

Filters

- Filters are mathematical functions that are multiplied into the frequency domain set to change the frequency distribution of the power spectrum.
- A filter is a magnitude vs. frequency function.

Ramp Filters

- A Ramp Filter emphasizes the high frequency components in our data sets.
- Therefore, a ramp filter enhances or emphasizes noise in our data sets.
- Since we use the ramp filter for filtered back projection reconstruction, we must somehow get rid of this additional noise in our image data sets. (smoothing filters)

3 Types of filters

Low pass

• Used to allow low frequencies through the filter and to reduce high frequencies (to attenuate)

High pass

- Used to allow high frequencies through the filter and to reduce or attenuate low frequencies.
- Used to enhance edges or small objects

Band pass

• Used to allow a certain band or range of frequencies through the filter.

Filter Characteristics

- Characterized by 2 parameters
 - 1. Cutoff frequency
 - 2. Order

Note: Different facilities and manufacturers use different definitions and/or units to describe similar filters.

When using filters, make sure to know which set of definitions and units you are working with.

Commonly used filters

- Ramp filter
- Hann filter
- Hamming filter
- Shepp-Logan
- Parzen filter
- Buttersworth filter
- Combination filter
- Weiner Filter (for restoration)
- Metz Filter (for restoration)

Ramp Filters

- High pass filter
- Used for edge enhancement
- Drawback: Propagate high frequency noise in the images

$$|H(\omega)|^2 = m\omega$$
, m is positive

Hann and Hamming Filter

- Low pass filters
 - Used to remove high frequency noise
- The only parameter used to describe a Hann or Hamming filter is it's cutoff frequency.

• Hamming =
$$|H(\omega)|^2 = 0.5 + 0.5 \cos\left(\frac{\omega}{n}\right)$$

• Hann =
$$|H(\omega)|^2 = 0.54 + 0.46\cos\left(\frac{\omega}{n}\right)$$

• where n = cut-off frequency (point where amplitude = 0)

Hann vs. Hamming filters

• Functionally, the Hann and Hamming filters are very similar except that the Hamming filter goes to a non-zero value at the Nyquist Frequency

• These filters are used for studies where higher statistical accuracy is needed at the expense of a loss in spatial resolution.

Butterworth Filter

- A BF needs 2 parameters to describe the filter.
 - Cutoff frequency
 - Order of the filter

$$\left|H\left(\omega\right)\right|^{2} = \frac{1}{1 + \left(\frac{\omega}{\omega_{c}}\right)^{2n}}$$

• The order of the filter is related to how fast the filter is cutoff.

Cutoff

- Allows us to retain information at higher frequencies while still eliminating noise.
- Remember, frequency and size are related by the Fourier transform (larger objects are represented by lower frequencies of sine and cosines)

Order

• Determines how quickly the transition is made between frequencies that are kept and frequencies that are eliminated

Combined Filters

- Wiener filter
 - In frequency domain, Wiener filter G(f) is given by:

$$G(f) = \frac{H^*(f)S(f)}{|H(f)|^2 S(f) + N(f)}$$

• G(f) and H(f) are the FT's of g and h (the PSF), respectively, S(f) is the mean power spectral density of the input signal, and N(t) is the mean power spectral density of the noise

The Metz Filter

Modification to inverse filter.

$$L_{M} = \frac{1 - \left[1 - H^{2}(\omega)\right]^{\chi}}{H(\omega)}$$

Where H is the FT of the PSF

- Supresses the high frequency noise instead of amplyfying it.
- Selection of factor χ such that that mean-square error (MSE) between ideal and filtered spectrum is minimized.
- Alternative to H(w) as transform of PSF

$$H(\omega) = e^{\frac{-\omega^P}{S}}$$

Setting Filter Parameters

- The Cutoff Frequency is probably the most important parameter in filtering work.
 - The CF should be chosen based on the Frequency space distribution of the data and the associated noise level in the images.
 - One criteria is to set the CF to a value approximately equal to the NF
 - Match the point of the filter where it drops to zero.
- Note: Noise level in spectra or images will depend on the count density
 - i.e. how many counts per channel/pixel
- The higher the count density the lower the noise level in relation to the image's power spectrum
 - Think signal to noise ratio

Order or Roll off of the filter

- How quickly the transition is made between frequencies that are kept and frequencies that are eliminated.
- The only real "rule of thumb" is that if the order is set too high, then oscillations in signal intensity will be introduced.