

varian data machines /a varian subsidiary

**DATA 620/i
SYSTEM
REFERENCE
MANUAL**

**DATA 620/i
SYSTEM
REFERENCE
MANUAL**

varian data machines /a varian subsidiary
2722 michelson drive / irvine / california / 92664 / (714)833-2400
© 1968 printed in USA

VDM-3000
Revision A
March 1968

CONTENTS

		Page
SECTION 1	INTRODUCTION	
	1.1 General	1-1
	1.2 Specifications	1-2
	1.3 Use of this Manual	1-6
SECTION 2	SYSTEM DESCRIPTION	
	2.1 Computer Organization	2-1
	2.2 Computer Word Formats	2-6
	2.3 Computer Options	2-11
SECTION 3	OPERATIONAL INSTRUCTIONS	
	3.1 General	3-1
	3.2 Single-Word Instructions	3-1
	3.3 Double-Word Instructions	3-31
SECTION 4	INPUT/OUTPUT SYSTEM	
	4.1 Introduction	4-1
	4.2 Organization	4-1
	4.3 Program Control Functions	4-3
	4.4 Optional Automatic Control Functions	4-11

		Page
SECTION 5	CONTROL CONSOLE OPERATION	
	5.1 Controls and Indicators	5-1
	5.2 Manual Operation	5-1
APPENDICES	A DATA 620/i Number System	A-1
	B Standard DATA 620/i Subroutines	B-1
	C Table of Powers of Two	C-1
	D Octal-Decimal Integer Conversion Table	D-1
	E Octal-Decimal Fraction Conversion Table	E-1
	F DATA 620/i Instructions (Alphabetical Order)	F-1
	G DATA 620/i Instructions (By Type)	G-1
	H DATA 620/i Reserved Instruction Codes	H-1
	I Standard Character Codes	I-1

SECTION 1

INTRODUCTION

1.1 GENERAL

The DATA 620/i is a high-speed, parallel, binary computer. Its flexible design and modular packaging make it ideal for operation both as a general-purpose machine and for application as an on-line system component. Its features include:

Fast operation:	1.8-microsecond memory cycle.
Large instruction repertoire:	107 standard, 18 optional; with approximately 200 additional instruction configurations which can be microcoded.
Word length:	16- or 18-bit configurations.
Modular memory:	4096 word minimum, 32,768 words maximum.
Multiple addressing modes:	Direct, indirect, relative, index, immediate, and extended (optional).
Flexible I/O:	Up to 10 devices may be placed on the I/O bus. The I/O system is easily expandable to include features such as automatic block transfer, priority interrupt, and "cycle-stealing" data transfers.
Extensive software:	Complete package includes an assembler, mathematics and I/O library, AID diagnostics, and an ASA FORTRAN subset.
Modular packaging:	Mounts in a standard 19-inch cabinet. No special mechanical or environmental facilities are required.

The advanced design techniques used throughout the DATA 620/i system provide solutions to real-time data acquisition, telemetry processing, process control, and simulation problems. In addition, the DATA 620/i is well suited for scientific computations. Special attention has been given to the interfacing problems usually encountered in integrating a digital computer into a system. As a result, the DATA 620/i can be joined to a system with unparalleled efficiency.

The unique design of the DATA 620/i makes it easy to program, operate and maintain. The entire mainframe includes the processor, all processor options, and a 4096-word core memory in a convenient 10-1/2 inch high rack-mountable package. Only 17 circuit boards of 11 different types are used in the basic 16-bit configuration.

Power supplies for the processor and up to 8192 words of core memory are a separate 10-1/2 inch high package that mounts behind the mainframe. Thus, the entire computer requires only 10-1/2 inches of a standard 19-inch rack. Installation is easy, requiring no special mounting, cabling, or air conditioning provisions.

Maintainability of the DATA 620/i is enhanced by easy front access to all wiring, making it unnecessary to remove panels on the computer rack to obtain access to the modules, connectors, and wiring.

A complete set of software provided with the DATA 620/i permits rapid preparation of application programs. The system software includes:

FORTRAN: Subset of ASA FORTRAN.

DATA 620/i Assembly System (DAS): Two-pass symbolic assembler.

AID: On-line debugging and utility package.

MAINTAIN: Complete set of computer and peripheral diagnostics.

Subroutine Library: Complete library of transcendental functions, single- and double-precision and floating-point arithmetic, format conversion, and peripheral service routines.

A wide variety of peripheral equipment is available to provide the DATA 620/i user with a complete system suited to specific needs.

1.2 SPECIFICATIONS

Specifications of the DATA 620/i computer are listed in table 1-1.

Table 1-1. DATA 620/i Specifications

Specification	Characteristics	
Type	General-purpose digital computer for on-line data system applications. Magnetic core memory: binary, parallel, single-address, with bus organization.	
Memory	Magnetic core, 16 bits (18 bits optional); 1.8 microseconds full-cycle, 700-nanosecond access time, 4096 words minimum, expandable in 4096-word modules to 32,768 words. Power-failure protection optional, non-volatile. Thermal over-load protection is standard.	
Arithmetic	Parallel, binary, fixed point, 2's complement.	
	Word Length	16 bits standard; 18 bits optional.
	Speed (fetch and execute)	
	Add or Subtract	3.6 microseconds.
	Multiply (optional)	16 bits - 18.0 microseconds. 18 bits - 19.8 microseconds.
	Divide (optional)	16 bits - 18.0 to 25.2 microseconds. 18 bits - 19.8 to 28.8 microseconds.
	Register Change	1.8 microseconds.
	Input/Output	From A or B register - 3.6 microseconds. From memory - 5.4 microseconds.
	Registers	
	A Register	Accumulator, input/output, 16 or 18 bits.
	B Register	Low-order accumulator, input/output, index register, 16 or 18 bits.
	X Register	Index register, multi-purpose register, 16 or 18 bits.

Table 1-1. (Continued)

Specification	Characteristics
	<p>P Register Instruction counter, 16 or 18 bits.</p> <p>U Register Instruction register, 16 bits.</p> <p>L Register Memory address register, 16 bits.</p> <p>W Register Memory word register, 16 or 18 bits.</p> <p>S Register Shift register, 5 bits.</p> <p>R Register Operand register, 16 or 18 bits.</p>
	Control
	<p>Addressing Modes Six as follows:</p> <p>Direct: to 2048 words.</p> <p>Relative to P register: to 512 words.</p> <p>Index with X register hardware: to 32,768 words (does not add to execution time).</p> <p>Index with B register hardware: to 32,768 words (does not add to execution time).</p> <p>Multilevel indirect: to 32,768 words.</p> <p>Immediate: operand immediately follows instruction.</p> <p>Extended: operand address immediately follows instruction (optional): to 32,768 words.</p>
Instruction Types	<p>Four, as follows:</p> <p>Single word, addressing. Single word, non-addressing. Double word, addressing. Double word, non-addressing.</p>
Instructions	107 standard, approximately 200 microinstructions, plus 18 optional.
Micro-EXEC (optional)	Facility and hardware to construct a hardwired program external to the DATA 620/i. Eliminates stored program memory accessing for hardwired programs.

Table 1-1. (Continued)

Specification	Characteristics
Control Panel	Selectable display and data entry switches, three sense switches, instruction repeat, single step, run, power on/off, system reset.
Input Output	
Data Transfer	Three types as follows: Single word to/from memory (program control). Single word to/from A and B registers (program control). Optional direct memory access (cycle-steal).
External Control (select)	Up to 512 external control lines.
Program Sense	Up to 512 status lines may be sensed.
Interrupts (optional)	Power failure, priority interrupts (expandable in groups of eight) with group enable/disable and individual arm/disarm. Each interrupt line is associated with a unique memory location.
Physical Characteristics	
Dimensions	10-1/2 inches high, 13 inches deep.
Weight	90 pounds, including power supplies.
Power	360 watts, single phase, 115 vac \pm 10 vac, 48-62 Hz. Power supplies are regulated. Additional regulation is not required with normal commercial power sources.
Expansion	Mainframe package contains a 4096-word memory, the processor, and space for processor options. Additional memory requires an additional 10-1/2 inches of rack height for up to 8192 words of additional storage. Peripheral controllers are mounted external to the mainframe.
Installation	Mainframe and power supply packages require 10-1/2 inches of standard 19-inch racks. No air-conditioning, subflooring, special wiring, or site preparation is required.
Environment	10°C to 45°C, 10% to 90% relative humidity.

Table 1-1. (Continued)

Specification	Characteristics
Logic and Signals	The logic of the computer utilizes DTL and TTL integrated circuits employing 5-volt levels. The logic levels on the transmission buses (I/O bus, interrupt bus, etc.) are also +3 v to reduce cross talk and current requirements. Internal logic conventions are 5 v for logical 1, and 0 v for logical 0. Logic conventions on the buses are +3 v for logical 0, and 0 v for logical 1.
Software	
DAS Assembler	Modular two-pass symbolic assembler which operates within the base 4096-word memory. It includes 17 basic pseudo-ops. The 8192-word memory version includes over 30 pseudo-ops for programming ease.
FORTRAN	Modular one-pass compiler; subset of ASA FORTRAN for 8192-word memory.
AID	Program analysis package which assists programmers in operating the machine and debugging other programs. Includes basic operational executive subroutines.
MAINTAIN	Modular, two-mode diagnostic package which provides fast verification of central processor and peripheral operation, and assists in isolating and correcting suspected faults.
Subroutines	Complete library of basic mathematical, fixed- and floating-point, single- and double-precision, number conversion and peripheral communication subroutines plus provisions for adding application-oriented routines.

1.3 USE OF THIS MANUAL

This manual provides the basic information required for programming and using the DATA 620/i, and is intended to be used in conjunction with other publications for the 620-series computers. These publications are listed in table 1-2.

The interface reference manual provides detailed information for integrating the DATA 620/i with special system components.

Table 1-2. DATA 620/i Documents

Publication Number	Title
VDM-3000	System Reference Manual
VDM-3001	Interface Reference Manual
VDM-3002	Programming Reference Manual
VDM-3003	FORTRAN Manual
VDM-3004	Subroutine Manual
VDM-3005	Maintenance Manuals
VDM-3006	ASR-33 Teletype Controller Reference Manual
VDM-3007	Buffer Interlace Controller Reference Manual
VDM-3008	Magnetic Tape Controller Reference Manual
VDM-3009	600 LPM Line Printer Controller Reference Manual
VDM-3010	300 LPM Line Printer Controller Reference Manual
VDM-3011	Paper Tape System Controller Reference Manual
VDM-3013	Priority Interrupt Reference Manual
VDM-3014	A/D Converter Reference Manual
VDM-3015	Optical Scanner Controller Manual
VDM-3016	ASR-35 Teletype Controller Reference Manual
VDM-3017	Digital Plotter Controller Reference
VDM-3018	DDC Disc Controller Reference Manual
VDM-3019	Console Printer Controller Reference Manual
VDM-3020	Installation Manual

Information required by the programmer for using the software packages is contained in the programming reference, FORTRAN, and subroutine manuals.

The maintenance manuals contain detailed design theory, logic and timing diagrams, circuit board data, maintenance procedures, and diagnostic programs.

Detailed design and maintenance information on peripheral device controllers is contained in individual reference manuals for these units. Operation and maintenance procedures for optional peripheral devices (tape transports, printers, etc.) are contained in the manufacturers' reference manuals furnished with the equipment.

Section 2 of this manual contains an overall description of the DATA 620/i system, and describes the word formats used in the computer. Section 3 describes the complete instruction set for the computer. The input/output system, including all input/output, sense, control, and interrupt instructions is described in section 4. Section 5 provides information required for using the control console of the computer.

SECTION 2 SYSTEM DESCRIPTION

2.1 COMPUTER ORGANIZATION

The DATA 620/i is organized with a unique bus structure, selection logic, and nine registers. The organization provides universal information routing, buffered processing, microprogramming capability, indexing without time penalty, and buffered input/output data transfer. A unique optional facility, Micro-EXEC, is also available which permits complex algorithms to be implemented with external control hardware. This capability provides increases in processing speed in excess of 400 percent over normal programmed operations.

The organization of the DATA 620/i is shown in figure 2-1. This diagram shows the major functional elements of the machine, including the registers and buses provided for information transfer.

The major functional elements of the DATA 620/i, indicated in figure 2-1, are: control section, arithmetic/logic section, operational registers, internal buses, input/output (I/O) bus, and memory.

2.1.1 Control Section

The control section provides the timing and control signals required to perform all operations in the computer. The major elements in this section are the U register, the timing and decoding logic, and the shift control.

The U register (instruction register) is 16 bits long. This register receives each instruction from memory through the W bus and holds the instruction during its execution. The control fields of the instruction word are routed to the decoding and timing logic where the codes determine the required timing and control signals. The address field from the U register, used for various addressing operations, is also routed to the arithmetic/logic section.

The decoding logic decodes the fields of the instruction word held in the U register to determine the control signal levels required to perform the operations specified by the instruction. These levels select the timing signals generated by the timing unit.

Fig. 2-1. DATA 620/i Organization

Timing logic generates the basic 4.4-MHz system clock. From this clock, timing logic derives the timing pulses which control the sequence of all operations in the computer.

The shift control contains the shift counter and logic to control operations performed by the shift, multiply, and divide instructions.

2.1.2 Arithmetic/Logic Section

This section consists of two elements; the R register and the arithmetic unit.

The R register receives operands from memory and holds them during instruction execution. The operand may be either data or address words. This register permits transfers between memory and I/O bus during the execution of extended-cycle instructions.

The arithmetic unit contains gating required for all arithmetic, logic, and shifting operations performed by the computer. Indexed and relative address modifications are performed in this section without increased instruction execution time.

The arithmetic unit also controls the gating of words from the operational registers and the I/O bus onto the C bus where they are distributed to the operational registers or to memory registers. This facility is used to implement many of the microinstructions of the computer.

2.1.3 Operational Registers

The basic DATA 620/i computer contains nine registers.

The operational registers consist of the A, B, X, and P registers. The A, B, and X registers are directly accessible to the programmer. The P register is indirectly accessible through use of the jump-class instructions which modify the program sequence. The operational registers are described in the following paragraphs.

A register. This full-length register is the upper half of the accumulator. This register accumulates the results of logical and addition/subtraction operations, the most-significant half of the double-length product in multiplication, and the remainder in division. It may also be used for input/output transfers under program control.

B register. This full-length register is the lower half of the accumulator. This register accumulates the least-significant half of the double-length product in multiplication, and the quotient in division. It may also be used for input/output transfers under program control and as a second hardware index register.

X register. This full-length register permits indexing of operand addresses without adding time to execution of indexed instructions.

P register. This full-length register holds the address of the current instruction and is incremented before each new instruction is fetched. A full complement of instructions is available for conditional and unconditional modification of this register.

S register. This five-bit register controls the length of shift instructions in combination with the U register.

2.1.4 Internal Buses

The basic computer contains five buses. These are the C, S, W, L, and I/O buses. Buses C, S, W, and L are described in the following paragraphs. The I/O bus is described in paragraph 2.1.5.

C bus. This bus provides the parallel path and selection logic for routing data between the arithmetic unit, the I/O bus, the operational registers, and the memory registers. The console display indicators are also driven from the C bus. Distribution of data simultaneously to multiple operational registers is facilitated by this bus.

S bus. This bus provides the parallel path and selection logic for routing data from the operational registers to the arithmetic unit.

W bus. The memory word (W) register is directly connected to all memory modules through the W bus. The bus is bidirectional and time-shared among memory modules.

L bus. The memory address (L) register is directly connected to all memory modules through the L bus. The bus is unidirectional.

2.1.5 Input/Output Bus

The standard DATA 620/i is provided with a bidirectional input/output (I/O) bus that permits programmed data transfers between peripheral devices and the computer.

2.1.6 Memory

The internal storage of the computer consists of 4096-word modules connected to the L and W buses. The mainframe can accommodate one 4096-word module. Additional modules are added in an additional frame that is attached to the mainframe. The computer memory can be expanded to a maximum of 32,768 words using 4096-word modules. Instruction words read from memory are transferred to the control section for execution. Words may be transferred, under program control, from memory to the arithmetic/logic section, to the operational registers, or to the I/O bus. Words may be transferred, under program control, to memory from the operational registers or the I/O bus. When the direct memory access option is used, the system is capable of direct transfer between memory and peripheral devices on the I/O bus, concurrent with computations.

2.1.7 Direct Memory Access

The direct-memory-access (DMA) option allows data transfer into or out of memory modules without disturbing the contents of the operational registers. Only the L and W registers are altered. Access to memory using the DMA facility is on a "cycle-steal" basis and requires 2.7 microseconds of processor time per transfer.

2.1.8 Micro-EXEC

The Micro-EXEC option is a unique hardware technique for microstep sequencing of the computer. This option provides hardware logic in which all computer control signals are

made available on an external cable connector so that special hardware routines can be constructed. External control and special return instructions are provided for easy program entry and exit.

2.2 COMPUTER WORD FORMATS

There are three basic word formats used in the DATA 620/i: data, indirect address, and instruction. The instruction word format is further divided into four types: single-word addressing, single-word non-addressing, double-word addressing, and double-word non-addressing.

2.2.1 Data Word Format

The data word format is shown in figure 2-2. This word may be either 16 or 18 bits depending upon the word length configuration of the particular machine.

In the 16-bit format, the data occupy bit positions 0-14, with the sign in position 15. Negative numbers are represented in 2's complement form. In the 18-bit format, the data occupy bits 0-16, with the sign in position 17.

2.2.2 Indirect Address Word Format

The indirect address word format is shown in figure 2-3. This word occupies a location in memory which is accessed by an instruction in the indirect address mode. Bit 15 contains the I Bit. If I = 0, bits 0-14 contain the location of

Figure 2-2. Data Word Format

Figure 2-3. Indirect Address Word Format

an operand or instruction in memory. If $I = 1$, bits 0-14 contain the location of another indirect address word. Indirect addressing may be extended to any desired level. Each level of indirect addressing adds one cycle (1.8 microseconds) to the basic execution time of an instruction.

2.2.3 Single-Word Instruction Formats

Single-word instructions may be either addressing or non-addressing, as described in the following paragraphs.

Addressing instructions. The single-word addressing instruction format is shown in figure 2-4. This type of word contains three fields, as follows:

- O - Operation code
- M - Addressing mode
- A - Address field

All single-word addressing instructions may be executed in any one of five addressing modes: direct, relative to P register, index with X register, index with B register, and indirect.

Single-word addressing instruction groups are as follows:

LOAD/STORE
ARITHMETIC
LOGICAL

M Field:	0XX - Direct	operand in location 0 - 2047 (bits 10 to 0).
	100 - Relative	add A field to P register.
	101 - Index (X)	add A field to X register.
	110 - Index (B)	add A field to B register.
	111 - Indirect	stored at A field location.

Figure 2-4. Single-Word Addressing Instruction Format

Non-addressing instructions. The single-word non-addressing instruction format is shown in figure 2-5. This instruction contains the following three fields:

- C - Class code
- O - Operation code
- D - Definition

The D (definition field) specifies the action to be performed by the computer such as:

- a. Number of shifts.
- b. Kind of register change as well as source and destination registers.
- c. Input/output.
- d. Halt code.

Single-word non-addressing instruction groups are as follows:

SHIFT
CONTROL
REGISTER CHANGE
INPUT/OUTPUT

Figure 2-5. Single-Word Non-Addressing Instruction Format

2.2.4 Double-Word Instruction Formats

Double-word instructions may be either addressing or non-addressing.

Addressing instructions. This instruction contains three fields:

- C - Class code
- O - Operation code
- D - Definition

The double-word addressing instruction is shown in figure 2-6. This format is used for the following instruction types:

JUMP
 JUMP AND MARK
 EXECUTE
 EXTENDED ADDRESS

For the jump, jump-and-mark, and execute groups, the definition field of the first word defines a set of nine logical states which condition the execution of the instruction. The second word contains the jump address, jump-and-mark address, or the location of the instruction to be executed if the condition is met. Indirect addressing is permitted.

Figure 2-6. Double-Word Addressing Instruction Format

For the extended address group of instructions, the definition field is further divided into three subfields. The M field contains bits 0-2, the op code contains bits 3-6, with bits 7 and 8 left blank. Extended address instructions are identical in operation to the single-word addressing instructions except that they allow direct addressing to 32,768 words of memory.

For the memory input/output group, the definition field of the first word contains the number of the peripheral device and its mode, and the second word contains the memory address of the data to be transferred. Indirect addressing is not permitted.

Non-addressing instructions. The double-word non-addressing instruction format is shown in figure 2-7. This format is used for the immediate group of instructions. There are 12 standard and two optional instructions in this group.

The op-code field contains the operation to be performed (bits 3-6). All single-word addressing type instructions may be performed as an immediate type instruction. The operand is contained in the second word. Indirect addressing is not applicable.

Figure 2-7. Double-Word Instruction Format, Immediate Type Instructions

2.3 COMPUTER OPTIONS

The following options can be mounted in the basic computer rack.

620/i-10 This option provides three additional features for the computer. These are: multiply, divide, and extended addressing.

During multiply, the contents of the B register are multiplied by the contents of a specified memory location. The original contents of the A register are added to the final product. Execution time is 18 microseconds for the basic 16-bit computer; 19.8 microseconds for the 18-bit model.

