Parsing

Unger's Parser

Laura Kallmeyer, Magnus Roos Heinrich-Heine-Universität Düsseldorf

Sommersemester 2014

Overview

- 1. Introduction
- 2. The parser
- 3. An example
- 4. Optimizations
- 5. Conclusion

Introduction (1)

Unger's parser [Grune and Jacobs, 2008] is a CFG parser that is

- a top-down parser: we start with S and subsequently replace lefthand sides of productions with righthand sides.
- a non-directional parser: the expanding of non-terminals (with appropriate righthand sides) is not ordered; therefore we need to guess the yields of all non-terminals in a right-hand side at once.

Introduction (2)

 $S \to NP \ VP, \ VP \to VP \ PP, \ VP \to V \ NP, \ NP \to Mary, \ \dots$

1.	S	Mary sees the man with the telescope	
2.	NP	Mary	$S \rightarrow NP VP from 1.$
3.	VP	sees the man with the telescope	
4.	NP	Mary sees	$S \rightarrow NP VP \text{ from } 1.$
5.	VP	the man with the telescope	

. . .

6.	Mary	Mary	$NP \rightarrow Mary from 2.$
7.	VP	sees	$VP \rightarrow VP PP \text{ from } 3.$
8.	PP	the man with the telescope	

. . .

Introduction (3)

- The parser takes a $X \in N \cup T$ and a substring w of the input.
- Initially, this is S and the entire input.
- If X and the remaining substring are equal, we can stop (success for X and w).
- Otherwise, X must be a non-terminal that can be further expanded. We then choose a X-production and partition w into further substrings that are paired with the righthand side elements of the production.
- The parser continues recursively.

The parser (1)

Assume CFG without ϵ -productions and without loops $A \stackrel{+}{\Rightarrow} A$.

```
function unger (w, X):
     out := false;
      if w = X, then out := true
     else for all X \to X_1 \dots X_k:
           for all x_1, \ldots, x_k \in T^+ with w = x_1 \ldots x_k:
                 if \bigwedge_{i=1}^k \operatorname{unger}(x_i, X_i)
                 then out := true;
     return out
unger(w, X) iff X \stackrel{*}{\Rightarrow} w (for X \in N \cup T, w \in T^*)
```

Unger's parser 6 Sommer 2014

The parser (2)

Extension to deal with ϵ -productions and loops:

- Add a list of preceding calls;
- pass this list when calling the parser again;
- if the new call is already on the list, stop and return false.

Initial call: $unger(w, S, \emptyset)$

The parser (3)

```
function unger (w, X, L):
      out := false;
      if \langle X, w \rangle \in L, return out;
      else if w = X or (w = \epsilon \text{ and } X \to \epsilon \in P)
            then out := true
      else for all X \to X_1 \dots X_k \in P:
            for all x_1, \ldots, x_k \in T^* with w = x_1 \ldots x_k:
                  if \bigwedge_{i=1}^k \operatorname{unger}(x_i, X_i, L \cup \{\langle X, w \rangle\})
                  then out := true;
      return out
```

The parser (4)

So far, we have a recognizer, not a parser.

To turn this into a parser, every call unger(..) must return a (set of) parse trees.

This can be obtained from

- the successful productions $X \to X_1 \dots X_k$, and
- the parse trees returned by the calls unger (x_i, X_i) .

Note however that there might be a large amount of parse trees since in each call, there might be more than one successful production. We will come back to the compact presentation of several analyses in a parse forest.

An example (1)

Assume a CFG without ϵ .

Production $S \to NP VP$.

Input sentence w:

Mr. Sarkozy's pension reform, which only affects about 500,000 public sector employees, is the opening salvo in a series of measures aimed more broadly at rolling back France's system of labor protections.

(New York Times)

An example (2)

Partitions according to Unger's parser:

S				
NP	VP			
Mr.	Sarkozy's pension protections			
Mr. Sarkozy	's pension protections			
Mr. Sarkozy's pension labor	protections			

|w| = 34, consequently we have 33 different partitions.

An example (3)

Take the following partition:

S				
NP	VP			
Mr. Sarkozy's pension reform, which employees,	is protections			

For NP \rightarrow NP S, there are 12 partitions of the NP part.

In the worst case, parsing is exponential in the length n of the input string.

An example (4)

We say that an algorithm is of

• polynomial time complexity if there is a constant c and a k such that the parsing of a string of length n takes an amount of time $\leq cn^k$.

Notation: $\mathcal{O}(n^k)$.

• exponential time complexity if there is a constant c and a k such that the parsing of a string of length n takes an amount of time $\leq ck^n$.

