

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

I – Limites et continuité

I-1 Notion de fonction

Définition (fonction réelle de la variable réelle ou fonction numérique)

Soit E une partie non vide de \mathbb{R} .

Si f une fonction qui à tout nombre réel x dans E associe au plus un nombre réel y dans \mathbb{R}

Alors

x est appelée variable libre, y est appelée variable dépendante et

f est appelée fonction réelle de la variable réelle ou fonction numérique.

On appelle domaine ou ensemble de défintion de f et on note \mathcal{D}_f l'ensemble des x qui ont une image par f.

$$\mathcal{D}_f = \{x \in E, f(x) \ existe\} \subset E$$

Un élément $a \in \mathcal{D}_f$ est appelé antécédant et f(a) son image.

Si $E = \mathcal{D}_f$ on dit que f est une application.

On note

$$f: \mathcal{D}_f \to \mathbb{R}$$
$$x \mapsto f(x)$$

On appelle graphe de f l'ensemble noté C_f et défini par $C_f = \{(x, f(x)), x \in E\}$. On parle également de courbe représentative de f.

Exemple

1.
$$f(x) = \sqrt{x}$$
; $\mathcal{D}_f = \mathbb{R}_+$

2.
$$f(x) = \frac{1}{E(x) - x}$$
;
 $E(x) - x = 0 \iff E(x) = x \iff x \in \mathbb{Z} \text{ d'où } \mathcal{D}_f = \mathbb{R}/\mathbb{Z}$

3.
$$f(x) = \begin{cases} \frac{1}{x} & si \ x > 0 \\ x & si \ x \le 0 \end{cases}$$
 . $\mathcal{D}_f = \mathbb{R}$

$$.4. f(x) = \begin{cases} x & \text{si } x \text{ est pair} \\ \frac{1}{x(x-1)} & \text{si } x \text{ est impair} \end{cases}$$

$$x(x-1) = 0 \iff x = 0 \text{ ou } x = 1 \text{ d'où } \mathcal{D}_f = \mathbb{Z}/\{1\}$$

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

Opérations sur les fonctions

Soit $f: D \to \mathbb{R}$ et $g: D \to \mathbb{R}$ deux fonctions numériques définies sur une même partie D.

1. Somme

La somme de f et g est la fonction notée f+g définie pour tout $x \in D$, par

$$(f+g)(x) = f(x) + g(x)$$

2. Produit

Le produit de f et g est la fonction notée fg définie pour tout $x \in D$, par

$$(fg)(x) = f(x)g(x)$$

Définition (fonction paire)

Soit D intervalle symétrique (centré en zéro) et $f: D \to \mathbb{R}$ une fonction définie dans D.

On dit que f est paire si $\forall x \in D, f(-x) = f(x)$.

La courde représentative de f présente une symétrie par rapport à l'axe des ordonnées y.

Le domaine d'étude de f est réduit à la partie de D des éléments positfs ou celle des éléments négatifs .

Axe de symétrie

Soit α un réel tel que $\forall x \in Df$, on a $\alpha - x \in Df$ et $\alpha + x \in Df$.

Si f(a-x) = f(a+x) alors la courbe C_f présente une symétrie par rapport à la droite d'équation x = a.

Le domaine d'étude de f est réduit à la partie de D des éléments supérieurs à a ou celle des éléments inférieurs à a.

Exemple

$$f(x) = x^2 - 2x - 3$$
. $Df = \mathbb{R}$. $\forall x \in \mathbb{R}$, $1 - x$ et $1 + x \in \mathbb{R}$ et $f(1 - x) = f(1 + x)$

donc la droite d'équation x = 1 est un axe de symétrie de la courbe représentative de f.

Définition (fonction impaire)

On dit que f est impaire si $\forall x \in D, f(-x) = -f(x)$.

La courbe C_f présente une symétrie par rapport à *l'origine*.

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

Le domaine d'étude de f est réduit à la partie de D des éléments positfs ou celle des éléments négatifs.

