WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07K 14/705, 16/28, C12N 1/21, 5/10, 15/12, 15/62

(11) International Publication Number:

WO 96/08510

(43) Internati nal Publicati n Date:

21 March 1996 (21.03.96)

(21) Internati nal Applicati n Number:

PCT/US95/10965

A1

(22) Internati nal Filing Date:

30 August 1995 (30.08.95)

(30) Priority Data: 306.231

14 September 1994 (14.09.94)

US 14 December 1994 (14.12.94) US (81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

355,888

(71) Applicant: PROGENITOR, INC. [US/US]; 1507 Chambers Road, Columbus, OH 43212 (US).

(72) Inventors: SNODGRASS, Ralph, H.; 650 Retreat Lane, Powell, OH 43065 (US). CIOFFI, Joseph; 134 Louis Lane, Athens, OH 45701 (US). ZUPANCIC, Thomas, J.: 501 Park Boulevard, Worthington, OH 43085 (US). SHAFER, Alan, W.; 3655 State Route 681, Albany, OH 45710 (US).

(74) Agents: POISSANT, Brian, M. et al.; Pennie & Edmonds, 1155 Avenue of the Americas, New York, NY 10036 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: Hu-B1.219, A NOVEL HUMAN HEMATOPOIETIN RECEPTOR

(57) Abstract

The present invention relates to a novel member of the hematopoietin receptor family, herein referred to as Hu-B1.219. In particular, the invention relates to nucleotide sequences and expression vectors encoding Hu-B1.219 gene product. Genetically engineered h st cells that express the Hu-B1.219 coding sequence may be used to evaluate and screen for ligands or drugs involved in Hu-B1.219 interaction and regulation. Since Hu-B1.219 expression has been detected in certain human fetal tissues and cancer cells, molecular probes designed from its nucleotide sequence may be useful for prenatal testing and cancer diagnosis.

> Applicants: Beth Borowsky, et al. U.S. Serial No.: 09/116,676

Filed: July 16, 1998 Exhibit 15

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
	200				
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE.	ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada .	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
a	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon:	· u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	. 170	Chad
CS	Czechoslovakia	w	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	Tj	Tajikistan
DE	Germany	MC -	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
Fi	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
G.	Cabon		•		

Hu-B1.219, A NOVEL HUMAN HEMATOPOIETIN RECEPTOR

1. <u>INTRODUCTION</u>

The present invention relates to a novel member of the 5 hematopoietin receptor family, herein referred to as Hu-B1.219. In particular, the invention relates to nucleotide sequences and expression vectors encoding Hu-B1.219 gene product. Genetically engineered host cells that express the Hu-B1.219 coding sequence may be used to evaluate and screen for ligands or drugs involved in Hu-B1.219 interaction and regulation. Since Hu-B1.219 expression has been detected in certain human fetal tissues and cancer cells, molecular probes designed from its nucleotide sequence may be useful for prenatal testing and cancer diagnosis.

15

2. BACKGROUND OF THE INVENTION

A variety of diseases, including malignancy and immunodeficiency, are related to malfunction within the lympho-hematopoietic system. Some of these conditions could 20 be alleviated and/or cured by repopulating the hematopoietic system with progenitor cells, which when triggered to differentiate would overcome the patient's deficiency. Therefore, the ability to initiate and regulate hematopoiesis is of great importance (McCune et al., 1988, Science 25 241:1632).

The process of blood cell formation, by which a small number of self-renewing stem cells give rise to lineage specific progenitor cells that subsequently undergo proliferation and differentiation to produce the mature

- 30 circulating blood cells has been shown to be at least in part regulated by specific hormones. These hormones are collectively known as hematopoietic growth factors or cytokines (Metcalf, 1985, Science 229:16; Dexter, 1987, J. Cell Sci. 88:1; Golde and Gasson, 1988, Scientific American,
- 35 July:62; Tabbara and Robinson, 1991, Anti-Cancer Res. 11:81; Ogawa, 1989, Environ. Health Presp. 80:199; Dexter, 1989, Br. Med. Bull. 45:337).

With the advent of recombinant DNA technology, the genes encoding a number of these molecules have now been molecularly cloned and expressed in recombinant form (Souza et al., 1986, Science 232:61; Gough et al., 1984, Nature 5 309:763; Yokota et al., 1984, Proc. Natl. Acad. Sci. U.S.A. 81:1070; Kawasaki et al., 1985, Science 230:291). These cytokines have been studied in their structure, biology and even therapeutic potential. Some of the most well characterized factors include erythropoietin (EPO), stem cell factor (SCF), granulocyte macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), granulocyte colony stimulating factor (G-CSF), and the interleukins (IL-1 to IL-14).

These factors act on different cell types at different stages during blood cell development, and their potential uses in medicine are far-reaching which include blood transfusions, bone marrow transplantation, correcting immunosuppressive disorders, cancer therapy, wound healing, and activation of the immune response. (Golde and Gasson, 20 1988, Scientific American, July:62).

Apart from inducing proliferation and differentiation of hematopoietic progenitor cells, such cytokines have also been shown to activate a number of functions of mature blood cells (Stanley et al., 1976, J. Exp. Med. 143:631; Schrader et al.,

25 1981, Proc. Natl. Acad. Sci. U.S.A. 78:323; Moore et al., 1980, J. Immunol. 125:1302; Kurland et al., 1979, Proc. Natl. Acad. Sci. U.S.A. 76:2326; Handman and Burgess, 1979, J. Immunol. 122:1134; Vadas et al., 1983, Blood 61:1232; Vadas et al., 1983, J. Immunol. 130:795), including influencing the 30 migration of mature hematopoietic cells (Weibart et al., 1986, J. Immunol. 137:3584).

Cytokines exert their effects on target cells by binding to specific cell surface receptors. A number of cytokine receptors have been identified and the genes encoding them

35 molecularly cloned. Several cytokine receptors have recently been classified into a hematopoietin receptor (HR) superfamily. The grouping of these receptors was based on

the conservation of key amino acid motifs in the extracellular domains (Bazan, 1990, Immunology Today 11:350) (Figure 1). The HR family is defined by three conserved motifs in the extracellular domain of these receptors. The

- 5 first is a Trp-Ser-X-Trp-Ser (WSXWS box) motif which is highly conserved and located amino-terminal to the transmembrane domain. Most members of the HR family contain this motif. The second consists of four conserved cysteine residues located in the amino-terminal half of the
- 10 extracellular region. The third is a conserved fibronectin Type III (FN III) domain which is located between the WSXWS box and the cysteines. The members of the HR family include receptors for ligands such as erythropoietin (EPO), granulocyte colony stimulating factor (G-CSF) (Fukunaga,
- 15 1990, Cell 61:341), granulocyte-macrophage colony stimulating
 factor (GM-CSF), interleukin-3 (IL-3), IL-4, IL-5, IL-6, IL7, and IL-2 (β-subunit) (Cosman, 1990, TIBS 15:265).

Ligands for the HR are critically involved in the maturation and differentiation of blood cells. For example,

- 20 IL-3 promotes the proliferation of early multilineage pluripotent stem cells, and synergizes with EPO to produce red cells. IL-6 and IL-3 synergize to induce proliferation of early hematopoietic precursors. GM-CSF has been shown to induce the proliferation of granulocytes as well as increase
- 25 macrophage function. IL-7 is a bone marrow-derived cytokine that plays a role in producing immature T and B lymphocytes. IL-4 induces proliferation of antigen-primed B cells and antigen-specific T cells. Thus, members of this receptor superfamily are involved in the regulation of the
- 30 hematopoietic system.

3. SUMMARY OF THE INVENTION

The present invention relates to a novel member of the HR family, referred to as Hu-B1.219. In particular, it 35 relates to the nucleotide sequences, expression vectors, host cells expressing the Hu-B1.219 gene, and proteins encoded by the sequences.

The invention is based, in part, upon Applicants' discovery of a cDNA clone, Hu-Bl.219, isolated from a human fetal liver cDNA library. While the nucleotide sequence of this clone shares certain homology with other HR genes, it is also unique in its structure. Three forms of Hu-Bl.219 have been identified, and they differ in sequence only at their 3' ends. The sequences are expressed in certain human fetal and tumor cells. Therefore, a wide variety of uses are encompassed by the present invention, including but not limited to, the diagnosis of cancer, the marking of fetal tissues, and the screening of ligands and compounds that bind the receptor molecule encoded by Hu-Bl.219.

For the purpose of the present invention, the designation Hu-B1.219 refers to the complete cDNA sequence 15 disclosed in Figure 2A-2G. In addition, Hu-B1.219 also refers to the partial coding sequences within the cDNA sequence of Figure 2A-2G.

4. BRIEF DESCRIPTION OF THE DRAWINGS

20 Figure 1. A schematic drawing of conserved regions shared by members of HR family.

Figure 2A-2G. Nucleotide sequence and deduced amino acid sequence of Hu-B1.219.

Figure 3A. Comparison of 3' end nucleotide sequences of the three forms of the Hu-Bl.219.

Figure 3B. Comparison of 3' end amino acid sequences of the three forms of Hu-B1.219. The * symbol indicates a stop codon.

Figure 4. Comparison of the spacing of conserved amino acids in the FN III domain between HR genes and Hu-B1.219.

Figure 5. Comparison of conserved motifs between HR molecules and Hu-B1.219 in "Block 3".

Figure 6. Comparison of conserved motifs between HR molecules and Hu-B1.219 in "Block 6".

35 . .

30

25...

5. DETAILED DESCRIPTION OF THE INVENTION

5.1. THE Hu-B1.219 CODING SEQUENCE

The present invention relates to nucleic acid and amino acid sequences of a novel member of the HR family. In a 5 specific embodiment by way of example in Section 6, infra, a new member of this HR family of receptors was cloned and characterized. The nucleotide coding sequence and deduced amino acid sequence of the novel receptor are unique, and the receptor is referred to as Hu-Bl.219. In accordance with the invention, any nucleotide sequence which encodes the amino acid sequence of the Hu-Bl.219 gene product can be used to generate recombinant molecules which direct the expression of Hu-Bl.219 gene.

Analysis of the Hu-B1.219 sequence revealed significant 15 homology to the FN III domain of the HR family indicating that it was a member of the HR family of receptors. The shared homology between Hu-B1.219 and other known members of the HR family is discussed in Section 6.2, <u>infra</u>. However, this receptor also contains regions of previously unreported unique nucleotide sequences.

Northern blot hybridization analysis, indicates that Hu-B1.219 mRNA is highly expressed in cells of hematopoietic origin. In addition, the Hu-B1.219 sequence is expressed in certain tumor cells.

- In order to clone the full length cDNA sequence encoding the entire Hu-B1.219 cDNA or to clone variant forms of the molecule, labeled DNA probes made from nucleic acid fragments corresponding to any portion of the partial cDNA disclosed herein may be used to screen the human fetal liver cDNA
- 30 library. More specifically, oligonucleotides corresponding to either the 5' or 3' terminus of the partial cDNA sequence may be used to obtain longer nucleotide sequences. Briefly, the library may be plated out to yield a maximum of 30,000 pfu for each 150 mm plate. Approximately 40 plates may be
- 35 screened. The plates are incubated at 37°C until the plaques reach a diameter of 0.25 mm or are just beginning to make contact with one another (3-8 hours). Nylon filters are

placed onto the soft top agarose and after 60 seconds, the filters are peeled off and floated on a DNA denaturing solution consisting of 0.4N sodium hydroxide. The filters are then immersed in neutralizing solution consisting of 1M

- 5 Tris HCL, pH 7.5, before being allowed to air dry. The filters are prehybridized in casein hybridization buffer containing 10% dextran sulfate, 0.5M NaCl, 50mM Tris HCL, pH 7.5, 0.1% sodium pyrosphosphate, 1% casein, 1% SDS, and denatured salmon sperm DNA at 0.5 mg/ml for 6 hours at 60°C.
- 10 The radiolabeled probe is then denatured by heating to 95°C for 2 minutes and then added to the prehybridization solution containing the filters. The filters are hybridized at 60°C for 16 hours. The filters are then washed in 1% wash mix (10% wash mix contains 3M NaCl, 0.6M Tris base, and 0.02M
- 15 EDTA) twice for 5 minutes each at room temperature, then in 1X wash mix containing 1% SDS at 60°C for 30 minutes, and finally in 0.3X wash mix containing 0.1% SDS at 60°C for 30 minutes. The filters are then air dried and exposed to x-ray film for autoradiography. After developing, the film is
- 20 aligned with the filters to select a positive plaque. If a single, isolated positive plaque cannot be obtained, the agar plug containing the plaques will be removed and placed in lambda dilution buffer containing 0.1M NaCl, 0.01M magnesium sulfate, 0.035M Tris HCl, pH 7.5, 0.01% gelatin. The phage
- 25 may then be replated and rescreened to obtain single, well isolated positive plaques. Positive plaques may be isolated and the cDNA clones sequenced using primers based on the known cDNA sequence. This step may be repeated until a full length cDNA is obtained.
- It may be necessary to screen multiple cDNA libraries from different tissues to obtain a full length cDNA. In the event that it is difficult to identify cDNA clones encoding the complete 5' terminal coding region, an often encountered situation in cDNA cloning, the RACE (Rapid Amplification of
- 35 cDNA Ends) technique may be used. RACE is a proven PCR-based strategy for amplifying the 5' end of incomplete cDNAs. 5'-RACE-Ready cDNA synthesized from human fetal liver containing

a unique anchor sequence is commercially available (Clontech). To obtain the 5' end of the cDNA, PCR is carried out on 5'-RACE-Ready cDNA using the provided anchor primer and the 3' primer. A secondary PCR reaction is then carried out using the anchored primer and a nested 3' primer according to the manufacturer's instructions. Once obtained, the full length cDNA sequence may be translated into amino acid sequence and examined for certain landmarks such as a continuous open reading frame flanked by translation

10 initiation and termination sites, a potential signal sequence and transmembrane domain, and finally overall structural similarity to known HR genes.

5-2- EXPRESSION OF Hu-B1.219 SEQUENCE

In accordance with the invention, Hu-Bl.219

- 15 polynucleotide sequence which encodes the Hu-Bl.219 protein, peptide fragments of Hu-Bl.219, Hu-Bl.219 fusion proteins or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of Hu-Bl.219 protein, Hu-Bl.219 peptide fragment, fusion proteins
- 20 or a functional equivalent thereof, in appropriate host cells. Such Hu-Bl.219 polynucleotide sequences, as well as other polynucleotides which selectively hybridize to at least a part of such Hu-Bl.219 polynucleotides or their complements, may also be used in nucleic acid hybridization
 25 assays, Southern and Northern blot analyses, etc.

Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence, may be used in the practice of the invention for the cloning and expression

- 30 of the Hu-B1.219 protein. Such DNA sequences include those which are capable of hybridizing to the human Hu-B1.219 sequences under stringent conditions. The phrase "stringent conditions" as used herein refers to those hybridizing conditions that (1) employ low ionic strength and high
- 35 temperature for washing, for example, 0.015 M NaCl/0.0015 M sodium citrate/0.1% SDS at 50°C.; (2) employ during hybridization a denaturing agent such as formamide, for

example, 50% (vol/vol) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM NaCl, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M 50 NaCl, 0.075 M Sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 g/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC and 0.1% SDS.

Altered DNA sequences which may be used in accordance

10 with the invention include deletions, additions or
substitutions of different nucleotide residues resulting in a
sequence that encodes the same or a functionally equivalent
gene product. The gene product itself may contain deletions,
additions or substitutions of amino acid residues within a

- 15 Hu-Bl.219 sequence, which result in a silent change thus producing a functionally equivalent Hu-Bl.219 protein. Such amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues
- 20 involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine, histidine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: glycine,
- 25 asparagine, glutamine, serine, threonine, tyrosine; and amino acids with nonpolar head groups include alanine, valine, isoleucine, leucine, phenylalanine, proline, methionine, tryptophan.

The DNA sequences of the invention may be engineered in 30 order to alter an Hu-B1.219 coding sequence for a variety of ends including but not limited to alterations which modify processing and expression of the gene product. For example, mutations may be introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert

35 new restriction sites, to alter glycosylation patterns, phosphorylation, etc.

In another embodiment of the invention, an Hu-B1.219 or a modified Hu-B1.219 sequence may be ligated to a heterologous sequence to encode a fusion protein. For example, for screening of peptide libraries for inhibitors or 5 stimulators of Hu-B1.219 activity, it may be useful to encode a chimeric Hu-B1.219 protein expressing a heterologous epitope that is recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between a Hu-B1.219 sequence and the 10 heterologous protein sequence, so that the Hu-B1.219 may be cleaved away from the heterologous moiety.

In an alternate embodiment of the invention, the coding sequence of a Hu-B1.219 could be synthesized in whole or in part, using chemical methods well known in the art. See, for 15 example, Caruthers et al., 1980, Nuc. Acids Res. Symp. Ser. 7:215-233; Crea and Horn, 180, Nuc. Acids Res. 9(10):2331; Matteucci and Caruthers, 1980, Tetrahedron Letters 21:719; and Chow and Kempe, 1981, Nuc. Acids Res. 9(12):2807-2817. Alternatively, the protein itself could be produced using 20 chemical methods to synthesize an Hu-B1.219 amino acid sequence in whole or in part. For example, peptides can be

- sequence in whole or in part. For example, peptides can be synthesized by solid phase techniques, cleaved from the resin, and purified by preparative high performance liquid chromatography. (e.g., see Creighton, 1983, Proteins
- 25 Structures And Molecular Principles, W.H. Freeman and Co., N.Y. pp. 50-60). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, 1983, Proteins, Structures and Molecular Principles, W.H. Freeman 30 and Co., N.Y , pp. 34-49).

In order to express a biologically active Hu-B1.219, the nucleotide sequence coding for Hu-B1.219, or a functional equivalent, is inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. The Hu-B1.219 gene products as well as host cells or cell lines transfected or transformed with recombinant Hu-

B1.219 expression vectors can be used for a variety of purposes. These include but are not limited to generating antibodies (i.e., monoclonal or polyclonal) that competitively inhibit activity of an Hu-B1.219 and neutralize its activity; and antibodies that mimic the activity of Hu-B1.219 ligands in stimulating the receptor to transmit an intracellular signal. Anti-Hu-B1.219 antibodies may be used in detecting and quantifying expression of Hu-B1.219 levels in cells and tissues.

5.3. EXPRESSION SYSTEMS

Methods which are well known to those skilled in the art can be used to construct expression vectors containing the Hu-B1.219 coding sequence and appropriate transcriptional/translational control signals. These methods

- 15 include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Sambrook et al., 1989, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. and Ausubel et al., 1989, Current
- 20 Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N.Y.

A variety of host-expression vector systems may be utilized to express the Hu-B1.219 coding sequence. These include but are not limited to microorganisms such as

- 25 bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the Hu-B1.219 coding sequence; yeast transformed with recombinant yeast expression vectors containing the Hu-B1.219 coding sequence; insect cell systems infected with recombinant virus
- 30 expression vectors (<u>e.g.</u>, baculovirus) containing the Hu-B1.219 coding sequence; plant cell systems infected with recombinant virus expression vectors (<u>e.g.</u>, cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (<u>e.g.</u>, Ti
- 35 plasmid) containing the Hu-Bl.219 coding sequence; or animal cell systems The expression elements of these systems vary in their strength and specificities. Depending on the

host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used in the expression vector. For example, when cloning in bacterial 5 systems, inducible promoters such as pL of bacteriophage λ , plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the 10 genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll α/β binding protein) or from plant viruses (e.g., the 35S RNA promoter of CaMV; the doat protein promoter of TMV) may be used; when cloning in mammalian cell 15 systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the Hu-B1.219 DNA, SV40-, BPV- and 20 EBV-based vectors may be used with an appropriate selectable marker.

In bacterial systems a number of expression vectors may be advantageously selected depending upon the use intended for the Hu-B1.219 expressed. For example, when large 25 quantities of Hu-B1.219 are to be produced for the generation of antibodies or to screen peptide libraries, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include but are not limited to the E. coli expression 30 vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which the Hu-B1.219 coding sequence may be ligated into the vector in frame with the $lac\ Z$ coding region so that a hybrid AS-lacZ protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, 35 J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST).

such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa 5 protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety.

In yeast, a number of vectors containing constitutive or inducible promoters may be used. For a review see, Current Protocols in Molecular Biology, Vol. 2, 1988, Ed. Ausubel et

- 10 al., Greene Publish. Assoc. & Wiley Interscience, Ch. 13;
 Grant et al., 1987, Expression and Secretion Vectors for
 Yeast, in Methods in Enzymology, Eds. Wu & Grossman, 1987,
 Acad. Press, N.Y., Vol. 153, pp. 516-544; Glover, 1986, DNA
 Cloning, Vol. II, IRL Press, Wash., D.C., Ch. 3; and Bitter,
- 15 1987, Heterologous Gene Expression in Yeast, Methods in Enzymology, Eds. Berger & Kimmel, Acad. Press, N.Y., Vol. 152, pp. 673-684; and The Molecular Biology of the Yeast Saccharomyces, 1982, Eds. Strathern et al., Cold Spring Harbor Press, Vols. I and II.
- In cases where plant expression vectors are used, the expression of the Hu-B1.219 coding sequence may be driven by any of a number of promoters. For example, viral promoters such as the 35S RNA and 19S RNA promoters of CaMV (Brisson et al., 1984, Nature 310:511-514), or the coat protein promoter
- 25 of TMV (Takamatsu et al., 1987, EMBO J. 6:307-311) may be used; alternatively, plant promoters such as the small subunit of RUBISCO (Coruzzi et al., 1984, EMBO J. 3:1671-1680; Broglie et al., 1984, Science 224:838-843); or heat shock promoters, e.g., soybean hsp17.5-E or hsp17.3-B (Gurley
- 30 et al., 1986, Mol. Cell. Biol. 6:559-565) may be used. These constructs can be introduced into plant cells using Ti plasmids, Ri plasmids, plant virus vectors, direct DNA transformation, microinjection, electroporation, etc. For reviews of such techniques see, for example, Weissbach &
- 35 Weissbach, 1988, Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp. 421-463; and Grierson &

Corey, 1988, Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9.

An alternative expression system which could be used to express Hu-B1.219 is an insect system. In one such system, 5 Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The Hu-B1.219 coding sequence may be cloned into non-essential regions (for example the polyhedrin gene) of the virus and placed under 10 control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of the Hu-B1.219 coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin 15 gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted gene is expressed. (e.g., see Smith et al., 1983, J. Viol. 46:584; Smith, U.S. Patent No. 4,215,051).

In mammalian host cells, a number of viral based 20 expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the Hu-B1.219 coding sequence may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene 25 may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing Hu-B1.219 in infected hosts. (e.g., See Logan & Shenk, 1984, 30 Proc. Natl. Acad. Sci. USA 81:3655-3659). Alternatively, the vaccinia 7.5K promoter may be used. (See, e.g., Mackett et al., 1982, Proc. Natl. Acad. Sci. USA 79:7415-7419; Mackett et al., 1984, J. Virol. 49:857-864; Panicali et al., 1982, Proc. Natl. Acad. Sci. USA 79:4927-4931).

Specific initiation signals may also be required for efficient translation of inserted Hu-B1.219 coding sequences. These signals include the ATG initiation codon and adjacent

sequences. In cases where the entire Hu-B1.219 gene, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed.

- 5 However, in cases where only a portion of the Hu-B1.219 coding sequence is inserted, exogenous translational control signals, including the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the Hu-B1.219 coding sequence to
- 10 ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription
- 15 terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific

- 20 fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. The presence of several consensus N-glycosylation sites in the Hu-Bl.219 extracellular domain support the possibility that proper
- 25 modification may be important for Hu-Bl.219 function.
 Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and
- 30 processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited
- 35 to CHO, VERO, BHK, HeLa, COS, MDCK, 293, WI38, etc.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell

lines which stably express the Hu-B1.219 may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with the Hu-B1.219 DNA controlled by appropriate expression

- 5 control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective
- 10 media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to
- 15 engineer cell lines which express the Hu-B1.219 on the cell surface. Such engineered cell lines are particularly useful in screening for ligands or drugs that affect Hu-B1.219 function.

A number of selection systems may be used, including but 20 not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817)

- 25 genes can be employed in tk, hgprt or aprt cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA
- 30 78:1527); gpt, which confers resistance to mycophenolic acid
 (Mulligan & Berg, 1981), Proc. Natl. Acad. Sci. USA 78:2072);
 neo, which confers resistance to the aminoglycoside G-418
 - (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and
 hygro, which confers resistance to hygromycin (Santerre, et
- 35 al., 1984, Gene 30:147) genes. Recently, additional selectable genes have been described, namely trpB, which allows cells to utilize indole in place of tryptophan; hisD,

which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, 1988, Proc. Natl. Acad. Sci. USA 85:8047); and ODC (ornithine decarboxylase) which confers resistance to the ornithine decarboxylase inhibitor, 2- (difluoromethyl)-DL-ornithine, DFMO (McConlogue L., 1987, In: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed.).

5.4. IDENTIFICATION OF CELLS THAT EXPRESS Hu-B1.219

The host cells which contain the coding sequence and which express the biologically active gene product may be identified by at least four general approaches; (a) DNA-DNA or DNA-RNA hybridization; (b) the presence or absence of "marker" gene functions; (c) assessing the level of transcription as measured by the expression of Hu-B1.219 mRNA transcripts in the host cell; and (d) detection of the gene product as measured by immunoassay or by its biological activity. Prior to the identification of gene expression, the host cells may be first mutagenized in an effort to increase the level of expression of Hu-B1.219, especially in cell lines that produce low amounts of Hu-B1.219.

In the first approach, the presence of the Hu-B1.219 coding sequence inserted in the expression vector can be detected by DNA-DNA or DNA-RNA hybridization using probes comprising nucleotide sequences that are homologous to the Hu-B1.219 coding sequence, respectively, or portions or derivatives thereof.

In the second approach, the recombinant expression vector/host system can be identified and selected based upon the presence or absence of certain "marker" gene functions (e.g., thymidine kinase activity, resistance to antibiotics, resistance to methotrexate, transformation phenotype, occlusion body formation in baculovirus, etc.). For example, if the Hu-Bl.219 coding sequence is inserted within a marker gene sequence of the vector, recombinants containing the Hu-Bl.219 coding sequence can be identified by the absence of the marker gene function. Alternatively, a marker gene can

be placed in tandem with the Hu-B1.219 sequence under the control of the same or different promoter used to control the expression of the Hu-B1.219 coding sequence. Expression of the marker in response to induction or selection indicates expression of the Hu-B1.219 coding sequence.

In the third approach, transcriptional activity for the Hu-B1.219 coding region can be assessed by hybridization assays. For example, RNA can be isolated and analyzed by Northern blot using a probe homologous to the Hu-B1.219

10 coding sequence or particular portions thereof.

Alternatively, total nucleic acids of the host cell may be extracted and assayed for hybridization to such probes.

In the fourth approach, the expression of the Hu-B1.219 protein product can be assessed immunologically, for example 15 by Western blots, immunoassays such as radioimmuno-precipitation, enzyme-linked immunoassays and the like.

5.5. USES OF Hu-B1.219 ENGINEERED CELL LINES

In an embodiment of the invention, the Hu-B1.219 receptor and/or cell lines that express the Hu-B1.219

- 20 receptor may be used to screen for antibodies, peptides, or other ligands that act as agonists or antagonists of the Hu-Bl.219 receptor. For example, anti-Hu-Bl.219 antibodies may be used to inhibit or stimulate receptor Hu-Bl.219 function. Alternatively, screening of peptide libraries with
- 25 recombinantly expressed soluble Hu-B1.219 protein or cell lines expressing Hu-B1.219 protein may be useful for identification of therapeutic molecules that function by inhibiting or stimulating the biological activity of Hu-B1.219. The uses of the Hu-B1.219 receptor and engineered
- 30 cell lines, described in the subsections below, may be employed equally well for other members of the HR family.

In an embodiment of the invention, engineered cell lines which express most of the Hu-B1.219 coding region or its ligand binding domain or its ligand binding domain fused to 35 another molecule such as the immunoglobulin constant region (Hollenbaugh and Aruffo, 1992, Current Protocols in Immunology, Unit 10.19; Aruffo et al., 1990, Cell 61:1303)

may be utilized to produce a soluble receptor to screen and identify ligand antagonists as well as agonists. The soluble Hu-B1.219 protein or fusion protein may be used to identify a ligand in binding assays, affinity chromatography,

- 5 immunoprecipitation, Western blot, and the like.
 Alternatively, the ligand binding domain of Hu-B1.219 may be fused to the coding sequence of the epidermal growth factor receptor transmembrane and cytoplasmic regions. This approach provides for the use of the epidermal growth factor
- 10 receptor signal transduction pathway as a means for detecting ligands that bind to Hu-B1.219 in a manner capable of triggering an intracellular signal. Synthetic compounds, natural products, and other sources of potentially biologically active materials can be screened in a number of ways.

