TECHNICAL REPORT 1936 April 2006

Investigation of PCB Release-Rates from Selected Shipboard Solid Materials Under Laboratory-Simulated Shallow Ocean (Artificial Reef) Environments

R. D. George C. R. In R. K. Johnston C. A. Kurtz P. F. Seligman R. D. Gauthier W. J. Wild

Approved for public release; distribution is unlimited.

SSC San Diego

TECHNICAL REPORT 1936 April 2006

Investigation of PCB Release-Rates from Selected Shipboard Solid Materials Under Laboratory-Simulated Shallow Ocean (Artificial Reef) Environments

R. D. George C. R. In R. K. Johnston C. A. Kurtz P. F. Seligman R. D. Gauthier W. J. Wild

Approved for public release; distribution is unlimited.

SSC San Diego San Diego, CA 92152-5001

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the many beneficial comments, suggestions, and technical guidance provided by members of the interagency and multi-project technical working groups (PCB Leach Rate, REEFEX, and SINKEX), which included representatives from the U.S. Environmental Protection Agency (EPA), U.S. Navy, and contract support personnel. The authors are especially thankful for technical review of experimental design by L. Casey and J. Smith, EPA Office of Pollution Prevention and Toxic Substances (OPPTS); D. Redford, EPA Office of Water (OW); and for applicability to risk assessments, L. Phillips, EPA Office of Science and Policy (formerly with Versar, Inc.). From its inception, this study benefited greatly from the numerous technical insights and contributions provided by T. Scarano, Naval Sea Systems Command (NAVSEA); A. Lunsford, Naval Environmental Health Center (NEHC-Norfolk, retired); J. Grovhoug, SSC San Diego (retired); and the entire URS team, particularly J. Garrison, A. Roberts, and M. Goodrich (deceased). T. Pape, CACI Incorporated, (formerly with John J. McMullen Associates); S. Thompson, Naval Inactive Fleet Facility (NAVINACTFLT-Norfolk); R. Brown and M. Dudley, Naval Inactive Ship Maintenance Facility (NISMF-Norfolk); and P. Jones and B. Williams, Puget Sound Naval Shipyard (PSNS-Bremerton) were particularly instrumental in locating and sampling the required shipboard solids for this study. The following SSC San Diego personnel provided significant onsite (SSC San Diego) support and expertise throughout the PCB-LRS: J. Guerrero, K. Lane, and H. Halkola. The team at Arthur D. Little, Inc (Cambridge MA), F. Newton, L. Cook, H. Camp, and S. Roy contributed to the success of this project through their superb analytical and sample logistics efforts. Finally, the authors also express their appreciation to the many reviewers of this report for their critical review, comments, and suggestions.

EXECUTIVE SUMMARY

BACKGROUND

The most common potential contaminant of concern (PCoC) onboard Navy vessels for sinking as an artificial reef are a class of compounds, the polychlorinated biphenyls (PCBs), which have been found in a variety of shipboard solids, as either an integral component or, in some cases, as a contaminant. Various investigative approaches directed at PCoC associated with decommissioned vessels have included monitoring and evaluating existing artificial reefs associated with previously sunken vessels, ^{1, 2, 3} and shipyard evaluations of materials found onboard candidate reefing vessels, vessels being scrapped, and vessels slated for title-transfer/resale.⁴ In general, previously sunken vessels were prepared using the less stringent cleaning standards and methodologies compared with standards today⁵ that now include knowledge of PCBs in solid materials (PCBs-ISM) onboard such vessels. Studies of sunken vessels in the deep ocean have also been made, and while the deep ocean⁶ is a much different environment from shallow or estuarine systems, most PCBs in solid materials (PCBs-ISM) found in shipboard components are common to vessels in both scenarios. This report describes a technical effort that measured the leaching behavior of PCBs-ISM under laboratory-simulated, shallow-water/reef conditions. A companion study focusing on evaluating leaching behaviors of PCBs-ISM under laboratory-simulated, deep-ocean scenarios will be described in a separate report.

METHODOLOGY

Leaching data were collected for solid materials commonly found to contain PCBs onboard older, out of service surface vessels and submarines. Solids with known high levels of PCBs were purposely chosen for this study because they represented the highest concentrations of PCBs expected on current and future vessels to be reefed. Shallow-water leaching tests were performed under constant representative abiotic conditions of pH 8.1, salinity of 34 psu, ambient

_

¹ R. M. Matore, T. D. Mathews, and M. Bell. 1998. "Levels of PCBs and Heavy Metals in Biota Found on ex-Military Ships Used as Artificial Reefs," Draft Report. Marine Resources Division, South Carolina Marine Resources Center, South Carolina Department of Natural Resources, Charleston, SC.

² Space and Naval Warfare Systems Center San Diego. 2005 (May). "A Screening Level Ecorisk Assessment for Using Former Navy Vessels to Construct Artificial Reefs," Final Report prepared for U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxic Substances and Office of Water, and U.S. Department of Navy, Chief of Naval Operations and Naval Sea Systems Command, San Diego, CA.

³ Naval Environmental Health Center Environmental Programs Directorate. 2004 (March). "A Human Health Risk Assessment for Potential Exposure to Polychlorinated Biphenyls (PCBs) from Sunken Vessels Used as Artificial Reefs (Food Chain Scenario)," Volumes 1 and 2, Final Report prepared for U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxic Substances, and U.S. Department of Navy, Chief of Naval Operations, and Space and Naval Warfare Systems Center San Diego.

⁴ John J. McMullen Associates. 1999. Database of PCB-laden Material Inventory Onboard Navy Vessels.

⁵ U.S. Environmental Protection Agency. 2004. "Draft National Guidance: Best Management Practices for Preparing Vessels Intended to Create Artificial Reefs." Washington, DC.

⁶ Space and Naval Warfare Systems Center San Diego. "Risk Assessment of the Potential Release of PCBs and Other Contaminants from Sunken Navy Ships in the Deep Ocean: ex-USS Agerholm Case Study," Final Report to Naval Sea Systems Command. In preparation.

⁷ R. D. George, C. In, R. K. Johnston, P. F. Seligman, R. D. Gauthier, and W. J. Wild. "Investigation of Polychlorinated Biphenyl (PCB) Release-Rates from Selected Shipboard Solid Materials Under Laboratory-Simulated Deep Ocean (SINKEX) Environments." In preparation.

hydrostatic pressure (~1 bar), 25°C temperature, and dynamic agitation to simulate flow. As a conservative approach, leaching experiments were designed to simulate an open system with sufficient transport of PCBs away from the solid to preclude PCB saturation in seawater. Other processes found in natural environments were also precluded to minimize potential effects on observable PCB concentrations resulting from this uninhibited leaching process, including organic particulate sorptive processes, biological processes such as biofouling, biodegradation, uptake/metabolism, or bioaccumulation of PCBs. The shipboard solids were tested intact whenever possible to simulate what would actually occur onboard a sunken vessel inside a compartment containing PCBs-ISM. The solids evaluated included Black Rubber Pipe Hanger Liner (BRPHL), Electrical Cable (EC), Foam Rubber/Ensolite® (FRE), Bulkhead Insulation (BHI), Felt Gasket/Inner (FGI), Felt Gasket/Outer (FGO), and Aluminized Paint (AP). The PCB distributions in shipboard solids were consistent with Aroclor[®] 1254 (A1254), Aroclor[®] 1268 (A1268), or a mixture of both A1268 and A1254. Thus, neat Aroclor® 1254 and 1268 reference materials were used as positive controls for the shipboard solid leaching experiments. A total of 31 PCB congeners and all 10 PCB homolog groups were measured in seawater leachate as a function of exposure time to represent environmentally significant (toxicologically persistent) PCBs to assess ecological and human health risks. Total PCBs (tPCBs) were empirically determined by summing each level of PCB chlorination (summing the measured homolog groups). All of the PCB analytes measured in this study are identical to the PCB evaluated risk assessment in concurrent efforts for sinking decommissioned Navy vessels. In general, the leaching data in this study focus on the shallow/reef scenario. However, data from leach rate studies concerned with evaluating these same shipboard solids as a function of time at lower temperature are included for comparison.

RESULTS

Leach rate curves were generated for all leach rate experiments across the entire leaching experiment timeframe or leaching series to show the change in leach rate with time. This approach was necessary because most shipboard solid leaching behaviors exhibited a temporal dependence over the course of the leaching experiments. Some leach rate curves exhibited a pre-maximum period of instability. However, in all cases, leach rate curves eventually stabilized and achieved a maximum leach rate, followed by a slow decrease in the stabilized leach rate with time. This latter, decreasing portion of leach rate curves could be extrapolated out to very long leaching times to determine when the solids might be depleted of PCBs by assuming that all PCBs in the solid are available for leaching, even though it is possible that some PCBs are probably irreversibly bound to the source material matrix.

The relative leach rates for the materials tested in this study are summarized in Figure 1. The leach rate values in Figure 1 are plotted from lowest to highest and correspond to the stabilized final empirical leach rates determined in each leaching experiment for each material. This figure demonstrates that each shipboard solid attenuates the leaching of PCBs to differing degrees and ultimately stabilizes at significantly different rates.

Figure 1. Experimental tPCB leach rate differences determined for shipboard solids compared with Aroclor® dissolution rates (analytical controls). These rates are the long-term stabilized values observed at the end of each experiment (final empirical value), generally after 14 to 16 months of leaching for each material in seawater.

CONCLUSIONS AND RECOMMENDATIONS

The leach rate data presented are useful for characterizing the time- and temperaturedependent leaching behaviors of PCBs from different shipboard solid materials under physical and chemical conditions similar to a shallow-water artificial reef environment. The acceptable leach rate source term in the context of a release and exposure model for risk assessment depends on what assumptions are considered reasonable within the risk assessment framework used. Shipboard solid-specific leach rate data can be incorporated to varying degrees of complexity, depending on the assumptions one is willing to accept. The approach can range from (1) assuming a single, mean leach rate over the entire period of time to (2) using the leaching curves for the empirical release, followed by a long-term leach rate, as an extrapolated (changing) rate based on the leaching curve, or an assumed constant rate as an upper limit (conservative case). The regression analysis and extrapolated curves in this study (Appendix A) support using the long-term leach rate described in (2) by demonstrating that leach rates continue to decrease with time. Alternatively, the regression analysis itself can be used as a source term function to predict a continued decreasing release. In general, we suggest that the empirical leaching results be used to characterize the early release beyond which, the regression functions found in Appendix A can be used for estimating a long-term source parameter or to support using a conservative constant leach rate. We suggest that the use of regression functions be caveated as having been produced from a relatively small amount of data, leading to low confidence in predicted values at long term extrapolation endpoints (times). Thus, we recommend that

the upper prediction interval curve/data be used at such endpoints if this approach is chosen. In many instances, the upper prediction interval is nearly equivalent to the final empirical data value, but is still useful in providing confidence in using the final empirical leach rate value as a long-term leach rate.

CONTENTS

E)	XECUTIVE SUMMARY	v
Α	BBREVIATIONS AND ACRONYMSx	xiii
1.	INTRODUCTION	1
	1.1. PURPOSE	1
	1.2. PCBs IN SOLID MATERIALS (PCBs-ISM)	
	1.3. PCB TERMINOLOGY AND CHEMISTRY	
	1.4. PCBs IN THE ENVIRONMENT	
	1.5. FACTORS AFFECTING PCB LEACHING AND PARTITIONING IN NATURAL ENVIRONMENTS	3
	1.6. CONCEPTUAL MODEL FOR SHIPBOARD PCB LEACHING	9
2.	EXPERIMENTAL DETAILS	.13
	2.1. EVALUATION OF EXPERIMENTAL LEACHING PARAMETERS AND PROTOCOLS.	.13
	2.2. FIELD COLLECTION OF PCBs IN SOLID MATERIALS (PCBs-ISM)	
	2.2.1. PCBs-ISM Selection	
	2.2.2. Vessel Selection	.20
	2.2.3. PCBs-ISM Sample Collection	.20
	2.2.4. PCBs-ISM Sample Description	
	2.3. LABORATORY SUBSAMPLING OF SHIPBOARD SOLID MATERIALS	
	2.4. LABORATORY LEACHING OF PCBs-ISM	
	2.4.1. Saturation Avoidance	
	2.4.2. Artificial Degradation/Disintegration Avoidance	
	2.4.3. Positive And Negative Leaching Controls	
	2.5. ARTIFICIAL SEAWATER LEACHATE PREPARATION	
	2.6. GENERAL LEACHING EXPERIMENT DESIGN AND METHODOLOGY	
	2.6.1. Sampling Intervals	
	2.6.2. Experimental Conditions	
	2.7. ANALYTICAL CHEMISTRY OF PCBs	
	2.7.1. PCB Screening Analyses	. SU
	2.7.2. Conventional PCB Analyses	. 3U
	2.9. LEACHATE EXTRACTION	
	2.10. DATA MANAGEMENT	
	2.11. DATA MANAGEMENT	
	2.12. CALCULATION OF LEACH RATE	ەد. 10
	2.13. LEACH RATE ANALYSIS	
^	EMPIRICAL DATA AND OBSERVATIONS	
ა.		
	3.1. PCBs-ISM CHARACTERIZATION	
	3.2. SHIPBOARD SOLID MATERIALS	
	3.3. LEACHING DATA DESCRIPTION	
	3.4. SHIPBOARD SOLID-SPECIFIC LEACHING DATA	
	3.4.1. Aroclor® 1254 (A1254) Analytical Control Dissolution Behavior	
	3.4.2. Black Rubber Pipe Hanger Liner (BRPHL) Leaching Behavior	
	3.4.3. Electrical Cable (EC) Leaching Behavior	
	3.4.4. Foam Rubber/Ensolite® (FRE) Leaching Behavior	
	3.4.5. Aroclor® 1268 (A1268) Analytical Control Dissolution Behavior	.82

	3.4.6. Bulkhead Insulation (BHI) Leaching Behavior	92
	3.4.7. Felt Gasket/Inner (FGI) Leaching Behavior	
	3.4.8. Felt Gasket/Outer (FGO) Leaching Behavior	
	3.4.9. Aluminized Paint (AP) Leaching Behavior	
4. F	RESULTS AND DISCUSSION	123
4.	1. AVERAGE LEACH RATE CALCULATIONS	123
	4.1.1. Aroclor® 1254 (A1254) Analytical Control Dissolution Rates	
	4.1.2. Black Rubber Pipe Hanger Liner (BRPHL) Leach Rates	
	4.1.3. Electrical Cable (EC) Leach Rates	
	4.1.4. Foam Rubber/Ensolite® (FRE) Leach Rates	142
	4.1.5. Aroclor® 1268 (A1268) Analytical Control Dissolution Rates	147
	4.1.6. Bulkhead Insulation (BHI) Leach Rates	
	4.1.7. Felt Gasket/Inner (FGI) Leach Rates	160
	4.1.8. Felt Gasket/Outer (FGO) Leach Rates	167
	4.1.9. Aluminized Paint (AP) Leach Rates	
4.	2. SUMMARIZED LEACH RATE STUDY RESULTS	178
5. C	CONCLUSIONS AND RECOMMENDATIONS	197
5.	1. LEACHING RESULTS DISCUSSION	197
	5.1.1. Leach Rate Temperature Dependence	
5.	2. LEACH RATE STUDY UNCERTAINTY AND CONFIDENCE IN LEACH RATE	
	STUDY RESULTS	202
	STUDY RESULTS5.2.1. Leach Rate Study Design/Approach	
		202
	5.2.1. Leach Rate Study Design/Approach	202
	5.2.1. Leach Rate Study Design/Approach	202 203 209
	 5.2.1. Leach Rate Study Design/Approach 5.2.2. Potential Degradation—Bounding Analysis 5.2.3. Potential Effects of Biotic Processes on Leach Rates 5.2.4. Shipboard Solid Sources 5.2.5. Analytical Chemistry 	202 203 209 210
	5.2.1. Leach Rate Study Design/Approach 5.2.2. Potential Degradation—Bounding Analysis 5.2.3. Potential Effects of Biotic Processes on Leach Rates 5.2.4. Shipboard Solid Sources 5.2.5. Analytical Chemistry 5.2.6. Leach Rate Data/Results	202 203 209 210 213
	5.2.1. Leach Rate Study Design/Approach 5.2.2. Potential Degradation—Bounding Analysis 5.2.3. Potential Effects of Biotic Processes on Leach Rates 5.2.4. Shipboard Solid Sources 5.2.5. Analytical Chemistry 5.2.6. Leach Rate Data/Results 5.2.7. Alternative Uses of Leach Rate Data	202 203 219 210 214 219
	5.2.1. Leach Rate Study Design/Approach 5.2.2. Potential Degradation—Bounding Analysis 5.2.3. Potential Effects of Biotic Processes on Leach Rates 5.2.4. Shipboard Solid Sources 5.2.5. Analytical Chemistry 5.2.6. Leach Rate Data/Results 5.2.7. Alternative Uses of Leach Rate Data 5.2.8. Leach Rate Data Regression Uncertainty	202 203 219 213 214 219
5.	5.2.1. Leach Rate Study Design/Approach 5.2.2. Potential Degradation—Bounding Analysis 5.2.3. Potential Effects of Biotic Processes on Leach Rates 5.2.4. Shipboard Solid Sources 5.2.5. Analytical Chemistry 5.2.6. Leach Rate Data/Results 5.2.7. Alternative Uses of Leach Rate Data	202 203 219 213 214 219
	5.2.1. Leach Rate Study Design/Approach 5.2.2. Potential Degradation—Bounding Analysis 5.2.3. Potential Effects of Biotic Processes on Leach Rates 5.2.4. Shipboard Solid Sources 5.2.5. Analytical Chemistry 5.2.6. Leach Rate Data/Results 5.2.7. Alternative Uses of Leach Rate Data 5.2.8. Leach Rate Data Regression Uncertainty	202 203 219 213 214 219 219

Figures

1. Experimental tPCB leach rate differences determined for shipboard solids compared with Aroclor® dissolution rates (analytical controls). These rates are the long-term stabilized values observed at the end of each experiment (final empirical value), generally after 14 to 16 months of leaching for each material in seawater
2. Polychlorinated Biphenyl molecular structure, where X at each numbered carbon can be a hydrogen (H) or chloro- (Cl) substituent. Each phenyl ring can rotate independent of the other around the covalent bond linking them together (i.e., the phenyl rings can be, but are not forced to be, coplanar). The total number of possible isomers is 209
3. Primary PCB leaching process illustrated for an open system such as is simulated in this study. PCB transport occurs within a PCB containing material primarily by diffusive processes (PCBsolid matrix) and through the material-seawater interface (PCBinterfacial), before becoming available to the surrounding seawater environment (PCBaq s.w.) for subsequent advective transport and sorption onto sediments, particulate matter, and biological materials in the natural ocean environment. In a closed system in the absence of advective processes, similar to conditions in many natural environments, transport out of the solid matrix is suppressed, and is dependent on partitioning between the solid surface and the seawater. Release under these conditions would eventually stop and become static until solvated PCBs are removed from the system by external processes or external partitioning equilibria (see Figure 4 and Figure 5)
4. Schematic of release/leaching processes expected for PCBs in shipboard solids. C_{bulk} is the concentration of a PCB congener in the bulk material, C_{external} is the concentration of that PCB congener in the external phase (seawater, organic material, biological material, etc.), T is thickness of the material and L is the PCB congener-specific diffusion pathlength corresponding to the thickness of the depletion layer at the interface between bulk and external phases5
5. Primary PCB leaching process in red bold italics, (1) and (2), as described in Figure 3, with subsequent transport/depletion mechanisms for PCBs in seawater, PCB(aq s.w.). The experimental design minimizes or removes the potential processes represented by (3), while processes represented by (4) are simulated by seawater exchange and a dynamic mixing approach. The processes represented by (5) are completely removed by the experimental design. In a closed system, many of these processes are related to equilibrium partitioning and/or PCB uptake/metabolism into biological organisms
6. Conceptual schematic (a) for simulating the PCB leaching process expected to occur for a PCB-containing solid inside of a compartment onboard a sunken vessel similar to that shown in Figure 7

7. Photos of vessel compartments onboard vessels prepared as shown in (b) and (d) and sunk in shallow water as artificial reefs. For this study, PCB release is evaluated for seawater flowing through open compartment(s) such as shown in (a) and (c) under mild flow conditions that are sufficient to avoid saturation in the leachate above the surface of the shipboard solid inside the compartment. Solvated PCBs in a sealed compartment would be expected to saturate and remain trapped unless the compartment becomes breached. For a closed, but unsealed compartment, saturation would also be expected, but would be subject to PCBs-in-seawater diffusion/transport out of the compartment into adjacent compartments and/or the surrounding environment. Photos (a) and (b) are of ex-Yukon, a Canadian vessel, being prepared for use as an Artificial Reef in San Diego coastal waters. Photo (c) is an underwater compartment on ex-Vermillion, a U.S. Navy vessel sunk off the coast of South Carolina in 1988 as an Artificial Reef, and (d) is ex-Vermillion after being prepared and towed to the site. Photos (a) and (b) are
Marine Environment Support Office photos and photos (c) and (d) are courtesy of Sourh Caroline Department of Natural Resources10
8. Shipboard solid sample cage used to localize shipboard solid particulates in the leaching vessel, as described above. An identical cage was used for negative analytical controls (procedural blanks without shipboard solid) and positive analytical controls (neat Aroclor® compounds) as described below
9. The constant temperature apparatus for ambient pressure leaching at 25°C is shown in (a) and that for 4°C is shown in (b). Both systems used gentle mixing through a bench-top shaker table, operated at 45 rpm to simulate dynamic flow around the shipboard solids under test, and maintained a constant temperature throughout the leaching experiments (1 to 2 years)
10. MDL study values for PCB target congeners in representative PCB-LRS water samples using three different methods, GC-ECD (EPA Method 8081M), Micro-GC-ECD (modified EPA Method 8081M), and GC-MS/SIM (EPA Method 680). Micro-GC-ECD is shown for comparison purposes only and was not used in this study. The average congener MDL using each method is shown next to the legend
11. Hypothetical leachate concentration data. Each positive slope (straight line) between asterisks is proportional to the average leach rate for that partial or incremental leaching experiment as described in the text. The average leach rates for these hypothetical data are plotted versus absolute leaching time in Figure 12
12. Example of a hypothetical changes in AvgLR with time for the hypothetical leached PCB concentration data in Figure 1141
13(a–h). Representative photos of shipboard solids: (a) Felt Gasket-Outer (FGO), (b) flange bottom edge where FGO was collected, (c) Felt Gasket-Inner (FGI) with flange collection site, (d) Black Rubber Pipe Hanger Liner (BRPHL)—subsample is shown in center, with remaining pieces of the ship sample on the left and right, (e) Bulkhead Insulation (BHI), (f) Aluminized Paint (AP), (g) Foam Rubber/EnsoliteTM (FRE), and (h) Electrical Cable (EC) with a schematic illustrating its internal components. The masses of each leached solid are reported in the respective leaching subsections of Subsection 3.4
14(a–h). Experimental PCB concentration versus exposure time for 21.1 mg of neat Aroclor® 1254 exposed to a total volume of 13.13 L of seawater leachate. Plot (a) shows tPCBs concentration and contributing homolog group concentrations versus exposure time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–h) are homolog group concentrations and corresponding target congener concentrations within homolog groups CI1 through CI7 versus time

15(a–d). Experimental homolog and congener PCB distributions for neat Aroclor® 1254 "solid" (a and c) compared with total homolog and congener distributions of PCBs released from A1254 into seawater (b and d). The latter distributions correspond to all PCBs released, also represented by the cumulative concentration endpoint for all analytes plotted in Figure 14. The solid distributions correspond to the pre-dissolution PCB content in the neat-solid A1254, derived from the mass balance performed at the conclusion of the experiment. Analytes present below 0.1% are indicated using an offset linear scale. Variances at these very low subpercentage levels are not visible on the scale shown here, but are included in the mass balance tables in Appendix C
16(a–d). Homolog distributions during the neat Aroclor® 1254 experiment, normalized as percent of total, corresponding to intervals: (a) 62 to 69 days, (b) 188 to 230 days, (c) 230 to 286 days, (d) 370 to 433 days
17(a–d). Congener distributions during the neat Aroclor [®] 1254 experiment, normalized as percent of total, corresponding to different intervals: (a) 62 to 69 days, (b) 188 to 230 days, (c) 230 to 286 days, (d) 370 to 433 days59
18(a–g). Experimental PCB concentration versus leaching time for BRPHL containing 0.16 wt% (4.7 mg) tPCBs exposed to a total volume of 14.82 L of seawater leachate. Plot (a) shows tPCBs concentration and contributing homolog group concentration versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–g) are homolog group concentrations and corresponding target congener concentrations within homolog groups Cl1 through Cl5, and Cl7 versus leaching time
19(a–d). Experimental homolog and congener PCB distributions for BRPHL solid (a and c) compared with total homolog and congener distributions of PCBs leached from BRPHL into seawater (b and d). The leachate distributions are derived from all PCBs released, also depicted as the cumulative leachate concentration endpoint for detected analytes in Figure 18. The solid distributions correspond to the pre-leaching PCB content in BRPHL solid, derived from the mass balance performed for the leaching experiment. Analytes at levels below 0.1% are plotted using an offset linear scale to indicate their presence. Variances at these very low subpercentage levels are not visible on the scale shown here, but are in the mass balance tables in Appendix C
20(a–d). Homolog distributions during the BRPHL leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 7 to 14 days, (b) 49 to 69 days, (c) 230 to 286 days, (d) 398 to 475 days66
21(a–d). Congener distributions during the BRPHL leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 7 to 14 days, (b) 49 to 69 days, (c) 230 to 286 days, (d) 398 to 475 days
22(a–i). Experimental PCB concentration versus leaching time for EC containing 0.21 wt% (32.1 mg) tPCBs exposed to a total volume of 14.49 L of seawater leachate. Plot (a) shows the tPCBs concentration and contributing homolog group concentrations versus leaching time for EC, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–i) are homolog group concentrations and corresponding target congener concentrations within homolog groups Cl2 through Cl7, Cl9, and Cl10 versus leaching time72

23(a–d). Experimental homolog and congener PCB distributions for EC solid (a and c) compared with total homolog and congener distributions of PCBs leached from EC into seawater (b and d). Leachate distributions are derived from all PCBs released, which also corresponds to the cumulative leachate concentration endpoint for analytes plotted in Figure 22. Solid distributions correspond to the initial PCB content in EC solid, from the leaching experiment mass balance performed at the end of the leaching experiment. An offset linear scale is used to indicate analyte levels present below 0.1%. Though not visible on the scale shown here, the degree of variance at these very low subpercentage levels can be seen in the mass balance tables in Appendix C
24 (a–d). Homolog distributions during the EC leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 1 to 6 days, (b) 62 to 90 days, (c) 90 to 125 days, (d) 412 to 475 days
25(a–d). Congener distributions during the EC leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 1 to 6 days, (b) 62 to 90 days, (c) 90 to 125 days, (d) 412 to days
26(a–g). Experimental PCB concentration versus leaching time for FRE containing 0.89 wt% (23.2 mg) tPCBs exposed to a total volume of 13.86 L of seawater leachate. Plot (a) shows the tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–g) are homolog group concentrations and corresponding target congener concentrations within homolog groups Cl2 through Cl7 versus leaching time
27(a–d). Experimental homolog and congener PCB distributions for FRE solid (a and c) compared with total homolog and congener distributions of PCBs leached from FRE into seawater (b and d). The leachate distributions correspond to all PCBs released over the leaching experiment, also represented by the cumulative leachate concentration endpoint for analytes plotted in Figure 26. The solid distributions correspond to the pre-leaching PCB content in FRE solid, determined from the leaching experiment mass balance. Analytes at levels below 0.1% are shown on an offset linear scale to indicate their presence, but the degree of variance is not visible on the scale shown here. Variance at these very low subpercentage levels can be seen in the mass balance tables in Appendix C80
28(a–d). Homolog distributions during the FRE leaching experiment, normalized as percent of total, for leaching intervals: (a) 7 to 21 days, (b) 147 to 189 days, (c) 189 to 273 days, (d) 399 to 469 days
29(a–d). Congener distributions during the FRE leaching experiment, normalized as percent of total, for leaching intervals: (a) 7 to 21 days, (b) 147 to 189 days, (c) 189 to 273 days, (d) 399 to 469 days
30(a–j). Experimental PCB concentration versus exposure time for 20.2 mg of A1268 in a total volume of 9.77 L of seawater. Plot (a) shows experimental tPCBs concentration and contributing homolog group concentrations versus time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–j) are homolog group concentrations and target congener concentrations within homolog groups Cl1 through Cl9 versus. time

31(a–d). Experimental homolog and congener PCB distributions for neat A1268 solid (a and c) compared with total homolog and congener distributions of PCBs released from neat A1268 into seawater (b and d). Seawater distributions correspond to all PCBs released from A1268 during the experiment and also to the cumulative concentration endpoint for analytes plotted in Figure 30. Solid distributions correspond to the initial pre-exposure PCB content in A1268 solid, determined from the experiment mass balance. Some analytes contribute to tPCBs at levels below 0.1% and are plotted using an offset linear scale. This scale is useful to indicate their presence; however the degree of variance at these very low subpercentage levels is not visible on the scale shown here. These experimental variances can be seen in the mass balance tables included in Appendix C
32(a–d). Homolog distributions during the A1268 dissolution experiment, normalized as percent of total, for exposure intervals: (a) 1 to 6 days, (b) 20 to 41 days, (c) 111 to 189 days, (d) 322 to 371 days
33(a–d). Congener distributions during the A1268 dissolution experiment, normalized as percent of total, for exposure intervals: (a) 1 to 6 days, (b) 20 to 41 days, (c) 111 to 189 days, (d) 322 to 371 days9
34(a–g). Experimental PCB concentration versus leaching time for BHI containing 0.23 mg (0.044 wt%) tPCBs exposed to a total volume of 15.71 L of seawater leachate. Plot (a) shows the tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–g). are homolog group concentrations and target congener concentrations within homolog groups Cl2 through Cl7 versus leaching time
35(a–d). Experimental homolog and congener PCB distributions for BHI solid (a and c) compared with total homolog and congener distributions of PCBs leached into seawater from BHI (b and d). The leachate distributions correspond to all released PCBs, which is also the cumulative leachate concentration endpoint for analytes presented in Figure 34. Solid distributions correspond to the initial PCB content in the BHI solid, determined using the mass balance performed at the conclusion of the leaching experiment. Analytes present below 0.1% are indicated using an offset linear scale. However, variances at these very low subpercentage levels are not visible on the scale shown here. The mass balance tables in Appendix C should be consulted for these experimental variance values9
36(a–d). Homolog distributions during the BHI leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 14 to 21 days, (b) 69 to 83 days, (c) 118 to 167 days, (d) 398 to 454 days
37(a–d). Congener distributions during the BHI leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 14 to 21 days, (b) 69 to 83 days, (c) 118 to 167 days, (d) 398 to 454 days9
38(a–k). Experimental PCB concentration versus leaching time for FGI containing 682.0 mg (23.0 wt%) tPCBs exposed to a total volume of 13.85 L of seawater leachate. Plot (a) shows tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–k) are homolog group concentrations and target congener concentrations within homolog groups Cl1 through Cl10 versus. leaching time

39(a–d). Experimental homolog and congener PCB distributions for FGI solid (a and c) compared with total homolog and congener distributions of PCBs leached from FGI into seawater (b and d). The leachate distributions correspond to all PCBs released during the experiment and are derived from the cumulative leachate concentration endpoint analytes plotted in Figure 38. The solid distributions correspond to the initial PCB content in FGI solid, determined from the leaching experiment mass balance performed at the conclusion of the experiment. An offset linear scale is used to plot analytes present at levels below 0.1%, but the degree of experimental variance at these very low subpercentage levels is not visible on the scale shown here. This scale can be seen in the mass balance tables in Appendix C	•
40(a–d). Homolog distributions during the FGI leaching experiment, normalized as percent of total, for leaching intervals: (a) 20 to 34 days, (b) 34 to 56 days, (c) 83 to 118 days, (d) 405 to 475 days	106
41(a–d). Congener distributions during the FGI leaching experiment, normalized as percent of total, for leaching intervals: (a) 20 to 34 days, (b) 34 to 56 days, (c) 83 to 118 days, (d) 405 to 475 days	107
42(a–i). Experimental PCB concentration versus leaching time for FGO containing 112.1 mg (11.7 wt%) tPCBs exposed to a total volume of 13.86 L of seawater leachate. Plot (a) shows the tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–i) are homolog group concentrations and target congener concentrations within homolog groups CI1 through CI8 versus leaching time	112
43(a–d). Experimental homolog and congener PCB distributions for FGO solid (a and c) compared with total homolog and congener distributions of PCBs leached from FGO into seawater (b and d). Leachate distributions are derived from the accumulative leachate concentration endpoint for analytes plotted in Figure 26 and correspond to all PCBs released during the leaching experiment. The solid distributions correspond to the initial pre-leaching PCB content in FGO solid, derived from the leaching experiment mass balance performed at the experiment conclusion. Analytes present at levels below 0.1% are plotted using an offset linear scale to indicate the presence of the analyte, but experimental variances are not visible on the scale shown. The experimental values that show the degree of variance at these very low subpercentage levels can be found in the mass balance tables in Appendix C	
44(a–d). Homolog distributions during the FGO leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 42 to 69 days, (b) 69 to 111 days, (c) 230 to 265 days, (d) 377 to 454 days	
45(a–d). Congener distributions during the FGO leaching experiment, normalized as percent total, corresponding to leaching intervals: (a) 42 to 69 days, (b) 69 to 111 days, (c) 230 to 265 days, (d) 377 to 454 days	
46(a–f). Experimental PCB concentration versus leaching time for AP containing 0.52 mg (0.043 wt%) tPCBs exposed to a total volume of 13.89 L of seawater leachate, Plot (a) shows tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–f) are homolog group concentrations and target congener concentrations within	440
homolog groups Cl3 through Cl7 versus leaching time	118

compared with total homolog and congener PCB distributions for AP solid (a and c) compared with total homolog and congener distributions of PCBs leached from AP into seawater (b and d). The leachate distributions correspond to all PCBs released over the entire experiment and are derived from the cumulative leachate concentration endpoint for analytes plotted in Figure 46. Solid distributions correspond to the initial PCB content in AP solid, derived from the post-leaching mass balance performed at the end of the experiment. Analytes present at levels below 0.1% are plotted on an offset linear scale to indicate their presence, but this scale is not conducive to observing the degree of experimental variance at these very low subpercentage levels. The experimental values showing the experimental variance can be found in the mass balance tables in Appendix C
48(a–d). Homolog distributions during the AP leaching experiment, normalized as percent of total, for leaching intervals: (a) 7 to 21 days, (b) 147 to 189 days, (c) 273 to 315 days, (d) 399 to 469 days
49(a–d). Congener distributions during the AP leaching experiment, normalized as percent of total, for leaching intervals: (a) 7 to 21 days, (b) 147 to 189 days, (c) 273 to 315 days, (d) 399 to 469 days
50(a–h). Plot (a) shows experimental tPCBs average dissolution rate and contributing homolog group average dissolution rates versus time for neat Aroclor® 1254. The sum of the homolog average dissolution rates equals the tPCBs average dissolution rate curve (solid black squares). Plots (b–h) show homolog group average dissolution rates and corresponding target congener average dissolution rates within those detected homolog groups (CI1–CI7) versus time for neat Aroclor® 1254. Lines connecting adjacent data points indicate detection in consecutive seawater samples (continued dissolution of that PCB congener or homolog group), while no line indicates a discontinuity in dissolution (analyte not detected in an adjacent seawater sample). Non-detected target congeners within detected homolog groups included PCB 126 (CI5); PCB 169 (CI6); and PCBs 170, 183, 184, 187, and 189 (CI7)
51. A1254 tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over the 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day
52(a–g). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for BRPHL. The sum of the homolog average leach rate curves is equal to the tPCBs average leach rate curve (solid black squares). Plots (b-g) show the detected homolog group average leach rates and corresponding target congener average leach rates within those homolog groups (Cl1 through Cl5, and Cl7) versus leaching time for BRPHL. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCB 77 (Cl4); PCBs 114, 123, and 126 (Cl5); and PCBs 170, 180, 183, 187, and 189 (Cl7)

53. Extrapolation results for BRPHL tPCBs average leach rate (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over the 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day
54(a–i). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for EC. The sum of the homolog average leach rate curves is equal to the tPCBs average leach rate curve (solid black squares). Plots (b–i) show homolog group average leach rates and corresponding target congener average leach rates within those detected homolog groups (Cl2 through Cl7, Cl9 and Cl10) versus leaching time for EC. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCBs 114, 123, and 126 (Cl5); PCBs 156, 157, 167, 169 (Cl6); PCBs 170, 180, 183, 187, and 189 (Cl7). Note that Cl10 and PCB209 should be experimentally identical and are plotted to demonstrate this concurrence
55. Extrapolation results for EC tPCBs average leach rate (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over the 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day
56(a–g). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for FRE. The sum of the homolog average leach rate curves is equal to the upper tPCBs average leach rate curve (solid black squares). Plots (b–g) show homolog group average leach rates and target congener average leach rates within those detected homolog groups (Cl2 through Cl7) versus leaching time for FRE. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCB 77 (Cl4); PCBs 123 and 126 (Cl5) (note that PCB 114 only appeared once); PCBs 157, 167, 169 (Cl6); PCBs 170, 180, 183, 187, and 189 (Cl7)
57. Extrapolation results for FRE tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over the 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day

58(a–j). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for A1268. The sum of the homolog average leach rate curves is equal to the upper tPCBs average leach rate curve (solid black squares). Plots (b-j) show homolog group average leach rates and corresponding target congener average leach rates within detected homolog groups (Cl1 through Cl9) versus leaching time for A1268. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCBs 123 and 126 (Cl5); PCBs 128, 156,157, 158, 167, and 169 (Cl6); PCBs 170, 183, 184, and 189 (Cl7); and PCB 195 (Cl8)
59. A1268 tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day
60(a-g). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for BHI. The sum of the homolog average leach rate curves is equal to the tPCBs average leach rate curve (solid black squares). Plots (b–g) show homolog group average leach rates and corresponding target congener average leach rates within detected homolog groups (CI2 through CI7) versus leaching time for BHI. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCBs 123 and 126 (CI5); PCB 169 (CI6); and PCB 189 (CI7)
61. BHI tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day
62(a–k). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for FGI. The sum of the homolog average leach rate curves is represented by the tPCBs average leach rate curve (solid black squares). Plots (b–k) show homolog group average leach rates and corresponding target congener average leach rates within detected homolog groups Cl1 through Cl10 versus leaching time for FGI. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Nondetected target congeners within detected homolog groups included PCB 77 (Cl4); PCBs 105, 114, 123 and 126 (Cl5); PCBs 128, 138, 156,157, 158, 167, and 169 (Cl6); PCBs 170 and 189 (Cl7); and PCB 195 (Cl8)

63. FGI tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day	.167
64(a–i). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for FGO. The sum of the homolog average leach rate curves is represented by the tPCBs average leach rate curve (solid black squares Plots (b–i) show homolog group average leach rates and corresponding target congener average leach rates within detected homolog groups Cl1 through Cl8 versus leaching time for FGO. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCBs 114, 123 and 126 (Cl5); PCBs 128, 138, 156,157, 158, 167, and 169 (Cl6); PCBs 170, 183, 184, and 189 (Cl7); and PCB 195 (Cl8)	. 172
65. FGO tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The supper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day	95%
66(a–f). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for AP. The sum of the homolog average leach rate curves is represented by the upper tPCBs average leach rate curve (solid black squares). Plots (b–f) show homolog group average leach rates and corresponding target congener average leach rates within homolog groups Cl3 through Cl7 versus leaching time for AP. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within these detected homolog groups included PCB 18 (Cl3); PCBs 66 and 77 (Cl4); PCBs 114, 123 and 126 (Cl5); PCBs 128,157, 158, 167, and 169 (Cl6); and PCBs 170, 180, 183, 187 and 189 (Cl7)	
67. AP tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day	178
68. Comparison of tPCB average leach rates at ambient pressure (~1 bar) and (a) 25°C, to tPCB average leach rates at (b) 4°C for the suite of shipboard solid tested	199

Tables

1. Experimental parameters of possible concern for leaching studies. Variables indicated as "N/A" are not applicable to this study because they were excluded by the experimental design. Variables indicated as "not controlled" are considered part of the leaching mechanism under the specific conditions set up in this study, defined by the "Controlled" parameters that were the same for each of the solids tested	. 13
2. Summary statistics compiled from the NAVSEA Inactive Fleet PCB Survey Program, February 2001. Some Aroclors® had been individually quantified in more recent analyses, and are included, but most historical data available at the time of the Leach Rate Study (1999–2002) were reported as total Aroclor®. The identity of Aroclors® was usually reported only qualitatively. The construction date of vessels, which these data represent, range from the late 1940s through the early 1990s, with PCB sampling performed from the late 1980s through the late 1990s.	.18
3. Descriptive summary of shipboard solids (PCBs-ISM) samples used in the leach rate studies.	.21
4. Congener analytes of interest in the PCB leach rate study. Those shown in red and noted with an asterisk are considered dioxin-like and were compiled at this study's inception from EPA and WHO lists of "dioxin-like" PCB congeners. Subsequent to this, PCB81 (3,4,4',5-tetrachlorobiphenyl) was listed as dioxin-like in WHO TEF re-evaluation studies, which also resulted in PCB 170 and PCB 180 being removed from the WHO dioxin-like congener list, while the EPA dioxin reassessment document lists 14 dioxin-like PCBs, including congeners 81, 170, and 180. Dioxin-like PCBs that are considered coplanar are indicated with CP0 (non-ortho) and CP1 (mono-ortho), followingthe convention in the Table of PCB Congeners and Other Species (U.S. Environmental Protection Agency, 2006)	.33
5. Homolog group analytes of interest in the PCB leach rate study	.35
6. Aroclor® analytes of interest in the PCB leach rate study	.35
7. PCB congeners of concern found in the environment. Details are described in the text. Congeners listed in McFarland and Clarke (1989), but not analyzed in PCB leach rate study samples are shaded.	36

8. Internal Standard and Surrogate Compounds used in the PCB leach rate study3	8
9. Aroclor® concentrations in $\mu g/g$ (ppm) as determined for best-fit analyses of the congener distribution for <i>representative</i> subsamples of each shipboard solid used in leaching experiments. These materials correspond to the shipboard solids collected during the ship sampling effort for which subsamples were subsequently leached in this study. Separate determinations were also made for different physical dissections of both electrical cable and foam rubber subsamples in an effort to possibly identify the primary PCB-containing components for these samples. These included the paint-only portion of the foam rubber field sample, the inner component only (resin binder adjacent to outer plastic sheath) of the electrical cable field sample, and the middle component only (paper/resin insulation adjacent to copper center conductor) of the electrical cable field sample	4
10(a–i). Summary of Empirical Dissolution Rate Behaviors/Curves/Regression Analyses for A1254 and A1268 (a and e), and Empirical Leach Rates for BRPHL, EC, FRE, BHI, FGI, FGO, and AP (b, c, d, f, g, h, i) respectively. Regression analyses correspond only to the post-maximum portion of those leach rate curves with a significant number of leach rate data points beyond the observed maximum (regressions for N>4, including the maximum), as described in Appendix D and Subsection 2.13.	'9
11. Comparison of Leaching Experiment Concentration Maxima. Those analyte concentration maxima for shipboard leaching samples that were higher than that for A1254 or A1268 are indicated in parentheses, with double parentheses further indicating which of these maxima were J-flagged (estimated/below MRL). Most of the shipboard solid analyte maxima greater than Aroclor® maxima occur for the higher order chlorinated PCBs. Maxima that were non-detects are indicated as zero, meaning the analyte was never detected in the leaching or dissolution experiment. The maximum tPCBs concentration in any single sample is included as sum of homologs. A summation of all maximum homolog values across all samples is also included, which represents the reasonable maximum tPCBs concentration one might expect for a material containing A1254 and A1268, if tested under the leaching conditions of the study. See discussion in the text above for further explanation of the significance of these tabulated observations.)1
12(A and B). Bounding Analysis for Potential Incremental Increases in Leaching Surface Area as a function of Particle Formation. As described in the text, this analysis starts with a sample of shipboard solid material (e.g., FRE with the empirical tPCB leach rate curve values included below), and in (A) Cases 1 and 2, beginning with a known size, assumes degradation into varied small particle numbers and sizes over realistic time periods to derive %-increases in surface areas from such a process. These calculated % increases in surface area are then applied to the FRE leach rates in (B) for Cases 1 and 2 in (A) over timeframes that the degradation process is expected to take place: (1) and (2a) 200 years, (2b) 100 years, (2c) 50 years to calculate the increase in release from the new surface area associated with the new, smaller particles. This data treatment is non-dimensional (x-units), that is, the increase in leach rate is based on a %-increase in surface area, that is based on a %-decrease in particle size, and increase in the number of particles. The treatment is massindependent and can be applied to any shipboard solid leach rate for any PCB analyte reported in this study, as the increase in leaching calculation is simply a scalar multiplier20	06
13(A and B). A) Empirical and Long Term average leach rates during and beyond the experimental leaching timeframe for each shipboard solid. B) Example calculations of timeto-depletion for the ex-Lawe, using the empirical and long-term average leach rates in A)22	23

Equations

Equation 1	41
	41
	41
	44
	50
•	50
•	206
	218
•	222
	222
ABBREVIATIO	ONS AND ACRONYMS
μg	micrograms (10 ⁻⁶ grams)
μg%D.	
μg %D %RSD	micrograms (10 ⁻⁶ grams) Percent Difference Percent Relative Standard Deviation
μg %D %RSD A1254	micrograms (10 ⁻⁶ grams) Percent Difference
μg %D %RSD A1254 A1268	micrograms (10 ⁻⁶ grams) Percent Difference Percent Relative Standard Deviation Aroclor [®] 1254 Aroclor [®] 1268
μg%D%RSD	micrograms (10 ⁻⁶ grams)Percent DifferencePercent Relative Standard DeviationAroclor [®] 1254
μg	micrograms (10 ⁻⁶ grams) Percent Difference Percent Relative Standard Deviation Aroclor [®] 1254 Aroclor [®] 1268 American Chemical Society
μg	micrograms (10 ⁻⁶ grams)Percent DifferencePercent Relative Standard DeviationAroclor® 1254Aroclor® 1268American Chemical SocietyArthur D. Little, Inc.

ASTM American Society for Testing and Materials ASW Artificial Seawater BHIBulkhead Insulation BRPHLBlack Rubber Pipe Hanger Liner BS......Blank Spike BZ......Ballschmiter–Zell CI......Chlorine CLPContract Laboratory Program CNO Chief of Naval Operations EC Electrical Cable ECD...... Electron Capture Detection EHM Estimated Homolog Minimum EPAEnvironmental Protection Agency ERA Ecological Risk Assessment FGI Felt Gasket (Inner) FGO......Felt Gasket (Outer) FREFoam Rubber (Ensolite®)

GC/ECD	Gas Chromatography/Electron Capture Detection
GCMS-SIM Gas Chromato	ography Mass Spectrometry-Selected Ion Monitoring
HHRA	Human Health Risk Assessment
HVAC	Heating, Ventilation, and Air Conditioning
	Initial Calibration
	Independent Reference Material
IUPAC	International Union of Pure and Applied Chemistry
	Kuderna-Danish
	Liter
	Lower Confidence Interval
	Lower Prediction Interval
	Leach Rate (general context)
MDL(S	Sample-specific) Minimum or Method Detection Limit
MESOM	arine Environmental Support Office, SSC San Diego
	milligrams (10 ⁻³ grams)
mL	milliliter
	Non-Detect
	Naval Environmental Health Center
na	nanograms (10 ⁻⁹ grams)
ng/L	nanograms per Liter
	Naval Inactive Fleet
	Naval Sea Systems Command
NISMF	Naval Inactive Ship Maintenance Facility
NIST	National Institute of Standards and Technology
OPPTSOffice	of Pollution Prevention and Toxic Substances (EPA)
	Office of Water (EPA)
	Procedural Blank
	polychlorinated biphenyls
	PCBs in Solid Material
	PCB Leach Rate Study
PCoC	Potential Contaminant of Concern
PEO-Ships	Program Executive Office Ships
PTFE	Polytetrafluoroethylene
pg	picograms (10 ⁻¹² grams)
PQL	Practical Quantitation Limit
ppb	parts per billion (ng/g, ug/L in water)
	parts per million (?g/g, mg/L in water)
pptr	parts per trillion (pg/g, ng/L in water)
PRAM	Prospective Risk Assessment Model
PSNS	Puget Sound Naval Shipyard
	Polytetrafluoroethylene
	Polyvinyl Chloride
	Quality Assurance
	Quality Control
	Reefing Exercise
	Residual Homolog Value
	Relative Percent Difference
RSD	Relative Standard Deviation
	Solvent Accessible Surface Area
SCDNR	South Carolina Department of Natural Resources

SIM	Selected Ion Monitoring
SINKEX	Sinking Exercise
SOP	Standard Operating Procedure
SRM	Standard Reference Material
SS	Stainless Steel
SSC San Diego	Space and Naval Warfare Systems Center San Diego
SW	Seawater
SW-PCB-LRS	Shallow-Water PCB-LRS
TCMX	Tetrachloro-m-xylene
tPCBs	Total PCBs
UCI	Upper Confidence Interval
	Upper Prediction Interval
USEPA	United States Environmental Protection Agency
WHO	

1. INTRODUCTION

1.1. PURPOSE

This effort was undertaken to evaluate the leaching of PCBs from shipboard solid materials as it applies to sinking out-of-service vessels in shallow-ocean environments to create artificial reefs. The specific goal of the laboratory study was to measure the release of polychlorinated biphenyls (PCBs) from complex PCB mixtures into artificial seawater from solid materials found onboard U.S. Navy ships. The approach was limited in scope to measuring PCB release under abiotic conditions and was temporally constrained to evaluate leaching in a minimum amount of time, while still providing adequate analytical results.

1.2. PCBs IN SOLID MATERIALS (PCBs-ISM)

The shipboard solids tested contained the highest PCB concentrations available on inactive vessels when the study was conducted. Vessels that might become available after this study could have higher or lower PCB concentrations. The shipboard solid materials investigated included felt gaskets, electrical cable, paint, foam rubber (insulation), black rubber (shock mounts), and bulkhead insulation (inorganic). These classes of PCBs-ISM represent shipboard solid materials commonly found onboard surface vessels and submarines. Oils and greases are a class of shipboard solids that contain PCBs, but these items were not a focus because PCB-containing oils and greases are routinely removed with other liquid materials during remedial actions (performed as part of the process of decommissioning vessels to the inactive fleet).

1.3. PCB TERMINOLOGY AND CHEMISTRY

Polychlorinated biphenyls are classified as persistent pollutants, environmental health hazards, and suspected carcinogens. They comprise a class of environmental pollutants that are ubiquitous and can be found in nearly every natural environment tested, including food, animal tissues, soils/sediments, oceans, and freshwater systems. One of the more important driving forces for this observed persistence in natural environments is the molecular stability of PCBs, reinforced by their tendency to associate strongly with organic materials and partition into those materials from aqueous phases. This stabilization feature leads to bioaccumulation within ecosystems, and ultimately to possible human health consequences. Additionally, this stability and resulting bioaccumulation also aids in the long-term biochemical decomposition of PCBs (sequestration and biodegradation). Fundamentally, PCBs possess low aqueous solubilities that, in effect, force PCBs to seek out the most desirable molecular environment, the organic phase. This partitioning behavior is a fundamental component of many scientific study designs that have sought to evaluate transport, transport mechanisms, fate, and effects of PCBs in natural environments. Within such studies, an issue seldom addressed is that molecular transport of PCBs from a source material into the surrounding environment is also governed by a similar partitioning effect. Differences in partitioning are dictated by characteristics and properties of the source materials themselves, materials such as polymers that contain PCBs as part of their chemical composition or as contamination within those matrices. Fortunately, from a partitioning standpoint, the underlying stabilization force remains: PCBs generally tend to reside more in organic phases (Miller et al., 1984; Shiu and Mackay, 1986) and materials similar to shipboard solids (Mackay, Shiu, and Ma, 1992) rather than in the agueous phase. This tendency slows or suppresses leaching processes, and a large portion of PCBs that do leach at a low level into the aqueous phase tend to be degraded forthright (Tabak, Quave, Masahni, and Barth, 1981;

Rochlind, Blackburn, and Saylor, 1986) or are sequestered into natural organic materials (MacFarland and Clarke, 1989) by absorptive/adsorptive partitioning processes.

The PCB molecular structure is based on the biphenyl structure shown in Figure 2, and consists of two covalently linked phenyl rings.

Figure 2. Polychlorinated Biphenyl molecular structure, where X at each numbered carbon can be a hydrogen (H) or chloro- (Cl) substituent. Each phenyl ring can rotate independent of the other around the covalent bond linking them together (i.e., the phenyl rings can be, but are not forced to be, coplanar). The total number of possible isomers is 209.

The biphenyl rings are substituted at X with either hydrogen (H) or chloro- (Cl) substituents on the numbered carbon positions above in various combinations, with a generic formula of $C_{12}H_aCl_b$ (where a + b = 10). The total number of possible combinations of hydrogen and chloro-substituents on a biphenyl ring yields 209 unique molecules or positional isomers, commonly referred to as congeners, excluding the unchlorinated, or fully H-substituted molecule, biphenyl. By convention, these 209 congeners are assigned unique numbers (termed BZ [Ballschmiter and Zell] numbers [Ballschmiter et al., 1992]) (BZ1 toBZ209), which correspond to the same numbers adopted by the International Union of Pure and Applied Chemistry (IUPAC) and the American Chemical Society (ACS) Chemical Abstract Service (CAS). One should note slight differences in numbers and molecular naming conventions between IUPAC and BZ (U.S. Environmental Protection Agency, 2006) when looking at historical PCB congener data. Additionally, all 209 PCB congeners can be grouped according to chlorination level. These groups are referred to as homolog groups (Cl1, Cl2, Cl3...Cl10). Within each homolog group are positional isomers that possess the same number of chloro-substituents and resulting molecular weight. The summation of all 10 homolog groups corresponds to total PCBs (tPCBs), equivalent to the sum of all 209 congeners.

Commercial PCBs were originally marketed under the trade name Aroclor[®]. These PCBs were the most common commercial PCBs used in the United Sates and are complex mixtures produced by bulk chlorination. Aroclors[®] are generally described by a 4-digit numerical notation, in which the last two digits indicate the weight percent chlorine (e.g.,, Aroclor[®] 1254 is 54% chlorinated, at a distribution of sites on the biphenyl rings dictated by the ease of chlorination). Aroclor[®] products were manufactured by bulk chlorination in the United States through the middle to late 1970s, forming mixtures with differing distributions of individual congeners, which results in oils (Aroclor[®] 1016, 1221, 1232, 1248), viscous liquids (Aroclor[®] 1254), sticky resins (Aroclor[®] 1260 and 1262) and white powders (Aroclor[®] 1268, 1270). The type of Aroclor is typically identified by the percentage of chlorine in a mixture of congeners. For example, Aroclors[®] 1254 and 1268 are manufactured by chlorinating biphenyl to a final chlorine content

of 54 and 68 percent, respectively (Kennish, 1992). A notable exception is Aroclor[®] 1016, which is 41.5 percent chlorine. In practice, all 209 congeners are very difficult to separate, which has led to analyses of PCBs reported as select individual congeners; tPCBs estimated from select congeners; Aroclor[®] (or Aroclor[®] equivalents) and, in some instances, homologs; and tPCBs as the sum of homologs.

1.4. PCBs IN THE ENVIRONMENT

Although PCBs in natural environments can exist as one or more of the 209 distinct molecular isomers described above, only some of these congeners are found at significant levels in the environment. The least persistent of the PCBs are those that have less than five chlorines per molecule, caused, in part, by (1) availability and use of only certain industrial PCB mixtures (Aroclors® with different, but distinct chlorination levels and congener distributions), and (2) selectivity by aqueous-organic phase partitioning and by PCB degradation processes (Tabak et al., 1981). More heavily chlorinated PCBs persist to a much greater extent in the environment because of their resistance to biodegradation. These PCBs adsorb or bind to sediments or other seawater particulates, exhibit suppressed or decreased aqueous solubilities relative to their lower molecular weight counterparts, and tend to accumulate more in lipid tissues (Rochlind, Blackburn, and Saylor, 1986). Additionally, some PCB congeners, exhibiting coplanarity of the two phenyl rings, with chloro-groups only in one or more of the outer non-ortho positions (carbon numbers 3,3',4'4',5, or 5') or in some cases at one ortho position (carbon number 2), are considered more toxic than their non-planar counterparts because of their specificity toward important biochemical receptors that are responsible for toxic and other biological effects (Miller et al., 1984; Stalling et al., 1985). The more toxic coplanar congeners are also generally less soluble in seawater than other PCB congeners (Miller et al., 1984; Opperhutzen, Gobas, van der Steen, and Hutzinger, 1988; Shiu and Mackay, 1986). However, even with transport limited by low aqueous solubilities, and because of their environmental stability and persistence, PCBs can readily bioaccumulate in the lipid-rich tissues of marine and other organisms (i.e., they are lipophilic). Fate and transport properties are further exacerbated by the temporal variability in any given exposure scenario.

1.5. FACTORS AFFECTING PCB LEACHING AND PARTITIONING IN NATURAL ENVIRONMENTS

The rate at which PCBs leach into a seawater environment is controlled by the physical and chemical characteristics of that environment, the molecular solubilities and distribution of the 209 possible unique PCB isomers (congeners) initially residing in the source material, and the physico-chemical nature of that source material. The combination of these factors influences the primary leaching pathway illustrated in Figure 3.

Figure 3. Primary PCB leaching process illustrated for an open system such as is simulated in this study. PCB transport occurs within a PCB containing material primarily by diffusive processes (PCB solid matrix) and through the material-seawater interface (PCB interfacial), before becoming available to the surrounding seawater environment (PCB aq s.w.) for subsequent advective transport and sorption onto sediments, particulate matter, and biological materials in the natural ocean environment. In a closed system in the absence of advective processes, similar to conditions in many natural environments, transport out of the solid matrix is suppressed, and is dependent on partitioning between the solid surface and the seawater. Release under these conditions would eventually stop and become static until solvated PCBs are removed from the system by external processes or external partitioning equilibria (see Figure 4 and Figure 5).

The simplified leaching pathway indicated in Figure 3 is further examined in Figure 4, and in the associated analysis that describes various PCB release/leaching behaviors in the context of fundamental diffusion, dissolution, and dispersive processes as shown.

In Figure 4, C_{bulk} is generally constant while L, C_{gradient}, and C_{external} are variables that depend on the chemical and physical properties of the bulk and external phases. Dispersion in the external phase is composed of advective and diffusive components; relative magnitudes of each depend on physical constraints imposed on the external phase (e.g., open versus closed system). Diffusion in the solid is fundamentally considered Fickian, and can be explicitly described in mathematical terms (Crank, 1979) for well-defined systems if bulk-migrant-external, phase-coupled microscopic/molecular properties are known. Such properties are not known or determined for the shipboard solid-PCB congener—seawater systems in the leach rate studies. However, empirical release behavior of homologs and tPCBs were quantified macroscopically, which corresponds to complex release of groups of PCB congeners that can be considered equivalent to the summed release behaviors occurring simultaneously for the PCB congeners in the group.

Figure 4. Schematic of release/leaching processes expected for PCBs in shipboard solids. C_{bulk} is the concentration of a PCB congener in the bulk material, C_{external} is the concentration of that PCB congener in the external phase (seawater, organic material, biological material, etc.), T is thickness of the material and L is the PCB congener-specific diffusion path length corresponding to the thickness of the depletion layer at the interface between bulk and external phases.

Figure 4 is used to evaluate and describe processes and parameters associated with the following three types of migration/release scenarios for a PCB congener leaching from a PCB-containing bulk material into the external phase under various scenarios. The potential dependencies/effects on the release when the scenarios and/or the variables change is also described.

- 1. Simple Dissolution of a Pure Compound or Substance (e.g., a pure PCB congener). Although the dissolution of a pure PCB congener is not a system that corresponds to anything that was measured in the leach rate study, and probably not even found in the natural environment, it is instructive for understanding the dissolution process associated with an Aroclor® (scenario 2). For the dissolution of a pure PCB congener, the matrix is 100% pure PCB congener and the dissolution process is erosive, i.e., the physical dimensions decrease (represented by thickness, T). There is no diffusion out of the bulk, only dissolution at the interface. L is infinitely small, and C_{gradient} is vertical, representing a sharp concentration decrease at the interface between C_{bulk} and C_{external}. Under conditions of high dispersion, C_{external} does not increase, and dissolution is greater than zero, occurring at a rate that depends on its molecular interaction with the external phase (solubility in the external phase). In a system with little or no transport of PCBs in the external phase away from the interface, C_{external} approaches saturation and dissolution ceases.
- 2. Complex Dissolution of a Mixture of Pure Compounds or Substances (e.g., neat Aroclor® 1254). For the dissolution of a pure PCB congener (hereafter referred to as PCB X) in a neat Aroclor® matrix, only a fraction of that matrix is pure PCB X. Dissolution of available PCB X occurs at the interface as for a pure PCB congener described in scenario 1. Similarly, under conditions of high dispersion, C_{external} does not

increase, and dissolution is greater than zero, occurring at a rate that depends on its molecular interaction with the external phase (solubility in the external phase). In a system with little or no transport of PCBs in the external phase away from the interface, C_{external} approaches saturation and dissolution ceases, leaving a concentration gradient in the material that may equilibrate again with the bulk over time if dissolution remains at zero. However, for the case of an Aroclor®, a significant difference exists for the PCBs in the dissolution process; availability of PCBs at the interface is now also controlled by diffusion of PCB X out of the bulk Aroclor®, leading to a gradient in concentration at the interface, C_{gradient}. The bulk Aroclor® matrix (composed of the "other" PCB congeners) is also dissolving, thus release of PCB X is complicated by the depletion layer thickness, L, which is dynamically varying as a function of a diffusive process and a dissolution process. The net result is that as the physical dimension of the bulk decreases because of both of these processes, the thickness, T, at any given moment is dictated by the relative magnitudes of these processes. Finally, just to make it challenging, one should consider that the influence of this situation on PCB X, as just described, is simultaneously occurring for each of as many as 116 of the "other" PCB congeners present in the bulk Aroclor® 1254 matrix.

3. Leaching of a Mixture of Pure Compounds or Substances from a Solid Matrix (e.g., Aroclor® 1254 release from a Shipboard Solid Matrix). In the case of pure PCB congener (again referred to as PCB X), now leaching from an inert or non-dissolving bulk matrix like a shipboard solid, only a fraction of the bulk matrix is pure PCB X, similar to the situation for neat Aroclor®. As for scenarios 1 and 2 above, dissolution of available PCB X occurs at the interface. Similarly, under conditions of high dispersion, C_{external} does not increase, and dissolution is greater than zero, occurring at a rate that depends on its molecular interaction with the external phase (solubility in the external phase). In a system with little or no transport of the external phase away from the interface, C_{external} approaches saturation and dissolution ceases. As in the case for neat Aroclor[®] above, the availability of PCBs at the interface for dissolution are now also controlled by diffusion of PCB X out of the bulk matrix, in this case, shipboard solid, resulting in a gradient in concentration at the interface, C_{gradient}. The bulk shipboard solid matrix is composed of shipboard solid and the "other" PCB congeners; the latter are also diffusing to the interface and dissolving. However, unlike the Aroclor® in scenario 2 above, the depletion layer thickness, L, is now only increasing as a function of the diffusive process, as the matrix is stable (not dissolving), and T is a constant, Again, the process for leaching PCB X is also simultaneously occurring for each of as many as 116 of the "other" PCB congeners present in a bulk shipboard solid containing Aroclor® 1254. The release behavior should, of course, be distinct from the neat Aroclor® case above because of (1) the bulk matrix stability, and (2) the fact that a shipboard solid is largely composed of high molecular weight polymers, which, in many cases, contains multiple types of polymers and/or other materials in a composite structure. This structure is very different chemically from a bulk neat Aroclor® matrix, leading to a broad distribution of attenuations (slight to extreme) for different PCB congeners as they migrate through the various bulk matrices. Again, in a system with little or no transport of PCBs in the external phase away from the interface, Cexternal approaches saturation and dissolution ceases, leaving a concentration gradient in the material that may equilibrate again with the bulk over time if dissolution remains at zero.

The above analysis of PCB diffusion and depletion at the leaching surface of a solid matrix provides a reasonable hypothetical mechanism or conceptual model of PCBs leaching from shipboard solids. The behavior of PCB congeners escaping from a shipboard solid should be similar to the case of PCB congeners escaping from an Aroclor® matrix because diffusion of PCB congeners out of the matrix becomes significant. Furthermore, the PCB dissolution component also makes an important contribution to the leaching mechanism. Most reported Aroclor® solubility experiments can take weeks to months to allow sufficient time for concentrations for all of the solvated PCB congeners to stabilize. A solubility experiment for a pure molecular substance like a congener might take only hours to stabilize because it is a simple dissolution without a slower diffusion component. In this respect only, Aroclor® dissolution is similar to a pure molecular substance because all of the PCB congeners present in the Aroclor® matrix are also dissolving, though on different timescales (at different rates). Dissolution of Aroclor[®] can be effectively described as two simultaneous processes: (1) diffusion of pure molecular substances, where there is significant interaction with the Aroclor® as a solid matrix; and (2) dissolution of a mixture of pure molecular substances in an eroding (dissolving) matrix. For such a system, the rate of release will be a function of the expected depletion at the interface, formation of a depleted layer, and subsequent diffusion through that depleted layer. In addition, the thickness of the depletion layer is increasing as a function of diffusion and decreasing as a function of the surface erosion as the matrix itself dissolves at a variable rate. In a depletionregulated system, the rate of diffusion through the depletion layer at the interface will eventually slow down with time because of the increasing path length/depletion layer thickness and perhaps even a dependence of diffusion coefficient on concentration of PCBs. As a result, the measured rate for such a system should decrease as function of time, regardless of sampling interval. This type of behavior should be further attenuated by the presence of the shipboard solid matrix. Section 4 describes calculations and graphical analyses of leach rate as a function of sampling time for all shipboard solid leaching experiments and Aroclor[®] dissolution controls. Leach rates are tabulated with corresponding sampling intervals and leaching times in Appendix D.

In a closed system, the leaching pathway indicated in Figure 3 and Figure 4 becomes an equilibrium partitioning process between the solid and the seawater leachate. However, equilibrium may not be reached in a natural environment because various mechanisms exist to reduce the effective concentration of PCBs in the leachate (solvent) such as transport of PCBs away from the source material-leachate interface (mixing and dilution), sorption onto natural particulates, and other processes that reduce the PCB concentration in the seawater leachate (Figure 5).

In the presence of these additional processes, PCB saturation is unlikely to occur (except under static, isolated conditions such as might be found in a closed system), and PCB solvation occurs freely or is unsuppressed near the solid surface interface with seawater. As a result, leaching continues unimpeded until PCB depletion of the source material is (theoretically) attained, although, in most organic-based solid materials, many PCBs would probably be irreversibly bound. Without specific leaching information, fate and transport models generally assume that the source terms characterized by leaching provides a constant concentration of infinite duration and quantity. As a consequence, the scientific focus can be directed on the fate and transport of PCBs and on what effect(s) they might have on environmental endpoint(s). This far-reaching assumption does not generally hold for PCBs in all source matrices because of (1) attenuation processes related to solvent/fluid properties, (2) properties inherent to the source material, and (3) spatial and temporal dependencies of leaching processes. Such processes/properties do not

allow the PCBs to leach in their entirety or at a rate commensurate with the timescale required for an effect to be observed on environmental endpoints. More specifically, differences in PCB molecular properties, the source matrix physical and chemical properties, source surface interfacial properties, and aqueous phase characteristics will define the leaching scenario and subsequent PCB leach rate for that scenario. An important consequence of this is that these properties will result in a unique leaching behavior for any PCBs-ISM as a function of time. Accordingly, we have attempted to evaluate specific baseline leaching behaviors as a function of time for different representative solid matrices of interest and under laboratory conditions designed to simulate the leaching of PCBs into natural seawater environments. Our approach includes controlling or removing the additional processes (Figure 4) from the laboratory simulation so that the experimental focus is on determining the rate of leaching corresponding to an unsuppressed leaching pathway (Figure 3). In our approach, transport away from the solid surface and other processes that would reduce the PCB concentration in the seawater near the solid surface is *simulated* by a dynamic leaching and sampling design that will be described later.

Figure 5. Primary PCB leaching process in red bold italics, (1) and (2), as described in Figure 3, with subsequent transport/depletion mechanisms for PCBs in seawater, PCB(aq s.w.). The experimental design minimizes or removes the potential processes represented by (3), while processes represented by (4) are simulated by seawater exchange and a dynamic mixing approach. The processes represented by (5) are completely removed by the experimental design. In a closed system, many of these processes are related to equilibrium partitioning and/or PCB uptake/metabolism into biological organisms.

A leaching experiment must consider parameters that reflect the types of dependencies described above and may include such variables as leachate temperature; hydrostatic pressure; pH; time-induced effects (e.g., PCBs-ISM matrix degradation); surface coatings (if any) on the material; surface area/contact area of leaching surface to seawater leachate, termed the solvent accessible surface area (SASA); molecular structure of PCB congener(s); and PCB congener solubility in the PCBs-ISM matrix versus seawater. For example, an industrial-grade PCB mixture, Aroclor® 1254, occasionally found in shipboard solid materials, is principally composed of molecules with 4-6 chloro-substituents, or up to 116 different congeners (Alford-Stevens, 1986; Alford-Stevens, Bellar, Eichelberger, and Budde, 1986). Some of these different congeners will behave in essentially the same manner, while others will exhibit leaching behavior differences related to variation in properties including but not limited to properties such as solubility, differential interactions with the solid matrix, dynamic leaching surface area of the solid, PCB solid-liquid phase transition temperature, etc. Any one or more of these properties can potentially impact PCB transport, within the material (diffusion) or subsequently through the PCBs-ISM/seawater interface (solubility-driven behavior), and must be evaluated/quantified for appropriate inclusion before the collection and interpretation of empirical leaching data. Once key parameters have been identified and incorporated into the experimental design, well-defined empirical leaching data can be collected and leach-rates calculated for different PCBs-ISM leached under established, designed, and controlled or systematically varied chemical/physical leaching conditions.

1.6. CONCEPTUAL MODEL FOR SHIPBOARD PCB LEACHING

This study sought to evaluate the leaching of PCBs from solid matrices, inclusive of inherent material properties that control the process, by simulating the leaching conditions in the laboratory as they are likely to exist onboard a sunken vessel. The Figure 6 schematic focuses on evaluating the leaching behavior of PCBs-ISM that would be contained within a shipboard compartment similar to that shown in Figure 7, as it is exposed to seawater as a function of time.

Figure 6. Conceptual schematic (a) for simulating the PCB leaching process expected to occur for a PCB-containing solid inside of a compartment onboard a sunken vessel similar to that shown in Figure 7.

Figure 7. Photos of vessel compartments onboard vessels prepared as shown in (b) and (d) and sunk in shallow water as artificial reefs. For this study, PCB release is evaluated for seawater flowing through open compartment(s) such as shown in (a) and (c) under mild flow conditions that are sufficient to avoid saturation in the leachate above the surface of the shipboard solid inside the compartment. Solvated PCBs in a sealed compartment would be expected to saturate and remain trapped unless the compartment becomes breached. For a closed, but unsealed compartment, saturation would also be expected, but would be subject to PCBs-in-seawater diffusion/transport out of the compartment into adjacent compartments and/or the surrounding environment. Photos (a) and (b) are of ex-Yukon, a Canadian vessel, being prepared for use as an Artificial Reef in San Diego coastal waters. Photo (c) is an underwater compartment on ex-Vermillion, a U.S. Navy vessel sunk off the coast of South Carolina in 1988 as an Artificial Reef, and (d) is ex-Vermillion after being prepared and towed to the site. Photos (a) and (b) are Marine Environment Support Office photos and photos (c) and (d) are courtesy of South Caroline Department of Natural Resources.

In a natural leaching scenario, some materials will possibly degrade and/or eventually lose their structural integrity on exposure to seawater over a very long period of time. We expect that degraded PCBs-ISM or smaller individual particles will continue to leach PCBs similarly to the intact solid; however, such effects would tend to spread out over very long periods of time and result in only a slight influence, if any, on long-term rates because the total surface area increase would not be instantaneous. This tendency effectively means that natural surface area increases cannot keep up with the PCB release rate, as these two processes are on significantly different

timescales, and the degraded surface would be depleted by the time particulates would be produced from that surface. In the laboratory, the solid matrix must still be allowed to undergo any physical or chemical degradation caused by its exposure to seawater so that such effects can be captured and included as an inherent component of the leaching mechanism and leach rate value. However, the solid must also be constrained experimentally to remain localized but not isolated from seawater in a single location during leaching to (1) simulate a shipboard solid remaining in the relatively protected environment inside a vessel compartment and only evaluate solvated PCB transport, (2) avoid artificially degrading or compromising the shipboard solid structural/physical integrity by agitation needed to simulate seawater current flow, and (3) minimize the loss and deleterious effects of very small, PCB-containing shipboard solid particulates formed as artifacts of the shipboard solid sampling during the PCB analytical extraction of seawater leachate.

The localization of initially intact shipboard solids can be accomplished by "caging" the solid in a small pore-size mesh that freely allows seawater (and solvated PCBs) transport through the pores, but does not allow the transport of shipboard solid particulate matter. Caging is a key component of the experimental design that leads to a true evaluation of the release for only solvated PCBs from the shipboard solid matrix. Caging the shipboard solid simulates the real leaching scenario because (1) the material remains localized except for natural structural degradation caused by seawater exposure, (2) the naturally occurring surface area available for leaching is incorporated, and (3) leaching artifacts (e.g., through damage introduced by solid sampling) that might occur by disturbing this natural structural degradation and particle production and release are minimized. Subsection 2.4 provides a more detailed description of this conceptual model as it is applied in the laboratory.

2. EXPERIMENTAL DETAILS

The experimental approach was conducted in several phases with the following goals, as discussed in detail below:

- Evaluation of experimental leaching parameters and protocols
- Field collection of PCBs-ISM from Navy ships
- Laboratory subsampling of field collected PCBs-ISM
- Laboratory leaching of PCBs-ISM
- Analysis of PCBs in leachate

2.1. EVALUATION OF EXPERIMENTAL LEACHING PARAMETERS AND PROTOCOLS

The following summary describes the possible experimental parameters and variables, and assesses their potential impact on the leaching experiments (Table 1). This evaluation generally follows an approach similar to the evaluation performed for development of Toxicity Characteristic Leaching Procedure (TCLP) protocols (U.S. Environmental Protection Agency, 1997) and methodologies (U.S. Environmental Protection Agency, 1991a).

Table 1. Experimental parameters of possible concern for leaching studies. Variables indicated as "N/A" are not applicable to this study because they were excluded by the experimental design. Variables indicated as "not controlled" are considered part of the leaching mechanism under the specific conditions set up in this study, defined by the "Controlled" parameters that were the same for each of the solids tested.

