INTERNAL PROSTHETIC JIG EXPANSIBLE IN RADIUS DIRECTION AND PRODUCTION THEREOF

Publication number: JP2068052 Publication date: 1990-03-07

Inventor:

REONAADO PINCHIYAKU

Applicant:

CORVITA CORP

Classification:

- international:

A61F2/04: A61F2/06; A61F2/84; A61F2/04; A61F2/06;

A61F2/82; (IPC1-7): A61F2/04

- European:

A61F2/06S6C

Application number: JP19890171024 19890701 Priority number(s): US19880240000 19880901

Also published as:

EP0357003 (A2)
US5019090 (A1)

EP0357003 (A3)

EP0357003 (B2)

EP0357003 (B1)

more >>

Report a data error here

Abstract of JP2068052

PURPOSE: To provide an internal prosthesis which can be embedded perlumen, expandable in the radial direction, and extendable in the axis direction by forming a single plane waved winding strand with plural winding parts, making it into a strand body by acting flattening force, winding it around another core metal, and then removing the said another core metal. CONSTITUTION: A strand 39 made of a wire or another material is firmly wound around a core metal 38 as a whole to have a section shape along a cross cut line of the core metal 38. The strand 39 wound around the core metal 38 is preferably annealed by a conventional annealing method which is suitable for the wire used in the said strand. Then, force to flatten the wound strand 39 is applied to make the strand 39 wound as a cubic body into an almost flat shape of a waved body 33. After that, the waved body 33 is almost helically wound around an almost cylindrically shaped core metal 41. The almost helically winding process is continued until a desired number of circumferential direction parts is formed and a stent 31 with a desired length is provided. The free end 43 has properties of a hook part to easily form a ring in or to be folded in an integrated hinge 36.

Data supplied from the esp@cenet database - Worldwide

⑩ 日本国特許庁(JP) ⑪ 特許出願公開

@ 公開特許公報(A) 平2-68052

5 Int. Cl. 5

勿出 顋 人

識別記号

庁内整理番号

❸公開 平成2年(1990)3月7日

A 61 F 2/04

·7603-4C

審査請求 未請求 請求項の数 21 (全10頁)

半径方向に膨張可能な体内補装具及びその製造方法 69発明の名称

> 頭 平1-171024 20特

22)出 願 平1(1989)7月1日

@1988年9月1日@米国(US)@240000 優先権主張

アメリカ合衆国フロリダ州33186, マイアミ, サウス・ウ 加発 明 者 レオナード・ピンチヤ

エスト・ワンハンドレッドサーテイサード・プレース

コーヴィタ・コーポレ アメリカ合衆国フロリダ州33174, マイアミ, ウエスト・

フラグラー・ストリート 10555 ーション

恭三 外4名 個代 理 人 弁理士 湯浅

蚜

1、〔発明の名称〕

半岱方向に膨張可能な体内補装具及びその 製造方法

2. 【特許請求の範囲】

1. 半径方向に膨張可能な体内補裁具であって、 互いに奥賀的に隣接しかつ互いに略軸方向に方 向決めされ、よって、金体として体内補袋具を餌 放し得るようにした複数の略円周方向部分を備え,

前記略円周方向部分の少なくとも1つが、鉄略 円周方向部分に対して半径方向への影張可能性を 付与する膨張可能な部片を有し、よって、前配円 朋方向部分が非節強状態の挿入円周部と、及び前 記非脳磁状態の挿入円周部よりも大きい総張状態 の増め込み円周部とを備え、

前記略円周方向部分の前記態要可能な部片が、 略閉じられた方向と略開放した方向との間にて屈 曲可能な実質的に折り畳み可能な部材であり、よっ て前記略円周方向部分に半径方向の勘張可能性を 付与することを特徴とする半径方向に膨張可能な

