Distillation

Processos de Separação

LEQB

2023/2024

Summary

- Optimal reflux ratio
- Condenser and Boiler in a distillation column
- Energy Balances to a distillation column
- Stage efficiency
- > Energetic balance to the feed stage

> Optimal reflux ratio

Reflux ratio, R

R = L/D

which value should we choose for the reflux ratio of a given distillation column, and how do we estimate that value ??

Reflux Ratio, $R \leftrightarrow Number of stages$, N

Optimum Reflux 1.05 a 1.5 × R_{min}

How?

- Material Balance
- Energy Balance
- Economic Analysis

Effect of Reflux Ratio on Annualized Cost of a Distillation Operation

R/R _{min}	Actual N
1.00	Infinite
1.05	29
1.14	21
1.23	18
1.32	16
1.49	14
1.75	13

Values of F, x_F , x_D , x_B and i are constants

$$R = \frac{L}{D}$$

R / \leftrightarrow L /

(Adapted from an example by Peters and Timmerhaus [6].)

System benzene + toluene

Effect of Reflux Ratio on Annualized Cost of a Distillation Operation

7	7	7

R/R_{\min}	Actual N	Diam., ft	
1.00	Infinite	6.7 (204	cm)
1.05	29	6.8	
1.14	21	7.0	
1.23	18	7.1	
1.32	16	7.3	
1.49	14	7.7	
1.75	13	8.0 (243	cm)

(Adapted from an example by Peters and Timmerhaus [6].)

System benzene + toluene

Values of F, x_F , x_D , x_B and i are constants

$$R = \frac{L}{D}$$

Effect of Reflux Ratio on Annualized Cost of a Distillation Operation

7	7	7	7	7
R/R _{min}	Actual N	Diam., ft	Reboiler Duty, Btu/h	Condenser Duty, Btu/h
1.00	Infinite	6.7	9,510,160	9,416,000
1.05	29	6.8	9,776,800	9,680,000
1.14	21	7.0	10,221,200	10,120,000
1.23	18	7.1	10,665,600	10,560,000
1.32	16	7.3	11,110,000	11,000,000
1.49	14	7.7	11,998,800	11,880,000
1.75	13	8.0	13,332,000	13,200,000

Values of F, x_F , x_D , x_B and i are constants

$$R = \frac{L}{D}$$

(Adapted from an example by Peters and Timmerhaus [6].)

System benzene + toluene

Effect of Reflux Ratio on Annualized Cost of a Distillation Operation

7	\	7	7	7	Annualized Cost, \$/yr	
R/R _{min}	Actual N	Diam., ft	Reboiler Duty, Btu/h	Condenser Duty, Btu/h	Equipment	
1.00	Infinite	6.7	9,510,160	9,416,000	Infinite	
1.05	29	6.8	9,776,800	9,680,000	44,640	
1.14	21	7.0	10,221,200	10,120,000	38,100	
1.23	18	7.1	10,665,600	10,560,000	36,480	
1.32	16	7.3	11,110,000	11,000,000	35,640	
1.49	14	7.7	11,998,800	11,880,000	35,940	
1.75	13	8.0	13,332,000	13,200,000	36,870	

Values of F, x_F , x_D , x_B and i are constants

$$R = \frac{L}{D}$$

(Adapted from an example by Peters and Timmerhaus [6].)

System benzene + toluene

Effect of Reflux Ratio on Annualized Cost of a Distillation Operation

7		7	7	7	Annualized Cost, \$/yr		S/yr
R/R _{min}	Actual N	Diam., ft	Reboiler Duty, Btu/h	Condenser Duty, Btu/h	Equipment	Cooling Water	Steam
1.00	Infinite	6.7	9,510,160	9,416,000	Infinite	17,340	132,900
1.05	29	6.8	9,776,800	9,680,000	44,640	17,820	136,500
1.14	21	7.0	10,221,200	10,120,000	38,100	18,600	142,500
1.23	18	7.1	10,665,600	10,560,000	36,480	19,410	148,800
1.32	16	7.3	11,110,000	11,000,000	35,640	20,220	155,100
1.49	14	7.7	11,998,800	11,880,000	35,940	21,870	167,100
1.75	13	8.0	13,332,000	13,200,000	36,870	24,300	185,400

Values of F, x_F , x_D , x_B and i are constants

$$R = \frac{L}{D}$$

(Adapted from an example by Peters and Timmerhaus [6].)

