design and analysis of ecological experiments: a bestiary of experimental and sampling designs

chris moore and jake dittel university of nevada, reno BIOL322: experimental field ecology 29 may 2013

outline

- continuity of variables
- dependency of variables
- classes of experimental design

continuous, unbounded

- continuous, unbounded
- continuous, upper or lower bounded

- continuous, unbounded
- continuous, upper or lower bounded
- continuous, upper and lower bounds

- continuous, unbounded
- continuous, upper or lower bounded
- continuous, upper and lower bounds
- categorical, many regular intervals

- continuous, unbounded
- continuous, upper or lower bounded
- continuous, upper and lower bounds
- categorical, many regular intervals
- categorical, few regular intervals

- continuous, unbounded
- continuous, upper or lower bounded
- continuous, upper and lower bounds
- categorical, many regular intervals
- categorical, few regular intervals
- categorical, ordinal with fairly evenly distributed rankings

- continuous, unbounded
- continuous, upper or lower bounded
- continuous, upper and lower bounds
- categorical, many regular intervals
- categorical, few regular intervals
- categorical, ordinal with fairly evenly distributed rankings
- categorical, categorical with unevenly distributed rankings

- continuous, unbounded
- continuous, upper or lower bounded
- continuous, upper and lower bounds
- categorical, many regular intervals
- categorical, few regular intervals
- categorical, ordinal with fairly evenly distributed rankings
- categorical, categorical with unevenly distributed rankings
- categorical, nominal with no apparent ranking

outline

- continuity of variables
- dependency of variables
- classes of experimental design

- dependent variable
 - response variable

- dependent variable
 - response variable
 - Y variable

- dependent variable
 - response variable
 - Y variable
- independent variable

- dependent variable
 - response variable
 - Y variable
- independent variable
 - predictor variable

- dependent variable
 - response variable
 - Y variable
- independent variable
 - predictor variable
 - X variable

- dependent variable
 - response variable
 - Y variable
- independent variable
 - predictor variable
 - X variable

$$y = \alpha + bx$$

- dependent variable
 - response variable
 - Y variable
- independent variable
 - predictor variable
 - X variable

$$y = \alpha + bx$$

predictor variable

outline

- continuity of variables
- dependency of variables
- classes of experimental design

variable		continuous	categorical
	continuous		
dependent	categorical		

ariable		continuous	categorical
dent va	continuous	regression	
depen	categorical		

variable		continuous	categorical
	continuous	regression	ANOVA
dependent	categorical		

ariable

classes of design

variable		continuous	categorical
ent	continuous	regression	ANOVA
depend	categorical	logistic regression	

/ariable		continuous	categorical
dent \	continuous	regression	ANOVA
depen	categorical	logistic regression	tabular

/ariable		continuous	categorical
dent \	continuous	regression	ANOVA
depen	categorical	logistic regression	tabular

simple regression

simple regression

$$Y = \beta X$$

simple regression

$$Y = \beta X$$

multiple regression

simple regression

$$Y = \beta X$$

multiple regression

$$Y = \beta_1 X_1 + \beta_2 X_2 \dots$$

simple regression

$$Y = \beta X$$

multiple regression

$$Y = \beta_1 X_1 + \beta_2 X_2 \dots$$

multivariate regression

simple regression

$$Y = \beta X$$

multiple regression

$$Y = \beta_1 X_1 + \beta_2 X_2 \dots$$

• multivariate regression $[Y_1...Y_p] = [\beta_1 X_1...\beta_p X_q]$

simple regression l

 sample within the full range of dependent variable

response variable

distribution of predictor is uniform . . . ish

simple regression l

sample within the full range of dependent variable

distribution of

predictor is

uniform . . . ish

response variable

sample within the full range of dependent variable

esponse variable

 distribution of predictor is uniform . . . ish

 sample within the full range of dependent variable

variabledistribution of predictor is

uniform . . . ish

response variable

predictor variable

 sample within the full range of dependent variable

distribution of predictor is uniform . . . ish

predictor variable

 sample within the full range of dependent variable

distribution of predictor is uniform . . . ish

predictor variable

statistical test

- statistical test
 - null hypothesis:

$$H_o = Y = \beta_o + \varepsilon$$

- statistical test
 - null hypothesis:

$$H_o = Y = \beta_o + \varepsilon$$

alternative hypothesis:

$$H_a = Y = \beta_o + \beta_1 X + \varepsilon$$

predictor variable

classes of design

independent variable

/ariable		continuous	categorical
dent \	continuous	regression	ANOVA
depen	categorical	logistic regression	tabular

logistic regression

- special case of regression where dependent variable is categorical
- same statistical hypotheses, but equation reads:

$$H_a = \ln\left(\frac{p}{1-p}\right) = \beta_o + \beta_1 X + \varepsilon$$

classes of design

independent variable

/ariable		continuous	categorical
dent \	continuous	regression	ANOVA
depen	categorical	logistic regression	tabular