体内捕鼓具。

- 2. 前記折り畳み可能な部材が略エルポ状の部 材を推えることを特徴とする請求項1記載の体内
- 3、前記折り受み可能な部材が一対の聊部を単 一体的に接続する能動的なヒンジを備えることを 特徴とする請求項1記載の体内補裁具。
- 4. 前記略円周方向部分が略円筒状の体内補袋 具を形成することを特徴とする請求項1記載の体 内辖婺具。
- 5. 前記略円周方向部分が軸方向に伸長する体 内補扱具を顕成する選続的なつる巻き体を形成す ることを特徴とする請求項1記載の体内構装具。
- 6. 前記略円周方向部分の外側の1つが、前記 円周方向部分の隣接する1つと係合するフック手 殷が形成された自由端を有することを特徴とする 請求項5記載の体内補袋具。
- 7、 前記膨張可能な部片が略折り是み可能な弾 性のばね状態材であり、体内補袋具の非影張状態 の挿入円周部がその上にあるシーズにより維持さ

れることを特徴とする請求項1記載の体内施袋具。

8. 前記距張可能な部片が実質的に折り畳み可能な可報部材であり、膨張された塩め込み円周部がカテーテルの膨張可能な要素から作用される半 径方向を向いた力により達成されることを特徴と する原求項1記載の体内補養具。

9. 前記実質的に折り最み可能な部材が格U字形であることを特徴とする請求項1記載の体内補 装具。

10. 前記連続的なつる巻き体が複数の前記実質的に折り最み可能な部材を備え、前配折り畳み可能な部材を備え、前配折り畳み可能な部材の各々が交互に実質的に反対方向に方向 次めされた略U字形であることを特徴とする請求 項5記数の体内補袋具。

11. 前記略折り登み可能な密材が略 V 字形であることを特徴とする請求項 1 記載の体内補装具。 12. 前記連続的なつる巻き体が複数の前記実質 的に折り畳み可能な部材を備え、前記折り畳み可 能な部材の各々が交互に実質的に反対方向に方向 決めされた略 V 字形であることを特徴とする講求

前記巻き付けストランドを優平にする力を作用 させ、実質的に単一平面状の弦状のストランド体 が形成されるようにする段階と、

前記比較的小さい心金の断面被よりも大きい断 函数の別の心金を提供する段階と、及び

前記波状のストランド体を前記別の心金の周囲に実質的にら複状に巻き付けかつ該別の心金を除去することにより、半径方向に膨張可能な体内構築具を提供する段階と、を備えることを特徴とする半径方向に影張可能な体内補装具を製造するための方法。

1 6 · 前記実質的にら旋状に巻き付ける殺階の開始後、前記波状のストランド体の自由場を放波状のストランド体の自由場を放波状のストランド体の隣接する部分上に掛止する段階をさらに備えることを特徴とする請求項 1 5 記載の方法。

17. 前記別の心金を提供する段階が略円筒状の 外面を有する別の心金を選択する段階を備えることを特徴とする請求項15記載の方法。

1.8. 前記選択段階が、前記巻き付け間が略楕円

項5記載の体内舗装具。

13. 前記体内補数具が略智状であり、それぞれの略円周方向部分のそれぞれの円周方向場線が互いに実質的に隣接することを特徴とする請求項1記載の体内補益具。

14. 前記略円周方向部分の前記巡視可能な部片がストランドを形状心金に巻き付け、その後傷平にし、略平面状の形状にする巻き付けストランドを形成し得るようにしたことを特徴とする請求項 1記載の体内補益具。

15. 半径方向に感要可能な体内補袋具を製造する方法であって、

狭い巻き付け面を形成し得るように比較的小さ い断面側の心金を選択する段階と、

細長いストランドを前記狭い巻き付け面上に巻き付け、及び譲ストランドを前記小さい心金から 象去して、複数の巻き付け部分を有する巻き付け ストランドを形成し、前記巻き付け部分が前記断 顕鏡の形状に実質的に適合し得るようにする段階

