

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Методы машинного обучения

Отчёт по рубежному контролю № 1 «Методы обработки данных»

Выполнил: студент группы ИУ5 – 23М

Крутов Т.Ю.

Преподаватель: Гапанюк Ю.Е.

Рубежный контроль № 1

Методы обработки данных

Вариант № 4

Задание № 1

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style = 'ticks')
```

Импортируем датасет

```
In [115]:

data = pd.read_csv('toy_dataset.csv')

In [107]:

data.head()
```

Out[107]:

	Number	City	Gender	Age	Income	Illness
0	1	Dallas	Male	41	40367.0	No
1	2	Dallas	Male	54	45084.0	No
2	3	Dallas	Male	42	52483.0	No
3	4	Dallas	Male	40	40941.0	No
4	5	Dallas	Male	46	50289.0	No

```
In [61]:
```

```
data['City'].unique()
```

```
Out[61]:
```

```
H
In [6]:
data.shape
Out[6]:
(150000, 6)
In [12]:
                                                                                        M
data.dtypes
Out[12]:
Number
            int64
City
           object
Gender
           object
            int64
Age
Income
          float64
Illness
           object
dtype: object
Проверим наличе пропусков в данных
In [5]:
                                                                                        M
for col in data.columns:
   count = data[data[col].isnull()].shape[0]
   print('{} - {}'.format(col, count))
Number - 0
City - 0
Gender - 0
Age - 0
Income - 0
Illness - 0
Преобразуем категориальные признаки
In [18]:
                                                                                        H
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
```

Закодируем категориальные признаки числовыми с помощью метода Label Encoding

```
H
In [133]:
leCity = LabelEncoder()
city = leCity.fit_transform(data['City'])
np.unique(city)
Out[133]:
array([0, 1, 2, 3, 4, 5, 6, 7])
In [134]:
                                                                                              H
leCity.inverse_transform([0, 1, 2, 3, 4 ,5 ,6 , 7 ])
Out[134]:
array(['Austin', 'Boston', 'Dallas', 'Los Angeles', 'Mountain View',
       'New York City', 'San Diego', 'Washington D.C.'], dtype=object)
In [144]:
                                                                                              H
city = pd.DataFrame({'City':city.T})
city
Out[144]:
        City
          2
     0
          2
     1
     2
          2
          2
     3
     4
          2
149995
          0
 149996
          0
149997
          0
149998
          0
149999
          0
150000 rows × 1 columns
```

```
In [135]:
                                                                                             H
leGender = LabelEncoder()
gender = leGender.fit_transform(data['Gender'])
np.unique(gender)
Out[135]:
array([0, 1])
In [136]:
                                                                                             H
gender = pd.DataFrame({'Gender':gender.T})
gender
                                              . . .
In [137]:
leIllness = LabelEncoder()
illness = leIllness.fit_transform(data['Illness'])
np.unique(gender)
Out[137]:
array([0, 1])
                                                                                             H
In [138]:
illness = pd.DataFrame({'Illness':illness.T})
illness
                                              . . .
In [139]:
del data['City']
del data['Gender']
del data['Illness']
data
In [146]:
                                                                                             H
#merge = data.join(city)
merge = merge.join(gender)
merge = merge.join(illness)
merge
```

In [152]:
▶

```
del merge['Number']
merge
```

Out[152]:

	Age	Income	City	Gender	Illness
0	41	40367.0	2	1	0
1	54	45084.0	2	1	0
2	42	52483.0	2	1	0
3	40	40941.0	2	1	0
4	46	50289.0	2	1	0
149995	48	93669.0	0	1	0
149996	25	96748.0	0	1	0
149997	26	111885.0	0	1	0
149998	25	111878.0	0	1	0
149999	37	87251.0	0	0	0

150000 rows × 5 columns

Теперь, когда категориальные признаки закодированы, можно приступить к построению основных графиков разведочного анализа

In [153]: ▶

sns.pairplot(merge)

Out[153]:

<seaborn.axisgrid.PairGrid at 0x21966903b00>


```
In [154]: 
▶
```

```
sns.heatmap(merge.corr(), annot=True, fmt='.3f')
```

Out[154]:

<matplotlib.axes._subplots.AxesSubplot at 0x21969430208>

Как видно из корреляционной матрицы, все признаки очень слабо коррелируют. Наибольшую корреляцию демонстрируют пары признаков: City - Income & Gender - Income

In [161]: ▶

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Income', y='Age', data=merge, hue='Illness')
```

Out[161]:

<matplotlib.axes._subplots.AxesSubplot at 0x2196ada2c18>

Выбрав в качестве целевого признака критерий болезни, можно убедиться, что уровень дохода с высокой долей вероятности никак не влияет на отсутствие заболевания. Что касается возраста человека, можно выделить очень малозаметное смещение заболеваемости к людям старшего возраста

```
In [162]: ▶
```

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(merge['Income'])
```

Out[162]:

<matplotlib.axes._subplots.AxesSubplot at 0x2196a6dcf28>

Набор данных позволяет получить гистограмму распределения дохода. С помощью гистограммы можно говорить о присутствии "легкого"

трехмодального распределения с явным преобладанием центральной моды, соответствующей среднему достатку около 95000\$

In [165]:
sns.jointplot(x='Income', y='City', data=merge)

Out[165]:

<seaborn.axisgrid.JointGrid at 0x2196f102668>

График выше демонстрирует разброс дохода в каждом из городов, присутствующих ввыборке. Наименьший уровень дохода соответствует Далласу, проживающие в Маунтин-Вью могут расчитывать на самый больший доход

In [164]:

▶

```
sns.jointplot(x='Gender', y='Income', data=merge, kind="kde")
```

Out[164]:

<seaborn.axisgrid.JointGrid at 0x2196d3354e0>

График уровня дохода мужчин и женщин

Ящик с усами

In [156]:

```
sns.boxplot(x=merge['Age'])
```

Out[156]:

<matplotlib.axes._subplots.AxesSubplot at 0x2196a163080>

Ящик с усами отображает распределение вероятности попадания человека в диапазон возрастов

В целом можно судить о скудной репрезентативности выборки датасета. Признаки слабо коррелируют между собой. Исходя из этого, довольно затруднительно говорить о построении какой- либо модели машинного обучения.