Семинар 4 + 5

Алексеев Василий

23 + 30 сентября 2024

Содержание

1	Пре	дел функции	1
	1.1	Определения предела функции	1
	1.2	Односторонние пределы	4
	1.3	Замечательные пределы	5
	1.4	Эквивалентность функций	6
	1.5	Избранные свойства пределов функций	8
	1.6	C1, §9, N°20(2)	9
	1.7	C1, §9, N°25(5)	9
	1.8	C1, §9, N°30(2)	9
	1.9	C1, §9, Nº36(2)	10
	1.10	C1, §9, №61	11
	1.11	C1, §9, №36(8)	12
2	2 Непрерывность функции		12
	2.1	Типы точек разрыва	13
	2.2	Теорема Вейерштрасса о достижении непрерывной на отрезке функцией	
		своих точных верхней и нижней граней	14
	2.3	C1, §10, Nº5(9)	15
	2.4	C1, §10, №22	17
	2.5	С1, §10, $N^{o}42$ (вариант Теоремы о промежуточных значениях)	19
	2.6	C1, §10, N° 97(2)	20
	2.7	T4	21

1. Предел функции

При разговоре о производной функции в точке x_0 было важно, как *меняется* функция в окрестности точки — смотрели на разницу значений функции $f(x) - f(x_0)$ для "близких" к x_0 точек x. (По сути производная и показывает скорость изменения.) Получается, для существования вообще производной функии f(x) в точке x_0 функция должна быть определена в некоторой $U_\delta(x_0)$ окрестности этой точки, включая саму точку.

Но можно ещё задаться таким вопросом: как $\mathit{ведёm}$ себя функция в окрестности точки? какие значения принимает функция в "близких" к x_0 точках x? Для всех "нормальных" функций, очевидно, ожидается, что по мере приближения x к x_0 будет наблюдаться и сближение f(x) с $f(x_0)$. Но всегда ли так будет происходить? Да и вообще: ведь $\mathit{не}$ важно значение функции в самой точке x_0 , чтобы понять, как она ведёт себя в её окрестности? (приближается ли f(x) к чему-то вообще или нет) Это поведение функции при приближении к точке x_0 описывается понятием $\mathit{предела}$ функции в точке. Получается, для существования предела функции f(x) в точке x_0 функция должна быть определена в некоторой $U_\delta(x_0)$ окрестности этой точки, $\mathit{исключая}$, $\mathit{возможно}$, $\mathit{саму}$ точки — то есть важна окрестность без "центральной" точки, $\mathit{ил}$ $\mathit{проколотая}$ окрестность точки:

$$\mathring{U}_{\delta}(x_0) \equiv U_{\delta}(x_0) \smallsetminus \{x_0\} = \{x: \ 0 < |x - x_0| < \delta\}$$

Существует два подхода к "формализации" описания того, что значит "поведение функции f(x) при приближении x к x_0 "... (При этом суть за обоими подходами одинаковая — кусочек графика функции лежит в квадратике около некоторой точки с абсциссой x_0 , как бы сильно этот квадратик ни уменьшать 1).

Рис. 1: Предел функции в точке — чем ближе по оси X точки x к x_0 , тем ближе по оси Y значения f(x) к a.

1.1. Определения предела функции

Определение 1.1 (Предел по Коши). Пусть функция f(x) определена в некоторой проколотой $\mathring{\delta}_0$ -окрестности точки x_0 .

Элемент $a \in \mathbb{R} \cup \{\pm \infty, \infty\}$ (число или какая-то бесконечность) называется *пределом* функции в точке $x_0 \in \mathbb{R} \cup \{\pm \infty, \infty\}$ в смысле Коши, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in \mathring{U}_{\delta}(x_0) \to f(x) \in U_{\varepsilon}(a) \tag{1}$$

Если и x_0 , и a- это просто числа, то можно написать и так:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x : \ 0 < |x - x_0| < \delta \rightarrow |f(x) - a| < \varepsilon$$

Определение 1.2 (Предел по Гейне). Пусть функция f(x) определена в некоторой проколотой $\mathring{\delta}_0$ -окрестности точки x_0 .

Элемент $a \in \mathbb{R} \cup \{\pm \infty, \infty\}$ (число или какая-то бесконечность) называется *пределом* функции в точке $x_0 \in \mathbb{R} \cup \{\pm \infty, \infty\}$ в смысле Гейне, если

$$\forall \{x_n\}_{n=1}^{\infty} : \begin{cases} \lim_{n \to \infty} x_n = x_0 \\ x_n \neq x_0, \ \forall n \in \mathbb{N} \end{cases} \to \lim_{n \to \infty} f(x_n) = a$$
 (2)

где описанная последовательность $\{x_n\}_{n=1}^{\infty}$ называется *последовательностью Гейне* в точке x_0 (то есть это такая последовательность, которая сходится к x_0 , при этом в саму x_0 никогда не попадая).

Замечание. Проколотость окрестности около точки x_0 в определении предела по Коши, условие $x_n \neq x_0$ в определении предела по Гейне — всё это выражение того, что для предела функции в точке не важно, что происходит с функцией в самой точке — важно лишь её поведение вблизи точки.

Два определения (пусть и с похожей идеей) — по-хорошему, стоило бы предположить, что они, возможно, определяют разные понятия: что может быть предел a функции в точке x_0 по Коши, но это не будет пределом по Гейне, или наоборот. Но "оказывается", что два определения предела *равносильны*, взаимозаменяемы. Из одного следует другое, и наоборот. Покажем это...

 $Komu \to \Gamma e \ddot{u}$ не. Считаем, что a есть предел функции f(x) в точке x_0 в смысле Коши (1). Надо показать, что a будет и пределом в той же точке по Γ ейне (2).

То есть надо доказать, что "для любой последовательности Гейне..." Как это сделать? Все-все последовательности Гейне в точке, очевидно, перебрать не сможем. Но можно взять произвольную последовательность Гейне в точке x_0 и доказать всё для неё. Или можно допустить, что найдётся хотя бы одна последовательность Гейне, для которой условие предела по Гейне выполняться не будет, и попробовать получить отсюда какое-нибудь противоречие (с тем, что a есть предел по Коши). Второй способ — способ от противного. Пойдём по нему. То есть допускаем отрицание (2): найдётся последовательность Гейне $\{x_n\}_{n=1}^{\infty}$ в точке x_0 , такая что предела $\lim_{n\to\infty} f(x_n)$ не существует, либо $\lim_{n\to\infty} f(x_n) \neq a$. Почему это "плохо"? Это может противоречить тому, что про a известно, что это — предел по Коши. То есть отсюда можно выйти на отрицание условия Коши (1) предела... a

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x \in \mathring{U}_{\delta}(x_0) : f(x) \notin U_{\varepsilon}(a)$$

Почему при наличии "нехорошей" последовательности Гейне $\{x_n\}_{n=1}^{\infty}$ верно отрицание Коши? Потому что "нехорошесть" $\{x_n\}_{n=1}^{\infty}$ — она по сути означает то же самое, что и отрицание Коши! (Читателю рекомендуется сделать здесь паузу, чтобы "прочувствовать и осознать".) Для строгости и понятности изложения, поясним идею более конкретно, не на словах. Ещё раз: последовательность Гейне $\{x_n\}_{n=1}^{\infty}$ сходится к x_0 , то есть:

$$\forall \delta > 0 \ \exists N(\delta) \in \mathbb{N}: \ \forall n \geq N(\delta) \rightarrow x_n \in \mathring{U}_{\delta}(x_0)$$

 $^{^{1}}$ Забавно. Идём по от-противным, сначала отрицание "по Гейне", теперь "по Коши".