During divide, the contents of the A and B registers are divided by the contents of a specified memory location. Execution time is 18 to 25.2 microseconds for the basic 16-bit computer; 19.8 to 28.8 microseconds for the 18-bit model.

During extended addressing, all single-word instructions can be programmed as double-word instructions, where the second word contains the effective address of the operand. This option is used with the basic DATA 620/i-00.

620/i-01 Memory/Peripheral Controller Expansion Chassis. This option provides the necessary power supply and mounting hardware required for the 620/i-02 memory module and/or a peripheral controller chassis. The chassis (backpanel wiring) is divided into halves. Each half can accommodate a 4096-word memory module. Alternately, a peripheral control chassis may be installed in the right half. Each peripheral controller chassis can contain up to four controllers.

This option requires 10-1/2 inches of height in a 19-inch rack and mounts below the mainframe.

620/i-02 Memory Module. This option is a 4096-word (16-bit) memory module that provides additional on-line core storage for the standard DATA 620/i-00 computer. The memory has a cycle time of 1.8 microseconds and utilizes a unique stack-temperature compensation scheme that does not require a stack heater.

This concept allows stack temperature to follow ambient temperature but compensate by controlling drive circuits with a simple and unique electronic servo. This servo senses stack temperature and automatically adjusts drive and inhibit currents to their optimum values. This method avoids operation near marginal limits and makes the memory instantly available regardless of ambient temperature.

The memory is expandable to 32,768 words in 4096-word increments. This memory option requires one or more 620/i-01 expansion chassis. Two memory modules can be contained in an expansion chassis. Up to seven 620/i-02 options can be on-line to the computer.

620/i-12 Direct Memory Access and Interrupt. This option DMA/I provides "cycle-stealing" capability to the party-line I/O system. It permits external devices to request service from the computer on a priority basis and to interrupt the computer for 2.7 microseconds while the memory is cycled. DMA/I permits data transfers to occur at a rate

of over 200,000 words (16 or 18 bits) per second. This operation does not disturb the operational registers (A, B, X, P) of the computer, thus allowing the program to proceed normally at the conclusion of the data transfer. This option is physically mounted in the DATA 620/i mainframe.

620/i-13 Real-Time Clock. The real-time clock provides a flexible time-orientation system that can be used in a variety of real-time functions, including time-of-day accumulation and as an interval timer.

The real-time clock can generate two interrupts. The first interrupt is a time-base signal that increments a specific memory location when recognized by the computer. The second interrupt occurs when the incremented memory location reaches a count of 40,000. The frequency of the first interrupt can range from 100 Hz to 10 kHz, or an external frequency source can be used. This option is physically mounted in the DATA 620/i mainframe. Direct memory access and interrupt must be installed before this option may be used.

620/i-14 Power Fail/Restart. This option permits automatic recovery and restart of a program when ac line power to the computer is discontinuous.

A power failure is detected when the 115-vac supply falls below an adjustable threshold (105 vac). Any time a power failure is detected, a power-fail interrupt is generated, and memory-data-save and processor-reset operations are initiated before dc power falls below operating level.

This option is installed in the DATA 620/i mainframe.

620/i-16 Priority Interrupt. This option provides the DATA 620/i with a multi-level priority interrupt system that includes single-instruction execute, group enable/disable, and selective arm/disarm capability. Each interrupt line is assigned a

unique memory destination address which is the first of a pair of locations. The system is modular and expendable in groups of eight levels. This option is mounted in the DATA 620/i mainframe or in a 620/i-01 expansion chassis.

The interrupt system is automatically scanned every 900 nanoseconds and the interrupt is recognized before the fetch cycle of the next instruction to be executed. If signals exist on one or more interrupt line, the highest-priority interrupt is recognized.

Each group of eight interrupt can be enabled/disabled individually and contains an eight-bit mask register that controls the individual interrupt lines. Acknowledgment of an interrupt by the computer causes the instruction-specified memory address of the interrupt to be accessed. The instruction can be any of the DATA 620/i repertoire. This technique permits an interrupt to be serviced in one instruction period. If the executed instruction is jump and mark, the interrupt system is automatically inhibited, permitting the inhibit to be terminated under program control.

The DATA 620/i interrupt system provides high-speed reaction time, expansion capability, and arm/disarm versatility for real-time control.

SECTION 3 OPERATIONAL INSTRUCTIONS

3.1 GENERAL

This section describes DATA 620/i instructions which effect operations in the computer. Input/output instructions are described in section 4. Information provided for each instruction is as follows:

- a. The mnemonic that is recognized by the DATA 620/i assembler (DAS).
- b. Mnemonic definition.
- c. Instruction timing.
- d. Instruction description.
- e. Registers altered by execution of the instruction.
- f. Addressing modes permitted.
- g. A flow chart, when required for complete understanding.

Instructions are divided into two classes: single-word and double-word. Each class contains both addressing and non-addressing groups of instructions. Microprogramming operations which can be implemented for various instruction types are summarized in appendix G.

3.2 SINGLE-WORD INSTRUCTIONS

Single-word instructions may be either addressing or non-addressing. The addressing instruction groups are load/store, arithmetic (multiply/divide optional), and logical.

The non-addressing instruction groups are control, shift, and register change.

3.2.1 Single-Word Addressing Instructions

The format of the single-word addressing class instructions is shown in figure 2-4. The operation is specified by the O field (bits 12-15). The address field, A (bits 0-8), contains the base location of an operand in memory. Operand addressing may be in any one of five modes specified by the M field (bits 9-11).

Table G-1 (d), appendix G, summarizes the addressing modes, and tables G-1 (a), G-1 (b), and G-1 (c) summarize the operation codes for the single-word addressing instructions. Figure 3-1 shows the general operand addressing flow for this class of instructions.

For direct addressing, bits 0-10 specify the location of an operand within the first 2048 (0-2047) words of memory.

For relative addressing, the address field is added to the P register, mod 2^9 , to form the effective address. This mode permits addressing an operand up to 511 words in advance of the current program location.

For index addressing with the X or B register, the address field is added to the X or B register, mod 2^{15} , to form the effective address. Indexing does not increase the basic instruction execution time.

For indirect addressing, the address field specifies the location of an indirect address word within the first 512 (0-511) words of memory. If I = 0 in the address word, the word contains the location of an operand. If I = 1, the word specifies the location of another indirect address word. Each level of indirect addressing adds one cycle (1.8 microseconds) to the basic instruction execution time.

Load/store instruction group. The following paragraphs provide the mnemonic, description, and timing for each instruction in the load/store group. Figures 3-2 and 3-3 show the general flow for the load/store instruction group.

The contents of the addressed memory location are placed in the A register.

Fig. 3-1 Single-Word-Address Instruction, Operand Addressing, General Flow

Fig. 3-2 Load Type Instruction, General Flow

Fig. 3-3 Store-Type Instruction, General Flow

Relative: Yes
Indexing: Yes
Indirect Addressing: Yes
Registers Altered: A

The contents of the effective memory location are placed in the B register.

Relative: Yes
Indexing: Yes
Indirect Addressing: Yes
Registers Altered: B

The contents of the effective memory location are placed in the index register.

Relative: Yes
Indexing: Yes
Indirect Addressing: Yes
Registers Altered: X

The contents of the A register are placed in the effective memory location.

Relative: Yes
Indexing: Yes
Indirect Addressing: Yes
Registers Altered: Memory

The contents of the B register are placed in the effective memory location.

Relative: Yes
Indexing: Yes
Indirect Addressing: Yes
Registers Altered: Memory

The contents of the X register are placed in the effective memory location.

Relative: Yes
Indexing: Yes
Indirect Addressing: Yes
Registers Altered: Memory

Arithmetic instruction group. The following paragraphs provide the mnemonic, description, and timing for each instruction in the arithmetic group. Figures 3-4 and 3-5 show the general flow for the arithmetic instruction group.

Fig. 3-4 Increment Memory-and-Replace Instruction, General Flow

Fig. 3-5 Add Instruction, General Flow

INRIncrement Memory and
Replace

Timing: 3 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the effective memory location are incremented by one, mod 2^{16} (2^{18}).

After execution, if $(M) \geq 2^{15}$ (2^{17}), the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Registers Altered: Memory, OF

ADD

Add Memory to A

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the effective memory location are added to the contents of the A register and the sum is placed in the A register.

After execution, if $(A) \geq 2^{15}$ (2^{17}) or $\leq -2^{15}$ (-2^{17}), the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Registers Altered: A, OF

SUB

Subtract Memory from A

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the effective memory location are subtracted from the A register and the difference is placed in the A register.

After execution, if $(A) \leq 2^{15}$ (2^{17}) or $< -2^{15}$ (-2^{17}), the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Registers Altered: A, OF

MUL

Multiply (optional)

Timing: 10 cycles
(16 bits)
11 cycles
(18 bits)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the B register are multiplied by the contents of the effective memory location. The original contents of the A register are added to the final product. The product is placed in the A and B registers, with the most-significant half of the product in the A register and the least-significant half in the B register. The sign of the product is contained in the sign position of the A register. The sign position of the B register is reset to zero.

The algorithm is in the form $R \cdot B + A$.

Indexing: Yes

Indirect Addressing: Yes

Registers Altered: A, B, OF

DIV

Divide (optional)

Timing: 10-14 cycles
(16 bits)
11-15 cycles
(18 bits)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the A and B registers are divided by the contents of the effective memory location. The quotient is placed in the B register with sign, and the remainder is placed in the A register with the sign of the dividend.

$$\text{If } \frac{(A, B)}{M} \leq 1$$

(divisor > dividend, taken as a binary fraction), overflow will not occur. If overflow does occur, the overflow indicator (OF) is set.

Logical instruction group. The following paragraphs provide the mnemonics, description, and timing for each instruction in the logical instruction group.

Indexing: Yes

Indirect Addressing: Yes

Registers Altered: A, B, OF

An inclusive-OR operation is performed between the effective memory location and the contents of the A register. The result is placed in the A register. If either the effective memory location or A contains a one in the same bit position, a one is placed in the result. The truth table is shown below, where n = bit position.

Condition		Result
A _(n)	Effective Memory Location (n)	A _(n)
0	0	0
0	1	1
1	0	1
1	1	1

Indexing: Yes
 Indirect Addressing: Yes
 Registers Altered: A

An exclusive-OR operation is performed between the effective memory location and the contents of the A register. The result is placed in the A register. If the same bit position of the effective memory location and A contain a zero, or if both bit positions contain a one, the result is zero. If the same bit position of the effective memory location and A are not equal; i.e., one contains a zero and the other a one the result is a one. The truth table is shown below, where n = bit position:

Condition		Result
$A_{(n)}$	Effective Memory Location (n)	$A_{(n)}$
0	0	0
0	1	1
1	0	1
1	1	0

Indexing: Yes
 Indirect Addressing: Yes
 Registers Altered: A

The logical-AND is performed between the contents of the A register and the contents of the effective memory location. The result is placed in the A register. If the same bit position of both the effective memory location and A contain a one, the result is a one. The truth table is shown below, where n = bit position:

Condition		Result
$A_{(n)}$	Effective Memory Location (n)	$A_{(n)}$
0	0	0
0	1	0
1	0	0
1	1	1

Indexing: Yes

Indirect Addressing: Yes

Registers Altered: A

3.2.2 Single-Word Non-Addressing Instructions

The format of the single word non-addressing instruction class is shown in figure 2-5.

The non-addressing single-word instructions include the control group, the shift group, and the register change group. The operation is defined by the M field. The address field (A) is not used by the control group instructions. For the shift group, the A field defines the type and number of shifts. For the register change group, the A field defines the type of transfer and the registers affected.

Control instruction group. The following paragraphs provide mnemonic, description, and timing for each instruction in the control group. Table G-2, appendix G, summarizes the control instructions.

HLT	Halt	Timing: 1 cycle	
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
	00	0	XXX
18-bit option			

When the computer executes the halt instruction, computation is stopped and the computer is placed in the step mode. When the RUN button is pressed, computation starts with the next instruction in sequence.

Indexing: No
 Indirect Addressing: No
 Registers Altered: None

NOP	No Operation	Timing: 1 cycle	
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
	00	5	000
18-bit option			

Execution of the NOP instruction does not affect the A, B, X registers or memory.

Indexing: No
 Indirect Addressing: No
 Registers Altered: None

SOF	Set Overflow Indicator	Timing: 1 cycle	
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
	00	7	401
18-bit option			

The overflow indicator (OF) is set.

Indexing: No

Indirect Addressing: No

Registers Altered: OF

The overflow indicator (OF) is reset

Indexing: No

Indirect Addressing: No

Registers Altered: OF

Shift instruction group. For shift instructions 0-31, the address field, A, defines the type of shift (bits 5-8) and the number of bit positions to be shifted (bits 0-4). The instruction format showing the use of each A-field bit is given in table G-3(a), appendix G. Twelve of the possible sixteen shift operations defined by bits 5-8 are implemented. These are summarized in table G-3(b). Figure 3-6 shows the general flow for the shift instructions.

The contents of the A register are shifted n places to the right ($n = 0$ to 37_8). Zeros are shifted into the high-order positions of the A register. Information shifted out of the low-order position of the A register is lost.

Fig. 3-6 Single-Register Shift Instruction, General Flow

Indexing: No
Indirect Addressing: No
Registers Altered: A

LSRB	Logical Shift Right B	Timing: $1 + 0.25 n$ cycles ($n =$ number of shifts)
------	-----------------------	---

The contents of the B register are shifted n places to the right ($n = 0$ to 37_8). Information shifted out of the low-order position of the B register is lost. Zeros are shifted into the high-order position of the B register.

Indexing: No
Indirect Addressing: No
Registers Altered: B

LRLA	Logical Rotate Left A	Timing: $1 + 0.25 n$ cycles ($n =$ number of shifts)
------	-----------------------	---

The contents of the A register are rotated left n places ($n = 0$ to 37_8). Bit position A_{15} (A_{17}) is rotated into bit position A_0 .

Indexing: No
Indirect Addressing: No
Registers Altered: A

LRLB

Logical Rotate Left B

Timing: $1 + 0.25 n$
cycles ($n =$
number of
shifts)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the B register are rotated n positions to the left ($n = 0$ to 37_8). Bit position B_{15} (B_{17}) is rotated into bit position B_0 .

Indexing: No

Indirect Addressing: No

LLSR

Long Logical Shift Right

Timing: $1 + 0.50 n$
cycles ($n =$
number of
shifts)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the A and B registers are shifted right n positions ($n = 0$ to 37_8). Bits shifted out of the low-order position of B are lost. Zeros are shifted into the high-order position of the A register.

Indexing: No

Indirect Addressing: No

Registers Altered: A, B

LLRL	Long Logical Rotate Left	Timing: $1 + 0.50 n$ cycles ($n =$ number of shifts)
------	--------------------------	--

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the A and B registers are rotated n positions to the left ($n = 0$ to 37_8). Bit position A_{15} (A_{17}) is shifted into bit position B_0 .

Indexing: No
Indirect Address: No
Registers Altered: A, B

ASRA	Arithmetic Shift A Right	Timing: $1 + 0.25 n$ cycles ($n =$ number of shifts)
------	--------------------------	--

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the A register are shifted n positions to the right ($n = 0$ to 37_8). Bits shifted out of the low-order positions of A are lost. The sign bit of A, A_{15} (A_{17}) is extended n places to the right.

Indexing: No
Indirect Addressing: No
Registers Altered: A

ASLA

Arithmetic Shift A Left

Timing: $1 + 0.25 n$ cycles
(n = number of shifts)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the A register are shifted n places to the left ($n = 0$ to 37_8). The sign bit, A_{15} (A_{17}), is retained and zeros are shifted into the low-order positions of A. Bits shifted out of A_{14} (A_{16}) are lost.

Indexing: No

Indirect Addressing: No

Registers Altered: A

ASRB

Arithmetic Shift B Right

Timing: $1 + 0.25 n$ cycles
(n = number of shifts)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the B register are shifted n places to the right ($n = 0$ to 37_8). Information shifted out of the low-order position of B are lost. The sign bit of B, B_{15} (B_{17}) is extended n places to the right.

Indexing: No

Indirect Addressing: No

Register Altered: B

ASLB

Arithmetic Shift B Left

Timing: 1 + 0.25 n

cycles

(n = number
of shifts)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the B register are shifted n places to the left (n = 0 to 37₈). The sign bit of B, B₁₅ (B₁₇), is retained and zeros are shifted into the low-order positions of B. Bits shifted out of B₁₄ (B₁₆) are lost.

Indexing: No

Indirect Addressing: No

LASR

Long Arithmetic Shift

Right

Timing: 1 + 0.50 n

cycles

(n = number
of shifts)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the A and B registers are shifted n places to the right (n = 0 to 37₈). Bit position A₀ is shifted into bit position B₁₄ (B₁₆). The sign of the A register, A₁₅ (A₁₇), is extended n places to the right. The sign bit, B₁₅ (B₁₇) of the B register remains unchanged. Bits shifted out of the low-order position of the B register are lost.

Indexing: No

Indirect Addressing: No

Register Altered: A,B

LASL

Long Arithmetic Shift

Left

Timing: 1 + 0.50 n

cycles

(n = number
of shifts)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	T	I	00	4	400 + n
--	---	---	----	---	---------

18-bit
option

The contents of the A and B registers are shifted n places to the left (n = 0 to 378). Bit position B₁₄ (B₁₆) is shifted into bit position A₀, with the sign of B, B₁₅ (B₁₇) remaining unchanged. The sign of the A register, A₁₅ (A₁₇) is not altered. Information shifted out of A₁₄ (A₁₆) is lost and zeros are shifted into the low-order positions of the B register.

Indexing: No

Indirect Addressing: No

Registers Altered: A, B

Register change group. The register change instruction group provides a macrooperation facility, in that these instructions may combine several register change operations in a single instruction. The instruction format is shown in figure 3-7.

The address field (A) defines the source and destination of a parallel word transfer within the operational register set A, B, and X. Any combination of registers may be selected. The A field also specifies whether the word transferred will be unchanged, incremented, decremented, or complemented. The transfer may also be conditional on the overflow indicator.

Table G-4 (a), in appendix G, defines the transfer control specified by the A field. If more than one source register is specified, the result will be the inclusive-OR of the group. Complementing causes transfer of the complement of the inclusive-OR (NOR) of a combination of source registers.

A total of 512 different register change operations are possible. The most useful instructions are contained in the mnemonic repertoire recognized by the DAS assembler, summarized in table G-4 (b), appendix G.

Figure 3-7. Register Change Instruction

IXR

Increment X Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-	-	-	-	00	5	144
---	---	---	---	----	---	-----

18-bit
option

The contents of the A (B, X) register are incremented by one, mod 2^{16} (2^{18}). If the sign of the A (B, X) register changes from plus to minus, the overflow indicator (OF) is set.

Indexing: No

Indirect Addressing: No

Registers Altered: A (B, X), OF

DAR

Decrement A Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-	-	-	-	00	5	311
---	---	---	---	----	---	-----

18-bit
option**DBR**

Decrement B Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-	-	-	-	00	5	322
---	---	---	---	----	---	-----

18-bit
option**DXR**

Decrement X Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-	-	-	-	00	5	344
---	---	---	---	----	---	-----

18-bit
option

The contents of the A (B, X) register are decremented by one, mod 2^{16} (2^{18}). If the sign bit of the A (B, X) register is changed from minus to plus, the overflow indicator (OF) is set.

Indexing: No

Indirect Addressing: No

Registers Altered: A (B, X), OF

CPA Complement A Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 00 5 211

18-bit
option

CPB Complement B Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 00 5 222

18-bit
option

CPX Complement X Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 00 5 244

18-bit
option

The contents of the A (B, X) register are complemented (1's-complement).

Indexing: No

Indirect Addressing: No

Register Altered: A (B, X)

TABTransfer A Register
to B Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the A register are placed in the B register.

Indexing: No

Indirect Addressing: No

Registers Altered: B

TAXTransfer A Register
to X Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the A register are placed in the X register.

Indexing: No

Indirect Addressing: No

Registers Altered: X

TBATransfer B Register
to A Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the B register are placed in the A register.

Indexing: No
Indirect Addressing: No
Registers Altered: A

The contents of the B register are placed in the X register.

Indexing: No
Indirect Addressing: No
Registers Altered: X

The contents of the X register are placed in the A register.

Indexing: No
Indirect Addressing: No
Registers Altered: A

The contents of the X register are placed in the B register.

TZA

Transfer Zero to A Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit

option

TZB

Transfer Zero to B Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit

option

TZX

Transfer Zero to X Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit

option

The A (B, X) register is cleared to zero.

Indexing: No

Indirect Addressing: No

Registers Altered: A (B, X)

AØFA

Add Overflow to A Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit

option

AØFB

Add Overflow to B Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

<input type="checkbox"/>	<input type="checkbox"/>	00	5	522
--------------------------	--------------------------	----	---	-----

18-bit

option

AØFX

Add Overflow to X Register Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

<input type="checkbox"/>	<input type="checkbox"/>	00	5	544
--------------------------	--------------------------	----	---	-----

18-bit

option

The contents of the overflow indicator (OF) are added to the A (B, X) register, mod 2^{16} (2^{18}). The sum is placed in the A (B, X) register. The overflow flip-flop does not change.

