Topology 2

Notes taken by Junwoo Yang

Based on a lecture by Youngsik Huh in fall $2021\,$

Contents

0	Introduction	2
	0.1 Quotient topology	2
	0.2 What is algebraic topology?	2
	0.3 Fundamental group	
9	Fundamental group	5
	9.51 Homotopy of paths	5
	9.52 Fundamental group	6
	9.53 Covering spaces	8
	9.54 Fundamental group of the circle	9
10	Separation theorems in the plane	10
	10.63 Jordan curve theorem	10
11	Seifert-Van Kampen theorem	11
	11.70The Seifert–Van Kampen theorem	12
12	Classification of surfaces	15
13	Classification of covering spaces	16

Introduction

0.1 Quotient topology

Definition 1 (Equivalence relation). An equivalence relation is a relation $x \sim y$ so that $x \sim x$; if $x \sim y$ then $y \sim x$; and if $x \sim y$ and $y \sim z$, then $x \sim z$. Given an equivalence relation defined on X, $X/_{\sim}$ is the set of equivalence classes.

Definition 2 (Quotient topology). Let $f \colon X \to Y$ be a surjective map from the topological space X to the set Y. Then, we define a topology on Y, called the quotient topology, by requiring that $O \subset Y$ be open if and only if $f^{-1}(O)$ is actually an open set of X. One checks trivially that this defines a topology on Y.

Example. Let X be the closed unit ball, $\{(x,y): x^2+y^2\leq 1\}$, in $\mathbb R$ and X^* be the partition of X consisting of all the one-point sets $\{(x,y)\}$ for which $x^2+y^2<1$, along with the set $S^1=\{(x,y): x^2+y^2=1\}$. Then X^* is homeomorphic with the subspace of $\mathbb R^3$ called the unit 2-sphere.

0.2 What is algebraic topology?

Functor from category of topological spaces to the category of groups.

- Category: set of spaces and morphisms.
- Functor: $X \leadsto G_X$ and $f \colon X \to Y \leadsto f_* \colon G_X \to G_Y$ such that

$$- (f \circ g)_* = f_* \circ g_*$$
$$- (1_X)_* = 1_{G_X}$$

Two systems we'll discuss:

- fundamental groups
- homology groups

Example. Suppose we have a functor. If $G_X \ncong G_Y$, then X and Y are not homeomorphic. If 'shadows' are different, then objects themselves are different too.

Proof. Suppose X and Y are homeomorphic. Then $\exists f \colon X \to Y$ and $g \colon Y \to X$, maps (maps are always continuous in this course), such that $g \circ f = 1_X$ and $f \circ g = 1_Y$. Then $f_* \colon G_X \to G_Y$ and $g_* \colon G_Y \to G_X$ such that $(g \circ f)_* = (1_X)_*$ and $(f \circ g)_* = (1_Y)_*$. Using the rules discussed previously, we get

$$g_* \circ f_* = 1_{G_X} \quad f_* \circ g_* = 1_{G_Y},$$

which means that $f_*: G_X \to G_Y$ is an isomorphism.

0.3 Fundamental group

Pick a base point x_0 and consider it fixed. (The fundamental gruop will not depend on it. We assume all spaces are path connected) $X \leadsto \pi(X)$.

- A loop based at $x_0 \in X$ is a map $f: I = [0,1] \to X$, $f(0) = f(1) = x_0$.
- Loops are equivalent if one can be deformed in the other in a continuous way, with the base point fixed.
- The fundamental group consists of equivalent classes of loops.

Example. Let $X = B^2$ (2 dimensional disk). Then $\pi(B^2) = 1$, because every loop is equivalent to the 'constant' loop.

Example. Let $X = S^1$ and pick x_0 on the circle. Two options:

- The loop is trivial equivalent to the constant loop
- The loop goes around the circle.
- The loop goes around the circle, twice.
- The loop goes around the circle, clockwise, once
- . . .

