CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

### Encrypt-then-Authenticate

- Given Enc is probabilistic & Mac is deterministic
- Enc and Mac use two different keys
  - Output (c,t) is still probabilistic, still CPA-secure



| X            | 00 | 01 | 10 | 11 |
|--------------|----|----|----|----|
| k=00,F(x)    | 11 | 00 | 01 | 10 |
| k=01,F(x)    | 10 | 11 | 00 | 01 |
| k = 10, F(x) | 01 | 10 | 11 | 00 |
| k=11,F(x)    | 00 | 01 | 10 | 11 |

Example: given  $k_e=10$ ,  $k_m=01$  m=1011, and IV=01

Use Encrypt-then-authenticate (CBC-Enc then CBC-MAC)

c=010000 and t=11 (or IV=01, c=0000, t=11)





#### Hash Function

- A mapping/function from an <u>arbitrary long</u> input to a <u>fixed-length output</u> (a digest or hash value)
- Hash Function: H(m) = h, deterministic
  - Collision: two inputs map to a same output
    - For x and y, x!=y, but H(x) == H(y)
    - Collision-resistance: collision must exist, but hard to find
- Crypto hash: MD5, SHA1, SHA2, etc.

### Merkle-Damgard Transform

- MD transform: from fixed-length to arbitrary-length
  - If we have a hash function h: {0,1}<sup>2n</sup> —> {0,1}<sup>n</sup>
  - then we can build a hash function H with arbitrary-length: {0,1}\* —> {0,1}<sup>n</sup>



FIGURE 5.1: The Merkle–Damgård transform.

### Merkle-Damgard Transform

- Arbitrary-length (KeyGen, Hash) is collision resistant if fixed-length (g, h) is collision resistant.
- Collision in Hash(m) could happen in two cases:
  - Messages are same, but lengths are different
    - m==m, L!=L', indicate h(z||L)==h(z||L')
  - Lengths are same, but messages are different
    - m!=m', L==L, indicate h(z||m)==h(z||m')
- h is a collision resistant, two cases both happen with negligible probability

## Arbitrary-Length MAC

- Hash-and-MAC
  - Given hash function H: {0,1}\* —> {0,1}<sup>n</sup>
  - Given a fixed-length MAC for n-bit messages
  - Given a message m with arbitrary size
  - Compute H(m) = h, Mac(h) = t
  - t is the tag of message m
  - Security: finding a collision is hard, so generating a valid tag for a new message is hard.

### Arbitrary-Length MAC

- Hash-and-MAC: H(m) = h, Mac(h) = t
  - Alice:
    - m="Cincinnati", h=H(m)=1011, t=Mac(h)=0101
    - Sends (m,t)
  - Attacker:
    - m'="Dayton", sends (m', t)
  - Bob:
    - m'="Dayton", h'=H(m')=0001, t'=Mac(h')=1110
    - t'!=t, then message is not correct/authenticate

### Security of Hash Function

- The security of a n-bit hash function is (n/2)-bit
  - Find a collision after about 2<sup>n/2</sup> tries with brute-force
    - Set S is empty
    - x = 1,  $h_1 = H(x)$ , add  $h_1$  to S
    - x = 2,  $h_2 = H(x)$ , if  $h_2$  not in S, add  $h_2$  to S
    - •
    - x = m,  $h_m = H(x)$ , if  $h_m$  not in S, add  $h_m$  to S
  - E.g., find a collision of SHA-1 (160-bit) with about 280 tries

## Security of Hash Function

- The security of a n-bit hash function is (n/2)-bit
  - Find a collision after about 2<sup>n/2</sup> tries with <u>brute-force</u>,
  - Wait..., it is not 2<sup>n</sup>?
- Key: the two following problems are different
  - Problem 1: find a collision
  - Problem 2: given x, find a collision of x

#### Problem 2: Find a collision of x



#### Problem 1: There is a collision



- Assume 365 days per year, uniformly distribution
- There are n students in a room, p is the probability that there are two students have a same birthday
  - If n=366, then p=100%
    - Each takes a different date, 366-th student will certainly have a same birthday with someone
  - What is n if p = 1/2? Surprisingly, n is only 23.

