Math 302 Midterm exam Friday, May 28, 5pm

Instructions

- There are 4 questions on this exam.
- You have 60 minutes to complete the exam, then an additional 20 minutes to upload pictures/scans of your solutions to Canvas.
- Write your name on the top of each page of work that you submit.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded.
- Give exact answers.
- Any student found engaging in academic misconduct will receive a score of 0 on this exam.

- 1. (12 points; 3 each) Deal a hand of 4 cards from a standard 52 card deck that is, sample 4 cards from the deck without replacement.
 - (a) What is the probability of getting two pairs, but not four of a kind? (e.g. 4H, 4S, JC, JS)

A: Count the number of hands that have two pairs but not four of a kind. We have to choose the two values – there are $\binom{13}{2}$ possibilities – then the suits for each pair – there are $\binom{4}{2}$ suit combinations for each pair. So the desired probability is $\frac{\binom{13}{2}\binom{4}{2}^2}{\binom{52}{4}}$.

- (b) What is the probability that no two of the cards have the same suit? A: The only way this can happen is if we have one card from each suit. So for each of the four suits we pick a value. Thus the desired probability is $\frac{13^4}{\binom{52}{4}}$.
- (c) What is the probability that two of the cards are the ace and king of spades? A: The number of such hands is $\binom{50}{2}$, since we just have to pick the remaining two cards. So the desired probability is $\binom{50}{2}$.
- (d) What is the probability of getting four twos, conditioned on the event that the hand has at least two twos?

A: The probability of having exactly j twos is $p_j = \frac{\binom{4}{j}\binom{48}{4-j}}{\binom{52}{4}}$. The desired probability is $\frac{p_4}{p_2+p_3+p_4}$.

- 2. (12 points; 4 each) Let (Ω, P) be a probability space, and let A, B be events in Ω . Assume that $\mathbb{P}(A \cap B) = 1/2$ and $\mathbb{P}(A) = 2/3$. Find $\mathbb{P}(B)$ in each of the following cases:
 - (a) A, B are independent A: If A, B are independent, then $1/2 = \mathbb{P}(A \cap B) = \mathbb{P}(A) \cap \mathbb{P}(B) = 2/3\mathbb{P}(B)$, so $\mathbb{P}(B) = 3/4$ in this case.
 - (b) $\mathbb{P}(A \cup B) = 1$ A: By the inclusion-exclusion formula, $\mathbb{P}(B) = \mathbb{P}(A \cup B) - \mathbb{P}(A) + \mathbb{P}(A \cap B) = 1 - 2/3 + 1/2 = 5/6$.
 - (c) $\mathbb{P}(A|B) = 3/4$. A: By the conditional probability formula, $3/4 = \mathbb{P}(A|B) = \mathbb{P}(A \cap B)/\mathbb{P}(B) = \frac{1}{2\mathbb{P}(B)}$, so $\mathbb{P}(B) = 2/3$.

- 3. (14 points) There are 2n seats at a circular dinner table, labeled clockwise from 1 to 2n. Suppose that of the 2n guests, exactly n are vegetarians, and they choose random seats in such a way that all $\binom{2n}{n}$ arrangements of vegetarians are equally likely. For $i \in \{1, 2, \ldots, 2n\}$, let X_i be the indicator random variable of the event that there is a vegetarian in both seats i and i + 1.
 - (a) (3pts) Give the probability mass function of X_i for any $i \in \{1, 2, ..., 2n\}$. A: X_i takes values 0 or 1. For $X_i = 1$, seats i and i + 1 must be occupied. This has probability $\frac{\binom{2n-2}{n-2}}{\binom{2n}{n}} = \frac{n(n-1)}{2n(2n-1)} = \frac{n-1}{4n-2}$. Thus $\mathbb{P}(X_i = 0) = 1 - \mathbb{P}(X_i = 1) = \frac{3n-1}{4n-2}$.
 - (b) (3pts) Compute $\mathbb{E}X_i$. A: From the calculation in part (a), $\mathbb{E}[X_i] = \frac{n-1}{4n-2}$.
 - (c) (3pts) Compute $\mathbb{E}[X_1X_2]$. A: X_1X_2 is the indicator of the event that seats 1, 2, and 3 are all occupied. This has probability $\frac{\binom{2n-3}{n-3}}{\binom{2n}{n}}$.
 - (d) (3pts) Let X denote the total number of pairs of vegetarians sitting next to each other (each pair counts once). Give a formula for X using the X_i 's. A: $X = \sum_{i=1}^{2n} X_i$.
 - (e) (2pts) Compute $\mathbb{E}[X]$. A: By linearity, $\mathbb{E}[X] = 2n\mathbb{E}[X_i] = \frac{n^2 - n}{2n - 1}$.

4. (12 points; 4 each) Consider the random variable Y with PDF given by

$$f_Y(y) = \frac{e}{2}ye^{-y}, y \ge 1.$$

(a) Let $Z = e^Y$. Find the PDF of Z.

A: Note that the function e^y is increasing. Thus, $\mathbb{P}(Z \leq z) = \mathbb{P}(Y \leq \log z)$. By the chain rule, we obtain

$$f_Z(z) = \frac{d}{dz} \mathbb{P}(Y \le \log z) = f_Y(\log z) \cdot \frac{d}{dz} (\log z) = \frac{e}{2} (\log z) e^{-\log z} \cdot \frac{1}{z} = \frac{e}{2} \frac{\log z}{z^2}.$$

- (b) Use your PDF from part (a) to give an integral expression for $\mathbb{E}[Z]$, and show that the integral diverges (i.e. that it is $+\infty$).
 - A: Using the PDF from (a) and the law of the unconscious statistician, $\mathbb{E}[Z] = \int_e^\infty \frac{e}{2} \frac{\log z}{z} \, dz \ge \frac{e}{2} \int_e^\infty \frac{1}{z} \, dz = \infty$, where we have used the fact that the integrand is non-negative, and $\log z \ge 1$ for $z \ge e$. That the final integral is infinite follows from the 'p-test.'
- (c) Let $W = \log Y$. Compute $\mathbb{P}(1 \leq W \leq 2)$. You can leave your answer as an integral.

A: Since the function e^y is increasing in y,

$$\mathbb{P}(1 \le W \le 2) = \mathbb{P}(e \le Y \le e^2) = \int_e^{e^2} f_Y(y) \, dy.$$