

CD4002/CN4002 Computer Systems and Networks

Week 2 – Number Systems

Pioneering Futures Since 1898

Agenda

- Why do we need an understanding of number systems?
- The common features of number systems
- The decimal, binary and hexadecimal number systems
- Converting numbers from one base to another

Why do we need an understanding of number systems?

 Put simply, to help us understand how computers work and how they represent data

Binary numbers

- Form the basis of the Von Neumann architecture
- Natural relationship with on/off switches
- Used to represent both instructions and data

Hexadecimal numbers

- Closely related to binary numbers
- Used as a shorthand for binary numbers which makes life easier for humans
- Often used for debugging

On	Off
True	False
Yes	No
1	0

Base and Digits

Base: the number of different digits including zero that exist in the number system

Decimal number system

- Base = 10
- Number of digits = 10, 0 through 9

Binary number system

- Base = 2
- Number of digits = 2, 0 & 1

Hexadecimal number system

- Base = 16
- Number of digits = 16, 0 9, A F (A equivalent to 10_{10} , B equivalent to 11_{10} etc.)

Pioneering Futures Since 1898

Quiz Time

Q. Unlike humans, martians have 3 fingers on each hand and hence use the senary (base 6) number system.

How many digits exist in this number system?

What are the digits?

Numbers: Physical Representation

- · Different representation, same number of apples
 - Cave dweller: IIIII
 - Roman: V
 - You and I: 5₁₀
 - A digital computer: 101₂
 - A martian: 5₆

Modern Number Systems

- Based on <u>positional notation</u> (aka <u>place value</u> i.e. used to find the value)
 - 1. Decimal system: system of positional notation based on powers of 10
 - i.e. 527₁₀ is 5 lots of 100, 2 lots of 10 and 7 lots of 1
 - 2. Binary system: system of positional notation based powers of 2
 - i.e. 111₂ is 1 lot of 4, 1 lot of 2 and 1 lot of 1
 - 3. Hexadecimal system: system of positional notation based powers of 16
 - i.e. ABC₁₆ is A (10) lots of 256, B (11) lots of 16 and C (12) lots of 1

The only thing that differentiates the above number systems is the base!

Positional Notation: Base 10

Using positional notation to find values in decimal

$$527 = 5 \times 10^2 + 2 \times 10^1 + 7 \times 10^0$$

Positional Notation: Binary

Using positional notation to find values in decimal

$$1101\ 0110_2 = 214_{10}$$

Place	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Value	128	64	32	16	8	4	2	1
Evaluate	1 x 128	1 x 64	0 x 32	1 x16	0 x 8	1 x 4	1 x 2	0 x 1
Sum for Base 10	128	64	0	16	0	4	2	0

Try these yourself

- Using positional notation, convert the following binary numbers into decimal.
 - · 1011₂
 - $\cdot 10110100_2$

Place	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	128	64	32	16	8	4	2	1
Evaluate								
Sum for Base 10								

Positional Notation: Hexadecimal

Using positional notation to find values in decimal

$$6,704_{16} = 26,372_{10}$$

And try this one!

- Using positional notation, convert the following hexadecimal number into decimal.
 - 123A₁₆

Place	16 ³	16 ²	16 ¹	16 ⁰
Value	4,096	256	16	1
Evaluate				
Sum for Base 10				

The Range of Possible Numbers

Range: determines the total number of values that can be represented by a number of a particular size.

The formula for finding the range is:

- $R = B^{K}$ where R = range, B = base, K = number of digits
- Example #1: Find the range of a 1 digit decimal number
 R = 10¹ = 10 different numbers (0...9)
- Example #2: Find the range of a 3 digit decimal number
 - $R = 10^3 = 1,000$ different numbers (0...999)
- Example #3: Find the range of a 16 bit binary number
 - $R = 2^{16} = 65,536$ or 64K different numbers (0...65,535)
 - A 16 bit integer can never store more than 64K different integers

Note: the largest number is always one less than the range.

Decimal Range for Bit Widths

Bits	Digits	Range
1	0+	2 (0 and 1)
4	1+	16 (0 to 15)
8	2+	256
10	3	1,024 (1K)
16	4+	65,536 (64K)
20	6	1,048,576 (1M)
32	9+	4,294,967,296 (4G)
64	19+	Approx. 1.6 x 10 ¹⁹
128	38+	Approx. 2.6 x 10 ³⁸

Try this example!

- Q. What is the range of a 3 digit hexadecimal number?
- Q. What is the largest number that can be represented by 3 hexadecimal digits?

