1. Винни-Пух поделил выборку на обучающую и тестовую, (y,X) и (y_B,X_B) . Предположим, что все наблюдения независимы, одна и та же зависимость выполнена на обучающей и тестовой выборке $y=X\beta+u,\,y_B=X_B\beta+u_B$. Кроме того, что $\mathbb{E}(u|X,X_B)=\mathbb{E}(u_B|X,X_B)=0$, совместный закон распределения предикторов и ошибки одинаков для тестовой и обучающей выборке, в частности, $\mathbb{V}\mathrm{ar}(u_i|x_i)=h(x_i),\,\mathbb{V}\mathrm{ar}(u_i^B|x_i^B)=h(x_i^B)$.

Для краткости обозначим $H=X(X^TX)^{-1}X^T$, оценки коэффициентов по обучающей выборке, $\hat{\beta}$, прогнозы на обучающую и тестовую выборку, $\hat{y}=X\hat{\beta},\,\hat{y}_B=X_B\hat{\beta},\,$ ошибки прогнозов, $\hat{u}=y-\hat{y},\,$ $\hat{u}_B=y_B-\hat{y}_B.$

Найдите ковариационные матрицы $\mathbb{V}\mathrm{ar}(\hat{y}|X,X_B)$, $\mathbb{C}\mathrm{ov}(\hat{y}_B,\hat{u}_B|X,X_B)$.

2. Рассмотрим регрессию с L^2 -регуляризацией, где штраф накладывается на все коэффициенты, кроме первого, который соответствует первому столбцу из единиц в матрице X размера $[n \times k]$. Целевая функция имеет вид:

$$Q(\hat{\beta}) = (y - X\hat{\beta})^T (y - X\hat{\beta}) + \lambda \sum_{j=2}^k \hat{\beta}_j^2.$$

Какие наблюдения надо добавить в обычную регрессию, чтобы результат обычной регрессии идеально совпал с регрессией с данной регуляризацией? Можно ли обойтись добавлением одного наблюдения?

3. Винни-Пух и Кролик пытаются оценить эффект воздействия бинарной переменной $w_i \in \{0,1\}$ на целевую переменную y_i .

Винни-Пух использует множественную регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_w w_i + \hat{\beta}_x x_i$, классическую стандартную ошибку $se_{\text{class}}(\hat{\beta}_w)$ для построения доверительного интервала.

Кролик использует CUPED в следующей вариации. На первом шаге строит ровно ту же регрессию, что и Винни-Пух, получает почти-остатки $r_i=y_i-\hat{\beta}_x x_i$. На втором шаге оценивает парную регрессию $\hat{r}_i=\hat{\gamma}_1+\hat{\gamma}_w w_i$ и также использует классическую стандартную ошибку $se_{\rm class}(\hat{\gamma}_w)$ для построения доверительного интервала.

- а) Верно ли, что совпадают точечные оценки эффекта воздействия $\hat{\beta}_w$ и $\hat{\gamma}_w$?
- б) Во сколько раз отличаются классические стандартные ошибки $\hat{\beta}_w$ и $\hat{\gamma}_w$?

4. Рассмотрим модель линейной регрессии

$$\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i + \hat{\beta}_3 x_i^2$$

для набора данных https://github.com/bdemeshev/psmo_2022-23/raw/main/ha_02/psmo-ha_02.csv.

- а) Найдите классическую и HC3-оценку ковариационной матрицы коэффициентов.
- б) Постройте классический и HC3-робастный доверительный интервал для $\hat{\beta}_2$.
- в) Используя HC3-оценку ковариационной матрицы и предполагая, что оценки коэффициентов имеют распределение, похожее на многомерное нормальное, постройте с помощью генератора случайных чисел из нормального распределения 95%-й доверительный интервал для вершины параболы.

5. Рассмотрим модель логистической регрессии для набора данных

$$\Lambda(\mathbb{P}(admit_i = 1|X)) = \beta_1 + \beta_2 gre_i + \beta_3 gpa_i + \beta_4 rank_i$$

для набора данных https://stats.idre.ucla.edu/stat/data/binary.csv, где $\Lambda()$ — логистическая функция. Переменная $admit_i$ равна 1 для попавших на обучение, gre_i — результат GRE экзамена, gpa_i — средний балл, $rank_i$ — рейтинг студента.

- а) Найдите оценку ковариационной матрицы коэффициентов.
- б) Постройте 95%-й доверительный интервал для коэффициента при gpa.
- в) Постройте точечную и 95%-ю интервальную оценку предельного эффекта $\partial \mathbb{P}(y_i=1\mid X)/\partial gpa_i$ для медианных значений предикторов.
- г) С помощью подходящего статистического теста сделайте выбор между предложенной моделью и моделью, в которой переменная rank считается категориальной, то есть вводится дополнительная бинарная переменная индикатор для каждого значения rank кроме базового.