形の形状であるように、比較的小さい心金を選択する段階であることを特徴とする額求項 1 5 記載の方法。

19. 前記選択段階が、前記巻き付け面が略矩形の形状であるように、比較的小さい心金を選択する段階であることを特徴とする請求項15記載の方法。

20. 前記選択段階が、前記巻き付け面が略レンズ状の形状であるように、比較的小さい心金を選択する段階であることを特徴とする請求項 15 記載の方法。

2 1 . 前記選択段階が、前記巻き付け面が円形の 形状であるように、比較的小さい心金を選択する 段階であることを特徴とする請求項 1 5 記載の方 法。

3. [発明の詳細な説明]

(産業上の利用分野)

本発明は、金体として、体内人工補装具、その 製造方法及びその使用方法に関する。より具体的 には、本発明は、実質的に態張不能の挿入円所と 競手膨張状態の挿入円周よりも大きい膨張された 埋め込み円周との間にて半路でののでは、 では、 では、 の体内人工に関する。 には、 の体内人工に関する。 には、 の大力にののののののののののののでは、 の形形をには、 の形形をには、 の形形をには、 の形形をには、 の形形をには、 の非形での非形でのがいる。 をはなるのが、 はなるのが、 が、 ののののののののができまれる。 をはなるのが、 はなるのが、 はなる

(従来の技術及びその疑題)

狭窄症、狭箱、動尿瘤等を治癒するための体内 補設具が公知である。しばしばステントと称され る型式の体内補設具は典型的に、機械的な経内整 法により位置決めされ又は埋め込まれる。この型 式の旋置は、しばしば経皮的に血管系に埋め込まれ、血管等の部分的に閉塞し、弱体化し又は異常 に拡張した局所部分が異常陷入しないように補強 するために使用される。

この型式のステントは、又、尿路、胆道、腸管

要である一方、除去が必要になったならば、疑内 些的な径皮法の実行中、除去可能であるようにす ることが望ましい。

現在公知の各種ステント製品は基本的につる巻 きばねの構造を有している。このばね型式のステ ントは緊密にコイル状に巻かれたとき、その径は 比較的小さく、血管等に挿入することが出来る。 このばねが反発し又はよりゆるく色かれたとき、 ステントはその膨張した埋め込み状態となる。マ アス (出4455) 寺の米田特許第4,551,565号は、こ の型式のつる巻きばねステント又は体内補強具を 開示している。多条又は網状のステントも又公知 である。この一般的な型式のステントは操作性が 劣り、肉厚が比較的厚く、及び立方体であるとい う欠点がある。これらは、又、一旦進め込んだな らば除去することが困難であり、又多数の比較的 鋭角又はギザギザのついた蟷部が露出している。 パルマス (『alaat)の米国特許第4,733,455号はこ の一般的型式の膨張可能なステントの一例である。 ギアンタルコ (Giastarco) の米国特許第1.510.5

等に使用することも出来る。体内補投具又はステントを使用して、狭窄症を治療する場合、典型的には血管形成パルーンのような拡張要素と関係させて行われる。この場合、拡張要素又はパルーンが狭窄部分を閉放し、その場所にステント等を位置決めし、狭窄を防止するか又は少なくとも狭窄の再形成を著しく遅らせる。

こうした現在公知のステント構造において、ステントの職方向長さはステントの円周の増加に伴って短くなるが、これは一般的に欠点である。 併えば、かかる長さの短縮は特定の埋め込み方法に適したステントの寸法を選択する上で考慮に入れなければならない。又、多数の従来型式のステント

のかかる特徴は、実行せんとする塩め込み方法に 実際に必要とされる長さよりはるかに長い距離に わたって血管を通すことが必要となり、又はそれ に対応した長さにしなければならない。これは、 援れ部分又は海曲部分を有する経路にステントを 通さなければならない方法の場合、特に容易に阻 曲し得ないステント構造である場合、特に因鍵な 問題である。

本発明の全体的な目的は、経内陸的に埋め込むことの出来る型式の改集された半径方向に影響可能でかつ動力向に伸及する体内補設具を提供することである。

木発明の別の目的は、半径方向への膨張性が低めて大きい構造とすることの出来る改良された体内視袋具又はステントを提供することである。

本発明の別の目的は、極めて操作性に置み、適 曲した経路を通って移動させることの出来る改良 された軸方向に膨張可能でかつ軸方向に伸長する 体内補袋具を提供することである。

