МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Інститут **КНІТ** Кафедра **ПЗ**

3BIT

До лабораторної роботи № 3 **На тему**: "*Метод сортування Шелла*" **3 дисципліни**: "Алгоритми та структури даних"

> **Лектор**: доцент кафедри ПЗ Коротеєва Т.О.

> > Виконав:

студент групи ПЗ-22 Коваленко Д.М.

Прийняв:

асистент кафедри $\Pi 3$ Франко А.В.

Тема. Метод сортування Шелла.

Мета. Вивчити алгоритм сортування Шелла. Здійснити програмну реалізацію алгоритму сортування Шелла. Дослідити швидкодію алгоритму сортування Шелла.

Лабораторне завдання

Створити віконний проект та написати програму, яка реалізує алгоритм сортування Шелла.

4. Задано матрицю дійсних чисел. Впорядкувати (переставити) її стовпці за зростанням значень їх перших елементів

Теоретичні відомості

Сортування Шелла (англійською «Shell Sort») — це алгоритм сортування, що ϵ узагальненням сортування включенням.

Алгоритм базується на двох тезах:

Сортування включенням ефективне для майже впорядкованих масивів. Сортування включенням неефективне, тому що переміщує елемент тільки на одну позицію за раз.

Тому сортування Шелла виконує декілька впорядкувань включенням, кожен раз порівнюючи і переставляючи елементи, що знаходяться на різній відстані один від одного. Сортування Шелла не є стабільним.

Сортування Шелла названо начесть автора — Дональда Шелла, який опублікував цей алгоритм у 1959 році.

На початку обираються m елементів: d_1, d_2, \ldots, d_m , причому $d1 > d2 > \ldots > d_m = 1$.

Потім виконується m впорядкувань методом включення, спочатку для елементів, що стоять через d_1 , потім для елементів через d_2 і так далі до $d_m = 1$.

Значення $d_1 = m/2$.

Ефективність досягається тим, що кожне наступне впорядкування вимагає меншої кількості перестановок, оскільки деякі елементи вже стали на свої місця.

Оскільки $d_m=1$, то на останньому кроці виконується звичайне впорядкування включенням всього масиву, а отже кінцевий масив гарантовано буде впорядкованим. Час роботи залежить від вибору значень елементів масиву d. Існує декілька підходів вибору цих значень:

Якщо d — впорядкований за спаданням набір чисел виду $(2i\ 1) < n, jn$, то час роботи є O(N1.5). Якщо d — впорядкований за спаданням набір чисел виду 2i*3j < n/2, i, jn, то час роботи є O(Nlog2N).

Покроковий опис роботи алгоритму сортування Шелла

Алгоритм S - сортування Шелла

- **S1** Задаємо величину проміжку = N/2;
- **S2** Заходимо у внутрішній цикл, призначаємо i = GAP, поки i < N;
- **S3** Присвоюємо значення тимчасовій змінній tmp = array[i];
- **S4** Заходиму у вкладений цикл, призначаємо j = i + 1, поки j < N;
- **S5** Виконуємо порівняння поки array[j-gap+1] > tmp інакше переставляємо елементи місцями $array[j] = array[j-gap+1], \ j=j-GAP;$
- **S6** Повторити S2;
- **S7** Повторюємо зменшення проміжку GAP = GAP/2, поки GAP > 0;

Хід роботи

Файл sort.rs

```
use crate::data::Data;
pub struct Sorted;
impl Sorted {
    pub fn sort(input: &mut Vec<Data>) -> Vec<Vec<Data>>> {
        let len = input.len();
        let gaps = GapSequence::new(len);
        let mut res = vec![input.clone()];
        for gap in gaps {
            for i in gap..len {
                let mut j = i;
                 while j >= gap \&\& input[j - gap] > input[j] 
                     input.swap(j - gap, j);
                     res.push(input.clone());
                     j = gap;
            }
        }
        r\,e\,s
    }
}
struct GapSequence {
    gap: usize,
impl GapSequence {
    fn new(n: usize) -> Self {
        Self \{ gap: n \}
    }
}
impl Iterator for GapSequence {
    type Item = usize;
    fn next(&mut self) -> Option<usize> {
        self.gap /= 2;
        if self.gap > 0 {
            Some (self.gap)
        } else {
            None
    }
}
```

Результат роботи

Рис. 1: Виконання програми

Висновок

Під час виконання лабораторної роботи я вивчив алгоритм сортування Шелла. Здійснив програмну реалізацію алгоритму сортування Шелла. Дослідив швидкодію алгоритму сортування Шелла.