第三章 选频回路与阻抗变换

- 逾 3.1 选频回路的主要指标 (5.1.1节)
- 逾 3.2 LC并联谐振回路 (5.1.4节)
- ◎ 3.3 无源阻抗变换网络 (8.1.1节)
- 逾 3.4 史密斯圆图 (第3章部分内容)

3.1 选频回路的主要指标

选频回路

◆功能:

选出有用信号, 滤除或抑制无用信 号

◆应用:

射频系统的各个 模块——放大、振 荡、调制、解调、 滤波等

3.1 选频回路的主要指标

选频回路的指标

1. 幅频特性

- (1) 中心频率 f_0
- (2) 通频带 BW_{3dB}
- (3) 带内波动
- (4) 选择性: 矩形系数

$$K_{0.1} = \frac{BW_{0.1}}{BW_{1/\sqrt{2}}} = \frac{BW_{20dB}}{BW_{3dB}}$$

- (5) 输入输出阻抗
- (6) 插入损耗 $L = \frac{P_{\text{in}}}{P_{\text{out}}}$

3.1 选频回路的主要指标

2. 相频特性

相频特性斜率: $\tau(\omega) = \frac{d\varphi}{d\omega}$

称为群时延

要求: 在通频带内群时延为常数

表现: 相频特性为线性

结果: 通频带内不同频率信号延迟相同时间

不产生波形失真

• 并联谐振回路

如图所示为简单并联谐振回路和实际的并联谐振回路

实际的并联谐振回路

怎么用?

3.2.1 简单并联谐振回路

对于简单并联谐振回路,可以写出其阻抗表达式为:

$$Z(j\omega) = \frac{1}{\frac{1}{R} + j\omega C + \frac{1}{j\omega L}} = \frac{R}{1 + j\frac{R}{\omega_0 L} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} = \frac{R}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

 $\phi \omega_0$ 为谐振频率(虚部为0的对应频率),Q为品质因数:

$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad Q = \frac{R}{\omega_0 L} = R\omega_0 C$$

A. 谐振时的特性

1. 阻抗特性

$$Y(\omega_0) = G$$

$$\rho = \omega_0 L = \frac{1}{\omega_0 C}$$

2. 电压特性

$$\dot{V_o} = \dot{I}_S R$$

输出电压最大且与信号源同相

$$Q = \frac{R}{\omega_0 L} = \frac{R}{\rho} = \frac{\omega_0 C}{G}$$

3. 品质因数Q

$$Q = 2\pi \frac{$$
谐振时回路总储能
谐振时回路一周耗能
$$= \frac{2\pi CV^2}{TV^2/R}$$

- · 品质因数Q描述了回路自由谐振时幅度衰减的速率
- · Q会影响到回路对带外频率信号的选择性

4. 电流特性

• 电感电流

$$\dot{I}_L = \frac{\dot{V_0}}{j\omega_0 L} = \frac{\dot{I}_s R}{j\omega_0 L} = -jQ\dot{I}_s$$

• 电容电流

$$\dot{I}_C = j\omega_0 C \cdot \dot{V}_0 = j\omega_0 C \dot{I}_S R = jQ \dot{I}_S$$

特点: 电抗支路的电流比信号源大Q倍

串联谐振回路

串、并联特性对照表

	并联	串联				
电路结构	L、C、G并联	L、C、R串联				
激励信号源	电流源 I_S	电压源 V_S				
谐振角频率	$\omega_0 = \frac{1}{\sqrt{LC}}$	$\omega_0 = \frac{1}{\sqrt{LC}}$				
谐振阻抗	$Y(\omega_0) = G$	$Z(\omega_0) = R$				
品质因数	$Q = \frac{\omega_0 C}{G} = \frac{R_P}{\omega_0 L}$	$Q = \frac{\omega_0 L}{R} = \frac{1}{R\omega_0 C}$				
谐振时的电流(电压)	$I_L = I_C = QI_S$	$V_L = V_C = QV_S$				

B. 选频特性

分析内容: 回路输出电压(电流)及回路阻抗随频率变化特性

1. 并联谐振回路

输出电压:
$$\dot{V}(\omega) = \dot{I}_S Z(\omega) = \frac{\dot{I}_S R}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} = \frac{\dot{V}(\omega_0)}{1 + j\xi}$$

