Index

accuracy, 415 activation, 400 activation function, 401	backpropagation, 429 backward stepwise selection, 87, 234–235
additive, 11, 94–98, 110–111 additivity, 305, 306 adjusted R^2 , 87, 231, 232, 236–238 Advertising data set, 15, 16, 19, 69, 71–73, 77, 78, 80, 82, 83, 85, 87–90, 95, 96, 109–111	bag-of- <i>n</i> -grams, 415 bag-of-words, 414 bagging, 11, 24, 331, 343–346, 354, 360–361 BART, 343, 350, 353, 354, 362–363 baseline, 93, 145, 161 basis function, 293–294, 296
agglomerative clustering, 525 Akaike information criterion, 87,	Bayes
© Springer Nature Switzerland AG 2023	597

 $[\]ensuremath{\mathbb{C}}$ Springer Nature Switzerland AG 2023

trade-off, 31-34, 38, 111-112,	bottom-up, 525
157, 159, 163, 164, 242,	hierarchical, 521, 525–535
254, 263, 266, 301, 336,	K-means, 11, 521–524
376, 385	Cochran-Mantel-Haenszel test, 475
bidirectional, 425	coefficient, 71
Bikeshare data set, 12, 167-172	College data set, $12, 65, 286, 328$
binary, 27, 138	collinearity, 106–110
biplot, 507, 508	concatenation, 41
Bonferroni method, 575–577, 585	conditional probability, 35
Boolean, 53, 176	confidence interval, 75–76, 90, 110,
boosting, 11, 24, 331, 343, 347–	292
350, 354, 361–362	confounding, 144
bootstrap, 11, 201, 212–214, 343	confusion matrix, 153, 176
Boston data set, 12, 67, 117, 122,	continuous, 2
133, 199, 227, 287, 327,	contour, 246
364, 556	contour plot, 50
bottom-up clustering, 525	contrast, 94
boxplot, 62	convenience function, 53
BrainCancer data set, 12, 472-	convolution filter, 407
474, 476, 482	convolution layer, 407
branch, 333	convolutional neural network, 406–
burn-in, 352	413
C-index, 487	correlation, 79, 82–83, 530
Caravan data set, 12, 184, 366	count data, 167, 170
Carseats data set, 12, 126, 130,	Cox's proportional hazards model,
364	480, 483–486
categorical, 2, 27	C_p , 87, 231, 232, 236–238
censored data, $469-502$	Credit data set, 12, 91, 92, 94,
censoring	97, 98, 106–109
independent, 471	cross-entropy, 405
interval, 471	cross-validation, 11 , 31 , 34 , 201 –
left, 471	211, 231, 252, 270
mechanism, 471	k-fold, 206–209
non-informative, 471	leave-one-out, $204-206$
right, 471	curse of dimensionality, 115, 193,
time, 470	266
chain rule, 429	
channel, 407	1
CIFAR100 data set, 406, 409–411,	data augmentation, 411
448, 449	data frame, 55
classification, 2, 11, 27, 34–39, 135–	Data sets
199, 367–382	Advertising, 15, 16, 19, 69,
error rate, 338	71–73, 77, 78, 80, 82, 83,
tree, 337–341, 355–358	85, 87–90, 95, 96, 109–
classifier, 135	111
cluster analysis, 25–26	Auto, 12, 66, 98–101, 129, 197,
clustering, 4, 25–26, 520–535	202–207, 327, 398
agglomerative, 525	${\tt Bikeshare,\ 12,\ 167-172}$

