Math 534H

Homework IV

(Due Thursday, April 2nd)

(1) Find a explicit expression for the solution to

$$\begin{cases} \partial_t u = \partial_{xx} u + 10u & \text{in } \mathbb{R} \times \mathbb{R}_+, \\ u(x,0) = \cos(x) + \cos(3x) & \end{cases}$$

Hint: Note that for every n, $\partial_{xx}(\cos(nx)) + 10\cos(nx) = (10 - n^2)u$, use the fact that the initial data is a sum of cosines.

(2) Find a explicit expression for the solution to each of the following problems

a)
$$\begin{cases} \partial_t u = \partial_{xx} u + 7\sin(2x) + 2\cos(3x) & \text{in } \mathbb{R} \times \mathbb{R}_+, \\ u(x,0) = \cos(x). \end{cases}$$

b)
$$\begin{cases} \partial_t u &= \partial_{xx} u + \sin(4x) - 2\cos(5x) & \text{in } \mathbb{R} \times \mathbb{R}_+, \\ u(x,0) &= \sin(2x) - 23\cos(7x) \end{cases}$$

c)
$$\begin{cases} \partial_t u = \partial_{xx} u + \sin(x) + \sin(2x) + \sin(4x) & \text{in } \mathbb{R} \times \mathbb{R}_+, \\ u(x,0) = \sin(x) - \cos(x) \end{cases}$$

Hint: Think of the problems as linear systems of ODEs, remember variations of parameters?.

(3) For every $n \in \mathbb{N}$, check that the complex valued function

$$E(x,t) = e^{inx - n^2t}$$

is a solution to the heat equation, $(x,t) \in \mathbb{R} \times \mathbb{R}$.

(4) Consider the 2π -periodic heat kernel, that is the function

$$H(x,t) = \frac{1}{\pi} \sum_{n=0}^{\infty} \operatorname{Re}\left(e^{inx-n^2t}\right).$$

- (a) Check that $\partial_t H = \partial_{xx} H$.
- (b) For t > 0 let $S(t) : C[0, 2\pi] \to C[0, 2\pi]$ denote the linear operator that maps a function S(t) defined by

$$(S(t)u)(x) = \int_0^{2\pi} H(x - y, t)u(y) dy.$$

Check that u(x,t) = (S(t)u)(x) solves $\partial_t u = \partial_{xx} u$.

C[a,b] denote the set of all continuous functions in the interval $[0,2\pi]$.

(c) (Variation of parameters/Duhamel's formula) Given a function f(x), check that the function

$$v(x,t) = \int_0^t (S(t-s)f)(x) ds$$

solves

$$\partial_t v = \partial_{xx} v + f(x).$$

(5) Let $u(x,t): \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ solve

$$\partial_t u = \partial_{xx} u$$
, $u(x,0) = u_0(x)$.
 $u(x,t)$ is 2π -periodic in x .

Justify the formula

$$\frac{1}{2}\frac{d}{dt}\left(\int_0^{2\pi} (u(x,t))^2 dx\right) = -\int_0^{2\pi} (\partial_x u(x,t))^2 dx$$

Conclude that $\int_0^{2\pi} u(x,t)^2 dx$ is decreasing with time.

(6) (Bonus) ("Finite speed of propagation") Suppose that u solves the **porous medium equation**,

$$\partial_t u = \partial_{xx}(u^2)$$

With $u(x,0) = u_0(x)$ a nonnegative function such that $u_0 \le 1$ everywhere and $u_0(x) \equiv 0$ if $x \notin (-1,1)$. Find a function R(t) so that

$$u(x,t) \equiv 0$$
 outside $(-R(t), R(t))$.

Hint: Use the comparison principle with u and a well chosen special solution (also, compare this phenomenon with what is obtained in the second bonus problem).

(7) (Bonus) Generalize problem #1 to higher dimensions, so, $u : \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}$ and such that $u(x_1, \ldots, x_d)$ is 2π -periodic in each of its variables and $\partial_t u = \Delta u$. Show that

$$\frac{1}{2}\frac{d}{dt}\left(\int_{[0,1]^d} (u(x,t))^2 dx\right) = -\int_{[0,1]^d} |\nabla u(x,t)|^2 dx.$$

(8) (Bonus) ("Infinite speed of propagation") Consider u a solution of the heat equation

$$\partial_t u = \partial_{xx} u$$
 if $\mathbb{R} \times \mathbb{R}_+$

where $u(x,0) = u_0(x)$, u_0 vanishes outside (-1,1) and $u_0(x) > 0$ for every x in (-1,1).

- (a) Check that no matter how small t > 0 is, we have u(x,t) > 0 for every $x \in \mathbb{R}$.
- (b) Suppose you know further that $u_0(x) \geq 2$ everywhere in (0, 1/2), then show the lower estimate

$$u(x,t) \ge \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t}, \quad \forall \ t > 0, x > 0.$$

Hint: For part a) note that if h is a function which is strictly positive everywhere and $u_0 \ge 0$, then the integral

$$\int_{\mathbb{R}} h(x)u_0(x) \ dx$$

can only be zero if $u_0 = 0$ everywhere.