TUSUNSUNTEN (Programming Languages)

ที่มา: เอกสารประกอบการสอนค่ายโอลิมปิกวิชาการ สอวน.

วิชาคอมผิวเตอร์ ค่าย 1 ศูนย์โรงเรียนสามเสนวิทยาลัย ปีการศึกษา 2564

1.โปรแกรมภาษา

ใช้ในการผัฒนาโปรแกรมประยุกฅ์สำหรับมานเฉผาะฅามที่ผู้ใช้ฅ้อมการ

- ภาษาระดับต่ำ (Low-Level Programming Language)
 - หรือภาษาเครื่อง (Machine Language)
 - ภาษาระดับกลาง (Mid-Level Programming Language)
 - เช่น ภาษาแอสแซมบลี (Assembly Language)
 - ภาษาระดับสูง (High-Level Programming Languages)
 - เช่น ภาษาซี ภาษาจาวา เป็นต้น

ภาษาเครื่อง (Machine Language)

เป็นภาษาที่คอมพิวเตอร์เข้าใจ ซึ่งเขียนเป็นรหัสเลขฐาน 2 (0/1) และ คำสั่งมีความเกี่ยวข้องกับอุปกรณ์ของคอมพิวเตอร์โดยตรง แต่<mark>มนุษย์เข้าใจ</mark> ภาษาเครื่องได้ยาก ดังนั้นการเขียนโปรแกรมด้วยภาษาเครื่องจึงยากมาก

ภาษาแอสเซมบลี (Assembly Language)

เป็นภาษาที่เขียนโดยใช้ภาษาอย่างง่ายที่มนุษย์เข้าใจ แทนการใช้รหัสเลขฐาน 2

- แต่ออกแบบมาเฉพาะสำหรับคอมพิวเตอร์แต่ละแบบ
- และผู้เขียนโปรแกรมยังต้องทราบข้อมูลที่เกี่ยวข้องกับอุปกรณ์ของคอมพิวเตอร์

ใช้ แอสเซมเบอร์ (Assembler) ในการแปลภาษาแอสเซมบลี ให้เป็นภาษาเครื่อง

ภาษาระคับสูง (High-Level Languages)

- ใช้ภาษาที่มนุษย์เข้าใจ (English-like language) เช่น C C++ JAVA Python
- ใช้ คอมไพเลอร์ (Compiler) หรือ Interpreter ในการแปลภาษาระดับสูงให้เป็นภาษาเครื่อง

2 การผัฒนาโปรแกรม

ขั้นฅอนการผัฒนาโปรแกรม

สรุป 5 ขั้นฅอนการผัฒนาโปรแกรม

กำหนดขอบเขตของปัญหา

จะให้คอมพิวเตอร์ทำอะไร (What?)

วิเคราะห์ปัญหา (Problem analysis)

input : ลักษณะข้อมูลนำเข้า

process : วิธีการประมวลผล (how?)

output : ลักษณะของผลลัพธ์ที่ต้องการ

ตัวอย่าง

การกำหนด-วิเคราะห์ปัญหาในชีวิตประจำวัน

อยากกินกระเพราไก่ไข่ดาว

ตัวอย่าง

การกำหนด-วิเคราะห์ปัญหาในชีวิตประจำวัน

กำหนดขอบเขตของปัญหา

ต้องการกระเพราไก่ไข่ดาว 1 จาน

วิเคราะห์ปัญหา (Problem analysis)

input : ใบกระเพรา เนื้อไก่ เครื่องปรุง ไข่ไก่

process: นำวัสดุดิบผัดพร้อมปรุงรสในกระทะ ทอดไข่ดาว

output : กระเพราไก่ไข่ดาว

ตัวอย่างการกำหนด-วิเคราะห์ปัญหา

ออกแบบโปรแกรมให้คอมพิวเตอร์ทำงานเป็น เครื่องคิดเลขอย่างง่าย โดยรับข้อมูลตัวเลข 2 จำนวน (X, Y) และแสดงผลบวกทางจอภาพ

กำหนดขอบเขตของปัญหา

คำนวณผลบวกของ 2 จำนวน

วิเคราะห์ปัญหา (Problem analysis)

input : รับข้อมูลตัวเลข (X, Y) จากคีย์บอร์ด

process : คำนวณ sum = X + Y

output : แสดงผลบวก (sum) ทางจอภาพ

ตัวอย่างการกำหนด-วิเคราะห์ปัญหา

ออกแบบโปรแกรมให้คอมพิวเตอร์รับข้อมูลตัวเลข 3 จำนวน คำนวณ ค่าเฉลี่ย และแสดงค่าเฉลี่ย ทางจอภาพ

กำหนดขอบเขตของปัญหา

คำนวณค่าเฉลี่ยของ 3 จำนวน ((X1+X2+X3)/3)