Boston, 12, 67, 117, 122, 133, 199, 227, 287, 327, 364,	Default data set, 12, 136–139, 141– 144, 152–156, 160, 161,
556 BrainCancer, 12, 472-474, 476,	225, 226, 466 degrees of freedom, 30, 266, 295,
482 Caravan, 12, 184, 366 Carseats, 12, 126, 130, 364 CIFAR100, 406, 409-411, 448, 449 College, 12, 65, 286, 328 Credit, 12, 91, 92, 94, 97, 98, 106-109 Default, 12, 136-139, 141-144, 152-156, 160, 161, 225, 226, 466 Fund, 12, 567-570, 572, 575, 576, 585, 588, 589 Heart, 339, 340, 344-347, 352,	296, 301 dendrogram, 521, 525–530 density function, 146 dependent variable, 15 derivative, 296, 300 detector layer, 410 deviance, 232 dictionary, 66 dimension reduction, 230, 253–262 discriminant function, 149 discriminant method, 146–161 dissimilarity, 530–532 distance correlation-based, 530–532, 554
353, 382, 383 Hitters, 12, 332, 333, 336,	Euclidean, 509, 522, 523, 529– 532 double descent, 431–435
338, 339, 366, 425, 426, 437, 446	double-exponential distribution, 251 dropout, 406, 431
IMDb, 413, 415, 416, 418, 420, 437, 458, 467	dummy variable, 91–94, 138, 142, 292
Income, 16-18, 21-23 Khan, 12, 579-581, 583, 590, 593 MNIST, 402-404, 406, 430, 431, 441, 444, 445, 448 NCI60, 4, 5, 12, 546, 548-550 NYSE, 12, 422-424, 466, 467 OJ, 12, 365, 398 Portfolio, 12 Publication, 12, 482-487 Smarket, 2, 3, 12, 173, 184, 196 USArrests, 12, 507, 508, 510, 512, 513, 515, 516, 518, 519	early stopping, 430 effective degrees of freedom, 301 eigen decomposition, 506, 516 elbow, 548 embedding, 418 embedding layer, 419 ensemble, 343–354 entropy, 337–339, 363 epochs, 430 error irreducible, 17, 30 rate, 34 reducible, 17 term, 16 Euclidean distance, 509, 522, 523,
Wage, 1, 2, 8, 9, 12, 290, 291, 293, 295, 297-300, 302-306, 309, 315, 327 Weekly, 12, 196, 226	529–532, 554 event time, 470 exception, 45 expected value, 18
lata type, 42 lecision function, 387	exploratory data analysis, 504 exponential, 173 exponential family, 173
lecision tree, 11, 331–342 leep learning, 399	F-statistic, 84

factor, 92	heteroscedasticity, 103, 168
factorial, 170	hidden layer, 400
failure time, 470	hidden units, 400
false	hierarchical clustering, 525–530
discovery proportion, 155, 573	dendrogram, $525-528$
discovery rate, 558, 573–577,	inversion, 529
579–582	linkage, 529–530
negative, 155, 562	hierarchical principle, 96
positive, 155, 562, 563	high-dimensional, 86, 234, 263
positive, 155, 362, 365 positive rate, 155, 156, 382	
family-wise error rate, 565–573, 577	hinge loss, 385
	Hitters data set, 12, 332, 333,
feature, 15	336, 338, 339, 366, 425,
feature map, 406	426, 437, 446
feature selection, 230	hold-out set, 202
featurize, 414	Holm's method, 568, 576, 585
feed-forward neural network, 400	hypergeometric distribution, 501
figure, 48	hyperparameter, 187
fit, 21	hyperplane, 367–372
fitted value, 101	hypothesis test, 76–77, 84, 103,
flattening, 424	558-583
flexible, 21	
floating point, 43	IMDb data set, 413, 415, 416, 418,
forward stepwise selection, 86, 87,	420, 437, 458, 467
233-234, 268	imputation, 515
function, 40	Income data set, 16–18, 21–23
Fund data set, $12, 567-570, 572,$	increment, 60
575, 576, 585, 588, 589	independent variable, 15
	indexable, 186
Gamma, 173	indicator function, 292
Gaussian (normal) distribution, 146,	inference, 17, 18
147, 150, 172, 561	inner product, 379, 380
generalized additive model, 5, 24,	input layer, 400
162, 289, 290, 305–309,	input variable, 15
319	integral, 301
generalized linear model, 5, 135,	interaction, 70, 89, 95–98, 110–
$167-174,\ 217$	111, 308
generative model, 146–161	
Gini index, $337-339$, 345 , 346 , 363	intercept, 71, 72
global minimum, 427	interpolate, 432
gradient, 428	interpretability, 229
gradient descent, 427	inversion, 529
	irreducible error, 17, 36, 90, 110
Harrell's concordance index, 487	iterator, 312
hazard function, 476–478	
baseline, 478	joint distribution, 158
hazard rate, 476	
Heart data set, 339, 340, 344-347,	K-means clustering, 11, 521–524
352, 353, 382, 383	K-nearest neighbors, 135, 164–167
heatmap, 50	classifier, 11, 36–37
helper, 311	regression, $111-115$