Centre de symétrie

Soit $a \in b$ deux réels tels que $\forall x \in Df$ $a - x \in Df$ et $a + x \in Df$ et si

$$f(a-x) + f(a+x) = 2b$$

alors le point A(a, b) est un centre de symétrie de la courbe représentative de f

Exemple

$$f(x)=2+rac{5}{x-3}$$
; $Df=\mathbb{R}\setminus\{3\}$.
Pour tout x de , $1-x$ et $1+x\in\mathbb{R}$, $f(3-x)+f(3+x)=4=2\times 2$ donc $(3,2)$ est un centre de symétrie de \mathcal{C}_f .

Définition (fonction périodique)

Soit D une partie de \mathbb{R} $f: D \to \mathbb{R}$ une fonction définie sur D.

On dit que f est périodique s'il exite un réel non nul t tel que, $\forall x \in D$ on a

$$f(x + t) = f(x)$$

t est appelé période de f. On dit que f est périodique de période t ou f est t-périodique Le plus petit nombre positif t s'il existe on note T et on l'appelle période fondamentale de f.

Le domaine d'étude de f est réduit à un intervalle de longueur une période.

Exemple

- 1. cosx est 2π -périodique ; 2. cos2x est π -périodique.
- 3. $\{x\} = x \lfloor x \rfloor$ est 1-périodique. (représenter graphiquement $\{x\}$)

Définition (Fonctions croissante, décroissante)

Soit D une partie de \mathbb{R} $f:D \to \mathbb{R}$ une fonction définie sur D. On dit que f est croissante (décroissante) si $\forall x,y \in D$ si $x \leq y$ alors $f(x) \leq f(y)$ ($f(x) \geq f(y)$)

Définition (Fonctions strictement croissante, décroissante)

Soit D une partie de \mathbb{R} $f:D \to \mathbb{R}$ une fonction définie sur D. On dit que f est strictement croissante (décroissante) si $\forall x,y \in D$ si x < y alors f(x) < f(y) (f(x) > f(y))

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

Définition (Fonctions constante)

Soit D une partie de \mathbb{R} $f:D \to \mathbb{R}$ une fonction définie sur D.

On dit que f est une fonction constante si

 $\exists c \in \mathbb{R}, \forall x \in D \ f(x) = c \ \text{on \'ecrit} \ f = c.$

Définition (fonction nulle, non nulle, positive, négative)

Soit D une partie de \mathbb{R} $f:D \to \mathbb{R}$ une fonction définie sur D

On dit que f est nulle dans D et on écrit f = 0 dans D si $\forall x \in D$, f(x) = 0.

On dit que f est non nulle dans D et on écrit $f \neq 0$ dans D si f n'est pas nulle dans D.

On dit que f est positive (strictement) dans D et on écrit $f \ge 0$ (f > 0) dans D si $\forall x \in D$, $f(x) \ge 0$ (f(x) > 0)

On dit que f est négative (strictement) dans D et on écrit $f \le 0$ (f < 0) dans D si $\forall x \in D$, $f(x) \le 0$ (f(x) < 0).

Définition (comparaison de deux fonctions)

Soit D une partie de \mathbb{R} $f:D \to \mathbb{R}$ une fonction définie sur D et $g:D \to \mathbb{R}$ une fonction définie sur D.

On dit que f égale g dans D et on écrit f=g dans D si f-g=0 dans D

On dit que f est différente de g dans D et on écrit $f \neq g$ dans D si $f - g \neq 0$ dans D

On dit que f est inférieure (strictement) à g dans D et on écrit $f \le g$ (f < g) si $f - g \le 0$ (f - g < 0) dans D.

Exemple

1.
$$f(x) = x - |x|$$

f = 0 dans \mathbb{Z} et $f \neq 0$ dans $\mathbb{R} \setminus \mathbb{Z}$.

2. $f(x) = x^2$ et g(x) = x. En étudiant le signe $x^2 - x$ dans \mathbb{R} , on aboutit à :

Dans $]-\infty,0[\cup]1,+\infty[$ on a f>g

Dans [0,1] on a $f \leq g$

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

Retrouver graphiquement ce résultat.