Phase or Process	Property or Parameter	Effect(s)	Classification	How Treated or Controlled
Solid matrix	Chemical composition	Leaching mechanism (PCB binding)	Experimental variable	Not controlled
Solid matrix	Morphology	Solvent access	Experimental variable	Not controlled
Solid matrix	Surface area (solvent accessible)	Defines interface with solvent; leaching efficiency	Experimental variable	Not controlled
Solid matrix	Surface physics/ Electrostatics	Solvent access and flow control	Experimental variable	Not controlled
Solid matrix	Matrix heterogeneity	Localized morphological/chem differences	Experimental variable	Not controlled
Solid matrix	Pore structure/ Volume/ Composition	Solvent flow; gas retention; leachate volume/composition	Experimental variable	Not controlled
Solid matrix	Leachant Permeability/Saturation/Retention	Solvent flow; residence time	Experimental variable	Not controlled

Table T.	Property or	ers of possible concern	lor leadining studies. (How Treated
Phase or Process	Parameter	Effect(s)	Classification	or Controlled
Solid matrix	Photo/ Biodegradability	Solid matrix changes	CONSTANT- Controlled	No biological organisms present, dark experimental conditions
Solid matrix	Toxicity	Solid matrix changes; Biodegradability	N/A	N/A
Solid matrix	Buffering ability	Solvent chemical properties; degradation; leachability	Experimental variable	Not controlled
Analyte (PCB)	Chemical composition and phase	Leachability differences	Experimental variable	Not controlled
Analyte (PCB)	Concentration	Leachability differences (rates/equilibria)	Experimental variable	Not controlled
Analyte (PCB)	Toxicity/ Biodegradability	Natural removal efficiency; PCB loss	N/A	N/A
Analyte (PCB)	Heterogeneity	PCB leachate availability	Experimental variable	Not controlled
Analyte (PCB)	Diffusivity	Transport by diffusion through solvent matrix	CONSTANT- Controlled	Homo- geneous mixing
Analyte (PCB)	Solubility	Transport in and though matrix-solvent interface	Experimental variable	Not controlled
Analyte (PCB)	Volatility	PCB Loss at air- solvent interface	CONSTANT- Controlled	Closed system, head space minimized above solvent
Analyte (PCB)	Adsorption tendency/ Lipophilicity	PCB loss at solid surfaces (solid-solvent interfaces)	CONSTANT- Controlled	Adsorption minimized, no organics, leaching vessel materials with solvent contact precleaned glass and stainless steel only

Property or			How Treated
I .	` '		or Controlled
			ASTM artificial
			seawater
Ionic concentration		CONSTANT-	ASTM
			artificial
(00)			seawater
Lipophilicity/		CONSTANT-	ASTM
Contaminants	enhancement	Controlled	artificial
			seawater
pH/Buffering	PCB transport and	CONSTANT-	ASTM
capacity	leachability; matrix	Controlled	artificial
	wetting		seawater
Gas composition	pH; PCB transport	CONSTANT-	ASTM
(dissolved)	and leachability;	Controlled	artificial
	matrix wetting		seawater
Density	Flow; hydraulic	CONSTANT-	ASTM
	conductivity	Controlled	artificial
			seawater
Viscosity	Flow; hydraulic	CONSTANT-	ASTM
	conductivity;	Controlled	artificial
	saturation		seawater
Temperature	PCB transport and	CONSTANT-	Temperature
dependence	leachability; matrix	Controlled	maintained
	wetting; PCB		as constant
	solubility		during
			leaching
Flow gradient			Closed-
		Controlled	system
			homo-
	advection)		geneous
			mixing,
			seawater
			exchange to
			simulate
			transport,
Flour trans //sessions	Flour and district	CONCTANT	constant flow
	riow gradient		Closed-
or turbulent regime)		Controlled	system
			homo-
			geneous
			mixing, constant flow
Flow pattern	Matrix intogrity	CONSTANT	Closed-
(continuity)	PCB transport/	CONSTANT- Controlled	
	FOD HAHSPOH	Controlled	system
(Continuity)	Concentration		homo-
(continuity)	Concentration		homo-
(Continuity)	Concentration gradient		geneous
(continuity)			
	Property or Parameter Chemical composition Ionic concentration (salinity) Lipophilicity/ Contaminants pH/Buffering capacity Gas composition (dissolved) Density Viscosity Temperature dependence Flow gradient Flow pattern Flow pattern	Property or Parameter Chemical composition Ionic concentration (salinity) Lipophilicity/ Contaminants PCB transport and leachability; matrix wetting Lipophilicity/ Contaminants PCB transport and leachability enhancement PH/Buffering capacity Gas composition (dissolved) PCB transport and leachability; matrix wetting Flow; hydraulic conductivity Viscosity Flow; hydraulic conductivity: saturation PCB transport and leachability; matrix wetting; PCB solubility Flow gradient Transport (dispersion/convection/advection) Flow type (laminar or turbulent regime) Flow pattern Matrix integrity;	Parameter Chemical Chemical Chemical Chemical Chemical Chemical Chemical Composition PCB transport and Ieachability; matrix wetting Ionic concentration (salinity) Lipophilicity/ Contaminants Lipophilicity/ Contaminants PCB transport and Ieachability; matrix wetting Lipophilicity/ Contaminants PCB transport and Ieachability; matrix wetting PCB transport and Ieachability; matrix wetting Gas composition (dissolved) PH; PCB transport and Ieachability; matrix wetting Density Plow; hydraulic conductivity Controlled Viscosity Flow; hydraulic conductivity Controlled Temperature dependence PCB transport and Ieachability; matrix wetting PCB transport and Ieachability; matrix wetting CONSTANT- Controlled CONSTANT- Controlled Temperature dependence PCB transport and Ieachability; matrix wetting; PCB solubility Flow gradient Transport (dispersion/ convection/ advection) Flow type (Iaminar or turbulent regime) Flow pattern Matrix integrity; CONSTANT- Controlled

Table 1.	Property or			How Treated
Phase or Process	Parameter	Effect(s)	Classification	or Controlled
Temporal/Spatial	Aging dynamics	Chemical/Physical property changes with time; matrix integrity	Experimental variable	Not controlled
Temporal/Spatial	Weathering	Matrix integrity	CONSTANT - Controlled	Solid protected/ Caged, Aging/Matrix degradation due to seawater exposure only
Temporal/Spatial	Pressure dependence	Matrix integrity; PCB solubility	Experimental variable	Not controlled, minor in ambient pressure fluctuations only
Monitoring/ Analytical	Sampling Time	Skew results of analysis (leach-rate)	Experimental variable	Sample collection and seawater exchange events selected in situ to characterize leaching while avoiding saturation effects
Monitoring/ Analytical	General Accuracy/Precision/ Reproducibility	Skew results of analysis (leach-rate)	CONSTANT- Controlled	QA/QC, data quality objectives
Monitoring/ Analytical	Leaching process	Skew results of analysis (leach-rate)	Experimental variable	Sample collection and sea-water exchange events selected in situ to characterize leaching while avoiding saturation effects

	Property or			How Treated
Phase or Process	Parameter	Effect(s)	Classification	or Controlled
Monitoring/	Leachant sample	Skew results of	CONSTANT-	SOPs using
Analytical	storage/	analysis	Controlled	EPA
	Preservation	(leach-rate)		protocols
Monitoring/	Sample prep/Test	Skew results of	CONSTANT-	SOPs using
Analytical	methodology	analysis	Controlled	EPA
·		(leach-rate)		protocols

The primary parameters relevant to ocean depth in leaching studies are temperature and hydrostatic pressure. The experiments in this report were performed at variable temperature and constant atmospheric (sea-level) pressure. The potential effect of pressure is the subject of a separate study (see Footnote 7 in Executive Summary). Other experimental parameters in Table 1 were measured or controlled. In some cases, a parameter was considered part of the solid specific leaching mechanism, was not present, or its contribution was minimized by the experimental design altogether.

2.2. FIELD COLLECTION OF PCBs IN SOLID MATERIALS (PCBs-ISM)

Three field-sampling events occurred between June and December 1999 to collect PCBs-ISM from components on decommissioned vessels and submarines then in the inactive fleet. The goal of the field-sampling effort was to locate and collect sufficient quantities of PCBs-ISM for each class of shipboard solid to allow subsampling in the laboratory and subsequent leaching of those subsamples under the experimental leaching conditions. The field sampling proceeded by performing the following tasks:

- Selecting the materials to collect
- Selecting ships to sample
- Following a specific collection method
- Describing the collected materials

2.2.1. PCBs-ISM Selection

The sampling effort used the most current listing of PCBs-ISM from Naval Sea System Command's (NAVSEA) PCBs-ISM survey program (Naval Sea Systems Command, 1995) to identify and locate materials for the leach rate study. Types of materials that contain PCBs onboard U.S. Navy vessels are summarized in Table 2. These PCBs-ISM were selected as representative solids for the leach rate study partially based on analysis of concentration data collected as part of the NAVSEA ship survey program, and partially based on probability of PCB presence as a functional component (imparting some specific beneficial property to the solid matrix). This study did not focus on materials likely to have acquired PCBs as contamination. Note that these historical concentration data in Table 2, like many other historical PCB data, were typically reported as total Aroclor® rather than by individual Aroclor®, congeners, or homologs. This type of data made it difficult to quantify Aroclor® distribution, even though the type of Aroclor® was at times qualitatively identified as present in the material.

Table 2. Summary statistics compiled from the NAVSEA Inactive Fleet PCB Survey Program, February 2001.8 Some Aroclors® had been individually quantified in more recent analyses, and are included, but most historical data available at the time of the Leach Rate Study (1999– 2002) were reported as total Aroclor[®]. The identity of Aroclors[®] was usually reported only qualitatively. The construction date of vessels, which these data represent, range from the late 1940s through the early 1990s, with PCB sampling performed from the late 1980s through the late 1990s.

-	PCBs											
Material	Reported	Aroclor										
Type	As	1016	1221	1232	1242	1248	1254	1260	1262	1268		tAroclor
Electrical	Detections		22		8		108	53	5	17	1649	(all Aroclors noted)
Cable												
(EC)												
	Mean		102		38.7		174.9	5370.2	848.2	8713.8	397	
	St Dev		424		55.3		642.4	38449.1	1818.2	31353.4	3454.1	
	Median		8		17		19.5	27	24	19	24	
Bulkhead	Detections		12		1		36	4	8	3	254	(1254/1260/1262/1268
Insulation												noted)
(BHI)	N 4		40.7		4000		5504.4	400.0	404.5	007.4	4400.0	
-	Mean		12.7		1000		5581.4	422.8	131.5	337.1	1168.3	
	St Dev		21.6				7429.8	470.3	351	574.1	6059.5	
	Median		8		1000		2450	345.5	6.5	9	25	
Rubber	Detections	2	15		3		45	13	2	14	910	(all Aroclors noted)
(BRPHL)	Moon	1.7	7.5		14.5		34.2	2787.9	80	6351.4	649.7	
	Mean											
	St Dev	0.4	1.9		17.3		70.6	7390.3	0	14970.5	4994.7	
	Median	1.7	8		8.6		14	22	80	140	28	
Paint (AP)	Detections		8				7	8	4	3	764	(1221/1254/1260/1262/ 1268 noted)
	Mean		21.3				14.4	110.1	11.2	867.7	822	
	St Dev		26.2				11.9	167.1	12.4	1,500.2	3,727.8	

⁸Data provided by John J. McMullen Associates, Navy Inactive Fleet Database, February 2001.

Table 2. Summary statistics compiled from the NAVSEA Inactive Fleet PCB Survey Program, February, 2001. (cont)

Material	PCBs	Araolar	Arador	Aroolor	Araolar	Arador	Arodor	Arador	Aroolor	Aroclor		
Туре	Reported As:	1016	1221	1232	1242	1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	1268	tAroclor	Material Type
	Detections		8	1202	1272	1240	7	8	4	3	764	(1221/1254/1260/1262/
. a (, a.)	Bottootione						,	Ū		Ü	701	1268 noted)
	Mean		21.3				14.4	110.1	11.2	867.7	822	,
	St Dev		26.2				11.9	167.1	12.4	1,500.2	3,727.8	
	Median		8				9.2	48.5	6.7	2	80	
Foam Rubber/ Ensolite [®] (FRE)	Detections										642	(only 1254 noted)
	Mean										1523.9	
	St Dev										3336.3	
	Median										260	
Felt (FGO /FGI)	Detections					1		7		2	310	(1242/1254/1260/1262/ 1268 noted)
	Mean					44.6		171,190		37,900	32920.2	
	St Dev							247531.5		46810.5	69300.1	
	Median					44.6		69000		37900	140	

2.2.2. Vessel Selection

Before a field-sampling event, the most recent shipyard PCBs-ISM survey was obtained for each inactive vessel at the shipyard. In most cases, the more recent the report, the more likely (but not certain) the remedial action had not yet occurred or was not yet complete. PCBs-ISM samples at or above 500-ppm PCBs were needed to realistically expect a detectable level of leached PCBs as a function of time at the scales dictated by the leaching experimental design. Locating and sampling PCB-ISM with such high concentrations were a unique challenge for the field-sampling effort—resulting in a "race" to collect such field samples before an imminent remedial action. Much of the success of a field-sampling trip hinged on the vessel's state of preparation and planned use, which affected how well the prior sampling location might be marked (by shipyard personnel) on a vessel. For example, onboard ships slated for a fleet training exercises (to be used as a target in a SINKing EXercise or SINKEX), a potential target sampling area (shipboard compartment) had frequently already been surveyed for PCBs, remediated, and cleaned of debris and all floatable materials, including, most notably, any previous sampling tags.

2.2.3. PCBs-ISM Sample Collection

Sample collection methods depended on the type of shipboard solid sample and amount available. If an intact PCBs-ISM vessel component could be collected, we removed it and placed it in clean plastic sample collection bags for later subsampling in the laboratory. If it was too difficult to remove an intact component, sampling of the PCBs-ISM portion of that component was performed to the maximum extent possible by using NAVSEA's PCBs-ISM survey program methodologies (Naval Sea Systems Command, 1995). This method included using pre-cleaned glass sample vials/containers for the sample, and sample-dedicated utility blades, pre-cleaned with hexane before collection. Sample naming conventions typically followed shipyard samplenaming conventions, which reflected where a sample was located onboard a vessel, using such information as deck level, frame number, compartment name, and/or a physical three-dimensional location/description within a given compartment.

2.2.4. PCBs-ISM Sample Description

Table 3 provides a summary and description of the field-collected shipboard solid samples used in the leach rate study. A specific brief description of each PCBs-ISM sample collected is included in the subsections that follow. One field sample of each shipboard solid was selected and subsampled for leaching studies.

⁹ This remediation policy is based on the power industry standard and regulatory limit of 50 ppm used to classify bulk PCB solid waste, as adopted by various regulatory programs such as the USEPA Toxic Substances Control Act program. PCBs-ISM onboard a decommissioned vessel at or above this concentration is routinely removed and disposed of as hazardous material.

Table 3. Descriptive summary of shipboard solids (PCBs-ISM) samples used in the leach rate studies.

	-	•	•	, ,		
PCSs-ISM Description	PCB-LRS Abbreviation	PCB-LRS Sample ID	Reported Shipyard Analysis	Representative Solid Analysis (PCB-LRS)	Leached Solid Pre-leaching Concentration	Comments
				By best-fit of PCB Congener Fingerprint	By dump of homologs	
Electrical cable	EC	01-18-6-L-3B	1,800 ppm A1254	1,800 ppm A1254, 160 ppm A1260	1200 ppm	Intact, no metal shielding, partially painted
Felt gasket (inner))	FGI	1-123-1-Q-3B	by shipyard	140,000-ppm A1268	230,300 ppm	Intact— between flange heads, not painted
Felt gasket (outer)	FGO	1-123-1-Q-3D	150000-ppm A1268	100,000-ppm A1268	11,7400 ppm	Intact— protruding from between flange heads, painted
Foam Rubber (Ensolite®)	FRE	PSNS-647- 165-9A	5,100-ppm A1254	7,100-ppm Aroclor® 1254, 550-ppm A1260	8,900 ppm	Intact, partially painted
Aluminized Paint	AP	5-110-0-E-4B	570-ppm A1260	470-ppm A1254, 540-ppm A1268	430 ppm	Not intact, scraped from solid substrate creating particles
Bulkhead Insulation	BHI	1-51-0-E-5A	2,000-ppm A1254	160-ppm A1254, 94-ppm A1260	440 ppm	Intact, insulation only, no pressboard backing (support)
Black Rubber (Pipe Hanger Liner)	BRPHL	PSNS-636-62- 4A	500-ppm A1254	2,100-ppm Aroclor® 1254, 72-ppm A1260	1,600 ppm	Intact, not painted
Neat Aroclor [®] 1254 Standard Reference Material	A1254	212-147A-S			100% by weight	PCBs Influenced by Aroclor matrix only, no shipboard Solid Matrix
Neat Aroclor® 1268 standard reference material	A1268	214-59B-S1			100% by weight	

Felt Gaskets. Sampling Location: Norfolk Naval Shipyard, 15 June 1999, ex-Dixon (AS-37) (NavSource Online Destroyer Photo Archive. 2006a). Two types of felt gasket samples were collected, one corresponding to the outer approximate 1/8 inch of gasket protruding from the junction between heating-ventilation air-conditioning (HVAC) flanges. (Throughout this report, this type of sampled gasket is called an "outer" felt gasket.) This type of felt gasket was typically painted and the target sampling included the paint as part of the intact sample. The collected sample protruding from the flange was the lowermost (most accessible) piece of gasket, which is also where mobile PCBs would be expected to accumulate by gravity/flow over time. The shipyard analysis of the targeted outer felt gasket indicated 150,000 ppm, a suitably high concentration for leaching. The second type of felt gasket field sample was collected as the intact flange from which the "outer" felt gasket sample above was collected, with the intent of subsequent disassembly in the laboratory. Throughout this report, the felt gasket found between the flange heads is called the "inner" felt gasket. We expected it to have a PCB concentration similar to the outer felt gasket, even though the shipyard had not analyzed this "inner" gasket between the flanges. The flange was disassembled in the laboratory and the felt material sandwiched between the flange heads was subsampled using methods described in Subsection 2.3. Both inner and outer felt gasket samples were tested intact in leaching experiments.

Electrical Cable. Sampling Location: Norfolk Naval Shipyard, 15 June 1999, ex-Dixon (AS-37) (NavSource Online Destroyer Photo Archive. 2006a) and an ex-Barracks Ship (APL-34) (NavSource Online Destroyer Photo Archive. 2006b). Attempts to sample intact electrical cable were unsuccessful on ex-Dixon, because cross-cutting of electrical cables was not allowed (for electrical safety or potential vessel sale/reuse). However, a vessel was located in the shipyard with cables that could be cross-cut, and entire lengths of cable could be collected intact, including any outer armored shielding and with internal copper center conductor. A cable sample of this type was located and collected from the ex-Barracks vessel (APL-34), with 1,800 ppm, as indicated by the shipyard analysis. This intact cable sample was subsampled in the laboratory later, after removing the outer armored shielding. Subsamples of this intact cable were tested in leaching experiments.

Aluminized Paint. Sampling Location: Norfolk Naval Shipyard, 15 June 1999, ex-Dixon (AS-37) (NavSource Online Destroyer Photo Archive. 2006a). An aluminized paint sample was collected, but not as an intact coated surface (painted substrate). This sample was located and collected from heating/cooling pipes in an engine compartment, which shipyard surveys indicated as 570-ppm Aroclor[®] 1260. The paint sample was collected by scraping the paint with a new, dedicated, pre-cleaned utility knife and capturing the paint chips into a clean glass container as the paint flaked off of the underlying substrate. This process resulted in paint particles as field samples, and subsequent homogenized laboratory subsamples for leaching experiments, unlike an intact paint on a substrate surface.

Bulkhead Insulation. Sampling Location: Norfolk Naval Shipyard, 15 June 1999, ex-Dixon (AS-37) (NavSource Online Destroyer Photo Archive. 2006a). A sample was collected into solvent pre-cleaned sample containers by using a dedicated solvent pre-cleaned utility knife similar to shipyard survey methods (Naval Sea Systems Command, 1995). This yellow fiberglass insulation sample was located in a workspace partition, sandwiched behind a pressboard cover. The pressboard was also collected as a physically separate sample, distinct from the underlying fiberglass insulation. Shipyard surveys found the insulation sample to contain 2,000-ppm

Aroclor® 1254. The insulation sample (not the pressboard backing/lagging) was subsampled for leaching per protocols described in Subsection 2.3.

Black Rubber. Sampling Location: Puget Sound Naval Shipyard, 29 July 1999, ex-Nathaniel Greene (SSBN-636) (NavSource Online Destroyer Photo Archive. 2006c). This PCBs-ISM was collected as a nearly intact shock mount on an equipment bracket. The sample is an unpainted, soft, rubbery polymer material with no apparent oil or grease present. Shipyard survey analysis indicated that it contained 500 ppm. It was subsampled for leaching studies in the laboratory per protocols described in Section 2.

Foam Rubber. Sampling Location: Puget Sound Naval Shipyard, 29 July 1999, ex-Pogy (SSN-647), a Sturgeon Class Attack Submarine (NavSource Online Destroyer Photo Archive. 2006d) and ex-Nathaniel Greene (SSBN-636) (NavSource Online Destroyer Photo Archive. 2006c). Several samples of a foam rubber, also called Ensolite[®], were collected. These samples are probably polyvinyl chloride (PVC)-nitrile-based, assuming they were the original components installed onboard the vessels and had not been replaced with reformulated materials. Most samples were attached to the hull with an adhesive backing that upon removal, contained rust particulates. In addition, many of these samples were partially or entirely painted. The sample used for leaching was a painted sample from ex-Pogy, collected from a bracket in an engine room, and was probably present for head protection and to provide anti-sweat properties. The shipyard survey analysis indicated 5,100 ppm for this material, which was later subsampled for leaching studies in the laboratory per the protocols described in Subsection 2.3.

Neat Aroclor[®] **Controls.** Two neat Aroclor[®] mixtures were also "collected" by purchasing them as National Institute of Standards and Technology (NIST)-traceable PCB analytical standards. These complex PCB mixtures, neat Aroclor® 1254, and neat Aroclor® 1268 were subsequently treated as shipboard solid samples to serve as analytical controls to measure seawater Aroclor[®] dissolution capacity under conditions identical to the leaching of shipboard solids throughout the leaching studies. Their respective concentrations are 100% by weight, being neat materials. These Aroclors® represent a PCB-ISM sample not influenced by a shipboard solid matrix. The neat PCB matrix does act as a matrix itself for the many different PCB congeners it contains. From the perspective of a single PCB congener in the material, the other PCB congeners in the mixture are analogous to a shipboard solid matrix, though with a maximum cohesive-type (PCB-PCB) interaction rather than the minimal cohesive interaction expected in the shipboard solids because of low PCB concentrations. The most distinctive differences between neat Aroclors® and shipboard solids are related to matrix characteristics, i.e., Aroclor[®] 1254 and 1268 are mobile, dynamic matrices that can themselves dissolve away, very much unlike a shipboard solid matrix. This difference is significant and, as a result, using Aroclor® results is only valid in understanding dissolution properties that may contribute toward observed leaching behaviors. A possible exception is that Aroclor® 1254 and 1268 results can perhaps be used as reasonable proxies for Aroclor[®] 1254 or 1268 containing matrices that are highly mobile, such as oil film and semi-solid greases.

2.3. LABORATORY SUBSAMPLING OF SHIPBOARD SOLID MATERIALS

Field samples were subsampled using a protocol developed in this work that focused on minimizing the possibility of any cross-contamination between classes of PCBs-ISM.

Representative subsamples of each field sample were collected for (1) leaching under different laboratory-simulated shallow/estuarine or deep-ocean conditions, and (2) chemical analysis

of the solid to confirm that the PCB concentration was similar to that reported in the shipyard survey analysis. These latter representative solid concentrations are discussed in Subsection 3.1. In most cases, shipyard concentration values were confirmed within an order of magnitude. PCB concentrations that differed significantly from shipyard analyses are indicative of the sometimes-extreme variation found in shipboard PCBs-ISM concentrations or, in some cases, may reflect changes in analytical technologies over time.

In three cases, the collected shipboard solid sample was an assembly or composite that first required disassembly before subsampling the PCBs-ISM portion:

- Inner felt gasket subsamples were collected from between flange-heads, originally bolted together to connect HVAC ducts.
- Intact electrical cable, originally collected with painted armored shielding, was subsampled for leaching without the armored shielding. However, for the entire EC sample, in areas where the paint had bled through the armored shielding onto the cable itself, small amounts of residual paint were present.
- Bulkhead insulation was subsampled for leaching without the pressboard backing described previously.

Except for paint particles and analytical Aroclor[®] controls, each subsample was prepared on a tray that had been twice-cleaned with high-performance liquid chromatography (HPLC)-grade methanol and lined with a large sample-specific laboratory wiper (low-lint or cleanroom Kimwipe[®]). The PCBs-ISM subsample was collected each time with a new, stainless-steel dissection blade, twice-cleaned with HPLC-grade methanol before use. For subsamples of EC, the final operation required using wire cutters to sever the inner copper core once the dissection blade cut through the outer layers of material. The wire cutters were pre-cleaned with HPLC-grade methanol before use and the cable was bent ~150° to expose the copper core and minimize physical contact with the inner resin and outer shell of the cable during cutting.

Subsamples were photo-documented and a unique sample identification (ID) was assigned to each subsample by appending a capital letter alphabetically to the field ID, e.g., for a sample named "FieldID1," subsamples would be assigned the names "FieldID1A," "FieldID1B," "FieldID1C," etc. A similar naming convention was also adopted for control samples such as PCB standards and procedural blanks, for which subsamples were treated in an experimentally identical manner to shipboard solid subsamples.

2.4. LABORATORY LEACHING OF PCBs-ISM

2.4.1. Saturation Avoidance

A primary goal of the experimental design was to avoid a saturation condition in the leaching vessel that could result in suppression of the dissolution component of the leaching process. This was achieved by performing the following:

- Gentle mixing of leachate in the leaching vessel to avoid saturation at the shipboard solid—seawater interface
- Seawater exchange/replacement of total volume of seawater leachate with a known amount of fresh, clean seawater leachate before saturation could be reached

In the presence of a saturation effect, the PCB concentration in the leachate would dictate the leaching behavior rather than allowing the physico-chemical properties of the solid sample and solid-leachate interface to dictate the leaching behavior. The seawater exchange effectively simulated advective transport of PCBs in the leachate away from the solid surface. When an exchange was performed, the leaching was effectively restarted at zero PCB concentration in the seawater leachate after each sampling event.

2.4.2. Artificial Degradation/Disintegration Avoidance

A second issue of concern centered on the possibility that natural disintegration of the shipboard solid might be artificially enhanced because of stirring in the leaching vessel. Disintegration during the leaching experiment would produce particulates of PCBs-ISM material that could then contribute towards false positives as noted in solubility studies previously performed on similar (acoustic felt) samples at SPAWAR Systems Center San Diego (SSC San Diego). In that study, results were confounded by this type of behavior; the study reported that PCB-rich particulates significantly skewed the analytical chemical results and noted that the mixing process significantly altered the physical integrity of the tested samples. Stirring felt samples freely in seawater is unlike what would be expected onboard a sunken vessel in the natural environment and clearly encouraged/hastened felt gasket disintegration and dispersal during the experiments, resulting in PCB extraction and chemical analysis difficulties.

In this study, we took steps to ensure that similar effects would be minimized. The experimental design incorporated a barrier system to minimize physical damage to the sample during the experiment and to localize any particulates that might exist within that barrier. As Figure 8 shows, the outer barrier consisted of a stainless-steel "cage," nominally 1/8-inch mesh size, precleaned with hexane and dried before use. Within that cage, a small pore size (nominally 1-micron), binder-free, pre-cleaned, glass-fiber filter minimized the transport of any PCBs-ISM particulate matter into the leachate, while simultaneously allowing the free flow of seawater leachate to and from the shipboard solid surface. When a leaching experiment was initiated, the shipboard solid subsample was wrapped in a filter, pre-wet with doubly distilled deionized water, caged in the stainless-steel mesh, and immediately placed in a leaching vessel to begin leaching as described in Subsection 2.6.

The increased leaching vessel surface area introduced by these materials was considered a portion of the total leaching experimental surface area. We expected that this surface area would probably adsorb a small amount of PCBs until its surfaces were passivated (saturated or inert to further adsorption). This expectation is an experimental uncertainty, but a reasonable approximation for the inorganic surface area susceptible to similar sorptive processes near a shipboard solid in a compartment onboard a sunken vessel. In the laboratory, the stainless-steel cage and glass-fiber filter remain with and become an integral part of the shipboard solid sample under test, which approximates a vessel compartment containing PCBs in equilibrium with its surrounding compartment surfaces. Natural degradation processes of shipboard solids in seawater under a given leaching scenario are still allowed to occur, but particulates are localized within the cage, and the observed PCB concentration in the leachate reflects increases or

Naval Ocean Systems Center (now SSC San Diego), Marine Sciences Division. 1989. "Evaluation of Polychlorinated Biphenyls (PCBs) in Damping Material on ex-Snook (SSN-592)," Preliminary Evaluation Report to Puget Sound Naval Shipyard and Naval Sea Systems Command (August), San Diego, CA.

decreases in surface area and/or PCB dissolution caused by such processes. These effects, if they exist, are considered part of the shipboard-solid-specific leaching behavior.

Figure 8. Shipboard solid sample cage used to localize shipboard solid particulates in the leaching vessel, as described above. An identical cage was used for negative analytical controls (procedural blanks without shipboard solid) and positive analytical controls (neat Aroclor® compounds) as described below.

2.4.3. Positive and Negative Leaching Controls

Samples consisting solely of the stainless-steel cage and glass-fiber filter barrier described above were prepared and treated under each of the different leaching experimental conditions to control for system contamination. These samples, called leaching procedural blanks, were prepared and treated identically to experiments performed with shipboard solids and with Aroclor® analytical controls. Insomuch as Aroclor® dissolution experiments are considered positive analytical controls for A1254 and A1268 solvation capacity, leaching procedural blanks are considered negative analytical controls. The former represents the maximum PCB concentration expected and the latter represents the minimum (zero) PCB concentration expected under any given experimental condition for leaching of shipboard solids.

2.5. ARTIFICIAL SEAWATER LEACHATE PREPARATION

Leaching of PCBs-ISM was performed in artificial seawater (ASW), rather than fresh or reconstituted natural seawater, to maintain consistent exposure conditions. This ASW leachate was prepared from an American Society for Testing and Materials (ASTM) standard (ASTM, 1992) per the standard operating procedure (SOP) included in Appendix B. This ASW is prepared from pure ACS reagent-grade inorganic salts to provide a constitutional equivalent to typical seawater, with a salinity value of 34.0 ± 0.5 psu $(34,000 \pm 500$ ppm), and a pH of 8.0 ± 0.2 . Natural and reconstituted seawater can contain organic particulate matter that is present at levels significant enough to remove trace amounts of PCBs through sorptive processes. Using ASTM ASW avoided possible processes that would interfere in the leaching process and assured us that all materials were leached under the same exposure conditions. Additionally, trace levels of

heavy metals in the ASW salts inhibit biological growth and removes biological pathways to PCB/leachate loss in the experiment.

ASW was prepared in 20-L batch sizes as needed, and consistency from batch-to-batch was determined through pH and salinity measurements. Throughout the leaching studies, at least one sample of each batch was used for negative controls, and in this way, evaluated for possible PCB contamination through laboratory operations during ASW preparation. When a new ASW preparation (batch) was completed, it was filtered through a coarse glass frit to remove any gross particulate matter (occasional salt precipitates). This filtered ASW was used to initiate and/or replenish leaching experiments during leachate sampling operations until nearly consumed, when another seawater batch was prepared. New seawater batches were prepared approximately every 4 to 6 weeks throughout the leaching study. In this manner, the ASW remained relatively fresh anytime, with less possibility of degradation effects such as salt precipitation or losses in buffering capacity (pH instability).

2.6. GENERAL LEACHING EXPERIMENT DESIGN AND METHODOLOGY

The approach to performing the leaching experiments in this study is described with emphasis on maintaining a simulated shallow-water leaching condition/scenario while simultaneously performing analytical sampling of PCB leachate as a function of time. The sampling design is critical in avoiding saturation effects as previously described. Throughout a given PCB leaching experiment (time-series), the primary focus was on ensuring that leachate samples were collected for conventional PCB chemical analyses (Subsection 2.7) while simultaneously not allowing PCB concentrations to approach saturation in the ASW leachate. Finally, the sampling design ensures that the solid and filter/cage remain wetted with ASW leachate so that the leaching process is not halted, even during sampling, and so that the ASW in the filter/cage does not begin dehydrating and precipitating salts. Such salts could remove PCBs (by occlusion or sorption) from the ASW leachate, thus artificially decreasing the PCB concentration in the leachate. If allowed to form, salt precipitates could adhere to or become trapped on the PCBs-ISM filter/cage, effectively blocking the leaching pathway, and contributing toward an artificially decreased leachate PCB concentration.

2.6.1. Sampling Intervals

Hypothetically, leaching might occur as an initial pulse or fast short-term release of PCBs followed by a slower long-term release, with the maximum leach rate observed somewhere between or perhaps even as the initially observed rate itself. Rapid PCB release requires sampling more often (short sampling interval) early in a leaching experiment, and perhaps less often (longer sampling interval) as leaching begins to slow down later in the experiment. Thus, each leaching experiment used various sampling intervals. The routine sampling approach for a leaching series included following an approximate/generic sampling schedule similar to the following:

- Collecting a sample immediately after submerging the shipboard solid to characterize any rapid PCB release
- Continued sampling on a progressive escalating sampling interval at 1 hour, 2 hours, 4 hours, and 8 hours throughout the first day
- Sampling once on day 2

- Sampling once on day 4
- Sampling once on day 7 during the first week
- Sampling once on day 14
- Once on day 28 during the first month
- Continued sampling on a longer sampling interval, approximately once every 6 to 8 weeks over many months
- Final sample collection at experiment termination.

For each sample collected, the entire leaching volume was collected from the leaching vessel for conventional chemical analysis. The leaching vessel was then replenished with clean ASW, effectively restarting the leaching at zero PCB concentration in the leaching vessel. Additionally, to avoid time-dependent adsorption issues (Sullivan, Atlas, and Giam, 1981) on the glass surfaces of the leaching vessel, leaching vessels were replaced once weekly with new/fresh, pre-cleaned amber glass leaching vessels. A selection of these used leaching vessels that were exposed to high-PCB leachate concentrations were analyzed to characterize any possible (but unlikely) PCB adsorption on the leaching vessel walls.

2.6.2. Experimental Conditions

Shallow, coastal leaching conditions were simulated in this study by immersing caged shipboard solids in ASW, inside 950 mL pre-cleaned amber glass leaching-vessels with Teflon[®]-lined caps, and placing the leaching vessels in a 25°C constant temperature bath (Figure 9a) to maintain a constant shallow-water leaching temperature selected to represent the average seasonal maximum shallow-water temperature along U.S. coastal regions (The Open University and Pergamon-Elsevier Science, Ltd, 1995). The leaching vessels were labeled and weighed before placing the caged sample in them and before filling with a known mass of ASW leachate. Ambient pressure (~1 bar) was chosen for experimental simplicity as a low-pressure extreme. Preliminary results in a concurrent study indicate that a 20°C temperature decrease (see preliminary low-temperature leaching results at 4°C, summarized in Appendix E) has a much more significant effect than observed for a hydrostatic pressure of ~325 bar (a two to three order of magnitude pressure increase)¹¹.

A laboratory bench-top shaker operating at 45 rpm supplied adequate gentle mixing. The temperature of the shaker water bath was maintained at a constant 25°C, stabilized by recirculation in series with an external water bath, for which the chilling element was purposely cycled in feedback mode against the heater. The low-temperature experiments summarized in Appendix E were collected as shown in Figure 9b, following the same method in a refrigerated forced air cabinet to maintain a constant 4°C temperature.

_

¹¹ These high-pressure studies are designed to simulate deep-ocean leaching conditions and use a special stainless-steel, high-pressure/low-temperature leaching system. See Footnote 7 in the Executive Summary.

Figure 9. The constant temperature apparatus for ambient pressure leaching at 25°C is shown in (a) and that for 4°C is shown in (b). Both systems used gentle mixing through a bench-top shaker table, operated at 45 rpm to simulate dynamic flow around the shipboard solids under test, and maintained a constant temperature throughout the leaching experiments (1 to 2 years).

Conditions were similar in all leaching experiments, regardless of the solid tested. Experimental variables such as pressure, temperature, salinity, and pH were controlled or maintained at constant values. Sample-specific variables were measured (e.g., shipboard solid mass, sample size, leachate volumes, etc.) to use for leaching data reduction and analysis.

We were careful in ensuring that Environmental Protection Agency (EPA)-accepted methodologies and protocols were followed in general throughout the study, especially during standard laboratory operations such as sample handling, leachate sampling, sample storage, and analytical chemistry-related methodologies. Only pre-cleaned glass, stainless steel, or Poly Tetra Fluoro Ethylene (PTFE) (Teflon®) in that order of preference, were allowed to come into contact with seawater leachate containing PCBs, based on published literature concerning PCB loss and degree of reversibility for common laboratory polymers/plastics (Cseh, Sanschagrin, Hawari, and Samson, 1989). PCB leachate was extracted along with the glass sample collection bottles when the analytical chemistry commenced for that sample.

2.7. ANALYTICAL CHEMISTRY OF PCBs

2.7.1. PCB Screening Analyses

During each sampling interval, screening-level PCB analyses were performed using commercial immunoassay techniques (measured as Aroclor® 1254, modification of EPA Method 4020 (U. S. Environmental Protection Agency, 1997b). Commercially available immunoassay kits and methodologies were modified and validated for seawater as presented in an ACS Environmental Chemistry Symposium as part of this work (In, Guerrero, Lane, and George, 2001a). These screening analyses were performed on aliquots of small-volume (2-mL) seawater leachate samples to aid in defining primary sampling intervals in real time as described in a companion paper at that symposium (In et al., 2001b).

2.7.2. Conventional PCB Analyses

At the end of each sampling interval, conventional high-throughput analyses were performed under a performance-based contract with Arthur D. Little, Inc. (ADL). PCBs were quantified in seawater and in leached solids using gas chromatography (GC)/mass spectrometry (MS) in selected ion monitoring (SIM) mode (EPA Method 680), entitled "Test Methods for Determination of Pesticides and PCBs in Water and Soils/Sediment by Gas Chromatography-Mass Spectroscopy" (U.S. Environmental Protection Agency, 1985). GC-MS/SIM analyses were performed using SOP ADL-2845, a modification of Method 680, entitled "PCB Congeners, Homologs, and Aroclors® by Gas Chromatography/Mass Spectrometry in the Selected Ion Monitoring Mode." This method uses a DB5 Column, under the following conditions, excerpted from the ADL Sample Preparation and Analysis Method Summaries section and the detailed SOP ADL-2845 included in Appendix B.

The GC/MS was operated in SIM mode to obtain the desired sensitivity that is comparable to that of a GC equipped with an electron capture detector (ECD). The GC/MS was first tuned with perfluoro-tributyl-amine (PFTBA = n-(C_4F_9)₃N), a common mass calibration standard for mass spectrometry, to verify accurate mass assignment and to maximize the sensitivity of the instrument in the mass range of interest (100 to 300 atomic mass units). After tuning, an initial calibration was performed that consisted of five calibration standards at different concentration levels spanning the concentration range of interest. Average response factors for each target

compound and surrogate are calculated from the initial calibration standards relative to the internal standard compounds added to the sample extracts just before instrumental analysis. Continuing calibration standards at a mid-range concentration level were analyzed at the beginning of each analytical sequence and every 18 hours or after every 10 sample analyses to monitor sensitivity and linearity of the GC/MS. Sample analyses were performed only after acceptable calibration analyses were obtained. The average response factors generated from the initial calibration were used to calculate the concentrations of target compounds and surrogates in the experimental and quality control samples. The recoveries of the surrogate compounds spiked into the sample before extraction were used to assess sample-specific extraction efficiency. The target compound concentrations were adjusted based on sample-specific surrogate recoveries to correct for differences in extraction efficiency.

In general, the sample-specific detection limits were at the subpart per trillion levels for congener GC-MS/SIM analyses. Method 680 was most useful for empirical determinations of tPCBs as the sum of measured homologs. The conventional method for estimating tPCBs uses an algorithm derived from specific congener data (measured using GC-ECD Methods 8081M or 8082 (U.S. Environmental Protection Agency, 1997c), similar to how Aroclors® are measured. Representative subsamples of shipboard solids were initially analyzed for Aroclor® content (tPCBs as the sum of Aroclors[®] in Table 6) using EPA Method 8082 to compare with reported shipyard analyses and to confirm that there would be sufficient PCB levels present for analytical detection in seawater leachate. Method 8082 was not used for any other samples. One batch of Aroclor[®] analyses, performed for a subsample of electrical cable as a comparison with Method 680, used GC-ECD Methods per SOP ADL-2818 "Determination of Chlorinated Pesticides and PCB Congeners by Gas Chromatography-Electron Capture Detection (GC/ECD)," a modified version of EPA's Method 8081M using dual, dissimilar columns and dual detectors. The following is taken from SOP ADL-2818 and included in the ADL Sample Preparation and Analysis Method Summaries section of Appendix B. A Restek RTX-5 column (or equivalent) was used as the primary column and a DB-17 column (or equivalent) was used as the confirmation column. Before sample analysis, an initial calibration was performed that consisted of five calibration standards at different concentration levels ranging from 1 to 200 ng/mL. Average calibration factors for each target compound and surrogate are calculated from the initial calibration standards (external standardization). Continuing calibration standards at a midrange concentration level were analyzed at the end of each analytical sequence and every 16 hours or after every 10 sample analyses, whichever was more frequent, to monitor sensitivity, retention time stability, and linearity of the GC/ECD. Sample analyses were performed only after acceptable calibration analyses were obtained. The average calibration factors generated from the initial calibration were used to calculate the concentrations of target compounds and surrogates in the environmental and quality control samples. When coelution occurred between one or more target compounds or when interference occurred on the primary column, the results were reported from the confirmation column for the affected compounds. Compound identification was based on (1) detecting a peak within the established retention time window for a specific compound on the primary and confirmation columns, and (2) the analyst's judgment. The recoveries of the surrogate compounds spiked into the sample before extraction were used to assess sample-specific extraction efficiency. The target compound concentrations were adjusted based on sample-specific surrogate recoveries to correct for differences in extraction efficiency.

EPA Method 8081M was used in a comparability study with results from Method 680 for the representative electrical cable subsample only. Method 680 (GC-MS/SIM) was used

as the conventional analytical method of choice for all seawater leachate and leached solid analyses, based on a detection limit evaluation performed at the beginning of the leach rate study for a selection of common congeners of interest (Figure 10). A more detailed description of sample-specific method detection limits (or "minimum detection limits") is in Appendix B. The U.S. Environmental Protection Agency defines the method detection limit (MDL) as "the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero." (U.S. Environmental Protection Agency, 1986)

Figure 10. MDL study values for PCB target congeners in representative PCB-LRS water samples using three different methods, GC-ECD (EPA Method 8081M), Micro-GC-ECD (modified EPA Method 8081M), and GC-MS/SIM (EPA Method 680). Micro-GC-ECD is shown for comparison purposes only and was not used in this study. The average congener MDL using each method is shown next to the legend.

The PCBs in Table 4 and Table 5 are the analytes of interest in this work and are the same analytes of concern in previous studies.^{2, 3, 6, 7}. The measurement of homolog groups allows one to empirically account for all PCBs in the sample without separately/individually quantifying each of the 209 PCB congeners. Summation of the homolog groups allows for an empirical determination of tPCBs, as mentioned previously.

The congener target analytes correspond to PCB congeners considered important in ecological and human health risk assessments. These include PCB congeners that are thought to interact with biological receptors in a manner similar to dioxins, and are thus called dioxin-like PCBs. The 13 dioxin-like PCBs in Table 4 (annotated in red/asterisks), correspond to non-ortho and mono-ortho PCBs that, when this study began, were considered dioxin-like by the EPA (U.S. Environmental Protection Agency, 2000) and the World Health Organization (WHO). At that time, the WHO also considered di-ortho PCBs (170 and 180) dioxin-like. PCB 170 and PCB 180 are PCB analytes included in this study, and PCB81 (3,4,4',5-tetrachlorobiphenyl) is not a PCB analyte included in this study as a result of compiling dioxin-like listings at the time of this study's inception. WHO 1997 toxicity equivalency factor (TEF) re-evaluation studies have since added this congener and removed PCB170 and PCB180. The EPA dioxin reassessment has 14 dioxin-like PCBs listed, including PCBs 81, 170, and 180.

Table 4. Congener analytes of interest in the PCB leach rate study. Those shown in red and noted with an asterisk are considered dioxin-like and were compiled at this study's inception from EPA and WHO lists of "dioxin-like" PCB congeners. Subsequent to this, PCB81 (3,4,4',5-tetrachlorobiphenyl) was listed as dioxin-like in WHO TEF re-evaluation studies, which also resulted in PCB 170 and PCB 180 being removed from the WHO dioxin-like congener list, while the EPA dioxin reassessment document¹² lists 14 dioxin-like PCBs, including congeners 81, 170, and 180. Dioxin-like PCBs that are considered coplanar are indicated with CP0 (non-ortho) and CP1 (mono-ortho), following the convention in the Table of PCB Congeners and Other Species (U.S. Environmental Protection Agency, 2006).

IUPAC Number	IUPAC Name
8	2,4'-Dichlorobiphenyl
18	2,2',5-Trichlorobiphenyl
28	2,4,4'-Trichlorobiphenyl
44	2,2',3,5'-Tetrachlorobiphenyl
49	2,2',4,5'-Tetrachlorobiphenyl
52	2,2',5,5'-Tetrachlorobiphenyl
66	2,3',4,4'-Tetrachlorobiphenyl
77* (CP0)	3,3',4,4'-Tetrachlorobiphenyl
87	2,2',3,4,5'-Pentachlorobiphenyl
101	2,2',4,5,5'-Pentachlorobiphenyl
105* (CP1)	2,3,3',4,4'-Pentachlorobiphenyl

¹² National Academy of Sciences. 2003. "Estimating Exposure to Dioxin-like Compounds." In Exposure of Human Health Reassessment of 2,3,7,8-tetrachlorodibenzo-p-dixin (TCDD) and Related Compounds." Review Draft (December), Washington, DC.

Table 4. Congener analytes of interest in the PCB leach rate study. (cont)

IUPAC Number	IUPAC Name
114* (CP1)	2,3,4,4',5-Pentachlorobiphenyl
118* (CP1)	2,3',4,4',5-Pentachlorobiphenyl
123* (CP1)	2',3,4,4',5'-Pentachlorobiphenyl
126* (CP0)	3,3',4,4',5-Pentachlorobiphenyl
128	2,2',3,3',4,4'-Hexachlorobiphenyl
138	2,2',3,4,4',5'-Hexachlorobiphenyl
153	2,2',4,4',5,5'-Hexachlorobiphenyl
156* (CP1)	2,3,3',4,4',5-Hexachlorobiphenyl
157* (CP1)	2,3,3',4,4',5'-Hexachlorobiphenyl
167* (CP1)	2,3',4,4',5,5'-Hexachlorobiphenyl
169* (CP0)	3,3',4,4',5,5'-Hexachlorobiphenyl
170*	2,2',3,3',4,4',5-Heptachlorobiphenyl
180*	2,2',3,4,4',5,5'-Heptachlorobiphenyl
183	2,2',3,4,4',5',6-Heptachlorobiphenyl
184	2,2',3,4,4',6,6'-Heptachlorobiphenyl
187	2,2',3,4',5,5',6-Heptachlorobiphenyl
189* (CP1)	2,3,3',4,4',5,5'-Heptachlorobiphenyl
195	2,2',3,3',4,4',5,6-Octachlorobiphenyl
206	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl
209	Decachlorobiphenyl

Table 5. Homolog group analytes of interest in the PCB leach rate study.

Homologue Groups
Monochlorobiphenyl (Cl1)
Dichlorobiphenyl (Cl2)
Trichlorobiphenyl (Cl3)
Tetrachlorobiphenyl (Cl4)
Pentachlorobiphenyl (Cl5)
Hexachlorobiphenyl (Cl6)
Heptachlorobiphenyl (Cl7)
Octachlorobiphenyl (Cl8)
Nonachlorobiphenyl (Cl9)
Decachlorobiphenyl (Cl10)

Table 6. Aroclor® analytes of interest in the PCB leach rate study.

Aroclor® Types
Aroclor® 1221
Aroclor® 1232
Aroclor® 1242
Aroclor® 1248
Aroclor® 1254
Aroclor® 1260
Aroclor® 1262
Aroclor® 1268
·

The list of congeners analyzed in PCB leach rate study samples compares reasonably well to congeners commonly reported in studies of natural environmental samples. Table 7, reproduced from McFarland and Clarke (1989), shows the 36 congeners commonly found in the environment.

Table 7. PCB congeners of concern found in the environment. Details are described in the text. Congeners listed in McFarland and Clarke (1989), but not analyzed in PCB leach rate study samples are shaded.

IUPAC Number								
Group 1A	Group 1B	Group Group 3		Group 4				
77	105	87	18	37				
126	118	99	44	81				
169	128	101	49	114				
	138	153	52	119				
(1989)	156	180	70	123				
	170	183	74	157				
		194	151	158				
			177	167				
			187	168				
			201	189				

McFarland and Clarke (1989) described their list of 36 congeners by enzyme-induction type. Induction of some enzyme types may be linked to metabolic carcinogenic processes. Group 1A–B congeners are the most likely to contribute to adverse biological effects in environmental samples. Group 1A congeners are aryl hydroxylase enzyme inducers. Group 1B congeners are mixed type inducers (mixed function oxidase enzyme-type) frequently reported in environmental samples. The toxicity potential of congeners is inferred by this property (mixed function oxidase enzyme inducers prevalent in the environment, and most are relatively abundant in tissues. Group 3 congeners are weak or non-mixed function oxidase inducers, but are frequently found in environmental tissue samples (fish and invertebrates). Group 4 congeners are mixed-type inducers that are relatively scarce in environmental samples.

2.8. SHIPBOARD SOLID EXTRACTION

Shipboard solid sample extraction was performed using ADL's SOP ADL-2819.04, "Extraction of Polychlorinated Biphenyls and Chlorinated Pesticides from Sediment or Shoreline Soil Samples." The solids were thoroughly cut or ground up into small pieces and returned to the original sample container for chemical analysis. Approximately 75 grams of sodium sulfate was mixed into each sample, followed by the addition of 100 mL of 50:50 dichloromethane/ acetone. Each environmental and quality control sample was spiked with PCB surrogate solution before the first addition of the extraction solvent. Table 8 lists the sample surrogates. The quality control (QC) samples that were processed along with the samples included one procedural blank (PB), one blank spike (BS), and one blank spike duplicate (BSD). The concentration of the surrogate compounds spiked into the samples was determined based on the expected contamination level in the samples. For this project, all surrogates were spiked at high levels in the shipboard solid samples. Besides the surrogate solution, the BS, BSD, and QC samples were spiked with a subset of the target PCB compounds.

Organic compounds were extracted from the solid samples using a 50:50 mixture of the organic solvents dichloromethane and acetone. For each sample, a 100-mL aliquot of solvent was added to the original sample container and placed on an orbital shaker for 12 hours. The samples were centrifuged and the organic solvent layer was decanted into a flask. This extraction procedure was repeated two more times with fresh aliquots of solvent and shaking for a shorter time. The three solvent extracts per sample were combined and water was removed from the combined extract by adding approximately 75 g of sodium sulfate. Alumina column cleanups were performed on the sample extracts to remove potential contamination that would interfere with sample analysis. All extracts were concentrated to approximately 1 mL, using Kuderna-Danish (KD) concentrators and nitrogen evaporation. Extracts were split into archive and working volumes. The working extract volume was then exchanged into hexane for PCB analyses.

2.9. LEACHATE EXTRACTION

PCB-leachate (seawater), procedural (leaching) bottle blanks, and stainless-steel/glass-caging sample extraction was performed using SOP ADL-2824, "Extraction of Semivolatile Hydrocarbons and PCBs/Pesticides from Water Samples," a modification of EPA Method 3510B, "Separatory Funnel Liquid-Liquid Extraction" (U.S. Environmental Protection Agency, 1997a). The following description is excerpted from SOP ADL-2824, included in Appendix B, and in the ADL Sample Preparation and Analysis Method Summaries section of Appendix B. With every sample preparation batch the following QC samples were prepared: PB, BS, and BSD. Each environmental and QC sample was transferred to a separatory funnel and spiked with PCB surrogate solutions before the first addition of the extraction solvent. Table 8 lists the sample surrogates. We determined the concentration of the surrogate compounds spiked into the samples based on the expected contamination level in the samples. For this project, all surrogates were spiked at low levels in the water samples. Besides the surrogate solution, the BS and BSD QC samples were spiked with a subset of the target PCB compounds.

Table 8. Internal standard and surrogate compounds used in the PCB leach rate study.

Internal Standard					
Tetrachloro-M-Xylene (TCMX)					
Surrogates					
4,4'-Dibromo-Octafluoro-Biphenyl (DBOFB)					
PCB 103					
PCB 198					

Organic compounds were extracted from the water, procedural (leaching) bottle blanks, or stainless-steel/glass-caging samples using the organic solvent dichloromethane. For each sample, a 120-mL aliquot of solvent was added to the separatory funnel; the separatory funnel was then sealed and shaken vigorously for 1 to 2 minutes. The organic layer was allowed to separate from the water phase and then was drained into a flask. This extraction procedure was repeated two more times with fresh aliquots of solvent. The three sovent extracts per sample were combined and water was removed from the combined extract by adding approximately 75 g of sodium sulfate. All extracts were concentrated to approximately 1 mL, using Kuderna-Danish (KD) concentrators and nitrogen evaporation. Extracts were split into archive and working volumes. The working extract volume was exchanged into hexane for PCB analyses.

2.10. DATA MANAGEMENT

A master electronic database was designed, populated, maintained, and compiled from each individual leaching experiment. It included specific experimental information, screening analysis results, draft results of conventional sample analysis, and final results of conventional sample analysis (including quality control results).

Leaching laboratory data were manually entered into database files directly from laboratory notebooks and/or logbooks. All analytical data reported electronically were archived in their original format (as delivered) before input into the SSC San Diego database. Any subsequent revisions to the file were archived as the latest version and the original version was archived separately as a draft report and not used except for tracking purposes.

2.11. DATA EVALUATION AND DATA REDUCTION

Throughout each leaching experiment, SSC San Diego personnel continuously evaluated project data, which was used to verify that analysis results were within specified QC allowances and that all sample-associated information was correct. When a questionable issue was

identified, the ADL analytical project manager was informed to clarify the issue or correct the data analysis report. In the former case, the clarification was simply noted in the database. In the latter case, a revised analysis report was prepared with corrected data. The revised dataset was then entered or imported into the database as the most recent version and the original data remained archived separately as a draft original file, as previously indicated.

Preliminary leach rate calculations were performed as soon as possible to evaluate the leaching progress in as near to real time as possible. This procedure was particularly important for leachate samples that contained tPCB concentrations (as Aroclor® 1254) lower than 2 ppb, the practical detection limit for immunochemical screening analyses.

Each leachate sample was an independent evaluation of the leaching behavior of the solid under test in that leachate volume over a specific time period. That specific time period started from when fresh seawater was introduced to the leaching vessel until the sample was collected for conventional chemical analysis. This time corresponds to the sampling interval.

A complete leaching experiment included a series of such partial or batch leaching experiments performed on the same shipboard solid sample (by removing the caged solid from a previous leaching vessel and placing it in a new leaching vessel with new ASW leachate as described previously, repeated over the entire leaching experimental timeframe). Figure 11 illustrates this process for a hypothetical dataset, where each concentration data point plotted versus time corresponds to the concentration in each partial leaching evaluation.

Figure 11. Hypothetical leachate concentration data. Each positive slope (straight line) between asterisks is proportional to the average leach rate for that partial or incremental leaching experiment as described in the text. The average leach rates for these hypothetical data are plotted versus absolute leaching time in Figure 12.

2.12. CALCULATION OF LEACH RATE

The generic leach rate for each sampling interval is proportional to the measured change in concentration over the time period for each partial leaching experiment across the leaching series as functionally described in Equation 1. The leach rate can be calculated by using the exposure volume in each given leaching interval to determine the mass released as a function of time as shown in Equation 2 and illustrated in Figure 12.

Equation 1

$$LR = V \frac{d[PCB]}{dt}$$

Equation 2

$$V\frac{d[PCB]}{dt} = V\frac{\Delta[PCB]}{\Delta t} = V\frac{([PCB]_f - [PCB]_i)}{t_f - t_i},$$

where d[PCB] is the differential change in PCB concentration, dt is the corresponding differential change in leaching time, V is the leaching interval (exposure) volume, t_i is the beginning of the leaching interval, and t_f is the endpoint of the leaching interval.

In this study, units for these parameters are measured and reported for concentration in ng/L (pptr), time in units of days (d), and volume in liters (L). The generic leach rate in Equations 1 through 3 are thus in units of ng/day. This leach rate can be further normalized to mass of shipboard solid tested in grams, as described later in Equation 5, providing a mass-normalized average leach rate (AvgLR) in units of ng/g shipboard solid-day, the specific leach rate units used throughout this study. "AvgLR" hereafter represents this mass-normalized average leach rate.

The final concentration in a leachate sample is equivalent to the change in concentration because each batch sampling interval starts with a PCB concentration effectively equal to zero (fresh seawater) and leaches with time until it is collected at the end of that incremental leaching experiment. The change in time (Δt) or time that the solid spends in a particular seawater leachate sample volume for a partial/incremental leaching experiment is conveniently equivalent to the sampling interval ($t_f - t_i$). Equation 2 can then be described simply by the following batch reactor equation.

Equation 3

$$LR = V \frac{[PCB]_f}{t_f - t_i}$$

A leach rate curve describing the behavior for the shipboard solid under test can be prepared by plotting the leach rates for each of the partial/incremental leaching experiments in the complete leaching series versus the absolute leaching time or total exposure time (not Δt , the partial or sampling interval). The absolute leaching time is indexed or referenced to the date and time that leaching for the shipboard solid was initiated (t_0). This type of curve is shown

as an AvgLR curve in Figure 12 for the hypothetical concentration data plotted in Figure 11 by assuming a hypothetical leaching volume of 1 L for each partial/incremental leaching experiment (over each interval, Δt), and normalizing to an assumed mass of 1 gram of shipboard solid tested.

Figure 12. Example of a hypothetical changes in AvgLR with time for the hypothetical leached PCB concentration data in Figure 11.

2.13. LEACH RATE ANALYSIS

Complete leaching curves for each shipboard solid tested were derived to represent the average leaching behavior as a function of absolute leaching time or seawater exposure time. Comparisons of leaching curves for different shipboard solids also demonstrate the degree to which each shipboard solid matrix attenuates PCB release. Evaluating these leaching curves to determine leach rate dynamics or stability as a function of time is also particularly useful.

If a decreasing AvgLR was observed during a leaching experiment, with at least four decreasing AvgLR data points, they were best-fit to an appropriate curve and evaluated using analysis of variance (ANOVA) (Ryan, 1990). This curve-fitting approach provided a crude predictive capability subject to statistical validity and confidence, but was most useful to evaluate whether the 95% confidence or prediction limits for such an extrapolated curve would support using the empirical endpoint of the AvgLR curve beyond the experimental timeframe.

Confidence and prediction limits for future AvgLR values were calculated using standard statistical equations available in most curve-fitting and analysis programs. The latter (prediction) limits were calculated for 20 predictions and are generally larger than confidence limits because of decreased precision in predicting future specific values as opposed to predicting future average values (confidence limits). In all cases, the fit was performed on the observed curve maximum and points beyond that observed maximum.

3. EMPIRICAL DATA AND OBSERVATIONS

3.1. PCBs-ISM CHARACTERIZATION

Table 3 summarized the concentrations of PCBs in leached shipboard solids and compared them with representative solid analyses and shipboard solid analyses. Table 9 provides more detailed representative solid analysis results for Aroclor[®] in which three additional analyses are included for the physically separable/dissectible components of electrical cable and foam rubber. In all cases, the concentration of primary Aroclor[®] (1254, 1260, or 1268) was greater than 100 ppm, and in some cases, the solid contained congeners for which a best-fit analysis indicated the possibility of more than one Aroclor[®]. The representative solid results were considered an estimate of the nominal pre-leaching concentration in solid subsamples before leaching.

The initial starting concentrations for each leached solid was determined by measuring the PCB concentration in the solid subsequent to leaching and adding that to the mass released during the experiment. This approach provided a way to indirectly determine the starting concentration in the solid at the beginning of the leaching experiment for each leached subsample and leaching experiment (Equation 4).

Equation 4

$$[PCB]_I = \frac{(M_R + M_L)}{M_S}$$

In this equation, for any given leaching experiment, $[PCB]_I$ is the concentration of PCBs initially in a shipboard solid (g PCB/g shipboard solid), M_R is the total mass (g PCB) of PCBs released over the course of the leaching experiment, M_L is the residual PCB mass (g PCB) in the leached solid, and M_S is the mass of solid tested (g shipboard solid). Because leaching experiment PCB analyses were performed based on empirical tPCBs (sum of the measured homologs) to reduce uncertainties associated with performing Aroclor® analyses, we assumed that the Aroclor® distributions (relative amounts of Aroclors®) in the solid samples used for leaching were similar to the best-fit Aroclor® distributions in these representative solid samples (Table 3).

Figure 13 shows photographs and schematics of the electrical cable components and foam rubber samples with photos of the other shipboard solids. Electrical cable was separated into inner core (resin binder adjacent to outer plastic sheath) and middle (paper/resin insulation adjacent to copper center conductor) components and analyzed in addition to the intact cable (all components including center copper wire). Paint chips were removed from the foam rubber and analyzed in addition to the intact foam rubber with paint analysis. The additional analyses of physically separated/dissected electrical cable and foam rubber were performed to identify, if possible, where the bulk of the PCB source resided in the material. These results show that PCBs are present at quite significant levels in all three components of electrical cable and in both components of foam rubber. Note that for the foam rubber sample, unlike the A1254 distribution, the A1260 concentration in the intact solid is lower, indicating that it seems more closely associated with the paint component instead of the foam rubber itself.

Table 9. Aroclor $^{\$}$ concentrations in $\mu g/g$ (ppm) as determined for best-fit analyses of the congener distribution for *representative* subsamples of each shipboard solid used in leaching experiments. These materials correspond to the shipboard solids collected during the ship sampling effort for which subsamples were subsequently leached in this study. Separate determinations were also made for different physical dissections of both electrical cable and foam rubber subsamples in an effort to possibly identify the primary PCB-containing components for these samples. These included the paint-only portion of the foam rubber field sample, the inner component only (resin binder adjacent to outer plastic sheath) of the electrical cable field sample, and the middle component only (paper/resin insulation adjacent to copper center conductor) of the electrical cable field sample.

μg/g (ppm)	Felt Gasket (outer)	Felt Gasket (inner)	Black Rubber	Bulkhead Insulation	Aluminized Paint
Aroclor 1221					
Aroclor 1232					
Aroclor 1242					
Aroclor 1248					
Aroclor 1254			2,100	160	470
Aroclor 1260			72	94	540
Aroclor 1262					
Aroclor 1268	100,000	140,000		46	120
μg/g (ppm)	Foam Rubber	Foam Rubber Paint Chips	Electrical Cable	Electrical Cable (middle)	Electrical Cable (inner)
Aroclor 1221					
Aroclor 1232					
Aroclor 1242			8.4	3	2.9
Aroclor 1248					
Aroclor 1254	7,100	3,300	1,800	610	1,200
Aroclor 1260	550	1,100	160	78	100
Aroclor 1262					
Aroclor 1268					

3.2. SHIPBOARD SOLID MATERIALS

Figure 13 shows photos of each representative shipboard solid. These photos show each shipboard solid subsample before leaching. Generally, the solids did not differ in appearance from these photos after seawater exposure over the experimental (leaching) timeframe. The length of each solid (as leached) corresponded to ~3 inches, except for those solids shown in Figure 13a and d, which were both ~2 inches long. The Aroclor[®] 1254 and Aroclor[®] 1254 control samples were placed on 1-inch x 3-inch pieces of binder-free, glass-fiber filter, similar to the one in the paint sample photo (Figure 13f). The masses of the shipboard solids were recorded before leaching. Shipboard solids were generally described in Section 2.

d.

e.

f.

Figure 13 (a–h). Representative photos of shipboard solids: (a) Felt Gasket-Outer (FGO), (b) flange bottom edge where FGO was collected, (c) Felt Gasket-Inner (FGI) with flange collection site, (d) Black Rubber Pipe Hanger Liner (BRPHL)—subsample is shown in center, with remaining pieces of the ship sample on the left and right, (e) Bulkhead Insulation (BHI), (f) Aluminized Paint (AP), (g) Foam Rubber/Ensolite® (FRE), and (h) Electrical Cable (EC) with a schematic illustrating its internal components. The masses of each leached solid are reported in Subsection 3.4.

3.3. LEACHING DATA DESCRIPTION

Ideally, a leaching experiment would be performed by placing the solid into a large enough volume of seawater to avoid saturation with PCBs, and by avoiding dilution effects or other effects related to removal of the required volume of seawater leachate (~1L) for conventional very low-level PCB analysis. Such an ideal approach would result in an experimental concentration versus time plot in a constant volume of water, a prerequisite for evaluating kinetics of leaching behaviors, especially for individual PCB congeners using classical data analysis techniques. Unfortunately, this ideal approach would require *a priori* knowledge of the leach rate for any given solid, which was not available. Indeed, this is the solid-specific property we sought to empirically determine in this work because such leaching data were not available.

To work around the experimental difficulties and detrimental effects associated with PCB saturation and dilution issues related to sample (volume) removal, an experimental approach was developed during the preliminary phase of this study using a sample of FGI as a representative test solid before the leaching experiments described in this report. This particular solid was, at the time, assumed to represent the experimental extreme (solid expected to be most difficult to contain for mass balance purposes, and was likely to have a worst-case release because of the tendency to break apart with physical stress induced by stirring action), i.e., a fast-leaching solid for leaching experiments based on a typically high-PCB concentration and potential for artificially induced high surface area. The preliminary development did not analyze leachate using analytical chemistry. Rather, the bench-top methodologies and SOPs were developed, evaluated, and optimized during this phase, before initializing experiments for which analytical results were collected and reported. Additionally, the approach developed and used in the study allowed for analytical data collection as a function of leaching time in known volumes of seawater leachate, while remaining below the saturation limit in the immediate volume of seawater leachate surrounding the solid at anytime during the leaching process. The process used to avoid saturation also allowed for a more conservative measure of leaching under completely advective conditions, a condition unlikely to be the case within the vessel where PCBs-ISM reside. The practical concentration (saturation) limit for Aroclor® was empirically observed using neat Aroclor[®] standards as positive analytical controls for dissolution under conditions identical to the leaching conditions for shipboard solids. Because the shipboard solids exhibited leaching at tPCB concentrations below these positive controls, the experimental leaching curves reflect valid leach rates, including only the leaching suppression dictated by the shipboard solid matrix itself

Each leaching experiment was, in effect, performed to simulate the ideal experiment described above using seawater exchange, i.e., by sequentially exposing a given shipboard solid to individual ~1L aliquots of clean seawater at time intervals designed to avoid PCB saturation in each seawater leachate batch. This approach also allowed for the detection of very small changes in PCB release, on the order of sub-nanogram quantities of congeners, unlike the larger mass release that would have been required to detect PCB congeners by increasing the sampling time periods and analyzing 1-L aliquots from a very large leaching volume. These intervals or batch leaching experiments between seawater exchange points coincided with leachate sampling events and represent the sampling interval or time resolution between analyses of PCBs in the seawater leachate. The batch leaching/sampling experiments were continued until such a time that conventional chemical analysis of the seawater leachate indicated that leaching had stopped or had reached what appeared as a stable leaching condition subsequent to an empirically observed

maximum leach rate. The mass normalized average leach rate (AvgLR) was then calculated as shown in Equation 5 (an extension of Equation 3) for seawater leachate samples that had previously contained the solid of interest by analyzing the leachate to determine the PCB concentration and then converting that concentration into the mass PCBs released into that volume, and finally by dividing that value by the leaching time (sampling) interval, i.e., the time that the solid had been exposed during the batch leaching experiment.

Equation 5

$$AvgLR = \frac{V}{M_S} \frac{[PCB]_f}{(t_f - t_i)},$$

where AvgLR (ng/g-shipboard solid-day) is the mass normalized average leach rate over the leaching interval, in which the expression on the right in Equation 5 corresponds to Equation 3 divided by M_S (g shipboard solid), the mass of the solid tested. Note that for all calculations of mass release using PCB concentration data, the calculated number is generally limited to two significant figures, a function of the reported sample analysis volume.

For each solid, a series of batch leaching experiments were plotted as a function of absolute leaching time and used to evaluate the AvgLR behavior as a function of entire seawater exposure or overall/absolute leaching time. At the conclusion of the entire leaching experiment, defined as a complete series of batch leaching experiments, the PCB concentration was plotted versus absolute leaching time, reconstructing the ideal/classical experiment that the actual experiment was designed to simulate. This type of plot corresponds to the classical experimental concentration behavior versus time curve corresponding to the ideal experiment described above, where a solid would have been placed in a constant large volume of seawater leachate. This constant volume is the sum of all incremental volumes to which the solid was exposed during the experiment, and as an inherent benefit, this analytically validated experimental protocol used an incremental volume that avoided a saturation condition. The classical concentration versus time curves are referred to as cumulative concentration curves and were prepared by calculating concentration using Equation 6 and plotting (C_i) as a function of leaching (exposure) time.

Equation 6

$$C_{i} = \frac{\sum_{j=1}^{i} \left(C_{j} V_{j}\right)}{\sum_{k=1}^{n} V_{k}},$$

where C_i = PCB concentration for the ith data point in the cumulative concentration plot, C_j = PCB concentration for the jth incremental (batch) experiment, V_j = volume of artificial seawater for the jth incremental experiment, V_k = incremental volume of artificial seawater in the kth incremental experiment, and n = total number of incremental experiments in the test (total number of incremental solid seawater batch experiments, which is equal to the number of data points).

3.4. SHIPBOARD SOLID-SPECIFIC LEACHING DATA

The following subsections contain data and results for each leaching experiment, including plots of cumulative PCB concentration in the total exposure volume versus leaching time (using Equation 6 to represent the classical experimental leaching curve) and the average PCB leach rates plotted versus absolute leaching time.

All cumulative concentration and average leach rate plots are presented according to level of chlorination (homolog groups), resulting in up to 10 plots per shipboard solid, depending on the target homologs detected during a given experiment. Detecting a target homolog group and failing to detect a target congener within that group was entirely possible because analyzing all congeners within the homolog groups was impractical. However, because a homolog group is the empirical quantitation of *all* congeners within that chlorination level, non-target congeners still contribute to the homolog group value, even if target congeners were not detected. In the following figures, only the homolog groups detected during each solid leaching experiment are plotted, along with the corresponding target congeners detected in each homolog group. Homologs and target congeners not detected during the leaching experiment are not plotted, but appear as a placeholder in the legend to indicate that it was not detected (See Table 4 and Table 5 of Section 2 for reference while viewing the plots.)

For the concentration versus time plots, the slope of a line drawn between any two adjacent points on a curve is proportional to the AvgLR between those points, which can be calculated using Equation 5. Cumulative concentration curves that continue to increase reflect a leach rate greater than zero and continued leaching with time, while truly horizontal portions of curves correspond to a leach rate of zero, indicating a leaching cessation for that particular analyte. In some cases, curves exhibit a mixture of these behaviors, where leaching stops and then begins again, sometimes more than once, as indicated by increasing and horizontal curve regions (slopes > 0, then = 0, then > 0 again, etc.). While the cumulative concentration plots provide qualitative snapshot of leaching behaviors, AvgLR plots are much better for quantitatively evaluating the leach rate behavior.

PCB distributions describe the temporal variability (what PCBs are released from the solids at different leaching times) and are calculated and plotted as mass percent of total in each of the Aroclor® dissolution and shipboard solid-specific leaching behavior sections. Within each section, homolog and congener distributions associated with the solid are first compared with the distributions associated with the total PCB released into the seawater leachate. Additionally, the results for four unique leachate samples (resulting in four sets of homolog and corresponding congener distributions) are presented across each entire leaching experiment, i.e., a series of batch leaching experiments for a solid as described above for the total leaching time. The first leachate PCB distribution presented for each tested material corresponds to the maximum observed rate and the final distribution corresponds to the final empirical rate (at the end of the entire experiment). Between these two endpoints, two intermediate distributions are shown to illustrate where dramatic changes occurred, relating to analyte-specific changes in material-specific leaching behaviors. Generally, we chose to include the broadest or narrowest distribution and the most distinct change in distribution and/or relative magnitude observed during the experiment.

The lower empirical limit of the leach rate range is bounded by results obtained for a negative control, procedural method blank leaching experiments that do not contain PCBs. These negative

controls were tested under conditions identical to shipboard solid leaching conditions, but with a cage only (without a shipboard solid sample matrix). Results from all negative controls analyzed during the leaching experiments are included in the Leaching Procedural Blank Data section of Appendix C.

The upper limit for any experimental leach rate for a shipboard solid is approximated by a positive analytical control curve corresponding to neat Aroclor[®] dissolution experiments. These are included for comparison with shipboard solid leaching results to provide a measure of the effective saturation limit in the experiments and as a reference point for the dissolution component of shipboard solid leach rate.

Representative solid analyses indicated that the following shipboard solids contain Aroclor[®] 1254 (A1254), but not Aroclor[®] 1268 (A1268): black rubber pipe hanger liner (BRPHL), electrical cable (EC), and foam rubber/Ensolite[®] (FRE). In the cumulative concentration plots and AvgLR plots, these data are related to the A1254 positive analytical control curves for maximum comparability. The remaining solids are presented in the context of the A1268 positive analytical control curves, as their representative solid analyses contained A1268, in some cases, with A1254: Bulkhead Insulation (BHI), Felt Gasket-Inner (FGI), Felt Gasket-Outer (FGO), and Aluminized Paint (AP).

3.4.1. Aroclor® 1254 (A1254) Analytical Control Dissolution Behavior

Concentration behaviors are plotted for neat A1254 leached at 25°C and ~1 bar as a function of seawater leaching time (exposure time). Homolog groups Cl1 through Cl7 were leached from A1254, and Figure 14a includes these homolog concentration curves (lower curves). Each point on the tPCB concentration curve (upper curve) is calculated as the sum of the homolog concentrations below it. Each homolog group is plotted as the upper curve in subsequent plots in Figure 14b–h. Curves for the target congeners detected in each homolog group are plotted with each corresponding homolog curve. As the tPCB curve shows, the long-term empirical upper limit approaches 10 ppb (10,000 ng/L) over the nearly 450-day experiment for 21.1 mg of A1254 in a 13.89 L total leachate exposure volume.

Figure 14(a–h). Experimental PCB concentration versus exposure time for 21.1 mg of neat Aroclor[®] 1254 exposed to a total volume of 13.13 L of seawater leachate. Plot (a) shows tPCBs concentration and contributing homolog group concentrations versus exposure time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–h) are homolog group concentrations and corresponding target congener concentrations within homolog groups Cl1 through Cl7 versus time.

