```
In [1]:
```

```
import yfinance as yf
import numpy as np
import pandas as pd
import scipy
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import sklearn
```

In [19]:

```
data = yf.download('NFLX ^GSPC', start='2017-05-22', end= '2022-05-02')
data
#scarico i dati degli ultimi5 anni '2017-05-22', end= '2022-05-02' riguardanti le azioni
di Netflix e l'indice S&P500
```

Out[19]:

	Adj Close		Close		High		Low		Open	
	NFLX	^GSPC	NFLX	^GSPC	NFLX	^GSPC	NFLX	^GSPC	NFLX	^GS
Date										
2017- 05-22	157.160004	2394.020020	157.160004	2394.020020	158.600006	2395.459961	156.429993	2386.919922	157.860001	2387
2017- 05-23	157.949997	2398.419922	157.949997	2398.419922	158.309998	2400.850098	156.800003	2393.879883	157.750000	2397
2017- 05-24	157.750000	2404.389893	157.750000	2404.389893	158.479996	2405.580078	157.169998	2397.989990	158.350006	2401
2017- 05-25	163.050003	2415.070068	163.050003	2415.070068	164.100006	2418.709961	160.550003	2408.010010	161.000000	2409
2017- 05-26	162.429993	2415.820068	162.429993	2415.820068	163.050003	2416.679932	161.119995	2412.199951	162.839996	2414
	•••			•••	***				***	
2022- 04-25	209.910004	4296.120117	209.910004	4296.120117	216.660004	4299.020020	204.509995	4200.819824	213.809998	4255
2022- 04-26	198.399994	4175.200195	198.399994	4175.200195	209.149994	4278.140137	198.279999	4175.040039	208.800003	4278
2022- 04-27	188.539993	4183.959961	188.539993	4183.959961	200.190002	4240.709961	187.770004	4162.899902	194.009995	4186
2022- 04-28	199.520004	4287.500000	199.520004	4287.500000	201.479996	4308.450195	185.600006	4188.629883	191.559998	4222
2022- 04-29	190.360001	4131.930176	190.360001	4131.930176	204.710007	4269.680176	190.000000	4124.279785	198.679993	4253

1245 rows × 12 columns

In [20]:

```
adj_close = data['Adj Close']
adj_close
#prendo in considerazione solamente la chiusura aggiustata, ovvero il prezzo aumentato pe
r i dividendi
```

Out[20]:

NEI A VUGEDU

```
NFLX AGSPC

Date

2017-05-22 157.160004 2394.020020

2017-05-23 157.949997 2398.419922

2017-05-24 157.750000 2404.389893

2017-05-25 163.050003 2415.070068

2017-05-26 162.429993 2415.820068

... ... ...

2022-04-25 209.910004 4296.120117

2022-04-26 198.399994 4175.200195

2022-04-27 188.539993 4183.959961

2022-04-28 199.520004 4287.500000

2022-04-29 190.360001 4131.930176
```

1245 rows × 2 columns

In [21]:

```
returns = adj_close.pct_change()
returns = returns.dropna(axis=0) #così droppa la prima colonna che ha i valori Nan, perc
hé è il valore di avvio quindi nullo
returns
#calcolo i ritorni sul prezzo aggiustato, calcolato come Ritorno = (Pt+1 + DIV -P)/P nell
'arco di tempo stabilito di 5 anni.
```

Out[21]:

	NFLX	^GSPC	
Date			
2017-05-23	0.005027	0.001838	
2017-05-24	-0.001266	0.002489	
2017-05-25	0.033597	0.004442	
2017-05-26	-0.003803	0.000311	
2017-05-30	0.004864	-0.001205	
2022-04-25	-0.026030	0.005698	
2022-04-26	-0.054833	-0.028146	
2022-04-27	-0.049698	0.002098	
2022-04-28	0.058237	0.024747	
2022-04-29	-0.045910	-0.036285	

1244 rows × 2 columns

In [22]:

```
returns.describe()
#mi dà i principali indicatori suli ritorni per colonna.
```

Out[22]:

	NFLX	^GSPC
count	1244.000000	1244.000000
mean	0.000561	0.000519
std	0.027918	0.012654

```
25%
       -0.012127
                 -0.003537
        0.000467
                  0.000938
 50%
        0.014374
                  0.006336
 75%
        0.168543
                  0.093828
 max
In [23]:
y = returns['NFLX'] #variabile dipendente
x1 = returns['^GSPC'] #variabile indipendente
y, x1
Out[23]:
(Date
2017-05-23
              0.005027
2017-05-24
             -0.001266
2017-05-25
              0.033597
 2017-05-26
              -0.003803
2017-05-30
              0.004864
                 . . .
 2022-04-25
              -0.026030
2022-04-26
              -0.054833
2022-04-27
             -0.049698
2022-04-28
              0.058237
2022-04-29
             -0.045910
Name: NFLX, Length: 1244, dtype: float64,
Date
2017-05-23
              0.001838
2017-05-24
              0.002489
              0.004442
2017-05-25
2017-05-26
              0.000311
2017-05-30
              -0.001205
                 . . .
2022-04-25
              0.005698
2022-04-26
              -0.028146
2022-04-27
              0.002098
2022-04-28
              0.024747
2022-04-29
              -0.036285
Name: ^GSPC, Length: 1244, dtype: float64)
In [24]:
X = sm.add constant(x1)
C:\Users\errea\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning
: In a future version of pandas all arguments of concat except for the argument 'objs' wi
ll be keyword-only
 x = pd.concat(x[::order], 1)
In [25]:
model = sm.OLS(y, X)
model
#uso come modello l'Ordinary least squares
Out[25]:
<statsmodels.regression.linear model.OLS at 0x15c231d4eb0>
In [26]:
results =sm.OLS(y, X).fit()
results.summary()
#La retta di regressione che minimizza la distanza tra i punti dei ritoni dell'indice S&P
500 (ovvero l'indice di mercato
#preso come riferimento) mi dà un coefficiente angolare m di 1.0299.
#Dunque il mio Beta per Netflix sarà 1.0299, che mi indica la rischiosità che aggiunge al
```

-0.3511166

min

-0**46884**G

mio portafoglio di mercato #che possiedo secondo le assunzioni del modello di Capital Asset Pricing Model. Dunque ch iederò un rendimento maggiore #rispetto a quello di mercato di 1.0299, questo perché quando il mercato è sceso di 1 med iamente l'azione Netlix #è scesa di 1.0299.

Out[26]:

OLS Regression Results

Dep. Variable:	NFLX	R-sq	0.218				
Model:	OLS	Adj. R-sq	uared:	0.217			
Method:	Least Squares	F-sta	atistic:	346.1			
Date:	Mon, 23 May 2022	Prob (F-sta	tistic):	2.49e-68			
Time:	12:01:38	Log-Likel	ihood:	2839.8			
No. Observations:	1244		AIC:	-5676.			
Df Residuals:	1242	!	BIC:	-5665.			
Df Model:	1						
Covariance Type:	nonrobust						
coe	f std err t	P>ltl [0.025	0.975]				
const 2.582e-0	5 0.001 0.037	0.971 -0.001	0.001				
^GSPC 1.0299	9 0.055 18.603	0.000 0.921	1.139				
Omnibus: 834.573 Durbin-Watson: 1.979							
Prob(Omnibus): 0.000 Jarque-Bera (JB): 78344.140							
Skew:	-2.268 P ı	ob(JB):	0.00				
Kurtosis:	41.612 C o	nd. No.	79.1				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [27]:

```
plt.scatter(x1,y)
yhat = 1.0299*x1 + 0.0009 #retta di regressione
fig = plt.plot(x1, yhat, lw=4, c='orange', label = 'regression line')
plt.xlabel('^GSPC', fontsize = 20)
plt.ylabel('NFLX', fontsize = 20)
```

Out[27]:

Text(0, 0.5, 'NFLX')

In [1]:

#Con un beta > 1, Il rendimento richiesto è più alto in quanto aggiunge rischio al mio po rtafoglio, cioè quando il mercato varia

#tendenzialmente Netflix oscilla di più.

#Dunque in caso di bisogno, se in quel momento il mercato sta scendendo, significherebbe che il mio portafoglio avrebbe uno

#scossone maggiore, e nel caso mi servisse liquidità per far fronte ad una emergenza potr ei avere una liquidità minore

#di quella aspettato.

#Secondo la teoria ottimale del portafoglio:

Con due investimenti con stesso rendimento medio, l'investitore razionale sceglierebbe sempre quello con std inferiore

#perché l'altro avrebbe una probabilità maggiore

che il prossimo anno in caso di bisogno di liquidità, il portafoglio sarebbe più volati le e in caso di una caduta del mercato

il rendimento del portafoglio amplicherebbe in negativo quello del mercato, e dunque in caso di vendita andrei ad ottenere

una liquidità minore di quella aspettata, anche se il rendimento medio nel lungo termin e è lo stesso.

In []:

#Dunque il regression beta nel modello di CAPM, il beta mi dà lo slope della retta di regressione,

#e quindi mi aiuta a predire come saranno i rendimenti futuri quando l'sp 500 varia.