

ANNUAL TECHNICAL CONFERENCE AND EXHIBITION

San Antonio, Texas, USA
9-11 October 2017
Henry B. Gonzalez Convention Center
www.spe.org/atce/2017

Optimization of hydraulic fracturing design in unconventional formation: comparative of study of fracking fluids

Mahammad Valiyev

22.06.2022

Contents

- Motivation
- Literature review
- Overview of workflow and optimization problem
- Results and discussion
- Conclusion

Motivation

- Oil & gas are still predicted to be dominant source of energy in 2050 (EIA)
- Unconventional sources play a significant role in oil & gas production (EIA)
- Horizontal drilling & hydraulic fracturing made unconventional sources economically viable
- Production from unconventional sources is non optimal due to reservoir heterogeneity & fracturing design flaws

Credit: EIA

Credit: EIA, Drilling info

Literature review

- **Hydraulic fracturing optimization** is a big and still active research area
- Combination of **field, experimental and numerical simulation** studies are used to study and optimize hydraulic fracking (King GE, 2010)
- **Numerical simulation study** is the most used technique in the literature (Adachi J et al., 2007; He Q et al., 2016; Murdoch LC, 2002)
- Studies focused on **various aspects of fracking optimization**: well position, number of HFs, spacing, half-length, treatment design etc (Holt, 2011; Wilson and Durlofsky, 2013; Ma et al., 2015; Plaksina and Gildin, 2015)

Credit: Halliburton

Workflow overview

Reservoir architecture, layers and well

	Step name	Pump rate (bbl/min)	Fluid name	Fluid volume (gal)	Proppant	Prop. conc (PPA)
1)	Pad	20.00	YF125-Flex - M	10000.00	None	0.00
2	Pad	20.00	YF125-Flex - M	10000.00	None	0.00
3	Pad	20.00	YF125-Flex - M	10000.00	None	0.00
4	0.5 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	0.50
5	0.75 P	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	0.75
6	1 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	1.00
7	1.5 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	1.50
8	2 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	2.00
9	2.5 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	2.50
10	3 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	3.00
11	3.5 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	3.50
12	4 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	4.00
13	4.5 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	4.50
14	5 PPA	20.00	YF125-Flex - M	10000.00	Badger Sand 20/40	5.00

Natural fracture distribution in the field

Optimization problem overview

- The performances of 3 different fracking fluids are compared in this study: slickwater, linear and cross-link gel
- Performance metrics are 1) fracture length 2) propped fracture area 3) total fracture area
- Fracking fluids differ among each other mainly by the viscosity values
- Cross link gel has their highest viscosity values, followed by linear gel and slickwater

Viscosity evolution through time for 3 fracking fluids

Results 1: Fracture distributions

Fracture distribution for case 1

Fracture distribution for case 3

Fracture distribution for case 2

Results 2: Propped fracture surface areas

Results 3: Total fracture surface areas

Results 4: Fracture length distributions

Conclusion

- Comparative study using three different fracturing fluids is used for hydraulic fracture design optimization.
- Results show that the use of cross-link gel leads to highest total and propped fracture surface areas, followed by linear gel and slickwater.
- Fractures generated by cross link gel, generally, have higher lengths compared to linear gel and slickwater.
- Fracture length distributions generated by linear gel and slickwater show similar distributions, with linear gel generated fracs exhibiting more uniform distribution
- As a future work, flow simulation of generated fracture networks using these fracking fluids can be done to compare dynamic flow responses of cases.

Thank You

Questions???

