

100 QUESTIONS ON NUMBER SYSTEM

Every CAT aspirant must solve

Preface

Hey there.

By now you must have started with your preparation for CAT 2017. This e-book caters to one of the most important and fundamental chapters in CAT Quant - Number System.

Most of you must have already gone through the concepts of this chapter. We have selected the following 100 questions that are hand-picked seeing the current trend in CAT quant. These questions cover all the concepts of number system and give you the perfect practice needed to master this section of quant.

In case you are yet to grasp the basics of this chapter, we'd suggest you do so. You can head out to the **Quant Prep** section on hitbullseye.com to learn the basics.

So go ahead and test your knowledge on number system.

The answer key along with explanations is given at the end of this e-book.

And feel free to share this e-book with your friends.

Happy practicing.

Always there for you, Team Hitbullseye:)

100 Must Questions for Number System

1.	What is the digit in the unit's place of 2^{51} ?			
	1. 2	2. 8	3. 1	4. 4
2.		ber is formed by writing 354. Find the remainder was		ers one after the other as ded by 8.
	1.4	2. 7	3. 2	4. 0
3.	If $n = 1 + x$, where following statements if (1) n is odd	_	-	s a perfect square
	1. 1 only	2. 2 only	3. 3 only	4. 1&3 only
4.				ds the HCF between any 2 find the HCF of the given
	1. <i>n</i> /2	2. $n-1$	3. <i>n</i>	4. None of these
5.		nct digits. AB is a two dere CCB > 320. What is t		a three digit number such digit B?
	1. 1	2. 0	3. 3	4. 9
6.	Convert 1982 in base	10 to base 12.		
	1. 1129	2. 1292	3. 1192	4. 1832
7.	P is the product of all product is	prime numbers from 1 t	to 100. Then the number	of zeros at the end of the
	1.0	2. 1	3. 24	4. None of these
8.	If N = $1421 \times 1423 \times$	1425, what is the remain	der when 'N' is divided l	oy 12?
	1.0	2. 1	3. 3	4. 9
9.	What is the 3 digit remainders?	number, by which wher	n we divide 32534 and	34069, we get the same
	1. 298	2. 307	3. 431	4. Data Inadequate
10.		nges, each box contains aining the same number of		st 144 oranges. The least
	1.5	2. 103	3. 6	4. Data Insufficient

11.	In a 4 digit number, the sum of first 2 digits is equal to that of the last 2 digits. The sum of the first and last digits is equal to the 3 rd digit. Finally the sum of second and fourth digits is twice the sum of other 2 digits. What is the number?			
	1. 1854	2.4815	3. 1458	4. 4158
12.	In a number system the converted in decimal system.	_	is 1034. The number 3	3111 of the system, when
	1. 406	2. 1086	3. 213	4. 691
13.		d by squaring the sum of then the value of the two	2	umber D. If the difference
	1. 24	2. 54	3. 34	4. 45
14.		divided by 3, 4 and 7 lef 84, divides the same nu		ively as remainders. What
	1. 80	2. 76	3. 41	4. 53
15.	What is the remainder	when 4 96 is divided by 6	?	
	1.0	2. 2	3. 3	4. 4
16.		e integers such that $a =$ as a number that is not an		= 12e. Then which of the
	$1.(\frac{a}{27},\frac{b}{e})$	$2.(\frac{a}{36},\frac{c}{e})$	$3.(\frac{a}{12},\frac{bd}{18})$	$4.(\frac{a}{6},\frac{c}{d})$
17.	Find the unit's digit of	the expression $11^{1} + 12^{2}$	2 + 13 3 + 14 4 + 15 5 + 16	6.
	1. 1	2. 9	3.7	4. 0
18.	Find the unit's digit of the expression $11^{1} \times 12^{2} \times 13^{3} \times 14^{4} \times 15^{5} \times 16^{6}$?			
	1. 1	2. 9	3.7	4. 0
19.	Find number of zeros a	at the end of 1090!		
	1. 270	2. 268	3. 269	4. None of these
20.	If 146! is divisible by 5	5^n , then find the maximum	m value of n .	
	1. 34	2. 35	3. 36	4. 37
21.	Find the unit's digit of	the expression: $55^{725} + 7$	$73^{5810} + 22^{853}$.	
	1.4	2. 0	3. 2	4. 6

22.	Find the value of x in the expression: $\sqrt{x + 2\sqrt{x + 2\sqrt{x + 2\sqrt{3x}}}} = x$				
	1. 1	2. 3	3. 6	4. 12	
23.			er <i>ab</i> to obtain the result integer so that it becomes	N = 0.xyxyxys an integer?	
	1. 99	2. 0	3. 198	4. Data insufficient	
24.	Find the number of zer	os in the product: 5×10^{-5}	$0 \times 25 \times 40 \times 50 \times 55 \times 6$	$55 \times 125 \times 80.$	
	1.8	2. 9	3. 12	4. 13	
25.	Find the last two digits	of the product: 15×37	$\times 63 \times 51 \times 97 \times 17.$		
	1. 35	2. 45	3. 85	4. 65	
26 .	Find the last two digits	of the product: 122×12	$23 \times 125 \times 127 \times 129.$		
	1. 20	2. 50	3. 30	4. 40	
27.	The last 3 digits of the multiplication 12345×54321 would be				
	1. 865	2. 745	3. 845	4. 945	
28.	Find the last digit of th	e number $N = 1^3 + 2^3 + 3$	$3^3 \dots + 99^3$.		
	1. 0	2. 1	3. 2	4. 5	
29 .	Find GCD of the numb	pers $2n + 13$ and $n + 7$, w	here n is a Natural Numb	er.	
	1. 1	2. 2	3. 5	4. 4	
30.	Find the remainder if 18	$8^{18^{36}}$ is divided by 7.			
	1.4	2. 2	3. 1	4. 3	
31.	Find the remainder who	en $43^{101} + 23^{101}$ is divided	d by 66.		
	1. 2	2. 10	3. 5	4. 0	
32.	What is the total number $8p + 6q = 240$?	per of positive integral so	plutions of the form (p, q)	that satisfy the equation	
	1.9	2. 11	3. 10	4. 8	

