

AD-A147 810

IONOSPHERIC TURBULENCE: INTERCHANGE INSTABILITIES AND
CHAOTIC FLUID BEHAVIOR(U) NAVAL RESEARCH LAB WASHINGTON 1/1
DC J D HUBA ET AL. 22 NOV 84 NRL-MR-5474

UNCLASSIFIED

F/G 4/1

NL

END
FILED
BY STC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A147 810

SECUR. CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE												
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS										
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT Approved for public release; distribution unlimited.										
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE												
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NRL Memorandum Report 5474		5. MONITORING ORGANIZATION REPORT NUMBER(S)										
6a. NAME OF PERFORMING ORGANIZATION Naval Research Laboratory	6b. OFFICE SYMBOL (if applicable) Code 4780	7a. NAME OF MONITORING ORGANIZATION										
6c. ADDRESS (City, State, and ZIP Code) Washington, DC 20375-5000		7b. ADDRESS (City, State, and ZIP Code)										
8a. NAME OF FUNDING / SPONSORING ORGANIZATION Defense Nuclear Agency	8b. OFFICE SYMBOL (if applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER										
8c. ADDRESS (City, State, and ZIP Code) Washington, DC 20305		10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. 62715H	PROJECT NO. DN280-291									
11. TITLE (Include Security Classification) Ionospheric Turbulence: Interchange Instabilities and Chaotic Fluid Behavior												
12. PERSONAL AUTHOR(S) Huba, J.D., Hassam, A.B.,* Schwartz, I.B., and Keskinen, M.J.												
13a. TYPE OF REPORT Interim	13b. TIME COVERED FROM 10/83 TO 10/84	14. DATE OF REPORT (Year, Month, Day) 1984 November 22	15. PAGE COUNT 27									
16. SUPPLEMENTARY NOTATION *Science Applications, Inc., McLean, VA 22102 (Continues)												
17. COSATI CODES <table border="1"><tr><th>FIELD</th><th>GROUP</th><th>SUB-GROUP</th></tr><tr><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td></tr></table>		FIELD	GROUP	SUB-GROUP							18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Interchange instabilities Ionospheric turbulence Chaotic behavior	
FIELD	GROUP	SUB-GROUP										
19. ABSTRACT (Continue on reverse if necessary and identify by block number) → We develop a set of mode coupling equations which describe the nonlinear evolution of the Rayleigh-Taylor and $E \times B$ gradient drift instabilities which are relevant to the ionosphere. The model is restricted to 2D turbulence in the plane transverse to the magnetic field, and only those modes such that $kL \gg 1$ are considered, where k is the wavenumber and L is the scale length of the density gradient. We show that for a three mode system, the nonlinear equations describing these instabilities correspond exactly to the Lorenz equations which approximately describe the Rayleigh-Bénard instability. Following the analysis of Lorenz (1963), it is shown that the three mode system can exhibit a strange attractor with chaotic behavior. Ion inertia plays a critical role in this phenomenon in that if it is neglected (as in the collisional limit), the three mode system does not exhibit chaos and a stable convection pattern results. ↗												
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED										
22a. NAME OF RESPONSIBLE INDIVIDUAL J. D. Huba		22b. TELEPHONE (Include Area Code) (202) 767-3630	22c. OFFICE SYMBOL Code 4780									

SECURITY CLASSIFICATION OF THIS PAGE

16. SUPPLEMENTARY NOTATION (Continued)

This research was sponsored by the Defense Nuclear Agency under Subtask S99QMXBC, work unit 00102 and work unit title "Plasma Structure Evolution."

SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

I. INTRODUCTION	1
II. DERIVATION OF NONLINEAR EQUATIONS	3
III. RESULTS	5
IV. CONCLUDING REMARKS	10
ACKNOWLEDGMENT	12
REFERENCES	13

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution/	
Availability Col	
Distr	Avail add/o Special
A1	

IONOSPHERIC TURBULENCE: INTERCHANGE INSTABILITIES AND CHAOTIC FLUID BEHAVIOR

I. INTRODUCTION

It is well-known that interchange instabilities produce turbulence in the ionosphere [Ossakow, 1979; Fejer and Kelley, 1980]. The Rayleigh-Taylor instability is believed to cause the intense nighttime equatorial F region turbulence known as equatorial spread F [Ossakow, 1981; Kelley and McClure, 1981]; the $E \times B$ gradient drift instability has been invoked to explain high-latitude ionospheric irregularities [Keskinen and Ossakow, 1983], the rapid structuring of barium clouds [Linson and Workman, 1970], and turbulence in equatorial electrojet [Ossakow, 1979]; and the current convective instability may be responsible for turbulence in auroral ionosphere [Ossakow and Chaturvedi, 1979a]. These instabilities are fundamentally similar in nature in that they require a density gradient, and they act to interchange the high and low plasma density regions. However, they have different driving mechanisms: the Rayleigh-Taylor instability is driven by the gravitational force, the $E \times B$ gradient drift instability is driven by an ambient electric field or neutral wind, and the current convective instability is driven by a current parallel to the ambient magnetic field. A considerable amount of research has been devoted to the study of these instabilities and their application to ionospheric turbulence. Since, in general, it is the nonlinear phase of the instabilities that is observed, it is important to identify the salient characteristics of this phase (e.g., wave amplitude at saturation, power spectra, etc.).

