Productizing new technologies for datacenter deployment

Prepared for a Talk at IEEE/ACM International Symposium on Microarchitecture Cloud@MICRO (10/18/2021)

Siamak Tavallaei
Chief Systems Architect, Google
On the Board of Directors, CXL Consortium
Server Project Lead at OCP Incubation Committee

Points expressed here are not reflective of Google plans or views at-large

<u>Abstract</u>

This section explores driving industrystandard efforts and technologies such as **C**ompute e**X**press **L**ink (**CXL**) into Open Compute Project (**OCP**) as a means to realize products in such a way to enable and encourage highvolume adoption into **datacenters**.

Outline

- Earlier presentations discussed workload performance and a few new technologies
- Customer (workloads & operations)
- CXL as a technology example
 - CXL enables technical benefits
 - CXL-based offerings and use-cases of interest
- Fundamental requirements persist
- Solutions
- Enablers
- Industry-wide efforts: CXL, PCIe, SNIA, NVMe, JEDEC, DMTF, and OCP

A Flywheel of Opportunities for Datacenters Hyperscale **Datacenters End-user** Customers **Industry Efforts** CXL Validation HW Diags (CPU, DRAM, SSD, NIC, System) Hyperscale (remote FW upgrade, attestation, **Emerging** power, reset, telemetry) **End-user** Reference HW Reference SW **Technologies** Enterprise Boot CPU Customers BMCs (multiple) Management **Datacenters** Security RoTs (multiple) NIC Networking Storage SSD GPU, xPU Modeling Benchmarking ossibly more than one Likely more than one reference mach Software Ingredients **Open Source SW** End-user Edge Customers **Datacenters End User** Audience Product Musician **Enclosures Design Specification** Conductor **Base Specification** Composer

CXL-enabled Opportunities

Interconnect

Based on PCIe physical layer, high-speed

Optimization for **Coherent**, Load/Store Semantics with **low-latency** for short packets

Fan-out using a Switch (large systems)

Memory

Memory Capacity and Bandwidth Expansion

Memory **Pooling**

Emerging Memory Technologies

Storage-class Memory

Architected optimizations for **persistent** memory using Load/Store semantics

Pooling (sub-dividing a Large Device)

Accelerators

Computational Off-loading

CPU and Accelerator working on the same coherent memory region

Avoiding superfluous data movement and reducing the associated time and energy (computation applications: in-memory, in-storage, and in-peer-accelerator)

CXL-enabled Opportunities

Interconnect

Based on PCIe physical layer, high-speed

Optimization for **Coherent**, Load/Store Semantics with **low-latency** for short packets

Fan-out using a Switch (large systems)

Memory

Memory Capacity and Bandwidth Expansion

Memory **Pooling**

Emerging Memory Technologies

Storage-class Memory

Architected optimizations for **persistent** memory using Load/Store semantics

Pooling (sub-dividing a Large Device)

Accelerators

Computational Off-loading

CPU and Accelerator working on the same coherent memory region

Avoiding superfluous data movement and reducing the associated time and energy (computation applications: in-memory, in-storage, and in-peer-accelerator)

Lots of fun for the technologists!

CXL Ecosystem

Major companies have announced product plans around CXL

- SoC suppliers
- Memory controller suppliers
- Storage suppliers
- Network controller suppliers
- Accelerator suppliers
- Switch suppliers

CXL Ecosystem

Major companies have announced product plans around CXL

- SoC suppliers
- Memory controller suppliers
- Storage suppliers
- Network controller suppliers
- Accelerator suppliers
- Switch suppliers

This **broad** engagement is the major **advantage** we expect of CXL to deliver a **successful** and profitable environment for all **participants**

Customers

• Enterprise customers have diverse set of needs

 As the Enterprise customers move their requirements to the Cloud Datacenters, they enjoy the benefits at-scale and bring their diverse needs to The Cloud

• Edge solutions benefit from this Enterprise & Cloud interplay

Do off-the-shelf solutions (OTS)

meet *Datacenter* Requirements?

Fundamental Requirements Persist

We still need to deliver integrated hardware and software solutions which are

Useful

Desirable

High Quality

- Secure (RoT and Chain of Trust: at-rest, in-transit, and secure execution)
- Safe
- Reliable
- Available

Manageable

- Serviceable
- Diagnosable

Performant

Efficient (power, space, cost, time, complexity, ...)

Fundamental Requirements Persist

We still need to deliver integrated hardware and software solutions which are

Useful

Desirable

High Quality

- Secure (RoT and Chain of Trust: at-rest, in-transit, and secure execution)
- Safe
- Reliable
- Available

Manageable

- Serviceable
- Diagnosable

Performant

Efficient (power, space, cost, time, complexity, ...)

Especially when driving the solutions into Large Datacenters

Solution

Balanced **Core** Architecture

• Frameworks, Software, Compute, BW, Capacity, Latency

General-purpose

Modular Building Blocks

Extensible

Allow heterogeneous variants based on the core Building Blocks

Challenges in deploying traditional Servers into Hyperscaled Datacenters

Balanced match of:

CPU core count
Memory Capacity, Bandwidth, and Latency

Storage Capacity, Bandwidth, IOPS, and Tail Latency Network Bandwidth

Challenging to meet the above balance in presence of varied workloads and customer VMs in high-volume production

Result:

Overprovisioned resources to meet customer demands
Unused or underused resources
Increased Cost

How can a new technology

such as CXL

help?

