Dokumentacja końcowa

Modyfikacja algorytmu ewolucji różnicowej

Michał Padzik

Albert Wolant

7 czerwca 2015

1. Ogólny opis projektu

Projekt polegał na zaimplementowaniu i zbadaniu właściwości zmodyfikowanego algorytmu ewolucji różnicowej. Zaproponowana modyfikacja polega na zmianie wyboru pierwszego z punktów w mutacji osobnika. Punkt ten ma być zastapiony średnią z aktualnej populacji. Projekt został wykonany w jezyku R.

Na potrzeby projektu zaimplementowano klasyczny algorytm ewolucji różnicowej według następującego pseudokodu:

```
Algorithm 1 Klasyczny algorytm ewolucji różnicowej

procedure DIFFERENTIAL EVOLUTION
P^{0} \leftarrow \{P_{1}^{0}, P_{2}^{0}, ..., P_{n}^{0}\}
H \leftarrow P^{0}
t \leftarrow 0
while !stop do
for all \ i \in \{1:n\} \ do
P_{j}^{t} \leftarrow select(P^{t})
P_{k}^{t}, P_{l}^{t} \leftarrow sample(P^{t})
M_{i}^{t} \leftarrow P_{j}^{t} + F * (P_{k}^{t} - P_{j}^{t})
O_{i}^{t} \leftarrow crossover(P_{i}^{t}, M_{i}^{t})
H \leftarrow H \cup \{O_{i}^{t}\}
P_{i}^{t+1} \leftarrow tournament(P_{i}^{t}, O_{i}^{t})
t \leftarrow t + 1
```

Algorytm działa w popularnym wariancie *DE/rand/1/bin*. Stworzenie własnej implementacji standardowego algorytmu miało na celu wyrównanie szans algorytmów w eksperymentach. Dzięki temu, porównanie bardziej skupia się na proponowanej modyfikacji, a mniej na jakości implementacji i mechanizmów pomocniczych w algorytmie.

Następnie zaimplementowano dwa algorytmy zmodyfikowane, odpowiednio MOD1 i MOD2. Algorytm MOD1 realizuje modyfikację poprzez zastosowanie średniej arytmetycznej osobników populacji. W algorytmie MOD2 używa się średniej ważonej, gdzie wagami są wartości funkcji celu dla osobników. Oba algorytmy realizują poniższy pseudokod, z dokładnością do różnej operacji *average:*

Algorithm 2 Zmodyfikowany algorytm ewolucji różnicowej

```
\begin{aligned} \mathbf{procedure} & \text{ modified differential evolution} \\ P^0 \leftarrow \{P_1^0, P_2^0, ..., P_n^0\} \\ H \leftarrow P^0 \\ t \leftarrow 0 \\ & \mathbf{while} \text{ !stop do} \\ & A \leftarrow average(P^t) \\ & \mathbf{for all} \ i \in \{1:n\} \text{ do} \\ & P_k^t, P_l^t \leftarrow sample(P^t) \\ & M_i^t \leftarrow A + F * (P_k^t - P_j^t) \\ & O_i^t \leftarrow crossover(P_i^t, M_i^t) \\ & H \leftarrow H \cup \{O_i^t\} \\ & P_i^{t+1} \leftarrow tournament(P_i^t, O_i^t) \\ & t \leftarrow t + 1 \end{aligned}
```

2. Opis eksperymentów

Procedura porównawcza algorytmów inspirowana była opisem zgłoszeń konkursu wykonywanego na zbiorze funkcji znanym pod nazwą CEC2013. Każdy z algorytmów został uruchomiony k razy na każdej z 28 funkcji benchmarku. Dodatkowo, przeprowadzono eksperymenty dla różnych wymiarowości problemów. Następnie obliczono wartości maksymalną, minimalną, średnią, medianę i odchylenie standardowe błędu populacji względem funkcji celu z k uruchomień każdego z algorytmów dla każdej z funkcji w każdej z badanych wymiarowości problemu. Zastosowano także proponowane w opisie kryterium stopu algorytmów. Mówi ono, że algorytm powinien zakończyć działanie po obliczeniu m * wymiarowość razy wartości funkcji celu lub jeżeli błąd będzie mniejszy niż 10^{-8} .

Ze względów praktycznych, głównie jeśli chodzi o czas uzyskania wyników, parametry przeprowadzonych eksperymentów różnią się od tych proponowanych w opisie benchmarku CEC2013. Dla każdego przypadku wykonano 5 niezależnych uruchomień. Eksperymenty przeprowadzono dla problemów o wymiarach 2, 5 i 10. Algorytmy kończyły działanie po 2500 * wymiarowość ewaluacjach funkcji celu lub przy błędzie mniejszym od 10⁻⁸.

