Introduction to Gradient Boosting

Jake Underland

July 7, 2022

Setup

Start with a simple setup.

- \blacktriangleright $\{x_i, y_i\}$ represents a dataset.
- ► N: number of training samples
- ► *M*: number of features.

Setup

In regression, we want to construct f such that

$$y_i \approx f(x_i)$$
 for all i

which is to say,

$$\underset{f}{\operatorname{arg\,min}} \quad \underbrace{\frac{1}{N} \sum_{i}^{N} (y_i - f(x))^2}_{Mean\ Squared\ Error\ (MSE)}$$

Setup

f can be represented as a sum of weak learners.

$$\underbrace{f(x)}_{\textit{final model}} = \underbrace{f_0(x) + f_1(x) + f_2(x) + \cdots + f_{\max}(x)}_{\textit{weak learners}}$$

Steps to training the model:

$$S_0(x) = f_0(x)$$

$$S_1(x) = f_0(x) + f_1(x)$$

$$S_2(x) = f_0(x) + f_1(x) + f_2(x)$$

$$\vdots$$

$$S_{k+1}(x) = S_k(x) + f_{k+1}(x)$$

S represents the model at each step, S_{max} being the end product.

Optimizing

At every step S we want to approximate y (training data).

$$S_{k+1}(x) = S_k(x) + f_{k+1}(x) \approx y$$

Reordering with respect to f_{k+1} gives us:

$$f_{k+1}(x) \approx \underbrace{y - S_k(x)}_{Residual}$$

Thus, for every step S_{k+1} we want to regress x on the residuals of the previous step, or S_k , to get f_{k+1} .

In Gradient Boosting, the model approaches f step by step.

Figure: borrowed from Matthew Drury

Following the steps

We start with $S_0(x) = f_0(x)$. Since our loss function is MSE, our choice for $f_0(x)$ should be:

$$f_0(x) = \frac{1}{N} \sum_i y_i$$

Adjust model in direction of residual $y_i - f_0(x_i)$ The residuals are only defined at the points where training data exists...

\rightarrow Use regression!

Calculating $f_1(x)$

Let residuals be the new dataset (y_i) . If we use a tree regressor, we can estimate the first tree $f_1(x)$.

Updating the model

$$S_1(x) = f_0(x) + f_1(x) \leftarrow \text{Model fit to residuals!}$$

Another Step

Calculate residuals of present model...

Create new training dataset $\{x_i, y_i\}$ so that y_i are residuals.

Estimate weak learner f_2 to add to model

Update model!

Gradually refine

Loss function

In the above example we used MSE as the loss function

Any loss function L(y, S(x)) can be used \downarrow

$$S_{k+1}(x) = S_k(x) + \operatorname*{arg\,min}_f \sum_{i=1}^N L(y_i, S_k(x_i) + f_{k+1}(x_i))$$

BUT global minimum at each iteration is computationally expensive...

→ use gradient descent

$$S_{k+1}(x) = S_k(x) - \left[\sum_{i=1}^{N} \nabla_{S_k} L(y_i, S_k(x_i))\right]$$

Gradient Boosting!

Gradient Descent

For any differentiable function L(x)

Inputs: Function *L*.

Outputs: x^* that minimizes L.

Algorithm: Repeat $x_{i+1} = x_i - \lambda \nabla L(x_i)$ until x converges to x^* .

Gradient Boosting

$$S_{k+1}(x) = S_k(x) - \left[\sum_{i=1}^N \nabla_{S_k} L(y_i, S_k(x_i))\right]$$

Gradient Boosting!

Adding weights

We can further increase accuracy by adding weights to the weak learners when updating the model.

$$S_{k+1}(x) = S_k(x) + \lambda_{k+1} f_{k+1}(x)$$

$$\left(= S_k(x) - \lambda_{k+1} \sum_{i=1}^{N} \nabla_{S_k} L(y_i, S_k(x_i)) \right)$$

Where

$$\lambda_{k+1} = \underset{\lambda}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, S_{k+1}(x_i))$$

$$= \underset{\lambda}{\operatorname{arg\,min}} \sum_{i=1}^{N} L(y_i, S_k(x_i) + \lambda_{k+1} f_{k+1}(x_i))$$

Weights can be constant, in which case it is a learning rate

Smoother approximation using weights

By the way

Applying Gradient Descent to MSE yields

$$\begin{aligned} x_{k+1} &= x_k - \lambda \nabla_x L(x_k, y) \\ &= x_k - \lambda \nabla_x \frac{\partial}{\partial x} \left(\frac{1}{2} (y - x_k)^2 \right) \\ &= x_k + \lambda (y - x_k) \end{aligned}$$

Meaning under MSE, GB simply moves gradually in the direction of the residuals.

Review

Inputs: A training data set $\{x_i, y_i\}$, and, optionally, a learning rate λ to replace weights.

Returns: A function f such that $f(x_i) \approx y_i$.

- ► Initialize $S_0(x) = f_0(x) = \frac{1}{N} \sum_i y_i$.
- ▶ Iterate (parameter *k*) until satisfied:
 - ► Create the working data set $W_k = \{x_i, y_i S_k(x_i)\}$.
 - Fit a regression tree to W_k , minimizing least squares. Call this tree f_k .
 - ► Set $S_{k+1}(x) = S_k(x) + \lambda f_k(x)$.
- ► Return $f(x) = f_0(x) + f_1(x) + f_2(X) + \cdots + f_{max}(x)$.