Random peptide libraries consisting of all possible combinations of amino acids attached to a solid phase support may be used to identify peptides that are able to bind to the ligand binding site of a given receptor or other functional

20 domains of a receptor such as kinase domains (Lam, K.S. et al., 1991, Nature 354: 82-84). The screening of peptide libraries may have therapeutic value in the discovery of pharmaceutical agents that stimulate or inhibit the biological activity of receptors through their interactions with the given receptor.

Identification of molecules that are able to bind to the Hu-B1.219 may be accomplished by screening a peptide library with recombinant soluble Hu-B1.219 protein. Methods for expression and purification of Hu-B1.219 are described in Section 5.2 supra and may be accomplished.

- 30 Section 5.2, <u>supra</u>, and may be used to express recombinant full length Hu-B1.219 or fragments of Hu-B1.219 depending on the functional domains of interest. For example, the cytoplasmic and extracellular ligand binding domains of Hu-B1.219 may be separately expressed and used to screen peptide 35 libraries.
 - To identify and isolate the peptide/solid phase support that interacts and forms a complex with Hu-B1.219, it is

necessary to label or "tag" the Hu-B1.219 molecule. The Hu-B1.219 protein may be conjugated to enzymes such as alkaline phosphatase or horseradish peroxidase or to other reagents such as fluorescent labels which may include fluorescein

- 5 isothiocyanate (FITC), phycoerythrin (PE) or rhodamine.
 Conjugation of any given label to Hu-B1.219 may be performed
 using techniques that are routine in the art. Alternatively,
 Hu-B1.219 expression vectors may be engineered to express a
 chimeric Hu-B1.219 protein containing an epitope for which a
- 10 commercially available antibody exist. The epitope specific antibody may be tagged using methods well known in the art including labeling with enzymes, fluorescent dyes or colored or magnetic beads.

The "tagged" Hu-B1.219 conjugate is incubated with the 15 random peptide library for 30 minutes to one hour at 22°C to allow complex formation between Hu-B1.219 and peptide species within the library. The library is then washed to remove any unbound Hu-B1.219 protein. If Hu-B1.219 has been conjugated to alkaline phosphatase or horseradish peroxidase the whole

- 20 library is poured into a petri dish containing substrates for either alkaline phosphatase or peroxidase, for example, 5-bromo-4-chloro-3-indoyl phosphate (BCIP) or 3,3',4,4"-diaminobenzidine (DAB), respectively. After incubating for several minutes, the peptide/solid phase-Hu-B1.219 complex
- 25 changes color, and can be easily identified and isolated physically under a dissecting microscope with a micromanipulator. If a fluorescent tagged Hu-B1.219 molecule has been used, complexes may be isolated by fluorescent activated sorting. If a chimeric Hu-B1.219 protein
- 30 expressing a heterologous epitope has been used, detection of the peptide/Hu-B1.219 complex may be accomplished by using a labeled epitope specific antibody. Once isolated, the identity of the peptide attached to the solid phase support may be determined by peptide sequencing.
- In addition to using soluble Hu-B1.219 molecules, in another embodiment, it is possible to detect peptides that bind to cell surface receptors using intact cells. The use

of intact cells is preferred for use with receptors that are multi-subunits or labile or with receptors that require the lipid domain of the cell membrane to be functional. Methods for generating cell lines expressing Hu-B1.219 are described in Section 5.3. The cells used in this technique may be either live or fixed cells. The cells may be incubated with the random peptide library and bind to certain peptides in the library to form a "rosette" between the target cells and the relevant solid phase support/peptide. The rosette can thereafter be isolated by differential centrifugation or removed physically under a dissecting microscope.

As an alternative to whole cell assays for membrane bound receptors or receptors that require the lipid domain of the cell membrane to be functional, the receptor molecules

15 can be reconstituted into liposomes where label or "tag" can be attached.

Various procedures known in the art may be used for the production of antibodies to epitopes of the recombinantly produced Hu-B1.219 receptor. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by an Fab expression library. Neutralizing antibodies <u>i.e.</u>, those which compete for the ligand binding site of the receptor are especially preferred for diagnostics and therapeutics.

- 25 Monoclonal antibodies that bind Hu-Bl.219 may be radioactively labeled allowing one to follow their location and distribution in the body after injection. Radioisotope tagged antibodies may be used as a non-invasive diagnostic tool for imaging de novo cells of tumors and metastases.
- Immunotoxins may also be designed which target cytotoxic agents to specific sites in the body. For example, high affinity Hu-Bl.219 specific monoclonal antibodies may be covalently complexed to bacterial or plant toxins, such as diphtheria toxin, abrin or ricin. A general method of
- 35 preparation of antibody/hybrid molecules may involve use of thiol-crosslinking reagents such as SPDP, which attack the primary amino groups on the antibody and by disulfide

exchange, attach the toxin to the antibody. The hybrid antibodies may be used to specifically eliminate Hu-B1.219 expressing tumor cells.

For the production of antibodies, various host animals

5 may be immunized by injection with the Hu-B1.219 protein
including but not limited to rabbits, mice, rats, etc.
Various adjuvants may be used to increase the immunological
response, depending on the host species, including but not
limited to Freund's (complete and incomplete), mineral gels

10 such as aluminum hydroxide, surface active substances such as
lysolecithin, pluronic polyols, polyanions, peptides, oil
emulsions, keyhole limpet hemocyanin, dinitrophenol, and
potentially useful human adjuvants such as BCG (bacilli
Calmette-Guerin) and Corynebacterium parvum.

- 15 Monoclonal antibodies to Hu-B1.219 may be prepared by using any technique which provides for the production of antibody molecules by continuous cell lines in culture.

 These include but are not limited to the hybridoma technique originally described by Kohler and Milstein, (Nature, 1975,
- 20 256:495-497), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today, 4:72; Cote et al., 1983, Proc.
 Natl. Acad. Sci., 80:2026-2030) and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). In addition,
- 25 techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen
- 30 specificity together with genes from a human antibody molecule of appropriate biological activity can be used. Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce Hu-Bl.219-specific single chain 35 antibodies.

Antibody fragments which contain specific binding sites of Hu-Bl.219 may be generated by known techniques. For

example, such fragments include but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity to Hu-B1.219.

5.6. USES OF Hu-B1.219 POLYNUCLEOTIDE

An Hu-B1.219 polynucleotide may be used for diagnostic and/or therapeutic purposes. For diagnostic purposes, an Hu-B1.219 polynucleotide may be used to detect Hu-B1.219 gene expression or aberrant Hu-B1.219 gene expression in disease states, e.g., chronic myelogenous leukemia. Included in the scope of the invention are oligonucleotide sequences, that include antisense RNA and DNA molecules and ribozymes, that function to inhibit translation of an Hu-B1.219.

5.6.1. DIAGNOSTIC USES OF AN Hu-B1.219 POLYNUCLEOTIDE

An Hu-B1.219 polynucleotide may have a number of uses for the diagnosis of diseases resulting from aberrant expression of Hu-B1.219. For example, the Hu-B1.219 DNA sequence may be used in hybridization assays of biopsies or autopsies to diagnose abnormalities of Hu-B1.219 expression; e.g., Southern or Northern analysis, including in situ hybridization assays. Such techniques are well known in the art, and are in fact the basis of many commercially available diagnostic kits.

5.6.2. THERAPEUTIC USES OF AN Hu-B1.219 POLYNUCLEOTIDE

An Hu-B1.219 polynucleotide may be useful in the treatment of various abnormal conditions. By introducing gene sequences into cells, gene therapy can be used to treat conditions ir which the cells do not proliferate or differentiate normally due to underexpression of normal Hu-B1.219 or expression of abnormal/inactive Hu-B1.219. In some instances, the polynucleotide encoding an Hu-B1.219 is

intended to replace or act in the place of a functionally deficient endogenous gene. Alternatively, abnormal conditions characterized by overproliferation can be treated using the gene therapy techniques described below.

- Abnormal cellular proliferation is an important component of a variety of disease states. Recombinant gene therapy vectors, such as viral vectors, may be engineered to express variant, signalling incompetent forms of Hu-B1.219 which may be used to inhibit the activity of the naturally
- 10 occurring endogenous Hu-B1.219. A signalling incompetent form may be, for example, a truncated form of the protein that is lacking all or part of its signal transduction domain. Such a truncated form may participate in normal binding to a substrate but lack signal transduction activity.
- 15 Thus recombinant gene therapy vectors may be used therapeutically for treatment of diseases resulting from aberrant expression or activity of an Hu-B1.219.

 Accordingly, the invention provides a method of inhibiting the effects of signal transduction by an endogenous Hu-B1.219
- 20 protein in a cell comprising delivering a DNA molecule encoding a signalling incompetent form of the Hu-B1.219 protein to the cell so that the signalling incompetent Hu-B1.219 protein is produced in the cell and competes with the endogenous Hu-B1.219 protein for access to molecules in the
- 25 Hu-B1.219 protein signalling pathway which activate or are activated by the endogenous Hu-B1.219 protein.

Expression vectors derived from viruses such as retroviruses, vaccinia virus, adeno-associated virus, herpes viruses, or bovine papilloma virus, may be used for delivery

- 30 of recombinant Hu-Bl.219 into the targeted cell population. Methods which are well known to those skilled in the art can be used to construct recombinant viral vectors containing an Hu-Bl.219 polynucleotide sequence. See, for example, the techniques described in Maniatis et al., 1989, Molecular
- 35 Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. and Ausubel et al., 1989, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience,

N.Y. Alternatively, recombinant Hu-B1.219 molecules can be reconstituted into liposomes for delivery to target cells.

Oligonucleotide sequences, that include anti-sense RNA and DNA molecules and ribozymes that function to inhibit the translation of an Hu-B1.219 mRNA are within the scope of the invention. Anti-sense RNA and DNA molecules act to directly block the translation of mRNA by binding to targeted mRNA and preventing protein translation. In regard to antisense DNA, oligodeoxyribonucleotides derived from the translation

10 initiation site, e.g., between -10 and +10 regions of an Hu-B1.219 nucleotide sequence, are preferred.

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Within the scope of the invention are engineered hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of Hu-B1.219 RNA sequences.

- Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides
- 25 corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features such as secondary structure that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their
- 30 accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.
- Both anti-sense RNA and DNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of RNA molecules. These include techniques
- 35 for chemically synthesizing oligodeoxyribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA

molecules may be generated by in vitro and in vivo
transcription of DNA sequences encoding the antisense RNA
molecule. Such DNA sequences may be incorporated into a wide
variety of vectors which incorporate suitable RNA polymerase
promoters such as the T7 or SP6 polymerase promoters.
Alternatively, antisense cDNA constructs that synthesize
antisense RNA constitutively or inducibly, depending on the
promoter used, can be introduced stably into cell lines.

Various modifications to the DNA molecules may be

10 introduced as a means of increasing intracellular stability
and half-life. Possible modifications include but are not
limited to the addition of flanking sequences of ribo- or
deoxy- nucleotides to the 5' and/or 3' ends of the molecule
or the use of phosphorothicate or 2' O-methyl rather than

15 phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

Methods for introducing polynucleotides into such cells or tissue include methods for *in vitro* introduction of polynucleotides such as the insertion of naked

20 polynucleotide, i.e., by injection into tissue, the introduction of an Hu-Bi.219 polynucleotide in a cell ex vivo, i.e., for use in autologous cell therapy, the use of a vector such as a virus, retrovirus, phage or plasmid, etc. or techniques such as electroporation which may be used in vivo 25 or ex vivo.

6. EXAMPLE: MOLECULAR CLONING OF A NOVEL HEMATOPOIETIN RECEPTOR COMPLEMENTARY DNA

6.1. MATERIALS AND METHODS

6.1.1. NORTHERN BLOT ANALYSIS

30

In order to study the expression of the Hu-B1.219 gene,
Northern blots containing RNA obtained from a variety of
human tissues (Clontech, Palo Alto, CA) were hybridized with
a radiolabeled 530 base pair (bp) DNA probe corresponding to
nucleotides #578 through 1107 (see Figure 2A-2G). Briefly,
the blots were prehybridized at 42°C for 3-6 hours in a
solution containing 5X SSPE, 10X Denhardt's solution, 100

μg/ml freshly denatured, sheared salmon sperm DNA, 50%
formamide (freshly deionized), and 2% SDS. The radiolabeled
probe was heat denatured and added to the prehybridization
mix and allowed to hybridize at 42°C for 18-24 hours with
5 constant shaking. The blots were rinsed in 2X SSC, 0.05% SDS
several times at room temperature before being transferred to
a wash solution containing 0.1X SSC, 0.1% SDS and agitated at
50°C for 40 minutes. The blots were then covered with
plastic wrap, mounted on Whatman paper and exposed to x-ray
10 film at -70°C using an intensifying screen.

6.1.2. REVERSE TRANSCRIPTION/POLYMERASE CHAIN REACTION (RT/PCR)

Total RNA was isolated using standard laboratory procedures (Sambrook et al., 1989, Molecular Cloning, A 15 Laboratory Manual, Cold Spring Harbor Laboratory, NY). Approximately 1 μg of total RNA was reverse transcribed and the cDNA was amplified by PCR (Perkin Elmer, Norwalk, CT). The PCR amplification conditions were the same for Hu-B1.219 and Form 1 expression analysis. They were: 94°C for 30 sec, 20 60°C for 30 sec, 72°C for 30 sec for a total of 40 cycles. The amplified products (224 bp for Hu-B1.219 and 816 bp for Form 1) were resolved by agarose gel electrophoresis and visualized by ethidium bromide staining. The Hu-B1.219 amplimers were GGTTTGCATATGGAAGTC (upper) and 25 CCTGAACCATCCAGTCTCT (lower). The Form 1 specific amplimers were GACTCATTGTGCAGTGTTCAG (upper) and TAGTGGAGGGGGGGCAGCAG (lower). The upper amplimer was commonly shared by all 3 forms, whereas the lower amplimer was Form 1-specific.

6.2. RESULTS

A number of cDNA clones were isolated from a human fetal liver cDNA library (Clontech, Palo Alto, CA) and the DNA sequences of several of these clones were determined. These clones (Hu-Bl.219 #4, #33, #34, #1, #36, #8, #55, #60, #3, #57, #62) contained overlapping sequences, which were then compiled into a contiguous nucleotide sequence. Both the cDNA sequence and predicted protein sequence from the cDNA are shown in Figure 2A-2G. This cDNA sequence contains two

FN III domains, each containing a "WS box", which are characteristic of genes of the HR family. However, the Hu-B1.219 sequence is not identical to any known gene. Thus, this cDNA represents a novel member of the HR gene family, 5 herein referred to as Hu-B1.219 (Table 1).