วิเคราะห์ปัญหา (Problem analysis)

input : รับข้อมูลตัวเลข (X1, X2, X3)

process : คำนวณ sum = X1 + X2 + X3

mean = sum/3

output : แสดงค่าเฉลี่ย (mean) ทางจอภาพ

คือ การนำปัญหาที่วิเคราะห์ได้จากขั้นตอนที่ 1 มาวางแผน อย่างเป็นขั้นตอนว่าจะต้องเขียนโปรแกรมเพื่อแก้ปัญหาอย่างไร การ วางแผนอย่างเป็นขั้นตอนนี้ เรียกว่า <mark>อัลกอริทึม (Algorithm)</mark> ซึ่ง อัลกอริทึมแบ่งออกเป็น 2 รูปแบบ คือ

- ซูโดโค้ด (Pseudo code)
- ผังงาน (Flowchart)

สัญลักษณ์ในผังงาน

สัญลักษณ์	ความหมาย	ตัวอย่างการใช้	คำอธิบาย
	การเริ่มต้นหรือสิ้นสุดการ เขียนผังงาน (Terminal)	START	1.เริ่มต้นผังงาน 2.จบผังงาน
	รับข้อมูลหรือแสดงข้อมูล โดยไม่ระบุสื่อ (Input/output)	read name display area	1.รับค่าใส่ในตัวแปรชื่อ name 2.แสดงค่าจากตัวแปร area

39

สัญลักษณ์ในผังงาน

สัญลักษณ์	ความหมาย	ตัวอย่างการใช้	คำอธิบาย
	การประมวลผล (Process)	C = A + B Sum = 0	1. คำนวณ A + B และเก็บไว้ใน C 2. กำหนดค่า sum เท่ากับ O
	การเปรียบเทียบ หรือตัวสินใจ (Compare / Decision)	i <= 10 false true	เปรียบเทียบถ้า i มีค่า น้อยกว่าหรือเท่ากับ 10 - เป็นจริง พิมพ์ค่า i เสร็จแล้วไปทำ คำสั่งอื่น ๆ - เป็นเท็จ ไปทำคำสั่งอื่น ๆ

สัญลักษณ์ในผังงาน

สัญลักษณ์	ความหมาย	ตัวอย่างการใช้	คำอธิบาย
	การแสดงผลลัพธ์ทาง เครื่องพิมพ์ (Document)	print A	พิมพ์ค่า A ทางเครื่องพิมพ์
	การแสดงผลลัพธ์ทาง จอภาพ (Display)	display A , B	แสดงค่า A, B บนจอภาพ

สัญลักษณ์ในผังงาน

สัญลักษณ์	ความหมาย	ตัวอย่างการใช้	คำอธิบาย
	จุดต่อเนื่องในหน้าเดียวกัน (In-Page connector)	write A	หลังจากพิมพ์ค่า A แล้วให้ทำ ตามที่จุดต่อเนื่อง A ซึ่งอยู่ใน หน้าเดียวกัน
	จุดต่อเนื่องที่อยู่คนละหน้า (Off-Page Connector)	A = 3	หลังจากกำหนดค่า A เท่ากับ 3 ให้ ทำตามจุดต่อเนื่องชื่อ 1 ซึ่งไม่ได้อยู่ในหน้าเดียวกัน

หลักการจัดภาพผังงาน

ทิศทางของผังงานจะเริ่มจากส่วนบน ของหน้ากระดาษลงมายังส่วนล่าง และจาก ซ้ายมือไปของหน้ากระดาษ และควรเขียน เครื่องหมายลูกศรกำกับทิศทางไว้ด้วย

2.3 การผัฒนาโปรแกรม (Development)

เป็นการนำอัลกอริทึมจากขั้นตอนที่ 2 มาเขียนโปรแกรมให้ถูกต้องตาม หลักไวยากรณ์ (Syntax) ของภาษาซี จากโจทย์สามารถเขียนโปรแกรมได้

ดังนี้

```
1: #include <stdio.h>
2: #include <conio.h>
3: int main()
4: {
5:     int x,y,sum;
6:     printf("Value of x is : ");
7:     scanf("%d",&x);
8:     printf("Value of y is : ");
9:     scanf("%d",&y);
10:     sum = x+y;
11:     printf(Sum of %d + %d \n",x,y,sum);
12:     getch();
13:     return 0;
```

2.3 การพัฒนาโปรแกรม (Development)

```
#include <stdio.h>
                                                                               START
         #include <conio.h>
         int main()
                                                                             Input X,Y
                int x,y,sum;
                printf("Value of x is : ");
                scanf("%d",&x);
                                                                            Sum = X + Y
                printf("Value of y is: ");
                scanf("%d",&y);
10:
                sum = x+y;
                                                                             print Sum
                printf(Sum of %d + %d n,x,y,sum);
11:
12:
                getch();
                                                                               STOP
13:
                return 0:
```

2.4 การทคสอบโปรแกรม (Testing)

จากการทดสอบ

เป็นการประกันคุณภาพของโปรแกรม ค้นหาข้อผิดพลาด ป้องกันการ เกิดข้อผิดพลาดของซอฟต์แวร์ รวมไปถึงตรวจสอบว่าโปรแกรมที่พัฒนานั้น เป็นไปตาม Requirement หรือไม่ ในการทดสอบนั้นอาจมีการสร้าง Test case หรือเป็นกรณีที่ผู้ใช้งานจะใช้งานระบบและ Expected results คือผลที่คาดหวัง