Kaplan–Meier survival curve, 472 –	local regression, 290
474, 483	$\log \text{ odds}, 145$
kernel, 379–382, 384, 394	log-rank test, 474–476, 483
linear, 380	logistic function, 139
non-linear, 377–382	logistic regression, 5, 11, 25, 135,
polynomial, 380, 382	138-144, 164-167, 172-
radial, 381–383, 390	173, 308–309, 377, 384–
kernel density estimator, 159	385
keyword, 46	multinomial, 145, 163
Khan data set, 12, 579-581, 583,	multiple, 142–144
590, 593	logit, 140
knot, 290, 294, 296–299	loss function, 300, 385
	low-dimensional, 262
ℓ_1 norm, 244	LSTM RNN, 420
ℓ_2 norm, 242	
lag, 422	main effects, 96
Laplace distribution, 251	majority vote, 344
lasso, 11, 24, 244–251, 265–266,	Mallow's C_p , 87, 231, 232, 236–
336, 385, 484	238
leaf, 333, 526	Mantel-Haenszel test, 475
learning rate, 429	margin, 370, 385
least squares, 5, 21, 71–72, 140,	marginal distribution, 158
141, 229	Markov chain Monte Carlo, 353
line, 73	matrix completion, 515
weighted, 103	matrix multiplication, 10
level, 92	maximal margin
leverage, 104–106	classifier, 367–372
likelihood function, 141	hyperplane, 370
linear, 2, 69–115	maximum likelihood, 139–141, 143,
linear combination, 128, 230, 253,	170
505	mean squared error, 28
linear discriminant analysis, 5, 11,	mesh, 53
135, 138, 147–155, 164–	method, 43
167, 377, 382	minibatch, 429
linear model 20, 60, 115	misclassification error, 35
linear model, 20, 69–115	missing at random, 515
linear regression, 5, 11, 69–115,	missing data, 56, 515–520
172–173	mixed selection, 87
multiple, 80–90	MNIST data set, 402–404, 406, 430,
simple, 70–80	431, 441, 444, 445, 448
link function, 172, 173	model assessment, 201
linkage, 529–530, 548	model selection, 201
average, 529–530	module, 42
centroid, 529–530	multicollinearity, 108, 266
complete, 526, 529–530	multinomial logistic regression, 145
single, 529–530	163
list, 41	multiple testing, 557–583
list comprehension, 123	multi-task learning, 403
local minimum, 427	multivariate Gaussian, 150

multivariate normal, 150	overfitting, 21, 23, 25, 30–31, 88,
naive Bayes, 135, 158–161, 164–	152, 233, 371
167	
namespace, 116	p-value, 77, 82, 560–562, 578–579
natural spline, 297, 298, 301, 317	adjusted, 586
	package, 42
NCI60 data set, 4, 5, 12, 546, 548– 550	parameter, 71
	parametric, 20–22, 111–115
negative binomial, 173	partial least squares, 254, 260–262,
negative predictive value, 155, 156	282
neural network, 5, 399	partial likelihood, 480
node	path algorithm, 249
internal, 333	permutation, 578
purity, 337–339	permutation approach, 577–582
terminal, 333	perpendicular, 257
noise, 21, 252	Poisson distribution, 169, 172
non-linear, 2, 11, 289–329	Poisson regression, 135, 167–173
decision boundary, 377–382	polynomial
kernel, 377–382	kernel, 380, 382
non-parametric, 20, 22–23, 111–	regression, 98–99, 289–292, 294–
115, 193	295
normal (Gaussian) distribution, 146,	pooling, 410
147, 150, 172, 476, 561	population regression line, 73
notebook, 40	Portfolio data set, 12
null, 152	positive predictive value, 155, 156
distribution, 561, 578	
hypothesis, 76, 559	posterior 251
model, 87, 231, 245	distribution, 251
null rate, 186	mode, 251
NYSE data set, 12, 422-424, 466,	probability, 147
467	power, 108, 155, 563
	precision, 155
Occam's razor, 426	prediction, 17
odds, 140, 145, 195	interval, 90, 110
OJ data set, 12, 365, 398	predictor, 15
one-hot encoding, 92, 126, 403	principal components, 505
one-standard-error rule, 240	analysis, $11, 254-260, 504-515$
one-versus-all, 384	loading vector, 505, 506
one-versus-one, 384	missing values, $515-520$
one-versus-rest, 384	proportion of variance explained
optimal separating hyperplane, 370	510–515, 547
optimism of training error, 30	regression, 11, 254–260, 280–
ordered categorical variable, 315	282, 504, 515
orthogonal, 257, 506	score vector, 506
basis, 125	scree plot, $514-515$
out-of-bag, 345	prior
outlier, 103–104	distribution, 251
output variable, 15	probability, 146
over-parametrized, 465	probability density function, 477,
overdispersion, 172	478
*	