Figure 15 shows the total released homolog and congener distributions or distributions, and compares these released PCB distributions to the initial PCB distributions determined for neat A1254. All detected homologs and congeners are normalized and plotted as percent of total PCBs in each matrix (seawater versus "solid"), even though in many instances the percent contribution to total PCB level was <0.1% of the total amount of PCBs. These levels of homologs and congeners in "solids" can be significant if they release into seawater, as reflected in many seawater PCB distributions. The highest levels of release were from homolog groups C11 through C16.

PCB distributions, normalized as percent of total, for specific A1254 seawater samples are presented below at key intervals across the entire experiment (exposure time). Figure 16 homolog group distributions correspond to (a) the maximum dissolution rate, (b) the broadest congener and homolog distributions, (c) a decrease in pentachlorobiphenyl with a concurrent increase in tetrachlorobiphenyl homolog groups (primary homolog group inversion), and (d) the final empirical dissolution rate. The respective target congener distributions in these samples are depicted in Figure 17(a–d).

In an effort to establish an effective saturation limit as an upper bound for A1254 PCB analytes leaching from shipboard solids that contain A1254, the most concentrated leachate sample in the experimental series for Aroclor[®] 1254 was evaluated (analytical concentration data are included in Appendix C.) This leachate sample (212-147-AS-T36) occurred for the leaching interval from 188 to 230 days (significantly less than the longest time-interval in the experiment), with a tPCB concentration of 16051 pptr (ng/L), and contributions from homolog groups Cl1 through Cl7. However, upon closer inspection, only the Cl4 through Cl7 homolog concentrations in this sample (5,900, 8,300, 1,200, and 69 pptr respectively) corresponded to maximum homolog concentrations observed in all A1254 leachate samples collected. As one would expect, based solely on solubility considerations, lower molecular weight species were released at higher levels earlier in the dissolution process; homologs Cl2 and Cl3 exhibited concentration maxima (330 pptr each) much earlier in the leaching experiment at 111 days, while the Cl1 maximum concentration occurred at 21 days (100 pptr). Homolog groups Cl8 through Cl10 were never detected in any leachate samples across the entire experiment and cannot contribute to the solubility estimate. The effective A1254 saturation limit is estimated as the sum of all observed maximum homolog group concentrations (16,200 pptr) and assumes that the solubility of any given homolog group is not significantly perturbed (suppressed) by the presence of other dissolved homolog groups at their maximum observed concentrations. The actual solubility for such a complex mixture is probably time-dependent, but should still lay above the highest concentration observed here experimentally (16,051 pptr = 0.016051 ppm). In comparison, solubilities reported in the literature and compiled by Mackay, Shiu, and Ma (1992) for A1254 in freshwater is in the range of 0.01 to 0.3 mg/L (ppm), providing a reasonable assurance that we are below saturation across the A1254 experiment, except perhaps in this particular sample. However, on a homolog basis, if one takes homolog solubilities also reported in Mackay, Shiu, and Ma (1992) and applies these to the homolog quantities observed in the neat A1254 control in this study, the estimated solubility range is 0.0032 to 0.0182 mg/L (ppm), much lower than the literature-reported empirical A1254 range above, by a factor of 3 to 16.

Figure 15(a–d). Experimental homolog and congener PCB distributions for neat Aroclor® 1254 "solid" (a and c) compared with total homolog and congener distributions of PCBs released from A1254 into seawater (b and d). The latter distributions correspond to all PCBs released, also represented by the cumulative concentration endpoint for all analytes plotted in Figure 14. The solid distributions correspond to the pre-dissolution PCB content in the neat-solid A1254, derived from the mass balance performed at the conclusion of the experiment. Analytes present below 0.1% are indicated using an offset linear scale. Variances at these very low sub-percentage levels are not visible on the scale shown here, but are included in the mass balance tables in Appendix C.

Figure 16(a–d). Homolog distributions during the neat Aroclor $^{\$}$ 1254 experiment, normalized as percent of total, corresponding to intervals: (a) 62 to 69 days, (b) 188 to 230 days, (c) 230 to 286 days, (d) 370 to 433 days.

Figure 17(a–d). Congener distributions during the neat Aroclor[®] 1254 experiment, normalized as percent of total, corresponding to different intervals: (a) 62 to 69 days, (b) 188 to 230 days, (c) 230 to 286 days, (d) 370 to 433 days.

The concentration maxima of target congeners, if detected within each of these homolog groups, occurred in the same leachate samples as their corresponding homolog group maxima with the following exceptions: Cl2/PCB8 140 pptr (at 42 and 111 days), Cl4/PCB77 1.4 pptr (at 62 days, only detection), and Cl5/PCB123 (at 286 days, only detection). These exceptions indicate that solubility of individual congeners in seawater leachate may not be the only factor contributing to the dissolution, i.e., insoluble PCBs in the Aroclor® matrix may be retarding the fundamental congener solvation. Note that in some cases the occurrence of different maxima in different (sequential) leachate samples over time is possibly related to uncertainty in the analytical data rather than other factors contributing to the leaching mechanism, particularly for concentrations that are very similar to the apparent maximum. For example, the concentrations for PCB8 for day-17, day-43, day-62, day-69, day-111, day-146, and day-188 are 120 ng/L, 140 ng/L, 130 ng/L, 63 ng/L, 140 ng/L, 120 ng/L, 110 ng/L respectively (Appendix C). All of these concentrations, except for the 63 ng/L value, are within expected analytical precision of each other. The Standard Deviation (RSD) for the six similar values is 10%, while the RSD for the first six corresponding PCB8 blank spike sample results and PCB 8 BSD sample results is 13% and 15% respectively. Similar concentrations are also observed for the Cl2 group in all six of these samples; the RSD is 25%, for which the concentration could have contributions from as many as 12 congeners. Clearly, the variability in PCB8 leachate sample results for these six leaching time periods is comparable to that from analysis of standard materials, and if one assumes that all of the contributing dichloro-congeners in the Cl2 homolog group behave similarly, then a Cl2 group analysis of standard materials would yield results similar to that observed for PCB8 in the BS and BSD samples. In some cases, simply for analytical reasons, determining the exact maximum concentration for all analytes in these empirical studies may not be possible, but we can determine the range.

Finally, if one considers that the maximum concentration observed was 16,051 pptr (meaning all other A1254 leachate concentrations lie below this value), the effective A1254 saturation limit was estimated at 16,200 pptr, and the concentration in the total experimental leaching volume was 6797 pptr (as indicated by the final concentration value in Figure 14a and in the cumulative concentration table in Appendix D, Aroclor[®] 1254 (A1254) Results), then the observed dissolution behavior must indeed be limited by the neat Aroclor[®] 1254 solid matrix itself. If this Aroclor[®] solid could have released more PCBs, then it would have been reflected in an increased cumulative leachate concentration, at least up to the value experimentally shown as possible in a leaching sample, i.e., 16,051 pptr, and likely up to the estimated saturation limit of 16,200 pptr. These combined observations demonstrate that this leaching experiment defines an upper limit for Aroclor[®] 1254 PCB release from the most closely related solid matrix possible, itself, in the form of a mixture of solid PCBs.

3.4.2. Black Rubber Pipe Hanger Liner (BRPHL) Leaching Behavior

Leaching concentration behaviors for BRPHL leached at 25°C and ~1 bar are plotted for tPCBs and homolog groups Cl1 through Cl5 and Cl7 (Figure 18a). Plots for homolog groups and target congeners within each homolog group are shown in Figure 18(b–g). The BRPHL subsample (2.911 g) containing 4.7 mg (0.16 wt%) tPCB was exposed over a leaching time of nearly 500 days to a total leachate volume of 14.82 L.

Figure 18(a–g). Experimental PCB concentration versus leaching time for BRPHL containing 0.16 wt% (4.7 mg) tPCBs exposed to a total volume of 14.82 L of seawater leachate. Plot (a) shows tPCBs concentration and contributing homolog group concentration versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–g) are homolog group concentrations and corresponding target congener concentrations within homolog groups CI1 through CI5, and CI7 versus leaching time.

Figure 19 shows total released homolog and congener distributions or distributions compared with the initial PCB distributions determined for BRPHL solid. All homologs and congeners detected are normalized and plotted as percent of measured tPCBs in each matrix (leachate versus solid). In many instances, the percent contribution of an analyte to tPCBs was <0.1%, which can still be significant if it leaches into seawater, as shown in the leachate PCB distributions. The highest levels of release from BRPHL were from homolog groups Cl1 through Cl5 and Cl7.

Fingerprints for specific BRPHL leachate samples are plotted at key intervals across the entire leaching experiment (exposure time). Figure 20 corresponds to the homolog groups in samples at (a) the maximum leach rate, (b) the narrowest homolog distribution, (c) a "typical" homolog distribution, and (d) the final empirical leach rate. The respective target congener distributions in these samples are shown in Figure 21(a–d).

Figure 19(a–d). Experimental homolog and congener PCB distributions for BRPHL solid (a and c) compared with total homolog and congener distributions of PCBs leached from BRPHL into seawater (b and d). The leachate distributions are derived from all PCBs released, also depicted as the cumulative leachate concentration endpoint for detected analytes in Figure 18. The solid distributions correspond to the pre-leaching PCB content in BRPHL solid, derived from the mass balance performed for the leaching experiment. Analytes at levels below 0.1% are plotted using an offset linear scale to indicate their presence. Variances at these very low sub-percentage levels are not visible on the scale shown here, but are in the mass balance tables in Appendix C.

Figure 20(a–d). Homolog distributions during the BRPHL leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 7 to 14 days, (b) 49 to 69 days, (c) 230 to 286 days, (d) 398 to 475 days.

Figure 21(a–d). Congener distributions during the BRPHL leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 7 to 14 days, (b) 49 to 69 days, (c) 230 to 286 days, (d) 398 to 475 days.

3.4.3. Electrical Cable (EC) Leaching Behavior

Leaching concentration behaviors for EC leached at 25°C and ~1 bar includes contributions from homologs Cl2 through Cl7, Cl9, and Cl10 as shown in Figure 22(a). Each of these homolog groups and contributions from target congeners are plotted in Figure 22(b–i). The total exposure volume of seawater leachate was 14.49 L for EC (26.5474 g) containing 32.1 mg tPCBs (0.12 wt%). Note also significant attenuation exists for many homologue groups that initially released (horizontal line behavior), and most homolog groups were detected over the nearly 500-day leaching experiment.

Figure 22(a–i). Experimental PCB concentration versus leaching time for EC containing 0.21 wt% (32.1 mg) tPCBs exposed to a total volume of 14.49 L of seawater leachate. Plot (a) shows the tPCBs concentration and contributing homolog group concentrations versus leaching time for EC, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–i) are homolog group concentrations and corresponding target congener concentrations within homolog groups Cl2 through Cl7, Cl9, and Cl10 versus leaching time.

Leaching Time (days)

Total released homolog and congener distributions or distributions are compared with the initial PCB distributions determined for EC solid in Figure 23. All detected homologs and congeners are normalized and plotted as percent of measured tPCBs in each matrix (leachate versus solid). In many instances, the percent contribution of tPCBs was <0.1%, which can still be significant if they leach into seawater, as shown in the leachate PCB distributions. The highest levels of release from EC solid were from homolog groups Cl2 and Cl4 through Cl7.

Figure 23(a–d). Experimental homolog and congener PCB distributions for EC solid (a and c) compared with total homolog and congener distributions of PCBs leached from EC into seawater (b and d). Leachate distributions are derived from all PCBs released, which also corresponds to the cumulative leachate concentration endpoint for analytes plotted in Figure 22. Solid distributions correspond to the initial PCB content in EC solid, from the leaching experiment mass balance performed at the end of the leaching experiment. An offset linear scale is used to indicate analyte levels present below 0.1%. Though not visible on the scale shown here, the degree of variance at these very low sub-percentage levels can be seen in the mass balance tables in Appendix C.

Normalized distributions for specific EC leachate samples are presented below at key intervals across the entire leaching experiment (exposure time). Figure 24 shows the homolog group distributions corresponding to (a) the initially observed and also maximum observed leach rate, (b) the final appearance of dichlorobiphenyl and heptachlorobiphenyl groups, (c) the broadest homolog and congener distributions observed, and (d) the final empirical leach rate. The respective target congener distributions are shown in Figure 25(a–d).

Figure 24(a–d). Homolog distributions during the EC leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 1 to 6 days, (b) 62 to 90 days, (c) 90 to 125 days, (d) 412 to 475 days.

Figure 25(a–d). Congener distributions during the EC leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 1 to 6 days, (b) 62 to 90 days, (c) 90 to 125 days, (d) 412 to days.

3.4.4. Foam Rubber/Ensolite® (FRE) Leaching Behavior

Figure 26(a) includes contributions from homologs Cl2 through Cl7 to the tPCB concentration behavior for FRE leached at 25°C and ~1 bar. The FRE solid (2.608 g) contained 23.2 mg tPCBs (0.89 wt%) and was exposed to a total volume of 13.86 L of seawater leachate over the leaching period of nearly 500 days. Target PCB congener concentration curves that contribute to each of these homolog group behaviors are shown in Figure 26(b–g).

Figure 26(a–g). Experimental PCB concentration versus leaching time for FRE containing 0.89 wt% (23.2 mg) tPCBs exposed to a total volume of 13.86 L of seawater leachate. Plot (a) shows the tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–g) are homolog group concentrations and corresponding target congener concentrations within homolog groups Cl2 through Cl7 versus leaching time.

Figure 27 shows total released homolog and congener distributions or distributions compared with the initial PCB distributions determined for FRE solid. Detected homologs and congeners are normalized and plotted as percent of measured tPCBs in each matrix (leachate versus solid). In many instances, the percent contribution of an analyte to tPCBs was <0.1%, which can still be significant if those analytes leach into seawater, as shown in the leachate PCB distributions. The highest levels of release from BRPHL were from homolog groups Cl2 through Cl7.

Figure 27(a–d). Experimental homolog and congener PCB distributions for FRE solid (a and c) compared with total homolog and congener distributions of PCBs leached from FRE into seawater (b and d). The leachate distributions correspond to all PCBs released over the leaching experiment, also represented by the cumulative leachate concentration endpoint for analytes plotted in Figure 26. The solid distributions correspond to the pre-leaching PCB content in FRE solid, determined from the leaching experiment mass balance. Analytes at levels below 0.1% are shown on an offset linear scale to indicate their presence, but the degree of variance is not visible on the scale shown here. Variance at these very low sub-percentage levels can be seen in the mass balance tables in Appendix C.

Normalized distributions corresponding to specific FRE leachate samples are presented below at key intervals across the entire leaching experiment (exposure time). Figure 28 corresponds to the homolog group distributions at (a) the maximum leach rate and broadest homolog distribution, (b) and (c) "typical" homolog and congener distributions, and (d) the final empirical leach rate, also the minimum observed distribution. The corresponding target congener distributions are shown in Figure 29(a–d).

Figure 28(a–d). Homolog distributions during the FRE leaching experiment, normalized as percent of total, for leaching intervals: (a) 7 to 21 days, (b) 147 to 189 days, (c) 189 to 273 days, (d) 399 to 469 days.

Figure 29(a–d). Congener distributions during the FRE leaching experiment, normalized as percent of total, for leaching intervals: (a) 7 to 21 days, (b) 147 to 189 days, (c) 189 to 273 days, (d) 399 to 469 days.

3.4.5. Aroclor® 1268 (A1268) Analytical Control Dissolution Behavior

The 25°C/~1 bar results for this positive analytical control, 20.2 mg exposed to a total of 9.77 L of seawater over the nearly 400-day experiment, is shown in Figure 30(a), and includes contributions to the tPCB concentration from homolog groups Cl1 through Cl9. These homologs are plotted with their corresponding target congeners in Figure 30(b–j). Note that the slopes of these curves increase sharply and become smaller with time very quickly as compared with the A1254 control curves in Figure 14.

Figure 30(a–j). Experimental PCB concentration versus exposure time for 20.2 mg of A1268 in a total volume of 9.77 L of seawater. Plot (a) shows experimental tPCBs concentration and contributing homolog group concentrations versus time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–j) are homolog group concentrations and target congener concentrations within homolog groups CI1 through CI9 versus time.

Figure 31 shows total released homolog and congener distributions compared with the initial PCB distributions determined for neat A1268 "solid." All homologs and congeners detected are normalized and plotted as percent of measured tPCBs in each matrix (seawater versus solid). In many instances, the percent contribution of an analyte to tPCBs was <0.1%, which can still be significant if the analyte dissolves into seawater, as shown in the seawater PCB distributions. The highest levels of release from neat A1268 were from homolog groups Cl2 through Cl5 and Cl7.

Figure 31(a–d). Experimental homolog and congener PCB distributions for neat A1268 solid (a and c) compared with total homolog and congener distributions of PCBs released from neat A1268 into seawater (b and d). Seawater distributions correspond to all PCBs released from A1268 during the experiment and also to the cumulative concentration endpoint for analytes plotted in Figure 30. Solid distributions correspond to the initial pre-exposure PCB content in A1268 solid, determined from the experiment mass balance. Some analytes contribute to tPCBs at levels below 0.1% and are plotted using an offset linear scale. This scale is useful to indicate their presence; however, the degree of variance at these very low sub-percentage levels is not visible on the scale shown here. These experimental variances can be seen in the mass balance tables included in Appendix C.

Fingerprints for specific A1268 seawater samples are included at key intervals across the entire experiment (exposure time). Figure 32 shows homolog groups corresponding to (a) the maximum observed dissolution rate and narrowest distribution of congeners and homologs, (b) the observed increase in tetrachlorobiphenyl and decrease in dichlorobiphenyl homolog contributions, (c) the broadest homolog and congener distributions, and (d) the final empirical dissolution rate. The corresponding target congener distributions are shown in Figure 33(a–d).

Figure 32(a–d). Homolog distributions during the A1268 dissolution experiment, normalized as percent of total, for exposure intervals: (a) 1 to 6 days, (b) 20 to 41 days, (c) 111 to 189 days, (d) 322 to 371 days.

Figure 33(a–d). Congener distributions during the A1268 dissolution experiment, normalized as percent of total, for exposure intervals: (a) 1 to 6 days, (b) 20 to 41 days, (c) 111 to 189 days, (d) 322 to 371 days.

The most concentrated seawater sample observed in the Aroclor® 1268 dissolution series was evaluated in an effort to establish an effective saturation limit for A1268 PCB analytes leaching from solids that contain A1268 under these conditions. (Analytical concentration data are included in Appendix C.) This sample (214-59B-S1-T10) occurred over the interval 20 to 41days, significantly less than the longest time-interval in the experiment, with a maximum tPCB concentration of 9118 pptr (ng/L), and contributions from homolog groups Cl2 through Cl7. However, this particular sample contained only the maxima for Cl3 and Cl4 homologs (4800 and 3500 pptr, respectively) across the entire A1268 experimental series. The maxima for Cl1 and Cl2 (33 and 1100 pptr, respectively) occurred in the leachate sample collected at 6 days, while the maximum concentrations for Cl5 through Cl7 (350, 44, and 180 pptr respectively) occurred in the leachate sample collected at 266 days. The Cl8 homolog maximum (10 pptr) occurred in the leachate sample at 111 days and then (an equivalent amount) again at 189 days. The maximum concentration for Cl9 (9.7 pptr) occurred in the first sample collected immediately after submersing the A1268 solid for the first time. Cl10 (PCB209) was never detected in any of the A1268 seawater samples. The effective A1268 saturation limit is estimated as the sum of all maximum homolog concentrations observed (10,000 pptr) and assumes that the solubility of any given homolog group would not be significantly affected (suppressed) by the presence of other dissolved homolog groups at their maximum observed concentrations. The true solubility for such a complex mixture is probably time-dependent, but as postulated for A1254, A1268, should exhibit a solubility value above the highest concentration observed (9118 pptr = 0.009118 ppm). In the absence of solubility data for A1268, we can follow the same approach demonstrated for A1254 and estimate the solubility for Aroclor[®] 1268 from the homolog solubilities compiled by Mackay, Shiu, and Ma (1992). Applying the homolog distribution for A1268 in this study to these values, the solubility range is estimated as 0.00026 to 0.0015 mg/L (ppm). However, as demonstrated for A1254, the estimation based on homolog solubilities was severely underestimated relative to empirical observed solubilities. If we assume that this would also be the case for A1268, the adjusted range for A1268 becomes 0.001 to 0.025 mg/L, giving reasonable assurance that we are below saturation across the A1268 leaching experiment, except perhaps in this particular sample. Again, as for A1254, the solubility of A1268 should be suppressed slightly in seawater.

The concentration maxima of target congeners, if detected within each of these homolog groups, deviated from their corresponding homolog group maxima as follows: Cl2/PCB8 at 20 days; Cl3/PCB18 and 28 at 20 and 69 days respectively; Cl4/PCB44, 49, and 52 at 69 days; Cl5/PCB87, 101, 105, 114, and 118 at 189 days (PCBs 123 and 126 not detected); Cl6/PCB138 and 153 at 189 and 111 days respectively (PCBs 128, 156, 157, 167, 169 not detected); and Cl7/PCBs 170, 183, 184, and 189 not detected. As with A1254, these exceptions indicate that solubility of PCBs in seawater leachate is not the only factor contributing to the leaching mechanism, i.e., insoluble PCBs in the Aroclor® matrix are probably retarding the solvation of other congeners.

If one considers that the maximum concentration observed was 9118 pptr, as indicated above (all other leachate concentrations were below this value), an estimated A1268 PCB saturation limit of 10,000 pptr was calculated, and the concentration in the total experimental volume was 4401 pptr (as indicated by the final concentration value in Figure 30a and in the cumulative concentration table in Appendix D, Aroclor[®] 1268 (A1268) Results), then the observed dissolution behavior must be limited by the neat Aroclor[®] 1268 solid matrix itself. If the Aroclor[®] could have released PCBs, then it would have been reflected as a cumulative leachate

concentration increase, at least up to the value experimentally shown as possible in an experimental A1268 seawater sample, i.e., 9118 pptr, and probably up to the estimated saturation limit of 10,000 pptr. All of these combined observations demonstrate that this neat Aroclor[®] 1268 experiment is a valid upper limit dissolution behavior for A1268 PCB congeners leaching from solid matrices. This leaching occurs from the most closely related PCB solid matrix possible, neat Aroclor[®] 1268 itself, a mixture of PCBs.

3.4.6. Bulkhead Insulation (BHI) Leaching Behavior

Figure 34(a) shows the leaching concentration curves for BHI at 25°C/~1 bar for tPCBs and contributing homolog groups Cl2 through Cl7, which are separately plotted with target congeners in Figure 34(b–g). BHI (0.520 g), containing 0.23 mg (0.044 wt%) tPCBs, was exposed to a 15.71-L total volume of seawater leachate over a leaching time of nearly 500 days and exhibited the maximum leach rate curve for all shipboard solids tested. It also approached the leach rate for the positive control curve to within three orders of magnitude. The very open/porous nature of this solid, leading to a high surface area, combined with the likelihood that PCBs are primarily coating the inorganic nature of the solid surfaces (rather than PCBs incorporated into an organic/polymer matrix), probably results in greater PCB mobility, which would lead to an increase in observed PCB "leaching" similar to what was observed for neat Aroclor® PCB matrices in results presented in this study.

Figure 34(a–g). Experimental PCB concentration versus leaching time for BHI containing 0.23 mg (0.044 wt%) tPCBs exposed to a total volume of 15.71 L of seawater leachate. Plot (a) shows the tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–g). are homolog group concentrations and target congener concentrations within homolog groups CI2 through CI7 versus leaching time.

Figure 35(a–d). Experimental homolog and congener PCB distributions for BHI solid (a and c) compared with total homolog and congener distributions of PCBs leached into seawater from BHI (b and d). The leachate distributions correspond to all released PCBs, which is also the cumulative leachate concentration endpoint for analytes presented in Figure 34. Solid distributions correspond to the initial PCB content in the BHI solid, determined using the mass balance performed at the conclusion of the leaching experiment. Analytes present below 0.1% are indicated using an offset linear scale. However, variances at these very low sub-percentage levels are not visible on the scale shown here. The mass balance tables in Appendix C should be consulted for these experimental variance values.

Fingerprints for specific samples of BHI leachate are shown at key intervals across the entire leaching experiment (exposure time). Figure 36 homolog group distributions correspond to (a) the maximum leach rate, (b) the observed increase in tetrachlorobiphenyl and decrease in dichlorobiphenyl groups, (c) the broadest homolog and congener distributions, and (d) the final empirical leach rate, also corresponding to the narrowest homolog and congener distributions. The respective target congener distributions are illustrated in Figure 37(a–d).

Figure 35(a–d). Homolog distributions during the BHI leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 14 to 21 days, (b) 69 to 83 days, (c) 118 to 167 days, (d) 398 to 454 days.

Figure 37(a–d). Congener distributions during the BHI leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 14 to 21 days, (b) 69 to 83 days, (c) 118 to 167 days, (d) 398 to 454 days.

3.4.7. Felt Gasket/Inner (FGI) Leaching Behavior

PCB concentration behaviors for FGI (2.9609 g), containing 682.0 mg (23.0 wt%) tPCBs exposed to a total leaching volume of 13.85 L at 25oC/~1 bar for nearly 500 days are shown in Figure 38(a), for which all 10 homolog groups (Cl1 through Cl10) contributed to the tPCB concentration curve behavior as a function of leaching time. Each of the 10 homolog group curves is plotted with the corresponding target congeners in Figure 38(b–k). This sample was the only shipboard solid that exhibited some leaching of all possible homolog groups.

One might consider that this sample perhaps has the highest probability of leaching the largest number of different target congeners, but it does not. Rather, the bulkhead insulation achieved this distinction because the BHI sample probably contains both Aroclor[®] 1254 and Aroclor[®] 1268, overlapping well with the target congener list, which is biased towards a larger number of more common lower chlorinated congeners found in environmental samples.

Figure 38(a–k). Experimental PCB concentration versus leaching time for FGI containing 682.0 mg (23.0 wt%) tPCBs exposed to a total volume of 13.85 L of seawater leachate. Plot (a) shows tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–k) are homolog group concentrations and target congener concentrations within homolog groups CI1 through CI10 versus leaching time.

Figure 39 shows total released homolog and congener distributions compared with the initial PCB distributions for FGI solid. All detected homologs and congeners are normalized and plotted as percent of measured tPCBs in each matrix (leachate versus solid). In many instances, the percent contribution of an analyte to tPCBs was <0.1%. Such a low level in the solid can still be significant if the analyte leaches into seawater, as shown in the leachate PCB distributions. The highest levels of release from FGI were from homolog groups Cl2 through Cl9.

Normalized distributions for specific FGI leachate samples are presented below at key intervals across the entire leaching experiment (exposure time). Figure 40 homolog group distributions correspond to (a) the maximum leach rate, (b) the broadest homolog and congener distributions, (c) the first detection of monochlorobiphenyl, and (d) the final empirical leach rate, at which point the narrowest homolog and congener distributions were observed, concurrent with a significant reduction in the octachlorobiphenyl group. The corresponding target congeners are depicted in Figure 41(a–d), where (b) shows the first detection of decachlorobiphenyl, observed only twice during leaching in this experiment

Figure 39(a–d). Experimental homolog and congener PCB distributions for FGI solid (a and c) compared with total homolog and congener distributions of PCBs leached from FGI into seawater (b and d). The leachate distributions correspond to all PCBs released during the experiment and are derived from the cumulative leachate concentration endpoint analytes plotted in Figure 38. The solid distributions correspond to the initial PCB content in FGI solid, determined from the leaching experiment mass balance performed at the conclusion of the experiment. An offset linear scale is used to plot analytes present at levels below 0.1%, but the degree of experimental variance at these very low sub-percentage levels is not visible on the scale shown here. This scale can be seen in the mass balance tables in Appendix C.

Figure 40(a–d). Homolog distributions during the FGI leaching experiment, normalized as percent of total, for leaching intervals: (a) 20 to 34 days, (b) 34 to 56 days, (c) 83 to 118 days, (d) 405 to 475 days.

Figure 41(a–d). Congener distributions during the FGI leaching experiment, normalized as percent of total, for leaching intervals: (a) 20 to 34 days, (b) 34 to 56 days, (c) 83 to 118 days, (d) 405 to 475 days.

3.4.8. Felt Gasket/Outer (FGO Leaching Behavior

The leaching concentration behavior for FGO (0.955 g), containing 112.1 mg (11.7 wt%) tPCBs, leached at 25°C/~1 bar for nearly 500 days, and exposed to 13.86-L total seawater volume is shown in Figure 42(a) for tPCB and detected homologs C11 through C18. These homolog curves are plotted in Figure 42(b–i) with the corresponding detected target congeners within each homolog group. This sample also exhibited an Aroclor® 1268 distribution and was associated with the same flange, i.e., was physically a part of the same felt gasket as the FGI sample. However, it was smaller, painted, and probably contained less Aroclor 1268 character. These were considered significant enough differences compared with FGI to expect it to exhibit a unique leaching behavior.

Figure 42(a–i). Experimental PCB concentration versus leaching time for FGO containing 112.1 mg (11.7 wt%) tPCBs exposed to a total volume of 13.86 L of seawater leachate. Plot (a) shows the tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–i) are homolog group concentrations and target congener concentrations within homolog groups Cl1 through Cl8 versus leaching time.

Figure 43 shows total released homolog and congener distributions compared with the initial PCB distributions determined for FGO solid. All detected homologs and congeners are normalized and plotted as percent of measured tPCBs in each matrix (leachate versus solid). In many instances, the percent contribution of an analyte to tPCBs was <0.1%; however, this content level in the solid can still be significant if the analyte leaches into seawater, as shown in the leachate PCB distributions. The highest levels of release from FGO were from homolog groups Cl2 through Cl9.

Figure 43(a–d). Experimental homolog and congener PCB distributions for FGO solid (a and c) compared with total homolog and congener distributions of PCBs leached from FGO into seawater (b and d). Leachate distributions are derived from the cumulative leachate concentration endpoint for analytes plotted in Figure 42 and correspond to all PCBs released during the leaching experiment. The solid distributions correspond to the initial pre-leaching PCB content in FGO solid, derived from the leaching experiment mass balance performed at the experiment conclusion. Analytes present at levels below 0.1% are plotted using an offset linear scale to indicate the presence of the analyte, but experimental variances are not visible on the scale shown. The experimental values that show the degree of variance at these very low sub-percentage levels can be found in the mass balance tables in Appendix C.

Specific leachate distributions are included below at key intervals across the entire FGO leaching experiment (exposure time). Figure 44 homolog group distributions correspond to (a) the maximum leach rate; (b) the broadest homolog and congener distributions observed, characterized by intermittent appearance of the hexachlorobiphenyl group and a single detection of the monochlorobiphenyl homolog; (c) the narrowest homolog distribution, characterized by a decrease in pentachlorbiphenyl and octachlorbiphenyl group contributions; and (d) the final empirical leach rate. The respective target congener distributions are shown in Figure 45(a–d), where (b) illustrates the last detections for PCB 87 and PCB 118 over the leaching experiment.

Figure 44(a–d). Homolog distributions during the FGO leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 42 to 69 days, (b) 69 to 111 days, (c) 230 to 265 days, (d) 377 to 454 days.

Figure 45(a–d). Congener distributions during the FGO leaching experiment, normalized as percent of total, corresponding to leaching intervals: (a) 42 to 69 days, (b) 69 to 111 days, (c) 230 to 265 days, (d) 377 to 454 days.

3.4.9. Aluminized Paint (AP) Leaching Behavior

The leaching behavior for the AP subsample (1.223 g), containing 0.52 mg (0.043 wt%) at 25°C/~1 bar for nearly 500 days and exposed to a total volume of 13.89 L of seawater leachate is shown in Figure 46(a) for tPCBs and detected homologs Cl3 through Cl7. Each of these homolog curves is again plotted with corresponding target congeners in Figure 46(b–f). This sample leached the least number of different homolog groups out of all leached solids, but this does not necessarily translate into a lower leach rate overall. The leach rate is dependent upon

the change in concentration over a change in time, not the simply the diversity of PCB congeners or homologs that leach out over time (see Subsection 4.1).

Figure 46(a–f). Experimental PCB concentration versus leaching time for AP containing 0.52 mg (0.043 wt%) tPCBs exposed to a total volume of 13.89 L of seawater leachate, Plot (a) shows tPCBs concentration and contributing homolog group concentrations versus leaching time, where the sum of the homolog curves is equal to the upper tPCB curve. Plots (b–f) are homolog group concentrations and target congener concentrations within homolog groups Cl3 through Cl7 versus leaching time.

Figure 47 shows total released homolog and congener distributions compared with the initial PCB distributions for AP solid. The detected homologs and congeners are normalized and plotted as percent of measured tPCBs in each matrix (leachate versus solid). In both matrices, the percent contribution of some analytes to tPCBs was <0.1%. Such a low level in the solid can still be significant if the analyte leaches into seawater, as shown in the leachate PCB distributions. The highest levels of release from AP were from homolog groups Cl3 through Cl7.

Figure 47(a–d). Experimental homolog and congener PCB distributions for AP solid (a and c) compared with total homolog and congener distributions of PCBs leached from AP into seawater (b and d). The leachate distributions correspond to all PCBs released over the entire experiment and are derived from the cumulative leachate concentration endpoint for analytes plotted in Figure 46. Solid distributions correspond to the initial PCB content in AP solid, derived from the post-leaching mass balance performed at the end of the experiment. Analytes present at levels below 0.1% are plotted on an offset linear scale to indicate their presence, but this scale is not conducive to observing the degree of experimental variance at these very low sub-percentage levels. The experimental values showing the experimental variance can be found in the mass balance tables in Appendix C.

Normalized distributions are shown for specific AP leachate samples at key intervals across the entire leaching experiment (exposure time). Figure 48 homolog group distributions correspond to (a) the maximum leach rate, broadest homolog and congener distributions, and a single detection of the trichlorobiphenyl group, (b) the final detection of the hexachlorobiphenyl group, (c) increase of the tetrachlorobiphenyl group with a concurrent decrease in pentachlorobiphenyl group, and (d) the final empirical leach rate, characterized by the narrowest homolog and congener distributions (entirely tetrachlorobiphenyl). The corresponding target congener distributions are depicted in Figure 49(a–d), where (a) illustrates the single detection of PCB 28 and the final detection of PCB 184 in the leaching experiment.

Figure 48(a–d). Homolog distributions during the AP leaching experiment, normalized as percent of total, for leaching intervals: (a) 7 to 21 days, (b) 147 to 189 days, (c) 273 to 315 days, (d) 399 to 469 days.

Figure 49(a–d). Congener distributions during the AP leaching experiment, normalized as percent of total, for leaching intervals: (a) 7 to 21 days, (b) 147 to 189 days, (c) 273 to 315 days, (d) 399 to 469 days.

4. RESULTS AND DISCUSSION

4.1. AVERAGE LEACH RATE CALCULATIONS

The average leach rate for any given analyte was calculated as described in Equation 5. The average leach rates calculated for each sampling interval across the entire leaching experiment or exposure time were then plotted as a function of absolute exposure/ leaching time.

To evaluate average leach rate dynamics as a function of time, each experimental concentration versus time plot above was converted into an average leach rate versus time plot, shown in the sections below. These average leach rate curves can be related to the slopes between adjacent points on the respective concentration versus time curves and plotted as a function of time.

Leach rates for all analytes for all leaching experiments first achieved some maximum value over days to months, and then slowly decreased over the remainder of the leaching series (experiment). In some instances, we observed erratic leaching behavior typically shown very early in the leaching process by extreme variations (increases and decreases up to ~ an order of magnitude) in leach rate. It is thought that unstable behavior can be attributed to physical and chemical conditioning processes that a shipboard solid might undergo upon seawater exposure. These might include changes in surface wetting properties, rinsing of outer solid surfaces, solid degradation and/or decomposition processes, and other processes that change the accessibility of seawater to the PCBs in the solid. Generally, a curve that first exhibited unstable behavior was followed by an average leach rate curve that was considered indicative of the stabilized leaching condition. These curves were qualitatively evaluated relative to a practical leaching model, for which the leach rate is expected to exhibit some variance upon initial seawater exposure and then achieve a stabilized release condition. This model describes a leach rate increase up to some maximum over a period of time that may or may not be observable within the experimental timeframe. Subsequently, a constant or decreasing rate with time should be observed as PCBs are slowly depleted at different rates from the seawater accessible solid interface (SASA). After this maximum or plateau in rate, leaching eventually becomes limited by PCB availability, i.e., becomes diffusion-limited (limited by transport from the innermost regions of the solid to the leaching surface (Figure 3).

For each shipboard solid leaching experiment, the tPCB leach rate is plotted with the contributing homolog leach rates. Correspondingly, each homolog leach rate is then plotted with that homolog group's contributing target congener leach rates. The data are in Appendix D with the cumulative concentration curve data plotted in previous sections, and are empirically derived leach rates with no adjustment made to very low or near-MDL analyte concentrations evaluated as part of the respective uncertainty analyses and evaluation. If a homolog group or a target congener was not detected, a rate could not be calculated (represented as zero in Appendix D) for that leaching interval, and therefore is not plotted as part of the curve. These are identified by discontinuities in the plotted leach rate curves.

4.1.1. Aroclor® 1254 (A1254) Analytical Control Dissolution Rates

The plots in Figure 50(a–h) illustrate the dissolution rate behavior for the Aroclor[®] 1254 positive analytical control. These curves are most useful for establishing an upper limit as a seawater PCB solvation capacity for A1254 as a reference point for the shipboard solid leach rate curves that follow, for which A1254 is present in the solid. PCB leaching from shipboard solids

relies partially upon PCB dissolution, with the shipboard solid matrix exerting an inhibitory influence on the solubility component of the leaching mechanism. One might expect a very different physical process for placing a solid such as neat A1254 into seawater, considering the absence of shipboard solid matrix. However, the Aroclor[®] is itself a solid matrix and can behave like a shipboard solid matrix, although the matrix is only of a mixture of different PCB congeners that is itself dissolving. Each A1254 PCB congener resides in (and is released from) this solid matrix, and as a result, only PCB-PCB interactions in the A1254 solid control the release in concert with individual PCB solubilities. In contrast, the interaction between PCBs and a shipboard solid matrix is expected to dominate during shipboard solid leaching if the PCBs are dispersed homogeneously throughout the solid. If PCBs are phase-separated in a shipboard solid, with domains of PCBs dispersed in a PCB matrix similar to an Aroclor[®], PCB–PCB interactions would be increased relative to PCB-shipboard solid interactions, and a combination of these behaviors would dictate the observed leach rate behavior. PCBs could also be selectively phase-separated, that is, some regions of the shipboard solid could be rich in a particular PCB congener or congeners even though the bulk composition is closely matched with a particular Aroclor[®]. A very small congener-rich phase could effect the observed leached congener distribution, particularly if the phase is present at the interface (SASA). Determining the interfacial compositions or relative magnitudes of PCB-PCB and various PCB-shipboard solid interactions at the molecular level is beyond the scope of this study; however, although the cohesive (PCB– PCB) interaction is probably stronger, the release is probably greatly enhanced because the Aroclor® matrix itself is dissolving and influencing (increasing) the dissolution. This dynamic dissolution behavior of the PCB matrix is a fundamental difference between a neat Aroclor's® release behavior and release from PCBs homogeneously dispersed in inert shipboard solid matrices. For this reason, the neat Aroclor® analytical control behavior can only be considered a measure of A1254 PCBs solvation capacity in seawater under the leaching conditions of the study, rather than a leaching surrogate or leaching control, and only represents the dissolution component of those PCBs uninhibited by the solid matrix at active leaching surfaces of shipboard solids. Neat Aroclor® 1254 can, however, be considered a surrogate/control for the leaching behavior of highly mobile material matrices such as oils or greases that contain Aroclor® 1254.

Each average dissolution rate curve above describes the release behavior in what would be the worst-case release scenario for a solid containing A1254 at the interface (SASA), in which neat Aroclor® 1254, a complex mixture of PCB congeners, is exposed to seawater and allowed to dissolve until limited only by availability from the Aroclor[®] itself (total dissolution). Note that the process monitored above was not a "leaching" control or surrogate for understanding the shipboard solid leaching mechanism, except perhaps the PCB dissolution component. Nor was it a solubility experiment, where an excess of the neat Aroclor® would be placed in a known volume of seawater and allowed to equilibrate until saturation was reached and no more solid was observed to dissolve. Such a process would perhaps take anywhere from hours to days before being limited by the PCB concentration in seawater (true saturation limit), at which point, the process would be complete. The experimental design used in this study resulted in the neat Aroclor[®] solid matrix itself limiting the availability of PCBs at the SASA, which dictates the dissolution behavior. For shipboard solid experiments, the experimental design called for seawater exchange at specific sample collection intervals to avoid saturation of the seawater as indicated by tPCB screening levels for A1254 congeners, but for Aroclor® dissolution experiments, saturation was considered a possibility during dissolution intervals (between seawater

sampling/exchange points). This design, in effect, results in a neat Aroclor[®] dissolution control curve that represents the expected uninhibited A1254 PCB seawater dissolution behavior, under the specific experimental conditions used in shipboard solid leaching measurements. Because of this similarity in leaching conditions, Aroclor[®] results are, at times, referred to as "leaching." Inadvertent reference to Aroclors[®] "leaching" should be in the context of positive analytical controls, not "leaching" controls or surrogates for the leaching process defined by PCBs leaching from inert solid matrices. Similarly, the term "leachate" is used generically for the seawater surrounding a sample from which PCBs dissolve.

Figure 50(a–h). Plot (a) shows experimental tPCBs average dissolution rate and contributing homolog group average dissolution rates versus time for neat Aroclor[®] 1254. The sum of the homolog average dissolution rates equals the tPCBs average dissolution rate curve (solid black squares). Plots (b–h) show homolog group average dissolution rates and corresponding target congener average dissolution rates within those detected homolog groups (CI1–CI7) versus time for neat Aroclorv 1254. Lines connecting adjacent data points indicate detection in consecutive seawater samples (continued dissolution of that PCB congener or homolog group), while no line indicates a discontinuity in dissolution (analyte not detected in an adjacent seawater sample). Non-detected target congeners within detected homolog groups included PCB 126 (CI5); PCB 169 (CI6); and PCBs 170, 183, 184, 187, and 189 (CI7).

In the A1254 average dissolution rate curves (Figure 50a-h), there is some indication of rapid initial dissolution, as suggested by the apparent spike observed in the average rate between day 62 and day 69. Complete evaluation of this type of behavior cannot be addressed in this study because the leaching data collection interval was too long because of sampling logistics (would require real-time data collection with acquisition time shorter than the kinetics associated with PCB dissolution). However, we can consider the calculated average rates between 42 and 62 days, between 62 and 69 days, and between 69 and 111 days. These data are 390 (= 7.803) pptr/20 days), 1253 (= 8,775 pptr/7 days), and 286 (= 11,992 pptr/42 days), respectively. While these average dissolution rates are not many orders of magnitude apart, they are significantly different, as evidenced by the practical explanation for the observed spike, that is, it only took 7 days to change by 8,775 pptr, exceeding the preceding concentration change of 7,803 pptr, which took 20 days, nearly three times as long. Also, the subsequent concentration change (11,992 pptr) was larger by 3,217 pptr, but it took six times longer to reach this concentration, an indication of limiting behavior by the Aroclor® matrix, if indeed rapid PCB dissolution occurred initially. These observations reveal that a calculated average leach rate magnitude appears to be dictated somewhat by the time-interval over which one might allow the release to occur before sampling, but this is not an experimental artifact. Rather this is related to availability of PCBs at the SASA and reflects the functional limiting of complex PCB release by the solid matrix. Note that the calculated rates in this study are not instantaneous (distinct rates corresponding to a distinct point

in leaching time), but lower resolution averages calculated over a leaching time-interval that cannot capture the dynamics of the limiting behavior, only the overall effects of the limiting behavior.

The observed Aroclor® leaching behaviors in the A1254 average dissolution rate versus time curves are valid and necessary positive analytical controls for evaluating the PCB solvation capacity of the seawater under the empirical leaching conditions, provided that a shipboard solid contains Aroclor[®] 1254 or similar Aroclor[®], e.g., 1260). To this end, each concentration leaching curve in Subsection 3.4 for shipboard solids that contained a significant amount of A1254 and/or 1260, but not A1268, were validated against the neat Aroclor[®] 1254 concentration versus time curves also in Subsection 3.4 (black rubber pipe hanger liner, electrical cable, and foam rubber/ Ensolite®). We confirmed that most shipboard solid leachate PCB concentrations were all lower than concentrations for the Aroclor[®] analytical controls, consistent with PCB release suppressed only by the shipboard solid matrix (diffusion-limited). A similar comparison was also performed on the raw concentration data in Appendix C for all analytes in individual seawater samples across the experimental timeframes, with significant suppression of PCB concentrations by the shipboard solids observed. The average leach rates subsequently calculated and plotted for these solids are thus below the effective saturation limit and considered valid measures of release. The neat A1254 results can also be used to estimate the worst-case leaching behavior for materials not tested in this work that might contain A1254. For example, A1254 results can be used as a proxy for mobile A1254 or 1260-containing oils and greases.

Each analyte in the A1254 average leaching curves was extrapolated beyond the experimental timeframe using standard data-treatment and curve-fitting methods described in Subsection 2.13. These results were especially useful for demonstrating that average leach rates are expected to continue decreasing beyond the average leach rates experimentally determined in this study. All regression analyses (curve-fit plots and associated ANOVA results) can be found in Appendix A for all analytes. Results of curve-fitting for A1254 are plotted for tPCBs only in Figure 51 to illustrate how the leach rate (predicted value with upper and lower 95th percentile confidence and prediction limits) is expected to decrease beyond the experimental timeframe. These values, extrapolated to 1,000 years, are tabulated below the figure. The final empirical tPCBs average value is included as a reference (3,505 ng/g shipboard solid-day at 433 days).

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
433	3505				
597.28962	2607.38024	5021.29955	1353.91877	8178.85457	831.22052
1493.48334	850.17907	2610.14027	276.92169	3665.95851	197.16657
3734.35667	277.21482	1385.69414	55.45817	1784.2291	43.07074
9337.51277	90.39044	740.42725	11.03475	903.61604	9.04193
23347.83539	29.47328	396.74147	2.18952	467.26176	1.85907
58379.72389	9.61025	212.89281	0.43382	244.52286	0.3777
145974.65266	3.13358	114.33564	0.08588	128.90918	0.07617
365000	1.02175	61.43775	0.01699	68.28956	0.01529

Figure 51. A1254 tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over the 1,000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.1.2. Black Rubber Pipe Hanger Liner (BRPHL) Leach Rates

This leached sample contained 0.16 wt% tPCBs with A1254 likely to be the primary Aroclor component (nominally 97% of the PCB content) with a small amount of Aroclor 1260 identified (nominally 3% of the PCB content), as indicated in Table 9. The average leach rate curves for BRPHL are shown in Figure 52(a–g) for detected homologs Cl1 through Cl5, and for only those target congeners detected within each homolog group. The average leach rate values for tPCBs lie predominantly in the 1-10 ng/g shipboard solid-day range, significantly lower (by 3 orders of magnitude) than the tPCBs average leach rate for A1254. This lower rate indicates significant suppression of PCB leaching by the BRPHL polymer matrix. Note that the Cl7 homolog and target congener PCB184 were only detected in the earliest stages of leaching, and

the leaching had stopped for these analytes by the end of the first month of leaching (see Figure 52g).

Figure 52(a–g). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for BRPHL. The sum of the homolog average leach rate curves is equal to the tPCBs average leach rate curve (solid black squares). Plots (b-g) show the detected homolog group average leach rates and corresponding target congener average leach rates within those homolog groups (Cl1 through Cl5, and Cl7) versus leaching time for BRPHL. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCB 77 (Cl4); PCBs 114, 123, and 126 (Cl5); and PCBs 170, 180, 183, 187, and 189 (Cl7).

The above curves were extrapolated beyond the experimental timeframe using standard data-treatment and curve-fitting methods as described in Subsection 2.13. These results are summarized for tPCBs only in Figure 53, with detailed curve-fit plots and ANOVA results included in Appendix A for all analytes. These values, extrapolated to 1,000 years, are tabulated below the figure. For reference purposes, the final experimental data point corresponds to a tPCBs average leach rate of 0.66 ng/g shipboard solid-day at 475 days.

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
475	0.66				
597.28962	0.6539	0.77635	0.55077	1.11353	0.38399
1493.48334	0.40379	0.49434	0.32983	0.69499	0.2346
3734.35667	0.24935	0.31617	0.19665	0.43524	0.14285
9337.51277	0.15397	0.20278	0.11692	0.27342	0.08671
23347.83539	0.09508	0.13028	0.06939	0.17225	0.05248
58379.72389	0.05871	0.0838	0.04114	0.1088	0.03169
145974.65266	0.03626	0.05395	0.02437	0.06888	0.01908
365000	0.02239	0.03475	0.01443	0.0437	0.01147

Figure 53. Extrapolation results for BRPHL tPCBs average leach rate (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over the 1,000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.1.3. Electrical Cable (EC) Leach Rates

The tPCB content for this shipboard solid sample was 0.12 wt%, with the likely primary component identified in Table 9 as (nominally) 91% Aroclor® 1254, with a possible Aroclor® 1260 component (nominally 8%), and an even smaller amount of Aroclor® 1242 possible (nominally 1%). The average leach rate curves for EC are plotted in Figure 54(a–i), with average leach rate curves for tPCBs, homolog groups Cl2 through Cl7, Cl9 through Cl10, and each of these homolog groups' target congeners. The average leach rates for EC are generally below 0.2 ng/g shipboard solid-day, 4 orders of magnitude below the A1254 average leach rates, signifying substantial leaching suppression by the EC solid matrix. Most leaching occurred in homolog groups Cl4 through Cl6 across the entire leaching timeframe, while many remaining detected homolog groups and corresponding target congeners were detected only sporadically.

Figure 54(a–i). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for EC. The sum of the homolog average leach rate curves is equal to the tPCBs average leach rate curve (solid black squares). Plots (b–i) show homolog group average leach rates and corresponding target congener average leach rates within those detected homolog groups (Cl2 through Cl7, Cl9 and Cl10) versus leaching time for EC. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCBs 114, 123, and 126 (Cl5); PCBs 156, 157, 167, 169 (Cl6); PCBs 170, 180, 183, 187, and 189 (Cl7). Note that Cl10 and PCB209 should be experimentally identical and are plotted to demonstrate this concurrence.

The average leach rate curves for EC were extrapolated beyond the experimental time frame using standard data-treatment and curve-fitting methods described in Subsection 2.13. These results are summarized for tPCBs (Figure 55), with detailed curve-fit plots and ANOVA results for all analytes included in Appendix A. These values, extrapolated to 1,000 years, are tabulated below the figure. For reference purposes, the final experimental data point corresponds to a tPCBs average leach rate of 0.044 ng/g shipboard solid-day at 475 days.

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
475	0.044				
597.28962	0.06429	0.09263	0.04462	0.16202	0.02551
1493.48334	0.0439	0.07293	0.02642	0.11805	0.01632
3734.35667	0.02997	0.05811	0.01546	0.08797	0.01021
9337.51277	0.02047	0.04655	0.009	0.06671	0.00628
23347.83539	0.01397	0.03739	0.00522	0.05127	0.00381
58379.72389	0.00954	0.03008	0.00303	0.0398	0.00229
145974.65266	0.00651	0.02423	0.00175	0.03112	0.00136
365000	0.00445	0.01952	0.00101	0.02448	8.08216E-4

Figure 55. Extrapolation results for EC tPCBs average leach rate (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over the 1,000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.1.4. Foam Rubber/Ensolite® (FRE) Leach Rates

This shipboard solid sample contained 0.89 wt% tPCBs, probably composed primarily of Aroclor® 1254 (nominally 93%) and possibly Aroclor® 1260 (nominally 7%) per Table 9. Average leach rate curves are plotted in Figure 56(a–g) for tPCBs and all detected analytes (homologs Cl2 through Cl7 and corresponding target congeners) across the entire leaching timeframe. All homolog groups were present (leached) throughout, with the exception of analytes Cl7 homolog group and congeners, which appeared early in the leaching and then stopped within the first month (Figure 56g). This behavior is qualitatively very similar to the leaching behavior exhibited by BRPHL and EC for these same target analytes (the release for EC is 1 to 2 orders of magnitude lower).

Figure 56(a–g). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for FRE. The sum of the homolog average leach rate curves is equal to the upper tPCBs average leach rate curve (solid black squares). Plots (b–g) show homolog group average leach rates and target congener average leach rates within those detected homolog groups (Cl2 through Cl7) versus leaching time for FRE. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCB 77 (Cl4); PCBs 123 and 126 (Cl5) (note that PCB 114 only appeared once); PCBs 157, 167, 169 (Cl6); PCBs 170, 180, 183, 187, and 189 (Cl7).

The average leach rate curves for FRE were extrapolated beyond the experimental time frame using standard data-treatment and curve-fitting methods described in Subsection 2.13. All curve-fit plots and associated ANOVA results are in Appendix A for all homolog and target congener analytes. The results for tPCBs average leach rates are included in Figure 57 to illustrate how the (predicted) rate behaves beyond the experimental time frame. These values, extrapolated to 1,000 years, are tabulated below the figure. The final empirical tPCBs average value is included as a reference (1.89 ng/g shipboard solid-day at 469 days).

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
469	1.89				
597.28962	2.63945	3.42056	2.03671	4.69037	1.48532
1493.48334	1.63852	2.41713	1.11072	3.11933	0.86069
3734.35667	1.01717	1.72362	0.60026	2.12314	0.48731
9337.51277	0.63144	1.23335	0.32328	1.46784	0.27163
23347.83539	0.39199	0.88399	0.17382	1.02539	0.14985
58379.72389	0.24334	0.63417	0.09337	0.72135	0.08209
145974.65266	0.15106	0.45519	0.05013	0.50992	0.04475
365000	0.09378	0.32685	0.02691	0.36171	0.02431

Figure 57. Extrapolation results for FRE tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over the 1,000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.1.5. Aroclor® 1268 (A1268) Analytical Control Dissolution Rates

The A1268 plots in Figure 58(a–j) represent the positive control plots that establish a reference or upper limit dissolution rate component for solids that contain a significant amount of A1268 in the shipboard solid matrix. As observed for A1254, leaching of individual congeners comprise a fundamental dissolution behavior, and the mechanism for neat A1268 dissolution is effected similarly in that it is a PCB mixture and does not possess a shipboard solid matrix. Also, as with the A1254 control, each PCB congener in A1268 exists in (and is released from) a matrix of a mixture of PCB congeners, resulting in only PCB–PCB interactions (cohesion) in the solid contributing to the release mechanism. This is in contrast with a shipboard solid, where the PCB-shipboard solid matrix interaction is the primary interaction during leaching and the PCB–PCB

interaction in the solid; if PCBs are homogeneously dispersed in a matrix without phase-separated domains, it is a much less significant contributor to the release behavior/mechanism. As mentioned previously, PCBs could also possibly be selectively phase-separated in some regions of the shipboard solid, rich in a particular PCB congener or congeners, in spite of the bulk composition closely matching the distribution for a particular Aroclor. A very small congener-rich phase present at the interface (SASA) could significantly effect the observed leached congener distribution. For reasons similar to those discussed for Aroclor. 1254, the neat Aroclor. 1268 analytical control behavior can only be considered a measure of A1268 PCB solvation capacity in seawater under the leaching conditions of the study, and is representative of the dissolution component of those PCBs uninhibited by the solid matrix at active leaching surfaces of shipboard solids. Aroclor. 1268 is not a valid leaching control for shipboard solids; however, neat Aroclor. 1268 can be considered a surrogate for the leaching behavior of highly mobile material matrices such as oils or greases that contain Aroclor. 1268.

Figure 58(a–j). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for A1268. The sum of the homolog average leach rate curves is equal to the upper tPCBs average leach rate curve (solid black squares). Plots (b-j) show homolog group average leach rates and corresponding target congener average leach rates within detected homolog groups (CI1 through CI9) versus leaching time for A1268. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCBs 123 and 126 (CI5); PCBs 128, 156,157, 158, 167, and 169 (CI6); PCBs 170, 183, 184, and 189 (CI7); and PCB 195 (CI8).

Each of the above A1268 average dissolution rate curves corresponds to a worst-case A1268 release scenario for a solid containing A1268 at the interface (SASA). As indicated for the neat A1254 experiment, this type of leaching experiment was not a "leaching" control/surrogate or a solubility experiment, where an excess of the neat Aroclor® in a known volume of seawater would equilibrate until saturation was reached, leaving undissolved solid. A solubility experiment is limited by PCB saturation in the seawater. In this study, the neat Aroclor® solid matrix itself limited the dissolution behavior, a feature of the experimental design; the seawater leachate was exchanged at sample collection intervals selected to avoid A1254 or A1268 saturation in shipboard solid leaching experiments, but this did not preclude the possibility of saturation between leachate exchange/sampling points. Effectively, a neat Aroclor® positive control curve represents the seawater A1268 PCB dissolution behavior of Aroclor® 1268 under the experimental leaching conditions used in the shipboard solid leaching determinations. Because of this similarity, Aroclor® results are occasionally called "leaching," and an inadvertent reference to Aroclors[®] "leaching" should be in the context of positive analytical controls. This does not imply that Aroclor® results are suitable for use as "leaching" controls for the leaching process defined by PCBs leaching from inert solid matrices.

Each *concentration versus time* leaching curve in Subsection 3.4 for shipboard solids probably contains A1268 only or A1268 with A1254 and/or A1260 (FGI, FGO, BHI, and AP), were evaluated against the neat Aroclor[®] 1268 *concentration versus time* curves, also in Subsection 3.4. BHI and AP results were also evaluated against A1254 because this Aroclor[®] is possibly present in significant amounts in addition to A1268. We confirmed that most of the shipboard solid leachate PCB concentrations were *lower*, consistent with PCB release being suppressed by the shipboard solid matrix itself. This type of comparison was also performed on the raw concentration data in Appendix C for all analytes in individual seawater samples across the experimental timeframes, with similar significant suppression of PCB concentrations by the shipboard solids observed. As a result, the average leach rates subsequently calculated and plotted for these solids are considered valid leaching behaviors, and occur well below the effective saturation limit. The A1268 leaching results can also be used to estimate the worst-case leaching behavior for mobile materials containing A1268, but are not tested in this report, e.g., oils and greases that contain A1268 can be approximated by A1268 results.

The average leach rate curve data were fit in the decreasing portion of the curves and extrapolated beyond the final experimental data point. Details for the curve fitting and extrapolation are in Appendix A; however, the results for tPCBs only are included in Figure 59. These values, extrapolated to 1,000 years, are tabulated below the figure. The final empirical tPCBs average value is included as a reference (838.0 ng/g shipboard solid-day at 371 days).

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
371	838.0				
721.79008	2065.44554	5727.09147	744.89211	26146.73518	163.15862
2037.31367	1351.77061	4447.29738	410.87511	18415.72424	99.22411
5750.49054	884.69231	3504.30547	223.34825	13183.5445	59.36799
16231.24697	579.00392	2787.45135	120.26956	9577.88476	35.00204
45814.07039	378.94027	2231.31173	64.35485	7050.43822	20.36692
129314.09703	248.00476	1793.99938	34.28449	5250.64023	11.71407
365000	162.31149	1446.95433	18.20722	3950.43643	6.66889

Figure 59. A1268 tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1,000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.1.6. Bulkhead Insulation (BHI) Leach Rates

This shipboard solid contained 0.044 wt% tPCBs; nominally 15.3% A1268, 31.3% A1260, and 54.3% A1254, as indicated in Table 9. BHI exhibited the highest leach rates for all the shipboard solids tested; however, these leach rates were still ~2 orders of magnitude lower than those for either neat Aroclor[®]. Average leach rate curves are plotted in Figure 60(a–g), represented by homolog groups Cl2 through Cl7. Homolog groups Cl2 and Cl7, and corresponding target congeners, leached initially and then became undetectable just after 200 days of exposure.

Figure 60(a–g). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for BHI. The sum of the homolog average leach rate curves is equal to the tPCBs average leach rate curve (solid black squares). Plots (b–g) show homolog group average leach rates and corresponding target congener average leach rates within detected homolog groups (Cl2 through Cl7) versus leaching time for BHI. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCBs 123 and 126 (Cl5); PCB 169 (Cl6); and PCB 189 (Cl7).

The average leach rate curves for BHI were each extrapolated using curve-fits of data in the decreasing portion of the curves. Using standard methods of data-treatment and curve-fitting described in Subsection 2.13, Apppendix A provides details for cyrve-fitting and extrpolation. Figure 61 includes the results for tPCBs only. These values, extrapolated to 1,000 years, are tabulated below the figure. The final empirical tPCBs average value is included as a reference (24.5 ng/g shipboard solid-day at 454 days).

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
454	24.5				
609.43782	34.4489	52.56691	22.57554	88.96799	13.3388
1240.296	22.64329	40.59459	12.63022	63.47185	8.07789
2524.1856	14.88345	31.66899	6.99477	46.37752	4.77639
5137.09059	9.78291	24.81893	3.85614	34.49882	2.77416
10454.73826	6.43031	19.49721	2.12076	26.00223	1.59021
21276.93684	4.22665	15.33808	1.16472	19.78835	0.90278
43301.70973	2.77818	12.07688	0.6391	15.16757	0.50887
88125.3763	1.8261	9.51476	0.35047	11.6885	0.28529
179348.15959	1.2003	7.49934	0.19211	9.04453	0.15929
365000	0.78896	5.91264	0.10527	7.02099	0.08866

Figure 61. BHI tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1,000-year extrapolation period. See Appendix A for details and homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.1.7. Felt Gasket/Inner (FGI) Leach Rates

This shipboard solid contained 23.03 wt% tPCBs corresponding nominally to A1268 only, (Table 9). This shipboard solid exhibited the highest PCB concentration in any solid tested, yet did not exhibit the highest average leach rate out of all shipboard solids tested. A surface-areanormalized leach rate would perhaps correlate with PCB content in the solid, but this was not within the scope of this experiment, considering that the seawater accessible surface area is probably changing as a function of exposure time. As with other solids, FGI leach rates were still lower (by ~4 orders of magnitude) than those for the neat Aroclor® 1268 control. Average leach rate curves are plotted in Figure 62(a–k), represented by all homolog groups C11 through C110, the only shipboard solid to exhibit leaching for all homolog groups. Homolog groups C15 and C16 leached throughout the first half of the experiment; both became undetectable at ~250 days of exposure, and C15 reappeared once more beyond that leaching time (near 350 days). Homolog

group Cl10 was detected only twice before \sim 75 days. The remaining homolog groups leached consistently throughout the entire leaching series.

Figure 62(a–k). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for FGI. The sum of the homolog average leach rate curves is represented by the tPCBs average leach rate curve (solid black squares). Plots (b–k) show homolog group average leach rates and corresponding target congener average leach rates within detected homolog groups Cl1 through Cl10 versus leaching time for FGI. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCB 77 (Cl4); PCBs 105, 114, 123 and 126 (Cl5); PCBs 128, 138, 156,157, 158, 167, and 169 (Cl6); PCBs 170 and 189 (Cl7); and PCB 195 (Cl8).

The average leach rate curves for FGI described above were extrapolated using curve-fitting for the decreasing portion of the curves. Using the data-treatment and curve-fitting approach described in Subsection 2.13, Appendix A includes curve-fits and extrapolation details. Figure 63 summarizes the results for tPCBs only. These values, extrapolated to 1,000 years, are tabulated below the figure. The final empirical tPCBs average value is included as a reference (0.93 ng/g shipboard solid-day at 475 days).

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
475	0.93				
597.28962	2.28678	3.81706	1.37	8.74794	0.59778
1493.48334	1.71146	3.30541	0.88616	6.96722	0.42041
3734.35667	1.28089	2.89931	0.56588	5.65456	0.29015
9337.51277	0.95863	2.56001	0.35898	4.66301	0.19708
23347.83539	0.71746	2.26897	0.22686	3.89647	0.1321
58379.72389	0.53696	2.01571	0.14304	3.29132	0.0876
145974.65266	0.40187	1.79346	0.09005	2.80468	0.05758
365000	0.30076	1.5974	0.05663	2.40713	0.03758

Figure 63. FGI tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1,000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.1.8. Felt Gasket/Outer (FGO) Leach Rates

This shipboard solid contained 11.74 wt% tPCBs as Aroclor® 1268 (Table 9), similar to FGI. However, its leaching behavior was somewhat different, as shown in Figure 64(a–i). Homolog groups Cl1 through Cl8 represent the leaching behavior, with only a single Cl1 detection observed at just after 100 days of leaching. Homolog groups Cl5 and Cl8 consistently appeared early in the leaching but later appeared only sporadically. Cl6 was only sporadically detected throughout, while the other detected homolog groups consistently leached throughout. Again, as observed for FGI, this solid contained a high level of PCBs (second highest concentration), but leached at ~4.5 orders of magnitude less than the A1268 control.

Figure 64(a–i). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for FGO. The sum of the homolog average leach rate curves is represented by the tPCBs average leach rate curve (solid black squares). Plots (b–i) show homolog group average leach rates and corresponding target congener average leach rates within detected homolog groups Cl1 through Cl8 versus leaching time for FGO. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within detected homolog groups included PCBs 114, 123 and 126 (Cl5); PCBs 128, 138, 156,157, 158, 167, and 169 (Cl6); PCBs 170, 183, 184, and 189 (Cl7); and PCB 195 (Cl8).

The average leach rate curves for FGO above were extrapolated from curve fits of the tail or decreasing portion of the curves. The results of curve fitting and extrapolation. Using the standard methods of data-treatment and curve-fitting described in Subsection 2.13, Appendix A includes the results of curve-fitting and extrapolation. Figure 65 summarizes the extrapolation results for tPCBs only. These values, extrapolated to 1,000 years, are tabulated below the figure and includes the final empirical average leach rate for reference purposes (1.27 ng/g shipboard solid-day at 454 days).

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
454	1.27				
597.28962	1.74724	2.70788	1.1274	3.90491	0.7818
1493.48334	0.92149	1.97122	0.43077	2.54622	0.33349
3734.35667	0.48599	1.45706	0.1621	1.76294	0.13397
9337.51277	0.25631	1.08195	0.06072	1.25714	0.05226
23347.83539	0.13518	0.80498	0.0227	0.91051	0.02007
58379.72389	0.07129	0.59951	0.00848	0.66537	0.00764
145974.65266	0.0376	0.44674	0.00316	0.48893	0.00289
365000	0.01983	0.33303	0.00118	0.36058	0.00109

Figure 65. FGO tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.1.9. Aluminized Paint (AP) Leach Rates

The AP sample contained 0.043 wt%, nominally composed of 10.6% A1268, 47.8% A1260, and 41.6% A1254, as indicated in Table 9. The average leach rates shown in Figure 66(a–f) for this material were generally much lower than expected for this type of sample, considering the large surface area that resulted when the shipboard solid sample was collected as paint chips. The mechanism for how PCBs might be more strongly bound in this solid matrix is not understood, primarily because of the complexities of paint formulations and application methods/ techniques, e.g., repainting frequency/paint thickness. Further investigation of the leaching mechanisms for shipboard solids was outside the scope of this investigation, which has focused

only on determining the baseline leaching level. Average leach rates for AP were approximately 5 orders of magnitude below those observed for A1268 or A1254 controls. Homolog groups Cl3 through Cl7 contributed to the PCB leaching; however, Cl3 and Cl7 were detected only early in the leaching series and were undetectable after ~25 days. The leaching for Cl6 was consistent until ~200 days, after which it was no longer detected. The remaining (Cl4 and Cl5) target analytes leached in a relatively consistent manner through the entire leaching experiment timeframe.

Figure 66(a–f). Plot (a) shows experimental tPCBs average leach rate and contributing homolog group average leach rates versus leaching time for AP. The sum of the homolog average leach rate curves is represented by the upper tPCBs average leach rate curve (solid black squares). Plots (b–f) show homolog group average leach rates and corresponding target congener average leach rates within homolog groups Cl3 through Cl7 versus leaching time for AP. Lines connecting adjacent data points indicate detection in consecutive leachate samples (continued leaching of that PCB congener or homolog group), while no line indicates a discontinuity in leaching (analyte not detected in an adjacent leachate sample). Non-detected target congeners within these detected homolog groups included PCB 18 (Cl3); PCBs 66 and 77 (Cl4); PCBs 114, 123 and 126 (Cl5); PCBs 128,157, 158, 167, and 169 (Cl6); and PCBs 170, 180, 183, 187 and 189 (Cl7).

The average leach rate curves for AP above were curve-fit through the decreasing portion of the curves and extrapolated to very long leaching times using the standard data-treatment and curve-fitting described in Subsection 2.13. These results are included in Appendix A, but Figure 67 summarizes the extrapolation results for tPCBs only. These values, extrapolated to 1,000 years, are tabulated below the figure. The final empirical tPCBs average value is included as a reference (0.062 ng/g shipboard solid-day at 469 days).

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
469	0.062				
597.28962	0.78741	1.24357	0.49858	2.017	0.3074
1493.48334	0.66151	1.1786	0.37128	1.8067	0.2422
3734.35667	0.55573	1.12508	0.2745	1.64175	0.18812
9337.51277	0.46687	1.07817	0.20216	1.5091	0.14444
23347.83539	0.39222	1.03562	0.14854	1.39978	0.1099
58379.72389	0.3295	0.99621	0.10898	1.30764	0.08303
145974.65266	0.27681	0.95925	0.07988	1.22841	0.06238
365000	0.23255	0.92431	0.05851	1.15909	0.04666

Figure 67. AP tPCBs average leach rate extrapolation results (red line/tabulated values) beyond the final experimental average leach rate value (included in italics for reference purposes). The 95% upper and lower confidence (UCI and LCI) and prediction intervals (UPI and LPI) are also shown (green and blue lines/tabulated values) over a 1,000-year extrapolation period. See Appendix A for details and for homolog and congener-specific average leach rate curve-fit results. Average leach rate units are ng PCB/g shipboard solid-day.

4.2. SUMMARIZED LEACH RATE STUDY RESULTS.

Table 10(a–i) summarizes leach rate study results to provide an at-a-glance synopsis of each shipboard solid leaching experiment and Aroclor® dissolution experiment. These synopses include calculated minimum, maximum, mean, standard deviation, and medians for leach rates in Appendix C; the recommended empirical leach rate for each analyte to be used as a long-term, conservative leach rate; and the results of regression analyses performed on the decreasing portion tabulated for each analyte curve detailed in Appendix A. The final leach rate curve endpoints listed in these tables were evaluated against regression analyses for those analytes with sufficient data and predictive power (small p-value). None of these final values were well outside the regression analysis confidence limits at the 95th percentile.