но $\{f(x_n)\}_{n=1}^{\infty}$ при этом к a не сходится, то есть:

$$\exists \varepsilon > 0: \ \forall \widetilde{N}(\varepsilon) \in \mathbb{N} \ \exists n(\varepsilon, \widetilde{N}) \geq \widetilde{N}: \ f(x_n) \not\in U_{\varepsilon}(a)$$

(где выражением $\exists n(\varepsilon,\widetilde{N})$ подчёркнуто, что этот номер n зависит от обозначенных ранее в том же условии ε и \widetilde{N} — то есть выбор этого n есть по сути ϕ ункция от ε и \widetilde{N} (ну, и вообще, конечно, можно ещё считать n функцией только ε , ведь \widetilde{N} тоже определяется ε ...)). Объединяя два в одном, получаем:

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x = x_{n(\varepsilon, N(\varepsilon))} \in \mathring{U}_{\delta}(x_0) : f(x) \notin U_{\varepsilon}(a)$$

что уже просто один-в-один совпадает с отрицанием Коши равенства a предела функции f(x) в точке x_0 .

Гейне \rightarrow *Коши*. Теперь, наоборот, считаем, что a есть предел функции f(x) в точке x_0 в смысле Гейне (2). Надо показать, что a будет и пределом в той же точке по Коши (1).

Опять, есть два пути. Можно взять *произвольное* $\varepsilon > 0$ и убедиться, что для него найдётся $\delta > 0$, такой что... (и так далее по определению предела в точке в смысле Коши) — таким образом доказав "предельность" по Коши для всех $\varepsilon > 0$. А можно — допустить, что *найдётся хотя бы одно* $\varepsilon > 0$, для которого "предельность" по Коши верна не будет, и как-нибудь из этого получить противоречие. Таким образом доказав "предельность" по Коши от противного.

Продолжим "путь по от-противным".

Допустим, что a **не** будет пределом в x_0 по Коши (1), то есть что будет верно отрицание "предельности" по Коши:

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x \in \mathring{U}_{\delta}(x_0) : f(x) \notin U_{\varepsilon}(a)$$
 (3)

Как из этого получить противоречие? По аналогии с предыдущим доказательством — получим противоречие с тем, что начали-то с верности "предельности" по Гейне. То есть надо как-то выйти на *отрицание* того, что a есть предел в x_0 по Гейне (2): найдётся последовательность Гейне $\{x_n\}_{n=1}^\infty$ в точке x_0 , такая что предела $\lim_{n\to\infty} f(x_n)$ не существует, либо он не равен a. Построим же эту последовательность (2)! Возьмём некоторый δ_1 (такой чтоб функция f была определена в δ_1 -окрестности x_0). Из верности отрицания Коши ("от противного" (3)) — найдётся $x_1 \in \mathring{U}_{\delta_1}(x_0)$, такой что $f(x_1) \notin U_{\varepsilon}(a)$. Далее, продолжаем процесс так: $\delta_2 = \frac{\delta_1}{2}, x_2 \in \mathring{U}_{\delta_2}(x_0)$ ($f(x_2) \notin U_{\varepsilon}(a)$), и так далее: уменьшаем δ_{n-1} -окрестность около x_0 в несколько раз, выбираем из новой окрестности новый x_n (отличный от всех выбранных до этого $x_1, x_2, ..., x_{n-1}$), такой чтоб $f(x_n)$ было на расстоянии ε от a или ещё дальше. Получаются последовательности $\{x_n\}$ и $\{f(x_n)\}$. Для первой имеем:

$$0 < |x_n - x_0| < \delta_n = \frac{\delta_1}{2^{n-1}} \xrightarrow{n \to \infty} 0$$

то есть $\{x_n\}$ — в самом деле последовательность Гейне в точке x_0 . Но последовательность из значений функций $\{f(x_n)\}$ к a, очевидно, не сходится (на расстоянии ε от a нет вообще ни одного члена последовательности $\{f(x_n)\}$). Противоречие.

 $^{^2}$ Строчка с отрицанием Гейне скопирована из предыдущего доказательства (где тоже отрицался Гейне, только где это было "первым" отрицанием, которое "от противного", а не вторым, которое "для противоречия").

Рис. 2: " ϵ -трубка" вокруг a.

1.2. Односторонние пределы

При нахождении предела функции в точке x_0 "двигаемся" всё ближе к x_0 , глядя на значения f(x). Но приближаться к x_0 можно по-разному. Так, можно приближаться к ней слева или справа. Двигаясь таким образом, находясь всегда с одной стороны от x_0 , приходим к понятию односторонних пределов. Сформулируем это точнее.

Число или бесконечность a называется npedenom слева функции f в числовой точке x_0 , если:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; : \; \forall x \; : \; x_0 - \delta < x < 0 \to f(x) \in U_\varepsilon(a)$$

(то есть как предел по Коши (1), только находимся всегда в левой половинке $\mathring{U}_{\delta}(x_0)$). Или, если смотреть на предел как Гейне (2), то левый односторонний предел функции f в x_0 есть a, если

$$\forall \{x_n\}_{n=1}^{\infty}: \begin{cases} \lim_{n \to \infty} x_n = x_0 \\ x_n < x_0, \ \forall n \in \mathbb{N} \end{cases} \to \lim_{n \to \infty} f(x_n) = a$$

то есть когда все элементы последовательности Гейне находятся "слева" от x_0 .

Аналогично определяется предел справа функции f в x_0 .

Обозначаются левый и правый пределы так:

$$\lim_{x \to x_0 = 0} f(x) = f(x - 0)$$
 (левый)
$$\lim_{x \to x_0 + 0} f(x) = f(x + 0)$$
 (правый)

Кажется понятным, что если существует "просто" предел функции f в x_0 , то существуют также и левый и правый пределы в той же точке, и они равны "просто" пределу.

Но верно и обратное: если существуют и равны оба односторонних предела в x_0 , то существует и "просто" предел (и равен односторонним). Это тоже, вроде бы, понятно... Правда, тут уже, кажется, стоит всё-таки привести какие-то более строгие пояснения. Итак, что значит, что существуют односторонние пределы и что они равны (и равны

 $^{^3}$ У окрестностей бесконечностей со знаком $\pm \infty$, видимо, "половинок" нет. Но половинки есть у окрестности "просто бесконечности" ∞ ... Получается, можно говорить о пределе слева при $x \to \infty$?.. (И это будет предел как при $x \to -\infty$?..)

некоторому a):

$$\begin{cases} \forall \varepsilon > 0 \; \exists \delta > 0 \; \colon \; \forall x \; \colon \; x_0 - \delta < x < 0 \; \to \; f(x) \in U_\varepsilon(a) \\ \forall \varepsilon > 0 \; \exists \delta > 0 \; \colon \; \forall x \; \colon \; 0 < x < x_0 + \delta \; \to \; f(x) \in U_\varepsilon(a) \end{cases}$$

(смотрели на пределы как Коши — можно бы было и по Гейне). Но просто "объединяя" вместе эти условия, и получаем, что a есть "просто" предел! (Из половинок окрестностей складывается целая (но проколотая) окрестность.)

1.3. Замечательные пределы

Существуют два "интересных" (необычных, важных, удивительных — замечательных) предела функций в точке. Приведём их без доказательства.

