Python Insights - Analisando Dados com Python

Case - Cancelamento de Clientes

Você foi contratado por uma empresa com mais de 800 mil clientes para um projeto de Dados. Recentemente a empresa percebeu que da sua base total de clientes, a maioria são clientes inativos, ou seja, que já cancelaram o serviço.

Precisando melhorar seus resultados ela quer conseguir entender os principais motivos desses cancelamentos e quais as ações mais eficientes para reduzir esse número.

Base de dados e arquivos:

https://drive.google.com/drive/folders/1uDesZePdkhiraJmiyeZ-w5tfc8XsNYFZ?usp=drive_link

```
In [1]: # Passo a passo
# Passo 1: Importar a base de dados
# Passo 2: Visualizar os dados (entender a base + identificar proble
# Passo 3: Descartar os dados que não são úteis para minha resoluçãe
# Passo 4: Analisar os dados depois de limpos e começar o raciocinie
# Passo 5: Montar os gráficos para vê o que impacta no cancelamento

In [2]: # Passo 1: Importar a base de dados
import pandas as pd # importando a biblioteca pandas

tabela = pd.read_csv('cancelamentos.csv') # importando os dados
# Passo 2: Visualizar os dados (entender a base + identificar proble
display(tabela)
```

	CustomerID	idade	sexo	tempo_como_cliente	frequencia_uso	lig
0	2.0	30.0	Female	39.0	14.0	
1	3.0	65.0	Female	49.0	1.0	
2	4.0	55.0	Female	14.0	4.0	
3	5.0	58.0	Male	38.0	21.0	
4	6.0	23.0	Male	32.0	20.0	
•••	•••					
881661	449995.0	42.0	Male	54.0	15.0	
881662	449996.0	25.0	Female	8.0	13.0	
881663	449997.0	26.0	Male	35.0	27.0	
881664	449998.0	28.0	Male	55.0	14.0	
881665	449999.0	31.0	Male	48.0	20.0	

881666 rows × 12 columns

```
In [3]: # Passo 3: Descartar os dados que não são úteis para minha resolução
# CustomerID não interfere na taxa de cancelamento, logo não será no
tabela = tabela.drop(columns='CustomerID')
# verificar se existe dados vazios
display(tabela.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 881666 entries, 0 to 881665
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	idade	881664 non-null	float64
1	sexo	881664 non-null	object
2	tempo_como_cliente	881663 non-null	float64
3	frequencia_uso	881663 non-null	float64
4	ligacoes_callcenter	881664 non-null	float64
5	dias_atraso	881664 non-null	float64
6	assinatura	881661 non-null	object
7	duracao_contrato	881663 non-null	object
8	total_gasto	881664 non-null	float64
9	<pre>meses_ultima_interacao</pre>	881664 non-null	float64
10	cancelou	881664 non-null	float64

dtypes: float64(8), object(3)

memory usage: 74.0+ MB

None

In [4]: # visualizando quais são os dados que possuem valores vazios
display(tabela[tabela.isna().any(axis=1)])

		idade	sexo	tempo_como_cliente	frequencia_uso	ligacoes_callcen
	11	52.0	Female	21.0	6.0	
	14	24.0	Male	4.0	9.0	
	17	47.0	Male	41.0	NaN	
	18	24.0	Male	44.0	13.0	
	23	27.0	Female	NaN	8.0	
1	199295	NaN	NaN	NaN	NaN	N
6	640128	NaN	NaN	NaN	NaN	Ν

```
In [5]: # excluir da tabela os valores vazios, já que são poucos valores
  tabela = tabela.dropna()

# tabela atualizada sem nenhum valor vazio
  display(tabela.info())

<class 'pandas.core.frame.DataFrame'>
```

Index: 881659 entries, 0 to 881665
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	idade	881659 non-null	float64
1	sexo	881659 non-null	object
2	tempo_como_cliente	881659 non-null	float64
3	frequencia_uso	881659 non-null	float64
4	ligacoes_callcenter	881659 non-null	float64
5	dias_atraso	881659 non-null	float64
6	assinatura	881659 non-null	object
7	duracao_contrato	881659 non-null	object
8	total_gasto	881659 non-null	float64
9	<pre>meses_ultima_interacao</pre>	881659 non-null	float64
10	cancelou	881659 non-null	float64

dtypes: float64(8), object(3)

memory usage: 80.7+ MB

None

In [6]: # Passo 4: Analisar os dados depois de limpos e começar o raciocinia
display(tabela['cancelou'].value_counts()) # visualizar quantos cand
display(tabela['cancelou'].value_counts(normalize=True).map("{:.1%}'

cancelou

1.0 499993

0.0 381666

Name: count, dtype: int64

cancelou

1.0 56.7%

0.0 43.3%

Name: proportion, dtype: object

In [7]: # Passo 5: Montar os gráficos para vê o que impacta no cancelamento
import plotly.express as px

```
# montar os gráficos em dois passos: criar o gráfico e exibir o grá
         # criar o gráfico
         grafico = px.histogram(tabela, x='duracao_contrato', color='cancelo
         # montar o gráfico
         grafico.show()
 In [8]: # criar os graficos relacionando com todos os dados
         for coluna in tabela.columns:
             grafico = px.histogram(tabela, x=coluna, color='cancelou', text)
             grafico.show()
 In [9]: # Levantar os pontos chaves da observação:
             # P1: Pessoas com plano mensal cancelam
             # P2: dias_atraso maior que 20 gera cancelamento
             # P3: ligacoes_callcenter mais de 4x gera cancelamento
In [10]: # visualizar como ficaria a taxa de cancelamento se esses problemas
         # resolvendo o P1:
         tabela = tabela[tabela['duracao_contrato'] != 'Monthly'] # taxa cail
         # resolvendo P2:
         tabela = tabela[tabela['dias_atraso'] <= 20] # taxa caiu para 35%
         # resolvendo P3:
         tabela = tabela[tabela['ligacoes_callcenter'] <= 4] # taxa caiu par@
         display(tabela['cancelou'].value_counts(normalize=True).map("{:.1%}'
        cancelou
        0.0
               81.6%
        1.0
               18.4%
        Name: proportion, dtype: object
```