Table 10(a–i). Summary of Empirical Dissolution Rate Behaviors/Curves/Regression Analyses for A1254 and A1268 (a and e), and Empirical Leach Rates for BRPHL, EC, FRE, BHI, FGI, FGO, and AP (b, c, d, f, g, h, i), respectively. Regression analyses correspond only to the post-maximum portion of those leach rate curves with a significant number of leach rate data points beyond the observed maximum (regressions for N>4, including the maximum), as described in Appendix D and Subsection 2.13.

a.		Lea	ch Rate	Results	5		Post-N	laxim un	n Regres	sion Re	sults (lo	g[AvgLR] = B log[time] + A	4)
Aroclor® 1254 (A1254)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)		Median (ng PCB/g shipboard solid-day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)		Z	В	Upper Confidence Interval B	Lower Confidence Interval B	Ą	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
tPCBs	0.0E+00	5.4E+04	9.0E+03	1.2E+04	1.3E+04	3.5E+03	9	-1.2228	-0.67592	-1.76969	6.81093	8.08618	5.53567	0.79974	1.14E-03
Cl1	6.5E+00	5.5E+02	7.5E+01	1.5E+02	1.7E+02	2.7E+01	14	-0.51719	-0.3849	-0.64948	3.02155	3.28889	2.75421	0.85808	< 0.0001
Cl2	2.5E+01	1.6E+03	3.1E+02	5.2E+02	4.6E+02	1.4E+02	14	-0.40164	-0.3849	-0.64948	3.38651	3.28889	2.75421	0.86145	< 0.0001
PCB8	1.4E+01	4.9E+02	1.3E+02	1.8E+02	1.6E+02	5.6E+01	13	-0.50621	-0.36773	-0.64469	3.24345	3.53386	2.95304	0.85475	< 0.0001
Cl3	3.1E+01	8.5E+02	2.6E+02	3.2E+02	2.4E+02	1.3E+02	9	-0.91788	-0.5608	-1.27495	4.58089	5.41354	3.74824	0.84071	5.02E-04
PCB18	2.2E+00	3.6E+02	1.1E+02	1.4E+02	1.1E+02	5.9E+01	9	-0.72088	-0.35063	-1.09113	3.72331	4.58669	2.85994	0.75174	2.47E-03
PCB28	1.6E+01	4.4E+02	1.1E+02	1.4E+02	1.2E+02	3.0E+01	9	-1.26974	-0.91062	-1.62886	4.84606	5.68347	4.00866	0.90897	<0.0001
Cl4	6.5E+02	2.3E+04	3.3E+03	5.1E+03	5.6E+03	1.9E+03	9	-1.11961	-0.65368	-1.58553	6.23989	7.32636	5.15342	0.82182	0.00074907
PCB44	6.5E+01	3.2E+03	7.0E+02	8.9E+02	8.1E+02	2.4E+02	9	-0.92408	-0.37459	-1.47358	4.98846	6.26979	3.70712	0.69316	0.00535
PCB49	8.9E+00	1.5E+03	2.4E+02	3.5E+02	3.9E+02	1.1E+02	9	-1.07215	-0.53342	-1.61089	4.94546	6.20171	3.68921	0.75983	2.19E-03
PCB52	1.9E+02	6.7E+03	1.6E+03	2.0E+03	1.7E+03	6.3E+02	9	-0.91101	-0.39679	-1.42522	5.28843	6.4875	4.08936	0.71487	4.09E-03
PCB66	1.2E+01	8.6E+02	5.9E+01	1.4E+02	2.3E+02	2.7E+01	9	-1.65782	-0.78289	-2.53276	5.78921	7.82942	3.74899	0.74146	0.00286
PCB77	3.1E+00	3.1E+00	3.1E+00	3.1E+00	N/A	3.1E+00									
Cl5	3.4E+02	2.6E+04	1.6E+03	3.9E+03	6.9E+03	1.2E+03	9	-1.4022	-0.73876	-2.06564	6.83448	8.38153	5.28743	0.74982	0.00157
PCB87	5.3E+00	1.8E+03	2.5E+02	3.7E+02	4.6E+02	7.7E+01	9	-1.35828	-0.57518	-2.14139	5.55465	7.38073	3.72857	0.70615	0.00456
PCB101	4.3E+01	2.1E+03	2.6E+02	3.9E+02	5.6E+02	1.3E+02	9	-1.12569	-0.27448	-1.97689	5.1866	7.17149	3.20172	0.58281	0.01668
PCB105	6.7E+00	5.3E+02	2.8E+01	7.8E+01	1.4E+02	8.4E+00	9	-1.93764	-0.92409	-2.9512	6.25348	8.61693	3.89002	0.74485	0.00273
PCB114	3.5E+00	8.7E+00	5.1E+00	6.0E+00	2.2E+00	8.7E+00									
PCB118	1.2E+01	1.2E+03	7.9E+01	2.2E+02	3.3E+02	1.5E+01	9	-2.10255	-1.08461	-3.1205	6.96128	9.33497	4.58759	0.77313	0.00179
PCB123	1.1E+01	1.1E+01	1.1E+01	1.1E+01	N/A	1.1E+01									
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl6	8.8E+01	2.6E+03	3.8E+02	6.2E+02	7.1E+02	1.4E+02	9	-1.29967	-0.56294	-2.0364	5.69548	7.41342	3.97754	0.71313	0.00418
PCB128	4.3E+00	7.4E+01	1.5E+01	2.2E+01	2.2E+01	4.3E+00	8	-1.08297	-0.07485	-2.09109	3.71625	6.03552	1.39698	0.53522	0.03913
PCB138	5.6E+00	2.9E+02	4.2E+01	7.4E+01	9.1E+01	1.2E+01	9	-1.45902	-0.4469	-2.47113	5.13034	7.49043	2.77024	0.62405	0.01131
PCB153	4.2E+00	3.7E+02	4.2E+01	8.8E+01	1.2E+02	1.4E+01	9	-1.37978	0.19641	-2.95596	4.86989	8.54532	1.19446	0.37969	0.07722
PCB156	2.8E+00	1.1E+01	4.8E+00	5.3E+00	2.9E+00	2.8E+00									
PCB157	1.1E+00	1.5E+00	1.3E+00	1.3E+00	2.3E-01	1.5E+00									
PCB167	1.6E+00	4.2E+00	2.9E+00	2.9E+00	1.8E+00	4.2E+00									
PCB169	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

Aroclor 1254 (A1254)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)		Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)		uay) Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	Z	В	Upper Confidence Interval B	Lower Confidence Interval B	V	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
Cl7	7.2E+01	7.2E+01	7.2E+01	7.2E+01	N/A	7.2E+01									
PCB170	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB180	4.2E+00	4.2E+00	4.2E+00	4.2E+00	N/A	4.2E+00									
PCB183	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB184	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB187	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
C19	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB206	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl10	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB209	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

b.		Lea	ch Rate	Results	S		Post-N	/laximur	n Regres	sion Res	sults (log	g[AvgLR]	= B log	time] +	A)
Black Rubber Pipe Hanger Liner (BRPHL)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	Z	В	Upper Confidence Interval B	Lower Confidence Interval B	V	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
tPCBs	6.6E-01	2.7E+02	1.5E+00	1.8E+01	6.7E+01	6.6E-01	14	-0.52599	-0.47736	-0.57463	1.27577	1.3821	1.16944	0.97885	< 0.0001
Cl1	1.2E-01	9.1E-01	5.2E-01	5.2E-01	3.6E-01	7.5E-01	12	-0.31693	-0.2708	-0.36306	-0.27111	-0.16962	-0.3726	0.95907	< 0.0001
Cl2	1.2E-01	2.3E+00	4.0E-01	5.9E-01	5.8E-01	5.4E-01	13	-0.6553	0.0877	-1.3983	0.28399	1.90746	-1.33948	0.25516	0.07828
PCB8	1.2E-01	9.9E-01	2.3E-01	3.8E-01	3.2E-01	8.8E-01	13	-0.40599	-0.30001	-0.51198	-0.94355	-0.71198	-1.17513	0.866	< 0.0001
Cl3	1.2E-01	1.0E+00	3.0E-01	3.9E-01	2.9E-01	9.1E-01	13	-0.29684	-0.00037082	-0.5933	-0.19319	0.45459	-0.84098	0.30628	0.04976
PCB18	1.1E-01	5.5E-01	2.2E-01	2.4E-01	1.4E-01	1.2E-01	13	-0.36636	-0.22795	-0.50477	-0.92319	-0.62077	-1.22561	0.75524	0.00011485
PCB28	1.4E-01	8.3E-01	4.1E-01	4.3E-01	2.4E-01	1.5E-01	10	-0.42758	-0.13061	-0.72455	-0.60601	0.00647	-1.21849	0.57947	0.01054
Cl4	2.2E-01	1.5E+00	5.7E-01	7.5E-01	4.8E-01	2.6E-01	13	-0.55437	-0.39107	-0.71767	0.94073	1.29756	0.58391	0.8354	< 0.0001
PCB44	1.3E-01	8.4E-01	3.4E-01	4.0E-01	2.5E-01	4.1E-01	13	-0.50696	-0.37214	-0.64178	0.05879	0.35338	-0.23579	0.86163	< 0.0001
PCB49	1.2E-01	9.6E-01	3.0E-01	4.1E-01	2.8E-01	1.2E-01	13	-0.61917	-0.45903	-0.77932	-0.14438	0.20555	-0.49431	0.86813	< 0.0001
PCB52	1.1E-01	9.2E-01	3.1E-01	3.6E-01	2.6E-01	8.3E-01	13	-0.49425	-0.37285	-0.61565	0.33621	0.60147	0.07095	0.87951	< 0.0001
PCB66	1.1E-01	7.6E-01	2.6E-01	3.1E-01	1.7E-01	5.0E-01	13	-0.59485	-0.24066	-0.94904	-0.5919	0.182	-1.36581	0.55401	0.00352
PCB77	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl5	1.7E-01	1.3E+00	6.7E-01	6.1E-01	3.3E-01	1.8E-01	10	-0.99549	-0.40872	-1.58226	1.85473	3.24059	0.46887	0.61383	0.00447
PCB87	1.4E-01	6.4E-01	3.5E-01	3.4E-01	1.6E-01	1.4E-01	7	-0.99977	-0.75437	-1.24518	0.63206	1.18722	0.07691	0.9564	0.00013694
PCB101	1.2E-01	8.9E-01	3.4E-01	4.1E-01	2.8E-01	1.4E-01	10	-1.22506	-0.92318	-1.52694	1.33537	2.04835	0.62238	0.9163	< 0.0001
PCB105	1.2E-01	4.1E-01	2.0E-01	2.3E-01	1.3E-01	4.1E-01									
PCB114	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB118	1.4E-01	7.8E-01	3.9E-01	4.3E-01	2.2E-01	7.3E-01	5	-1.44605	-0.95492	-1.93717	1.56213	2.63935	0.48492	0.96696	0.00257
PCB123	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl6	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB128	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB138	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB153	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB156	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB157	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB167	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB169	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A		0.05==1	0.51011	1.00.000	0.440.5	0.0	0.045=5	0.00-0:	0.00==1
Cl7	3.5E-01	5.0E-01	5.0E-01	7.3E-01	5.3E-01	3.5E-01	4	-0.87772	-0.54861	-1.20683	0.41963	0.852	-0.01275	0.98504	0.00751
PCB170	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB180	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB183	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A					0.445				
PCB184	2.2E-01	5.7E-01	4.8E-01	4.2E-01	1.8E-01	5.7E-01	4	-0.90943	-0.37214	-1.22762	-0.44569	0.35338	-0.86372	0.98695	0.00655

Black Rubber Pipe Hanger Liner (BRPHL)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	Z	В	Upper Confidence Interval B	Lower Confidence Interval B	V	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
PCB187	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
C19	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB206	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl10	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB209	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

C.		Lea	ach Rate	Result	S		Post-	Maximun	n Regres	ssion Re	esults (lo	g[AvgLF	$R = B \log B$	[time] +	· A)
Electrical Cable (EC)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solidday)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	z	æ	Upper Confidence Interval B	Lower Confidence Interval B	Ą	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
tPCBs	0.0E+00	5.4E-01	1.2E-01	1.3E-01	1.3E-01	4.4E-02	14	-0.41634	-0.23313	-0.59955	-0.03602	0.36073	-0.43277	0.67138	3.36E-04
Cl1	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl2	2.2E-01	9.9E-01	3.4E-01	5.2E-01	4.2E-01	2.2E-01									
PCB8	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl3	1.3E-01	2.0E-01	1.6E-01	1.6E-01	5.1E-02	2.0E-01									
PCB18	6.8E-01	6.8E-01	6.8E-01	6.8E-01	N/A	6.8E-01									
PCB28	1.6E-01	1.6E-01	1.6E-01	1.6E-01	N/A	1.6E-01									
Cl4	2.1E-01	6.5E-01	4.2E-01	4.3E-01	1.5E-01	2.1E-01	12	-0.26155	-0.02583	-0.49728	-0.83355	-0.29192	-1.37518	0.37936	0.03297
PCB44	1.2E-01	9.9E-01	5.7E-01	5.3E-01	2.5E-01	2.7E-01	14	-0.28017	-0.15484	-0.4055	-1.62759	-1.35618	-1.899	0.66409	0.00038452
PCB49	1.1E-01	6.8E-01	2.2E-01	2.6E-01	1.5E-01	1.1E-01	13	-0.34807	-0.22605	-0.47009	-1.93671	-1.67562	-2.1978	0.78184	< 0.0001
PCB52	1.1E-01	9.9E-01	1.8E-01	3.6E-01	3.3E-01	6.1E-01	14	-0.21297	-0.09694	-0.32899	-1.44774	-1.19647	-1.699	0.57133	0.00176
PCB66	1.3E-01	9.9E-01	2.3E-01	4.1E-01	3.5E-01	2.5E-01	10	-0.11283	0.378	-0.60366	-2.66793	-1.53168	-3.80419	0.03393	0.61045
PCB77	1.6E-01	1.6E-01	1.6E-01	1.6E-01	N/A	1.6E-01									
Cl5	1.2E-01	9.9E-01	6.0E-01	5.5E-01	2.9E-01	2.3E-01	14	-0.2883	-0.06726	-0.50934	-0.61403	-0.13535	-1.09271	0.40227	0.01485
PCB87	1.3E-01	6.4E-01	4.5E-01	4.1E-01	1.5E-01	1.3E-01	10	-0.31829	0.18122	-0.81781	-1.70219	-0.5348	-2.86959	0.21253	0.17992
PCB101	1.8E-01	9.6E-01	6.1E-01	5.9E-01	2.6E-01	2.1E-01	11	-0.51633	-0.06616	-0.9665	-1.05476	0.0032	-2.11271	0.42792	0.02899
PCB105	1.2E-01	9.9E-01	2.2E-01	3.0E-01	2.7E-01	2.2E-01	5	-0.44342	1.27563	-2.16246	-1.76382	2.31839	-5.84604	0.18342	0.47186
PCB114	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A		0.50050	0.17(00	1.01120	1.00200	0.10.40.5	2 0 42 1	0.61740	0.01206
PCB118	2.0E-01	7.2E-01	4.4E-01	4.4E-01	1.9E-01	2.6E-01	9	-0.59373	-0.17608	-1.01138	-1.08308	-0.12405	-2.0421	0.61748	0.01206
PCB123	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A		0.0446	0.60700	2 40700	0.52600	4.20202	2.15005	0.5541	0.12017
Cl6	1.7E-01	9.9E-01	2.6E-01	4.3E-01	3.0E-01	1.7E-01	4	-0.9446	0.60789	-2.49709	0.52608	4.20303	-3.15087	0.7741	0.12017
PCB128	2.4E-01	2.4E-01	2.4E-01	2.4E-01	N/A	2.4E-01									
PCB138	1.3E-01	9.9E-01	2.5E-01	3.4E-01	3.3E-01	2.4E-01	4	0.62444	1.52516	2.70402	1 24540	2.06024	(2(022	0.42626	0.2205
PCB153	2.2E-01 0.0E+00	9.9E-01 0.0E+00	2.3E-01 N/A	3.9E-01	3.4E-01 N/A	2.2E-01 N/A	4	-0.62444	1.53516	-2.78403	-1.24549	3.86934	-6.36032	0.43626	0.3395
PCB156 PCB157	0.0E+00 0.0E+00	0.0E+00 0.0E+00	N/A N/A	N/A N/A	N/A N/A	N/A N/A									
PCB157 PCB167	0.0E+00 0.0E+00	0.0E+00 0.0E+00	N/A N/A	N/A N/A	N/A N/A	N/A N/A									
PCB167 PCB169	0.0E+00 0.0E+00	0.0E+00 0.0E+00	N/A N/A	N/A N/A	N/A N/A	N/A N/A		+							
Cl7	2.2E-01	4.9E-01	2.4E-01	3.2E-01	1.5E-01	4.9E-01									
PCB170	0.0E+00	0.0E+00	N/A	3.2E-01 N/A	N/A	4.9E-01 N/A		+							
PCB170	0.0E+00 0.0E+00	0.0E+00 0.0E+00	N/A N/A	N/A N/A	N/A N/A	N/A N/A									
PCB183	0.0E+00 0.0E+00	0.0E+00 0.0E+00	N/A N/A	N/A N/A	N/A N/A	N/A N/A									
PCB184	1.6E-01	8.3E-01	5.2E-01	5.0E-01	3.3E-01	8.3E-01		+							+
rCB184	1.0E-U1	0.3E-UI	3.4E-U1	3.0E-01	3.3E-01	0.3E-U1									

Electrical Cable (EC)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	Z	æ	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R-squared (COD)	p-value (Probability>F)
PCB187	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl9	2.6E-01	2.6E-01	2.6E-01	2.6E-01	N/A	2.6E-01									
PCB206	1.7E-01	1.7E-01	1.7E-01	1.7E-01	N/A	1.7E-01									
Cl10	1.5E-01	1.5E-01	1.5E-01	1.5E-01	N/A	1.5E-01									
PCB209	1.5E-01	1.5E-01	1.5E-01	1.5E-01	N/A	1.5E-01									

d.		Lea	ch Rate	Results	5		Post-N	M aximun	Regres	ssion Re	sults (lo	g[AvgLF	$R = B \log$	[time] +	A)
Foam Rubber Ensolite [®] (FRE)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solidday)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	Z	æ	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
tPCBs	0.0E+00	1.3E+01	6.1E+00	6.1E+00	3.5E+00	1.9E+00	12	-0.52023	-0.36014	-0.68033	1.86578	2.22366	1.50789	0.83981	< 0.0001
Cl1	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl2	1.2E-01	5.5E+00	3.2E-01	6.8E-01	1.4E+00	1.8E-01	14	-0.6714	-0.36067	-0.98213	0.45198	1.09893	-0.19497	0.64874	0.00050749
PCB8	1.7E-01	9.6E-01	3.3E-01	4.1E-01	2.3E-01	1.7E-01	13	-0.38722	-0.32909	-0.44535	-0.64917	-0.52359	-0.77476	0.95132	<0.0001
Cl3	1.2E-01	9.3E-01	1.5E-01	3.6E-01	3.2E-01	8.6E-01	14	-0.31499	-0.24134	-0.38863	-0.20111	-0.04778	-0.35444	0.8786	<0.0001
PCB18	1.4E-01	8.4E-01	2.7E-01	3.5E-01	2.1E-01	1.4E-01	13	-0.41836	-0.27946	-0.55726	-0.66618	-0.36607	-0.96629	0.7998	<0.0001
PCB28	1.3E-01 8.6E-01	7.2E-01 4.9E+00	3.2E-01 1.9E+00	3.3E-01 2.3E+00	1.7E-01 1.2E+00	1.5E-01 8.6E-01	14	-0.5066 -0.41978	-0.45836 -0.33101	-0.55484 -0.50855	-0.3465 1.16854	-0.24607 1.36033	-0.44694 0.97674	0.97759 0.90782	<0.0001 <0.0001
Cl4 PCB44	1.5E-01	4.9E+00 8.5E-01	3.7E-01	4.3E-01	2.1E-01	8.6E-01 1.5E-01	12	-0.41978	-0.33101	-0.58978	0.61183	0.84775	0.97674	0.90782	<0.0001
PCB44 PCB49	1.3E-01 1.1E-01	9.2E-01	2.6E-01	4.3E-01 4.0E-01	2.1E-01 2.9E-01	3.8E-01	13	-0.48425	-0.37872	-0.52707	-0.07762	0.84773	-0.30131	0.91269	<0.0001
PCB49	2.8E-01	9.2E-01 1.6E+00	6.5E-01	7.5E-01	3.9E-01	2.8E-01	12	-0.42334	-0.32001	-0.56018	0.85219	1.04189	0.66248	0.88033	<0.0001
PCB66	1.1E-01	8.2E-01	3.7E-01	4.1E-01	2.7E-01	4.1E-01	11	-0.47332	-0.37066	-0.68401	0.00995	0.35332	-0.33342	0.93907	<0.0001
PCB77	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A	11	-0.32733	-0.37000	-0.06401	0.00993	0.33332	-0.33342	0.80302	<0.0001
Cl5	9.7E-01	5.6E+00	3.3E+00	3.1E+00	1.5E+00	9.7E-01	12	-0.53458	-0.35023	-0.71894	1.57794	1.99007	1.16582	0.80675	< 0.0001
PCB87	1.4E-01	8.4E-01	2.5E-01	3.3E-01	1.9E-01	5.4E-01	11	-0.50321	-0.33301	-0.67342	0.40893	0.78196	0.03591	0.8325	<0.0001
PCB101	1.3E-01	8.6E-01	4.2E-01	4.3E-01	2.3E-01	8.6E-01	12	-0.64488	1.42559	0.35182	0.88871	-0.88505	0.05571	0.78164	-0.40472
PCB105	1.2E-01	9.6E-01	1.9E-01	3.7E-01	3.0E-01	1.7E-01	12	-0.71824	-0.39669	-1.03979	0.45782	1.17665	-0.261	0.7124	0.00055593
PCB114	8.4E-01	8.4E-01	8.4E-01	8.4E-01	N/A	0.0E+00		0.71021	0.27007	1.05575	0.10702	1.17,000	0.201	V./12.	0.00000000
PCB118	1.3E-01	6.4E-01	2.5E-01	3.0E-01	1.4E-01	2.4E-01	12	-0.79162	-0.41499	-1.16825	0.92792	1.76988	0.08596	0.68684	0.00086331
PCB123	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl6	3.2E-01	1.9E+00	8.7E-01	9.0E-01	4.2E-01	4.3E-01	7	-1.1711	-0.45662	-1.88558	2.64134	4.36894	0.91374	0.78025	0.00838
PCB128	1.3E-01	5.6E-01	4.1E-01	4.0E-01	1.2E-01	1.3E-01	6	-0.41847	-0.13159	-0.70536	-0.45226	0.20749	-1.11201	0.80394	0.01548
PCB138	1.3E-01	8.5E-01	1.5E-01	2.9E-01	2.7E-01	2.2E-01	8	-1.38238	-0.61475	-2.15002	2.17049	3.99136	0.34963	0.76394	0.00454
PCB153	1.2E-01	7.5E-01	1.5E-01	3.2E-01	2.7E-01	3.3E-01	7	-1.10639	-0.39833	-1.81445	1.52114	3.17625	-0.13397	0.76341	0.01015
PCB156	1.7E-01	2.3E-01	1.9E-01	2.0E-01	2.6E-02	2.2E-01	4	-0.08289	1.18471	-1.3505	-1.51658	1.2861	-4.31927	0.03808	0.80487
PCB157	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB167	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB169	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl7	3.1E-01	2.1E+00	7.2E-01	1.1E+00	9.6E-01	7.2E-01									
PCB170	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB180	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB183	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB184	2.3E-01	4.8E-01	2.8E-01	3.3E-01	1.3E-01	2.8E-01									

Foam Rubber Ensolite [®] (FRE)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	Z	В	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
PCB187	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl9	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB206	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl10	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB209	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

e.		Lea	ch Rate	Results	3		Post-Maximum Regression Results $(log[AvgLR] = B log[time] + A)$								
Aroclor® 1268 (A1268)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solidday)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	z	В	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
tPCBs	5.1E+02	1.3E+05	1.4E+04	2.4E+04	3.7E+04	8.4E+02	11	-0.40855	-0.19468	-0.62241	4.48281	4.90291	4.06271	0.67479	1.93E-03
Cl1	3.3E+01	6.8E+01	3.9E+01	4.7E+01	1.8E+01	3.3E+01									
Cl2	7.3E-01	3.1E+03	1.5E+02	7.0E+02	1.0E+03	7.3E-01	8	-2.27589	-1.47668	-3.07509	6.35558	7.89792	4.81323	0.89002	0.00043412
PCB8	7.3E-01	4.2E+03	2.8E+02	1.1E+03	1.7E+03	7.3E-01	8	-2.16556	-1.36426	-2.96687	5.94637	7.49277	4.39997	0.87935	0.00057563
Cl3	3.0E+01	1.3E+04	9.6E+02	3.3E+03	5.0E+03	3.0E+01	9	-1.24578	-0.75547	-1.73609	5.72492	6.71092	4.73891	0.83757	0.00053795
PCB18	1.6E+00	4.6E+03	3.9E+02	1.3E+03	1.8E+03	3.8E+01	9	-1.38098	-0.87355	-1.88842	5.34363	6.36407	4.32319	0.85541	0.00035517
PCB28	3.7E+01	3.6E+03	5.9E+02	1.2E+03	1.3E+03	6.7E+01	8	-1.63604	-1.09239	-2.17969	5.99567	7.14561	4.84572	0.90037	0.00032134
Cl4	3.2E+01	6.3E+03	1.5E+03	2.4E+03	2.2E+03	5.3E+02	7	-1.35657	-0.79815	-1.91499	6.20746	7.44007	4.97485	0.88635	0.00154
PCB44	2.1E+01	1.2E+03	3.7E+02	5.0E+02	4.3E+02	1.3E+02	7	-1.19712	-0.80463	-1.58961	5.06967	5.93603	4.20331	0.92478	0.00054169
PCB49	2.9E+01	5.8E+02	1.9E+02	2.5E+02	2.0E+02	6.2E+01	7	-1.23157	-0.76822	-1.69492	4.83863	5.8614	3.81586	0.90326	0.00102
PCB52	2.1E+01	9.3E+02	1.5E+02	2.9E+02	3.3E+02	1.5E+02	7	-1.08002	-0.69788	-1.46217	4.81729	5.66081	3.97378	0.91347	0.00077226
PCB66	1.3E+01	5.6E+02	9.4E+01	1.8E+02	1.9E+02	2.7E+01	7	-1.57457	-0.975	-2.17415	5.4177	6.74115	4.09425	0.90113	0.00108
PCB77	4.7E+00	1.4E+02	6.0E+01	6.2E+01	4.4E+01	4.7E+00	5	-1.65693	-0.454	-2.85986	4.96588	7.44373	2.48803	0.86496	0.02198
Cl5	2.7E+01	5.3E+02	2.6E+02	2.5E+02	1.8E+02	7.8E+01	7	-0.8633	-0.41026	-1.31633	4.18509	5.18508	3.18509	0.82756	0.00448
PCB87	3.7E+00	2.9E+01	1.3E+01	1.4E+01	9.2E+00	6.3E+00	7	-0.49447	-0.14192	-0.84702	2.10982	2.88802	1.33163	0.7222	0.01546
PCB101	4.1E+00	3.1E+01	1.1E+01	1.4E+01	9.8E+00	7.2E+00	7	-0.89374	-0.64612	-1.14137	3.10529	3.65188	2.55871	0.9451	0.0002446
PCB105	3.7E+00	4.7E+01	1.9E+01	2.2E+01	1.5E+01	6.0E+00	7	-1.05095	-0.51015	-1.59175	3.49777	4.69148	2.30405	0.83308	0.00412
PCB114	1.3E+00	1.3E+00	1.3E+00	1.3E+00	N/A	1.3E+00									
PCB118	1.6E+00	4.9E+01	1.6E+01	1.9E+01	1.7E+01	4.3E+00	7	-1.1964	-0.6761	-1.7167	3.75174	4.90021	2.60326	0.87481	0.00197
PCB123	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl6	7.7E-01	3.9E+01	1.6E+01	1.8E+01	1.6E+01	7.7E-01	7	-1.47596	-0.03182	-2.9201	4.29809	7.48577	1.11041	0.57991	0.04669
PCB128	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB138	1.2E+00	1.2E+00	1.2E+00	1.2E+00	N/A	1.2E+00									
PCB153	1.4E+00	1.1E+01	3.6E+00	4.7E+00	3.6E+00	2.7E+00	7	-0.79246	-0.46094	-1.12397	2.41699	3.14875	1.68522	0.88306	0.00166
PCB156	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB157	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB167	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB169	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl7	1.5E+01	1.2E+02	1.9E+01	4.6E+01	4.3E+01	1.9E+01	5	-1.57541	0.70951	-3.86033	5.39484	10.81474	-0.02506	0.61611	0.11579
PCB170	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB180	2.0E+00	1.4E+01	6.4E+00	6.8E+00	4.2E+00	3.1E+00	6	-0.72045	-0.09062	-1.35028	2.362	3.78733	0.93666	0.71604	0.03367
PCB183	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB184	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

Aroclor [®] 1268 (A1268)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	Z	В	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
PCB187	1.6E+00	1.8E+01	9.9E+00	1.1E+01	6.2E+00	8.4E+00	7	-0.49447	-0.14192	-0.84702	2.10982	2.88802	1.33163	0.7222	0.01546
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	1.8E+00	5.8E+00	3.8E+00	3.8E+00	2.8E+00	5.8E+00									
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl9	3.0E+00	1.3E+05	2.3E+02	4.3E+04	7.4E+04	3.0E+00									
PCB206	2.3E+02	1.3E+05	6.4E+04	6.4E+04	9.0E+04	2.3E+02									
Cl10	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB209	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

f.		Lea	ch Rate	Results	S		Post-Maximum Regression Results $(log[AvgLR] = B log[time] + A)$									
Bulkhead Insulation (BHI)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solidday)		Z	В	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)	
tPCBs	0.0E+00	2.2E+02	7.1E+01	9.1E+01	6.1E+01	2.4E+01	13	-0.59053	-0.33261	-0.84846	3.18177	3.75688	2.60665	0.69775	3.78E-04	
Cl1	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A										
Cl2	1.8E-01	3.6E+00	5.5E-01	1.1E+00	1.3E+00	2.2E-01	7	-1.50353	-0.62246	-2.3846	1.68333	3.30537	0.06128	0.79375	0.00711	
PCB8	1.7E-01	8.6E-01	2.8E-01	3.8E-01	2.3E-01	2.2E-01	8	-0.80652	-0.71274	-0.9003	0.247	0.41094	0.08306	0.98663	< 0.0001	
Cl3	5.5E-01	4.0E+00	1.0E+00	1.4E+00	1.1E+00	6.4E-01	15	-0.48509	-0.37243	-0.59774	1.00729	1.24481	0.76978	0.86939	< 0.0001	
PCB18	1.2E-01	8.0E-01	4.8E-01	4.5E-01	2.3E-01	5.9E-01	12	-0.5489	-0.38657	-0.71122	0.11837	0.439	-0.20227	0.85022	< 0.0001	
PCB28	1.2E-01	1.3E+00	4.0E-01	5.2E-01	3.7E-01	8.3E-01	14	-0.65391	-0.52579	-0.78203	0.84677	1.12485	0.56869	0.91155	< 0.0001	
Cl4	2.2E+00	7.0E+01	2.5E+01	2.9E+01	1.9E+01	7.3E+00	13	-0.58887	-0.40067	-0.77707	2.64565	3.06529	2.22601	0.81174	< 0.0001	
PCB44	1.2E+00	9.5E+00	3.4E+00	4.3E+00	2.4E+00	1.2E+00	13	-0.53613	-0.36287	-0.70938	1.76176	2.14807	1.37544	0.80832	< 0.0001	
PCB49	3.8E-01	4.0E+00	1.4E+00	1.7E+00	1.0E+00	3.8E-01	13	-0.57104	-0.39939	-0.7427	1.32855	1.7113	0.9458	0.82975	< 0.0001	
PCB52	2.3E+00	1.8E+01	6.9E+00	8.2E+00	4.2E+00	2.3E+00	13	-0.45673	-0.28248	-0.63098	1.82136	2.20989	1.43282	0.75159	0.00012483	
PCB66	2.3E-01	4.1E+00	1.4E+00	1.5E+00	1.1E+00	2.3E-01	13	-0.74423	-0.48763	-1.00083	1.6542	2.22636	1.08204	0.78744	< 0.0001	
PCB77	1.8E-01	4.2E-01	3.0E-01	3.0E-01	1.7E-01	4.2E-01										
Cl5	1.1E+01	1.3E+02	3.9E+01	4.7E+01	3.5E+01	1.2E+01	13	-0.62147	-0.3302	-0.91274	3.00176	3.65122	2.35231	0.66721	0.00065415	
PCB87	1.5E+00	9.3E+00	3.6E+00	4.3E+00	2.4E+00	1.5E+00	13	-0.54518	-0.31221	-0.77816	1.74346	2.26294	1.22398	0.70688	0.000318	
PCB101	1.1E+00	1.5E+01	4.7E+00	5.7E+00	4.1E+00	1.5E+00	13	-0.58658	-0.34104	-0.83212	2.02151	2.569	1.47401	0.71537	0.00026925	
PCB105	1.3E-01	4.1E+00	1.5E+00	1.6E+00	1.2E+00	1.3E-01	10	-1.74254	-1.18971	-2.29536	4.05202	5.37013	2.73391	0.86849	< 0.0001	
PCB114	1.1E-01	7.2E-01	2.1E-01	2.7E-01	2.3E-01	7.2E-01	6	-0.35729	0.26329	-0.97787	-0.17405	1.00875	-1.35685	0.3898	0.18518	
PCB118	2.4E-01	9.8E+00	3.6E+00	3.8E+00	3.0E+00	2.4E-01	10	-2.0065	-1.38354	-2.62946	4.97811	6.46343	3.49278	0.87335	< 0.0001	
PCB123	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A										
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A										
Cl6	2.7E+00	2.3E+01	7.6E+00	9.5E+00	6.6E+00	4.1E+00	11	-0.86853	-0.43737	-1.29969	2.96041	3.96938	1.95144	0.69763	0.00137	
PCB128	1.3E-01	9.8E-01	3.8E-01	4.7E-01	2.7E-01	1.3E-01	7	-1.18069	-0.66151	-1.69986	2.22976	3.42328	1.03625	0.87237	0.00207	
PCB138	2.5E-01	4.0E+00	1.2E+00	1.6E+00	1.2E+00	2.5E-01	10	-1.31471	-0.7802	-1.84923	3.14165	4.4161	1.86719	0.80085	0.00046936	
PCB153	3.3E-01	2.5E+00	1.1E+00	1.1E+00	5.7E-01	3.8E-01	10	-0.79911	-0.22102	-1.37721	1.89173	3.2701	0.51337	0.5595	0.01285	
PCB156	1.2E-01	3.2E-01	1.9E-01	2.0E-01	8.9E-02	1.2E-01	5	-0.7612	0.41895	-1.94135	0.88132	3.33959	-1.57695	0.58412	0.13242	
PCB157	3.6E-01	3.6E-01	3.6E-01	3.6E-01	N/A	3.6E-01										
PCB167	4.7E-01	7.2E-01	6.0E-01	6.0E-01	1.8E-01	4.7E-01										
PCB169	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A		0.40070	0.00024	0.75701	0.051.55	1.51510	0.427	0.75676	0.02420	
CI7	8.9E-01	1.5E+01	1.8E+00	4.0E+00	5.5E+00	8.9E-01	6	-0.42373	-0.09024	-0.75721	0.97157	1.51713	0.426	0.75676	0.02428	
PCB170	9.3E-01	9.3E-01	9.3E-01	9.3E-01	N/A	9.3E-01										
PCB180	8.9E-01	9.8E-01	9.3E-01	9.3E-01	6.4E-02	8.9E-01										
PCB183	1.2E-01	5.8E-01	3.5E-01	3.5E-01	3.2E-01	5.8E-01	4	0.50501	0.15000	1.24520	0.02502	0.02222	0.055(0	0.0550	0.07521	
PCB184	1.6E-01	1.4E+00	2.0E-01	5.0E-01	6.3E-01	1.6E-01	4	-0.59721	0.15088	-1.34529	0.03783	0.93333	-0.85768	0.85506	0.07531	

Bulkhead Insulation (BHI)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	N	æ	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
PCB187	1.2E-01	7.9E-01	7.7E-01	5.6E-01	3.8E-01	7.7E-01									
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl9	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB206	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl10	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB209	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

g.		Lea	ach Rate	Results	 S		Post-	Maximun	n Regres	ssion Re	sults (lo	g[AvgLF	$ \mathbf{R} = \mathbf{B} \log \mathbf{B}$	[time] +	A)
Felt Gasket Inner (FGI)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solidday)		Z	В	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval	Lower Confidence Interval A	R-squared (COD)	p-value (Probability>F)
tPCBs	0.0E+00	1.5E+01	4.2E+00	5.1E+00	4.0E+00	9.3E-01	14	-0.31621	-0.12201	-0.51042	1.23709	1.6336	0.84058	0.51191	4.01E-03
Cl1	1.6E-01	4.5E-01	2.4E-01	2.6E-01	1.2E-01	1.6E-01									
Cl2	2.2E-01	1.1E+01	4.3E-01	1.6E+00	2.9E+00	2.2E-01	14	-0.5808	-0.41269	-0.74892	0.92763	1.27087	0.58439	0.82523	< 0.0001
PCB8	1.3E-01	7.6E-01	1.9E-01	2.8E-01	2.0E-01	7.6E-01	14	-0.32329	-0.24549	-0.40109	-0.11289	0.04595	-0.27173	0.87231	< 0.0001
Cl3	3.3E-01	2.7E+00	6.9E-01	8.7E-01	6.2E-01	3.5E-01	14	-0.30616	-0.23139	-0.38093	0.44707	0.59973	0.29441	0.86898	< 0.0001
PCB18	1.3E-01	9.0E-01	2.7E-01	3.2E-01	2.1E-01	9.0E-01	13	-0.35306	-0.25005	-0.45607	0.05359	0.27184	-0.16467	0.83802	< 0.0001
PCB28	1.3E-01	7.5E-01	2.9E-01	3.2E-01	2.1E-01	5.8E-01	13	-0.40695	-0.29592	-0.51798	-0.01333	0.22191	-0.24857	0.85542	< 0.0001
Cl4	1.7E-01	1.3E+00	5.3E-01	5.5E-01	3.1E-01	1.7E-01	13	-0.34787	-0.20856	-0.48718	0.35742	0.65259	0.06225	0.73305	0.00018736
PCB44	1.2E-01	9.6E-01	4.4E-01	4.8E-01	2.8E-01	2.3E-01	11	-0.52825	-0.31195	-0.74455	-0.06303	0.42526	-0.55132	0.77228	0.00036825
PCB49	1.2E-01	9.7E-01	2.8E-01	3.4E-01	2.4E-01	1.3E-01	14	-0.34735	-0.25221	-0.44249	-0.81993	-0.62568	-1.01418	0.84059	< 0.0001
PCB52	1.3E-01	9.2E-01	5.1E-01	4.9E-01	2.8E-01	3.6E-01	11	-0.4576	-0.25182	-0.66337	-0.17093	0.2936	-0.63546	0.73766	0.00070888
PCB66	1.1E-01	5.6E-01	2.6E-01	2.7E-01	1.3E-01	1.1E-01	11	-0.39015	-0.1868	-0.5935	-0.97206	-0.56353	-1.38058	0.6767	0.00188
PCB77	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl5	1.5E-01	4.5E-01	2.7E-01	2.8E-01	1.1E-01	1.8E-01	8	-0.36768	-0.02658	-0.70878	0.15408	0.87577	-0.56761	0.53693	0.03866
PCB87	1.2E-01	9.0E-01	1.4E-01	3.2E-01	3.8E-01	9.0E-01									
PCB101	1.4E-01	3.4E-01	2.4E-01	2.4E-01	6.7E-02	1.5E-01	7	-0.41925	-0.18364	-0.65487	-0.79257	-0.31086	-1.27428	0.80711	0.00598
PCB105	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB114	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB118	1.6E-01	2.2E-01	1.8E-01	1.9E-01	3.2E-02	1.6E-01									
PCB123	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl6	1.8E-01	5.9E-01	2.8E-01	3.2E-01	1.4E-01	1.8E-01	5	-1.07497	0.94206	-3.09199	1.35056	5.41067	-2.70954	0.48951	0.18844
PCB128	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB138	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB153	1.3E-01	3.7E-01	2.9E-01	2.7E-01	8.6E-02	1.3E-01									
PCB156	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB157	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB167	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB169	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A		1.05/50	0.20216	2.25025	4.053.55	T (1020	0.45000	0.61.102	0.00121
Cl7	2.5E-01	1.9E+00	5.0E-01	6.9E-01	4.9E-01	2.5E-01	8	-1.87679	-0.39319	-3.36039	4.05365	7.64829	0.45902	0.61493	0.02124
PCB170	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A		4.02202	0.45645	4.50005	1045	2.55001	0.00(=0	0.55445	0.00201
PCB180	1.1E-01	8.1E-01	2.6E-01	3.3E-01	2.3E-01	3.7E-01	8	-1.03299	-0.47613	-1.58986	1.26151	2.55981	-0.03679	0.77446	0.00394
PCB183	1.4E-01	3.4E-01	2.3E-01	2.4E-01	7.5E-02	2.0E-01	5	-0.47963	0.11795	-1.07721	-0.61016	0.67785	-1.89818	0.68502	0.08363
PCB184	3.7E-01	3.7E-01	3.7E-01	3.7E-01	N/A	3.7E-01									

Felt Gasket Inner (FGI)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	z	м	Upper Confidence Interval B	Lower Confidence Interval B	Ą	Upper Confidence Interval A	Lower Confidence Interval A	R-squared (COD)	p-value (Probability>F)
PCB187	1.3E-01	7.3E-01	3.4E-01	3.5E-01	1.8E-01	1.9E-01	9	-1.5905	-0.90589	-2.27511	2.87342	4.49753	1.24932	0.81172	0.0009128
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	1.4E-01	3.9E+00	1.4E+00	1.6E+00	1.3E+00	1.4E-01	9	-1.53299	-0.76229	-2.30369	3.56422	5.39254	1.7359	0.75964	0.0022
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl9	2.2E-01	1.8E+00	3.8E-01	5.9E-01	5.0E-01	2.2E-01	9	-1.28334	-0.4354	-2.13128	2.4405	4.36889	0.5121	0.6466	0.00899
PCB206	2.2E-01	1.2E+00	7.4E-01	6.6E-01	3.1E-01	4.3E-01	9	-1.71577	-1.19923	-2.23231	3.05277	4.2275	1.87805	0.8981	0.00010247
Cl10	2.0E-01	2.9E-01	2.5E-01	2.5E-01	6.7E-02	2.0E-01									
PCB209	2.0E-01	2.9E-01	2.5E-01	2.5E-01	6.7E-02	2.0E-01									

h.		Lea	ach Rate	Results	S		Post-	Maximun	n Regres	ssion Re	sults (lo	g[AvgLR	$ \mathbf{R} = \mathbf{B} \log \mathbf{B}$	[time] +	A)
Felt Gasket Outer (FGO)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)		Z	æ	Upper Confidence Interval B	Lower Confidence Interval B	Ą	Upper Confidence Interval A	Lower Confidence Interval A	R-squared (COD)	p-value (Probability>F)
tPCBs	0.0E+00	7.4E+00	3.7E+00	3.9E+00	2.4E+00	1.3E+00	10	-0.69812	-0.3193	-1.07695	2.18047	3.07079	1.29016	0.69301	2.80E-03
Cl1	5.6E-01	5.6E-01	5.6E-01	5.6E-01	N/A	5.6E-01									
Cl2	1.6E-01	2.9E+00	5.6E-01	9.0E-01	7.6E-01	3.5E-01	13	-0.52423	-0.32988	-0.71857	0.91968	1.33808	0.50127	0.76215	< 0.0001
PCB8	1.3E-01	5.3E-01	1.9E-01	2.5E-01	1.3E-01	1.3E-01	12	-0.49439	-0.37624	-0.61254	0.3979	0.6613	0.13449	0.89683	< 0.0001
Cl3	5.3E-01	2.9E+00	1.1E+00	1.4E+00	7.7E-01	5.3E-01	13	-0.35314	-0.23263	-0.47365	0.80081	1.06026	0.54137	0.79088	< 0.0001
PCB18	1.6E-01	7.9E-01	3.2E-01	4.1E-01	2.0E-01	1.6E-01	12	-0.46041	-0.31633	-0.60448	0.53762	0.85884	0.21641	0.83524	< 0.0001
PCB28	1.4E-01	8.6E-01	2.8E-01	3.8E-01	2.2E-01	8.6E-01	12	-0.5632	-0.40366	-0.72274	0.61799	0.97367	0.26231	0.86086	< 0.0001
Cl4	3.6E-01	2.9E+00	1.1E+00	1.2E+00	6.9E-01	3.6E-01	10	-0.77159	-0.43537	-1.10782	1.7476	2.53779	0.95741	0.77781	0.00073547
PCB44	1.1E-01	8.5E-01	2.3E-01	3.6E-01	2.9E-01	6.1E-01	10	-0.6337	-0.38364	-0.88376	0.52756	1.11525	-0.06012	0.8102	0.00038546
PCB49	1.2E-01	7.7E-01	4.2E-01	4.1E-01	2.4E-01	4.5E-01	10	-0.5867	-0.43391	-0.73949	0.11905	0.4649	-0.22681	0.90742	< 0.0001
PCB52	1.2E-01	5.6E-01	1.6E-01	2.2E-01	1.2E-01	5.6E-01	10	-0.56837	-0.21962	-0.91713	0.45343	1.27306	-0.3662	0.6384	0.00556
PCB66	1.8E-01	9.4E-01	3.5E-01	3.9E-01	2.4E-01	1.8E-01	9	-0.73831	-0.48891	-0.98771	0.17758	0.70383	-0.34868	0.87501	0.00021152
PCB77	7.9E-01	7.9E-01	7.9E-01	7.9E-01	N/A	7.9E-01									
Cl5	2.8E-01	9.3E-01	5.8E-01	5.6E-01	2.4E-01	2.8E-01	8	-0.46223	0.63782	-4.89632	0.64238	11.68654	-2.02574	0.80851	0.00237
PCB87	2.0E-01	2.8E-01	2.4E-01	2.4E-01	5.8E-02	2.8E-01									
PCB101	2.8E-01	8.3E-01	5.0E-01	5.2E-01	1.7E-01	2.8E-01	6	-0.52642	0.12255	-1.17539	-0.18166	1.2499	-1.61322	0.55909	0.08744
PCB105	7.9E-01	7.9E-01	7.9E-01	7.9E-01	N/A	7.9E-01									
PCB114	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB118	2.6E-01	8.4E-01	5.5E-01	5.5E-01	4.1E-01	2.6E-01									
PCB123	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl6	2.4E-01	5.5E-01	3.3E-01	3.7E-01	1.6E-01	5.5E-01									
PCB128	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB138	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB153	1.8E-01	4.4E-01	3.3E-01	3.2E-01	1.3E-01	1.8E-01									
PCB156	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB157	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB167	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB169	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A		2.10027	0.62502	4.00.500	4.0224	11 (0(7)	2.00.75.	0.420	0.10101
Cl7	1.3E-01	1.9E+00	6.1E-01	6.4E-01	4.8E-01	6.1E-01	7	-2.12925	0.63782	-4.89632	4.8304	11.68654	-2.02574	0.439	0.10484
PCB170	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB180	4.6E-01	7.6E-01	5.5E-01	5.8E-01	1.3E-01	4.6E-01									
PCB183	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB184	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

Felt Gasket Outer (FGO)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	N	В	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
PCB187	1.5E-01	9.7E-01	2.6E-01	3.2E-01	2.3E-01	3.9E-01	5	-3.63293	-0.52573	-6.74013	8.39912	16.28719	0.51104	0.82191	0.03379
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	2.3E-01	1.4E+00	3.4E-01	5.7E-01	4.0E-01	5.9E-01									
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl9	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB206	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl10	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB209	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

i.		Lea	ch Rate	Results			Post-I	Maximum	Regress	ion Res	ults (log	g[AvgLR]	= B log	time] A)
Aluminize d Paint (AP)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid-day)	Median (ng PCB/g shipboard solid-day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Curve Endpoint (ng PCB/g shipboard solid-	Z	м	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
tPCBs	0.0E+00	3.1E+00	9.5E-01	9.5E-01	9.1E-01	6.2E-02	14	-0.57148	-0.15908	-0.98388	0.8245	1.68313	-0.03414	0.43171	1.07E-02
Cl1	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl2	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB8	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl3	1.1E-01	1.1E-01	1.1E-01	1.1E-01	N/A	1.1E-01									
PCB18	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB28	1.8E-01	1.8E-01	1.8E-01	1.8E-01	N/A	1.8E-01									
Cl4	1.2E-01	6.2E-01	2.4E-01	3.2E-01	1.9E-01	6.2E-01	13	-0.49601	-0.22643	-0.7656	0.14484	0.72731	-0.43762	0.59853	0.00192
PCB44	1.4E-01	4.8E-01	2.8E-01	2.9E-01	1.1E-01	1.4E-01	6	-0.31476	-0.08735	-0.54216	-0.89169	-0.39419	-1.3892	0.78687	0.01841
PCB49	1.3E-01	7.4E-01	2.6E-01	3.5E-01	2.8E-01	1.9E-01	4	-0.65642	-0.38292	-0.92991	-0.59664	-0.15142	-1.04186	0.98159	0.00925
PCB52	1.8E-01	9.9E-01	4.8E-01	5.2E-01	1.9E-01	1.8E-01	13	-0.24361	-0.12207	-0.36514	-0.81293	-0.55034	-1.07552	0.63891	0.00104
PCB66	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB77	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl5	2.9E-01	9.6E-01	6.7E-01	6.5E-01	2.0E-01	6.7E-01	9	-0.57035	0.30373	-1.44442	0.86565	2.71145	-0.98014	0.25379	0.16675
PCB87	3.4E-01	4.9E-01	3.6E-01	3.8E-01	5.7E-02	3.5E-01	6	-0.17407	-0.04416	-0.30398	-1.10244	-0.85487	-1.35001	0.77578	0.02047
PCB101	2.7E-01	8.6E-01	6.1E-01	5.9E-01	1.8E-01	2.7E-01	8	-0.29445	-0.06825	-0.52066	-0.66416	-0.20045	-1.12787	0.62837	0.01895
PCB105	1.5E-01	2.6E-01	2.1E-01	2.1E-01	4.3E-02	1.5E-01	4	-0.19137	0.07519	-0.45793	-1.33832	-0.83485	-1.84179	0.82672	0.09076
PCB114	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB118	3.6E-01	5.4E-01	4.2E-01	4.3E-01	6.3E-02	3.6E-01									
PCB123	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB126	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl6	3.5E-01	5.7E-01	4.8E-01	4.7E-01	1.1E-01	3.5E-01									
PCB128	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB138	2.7E-01	5.4E-01	3.4E-01	3.7E-01	1.0E-01	2.7E-01									
PCB153	3.0E-01	5.4E-01	5.2E-01	4.6E-01	1.0E-01	4.1E-01									
PCB156	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB157	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB167	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB169	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl7	4.0E-01	3.9E+00	5.7E-01	1.6E+00	2.0E+00	4.0E-01									
PCB170	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB180	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB183	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB184	4.5E-01	8.7E-01	5.3E-01	6.2E-01	2.2E-01	4.5E-01									

Aluminize d Paint (AP)	Leach Rate MIN Value (ng PCB/g shipboard solid- day)	Leach Rate MAX Value (ng PCB/g shipboard solid- day)	Median (ng PCB/g shipboard solid- day)	Mean (ng PCB/g shipboard solid- day)	Standard Deviation (ng PCB/g shipboard solid-day)	Leach Rate Curve Endpoint (ng PCB/g shipboard solid-day)	Z	В	Upper Confidence Interval B	Lower Confidence Interval B	A	Upper Confidence Interval A	Lower Confidence Interval A	R -squared (COD)	p-value (Probability>F)
PCB187	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB189	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl8	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB195	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
C19	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB206	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
Cl10	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									
PCB209	0.0E+00	0.0E+00	N/A	N/A	N/A	N/A									

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. LEACHING RESULTS DISCUSSION

Leaching data were collected for a group of representative solid materials that commonly contain PCBs in shipboard components onboard older, out-of-service surface vessels and submarines. These PCBs in solid materials (PCBs-ISM) have been shown to leach very slowly over time under laboratory-simulated, shallow-water conditions expected in typical coastal/reef environments. The test conditions used organic-free artificial seawater at a representative pH of 8.1, a salinity of 35 psu, ambient hydrostatic pressure (~1 bar) to approximate shallow depths (<50 meters), 25°C temperature, and gentle mixing to simulate dynamic flow. Leaching experiments were designed to avoid any effects caused by unintentional PCB saturation in seawater, organic particulate sorptive processes, or biological processes (uptake/metabolism/bioaccumulation of PCBs).

The solids tested included Aroclor® 1254 (A1254) and solids containing A1254: black rubber pipe hanger liner (BRPHL), electrical cable (EC), foam rubber/Ensolite® (FRE), in addition to Aroclor® 1268 (A1268) and solids that contained A1268 or A1268 and A1254: bulkhead insulation (BHI), Felt gasket/inner (FGI), Felt gasket/outer (FGO), and aluminized paint (AP). Shipboard solids were tested mostly intact intact, except for paint chips, to simulate what would occur in a compartment onboard a sunken vessel. Field samples were deliberately chosen with high tPCB shipboard solid concentrations to ensure detection of leaching concentrations. Such high solid concentrations represent an upper limit rather than an average or mean concentration, and are typically only found in a very small fraction of PCBs-ISM onboard decommissioned vessels that exist presently.

The reasons for testing neat Aroclors® were threefold: (1) these Aroclors® are the most common types found on vessels as PCBs-ISM, (2) they were the two primary Aroclors® identified in the specific shipboard solids tested, and (3) the neat Aroclors® represent the worst case for a release scenario, PCB dissolution uninhibited by a shipboard solid matrix, allowing their use as positive analytical controls (maximum PCB concentration observable in seawater from A1254 or A1268 sources) for the shipboard solid leaching experiments.

For all experiments, PCBs were measured in the seawater leachate as a function of exposure time as part of a leaching time series. The analytes chosen for study represent environmentally significant PCBs in terms of their toxicological impact and persistence from an ecological and human health perspective. In addition, a true measure of tPCBs was preferred over the conventional estimated (calculated) tPCBs. To accomplish this goal, each level of PCB chlorination (homolog group) was measured, and these were then summed to provide an empirical tPCB value.

All PCB analytes measured during leaching (31 congeners, 10 homologs, and sum of homologs for tPCBs) include those evaluated in other studies concerning using decommissioned Navy vessels for artificial reefs^{2, 3} and deep-ocean studies (26 congeners, 10 homologs for tPCBs). The leaching data reported in this study focus on the former shallow/reef scenario (warm-temperature/low-pressure). A concurrent leach rate study focused on evaluating these shipboard solids in a deep-ocean scenario (low-temperature and high-pressure) will be the subject of a future report. Some leach rate data from that effort have been summarized in

Appendix E to compare with data from this study to show the leaching dependence on temperature and to demonstrate potential for use as an experimental data replicate.

Average leach rates calculated from seawater concentrations during leaching experiments correspond directly to the change in analyte concentration over individual leaching- or exposuretime increments. These leach rates are not instantaneous leach rates; the calculated leach rates correspond to a rate averaged over the time between adjacent sample collections (batch sampling interval). In all leaching experiments, for all solids tested, leach rate curves were generated across the entire leaching experiment timeframe or leaching series to show the *change in leach* rate with time, a behavior driven by depletion of PCBs at the seawater–solid interface as leaching occurs, and by changes expected in the amount of surface area defined by that seawater-solid interface as a function of exposure time. As a result, some leaching curves exhibited a period characterized by sometimes erratic initial release behaviors before reaching a maximum rate. All of the leach rate curves did exhibit an increase up to some maximum rate, followed by a slow, monotonically decreasing rate with time. This latter decreasing portion of the curve was suitable for curve-fitting and for extrapolation out to very long leaching times to determine if the leaching behavior would continue to decrease. Arguably, some portion of PCBs in shipboard solids should be strongly and irreversibly bound, particularly if the solids are organic or polymeric¹³ (Cseh et al., 1989). However, as a conservative approximation, one can assume that all PCBs in the solid are available for leaching.

5.1.1. Leach Rate Temperature Dependence

As indicated previously, we began a concurrent effort to evaluate the leaching behavior of the shipboard solids at high hydrostatic pressures (>300 bar) and low temperatures (4°C) to simulate a deep-ocean sinking scenario. As part of that effort and to maximize comparability with this study, the shipboard solids evaluated were also tested at low temperature (4°C) and ambient pressure (1 bar). Those leach rate results are included in Appendix E for all analytes in Table 4 and Table 5 (congeners, homologs, homolog-derived tPCBs) as a function of time. These low-temperature leach rate data are applicable to this study and effectively demonstrate the behavior of leach rates as a function of temperature in a shallow-water leaching scenario. Low-temperature leach rates are summarized in Figure 68 for comparing homolog-derived tPCB leaching behavior as a function of temperature and leaching time at ambient pressure (1 bar). In general, leach rates were lower at reduced temperature, as one would expect from thermodynamic (solubility) considerations. Initial kinetics also appeared somewhat suppressed for many solids, as indicated by a more gradual or sluggish leach rate increase up to the maximum lowtemperature leach rate. The post-maximum leach rate decrease for all solids tested at low temperature are generally slower relative to what is observed at 25°C, exhibiting flatter, more gradual monotonically decreasing leach rates as a function of time. This slow decrease is probably related to less PCB depletion with time at the seawater-solid interface as leaching

-

¹³ Wool felt, for example is a natural fiber similar to silk. It is a polypeptide composed of a polyamide backbone containing sidechains of amino acid residues. PCBs in wool felt and other polymeric materials are likely contained within the polymer molecular matrix as a result of being incorporated during formulation or by transport caused by PCB migration (absorption). Conversely, a material such as bulkhead insulation is composed of inorganic glass fibers and PCBs associated with this material and are expected to be present at the surface of the fibers rather than within the glass-fiber molecular matrix itself.

into the seawater progressed. Temperature appears to affect leach rates for shipboard solids to a greater extent than the neat solid Aroclors[®].

Figure 68. Comparison of tPCB average leach rates at ambient pressure (~1 bar) and (a) 25°C, to tPCB average leach rates at (b) 4°C for the suite of shipboard solid tested.

5.1.2. Leachate Saturation Evaluation To evaluate the leachate results against Aroclors® as analytical controls, the maximum concentrations observed in each shipboard solid leaching experiment are compared to the corresponding maximum concentrations observed for Aroclor® 1254 and Aroclor® 1268 dissolution experiments (Table 11). Also shown is the maximum observed tPCBs concentration in a single sample (calculated as sum of homologs). For comparison as a potential upper experimental limit (effective saturation), the sum of the homolog maxima across all leachate samples is shown for each dissolution and shipboard solid experiment.

All tPCB concentrations in shipboard solids are lower than A1254 and A1258, demonstrating that the goal of the study design was achieved. Upon close inspection of Table 11, most analyses are indeed lower, but on an analyte basis instead of a tPCBs basis, a small number of the homologs and congeners that comprise the tPCBs number (generally Cl7 and above), are higher for the shipboard solid leaching experiments. In samples where a particular analyte in the shipboard solid experiment was higher, the value is shown in Table 11 with parentheses, and double parentheses further indicating which of these were J-flagged/estimated below MRL.

The rationale for why this was observed includes one or more of the following:

- 1. Concentration was a very low value near the detection limit with high uncertainty.
- 2. Concentration of that analyte was not measurable above the minimum detection limit in the neat Aroclor® and therefore the effective Aroclor® saturation limit could not be determined satisfactorily.
- 3. Differences in analyte concentrations were within the expected analytical precision of each other.
- 4. Concentration could not be explained using the Aroclor® results reported here, which assumes the leachable PCBs are distributed similar to the bulk Aroclor® PCB distribution.

Item 4 suggests localized regions of readily leachable PCBs at the interface (SASA). All maxima in the Aroclor® experiments represent the effective saturation limit for that particular PCB analyte originating from Aroclor® in seawater. Those concentration maxima in shipboard solids below the Aroclor® maxima have the least uncertainty for leaching below the effective saturation limit for the Aroclor® it contains. The most concentrated sample in each shipboard solid experiment that lies above the Aroclor® maxima would be considered the samples with the most uncertainty, i.e., that particular sample could be approaching a potential saturation limit for that analyte, meaning suppression is a possibility. This assumption cannot be confirmed without having performed an experiment under the same conditions for that specific analyte (homolog or congener instead of using an Aroclor® selected to match the bulk PCB distribution as was done in this study). Leach rates derived from the highest concentration values, in those samples only, could potentially have been influenced by saturation of that analyte in the solution. The impact of these individual leach rate values on the overall empirical leach rate curve behaviors is minimal, and none of the suggested long-term leach rate values were affected (observed leachate concentration maxima did not correspond to the endpoints of leach rate curves). Note that samples exhibiting maximum concentrations did not generally correspond to the maximum leach rates because the leach rates, by definition, are related to change in concentration as a function of time (time over which a concentration change occurs), not simply the concentration magnitude.

Table 11. Comparison of leaching experiment concentration maxima. Those analyte concentration maxima for shipboard leaching samples that were higher than that for A1254 or A1268 are indicated in parentheses, with double parentheses further indicating which of these maxima were J-flagged (estimated/below MRL). Most of the shipboard solid analyte maxima greater than Aroclor® maxima occur for the higher order chlorinated PCBs. Maxima that were non-detects are indicated as zero, meaning the analyte was never detected in the leaching or dissolution experiment. The maximum tPCBs concentration in any single sample is included as sum of homologs. A summation of all maximum homolog values across all samples is also included, which represents the reasonable maximum tPCBs concentration one might expect for a material containing A1254 and A1268, if tested under the leaching conditions of the study. See discussion in the text above for further explanation of the significance of these tabulated observations.

	A1254	A1268		FGI	FGO	BHI		BRPHL	FRE
ng/L	MAX	MAX	EC MAX	MAX	MAX	MAX	AP MAX	MAX	MAX
	Value	Value	Value	Value	Value	Value	Value	Value	Value
tPCBs	16051	9118	173	729	230	3944	84	226	828
CI1-10	16229	10027	276	1010	308	3959	94	297	879
(Max									
Sum)									
CI1	100	33	0	6.1	2.4	0	0	18	0
CI2	330	1100	47	140	33	14	0	44	24
PCB8	140	630	0	26	11	1	0	2.1	4
CI3	330	4800	1.9	110	58	20	2.1	46	17
PCB18	120	1400	0.41	32	18	2.1	0	2.8	3.4
PCB28	110	1300	1.5	20	14	7.3	0.34	8.2	4.3
Cl4	5900	3500	53	71	58	870	13	94	250
PCB44	820	530	8.2	9.8	7.1	120	1.6	14	48
PCB49	410	260	3	3.9	3.6	36	0.62	5.8	13
PCB52	1800	500	18	10	8	200	3.1	27	79
PCB66	200	250	2.3	3.1	3	44	0	3	10
PCB77	1.4	61	1.5	0	1.1	0.82	0	0	0
CI5	8300	350	120	39	27	2400	43	86	420
PCB87	620	21	6.6	1.9	1.2	140	1.9	4.3	30
PCB101	1000	22	10	3.1	2.4	240	3.3	8	51
PCB105	200	36	3	0	1.1	66	1.1	2	16
PCB114	8.4	2.2	0	0	0	3.1	0	0	1
PCB118	440	26	6.5	2	1.3	170	2.4	4.7	33
PCB123	14	0	0	0	0	0	0	0	0
PCB126	0	0	0	0	0	0	0	0	0
CI6	1200	44	40	32	24	610	28	0	140
PCB128	47	0	2.3	0	0	16	0	0	4.9
PCB138	210	2.1	2.9	0	0	78	2.4	0	17
PCB153	220	7.3	3	4.1	1.9	42	2.9	0	15
PCB156	11	0	0	0	0	6.5	0	0	2.6
PCB157	1.4	0	0	0	0	0.84	0	0	0
PCB167	4	0	0	0	0	2	0	0	0
PCB169	0	0	0	0	0	0	0	0	0
CI7	69	180	8.9	130	47	45	7.4	9.3	28
PCB170	0	0	0	0	0	((2.5))	0	0	0
PCB180	4	12	0	(18)	3.3	2.7	0	0	0
PCB183	0	0	0	(3.2)	0	((1.6))	0	0	0
PCB184	0	0	(0.72)	(0.58)	0	(0.95)	((0.85))	((1.1))	((0.81))
PCB187	0	17	0	(41)	12	2.2	0	0 //	0
PCB189	0	0	0	0	0	0	0	0	0
CI8	0	10	0	(350)	(59)	0	0	0	0
PCB195	0	0	0	0	0	0	0	0	0
CI9	0	9.7	2.5	(130)	0	0	0	0	0
PCB206	0	9.6	1.6	(87)	0	0	0	0	0
PCB209	0	0	((1.4))	((2.1))	0	0	0	0	0

5.2. LEACH RATE STUDY UNCERTAINTY AND CONFIDENCE IN LEACH RATE STUDY RESULTS

This section describes the leach rate study through built-in conservatisms, uncertainties/ limitations, and caveats. This description provides an adequate level of confidence in the leaching results to objectively select aspects of the leach rate study results that are applicable to any potential application. The following discussion focuses on different components of the leach rate study to provide a reasonably comprehensive summary of critical issues in study design/ approach, shipboard solids containing PCBs, analytical chemistry, leach rate results, and leach rate uses/applications. With the exception of analytical chemistry, many issues are not readily quantified, but will be presented in a quantitative manner whenever possible, if necessary, by using reasonable assumptions to estimate any potential impacts.

5.2.1. Leach Rate Study Design/Approach

Before this study, information did not exist to describe the leaching behavior of shipboard solid materials. Consequently, the approach was limited in scope to empirically determine baseline-leaching characteristics for unknown leaching behaviors of unknown magnitudes for unknown PCB congeners from complex mixtures of PCBs (Aroclors®) in solid material matrices under abiotic conditions. This study was also temporally constrained to evaluate leaching in the shortest amount of time required to provide adequate analytical results for all PCB analytes of interest over an unknown period of release (months to years). This effort sought to characterize as many leaching processes for as many types of shipboard solids and analytes possible, and with maximum overlap with known PCB source compositions. Performing leaching tests under abiotic conditions reduces numbers and types, increases the defensibility of selected variable dependencies in the simulated environment, and also allows for significant control and QA/QC of fundamental parameters.

Given these very ambitious experimental goals, the leach rate study was not designed to address any site-specific effects such as partitioning equilibria, localized static conditions in reef environments, degradation processes and rates, or influences of biotic processes on leach rates. Although these types of processes can be important processes in natural environments, the leaching study was designed to empirically characterize the conservative process of release uninhibited by external processes and attenuated only by the shipboard solid matrix. This design required the simulation of completely advective conditions, meaning no suppression of leaching, a very conservative approach, considering that most PCB-containing shipboard materials reside inside the vessel hulk and would be protected from advective currents. (An evaluation of how well this simulation was accomplished is included in Subsection 5.2.5) The empirical study was limited to what is known and could be parameterized; data are evaluated in the context of the empirical study, and potential effects of shipboard material degradation were subsequently addressed in the context of uncertainty.

Secondary effects from processes such as biotic or physical degradation in natural environments are considered part of the site-specific scenario that would typically be addressed as a component or bounding assumption at the end-use/application, e.g., artificial reef characteristics for risk assessment. These degradation processes should exert only a minimal impact on the leaching behaviors of shipboard solid materials as the following analysis demonstrates.

5.2.2. Potential Degradation—Bounding Analysis

A bounding analysis was performed and is presented below for an example shipboard solid (FRE) to estimate the potential effect of degradation on the leaching curve magnitude. In this analysis, a single initial piece of solid was allowed to degrade with time to produce a porous solid. From the surface area perspective, this process is conceptually similar to producing a porous solid (envisioned as a highly localized hydrodynamically isolated assemblage of many, much smaller particulates) with an increased surface area defined by particle size. This treatment was used to estimate an effective upper bound for leach rates in a general context, using only the scalar effect of surface area, deliberately not including other possible dependencies and effects expected to be minimized under the expected reef conditions.

An effective or functional surface area dependence (see Equation 7) is used in this evaluation to provide a solution that is applicable to the hypothetical perturbation of an expected leach rate for a realistic leaching scenario under realistic artificial reef conditions instead of the conservatively biased conditions under which the leaching experiments have been initially conducted. Admittedly, the leach rate study sought to quantify leaching behaviors that are inherently dependent upon leaching surface area, though unable to evaluate/quantify the surface area parameters. In the leaching study timeframe, the effect of surface area on leaching was only captured as part of the measured macroscopic release of PCBs; it was not explicitly quantified. However, it is unlikely that quantitation of active leaching surface area alone would have been sufficient to adequately address potential degradation issues and related effects. Such an assessment would still require a detailed understanding of the microscopic/molecular properties of the system as a function of systematically varied leaching conditions. The elucidation of microscopic/molecular properties for PCB-containing materials was beyond the scope of this initial leach rate study because we used an experimental approach that focused on macroscopic properties under simulated conditions unlike that generally expected in an actual reefing scenario. This was part of the experimental design to overestimate the magnitude of leach rate relative to a true leaching scenario and provide a conservative estimate of the macroscopic physical environment in which the shipboard solid would reside.

An increase in surface area caused by degradation would be expected to occur largely within the material, initially starting from the outer macroscopic surface, and progressing inward at microscopic (pore) scales. For a porous solid, particularly in a hydrodynamically isolated environment such as might be expected in the bowels of a vessel (minimal or no dispersion), the fluid-filled pores of a shipboard solid would be expected to be relatively stagnant. In this scenario, transport of PCBs from newly formed degraded surface areas inside the solid would be limited by diffusion through the pore fluid in the innermost regions to the outermost regions and would eventually be advected away at the pore openings on the outer surface of the solid. We expected that this diffusive behavior would also inhibit and control the release and transport of PCBs diffusing through the depletion layer expected to form at the inner pore interfaces. Concurrently, we expected degradation to originate at the outermost portion of the developing porous solid where the surfaces would be most depleted, leading to a lower magnitude leaching behavior for PCBs in exfoliated particulates. It is important to note that exfoliation is unlikely to occur spontaneously, i.e., the process of exfoliation would probably require physical damage/ perturbation to produce particulates. Ultimately, the degradation process would be expected to occur over significantly long time periods (minimally, many decades to several centuries), given the inherent resistances of xenobiotic (man-made) materials to degradation and persistence of

materials such as plastics and polymers in the marine environment (Alexander, 1981; Andrady, 2000; Atlas and Bartha, 1998; Colton, Knapp, and Burns, 1974; Cundell, 1974; Gregory and Andrady, 2003; Heap and Morrell, 1968; Hetherington et al., 2005; Paustian, 1998; Pruter, 1987; The Ocean Conservatory and U.S. Environmental Protection Agency, 1993; U.S. Environmental Protection Agency, 1991b).

While the knowledge and treatment of leaching surface area is limited, the following is considered a reasonable treatment of degradation for the available data, physical model, and sitespecifics for a reef environment. In this degradation scenario, the potential effects of increasing pore surface area were evaluated by considering the dynamics of a hypothetical assemblage of hydrodynamically isolated (no fluid dispersion) localized particulates. These particulates were representative of a porous degraded solid. In the absence of quantitative microscopic and molecular descriptors to accurately describe the behavior at the surfaces formed within the pores of the solid as degradation proceeds, this functional model was used to estimate an upper limit for the combined effects of the new diffusive behaviors that would be associated with a newly formed surface area in the internal pores. These effects were approximated using the observed bulk macroscopic diffusive behavior (empirical leach rates) applied to the expected incremental surface area increase, over realistic degradation timeframes, to conservatively represent the upper bound for an incremental increase in macroscopic leach rate. This approach was used to represent a porous solid produced by degradative means at conditions under which properties that control microscopic inner pore structure diffusion parameters (e.g., diffusion pathlength/ depletion layer, hydrodynamically isolated/minimal or no pore fluid dispersion, fluid saturation/diffusion, and magnitude of exfoliated particulate leaching) were considered very small or minimal, and thus deliberately not included.

As will become apparent, these results are generally applicable to any shipboard solid leaching curve, and for any analyte. The underlying premise is that a shipboard solid, possessing a given leaching behavior related to the surface area defined by the seawater leachate exposure can be adjusted to reflect a-% change (increase) in that surface area over various choices for particle production and total degradation time. The assumption is that a small particle will behave like a large particle under the isolated/stagnant conditions described above, and an assemblage of small particles with the same total mass as one large particle will possess a higher surface area and thus potentially release at a higher rate.

To begin this analysis, we assume a generic piece of shipboard solid such as FRE to be of size 1 cm x 1 cm, with empirically observed leach rates in units of ng PCB/g-shipboard solid-day, and allow that single piece of FRE to degrade into an increasingly larger number of localized hydrodynamically isolated particles (simulating a porous solid). These particulates represent the formation of new surface area that can be quantified from an analysis of percent increase in surface area of a geometric surface area and volume calculated for the original 1-cm³ particle as compared to the corresponding surface areas and volumes for the degradation particles. This percent increase can subsequently be normalized to how long such a process might occur, and then the incremental surface area increase (per unit time) can be applied to the empirical leach rates (curve) to calculate the incremental increase in leach rate corresponding to the smaller particles with increasingly larger surface areas with time. This analysis maintains conservation of mass, and as a result, the mass of the initial piece of FRE is equivalent to the sum of the masses of all smaller degradation particulates of FRE. This effectively results in the percent increase in surface area translating to a decrease in mass per unit surface area, and ultimately this translates

into an increased leach rate because the mass per unit surface area is in the denominator of the leach rate expression. This can be most easily understood by performing a unit analysis of the following equation and applying varied surface area increases (as a function of particle number increase, resulting particle size decrease) to the Table 12 shipboard solid leach rate results for the example (FRE) using the analysis presented in Table 12. Equation 7 expresses the shipboard solid-specific, mass-normalized leach rate to a corresponding shipboard solid-specific, mass-perunit, leaching-surface-area-normalized leach rate by dividing the former by the seawater accessible surface area (SASA) as unity (1 unit of active surface area), independent of geometric units. This equation indicates that the reported mass-normalized rate relies on the surface area implicitly, which contributes to the observed/measured value, and the leach rate can be expressed in active-surface area units (units of SASA), despite not having quantified the SASA in geometric units (e.g., cm², etc.). As the number of particles/time increases and particle size/time decreases, the SASA/time increases. It is relatively straightforward to adjust the SASA unit factor in the equation while keeping the total mass of the shipboard solid constant to accommodate such an increase in SASA/time to see the effect on a range of leach rates. Table 12 uses this type of analysis to perform bounding calculations at different degradation rates (over variable degradation times, with decreased particle sizes/increased particle numbers/increased SASA).

Equation 7.

$$AvgLR(implicit) = \frac{V}{\left(\frac{M_S}{SASA}\right)} \frac{[PCB]_f}{(t_f - t_i)}$$

In this equation, AvgLR (implicit) represents the inherent functional dependence on surface area and is calculated in a manner similar to Equation 5, but instead of normalizing only to mass (M_S) , the AvgLR is normalized to mass per unit of seawater accessible surface area $(M_S/SASA)$. The units in this functional form are ng PCB/(g shipboard solid/1 SASA unit)-day.

Table 12(A and B). Bounding analysis for potential incremental increases in leaching surface area as a function of particle formation. As described in the text, this analysis starts with a sample of shipboard solid material (e.g., FRE with the empirical tPCB leach rate curve values included below), and in (A) Cases 1 and 2, beginning with a known size, assumes degradation into a porous solid simulated by small particle numbers and sizes over realistic time periods to derive %-increases in surface areas from such a process. These calculated % increases in surface area are then applied to the FRE leach rates in (B) for Cases 1 and 2 in (A) over timeframes that the degradation process is expected to take place: (1) and (2a) 200 years, (2b) 100 years, (2c) 50 years to calculate the increase in release from the new surface area associated with the new, smaller particles. This data treatment is non-dimensional (x-units), that is, the increase in leach rate is based on a %-increase in surface area, that is based on a %-decrease in particle size, and increase in the number of particles. The treatment is mass-independent and can be applied to any shipboard solid leach rate for any PCB analyte reported in this study, as the increase in leaching calculation is simply a scalar multiplier.

(A)

Original Solid Material			
a	b	c	
1	1	1	x-units
SA	6	x-units^2	
Volume	1	x-units^3	
Corners	Edges	Faces	
8	12	6	

Case 1: New, 100X Smaller Materials (Particles)			
a'	b'	c'	
0.01	0.01	0.01	x-units
SA'	0.0006	x-units^2	
Volume'	0.000001	x-units^3	
Corner particles	Edge particles	Face particles	All Partially External Particles
8	96	57576	57680
Volume of Fully Internal	# of Fully Internal Particles	Equiv # of Fully External	Volume of Fully External
Particles (x-units^3)		Particles	Particles (x-units^3)
0.990368	990368	9632	0.009632
SA of New Particles (Added SA)	Fractional Increase in SA from	Increase in New Particles from	
(x-units^2)	Original	Original	
594.2208	99.0368 -fold	1.00E+06 -fold	

Case 2: New, 1000X Smaller Materials (Particles)			
a'	b'	c'	
0.001	0.001	0.001	x-units
SA'	0.000006	x-units^2	
Volume'	0.000000001	x-units^3	
Corner particles	Edge particles	Face particles	All Partially External Particles
8	96	5975976	5976080
Volume of Fully Internal Particles (x-units^3)	# of Fully Internal Particles	Equiv # of Fully External Particles	Volume of Fully External Particles (x-units^3)
0.999003968	999003968	996032	0.000996032
SA of New Particles (Added SA) (x-units^2)	Fractional Increase in SA from Original	Increase in New Particles from Original	
5994.023808	999.003968 -fold	1.00E+09 -fold	

(B)

FRE	Leachi Time t (days)	ng	0.007	1.099	7.022	21.077	42.045	71.237	105.078	147.083	189.026	231	273.122	315.039	357.003	399.019	469.032
	delta-t		0.007	1.092	5.923	14.055	20.968	29.192	33.841	42.005	41.943	41.974	42.122	41.917	41.964	42.016	70.013
AvgLR [ng PCBs/g SS-day]	tPCBs		0	9.5	1.0	1.3	9.1	8.2	7.3	7.0	5.7	6.1	4.2	3.7	2.9	3.2	1.9
Case 1)		73000	0 days (200 y	years)	SA Increase	Timeframe											
Additional AvgLR inc increase tin (x 10 ⁻²)	l SA		0	1.3	1.4	1.8	1.2	1.1	0.99	0.95	0.77	0.83	0.57	0.50	0.39	0.43	0.26
Case 2a)		73000	0 days (200 y	years)	SA Increase	Timeframe		•		•	•	•					
Additional AvgLR inc increase tin (x 10 ⁻²)	l SA			13	14	18	13	11	10	9.6	7.8	8.4	5.8	5.1	4.0	4.4	2.6
Case 2b)		3650	0 days (100 y	years)	SA Increase	e Timeframe	11		· ·	11			- I		II.		
Additional AvgLR inc increase tin (x 10 ⁻¹)	l SA		0	2.6	2.7	3.6	2.5	2.2	2.0	1.9	1.6	1.7	1.2	1.0	0.79	0.88	0.52
Case 2c)		1825	0 days (50 ye	ears)	SA Increase	Timeframe	•	•	•	•	•	•	•	•	•	•	•
Additional AvgLR inc increase tin (x 10 ⁻¹)	l SA		0	5.2	5.5	7.1	5.0	4.5	4.0	3.8	3.1	3.3	2.3	2.0	1.6	1.8	1.0

5.2.3. Potential Effects of Biotic Processes on Leach Rates

This study was made feasible by using a simple conceptual model that limited the scope to controllable abiotic conditions over a relatively short period of time (<2 years). The potential effect(s) of biotic processes on the materials in this study was considered to be much less important during this short-term empirically determined release, before the majority of biotic processes could occur. Additionally, the influence of biotic processes is expected to be of much lower magnitude relative to the empirically determined initial release, and potentially in a positive or negative direction, i.e., opposite modes of action by biotic organisms such as PCB degradation or SASA blocking by organisms, vice shipboard solid degradation as demonstrated above, resulting in decreases and increases in effective PCB leach rate, but with a smaller magnitude relative to the early release.