 $\pi(S^1) \cong \mathbb{Z}$ (proof will follow)

The composition of loops is simply pasting them. In the case of the circle, the loop $-1\circ$ the loop 2 is the loop 1.

Suppose $\alpha: I \to X$ and $f: X \to Y$. Then we define

$$f_*[\alpha] = [f \circ \alpha].$$

Theorem 1 (Fixed point theorem of Brouwer). Any continuous map from a rectangle to itself has at least one fixed point.

Proof. Suppose there is no fixed point, so $f(x) \neq x$ for all $x \in B^2$. Then we can construct map $r \colon B^2 \to S_1$ as follows: take the intersection of the boundary and half ray between f(x) and x. If x lies on the boundary, we have the identity map. This map is continuous. Then we have $S^1 \to B^2 \to S^1$, via the inclusion and r. Looking at the fundamental groups:

$$\pi(S^1) = \mathbb{Z} \to \pi(B^2) = 1 \to \pi(S^1) = \mathbb{Z}.$$

The map from $\pi(S^1) \to \pi(S^1)$ is the identity map, but the first map maps everything on 1.

Fundamental group

See wikipedia¹ for a brief introduction.

9.51 Homotopy of paths

Definition 3 (Homotopic). If f and f' are continuous maps of the space X into the space Y, we say that f is homotopic to f' if there is a continuous map $F\colon X\times I\to Y$ such that F(x,0)=f(x) and F(x,1)=f'(x) for each x. (Here I=[0,1].) The map F is called a homotopy between f and f'. If f is homotopic to f', we write $f\simeq f'$. If $f\simeq f'$ and f' is a constant map, we say that f is nulhomotopic.

Definition 4 (Path homotopy). Let $f,g:I\to X$ be two paths such that $f(0)=g(0)=x_0$ and $f(1)=g(1)=x_1$. Then $H:I\times I\to X$ is a path homotopy between f and g, if and only if

- H(s,0) = f(s) and H(s,1) = g(s) (homotopy between maps)
- $H(0,t) = x_0$ and $H(1,t) = x_1$ (start and end points fixed)

Notation: $f \simeq_p g$.

Lemma 1. \simeq and \simeq_p are equivalence relations.

Proof. • Reflective: F(x,t) = f(x)

- Symmetric: G(x,t) = H(x,1-t)
- Transitive: Suppose $f \simeq g$ and $g \simeq h$, with H_1, H_2 resp.

$$H(x,t) = \begin{cases} H_1(x,2t) & 0 \le t \le \frac{1}{2} \\ H_2(x,2t-1) & \frac{1}{2} \le t \le 1 \end{cases}.$$

¹https://en.wikipedia.org/wiki/Homotopy

Example (Trivial, but important). Let $C \subset \mathbb{R}^n$ be a convex subset.

- Any two maps $f, g: X \to C$ are homotopic.
- Any two paths $f, g: I \to C$ with f(0) = g(0) and g(1) = f(1) are path homopotic.

Choose $H: X \times I \to C$ defined by $(x,t) \mapsto H(x,t) = (1-t)f(x) + tg(x)$.

Product of paths

Let $f: I \to X$, $g: I \to X$ be paths, f(1) = g(0). Define

$$f * g \colon I \to X$$
 given by $s \mapsto \begin{cases} f(2s) & 0 \le s \le \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \le s \le 1. \end{cases}$

Remark. If f is path homotopic to f' and g path homotopic to g' (which means that f(1) = f'(1) = g(0) = g'(0)), then $f * g \simeq_p f' * g'$.

So we can define [f] * [g] := [f * g] with $[f] := \{g : I \to X \mid g \simeq_p f\}$.

Theorem 2. 1. [f] * ([g] * [h]) is defined iff ([f] * [g]) * [h] is defined and in that case, they are equal.