33.	Find the value of x if $2^x = 8^y$ & $6^{4y} = 216^{x+y-2}$				
	1. $2\frac{1}{4}$	2. $2\frac{1}{2}$	3. $3\frac{1}{2}$	4. $3\frac{1}{3}$	
34.	By how much (approx) $2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots \alpha}}}$	is the following function	n more than one?		
	1. 2.414	2. 2	3. 1.414	4. 1.555	
35.	Find the value of (0.023	56) $\log_{256} (3 + \frac{3}{4} + \frac{3}{16} + \frac{3}{64})$	-+		
	1.32×10^{-4}	2.64×10^{-4}	3.64×10^{-3}	4.32×10^{-3}	
36.		numbers, one fourth of the maller. What is the ratio		Of the resulting numbers,	
	1.3:1	2.7:4	3.3:2	4. 2 : 1	
37.	containers will have an A, then the number of	equal number of fruits.	However, if 20 fruits fruits in	ner A are put in B, both om container B are put in container B. What is the	
	1. 70, 30	2. 60, 40	3. 100, 80	4. 60, 20	
38.	Find the larger of the squares is 49 more than		the sum of their cubes	is 637 and sum of their	
	1.7	2. 8	3. 5	4. 6	
39 .	Find the total number of	of factors of 888888.			
	1.6	2. 64	3. 32	4. 128	
40 .	What is the higher pow	er of 2 in 1! + 2! + 3!	100!?		
	1. 24	2. 3	3. 0	4. 97	
41.		that $y = x^x$, where x is a pagit value of y and the small		the difference between the <i>y</i> ?	
	1. 229	2. 336	3. 263	4. 521	

42.	The number of integral values of y satisfying $3x - 2y = 1$ for integral values of x, where $0 < x < 102$ is				
	1. 25	2. 51	3.3	4. None of these	
43.	If 423 is in base 6 systematical systems of the system of the s	em, what is the value of	$(abc)_6$ such that $(423)_6$ +	$abc_6 = 1000_6$?	
	1. 577	2. 133	3. 243	4. Data insufficient	
44.	addition of digits of the	efined as the corresponde original number till we $1489 = 1 + 4 + 8 + 9 = 2$	finally arrive at a single	er obtained by successive digit.	
	Which of the following	g numbers is completely	divisible by its Papa num	nber?	
	1. 5555	2. 3254	3. 6666	4. 7071	
45.	As defined in the above prime again?	e question, how many tw	vo-digit prime numbers h	nave their papa numbers as	
	1.9	2. 10	3. 11	4. 12	
46 .	What will be the remainder, when $11^{12^{13}}$ is divided by 9?				
	1. 1	2. 8	3. 7	4. 2	
47 .	How may odd divisors	does the number 1,000,0	000 have?		
	1.5	2. 6	3. 7	4. 8	
48.	The HCF of two num these four numbers.	bers is 28 and the HCF	of two other numbers i	s 82. Find the HCF of all	
	1. 2	2.14	3. 7	4. Data Inadequate	
49 .	For how many values	of <i>a</i> are, a , $a + 14$, $a + 26$	5 prime numbers?		
	1. One	2. Two	3. None	4. Infinite	
50 .	For how many values	of <i>a</i> are, a , $a + 2$, $a + 4$ p	rime numbers?		
	1. One	2. Two	3. None	4. Infinite	
51 .	For how many values	of <i>a</i> are, a , $a + 4$, $a + 7$ p	rime numbers?		
	1. One	2. Two	3. None	4. Infinite	
52.	If last two digits of A,	$A^2 & A^3$ are the same, th	en what is the digit at the	e unit's place of A?	
	1.6	2. 5	3. 1	4. Data Inadequate	

53 .	What is the remainder when $6!^{4!} + 4!^{6!}$ is divided by 10?				
	1.0	2. 2	3. 4	4. 6	
54 .	What is the remainder	when $10^{25} - 7$ is divided	by 11?		
	1.5	2. 1	3. 2	4. 3	
55 .	What is the remainder	when 3 ³⁷ is divided by 7	9?		
	1. 78	2. 1	3. 2	4. 35	
56 .	How many non-zero ir	ategral ordered x , y and z	are there, such that $z^2 = 0$	$x^2 + y^2$ and $z^2 \le 100$?	
	1. 16	2. 12	3. 8	4. 32	
57 .	If N is a positive odd n	umber, find the value of	$m \text{ in } 150! = 2^m \times N.$		
	1. 146	2. 145	3. 75	4. None of these	
58 .	$2^{16}-1$ is divisible by				
	1. 11	2. 13	3. 17	4. 19	
59 .	If 'a' is a whole number greater than 2 and ' $a - 2$ ' is divisible by 3, the largest number that must necessarily divide $(a + 4)$ $(a + 10)$, is				
	1. 72	2. 9	3.36	4. 27	
DIRE	CTIONS for questions	60 & 61: Read the inform	nation given and answer	questions that follow.	
A, B, 0	C are 3 different integers	. Two of them are positive	ve and one is negative. A	llso	
(i) $\frac{1}{1+e^{-\frac{t^2}{2}}}$	$\frac{A-B}{+(C^2-1)}$ < 0 (ii) A + B + C > 0 (iii) AC > BC				
60 .	Which of the following	g is positive?			
	1. AB	2. BC	3. AC	4 Data Inadequate	
61 .	Which of the following	g is negative?			
	1. A	2. B	3. C	4. Data Inadequate	
62 .	What is the remainder	when 26×5^{83} is divided	l by 100?		
	1. 1	2. 25	3. 50	4. 75	
63 .	Find the remainder, wh	nen $(109)^4 \times (145)^8$, is di	vided by 17?		
	1. 4	2. 3	3. 2	4. 1	