Eksperymenty wykonano na 10 komputerach klasy PC wyposażonych w procesory Intel Core i7 taktowane zegarami 2.8 GHz na wszystkich 4 rdzeniach oraz 8 Gb pamięci operacyjnej. Wszystkie obliczenia przeprowadzono w środowisku "R Studio". Zaprezentowane wyniki zostały uzyskane przy użyciu opisanych powyżej zasobów w około 8h nieprzerwanej pracy maszyn.

3. Wyniki eksperymentów

Poniżej przedstawiona tabele będące wynikami przeprowadzonych eksperymentów razem z ich analizą przeprowadzoną za pomocą testu t:

Tabela 1 Algorytm Standardowy, 2 wymiary

Func	Best	dardowy algorytm ew Worst	Mean	Median	Standard deviation		
1	2,05E-06	6,93E-06	4,45E-06	4,39E-06	1,82E-06		
2	0,009880861	0,338800097	0,113475757	0,092279626	0,131961057		
3	0,327389847	2,682140471	1,420650968	1,097807093	0,906685117		
4	0,000493192	0,206667617	0,091627126	0,075580237	0,093336732		
5	2,07E-05	0,000199571	9,53E-05	8,28E-05	6,71E-05		
6	2,78E-06	0,000142815	3,88E-05	1,24E-05	5,87E-05		
7	0,059039801	0,257598069	0,139477734	0,113020727	0,077009879		
8	2,701899473	13,3581884	7,538374656	7,080692015	4,647589954		
9	0,09332612	0,348005583	0,252610238	0,272129757	0,102147917		
10	0,000245098	0,049854026	0,032996682	0,040934482	0,019459281		
11	0,008820066	0,122487882	0,05135739	0,052885774	0,046377849		
12	0,017184823	0,197515432	0,100925172	0,087992361	0,072016734		
13	0,002921566	0,202417158	0,082821271	0,020044044	0,100095771		
14	2,351535517	16,06998827	7,221391342	5,55272126	5,249912725		
15	5,590627503	13,05887893	10,88207335	11,6068912	3,045337928		
16	0,387300061	0,782094099	0,540093508	0,486333572	0,154866105		
17	0,427094551	2,295038652	1,650284671	1,894426459	0,738406691		
18	1,302044488	2,396410053	2,102893835	2,271877233	0,452673397		
19	0,000253797	0,007194906	0,002062499	0,001120492	0,002911895		
20	0,019441125	0,021335674	0,020436817	0,020293118	0,000708438		
21	0,020182028	0,270149749	0,160841004	0,14189028	0,100815949		
22	15,13314732	64,28965628	36,64551583	30,70294	22,96909525		
23	3,933327878	18,82637339	11,4345841	11,4864972	5,295145051		
24	0,087982167	6,631776884	2,659674754	2,633777052	2,527698553		
25	1,25282173	19,50019833	6,57288708	3,521801031	7,479151372		
26	0,343837486	3,097360737	1,268014493	0,903236412	1,068900585		
27	122,8590709	191,3681143	150,7853411 150,9648251 26,573160				
28	0,191338194	0,636899453	0,447078557	0,528427866	0,204426868		

Tabela 2 Algorytm Standardowy, 5 wymiarów

	Standardowy algorytm ewolucji różnicowej, przypadek 5 wymiarowy											
Func	Best	Worst	Mean	Median	Standard deviation							
1	0,003939692	0,007534606	0,005077132	0,004619523	0,001476416							
2	894,4353866	10843,20262	4819,268355	4194,238343	3888,858851							
3	62308,01473	395291,5499	159593,4515	123635,4435	135499,7248							
4	79,66028544	432,6418759	195,7751071	145,9877973	144,5127422							
5	0,071013725	0,098666673	0,086842357	0,087680761	0,010484128							
6	0,388786566	0,702338834	0,574542483	0,573447246	0,124458729							
7	3,384519843	6,856244599	5,500886227	5,987907352	1,434514498							
8	20,05725577	20,20329983	20,12697918	20,11337507	0,070494999							
9	2,884501187	3,541037431	3,230763594	3,350483837	0,314573711							
10	0,347950814	0,689584878	0,5161208	0,57086421	0,143142027							
11	5,657516774	9,218787061	7,593854211	7,718317177	1,267417711							
12	6,761981792	15,34500246	11,09160871	11,30850421	3,113963973							
13	9,365410041	12,76460721	11,42044443	11,60300465	1,274867816							
14	472,7269845	534,7688581	492,6906102	476,6972651	26,78299368							
15	648,3798361	806,4593828	710,2963774	700,1311687	66,62614417							
16	0,679042972	1,28448584	1,074952966	1,206294885	0,256824013							
17	8,03358972	16,40371436	13,1815443	14,18401741	3,255677223							
18	6,556255297	18,78540884	14,985749	16,93015681	5,108941536							
19	0,225343526	0,874680023	0,538653859	0,476590544	0,276677372							
20	1,151838577	1,759872297	1,595202797	1,718807054	0,25378682							
21	300,827355	301,8385093	301,3041128	301,3635392	0,457538535							
22	563,9837004	888,1525745	716,5198736	684,5479526	137,486671							
23	467,2873231	1012,319726	786,3756297	798,8973013	207,3541213							
24	172,8473892	209,6027561	186,2363619	184,4276964	14,83580643							
25	175,0329507	189,5929	181,6974801	181,2466743	5,63946533							
26	141,2940453	200,0078191	159,1586646	146,1600153	24,35883892							
27	374,3214902	404,157166	386,5918469	382,1563114	12,66367573							
28	300,6479588	301,5605039	301,2019875	301,2403752	0,349765824							