2.5 การบำรุงรักษาซอฟต์แวร์ (Maintenance)

เป็นขั้นตอนการบำรุงรักษาระบบ ต่อเนื่องหลังจากเริ่มดำเนินการ ผู้ใช้งาน อาจจะพบกับปัญหาที่เกิดขึ้นภายหลัง เช่น ต้องการ Feature เพิ่มเติม ซอฟต์แวร์ทำงาน ไม่เป็นไปตามความคาดหวัง หรือซอฟต์แวร์มี Bug อยู่

เมื่อเกิดปัญหาเหล่านี้เกิดขึ้นก็ต้องมี การแก้ไข จึงควรกำหนดแผนการแก้ปัญหา และติดตามผล เพื่อทำการปรับปรุงให้ผู้ใช้งาน เกิดความพึงพอใจ

3. การโปรแกรมเบื้อมฅัน

- -การคาวน์โหลคและติคตั้งโปรแกรม
- -เริ่มตันเขียนภาษาซี
- -คำสั่วแสควผลทาวจอภาผ
- -ประเภทขอวข้อมูลและตัวแปร
- -ตัวคำเนินการ
- -คำสั่วรับข้อมูล

การโปรแกรมเบื้อมฅัน

การ Download และติคตั้งโปรแกรม IDE

● โปรแกรม Dev-C++

https://drive.google.com/file/d/1_d80TQMZLFksjBABQeS

styObEduHiVuo/view

หรือเขียนออนใลน์บนเว็บ https://www.onlinegdb.com/

3.1 การติดตั้วโปรแกรม IDE โปรแกรม Dev-C++

• 1) ดับเบิลคลิก

2) คลิก Next

3) Install

3.1 การติดตั้วโปรแกรม IDE โปรแกรม Dev-C++

3.1 การติดตั้งโปรแกรม IDE โปรแกรม Dev-C++

เลือก File > Source File

3.1 การติดตั้วโปรแกรม IDE โปรแกรม Dev-C++

1) Compile

2) Run

3.1 การติคตั้งโปรแกรม IDE โปรแกรม Dev-C++

ขั้นตอนการแปล Source code (file) ของโปรแกรมภาษา C ให้เป็น Machine code (Object file)

โปรแกรมภาษา C จะอยู่ในรูปแบบของฟังก์ชัน ซึ่งมีอย่างน้อยหนึ่ง ฟังก์ชัน (คือ main)

โครงสร้างโปรแกรม

โครงสร้างโปรแกรม

```
#include <stdio.h>
int main() {
    printf("Computer");
    return 0;
}

void ที่อยู่หน้า main จะบอกว่าเมื่อทำตั้งแต่
{ ถึง }
ไม่ต้องคืนค่า หรือไม่ต้องทำอะไรต่อไปอีก
```

คำสั่ง include ให้นำไฟล์ stdio.h มาร่วม ด้วย เพื่อเรียกใช้ฟังก์ชั่นต่าง ๆ หรืออาจเรียกไฟล์ .h อื่น ๆ อีกก็ได้

โดยไฟล์ที่เรียกจะต้องอยู่ใน "" หรือ < >

ฟังก์ชันในภาษาซี จบด้วยเครื่องหมาย ; ในที่นี้จะให้แสดงข้อความทางจอภาพ และขึ้นบรรทัดใหม่

ข้อควรระวังการ save ไฟล์

```
#include <stdio.h>
int main() {
    printf("Computer");
    return 0;
}
```

```
#include <stdio.h>
int main() {
   printf("Computer");
   return 0;
}
```

fileName.c

fileName.cpp

C library

include <Library>
include "Library"

ไฟล์นามสกุล .h เป็น Header file หรือไฟล์ส่วนหัวที่รวบรวมคำสั่งต่าง ๆ ของภาษาซีเอาไว้ เพื่อให้ผู้เขียนสามารถใช้ฟังก์ชันได้ มีอยู่หลายไฟล์เช่น

- stdio.h เก็บฟังก์ชันที่ใช้งานทั่วไป เช่น printf , scanf โปรแกรมส่วนมาก จะใช้ไฟล์นี้
- conio.h เก็บฟังก์ชันควบคุมการแสดงผลต่าง ๆ
- string.h เก็บฟังก์ซันที่ใช้ในการประมวลผลกับข้อความ
- math.h เก็บฟังก์ชันที่ใช้ในการคำนวณทางคณิตศาสตร์ เช่น sin,cos,log

Libery อื่น ๆ เพิ่มเติม C library - C++ Reference (cplusplus.com)

3.3 คำสั่วแสควผล

คำสั่ง **printf** ต้อง include<stdio.h>

รูปแบบคำสั่ง

```
printf("control string", variable,...);
```

Variable

เป็นตัวแปรใช้เก็บค่า (ที่เปลี่ยนแปลงได้) ใน memory ในขณะประมวลผล

ตัวอย่างการใช้งาน

<u>control string</u> ประกอบด้วย

- ข้อความอธิบาย เช่น printf("C Programming");
- %format เช่น printf("SUM = %d\n", sum);
- Escape sequence เช่น \n (new line)

ตัวอย่างการใช้งานคำสั่ง printf #include <stdio.h> int main() { printf ("Computer"); printf("Programming"); return 0;

ผลการรัน :

ComputerProgramming

รหัสควบคุมการแสดงผล (Escape Sequence)

- •\n ขึ้นบรรทัดใหม่
- •\t เว้นช่องว่างเป็นระยะ 1 tab หรือหกตัวอักขระ
- \r ให้เคอร์เซอร์ขึ้นบรรทัดใหม่
- •\f เว้นช่องว่างเป็นระยะหนึ่งหน้าจอ
- •\" พิมพ์ตัวอักษร " ในส่วน Control String
- •\\ พิมพ์ตัวอักษร \ ในส่วน Control String
- •%% พิมพ์ตัวอักษร % ในส่วน Control String

ตัวอย่างการใช้งาน Escape Sequence

```
1 #include <stdio.h>
2 int main()
3 {
4  printf ("Computer\n");
5  printf("Programming\n");
6  return 0;
7 }
```

ผลการรัน :

Computer

Programming

คอมเมนต์ (Comment)

คือส่วนที่เป็นหมายเหตุของโปรแกรม มีไว้เพื่อให้ผู้เขียนโปรแกรมใส่ ข้อความอธิบายกำกับลงไปใน source code ซึ่งคอมไพเลอร์จะข้ามการแปลผล ในส่วนที่เป็นคอมเมนต์นี้ คอมเมนต์ในภาษาซีมี2 แบบคือ

- คอมเมนต์แบบบรรทัดเดียว ใช้เครื่องหมาย //
- คอมเมนต์แบบหลายบรรทัด ใช้เครื่องหมาย /* และ */

ตัวอย่างการใช้งาน comment

```
1 #include <stdio.h>
2 int main()
3 {
4   //printf ("Computer\n");
5   printf("Programming\n");
6   return 0;
7 }
```

ผลการรัน :

Programming

ตัวอย่างการใช้งาน comment

```
1 #include <stdio.h>
2 int main()
3 {
4   //printf ("Computer\n");
5   //printf("Programming\n");
6   return 0;
7 }
```

ผลการรัน :

ตัวอย่างการใช้งาน comment 1 #include <stdio.h> 2 int main() 3 { 4 /*printf ("Computer\n"); 5 printf("Programming\n");*/ 6 return 0;

format code ใช้แสดงอักขระตัวเดียว (Char) %c ใช้แสดงชุดตัวอักษรหรือข้อความ (String) %s ใช้แสดงจำนวนเต็ม (Integer) %d ใช้แสดงเลขทศนิยม (Float) %f ใช้แสดง short interger %h ใช้แสดง unsigned int %u ใช้แสดงจำนวนเต็มเลขฐาน 8 %0 ใช้แสดงข้อมูลเลขฐาน 16 %x

ตัวอย่างการใช้งาน format code

ผลการรัน :

First value is 5

Second value is 7

ตัวอย่างการใช้งาน format code

```
1 #include <stdio.h>
2 int main()
3 {
4 printf("%s Smith %d %f %c", "Sam", 14, 51.5, 'M');
5 return 0;
6 }
ผลการรับ:
```

Sam Smith 14 51.500000 X

ตัวอย่างการใช้งาน format code #include <stdio.h> int main() 3 printf("%s Smith %d %f %c", "Sam", 14, 51.5, 'M'); return 0; ผลการรัน : Sam Smith 14 51.500000 X

ตัวอย่างการกำหนดจำนวนเลขทศนิยม

```
1 #include <stdio.h>
2 int main()
3 {
4 printf("%s Smith %d %.2f %c", "Sam", 14, 51.5, 'M');
5 return 0;
} ผลการรับ:
```

Sam Smith 14 51.50 M

ฅัวแปร

ตัวแปร เป็นชื่อของหน่วยความจำที่ตำแหน่งต่าง ๆ ที่ผู้เขียนโปรแกรม กำหนด มีไว้สำหรับ**เก็บข้อมูลต่าง ๆ** ระหว่างการทำโปรแกรม

ข้อมูล

กล่อง: ตัวแปร

ตัวแปร

ตัวแปร เป็นชื่อของหน่วยความจำที่ตำแหน่งต่าง ๆ ที่ผู้เขียนโปรแกรม กำหนด มีไว้สำหรับ**เก็บข้อมูลต่าง ๆ** ระหว่างการทำโปรแกรม

กล่อง: ตัวแปร

ชนิคข้อมูล

ตัวอย่างของข้อมูล

ชนิคข้อมูล

ชนิดข้อมูล	การประกาศ	ขนาด (byte)	ช่วงข้อมูล
ตัวอักขระ	char	1	-128 ถึง 127
เลขจำนวนเต็ม	int	2	-32,768 ถึง 32,767
unsigned int	unsigned int	2	0 ถึง 65,535
long integer	long	4	สองพันล้าน
เลขทศนิยม	float	4	1.2 x 10 ⁻³⁸ ถึง 3.4x10 ³⁸

ถ้าหากคอมไพลเลอร์ต่างกันขนาดก็อาจต่างกันไปด้วย

การประกาศตัวแปร

<u>หลักการ</u>

- ต้องประกาศชนิดของตัวแปรก่อนเรียกใช้
- ชนิดของตัวแปร ต้องสอดคล้องกับข้อมูลที่จะใช้เก็บ เช่น เก็บเกรดเฉลี่ย ซึ่งเป็นทศนิยม ตัวแปรต้องเป็น ชนิด float

กฏการตั้งชื่อตัวแปร

ตัวแปรจะเกิดจากเราเป็นคนกำหนดชื่อขึ้นมา

- 1. ชื่อจะประกอบขึ้นจาก <u>ตัวอักษร ตัวเลข</u> และ<u>เครื่องหมายขีดเส้นใต้</u> เท่านั้น เช่น Salary1 และ Salary_1
- 2. <u>อักขระแรกของชื่อ</u>จะต้องเป็น<u>ตัวอักษร</u> หรือ<u>เครื่องหมายขีดเส้นใต้</u>เท่านั้น เช่น ASalary และ _Salary
- 3. ตัว<u>พิมพ์ใหญ่</u> และ<u>ตัวพิมพ์เล็ก</u>ถือเป็นอักษรคนละตัวกัน เช่น Salary และ SALARY
- 4. ชื่อจะต้อง<u>ไม่ซ้</u>ำกับคำสงวน

กฏการตั้วชื่อตัวแปร

การตั้งชื่อตัวแปรต่อไปนี้ถูกหรือผิด

computer_room		_good	
n-sync	X	User name	X
cat108		if	×
Year#	X	108cat	×

การประกาศตัวแปร

ตัวอย่างการประกาศตัวแปรตัวเดียว

การประกาศตัวแปร

```
#include<stdio.h>
int main(){
        int var1,var2;
        var1=3;
        var2=5;
        printf("%d\n",var1);
        printf("%d",var2);

return 0;
}
```

```
รูปแบบการประกาศตัวแปร
```

```
<mark>ชนิดข้อมูล ชื่</mark>อตัวแปร,ชื่อตัวแปร;
```

จากตัวอย่าง

int var1,var2;

ตัวแปร var1 และ var2 เป็นชนิด int สำหรับเก็บจำนวนเต็ม

```
var1

→ ใช้เก็บข้อมูลชนิด int

var2

→ ใช้เก็บข้อมูลชนิด int

หน่วยความจำ
```

การประกาศตัวแปรและการกำหนดค่าเร่มตัน

การประกาศตัวแปรและกำหนดค่าเริ่มต้น

รูปแบบ ชนิด ตัวแปร = ค่าที่ต้องการ;

• กำหนดค่าพร้อมกับประกาศตัวแปร หรือประกาศแล้วจึงกำหนดก็ได้ ตัวอย่างเช่น

int score; score = 20; int score; score = 10+5; int score=20;

int score=10+5;

การประกาศตัวแปร และการกำหนคค่าเร่มตัน

การทำหนดค่าให้ตัวแปร

รูปแบบ

ตัวแปร ค่าที่ต้องการกำหนด

var1 = 20

var2 = var1

ູຣປແບບ

```
ตัวแปร = ตัวแปร = ตัวแปร = ค่าที่ต้องการกำหนด
int var1 , var2 ,var3
var1 = var2 = var3 = 20
```

ตัวแปรชนิดอักขระ (char)

```
char a, b;
a = 'T';
b = 'A';
c = 65;
```

กำหนดค่าตัวอักขระให้กับตัวแปรจะต้องอยู่ในเครื่องหมาย ' '

$$3U\overline{AO}$$
 int b;
b = \a' + 3;

/* ค่าในตัวแปร b จะเท่ากับรหัส <mark>ASCII</mark> ของ a บวกกับ 3 */

ตัวแปรชนิดข้อความ (string)

ข้อความในภาษา C คือตัวอักขระหลาย ๆ ตัวมาต่อเรียงกัน เรียกว่าสตริง (string) เมื่อมีการประกาศ ตัวแปรประเภทนี้ คอมพิวเตอร์จะ นำตัวอักขระแต่ละตัวมาเก็บในหน่วยความจำแบบ char เรียงกันไปทีละตัว

รูปแบบคำสั่ง

char name[n] = "str"

name : ชื่อตัวแปร

n : ขนาดของข้อความ หรือจำนวนอักขระในข้อความ

str: ข้อความเริ่มต้นที่กำหนดให้กับตัวแปร โดยเขียนไว้ในเครื่องหมาย " "

ตัวแปรชนิดข้อความ (string)

```
char name[15] = "COMPUTER"; /* เก็บข้อความลงตัวแปร name */
char phone[15] = "0-2737-3000";
char age[3] = "20";
```

การประกาศค่าคงที่

1. ใช้คำสั่ง const ตามรูปแบบดังนี้

```
const ชนิดข้อมูล ชื่อตัวแปร = ค่าที่เก็บในตัวแปร;
const int count = 120 ;
```

2. ใช้ตัวประมวลผลก่อน ตามรูปแบบดังนี้

```
#define ชื่อค่าคงที่ ค่าคงที่ที่ต้องการเก็บ
```