Définition (fonction majorée, minorée, bornée)

Soit D une partie de \mathbb{R} $f:D\to\mathbb{R}$ une fonction définie sur D et $g:D\to\mathbb{R}$ une fonction définie sur D. Considérons l'ensemble $f(D)=\{f(x),x\in D\}$.

On dit que f est majorée si l'ensemble f(D) est majorée.

On dit que f est minorée si l'ensemble f(D) est minorée.

On dit que f est bornée si l'ensemble f(D) est bornée.

f possède une borne supérieure si, et seulement si f est majorée

On note $\sup_{x \in D} f(x)$, $\sup_{D} f$ ou simplement $\sup_{x \in D} f$

Si f n'est pas majorée on convient que $\sup f = +\infty$

f possède une borne inférieure finie si, et seulement si f est minorée.

On note $\inf_{x \in D} f(x)$, $\inf_{D} f$ ou simplement $\inf_{x \in D} f(x)$

Si f n'est pas minorée on convient que $\inf f = -\infty$

On dit que f atteint son maximum si f(D) admet un maximum noté , c'est-à-dire $\exists x_0 \in D$, tel que $\sup_{x \in D} f = f(x_0) = \max_{x \in D} f$

On dit que f atteint son minimum si f(D) admet un minimum noté minf c'est-à-dire $\exists x_0 \in D$, tel que $\inf f = f(x_0) = minf$

On dit que f atteint ses bornes si f atteint son maximum et son minimum.

Exemple

- 1. $f(x) = x^2$; inf f = 0 et sup $f = +\infty$
- 2. $f(x) = \frac{1}{1+x^2}$; inf f = 0 et $\sup f = 1 = \max f = f(0)$: f atteint son maximum en zéro.
- 3. f(x) = cosx; inf f = -1 et sup f = 1 = maxf = f(0): f atteint ses bornes.

Définition (fonction identité)

Soit D une partie non vide de \mathbb{R} ,

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

On appelle fonction identité sur D la fonction notée $I_D: D \longrightarrow D$, définie dans D par $I_D(x) = x$.

Définition (composée de deux fonctions)

Soit D, F et G trois parties non vides de \mathbb{R} , $f: D \to F$ et $g: F \to G$ deux fonctions définies respectivement dans D et F.

On appelle composée de f par g la fonction notée $g \circ f$ définie de D dans G par

$$(g \circ f)(x) = g(f(x))$$

Exemple

$$f(x) = e^x \text{ et } g(x) = \frac{1}{x}; (g \circ f)(x) = \frac{1}{e^x}.$$

Définition (fonction réciproque ou inverse)

Deux fonctions f et g telles que $f: D \to E$ et $g: E \to D$ sont inverses l'une de l'autre si

$$g \circ f = I_D$$
 et $f \circ g = I_E$.

Lorsque la fonction inverse de f existe, on la note f^{-1} . Alors

$$f: D \to E, f(x) = y \iff f^{-1}: E \to D, x = f^{-1}(y)$$

La courbe de f^{-1} est symétrique à celle de f par rapport à la première bissectrice.

Proposition

Si $f: D \to E$ est une fonction bijective alors il existe une unique application $f: E \to D$ telle

$$g \circ f = I_D$$
 et $f \circ g = I_E$.

g est la bijection réciproque de $f: g = f^{-1}$.

$$y = f(x), \forall x \in D \iff y = f^{-1}(x), \forall x \in E$$

Exemple

$$f: \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1$$
, est bijective. $y = 2x + 1 \Leftrightarrow x = \frac{y-1}{2}$.
D'où $f^{-1}: \mathbb{R} \to \mathbb{R}, f^{-1}(x) = \frac{x-1}{2}$

$$y = 2x + 1, \forall x \in \mathbb{R} \Leftrightarrow y = \frac{x-1}{2}, \forall x \in \mathbb{R}$$

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

I-2 Limite

Définition (limite finie en un point fini)

Soit $x_0 \in \mathbb{R}$, f une fonction numérique définie dans un intervalle ouvert I centré en x_0 privé de x_0 et $\ell \in \mathbb{R}$.

