Complexidade de Algoritmos: Limitações da Máquina, Modelo ou Ser Humano?

Jayme Luiz Szwarcfiter

INSTITUTO DE MATEMÁTICA, COPPE e NCE

Universidade Federal do Rio de Janeiro"

Universidade Federal do Amazonas

Março 2011

Motivação

- O que a máquina consegue realizar (em tempo hábil)
- O que o homem n\u00e3o consegue realizar

Conteúdo

- Um breve histórico da complexidade de algoritmos
- O conceito de tratabilidade
- Problemas tratáveis
- Problemas possivelmente intratáveis
- Problemas comprovadamente intratáveis
- O conceito de indecidibilidade

Algoritmos

A computa a entrada E

O resultado da computação é S

Um Primeiro Algoritmo

Tempo e Espaço

- Um algoritmo efetua computações.Qual o tempo total requerido ?
- Um algoritmo ocupa espaço (entrada, saída, formulação, cálculos, etc.) Qual o espaço total requirido?

Questões básicas \Longrightarrow complexidade

Avaliação de Tempo e Espaço

Ao longo do tempo, até mais recentemente:

- Avaliação de tempo:
 Moderadamente importante
 (ex. velocidade de convergência de séries)
- 2. Avaliação de espaço: Praticamente, sem importância

Século XX

- Conceito teórico de computabilidade
- Surgimento do computador
- A avaliação de tempo e espaço tornam-se fundamentais
- Nos primórdios: avaliação empírica
- Avaliação empírica: depende da entrada, computador, implementação, etc.

Avaliação Analítica

A, algoritmo E_1, \ldots, E_t , entradas de A t_i , número de passos efetuados por A, sob a entrada E_i

complexidade de pior caso = $\max\{t_i\}$ complexidade de melhor caso = $\min\{t_i\}$ complexidade de caso médio = $\sum p_i t_i$, onde p_i é a probabilidade de ocorrência de E_i

Aproximações

- Desconsiderar constantes aditivas ou multiplicativas
- Variável independente para medida da complexidade: tamanho da entrada
- Complexidade (pior caso) de um algoritmos A: Ordem de grandeza do número de passos efetuados por A, para computar a entrada mais desfavorável, de tamanho n

Notação O

Para expressar complexidades de pior caso: Notação *O*

$$2n^{3} + n^{2} \log n + 5 = O(n^{3})$$

$$2n \log n + 10^{125}n + 2 = O(n \log n)$$

$$2^{436} = O(1)$$

./

Soma e Multiplicação de Matrizes

Entrada:

Matrizes $A, B, n \times n$, inteiro $k, 0 \le k \le 2$

Computação:

 $k=0 \Longrightarrow \mathsf{nada} \mathsf{fazer}$

 $k=1 \Longrightarrow \mathsf{calcular}\ A+B$

 $k=2 \Longrightarrow \mathsf{calcular}\ A.B$

Complexidade:

Melhor caso: $O(n^2)$

Pior caso: $O(n^3)$

Exemplo: Torre de Hanói

Dados:

3 pilhas A, B, C de discos, num total de n discos

Computação:

No início, todos os discos estão na pilha A, em ordem decrescente de tamanho, de baixo para cima. Transferir todos os discos de A para B, um a um, com a restrição de que nenhum disco seja colocado sobre outro, de tamanho menor. A pilha C é usada como armazenamento temporário de discos.

Torre de Hanói

 A
 B
 C
 Início

 A
 B
 C
 Fim

 Não
 Não

Torre de Hanói - Algoritmo

./

Torre de Hanói - Formulação

```
\begin{array}{c} \operatorname{proc}\ HANOI(A,B,C,n) \\ HANOI(A,C,B,n-1) \\ \operatorname{mover}\ \operatorname{disco}\ \operatorname{de}\ A\ \operatorname{para}\ B \\ HANOI(C,B,A,n-1) \end{array}
```

Número de movimentos de discos: $2^n - 1$

Complexidade: $O(2^n)$

Generalização

Torre de Hanói com $p \ge 3$ pilhas

Dados:

p pilhas A_1, \ldots, A_p de discos, num total de n discos

Computação: No início, todos os discos estão na pilha A_1 , em ordem decrescente de tamanho, de baixo para cima. Transferir todos os discos de A_1 para A_2 , um a um, com a restrição de que nenhum disco seja colocado sobre outro, de tamanho menor. As pilhas A_3, \ldots, A_p são usadas como armazenamento temporário de discos.

