Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (previously presented) A method for treating respiratory syncytial viral infections, comprising the step of:

administering to a patient in need of such treatment, a composition comprising an effective amount of a compound of formula I:

$$Q = \begin{bmatrix} R^1 & & & \\ & & & \\ & & & \\ N & & & \\ & & & \end{bmatrix} \begin{bmatrix} a^1 & a^2 & \\ & a^4 & a^4 \end{bmatrix}$$
 (1)

an addition salt or stereochemically isomeric form thereof, wherein $-a^1=a^2-a^3=a^4$ - represents a bivalent radical of formula

wherein each hydrogen atom in the radical (a-1) may optionally be replaced by halo, C_{1-6} alkyl, nitro, amino, hydroxy, C_{1-6} alkyloxy, polyhalo C_{1-6} alkyl, carboxyl, amino C_{1-6} alkyl, mono- or di(C_{1-4} alkyl)amino C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, hydroxy C_{1-6} alkyl, or a radical of formula

wherein Z is O, CH-C(=O)-NR^{5a}R^{5b}, CH₂, CH-C₁₋₆alkyl, N-OH or N-O-C₁₋₆alkyl;

Q is a radical of formula

$$Y_{(CH_2)_u}^1 = X_1^1 = Y_{(CH_2)_v}^1 = X_1^1 = X_2^1 = X_1^1 = X_2^1 = X_$$

Page 2 of 12

Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

wherein

Y¹ is a bivalent radical of formula -NR²- or -CH(NR²R⁴)-;

X¹ is NR⁴, S, S(=O), S(=O)₂, O, CH₂, C(=O), C(=CH₂), CH(OH), CH(CH₃), CH(OCH₃), CH(SCH₃), CH(NR^{5u}R^{5b}), CH₂-NR⁴ or NR⁴-CH₂;

 X^2 is a direct bond, CH_2 , C(=0), NR^4 , $C_{1-4}alkyl-NR^4$, $NR^4-C_{1-4}alkyl$;

u is 2 or 3;

v is 2; and

whereby each hydrogen atom in the carbocycles and the heterocycles defined in radicals (b-4), (b-5), and (b-6) may optionally be replaced by R^3 ; with the proviso that when R^3 is hydroxy or C_{1-6} alkyloxy, then R^3 can not replace a hydrogen atom in the α position relative to a nitrogen atom;

G is a direct bond or C₁₋₁₀alkanediyl;

R1 is a monocyclic heterocycle selected from piperidinyl, piperazinyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, pyrrolyl, furanyl, tetrahydrofuranyl, thienyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, and isothiazolyl; and each heterocycle may optionally be substituted with 1 or where possible more substituents selected from halo, hydroxy, amino, cyano, carboxy, C1-6alkyl, C₁₋₆alkyloxy. C₁₋₆alkylthio. C_{1-6} alkyloxy C_{1-6} alkyl, aryl, arylC_{1.6}alkyl, arylC₁₋₆alkyloxy, hydroxyC₁₋₆alkyl, mono-or di(C₁₋₆alkyl)amino, mono-or di(C1-6alkyl)aminoC1-6alkyl, polyhaloC1-6alkyl, C1-6alkylcarbonylamino, C1-6alkyl- SO_2-NR^{5c} -, aryl- SO_2-NR^{5c} -, C_{1-6} alkyloxycarbonyl, -C(=O)- $NR^{5c}R^{5d}$, $HO(-CH_2-CH_2-R_2-R_2)$ O)_n-, halo(-CH₂-CH₂-O)_n-, C₁₋₆alkyloxy(-CH₂-CH₂-O)_n-, arylC₁₋₆alkyloxy(-CH₂-CH₂-CH₂-O)_n-, arylC₁₋₆alkyloxy(-CH₂-CH₂-O)_n-, C_{1-6} alkyloxy(-CH₂-CH₂-O)_n-, C_{1-6} alkyloxy(-CH₂-CH₂-O)_n-, C_{1-6} alkyloxy(-CH₂-CH₂-O)_n-, C_{1-6} alkyloxy(-CH₂-O)_n-, C_{1-6} alkyloxy(-CH₂ O)_n- and mono-or di(C₁₋₆alkyl)amino(-CH₂-CH₂-O)_n-;

each n independently is 1, 2, 3 or 4;

 R^2 is hydrogen, formyl, C_{1-6} alkylcarbonyl, Hetcarbonyl, pyrrolidinyl, piperidinyl, homopiperidinyl, C_{3-7} cycloalkyl substituted with $N(R^6)_2$, or C_{1-10} alkyl substituted with $N(R^6)_2$ and optionally with a second, third or fourth substituent selected from amino, hydroxy, C_{3-7} cycloalkyl, C_{2-5} alkanediyl, piperidinyl, mono-or

Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

di(C1-6alkyl)amino,

C₁₋₆alkyloxycarbonylamino, aryl and aryloxy;

 R^3 is hydrogen, hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, aryl C_{1-6} alkyloxy;

R⁴ is hydrogen, C₁₋₆alkyl or arylC₁₋₆alkyl;

 $R^{5a},\,R^{5b},\,R^{5c}$ and R^{5d} each independently are hydrogen or $C_{1\text{-}6}$ alkyl; or

 R^{5n} and R^{5b} , or R^{5c} and R^{5d} taken together form a bivalent radical of formula -(CH₂)_s- wherein s is 4 or 5;

 R^6 is hydrogen, C_{1-4} alkyl, formyl, hydroxy C_{1-6} alkyl, C_{1-6} alkylcarbonyl or C_{1-6} alkyloxycarbonyl;

aryl is phenyl or phenyl substituted with 1 or more-substituents selected from halo, hydroxy, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, polyhaloC₁₋₆alkyl, and C₁₋₆alkyloxy; and Het is pyridyl, pyrimidinyl, pyrazinyl, or pyridazinyl;

2. (cancelled)

3. (previously presented) A method of treating a respiratory syncytial viral infection according to claim 10, wherein:

when Q is
$$R^2 - N - X^1$$

wherein X^1 is NR⁴, O, S, S(=O), S(=O)₂, CH₂, C(=O), C(=CH₂) or CH(CH₃), then R¹ is other than pyridyl, pyridyl substituted with C₁₋₆alkyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with C₁₋₆alkyl.

4. (previously presented) A method of treating a respiratory syncytial viral infection according to claim 10, wherein:

when Q is
$$R^2 - N$$

Page 4 of 12

PATENT

DOCKET NO.: JANS-0027/JAB1498 US

Application No.: 10/030,202

Office Action Dated: October 20, 2004

wherein X^1 is NR^4 , O, S, S(=0), S(=0)₂, CH₂, C(=0), C(=CH₂) or CH(CH₃), then R1 is other than pyridyl, pyridyl substituted with C1-6alkyl, pyridyl substituted with 1 or 2 C₁₋₆alkyloxy, pyrazinyl, pyrrolyl, pyrrolyl substituted with C₁₋₆alkyl,

imidazolyl and imidazolyl substituted with C₁₋₆alkyl.

5. (cancelled)

6. (previously amended) A method of treating a respiratory syncytial viral infection according to claim 10, wherein:

when Q is
$$R^2$$
—N— CH_2 -

then R1 is other than pyridyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with C₁₋₆alkyl.

7. (cancelled)

- 8. (currently amended) A method of treating a respiratory syncytial viral infection comprising the step of administering a therapeutically effective amount of a compound, according to claim 10, wherein the compound is:
 - (±)-2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-7-methyl-1Hbenzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride monohydrate;
 - 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-1H-benzimidazol-1-yl]methyl]-3-pyridinol;
 - (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(1,4-dimethyl-1H-imidazol-5-yl)methyl]-1H-benzimidazol-2-amine monohydrate;
 - (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(6-methyl-2pyridinyl)methyl]-1H-benzimidazol-2-amine;
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-[[3-(2-ethoxyethoxy)-6-methyl-2pyridinyl]methyl]-1H-benzimidazol-2-amine tetrahydrochloride dihydrate;

Page 5 of 12

Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

- (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(2-chloro-1,4-dimethyl-1H-imidazol-5-yl)methyl]-1H-benzimidazol-2-amine;
- (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(2-chloro-1,4dimethyl-1H-imidazol-5-yl)methyl]-1H-benzimidazol-2-amine;
- (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-methyl-1-[(6-methyl-2pyridinyl)methyl]-1H-benzimidazol-2-amine:
- (\pm) -N-[1-(2-aminopropyl)-4-piperidinyl]-1-[(3,5,6-
- trimethylpyrazinyl)methyl]-1H-benzimidazol-2-amine tetrahydrochloride trihydrate;
- (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(3,5,6-
- trimethylpyrazinyl)methyl]-1H-benzimidazol-2-amine:
- N-[1-(2-aminoethyl)-4-piperidinyl]-1-[[3-(2-chloroethoxy)-6-methyl-2pyridinyl]methyl]-1H-benzimidazol-2-amine trihydrochloride dihydrate;
- (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(3-amino-2pyridinyl)methyl]-1H-benzimidazol-2-amine tetrahydrochloride trihydrate;
- 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-4-methyl-1H-benzimidazol-1yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride;
- 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-6-chloro-4-methyl-1Hbenzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride 2-propanolate (1:1);
- (±)-2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-4-methyl-1Hbenzimidazol-I-yl]methyl]-6-methyl-3-pyridinol;
- (±)-2-[[2-[[1-(2-aminopropyl)-4-piperidinyl]amino]-4-methyl-1Hbenzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride trihydrate;
- 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-7-methyl-1H-benzimidazol-1yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride dihydrate;
- 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-6-bromo-4-methyl-1Hbenzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride;
- 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-1H-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride monohydrate;

