

Winning Space Race with Data Science

Bandi Om Sai Sashank 5 April, 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Utilized the SpaceX public API to get the details of all launches.
 - Used Exploratory Data Analysis(EDA) to get interactive visualization of the data.
 - Found the best hyperparameters for training LR, SVM and Decision Trees.
- Summary of all results
 - The best hyperparameters for
 - LR are C = 1 and penalty = I2 for solver lbfgs.
 - SVM are C = 1.0 and gamma = 0.03162277660168379 with sigmoid kernel.
 - Decision Tree are criterion = gini, max_depth = 2, max_features = sqrt, min_samples_leaf = 2, min_samples_split = 10, splitter = best.

Introduction

- Project background and context
 - This project is intended to collect data from SpaceX API, analyse the data, interactively visualize it.
- Problems you want to find answers
 - To find the best hyperparameters for Decision tree, SVM and Logistic Regression.

Methodology

Executive Summary

- Data collection methodology:
 - The data is collected from the SpaceX public API.
- Perform data wrangling
 - Determine the important columns for training a machine learning model.
 - Convert string columns into categorical columns.
- · Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

Data Collection

- Describe how data sets were collected.
 - The datasets are collected by contacting the SpaceX API.
 - The API resides at https://api.spacexdata.com
 - Various routes in the API provide various data about launches and launch sites.

_	static_fire_date_utc	static_fire_date_unix	net	window	rocket	success	failures	details	crew	ships	capsules	pay
0	2006-03- 17T00:00:00.000Z	1.142554e+09	False	0.0	5e9d0d95eda69955f709d1eb	False	[{'time': 33, 'altitude': None, 'reason': 'merlin engine failure'}]	Engine failure at 33 seconds and loss of vehicle	0	0	۵	[5eb0e4b5b6c3bb0006ee
							[{'time': 301, 'altitude':	Successful first stage burn and transition to second stage, maximum				▼

Data Collection - SpaceX API

The completed Jupyter Notebook is at

https://github.com/Sashank999/edX-ML-

Capstone/blob/master/jupyterlabs-spacex-data-collectionapi.ipynb

GET Past Launches

https://api.spacexdata.com/v3/launches/past

Optional Querystrings

Param	Sample	Type Description		
flight_id	5a9fc479ab7 0786ba5a1eaa a	string	Filter launches by mongo document id	
start/end	start=2017- 06- 22&end=2017- 06-25	valid JavaScript date format	Include both to sort by date range	
flight_number	60	integer	Filter by flight number	

Data Collection - Scraping

The completed Jupyter
 Notebook is at
 https://github.com/Sashank
 999/edX-ML Capstone/blob/master/jupyt
 er-labs-spacex-data collection-api.ipynb

GET One Landing Pad

https://api.spacexdata.com/v3/landpads/{{id}}

Returns a specific landing pad

Params

Param	Sample	Type	Description
id	LZ-4	string	get one launchpad by id

Data Wrangling

- The data is first analyzed to create a new column that displays whether the specific launch was successful or not.
- Next, all the value counts of columns Orbit, LaunchSite and Outcome are analysed.
- The completed Jupyter Notebook is at https://github.com/Sashank999/edX-ML-Capstone/blob/master/labs-jupyter-spacex-data wrangling jupyterlite.j

EDA with Data Visualization

- The graphs plotted are:
 - Scatter plot with Flight Number and Launch Site
 - Scatter plot with Payload Mass and Launch Site
 - Bar plot with Orbit and Success Rate
 - Scatter plot with Flight Number and Orbit
 - Scatter plot with Payload Mass and Orbit
 - Line plot of Yearly Success Rate of launches
- The GitHub URL of your completed EDA with data visualization notebook is https://github.com/Sashank999/edX-ML-Capstone/blob/master/jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

EDA with SQL

- The SQL queries performed are:
 - select distinct "Launch_Site" from SPACEXTABLE
 - select * from SPACEXTABLE where "Launch_Site" like 'KSC%' limit 5
 - select SUM("PAYLOAD_MASS__KG_") from SPACEXTABLE where "Customer" like '%NASA%'
 - select avg("PAYLOAD_MASS__KG_") from SPACEXTABLE where "Booster_Version" = 'F9 v1.1'
 - select min("Date") from SPACEXTABLE where "Landing_Outcome" like '%Success%'
 - select distinct "Booster_Version" from SPACEXTABLE where "PAYLOAD_MASS__KG_" > 4000 and "PAYLOAD_MASS__KG_" < 6000 and "Landing_Outcome" = 'Success (ground pad)'
- The GitHub URL of your completed EDA with SQL notebook is https://github.com/Sashank999/edX-ML-Capstone/blob/master/jupyter-labs-eda-sql-edx-sqllite.ipynb

Build an Interactive Map with Folium

- All launch sites in the given data are marked on the data to get an overview of the launch sites.
- Marked the sites where successful launches happened.
- Marked the sites where failed launches happened.
- The GitHub URL of your completed interactive map with Folium map is at https://github.com/Sashank999/edX-ML-Capstone/blob/master/lab_jupyter_launch_site_location.jupyterlite.ipynb

