MODOS DE DIRECCIONAMIENTO DE DATOS

CURSO DE MICROPROCESADORES ING. WILSON JAVIER PEREZ H.

ESCUELA DE INGENIERIA ELECTRONICA

DIRECCIONAMIENTO POR REGISTROS

DIRECCIONAMIENTO INMEDIATO

EFECTO DE LA INSTRUCCIÓN MOV AX, DATA

Ejm: MOV AX,2F36H

Programa: B8362F

Contenido de AX antes de ejecutar la instrucción

AX 2F36

BX

Contenido de AX después de ejecutar la instrucción

3

Ing. WJPH - UPTC - Curso de Microprocesadores

DIRECCIONAMIENTO DIRECTO DE DATOS

EFECTO DE LA INSTRUCCIÓN MOV AL,[DIR]

Ejm: MOV AL,[3A27] si DS=1000H

AX AH AL 45 45 13A27H

BX BH BL Contenido de AL después de ejecutar la instrucción

DIRECCIONAMIENTO POR DESPLAZAMIENTO

EFECTO DE LA INSTRUCCIÓN MOV CL,[DIR]

Ejm: MOV CL,[3000] si DS=2000H

Se diferencia con la anterior en que ésta instrucción una vez ensamblada ocupa 4 bytes mientras que la anterior ocupa solo 3.

-				Contenido de CL antes
AX	AH	AL		de ejecutar la instrucción Memoria
BX	ВН	BL		
CX	СН	CL	C6	C6 23000H

DIRECCIONAMIENTO INDIRECTO POR REGISTRO

EFECTO DE LA INSTRUCCIÓN MOV AL,[REG]

Ejm: MOV AX,[BX] si

DS=0100H y BX=1000H

Matriz de registro

AX

905E

BX

1000

90

2001H

5E

2000H

 $0100H \times 10H + 1000H$

Ing. WJPH - UPTC - Curso de Microprocesadores

DIRECCIONAMIENTO INDIRECTO POR REGISTRO

ARREGLO DE DATOS EN FORMA DE TABLA

Ejm:

MOV BX,OFFSET TABLA

MOV CX,50

CICLO: IN AL, DATA_PORT

MOV [BX],AL

INC BX

LOOP CICLO

DIRECCIONAMIENTO INDIRECTO POR REGISTRO

ARREGLO DE DATOS EN FORMA DE TABLA

TABLA+49

TABLA+48

BX TABLA

TABLA+2
TABLA+1
TABLA

DIRECCIONAMIENTO BASE MAS INDICE

LOCALIZACION DE DATOS

Ejm:

MOV DX,[BX+SI] si

DS = 0100H, BX = 1000H y SI = 0010H

Para generar la dirección se deben sumar los registros antes mencionados como se muestra a continuación:

$$0010H + 1000H + 1000H = 2010H$$

SI

BX

DSx10H

DIRECCIONAMIENTO BASE MAS INDICE

DIRECCIONAMIENTO BASE MAS INDICE

DIRECCIONAMIENTO RELATIVO POR REGISTRO

EFECTO DE LA INSTRUCCIÓN MOV AX,[BX+1000H] si BX=0100H y DS=0200H

Ing. WJPH - UPTC - Curso de Microprocesadores

DIRECCIONAMIENTO DE UN ARREGLO DE DATOS CON DIRECCIONAMIENTO RELATIVO POR REGISTRO

DIRECCIONAMIENTO RELATIVO BASE MAS INDICE

EFECTO DE LA INSTRUCCIÓN MOV AX,[BX+SI+100H] si BX=0020H, SI=0010H y DS=1000H

DIRECCIONAMIENTO RELATIVO BASE MAS INDICE

Ejm:

Direccionamiento de arreglos con direccionamiento relativo base mas índice.

MOV BX,OFFSET RECA

MOV DI,0

MOV AL, ARCHIVO[BX+DI]

MOV BX,OFFSET RECC

MOV DI,2

MOV ARCHIVO [BX+DI],AL

DIRECCIONAMIENTO RELATIVO BASE MAS INDICE

