

Customer No-Show Prediction

Liangzhu Chen, Hsiao Wei Liu, Michael Liu, Yanmin Luo Yanke Sun, Xinyu Wang, Jason Xu, Jiaxin Xu, Aixin Zhou

Agenda

- 🗀 Team
- Executive Summary
- Project Background
- □ Data Summary
- Analytics
- Insights and Recommendations
- Q&A

Team

Hsiao-Wei Liu hl3663@columbia.edu Data Analyst May 2024

Jiaxin Xu jx2530@columbia.edu Business Analyst May 2024

Jason Xu rx2223@columbia.edu Business Analyst May 2024

Michael Liu sl5300@columbia.edu Financial Analyst May 2024

Liangzhu Chen
lc3694@columbia.edu
Financial analyst
Dec 2023

Yanmin Luo yl5292@columbia.edu Marketing Analyst May 2024

Yanke Sun

ys3686@columbia.edu

Data analyst

May 2024

Xinyu Wang xw2904@columbia.edu Data Analyst Dec 2023

Aixin Zhou az2767@columbia.edu Data Analyst May 2024

Executive Summary

Project Goal

Develop a customer maintenance
appointment no-show rate predictive
solution that helps minimize customer
no-show rate

Analytical Approach

Random forest model trained on 80% of 100,000 appointment records that underwent stratified sampling

Deliverables

- 1. Model to be integrated on Ops Platform
- 2. Data visualizations that yield business insights

Insights and recommendations

- 1. Review resource allocation
- 2. Customer engagement

Project Background

Challenge

• Ryder is trying to **minimize customer no-shows** in maintenance appointments.

Proposed Solutions

 We aim to develop a predictive model that forecasts customer show-up rates for 21 time slots over a week, covering 3 daily shifts.

Expected Benefits

- 1. **Improve** Ryder's **current operation efficiency** by suggesting scheduling time slots with the highest likelihood of success.
- 2. Increase customer satisfaction by reducing the number of calls with customers to schedule maintenance events.
- 3. The **predictive model** can be further developed to **integrate with Ryder's auto scheduling platform** to suggest **optimal** maintenance time slots for individual vehicle/customer.
- 4. Reduce administrative cost associated with current scheduling process once model is integrated into auto scheduling.

Data Summary

Analytics

- Feature Engineering
- Random Forest Model
- Feature Importance Analysis

Feature Engineering

Goal: Convert raw data into model inputs

not used as

final model

inputs

1. Gather Data

Combine initial datasets from 2018 to 2020

- **3. Handle Missing Values (Dropped)**Datetimes, Priority ID, PM type
- 4. Convert Data Types (E.g. integer to string)
- 5. Create Additional Datetime Features
 Weekday
 Time period during the day

2. Features Selection

Feature Engineering (Cont.)

6. One hot encoding

PM_TYPE		PM_TYPE_BPM	PM_TYPE_APU	PM_TYPE_LOAD
Row 1	BPM	1	0	0
Row 2	APU	0	1	0
Row 3	LOAD	0	0	1

Assign 1

7. Labeling ground truth

If appointment and check-in:

- Dates are the same
- Weekdays are the same
- Time period are the same

Else (not the same) — Assign 0

Feature Engineering (Cont.)

8. Stratified sampling

All Data (~1,400,000 obs)

All Appointment Data (~250,000 obs)

Show Up (50,000 obs)

No Show (50,000 obs)

Final input data

X (Independent variables)

- Customer info (dummy variables)
- Appointment weekday and time period (dummy variables)

Y (Dependent variable)

- Column "SHOW_UP"
- Stored as 1 and 0 (1,0,0, 1, ...)

