

Computational Astrophysics

01. Introduction to MHD

Eduard Larrañaga
Observatorio Astronómico Nacional
Universidad Nacional de Colombia

MHD. Basic Concepts

MagnetoHidroDynamics (MHD)

Description of the dynamics of a electrically conducting fluid in the presence of electromagnetic fields.

The physical properties used to describe these systems include:

- Mass density: ρ
- Velocity of the fluid: \overrightarrow{v}
- Pressure: p
- Temperature: T
- Magnetic field \overrightarrow{B}

Isotropic Medium

In an isotropic medium, there is not a preferred direction in space, i.e. it looks and behaves the same in all directions.

When there is an external (or internal) magnetic field, it usually defines a preferred direction in space and therefore a *magnetized fluid* is an *anisotropic medium*.

Length Scales

We will define some length scales to describe a fluid:

- a_0 : atomic radius
- λ : mean free path between atomic collisions
- δ : physically infinitesimal distance
- L: smallest distance that is macroscopically relevant for the system. An example is the shortest wavelength of interest in the system:

$$L \sim \frac{1}{k_{max}} \sim \lambda_{min}$$

Length Scales

A fundamental assumption in MHD is that

$$\lambda \sim a_0 \ll \delta < L$$

When $\lambda \geq \delta$ or $\lambda \geq L$ the MHD model must be extended.

Time Scales

We will also define a characteristic time scale. First we define the following properties:

- v : characteristic velocity of the fluid
- c: speed of light (in vacuum)
- ω : characteristic frequency

Time Scales

Low-frequency motion is characterized by

$$\frac{v^2}{c^2} \ll 1$$

Using
$$v = \omega L$$
, we have $\omega \ll \frac{c}{L}$

and therefore,
$$\tau = \frac{1}{\omega} \gg \frac{L}{c} = \tau_c$$
 ,

i.e. the characteristic time au is much greater than the time interval in which light travels the macroscopic system, au_c .

Fluids

A fluid is a substance that resist the action of compressive stresses but continually deforms (flows) under the action of shear stresses.

Fluids

A fluid is a substance that resist the action of compressive stresses but continually deforms (flows) under the action of shear stresses.

 F_r is the restoring force that supports the compressive stress. This produces compressional waves.

Fluids

A fluid is a substance that resist the action of compressive stresses but continually deforms (flows) under the action of shear stresses.

 F_r is the restoring force that supports the compressive stress. This produces $compressional\ waves.$

The fluid cannot support the shearing stress. There are not shear waves.