Izmir Institute of Technology CENG 115 Discrete Structures

Slides are based on the Text

Discrete Mathematics & Its Applications (6th Edition)

by Kenneth H. Rosen

Slides were prepared by Dr. Michael P. Frank for COT 3100 course in University of Florida

Graphs Rosen 6th ed., Chapter 9 ~32 slides, ~1 lecture

Graphs

- A particular class of discrete structures that is useful for representing relations and has a convenient webby-looking graphical representation.
- The graphs can be used to examine finite structures and to analyze relationships and applications in many different settings.

Simple Graphs

- Correspond to symmetric binary relations *R*.
- A simple graph G=(V,E) consists of:

Visual Representation of a Simple Graph

- a set V of vertices or nodes (V corresponds to the universe of the relation R),
- a set *E* of *edges* / arcs / links: unordered pairs of elements $u,v \in V$, such that uRv.

Example of a Simple Graph

- Let V be some states in the U.S.:
 V={FL, GA, AL, MS, LA, SC, TN, NC}
- Let E={{FL,GA},{FL,AL},{FL,MS},{FL,LA},
 {GA,AL},{AL,MS},{MS,LA},
 {GA,SC},{GA,TN},{SC,NC},
 {NC,TN},{MS,TN},{MS,AL}}
- In a simple graph, no two edges connect the same pair of vertices.

Multigraphs

- Like simple graphs, but there may be *more* than one edge connecting two given nodes.
- A multigraph G=(V, E, f) consists of a set V of vertices, a set E of edges (as primitive objects), and a function Parallel edges

 $f: E \to \{\{u,v\} | u,v \in V \land u \neq v\}.$

• E.g., nodes are cities, edges are segments of major highways.

Pseudographs

- Like a multigraph, but edges connecting a node to itself are allowed.
- A pseudograph G=(V, E, f) where $f: E \to \{\{u,v\} | u,v \in V\}$. Edge $e \in E$ is a loop if $f(e)=\{u,u\}=\{u\}$.
- *E.g.*, nodes are campsites in a state park, edges are hiking paths in the forest.

Directed Graphs

- Correspond to arbitrary binary relations *R*, which need not be symmetric.
- A *directed graph* (*V*,*E*) consists of a set of vertices *V* and a binary relation *E* on *V*.
- E.g.: V = people, $E=\{(x,y) \mid x \text{ loves } y\}$

Directed Multigraphs

- Like directed graphs, but there may be more than one arc from a node to another.
- A directed multigraph G=(V, E, f) consists of a set V of vertices, a set E of edges, and a function $f:E \rightarrow V \times V$.
- E.g., V=web pages, E=hyperlinks. The WWW is a directed multigraph.

§9.2: Graph Terminology

• Adjacent, connects, degree, initial, terminal, in-degree, out-degree, complete graphs, cycles, bipartite graphs.

Adjacency

Let G be an undirected graph with edge set E. Let $e \in E$ be (or map to) the pair $\{u,v\}$. Then we say:

- u, v are adjacent / neighbors / connected.
- Edge *e connects u* and *v*.

Degree of a Vertex

- Let G be an undirected graph, $v \in V$ a vertex.
- The *degree* of *v*, deg(*v*), is its number of connecting edges.
- A vertex with degree 0 is *isolated*.

Handshaking Theorem

• Let G be an undirected graph with vertex set V and edge set E. Then

$$\sum_{v \in V} \deg(v) = 2|E|$$

• Summation of degrees is an even number.

Directed Adjacency

- Let G be a directed graph, and let e an edge of G that is (or maps to) (u,v). Then we say:
 - u is adjacent to v, v is adjacent from u
 - e connects u to v, e goes from u to v
 - the *initial vertex* of e is u
 - the terminal vertex of e is v

Directed Degree

- Let G be a directed graph, v a vertex of G.
 - The *in-degree* of v, deg⁻(v), is the number of edges going to v.
 - The *out-degree* of v, $deg^+(v)$, is the number of edges coming from v.
 - The *degree* of v, $deg(v) \equiv deg^{-}(v) + deg^{+}(v)$, is the sum of v's in-degree and out-degree.