	1. 25, 20	2. 30, 10	3. 23, 18	4. None of these		
65 .	If a charismatic number 'n' is defined in such a way that $n = m^2$ and $n = p^3$, then how many 'n' are there which are less than 10000? (It being given that $n, m \& p$ are all natural numbers).					
	1. 2	2. 3	3. 4	4. More than 4		
66.	How many prime num	bers exist in the factors of	of the product $6^7 \times 35^3 \times$	11 ¹⁰ ?		
	1. 20	2. 27	3. 30	4. 23		
67.		by 5, 7 and 8 successive if the order of division is		spectively 2, 3 and 4. What		
	1. 4, 5, 2	2. 5, 5, 2	3. 1, 2, 7	4. 4, 3, 2		
68.		s in 95 seconds and ano ow many times will they		nes in 234 seconds. If they hour?		
	1. 8 times	2. 9 times	3. 7 times	4. 6 times		
69.		nges, 408 apples, and 95 without mixing them, wh		e fruits into crates with an er of crates?		
	1. 32	2. 31	3. 33	4. 30		
70.	The HCF of 2 number number is 1½ times the	_	duct is 61206. What is	the bigger number, if one		
	1. 202	2. 404	3. 303	4. 606		
71.		eased by 100%. Now w	-	ne digit at tens place of the mber is 33 more than the		
	1. 63	2. 42	3. 24	4. 36		
72.	and the other half to equally divide their sh	grandsons. He has 13 are between themselves elves only. Each one get	grandsons and 17 grandonly. Similarly granddau	to all his granddaughters Idaughters. His grandsons aghters equally divide their bowls. What could be the		
	1. 442 bowls	2. 221 bowls	3. 884 bowls	4. 1768 bowls		

In a rectangular auditorium, chairs are arranged in rows and columns. The number of chairs in

each column is more than the number of chairs in each row by 5. If there are 300 chairs in all,

find the respective number of chairs in each row and in each column.

64.

73.	When a certain number is multiplied by 13, the product consists entirely of sevens. Find the smallest such number.			
	1. 49829	2. 59828	3. 59839	4. 59829
74.	The product of 2 number?	mbers is the cube of its	s HCF. If the LCM is	1225, what is the smaller
	1. 245	2. 175	3. 343	4. 210
75.		en successively divided number is divided by 15	•	inder 1 and 2. What is the
	1. 5	2. 3	3. 7	4. 9
76.	What is bigger: I. 9 ⁹⁹	- 9 ⁹⁸ or II. 9 ⁹⁸ ?		
	1. I.	2. II.	3. Both are equal	4. Can't be compared
77.				e figures in the question e took which figure in that
	1. 4, 5	2. 0, 6	3. 6, 0	4. 5, 4
78.	same time. After how		the first wheel will the	ly are set in motion at the y all have simultaneously
	1. 210	2. 6930	3. 6660	4. 33
79.	Which is greater: A. 7	/19 or B. 0.36 and I. 19	4 or II. $16 \times 18 \times 20 \times 10^{-4}$	22?
	1. A, I	2. A, II	3. B, I	4. B, II
80.	Which is smaller: A.	5/86 or B. 0.11, and	I. 11^4 or II. $9 \times 10 \times 12$	2 × 13.
	1. A, I	2. A, II	3. B, I	4. B, II
81.	each child, then 3 toy	ys to each, then 4 to each ring 7 he had no toys le	h, then 5 to each, then	t he tried giving 2 toys to 6 to each, but was always e smallest number of toys
	1. 61	2. 121	3. 181	4. 301
82.		mber, which is such the		26 are divided by it, the

1. 25, 1 2. 35, 3 3. 75, 1 4. 25, 3

	1. 6	2. 12	3. 9	4. 18
84.		igit number is added to to the unit's digit in the c		ber are reversed. Find the
	1.3:2	2. 1 : 4	3.2:1	4.1:2
85.	•	•	is 1/11of the sum of the difference between the	e number and the number digits of the number?
	1. 2	2. 3	3.7	4. Data inadequate
86.	Z is defined to be equa	1 to $32^{32} + 32$. What wou	ald be the remainder if Z	is divided by 33?
	1. 1	2. 32	3. 0	4. 2
87.	What is the highest po P is $44! \times 45$?	wer of 44, which will di	vide P without any rema	ninder? Given the value of
	1. 4	2. 20	3. 16	4. 1
88.	lying between 0 & 9.	At the most two digits		ere p , q and r are integers ual to 0. By which of the number?
	1. 99	2. 3996	3. 990	4. 39996
89.	What is the remainder	when $19^{6859} + 20$ is divid	led by 18?	
	1. 3	2. 17	3. 2	4. 0
90.		al number, which when is G . The last digit of G^{ς}		number made of 4's only.
	1.4	2. 2	3. 6	4. 8
91.	There exist a number N always divide $(N + 7)$		a multiple of 13, then the	ne largest number that will
	1. 26	2. 169	3. 338	4. 13
92.	How many ordered in $ P + Q = 7$?	teger solutions of the fo	rm of (P, Q) are there,	which satisfy the equation
	1. 26	2. 28	3. 22	4. 30

A number when decreased by 3 becomes 108 times the reciprocal of the number. The number is

83.

