LINEAR REGRESSION

Review

WHAT WILL YOU LEARN/REVIEW

- Reviewing the basic idea behind linear regression
- Learning how to measure predictive quality with Mean Square Error (MSE).
- Calculating optimal OLS regression parameters using tidymodels
- Distinguish between unfitted and fitted models
- How to interpret the OLS regression parameters and their significance
- Using metrics to evaluate prediction quality on the testing

LOADING THE LIBRARIES AND THE DATA

► Code

	Price	Sqft	Bedrooms	Condition
1	523633.4	2040	4	3
2	530960.7	2120	4	3
3	523466.8	2130	4	4
4	759747.7	3330	4	3
5	546377.8	2440	4	3
6	186536.6	900	3	4

SPLITTING IN TRAINING AND TESTING DATA:

```
1 set.seed(Seed)
2 Split7030=initial_split(DataHouses,prop=0.7, strata = Price)
3 DataTrain=training(Split7030)
4 DataTest=testing(Split7030)
```

HOW MUCH IS A HOUSE WORTH IN KING COUNTY?

A house with average properties should be predicted with an average price!

▶ Code

The mean square footage of a house in King county is: 2044.319

▶ Code

The mean price of a house in King county is: 497414.9

PREDICTING THE PRICE OF AN AVERAGE SIZED HOUSE AS THE AVERAGE OF ALL HOUSE PRICES

HOW TO MEASURE PREDICTION QUALITY WITH THE MEAN SQUARED ERROR (MSE)

$$MSE = rac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 \ \iff \ MSE = rac{1}{N} \sum_{i=1}^{N} (\underbrace{eta_1 x_i + eta_0}_{i} - y_i)^2 \ rac{Frror}{i}$$

Note, when the data are given (i.e., x_i and y_i are given), the MSE depends only on the choice of eta_1 and eta_0 »

INCLUDING SQFT AS DETERMINAT OF PRICE

PREPARING THE DATA

Blueprint for the data:

1 RecipeHouses=recipe(Price~Sqft, data=DataTrain)

CHOOSING THE MODEL BLUEPRINT

Blueprint for the model:

```
1 ModelDesignOLS=linear_reg() |>
2          set_engine("lm") |>
3          set_mode("regression")
```

HOW DOES THE UNFITTED MODEL LOOKS LIKE?

$$\widehat{Price} = \underbrace{eta_1}_{\hat{y}} \underbrace{Sqft}_{m} + \underbrace{eta_0}_{b}$$

USING A WORKFLOW TO FIT THE MODEL TO THE DATA (FINDING THE OPTIMAL β_1 and β_0 values

$$\widehat{Price} = \underbrace{eta_1}_{\hat{y}} \underbrace{Sqft}_x + \underbrace{eta_0}_b$$

```
1 WFModelHouses=workflow() |>
2          add_recipe(RecipeHouses) |>
3          add_model(ModelDesignOLS) |>
4          fit(DataTrain)
```

UNFITTED MODEL VS FITTED WORKFLOW MODEL

Unfitted Model:

$$\widehat{Price} = \underbrace{eta_1}_{\hat{y}} \underbrace{Sqft}_x + \underbrace{eta_0}_b$$

▶ Code

Fitted Model:

$$\widehat{Price} = \underbrace{238}_{\hat{y}} \cdot \underbrace{Sqft}_{x} + \underbrace{6584}_{b}$$

Predict the price for a house with 1,000 sqft and send it to me in a private chat!

INTERPRETATION AND SIGNIFICANCE

$$egin{aligned} \widehat{Price} &= 238 \cdot Sqft + 6584 \ (+238) &= 238 \cdot (+1) + (+0) \ (+476) &= 238 \cdot (+2) + (+0) \ (+714) &= 238 \cdot (+3) + (+0) \end{aligned}$$

For each extra Sqft the predicted price increases by \$238

The variable Sqft is significant. I.e., the probability that the related coefficient eta_1 equals zero is extremely small.

HOW DOES THE FITTED MODEL THAT CONSIDERS SQFT IMPROVES THE PREDICTION COMPARED TO A SIMPLE AVERAGE

EVALUATING PREDICTIVE QUALITY WITH THE TESTING DATASET

- 1 DataTestWithPred=augment(WFModelHouses, new_data=DataTest)
 2 metrics(DataTestWithPred, truth=Price, estimate=.pred)

PROJECT: ANALYSIS WITH ALL VARIABLES