L2 – Enzyme applications

Enzyme
Science and
Engineering

- Ravikrishnan Elangovan,
- Department of Biochemical Engg and Biotechnology,
- Indian Institute of Technology, Delhi

Enzyme applications

1. Starch conversions

- Production of glucose syrup
- Production of high fructose corn syrup
- Production of high maltose conversion syrups
- Production of cyclodextrins
- Production of ethanol

2. Lignocellulosic Biomass conversions

- Cellulose conversion
- Hemicellulose conversion
- Lignin conversion

- 3. Enzymes in the Production of Functional Oligosaccharides and Other Neutraceuticals
- 4. Enzymes in the Modification of Fats and Oils
- 5. Enzymes in the Animal Feed Industry
- 6. Enzymes in the Pulp and Paper Industry
- 7. Enzymes in the Fruit Juice Processing Industry
- 8. Enzymes in the Meat and Fish Processing Industry
- 9. Enzymes in the Dairy Industry
- 10. Enzymes in Detergents
- 11. Enzymes in the Leather Industry
- 12. Enzymes in the Production of Bulk and Fine Chemicals
- 13. Analytical Applications of Enzymes
- 14. Enzyme-Replacement Therapy

What are enzymes?

- Enzymes are proteins
- Catalysts are those that accelerate reaction without getting altered permanently
- Sometimes RNA's have enzymatic property
- 3D structure of proteins allows them to have this unique Functional property
- Enzyme are purified from
 - Animals, e.g., Rennet
 - Plants, e.g., Papain
 - Microbial sources, e.g., Cellulases

Why enzymes are useful?

There are several characteristics of enzymes that make them ideal for industrial applications:

- Specificity: Enzymes are highly specific in their catalytic activity, meaning that they can catalyze a specific chemical reaction without affecting other reactions. This allows them to be used in targeted and precise ways in industrial processes.
- Efficiency: Enzymes can catalyze reactions at much lower temperatures and pressures than traditional chemical catalysts, making them more energy-efficient and cost-effective.
- Stability: Enzymes are relatively stable and can be used over a wide range of pH and temperature conditions. This makes them suitable for use in a variety of industrial processes.
- Renewability: Enzymes are biodegradable and can be produced sustainably, making them an environmentally friendly alternative to traditional chemical catalysts.
- Versatility: Enzymes can be used in a wide range of industries, including food processing, animal feed, textiles, paper and pulp production, and detergent manufacturing. This makes them a valuable tool in many different industrial applications.

Enzyme classification

ENZYME CLASS INDUSTRIAL ENZYMES EC 1: Oxidoreductases catalase glucose oxidase laccase EC 2: Transferases glucosyltransferase EC 3: Hydrolases amylase cellulase lipase mannanase pectinase phytase protease pullulanase xylanase EC 4: Lyases pectate lyase alpha-acetolactate decarboxylase EC 5: Isomerases glucose isomerase EC 6: Ligases not used at present

Availability of enzyme!

Application Stability Immobilization Cofactor regeneration Multiphase systems Biocatalyst characterization Kinetics Reaction conditions Structural information Process engineering Enzyme engineering	Product recovery Downstream In situ recovery	Process	Biocatalyst selection Screening Enzyme or cells ?
Figure 1 The biocatalysis cycle.	Stability Immobilization Cofactor regeneration Multiphase systems New reactions	Cell engineering Process engineering Enzyme	Kinetics Reaction conditions Structural

TEXTILE ENZYMES

For Cotton and Hosiery Biopolishing

For Cotton and Denim Biofading

For Textile and Denim Desizing

For Textile Fabric Bioscouring

Concentrated Thermostable Alpha Amylase

Concentrated Low Temperature Alpha Amylase

Concentrated Cellulase for Formulation (Biopolishing)

Concentrated Cellulase for Formulation (Biofading)

Concentrated Pectinase for Formulation (Bioscouring)