Утверждение 1.1 (Первый замечательный предел).

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{4}$$

Утверждение 1.2 (Второй замечательный предел).

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{5}$$

Без доказательства, но с попыткой осмыслить...

Замечание ("Попытка принять"). Функция под первым замечательным пределом:

$$f(x) = \frac{\sin x}{x}$$

Что можно про неё заметить? Во-первых, при $x_0=0$ и числитель $\sin x$, и знаменатель обращаются в ноль (отсюда и интересность предела). Кроме этого, посмотрим на производные числителя и знаменателя в нуле:

$$(\sin x)'|_{x=0} = \cos 0 = 1, \quad x'|_{x=0} = 1$$

то есть производные тоже равны! Что получается: $\sin x$ и x равны в нуле, и изменяются одинаково в окрестности нуля (бесконечно малой). Таким образом, в этой малой окрестности нуля функции $\sin x$ и x получаются равными! (Стартуют из одной точки, и, изменяясь одинаково, приходят снова в одну точку.)

Теперь посмотрим на второй замечательный предел... Что можно бы было с ним сделать, если бы стояла задача найти его?

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = ?$$

Функция под пределом — это сложная функция, в табличных такой нет. При вычислении производных от функций такого вида можно было преобразовать выражение так, чтобы получилась показательная (с которой уже понятно, что делать). Воспользуемся таким же приёмом:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\ln(1+x)^{\frac{1}{x}}}$$

 $^{^{4}}$ Сразу возникает вопрос, откуда там вообще e)

Посмотрим, к чему стремится показатель:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = ?$$

Что можно сказать про функцию под пределом? (Проведём по пунктам то же "исследование", что и при рассмотрении первого замечательного предела.) Числитель и знаменатель равны в нуле:

$$\ln(1+x)|_{x=0} = \ln 1 = 0 = x|_{x=0}$$

И их производные — тоже равны в нуле:

$$\left(\ln(1+x)\right)'|_{x=0} = \frac{1}{1+x}\Big|_{x=0} = 1 = x'|_{x=0}$$

Получается, равны в начале, изменяются одинаково — а потому равны в конце, вблизи нуля, бесконечно близко к нулю, то есть верно соотношение: 5

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

А потому верно и следующее:

$$\lim_{x \to 0} e^{\frac{\ln(1+x)}{x}} = e^1 = e$$

Хочется верить, что приведённое рассуждение помогло читателю, хоть и не доказать, но, по крайней мере, "принять" для себя эти замечательные пределы. (Убрать из "замечательности" компоненту "удивительности".)

1.4. Эквивалентность функций

Если, как в первом замечательном приделе (4), отношение двух функций в пределе в некоторой точке x_0 равно единице, то такие функции называются *эквивалентными* при $x \to x_0$:

$$f(x) \sim g(x)$$
 при $x \to x_0$ \longleftrightarrow $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

Пример. Кроме $\sin x$ и x при $x \to 0$, эквивалентными будут, например, x+1 и x+100 при $x \to \infty$.

Ещё один особый случай отношения между двумя функциями в пределе в некоторой точке — когда это отношение $\frac{f(x)}{g(x)}$ равно нулю при $x \to x_0$. Тогда говорят, что функция f(x) является o-малой относительно g(x) при $x \to x_0$:

$$f(x) = o(g(x))$$
 при $x \to x_0$ \longleftrightarrow $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$

 Π ример. Например, 1=o(x) при $x\to\infty$, $1000x^3=o\left(x^2\right)$ при $x\to0$.

Между эквивалентностью и "о-малостью" существует связь...

⁵Подчеркнём ещё раз, что это не строгое доказательство. Можно сказать, что это... немного рукомахательное доказательство, основанное на здравом смысле (и с претензией на понятность и доступность).

 $^{^{6}}$ о-малая от g(x) — не одна функция, а семейство функций.

Утверждение 1.3. Две функции эквивалентны при $x \to x_0$ тогда и только тогда, когда одна из них представима как другая плюс о-малая от неё при $x \to x_0$:

$$f(x) \sim g(x) npu x \rightarrow x_0 \quad \leftrightarrow \quad f(x) = g(x) + o(g(x)) npu x \rightarrow x_0$$

Доказательство. Достаточность (⇐) кажется очевидной. Убедимся:

$$f(x)=g(x)+oig(g(x)ig)$$
 при $x o x_0 o rac{f(x)}{g(x)}=1+o(1)$ при $x o x_0\leftrightarrow \lim_{x o x_0}rac{f(x)}{g(x)}=1$

Покажем необходимость (⇒). Имеем:

$$f(x) \sim g(x)$$
 при $x \to x_0 \leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

то есть для любого (даже сколь угодно малого) $\varepsilon > 0$ в некоторой δ -окрестности x_0 будет верно, что

$$1 - \varepsilon < \frac{f(x)}{g(x)} < 1 + \varepsilon$$

...Сделаем по-другому. Откатимся назад:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Воспользуемся приёмом "вычесть и добавить":

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - g(x) + g(x)}{g(x)} = 1 + \lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)}$$

Так как этот предел равен единице, получаем:

$$\lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0 \leftrightarrow f(x) - g(x) = o(g(x))$$

В контексте нахождения пределов функций эквивалентность полезна тем, что функции можно заменять на эквивалентные им при нахождении пределов произведения и частного. Например, пусть $f_1(x) \sim f_2(x)$ и $g_1(x) \sim g_2(x)$ при $x \to 0$. Тогда

$$\lim_{x \to x_0} f_1(x) \cdot g_1(x) = \lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} f_2(x) \cdot \frac{g_1(x)}{g_2(x)} g_2(x) = \lim_{x \to x_0} f_2(x) \cdot g_2(x)$$

Приведём несколько "популярных" эквивалентных пар функций (и связанных с ними представлений в виде суммы с o-малой) при $x \to 0$.

Тригонометрические:

$$\sin x \sim x \qquad \sin x = x + o(x)$$

$$\cos x \sim 1 - \frac{x^2}{2} \qquad \cos x = 1 - \frac{x^2}{2} + o(x^2)$$

$$\tan x \sim x \qquad \tan x = x + o(x)$$

$$\arcsin x \sim x \qquad \arcsin x = x + o(x)$$

$$\arctan x \sim x \qquad \arctan x = x + o(x)$$

⁷Задача: найти телепузика...

"Связанные с e":

$$e^{x} \sim 1 + x$$
 $e^{x} = 1 + x + o(x)$
 $\ln(1+x) \sim x$ $\ln(1+x) = x + o(x)$

И "скобка" (α ∈ \mathbb{R}):⁸

$$(1+x)^{\alpha} \sim 1 + \alpha x \quad (1+x)^{\alpha} = 1 + \alpha x + o(x)$$

1.5. Избранные свойства пределов функций

При некоторых условиях можно искать пределы в точке суммы, разности, произведения, частного функций. (Благодаря взгляду на предел через определение по Гейне все эти свойства сводятся к таковым для сходящихся последовательностей.) Есть свойства, связанные с неравенствами. Но оставим это всё намеренно "за кадром". 9

Обратим внимание лишь на одно свойство...