Algoritmo

- Transferir k discos de A_1 para A_3 , usando p pilhas
- Transferir os n-k discos que restaram em A_1 para A_2 , usando p-1 pilhas
- Transferir os k discos de A_1 para A_2 , usando p pilhas

Perguntas

■ Quantos movimentos ? T(n,p) = # movimentos para transferir n discos usando p pilhas

Total:
$$2T(k, p) + T(n - k, p - 1)$$

- Provar minimalidade Problema em aberto!
- Determinar o valor de k minimizante Possivel

Polynomial × **Exponencial**

Algoritmo	Complexidade	1 seg	1 min	1 hor
A_1	n	1000	60000	3600000
A_2	$n \log n$	140	4893	200000
A_3	n^2	31	244	1897
A_4	n^3	10	39	153
A_5	2^n	9	15	21

Supor:

Complexidade = # u. t.; 1 u. t. = 1 ms

Ref: Aho, Hopcroft and Ullman, The Design and Analysis of Computer Algorithms, 1974

Tratabilidade

Algoritmo *tratável*: complexidade polinomial Algoritmo *intratável*: caso contrário

Problema *tratável*: admite algoritmo tratável Problema *intratável*: caso contrário

Multiplicação de matrizes: tratável

Torre de Hanói: intratável

As Classes \mathcal{P} e $\mathcal{N}P$

Problemas de decisão: Resposta SIM ou Não

 \mathcal{P} : Tempo polinomial para obter solução

 $\mathcal{N}P$: Tempo polinomial para certificar resposta SIM

./

$$\mathcal{P} = \mathcal{N}P$$
?

$$\mathcal{P} \subseteq \mathcal{N}P$$
.

Mas $\mathcal{P} = \mathcal{N}P$?

Isto é, certificar seria tão difícil quanto resolver ?

Conjectura: $P \neq \mathcal{N}P$

./

Porque $\mathcal{N}P$?

Existe um grande número de problemas que se situam nesta classe:

- Teoria de grafos
- Teoria de números
- Lógica
- Otimização combinatória
- etc

Grafos

Um grafo G(V,E) é um conjunto V de elementos, denominados *vértices* e um conjunto E de pares não ordenados de vértices, denominados *arestas*

Cliques

 $(v_i, v_j) \in E$: v_i, v_j adjacentes clique: subconjunto de vértices, 2 a 2 adjacentes

PROBLEMA: CLIQUE

DADOS: Grafo G, inteiro k

QUESTÃO: G possui clique de tamanho $\geq k$?

CERTIFICADO SIM: vertices da clique

CERTIFICADO NÃO: ?

Expressões Booleanas

Variável boolena: x, V ou F

 x, \overline{x} : literais

 $x \in V \iff \overline{x} \in F$

conjunção: \

disjunção: 🗸

Expressão booleana:

Ex.: $B = (x \wedge \overline{y}) \vee y$

 $x \in F, y \in V \Longrightarrow B \in V$

 $x \in F, y \in F \Longrightarrow B \in F$

B satisfatível: \exists atribuições V,F às variáveis que tornam B igual a V

Expressões Booleanas

Forma Normal Conjuntiva: Conjunção de disjunções

$$(x \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{y} \lor z)$$

SATISFATIBILIDADE

PROBLEMA: SATISFATIBILIDADE

DADOS: Expressão booleana B na forma normal

conjuntiva

QUESTÃO: B é satisfatível ?

 $B = (x \vee y \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (\overline{y} \vee z)$

RESPOSTA: SIM

CERTIFICADO: $x \in V$, $y \in F$, $z \in F$

 \Longrightarrow SATISFATIBILIDADE $\in \mathcal{N}P$

Redução Polinomial

 π_1, π_2 , problemas $\in \mathcal{N}P$ π_1 se reduz π_2 :

Dado π_1 , construir π_2 , t.q. solução π_2 implica solução π_1

REDUÇÃO POLINOMIAL:

construção polinomial de π_2 , e solução polinomial de π_1 , a partir da solução de π_2

NP-COMPLETO

 π é NP-completo:

- 1. $\pi \in \mathcal{N}P$
- 2. $\pi' \in \mathcal{N}P \Longrightarrow \pi'$ se reduz polinomialmente a π