Biological factors such as biofouling and encrustation could influence the long-term release of PCBs from shipboard solids in an artificial reef setting. The laboratory leach rate study did not address such issues empirically because of inherent difficulties with experimental complexities, concerns with data interpretability, and subsequent applicability of results to site-specific reef environments. Clearly, biological factors are an uncertainty; however, one can speculate very generally about the possible effects of biological organisms on leaching, including, but not limited to the following:

- Potentially enhanced release caused by an increase in leaching surface area.
- Potentially decreased leaching caused by protection of the leaching surface from seawater by marine organic/biological matter and enhanced sorption of PCBs from the aqueous phase.

For antifouling paints in marine environments, a decreased leach rate caused by biofilm presence has been observed for organometallic and inorganic contaminants leaching into seawater (Caprari, Slutzky, Pessi, and Rascio, 1986; Haslbeck et al., 2000; Mihm and Loeb, 1988; Schatzberg, 1996; Seligman et al., 2001; Thomas, Raymond, Chadwick, and Waldock, 1999; Valkirs, Seligman, Haslbeck, and Caso, 2003). Some of the literature also indicates sequestration by lipids as PCBs in water pass through membranes in cell walls of various types of microbial organisms (Kujawinski, Farrington, and Moffett, 2000). Such a process could decrease the concentration of PCBs in seawater near the leaching surface, thus potentially enhancing the release by increasing the concentration difference between the solid and seawater. Conversely, PCB sorption into an extra-cellular matrix (biopolymer) and/or organic/biological matter (e.g., previously suspended in water column) (Baier, 1984; Little, 1984; Mitchell and Kirchman, 1984; White and Benson, 1984)in intimate contact with the leaching surface could also inhibit the release. We reasonably expected that the presence of such materials at the SASA might provide a significant diffusional barrier to direct exposure over the residence time or lifetime of the microbial population prior to the onset of higher order colonization in the macrofouling organism settlement/long-term encrustation process. Such diffusional barrier mechanisms could also contribute to decreases in PCB leach rates that might occur in a manner analogous to that for antifouling coatings.

Since biotic processes leading to degradation are not instantaneous/short-term processes, as noted in the bounding analysis above, the empirical leach rates in the study timeframe should closely reflect the initial 1 to 2 years of release. Of primary importance/concern is what one

chooses to use as a long-term leach rate. The long-term AvgLR could be affected by biotic or physical degradation conditions, although the magnitude of such an effect would be comparatively small as shown in Table 12.

These factors were considered during the experimental design phase and are also reflected in the suggested applicability/use of the empirical results. Specifically, it is not advisable to adopt and use an extrapolated curve leach rate value beyond ~2-years as a long-term (>>2 years) leach rate value without first evaluating the 95% UCL and UPI). Extrapolated data beyond ~2-years are only used in this study to demonstrate that the statistical upper limits of regressions performed on the empirical AvgLR curves beyond their maxima either decrease or remain constant. This approach was used purposely to provide confidence in using a constant leach rate from the decreasing portion of the AvgLR curve or regression (1.5 to 2 years) as a reasonable maximum rate to use beyond the initial release timeframe. It is also stressed that using the regression analysis results to extrapolate back to a time point before the maximum rate on the empirical curve is not valid.

5.2.4. Shipboard Solid Sources

The choice of shipboard solids investigated in this study presented a serious technical and logistics challenge during the field sample collection phase. Most technical data and information regarding what types of materials, concentrations of PCBs, identity of commercial PCB mixtures (Aroclors®) in the solids, and location of ship components with these materials were either anecdotal or historical, described materials that had already been remediated, or the vessel was no longer available for sampling. This reality presented the leach rate study with a unique problem in terms of locating and collecting existing materials as source material with known quantities and PCB distributions. Ultimately, the necessary approach consisted of evaluating the existing database to focus on the major classes of materials in Table 3, and then attempt to collect those materials with the highest concentrations available in the inactive vessel inventory (1999) before an imminent shipyard remedial action. As a lower limit requirement, a material with sufficient PCB concentration was needed that, given a substantial amount of time to release, could be detected in seawater leachate (e.g., avoid situations where the tPCB concentration in the solid would be diluted to below detection in the leaching vessel minimum required volume (1 L), even if all the PCBs came out of the solid instantaneously). This requirement generally meant a minimum of hundreds of ppm in the solid was needed to realistically expect to see a measurable PCB concentration, below 10- to 20-ppb seawater (expected) saturation limits in leachate samples over a reasonable amount of time. From the PCB database for the inactive fleet inventory used during the study, it was clear that finding and collecting materials with specific PCB distributions was beyond the scope of the study, as it would have required a dedicated/robust random sampling and analysis effort similar to the existing NAVSEA sampling program. Instead, the database was evaluated to identify the most common Aroclors® for the leach rate study classes of materials in the database, followed by focused subsequent field collection events to obtain materials expected to have a similar distribution, if they were still available for collection. This approach resulted in the samples with distributions in Table 3, which when compared with the NAVSEA PCB program summary statistics in Table 2, overlap significantly and effectively provided an increased confidence in assuming a similar distribution in shipboard solids onboard other vessels and applying the leach rate results to those materials.

In addition to the PCB content issues in shipboard solids described above, each shipboard solid was tested in a manner designed to conservatively emulate the worst-case physical form of the solid initially onboard a vessel during a typical natural leaching scenario. This means that the leach rate study results, on a mass-normalized basis, correspond in most cases to leaching performed under very conservative representative physical conditions for each shipboard solid. More detailed descriptions of each class of shipboard solid are in the field sampling descriptions in Section 2 and shipboard solids descriptions in Section 3, and summarized here.

Electrical Cable (EC). This solid sample was tested intact, except for the ends, which were cross-cut, immediately exposing the internal components to seawater during leaching studies. This exposure represents only a small fraction of the cable typically onboard a vessel, unless a substantial amount of cabling has been removed, in which case, the ends of cables that reside within the cable runs between bulkheads would be exposed similarly. In addition, the outer armored shielding (painted steel mesh) on the tested EC was removed, negating the possibility of seawater leachate collecting statically between the surface of the EC and the shielding, which would have affected the simulation of complete dynamic advection and instead would have introduced the possibility for leach rate suppression. The leaching surface area to mass ratio for most EC in its native state onboard a typical vessel is expected to be significantly lower than that tested in this study, resulting in a much larger empirical EC leach rate than expected onboard a vessel in a realistic reef environment.

Bulkhead Insulation (BHI). This sample was tested intact, without the outer lagging (painted pressboard backing), behind which, is BHI material. The as-tested material is likely similar to that onboard most vessels except that the as-tested sample had no paint on its outer surfaces, unlike many materials onboard, which would reduce the leach rate caused by sorptive processes and advective flow reduction in and out of this very open-structured material. In addition, the presence of lagging material, as with paint or the armored shielding for EC, would have affected the simulation of complete dynamic advection and would have introduced the possibility for leach rate suppression, as would be expected in a natural leaching environment. Most BHI material in its native state onboard a typical vessel is expected to have a leaching surface area to mass ratio is less than or equal to that tested in this study. The BHI empirical leach rate slightly overestimates that expected onboard a vessel in a realistic reef environment.

Black Rubber (BRPHL). This sample was tested intact, but unlike most materials onboard vessels, without the presence of paint on its outer surfaces. The presence of outer painted surfaces would reduce the leach rate caused by sorptive processes, acting as a barrier to PCB release, and thus the leach rate study is evaluating a more conservative leach rate process. Most BRPHL material in its native state onboard a typical vessel is expected to have a leaching surface area to mass ratio less than or equal to that tested in this study. The BRPHL empirical leach rate slightly overestimates that expected onboard a vessel in a realistic reef environment.

Paint (AP). This sample was tested in a significantly different form than what is onboard a typical vessel. It consisted of paint chips and particulates, rather than an intact painted substrate. As a result, the surface area was artificially increased well beyond that found for most paints onboard in a natural leaching scenario. Consequently, the leach rate study reports a higher, conservative leach rate than would be expected in a natural setting or if an intact painted substrate was tested in the laboratory. The as-tested sample of paint chips is a close approximation for the minimal amount of loose, flaking paint that might become de-bonded from the

substrate, although paint flakes are generally removed as part of vessel maintenance and preparations. The type of paint tested in the leach rate study is similar to most types of interior and exterior vessel paints, except for antifouling hull paint, which is not a PCB-containing material found onboard Navy or commercial vessels. The leaching surface area to mass ratio for most AP in its native state onboard a typical vessel is expected to be significantly lower than that tested in this study. This results in a much larger empirical AP leach rate than that expected onboard a vessel in a realistic reef environment.

Foam Rubber/Ensolite® **(FRE).** The FRE sample was basically what one would expect to find leaching in a natural environment, except that the outer surfaces of most materials of this type are either painted or covered by materials (adhesives or substrata) that would provide a sorptive barrier and impede seawater leachate flow, suppressing the leach rate. The as-tested FRE sample in the leach rate study was painted only on one of its sides and the remaining surfaces were unpainted and freshly cut/exposed by the subsampling process. The lack of paint on >75% of the available surface allowed a conservative measurement of PCB release. Most FRE in its native state onboard a typical vessel is expected to have a leaching surface area to mass ratio less than or equal to that tested in this study. The FRE empirical leach rate slightly overestimates that expected onboard a vessel in a realistic reef environment.

Felt (FGI). Felt gasket material is similar to other types of felt components onboard vessels and in this study is the same gasket material that was protruding out of an HVAC duct flange, which was collected as the FGO sample discussed below. The primary difference between this sample and the FGO sample is a very significant one; this type of felt gasket is an internal component of the flange, and would remain compressed between the flange heads in a natural leaching environment. The as-tested FGI sample is not such a sample; it was removed from the flange and tested with most of its surfaces exposed, resulting in a more open, advective condition during the test than would be found onboard a vessel in a natural leaching scenario, where the felt gasket would be covered by flange materials that would impede seawater leachate flow, suppressing the leach rate. As the flange dissolves away over many years, decades, or perhaps a century, the felt material would become incrementally exposed, rather than exposed instantaneously in its entirety as tested. Leaching of exposed surfaces after loss (corrosion/dissolution) of the metal flange would continue uninhibited in a manner similar to what was measured in the laboratory but any fresh surface would be small and exposed only incrementally over time. The leaching surface area to mass ratio for most of the FGI in its native state onboard a typical vessel is expected to be significantly lower than that tested in this study, resulting in a much larger empirical FGI leach rate than that expected onboard a vessel in a realistic reef environment.

Felt (FGO). This sample, as mentioned above, is part of the same flange gasket as the tested FGI. The sample was tested essentially intact and its surface approximately 30% painted, with the remainder exposed because of the material was cut off of the intact flange during the field sample collection and subsampling event in the laboratory. The 30% painted surface probably contributed a smaller fraction to leach rate and the unpainted portion, a larger fraction. Most felt material of this type onboard vessels, particularly that protruding from between flange heads, is sealed by paint and not damaged by cutting it away from the flange. As a result, the leaching results for the as-tested sample are conservative, not only from the paint/barrier coating standpoint, but also from the standpoint of testing a freshly cut, exposed surface, unlike what would be the case onboard a vessel. The leaching surface area to mass ratio for most FGO in its native

state onboard a typical vessel is expected to be significantly lower than that tested in this study, resulting in a much larger empirical FGO leach rate than that expected onboard a vessel in a realistic reef environment.

Shipboard Solid Surface Areas. While scientific pursuits aimed at broadening the scientific understanding of unique mechanisms associated with PCB release have potential, this study did not focus on evaluating the molecular properties of the interfaces each of these materials makes with seawater, probably a dynamic/changing property of each shipboard solid. This study did capture the resultant effect of such properties on the magnitude and variability of the leaching process in the form of quantifying the release in each case, and with normalization to shipboard solid mass instead of surface area. From a practical (data-use) standpoint, this effort was a much more efficient data reduction approach, as shipboard solid materials for vessels are typically described in terms of mass or tonnage vice surface area. We suggest caution in using the initial surface area approach, simply because it represents only the starting surface area and not necessarily the seawater accessible surface area (SASA), a parameter very likely to be dynamic or changing temporal variable (could significantly increase or decrease over time).

5.2.5. Analytical Chemistry

The choice to use homolog measurements to determine tPCB concentrations is probably the most effective manner in which the analytical uncertainty level was reduced in this study. Without such an approach, the homolog and tPCB results reported in this study would have been estimated values based on limited congener data combined with assumptions and estimation algorithms with much higher levels of uncertainty. For most detailed uncertainty and confidence issues concerned with study analytics, the reader is directed to the QA/QC sections of Appendix C, the data quality objectives (DQO) specified in this study, and analytical chemistry-related subsections included in Section 2 and in Appendix B.

In general, the analytical data quality was very high throughout the leach rate study providing high confidence in results. The low levels of detection were particularly useful in determining whether or not leaching could be observed in a minimal amount of leaching time. Of course, with unlimited time and resources, one could have run experiments longer in an attempt to perhaps observe leaching for analytes that were never detected in this study. However, one must know very precisely and to very low or trace levels, what is present in and on the leachable surfaces of the solid source materials and whether what is measured represents all possible variations of PCB mixtures (multiple Aroclors®). In this respect, this study could not evaluate every possible type of Aroclor® content in each shipboard solid, and it was beyond the study scope to determine what the molecular level composition was at the interface (SASA), which was likely changing with time, as noted in the shipboard solid discussion above.

In some cases, as can be seen in Table 3, all Aroclors® in all shipboard solids do not have a corresponding analytical (Aroclor®) control. Evaluating the dissolution behavior under the leaching conditions for all possible neat Aroclors® as analytical controls was beyond the scope of this study. As a result, in some cases (as noted in Table 11 for each shipboard solid), an analyte was detected for a shipboard solid leaching experiment, but a corresponding measure of that analyte in seawater from Aroclor® analytical control was unavailable for comparison. Though uncommon, occasionally the study was unable to examine every possible perturbation of Aroclor® loading possibilities. For similar reasons, samples occasionally did not have corresponding Aroclor® analyte maxima against which to compare to evaluate the Aroclor® analyte.

The impact of this was minimal because many other lower incremental leaching sample concentration data were collected during the leaching experiment. Regardless, in these rare instances, the analyte maxima in those samples must be interpreted as a possibility (not certainty) that it may have been influenced to somewhat by a potential saturation condition. In general, these cases occurred earlier rather than later in the leaching process for a given experiment, exerting minimal impact on long-term leach rates at the curve endpoint. Furthermore, while steps were taken to avoid the release of PCB-rich shipboard solid particulates into the leachate, it is possible, though not particularly probable, that an occasional very small particle made it through the cage in the leaching vessel and then into an analytical sample extraction to produce slightly higher leachate concentrations in that sample. A more probable scenario for the non-Aroclor maxima relates to availability of PCB analytes at the seawater interface (SASA), as briefly described below.

5.2.6. Leach Rate Data/Results

Leachate Saturation. Except for a few analytes, all shipboard solid PCB leachate concentration maxima were lower compared with Aroclor® analytical controls (see Table 11). For the non-Aroclor® analyte maxima, the shipboard solid interface (SASA) could probably release more of that particular PCB than the A1254 or A1268 matrix. Unfortunately, without more detailed information about the interfacial PCB compositions of shipboard solids, vice assuming that it is composed of PCB distributions similar to bulk compositions, the dissimilarities between these analyte behaviors and Aroclor® analyte behaviors can only be characterized as an uncertainty. Regardless, these shipboard solid analyte maxima can be considered the effective saturation limit in seawater for that analyte. Other concentrations for that analyte across the experimental series are below that maximum and still comprise a valid leach rate dataset.

Sampling Interval. Maintaining a non-saturated condition was a primary component of the study approach, which ensured that leaching results reflect a truly uninhibited release process. The sampling time was also a critical variable in the leaching studies. This variable was not a parameter that could be optimized to provide a higher temporal leach rate resolution across any given leach rate experiment. The resolution to which we could determine the leach rates was entirely dependent on the rate of release from the solid, with the result that the time intervals in the leaching experiments are large and not truly differential. This relatively large time interval was out of necessity, and is a function of allowing the experiment to follow the leach rate, i.e., sampling interval is governed by the time required for a very slow leaching process to occur until sufficient concentrations are reached for analytical quantitation of a significant number of different analytes in each sample (leaching of a reasonable number of analytes above detectable levels to provide an appropriate level of confidence in the overall quantitation.) For slow leaching processes, such as those observed in this study, in which nearly insoluble PCBs are essentially immobilized in a solid matrix, it is reasonable to increase the sampling time to allow the leaching of PCBs to be observed. The alternative would be to shorten the sampling interval and measure non-detects, a clearly unacceptable option for quantitatively characterizing an empirical release behavior. If the solids had contained only a single analyte, instead of a complex mixture of PCBs (one or more Aroclors[®]), a study could have been designed where one might have been able to perform analyses at lower detection limits to observe the (lower magnitude) release in a shorter time, and the sampling interval might have been minimized further within similar criteria. Regardless, the properties of the solid matrices would have dictated the inherently slow leaching process. The result of long sampling times is that one cannot characterize the dynamic nonlinearities (faster and slower) leaching that could be occurring within each sampling/leaching interval. AvgLR, as described by Equation 5, captures the total behavior and is numerically correct, reflecting an average change in concentration over a time-period interval, delta-t. As mentioned above, the underlying issue is one of time resolution. This calculation is numerically dependent on t_f and t_i, and defines an average for any value of delta-t. It does not provide any information about instantaneous values of leach rate within the time-period; however, the sum of all instantaneous rates within the time-period must equal the average rate defined by Equation 5. While it is correct to consider this AvgLR a low-resolution value, it is not an underestimation. The AvgLR can be composed of low and high values within the sampling interval that must sum to the AvgLR.

Adsorption Loss. The leach rate study was designed to avoid PCB adsorption on leaching vessel walls using weekly leaching vessel exchange. PCB adsorption is a function of the concentration of PCBs in the glass container and the condition of the inner surfaces of the glass bottles used, which were cleaned to full EPA cleaning and quality assurance standards to include custody seals and labeled with lot number for traceability to certificate of analysis. Because adsorption was intentionally minimized in the experimental approach, we expected that an insignificant level of adsorption would probably occur in the bottles, and as a result, the analysis of used leaching vessels would probably fall below the limits of detection. To verify this, leaching vessels were selected for analysis from each solid leaching experiment based on high concentration in the leaching vessel during that leaching experiment. The intent was to apply corrections for adsorption to the experiments by using these results. This approach did not yield detectable levels of PCBs analyzed over a range of concentration values observed in the leachate solutions. These results are included in Appendix C and provide confidence in earlier predictions that it would be difficult to even detect adsorbed PCBs at such low levels in leaching vessels, which contained PCB concentrations in seawater significantly below saturation.

While it is probable, based on the empirical data described above, that loss caused by PCB adsorption on leaching vessel walls was insignificant during the experiments, supplementary data for PCBs detected in similarly selected leaching vessels during Aroclor[®] dissolution experiments were evaluated to estimate the amount of adsorption. This approach significantly over-predicted adsorption values on shipboard solid leaching vessel walls for which PCBs were not detected. Similarly, using ½ MDL as an alternate approach led to even higher over-predictions.

The prediction of unrealistic values for both these estimate approaches is likely related to the approximation of an adsorption factor (mass-adsorbed/PCB concentration in seawater) assuming a linear rather than nonlinear dependence on seawater PCB concentration. Figure 69 illustrates the observed adsorption behavior graphically, showing that adsorption was only detectable at very high PCB concentrations in leachate, significantly higher than in shipboard solid leaching experiments. At the much lower concentrations typically observed for shipboard solid leachate (e.g., <10³ ng/L, in Figure 69 and Appendix C), an insignificant level of adsorption (at or below detection limits) would be expected.

Figure 69. (a) PCB mass associated with leaching vessel walls as a function of leachate concentration, and (b) leachate concentration distribution across all shipboard solid leaching experiments. The Aroclor[®] 1254 dissolution vessel analysis in (a) provided the only measure of adsorbed PCBs above detection limits, but at significantly higher leachate concentrations than typical leachate concentrations for shipboard solid leaching vessels. The leaching vessel analysis for FGI, also shown in red, is an artifact associated with source material, i.e., corresponds to the source material distribution (homolog groups 7 through 9) rather than the corresponding leachate distribution (homolog groups 2 through 7). The predominant homolog distributions found in other leaching vessel analyses are composed of homolog groups 2 through 7. Adsorption values indicated above for shipboard solid leaching vessels and the Aroclor[®] 1268 leaching vessel were derived from sample-specific minimum detection limits in those analyses. Most shipboard solid leaching vessels in the leach rate study were exposed to concentrations below 1,000 ng/L, where adsorption was not detected on leaching vessel walls and is estimated to be minimal.

Replicate Leaching Results. The leaching curves are unique results for each solid and do not represent a statistical result in the sense that replicate experiments and analyses were not performed to provide error bars on each leach rate data point (in addition to the expected variance in analytical precision, as demonstrated in the raw concentration data evaluation). It is improbable that such a set of experiments could provide results considered interpretable, simply because commonality in PCB source content is insufficient, even within a given solid sample (subsamples of a field sample have been generally shown to contain different concentrations and distributions of PCBs/Aroclors[®]). However, subsamples of the same solids, tested at low temperature, as described in Subsection 2.6, and presented in Appendix E, were qualitatively similar. Further analyses of these low-temperature data are presented in Appendix E to address the absence of more samples (leaching of additional samples) at 25°C. The low-temperature leaching results at 4°C were corrected for temperature and evaluated to provide confidence that quantitative results at 25°C are sufficiently representative. This evaluation is based on enthalpy of solution data from the literature to correct for temperature effects on dissolution properties (Dickhut, Anders, and Armstrong, 1986) and uses the integrated form of the van't Hoff equation for dilute solutions as shown in Equation 8. This equation can be used to calculate the concentration of a soluble chemical species (e.g., a PCB congener) at a given temperature.

Equation 8

$$\Delta H_{ss} = RT(C-ln(x)),$$

where ΔH_{ss} is the enthalpy of solution of the solid, C is an experimentally determined integration constant, x is concentration, T is temperature, and R is the universal gas constant. Requirements for using this approach included identifying a PCB congener, for which ΔH_{ss} and C were reported, and that was consistently detected in most of the leaching experiments for all shipboard solids at both temperatures. Fortunately, a congener was identified (one of the few noted), PCB101 (2,2'4,5,5'-pentachlorobiphenyl), that met all of these requirements. Using temperaturedependent solubility parameters for PCB101, in which C was experimentally determined to be -8.0159, and ΔH_{ss} determined to be 31.9 kJ/mol, the respective concentrations for each of the leaching temperatures (4°C and 25°C) were calculated. The ratio of these (4°C concentration to 25°C concentration) was then used to initially correct for the temperature dependence of the dissolution component in the 4°C A1254 dissolution curve, which is the experiment in the leach rate study that should bear a close similarity to a solubility study. This result provided a very good correspondence upon comparison to the 25°C curve for A1254. Similarly, this approach was also then used to correct the 4°C EC (electrical cable) experiment, and it compared well with EC at 25°C. We then assumed that the behavior of PCB101 was representative of the other congeners in the pentachlorobiphenyl homolog group and similar corrections were performed for the congener and the homolog leach rate curves for A1254 and EC at 4°C and compared them with the A1254 and EC curves at 25°C. All of these results described for A1254 and EC are included for comparison, in addition to similar corrections and comparisons of leaching results for other shipboard solid materials and Aroclor[®] 1268 (A1268) at 4^oC.

While this approach probably cannot be extrapolated to the other homologs in each sample, the data treatment and close correspondence between temperature-corrected 4°C and the corresponding empirical 25°C curves provide a reasonable level of confidence in using the empirical leach rate study results to represent mass release for materials onboard a vessel.

Leaching Nondetection. Ultimately, the regression analyses performed on leach rate curves in this study are used as reasonable approximations for bounding the individual leaching behaviors. For those analyte leach rate regressions with insufficient statistical predictive power (high p-values) or insufficient numbers of points for a regression analysis, the maxima or the statistical means and standard deviations in the observed empirical leach rates can provide an estimation of the release and perhaps the variance in the data. Additionally, for leaching behavior non-detect (ND) data, evaluated in the study as part of the regression approach and homolog data quality analysis, were treated conservatively. Specifically, ND data (reported as zero) were not included/used in leach rate calculations, plots, or regression analyses, as described below.

Throughout the leach rate study, at times, for all of the materials leached, concentration data were encountered that were intermittent, that is, release was detected in one leaching interval, then not detected in the subsequent interval, then detected again in the following interval. Occasionally, the non-detection would remain a non-detect for several leaching intervals and then a detection, then nothing for the remainder of the experiment, and so on. Certainly, these observed behaviors make the data credible, i.e., if the study had always detected every analyte, it may have not appeared believable. However, this issue was evaluated as part of data quality analyses performed on all of the concentration data collected, realizing that because a process was being measured, the concept of data distribution should be in the context of variability around a given behavioral pattern or trend (i.e., leaching curve) rather than a distribution in samples randomly collected in the environment from contaminated sites, for example. In the case of environmental samples, a standard method of treating nondetects as ½ MDL, while perhaps applicable, needs to be applied in the context of a behavioral trend represented by a leaching curve, as PCBs are diffusively transported from a region of high concentration to a region of low concentration in the shipboard solid, and then dispersed in the external fluid medium. This type of treatment was relatively straightforward for PCB congeners, but laborious for treatment of homolog data, which were quantified as the sum of all detectable congeners within a homolog group. The details of the homolog evaluation, which are applicable because existing Navy models (PRAM and TDM) use only homolog data for predicting source release and exposure, are included in Appendix C. Essentially, during that evaluation, it became very obvious that relatively few cases existed where the detection of homolog data was significantly low enough to be classified as an uncertainty issue, and in those cases, omitting a low value was more conservative than including a value based on MDL, which would have resulted in a lower magnitude leaching curve regression. In several cases, where data for regression analyses was insufficient, a significant number of nondetect values could have been replaced with values based on MDL, but in such cases, the validity of the curve itself was in question for evaluation in context (where no behavioral trend really existed). In such cases, the maximum leach rate can be used as a conservative measure, negating the need for having MDL-based values assigned for nondetects. The overall result of this approach is a bias towards a more conservative rate, which in the case of regression analyses, effectively interpolates across regions where nondetects occur in the leaching curves. In cases where release in leaching curves was not indicated, assigning MDLbased values to the homolog group (arbitrarily assume a low constant level of release) is considered invalid for use in modeling release from a vessel.

5.2.7. Alternative Uses of Leach Rate Data

A detailed analysis and description of confidence, limitations, assumptions, and uncertainties associated with using these leach rate data to describe the source component in a vessel-sinking scenario is best described by using the example vessel (the ex-Lawe) discussed in Subsection 5.3. However, providing broad, general guidance on what the data ultimately represent is also prudent because situations may arise where the data are being evaluated/explored for another use. Examples might include, but are not limited to, applying the results for a material in this leaching study to another type of material, sinking a vessel under different conditions common to some other environment, or perhaps hazardous material disposal of PCB-containing shipboard solids. Empirical data specific to a situation under consideration should be used preferentially. In some cases, a proxy or surrogate is needed to estimate what the release could be as a worstcase scenario. For this reason, one must know or obtain information on PCB content (concentration and type of PCBs) for the source material in question. Once this information is known, the applicability of leach rate results to other materials can be evaluated using conservative assumptions and known commonalities with the materials tested in this study. A method that one might be inclined to try is to use the results for neat Aroclor[®] as a proxy or surrogate and simply scale the leach rate result for the neat Aroclor® to match. This method is only valid under certain circumstances, one of which is described for the example vessel. The primary caveat is that the type of material must possess similar physico-chemical properties. In particular, using Aroclor® results to rationalize the mechanism or model the complete leaching behavior of an inert solid material containing PCBs is invalid because the Aroclor® matrix, even if it is a solid or semisolid material, is not inert to dissolution in seawater. Neat Aroclor® results should not be considered a suitable proxy for A1254 or A1268 PCBs leaching from an inert solid material. However, empirical results for A1254 or A1268 can be used as a surrogate for mobile materials such as oils/greases that might leach Aroclor[®]/PCBs, as is the case described in the example for the ex-Lawe.

5.2.8. Leach Rate Data Regression Uncertainty

Understanding and describing the uncertainties associated with the use of (1) empirical leach rates, (2) statistical means of empirical leach rates, or (3) leach rates calculated using regression analysis results is also important. In the former two cases, the leach rate could be significantly or perhaps even overly conservative. If the final empirical leach rate value is used, it could be not conservative enough. If regression analysis is used to calculate a value at some time, t, a situation might arise where the confidence in the regression value is significantly lower than using the empirical data, even to the point of an unacceptable confidence level. These approaches should be evaluated on a case-by-case basis and the user should verify that the decision to use any particular approach can be rationalized in some reasonable, defensible manner.

In general, we recommend that for analytes exhibiting stable leaching curves, the final empirical leach rate be used unless it is outside the regression curve shown in Appendix A and summarized in Subsection 4.2. A given regression analysis can be used when a value just beyond the leach rate study timeframe is required to provide a value across all of the types of solids in a particular leaching scenario that requires a common point in time, e.g., ≤ 2 years for when a reef community might become established on a sunken vessel, or perhaps a leach rate corresponding to the final empirical leaching value for the solid of shortest overall leaching experiment duration. In the latter case, to perform a consistent and comparable leach rate analysis for all

materials' released analytes at the same point in an overall leaching process, leach rates for the analytes in other materials would be calculated from their statistically defensible regression analyses, but some other approach would be required for those analytes with insufficient data to support a regression analysis.

At no time are regression analysis results applicable to calculating a pre-maximum leach rate, as regression analyses correspond only to the decreasing portion of leach rate curves and are not statistically related to points on an empirical leach rate curve before the maximum leach rate. In all cases where a regression value is selected as a long-term leach rate, it is advisable to compare that value to the upper prediction interval (UPI) of the regression analysis to ensure that the selected value is greater than or equal to it and that the p-value for the regression is of high predictive power. This defensible approach will ensure the use of a conservative value in which one can place a high degree of confidence.

5.3. RECOMMENDATIONS FOR USING LEACH RATE DATA

The leaching data and leach rates presented in this work are useful for characterizing the leaching of PCBs from solid materials in the context of a risk assessment release and exposure model, under conditions specific to the environment of concern in the risk assessment, i.e., shallow-water leaching in an artificial reef environment. The portion of a given leaching curve to use as a source term in such a model depends on what assumptions are considered reasonable within the risk assessment framework used. However, to help illustrate the process of choosing and using the leach rate data presented in this report, an example evaluation is included for a decommissioned U.S. Navy vessel, the ex-William C. Lawe (NavSource Online Destroyer Photo Archive. 2006e). This vessel was the subject of a report prepared for NAVSEA, in which PCBs-ISM were thoroughly evaluated to provide source information (PCBs-ISM onboard) for the SINKEX study. In the SINKEX study, a sister-ship to the ex-Lawe, the ex-Agerholm, was located at ~2700 feet in the Pacific Ocean off of the coast of California, and was the focus of intense oceanographic and environmental sampling effort for subsequent risk assessments. ⁶ The ex-Lawe, although not the typical type of vessel used for artificial reef-building, is used as a surrogate reef vessel and is considered a valid approach from the PCB leaching perspective, considering that the same types of PCBs-ISM evaluated in this study were found onboard the ex-Lawe. The total estimated amount of each type of PCBs-ISM onboard¹⁴ will be used to demonstrate how one would apply the leach rate data to a provide a source term in a hypothetical sinking event, i.e., as if the ex-Lawe were to sink in shallow water as an artificial reef.

Shipboard solid-specific leaching data can be used to varying degrees of complexity, depending on the assumptions one is willing to accept. The extremes range from assuming a single, average leach rate over the entire period of time to using the leaching curves for the release over the empirical timeframe, followed by a long-term leach rate; either an extrapolated (changing) rate based on the leaching curve, or an assumed constant rate as an upper limit (worst case). The latter approach is being used in PRAM, initiated as part of the human health risk assessment in the U.S. Navy's Artificial Reef program. The former approach, using only the final empirical leach rate for each shipboard solid over the entire risk assessment timeframe, was originally used

¹⁴ John J. McMullen Associates, Inc. 1998. "Weight Estimates for Polychlorinated Biphenyls (PCBs) and Selected Metals Sunk on ex-USS Agerholm (DD 826) for the Deep Water Sunken Ship Study." Prepared for Naval Sea Systems Command (December), Alexandria, VA.

in the screening ecological risk assessment,² with the ex-Agerholm as a surrogate reef-vessel. The constant average leach rates for such an approach is shown in Table 13A as the "(b) Long-term" column of values for use in the ex-Lawe mass loading example. The extrapolated curves in Appendix A support this choice of long-term upper limit leach rate by demonstrating that the leach rates do appear to continue decreasing with time. Table 13A also summarizes the data for the case where the empirical leach rate (a) applies over the shipboard solid-specific experimental leaching timeframe (Table 13B), and the long-term upper limit (b) applies over the remaining timeframe of interest.

In Table 13B, the quantities and high estimates for PCB concentrations of each shipboard solid are adopted from the ex-Lawe report, and the leach rates for the materials tested in the leach rate study are used to calculate depletion times. Note that the leaching amounts and times to depletion for each solid are much different because of the very different amounts of each material onboard and with varied concentrations. This leads to a complex mixture of PCB source terms at any particular point in absolute time over a maximum timeframe dictated by the longest time-to-depletion for that particular scenario, from less than a year for highly mobile fast-releasing materials such as oils/greases to nearly 27,000 years for the electrical cable to over a million years for felt gasket, at which point PCB leaching would cease. In this scenario, all PCBs are assumed to be mobile and leach in their entirety. This is very conservative, as it is highly likely that some PCBs in the solid would remain permanently bound within the solid matrix. As previously stated, the neat Aroclor[®] dissolution rates were used as surrogates for shipboard solids not included in the leaching study (oils and greases). Under the stated assumptions, the rates of PCB release in this table could be used as source terms in a risk assessment for a hypothetical sinking of the ex-Lawe as a reef at a shallow-water site.

Alternatively, the regression results summarized in Section 4.2 and Appendix A could be used to support using a constant long-term leach rate value for regression analyses of PCBs that indicate leach rates will continue to decrease. In general, all leach rate behaviors in this study can be described by the power function in Equation 9, where y is the average leach rate and x is time. The leach rate data were subsequently fit using the logarithmic form of this power function (in "y = mx + b" form), shown in Equation 10.

Equation 9

$$y = 10^{A} x^{B}$$

Equation 10

$$\log[y] = B \log[x] + A$$

The tail or decreasing portion of the leach rate curves was plotted on a log-log scale, for which a linear regression was performed (only on data points at leaching times beyond and including the observed curve maximum).

If regression analyses are used, it is suggested that the approach for treating experimental leaching results in Table 13A, "(a) Empirical," be used as the source release term over the short-term (experimental) leaching period, beyond which, the functions in Appendix A and Section 4.2 can be used for estimating the long-term source parameter, or to support using the final empirical value as a conservative upper limit leach rate.

Further, the use of regression functions should be caveated as having been produced from a relatively small amount of data early in the leaching process, leading to low confidence in predicted values at long-term extrapolation endpoints (times). Because of this, we highly recommend that the more conservative, upper prediction interval curve/data be used at such endpoints if this approach is chosen. In some cases, the predicted upper limit (prediction interval) is nearly equivalent to the final empirical data value. In such a case, the curve-fit is most useful in providing confidence in using the final empirical leach rate value as a long-term upper limit leach rate.

Table 13(A and B). (A) Empirical and Long Term average leach rates during and beyond the experimental leaching timeframe for each shipboard solid. (B) Example calculations of time-to-depletion for the ex-Lawe, using the empirical and long-term average leach rates in A).

(A)	Felt Gasl	et-Outer	Felt Gasl	ket-Inner	Electrica	al Cable	Foam I Enso	Rubber- olite [®]	Bulkhead	Insulation	Black Ru	bber-PHL	Aluminiz	zed Paint	Oils/Gre A1			268
PCB Content ^(f)	11.74 wt		23.03 wt		0.12 wt%	6 tPCBs	0.89 wt	% tPCBs	0.044 wt	% tPCBs	0.16 wt	% tPCBs	0.043 wt	% tPCBs	100 wt%	% tPCBs	100 wt%	% tPCBs
Leach Rates (ng/g	Empirical (a)	Long- term ^(b)	Empirical (a)	Long- term ^(b)	Empirical (a)	Long- term ^(b)	Empirical (a)	Long- term ^(b)	Empirical (a)	Long- term ^(b)	Empirical (a)	Long- term ^(b)	Empirical (a)	Long- term ^(b)	Empirical (a)	Long- term ^(b)	Empirical (a)	Long- term ^(b)
shipboard solid-day)																		
Cl1	3.7E-03		8.7E-03	1.6E-02							9.2F-02	7.0E-02			1.6E+02	2.7E+01	8 6F+01	
Cl2	7.7E-01	3.5E-01	1.4E+00	2.2E-01	2.3E-02		5.1E-01	1.0E-01	3.9E-01		2.5E-01	5.4E-02				1.4E+02		
PCB8	2.1E-01		2.1E-01	7.6E-02			3.4E-02				1.7E-02					5.6E+01		
C13	1.1E+00		8.1E-01	3.5E-01	1.8E-04		1.7E-01		1.2E+00	6.0E-01		9.1E-02	7.5E-03					2.1E+02
PCB18	3.4E-01	1.5E-01	2.4E-01	9.0E-02			2.9E-02					1.2E-02				5.9E+01		
PCB28	2.6E-01	8.5E-02	1.6E-01	5.8E-02	9.4E-05		7.2E-02	1.5E-02	4.2E-01	8.3E-02	3.0E-02		1.2E-03		1.4E+02	3.0E+01	1.4E+03	6.7E+01
C14	1.0E+00	3.6E-01	4.9E-01	1.7E-01	3.7E-02	2.1E-02	2.0E+00	8.1E-01	2.8E+01	7.3E+00	6.3E-01	2.6E-01	1.5E-01	6.2E-02	5.6E+03	1.9E+03	3.4E+03	5.3E+02
PCB44			6.2E-02	2.3E-02	5.8E-03	2.7E-03	3.9E-01	1.5E-01	4.6E+00	1.2E+00	1.0E-01	4.1E-02	1.2E-02	1.4E-02	9.0E+02	2.4E+02	4.7E+02	1.3E+02
PCB49	6.5E-02	4.5E-02	3.8E-02	1.3E-02	2.0E-03	1.1E-03		3.8E-02	1.5E+00	3.8E-01	4.1E-02	1.2E-02	8.8E-03		3.8E+02	1.1E+02	2.3E+02	6.2E+01
PCB52	1.5E-01	5.6E-02	7.5E-02	3.0E-02	1.2E-02	6.1E-03		2.8E-01	7.6E+00	2.3E+00	2.0E-01	8.3E-02	4.4E-02	1.8E-02	1.9E+03	6.3E+02	4.5E+02	1.5E+02
PCB66			1.6E-02		1.0E-03		7.0E-02			2.3E-01	1.6E-02	5.0E-03			1.4E+02	2.7E+01	1.8E+02	2.7E+01
PCB77	4.7E-03				9.4E-05				8.8E-03						2.1E-01		4.0E+01	
			1.5E-01		6.0E-02	2.3E-02	2.6E+00		5.0E+01			1.8E-01	3.7E-01		4.8E+03	1.2E+03		
			3.2E-03		3.1E-03	1.3E-03			3.7E+00				1.5E-02		3.2E+02			6.3E+00
PCB101	2.7E-02		1.3E-02			2.1E-03	3.2E-01		5.9E+00			1.0E-02	3.1E-02					7.2E+00
PCB105	4.7E-03				1.1E-03		8.4E-02		1.4E+00	1.3E-01	3.5E-03		5.5E-03			8.4E+00		6.0E+00
PCB114							5.6E-04		5.6E-02						2.0E+00		1.2E-01	
PCB118	7.3E-03		3.4E-03		2.9E-03		1.8E-01	2.4E-02	3.2E+00	2.0E-01	1.7E-02		1.7E-02			1.5E+01	1.5E+01	4.3E+00
PCB123															7.3E-01			
PCB126																		
C16	7.2E-02		8.1E-02		9.3E-03		5.7E-01			4.1E+00			1.5E-01			1.4E+02	1.5E+01	7.7E-01
PCB128					1.4E-04		2.6E-02		3.0E-01							4.3E+00		
PCB138					7.0E-04		7.9E-02			2.5E-01			1.2E-02			1.2E+01		
PCB153	6.1E-03		8.9E-03		6.6E-04		6.9E-02			3.1E-01			1.5E-02			1.4E+01	3.8E+00	2.7E+00
PCB156							9.2E-03		7.1E-02						2.4E+00			
PCB157									2.1E-03						1.7E-01			
PCB167									7.0E-03						3.8E-01			
PCB169	2 OF 61	(1E 02	5.0E.01	2.5E.62	2.00.02		2 1E 01		1.45.00		1.75.01		0.75.01		4.05+00		4.0E+01	1.05.01
Cl7	3.8E-01	6.1E-02	5.2E-01	2.5E-02	3.2E-03		2.1E-01		1.4E+00		1.7E+01		2.7E-01		4.8E+00		4.9E+01	1.8E+01
PCB170									5.3E-03									

(A)	Felt Gasket-Outer		Felt Gasket-Inner		Electrical Cable		Foam Rubber- Ensolite®		Bulkhead Insulation		Black Rubber-PHL		Aluminized Paint		Oils/Greases with A1254		Oils/Greases with A1268	
	1.5E-02		6.7E-02						1.0E-02						2.8E-01		3.7E+00	3.1E+00
PCB183			8.0E-03						1.1E-02									
PCB184			2.5E-03		4.7E-04		2.0E-02		1.1E-01		2.6E+00		4.4E-02					
PCB187	1.5E-01	3.9E-02	1.6E-01	1.9E-02					1.6E-02								7.5E+00	8.4E+00
PCB189																		
C18	2.7E-01		1.2E+00	1.4E-01													1.5E+00	
PCB195																		
C19			4.0E-01		1.6E-04												1.2E+04	
PCB206			2.5E-01		1.0E-04												1.2E+04	
C110			3.3E-03		8.8E-05													
PCB209			3.3E-03		8.8E-05													
tPCBs (sum	3.9E+00	1.3E+00	5.1E+00	9.3E-01	1.3E-01	4.4E-02	6.1E+00	1.9E+00	9.1E+01	2.4E+01	1.8E+01	6.6E-01	9.5E-01	6.2E-02	1.2E+04	3.5E+03	2.4E+04	8.4E+02
of																		
homologs)																		

(B)	Example: ex-William C. Lawe										
	Felt Gasket (outer)	Felt Gasket (inner)	Electrical Cable	Foam Rubber/Ensolite [®]	Bulkhead Insulation	BRPHL	Aluminized Paint	Oils/Greases with A1254	Oils/Greases with A1268		
g shipboard solid (ex-Lawe JJMA estimates)	45359.2	45359.2	15169489.8	9071.8	9071.8	1496854.8	55882580.5	3215969.9	3215969.9		
Weight fraction (ex-Lawe JJMA high estimates)	4.0E-01	4.0E-01	4.4E-04	5.0E-04	5.0E-04	2.0E-02	4.9E-05	1.2E-03	1.2E-03		
Weight% in shipboard solid (PCB-LRS)	11.74	23.03	0.12	0.89	0.044	0.16	0.043	100	100		
Empirical Leaching Range ^(c) (days)	454.1	475.0	475.0	469.0	454.3	475.1	469.0	433.3	371.0		
Years to Depletion ^(d) , for tPCBs, assuming all materials release all PCBs in their entirety.	860311	1173719	26900	723	56	83758	2173	0.9	3.8		
Years to Depletion ^(e) , for tPCBs, assuming all materials release all PCBs in their entirety.	860307	1173712		719	51	83721	2153	0.3	0.1		

⁽a) Mean of all experimentally-determined rates determined over the empirical timeframe (c).

⁽b) The final empirical leach rate value is used as a long-term constant upper limit, to represent a constant upper limit rate beyond the experimental timeframe (c).

⁽c) This is equivalent to the total experimental leaching or exposure time for the materials in this study.

⁽d) Calculated assuming the constant rate in (b) only.

⁽e) Calculated using the empirical rate (a) over experimental time period (c), and the constant upper limit rate (b) thereafter.

⁽f) Concentration of PCBs in the solid.

6. REFERENCES

- Alexander, M. 1981. "Biodegradation of Chemicals of Environmental Concern," *Science, New Series*, vol. 211, no. 4478, pp. 132–138.
- Alford-Stevens, A. L. 1986. "Analyzing PCBs: Basic Information About PCBs and How They Are Identified and Measured," *Environmental Science and Technology*, vol. 20, pp. 1194–1199.
- Alford-Stevens, A. L., T. A. Bellar, J. W. Eichelberger, and W. L. Budde. 1986. *Analytical Chemistry*, vol. 58, pp. 2014–2022.
- American Society for Testing and Materials. 1992. "Table 1: Reconstituted Saltwater for Marine and Estuarine Crustaceans." In "Standard Guide for Conducting 10-Day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods," p. 737 and references therein, ASTM Designation E1367-92, West Conshohocken, PA.
- Andrady, A. 2000. "Plastics and Their Impacts in the Marine Environment." *Proceedings of the International Marine Debris Conference on Derelict Fishing Gear and the Ocean Environment*, 6–11August 2000, Honolulu, HI. http://www.mindfully.org/Plastic/Ocean/Plastics-Impacts-Marine-Andrady6aug00.htm
- Atlas, R. M. and R. Bartha. 1998. *Microbial Ecology: Fundamentals and Applications*, Fourth Edition. Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA.
- Baier, R. E. 1984. "Initial Events in Microbial Film Formation." In *Marine Biodeteriation:*An Interdisciplinary Study. Proceedings of the Symposium on Marine Biodeterioration.
 Uniformed Services University of Health Sciences, 20–23 April 1981 (pp 57–62).
 J. D. Costlow and R. C. Tipper, Eds. Naval Institute Press, Annapolis, MD.
- Ballschmiter, K., R. Bacher, A. Mennel, R. Fischer, U. Riehle, and M. Swerev. 1992. "Determination Chlorinated Biphenyls, Chlorinated Dibenzodioxins, and Chlorinated Dibenzofurans by GC-MS," *Journal of High Resolution Chromatography*. vol. 15, pp. 260–270.
- Caprari, J. J., O. Slutzky, P. L. Pessi and V. Rascio. 1986. "A Study of the Leaching of Cuprous Oxide from Vinyl Antifouling Paints," *Progress in Organic Coatings*, vol. 13, pp. 431–444.
- Colton, J. B., F. D. Knapp, and B. R. Burns. 1974. "Plastic Particles in Surface Waters of the Northwestern Atlantic," *Science, New Series*, vol. 185, no. 4150, pp. 491–497.
- Crank, J. 1979. *The Mathematics of Diffusion*. Second Edition. Clarendon Press, Oxford, England.
- Cseh, T., S. Sanschagrin; J. Hawari, and R. Samson, R. 1989. "Adsorption-Desorption Characteristics of Polychlorinated Biphenyls on Various Polymers Commonly Found in Laboratories," *Applied Environmental MicroBiology*, vol., 55, no. 12, pp. 3150–3154.
- Cundell, A. M. 1974. "Plastics in the Marine Environment," *Environmental Conservation*, vol. 1, no.1, pp. 63–68.
- Dickhut, R. M., A. W. Anders, and D. E. Armstrong. 1986. "Aqueous Solubilities of Six Polychlorinated Biphenyl Congeners at Four Temperatures," *Environmental Science and Technology*, vol. 20, no. 8, pp. 807–810.

- Gregory, M. R. and A. L. Andrady. 2003. "Plastics in the Marine Environment." In *Plastics and the Environment*. A. Andrady, Ed. Wiley-Interscience, Hoboken, NJ.
- Haslbeck, E. A., A. Valkirs, P. Seligman, A. Zirino, Ignacio Rivera, J. Caso and E. Chen. 2000."Release Rate Determination and Interpretation for Copper Antifouling Coatings." In *Proceedings of the PCE 2000 Conference and Exhibition:* Assessing the Future of Coating Work pp. 329–348. Publisher.
- Heap, W. M. and S. H. Morrell, 1968. "Microbiological Deterioration of Rubbers and Plastics," *Journal of Applied Chemistry*, vol. 18, pp. 189–194.
- Hetherington, J., J. Leous, J. Anziano, D. Brockett, A. Cherson, E. Dean, J. Dillon, T. Johnson, M. Littman, N. Lukehart, J. Ombac, and K. Reilly. 2005. *The Marine Debris Research, Prevention and Reduction Act: A Policy Analysis*. The Marine Debris Team, Columbia University, New York, NY.
- In, C. R. J. M. Guerrero, K. M. Lane, and R. D. George. 2001a. "Screening-Level Determination of Chlorinated Biphenyls in Seawater Matrices using Enzyme-linked Immunosorbent Assay (ELISA) Techniques," *American Chemical Society Environmental Abstracts*, vol. 41, no. 1, pp. 174–179.
- In, C. R., J. M. Guerrero, K. M. Lane, and R. D. George. 2001b. "Leaching Studies of Chlorinated Biphenyls from Solid Matrices into Seawater," *American Chemical Society Environmental Abstracts* vol. 41, no. 1, p. 267.
- Kennish, M. J. 1992. *Ecology of Estuaries: Anthropogenic Effects*" Marine Science Series. CRC Press, Boca Raton, FL.
- Kujawinski, E. B., J. W. Farrington and J. W. Moffett. 2000. "Importance of Passive Diffusion in the Uptake of Polychlorinated Biphenyls by Phagotrophic Protozoa," *Applied and Environmental Microbiology*, vol. 66, no. 5, pp. 1987–1993.
- Little, B. J. 1984. "Succession in Microfouling." In *Marine Biodeteriation: An Interdisciplinary Study. Proceedings of the Symposium on Marine Biodeterioration*, Uniformed Services University of Health Sciences (pp. 63–67), 20–23 April 1981. J. D. Costlow and R. C. Tipper, Eds. Naval Institute Press, Annapolis, MD.
- Mackay, D, W. Y. Shiu, and K. C. Ma. 1992. "Table 4.4, Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals," In *Volume 1*. *Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs*, Lewis Publishers, Ann Arbor, MI.
- McFarland, V. A. and J. U. Clarke. 1989. "Environmental Occurrence, Abundance, and Potential Toxicity of Polychlorinated Biphenyl Congeners: Considerations for a Congener-specific Analysis," *Environmental Health Perspectives*, vol. 81, pp. 225–239.
- Mihm, J. W. and G. I. Loeb. 1988. "The Effects of Microbial Biofilms on Organotin Release by Antifouling Paint." In *Biodeterioration* 7 (pp. 309–314). D. R. Houghton, R. N. Smith, and H. O. W. Eggins, Eds. Elsevier Applied Science, London, UK.
- Miller, N. M., S. Ghodbane, S. P. Wasik, Y. B. Tewari; and D. E. Martire. 1984. "Aqueous Solubilities, Octanol/Water Partition Coefficients, and Entropies of Melting of Chlorinated Benzenes and Biphenyls," *Journal of Chemical Engineering Data*, vol. 29, pp. 184–190.

- Mitchell, R. and D. Kirchman. 1984. "The Microbiology of Marine Surfaces." In *Marine Biodeteriation: An Interdisciplinary Study. Proceedings of the Symposium on Marine Biodeterioration* (pp. 49–56). Uniformed Services University of Health Sciences, 20–23 April 1981. J. D. Costlow and R.C. Tipper, Eds. Naval Institute Press, Annapolis, MD.
- Naval Sea Systems Command. 1995. "Sampling and Management of Polychlorinated Biphenyls (PCBs) During Disposal of Vessels," NAVSEA PCB Advisory 95-1 (September), Washington Navy Yard, DC.
- NavSource Online Destroyer Photo Archive. 2006a. Barracks Craft (APL) Index: http://www.navsource.org/archives/09/71idx.htm
- NavSource Online Destroyer Photo Archive. 2006b. DD-763 USS William C. Lawe: http://www.navsource.org/archives/09/3637.htm
- NavSource Online Destroyer Photo Archive. 2006c. Submarine Photo Archive, Nathaniel Greene (SSNBN 636): http://www.navsource.org/archives/08/08636.htm
- NavSource Online Destroyer Photo Archive. 2006d. Submarine Photo Archive, Pogy (SSN-647): http://www.navsource.org/archives/08/08647.htm
- NavSource Online Destroyer Photo Archive. 2006e. DD-763 USS William C. Lawe: http://www.navsource.org/archives/05/763.htm
- Opperhutzen, A., F. A. P. C. Gobas, J. M. D. Van der Steen, and O. Hutzinger. 1988. "Aqueous Solubility of Polychlorinated Biphenyls Related to Molecular Structures," *Environmental Science and Technology*, vol. 22, pp. 638–646.
- Paustian, T. "Bacterial Plastics." *Microbiology and Bacteriology The World of Microbes*: http://www.bact.wisc.edu/Microtextbook/index.php?name=Sections&req=viewarticle&artid=1 55&page=1
- Pruter, A. T. 1987. "Sources, Quantities and Distribution of Persistent Plastics in the Marine Environment," *Marine Pollution Bulletin*, vol. 18, no. 6B, pp. 305–110.
- Rochlind, M. L., J. W. Blackburn; and G. S. Saylor. 1986. "Microbial Decomposition of Chlorinated Aromatic Compounds," U.S. Environmental Protection Agency, EPA/600/2-86/090, Washington, DC.
- Ryan, T. P. 1990. "Linear Regression." In *Handbook of Statistical Methods for Engineers and Scientists*, H. M. Wadsworth, Jr., Ed. McGraw-Hill Publishing Co., New York, NY.
- Schatzberg, P. 1996. "Measurement and Significance of the Release Rate for Tributyltin." In *Organotin: Environmental Fate and Effects* (pp. 383–403). M. A. Champs and P. F. Seligman, Eds. Chapman and Hall. New York, NY.
- Seligman, P. F., A. O. Valkirs, J. S. Caso, I. Rivera-Duarte and E. Haslbeck. 2001. "Copper Release Rates from Marine Antifouling Coatings and its Relationship to Loading, and Toxicity in San Diego Bay, California," *Proceedings Pollution Prevention from Ships and Shipyards Symposium—Oceanology International 2000.* pp. 64–80.

- Shiu, W. Y. and D. Mackay. 1986. "A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol-Water Partition Coefficients of the Polychlorinated Biphenyls," *Journal of Physical Chemistry*, Reference Data, vol. 15, no. 2, pp. 911–929.
- Stalling, D. L., W. J. Dunn; T. R. Schwartz; J. W. Hogan, J. D. Petty, E. Johansson; and S. Wold. 1981. "Application of Soft Independent Method of Class Analogy (SIMCA) in Isomer Specific Analysis of Polychlorinated Biphenyls," In *Trace Residue Analysis* (vol. 284, pp. 195–234). D. A. Kurtz, Ed. American Chemical Society Symposium Series, Washington, DC.
- Sullivan, K. F., E. L. Atlas, and C.-S. Giam. 1981. "Loss of Phthalic Acid Esters and Polychlorinated Biphenyls from Seawater Samples During Storage," *Analytical Chemistry*, vol. 53, pp. 718–1719.
- Tabak, H. H., S. A. Quave, C. I. Mashni, and E. F. Barth. 1981. "Biodegradability Studies with Priority Pollutant Compounds," *Journal of the Workshop on Particle Correlations and Femtoscopy(WPCF)*, vol. 53, no. 10, p. 1503.
- The Ocean Conservancy and U.S. Environmental Protection Agency. 1993. *Pocket Guide to Marine Debris*: http://sacoast.uwc.ac.za/education/resources/marinedebris/index.htm
- The Open University and Pergamon-Elsevier Science, Ltd. 1995. "The Global Distribution of Sea-Surface Temperature (°C) (a) in February, and (b) in August, Figure 2.12." In Seawater: Its Composition, Properties, and Behaviour, 2nd Edition. G. Bearman, Ed., Oxford, England.
- Thomas, K., K. Raymond, J. Chadwick, and M. Waldock. 1999. "The Effects of Short Term Changes in Environmental Parameters on the Release of Biocides from Antifouling Coatings: Cuprous Oxide and Tributyltin," *Applied Organometallic Chemistry*, vol 13, pp. 453–460.
- U.S. Environmental Protection Agency. 1977. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Method 1310A and Method 1311," SW-846, Final Update III, Washington, DC.
- U.S. Environmental Protection Agency. 1985. "Method 680. Test Methods for Determination of Pesticides and PCBs in Water and Soils/Sediment by Gas Chromatography/Mass Spectroscopy, Method 680," Physical and Chemical Methods Branch, Environmental Monitoring and Support Laboratory, Office of Research and Development, Cincinnati, OH.
- U.S. Environmental Protection Agency. 1986. "Appendix B to Part 136. Definition and Procedure for the Determination of the Method Detection Limit—Revision 1.11," 40 CFR 136, Washington, DC.
- U.S. Environmental Protection Agency Science Advisory Board. 1991. "Leachability Phenomena—Recommendations and Rationale for Analysis of Contaminant Release by the Environmental Engineering Committee," EPA-SAB-EEC-92-003 (October), Washington, DC.
- U.S. Environmental Protection Agency. 1991. "Impacts of Plastic Debris on the Environment." In *Plastic Wastes—Management, Control, Recycling, and Disposal*. William Andrew Publishing/Noyes, Norwich, NY.
- U.S. Environmental Protection Agency. 1997. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Method 3510A," SW-846, Final Update III, Washington, DC.

- U.S. Environmental Protection Agency. 1997. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Methods 4000 and 4020," SW-846, Final Update III, Washington, DC.
- U.S. Environmental Protection Agency. 1997. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Methods 8081M and 8082." SW-846, Final Update III, Washington, DC.
- U.S. Environmental Protection Agency. 2000. "PCB ID—Table of PCB Congeners & Other Species." Toxics Reduction Team, USEPA Region 5 (16 November), Washington, DC. http://www.epa.gov/toxteam/pcbid/table.htm
- U.S. Environmental Protection Agency. 2006. "PCB ID—BZ versus IUP." Washington, DC. http://www.epa.gov/toxteam/pcbid/bzviupac.htm
- Valkirs, A. O., P. F. Seligman, E. Haslbeck, and J. Caso. 2003. "Measurement of Copper Release Rates from Antifouling Paint Under Laboratory and In Situ Conditions: Implications for Loading Estimation to Marine Water Bodies," *Marine Pollution Bulletin*, vol. 46, pp. 763–779.
- White, D. C. and P. H. Benson. 1984. "Determination of Biomass, Physiological Status, Community Structure, and Extracellular Plaque of the Microfouling Film." In: *Marine Biodeteriation: An Interdisciplinary Study. Proceedings of the Symposium on Marine Biodeterioration*, Uniformed Services University of Health Sciences (pp 68–74). 20–23 April, J. D. Costlow and R. C. Tipper, Eds. Naval Institute Press, Annapolis, MD.

APPENDICES CONTENTS

APPENDIX A: LEACH RATE DATA REGRESSION ANALYSIS CURVE-FITING AND EXTRAPOLATION	A-1
Aroclor 1254 (A1254) Dissolution Rate Extrapolation Results	
Black Rubber Pipe Hanger Liner (BRPHL) Leach Rate Extrapolation Results	A-23
Electrical Cable (EC) Leach Rate Extrapolation Results	A-41
Foam Rubber/Ensolite TM (FRE) Leach Rate Extrapolation Results	A-54
Aroclor 1268 (A1268) Dissolution Rate Extrapolation Results	
Felt Gasket/Inner (FGI) Leach Rate Extrapolation Results	
Felt Gasket/Outer (FGO) Leach Rate Extrapolation Results	
Aluminized Paint (AP) Leach Rate Extrapolation Results	
APPENDIX B: MISCELLANEOUS LABORATORY OPERATIONS, METHODS, AND STANDARD OPERATING PROCEDURES	
Standard Operating Procedure for Preparation of Artificial Seawater (ASW)	
Standard Operating Procedure for PCB Leachate Handling and Sampling	
Summary: Method Detection Limits	
Summary: Quality Assurance and Quality Control	B-9
Summary: Sample Custody Procedures	B-12
Arthur D. Little (ADL) Sample Preparation and Analysis Method Summaries	B-13
Arthur D. Little (ADL) Standard Operating Procedure 2845 (SOP ADL-2845): Determination of	
PCBs by Gas Chromatography/Mass Spectrometry in the Selected Ion Monitoring Mode	
Arthur D. Little (ADL) Standard Data Qualifiers (Flags).	B-42
APPENDIX C: SAMPLE-SPECIFIC DATA AND ANALYTICAL DATA QUALITY, ANALYTICAL LABORATORY QA/QC, AND LEACHING EXPERIMENT QA/QC	C-1
Analytical Results, Detection Limits, Quantitation Limits, and Data Reduction	C-1
Aroclor 1254 (A1254) Experiment: Analytical Results (ng/L)	
Aroclor 1254 (A1254) Experiment: PCB Mass per Sample (ng)	
Aroclor 1254 (A1254) Experiment: Mass Balance	
Black Rubber Pipe Hanger Liner (BRPHL) Experiment: Analytical Results (ng/L)	C-8
Black Rubber Pipe Hanger Liner (BRPHL) Experiment: PCB Mass per Sample (ng)	C-12
Black Rubber Pipe Hanger Liner (BRPHL) Experiment: Mass Balance	C-13
Electrical Cable (EC) Experiment: Analytical Results (ng/L)	
Electrical Cable (EC) Experiment: PCB Mass per Sample (ng)	C-19
Electrical Cable (EC) Experiment: Mass Balance	C-21
Foam Rubber/Ensolite® (FRE) Experiment: Analytical Results (ng/L)	C-22
Foam Rubber/Ensolite® (FRE) Experiment: PCB Mass per Sample (ng)	
Foam Rubber/Ensolite® (FRE) Experiment: Mass Balance	
Aroclor 1268 (A1268) Experiment: Analytical Results (ng/L)	C-29
Aroclor 1268 (A1268) Experiment: PCB Mass per Sample (ng)	C-33
Aroclor 1268 (A1268) Experiment: Mass Balance	
Bulkhead Insulation (BHI) Experiment: Analytical Results (ng/L)	
Bulkhead Insulation (BHI) Experiment: PCB Mass per Sample (ng)	
Bulkhead Insulation (BHI) Experiment: Balance (ng)	
Felt Gasket/Inner (FGI) Experiment: Analytical Results (ng/L)	
Felt Gasket/Inner (FGI) Experiment: PCB Mass per Sample (ng)	
Felt Gasket/Inner (FGI) Experiment: Mass Balance	
Felt Gasket/Outer (FGO) Experiment: Analytical Results (ng/L)	
Felt Gasket/Outer (FGO) Experiment: PCB Mass per Sample (ng)	C-54

Felt Gasket/Outer (FGO) Experiment: Mass Balance	C-55
Aluminized Paint (AP) Experiment: Analytical Results (ng/L)	
Aluminized Paint (AP) Experiment: PCB Mass per Sample (ng)	
Aluminized Paint (AP) Experiment: Mass Balance	C-62
Analytical Surrogate Data	C-65
Analytical QA/QC Data	C-141
Analytical Blank Spike (BS) Data	C-141
Analytical Blank Spike Duplicate (BSD) Data	C-213
Analytical Instrument Reference Standard (IRM) Data	C-283
Analytical Procedural Blank (PB) Data	C-378
Leaching Procedural Blank Data	C-450
Procedural Blank 1 Experiment: Analytical Results (ng/L)	C-450
Procedural Blank 1 Experiment: PCB Mass per Sample (ng)	C-454
Procedural Blank 2 Experiment: Analytical Results (ng/L)	C-455
Procedural Blank 2 Experiment: PCB Mass per Sample (ng)	C-459
Seawater Blank Data	
Seawater Blanks A: Analytical Results (ng/L)	
Seawater Blanks A: PCB Mass per Sample (ng)	
Seawater Blanks B: Analytical Results (ng/L)	
Seawater Blanks B: PCB Mass per Sample (ng)	C-472
Data Quality Analysis	
Shipboard-Solid-Specific Homologue Data Quality Evaluation and Validation	
Aroclor 1254 (A1254) Homologue Data Evaluation	
Black Rubber Pipe Hanger Liner (BRPHL) Homologue Data Evaluation	
Electrical Cable (EC) Homologue Data Evaluation	
Foam Rubber/Ensolite (FRE) Homologue Data Evaluation	
Aroclor 1268 (A1268) Homologue Data Evaluation	
Bulkhead Insulation (BHI) Homologue Data Evaluation	
Felt Gasket/Inner (FGI) Homologue Data Evaluation	
Felt Gasket/Outer (FGO) Homologue Data Evaluation	
Aluminized Paint (AP) Homologue Data Evaluation	C-495
APPENDIX D: DATASET FOR LABORATORY-SIMULATED SHALLOW-WATER LEACHI	
STUDY	D-1
Aroclor 1254 (A1254) Results	D-1
Cumulative Leaching Concentration (ng/L)	
Dissolution Rate (ng/g shipboard solid-day)	
Black Rubber Pipe Hanger Liner (BRPHL) Results	
Cumulative Leaching Concentration (ng/L)	
Leach Rate (ng/g shipboard solid-day)	
Electrical Cable (EC) Results	
Cumulative Leaching Concentration (ng/L)	D-7
Leach Rate (ng/g shipboard solid-day)	
Foam Rubber/Ensolite TM (FRE) Results	D-10
Cumulative Leaching Concentration (ng/L)	
Leach Rate (ng/g shipboard solid-day)	
Aroclor 1268 (A1268) Results	
Cumulative Leaching Concentration (ng/L)	
Dissolution Rate (ng/g shipboard solid-day)	
Bulkhead Insulation (BHI) Results	
Cumulative Leaching Concentration (ng/L)	
Leach Rate (ng/g shipboard solid-day)	
Felt Gasket/Inner (FGI) Results	
Cumulative Leaching Concentration (ng/L)	
· · · · · · · · · · · · · · · · · · ·	

Leach Rate (ng/g shipboard solid-day)	. D-20
Felt Gasket/Outer (FGO) Results	
Cumulative Leaching Concentration (ng/L)	
Leach Rate (ng/g shipboard solid-day)	. D-23
Aluminized Paint (AP) Results	
Cumulative Leaching Concentration (ng/L)	
Leach Rate (ng/g shipboard solid-day)	
APPENDIX E: RATE CURVES FOR DATA COLLECTED AT LOW TEMPERATURE (4°C) AND	
AMBIENT PRESSURE (1 BAR)	E-1
Aroclor 1254 (A1254) Dissolution Rates at 4°C	E-1
Black Rubber Pipe Hanger Liner (BRPHL) Leach Rates at 4°C	E-2
Electrical Cable (EC) Leach Rates at 4°C	
Foam Rubber/Ensolite® (FRE) Leach Rates at 4°C	E-4
Aroclor 1268 (A1268) Dissolution Rates at 4°C	
Bulkhead Insulation (BHI) Leach Rates at 4°C	E-6
Felt Gasket/Inner (FGI) Leach Rates at 4°C	E-7
Felt Gasket/Outer (FGO) Leach Rates at 4°C	
Felt Gasket/Outer (FGO) Leach Rates at 4°C	

APPENDIX A: LEACH RATE DATA REGRESSION ANALYSIS - CURVE FITTING AND EXTRAPOLATION

The approach described in the Leach Rate Analysis section of this report was used to fit the postmaximum leach rate decrease for each of the leach rate curves discussed and presented in the Leach Rate Calculations section of this report. Curve-fit regression analysis results are organized by shipboard solid below. Included in each section are results for which there exist sufficient data for target analytes (homologue, tPCBs, or congener), which we defined as 4 or more data points on the decreasing portion of the leach rate curves. In all cases, the curve fit over the empirical timeframe is plotted with curve-fit parameters and an ANOVA table below it. Each curve-fit was performed only on points > the observed curve maximum as described in the Leach Rate Analysis section by omitting data points prior to the maximum (to fit only the decreasing portion of each curve). In the plots below, omitted data are red solid squares. Below each ANOVA table, the curve-fit results are plotted and tabulated over the extrapolation timeframe (arbitrarily chosen as 1000-years). The tPCBs curve-fits included as example regressions in the Leach Rate Calculations section of the report are also included here with the entire regression analysis for completeness. The data were fit to the logarithmic form of the power function y = ax^B (Equation 7) as described in the Leach Rate Analysis and Recommendations for the Use of Leaching Data sections. Data were treated on log-log basis, i.e. log[AvgLR] vs. log[time] and fit to the linear equation: log[AvgLR] = A + B*log[time] (Equation 11). The linear regression curves are plotted below, but on a log-normal basis rather than as fit (log-log), to more clearly illustrate the curve behavior.