Interchange instabilities, as they are applied to the ionosphere, can be divided into two categories: collisional and inertial. The collisional limit considers $v_{in} \gg \omega$ (where v_{in} is the ion-neutral collision frequency

Manuscript approved September 7, 1984.

and ω is the wave frequency) while the inertial limit considers $\omega \gg v_{in}$.

In the ionosphere, the transition from the collisional limit to the inertial limit typically occurs in the altitude regime ~ 500 km. The bulk of the nonlinear research on interchange instabilities in the ionosphere (both theory and simulation) has been restricted to the collisional domain. The purpose of this paper is to extend the nonlinear theory of interchange instabilities into the inertial regime.

In brief, we develop a set of mode coupling equations which describe the nonlinear evolution of the Rayleigh-Taylor and $E \times B$ gradient drift instabilities. The model is restricted to 2D turbulence in the plane transverse to the magnetic field, and only those modes such that $kL \gg 1$ are considered, where k is the wavenumber and L is the scale length of the density gradient. We do not consider the current convective instability for simplicity because it requires a component of the wavenumber parallel to B [Chaturvedi and Ossakow, 1979b]. We show that our mode coupling equations have the same structure as the equations describing the Rayleigh-Benard instability; in particular, when we consider a three mode system, we show that the equations correspond exactly to the Lorenz equations which approximately describe the Rayleigh-Benard instability [Saltzman, 1962; Lorenz, 1963]. Following the analysis of Lorenz (1963), it is shown that the three mode system can exhibit a strange attractor with chaotic behavior [Ruelle and Takens, 1971]. Ion inertia plays a critical role in this phenomenon in that if it is neglected (as in the collisional limit), the three mode system does not exhibit chaos and a stable convection pattern results.

The organization of this letter is as follows. In the next section we present the geometry, assumptions, and derivation of the nonlinear mode coupling equations. In Section III we present our results for a three mode

system and show the correspondence to the Rayleigh-Benard problem. We derive a criterion for the onset of chaotic turbulence involving the dissipation parameters (i.e., diffusion coefficient, ion-neutral collision frequency). Finally, in the last section we summarize our findings and discuss the implications for ionospheric turbulence.

II. DERIVATION OF NONLINEAR EQUATIONS

The plasma configuration and assumptions used in the analysis are described as follows. We consider an ambient magnetic field in the z -direction ($\mathbf{B} = B_0 \hat{\mathbf{e}}_z$), a gravitational acceleration in the $-x$ -direction ($\mathbf{g} = -g \hat{\mathbf{e}}_x$), a density gradient in the x -direction ($n = n_0(x)$ and $\partial n_0 / \partial x > 0$), and an ambient electric field in the y direction ($\mathbf{E} = E_0 \hat{\mathbf{e}}_y$). We assume two dimensional perturbations in the x - y plane (transverse to \mathbf{B}) such that $\mathbf{k} = k_x \hat{\mathbf{e}}_x + k_y \hat{\mathbf{e}}_y$ with $k_x L \gg 1$ and $k_y L \gg 1$ where $L = [\partial \ln n / \partial x]^{-1}$ is the density gradient scale length. For simplicity we assume a cold ion plasma ($T_i = 0$). We consider low frequency turbulence in a weakly collisional plasma such that $\partial / \partial t \ll \Omega_i$, $v_{in} \ll \Omega_i$, $v_{ie} \ll \Omega_i$, and $v_{ei} \ll \Omega_e$ where $\Omega_a = eB_0/m_a c$ is the cyclotron frequency of species a , v_{in} is the ion-neutral collision frequency, v_{ie} is the ion-electron collision frequency, and v_{ei} is the electron-ion collision frequency. We neglect electron-neutral collisions since $v_{en}/\Omega_e \ll v_{in}/\Omega_i$ in the F region. Finally, we consider electrostatic turbulence and assume quasi-neutrality ($n_e \approx n_i$).

The equations used in the analysis are continuity, momentum transfer, and charge conservation:

$$\frac{\partial n_a}{\partial t} + \nabla \cdot (n_a \mathbf{v}_a) = 0 \quad (1)$$

$$0 = -\frac{e}{m_e} (\mathbf{E} + \frac{1}{c} \mathbf{v}_e \times \mathbf{B}) - \frac{T_e}{m_e} \frac{\nabla n}{n} - v_{ei} (v_e - v_i) \quad (2)$$

$$\frac{dv_i}{dt} = \frac{e}{m_i} (\mathbf{E} + \frac{1}{c} \mathbf{v}_i \times \mathbf{B}) - v_{ie} (v_i - v_e) - v_{in} v_i + g \quad (3)$$

$$\nabla \cdot \mathbf{J} = \nabla \cdot [n(v_i - v_e)] = 0 \quad (4)$$

We perturb (1)-(4) about an equilibrium and let $n = n_0 + \tilde{n}$, $\mathbf{E} = \mathbf{E}_0 - \nabla \tilde{\phi}$, and $\mathbf{v}_a = \mathbf{v}_{a0} + \tilde{\mathbf{v}}_a$. To lowest order in v_a/Ω_a the equilibrium drifts are given by $v_{e0} = -[cT_e/eB](\partial \ln n / \partial x)^{-1} \hat{\mathbf{e}}_y$ (the electron diamagnetic drift) and $v_{i0} = [g/\Omega_i + (v_{in}/\Omega_i)(cE_0/B)]\hat{\mathbf{e}}_y$ (the ion gravitational drift and ion Pedersen drift, respectively). Note we have chosen $v_{0x} = v_{0y} = cE_0y/B$. We solve (2) and (3) for $\tilde{\mathbf{v}}_e$ and $\tilde{\mathbf{v}}_i$, and substitute these values into (1) and (4). We arrive at the coupled set of equations for \tilde{n} and $\tilde{\phi}$:

$$\frac{\partial}{\partial t} \frac{\tilde{n}}{n_0} - \frac{c}{B} \nabla \tilde{\phi} \times \hat{\mathbf{e}}_z \cdot \frac{\nabla n_0}{n_0} - D_e \nabla^2 \frac{\tilde{n}}{n_0} = \frac{c}{B n_0} \nabla \tilde{\phi} \times \hat{\mathbf{e}}_z \cdot \nabla \tilde{n} \quad (5)$$

and

$$[\frac{g}{\Omega_i} \times \hat{\mathbf{e}}_z + \frac{v_{in}}{\Omega_i} \frac{cE}{B}] \cdot \nabla \frac{\tilde{n}}{n_0} - \frac{c}{B} \frac{1}{\Omega_i} (\frac{\partial}{\partial t} + \hat{\mathbf{e}}_z \times \nabla \tilde{\phi} \cdot \nabla + v_{in}) \nabla^2 \tilde{\phi} = 0 \quad (6)$$

where $D_e = v_{ei} \rho_e^2$ is the electron diffusion coefficient and we have assumed $\partial/\partial t \gg \mathbf{v}_{i0} \cdot \nabla$. It may be seen that (5) and (6) are mathematically the same as the Rayleigh-Benard equations [Eqs. (17) and (18) of Lorenz (1963)] provided the substitution $v_{in} \rightarrow v \nabla^2$ is made in (6).

III. RESULTS

We now present results of our analysis for a three mode configuration. Prior to this we cast (5) and (6) into dimensionless form. Specifically, we find that (5) and (6) can be written as

$$\frac{\partial \tilde{n}_1}{\partial t_1} = \hat{D}_e \hat{\nabla}^2 \tilde{n}_1 + \hat{\nabla}_y \tilde{\phi}_1 + \hat{\nabla} \tilde{n}_1 \cdot \hat{\nabla} \tilde{\phi}_1 \times \hat{e}_z \quad (7)$$

and

$$(\frac{\partial}{\partial t_1} + \hat{e}_z \times \hat{\nabla} \tilde{\phi}_1 \cdot \hat{\nabla}) \hat{\nabla}^2 \tilde{\phi}_1 = - \hat{v}_{in} \hat{\nabla}^2 \tilde{\phi}_1 + \hat{\nabla}_y \tilde{n}_1 \quad (8)$$

where $t_1 = \gamma_0 t$, $\hat{v}_{in} = v_{in}/\gamma_0$, $\tilde{n}_1 = (\tilde{n}/n_0)(L/\lambda)$, $\tilde{\phi}_1 = \tilde{\phi}(c/B\lambda^2\gamma_0)$, $\hat{\nabla} = \lambda \nabla$, $\hat{D}_e = D_e/\lambda^2\gamma_0$, $\gamma_0 = [(g + v_{in}^2 c E_0 / B)/L]^{1/2}$, and λ is half of the maximum wavelength permitted (i.e., $\lambda < 2L$).

We consider the following perturbations for $\tilde{\phi}_1$ and \tilde{n}_1 : $\tilde{\phi}_1 = X_1 \sin x \sin y$ and $\tilde{n}_1 = Y_1 \sin x \cos y + Z_1 \sin 2x$ where we have taken $k_x = k_y$ with $k_x = \lambda^{-1}$ and $k_y = \lambda^{-1}$ for simplicity. Here, x and y represent the x and y spatial coordinate normalized to λ , and only the coefficients X_1 , Y_1 , and Z_1 are assumed to be time dependent. Substituting \tilde{n}_1 and $\tilde{\phi}_1$ into (7) and (8) we obtain the following set of coupled ordinary differential equations:

$$\dot{X} = - \sigma X + \sigma Y \quad (9)$$

$$\dot{Y} = - Y + rX - XZ \quad (10)$$

$$\dot{Z} = - 2Z + XY \quad (11)$$

where the dot over a variable indicates a time derivative, $X = \dot{X}_1 \sqrt{r\sigma}$, $Y = \dot{Y}_1 \sqrt{r\sigma} / 2\hat{v}_{in}$, $Z = r\dot{Z}_1$, $\tau = 2\hat{D}_e t_1$, $\sigma = \hat{v}_{in} / 2\hat{D}_e$ and $r = (4\hat{D}_e \hat{v}_{in})^{-1}$.

Equations (9)-(11) correspond exactly to the equations solved by Lorenz (1963) for the Rayleigh-Benard instability (with the exception that Lorenz' parameter b is equal to 2 in our case).

