/home/nicole/Jupyter/JG3/Data/0.5a0/M/3

```
;ls
In [4]:
        Correlation.G5.M.C*.txt
        Correlation.G5.M.J.txt
        Correlation.G5.M.JC*.txt
        Correlation.G5.M.JC.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        MarNF.txt
        MarNFCenter.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.M.C*.txt
        Regression.G5.M.J.txt
        Regression.G5.M.JC*.txt
        Regression.G5.M.JC.txt
        all.ID
        alphaEstimatesJ
        alphaEstimatesJC
        alphaEstimatesLeggaraC
        alphaEstimatesLeggaraJC
        epsiEstimatesJ
        epsiEstimatesJC
        epsiEstimatesLeggaraC
        epsiEstimatesLeggaraJC
        genotype.ID
        meanOfSNPMAll
        meanOfSNPMG0
        meanOfSNPMG1
        meanOfSNPMG2
        meanOfSNPMG3
        meanOfSNPMG4
        meanOfSNPMG5
        noGenotype.ID
        sim.bv
        sim.phenotype
```

```
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
```

```
;awk '{print $1}' MarNF.txt | sort -b > genotype.ID
         ;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]:
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]:
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
In [13]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [17]:
In [18]:
         ; join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]:
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [25]:
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]: |;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNF.txt",numSSBayes)
         M Mats = make MMats(df,A Mats,ped);
                                                                                 # with
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X_Mats, W_Mats = make_XWMats(Z_Mats,M_Mats,numSSBayes)
                                                                                 # no
         nothing
In [31]:
         vRes
                = 0.328
                = 0.328
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter,
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         3468.520300 seconds (23.02 G allocations: 723.199 GB, 7.23% gc time)
In [32]: betaHat
Out[32]: 1-element Array{Float64,1}:
          -0.189868
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
          -0.0203069
          -0.107635
           0.0850135
          -0.0840769
          -0.00242359
          -0.0697612
           0.121576
          -0.0642908
           0.101607
          -0.0074792
            0.0139828
           0.11654
           0.0617421
           0.0828155
          -0.06227
          -0.0332665
           0.255038
            0.0421252
            0.130088
           0.00979602
           0.0200047
          -0.00419194
          -0.0585183
            0.00656032
          -0.0313194
In [34]: writedlm("alphaEstimatesN",alphaHat)
```

```
In [35]: epsiHat
Out[35]: 45891-element Array{Float64,1}:
          -0.567073
          -0.0897098
           0.0550661
           0.316733
          -0.462957
          -0.237009
           0.128624
          -0.0992522
           0.489034
          -0.0783103
          -0.108002
          -0.349352
          -0.231298
          -0.111714
           0.146353
          -0.114874
           0.419276
          -0.483406
           0.353926
          -0.394515
           0.0810765
           0.132826
           0.105357
          -0.148476
          -0.711699
In [36]: writedlm("epsiEstimatesN",epsiHat)
In [37]: using DataFrames
         df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
In [38]:
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
              j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.892
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.986
Out[39]: 0.892092480373127
```

```
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 1.1076799378635123
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.838
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.040
Out[41]: 0.8383283283091536
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 1.957002765937009
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         req3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.855
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.930
Out[43]: 0.8548928320666973
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: 0.9116823621542439
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.583
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.600
Out[45]: 0.5829738593160088
```

```
In [46]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: 0.0955057010864317
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation =
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.948
Out[47]: 0.7556768570775014
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: 0.5514942110054106
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ep
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.760
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.021
Out[49]: 0.7598742883345794
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: 0.9865348993723871
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.772
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.067
Out[51]: 0.7718241754538169
```

```
In [52]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 1.341094379505558
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.084
Out[53]: 0.7640653782234605
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 1.6833527188194353
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.817
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.990
Out[55]: 0.8168796111703424
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 1.9880977173918515
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.4366035063864409
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          0.551494
          0.986535
          1.34109
          1.68335
          1.9881
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          -0.0371345
           0.989663
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.21603065247257427
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.31708352413037566
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.21379748068169802
In [63]: b=Cov/VarGEBV
Out[63]: 0.9896627086697348
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.838
         SSBRJC from Gibbs - G0.Genotype.ID: regression of TBV on GEBV = 1.004
Out[64]: 0.8383213780706645
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 1.0825185563737767
```

```
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.813
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.886
Out[66]: 0.8126666680423579
In [67]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[67]: 1.488618404828679
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.814
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.934
Out[68]: 0.8143240801556931
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 1.7083112664407742
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", corll
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.784
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.868
Out[70]: 0.7839785319726739
```

```
In [71]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 1.9995430477810587
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.764
         SSBRJC from Gibbs - G4.Genotype.ID: regression of TBV on GEBV = 0.890
Out[72]: 0.7637697643679084
In [73]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: 2.262224496067046
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.817
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 0.990
Out[74]: 0.8168796111703424
In [75]: writedlm("Correlation.G5.M.N.txt",cor13)
In [76]: | writedlm("Regression.G5.M.N.txt",reg13)
In [77]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[77]: 1.9304116249999999
In [78]: | GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[78]: 1.9880977173918515
```

```
In [79]: | IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.562
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.593
Out[79]: 0.5620510606969302
In [80]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[80]: 0.07019767915598696
In [81]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.736
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 0.952
Out[81]: 0.7360774135068686
In [82]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[82]: 0.5274653855227627
In [83]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.744
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.020
Out[83]: 0.7441551419202149
In [84]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[84]: 0.9680278130373002
```

```
In [85]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.758
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.060
Out[85]: 0.7576159525786411
In [86]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[86]: 1.3242110803190068
In [87]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.751
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 1.071
Out[87]: 0.7505515187048153
In [88]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[88]: 1.668509852736163
In [89]: numSSBayes
Out[89]: SSBR.NumSSBayes(54891,45891,9000,40000,39000,1000,150)
```