Утверждение 1.4 (Предел сложной функции). Пусть известно, что

$$\lim_{y \to y_0} f(y) = a$$
$$\lim_{x \to x_0} g(x) = y_0$$

и при этом сущестует δ -окрестность x_0 , где $g(x) \neq y_0$. Тогда

$$\lim_{x \to x_0} f(g(x)) = \lim_{y \to y_0} f(y) = a$$

Доказательство. Пользуясь определением предела функции в точке по Гейне:

$$\forall \{x_n\}: \begin{cases} \lim_{n \to \infty} x_n = x_0 \\ x_n \neq x_0, \ \forall n \in \mathbb{N} \end{cases} \to \lim_{n \to \infty} g(x_n) = y_0$$

$$\forall \{y_n\} : \begin{cases} \lim_{n \to \infty} y_n = y_0 \\ y_n \neq y_0, \ \forall n \in \mathbb{N} \end{cases} \to \lim_{n \to \infty} f(y_n) = a$$

и аккуратно "соединяя" одно с другим, получаем требуемое:

$$\Rightarrow \forall \{x_n\}: \ \begin{cases} \lim_{n\to\infty} x_n = x_0 \\ x_n \neq x_0, \ \forall n \in \mathbb{N} \end{cases} \to \lim_{n\to\infty} f\left(g(x_n)\right) = \lim_{n\to\infty} f(y_n)|_{y_n = g(x_n)} = a$$

то есть "основной момент", вся суть в том, что $\{g(x_n)\}$ составили последовательность Гейне в точке y_0 (последовательность сходится, плюс в саму точку не попадает).

⁸До этого уже встречалась скобка $(1+x)^n$, при $n \in \mathbb{N}$. Тогда можно бы было получить сколь угодно точное (по степеням x) разложение, просто перемножая скобки: $(1+x)^n = 1 + nx + \frac{n(n-1)}{2} \cdot x^2 + \dots$

⁹Автор конспекта в очередной раз пользуется привилегией не рассказывать в конспекте подробно ту теорию, которую не особо хочется рассказывать)

1.6. C1, §9, №20(2)

Найти предел функции:

$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 1}$$

Решение. Имеем неопределённость (вида 0/0), поэтому пока "просто подставить" значение в формулу не получится. Но видно, что можно разложить на множители знаменатель (и числитель) — возможно, "проблемность" сократится:

$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 5)}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{x + 5}{x + 1} = \frac{6}{2} = 3$$

То, на что сокращали — это не ноль! потому что x *стремится* к 1, то есть подходит всё ближе и ближе к единице, никогда в неё не попадая, и потому выражение x-1 *стремится* к нулю, но никогда нулю не равно. А в конце, когда "проблема" ушла, уже можно было просто "подставить" в формулу значение x=1.

1.7. C1, §9, №25(5)

Найти предел функции:

$$\lim_{x \to 5} \frac{\sqrt{6 - x} - 1}{3 - \sqrt{4 + x}}$$

Решение. Снова неопределённость (0/0). В данном случае же, очевидно, на множители ничего не раскладывается. Однако можно воспользоваться другим приёмом — "домножить и поделить":

$$\lim_{x \to 5} \frac{\sqrt{6-x} - 1}{3 - \sqrt{4+x}} = \lim_{x \to 5} \frac{\left(\sqrt{6-x} - 1\right)\left(\sqrt{6-x} + 1\right)\left(3 + \sqrt{4+x}\right)}{\left(3 - \sqrt{4+x}\right)\left(3 + \sqrt{4+x}\right)\left(\sqrt{6-x} + 1\right)}$$

$$= \lim_{x \to 5} \frac{(5-x)\left(3 + \sqrt{4+x}\right)}{(5-x)\left(\sqrt{6-x} + 1\right)} = \lim_{x \to 5} \frac{3 + \sqrt{4+x}}{\sqrt{6-x} + 1} = \frac{3 + \sqrt{4+x}}{\sqrt{6-x} + 1}\Big|_{x=5} = 3$$

В итоге снова почти-равный-но-до-конца-не-равный нулю множитель сократился, и неопределённости после этого уже не было. \Box

1.8. C1, §9, Nº30(2)

Найти предел функции:

$$\lim_{x \to \pi} \frac{\sin x}{\pi^2 - x^2}$$

Решение. Видно, что предел "похож" на первый замечательный (4). (И кроме как сведения к первому замечательному не понятно, как его вообще находить.) Поэтому попробуем "выделить" в явном виде этот табличный предел, немного повертев выражение, задающее функцию:

$$\lim_{x \to \pi} \frac{\sin x}{\pi^2 - x^2} = \lim_{x \to \pi} \frac{\sin x}{(\pi - x)(\pi + x)}$$

$$= \lim_{x \to \pi} \frac{\sin (\pi - x)}{(\pi - x)(\pi + x)} = \lim_{x \to \pi} \frac{\sin (\pi - x)}{(\pi - x)(\pi + x)} = \blacktriangle$$

Теперь первый замечательный предел виден. Это в самом деле он, так как при $x \to \pi$ имеем $(\pi - x) \to 0$. Можно сделать замену, чтоб совсем было один-в-один по виду, как в замечательном:

$$\pi - x \equiv t$$
, $x = \pi + t$, $x \to \pi \Leftrightarrow t \to 0$

Тогда, возвращаясь к пределу:

$$\blacktriangle = \lim_{t \to 0} \frac{\sin t}{t} \frac{1}{2\pi + t} = \frac{1}{2\pi}$$

П

1.9. C1, §9, №36(2)

Найти предел функции:

$$\lim_{x \to 0} \left(\sqrt{1+x} - x \right)^{1/x}$$

Решение. А этот предел чем-то напоминает второй замечательный (5). Поэтому снова попробуем немного "причесать" функцию под пределом. Так как

$$\sqrt{1+x} = (1+x)^{1/2}$$

то можно воспользоваться следующим равенством:

$$\sqrt{1+x} = 1 + \frac{1}{2}x + o(x), \quad x \to 0$$

Подставим это в предел:

$$\lim_{x \to 0} \left(\sqrt{1+x} - x \right)^{1/x} = \lim_{x \to 0} \left(1 + \frac{1}{2} x - x + o(x) \right)^{1/x} = \lim_{x \to 0} \left(1 - \frac{1}{2} x + o(x) \right)^{1/x} = \blacktriangle$$

o(x) — это какая-то функция, бесконечно малая¹⁰ по отношению к функции x при $x \to 0$. Так как в той же скобке присутствует ещё и сам x (с коэффициентом -1/2), то на o(x) можно смотреть как "практически" на ноль (это поправка, которая несравнимо меньше члена -x/2 по величине). Другими словами, можно просто "забыть" про o(x):

$$\blacktriangle = \lim_{x \to 0} \left(1 - \frac{x}{2} \right)^{\frac{1}{x}} = \spadesuit$$

какой-то более высокой точности (до ещё более малой поправки)... 12 Или не "забыть", а сделать так: $\lim_{x\to 0} \left(1-\frac{1}{2}\,x+o(x)\right)^{1/x} = \lim_{x\to 0} \exp\left\{\ln\left(1-\frac{1}{2}\,x+o(x)\right)/x\right\}$. И тогда всё сводится в рассмотрению предела степени, а там уже стоит дробь, и можно заменять на эквивалентные.

 $^{^{10}}$ Дающая в пределе ноль (а не "минус бесконечность").