- 1st student, probability of no same day is 1
- 2nd student, probability of no same day is 364/365
  - Choose any date, except 1st birthday
- 3rd student, probability of no same day is 363/365
  - Choose any date, except 1st and 2nd's birthday
- 4th student, probability of no same day is 362/365
  - Choose any date, except 1st, 2nd & 3rd' birthday

- 1st student, probability of no same day is 1
- 2nd student, probability of no same day is 364/365
- . . . . . .
- n-th, probability of no same day is (365 (n-1))/365
- The probability of no same day for all n students is

$$p' = p'_1 \cdot p'_2 \cdot p'_3 \cdot \dots \cdot p'_n$$

$$= 1 \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \dots \cdot \frac{365 - (n-1)}{365} = \frac{365!}{365^n \cdot (365 - n)!}$$

• The probability that two having a same birthday is

$$p = 1 - p' = 1 - \frac{365!}{365^n \cdot (365 - n)!}$$

- p: red curve
- p': blue curve



- Taylor series  $e^x \approx 1 + x$  (if x << 1)
- Approximated probability of having a same birthday

$$p = 1 - p' \approx 1 - e^{\frac{-n^2}{2 \cdot 365}}$$
 $p(n, D) \approx 1 - e^{\frac{-n^2}{2D}}$ 

 Example: what is the probability that two students in this class have a same birthday? (D=365, n=48, e=2.718)

$$p = 1 - p' \approx 1 - e^{\frac{-n^2}{2 \cdot 365}}$$
 $p(n, D) \approx 1 - e^{\frac{-n^2}{2D}}$ 

 Example: what is the probability that two students in this class have a same birthday? (D=365, n=48, e=2.718)

- n\*n = 48\*48 = 2304
- 2\*D = 2\*365 = 730
- -(2304/730) = -3.156
- $e^{-3.156} = 0.043$
- p = 1 0.043 = 0.957

$$p = 1 - p' \approx 1 - e^{\frac{-n^2}{2 \cdot 365}}$$
 $p(n, D) \approx 1 - e^{\frac{-n^2}{2D}}$ 

- Practice: we have 20 students and 200 classes, each student (uniformly) chooses one class, what is the probability that two students choose a same class? (D=200, n=20, e=2.718)
  - n\*n = 20\*20 = 400
  - 2\*D = 2\*200 = 400
  - -(400/400) = -1
  - $e^{-1} = 0.368$
  - p = 1 0.368 = 0.632

$$p = 1 - p' \approx 1 - e^{\frac{-n^2}{2 \cdot 365}}$$
 $p(n, D) \approx 1 - e^{\frac{-n^2}{2D}}$ 

- Brute-force Attack on Hash Function:
  - There is a collision s.t., x!=y, but H(x)==H(y)
- H() has D=2<sup>160</sup> outputs, if we try this H() n times, where each time we use a different input, p is the probability that there are two times having a same output (D=2<sup>160</sup>, n, e=2.718, p)
  - If p=1/2, then n is about  $O(2^{160/2})$
  - 160-bit hash provides 80-bit security

- There are n students, given Alice's birthday (e.g., Jan. 1st), the probability that there is another student having a same birthday as Alice
- 1st student is Alice
  - Alice's birthday is Jan. 1st
- 2nd student, probability of not the same is 364/365
  - Choose any date, except Jan. 1st

- 1st student is Alice, probability is 1
  - Alice's birthday is Jan. 1st
- 2nd student, probability of not the same is 364/365
  - Choose any date, except Jan. 1st
- 3rd student, probability of not the same is 364/365
  - Choose any date, except Jan. 1st
- 4th student, probability of not the same is 364/365
  - Choose any date, except Jan. 1st

