

Course > Week 6... > Compr... > Quiz 6

# Quiz 6

### Problem 1

1/1 point (graded)

You are given a binary 4-dimensional linear decision boundary with coefficient vector  $\mathbf{w}=[2,1,4,3]$  and b=-12. How would you classify the point (2,1,1,2)?

<u>-1</u>

 $\bigcirc$ 0





Submit

## Problem 2

1/1 point (graded)

In which of the following situations has our linear classifier correctly labeled a data point? Select all that apply.

 $lap{ }{f v} \ {f w} \cdot {f x} + b > 0$  and y > 0

$$\checkmark y(\mathbf{w} \cdot \mathbf{x} + b) > 0$$

Generating Speech Output

| $\mathbf{v} \cdot \mathbf{x} + b < 0$ and $y < 0$                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $oxed{ } y > \mathbf{w} \cdot \mathbf{x} + b$                                                                                                                                                                                                                                             |
| <b>✓</b>                                                                                                                                                                                                                                                                                  |
| Submit                                                                                                                                                                                                                                                                                    |
| Problem 3                                                                                                                                                                                                                                                                                 |
| 1/1 point (graded) Let's say that we have a linear classifier given by $\mathbf{w}=[1,1,-3,0]$ and $b=-2$ . Our loss function measures the amount by which our prediction is incorrect: $\mathbf{loss}=-y(\mathbf{w}\cdot\mathbf{x}+b)$ . If our prediction is correct, there is no loss. |
| What is the loss on the data point $(\mathbf{x},y)$ where $\mathbf{x}=(3,1,1,4)$ and $y=1$ ?                                                                                                                                                                                              |
| 0                                                                                                                                                                                                                                                                                         |
| <u> </u>                                                                                                                                                                                                                                                                                  |
| <u>2</u>                                                                                                                                                                                                                                                                                  |
| <u></u>                                                                                                                                                                                                                                                                                   |
| <b>✓</b>                                                                                                                                                                                                                                                                                  |
| Submit                                                                                                                                                                                                                                                                                    |
| Problem 4                                                                                                                                                                                                                                                                                 |
| 1/1 point (graded)  If the Perceptron algorithm does 9 updates before converging on a solution, what value of Generating Speech Output (ave?)                                                                                                                                             |

| $\bigcirc b = 9$                                                                                       |
|--------------------------------------------------------------------------------------------------------|
| $\bigcirc b = -9$                                                                                      |
| $left[left] b \in [-9,9]$                                                                              |
| $igcup_{b} \in [0,9]$                                                                                  |
| <b>✓</b>                                                                                               |
| Submit                                                                                                 |
| Problem 5                                                                                              |
| 1/1 point (graded) What is a support vector?                                                           |
| A data point from the test set that is used to test the classifier                                     |
| A vector that we are trying to minimize                                                                |
| $\bigcirc$ A data point which is correctly classified by the optimal solution for ${f w}$              |
| lacktriangle A data point from the training set that contributes to the optimal solution for $f w$     |
| <b>✓</b>                                                                                               |
| Submit                                                                                                 |
| Problem 6                                                                                              |
| 1/1 point (graded)  Generating Speech Output   between the perceptron algorithm and the support vector |
| Generating Speech Output   between the perceptron algorithm and the support vector machine?            |

| The perceptron uses gradient descent while the SVM uses stochastic gradient descent                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The perceptron finds a linear separator that separates most of the data points in the training set, while a SVM finds a linear separator that separates all of the data in the training set                        |
| The perceptron finds any solution that perfectly separates the training set, while the SVM finds the solution that perfectly separates the training set with the greatest margin of separation                     |
| The perceptron algorithm may not find a solution while the SVM is guaranteed to find a solution                                                                                                                    |
| Submit                                                                                                                                                                                                             |
| Problem 7   1/1 point (graded)   The optimal solution for a SVM is given by the coefficient vector ${\bf w}$ and the constant $b$ . The width of the margin is given by $\gamma$ . What is the value of $\gamma$ ? |
| $igcolumn{igcolumn{2}{c} oldsymbol{\gamma} = rac{1}{  \mathbf{w}  } igcolumn{2}{c}$                                                                                                                               |
| $\bigcirc \gamma = rac{1}{  \mathbf{w}  }$                                                                                                                                                                        |
| $\bigcirc \gamma =   \mathbf{w}  $                                                                                                                                                                                 |
| $\bigcirc \gamma = b - rac{1}{  \mathbf{w}  }$                                                                                                                                                                    |
| Generating Speech Output                                                                                                                                                                                           |