广义失谐:
$$\xi = Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)$$

2. 电压~频率特性与阻抗~频率特性相同

(因为Is为常数)

- 讨论谐振频率附近的选频特性 ($\omega \approx \omega_0$)
 - > 近似条件:

$$\xi = Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = Q \frac{(\omega + \omega_0)(\omega - \omega_0)}{\omega \omega_0} \approx Q \frac{2\omega_0(\omega - \omega_0)}{\omega_0^2} = Q \frac{2(\omega - \omega_0)}{\omega_0}$$

> 公式:

$$\dot{V}(\omega) \approx \frac{\dot{I}_s R}{1 + jQ \frac{2(\omega - \omega_0)}{\omega_0}} = \frac{\dot{V}(\omega_0)}{1 + jQ \frac{2\Delta\omega}{\omega_0}} = \frac{\dot{V}(\omega_0)}{\sqrt{1 + \left(Q \frac{2\Delta\omega}{\omega_0}\right)^2}} e^{j\varphi}$$

其中: $\varphi = -\arctan Q \frac{2\Delta\omega}{\omega_0}$

(1) 幅频特性(归一化选频特性)

公式:
$$S = \frac{V(\omega)}{V(\omega_0)} = \frac{1}{\sqrt{1 + \left(Q\frac{2\Delta\omega}{\omega_0}\right)^2}}$$

①选择性

回路的Q值越高,选择性越好

② 通频带

$$\diamondsuit S = \frac{1}{\sqrt{2}}$$
,得:

$$BW_{3dB} = 2\Delta\omega = \frac{f_0}{Q}$$
 \longrightarrow $\int_0^0 \text{大,通频带宽}$ Q 高,通频带窄,选择性好

注意: 高的选择性与宽的通频带对Q的要求是矛盾的

③矩形系数

$$K_{0.1} = \frac{\text{BW}_{20\text{dB}}}{\text{BW}_{3\text{dB}}} = 9.96 >> 1$$

其中BW_{0.1}由S = 0.1求出

阻抗Z的表达式可写为:

$$Z(j\omega) = \frac{R}{1 + j\xi}$$

$$|Z(\omega)| = \frac{R}{\sqrt{1+\xi^2}}$$
, $\varphi_z = -\arctan \xi$

(2) 相频特性

$$\varphi = -\arctan Q \frac{2\Delta\omega}{\omega_0}$$

① 谐振时 $\varphi(\omega_0) = 0$

含义:回路阻抗呈纯电阻,输出电压与信号电流同相

② 失谐时

当 $\omega < \omega_0$ 时 $\varphi(\omega) > 0$,并联回路阻抗呈感性; 当 $\omega > \omega_0$ 时 $\varphi(\omega) < 0$,并联回路阻抗呈容性。

注意: 回路的阻抗性质会随频率而变化

$$\varphi = -\arctan Q \frac{2\Delta\omega}{\omega_0}$$

③ 相频特性曲线斜率

$$\left. \frac{d\varphi}{d\omega} \right|_{\omega=\omega_0} = -\frac{2Q}{\omega_0}$$

特点: ① 负斜率

② Q越大, 相频特性越陡

④ 线性相频范围

当
$$|\varphi| \le \frac{\pi}{6}$$
 时, $\varphi(\omega) \approx -2Q \frac{(\omega - \omega_0)}{\omega_0}$

相频特性 $\varphi(\omega) \sim \omega$ 呈线性

2. 串联谐振回路

选频特性

对偶特性应用:

变量对偶时, 特性曲线相同

相频特性

变量相同时,

电抗特性

特性曲线 变化相反

串并联对比:

- ✓ 并联谐振是电流谐振,C和L支路上的电流相互交换,形成谐振,对外电流交换为0,呈开路状态;
- ✓ 串联谐振是电压谐振, *C*和*L*支路上的电压相互交换,形成谐振,对外电压交换为0,呈短路状态。
- ✓ 并联谐振回路用电流源激励;
- ✓ 串联谐振回路用电压源激励。
- ✓ 并联谐振回路谐振时L、C支路上的电流是外部端口电流的Q倍;
- ✓ 串联谐振回路谐振时L、C之路上的电压是外部端口电压的Q倍。