On dit que la fonction f admet pour limite ℓ ou tend vers ℓ en x_0 si

$$\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in I (|x - x_0| < \eta \Longrightarrow |f(x) - \ell| < \varepsilon)$$

C'est-à-dire

$$\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall \epsilon \mid I(x_0 - \eta < x < x_0 + \eta \Longrightarrow |f(x) - \ell| < \epsilon)$$

On écrit
$$\lim_{x \to x_0} f(x) = \ell$$
 ou $\lim_{x \to x_0} f = \ell$ ou $f(x) \to \ell$

Proposition (caractéisation séquentielle de la limite d'une fonction)

f a une limite l fini ou infini en x_0 fini ou infini si, et seulement si pour toute suite (x_n) dans $I \setminus \{x_0\}$ convergent vers x_0 , la suite $f(x_n)$ converge vers l.

Exemple

1. Montrons que $\cos x$ n'a pas de limite en $+\infty$.

Considérons la suite définie par $x_n = 2n\pi$ et la suite définie par $x'_n = (2n+1)\pi$. Les deux suites (x_n) et (x'_n) divergent vers $+\infty$. $\cos(x_n) = \cos(2n\pi)$ =et $\cos(x'_n) = \cos((2n+1)\pi) = -1$ $\cos(x_n)$ converge vers 1 et $\cos(x'_n)$ converge vers -1. Donc $\cos x$ n'a pas de limite en $+\infty$

2. Montrons que $\cos \frac{1}{x}$ n'a pas de limite en $z \acute{e} ro$

Considérons la suite de terme général $x_n = \frac{1}{2n\pi}$ et la suite de terme général $x'_n = \frac{1}{(2n+1)\pi}$. Les deux suites (x_n) et (x'_n) divergent vers zéro. $\cos(x_n) = \cos(2n\pi) = 1$ et $\cos(x'_n) = \cos((2n+1)\pi) = -1$ $\cos(x_n)$ converge vers 1 et $\cos(x'_n)$ converge vers -1. Donc $\cos\frac{1}{x}$ n'a pas de limite en zéro.

Définition (limite infinie en un point fini à droite)

Soit $x_0 \in \mathbb{R}$, f une fonction numérique définie dans un intervalle ouvert $I =]x_0, x_0 + h[, h > 0$, et $\ell \in \mathbb{R}$.

On dit que la fonction f admet pour limite ℓ ou tend vers ℓ en x_0 à droite si

$$\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in I \ (x_0 < x < x_0 + \eta \Longrightarrow |f(x) - \ell| < \varepsilon)$$

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

On écrit
$$\lim_{x \to x_0^+} f(x) = \ell$$
 ou $\lim_{x_0^+} f = \ell$ ou $f(x) \xrightarrow[x \to x_0^+]{} \ell$

Définition (limite infinie en un point fini à gauche)

Soit $x_0 \in \mathbb{R}$, f une fonction numérique définie dans un intervalle ouvert $I =]x_0 - h$, $x_0[, h > 0$, et $\ell \in \mathbb{R}$.

On dit que la fonction f admet pour limite ℓ ou tend vers ℓ en x_0 à droite si

$$\forall \varepsilon > 0$$
, $\exists \eta > 0$ tel que $\forall x \in I \ (x_0 - \eta < x < x_0 \Longrightarrow |f(x) - \ell| < \varepsilon)$

On écrit
$$\lim_{x \to x_0^-} f(x) = \ell$$
 ou $\lim_{x_0^-} f = \ell$ ou $f(x) \xrightarrow{x \to x_0^-} \ell$

Définition (limite finie en un point infini)

Soit f une fonction numérique définie dans un intervalle ouvert $I=]a,+\infty[$, a>0 (respectivement $]-\infty,b[$, b<0).

On dit que la fonction f tend vers $+\infty$ $(-\infty)$ en $+\infty$ $(-\infty)$ si

$$\forall \varepsilon > 0, \exists B > 0 \text{ tel que } \forall x \in I \ (x > B \ (x < -B) \Longrightarrow |f(x) - \ell| < \varepsilon)$$

On écrit
$$\lim_{x \to +\infty} f(x) = \ell$$
 ou $\lim_{+\infty} f = \ell$ ou $f(x) \to \ell$ $\lim_{x \to +\infty} f(x) \to \ell$

Définition (limite infinie en un point fini)

Soit $x_0 \in \mathbb{R}$, f une fonction numérique définie dans un intervalle ouvert I centré en x_0 privé de x_0 et $\ell \in \mathbb{R}$.