Predictive Analysis (Classification)

- The best parameters for models are calcualted by using the GridSearchCV class provided by the scikit-learn Python library.
- Every model is trained with an exhaustive list of hyperparameters to find the best parameter values.
- The GitHub URL of your completed predictive analysis lab is at https://github.com/Sashank999/edX-ML-Capstone/blob/master/SpaceX_Machine_Learning_Prediction_Part_5.jupyterlite.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Scatter plot of Flight Number vs. Launch Site

Payload vs. Launch Site

Scatter plot of Payload vs. Launch Site

Success Rate vs. Orbit Type

Show a bar chart for the success rate of each orbit type

Flight Number vs. Orbit Type

Scatter plot of Flight number vs. Orbit type

Payload vs. Orbit Type

• Show a scatter point of payload vs. orbit type

Launch Success Yearly Trend

Show a line chart of yearly average success rate

All Launch Site Names

- Names of the unique launch sites are:
 - CCAFS LC-40
 - VAFB SLC-4E
 - KSC LC-39A
 - CCAFS SLC-40
- Query:
 - select distinct "Launch_Site" from SPACEXTABLE

Launch Site Names Begin with 'KSC'

5 records where launch sites' names start with `KSC`

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2017-02-19	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2017-03-16	6:00:00	F9 FT B1030	KSC LC-39A	EchoStar 23	5600	GTO	EchoStar	Success	No attempt
2017-03-30	22:27:00	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO	SES	Success	Success (drone ship)
2017-05-01	11:15:00	F9 FT B1032.1	KSC LC-39A	NROL-76	5300	LEO	NRO	Success	Success (ground pad)
2017-05-15	23:21:00	F9 FT B1034	KSC LC-39A	Inmarsat-5 F4	6070	GTO	Inmarsat	Success	No attempt

- Query:
 - select * from SPACEXTABLE where "Launch_Site" like 'KSC%' limit 5

Total Payload Mass

- The total payload carried by boosters from NASA
 - 107010 kg
- Query:
 - select SUM("PAYLOAD_MASS__KG_") from SPACEXTABLE where "Customer" like '%NASA%'

Average Payload Mass by F9 v1.1

- The average payload mass carried by booster version F9 v1.1
 - 2928.4
- Query:
 - select avg("PAYLOAD_MASS__KG_") from SPACEXTABLE where "Booster_Version" = 'F9 v1.1'

First Successful Ground Landing Date

The dates of the first successful landing outcome on drone ship.

```
%sql select min("Date") from SPACEXTABLE where "Landing_Outcome" like '%Success%'

* sqlite://my_data1.db
Done.
min("Date")

2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

- Query:
 - select distinct "Booster_Version" from SPACEXTABLE where "PAYLOAD_MASS__KG_" > 4000 and "PAYLOAD_MASS__KG_" < 6000 and "Landing_Outcome" = 'Success (ground pad)'

Total Number of Successful and Failure Mission Outcomes

The total number of successful and failure mission outcomes

- Query:
 - select "Mission_Outcome", count("Mission_Outcome") from SPACEXTABLE group by "Mission Outcome"

Boosters Carried Maximum Payload

- The names of the booster which have carried the maximum payload mass
- Query:
 - select distinct "Booster_Version" from SPACEXTABLE where "PAYLOAD_MASS__KG_" = (select max("PAYLOAD_MASS__KG_") from SPACEXTABLE)

2017 Launch Records

 The records which will display the month names, successful landing_outcomes in ground pad ,booster versions, launch_site for the

months in year 2017

Month_Name	Landing_Outcome	Booster_Version	Launch_Site
02	Success (ground pad)	F9 FT B1031.1	KSC LC-39A
05	Success (ground pad)	F9 FT B1032.1	KSC LC-39A
06	Success (ground pad)	F9 FT B1035.1	KSC LC-39A
08	Success (ground pad)	F9 B4 B1039.1	KSC LC-39A
09	Success (ground pad)	F9 B4 B1040.1	KSC LC-39A
12	Success (ground pad)	F9 FT B1035.2	CCAFS SLC-40

- Query:
 - %sql select STRFTIME('%m', "Date") as "Month_Name", "Landing_Outcome", "Booster_Version", "Launch_Site" from SPACEXTABLE \ where substr("Date", 0, 5) = '2017' and "Landing_Outcome" = 'Success (ground pad)'

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 The counts of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

- Query:
 - select "Landing_Outcome", count("Landing_Outcome") as "C" from SPACEXTABLE\
 where "Date" >= '2010-06-04' and "Date" <= '2017-03-20' \
 group by "Landing_Outcome" \ order by "C" DESC

Map of All Launch Sites

Launch Outcomes

Launch Site Proximities

Classification Accuracy

 The most accurate models are SVM and Decision tree.

Confusion Matrix

SVM Confusion Matrix

Decision Tree Confusion Matrix