A certain even number K is given, which is not divisible by 3. What will be the remainder if this number will be divided by 6?

2.4

93.

1. 2

ANSWER KEYS

1. 2	21.	4	41.	1	61.	3	81. 4
2. 3	22.	2	42.	2	62.	3	82. 3
3. 4	23.	4	43.	2	63.	1	83. 2
4. 2	24.	2	44.	3	64.	4	84. 4
5. 1	25.	1	45.	2	65.	3	85. 4
6. 3	26.	2	46.	4	66.	3	86. 3
7. 2	27.	2	47.	3	67.	2	87. 1
8. 3	28.	1	48.	1	68.	1	88. 2
9. 2	29.	1	49.	4	69.	2	89. 1
10. 3	30.	3	50.	1	70.	3	90. 3
11. 1	31.	4	51.	3	71.	4	91. 3
12. 1	32.	1	52.	4	72.	1	92. 2
13. 2	33.	1	53.	4	73.	4	93. 3
14. 4	34.	3	54.	4	74.	2	94. 1
15. 4	35.	2	55.	4	75.	3	95. 1
16. 4	36.	2	56.	4	76.	1	96. 4
17. 2	37.	3	57.	1	77.	3	97. 1
18. 4	38.	2	58.	3	78.	1	98. 3
19. 1	39.	4	59.	2	79.	1	99. 2
20. 2	40.	3	60.	1	80.	2	100. 2

EXPLANATIONS

Q. No.	Ans.	Explanation
1.	2	Divide 51 by cyclicity of 2 i.e. 4. Remainder = 3. Now you can find $2^3 = 8$. Thus 2^{nd} option.
2.	3	We need to look at only the last three digits of this number. So 354 divided by 8 gives remainder as 2. Thus 2 is the answer. Thus 3 rd option.
3.	4	Assume values of x to get the answer. We can find that 1^{st} and 3^{rd} statements are always true. So answer is 4^{th} option.
4.	2	If we are given 2 numbers, we find the HCF only once. Similarly if we are given 3 numbers, we find the HCF twice and so on. So in order to find the HCF of n numbers, the number of times we need to find the HCF is ' $n-1$ '. Thus 2^{nd} option.
5.	1	The only number satisfying this condition is 21. As $21 \times 21 = 441$, so possible value of B is 1.
6.	3	Divide 1982 by 12 and find out remainders at every step. Then the answer is starting from the last upto the first and the number you get is 1192. Thus 3 rd option.
7.	2	There is only one even prime number i.e. 2 and there is only 1 multiple of 5 i.e. 5. Hence the number of zeroes will also be 1 only. Thus 2 nd option.
8.	3	$N = 1421 \times 1423 \times 1425$. Remainders when these numbers are divided by 12 are 5, 7and 9. Their product is 315. Divide it by 12 and find the remainder to be 3.
9.	2	$34069 - 32534 = 1535$ should be perfectly divisible by the number which is 307 as $1535 = 307 \times 5$. So answer is 307 which is given in 2^{nd} option.
10.	3	Since out of 128 boxes of oranges, each box contains at least 120 and at most 144 oranges i.e. 25 different number of oranges, the minimum number of boxes containing the same number of oranges is next integral value of {128\25} i.e. 6. Thus 3 rd option.
11.	1	Let the number be $abcd$, it is given that $a+b=c+d$ (1) $a+d=c$ (2) $b+d=2(a+c)$ (3) Now going by options, get the number as 1854. Hence 1 st option.
12.	1	Let the number system be x . Therefore $44 \times 11 = 1034$ or $(4x + 4)(x + 1) = x^3 + 3x + 4$. Solve and get the value of x as 5. Therefore $(3111)_5 = (406)_{10}$. So the answer is 406.
13.	2	Work with options to get answer as 54. So number S will be $(5 + 4)^2 = 81$. Now the difference between 81 and 54 is 27. Hence 2^{nd} option 54 is verified.
14.	4	Let the 1 st quotient be x . So the number becomes $[3\{4(7x + 4) + 1\} + 2]$ which is equal to $84x + 53$. Hence on dividing this by 84, we get the remainder as 53.
15.	4	$4 \div 6$, remainder is 4 . $4^2 \div 6$, remainder is 4 . $4^3 \div 6$, remainder is 4 . So checking the cyclicity, we get the answer as 4 .
16.	4	a = $6b = 12c$ (1) and 2b = $9d = 12e$ (2). If we multiply the 2^{nd} equation by 3, we get $6b = 27d = 36e$. Combining the 2 equations, we get $a = 6b = 12c = 27d = 36e$. So we can see that $c/d = 27/12$ which is not an integer and hence becomes the answer.
17.	2	Final unit digit of this expression would be $1+4+7+6+5+6$ i.e 9. So answer is 2^{nd} option.