本発明のさらに別の目的は、望むならば、例え

つ半径方向に膨張可能な体内補換具又はステント を経内腔的に埋め込むための改良された方法及び システムを提供することである。

本発明のさらに別の目的は、すり切れた端縁の 発生を防止し、及び競多の半径方向の膨張位置に おいて、その軸方向の長さを略維持し得る改良さ れた半径方向に膨張可能な体内補数具を提供する ことである。

(森類を選成するための手段)

 ば、係線又はカテーテルにより経内腔的に埋め込むことの出来る、改良された半径方向に伸長可能 で魅方向に伸長した体内補袋具を提供することで ある。

本発明のさらに別の目的は、体内補強具をその 埋め込み箇所に投填し易いような方法にて離間し て配数するか又は方向決めすることの出来る部材 を備える改良された学径方向に膨張可能で融方向 に伸長した体内補強具を提供することである。

本発明のさらに別の目的は、カテーテル接触の 膨張部材又はパルーンにより半径方向に膨張可能 であり、及び/又は体内補接具のばね状の特性に より半径方向に膨張可能な構造にて形成すること の出来る改良された和方向に伸長する体内補装具 を提供することである。

本発明のさらに別の目的は、半径方向に膨張可能で軸方向に伸長した及び/又は略管状の体内補 彼具を製造するための改良された方法を提供する ことである。

本発明のさらに別の目的は、軸方向に伸長しか

(突舷例)

本発明の上記及びその他の目的、特徴並びに利 点は以下の詳細な説明から明確に理解されるであ ろう。

半径方向に膨張可能でかつ軸方向に伸展した体内補袋具又はステントが全体として、第3回及び第4回に符号31で示されている。このステント31は、複数の円周方向部分32を有している。この図示した実施例において、該円周方向部分32の各々は第2図に図示した波状体のように、同

一の選択するつる巻き状体にて形成されている。

少なくとも1つの円周方向部分32が少なくと も1つの影張可能な部片34を備えている。この 膨張可能な部片 3 4 は典型的に 1 又は 2 以上の脚 部35を開える周曲可能な部材である。各脚部3 5 は脚部 3 5 及び円周方向部分 3 2 の隣接部分と 一体又は単一の構成要素であるいわゆる能動的離 手又はヒンジにより円周方向部分32の他部分に 庶曲可能に因着されている。 例えば、第1図乃至 第5回に因示した実施例において、各単部分15 は略円弧状の形状を有する一体の又は能動的ヒン ジ36を介して別の脚部35に屈曲可能に絡合さ れている。ステント31が膨張するとき、一体型 ヒンジ38が脚部35の端部分37がさらに動い て難反するのを許容し、よってステント31の円 周及び径を増大させる。勿論、ステント31の円 周及び径はこれらの頻部分37同士を互いに接近 させる力により粗少させることが出来る。

第1回、第2回及び第3回をお照することによ り、ステント31のような本発明による体内補装

例えば、巻き付けたストランド39は2つの平面状の表面間にて圧縮することが出来、この工程中、ストランド39の巻き付け部分は略単一の波状体が形成されるまで扱る。この波状体は略正弦波を形成する。

第3図に図示したステント31の製造を完了させるためには、その後、波状体33は第3図に略図示するように略つる巻き状に略円筒状の心金41の周囲に巻き付ける。この略つる巻き状の巻き付け工程は希望の数の円周方向部分が形成され、

具の製造力法が理解されよう。第1 区には、銀分精円形の断面形状を有する心金3 8 が図示されている。この心金3 8 は例えば、略矩形の断面を提供し得るよう、2 つの対向する縦方向部分が原平であり、その2 つの対向する総部分が円弧状又は円形であるようにした丸管又はロッドとすることが望ましい。