Aroclor 1254 (A1254) Dissolution Rate Extrapolation Results

A1254 at 25 deg-C Linear Fit to Log(y) = A + B * Log(x), where x = Time and y = AvgLR

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	6.81093	0.53931	12.62905	< 0.0001
В	-1.2228	0.23128	-5.28714	0.00114
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.89428	0.79974	0.77113	0.17204	9
Parameter	LCI	UCI		
A	5.53567	8.08618		
В	-1.76969	-0.67592		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic

Model	1	0.82739	0.82739	27.9539
Error	7	0.20719	0.0296	
Total	8	1.03457		
Prob>F				
0.00114				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	2607.38024	5021.29955	1353.91877	8178.85457	831.22052
1493.48334	850.17907	2610.14027	276.92169	3665.95851	197.16657
3734.35667	277.21482	1385.69414	55.45817	1784.2291	43.07074
9337.51277	90.39044	740.42725	11.03475	903.61604	9.04193
23347.83539	29.47328	396.74147	2.18952	467.26176	1.85907
58379.72389	9.61025	212.89281	0.43382	244.52286	0.3777
145974.65266	3.13358	114.33564	0.08588	128.90918	0.07617
365000	1.02175	61.43775	0.01699	68.28956	0.01529

Parameter	Value	Error	t-Value	Prob> t
A	5.69548	0.72652	7.83942	1.03725E-4
В	-1.29967	0.31156	-4.17145	0.00418
R	R-Square(COD)	Adj. R-	Root-	N
		Square	MSE(SD)	
-0.84447	0.71313	0.67214	0.23176	9
Parameter	LCI	UCI		
A	3.97754	7.41342		
В	-2.0364	-0.56294		
ANOVA				
Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.93468	0.93468	17.40095
Error	7	0.376	0.05371	
Total	8	1.31067		
Prob>F				
0.00418				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	102.20667	183.8604	56.81595	280.02338	37.30476
1493.48334	29.90278	80.72449	11.07689	108.34263	8.25323
3734.35667	8.74871	36.1557	2.11695	45.02949	1.69977
9337.51277	2.55962	16.2949	0.40207	19.37562	0.33814
23347.83539	0.74887	7.36373	0.07616	8.49027	0.06605
58379.72389	0.2191	3.33238	0.01441	3.75948	0.01277
145974.65266	0.0641	1.50928	0.00272	1.67551	0.00245
365000	0.01875	0.68393	5.14281E-4	0.74992	4.69025E-4

Parameter	Value	Error	t-Value	Prob> t
A	6.83448	0.65425	10.44633	< 0.0001
В	-1.4022	0.28057	-4.99769	0.00157
R	R-	Adj. R-Square	Root-MSE(SD)	N
	Square(COD)			
-0.88379	0.78109	0.74982	0.20871	9
Parameter	LCI	UCI		
A	5.28743	8.38153		
В	-2.06564	-0.73876		
ANOVA				
Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.08797	1.08797	24.97693
Error	7	0.30491	0.04356	
Total	8	1.39288		
Prob>F				
0.00157				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	746.901	1298.42903	429.64312	1929.66544	289.09732
1493.48334	199.84019	509.16036	78.43521	671.74568	59.45122
3734.35667	53.46907	203.4423	14.05284	250.15504	11.42868
9337.51277	14.30614	81.7662	2.50306	96.24923	2.12641
23347.83539	3.82774	32.94653	0.44471	37.67314	0.38891
58379.72389	1.02415	13.29291	0.0789	14.89165	0.07043
145974.65266	0.27402	5.36744	0.01399	5.92245	0.01268
365000	0.07332	2.16835	0.00248	2.36484	0.00227

Parameter	Value	Error	t-Value	Prob> t
A	6.23989	0.45947	13.58068	< 0.0001
В	-1.11961	0.19704	-5.68213	7.49073E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.90654	0.82182	0.79637	0.14657	9
Parameter	LCI	UCI		
A	5.15342	7.32636		
В	-1.58553	-0.65368		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.69363	0.69363	32.28665
Error	7	0.15038	0.02148	
Total	8	0.84401		
Prob>F				
7.49073E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	1354.09225	2366.6081	774.76529	3586.21827	511.28116
1493.48334	485.31867	1262.00967	186.63424	1685.57121	139.73554
3734.35667	173.94251	685.1717	44.15827	849.82684	35.60254
9337.51277	62.34254	374.05151	10.39053	443.22816	8.76883
23347.83539	22.34412	204.68898	2.43911	235.30358	2.12177
58379.72389	8.00833	112.1483	0.57186	126.19593	0.5082
145974.65266	2.87026	61.4899	0.13398	68.10717	0.12096
365000	1.02873	33.72977	0.03138	36.9092	0.02867

Parameter	Value	Error	t-Value	Prob> t
A	4.58089	0.35213	13.00912	< 0.0001
В	-0.91788	0.15101	-6.07832	5.01702E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.9169	0.84071	0.81796	0.11233	9
Parameter	LCI	UCI		
A	3.74824	5.41354		
В	-1.27495	-0.5608		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.46619	0.46619	36.94592
Error	7	0.08833	0.01262	
Total	8	0.55452		
Prob>F				
5.01702E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	107.81866	165.39612	70.28498	227.43937	51.11192
1493.48334	46.49056	96.70338	22.35054	120.71582	17.90463
3734.35667	20.04637	57.32394	7.01028	67.61091	5.94367
9337.51277	8.64384	34.12449	2.18951	38.86383	1.92251
23347.83539	3.72715	20.35103	0.6826	22.64534	0.61345
58379.72389	1.60712	12.14834	0.21261	13.2983	0.19422
145974.65266	0.69298	7.25583	0.06618	7.84705	0.0612
365000	0.29881	4.3352	0.0206	4.64506	0.01922

Parameter	Value	Error	t-Value	Prob> t
A	3.38651	0.09397	36.03966	< 0.0001
В	-0.40164	0.0465	-8.63775	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92814	0.86145	0.8499	0.12614	14
Parameter	LCI	UCI		
A	3.18177	3.59124		
В	-0.50295	-0.30033		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.1871	1.1871	74.61068
Error	12	0.19093	0.01591	
Total	13	1.37803		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	186.84395	244.21142	142.95261	371.44783	93.98537
1493.48334	129.3064	182.53676	91.59878	265.82151	62.89989
3734.35667	89.48721	137.30448	58.32265	192.11988	41.68211
9337.51277	61.93012	103.6185	37.01405	140.01049	27.39324
23347.83539	42.85909	78.34258	23.44704	102.73439	17.8801
58379.72389	29.66087	59.30033	14.83579	75.80248	11.60605
145974.65266	20.52697	44.92043	9.38007	56.18274	7.49975
365000	14.20581	34.04526	5.92755	41.7929	4.82869

Cl1

Parameter	Value	Error	t-Value	Prob> t
A	3.02155	0.1227	24.62561	< 0.0001
В	-0.51719	0.06072	-8.51803	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92633	0.85808	0.84626	0.16471	14
Parameter	LCI	UCI		
A	2.75421	3.28889		
В	-0.64948	-0.3849		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.96838	1.96838	72.55686
Error	12	0.32554	0.02713	
Total	13	2.29392		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	38.52518	54.65003	27.15807	94.49645	15.7063
1493.48334	23.98259	37.61939	15.28905	61.45651	9.35889
3734.35667	14.92958	26.11104	8.53633	40.4876	5.5052
9337.51277	9.29393	18.20071	4.74581	26.96403	3.20342
23347.83539	5.78563	12.71767	2.63205	18.11849	1.84748
58379.72389	3.60166	8.89976	1.45756	12.26335	1.05778
145974.65266	2.24209	6.23413	0.80636	8.3492	0.60209
365000	1.39574	4.36988	0.4458	5.71142	0.34109

Parameter	Value	Error	t-Value	Prob> t
A	5.55465	0.77225	7.1928	1.78571E-4
В	-1.35828	0.33118	-4.1014	0.00456
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.84033	0.70615	0.66417	0.24635	9
Parameter	LCI	UCI		
A	3.72857	7.38073		
В	-2.14139	-0.57518		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.02088	1.02088	16.82149
Error	7	0.42483	0.06069	
Total	8	1.44571		
Prob>F				
0.00456				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	50.95271	103.26647	25.14058	171.30355	15.15543
1493.48334	14.13624	46.68825	4.28016	66.51997	3.00411
3734.35667	3.92193	21.6206	0.71143	28.15425	0.54633
9337.51277	1.08809	10.08742	0.11737	12.42382	0.0953
23347.83539	0.30188	4.72174	0.0193	5.60376	0.01626
58379.72389	0.08375	2.2139	0.00317	2.55957	0.00274
145974.65266	0.02324	1.03907	5.19622E-4	1.17825	4.58243E-4
365000	0.00645	0.48798	8.5165E-5	0.54517	7.62314E-5

Parameter	Value	Error	t-Value	Prob> t
A	3.24345	0.13195	24.5816	< 0.0001
В	-0.50621	0.06292	-8.04569	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92453	0.85475	0.84155	0.11891	13
Parameter	LCI	UCI		
A	2.95304	3.53386		
В	-0.64469	-0.36773		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.91523	0.91523	64.73313
Error	11	0.15552	0.01414	
Total	12	1.07076		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	68.88235	92.113	51.51041	134.48153	35.28201
1493.48334	43.31387	64.69021	29.00117	89.33434	21.00079
3734.35667	27.23617	45.77575	16.20529	60.33913	12.294
9337.51277	17.12636	32.50157	9.02455	41.2711	7.10696
23347.83539	10.76922	23.11767	5.01677	28.49339	4.07028
58379.72389	6.77179	16.46014	2.78595	19.80781	2.3151
145974.65266	4.25816	11.72756	1.5461	13.84074	1.31004
365000	2.67757	8.35935	0.85765	9.70878	0.73844

Parameter	Value	Error	t-Value	Prob> t
A	5.78921	0.86281	6.70973	2.74969E-4
В	-1.65782	0.37001	-4.48048	0.00286
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.86108	0.74146	0.70452	0.27524	9
Parameter	LCI	UCI		
A	3.74899	7.82942		
В	-2.53276	-0.78289		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.5208	1.5208	20.07474
Error	7	0.5303	0.07576	
Total	8	2.0511		
Prob>F				
0.00286				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	15.37386	43.86501	5.38825	95.73882	2.46875
1493.48334	3.36468	20.24485	0.55921	34.86021	0.32476
3734.35667	0.73638	9.66404	0.05611	14.48089	0.03745
9337.51277	0.16116	4.66124	0.00557	6.41048	0.00405
23347.83539	0.03527	2.25829	5.50898E-4	2.93395	4.24031E-4
58379.72389	0.00772	1.09664	5.43386E-5	1.3687	4.35376E-5
145974.65266	0.00169	0.53325	5.35253E-6	0.64608	4.41777E-6
365000	3.69749E-4	0.25952	5.26789E-7	0.30736	4.44808E-7

Parameter	Value	Error	t-Value	Prob> t
A	5.28843	0.50709	10.429	< 0.0001
В	-0.91101	0.21746	-4.18927	0.00409
R	R-	Adj. R-Square	Root-MSE(SD)	N
	Square(COD)			
-0.8455	0.71487	0.67413	0.16176	9
Parameter	LCI	UCI		
A	4.08936	6.4875		
В	-1.42522	-0.39679		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.45924	0.45924	17.55
Error	7	0.18317	0.02617	
Total	8	0.64241		
Prob>F				
0.00409				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	574.5181	1063.93057	310.2374	1683.18764	196.09878
1493.48334	249.29207	715.74815	86.82738	985.07917	63.08786
3734.35667	108.17159	491.15215	23.82376	622.93257	18.78388
9337.51277	46.93728	339.09032	6.49711	408.93048	5.38749
23347.83539	20.3668	234.72137	1.76723	273.75415	1.51525
58379.72389	8.83746	162.69737	0.48004	185.32979	0.42141
145974.65266	3.83471	112.86356	0.13029	126.34075	0.11639
365000	1.66394	78.33323	0.03534	86.52109	0.032

Parameter	Value	Error	t-Value	Prob> t
A	4.94546	0.53127	9.30878	< 0.0001
В	-1.07215	0.22783	-4.7059	0.00219
R	R-	Adj. R-Square	Root-MSE(SD)	N
	Square(COD)			
-0.87168	0.75983	0.72552	0.16948	9
Parameter	LCI	UCI		
A	3.68921	6.20171		
В	-1.61089	-0.53342		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.63607	0.63607	22.14551
Error	7	0.20106	0.02872	
Total	8	0.83713		
Prob>F				
0.00219				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	93.10416	177.55746	48.82017	287.11601	30.19123
1493.48334	34.85269	105.22745	11.54366	147.04627	8.26073
3734.35667	13.04678	63.67054	2.67343	81.67432	2.08411
9337.51277	4.88394	38.77194	0.61521	47.17695	0.50561
23347.83539	1.82826	23.67493	0.14118	27.81522	0.12017
58379.72389	0.68439	14.47701	0.03235	16.5936	0.02823
145974.65266	0.2562	8.85994	0.00741	9.9714	0.00658
365000	0.0959	5.42515	0.0017	6.0207	0.00153

Parameter	Value	Error	t-Value	Prob> t
A	4.98846	0.54188	9.20587	< 0.0001
В	-0.92408	0.23238	-3.97658	0.00535
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.83256	0.69316	0.64933	0.17286	9
Parameter	LCI	UCI		
A	3.70712	6.26979		
В	-1.47358	-0.37459		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.47252	0.47252	15.81323
Error	7	0.20917	0.02988	
Total	8	0.68169		
Prob>F				
0.00535				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	482.09896	645.42622	360.10221	838.50323	277.18368
1493.48334	351.06539	538.85263	228.72098	663.28391	185.8132
3734.35667	255.64648	453.09793	144.24062	536.23303	121.87821
9337.51277	186.16226	382.08379	90.70363	439.57189	78.84122
23347.83539	135.56371	322.65507	56.95717	363.55102	50.55004
58379.72389	98.71775	272.68646	35.73773	302.44433	32.22145
145974.65266	71.88645	230.56934	22.41262	252.61663	20.45654
365000	52.34785	195.02032	14.05134	211.5941	12.95073

Parameter	Value	Error	t-Value	Prob> t
A	4.84606	0.35414	13.684	< 0.0001
В	-1.26974	0.15187	-8.36065	< 0.0001
R	R-	Adj. R-Square	Root-MSE(SD)	N
	Square(COD)			
-0.9534	0.90897	0.89597	0.11297	9
Parameter	LCI	UCI		
A	4.00866	5.68347		
В	-1.62886	-0.91062		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.89213	0.89213	69.90054
Error	7	0.08934	0.01276	
Total	8	0.98147		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	20.94224	32.20448	13.61852	44.36567	9.88551
1493.48334	6.54102	13.66281	3.13149	17.07706	2.50541
3734.35667	2.043	5.87728	0.71017	6.93851	0.60155
9337.51277	0.6381	2.53897	0.16037	2.89375	0.14071
23347.83539	0.1993	1.09884	0.03615	1.22347	0.03247
58379.72389	0.06225	0.47602	0.00814	0.52135	0.00743
145974.65266	0.01944	0.20633	0.00183	0.22324	0.00169
365000	0.00607	0.08946	4.12216E-4	0.09589	3.84567E-4

Parameter	Value	Error	t-Value	Prob> t
A	3.72331	0.36512	10.19751	< 0.0001
В	-0.72088	0.15658	-4.60393	0.00247
R	R-	Adj. R-Square	Root-MSE(SD)	N
	Square(COD)			
-0.86703	0.75174	0.71627	0.11648	9
Parameter	LCI	UCI		
A	2.85994	4.58669		
В	-1.09113	-0.35063		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.28756	0.28756	21.1962
Error	7	0.09497	0.01357	
Total	8	0.38252		
Prob>F				
0.00247				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	52.7247	82.16774	33.83194	114.3261	24.31548
1493.48334	27.23279	58.19741	12.74326	73.24531	10.12522
3734.35667	14.06599	41.81235	4.7319	49.61692	3.98759
9337.51277	7.26521	30.17234	1.74939	34.52805	1.52871
23347.83539	3.75255	21.81387	0.64553	24.36894	0.57785
58379.72389	1.93822	15.78635	0.23797	17.33844	0.21667
145974.65266	1.00111	11.43087	0.08768	12.39805	0.08084
365000	0.51708	8.28008	0.03229	8.89452	0.03006

Parameter	Value	Error	t-Value	Prob> t
A	4.86989	1.55434	3.13309	0.01654
В	-1.37978	0.66657	-2.06996	0.07722
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.61619	0.37969	0.29108	0.49584	9
Parameter	LCI	UCI		
A	1.19446	8.54532		
В	-2.95596	0.19641		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.05345	1.05345	4.28475
Error	7	1.72102	0.24586	
Total	8	2.77447		
Prob>F				
0.07722				

			1		
Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	10.94901	72.38667	1.65612	295.33206	0.40592
1493.48334	3.09174	78.38529	0.12195	208.64827	0.04581
3734.35667	0.87303	90.19836	0.00845	186.8988	0.00408
9337.51277	0.24652	105.74642	5.74711E-4	187.74702	3.237E-4
23347.83539	0.06961	124.97428	3.87748E-5	200.26384	2.41974E-5
58379.72389	0.01966	148.31538	2.60519E-6	221.09033	1.74766E-6
145974.65266	0.00555	176.4453	1.74611E-7	249.33003	1.23568E-7
365000	0.00157	210.23528	1.1685E-8	285.13433	8.61562E-9

Parameter	Value	Error	t-Value	Prob> t
A	5.13034	0.99809	5.14018	0.00134
В	-1.45902	0.42802	-3.40873	0.01131
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.78997	0.62405	0.57034	0.31839	9
Parameter	LCI	UCI		
A	2.77024	7.49043		
В	-2.47113	-0.4469		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.17792	1.17792	11.61947
Error	7	0.70962	0.10137	
Total	8	1.88755		
Prob>F				
0.01131				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	9.36172	20.50838	4.27347	35.97024	2.43651
1493.48334	2.3318	8.7842	0.61898	13.01298	0.41783
3734.35667	0.5808	3.86395	0.0873	5.18007	0.06512
9337.51277	0.14466	1.71384	0.01221	2.15978	0.00969
23347.83539	0.03603	0.76291	0.0017	0.92266	0.00141
58379.72389	0.00897	0.34025	2.36737E-4	0.39971	2.01521E-4
145974.65266	0.00224	0.15191	3.28957E-5	0.17466	2.86112E-5
365000	5.56802E-4	0.06787	4.56781E-6	0.07676	4.03907E-6

Parameter	Value	Error	t-Value	Prob> t
A	3.71625	0.94784	3.92077	0.0078
В	-1.08297	0.412	-2.62858	0.03913
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.73159	0.53522	0.45776	0.2864	8
Parameter	LCI	UCI		
A	1.39698	6.03552		
В	-2.09109	-0.07485		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.56675	0.56675	6.90941
Error	6	0.49215	0.08203	
Total	7	1.0589		
Prob>F				
0.03913				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	3.8621	9.33066	1.59858	15.58771	0.9569
1493.48334	1.31273	5.6697	0.30394	8.09472	0.21289
3734.35667	0.4462	3.53118	0.05638	4.60471	0.04324
9337.51277	0.15166	2.21696	0.01038	2.7341	0.00841
23347.83539	0.05155	1.39681	0.0019	1.65994	0.0016
58379.72389	0.01752	0.88171	3.48201E-4	1.02071	3.00782E-4
145974.65266	0.00596	0.55718	6.36593E-5	0.63262	5.60682E-5
365000	0.00202	0.35235	1.16302E-5	0.39412	1.03975E-5

Parameter	Value	Error	t-Value	Prob> t
A	6.96128	1.00384	6.93468	2.24245E-4
В	-2.10255	0.43049	-4.88411	0.00179
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.87928	0.77313	0.74072	0.32023	9
Parameter	LCI	UCI		
A	4.58759	9.33497		
В	-3.1205	-1.08461		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	2.44619	2.44619	23.85449
Error	7	0.71782	0.10255	
Total	8	3.16401		
Prob>F				
0.00179				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	10.32831	22.35073	4.77273	38.85946	2.74512
1493.48334	1.42518	5.25889	0.38623	7.74294	0.26232
3734.35667	0.19666	1.27021	0.03045	1.69509	0.02282
9337.51277	0.02714	0.30932	0.00238	0.3884	0.0019
23347.83539	0.00374	0.07559	1.85477E-4	0.09115	1.53819E-4
58379.72389	5.16686E-4	0.01851	1.44242E-5	0.02169	1.23094E-5
145974.65266	7.12961E-5	0.00454	1.12053E-6	0.0052	9.7671E-7
365000	9.83796E-6	0.00111	8.69874E-8	0.00126	7.7066E-8

Parameter	Value	Error	t-Value	Prob> t
A	6.25348	0.99951	6.25655	4.21471E-4
В	-1.93764	0.42863	-4.52052	0.00273
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.86305	0.74485	0.7084	0.31885	9
Parameter	LCI	UCI		
A	3.89002	8.61693		
В	-2.9512	-0.92409		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	2.07751	2.07751	20.43507
Error	7	0.71165	0.10166	
Total	8	2.78916		
Prob>F				
0.00273				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	5.86195	13.3364	2.57659	24.03342	1.42978
1493.48334	0.94268	3.78572	0.23474	5.71547	0.15548
3734.35667	0.1516	1.10503	0.0208	1.5025	0.0153
9337.51277	0.02438	0.32537	0.00183	0.41463	0.00143
23347.83539	0.00392	0.09617	1.59818E-4	0.11738	1.30941E-4
58379.72389	6.30451E-4	0.02848	1.39561E-5	0.03372	1.17882E-5
145974.65266	1.01385E-4	0.00844	1.21732E-6	0.00977	1.05167E-6
365000	1.6304E-5	0.00251	1.06102E-7	0.00285	9.32658E-8

Parameter	Value	Error	t-Value	Prob> t
A	5.1866	0.83941	6.17888	4.5452E-4
В	-1.12569	0.35998	-3.12712	0.01668
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.76342	0.58281	0.52321	0.26778	9
Parameter	LCI	UCI		
A	3.20172	7.17149		
В	-1.97689	-0.27448		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.70118	0.70118	9.77891
Error	7	0.50193	0.0717	
Total	8	1.20311		
Prob>F				
0.01668				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	115.20849	319.50029	41.54299	682.72893	19.44109
1493.48334	41.0623	235.33043	7.16487	399.29402	4.22274
3734.35667	14.63532	179.11649	1.19583	265.46592	0.80686
9337.51277	5.21628	137.71112	0.19758	187.76092	0.14492
23347.83539	1.85917	106.33741	0.03251	137.17554	0.0252
58379.72389	0.66264	82.29641	0.00534	102.09751	0.0043
145974.65266	0.23618	63.77454	8.74637E-4	76.86742	7.25659E-4
365000	0.08418	49.46254	1.43257E-4	58.3106	1.21519E-4

Black Rubber Pipe Hanger Liner (BRPHL) Leach Rate Extrapolation Results

Linear Fit to Log(Y) = A + B * Log(X) for BRPHL at 25 deg-C

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	1.27577	0.0488	26.14112	< 0.0001
В	-0.52599	0.02232	-23.56463	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.98937	0.97885	0.97708	0.10044	14
Parameter	LCI	UCI		
A	1.16944	1.3821		
В	-0.57463	-0.47736		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	5.60202	5.60202	555.29184

Error	12	0.12106	0.01009	
Total	13	5.72308		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.6539	0.77635	0.55077	1.11353	0.38399
1493.48334	0.40379	0.49434	0.32983	0.69499	0.2346
3734.35667	0.24935	0.31617	0.19665	0.43524	0.14285
9337.51277	0.15397	0.20278	0.11692	0.27342	0.08671
23347.83539	0.09508	0.13028	0.06939	0.17225	0.05248
58379.72389	0.05871	0.0838	0.04114	0.1088	0.03169
145974.65266	0.03626	0.05395	0.02437	0.06888	0.01908
365000	0.02239	0.03475	0.01443	0.0437	0.01147

Parameter	Value	Error	t-Value	Prob> t
A	0.41963	0.10049	4.17581	0.05284
В	-0.87772	0.07649	-11.47503	0.00751
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.99249	0.98504	0.97756	0.20091	4
Parameter	LCI	UCI		
A	-0.01275	0.852		
В	-1.20683	-0.54861		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	5.31513	5.31513	131.6762
Error	2	0.08073	0.04037	
Total	3	5.39586		
Prob>F				
0.00751				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00961	0.10091	9.15942E-4	0.20928	4.41646E-4
1493.48334	0.0043	0.05951	3.10811E-4	0.11617	1.59229E-4
3734.35667	0.00192	0.03528	1.04941E-4	0.0653	5.66874E-5
9337.51277	8.60714E-4	0.02099	3.53011E-5	0.03709	1.9974E-5
23347.83539	3.85045E-4	0.01252	1.18419E-5	0.02125	6.97848E-6
58379.72389	1.72252E-4	0.00749	3.96386E-6	0.01226	2.4211E-6
145974.65266	7.70576E-5	0.00448	1.3246E-6	0.00711	8.35088E-7
365000	3.44721E-5	0.00269	4.42041E-7	0.00415	2.86638E-7

Parameter	Value	Error	t-Value	Prob> t
A	1.85473	0.60098	3.08618	0.01498
В	-0.99549	0.25445	-3.91227	0.00447
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.81039	0.65674	0.61383	0.20764	10
Parameter	LCI	UCI		
A	0.46887	3.24059		
В	-1.58226	-0.40872		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.65991	0.65991	15.30587
Error	8	0.34492	0.04311	
Total	9	1.00483		
Prob>F				
0.00447				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.24363	0.36329	0.16338	0.6255	0.09489
1493.48334	0.17127	0.295	0.09943	0.47138	0.06223
3734.35667	0.1204	0.24208	0.05988	0.36289	0.03994
9337.51277	0.08464	0.19963	0.03588	0.28402	0.02522
23347.83539	0.0595	0.16505	0.02145	0.22509	0.01573
58379.72389	0.04182	0.13666	0.0128	0.18008	0.00971
145974.65266	0.0294	0.11327	0.00763	0.1451	0.00596
365000	0.02067	0.09394	0.00455	0.11756	0.00363

Parameter	Value	Error	t-Value	Prob> t
A	0.94073	0.16212	5.80274	1.18812E-4
В	-0.55437	0.0742	-7.47173	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.914	0.8354	0.82043	0.1232	13
Parameter	LCI	UCI		
A	0.58391	1.29756		
В	-0.71767	-0.39107		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.84741	0.84741	55.82673
Error	11	0.16697	0.01518	
Total	12	1.01438		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.25218	0.33923	0.18746	0.50339	0.12633
1493.48334	0.15172	0.23256	0.09899	0.32329	0.07121
3734.35667	0.09129	0.16096	0.05177	0.2122	0.03927
9337.51277	0.05492	0.11184	0.02697	0.1415	0.02132
23347.83539	0.03305	0.07786	0.01402	0.09542	0.01144
58379.72389	0.01988	0.05427	0.00728	0.06486	0.00609
145974.65266	0.01196	0.03785	0.00378	0.04434	0.00323
365000	0.0072	0.02641	0.00196	0.03044	0.0017

Parameter	Value	Error	t-Value	Prob> t
A	-0.19319	0.29431	-0.65643	0.52504
В	-0.29684	0.1347	-2.20374	0.04976
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.55342	0.30628	0.24321	0.22367	13
Parameter	LCI	UCI		
A	-0.84098	0.45459		
В	-0.5933	-3.70818E-4		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.24296	0.24296	4.85648
Error	11	0.5503	0.05003	
Total	12	0.79325		
Prob>F				
0.04976				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.07038	0.10277	0.04819	0.15891	0.03117
1493.48334	0.04916	0.08393	0.02879	0.12065	0.02003
3734.35667	0.03433	0.06929	0.01701	0.09394	0.01255
9337.51277	0.02398	0.05747	0.01001	0.07446	0.00772
23347.83539	0.01675	0.04777	0.00587	0.05978	0.00469
58379.72389	0.0117	0.03977	0.00344	0.04842	0.00283
145974.65266	0.00817	0.03314	0.00202	0.03947	0.00169
365000	0.00571	0.02762	0.00118	0.03232	0.00101

Parameter	Value	Error	t-Value	Prob> t
A	0.28399	0.73761	0.38501	0.70757
В	-0.6553	0.33757	-1.94121	0.07828
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.50513	0.25516	0.18745	0.56055	13
Parameter	LCI	UCI		
A	-1.33948	1.90746		
В	-1.3983	0.0877		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.18408	1.18408	3.76829
Error	11	3.45643	0.31422	
Total	12	4.6405		
Prob>F				
0.07828				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0561	0.10883	0.02891	0.24941	0.01262
1493.48334	0.03006	0.07308	0.01236	0.14963	0.00604
3734.35667	0.01611	0.05007	0.00518	0.09297	0.00279
9337.51277	0.00863	0.03463	0.00215	0.05934	0.00126
23347.83539	0.00462	0.02407	8.88527E-4	0.03865	5.53318E-4
58379.72389	0.00248	0.01678	3.65918E-4	0.02556	2.40232E-4
145974.65266	0.00133	0.01172	1.50407E-4	0.0171	1.03114E-4
365000	7.11446E-4	0.0082	6.17434E-5	0.01154	4.38751E-5

Parameter	Value	Error	t-Value	Prob> t
A	-0.27111	0.04555	-5.95224	1.40818E-4
В	-0.31693	0.0207	-15.30808	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.97932	0.95907	0.95498	0.03789	12
Parameter	LCI	UCI		
A	-0.3726	-0.16962		
В	-0.36306	-0.2708		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.33647	0.33647	234.33728
Error	10	0.01436	0.00144	
Total	11	0.35083		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.07064	0.07715	0.06467	0.08745	0.05706
1493.48334	0.05283	0.05979	0.04668	0.06653	0.04196
3734.35667	0.03951	0.04649	0.03359	0.05091	0.03067
9337.51277	0.02955	0.0362	0.02413	0.03914	0.02232
23347.83539	0.0221	0.0282	0.01732	0.03019	0.01618
58379.72389	0.01653	0.02198	0.01243	0.02334	0.01171
145974.65266	0.01236	0.01714	0.00892	0.01808	0.00846
365000	0.00925	0.01337	0.0064	0.01402	0.0061

Parameter	Value	Error	t-Value	Prob> t
A	0.63206	0.21597	2.92669	0.03276
В	-0.99977	0.09547	-10.47248	1.36942E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.97796	0.9564	0.94768	0.06143	7
Parameter	LCI	UCI		
A	0.07691	1.18722		
В	-1.24518	-0.75437		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.41385	0.41385	109.67283
Error	5	0.01887	0.00377	
Total	6	0.43271		
Prob>F				
1.36942E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00719	0.00998	0.00518	0.01173	0.0044
1493.48334	0.00287	0.00494	0.00167	0.00551	0.0015
3734.35667	0.00115	0.00246	5.37667E-4	0.00267	4.951E-4
9337.51277	4.59969E-4	0.00123	1.72249E-4	0.00131	1.61387E-4
23347.83539	1.83994E-4	6.14141E-4	5.51236E-5	6.47987E-4	5.22444E-5
58379.72389	7.35999E-5	3.07242E-4	1.76309E-5	3.21554E-4	1.68461E-5
145974.65266	2.94409E-5	1.53758E-4	5.63722E-6	1.59956E-4	5.4188E-6
365000	1.17768E-5	7.69644E-5	1.80203E-6	7.96969E-5	1.74024E-6

Parameter	Value	Error	t-Value	Prob> t
A	-0.94355	0.10522	-8.96782	< 0.0001
В	-0.40599	0.04815	-8.43133	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93059	0.866	0.85381	0.07996	13
Parameter	LCI	UCI		
A	-1.17513	-0.71198		
В	-0.51198	-0.30001		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.4545	0.4545	71.08728
Error	11	0.07033	0.00639	
Total	12	0.52483		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0088	0.01052	0.00735	0.01369	0.00565
1493.48334	0.00624	0.00798	0.00488	0.01002	0.00389
3734.35667	0.00443	0.00608	0.00323	0.00741	0.00265
9337.51277	0.00314	0.00465	0.00213	0.00552	0.00179
23347.83539	0.00223	0.00356	0.0014	0.00414	0.0012
58379.72389	0.00158	0.00272	9.20038E-4	0.00311	8.04436E-4
145974.65266	0.00112	0.00208	6.04851E-4	0.00235	5.36168E-4
365000	7.96831E-4	0.0016	3.97521E-4	0.00178	3.56422E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.5919	0.35162	-1.68337	0.12043
В	-0.59485	0.16092	-3.69651	0.00352
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.74432	0.55401	0.51347	0.26722	13
Parameter	LCI	UCI		
A	-1.36581	0.182		
В	-0.94904	-0.24066		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.97569	0.97569	13.66421
Error	11	0.78545	0.0714	
Total	12	1.76113		
Prob>F				
0.00352				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00571	0.01086	0.003	0.02557	0.00128
1493.48334	0.00331	0.00836	0.00131	0.01708	6.41738E-4
3734.35667	0.00192	0.00657	5.60969E-4	0.01196	3.08047E-4
9337.51277	0.00111	0.0052	2.37988E-4	0.00867	1.42889E-4
23347.83539	6.45128E-4	0.00414	1.0054E-4	0.00643	6.46872E-5
58379.72389	3.74013E-4	0.0033	4.23725E-5	0.00486	2.87827E-5
145974.65266	2.16834E-4	0.00264	1.78317E-5	0.00372	1.26483E-5
365000	1.25709E-4	0.00211	7.49689E-6	0.00287	5.50755E-6

Parameter	Value	Error	t-Value	Prob> t
A	0.33621	0.12052	2.78972	0.0176
В	-0.49425	0.05516	-8.96082	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93782	0.87951	0.86856	0.09159	13
Parameter	LCI	UCI		
A	0.07095	0.60147		
В	-0.61565	-0.37285		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.67357	0.67357	80.29628
Error	11	0.09227	0.00839	
Total	12	0.76584		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.09206	0.11477	0.07385	0.15391	0.05507
1493.48334	0.05853	0.0804	0.04261	0.10271	0.03335
3734.35667	0.03721	0.05672	0.02441	0.06966	0.01988
9337.51277	0.02366	0.04014	0.01394	0.0478	0.01171
23347.83539	0.01504	0.02844	0.00795	0.03308	0.00684
58379.72389	0.00956	0.02017	0.00453	0.02303	0.00397
145974.65266	0.00608	0.01431	0.00258	0.0161	0.0023
365000	0.00386	0.01016	0.00147	0.01129	0.00132

Parameter	Value	Error	t-Value	Prob> t
A	-0.14438	0.15899	-0.90813	0.38327
В	-0.61917	0.07276	-8.50962	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93173	0.86813	0.85614	0.12082	13
Parameter	LCI	UCI		
A	-0.49431	0.20555		
В	-0.77932	-0.45903		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.05711	1.05711	72.41369
Error	11	0.16058	0.0146	
Total	12	1.21769		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0137	0.01832	0.01024	0.02698	0.00695
1493.48334	0.00777	0.01181	0.00511	0.01631	0.0037
3734.35667	0.0044	0.00768	0.00252	0.01007	0.00193
9337.51277	0.0025	0.00501	0.00124	0.00632	9.86964E-4
23347.83539	0.00142	0.00328	6.10782E-4	0.004	5.00369E-4
58379.72389	8.02554E-4	0.00215	2.99796E-4	0.00256	2.51701E-4
145974.65266	4.55023E-4	0.00141	1.47053E-4	0.00164	1.25902E-4
365000	2.57984E-4	9.23104E-4	7.20999E-5	0.00106	6.27164E-5

Parameter	Value	Error	t-Value	Prob> t
A	0.05879	0.13384	0.43926	0.66898
В	-0.50696	0.06125	-8.27626	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92824	0.86163	0.84905	0.10171	13
Parameter	LCI	UCI		
A	-0.23579	0.35338		
В	-0.64178	-0.37214		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.70866	0.70866	68.49646
Error	11	0.1138	0.01035	
Total	12	0.82246		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.04481	0.05724	0.03508	0.07929	0.02532
1493.48334	0.02816	0.04006	0.01979	0.05258	0.01508
3734.35667	0.01769	0.02826	0.01108	0.0355	0.00882
9337.51277	0.01112	0.02	0.00618	0.02429	0.00509
23347.83539	0.00699	0.01418	0.00344	0.01677	0.00291
58379.72389	0.00439	0.01006	0.00192	0.01165	0.00165
145974.65266	0.00276	0.00714	0.00107	0.00814	9.35357E-4
365000	0.00173	0.00507	5.92732E-4	0.0057	5.27086E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.60601	0.2656	-2.28164	0.05194
В	-0.42758	0.12878	-3.32016	0.01054
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.76123	0.57947	0.5269	0.18499	10
Parameter	LCI	UCI		
A	-1.21849	0.00647		
В	-0.72455	-0.13061		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.37724	0.37724	11.02348
Error	8	0.27377	0.03422	
Total	9	0.65101		
Prob>F				
0.01054				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01246	0.01741	0.00892	0.0231	0.00672
1493.48334	0.00818	0.01273	0.00526	0.01617	0.00414
3734.35667	0.00537	0.00935	0.00309	0.01148	0.00252
9337.51277	0.00353	0.00689	0.00181	0.00823	0.00151
23347.83539	0.00232	0.00508	0.00106	0.00594	9.04593E-4
58379.72389	0.00152	0.00375	6.17315E-4	0.00431	5.37557E-4
145974.65266	9.99888E-4	0.00277	3.60291E-4	0.00314	3.18219E-4
365000	6.56672E-4	0.00205	2.10195E-4	0.0023	1.87834E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.44569	0.09716	-4.5874	0.04438
В	-0.90943	0.07395	-12.29758	0.00655
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.99345	0.98695	0.98042	0.19425	4
Parameter	LCI	UCI		
A	-0.86372	-0.02766		
В	-1.22762	-0.59124		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	5.7061	5.7061	151.2305
Error	2	0.07546	0.03773	
Total	3	5.78156		
Prob>F				
0.00655				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00107	0.01039	1.10253E-4	0.02104	5.44637E-5
1493.48334	4.65138E-4	0.0059	3.6676E-5	0.01126	1.92107E-5
3734.35667	2.02122E-4	0.00336	1.21412E-5	0.0061	6.69388E-6
9337.51277	8.78303E-5	0.00193	4.00491E-6	0.00334	2.30928E-6
23347.83539	3.81659E-5	0.00111	1.3175E-6	0.00184	7.90155E-7
58379.72389	1.65847E-5	6.35925E-4	4.32523E-7	0.00102	2.68538E-7
145974.65266	7.20674E-6	3.66371E-4	1.41761E-7	5.72303E-4	9.07511E-8
365000	3.13163E-6	2.11351E-4	4.6402E-8	3.21285E-4	3.05246E-8

Parameter	Value	Error	t-Value	Prob> t
A	-0.92319	0.1374	-6.71885	< 0.0001
В	-0.36636	0.06288	-5.82594	1.1485E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.86904	0.75524	0.73299	0.10442	13
Parameter	LCI	UCI		
A	-1.22561	-0.62077		
В	-0.50477	-0.22795		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.37009	0.37009	33.94163
Error	11	0.11994	0.0109	
Total	12	0.49003		
Prob>F				
1.1485E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0104	0.01218	0.00887	0.01501	0.0072
1493.48334	0.00726	0.00901	0.00585	0.01078	0.00489
3734.35667	0.00507	0.00669	0.00384	0.00781	0.00329
9337.51277	0.00354	0.00498	0.00252	0.0057	0.0022
23347.83539	0.00247	0.00371	0.00165	0.00417	0.00147
58379.72389	0.00173	0.00276	0.00108	0.00307	9.72073E-4
145974.65266	0.00121	0.00206	7.06615E-4	0.00226	6.42956E-4
365000	8.42452E-4	0.00154	4.62238E-4	0.00167	4.24375E-4

Parameter	Value	Error	t-Value	Prob> t
A	1.56213	0.33848	4.61508	0.01914
В	-1.44605	0.15432	-9.37027	0.00257
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.98334	0.96696	0.95595	0.08278	5
Parameter	LCI	UCI		
A	0.48492	2.63935		
В	-1.93717	-0.95492		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.6017	0.6017	87.80202
Error	3	0.02056	0.00685	
Total	4	0.62226		
Prob>F				
0.00257				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00353	0.0073	0.00171	0.00909	0.00137
1493.48334	9.37759E-4	0.00298	2.95049E-4	0.00346	2.54089E-4
3734.35667	2.49197E-4	0.00123	5.04438E-5	0.00138	4.51302E-5
9337.51277	6.62207E-5	5.10489E-4	8.59016E-6	5.57551E-4	7.86508E-6
23347.83539	1.75973E-5	2.12077E-4	1.46015E-6	2.28104E-4	1.35756E-6
58379.72389	4.67624E-6	8.81929E-5	2.47947E-7	9.38332E-5	2.33043E-7
145974.65266	1.24265E-6	3.66975E-5	4.20784E-8	3.87305E-5	3.98697E-8
365000	3.30217E-7	1.52759E-5	7.13822E-9	1.60221E-5	6.80579E-9

Parameter	Value	Error	t-Value	Prob> t
A	1.33537	0.30919	4.31898	0.00255
В	-1.22506	0.13091	-9.35812	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.95723	0.9163	0.90583	0.10683	10
Parameter	LCI	UCI		
A	0.62238	2.04835		
В	-1.52694	-0.92318		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.99937	0.99937	87.5745
Error	8	0.09129	0.01141	
Total	9	1.09066		

Prob>F		
< 0.0001		

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0086	0.01217	0.00607	0.01672	0.00442
1493.48334	0.0028	0.00511	0.00153	0.0064	0.00122
3734.35667	9.10304E-4	0.00217	3.8143E-4	0.00257	3.2225E-4
9337.51277	2.96206E-4	9.28012E-4	9.45438E-5	0.00106	8.27608E-5
23347.83539	9.6383E-5	3.9711E-4	2.33933E-5	4.43015E-4	2.09692E-5
58379.72389	3.13623E-5	1.70082E-4	5.78304E-6	1.86586E-4	5.27151E-6
145974.65266	1.0205E-5	7.28843E-5	1.42888E-6	7.89697E-5	1.31877E-6
365000	3.32064E-6	3.1243E-5	3.52931E-7	3.35302E-5	3.28857E-7

Electrical Cable (EC) Leach Rate Extrapolation Results

Linear Fit to Log(Y) = A + B * Log(X) for EC at 25 deg-C

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	-0.03602	0.18209	-0.1978	0.84651
В	-0.41634	0.08409	-4.95138	3.35599E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.81938	0.67138	0.64399	0.16924	14
Parameter	LCI	UCI		
A	-0.43277	0.36073		
В	-0.59955	-0.23313		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic

Model	1	0.7022	0.7022	24.51619
Error	12	0.34371	0.02864	
Total	13	1.0459		
Prob>F				
3.35599E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.06429	0.09263	0.04462	0.16202	0.02551
1493.48334	0.0439	0.07293	0.02642	0.11805	0.01632
3734.35667	0.02997	0.05811	0.01546	0.08797	0.01021
9337.51277	0.02047	0.04655	0.009	0.06671	0.00628
23347.83539	0.01397	0.03739	0.00522	0.05127	0.00381
58379.72389	0.00954	0.03008	0.00303	0.0398	0.00229
145974.65266	0.00651	0.02423	0.00175	0.03112	0.00136
365000	0.00445	0.01952	0.00101	0.02448	8.08216E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.52608	0.85458	0.61561	0.60087
В	-0.9446	0.36082	-2.61791	0.12017
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.87983	0.7741	0.66115	0.14816	4
Parameter	LCI	UCI		
A	-3.15087	4.20303		
В	-2.49709	0.60789		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.15044	0.15044	6.85347
Error	2	0.0439	0.02195	
Total	3	0.19434		
Prob>F				
0.12017				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0128	0.03247	0.00504	0.05396	0.00303
1493.48334	0.00905	0.03755	0.00218	0.05458	0.0015
3734.35667	0.00641	0.04442	9.23955E-4	0.05931	6.91882E-4
9337.51277	0.00453	0.05299	3.87736E-4	0.06694	3.06932E-4
23347.83539	0.00321	0.06347	1.62059E-4	0.07715	1.33314E-4
58379.72389	0.00227	0.07619	6.75843E-5	0.09006	5.71717E-5
145974.65266	0.00161	0.09158	2.81471E-5	0.106	2.43185E-5
365000	0.00114	0.11018	1.17122E-5	0.12545	1.02872E-5

Parameter	Value	Error	t-Value	Prob> t
A	-0.61403	0.2197	-2.79488	0.0162
В	-0.2883	0.10145	-2.84181	0.01485
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.63425	0.40227	0.35246	0.20419	14
Parameter	LCI	UCI		
A	-1.09271	-0.13535		
В	-0.50934	-0.06726		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.33671	0.33671	8.07591
Error	12	0.50032	0.04169	
Total	13	0.83703		
Prob>F				
0.01485				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.04552	0.064	0.03237	0.10392	0.01994
1493.48334	0.0366	0.05856	0.02287	0.08883	0.01508
3734.35667	0.02943	0.05414	0.016	0.07747	0.01118
9337.51277	0.02366	0.05029	0.01113	0.06862	0.00816
23347.83539	0.01903	0.04682	0.00773	0.0615	0.00589
58379.72389	0.0153	0.04366	0.00536	0.0556	0.00421
145974.65266	0.0123	0.04074	0.00371	0.05059	0.00299
365000	0.00989	0.03805	0.00257	0.04627	0.00211

Parameter	Value	Error	t-Value	Prob> t
A	-0.83355	0.24309	-3.42904	0.00645
В	-0.26155	0.10579	-2.47231	0.03297
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.61592	0.37936	0.31729	0.12087	12
Parameter	LCI	UCI		
Α	-1.37518	-0.29192		
В	-0.49728	-0.02583		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.0893	0.0893	6.11231
Error	10	0.14609	0.01461	
Total	11	0.23539		
Prob>F				
0.03297				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0204	0.02248	0.01852	0.02443	0.01704
1493.48334	0.01391	0.01617	0.01196	0.01722	0.01123
3734.35667	0.00948	0.01166	0.0077	0.01226	0.00733
9337.51277	0.00646	0.00842	0.00495	0.00877	0.00476
23347.83539	0.0044	0.00608	0.00319	0.00629	0.00308
58379.72389	0.003	0.00439	0.00205	0.00452	0.00199
145974.65266	0.00204	0.00318	0.00132	0.00326	0.00128
365000	0.00139	0.00229	8.45864E-4	0.00235	8.26982E-4

Parameter	Value	Error	t-Value	Prob> t
A	-1.70219	0.50624	-3.36242	0.0099
В	-0.31829	0.21661	-1.46941	0.17992
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.46101	0.21253	0.1141	0.19444	10
Parameter	LCI	UCI		
A	-2.86959	-0.5348		
В	-0.81781	0.18122		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.08163	0.08163	2.15916
Error	8	0.30245	0.03781	
Total	9	0.38408		
Prob>F				
0.17992				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00149	0.00214	0.00104	0.00271	8.23952E-4
1493.48334	8.30716E-4	0.00149	4.62657E-4	0.00176	3.91249E-4
3734.35667	4.61815E-4	0.00105	2.0348E-4	0.00119	1.79207E-4
9337.51277	2.56734E-4	7.3891E-4	8.92025E-5	8.17653E-4	8.0612E-5
23347.83539	1.42725E-4	5.21675E-4	3.90481E-5	5.67295E-4	3.5908E-5
58379.72389	7.93443E-5	3.68593E-4	1.70799E-5	3.95863E-4	1.59033E-5
145974.65266	4.41095E-5	2.60552E-4	7.46741E-6	2.77237E-4	7.01798E-6
365000	2.45215E-5	1.84234E-4	3.26381E-6	1.94627E-4	3.08953E-6

Parameter	Value	Error	t-Value	Prob> t
A	-2.66793	0.49274	-5.41452	6.34932E-4
В	-0.11283	0.21285	-0.53008	0.61045
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.1842	0.03393	-0.08683	0.17797	10
Parameter	LCI	UCI		
A	-3.80419	-1.53168		
В	-0.60366	0.378		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.0089	0.0089	0.28098
Error	8	0.25339	0.03167	
Total	9	0.26229		
Prob>F				
0.61045				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	9.59632E-4	0.00149	6.16031E-4	0.00247	3.7217E-4
1493.48334	7.92502E-4	0.00153	4.10674E-4	0.0023	2.7337E-4
3734.35667	6.54479E-4	0.00159	2.70169E-4	0.00221	1.93605E-4
9337.51277	5.40495E-4	0.00165	1.76816E-4	0.00218	1.33798E-4
23347.83539	4.46362E-4	0.00173	1.15428E-4	0.00219	9.09727E-5
58379.72389	3.68623E-4	0.00181	7.52484E-5	0.00222	6.1178E-5
145974.65266	3.04424E-4	0.00189	4.90128E-5	0.00227	4.08287E-5
365000	2.51405E-4	0.00198	3.19065E-5	0.00233	2.71002E-5

Parameter	Value	Error	t-Value	Prob> t
A	-1.44774	0.11532	-12.55391	< 0.0001
В	-0.21297	0.05325	-3.99923	0.00176
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.75587	0.57133	0.53561	0.10718	14
Parameter	LCI	UCI		
A	-1.699	-1.19647		
В	-0.32899	-0.09694		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.18373	0.18373	15.99386
Error	12	0.13785	0.01149	
Total	13	0.32159		
Prob>F				
0.00176				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00768	0.00924	0.00639	0.01159	0.00509
1493.48334	0.00598	0.0077	0.00465	0.00934	0.00383
3734.35667	0.00466	0.00645	0.00336	0.00761	0.00285
9337.51277	0.00362	0.00541	0.00243	0.00624	0.0021
23347.83539	0.00282	0.00455	0.00175	0.00515	0.00155
58379.72389	0.0022	0.00382	0.00126	0.00427	0.00113
145974.65266	0.00171	0.00322	9.0969E-4	0.00355	8.23759E-4
365000	0.00133	0.00271	6.55307E-4	0.00296	5.99123E-4

Parameter	Value	Error	t-Value	Prob> t
A	-1.93671	0.11862	-16.32654	< 0.0001
В	-0.34807	0.05544	-6.2786	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88421	0.78184	0.762	0.10942	13
Parameter	LCI	UCI		
A	-2.1978	-1.67562		
В	-0.47009	-0.22605		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.47202	0.47202	39.4208
Error	11	0.13171	0.01197	
Total	12	0.60373		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00125	0.00161	9.72318E-4	0.0023	6.8006E-4
1493.48334	9.08738E-4	0.00129	6.42532E-4	0.00175	4.72516E-4
3734.35667	6.60541E-4	0.00104	4.21348E-4	0.00135	3.23481E-4
9337.51277	4.80133E-4	8.37197E-4	2.75356E-4	0.00105	2.18936E-4
23347.83539	3.48998E-4	6.78066E-4	1.79628E-4	8.29086E-4	1.46908E-4
58379.72389	2.53679E-4	5.49752E-4	1.17058E-4	6.57039E-4	9.79439E-5
145974.65266	1.84393E-4	4.46011E-4	7.62335E-5	5.23221E-4	6.4984E-5
365000	1.34032E-4	3.62004E-4	4.96251E-5	4.18192E-4	4.29574E-5

Parameter	Value	Error	t-Value	Prob> t
A	-1.62759	0.12457	-13.06588	< 0.0001
В	-0.28017	0.05752	-4.8707	3.84522E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.81492	0.66409	0.6361	0.11577	14
Parameter	LCI	UCI		
A	-1.899	-1.35618		
В	-0.4055	-0.15484		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.31799	0.31799	23.72372
Error	12	0.16085	0.0134	
Total	13	0.47883		
Prob>F				
3.84522E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00393	0.00505	0.00306	0.0074	0.00209
1493.48334	0.00304	0.0043	0.00215	0.00598	0.00155
3734.35667	0.00235	0.0037	0.0015	0.00491	0.00113
9337.51277	0.00182	0.00319	0.00104	0.00408	8.1095E-4
23347.83539	0.00141	0.00276	7.1798E-4	0.00343	5.78563E-4
58379.72389	0.00109	0.00239	4.9644E-4	0.00289	4.09959E-4
145974.65266	8.42418E-4	0.00207	3.43029E-4	0.00246	2.88998E-4
365000	6.51652E-4	0.00179	2.3692E-4	0.00209	2.02929E-4

Parameter Value Error t-ValueProb>|t|

ParameterValue	Value	Error	t-Value	Prob> t
A	-1.24549	1.18876	-1.04772	0.40472
В	-0.62444	0.50192	-1.24409	0.3395
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.6605	0.43626	0.1544	0.20609	4
Parameter	LCI	UCI		
A	-6.36032	3.86934		
В	-2.78403	1.53516		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.06574	0.06574	1.54776
Error	2	0.08495	0.04247	
Total	3	0.15069		
Prob>F				
0.3395				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00122	0.00474	3.11473E-4	0.00823	1.79389E-4
1493.48334	8.26563E-4	0.00807	8.4621E-5	0.01165	5.86344E-5
3734.35667	5.62163E-4	0.01423	2.22016E-5	0.01862	1.69753E-5
9337.51277	3.82339E-4	0.02538	5.76008E-6	0.03131	4.66868E-6
23347.83539	2.60037E-4	0.04547	1.48707E-6	0.05401	1.25199E-6
58379.72389	1.76857E-4	0.08168	3.82922E-7	0.09448	3.31063E-7
145974.65266	1.20284E-4	0.14696	9.84513E-8	0.16669	8.67979E-8
365000	8.18077E-5	0.26465	2.52877E-8	0.29573	2.26304E-8

Parameter	Value	Error	t-Value	Prob> t
A	-1.08308	0.40557	-2.6705	0.03198
В	-0.59373	0.17662	-3.36152	0.01206
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.7858	0.61748	0.56284	0.14394	9
Parameter	LCI	UCI		
A	-2.0421	-0.12405		
В	-1.01138	-0.17608		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.23413	0.23413	11.29983
Error	7	0.14504	0.02072	
Total	8	0.37917		
Prob>F				
0.01206				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00186	0.0032	0.00108	0.00482	7.15009E-4
1493.48334	0.00108	0.00265	4.38565E-4	0.00355	3.26933E-4
3734.35667	6.25169E-4	0.00223	1.75609E-4	0.00278	1.40592E-4
9337.51277	3.62814E-4	0.00188	6.99423E-5	0.00225	5.85938E-5
23347.83539	2.10558E-4	0.0016	2.77911E-5	0.00185	2.4007E-5
58379.72389	1.22196E-4	0.00135	1.10289E-5	0.00153	9.73805E-6
145974.65266	7.09161E-5	0.00115	4.37356E-6	0.00128	3.92527E-6
365000	4.11559E-5	9.77078E-4	1.73354E-6	0.00108	1.5756E-6

Parameter	Value	Error	t-Value	Prob> t
A	-1.76382	1.28272	-1.37506	0.26281
В	-0.44342	0.54016	-0.8209	0.47186
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.42828	0.18342	-0.08877	0.22264	5
Parameter	LCI	UCI		
A	-5.84604	2.31839		
В	-2.16246	1.27563		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.0334	0.0334	0.67387
Error	3	0.14871	0.04957	
Total	4	0.18211		
Prob>F				
0.47186				

	Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
	597.28962	7.3898E-4	0.00111	4.91576E-4	0.00133	4.09075E-4
ĺ	1493.48334	4.79558E-4	8.79436E-4	2.61504E-4	0.00101	2.28237E-4
	3734.35667	3.11207E-4	7.01051E-4	1.38149E-4	7.795E-4	1.24246E-4
	9337.51277	2.01956E-4	5.6039E-4	7.27822E-5	6.10883E-4	6.67663E-5
	23347.83539	1.31059E-4	4.4856E-4	3.82924E-5	4.82265E-4	3.56161E-5
	58379.72389	8.50501E-5	3.5932E-4	2.01311E-5	3.82432E-4	1.89145E-5
	145974.65266	5.51929E-5	2.8797E-4	1.05784E-5	3.04144E-4	1.00158E-5
	365000	3.58172E-5	2.3086E-4	5.55693E-6	2.4236E-4	5.29324E-6

Parameter	Value	Error	t-Value	Prob> t
A	-1.05476	0.46768	-2.25531	0.05056
В	-0.51633	0.199	-2.59464	0.02899
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.65416	0.42792	0.36436	0.18111	11
Parameter	LCI	UCI		
A	-2.11271	0.0032		
В	-0.9665	-0.06616		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.22081	0.22081	6.73215
Error	9	0.29519	0.0328	
Total	10	0.516		
Prob>F				
0.02899				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00207	0.00299	0.00144	0.00391	0.0011
1493.48334	0.00101	0.00184	5.53684E-4	0.00224	4.56572E-4
3734.35667	4.92399E-4	0.00115	2.10626E-4	0.00133	1.82016E-4
9337.51277	2.39916E-4	7.20885E-4	7.98462E-5	8.09738E-4	7.10846E-5
23347.83539	1.16897E-4	4.52148E-4	3.02222E-5	4.97761E-4	2.74527E-5
58379.72389	5.69568E-5	2.83824E-4	1.14299E-5	3.08E-4	1.05327E-5
145974.65266	2.77517E-5	1.78249E-4	4.32067E-6	1.9137E-4	4.02442E-6
365000	1.35217E-5	1.11979E-4	1.63277E-6	1.19232E-4	1.53346E-6

Foam Rubber/Ensolite® (FRE) Leach Rate Extrapolation Results

Linear Fit to Log(Y) = A + B * Log(X) for FRE at 25 deg-C

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	1.86578	0.16062	11.61588	< 0.0001
В	-0.52023	0.07185	-7.24046	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.91641	0.83981	0.82379	0.10003	12
Parameter	LCI	UCI		
A	1.50789	2.22366		
В	-0.68033	-0.36014		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.52452	0.52452	52.42419

Error	10	0.10005	0.01001	
Total	11	0.62457		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	2.63945	3.42056	2.03671	4.69037	1.48532
1493.48334	1.63852	2.41713	1.11072	3.11933	0.86069
3734.35667	1.01717	1.72362	0.60026	2.12314	0.48731
9337.51277	0.63144	1.23335	0.32328	1.46784	0.27163
23347.83539	0.39199	0.88399	0.17382	1.02539	0.14985
58379.72389	0.24334	0.63417	0.09337	0.72135	0.08209
145974.65266	0.15106	0.45519	0.05013	0.50992	0.04475
365000	0.09378	0.32685	0.02691	0.36171	0.02431

Parameter	Value	Error	t-Value	Prob> t
A	2.64134	0.67207	3.93019	0.01107
В	-1.1711	0.27794	-4.21344	0.00838
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88332	0.78025	0.7363	0.10547	7
Parameter	LCI	UCI		
A	0.91374	4.36894		
В	-1.88558	-0.45662		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.19747	0.19747	17.75307
Error	5	0.05562	0.01112	
Total	6	0.25309		
Prob>F				
0.00838				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.24555	0.46628	0.12931	0.60092	0.10034
1493.48334	0.08395	0.29988	0.0235	0.34661	0.02033
3734.35667	0.0287	0.19586	0.00421	0.21622	0.00381
9337.51277	0.00981	0.12841	7.49885E-4	0.13837	6.95919E-4
23347.83539	0.00335	0.08431	1.33494E-4	0.08952	1.25735E-4
58379.72389	0.00115	0.0554	2.37468E-5	0.05824	2.25902E-5
145974.65266	3.92143E-4	0.03642	4.22246E-6	0.03801	4.04556E-6
365000	1.34069E-4	0.02395	7.50607E-7	0.02486	7.23022E-7

Parameter	Value	Error	t-Value	Prob> t
A	1.57794	0.18496	8.5311	< 0.0001
В	-0.53458	0.08274	-6.46108	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.89819	0.80675	0.78742	0.11518	12
Parameter	LCI	UCI		
A	1.16582	1.99007		
В	-0.71894	-0.35023		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.55385	0.55385	41.74551
Error	10	0.13267	0.01327	
Total	11	0.68653		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	1.2412	1.67296	0.92087	2.40643	0.64019
1493.48334	0.76045	1.18988	0.486	1.59606	0.36232
3734.35667	0.4659	0.85518	0.25383	1.08721	0.19965
9337.51277	0.28545	0.61708	0.13204	0.75403	0.10806
23347.83539	0.17488	0.44612	0.06856	0.52924	0.05779
58379.72389	0.10715	0.32286	0.03556	0.37448	0.03066
145974.65266	0.06565	0.2338	0.01843	0.26646	0.01617
365000	0.04022	0.16938	0.00955	0.19035	0.0085

Parameter	Value	Error	t-Value	Prob> t
A	1.16854	0.08714	13.40979	< 0.0001
В	-0.41978	0.04033	-10.40811	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.95279	0.90782	0.89944	0.07681	13
Parameter	LCI	UCI		
A	0.97674	1.36033		
В	-0.50855	-0.33101		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.6391	0.6391	108.32874
Error	11	0.0649	0.0059	
Total	12	0.704		
Prob>F				
< 0.0001				
	ſ		1	1

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	1.0073	1.20136	0.84459	1.54427	0.65704
1493.48334	0.68562	0.87647	0.53632	1.08635	0.43271
3734.35667	0.46666	0.64308	0.33864	0.77273	0.28182
9337.51277	0.31763	0.473	0.2133	0.55433	0.182
23347.83539	0.2162	0.34835	0.13418	0.40016	0.1168
58379.72389	0.14715	0.25673	0.08434	0.29023	0.07461
145974.65266	0.10016	0.1893	0.05299	0.21122	0.04749
365000	0.06817	0.13962	0.03329	0.15413	0.03015

Parameter	Value	Error	t-Value	Prob> t
A	-0.20111	0.07037	-2.85785	0.01441
В	-0.31499	0.0338	-9.31925	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93734	0.8786	0.86849	0.09284	14
Parameter	LCI	UCI		
A	-0.35444	-0.04778		
В	-0.38863	-0.24134		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.74861	0.74861	86.8485
Error	12	0.10344	0.00862	
Total	13	0.85204		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.08403	0.10137	0.06965	0.13884	0.05086
1493.48334	0.06296	0.08022	0.04941	0.10643	0.03724
3734.35667	0.04717	0.06382	0.03487	0.08219	0.02707
9337.51277	0.03534	0.0509	0.02454	0.06386	0.01956
23347.83539	0.02648	0.04066	0.01725	0.04988	0.01406
58379.72389	0.01984	0.03251	0.01211	0.03912	0.01006
145974.65266	0.01487	0.02601	0.0085	0.03078	0.00718
365000	0.01114	0.02082	0.00596	0.02429	0.00511

Parameter	Value	Error	t-Value	Prob> t
A	0.45198	0.29693	1.52218	0.15387
В	-0.6714	0.14261	-4.70778	5.0749E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.80545	0.64874	0.61947	0.39174	14
Parameter	LCI	UCI		
A	-0.19497	1.09893		
В	-0.98213	-0.36067		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	3.40118	3.40118	22.1632
Error	12	1.84153	0.15346	
Total	13	5.2427		
Prob>F				
5.0749E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.03873	0.08548	0.01755	0.32228	0.00465
1493.48334	0.02093	0.05819	0.00753	0.19184	0.00228
3734.35667	0.01131	0.04049	0.00316	0.11777	0.00109
9337.51277	0.00611	0.0285	0.00131	0.07421	5.03815E-4
23347.83539	0.0033	0.02018	5.412E-4	0.04779	2.28551E-4
58379.72389	0.00179	0.01435	2.22366E-4	0.03132	1.01866E-4
145974.65266	9.65365E-4	0.01023	9.11354E-5	0.02082	4.47554E-5
365000	5.21753E-4	0.0073	3.72869E-5	0.01401	1.94362E-5

Parameter	Value	Error	t-Value	Prob> t
A	0.57289	0.22231	2.57697	0.02756
В	-0.59151	0.09945	-5.94803	1.41616E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88297	0.77963	0.7576	0.13844	12
Parameter	LCI	UCI		
A	0.07755	1.06823		
В	-0.81309	-0.36993		
ANOVA				
Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.67808	0.67808	35.37902
Error	10	0.19166	0.01917	
Total	11	0.86974		
Prob>F				
1.41616E-				
4				

]	Γime (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
5	597.28962	0.08526	0.12206	0.05956	0.18895	0.03847
1	1493.48334	0.04958	0.08492	0.02895	0.12087	0.02034
3	3734.35667	0.02883	0.05983	0.0139	0.07984	0.01041
9	9337.51277	0.01677	0.04235	0.00664	0.05389	0.00522
2	23347.83539	0.00975	0.03005	0.00316	0.0369	0.00258
5	58379.72389	0.00567	0.02135	0.00151	0.02552	0.00126
1	145974.65266	0.0033	0.01518	7.16401E-4	0.01776	6.12227E-4
3	365000	0.00192	0.0108	3.40597E-4	0.01242	2.96021E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.64917	0.05706	-11.37723	< 0.0001
В	-0.38722	0.02641	-14.66244	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.97536	0.95132	0.9469	0.05029	13
Parameter	LCI	UCI		
A	-0.77476	-0.52359		
В	-0.44535	-0.32909		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.54381	0.54381	214.98719
Error	11	0.02782	0.00253	
Total	12	0.57163		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01887	0.02118	0.01682	0.02497	0.01427
1493.48334	0.01323	0.01554	0.01127	0.01789	0.00979
3734.35667	0.00928	0.01145	0.00752	0.01291	0.00667
9337.51277	0.00651	0.00845	0.00501	0.00937	0.00452
23347.83539	0.00456	0.00624	0.00334	0.00683	0.00305
58379.72389	0.0032	0.00461	0.00222	0.00499	0.00205
145974.65266	0.00224	0.00341	0.00148	0.00366	0.00138
365000	0.00157	0.00252	9.84316E-4	0.00269	9.22612E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.00995	0.15179	0.06554	0.94917
В	-0.52733	0.06926	-7.61394	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93038	0.86562	0.85068	0.09017	11
Parameter	LCI	UCI		
A	-0.33342	0.35332		
В	-0.68401	-0.37066		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.47132	0.47132	57.97215
Error	9	0.07317	0.00813	
Total	10	0.54449		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.03515	0.04581	0.02698	0.06027	0.0205
1493.48334	0.02168	0.03214	0.01463	0.04001	0.01175
3734.35667	0.01337	0.02272	0.00787	0.02715	0.00659
9337.51277	0.00825	0.01611	0.00422	0.01869	0.00364
23347.83539	0.00509	0.01144	0.00226	0.01298	0.00199
58379.72389	0.00314	0.00813	0.00121	0.00907	0.00109
145974.65266	0.00193	0.00578	6.47675E-4	0.00637	5.88082E-4
365000	0.00119	0.00411	3.46397E-4	0.00448	3.178E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.85219	0.08514	10.00921	< 0.0001
В	-0.47532	0.03809	-12.48043	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.96937	0.93967	0.93364	0.05302	12
Parameter	LCI	UCI		
A	0.66248	1.04189		
В	-0.56018	-0.39046		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.43787	0.43787	155.76113
Error	10	0.02811	0.00281	
Total	11	0.46598		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.34088	0.39109	0.29712	0.46233	0.25133
1493.48334	0.2205	0.27097	0.17944	0.31019	0.15675
3734.35667	0.14264	0.18864	0.10785	0.21068	0.09657
9337.51277	0.09227	0.13157	0.0647	0.14429	0.059
23347.83539	0.05968	0.09185	0.03878	0.09936	0.03585
58379.72389	0.03861	0.06415	0.02324	0.06868	0.0217
145974.65266	0.02497	0.04481	0.01392	0.04759	0.0131
365000	0.01615	0.03131	0.00833	0.03304	0.0079

Parameter	Value	Error	t-Value	Prob> t
A	-0.07762	0.10163	-0.7637	0.46111
В	-0.42354	0.04704	-9.00407	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93837	0.88053	0.86967	0.08958	13
Parameter	LCI	UCI		
A	-0.30131	0.14607		
В	-0.52707	-0.32001		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.65062	0.65062	81.07335
Error	11	0.08828	0.00803	
Total	12	0.73889		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.05579	0.06852	0.04543	0.09183	0.03389
1493.48334	0.03784	0.05039	0.02842	0.06473	0.02212
3734.35667	0.02567	0.03731	0.01766	0.04622	0.01425
9337.51277	0.01741	0.0277	0.01094	0.03333	0.00909
23347.83539	0.01181	0.0206	0.00677	0.02422	0.00576
58379.72389	0.00801	0.01533	0.00419	0.01769	0.00363
145974.65266	0.00543	0.01142	0.00259	0.01297	0.00228
365000	0.00369	0.0085	0.0016	0.00954	0.00142

Parameter	Value	Error	t-Value	Prob> t
A	0.61183	0.10588	5.77858	1.7808E-4
В	-0.48425	0.04736	-10.22421	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.95535	0.91269	0.90396	0.06594	12
Parameter	LCI	UCI		
A	0.37592	0.84775		
В	-0.58978	-0.37872		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.45446	0.45446	104.5345
Error	10	0.04347	0.00435	
Total	11	0.49794		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.18513	0.21963	0.15605	0.27044	0.12673
1493.48334	0.11878	0.15348	0.09193	0.18157	0.0777
3734.35667	0.07621	0.10789	0.05383	0.12378	0.04692
9337.51277	0.04889	0.07602	0.03145	0.08526	0.02804
23347.83539	0.03137	0.05362	0.01835	0.05913	0.01664
58379.72389	0.02013	0.03784	0.0107	0.0412	0.00983
145974.65266	0.01291	0.02672	0.00624	0.0288	0.00579
365000	0.00829	0.01887	0.00364	0.02017	0.0034

Parameter	Value	Error	t-Value	Prob> t
A	-0.3465	0.0461	-7.51693	< 0.0001
В	-0.5066	0.02214	-22.8816	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.98873	0.97759	0.97573	0.06082	14
Parameter	LCI	UCI		
A	-0.44694	-0.24607		
В	-0.55484	-0.45836		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.93642	1.93642	523.56782
Error	12	0.04438	0.0037	
Total	13	1.9808		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01766	0.01997	0.01562	0.02454	0.01271
1493.48334	0.0111	0.01301	0.00947	0.01566	0.00787
3734.35667	0.00698	0.00851	0.00573	0.01004	0.00485
9337.51277	0.00439	0.00557	0.00345	0.00646	0.00298
23347.83539	0.00276	0.00365	0.00208	0.00417	0.00182
58379.72389	0.00173	0.0024	0.00125	0.0027	0.00111
145974.65266	0.00109	0.00157	7.55348E-4	0.00176	6.76396E-4
365000	6.84918E-4	0.00103	4.54719E-4	0.00114	4.10977E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.66618	0.13635	-4.88573	4.82461E-4
В	-0.41836	0.06311	-6.62917	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.89432	0.7998	0.7816	0.12019	13
Parameter	LCI	UCI		
A	-0.96629	-0.36607		
В	-0.55726	-0.27946		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.63479	0.63479	43.94587
Error	11	0.15889	0.01444	
Total	12	0.79368		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01662	0.01897	0.01455	0.02266	0.01218
1493.48334	0.01162	0.01395	0.00967	0.01624	0.00831
3734.35667	0.00812	0.0103	0.00641	0.01173	0.00562
9337.51277	0.00568	0.00762	0.00423	0.00853	0.00378
23347.83539	0.00397	0.00564	0.00279	0.00623	0.00253
58379.72389	0.00278	0.00418	0.00184	0.00456	0.00169
145974.65266	0.00194	0.0031	0.00122	0.00335	0.00113
365000	0.00136	0.0023	8.02313E-4	0.00247	7.47942E-4

Parameter	Value	Error	t-Value	Prob> t
A	-1.51658	0.65138	-2.32825	0.14532
В	-0.08289	0.29461	-0.28137	0.80487
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.19513	0.03808	-0.44288	0.0753	4
Parameter	LCI	UCI		
A	-4.31927	1.2861		
В	-1.3505	1.18471		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	4.48855E-4	4.48855E-4	0.07917
Error	2	0.01134	0.00567	
Total	3	0.01179		
Prob>F				
0.80487				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01792	0.09826	0.00327	0.11489	0.00279
1493.48334	0.01661	0.28615	9.63798E-4	0.31502	8.75471E-4
3734.35667	0.01539	0.84148	2.8155E-4	0.90154	2.62793E-4
9337.51277	0.01427	2.48241	8.19856E-5	2.61923	7.77028E-5
23347.83539	0.01322	7.33381	2.38393E-5	7.66282	2.28158E-5
58379.72389	0.01226	21.68307	6.92654E-6	22.50294	6.67417E-6
145974.65266	0.01136	64.13747	2.01158E-6	66.2329	1.94794E-6
365000	0.01053	189.77178	5.84025E-7	195.22924	5.67699E-7

Parameter	Value	Error	t-Value	Prob> t
A	1.52114	0.64387	2.36251	0.06455
В	-1.10639	0.27545	-4.01668	0.01015
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.87373	0.76341	0.71609	0.12765	7
Parameter	LCI	UCI		
A	-0.13397	3.17625		
В	-1.81445	-0.39833		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.2629	0.2629	16.13369
Error	5	0.08148	0.0163	
Total	6	0.34438		
Prob>F				
0.01015				

,	Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
	597.28962	0.02816	0.06143	0.01291	0.08341	0.00951
	1493.48334	0.01022	0.0416	0.00251	0.05032	0.00207
	3734.35667	0.00371	0.02861	4.80034E-4	0.03275	4.19332E-4
9	9337.51277	0.00134	0.01976	9.14519E-5	0.02193	8.2404E-5
1	23347.83539	4.87708E-4	0.01368	1.73899E-5	0.01488	1.59801E-5
,	58379.72389	1.76929E-4	0.00948	3.30359E-6	0.01017	3.07694E-6
	145974.65266	6.41859E-5	0.00657	6.27235E-7	0.00698	5.89957E-7
	365000	2.32852E-5	0.00455	1.19048E-7	0.00481	1.12809E-7

Parameter	Value	Error	t-Value	Prob> t
A	2.17049	0.74415	2.91675	0.02674
В	-1.38238	0.31372	-4.40649	0.00454
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.87404	0.76394	0.7246	0.16558	8
Parameter	LCI	UCI		
A	0.34963	3.99136		
В	-2.15002	-0.61475		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.53237	0.53237	19.41717
Error	6	0.16451	0.02742	
Total	7	0.69688		
Prob>F				
0.00454				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.02152	0.04782	0.00968	0.07347	0.0063
1493.48334	0.00606	0.02632	0.0014	0.03452	0.00106
3734.35667	0.00171	0.0148	1.96967E-4	0.01795	1.62414E-4
9337.51277	4.80968E-4	0.00837	2.76287E-5	0.00971	2.38167E-5
23347.83539	1.3549E-4	0.00475	3.86599E-6	0.00536	3.42773E-6
58379.72389	3.81677E-5	0.0027	5.40283E-7	0.00298	4.88373E-7
145974.65266	1.07519E-5	0.00153	7.54518E-8	0.00167	6.91659E-8
365000	3.02885E-6	8.71027E-4	1.05323E-8	9.40136E-4	9.75807E-9

Parameter	Value	Error	t-Value	Prob> t
A	0.40526	0.70211	0.5772	0.58882
В	-0.80957	0.30036	-2.6953	0.04302
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.76963	0.59232	0.51079	0.1392	7
Parameter	LCI	UCI		
Α	-1.39956	2.21007		
В	-1.58168	-0.03746		
ANOVA				
Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.14076	0.14076	7.26467
Error	5	0.09688	0.01938	
Total	6	0.23765		
Prob>F				
0.04302				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01438	0.03366	0.00614	0.04699	0.0044
1493.48334	0.00685	0.03166	0.00148	0.03896	0.0012
3734.35667	0.00326	0.03028	3.51072E-4	0.03509	3.0295E-4
9337.51277	0.00155	0.02911	8.28234E-5	0.03261	7.39292E-5
23347.83539	7.39341E-4	0.02803	1.94994E-5	0.03074	1.7782E-5
58379.72389	3.52065E-4	0.02703	4.58599E-6	0.02921	4.24399E-6
145974.65266	1.67649E-4	0.02607	1.07791E-6	0.02788	1.00824E-6
365000	7.98322E-5	0.02516	2.53256E-7	0.02669	2.38819E-7

Parameter	Value	Error	t-Value	Prob> t
A	0.92792	0.37788	2.45561	0.03393
В	-0.79162	0.16903	-4.6832	8.63308E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.82876	0.68684	0.65552	0.23532	12
Parameter	LCI	UCI		
A	0.08596	1.76988		
В	-1.16825	-0.41499		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.2145	1.2145	21.93235
Error	10	0.55375	0.05537	
Total	11	1.76825		
Prob>F				
8.63308E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.05373	0.09888	0.0292	0.2078	0.01389
1493.48334	0.02601	0.06492	0.01042	0.11829	0.00572
3734.35667	0.01259	0.04354	0.00364	0.07111	0.00223
9337.51277	0.0061	0.02945	0.00126	0.04435	8.37802E-4
23347.83539	0.00295	0.01999	4.3556E-4	0.02834	3.07216E-4
58379.72389	0.00143	0.0136	1.50035E-4	0.01841	1.10812E-4
145974.65266	6.91461E-4	0.00926	5.16149E-5	0.0121	3.95164E-5
365000	3.34727E-4	0.00632	1.77416E-5	0.00802	1.3978E-5

Parameter	Value	Error	t-Value	Prob> t
A	0.45782	0.32261	1.41911	0.18628
В	-0.71824	0.14431	-4.97694	5.55932E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.84404	0.7124	0.68363	0.2009	12
Parameter	LCI	UCI		
A	-0.261	1.17665		
В	-1.03979	-0.39669		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.99977	0.99977	24.76993
Error	10	0.40362	0.04036	
Total	11	1.4034		
Prob>F				
5.55932E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0291	0.04898	0.01729	0.09234	0.00917
1493.48334	0.01507	0.03289	0.0069	0.0549	0.00413
3734.35667	0.0078	0.0225	0.0027	0.0342	0.00178
9337.51277	0.00404	0.0155	0.00105	0.02198	7.42053E-4
23347.83539	0.00209	0.01071	4.08336E-4	0.01443	3.03099E-4
58379.72389	0.00108	0.00741	1.58118E-4	0.0096	1.22074E-4
145974.65266	5.60581E-4	0.00514	6.11598E-5	0.00645	4.86892E-5
365000	2.90247E-4	0.00356	2.36395E-5	0.00437	1.92857E-5

Parameter	Value	Error	t-Value	Prob> t
A	0.88871	0.24096	3.68821	0.00419
В	-0.64488	0.10779	-5.98292	1.35155E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.8841	0.78164	0.7598	0.15005	12
Parameter	LCI	UCI		
A	0.35182	1.42559		
В	-0.88505	-0.40472		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.80598	0.80598	35.79532
Error	10	0.22516	0.02252	
Total	11	1.03114		
Prob>F				
1.35155E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.12543	0.18505	0.08502	0.29715	0.05294
1493.48334	0.06946	0.12446	0.03876	0.18246	0.02644
3734.35667	0.03846	0.08485	0.01744	0.11601	0.01275
9337.51277	0.0213	0.05815	0.0078	0.0755	0.00601
23347.83539	0.0118	0.03995	0.00348	0.04991	0.00279
58379.72389	0.00653	0.02748	0.00155	0.03334	0.00128
145974.65266	0.00362	0.01892	6.91375E-4	0.02244	5.83104E-4
365000	0.002	0.01304	3.07763E-4	0.01518	2.64355E-4

Aroclor 1268 (A1268) Dissolution Rate Extrapolation Results

Linear Fit to Log(Y) = A + B * Log(X) for A1268 at 25 deg-C

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	4.48281	0.18571	24.13884	< 0.0001
В	-0.40855	0.09454	-4.3214	0.00193
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.82146	0.67479	0.63866	0.44626	11
Parameter	LCI	UCI		
A	4.06271	4.90291		
В	-0.62241	-0.19468		
ANOVA Table:				
	Degrees of	Sum of	Mean	

Item	Freedom	Squares	Square	F Statistic
Model	1	3.71902	3.71902	18.67451
Error	9	1.79234	0.19915	
Total	10	5.51136		
Prob>F				
0.00193				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	772.05486	1925.34024	309.59136	4606.48552	129.39772
1493.48334	306.14967	1041.44577	89.9976	2180.46984	42.98506
3734.35667	121.40021	574.26997	25.66391	1078.35445	13.66713
9337.51277	48.13989	319.59055	7.25131	550.60712	4.2089
23347.83539	19.08933	178.75342	2.03858	287.68673	1.26666
58379.72389	7.56966	100.28273	0.57138	152.84301	0.37489
145974.65266	3.00166	56.36946	0.15984	82.20511	0.1096
365000	1.19028	31.72765	0.04465	44.62066	0.03175

Parameter	Value	Error	t-Value	Prob> t
A	5.39484	1.70305	3.16775	0.05057
В	-1.57541	0.71797	-2.19425	0.11579
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.78493	0.61611	0.48815	0.30126	5
Parameter	LCI	UCI		
A	-0.02506	10.81474		
В	-3.86033	0.70951		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.43698	0.43698	4.81473
Error	3	0.27228	0.09076	
Total	4	0.70925		
Prob>F				
0.11579				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	10.50055	113.4462	0.97193	269.77173	0.40872
1493.48334	2.47842	196.3791	0.03128	332.20397	0.01849
3734.35667	0.58497	362.71449	9.43428E-4	524.28846	6.52685E-4
9337.51277	0.13807	682.05019	2.795E-5	904.10112	2.10854E-5
23347.83539	0.03259	1292.03992	8.21954E-7	1622.42781	6.54573E-7
58379.72389	0.00769	2456.75805	2.40817E-8	2973.28868	1.98981E-8
145974.65266	0.00182	4681.5101	7.04024E-10	5516.64625	5.97446E-10
365000	4.28499E-4	8933.01893	2.05542E-11	10316.36743	1.7798E-11

