Conjecture (Bandyopadhyay and L.(2022)). In the random graph process $(G_t^{(1,p_t)})_{t>0}$, which admits fixed number $(d \geq 0)$ of with replacement soft-core taboo-ing, let p_k denote the asymptotic proportion of k degree vertices. Then p_k can be bounded on both sides as

denote the asymptotic proportion of
$$k$$
 degree vertices. Then p_k can be bounded on both sides as
$$\frac{4\Gamma(k)}{2^{(k-1)d}\Gamma(k+3)} \leq p_k \leq \frac{2^{kd+1}\Gamma(k)\Gamma(2^{d+1}+1)}{\Gamma(2^{d+1}+k+1)}.$$