11.36

0.196

Teacher's Signature:

25

14.1

7.05

0-201

EXPERIMENTAL SETUP:

	Date
Expt. No	Page Nos
Parocess:	
D = the distance from the d = the spacing between (same thing as ex	every two lines
then (d), the space be adjacent lines or levery	er mm of the grating,
adjacent lines or Cerrey	two adjacent lines sources)
d = 1	
N	
The differentin grating of marcina is: dain 0 = 1	ormula for the principal
where n is the order	of diffraction (= 1,2,3)
and I angle of diffrac	·
0 1 0 >	1
$\lambda = \frac{\sin \theta}{\sin \theta}$	
Nn	
Observation:	11 : 105/1/10
Observation: Number of lines per mote	a on the grating to 10 win
Elesult:	a source is found to be
Result! The wavelength of the lase 663.33 mm	V
663.33 nm	

Calculation:

$$\lambda_1 = \frac{\sin \theta}{Nn} = \frac{0.069}{10^5 \times 1} = 690 \text{mm}$$

$$\lambda_2 = \frac{\sin \theta}{N\pi} = \frac{0.130}{10^5 \times 2} = 650 \text{ mm}$$

$$\lambda_S = \frac{\text{Sim}\,\theta}{\text{Nn}} = \frac{0.195}{10^5 \times 3} = 650 \text{nm}$$

$$\lambda_{\text{meam}} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3} = \frac{690 + 650 + 650}{3} = \frac{663.33 \text{ nm}}{3}$$