18.404 Recitation 1

Sept 4, 2020

Today's Topics

- Terminology: Finite Automata
- Example: Finite Automata
 - Σ* (Sigma-star)
 - Ø (empty language)
 - \circ { Σ } (single string)
 - (ε) (empty string)
 - Even number of 0s
- Terminology: Regular language
- Theorem: Every finite language is regular
- Theorem: Regular languages are closed under reversal

Terminology: Finite Automata

- Automata States
 - One start state
 - One or Many accept states
- Automata Transitions
 - Flow follows direction of arrow
 - Every transition consumes one unit from the input. No going back or re-reading input!
- 5-Tuple Definition:
 - $\circ \quad (Q, \Sigma, \delta, q_0, F)$

Example Finite Automata

Terminology: Finite Automata (cont.)

- Automata accepts string
 - Given an input string, is there a path of valid transitions such that:
 - When entire string has been fully consumed, current state is an accept state.
 - ∘ " M_1 accepts S" or S ∈ $L(M_1)$
- Language
 - Set of all strings accepted by M₁

Example Finite Automata

Example: Finite Automata (Σ*)

- What is Σ ?
- What does the * do?

What does the language Σ^* mean in plain English?

Example: Finite Automata (Σ*)

- What is Σ ?
- What does the * do?

What does the language Σ^* mean in plain English?

Example: Finite Automata (Ø)

• What is Ø?

What does the language Ø mean in plain English?

Example: Finite Automata (0)

• What is Ø?

What does the language Ø mean in plain English?

Example: Finite Automata ({Σ})

What does the language $\{\Sigma\}$ mean in plain English?

Example: Finite Automata ({Σ})

What does the language $\{\Sigma\}$ mean in plain English?

Example: Finite Automata ({ε})

What does the language {ε} mean in plain English?

Example: Finite Automata ({ε})

What does the language {ε} mean in plain English?

Example: Finite Automata (Even number of 0s)

Ideas?

Example: Finite Automata (Even number of 0s)

Ideas?

Terminology: Regular Language

Any language for which a valid Finite Automata exists

- Can be a finite language (|L(M)| = some number)
- Can be an infinite language (|L(M)| = ∞)

Non-regular languages exists!

Example in future lecture

Theorem: Every Finite Language is Regular

Direct construction

Closure under union

Theorem: Every Finite Language is Regular

Direct construction

q0

Closure under union

Theorem: Regular Languages Closed Under Reversal

Ideas?

- Objective is to recognize A^R where A is language of M
 - Formally: $A^R = \{ w \mid w^R \in A \}$ where for $w = w_0 w_1 ... w_n$ and $w^R = w_n ... w_1 w_0$
- We have the Finite Automata of M
- Need to devise Finite Automata M_{rev}

Theorem: Regular Languages Closed Under Reversal (cont.)

