Donner l'équivalence en binaire du nombre signé suivant en 6 bits : (-21)10

Premièrement, l'équivalence binaire de +21 est : 1*16+0*8+1*4+0*2+1*1 =10101

Sous 6 bits, +21 vaut 010101

Le complément à 1 de 010101 est de 101010

Son complément à 2 est 101010+1=101011

Son complement a 2 est 101010+1=101011

Donc (-21)10=(101011)2

Evaluation des expressions booléennes

Postulats

Disjonction (+)	Conjonction (.)
1+1=1	1.1=1
1+0=0+1=1	1.0=0.1=0
0+0=0	0.0=0
$\overline{1} = 0$	$\bar{0} = 1$

Axiomes

propriété	Disjonction (+)	Conjonction (.)
Commutativité	A+B=B+A	A.B=B.A
Associativité	A+(B+C)=(A+B)+C	A.(B.C)=(A.B).C
Distributivité	A+(B.C)=(A+B).(A+C)	A.(B+C)=A.B+A.C
Elément neutre	A+0=A	A.1=A
Elément absorbant	A+1=1	A.0=0
Complémentation	$A + \overline{A} = 1$	$A. \overline{A} = 0$
Idempotence	A+A=A	A.A=A
Involution	$\overline{\overline{A}} = A$	$\bar{\bar{A}} = \bar{A}$

Théorèmes

1. Théorème de DE MORGAN

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A+B}=\overline{A}\cdot\overline{B}$$

2. Théorème d'inclusion

$$\begin{array}{c} A\cdot B+A\cdot \overline{B}=A\\ {}^{A}(\overline{g}_{+}\overline{g})=\underline{g}_{+})=A\\ 3. \ \ \text{Théorème d'allégement} \end{array}$$

$$(A+B)\cdot (A+\overline{B})=A$$

$$A+B\overline{B}+B\overline{B}+B\overline{B}=A((-\overline{B}+\overline{B}))=A$$

$$A \cdot (\overline{A} + B) = A \cdot B$$

$$A + \overline{A} \cdot B = A + B$$

4. Théorème d'absorption

$$(A+\overline{A})\cdot(A+\overline{B})$$

$$A + A \cdot B = A$$

$$A \cdot (A + B) = A$$

5. Théorème de dualité

Chaque axiome et chaque postulat possède un équivalent dual, où les éléments 0 sont remplacés par des 1, les 1 par des 0, les (°) par des (+) et vice versa. Aussi, tout théorème de l'algèbre de Boole a son équivalent dual.

Exemple: A+A.B=A⇔A.(A+B)=A; A+1=1⇔A.0=0

Réflexion de Michaud

Si
$$A = B \oplus C$$
 alors $B = A \oplus C$

Terminologie

Logique combinatoire : La valeur de sortie d'une fonction dépend uniquement des valeurs des variables d'entrées et ne dépend pas des états antérieurs de la fonction (pas de mémorisation).

Variable logique: Grandeur représentée par un symbole, pouvant prendre deux valeurs logiques distinctes.

Etat logique: Valeur d'une variable logique, représentée par les chiffres « 0 » ou « 1 » ou les lettres « H » ou « L ». (H=High; L=Low).

Opérateur logique: Il existe trois opérateurs de base : Non, Ou, Et.

Porte logique: Un circuit électronique élémentaire permettant de réaliser la fonction d'un opérateur logique

0

3

devient 0); il est représenté par une barre au-dessus

de la variable, exemple: Ā,

Opérateur unaire (appliqué sur une variable) qui

Opérateur binaire qui fait le produit logique entre deux variables, retourne 1 si et seulement si les deux variables en entrées sont

La conjonction (et):

à l'État 1, il est représenté par un point, exemple A.B,

Opérateurs de base

a négation (non):

nverse la valeur d'une variable (0 devient 1 et 1

\	S	0	
	B	0	_
	-	0	0

S	0	-	-	-
8	0	-	0	_
-	0	0	_	_

s	0	-	-	-
8	0	-	0	_
-	0	0	_	_

qui fait la somme logique entre deux variables, il

entrées est en état 1, il est représenté par +,

exemple A+B,

donne 1 si au moins une des variables en

Opérateur binaire (appliqué sur deux variables)

La disjonction (ou):

S		0	0	0
22	0	-	0	
-		0	_	-

S		 	0
m	0	 0	-
-		_	_

1			
1	· ent	0	2
4	0	-	
	-	-	~ m

S		-		0
2	0		0	-
-	0		_	_

	1	0	
	_	1	
T	_	ተ	
	H	T	

	į	•	,		
٦	S	Ļ	ļ		
	5	4	2		
	5		2		
	B		ì	•	
	ξ		Ē		
	ē	3	5		
	¢	3	,		
	•	è	,		
	S		Ē		
	Ξ		,		
ě	9	L	2		
ŝ	7	E	ī		
	i,	Ī	ī		
٠	q	L	,		

sont à 0, il est représenté par une flèche vers le bas, Operateur binaire qui fait la négation de l'opérateur OU, il retourne 1 si toutes les variables en entrées Opérateur NOR (Non Ou)

٥.	
	8
	Š

erateur NAND (Non Et)

ble d'entrées égale à 0, il est représenté par une flèche vers le haut, exemple $A \cdot B = A \uparrow B$, rateur ET, il retourne 1 si au moins une ateur binaire qui fait la négation de

S	0			9
80	0	_	0	-
4	0	0	_	_

6	۱°
1	\wedge
-7	m
	4

exemple: $A + B = A \downarrow B$

S	-	0	0	-
8	0	-	0	-
4	0		_	_

-	
į	Į
6	7
Ī	

				-
n	0	0	0	
2	0	****	-	_
-:	0		-	_

Opérateur XOR (OU Exclusif)

Opérateur binaire qui vérifie si les deux variables en entrées sont différentes, si oui il retourne 1, il est eprésenté par un plus encerclé,

Exemple : $A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$

Opérateur XNOR

Opérateur binaire qui vérifie si les deux variables en entrées sont égaux, il retourne 1 si oui, il est défini

Remarque: $A \oplus B \oplus C = (A \oplus B) \oplus C = A \oplus (B \oplus C)$

comme suit : $A \oplus B = A \cdot B + \bar{A} \cdot \bar{B}$