Chapter 2 Boolean Algebra

Morris Mano, "Digital Logic and Computer Design." (Pearson India, 2017)

In this topic, we'll learn

- Primitive logic elements used in digital systems.
- Mathematical methods for designing circuits.
- Cost effective design.
- Optimization techniques.

Binary Logic

- Deals with
 - variables that take on two discrete values
 - operations that assume logical meaning.
- Two values the variables take may be called by different names. (e.g., *true* and *false*, *yes* and *no*, etc.)
- Convenient to uses bits and assign the values of 1 and 0.
- Used to describe mathematically the manipulation and processing of binary information.
- Suited for the analysis and design of digital systems.

Definition of Binary Logic

- Consists of binary variables (A, B, C, y, z etc.,) and logical operations.
- Each variable can have two and only two distinct possible values: 0 and 1.
- Basic logical operations: AND, OR and NOT.

AND operation

• Represented by '.' or absence of an operator.

• Can be considered as two switches connected in series.

AND					
$X Y Z = X \cdot Y$					
0	0	0			
0	1	0			
1	0	0			
1	1	1			

OR operation

- Represented by '+'.
- Can be considered as two switches connected in parallel.

OR					
X Y Z = X + Y					
0 0 1 1	0 1 0 1	0 1 1 1			

NOT Operation

• Represented by a ' or by a bar.

NOT				
X	$Z = \overline{X}$			
0	1			
1	0			

Switching Circuits and Binary Signals

- Manual switches A and B represent two binary variables.
 - equal to 0 when the switch is open and 1 when the switch is closed.
- Lamp L represent a third binary variable
 - equal to 1 when the light is on and 0 when off.
- Electronic digital circuits: Switching circuits
 - Active element such as transistor acts as closed switch when conducting and open switch other wise.

Logic gates

• Electronic digital circuits are also called Logic gates.

with the proper input, they establish logical manipulation paths.

Gates are implemented using transistors. Signals are voltages or currents.

Symbols for digital logic circuits

- These circuits are called *gates*.
- Four different names are used:
 - digital circuits, switching circuits, logic circuits, and gates
- We prefer to call them gates.
- Not gate is also called an inverter circuit.

(d) Three-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

(e) Four-input OR gate

Input-output signals for gates

Boolean Algebra

- Mathematical system of binary logic is better known as Boolean, or switching, algebra.
 - conveniently used to describe the operation of complex networks of digital circuits.
- Designers of digital systems use Boolean algebra
 - to transform circuit diagrams to algebraic expressions and vice versa.
- Mathematical notion used is Boolean Algebra.
- George Boole, 1854.

History

- In 1854 George Boole introduced a systematic treatment of logic: Boolean Algebra
- In 1938 C. E. Shannon (2) introduced a two-valued Boolean algebra called *switching algebra*,
 - he demonstrated that the properties of bistable electrical switching circuits can be represented by this algebra.
- Postulates formulated by E. V. Huntington in 1904 are used for formal definition of Boolean Algebra.

Definition of Boolean Algebra

- An algebraic structure defined on a set of elements *B* together with two binary operators + and provided the following (Huntington) postulates are satisfied.
- 1.
- (a) Closure with respect to the operator +.
- (b) Closure with respect to the operator •.
- 2.
- (a) An identity element with respect to +, designated by 0:

$$x + 0 = 0 + x = x$$
.

(b) An identity element with respect to •, designated by 1:

$$x \bullet 1 = 1 \bullet x = x$$
.

Definition of Boolean Algebra (continued)

- 3.
- (a) Commutative with respect to +: x + y = y + x.
- (b) Commutative with respect to \bullet : $x y = y \bullet x$.
- 4.
- (a) is distributive over $+: x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.
- (b) + is distributive over: $x + (y \cdot z) = (x + y) \cdot (x + z)$.
- 5. For every element $x \in B$, there exists an element $x' \in B$ (called the complement of x) such
- that: (a) x + x' = 1 and (b) $x \cdot x' = 0$.
- 6. There exists at least two elements $x, y \in B$ such that $x \neq y$.