Table 1
Cytokine Receptor Gene FN III Domain Sizes (bp)

10	<u>Gene</u>	<u>Human</u>	<u>Mouse</u>	Rat
	Hu-B1.219(5')	273		
	Hu-B1.219(3')	282		
15	IL-2Rβ	291	288	291
	IL-2Rγ	273		
	IL-3Rα	246	252	
	IL-3RβAic2a		306 and 273	
	IL-3RβAic2b	306 and 282	303 and 276	
	IL-4R	294		291
20	IL-5Rα	276	. 273	
	IL-6R	294	285	
	gp130	288	291	288
25	· IL-7R		294	
	IL-9R	321	321	
	mpl -		270	
	G-CSFR	300	297	
30	GM-CSFR	288		
	CNTFR	282		285
	PRLR			288
	EPOR	288	285	288
	LIFR-1	321 and 297		

Based on the sequence of Hu-B1.219 presented in Figure 2A-2G, the translation initiation site appears at position #97. The sequence encodes an open reading frame up to and

including nucleotide #2970. It is believed that the sequence between nucleotides #2614 and #2691 encodes a transmembrane domain. The complete sequence encodes a protein of 958 amino acids.

- However, the sequence in Figure 2A-2G represents only one form of Hu-B1.219 cDNA sequence, herein referred to as Form 1. This is because additional lambda clones were discovered that contained different sequences near the 3' end known as Form 2 and Form 3. All three forms contain the
- 10 identical sequence up to and including nucleotide #2770, then they diverge at nucleotide #2771 and beyond (Figure 3A). An alignment of deduced amino acid sequences of all three forms corresponding to the 3' end from #2771 until a stop codon is shown in Figure 3B. Two of the originally isolated lambda
- 15 clones, #36 and #8, contain the 3' end sequences of Form 1 and Form 2, respectively. These three forms of Hu-B1.219 may derive from a common precursor mRNA by an alternative splicing mechanism.
- It is noteworthy that the DNA sequence of Form 1 from 20 nucleotide #2771 to the end is 98% identical to a human retrotransposon sequence that is thought to be derived from a human endogenous retroviral DNA sequence (Singer, 1982, Cell 28:433; Weiner et al., 1986, Ann. Rev. Biochem. 55:631; Lower et al., 1993, Proc. Natl. Acad. Sci. USA 90:4480). In order
- 25 to examine the expression of the different forms of cDNA, RT/PCR was performed using several human cell lines. The results in Table 2 show that Form 1 was expressed as RNA in K-562 cells and in a human fetal liver cDNA preparation. Since Hu-B1.219 was cloned from human fetal liver cDNA
- 30 library, this served as a positive control. However, with respect to several other human cell lines, Form 1 was not detected, whereas Hu-B1.219 expression was positive. For example, Form 1 was not expressed in KGla cells, but Form 3 was expressed. Thus, it is possible that these three forms
 - 35 of Hu-Bl.219 are not expressed simultaneously in the same cells. There may be selective expression of certain forms in particular cell populations.

Table 2
RT/PCR Analysis of Hu-B1.219 Expression

	<u>Cell Lines</u>	Hu- <u>B1.219</u> *	Form 1 _A	Form 3
	MRC5 (Lung fibroblast)	++	+/-	+
5	KGla (lymphoblast)	+	-	++ .
	Raji (B cell lymphoma)	+	•	+
	Kit 225/K6 (T cell)	+++	-	+
	K562 (myelogenous leukemia)	++++	+++	++++
10	Human Fetal Liver (positive control)	+++	+++	+++

* - Analysis by Northern blots.

- Analysis by RT/PCR

Various human tissue RNA were probed with a radiolabelled Hu-B1.219 fragment corresponding to nucleotide numbers from #578 to #1107 as disclosed in Figure 2A-2G for Northern blot analyses. Two different size mRNAs were detected. This result suggests that there may be another homologous gene or there is alternative splicing of a single RNA transcript. Hu-B1.219 expression was by far the strongest in human fetal tissues, particularly the liver and lung. Trace levels were found in several adult tissues. Interestingly, a chronic myelogenous leukemia cell line, K562, was strongly positive for its expression, while some expression was also detected in A549 cells, a lung carcinoma cell line (Table 3).

30

i si wala w

35

· WO 96/08510

Table 3

SUMMARY OF NORTHERN BLOT ANALYSIS OF Hu-B1.219 GENE EXPRESSION

5	Human Tissues/cell lines	Expression
	fetal brain lung liver kidney	- +++ +++++ +
10	adult heart brain placenta lung liver skeletal muscle	+ - +/- + -
15	kidney pancreas spleen thymus prostate testis	+/- - - - -
20	ovary small intestine colon peripheral blood leukocytes	+ - -
	cancer HL-60 HeLa K-562 MOLT-4 Raji SW480	- - +++ - -
25	A549 G361	+ . -

Taken together, the data indicates that the Hu-B1.219 cDNA clone represents a new member of the human hematopoietin receptor family. A summary of the data that supports this 30 conclusion is as follows:

- 1. The Hu-B1.219 DNA and protein sequences do not fully match any known sequences in the corresponding computer data bases.
- 2. Hu-Bl.219 shares certain DNA sequence homology 35 with the IL-6R and IL-4R.
 - 3. It shares certain protein homology with G-CSFR, IL-6R, IL-3R beta chain, gp130, IL-12R, and LIFR.

4. It contains two "WS box" motifs with the correct spacing of conserved amino acids in the FN III domains (see Figure 4).

- 5. It contains an amphipathic sequence in block 3 5 of the FN III domains (see Figure 5).
 - 6. It contains alternating hydrophobic and basic amino acids in block 6 of the FN III domains (see Figure 6).
 - 7. It contains conserved cysteines in these cysteine rich regions upstream of the FN III domains.
- 8. It was originally cloned from a hematopoietic tissue, fetal liver.
 - 9. It is expressed by certain fetal tissues.

7. <u>Deposit of Microorganisms</u>

The following organisms were deposited with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852.

Strain Designation Accession No.

HuB1.219,	#1	75885
HuB1.219,	#4	75886
HuB1.219,	#8	75887
HuB1.219,	#33	75888
HuB1.219,	#34	75889
HuB1.219,	#36	75890
HuB1.219,	#55	75971
HuB1.219,	#60	75973
HuB1.219,	#3	75970
HuB1.219,	#57	75972
HuB1.219,	#62	75974
	HuB1.219, HuB1.219, HuB1.219, HuB1.219, HuB1.219, HuB1.219, HuB1.219, HuB1.219,	HuB1.219, #4 HuB1.219, #8 HuB1.219, #33 HuB1.219, #34 HuB1.219, #36 HuB1.219, #55 HuB1.219, #60 HuB1.219, #3 HuB1.219, #57

The present invention is not to be limited in scope by the exemplified embodiments, which are intended as

30 illustrations of individual aspects of the invention.

Indeed, various modifications for the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to 35 fall within the scope of the appended claims.

All publications cited herein are incorporated by reference in their entirety.

5

10

15

20

25

30

Lining the state of the sta

- 32 -

SEQUENCE LISTIN

(1) GENERAL INFORMATI N:

- (i) APPLICANT: Snodgrass, H. R. Cioffi, Joseph Zupancic, Thomas J. Shafer, Alan W.
- (ii) TITLE OF INVENTION: Hu-B1.219, A NOVEL HUMAN HEMATOPOIETIN RECEPTOR
- (iii) NUMBER OF SEQUENCES: 25
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Pennie & Edmonds
 - (B) STREET: 1155 Avenue of the Americas
 - (C) CITY: New York
 - (D) STATE: New York

 - (E) COUNTRY: USA (F) ZIP: 10036-2711
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/355,888
 - (B) FILING DATE: 14-DEC-1994
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Poissant, Brian M.

 - (B) REGISTRATION NUMBER: 28,462 (C) REFERENCE/DOCKET NUMBER: 7225-078
 - (ix) TELECOMMUNICATION INFORMATION:

 - (A) TELEPHONE: (212) 790-9090 (B) TELEFAX: (212) 869-9741/8864
 - (C) TELEX: 66141 PENNIE
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Trp Ser Xaa Trp Ser

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs

	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA		
٠		· •	
	(x1) SEQUENCE DESCRIPTION: SEQ ID	NO:2:	
GGT	TTGCATA TGGAAGTC		18
(2)	INFORMATION FOR SEQ ID NO:3:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA		
		, v	
	(xi) SEQUENCE DESCRIPTION: SEQ ID	NO:3:	
CCT	GAACCAT CCAGTCTCT	•.	19
(2 <u>)</u>	INFORMATION FOR SEQ ID NO:4:		
,	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA		
	(xi) SEQUENCE DESCRIPTION: SEQ ID	NO:4:	
GAC	CATTGT GCAGTGTTCA G		21
(2)	INFORMATION FOR SEQ ID NO:5:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: DNA		
		* * *	
	(with appropriate the control of the		
T 2	(xi) SEQUENCE DESCRIPTION: SEQ ID		
	rgargg agggtcagca g		21
(2)	INFORMATION FOR SEQ ID NO:6:	• • • • • • • • • • • • • • • • • • •	
	(i) SEQUENCE CHARACTERISTICS.		

- (A) LENGTH: 2991 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: CDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS (B) LOCATION: 1..2991

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

	(,															
GCG Ala 1	CGC Arg	GCG Ala	ACG Thr	CAG Gln 5	GTG Val	CCC Pro	GAG Glu	CCC Pro	CGG Arg 10	CCC Pro	GCG Ala	CCC Pro	ATC Ile	TCT Ser 15	GCC Ala	48
TTC Phe	GCT ·	CGA Arg	GTT Val 20	GCA GCA	CCC Pro	CCG Pro	GAT [®]	CAA Gln 25	GGT Gly	GTA Val	CTT Leu	CTC Leu	TGA * 30	_	AAG Lys	96
ATG Met	ATT. Ile	TGT Cys 35	CAA Gln	AAA Lys	TTC Phe	TGT	GTG Val 40	GTT Val	TTG Leu	TTA Leu	CAT His	TGG Trp 45	GAA Glu	TTT Phe	ATT Ile	144
TAT Tyr	GTG Val 50	ATA Ile	ACT Thr	GCG Ala	TTT Phe	AAC Asn 55	TTG Leu	TCA Ser	TAT Tyr	CCA Pro	ATT Ile 60	ACT Thr	CCT Pro	TGG Trp	AGA Arg	192
TTT Phe 65	AAG Lys	TTG Leu	TCT Ser	TGC Cys	ATG Met 70	CCA Pro	CCA Pro	AAT Asn	TCA Ser	ACC Thr 75	TAT Tyr	GAC Asp	TAC Tyr	TTC Phe	CTT Leu 80	240
TTG Leu	CCT Pro	GCT Ala	GGA Gly	CTC Leu 85	TCA Ser	AAG Lys	AAT Asņ	ACT Thr	TCA Ser 90	AAT Asn	TCG Ser	AAT Asn	GGA Gly	CAT His 95	TAT Tyr	288
GAG Glu	ACA Thr	GCT Ala	GTT Val 100	GAA Glu	CCT Pro	AAG Lys	TTT Phe	AAT Asn 105	TCA Ser	AGT Ser	GGT Gly	ACT Thr	CAC His 110	TTT Phe	TCT Ser	336
AAC Asn	TTA Leu	TCC Ser 115	AAA Lys	GCA Ala	ACT Thr	TTC Phe	CAC His 120	TGT Cys	TGC Cys	TTT Phe	CGG Arg	AGT Ser 125	GAG Glu	CAA Gln	GAT Asp	384
AGA Arg	AAC Asn 130	TGC Cyb	TCC Ser	TTA Leu	TGT Cys	GCA Ala 135	GAC Asp	AAC Asn	ATT Ile	GAA Glu	GGA Gly 140	AGG Arg	ACA Thr	TTT Phe	GTT Val	432
TCA Ser 145	ACA Thr	GTA Val	AAT Asn	TCT Ser	TTA Leu 150	GTT Val	TTT Phe	CAA Gln	CAA Gln	ATA Ile 155	GAT Asp	GCA Ala	AAC Asn	TGG Trp	AAC Asn 160	48 0
ATA Ile	CAG Gln	TGC Cys	TGG Trp	CTA Leu 165	AAA Lys	GGA Gly	GAC Asp	TTA Leu	AAA Lys 170	TTA Leu	TTC Phe	ATC Ile	TGT Cys	TAT Tyr 175	GTG Val	528
GAG Glu	TCA Ser	TTA Leu	777 Phe 180	Lys	AAT Asn	CTA	TTC Phe	AGG Arg 185	AAT Asn	TAT Tyr	AAC Asn	TAT Tyr	AAG Lys 190	GTC Val	CAT His	· 576
CTT Leu	TTA Leu	TAT Tyr 195	GTT Val	CTG Leu	CCT Pro	GAA Glu	GTG Val 200	TTA Leu	GAA Glu	GAT Asp	TCA Ser	CCT Pro 205	CTG Leu	GTT Val	CCC Pro	624