 $^{^{11}}$ "Забывать" можно не всегда, а только тогда, когда это в самом деле "бесконечно малая" поправка, по сравнению с другими членами. Например, в пределе $\lim_{x\to 0} \left(1+x^2\right)^{1/x^2}$ функция x^2 тоже будет o(x), но "отметание" её в сумме в скобке приведёт к приделу $\lim_{x\to 0} 1^{1/x^2}$. Который, очевидно, не равен исходному. Бывают также случаи, когда... не только не стоит "отметать" поправку, а когда, наоборот, необходимо её както уточнить, разложить до ещё большей точности. Например, пусть есть предел $\lim_{x\to 0} \left(\sqrt{1+x}-x/2\right)^{1/x^2}$. Раскладывая до o(x) корень, переходим к пределу $\lim_{x\to 0} (1+o(x))^{1/x^2}$, с которым уже и не понятно, что делать. Потому что выкинуть o(x) нельзя: она хоть и малая, но играет роль. Например, вместо o(x) могла бы быть, например, функция x^2 , или $-17.5x^2$, или x^{2024} — итоговый ответ в каждом из случаев был бы другим. Таким образом, в данном примере нужно бы было каким-то образом раскладывать корень не до o(x), а до какой-то более высокой точности (до ещё более малой поправки)...

Второй замечательный предел почти проявился, правда, ещё не до конца... Но его можно получить, если теперь "домножить и поделить" в степени:

(По ходу пользовались тем, что $x/2 \to 0$ при $x \to 0$. Можно бы было сделать замену, чтоб получить второй замечательный предел прям в как в табличном виде. Но можно было и просто иметь это в виду (делая "мысленную замену").)

1.10. C1, §9, №61

Пусть известно, что

$$\lim_{y \to y_0} f(y) = a$$

$$\lim_{x \to x_0} g(x) = y_0$$

Следует ли отсюда, что

$$\lim_{x \to x_0} f(g(x)) = \lim_{y \to y_0} f(y) = a$$

Решение. Очевидно, условие задачи представляет "практически" утверждение о непрерывности сложной функции (1.5). С тем отличием, что не требуется, чтобы $g(x) \neq y_0$ хотя бы в некоторой δ-окрестности x_0 . Таким образом, при взятии предела

$$\lim_{x \to x_0} f(g(x))$$

может получиться так, что при стремлении $x \to x_0$ функция g(x) пройдёт через y_0 . Но ведь при рассмотрении предела

$$\lim_{y \to y_0} f(y)$$

вообще не важно, что происходит с f(y) в самой точке y_0 (функция f(y) может быть даже не определена в ней). Отсюда и может возникнуть противоречие: с f(y) что-то "нехорошо" в самой y_0 , а g(x) в неё попадает при $x \to x_0$ (функция g(x) в любом случае *стремится* к y_0 при $x \to x_0$ — тут же важно, что она может именно пройти через y_0 , принять это значение — не в пределе).

Наверняка можно придумать не один (контр)пример, решающий задачу...

Как вариант, предлагается завязаться снова на замечательный предел (первый). Рассмотрим ситуацию:

$$f(y) = \frac{\sin y}{y}, \quad g(x) = 0$$

то есть g(x) просто константный ноль; в качестве же y_0 , очевидно, берём $y_0=0$; точка же x_0 может быть любой, пусть, для определённости, тоже $x_0=0$. Тогда получаем

$$\begin{cases} \lim_{y \to y_0} f(y) = \lim_{y \to 0} \frac{\sin y}{y} = 1\\ \lim_{x \to x_0} g(x) = \lim_{x \to 0} 0 = 0 \end{cases}$$

Однако

$$\lim_{x \to x_0} f(g(x)) = \lim_{x \to 0} \frac{\sin 0}{0} \quad (\textcircled{2})$$

Получили в явном виде деление на ноль. Дальнейшие объяснения кажутся излишними. 13

1.11. C1, §9, №36(8)

Найти предел функции:

$$\lim_{x\to 0} \left(\ln(e+x)\right)^{\operatorname{ctg} x}$$

Решение. Попытаемся постепенно прийти ко второму замечательному пределу:

$$\lim_{x \to 0} \left(\ln(e+x) \right)^{\operatorname{ctg} x} = \lim_{x \to 0} \left(\ln\left\{ e\left(1 + \frac{x}{e}\right) \right\} \right)^{\operatorname{ctg} x} = \lim_{x \to 0} \left(1 + \ln\left\{1 + \frac{x}{e}\right\} \right)^{\operatorname{ctg} x} = \blacktriangle$$

Воспользуемся равенствами при $x \to 0$:

$$\begin{cases} \ln\left(1 + \frac{x}{e}\right) = \frac{x}{e} + o(x) \\ \cot x = \frac{1}{\tan x} = \frac{1}{x + o(x)} \sim \frac{1}{x} \end{cases}$$

Подставляя в формулу для предела:

$$\blacktriangle = \lim_{x \to 0} \left(1 + \frac{x}{e} + o(x) \right)^{\frac{1}{x}} = \diamondsuit$$

"Забывая" про o(x) и "подкручивая" (в рамках правил) степень, наконец получаем замечательный предел:

 $\diamondsuit = \lim_{x \to 0} \left(1 + \frac{x}{e} \right)^{\frac{e}{x} \cdot \frac{1}{e}} = e^{1/e}$

2. Непрерывность функции

При вычислении пределов функции f(x) в точке x_0 , говорили, что не важно, что происходит с функцией в самой точке x_0 . Для вычисления предела, это, может, и не важно, но так-то ведь вообще интересно, в частности, интересно, будет ли значение функции в точке $f(x_0)$ (если она там определена) совпадать с пределом функции в точке $\lim_{x\to x_0} f(x)$... Иными словами, "предсказуема" ли функция в точке x_0 : можно ли по окрестности точки "догадаться", чему равна функция в самой точке. Такие "предсказуемые" функции имеют специальное название...

Функция f(x) называется непрерывной в точке x_0 , если она определена в этой точке и имеет в ней предел, который совпадает с её значением в этой точке:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Пользуясь определениями предела функции, можно это расписать подробнее (в двух вариантах — по Коши и по Гейне). ¹⁴

¹³Всё-таки на всякий случай ещё одно небольшое замечание: в первом замечательном пределе $\lim_{x\to 0} \frac{\sin x}{x}$ нет деления на ноль! ноль никогда не возникает в знаменателе (при $x\to 0$ знаменатель становится всё ближе к нулю, бесконечно близко, но всё-таки не "чистый" ноль).

¹⁴Далее фактически скопированы определения пределов по Коши (1) и по Гейне (2). Скопированы — но с небольшими изменениями.

Определение 2.1 ("Непрерывность в точке по Коши"). Пусть функция f(x) определена в некоторой δ_0 -окрестности точки x_0 .

Функция f(x) называется непрерывной в точке $x_0 \in \mathbb{R} \cup \{\pm \infty, \infty\}$, если

$$\forall \varepsilon > 0 \,\exists \delta > 0 \colon \forall x \in U_{\delta}(x_0) \to f(x) \in U_{\varepsilon}(a) \tag{6}$$

Если и x_0 , и a- это просто числа, то можно написать и так:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x : |x - x_0| < \delta \rightarrow |f(x) - a| < \varepsilon$$

Определение 2.2 ("Непрерывность в точке по Гейне"). Пусть функция f(x) определена в некоторой δ_0 -окрестности точки x_0 .

Функция f(x) называется непрерывной в точке $x_0 \in \mathbb{R} \cup \{\pm \infty, \infty\}$, если

$$\forall \{x_n\}_{n=1}^{\infty} : \left\{ \lim_{n \to \infty} x_n = x_0 \to \lim_{n \to \infty} f(x_n) = a \right\}$$
 (7)

(то есть теперь последовательность просто должна сходиться к x_0 — возможно, попадая при этом и в саму x_0).