- 2. Let e_x denote the constant path $e_x \colon I \to X$ given by $s \mapsto x, \ x \in X$. If $f(0) = x_0$ and $f(1) = x_1$ then $[e_{x_0}] * [f] = [f]$ and $[f] * [e_{x_1}] = [f]$.
- 3. Let $\overline{f}: I \to X$ given by $s \mapsto f(1-s)$. Then $[f] * [\overline{f}] = [e_{x_0}]$ and $[\overline{f}] * [f] = [e_{x_1}]$.

9.52 Fundamental group

Definition 5. Let X be a space and $x_0 \in X$, then the fundamental group of X based at x_0 is

$$\pi(X, x_0) = \{ [f] \mid f \colon I \to X, f(0) = f(1) = x_0 \}.$$

(Also $\pi_1(X, x_0)$ is used, first homotopy group of X based at x_0)

For $[f], [g] \in \pi(X, x_0)$, [f] * [g] is always defined, $[e_{x_0}]$ is an identity element, * is associative and $[f]^{-1} = [\overline{f}]$. This makes $(\pi(X, x_0), *)$ a group.

Example. If $C \subset \mathbb{R}^n$, convex then $\pi(X, x_0) = 1$. E.g. $\pi(B^2, x_0) = 1$.

Remark. All groups are a fundamental group of some space.

Question: how does the group depend on the base point?

Theorem 3 (52.1). Let X be a space, $x_0, x_1 \in X$ and $\alpha: I \to X$ a path from x_0 to x_1 . Then

$$\hat{\alpha} \colon \pi(X, x_0) \longrightarrow \pi(x, x_1)$$

$$[f] \longmapsto [\overline{\alpha}] * [f] * [\alpha].$$

is an isomorphisms of groups. Note however that this isomorphism depends on α .

Proof. Let $[f], [g] \in \pi_1(X, x_0)$. Then

$$\begin{split} \widehat{\alpha}([f]*[g]) &= [\overline{\alpha}]*[f]*[g]*[\alpha] \\ &= [\overline{\alpha}]*[f]*[\alpha]*[\overline{\alpha}]*[g]*[\alpha] \\ &= \widehat{\alpha}[f]*\widehat{\alpha}[g]. \end{split}$$

We can also construct the inverse, proving that these groups are isomorphic. \Box

Remark. If : $(x, x_0) \to (Y, y_0)$ is a map of pointed topology spaces $(f: X \to Y \text{ continuous and } f(x_0) = y_0)$. Then

$$f_*: \pi(X, x_0) \to \pi(Y, y_0)$$
 given by $[\gamma] \mapsto [f \circ \gamma]$

is a morphism of groups, because of the two 'rules' discussed previously, with

$$(f \circ g)_* = f_* \circ g_* \quad (1_X)_* = 1_{\pi(X, x_0)}.$$

Definition 6. Let X be a topological space, then X is simply connected iff X is path connected and $\pi_1(X, x_0) = 1$ for some $x_0 \in X$.

Remark. If trivial for one base point, it's trivial for all base points.

Example. Any convex subset $C \subset \mathbb{R}^n$ is simply connected.

Lemma 2. Suppose X is simply connected and $\alpha, \beta \colon I \to X$ two paths with same start and end points. Then $\alpha \simeq_p \beta$.

Proof. Simply connected implies loops are homotopic? Consider $\alpha * \overline{\beta} \simeq_p e_{x_0}$, since the space is imply connected.

$$([\alpha] * [\overline{\beta}]) * [\beta] = [e_{x_0}] * [\beta] = [\beta]$$
$$[\alpha] * ([\overline{\beta}] * [\beta]) = [\alpha] * [e_{x_0}] = [\alpha].$$

And therefore $\alpha \simeq_p \beta$. (Note: make sure end and start point matchs when using *)

9.53 Covering spaces

Definition 7 (Evenly covered). Let $p: E \to B$, surjective map (so continuous). Let $U \subset B$ open. Then U is evenly covered iff $p^{-1}(U) = \bigcup_{\alpha \in I} V_{\alpha}$ with

- V_{α} open in E
- $V_{\alpha} \cap V_{\beta} = \emptyset$ if $\alpha \neq \beta$
- $p|_{V_{\alpha}}: V_{\alpha} \to U$ is a homeomorphism.

Figure 9.1: Evenly covered

Remark. If $U' \subset U$, also open and U is evenly covered, then also U'.

Definition 8. Let $p: E \to B$ be a surjective map. Then p is a covering projection iff $\forall b \in B, \exists U \subset B$ open, containing b such that U is evenly covered by p. Then (E, p) is called a covering space.

Example. Let $S^1 = \{z \in \mathbb{C} : |z| = 1\}$. Take $p: \mathbb{R} \to S^1$ given by $t \mapsto e^{2\pi i t}$. Note that \mathbb{R} is an easier space than S^1 , and so will be π_1 (1 vs \mathbb{Z}).

Proposition 1. A covering map is always a open map.

Proof. Exercise.

Proposition 2. For any $b \in B$, $p^{-1}(b)$ is a discrete subset of E. (No accumulation point)

Proof. Indeed for any $\alpha \in I$, $V_{\alpha} \cap p^{-1}(b)$ is exactly one point. \square

Remark. A covering is always local homeomorphism. But there are surjective local homeomorphism which are not covering maps. A covering map is more than a surjective local homeomorphism.

For example, $p: \mathbb{R}_0^+ \to S^1$ given by $t \mapsto e^{2\pi i t}$. Consider the inverse image of a neighborhood around 1. When we restrict p to the part around 0, it is no longer a homeomorphism (we don't get the whole neighborhood around one).

Creating new covering spaces out of old ones

- Suppose $p: E \to B$ is a covering and $B_0 \subset B$ is a subspace with the subspace topology. Let $E_0 = p^{-1}(B_0)$ and $p_0 = p|_{E_0}$. Then (E_0, p_0) is a covering of B_0 .
- Suppose that (E, p) is a covering of B and (E', p') is a covering of B', then $(E \times E', p \times p')$ is a covering of $B \times B'$.

Example. Let $T^2 = S^1 \times S^1$.

- $p: \mathbb{R}^2 \to S^1 \times S^1$ given by $(t,s) \mapsto (e^{ait}, e^{bis})$. $p': \mathbb{R} \times S^1 \to T^2$ given by $(t,z) \mapsto (e^{ait}, z^n)$. $p: S^1 \times S^1 \to T^2$ given by $(z_1, z_2) \mapsto (z_1^n, z_2^m)$.

These are the only types of coverings of the torus. We'll prove this later on.

9.54 Fundamental group of the circle

Given f, when can f be 'lifted' to E? I.e. when does there exist an $\tilde{f}: X \to E$ such that $p \circ \tilde{f} = f$? In this section, we'll only consider $X = [0, 1], X = [0, 1]^2$.

Definition 9. Let $p: E \to B$ be a map. If f is a continuous mapping of some space X into B, a lifting of f is a map $\tilde{f}: X \to E$ such that $p \circ \tilde{f} = f$.

Separation theorems in the plane

10.63 Jordan curve theorem

https://en.wikipedia.org/wiki/Jordan_curve_theorem

Seifert-Van Kampen theorem

https://en.wikipedia.org/wiki/Seifert%E2%80%93Van_Kampen_theorem

Note. This doesn't follow the book very well.

Definition 10. A free group on a set X consists of a group F_x and a map: $i: X \to F_X$ such that the following holds: For any group G and any map $f: X \to G$, there exists a unique morphism of groups $\phi: F_X \to G$ such that

$$X \xrightarrow{i} F_x$$

$$\downarrow f \qquad \qquad \downarrow \exists ! \phi$$

$$G$$

Note. The free group of a set is unique. Suppose $i: X \to F_X$ and $j: X \to F_X'$ are free groups.

$$X \xrightarrow{i} F_X \qquad X \xrightarrow{j} F'_X$$

$$\downarrow^{j} \downarrow^{\exists \phi} \qquad \downarrow^{i} \downarrow^{\exists \psi}$$

$$F'_X \qquad F_X$$

Then

$$X \xrightarrow{i} F_X$$

$$\downarrow^i \qquad \downarrow^{\psi \circ \phi}$$

$$F_X$$

Then by uniqueness, $\psi \circ \phi$ is 1_{F_X} , and likewise for $\phi \circ \psi$.