Following Lorenz (1963), (9)-(11) can be analyzed to determine (i) the nonlinear fixed states of the system, and (ii) the stability of these fixed states as a function of r and σ . The fixed states are determined by the condition $\dot{X} = \dot{Y} = \dot{Z} = 0$. If $r < 1$, the only stable steady state is given by $X_0 = Y_0 = Z_0 = 0$. This represents the state of no convection, i.e., the usual equilibrium state upon which linear stability analysis is performed; in fact, $r = 1$ is the point of marginal linear stability of the equilibrium. For $r > 1$, the equilibrium is unstable resulting in convection and the interchange of high and low density regions. However, $r > 1$ allows two additional fixed states, given by $X_0 = Y_0 = \pm [2(r - 1)]^{1/2}$ and $Z_0 = r - 1$; these correspond to convection cells of either positive or negative vorticity. The linear instability may thus "saturate" by attracting to one of these new fixed states with X_0 , Y_0 , and Z_0 providing estimates for the saturation amplitudes of \tilde{n} and $\tilde{\phi}$. This is indeed the case for $1 < r < r_c \equiv \sigma(\sigma + 5)/(\sigma - 3)$ or $\sigma < 3$. In this range of r , the fixed states are stable and the orbit in X , Y , Z phase space asymptotes to one of the nontrivial fixed points. An example is shown in Fig. 1 ($\sigma = 10$, $r = 15$) where the projection of the orbit on to the X - Z plane is plotted.

For $\sigma > 3$ and $r > r_c$, the saturated convection pattern described above is itself unstable. No other fixed stable states exist; this means that

Fig. 1. Depicted is an approach to the non-trivial steady state attractor to (9)-(11) projected onto the X-Z plane. The parameters used for the numerical simulation are $\sigma = 10$ and $r = 15$; note that $r_c = 21.4$ so that $1 < r < r_c$.

the amplitudes X, Y, and Z oscillate in intensity in periodic or chaotic fashion. The magnitude of these oscillations cannot be determined analytically and numerical analysis of (9) - (11) is required. Nevertheless, some general features may be discerned: even though the phase space orbit does not approach a single point, it does lie in a bounded, or "attracting", region of phase space. Figure 2 illustrates such an orbit for $\sigma = 10$ and $r = 30$. This orbit in fact tends to encircle either one or the other of the two non-trivial fixed states. There is, however, no periodicity for the case shown: the transition from encircling one or the other fixed points is seemingly random. In such a case the orbit is "chaotic" and the attracting region is a strange attractor. Since all orbits are unstable, one sees chaotic behavior in the amplitudes of X, Y, and Z [Ruelle and Takens, 1971]. Note that the amplitudes of X and Z in Fig. 2 can fluctuate by more than a factor of 2.

An important point to be recognized concerning the application of this theory to interchange instabilities is the following. As noted earlier, we can consider two limits: collisional and inertial. In the collisional limit ($v_{in} \gg \partial/\partial t$), $\dot{X} = 0$ in (9) so that $X = Y$ and the problem reduces to solving only two coupled differential equations. For this case, the convection states are always stable. This is the situation that has been considered in most previous analytic treatments of ionospheric interchange instabilities [Rognlien and Weinstock, 1974; Chaturvedi and Ossakow, 1977, 1979a,b] although the stability of the convection states was not analyzed. Thus, for this simple three mode system, we find that ion inertia is required for unstable convection patterns to occur. We comment that the nonlinear behavior of Rayleigh-Taylor instability in the inertial limit has been considered by Hudson (1978). However, Hudson (1978) did not

Fig. 2. A strange attractor for (9)-(11) is illustrated as a projection onto the X-Z plane. The parameters used are $\sigma = 10$ and $r = 30$. Note that $r_c = 21.4$ so that $r > r_c$. All periodic orbits are unstable, as well as the three equilibrium points. The attractor lies in a finite volume of space.

find chaotic behavior because it was assumed that $\partial/\partial t = -i\omega$ where ω is the linear eigenfrequency in (6). This ad hoc assumption effectively reduces the problem to two differential equations and leads to results similar to the collisional limit.

IV. CONCLUDING REMARKS

We have shown that interchange instabilities relevant to ionospheric turbulence (Rayleigh-Taylor and $E \times B$ gradient drift), can be studied in the context of chaotic attractor theory. In particular, we demonstrate that for a simple system (three modes) the equations governing these instabilities are exactly the same as those that govern the Rayleigh-Benard instability [Saltzman, 1962; Lorenz, 1963]. The analogy between these two instabilities is the following. The Rayleigh-Benard instability is driven by a temperature gradient and convects "hot and cold" fluid elements; the temperature gradient is maintained by a heat source at one end and a heat sink at the other. The Rayleigh-Taylor and $E \times B$ gradient drift instabilities are driven by a density gradient and convect "heavy and light" fluid elements; in the case of the ionosphere, the density gradient could be maintained by photoionization at one end and recombination at the other. We have shown that these interchange instabilities can exhibit both stable and unstable convection patterns in this system. A crucial point is that unstable convection only results if inertial effects are important, i.e., $v_{in} \lesssim \partial/\partial t$.