| Submit                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------|
| Problem 8                                                                                                       |
| 1/1 point (graded) True or false: A soft-margin SVM has fewer support vectors than a hard-margin SVM.           |
| ○ True                                                                                                          |
| ● False                                                                                                         |
| <b>✓</b>                                                                                                        |
| Submit                                                                                                          |
| Problem 9                                                                                                       |
| 1/1 point (graded) Decreasing the value of ${\cal C}$ in the soft-margin SVM results in which of the following: |
| fewer number of support vectors                                                                                 |
| ✓ wider margin                                                                                                  |
| more data points being correctly classified                                                                     |
| lower penalty for incorrectly classified data points                                                            |
|                                                                                                                 |
| Submit                                                                                                          |
| Generating Speech Output                                                                                        |

| 1/1 point (graded) True or false: All support vectors are contained between, or on, the margins of the two classes.           |
|-------------------------------------------------------------------------------------------------------------------------------|
| True                                                                                                                          |
| ● False                                                                                                                       |
| Submit                                                                                                                        |
| Problem 11  1/1 point (graded)  What does the slack variable represent?                                                       |
| $igcirc$ It is a vector containing the amount of error each point $(x^{(i)},y^{(i)})$ contributes to the optimization problem |
| It is a coefficient that we must determine to optimize the problem                                                            |
| $\bigcirc$ It is a vector containing the number of times each $w_i$ is updated                                                |
| it is a value that determines how much error the optimization problem is allowed to have                                      |
| Submit                                                                                                                        |
| Generating Speech Output                                                                                                      |

Problem 10

Using the dual form of the perceptron algorithm, which of the following values are updated during each pass over the training set?  $\mathbf{w}$  $\checkmark \alpha$ **✓** b  $|\mathbf{y}|$ Submit Problem 13 1/1 point (graded) When optimizing the dual form of the hard-margin SVM, when are the values  $\alpha_i$  nonzero? When the data point  $(x^{(i)},y^{(i)})$  is on the linear separator between the two classes  $igcolon{igcup}{igcolon}$  When the data point  $(x^{(i)},y^{(i)})$  is right on the margin for its class ) When the data point  $(x^{(i)},y^{(i)})$  is in the interior of the region for its class When the data point  $(x^{(i)},y^{(i)})$  is on the wrong side of the linear separator Submit Generating Speech Output

1/1 point (graded)

#### Problem 14

1/1 point (graded)

When using multiclass logistic regression on data with labels,  $Y=\{1,2,\ldots,k\}$ , and a linear classifier specified by  $\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_k\in\mathbb{R}^d$  and  $b_1,b_2,\ldots,b_k\in\mathbb{R}$ , and given a point  $(\mathbf{x},y)$ , what is the probability that y=j, where  $0< j\leq k$ ?

$$igcirc Pr(y=j|\mathbf{x})=e^{\mathbf{w}_j\cdot\mathbf{x}+b_j}$$

$$igcirc Pr\left(y=j|\mathbf{x}
ight)=rac{e^{\mathbf{w}_{j}\cdot\mathbf{x}+b_{j}}}{e^{\mathbf{w}_{k}\cdot\mathbf{x}+b_{k}}}$$

$$igcolumber Pr(y=j|\mathbf{x}) = rac{e^{\mathbf{w}_j\cdot\mathbf{x}+b_j}}{e^{\mathbf{w}_1\cdot\mathbf{x}+b_1}+e^{\mathbf{w}_2\cdot\mathbf{x}+b_2}+...+e^{\mathbf{w}_k\cdot\mathbf{x}+b_k}}$$

$$igcirc Pr(y=j|\mathbf{x}) = rac{e^{\mathbf{w}_j \cdot \mathbf{x} + b_j}}{1 + e^{\mathbf{w}_j \cdot \mathbf{x} + b_j}}$$



Submit

#### Problem 15

1/1 point (graded)

What does  $\xi_i$  represent in the soft-margin SVM?

 $\bigcirc$  It is the number of times the i'th point was updated

 $\bigcirc$  It is the amount of slack the i'th point has

 $\bigcirc$  It represents the i'th support vector

Olt represents the width of the margin

Generating Speech Output

Submit

© All Rights Reserved