Variabile binomiale

Esercizio 1. Si sa che un'urna contiene 8 palline: 2 nere e 6 bianche. Estraggo per 3 volte una pallina con rimpiazzo.

- (a) Calcolare la probabilità che il numero di palline nere sia uguale a 3.
- (b) Calcolare la probabilità di ottenere almeno 2 palline nere.

Svolgimento. (a) La variabile $X \to \text{numero di palline nere } \hat{e}$ una v.a. binomiale, più precisamente $X \sim Bin(3, \frac{1}{4})$ dove 3 è il numero di volte in cui si ripete l'esperimento di Bernoulli (lancio di una moneta) e $\frac{1}{4}$ è la probabilità di estrarre una pallina nera in un singolo esperimento (singola estrazione). Di consequenza,

$$P(X = 2) = {3 \choose 2} (\frac{1}{4})^2 (1 - \frac{1}{4})^{3-2} = 0.14.$$

$$(b) \ P(X \ge 2) = P(\{X = 2\} \cup \{X = 3\}) = P(X = 2) + P(X = 3) =$$

$${3 \choose 2} (\frac{1}{4})^2 (\frac{3}{4})^{3-2} + {3 \choose 3} (\frac{1}{4})^3 (\frac{3}{4})^0 = 0.15.$$

Valor medio, varianza e deviazione standard di una variabile aleatoria

Abbiamo introdotto il concetto di media aritmetica di un insieme di dati; introduciamo ora un concetto simile che riguarda le variabili aleatorie.

Valor medio

Definizione. Sia X una variabile aleatoria che assume i valori x_1, \ldots, x_n , il valor medio di X (chiamato anche speranza matematica o valore atteso di X) è definito come segue:

$$E(X) = x_1 P(X = x_1) + \ldots + x_n P(X = x_n).$$

Il valor medio si indica anche con μ .

E(X) indica il centro dei valori assunti dalla variabile aleatoria X, ovvero dove ci aspettiamo che cadono i valori di X.

Esempio. Sia X la variabile aleatoria che rappresenta il punteggio ottenuto lanciando un dado regolare, allora $E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5.$

Significato: Lanciando un dado molte volte, mi aspetto che il centro dei punteggi ottenuti sia 3,5.

Esercizio 2. Sia X la v.a. che indica la somma dei punti ottenuti con il lancio di due dadi. Calcola E(X).

Svolgimento. La distribuzione di probabilità di X è rappresentata dalla sequente tabella.

$\overline{x_i}$	2	3	4	5	6	7	8	9	10	11	12
$P(X=x_i)$	1	2	3	4	5	6	5	4	3	2	1
	36	$\overline{36}$	$\frac{\overline{36}}{36}$	$\overline{36}$	$\frac{\overline{36}}{36}$						

Da cui si ricava che

$$E(X) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} = 7.$$

Significato: Lanciando due dadi molte volte, mi aspetto che il centro dei della somma dei punteggi ottenuti sia 7.

Giochi equi

Tramite il concetto di valor medio di una variabile aleatoria possiamo costruire un modello matematico che consente di valutare l'equità di un gioco.

Consideriamo la v.a. X che rappresenta la somma complessiva vinta o persa da un giocatore in un gioco (ad esempio se X=-5 vuol dire che il giocatore ha perso 5 euro e se X=20 vuol dire che il giocatore ha vinto 20 euro),

- se E(X) = 0 allora il gioco è equo (dopo tante partite, il giocatore si trova nelle stesse condizioni di partenza, cioè nè in vincita nè in perdita);
- se E(X) > 0 allora il gioco è favorevole al giocatore (dopo tante partite, il giocatore realizza una vincita);
- se E(X) < 0 allora il gioco è sfavorevole al giocatore (dopo tante partite, il giocatore si trova in perdita).

Esercizio 3. Alla roulette Francese, la puntata sul rosso (o sul nero) è pagata, in caso di vincita, il doppio della posta in gioco. Si tratta di un gioco equo?

Svolgimento. Nella roulette Francese ci sono in tolale 37 numeri: 18 rossi, 18 neri e 1 verde.

Supponiamo che il giocatore punta 1 euro sul rosso. Se esce un numero rosso allora vince l'euro che ha puntato più un altro euro. Se non esce un numero che non è rosso allora, il giocatore perde 1 euro.