Page 6 of 12

Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

(±)-2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-1H-benzimidazol-I-yl]methyl]-6-methyl-3-pyridinol;

(±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-4-methyl-1-[(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; or

an addition salt or stereochemically isomeric form thereof.

- 9. (currently amended) A method of treating a respiratory syncytial viral infection comprising the step of administering a therapeutically effective amount of a compound, according to claim-10, wherein the compound is:
 - 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-5-chloro-7-methyl-1H-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride tetrahydrate;
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2,4-dimethyl-5-oxazolyl)methyl]-1H-benzimidazol-2-amine;
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2,5-dimethyl-4-oxazolyl)methyl]-1H-benzimidazol-2-amine trihydrochloride monohydrate;
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(5-methyl-3-isoxazolyl)methyl]-1H-benzimidazol-2-amine trihydrochloride monohydrate;
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-methyl-5-oxazolyl)methyl]-1H-benzimidazol-2-amine monohydrate;
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-methyl-5-oxazolyl)methyl]-1H-benzimidazol-2-amine trihydrochloride monohydrate:
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-(4-thiazolylmethyl)-1H-benzimidazol-2-amine;
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(5-phenyl-1,2,4-oxadiazol-3-yl)methyl]-1H-benzimidazol-2-amine trihydrochloride;
 - 5-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-1H-benzimidazol-1-yl]methyl]-2-oxazolemethanol tetrahydrochloride dihydrate;
 - N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(3-methyl-5-isoxazolyl)methyl]-1H-benzimidazol-2-amine trihydrochloride monohydrate;

Page 7 of 12

Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

4-[[1-[[2-(dimethylamino)-4-thiazolyl]methyl]-1H-benzimidazol-2-yl]methyl]-1-piperidineethanamine tetrahydrochloride monohydrate 2-propanolate (1:1);

ethyl 5-[[2-[[1-[2-[[(1,1-dimethylethoxy)carbonyl]amino]ethyl]-4-piperidinyl]amino]-1H-benzimidazoI-1-yl]methyl]-2-methyl-4-oxazolecarboxylate;

 $\label{lem:conditional} 4-[[1-[(2-methyl-4-thiazolyl)methyl]-1H-benzimidazol-2-yl]methyl]-1-piperidineethanamine;$

N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-methyl-3-furanyl)methyl]-1H-benzimidazol-2-amine;

1,1-dimethylethyl 4-[[1-[[3-[2-(dimethylamino)ethoxy]]-6-methyl-2-pyridinyl]methyl]-1H-benzimidazol-2-yl]amino-1-piperidinecarboxylate;

ethyl 4-[[1-[(3-amino-2-pyridinyl)methyl]-1H-benzimidazol-2-yl]amino]-1-piperidinecarboxylate;

N-[1-(6-methyl-2-pyridinyl)-1H-benzimidazol-2-yl]-1-(3-pyridinylcarbonyl)-4-piperidinamine; or

an addition salt or stereochemically isomeric form thereof.

10. (previously presented) A method of treating a respiratory syncytial viral infection, comprising the step of administering a therapeutically effective amount of said compound of formula (I'):

$$Q = \begin{bmatrix} R^1 \\ N \end{bmatrix} \begin{bmatrix} a^1 \\ a^2 \end{bmatrix} \begin{bmatrix} I' \end{bmatrix}$$

an addition salt, or stereochemically isomeric form thereof, wherein $-a^1=a^2-a^3=a^4$ represents a radical of formula

wherein each hydrogen atom in the radicals (a-1) may optionally be replaced by halo, C₁₋₆alkyl, nitro, amino, hydroxy, C₁₋₆alkyloxy, polyhaloC₁₋₆alkyl, carboxyl,

