Chapter 2:

2.2 Limits and Continuity

Continuity

(a) Discontinuous function for which limit $x \rightarrow x_0$ f (x) does not exist. (b) Continuous function for which this limit exists and equals $f(x_0)$.

- (a) A discontinuous function of two variables.
- (b) (b) A continuous function

DEFINITION: Continuity Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ be a given function with domain A. Let $\mathbf{x}_0 \in A$. We say f is **continuous** at \mathbf{x}_0 if and only if $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0).$

If we just say that f is **continuous**, we shall mean that f is continuous at each point \mathbf{x}_0 of A. If f is not continuous at \mathbf{x}_0 , we say f is **discontinuous** at \mathbf{x}_0 . If f is discontinuous at some point in its domain, we say f is **discontinuous**.

THEOREM 4: Properties of Continuous Functions Suppose that $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$, $g: A \subset \mathbb{R}^n \to \mathbb{R}^m$, and let c be a real number.

- (i) If f is continuous at \mathbf{x}_0 , so is cf, where $(cf)(\mathbf{x}) = c[f(\mathbf{x})]$.
- (ii) If f and g are continuous at \mathbf{x}_0 , so is f + g, where the sum of f and g is defined by $(f + g)(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$.
- (iii) If f and g are continuous at \mathbf{x}_0 and m = 1, then the product function fg defined by $(fg)(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$ is continuous at \mathbf{x}_0 .
- (iv) If $f: A \subset \mathbb{R}^n \to \mathbb{R}$ is continuous at \mathbf{x}_0 and nowhere zero on A, then the quotient 1/f is continuous at \mathbf{x}_0 , where $(1/f)(\mathbf{x}) = 1/f(\mathbf{x})$.
- (v) If $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ and $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$, then f is continuous at \mathbf{x}_0 if and only if each of the real-valued functions f_1, \dots, f_m is continuous at \mathbf{x}_0 .

THEOREM 5: Continuity of Compositions Let $g: A \subset \mathbb{R}^n \to \mathbb{R}^m$ and let $f: B \subset \mathbb{R}^m \to \mathbb{R}^p$. Suppose $g(A) \subset B$, so that $f \circ g$ is defined on A. If g is continuous at $\mathbf{x}_0 \in A$ and f is continuous at $\mathbf{y}_0 = g(\mathbf{x}_0)$, then $f \circ g$ is continuous at \mathbf{x}_0 .

Proof. We use the ε - δ criterion for continuity. Thus, given $\varepsilon > 0$, we must find $\delta > 0$ such that for $\mathbf{x} \in A$.

$$\|\mathbf{x} - \mathbf{x}_0\| < \delta \text{ implies } \|(g \circ f)(\mathbf{x}) - (g \circ f)(\mathbf{x}_0)\| < \varepsilon.$$

Since g is continuous at $f(\mathbf{x}_0) = \mathbf{y}_0 \in B$, there is a $\gamma > 0$ such that for $\mathbf{y} \in B$,

$$\|\mathbf{y} - \mathbf{y}_0\| < \gamma \text{ implies } \|g(\mathbf{y}) - g(f(\mathbf{x}_0))\| < \varepsilon.$$

Since f is continuous $\mathbf{x}_0 \in A$, there is, for this γ , a $\delta > 0$ such that for $\mathbf{x} \in A$,

$$\|\mathbf{x} - \mathbf{x}_0\| < \delta \text{ implies } \|f(\mathbf{x}) - f(\mathbf{x}_0)\| < \gamma,$$

which in turn implies

$$||g(f(\mathbf{x})) - g(f(\mathbf{x}_0))|| < \varepsilon,$$

which is the desired conclusion.

In terms of ε 's and δ 's

THEOREM 6 Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ and let \mathbf{x}_0 be in A or be a boundary point of A. Then $\liminf_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \mathbf{b}$ if and only if for every number $\varepsilon > 0$ there is a $\delta > 0$ such that for any $\mathbf{x} \in A$ satisfying $0 < \|\mathbf{x} - \mathbf{x}_0\| < \delta$, we have $\|f(\mathbf{x}) - \mathbf{b}\| < \varepsilon$ (see Figure 2.2.16).

Show that $\lim_{(x,y)\to(0,0)} x = 0$ using the ε - δ method.

