4. Algèbre relationnelle

Algèbre relationnelle

- L'algèbre relationnelle est un ensemble de règles et d'opérateurs ensemblistes sur lesquels sont basés tous les gestionnaires de bases de données dit relationnels.
- L'algèbre relationnelle permet de traduire des questions par une combinaison d'opérations sur des ensembles.
- La connaissance de **l'Algèbre Relationnelle** est indispensable lorsqu'il s'agit de répondre à des questions complexes (ex : Quels sont les fournisseurs qui ne fournissent pas tous les produits d'une catégorie donnée?).

Les opérateurs relationnels

 Tous les opérateurs relationnels servent à traduire une question exprimée en langage courant par des opérations sur des ensembles de données.

- Les opérateurs relationnels créent une nouvelle relation (Table) en fonction du contenu des relations auxquelles on les applique.
- La relation nouvellement créée a le même statut qu'une relation de base, on peut donc appliquer à cette relation les opérateurs relationnels.

Les opérateurs relationnels

- 1. Opérateurs unaires: s'appliquent à une seule relation (table)
 - 1. Sélection
 - 2. Projection
 - 3. Renommage
- 2. Opérateurs binaires: s'appliquent à deux relations (tables)
 - 1. Union
 - 2. Intersection
 - 3. Différence
 - 4. Produit cartésien
 - 5. Jointure
 - 6. Division

Les opérateurs unaires : s'appliquent à une seule relation

• Les opérateurs unaires servent à extraire d'une seule relation les informations correspondant à une question simple.

Exemple:

- Quels sont les clients dont le CA est supérieur à 20 000 DH?
- Quelles sont les villes dans lesquelles nous avons des clients?

Sélection: O

• But: La sélection permet de choisir des enregistrements en fonction d'une combinaison de conditions qu'on appelle critère.

Syntaxe: σ [critère] relation

CLIENT				
NOM	RUE	СР	VILLE	CA
Driss	42, des FAR	30000	Fès	15 000
Mohamed	125, rue Hamria	50000	Meknès	23 500
Jamila	12, place Jamai	40000	Marrakech	21 000
Ahmed	25, av de Fès	90000	Tanger	14 600

Sélection: O

Exemple:

$\sigma_{\text{ICA}>200001}$ Client

A==				
NOM	RUE	СР	VILLE	CA
Driss	42, des FAR	30000	Fès	15 000
Mohamed	125, rue Hamria	50000	Meknès	23 500
Jamila	12, place Jamai	40000	Marrakech	21 000
Ahmed	25, av de Fès	90000	Tanger	14 600

CLIENT NOM	RUE	СР	VILLE	CA
Mohamed	125, rue Hamria	50000	Meknès	23 500
Jamila	12, place Jamai Fna	40000	Marrakech	21 000

Projection: π

- But: ne retenir que certains attributs dans une relation
- Syntaxe:

$$\pi$$
 [attributs] Relation

- **attributs**: liste l'ensemble d'attributs de Relation à conserver dans le résultat
- crée une nouvelle relation de population
- l'ensemble des tuples de Relation est **réduit** aux **seuls attributs** de la liste spécifiée

Projection: π

Exemple:

$\pi_{\text{[NOM,CP,VILLE]}}$ Client

CLIENT			
МОМ	CP	VILLE	
Driss	30000	Fès	
Mohamed	50000	Meknès	
Jamila	40000	Marrakech	
Ahmed	90000	Tanger	

Sélection-projection

On veut les villes et les CP des clients qui ont un CA>20000

CP-Ville				
MOM	CP		VILLE	
Mohamed		50000	Meknès	
Jamila		40000	Marrakech	

Renommage: α

- But: résoudre des problèmes de compatibilité entre noms d'attributs de deux relations opérandes d'une opération binaire.
- Syntaxe : α [nom_attribut : nouveau_nom] Relation
- Exemple:

$$R2 = \alpha_{[B:C]}R1$$

Les opérateurs binaires: s'appliquent à deux relations

- Les opérateurs binaires permettent de croiser des informations en provenance de plusieurs relations afin de répondre à des questions plus complexes.
- Sur deux structures identiques (même nombre de champs et champs de même type): Union, Intersection, Soustraction

Fournisseurs		Clients	
NomFrs (30)	PreFrs (25)	NomCli (30)	PreCli (25)
Mami	Driss	Moumen	Saad
Rami	Ahmed	Amir	Soukayna
Zaim	Houda	Alami	Driss
Smili	Abdelhak	Selouane	Mehdi
Moumen	Saad		

Union: ∪

• Syntaxe:

 $R1 \cup R2$

 $R1 \cup R2$:

- But: réunit dans une même relation les tuples de R1 et ceux de R2
- Exemple: créer une relation qui contient les noms et prénoms de toutes les

personnes en relation avec l'entreprise.