System benzene + toluene

Effect of Reflux Ratio on	Annualized Cost	of a Distillation	Operation
---------------------------	-----------------	-------------------	-----------

7	\	7	7	7	Annualized Cost, \$/yr			
R/R _{min}	Actual N	Diam., ft	Reboiler Duty, Btu/h	Condenser Duty, Btu/h	Equipment	Cooling Water	Steam	Total Annualized Cost, \$/yr
1.00	Infinite	6.7	9,510,160	9,416,000	Infinite	17,340	132,900	Infinite
1.05	29	6.8	9,776,800	9,680,000	44,640	17,820	136,500	198,960
1.14	21	7.0	10,221,200	10,120,000	38,100	18,600	142,500	199,200
1.23	18	7.1	10,665,600	10,560,000	36,480	19,410	148,800	204,690
1.32	16	7.3	11,110,000	11,000,000	35,640	20,220	155,100	210,960
1.49	14	7.7	11,998,800	11,880,000	35,940	21,870	167,100	224,910
1.75	13	8.0	13,332,000	13,200,000	36,870	24,300	185,400	246,570

Values of F, x_F , x_D , x_B and i are constants

$$R = \frac{L}{D}$$

(Adapted from an example by Peters and Timmerhaus [6].)

System benzene + toluene

Effect of Reflux Ratio on Annualize	ed Cost of a Distillation Operation
-------------------------------------	-------------------------------------

7	\	7	7	7	Annualized Cost, \$/yr			
R/R _{min}	Actual N	Diam., ft	Reboiler Duty, Btu/h	Condenser Duty, Btu/h	Equipment	Cooling Water	Steam	Total Annualized Cost, \$/yr
1.00	Infinite	6.7	9,510,160	9,416,000	Infinite	17,340	132,900	Infinite
1.05	29	6.8	9,776,800	9,680,000	44,640	17,820	136,500	198,960
1.14	21	7.0	10,221,200	10,120,000	38,100	18,600	142,500	199,200
1.23	18	7.1	10,665,600	10,560,000	36,480	19,410	148,800	204,690
1.32	16	7.3	11,110,000	11,000,000	35,640	20,220	155,100	210,960
1.49	14	7.7	11,998,800	11,880,000	35,940	21,870	167,100	224,910
1.75	13	8.0	13,332,000	13,200,000	36,870	24,300	185,400	246,570

Values of F, x_F , x_D , x_B and i are constants

$$R = \frac{L}{D}$$

(Adapted from an example by Peters and Timmerhaus [6].)

System benzene + toluene

$$\frac{R}{R_{min}}\Big]_{ontimum} \cong 1.1$$

Effect of Reflux	Ratio on	Annualized	Cost of	a	Distillation	Operation
------------------	----------	------------	---------	---	--------------	-----------

7	\	7	7	7	Annualized Cost, \$/yr			
R/R _{min}	Actual N	Diam., ft	Reboiler Duty, Btu/h	Condenser Duty, Btu/h	Equipment	Cooling Water	Steam	Total Annualized Cost, \$/yr
1.00	Infinite	6.7	9,510,160	9,416,000	Infinite	17,340	132,900	Infinite
1.05	29	6.8	9,776,800	9,680,000	44,640	17,820	136,500	198,960
1.14	21	7.0	10,221,200	10,120,000	38,100	18,600	142,500	199,200
1.23	18	7.1	10,665,600	10,560,000	36,480	19,410	148,800	204,690
1.32	16	7.3	11,110,000	11,000,000	35,640	20,220	155,100	210,960
1.49	14	7.7	11,998,800	11,880,000	35,940	21,870	167,100	224,910
1.75	13	8.0	13,332,000	13,200,000	36,870	24,300	185,400	246,570

Values of F, x_F , x_D , x_B and i are constants

$$R = \frac{L}{D}$$

(Adapted from an example by Peters and Timmerhaus [6].)