Parameter	Value	Error	t-Value	Prob> t
A	4.29809	1.24006	3.46602	0.01793
В	-1.47596	0.5618	-2.62722	0.04669
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.76152	0.57991	0.4959	0.49843	7
Parameter	LCI	UCI		
A	1.11041	7.48577		
В	-2.9201	-0.03182		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.71474	1.71474	6.90231
Error	5	1.24215	0.24843	
Total	6	2.95688		
Prob>F				
0.04669				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	16.16897	51.77845	5.04912	73.12044	3.57541
1493.48334	11.59834	64.7835	2.07648	83.1818	1.6172
3734.35667	8.31973	82.18277	0.84224	99.70206	0.69425
9337.51277	5.96791	104.8388	0.33972	122.61884	0.29046
23347.83539	4.28091	134.11359	0.13665	152.94676	0.11982
58379.72389	3.07078	171.83498	0.05488	192.39605	0.04901
145974.65266	2.20274	220.38317	0.02202	243.33788	0.01994
365000	1.58007	282.83262	0.00883	308.90203	0.00808

Parameter	Value	Error	t-Value	Prob> t
A	4.18509	0.38902	10.75815	1.2029E-4
В	-0.8633	0.17624	-4.89845	0.00448
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.9097	0.82756	0.79307	0.15636	7
Parameter	LCI	UCI		
A	3.18509	5.18508		
В	-1.31633	-0.41026		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.58663	0.58663	23.99483
Error	5	0.12224	0.02445	
Total	6	0.70887		
Prob>F				
0.00448				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	61.43501	125.20714	30.14414	197.48295	19.11183
1493.48334	27.84907	83.06489	9.33692	116.61265	6.65083
3734.35667	12.62424	56.13269	2.83919	73.07125	2.18104
9337.51277	5.72269	38.19311	0.85746	47.28778	0.69255
23347.83539	2.59415	26.071	0.25813	31.1713	0.21589
58379.72389	1.17595	17.82789	0.07757	20.77964	0.06655
145974.65266	0.53307	12.20419	0.02328	13.95311	0.02037
365000	0.24165	8.36029	0.00698	9.41543	0.0062

Parameter	Value	Error	t-Value	Prob> t
A	6.20746	0.47951	12.9455	< 0.0001
В	-1.35657	0.21723	-6.24473	0.00154
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.94146	0.88635	0.86363	0.19273	7
Parameter	LCI	UCI		
A	4.97485	7.44007		
В	-1.91499	-0.79815		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.44855	1.44855	38.99662
Error	5	0.18573	0.03715	
Total	6	1.63427		
Prob>F				
0.00154				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	414.12623	726.05986	236.20716	960.91011	178.47719
1493.48334	141.80118	330.40591	60.85719	406.42954	49.47371
3734.35667	48.55422	152.09468	15.50029	178.63926	13.19705
9337.51277	16.62548	70.32445	3.93045	80.12235	3.4498
23347.83539	5.69274	32.58597	0.99452	36.34857	0.89157
58379.72389	1.94925	15.11729	0.25134	16.60455	0.22883
145974.65266	0.66744	7.01836	0.06347	7.61913	0.05847
365000	0.22854	3.25991	0.01602	3.50671	0.01489

Parameter	Value	Error	t-Value	Prob> t
A	5.72492	0.41698	13.72936	< 0.0001
В	-1.24578	0.20735	-6.00799	5.37954E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.91519	0.83757	0.81437	0.35669	9
Parameter	LCI	UCI		
A	4.73891	6.71092		
В	-1.73609	-0.75547		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	4.59231	4.59231	36.096
Error	7	0.89057	0.12722	
Total	8	5.48289		
Prob>F				
5.37954E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	184.67128	586.94084	58.10378	1770.17149	19.26564
1493.48334	58.96028	277.58031	12.52364	707.0985	4.91631
3734.35667	18.82434	134.50846	2.63445	298.55672	1.1869
9337.51277	6.01008	65.94323	0.54776	131.25738	0.27519
23347.83539	1.91885	32.53514	0.11317	59.4117	0.06197
58379.72389	0.61263	16.11368	0.02329	27.46576	0.01366
145974.65266	0.1956	8.00031	0.00478	12.89594	0.00297
365000	0.06245	3.97877	9.8015E-4	6.1257	6.36628E-4

Parameter	Value	Error	t-Value	Prob> t
A	6.35558	0.63032	10.08306	< 0.0001
В	-2.27589	0.32662	-6.96804	4.34124E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.94341	0.89002	0.87169	0.51596	8
Parameter	LCI	UCI		
A	4.81323	7.89792		
В	-3.07509	-1.47668		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	12.92583	12.92583	48.5536
Error	6	1.59731	0.26622	
Total	7	14.52314		
Prob>F				
4.34124E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	1.08968	8.00858	0.14827	37.019	0.03208
1493.48334	0.13535	1.91455	0.00957	6.91242	0.00265
3734.35667	0.01681	0.4728	5.97817E-4	1.40451	2.01243E-4
9337.51277	0.00209	0.11863	3.67591E-5	0.30287	1.43986E-5
23347.83539	2.59387E-4	0.03003	2.24033E-6	0.0681	9.87974E-7
58379.72389	3.22189E-5	0.00764	1.35804E-7	0.01578	6.57991E-8
145974.65266	4.00197E-6	0.00195	8.20318E-9	0.00373	4.28826E-9
365000	4.97092E-7	4.99889E-4	4.94311E-10	8.98498E-4	2.75015E-10

Parameter	Value	Error	t-Value	Prob> t
A	2.94754	0.30169	9.77003	1.91105E-4
В	-0.86649	0.13668	-6.33969	0.00144
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.94306	0.88936	0.86723	0.12126	7
Parameter	LCI	UCI		
A	2.17201	3.72306		
В	-1.21783	-0.51515		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.59099	0.59099	40.1917
Error	5	0.07352	0.0147	
Total	6	0.66451		
Prob>F				
0.00144				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	3.48329	6.05051	2.00533	8.61528	1.40835
1493.48334	1.57439	3.67436	0.67459	4.78011	0.51854
3734.35667	0.7116	2.26351	0.22371	2.77718	0.18233
9337.51277	0.32163	1.4018	0.07379	1.65435	0.06253
23347.83539	0.14537	0.87032	0.02428	0.99968	0.02114
58379.72389	0.06571	0.54109	0.00798	0.60936	0.00708
145974.65266	0.0297	0.33668	0.00262	0.37353	0.00236
365000	0.01342	0.20961	8.59561E-4	0.22985	7.83872E-4

Parameter	Value	Error	t-Value	Prob> t
A	5.94637	0.63198	9.40911	< 0.0001
В	-2.16556	0.32748	-6.61288	5.75633E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93774	0.87935	0.85924	0.51732	8
Parameter	LCI	UCI		
A	4.39997	7.49277		
В	-2.96687	-1.36426		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	11.70308	11.70308	43.73015
Error	6	1.60572	0.26762	
Total	7	13.3088		
Prob>F				
5.75633E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.85973	6.35181	0.11637	29.47918	0.02507
1493.48334	0.11815	1.68293	0.00829	6.09671	0.00229
3734.35667	0.01624	0.46065	5.72318E-4	1.37234	1.92109E-4
9337.51277	0.00223	0.12812	3.88633E-5	0.32789	1.51853E-5
23347.83539	3.06654E-4	0.03595	2.61567E-6	0.0817	1.15102E-6
58379.72389	4.21425E-5	0.01014	1.75095E-7	0.02097	8.46745E-8
145974.65266	5.79152E-6	0.00287	1.16796E-8	0.0055	6.09517E-9
365000	7.95911E-7	8.15079E-4	7.77193E-10	0.00147	4.31733E-10

Parameter	Value	Error	t-Value	Prob> t
A	4.96588	0.7786	6.378	0.0078
В	-1.65693	0.37799	-4.38355	0.02198
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93003	0.86496	0.81995	0.24744	5
Parameter	LCI	UCI		
A	2.48803	7.44373		
В	-2.85986	-0.454		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.17648	1.17648	19.21554
Error	3	0.18368	0.06123	
Total	4	1.36015		
Prob>F				
0.02198				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	2.3224	20.90088	0.25805	40.09853	0.13451
1493.48334	0.50869	13.0852	0.01978	20.9763	0.01234
3734.35667	0.11142	8.40863	0.00148	12.11035	0.00103
9337.51277	0.02441	5.46069	1.09075E-4	7.33982	8.11497E-5
23347.83539	0.00535	3.56495	8.01588E-6	4.56863	6.25487E-6
58379.72389	0.00117	2.33431	5.87326E-7	2.88949	4.74479E-7
145974.65266	2.56469E-4	1.53134	4.29535E-8	1.84632	3.56257E-8
365000	5.6176E-5	1.00582	3.13749E-9	1.18797	2.65641E-9

Parameter	Value	Error	t-Value	Prob> t
A	5.4177	0.51485	10.52295	1.3381E-4
В	-1.57457	0.23324	-6.75073	0.00108
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.94928	0.90113	0.88136	0.20694	7
Parameter	LCI	UCI		
A	4.09425	6.74115		
В	-2.17415	-0.975		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.95151	1.95151	45.57239
Error	5	0.21411	0.04282	
Total	6	2.16563		
Prob>F				
0.00108				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	17.50992	28.59167	10.72331	36.52029	8.39526
1493.48334	5.01204	10.49187	2.39429	12.57184	1.99816
3734.35667	1.43465	3.88888	0.52926	4.47547	0.45989
9337.51277	0.41065	1.44703	0.11654	1.62163	0.10399
23347.83539	0.11755	0.53944	0.02561	0.59346	0.02328
58379.72389	0.03365	0.20131	0.00562	0.2185	0.00518
145974.65266	0.00963	0.07517	0.00123	0.08076	0.00115
365000	0.00276	0.02808	2.70614E-4	0.02993	2.53905E-4

Parameter	Value	Error	t-Value	Prob> t
A	4.81729	0.32814	14.6805	< 0.0001
В	-1.08002	0.14866	-7.26503	7.72263E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.95575	0.91347	0.89616	0.13189	7
Parameter	LCI	UCI		
A	3.97378	5.66081		
В	-1.46217	-0.69788		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.91815	0.91815	52.7806
Error	5	0.08698	0.0174	
Total	6	1.00513		
Prob>F				
7.72263E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	65.90925	120.16386	36.15088	176.48464	24.61421
1493.48334	24.49514	61.57725	9.74405	81.97747	7.31923
3734.35667	9.1036	32.04964	2.58585	40.03429	2.07012
9337.51277	3.38335	16.77769	0.68228	20.09002	0.56979
23347.83539	1.25742	8.80694	0.17953	10.23952	0.15441
58379.72389	0.46732	4.62985	0.04717	5.26857	0.04145
145974.65266	0.17368	2.43614	0.01238	2.72749	0.01106
365000	0.06455	1.28261	0.00325	1.41787	0.00294

Parameter	Value	Error	t-Value	Prob> t
A	4.83863	0.39788	12.16118	< 0.0001
В	-1.23157	0.18025	-6.83248	0.00102
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.9504	0.90326	0.88391	0.15992	7
Parameter	LCI	UCI		
A	3.81586	5.8614		
В	-1.69492	-0.76822		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.19389	1.19389	46.68276
Error	5	0.12787	0.02557	
Total	6	1.32177		
Prob>F				
0.00102				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	37.8575	48.90451	29.30589	55.57147	25.79004
1493.48334	14.29462	21.02333	9.7195	23.1055	8.84362
3734.35667	5.39751	9.08511	3.20669	9.77663	2.97987
9337.51277	2.03805	3.93402	1.05582	4.17513	0.99485
23347.83539	0.76955	1.70518	0.3473	1.7923	0.33041
58379.72389	0.29057	0.7395	0.11418	0.77183	0.10939
145974.65266	0.10972	0.32081	0.03752	0.33306	0.03614
365000	0.04143	0.13921	0.01233	0.14392	0.01193

Parameter	Value	Error	t-Value	Prob> t
A	5.06967	0.33703	15.04226	< 0.0001
В	-1.19712	0.15269	-7.84038	5.41691E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.96165	0.92478	0.90974	0.13546	7
Parameter	LCI	UCI		
A	4.20331	5.93603		
В	-1.58961	-0.80463		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.12804	1.12804	61.47162
Error	5	0.09175	0.01835	
Total	6	1.21979		
Prob>F				
5.41691E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	55.74947	103.30738	30.085	153.31511	20.27199
1493.48334	18.61093	47.96778	7.22082	64.35602	5.38204
3734.35667	6.21291	22.63119	1.70562	28.44019	1.35724
9337.51277	2.07407	10.74086	0.4005	12.92427	0.33284
23347.83539	0.69239	5.11195	0.09378	5.96779	0.08033
58379.72389	0.23114	2.43669	0.02193	2.78257	0.0192
145974.65266	0.07716	1.16257	0.00512	1.3056	0.00456
365000	0.02576	0.55501	0.0012	0.61521	0.00108

Parameter	Value	Error	t-Value	Prob> t
A	5.99567	0.46996	12.75791	< 0.0001
В	-1.63604	0.22218	-7.3636	3.21337E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.94888	0.90037	0.88376	0.2693	8
Parameter	LCI	UCI		
A	4.84572	7.14561		
В	-2.17969	-1.09239		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	3.93231	3.93231	54.22254
Error	6	0.43513	0.07252	
Total	7	4.36743		
Prob>F				
3.21337E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	28.42597	79.83034	10.12192	178.15068	4.53569
1493.48334	6.34667	27.91188	1.44312	52.89348	0.76154
3734.35667	1.41702	9.99858	0.20082	16.81693	0.1194
9337.51277	0.31638	3.6183	0.02766	5.58324	0.01793
23347.83539	0.07064	1.31614	0.00379	1.90567	0.00262
58379.72389	0.01577	0.48015	5.18037E-4	0.66243	3.75489E-4
145974.65266	0.00352	0.17549	7.06567E-5	0.23316	5.31796E-5
365000	7.86196E-4	0.06422	9.6254E-6	0.08279	7.46552E-6

Parameter	Value	Error	t-Value	Prob> t
A	2.10982	0.30273	6.96931	9.35464E-4
В	-0.49447	0.13715	-3.60537	0.01546
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.84982	0.7222	0.66664	0.12168	7
Parameter	LCI	UCI		
A	1.33163	2.88802		
В	-0.84702	-0.14192		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.19245	0.19245	12.99866
Error	5	0.07403	0.01481	
Total	6	0.26648		
Prob>F				
0.01546				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	7.19098	8.93128	5.7898	9.95165	5.19615
1493.48334	5.13699	7.12061	3.70595	7.71319	3.42124
3734.35667	3.66968	5.70226	2.36162	6.06757	2.21943
9337.51277	2.62149	4.57425	1.50237	4.81046	1.4286
23347.83539	1.8727	3.67243	0.95496	3.83065	0.91551
58379.72389	1.33779	2.94976	0.60672	3.05857	0.58514
145974.65266	0.95567	2.36997	0.38537	2.44632	0.37334
365000	0.6827	1.9045	0.24472	1.95891	0.23793

Parameter	Value	Error	t-Value	Prob> t
A	2.362	0.51337	4.60099	0.01002
В	-0.72045	0.22685	-3.17592	0.03367
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.84619	0.71604	0.64505	0.18277	6
Parameter	LCI	UCI		
A	0.93666	3.78733		
В	-1.35028	-0.09062		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.33695	0.33695	10.08648
Error	4	0.13362	0.03341	
Total	5	0.47057		
Prob>F				
0.03367				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	2.30088	5.73599	0.92296	10.13954	0.52212
1493.48334	1.1889	5.00635	0.28234	7.58108	0.18645
3734.35667	0.61432	4.50049	0.08385	6.18221	0.06104
9337.51277	0.31743	4.08808	0.02465	5.27263	0.01911
23347.83539	0.16402	3.73123	0.00721	4.60929	0.00584
58379.72389	0.08475	3.41429	0.0021	4.08888	0.00176
145974.65266	0.04379	3.12909	6.12868E-4	3.66109	5.2381E-4
365000	0.02263	2.87055	1.78368E-4	3.29849	1.55227E-4

Parameter	Value	Error	t-Value	Prob> t
A	5.34363	0.43154	12.38258	< 0.0001
В	-1.38098	0.21459	-6.43532	3.5517E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92488	0.85541	0.83476	0.36914	9
Parameter	LCI	UCI		
A	4.32319	6.36407		
В	-1.88842	-0.87355		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	5.6432	5.6432	41.41331
Error	7	0.95386	0.13627	
Total	8	6.59705		
Prob>F				
3.5517E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	32.34177	107.02741	9.7731	335.47262	3.11796
1493.48334	9.12244	45.33514	1.83564	119.31818	0.69745
3734.35667	2.57311	19.69293	0.33621	44.9448	0.14731
9337.51277	0.72578	8.65809	0.06084	17.65286	0.02984
23347.83539	0.20472	3.83171	0.01094	7.14568	0.00586
58379.72389	0.05774	1.70247	0.00196	2.95641	0.00113
145974.65266	0.01629	0.75836	3.498E-4	1.24297	2.13419E-4
365000	0.00459	0.3384	6.23684E-5	0.5289	3.99038E-5

Parameter	Value	Error	t-Value	Prob> t
A	2.41699	0.28467	8.4905	3.72532E-4
В	-0.79246	0.12897	-6.1447	0.00166
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93971	0.88306	0.85967	0.11442	7
Parameter	LCI	UCI		
A	1.68522	3.14875		
В	-1.12397	-0.46094		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.49431	0.49431	37.75738
Error	5	0.06546	0.01309	
Total	6	0.55977		
Prob>F				
0.00166				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	1.64808	2.77492	0.97883	3.87318	0.70127
1493.48334	0.7972	1.77366	0.35832	2.27342	0.27955
3734.35667	0.38562	1.14908	0.12941	1.39367	0.1067
9337.51277	0.18653	0.74818	0.0465	0.87476	0.03977
23347.83539	0.09023	0.4883	0.01667	0.55651	0.01463
58379.72389	0.04364	0.31911	0.00597	0.35696	0.00534
145974.65266	0.02111	0.2087	0.00214	0.23019	0.00194
365000	0.01021	0.13656	7.6363E-4	0.14897	7.0002E-4

Parameter	Value	Error	t-Value	Prob> t
A	3.75174	0.44678	8.39737	3.92433E-4
В	-1.1964	0.20241	-5.91091	0.00197
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93531	0.87481	0.84977	0.17958	7
Parameter	LCI	UCI		
A	2.60326	4.90021		
В	-1.7167	-0.6761		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.12668	1.12668	34.93886
Error	5	0.16124	0.03225	
Total	6	1.28792		
Prob>F				
0.00197				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	2.69339	6.1013	1.18898	10.2969	0.70452
1493.48334	0.89973	3.15636	0.25647	4.66004	0.17371
3734.35667	0.30056	1.66782	0.05416	2.2578	0.04001
9337.51277	0.1004	0.88823	0.01135	1.13517	0.00888
23347.83539	0.03354	0.4748	0.00237	0.58295	0.00193
58379.72389	0.0112	0.25432	4.93566E-4	0.30325	4.13931E-4
145974.65266	0.00374	0.13639	1.02699E-4	0.15907	8.80576E-5
365000	0.00125	0.07321	2.13518E-5	0.08391	1.86274E-5

Parameter	Value	Error	t-Value	Prob> t
A	3.49777	0.46438	7.53219	6.53113E-4
В	-1.05095	0.21038	-4.9955	0.00412
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.91273	0.83308	0.7997	0.18665	7
Parameter	LCI	UCI		
A	2.30405	4.69148		
В	-1.59175	-0.51015		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.86938	0.86938	24.95499
Error	5	0.17419	0.03484	
Total	6	1.04357		
Prob>F				
0.00412				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	3.80307	8.8971	1.62563	15.32802	0.94359
1493.48334	1.45158	5.35042	0.39381	8.02151	0.26268
3734.35667	0.55405	3.28919	0.09333	4.50615	0.06812
9337.51277	0.21147	2.03862	0.02194	2.63069	0.017
23347.83539	0.08072	1.26841	0.00514	1.56996	0.00415
58379.72389	0.03081	0.79086	0.0012	0.94957	9.9953E-4
145974.65266	0.01176	0.49374	2.8005E-4	0.57933	2.38675E-4
365000	0.00449	0.3085	6.52959E-5	0.35553	5.66588E-5

Parameter	Value	Error	t-Value	Prob> t
A	3.10529	0.21263	14.60412	< 0.0001
В	-0.89374	0.09633	-9.27794	2.44598E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.97216	0.9451	0.93412	0.08546	7
Parameter	LCI	UCI		
A	2.55871	3.65188		
В	-1.14137	-0.64612		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.62874	0.62874	86.08025
Error	5	0.03652	0.0073	
Total	6	0.66526		
Prob>F				
2.44598E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	4.20818	6.21021	2.85156	7.96667	2.22286
1493.48334	1.85512	3.37121	1.02084	4.05801	0.84807
3734.35667	0.8178	1.8486	0.36179	2.13522	0.31322
9337.51277	0.36052	1.01747	0.12774	1.14347	0.11366
23347.83539	0.15893	0.56101	0.04502	0.61856	0.04083
58379.72389	0.07006	0.30963	0.01585	0.33667	0.01458
145974.65266	0.03089	0.17099	0.00558	0.18397	0.00519
365000	0.01362	0.09446	0.00196	0.1008	0.00184

Bulkhead Insulation (BHI) Leach Rate Extrapolation Results

Linear Fit to Log(Y) = A + B * Log(X) for BHI at 25 deg-C

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	3.18177	0.2613	12.17679	< 0.0001
В	-0.59053	0.11719	-5.03925	3.7841E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.83532	0.69775	0.67028	0.16762	13
Parameter	LCI	UCI		
A	2.60665	3.75688		
В	-0.84846	-0.33261		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.71347	0.71347	25.39406
Error	11	0.30905	0.0281	

Total	12	1.02252	
Prob>F			
3.7841E-4			

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
609.43782	34.4489	52.56691	22.57554	88.96799	13.3388
1240.296	22.64329	40.59459	12.63022	63.47185	8.07789
2524.1856	14.88345	31.66899	6.99477	46.37752	4.77639
5137.09059	9.78291	24.81893	3.85614	34.49882	2.77416
10454.73826	6.43031	19.49721	2.12076	26.00223	1.59021
21276.93684	4.22665	15.33808	1.16472	19.78835	0.90278
43301.70973	2.77818	12.07688	0.6391	15.16757	0.50887
88125.3763	1.8261	9.51476	0.35047	11.6885	0.28529
179348.15959	1.2003	7.49934	0.19211	9.04453	0.15929
365000	0.78896	5.91264	0.10527	7.02099	0.08866

Parameter	Value	Error	t-Value	Prob> t
A	0.97157	0.1965	4.94442	0.00779
В	-0.42373	0.12011	-3.52773	0.02428
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.86992	0.75676	0.69595	0.23816	6
Parameter	LCI	UCI		
A	0.426	1.51713		
В	-0.75721	-0.09024		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.70585	0.70585	12.44489
Error	4	0.22687	0.05672	
Total	5	0.93272		
Prob>F				
0.02428				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.62406	2.09632	0.18578	4.36811	0.08916
1493.48334	0.42323	1.86362	0.09612	3.54354	0.05055
3734.35667	0.28703	1.67584	0.04916	2.95172	0.02791
9337.51277	0.19466	1.51717	0.02498	2.50862	0.01511
23347.83539	0.13202	1.37938	0.01264	2.16475	0.00805
58379.72389	0.08953	1.25766	0.00637	1.88986	0.00424
145974.65266	0.06072	1.14896	0.00321	1.66473	0.00221
365000	0.04118	1.05116	0.00161	1.47671	0.00115

Parameter	Value	Error	t-Value	Prob> t
A	2.96041	0.44602	6.63736	< 0.0001
В	-0.86853	0.1906	-4.55686	0.00137
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.83524	0.69763	0.66403	0.16808	11
Parameter	LCI	UCI		
A	1.95144	3.96938		
В	-1.29969	-0.43737		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.58661	0.58661	20.76498
Error	9	0.25425	0.02825	
Total	10	0.84086		
Prob>F				
0.00137				

	Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
	597.28962	3.54169	5.95697	2.1057	9.8046	1.27936
	1493.48334	1.5978	3.86553	0.66044	5.5423	0.46063
ſ	3734.35667	0.72083	2.55674	0.20323	3.36003	0.15464
ſ	9337.51277	0.3252	1.70109	0.06217	2.11407	0.05002
ſ	23347.83539	0.14671	1.13468	0.01897	1.35774	0.01585
ſ	58379.72389	0.06619	0.75786	0.00578	0.88265	0.00496
ſ	145974.65266	0.02986	0.50658	0.00176	0.57821	0.00154
	365000	0.01347	0.33877	5.35642E-4	0.38072	4.76629E-4

Parameter	Value	Error	t-Value	Prob> t
A	3.00176	0.29507	10.1729	< 0.0001
В	-0.62147	0.13233	-4.69621	6.54148E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.81683	0.66721	0.63696	0.18929	13
Parameter	LCI	UCI		
A	2.35231	3.65122		
В	-0.91274	-0.3302		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.79019	0.79019	22.05436
Error	11	0.39412	0.03583	
Total	12	1.18431		
Prob>F				
6.54148E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	18.89924	30.31078	11.78396	55.05951	6.48718
1493.48334	10.69274	21.72881	5.2619	35.25026	3.24352
3734.35667	6.0497	15.82744	2.31237	23.5325	1.55525
9337.51277	3.42278	11.59928	1.01001	16.16452	0.72476
23347.83539	1.93653	8.52536	0.43988	11.31809	0.33134
58379.72389	1.09564	6.27609	0.19127	8.02848	0.14952
145974.65266	0.61989	4.62474	0.08309	5.74677	0.06687
365000	0.35072	3.41004	0.03607	4.14021	0.02971

Parameter	Value	Error	t-Value	Prob> t
A	2.64565	0.19066	13.87626	< 0.0001
В	-0.58887	0.08551	-6.88685	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.90096	0.81174	0.79462	0.12231	13
Parameter	LCI	UCI		
A	2.22601	3.06529		
В	-0.77707	-0.40067		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.70947	0.70947	47.42873
Error	11	0.16454	0.01496	
Total	12	0.87401		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	10.25239	13.91179	7.55557	20.45907	5.13765
1493.48334	5.97646	9.44977	3.77978	12.91793	2.765
3734.35667	3.48388	6.48547	1.87148	8.38	1.44838
9337.51277	2.03087	4.46859	0.92298	5.53733	0.74484
23347.83539	1.18386	3.08472	0.45434	3.7045	0.37833
58379.72389	0.69011	2.13161	0.22342	2.49925	0.19056
145974.65266	0.40229	1.47392	0.1098	1.69601	0.09542
365000	0.23451	1.01957	0.05394	1.15575	0.04758

Parameter	Value	Error	t-Value	Prob> t
A	1.00729	0.10994	9.16213	< 0.0001
В	-0.48509	0.05215	-9.30247	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93241	0.86939	0.85935	0.11142	15
Parameter	LCI	UCI		
A	0.76978	1.24481		
В	-0.59774	-0.37243		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.07435	1.07435	86.536
Error	13	0.1614	0.01242	
Total	14	1.23575		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.45772	0.5817	0.36016	0.83726	0.25023
1493.48334	0.29344	0.40751	0.21131	0.55887	0.15408
3734.35667	0.18813	0.28738	0.12315	0.37795	0.09364
9337.51277	0.12061	0.20328	0.07156	0.25826	0.05633
23347.83539	0.07732	0.14402	0.04151	0.17788	0.03361
58379.72389	0.04957	0.10213	0.02406	0.12326	0.01994
145974.65266	0.03178	0.07247	0.01394	0.08581	0.01177
365000	0.02037	0.05144	0.00807	0.05996	0.00692

Parameter	Value	Error	t-Value	Prob> t
A	1.68333	0.631	2.6677	0.04447
В	-1.50353	0.34275	-4.38664	0.00711
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.89093	0.79375	0.7525	0.37645	7
Parameter	LCI	UCI		
A	0.06128	3.30537		
В	-2.3846	-0.62246		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	2.72699	2.72699	19.24261
Error	5	0.70858	0.14172	
Total	6	3.43557		
Prob>F				
0.00711				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00319	0.0168	6.071E-4	0.04092	2.49187E-4
1493.48334	8.00402E-4	0.00701	9.13785E-5	0.01467	4.36714E-5
3734.35667	2.00625E-4	0.00297	1.35557E-5	0.00554	7.26606E-6
9337.51277	5.02878E-5	0.00127	1.99602E-6	0.00217	1.16732E-6
23347.83539	1.26049E-5	5.42918E-4	2.92648E-7	8.67801E-4	1.83088E-7
58379.72389	3.15949E-6	2.33279E-4	4.27916E-8	3.53526E-4	2.82366E-8
145974.65266	7.91943E-7	1.00414E-4	6.24591E-9	1.45779E-4	4.30222E-9
365000	1.98505E-7	4.32766E-5	9.10521E-10	6.06552E-5	6.49642E-10

Parameter	Value	Error	t-Value	Prob> t
A	1.74346	0.23602	7.38685	< 0.0001
В	-0.54518	0.10585	-5.1505	3.17996E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.84076	0.70688	0.68024	0.1514	13
Parameter	LCI	UCI		
A	1.22398	2.26294		
В	-0.77816	-0.31221		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.6081	0.6081	26.52765
Error	11	0.25215	0.02292	
Total	12	0.86025		
Prob>F				
3.17996E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	1.69795	2.47754	1.16367	3.99369	0.72189
1493.48334	1.03023	1.81656	0.58427	2.675	0.39677
3734.35667	0.62509	1.34905	0.28964	1.85273	0.2109
9337.51277	0.37927	1.00675	0.14288	1.31283	0.10957
23347.83539	0.23012	0.75305	0.07032	0.94462	0.05606
58379.72389	0.13963	0.56401	0.03457	0.68679	0.02839
145974.65266	0.08472	0.42275	0.01698	0.50297	0.01427
365000	0.0514	0.31703	0.00833	0.37025	0.00714

Parameter	Value	Error	t-Value	Prob> t
A	0.247	0.067	3.68668	0.01025
В	-0.80652	0.03833	-21.0438	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.99329	0.98663	0.9844	0.05401	8
Parameter	LCI	UCI		
A	0.08306	0.41094		
В	-0.9003	-0.71274		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.29168	1.29168	442.84153
Error	6	0.0175	0.00292	
Total	7	1.30918		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01018	0.01322	0.00785	0.01521	0.00682
1493.48334	0.00486	0.00684	0.00346	0.00768	0.00308
3734.35667	0.00232	0.00355	0.00152	0.00391	0.00138
9337.51277	0.00111	0.00184	6.679E-4	0.002	6.13904E-4
23347.83539	5.29551E-4	9.56556E-4	2.9316E-4	0.00103	2.72331E-4
58379.72389	2.52871E-4	4.97145E-4	1.28622E-4	5.30707E-4	1.20488E-4
145974.65266	1.20751E-4	2.58451E-4	5.6416E-5	2.74044E-4	5.32059E-5
365000	5.7661E-5	1.34388E-4	2.47403E-5	1.41709E-4	2.3462E-5

Parameter	Value	Error	t-Value	Prob> t
A	1.6542	0.25996	6.3634	< 0.0001
В	-0.74423	0.11658	-6.38359	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88738	0.78744	0.76812	0.16676	13
Parameter	LCI	UCI		
A	1.08204	2.22636		
В	-1.00083	-0.48763		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.13318	1.13318	40.75019
Error	11	0.30589	0.02781	
Total	12	1.43907		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.38734	0.58725	0.25548	0.99358	0.151
1493.48334	0.19583	0.36574	0.10485	0.56013	0.06846
3734.35667	0.09901	0.23101	0.04243	0.32763	0.02992
9337.51277	0.05005	0.14669	0.01708	0.19651	0.01275
23347.83539	0.02531	0.09339	0.00686	0.11987	0.00534
58379.72389	0.01279	0.05954	0.00275	0.07397	0.00221
145974.65266	0.00647	0.03799	0.0011	0.04601	9.0949E-4
365000	0.00327	0.02426	4.40916E-4	0.02878	3.7164E-4

Parameter	Value	Error	t-Value	Prob> t
A	1.82136	0.17653	10.31768	< 0.0001
В	-0.45673	0.07917	-5.76905	1.24826E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.86694	0.75159	0.72901	0.11324	13
Parameter	LCI	UCI		
A	1.43282	2.20989		
В	-0.63098	-0.28248		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.42678	0.42678	33.28199
Error	11	0.14106	0.01282	
Total	12	0.56784		
Prob>F				
1.24826E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	3.57593	4.74375	2.69561	6.77967	1.88612
1493.48334	2.3529	3.5961	1.53948	4.8033	1.15257
3734.35667	1.54817	2.75228	0.87085	3.48935	0.6869
9337.51277	1.01867	2.11415	0.49083	2.57847	0.40244
23347.83539	0.67027	1.62679	0.27616	1.92732	0.2331
58379.72389	0.44102	1.25298	0.15523	1.45186	0.13397
145974.65266	0.29019	0.96563	0.0872	1.09963	0.07658
365000	0.19094	0.74446	0.04897	0.83608	0.0436

Parameter	Value	Error	t-Value	Prob> t
A	1.32855	0.1739	7.6398	< 0.0001
В	-0.57104	0.07799	-7.32198	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.91091	0.82975	0.81427	0.11155	13
Parameter	LCI	UCI		
A	0.9458	1.7113		
В	-0.7427	-0.39939		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.66715	0.66715	53.61145
Error	11	0.13689	0.01244	
Total	12	0.80403		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.55365	0.73138	0.41911	1.03972	0.29482
1493.48334	0.32806	0.49824	0.21601	0.66263	0.16242
3734.35667	0.19439	0.34263	0.11029	0.43285	0.0873
9337.51277	0.11518	0.23646	0.05611	0.28755	0.04614
23347.83539	0.06825	0.16348	0.02849	0.19319	0.02411
58379.72389	0.04044	0.11312	0.01446	0.13079	0.0125
145974.65266	0.02396	0.07832	0.00733	0.08902	0.00645
365000	0.0142	0.05425	0.00372	0.06082	0.00331

Parameter	Value	Error	t-Value	Prob> t
A	1.76176	0.17552	10.03745	< 0.0001
В	-0.53613	0.07872	-6.81088	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.89907	0.80832	0.7909	0.11259	13
Parameter	LCI	UCI		
A	1.37544	2.14807		
В	-0.70938	-0.36287		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.58806	0.58806	46.38802
Error	11	0.13945	0.01268	
Total	12	0.72751		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	1.87659	2.48542	1.4169	3.54486	0.99343
1493.48334	1.14811	1.75048	0.75302	2.33424	0.5647
3734.35667	0.70242	1.24463	0.39641	1.57581	0.3131
9337.51277	0.42974	0.88817	0.20793	1.08201	0.17068
23347.83539	0.26292	0.6349	0.10888	0.75146	0.09199
58379.72389	0.16085	0.45428	0.05696	0.52594	0.0492
145974.65266	0.09841	0.32523	0.02978	0.37009	0.02617
365000	0.06021	0.23293	0.01556	0.26143	0.01387

Parameter	Value	Error	t-Value	Prob> t
A	0.84677	0.12763	6.63461	< 0.0001
В	-0.65391	0.0588	-11.1205	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.95475	0.91155	0.90418	0.10288	14
Parameter	LCI	UCI		
A	0.56869	1.12485		
В	-0.78203	-0.52579		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.30885	1.30885	123.66558
Error	12	0.12701	0.01058	
Total	13	1.43585		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.10749	0.13635	0.08474	0.18975	0.0609
1493.48334	0.05904	0.08297	0.04201	0.10955	0.03181
3734.35667	0.03242	0.05086	0.02067	0.06431	0.01635
9337.51277	0.01781	0.03127	0.01014	0.03822	0.0083
23347.83539	0.00978	0.01926	0.00497	0.02292	0.00417
58379.72389	0.00537	0.01187	0.00243	0.01383	0.00209
145974.65266	0.00295	0.00732	0.00119	0.00839	0.00104
365000	0.00162	0.00451	5.81272E-4	0.0051	5.14196E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.03783	0.20813	0.18175	0.87253
В	-0.59721	0.17386	-3.43488	0.07531
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92469	0.85506	0.78258	0.23058	4
Parameter	LCI	UCI		
A	-0.85768	0.93333		
В	-1.34529	0.15088		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.6273	0.6273	11.79843
Error	2	0.10634	0.05317	
Total	3	0.73364		
Prob>F				
0.07531				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.02398	0.63176	9.10335E-4	1.29622	4.43681E-4
1493.48334	0.01387	0.6999	2.74992E-4	1.29709	1.48384E-4
3734.35667	0.00803	0.78355	8.2205E-5	1.34186	4.80015E-5
9337.51277	0.00464	0.88292	2.44145E-5	1.42068	1.5173E-5
23347.83539	0.00269	0.9992	7.21978E-6	1.5292	4.7175E-6
58379.72389	0.00155	1.13418	2.12863E-6	1.66607	1.44907E-6
145974.65266	8.98864E-4	1.29018	6.26233E-7	1.83179	4.41075E-7
365000	5.19992E-4	1.47001	1.83939E-7	2.02809	1.33323E-7

Parameter	Value	Error	t-Value	Prob> t
A	0.11837	0.1439	0.82254	0.42994
В	-0.5489	0.07285	-7.53428	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92207	0.85022	0.83524	0.13561	12
Parameter	LCI	UCI		
A	-0.20227	0.439		
В	-0.71122	-0.38657		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.04399	1.04399	56.76534
Error	10	0.18391	0.01839	
Total	11	1.22791		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0417	0.05231	0.03323	0.06649	0.02615
1493.48334	0.02506	0.03396	0.0185	0.04168	0.01507
3734.35667	0.01507	0.02215	0.01025	0.0264	0.0086
9337.51277	0.00906	0.01447	0.00567	0.01686	0.00487
23347.83539	0.00544	0.00947	0.00313	0.01082	0.00274
58379.72389	0.00327	0.0062	0.00173	0.00698	0.00153
145974.65266	0.00197	0.00406	9.5302E-4	0.00452	8.56447E-4
365000	0.00118	0.00266	5.256E-4	0.00293	4.77125E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.88132	0.77244	1.14095	0.33672
В	-0.7612	0.37083	-2.0527	0.13242
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.76428	0.58412	0.44549	0.14884	5
Parameter	LCI	UCI		
A	-1.57695	3.33959		
В	-1.94135	0.41895		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.09335	0.09335	4.21356
Error	3	0.06646	0.02215	
Total	4	0.15981		
Prob>F				
0.13242				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.05863	0.41877	0.00821	0.55534	0.00619
1493.48334	0.02918	0.60147	0.00142	0.72775	0.00117
3734.35667	0.01453	0.87384	2.41474E-4	1.00787	2.09362E-4
9337.51277	0.00723	1.27508	4.10042E-5	1.42868	3.65957E-5
23347.83539	0.0036	1.86446	6.94822E-6	2.04915	6.32197E-6
58379.72389	0.00179	2.72948	1.176E-6	2.95893	1.08481E-6
145974.65266	8.91815E-4	3.99872	1.98897E-7	4.29057	1.85368E-7
365000	4.43921E-4	5.86096	3.36235E-8	6.23885	3.15869E-8

Parameter	Value	Error	t-Value	Prob> t
A	1.89173	0.59773	3.16488	0.0133
В	-0.79911	0.25069	-3.18763	0.01285
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.74799	0.5595	0.50443	0.18073	10
Parameter	LCI	UCI		
A	0.51337	3.2701		
В	-1.37721	-0.22102		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.33189	0.33189	10.161
Error	8	0.2613	0.03266	
Total	9	0.59319		
Prob>F				
0.01285				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.47125	0.8726	0.2545	1.47403	0.15066
1493.48334	0.22656	0.68633	0.07479	0.98148	0.0523
3734.35667	0.10893	0.55283	0.02146	0.71862	0.01651
9337.51277	0.05237	0.44829	0.00612	0.55012	0.00499
23347.83539	0.02518	0.36454	0.00174	0.43082	0.00147
58379.72389	0.0121	0.29684	4.93598E-4	0.34173	4.28768E-4
145974.65266	0.00582	0.24192	1.39995E-4	0.27319	1.23972E-4
365000	0.0028	0.19726	3.96854E-5	0.2195	3.56636E-5

Parameter	Value	Error	t-Value	Prob> t
A	3.14165	0.55267	5.68452	4.6257E-4
В	-1.31471	0.23179	-5.67192	4.69357E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.8949	0.80085	0.77596	0.1671	10
Parameter	LCI	UCI		
A	1.86719	4.4161		
В	-1.84923	-0.7802		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.89833	0.89833	32.17065
Error	8	0.22339	0.02792	
Total	9	1.12172		
Prob>F				
4.69357E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.31028	0.54847	0.17554	0.8906	0.1081
1493.48334	0.093	0.25914	0.03338	0.36073	0.02398
3734.35667	0.02787	0.12517	0.00621	0.15952	0.00487
9337.51277	0.00835	0.06083	0.00115	0.07351	9.49607E-4
23347.83539	0.0025	0.02964	2.11558E-4	0.03459	1.81279E-4
58379.72389	7.50553E-4	0.01446	3.89544E-5	0.01647	3.41991E-5
145974.65266	2.2496E-4	0.00706	7.16734E-6	0.0079	6.40545E-6
365000	6.74263E-5	0.00345	1.31812E-6	0.00381	1.19412E-6

Parameter	Value	Error	t-Value	Prob> t
A	2.22976	0.4643	4.80245	0.00487
В	-1.18069	0.20197	-5.84588	0.00207
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.934	0.87237	0.84684	0.1161	7
Parameter	LCI	UCI		
A	1.03625	3.42328		
В	-1.69986	-0.66151		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.46066	0.46066	34.17426
Error	5	0.0674	0.01348	
Total	6	0.52806		
Prob>F				
0.00207				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.08953	0.16948	0.04729	0.22869	0.03505
1493.48334	0.03034	0.09025	0.0102	0.11007	0.00836
3734.35667	0.01028	0.04876	0.00217	0.05636	0.00188
9337.51277	0.00348	0.02646	4.59014E-4	0.02963	4.09838E-4
23347.83539	0.00118	0.01438	9.69694E-5	0.01578	8.83807E-5
58379.72389	4.00226E-4	0.00783	2.04646E-5	0.00847	1.89218E-5
145974.65266	1.35636E-4	0.00426	4.3163E-6	0.00456	4.03327E-6
365000	4.59667E-5	0.00232	9.10031E-7	0.00246	8.57252E-7

Parameter	Value	Error	t-Value	Prob> t
A	4.97811	0.64411	7.72865	< 0.0001
В	-2.0065	0.27015	-7.42746	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93453	0.87335	0.85752	0.19475	10
Parameter	LCI	UCI		
A	3.49278	6.46343		
В	-2.62946	-1.38354		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	2.09243	2.09243	55.16719
Error	8	0.30343	0.03793	
Total	9	2.39586		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.25568	0.49662	0.13163	0.87376	0.07482
1493.48334	0.04065	0.13421	0.01231	0.19733	0.00837
3734.35667	0.00646	0.03721	0.00112	0.04936	8.46276E-4
9337.51277	0.00103	0.01039	1.01623E-4	0.01296	8.15078E-5
23347.83539	1.63392E-4	0.00291	9.1712E-6	0.00349	7.66027E-6
58379.72389	2.59784E-5	8.16627E-4	8.2642E-7	9.50432E-4	7.10074E-7
145974.65266	4.13043E-6	2.29295E-4	7.4404E-8	2.61384E-4	6.52698E-8
365000	6.56717E-7	6.44174E-5	6.69503E-9	7.22787E-5	5.96685E-9

Parameter	Value	Error	t-Value	Prob> t
A	-0.17405	0.42601	-0.40856	0.70379
В	-0.35729	0.22352	-1.5985	0.18518
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.62434	0.3898	0.23725	0.18543	6
Parameter	LCI	UCI		
A	-1.35685	1.00875		
В	-0.97787	0.26329		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.08786	0.08786	2.5552
Error	4	0.13753	0.03438	
Total	5	0.22539		
Prob>F				
0.18518				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.06824	0.26985	0.01726	0.41921	0.01111
1493.48334	0.04919	0.33471	0.00723	0.46875	0.00516
3734.35667	0.03545	0.42002	0.00299	0.54996	0.00229
9337.51277	0.02555	0.52988	0.00123	0.66259	9.8539E-4
23347.83539	0.01842	0.67035	5.05986E-4	0.81096	4.1825E-4
58379.72389	0.01327	0.84947	2.07431E-4	1.00252	1.75765E-4
145974.65266	0.00957	1.07762	8.49462E-5	1.24759	7.3373E-5
365000	0.0069	1.36804	3.47614E-5	1.55982	3.04875E-5

Parameter	Value	Error	t-Value	Prob> t
A	4.05202	0.5716	7.08894	1.03113E-4
В	-1.74254	0.23973	-7.26867	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93193	0.86849	0.85206	0.17283	10
Parameter	LCI	UCI		
A	2.73391	5.37013		
В	-2.29536	-1.18971		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.57811	1.57811	52.8335
Error	8	0.23896	0.02987	
Total	9	1.81707		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.16384	0.29531	0.0909	0.48755	0.05506
1493.48334	0.03318	0.09575	0.0115	0.13481	0.00817
3734.35667	0.00672	0.03176	0.00142	0.04082	0.00111
9337.51277	0.00136	0.0106	1.74588E-4	0.0129	1.43551E-4
23347.83539	2.75541E-4	0.00355	2.13894E-5	0.00416	1.82313E-5
58379.72389	5.57993E-5	0.00119	2.61695E-6	0.00136	2.28727E-6
145974.65266	1.12998E-5	3.99104E-4	3.19932E-7	4.48298E-4	2.84824E-7
365000	2.28831E-6	1.33944E-4	3.90937E-8	1.48354E-4	3.52963E-8

Parameter	Value	Error	t-Value	Prob> t
A	2.02151	0.24875	8.12668	< 0.0001
В	-0.58658	0.11156	-5.25799	2.69249E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.84579	0.71537	0.68949	0.15957	13
Parameter	LCI	UCI		
A	1.47401	2.569		
В	-0.83212	-0.34104		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.70394	0.70394	27.64649
Error	11	0.28008	0.02546	
Total	12	0.98402		
Prob>F				
2.69249E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	2.47209	3.68136	1.66004	6.08899	1.00365
1493.48334	1.4441	2.62542	0.79432	3.94762	0.52827
3734.35667	0.84359	1.89773	0.375	2.65124	0.26842
9337.51277	0.49279	1.3788	0.17613	1.82392	0.13314
23347.83539	0.28787	1.00423	0.08252	1.27518	0.06499
58379.72389	0.16816	0.7324	0.03861	0.90137	0.03137
145974.65266	0.09823	0.53459	0.01805	0.64202	0.01503
365000	0.05739	0.39041	0.00843	0.45979	0.00716

Felt Gasket/Inner (FGI) Leach Rate Extrapolation Results

Linear Fit to Log(Y) = A + B * Log(X) for FGI at 25 deg-C

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	1.23709	0.18199	6.79775	< 0.0001
В	-0.31621	0.08913	-3.54761	0.00401
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.71548	0.51191	0.47123	0.24716	14
Parameter	LCI	UCI		
A	0.84058	1.6336		
В	-0.51042	-0.12201		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.76885	0.76885	12.58554

Error	12	0.73308	0.06109	
Total	13	1.50194		
Prob>F				
0.00401				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	2.28678	3.81706	1.37	8.74794	0.59778
1493.48334	1.71146	3.30541	0.88616	6.96722	0.42041
3734.35667	1.28089	2.89931	0.56588	5.65456	0.29015
9337.51277	0.95863	2.56001	0.35898	4.66301	0.19708
23347.83539	0.71746	2.26897	0.22686	3.89647	0.1321
58379.72389	0.53696	2.01571	0.14304	3.29132	0.0876
145974.65266	0.40187	1.79346	0.09005	2.80468	0.05758
365000	0.30076	1.5974	0.05663	2.40713	0.03758

Parameter	Value	Error	t-Value	Prob> t
A	2.4405	0.81552	2.99256	0.02015
В	-1.28334	0.35859	-3.5788	0.00899
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.80412	0.6466	0.59612	0.30081	9
Parameter	LCI	UCI		
A	0.5121	4.36889		
В	-2.13128	-0.4354		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.1589	1.1589	12.80781
Error	7	0.63339	0.09048	
Total	8	1.79229		
Prob>F				
0.00899				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.13101	0.23457	0.07317	0.33863	0.05069
1493.48334	0.05261	0.13362	0.02071	0.17404	0.0159
3734.35667	0.02113	0.07721	0.00578	0.09444	0.00473
9337.51277	0.00848	0.04484	0.00161	0.05268	0.00137
23347.83539	0.00341	0.0261	4.44697E-4	0.02983	3.89027E-4
58379.72389	0.00137	0.01521	1.23061E-4	0.01704	1.09793E-4
145974.65266	5.49311E-4	0.00887	3.40298E-5	0.00979	3.08116E-5
365000	2.20583E-4	0.00517	9.4058E-6	0.00565	8.61412E-6

Parameter	Value	Error	t-Value	Prob> t
A	3.56422	0.7732	4.60971	0.00246
В	-1.53299	0.32593	-4.70346	0.0022
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.87157	0.75964	0.7253	0.23673	9
Parameter	LCI	UCI		
A	1.7359	5.39254		
В	-2.30369	-0.76229		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.23974	1.23974	22.12258
Error	7	0.39228	0.05604	
Total	8	1.63202		
Prob>F				
0.0022				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.2034	0.47807	0.08654	0.95496	0.04332
1493.48334	0.04991	0.22538	0.01105	0.36274	0.00687
3734.35667	0.01225	0.10985	0.00137	0.15599	9.6163E-4
9337.51277	0.00301	0.05406	1.67061E-4	0.07114	1.26969E-4
23347.83539	7.37461E-4	0.02672	2.0357E-5	0.03344	1.62655E-5
58379.72389	1.80961E-4	0.01323	2.47545E-6	0.01599	2.0484E-6
145974.65266	4.44049E-5	0.00656	3.0066E-7	0.00772	2.55281E-7
365000	1.08963E-5	0.00325	3.64896E-8	0.00376	3.1598E-8

Parameter	Value	Error	t-Value	Prob> t
A	4.05365	1.46905	2.75937	0.03288
В	-1.87679	0.60632	-3.09541	0.02124
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.78417	0.61493	0.55075	0.33743	8
Parameter	LCI	UCI		
A	0.45902	7.64829		
В	-3.36039	-0.39319		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.09095	1.09095	9.58155
Error	6	0.68315	0.11386	
Total	7	1.7741		
Prob>F				
0.02124				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.18113	0.35228	0.09313	0.48643	0.06745
1493.48334	0.06841	0.23655	0.01979	0.28864	0.01622
3734.35667	0.02584	0.16183	0.00413	0.18615	0.00359
9337.51277	0.00976	0.11127	8.56031E-4	0.12386	7.68999E-4
23347.83539	0.00369	0.07666	1.77244E-4	0.0836	1.62534E-4
58379.72389	0.00139	0.05288	3.66607E-5	0.05686	3.40935E-5
145974.65266	5.25867E-4	0.03649	7.57834E-6	0.03884	7.11961E-6
365000	1.9862E-4	0.02519	1.56597E-6	0.02661	1.48253E-6

Parameter	Value	Error	t-Value	Prob> t
A	1.35056	1.27578	1.05862	0.36747
В	-1.07497	0.63379	-1.69608	0.18844
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.69965	0.48951	0.31935	0.43835	5
Parameter	LCI	UCI		
A	-2.70954	5.41067		
В	-3.09199	0.94206		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.55277	0.55277	2.87669
Error	3	0.57646	0.19215	
Total	4	1.12923		
Prob>F				
0.18844				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.205	0.46664	0.09006	0.52876	0.07948
1493.48334	0.17792	0.57092	0.05544	0.6255	0.05061
3734.35667	0.15441	0.70186	0.03397	0.75378	0.03163
9337.51277	0.13401	0.86465	0.02077	0.91666	0.01959
23347.83539	0.1163	1.06637	0.01268	1.12034	0.01207
58379.72389	0.10094	1.31602	0.00774	1.37345	0.00742
145974.65266	0.0876	1.62478	0.00472	1.68709	0.00455
365000	0.07603	2.00655	0.00288	2.07516	0.00279

Parameter	Value	Error	t-Value	Prob> t
A	0.15408	0.29494	0.52242	0.6201
В	-0.36768	0.1394	-2.63762	0.03866
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.73276	0.53693	0.45975	0.12664	8
Parameter	LCI	UCI		
A	-0.56761	0.87577		
В	-0.70878	-0.02658		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.11158	0.11158	6.95705
Error	6	0.09623	0.01604	
Total	7	0.20782		
Prob>F				
0.03866				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.13593	0.24624	0.07504	0.34402	0.05371
1493.48334	0.09705	0.23566	0.03997	0.30299	0.03108
3734.35667	0.06928	0.22779	0.02107	0.27753	0.0173
9337.51277	0.04946	0.22106	0.01107	0.25976	0.00942
23347.83539	0.03531	0.21494	0.0058	0.24621	0.00507
58379.72389	0.02521	0.20922	0.00304	0.2352	0.0027
145974.65266	0.018	0.20379	0.00159	0.22583	0.00143
365000	0.01285	0.19858	8.31575E-4	0.2176	7.58896E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.35742	0.13411	2.66519	0.02198
В	-0.34787	0.0633	-5.49602	1.87357E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.85618	0.73305	0.70878	0.12543	13
Parameter	LCI	UCI		
A	0.06225	0.65259		
В	-0.48718	-0.20856		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.47523	0.47523	30.20621
Error	11	0.17306	0.01573	
Total	12	0.6483		
Prob>F				
1.87357E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.24641	0.33034	0.18381	0.49622	0.12237
1493.48334	0.17915	0.26792	0.11979	0.38016	0.08442
3734.35667	0.13024	0.21913	0.07741	0.29614	0.05728
9337.51277	0.09469	0.17991	0.04983	0.23368	0.03837
23347.83539	0.06884	0.148	0.03202	0.18619	0.02545
58379.72389	0.05005	0.12189	0.02055	0.14942	0.01676
145974.65266	0.03638	0.10046	0.01318	0.12058	0.01098
365000	0.02645	0.08284	0.00845	0.09771	0.00716

Parameter	Value	Error	t-Value	Prob> t
A	0.44707	0.07007	6.38082	< 0.0001
В	-0.30616	0.03432	-8.9214	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93219	0.86898	0.85807	0.09516	14
Parameter	LCI	UCI		
A	0.29441	0.59973		
В	-0.38093	-0.23139		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.72073	0.72073	79.5914
Error	12	0.10866	0.00906	
Total	13	0.82939		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.39548	0.48172	0.32469	0.66292	0.23594
1493.48334	0.29873	0.38488	0.23186	0.51287	0.174
3734.35667	0.22564	0.30904	0.16475	0.39967	0.12739
9337.51277	0.17044	0.24877	0.11677	0.31338	0.0927
23347.83539	0.12874	0.20055	0.08264	0.24697	0.06711
58379.72389	0.09724	0.16182	0.05843	0.19544	0.04838
145974.65266	0.07345	0.13065	0.04129	0.15519	0.03476
365000	0.05548	0.10552	0.02917	0.12357	0.02491

Parameter	Value	Error	t-Value	Prob> t
A	0.92763	0.15754	5.88841	< 0.0001
В	-0.5808	0.07716	-7.52739	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.90842	0.82523	0.81067	0.21396	14
Parameter	LCI	UCI		
A	0.58439	1.27087		
В	-0.74892	-0.41269		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	2.59385	2.59385	56.66158
Error	12	0.54934	0.04578	
Total	13	3.14319		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.20664	0.32198	0.13262	0.6601	0.06469
1493.48334	0.12135	0.21453	0.06864	0.40909	0.036
3734.35667	0.07126	0.14454	0.03514	0.2577	0.01971
9337.51277	0.04185	0.09794	0.01788	0.1646	0.01064
23347.83539	0.02458	0.06659	0.00907	0.10634	0.00568
58379.72389	0.01443	0.04536	0.00459	0.06934	0.003
145974.65266	0.00848	0.03094	0.00232	0.04557	0.00158
365000	0.00498	0.02112	0.00117	0.03013	8.22446E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.11289	0.0729	-1.54855	0.14745
В	-0.32329	0.03571	-9.05429	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93398	0.87231	0.86167	0.09901	14
Parameter	LCI	UCI		
A	-0.27173	0.04595		
В	-0.40109	-0.24549		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.80366	0.80366	81.98018
Error	12	0.11764	0.0098	
Total	13	0.9213		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.09763	0.11987	0.07952	0.16711	0.05704
1493.48334	0.0726	0.0945	0.05577	0.1274	0.04137
3734.35667	0.05398	0.07488	0.03892	0.09785	0.02978
9337.51277	0.04014	0.05949	0.02708	0.07564	0.0213
23347.83539	0.02985	0.04734	0.01882	0.05879	0.01515
58379.72389	0.02219	0.0377	0.01306	0.04588	0.01073
145974.65266	0.0165	0.03005	0.00906	0.03594	0.00758
365000	0.01227	0.02395	0.00629	0.02823	0.00533

Parameter	Value	Error	t-Value	Prob> t
A	-0.97206	0.18059	-5.38267	4.42941E-4
В	-0.39015	0.08989	-4.34024	0.00188
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.82262	0.6767	0.64077	0.1579	11
Parameter	LCI	UCI		
A	-1.38058	-0.56353		
В	-0.5935	-0.1868		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.46968	0.46968	18.83765
Error	9	0.2244	0.02493	
Total	10	0.69408		
Prob>F				
0.00188				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00881	0.01401	0.00554	0.02265	0.00342
1493.48334	0.00616	0.01156	0.00328	0.01735	0.00219
3734.35667	0.00431	0.00963	0.00193	0.01361	0.00136
9337.51277	0.00301	0.00805	0.00113	0.01086	8.35955E-4
23347.83539	0.00211	0.00675	6.57432E-4	0.00877	5.06336E-4
58379.72389	0.00147	0.00567	3.83028E-4	0.00714	3.03962E-4
145974.65266	0.00103	0.00476	2.22958E-4	0.00586	1.81278E-4
365000	7.20777E-4	0.00401	1.29704E-4	0.00483	1.0758E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.17093	0.20535	-0.83237	0.42673
В	-0.4576	0.09096	-5.03051	7.08876E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.85887	0.73766	0.70851	0.10754	11
Parameter	LCI	UCI		
A	-0.63546	0.2936		
В	-0.66337	-0.25182		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.29269	0.29269	25.30602
Error	9	0.10409	0.01157	
Total	10	0.39678		
Prob>F				
7.08876E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0362	0.04932	0.02657	0.06865	0.01909
1493.48334	0.0238	0.03841	0.01475	0.04972	0.01139
3734.35667	0.01565	0.03023	0.0081	0.03714	0.00659
9337.51277	0.01029	0.02388	0.00443	0.02828	0.00374
23347.83539	0.00676	0.0189	0.00242	0.0218	0.0021
58379.72389	0.00445	0.01497	0.00132	0.01693	0.00117
145974.65266	0.00292	0.01187	7.20289E-4	0.01322	6.4665E-4
365000	0.00192	0.00941	3.92647E-4	0.01036	3.56744E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.81993	0.08915	-9.19685	< 0.0001
В	-0.34735	0.04367	-7.95469	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.91684	0.84059	0.8273	0.12108	14
Parameter	LCI	UCI		
A	-1.01418	-0.62568		
В	-0.44249	-0.25221		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.92774	0.92774	63.27708
Error	12	0.17594	0.01466	
Total	13	1.10368		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01643	0.02112	0.01279	0.03171	0.00852
1493.48334	0.01195	0.0165	0.00866	0.02378	0.00601
3734.35667	0.00869	0.01297	0.00583	0.018	0.0042
9337.51277	0.00632	0.01023	0.00391	0.01373	0.00291
23347.83539	0.0046	0.00809	0.00262	0.01054	0.00201
58379.72389	0.00335	0.0064	0.00175	0.00813	0.00138
145974.65266	0.00243	0.00506	0.00117	0.0063	9.39439E-4
365000	0.00177	0.00401	7.81134E-4	0.0049	6.38971E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.06303	0.21585	-0.29199	0.77692
В	-0.52825	0.09562	-5.52469	3.68249E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.87879	0.77228	0.74698	0.11305	11
Parameter	LCI	UCI		
A	-0.55132	0.42526		
В	-0.74455	-0.31195		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.39005	0.39005	30.52215
Error	9	0.11501	0.01278	
Total	10	0.50506		
Prob>F				
3.68249E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.02954	0.0409	0.02134	0.05789	0.01508
1493.48334	0.01821	0.03011	0.01101	0.03949	0.00839
3734.35667	0.01122	0.02241	0.00562	0.02783	0.00452
9337.51277	0.00691	0.01675	0.00285	0.02002	0.00239
23347.83539	0.00426	0.01255	0.00145	0.01458	0.00125
58379.72389	0.00263	0.0094	7.32872E-4	0.0107	6.43976E-4
145974.65266	0.00162	0.00705	3.71032E-4	0.0079	3.31267E-4
365000	9.96986E-4	0.00529	1.87768E-4	0.00586	1.69765E-4

Parameter	Value	Error	t-Value	Prob> t
A	-0.01333	0.10688	-0.12472	0.90299
В	-0.40695	0.05044	-8.06742	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92489	0.85542	0.84228	0.09996	13
Parameter	LCI	UCI		
A	-0.24857	0.22191		
В	-0.51798	-0.29592		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.65036	0.65036	65.08332
Error	11	0.10992	0.00999	
Total	12	0.76028		
Prob>F				
< 0.0001				

Time (days) Cu	urve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962 0.0	07193	0.09086	0.05694	0.12566	0.04117
1493.48334 0.0	04954	0.06827	0.03594	0.09023	0.0272
3734.35667 0.0	03412	0.05165	0.02254	0.06566	0.01773
9337.51277 0.0	0235	0.03919	0.01409	0.04827	0.01144
23347.83539 0.0	01618	0.02978	0.00879	0.03576	0.00732
58379.72389 0.0	01114	0.02265	0.00548	0.02665	0.00466
145974.65266 0.0	00767	0.01724	0.00342	0.01994	0.00295
365000 0.0	00529	0.01313	0.00213	0.01497	0.00187

Parameter	Value	Error	t-Value	Prob> t
A	3.05277	0.49679	6.14499	4.69839E-4
В	-1.71577	0.21845	-7.85447	1.02466E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.94768	0.8981	0.88354	0.18324	9
Parameter	LCI	UCI		
A	1.87805	4.2275		
В	-2.23231	-1.19923		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	2.07149	2.07149	61.69275
Error	7	0.23504	0.03358	
Total	8	2.30654		
Prob>F				
1.02466E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01947	0.03927	0.00966	0.06594	0.00575
1493.48334	0.00404	0.01264	0.00129	0.01839	8.88137E-4
3734.35667	8.38823E-4	0.00415	1.69474E-4	0.00552	1.27359E-4
9337.51277	1.74087E-4	0.00137	2.20843E-5	0.00172	1.75745E-5
23347.83539	3.61296E-5	4.54937E-4	2.8693E-6	5.49805E-4	2.37421E-6
58379.72389	7.49826E-6	1.51056E-4	3.72205E-7	1.77515E-4	3.16728E-7
145974.65266	1.55617E-6	5.02034E-5	4.8237E-8	5.77728E-5	4.19171E-8
365000	3.22964E-7	1.66951E-5	6.24767E-9	1.89029E-5	5.51798E-9

Parameter	Value	Error	t-Value	Prob> t
A	2.87342	0.68683	4.18357	0.00412
В	-1.5905	0.28952	-5.49351	9.12796E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.90095	0.81172	0.78482	0.21029	9
Parameter	LCI	UCI		
A	1.24932	4.49753		
В	-2.27511	-0.90589		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.3345	1.3345	30.17862
Error	7	0.30954	0.04422	
Total	8	1.64404		
Prob>F				
9.12796E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.0287	0.06132	0.01343	0.11337	0.00727
1493.48334	0.00668	0.0255	0.00175	0.03891	0.00115
3734.35667	0.00156	0.01092	2.2155E-4	0.01491	1.62259E-4
9337.51277	3.62057E-4	0.00472	2.77933E-5	0.00602	2.17808E-5
23347.83539	8.42819E-5	0.00204	3.47413E-6	0.0025	2.84632E-6
58379.72389	1.96197E-5	8.88033E-4	4.33465E-7	0.00105	3.66354E-7
145974.65266	4.56719E-6	3.86098E-4	5.40257E-8	4.46495E-4	4.67176E-8
365000	1.06318E-6	1.67979E-4	6.72909E-9	1.9089E-4	5.92146E-9

Parameter	Value	Error	t-Value	Prob> t
A	-0.61016	0.40472	-1.5076	0.22877
В	-0.47963	0.18777	-2.55429	0.08363
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.82766	0.68502	0.58003	0.09373	5
Parameter	LCI	UCI		
A	-1.89818	0.67785		
В	-1.07721	0.11795		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.05732	0.05732	6.52439
Error	3	0.02636	0.00879	
Total	4	0.08367		
Prob>F				
0.08363				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01144	0.02878	0.00455	0.03613	0.00362
1493.48334	0.00737	0.03144	0.00173	0.03668	0.00148
3734.35667	0.00475	0.03471	6.49437E-4	0.03895	5.78753E-4
9337.51277	0.00306	0.03847	2.43237E-4	0.04216	2.21967E-4
23347.83539	0.00197	0.04272	9.09343E-5	0.04609	8.43009E-5
58379.72389	0.00127	0.04749	3.39618E-5	0.05066	3.18386E-5
145974.65266	8.18284E-4	0.05282	1.26762E-5	0.05588	1.19832E-5
365000	5.27235E-4	0.05878	4.72948E-6	0.06178	4.49983E-6

Parameter	Value	Error	t-Value	Prob> t
A	1.26151	0.53059	2.37757	0.05495
В	-1.03299	0.22758	-4.53908	0.00394
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88004	0.77446	0.73687	0.14655	8
Parameter	LCI	UCI		
A	-0.03679	2.55981		
В	-1.58986	-0.47613		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.44247	0.44247	20.60325
Error	6	0.12885	0.02148	
Total	7	0.57132		
Prob>F				
0.00394				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.02476	0.04759	0.01288	0.07096	0.00864
1493.48334	0.00961	0.02983	0.00309	0.03904	0.00236
3734.35667	0.00373	0.01905	7.29216E-4	0.0232	5.9881E-4
9337.51277	0.00145	0.01224	1.70921E-4	0.01428	1.46518E-4
23347.83539	5.61219E-4	0.00788	3.99658E-5	0.00894	3.52342E-5
58379.72389	2.17763E-4	0.00508	9.33338E-6	0.00565	8.39114E-6
145974.65266	8.44961E-5	0.00328	2.17807E-6	0.00359	1.98659E-6
365000	3.2786E-5	0.00212	5.08047E-7	0.00229	4.68513E-7

Parameter	Value	Error	t-Value	Prob> t
A	0.05359	0.09916	0.54041	0.59968
В	-0.35306	0.0468	-7.54373	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.91543	0.83802	0.82329	0.09275	13
Parameter	LCI	UCI		
A	-0.16467	0.27184		
В	-0.45607	-0.25005		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.48952	0.48952	56.90789
Error	11	0.09462	0.0086	
Total	12	0.58414		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.11842	0.14708	0.09535	0.19871	0.07057
1493.48334	0.08569	0.11539	0.06363	0.14946	0.04912
3734.35667	0.062	0.09109	0.0422	0.11381	0.03377
9337.51277	0.04486	0.07211	0.02791	0.08749	0.023
23347.83539	0.03246	0.05717	0.01843	0.06774	0.01555
58379.72389	0.02349	0.04536	0.01216	0.05273	0.01046
145974.65266	0.01699	0.03601	0.00802	0.04121	0.00701
365000	0.0123	0.0286	0.00529	0.03231	0.00468

Parameter	Value	Error	t-Value	Prob> t
A	-0.79257	0.18739	-4.22944	0.00825
В	-0.41925	0.09166	-4.57406	0.00598
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.89839	0.80711	0.76854	0.06947	7
Parameter	LCI	UCI		
A	-1.27428	-0.31086		
В	-0.65487	-0.18364		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.10097	0.10097	20.92199
Error	5	0.02413	0.00483	
Total	6	0.1251		
Prob>F				
0.00598				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01105	0.0171	0.00714	0.02013	0.00607
1493.48334	0.00753	0.01432	0.00396	0.01615	0.00351
3734.35667	0.00513	0.01204	0.00218	0.01323	0.00199
9337.51277	0.00349	0.01015	0.0012	0.01095	0.00111
23347.83539	0.00238	0.00856	6.60177E-4	0.00913	6.19021E-4
58379.72389	0.00162	0.00722	3.62749E-4	0.00764	3.43168E-4
145974.65266	0.0011	0.0061	1.99252E-4	0.0064	1.89776E-4
365000	7.50637E-4	0.00515	1.09421E-4	0.00538	1.04773E-4

Felt Gasket/Outer (FGO) Leach Rate Extrapolation Results

Linear Fit to Log(Y) = A + B * Log(X) for FGO at 25 deg-C

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	2.18047	0.38608	5.64767	4.82728E-4
В	-0.69812	0.16428	-4.24963	0.0028
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.83247	0.69301	0.65463	0.12701	10
Parameter	LCI	UCI		
A	1.29016	3.07079		
В	-1.07695	-0.3193		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.29131	0.29131	18.05935

Error	8	0.12904	0.01613	
Total	9	0.42035		
Prob>F				
0.0028				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	1.74724	2.70788	1.1274	3.90491	0.7818
1493.48334	0.92149	1.97122	0.43077	2.54622	0.33349
3734.35667	0.48599	1.45706	0.1621	1.76294	0.13397
9337.51277	0.25631	1.08195	0.06072	1.25714	0.05226
23347.83539	0.13518	0.80498	0.0227	0.91051	0.02007
58379.72389	0.07129	0.59951	0.00848	0.66537	0.00764
145974.65266	0.0376	0.44674	0.00316	0.48893	0.00289
365000	0.01983	0.33303	0.00118	0.36058	0.00109

Parameter	Value	Error	t-Value	Prob> t
A	4.8304	2.66716	1.81107	0.12989
В	-2.12925	1.07644	-1.97805	0.10484
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.66257	0.439	0.3268	0.34699	7
Parameter	LCI	UCI		
A	-2.02574	11.68654		
В	-4.89632	0.63782		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.4711	0.4711	3.9127
Error	5	0.60202	0.1204	
Total	6	1.07312		
Prob>F				
0.10484				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.13762	0.50659	0.03738	1.20285	0.01574
1493.48334	0.04196	0.48603	0.00362	0.84307	0.00209
3734.35667	0.01279	0.48678	3.36142E-4	0.71997	2.27273E-4
9337.51277	0.0039	0.49312	3.08439E-5	0.66615	2.28323E-5
23347.83539	0.00119	0.50184	2.81717E-6	0.64013	2.2086E-6
58379.72389	3.62512E-4	0.51191	2.56717E-7	0.62779	2.0933E-7
145974.65266	1.10523E-4	0.52286	2.33626E-8	0.62319	1.96012E-8
365000	3.36964E-5	0.53449	2.12437E-9	0.62345	1.82124E-9

Parameter	Value	Error	t-Value	Prob> t
A	0.64238	0.18823	3.41283	0.01427
В	-0.46223	0.09184	-5.03321	0.00237
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.89917	0.80851	0.7766	0.09572	8
Parameter	LCI	UCI		
A	0.18181	1.10295		
В	-0.68694	-0.23751		
ANOVA				
Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.23209	0.23209	25.33325
Error	6	0.05497	0.00916	
Total	7	0.28706		
Prob>F				
0.00237				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.22864	0.35395	0.14769	0.45773	0.11421
1493.48334	0.14968	0.28071	0.07982	0.34271	0.06538
3734.35667	0.09799	0.22415	0.04284	0.2631	0.0365
9337.51277	0.06415	0.1795	0.02293	0.20499	0.02008
23347.83539	0.042	0.14396	0.01225	0.16116	0.01095
58379.72389	0.0275	0.11555	0.00654	0.12744	0.00593
145974.65266	0.018	0.0928	0.00349	0.10117	0.0032
365000	0.01179	0.07456	0.00186	0.08054	0.00172

Parameter	Value	Error	t-Value	Prob> t
A	1.7476	0.34267	5.10002	9.29824E-4
В	-0.77159	0.1458	-5.29199	7.35473E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88193	0.77781	0.75004	0.11272	10
Parameter	LCI	UCI		
A	0.95741	2.53779		
В	-1.10782	-0.43537		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.35584	0.35584	28.00511
Error	8	0.10165	0.01271	
Total	9	0.4575		
Prob>F				
7.35473E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.4032	0.59483	0.2733	0.82318	0.19749
1493.48334	0.1988	0.39041	0.10123	0.48998	0.08066
3734.35667	0.09802	0.25974	0.03699	0.3076	0.03123
9337.51277	0.04833	0.1735	0.01346	0.19822	0.01178
23347.83539	0.02383	0.1161	0.00489	0.12951	0.00438
58379.72389	0.01175	0.07776	0.00178	0.0853	0.00162
145974.65266	0.00579	0.05211	6.43986E-4	0.05645	5.94425E-4
365000	0.00286	0.03493	2.33552E-4	0.03748	2.17644E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.80081	0.11788	6.79361	< 0.0001
В	-0.35314	0.05475	-6.44983	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88931	0.79088	0.77186	0.10552	13
Parameter	LCI	UCI		
A	0.54137	1.06026		
В	-0.47365	-0.23263		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.46321	0.46321	41.60036
Error	11	0.12248	0.01113	
Total	12	0.58569		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.66133	0.84269	0.51901	1.18962	0.36765
1493.48334	0.47848	0.66992	0.34175	0.90007	0.25436
3734.35667	0.34618	0.53666	0.22331	0.69123	0.17338
9337.51277	0.25047	0.43136	0.14543	0.53694	0.11684
23347.83539	0.18122	0.34732	0.09455	0.42066	0.07806
58379.72389	0.13111	0.27993	0.06141	0.33166	0.05183
145974.65266	0.09486	0.22576	0.03986	0.26273	0.03425
365000	0.06863	0.18215	0.02586	0.20888	0.02255

Parameter	Value	Error	t-Value	Prob> t
A	0.91968	0.1901	4.83792	5.2072E-4
В	-0.52423	0.0883	-5.93703	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.87301	0.76215	0.74053	0.17017	13
Parameter	LCI	UCI		
A	0.50127	1.33808		
В	-0.71857	-0.32988		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	1.02073	1.02073	35.24828
Error	11	0.31854	0.02896	
Total	12	1.33928		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.29129	0.43059	0.19706	0.75083	0.11301
1493.48334	0.18017	0.31002	0.10471	0.49914	0.06503
3734.35667	0.11144	0.22598	0.05495	0.33989	0.03654
9337.51277	0.06893	0.16562	0.02869	0.23575	0.02015
23347.83539	0.04263	0.12172	0.01493	0.16579	0.01096
58379.72389	0.02637	0.0896	0.00776	0.11778	0.0059
145974.65266	0.01631	0.06603	0.00403	0.08432	0.00315
365000	0.01009	0.04869	0.00209	0.06071	0.00168