For application to the ionosphere, we consider the stability of the fixed states of the Rayleigh-Taylor instability in the equatorial ionosphere, and the $E \times B$ gradient drift instability in the high latitude auroral ionosphere. Three observations may be made. First, the nonlinear

fixed states given by X_0 , Y_0 , and Z_0 correspond to the saturated potential and density fluctuation amplitudes. We note the density fluctuation amplitude associated with Y_0 is $\tilde{n}/n_0 = 4(\rho_e/L)(v_{in}v_{ei}/\gamma_0^2)^{1/2}$, while the amplitude associated with Z_0 is $\tilde{n}/n_0 = \lambda/L$. These estimates agree with previous results [Chaturvedi and Ossakow, 1977, 1979] and yield density fluctuations of several percent for typical F region parameters. These estimates can vary by more than a factor of 2 when the instabilities are in the "chaotic regime" (see Fig. 2). Second, since $\sigma = \lambda^2 v_{in}/2v_{ei}\rho_e$ using the normalizations listed after (8), we find that $10^3 \leq \sigma \leq 10^5$ for the F region ionosphere (200-800 km) where we have taken $\lambda = 500$ m, $\rho_e = 1.5$ cm, $v_{in} = 2.4 \times 10^{11} T_e^{1/2} n_n \text{ sec}^{-1}$ [Strobel and McElroy, 1970], $v_{ei} = (\lambda_{ei}/3.5 \times 10^5)(n_e/T_e^{3/2}) \text{ sec}^{-1}$ [Braginskii, 1965; Johnson, 1961] where T_e is the electron temperature in eV, n_n is the neutral gas density, n_e is the electron density, $\lambda_{ei} = 23.4 - 1.15 \log n_e + 3.45 \log T_e$, and the neutral densities were obtained from a Jacchia (1975) model neutral atmosphere. Third, since $\sigma \gg 1$, the critical value of r is given by $r_c \approx \sigma$. For the Rayleigh-Taylor instability, the condition for unstable fixed states can thus be written as $v_{in} < (g/2L)^{1/2}$. For $g = 9.8$ m/sec² and $L = 10$ km, we find that unstable behavior can occur for $v_{in} < 0.02 \text{ sec}^{-1}$ which corresponds to altitudes greater than 400-500 km in the equatorial F region ionosphere. For the $E \times B$ gradient drift instability, the condition for an unstable fixed state is $v_{in} < cE_0/2BL$. Taking $cE_0/B = 6 \times 10^2$ m/sec and $L = 10^2$ km [Weber et al., 1984], we find that chaotic behavior can occur for $v_{in} < 6 \times 10^{-3} \text{ sec}^{-1}$ which corresponds to altitudes greater than roughly 500 km in the high latitude F region.

We comment that the values of r and σ relevant to ionospheric plasmas are considerably different than those used in most mathematical studies

(i.e., similar to those used in Figs. 1 and 2). However, we have also performed calculations for large r and σ and have found similar behavior; namely, the transition from a stable attractor to a strange attractor for sufficiently large r . This is in agreement with previous studies [Fowler and McGuinness, 1982].

Finally, we have only considered a simple three mode system which could be argued is unrealistic. It is known that the nonlinear behavior of the Lorenz equations for more than three modes can be different from the three mode system [Ott, 1981]. For example, we have shown that for three modes, the nonlinear fixed states are always stable in the collisional limit (i.e., $v_{in} > \gamma_0$). However, we have also developed a pseudo-spectral code which follows the evolution of a many mode system (~ 120 modes). Preliminary results indicate that chaotic fluid behavior can also occur in the collisional limit, in sharp contrast to the simple three mode result. A report on the nonlinear dynamics of the many mode system will follow shortly.

ACKNOWLEDGMENT

This research has been supported by the Defense Nuclear Agency and the Office of Naval Research.

REFERENCES

Braginskii, S.I., "Transport processes in a plasma," in Reviews of Plasma Physics, ed. M. Leontovich, Vol. 1, Consultants Bureau, New York, 1965.

Chaturvedi, P.K. and S.L. Ossakow, "Nonlinear Theory of the Collisional Rayleigh-Taylor Instability in Equatorial Spread F," Geophys. Res. Lett., 4, 558, 1977.

Chaturvedi, P.K. and S.L. Ossakow, "Nonlinear Stabilization of the Current Convective Instability in the Diffuse Aurora," Geophys. Res. Lett., 6, 957, 1979.

Chaturvedi, P.K. and S.L. Ossakow, "Nonlinear Stabilization of the E x B Gradient Drift Instability in Ionospheric Plasma Clouds," J. Geophys. Res., 84, 419, 1979.

Fejer, B.G. and M.C. Kelley, "Ionospheric Irregularities," Rev. Geophys. Space Phys., 18, 401, 1980.

Fowler, A.C. and M.J. McGuinness, "A Description of the Lorenz Attractor at a Large Prandtl Number," Physica, 5D, 149, 1982.

Hudson, M.K., "Spread F Bubbles: Nonlinear Rayleigh-Taylor Mode in Two Dimensions," J. Geophys. Res., 83, 3189, 1978.

Jacchia, L.G., "Static Diffusion Models of the Upper Atmosphere with Empirical Temperature Profiles," Smithson. Contrib. Astrophys., 8, 215, 1965.

Johnson, F.S., Satellite Environment Handbook, ed. F.S. Johnson, Stanford University Press, Stanford, Calif., 1961.

Kelley, M.C. and J.P. McClure, "Equatorial Spread-F: A Review of Recent Experimental Results," J. Atm. Terr. Phys., 43, 427, 1981.

Keskinen, M.J. and S.L. Ossakow, "Theories of High-Latitude Ionospheric Irregularities: A Review," Radio Sci., 18, 1077, 1983.

Linson, L.M. and J.B. Workman, "Formation of Striations in Ionospheric Plasma Clouds," J. Geophys. Res., 75, 3211, 1970.

Lorenz, E.N., "Deterministic Nonperiodic Flow," J. Atmos. Sci., 20, 130, 1963.