CAA Gln	AAA Lys 210	GCC	AGT Ser	TTT Phe	CAG Gln	ATG Met 215	GTT Val	CAC His	TGC Cys	AAT	TGC Cys 220	AGT Ser	GTT Val	CAT His	GAA Glu	61	72
TGT Cys 225	TGT Cys	GAA Glu	TGT Cys	CTT Leu	GTG Val 230	CCT Pro	GTG Val	CCA Pro	ACA Thr	GCC Ala 235	AAA Lys	CTC Leu	AAC Asn	GAC Asp	ACT Thr 240	72	20
CTC Leu	CTT Leu	ATG Met	TGT Cys	TTG Leu 245	AAA Lys	ATC Ile	ACA Thr	TCT Ser	GGT Gly 250	GGA Gly	GTA Val	ATT Ile	TTC Phe	CGG Arg 255	TCA Ser	7 <i>6</i>	58
CCT Pro	CTA Leu	ATG Met	TCA Ser 260	GTT Val	CAG Gln	CCC Pro	Ile	AAT Asn 265	ATG Met	GTG Val	AAG Lys	CCT Pro	GAT Asp 270	CCA Pro	CCA Pro	81	۱6
TTA Leu	GGT Gly	TTG Leu 275	CAT His	ATG Met	GAA Glu	ATC Ile	ACA Thr 280	GAT Asp	GAT Asp	GGT Gly	AAT Asn	TTA Leu 285	AAG Lys	ATT Ile	TCT	86	i4
TGG Trp	TCC Ser 290	AGC Ser	CCA Pro	CCA Pro	TTG Leu	GTA Val 295	CCA Pro	TIT Phe	CCA Pro	CTT Leu	CAA Gln 300	Tyr	CAA Gln	GTG Val	AAA Lys	91	.2
TAT Tyr 305	TCA Ser	GAG Glu	AAT Asn	TCT Ser	ACA Thr 310	ACA Thr	GTT Val	ATC Ile	AGA Arg	GAA Glu 315	GCT Ala	GAC Asp	AAG Lys	ATT	GTC Val 320	96	Ю
TCA Ser	GCT Ala	ACA Thr	TCC Ser	CTG Leu 325	CTA Leu	GTA Val	GAC Asp	AGT Ser	ATA Ile 330	CTT Leu	CCT Pro	GGG Gly	TCT Ser	TCG Ser 335	TAT Tyr	100	8
GAG Glu	GTT Val	CAG Gln	GTG Val 340	AGG Arg	GGC Gly	AAG Lys	AGA Arg	CTG Leu 345	GAT Asp	GCC	CCA Pro	GGA Gly	ATC Ile 350	Trp	AGT Ser	105	6
GAC Asp	TGG Trp	AGT Ser 355	ACT Thr	CCT Pro	CGT Arg	GTC Val	TTT Phe 360	ACC Thr	ACA Thr	CAA Gln	GAT Asp	GTC Val 365	ATA Ile	TAC Tyr	TTT Phe	110	4
CCA Pro	CCT Pro 370	AAA Lys	ATT Ile	CTG Leu	ACA Thr	AGT Ser 375	GTT Val	GGG Gly	TCT Ser	AAT Asn	GTT Val 380	TCT Ser	TTT Phe	CAC His	TGC Cys	115	2
ATC Ile 385	TAT Tyr	AAG Lys	AAG Lys	GAA Glu	AAC Asn 390	AAG Lys	ATT Ile	GTT Val	CCC Pro	TCA Ser 395	AAA Lys	GAG Glu	ATT Ile	GTT Val	TGG Trp 400	120	0
TGG Trp	ATG Met	AAT ABN	TTA Leu	GCT Ala 405	GAG Glu	AAA Lys	ATT Ile	CCT Pro	CAA Gln 410	AGC Ser	CAG Gln	TAT Tyr	GAT Asp	GTT Val 415	GTG Val	124	8
AGT Ser	GAT Asp	CAT His	GTT Val 420	AGC Ser	AAA Lys	GTT Val	ACT Thr	TTT Phe 425	TTC Phe	AAT Asn	CTG Leu	AAT Asn	GAA Glu 430	ACC Thr	AAA Lys	129	6
CCT Pro	CGA Arg	GGA Gly 435	AAG Lys	TTT Phe	ACC Thr	TAT Tyr	GAT Asp 440	GCA Ala	GTG Val	TAC Tyr	TGC Cys	TGC Cys 445	AAT Asn	GAA Glu	CAT His	134	4
GAA Glu	TGC Cys 450	CAT His	CAT His	CGC Arg	TAT Tyr	GCT Ala 455	GAA Glu	TTA Leu	TAT Tyr	GTG Val	ATT Ile 460	GAT Asp	GTC Val	AAT Asn	ATC Ile	139	2
AAT Asn 465	ATC Ile	TCA Ser	TGT Cys	GAA Glu	ACT Thr 470	GAT Asp	GGG Gly	TAC Tyr	TTA Leu	ACT Thr 475	AAA Lys	ATG Met	ACT Thr	TGC Cys	AGA Arg 480	144	D

			AGT Ser													1488
			AGG Arg 500													1536
			GAG Glu													1584
			TTC Phe													1632
			AAT Asn											Thr		1680
			GAT Asp													1728
			ACT Thr 580													1776
			CCA Pro													1824
			GAA Glu												AAA Lys	1872
			GTC Val													1920
			CGC Arg													1968
			CCA Pro 660													2016
			GAA Glu					Ile								2064
		Asn	GTC Val													2112
	Сув		GTT Val			Tyr										2160
G17	ACA Thr	TGG	TCA Ser	GAA Glu 725	Asp	GTG Val	GGA Gly	AAT Asn	CAC His 730	Thr	AAA Lys	TTC Phe	ACT	TTC Phe 735	CTG Leu	2208
TGG Trp	ACA Thr	GAG Glu	CAA Gln 740	Ala	CAT His	ACT Thr	GTT Val	Thr 745	Val	CTG Leu	GCC Ala	ATC Ile	AAT Asn 750	TCA Ser	ATT Ile	2256

GCT	GCT Ala	TCT Ser 755	GTT Val	GCA Ala	AAT Asn	TTT Phe	AAT Asn 760	TTA Leu	ACC Thr	TTT Phe	TCA Ser	TGG Trp 765	CCT Pro	ATG Met	AGC Ser		2304
AAA Lys	GTA Val 770	AAT Asn	ATC Il	GTG Val	CAG Gln	TCA Ser 775	CTC Leu	AGT Ser	GCT Ala	TAT Tyr	CCT Pro 780	TTA Leu	AAC 'Asn	AGC Ser	AGT Ser		2352
TGT Cys 785	GTG Val	ATT Ile	GTT Val	TCC Ser	TGG Trp 790	ATA Ile	CTA Leu	TCA Ser	CCC Pro	AGT Ser 795	GAT Asp	TAC Tyr	AAG Lys	CTA Leu	ATG Met 800		2400
TAT	TTT Phe	ATT Ile	ATT Ile	GAG Glu 805	TGG Trp	AAA Lys	AAT Asn	CTT Leu	AAT Asn 810	GAA Glu	GAT Asp	GGT Gly	GAA Glu	ATA Ile 815	AAA Lys		2448
TGG Trp	CTT Leu	AGA Arg	ATC Ile 820	TCT Ser	TCA Ser	TCT Ser	GTT Val	AAG Lys 825	AAG Lys	TAT Tyr	TAT Tyr	ATC Ile	CAT His 830	GAT Asp	CAT		2496
TTT Phe	ATC Ile	CCC Pro 835	ATT Ile	GAG Glu	AAG Lys	TAC Tyr	CAG Gln 840	TTC Phe	AGT Ser	CTT Leu	TAC Tyr	CCA Pro 845	ATA Ile	TTT Phe	ATG Met	•	2544
GAA lu	GGA Gly 850	GTG Val	GGA Gly	AAA Lys	CCA Pro	AAG Lys 855	ATA Ile	ATT Ile	AAT Asn	AGT Ser	TTC Phe ^s 860	ACT	CAA Gln	GAT Asp	GAT Asp	yar i	2592
ATT Ile 865	Glu	AAA Lys	CAC His	CAG Gln	AGT Ser 870	GAT Asp	GCA Ala	GGT Gly	TTA Leu	TAT Tyr 875	GTA Val	ATT Ile	GTG Val	CCA Pro	GTA Val 880		2640
ATT Ile	ATT Ile	TCC Ser	TCT Ser	TCC Ser 885	ATC Ile	TTA Leu	TTG Leu	CTT Leu	GGA Gly 890	ACA Thr	TTA Leu	TTA Leu	ATA Ile	TCA Ser 895	CAC His		2688
CAA Gln	AGA Arg	ATG Met	AAA Lys 900	AAG Lys	CTA Leu	TTT Phe	TGG Trp	GAA Glu 905	GAT Asp	GTT Val	CCG Pro	AAC Asn	CCC Pro 910	AAG Lys	AAT Aan	٠	2736
TGT Cys	TCC Ser	TGG Trp 915	GCA Ala	CAA Gln	GGA Gly	CTT Leu	AAT Asn 920	TTT Phe	CAG Gln	AAG Lys	ATG Met	CTT Leu 925	GAA Glu	GGC Gly	AGC Ser		2784
ATG Met	TTC Phe 930	GTT Val	AAG Lys	AGT Ser	CAT His	CAC His 935	CAC His	TCC Ser	CTA Leu	ATC Ile	TCA Ser 940	AGT Ser	ACC Thr	CAG Gln	GGA Gly		2832
CAC His 945	AAA Lys	CAC His	TGC Cys	GGA Gly	AGG Arg 950	CCA Pro	CAG Gln	GGT Gly	CCT Pro	CTG Leu 955	CAT His	AGG Arg	AAA Lys	ACC Thr	AGA Arg 960		2880
GAC Asp	CTT Leu	TGT Cys	TCA Ser	CTT Leu 965	GTT Val	TAT Tyr	CTG Leu	CTG Leu	ACC Thr 970	CTC Leu	CCT Pro	CCA Pro	CTA Leu	TTG Leu 975	TCC Ser		2928
TAT Tyr	GAC	CCT	GCC Ala	AAA	TCC	CCC	TCT Ser	GTG Val	AGA Arg	AAC Asn	ACC Thr	CAA Gln	GAA Glu	TGA	TCA Ser		2976
	reb		980	-,-				985					990				

⁽²⁾ INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 997 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Arg Ala Thr Gln Val Pro Glu Pro Arg Pro Ala Pro Ile Ser Ala Phe Gly Arg Val Gly Pro Pro Asp Gln Gly Val Leu Leu 20 25 Ser Lys Met Ile Cys Gln Lys Phe Cys Val Val Leu Leu His Trp Glu Phe Ile Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thr Pro Trp Arg Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp Tyr Phe Leu Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser Asn Gly His Tyr Glu Thr Ala Val Glu Pro Lys Phe Asn Ser Ser Gly Thr His Phe Ser Asn Leu Ser Lys Ala Thr Phe His Cys Cys Phe Arg Ser Glu Gln Asp 120 Arg Asn Cys Ser Leu Cys Ala Asp Asn Ile Glu Gly Arg Thr Phe Val Ser Thr Val Asn Ser Leu Val Phe Gln Gln Ile Asp Ala Asn Trp Asn Ile Gln Cys Trp Leu Lys Gly Asp Leu Lys Leu Phe Ile Cys Tyr Val Glu Ser Leu Phe Lys Asn Leu Phe Arg Asn Tyr Asn Tyr Lys Val His 180 185 190 Leu Leu Tyr Val Leu Pro Glu Val Leu Glu Asp Ser Pro Leu Val Pro 200 Gln Lys Gly Ser Phe Gln Met Val His Cys Asn Cys Ser Val His Glu Cys Cys Glu Cys Leu Val Pro Val Pro Thr Ala Lys Leu Asn Asp Thr Leu Leu Met Cys Leu Lys Ile Thr Ser Gly Gly Val Ile Phe Arg Ser Pro Leu Met Ser Val Gln Pro Ile Asn Met Val Lys Pro Asp Pro Pro Leu Gly Leu His Met Glu Ile Thr Asp Asp Gly Asn Leu Lys Ile Ser Trp Ser Ser Pro Pro Leu Val Pro Phe Pro Leu Gln Tyr Gln Val Lys Tyr Ser Glu Asn Ser Thr Thr Val Ile Arg Glu Ala Asp Lys Ile Val

			_												
305					310			•		315			н.		320
Ser	Ala	Thr	Ser	Leu 325	Leu	Val	Asp	Ser	Ile 330	Leu	Pro	Gly	Ser	Ser 335	Tyr
Glu	Val	Gln	Val 340	Arg	Gly	Lys	Arg	Leu 345	Asp	Gly	Pr	Gly	Ile 350	Trp	Ser
Asp	Trp	Ser 355	Thr	Pro	Arg	Val	Phe 360	Thr	Thr	Gln	Asp	Val 365	Ile	Tyr	Phe
Pro	Pro 370	Lys	Ile	Leu	Thr	Ser 375	Val	Gly	Ser	Asn	Val 380	Ser	Phe	His	Сув
Ile 385	Tyr	Lys	Lys	Glu	Asn 390	Lys	Ile	Val	Pro	Ser 395	Lys	Glu	Ile	.Val	Trp 400
Trp	Met	Asn	Leu	Ala 405	Glu	Lys	Ile	Pro	Gln 410	Ser	Gln	Tyr	Asp	Val 415	Val
Ser	Asp	His	Val 420	Ser	Lys	Val	Thr	Phe 425	Phe	Asn	Leu	Asn	Glu 430	Thr	Lys
Pro	Arg	Gly 435	Lys	Phe	Thr	Tyr	Авр 440	Ala	Val	Tyr	Cys	Сув 445		Glu	His
Glu	Сув 450	His	His	Arg	Tyr	Ala 455	Glu	Leu	Tyr	Val	Ile 460	Asp	Val	Asn	Ile
Asn 465	Ile	Ser	Сув	Glu	Thr 470	Asp	Gly	Tyr	Leu	Thr 475	Lys	Met	Thr	Сув	Arg 480
Trp	Ser	Thr	Ser	Thr 485	Ile	Gln	Ser	Leu	Ala 490	Glu	Ser	Thr	Leu	Gln 495	Leu
Arg	Tyr	His	Arg 500	Ser	Ser	Leu	Tyr	Cys 505	Ser	yeb	Ile	Pro	Ser 510	Ile	His
Pro	Ile	Ser 515	Glu	Pro	Lys	Asp	Cys 520	Tyr	Leu	Gln	Ser	Asp 525	Gly	Phe	Tyr
Glu	Сув 530	Ile	Phe	Gln	Pro	Ile 535	Phe	Leu	Leu	Ser	Gly 540		Thr	Met	Trp
11e . 545	Arg	Ile	Asn	His	Ser 550	Leu	Gly	Ser	Leu	As p 555	Ser	Pro	Pro	Thr	Сув 560
Val	Leu	Pro	Asp	Ser 565	Val	Val	Lys	Pro	Leu 570	Pro	Pro	Ser	Ser	Val 575	Lys
Ala	Glu	Ile	Thr 580	Ile	Asn	Ile	Gly	Leu 585	Leu	Lys	Ile	Ser	Trp 590	Glu	Lys
Pro	Val	Phe 595	Pro	Glu	Asn	Asn	Leu 600	Gln	Phe	Gln	Ile	Arg 605	Tyr	Gly	Leu
Ser	Gly 610	Lys	Glu	Val	Gln	Trp 615	Lys	Met	Tyr	Glu	Val 620	Tyr	Asp	Ala	Lys
025					630					635	Cys			- 0	640
Val	Gln	Val	Arg	Cys 645	Lys	Arg	Leu	Asp	Gly 650	Leu	Gly	Tyr	Trp	Ser 655	Asn
Trp	Ser	Asn	Pro 660	Àla	Tyr	Thr	Val	Val 665	Met		Ile	Lys	Val 670		Met