Indexing: No

Indirect Addressing: No

Registers Altered: A (B, X)

SØFASubtract Overflow from
A Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

<input type="checkbox"/>	<input type="checkbox"/>	00	5	711
--------------------------	--------------------------	----	---	-----

18-bit

option

SØFBSubtract Overflow from
B Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

<input type="checkbox"/>	<input type="checkbox"/>	00	5	722
--------------------------	--------------------------	----	---	-----

18-bit

option

S \ominus FX

Subtract Overflow from
X Register

Timing: 1 cycle

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—	T	—	00	5	744
---	---	---	----	---	-----

18-bit
option

The contents of the overflow indicator (OF) are subtracted from the A (B, X) register, mod 2^{16} (2^{18}). The overflow flip-flop does not change.

Indexing: No

Indirect Addressing: No

Registers Altered: A (B, X)

3.3 DOUBLE-WORD INSTRUCTIONS

Double-word instructions may be either addressing or non-addressing. The instructions of the double-word addressing group are jump, jump and mark, execute, and extended addressing.

The instructions in the double-word non-addressing group are the immediate instructions.

3.3.1 Double-Word Addressing Instructions

For double-word addressing instructions, the second word is contained in the memory location following the instruction word. The second word may contain an operand or an address. The address may be either indirect or direct. The general flow chart for double-word instructions is shown in figure 3-8.

Bits 0 through 8 determine the conditions for execution of the instruction. The condition is tested if the corresponding bit is equal to one. For example, if bit 0 equals one, the instruction will examine the status of the overflow flip-flop. If overflow is set, the command will be executed. If overflow is not set, the next instruction in sequence will be executed.

Jump instruction group. For the jump instruction group, the address field A, contains a set of nine flags which define the logical conditions for execution of the jump function. The jump address is contained in the second word of the double-word instruction. Table G-5(a), in appendix G, summarizes the logical condition associated with each bit in the address

Fig. 3-8 Double Word Instruction, General Flow

field. The jump condition is the logical-AND of all ones in the field. Thus, there are 512 possible combinations, but not all are useful. The most useful conditional jump instructions are contained in the mnemonic instruction repertoire recognized by the DAS assembler, summarized in table G-5(b). The general flow for jump instruction is shown in figure 3-9.

The next instruction executed is at the jump address.

Indexing: No
 Indirect Addressing: Yes
 Registers Altered: P

If the overflow indicator (OF) is set, the next instruction executed is at the jump address. If the overflow indicator is not set, the next instruction in sequence is executed. The overflow indicator is reset upon execution of the JOF instruction.

Indexing: No
 Indirect Addressing: Yes
 Registers Altered: OF

(*) RESET OF IF OVERFLOW
IS A JUMP CONDITION

Fig. 3-9 Jump Instruction, General Flow

JAP

Jump if A Register Positive Timing: 2 cycles

If the contents of the A register are positive or zero, the next instruction executed is at the jump address. If the A register is negative, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: P

JANJump if A Register
Negative

Timing: 2 cycles

If the A register is negative, the next instruction executed is at the jump address. If the A register is positive, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: P

JAZ

Jump if A Register Zero

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

If the A register is zero, the next instruction executed is at the jump address. If the A register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: P

JBZ

Jump if B Register Zero

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

If the B register is zero, the next instruction executed is at the jump address. If the B register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: P

JXZ

Jump if X Register Zero

Timing: 2 cycles

If the index register (X) is zero, the next instruction executed is at the jump address. If the register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: P

JSS1

Jump if Sense Switch 1 Set

Timing: 2 cycles

JSS2

Jump if Sense Switch 2 Set

Timing: 2 cycles

JSS3

Jump if Sense Switch 3 Set

Timing: 2 cycles

If sense switch 1 (2,3) is set, the next instruction executed is at the jump address. If the sense switch being tested is not set, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: P

Jump-and-Mark Instruction Group. For the jump-and-mark group of instructions, the address field, A, defines the same set of logical conditions specified for the jump group. These conditions are summarized in table G-6(a) in appendix G. Thus, there are 512 possible combinations, but not all are useful. The most convenient instructions are contained in the mnemonic instruction repertoire recognized by the DAS assembler. These are summarized in table G-6(b). Figure 3-10 illustrates the general flow for the jump-and-mark instructions.

JMPM

Jump and Mark

Unconditionally

Timing: 3 cycles

The contents of the instruction counter (P) are stored at the jump address. The next instruction executed is at the jump address plus one.

(*) - RESET OF IF OVERFLOW IS A JUMP CONDITION

Fig. 3-10 Jump-and-Mark Instruction, General Flow

Indexing: No
 Indirect Addressing: Yes
 Registers Altered: Jump address, P

JØFM Jump and Mark if Overflow Timing: 2-3 cycles
 Set

If the overflow indicator (OF) is set, the contents of the instruction counter (P) are stored at the jump address, and the instruction at the jump address plus one is executed. If the overflow indicator is not set, the next instruction in sequence is executed. The overflow indicator is reset upon execution of the JOFM instruction.

Indexing: No
 Indirect Addressing: Yes
 Registers Altered: Jump address, P, OF

JANM . Jump and Mark if A Register Negative Timing: 2-3 cycles

If the A register is negative, the contents of the instruction counter (P) are placed at the jump address, and the instruction at the jump address plus one is executed. If the A register is positive, the next instruction in sequence is executed.

Indexing: No
 Indirect Addressing: Yes
 Registers Altered: Jump address, P

If the A register is positive or zero, the contents of the instruction counter (P) are placed at the jump address, and the instruction at the jump address plus one is executed. If the A register is negative, the next instruction in sequence is executed.

Indexing: No
 Indirect Addressing: Yes
 Registers Altered: Jump address, P

If the A register is zero, the instruction counter (P) is placed at the jump address and the instruction at the jump address plus one is executed. If the A register is not zero, the next instruction in sequence is executed.

Indexing: No
 Indirect Addressing: Yes
 Registers Altered: Jump address, P

JBZMJump and Mark if B
Register Zero

Timing: 2-3 cycles

If the B register is zero, the contents of the instruction counter (P) are placed at the jump address, and the instruction at the jump address plus one is executed. If the B register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: Jump address, P

JXZMJump and Mark if X
Register Zero

Timing: 2-3 cycles

If the X register is zero, the contents of the instruction counter (P) are placed at the jump address and the instruction at the jump address plus one is executed. If the X register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: Jump address, P

JS1MJump and Mark if Sense
Switch 1 Set

Timing: 2-3 cycles

JS2MJump and Mark if Sense
Switch 2 Set

Timing: 2-3 cycles

JS3MJump and Mark if Sense
Switch 3 Set

Timing: 2-3 cycles

If sense switch 1 (2,3) is set, the instruction counter (P), is placed at the jump address, and the instruction at the jump address plus one is executed. If the tested sense switch is not set, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: Jump address, P

Execute instruction group. For the execute group of instructions, the address field, A, contains a set of nine flags which define the logical conditions for executing an instruction contained at the effective execution address. The execution address is contained in the second word of the double-word instruction. Table G-7(a), appendix G, summarizes the logical conditions associated with each bit in the address field. The execute condition is the logical-AND of all ones in the A field. The most useful of the 512 possible execute instructions are contained in the mnemonic instruction repertoire recognized by the DAS assembler, summarized in table G-7(b). Figure 3-11 illustrates the general flow for the execute instructions.

It is important to note that only single-word instructions should be executed. The single-word instruction groups are load/store, arithmetic, logical, control, shift and register change.

If the execute is attempted on double-word instructions, erroneous operations will occur. The double-word instruction groups are jump, jump and mark, execute, extended addressing (optional), and immediate.

The instruction located at the execute address is executed and then the next instruction in sequence is executed.

Indexing: No
 Indirect Addressing: Yes
 Registers Altered: None

Fig. 3-11 Execute Instruction, General Flow

XOF Execute if Overflow Set Timing: 2 cycles

If the overflow indicator (OF) is set, the instruction at the execute address is executed, and then the next instruction in sequence is executed.

If the overflow indicator is not set, the next instruction in sequence is executed. Execution of the XOF instruction resets the overflow indicator.

Indexing: No

Indirect Addressing: Yes

Registers Altered: OF (reset)

XAP Execute if A Register Positive Timing: 2 cycles

If the A register is positive or zero, the instruction at execute address is executed, and then the next instruction in sequence is executed. If the A register is negative, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: None

XAN

Execute if A Register Negative

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The diagram illustrates a memory system architecture. At the top, a horizontal bus is divided into four segments: the first segment is labeled 'n' and contains a dashed box; the second segment is labeled '00'; the third segment is labeled '3'; and the fourth segment is labeled '004'. Below this, another horizontal bus is divided into two segments: the first segment is labeled 'n+1' and contains a dashed box with the letter 'I'; the second segment is labeled 'Execute Address'. A third horizontal bus at the bottom is divided into two segments: the first segment is labeled '18-bit' and contains a dashed box with the text 'option'; the second segment is also labeled '18-bit'. The three buses are connected vertically at their right ends.

If the A register is negative, the instruction at the execute address is executed, and then the next instruction in sequence is executed. If the A register is positive, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: None

XAZ

Execute if A Register Zero

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The diagram illustrates a memory system architecture. At the top, a horizontal bus is divided into four segments: the first segment is labeled 'n' and contains a dashed box; the second segment is labeled '00'; the third segment is labeled '3'; and the fourth segment is labeled '010'. Below this, another horizontal bus is divided into two segments: the first segment is labeled 'n+1' and contains a dashed box labeled 'I'; the second segment is labeled 'Execute Address'. A vertical dashed line connects the two 'n' boxes. At the bottom, a vertical bus is labeled '18-bit option'.

If the A register is zero, the instruction at the execute address is executed, and then the next instruction sequence is executed.

If the A register is not zero the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: None

XBZ

Execute if B Register
Zero

Timing: 2 cycles

If the B register is zero, the instruction at the execute address is executed, and then the next instruction in sequence is executed.

If the B register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: None

XXZ

Execute if X Register
Zero

Timing: 2 cycles

If the index register (X) is zero, the instruction at the execute address is executed, and then the next instruction in sequence is executed:

If the index register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes

Registers Altered: None

XS1

Execute if Sense Switch 1

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XS2

Execute if Sense Switch 2

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XS3

Execute if Sense Switch 3

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

If sense switch 1, (2, 3) is set, the instruction at the execute address is executed and then the next instruction in the sequence is executed. If the sense switch tested is not set, the next instruction is executed.

Indexing: No

Indirect Addressing: Yes

Register Altered: None

Extended-addressing instruction group (optional). The extended address mode instructions are similar in format to the immediate instructions. However, the second word of the double-word instruction contains the effective address. The address can be indirect or direct. This is determined by bit 15 of the second word.

$U_{15} - U_{12}$	$U_{11} - U_9$	$U_8 - U_3$	$U_2 - U_0$	OP Code
00	6	YY	X	Address Mode Format

YY equals any single word instruction in the op code.

If X =	Address Mode	Effective Address
0-3	Immediate	Second word contains operand
4	Relative to P	Contents of second word plus (P register plus 1)
5	Indexed with X	Contents of second word plus X register
6	Indexed with B	Contents of second word plus B register
7	Direct or indirect	Contents of second word is the direct address if bit 15 is zero. Contents of second word is an indirect address if bit 15 is one.

The contents of the memory location as addressed by the operand address at location n + 1 are placed in the A register.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

LDBELoad B Register Extended
(optional)

Timing: 3 cycles

The contents of the memory location as addressed by the operand address at location $n + 1$ are placed in the B register.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: B

LDXELoad X Register Extended
(optional)

Timing: 3 cycles

The contents of the memory location as addressed by the operand address at location $n + 1$ are placed in the X register.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: X

STAEStore A Register Extended
(optional)

Timing: 3 cycles

The contents of the A register are stored in the memory location as addressed by the operand address at location n + 1.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: Memory

STBE

Store B Register Extended

Timing: 3 cycles

(optional)

The contents of the B register are stored in the memory location as addressed by the operand address to location n + 1.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: Memory

STXEStore Index Register
Extended (optional)

Timing: 3 cycles

The contents of the index register are stored in the memory location as addressed by the operand address at location $n + 1$.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: Memory

INREIncrement Memory and
Replace Extended (optional)

Timing: 4 cycles

The contents of the memory location as addressed by the operand address at location $n + 1$ are incremented by one, mod 2^{16} (2^{18}).

After execution, if $(M) \geq 2^{15}$ (2^{17}), the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: Memory, OF

ADDEAdd Memory to A
Extended (optional)

Timing: 3 cycles

The contents of the memory location as addressed by the operand address at location $n + 1$ are added to the contents of the A register and the sum is placed in the A register.

After execution, if $(A) \geq 2^{15}$ (2^{17}) or $< -2^{15}$ (-2^{17}), the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A, OF

SUBESubtract Memory from A
Extended (optional)

Timing: 3 cycles

The contents of the memory location as addressed by the operand address at location $n + 1$ are subtracted from the contents of the A register and the difference is placed in the A register.

After execution, if $(A) \geq 2^{15}$ (2^{17}) or $< -2^{15}$ (-2^{17}), the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A, OF

MULEMultiply Extended
(optional)Timing: 11 cycles (16 bits)
12 cycles (18 bits)

The contents of the B register are multiplied by the contents of the memory location as addressed by the operand address in location $n + 1$. The original contents of the A register are added to the final product. The product is placed in the A and B registers with the most-significant half of the product in the A register and the least-significant half in the B register. The sign of the product is contained in the sign position of the A register. The sign position of the B register is reset to zero.

The algorithm is in the form $(M) \cdot (B) + (A^*)$.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A, B, OF

DIVEDivide Extended
(optional)Timing: 11-15 cycles (16 bits)
12-16 cycles (18 bits)

The contents of the A and B registers are divided by the contents of the memory location as addressed by the operand address at location $n + 1$. The quotient is placed in the B register and the remainder is placed in the A register.

* Original value.

If

$$\frac{(A, B)}{M} \leq 1$$

(divisor > dividend, taken as a binary fraction), overflow will not occur. If overflow does occur, the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A, B, OF

ØRAE Inclusive-OR Memory Timing: 3 cycles
and A Extended (optional)

The inclusive-OR operation is performed between the contents of the A register and the contents of the memory location as addressed by the operand address in location $n + 1$.

The result is placed in the A register. If either the memory or A contains a one in the same position, a one is placed in the result. The truth table is shown below, where $n = \text{bit position}$.

Condition		Result
$A_{(n)}$	Effective Memory Location (n)	$A_{(n)}$
0	0	0
0	1	1
1	0	1
1	1	1

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A

ERAЕExclusive-OR Memory
and A Extended (optional)

Timing: 3 cycles

An exclusive-OR operation is performed between the contents of the A register and the contents of the memory location as addressed by the operand address in location $n + 1$. The result is placed in the A register. If the same bit position of the memory location and the A register contains a zero, or if both bit positions contain a one, the result is zero. The truth table is shown below, where $n = \text{bit position}$:

Condition		Result
$A_{(n)}$	Effective Memory Location (n)	$A_{(n)}$
0	0	0
0	1	1
1	0	1
1	1	0

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A

ANAE

AND Memory and A
Extended (optional)

Timing: 3 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The diagram illustrates the memory operand format across three bytes:

- Byte n:** Contains fields 00, 6, 15, and X.
- Byte n+1:** Contains field I and is labeled "Operand Address".
- Byte n+2:** Contains the "18-bit option" (indicated by a dashed box).

The logical-AND operation is performed between the contents of the A register and the contents of the memory location as addressed by the operand address in location $n + 1$. The result is placed in the A register. If the same bit position of both the memory location and the A register contains a one the result is a one. The truth table is shown below, where $n = \text{bit position}$:

Condition		Result
$A_{(n)}$	Effective Memory Location (n)	$A_{(n)}$
0	0	0
0	1	0
1	0	0
1	1	1

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A

3.3.2 Double-Word Non-Addressing Instructions

The double-word non-addressing instructions consist of the immediate instruction group. The operand for the immediate instruction is contained in the second word of the double-word instruction. Address modification is not permitted for this group of instructions. The immediate instruction group codes are summarized in table G-10, appendix G.

LDAI

Load A Register
Immediate

Timing: 2 cycles

The contents of the operand at location $n + 1$ are placed in the A register.

Indexing: No

Indirect Addressing: No

Registers Altered: A

LDBI

Load B Register
Immediate

Timing: 2 cycles

The contents of the operand at location $n + 1$ are placed in the B register.

Indexing: No

Indirect Addressing: No

Registers Altered: B

LDXILoad X Register
Immediate

Timing: 2 cycles

The contents of the operand at location $n + 1$ are placed in the X register.

Indexing: No

Indirect Addressing: No

Registers Altered: X

STAIStore A Register
Immediate

Timing: 2 cycles

The contents of the A register are placed in the operand at location $n + 1$.

Indexing: No

Indirecting Addressing: No

Registers Altered: Operand

STBI

Store B Register Immediate

Timing: 2 cycles

	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
<i>n</i>				00		6									060			
<i>n+1</i>																	Operand	
	18-bit option																	

The contents of the B register are placed in the operand at location $n + 1$.

Indexing: No

Indirect Addressing: No

Registers Altered: Operand

STXI

Store X Register

Timing: 2 cycles

The diagram illustrates a 19-bit memory location structure. It consists of two horizontal rows. The top row shows bit positions from 17 to 0 above vertical lines. The bottom row contains four fields: a 2-bit field at address n labeled 'option' (with values 00, 01, or 00), a 1-bit field at address n+1 labeled 'Operand' (with values 0 or 1), and two 6-bit fields at addresses n and n+1 labeled '070' (with values 000000, 000001, or 000000).

The contents of the index register are placed in the operand at location $n + 1$.

Indexing: No

Indirect Addressing: No

Registers Altered: Operand

ADDI Add Immediate Timing: 2 cycles

The contents of the A register are added to the contents of the operand at location $n+1$. The sum is placed in the A register.

After execution, if $(A) \geq 2^{15}$ (2^{17}) or $< -2^{15}$ (-2^{17}), the overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A, OF

SUBI Subtract Immediate Timing: 2 cycles

The contents of the operand at location $n+1$ are subtracted from the contents of the A register. The difference is placed in the A register. After execution, if $(A) \geq 2^{15}$ (2^{17}) or $< -2^{15}$ (-2^{17}), the overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A, OF

MULTI

Multiply Immediate Timing: 10 cycles (16 bits)
(optional) 11 cycles (18 bits)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the B register are multiplied by the contents of the operand at location $n + 1$. The original contents of the A register are added to the final product. The product is placed in the A and B registers, with the most-significant half of the product in the A register and the least-significant half in the B register. The sign of the product is contained in the sign position of the A register. The sign position of the B register is reset to zero.

The algorithm is in the form $R \cdot B + A$.

Indexing: No

Indirect Addressing: No

Registers Altered: A, B, OF

DIVI

Divide Immediate Timing: 10-14 cycles (16 bits)
(optional) 11-15 cycles (18 bits)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The contents of the A and B registers are divided by the contents of the operand at location $n + 1$. The quotient is placed in the B register with sign, and the remainder is placed in the A register with the sign of the dividend.

1f

$$\frac{(A, B)}{M} \leq 1$$

(divisor > dividend, taken as a binary fraction), overflow will not occur. If overflow does occur, the overflow indicator (OF) is set.

Indexing: No
 Indirect Addressing: No
 Registers Altered: A, B, OF

The contents of the operand at location $n + 1$ are incremented by one, mod 2^{16} (2^{18}). After execution, if $(n + 1) 2^{15}$ (2^{17}), the overflow indicator (OF) is set.

Indexing: No
 Indirect Addressing: No
 Registers Altered: Operand, OF

An exclusive-OR is performed between the contents of the operand at location $n + 1$ and the contents of the A register, and the result is placed in the A register. If the same bit position of the operand and the A register contains a zero, or if both bit positions contain a one, the result is zero. The truth table is shown below, where $n = \text{bit position}$.

Condition		Result
$A_{(n)}$	Operand (n)	$A_{(n)}$
0	0	0
0	1	1
1	0	1
1	1	0

Indexing: No

Indirect Addressing: No

Registers Altered: A

An inclusive-OR is performed between the contents of the operand and the contents of the A register. The result is placed in the A register. If either the operand or the A register contains a one in the same bit position, a one is placed in the result in the A register. The truth table is shown below, where $n = \text{bit position}$:

Condition		Result
$A_{(n)}$	Operand (n)	$A_{(n)}$
0	0	0
0	1	1
1	0	1
1	1	1

Indexing: No

Indirect Addressing: No

Registers Altered: A

ANAI

AND Immediate

Timing: 2 cycles

A logical-AND is performed between the contents of the operand and the contents of the A register. The result is placed in the A register. If the same bit position of the operand and the A register contains a one, the result is one; otherwise, the result is zero. The truth table is shown below, where n = bit position.

Condition		Result
$A_{(n)}$	Operand (n)	$A_{(n)}$
0	0	0
0	1	0
1	0	1
1	1	1

Indexing: No

Indirect Addressing: No

Registers Altered: A

SECTION 4

INPUT/OUTPUT SYSTEM

4.1 INTRODUCTION

This section describes the operation and instruction repertoire of the DATA 620/i input/output (I/O) system. The standard computer is equipped with a parity line I/O system that has capabilities, under program control, to input data, output data, sense external signals, and generate control signals. The DATA 620/i input/output system is designed to facilitate integration of the computer into an overall system. Refer to the interface reference manual for detailed information required for special interface designs.

