Laboratorijske vaje 5

Scilab - pomoč:

- fft(x,-1), abs, atan
- magplot(signal,faktor_ekspanzije,od,do)
- frmag(b,a,N), dbphi
- plot ()
- nextpow2() izračun prve najbližje potence števila 2

1. Frekvenčna analiza signalov:

http://www.fourier-series.com/, posebej priporočam:

http://www.fourier-series.com/fourierseries2/flash programs/Discrete Basis Functions/index.html http://www.fourier-series.com/fourierseries2/flash programs/DFT insight/index.html

Diskretno-časovna periodična Fourierova transformacija

transformacija
$$\cos(x) = \frac{e^{x} + e^{-x}}{2}$$

$$k = 0,1,2,..., N-1$$

$$\sin(x) = \frac{e^{x} - e^{-x}}{2y}$$

- $D(\check{C}P)FT: \ X(k) = (\frac{1}{N}) \sum_{n=0}^{N-1} x(n) e^{\frac{-j2\pi kn}{N}} \qquad k = 0,1,2,...,N-1$ generiraite **kosinusni** in **sinusni** signal x₀ (F₁=250Hz, A₁=3, 00)
- generirajte kosinusni in sinusni signal x₀ (F₁=250Hz, A₁=3, θ₀=0), s F_s=1000 Hz, N=512 vzorci in analizirajte dobljen DČPFT transform (ločeno realni in imaginarni del)
- generirajte 3 **kosinusne** signale s F_s =1000 Hz in N=512 vzorci: x_1 (F_1 =250Hz, A_1 =3, θ_1 =pi/4), x_2 (F_2 =50.78125Hz, A_2 =0.7, θ_2 =-pi/8), x_3 = x_1 + x_2

- preverite ujemanje podanih podatkov s podatki, ki ste jih dobili za x₃ s pomočjo izračunanega frekvenčnega odziva signala.
- generirajte nov signal x₂₂ s takšno frekvenco F₂₂, ki bo na polovici razdalje med dvema sosednjima točkama na frekvenčni osi amplitudnega odziva (za določanje F₂₂ lahko uporabite odmik od F₂). Preverite amplitudna odziva v bližini točk, ki ustrezata frekvencam F₂ in F₂₂.Kaj opazite ?

2. Prikaz amplitudnega odziva v logaritemskem merilu [dB] (običajen pri zvoku)

- amplitudni odziv običajno prikažemo v logaritemskem merilu

$$A(k)[dB] = 20*log_{10}(A(k)/max(A))$$

- napišite funkcijo za prikaz amplitudnega odziva danega zaporedja »magplot«, ki omogoča:
 - prikaz amplitude v dB
 - možnost hkratnega prikaza amplitudnih odzivov več signalov
 - kot zanimivost še možnost dodajanja ničel (s tem se prikaz interpolira)

Frekvenčna analiza nekaterih že obravnavanih signalov

S pomočjo funkcije za izračun in prikaz amplitudnega odziva analizirajte naslednje signale (lahko tudi ostale signale po lastni izbiri); podano je tudi nekaj primerov vprašanj, na katere bi lahko odgovarjali v praksi :

- samoglasnika ("aaa.wav", "iii.wav") npr. lega spektralnih vrhov formantov čisti DTMF signal ("dtmf_tipka1.wav", "dtmf_tipka2.wav") katerim tipkam ustreza zvok ? posnetek klarineta ("clarinet.wav") določitev parametrov modela klarinta za aditivno sintezo...