System benzene + toluene

Summary

- > Influence of the reflux ratio on the efficiency of a distillation column
- Optimal reflux ratio
- Condenser and Boiler in a distillation column
- > Energy Balances to a distillation column
- Energetic balance to the feed stage
- Stage efficiency

Distillation - McCabe - Thiele Method

Condenser and boiler

A distillation unit includes among others:

- 1) The distillation column
- 2) The condenser
- 3) The boiler

The McCabe-Thiele method calculates the total number of equilibrium stages of the distillation unit

Depending on the conditions, this number may include or not the boiler and the condenser

Total Condenser

$$x_0 = x_D = y_1$$

Total Condenser

The Condenser is not a equilibrium stage!

The Condenser is an equilibrium stage!

Total Condenser

Condenser is not an equilibrium stage

Condenser is an equilibrium stage

Total Condenser

Partial Condenser Condenser $N_{\text{column}} = N_{\text{MT}} D, y_D$ V, y_1 L, x_0 D: Vapor $V y_{n+1} L x_n$ x_0 in equilibrium with yD Condensador y_{D} 0.8 1º prato 0.6 χ_0 0.4 0 0.4 0.6 0.8

Condenser is not an equilibrium stage

MT: McCabe-Thiele

0.8

0.6

0.4

Condenser is an equilibrium stage

Partial Boiler

 x_B in equilibrium with y_b

B: Liquid

Boiler is an equilibrium stage

Total Boiler

B: Vapor

$$x_N = y_B = y_b$$

Total Boiler

B: Vapor

$$x_N = y_B = y_b$$

Boiler is not an equilibrium stage

Summary

- > Influence of the reflux ratio on the efficiency of a distillation column
- Optimal reflux ratio
- Condenser and Boiler in a distillation column
- > Energy Balances to a distillation column
- > Energetic balance to the feed stage
- > Stage efficiency

Energy balances

Heat required in the boiler, Q_{boiler}

Partial boiler

$$Q_{boiler} = \overline{V}.\Delta \widehat{H}_{vaporization}$$

 \bar{V} : molar rate of vapour produced in the boiler

 $\Delta \hat{H}_{vap}$: molar enthalpy of vaporization of mixture

(see considering sensible heats negligible!)

Heat to be remover from condenser, Q_{condenser}

$$Q_{condenser} = V.\Delta \widehat{H}_{condenser}$$

Total Condenser

V: molar rate of vapour fed to the condenser

 $\Delta \hat{H}_{cond}$: molar enthalpy of condensation of mixture

Problem 1

A distillation column is used to separate 100 mol/h of a mixture made of two compounds A and C. The feed mixture consists of equal parts of saturated vapor and liquid, with a molar composition of 35% A. It is intended to obtain a distillate with a molar composition of 93% A and a residue with a molar composition of 97.8% C. The reflux ratio is equal to 4.

f) Calculate the heat involved in the boiler and in the condenser.

$$\Delta \hat{H}^{\text{vap}}_{\text{(mistura A+C)}} = 31.2 \text{ kJ/mol}$$

Heat required in the boiler, Q_{boiler}

$$Q_{boiler} = \overline{V}.\Delta \widehat{H}_{vaporization}$$

 \overline{V} : vapour molar rate produced in the boiler

Heat to be remover from condenser, Q_{condenser}

 $Q_{condenser} = V.\Delta \widehat{H}_{condenser}$

V: molar rate of vapour fed to the condenser

Material balances - determine $V, L, \overline{V}, \overline{L}$

$$F = 100 \text{ mol/h}$$

$$D = 36.12 \text{ mol/h}$$

$$B = 63.88 \text{ mol/h}$$

$$x_F = 0.35$$

$$x_{\rm D} = 0.93$$

$$x_{\rm B} = 0.022$$

$$R = 4$$

$$i = 0.5$$

$$R = L/D$$

$$i = \frac{\overline{L} - L}{F}$$

$$V = L + D$$

$$\overline{V} = \overline{L} - B$$

Determine L, V \bar{L} , \bar{V}

$$L = 144.5 \text{ mol/h}$$

$$V = 180.6 \text{ mol/h}$$

$$\bar{L} = 194.5 \text{ mol/h}$$

$$\bar{V} = 130.6 \text{ mol/h}$$

Heat required in the boiler, Q_{boiler}

$$Q_{boiler} = \overline{V}.\Delta \widehat{H}_{vaporization}$$

$$\Delta \hat{H}^{vap} = 31.2 \text{ kJ/mol}$$

$$\bar{V} = 130.6 \text{ mol/h}$$

$$Q_{caldeira} = 4,074.7 \ kJ/h$$

Heat to be remover from condenser, Q_{condenser}

$$Q_{condenser} = V.\Delta \widehat{H}_{condenser}$$

$$\Delta \hat{H}^{cond} = -31.2 \text{ kJ/mol}$$

$$V = 180.6 \text{ mol/h}$$

$$Q_{condensador} = -5,634.7 \, kJ/h$$

Summary

- > Influence of the reflux ratio on the efficiency of a distillation column
- Optimal reflux ratio
- Condenser and Boiler in a distillation column
- Energy Balances to a distillation column
- > Energetic balance to the feed stage
- Stage efficiency

