Design of Wind Energy Systems

CIP Tutorial 05 Hints for wind fields and wake modelling

Prof. Dr. M. Kühn

ForWind – Wind Energy Systems

Topics

- Some concepts for wind field generation
- Wind fields TurbSim
- Summary

No reproduction, publication or dissemination of this material is authorized, except with written consent of the author.

Oldenburg, June 2015

Prof. Dr. Martin Kühn

Some concepts for wind field generation

Where do we start?

Turbulent wind

- Wind is unevenly distributed over the rotor area
- As wind varies over time, so does the aerodynamic loads and the structural response
- Probability distributions relate time to wind speed
- Load cases define conditions to be simulated
- To estimate structural loads a statistical approach is followed

Hau, 2005

Probability distribution

- Weibull distribution, where Rayleigh distribution is a special case
- Rayleigh can be assumed to be a "usual" frequency distribution
- The probability distribution helps to estimate:
 - annual energy production
 - structural loads

Wind classes & normal turbulence model

Standard IEC 61400 defines the following wind classes:

Wind turbine class		1	Ш	III	S
V_{ref}	(m/s)	50	42,5	37,5	Values
Α	I _{ref} (-)		0,16		specified
В	I _{ref} (-)		0,14		by the
С	I _{ref} (-)		0,12		designer

Where:

Vref – reference wind speed (50y) Iref – turbulence intensity at 15m/s

The normal turbulence model (NTM) is defined as follows:

$$\sigma_1 = I_{ref}(0.75V_{hub} + b); b = 5.6 \text{ m/s}$$

Where:

 σ 1 – std. dev. of ambient turbulence at a given wind speed at hub height

Wake modelling – Frandsen

 The effective turbulence accounts for the increase of turbulence due to wakes, and it can be used to estimate structural loads (IEC 61400)

$$I_{\text{eff}} = \frac{\hat{\sigma}_{\text{eff}}}{V_{\text{hub}}} = \frac{1}{V_{\text{hub}}} \left[(1 - N p_{\text{w}}) \hat{\sigma}^{\text{m}} + p_{\text{w}} \sum_{i=1}^{N} \hat{\sigma}_{\text{T}}^{\text{m}}(d_i) \right]^{\frac{1}{m}}$$

Note: it does not account for mean wind speed reduction, and:

$$\hat{\sigma}_{T} = \sqrt{\frac{0.9V_{\text{hub}}^{2}}{(1.5 + 0.3d_{i}\sqrt{V_{\text{hub}}/c})^{2}} + \hat{\sigma}^{2}}$$

- N number of neighboring wind turbines (N = 1)
- p_w probability of wind direction (assume uniform case: p_w = 0.06)
- σ standard deviation of ambient turbulence (σ_1 in NTM)
- d_i distance to neighboring wind turbine (di = 4 or 8)
- c constant value (c = 1 m/s)
- m Wöhler slope from SN-curve (m = 4 for steel, m = 10 for fiber glass)

Power production & faults

- Faults can be related to failure of control functions or the electrical system
- Some failures of the turbine have to be considered in the simulations to guarantee structural integrity
- In tutorial 05 no faults are taken into account

[http://www.snopes.com/photos/accident/windmill.asp]

Wind fields - TurbSim

- Overview
- Test case
- Wind field

Innovation for Our Energy Future

TurbSim User's Guide: Version 1.06.00

B.J. Jonkman, L. Kilcher

Revised September 19, 2012 for TurbSim version 1.06.00

Overview - TurbSim

- Numerical simulation of 3 wind vectors
- Wind is presented in a rectangular grid
- Includes Kaimal & von Karman spectral models
- Output can be used as input to AeroDyn, FAST, GH Bladed & MSC ADAMS

TurbSim wind field & coordinates system

TurbSim input file

Test case – TurbSim (1/2)

- Unpack zip folder as C:\ TurbSim
- 2. Explore folder; it contains:
 - TurbSim64.exe (or *32 bits)
 - TurbSim_test.inp test input file
 - Turbsim _UserGuide/_Overview
 - Disclaimer & FAQ text files
 - PlotTurbulentWindFields.m –
 matlab script to plot wind field
 - Folder with used matlab functions
- 3. In DOS, run in correct folder:
 - TurbSim64 TurbSim_test.inp

TurbSim folder

3

Eingabeaufforderung
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. Alle Rec]
C:\Users\Nopo>cd..
C:\Users>cd..
C:\>cd TurbSim
C:\TurbSim>TurbSim64 TurbSim_test.inp

Turbsim commands in DOS

Test case – TurbSim (2/2)

- Review results in folder:
 - TurbSim_test.sum summary file
 - TurbSim_test.wnd output file
- 5. Review the results:
 - Run matlab script
 "PlotTurbulentWindFields" &
 select output file

Note: Use TurbSim_UserGuide.pdf to know how to change inputs

TurbSim folder with results

5

TurbSim wind field visualization with Matlab

Wind field – TurbSim

- Comment 2-lines header for traceability: "color", user & date
- 2. Update turbine values
 - HubHt hub height
 - GridHeight/Width grid size
- 3. Update meteo. conditions:
 - IECturbc turb. intensity (%)
 at reference wind speed
 - RefHt height of reference wind speed (equal to HubHt)
 - URef reference wind speed
 - PLExp power law exponent

TurbSim input test file. Valid for TurbSim v1.06.00, 23-Jun-2014 To be use in DoWES class (SS2014)

```
----Turbine/Model Specifications--
                     NumGrid_Z
                                      - Vertical grid-point matrix din
11
                     NumGrid_Y
                                      - Horizontal grid-point matrix c
0.01

    Time step [seconds]

                     TimeStep
                     AnalysisTime

    Length of analysis time series

                                      <u>– Usable length of output time s</u>
                     UsableTime
                                      - Hub height [m] (should be > 0.
80
                     HubHt
110
                                      Grid height [m]
                     GridHeight
110
                     GridWidth
                                      - Grid width [m] (should be >= 2
                                      - Vertical mean flow (uptilt) ar
                     VFlowAng.
                                      - Horizontal mean flow (skew) ar
                     HF1owAng
```

Meteorological Boundary Conditions					
"IECKAI"	TurbModel	- Turbulence model ("IECKAI"=Kai			
"1-ED3"	IECstandard	- Number of IEC 61400-x standard			
"B"		- IEC turbulence characteristic			
"NTM"	IEC_WindType	 IEC turbulence type ("NTM"=nor 			
default	ETMC	- IEC Extreme Turbulence Model '			
"PL"	WindProfileType	- Wind profile type ("JET":"LOG"			
80	RefHt	- Height of the reference wind s			
15.0	URef	- Mean (total) wind speed at the			
default	ZJetMax	 Jet height [m] (used only for 			
0.11	PLEXP	- Power law exponent [-] (or "de			
0.03	zo '	- Surface roughness length [m] (

Note: use "IECKAI" to model Kaimal spectrum according to IEC Standard

Summary / Conclusion

- We discussed some concepts related to the importance of turbulent wind fields
- We described the concept of effective turbulence according to Frandsen
- We generated turbulent wind fields with help of "TurbSim"

