r	0	1	1	1	2	2	2	2	2	2	2	2

Output in SAM format

TGCTCAGTT Chr2 position xxx ACGTCCGA Chr2 position yyy


```
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC
r003 2064 ref 29 17 6H5M * 0 0 TAGGC
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT
```

How alignment is made in practice

How alignment is made in practice: Summary

- Special algorithms are used to have fast alignments
 - They are not guaranteed to be perfect but most of the time they are very good
- A read can map equally well to multiple regions (multimappings)
 - BWA reports one primary alignment (randomly chosen) with mapping quality of 0
 - Depending on the software, it can generate secondary alignments
 - Information of paired reads are used to disambiguate multimappings if possible
- Alignments are made piece-wise (a read is split in segments)
 - A read alignment can be split in a primary and supplementary alignment(s)
 - Eg. splicing in RNA-Seq; large deletions
 - Sometimes, only a part of the read is aligned (the rest is "masked"/hidden)
 - Particularly in repetitive areas this can lead to false alignments

Practical Exercise

You will only need to run alignment using 'bwa mem', like this:

\$ bwa mem -t 1 -M -R

'@RG\tID:sampleid\tPU:FlowCell.Lane.Sample\tSM:samplename\tPL:ILLUMINA\tLB:samplena me\tCN:UTI' genoma.fasta reads_R1.fastq.gz reads_R2.fastq.gz > output.sam

- -M: Mark split reads as secondary (relevant for detecting duplicates)
- -R: Read Group (to associated specific metadata to each read)
- ID: Identifier; PU: Platform Code (FlowCell.Lane.Sample); SM: Sample; PN: LB: Library; CN: Center Name (Sequencing Team); other fields possible (see SAM specification)
- -t: number of "threads" (CPU processors) to use

Practical Exercise

'bwa mem' generates a SAM file. To generate a more compact BAM file that is used to visualize and in variant calling, we need to process the SAM:

- Sort SAM by coordinates using 'samtools sort'
- \$ samtools sort file.sam —o output_sorted.sam
- Convert SAM to BAM using 'samtools view'
- \$ samtools view -Sb file.sam -o output.bam
- -S: input file is SAM; -b: output file is bam
- Index the BAM so it can used by other programs using 'samtools index'
- \$ samtools sort file.bam —o output_sorted.bam

(note: this has nothing to do with 'bwa index')

Practical Exercise

- There are three samples, use data from any/all:
 - Align selected reads against a specific chromosome
 - What is the identifier of the first aligned read? Where does it align?
 - Sort the aligned reads
 - What is the identifier of the first aligned read? Where does it align?
 - Convert to a bam and index the bam

Commands to run are in the github

Interlude

Raw Unmapped Reads

uBAM or FASTO

(fasta file)

Reference Genome

- Duplicate reads (same fragment) can appear
 - In library preparation during amplification (eg. WES)
 - In the amplification process while sequencing (optical duplicates)
 - They can generate "false" mutations, or at a false frequency

```
AAGCGATG AGTTGTGT

AAGCGATG TCCATGC AGTTGTGT

ACTCCAT GTTGT

TGCTCAGTT

GTGTGTTT-CA
```

AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC geneA geneB geneC

Read pairs need to be taken in consideration

```
AAGCGATG AGTTGTGT

AAGCGATG TCCATGC AGTTGTGT

ACTCCAT GTTGT

TGCTCAGTT

GTGTGTTT-CA
```

AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC geneA geneB geneC

Duplicates are identified by position (alignment and/or flow-cell), not by sequence

```
AAGCTATG
AAGCGATG
AAGCGATG
TCCATGC
AGTTGTGT
ACTCCAT
TGCTCAGTT
GTGTGTT-CA
```

AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC geneA geneB geneC

Data pre-processing for variant discovery Duplicated Reads: optical duplicates

The recommended practice is to ignore duplicates

- Only consider one of the duplicates for variant calling
 - Usually the one with the best quality
- This may remove good information (eg. with high coverage, targeted)
- Duplicates are marked and later ignored (or not)
- Benefits of marking duplicates not always obvious
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965708/
 - Eg. one can chose to only ignore reads marker as optical duplicates

We will run this process using 'gatk MarkDuplicates'

It takes a BAM file and annotates duplicated reads:

> gatk MarkDuplicates -l=sample.bam -O=sample_marked.bam -M=sample_marked_metrics.txt

It generates another BAM file with the same number of alignments, but alignments determined as duplicated have an annotation that can be used.