Directed Handshaking Theorem

• Let G be a directed (possibly multi-) graph with vertex set V and edge set E. Then:

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = \frac{1}{2} \sum_{v \in V} \deg(v) = |E|$$

• Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

Special Graph Structures

Special cases of undirected graph structures:

- Complete graphs K_n
- Cycles C_n
- Bipartite graphs
- Complete bipartite graphs $K_{m,n}$

Complete Graphs

• For any $n \in \mathbb{N}$, a complete graph on n vertices, K_n , is a simple graph with n nodes in which every node is adjacent to every other node: $\forall u,v \in V: u \neq v \leftrightarrow \{u,v\} \in E$.

Note that K_n has $\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$ edges.

Cycles

• For any $n \ge 3$, a *cycle* on *n* vertices, C_n , is a simple graph where $V = \{v_1, v_2, \dots, v_n\}$ and $E = \{\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}, \{v_n, v_1\}\}$.

How many edges are there in C_n ?

Bipartite Graphs

- A simple graph G is called **bipartite** if its V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2
- An example:

Did you notice that this is C_6 ?

Complete Bipartite Graphs

• When every vertices in V_1 is connected to all vertices in V_2

§9.3: Graph Representations & Isomorphism

- Graph representations:
 - Adjacency lists.
 - Adjacency matrices.
- Graph isomorphism:
 - Two graphs are isomorphic iff they are identical except for their node names.

Adjacency Lists

• A table with 1 row per vertex, listing its adjacent vertices.

	Adjacent
Vertex	Adjacent Vertices
a	<i>b</i> , <i>c</i>
b	a, c, e, f a, b, f
\mathcal{C}	a, b, f
d	
e	b
f	c, b

Directed Adjacency Lists

• 1 row per node, listing the terminal nodes of each edge incident from that node.

Initial Vertex	Terminal Vertices	
а	b, c, d, e	
b	b, d	
c	a, c, e	
d		
e	b, c, d	

Adjacency Matrices

• Matrix $A=[a_{ij}]$, where a_{ij} is 1 if $\{v_i, v_j\}$ is an edge of G, 0 otherwise.

	а	b	С	d
a	$\lceil 0 \rceil$	1	1	1
b	1	0	1	0
C	1	1	0	0
d	1	0	0	0

Graph Isomorphism

• Formal definition:

- Simple graphs G_1 =(V_1 , E_1) and G_2 =(V_2 , E_2) are *isomorphic* iff \exists a bijection $f:V_1 \rightarrow V_2$ such that $\forall a,b \in V_1$, a and b are adjacent in G_1 iff f(a) and f(b) are adjacent in G_2 .
- -f is the "renaming" function that makes the two graphs identical.

Isomorphism Example

• If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.

Are These Isomorphic?

• If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.

* Same # of vertices * Same # of edges * Different # of vertices of degree 2! (1 vs 3)

§9.5: Euler & Hamilton Paths

- An *Euler path* in *G* is a path that contains each edge of *G* exactly once.
- An *Euler circuit* in *G* is a circuit (path with same start and end point) that contains each edge of *G* exactly once.
- A *Hamilton path* is a path that traverses each vertex in *G* exactly once.
- A *Hamilton circuit* is a circuit that traverses each vertex in *G* exactly once.

Euler Circuits/Paths

- A connected multigraph has an Euler circuit iff each vertex has even degree.
- A connected multigraph has an Euler path (but not an Euler circuit) iff it has exactly 2 vertices of odd degree.

Euler Circuit Examples

• Which of the followings have an Euler circuit (if not, an Euler path)?

Hamilton Circuit Examples

• Which of the followings have a Hamilton circuit (if not, a Hamilton path)?