3.2.2 实际并联回路

讨论的意义:

- 1. 实际的线圈(或电容)是有损耗的
- 2. 并联回路的前后接有信号源与负载——对Q的影响

1. 实际并联回路

▶ 考虑损耗的线圈的等效电路 串联小电阻 r

> 实际并联回路电路形式

分析方法

直接推导:端口阻抗Z(jω)表达式推导如下:

$$Z(j\omega) = \frac{1}{\frac{1}{r+j\omega L} + j\omega C} = \frac{r+j\omega L}{1+j\omega C(r+j\omega L)} = \frac{1+\frac{r}{j\omega L}}{\frac{1}{j\omega L} + \frac{Cr}{L} + j\omega C}$$

• 若回路中电感的感抗远远大于损耗电阻值, $r/\omega L \ll 1$,并引入R'与电容支路并联,其值取

$$R' = L/Cr$$

则阻抗表达式变为:

$$Z(j\omega) = \frac{1}{\frac{1}{R'} + j\omega C + \frac{1}{j\omega L}}$$

讨论信号源内阻及负载对回路的影响

 R_S 和 R_L 不影响回路谐振频率只影响谐振阻抗和回路Q

谐振阻抗 $R_T = R_S //R_L //R_P$

回路损耗对应——空载 Q_0 : $Q_0 = \frac{\omega_0 L}{r} = \frac{R_P}{\omega_0 L} >> 1 高 Q$

有载 Q_e 为: $Q_e = \frac{R_T}{\omega_0 L} = \frac{Q_0}{1 + \frac{R_P}{R_S} + \frac{R_P}{R_L}} < Q_0$

结果: 通频带变宽, 选择性变差

课堂测试

1. 用R、L、C并联谐振回路对SSB上边带信号(载频为 ω_c ,带宽为 Ω)进行选频,则回路元件值应当满足什么关系式? 在载波频率上回路阻抗幅值为何?

- 2. 已知一RLC并联谐振回路的中心频率 f_0 =465kHz, Q_0 =120
- , $Q_e = 60$,L=100mH试问:回路的电容C和通频带BW $_{3dB}$ 为多少?并联电阻R为多少?

3.3 无源阻抗变换网络

- > 阻抗变换的必要性
 - (1) 实现最大功率传输——共轭匹配
 - (2) 改善噪声系数
 - (3) 保证滤波器性能

对变换网络的要求:

(1) 损耗小 —— 用纯电抗

(2) 带宽 宽带:变压器、传输线

→ 窄带: LC网络

3.3.1 部分接入进行阻抗变换

电抗元件部分接入

X₁与X₂为同性质电抗

分析方法: 将部分阻抗折合到 全部, X_1 、 X_2 值不变, $R \rightarrow R'$

条件: 并联支路 $Q = \frac{R}{X_2} >> 1$

电感部分接入

电容部分接入

3.3.1 部分接入进行阻抗变换

定义参数:接入系数 P

$$P = \frac{B \lambda$$
部分阻抗 $= \frac{X_2}{X_1 + X_2} < 1$

电容部分接入系数
$$P_c = \frac{X_{c2}}{X_{c1} + X_{c2}} = \frac{C_1}{C_1 + C_2} < 1$$

电感部分接入系数
$$P_L = \frac{X_{L2}}{X_{L1} + X_{L1}} = \frac{L_2 \pm M}{L_1 + L_2 \pm 2M} < 1$$