Standardowy algorytm ewolucji różnicowej, przypadek 10 wymiarowy										
Func	Best	Worst	Mean	Median	Standard deviation					
1	13,24063815	19,66613931	17,6703125	18,54682271	2,599255192					
2	6243723,105	8492836,575	7313052,623	7415183,655	1018401,502					
3	3578175435	14117862840	8563390806	8552037069	4057822932					
4	31420,80965	44277,77409	36098,6066	33636,07208	5408,627215					
5	17,6575258	34,49080731	23,57748798	18,83856246	7,45855523					
6	11,06362497	15,87638255	12,37727961	11,3692539	2,029423006					
7	213,0763429	269,0259667	233,8352395	229,7005002	22,22935482					
8	20,36137297	20,44260814	20,4062709	20,4092201	0,032316175					
9	8,360135055	10,34345917	9,336807526	9,379100593	0,73485775					
10	20,07667596	51,83841658	34,47110391	30,49582935	11,97538051					
11	35,42734464	53,43378898	45,83559162	47,40150633	6,696087759					
12	57,49669163	69,17027494	62,25384129	60,37629556	4,972370413					
13	41,59530818	62,23250875	53,32541387	55,19876944	8,312601981					
14	1862,286066	2094,073502	1956,866706	1932,470685	94,09588472					
15	1876,856362	2263,687752	2129,835869	2227,662638	170,0154812					
16	0,857122152	1,662628996	1,385136635	1,501298528	0,325888649					
17	62,10140903	73,03211381	66,00993121	64,49184033	4,17595071					
18	59,44116034	68,76811333	64,75783891	67,67647904	4,615445872					
19	4,607111935	5,834733563	5,252513148	5,260079603	0,503147922					
20	4,253556329	4,435870479	4,341266749	4,313726636	0,077315931					
21	308,4611013	402,06024	376,057989	401,4191228	40,71617758					
22	1892,342446	2426,371157	2179,129804	2201,733883	229,7430474					
23	2190,289468	2436,937283	2341,961423	2336,585415	99,22780644					
24	223,3546624	228,4591905	226,3322678	226,7765302	1,952645217					
25	219,4532068	226,1706742	223,0326085	223,345648	2,415378667					
26	211,563526	290,942944	256,4060505	267,6265745	33,52638563					
27	540,387612	578,2587889	557,126799	556,5643304	16,05932018					
28	411,6519016	451,783014	429,6508524	426,814389	16,5537428					

