

自动化导论 Automation: An Introduction

南京大学控制科学与智能工程系 陈春林

Email: clchen@nju.edu.cn

北京冬奥会开幕式

嫦娥五号

京张高铁

全无人自动化学实验系统

移液

反应

开门 取样 关门

自动化专业名称发展脉络

1975年长征二号运载火箭

雪龙号 极地考察船

中国商飞 C919

问题求解的一般模式

对象可为物 (控制): 如机器人

对象可为人或企业(管理):如项目管理

发展趋势:智能技术与控制技术深入融合,并以自动化系统的形式渗透各行业。

控制 (自动化) 的一般形式

控制 (自动化) 系统的一般方框图

系统 (System) 、信息 (Information) 、反馈 (Feedback) 鲁棒 (Robust) 与优化 (Optimization)

0 开场白

0.1 课程说明

0.2 漫谈维纳与控制论

0.3 控制系统与信息反馈

课程简介:

以"感知—认知—反思"为主线,结合大量案例和多媒体素材,对控制的基础概念、自动控制的基本原理、自动控制系统的技术体系、自动化技术的应用、信息化时代的控制等进行系统的讲解和演示。

本课程为自动化专业的平台基础课,也可作为理工类、管理类各专业及其他对自动化技术感兴趣的同学们的开放选修课程。

课程学习目的:

通过本课程的学习,建立对控制学科/专业的性质、技术特点、服务领域等建立较清晰的概念,在学科/专业思想和自动化技术整体概念上建立较系统化的认知和学习体系,并为专业知识群(链)的学习和理解起到导向性作用。

以课堂教学为主,采用实例演示、概念讲解、课堂讨 论和实验室实验体验相结合的教学方式,要求:

- 了解控制论的基本思想
- 了解控制学科与技术的发展和影响
- 理解控制理论和技术的基本原理和核心概念有较深刻的理 解和体会
- 能对控制系统进行较为系统分析与认识

考核方式: 平时成绩30%+期末考试 (开卷) 70%

教材:

• 周献中、陈春林,自动化导论(第三版),科学出版社,2022

主要参考资料:

- 维 纳著. 控制论, 北京大学出版社, 2007
- 理查德等. 信息爆炸时代的控制, 科学出版社, 2004
- 戴先中等. 自动化学科概论. 高等教育出版社. 2006.4
- 万百五等. 自动化(专业)导论.武汉理工大学出版社.2003.9
- 汪晋宽等. 自动化概论.北京邮电大学出版社.2005.12
- 胡寿松编. 自动控制原理. 国防工业出版社.2005.4

序号	教 学 内 容	周次
0	开场白: 课程说明及Cybernetics漫谈	1
1	绪论: 自动化的历史与未来	2
2	自动控制系统的基本概念	3
3	自动控制系统的基本元件与设备	4
4	自动控制系统的描述原理	5
5	自动控制系统的基本控制过程	6
6	自动控制系统的基本控制方法	7-9
7	综合案例分析:机电系统、人工智能系统、机器人、智能制造	10-15
8	自动化专业介绍	16

0.2 漫谈维纳与控制论

- 信息时代背后的"思想的力量"
- Cybernetics(控制学或控制论)与Control Theory (控制理论)
- MIT的Norbert Wiener研究随机过程的预测(1942), 提出Wiener滤波理论(1942),发表《控制论》 (Cybernetics)(1948),标志着控制论学科的诞生。

0.2 漫谈维纳与控制论

《控制论(Cybernetics)》或

《关于在动物和机器中控制和通信的科学

(Control and Communication in the Animal and the Machine) »

0.2 漫谈维纳与控制论

诺伯特·维纳(Norbert Wiener) (1894.11.26-1964.3.18)

- 昔日神童
 - 幼受庭训,通才教育:数学、物理、化学、哲学与心理学、生物学
- 现代大师
 - o 建立维纳测度(1923)
 - 引进巴拿赫-维纳空间(1920)
 - 阐述位势理论(1925)
 - 发展调和分析(1926)
 - 发现维纳-霍普夫方法(1930)
 - 提出维纳滤波理论(1942)
 - 开创维纳信息论
 - o **创立控制论(1948)**: 计算机设计、防空火炮自动控制理论、通信与信息理论和神经生理学

0.3 控制系统与信息反馈

- 1. 控制系统无处不在
- 2. 信息反馈是保证控制性能的必要环节,尤 其对于较复杂系统(反馈的必要性)

0.3 控制系统与信息反馈

- 3. 信息反馈的质量直接影响到控制的效果, 如:
 - 准确性、快速性
 - 甚至包括系统的稳定性

4. 控制系统的三种性能(准确性、快速性、 稳定性)通常是相互制约的

小思考: 如下系统是否有明显的反馈机制?

精巧传动

无人驾驶