Замечание. Если при использовании определения предела по Гейне не сказать, что функция f(x) должна быть определена хотя бы в некоторой δ_0 -окрестности x_0 , то это приведёт к тому, что под определение непрерывной в точке функции попадут все случаи, когда у функции в области определения есть изолированная точка x_0 — то есть такая точка, вокруг которой существует окрестность, не содержащая, кроме самой x_0 , никаких других точек из области определения функции ("изолирована" от других точек области определения).

При этом ещё может быть ситуация, когда, например, рассматривается функция на отрезке [a,b]. У точки a слева "ничего нет", у точки b — справа. То есть о непрерывности функции в точках a и b говорить нельзя. Но можно говорить о непрерывности справа в точке a и слева — в точке b:

$$\lim_{x \to a+0} f(x) = f(a), \quad \lim_{x \to b-0} f(x) = f(b)$$

Если функция непрерывна на "внутренности" отрезка [a,b] — то есть во всех точках интервала (a,b) — а также непрерывна с соответствующей стороны на концах отрезка в точках a и b, то говорят, что функция f непрерывна на отрезке.

Но функция может и не быть непрерывной в некоторых точках. Такая точка x_0 , в которой функция не является непрерывной, называется *точкой разрыва*.

2.1. Типы точек разрыва

Но разрывы бывают разные (3).

Так, если есть $\lim_{x\to x_0} f(x)$, но при этом функция либо просто не определена в точке x_0 , либо определена, но $f(x_0) \neq \lim_{x\to x_0} f(x)$, то эта точка — точка устранимого разрыва. (Разрыв устраняется "нормальным" переопределением функции в x_0 .)

Если же предела в точке нет, но при этом в ней всё-таки существуют конечные односторонние пределы $\lim_{x\to x_0\pm 0} f(x)\in\mathbb{R}$ (не равные друг другу), то эта x_0 — точка разрыва первого рода.

U, наконец, если хотя бы один из односторонних пределов $\lim_{x\to x_0\pm 0} f(x)$ не существует или бесконечен, то эта точка — точка разрыва второго рода.

Рис. 3: Сверху вниз: функция непрерывна в точке x_0 , функция имеет устранимый разрыв в точке, разрыв первого рода, разрыв второго рода (две нижних строчки).

2.2. Теорема Вейерштрасса о достижении непрерывной на отрезке функцией своих точных верхней и нижней граней

Сформулируем и покажем это свойство непрерывных функций.

Утверждение 2.1 (Теорема Вейерштрасса). Пусть функция f непрерывна на отрезке [a,b]. Тогда $\exists p \in [a,b]$, такая что $f(p) = \sup_{[a,b]} f$, а также $\exists q \in [a,b]$, такая что $f(q) = \inf_{[a,b]} f$.

Доказательство. Покажем, например, что функция достигает на отрезке точной верхней грани. (То есть что $\sup_{[a,b]} f = \max_{[a,b]} f$.) Обозначим $M \equiv \sup_{[a,b]} f$.

Пусть $x_1 \in [a,b]$ — некоторая точка отрезка. Тогда $f(x_1) < M$. Но так как M — mочная верхняя грань, то $f(x_1)$ верхней гранью являться не будет, то есть $\exists x_2 \colon f(x_1) < f(x_2) < M$. Очевидно, процесс можно продолжать, находя каждый раз точку x_n , в которой $f(x_n)$ будет всё ближе к M — но будет ли последовательность значений функций $\{f(x_n)\}$ в получаемых точках $\{x_n\}$ подбираться к M бесконечно близко?.. (будет ли она сходиться, и

сходиться к M?) Но можно также заметить, что последовательность $\{f(x_n)\}$ монотонно возрастает. Ещё она ограничена. А значит, по теореме Вейерштрасса (другой), она сходится (к чему-то). Допустим,

$$\lim_{n \to \infty} f(x_n) = A \neq M$$

то есть сходится к чему-то, отличному от M. Но тогда этот предел A будет верхней гранью $\{f(x_n)\}$Кажется, противоречий нет. В самом деле можно построить такую $\{f(x_n)\}$, которая не сходится к M (если величина монотонного роста не контролируется). Хм... \mathfrak{A}

Способ 1, версия 2. "Контролируемое возрастание".

Зайдём с другой стороны.

Пусть есть $\varepsilon_1 > 0$. Тогда число $M - \varepsilon_1$ не будет являться точной верхней гранью для множества значений функции на отрезке, то есть $\exists x_1 \in [a,b]$, такой что $M - \varepsilon_1 < f(x_1) < M$. Теперь возьмём $\varepsilon_2 = \min \left\{ M - f(x_1), \frac{\varepsilon_1}{2} \right\}$. 15 И снова найдём $x_2 \in [a,b]$, такой что $M - \varepsilon_2 < f(x_2) < M$. И так далее:

$$M - \varepsilon_1 < f(x_1) < M - \varepsilon_2 < f(x_2) < \dots < M - \varepsilon_n < f(x_n) < M - \varepsilon_{n+1} < f(x_n+1) < \dots < M$$

Последовательность $\{f(x_n)\}$ снова монотонно возрастает. И она ограничена. И... она сходится к M! Потому что

$$0 < |f(x_n) - M| < \varepsilon_n = \frac{\varepsilon_1}{2^{n-1}} \xrightarrow{n \to \infty} 0$$

Итак, сходится к M:

$$\lim_{n \to \infty} f(x_n) = M$$

Мы уже почти получили, что требуется — осталось только разобраться с "иксами". Ведь пока нельзя утверждать, что $\{x_n\}$ сходится к некоторому x_0 , в котором как раз $f(x_0) = M$. Это ниоткуда вроде бы не следует. Но... Можно воспользоваться тем, что $\{x_n\}$ — ограниченная последовательность, а потому, по теореме Больцано — Вейерштрасса, имеет сходящуюся подпоследовательность $\{x_{n_k}\}$! Вот теперь уже "всё":

$$\lim_{k \to \infty} x_{n_k} = x_0$$

$$\lim_{k \to \infty} f(x_{n_k}) = M$$

Видно, что $\{x_{n_k}\}$ — это последовательность Гейне в точке x_0 (правда, она ещё может проходить через саму x_0). Поэтому, в силу непрерывности функции f на отрезке:

$$\lim_{k \to \infty} f(x_{n_k}) = f\left(\lim_{k \to \infty} x_{n_k}\right) = f(x_0)$$

Нашли точку x_0 , в которой $f(x_0) = \sup_{[a,b]} f$.

2.3. C1, §10, №5(9)

Доказать (по определению), что функция y(x) непрерывна в каждой точке своей области определения:

$$y(x) = \frac{1}{x^2}$$

 $^{^{15}}$ Такой немного замороченный выбор ε_2 — для того, чтобы, с одной стороны, окрестность около M стала как минимум в два раза меньше; с другой — чтобы уже выбранная ранее x_1 осталась "за бортом", вне новой окрестности.

Решение. Область определения: $\mathbb{R} \setminus \{0\}$. Пусть есть $x_0 \neq 0$. Покажем, что f(x) непрерывна в x_0 .