Notation: $\mathcal{O}(k^n)$.

Optimizations (1)

Conditions on the partitions:

- check on occurrences of terminals in rhs;
- check on minimal length of terminal string derived by a non-terminal;
- check on obligatory terminals (pre-terminals) in strings derived by non-terminals; (e.g., each NP contains a N, each VP a V, ...)
- check on the first terminals derivable from a non-terminal

Optimizations (2)

Tabulation: avoid computing several times the same thing:

- whenever $\operatorname{unger}(X, w)$ yields a result res, we store $\langle X, w, res \rangle$ in our table of partial parsing results;
- in every call $\operatorname{unger}(X, w)$, we first check whether we have already computed a result $\langle X, w, res \rangle$ and if so, we stop immediately and return res.

Optimizations (3)

Results can be stored in a three-dimensional table (chart) C:

If k = |N + T| and non-terminals and terminals X have a unique index $\leq k$ and |w| = n with $w = w_1 \cdots w_n$, then use a $k \times n \times n$ table, the chart.

- Whenever $\operatorname{unger}(X, w_i \cdots w_j)$ yields a result res and m index of X, then $\mathcal{C}(m, i, j) = res$.
- In every call $\operatorname{unger}(X, w_i \cdots w_j)$, we first check whether we have already a value in $\mathcal{C}(m, i, j)$ and if so, we stop and return $\mathcal{C}(m, i, j)$.

Advantage: access of C(m, i, j) in constant time.

(Assumption: grammar ε -free, otherwise we need a $k \times (n+1) \times (n+1)$ chart.)

Optimizations (4)

Example: CFG with start symbol S, $N = \{S, B\}$, $T = \{a, b, c\}$ and productions

$$S \to aSB \mid c \mid B \to bb$$

Input word w = acbb. We assume that, when guessing the span of a rhs element, we take into account that

- each terminal spans only a corresponding single terminal;
- the span of an S has to start with an a or an c;
- the span of a B has to start with a b.
- the span of each $X \in N \cup T$ contains at least one symbol (no ε -productions)

Optimizations (5)

Chart obtained for w = acbb

j					
4	$\langle S, t \rangle$		$\langle B,t \rangle$	$\langle b,t angle$	
				$\langle B,f \rangle$	
3		$\langle S, f \rangle$	$\langle b,t \rangle$		
2		$\langle S, t \rangle$			
		$\langle S, t \rangle$ $\langle c, t \rangle$			
1	$\langle a, t \rangle$				
	1	2	3	4	i

$$S \stackrel{*}{\Rightarrow} acbb? \rightarrow t$$

$$a \stackrel{*}{\Rightarrow} a? \rightarrow t$$

$$S \stackrel{*}{\Rightarrow} c? \rightarrow t$$

$$c \stackrel{*}{\Rightarrow} c? \rightarrow t$$

$$B \stackrel{*}{\Rightarrow} bb? \rightarrow t$$

$$b \stackrel{*}{\Rightarrow} b? \rightarrow t$$

$$b \stackrel{*}{\Rightarrow} b? \rightarrow t$$

$$S \stackrel{*}{\Rightarrow} cb \rightarrow f$$

$$B \stackrel{*}{\Rightarrow} b \rightarrow f$$

(Productions: $S \to aSB \mid c \mid B \to bb$)

Optimizations (6)

In addition, we can tabulate entire productions with the spans of their different symbols. This gives us a compact presentation of the parse forest.

- In every call $\operatorname{unger}(X, w_i \cdots w_j)$, we first check whether we have already a value in $\mathcal{C}(m, i, j)$ and if so, we stop and return $\mathcal{C}(m, i, j)$.
- Otherwise, we compute all possible first steps of derivations $X \stackrel{*}{\Rightarrow} w$: for every production $X \to X_1 \dots X_k$ and all w_1, \dots, w_k such that the recursive Unger calls yield **true**, we add $\langle X, w \rangle \to \langle X_1, w_1 \rangle \dots \langle X_k, w_k \rangle$ with the indices of the spans to the list of productions.

If at least one such production has been found, we return true, otherwise false.

Example: see handout.

Conclusion

Unger's parser is

- a non-directional top-down parser;
- highly non-deterministic because during parsing, the yields of all non-terminals in righthand sides must be guessed;
- in general of exponential complexity;
- polynomial if tabulation is applied.

References

[Grune and Jacobs, 2008] Grune, D. and Jacobs, C. (2008).

Parsing Techniques. A Practical Guide. Monographs in
Computer Science. Springer. Second Edition.