Summer 2021

1 Implication

Which of the following implications are always true, regardless of P? Give a counterexample for each false assertion (i.e. come up with a statement P(x, y) that would make the implication false).

- (a) $\forall x \forall y P(x,y) \implies \forall y \forall x P(x,y)$.
- (b) $\forall x \exists y P(x,y) \implies \exists y \forall x P(x,y)$.
- (c) $\exists x \forall y P(x,y) \implies \forall y \exists x P(x,y)$.

Solution:

- (a) True. For all can be switched if they are adjacent; since $\forall x, \forall y$ and $\forall y, \forall x$ means for all x and y in our universe.
- (b) False. Let P(x, y) be x < y, and the universe for x and y be the integers. Or let P(x, y) be x = y and the universe be any set with at least two elements. In both cases, the antecedent is true and the consequence is false, thus the entire implication statement is false.
- (c) True. The first statement says that there is an x, say x' where for every y, P(x',y) is true. Thus, one can choose x = x' for the second statement and that statement will be true again for every y.

2 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

- (a) $P \wedge (Q \vee P) \equiv P \wedge Q$
- (b) $(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$
- (c) $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

Solution:

(a) Not equivalent.

P	Q	$P \wedge (Q \vee P)$	$P \wedge Q$
T	T	T	T
T	F	T	F
F	T	F	F
F	F	F	F

(b) Equivalent.

P	Q	R	$(P \vee Q) \wedge R$	$(P \wedge R) \vee (Q \wedge R)$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	T
T	F	F	F	F
F	T	T	T	Т
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

(c) Equivalent.

P	Q	R	$(P \wedge Q) \vee R$	$(P \vee R) \wedge (Q \vee R)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	Т
F	T	F	F	F
F	F	T	T	Т
F	F	F	F	F

3 Converse and Contrapositive

Consider the statement "if a natural number is divisible by 4, it is divisible by 2" (use " $x \mid y$ " to denote x divides y).

- (a) Write the statement in propositional logic. Prove that it is true or give a counterexample.
- (b) Write the inverse of the implication in English and in propositional logic. Prove that it is true or give a counterexample. (The inverse of an implication $P \Longrightarrow Q$ is $\neg P \Longrightarrow \neg Q$.)
- (c) Write the converse of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
- (d) Write the contrapositive of the implication in English and in propositional logic. Prove that it is true or give a counterexample.

Solution:

- (a) $(\forall x \in \mathbb{N})$ $(4 \mid x \Longrightarrow 2 \mid x)$. This statement is true. We know that if x is divisible by 4, we can write x as 4k for some integer k. But $4k = (2 \cdot 2)k = 2(2k)$, where 2k is also an integer. Thus, x must also be divisible by 2, since it can be written as 2 times an integer.
- (b) The inverse is that if a natural number is not divisible by 4, it is not divisible by 2: $(\forall x \in \mathbb{N})$ $(4 \nmid x \implies 2 \nmid x)$. This is false, since 2 is not divisible by 4, but is divisible by 2.
- (c) The converse is that any natural number that is divisible by 2 is also divisible by 4: $(\forall x \in \mathbb{N})$ $(2 \mid x \implies 4 \mid x)$. Again, this is false, since 2 is divisible by 2 but not by 4.
- (d) The contrapositive is that any natural number that is not divisible by 2 is not divisible by 4: $(\forall x \in \mathbb{N}) \ (2 \nmid x \implies 4 \nmid x)$. To show that this is true, first consider that saying that x is not divisible by 2 is equivalent to saying that x/2 is not an integer. And if we divide a non-integer by an integer, we get back another non-integer—so (x/2)/2 = x/4 must also not be an integer. But that is exactly the same as saying that x is not divisible by 4.

Note that the inverse and the converse will always be contrapositives of each other, and so will always be logically equivalent.