A wide selection of peripheral devices can be controlled by the 620/i.

4.2 ORGANIZATION

As shown in the block diagram, figure 2-1, the I/O section of the computer communicates with the operational registers and the memory through the internal C bus. Data and control signals are transmitted to and from external peripheral devices through the I/O bus.

4.2.1 Overall Operation

The overall organization of the DATA 620/i I/O system, including a typical set of peripheral devices, is shown in figure 4-1. Standard or special peripheral devices are in parallel on the I/O bus.

The following types of I/O commands can be executed by the standard computer.

Single word to/from memory. A single word may be transferred to or from any memory location.

Single word transfer to/from A or B register. A single word may be transferred to or from the A or B register under program control.

Test external sense line. The computer can sense the status of a selected external line under program control.

Generate external control line. An external control code may be transmitted, under program control, from the computer to an external device.

Fig. 4-1 DATA 620/i System Organization

4.2.2 Input/Output Bus Structure

The basic DATA 620/i computer (620/i-00, 622/i-00) is equipped with a positive-voltage-level party-line I/O bus. The party line is a bi-directional common communication channel containing the data and control lines required for system communication. Each transmission on the party line has two phases: The first phase is the route set-up (i.e. device selection); the second is the data transmission.

The party line permits plug-in expansion of all peripheral devices. The party line contains line drivers and line receivers to service up to ten standard peripheral devices. Modifications to the computer are not required to add peripherals. Each standard peripheral device contains a party-line data buffer. Thus, no device can tie-up the party line. The party line technique solves the troublesome problems usually encountered with on-site system expansion.

4.2.3 Input/Output Operations

During information transfers over the I/O bus, the E-bus lines may carry control codes, addresses, or data, depending upon the type of operation being performed. Table 4-1 defines the I/O cable control signals used to synchronize all I/O operations. Table 4-2 summarizes the signals on the interrupt cable.

NOTE

An I/O command is not transmitted intact over the E bus. Bits 11-15 are decoded in the central processor. The processor then generates an E-bus bit (EB11-EB15). Only one of these bits is true for each type of command. Bits 0-8 of the command are transmitted unchanged on the I/O cable.

4.3 PROGRAM CONTROL FUNCTIONS

Interfacing functions fall into two major categories: programmed operations and automatic operations. The programmed operations are: external control (single-bit out), sense operations (testing a single bit), data transfer in (full-word input) and data transfer out (full-word output). The following paragraphs describe the programmed operations and examples of their use. The I/O instruction group is summarized in table G-11, appendix G. This group of instructions is standard for the DATA 620/i.

Table 4-1. I/O-Cable Control Line Signals

Control Line	Signal Name	Function
Function Ready	FRYX-I	Indicates that the E bus contains control or address information.
Data Ready	DRYX-I	Indicates that the E bus contains data.
Sense Response	SERX-I	Indicates logical state of line queried by sense line address on E bus.
Interrupt Acknowledge	IUAX-I	Indicates that external interrupt or trap demand is being acknowledged. Address is placed on E bus and removed with the function-ready signal.
System Reset	SYRT-I	Reset line for initializing peripheral controllers. Energized by console RESET switch.

Table 4-2. Interrupt-Cable Control Line Signals

Control Line	Signal Name	Function
Interrupt Request	IURX-I	Indicates a demand from the Interrupt module to force program to take one instruction from location specified by address on E bus. This address will be placed on E bus when IUAX-I is true.
Trap-Out Request	TPOX-I	Indicates that a buffer interlace controller or other trap device is requesting data transfer from memory.
Trap-In Request	TPIX-I	Indicates that a buffer interlace controller or other trap device is requesting data transfer to memory.
Interrupt Clock	IUXC-I	1.1-MHz clock provided on cable for interrupt module. May be used in any interface design. This clock is not present if the direct-memory-access-and-interrupt option is not included in the system.
Priority Out	PR1X-I	Priority lines used with interrupt and buffer-interlace-controller modules for priority determination.
Priority In	PR4X-I	Priority line returned to computer for permitting console interrupt.
Priority 2 and 3	PR2X-I, PR3X-I	Intermediate priority lines that are used to assign priority positions among trap and interrupt devices.
Interrupt Jump	IUJP-I	Indicates that instruction at interrupt location is a jump-and-mark (two-word) instruction.

4.3.1 External Control

The external control instruction is a single word, non-addressing instruction. It places a function code, contained in bits 0-8, on the E bus to initiate a control operation in an external device.

The nine bits represented by XYY are placed on the E bus for transmission to the peripheral controllers. The device address is contained in the YY portion of the data, and the function to be performed by the selected device is contained in the X portion.

Indexing: No

Indirect Addressing: No

Registers Altered: None

4.3.2 Program Sense

The sense instruction is a double-word, addressing instruction that senses the logical state of an external line. Figure 4-2 shows the execution of this instruction.

I = 0, word contains an address

I = 1, word contains an indirect address

Fig. 4-2 Sense Instruction, General Flow

The nine bits represented by XYY are placed on the party line I/O bus and represent the condition to be tested. X defines a specific line within device YY. The associated peripheral controller replies with a true or false signal.

If a true signal is received by the DATA 620/i, a jump is made to the jump address. If a false signal is received, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: P

4.3.3 Data Transfer In

Two types of data transfer in instructions are provided: input to operational registers, and input directly to memory. The first type of input instruction is a single-word, non-addressing instruction; the second type is a double-word addressing instruction.

The A register is cleared and a data word from the selected device, ZZ, is transferred to the A register.

Indexing: No
Indirect Addressing: No
Registers Altered: A

CIB Clear and Input to B Register Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The B register is cleared and a data word from the selected device, ZZ, is transferred to the B register.

Indexing: No

Indirect Addressing: No

Registers Altered: B

INA Input to A Register Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A data word from the selected device, ZZ, is inclusively-OR'ed with the contents of the A register.

Indexing: No

Indirect Addressing: No

Registers Altered: A

INB Input to B Register Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A data word from the selected device, ZZ, is inclusively-OR'ed with the contents of the B register.

Indexing: No
 Indirect Addressing: No
 Registers Altered: B

A data word from the selected device, ZZ, is placed in the cleared effective memory address. Figure 4-3 shows the execution of this instruction.

Indexing: No
 Indirect Addressing: No
 Registers Altered: Memory

4.3.4 Data Transfer Out

Two types of output data transfer instructions are provided: output from operational registers and output from memory. The first type of instruction is a single-word, non-addressing instruction; the second type is a double-word, addressing instruction.

The contents of the A register are transferred to the selected device, ZZ.

Indexing: No
 Indirect Addressing: No
 Registers Altered: None

Fig. 4-3 Input-to-Memory, General Flow

ØBR

Output from B Register

Timing: 2 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the B registers are transferred to the selected device, ZZ.

Indexing: No

Indirect Addressing: No

Registers Altered: None

ØME

Output from Memory

Timing: 3 cycles

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18-bit
option

The contents of the effective memory location are transferred to the selected device, ZZ.

Indexing: No

Indirect Addressing: No

Registers Altered: None

4.4 OPTIONAL AUTOMATIC CONTROL FUNCTIONS (direct-memory-access-and-interrupt logic option)

Two types of computer timing sequences are provided to automatically transfer control and information signals between peripheral devices and the DATA 620/i:

- a. An interrupt timing sequence is initiated when the DATA 620/i recognizes an external interrupt signal. This sequence forces the computer to execute an instruction at the memory location specified by interrupt logic through the E bus.

- b. A trap timing sequence is initiated when an external device signals that it must transfer a word to or from memory. The external device must supply the memory address of the word through the E bus. This sequence delays the internal program sequence for the time required to execute the I/O transfer (2.7 microseconds).

The devices that demand either of those automatic sequences must first have priorities to resolve two or more simultaneous demands for service. The priorities of devices demanding service are determined every 0.9 microseconds, and are clocked by the interrupt clock. Refer to the interface reference manual (VDM-3001) for a more detailed description. Priority assignment for devices on the I/O cable is optional and is a part of the system definition. Priorities may be fixed for any given configuration by properly connecting priority lines in the I/O cable. Priorities can be altered if the definition changes.

4.4.1 Interlace Data Transfers

Interlace optional data transfers may be performed concurrently with internal program operation. This type of operation uses the computer trap-timing sequence to delay the program for 2.7 microseconds while a word is transferred between memory and a peripheral device. The transfer is controlled by the external device, which must transmit the memory address of the data word, and must synchronize the operation using the signals transmitted on the I/O control lines. The maximum interlace transfer rate is 202,000 words per second.

The general trap-sequence flow is shown in figure 4-4. The maximum computer delay in acknowledging a trap request is 5.4 microseconds. However, the time delay experienced by a specific controller in receiving acknowledgment to a trap request may be extended by the time required for the computer to service higher-priority requests.

Special peripheral controllers designed for system applications (such as A/D and D/A converters) may utilize the trap facilities of the computer to implement automatic I/O operations (refer to the interface reference manual for detailed design information). A buffer interlace controller (BIC) is also available for use with all standard DATA 620/i peripheral equipment. Special system devices may be interfaced for interlace operations under control of the BIC.

Fig. 4-4 Trap Sequence, General Flow

4.4.2 Program Interrupt (optional)

The DATA 620/i has a multi-level interrupt system with single execute, on/off and selective arm/disarm capability. Each interrupt line is assigned a unique memory interrupt address which is the first of a pair of locations. The system is modular and expandable in sets of eight levels.

Each optional interrupt line has an enable/disable flip-flop which is addressable and set by interrupt control instructions. If signals exist on one or more interrupt lines, the highest-priority line is recognized and the corresponding memory destination address is transmitted to the DATA 620/i after the current instruction is executed.

For each group of interrupts, enable is determined by an 8-bit mask word transferred under program control to the arm/disarm flip-flops in the interrupt system. The action initiated by an interrupt subroutine causes the interrupting device to remove its request signal. An acknowledgment of an interrupt causes the instruction located at the interrupt address to be executed. The instruction can be any of the DATA 620/i repertoire. This technique permits the interrupts to be of the single-execute type, whereby single-instruction responses to external signals can be serviced in one instruction period. A real-time clock can be implemented with an interrupt line and an external pulse generator. An automatic data channel can be implemented with as few as two interrupt lines. If the executed instruction is a jump-and-mark instruction, the interrupt system is automatically inhibited, permitting the inhibit to be terminated under program control. While in the inhibit mode, the interrupt subroutine may selectively enable and disable interrupt levels, and then enable the system, permitting the selected levels to interrupt the level being processed.

SECTION 5

CONTROL CONSOLE OPERATION

5.1 CONTROLS AND INDICATORS

The DATA 620/i console (figure 5-1) provides controls and displays required for operator communication with the computer. The contents of all operational registers, including the instruction register, can be displayed in binary-octal form. During normal operation (run mode) the contents of the computer C bus are displayed continuously. Data entry into a selected operational register is accomplished in the step mode (computer halted) by momentary-contact switches. During the run mode, these switches are inhibited to prevent accidental alteration of the register contents.

Control switches allow the operator to manually alter normal program operation. These switches, described in table 5-1, provide considerable control flexibility and are useful for maintenance, troubleshooting, and program debugging. The sense switches are useful in normal program operation to allow selection of particular program sequences to be executed.

5.2 MANUAL OPERATION

Control console operation may be understood by reference to table 5-1 and figure 5-1. The following paragraphs describe typical operating sequences which illustrate normal use of the computer.

5.2.1 Power Control

The POWER switch applies power to computer logic memory, and controller logic.

5.2.2 Manual Program Entry and Execution

When the computer is halted (step mode), programs and data may be read from memory and entered into memory, and a pre-stored program may be manually executed.

To load words into memory (either instructions or data), set the desired word in the A, B, or X register. Set the appropriate store-type instruction (STA, STB, STX) with the desired operand address in the instruction (U) register; then press the STEP switch to execute the store operation.

Fig. 5-1 Control Console

Table 5-1. Controls and Indicators

Control or Indicator	Function
Register Display	In-line display of 16 (or 18) bits in selected operational register. Register bits are numbered from right to left with the sign bit appearing on the far left side of the display. Lights are grouped in an octal arrangement. Selection of the register to be displayed is accomplished by the register select switches.
Register Select Switches	Five alternate-action switches used to select one of five registers for display. Only one register may be selected at a time. Selection of two or more registers at the same time disables the selection logic and the display becomes blank.
Status Display	Four indicators are provided to indicate the status of the machine. OVFL indicator lights when the overflow flip-flop is set. STEP indicator lights when the computer is in the step mode and the Micro-EXEC facility is not being used. RUN indicator lights when the computer is in the run mode. ALARM indicator lights when a thermal overload condition occurs.
RESET Switch	The RESET switch causes the selected register to be cleared. This switch is disabled when the computer is in the run mode.
STEP Switch	The STEP switch is a momentary-contact switch that causes the instruction in the instruction register to be executed if the computer is in the step mode. If the computer is in the run mode, pressing the STEP switch causes the computer to halt at the completion of the instruction being executed.
RUN Switch	The RUN switch causes the program to run at the location specified by the program counter after first executing the instruction in the instruction register.
SYSTEM RESET Switch	The SYSTEM RESET switch is a system-clear control that forces the computer to the halt mode and initializes control flip-flops in the processor. In addition, all peripheral devices are initialized by SYSTEM RESET. This control is normally used as an initialize control, but is useful to halt I/O operations.
REPEAT Switch	Toggle switch that permits manual repeat of an instruction in instruction register. Pressing STEP switch executes instruction and advances program counter; however, contents of the instruction register are left unchanged. Switch on the control console is activated only when the STEP light is on (operation halted).

Table 5-1. (Continued)

Control or Indicator	Function
SENSE Switches 1, 2, 3	Toggle switches that permit manual program control whenever sense-switch-jump, jump-and-mark, or execute instructions (JSS1, JSS2, JSS3, JS1M, JS2M, JS3M, XS1, XS2, XS3) are performed. The indicated jump and execute operations are performed only if the corresponding SENSE switch is ON.
POWER On/Off	Alternate-action switch/indicator that turns power supplies on and off. Indicator/switch is illuminated when power is on; indicator is off when power is off.

To display the contents of any memory cell in the A, B, or X register; set the appropriate load-type instruction (LDA, LDB, LDX) with the proper memory address in the instruction register; then press the STEP switch to load the selected word into the register. To manually execute a program stored in memory, set the starting address of the program in the program counter. When the STEP switch is pressed, the instruction contained in the instruction register is executed, and the instruction of the selected address is transferred to the instruction register. Repeated operation of the STEP switch will then step through the program one instruction at a time. All operations such as multi-level indirect addressing will be performed for each instruction as the STEP switch is operated. Note that I/O instructions involving an asynchronous device that transfers data in a block (such as a magnetic tape unit or teletype) generally cannot be operated in the step mode.

5.2.3 Instruction Repeat

In the step mode, the instruction register contains the next instruction to be executed when STEP is pressed. The program counter contains the location of the next instruction to be transferred to the instruction register after the current instruction is executed.

In some cases, it is desirable to manually execute an instruction several times. When the REPEAT switch is on, instruction register loading (when STEP is pressed) is inhibited even though the instruction counter is advanced each time. This mode is

particularly useful for loading words into sequential memory locations, or for displaying the contents of sequential memory locations. To load a group of sequential memory cells, set the appropriate store-type instruction (STA, STB, STX) in the instruction register with the relative address mode in the M field and the base address in the A field. Repeated operation of the STEP switch will store the contents of the A, B, or X register into sequential memory locations. The word loaded on each step may be changed by entering the desired value into the operational register for each step.

To display the contents of a group of sequential memory cells, set the appropriate load-type instruction (LDA, LDB, LDX) in the instruction register, in the relative address mode, with the base address in the P register and the A field of the U register = 0. The contents of the sequential locations will be displayed in the selected operational register with each operation of the STEP switch.

5.2.4 Sense Switches

The SENSE switches allow the operator to dynamically alter a program sequence in either the run or step mode. The three SENSE switches provide a logical-AND function with bits 6-8 of the jump, jump-and-mark, or execute instruction word, and consequently can be used for various logical branches selected at the console.

APPENDICES

Appendix A
DATA 620/i Number System

DATA 620/i Number System

Binary numbers in the DATA 620/i are represented in 2's-complement form. Single-precision numbers are 15 bits plus sign (16-bit configuration) or 17 bits plus sign (18-bit configuration). The sign bit occupies the most-significant bit position (15 or 17). A "0" in the sign position denotes a positive number; a "1" in the sign position denotes a negative number. The negative of a positive number is represented in 2's-complement form.

The 2's-complement of a number may be found in either of two ways:

- a. Take the 1's-complement of the number (i.e., complement each bit); add "1" in the least-significant bit position. Example:

$$\begin{array}{r}
 +9 & 0000000000001001 \\
 1\text{'s-complement} & 111111111110110 \\
 \\
 2\text{'s-complement} & \overline{\quad +1 \quad} \\
 (-9) & 111111111110111
 \end{array}$$

- b. For an n-bit number (including sign) subtract it from 2^{n+1} . Example:

$$\begin{array}{r}
 2^{n+1} & 100000000000000000 \\
 -(+9) & \overline{-0000000000001001} \\
 -9 & 111111111110111
 \end{array}$$

It is generally convenient to express binary numbers by their octal equivalent. This conversion is easily performed by grouping the binary bits by threes, starting with the least-significant bit. Thus, in the 18-bit configuration, numbers may be expressed by six full octal digits (000000-777777₈).

In the 16-bit configuration, the range of octal numbers is less than six full digits (000000-177777₈). The octal equivalents for the above examples are:

Decimal	Octal
+9	000011 ₈
-9	177767 ₈

The range of numbers in the DATA 620/i is from -2^{15} to $+2^{15} - 1$ for the 16-bit configuration and -2^{17} to $+2^{17} - 1$ for the 18-bit configuration. The zero minus 1 and plus/minus full-scale numbers for the 16-bit configuration are:

Binary	Octal	Decimal	
0111111111111111	077777_8	+32,767	+Full Scale
0000000000000000	000000	0	0
1111111111111111	177777_8	-1	-1
1000000000000000	100000_8	-32,768	-Full Scale

The negative of the octal equivalent number is found by subtracting the number from 177777_8 and adding 1 in the least-significant digit (subtract from 777777_8 for the 18-bit configuration). Example:

$$\begin{array}{r}
 177777_8 \\
 -(9) \quad -000011_8 \\
 \hline
 +1 \\
 \hline
 (-9) \quad 177767_8
 \end{array}$$

In performing addition or subtraction, it is possible for the results to exceed the \pm full scale range of the machine. For example:

Decimal	Octal
+21,980	052734_8
+11,843	$+027103_8$
33,823	102037_8
	-31,713

The negative result is in error. The same type of error occurs if the sum of the two negative numbers exceeds the minus full-scale range:

Decimal	Octal
-21,980	125044 ₈
(+)-11,843	150675 ₈
<hr/>	<hr/>
-33,823	(1)075741 ₈ 31,803

Note that the carry out of the most-significant octal digit position is generally lost. However, to inform the programmer that the true result of an addition/subtraction falls outside the range of the machine, an overflow indicator is provided. The overflow indicator is set if the sign bit changes when two numbers of the same sign are added together (where the sign of the subtrahend is changed in subtraction).

In multiplication, a double-length product is formed in the arithmetic registers (A or B). Since the product cannot exceed 32-bits (36-bits in the 18-bit configuration), overflow will never occur as the result of a multiply. The sign of the product is automatically determined.

Example:

Decimal	Octal
21,980	052734
X 11,843	027103
<hr/>	<hr/>
65,940	200624
87,920	52734
175,840	454404
21,980	125670
<hr/>	<hr/>
21,980	
<hr/>	
260,299,140	001741000224
	A B

The double-length result is accumulated in the A and B registers.

In division, an overflow (underflow) can occur if the divisor is less than or equal to the dividend.

Appendix B
Standard DATA 620/i Subroutines

Standard DATA 620/i Subroutines

Subroutines	Locations	Time
Elementary Functions*		
Log ^e (1 + X), (0 ≤ X < 1)	19	365 usec
Exponential (e ^{-X}) (0 ≤ X < 1)	17	283 usec
Exponential (e ^{+X}) (0 ≤ X < 1)	17	333 usec
Square Root (0 ≤ X < 1)	58	493 usec
Sine X (-π < X < π)	31	315 usec
Cosine X (-π < X < π)	20	310 usec
Arctan (-1 to 1)	15	380 usec
Single Precision (fixed point)		
Multiply (optional)	hardware	18 usec
Divide (optional)	hardware	27 usec
Divide (programmed)	27	300 usec
Double Precision (fixed point)		
Open		
Addition	7	20 usec
Subtraction	7	20 usec
Multiplication	16	97.2 usec
Divide	28	1036 usec
Closed		
Addition	23	54.0 usec
Subtraction	25	57.6 usec
Multiply	36	127.8 usec
Divide	35	1050 usec

*All elementary functions except square root require a subroutine called POLY, which takes 42 locations.

