Deep Generative Models

Lecture 3

Roman Isachenko

Ozon Masters

Spring, 2022

Recap of previous lecture

MLE problem for autoregressive model

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} p(\mathbf{X}|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^{m} \sum_{j=1}^{m} \log p(x_{ij}|\mathbf{x}_{i,1:j-1}oldsymbol{ heta}).$$

Sampling

$$\hat{x}_1 \sim p(x_1|\boldsymbol{\theta}), \quad \hat{x}_2 \sim p(x_2|\hat{x}_1, \boldsymbol{\theta}), \ldots, \quad \hat{x}_m \sim p(x_m|\hat{\mathbf{x}}_{1:m-1}, \boldsymbol{\theta})$$

New generated object is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

Masking helps to make neural network autoregressive.

- MADE masked autoencoder (MLP).
- WaveNet masked 1D convolutions.
- ▶ PixelCNN masked 2D convolutions.

PixelCNN++ uses discretized mixture of logistic distribution to make the output distribution more natural.

Recap of previous lecture

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \arg\max_{\boldsymbol{\theta}} \bigl(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\bigr)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta \approx p(\mathbf{x}|\theta^*).$$

Variational lower bound (ELBO)

Derivation 1

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} =$$

$$= \log \int \frac{q(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \log \mathbb{E}_q \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} \right] \geq$$

$$\geq \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} d\mathbf{z} = \mathcal{L}(q, \boldsymbol{\theta})$$

Derivation 2

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \int q(\mathbf{z}) \log p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} d\mathbf{z} + \int q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})} d\mathbf{z} =$$

$$= \mathcal{L}(q, \boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \ge \mathcal{L}(q, \boldsymbol{\theta}).$$

Variational lower bound

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}$$

$$= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

▶ Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{\boldsymbol{\theta}} p(\mathbf{x}|\boldsymbol{\theta}) \quad \rightarrow \quad \max_{\boldsymbol{q},\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{q},\boldsymbol{\theta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$\max_{q} \mathcal{L}(q, \theta) \equiv \min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta)).$$

EM-algorithm

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}.$$

Block-coordinate optimization

- Initialize θ*;
- ► E-step

$$egin{aligned} q^*(\mathbf{z}) &= rg \max_q \mathcal{L}(q, oldsymbol{ heta}^*) = \ &= rg \min_q \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z} | \mathbf{x}, oldsymbol{ heta}^*)) = \mathit{p}(\mathbf{z} | \mathbf{x}, oldsymbol{ heta}^*); \end{aligned}$$

M-step

$$\theta^* = \arg\max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Repeat E-step and M-step until convergence.

EM illustration

Bishop C. Pattern Recognition and Machine Learning, 2006

Amortized variational inference

E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*).$$

- ▶ $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$ could be **intractable**;
- $ightharpoonup q(\mathbf{z})$ is different for each object \mathbf{x} .

Idea

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$oldsymbol{ heta}_k = oldsymbol{ heta}_{k-1} + \eta
abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{\phi}_k, oldsymbol{ heta})|_{oldsymbol{ heta} = oldsymbol{ heta}_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}) + KL(q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \geq \mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}).$$

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of variational distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}},$$

where θ – parameters of the generative distribution $p(\mathbf{x}|\mathbf{z},\theta)$.

Now all we have to do is to obtain two gradients $\nabla_{\phi} \mathcal{L}(\phi, \theta)$, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$.

Challenge: Number of samples n could be huge (we heed to derive unbiased stochastic gradients).

ELBO gradients

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})}
ight]
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

M-step: $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta})$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

E-step: $\nabla_{\phi} \mathcal{L}(\phi, \theta)$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$egin{aligned}
abla_{\phi} \mathcal{L}(\phi, oldsymbol{ heta}) &=
abla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, \phi)}
ight] d\mathbf{z} \ &
eq \int q(\mathbf{z}|\mathbf{x}, \phi)
abla_{\phi} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, \phi)}
ight] d\mathbf{z} \end{aligned}$$

Summary

LVM maximizes variational evidence lower bound (ELBO) to find MLE of model parameters.

The general variational EM algorithm maximizes ELBO objective.

Amortized inference allows to efficiently compute stochastic gradients for ELBO using Monte-Carlo estimation.