Tabela 4 Algorytm MOD1, 2 wymiary

	Zmodyfikowany	algorytm ewolucji rć	ożnicowej - średnia a	rytmetyczna, przypa	dek 2 wymiarowy	
Func	Best	Worst	Mean	Median	Standard deviation	
1	3,40E-08	8,40E-08	5,76E-08	5,70E-08	1,80E-08	
2	4,01E-06	6,40E-05	2,96E-05	2,74E-05	2,18E-05	
3	0,001462857	0,006955458	0,003452778 0,001824708		0,002525746	
4	5,61E-06	5,98E-05	2,65E-05	2,45E-05	2,11E-05	
5	3,20E-08	6,66E-07	2,33E-07	1,36E-07	2,55E-07	
6	8,00E-09	0,008830926	0,002117172	4,81E-05	0,00382269	
7	0,004888715	0,021210015	0,009779857	0,007599132	0,00649665	
8	0,091662048	7,877334307	3,819416973	3,421315879	3,009036219	
9	0,179704429	0,375500336	0,277782192	0,303652114	0,078821846	
10	0,007258892	0,031902688	0,016682752	0,015790279	0,009406399	
11	0,12018124	0,998221079	0,350773316	0,215372019	0,367027795	
12	0,02268455	0,459068472	0,304120731 0,351240194		0,170222025	
13	0,017022906	0,332165371	0,12809086	0,021541107	0,151439918	
14	0,444732232	13,63975096	3,878337718	2,023510376	5,52402888	
15	0,388432147	4,156883492	1,836747163	1,504402299	1,60976083	
16	0,255242025	1,13929237	0,567699289	0,528498106	0,341810986	
17	0,39284807	2,314294138	1,721081802	2,143026848	0,798734304	
18	1,140174065	2,529647158	1,895977679	2,178278791	0,596514698	
19	1,62E-05	0,000117291	7,81E-05	8,24E-05	3,75E-05	
20	0,002844011	0,01945484	0,0151074	0,019432499	0,007198999	
21	4,598973204	21,36444512	11,42031604	11,53236312	6,340680514	
22	1,238182338	34,88661849	17,62567053	15,3070583	12,33244748	
23	0,406437834	36,15267063	19,67380763	20,53950427	15,58758633	
24	0,319785293	6,2364446	3,73195028	4,803941163	2,709357971	
25	1,361346985	19,47825657	7,901348928	8,314996104	7,331031673	
26	0,046440399	0,517659719	0,213801691	0,146935711	0,182645259	
27	55,11428744	101,3515963	81,91814895	89,11327234	21,65720952	
28	3,498688439	21,91997589	13,3201519	17,78755249	8,231427988	

	Zmodyfikowany	algorytm ewolucji rć	óżnicowej - średnia a	rytmetyczna, przypa	adek 5 wymiarowy
Func	Best	Worst	Mean	Median	Standard deviation
1	3,10E-08	9,30E-08	5,32E-08	4,20E-08	2,44E-08
2	0,003916793	0,033970633	0,015627433	0,012747204	0,011243596
3	0,072293836	0,349859981	0,133413651	0,079216885	0,121124337
4	2,63E-05	0,000286583	0,000155699	0,000152216	0,000108935
5	2,30E-08	9,40E-08	6,22E-08	7,10E-08	2,76E-08
6	0,044891793	0,961803879	0,377905379	0,206689566	0,387880916
7	0,00717951	0,060253378	0,031682676	0,034383129	0,023588531
8	20,11333811	20,16519162	20,14094301	20,15204967	0,025342544
9	2,237215412	3,495309976	2,936201303	3,086718711	0,487773072
10	0,132855678	0,28176039	0,208729776	0,193667205	0,060043819
11	4,841210926	9,3143455	6,661967924	6,159364635	1,741617336
12	3,505172878	9,772139914	5,90037917	4,920547863	2,463256239
13	3,955013815	7,304180767	5,984683313	5,836616786	1,343226669
14	283,7179544	353,7872375	317,299635	302,5342007	32,29944021
15	246,333559	427,1424175	328,7829088	323,9556242	65,50254713
16	0,708837907	1,486400595	1,158516871	1,124909929	0,332533589
17	9,047418758	10,73375	9,85320673	9,742999372	0,687201509
18	8,260093251	13,60524353	11,6303176	12,05456627	1,996534245
19	0,341022029	0,74552095	0,518948162	0,544678174	0,162736111
20	0,68099749	1,197920217	0,915661732	0,822432638	0,257454677
21	300,0000799	300,0011467	300,0004222	300,000259	0,000419258
22	408,6846149	532,3962779	495,6579188	526,9442533	53,07969813
23	453,3851096	793,3661067	618,8563495	635,1297444	135,9413083
24	141,1758161	189,2551843	172,7778018	179,2058442	18,7786532
25	109,9346331	114,0353193	112,1717737	112,2077719	1,488833688
26	104,4255528	112,0358326	107,0850668	106,6359074	3,085586206
27	363,2349176	393,9301375	382,4315877	385,4841327	11,67084769
28	300,0000629	300,0001191	300,0000938	300,0001036	2,35E-05