希望の長さのステント 3 1 が提供されるまで継続する。使用するワイヤの型式いかんにより、第 3 図のつる巻き状の巻き付け部分を加熱銃鈍しすることも出来る。

第6図及び第7図に関示した実施例に関し、ストランド39がその周囲に巻き付けられる心金は

略矩形の心金44である。その結果、その後形成される略平面状の構造体は波状体45となり、この波状体45は典型的に一体形ヒンジよりも小さい円弧状である単一型又は一体型ヒンジ47により接続された複数の脚部48を有している。次いで、この波状体45を円筒状心金41のような構造体の上につる巻き状に巻き付けることにより、本発明の体内補装具又はステントが形成される。

ここで図示したステントは典型的に血管系への 埋め込み時に遭遇するであろう風折した経路を通っ て移動していくことが出来る。かかるステントは 損傷されたり又は大きい曲げ抵抗を受けることな く、比較的小さい半径にて容易に軸方向に曲げる ことが出来る。

形成に通した波状体 5 2 が形成され持るようにする。

本発明に従った別の実施例による体内補強其又 はステントが全体として第10図、第11図及び 第12図に図示されている。この場合、ストラン ドは円形断面の小径の心金53の周囲に巻き付け られている。数ストランドは緊密に巻き付けられ たつる抱き状体54として形成される。その後、 心金53を除去し、ストランドはよりゆるく巻き 付けたつる巻き体55として形成される。例えば、 つる巻き体55は約60%以下のピッチ角度となる ように細長くすることが出来る。次いで、このつ る巻き体55は、例えば、10tの空気圧プレスに より略上述した方法にて平坦にし、略単一の平面 状の波状体が形成されるようにする。希望するな らば、この波状体56は収容された金型内で軸方 向に圧縮し、希望するピッチ角度が得られるよう にすることが出来る。この波状体56は円筒状の 心金41の周囲に巻き付けて体内補袋体又はステ ントを形成するのに超している。

る! 又は2以上の円周方向部分を備えるステント を提供することも可能である。

さらに、血管系等内の分岐部分にてもとする とする狭窄、狭箱等に適用することを目的とする 略二股状の構造体を有する ステントを提供すること のまび、2つの異なる単一のステントの対向する 場部の一部を接続し、全体として、二股の ツ字形 物の構造体を提供することにより形成で ファントは 数のつる 巻状ステントは 東平行の形態にて 構成することが 出来る。

本発明のステント、特に、その認張可能な姿界を形成するための材料は全体として2つの種類に分類することが出来る。その材料は、エラストマー的又は郭エラストマー的なものとすることが出来る。エラストマー的材料の例としては、ばれ餌、ステンレス類、ニチール、エルジロイ、 \$P\$16 Kとして公知の合金等がある。一般に非エラストマー的材料は可線性であると特徴づけることが出来る。

タンタル、チタニウム、銀、金及びここで説明し たエラストマー的材料の筋鋭ししたものが含まれ る。ポリエーテルサルホン、ポリイミド、ポリ炭 酸エステル、ポロプロピレン、超高分子量ポリエ チレン、炭素繊維、ゲルバー等のようなポリアー を使用しても良い。又、これらの材料には、泡の 成長のため、多孔質又は穏雄状安置等にて被覆し、 又はパイロリティックカーポン、ヘパリン、ヒド ロゲル、テフロン材料、シリコン、ポリウレタン 等のような非要塊形成性の材料を被覆することも 可能である。ステントはそこから薬剤が提出する ように処理することも出来る。又、一部のステン トは生物分解性の材料にて形成することも出来る。 何れの場合でも、ステント材料は生物学的に適合 性あることを要するのは勿論である。又、ステン ト材料のストランドは、ワイヤの場合に一般的で あるように円形の断菌形状とするか、又は、例え ば、爾平主たは矩形の断面形状とすることが出来 δ.

