Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»			
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,			
информационные технологии»				

Лабораторная работа №6

«Mahout. Алгоритмы кластеризации»

ДИСЦИПЛИНА: «Технологии обработки больших данных»

Выполнил: студент гр. ИУК4-72Б			Сафронов Н.С.	
-	(подпись)		(Ф.И.О.)	
Проверил:		(Голубева С.Е.	
	(подпись)		(Ф.И.О.)	
Дата сдачи (защиты):				
D ()				
Результаты сдачи (защиты):				
-	Балльная оценка:			
	O11011140:			
-	Оценка:			

Калуга, 2023

Цель работы: формирование практических навыков работы с

библиотекой Mahout для создания рекомендательных систем на основе

больших данных.

Постановка задачи

1. Изучить средства Mahout для векторизации текстов. Реализовать

кластеризацию статей по темам. Исходные статьи можно загрузить

Reuters: ИЗ коллекции

http://www.daviddlewis.com/resources/testcollections/

Можно использовать любой алгоритм кластеризации и любую

метрику.

2. Создать тестовый файл с координатами точек на плоскости.

Реализовать алгоритм кластеризации точек (согласно варианту) с

различными метриками. Результаты сохранить в файл, затем

графически отобразить полученные кластеры с помощью любого

средства. Сравнить результаты.

Вариант 4

Алгоритм: Сапору

Метрики: EuclideanDistanceMeasure, CosineDistanceMeasure

Результаты выполнения работы

2

Задание 1

Рисунок 1 – Извлечение данных Reuters

Рисунок 2 – Приведение данных Reuters к нужному формату

Рисунок 3 – Создание на основе данных Reuters векторов

Рисунок 4 – Применение алгоритма Сапору

```
hadoop@keyone-laptop:-/lab6-data/reuters-vectors$ $MAHOUT_HOME/bin/mahout clusterdump -i file:///home/hadoop/lab6-data/reuters-canopy-clusters/clusters-* -o canopy_dump -dt sequencefile -d file:///home/hadoop/lab6-data/reuters-canopy-clusters/clusters-* -o canopy_dump -dt sequencefile -d file:///home/hadoop/lab6-data/reuters-vectors/dictionary.file-* MAHOUT_LOCAL is set, so we don't add HADOOP_CONF_DIR to classpath.

MAHOUT_LOCAL is set, running locally
23/10/22 20:42:12 INFO common.AbstractJob: Command line arguments: {--dictionary=[file:///home/hadoop/lab6-data/reuters-vectors/dictionary.file-*}, --dictionaryType=[sequencefile], --distanceMeasure=[org.apache.nahout.common.distance.SquaredEuclideanolistanceMeasure], --endPhase=[2147483647], --input=[file://home/hadoop/lab6-data/reuters-canopy-clusters/clusters-*], --output=[canopy_dump], --outputFormat=[TEXT], --startPhase=[0], --tempDir=[temp]}

WARNING: All lilegal reflective access operation has occurred

WARNING: Illegal reflective access by org.apache.hadoop.security.authentication.util.KerberosUtil (file:/home/hadoop/mahout/mahout_9/lib/hadoop/hadoop-core-1.2.1.jar) to method sun.security.krb5.Config.getInstance()

WARNING: Slease consider reporting this to the maintainers of org.apache.hadoop.security.authentication.util

WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations

WARNING: Slease consider reporting this to the maintainers of org.apache.hadoop.security.authentication.util

WARNING: Slease consider reporting this to the maintainers of org.apache.hadoop.security.authentication.util

WARNING: Slease consider reporting this warnings of further illegal reflective access operations

WARNING: 20:42:18 INFO clustering.clusterDumper: Wrote 21578 clusters

23/10/22 20:42:18 INFO driver.MahoutDriver: Program took 5955 ms (Minutes: 0.09925)

hadoop@keyone-laptop:-/lab6-data/reuters-vectors$
```

Рисунок 5 – Приведение результата к читаемому виду

```
k1@keyone-laptop: ~
GNU nano 6.2
                                                    canopy_dump
C-0{n=1 c=[0.39:9.188, 01:4.670, 01.79:9.034, 1,750:8.900, 1,780:9.370, 1,850:9.188, 1,870:9.881, 1,875:9
        Top Terms:
                comissaria
                                                           => 23.00082778930664
                bahia
                                                           => 18.649639129638672
                                                           => 16.918155670166016
                cocoa
                bags
                                                           => 14.987834930419922
                 1,880
                                                               14.54699993133545
                 2.27
                                                          => 14.010659217834473
                                                          => 13.897024154663086
                 times
                                                          => 13.754313468933105
                smith
                                                          => 13.453493118286133
=> 13.428743362426758
                sept
                dec
C-1{n=1 c=[02:4.660, 15:2.807, 20.00:8.495, 26:3.594, 3:1.119, 55:4.707, activities:5.482, also:2.748, am>
        Top Terms:
                                                           => 13.641093254089355
                bр
                standard
                                                           => 10.731813430786133
                oversight
                                                          => 8.494523048400879
                 20.00
                                                               8.494523048400879
                                                          => 7.6472249031066895
                srd
                oil
                                                                7.407129764556885
                                                           =>
                                                                7.191313743591309
                 form
                 venture
                                                           =>
                                                               7.071836471557617
                 america
                                                                7.039975643157959
                north
                                                                6.887477397918701
C-2{n=1 c=[1.19:7.218, 132,000:8.271, 15:2.807, 18:3.035, 1985:3.678, 26:3.594, 3:1.119, 327.2:9.881, 34:>
        Top Terms:
                472.3
                                                                9.880817413330078
                327.2
                                                                9.880817413330078
                                                               9.593134880065918
                 479.7
                 59.34
                                                                8.899988174438477
                 132,000
                                                                8.271379470825195
                                                                7.218229293823242
                 1.19
                                                           =>
                                                               6.417973041534424
                 vs
                                                                5.885679244995117
                 forward
                                                           =>
                carry
deposits
                                                          =>
                                                                5,661309719085693
                                                                5.259117603302002
                                               ^K Cut
^U Paste
                                                               ^T Execute
^J Justify
                                                                               ^C Location
^/ Go To Line
                               ^W Where Is
                                                                                               M-U Undo
^G Help
                ^O Write Out
   Exit
                ^R Read File
                               ^\ Replace
                                                                                               M-E Redo
```