Note. The free group on a set always exists. You can construct it using "irreducible words".

Example. Consider $X = \{a, b\}$. An example of a word is $aaba^{-1}baa^{-1}bbb^{-1}a$. This is not a irreducible word. The reduced form is $aaba^{-1}bba = a^2ba^{-1}b^2a$. Then F_X is the set of irreducible words.

Example. If $X = \{a\}$, then $F_x = \{a^z \mid z \in \mathbb{Z}\} \cong (\mathbb{Z}, +)$. Exercise: check that \mathbb{Z} satisfies the universal property.

Example. If $X = \emptyset$, then $F_X = 1$.

Definition 11 (Free product of a collection of groups). Let G_i with $i \in I$, be a set of groups. Then the free product of these groups denoted by $*_{i \in I} G_i$ is a group G together with morphisms $j_i \colon G_i \to G$ such that the following universal property holds: Given any group H and a collection of morphisms $f_i \colon G_i \to H$, then there exists a unique morphism $f \colon G \to H$, such that for all $i \in I$, the following diagram commutes:

Note. Again, $*_{i \in I}G_i$ is unique.

11.70 The Seifert-Van Kampen theorem

Theorem 4 (70.1, Seifert–Van Kampen theorem). Let $X = U \cup V$ where $U, V, U \cap V$ are open and path connected.^a Let $x_0 \in U \cap V$. For any group H and 2 morphisms $\Phi_1 \colon \pi(U, x_0) \to H$ and $\Phi_2 \colon \pi(V, x_0) \to H$ such that $\Phi_1 \circ i_1$ and $\Phi_2 \circ i_2$, there exists exactly one $\Phi \colon \pi(X, x_0) \to H$ making the diagram commute

 i_1, i_2, i, j_1, j_2 are induced by inclusions.

 $^{{}^}a\mathrm{Note}$ that U,V should also be path connected!

Theorem 5 (70.2, Seifert-Van Kampen theorem (classical version)). Assume the hypotheses of the Theorem 4. Let $j: \pi(U, x_0) * \pi(V, x_0) \to \pi(X, x_0)$ (induced by j_1 and j_2). On elements of $\pi(U, x_0)$ it acts like j_1 , on elements of $\pi(V, x_0)$ it acts like j_2 .

Then j is surjective^a and the kernel of j is the normal subgroup of $\pi(U, x_0) * \pi(U, x_0)$ generated by all elements of the form $i_1(g)^{-1}i_2(g)$, were $g \in \pi(U \cap V, x_0)$.

 a This is the only place where algebraic topology is used. We've proved this last week. The groups U and V generate the whole group. The rest of this theorem follows from the previous theorem.

Proof. • j is surjective. (later)

- Let N be the normal subgroup generated by $i_1(g)^{-1}i_2(g)$. Then we claim that $N \subset \ker(j)$. This means we have to show that $i_1(g)^{-1}i_2(g) \in \ker j$. $j(i_1(g)) = j_1(i_1(g))$ by definition of j. Looking at the diagram, we find that $j_1(i_1(g)) = j_2(i_2(g)) = i(g) = j(i_2(g))$. Therefore $j(i_1(g)^{-1}i_2(g)) = 1$, which proves that elements of the form $i_1(g)^{-1}i_2(g)$ are in the kernel.
- Since $N \subset \ker j$, there is an induced morphism

$$k : (\pi_1(U, x_0) * \pi_1((V, x_0))/N \longrightarrow \pi_1(X, x_0)$$

 $gN \longmapsto j(g).$

To prove that $N = \ker j$, we have to show that k is injective. Because this would mean that we've divided out the whole kernel of j.