第13図乃至第18図には、及びばね鎖のよう

に略位置決めされるようにする。次いで、第15 図に図示するように、シーズ 6 6 は略

基場方向に動かすことにより引き抜き、ステント31をシーズ86から釈放させる。この釈放は略連続的な方法(全体として第15回に図示)にてステントの隣接する円周方向部分が拡張し得るようにする。

この手順が完了したならば、ステント31全体が反発し、全体として第16回に関示された部17回に関示するように係合する。その後、第17回に関示するように、カテーテル63は希耳びいからば、パルーン67が拡張の行政の61aに下、パルーン67が拡張かす。次いント31を整合するまでに力を住びいた。カラに大力に対して病変をさらに拡張した後に残る危険が出来る。

第19因乃至第23回には、郡磯可能な部分が 可露性材料にて形成された非エラストマー的ステ な弾性材料にて形成されたステントに特に適した 埋め込み方法及び挿入システムが図示されている。 狭窄又は病変 6 1 が血管 6 2 内に図示されている。 ステント31が全体として符号63で示したパル ーンカテーテル上に位置決めされる。導入管又は プランジャ64、あるいは、周様のストッパ構造 体がカテーテル質65の外面に沿って位置決めさ れている。ステント31は部材64の末梢方向に 位置決めされ、シーズ66がステント31を略正 縮状態に保持し、この間、ステント 3 1 の影張可 能な部分は略折り畳まれているか又は閉じられて いる。第13図には、さらに、カテーテルのパル ニン67が図示されており、このパルーン67は 鎮変に対し半径外方に向いた力を作用させ、酸バ ルーン67を拡張させて全体として第4回に示し た広い開放部分を提供し、よって、病変の全体的 寸法を小さくし、最初に治療した病変 6 1 a の金 体的形状となるようにする。このとき、パルーン 67は収縮しており、カテーテル63は末梢方向 に動かし、収縮したステント31が病変61a内

ステント31は全体として、第23図に図示した位置に止まる。それは、可線性材料(又はこの場合にはエラストマー的材料)が影張されて第23図に図示した寸法になったとき、フーブ応力を作用させ、治療済み病変及び血管整等により提供

'される単径方向中方の力により陥入することがな いからである。換君すれば、鄭張しされたステン トのフーブ応力はステントが埋め込まれる通路に より作用されるフープ力よりも大きい。さらに、 バルーンが収縮したステントを開放するのに必要 な力はパルーンにより提供されるワープ力よりも 小さい。換言すれば、収縮し、又は非仲長状態の ステントに作用するフープ応力はカテーテルの加 圧されたパルーンが提供するフーブ応力よりも小 さい。図示した型式の可線性ステントの有利なフ ープ応力の特性に寄与し得る1つの特徴は、拡張 法を行うのに必要とされる以上、ステントを彫張 させ得る能力を備えることである。例えば、典型 的な拡張法及びステントの伸及法においては、挿 スマは収縮時の径又は円間の約1倍の寸法にする。 図示したような構造のステントの場合、 伸長程度 は各波状部分の長さ及び脚部間の距離いかんによ り、1倍乃至10倍とすることが可能である。この 特徴は、使用される特定の材料の可観性と相換っ て、挿入又は収縮時の約1倍の大きさまでステン

你径4.010インチの心金に巻き付けられた径4.605 インチのタンタル線である。各脚郎46の長さは 約0.018インチ程度とし、一体形または能動的な 隣接するヒンジ36間の中心間の距離は約8.818 インチとする。かかるステントの収縮又は挿入時 の典型的な外径は約0.085インチとし、その内径 は約0.078インチとする。ステント31の全長は、 病変等を治療するのに一般的に必要な値であるよ うに選択し、ステントの全長が収縮又は仲長状態 にあるか否かを問わず、略一定の値であるように する。但し、外観円周方向部分32の脚部46は ヒンジを屈曲させたときに、楚分中方に動き、ス テントの全長が多少なりとも短くなるようにする。 伸長時の典型的な外径は 0.110インチとし、内径 は1.170インチとする。この典型的な装置におい て、拡張比は約1.8とする。

上述した本発明の実施例は本発明の基本的原理 の適用例の一部を示すものだけであり、当業者は 本発明の精神及び範囲から逸脱することなく、衆 多の変形例をなし得るものである。 トを懲役させるのに要するフープ力を軽減する類 向がある。

