PROTOCOL

for lab-exercise

LC-Oscillator

Group / Class	Script writer	Signature
5 / 4AHELS	Thomas ASCH	
Date of Exercise / Hand-in Date	Team member	Signature
1.4.2014	Andreas BÖHM	
8.4.2014		
Teacher	Team member	Signature
TILL	Peter Neunteufel	
Grade	Team member	Signature

SUMMARY (or DEVICE UNDER TEST)

LC-Oscillator

USED DEVICES

Number	Device	Company	Туре	Inventory Number	
1	Laboratory Power Supply	Tecstar	PS 2403D	EL-TFTKL 0057/02	
2	Oszilloskop	Tektronics	TDS1001B	540-04/2007/5/16	
3					

Stored on el-lab file Server:

Cover Sheet E2014 v3

Task 1:

Design an LC oscillator using a collector-ground circuit. The oscillator should have a frequency of approximately 900 kHz and a coil with $22\mu H$. Build this circuit on the breadboard. Measure the voltage course and the FFT of the output voltage Ua with the oscilloscope.

Fig. 1: Collector-ground circuit

Calculations:

$$fo = \frac{1}{2\pi * \sqrt{L * Cges}} /* \sqrt{L} /* 2\pi$$

$$fo * 2\pi * \sqrt{L} = \frac{1}{\sqrt{Cges}} /^2$$

$$\left(\frac{1}{2\pi * fo * \sqrt{L}}\right)^2 = Cges$$

$$Cges = \left(\frac{1}{2\pi * 900k * \sqrt{22\mu}}\right)^2 = 2nF$$

$$Cges = \frac{C1*C2}{C1+C2} \implies C1,C2 = 2nF$$

$$U_{R2} = Uo*\frac{R1}{R1+R2}$$

$$U_{R2} = 3.3V * \frac{10k}{10k + 22k} = 2.27V$$

Measurements:

Fig. 2: Voltage course of the output voltage Ua

Fig. 3: FFT of the output voltage Ua

Calculation of the distortion factor:

U1/dBV	U1/V	U2/dBV	U2/V	U3/dBV	U3/V	U4/dBV	U4/V
20	10	2	1,26	-11	0,28	-17	0,14

$$K = \sqrt{\frac{1,26^2 + 0,28^2 + 0,14^2}{10^2 + 1,26^2 + 0,28^2 + 0,14^2}} = 0,129 = > 12,9\%$$

Comment:

After the 4th harmonic the FFT is uninteresting. In Figure 2 we see that the sine is not very nice. There were no problems in the construction and in the measurement.

Task 2:

Design an LC oscillator using an emitter circuit. The oscillator should have a frequency of approximately 900 kHz and a coil with 22µH. Build this circuit on the breadboard. Measure the voltage course and the FFT of the output voltage Ua with the oscilloscope.

Fig. 4: Emitter circuit

Calculations:

C1 should 5- 10-times be as large as C2

$$=> C1 = 6.8n$$

$$=> C2 = 1,5n$$

 $R3 = 0.65 \text{V}/3 \text{mA} = 220 \Omega$

$$R4 = 2V/3mA = 666,67\Omega$$
 => $R4 = 680\Omega$

Measurements:

Our variant with the resistor R3:

Fig. 5: Voltage course of the output voltage Ua

Fig. 6: FFT of the output voltage Ua

Calculation of the distortion factor:

U1/dBV	U1/V	U2/dBV	U2/V	U3/dBV	U3/V	U4/dBV	U4/V
25	17,78	12	3,98	-1	0,89	-11	0,28

$$K = \sqrt{\frac{3,98^2 + 0,89^2 + 0,28^2}{17,78^2 + 3,98^2 + 0,89^2 + 0,28^2}} = 0,224 => 22,4\%$$

Variant of Prof. Tillich without the resistor R3:

Fig. 7: Voltage course of the output voltage Ua

Fig. 8: FFT of the output voltage Ua

Calculation of the distortion factor:

U1/dBV	U1/V	U2/dBV	U2/V	U3/dBV	U3/V	U4/dBV	U4/V
20	10	9	2,82	-1	0,89	-15	0,18

$$K = \sqrt{\frac{2,82^2 + 0,89^2 + 0,18^2}{10^2 + 2,82^2 + 0,89^2 + 0,18^2}} = 0,284 => 28,4\%$$

Comment:

In Figure 5 it can be seen that our variant is better with the resistor R3 because the sine look better. After the 4th harmonic the FFT is uninteresting. There were no problems in the construction and in the measurement.