Now we're ready to use the previous theorem. Let $H=(\pi(U)*\pi(V))/N$. Repeating the diagram:

Now, we define $\Phi_1 : \pi(U, x_0) \to H$ given by $g \mapsto gN$, and $\Phi_2 : \pi(V, x_0) \to H$ given by $g \mapsto gN$. For the theorem to work, we needed that $\Phi_1 \circ i_1 = \Phi_2 \circ i_2$. This is indeed the case: let

 $g \in \pi(U \cap V)$. Then $\Phi_1(i_1(g)) = i_1(g)N$ and $\Phi_2(i_2(g)) = i_2(g)N$ and $i_1(g)N = i_2(g)N$ because $i_1(g)^{-1}i_2(g) \in N$.

The conditions of the previous theorem are satisfied, so there exists a Φ such that the diagram commutes.

Note that we also have $k: H \to \pi(X)$. We claim that $\Phi \circ k = 1_H$, which would mean that k is injective, concluding the proof. It's enough to prove that

Corollary 5.1. Suppose $U \cap V$ is simply connected, so $\pi_1(U \cap V, x_0)$ is the trivial group. In this case $N = \ker j = 1$, hence $\pi(U, x_0) * \pi(V, x_0) \to \pi(X, x_0)$ is an isomorphism.

Corollary 5.2. Suppose U is simply connected. Then $\pi(X, x_0) \cong \pi(V, x_0)/N$ where N is the normal subgroup generated by the image of $i_2 \colon \pi(U \cap V) \to \pi(V, x_0)$.

Example. Let X be the figure 8 space.

Classification of surfaces

Classification of covering spaces

Lemma 3 (79.1, General lifting lemma). Let $p: E \to B$ be a covering, Y a space. Assume B, E, Y are path connected, and locally path connected. a Let $f: Y \to B$, $y_0 \in Y$, $b_0 = f(y_0)$. Let $e_0 \in E$ such that $p(e_0) = b_0$. Then $\exists \tilde{f}: Y \to E$ with $\tilde{f}(y_0) = e_0$ and $p \circ \tilde{f} = f$

$$(E, e_0) \xrightarrow{\tilde{f}} \downarrow^p \\ (Y, y_0) \xrightarrow{-f} (B, b_0)$$

iff $f_*(\pi(Y, y_0)) \subset p_*\pi(E, e_0)$. If \tilde{f} exists then it is unique.

Proof. Suppose \tilde{f} exists. Then $p \circ \tilde{f} = f$, so $(p \circ \tilde{f})_*\pi(Y, y_0) = \pi(Y, y_0)$. The left hand side is of course $p_*(\tilde{f}_*(\pi(Y, y_0)) \subset p_*(\pi(E, e_0))$, so $p_*(\pi(E, e_0)) \subset f_*(\pi(Y, y_0))$.

Conversely, we'll show the uniqueness first. Suppose \tilde{f} exists. $p \circ (\tilde{f} \circ \alpha) = f \circ \alpha$, so $\tilde{f} \circ \alpha$ is the unique lift of $f \circ \alpha$ starting at e_0 . Hence f(y) the endpoint of the unique lift of $f \circ \alpha$ to E starting at e_0 . This also shows how you can define \tilde{f} : choose a path α from y_0 to y. Lift $f \circ \alpha$ to a path starting at e_0 . Define $\tilde{f}(y) =$ the end point of this lift. Problem: is this well defined? A second problem: is \tilde{f} continuous?

 $[^]a$ From now on, all spaces are locally path connected: Every neighborhood contains an open that is path connected.

Figure 13.1: General lifting lemma

We prove that \tilde{f} is continuous.

- Choose a neighborhood of $\tilde{f}(y_1)$, say N.
- Take U, a path connected open neighborhood of $f(y_1)$ which is evenly covered, such that the slice $p^{-1}(U)$ containing $\tilde{f}(y_1)$ is completely contained in N.

Example. Take Y = [0, 1]. Then f is a path, then we showed that every map can be lifted. And indeed, the condition holds: $f_*(\pi(Y, y_0)) = 1$, the trivial group, which is a subgroup of all groups.