Page 8 of 12

Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

aminoC_{1.6}alkyl, di(C₁₋₄alkyl)aminoC₁₋₆alkyl, mono-C₁₋₆alkyloxycarbonyl. hydroxyC₁₋₆alkyl, or a radical of formula

wherein Z is O, CH-C(=O)-NR 5a R 5b , CH₂, CH-C₁₋₆alkyl, N-OH or N-O-C₁₋₆alkyl;

Q is a radical of formula

$$Y_{(CH_2)_u}^1 = X_1^1 - Y_{(CH_2)_v}^1 - Y_{(CH_2)_v}^$$

wherein

Y¹ is a bivalent radical of formula -NR²- or -CH(NR²R⁴)-:

X1 is NR4, S, S(=O), S(=O)2, O, CH2, C(=O), C(=CH2), CH(OH), CH(CH3), CH(OCH₃), CH(SCH₃), CH(NR^{5a}R^{5b}), CH₂-NR⁴ or NR⁴-CH₂;

 X^2 is a direct bond, CH₂, C(=0), NR⁴, C₁₋₄alkyl-NR⁴, NR⁴-C₁₋₄alkyl;

u is 2 or 3;

v is 2; and

whereby each hydrogen atom in the carbocycles and the heterocycles defined in radicals (b-4), (b-5), and (b-6) may optionally be replaced by R³; with the proviso that when R³ is hydroxy or C₁₋₆alkyloxy, then R³ can not replace a hydrogen atom in the α position relative to a nitrogen atom;

G is a direct bond or C₁₋₁₀alkanediyl;

R1 is a monocyclic heterocycle selected from pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, pyrrolyl, imidazolyl and pyrazolyl; and each heterocycle may optionally be substituted with 1 or where possible more substituents selected from halo, hydroxy, amino, cyano, carboxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkyloxyC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, arylC₁₋₆alkyloxy, hydroxyC₁₋₆alkyl, mono-or di(C₁₋₆alkyl)amino, mono-or $di(C_{1-6}alkyl)$ amino $C_{1-6}alkyl$, polyhalo $C_{1-6}alkyl$, $C_{1-6}alkyl$ carbonylamino,

Page 9 of 12

Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

 C_{1-6} alkyl- SO_2 - NR^{5c} -, aryl- SO_2 - NR^{5c} -, C_{1-6} alkyloxycarbonyl, -C(=O)- $NR^{5c}R^{5d}$, $HO(-CH_2-CH_2-O)_n$ -, halo $(-CH_2-CH_2-O)_n$ -, C_{1-6} alkyloxy $(-CH_2-CH_2-O)_n$ -, aryl C_{1-6} alkyloxy $(-CH_2-CH_2-O)_n$ - and mono-or di $(C_{1-6}$ alkyl)amino $(-CH_2-CH_2-O)_n$ -;

each n independently is 1, 2, 3 or 4;

 R^2 is hydrogen, formyl, pyrrolidinyl, piperidinyl, homopiperidinyl, $C_{3\text{--}7}$ cycloalkyl substituted with $N(R^6)_2$, or $C_{1\text{--}10}$ alkyl substituted with $N(R^6)_2$ and optionally with a second, third or fourth substituent selected from amino, hydroxy, $C_{3\text{--}7}$ cycloalkyl, $C_{2\text{--}5}$ alkanediyl, piperidinyl, mono-or di($C_{1\text{--}6}$ alkyl)amino, $C_{1\text{--}6}$ alkyloxycarbonylamino, aryl and aryloxy;

 R^3 is hydrogen, hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, aryl C_{1-6} alkyloxy;

R⁴ is hydrogen, C₁₋₆alkyl or arylC₁₋₆alkyl;

 $R^{5a},\,R^{5b},\,R^{5c}$ and R^{5d} each independently are hydrogen or $C_{1\text{-}6}$ alkyl; or

R^{5a} and R^{5b}, or R^{5c} and R^{5d} taken together form a bivalent radical of formula - (CH₂)_s- wherein s is 4 or 5:

 R^6 is hydrogen, C_{1-4} alkyl, formyl, hydroxy C_{1-6} alkyl, C_{1-6} alkylcarbonyl or C_{1-6} alkyloxycarbonyl;

aryl is phenyl or phenyl substituted with 1 or more substituents selected from halo, hydroxy, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, polyhaloC₁₋₆alkyl, and C₁₋₆alkyloxy; provided:

that when G is methylene, and R¹ is 2-pyridyl, 3-pyridyl, 6-methyl-2-pyridyl, 2-pyrazinyl or 5-methyl-imidazol-4-yl, then Q is other than

Application No.: 10/030,202

Office Action Dated: October 20, 2004

PATENT

Claims 11 to 22 (cancelled)