18.	4	Due to availability of an even number and 15 ⁵ , the unit digit of the given expression would be zero.
19.	1	In 1090!, number of 5s would be 218. Also number of 5^2 would be 43. The number of 5^3 would be 8. Also the number of 5^4 would be 1. Hence the total number of zeros would be $218 + 43 + 8 + 1 = 270$. Thus 1^{st} option.
20.	2	In 146!, number of 5s would be 29. Also number of 5^2 would be 5. The number of 5^3 would be 1. Hence the maximum value of n would be $29 + 5 + 1 = 35$. Thus 2^{nd} option.
21.	4	Solving separately for the unit digit of each number, we get the unit digit of the 1 st number as 5, unit digit of the 2 nd number as 9 and unit digit of the 3 rd number as 2. Adding these, we get the answer as 6. i.e. 4 th option.
22.	2	Substitute the options and get the value of x as 3. So answer is 2^{nd} option.
23.	4	N can be converted into fraction as <i>xy</i> /99. As N could be multiplied with any negative multiple of 99, so a unique answer cannot be determined.
24.	2	Counting the number of fives and twos in the given expression, we see that this expression contains 13 fives and 9 twos. Hence number of zeros at the end of this product is 9. (We have to take lower of the number of twos and fives).
25.	1	Multiply the last two digits at every stage and get the result as 35, which will be your answer.
26.	2	The last two digits of multiplication can be achieved by dividing the number by 100 and finding the remainder. 125 divided by 100 gives us $5/4$ (Cancellation by 25). Hence remainder obtained is 1. (Usually speak you cannot cancel the terms while remainders, in case you do, then finally the remainder obtained is multiplied with the cancelling factor) Also 122 divided by 4 gives remainder as 2, 123 divided by 4 gives remainder as 3, 127 divided by 4 gives remainder as 1. So final remainder would be $2 \times 3 \times 1 \times 3 \times 1 = 18/4$ gives us 2 as the answer. Multiplying it back with the cancelling factor i.e. 25 gives us the final answer as $2 \times 25 = 50$. Hence answer is 50.
27.	2	The last 3 digits of the multiplication 12345×54321 would be given the product 345×321 , which is 745.
28.	1	$1^3 + 2^3 + 3^3$
29.	1	Put $n = 1$. So we get the numbers as 15 and 8. Hence GCD = 1. Putting $n = 2$, we get the numbers as 17 and 9 whose GCD is again 1. So for any value of n , we are getting two co-prime numbers whose GCD is always 1. Hence answer is 1. So answer is 1^{st} option.
30.	3	We will find the cyclicity of 18 on being divided by 7. $18 \div 7$, remainder = 4, $18^2 \div 7$, remainder = 2, $18^3 \div 7$, remainder = 1. Hence the cyclicity is 3. So we have to find the remainder when 18^{36} is divided by 3. Also we can see that 18^{36} is divisible by 3. So the final answer would be the third remainder in the original sequence. Hence the answer is 1, which is the 3^{rd} option.
31.	4	As per the standard result that $x^n + y^n$ is divisible by $x + y$ if n is odd. So remainder is this case would be 0.
32.	1	Simplifying the equation you get $4p + 3q = 120$, given the integers are positive. Solving and finding the smallest possible value for q as 4 and the largest possible value comes out to be 36. As q is always a multiple of 4, there are 9 such values. Thus 1^{st} option.
33.	1	Equating the bases, we can equate the powers also. Hence $x = 3y$ and $4y = 3(x + y - 2)$. Solving these 2 equations, we get the value of x as $2\frac{1}{4}$
34.	3	We can write the given expression as $2 + \frac{1}{x} = x$. Solving this, we get $x = 1 + \sqrt{2}$.
		So value = 2.414 . It is more than one by 1.414 . Hence answer is 3^{rd} option.

35.	2	We can see that the part in bracket is actually an infinite GP of 3 as the 1^{st} term and $\frac{1}{4}$ as r .
33.	2	So we can see that the part in bracket is actuary an infinite or of 3 as the 1 term and 74 as 7.
		So we can solve the given expression and get (0.0256) $\log_{256} \frac{3}{1 - \frac{1}{4}} \Rightarrow 0.0256 \log_{256} 4 = 0.0256/4$.
		$1-\frac{1}{4}$
		It can be further written as $0256/(10000 \times 4) = 64 \times 10^{-4}$.
36.	2	If the numbers are x and y (y < x), we get the equation as $x - y/4 = 2 \times 3y/4 \Rightarrow x : y = 7 : 4$.
37.	3	Going by options and verifying the 3 rd option: If A has 100 fruits and B has 80 fruits, then 10 fruits
		put from A to B will lead to 90 fruits in both A and B.
		Also if 20 fruits are put from B to A, then A will have 120 fruits and B will have 60 fruits.
20		So A will have twice the number of fruits as compared to B.
38.	2	If the numbers are x and y, then $x^3 + y^3 = 637$ and $x^2 + y^2 - xy = 49$. So $x + y = 13$. Now going by options, we get the answer as 2^{nd} option. The other number is 5.
20	4	The number 888888 can be written as $2^3 \times 3 \times 7 \times 11 \times 13 \times 37$.
39.	4	Applying the formula of total number of factors, we get the factors as $(3 + 1)(1 + 1$
		Applying the formula of total number of factors, we get the factors as $(3+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)$
40.	3	The given expression can be written as $\{1!\} + \{2! + 3! \dots 100!\}$
	•	The first bracket contains an odd number and the second an even number.
		Also $Odd + Even = Odd$.
		As final answer is an odd number, so there is no power of 2 in this expression.
44	-	Hence required answer is 0.
41.	1	The smallest possible value for a three-digit y is 256 and the largest possible value for a two-digit y is 27. The difference between the two is $256 - 27 = 229$. Thus 1^{st} option.
12	2	-
42.	2	The given expression is $3x - 2y = 1 \implies 2y = 3x - 1 \implies y = \frac{3x - 1}{2} \implies y = x + \frac{x - 1}{2}$.
12	-	Since both x and y have to be integers, so $x = 1, 3$. Hence answer is 51.
43.	2	Going by options, we get the answer as 2 nd option.
44.	3	Going by options, we get the answer as 3^{rd} option as Papa number of 6666 is $6 + 6 + 6 + 6 = 24$
• • •		\Rightarrow 2 + 4 = 6. So we can see that 6666 is divisible by 6.
45.	2	There are 11 prime numbers i.e. 11, 23, 29, 41, 43, 47, 59, 61, 79, 83, 97 which are having their Papa
	-	numbers as prime numbers again.
46.	4	We will find the cyclicity of 11 on being divided by 9. $11 \div 9$, remainder = 2, $11^2 \div 9$, remainder = 4,
		$11^{3} \div 9$, remainder = 8, $11^{4} \div 9$, remainder = 7, $11^{5} \div 9$, remainder = 5, $11^{6} \div 9$, remainder = 1.
		Hence the cyclicity is 6. So we have to find the remainder when 12^{13} is divided by 6. Also we can
		see that 12 ¹³ is divisible by 6.
47.	3	So the final answer would be the 6 th remainder in the original sequence. Hence the answer is 1.
→ /•	3	1000000 can be written as $2^6 \times 5^6$. So number of odd divisors of 1000000 is $6 + 1 = 7$.
48.	1	Required HCF = HCF $(28, 82) = 2$, thus answer will be 2. So answer is 1 st option.
40.	1	11cquired 11c1 = 11c1 (26, 62) = 2, thus unswel will be 2. 50 unswel is 1 option.
49.	4	a could be 3 or 5 or 17 So answer is infinite.
-50	'	
50.	1	a=3 is the only one value satisfying this condition. So only one value.
	-	
51.	3	No value satisfies the given condition as for $a + 7$ to be prime, a has to be even.
		As a result $a + 4$ will never be prime.
52.	4	For 76 and for 25, the last two digits always remain same i.e. 76 raised to power anything ends in 76
		only and 25 raised to power anything ends in 25 only.
		As we cannot get a unique answer, so data is not adequate to answer the question.
53.	4	6! ^{4!} is divisible by 10 and 4! ^{6!} gives remainder 6 (using cyclicity). So answer is 6.