Boolean vs ordinary algebra

- Huntington postulates do not include the associative law. (this is true).
- The distributive law of + over •, i.e., x + (y z) = (x + y) (x + z), is valid for Boolean algebra, but not for ordinary algebra.
- Boolean algebra does not have additive or multiplicative inverses; therefore, there are no subtraction or division operations.
- *complement* is not available in ordinary algebra.
- Ordinary algebra deals with the real numbers, which constitute an infinite set of elements. B, for our purpose, is defined as a set with only two elements, 0 and 1 in Boolean algebra.
- Our interest here is with the application of Boolean algebra to gate-type circuits.

Two-Valued Boolean Algebra

- Defined on a set of two elements, $B = \{0, 1\}$ with
 - rules for the two binary operators + and as shown below

x y	$x \cdot y$	x y	x + y	_	x	x'
0 0	0	0 0	0		0	1
0 1	0	0 1	1		1	0
1 0	0	1 0	1			
1 1	1	1 1	1			

 Closure, Identity and commutative properties are easily verified from the table.

Continued...

• *distribute* law: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

x y z	y + z	$x \cdot (y + z)$	x • y	x • z	$(x \cdot y) + (x \cdot z)$

Continued...

• distribute law $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

x y z	y + z	$x \cdot (y + z)$	x • y	x • z	$(x \cdot y) + (x \cdot z)$
0 0 0	0	0	0	0	0
0 0 1	1	0	0	0	0
0 1 0	1	0	0	0	0
0 1 1	1	0	0	0	0
1 0 0	0	0	0	0	0
1 0 1	1	1	0	1	1
1 1 0	1	1	1	0	1
1 1 1	1	1	1	1	1

continued

- Property 5
 - -x + x' = 1
 - $-x \cdot x' = 0$
- Postulate 6 is satisfied because the two-valued Boolean algebra has two distinct elements
 - -1 and 0 with $1 \neq 0$.
- Two binary operators with operation rules equivalent to the AND and OR operations.
- Complement operator equivalent to the NOT operation.
- Equivalent to the binary logic presented earlier.

Postulates and theorems of Boolean algebra

Postulate 2	(a) x + 0 = x	(b) x • 1 = x
Postulate 5	(a) $x + x' = 1$	(b) $x \cdot x' = 0$
Theorem 1	(a) $x + x = x$	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	(b) $x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) $x + y = y + x$	(b) $xy = yx$
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy) z$
Postulate 4, distributive	(a) $x(y + z) = xy + xz$	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	(a) $(x + y)' = x'y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) x(x+y) = x

• Duality principle: Arranged as 2 columns

Operator Precedence

• (1) parentheses, (2) NOT, (3) AND, and (4) OR.

• Eg: $(A + B)' = A' \cdot B'$.

Using basic Boolean theorem prove:

1.
$$(x + y)(x + z) = x + yz$$

2.
$$xy + xz + yz' = xz + yz'$$

Sol. 1:
$$(x + y)(x + z)$$

 $xx + xz + xy + yz$
 $x + xz + xy + yz$
 $x(1+z) + xy + yz$
 $x + xy + yz$
 $x(1+y) + yz$
 $x + yz$

Sol. 2: xy + xz + yz' xy(z+z') + xz + yz' xyz + xyz' + xz + yz' xz(1 + y) + yz'(1 + x)xz + yz'

Venn Diagram

• Aids in the visualization of Boolean relations between variables.

$$X = X + XY$$

Boolean Functions

- A Boolean function is an expression formed with
 - binary variables
 - the two binary operators OR and AND,
 - the unary operator NOT,
 - parentheses, and equal sign
- For a given value of the variables, the function can be either 0 or 1.

$$e.g.: F_1 = xyz'$$

Boolean function represented as an algebraic expression.