It generates a file with metrics from the analysis (described in next slide)

Metrics

Field	Description
LIBRARY	The library on which the duplicate marking was performed.
UNPAIRED_READS_EXAMINED	The number of mapped reads examined which did not have a mapped mate pair, either because the read is unpaired, or the read is paired to an unmapped mate.
READ_PAIRS_EXAMINED	The number of mapped read pairs examined. (Primary, non-supplemental)
SECONDARY_OR_SUPPLEMENTARY_RDS	The number of reads that were either secondary or supplementary
UNMAPPED_READS	The total number of unmapped reads examined. (Primary, non-supplemental)
UNPAIRED_READ_DUPLICATES	The number of fragments that were marked as duplicates.
READ_PAIR_DUPLICATES	The number of read pairs that were marked as duplicates.
READ_PAIR_OPTICAL_DUPLICATES	The number of read pairs duplicates that were caused by optical duplication. Value is always < READ_PAIR_DUPLICATES, which counts all duplicates regardless of source.
PERCENT_DUPLICATION	The fraction of mapped sequence that is marked as duplicate.
ESTIMATED_LIBRARY_SIZE	The estimated number of unique molecules in the library based on PE duplication.

Now we have a BAM with potential duplicated alignments marked

Data pre-processing for variant discovery Base Quality Recalibration

Base Quality not very precise Depends on several factors:

- Sample Quality (DNA)
- Nucleotide context
- Machine and cycle of sequencing
- Type of variant (SNP or Indel)

The machine oftens does not estimate well the base quality score

Data pre-processing for variant discovery **Base Quality Recalibration**

Use list of known variants to estimate correct quality values

- All bases different from reference not in the provided list of known variants are considered to be errors

Count occurrences and compare Q value marked by the machine with the observed % errors

Data pre-processing for variant discovery Base Quality Recalibration

Base Quality Recalibration:

The covariates being used here:

- ReadGroupCovariate
- QualityScoreCovariate
- ContextCovariate
- CycleCovariate

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083463/ https://www.youtube.com/watch?v=L4D1dwES9s8

https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-

Data pre-processing for variant discovery Base Quality Recalibration

> gatk BaseRecalibrator -I sample_marked.bam -R genome.fasta --known-sites known_snps.vcf --known-sites known_indels.vcf [--intervals target_positions.bed --interval-padding 100] -O sample_marked_baserecalibrator_report.txt

>gatk ApplyBQSR -I sample_marked.bam -R genome.fasta --bqsr-recal-file sample_marked_baserecalibrator_report.txt -O sample_marked_baserecalibrator.bam

Data pre-processing for variant discovery

GATK
Best
Practices

These steps can be used with other variant callers

Practical Exercise

- There are three samples, use data from any/all:
 - Mark duplicates using "gatk MarkDuplicates"
 - Describe the contents of the Metrics File

Apply Base Recalibration: gatk BaseRecalibrator / ApplyBQSR

Commands to run are in the github

Interlude

NGS: Quality Assessment and Visualization of Read Mappings

Quality Assessment of Read Mappings

Measures to consider:

- Mapped Reads / Unmapped Reads
 - Usually >80% for WGS; >90% for WES
- Total Mapped Reads / Coverage
 - Presence of Duplicates (depends on coverage)
- Homogeneity in the coverage
- Distribution of Fragment Size (paired-end)
- Coverage of Targeted Regions (in case of eg. WES)

Quality Assessment of Read Mappings

Qualimap

http://qualimap.conesalab.org/

Practical example

Look at Metrics from GATK

>qualimap bamqc -bam sample_marked_recalibrated.bam -outdir . -outfile sample_marked_recalibrated_qualimap.pdf -outformat PDF [-gff targets_position.bed]

Exercise

Look at Metrics from GATK for your sample

Run qualimap bamqc for your sample and see output

Visualization of Read Mappings

Coverage

Integrative Genomics Viewer

Alignments

Annotation (genes)

Visualization of Read Mappings

Example mutations

Example deletion

IGV provides colors to signal unusual situations

Besides mutations, information from paired-end is also there

Pair orientation

https://software.broadinstitute.org/software/igv/

Visualization of Read Mappings

Example of mutations, showing evidence

Practical Exercise

- Look at the alignments in IGV in specific positions:
 - Sample 1: 2:171868791
 - Sample 2: 6:121216049
 - Sample 3: X:129746638

Gather evidence that you think is relevant for the mutation:

- Number of reads, strand of reads, quality etc...