On dit que la fonction f tend vers $+\infty$ $(-\infty)$ en x_0 si

$$\forall A > 0, \exists \eta > 0 \text{ tel que } \forall x \in I (|x - x_0| < \eta \Longrightarrow f(x) > A (f(x) < -A))$$

On écrit
$$\lim_{x \to x_0} f(x) = +\infty$$
 ($-\infty$) ou $\lim_{x \to x_0} f = +\infty$ ($-\infty$) ou $f(x) \xrightarrow[x \to x_0]{} +\infty$ ($-\infty$)

Définition (limite infinie en un point fini à droite)

Soit $x_0 \in \mathbb{R}$, f une fonction numérique définie dans un intervalle ouvert $I =]x_0, x_0 + h[, h > 0$, et $\ell \in \mathbb{R}$.

On dit que la fonction f tend vers $+\infty$ $(-\infty)$ en x_0 à droite si

$$\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in I \ (x_0 < x < x_0 + \eta \Longrightarrow f(x) > A \ (f(x) < -A))$$

On écrit
$$\lim_{x \to x_0^+} f(x) = +\infty$$
 ($-\infty$) ou $\lim_{x_0^+} f = +\infty$ ($-\infty$) ou $f(x) \xrightarrow[x \to x_0^+]{} +\infty$ ($-\infty$)

Définition (limite infinie en un point fini à gauche)

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

Soit $x_0 \in \mathbb{R}$, f une fonction numérique définie dans un intervalle ouvert $I = [x_0 - h, x_0], h > 0$, et $\ell \in \mathbb{R}$.

On dit que la fonction f tend vers $+\infty$ ($-\infty$) en x_0 à droite si

$$\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in I \ (x_0 - \eta < x < x_0 \Longrightarrow f(x) > A \ (f(x) < -A))$$

On écrit
$$\lim_{x \to x_0^-} f(x) = +\infty$$
 ($-\infty$) ou $\lim_{x \to x_0^-} f(x) = +\infty$ ($-\infty$) ou $\lim_{x \to x_0^-} f(x) = +\infty$ ($-\infty$)

Définition (limite infinie en un pointin fini)

Soit $x_0 \in \mathbb{R}$, f une fonction numérique définie dans un intervalle ouvert $I =]a, +\infty[, a > 0$ (respectivement $]-\infty, b[, b < 0)$.

On dit que la fonction f tend vers $+\infty$ $(-\infty)$ en $+\infty$ $(-\infty)$ si

$$\forall A > 0, \exists B > 0 \text{ tel que } \forall x \in I \ (x > B \ (x < -B) \Longrightarrow | \Longrightarrow f(x) > A \ (f(x) < -A))$$

On écrit
$$\lim_{x \to +\infty(-\infty)} f(x) = +\infty$$
 ($-\infty$) ou $\lim_{+\infty(-\infty)} f = +\infty$ ($-\infty$) ou $f(x) \xrightarrow[x \to +\infty(-\infty)]{} -\infty$ ($-\infty$)

Proposition (unicité de la limite)

Lorsqu'une fonction a une limite alors cette limite lmite est unique.

Proposition

Lorsqu'une fonction a une limite finie en x_0 fini ou infini alors f est bornée dans un voisinage de x_0 .