Physical state of the Feed

a) Subcooled liquid

$$\overline{L} = L + F + \upsilon$$

$$i = \frac{\overline{L} - L}{F}$$

$$i = \frac{(L+F+\upsilon)-L}{F}$$

$$i = \frac{F + \upsilon}{F} > 1$$

Value of v: to be determined by an energy balance to feed plate

Example

A distillation column is used to separate a binary mixture A+C. We know that the feed enters the column at 17 °C. Estimate the slope of the feed operating line.

Feed mixture data:

- Specific heat: 225.4 J/(mol.K)
- Boiling point: 63 °C
- Enthalpy of vaporization: 25 900 J/mol

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$

$$i = \frac{\overline{L} - L}{F}$$

• Temperature: 17 °C

Specific heat: 225.4 J/(mol.K)

• Boiling point: 63 °C

• Enthalpy of vaporization: 25 900 J/mol

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$

$$i = \frac{\overline{L} - L}{F}$$

• Temperature: 17 °C

Specific heat: 225.4 J/(mol.K)

Boiling point: 63 °C

• Enthalpy of vaporization: 25 900 J/mol

T_{feed} < T_{saturated liquid}

Subcooled liquid!

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$

$$i = \frac{\overline{L} - L}{F}$$

• Temperature: 17 °C

Specific heat: 225.4 J/(mol.K)

Boiling point: 63 °C

Enthalpy of vaporization: 25 900 J/mol

How to estimate v?

Energy balance to the feed plate

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$

$$i = \frac{\overline{L} - L}{F}$$

• Temperature: 17 °C

Specific heat: 225.4 J/(mol.K)

Boiling point: 63 °C

Enthalpy of vaporization: 25 900 J/mol

$$F. c_p^{liq}. \Delta T = v. \Delta \widehat{H}_{condensation}$$

$$(\Delta T = T_L - T_F)$$
 Sensible heat to warm F moles of from the condensation of v moles of vapor

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$

$$i = \frac{\overline{L} - L}{F}$$

• Temperature: 17 °C

Specific heat: 225.4 J/(mol.K)

Boiling point: 63 °C

• Enthalpy of vaporization: 25 900 J/mol

Energy balance to the feed plate

$$F.c_p^{liq}.\Delta T = v.\Delta \widehat{H}_{condensation}$$

Sensible heat to warm F moles of feed

Latent heat resulting from the condensation of v moles of vapor

$$v = \frac{F.c_p^{liq}.\Delta T}{\Delta \widehat{H}_{condensation}}$$

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$

$$i = \frac{\overline{L} - L}{F}$$

Temperature: 17 °C

Specific heat: 225.4 J/(mol.K)

• Boiling point: 63 °C

• Enthalpy of vaporization: 25 900 J/mol

$$v = \frac{F.c_p^{liq}.\Delta T}{\Delta \widehat{H}_{condensation}}$$

$$v = \frac{225.4 \, J mol^{-1} K^{-1} (336 \, K - 290 \, K)}{25900 \, J mol^{-1}} F = 0.4 \, F$$

$$y_i = \frac{i}{i-1} x_i - \frac{x_F}{i-1}$$

$$i = \frac{\overline{L} - L}{F}$$

Temperature: 17 °C

Specific heat: 225.4 J/(mol.K)

Boiling point: 63 °C

• Enthalpy of vaporization: 25 900 J/mol

$$\bar{L} = L + F + \upsilon$$

$$\upsilon = 0.4F$$

Summary

- > Influence of the reflux ratio on the efficiency of a distillation column
- > Optimal reflux ratio
- Condenser and Boiler in a distillation column
- > Energy Balances to a distillation column
- > Energetic balance to the feed stage
- Stage efficiency

McCabe - Thiele Method

Plate efficiency

In practice, a real plate is not an equilibrium plate

Due to, among others...