Lemma 4 (General lifting lemma, short statement). Short statement:

$$(E, e_0) \xrightarrow{\tilde{f}} (B, b_0)$$

 $\exists ! \tilde{f} \iff f_*(\pi(Y, y_0)) \subset p_*\pi(E, e_0).$

Definition 12. Let (E,p) and (E',p') be two coverings of a space B. An equivalence between (E,p) and (E',p') is a homeomorphism $h\colon E\to E'$ such that

is commutative. $p' \circ h = p$.

CHAPTER 13. CLASSIFICATION OF COVERING SPACES

Theorem 6 (79.2). Let $p: (E, e_0) \to (B, b_0)$ and $p': (E', e'_0) \to (B, b_0)$ be coverings, and $H_0 = p_*\pi(E, e_0)$ and $H'_0 = p'_*\pi(E', e'_0) \le \pi(B, b_0)$. Then there exists and equivalence $h: (E, p) \to (E', p')$ with $h(e_0) = e'_0$ iff $H_0 - H'_0$. Not isomorphic, but really the same as a subgroup of $\pi(B, b_0)$. In that case, h is unique.

Proof. \implies Suppose h exists. Then

$$(E, e_0) \xrightarrow{h} (E', e'_0)$$

$$\downarrow^p \qquad \downarrow^{p'}$$

$$(B, b_0)$$

Therefore $p_*\pi(E, e_0) = p'_*(h_*\pi(E, e_0))$. Since h is a homeomorphism, it induces an isomorphism, so $p'_*(h_*\pi(E, e_0)) = p'_*(\pi(E', e'_0))$.

 \Leftarrow

$$(E', e'_0)$$

$$\downarrow^k \qquad \downarrow^{p'}$$

$$(E, e_0) \xrightarrow{p} (B, b_0)$$

By the previous lemma, there exists a unique k iff $p_*\pi(E, e_0) \subset p'_*\pi(E', e'_0)$ or equivalently $H_0 \subset H'_0$, which is the case. Reversing the roles, we get

$$(E, e_0)$$

$$\downarrow p$$

$$(E', e'_0) \xrightarrow{p'} (B, b_0)$$

for the same reasoning, l exists. Now, composing the diagrams

$$(E, e_0) \qquad (E', e'_0)$$

$$\downarrow^{l \circ k} \qquad \downarrow^{p} \qquad \downarrow^{k \circ l} \qquad \downarrow^{p'}$$

$$(E, e_0) \xrightarrow{p} (B, b_0) \qquad (E', e'_0) \xrightarrow{p'} (B, b_0)$$

But placing the identity in place of $l \circ k$ or $k \circ l$, this diagram also commutes! By unicity, we have that $l \circ k = 1_E$ and $k \circ l = 1_{E'}$. Therefore, k and l are homeomorphism $k(e_0) = e'_0$.

Uniqueness is trivial, because of the general lifting theorem.

Note that this doesn't answer the question 'is there a equivalence between two coverings', it only answers the question 'is there an equivalence between two coverings mapping $e_0 \to e_0'$ '. So now, we seek to understand the dependence of H_0 on the base point.

Lemma 5 (79.3). Let (E, p) be a covering of B. Let $e_0, e_1 \in p^{-1}(b_0)$. Let $H_0 = p_*\pi(E, e_0), H_1 = p_*\pi(E, e_1)$.

- Let γ be a path from e_0 to e_1 and let $p \circ \gamma = \alpha$ be the induced *loop* at b_0 . Then $H_0 = [\alpha] * H_1 * [\alpha]^{-1}$, so H_0 and H_1 are conjugate inside $\pi(B, b_0)$.
- Let H be a subgroup of $\pi(B, b_0)$ which is conjugate to H_0 , then there is a point $e \in p^{-1}(b_0)$ such that $H = p_*\pi(E, e)$.

So a covering space induces a conjugacy class of a subgroup of $\pi(B, b_0)$.