Assignment 1b- Zamima Islam Sabaa

1/17/22

STEP 1: Setting my working directory and loading required packages in R

```
rm(list = ls())  #clears environment
directory <- setwd("~/Documents/SFU courses/Spring 2022/Econ836 - A.
Econometrics/Assignm")  #sets working directory
library(haven)  #needed to load the .dta stata data file
library(tidyverse)  #needed for datacleaning

library(dplyr)
library(labelled)  #needed for labels
library(modelsummary)  #needed for tables
library(data.table)</pre>
```

STEP 2: Reading the dataset

```
d.s <- read_dta("~/Documents/SFU courses/Spring 2022/Econ836 - A.
Econometrics/Assignm/Census_2016_Hierarchial.dta") #loads the dataset and
names it "d.s"</pre>
```

STEP 3: Cleaning the dataset

Here I will clean three variables that are needed in my analysis which have missing data:

- 1. agegrp: this is the variable that defines the "agegroup" and has data that is not available is labelled as "88", so here I will replace those observations with NA
- 2. empin: this is the variable that defines the "income" and has data that is not available and not applicable is labelled as "88888888,9999999", so here I will replace those observations with NA
- 3. sex: this is the variable that defines observations "sex" and has data that is not available is labelled as "8", so here I will replace those observations with NA

```
))
#filtering out "Income"
class(d.s$empin) #checking the class of the variable
[1] "numeric"
d.s <- d.s %>%
  rename(income= 'empin') %>%
  mutate(income = case_when(
   income %in% c(88888888,99999999) ~ as.numeric(NA),
   TRUE ~ income
  ))
#filtering out "sex"
class(d.s$sex) #checking the class of the variable
[1] "haven_labelled" "vctrs_vctr"
                                      "double"
d.s <- d.s %>%
  mutate(sex = case when(
    sex == 8 ~ as.double(NA),
   TRUE ~ as.double(sex)
 ))
```

Now I will check how many observations I have for each person:

```
people <-
    d.s %>%
    group_by(PP_ID) %>%
    summarise(obs= n())

people %>% filter(obs != 1)

# A tibble: 0 x 2
# ... with 2 variables: PP_ID <dbl>, obs <int>
```

It shows that there is one observation for each person, so I don't have to remove any rows of observations

STEP 4: Constructing a dummy variable for homosexuals:

The "cfstat" variable shows whether a person lives with a non-relative then it is coded as 7, so I create a dummy variable as follows:

```
d.s <-
    d.s %>%
    mutate(non_relative = ifelse(cfstat == 7, 1, 0)) #if cfstat==7, code it as
1 or 0 otherwise

# Now, the grouping at the household level, filtering out the people whose
```

```
age we're not interested in and those who were not in full-time work
h.h <-
  d.s %>%
  filter(agegrp %in% c(9,10,11) & wrkact==11) %>%
  group by(HH ID) %>%
  summarise(non_relative = sum(non_relative),
            people = n(),
                                          #the no. of people there are in the
HH ID
            sexes = n distinct(sex))
#focuses only on the agegroups '45 - 64' & those who were based on full-
time, full-year work
#the summarise gives me new variables
#counts whether the people living in the household have the same sex, if same
sex we get 1, if different sex we get 2
#the arrange function gives me the "desc" in descending order
```

Now I will determine if a household potentially has homosexual people in it (individuals unrelated through family) by marking households which have a greater number of people in the house compared to the number of genders. If there is, for instance, a house with 3 people in it where at least one of them is unrelated in family terms and only two genders, there is a potential homosexual couple living in the household. As I have no more than this, I have no choice to later "mark" all of the people living in the household as homosexual.

Now I make the "hom_sxl" indicator at the household level, and later left join this data to the individual level dataframe to mark each individual as presumed homosexuals.

```
# Creating the indicator

h.h <- h.h %>%
    mutate(hom_sxl = ifelse(non_relative >= 1 & people > sexes,
    'Homosexual','Heterosexual')) %>%
    select(HH_ID, hom_sxl)

# Make it at the individual level

d.join <-
    d.s %>%
    filter(agegrp %in% c(9,10,11)) %>%
    left_join(h.h, by = 'HH_ID') %>% #
    mutate(hmsxl = as.factor(hom_sxl))
```

STEP 5: Creating the data.frame that will give me the final means table

```
table<-
d.join %>%
```

```
mutate(agegrp = case_when(
          agegrp %in% c(9,10) ~ '45-54',
          agegrp == 11 ~ '55-64'),
          sex = ifelse(sex == 1, 'Female', 'Male'),
          hmsxl = as.factor(hmsxl),
          MarStH = as_factor(MarStH)) %>%
rename(Income = 'income',
          Sexual_orientation = 'hom_sxl',
          Mar_status = 'MarStH') %>%
select(Sexual_orientation, agegrp, Income, sex, Mar_status)
```

STEP 6: Output of the table

Finally I use excel to create the ratios and the resulting table gives us the final values and ratios

Sexual_orientation	Mar_status	Male / 45-54	Male / 55-64	Female / 45-54	Female / 55-64
Heterosexual	Never legally married (and not living common law)	\$62,436.44	\$56,581.53	\$61,611.80	\$61,146.74
	Legally married (and not separated)	\$90,990.62	\$81,711.76	\$55,695.37	\$50,313.53
	Living common law	\$72,884.28	\$69,739.80	\$52,267.84	\$47,482.99
	Separated, divorced or widowed (and not living common law)	\$78,049.26	\$74,523.11	\$59,301.69	\$53,780.94
Homosexual	Never legally married (and not living common law)	\$50,875.00	\$44.521.74	\$67.356.12	\$60,000.00
Holliosexual					,
	Legally married (and not separated)	\$60,600.00	. ,		
	Living common law	\$45,666.67	\$29,000.00	\$31,000.00	
	Separated, divorced or widowed (and not living common law)	\$48,615.38	\$38,625.00	\$57,923.08	\$43,947.37
Ratios of Heterosexuals/Homosexuals	Never legally married (and not living common law)	122.73%	127.09%	91.47%	101.91%
·	Legally married (and not separated)	150.15%	377.13%	91.09%	162.30%
	Living common law	159.60%	240.48%	168.61%	
	Separated, divorced or widowed (and not living common law)	160.54%	192.94%	102.38%	122.38%