Arg Gly Pr Glu Phe Trp Arg Ile Ile Asn Gly Asp Thr Met Lys Lys Glu Lys Asn Val Thr Leu Leu Trp Lys Pro Leu Met Lys Asn Asp Ser Leu Cys Ser Val Gln Arg Tyr Val Ile Asn His His Thr Ser Cys Asn Gly Thr Trp Ser Glu Asp Val Gly Asn His Thr Lys Phe Thr Phe Leu Trp Thr Glu Gln Ala His Thr Val Thr Val Leu Ala Ile Asn Ser Ile Gly Ala Ser Val Ala Asn Phe Asn Leu Thr Phe Ser Trp Pro Het Ser 760 Lys Val Asn Ile Val Gln Ser Leu Ser Ala Tyr Pro Leu Asn Ser Ser Cys Val Ile Val Ser Trp Ile Leu Ser Pro Ser Asp Tyr Lys Leu Met Tyr Phe Ile Ile Glu Trp Lys Asn Leu Asn Glu Asp Gly Glu Ile Lys Trp Leu Arg Ile Ser Ser Ser Val Lys Lys Tyr Tyr Ile His Asp His Phe Ile Pro Ile Glu Lys Tyr Gln Phe Ser Leu Tyr Pro Ile Phe Met Glu Gly Val Gly Lys Pro Lys Ile Ile Asn Ser Phe Thr Gln Asp Asp Ile Glu Lys His Gln Ser Asp Ala Gly Leu Tyr Val Ile Val Pro Val Ile Ile Ser Ser Ser Ile Leu Leu Leu Gly Thr Leu Leu Ile Ser His 885 Gin Arg Met Lys Lys Leu Phe Trp Glu Asp Val Pro Asn Pro Lys Asn 905 Cys Ser Trp Ala Gln Gly Leu Asn Phe Gln Lys Met Leu Glu Gly Ser Met Phe Val Lys Ser His His His Ser Leu Ile Ser Ser Thr Gln Gly 935 His Lys His Cys Gly Arg Pro Gln Gly Pro Leu His Arg Lys Thr Arg Asp Leu Cys Ser Leu Val Tyr Leu Leu Thr Leu Pro Pro Leu Leu Ser 965 970 Tyr Asp Pro Ala Lys Ser Pro Ser Val Arg Asn Thr Gln Glu 980 Ile Lys Lys Lys Lys

- 995
- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 241 base pairs

WO 96/08510

		į	3) TY C) ST O) TO	TRANI	DEDNE	ess:	sing		٠		•		* -	•		
	(11)	MOI	LECUI	E T	PE:	cDN2	Ą			•			•			
	(ix)	(1	ATURI A) NI B) LO	ME/I			241									
	(xi)	SEC	QUENC	E DE	ESCRI	PTIC	ON: 5	SEQ :	ID N	0:8:						
A GO	A CT ly Le	TT AI	AT TI	TT C? ne Gl	AG AF ln Ly 5	AG AT	rg C: et Le	TT GI	lu G	GC AG ly so	SC AS	TG T	TC G: he V	al L	AG ys 15	46
AGT Ser	CAT His	CAC His	CAC His	TCC Ser 20	CTA Leu	ATC Ile	TCA Ser	AGT Ser	ACC Thr 25	CAG Gln	GGA Gly	CAC His	AAA Lys	CAC His 30	TGC Cys	94
GGA Gly	AGG Arg	CCA Pro	CAG Gln 35	GGT Gly	CCT Pro	CTG Leu	CAT His	AGG Arg 40	Lys	ACC Thr	AGA Arg	GAC Asp	CTT Leu 45	Сув	TCA Ser	142
CTT Leu	GTT Val	TAT Tyr 50	CTG Leu	CTG Leu	ACC Thr	CTC Leu	CCT Pro 55	CCA Pro	CTA	TTG Leu	TCC Ser	TAT Tyr 60	GAC Asp	CCT Pro	GCC Ala	190
AAA Lys	TCC Ser 65	CCC	TCT Ser	GTG Val	AGA Arg	AAC Asn 70	ACC Thr	CAA Gln	GAA Glu	TGA *	TCA Ser 75	ATA Ile	AAA Lys	AAA Lys	AAA Lys	238
AAA Lys 80													•			241
(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO: 9	:		÷						
		(i)	(B	ENCE) LEI) TYI) TOI	NGTH:	: 80	ami:	no a	-			•		•	. •	
	(:	ii) 1	MOLE	CULE	TYP	E: p	rote	in			٠.					
0.			SEQU						_							w.
Gly 1	Leu	Asn	Phe	Gln 5	Lys	Met	Leu	Glu	Gly 10		Met	Phe	Val	Lys 15	Ser	•
His	His	His	Ser 20	Leu	Ile	Ser	Ser	Thr 25	Gln	Gly	His	Lys		Cys	Gly	
Arg	Pro	Gln 35	Gly	Pro	Leu	His	Arg 40	Lys	Thr	Arg	Asp	Leu 45	Сув	Ser	Leu	
Val	Tyr 50	Leu	Leu	Thr	Leu	Pro 55	Pro	Leu	Leu	Ser	Tyr 60	Asp	Pro	Ala	Lys	
Ser 65	Pro	Ser	Val	Arg	Asn 70		Gln	Glu	*	Ser 75	Ile	Lys	Lys	Lys	Lys 80	

PCT/US95/10965

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2130	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
A GGA CTT AAT TTT CAG AAG AAA ATG CCT GGC ACA AAG GAA CTA CTG Gly Leu Asn Phe Gln Lys Lys Met Pro Gly Thr Lys Glu Leu Leu 1 5 10 15	46
GGT GGA GGT TGG TTG ACT TAG GAA ATG CTT GTG AAG CTA CGT CCT ACC Gly Gly Gly Trp Leu Thr * Glu Met Leu Val Lys Leu Arg Pro Thr 20 25 30	. 94
TCG TGC GCA CCT GCT CTC CCT GAG GTG TGC ACA ATG Ser Cys Ala Pro Ala Leu Pro Glu Val Cys Thr Met 35 40	130
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
Gly Leu Asn Phe Gln Lys Lys Met Pro Gly Thr Lys Glu Leu Leu Gly 10 15	·-·
Gly Gly Trp Leu Thr * Glu Met Leu Val Lys Leu Arg Pro Thr Ser 20 25 30	
Cys Ala Pro Ala Leu Pro Glu Val Cys Thr Met 35 40	
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 127 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	•
(ii) MOLECULE TYPE: cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2127	

A G	GA C ly L l	TT A eu A	AT T sn P	TT C. he G	AG A ln L	AG A	GA A	CG G	AC A' Bp I	TT C le L 10	TT T	GA A	GT C er L	TA A	TC le 15	46
ATG Met	ATC Ile	ACT	ACA Thr	GAT Asp 20	AA Glu	CCC	AAT Asn	GTG Val	CCA Pro 25	ACT Thr	TCC Ser	CAA Gln	CAG ln	TCT Ser 30	ATA Ile	94
GAG Glu	TAT Tyr	TAG	AAG Lys 35	ATT Ile	TTT Phe	ACA Thr	TTC Phe	TGA *	AGA Arg	AGG Arg						127

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
- Gly Leu Asn Phe Gln Lys Arg Thr Asp Ile Leu * Ser Leu Ile Met
- Ile Thr Thr Asp Glu Pro Asn Val Pro Thr Ser Gln Gln Ser Ile Glu
- Lys Ile Phe Thr Phe Arg Arg 35
- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
 - Glu Pro Tyr Leu Glu Phe Glu Ala Arg Arg Leu Leu
- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
 - Glu His Leu Val Gln Tyr Arg Thr Asp Trp Asp His Ser

WO 96/08510

· 1 10

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Asp His Cys Phe Asn Tyr Glu Leu Lys Ile Tyr Asn Thr

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS:

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Thr Thr His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS:
 (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Pro Phe Pro.Leu Gln Tyr Gln Val Lys Tyr Gln Val Lys 10

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: Gin Phe In Ile Arg Tyr Gly Leu Ser Gly Lys Glu Val 10

- (2) INDORNATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Ser Thr Ser Tyr Glu Val Gln Val Arg Val Lys Ala Gln Arg Asn 10 15

1 17

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Gln Lys Arg Tyr Thr Phe Arg Val Arg Ser Arg Phe Asn Pro Leu 10 15

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Leu Ser Lys Tyr Asp Val Gln Val Arg Ala Ala Val Ser Ser Met 10 15

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS: (D) TOPOLOGY: unknown

(ii)	MOLECULE	TYPE:	peptide
------	----------	-------	---------

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
- Gly Thr Arg Tyr Thr Phe Ala Val Arg Ala Arg Met Ala Pro Ser
- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS: (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Gly Ser Ser Tyr Glu Val Gln Val Arg Gly Lys Arg Leu Asp Gly 1

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Cys Ala Val Tyr Ala Val Gln Val Arg Cys Lys Arg Leu Asp Gly

International Application No: PCT/

MICROC	RGANISMS
Optional Sheet in connection with the microorganism ref	erred to on page <u>31</u> , lines <u>15-35</u> of the description '
A. IDENTIFICATION OF DEPOSIT	·
Further deposits are identified on an additional sheet	•
Name of depositary institution	
American Type Culture Collection	·
Address of depositary institution (including postal	
12301 Parklawn Drive Rockville, MD 20852 US	code and country) •
Date of deposit * September 14, 1994 Accession	Number * 75885
B. ADDITIONAL INDICATIONS 'Grave blank if not applicable	
C. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE ' &
D. SEPARATE FURNISHING OF INDICATIONS ' (leave	re blank if not applicable)
The indications listed below will be submitted to the International Bu "Accession Number of Deposit")	reau later * (Specify the general nature of the indications e.g.,
E. W This sheet was received with the International app	lication when filed (to be checked by the receiving Office)
	(Authorized Officer)
☐ The date of receipt (from the applicant) by the In	ternational Bureau *
was	(Authorized Officer)
Form PCT/RO/134 (January 1981)	

International Application No: PCT/

Form PCT/RO/134 (cont.)

American Type Culture Collection

12301 Parklawn Drive Rockville, MD 20852 US

para mesay bash #

Accession No.		Date of Deposit
75886		September 14, 1994
75887		September 14, 1994
75888		September 14, 1994
75889	•	September 14, 1994
75890		September 14, 1994
75970		December 14, 1994
75971		December 14, 1994
75972		December 14, 1994
75973	and the second	December 14, 1994
75974	784 A	December 14, 1994

oyadbaqqqay () -

and preferring our appointment of

WO 96/08510

PCT/US95/10965

WHAT IS CLAIMED IS:

1. An isolated nucleotide sequence encoding an Hu-Bl.219 protein.

5

- 2. A cDNA nucleotide sequence encoding an Hu-B1.219 protein.
- 3. A cDNA nucleotide sequence encoding an Hu-B1.219
 10 protein in which the nucleotide sequence encodes the amino acid sequence of Figure 2A-2G or which is capable of selectively hybridizing to the DNA sequence of Figure 2A-2G.
- 4. A cDNA nucleotide sequence encoding an Hu-B1.219
 15 protein in which the nucleotide sequence encodes the amino acid sequence of Figure 2A-2G wherein the carboxyl terminal end is replaced by a sequence indicated as Form 2 in Figure 3B, starting at position #7, or which is capable of selectively hybridizing to this DNA sequence.

20

- 5. A cDNA nucleotide sequence encoding an Hu-B1.219 protein in which the nucleotide sequence encodes the amino acid sequence of Figure 2A-2G wherein the carboxyl terminal end is replaced by a sequence indicated as Form 3 in Figure 25 3B, starting at position #7, or which is capable of selectively hybridizing to this DNA sequence.
 - 6. A recombinant DNA vector containing a nucleotide sequence that encodes an Hu-B1.219 protein.

30

7. The recombinant DNA vector of Claim 6 in which the Hu-B1.219 nucleotide sequence is operatively associated with a regulatory sequence that controls the Hu-B1.219 gene expression in a host.

35

8. A recombinant DNA vector containing a nucleotide sequence that encodes an Hu-B1.219 fusion protein.

9. The recombinant DNA vector of Claim 8 in which the Hu-B1.219 fusion protein nucleotide sequence is operatively associated with an regulatory sequence that controls the Hu-B1.219 fusion protein gene expression in a host.

5

- 10. The DNA of Claim 2, 3, 4, 5, 6, 7, 8 or 9 in which the nucleotide sequence is capable of hybridizing under standard conditions, or which would be capable of hybridizing under standard conditions but for the degeneracy of the 10 genetic code to the DNA sequence of Figure 2A-2G.
 - 11. An engineered host cell that contains the recombinant DNA vector of Claim 6, 7, 8 or 9.
- 15 12. An engineered cell line that contains the recombinant DNA expression vector of Claim 7 and expresses Hu-B1.219.
- 13. An engineered cell line that contains the
 20 recombinant DNA expression vector of Claim 9 and expresses
 Hu-Bl.219 fusion protein.
 - 14. The engineered cell line of Claim 12 which expresses the Hu-B1.219 on the surface of the cell.

25

- 15. The engineered cell line of Claim 12 which secretes a soluble Hu-B1.219 protein.
- 16. The engineered cell line of Claim 12 which 30 expresses Hu-Bl.219 in the form of ribozyme.
 - 17. The engineered cell line of Claim 12 which expresses a cytoplasmic region of Hu-B1.219.
- 35 18. The engineered cell line of Claim 13 which expresses the Hu-B1.219 fusion protein on the surface of the cell.

19. The engineered cell line of Claim 13 which secretes a soluble Hu-B1.219 protein.

- 20. A method for producing recombinant Hu-B1.219,
 5 comprising:
 - (a) culturing a host cell transformed with the recombinant DNA expression vector of Claim 6 or 7 and which expresses the Hu-B1.219; and
- (b) recovering the Hu-B1.219 gene product from the cellculture.
 - 21. A method for producing recombinant Hu-B1.219 fusion protein, comprising:
- (a) culturing a host cell transformed with the recombinant DNA expression vector of Claim 8 or 9 and which expresses the Hu-B1.219 fusion protein; and
 - (b) recovering the Hu-B1.219 fusion protein from the cell culture.

22. An isolated Hu-B1.219 protein.

20

- 23. The protein of Claim 22 which is produced by recombinant methods.
- 24. The protein of Claim 23 having an amino acid sequence as substantially depicted in Figure 2A-2G.
- 25. The protein of Claim 24 having an amino acid 30 sequence as substantially depicted in Figure 2A-2G wherein the carboxyl terminal end is replaced by a sequence indicated as Form 2 in Figure 3B, starting at position #7.
- 26. The protein of Claim 24 having an amino acid
 35 sequence as substantially depicted in Figure 2A-2G wherein the carboxyl terminal end is replaced by a sequence indicated as Form 3 in Figure 3B, starting at position #7.