Непрерывна — то есть значение функции в точке совпадает с её пределом в точке. Поэтому, чтобы доказать непрерывность по определению, воспользуемся определением предела функции в точке, например, по Коши. Итого, надо показать, что:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in U_{\delta}(x_0) \to f(x) \in U_{\varepsilon}(f(x_0))$$

или, если через неравенства:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x : |x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon$$

Посмотрим на разность между значениями функции:

$$|f(x) - f(x_0)| = \left| \frac{1}{x^2} - \frac{1}{x_0^2} \right| = \left| \frac{x_0^2 - x^2}{x^2 x_0^2} \right| = \left| \frac{(x_0 - x)(x_0 + x)}{x^2 x_0^2} \right|$$

Может ли эта разность быть меньше любого наперёд заданного ε для всех x, достаточно близких к x_0 ? (можно ли это обеспечить выбором δ ?) Посмотрим внимательно на дробь. Разность x_0-x можно сделать сколь угодно малой (x — точка такая, что $|x_0-x|<\delta$, а δ выбираем, какой хотим); x_0+x — при достаточно малом δ есть "нечто, сравнимое с x_0 ", это что-то около x_0 , "примерно" x_0 ; то же самое с x в знаменателе — если δ достаточно малая, x будет близко к x_0 , "практически" x_0 . Итого, о дроби под модулем при достаточно малом δ можно думать как

$$\left| \frac{(x_0 - x)(x_0 + x)}{x^2 x_0^2} \right| \lesssim \frac{\delta \cdot x_0}{x_0^4}$$

А это, очевидно, можно выбором δ сделать таким малым, как захотим (меньше любого $\epsilon > 0$).

Разберёмся теперь аккуратнее со всеми упомянутыми "практически", "примерно", "что-то около" и прочими (4). Пусть для определённости $x_0>0$. Тогда выбором δ можно добиться того, чтобы $x_0+\delta$ было меньше, чем, скажем, $100x_0$. С другой стороны, также можно выбрать и такой маленький δ , чтобы $x_0-\delta$ было, например, больше $0.01x_0$. Выбирая самый маленький из двух упомянутых δ (или ещё сколь угодно меньше), и получаем такую оценку:

$$\left| \frac{(x_0 - x)(x_0 + x)}{x^2 x_0^2} \right| < \frac{\delta \cdot 100 x_0}{(0,01x_0)^2 x_0^2} < \varepsilon$$

Рис. 4: δ -окрестность можно выбирать сколь угодно малую.

И из неё уже выходит такое условие на δ :

$$\delta < \varepsilon \cdot \left(\frac{x_0}{100}\right)^3$$

Показали непрерывность в x_0 , используя определение предела в x_0 по Коши.

Способ 2: по Гейне. Покажем теперь интереса ради непрерывность, если опираться на определение предела функции в точке по Гейне. Тогда фраза "предел в точке x_0 равен значению в точке" будет переводиться так:

$$\forall \{x_n\} \subset U_{\delta}(x_0), \ \lim_{n \to \infty} x_n = x_0 \to \lim_{n \to \infty} f(x_n) = f(x_0) \leftrightarrow \lim_{n \to \infty} \left(f(x_n) - f(x_0) \right) = 0$$

(где последовательности Гейне берутся из элементов из некоторой δ -окрестности x_0 , где функция f(x) определена). В таком случае, рассмотрим предел:

$$\lim_{n \to \infty} \left(f(x_n) - f(x_0) \right) = \lim_{n \to \infty} \left(\frac{1}{x_n^2} - \frac{1}{x_0^2} \right) = \lim_{n \to \infty} \frac{(x_0 - x_n)(x_0 + x_n)}{x_n^2 x_0^2} = 0$$

он равен нулю, так как $x_n \xrightarrow{n \to \infty} x_0$.

2.4. C1, §10, №22

Доказать, что функция

$$f(x) = \begin{cases} 1, & \text{если } x \in \mathbb{Q} \\ 0, & \text{если } x \in \mathbb{I} \end{cases}$$

разрывна в каждой точке.

Решение. Докажем разрывность из противоречия с непрерывностью. То есть покажем, например, выполнение *отрицания непрерывности*, если смотреть на неё по Гейне:

$$\exists \{x_n\} : \lim_{n \to \infty} x_n = x_0, \ \neg \left(\lim_{n \to \infty} f(x_n) = f(x_0)\right)$$
 (8)

где x_0 — некоторая точка, а символом ¬ обозначено отрицание — в данном случае отрицание условия равенства предела последовательности $\{f(x_n)\}$ числу a (то есть предел последовательности либо не равен a, либо вообще не существует). Получается, для произвольного x_0 надо научиться предъявлять описанную последовательность Гейне в этой точке

Пусть $x_0 \in \mathbb{I}$. Кажется естественным попытаться составить $\{x_n\}$ так, чтобы все элементы последовательности, наоборот, было бы рациональными. (Тогда сразу получится, что $\lim_{n\to\infty}f(x_n)=1\neq 0=f(x_0)$.) Можно поступить так: пусть x_1 — произвольное рациональное число (пусть оно ещё и меньше x_0 для определённости). Определим $\delta_1=x_0-x_1$. Далее, положим $\delta_2=\frac{\delta_1}{2}$, и выберем какой-нибудь любой рациональный $x_2\in (x_0-\delta_2,x_0)$. И "зацикливаем" процесс: следующий $\delta_3=\frac{\delta_2}{2}$, выбираем произвольный рациональный $x_3\in (x_0-\delta_3,x_0)$, и так далее. Получаем последовательность $\{x_n\}\subset \mathbb{Q}$. Почему она сходится к x_0 ? Потому что она построена так, чтобы каждый очередной x_n был всё ближе к x_0 , причём в несколько раз ближе, чем предыдущий x_{n-1} :

$$0 < |x_n - x_0| < \delta_n = \frac{\delta_1}{2^n} \xrightarrow{n \to \infty} 0$$

Можно бы было предложить и ещё, например, вот такой способ нахождения $\{x_n\} \subset \mathbb{Q}$. Так как $x_0 \in \mathbb{I}$, то x_0 представимо в виде бесконечной непериодической десятичной дроби:

$$x_0 = a_0, a_1 a_2 a_3 \dots a_n \dots$$

где a_0 , a_1 , a_2 и так далее — цифры. Тогда предлагается такая последовательность $\{x_n\}$:

$$\begin{cases} x_1 = a_0, a_1 \\ x_2 = a_0, a_1 a_2 \\ x_3 = a_0, a_1 a_2 a_3 \\ \dots \\ x_n = a_0, a_1 a_2 a_3 \dots a_n \end{cases}$$

Очевидно, $x_n \xrightarrow{n \to \infty} x_0$. Также очевидно, что $x_n \in \mathbb{Q}$. А значит, это и есть подпоследовательность Гейне, "ломающая" непрерывность функции в точке x_0 по Гейне.

Пусть теперь $x_0 \in \mathbb{Q}$. Опять, хочется составить последовательность Гейне $\{x_n\}$ из, наоборот, иррациональных чисел (вообще не обязательно прям только из иррациональных — по-хорошему, достаточно лишь, чтобы иррациональные просто время от времени встречались среди элементов последовательности). Пусть x_1 — это, например, $\frac{x_0}{\sqrt{3}}$. Очевидно, $x_1 \in \mathbb{I}$. Далее, положим, например

$$x_n = x_1 + (x_0 - x_1) \cdot \frac{n}{n+1}$$

Очевидно, что $x_n \in \mathbb{L}^{16}$ Также понятно, что

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(x_1 + (x_0 - x_1) \cdot \frac{n}{n+1} \right) = x_0$$

Итого, это нужная последовательность Гейне в иррациональном x_0 .