Tabela 6 Algorytm MOD1, 10 wymiarów

	Zmodyfikowany a	lgorytm ewolucji ró	żnicowej - średnia a	rytmetyczna, przypac	dek 10 wymiarowy	
Func	Best	Worst	Mean	Median	Standard deviation	
1	5,50E-08	9,40E-08	7,86E-08	8,50E-08	1,63E-08	
2	8,490217535	26,86325521	17,29769416	16,12881839	7,298244743	
3	470,7862185	36468,75796	17957,06141	10974,88479	16458,83306	
4	0,032279899	0,085841242	0,067089548	0,072702536	0,020340018	
5	5,80E-08	9,10E-08	7,84E-08	8,40E-08	1,27E-08	
6	5,374623862	6,213144384	5,673848458	5,576767404	0,320924883	
7	0,481158011	1,390748938	0,989514706	1,048750655	0,353811217	
8	20,29230448	20,53513051	20,40116823	20,36921548	0,092739416	
9	9,514607796	10,07978777	9,755717041	9,816063867	0,241258693	
10	0,391882106	0,573708842	0,472352395	0,467911185	0,065920746	
11	26,33381653	35,67135674	30,80191042	29,3204394	3,790680348	
12	23,4406593	35,17578834	29,80905818	28,23771478	5,199056642	
13	26,9030416	41,08045052	32,99967913	28,85808141	7,134942342	
14	1295,373515	1583,557335	1440,717754	1425,628005	120,7537395	
15	989,6595147	1882,041832	1497,876646	1692,906288	382,6574354	
16	1,022462674	1,500926083	1,338446203	1,423903139	0,193054021	
17	29,1555632	43,94340472	36,78169293	35,88889703	5,99138928	
18	34,35695914	45,80801943	39,82778506	39,01766067	4,338274583	
19	2,648716993	3,155089273	2,853320484	2,739702995	0,214299322	
20	3,506029252	3,722181087	3,593718781	3,576517383	0,093432381	
21	400,1938672	400,1938672	400,1938672	400,1938672	0	
22	1740,817042	1971,661501	1852,176539	1864,860784	89,9775756	
23	1627,942754	1935,247705	1816,2116	1856,19491	128,5569629	
24	223,1903743	226,4734814	224,5976876	224,858725	1,399511755	
25	222,6584022	226,2657909	224,179391	224,1028473	1,370535352	
26	200,0157002	200,0161652	200,0158127	200,0157352	0,000198167	
27	545,6578	570,5262671	553,5595214	550,5463797	9,810598322	
28	300,0001469	300,0002292	300,0001841	300,0001789	3,34E-05	

Tabela 7 Algorytm MOD2, 2 wymiary

Zmodyfikowany algorytm ewolucji różnicowej - średnia ważona, przypadek 2 wymiarowy											
Func	Best	Worst	Mean	Median	Standard deviation						
1	4,00E-09	9,30E-08	3,92E-08	3,20E-08	3,42E-08						
2	0,000335351	0,480059418	0,097274515	0,001057722	0,213989615						
3	16,56886185	2834,094264	961,4455424	805,8875392	1145,280115						
4	0,000590065	0,064051111	0,015024856	0,002738432	0,027472869						
5	8,05E-07	6,72E-06	3,72E-06	4,02E-06	2,52E-06						
6	0,000426834	0,006935137	0,005024198	0,006295368	0,002708191						
7	0,420089898	0,610681286	0,520177967	0,52594095	0,06826212						
8	0,151485602	5,875341255	3,254703567	3,708785018	2,100375703						
9	0,112119848	0,270805832	0,17607061	0,179261862	0,061028349						
10	0,009550323	0,031895682	0,019798357	0,018256313	0,008213798						
11	0,058099101	1,03150874	0,341593005	0,089716492	0,421780065						
12	0,016198189	0,483451739	0,190949111	0,157696216	0,182367865						
13	0,034277933	0,053255482	0,043485754	0,043724079	0,006847888						
14	0,48737377	16,69386894	5,505970743	3,804225955	6,469034783						
15	3,593473574	29,50732049	15,84097672	17,05404402	11,28280786						
16	0,26913346	0,687073585	0,478990201	0,496438681	0,163922716						
17	0,418900663	2,205177276	1,564435441	1,896197366	0,745408406						
18	1,338481874	2,238919725	1,932533043	1,984755413	0,354959746						
19	9,63E-07	0,000265812	8,21E-05	4,84E-05	0,000108857						
20	0,019434158	0,022279643	0,02003306	0,019469741	0,001256279						
21	2,382555796	26,92407199	13,01101098	10,97071246	8,907978764						
22	5,888268672	36,42096834	22,26391026	23,77254115	12,07551208						
23	0,398618034	47,79344036	13,14457955	4,950850006	19,93527753						
24	1,503886472	5,647858184	3,173884462	2,856735493	1,529411829						
25	1,618502844	8,702050036	3,64077645	2,711348278	2,922627912						
26	0,197847398	1,324621396	0,782189497	0,689743534	0,506430775						
27	45,32850085	144,5045311	105,6177227	110,4197354	37,47848482						
28	4,175212882	12,17847742	7,575353618	7,403524916	2,898939337						