Proposition (Opérations sur les limites)

Soit f et g deux fonctions numériques ayant pour limites respectives ℓ et ℓ' finis ou infinis en x_0 fini ou infini. Alors

Cas ℓ et ℓ' finis

1.
$$\lim_{x_0} (f + g) = \ell + \ell'$$

2.
$$\lim_{x_0} fg = \ell \ell'$$
. En particulier, $\forall \alpha \in \mathbb{R}, \lim_{x_0} \alpha f = \alpha \ell$

3. Si
$$\ell \neq 0$$
 alors $\lim_{x_0} \frac{1}{f} = \frac{1}{\ell}$ et si $\ell = 0$ alors $\lim_{x_0} \frac{1}{|f|} = +\infty$

Cas
$$\ell$$
 infini $\ell = +\infty$ $(-\infty)$ et ℓ' fini

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

1.
$$\lim_{x_0} (f + g) = +\infty$$
 ($-\infty$)

2. Si
$$\ell' \neq 0$$
, $\lim_{x_0} fg = +\infty$ ($-\infty$) si $\ell' > 0$ et $\lim_{x_0} fg = +\infty$ ($-\infty$) si $\ell' < 0$ En particulier, $\forall \alpha \in \mathbb{R}$, $\lim_{x_0} \alpha f = +\infty$ ($-\infty$) si $\alpha > 0$ $\lim_{x_0} \alpha g = +\infty$ ($-\infty$) si $\alpha > 0$

3.
$$\lim_{x_0} \frac{1}{f} = 0$$

Cas ℓ et et ℓ' infinis

1.
$$\lim_{x_0} (f+g) = +\infty$$
 ($-\infty$) si $\ell > 0$ et $\ell' > 0$ ($\ell > 0$ et $\ell' > 0$)

2. Si
$$\lim_{x_0} fg = +\infty$$
 ($-\infty$)si $\ell\ell' > 0$ ($\ell\ell' < 0$)

Les formes indéterminées

$$+\infty -\infty$$
; $\pm \infty \times 0$; $\frac{\pm \infty}{+\infty}$, $\frac{0}{0}$

Proposition (limite de la composée)

Soit f et g deux fonctions numériques telles f a une limite ℓ fini ou infini en x_0 fini ou infini et g a une limite ℓ' fini ou infini en ℓ c'est-à-dire $\lim_{x_0} f = \ell'$ et $\lim_{\ell} g = \ell'$ Alors

$$\lim_{x_0} g \circ f = \ell'$$

Proposition (comparaison des limites)

Soit f et g deux fonctions numériques définies dans un intervalle centré en x_0 fini ou infini sauf peut être en x_0 telle que f < g alors

Si
$$\lim_{x_0} f = \ell$$
 fini et $\lim_{x_0} g = \ell'$ fini alors $\ell \leq \ell'$

Si
$$\lim_{x_0} f = +\infty$$
 alors $\lim_{x_0} g = +\infty$

Si
$$\lim_{x_0} g = -\infty$$
 alors $\lim_{x_0} f = -\infty$

I-3 Continuité

U.S.T.H.B. 2021/22

Faculté de mathématiques. Département d'analyse

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

Définition (continuité en un point)

Soit x_0 un réel et f une fonction numérique définie dans un intervalle centré en x_0 . On dit que f est continue en x_0 si f admet une limte en x_0 égale à $f(x_0)$.

On écrit
$$\lim_{x \to x_0} f(x) = f(x_0)$$
 ou $\lim_{x_0} f = f(x_0)$ ou $f(x) \xrightarrow[x \to x_0]{} f(x_0)$

Proposition (caractéisation séquentielle de la continuité)

f est continue en x_0 si, et seulement si \forall la suite (x_n) telle que $\forall n, x_n \in I \setminus \{x_0\}$ convergent vers x_0 , la suite $f(x_n)$ converge vers $f(x_0)$.

Définition (continuité en un point à droite)

Soit x_0 un réel et f une fonction numérique définie dans un intervalle de la forme $[x_0, x_0 + h], h > 0$.

On dit que f est continue en x_0 à droite si f admet une limte en x_0 à droite égale à $f(x_0)$.

On écrit
$$\lim_{x \to x_0^+} f(x) = f(x_0)$$
 ou $\lim_{x_0^+} f = f(x_0)$ ou $f(x) \xrightarrow{x \to x_0^+} f(x_0)$

Définition (continuité en un point à gauche)

Soit x_0 un réel et f une fonction numérique définie dans un intervalle de la forme $]x_0 - h, x_0], h > 0.$

On dit que f est continue en x_0 à gauche si f admet une limte en x_0 à gauche égale à $f(x_0)$.