Subroutines	Locations	Time
Conversion		
Binary-to-BCD (4 characters)	32	249 usec
BCD-to-Binary	28	205 usec

Appendix C
Table of Powers of Two

Table of Powers of Two

2^n	n	2^{-n}
1	0	1.0
2	1	0.5
4	2	0.25
8	3	0.125
16	4	0.062 5
32	5	0.031 25
64	6	0.015 625
128	7	0.007 812 5
256	8	0.003 906 25
512	9	0.001 953 125
1 024	10	0.000 976 562 5
2 048	11	0.000 488 281 25
4 096	12	0.000 244 140 625
8 192	13	0.000 122 070 312 5
16 384	14	0.000 061 035 156 25
32 768	15	0.000 030 517 578 125
65 536	16	0.000 015 258 789 062 5
131 072	17	0.000 007 629 394 531 25
262 144	18	0.000 003 814 697 265 625
524 288	19	0.000 001 907 348 632 812 5
1 048 576	20	0.000 000 953 674 316 406 25
2 097 152	21	0.000 000 476 837 158 203 125
4 194 304	22	0.000 000 238 418 579 101 562 5
8 388 608	23	0.000 000 119 209 289 550 781 25
16 777 216	24	0.000 000 059 604 644 775 390 625
33 554 432	25	0.000 000 029 802 322 387 695 312 5
67 108 864	26	0.000 000 014 901 161 193 847 656 25
134 217 728	27	0.000 000 007 450 580 596 923 828 125
268 435 456	28	0.000 000 003 725 290 298 461 914 062 5
536 870 912	29	0.000 000 001 862 645 149 230 957 031 25
1 073 741 824	30	0.000 000 000 931 322 574 615 478 515 625
2 147 483 648	31	0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296	32	0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592	33	0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184	34	0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368	35	0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736	36	0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472	37	0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944	38	0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888	39	0.000 000 000 001 818 989 403 545 856 475 830 078 125

Appendix D
Octal-Decimal Integer Conversion Table

Octal-Decimal Integer Conversion Table

		0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7
0000 to 0777 (Octal)	0000 to 0511 (Decimal)	0000 0000 0001 0002 0003 0004 0005 0006 0007 0010 0008 0009 0010 0011 0012 0013 0014 0015 0020 0016 0017 0018 0019 0020 0021 0022 0023 0030 0024 0025 0026 0027 0028 0029 0030 0031 0040 0032 0033 0034 0035 0036 0037 0038 0039 0050 0040 0041 0042 0043 0044 0045 0046 0047 0060 0048 0049 0050 0051 0052 0053 0054 0055 0070 0056 0057 0058 0059 0060 0061 0062 0063 Octal Decimal 10000 - 4096 20000 - 8192 30000 - 12288 40000 - 16384 50000 - 20480 60000 - 24576 70000 - 28672	0100 0064 0065 0066 0067 0068 0069 0070 0071 0110 0072 0073 0074 0075 0076 0077 0078 0079 0120 0080 0081 0082 0083 0084 0085 0086 0087 0130 0088 0089 0090 0091 0092 0093 0094 0095 0140 0096 0097 0098 0099 0100 0101 0102 0103 0150 0104 0105 0106 0107 0108 0109 0110 0111 0160 0112 0113 0114 0115 0116 0117 0118 0119 0170 0120 0121 0122 0123 0124 0125 0126 0127 0200 0128 0129 0130 0131 0132 0133 0134 0135 0210 0136 0137 0138 0139 0140 0141 0142 0143 0220 0144 0145 0146 0147 0148 0149 0150 0151 0230 0152 0153 0154 0155 0156 0157 0158 0159 0240 0160 0161 0162 0163 0164 0165 0166 0167 0250 0168 0169 0170 0171 0172 0173 0174 0175 0260 0176 0177 0178 0179 0180 0181 0182 0183 0270 0184 0185 0186 0187 0188 0189 0190 0191 0300 0192 0193 0194 0195 0196 0197 0198 0199 0310 0200 0201 0202 0203 0204 0205 0206 0207 0320 0208 0209 0210 0211 0212 0213 0214 0215 0330 0216 0217 0218 0219 0220 0221 0222 0223 0340 0224 0225 0226 0227 0228 0229 0230 0231 0350 0232 0233 0234 0235 0236 0237 0238 0239 0360 0240 0241 0242 0243 0244 0245 0246 0247 0370 0248 0249 0250 0251 0252 0253 0254 0255	0400 0256 0257 0258 0259 0260 0261 0262 0263 0410 0264 0265 0266 0267 0268 0269 0270 0271 0420 0272 0273 0274 0275 0276 0277 0278 0279 0430 0280 0281 0282 0283 0284 0285 0286 0287 0440 0288 0289 0290 0291 0292 0293 0294 0295 0450 0296 0297 0298 0299 0300 0301 0302 0303 0460 0304 0305 0306 0307 0308 0309 0310 0311 0470 0312 0313 0314 0315 0316 0317 0318 0319 0500 0320 0321 0322 0323 0324 0325 0326 0327 0510 0328 0329 0330 0331 0332 0333 0334 0335 0520 0336 0337 0338 0339 0340 0341 0342 0343 0530 0344 0345 0346 0347 0348 0349 0350 0351 0540 0352 0353 0354 0355 0356 0357 0358 0359 0550 0360 0361 0362 0363 0364 0365 0366 0367 0560 0368 0369 0370 0371 0372 0373 0374 0375 0570 0376 0377 0378 0379 0380 0381 0382 0383 0600 0384 0385 0386 0387 0388 0389 0390 0391 0610 0392 0393 0394 0395 0396 0397 0398 0399 0620 0400 0401 0402 0403 0404 0405 0406 0407 0630 0408 0409 0410 0411 0412 0413 0414 0415 0640 0416 0417 0418 0419 0420 0421 0422 0423 0650 0424 0425 0426 0427 0428 0429 0430 0431 0660 0432 0433 0434 0435 0436 0437 0438 0439 0670 0440 0441 0442 0443 0444 0445 0446 0447 0700 0448 0449 0450 0451 0452 0453 0454 0455 0710 0456 0457 0458 0459 0460 0461 0462 0463 0720 0464 0465 0466 0467 0468 0469 0470 0471 0730 0472 0473 0474 0475 0476 0477 0478 0479 0740 0480 0481 0482 0483 0484 0485 0486 0487 0750 0488 0489 0490 0491 0492 0493 0494 0495 0760 0496 0497 0498 0499 0500 0501 0502 0503 0770 0504 0505 0506 0507 0508 0509 0510 0511														
1000 to 1777 (Octal)	0512 to 1023 (Decimal)	1000 0512 0513 0514 0515 0516 0517 0518 0519 1010 0520 0521 0522 0523 0524 0525 0526 0527 1020 0528 0529 0530 0531 0532 0533 0534 0535 1030 0536 0537 0538 0539 0540 0541 0542 0543 1040 0544 0545 0546 0547 0548 0549 0550 0551 1050 0552 0553 0554 0555 0556 0557 0558 0559 1060 0560 0561 0562 0563 0564 0565 0566 0567 1070 0568 0569 0570 0571 0572 0573 0574 0575 1100 0576 0577 0578 0579 0580 0581 0582 0583 1110 0584 0585 0586 0587 0588 0589 0590 0591 1120 0592 0593 0594 0595 0596 0597 0598 0599 1130 0600 0601 0602 0603 0604 0605 0606 0607 1140 0608 0609 0610 0611 0612 0613 0614 0615 1150 0616 0617 0618 0619 0620 0621 0622 0623 1160 0624 0625 0626 0627 0628 0629 0630 0631 1170 0632 0633 0634 0635 0636 0637 0638 0639 1200 0640 0641 0642 0643 0644 0645 0646 0647 1210 0648 0649 0650 0651 0652 0653 0654 0655 1220 0656 0657 0658 0659 0660 0661 0662 0663 1230 0664 0665 0666 0667 0668 0669 0670 0671 1240 0672 0673 0674 0675 0676 0677 0678 0679 1250 0680 0681 0682 0683 0684 0685 0686 0687 1260 0688 0689 0690 0691 0692 0693 0694 0695 1270 0696 0697 0698 0699 0700 0701 0702 0703 1300 0704 0705 0706 0707 0708 0709 0710 0711 1310 0712 0713 0714 0715 0716 0717 0718 0719 1320 0720 0721 0722 0723 0724 0725 0726 0727 1330 0728 0729 0730 0731 0732 0733 0734 0735 1340 0736 0737 0738 0739 0740 0741 0742 0743 1350 0744 0745 0746 0747 0748 0749 0750 0751 1360 0752 0753 0754 0755 0756 0757 0758 0759 1370 0760 0761 0762 0763 0764 0765 0766 0767	1400 0768 0769 0770 0771 0772 0773 0774 0775 1410 0776 0777 0778 0779 0780 0781 0782 0783 1420 0784 0785 0786 0787 0788 0789 0790 0791 1430 0792 0793 0794 0795 0796 0797 0798 0799 1440 0800 0801 0802 0803 0804 0805 0806 0807 1450 0808 0809 0810 0811 0812 0813 0814 0815 1460 0816 0817 0818 0819 0820 0821 0822 0823 1470 0824 0825 0826 0827 0828 0829 0830 0831 1500 0832 0833 0834 0835 0836 0837 0838 0839 1510 0840 0841 0842 0843 0844 0845 0846 0847 1520 0848 0849 0850 0851 0852 0853 0854 0855 1530 0856 0857 0858 0859 0860 0861 0862 0863 1540 0864 0865 0866 0867 0868 0869 0870 0871 1550 0872 0873 0874 0875 0876 0877 0878 0879 1560 0880 0881 0882 0883 0884 0885 0886 0887 1570 0888 0889 0890 0891 0892 0893 0894 0895 1600 0896 0897 0898 0899 0900 0901 0902 0903 1610 0904 0905 0906 0907 0908 0909 0910 0911 1620 0912 0913 0914 0915 0916 0917 0918 0919 1630 0920 0921 0922 0923 0924 0925 0926 0927 1640 0928 0929 0930 0931 0932 0933 0934 0935 1650 0936 0937 0938 0939 0940 0941 0942 0943 1660 0944 0945 0946 0947 0948 0949 0950 0951 1670 0952 0953 0954 0955 0956 0957 0958 0959 1700 0960 0961 0962 0963 0964 0965 0966 0967 1710 0968 0969 0970 0971 0972 0973 0974 0975 1720 0976 0977 0978 0979 0980 0981 0982 0983 1730 0984 0985 0986 0987 0988 0989 0990 0991 1740 0992 0993 0994 0995 0996 0997 0998 0999 1750 1000 1001 1002 1003 1004 1005 1006 1007 1760 1008 1009 1010 1011 1012 1013 1014 1015 1770 1016 1017 1018 1019 1020 1021 1022 1023															

Octal-Decimal Integer Conversion Table

	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		Octal	Decimal
2000	1024	1025	1026	1027	1028	1029	1030	1031		2400	1280	1281	1282	1283	1284	1285	1286	1287	2000	1024
2010	1032	1033	1034	1035	1036	1037	1038	1039		2410	1288	1289	1290	1291	1292	1293	1294	1295	to	to
2020	1040	1041	1042	1043	1044	1045	1046	1047		2420	1296	1297	1298	1299	1300	1301	1302	1303	2777	1535
2030	1048	1049	1050	1051	1052	1053	1054	1055		2430	1304	1305	1306	1307	1308	1309	1310	1311	(Octal)	(Decimal)
2040	1056	1057	1058	1059	1060	1061	1062	1063		2440	1312	1313	1314	1315	1316	1317	1318	1319		
2050	1064	1065	1066	1067	1068	1069	1070	1071		2450	1320	1321	1322	1323	1324	1325	1326	1327		
2060	1072	1073	1074	1075	1076	1077	1078	1079		2460	1328	1329	1330	1331	1332	1333	1334	1335		
2070	1080	1081	1082	1083	1084	1085	1086	1087		2470	1336	1337	1338	1339	1340	1341	1342	1343		
2100	1088	1089	1090	1091	1092	1093	1094	1095		2500	1344	1345	1346	1347	1348	1349	1350	1351		
2110	1096	1097	1098	1099	1100	1101	1102	1103		2510	1352	1353	1354	1355	1356	1357	1358	1359		
2120	1104	1105	1106	1107	1108	1109	1110	1111		2520	1360	1361	1362	1363	1364	1365	1366	1367		
2130	1112	1113	1114	1115	1116	1117	1118	1119		2530	1368	1369	1370	1371	1372	1373	1374	1375		
2140	1120	1121	1122	1123	1124	1125	1126	1127		2540	1376	1377	1378	1379	1380	1381	1382	1383		
2150	1128	1129	1130	1131	1132	1133	1134	1135		2550	1384	1385	1386	1387	1388	1389	1390	1391		
2160	1136	1137	1138	1139	1140	1141	1142	1143		2560	1392	1393	1394	1395	1396	1397	1398	1399		
2170	1144	1145	1146	1147	1148	1149	1150	1151		2570	1400	1401	1402	1403	1404	1405	1406	1407		
2200	1152	1153	1154	1155	1156	1157	1158	1159		2600	1408	1409	1410	1411	1412	1413	1414	1415		
2210	1160	1161	1162	1163	1164	1165	1166	1167		2610	1416	1417	1418	1419	1420	1421	1422	1423		
2220	1168	1169	1170	1171	1172	1173	1174	1175		2620	1424	1425	1426	1427	1428	1429	1430	1431		
2230	1176	1177	1178	1179	1180	1181	1182	1183		2630	1432	1433	1434	1435	1436	1437	1438	1439		
2240	1184	1185	1186	1187	1188	1189	1190	1191		2640	1440	1441	1442	1443	1444	1445	1446	1447		
2250	1192	1193	1194	1195	1196	1197	1198	1199		2650	1448	1449	1450	1451	1452	1453	1454	1455		
2260	1200	1201	1202	1203	1204	1205	1206	1207		2660	1456	1457	1458	1459	1460	1461	1462	1463		
2270	1208	1209	1210	1211	1212	1213	1214	1215		2670	1464	1465	1466	1467	1468	1469	1470	1471		
2300	1216	1217	1218	1219	1220	1221	1222	1223		2700	1472	1473	1474	1475	1476	1477	1478	1479		
2310	1224	1225	1226	1227	1228	1229	1230	1231		2710	1480	1481	1482	1483	1484	1485	1486	1487		
2320	1232	1233	1234	1235	1236	1237	1238	1239		2720	1488	1489	1490	1491	1492	1493	1494	1495		
2330	1240	1241	1242	1243	1244	1245	1246	1247		2730	1496	1497	1498	1499	1500	1501	1502	1503		
2340	1248	1249	1250	1251	1252	1253	1254	1255		2740	1504	1505	1506	1507	1508	1509	1510	1511		
2350	1256	1257	1258	1259	1260	1261	1262	1263		2750	1512	1513	1514	1515	1516	1517	1518	1519		
2360	1264	1265	1266	1267	1268	1269	1270	1271		2760	1520	1521	1522	1523	1524	1525	1526	1527		
2370	1272	1273	1274	1275	1276	1277	1278	1279		2770	1528	1529	1530	1531	1532	1533	1534	1535		
3000	1536	1537	1538	1539	1540	1541	1542	1543		3400	1792	1793	1794	1795	1796	1797	1798	1799		
3010	1544	1545	1546	1547	1548	1549	1550	1551		3410	1800	1801	1802	1803	1804	1805	1806	1807		
3020	1552	1553	1554	1555	1556	1557	1558	1559		3420	1808	1809	1810	1811	1812	1813	1814	1815		
3030	1560	1561	1562	1563	1564	1565	1566	1567		3430	1816	1817	1818	1819	1820	1821	1822	1823		
3040	1568	1569	1570	1571	1572	1573	1574	1575		3440	1824	1825	1826	1827	1828	1829	1830	1831		
3050	1576	1577	1578	1579	1580	1581	1582	1583		3450	1832	1833	1834	1835	1836	1837	1838	1839		
3060	1584	1585	1586	1587	1588	1589	1590	1591		3460	1840	1841	1842	1843	1844	1845	1846	1847		
3070	1592	1593	1594	1595	1596	1597	1598	1599		3470	1848	1849	1850	1851	1852	1853	1854	1855		
3100	1600	1601	1602	1603	1604	1605	1606	1607		3500	1856	1857	1858	1859	1860	1861	1862	1863		
3110	1608	1609	1610	1611	1612	1613	1614	1615		3510	1864	1865	1866	1867	1868	1869	1870	1871		
3120	1616	1617	1618	1619	1620	1621	1622	1623		3520	1872	1873	1874	1875	1876	1877	1878	1879		
3130	1624	1625	1626	1627	1628	1629	1630	1631		3530	1880	1881	1882	1883	1884	1885	1886	1887		
3140	1632	1633	1634	1635	1636	1637	1638	1639		3540	1888	1889	1890	1891	1892	1893	1894	1895		
3150	1640	1641	1642	1643	1644	1645	1646	1647		3550	1896	1897	1898	1899	1900	1901	1902	1903		
3160	1648	1649	1650	1651	1652	1653	1654	1655		3560	1904	1905	1906	1907	1908	1909	1910	1911		
3170	1656	1657	1658	1659	1660	1661	1662	1663		3570	1912	1913	1914	1915	1916	1917	1918	1919		
3200	1664	1665	1666	1667	1668	1669	1670	1671		3600	1920	1921	1922	1923	1924	1925	1926	1927		
3210	1672	1673	1674	1675	1676	1677	1678	1679		3610	1928	1929	1930	1931	1932	1933	1934	1935		
3220	1680	1681	1682	1683	1684	1685	1686	1687		3620	1936	1937	1938	1939	1940	1941	1942	1943		
3230	1688	1689	1690	1691	1692	1693	1694	1695		3630	1944	1945	1946	1947	1948	1949	1950	1951		
3240	1696	1697	1698	1699	1700	1701	1702	1703		3640	1952	1953	1954	1955	1956	1957	1958	1959		
3250	1704	1705	1706	1707	1708	1709	1710	1711		3650	1960	1961	1962	1963	1964	1965	1966	1967		
3260	1712	1713	1714	1715	1716	1717	1718	1719		3660	1968	1969	1970	1971	1972	1973	1974	1975		
3270	1720	1721	1722	1723	1724	1725	1726	1727		3670	1976	1977	1978	1979	1980	1981	1982	1983		
3300	1728	1729	1730	1731	1732	1733	1734	1735		3700	1984	1985	1986	1987	1988	1989	1990	1991		
3310	1736	1737	1738	1739	1740	1741	1742	1743		3710	1992	1993	1994	1995	1996	1997	1998	1999		
3320	1744	1745	1746	1747	1748	1749	1750	1751		3720	2000	2001	2002	2003	2004	2005	2006	2007		
3330	1752	1753	1754	1755	1756	1757	1758	1759		3730	2008	2009	2010	2011	2012	2013	2014	2015		
3340	1760	1761	1762	1763	1764	1765	1766	1767		3740	2016	2017	2018	2019	202					