Tabela 8 Algorytm MOD2, 5 wymiarów

Zmodyfikowany algorytm ewolucji różnicowej - średnia ważona, przypadek 5 wymiarowy										
Func	Best	Worst	Mean	Median	Standard deviation					
1	7,20E-08	9,50E-08	8,54E-08	9,20E-08	1,14E-08					
2	0,021624042	0,120068984	0,05439616	0,044342736	0,040205446					
3	405,2837031	113107,1006	25366,28445	4219,868065	49137,23869					
4	0,000502744	0,003063778	0,001284027	0,001092628	0,00102928					
5	4,40E-08	1,00E-07	8,56E-08	9,70E-08	2,35E-08					
6	0,137962856	0,894619073	0,377391898	0,228245528	0,306870013					
7	0,178588918	0,580160446	0,357930061	0,284996563	0,165127343					
8	20,07258593	20,18411478	20,1126291	20,10026442	0,045292963					
9	2,442106876	3,362541926	2,83888208	2,593606991	0,417796816					
10	0,091134763	0,204803545	0,132541718	0,108279469	0,047799927					
11	3,667793816	9,105827548	5,3785053	4,9627039	2,171265007					
12	1,673787134	6,23294338	4,659116333	5,380314901	1,864701411					
13	5,321370717	8,960195957	7,145704799	6,855654752	1,338207535					
14	211,4255789	431,8768217	352,6576452	385,1427123	84,47359154					
15	177,9673832	561,3575027	351,6071197	376,8698453	155,2025604					
16	0,670993406	1,160649099	0,969690485	1,033464403	0,195658449					
17	9,136882424	12,11515564	10,93020339	11,07550905	1,092054543					
18	8,91206664	14,30813371	11,34352363	11,62799716	2,172478236					
19	0,413729145	0,709547517	0,559761975	0,522547574	0,116143372					
20	1,095443309	1,34588236	1,241153624	1,299393124	0,105890515					
21	300,000491	300,8107461	300,1626457	300,0007003	0,362299165					
22	484,9267703	607,7600672	554,0028483	573,2527461	51,86945655					
23	516,309624	712,09606	644,3006135	660,1421319	76,91293936					
24	149,8442356	195,3017333	171,5020782	178,2790445	20,07540005					
25	109,9211319	113,5211273	112,156724	112,39872	1,336110601					
26	99,68573135	110,0479	105,9084124	107,3205244	3,892770606					
27	368,768547	396,9446622	383,285815	384,311138	11,06777381					
28	300,0000635	300,0001629	300,000128	300,0001365	3,96E-05					

Tabela 9 Algorytm MOD2, 10 wymiarów

Zmodyfikowany algorytm ewolucji różnicowej - średnia ważona, przypadek 10 wymiarowy										
Func	Best	Worst	Mean	Median	Standard deviation					
1	5,80E-08	1,00E-07	7,52E-08	6,80E-08	1,65E-08					
2	17,88470003	86,18533823	38,15143448	21,34270324	28,9946836					
3	1090835,637	36826354,67	11386960,46	2401018,698	15216571,84					
4	0,198702935	11,60376951	2,523227938	0,276878202	5,076297067					
5	8,30E-08	1,75E-07	1,13E-07	9,40E-08	3,74E-08					
6	4,126055202	6,186828679	5,200597637	5,117541512	0,760384305					
7	3,716124684	12,40588544	7,525099148	7,580269157	3,232459699					
8	20,40241253	20,54553155	20,47302675	20,49525911	0,060236799					
9	9,456824218	10,333384	9,816295349	9,771222721	0,349140555					
10	0,457657528	0,6010739	0,509972351	0,485154552	0,058775112					
11	21,0243266	35,82763339	29,80565154	32,2439082	6,512727248					
12	18,99129391	38,40857869	29,40345818	28,28193241	7,927460431					
13	19,70732152	38,135713	28,5467994	30,95387566	7,327487721					
14	1149,075164	1474,837747	1332,992139	1376,253146	138,1303378					
15	1522,934142	1923,59763	1712,444271	1760,223096	159,4005529					
16	1,047709176	1,587783427	1,250703138	1,074826371	0,265337677					
17	30,89061819	41,78805093	36,2603215	35,8230778	4,61386044					
18	32,10544346	45,35902344	40,14027616	40,27657367	5,042728079					
19	1,891452716	3,04544194	2,519642876	2,468962353	0,424273153					
20	3,400720352	3,795206476	3,548610237	3,495641166	0,158627173					
21	400,1938672	400,1938672	400,1938672	400,1938672	0					
22	1619,659003	1990,347701	1854,826984	1891,125609	143,2652681					
23	1494,459027	2145,415646	1914,787681	1986,743071	250,3425659					
24	223,1665567	226,1162278	224,7791417	224,4594972	1,25779211					
25	225,4565905	227,4102165	226,2608041	225,9585938	0,746706541					
26	200,0156999	200,0161316	200,0158116	200,0157368	0,000181282					
27	519,5500393	566,89912	545,0020589	549,4571444	18,00607372					
28	300,0001366	300,0002649	300,0002127	300,0002418	5,47E-05					