projection, 230	drop(), 179
proportional hazards assumption,	dropna(), 56, 268, 461
478	DTC(), see DecisionTreeClassifier()
pruning, 336	<pre>DTR(), see DecisionTreeRegressor()</pre>
cost complexity, 336	dtype, 43
weakest link, 336	ElasticNetCV(), 279
Publication data set, 12, 482-	enumerate(), 217
487	export_text(), 356
Python objects and functions	export_tree(), 365
%%capture, 458	fit(), 118, 181, 218
iloc[], 58	<pre>fit_transform(), 119</pre>
loc[], 57	for, 59
AgglomerativeClustering(),	GaussianNB(), 182
543	<pre>GBR(), see GradientBoosting-</pre>
anova(), 313	Regressor()
anova_lm(), 125, 129, 312,	get_dummies(), 461
313	get_influence(), 121
axhline(), 122, 551	get_prediction(), 120, 314
axline(), 121, 129, 329	get_rdataset(), 535
BART(), 362	glm(), 313
biplot, 537	glob(), 437
boot_SE(), 223	<pre>GradientBoostingClassifier(),</pre>
boxplot(), 62, 66	361
bs(), 315, 327	<pre>GradientBoostingRegressor(),</pre>
BSpline(), 315	354, 361
clone(), 222	GridSearchCV(), 276
columns.drop(), 122	groupby(), 490
compute_linkage(), 544	hist(), 62
confusion_table(), 176	iloc[], 58, 59
contour(), 50	import, 42
corr(), 129, 174	imshow(), 50, 449
<pre>cost_complexity_pruning_path(),</pre>	ISLP.bart, 362
357	ISLP.cluster, 544
CoxPHFitter(), 491	json,437
$cross_val_predict(), \frac{270}{2}$	$\mathtt{KaplanMeierFitter(), 502}$
$cross_validate(), 218, 219,$	keras, 437
226	KFold(),219
cumsum(), 539	KMeans(), 542, 543
$\operatorname{cut_tree}(), 545$	Kmeans(), 542
data.frame(), 227	KNeighborsClassifier(), 183
Dataset, 440	lambda, 58
$decision_function(), 392$	LDA(), see LinearDiscriminant-
<pre>DecisionTreeClassifier(),</pre>	Analysis()
354, 355	legend(), 132
${\tt DecisionTreeRegressor(), 354}$	lifelines, 490
$\mathtt{def},121$	LinearDiscriminantAnalysis(),
dendrogram(), 544	174, 179
describe(), 62, 66	LinearGAM(), 317
dir(), 116	LinearRegression(), 280