- 1st student is Alice, probability is 1
- 2nd student, probability of not the same is 364/365
- . . . . . .
- n-th student, probability of not the same is 364/365
- The probability that there is no student having a same birthday as Alice

$$p' = p'_1 \cdot p'_2 \cdot p'_3 \cdot \dots \cdot p'_n$$

$$= 1 \cdot \frac{364}{365} \cdot \frac{364}{365} \cdot \dots \cdot \frac{364}{365} = (\frac{364}{365})^{n-1}$$

 The overall probability that there is another student having a same birthday as Alice

$$p = 1 - p' = 1 - \left(\frac{364}{365}\right)^{n-1}$$

- Example: there are n=48 students, given Alice's birthday (e.g., Jan. 1st), what is the probability that there is another student having a same birthday as Alice? (D=365, n=48)
  - $(364/365)^{47} = 0.879$ , p = 1 0.879 = 0.121

$$p = 1 - p' = 1 - \left(\frac{364}{365}\right)^{n-1}$$

Practice: there are n=20 students and D=200 classes, each student (uniformly) chooses one class. Given Alice chooses CS5158, what is the probability that there is another student chooses CS5158?

•  $(199/200)^{19} = 0.909$ , p = 1 - 0.909 = 0.091

 Problem 1: There are n students in a room, p is the probability that there are two students having a same birthday

 Problem 2: There are n students, given Alice's birthday (e.g., Jan. 1st), the probability that there is another student having a same birthday as Alice

|             | Problem 1 | Problem 2 |
|-------------|-----------|-----------|
| n=48, D=365 | p = 0.957 | p = 0.121 |

# Public-Key Cryptography

CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

## Public-Key Revolution

- Symmetric-Key Crypto:
  - Block Cipher and MAC
  - Need to share a private key in advance
  - Limit usage in practice: mainly military
- Public-Key Crypto (<u>Diffie and Hellman</u>, 1976)
  - "New Direction in Cryptography"
  - Idea: No need to share a private key
  - Expend crypto usage to almost everywhere

Whitfield Diffie (right) and Martin Hellman (middle),
 ACM Turning award in 2015



- Ralph Merkle (left)
  - Merkle-Damgard Transform, Merkle hash tree



## Public-Key Revolution

- A key includes two parts,
  - a public (pk) & a private (sk)
  - Send public key on public channel for encryption
  - Use private key to decrypt
- Based on some hard problem (one-way function)
  - Easy to compute (with public key),
  - But hard to decrypt (without private key)
- Data Privacy: Public-Key Encryption
- Data Integrity: Signature

# Public-Key Encryption



- Alice obtains Bob' public key from <u>public channels</u>
- Alice encrypts with public key
- Bob decrypts with private key

# Number Theory

Mathematical Foundation of Public-Key Crypto

#### Divisor and Factor

- Z: the set of integers, {..., -2, -1, 0, 1, 2, 3, ...}
- For a, b in Z, a divides b, written a | b
  - i.e., there is an integer c, s. t. ac = b
- E.g., a = 6, b = 12, a divides b
  - c=2, ac=2\*6=12=b
- a | b and a is positive, a is divisor of b
  - In addition, if a is not 1 or b, a is factor of b

#### Prime and Composite

- a | b and a is positive, a is divisor of b
  - In addition, if a is not 1 or b, a is factor
  - E.g., b = 12
  - divisors: 1, 2, 3, 4, 6, 12
  - factors: 2, 3, 4, 6
- A positive integer p>1 is a prime, if p has no factors, i.e., only two divisors, 1 and p; otherwise p is a composite

### Prime and Composite

- A positive integer p>1 is a prime, if p has no factors, i.e., only two divisors, 1 and p; otherwise p is a composite
- Practice: Prime or Composite? 2, 3, 4, 5, 6,
  - 2: {1,2}, no factors, prime
  - 3: {1,3}, no factors, prime
  - 4: {1,2,4}, 1 factor, composite
  - 5: {1,5}, no factors, prime
  - 6: {1,2,3,6}, 2 factors, composite

#### Additional Reading

Chapter 5 & 8, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition