$\chi^2 - 2 = 0$ Q ~ rationals R ~ reals 1 no solutions in Q: exactly 2 solutions in R - one of them + ve. $\begin{cases} \chi^{2}+1=0 & \text{no solution in } \mathbb{R} \\ \chi \in \mathbb{Q} \mid \chi^{2}-2<0 \end{cases} \neq \phi$ $\Rightarrow \{x \in \mathbb{R} \mid x^2 + 1 < 0\} = \emptyset$ I. Prelimi naries Partially ordered set: (P, \leq) , where P is a set and \leq is a relation on P, is called a partially ordered set (Poset) if: (Reflexivity) $a \le a$ $\forall a \in P$ (Antisymmetry) $a \le b$ and $b \le a \Rightarrow a = b$ $\forall a, b \in P$ (Transitivity) $a \le b$, $b \le c \Rightarrow a \le c$ $\forall a, b, c \in P$ In this case, \subseteq is said to be a partial order on P. * P = 1, 2, 3, 6 }. $a \le b$ iff $a \mid b$. $a \not = 3$ and $3 \not = 2$. Verify (P, \le) is a poset. * P = R. \leq is the usual comparison. (P, \leq) is a poset. Define \leq : $a \leq b \Leftrightarrow (a \leq b \text{ and } a \neq b)$ Totally ordered set: (P, \leq) is said to be a totally ordered set if \leq is a partial order on P and $\forall a, b \in P$ either $a \leq b$ or $b \leq a$. In this case, = is said to be a total order on P. (Totally) ordered field: Let K be a field. (K, \leq) is said to be a totally ordered field of < is a total order on K and the following hold true: \bigcirc $a < b \Rightarrow a + c < b + c \qquad \forall a, b, c \in K$ \bigcirc $a < b \Rightarrow a + c < b + c$ $\forall a, b, c \in K$ \bigcirc a > 0, b > 0 $\forall a, b \in K$. In what follows, (K, <) will always denote an ordered field. $1 > K = K^{+} \sqcup K^{-} \sqcup \{0\} > disjoint union$ 27 $K^{\times} = K^{+} \sqcup K^{-}$ is a group (under multiplication) Verify as HW. 3) K+ is a group (under mult). In fact, K+ is a subgp of K×.

Fact:
$$a^{2} > 0$$
 $\forall a \in K^{\times}$
 $Pf: \rightarrow a > 0$: $a^{2} = a \cdot a > 0$
 $\rightarrow a < 0 \Rightarrow 0 = a + (-a) < 0 + (-a) = -a$
 $\Rightarrow a^{2} = (-a) \cdot (-a) > 0$

Fact: 1>0 Pf: HW

$$N \longrightarrow \mathbb{Z} \xrightarrow{\text{take fractions}} \emptyset$$
field

 $f: \mathbb{Q} \to \mathbb{Q}$ given by $x \mapsto x^2$ is not surjective. $f^{-1}(z) = \phi$.

Let $S \subseteq K$, $S \neq \phi$. We say $l \in K$ is an upper bound of S if $l \ni K$ is said to be a least upper bound (lub) (or supremum) of S if O l is an u.b. of S. O if $l' \in K$ is s.t. l' < l then l' is not an u.b. of S.

K is said to have the lub property if every subset $S \subseteq K$, $S \neq \phi$, which is bounded above, has a supremum.

 \mathbb{Q} does not have the lub property. $S = \{x \in \mathbb{Q} \mid x^2 < 2\}$

Theorem (Dedekind / Cauchy / Cautor): There is an ordered field R such that i R is an ordered subfield of R, i.e., \exists a map $i: R \longrightarrow R$ s.t.

 $i : Q \longrightarrow R$ s.t. i (a+b) = i(a) + i(b) $i (ab) = i(a) \cdot i(b)$ $a \le b \implies i(a) < i(b)$

For your comfort, you may think that Q = R and order is preserved inside R. ii) R has the lub property.

I. Properties of R:

(1) (Archimedean property) Let $x \in \mathbb{R}^+$, $y \in \mathbb{R}$. Then $\exists n \in \mathbb{Z}^+ : t \cdot nx > y$.

If: $S = \{ n : | n \in \mathbb{Z}^+ \} \subseteq \mathbb{R}$ (*) — Suppose $t = y + t \in S$. So S is bold above. $S \neq \emptyset$.

By lub property of \mathbb{R} , S has a supremum, say u.

 $\chi > 0 \Rightarrow -\chi < 0 \Rightarrow u - \chi < u \Rightarrow u - \chi \text{ is not an } u \cdot b \cdot \text{ of } S.$ $\Rightarrow \exists w \in S \quad S.t. \quad \omega > u - \chi$ $(w = kn \text{ for } \Rightarrow (k+1)\chi > u$ $\text{Some } k \in \mathbb{Z}^+)$ $\text{This is a contradiction } (:'u \text{ is an } u \cdot b \cdot \text{ of } S)$ $\text{So } (*) \text{ is } \text{false } \Rightarrow \exists n \in \mathbb{Z}^+ \text{ S.t. } n\chi > y.$

Cor: Z is unbounded above & unbounded below.

 \mathcal{Q} (Q is dense in R) Given $\alpha, \beta \in \mathbb{R}$ ($\alpha < \beta$) $\exists \alpha \in \mathbb{Q} \text{ s.t.}$

Pf: Try as exercise / look up any Standard book or internet. I

Open interval: $(a, b) = \{ x \in \mathbb{R} \mid a < x < b \}$ $(a < b \in \mathbb{R})$

Cor: $(a,b) \cap Q$ is an infinite set. Pf: HW (important)

Enercise: (1) If a∈R\Q then d∈R\Q

- (2) There is no total ordering on E.
- (3) a, b, c, d ER+ s.t. a>b, c>d. Show ac>bd.

II. Roots of the leab:

Let $\alpha \in \mathbb{R}^+$. A real in root $\gamma \propto is$ some $\alpha \in \mathbb{R}$ S.t. $\alpha^n = \alpha$.

Claim: Atmost one such 2>0 exists.

Pf: WLOG, $\alpha > 1$. Suppose $\exists x > y > 0$ in \mathbb{R}^+ s.t. $x^n = \alpha$, $y^n = \alpha$. $x^n > y^n \qquad \text{(use induction } + \text{ exercise (3))}$ $\Rightarrow \alpha > \alpha \qquad \text{(contradiction)}$

Finite Set: S is said to be "Jinite" if \exists $n \in \mathbb{N}_0$ and a bijection $f: S \longrightarrow \{1,2,...,n\}$.