Способ 2: по Коши

Решим задачу, смотря на предел функции в точке как Коши. Отрицание, которое надо доказать (чтоб показать разрывность в произвольной x_0):

$$\exists \epsilon > 0 : \, \forall \delta > 0 \, \exists x \in U_\delta(x_0) : \, f(x) \not\in U_\epsilon \left(f(x_0) \right)$$

Но какой бы ни был x_0 ($\mathbb Q$ или $\mathbb I$) — это будет верно! Потому что в любой δ -окрестности рационального (иррационального) числа x_0 на числовой прямой есть иррациональное (рациональное) число x (и тогда $|f(x)-f(x_0)|=1$ — так что в качестве ε можно взять, например, $\varepsilon=1/2$.)

Способ 3: Гейне + Коши (другой Коши)

Вернёмся к взгляду на предел в точке по Гейне. Как ещё можно показать (8)? Предъявив такую последовательность Гейне $\{x_n\}$ в x_0 , чтоб предела $\lim_{n\to\infty} f(x_n)$ просто не существовало! Из критерия Коши сходимости последовательности, предела не будет, если

$$\exists \varepsilon > 0 : \forall N \in \mathbb{N}, \ \exists n, m \ge N : |f(x_n) - f(x_m)| \ge \varepsilon$$

Тогда можно построить $\{x_n\}$, чередуя попеременно рациональные и иррациональные элементы, которые становятся всё ближе к x_0 (можно опять ввести окрестность δ_n , из которой произвольно выбирается очередной $\mathbb Q$ или $\mathbb I$ элемент x_n — чтобы окрестности δ_n стягивались к нулю).

Способ 3: Коши - Гейне ("минус Гейне")

 $^{^{16}}$ Или не так очевидно... В общем, получается, что $x_{\scriptscriptstyle n}$ есть сумма иррационального и рационального.

На самом деле *критерий Коши существования предела в функции* — не привязан к последовательностям (к определению предела в точке по Гейне). Его можно сформулировать в более общем виде так: функция f(x) непрерывна в точке x_0 тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x_1, x_2 \in U_{\delta}(x_0) \to |f(x_1) - f(x_2)| < \varepsilon$$

И его отрицание:

$$\exists \varepsilon > 0$$
: $\forall \delta > 0 \ \exists x_1, x_2 \in U_{\delta}(x_0)$: $|f(x_1) - f(x_2)| \ge \varepsilon$

Но тогда можно и не искать никакую последовательность Гейне в точке x_0 ! Просто достаточно сказать, что в любой δ -окрестности любого числа x_0 есть как рациональные, так и иррациональные числа (а потому подойдёт $\varepsilon = 1/2$).

2.5. C1, §10, №42 (вариант Теоремы о промежуточных значениях)

Пусть функция f(x) непрерывна на интервале (a, b), и пусть

$$m_0 \equiv \inf_{(a,b)} f, \quad M_0 \equiv \sup_{(a,b)} f$$

Доказать, что для любого $y_0 \in (m, M)$ найдётся $x_0 \in (a, b)$, такой что $f(x_0) = y_0$.

Решение. Отметим, что непрерывная на интервале функция может и не достигать на этом интервале своих инфимума и/или супремума. Например, функция $f(x) = \frac{1}{x}$ на интервале (0,1) (не достигает инфимума). Или $f(x) = \lg x$ на интервале $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ (не достигает "ничего").

Поэтому сперва осторожно определим, в каких "границах" лежит y_0 . Границах — в смысле между какими значениями, которые функция f(x) точно принимает. Но это сразу получаем из определения точных граней: если $y_0 > m_0$, то обязательно найдётся $m_1 = f(l_1), l_1 \in (a,b)$, такое что $y_0 > m_1 > m_0$. Аналогично и с точной верхней гранью. Итого, имеем:

$$\inf_{(a,b)} f = m_0 < m_1 = f(l_1) < y < f(r_1) = M_1 < M_0 = \sup_{(a,b)} f$$

(для определённости также будем считать $l_1 < r_1$, хотя это ни на что не влияет, кроме смысла за именами.)

Теперь предлагается следующая процедура поиска точки x_0 , где $f(x_0) = y_0$. Будем приближаться к ней, всё ближе и ближе. Точнее даже, будем *стягиваться* к ней — по оси X. Но так как функция непрерывна — то параллельно мы будем приближаться и к интересуемому значению y_0 по оси Y! Таким образом, 2D "область поиска" точки (x_0, y_0) тоже стягивается — и в итоге получается одна точка графика, где функция принимает искомое значение (график не видим, но нужную точку на нём найти сможем).

Определим процесс более формально (5). Первый отрезок — это $[l_1,r_1]$. Точка x_0 должна быть на нём. Далее, начинаем делить пополам: $c_1 = \frac{l_1+r_1}{2}$. Если вдруг $f(c_1) = y_0$, то процесс завершён, точку нашли. Иначе, либо $f(c_1) < y_0$, либо $f(c_1) > y_0$. В любом случае, можно будет от "большого" отрезка $[l_1,r_1]$ перейти к отрезку в два раза меньше — такому, чтоб y_0 было между значениями на его концах ($[c_1,r_1]$ или $[l_1,c_1]$ соответственно). Это будет отрезок $[l_2,r_2]$. Далее всё повторяется: смотрим середину, сравниваем, переходим в нужный подотрезок. И так далее. Получается последовательность точек $\{x_n\}$ и стягивающаяся последовательность вложенных отрезков $\{[l_n,r_n]\}$. Раз стягивающаяся, то, по

теореме Кантора, имеет общую точку x_0 (назовём её так же, как искомую, где $f(x_0) = y_0$, потому что это в самом деле она и есть, что далее покажем). При этом

$$0 < |x_n - x_0| < \frac{r_1 - l_1}{2^{n-1}} \xrightarrow{n \to \infty} 0$$

то есть $x_n \xrightarrow{n \to \infty} x_0$. Осуществили "стяжку" в x_0 . Посмотрим, что при этом происходит по другой оси. Строили отрезки так, чтобы

$$f(l_n) < y_0 < f(r_n)$$

при стяжке же $l_n, r_n \xrightarrow{n \to \infty} x_0$, а в силу *непрерывности* функции f(x) при этом выходит также $f(l_n), f(r_n) \xrightarrow{n \to \infty} f(x_0)$. По теореме о двух милиционерах: $y_0 = f(x_0)$. Значит, нашли "ту самую" x_0 .

Получается, при поиске как бы двигались от граничных точек в нужную сторону "шаж-ками". При этом шаги уменьшались от очень больших ко всё более и более маленьким — уменьшались по мере приближения к искомой точке.

Рис. 5: Функция f(x), определённая на интервале (a,b), непрерывна... И это — всё, что про неё вообще по условию известно. Графика нет — только чистый лист. И пара граничных точек m_1 и M_1 — границы, между которыми заключено интересуемое значение y_0 (произвольное между инфимумом $\inf_{(a,b)} f$ и супремумом $\sup_{(a,b)} f$ функции на интервале). Как тогда показать, что функция обязательно проходит через y_0 ? ("Обязательно" — в данном контексте это скорее как "математический троп", подчёркивающий, что предстоит доказать "стрелку вправо" \Rightarrow , что из условий *следует* желаемое. Хотя, пожалуй, "обязательно" можно бы было и опустить...)

2.6. C1, §10, №97(2)

Построить взаимно однозначное отображение отрезка на интервал.

Решение. ТВА □

2.7. T4

Приведите пример разрывной функции $f: \mathbb{R} \to \mathbb{R}$, которая отображает любой отрезок в отрезок.

Решение. ТВА □