物质的溶解性 1

记少不记多

1.1 K⁺, Na⁺, NH₄⁺, NO₃⁻, HCO₃⁻, HSO₃⁻, CH₃COO⁻ 对应的物质基本上都溶于水

例外: CoC₂O₄↓ (C₂O₄²⁻ 定向沉 CO²⁺)

补充: CO_3^{2-} 沉 Li^+, Ni^{2+} ;

补充: SO_4^{2-} 沉 Pb^{2+} ; $(CH_3COO)_2Pb$ 溶于水, 弱电解质。

补充: 为什么 $C_2O_4^{2-}$ 的盐大多易溶于水?

— 草酸的结构,羧基容易与金属阳离子形成配位键,故易溶于水;且构成五元环的螯合物,很稳定。

1.2 氯化物 Cl^- 除 Ag^+ , Cu^+ (亚铜离子) 之外,全部溶于水

氯化物三大性质:

- 1. 除了 IA, IIA, 绝大多数为共价化合物。(IIA 中的BeCl₂ 也是共价化合物)
- 2. 熔沸点低,易升华,易堵塞导管(解决方法为换粗导管)。
- 3. 易水解,需左右隔水。

 $SOCl_2 \xrightarrow{\#} H_2SO_3 + HCl$ $POCl_3 \xrightarrow{\#} H_3PO_4 + HCl$ $TiOCl_2 \xrightarrow{\#} TiOOH + HCl$

实验应用:

 $\operatorname{CuCl}_2 \xrightarrow{-\operatorname{\underline{a}}_{l} \operatorname{\underline{h}}} \operatorname{Cu}(\operatorname{OH})_2 \xrightarrow{\mathbb{R}^k} \operatorname{CuO}$ 氯化物易水解,所以在加热的过程中 CuCl_2 水解程度加大,最终变成 $\operatorname{Cu}(\operatorname{OH})_2$ 配制FeCl3,溶于浓盐酸(防水解),SOCl2 也能防水解 (除水)

 $\mathrm{MgCl_2} \cdot 6\,\mathrm{H_2O} \xrightarrow{\mathrm{fe}\,\,\mathrm{HCl}\,\,\mathrm{infl} = \mathrm{Imk} \,\mathrm{kh}\,\mathrm{kh}} \mathrm{MgCl_2}$

补充:

CaCl₂ 不能干燥 CH₃CH₂OH, NH₃, SO₃

$$CaCl_2 + 2NH_3 \longrightarrow CaCl_2 \cdot 2NH_3$$

 $CaCl_2 + 2CH_3CH_2OH \longrightarrow CaCl_2 \cdot 2CH_3CH_2OH$

 $CaCl_2 + SO_3 \longrightarrow CaSO_4 \downarrow + HCl$

1.3 SO_4^{2-} 除 $(Ba_2^+, Pb_2^+,)$ (不溶) 和 (Ag^+, Ca_2^+) (微溶) 之外都溶于水

补充: 微溶表示除不尽, 之后的流程需要再除一次, 但前面过滤的滤渣需考虑微溶。