# <del>人</del>基础与展望

数学+计算机+场景 = 机器+人



# Artificial Intelligence

智能,到底是什么?



辅助工具

图灵测试

独立生命





### 我读书少 不要骗我 ....

人工智能的资料,基本上都是公开的,包括论文和实现







### 数学 是核心

数学,是人类对于关联关系的高度抽象,是一种映射规则

等代 性 微 概 会 数 他 概 名 数 会 数 信 信 。

多项式

Scalar 标量 / Vector 向量 / Matrix 矩阵 / Tensor 张量

极限/积分/微分/斜率

统计概率 / 条件概率 / 联合概率 / 贝叶斯定理

连续/离散

集合/群/环/域

熵 / 分布

### 计算机 是基础

计算机,是实现数学映射的物理模型

#### 哈佛结构 / 冯诺依曼体系结构 / 非冯诺依曼体系结构

硬件

指令 CISC / RISC 传输 带宽存储 容量 / 访问速度

软件

Assembly 汇编 Compiled 编译 Interpreted 解释

#### 数据格式

Fixed 定点数

Float 浮点数

Single 单精度浮点数

Double 双精度浮点数

并行/并发

CPU / GPU / FPGA / ASIC

### 场景 是关键

不一样的场景,不一样的问题空间,不一样的解空间

规则明确

变化不频繁 希望预测新数据

金融管理 / 决策支持

传统算法

数据量小

难以给出规则描述 希望发现关联关系

价格预测 / 对象分类

机器学习

数据量很大

难以给出规则描述 希望预测新数据

视觉分析 / 语言处理

深度学习

### 算法 则连接一切

在计算机的限制上,基于数学基础,实现特定场景中数据之间的转换

#### 分析数学工具的优劣

线性/非线性 迭代逼近

#### 考虑计算机的限制

时间复杂度 空间复杂度

#### 选择较优的方案

没有完美统一的最优方案 只有适合场景的较优方案

### AI 人工智能 算法

人类解决问题的基本方法是 演绎 和 归纳

科学的历史基础,是公理体系,即演绎

演绎

控制算法

数值算法

遗传算法

蚁群算法

流程控制 (大多数语言)

> 谓词逻辑 ( Prolog )

符号演算 ( Lisp ) 专家系统

知识图谱

主动归纳数据?

ML 机器学习

### ML 机器学习 算法

人类解决问题的基本方法是 演绎 和 归纳

概率论的出现,引入了统计

归纳

DT 决策树 RF 随机森林 LR 逻辑回归 SVM 支持向量机 PCA 主成分分析 K-means 聚类分析 NB 朴素贝叶斯分类 解释性语言 (Python / R / Julian) 编译性语言 (C / CPP / Java) Regression 回归 Classification 分类

Cluster 聚集

更快更高更强

DL 深度学习

### DL 深度学习 算法

人类解决问题的基本方法是 演绎 和 归纳

#### 宽度和深度,各有优劣

DFN (MLP) 多层感知机

FP 前馈

BP 后馈

SGD 梯度下降

**CNN** 

RNN

Graph

AutoEncoder Representation Boltzmann Sampling GAN
(Generative Adversarial Networks)

TL
(Transfer Learning)

RL
(Reinforcement Learning)

FL
(Federated Learning)

AutoML

## 如何判断技术团队

人,是复杂的

学校基础

数学功底

工程实践

学习能力

思考深度





### 如何投资技术项目

投资,本身就是因人而异的

#### 投资风格

技术能力的竞争

技术落地的场景

技术团队的演化

机器 能干什么

未来的机器 能干什么



# THANKS

TECHNIQUE ANYTHING 技术改变世界