	1	25
54.	4	10^{25} divided by 11 gives 10 as remainder. Also 7 divided by 11 gives 7 as remainder. Hence required answer $= 10 - 7 = 3$.
55.	4	We can write $3^{37} = 3^{36} \times 3$. 3^{36} can be written as $(3^4)^9$.
		Dividing it by 79, we get 2 ⁹ as the remainder (As 81 divided by 79 gives 2 as remainder).
		So finally it becomes $512 \times 3 = 1536$.
		When we divide 1536 by 79, we get the remainder as 35.
56.	4	You have 32 possible cases, considering the positive and negative values of x , $y \& z$.
20.	"	The cases are 3, 4, 5 (8 possibilities i.e. each can have a positive or a negative value); 4, 3, 5; 6, 8,
		10; 8, 6, 10. Thus 32 is the answer.
57.	1	The value of <i>m</i> is basically the power of 2 in 150!. So answer is $75 + 37 + 18 + 9 + 4 + 2 + 1 = 146$.
	*	The talke of his constantly and power of 2 in 100 h as an and 10 h a h a h a h a h a h a h a h a h a h
58.	3	$2^{16}-1$ can be rewritten as $(2^4-1)(2^4+1)(2^8+1)$. So out of the given options, it is divisible by 17.
20.		2 real be rewritten as $(2-1)(2+1)(2+1)$. So out of the given options, it is divisible by 17.
59.	2	Take $a = 5$, 8 etc. Clearly $(a + 4)$ $(a + 10)$ would be divisible by 9.
39.		Take $u = 3$, 8 etc. Clearly $(u + 4)(u + 10)$ would be divisible by 3.
60	1	(c) A-B
		$(i) \frac{A-B}{1+(C^2-1)} < 0$
		- (/
		\Rightarrow A < B, as denominator is always positive.
		(ii)A + B + C > 0 $(iii)A + B + C > 0$
<i>L</i> 1	3	(iii)AC > BC coupled with (i) implies C is negative. Answer is C.
61.	3	Answer is C.
62.	3	5 ⁸³ divided by 100 gives us the remainder as 25.
	-	So $26 \times 25 = 650$ divided by 100 gives us final answer as 50.
63.	1	(100)4 (102 + 7)4 74
	*	Solving $\frac{(109)^4}{17} = \frac{(102+7)^4}{17} = \frac{7^4}{17}$, we get remainder 4.
		17 17 17
		$(145)^8 (153-8)^8 8^8$
		Solving $\frac{(145)^8}{17} = \frac{(153-8)^8}{17} = \frac{8^8}{17}$, we get remainder 1. The product of $4 \times 1 = 4$. Thus 1^{st} option.
64.	4	Going by options we find that none of these options satisfy the given conditions. Hence the answer is
0	"	4 th option. The actual values are 15 chairs in each row and 20 chairs in each column.
65.	3	If any number is simultaneously a perfect square and a perfect cube, then that number must be 6 th
05.	'	power of any other number.
		So the values of n are $1^6 = 1$, $2^6 = 64$, $3^6 = 729$ and $4^6 = 4096$.
		So answer is 3^{rd} option.
66.	3	$6^7 \times 35^3 \times 11^{10} = (2 \times 3)^7 \times (5 \times 7)^3 \times 11^{10} = 2^7 \times 3^7 \times 5^3 \times 7^3 \times 11^{10}$
		$\therefore \text{ No. of prime factors} = \text{addition of powers of prime nos.} = 7 + 7 + 3 + 3 + 10 = 30.$
67.	2	5, 7 and 8; remainders are 2, 3 and 4. \therefore The no. can be calculated as $8 + 4 = 12$ (1st divisor).
0/.	~	3, 7 and 8, remainders are 2, 3 and 4 The no. can be calculated as $8 + 4 = 12$ (1 divisor). $(12 \times 7) + 3 = 87$ (2 nd divisor). $(87 \times 5) + 2 = 437$ (Final no.).
		So 437 is divided successively by 8, 7 and 5. We get remainders as 5, 5 and 2.
68.	1	95 234
00.	1	For one time they take $\frac{93}{90}$ and $\frac{234}{315}$ seconds.
		Now their LCM = LCM ($\frac{95}{90}$, $\frac{234}{315}$) = LCM (95, 234)/HCF (90, 315) = 234 × $\frac{95}{45}$ = 26 × 19 = 494 sec.
		In the first hour they will toll $\frac{3600}{494} = 7$ times + 1 time at the start.
<i>(</i> 0	12	Total they will toll together 8 times in the first hour.
69.	2	Max. items in a crate = HCF of 748, 408 and 952 is 68.
		So minimum number of crates is $\frac{748}{100} + \frac{408}{100} + \frac{952}{100} \Rightarrow 11 + 6 + 14 = 31$
	-	68 68 68
70.	3	Let smaller number be x and the larger be $1.5x \Rightarrow x \times 1.5x = 61206 \Rightarrow x^2 = 40804 \Rightarrow x = 202$.
		∴ Bigger no. = $1.5 \times 202 = 303$.