ANalysis Of VAriance

- ANalysis Of VAriance
- TERMINOLOGY

- ANalysis Of VAriance
- TERMINOLOGY
 - treatments: different categories of predictor

- ANalysis Of VAriance
- TERMINOLOGY
 - treatments: different categories of predictor
 - (treatment) level: each value in a treatment

- ANalysis Of VAriance
- TERMINOLOGY
 - treatments: different categories of predictor
 - (treatment) level: each value in a treatment
 - replicate: observation within a treatment

- ANalysis Of VAriance
- TERMINOLOGY
 - treatments: different categories of predictor
 - (treatment) level: each value in a treatment
 - replicate: observation within a treatment
 - main effect: additive effects on each treatment

- ANalysis Of VAriance
- TERMINOLOGY
 - treatments: different categories of predictor
 - (treatment) level: each value in a treatment
 - replicate: observation within a treatment
 - main effect: additive effects on each treatment
 - **interaction effect**: synergistic / multiplicative responses to treatments

single-factor ANOVA

single-factor ANOVA

randomized block design

single-factor ANOVA

randomized block design

nested designs

single-factor ANOVA

randomized block design

nested designs

multiple-factor

single-factor ANOVA

randomized block design

nested designs

multiple-factor

classes of design

independent variable

/ariable		continuous	categorical
dent \	continuous	regression	ANOVA
depen	categorical	logistic regression	tabular

column 1		column 2	row total
row 1	observation 1,1	observation 1,2	sum row 1
row 2	observation 2,1	observation 2,2	sum row 2
column total	sum column 1	sum column 2	grand total

	column 1	column 2	row total
row 1 observation 1,1		observation 1,2	sum row 1
row 2	observation 2,1	observation 2,2	sum row 2
column total	sum column 1	sum column 2	grand total

	column 1	column 2	row total
row 1	expected 1,1	expected 1,2	sum row 1
row 2	expected 2,1	expected 2,2	sum row 2
column total	sum column 1	sum column 2	grand total

	column 1	column 2	row total
row 1 observation 1,1		observation 1,2	sum row 1
row 2	observation 2,1	observation 2,2	sum row 2
column total	sum column 1	sum column 2	grand total

	column 1	column 2	row total
row 1	expected 1,1	expected 1,2	sum row 1
row 2	expected 2,1	expected 2,2	sum row 2
column total	sum column 1	sum column 2	grand total

$$\chi^2_{Pearson = \frac{(observed - expected)^2}{expected}}$$

	column 1	column 2	row total
row 1 observation 1,1		observation 1,2	sum row 1
row 2	observation 2,1	observation 2,2	sum row 2
column total	sum column 1	sum column 2	grand total

	column 1	column 2	row total
row 1	expected 1,1	expected 1,2	sum row 1
row 2	expected 2,1	expected 2,2	sum row 2
column total	sum column 1	sum column 2	grand total

$$\chi^2_{Pearson = \frac{(observed - expected)^2}{expected}}$$

classes of design

independent variable

/ariable		continuous	categorical
dent \	continuous	regression	ANOVA
depen	categorical	logistic regression	tabular

when designing your experiment, think:

- when designing your experiment, think:
 - 1. what is the most informative type of data we can gather?

- when designing your experiment, think:
 - 1. what is the most informative type of data we can gather?
 - 2. how does causality work in our system?

- when designing your experiment, think:
 - 1. what is the most informative type of data we can gather?
 - 2. how does causality work in our system?
 - 3. what will data analysis look like?

- when designing your experiment, think:
 - 1. what is the most informative type of data we can gather?
 - 2. how does causality work in our system?
 - 3. what will data analysis look like?
- remember the KISS principle:

- when designing your experiment, think:
 - 1. what is the most informative type of data we can gather?
 - 2. how does causality work in our system?
 - 3. what will data analysis look like?
- remember the KISS principle:
 - Keep It Simple, Stupid