Hardware System Design (Advanced Digital Systems Design)

4190.309A 2013 Spring Semester

Power Supply Theory and Practice

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University
naehyuck@snu.ac.kr

Ideal versus real-world power supply

Why real power supplies are noisy?

a) Ideal power source: zero line impedance

b) Realistic power source: non-zero line impedance

Good power supply

- Minimize power supply impedance
 - as much as possible.
- Power supply impedance
 - Resistive component
 - Inductive component

$$V_{drop} = iR + L\frac{di}{dt}$$

Voltage drop:

$$V_{drop} = iR + L\frac{di}{dt}$$

- \odot 20A current with DC resistance 0.05 Ω
 - yields 1V drop.
 - TTL operating range is 4.75V to 5.25V
- 0.1A current change in 2ns with 500nH
 - yields 25V drop!
 - In practice, yields much less voltage drop since 500nH prevents 0.1A current change itself in 2ns.

Reducing DC resistance

- Use low resistance materials: copper
- Use thick wire
- Reduce contact resistance

Reducing inductance

- Use short wire.
- Make no bend or loop if possible.
- VCC is as important as GND.
- Use bypass capacitors.
- Wire thickness is not so important!
- If somebody fails in reducing inductance, he or she may suffer from ground bounce.

Ground bounce

Earthquake!

$$L\frac{di}{dt}$$

Low inductance

Short wire, no bend or loop

$$L = K l \, ln \frac{d-r}{r}$$

Signal return path

VCC and GND are signal return paths!

Minimize signal return path

Power bus and power plane

Power bus

- VCC and GND fingers layout
- Track width?

$$L = Kl \, ln \frac{d-r}{r}$$

Power bus (2)

VCC and GND grid on two layers

Solid power planes

- VCC and GND planes
- Ideal for signal return path

VCC Plane

GND Plane

Solid power planes

Drain pipes

Bypass capacitor

Water supply

Bypass capacitor

- Reduce power supply impedance.
 - Reduce impedance between VCC and GND.
 - Prevent from abrupt current change thus reducing ground bounce.
 - Monolithic and chip capacitors

Bypass capacitor (contd.)

- For digital systems
 - Low equivalent series inductance (ESL) and low equivalent series resistance (ESR) capacitors.

Single sided universal PCB

- Use power bus
 - VCC and GND fingers layout
 - As straight as possible
 - Use tin-plated wire
 - Use bypass capacitors
 - RLC, diode and transistor experiments

Double sided solid GND plane universal PCB

Use solid GND plane

Double sided solid GND plane universal PCB (contd.)

- Make VCC mesh (grid)
 - Still worse than GND
- Use plenty of bypass capacitors
 - CompensateVCCimpedance

SNUCOM board: component side

SNUCOM board: solder side

Controlled impedance line

Inductance and capacitance are evenly distributed along the length of the line

Controlled impedance line (contd.)

Stripline and microstripline

Controlled impedance line (contd.)

- Coplanar waveguide
 - Often used in RF circuits
 - Often can be seen with copper pour