On écrit
$$\lim_{x \to x_0^-} f(x) = f(x_0)$$
 ou $\lim_{x_0^-} f(x_0)$ ou $f(x) \xrightarrow{x \to x_0^-} f(x_0)$

Proposition

Soit x_0 un réel et f une fonction numérique définie dans un intervalle centré en x_0 . f est continue en x_0 si, et seulement si f est continue en x_0 à droite et en x_0 à gauche.

Définition (continuité sur un intervalle)

Soit f une fonction numérique définie dans un intervalle ouvert f est continue dans I si f est continue en tout point de I. C'est-à-dire

$$\forall \varepsilon > 0, \forall x_0 \in I, \exists \eta > 0 \text{ tel que } \forall x \in I, (|x - x_0| < \eta \Longrightarrow |f(x) - \ell| < \varepsilon)$$

Proposition (Opérations sur les fonctions continues)

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

Soit f et g deux fonctions numériques définies dans intervalle I et continue en $x_0 \in I$.

- 1. f + g est contune en x_0
- 2. fg est contune en x_0
- 3. Si $f(x_0) \neq 0$ alors $\frac{f}{g}$ est contune en x_0

Proposition (composée de fonctions continues)

Soit f une fonction numérique définie dans intervalle I et g une fonction numérique définie dans intervalle J telles que $f(I) \subset J$

Si f et continue en $x_0 \in I$ et g est continue en $f(x_0)$ alors $g \circ f$ est continue en x_0 .

Définition (prolongement pa continuité)

Soit intervalle ouvert I contenant x_0 et f une fonction numérique définie dans I sauf en x_0 . On dit que f est prolongeable par continuité en x_0 si f admet une limite l en x_0 et la fontion \tilde{f} définie dans I par

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ l & \text{si } x = x_0 \end{cases} \text{ est appelé prologement par continuité de } f \text{ en } x_0.$$
 Exemple

1. $f(x) = \frac{\sin x}{x}$ définie dans \mathbb{R}^* a pour limite l = 1 en zéro donc prolongeable par continuité en 0. Son prolongement par continuité en 0 est la fonction qu'on note \tilde{f} définie dans \mathbb{R} par

$$\tilde{f}(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$

2. $f(x) = \frac{1}{x}$ définie dans \mathbb{R}^* n' a pas de limite en zéro donc n'est prolongeable par continuité.

Théorème des valeurs intermédiaires

Soit a et b deux réels tels que a < b. Si f est continue sur un segment [a, b] alors pour tout réel compris entre f(a) et f(b) il existe $c \in [a, b]$ tel que y = f(c)

Corollaire 1

Soit a et b deux réels tels que a < b. Si f est continue sur un segment [a, b] et f(a) f(b) < 0 alors il existe $c \in [a, b]$ tel que f(c) = 0

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

Exemple

Montrer que l'équation Lnx + 3x - 2 - Ln2 = 0 possède une solution unique dans l'intervalle [1, 2].

Posons pour $x \in [1, 2]$, f(x) = Lnx + 3x - 2 - Ln2.

f est continue dans [1,2] et f(1)f(2) < 0 alors il existe $c \in [1,2]$ tel que f(c) = 0.

Donc c est solution de l'équation considérée.

Comme f est croissante dans [1,2] alors c est unique.

Corollaire 2

Si f est continue sur un intervalle I alors f(I) estun intervalle.

Exemple

- 1. $\cos([0, 2\pi[) = [-1, 1]$
- 2. $\cos([0, \pi[) =]-1, 1]$
- 3. $\cos(0, 3\pi) = [-1, 1]$

Théorème

L'image d'un segment par une fonction continue est un segment.

Théorème

Une fonction continue sur un segment est bornée et atteintses bornes.

Théorème (théorème de la bijection).

Soit f une fonction numérique définie sur un intervalle I.

- Si f est continue et strictement monotone sur I, alors
- 1. f établit une bijection de l'intervalle I dans l'intervalle image J = f(I),
- 2. la fonction réciproque f^{-1} est continue et strictement monotone sur J et elle a le même sens de variation que .