Ossakow, S.L., "Ionospheric Irregularities," Rev. Geophys. Space Phys., 17, 521, 1979.

Ossakow, S.L., "Spread-F Theories - A Review," J. Atm. Terr. Phys., 43, 437, 1981.

Ossakow, S.L. and P.K. Chaturvedi, "Current Convective Instability in the Diffuse Aurora," Geophys. Res. Lett., 6, 332, 1979.

Ott, E., "Strange Attractors and Chaotic Motions of Dynamical Systems," Rev. Mod. Phys., 53, 655, 1981.

Rognlien, T.D. and J. Weinstock, "Theory of the Nonlinear Spectrum of the Gradient Drift Instability in the Equatorial Electrojet," J. Geophys. Res., 79, 4733, 1974.

Ruelle, D. and F. Takens, "On the Nature of Turbulence," Comm. Math. Phys., 20, 167, 1971.

Saltzman, B., "Finite Amplitude Free Convection as an Initial Value Problem-I," J. Atmos. Sci., 19, 329, 1962.

Strobel, D.F. and M.B. McElroy, "The F2-layer at Middle Latitudes," Planet. Space Sci., 18, 1181, 1970.

Weber, E.J., J. Buchau, J.G. Moore, J.R. Sharber, R.C. Livingston, J.D. Winingham, and B. W. Reinisch, "F layer Ionization Patches in the Polar Cap," J. Geophys. Res., 89, 1683, 1984.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, COMINT & INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR
MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DOST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAO/DNA
BUILDING 20676
KIRTLAND AFB, NM 87115
01CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WNMCCS EVALUATION
OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NB 68113
01CY ATTN JLTV-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPR

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE
SYSTEMS (OS)

WMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO, F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-O W. DAVIES
01CY ATTN ATC-R DON RUSS

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E- SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON RM 1B269
WASHINGTON, D.C. 20310
01CY ATTN C- E-SERVICES DIVISION

COMMANDER
FRAOCOM TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
FORT MONMOUTH, N.J. 07703
01CY ATTN DRSEL-NL-RD H. BENNET
01CY ATTN DRSEL-PL-ENV H. BOMKE
01CY ATTN J.E. QUIGLEY

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. HUACHUCA, AZ 85613
01CY ATTN CCC-EMEO GEORGE LANE

COMMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
01CY ATTN DRXST-SD

COMMANDER
U.S. ARMY MATERIAL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DRCLDC J.A. BENDER

COMMANDER
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
01CY ATTN LIBRARY

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH
LABORATORY
ABERDEEN PROVING GROUND, MD 21005
01CY ATTN TECH LIBRARY,
EDWARD DAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
01CY ATTN DOCUMENT CONTROL

COMMANDER
U.S. ARMY MISSILE INTELLIGENCE AGENCY
REDSTONE ARSENAL, AL 35809
01CY ATTN JIM GAMBLE

DIRECTOR
U.S. ARMY TRADOC SYSTEMS ANALYSIS
ACTIVITY
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN ATAA-SA
01CY ATTN TCC/F. PAYAN JR.
01CY ATTN ATTA-TAC LTC J. NESSE

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, D.C. 20360
01CY ATTN NAVALEX 034 T. HUGHES
01CY ATTN PME 117
01CY ATTN PME 117-T
01CY ATTN CODE 5011

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CTR
4301 SUITLAND ROAD, BLDG. 5
WASHINGTON, D.C. 20390
01CY ATTN MR. DUBBIN STIC 12 ..
01CY ATTN NISC-50
01CY ATTN CODE 5404 J. GALET

COMMANDER
NAVAL OCCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
01CY ATTN J. FERGUSON

NAVAL RESEARCH LABORATORY
 WASHINGTON, D.C. 20375
 01CY ATTN CODE 4700 S. L. Ossakow
 26 CYS IF UNCLASS. 1 CY
 IF CLASS)
 01CY ATTN CODE 4701 I Vilkovitsky
 01CY ATTN CODE 4780 J. Huba (100
 CYS IF UNCLASS, 1 CY IF CLASS)
 01CY ATTN CODE 7500
 01CY ATTN CODE 7550
 01CY ATTN CODE 7580
 01CY ATTN CODE 7551
 01CY ATTN CODE 7555
 01CY ATTN CODE 4730 E. MCLEAN
 01CY ATTN CODE 4108
 01CY ATTN CODE 4730 B. RIPIN
 20CY ATTN CODE 2628

COMMANDER
 NAVAL SEA SYSTEMS COMMAND
 WASHINGTON, D.C. 20362
 01CY ATTN CAPT R. PITKIN

COMMANDER
 NAVAL SPACE SURVEILLANCE SYSTEM
 DAHLGREN, VA 22448
 01CY ATTN CAPT J.H. BURTON

OFFICER-IN-CHARGE
 NAVAL SURFACE WEAPONS CENTER
 WHITE OAK, SILVER SPRING, MD 20910
 01CY ATTN CODE F31

DIRECTOR
 STRATEGIC SYSTEMS PROJECT OFFICE
 DEPARTMENT OF THE NAVY
 WASHINGTON, D.C. 20376
 01CY ATTN NSP-2141
 01CY ATTN NSSP-2722 FRED WIMBERLY

