GEORGIA INSTITUTE OF TECHNOLOGY

COLLEGE OF ENGINEERING

BMED3300 - BIOTRANSPORT

QUIZ 3 (SPRING 2014) - ETHIER

STUDENT NAME:	Ne	4-	 	
GTID NUMBER:				
RECITATION SECTION:				

(Section E is Wednesdays at 2 pm; Section F is Wednesdays at 1 pm)

Closed Book

All non-communicating calculator types allowed

Time allotted: 15 minutes Do all work in this booklet

Reminder: for questions that require numerical answers, units are required and worth 50%

Maximum Mark	Actual Mark
9	
3	V = 0.1 + 0.2 · · · · · · · · · · · · · · · · · · ·
12	
	9

- 1) The mouse is now widely used as a model of cardiovascular disease in humans. Researchers decide to study blood flow patterns in the mouse aorta. To do so, they build a 5 times larger scale model of the aorta of known diameter D, attach it to a pulsatile pump to simulate the heart, and use a model fluid with the known properties of heart rate (HR), fluid viscosity μ (kg·m⁻¹·s⁻¹), fluid density ρ , and flow rate Q. Because it is known that disease development depends in part on the shear stress, τ (kg·m⁻¹·s⁻²), exerted by flowing blood on the endothelial cells that line the arteries, they wish to measure this quantity.
 - a. Construct a π -matrix from the relevant parameters in this problem and confirm that 3 π groups can be formed from these parameters.

: 0= -a+c-3

0 = -2+0

7: 0 = -2a-6

= 2-6

1, = 7 HR2D2,P

 $=\frac{t^2.L}{m}\cdot\frac{1}{t^2}\cdot\frac{L^2}{13}\cdot\frac{m}{13}$

6=2 +1

= HR2 D2 S 1 + 3

c=2 +1

$$\begin{array}{ll}
m & C = \alpha + 1 \\
\alpha = -1 & + 1
\end{array}$$

$$= \left(\frac{m}{L \cdot t^2}\right)^{\alpha} \left(\frac{1}{t}\right)^{\beta} \left(L\right)^{\beta} \cdot \left(\frac{L^3}{t}\right)^{\alpha} = \left(\frac{m}{L \cdot t^2}\right)^{\alpha} \left(\frac{1}{t}\right)^{\beta} \cdot \left(L\right)^{\alpha} \cdot \left(\frac{L^3}{t}\right)^{\alpha} \cdot \left(\frac{L^3}{t}\right)^{\alpha} \cdot \left(\frac{L}{t}\right)^{\alpha} \cdot \left($$

L:
$$0 = -a + c + 3$$

 $c = -3$

$$f: 0 = -2a - 6 - 1$$

 $6 = -1$

$$T_2 = \gamma^{\circ} + |R^{-1}D^{-3}Q$$

$$= \frac{Q}{HR \cdot D^3}$$

M: 0 = a+1

a = - 1

L: 0=-a+c-1

C=0

t: 0=-2a-6-1

0=1-1+6

undergoing clinical trials for treating macular edema. Perhaps more familiar is the use of Norplant[™], an implantable contraceptive device which releases the steroid hormone levonorgestrel into the blood when implanted under the skin in the arm. A new device is being considered which does not contain any surface coating, i.e. the implant of **cylindrical geometry** consists of a single polymer gel material that the drug is imbedded in and can diffuse through. You may assume that only radial

2. Medical implants are capable of releasing drugs at a constant rate into the systemic circulation, a convenient alternative to oral drug administration when a constant blood level of drug is desired in the patient for extended periods of time. Several slow-release corticosteroid intraocular implants are

diffusion is taking place, as the two ends of the cylinder are impermeable to

the drug. Consider the following definitions:

 $D_{\text{d}\text{-}\text{i}}$ = effective diffusion coefficient of the drug in the implant

at
$$r=R$$
, $C_d=C_b$. $+1.5$
at $r=0$ $\frac{\partial c_d}{\partial r}=0$ $+1.5$

a) What are the boundary conditions you would use for determining a solution?