การประกาศค่าคงที่

ตัวอย่าง const

```
#include<stdio.h>
int main()
{
    const double pi=3.14;
    const char ch= 'A';
    const char company[10]="INTER";
    printf("pi = %d\n",pi);
    printf("ch = %d\n",ch);
    printf("company name = %s",company);
    return 0;
}
```

ตัวอย่าง #define

```
#include<stdio.h>
#define PI 3.14
#define AREA(x) PI*x*x
int main()
{
    int r=2;
    printf("pi = %d\n",pi);
    printf("Area = %f",AREA(r) );
    return 0;
}
```

นิพจน์ (Expression) คือ การนำค่าคงที่หรือตัวแปรมาเชื่อมต่อกัน ด้วย เครื่องหมายทางคณิตศาสตร์

a = b = 0; /*ให้ตัวแปร a เท่ากับตัวแปร b โดยมีค่าเป็นศูนย์ */

```
1 #include<stdio.h>
2 int main(){
    int sum, total;
    sum = total = 0;
    printf(" sum = %d \n", sum);
    printf(" total = %d \n", total);

7 return 0;
9
10
```

```
sum = 0
total = 0
```

ตัวดำเนินการ (Operator) ในโปรแกรมภาษาซีมีตัวดำเนินการหลายชนิด เพื่อใช้ในการเขียนโปรแกรม ดังนี้

- ตัวดำเนินการคณิตศาสตร์ (Arithmetic operators)
- ตัวดำเนินการกำหนดค่าแบบผสม (Compound assignment operators)
- ตัวดำเนินการยูนารี (Unary operators)
- ตัวดำเนินการเปรียบเทียบ (Comparison operators)
- ตัวดำเนินการตรรกะ (Logical operators)

ตัวคำเนินการคณิตศาสตร์ (Arithmetic operators)

การคำนวณ	ตัวดำเนินการ	ตัวอย่าง	การทำงาน
บวก	+	c=a+b;	นำ a บวก b ผลลัพธ์เก็บใน
au	-	c=a-b;	นำ a ลบ b แล้วเก็บใน c
คูณ	*	c=a*b;	นำ a คูณ b แล้วเก็บใน c
หาร	/	c=a/b	นำ a หารด้วย b แล้วเก็บใน c
มอดูลัส	%	c=a%b;	เป็นการหารที่เก็บเศษไว้ใน c

ตัวคำเนินการคณิฅศาสตร์ (Arithmetic operators)

การหาแบบหารแบบเอาเศษหรือ Modulus %

- ตั้งหารยาว 9 หาร 2
- ผลลัพธ์คือเศษจากการหาร

1

ตัวคำเนินการคณิฅศาสตร์ (Arithmetic operators)

<u>ข้อควรระวัง !!!</u>

สำหรับภาษาซี operand ที่จะนำมาดำเนินการกันผ่าน operator ใดๆ ต้องเป็น**ข้อมูลชนิดเดียวกัน** และผลลัพธ์ที่ได้ เป็นข้อมูลชนิด เดียวกันด้วย

ตัวคำเนินการคณิตศาสตร์ (Arithmetic operators)

ข้อควรระวัง !!!

ถ้า a และ b **ไม่ใช่ข้อมูลชนิดเดียวกัน** ภาษาซีจะ**แปลงให้ เป็นข้อมูลชนิดเดียวกัน**โดยอัตโนมัติก่อนคำนวณ

ตัวคำเนินการคณิตศาสตร์ (Arithmetic operators)

<u>ข้อควรระวัง !!!</u>

```
1 #include <stdio.h>
2 int main()
3 {
4 int num = 7/2;
5 printf("%d",num);
6 return 0;
7 }
```


ตัวคำเนินการคณิตศาสตร์ (Arithmetic operators)

ข้อควรระวัง !!!

```
1 #include <stdio.h>
2 int main()
3 {
4  float num = 7/2;
5  printf("%f",num);
6  return 0;
7 }
```

ผลการรัน : 3.000000

ตัวคำเนินการกำหนคค่าแบบผสม (Compound assignment operators)

ประกอบด้วย += , -= , *= , /= และ %= โดยสามารถแสดงได้ดังนี้

นิพจน์ทั่วไป	นิพจน์แบบผสม
a = a + 5	a += 5
a = a - 5	a -= 5
a = a * (b - 3)	a *= (b - 3)
a = a / 3	a /= 3
a = a % (b – 2)	a %= (b - 2)

ตัวคำเนินการกำหนคค่าแบบผสม (Compound assignment operators)

เป็นการใช้ตัวดำเนินการกับตัวแปรตัวเดียว มีการใช้สองแบบคือ

<u>1. ตัวดำเนินการเอกภาคเติมหน้า (prefix mode)</u>

```
EX: ++a; เพิ่มค่าครั้งละหนึ่งค่า (มีค่าเท่ากับ x=x+1;)
```

--a; ลดค่าครั้งละหนึ่งค่า (มีค่าเท่ากับ x=x-1;)

2. ตัวดำเนินการเอกภาคเติมหลัง (postfix mode)

```
EX: a++; เพิ่มค่าครั้งละหนึ่งค่า (มีค่าเท่ากับ x=x+1;)
```

a--; ลดค่าครั้งละหนึ่งค่า (มีค่าเท่ากับ x=x-1;)

ตัวคำเนินการกำหนคค่าแบบผสม (Compound assignment operators)

เป็นการใช้ตัวดำเนินการกับตัวแปรตัวเดียว มีการใช้สองแบบคือ

1. ตัวดำเนินการเอกภาคเติมหน้า (prefix mode)

ตัวคำเนินการกำหนคค่าแบบผสม (Compound assignment operators)

```
y = x++ หมายถึง จะส่งค่า x ให้ y ก่อน จากนั้นเพิ่มค่าให้ตัวมันเองหนึ่งค่า
```

y = ++x หมายถึง จะเพิ่มค่าให้ตัวมันเองหนึ่งค่า แล้วค่อยส่งค่า x ให้ y

ถ้าหากสมมติว่า **i = 10** และ **j = 2** พิจารณาการดำเนินการต่อไปนี้

```
    i=i*j++ ผลลัพธ์จะเท่ากับ i=20 และ j=3 (เพิ่มค่าหลังจากการคูณ)
    i=i*++j ผลลัพธ์จะเท่ากับ i=30 และ j=3 (เพิ่มค่าก่อนการคูณ)
    i=i*j-- ผลลัพธ์จะเท่ากับ i=20 และ j=1 (ลดค่าหลังการคูณ)
    i=i*--j ผลลัพธ์จะเท่ากับ i=10 และ j=1 (ลดค่าก่อนการคูณ)
```

ลำคับการคำนวณ

ลำดับที่	ตัวดำเนินการ
1	0
2	++
3	* / %
4	+ -
5	+= *= /= -= %=

ซ้าย -> ขวา

ลำคับการคำนวณ

ลำคับการคำนวณ

ลำคับการคำนวณ

ผลลัพธ์เป็นเท่าไร

$$2.0/2.0+5*2 = 11.0$$

$$2.0*2.0+5*2 = 14.0$$

$$2.0+5/2.0*2 = 7.0$$

3.6 คำสั่วรับข้อมูล

- scanf () รับข้อมูล<mark>ข้อความ</mark>จากคีย์บอร์ดมาเก็บในตัวแปรที่กำหนด
- gets() รับข้อความ (string) มาเก็บในตัวแปรที่กำหนด
- getchar() รับข้อมูล<mark>อักขระ</mark>ตัวเดียว และต้องกด Enter ทุกครั้ง
- getch() รับข้อมูล<mark>อักขระ</mark>ตัวเดียว ไม่ต้องกด Enter และไม่แสดงผล
- getche() รับข้อมูล<mark>อักขระ</mark>ตัวเดียวเหมือน getch() แต่จะแสดงผลด้วย

3.6 คำสั่วรับข้อมูล คำสั่ง scanf()

ต้อง include<stdio.h>

รูปแบบคำสั่ง

```
scanf("control string", argument list);
```

argument list ตัวแปรที่ใช้เก็บ ข้อมูล ใช้เครื่องหมาย & นำหน้า ชื่อ แต่ถ้ารับข้อมูลเป็นสตริงไม่ ต้องมีเครื่องหมายนี้

ตัวอย่างการใช้งาน

```
int score;
printf("Enter score :");
scanf("%d", &score);
```

control string เป็นรหัส รูปแบบข้อมูล (format code)

หากป้อนข้อมูลแล้ว<mark>เว้นวรรค</mark> โปรแกรมจะมอง ว่าเป็นตัวแปรมากกว่าหนึ่งตัว 126

3.6 คำสั่วรับข้อมูล

คำสั่ง scanf()

```
ตัวอย่างโปรแกรมคำนวณพื้นที่วงกลม
                                                format code
                                                                            ใช้แสดงอักขระตัวเดียว (Char)
                                                              %с
                                                                            ใช้แสดงชุดตัวอักษรหรือข้อความ (String)
                                                              %s
  #include<stdio.h>
                                                                            ใช้แสดงจำนวนเต็ม (Integer)
                                                              %d
2 pint main(){
                                                                            ใช้แสดงเลขทศนิยม (Float)
                                                              %f
3
         float r, area;
                                                              %h
                                                                            ใช้แสดง short integer
         printf("Enter radius:");
                                                                            ใช้แสดง unsigned int
                                                              %u
5
         scanf("%f",&r);
                                                                            ใช้แสดงจำนวนเต็มเลขฐาน 8
                                                              %o
6
         area=(22.0/7.0)*r*r;
                                                                            ใช้แสดงข้อมูลเลขฐาน 16
                                                              %x
         printf("%.2f", area);
```

3.6 คำสั่วรับข้อมูล คำสั่ง gets()

รูปแบบคำสั่ง

gets(stringVar)

ตัวอย่างการใช้งาน

char stringVar[5];
gets(stringVar);

เป็นตัวแปรสตริงที่ใช้<u>เก็บข้อความ</u> (string constant) ฟังก์ชันนี้ใช้รั<u>บข้อมูลจากคีย์บอร์ด</u>มาเก็บในตัวแปรสตริง