COMMANDER
 NAVAL SURFACE WEAPONS CENTER
 DAHLGREN LABORATORY
 DAHLGREN, VA 22448
 01CY ATTN CODE DF-14 R. BUTLER

OFFICER OF NAVAL RESEARCH
 ARLINGTON, VA 22217
 01CY ATTN CODE 465
 01CY ATTN CODE 461
 01CY ATTN CODE 402
 01CY ATTN CODE 420
 01CY ATTN CODE 421

COMMANDER
 AEROSPACE DEFENSE COMMAND/DC
 DEPARTMENT OF THE AIR FORCE
 ENT AFB, CO 80912
 01CY ATTN DC MR. LONG

COMMANDER
 AEROSPACE DEFENSE COMMAND/XPD
 DEPARTMENT OF THE AIR FORCE
 ENT AFB, CO 80912
 01CY ATTN XPDQQ
 01CY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY
 HANSCOM AFB, MA 01731
 01CY ATTN OPR HAROLD GARDNER
 01CY ATTN LKB
 KENNETH S.W. CHAMPION
 01CY ATTN OPR ALVA T. STAIR
 01CY ATTN PHD JURGEN BUCHAU
 01CY ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY
 KIRTLAND AFT, NM 87117
 01CY ATTN SUL
 01CY ATTN CA ARTHUR H. GUENTHER
 01CY ATTN NTYCE 1LT. G. KRAJEI

AFTAC
 PATRICK AFB, FL 32925
 01CY ATTN TF/MAJ WILEY
 01CY ATTN TN

AIR FORCE AVIONICS LABORATORY
 WRIGHT-PATTERSON AFB, OH 45433
 01CY ATTN AAD WADE HUNT
 01CY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF
 RESEARCH, DEVELOPMENT, & ACQ
 DEPARTMENT OF THE AIR FORCE
 WASHINGTON, D.C. 20330
 01CY ATTN AFRDQ

HEADQUARTERS
 ELECTRONIC SYSTEMS DIVISION
 DEPARTMENT OF THE AIR FORCE
 HANSCOM AFB, MA 01731
 01CY ATTN J. DEAS

HEADQUARTERS
 ELECTRONIC SYSTEMS DIVISION/YSEA
 DEPARTMENT OF THE AIR FORCE
 HANSCOM AFB, MA 01732
 01CY ATTN YSEA

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/DC
DEPARTMENT OF THE AIR FORCE
HANSOM AFB, MA 01731
01CY ATTN DCKC MAJ J.C. CLARK

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN NICD LIBRARY
01CY ATTN ETDP B. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
01CY ATTN DOC LIBRARY/TSLD
01CY ATTN OCSE V. COYNE

SAMSO/SZ
POST OFFICE BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
01CY ATTN SZJ

STRATEGIC AIR COMMAND/XPPS
OFFUTT AFB, NB 68113
01CY ATTN ADWATE MAJ BRUCE BAUER
01CY ATTN NRT
01CY ATTN DOK CHIEF SCIENTIST

SAMSO/SK
P.O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
01CY ATTN SKA (SPACE COMM SYSTEMS)
M. CLAVIN

SAMSO/MN
NORTON AFB, CA 92409
(MINUTEMAN)
01CY ATTN MNML

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSOM AFB, MA 01731
01CY ATTN EEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.C. 20545
01CY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR D. SHERWOOD

E688, INC.
LOS ALAMOS DIVISION
P.O. BOX 809
LOS ALAMOS, NM 85546
01CY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA
LAURENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR TECH INFO
DEPT
01CY ATTN DOC CON FOR L-389 R. OTT
01CY ATTN DOC CON FOR L-31 R. HAGER

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN DOC CON FOR J. VOLCOTT
01CY ATTN DOC CON FOR R.F. TASCHKE
01CY ATTN DOC CON FOR E. JONES
01CY ATTN DOC CON FOR J. MALIK
01CY ATTN DOC CON FOR R. JEFFRIES
01CY ATTN DOC CON FOR J. ZIMM
01CY ATTN DOC CON FOR P. KEATON
01CY ATTN DOC CON FOR D. WESTERVELT
01CY ATTN D. SAPPENFIELD

SANDIA LABORATORIES
P.O. BOX 5800
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR W. BROWN
01CY ATTN DOC CON FOR A.
THORNBROUGH
01CY ATTN DOC CON FOR T. WRIGHT
01CY ATTN DOC CON FOR D. DAHLGREN
01CY ATTN DOC CON FOR 3141
01CY ATTN DOC CON FOR SPACE PROJECT
DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR D. MURPHAY
01CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
01CY ATTN DOC CON DR. YO SONG

OTHER GOVERNMENT

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO
ADMIN
BOULDER, CO 80303
01CY ATTN A. JEAN (UNCLASS ONLY)
01CY ATTN W. UTLAUT
01CY ATTN D. CROMBIE
01CY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
01CY ATTN R. GRUBB
01CY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
01CY ATTN I. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOWER
01CY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 RUTLAND DRIVE
AUSTIN, TX 78758
01CY ATTN L. SLOAN
01CY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
01CY ATTN J. WORKMAN
01CY ATTN C. PRETTIE
01CY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. HALL
01CY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN D.B. COX
01CY ATTN J.P. GILMORE

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
01CY ATTN H. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, Calif 90401
01CY ATTN C.B. GABBARD
01CY ATTN R. LELEVIER