Truth Table for Boolean function $F_1 = xyz'$

	-		
х	y	Z	F_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Truth Table for Boolean function $F_1 = xyz'$, $F_2 = x + y'z$, $F_3 = x'y'z + x'yz + xy'$, and $F_4 = xy' + x'z$

х	у	Z	F_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

(a) Two-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

•
$$F_1 = xyz'$$

(a) Two-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

•
$$F_1 = xyz'$$

(a) Two-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

$$\bullet \quad F_2 = x + y' z$$

- $F_3 = x' y' z + x' yz + xy'$
- $F_{\Delta} = xy' + x'z$

- (a) Two-input AND gate
- (b) Two-input OR gate
- (c) NOT gate or inverter

•
$$F_2 = x + y'z$$

•
$$F_3 = x' y' z + x' yz + xy'$$

How to manipulate Boolean functions to obtain equal and simpler expressions?

Best form of Boolean Function

- Depends on the particular application.
- Here we consider criterion of equipment minimization.

Algebraic Manipulation

- Literal is a primed or unprimed variable.
- While implementing
 - each literal in the function designates an input to a gate.
 - each term is implemented with a gate.
- Minimization of the number of literals and the number of terms results in a circuit with less equipment.
- Here we will emphasize on literal minimization.
- Algebraic manipulation
 - Unfortunately, there are **no specific rules** to follow that will guarantee the final answer.
 - employ the postulates, the basic theorems, and other manipulation methods

Simplify the following equations

- x + x'y
- x(x'+y)
- x' y' z + x' yz + xy'
- xy + x'z + yz
- (x + y) (x' + z) (y + z)

Simplify the following equations

- x + x' y = x + y
- x(x'+y)=xy
- x' y' z + x' yz + xy' = x' z + x y'
- $\bullet xy + x'z + yz = xy + x'z$
- (x + y) (x' + z) (y + z) = (x + y) (x' + z)

Complement of a Function

- Complement of a function may be derived algebraically through De Morgan's theorem.
- De Morgan's theorems can be extended to three or more variables.

Complement of a Function

- Complement of a function may be derived algebraically through De Morgan's theorem.
- De Morgan's theorems can be extended to three or more variables.

$$(A + B + C + D + ... + F)' = A'B'C'D' ... F'$$

 $(ABCD ... F)' = A' + B' + C' + D' + ... + F'$

• Complement of a function is obtained by interchanging AND and OR operators and complementing each literal.

Find the complement of functions using De Morgan's theorem:

•
$$F_1 = x' yz' + x' y' z$$

•
$$F_2 = x(y'z' + yz)$$

Find the complement of functions using duals:

- 1. Find the dual of the function.
- 2. Complement the literal

- $F_1 = x' y z' + x' y' z$
- 1. (x' + y + z').(x' + y' + z)
- 2. $(x + y' + z) \cdot (x + y + z')$
- $\bullet \quad F_2 = x(y' \ z' + y \ z)$
- 1.
- 2.

Canonical Forms

- A binary variable may appear in
 - Normal form (x)
 - Complimentary form (x ')
- Hence for two variables x and y there are four possibilities for AND operation
 - -x'y', x'y, xy', and xy
 - Each of these 4 terms is called a **min-term** or **standard product**.
 - n variables : 2^n minterms (binary numbers from 0 to 2^n 1).
 - Each minterm: AND term of n variables which is primed if the corresponding bit is 0. (Symbol m_i, where j is the decimal equivalent of binary number)

Minterms

Table 2-3 Minterms and maxterms for three binary variables

			Minterms		Maxterms			
х	y	Z	Term	Designation	Term	Designation		
0	0	0	x'y'z'	m_0	x + y + z	$M_{\rm o}$		
0	0	1	x'y'z	m_1	x + y + z'	M_1		
0	1	0	x'yz'	m_2	x + y' + z	M_2		
0	1	1	x'yz	m_3	x + y' + z'	M_3		
1	0	0	xy'z'	m_4	x' + y + z	M_4		
1	0	1	xy'z	m_5	x' + y + z'	M_5		
1	1	0	xyz'	m_{6}	x' + y' + z	M_{6}		
1	1	1	xyz	m_7	x' + y' + z'	M_7		

Canonical Forms (continued..)

