Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра «Измерительные информационные технологии»

Исследование алгоритма Виолы-Джонса

10.03.01 Информационная безопасность

Выпускная квалификационная работа на соискание степени бакалавра

Студент гр. 43505/2 Сидоренко Е.В. Руководитель: д.т.н., проф. Малыхина Г.Ф.

Санкт-Петербург 2017 г.

Цели и задачи

• Цели:

- Реализовать алгоритм детектирования Виолы-Джонса
- Выполнить модификацию алгоритма с использованием различных алгоритмов классификации
- Провести сравнение результатов тестирования

Задачи:

- Провести анализ алгоритма Виолы-Джонса
- Реализовать каждый этап алгоритма с использованием пакета MATLAB
- Построить графики качества детектирования
- Получить оценку точности классификации
- Получить ошибки первого и второго рода

Признаки Хаара

• Признак Хаара — численное значение, характеризующееся разностью суммы пикселей между черной и белой областями.¹

Характеристики

Нормализация

Сложность вычисления

Интегральное изображение

- Интегральное преобразование изображения преобразование, при котором в каждом пикселе хранится сумма пикселей, находящихся левее и выше текущего.
- $I(X) = X[i;j] + X[i-1;j] + X[i;j-1] X[i-1;j-1]^2$

Преобразование

Пример (1)

1	1	1	1	1
1	1	1	1	1
1	1,	1,	1	1
1	1	1	1	1
1	1	1	1	1

1	2	3	4	5
2	4	6	8	10
3	6	9	12	15
4	8	12	16	20
5	10	15	20	25

Пример (2)

1	2	3	4	5
2	4 (A)	6	8	10 (C)
3	6	9	12	15
4	8	12	16	20
5	10 (B)	15	20	25 (D)

$$S = D + A - C - B \rightarrow S = 25 + 4 - 10 - 10 = 9$$

Скорость вычисления

AdaBoost

- AdaBoost алгоритм машинного обучения, предложенный Йоавом Фройндом и Робертом Шапайром
- Является алгоритмом адаптивного бустинга, т.е. каждый следующий классификатор строится по объектам, которые плохо классифицируются предыдущими классификаторами³

Концепция

Задача дискриминантного анализа

Входные и выходные данные

Обучающая выборка	0.5	0.3	0.6	1.1	0.4	1.5	0.9	1.8	1.1	0.7	0.1
Вектор классификации	1	1	1	-1	1	-1	1	-1	-1	1	1

Бинарное дерево

Преимущества и недостатки

Тестирование

Сравнение алгоритмов

		Позитивных образцов	Негативных образцов
Размер тренировочной выбор	320	640	
Размер тестовой выборки	80	160	
AdaBoost		75	152
Coarse Gaussian	Правильно классифицировано	67	156
Quadratic Discriminant		68	154

Ошибки первого и второго рода

Алгоритм	Ошибка первого рода (ложное срабатывание)	Ошибка второго рода (пропуск события)
AdaBoost	0.033	0.021
Coarse Gaussian	0.016	0.054
Quadratic Discriminant	0.025	0.050

Что планируется реализовать

- Удобный API для добавления любых объектов в качестве тренировочной выборки
- Генерация множества изображений объекта, находящегося под разными углами, из нескольких изображений образца
- GUI для удобного использования
- Расширение признаков Хаара для улучшения точности детектирования

Заключение

- Реализован алгоритм детектирования Виолы-Джонса
- Был модифицирован алгоритм детектирования путем изменения алгоритма классификации
- Получены графики зависимости качества детектирования от количества итераций алгоритма AdaBoost
- Произведено сравнение алгоритмов классификации
- Вычислены ошибки первого и второго рода

Публикации

Сидоренко Е.В. Анализ алгоритма Виолы-Джонса и аналитическое сравнение различных видов его модификаций. Информатика и кибернетика (ComCon—2017): сборник докладов студенческой научной конференции Института компьютерных наук и технологий. 3—8 апреля 2017 года. — СПб.: Изд-во Политехн. ун-та, 2017