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
01CY ATTN J. ROBERTS
01CY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M.H. BORTNER
SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201
01CY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES
CO., INC.
HMES
COURT STREET
SYRACUSE, NY 13201
01CY ATTN G. MILLMAN

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T.N. DAVIS (UNCLASS ONLY)
01CY ATTN TECHNICAL LIBRARY
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATTN DICK STEINHOF

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820
(ALL CORRES ATTN DAN MCCLELLAND)
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
1801 NO. BEAUREGARD STREET
ALEXANDRIA, VA 22311
01CY ATTN J.M. AEIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
01CY ATTN JOEL BENGSTON

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
11011 TORREYANA ROAD
P.O. BOX 85154
SAN DIEGO, CA 92138
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP
P.O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED
STUDIES
816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIAC
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM McNAMARA
01CY ATTN B. GAMBILL

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC
P.O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60-12
01CY ATTN D.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC.
3251 HANOVER STREET
PALO ALTO, CA 94304
01CY ATTN MARTIN WALT DEPT 52-12
01CY ATTN W.L. IMHOFF DEPT 52-12
01CY ATTN RICHARD G. JOHNSON
DEPT 52-12
01CY ATTN J.B. CLADIS DEPT 52-12

MARTIN MARIETTA CORP
ORLANDO DIVISION
P.O. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFNER

M.I.T. LINCOLN LABORATORY
P.O. BOX 73
LEXINGTON, MA 02173
01CY ATTN DAVID M. TOWLE
01CY ATTN L. LOUGHLIN
01CY ATTN D. CLARK

MCDONNELL DOUGLAS CORPORATION
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
01CY ATTN N. HARRIS
01CY ATTN J. MOULE
01CY ATTN GEORGE MROZ
01CY ATTN W. OLSON
01CY ATTN R.W. HALPRIN
01CY ATTN TECHNICAL
LIBRARY SERVICES

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
01CY ATTN P. FISCHER
01CY ATTN W.F. CREVIER
01CY ATTN STEVEN L. GUTSCHE
01CY ATTN R. BOGUSCH
01CY ATTN R. HENDRICK
01CY ATTN RALPH KILB
01CY ATTN DAVE SOWLE
01CY ATTN F. FAJEN
01CY ATTN M. SCHEIBE
01CY ATTN CONRAD L. LONGMIRE
01CY ATTN B. WHITE
01CY ATTN R. STAGAT

MISSION RESEARCH CORP.
1720 RANDOLPH ROAD, S.E.
ALBUQUERQUE, NEW MEXICO 87106
01CY R. STELLINGWERF
01CY M. ALME
01CY L. WRIGHT

MITRE CORPORATION, THE
P.O. BOX 208
BEDFORD, MA 01730
01CY ATTN JOHN MORGANSTERN
01CY ATTN G. HARDING
01CY ATTN C.E. CALLAHAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, VA 22101
01CY ATTN W. HALL
01CY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
12340 SANTA MONICA BLVD.
LOS ANGELES, CA 90025
01CY ATTN E.C. FIELD, JR.

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(NO CLASS TO THIS ADDRESS)
01CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
4 ARROW DRIVE
WOBURN, MA 01801
01CY ATTN IRVING L. KOFSKY

PHYSICAL DYNAMICS, INC.
P.O. BOX 3027
BELLEVUE, WA 98009
01CY ATTN E.J. FREMOUW

PHYSICAL DYNAMICS, INC.
P.O. BOX 10367
OAKLAND, CA 94610
ATTN A. THOMSON

R & D ASSOCIATES
P.O. BOX 9695
MARINA DEL REY, CA 90291
01CY ATTN FORREST GILMORE
01CY ATTN WILLIAM B. WRIGHT, JR.
01CY ATTN WILLIAM J. KARZAS
01CY ATTN H. ORY
01CY ATTN C. MACDONALD
01CY ATTN R. TURCO
01CY ATTN L. DeRAND
01CY ATTN W. TSAI

RAND CORPORATION, THE
1700 MAIN STREET
SANTA MONICA, CA 90406
01CY ATTN CULLEN CRAIN
01CY ATTN ED BEDROZIAN

RAYTHEON CO.
528 BOSTON POST ROAD
SUDBURY, MA 01776
01CY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
330 WEST 42nd STREET
NEW YORK, NY 10036
01CY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
01CY ATTN LEWIS M. LINSON
01CY ATTN DANIEL A. HAMLIN
01CY ATTN E. FRIEMAN
01CY ATTN E.A. STRAKER
01CY ATTN CURTIS A. SMITH

SCIENCE APPLICATIONS, INC
1710 GOODRIDGE DR.
MCLEAN, VA 22102
01CY J. COCKAYNE
01CY E. HYMAN

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
01CY ATTN J. CASPER
01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN R. TSUNODA
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN J. VICKREY
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN R. LIVINGSTON
01CY ATTN V. GONZALES
01CY ATTN D. McDANIEL

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W.P. BOQUIST

TOYON RESEARCH CO.
P.O. Box 6890
SANTA BARBARA, CA 93111
01CY ATTN JOHN ISE, JR.
01CY ATTN JOEL GARBARINO

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R. K. PLEBUCH
01CY ATTN S. ALTSCHULER
01CY ATTN D. DEE
01CY ATTN D/ STOCKWELL
SNTF/1575

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MASS 01803
01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
01CY ATTN: N. ZABUSKY

END

FILMED

12-84

DTIC