71	1	Let xy be the 2 digit no. Net increase in the no. after 2 different increases of 50 % & 100 % = 33.
71.	4	
		Unit's digit is increased by 50 % and on increase it becomes 3. $\therefore \frac{50}{100}y = 3. \Rightarrow y = 6.$
		Similarly 100 % increase makes the value more by 3. $\therefore \frac{100x}{100} = 3. \Rightarrow x = 3.$ \therefore Number is 36.
72.	1	No. of grandsons = 13. No. of granddaughters = 17.
		Now the total share of both grandsons and granddaughters has to be a multiple of 13 & 17 both (
		because the totals should be equal and there are 13 grandsons and 17 granddaughters)
=-		LCM of 13 & $17 = 221$: Minimum no. of bowls = $221 \times 2 = 442$
73.	4	13x = 77 Go on adding 7 in the dividend. When you reach 777777, you will see that this no. is divisible by 13.
		On dividing 777777 by 13, get the quotient as 59,829.
74.	2	Product of 2 numbers = HCF × LCM. HCF 3 = HCF × 1225 \Rightarrow HCF = 35.
	-	Let nos. be $35x$ and $35y$: $35x \times 35y = 35 \times 1225 \Rightarrow xy = 35$.
		Co-prime factors of 35 are 5 and 7 \therefore Nos. are $35 \times 5 = 175$ and $35 \times 7 = 245$.
		The smaller number is thus 175, hence 2 nd option.
75.	3	3 and 5 remainders are 1 and 2. Therefore no. will be of the form $5k+2$. Hence number is $(5k+2)$
		\times 3 + 1 = 7 \times 3 + 1 = 22 (Assuming $k = 1$). Hence remainder when same no. is divided by 15 is 7.
76.	1	$9^{99} - 9^{98}$ or 9^{98} . Taking 9^{98} common we get 9^{98} $(9-1) = 8 \times 9^{98}$.
		$\therefore \text{ It is bigger than } 9^{98}. \text{ Thus first option.}$
77.	3	10056×469 . One figure is wrong. He obtained 4,112,904.
		If we multiply 10000 by 470, we get 4,700,000 i.e. app. 600,000 more
		∴ He must have written 409 instead of 469.
		So 6 is the possible mistake that he could have made.
78.	1	LCM of 33, 42, 55 and 63 is 6930. Number of revolutions of the first wheel = Total circumference ÷
		<u>6930</u>
		circumference of first wheel = $33 = 210$.
79.	1	$\frac{7}{10}$ or $\frac{7}{10}$ or $\frac{36}{10}$ or $\frac{36}{10}$ or $\frac{9}{10}$
		A. $\frac{7}{19}$ or B. $0.36 \Rightarrow \frac{7}{19}$ or $\frac{36}{100} \Rightarrow \frac{7}{19}$ or $\frac{9}{25}$.
		Then cross-multiply and check. As $175 > 171$ \therefore A. $7/19 >$ B. 0.36.
		I. 19^4 or II. $16 \times 18 \times 20 \times 22$.
		$\Rightarrow 19^4 = 19^2 \times 19^2.$
		As 19 is the average of the four numbers, therefore the product will be maximum, when the number
		is same i.e. 19. Therefore 19^4 will be greater. i.e. a^4 will always be greater than $(a-2)(a-1)(a+1)(a+2)$. Hence Let H. Therefore 19^4 will be greater. 19^4 is the appearance.
80.	2	1)($a + 2$). Hence I > II. Thus see carefully option 1 st is the answer.
ου.	~	A. $\frac{5}{86}$ or B. $0.11 = \frac{5}{86}$ or $\frac{11}{100} \Rightarrow \frac{5}{86}$ or $\frac{11}{100} \Rightarrow \text{As } 500 < 946 : .5/86 < 0.11 \Rightarrow A < B$.
		II. 11 ⁴ or 9.10.12.13.
		Apply the logic of the above questions and see that 11^4 is greater. This implies $I > II$
		As the question is talking about the smaller numbers A and II will be the answer.
81.	4	LCM of 2, 3, 4, 5, $6 = 60$. Toys would be of the form $60K + 1$.
		We put various values to K so as to make it divisible by 7. Start from $K = 1$, and check unless you get
0.2		a multiple of 7. K = 5 makes it 301, which is the answer.
82.	3	Greatest no. will be HCF of (151 – 76, 226 – 76, 226 – 151) i.e. HCF of 75, 150, 75, which is 75. The common remainder is 1.
02		
83.	2	$\frac{1}{2}$
		Let us assume the no. to be n. Thus as per the statement, $(n-3) = 108 \times n$.
		Solving this you get a quadratic equation, so it is better to use options. Putting n as 12 you get both the sides as 9. Thus 2^{nd} option i.e. 12 is the answer.
		THE CHIEF BY A TIME / AMBANIA I / BY THE BROWAY
84.	4	Let the unit's digit of the no. be u and ten's digit be t . The original number becomes $10t + u$.