Allora X è definita come segue:

$$X = \begin{cases} 1 & \text{se esce un numero rosso} \\ -1 & \text{se non esce un numero rosso} \end{cases}$$

Calcoliamo le probabilità degli eventi X = 1 e X = -1:

$$P(X=1) = \frac{18}{37} = \frac{numero\ di\ palline\ rosse}{numero\ di\ tutte\ le\ palline};$$

$$P(X = -1) = \frac{19}{37} = \frac{numero\ di\ palline\ nere}{numero\ di\ tutte\ le\ palline}.$$

$$E(X) = 1 \cdot P(X = 1) + (-1) \cdot P(X = -1) = 1 \cdot \frac{18}{37} + (-1) \cdot \frac{19}{37} = -\frac{1}{37}.$$

Poichè E(X) < 0, il gioco non è equo ma a sfavore del giocatore (o anche a favore del banco).

 $E(X) = -\frac{1}{37} \ vuol \ dire \ che \ dopo \ tante \ partite, \ puntando \ un \ euro \ in \ ogni \ partita, \ mi \ ritrovo \ a \ perdere \ una \ somma \ pari \ a \ \frac{1}{37} \ euro \ (2,7 \ centesimi).$

Supponiamo che un giocatore per partecipare a un gioco deve comprare un biglietto che costa S (ad esempio il biglietto di una lotteria). Il concetto di valor medio di una variabile aleatoria ci permette di costruire un modello matematico per capire quale deve essere il valore di S affinchè il gioco sia equo.

Sia X la v.a. che la somma che il giocatora guadagna,

- se S = E(X) allora il gioco è equo;
- se S < E(X) allora il gioco è favorevole al giocatore;
- se S > E(X) allora il gioco è sfavorevole al giocatore.

Esercizio 4. Un giocatore acquista un biglietto di una lotteria e può vincere il primo premio di 5000 euro con probabilità 0.001 e il secondo premio con probabilità 0.003. Quale dovrebbe essere il prezzo del biglietto affinchè il gioco sia equo?

Svolgimento. Considero la variabile a. X che indica la somma che il giocatore guadagna, allora $E(X) = 5000 \cdot 0.001 + 2000 \cdot 0.003 = 11$.

S dovrebbe costare 11 euro affinchè il gioco sia equo.

Varianza e Deviazione standard

Abbiamo definito la varianza e la deviazione standard di un insieme di dati (in statistica descrittiva), possiamo introdurre concetti nel caso delle variabili aleatorie.

La varianza e la deviazione standard di una variabile aleatoria indicano quanto ci aspettiamo che i valori assunti da X siaano distanti da E(X). Se σ^2 (o σ è grande allora mi aspetto che X assume valori lontani da E(X), se invece σ^2 e σ sono vicine a 0 mi aspetto che i valori assunti da X siano vicini a 0).

Definizione. Sia X una v.a. cui valori sono x_1, \ldots, x_n e sia μ il valor medio di X, allora la varianza di X è

$$\sigma^{2} = \sum_{i=1}^{n} (x_{i} - \mu)^{2} \cdot P(X = x_{i}).$$

La deviazione standard $di X \dot{e}$

$$\sigma = \sqrt{\sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(X = x_i)}.$$

La varianza e la deviazione standard di X si indicano anche con Var(X) e Dev(X).

Una formula aternativa della varianza è la seguente:

$$\sigma^2 = \sum_{i=1}^n x_i^2 \cdot P(X = x_i) - \mu^2.$$

Esercizio 5. Trovare il valor medio, la varianza e la deviazione standard della v.a. X definita come il numero di teste ottenute con il lancio successivo di 3 monete.

x_i	0	1	2	3
D/X	1	3	3	1
$P(X = x_i)$	$\frac{-}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

Svolgimento. La distribuzione di probabilità di X è data dalla seguente tabella:

$$E(X) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3\frac{1}{8} = \frac{3}{2};$$

$$Var(X) = 0^2 \cdot \frac{1}{8} + 1^2 \cdot \frac{3}{8} + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{1}{8} - \left(\frac{3}{2}\right)^2 = \frac{3}{4};$$

$$Dev(X) = \sqrt{\frac{3}{4}}.$$