27. The protein of Claim 22, 23, 24, 25 or 26 which is associated with cell surface plasma membrane.

- 28. The protein of Claim 22, 23, 24, 25 or 26 which is 5 secreted.
 - 29. The protein of Claim 22, 23, 24, 25 or 26 in which it is linked to a heterologous protein or peptide sequence.
- 30. An oligonucleotide which encodes an antisense sequence complementary to an Hu-B1.219 nucleotide sequence, and which inhibits translation of the Hu-B1.219 gene in a cell.
- 31. An oligonucleotide which encodes a ribozyme sequence complementary to an Hu-B1.219 nucleotide sequence, and which inhibits translation of the Hu-B1.219 gene in a cell.
- 20 32. An antibody that binds to Hu-B1.219 protein.
 - 33. The antibody of Claim 32 which is of monoclonal origin.
- 25 34. The antibody of Claim 32 which competitively inhibits the binding of Hu-B1.219 to a ligand.
 - 35. A method for screening and identifying ligands of Hu-B1.219 protein comprising:
- (a) contacting Hu-B1.219 protein with a peptide library such that Hu-B1.219 protein binds to one or more peptide species within the library;

- (b) isolating the Hu-B1.219/peptide combination; and
- (c) determining the sequence of the peptide.

FIG. 1

		9			18			27			36			45			54
GCG	CGC	GCG	ACG	CAG	GTG	CCC	GAG	CCC	CGG	CCC	GCG	CCC	ATC	TCT	GCC	ттс	GGT
A	R	A	T	Q	V	Р	E	Р	R	Р	Α	P	I	S,	A	F	G
CGA	GTT	63 GGA	CCC	CCG								AGT			ATT	TGT	108 CAA
R.	٧	G	Р	Р	D	Q	G	٧	L	L	*	S	K	M	I	С	Q
AAA	TTC	117 TGT	GTG	GTT								TAT			ACT		
K	Ţ F	С	V	٧	Ŀ	L	Н	W	E	F	I	Y	V	I	Τ	Α	F
AAC	TTG	171 TCA			180 ATT							TTG			ATĠ		216 CCA
N	L	S	Υ	P	I	T	P	W	R	F	K	L	S	С	M	Р	P
AAT	TCA				234 TAC									261 AAG	AAT	ACT	270 TCA
N	S	T	Υ	D	Υ	F	L	L	Р	Α	G	. F	S	K	N	T.	S
AAT	TCG	279 AA T		CAT				297 GCT				AAG		315 AAT	TCA	AGT	324 GGT
N	S	N	Ġ	Н	Υ	Ε	Т	Α	٧	Ε	Р	K	F	N	S	S	G
ACT	CAC				342 TTA									369 TTT	CGG	AGT	378 GAG
T	Н	F	S	N	L	S	K	Α	T	F	Н	С	С	F	R	S	E
CAA	GAT		AAC												ACĄ		432 GTT
Q	D	R	N	С	S	L	С	Α	D	N	I	E	G	R	T	F	V

FIG.2A

TCA	ACA																486 CAG
S	T	٧	N	S	L	۷	F	Q	Q	I	D	Α	N	W	N	I	Q
TGC	TGG	495 CTA	AAA	GGA	504 GAC	TTA	AAA	513 TTA	TTC	ATC	522 TGT	TAT	GTG	531 GAG	TCA	TTA	540 TTT
С	W	L	K	G	D	L	K	L	F	I	С	Y	٧	E	S	L	F
AAG	AAT	549 CTA	TTC	AGG	558 AAT	TAT	AAC	567 TAT	AAG	GTC	576 CAT	CTT	TTA	585 TAT	GTT	CTG	594 CCT
. K	N	L	F	R	N	Y	N	Υ	K	٧	Н	L	L	Y	٧	L	P
GAA	GTG										630 AAA						648 GTT
Ε	٧	L	E _,							2 4	K				Q	М	٧
		657		•	666			675	24 T + 1	:							
CAC	TGC			AGT	GTT	CAT	GAA	TGT	TGT	GAA	TGT	CTT	GTG	693 CCT	GTG	CCA	702 ACA
	TGC C	AAT	TGC	AGT	GTT	CAT	GAA	TGT	TGT	GAA	TGT C	CTT	GTG V	693 CCT P	GTG V	CCA P	
Н	С	AAT N 711	TGC C	AGT S	GTT V 720	CAT H	GAA E	TGT C 729	TGT C	GAA E	TGT	CTT L	GTG V	CCT P 747	GTG V	P	ACA T 756
Н	C AAA	AAT N 711 CTC	TGC C	AGT S GAC	720 ACT	CAT H CTC	GAA E CTT	TGT C 729 ATG	TGT C	GAA E TTG	TGT C 738	CTT L ATC	GTG V V ACA	CCT P 747 TCT	GTG V V GGT	P	ACA T 756
H GCC	C AAA K	AAT	TGC C AAC	AGT S GAC D	GTT V 720 ACT T 774	CAT H CTC	GAA E CTT	TGT C 729 ATG M	TGT C TGT C	GAA E TTG	TGT C 738 AAA K	ATC	GTG V ACA T	CCT P 747 TCT S 801	GTG V GGT G	P GGA 	ACA T 756 GTA V 810
GCC A	C AAA K	AAT N 711 CTC L 765 CGG	TGC C AAC N TCA	AGT S GAC D CCT	720 ACT T 774 CTA	CAT H CTC L ATG	GAA E CTT L TCA	TGT C 729 ATG M 783 GTT 	TGT C TGT C C	GAA E TTG L	TGT C 738 AAA K	ATC I AAT	GTG V ACA T ATG	CCT P 747 TCT S 801 GTG 	GTG V GGT G	P GGA G	ACA T 756 GTA V 810
GCC A	AAA K TTC	AAT N 7111 CTC L 765 CGG R 819	TGC C AAC N TCA	AGT S GAC D CCT P	720 ACT T 774 CTA L 828	CAT H CTC L ATG	GAA E CTT L	TGT C 729 ATG M 783 GTT V 837	TGT C TGT C CAG	GAA E TTG L	TGT C 738 AAA K 792 ATA 	ATC I AAT	GTG V ACA T ATG M	CCT P 747 TCT S 801 GTG V	GTG V GGT G AAG	P GGA G CCT P	ACA T 756 GTA V 810 GAT D

FIG.2B

TGG	TCC							891 TTT									918 TCA
W	S	·S	P	P	L	V	P	F	P	L	Q	Υ	Q	٧	 К	Υ	S
GAG								945 GAA									
E	N	S	Т	T	٧	I	R	E	A	D	K	I	٧	S	Α	T	S
	CTA							999 GGG									
L	L	٧	D	S	·I	L	P	G	S	S	Υ	E	٧	Q	٧	R	G
AAG	AGA	L035 CTG	GAT	GGC	L044 CCA	GGA	ATC	L053 TGG	AGT	GAC	1062 TGG	AGT	ACT	1071 CCT	CGT	GTC	1080 TTT
K	R	L	D	G	Р	G	I	W	S	D	W	S	T	P	R	٧	F
ACC	ACA	L089 CAA	GAT	GTC	L098 ATA	TAC	тт	L107 CCA	CCT	AAA	1116 ATT	CTG	ACA	L125 AGT	GTT	GGG	134 TCT
	ACA 	CAA	GAT	GTC	ATA	TAC	TTT	L107 CCA P	CCT	AAA 	116 ATT I	CTG	ACA	AGT	GTT V	GGG	
T	ACA T	CAA Q L143	GAT D	GTC V	ATA I I 1152	TAC Y	TTT F	CCA	CCT P	AAA K	ATT I 170	CTG L	ACA T	AGT S S	GTT V	GGG G	TCT S
T	ACA T	Q 1143 TCT	GAT D	GTC V CAC	I I 152 TGC	TAC Y ATC	F TAT	P 1161	P AAG	AAA K GAA	I I 170 AAC	CTG L AAG	ACA T	AGT S S	GTT V CCC	GGG G	TCT S 188 AAA
T AAT	ACA T GTT V	CAA Q L143 TCT S	GAT D TTT F	CAC H	ATA I I 152 TGC C	TAC Y ATC I	F TAT	P 1161 AAG	P AAG	AAA K GAA E	I I I I I I I I I I I I I I I I I I I	CTG L AAG K	ACA T ATT	AGT S 1179 GTT V	GTT V CCC	GGG G TCA S	TCT S 1188 AAA K
AAT N GAG	ACA T GTT V	CAA	GAT D TTT F	CAC H	I I IS2 TGC C I206 ATG	TAC Y ATC I AAT	TAT Y TTA	P 1161 AAG K 1215	P AAG K GAG	GAA E	ATT I 170 AAC N .224 ATT	AAG K	ACA T ATT I CAA	AGT S 1179 GTT V 1233 AGC	GTT V CCC P CAG	GGG G TCA S TAT	TCT S 188 AAA K 242 GAT
AAT N GAG	ACA T GTT V ATT	CAA	GAT D TTT F TGG	CAC H	ATA I 152 TGC C 1206 ATG ATG M	TAC Y ATC I AAT N	TAT Y TTA L	P L161 AAG K L215 GCT	CCT P AAG K GAG E	AAA K GAA E AAA K	ATT I 170 AAC N .224 ATT I .278	AAG K CCT P	ACA T ATT I CAA Q	AGT S 1179 GTT V 1233 AGC S	CCC P CAG Q	GGG G TCA TCA S TAT Y	TCT S 188 AAA K 242 GAT D

FIG.2C

3.5

CCT		1305									1332			1341 GAA			1350
CCI	CGA	GGA	AAG	111	ACC	IAI	GAI	GCA	טוט	IAC	160	IGC	AAT	GAA	CAI	GAA	iuc
P	R	G	K	F	T	Υ	D	Α	٧	Υ	С	С	N	E	Н	E	С
	-	1359			1368		•	1377			1386		•	1395			1404
CAT														AAT			
Н	Н	R	Υ	. A	E	L	Υ	٧	I	D	٧	N	I,	N	I	S	С
		1413		1	1422			1431			1440			1449			1458
GAA	-													ACC			
E	T	D	G	- Y	L	T	K	М	Т	С	R	W	S	T	S	T	I
		1467			1476			1485		,	1494			1503		•	1512
CAG														AGC			
Q	S	L	Α	Ε	S	T	L	Q	L	R	Υ	H ·	R	S	S	L	Y
		1521			1530			1530			15/18		•	1557		•	1566
TGT														GAT			
С	S	D	I	P	S	I	Н	P	I	S	Ε	Р	K	D	С	Υ	L
•		1575		•	1584			1593	v		1602		•	1611			1620
CAG														CTA			
Q	S	D	G	F	Y	E	С	I	F	Q	Р	I	F	L	L	S	G
		1629			1638			1647			1656			1665		•	1674
TAC														GAC			
Υ	T	M	W	I	R	I	N	Н	S	L	G	S	L	D	S	Р	Р

FIG.2D

FIGIZE

۸۲۸														1719 TCC			1728
T	С	V .	L	Р	D	S	٧	٧	K	Р	L	P	Р	S	S	٧	K.
]	1737		1	746		1	1755			1764	•		1773			1782
GCA	GAA	ATT	ACT	ATA	AAC	ATT	GGA	TTA	TTG	AAA	ATA	TCT	TGG	GAA	AAG	CCA	GTC
Α	E	I	T	Ι	N	I	G	L	L	K	I	S	W	E	K	P	٧
	1	1791		1	1800			1809			1818			1827			1836
Ш	CCA	GAG	AAT	AAC	CTT	CAA	TTC	CAG	ATT	CGC	TAT	GGT	TTA	AGT	GGA	AAA	GAA
F	Р	E	N	N	L	Q	F	Q	I	R	Y	G	L	S	G	K	Ε
	•	1845		•	1854		٠.	1863	•		1872			1881		•	1890
GTA														TCT			
V	Q	W	K	М	Υ	E	٧	Υ	D	Α	K	S	K	S	٧	S	L
		1899			1908			1917		•	1926			1935			1944
CCA	GTT	CCA	GAC	TTG	TGT	GCA	GTC	TAT	GCT	GTT	CAG	GTG	CGC	TGT	AAG	AGG	CTA
Р	۷	Р	D	L	С	Α	- V	Υ	Α	٧	Q	٧	R	С	K	R	L
	•	1953		•	1962		•	1971			1980		•	1989		•	1998
GAT														ACA			
D	G	L	G	Υ	W	S	N	W	S	N	Р	Α	Υ	T	٧	V .	M
	:	2007		2	016		;	2025		:	2034		;	2043		;	2052
GAT			GTT	CCT	ATG	AGA	GGA	CCT	GAA				-			_	GAT
D	I	K	٧	P	М	R	G	P	E	F	W	R	I	I	N	G	D
	;	2061		21	070			2079		:	2088		•	2097		•	2106
ACT														CTG		_	
T	M	 К	K	 E	 К	 N	٧	T	L	L	 W	K	 Р	L	M		 N

