Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τεχνολογία και Ανάλυση Εικόνων και Βίντεο

1^η Εργαστηριακή Ασκηση 15/11/2015

Ον/μο : Βαβουλιώτης Γεώργιος

A.M.: 03112083

Τμήμα: A, 8:45 - 10:30

Σκοπός της 1^{ης} εργαστηριακής άσκησης είναι η μελέτη της διαδικασίας που πρέπει να ακολουθηθεί ώστε να γίνει συμπίεση εικόνων με χρήση fft, χρησιμοποιώντας δυο τεχνικές. Η πρώτη είναι η εφαρμογή fft σε ολόκληρη την εικόνα και η δεύτερη η εφαρμογή του fft σε

8X8 blocks. Για την υλοποίηση της 1^{ης} τεχνικής χρησιμοποιούμε την συνάρτηση fft_global η οποία παίρνει ως παράμετρο την αρχική εικόνα και τις ακτίνες rY,rCb,rCr και επιστρέφει τα αποτελέσματα του γινομένου κάθε μάσκας με το αντίστοιχο κανάλι και την ifft_global η οποία παίρνει ως είσοδο την έξοδο της fft_global και επιστρέφει την RGB μορφή της ανακατασκευαζόμενης εικόνας. Για την υλοποίηση της δεύτερης

τεχνικής χρησιμοποιούμε τις συναρτήσεις fft_{block} και την $ifft_{block}$ οι οποίες χρησιμοποιούν τον fft_{block} και τον $ifft_{block}$ εικόνας. Στη συνέχεια παραθέτω τις γραφικές παραστάσεις των δυο συμπιεσμένων εικόνων($\mathbf{1}^{\eta}$: \mathbf{block}_{fft} , $\mathbf{2}^{\eta}$: \mathbf{fft}) που προέκυψαν από την εφαρμογή των παραπάνω συναρτήσεων στην αρχική εικόνα, η οποία υπάρχει κι αυτή λίγο πιο πάνω για σύγκριση των αποτελεσμάτων:

Στη συνέχεια υπολογίζουμε τις τιμές του SNR και του αντίστροφου λόγου συμπίεσης λ με την βοήθεια του Matlab (λόγω των ονομάτων των μεταβλητών του Matlab έβαλα τα αποτελέσματα στον παρακάτω πίνακα ώστε να φαίνεται σε ποιο μέγεθος αναφέρομαι):

Command Window			
globalsnr =			
22.6177			
		SNR	λ
Global =			
0.1819	Global fft	22,6177	0,1819
blocksnr =	Block fft	18,1603	0,2826
Block =			
0.2826			

Σχολιασμός αποτελέσματος: Από τα παραπάνω αποτελέσματα παρατηρούμε ότι όταν χρησιμοποιούμε την 1^{η} τεχνική(Global fft) παίρνουμε μεγαλύτερο SNR και μικρότερο ποσοστό συμπίεσης σε σχέση με την 2^{η} τεχνική(Block fft). Επομένως η συμπιεσμένη εικόνα που προκύπτει από την 1^{η} τεχνική(Global fft) έχει καλύτερη ποιότητα σε σχέση με αυτή που προκύπτει από την 2^{η} τεχνική(Block fft). Ωστόσο με την 1^{η} τεχνική δεν παίρνουμε μεγάλη συμπίεση γεγονός το οποίο μπορεί να μας είναι απαραίτητο σε κάποιες εφαρμογές, άρα όταν επιθυμώ μεγάλη συμπίεση της εικόνας μου(με μικρότερο SNR) καλύτερη τεχνική είναι η 2^{η} . Στη συνέχεια παραθέτω το διάγραμμα του SNR συναρτήσει του λ, για πολλές τιμές των ακτινών των μασκών:

Σχολιασμός διαγράμματος: Παρατηρούμε ότι και στις δυο περιπτώσεις το SNR αυξάνεται όσο αυξάνεται το λ , ωστόσο αν παρατηρήσει κανέις τις δυο γραφικές κατανοεί πως για οποιοδήποτε τιμή του λ η τιμή του SNR που δίνει η 1^{η} τεχνική(Global fft) είναι μεγαλύτερη από αυτή που δίνει η 2^{η} τεχνική(Block fft).