Getting into hot water: An opportunity for the Petroleum Industry

Jon Gluyas¹, Alison Auld², Charlotte Adams¹, Catherine Hirst¹, Simon Hogg² & Jonathan Craig³

¹Department of Earth Sciences, Durham University, DH1 3LE, UK
² School of Engineering & Computing Sciences, Durham University, DH1 3LE, UK
³ ENI Exploration Division, Via Emilia 1, 20097 San Donato Milanese, Italia

Outline

- Global oil production
- Co-produced water
- Examples of co-produced water N Sea fields
- Southampton District Energy Scheme & Wytch Farm
- Power generation
- UK co-produced water
- Global co-produced water
- The global geothermal industry
- Global potential for power generation from co-produced water

Global Oil Production

Initial Water Free Production

Co-produced Water

UK Forties Oil + Water Production

UK Fulmar Oil + Water Production

Southampton District Energy Scheme

- Single borehole
 - Start-up 1986
 - Rate 15-20 lsec⁻¹
 (≡ 39,500-52,600
 m³month⁻¹ or
 8,200-11,000 bwpd)
 - Power ~ 1.7MW

Triassic Sherwood Sandstone - Outcrop

- High net to gross reservoir
- High porosity
- High permeability
- High kv/kh

Sherwood Sandstone Ladram Bay, Devon, October 2011

Triassic Sherwood Sandstone – Wytch Farm Field

Production Performance Wytch Farm & Southampton DES

Power Production

- The Organic Rankine Cycle (Binary power plant)
- Typically 1-20 MW
- Size 'sea container' & 150+ tonnes

The North Viking Graben, UKCS

Late Life Production Chokes

- Water handling
- Water/oil separation & discharge
- Scaling
- Injectivity
- Aging infrastructure
- Power generation & hence water injection/pressure maintenance

Name	Mass Flow Rate	Temperature	Max. Power Output
	(kg/s)	(° C)	(MW)
Ellon	9.29	117	0.45
Lyell	11.25	114	0.52
Pelican	20.51	125	1.09
Devron	39.54	104	1.09
Heather	44.88	113	2.05
Dunbar	58.43	128	3.2
Beryl	100.88	97	2.1
Osprey	107.15	101	2.66
Strathspey	110.29	100	2.59
Cormorant South	111.94	107	3.67
Eider	159.22	107	5.22
Alwyn North (East)	168.71	112	7.58
Tern	173.17	93	3.15
Magnus	218.65	116	10.36
Dunlin	282.72	99	6.39
Murchison	346.46	110	14.1
Thistle	369.93	104	10.19
Cormorant North	398.72	94	7.57
Brent	1096.62	96	22.28
Ninian	1231.1	102	31.01
Statfjord	1417.43	89	22.56

Power Generation (from co-produced water)

UK Oil + Water Production

5 million bbl/d @ av 100° C = 250 MW

Global Oil + Water Production

300 million bbl/d @ av ?°C = 15,000 MW

Global Water Production

About 70% of water production is onshore

World geothermal energy potential

Production about 12.000 MW & Potential 150.000 MW

Conclusions – Global Power Production

- Dedicated geothermal plants produce about 12,000 MW
- TODAY the oil industry could generate >15,000 MW at a water oil ratio of about 3.
- The most mature of oil fields produce >>10x more water than oil and this would rise if the co-produced water had value rather than being a cost.

 The oil industry could be a globally significant geothermal power producer & the waste heat recovery potential is substantially higher