Show that $\lim_{(x,y)\to(0,0)} x = 0$ using the ε - δ method.

Note that if $\delta > 0$, $\|(x,y) - (0,0)\| = \sqrt{x^2 + y^2} < \delta$ implies $|x - 0| = |x| = \sqrt{x^2} \le \sqrt{x^2 + y^2} < \delta$. Thus, if $\|(x,y) - (0,0)\| < \delta$, then |x - 0| is also less than δ . Given $\varepsilon > 0$, we are required to find a $\delta > 0$ (generally depending on ε) with the property that $0 < \|(x,y) - (0,0)\| < \delta$ implies $|x - 0| < \varepsilon$. What are we to pick as our δ ? From the preceding calculation, we see that if we choose $\delta = \varepsilon$, then $\|(x,y) - (0,0)\| < \delta$ implies $|x - 0| < \varepsilon$. This shows that $\liminf_{(x,y) \to (0,0)} x = 0$. Given $\varepsilon > 0$, we could have also chosen $\delta = \varepsilon/2$ or $\varepsilon/3$, but it suffices to find just one δ satisfying the requirements of the definition of a limit.

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}} = 0.$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}} = 0.$$

We must show that $x^2/\sqrt{x^2+y^2}$ is small when (x, y) is close to the origin. To do this, we use the following inequality:

$$0 \le \frac{x^2}{\sqrt{x^2 + y^2}} \le \frac{x^2 + y^2}{\sqrt{x^2 + y^2}}$$
 (because $y^2 \ge 0$)
= $\sqrt{x^2 + y^2}$.

Given $\varepsilon > 0$, choose $\delta = \varepsilon$. Then $\|(x, y) - (0, 0)\| = \|(x, y)\| = \sqrt{x^2 + y^2}$, and so $\|(x, y) - (0, 0)\| < \delta$ implies that

$$\left| \frac{x^2}{\sqrt{x^2 + y^2}} - 0 \right| = \frac{x^2}{\sqrt{x^2 + y^2}} \le \sqrt{x^2 + y^2} = \|(x, y) - (0, 0)\| < \delta = \varepsilon.$$

Thus, the conditions of Theorem 6 have been fulfilled and the limit is verified.

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 + y^2} \ do \ not \ exists$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 + y^2} \ do \ not \ exists$$

(a) If the limit exists, $x^2/(x^2 + y^2)$ should approach a definite value, say a, as (x, y) gets near (0, 0). In particular, if (x, y) approaches zero along any given path, then $x^2/(x^2 + y^2)$ should approach the limiting value a. If (x, y) approaches (0, 0) along the line y = 0, the limiting value is clearly 1 (just set y = 0 in the preceding expression to get $x^2/x^2 = 1$). If (x, y) approaches (0, 0) along the line x = 0, the limiting value is

$$\lim_{y \to 0} \frac{0^2}{0^2 + y^2} = 0 \neq 1.$$

Hence, $\lim_{(x,y)\to(0,0)} x^2/(x^2+y^2)$ does not exist.

THEOREM 7 Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ be given. Then f is continuous at $\mathbf{x}_0 \in A$ if and only if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that

 $\mathbf{x} \in A$ and $\|\mathbf{x} - \mathbf{x}_0\| < \delta$ implies $\|f(\mathbf{x}) - f(\mathbf{x}_0)\| < \varepsilon$.

2.2 Limits and Continuity

Key Points in this Section.

6. Continuity. Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{x}_0 \in A$. We say f is **continuous at** \mathbf{x}_0 provided

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0).$$

If f is continuous at every point of A, we just say f is **continuous**.

- 7. The sum of continuous functions is continuous. The same is true of products and quotients of real-valued functions (if the denominator is non-zero).
- 8. The composition of continuous functions is continuous. **Compositions** $f \circ g$ are defined by $(f \circ g)(\mathbf{x}) = f(g(\mathbf{x}))$.
- 9. The usual functions of one-variable calculus, such as polynomials, trigonometric, and exponential functions are continuous and these can be used to build up continuous functions of several variables. For instance, $f(x,y) = e^{xy}/(1-x^2-y^2)$ is continuous on \mathbb{R}^2 minus the unit circle.

10. If f(x, y) has different limits as (0, 0) is approached along two different rays (such as the x- and y-axes), then f is not continuous at (0, 0).