OCTAL-DECIMAL INTEGER CONVERSION TABLE

		0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		
4000	2048	4000	2048	2049	2050	2051	2052	2053	2054	2055	4400	2304	2305	2306	2307	2308	2309	2310	2311	
to	to	4010	2056	2057	2058	2059	2060	2061	2062	2063	4410	2312	2313	2314	2315	2316	2317	2318	2319	
4777	2559	(Octal)	4020	2064	2065	2066	2067	2068	2069	2070	2071	4420	2320	2321	2322	2323	2324	2325	2326	2327
(Decimal)		4030	2072	2073	2074	2075	2076	2077	2078	2079	4430	2328	2329	2330	2331	2332	2333	2334	2335	
Octal Decimal		4040	2080	2081	2082	2083	2084	2085	2086	2087	4440	2336	2337	2338	2339	2340	2341	2342	2343	
10000 - 4096	20000 - 8192		4050	2088	2089	2090	2091	2092	2093	2094	2095	4450	2344	2345	2346	2347	2348	2349	2350	2351
10000 - 4096	20000 - 8192		4060	2096	2097	2098	2099	2100	2101	2102	2103	4460	2352	2353	2354	2355	2356	2357	2358	2359
70000 - 28672			4070	2104	2105	2106	2107	2108	2109	2110	2111	4470	2360	2361	2362	2363	2364	2365	2366	2367
30000 - 12288	40000 - 16384		4100	2112	2113	2114	2115	2116	2117	2118	2119	4500	2368	2369	2370	2371	2372	2373	2374	2375
50000 - 20480	60000 - 24576		4110	2120	2121	2122	2123	2124	2125	2126	2127	4510	2376	2377	2378	2379	2380	2381	2382	2383
70000 - 28672			4120	2128	2129	2130	2131	2132	2133	2134	2135	4520	2384	2385	2386	2387	2388	2389	2390	2391
4130	2136	2137	2138	2139	2140	2141	2142	2143			4530	2392	2393	2394	2395	2396	2397	2398	2399	
4140	2144	2145	2146	2147	2148	2149	2150	2151			4540	2400	2401	2402	2403	2404	2405	2406	2407	
4150	2152	2153	2154	2155	2156	2157	2158	2159			4550	2408	2409	2410	2411	2412	2413	2414	2415	
4160	2160	2161	2162	2163	2164	2165	2166	2167			4560	2416	2417	2418	2419	2420	2421	2422	2423	
4170	2168	2169	2170	2171	2172	2173	2174	2175			4570	2424	2425	2426	2427	2428	2429	2430	2431	
4200	2176	2177	2178	2179	2180	2181	2182	2183			4600	2432	2433	2434	2435	2436	2437	2438	2439	
4210	2184	2185	2186	2187	2188	2189	2190	2191			4610	2440	2441	2442	2443	2444	2445	2446	2447	
4220	2192	2193	2194	2195	2196	2197	2198	2199			4620	2448	2449	2450	2451	2452	2453	2454	2455	
4230	2200	2201	2202	2203	2204	2205	2206	2207			4630	2456	2457	2458	2459	2460	2461	2462	2463	
4240	2208	2209	2210	2211	2212	2213	2214	2215			4640	2464	2465	2466	2467	2468	2469	2470	2471	
4250	2216	2217	2218	2219	2220	2221	2222	2223			4650	2472	2473	2474	2475	2476	2477	2478	2479	
4260	2224	2225	2226	2227	2228	2229	2230	2231			4660	2480	2481	2482	2483	2484	2485	2486	2487	
4270	2232	2233	2234	2235	2236	2237	2238	2239			4670	2488	2489	2490	2491	2492	2493	2494	2495	
4300	2240	2241	2242	2243	2244	2245	2246	2247			4700	2496	2497	2498	2499	2500	2501	2502	2503	
4310	2248	2249	2250	2251	2252	2253	2254	2255			4710	2504	2505	2506	2507	2508	2509	2510	2511	
4320	2256	2257	2258	2259	2260	2261	2262	2263			4720	2512	2513	2514	2515	2516	2517	2518	2519	
4330	2264	2265	2266	2267	2268	2269	2270	2271			4730	2520	2521	2522	2523	2524	2525	2526	2527	
4340	2272	2273	2274	2275	2276	2277	2278	2279			4740	2528	2529	2530	2531	2532	2533	2534	2535	
4350	2280	2281	2282	2283	2284	2285	2286	2287			4750	2536	2537	2538	2539	2540	2541	2542	2543	
4360	2288	2289	2290	2291	2292	2293	2294	2295			4760	2544	2545	2546	2547	2548	2549	2550	2551	
4370	2296	2297	2298	2299	2300	2301	2302	2303			4770	2552	2553	2554	2555	2556	2557	2558	2559	
5000	2560		5000	2561	2562	2563	2564	2565	2566	2567		5400	2816	2817	2818	2819	2820	2821	2822	2823
5100	2568		5010	2569	2570	2571	2572	2573	2574	2575		5410	2824	2825	2826	2827	2828	2829	2830	2831
5200	2576		5020	2577	2578	2579	2580	2581	2582	2583		5420	2832	2833	2834	2835	2836	2837	2838	2839
5300	2584		5030	2585	2586	2587	2588	2589	2590	2591		5430	2840	2841	2842	2843	2844	2845	2846	2847
5400	2592		5040	2593	2594	2595	2596	2597	2598	2599		5440	2848	2849	2850	2851	2852	2853	2854	2855
5500	2600		5050	2601	2602	2603	2604	2605	2606	2607		5450	2856	2857	2858	2859	2860	2861	2862	2863
5600	2608		5060	2609	2610	2611	2612	2613	2614	2615		5460	2864	2865	2866	2867	2868	2869	2870	2871
5700	2616		5070	2617	2618	2619	2620	2621	2622	2623		5470	2872	2873	2874	2875	2876	2877	2878	2879
5800	2624		5100	2625	2626	2627	2628	2629	2630	2631		5500	2880	2881	2882	2883	2884	2885	2886	2887
5900	2632		5110	2633	2634	2635	2636	2637	2638	2639		5510	2888	2889	2890	2891	2892	2893	2894	2895
6000	2640		5120	2641	2642	2643	2644	2645	2646	2647		5520	2896	2897	2898	2899	2900	2901	2902	2903
6100	2648		5130	2649	2650	2651	2652	2653	2654	2655		5530	2904	2905	2906	2907	2908	2909	2910	2911
6200	2656		5140	2657	2658	2659	2660	2661	2662	2663		5540	2912	2913	2914	2915	2916	2917	2918	2919
6300	2664		5150	2665	2666	2667	2668	2669	2670	2671		5550	2920	2921	2922	2923	2924	2925	2926	2927
6400	2672		5160	2673	2674	2675	2676	2677	2678	2679		5560	2928	2929	2930	2931	2932	2933	2934	2935
6500	2680		5170	2681	2682	2683	2684	2685	2686	2687		5570	2936	2937	2938	2939	2940	2941	2942	2943
6600	2688		5200	2689	2690	2691	2692	2693	2694	2695		5600	2944	2945	2946	2947	2948	2949	2950	2951
6700	2696		5210	2697	2698	2699	2700	2701	2702	2703		5610	2952	2953	2954	2955	2956	2957	2958	2959
6800	2704		5220	2705	2706	2707	2708	2709	2710	2711		5620	2960	2961	2962	2963	2964	2965	2966	2967
6900	2712		5230	2713	2714	2715	2716	2717	2718	2719		5630	2968	2969	2970	2971	2972	2973	2974	2975
7000	2720		5240	2721	2722	2723	2724	2725	2726	2727		5640	2976	2977	2978	2979	2980	2981	2982	2983
7100	2728		5250	2729	2730	2731	2732	2733	2734	2735		5650	2984	2985	2986	2987	2988	2989	2990	2991
7200	2736		5260	2737	2738	2739	2740	2741	2742	2743		5660	2992	2993	2994	2995	2996	2997	2998	2999
7300	2744		5270	2745	2746	2747	2748	2749	2750	2751		5670	3000	3001	3002	3003	3004	3005	3006	3007
7400	2752		5300	2753	2754	2755	2756	2757	2758	2759		5700	3008	3009	3010	3011	3012	3013	3014	3015
7500	2760		5310	2761	2762	2763	2764	2765	2766	2767		5710	3016	3017	3018	3019	3020	3021	3022	3023
7600	2768		5320	2769	2770	2771	2772	2773	2774	2775		5720	3024	3025	3026	3027	3028	3029	3030	3031
7700	2776		5330	2777	2778	2779	2780	2781	2782	2783		5730	3032	3033	3034	3035	3036	3037	3038	

Octal-Decimal Integer Conversion Table

	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		Octal	Decimal
6000	3072	3073	3074	3075	3076	3077	3078	3079	6400	3328	3329	3330	3331	3332	3333	3334	3335	6000	3072	3072
6010	3080	3081	3082	3083	3084	3085	3086	3087	6410	3336	3337	3338	3339	3340	3341	3342	3343	to	to	
6020	3088	3089	3090	3091	3092	3093	3094	3095	6420	3344	3345	3346	3347	3348	3349	3350	3351	6777	3583	
6030	3096	3097	3098	3099	3100	3101	3102	3103	6430	3352	3353	3354	3355	3356	3357	3358	3359	(Octal)	(Decimal)	
6040	3104	3105	3106	3107	3108	3109	3110	3111	6440	3360	3361	3362	3363	3364	3365	3366	3367			
6050	3112	3113	3114	3115	3116	3117	3118	3119	6450	3368	3369	3370	3371	3372	3373	3374	3375			
6060	3120	3121	3122	3123	3124	3125	3126	3127	6460	3376	3377	3378	3379	3380	3381	3382	3383			
6070	3128	3129	3130	3131	3132	3133	3134	3135	6470	3384	3385	3386	3387	3388	3389	3390	3391			
6100	3136	3137	3138	3139	3140	3141	3142	3143	6500	3392	3393	3394	3395	3396	3397	3398	3399			
6110	3144	3145	3146	3147	3148	3149	3150	3151	6510	3400	3401	3402	3403	3404	3405	3406	3407			
6120	3152	3153	3154	3155	3156	3157	3158	3159	6520	3408	3409	3410	3411	3412	3413	3414	3415			
6130	3160	3161	3162	3163	3164	3165	3166	3167	6530	3416	3417	3418	3419	3420	3421	3422	3423			
6140	3168	3169	3170	3171	3172	3173	3174	3175	6540	3424	3425	3426	3427	3428	3429	3430	3431			
6150	3176	3177	3178	3179	3180	3181	3182	3183	6550	3432	3433	3434	3435	3436	3437	3438	3439			
6160	3184	3185	3186	3187	3188	3189	3190	3191	6560	3440	3441	3442	3443	3444	3445	3446	3447			
6170	3192	3193	3194	3195	3196	3197	3198	3199	6570	3448	3449	3450	3451	3452	3453	3454	3455			
6200	3200	3201	3202	3203	3204	3205	3206	3207	6600	3456	3457	3458	3459	3460	3461	3462	3463			
6210	3208	3209	3210	3211	3212	3213	3214	3215	6610	3464	3465	3466	3467	3468	3469	3470	3471			
6220	3216	3217	3218	3219	3220	3221	3222	3223	6620	3472	3473	3474	3475	3476	3477	3478	3479			
6230	3224	3225	3226	3227	3228	3229	3230	3231	6630	3480	3481	3482	3483	3484	3485	3486	3487			
6240	3232	3233	3234	3235	3236	3237	3238	3239	6640	3488	3489	3490	3491	3492	3493	3494	3495			
6250	3240	3241	3242	3243	3244	3245	3246	3247	6650	3496	3497	3498	3499	3500	3501	3502	3503			
6260	3248	3249	3250	3251	3252	3253	3254	3255	6660	3504	3505	3506	3507	3508	3509	3510	3511			
6270	3256	3257	3258	3259	3260	3261	3262	3263	6670	3512	3513	3514	3515	3516	3517	3518	3519			
6300	3264	3265	3266	3267	3268	3269	3270	3271	6700	3520	3521	3522	3523	3524	3525	3526	3527			
6310	3272	3273	3274	3275	3276	3277	3278	3279	6710	3528	3529	3530	3531	3532	3533	3534	3535			
6320	3280	3281	3282	3283	3284	3285	3286	3287	6720	3536	3537	3538	3539	3540	3541	3542	3543			
6330	3288	3289	3290	3291	3292	3293	3294	3295	6730	3544	3545	3546	3547	3548	3549	3550	3551			
6340	3296	3297	3298	3299	3300	3301	3302	3303	6740	3552	3553	3554	3555	3556	3557	3558	3559			
6350	3304	3305	3306	3307	3308	3309	3310	3311	6750	3560	3561	3562	3563	3564	3565	3566	3567			
6360	3312	3313	3314	3315	3316	3317	3318	3319	6760	3568	3569	3570	3571	3572	3573	3574	3575			
6370	3320	3321	3322	3323	3324	3325	3326	3327	6770	3576	3577	3578	3579	3580	3581	3582	3583			
	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		Octal	Decimal
7000	3584	3585	3586	3587	3588	3589	3590	3591	7400	3840	3841	3842	3843	3844	3845	3846	3847	7000	3584	3584
7010	3592	3593	3594	3595	3596	3597	3598	3599	7410	3848	3849	3850	3851	3852	3853	3854	3855	to	to	
7020	3600	3601	3602	3603	3604	3605	3606	3607	7420	3856	3857	3858	3859	3860	3861	3862	3863	7777	4095	
7030	3608	3609	3610	3611	3612	3613	3614	3615	7430	3864	3865	3866	3867	3868	3869	3870	3871	(Octal)	(Decimal)	
7040	3616	3617	3618	3619	3620	3621	3622	3623	7440	3872	3873	3874	3875	3876	3877	3878	3879			
7050	3624	3625	3626	3627	3628	3629	3630	3631	7450	3880	3881	3882	3883	3884	3885	3886	3887			
7060	3632	3633	3634	3635	3636	3637	3638	3639	7460	3888	3889	3890	3891	3892	3893	3894	3895			
7070	3640	3641	3642	3643	3644	3645	3646	3647	7470	3896	3897	3898	3899	3900	3901	3902	3903			
7100	3648	3649	3650	3651	3652	3653	3654	3655	7500	3904	3905	3906	3907	3908	3909	3910	3911			
7110	3656	3657	3658	3659	3660	3661	3662	3663	7510	3912	3913	3914	3915	3916	3917	3918	3919			
7120	3664	3665	3666	3667	3668	3669	3670	3671	7520	3920	3921	3922	3923	3924	3925	3926	3927			
7130	3672	3673	3674	3675	3676	3677	3678	3679	7530	3928	3929	3930	3931	3932	3933	3934	3935			
7140	3680	3681	3682	3683	3684	3685	3686	3687	7540	3936	3937	3938	3939	3940	3941	3942	3943			
7150	3688	3689	3690	3691	3692	3693	3694	3695	7550	3944	3945	3946	3947	3948	3949	3950	3951			
7160	3696	3697	3698	3699	3700	3701	3702	3703	7560	3952	3953	3954	3955	3956	3957	3958	3959			
7170	3704	3705	3706	3707	3708	3709	3710	3711	7570	3960	3961	3962	3963	3964	3965	3966	3967			
7200	3712	3713	3714	3715	3716	3717	3718	3719	7600	3968	3969	3970	3971	3972	3973	3974	3975			
7210	3720	3721	3722	3723	3724	3725	3726	3727	7610	3976	3977	3978	3979	3980	3981	3982	3983			
7220	3728	3729	3730	3731	3732	3733	3734	3735	7620	3984	3985	3986	3987	3988	3989	3990	3991			
7230	3736	3737	3738	3739	3740	3741	3742	3743	7630	3992	3993	3994	3995	3996	3997	3998	3999			
7240	3744	3745	3746	3747	3748	3749	3750	3751	7640	4000	4001	4002	4003	4004	4005	4006	4007			
7250	3752	3753	3754	3755	3756	3757	3758	3759	7650	4008	4009	4010	4011	4012	4013	4014	4015			
7260	3760	3761	3762	3763	3764	3765	3766	3767	7660	4016	4017	4018	4019	4020	4021	4022	4023			
7270	3768	3769	3770	3771	3772	3773	3774	3775	7670	4024	4025	4026	4027	4028	4029	4030	4031			
7300	3776	3777	3778	3779	3780	3781	3782	3783	7700	4032	4033	4034	4035	4036	4037	4038	4039			
7310	3784	3785	3786	3787	3788	3789	3790	3791	7710	4040	4041	4042	4043	4044	4045	4046	4047			
7320	3792	3793	3794	3795	3796	3797	3798	3799	7720	4048	4049	4050	4051	4052	4053	4054	4055			
7330	3800	3801	3802	3803	3804	3805	3806	3807	7730	4056	4057	4058	4059	4060	4061	4062	4063			

Appendix E
Octal-Decimal Fraction Conversion Table

Octal-Decimal Fraction Conversion Table

OCTAL	DEC.	OCTAL	DEC.	OCTAL	DEC.	OCTAL	DEC.
.000	.000000	.100	.125000	.200	.250000	.300	.375000
.001	.001953	.101	.126953	.201	.251953	.301	.376953
.002	.003906	.102	.128906	.202	.253906	.302	.378906
.003	.005859	.103	.130859	.203	.255859	.303	.380859
.004	.007812	.104	.132812	.204	.257812	.304	.382812
.005	.009765	.105	.134765	.205	.259765	.305	.384765
.006	.011718	.106	.136718	.206	.261718	.306	.386718
.007	.013671	.107	.138671	.207	.263671	.307	.388671
.010	.015625	.110	.140625	.210	.265625	.310	.390625
.011	.017578	.111	.142578	.211	.267578	.311	.392578
.012	.019531	.112	.144531	.212	.269531	.312	.394531
.013	.021484	.113	.146484	.213	.271484	.313	.396484
.014	.023437	.114	.148437	.214	.273437	.314	.398437
.015	.025390	.115	.150390	.215	.275390	.315	.400390
.016	.027343	.116	.152343	.216	.277343	.316	.402343
.017	.029296	.117	.154296	.217	.279296	.317	.404296
.020	.031250	.120	.156250	.220	.281250	.320	.406250
.021	.033203	.121	.158203	.221	.283203	.321	.408203
.022	.035156	.122	.160156	.222	.285156	.322	.410156
.023	.037109	.123	.162109	.223	.287109	.323	.412109
.024	.039062	.124	.164062	.224	.289062	.324	.414062
.025	.041015	.125	.166015	.225	.291015	.325	.416015
.026	.042968	.126	.167968	.226	.292968	.326	.417968
.027	.044921	.127	.169921	.227	.294921	.327	.419921
.030	.046875	.130	.171875	.230	.296875	.330	.421875
.031	.048828	.131	.173828	.231	.298828	.331	.423828
.032	.050781	.132	.175781	.232	.300781	.332	.425781
.033	.052734	.133	.177734	.233	.302734	.333	.427734
.034	.054687	.134	.179687	.234	.304687	.334	.429687
.035	.056640	.135	.181640	.235	.306640	.335	.431640
.036	.058593	.136	.183593	.236	.308593	.336	.433593
.037	.060546	.137	.185546	.237	.310546	.337	.435546
.040	.062500	.140	.187500	.240	.312500	.340	.437500
.041	.064453	.141	.189453	.241	.314453	.341	.439453
.042	.066406	.142	.191406	.242	.316406	.342	.441406
.043	.068359	.143	.193359	.243	.318359	.343	.443359
.044	.070312	.144	.195312	.244	.320312	.344	.445312
.045	.072265	.145	.197265	.245	.322265	.345	.447265
.046	.074218	.146	.199218	.246	.324218	.346	.449218
.047	.076171	.147	.201171	.247	.326171	.347	.451171
.050	.078125	.150	.203125	.250	.328125	.350	.453125
.051	.080078	.151	.205078	.251	.330078	.351	.455078
.052	.082031	.152	.207031	.252	.332031	.352	.457031
.053	.083984	.153	.208984	.253	.333984	.353	.458984
.054	.085937	.154	.210937	.254	.335937	.354	.460937
.055	.087890	.155	.212890	.255	.337890	.355	.462890
.056	.089843	.156	.214843	.256	.339843	.356	.464843
.057	.091796	.157	.216796	.257	.341796	.357	.466796
.060	.093750	.160	.218750	.260	.343750	.360	.468750
.061	.095703	.161	.220703	.261	.345703	.361	.470703
.062	.097656	.162	.222656	.262	.347656	.362	.472656
.063	.099609	.163	.224609	.263	.349609	.363	.474609
.064	.101562	.164	.226562	.264	.351562	.364	.476562
.065	.103515	.165	.228515	.265	.353515	.365	.478515
.066	.105468	.166	.230468	.266	.355468	.366	.480468
.067	.107421	.167	.232421	.267	.357421	.367	.482421
.070	.109375	.170	.234375	.270	.359375	.370	.484375
.071	.111328	.171	.236328	.271	.361328	.371	.486328
.072	.113281	.172	.238281	.272	.363281	.372	.488281
.073	.115234	.173	.240234	.273	.365234	.373	.490234
.074	.117187	.174	.242187	.274	.367187	.374	.492187
.075	.119140	.175	.244140	.275	.369140	.375	.494140
.076	.121093	.176	.246093	.276	.371093	.376	.496093
.077	.123046	.177	.248046	.277	.373046	.377	.498046