娘24 図及び第25 図には、本発明に従って堰 め込まれたステントを除去し又は移植するための ステント引き抜き方法及び係蹄カテーテルシステ ムが図示されている。係蹄カテーテルが全体とし て符号74で図示されている。搬長い館材75が カテーテル本体76内に掲動可能に位置決めされ ている。この組長い部材75はその末梢端にフッ ク部材で7を備えている。このフック部材77は ステント31内に伸長されたとき、ステント31 の一部分を引っ掛ける。図示したブーラ組立体で 8のような適当な制御構造体を操作して、フック 部材が基端方向に動き、その結果、ステントは巻 きほどけ始め、解放して、血管 6.2 等内を遊むこ とが出来るようになり、細長い部材15を基端方 向に連続して動かすことにより、ステントは完全 に身体外に出る。

説明の便宜上、典型的なステント 3 1 について、 次の寸法を掲げる。一例としての可録性材料は公

4. [図面の簡単な説明]

第1図は本発明による体内補装具を製造する方 法の初期の段階を示す斜視図、

第2図は第1図に示した後の段階を示す立面図、 第3図は本発明による完成した体内補装具を略 図示する一方、第2図の後の製造段階を示す立面 図、

第4図は第3図の線4-4に沿った新面図、

第5 図は第3 図に図示した体内補袋具の一端の 版大部分詳細図、

第6図は別の実施例の体内補袋具を製造する方法の初期の設階を示す網視図、

第7図は円周方向に方向決めする前におけるこの体内補装具の一部分の形状を示す一方、第6図に示した後の段階を示す立面図、

第8図はさらに別の実施領による体内簡要具を 製造する方法における初期の段階を示す斜視図、

第9図は円周方向に方向決めする前にこの体内 補裁具の一部分の形状を示す一方、第8図の後の 段階を示す立面図、 第10回はさらに別の実施例の体内補装具の製 強方法における初期の段階を示す立面図、

第11図は第10図に示した後の段階の立面図、 第12図は心金上に略つる巻状に巻き付け、こ の実施例の体内補装具を形成するのに適した材料 の長さを示す、第11図に図示した後の製造段階 を示す立面図、

第13回は本発明による体内補袋具を埋め込む 方法(この方法は、ばれ状の性質の体内補袋具に 特に適している)における初期の段階を示す断図、

第14回は第13回に図示した後の埋め込み方法を示す略断面図、

第15図は第14図に図示した後の埋め込み方法を示す略断面図、

第16図は第15図に図示した後の塩め込み方 法を示す略断面図、

第1.7回は第1.6回に図示した後の埋め込み方法を示す略断面図、

第18図は本発明による埋め込みステント又は 体内補袋具の略断面図、

3 7 : 嫡 都 分 3 8 : 心 金

3 9 : ストランド 4 1 : 心金

4.2:円周方向部分 4.3:自由

4.4:心金· 4.5:波状体

46: 脚部 47: 能動的ヒンジ

51:レンズ形心金 53:小径の心金

55:つる巻き体 61:狭窄(病変)

62:血管 83:カテーテル.

65:カテーテル管 66:シーズ

67: KN-> 72: KN->

14:保蹄カテーテル 75:細長い部材

76:カテーテル本体 77:フック部材

78:プーラ組立体

代理人 弁理士 **海 改 卷** 三 (外 4 名)

第19回は可報性材料にて形成された本発明による体内補装具に特に適した埋め込み方法用の体内補装具及びパルーンカテーテルの末梢端の立面

第20図は血管内に位置決めされた体内補装具及びカテーテルの略断面図、

第21回は第20回に示した後の埋め込み段階を示す略断面図、

第22回は第21回に示した後の埋め込み段階 を示す略断面図、

第23回は本発明による埋め込まれたステント 又は体内補袋具の略断面図、

第24図は本発明に従いステント又は体内補袋 具を移植する係錚カテーテルの絡断面図、及び

第25図は第24図に示した移植方法のさらに 別の段階を示す略断面図である。

3 1:体内補装具(ステント)

32:円周方向部分

34:膨張可能な部片

35:脚部 36:能動的ヒンジ