- Insufficient time of contact between the two phases
- Deficient mixing of the two phases in the plate
 - ⇒ The liquid and vapour streams exiting the plate are not in equilibrium!

Total efficiency (of the column...)

$$E_0 = \frac{N_{\rm equilibrium \, stages}}{N_{\rm real \, stages}} \leq 1$$

Depends on:

- \triangleright Physical properties of currents L and V (ρ , μ)
- > Flow conditions (V/L)
- Mass and heat transfer (Re, Pr, Sc, Nu, Sh)

It is determined by:

- comparison with performance data from industrial columns
- · use of empirical efficiency equations derived from data on industrial columns
- use of semi theoretical models based on mass- and heat-transfer rates
- scale-up from laboratory or pilot plant columns

Total efficiency (of the column...)

$$E_0 = \frac{N_{\rm equilibrium \, stages}}{N_{\rm real \, stages}} \leq 1$$

For distillation processes where the compounds are close to their boiling points and the viscosity of the liquid phases is low, the efficiency of tray columns is often over 70% and can even reach 100%

> Energetic efficiency on distillation columns

Energetic efficiency

Distillation - intensive energy operation

Optimization of distillation => \Leftrightarrow optimize operating conditions \Leftrightarrow minimize energy consumption

Practical example: R > => • Energy consumption >

• N_{stages} >

That is, a compromise must be established between equipment costs (i.e. sieve trays) and operational costs (i.e. energy costs)!

Energetic efficiency

How to optimize the energy demanding of a distillation unit?

Energetic integration

Hot streams are used to warm cold streams

From *Separation Process Engineering, Third Edition* by Phillip C. Wankat (ISBN: 0131382276) Copyright © 2012 Pearson Education, Inc. All rights reserved.

Energetic integration

Hot streams are used to warm cold streams

Examples:

 Feed is pre-heated in the condenser where the exiting vapor condenses in contact with the cold feed, that in turn will heat

Energetic integration

Hot streams are used to warm cold streams

Examples:

- Feed is pre-heated in the condenser where the exiting vapor condenses in contact with the cold feed, that in turn will heat
- Feed is pre-heated by the bottom current, that acts as a heating fluid

Integrated several distillation columns

The vapour of column 1 is condensed in the boiler of column 2

From Separation Process Engineering, Third Edition by Phillip C. Wankat (ISBN: 0131382276) Copyright © 2012 Pearson Education, Inc. All rights reserved.

Table 7.1 Representative Commercial Binary Distillation Operations

Binary Mixture	Average Relative Volatility	Number of Trays	Typical Operating Pressure, psia	Reflux-to-Minimum-Reflux Ratio
1,3-Butadiene/vinyl acetylene	1.16	130	75	1.70
Vinyl acetate/ethyl acetate	1.16	90	15	1.15
o-Xylene/m-xylene	1.17	130	15	1.12
Isopentane/n-pentane	1.30	120	30	1.20
Isobutane/n-butane	1.35	100	100	1.15
Ethylbenzene/styrene	1.38	34	1	1.71
Propylene/propane	1.40	138	280	1.06
Methanol/ethanol	1.44	75	15	1.20
Water/acetic acid	1.83	40	15	1.35
Ethylene/ethane	1.87	73	230	1.07
Acetic acid/acetic anhydride	2.02	50	15	1.13
Toluene/ethylbenzene	2.15	28	15	1.20
Propane/1,3-butadiene	2.18	40	120	1.13
Ethanol azeotrope/water	2.21	60	15	1.35
Isopropanol/water	2.23	12	15	1.28
Benzene/toluene	3.09	34	15	1.15
Methanol/water	3.27	60	45	1.31
Cumene/phenol	3.76	38	1	1.21
Benzene/ethylbenzene	6.79	20	15	1.14
HCN/water	11.20	15	50	1.36
Ethylene oxide/water	12.68	50	50	1.19
Formaldehyde/methanol	16.70	23	50	1.17
Water/ethylene glycol	81.20	16	4	1.20

Mix, T.W., J.S. Dweck, M. Weinberg, and R.C. Armstrong, Chem. Eng. Prog., 74(4), 49–55 (1978).