Assignment 12

Saransh Bali

Abstract—This a simple document that explains that $F^{m\times n}$ is isomorphic to $F^{mn}.$

Download latex-tikz from

https://github.com/saranshbali/ EE5609/blob/master/ Assignment12

1 Problem

Let $\alpha_1 = (1, 0, -1, 2)$ and $\alpha_2 = (2, 3, 1, 1)$ and let **W** be the subspace of \mathbb{R}^4 spanned by α_1 and α_2 . Which linear functionals **f**:

$$f(x_1, x_2, x_3, x_4) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4$$
 (1.0.1)

are in the annihilator of **W**?

2 Definitions

Linear Functional	If V is a vector space over the field F , a linear transformation f from V into the scalar field F is also called a linear functional on V .
Dual Space of V	If V is a vector space, the collection of all linear functionals on V forms a vector space It is the space $L(V,F)$ which we denote by V^* and is called as dual space of V .
Annihilator of S	V is a vector space over the field F and <i>S</i> is a subset of V , the annihilator of <i>S</i> is the set S^o of linear functionals f on V such that $\mathbf{f}(\alpha) = 0$ for every α in <i>S</i> .

Given two vectors

$$\alpha_1 = (1, 0, -1, 2)$$
 and $\alpha_2 = (2, 3, 1, 1)$ (3.0.1)

Since, α_1 is not a scalar multiple of α_2 . Thus, α_1 and α_2 are linearly independent. Also, given α_1 and α_2 span **W**, thus $\{\alpha_1, \alpha_2\}$ form basis for **W**. Hence, **W** has dimension 2.

Now, a functional \mathbf{f} is in the annihilator of \mathbf{W} if and only if $\mathbf{f}(\alpha_1) = \mathbf{f}(\alpha_2) = 0$. We find such \mathbf{f} by solving the system

$$\mathbf{f}(\alpha_1) = 0 \tag{3.0.2}$$

$$\mathbf{f}(\alpha_2) = 0 \tag{3.0.3}$$

or equivalently

$$c_1 - c_3 + 2c_4 = 0 (3.0.4)$$

$$2c_1 + 3c_2 + c_3 + c_4 = 0 (3.0.5)$$

Converting, above into system of equations, we have

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = 0$$
 (3.0.6)

Converting (3.0.6) into row reduced echelon form

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 3 & 1 & 1 \end{pmatrix} \xleftarrow{r_2 = r_2 - 2r_1} \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 3 & 3 & -3 \end{pmatrix} (3.0.7)$$

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 3 & 3 & -3 \end{pmatrix} \stackrel{r_2 = \frac{r_2}{3}}{\longleftrightarrow} \quad \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{pmatrix} (3.0.8)$$

from (3.0.8), we have

$$c_1 = c_3 - 2c_4 \tag{3.0.9}$$

$$c_2 = -c_3 + c_4 \tag{3.0.10}$$

The general element of \mathbf{W}^o is therefore

$$\mathbf{f}(x_1, x_2, x_3, x_4) = (c_3 - 2c_4)x_1 + (c_3 + c_4)x_2 + c_3x_3 + c_4x_4 \quad (3.0.11)$$

for arbitrary constants c_3 and c_4 .

Also, W^o has dimension 2.