变换原则: 变换前后电阻上功率相等

$$R' = \frac{R}{P^2}$$

3.3.2 L 网络阻抗变换

特征: ① 两电抗元件组成 —— 结构形式同 L

② 窄带网络——两电抗元件异性,有选频滤波性能

分析目标: 已知工作频率 ω_0 , 欲将 R_L 变换为 R_s ,

求: 电路结构和 $X_S \setminus X_P$

3.3.2 L网络阻抗变换

1. 电路结构与参数计算

变换依据: 串并联互换

谐振, 开路

串联支路 $R_L X_S \longrightarrow$ 并联支路 $R_P X_{SP} \longrightarrow R_P = R_S$

串并联互换公式

$$R_S = R_P = R_L \left(1 + Q^2 \right)$$

$$Q = \sqrt{\frac{R_S}{R_L}} - 1$$

$$X_{\rm SP} = X_{\rm S} \left(1 + \frac{1}{Q^2} \right)$$

3.3.2 L网络阻抗变换

串联支路

$$Q = \frac{X_S}{R_L}$$

等效并联支路

$$Q = \frac{R_{\rm P}}{X_{\rm SP}}$$

谐振回路

$$Q = \frac{R_S}{X_P}$$

同一端口从不同的角度观察, 阻抗特性等效

$$Q = \frac{X_S}{R_L} = \frac{R_P}{X_{SP}} = \frac{R_S}{X_P}$$

$$Q = \sqrt{\frac{R_S}{R_L} - 1} \qquad \qquad X_S = QR_L \qquad X_P = \frac{R_S}{Q}$$

$$X_S = QR_L$$

$$X_P = \frac{R_S}{O}$$

注意:
$$R_s > R_L$$

3.3.2 L 网络阻抗变换

并联支路 $R_L X_P \longrightarrow$ 串联支路 $r_S X_{PS} \longrightarrow r_S = R_S$

其中
$$R_L = r_S(1+Q^2) = R_S(1+Q^2)$$

$$Q = \sqrt{\frac{R_L}{R}-1}$$

总结: L匹配网络支路的 Q 值可以表示为

$$Q = \sqrt{\frac{R_{(\pm \text{di})}}{R_{(\text{hdi})}}} - 1$$

L网络缺点: 当两个要阻抗变换的源和负 载电阻值确定后,L网络的Q值也确定了, 是不能选择的,因此该窄带网络的滤波 性能不能选择。

3.3.2 L 网络阻抗变换

例:已知信号源内阻 $R_s = 12\Omega$,并串有寄生电感L = 1.2nH。负载电阻为 $R_L = 58\Omega$ 并带有并联的寄生电容 $C_L = 1.8$ pF,工作频率为f = 1.5GHz。设计 L 匹配网络,使信号源与负载达共轭匹配。

解: 先将信号源端的寄生电感和负载端的 寄生电容归并到 L 网络中。

由于 $R_L > R_S$,则L网络如图示

$$Q = \sqrt{\frac{R_L}{R_S} - 1} = \sqrt{\frac{58}{12} - 1} = 1.96$$

L网络并联支路电抗

$$X_P = \frac{R_L}{Q} = \frac{58}{1.96} = 29.6\Omega \longrightarrow C_P = C_1 + C_L$$

L网络串联支路电抗

$$X'_{S} = QR_{S} = 1.96 \times 12 = 23.5\Omega \longrightarrow L'_{S} = L_{S} + L_{1}$$

8.1 采用分立元件的匹配网络

匹配网络就是阻抗匹配,在原系统中插入一无源网络,以减小反射、噪声干扰、提高功率容量和频率响应的线性度等。

一、L型网络(双元件)

设计方法: 1. 采用解析法求出元件值, 2. 利用圆图设计。

前者结果精确,便于访真;后者简单直观,容易验证。

8.1 采用分立元件的匹配网络

例8.1 已知晶体管在2GHz的输出阻抗 Z_T =(150+j75) Ω ,设计如图L形匹配

网络,使输入阻抗 $Z_A = (75+j15) \Omega$ 的天线得到最大功率。

解:根据最大功率传输条件(共轭匹配)

$$Z_{M} = \frac{1}{Z_{T}^{-1} + jB_{C}} + jX_{L} = Z_{A}^{*}$$

可得: $\frac{R_T + jX_T}{1 + jB_C(R_T + jX_T)} + jX_L = R_A - jX_A$

$$B_{C} = \frac{X_{T} \pm \sqrt{R_{T} \left(R_{T}^{2} + X_{T}^{2}\right) / R_{A} - R_{T}^{2}}}{R_{T}^{2} + X_{T}^{2}} 9.2 \text{ mS} \Rightarrow C = \frac{B_{C}}{\omega} = 0.73 \text{ pF}$$

$$X_{L} = \frac{1}{B_{C}} - \frac{R_{A}(1 - B_{C}X_{T})}{B_{C}R_{T}} - X_{A} = 76.9\Omega \Rightarrow L = \frac{X_{L}}{\omega} = 6.1\mu H$$