Model - Random Forest

Hyperparameter Tuning

- \square *n_estimators* \rightarrow number of decision trees
- max_depth → maximum levels within each tree
- min_samples_split → minimum data size
 for each split between levels

Random walk to get the best **AUC**

Train and Test

- \Box Train \rightarrow 80,000 obs
- ightharpoonup Test ightharpoonup 20,000 obs
- Drop ID and all attributes associated with check-in prior to fitting

Evaluation of Model

1. Train

- AUC: 88.28% Accuracy: 80%
- Non show-up
 - Precision: 85%
 - Recall: 73%
- Show-up
 - Precision: 77%
 - Recall: 87%

2. Test

- **AUC: 85.02%** Accuracy: 78%
- Non show-up
 - Precision: 82%
 - Recall: 75%
- Show-up
 - Precision: 71%
 - Recall: 85%

Feature Importance Analysis

Appointment Priority IDs 5 (hard schedule) and 6 (maintenance with no vehicle substitution) are the most important features, taking up about half of the model's total feature importance.

Nighttime appointments have a stronger influence in shaping the model's outcome than morning / afternoon.

Apart from the top 10 features, all other features (64 in total) represent about ¼ of the total feature importance.

Business Use Case

Predict by Segments

To gain insights for a specific customer segment, we first use the model to predict the show-up probability for all appointments. Then we filter these predictions based on selected criteria and calculate the average show-up rate for each time slot.

Alternatively, we could predict binary outcomes (show-ups and no-shows) for each case and compute the proportion of show-ups in each time slot.

Predict by Customer / Vehicle ID Combination

To predict individual customer/vehicle show-up rates, we'll first select specific customer/vehicle ID combinations from all appointment data.

Next, we'll remove the appointment date time features and create 21 time slots, duplicating each customer's remaining features for these slots.

Finally, we'll use the same prediction mechanism to estimate the show-up rate for each customer across these time slots.

Implementation Recommendation

Output

Predicted show-up probabilities of each customer/vehicle combination in 21 time slots

Days	Morning	Afternoon	Night
	Piorining	Ancinoon	
Monday	P1	P2	P3
Tuesday	P4	P5	P6
Wednesday	P7	P8	P9
Thursday	P10	P11	P12
Friday	P13	P14	P15
Saturday	P16	P17	P18
Sunday	P19	P20	P21

The scheduling platform can automatically assign user appointments to time slots with predicted show-up rates above a set threshold.

Business Insights & Recommendations

- Industries
- Appointment Priority IDs
- Vehicle Types
- Regions

Industries

There's no significant difference across industries.

All the industries has the Higher show-up rates on afternoons and Lower show-up rates on nights.

The average show-up rate:

- Morning: 39%
- Afternoon: 48%
- Night: 18%

Specific Example for Food & Beverage Industry

On weekdays, the industry is most likely to have the highest show-up rate in the afternoon.

On weekends, the industry is most likely to have the highest show-up rate on Saturday mornings.

Appointment Priority ID

Customers with appointment priority ID 5, who have hard schedule appointments, have the highest overall probability of showing up on weekday mornings and afternoons out of all priorities.

Vehicle Type - Tractor, Trailer, and Truck

All three vehicle types show that

Saturday morning has the highest probability of showing up out of all morning appointments.

Similar with previous insights, the complete heatmap (not pictured) of all vehicle types show higher overall likelihood of showing up on weekday afternoons and lower likelihood at night.

Regions

Across all regions, customers are more likely to show up in the **afternoon** and less likely to show up at night.

In Central and Southeastern regions, the highest show-up rate on Saturday is in the morning.

Recommendations

1. Review Resource Allocation

Review resource allocation to match high probability timeslots.

2. Customer Engagement

- Conduct surveys and feedback sessions to gain insights into why customers prefer certain times or miss appointments, especially during low show-up periods.
- Utilize personalized communication strategies (emails, SMS) to remind customers of their appointments, especially for those scheduled in lower probability time slots like nighttime.
- Provide incentives for customers to utilize lower probability timeslots.

Special Thanks to Our Mentors!

Lenniet M. Coello

We couldn't have done it without you 🤎

Prof. Josue Martinez

TA Elijah Hall

A&Q