Przedstawione powyżej wyniki eksperymentów poddano analizie przy pomocy testu t-Studenta. Pozwoliło to stwierdzić, czy zaobserwowane różnice pomiędzy algorytmami są statystycznie istotne. Test przeprowadzano na poziomie istotności 0,05 i przy 8 stopniach swobody. Daje to wartość krytyczną odczytaną z tablic równą **2,306.**

Poniższe tabele prezentują wzajemne porównanie algorytmów dla każdego przypadku testowego, czyli kombinacji funkcji i wymiarowości. Jeśli wynik testu wskazywał na istotne różnice, wyznaczano bilans algorytmu jako: -1 za przegraną, 1 za wygraną. Na podstawie wartości bilansu wyznaczano rangi algorytmów w każdym z przypadków testowych. W razie równych bilansów stosowano rangę remisową.

					Testy t	t dla przypa	dku 2 wy	miarowe	go			
Fu nk.	Std vs. MOD1	Std vs. MOD2	Bilans Std	Ranga Std	MOD1 vs. Std	MOD1 vs. MOD2	Bilans MOD1	Ranga MOD1	MOD2 vs. Std	MOD2 vs. MOD1	Bilans MOD2	Ranga MOD2
1	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
2	0	0	0	2	0	0	0	2	0	0	0	2
3	-1	0	-1	3	1	0	1	1	0	0	0	2
4	0	0	0	2	0	0	0	2	0	0	0	2
5	-1	-1	-2	3	1	1	2	1	1	-1	0	2
6	0	1	1	1	0	0	0	2	-1	0	-1	3
7	-1	1	0	2	1	1	2	1	-1	-1	-2	3
8	0	0	0	2	0	0	0	2	0	0	0	2
9	0	0	0	2	0	0	0	2	0	0	0	2
10	0	0	0	2	0	0	0	2	0	0	0	2
11	0	0	0	2	0	0	0	2	0	0	0	2
12	1	0	1	1	-1	0	-1	3	0	0	0	2
13	0	0	0	2	0	0	0	2	0	0	0	2
14	0	0	0	2	0	0	0	2	0	0	0	2
15	-1	0	-1	2,5	1	1	2	1	0	-1	-1	2,5
16	0	0	0	2	0	0	0	2	0	0	0	2
17	0	0	0	2	0	0	0	2	0	0	0	2
18	0	0	0	2	0	0	0	2	0	0	0	2
19	0	0	0	2	0	0	0	2	0	0	0	2
20	0	0	0	2	0	0	0	2	0	0	0	2
21	1	1	2	1	-1	0	-1	2,5	-1	0	-1	2,5
22	0	0	0	2	0	0	0	2	0	0	0	2
23	0	0	0	2	0	0	0	2	0	0	0	2
24	0	0	0	2	0	0	0	2	0	0	0	2
25	0	0	0	2	0	0	0	2	0	0	0	2
26	0	0	0	2	0	1	1	1	0	-1	-1	3
27	-1	0	-1	3	1	0	1	1	0	0	0	2
28	1	1	2	1	-1	0	-1	2,5	-1	0	-1	2,5

