Factors Added

1. Price Based

- From Return_Based.py Import Price_Based_Factors
- Return_Based_Factors(universe, date, benchmark)
- Return_Based_Factors.M12_L1()
 - 12 month momentum lagged 1 month
- 2. Return_Based_Factors.M6_L1()
 - 6 month momentum lagged 1 month
- Return_Based_Factors.MR1()
 - 1 month mean reversion. negative of the return realised in past 20 days.
- 4. Return_Based_Factors.IR12_L1()
 - 12 months Information Ratio

$$IR12_L1_t = \left[\frac{\sum_{i=1}^{N} r_{diff}}{\sqrt{\sum_{i=1}^{N} (r_{diff} - \bar{r}_{diff})^2}}\right]_{t-20} ; N = 250, \ lag = 20$$
 (Eq. 4.0)

where $r_{diff}=$ return of stock minus return of benchmark

- 5. Return_Based_Factors.IR6_L1()
 - Same as (Eq. 4.0) but with N=125
- Return_Based_Factors.JA12_L1()
 - 12 months Jensen's Alpha

$$JA12_L1_t = \left\lceil rac{\sum_{i=1}^{N} r_{diff}}{N}
ight
ceil_{t=20} \hspace{0.5cm} ; N=250, \ lag = 20 \hspace{0.5cm} ext{(Eq. 6.0)}$$

where $r_{diff} =$ return of stock minus return of (beta imes benchmark)

- 7. Return_Based_Factors.JA6_L1()
 - Same as (Eq. 6.0) but with N=125
- 8. Return_Based_Factors.JAV12_L1()
 - 12 months <u>Vol-adjusted Jensen's Alpha</u>

$$JA12_L1_t = \left[\frac{\sum r_{diff}}{\sqrt{\sum (r_{diff} - \bar{r}_{diff})^2}}\right]_{t-lag} ; N = 250, \ lag = 20$$
 (Eq. 8.0)

- 9. Return_Based_Factors.JAV6_L1()
 - Same as (Eq. 8.0) but with N=125
- 10. Return_Based_Factors.BB()
 - · Based on Bollinger Band.

$$BB_t = \begin{cases} 1 & \text{if } C_{t-lag} > UB_{t-lag} \\ -1 & \text{if } C_{t-lag} < LB_{t-lag} \\ 0 & \text{otherwise} \end{cases} ; lag = 5$$
 (Eq. 10.0)

where

$$UB_t = MA_t + \sigma_t \ LB_t = MA_t - \sigma_t$$

where $MA_t=20$ Days Moving Average of prices and $\sigma_t=\mathrm{vol}\ \mathrm{of}\ \mathrm{daily}\ \mathrm{change}\ \mathrm{of}\ \mathrm{prices}$

- 11. Return_Based_Factors.CB()
 - Based on Channel Breakout.

$$CB_t = \begin{cases} 1 & \text{if } C_{t-lag} > HH_{t-lag} \\ -1 & \text{if } C_{t-lag} < LL_{t-lag} \end{cases} ; lag = 5$$
 (Eq. 11.0)

where HH = Highest closing in previous 60 days and LL = Lowest closing in previous 60 days

- 12. Return_Based_Factors.EWMAC100()
 - Based on <u>Moving Average Crossover</u>.

$$EWMAC_t = \frac{\frac{Fast_t}{Slow_t} - 1}{\sigma_t}$$
 (Eq. 12.0)

where $Slow_t = 100$ Days Moving Average of closing price and $Fast_t = \frac{100}{4}$ Days Moving Average of closing price

- 13. Return_Based_Factors.EWMAC250()
 - Same (Eq. 12.0) but with 250 Days lookback.
- 14. Return_Based_Factors.RSI()
 - Based on <u>RSI indicator</u>.

$$RSI_t = 100 - \frac{100}{1 - \frac{UP_t}{DOWN_t}}$$
 (Eq. 13.0)

where $UP_t = \text{average increase on } + \text{ve days in lookback period}$ and $DOWN_t = \text{average decrease on } - \text{ve days in lookback period}$

2. Vol/Risk Based

- From Volatility.py Import Vol_Risk_Based_Factors
- Vol_Risk_Based_Factors(universe, date, benchmark)
- 15. Vol_Risk_Based_Factors.BAB()
 - · Based on Betting Against Beta factor

$$BAB_t = rac{1}{eta_t}$$
 ; where $eta_t = rac{Cov(r_i, r_B)}{V(r_B)}$; $N = 250$ (Eq. 15.0)

- 16. Vol_Risk_Based_Factors.VOL()
 - · Based on Low Risk factor

$$VOL_t = \frac{1}{\sqrt{V(r_i)}}\tag{16.0}$$

- 17. Vol_Risk_Based_Factors.RES_VOL()
 - Based on <u>CAPM Residual Volatility</u>

$$RES_{-}VOL = \frac{1}{\sqrt{V(r_{i,R})}}$$
 ; where $V(r_{i,R}) = \text{Variance of benchmark-beta-adjusted return}$ (17.0)

3. Value

- From Value.py Import Valuation_Based_Factors
- Valuation_Based_Factors(universe, date)
- 18. Valuation_Based_Factors.PB()
 - Price to Book
- 19. Valuation_Based_Factors.DY()
 - Dividend Yield
- 20. Valuation_Based_Factors.EV_NS()
 - Enterprise Value to Net Sales
- 21. Valuation_Based_Factors.EV_EBIT()
 - EV to EBIT
- 22. Valuation_Based_Factors.EV_EBITDA()

- EV to EBITDA
- 23. Valuation_Based_Factors.P_CF()
 - Price to Cash Flow
- 24. Valuation_Based_Factors.FCFY()
 - Free Cash Flow Yield

4. Quality

- From Quality.py Import Quality_Based_Factors
- Quality_Based_Factors(universe, date)
- 25. Quality_Based_Factors.DP()
 - Dividend Payout Ratio
- 26. Quality_Based_Factors.GPM()
 - Gross Profit Margin
- 27. Quality_Based_Factors.PTM()
 - Pre-Tax Margin
- 28. Quality_Based_Factors.PATM()
 - Profit After Tax Margin
- 29. Quality_Based_Factors.ROA()
 - Return on Assets
- 30. Quality_Based_Factors.ROE()
 - Return on Equity
- 31. Quality_Based_Factors.ROCE()
 - Return on Capital Employed
- 32. Quality_Based_Factors.AT()
 - Asset Turnover
- 33. Quality_Based_Factors.DE()
 - Debt-to-Equity
- 34. Quality_Based_Factors.SCF()
 - Sales-to-Cash Flow