- Similarly for an OR
 - n variables from 2ⁿ terms called **maxterms** or **standard sums**.
 - each variable being unprimed if the corresponding bit is a 0 and primed if a 1. (Symbol: M_i)

Minterms and maxterms for three binary variables

]	Minterms	Maxte	rms
x	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	$m_0^{}$	x + y + z	$M_{_0}$
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	$m_2^{}$	x + y' + z	M_{2}
0	1	1	x'yz	$m_3^{}$	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	$m_5^{}$	x' + y + z'	M_{5}
1	1	0	xyz'	m_{6}	x' + y' + z	M_{ϵ}
1	1	1	xyz	m_7	x' + y' + z'	M_7

Minterms and Maxterms

Table 2-3 Minterms and maxterms for three binary variables

			Minterms		Maxterms			
х	y	Z	Term Designation		Term	Designation		
0	0	0	x'y'z'	m_0	x + y + z	$M_{_0}$		
0	0	1	x'y'z	m_1	x + y + z'	M_1		
0	1	0	x'yz'	m_2	x + y' + z	$M_{_2}$		
0	1	1	x'yz	m_3	x + y' + z'	$M_{_3}$		
1	0	0	xy'z'	m_4	x' + y + z	M_4		
1	0	1	xy/z	m_5	x' + y + z'	M_{5}		
1	1	0	xyz'	$m_{_6}$	x' + y' + z	M_{ϵ}		
1	1	1	xyz	m_7	x' + y' + z'	M_7		

Boolean function as sum of minterms

х	у	z	Function f_1	Function f_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	Ι	0	0	1
1	1	1	1	1

				Minterms
х	У	z	Term	Designation
0	0	0	x'y'z'	$m_{_0}$
0	0	1	x'y'z	m_1
0	1	0	x'yz'	$m_2^{}$
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy/z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

Maxterms directly from the truth table

х	у	Z	Function f_1	Function f_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	I	0	0	1
1	1	1	1	1

- Any Boolean function can be expressed as a product of maxterms or sum of minterms.
- Boolean functions expressed as a sum of minterms or product of maxterms are said to be in *canonical form*.

Sum of Minterms

- Minterms whose sum defines the Boolean function are those that give the 1's of the function in a truth table.
- Conversion to sum of minterms:
 - If a term misses one or more variables, it is ANDed with an expression such as x + x', where x is one of the missing variables.
- E.g.: Express the Boolean function F = A + B'C in a sum of minterms.

Sum of Minterms

- Minterms whose sum defines the Boolean function are those that give the 1's of the function in a truth table.
- Conversion to sum of minterms:
 - If a term misses one or more variables, it is ANDed with an expression such as x + x', where x is one of the missing variables.
- E.g.: Express the Boolean function F = A + B'C in a sum of minterms.
- $F=m_1+m_4+m_5+m_6+m_7=\Sigma$ (1,4, 5,6,7)

Product of Maxterms

- 1. Use distributive law to bring to a form of OR terms.
- 2. Missing variable x in each OR term is ORed with xx'.

$$E.g.: F = xy + x'z$$

Product of Maxterms

- 1. Use distributive law to bring to a form of OR terms.
- 2. Missing variable x in each OR term is ORed with xx'.

E.g.:
$$F = xy + x'z = M_0M_2M_4M_5 = \Pi(0,2,4,5)$$

Table 2-3 Minterms and maxterms for three binary variables

	Minterms			Minterms	Maxterms			
\boldsymbol{x}	у	Z	Term	Designation	Term	Designation		
0	0	0	x'y'z'	m_0	x + y + z	M_{0}		
0	0	1	x'y'z	m_1	x + y + z'	M_1		
0	1	0	x'yz'	$m_2^{}$	x + y' + z	M_2		
0	1	1	x'yz	m_3	x + y' + z'	M_3		
1	0	0	xy'z'	m_4	x' + y + z	M_4		
1	0	1	xy'z	m_5	x' + y + z'	M_5		
1	1	0	xyz'	m_{6}	x' + y' + z	M_6		
1	1	1	xyz	m_7	x' + y' + z'	M_{7}		

Conversion between canonical forms

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.
- $F(A,B,C) = \Sigma(1,4,5,6,7)$
- $F'(A,B,C) = \Sigma()$

