Neural Power Units

Arithmetic extrapolation with fractional powers NeurIPS | 2020

Niklas Heim, Václav Šmídl, Tomáš Pevný

Artificial Intelligence Center, Czech Technical University

https://github.com/nmheim/NeuralArithmetic.jl

Arithmetic extrapolation

- → Neural Networks are great at interpolation, but they poorly extrapolate.
- →Neural arithmetic assumes that the problem is composed of arithmetic operations.

Examples

Function approximation

$$f(x,y) = (x+y, xy, \frac{x}{y}, \sqrt{x})^{\mathsf{T}}$$

Differential equations in physical / financial modelling

$$\begin{bmatrix} \dot{S} \\ \dot{l} \\ \dot{k} \end{bmatrix} = \begin{bmatrix} -\beta & 0 & \eta \\ \beta & -\alpha & 0 \\ 0 & \alpha & \eta \end{bmatrix} \begin{bmatrix} l^{\gamma} S^{\kappa} \\ l \\ R \end{bmatrix}$$

1

NALU - Trask et al.

Definition: Neural Arithmetic Logic Unit (NALU)

Addition:
$$\pmb{a} = \hat{\pmb{W}} \pmb{x}$$
 $\hat{\pmb{W}} = \tanh(\pmb{W}) \odot \sigma(\pmb{M})$ Multiplication: $\pmb{m} = \exp(\hat{\pmb{W}}\log(|\pmb{x}| + \epsilon))$ Output: $\pmb{y} = \pmb{a} \odot \pmb{g} + \pmb{m} \odot (1 - \pmb{g})$ $\pmb{g} = \sigma(\pmb{G}\pmb{x})$

NALU has constrained weights, and is gating between an addition (+) and multiplication/division (\times, \div) path.

Inconsistent convergence, negative numbers not handled correctly.

NMU & NAU - Madsen & Johansen

Definition: Neural Multiplication & Addition Units

NMU:
$$y_j = \prod_i \hat{M}_{ij} x_i + 1 - \hat{M}_{ij}$$
 $\hat{M}_{ij} = \min(\max(M_{ij}, 0), 1)$ (1)

NMU & NAU have constrained weights, and are learning (+) and (\times) by stacking.

No division (\div) .

Neural Power Unit

We improved NALU's multiplication path

$$m = \exp(W \log_{\text{real}}(|x|))$$

by lifting it into complex space ($\log := \log_{complex}$)

$$z = \text{Re}(\exp(W_{\mathbb{C}} \log x)) = \text{Re}(\exp\left((W_{r} + iW_{i}) \log x\right)).$$

Naive Neural Power Unit (NaiveNPU)

Definition: Naive Neural Power Unit

$$\mathbf{y} = \exp(\mathbf{W}_r \log \mathbf{r} - \pi \mathbf{W}_i \mathbf{k}) \odot \cos(\mathbf{W}_i \log \mathbf{r} + \pi \mathbf{W}_r \mathbf{k}), \text{ where}$$

$$\mathbf{r} = |\mathbf{x}| + \epsilon, \quad k_i = \begin{cases} 0 & x_i \ge 0 \\ 1 & x_i < 0 \end{cases},$$

5

Neural Power Unit (NPU) & Relevance Gate

Definition: Neural Power Unit

$$y = \exp(W_r \log r - \pi W_i k) \odot \cos(W_i \log r + \pi W_r k)$$
, where $r = \hat{g} \odot (|\mathbf{x}| + \epsilon) + (1 - \hat{g})$, $k_i = \begin{cases} 0 & x_i \ge 0 \\ \hat{g}_i & x_i < 0 \end{cases}$, $\hat{g}_i = \min(\max(g_i, 0), 1)$,

6

Learning Simple Arithmetic

$$f(x,y) = (x+y, xy, \frac{x}{y}, \sqrt{x})^T$$

RealNPU denotes the NPU with $W_i = 0$.

Towards Equation Discovery

The fractional SIR model (fSIR, Taghvaei et al. [2020])

$$\begin{bmatrix} \dot{S} \\ \dot{l} \\ \dot{R} \end{bmatrix} = \begin{bmatrix} -\beta & 0 & \eta \\ \beta & -\alpha & 0 \\ 0 & \alpha & \eta \end{bmatrix} \begin{bmatrix} l^{\gamma} S^{\kappa} \\ l \\ R \end{bmatrix}, \begin{array}{c} \alpha = 0.05 \\ \beta = 0.05 \\ \eta = 0.01 \\ \gamma = \kappa = 0.5 \end{array}$$

Towards Equation Discovery

The fractional SIR model (fSIR, Taghvaei et al. [2020])

$$\begin{bmatrix} \dot{\mathsf{S}} \\ \dot{l} \\ \dot{R} \end{bmatrix} = \begin{bmatrix} -\beta & 0 & \eta \\ \beta & -\alpha & 0 \\ 0 & \alpha & \eta \end{bmatrix} \begin{bmatrix} l^\gamma \mathsf{S}^\kappa \\ l \\ R \end{bmatrix}, \begin{array}{c} \alpha = 0.05 \\ \beta = 0.05 \\ \eta = 0.01 \\ \gamma = \kappa = 0.5 \end{array}$$

Neural Power Units

Arithmetic extrapolation with fractional powers NeurIPS | 2020

Niklas Heim, Václav Šmídl, Tomáš Pevný

Artificial Intelligence Center, Czech Technical University

https://github.com/nmheim/NeuralArithmetic.jl