Exemple

2. $Ln:]0, +\infty[\to \mathbb{R}, \text{ est continue et strictement croissante dans }]0, +\infty[donc admet une fonction réciproque qu'on note <math>e^x : \mathbb{R} \to]0, +\infty[$ définie, continue et strictement décroissante dans \mathbb{R}

$$y = Lnx, \forall x \in]0, +\infty[\iff y = e^x, \forall x \in \mathbb{R}$$

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

2. $cos: [0,\pi] \to [-1,1]$, est continue et strictement décroissante dans $[0,\pi]$ donc admet une fonction réciproque qu'on note $arccosx: [-1,1] \to [0,\pi]$ définie, continue et strictement décroissante dans [-1,1]

$$y = cosx, \forall x \in [0, \pi] \Leftrightarrow y = arccosx, \forall x \in [-1, 1]$$

3. $tg: \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$, est continue et strictement croissante dans $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ donc admet une fonction réciproque qu'on note $arctgx: \mathbb{R} \to \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ définie, continue et strictement décroissante dans \mathbb{R}

$$y = tgx, \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff y = arctgx, \forall x \in \mathbb{R}$$

4. $sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1,1]$, est continue et strictement croissante dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc admet une fonction réciproque qu'on note $arcsinx: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ définie, continue et strictement croissante dans [-1,1]

$$y = sinx, \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Leftrightarrow y = arcsinx, \forall x \in [-1,1]$$

Définition (continuité uniforme)

Soit f une fonction numérique définie dans un intervalle non vide I. On dit que f est continue uniformément dans I si

$$\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in I, \forall x' \in I, (|x - x'| < \eta \Longrightarrow |f(x) - f(x')| < \varepsilon)$$

Définition (caractérisation séquentielle de la continuité uniforme)

Soit f une fonction numérique définie dans un intervalle non vide I. f est continue uniformément dans I si, etseulement si,

 $\forall (x_n) \in I \text{ et } \forall (x'_n) \in I \text{ telles que la suite } (x_n - x'_n) \text{ converge vers zéro alors la suite } (f(x_n) - f(x'_n)) \text{ Converge vers zéro.}$

Proposition (la continuité uniforme et continuité)

Soit f une fonction numérique définie dans un intervallenon vide I. Si f est uniformément continue dans I alors f est continue dans I. La réciproque est vrai lorsque l'intervalle I est un segemnt.

Proposition (condition nécessaire pour la continuité uniforme)

Si f est continue uniformément dans un intervalle ouvert]a,b[borné ou non alors f possède une limite finie en a à droite et une limite finie en b à gauche.

Exemple

U.S.T.H.B. 2021/22

L1 MI8 Analyse1

Chapitre 3 : Fonctions réelles d'une variable réelle

 $f(x) = \frac{1}{x}$ n'est pas uniformément continue dans tout intervalle de la forme]0,a[puisque sa limite en zéro à droite est infinie, a fini ou infini.

Définition (fonction Lipshitzienne)

Soi f une fonction numérique définie dans un intervalle non vide I. On dit que f est Lipshitzienne de rapport α ou α –Lipshitzienne dans I si $\exists \alpha > 0$ tel que $\forall x \in I, \forall x' \in I, |f(x) - f(x')| \leq \alpha |x - x'|$

Si α < 1 on dit que la fonction est contractante.

Exemple

$$f(x) = \frac{1}{x} \text{ et } I = [1, +\infty[\text{ est } 1 - \text{Lipshitzienne.}]$$
 Soit $x, x' \in [1, +\infty[\text{ alors } xx' \ge 1 \text{ donc } \frac{1}{xx'} \le 1$
$$|f(x') - f(x)| = \left|\frac{1}{x'} - \frac{1}{x}\right| = \left|\frac{x - x'}{xx'}\right| = \frac{1}{xx'}|x' - x| \le |x' - x|$$

$$\frac{1}{x} \text{ est } 1 - \text{Lipshitzienne dans } [1, +\infty[.$$

Proposition (fonction Lipshitzienne et continuité uniforme)

Soi f une fonction numérique définie dans un intervalle non vide I. Si f est α —Lipshitzienne dans I alors ou f est uniformément continue dans I.