Рисунок 6 – Результат кластеризации

Задание 2

Листинг программы

Main.java:

```
package org.example;
import org.apache.mahout.clustering.canopy.Canopy;
import org.apache.mahout.clustering.canopy.CanopyClusterer;
import org.apache.mahout.common.distance.CosineDistanceMeasure;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class Main {
   public static List<Vector> chooseRandomPoints(List<Vector> vectors, int
k) {
        List<Vector> randomPoints = new ArrayList<Vector>();
        for (int i = 0; i < k; i++) {
            int randomN = (int) (Math.random() * (vectors.size() - 1));
            randomPoints.add(vectors.get(randomN));
        return randomPoints;
    }
    public static double[][] readFile(String path) throws IOException {
        List<String> temp = new ArrayList<>();
        try (BufferedReader br = new BufferedReader(new FileReader(path))) {
            while ((s = br.readLine()) != null) {
                temp.add(s);
        double[][] result = new double[temp.size()][2];
        for (int i = 0; i < temp.size(); i++) {
            int sep idx = temp.get(i).indexOf(',');
            result[i][0] = Double.parseDouble(temp.get(i).substring(0,
sep idx));
```

```
result[i][1] = Double.parseDouble(temp.get(i).substring(sep idx +
1));
        return result;
    public static List<Vector> getPoints(double[][] raw) {
        List<Vector> points = new ArrayList<Vector>();
        for (int i = 0; i < raw.length; i++) {
            double[] fr = raw[i];
            Vector vec = new RandomAccessSparseVector(fr.length);
            vec.assign(fr);
            points.add(vec);
        return points;
    }
    public static void solve(List<Vector> points, List<Vector> randomPoints,
DistanceMeasure measure, String output) throws IOException {
        List<Canopy> canopies = CanopyClusterer.createCanopies(randomPoints,
new EuclideanDistanceMeasure(), 3, 1.5);
        List<Vector> clusterCenters = new ArrayList<>();
        for (Canopy canopy : canopies) {
            clusterCenters.add(canopy.getCenter());
        System.out.println(randomPoints);
        System.out.println(clusterCenters);
        FileWriter writer = new FileWriter(output, false);
        for (Vector vector : points) {
            double minDistance = measure.distance(vector,
clusterCenters.get(0));
            int minCenterId = 0;
            for (int i = 1; i < clusterCenters.size(); i++) {</pre>
                if (minDistance > measure.distance(vector,
clusterCenters.get(i))) {
                    minDistance = measure.distance(vector,
clusterCenters.get(i));
                    minCenterId = i;
                }
            writer.write(vector.get(0) + ", " + vector.get(1) + " : " +
minCenterId + "\n");
        writer.flush();
    }
    public static void main(String[] args) throws Exception {
        List<Vector> points =
```

```
getPoints(readFile("/home/k1/Documents/studies/hadoop/lab6/points.txt"));
        List<Vector> randomPoints = chooseRandomPoints(points, 2);
        DistanceMeasure euclidianDistanceMeasure = new
EuclideanDistanceMeasure();
        DistanceMeasure cosineDistanceMeasure = new CosineDistanceMeasure();
        solve(new ArrayList<Vector>(points), new
ArrayList<Vector>(randomPoints), euclidianDistanceMeasure,
"/home/k1/Documents/studies/hadoop/lab6/euclidean.txt");
        solve(new ArrayList<Vector>(points), new
ArrayList<Vector>(randomPoints), cosineDistanceMeasure,
"/home/k1/Documents/studies/hadoop/lab6/cosine.txt");
}
      plotter.py:
import matplotlib.pyplot as plt
def plot from file(filename: str, title: str):
    file = open(filename)
    lines = file.readlines()
    lines = [line[:-1] for line in lines]
   points = []
    for line in lines:
        parts = line.split(' : ')
        cluster id = int(parts[1])
        parts = parts[0].split(", ")
        x = float(parts[0])
        y = float(parts[1])
        points.append([x, y, cluster id])
   plt.grid()
    colors = ['red', 'blue']
    for point in points:
        plt.scatter(point[0], point[1], c=colors[point[2]])
    plt.title(title)
    plt.show()
plot from file('euclidean.txt', 'Euclidean Distance Measure')
plot from file('cosine.txt', 'Cosine Measure')
```

Результат выполнения программы

Рисунок 7 - Результат работы Canopy с метрикой EuclideanDistanceMeasure

Рисунок 8 - Результат работы Canopy с метрикой CosineMeasure

Вывод: в ходе выполнения работы были сформированы практические навыки работы с библиотекой Mahout для кластеризации больших данных.