Octal-Decimal Fraction Conversion Table

OCTAL	DEC.	OCTAL	DEC.	OCTAL	DEC.	OCTAL	DEC.
.000000	.000000	.000100	.000244	.000200	.000488	.000300	.000732
.000001	.000003	.000101	.000247	.000201	.000492	.000301	.000736
.000002	.000007	.000102	.000251	.000202	.000495	.000302	.000740
.000003	.000011	.000103	.000255	.000203	.000499	.000303	.000743
.000004	.000015	.000104	.000259	.000204	.000503	.000304	.000747
.000005	.000019	.000105	.000263	.000205	.000507	.000305	.000751
.000006	.000022	.000106	.000267	.000206	.000511	.000306	.000755
.000007	.000026	.000107	.000270	.000207	.000514	.000307	.000759
.000010	.000030	.000110	.000274	.000210	.000518	.000310	.000762
.000011	.000034	.000111	.000278	.000211	.000522	.000311	.000766
.000012	.000038	.000112	.000282	.000212	.000526	.000312	.000770
.000013	.000041	.000113	.000286	.000213	.000530	.000313	.000774
.000014	.000045	.000114	.000289	.000214	.000534	.000314	.000778
.000015	.000049	.000115	.000293	.000215	.000537	.000315	.000782
.000016	.000053	.000116	.000297	.000216	.000541	.000316	.000785
.000017	.000057	.000117	.000301	.000217	.000545	.000317	.000789
.000020	.000061	.000120	.000305	.000220	.000549	.000320	.000793
.000021	.000064	.000121	.000308	.000221	.000553	.000321	.000797
.000022	.000068	.000122	.000312	.000222	.000556	.000322	.000801
.000023	.000072	.000123	.000316	.000223	.000560	.000323	.000805
.000024	.000076	.000124	.000320	.000224	.000564	.000324	.000808
.000025	.000080	.000125	.000324	.000225	.000568	.000325	.000812
.000026	.000083	.000126	.000328	.000226	.000572	.000326	.000816
.000027	.000087	.000127	.000331	.000227	.000576	.000327	.000820
.000030	.000091	.000130	.000335	.000230	.000579	.000330	.000823
.000031	.000095	.000131	.000339	.000231	.000583	.000331	.000827
.000032	.000099	.000132	.000343	.000232	.000587	.000332	.000831
.000033	.000102	.000133	.000347	.000233	.000591	.000333	.000835
.000034	.000106	.000134	.000350	.000234	.000595	.000334	.000839
.000035	.000110	.000135	.000354	.000235	.000598	.000335	.000843
.000036	.000114	.000136	.000358	.000236	.000602	.000336	.000846
.000037	.000118	.000137	.000362	.000237	.000606	.000337	.000850
.000040	.000122	.000140	.000366	.000240	.000610	.000340	.000854
.000041	.000125	.000141	.000370	.000241	.000614	.000341	.000858
.000042	.000129	.000142	.000373	.000242	.000617	.000342	.000862
.000043	.000133	.000143	.000377	.000243	.000621	.000343	.000865
.000044	.000137	.000144	.000381	.000244	.000625	.000344	.000869
.000045	.000141	.000145	.000385	.000245	.000629	.000345	.000873
.000046	.000144	.000146	.000389	.000246	.000633	.000346	.000877
.000047	.000148	.000147	.000392	.000247	.000637	.000347	.000881
.000050	.000152	.000150	.000396	.000250	.000640	.000350	.000885
.000051	.000156	.000151	.000400	.000251	.000644	.000351	.000888
.000052	.000160	.000152	.000404	.000252	.000648	.000352	.000892
.000053	.000164	.000153	.000408	.000253	.000652	.000353	.000896
.000054	.000167	.000154	.000411	.000254	.000656	.000354	.000900
.000055	.000171	.000155	.000415	.000255	.000659	.000355	.000904
.000056	.000175	.000156	.000419	.000256	.000663	.000356	.000907
.000057	.000179	.000157	.000423	.000257	.000667	.000357	.000911
.000060	.000183	.000160	.000427	.000260	.000671	.000360	.000915
.000061	.000186	.000161	.000431	.000261	.000675	.000361	.000919
.000062	.000190	.000162	.000434	.000262	.000679	.000362	.000923
.000063	.000194	.000163	.000438	.000263	.000682	.000363	.000926
.000064	.000198	.000164	.000442	.000264	.000686	.000364	.000930
.000065	.000202	.000165	.000446	.000265	.000690	.000365	.000934
.000066	.000205	.000166	.000450	.000266	.000694	.000366	.000938
.000067	.000209	.000167	.000453	.000267	.000698	.000367	.000942
.000070	.000213	.000170	.000457	.000270	.000701	.000370	.000946
.000071	.000217	.000171	.000461	.000271	.000705	.000371	.000949
.000072	.000221	.000172	.000465	.000272	.000709	.000372	.000953
.000073	.000225	.000173	.000469	.000273	.000713	.000373	.000957
.000074	.000228	.000174	.000473	.000274	.000717	.000374	.000961
.000075	.000232	.000175	.000476	.000275	.000720	.000375	.000965
.000076	.000236	.000176	.000480	.000276	.000724	.000376	.000968
.000077	.000240	.000177	.000484	.000277	.000728	.000377	.000972

Octal-Decimal Fraction Conversion Table

OCTAL	DEC.	OCTAL	DEC.	OCTAL	DEC.	OCTAL	DEC.
.000400	.000976	.000500	.001220	.000600	.001464	.000700	.001708
.000401	.000980	.000501	.001224	.000601	.001468	.000701	.001712
.000402	.000984	.000502	.001228	.000602	.001472	.000702	.001716
.000403	.000988	.000503	.001232	.000603	.001476	.000703	.001720
.000404	.000991	.000504	.001235	.000604	.001480	.000704	.001724
.000405	.000995	.000505	.001239	.000605	.001483	.000705	.001728
.000406	.000999	.000506	.001243	.000606	.001487	.000706	.001731
.000407	.001003	.000507	.001247	.000607	.001491	.000707	.001735
.000410	.001007	.000510	.001251	.000610	.001495	.000710	.001739
.000411	.001010	.000511	.001255	.000611	.001499	.000711	.001743
.000412	.001014	.000512	.001258	.000612	.001502	.000712	.001747
.000413	.001018	.000513	.001262	.000613	.001506	.000713	.001750
.000414	.001022	.000514	.001266	.000614	.001510	.000714	.001754
.000415	.001026	.000515	.001270	.000615	.001514	.000715	.001758
.000416	.001029	.000516	.001274	.000616	.001518	.000716	.001762
.000417	.001033	.000517	.001277	.000617	.001522	.000717	.001766
.000420	.001037	.000520	.001281	.000620	.001525	.000720	.001770
.000421	.001041	.000521	.001285	.000621	.001529	.000721	.001773
.000422	.001045	.000522	.001289	.000622	.001533	.000722	.001777
.000423	.001049	.000523	.001293	.000623	.001537	.000723	.001781
.000424	.001052	.000524	.001296	.000624	.001541	.000724	.001785
.000425	.001056	.000525	.001300	.000625	.001544	.000725	.001789
.000426	.001060	.000526	.001304	.000626	.001548	.000726	.001792
.000427	.001064	.000527	.001308	.000627	.001552	.000727	.001796
.000430	.001068	.000530	.001312	.000630	.001556	.000730	.001800
.000431	.001071	.000531	.001316	.000631	.001560	.000731	.001804
.000432	.001075	.000532	.001319	.000632	.001564	.000732	.001808
.000433	.001079	.000533	.001323	.000633	.001567	.000733	.001811
.000434	.001083	.000534	.001327	.000634	.001571	.000734	.001815
.000435	.001087	.000535	.001331	.000635	.001575	.000735	.001819
.000436	.001091	.000536	.001335	.000636	.001579	.000736	.001823
.000437	.001094	.000537	.001338	.000637	.001583	.000737	.001827
.000440	.001098	.000540	.001342	.000640	.001586	.000740	.001831
.000441	.001102	.000541	.001346	.000641	.001590	.000741	.001834
.000442	.001106	.000542	.001350	.000642	.001594	.000742	.001838
.000443	.001110	.000543	.001354	.000643	.001598	.000743	.001842
.000444	.001113	.000544	.001358	.000644	.001602	.000744	.001846
.000445	.001117	.000545	.001361	.000645	.001605	.000745	.001850
.000446	.001121	.000546	.001365	.000646	.001609	.000746	.001853
.000447	.001125	.000547	.001369	.000647	.001613	.000747	.001857
.000450	.001129	.000550	.001373	.000650	.001617	.000750	.001861
.000451	.001132	.000551	.001377	.000651	.001621	.000751	.001865
.000452	.001136	.000552	.001380	.000652	.001625	.000752	.001869
.000453	.001140	.000553	.001384	.000653	.001628	.000753	.001873
.000454	.001144	.000554	.001388	.000654	.001632	.000754	.001876
.000455	.001148	.000555	.001392	.000655	.001636	.000755	.001880
.000456	.001152	.000556	.001396	.000656	.001640	.000756	.001884
.000457	.001155	.000557	.001399	.000657	.001644	.000757	.001888
.000460	.001159	.000560	.001403	.000660	.001647	.000760	.001892
.000461	.001163	.000561	.001407	.000661	.001651	.000761	.001895
.000462	.001167	.000562	.001411	.000662	.001655	.000762	.001899
.000463	.001171	.000563	.001415	.000663	.001659	.000763	.001903
.000464	.001174	.000564	.001419	.000664	.001663	.000764	.001907
.000465	.001178	.000565	.001422	.000665	.001667	.000765	.001911
.000466	.001182	.000566	.001426	.000666	.001670	.000766	.001914
.000467	.001186	.000567	.001430	.000667	.001674	.000767	.001918
.000470	.001190	.000570	.001434	.000670	.001678	.000770	.001922
.000471	.001194	.000571	.001438	.000671	.001682	.000771	.001926
.000472	.001197	.000572	.001441	.000672	.001686	.000772	.001930
.000473	.001201	.000573	.001445	.000673	.001689	.000773	.001934
.000474	.001205	.000574	.001449	.000674	.001693	.000774	.001937
.000475	.001209	.000575	.001453	.000675	.001697	.000775	.001941
.000476	.001213	.000576	.001457	.000676	.001701	.000776	.001945
.000477	.001216	.000577	.001461	.000677	.001705	.000777	.001949

Appendix F
DATA 620/i Instructions (Alphabetical Order)

Appendix F
DATA 620/i Instructions (Alphabetical Order)

Mnemonic	Octal	Description	WDS/ Inst	Time Cycles	Indirect Address
ADD	120000	Add to A Register	1	2	Yes
ADDE*	006120	Add to A Register Extended	2	3	Yes
ADDI	006120	Add to A Register Immediate	2	2	No
ANA	150000	AND to A Register	1	2	Yes
ANAE*	006150	AND to A Register Extended	2	3	Yes
ANAI	006150	AND to A Register Immediate	2	2	No
AØFA	005511	Add OF to A Register	1	1	No
AØFB	005522	Add OF to B Register	1	1	No
AØFX	005544	Add OF to X Register	1	1	No
ASLA	004200+n	Arithmetic Shift Left A n Places	1	1+0.25n	No
ASLB	004000+n	Arithmetic Shift Left B n Places	1	1+0.25n	No
ASRA	004300+n	Arithmetic Shift Right A n Places	1	1+0.25n	No
ASRB	004100+n	Arithmetic Shift Right B n Places	1	1+0.25n	No
CIA	102500	Clear and Input to A Register	1	2	No
CIB	102600	Clear and Input to B Register	1	2	No
CPA	005211	Complement A Register	1	1	No
CPB	005222	Complement B Register	1	1	No
CPX	005244	Complement X Register	1	1	No
DAR	005311	Decrement A Register	1	1	No
DBR	005322	Decrement B Register	1	1	No

*Optional Instructions

Mnemonic	Octal	Description		WDS/ Inst	Time Cycles	Indirect Address
DIV*	170000	Divide AB Register	16-Bit	1	10-14	Yes
			18-Bit	1	11-15	
DIVE*	006170	Divide AB Register	16-Bit	2	11-15	Yes
		Extended	18-Bit		12-16	
DIVI*	006170	Divide AB Register	16-Bit	2	10-14	No
		Immediate	18-Bit		11-15	
DXR	005344	Decrement X Register		1	1	No
ERA	130000	Exclusive OR to A Register		1	2	Yes
ERAE*	006130	Exclusive OR to A Register		2	3	Yes
		Extended				
ERAI	006130	Exclusive OR to A Register		2	2	No
		Immediate				
EXC	100000	External Control Function		1	1	No
HLT	000000	Halt		1	1	No
IAR	005111	Increment A Register		1	1	No
IBR	005122	Increment B Register		1	1	No
IME	102000	Input to Memory		2	3	No
INA	102100	Input to A Register		1	2	No
INB	102200	Input to B Register		1	2	No
INR	040000	Increment and Replace		1	3	Yes
INRE*	006040	Increment and Replace		2	4	Yes
		Extended				
INRI	006040	Increment and Replace		2	3	No
		Immediate				
IXR	005144	Increment X Register		1	1	No
JAN	001004	Jump if A Register Negative		2	2	Yes
JANM	002004	Jump and Mark if A Register		2	2-3	Yes
		Negative				

*Optional Instructions

Mnemonic	Octal	Description	WDS/ Inst	Time Cycles	Indirect Address
JAP	001002	Jump if A Register Positive	2	2	Yes
JAPM	002002	Jump and Mark if A Register Positive	2	2-3	Yes
JAZ	001010	Jump if A Register Zero	2	2	Yes
JAZM	002010	Jump and Mark if A Register	2	2-3	Yes
JBZ	001020	Jump if B Register Zero	2	2	Yes
JBZM	002020	Jump and Mark if B Register Zero	2	2-3	Yes
JMP	001000	Jump Unconditionally	2	2	Yes
JMPM	002000	Jump and Mark if Unconditionally	2	3	Yes
JOF	001001	Jump if Overflow On	2	2	Yes
JOFM	002001	Jump and Mark if Overflow On	2	2-3	Yes
JS1M	002100	Jump and Mark if Sense Switch 1 On	2	2-3	Yes
JS2M	002200	Jump and Mark if Sense Switch 2 On	2	2-3	Yes
JS3M	002400	Jump and Mark if Sense Switch 3 On	2	2-3	Yes
JSS1	001100	Jump if Sense Switch 1 On	2	2	Yes
JSS2	001200	Jump if Sense Switch 2 On	2	2	Yes
JSS3	001400	Jump if Sense Switch 3 On	2	2	Yes
JXZ	001040	Jump X Register Zero	2	2	Yes
JXZM	002040	Jump and Mark X Register Zero	2	2-3	Yes
LASL	004400+n	Long Arithmetic Shift Left n Places	1	1+0.50n	No
LASR	004500+n	Long Arithmetic Shift Right n Places	1	1+0.50n	No

Mnemonic	Octal	Description	WDS/ Inst	Time Cycles	Indirect Address
LDA	010000	Load A Register	1	2	Yes
LDAE*	006010	Load A Register Extended	2	3	Yes
LDAI	006010	Load A Register Immediate	2	2	No
LDB	020000	Load B Register	1	2	Yes
LDBE*	006020	Load B Register Extended	2	3	Yes
LDBI	006020	Load B Register Immediate	2	2	No
LDX	030000	Load X Register	1	2	Yes
LDXE*	006030	Load X Register Extended	2	3	Yes
LDXI	006030	Load X Register Immediate	2	2	No
LLRL	004440+n	Long Logical Rotate Left n Places	1	1+0.50n	No
LLSR	004540+n	Long Logical Shift Right n Places	1	1+0.50n	No
LRLA	004240+n	Logical Rotate Left A n Places	1	1+0.25n	No
LRLB	004040+n	Logical Rotate Left B n Places	1	1+0.25n	No
LSRA	004340+n	Logical Shift Right A n Places	1	1+0.25n	No
LSRB	004140+n	Logical Shift Right B n Places	1	1+0.25n	No
MUL*	160000	Multiply B Register 16-Bit 18-Bit	1	10 11	Yes
MULE*	006160	Multiply B Register 16-Bit Extended 18-Bit	2	11 12	Yes
MULI*	006160	Multiply B Register 16-Bit Immediate 18-Bit	2	10 11	No
NØP	00500	No Operation	1	1	No
ØAR	103100	Output from A Register	1	2	No
ØBR	103200	Output from B Register	1	2	No

*Optional Instructions

Mnemonic	Octal	Description	WDS/ Inst	Time Cycles	Indirect Address
ØME	103000	Output from Memory	2	3	No
ØRA	110000	Inclusive OR to A Register	1	2	Yes
ØRAE*	006110	Inclusive OR to A Register Extended	2	3	Yes
ØRAI	006110	Inclusive OR to A Register Immediate	2	2	No
RØF	007400	Reset Overflow	1	1	No
SEN	101000	Sense Input/Output Lines	2	2.25	Yes
SØF	007401	Set Overflow	1	1	No
SØFA	005711	Subtract OFLO from A Register	1	1	No
SØFB	005722	Subtract OFLO from B Register	1	1	No
SØFX	005744	Subtract OFLO from X Register	1	1	No
STA	050000	Store A Register	1	2	Yes
STAE*	006050	Store A Register Extended	2	3	Yes
STAI	006050	Store A Register Immediate	2	2	No
STB	060000	Store B Register	1	2	Yes
STBE*	006060	Store B Register Extended	2	3	Yes
STBI	006060	Store B Register Immediate	2	2	No
STX	070000	Store X Register	1	2	Yes
STXE*	006070	Store X Register Extended	2	3	Yes
STXI	006070	Store X Register Immediate	2	2	No
SUB	140000	Subtract from A Register	1	2	Yes
SUBE*	006140	Subtract from A Register Extended	2	3	Yes

*Optional Instructions

Mnemonic	Octal	Description	WDS/ Inst	Time Cycles	Indirect Address
SUBI	006140	Subtract from A Register Immediate	2	2	No
TAB	005012	Transfer A to B Register	1	1	No
TAX	005014	Transfer A to X Register	1	1	No
TBA	005021	Transfer B to A Register	1	1	No
TBX	005024	Transfer B to X Register	1	1	No
TXA	005041	Transfer X to A Register	1	1	No
TXB	005042	Transfer X to B Register	1	1	No
TZA	005001	Transfer Zero to A Register	1	1	No
TZB	005002	Transfer Zero to B Register	1	1	No
TZX	005004	Transfer Zero to X Register	1	1	No
XAN	003004	Execute A Register Negative	2	2	Yes
XAP	003002	Execute A Register Positive	2	2	Yes
XAZ	003010	Execute A Register Zero	2	2	Yes
XBZ	003020	Execute B Register Zero	2	2	Yes
XEC	003000	Execute Unconditionally	2	2	Yes
XOF	003001	Execute Overflow Set	2	2	Yes
XS1	003100	Execute Sense Switch 1 Set	2	2	Yes
XS2	003200	Execute Sense Switch 2 Set	2	2	Yes
XS3	003400	Execute Sense Switch 3 Set	2	2	Yes
XXZ	003040	Execute X Register Zero	2	2	Yes

*Optional Instructions

Appendix G
DATA 620/i Instructions (By Type)

Table G-1
Single-Word Addressed Instructions

Table G-1(a)
Load/Store Instruction Group

Op Code		Instruction	Timing (Cycles)
Octal	Mnemonic		
01	LDA	Load A Register	2
02	LDB	Load B Register	2
03	LDX	Load X Register	2
05	STA	Store A Register	2
06	STB	Store B Register	2
07	STX	Store X Register	2

Table G-1(b)
Arithmetic Instruction Group

Op Code		Instruction	Timing (Cycles)
Octal	Mnemonic		
04	INR	Increment and Replace	3
12	ADD	Add Memory to A	2
14	SUB	Subtract Memory from A	2
16	MUL(*)	Multiply 16-bit 18-bit	10 11
17	DIV(*)	Divide 16-bit 18-bit	10-14 11-15

*Optional Instructions

Table G-1(c)
Logical Instruction Group

Op Code		Instruction	Timing (Cycles)
Octal	Mnemonic		
11	ØRA	Inclusive OR, Memory and A	2
13	ERA	Exclusive OR, Memory and A	2
15	ANA	AND Memory and A	2

Table G-1(d)
Addressing Modes for Single Word Addressed Instructions

M Field	Addressing Mode	Operation
11 10 9		
0 X X	Direct	Combine bits 9, 10 with a field (0-8) to form effective address (0000 - 2047).
1 0 0	Relative	Add a field (bits 0-8) to contents of P to form effective address (Mod 2^{15}).
1 0 1	Index (X Register)	Add a field (bits 0-8) to contents of X to form effective address (Mod 2^{15}).
1 1 0	Index (B Register)	Add a field (bits 0-8) to contents of B to form effective address (Mod 2^{15}).
1 1 1	Indirect	a field (bits 0-8) specifies location of an address word.

Table G-2
Control Instruction Group Codes
(Single-Word, Non-Addressable)

Op Code		M Field	A Field	Instruction	Timing (Cycles)
Octal	Mnemonic				
00	HLT	0	XXX	Halt	1
00	NØP	5	000	No Operation	1
00	RØF	7	400	Reset Overflow	1
00	SØF	7	401	Set Overflow	1

Table G-3
Shift Instruction Group

Table G-3(a)
Instruction Format

Octal	Octal	A Field									
OP Code	M Field	U ₈	U ₇	U ₆	U ₅	U ₄	U ₃	U ₂	U ₁	U ₀	
		0 = A or B 1 = A & B	0 = B 1 = A	0 = Left 1 = Right	0 = Arith. 1 = Logical rotate	Shift Count (0 - 31)					

Table G-3(b)
Instruction Format

U_8	U_7	U_6	U_5	Mnemonic	Shift Instruction	Timing (Cycles)
0	0	0	0	ASLB	Arithmetic Shift B Left	1 + 0.25n
0	0	0	1	LRLB	Logical Rotate B Left	1 + 0.25n
0	0	1	0	ASRB	Arithmetic Shift B Right	1 + 0.25n
0	0	1	1	LSRB	Logical Shift B Right	1 + 0.25n
0	1	0	0	ASLA	Arithmetic Shift A Left	1 + 0.25n
0	1	0	1	LRLA	Logical Rotate A Left	1 + 0.25n
0	1	1	0	ASRA	Arithmetic Shift A Right	1 + 0.25n
0	1	1	1	LSRA	Logical Shift A Right	1 + 0.25n
1	0	0	0	LASL	Long Arithmetic Shift A, B Left	1 + 0.50n
1	0	0	1	LLRL	Long Logical Rotate A, B Registers Left	1 + 0.50n
1	0	1	0	LASR	Long Arithmetic Shift A, B Right	1 + 0.50n
1	0	1	1	LLSR	Long Logical Shift, A, B Registers	1 + 0.50n
1	1	0	0		Invalid	
1	1	0	1		Invalid	
1	1	1	0		Invalid	
1	1	1	1		Invalid	

Table G-4
Register Change Instruction Group

Table G-4(a)
Instruction Format

Octal		A Field						Type of Transfer		
		Source			Dest.					
Class Code	M Field	U_8	U_7	U_6	U_5	U_4	U_3	U_2	U_1	U_0
00	5	0	0							Transfer Unchanged
		0	1							Transfer Incremented
		1	0	X	B	A	X	B	A	Transfer Complemented
		1	1							Transfer Decrement

Note: Multiple source transfer results in inclusive-OR; multiple source complemented results in complement inclusive-OR.