FIG.2E

		2169												2205			2214
GGA	ACA	TGG	TCA	GAA	GAT	GIG	GGA	AA I	CAC	ACG	AAA	110	ACT	TTC	CTG	TGG	ACA
G	Τ.	W	S	Ε	D	٧	G	N	Н	T	K	F	T	F	L	W	T
	2	2223		22	232		2	2241		2	2250		2	2259		2	2268
GAG	CAA	GCA	CAT	ACT	GTT	ACG	GTT	CTG	GCC	ATC	AAT	TCA	ATT	GGT	GCT	TCT	GTT
E	Q	Α	Н	T	٧	T	٧	L	Α	I	N	S	I	G	A	S	٧
	2	2277		22	286		2	2295		2	2304			2313		2	2322
GCA	AAT	Ш	AAT	TTA	ACC	Ш	TCA	TGG	CCT	ATG	AGC	AAA	GTA	AAT	ATC	GTG	CAG
A	N	F	N	L	· T	F	S	W	P	М	S	K	٧	N	I	٧	Q
	2	2331		23	340			2349			2358		2	2367		2	2376
TCA	CTC	AGT															
S	L	S	Α	Υ	Р	L	N	S	S	С	٧	I	٧	S	W	I	L
•					•												
		2385			2394			2403			2412		2	2421		2	2430
TCA		2385 AGT									2412 ATT						
TCA S	CCC		GAT	TAC	AAG	CTA	ATG	TAT	TTT	ATT		GAG	TGG	AAA			
	CCC P	AGT	GAT D	TAC Y	AAG K	CTA L	ATG M	TAT Y	ТТТ F	ATT I	ATT I	GAG E	TGG W	AAA	AAT N	CTT L	AAT N
S	CCC P	AGT S	GAT D	TAC Y	AAG K 2448	CTA L	ATG M	TAT Y 2457	TTT F	ATT I	ATT I 2466	GAG E	TGG W	AAA K 2475	AAT N	CTT	AAT N 2484
S	P GAT	AGT S 2439	GAT D GAA	TAC Y ATA	AAG K 2448 AAA	CTA L TGG	M CTT	TAT Y 2457 AGA	F ATC	I TCT	ATT I 2466 TCA	GAG E TCT	TGG W GTT	AAA K 2475	AAT N AAG	CTT L TAT	AAT N 2484
S	CCC P GAT	AGT S S 2439 GGT	GAT D GAA	TAC Y ATA I	AAG K 2448 AAA K	CTA L TGG	ATG M CTT	TAT Y 2457 AGA	F ATC	ATT I TCT S	ATT I 2466 TCA	GAG E TCT	TGG W GTT V	AAA K 2475 AAG	AAT N AAG	CTT L Z TAT Y	AAT N N 2484 TAT
GAA E	P GAT	AGT S 2439 GGT G	GAT D GAA	TAC Y ATA I	AAG K 2448 AAA K	TGG	ATG M CTT	TAT Y 2457 AGA R	F ATC	ATT I TCT S	ATT I 2466 TCA S	GAG E TCT	TGG W GTT V	AAA K 2475 AAG K	AAT N AAG	CTT L TAT Y	AAT N 2484 TAT Y
GAA E ATC	CCC P GAT D CAT	AGT S 2439 GGT G	GAT D GAA E CAT	TAC Y ATA I	AAG K 2448 AAA K 2502 ATC	TGG	ATG M CTT L	TAT Y 2457 AGA R 2511 GAG	F ATC I	TCT S	2466 TCA S 2520 CAG	GAG E TCT S	TGG W GTT V AGT	AAA K 2475 AAG K 2529 CTT	AAT N AAG K	CTT L TAT Y CCA	AAT N 2484 TAT Y
GAA E	CCC P GAT D CAT	AGT S 2439 GGT G 2493 GAT D	GAT D GAA E CAT	TAC Y ATA I TTT F	AAG K 2448 AAA K 2502 ATC I	TGG W	ATG M CTT L ATT	TAT Y 2457 AGA R 2511 GAG E	F ATC I	ATT I TCT S TAC	2466 TCA S 2520 CAG Q	GAG E TCT S TTC F	TGG W GTT V AGT	AAA K 2475 AAG K 2529 CTT L	AAT N AAG K TAC Y	CTT L TAT Y CCA	AAT N 2484 TAT Y 2538 ATA I
GAA E ATC	CCC P GAT D CAT	AGT S 2439 GGT G 2493 GAT D	GAA D GAA E CAT	TAC Y ATA I TTT F	AAG K 2448 AAA K 2502 ATC I	TGG W	ATG M CTT L ATT	TAT Y 2457 AGA R 2511 GAG E	F ATC I	TCT S TAC	ATT I 2466 TCA S 2520 CAG Q 2574	GAG E TCT S TTC F	TGG W GTT V AGT	AAA K 2475 AAG K 2529 CTT L	AAT N AAG K TAC Y	CTT L TAT Y CCA P	AAT N 2484 TAT Y 2538 ATA I

FIG.2F

JE BLANK (USPTO)

																ATT 2	
ATT	GAA	AAA	CAC	CAG	AG I	GAI	GCA	GG 1	IIA	IAI	GIA	AII	616	CCA	GIA	ATT	AII
I	Ė	K	Н	Q	S	D	Α	G	. L	Υ	٧	I.	٧.	P	٧	I	I
	2	2655		2	2664		2	2673		2	2682		2	2691		2	2700
TCC																ATG	
S	S	S	I	L	L	L	G	T	L	. L	I	S	Н	Q	R	М	K
	2	2709		2	2718		2	2727		2	2736		2	2745		2	2754
AAG	CTA	Ш	TGG	GAA	GAT	GTT	CCG	AAC	CCC	AAG	AAT	TGT	TCÇ	TGG	GCA	CAA	GGA
K	L	F	W	E	D	٧	P	N	Ρ.	K	N	С	S	W	A	Q	G
	. 2	2763		:	2772		•	2781		2	2790		2	27 9 9		2	2808
CTT	AAT	TTT	CAG	AAG	ATG	CTT	GAA	GGC	AGC	ATG	TTC	GTŢ	AAG	AGT	CAŢ	CAC	CAC
L	N	F	Q	K	М	L	.E	G	S	М	F	V	K	S	Н	Н	Н
		2017			0006			2025			0044			2050			
																	2862
TCC																GGT	
<i>-</i>	CTA	ATC	TCA	AGT	ACC	CAG	GGA	CAC	AAA	CAC	TGC	GGA	AGG	CCA	CAG		CCT
S	CTA L	ATC I 2871	TCA S	AGT S	ACC T 2880	CAG Q	GGA G	CAC H 2889	AAA K	CAC	TGC C 2898	GGA G	AGG R	CCA P 2907	CAG Q	GGT G	CCT P P 2916
S	CTA L	ATC I 2871	TCA S	AGT S	ACC T 2880	CAG Q	GGA G	CAC H 2889	AAA K	CAC	TGC C 2898	GGA G	AGG R	CCA P 2907	CAG Q	GGT G	CCT P P 2916
S	CTA L CAT	ATC I 2871 AGG	TCA S	AGT S	ACC T 2880 AGA	CAG Q GAC	GGA G	CAC H 2889 TGT	AAA K TCA	CAC H	TGC C 2898 GTT	GGA G	AGG R CTG	CCA P 2907 CTG	CAG Q ACC	GGT G	P 2916 CCT
S	CTA L CAT	ATC I 2871 AGG R	TCA S AAA K	AGT S ACC	ACC T 2880 AGA R	CAG Q Q GAC	GGA G CTT	CAC H 2889 TGT C	AAA K TCA S	CAC H CTT	TGC C 2898 GTT V	GGA G TAT	AGG R CTG	P 2907 CTG L	CAG Q ACC T	GGT G CTC	P 2916 CCT
S CTG	CTA L CAT	ATC I 2871 AGG R	TCA S AAA K	AGT S ACC T	ACC T 2880 AGA R	CAG Q Q GAC D	GGA G CTT	CAC H 2889 TGT C	AAA K TCA	CAC H CTT	TGC C 2898 GTT V 2952	GGA GG TAT	AGG R CTG	CCA P 2907 CTG L	CAG Q ACC T	GGT G CTC	P 2916 CCT P
CTG L	CTA L CAT H CTA	ATC I 2871 AGG R 2925 TTG	TCA S AAA K TCC	AGT S ACC T T TAT	ACC T 2880 AGA R 2934 GAC	GAC D CCT	GGA GCC	2889 TGT C 2943 AAA	TCA TCC	CAC H CTT L	TGC C 2898 GTT V 2952 TCT	GGA TAT Y GTG	AGG R CTG L	2907 CTG L 2961 AAC	CAG Q ACC T ACC	GGT G CTC	P 2916 CCT P 2970 GAA
CTG L	CTA L CAT H CTA	ATC I 2871 AGG R 2925 TTG	TCA S AAA K TCC S	AGT S ACC T T TAT	ACC T 2880 AGA R 2934 GAC	GAC D CCT	GGA GCC	2889 TGT C 2943 AAA	TCA TCC	CAC H CTT L	TGC C 2898 GTT V 2952 TCT	GGA TAT Y GTG	AGG R CTG L	2907 CTG L 2961 AAC	CAG Q ACC T ACC	GGT G CTC L	P 2916 CCT P 2970 GAA
CTG L CCA	CTA L CAT H CTA	ATC I 2871 AGG R 2925 TTG L	TCA S AAA K TCC S	AGT S ACC T TAT Y	ACC T 2880 AGA R 2934 GAC D	GAC D CCT P	GGA G CTT L GCC	2889 TGT C 2943 AAA	TCA TCC	CAC H CTT L	TGC C 2898 GTT V 2952 TCT	GGA TAT Y GTG	AGG R CTG L	2907 CTG L 2961 AAC	CAG Q ACC T ACC	GGT G CTC L	P 2916 CCT P 2970 GAA

FIG.2G

HuB1.219 Form HuB1.219	1 2	2751 2751	2760 AGGACTTAAT AGGACTTAAT		2780 TGCTTGAAGG AAATGCCTGG		2800 GTTAAGAGTC CTACTGGGTG	2800 2800
HuB1.219	3	2751	AGGACTTAAT	TTTCAGAAGA	GAACGGACAT	TCTTTGAAGT	CTAATCATGA	2800
HuB1.219 Form HuB1.219 HuB1.219	1 2 3	2801 2801 2801	2810 ATCACCACTC GAGGTTGGTT TCACTACAGA	GACTTAGGAA	2830 AGTACCCAGG ATGCTTGTGA GTGCCAACTT	2840 GACACAAACA AGCTACGTCC CCCAACAGTC	2850 CTGCGGAAGG TACCTCGTGC TATAGAGTAT	2850 2850 2850
HuB1.219 Form HuB1.219 HuB1.219	1 2 3	2851 2851 2851	2860 CCACAGGGTC GCACCTGCTC TAGAAGATTT	TCCCTGAGGT	GTGCACAATG	2890 GACCTTTGTT	•	2900 2900 2900
HuBi.219 Form HuB1.219 HuB1.219	1 2 3	2901 2901 2901	2910 TCTGCTGACC	2920 CTCCCTCCAC	2930 TATTGTCCTA	2940 TGACCCTGCC	2950 AAATCCCCCT	2950 2950 2950
HuBl.219 Form HuBl.219 HuBl.219	1 2 3	2951 2951 2951	2960 CTGTGAGAAA	2970 CACCCAAGAA		2990 AAAAAAAAA 		3000 3000 3000

FIG.3A

			,					
			10	20	30	40	50	
HuB1.219 Form	1	1	GLNFQKMLEG	SMFVKSHHHS	LISSTQGHKH	CGRPQGPLHR	KTRDLCSLVY	50
HuB1.219	2	1	GLNFQKKMPG	TKELLGGGWL	T*EMLVKLRP	TSCAPALPEV	CTM	50
HuB1.219	3	1	GLNFQKRTDI	L*SLIMITTD	EPNVPTSQQS	IEY*KIFTF*	RR	50
			60	70	80	90	100	
HuB1.219 Form								100
HuB1.219								100
HuB1.219	3	51						100

FIG.3B

1	0/1	1	
۰	\sim $^{\prime}$	•	

	(26-33) (5-6)(5)(6-11)(2)		WSDWS
SPACING OF CONSERVED AMINO ACIDS IN THE EXTRACELLULAR DOMAINS OF KNOWN CYTOKINE RECEPTOR GENES	CCA/PP.L/VWY (28–35) (9–16) (36–48) (2–3) (13–18) (12–20)	CONSERVED AMINO ACIDS IN THE 5' EXTRACELLULAR DOMAINS OF CLONE HU-B1.219	(44) (10) (43) (3) (14) (12) (30) (5) (5)(8)(2)
	CC	CONSE	(11) (44)

WSXWS.

CONSERVED AMINO ACIDS IN THE 3' EXTRACELLULAR DOMAINS OF CLONE HU-B1.219

C. C. C. C. (41) (7) (7) (12) (15) (16) (27) (6) (5)(8)(2) (17) (18) (18) (19) (19) (19) (19) (19) (19) (19) (19
(27)
(15) (16)
PP.V
(41)
CC
(41)
 (11)

FIG. 4

 mIL2Rβ
 E P Y L E F E A R R R L L

 hIL2Rγ
 E H L V Q Y R T D W D H S

 mIL5Rα
 D H C F N Y E L K I Y N T

 mEPOR
 T T H I R Y E V D V S A G

 Hu-B1.219(5')
 P F P L Q Y Q V K Y Q V K

 Hu-B1.219(3')
 Q F Q I R Y G L S G K E V

HYDROPHOBIC: "*"
HYDROPHILIC: "-"

FIG.5

* b * b * b

mIL-2Rβ S T S Y E V Q V R V K A Q R N

hIL-2Rγ Q K R Y T F R V R S R F N P L

mIL-5Rα L S K Y D V Q V R A A V S S M

mEPOR G T R Y T F A V R A R M A P S

Hu-B1.219(5') G S S Y E V Q V R G K R L D G

Hu-B1.219(3') C A V Y A V Q V R C K R L D G

Y R

HYDROPHOBIC: "*"
BASIC: "b"

FIG.6

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/10965

	SSIFICATION OF SUBJECT MATTER		
	CO7K 14/705, 16/28; C12N 1/21, 5/10, 15/12, 15/62 435/6, 69.1, 69.7, 252.3, 320.1; 530/350, 388.22; 53		
According to	o International Patent Classificati n (IPC) or to both n	ational classification and IPC	
	DS SEARCHED		
Minimum d	ocumentation searched (classification system followed	by classificati n symbols)	
	435/6, 69.1, 69.7, 252.3, 320.1; 530/350, 388.22; 53		
Documentat NONE	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched
Electronic d	ata base consulted during the international search (nan	ne of data base and, where practicable,	, search terms used)
Swiss-prosection searched	ot for amino acid sequence of Figures 2a-2E		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.
A	CELL, Vol. 61, issued 20 April 19 "Expression Cloning of a receptor Colony-Stimulating Factor", pages	for Murine Granulocyte	1-35
A	TIBS, Vol.15, issued July 1990, D cytokine receptor superfamily", pag		1-35
A	CELL, Vol. 63, issued 21 Decemb "Molecular Cloning and Express Transducer, gp130", pages 1149-	sion of an IL-6 Signal	1-35
<u> </u>	her documents are listed in the continuation of Box C.	See patent family annex.	
-V- q	secial categories of cited documents: scument defining the general state of the art which is not considered be of particular relevance	"T" later document published after the inte date and not in conflict with the applic principle or theory underlying the inv	ation but cited to understand the
E. ca	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	e claimed invention cannot be ared to involve an inventive step
ci	reument which may throw doubts on priority claim(s) or which is ted to establish the publication date of another citation or other social reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	
65	ocument referring to an oral disclosure, use, exhibition or other	combined with one or more other me being obvious to a person skilled in the	documents, such combination
	cument published prior to the international filing date but later than e priority date claimed	"&" document member of the same patent	
	actual completion of the international search	Date of mailing of the international ser	1996
Name and Commissi Box PCT	mailing address of the ISA/US oner of Patents and Trademarks	Authorized officer	Callin