	I	
		Now making the equation $(10t + u) \times 7/4 = 10u + t \Rightarrow 66t = 33u \Rightarrow \frac{2}{1} = \frac{u}{t}$, thus 4 th option is the answer.
85.	4	Converting the statement of the question into an equation you get $T + U = [10T + U + 10U + T] \times 1/11$
		\Rightarrow Solving this you get T + U = T + U, which is always true. Thus data is not sufficient to answer the question.
86.	3	Z can be rewritten as 32 (32 ³¹ + 1). Now applying the basic property $x^n + y^n$ is divisible by $x + y$, provided n is odd and n remains odd here.
		Here because the internal part is divisible by $32 + 1 = 33$, the remainder will be equal to zero. Thus 3^{rd} option is the answer.
87.	1	The prime factors of 44 are $2 \times 2 \times 11$, out of which 11 is a bigger prime number. The multiples of 11 in 44! are 4 in number (i.e. 11, 22, 33 and 44) and thus 4 i.e. 1^{st} option will be the answer. There is no need to calculate the multiples of 2 because they will definitely be much more than the multiples of 11.
88.	2	<u>pqr</u>
		Converting M into fractions you get ⁹⁹⁹ . Now in order to convert into a natural number it has to be multiplied with a multiple of 999. Check all the options, only the second option given i.e. 3996 is a multiple of this and hence it is the answer.
89.	1	19 raise to power anything when divided by 18, remainder will be 1. Now after that when 20 is divided by 18 the remainder is 2. Thus the final remainder will be $1 + 2 = 3$ i.e. the first option.
90.	3	The smallest such number is 63492, which when multiplied with 7 gives 444444. Now the sum of the digits of F is $6 + 3 + 4 + 9 + 2 = 24$. The last digit of 24^{92} will be 6 because 4 raise to power any even number always ends in a 6. Thus 3^{rd} option is the answer.
91.	3	As $N-6$ is a multiple of 13, thus $(N+7)$ and $N+20$ should also be divisible by 13. Because there are respectively 13 and 26 more than $N-6$. Now $(N+7)$ and $(N+20)$ are two consecutive multiples of 13, one of them must be even. Thus their product would always be divisible by $13 \times 13 \times 2 = 338$. Hence 3^{rd} option is the answer.
92.	2	The following are the cases for (a, b) which make this equation right. $(0, 7)$ $(0, -7)$ $(1, 6)$ $(-1, -6)$ $(-1, -6)$ $(2, 5)$ $(-2, 5)$ $(-2, -5)$ $(-2, -5)$ $(3, 4)$ $(-3, 4)$ $(-3, -4)$. These 14 cases and their reverse 14 cases. Thus 28 solutions are there.
93.	3	As it is an even number, it must be either a multiple of 6, or (a multiple of 6) + 2, or (a multiple of 6) + 4. It cannot be a multiple of 6, as the question states that it is not divisible by 3. Thus the only possible remainders are now 2 or 4. Thus 3 rd option is the answer.
94.	1	Let the unit's digit be U and the ten's digit is T. The equation will be $10T + U = 4 (T + U) \Rightarrow 6T = 3U$ $\Rightarrow 2T = U$. Their difference is given to be 3. Solving you get $U = 6$ and $T = 3$. Thus first option.
95.	1	The equation can be rewritten as $4p + 3q = 120$. The smallest value of p and the greatest value of q
<i>)</i>	1	that satisfies this equation is $(0, 40)$. The greatest value of p and the smallest value of q possible is
		(30, 0). Now after taking p as 0, the next p which will make it possible is $p = 3$, then $p = 6$ and so on the last
		will be $p = 30$ i.e. 11 values of p can make this equation right.
		But the questions states positive integers only thus we have to exclude two sets of solutions, which include a zero i.e. (0, 40) and (30, 0). Thus remaining there are 9 solutions. Thus 1 st option is the answer.
96.	4	Every 3 rd car is red and every fourth car is white.
		On the face of it seems that the data is inadequate to answer this question. But take the LCM of 3 and 4 i.e. $12. \Rightarrow 12^{th}$ car is red as well as white, which can't be true. The maximum number of cars in parking lot is 11.
97.	1	The factorial of all the natural numbers ≥ 3 is divisible by 6. Therefore 20! will be exactly divisible by 6, hence no remainder shall be there.
98.	3	Net area left = $0.9 \times 0.7 = 0.63$, \therefore area cut off = $1 - 0.63 = 0.37 \Rightarrow 37$ %.

99.	2	Sum of their ages 5 years back = 125.
		Sum of present ages of 5 members = $125 + 25 = 150$. Total age of 7 members = $22 \times 7 = 154$.
		So sum of ages of 2 children = $154 - 150 = 4$. Diff. of ages of 2 children = 2 : their ages are 3, 1.
100.	2	Try with options. 1st option and 2 nd option give same remainders when divided by 12 and 16. But 2 nd
		option is smaller than 1 st . So 2 nd is the answer.