Conversion between canonical forms

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.
- $F(A,B,C) = \Sigma(1,4,5,6,7)$
- $F'(A,B,C) = \Sigma(0,2,3)$
- Complement of F ' by De Morgan's theorem gives F in another form

Table 2-3 Minterms and maxterms for three binary variables

	Minterms				Maxterms			
х	у	Z	Term	Designation	Term	Designation		
0	0	0	x'y'z'	m_0	x + y + z	$M_{_0}$		
0	0	1	x'y'z	m_1	x + y + z'	M_1		
0	1	0	x'yz'	$m_2^{}$	x + y' + z	M_{2}		
0	1	1	x'yz	m_3	x + y' + z'	M_3		
1	0	0	xy'z'	m_4	x' + y + z	M_4		
1	0	1	xy'z	m_5	x' + y + z'	M_{5}		
1	1	0	xyz'	m_{6}	x' + y' + z	M_{ϵ}		
1	1	1	xyz	m_7	x' + y' + z'	M_7		

Conversion between canonical forms

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.
- $F(A,B, C) = \Sigma(1,4,5,6,7)$
- $F'(A,B,C) = \Sigma(0,2,3)$
- Complement of F ' by De Morgan's theorem gives F in another form
- $F=(m_0+m_2+m_3)'=m_0'.m_2'.m_3'=M_0M_2M_3=\Pi(0,2,3)$
- $m_i' = M_i$

General conversion procedure

- To convert from one canonical form to another
 - interchange the symbols Σ and Π
 - list those numbers missing from the original form.
- Convert $F(x, y, z) = \Pi(0, 2, 4, 5)$ to Sum of minterms form.
- $\sum (1,3,6,7)$

Standard Forms

- Two canonical forms of Boolean algebra are basic forms that one obtains from reading a function from the truth table.
 - seldom the ones with the least number of literals (should include by definition all variables)
- Standard form
 - function may contain one, two or any number of literal.
 - 2 types: the sum of products and product of sums.
 - $-F_1 = y' + xy + x'yz'$: SOP
 - $-F_2 = x(y'+z)(x'+y+z'+w)$: POS

Conversion from non-standard form to standard form

•
$$F3 = (AB + CD)(A'B' + C'D')$$

= $ABA'B' + ABC'D' + A'B'CD + CDC'D'$
= $ABC'D' + A'B'CD$

Other Logic Operations

Х	у	F_{0}	F_1	F_2	F_3	F_4	F_{5}	F_{6}	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Ope	rator																
Syn	nbol			/		/		\oplus	+	\downarrow	0				\supset	1	

Boolean expressions for the 16 functions of two variables

$F_{0} = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exciusive-OR	x or y but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$x \odot y$	Equivalence*	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Digital logic gates

Name	Graphic	Algebraic	Truth
	symbol	function	table
AND	х у	F = xy	x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	х у	F = x + y	x y F 0 0 0 0 1 1 1 0 1 1 1 1
Inverter	х	F = x'	x F 0 1 1 0
Buffer	х	F = x	x F 0 0 1 1

NAND

$$x = (xy)'$$
 $x = (xy)'$
 $x = (xy)'$

Extension to Multiple Inputs

- A gate can be extended to have multiple inputs if binary operation it represents is
 - commutative
 - and associative
 - AND and OR are commutative and associative.
 - gate inputs can be interchanged.
- What about NAND and NOR?

Extension to Multiple Inputs

- A gate can be extended to have multiple inputs if binary operation it represents is
 - commutative
 - and associative
 - AND and OR are commutative and associative.
 - gate inputs can be interchanged.
- What about NAND and NOR?
 - Commutative but not associative.

$$x \downarrow y \downarrow z = (x + y + z)'$$
$$x \uparrow y \uparrow z = (xyz)'$$

-(x + y + z)'

Cascaded NAND

• Write the output

Cascaded NAND

- Correct parentheses should be used to signify the proper sequence.
- Sum of products can be implemented with NAND gates

Cascaded XOR and Equivalence

- Both are commutative and associative.
 - can be extended to more than two inputs.

X	у	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Construct AND/OR Gate using NOR/NAND Gate