Table G-4(b)
Register Change Instruction Codes

Class Code Field Octal	Mnemonic	Register Change Instruction	Timing
0 0 1	TZA	Transfer Zero to A Register	1
0 0 2	TZB	Transfer Zero to B Register	1
0 0 4	TZX	Transfer Zero to X Register	1
0 1 2	TAB	Transfer A Register to B Register	1
0 1 4	TAX	Transfer A Register to X Register	1
0 2 1	TBA	Transfer B Register to A Register	1
0 2 4	TBX	Transfer B Register to X Register	1
0 4 1	TXA	Transfer X Register to A Register	1
0 4 2	TXB	Transfer X Register to B Register	1
1 1 1	IAR	Increment A Register	1
1 2 2	IBR	Increment B Register	1
1 4 4	IXR	Increment X Register	1
3 1 1	DAR	Decrement A Register	1
3 2 2	DBR	Decrement B Register	1
3 4 4	DXR	Decrement X Register	1
5 1 1	AØFA	Add Overflow to A Register	1
5 2 2	AØFB	Add Overflow to B Register	1
5 4 4	AØFX	Add Overflow to X Register	1
7 1 1	SØFA	Subtract Overflow from A Register	1
7 2 2	SØFB	Subtract Overflow from B Register	1
7 4 4	SØFX	Subtract Overflow from X Register	1

Table G-5
Jump Instruction Group

Table G-5(a)
Instruction Format

Octal		A Field									
OP Code	M Field	U ₈	U ₇	U ₆	U ₅	U ₄	U ₃	U ₂	U ₁	U ₀	
00	1	SS3 ON	SS2 ON	SS1 ON	X = 0	B = 0	A = 0	A < 0	A ≥ 0	OF = 1	

Note: Jump condition is logical AND of all a field bits.

Table G-5(b)
Jump Instruction Codes

A Field Octal	Mnemonic	Jump Instruction	Timing (Cycles)
0 0 0	JMP	Jump Unconditionally	2
0 0 1	JØF	Jump If Overflow Set	2
0 0 2	JAP	Jump If A Register Positive	2
0 0 4	JAN	Jump If A Register Negative	2
0 1 0	JAZ	Jump If A Register Zero	2
0 2 0	JBZ	Jump If B Register Zero	2
0 4 0	JXZ	Jump If X Register Zero	2
1 0 0	JSS1	Jump If Sense Switch 1 Set	2
2 0 0	JSS2	Jump If Sense Switch 2 Set	2
4 0 0	JSS3	Jump If Sense Switch 3 Set	2

Table G-6
Jump-and-Mark Instruction Group

Table G-6(a)
Instruction Format

Octal		A Field									
OP Code	M Field	U ₈	U ₇	U ₆	U ₅	U ₄	U ₃	U ₂	U ₁	U ₀	
00	2	SS3	SS2	SS1	X = 0	B = 0	A = 0	A < 0	A ≥ 0	OF = 1	

Note: Jump and Mark condition is logical-AND of all a field bits.

Table G-6(b)
Jump-and-Mark Instruction Codes

A Field Octal	Mnemonic	Jump-and-Mark Instructions	Timing (Cycles)
000	JMPM	Jump and Mark Unconditionally	3
001	JØFM	Jump and Mark if Overflow Set	2 (3 if Jump)
002	JANM	Jump and Mark if A Register Negative	2 (3 if Jump)
003	JAPM	Jump and Mark if A Register Positive	2 (3 if Jump)
010	JAZM	Jump and Mark if A Register Zero	2 (3 if Jump)
020	JBZM	Jump and Mark if B Register Zero	2 (3 if Jump)
040	JX ZM	Jump and Mark if X Register Zero	2 (3 if Jump)
100	JS1M	Jump and Mark if Sense Switch 1 On	2 (3 if Jump)
200	JS2M	Jump and Mark if Sense Switch 2 On	2 (3 if Jump)
400	JS3M	Jump and Mark if Sense Switch 3 On	2 (3 if Jump)

Table G-7
Execute Instruction Group

Table G-7(a)
Instruction Format

Octal		A Field									
OP Code	M Field	U ₈	U ₇	U ₆	U ₅	U ₄	U ₃	U ₂	U ₁	U ₀	
0 0	3	SS3 ON	SS2 ON	SS1 ON	X = 0	B = 0	A = 0	A 0	A 0	OF = 1	

Note: Execute condition is logical-AND of all a field bits. Executed instruction must be single word.

Table G-7(a)
Instruction Format

A Field Octal	Mnemonic	Execute Instruction	Timing (Cycles)
000	XEC	Execute Unconditionally	2
001	XOF	Execute if Overflow Set	2
002	XAP	Execute if A Register Positive	2
004	XAN	Execute if A Register Negative	2
010	XAZ	Execute if A Register Zero	2
020	XBZ	Execute if B Register Zero	2
040	XXZ	Execute if X Register Zero	2
100	XS1	Execute if Sense Switch 1	2
200	XS2	Execute if Sense Switch 2	2
400	XS3	Execute if Sense Switch 3	2

Table G-10
Immediate Instruction Group

OP Code		Octal		Instruction	Timing (Cycles)
Octal	Mnemonic	M Field	A Field		
00	LDAI	6	010	Load A Immediate	2
00	LDBI	6	020	Load B Immediate	2
00	LDXI	6	030	Load X Immediate	2
00	INRI	6	040	Increment and Replace Immediate	2
00	STAI	6	050	Store A Immediate	2
00	STBI	6	060	Store B Immediate	2
00	STXI	6	070	Store X Immediate	2
00	ØRAI	6	110	Inclusive OR Immediate	2
00	ADDI	6	120	Add Immediate	2
00	ERAI	6	130	Exclusive OR Immediate	2
00	SUBI	6	140	Subtract Immediate	2
00	ANAI	6	150	AND Immediate	2
00	MULI*	6	160	Multiply Immediate	10
				16 bits	11
				18 bits	
00	DIVI*	6	170	Divide Immediate	16 bits
				18 bits	10-14
					11-15

*Optional Instructions

Table G-11
Input/Output Instruction Group

OP Code		Octal		Instruction	Timing (Cycles)
Octal	Mnemonic	M Field	A Field		
10	EXC	0	XZZ	External Control	1
10	SEN	1	XZZ	Program Sense	2
10	IME	2	0ZZ	Input to Memory	3
10	INA	2	1ZZ	Input to A	2
10	INB	2	2ZZ	Input to B	2
10	CIA	2	5ZZ	Clear and Input to A	2
10	CIB	2	6ZZ	Clear and Input to B	2
10	ØME	3	0ZZ	Output from Memory	3
10	ØAR	3	1ZZ	Output from A	2
10	ØBR	3	2ZZ	Output from B	2

X - Mode or logical unit number

Z - Device number

Table G-12
Extended Address Instruction Group (Optional)

OP Code		Octal		Instruction	Timing (Cycles)
Octal	Mnemonic	M Field	A Field		
00	LDAE	6	01X	Load A Register Extended	3
00	LDBE	6	02X	Load B Register Extended	3
00	LDXE	6	03X	Load X Register Extended	3
00	STAE	6	05X	Store A Register Extended	3
00	STBE	6	06X	Store B Register Extended	3
00	STXE	6	07X	Store X Register Extended	3
00	INRE	6	04X	Increment and Replace Extended	4
00	ADDE	6	12X	Add Memory to A Register Extended	3
00	SUBE	6	14X	Subtract Memory from A Register Extended	3
00	MULE	6	16X	Multiply 16-Bit Extended	11
				Multiply 18-Bit Extended	12
00	DIVE	6	17X	Divide 16-Bit Extended	11 - 15
				Divide 18-Bit Extended	12 - 16
00	ØRAE	6	11X	Inclusive OR Extended	3
00	ERAЕ	6	13X	Exclusive OR Extended	3
00	ANAE	6	15X	AND Extended	3

Appendix H
DATA 620/i Reserved Instruction Codes

Table H-1
Interrupt Module Reserved Instruction Codes

The following instruction codes are for use with the first interrupt module. Device addresses 40_8 through 47_8 are reserved for interrupt modules.

Mnemonic	Octal	Function
A. External Control		
EXC 140*	100140	Clear AC Register
EXC 240	100240	Enable Interrupt Module
EXC 440	100440	Inhibit Interrupt Module
EXC 540	100540	Initialize Interrupt Module
B. Transfer		
OME 40	103040	Load Mask from Memory
OAR 40	103140	Load Mask from A Register
OBR 40	103240	Load Mask from B Register
C. Sense		
None		

*AC option only

Table H-2
BIC Reserved Instruction Codes

The following instruction codes are for use with the first buffer interface controller. Device addresses 20_8 through 27_8 are reserved for BIC's.

Mnemonic	Octal	Function
A. External Control		
EXC 020	100020	Activate Enable
EXC 021	100021	Initialize
B. Transfer		
ØAR 20	103120	Load Initial Register from A
ØBR 20	103220	Load Initial Register from B
ØME 20	103020	Load Initial Register from Memory
ØAR 21	103121	Load Final Register from A
ØBR 21	103221	Load Final Register from B
ØME 21	103021	Load Final Register from Memory
INA 20	102120	Read Initial Register into A
INB 20	102220	Read Initial Register into B
IME 20	102020	Read Initial Register into Memory
CIA 20	102520	Read Initial Register into Cleared A
CIB 20	102620	Read Initial Register into Cleared B
C. Sense		
SEN 20	101020	Sense BIC Not Busy
SEN 21	101021	Sense Abnormal Device Stop

Table H-3
Teletype Reserve Instruction Codes

Table H-3(a)
Model A Teletype Instructions

Mnemonic	Octal	Function
A. External Control		
EXC 000	100000	Select High-Speed Input
EXC 100	100100	Select Paper Tape Input
EXC 200	100200	Select Keyboard Input
EXC 300	100300	Select Page and/or Paper Tape Out
EXC 400	100400	Select Off
B. Transfer		
OAR 00	103100	Transfer A Register to TTY Buffer
OBR 00	103200	Transfer B Register to TTY Buffer
OME 00	103000	Transfer Memory to TTY Buffer
INA 00	102100	Transfer TTY Buffer to A Register
INB 00	102200	Transfer TTY Buffer to B Register
IME 00	102000	Transfer TTY Buffer to Memory
CIA 00	102500	Transfer TTY Buffer to A Register cleared
CIB 00	102600	Transfer TTY Buffer to B Register cleared
C. Sense		
SEN 000	101000	Sense TTY Not Busy
SEN 100	101100	Sense TTY Buffer Ready
SEN 300	101300	Sense TTY Reader Ready

The following are A-type teletypes:

620-60A

Table H-3(b)
Model B Teletype Instructions

Mnemonic	Octal	Function	
A. External Control			
EXC 101	100101	Connect Write Register to BIC	
EXC 201	100201	Connect Read Register to BIC	
EXC 401	100401	Initialize	
B. Transfer			
OAR 01	103101	Transfer A Register to Write Register	
OBR 01	103201	Transfer B Register to Write Register	
OME 01	103001	Transfer Memory Register to Write Register	
IAR 01	102101	Transfer Read Register to A Register	
IBR 01	102201	Transfer Read Register to B Register	
IME 01	102001	Transfer Read Register to Memory Register	
CIA 01	102501	Transfer Read Register to Cleared A Register	
CIB 01	102601	Transfer Read Register to Cleared B Register	
C. Sense			
SEN 101	101101	Write Register Ready	
SEN 201	101201	Read Register Ready	
D. Teletype Command Codes			
Function	Symbol	Code	Typed As
Print Enable	SOM	201	Control and A
Print Suppress	EOT	204	Control and D
Reader On	XON	221	Control and Q
Punch On	TAPE	222	Control and R
Reader Off	XOFF	223	Control and S
Punch Off	TAPE OFF	224	Control and T

The following models are B-type teletypes:

- 620-60B (ASR-33 TM)
- 620-61B (ASR-35 TM)
- 620-62B (KSR-35 TM)

Note: External control instructions are for use only with the BIC.

Table H-4
Card Reader Reserved Instruction Codes

The following instruction codes are for use with the 90 CPM or 1100 CPM card reader. For additional card readers, device addresses will be assigned at the time of system definition.

Mnemonic	Octal	Function
A. External Control		
EXC 230	100230	Read One Card
*EXC 630	100630	Step Read One Character
B. Transfer		
INA 30	102130	Transfer to A Register
INB 30	102230	Transfer to B Register
IME 30	102030	Transfer to Memory
CIA 30	102530	Transfer to A Register Cleared
CIB 30	102630	Transfer to B Register Cleared
C. Sense		
SEN 130	101130	Sense Character Ready
*SEN 230	101230	Sense Reader Not Busy
SEN 630	101630	Sense Reader Ready

*Delete for 1100 CPM reader.

Table H-5
Gated-Input-Channel Reserved Instruction Codes

The following instruction codes are for use with the gated input channel. Device addresses for additional input channels will be assigned at the time of system definition.

Mnemonic	Octal	Function
A. External Control		
None		
B. Transfer		
INA 60	102160	Input from Channel to A Register
INB 60	102260	Input from Channel to B Register
IME 60	102060	Input from Channel to Memory
CIA 60	102560	Input from Channel to Cleared A Register
CIB 60	102660	Input from Channel to Cleared B Register
C. Sense		
SEN 460	101460	Sense Transfer in Request

Table H-6
Buffer-Input-Channel Reserved Instruction Codes

The following instruction codes are for use with the buffer input channel. Device addresses for additional input channels will be assigned at the time of system definition.

Mnemonic	Octal	Function
A. External Control None		
B. Transfer INA 62 INB 62 IME 62 CIA 62 CIB 62	102162 102262 102062 102562 102662	Input from Channel to A Register Input from Channel to B Register Input from Channel to Memory Input from Channel to Cleared A Register Input from Channel to Cleared B Register
C. Sense SEN 462	101462	Sense Transfer in Request

Table H-7
Gated-Output-Channel Reserved Instruction Codes

The following instruction codes are for use with the gated output channel. Device addresses for additional output channels will be assigned at the time of system definition.

Mnemonic	Octal	Function
A. External Control		
None		
B. Transfer		
ØAR 60	103160	Output from A Register through Channel
ØBR 60	103260	Output from B Register through Channel
ØME 60	103060	Output from Memory through Channel
C. Sense		
SEN 260	101260	Sense Data Request

Table H-8
Buffer-Output-Channel Reserved Instruction Code

The following codes are for use with the buffer output channel. Device addresses for additional output channels will be assigned at the time of system definition.

Mnemonic	Octal	Function
A. External Control		
None		
B. Transfer		
ØAR 62	103162	Output from A Register through Channel
ØBR 62	103262	Output from B Register through Channel
ØME 62	103062	Output from Memory through Channel
C. Sense		
SEN 262	101262	Sense Data Request

Table H-9
High-Speed Paper Tape I/O Reserved Instruction Codes

The following instruction codes are for use with the paper tape I/O unit. For additional units, device addresses will be assigned at the time of system definition. If only a reader or a punch is attached, use only those codes which apply.

Mnemonic	Octal	Function
A. External Control		
EXC 037	100037	Connect Punch to BIC
EXC 437	100437	Stop Reader
EXC 537	100537	Start Reader
EXC 637	100637	Punch Buffer
EXC 737	100737	Read One Character
B. Transfer		
OAR 37	103137	Load Buffer from A Register
OBR 37	103237	Load Buffer from B Register
OME 37	103037	Load Buffer from Memory
INA 37	102137	Read Buffer into A Register
INB 37	102237	Read Buffer into B Register
IME 37	102037	Read Buffer into Memory
CIA 37	102537	Read Buffer into Cleared A Register
CIB 37	102637	Read Buffer into Cleared B Register
C. Sense		
SEN 537	101537	Sense Buffer Ready

Table H-10
Magnetic Tape Unit Reserved Instruction Codes

The following instruction codes are for use with the first magnetic tape unit. Device addresses 10_8 through 13_8 are reserved for other magnetic tape.

Mnemonic	Octal	Function
A. External Control		
EXC 010	100010	Read One Record Binary
EXC 110	100110	Read One Record BCD
EXC 210	100210	Write One Record Binary
EXC 310	100310	Write One Record BCD
EXC 410	100410	Write File Mark
EXC 510	100510	Forward One Record
EXC 610	100610	Backspace One Record
EXC 710	100710	Rewind
B. Transfer		
ØAR 10	103110	Load Buffer from A Register
ØBR 10	103210	Load Buffer from B Register
ØME 10	103010	Load Buffer from Memory
INA 10	102110	Read Buffer into A Register
INB 10	102210	Read Buffer into B Register
IME 10	102010	Read Buffer into Memory
CIA 10	102510	Read Buffer into Cleared A Register
CIB 10	102610	Read Buffer into Cleared B Register
C. Sense		
SEN 010	101010	Sense Parity Error
SEN 110	101110	Sense Buffer Ready
SEN 210	101210	Sense MTU Ready
SEN 310	101310	Sense File Mark
SEN 410	101410	Sense High Density
SEN 510	101510	Sense End of Tape
SEN 610	101610	Sense Beginning of Tape
SEN 710	101710	Sense Rewinding

Appendix I
Standard Character Codes

Appendix I
DATA 620/i Standard BCD Codes

Symbol	ASCII	Printer	Mag Tape	Hollerith	FORTRAN
@	300	00	32	0-2-8	77
A	301	01	61	12-1	13
B	302	02	62	12-2	14
C	303	03	63	12-3	15
D	304	04	64	12-4	16
E	305	05	65	12-5	17
F	306	06	66	12-6	20
G	307	07	67	12-7	21
H	310	10	70	12-8	22
I	311	11	71	12-9	23
J	312	12	41	11-1	24
K	313	13	42	11-2	25
L	314	14	43	11-3	26
M	315	15	44	11-4	27
N	316	16	45	11-5	30
O	317	17	46	11-6	31
P	320	20	47	11-7	32
Q	321	21	50	11-8	33
R	322	22	51	11-9	34
S	323	23	22	0-2	35
T	324	24	23	0-3	36
U	325	25	24	0-4	37
V	326	26	25	0-5	40
W	327	27	26	0-6	41

DATA 620/i Standard BCD Codes (continued)

Symbol	ASCII	Printer	Mag Tape	Hollerith	FORTRAN
X	330	30	27	0-7	42
Y	331	31	30	0-8	43
Z	332	32	31	0-9	44
[333	33	75	12-5-8	76*
\	334	34	36	0-6-8	76*
]	335	35	55	11-5-8	76*
↑	336	36	17 (Note)	7-8	76*
←	337	37	20	2-8	76 ¹
blank	240	40	20	No Punch	00
!	241	41	52	11-2-8	51
"	242	42	35	0-5-8	62
#	243	43	37	0-7-8	63
\$	244	44	53	11-3-8	60
%	245	45	57	11-7-8	64
&	246	46	77	12-7-8	65
'	247	47	14	4-8	66
(250	50	34	0-4-8	52
)	251	51	74	12-4-8	53
*	252	52	54	11-4-8	47
+	253	53	60	12	45
,	254	54	33	0-3-8	54
-	255	55	40	11	46
.	256	56	73	12-3-8	51
/	257	57	21	0-1	50

DATA 620/i Standard BCD Codes (continued)

Symbol	ASCII	Printer	Mag Tape	Hollerith	FORTRAN
0	260	60	12	0	01
1	261	61	01	1	02
2	262	62	02	2	03
3	263	63	03	3	04
4	264	64	04	4	05
5	265	65	05	5	06
6	266	66	06	6	07
7	267	67	07	7	10
8	270	70	10	8	11
9	271	71	11	9	12
:	272	72	15	5-8	67
;	273	73	56	11-6-8	70
<	274	74	76	12-6-8	76*
=	275	75	13	3-8	55
>	276	76	16	6-8	76 ²
?	277	77	72	12-2-8	76

Note: End-of-file for mag tape.

*: Undefined character.

1: Form control: Return to col 1.
 2: Tab control: Skip to col 7. } FORTRAN System only

Teletype Character Codes

Teletype Character	DATA 620/i Internal Code	Teletype Character	DATA 620/i Internal Code
0	260	Y	331
1	261	Z	332
2	262	blank	240
3	263	!	241
4	264	'	242
5	265	#	243
6	266	\$	244
7	267	%	245
8	270	&	246
9	271	'	247
A	301	(250
B	302)	251
C	303	*	252
D	304	+	253
E	305	,	254
F	306	-	255
G	307	.	256
H	310	/	257
I	311	:	272
J	312	;	273
K	313	=	274
L	314		275
M	315		276
N	316	?	277
O	317	@	300
P	320		333
Q	321		334
R	322		335
S	323		336
T	324		337
U	325	Rub Out	377
V	326	NUL	200
W	327	SOM	201
X	330	EOA	202

Teletype Character Codes (continued)

Teletype Character	DATA 620/i Internal Code	Teletype Character	DATA 620/i Internal Code
EOM	203	X-OFF	223
EOT	204	TAPE OFF	
WRU	205	AUX	224
RU	206	ERROR	225
BEL	207	SYNC	226
FE	210	LEM	227
H TAB	211	SO	230
LINE FEED	212	S1	231
V TAB	213	S2	232
FORM	214	S3	233
RETURN	215	S4	234
SO	216	S5	235
SI	217	S6	236
DCO	220	S7	237
X-ON	221		
TAPE AUX			
ON	222		

varian data machines /a varian subsidiary