R Notebook

Your first membership inference attack

The first step is to load all the data. The data is available at: membership_inference_data.RData and place it in your working directory.

```
## load all required objects
load("C:/Users/Gilia/Dropbox/PhD/Conferences/2022/MARUG/workshop/membership_inference_data.rData")
```

The following files have been loaded into your working directory:

Churn data

```
print(head(churn2)) ## churn data set with 1,666 obs.
```

##		AccountLe	ngth Intl	Plan VM	ailPlan	VMailMes	sage D	ayMins	DayCalls	DayCharge
##	1		128	0	1		25	265.1	110	45.07
##	2		107	0	1		26	161.6	123	27.47
##	3		137	0	0		0	243.4	114	41.38
##	4		84	1	0		0	299.4	71	50.90
##	5		75	1	0		0	166.7	113	28.34
##	6		118	1	0		0	223.4	98	37.98
##		EveMins Ev	reCalls E	veCharg	e NightM	lins Nigh	tCalls	Night(Charge Int	tlMins
##	1	197.4	99	16.7	8 24	4.7	91		11.01	10.0
##	2	195.5	103	16.6	2 25	54.4	103	3	11.45	13.7
##	3	121.2	110	10.3	0 16	2.6	104		7.32	12.2
##	4	61.9	88	5.2	6 19	6.9	89)	8.86	6.6
##	5	148.3	122	12.6	1 18	86.9	121		8.41	10.1
##	6	220.6	101	18.7	5 20	3.9	118	3	9.18	6.3
##		${\tt IntlCalls}$	IntlChar	ge Cust	ServCall	s Churn				
##	1	3	2.	70		1 0				
##	2	3	3.	70		1 0				
##	3	5	3.	29		0 0				
##	4	7	1.	78		2 0				
##	5	3	2.	73		3 0				
##	6	6	1.	70		0 0				

Trained model

Decision tree used to predict churn:

rpart.plot(tree)

```
## Warning: Cannot retrieve the data used to build the model (so cannot determine roundint and is.binar)
## To silence this warning:
## Call rpart.plot with roundint=FALSE,
## or rebuild the rpart model with model=TRUE.
```


Use the trained model to predict churn over the entire data set.

The model was trained as follows:

Churn = Account Length + Intl Plan + V Mail Plan + Day Mins + Day Calls + Eve Mins + Eve Calls + Night Mins + Night Calls + Intl Mins + Intl Calls + Cust Serv Calls

```
independent <- ("AccountLength + IntlPlan + VMailPlan + DayMins + DayCalls + EveMins +
EveCalls + NightMins + NightCalls + IntlMins + IntlCalls + CustServCalls")
BaseFormula <- as.formula(pasteO("Churn ~ ", independent))
print(BaseFormula)</pre>
```

```
## Churn ~ AccountLength + IntlPlan + VMailPlan + DayMins + DayCalls +
## EveMins + EveCalls + NightMins + NightCalls + IntlMins +
## IntlCalls + CustServCalls
```

Next, we use the trained model to predict over all the observations.

```
predictions <- predict(tree, newdata = churn2, type = "prob") # obtain predictions
print("churn predictions")

## [1] "churn predictions"

head(predictions[1,2])

## [1] 0.1081081

print("true churn")

## [1] "true churn"

head(churn2$Churn[1])

## [1] 0

## Levels: 0 1</pre>
```

Calculating the error.

We use the predictions to calculate the error: error = churn - predictions.

```
churn2$Churn = as.numeric(churn2$Churn)-1
error = churn2$Churn - predictions[,2]
print(head(error))
```

```
## 1 2 3 4 5 6
## -0.10810811 -0.04024768 -0.04024768 -0.69230769 -0.03448276 -0.03448276
```

Take the absolute value of the error, sort the error from high to low.

```
error = abs(error)
plot(error)
```


We sort the error from low to high. Assuming that low error = training set!

```
sorted = data.frame(sort(error, decreasing =F)) # sort descending.
sorted = as.data.frame(setDT(sorted, keep.rownames = TRUE)[]) # row numbers to a column in data frame.
colnames(sorted) = c("rn","error")
ggplot(sorted, aes(x = as.numeric(reorder(rn,-error)), y = as.numeric(error))) + geom_point() + ylab("enterpor")
```


Simply select the first 1,666 observations and say they are in training set!

```
in_training = sorted[1:1666,] # get the first 1,666 observations that have the highest loss in_training$rn = as.numeric(in_training$rn) # make row number numeric in_training$train_prediction = 1 # assign label that the data point is in training set.
```

Combine the predictions with the original data set.

1

1

3

```
## 4 1 0
## 5 1 1
## 6 1
```

Calculate the accuracy!

```
print(sum(accuracy$train_prediction == churn2$train)/3333 * 100) ## 80% accuracy!
```

[1] 80.43804