Concentrated Catalase for Formulation (Peroxide Killer)

LEATHER ENZYMES

For Beamhouse Soaking

STARCH ENZYMES

For Starch Liquefaction

For Viscosity Reduction

For Dextran Hydrolysis

For Fat and Oil Degreasing For Starch Saccharification

For Acid Bating and Softening

For Alkaline Bating and Dewrinkling

For Enzymatic Dehairing

Concentrated Alkaline protease for Formulation

Concentrated Acid Protease for Formulation

Concentrated Alkaline Lipase for Formulation

Concentrated Acid Lipase for Formulation

ANIMAL FEED ENZYMES

Phytase Enzyme for Animal Feed

B-Glucanase Enzyme for Animal Feed

Cellulase Enzyme for Animal Feed

Xylanase Enzyme for Animal Feed

Amylase Enzyme for Animal Feed

Bacterial Protease Enzyme for Animal Feed

Fungal Protease Enzyme for Animal Feed

Lipase Enzyme for Animal Feed

DIETARY SUPPLEMENT ENZYMES

Fungal Amylase Enzyme for Dietary Supplements

Fungal Xylanase Enzyme for Dietary Supplements

Fungal Lipase Enzyme for Dietary Supplements

Fungal Protease Enzyme for Dietary Supplements

Fungal Cellulase Enzyme for Dietary Supplements

Cloth Industry

Faded Jeans

cellulase

Enzymatic desizing of cotton fabric

Enzymatic desizing is a method for removing the size, or starch, from cotton fabric.

Enzymes as detergents!

Otto Rohm first patented the use of pancreatic enzymes in 1913, since then use of enzymes in detergents have Come a long way

- A better cleaning performance in general
- Rejuvenation of cotton fabric through the action of cellulases on fibers
- Reduced energy consumption by enabling lower washing temperatures
- Reduced water consumption through more effective soil release
- Minimal environmental impact since they are readily biodegradable
- Environmentally friendlier wash water effluents (in particular, phosphate-free and less alkaline)

- Proteases
- Lactases
- Maltases
- Lipases
- Alpha-amylase
- Cellulases

The most widely used detergent enzymes are hydrolases, which remove soils consisting of proteins, lipids, and polysaccharides.

Ingredients	Example	Approximate Composition (%)
Builders	Sodium tripolyphosphate, nitrilotriacetic acid, sodi- um citrate, EDTA, Poly- carboxylates	38
Surfactants	Sodium alkane sulpho- nate, alkyl sulphate	25
Bleaching agents	Sodium percarbonate, hydrogen peroxide, sodi- um perborate tetrahydrate, and chlorine	25
Antiredeposition agents	Sodium carboxymethyl cellulose/sodium polyacry-late/ polyethylene glycol	2
Foam regula- tors/soap	Soap (sodium alkane carboxylates)	3
Water sof- teners	Sodium sulphate	2.5
Binder /loosens dirt	Sodium metasilicate	1
Enzyme	Protease, lipase, amylase, cellulase	1
Optical brighteners	Triazine-stilbenes, bi- phenyl-stilbenes, couma- rins, imidazolines, dia- zoles, triazoles	0.5
Solvents	Alcohol, acetone	Trace
Alkalis	Alkalis Sodium hydroxide, sodi- um carbonate	
Perfumes	Citronella, lavender oil, vanilla	Trace
Fabric sof- teners	Imidazolinium salts	Trace

Microbial Enzymes in Detergents: A Review Sumeyra GÜRKÖK - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/COMPOSITION-OF-AN-ENZYME-DETERGENT_tbl1_337796251 [accessed 10 Jan, 2023]

•Papaya contains an enzyme, papain, which is a mild whitening agent and is used in toothpastes to remove enamel stains.

Enzymes in leather industry

Opening of protein sac around fat globules by protease action & removal of fat by the action of protease

Splitting of collagen fibers & removal of nonleather forming proteins

Enzymes in food processing!

Thank you!