ДЗ по дискретной математике на 17.09.2021

Кожевников Илья 2112-1

16 сентября 2021 г.

№1

$$(A \to B) \lor (B \to C)$$
$$\neg A \lor B \lor \neg B \lor C$$

Но т.к. $B \vee \neg B \equiv 1$, то изначальное выражение является тавтологией. Ч.Т.Д.

№2

$$A \to (B \to C) \qquad (A \to B) \to C$$

$$\neg A \lor (\neg B \lor C) \qquad \neg (\neg A \lor B) \lor C$$

$$\neg A \lor \neg B \lor C(1) \qquad A \land \neg B \lor C(2)$$

Пусть F1 и F2 - выражения (1) и (2) соответственно.

Α	В	С	F1	F2
0	0	0	1	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Заметим, что значения F1 и F2 при одних и тех же значениях A, B и C расходятся. Значит, высказывания не равносильны.

Ответ: нет

$N_{\overline{2}}3$

$$\begin{array}{ll} A \wedge (B \to C) & (A \wedge B) \to (A \wedge C) \\ A \wedge (\neg B \vee C) & \neg A \vee \neg B \vee (A \wedge C) \end{array}$$

Пусть F1 и F2 - выражения (1) и (2) соответственно.

A	В	С	F1	F2
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Заметим, что значения F1 и F2 при одних и тех же значениях A, B и C расходятся. Значит,

высказывания не равносильны.

Ответ: нет

№4

$$\begin{array}{ll} A \to (B \to C) & (A \to B) \to (A \to C) \\ \neg A \lor \neg B \lor C & \neg (\neg A \lor B) \lor \neg A \lor C \\ \neg A \lor \neg B \lor C & A \land B \lor \neg A \lor C \end{array}$$

Пусть F1 и F2 - выражения (1) и (2) соответственно.

В	С	F1	F2
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	1
0	0	1	0
0	1	1	1
1	0	0	1
1	1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1	0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1

Заметим, что значения F1 и F2 при одних и тех же значениях A, B и C расходятся. Значит, высказывания не равносильны.

Ответ: нет

№5

Проверим выражение $A \wedge B \vee B \wedge C \vee C \wedge A$

Пусть F - данное выражение

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Заметим, что F истинно лишь тогда, когда истинны два или три элементарных утверждения из A, B и C. Следовательно, данное выражение - искомое.

Ответ: $A \wedge B \vee B \wedge C \vee C \wedge A$

№6

$$ab = n => a = \frac{n}{b}$$

Если $a \leq \sqrt{n}$, то изначальное выражение верно (т.к. $(1) \lor (b \leq \sqrt{n}) = 1$).

Тогда пойдем от противного. Пусть $a > \sqrt{n}$. Тогда:

$$\frac{n}{b} > \sqrt{n}$$

$$n > b\sqrt{n}$$

$$b < \sqrt{n}$$

Тогда при $a>\sqrt{n},\,b\leq\sqrt{n}=>$ изначальное выражение также становится истинным.

Аналогично, можно понять, что при $b>\sqrt{n},~a\leq \sqrt{n}$ изначальное выражение также становится истинным. Следовательно, как бы а или b ни относились к n, одно из выражений $a\leq \sqrt{n},~b\leq \sqrt{n}$ будет верно => все изначальное выражение будет верно. Ч.Т.Д.

$N_{\overline{2}}7$

$$n^{25} + n^{64} = n^{25}(1 + n^{39})$$

Пусть n - четное число. Тогда n^{25} (т.к. четное число, умноженное на четное будет четным, а n^{25} представляет собой произведение 25 одинаковых четных чисел) - четное, а $1+n^{39}$ - нечетное (т.к. нечетное число, умноженное на нечетное будет нечетным, а $1+n^{39}$ представляет собой произведение 25 одинаковых нечетных чисел). Но четное число, умноженное на нечетное число дает четное, значит, изначальная сумма будет четная.

Пусть n - нечетное число. Тогда n^{25} - нечетное (аналогично), а $1+n^{39}$ - четное (аналогично). Но четное число, умноженное на нечетное число дает четное, значит, изначальная сумма будет четная.

Получается, независимо от четности числа n, изначальное выражение всегда будет четным. Ч.Т.Д.