Use the formula $R = B^{K}$ where R = range, B = base and K = number of digits

Number of Symbols vs. Number of Digits

- For a given number, the *larger* the base
 - the *more* symbols required (e.g. 16 symbols required in Base 16, 0 9, A F)
 - but the fewer digits needed
- To prove that the above statement is true, look at the following examples:
- Example #1: Convert 65₁₆ to decimal and binary
 - 101₁₀ 110 0101₂
- Example #2: Convert 11C₁₆ to decimal and binary
 - 284₁₀ 1 0001 1100₂

Counting in Base 2

Binary		Equiv	/alent		Decimal
Number	8's (2 ³)	4's (2 ²)	2's (21)	1's (2 ⁰)	Number
0				0 x 2 ⁰	0
1				1 x 2 ⁰	1
10			1 x 2 ¹	0 x 2 ⁰	2
11			1 x 2 ¹	1 x 2 ⁰	3
100		1 x 2 ²			4
101		1 x 2 ²		1 x 2 ⁰	5
110		1 x 2 ²	1 x 2 ¹		6
111		1 x 2 ²	1 x 2 ¹	1 x 2 ⁰	7
1000	1 x 2 ³				8
1001	1 x 2 ³			1 x 2 ⁰	9
1010	1 x 2 ³		1 x 2 ¹		10

Arithmetic operations in Number Bases: Addition

Base	Problem	Largest Single Digit
Decimal	6 +3	9
Hexadecimal	6 9 +	F
Binary	1 +0	1

Addition with carry forward

Base	Problem	Carry	Answer
Decimal	6 +4	Carry the 10	10
Hexadecimal	6 +A	Carry the 16	10
Binary	1 +1	Carry the 2	10

Binary Addition

Hexadecimal Addition

Now you try!

- Perform the following addition:
 - $\cdot 1101_2 + 110_2$

Converting to and from Base 10

Using Powers Table (e.g. 2^p and 16^p)

		Power								
		8	7	6	5	4	3	2	1	0
Poo	2	256	128	64	32	16	8	4	2	1
Base	16					65,536	4,096	256	16	1

Method 1: From Base 10 to Base 2

			Power					
		6	5	4	3	2	1	0
Base	2	64	32	16	8	4	2	1
			1	0	1	0	1	0
Intogor			42/32	10/16	10/8	2/4	2/2	0/1
Integer			= 1	= 0	= 1	= 0	_ = 1	= 0
Remainder			10	10	2	2	0	0

$$42_{10} = 101010_2$$

Method 2: From Base 10 to Base 2 (Long division using the base and carry)

From Base 10 to Base 16

(Long division: using the base and carry)

From Base 16 to Base 2 and vice-versa

 The nibble approach (i.e. group into 4 bits then convert to hexadecimal and vice versa)

Base 16	1	F	6	7
Base 2	0001	1111	0110	0111

Binary	Hexa- decimal	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	Α	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

And one for you to try!

Convert the binary number below to hexadecimal.
 (Watch out for the 2 most significant bits!)

Base 16				
Base 2	10	1010	0010	0110

Binary	Hexa- decimal	Decimal		
0000	0	0		
0001	1	1		
0010	2	2		
0011	3	3		
0100	4	4		
0101	5	5		
0110	6	6		
0111	7	7		
1000	8	8		
1001	9	9		
1010	A	10		
1011	В	11		
1100	C	12		
1101	D	13		
1110	E	14		
1111	F	15		

Example of the use of ASCII code (base 16) in computing

LSD MSD	0	1	2	3	4	5	6	7	
0	NUL	DLE	SP	0	@	Р	`	р	
1	SOH	DC1	!	1	А	Q	а	q	
2	STX	DC2	66	2	В	R	р	r	
3	ETX	DC3	#	3	С	S	С	s	
4	EOT	DC4	\$	4	D	Т	d	t	
5	ENQ	NAK	%	5	Е	U	е	u	74 ₁₆
6	ACJ	SYN	&	6	F	V	f	V	111 0100
7	BEL	ETB	í	7	G	W	g	W	
8	BS	CAN	(8	Н	Χ	h	Х	
9	HT	EM)	9	I	Υ	i	У	
A	LF	SUB	*	:	J	Z	j	Z	
В	VT	ESC	+	;	K	[k	{	
C	FF	FS	,	<	L	\	I		
D	CR	GS	-	=	М]	m	}	
Е	SO	RS		>	N	٨	n	~	
F	SI	US	/	?	0	_	0	DEL	

Learning Objectives

- On completion of this topic, you will be able to:
 - Explain the relevance of the binary and hexadecimal number systems in computing
 - Convert decimal numbers to and from binary and hexadecimal
 - Convert binary numbers to and from hexadecimal
 - Perform simple additions in binary and hexadecimal

Reading

- Essential reading
 - Englander, Chapter 3
- Recommended reading
 - Stallings, Chapter 9

