ПОСТРОЯВАНЕ НА МРЕЖА

Някои геометрични задачи се решават лесно чрез построяване на мрежа от еднакви фигури (например квадрати или равностранни триъгълници).

Задача 1. Всеки квадрат може да се раздели на шест, седем и осем квадрата (не непременно еднакви).

Решение: Ако търсим разделянията направо (без помощно построение), ще бъдем затруднени. По-лесно е да разделим дадения квадрат (чрез мрежа) на девет или шестнайсет еднакви квадрата и после да окрупним някои от тях.

На чертежа са показани трите разделяния.

Задача 2. Правилен шестоъгълник да се раздели на четири еднакви шестоъгълника.

Решение: Първо разделяме правилния шестоъгълник на двайсет и четири еднакви равностранни триъгълника с помощта на мрежа.

После групираме триъгълниците по шест (24 : 4 = 6). По този начин получаваме четири еднакви шестоъгълника. Те не са изпъкнали, но няма такова изискване.

Задача 3. Всяка точка от равнината е оцветена в червено или синьо. Докажете, че съществува равностранен триъгълник с едноцветни върхове.

Решение: Първо построяваме мрежа от равностранни триъгълници. След това разглеждаме избрани възли от мрежата в подходящ ред.

Да допуснем, че няма равностранен триъгълник с едноцветни върхове. Без ограничение на общността на разсъжденията можем да предположим, че т. O е червена. Поне една от точките A, C и E е червена (в противен случай равностранният триъгълник ACE би имал три сини върха); пак без ограничение (заради симетрията на правилния шестоъгълник ABCDEF) можем да приемем, че т. C е червена. Равностранните триъгълници OBC и OCD вече притежават по два червени върха, затова точките B и D са сини. Заради равностранния триъгълник BDF точката F е червена, а заради равностранните триъгълници OEF и OAF точките E и A са сини. За точката X не остава цвят: ако я оцветим в червено, то равностранният триъгълник XCF ще има три червени върха; ако я оцветим в синьо, равностранният триъгълник XAB ще има три сини върха.

И така, допускането се оказа погрешно. Вярно е твърдението на задачата: както и да оцветяваме точките от равнината в два цвята, винаги съществува равностранен триъгълник с едноцветни върхове.

Задача 4. Катетът CB в правоъгълния триъгълник ABC е три пъти по-дълъг от катета CA. Точките M и K делят CB на три равни части, а P е средата на AB. Да се докаже, че отсечката PM е перпендикулярна и равна на отсечката PK.

Решение: Построяваме правоъгълна мрежа, както е показано на чертежа.

Отсечките PM и PK са перпендикулярни и равни, тъй като представляват половинки на диагоналите MX и KY на квадрата MKXY.