load_data(), 117	np.squeeze(), 457
loc[], 58, 59, 177	np.std(), 47
$log_loss(), 355$	np.sum(), 43
LogisticGAM(), 323	np.var(), 47
logrank_test(), 490	np.where(), 180
lowess(), 324	ns(), 317
matplotlib, 48	numpy, 42, 555
$\max(), 66$	os.chdir(), 55
mean(), 48	outer(), 219
median(), 197	$pairwise_distances(), 554$
$\min(), 66$	$pairwise_tukeyhsd(), 587$
MNIST(), 444	pandas, 55
ModelSpec(), 116-118, 122,	params, 175
124, 267	partial(), 222, 269
MS(), see ModelSpec()	PCA(), 280, 537, 540, 554
<pre>mult_test(), see multipletests()</pre>	pd, see pandas
multipletests(), 586	pd.crosstab(), 555
multipletests(), 583, 589	pd.cut(), 315
<pre>multivariate_logrank_test(),</pre>	pd.get_dummies(), 314
496	<pre>pd.plotting.scatter_matrix(),</pre>
NaturalSpline(), 317, 319	62
ndim, 42	pd.qcut(), 314, 315
nn.RNN(), 461	$pd.read_csv(), 55, 556$
normal(), 132, 286, 555	pd.Series(), 62
np, see numpy	Pipeline(), 275
np.all(), 54, 180	plot(), 48, 61, 356, 490
np.allclose(), 190	plot.scatter(), 120
np.any(), 54	plot_gam(), 321
np.arange(), 51	plot_svm(), 398
np.argmax(), 122	PLSRegression(), 282
np.array(), 42	poly(), 125, 313, 327
np.concatenate(), 133	predict(), 175, 178, 181, 216,
np.corrcoef(), 46, 554	218, 323, 358
np.empty(), 224	<pre>predict_survival_function(),</pre>
np.isnan(), 268	493
np.ix_(), 53	print(), 40
np.linalg.svd(), 539	pvalues, 175
np.linspace(), 50	pygam, 307, 317
np.logspace(), 318	pytorch_lightning, 435
np.mean(), 47, 176	QDA(), see QuadraticDiscriminant-
np.nan, 60	Analysis()
np.nanmean(), 541	QuadraticDiscriminantAnalysis()
np.percentile(), 228	174, 181
np.power(), 219	random(), 555
np.random.choice(), 553	RandomForestRegressor(), 354,
np.random.default_rng(), 46,	360
47	read_image(), 436
np.random.normal(), 45	reindex(), 461
np.sqrt(), 45	reshape(), 43

return, 198	${\tt StandardScaler(), 185, 438,}$
RF(), see RandomForestRegressor() 537, 555
<pre>rng, see np.random.default_rng()</pre>	$\mathtt{statsmodels},116,173$
rng.choice(), 60	std(), 186
rng.standard_normal(),60	Stepwise(), 269
roc_curve(), 392	str.contains(), 59
RocCurveDisplay.from_estimator	(), subplots(), 48
387	sum(), 43, 268
savefig(), 50	summarize(), 118, 129, 223,
scatter(), 49, 61	226
scipy.interpolate, 315	summary(), 119, 322, 587
score(), 218, 461	super(), 440
seed_everything(), 436	<pre>SupportVectorClassifier(),</pre>
set_index(), 57	387, 389–391, 393
set_title(), 49	${\tt SupportVectorRegression()},$
set_xlabel(), 49	394
set_xscale(), 198	${ t SVC()}, \; see \; { t Support Vector-}$
set_ylabel(), 49	<pre>Classifier()</pre>
set_yscale(), 198	$\mathtt{svd}(),539$
shape, 43	${ t SVR}(), \; see \; { t Support Vector-}$
ShuffleSplit(), 219	Regression()
sim_time(), 495	TensorDataset(), 441
SimpleDataModule(), 441	$to_numpy(), 437$
<pre>SimpleModule.classification(),</pre>	$\mathtt{torch},435$
446	torchinfo, 436
<pre>SimpleModule.regression(),</pre>	torchmetrics, 436
442	torchvision, 436
skl, see sklearn.linear_model	ToTensor(), 444
skl.ElasticNet(), 273, 277	$\texttt{train_test_split()}, 186, 216$
skl.ElasticNet.path, 274	transform(), 118, 119
skl.ElasticNet.path(), 273	${\tt ttest_1samp(),584}$
sklearn, 118, 181	${ ttest_ind(),590}$
sklearn.ensemble, 360	${ ttest_rel(),587}$
sklearn.linear_model, 267	tuple, 43
sklearn.model_selection, 267	$\mathtt{uniform}(),555$
sklearn_selected(), 269	value_counts(), 66
sklearn_selection_path(),	var(), 536
270	<pre>variance_inflation_factor()</pre>
sklearn_sm(), 218	116, 124
skm, see sklearn.model_selection	$ exttt{VIF()}, see exttt{variance_inflation-}$
skm.cross_val_predict(), 271	_factor()
skm.KFold(), 271	where(), 355
skm.ShuffleSplit(), 272	zip(), 60, 312
slice(), 51, 462	
sm, see statsmodels	q-values, 589
sm.GLM(), 174, 192, 226	quadratic, 98
sm.Logit(), 174	quadratic discriminant analysis, 4,
sm.OLS(), 118, 129, 174, 319	135, 156–157, 164–167