Task 3:

Design a Low-Cost oscillator. The oscillator should have a frequency of approximately 900 kHz and a coil with 22µH. Build this circuit on the breadboard. Measure the voltage course and the FFT of the output voltage Ua with the oscilloscope.

Fig. 9: Low-Cost-Oscillator

Calculations:

C1 should 5-10-times be as large as C2

$$=> C1 = 6.8n$$

$$=> C2 = 1,5n$$

Measurements:

Fig. 10: Voltage course of the output voltage Ua at a supply voltage of 0,7V

Fig. 11: FFT of the output voltage Ua at a supply voltage of 0,7V

Calculation of the distortion factor:

U1/dBV	U1/V	U2/dBV	U2/V	U3/dBV	U3/V	U4/dBV	U4/V
7	2,24	-10	0,316	-18	0,126	-21	0,089

$$K = \sqrt{\frac{0,316^2 + 0,126^2 + 0,089^2}{2,24^2 + 0,316^2 + 0,126^2 + 0,089^2}} = 0,157 => 15,7\%$$

Fig. 12: Voltage course of the output voltage Ua at a supply voltage of 1V

Fig. 13: FFT of the output voltage Ua at a supply voltage of 1V

Fig. 14: Voltage course of the output voltage Ua at a supply voltage of 1,5V

Fig. 15: FFT of the output voltage Ua at a supply voltage of 1,5V

Fig. 16: Voltage course of the output voltage Ua at a supply voltage of 2V

Fig. 17: FFT of the output voltage Ua at a supply voltage of 2V

Calculation of the distortion factor:

U1/dBV	U1/V	U2/dBV	U2/V	U3/dBV	U3/V	U4/dBV	U4/V
18	7,94	-2	0,794	-13	0,224	-13	0,224

$$K = \sqrt{\frac{0.794^2 + 0.224^2 + 0.224^2}{7.94^2 + 0.794^2 + 0.224^2 + 0.224^2}} = 0.106 = > 10.6\%$$

Fig. 18: Voltage course of the output voltage Ua at a supply voltage of 2,5V

Fig. 19: FFT of the output voltage Ua at a supply voltage of 2,5V

Fig. 20: Voltage course of the output voltage Ua at a supply voltage of 3V

Fig. 21: FFT of the output voltage Ua at a supply voltage of 3V

Fig. 22: Voltage course of the output voltage Ua at a supply voltage of 3,3V

Fig. 23: FFT of the output voltage Ua at a supply voltage of 3,3V

Calculation of the distortion factor:

U1/dBV	U1/V	U2/dBV	U2/V	U3/dBV	U3/V	U4/dBV	U4/V
20	10	-10	0,316	-1	0,891	-25	0,056

$$K = \sqrt{\frac{0,316^2 + 0,891^2 + 0,056^2}{10^2 + 0,316^2 + 0,891^2 + 0,056^2}} = 0,094 => 9,4\%$$

Comment:

It is apparent that the distortion factor and the offset voltage of Ua have become smaller, the closer to the supply voltage has risen to 3.3V. After the 4th harmonic the FFT is uninteresting. There were no problems in the construction and in the measurement.

Task 4:

Design an LC-oscillator with a basic circuit. The oscillator should have a frequency of approximately 900 kHz and a coil with 22µH. Build this circuit on the breadboard. Measure the voltage course and the FFT of the output voltage Ua with the oscilloscope.

Fig. 24: Basic circuit

Calculations:

C1 should 5- 10-times be as large as C2

$$=> C1 = 6.8n$$

$$=> C2 = 1,5n$$

$$R3 = 1V/1mA = 1k\Omega$$

$$U_{R2} = Uo * \frac{R1}{R1 + R2}$$

$$U_{R2} = 3.3V * \frac{15k}{15k + 15k} = 1.65V$$

Measurements:

Fig. 25: Voltage course of the output voltage Ua

Fig. 26: FFT of the output voltage Ua

Calculation of the distortion factor:

U1/dBV	U1/V	U2/dBV	U2/V	U3/dBV	U3/V	U4/dBV	U4/V
28	25,12	3	1,41	-1	0,89	-7	0,45

$$K = \sqrt{\frac{1,41^2 + 0,89^2 + 0,45^2}{25,12^2 + 1,41^2 + 0,89^2 + 0,45^2}} = 0,069 = 6,9\%$$

Comment:

It can be seen that in this circuit, the operating point is well adjusted, because the distortion is very low and the sine look at the most beautiful of all. After the 4th harmonic the FFT is uninteresting. There were no problems in the construction and in the measurement.