Se 2 verdadeiro $\Longrightarrow \pi$ é *NP-difícil*

NP-COMPLETO

- lacksquare Os problemas mais difíceis de $\mathcal{N}P$
- Se um problema NP-completo $\in \mathcal{N}P \Longrightarrow$ todos pertencem
- todos problemas NP-completos são "equivalentes"
- Grande quantidade de problemas de diversas áreas
- lacksquare Questão $\mathcal{P} = \mathcal{N}P$

Prova de NP-completude

Para provar que π é NP-completo:

- Náo é necessário mostrar que todo problema $\pi' \in \mathcal{N}P$ se reduz polinomialmente a π
- Basta mostrar que um problema NP-completo se reduz polinomialmente a π

Primeiro problema NP-completo

Teorema (Cook 1971): SATISFATIBILIDADE é NP-completo.

Na mesma ocasião,

Teorema (Cook 1971): CLIQUE é NP-completo.

Ideía da prova

CLIQUE $\in \mathcal{N}P$, claro.

Redução polinomial de SATISFATIBILIDADE a CLIQUE:

B, expressão booleana dada na forma normal conjuntiva.

 C_1, \ldots, C_n , cláusula de B, onde C_i é uma disjunção de literais ℓ_{ip}

Ideía da prova

Construir grafo *G*:

Cada
$$\ell_{ip} \Longrightarrow$$
 vértice v_{ip}
 v_{ip}, v_{jq} adjacentes $\Longleftrightarrow i \neq j$ e $\ell_{ip} \neq \overline{\ell_{jq}}$

Definir k = n

Então: n variáveis podem assumir o valor V simultâneamente, em cláusulas distintas de B

existirem n vértices mutuamente adjacentes em G.

B satisfatível \iff G contém clique tamanho n.

Problemas NP-Completos: Exemplos

- Coloração de vértices
- Ciclo hamiltoniano
- Caixeiro Viajante
- Mochila
- Escalonamento de tarefas (2 processadores)
- Isomorfismo de subgrafos
- Coloração de arestas

São NP-completos?

- Escalonamento de tarefas de tempos unitários, com restrições de precedência (3 processadores)
- Isomorfismo de grafos

Além da NP-completude

- Problemas comprovadamente exponenciais
- Problemas comprovadamente duplamente, triplamente (ou mais) exponenciais

$$2^n, 2^{2^n}, 2^{2^{2^n}}, 2^{2^{\dots 2^n}}$$

Exemplo: Aritmética de Presburguer: 2^{2^n}

./

E mais além?

Problema indecidível: Não admite algoritmo

Problemas Indecidíveis **Problemas** Intratáveis **Problemas** Tratáveis

Ladrilhamento

Ladrilho: quadrado 1×1 , bordas coloridas

Ladrilhamento

PROBLEMA: LADRILHAMENTO

DADOS: Área X do plano, ladrilhos tipos 1, 2, 3

QUESTÃO: É possivel ladrilhar X com os ladrilhos dados, de modo que as bordas de ladrilhos vizinhos tenham sempre a mesma cor ?

Ladrilhos em linha

PROBLEMA: LADRILHOS EM LINHA

DADOS: Quadrados Q_1, Q_2

QUESTÃO: Existe uma linha de ladrilhos entre Q_1

 $e Q_2$?

LADRILHOS EM LINHA é indecidível

Correspondência de palavras

PROBLEMA: CORRESPONDÊNCIA DE PALAVRAS

DADOS: Sequências $X = X_1, \dots, X_n$ e $Y = Y_1, \dots, Y_n$ de palavras

QUESTÃO: \exists sequência finita índices, t.q. as concatenações em X e Y, segundo esses índices conduzem a palavras idênticas ?

Correspondência de palavras

RESPOSTA: SIM

Sequência 4, 3, 5

./

Término de algoritmos

algoritmo

```
k:= inteiro >0 enquanto k \neq 1 faça k:=k-2
```

O algoritmo acima termina?

RESPOSTA: NÃO necessariamente

algoritmo

```
k:= inteiro >0 enquanto k \neq 1 faça se k par então k:=k/2 senão k:=3k+1
```

O algoritmo acima termina? RESPOSTA: ???

O problema da Parada

PROBLEMA: PARADA

DADOS: Algoritmo A e um conjunto de dados D

para A

QUESTÃO: A termina com a entrada D ?

O problema PARADA é indecidível!

OBRIGADO PELA ATENÇÃO