qualitative, 2, 27, 91, 135, 167,	elbow, 514
202	semi-supervised learning, 27
variable, 91–94	sensitivity, 153, 155, 156
quantitative, 2, 27, 91, 135, 167,	separating hyperplane, 367–372
202	Seq2Seq, 425
	sequence, 41
radial kernel, 381, 383, 390	shrinkage, 230, 240, 484–486
random forest, 11, 331, 343, 346–	penalty, 240
347, 354, 360-361	sigmoid, 401
random seed, 46	signal, 252
re-sampling, 577–582	signature, 45
recall, 155	singular value decomposition, 539
receiver operating characteristic (ROC),	slack variable, 375
154, 382–383	slice, 51
recommender systems, 516	slope, 71, 72
rectified linear unit, 401	Smarket data set, 2, 3, 12, 173,
recurrent neural network, 416–427	184, 196
recursive binary splitting, 334, 337,	smoother, 308
338	smoothing spline, 290, 300–303
reducible error, 17, 90	soft margin classifier, 372–374
regression, 2, 11, 27	soft-thresholding, 250
local, 289, 290, 304–305	softmax, 145, 405
piecewise polynomial, 294–295	
polynomial, 289–292, 299	sparse, 244, 252
spline, 289, 294	sparse matrix format, 414
tree, $331-337$, $358-360$	sparsity, 244
regularization, 230, 240, 406, 484–	specificity, 153, 155, 156
486	spline, 289, 294–303
ReLU, 401	cubic, 296
resampling, 201–214	linear, 296
residual, 71, 81	natural, 297, 301
plot, 100	regression, 289, 294–299
standard error, 75, 77–78, 88–	smoothing, 30, 290, 300–303
89, 109	thin-plate, 22
studentized, 104	standard error, 75, 101
sum of squares, 71, 79, 81	standardize, 185
residuals, 263, 348	statistical model, 1
response, 15	step function, 111, 289, 292–293
ridge regression, 11, 240–244, 385,	stepwise model selection, 11, 231,
484	233
risk set, 473	stochastic gradient descent, 429
robust, 374, 376, 535	string, 41
ROC curve, 154, 382–383, 486–	string interpolation, 490
487	stump, 349
R^2 , 77–80, 88, 109, 238	subset selection, 230–240
rug plot, 314	subtree, 336
~ - <i>'</i>	supervised learning, 25–27, 261
scale equivariant, 242	support vector, 371, 376, 385
Scheffé's method, 572	classifier, 367, 372–377
scree plot, 512, 514–515	machine, 5, 11, 24, 377–386

regression, 386 survival	unsupervised learning, 25–27, 255, 260, 503–552
analysis, 469–502	USArrests data set, 12, 507, 508,
curve, 472, 483	510, 512, 513, 515, 516,
function, 472	518, 519
time, 470	516, 519
	validation set, 202
synergy, 70, 89, 95–98, 110–111	approach, 202–204
systematic, 16	variable, 15
t-distribution, 77, 165	dependent, 15
t-statistic, 76	dummy, 91–94, 97–98
t-test	importance, 346, 360
one-sample, 583, 584, 588	independent, 15
paired, 587	indicator, 35
two-sample, 559, 570, 571, 577–	input, 15
581, 584, 590	output, 15
test	qualitative, 91–94, 97–98
error, 35, 37, 176	selection, 86, 230, 244
MSE, 28–32	variance, 18, 31–34, 159
observations, 28	inflation factor, 108–110, 123
set, 30	varying coefficient model, 305
statistic, 559	varying coefficient model, 505
theoretical null distribution, 577	Wage data set, 1, 2, 8, 9, 12, 290,
time series, 101	291, 293, 295, 297–300,
total sum of squares, 79	302–306, 309, 315, 327
tracking, 102	weak learner, 343
train, 21	weakest link pruning, 336
training	Weekly data set, 12, 196, 226
data, 20	weight freezing, 412, 419
error, 35, 37, 176	weight sharing, 418
MSE, 28–31	weighted least squares, 103, 304
transformer, 311	weights, 404
tree, 331–342	with replacement, 214
tree-based method, 331	within class covariance, 150
true negative, 155	wrapper, 217
true positive, 155	
true positive rate, 155, 156, 382	
truncated power basis, 296	
Tukey's method, 571, 585, 587	
tuning parameter, 187, 240, 484	
two-sample t -test, 474	
Type I error, 155, 562–565	
Type I error rate, 563	
Type II error 155 563 568 584	