解析法计算量相当大,图解法的复杂程度几乎与元件数目无关,而且能体会到每个元件对实现特定匹配状态的贡献。

3.3.3 π和T型匹配网络

当对匹配网络有更高的滤波要求时,采用三电抗元件组成

π和T型匹配网络

分析方法:分解为两个L网络,设置一个假想中间电阻 R_{inter}

两个L网络的Q分别是

$$Q_1 = \sqrt{\frac{R_S}{R_{\text{inter}}}} - 1$$
 $Q_2 = \sqrt{\frac{R_L}{R_{\text{inter}}}} - 1$ 带宽由较高的 Q 值决定

假设Q的原则:根据滤波要求,设置一个高Q 当 $R_L > R_S$ 时, $Q_2 = Q$ 当 $R_L < R_S$ 时, $Q_1 = Q$

3.4 史密斯圆图

射频微波工程中最基本的运算是: 计算 Γ 、驻波比、 Z_{in}

Smith圆图是把 特征参数 Z_0 、 β 及长度d和工作参数形成一体,采用图解法计算工作参数的一种专用图表。

圆图的应用:

- >采用图解法计算工作参数
- > 直观理解阻抗匹配问题
- 〉矢量网络分析、CAD软件的主要结果形式

简单,方便和直观

3.4 史密斯圆图

1. 参数归一

•阻抗归一
$$z_{in} = \frac{Z_{in}}{Z_0} = \frac{1+\Gamma}{1-\Gamma} \quad \Gamma = \frac{z_{in}-1}{z_{in}+1}$$

好处?

阻抗千变万化,现在用 Z_0 归一,统一起来作为一种情况研究。简单地认为 $Z_0 = 1$,使特征参数 Z_0 不见了。

•长度归一 长度为d的传输线其电长度为: $\theta = d/\lambda$

好处?

电长度包含了特征参数 β , β 连同长度均转化为?

反射系数角度

与结构和工作 频率 无关

3.4 史密斯圆图

2. |Γ|是系统的不变量

$$\Gamma(d) = \Gamma_0 e^{-j2\beta d}$$

3. 把阻抗 (或导纳) 套覆在|Γ|圆上

以 $|\Gamma|$ 从0到1的同心圆作为Smith圆图的基底,在有限空间内表示全部工作参数 Γ 、 z_{in} (和 y_{in})和SWR。

Smith圆图的基本思想可描述为:

- ▶消去特征参数 Z₀: 参数归一
- ▶把 d 归于 Γ 相位: 长度→角度 (或波长)

3.4.1 史密斯圆图的基本构成

Smith圆图的基本构成

1. 建立反射系数复平面

$$\Gamma = \left| \Gamma_0 \right| e^{j(\phi_L - 2\beta d)} = u + jv$$

原点(匹配) 开路点 短路点

全反射 SWR

$$\varphi = 0^{\circ}$$
 $\varphi = \pm 180^{\circ}$

2. 绘制等Γ曲线

Γ₀ 等Γ圆

向电源方向移动d:

Γ 移动距离

实际圆图的标注: 角度与距离

1. 套覆阻抗图

曲线方程:
$$\Gamma = u + jv$$
 $z_{in} = r + jx = \frac{1 + \Gamma}{1 - \Gamma} = \frac{1 + u + jv}{1 - u - jv}$

两边+1:
$$1+r+jx = \frac{2}{1-u-jv}$$
 (a)

(a)取共轭:
$$1+r-jx = \frac{2}{1-u+jv}$$
 (b)

(a)+(b):
$$\left(u - \frac{r}{1+r}\right)^2 + v^2 = \left(\frac{1}{1+r}\right)^2$$

(a)-(b):
$$(u-1)^2 + \left(v - \frac{1}{x}\right)^2 = \left(\frac{1}{x}\right)^2$$

2. 等 r 圆 (阻抗实部)