Tabela 11 Testy T i rangi dla 5 wymiarów

					Testy	t dla przypa	dku 5 wy	miarowe	go			
Fun kcja	Std vs. MOD1	Std vs. MOD2	Bilans Std	Ranga Std	MOD1 vs. Std	MOD1 vs. MOD2	Bilans MOD1	Ranga MOD1	MOD2 vs. Std	MOD2 vs. MOD1	Bilans MOD2	Ranga MOD2
1	-1	-1	-2	3	1	1	2	1	1	-1	0	2
2	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
3	-1	0	-1	3	1	0	1	1	0	0	0	2
4	-1	-1	-2	3	1	1	2	1	1	-1	0	2
5	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
6	0	0	0	2	0	0	0	2	0	0	0	2
7	-1	-1	-2	3	1	1	2	1	1	-1	0	2
8	0	0	0	2	0	0	0	2	0	0	0	2
9	0	0	0	2	0	0	0	2	0	0	0	2
10	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
11	0	0	0	2	0	0	0	2	0	0	0	2
12	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
13	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
14	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
15	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
16	0	0	0	2	0	0	0	2	0	0	0	2
17	0	0	0	2	0	0	0	2	0	0	0	2
18	0	0	0	2	0	0	0	2	0	0	0	2
19	0	0	0	2	0	0	0	2	0	0	0	2
20	-1	-1	-2	3	1	1	2	1	1	-1	0	2
21	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
22	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
23	0	0	0	2	0	0	0	2	0	0	0	2
24	0	0	0	2	0	0	0	2	0	0	0	2
25	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
26	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
27	0	0	0	2	0	0	0	2	0	0	0	2
28	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5

Tabela 12 Testy i rangi dla 10 wymiarów

					Testy t	dla przypad	dku 10 w	ymiarowe	ego			
Fun kcja	Std vs. MOD1	Std vs. MOD2	Bilans Std	Ranga Std	MOD1 vs. Std	MOD1 vs. MOD2	Bilans MOD1	Ranga MOD1	MOD2 vs. Std	MOD2 vs. MOD1	Bilans MOD2	Ranga MOD2
1	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
2	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
3	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
4	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
5	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
6	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
7	-1	-1	-2	3	1	1	2	1	1	-1	0	2
8	0	0	0	2	0	0	0	2	0	0	0	2
9	0	0	0	2	0	0	0	2	0	0	0	2
10	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
11	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
12	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
13	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
14	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
15	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
16	0	0	0	2	0	0	0	2	0	0	0	2
17	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
18	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
19	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
20	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
21	0	0	0	2	0	0	0	2	0	0	0	2
22	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
23	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
24	0	0	0	2	0	0	0	2	0	0	0	2
25	0	1	1	1,5	0	1	1	1,5	-1	-1	-2	3
26	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5
27	0	0	0	2	0	0	0	2	0	0	0	2
28	-1	-1	-2	3	1	0	1	1,5	1	0	1	1,5

Kolejna tabela prezentuje zbiorcze wyniki przeprowadzonej analizy statystycznej wyników w postaci średnich rang z podziałem na wymiarowości problemów:

	Średnie rangi			
	2 wymiary	5 wymiarów	10 wymiarów	Ogółem
Standard	2,018	2,607	2,732	2,452
MOD1	1,839	1,607	1,589	1,679
MOD2	2,143	1,786	1,679	1,869

Powyższą tabelę można potraktować jako główny wynik z przeprowadzonych eksperymentów.

Ponadto, głównie w celach poglądowych, wygenerowano wykresy zbieżności algorytmów dla przykładowych uruchomień dla przypadków 10 wymiarowych. Wykresy prezentują zmiany najlepszego i najgorszego osobnika oraz wartości średniej populacji w kolejnych iteracjach:

Rysunek 1 Algorytm Standard, funkcja 12

Rysunek 2 Algorytm MOD1, funkcja 12

Rysunek 3 Algorytm MOD2, funkcja 12

Rysunek 4 Algorytm Standard, funkcja 19

Rysunek 5 Algorytm MOD1, funkcja 19

Rysunek 6 Algorytm MOD2, funkcja 19

4. Wnioski

Uzyskane wyniki pokazują, że zaproponowana modyfikacja ewolucji różnicowej może poprawić wyniki zwracane przez ten algorytm. Przeprowadzone eksperymenty i ich analiza pokazują, że w porównaniu ze standardowym algorytmem, oba zaimplementowane sposoby liczenia średniej mogą stanowić wartość dodaną. Ze względu na ograniczony zakres przeprowadzonych eksperymentów nie można stwierdzić, że algorytmy zmodyfikowane będą zawsze lepsze, ale z pewnością prezentowane wyniki mogą stanowić obiecujący początek dalszych badań. Należy też zwrócić uwagę na fakt, że wraz ze wzrostem wymiarowości problemu, przewaga algorytmów zmodyfikowanych, wyrażona średnią rangą, rośnie. Przy próbie 3 wymiarów nie można jednakże powiedzieć czy jest to stały trend.

Proponowane kierunki dalszych badań mogłyby obejmować między innymi ulepszenie implementacji przedstawionych algorytmów i przeprowadzenie eksperymentów dla większej liczby niezależnych uruchomień i większych wymiarowości problemu. Dodatkowo interesujące może być sprawdzenie jak modyfikacja wpływa na algorytmy ewolucji różnicowej inne niż *DE/rand/1/bin*.