Extensible Solutions

Topology

- Point-to-point
- Multi-port
- Switched

Density (multi-port)

- Dense packaging of (n x m) multi-ported Devices
- Liquid cooling

Reach (SERDES)

- Longer Links (to all devices including memory!)
- Modular Enclosures
- Cabled Solutions
- Photonics

Extensibility (heterogeneous)

Compute (xPU), Memory, Storage, Networking

Capacity-matched Bandwidth-matched

Is CXL the End-all?

Should we move everything to the new technology?

Is CXL the End-all?

Should we move everything to the **new technology**?

Putting Things where they Belong!

PCle

- Software-managed consistency (DMA, RDMA)
- Block Data Moves (Large Payloads)
- Deferred Calls, Interrupts
- Latency-tolerant
- Sequential data access

CXL

- Hardware-managed (Coherence)
- Load/Store (Short Packets)
- In-line codes
- Latency-sensitive
- Concurrent data access

Putting Things where they Belong!

PCle

- Software-managed consistency (DMA, RDMA)
- Block Data Moves (Large Payloads)
- Deferred Calls, Interrupts
- Latency-tolerant
- Sequential data access

CXL

- Hardware-managed (Coherence)
- Load/Store (Short Packets)
- In-line codes
- Latency-sensitive
- Concurrent data access
- Enabling new optimizations and programing paradigms

There will be a transitional period

from one to the other

Remember!

All Fundamental Requirements Persist!

Enablers Needed

Enablers Needed

A Vibrant Ecosystem

Enablers

Riding on the Coattail of The Giants

Industry Efforts

- CXL Consortium
- PCle SIG
- SNIA
- NVMe
- JEDEC
- DMTF
- OCP
- ...

Enablers (Software and Firmware Ingredients)

CXL Fabric Manager

Secure composability, allocation, on-lining/off-lining

Pre-boot Environment

• Discovery, Enumeration

CXL Bus Driver

• Configuration, Resource allocation

CXL Memory Device Driver

- Interactions with Bus Driver, Fabric Manager, and VMM
- RAS, Security, Fault-isolation, On-lining, Off-lining, ...

ECN: Error Isolation on CXL.mem and CXL.cache (Enabled by the Root Port; requires Software Stack to recover from faults)

OS-specific Software

- VMM, Hypervisor
- VM Allocation, Orchestration, Fault-isolation & Recovery

Datacenter-ready Integrated System (DC-Stack)

CXL Consortium relies on other standards bodies to provide specifications for suitable mechanical/thermal/electrical Form Factors

Newly enabled solutions based on CXL will require new form factors

Reference Designs (open-source hardware at OCP)

PoCs

Datacenter-ready Integrated System (DC-Stack)

CXL Consortium relies on other standards bodies to provide specifications for suitable mechanical/thermal/electrical Form Factors

Newly enabled solutions based on CXL will require new form factors

Reference Designs (open-source hardware at OCP)

PoCs

Datacenter-ready Integrated System (DC-Stack)

A convolution of many essential ingredients

For OCP Discussions

Modular Hardware Reference designs for three different architectural instances

1S/2S Server

Rack

Power

Cooling

Multi-Blade/Instance Chassis

HPM (CPUs + Memory) per Blade

Multiple DC-SCMs or Multi-Host DC-SCM

DC-MIO

IO Module/Cage (IO Slots)

Multiple SmartNICs or Multi-Host SmartNIC

Multi-CPU Server

Rack

Power

Cooling

Single Instance Chassis

Multi-HPM (CPUs + Memory)

IO Module/Cage (IO Slots)

Single-Host DC-SCMS

DC-MIO

Single-host SmartNIC

GPU/Acc. or Storage Expansion Chassis

Expansion Chassis, Power, Cooling

Head Node (Server)

Interconnect (cables, retimer?)

Out-of-band Management

BMC (or a variant of DC-SCM)

Summary

- A new technology such as CXL enables special benefits, but we still need to deliver the fundamental requirements
- Delivering these technical advantages will take major ecosystem effort from various industry players
- You along with balanced, extensible, modular solutions, along with the staged software stack are the enablers
- Taking advantage of the industry-wide efforts, we can deliver CXL-based **PoCs** toward a datacenter-ready integrated system (**DC-Stack**) via open-sourced hardware and software (**OCP**)

You are a

Giant **Enabler!**

Lend your Coattail!

Available presentations on *Compute eXpress Link (CXL)* as an open-standard specification

The material that CXL has published on memory pooling:

Webinar: Compute Express Link™ 2.0 Specification: Memory Pooling

LinkedIn Post on CXL Memory Pooling

Recap Q&A Blog: Part 1
Recap Q&A Blog: Part 2

CXL Memory Pooling Slides

CXL Memory Pooling Video

CXL 2.0 Animated Video

CXL to Gen-Z Use Cases

Presentations on Datacenter-ready Integrated System (DC-Stack):

DC-Stack Datacenter-ready Integrated System OCP

http://files.opencompute.org/oc/public.php?service=files&t=dd1e012f85ab59a608d758db8357539c