/	2	1 4	$\searrow 2$
(r)	2		1
u – —	$+v^{2} =$		_
1 1 1		1+	10
1+r		$(1_{\perp}$	

圆心(r/(1+r)、0)	0, 0	1/3, 0	1/2, 0	2/3, 0	1, 0
半径 (1/(1+r))	1	2/3	1/2	1/3	0
r	0	0.5	1	2	∞

$$r=0$$

$$r=0.5$$
 $r=1$

$$r=1$$

$$r=2$$

$$r=\infty$$

说明: ▶jx 轨迹

$$r > 1(x=0)$$

$$r < 1(x=0)$$

- ▶所有曲线与D点相切
- > r 读数的标注

3. 等x弧线 (阻抗虚部)

$$(u-1)^2 + \left(v - \frac{1}{x}\right)^2 = \left(\frac{1}{x}\right)^2$$

圆心(1,1/x)	1, ∞	$\sqrt{1, \pm 2}$	$\sqrt{1,\pm 1}$	$1, \pm 1/2$	1,0
半径 (1/x)	∞	2	1	1/2	O
X	0	± 0.5	± 1	± 2	∞

$$x=0$$

$$x = \pm 0.5$$
 $x = \pm 1$

$$x = \pm 2$$
 $x = \infty$

$$x = \infty$$

说明:

$$> x > 0$$
、 $x < 0$ 平面

- ▶所有曲线与D点相切
- >x 读数的标注

4. 阻抗圆图特点

- ▶三点(开、短、匹配)
- ▶ 两线(SWR、纯电抗线)
- ▶ 两面(上(感) 、下(容))
- ▶ 两方向(顺(源)、逆(载))

红点读数:?

蓝点读数:?

3.4.3 导纳圆图

导纳圆图

Smith圆图是阻抗、导纳兼用的。

1. 阻抗圆图转为导纳圆图

曲线方程

$$z_{in} = \frac{1+\Gamma}{1-\Gamma} = r+jx$$

$$y_{in} = \frac{1-\Gamma}{1+\Gamma} = \frac{1+(-\Gamma)}{1-(-\Gamma)} = g+jb$$

以电流反射系数 (-Γ) 建立复平面,导纳图与阻抗图完全一致, 其对应关系为:

$$\Gamma \leftrightarrow -\Gamma$$
, $r \leftrightarrow g$, $x \leftrightarrow b$

3.4.3 导纳圆图

并联问题用导纳圆图, 串联问题用阻抗圆图

3.4.4 史密斯圆图的应用

例:已知 $Z_L=80$ -j 40Ω , $Z_0=50\Omega$,求驻波比, Γ_L ,LR

$$(1).z_L = Z_L / Z_0 = 1.6 - j0.8$$
, 圆图上 z_L 于A点

(2).以|OA|作等SWR圆,得 $\rho = 2.16$

$$(3)$$
. 延长 \overline{OA} 得 $\varphi_L = -36^\circ$

(4).
$$|\Gamma_L| = \frac{\text{SWR} - 1}{\text{SWR} + 1} = 0.36$$

 $\Gamma_L = 0.36 \angle - 36^\circ$

(5).
$$LR = -20 \lg |\Gamma_L| = 8.8 dB$$

3.4.4 史密斯圆图的应用

(1) 串联一个元件

采用阻抗圆图:

串联电感,沿等r圆顺时针移动串联电容,沿等r圆逆时针移动串联电阻,沿等x弧线移动

(2) 并联一个元件

采用导纳圆图

并联电感,沿等 g 圆逆时针移动 并联电容,沿等 g 圆顺时针移动

3.4.4 史密斯圆图的应用

ADS软件演示

完成输入阻抗50Ω,输出阻抗150Ω的阻抗匹配。有多种网络可用,注意匹配过程中输入阻抗在阻抗/导纳圆图中的变化!

本章重点

- ➤ 掌握LC并联谐振回路
- ➤ 掌握L型阻抗变换网络的设计
- > 理解π和T型匹配网络的原理
- > 了解史密斯圆图的特点和应用

课后设计作业1

▶ 请下载ADS软件,利用史密斯圆图实现两种阻抗匹配网络(至 少含一个L网络),结合解析法对L网络的结果进行说明,工作 频率900MHz、网络形式自选。

■ 信源阻抗: 统一为150Ω

■ **负载阻抗:实部**为rem(学号, 6)+1

虚部为 +rem(学号, 25)*10+10, 偶数学号

-rem(学号, 25)*10-10, 奇数学号

提交形式: 文件名为"学号_姓名.docx/doc"

发送至邮箱 yzhang627@xjtu.edu.cn

截止日期: 2022-10-30