สามารถรับข้อมูลที่มี เว้นวรรค ได้

stringVar เป็นตัวแปรสตริงที่ใช้เก็บ ข้อความ (string constant)

3.6 คำสั่ง gets()

```
#include <stdio.h>
2 □ int main(){
        char name[30];
        int age;
5 6 7 8 9
        printf("Enter your name :");
        gets(name);
        printf("Enter your age :");
        scanf("%d",&age);
        printf("Your name is %s\n",name);
10
        printf("Your are %d years old. \n",age);
   return 0;
```

3.6 คำสั่วรับข้อมูล คำสั่ง getchar()

```
รูปแบบคำสั่ง
```

```
getchar()
```

ตัวอย่างการใช้งาน

```
char charVar;
charVar = getchar();
```

charVar เป็นตัวแปรชนิด char ที่ใช้เก็บข้อมูลตัวอักขระที่ป้อน ผ่านคีย์บอร์ด

3.6 คำสั่วรับข้อมูล คำสั่ง getchar()

```
#include <stdio.h>
int main(){
    char c;
    printf("Enter a single character :");
    c = getchar();
    printf("You type a character is %c\n",c);

return 0;
}
```

3.6 คำสั่วรับข้อมูล คำสั่ง getch()

ต้อง include<conio.h>

รูปแบบคำสั่ง

getch()

ฟังก์ชันนี้ใช้รับ<u>อักขระตัวเดียวจากคีย์บอร์ด</u> โดยไม่ต้องกด Enter ข้อมูลที่รับเข้าไปจะไม่แสดงผล

ตัวอย่างการใช้งาน

```
char charVar;
charVar = getch();
```

<u>charVar</u> เป็นตัวแปรชนิด char ที่ใช้เก็บข้อมูลตัวอักขระที่ป้อน ผ่านคีย์บอร์ด

3.6 คำสั่วรับข้อมูล คำสั่ง getch()

```
1 #include <stdio.h>
2 #include <conio.h>
3 pint main(){
      char d;
      printf("Enter a single character :");
6
      d = getch();
      printf("You type a character is ... %c\n",d);
  return 0;
```

3.6 คำสั่วรับข้อมูล คำสั่ง getch()

สรุปการใช้งาน

- รับข้อมูล string ควรใช้ฟังก์ชัน gets() หรือ scanf()
- รับข้อมูลตัวเลขควรใช้ฟังก์ชัน scanf() ถ้าหากป้อนข้อมูลแล้วเว้นวรรค
 โปรแกรมจะมองว่าเป็นตัวแปรมากกว่าหนึ่งตัว
- รับตัวเลขหนึ่งตัวหรือตัวอักขระหนึ่งตัว ไม่แสดงทางจอภาพ ใช้ getch() แต่ถ้าต้องการให้แสดงทางจอภาพใช้ getchar()

แบบฝึกหัก

- 1.1) จงเขียนโปรแกรมคำนวณผื้นที่สามเหลี่ยม กำหนคให้ค่าเริ่มฅัน สูง=10 หน่วย ฐาน=14 หน่วย
- 1.2) จมเขียนโปรแกรมคำนวณผื้นที่สามเหลี่ยม โคยรับค่าความยาวฐานและความสูงจากคีย์บอร์ค
- 1.3) จมเขียนโปรแกรมคำนวณหาค่า บ จากสมการ บ = ห^2 + 8 ห+4 โคยให้รับค่า ห จากคีย์บอร์ค
- 1.4) จมเขียนโปรแกรมรับค่าปี พ.ศ. จากคีย์บอร์ค แล้วแสคมผลเป็น ค.ศ.
- 1.5) จมเขียนโปรแกรมรับปี จากคีย์บอร์ค หลัมจากนั้นให้ทำการแปลมเลขปี ค.ศ. ที่รับเข้ามานั้นให้ กลายเป็นปีผ.ศ. หลัมจากนั้นให้ทำการคำนวณผลรวมขอมเลขแต่ละหลักขอมปี ค.ศ. และ ผ.ศ. ที่ได้มานั้น แสคมผลลัพธ์สุคท้ายอกทามจอภาผ คัมต่อไปนี้

แบบฝึกหัก

1.6) จมเขียนโปรแกรมวัคความเหมาะสมระหว่ามส่วนสูมกับน้ำหนักคัวยการหาค่าคัชนีมวลกาย (Body Mass Index : BMI) ตามสูตรต่อไปนี้

$$BMI = \frac{Weight (kg)}{Height^2 (m^2)}$$

1.7) จมเขียนโปรแกรมสำหรับการกค ATM โคยป้อนตัวเลขเข้าไป แล้วให้จำนวนแบมค์ออกมา เช่น

แบบฝึกหัก

1.8) จมเขียนโปรแกรมหาระยะระหว่ามจุคสอมจุค อินผุฅเป็น (ห1,y1) และ (ห2,y2)

หมายเหตุ : #include<math.h> เผื่อใช้ฝังก์ชัน sqrt()

ฝึกฝนเผิ่มเติมใค้ที่ https://www.programming.in.th/