		'	•
IENT	() –	OHIT	isseur
		U UIII	II 3 3 C U I

Fournisseurs		Clients	
NomFrs (30)	PreFrs (25)	NomCli (30)	PreCli (25)
Alami	Driss	Moumen	Saad
Rami	Ahmed	Amir	Soukayna
Zaim	Houda	Alami	Driss
Smili	Abdelhak	Selouane	Mehdi
Moumen	Saad		

NomFrs(30)	PreFrs(25)		
Alami	Driss		
Rami	Ahmed		
Zaim	Houda		
Smili	Abdelhak		
Moumen	Saad		
Amir	Soukayna		
Selouane	Mehdi		

Intersection:

• Syntaxe:

- But: sélectionne les tuples qui sont à la fois dans R et S
- <u>Exemple:</u> les noms et prénoms des personnes qui **sont clients et aussi fournisseurs**

Client ∩ **Fournisseur**

ournisseurs			Clients					
NomFrs (30)	PreFrs (25)		NomCli (30)	PreCli (25)	1	$R \cap S$:	NomCli(30)	PreCli(25
Alami	Driss	1 _	Moumen	Saad				<u> </u>
Rami	Ahmed	$1 \cap$	Amir	Soukayna	— — •		Moumen	Saad
Zaim	Houda		Alami	Driss			Alami	Driss
Smili	Abdelhak		Selouane	Mehdi			Alailii	DIISS
Moumen	Saad							

Différence: -

- But: sélectionne les tuples de R1 qui ne sont pas dans R2
- Syntaxe:

R1 - R2

• Exemple: Liste des fournisseurs qui ne sont pas des clients.

Fournisseurs - Clients

Fournisseurs		Clients		R1 – R2:	NomFrs(30)	PreFrs(25)
NomFrs (30)	PreFrs (25)	NomCli (30)	PreCli (25)		Rami	Ahmed
Alami	Driss	Moumen	Saad	\rightarrow	7-:	TT1-
Rami	Ahmed	Amir	Soukayna		Zaim	Houda
Zaim	Houda	Alami	Driss		Smili	Abdelhak
Smili	Abdelhak	Selouane	Mehdi		Sillili	Abdelliak
Marinaan	Cood					•

<u>Attention</u>: contrairement à l'union et à l'intersection, la soustraction n'est pas commutative. Le résultat de "Client - Fournisseurs" n'est pas le même.

Produit cartésien:×

• But: construire toutes les combinaisons de tuples de deux relations (en général, en vue d'une sélection)

Résultat

- Syntaxe : $R \times S$
- Exemple: Producteur X Produit

Produit

Id	Nom	Prix
4	Fraise	3.99\$
7	Mais	3.50\$

Producteur

Nom	Prénom
Bernard	Alain
Perrier	Charles
Labbé	Caroline

Nom	Prénom	Id	Nom	Prix
Bernard	Alain	4	Fraise	3.99\$
Bernard	Alain	7	Mais	3.50\$
Perrier	Charles	4	Fraise	3.99\$
Perrier	Charles	7	Mais	3.50\$
Labbé	Caroline	4	Fraise	3.99\$
Labbé	Caroline	7	Mais	3.50\$

Produit cartésien:×

Exemple 2:

Commande		Lignes			
NOCOM	DATCOM	иимсом	REF	QTE	
732	15-mars	732	x123		2
733	16-mars	732	x124		- 4
734	16-mars	732	x125		5
735	16-mars	733	x121		3
		733	x124		2
		734	x121		2
		734	x123		5
		734	x124		2
		734	x125		3
		735	x124		2
S		735	x125		1

Commande X Lignes

Jointure naturelle:

- But: créer toutes les combinaisons significatives entre tuples de deux relations (portent la même valeur pour les attributs de même nom)
 - les deux relations ont **au moins** un attribut de même nom.
 - les attributs de même nom n'apparaissent qu'une seule fois
- Syntaxe: R1 ⋈ R2
- Exemple: Liste des commandes avec leurs lignes

Commandes ⋈ Lignes

NOCOM	DATCOM	REF	QTE
732	15-mars	x123	2
732	15-mars	x124	4
732	15-mars	x125	5
733	16-mars	x121	3
733	16-mars	x124	2
734	16-mars	x121	2
734	16-mars	x123	5
734	16-mars	x124	2
734	16-mars	x125	3
735	17-mars	x124	2
735	17-mars	x125	1

Jointure naturelle:

Exemple 2:

Etudiant

NumEtu	Nom	Groupe
10	Martin	211
11	Videau	221
22	Durand	221
32	Rossi	211

Projet

Groupe	ResProjet
211	Fournier
221	Astier

NumEtu	Nom	Groupe	ResProjet
10	Martin	211	Fournier
11	Videau	221	Astier
22	Durand	221	Astier
32	Rossi	211	Fournier

Etudiant M Projet

Theta-jointure: ⋈[p]

p: prédicat/condition de jointure

- But: créer toutes les combinaisons significatives entre tuples de deux relations (critère de combinaison explicitement défini en paramètre de l'opération)
 - combine les tuples qui **satisfont** le prédicat
 - les deux relations n'ont pas d'attribut de mêmenom

Jointure naturelle:

Exemple 2:

Client						
numéro nom adresse téléphone						
101	Durand	Nice	0493939393			
106	Fabre	Paris	NULL			
110	Prosper	Paris	NULL			
125	Antonin	Marseille	0491919191			

Vente						
numéro ref-profduit no_client date						
00102	AF153	101	12/10/04			
00809	BG589	106	18/10/04			
11005	VF158	106	05/10/04			
12005	BG589	125	25/10/04			

Client Vente numéro = no_client

				1.01110			
numéro	nom	adresse	téléphone	numéro	ref_produit	no_client	date
101	Durand	NICE	0493942613	00102	AF153	101	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	106	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	106	05/10/04
125	Antonin	MARSEILLE	0491258472	12005	BG589	125	25/10/04

Division: réponse aux questions "tous les"

• Syntaxe générale :

RelDividende / ou % RelDiviseur

- But: permet de répondre aux questions qui contiennent le quantificateur "tous".
- Les structures des relations misent en jeux doivent correspondre au schéma suivant :

Division : réponse aux questions "tous les"

 Exemple : Les références qui sont présentes dans toutes les commandes

• La dividende doit comprendre les commandes avec les références qu'elles contiennent:

Relation dividende : $\pi_{[NOCOM,REF]}$ Lignes

• Le diviseur doit comprendre toutes les commandes :

Relation diviseur: π_{INOCOM} Commande

Division : réponse aux questions "tous les"

- Le résultat (Relation Quotient) comprendra les Références qui sont présentes dans **toutes** les commandes.
- Quotient:

 $\pi_{ ext{[NOCOM, REF]}}$ Lignes $\pi_{ ext{[NOCOM]}}$ Commandes

Commande		Lignes			
носом	DATCOM	NOCOM	REF	QTE	
732	15-mars	732	x123	2	
733	16-mars	732	x124	4	
734	16-mars	732	x125	5	
735	16-mars	733	x121	3	
		733	x124	2	
		734	x121	2	
		734	x123	5	
		734	x124	2	
		734	x125	3	
		735	x124	2	
		735	x125	1	

REF x124

Division: réponse aux questions "tous les"

Exemple 2: quels sont les fournisseurs de la table R qui fournissent toutes les pièces de la table S

R:	PIECE	FOURNISS
	vis	pierre
	boulon	paul
	écrou	pierre
	vis	paul
	boulon	pierre
	boulon	alice

S :	PIECE		R÷S:	FOURNISS
	vis			pierre
	boulon			paul

Soient les relations suivantes :

Journal (code-j, titre, prix, type, périodicité)

Dépôt (no-dépôt, nom-dépôt, adresse)

Livraison (*no-dépôt, code-j*, date-liv, quantité-livrée)

1) Quel est le prix des journaux?

$$\pi_{[prix]}$$
 Journal

2) Donnez tous les renseignements connus sur les journaux hebdomadaires.

```
σ [périodicité = "hebdomadaire"] Journal
```

3) Donnez les codes des journaux livrés à Fès.

```
\pi_{\text{[code-j]}} (\sigma_{\text{[adresse = "Fès"]}} (Dépôt \bowtie Livraison))
```

Soit le schéma relationnel suivant:

- Huiles(Num, Annee, Acidité)
- PRODUCTEURS (Num, Nom, Prenom, Region)
- RECOLTES (Nprod. Nh, Quantite)
- 1) Donner la liste des producteurs.

$$\pi_{\text{[Nom]}}$$
 PRODUCTEURS

2) Quels sont les producteurs de la région de Mekèns?

$$\pi_{\text{[Nom,Prenom]}}(\sigma_{\text{[Region="Meknès"]}} \text{ PRODUCTEURS})$$

3) Quels sont les producteurs de la région de Fès qui ont récolté au moins un type d'huile en quantité supérieure à 30000 litres? On veut les noms et les prénoms des producteurs.

$$\pi_{\text{[Nom,Prenom]}}((\sigma_{\text{[Region="Fès"]}} \text{PRODUCTEURS})) [Num=Nprod]}(\sigma_{\text{[Quantite>30000]}} \text{Recoltes}))$$

Autre solution:

$$\pi_{[\text{Nom,Prenom}]}(\sigma_{[\text{Quantite}>30000]}(\sigma_{[\text{Region="Fès"}]} \text{PRODUCTEURS} \bowtie_{[\text{Num=Nprod}]} \text{RECOLTES})$$

4) Donner la liste des numéros d'huile qui ont une acidité supérieure à 1,2 **ou** qui ont été produits par le producteur numéro 24.

$$\pi_{\text{[Num]}}(\sigma_{\text{[acidité}>1,2]}(\text{Huiles})) \cup \pi_{\text{[Nh]}}(\sigma_{\text{[Nprod=24]}}(\text{RECOLTES}))$$

5) Donner les numéros, noms et prénoms des producteurs qui ne produisent aucune huile.

```
\pi_{\text{[Nom,Prenom]}}(\text{PRODUCTEURS})
-\pi_{\text{[Norod]}}(\text{RECOLTES}))
```