Parameter	Value	Error	t-Value	Prob> t
A	0.3979	0.11822	3.36582	0.00717
В	-0.49439	0.05303	-9.32357	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.94701	0.89683	0.88651	0.07259	12
Parameter	LCI	UCI		
A	0.13449	0.6613		
В	-0.61254	-0.37624		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.45812	0.45812	86.92891
Error	10	0.0527	0.00527	
Total	11	0.51082		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.10602	0.12838	0.08755	0.16115	0.06975
1493.48334	0.06739	0.08984	0.05055	0.10788	0.0421
3734.35667	0.04284	0.06327	0.029	0.07346	0.02498
9337.51277	0.02723	0.04467	0.0166	0.05059	0.01466
23347.83539	0.01731	0.03158	0.00949	0.03511	0.00853
58379.72389	0.011	0.02233	0.00542	0.02449	0.00494
145974.65266	0.00699	0.0158	0.0031	0.01714	0.00285
365000	0.00445	0.01118	0.00177	0.01202	0.00164

Parameter	Value	Error	t-Value	Prob> t
A	0.17758	0.22255	0.79791	0.45114
В	-0.73831	0.10547	-7.00017	2.11524E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.93542	0.87501	0.85715	0.12177	9
Parameter	LCI	UCI		
A	-0.34868	0.70383		
В	-0.98771	-0.48891		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.72655	0.72655	49.00232
Error	7	0.10379	0.01483	
Total	8	0.83034		
Prob>F				
2.11524E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01342	0.02125	0.00848	0.03008	0.00599
1493.48334	0.00682	0.01332	0.0035	0.0175	0.00266
3734.35667	0.00347	0.00843	0.00143	0.01051	0.00115
9337.51277	0.00176	0.00535	5.80686E-4	0.00643	4.83664E-4
23347.83539	8.96321E-4	0.00341	2.35759E-4	0.00398	2.01804E-4
58379.72389	4.55623E-4	0.00217	9.56127E-5	0.00248	8.35443E-5
145974.65266	2.31605E-4	0.00138	3.87495E-5	0.00156	3.44033E-5
365000	1.17731E-4	8.82999E-4	1.56971E-5	9.82003E-4	1.41145E-5

Parameter	Value	Error	t-Value	Prob> t
A	0.45343	0.35543	1.27571	0.23785
В	-0.56837	0.15124	-3.75818	0.00556
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.799	0.6384	0.5932	0.11692	10
Parameter	LCI	UCI		
A	-0.3662	1.27306		
В	-0.91713	-0.21962		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.19309	0.19309	14.1239
Error	8	0.10937	0.01367	
Total	9	0.30245		
Prob>F				
0.00556				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.07508	0.11238	0.05016	0.15742	0.03581
1493.48334	0.0446	0.08981	0.02214	0.11367	0.0175
3734.35667	0.02649	0.07279	0.00964	0.08675	0.00809
9337.51277	0.01573	0.05924	0.00418	0.06802	0.00364
23347.83539	0.00935	0.04831	0.00181	0.05411	0.00161
58379.72389	0.00555	0.03942	7.81752E-4	0.04339	7.10221E-4
145974.65266	0.0033	0.03219	3.37784E-4	0.03498	3.1086E-4
365000	0.00196	0.0263	1.45902E-4	0.02829	1.35607E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.11905	0.14998	0.79374	0.45024
В	-0.5867	0.06626	-8.85501	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.95259	0.90742	0.89585	0.06478	10
Parameter	LCI	UCI		
A	-0.22681	0.4649		
В	-0.73949	-0.43391		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F
				Statistic
Model	1	0.32908	0.32908	78.41117
Error	8	0.03357	0.0042	
Total	9	0.36265		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.03092	0.03842	0.02489	0.04644	0.02059
1493.48334	0.01806	0.02551	0.01279	0.02941	0.01109
3734.35667	0.01055	0.01705	0.00653	0.01905	0.00584
9337.51277	0.00616	0.01143	0.00332	0.01249	0.00304
23347.83539	0.0036	0.00766	0.00169	0.00826	0.00157
58379.72389	0.0021	0.00514	8.59397E-4	0.00548	8.06234E-4
145974.65266	0.00123	0.00345	4.36775E-4	0.00365	4.13098E-4
365000	7.17228E-4	0.00232	2.21936E-4	0.00244	2.1124E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.52756	0.25485	2.0701	0.07222
В	-0.6337	0.10844	-5.84385	3.85457E-4
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.90011	0.8102	0.78648	0.08383	10
Parameter	LCI	UCI		
A	-0.06012	1.11525		
В	-0.88376	-0.38364		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.24002	0.24002	34.15055
Error	8	0.05623	0.00703	
Total	9	0.29625		
Prob>F				
3.85457E-4				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.05865	0.07833	0.04392	0.09973	0.0345
1493.48334	0.03282	0.05421	0.01987	0.06419	0.01678
3734.35667	0.01836	0.0379	0.00889	0.04298	0.00784
9337.51277	0.01027	0.02658	0.00397	0.02934	0.0036
23347.83539	0.00575	0.01866	0.00177	0.02024	0.00163
58379.72389	0.00322	0.01311	7.88452E-4	0.01404	7.36027E-4
145974.65266	0.0018	0.00922	3.51121E-4	0.00978	3.3082E-4
365000	0.00101	0.00648	1.56327E-4	0.00683	1.48336E-4

Parameter	Value	Error	t-Value	Prob> t
A	0.61799	0.15963	3.87138	0.0031
В	-0.5632	0.0716	-7.86567	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.92782	0.86086	0.84694	0.09803	12
Parameter	LCI	UCI		
A	0.26231	0.97367		
В	-0.72274	-0.40366		
ANOVA				
Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.59451	0.59451	61.8687
Error	10	0.09609	0.00961	
Total	11	0.6906		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.11336	0.14679	0.08754	0.19954	0.0644
1493.48334	0.06765	0.09974	0.04589	0.1277	0.03584
3734.35667	0.04038	0.06837	0.02385	0.08363	0.01949
9337.51277	0.0241	0.04702	0.01235	0.05562	0.01044
23347.83539	0.01438	0.03239	0.00639	0.03737	0.00553
58379.72389	0.00858	0.02233	0.0033	0.02528	0.00291
145974.65266	0.00512	0.0154	0.0017	0.01718	0.00153
365000	0.00306	0.01063	8.79572E-4	0.01172	7.97715E-4

Parameter	Value	Error	t-Value	Prob> t
A	8.39912	2.47861	3.38864	0.04282
В	-3.63293	0.97635	-3.72092	0.03379
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.90659	0.82191	0.76254	0.17302	5
Parameter	LCI	UCI		
A	0.51104	16.28719		
В	-6.74013	-0.52573		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.41448	0.41448	13.84526
Error	3	0.08981	0.02994	
Total	4	0.50429		
Prob>F				
0.03379				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.18751	0.28637	0.12278	0.3778	0.09307
1493.48334	0.16215	0.33443	0.07861	0.40446	0.065
3734.35667	0.14021	0.39498	0.04977	0.45469	0.04324
9337.51277	0.12124	0.46813	0.0314	0.52294	0.02811
23347.83539	0.10484	0.55566	0.01978	0.60853	0.01806
58379.72389	0.09066	0.66007	0.01245	0.71287	0.01153
145974.65266	0.07839	0.78447	0.00783	0.83853	0.00733
365000	0.06779	0.93259	0.00493	0.98901	0.00465

Parameter	Value	Error	t-Value	Prob> t
A	0.53762	0.14416	3.72929	0.00391
В	-0.46041	0.06466	-7.12001	< 0.0001
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.91391	0.83524	0.81876	0.08853	12
Parameter	LCI	UCI		
A	0.21641	0.85884		
В	-0.60448	-0.31633		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.3973	0.3973	50.69455
Error	10	0.07837	0.00784	
Total	11	0.47567		
Prob>F				
< 0.0001				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.18174	0.22952	0.14391	0.30285	0.10906
1493.48334	0.11918	0.16922	0.08394	0.21154	0.06715
3734.35667	0.07815	0.12575	0.04857	0.15086	0.04049
9337.51277	0.05125	0.09373	0.02803	0.10909	0.02408
23347.83539	0.03361	0.06996	0.01615	0.07961	0.01419
58379.72389	0.02204	0.05226	0.0093	0.05846	0.00831
145974.65266	0.01445	0.03905	0.00535	0.04311	0.00485
365000	0.00948	0.0292	0.00308	0.03189	0.00282

Parameter	Value	Error	t-Value	Prob> t
A	-0.18166	0.51561	-0.35232	0.74238
В	-0.52642	0.23374	-2.25215	0.08744
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.74772	0.55909	0.44887	0.12108	6
Parameter	LCI	UCI		
A	-1.61322	1.2499		
В	-1.17539	0.12255		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.07436	0.07436	5.07219
Error	4	0.05864	0.01466	
Total	5	0.13299		
Prob>F				
0.08744				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.02275	0.05726	0.00904	0.07587	0.00682
1493.48334	0.01404	0.06267	0.00315	0.07566	0.00261
3734.35667	0.00867	0.06944	0.00108	0.07982	9.41003E-4
9337.51277	0.00535	0.07728	3.70335E-4	0.08626	3.31785E-4
23347.83539	0.0033	0.08617	1.26548E-4	0.09434	1.15589E-4
58379.72389	0.00204	0.09619	4.31979E-5	0.10388	3.99981E-5
145974.65266	0.00126	0.10743	1.47365E-5	0.11486	1.37834E-5
365000	7.76673E-4	0.12004	5.02513E-6	0.12735	4.73682E-6

Aluminized Paint (AP) Leach Rate Extrapolation Results

Linear Fit to Log(Y) = A + B * Log(X) for AP at 25 deg-C

tPCBs

Parameter	Value	Error	t-Value	Prob> t
A	0.8245	0.39408	2.09219	0.05835
В	-0.57148	0.18928	-3.01926	0.01068
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.65705	0.43171	0.38435	0.51978	14
Parameter	LCI	UCI		
A	-0.03414	1.68313		
В	-0.98388	-0.15908		
ANOVA Table:				
	Degrees of	Sum of	Mean	

Item	Freedom	Squares	Square	F Statistic
Model	1	2.46285	2.46285	9.11593
Error	12	3.24203	0.27017	
Total	13	5.70488		
Prob>F				
0.01068				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.78741	1.24357	0.49858	2.017	0.3074
1493.48334	0.66151	1.1786	0.37128	1.8067	0.2422
3734.35667	0.55573	1.12508	0.2745	1.64175	0.18812
9337.51277	0.46687	1.07817	0.20216	1.5091	0.14444
23347.83539	0.39222	1.03562	0.14854	1.39978	0.1099
58379.72389	0.3295	0.99621	0.10898	1.30764	0.08303
145974.65266	0.27681	0.95925	0.07988	1.22841	0.06238
365000	0.23255	0.92431	0.05851	1.15909	0.04666

Parameter	Value	Error	t-Value	Prob> t
A	0.86565	0.78059	1.10897	0.30408
В	-0.57035	0.36965	-1.54295	0.16675
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.50377	0.25379	0.14718	0.4311	9
Parameter	LCI	UCI		
A	-0.98014	2.71145		
В	-1.44442	0.30373		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.44245	0.44245	2.38068
Error	7	1.30094	0.18585	
Total	8	1.74339		
Prob>F				
0.16675				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.50913	0.72499	0.35754	0.90285	0.2871
1493.48334	0.43605	0.72455	0.26242	0.85988	0.22112
3734.35667	0.37345	0.72843	0.19146	0.83611	0.1668
9337.51277	0.31985	0.73417	0.13934	0.82317	0.12428
23347.83539	0.27393	0.74091	0.10128	0.81667	0.09188
58379.72389	0.23461	0.74825	0.07356	0.81426	0.0676
145974.65266	0.20093	0.75602	0.0534	0.81457	0.04957
365000	0.17209	0.7641	0.03876	0.81679	0.03626

Parameter	Value	Error	t-Value	Prob> t
A	0.14484	0.26464	0.54733	0.59508
В	-0.49601	0.12248	-4.04963	0.00192
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.77365	0.59853	0.56204	0.23327	13
Parameter	LCI	UCI		
A	-0.43762	0.72731		
В	-0.7656	-0.22643		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.89235	0.89235	16.39947
Error	11	0.59854	0.05441	
Total	12	1.49089		
Prob>F				
0.00192				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.05859	0.10004	0.03431	0.21447	0.01601
1493.48334	0.03719	0.0784	0.01764	0.15047	0.00919
3734.35667	0.0236	0.0625	0.00891	0.10918	0.0051
9337.51277	0.01498	0.05021	0.00447	0.08129	0.00276
23347.83539	0.00951	0.04048	0.00223	0.06169	0.00147
58379.72389	0.00604	0.03272	0.00111	0.04748	7.67233E-4
145974.65266	0.00383	0.02648	5.54265E-4	0.03693	3.97355E-4
365000	0.00243	0.02145	2.75663E-4	0.02896	2.04162E-4

Parameter	Value	Error	t-Value	Prob> t
A	-1.10244	0.08917	-12.36367	2.45954E-4
В	-0.17407	0.04679	-3.72015	0.02047
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88078	0.77578	0.71972	0.03731	6
Parameter	LCI	UCI		
A	-1.35001	-0.85487		
В	-0.30398	-0.04416		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.01926	0.01926	13.8395
Error	4	0.00557	0.00139	
Total	5	0.02483		
Prob>F				
0.02047				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.02596	0.03455	0.01951	0.03767	0.01789
1493.48334	0.02213	0.03301	0.01484	0.03526	0.01389
3734.35667	0.01887	0.03162	0.01126	0.03332	0.01069
9337.51277	0.01609	0.03031	0.00854	0.03165	0.00817
23347.83539	0.01371	0.02907	0.00647	0.03017	0.00623
58379.72389	0.01169	0.0279	0.0049	0.02881	0.00475
145974.65266	0.00997	0.02677	0.00371	0.02754	0.00361
365000	0.0085	0.0257	0.00281	0.02636	0.00274

Parameter	Value	Error	t-Value	Prob> t
A	-0.81293	0.1193	-6.81391	< 0.0001
В	-0.24361	0.05522	-4.41169	0.00104
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.79932	0.63891	0.60608	0.10516	13
Parameter	LCI	UCI		
A	-1.07552	-0.55034		
В	-0.36514	-0.12207		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.21524	0.21524	19.46302
Error	11	0.12165	0.01106	
Total	12	0.33689		
Prob>F				
0.00104				

Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
0.03723	0.04318	0.0321	0.05198	0.02666
0.03122	0.03834	0.02542	0.04488	0.02172
0.02618	0.03419	0.02005	0.03909	0.01754
0.02196	0.03053	0.01579	0.03427	0.01407
0.01841	0.0273	0.01242	0.03019	0.01123
0.01544	0.02442	0.00977	0.02669	0.00894
0.01295	0.02185	0.00768	0.02365	0.00709
0.01086	0.01955	0.00603	0.02101	0.00562
	0.03723 0.03122 0.02618 0.02196 0.01841 0.01544 0.01295	0.03723 0.04318 0.03122 0.03834 0.02618 0.03419 0.02196 0.03053 0.01841 0.0273 0.01544 0.02442 0.01295 0.02185	0.03723 0.04318 0.0321 0.03122 0.03834 0.02542 0.02618 0.03419 0.02005 0.02196 0.03053 0.01579 0.01841 0.0273 0.01242 0.01544 0.02442 0.00977 0.01295 0.02185 0.00768	0.03723 0.04318 0.0321 0.05198 0.03122 0.03834 0.02542 0.04488 0.02618 0.03419 0.02005 0.03909 0.02196 0.03053 0.01579 0.03427 0.01841 0.0273 0.01242 0.03019 0.01544 0.02442 0.00977 0.02669 0.01295 0.02185 0.00768 0.02365

Parameter	Value	Error	t-Value	Prob> t
A	-0.59664	0.10348	-5.76599	0.02879
В	-0.65642	0.06356	-10.32676	0.00925
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.99075	0.98159	0.97239	0.06417	4
Parameter	LCI	UCI		
A	-1.04186	-0.15142		
В	-0.92991	-0.38292		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.43916	0.43916	106.6419
Error	2	0.00824	0.00412	
Total	3	0.44739		
Prob>F				
0.00925				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.00381	0.0088	0.00165	0.0109	0.00133
1493.48334	0.00209	0.0061	7.14448E-4	0.00727	6.00183E-4
3734.35667	0.00114	0.00426	3.07488E-4	0.00493	2.65792E-4
9337.51277	6.2695E-4	0.00298	1.31956E-4	0.00337	1.16486E-4
23347.83539	3.43533E-4	0.00209	5.65305E-5	0.00233	5.07067E-5
58379.72389	1.88237E-4	0.00146	2.41913E-5	0.00161	2.19715E-5
145974.65266	1.03143E-4	0.00103	1.03445E-5	0.00112	9.48955E-6
365000	5.65166E-5	7.2247E-4	4.42112E-6	7.81169E-4	4.08891E-6

Parameter	Value	Error	t-Value	Prob> t
A	-0.89169	0.17919	-4.97629	0.00762
В	-0.31476	0.08191	-3.84292	0.01841
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.88706	0.78687	0.73359	0.09049	6
Parameter	LCI	UCI		
A	-1.3892	-0.39419		
В	-0.54216	-0.08735		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.12092	0.12092	14.768
Error	4	0.03275	0.00819	
Total	5	0.15368		
Prob>F				
0.01841				

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.01716	0.0258	0.01141	0.03483	0.00845
1493.48334	0.01286	0.02321	0.00713	0.02939	0.00563
3734.35667	0.00964	0.02115	0.00439	0.02557	0.00363
9337.51277	0.00722	0.01937	0.00269	0.02267	0.0023
23347.83539	0.00541	0.01779	0.00165	0.02033	0.00144
58379.72389	0.00406	0.01636	0.00101	0.01836	8.95917E-4
145974.65266	0.00304	0.01507	6.13265E-4	0.01667	5.54168E-4
365000	0.00228	0.01388	3.73884E-4	0.01519	3.41589E-4

Parameter	Value	Error	t-Value	Prob> t
A	-1.33832	0.11701	-11.43728	0.00756
В	-0.19137	0.06195	-3.08902	0.09076
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.90924	0.82672	0.74008	0.04842	4
Parameter	LCI	UCI		
A	-1.84179	-0.83485		
В	-0.45793	0.07519		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.02237	0.02237	9.54207
Error	2	0.00469	0.00234	
Total	3	0.02706		
Prob>F				
0.09076				

Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
0.0135	0.02505	0.00728	0.02953	0.00617
0.01133	0.02647	0.00485	0.03003	0.00427
0.00951	0.02814	0.00321	0.03114	0.0029
0.00798	0.03	0.00212	0.03264	0.00195
0.00669	0.03203	0.0014	0.03442	0.0013
0.00562	0.03423	9.21914E-4	0.03644	8.65984E-4
0.00471	0.0366	6.07091E-4	0.03869	5.74378E-4
0.00396	0.03915	3.99615E-4	0.04115	3.80256E-4
	0.0135 0.01133 0.00951 0.00798 0.00669 0.00562 0.00471	0.0135 0.02505 0.01133 0.02647 0.00951 0.02814 0.00798 0.03 0.00669 0.03203 0.00562 0.03423 0.00471 0.0366	0.0135 0.02505 0.00728 0.01133 0.02647 0.00485 0.00951 0.02814 0.00321 0.00798 0.03 0.00212 0.00669 0.03203 0.0014 0.00562 0.03423 9.21914E-4 0.00471 0.0366 6.07091E-4	0.0135 0.02505 0.00728 0.02953 0.01133 0.02647 0.00485 0.03003 0.00951 0.02814 0.00321 0.03114 0.00798 0.03 0.00212 0.03264 0.00669 0.03203 0.0014 0.03442 0.00562 0.03423 9.21914E-4 0.03644 0.00471 0.0366 6.07091E-4 0.03869

Parameter	Value	Error	t-Value	Prob> t
A	-0.66416	0.18951	-3.50463	0.01275
В	-0.29445	0.09245	-3.18513	0.01895
R	R-Square(COD)	Adj. R-Square	Root-MSE(SD)	N
-0.7927	0.62837	0.56643	0.09714	8
Parameter	LCI	UCI		
A	-1.12787	-0.20045		
В	-0.52066	-0.06825		
ANOVA Table:				
	Degrees of	Sum of	Mean	
Item	Freedom	Squares	Square	F Statistic
Model	1	0.09573	0.09573	10.14506
Error	6	0.05662	0.00944	
Total	7	0.15234		

Prob>F		
0.01895		

Time (days)	Curve Fit	95% UCI	95% LCI	95% UPI	95% LPI
597.28962	0.03299	0.05126	0.02123	0.06661	0.01634
1493.48334	0.02519	0.04746	0.01337	0.05818	0.0109
3734.35667	0.01923	0.04425	0.00836	0.05212	0.0071
9337.51277	0.01468	0.04138	0.00521	0.04739	0.00455
23347.83539	0.01121	0.03875	0.00324	0.04349	0.00289
58379.72389	0.00856	0.03632	0.00202	0.04015	0.00182
145974.65266	0.00653	0.03407	0.00125	0.03721	0.00115
365000	0.00499	0.03196	7.78769E-4	0.03459	7.19641E-4

APPENDIX B: MISCELLANEOUS LABORATORY OPERATIONS, METHODS, AND STANDARD OPERATING PROCEDURES

Standard Operating Procedure for Preparation of Artificial Seawater (ASW)

Reference: ASTM E 1367-92, page 737. (Result is ASW with pH of 8.0 ± 0.2 and a salinity of 34 ± 0.5).

- I. Preparing the doubly distilled deionized water (2XDW) water
 - 1. Clean glassware (e.g. 20L carboys, volumetric flasks, stirring rods, filter tubes, etc.) using Micro^R-90 (International Products Corporation). Rinse multiple times (3X) with doubly distilled deionized water (2XDW), dry overnight in a dedicated 100°C vacuum oven, and store in a dust-free environment..
 - 2. Rinse a clean 20 L glass carboy thoroughly with 2XDW. Repeat this step 2-3 times to ensure no particulate matter is present.
 - 3. Using a clean 2 L volumetric flask, add 18 L of 2XDW water to carboy and cover with aluminum foil.
 - 4. Fill the 2 L volumetric flask once more with 2XDW water, cover and save for rinsing and salt solution preparation in step II below.
 - 5. Add a magnetic stir bar to carboy and place on heating plate. Start stirrer and heat on warm.
- II. Adding the Inorganic Seawater Salts to the 2XDW
 - 1. Put on lab coat, safety goggles, and gloves. For safety precautions regarding chemicals used, refer to MSDS from supplier.
 - 2. Each chemical is added using its own designated spatula and plastic beaker in amounts that are listed in the table below. If the amount is small enough, weighing paper is substituted for the plastic beaker.
 - 3. Weigh out the correct amount of NaF according to the reference table below. Carefully add NaF to carboy. Using a 10 mL pipette, rinse the plastic beaker (or weighing paper) into the carboy with 2XDW. Cover carboy with aluminum foil.
 - 4. Repeat step 3 for the next 8 chemicals in the reference, being sure to add in order from top to bottom. Allow enough time between additions for the salt to dissolve.
 - 5. Using the 2XDW water you saved in I, place ~1L of 2XDW into a 1 L round bottom flask. Place the round bottom flask on a heating plate with a magnetic stirrer. Weigh out 400 mg of Na₂SiO3*9H₂O onto weighing paper and slowly add it to the warm water with stirring. Rinse the residual salt on the weighing paper into the flask as well. Cover with aluminum foil and stir to allow salt to dissolve (may take one to three days).
 - 6. Save the left over 2XDW water for rinsing in a later step.
 - 7. Once the Na2SiO3*9H2O has dissolved, slowly add the solution to the 20 L carboy. Use the remaining 2XDW water from step 6 to rinse the 1 L round bottom flask and add this rinsate to carboy.
 - 8. Follow steps 2 through 3 for the final chemical (NaHCO₃). Cover carboy with aluminum foil.
 - 9. Continue heating ASW on low heat and stir until all the chemicals have dissolved (approximately 1 full day).

10. Remove from heat and continue to stir slowly until cool.					
	n heat and continue	n heat and continue to stir slowly unti	n heat and continue to stir slowly until cool.		

Chemical	Amount		
NaF	60 mg		
SrCl ₂ *6H ₂ O	400 mg		
H_3BO_3	600 mg		
KBr	2000 mg		
KCl	14000 mg		
CaCl ₂ *2H ₂ O	29.40 g		
Na ₂ SO ₄	80.00 g		
MgCl ₂ *6H ₂ O	215.60 g		
NaCl	470.00 g		
Na ₂ SiO ₃ *9H ₂ O	400 mg		
NaHCO ₃	4000 mg		

III. Filtering

- 1. Once ASW has cooled to room temperature, place a frit medium frit assembly (sparging tube) into carboy containing the ASW. Pump through the medium frit tube into a clean 20L carboy for room temperature use or a precleaned amber glass container for longer term storage. ASW for low temperature experiments must be chilled prior to use and may be stored in a 4°C refrigerator in precleaned, EPA-certified sample jars with Teflon caps.
- 2. Collect a 1L filtered sample for QA/QC measurement.

IV. Cleanup

- 1. When empty, rinse the ASW preparation carboy thoroughly with 2XDW.
- 2. Carboy may be used to prepare another batch immediately or cleaned using and stored for future use

V. Logging

- 1. Record the weights of each chemical, their date and time added to carboy during preparation into lab notebook.
- 2. Transpose data into the electronic ASW master file as soon as possible.

Standard Operating Procedure for Artificial Seawater (ASW) pH and Salinity Analysis

Reference: LabComp, Inc, Operations Manual; Model SCTpH Monitor/Logger

I. Calibration

- 1. Calibrate the Monitor/Logger, model SCTpH, using the protocol in the Operations Manual.
- 2. Use a standard conductance solution, 0.5 M KCl, to calibrate the conductance.

II. Probe Storage

- 1. The pH probe is kept in a 3.8 M solution of KCl when not in use.
- 2. Store the Temperature/Conductance (T/C) probe in a dry, dust-free container.

III. Analysis Preparation

- 1. The T/C probe is placed in a clean 250 mL Erlenmeyer flask filled with 2XDW water.
- 2. The water is then heated in order to dissolve any salt crystals that may have been left on the probe. Leave on heat for about 30 minutes.
- 3. The T/C probe is then rinsed with clean 2XDW water, and wiped dry using clean Kimwipes.
- 4. The pH probe is rinsed thoroughly with 2XDW water, then wiped dry with a clean Kimwipe.
- 5. Rinse a dedicated 250 mL polypropylene centrifuge bottle with 2XDW water.
- 6. Fill with the seawater to be analyzed ($\sim 240 \text{ mL}$).
- 7. Allow bottle to sit in room temperature water bath until equilibrium, approximately 10 minutes for near-room temperature samples. (If measuring low temperature seawater samples, allow them extra time in the water bath to come to room temperature before performing the measurements).

IV. Conducting Readings and Measurements

- 1. Once seawater has reached equilibrium room temperature, place the pH probe and T/C probe into the seawater.
- 2. Center the probe, being careful not to allow the probes to touch the sides of the bottle. Probes should be kept as close to the center of the bottle as possible using ring stands and clamps. The T/C probe should be dipped in and out of the sample a few times and shaken gently while in the sample if needed to dislodge any air bubbles from the core of the probe.
- 3. Start timer for 5 minutes.
- 4. Once timer goes off, record pH, Temperature, and Conductance in specified section of lab notebook.
- 5. Rinse both probes thoroughly with clean 2XDW water and dry thoroughly with a clean Kimwipe between readings. Refer to section II for probe storage.

Standard Operating Procedure for PCB Leachate Handling and Sampling

Leachate is defined as artificial seawater (ASW) that has come into contact with a solid that contains PCBs (termed PCBs in solid materials or PCBs-ISM) and has potentially leached PCBs from that solid. PCBs-ISM may include solid or semi-solid pure Aroclor standards used as positive controls (commercial PCB mixtures), in addition to solids such as polymers and plastics or other host solid materials

Goal. Adequately describe leachate sampling, logging, storage, bottle changing, equipment cleaning, and general leachate handling operations.

I. Safety Precautions

- 1. Lab coat, nitrile gloves, and safety glasses should be worn at all times when handling PCB leachate or materials with potential of being contaminated with PCBs.
- 2. Read the MSDS for Polychlorinated Biphenyls and Aroclor mixtures.
- 3. If any personal protective equipment (PPE) comes in contact with potential PCB-containing materials, remove the PPE immediately and dispose of it properly. Replace with clean new PPE before continued PCB/leachate operations.

II. Logistics

- 1. All leachate operations should be logged with time, date, bottle and leachate identification numbers, user initials, and vessel tare weight in the appropriate section of the sampling logbook that has been designated for Quantitative Analysis sampling, Immunoassay (PCB-Screening) sampling, or leaching vessel (bottle) changing.
- 2. The bottles and vials used are amber, EPA-certified precleaned bottles with Teflon cap liners.
- 3. A Quantitative Analysis sample is collected at regularly timed intervals. Additional sampling may be require when concentrations are considered elevated by PCB-screening analysis.
- 4. Even when no analytical sampling is necessary, a leaching vessel/bottle change is performed weekly, on or about every seventh day to minimize any sorption effects onto the inner walls of the leaching vessel, with an effort to consistently perform the bottle change at the same time of day. The leaching vessel/bottle is a 1L precleaned EPA-certified amber glass bottle identical to the 950mL analytical sample bottles.

III. Quantitative Analysis Sampling with Leaching Vessel/Bottle Change

- 1. Quantitative Analysis sampling for ambient pressure experiments involves removal of all of the ASW leachate from the leaching vessel by carefully decanting it from the leaching vessel into a new labeled, tared leachate sample bottle for quantitative analysis. In this way, the caged sample remains wet but not submerged.
- 2. The caged shipboard solid is quickly grasped and transferred to a new labeled, tared leaching vessel/bottle using large stainless forceps that were previously rinsed with HPLC-grade methanol, wiped with Kimwipes, and air-dried for

- several minutes. Make every attempt to minimize physical contact with the sample cage and thus minimize any PCB transfer to the forceps (or nitrile gloves, should you be forced to aid in the transfer with your gloved hand).
- 3. The new, tared leaching vessel/bottle containing the caged solid is then replenished with ~930mL of clean, fresh ASW (the actual volume recorded is specific to the maximum amount possible for that caged solid experiment, dictated by the caged solid volume displacement).
 - a. For experiments run at 25°C, the fresh ASW is stored at room temperature and allowed to equilibrate to the water bath temperature for approximately 10 minutes before being added to the leaching vessel.
 - b. For experiments run at low temperature (4°C), the solvent is stored in the refrigerator overnight at 4°C before being added to the leaching vessel.
 - c. Replenish the sample with fresh ASW, measured using a clean 1-liter graduated cylinder, and slowly pour the ASW into the new leaching vessel, to slowly submerge the sample.
 - d. Swirl or tap the closed leaching bottle on the counter to displace air bubbles trapped around the source material, ensuring that the source material is wetted. Do not shake the leaching vessel or air from above the liquid will become trapped in the sample cage, and will need to be dislodged.
 - e. The ID numbers, time of transfer, volume of transfer (by mass), volume of replenishment, and personnel initials are logged into the Quantitative Analysis Sampling section of the logbook.
 - f. The new leachate bottle is then returned to the water bath or the refrigerator to continue leaching.
 - g. The forceps are rinsed thoroughly with HPLC-grade methanol and wiped off with Kimwipes between uses. They are stored in a vial of clean HPLC-grade methanol when not in use.

4. Storing & Shipping

- a. Samples of leachate that were decanted in step 1 are weighed, logged in log book, and placed in a 4°C refrigerator to await shipment for analytical chemistry analysis.
- b. Samples stored at 4°C are shipped overnight on wet ice to be extracted within 7 days of sampling.
- c. Enclose a manifest/chain of custody form with the shipment and keep a copy on file.
- d. Inform recipient. Communicate shipment details by email or phone/fax.

IV. Leaching Vessel/Bottle Changes Without Quantitative Sample Collection

- 1. Perform leaching vessel/bottle changing without quantitative analysis sampling by generally following the outline in III above, but with the following deviations:
 - a. Instead of decanting into a sample bottle, directly decant leachate into the new leaching vessel/bottle to continue using the same ASW leachate. No clean new ASW leachate is required.

- b. Transfer the caged solid to the new leaching vessel as described above, but it will be placed into the old ASW leachate, rather than into an empty leaching vessel followed by clean ASW.
- 2. Leaching Vessel/Bottle changes are required weekly whether or not quantitative analysis sampling is done. This minimizes PCB sorption onto the inner walls of the leaching vessel.

V. PCB Screening (Immunoassay) Sample Collection

- 1. Immunoassay aliquots (2mL) are subsamples of the Quantitative Analysis sample bottle collected prior to refrigerated storage.
- 2. Disposable glass pipettes are precleaned with HPLC grade methanol twice and allowed to dry or are dried with clean, dry air. Store pipettes cleaned in this manner in a dry dust-free environment.
- 3. Prior to sampling, rinse a precleaned disposable pipette with HPLC grade methanol twice and dispense as waste. Shake it dry or allow the pipette to dry prior to rinsing with clean ASW.
- 4. Pipette ~2mL of the Quantitative Analysis sample into a certified precleaned, labeled and tared amber vial with Teflon septum. (Make sure the Quantitave Analysis sample was weighed prior to this step for future mass balance purposes. See Storing/Shipping section above.)
- 5. Log the sample ID number(s), time of transfer, and personnel initials into the Immunoassay Sampling section of the logbook.
- 6. The Immunoassay vial and Quantitative Analysis sample bottle are then placed in the refrigerator for storage.

Summary: Method Detection Limits

The U.S. Environmental Protection Agency defines the method detection limit (MDL) to be "the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero."[1] This procedure consists of preparing and analyzing seven aliquots of a standard spiked at three to five times the expected MDL. The MDL is defined as approximately three times the standard deviation of the mean value for the seven analyses. The Arthur D. Little Environmental Monitoring and Analysis laboratory (ADL) calculated sample-specific method detection limits (sometimes referred to as minimum detection limits) by adjusting the MDL for sample-specific preparation factors such as sample mass extracted, percent solid content, and dilution factors. It was the sample-specific MDL that was reported in the electronic data deliverables submitted to the Navy for the organic compound results.

Sample-specific MRLs calculated for each sample were based on the concentration of the lowest level calibration standard adjusted for all sample preparation factors. ADL's MRL was consistent with a practical quantitation limit (PQL). The MRL is considered to be the value at which the results can be accurately quantitated. Results reported at concentrations less than the MRL (and thus less than the lowest calibration standard) were qualified with a "J" by the laboratory to indicate that the result was an estimated value. In general, on a compound-by-compound basis, the MRLs were normally 3 to 10 times greater than the MDL.

The fundamental difference between detection limits and quantitation/reporting limits is that detection limits are considered the lowest concentration that can be accurately detected by the method, whereas, quantitation limit is considered the lowest concentration that can be accurately quantitated by the method. Thus, results reported at concentrations below the quantitation/reporting limit were considered to be estimated values and qualified with a "J". Often, the quantitation limit is set at the concentration equal to the concentration of the lowest level calibration standard. For example, within a Contract Laboratory Program (CLP) type Statement of Work for Organics, the contract required quantitation limit (CRQL) is equal to the lowest level calibration standard adjusted for sample preparation factors.

For the PCB-LRS project, any compound confirmed to be present in the sample (e.g., mass spectrum meets identification criteria) was reported as a positive result regardless of the result concentration. All results detected at concentrations below the sample-specific MRL were qualified with a "J" flag by the laboratory. These results were considered to be estimated values due to uncertainty in quantitation below the calibrated range of the instrument. Occasionally, there were also positive results reported at concentrations below the MDL when the compound identification criteria were met. If a compound was not detected or did not meet the compound identification criteria, the compound was reported as a nondetect (ND). In electronic data deliverables, the nondetect values were reported with a value of zero and a "ND" qualifier. It was left to the judgment of the PCB-LRS Principal Investigator to determine the best value to be used for nondetects based on specific data analysis needs.

Summary: Quality Assurance and Quality Control

A number of quality assurance (QA) measures were added to the processing of samples to monitor quality control (QC) and to aid in the assessment of the usability of the data with respect to the project objectives. An important part of this was the evaluation of specific QA/QC samples for accuracy, precision, and potential contamination. The method summaries in the performance-based contract project-specific work plan and reproduced in this report contain details of the quality control samples required for each analytical method. The data quality analyses and Data Quality Objectives (DQO) for the PCB analysis methods are summarized in the Table below..

Each lot of solvent received at the ADL laboratory was tested by the applicable analytical method to determine potential solvent contamination prior to use. Preparation of analytical standards in analytical grade solvents is described in the relevant laboratory SOP. Prior to spiking the samples with surrogate, matrix spike, and/or internal standard solutions, all standard solutions were analyzed to determine accuracy of preparation and potential contamination.

Instruments were calibrated prior to sample analysis by analyzing standard solutions containing the target and surrogate compounds at different concentration levels spanning the concentration range of interest. The linearity of the instrument over the selected concentration range was also checked. A continuing calibration standard was analyzed regularly to check the stability of the instrument response and the compound retention times. If the variability of either the initial calibration or the daily calibration did not meet the criteria set in the project-specific work plan, a new calibration was run and the affected samples reanalyzed.

To assess the accuracy of the calibration standards, an independent reference material (IRM) was analyzed. Instrument calibration was considered acceptable if the reported concentrations of the compounds in the IRMs were within 15 percent of the target concentrations for GC-ECD analysis, and within 20% for GCMS-SIM.

Standard Reference Materials (SRMs) were obtained from National Institute of Standards and Technology (NIST) and are samples that have been repetitively analyzed to determine certified values. SRMs were used to assess the effect of the sample processing procedures and matrix on method accuracy.

A procedural blank was processed and analyzed with each sample preparation batch in order to monitor potential contamination resulting from laboratory solvents, reagents, glassware, and processing procedures. These procedural blanks are for evaluating the analytical laboratory methods. They are different from the leaching experiment procedural blanks described previously (in the subsample preparation section), for which leachate samples were collected and analyzed as typical seawater leachate samples, to determine potential contamination during laboratory leaching operations.

Blank spikes and blank spike duplicates were prepared by spiking representative target compounds into a blank matrix to assess the effect of the sample processing procedure independent of sample matrix effects on method accuracy and precision. Duplicates samples were prepared by extracting and analyzing a second representative aliquot of sample. Comparisons of the original and duplicate sample results were used to assess the effect of the sample processing procedures and sample matrix effects on method precision. A surrogate is a known compound, which is not present in environmental samples, that is added to a sample prior to processing. The chemical properties of the surrogate compounds must be close to the target compounds. The surrogate was measured to assess the sample preparation efficiency and impacts of sample handling. Surrogates may also be used to adjust the target compound concentrations to

correct for loss during sample preparation (surrogate correction). Surrogates were added to all samples prior to preparation.

Target compound concentrations, surrogate and matrix spike recoveries, and additional QC sample results were determined. After careful checking and review, analysts transferred data electronically from the instrument data systems to ADLs data management software for further data review, qualification, and edits. All data summary forms were generated from the data management software and were compared with the instrument quantitation reports for accuracy. The data summaries were arranged in spreadsheet format.

The chemistry data for each analysis were reduced and reviewed by ADL laboratory staff and then assembled into the final laboratory data package. The assembled package was reviewed and validated by the facility supervisor or staff responsible for each analysis. The data were checked to ensure that data quality objectives were met, that the analyses met the project objectives, and that the data were traceable and defensible. The Project Manager also reviewed the data for compliance with the documented procedures and quality objectives. Data were also reviewed for internal consistency and against expected or known values. All final laboratory data packages and the associated electronic data deliverables were audited by the Quality Assurance Manager or data review specialists according to the procedures outlined in ADLs data auditing SOP.

As previously mentioned, all results detected at concentrations below the sample-specific minimum reporting limit (MRL) are qualified with a "J" by the laboratory. These results are considered to be estimated values due to uncertainty in quantitation below the calibrated range of the instrument and due to increased variability at concentrations near the method detection limit (MDL).

Data quality objectives and criteria for PCB congeners, homologs, and Aroclors by GC/MS SIM, PCB Congeners by GC/ECD.

Element or Sample Type	Minimum Frequency	Data Quality Objective/Acceptance Criteria				
Initial Calibration	Prior to every batch sequence.	5-point curve. %RSD <25% for 90% of analytes and <35% for all analytes.				
Continuing Calibration	Must end analytical sequence and every 12 samples or 18 hours, whichever is more frequent.	%D <25% for 90% of analytes and <35% for all analytes.				
Procedural Blank	Every batch/every 20 field samples.	No more than 2 analytes to exceed 5x PQL unless analyte was not detected in associated sample(s) or associated sample compound concentrations are >10x blank value.				
Blank Spike/Blank Spike Duplicate Sample	Every batch/every 20 field samples.	50-150% recovery, RPD <35%.				
Duplicate Analysis	One per 40 field samples.	RPD <35% for all analytes that are detected at concentrations >10 times the MDL; mean RPD <35%.				
Matrix Spike, Matrix Spike Duplicate Sample	Every batch/every 20 field samples.	45-150% recovery, RPD <35%.				
Surrogate Standards	Every sample.	45%-125%: all surrogates, one is allowed out				
IRMs (SRM specified per batch)	One set per batch of samples after every ICAL.	Values ≤20% (<15% for GC-ECD) difference of true value for all certified analytes.				

Summary: Sample Custody Procedures

Sample custody control was maintained at each laboratory through the use of several tracking systems designed to protect sample integrity. The sample custodian initiated laboratory chain of custody documentation when the sample was relinquished by the courier. Samples were inspected to ensure that:

- minimum sample volumes were received,
- appropriate containers and preservatives were used,
- acceptable sample conditions were maintained (e.g., temperature, no breakage), and
- samples were received within allowed shipping time (e.g., next-day air).

Immediately upon receipt by the analytical laboratory, the sample custodian assessed and documented the conditions of the samples and initiated sample login. The contents of each shipping container were checked against the information on the chain of custody forms. Temperature blank samples were checked to verify that samples were maintained within specified temperature ranges. If anomalies were noted in the chain of custody form, the ADL Project Manager was informed. Any samples that were improperly preserved were noted on the chain of custody form and SSC-SD personnel) were notified immediately. The SSC-SD personnel and ADL Project Manager then determined the necessary corrective action. The laboratory assigned an internal unique identifier to each sample, or used the sample identification number assigned in the field with the container number and project name to track individual sample containers so that the sample would not be confused with samples from another project.

The field chain of custody document was completed and maintained in the project file. While within the laboratory, the sample was held in appropriate storage areas to maintain sample integrity. Upon completion of the analysis, any remaining sample was placed into long-term storage. When sample analysis and all quality control checks were completed and a final data report was issued, the unused sample portion and/or extract was stored up to six months or longer if requested by the SSC SD Principal Investigator. Samples were sent to SSC-SD for archiving if requested and were not disposed of without the written permission of the SSC-SD Principal Investigator. Sample disposal was then documented in the project file.

Arthur D. Little (ADL) Sample Preparation and Analysis Method Summaries

Sample Preparation Procedure of Water Samples for PCB Analyses

Water samples were extracted for semivolatile organic compounds per Arthur D Little's (ADLs) Standard Operating Procedure (SOP) ADL-2824, "Extraction of Semivolatile Hydrocarbons and PCBs/Pesticides from Water Samples". This method is similar to EPA SW-846 Method 3510B, Separatory Funnel Liquid-Liquid Extraction. With every sample preparation batch the following quality control samples were prepared: procedural blank (PB), blank spike (BS), and blank spike duplicate (BSD). Each environmental and quality control sample was transferred to a separatory funnel and spiked with polychlorinated biphenyl (PCB) surrogate solutions prior to the first addition of the extraction solvent. The concentration of the surrogate compounds spiked into the samples was determined based on the expected contamination level in the samples. For this project, all surrogates were spiked at low levels in the water samples. In addition to the surrogate solution, the BS and BSD quality control samples were spiked with a subset of the target PCB compounds.

Organic compounds were extracted from the water samples using the organic solvent dichloromethane. For each sample, a 120-mL aliquot of solvent was added to the separatory funnel and the separatory funnel was sealed and shaken vigorously for 1-2 minutes. The organic layer was allowed to separate from the water phase and then was drained into a flask. This extraction procedure was repeated two more times with fresh aliquots of solvent. The 3 solvent extracts per sample were combined and water was removed from the combined extract by adding approximately 75 g of sodium sulfate. All extracts were concentrated to approximately 1 mL, using Kuderna-Danish (KD) concentrators and nitrogen evaporation. Extracts were split into archive and working volumes. The working extract volume was exchanged into hexane for PCB analyses.

Sample Preparation Procedure of Shipboard Solid Samples for PCB Analyses

Shipboard solid samples were extracted for semivolatile organic compounds (SVOCs) per ADLs SOP ADL-2819.04, "Extraction of Polychlorinated Biphenyls and Chlorinated Pesticides from Sediment or Shoreline Soil Samples." The solids were thoroughly cut or ground up into small pieces and returned to the original sample container for chemical analysis. Approximately 75 grams of sodium sulfate was mixed into each sample, followed by the addition of 100 mL of 50:50 dichloromethane/acetone. Each environmental and quality control sample was spiked with PCB surrogate solution prior to the first addition of the extraction solvent. The QC samples that were processed along with the samples included one procedural blank (PB), one blank spike (BS), and one blank spike duplicate (BSD). The concentration of the surrogate compounds spiked into the samples was determined based on the expected contamination level in the samples. For this project, all surrogates were spiked at high levels in the shipboard solid samples. In addition to the surrogate solution, the BS, BSD, quality control samples were spiked with a subset of the target PCB compounds.

Organic compounds were extracted from the sediment samples using a 50:50 mixture of the organic solvents dichloromethane and acetone. For each sample, a 100-mL aliquot of solvent

was added to the original sample container and placed on an orbital shaker for 12 hours. The samples were centrifuged and the organic solvent layer was decanted into a flask. This extraction procedure was repeated two more times with fresh aliquots of solvent and shaking for a shorter period of time. The 3 solvent extracts per sample were combined and water was removed from the combined extract by adding approximately 75 g of sodium sulfate. Alumina column cleanups were performed on the sample extracts to remove potential contamination that would interfere with sample analysis. All extracts were concentrated to approximately 1 mL, using KD concentrators and nitrogen evaporation. Extracts were split into archive and working volumes. The working extract volume was then exchanged into hexane for PCB analyses.

PCB Congeners, Homologues, and Aroclors by Gas Chromatography/Mass Spectrometry in the Selected Ion Monitoring Mode

Water and Shipboard Solid extracts were analyzed for PCB congeners, homologues, and Aroclors per ADLs SOP ADL-2845, "Determination of PCBs by Gas Chromatography/Mass Spectrometry in the Selected Ion Monitoring Mode." ADLs PCB analysis method is a modified version of EPA's Method 680. The target PCB congeners, homologues, and Aroclors are tabulated below. The GC/MS was operated in SIM mode to obtain the desired sensitivity that is comparable to that of a GC equipped with an ECD. The GC/MS was first tuned with PFTBA to verify accurate mass assignment and to maximize the sensitivity of the instrument in the mass range of interest (100 to 300 atomic mass units). After tuning, an initial calibration was performed which consisted of five calibration standards, at different concentration levels, spanning the concentration range of interest. Average response factors for each target compound and surrogate are calculated from the initial calibration standards relative to the internal standard compounds added to the sample extracts just prior to instrumental analysis. Continuing calibration standards, at a mid-range concentration level, were analyzed every 16 hours or after every 10 sample analyses, whichever was more frequent, to monitor sensitivity and linearity of the GC/MS. Sample analyses were performed *only* after acceptable calibration analyses were obtained. The average response factors generated from the initial calibration were used to calculate the concentrations of target compounds and surrogates in the environmental and quality control samples. The recoveries of the surrogate compounds spiked into the sample prior to extraction were used to assess sample-specific extraction efficiency. The target compound concentrations were adjusted based on sample-specific surrogate recoveries to correct for differences in extraction efficiency.

PCB Congeners by Gas Chromatography/Electron Capture Detector

Shipboard Solid extracts were analyzed for PCB congeners per ADLs SOP ADL-2818, "Determination of Chlorinated Pesticides and PCB Congeners by Gas Chromatography/Electron Capture Detection." ADLs PCB congener analysis method is a modified version of EPA's SW-846 Method 8081 using dual, dissimilar columns and dual detectors. A Restek RTX-5 column (or equivalent) was used as the primary column and a DB-17 column (or equivalent) was used as the confirmation column. The target PCB congeners are listed in Table 2. Prior to sample analysis, an initial calibration was performed which consisted of five calibration standards, at different concentration levels ranging from 1 to 200 ng/mL. Average calibration factors for each target compound and surrogate are calculated from the initial calibration standards (external standardization). Continuing calibration standards, at a mid-range concentration level, were

analyzed at the end of each analytical sequence and every 16hours or every 10 sample analyses, whichever was more frequent, to monitor sensitivity, retention time stability, and linearity of the GC/ECD. Sample analyses were performed *only* after acceptable calibration analyses were obtained. The average calibration factors generated from the initial calibration were used to calculate the concentrations of target compounds and surrogates in the environmental and quality control samples. When coelution occurred between one or more target compounds or when interference occurred on the primary column, the results were reported from the confirmation column for the affected compounds. Compound identification was based on 1) detecting a peak within the established retention time window for a specific compound on both the primary and confirmation columns and 2) the analyst's judgment. The recoveries of the surrogate compounds spiked into the sample prior to extraction were used to assess sample-specific extraction efficiency. The target compound concentrations were adjusted based on sample-specific surrogate recoveries to correct for differences in extraction efficiency.

Sample Receipt

Water samples and shipboard solid samples were collected by SPAWAR. The samples were transported to the laboratory at appropriate temperatures and under strict chain-of-custody procedures. Arthur D. Little received the study samples intact and in good condition. A listing of the project samples, copies of the chains-of-custody, sample results, and quality assurance/quality control (QA/QC) results are included in the ADL data reports.

Quality Assurance/Quality Control

Quality Assurance

For this project, sample processing was conducted in accordance with the laboratory's Quality Assurance Plan (QAP). The plan describes the laboratory's quality assurance (QA) structure and organization. The following is a general description of some of the plan elements as they apply to this project. Exceptions to the quality control elements are documented and filed with the appropriate laboratory report.

Laboratory Records

Detailed laboratory records were maintained throughout the processing of samples. All raw instrumental data are archived electronically. Completed records or copies of forms were collated into a binder as a final data package with sufficient detail for audit. The final laboratory data package includes:

- Lot numbers, vendor, and preparation records for reagents and standards
- Sample preparation records
- Analytical procedures used that are not documented in laboratory SOPs
- Instrument analysis records
- Instrument raw data hardcopy
- Documentation of observations or deviations encountered

Quality Control

A number of measures were added to the processing of samples to monitor quality control (QC) and to aid in the assessment of the usability of the data with respect to the project objectives. An important part of this was the evaluation of specific QC samples for accuracy, precision, and potential contamination. The method summaries included in this report and the project-specific work plan contain details of the quality control samples required for each analytical method.

Data quality analyses and Data Quality Objectives (DQOs) for the PAH and PCB analysis methods are summarized in Tables below. The following is a general description of quality control samples and their relevance.

Solvent Checks

Each lot of solvent received at the laboratory was tested by the applicable analytical method to determine potential solvent contamination prior to use.

Standard Checks

Preparation of analytical standards is described in the relevant laboratory SOP. Prior to spiking the samples with surrogate, matrix spike, and/or internal standard solutions, all standard solutions are analyzed to determine accuracy of preparation and potential contamination.

Instrument Calibration

Instruments were calibrated prior to sample analysis by analyzing standard solutions of containing the target and surrogate compounds at different concentration levels spanning the concentration range of interest. The linearity of the instrument over the selected concentration range was checked. A continuing calibration standard was analyzed regularly to check the stability of the instrument response and the compound retention times. If the variability of either the initial calibration or the daily calibration did not meet the criteria set in the project-specific work plan, a new calibration was run and the affected samples reanalyzed.

Instrumental Standard Reference Material (IRM)

To assess the accuracy of the calibration standards, an independent reference material (IRM) was analyzed. Instrument calibration was considered acceptable if the reported concentrations of the compounds in the IRMs were within 15 percent of the target concentrations (for PAH analysis only).

Standard Reference Material (SRM)

Standard Reference Materials (SRMs) were obtained from National Institute of Standards and Technology (NIST) and are contaminated environmental samples that have been repetitively analyzed to determine certified values. For this project tissue and sediment SRMs were prepared and analyzed with the tissue and sediment samples. SRMs are used to assess the effect of the sample processing procedures and matrix on method accuracy.

Oil Reference Standard

A solution of an assayed crude oil was analyzed with each analytical sequence. The results were compared to previously established laboratory means to assess method accuracy. The solution is also used to provide pattern information and aid in sample fingerprinting (for PAH analysis only).

Procedural Blank

A procedural blank was processed and analyzed with each sample preparation batch in order to monitor potential contamination resulting from laboratory solvents, reagents, glassware, and processing procedures.

Blank Spike

Blank spikes and blank spike duplicates were prepared by spiking representative target compounds into a blank matrix to assess the effect of the sample processing procedure independent of sample matrix effects on method accuracy and precision.

Duplicate

Duplicates samples were prepared by extracting and analyzing a second representative aliquot of a sample. Comparisons of the original and duplicate sample results were used to assess the effect of the sample processing procedures and sample matrix effects on method precision.

Surrogate

A surrogate is a known compound, which is not present in environmental samples, that is added to a sample prior to processing. The chemical properties of the surrogate compounds must be close to the target compounds. The surrogate was measured to assess the sample preparation efficiency and impacts of sample handling. Surrogates may also be used to adjust the target compound concentrations to correct for loss during sample preparation (surrogate correction). Surrogates were added to all samples prior to preparation.

Data Review and Audit

Target compound concentrations, surrogate and matrix spike recoveries, and additional QC sample results were determined in the respective laboratories. After careful checking and review, analysts transferred data electronically from the instrument data systems to ADLs data management software for further data review, qualification, and edits. All data summary forms were generated from the data management software and were compared with the instrument quantitation reports for accuracy. The data summaries were arranged in spreadsheet format.

The chemistry data for each analysis were reduced and reviewed by the laboratory staff and then assembled into the final laboratory data package. The assembled package was reviewed and validated by the facility supervisor or staff responsible for each analysis. The data were checked to ensure that data quality objectives were met, that the analyses met the project objectives, and that the data were traceable and defensible. The Project Manager also reviewed the data for compliance with the documented procedures and quality objectives. Data were also reviewed for internal consistency and against expected or known values. All final laboratory data packages and the associated electronic data deliverables were audited by the Quality Assurance Manager or data review specialists according to the procedures outlined in ADLs data auditing SOP.

Data Usability

No serious data quality issues were noted that would adversely affect the quality or use of these data. All reported data are usable for project objectives.

All results detected at concentrations below the sample-specific minimum reporting limit (MRL) are qualified with a "J" by the laboratory. These results are considered to be estimated values due to uncertainty in quantitation below the calibrated range of the instrument and due to increased variability at concentrations near the method detection limit (MDL). If these data were

validated according to EPA guidelines, additional sample results would have been qualified as estimated (J) due to minor quality control exceedances.

Data Quality Objectives and Criteria for PCB Congeners, Homologues, and Aroclors by GC/MS SIM:

Element or Sample Type	Minimum Frequency	Data Quality Objective/ Acceptance Criteria			
Initial Calibration	Prior to every batch sequence.	5-point curve. %RSD <25% for 90% of analytes and <35% for all analytes.			
Continuing Calibration	Must end analytical sequence and every 10 samples or 16 hours, whichever is more frequent.	%D <25% for 90% of analytes and <35% for all analytes.			
Procedural Blank	Every batch/every 20 field samples.	No more than 2 analytes to exceed 5x PQL unless analyte was not detected in associated sample(s) or associated sample compound concentrations are >10x blank value.			
Blank Spike/Blank Spike Duplicate Sample	Every batch/every 20 field samples.	50-150% recovery, RPD <35%.			
SRMs (SRM 1941a for sediment, 1974a for tissue)	Every batch/every 20 field samples.	Values ±35% difference of true value for all certified analytes, two may exceed.			
Duplicate Analysis	One per 40 field samples.	RPD < 35% for all analytes that are detected at concentrations >10 times the MDL; mean RPD <35%.			
Matrix Spike, Matrix Spike Duplicate Sample	Every batch/every 20 field samples.	45-150% recovery, RPD <35%.			
Surrogate Standards	Every sample.				
		45%-125% all surrogates, one is allowed out			
IRMs	One set per batch of samples after every ICAL.	Values <20% difference of true value for all certified			

	analytes
	anary tos.

Data Quality Objectives and Criteria for PCB Congeners by GC/ECD:

Element or Sample Type	Minimum Frequency	Data Quality Objective/ Acceptance Criteria				
Initial Calibration	Prior to every batch sequence.	5-point curve. %RSD <25% for 90% of analytes and <35% for all analytes.				
Continuing Calibration	Must end analytical sequence and every 10 samples or 16 hours, whichever is more frequent.	%D <25% for 90% of analytes and <35% for all analytes.				
Procedural Blank	Every batch/every 20 field samples.	No more than 2 analytes to exceed 5x PQL unless analyte was not detected in associated sample(s) or associated sample compound concentrations are >10x blank value.				
Blank Spike/Blank Spike Duplicate Sample	Every batch/every 20 field samples.	50-150% recovery, RPD <35%.				
SRMs (SRM 1941a for sediment, 1974a for tissue)	Every batch/every 20 field samples.	Values ±35% difference of true value for all certified analytes, two may exceed.				
Duplicate Analysis	One per 40 field samples.	RPD < 35% for all analytes that are detected at concentrations >10 times the MDL; mean RPD <35%.				
Matrix Spike, Matrix Spike Duplicate Sample	Every batch/every 20 field samples.	45-150% recovery, RPD <35%.				
Surrogate Standards	Every sample.	45%-125% all surrogates, one is allowed out				
IRMs	One set per batch of samples after every ICAL.	Values <15% difference of true value for all certified analytes GC-ECD.				

1. The EPA procedure used for establishing MDLs is described in Appendix B to Part 136 "Definition and Procedure for the Determination of the Method Detection Limit - Revision 1.11," 40 CFR 136, 1986.

Arthur D. Little (ADL) Standard Operating Procedure 2845 (SOP ADL-2845): Determination of PCBs by Gas Chromatography/Mass Spectrometry in the Selected Ion Monitoring Mode

The following is excerpted in its entirety from SOP ADL-2845 and correspons to the SOP in use when the PCB Leach Rate Study (PCB-LRS) was initiated in 1999. Wherever appropriate, the PCB-LRS-specific Data Quality Objectives supercede the following SOP, which should be considered a general guide for laboratory personnel only.

1. Purpose

This standard operating procedure (SOP) describes the method used for analyzing prepared sample extracts for polychlorinated biphenyls (PCBs) by gas chromatography/mass spectrometry (GC/MS) in the select ion monitoring mode (SIM).

2. Application

This SOP applies to the analysis of PCB congeners in water, sediment, biological tissue and oil sample extracts. The target analytes listed in Table 1 are determined in the concentration range of parts per trillion (ng/L) for water samples, parts per billion (ng/g) for sediment and tissue samples, and parts per million (mg/Kg) for oil samples. However, the target analyte list is not limited to those listed in Table 1. This method of analysis can be used for other PCB congeners which can be resolved using the chromatographic conditions provided in this SOP. Samples with any PCB concentration can be analyzed by this SOP if the appropriate extract dilutions and/or splits are made to bring the extract concentrations within the working range of the calibration standards. Prepare extracts for analysis by GC/MS SIM according to the appropriate sample extraction and fractionation/cleanup procedures as noted in the case specific workplan or specific QA Plan. Base concentrations on the amount of analyte per volume (ng/L) for water samples, per dry weight (ng/g) for sediment and tissue samples, and per oil weight (mg/Kg) for oil samples. Operate instruments at maximum sensitivity to achieve the desired method detection limits (MDL) and minimum reporting limit (MRL). Reporting limits for individual PCB compounds are based on a low calibration standard 25 ng/mL, sample size, PIV, and any required dilution.

3. References

Federal Register (1984), Vol. 49, and No. 209: pp 198-199

United States Environmental Protection Agency (U.S. EPA). 1985. Test Methods for Determination of Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/ Mass Spectroscopy, Method 680, Physical and Chemical Methods Branch, Environmental Monitoring and Support Laboratory Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio

4. Associated SOPs

Refer to the latest revision of the appropriate SOP when necessary.

ADL-2814 Standards Preparation and Ampoule Sealing.

ADL-2819 Extraction of Polychlorinated Biphenyls (PCBs) and Chlorinated Pesticides from Sediment or Shoreline Soil Samples.

ADL-2820 Extraction of Polychlorinated Biphenyls (PCBs) and Chlorinated Pesticides from Water Samples.

ADL-2821 Fractionation/Cleanup of Sample Extracts for PCB and

Chlorinated Pesticide Analyses.

ADL-2831 Extraction of Polychlorinated Biphenyls (PCBs) and Chlorinated Pesticides from Biological Tissue Samples

ADL-5035 Procedure for Cleaning an Hewlett-Packard GC/MS Source

ADL-5036 Procedure for Injection Port Maintenance for the HP5890A Gas Chromatograph in the GC/MS Facility

ADL-5037 Procedure for Column Replacement in the Hewlett-Packard GC/MS System ADL-5038 Procedure for Tuning the Hewlett Packard MSD within the GC/MS Facility

5. Supplies and Equipment

5.1 Glassware

Glass vials - GC autosampler vials with micro inserts and Teflon lined caps Syringes - 10 uL and larger Pipets - glass, disposable

5.2 Reagents and Standards

5.2.1 Reagents

Acetone, methanol, methylene chloride, and hexane residue analysis grade or equivalent.

5.2.2 Standards

Prepare all standard solutions according to SOP ADL-2814.

5.2.2.1 Stock Standard Solutions. Stock standard solution may be purchased or prepared using the following procedure. Purchased certified standards are recommended. Prepare stock standard solutions by accurately weighing about 0.0100 g of pure material. Dissolve the material in methylene chloride or another suitable solvent and dilute to volume in a 10mL volumetric flask. Larger volumes may be used at the convenience of the analyst. Fresh stock standards must be prepared once every twelve months or sooner if standards have degraded or concentrated. Stock standards must be checked for signs of degradation or concentration just prior to preparing secondary dilution and working standards from them.

5.2.2.2 Secondary Dilution Standards. Using stock standards, prepare secondary dilution standards in methylene chloride that contain the compounds of interest either singly or mixed together. Purchased secondary dilution standards are recommended.

Fresh secondary dilution standards must be prepared once every twelve months or sooner if standards have degraded or concentrated. Secondary dilution standards must be checked for signs of degradation or concentration just prior to preparing working standards from them.

5.2.2.3 Working Standards

Surrogate Standard Spiking Solution Prepare surrogate compound solutions and add to each sample and quality control sample prior to extraction as described in the extraction SOPs. The surrogate solution contains 4,4'-dibromoctafluorobiphenyl (DBOFB) and PCB congeners 103 and 198. Although the sample extract concentrations are calculated versus the internal standard, target analyte concentrations may be corrected for surrogate recovery of PCB.

Matrix Spiking Solution. With each batch of samples, analyze matrix spike (MS) and matrix spike duplicate (MSD) quality control samples. Spike these quality control samples with a matrix spike solution containing PCB congeners listed in the respective extraction SOPs.

Internal Standard Solution. Add an internal standard solution containing tetrachloro-m-xylene (TCMX) to the extracts just prior to instrumental analysis. Prepare the internal standard solution by weighing an appropriate amount of the purified compound into a volumetric flask and diluting to volume with hexane or iso-octane. Use the internal standard to determine the relative recovery of the surrogate compounds. If there is need to dilute and reanalyze the extract in order to bring analytes with very high concentrations within the calibration range, additional TCMX must be added.

Initial and Continuing Calibration Solutions. Prepare a stock solution for each PCB congener. From this stock solution, prepare three to six calibration solutions (refer to QA Plan) of different concentrations (5-500 ng/mL). The lower end of the calibration range is limited by the sensitivity of the GC/MS and should be established such that analytes at the target method detection limit (MDL) respond within the calibration range. If low part-per-billion detection limits are not

required, the lower end of the calibration range may be raised to 25 or 50 ng/mL. The upper end of the calibration range is limited by the GC/MS response. Samples with analyte concentrations that produce responses outside this calibration range should be diluted until analyte responses fall within the range. The surrogate compounds vary with concentration, while the internal standard concentration remains constant at 500 ng/mL in all calibration standards. You can adjust the calibration standards to meet instrumental sensitivity requirements (ie., the low standard should produce approximately a 5-to-1 signal-to-noise ratio).

5.2.3 Ampulated Standard Extracts

Standard solutions purchased from a chemical supply house as ampulated extracts in glass vials may be retained for 2 years from the preparation date, unless the manufacturer recommends a shorter time period. Standard solutions prepared by the laboratory which are immediately ampulated in glass vials may be retained for 2 years from the preparation date. Upon breaking the glass seal, the expiration times listed apply.

5.2.4 Storage of Standard Solutions

Store the stock and secondary dilution standard solutions at less than 4 °C but not greater than 6 °C in Teflon-lined screw-cap amber bottles. Fresh standards should be prepared every twelve months at a minimum.

Store the working standards at less than 4 °C but not greater than 6 °C in Teflon-sealed containers. The solution should be checked frequently for stability. These solutions must be replaced after twelve months or sooner if comparison with quality control check samples indicates a problem.

Protect all standards from light. Samples, sample extracts and standards must be stored separately.

6. Procedure

6.1 Preparation of Sample Extracts for Instrumental Analysis

Prepare samples and sample extracts according to appropriate SOPs and/or project specific workplan. Extracts are concentrated to the determined final volume prior to spiking with internal standard. The extracts are submitted at a pre-injection volume (PIV) of .25 mL unless stated otherwise in the case specific workplan. The recovery internal standard is spiked at 500 ng/mL (concentration - accounting for changes in final volume) unless stated otherwise in the case specific workplan.

6.2 Instrument Conditions

The GC/MS system is a Hewlett Packard 5970 MSD interfaced to an HP5890 GC with an HP7673A autosampler or a Hewlett Packard 5973 MSD interfaced to an HP6890 GC with an HP7683A autosampler. Attachment 1 contains details of the instrument acquisition parameters.

6.2.1 Gas Chromatograph

The following are the gas chromatographic analytical conditions.

- Initial Column Temperature Hold 75 °C for 2 minutes
- Column Temperature Program 75-150 °C at 15 C°/minutes

150-300 °C at 1.2 C°/minutes

- Final Column Temperature Hold 300 °C for 1 minute
- Injector Temperature 250 °C
- Transfer Line Temperature 280 °C
- Source Temperature According to manufacturer's specifications
- Injector splitless
- Sample Volume 2 μL
- Carrier Gas Helium at 1 mL/min

The column used is a 30 m x .25 mm ID x .25 μ m film thickness with RTX-5 (Restek) bonded phase, or equivalent.

Prior to each analysis, perform injection port maintenance per SOP ADL-5036. The liner used is a 4mm liner without glass wool. Optimize GC conditions for analyte separation and sensitivity. Once optimized, the same GC conditions must be used for the analysis of all standards, samples, blanks, matrix spikes and matrix spike duplicates.

6.2.2 Mass Spectrometer

The following are the required mass spectrometer analytical conditions:

Electron Energy 70 volts (nominal)

Mass Range 35 to 500 amu

Scan Time Not to exceed 1 second per scan

6.2.2.1 Selected Ion Mode Ions and Windows. The mass spectrometer scans for the quant ions and confirmation ions listed in Table 3 for the time required for each compound to elute. Refer to Attachment 1 for the group and dwell times.

6.3 GC/MS Mass Calibration (Tuning) and Ion Abundance

6.3.1 Summary of GC/MS Instrument Performance Check

Prior to analysis, tune the instrument per SOP ADL-5038. This procedure utilizes perfluorotributylamine (PFTBA) to tune the mass spectrometer and maximize the sensitivity of the instrument.

6.3.2 Frequency of GC/MS Instrument Performance Check

The instrument performance check solution must be analyzed once at the beginning of each analytical sequence.

6.3.3 Procedure for GC/MS Instrument Performance Check

The procedure for tuning the mass spectrometer is described in SOP ADL-5038.

6.3.4 Technical Acceptance Criteria for GC/MS Instrument Performance Check

The technical acceptance criteria for tuning the mass spectrometer is as follows:

Mass 69 100%; response greater than 100,000 area counts

Mass 219 40-65% of mass 69

Mass 502 4-12% of mass 69

6.3.5 Corrective Action for GC/MS Instrument Performance Check

If the acceptance criteria are not met, check the GC and MS and retry tuning. Continued failure may necessitate other action, the most likely being the cleaning of the ion source. Other actions may also be required such as changing the column, cleaning quadrupoles, or cleaning the GC system.

6.4 Initial Calibration

6.4.1 Summary of Initial Calibration

Prior to the analysis of samples and required blanks, and after the instrument performance check solution criteria have been met, calibrate the GC/MS system at a minimum of five concentrations to determine instrument sensitivity and the linearity of GC/MS response for the target compounds.

6.4.2 Frequency of Initial Calibration

The GC/MS system must be calibrated at the beginning of each analytical sequence and as indicated by the evaluation of the continuing calibration standard.

6.4.3 Procedure for Initial Calibration

All standard/spiking solutions and blanks must be allowed to warm to ambient temperature (approximately 1 hour) before preparation or analysis.

Prepare three to six calibration standards containing all the target and surrogate compounds at the following concentrations: 5, 25, 50, 100, 200, and 500 ng/mL. The internal standard compounds should be at a level of 500 ng/mL

NOTE: It is permissible, if necessary, to adjust the calibration levels to meet instrumental sensitivity requirements. For example, the low standard should yield approximately a 5-to-1 signal-to-noise ratio. If it does not, the concentration may either be lowered or raised to meet these requirements. Analyze each calibration standard by injecting 1 μ L.

6.4.4 Calculations for Initial Calibration

Calculate the relative response factors (RRF) for each target and surrogate compound using Equation 1 and the primary characteristic ions found in Table 3. For internal standards, use the primary ion listed in Table 3 unless an interference is present. If an interference prevents the use of the primary ion for TCMX, use the secondary ion(s) listed in Table 3.

NOTE: Unless otherwise stated, the area response of the primary characteristic ion is the quantitation ion.

Equation 1

$$RRF = \frac{A_x}{A_{is}} \times \frac{C_{is}}{C_x}$$

Where,

Ax = Area of the characteristic ion for the compound to be measured (see Table 3)

Ais= Area of the characteristic ion for specific internal standard (see Table 3)

Cis= Amount of the internal standard injected (ng)

Cx = Amount of the compound to be measured injected (ng)

The mean relative response factor (RRF) must be calculated for all compounds. Calculate the % Relative Standard Deviation (%RSD) of the RRF values for the initial calibration using the following equation:

Equation 2

_

$$\%RSD = \frac{\text{Standard Deviation}}{\text{Mean}} \times 100$$

Standard Deviation =
$$\sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{(n-1)}}$$

Where,

xi = each individual value used to calculate the mean

x =the mean of n values

n =the total number of values

6.4.5 Technical Acceptance Criteria for Initial Calibration

Acceptance criteria apply only to target compounds and surrogates.

All initial calibration standards must be analyzed at the concentration levels and frequency described above (6.4.2 and 6.4.3).

The %RSD over the initial calibration range for relative response factor for target and surrogate compounds must be less than or equal to the 35% for all compounds. In additional, the %RSD over the initial calibration range for each target and surrogate compound must be less than or equal to the 25% for 90% of all compounds.

If these criteria are met, the RRF is assumed to be constant over the working range and the average RRF may be used for quantiation.

No quantitation ion may saturate the detector. Consult the manufacturer's instrument manual to determine how saturation is indicated.

6.4.6 Corrective Action for Initial Calibration

If any technical acceptance criteria for initial calibration are not met, inspect the system for problems. It may be necessary to clean the ion source, change the column, or take other corrective actions to achieve the acceptance criteria.

Initial calibration technical acceptance criteria must be met before any samples, including matrix spike/matrix spike duplicates or required blanks are analyzed. Any samples, including matrix spike/matrix spike duplicates or required blanks analyzed when initial calibration technical acceptance criteria have not been met will require reanalysis.

6.5 Continuing Calibration

6.5.1 Summary of Continuing Calibration

Prior to the analysis of samples, including MS/MSD and required blanks, and after tuning criteria and initial calibration criteria have been met, each GC/MS system must be routinely checked by analyzing a continuing calibration standard to ensure that the instrument continues to meet the instrument sensitivity and linearity requirements. The continuing calibration standard contains all target and surrogate compounds and internal standards.

6.5.2 Frequency of Continuing Calibration

Each GC/MS calibration used for analysis must be checked once every 14-18-hour time period of operation. It must also be checked at the end of the analytical sequence.

The 18 hour period begins from the time of injection of the continuing calibration check standard. This includes that which is contained in the initial calibration.

6.5.3 Procedure for Continuing Calibration

All standard/spiking solutions and blanks must be allowed to warm to ambient temperature (approximately 1 hour) before preparation or analysis.

Prepare a calibration check standard containing target analytes and surrogate compounds at a concentration of 100 ng/mL. Add internal standards at a concentration of 500 ng/mL. Analyze the continuing calibration standard.

6.5.4 Calculations for Continuing Calibration

Calculate a relative response factor (RRF) for each target and surrogate compound using Equation 1 and the primary characteristic ions found in Table 3. For internal standards, use the primary ions listed in Table 3 unless interferences are present. If interferences prevent the use of the primary ion for a given internal standard, use the secondary ion(s) listed in Table 3.

Calculate the percent difference between the mean relative response factor from the most recent initial calibration and the continuing calibration relative response factor for each target and surrogate compound using Equation 3.

Equation 3

% Difference =
$$\frac{RRF_c - \overline{RRF_i}}{\overline{RRF_i}} \times 100$$

Where:

RRFi = Mean relative response factor from the most recent initial calibration meeting technical acceptance criteria

RRFc = Relative response factor from continuing calibration standard

6.5.5 Technical Acceptance Criteria for Continuing Calibration

Acceptance criteria apply only to target compounds and surrogates. The continuing calibration standard must be analyzed at the 100 ng/mL concentration level at the frequency described (6.5.2) on a properly tuned GC/MS system meeting the initial calibration technical acceptance criteria. The relative response factor percent difference for each target and surrogate compound must be 35% of the initial calibration average RRF for all compounds. In addition, the relative response factor percent difference for each target and surrogate compound must be 25% of the initial calibration average RRF for 90% of all compounds.

No quantitation ion may saturate the detector. Consult the manufacturer's instrument manual to determine how saturation is indicated.

6.5.6 Corrective Action for Continuing Calibration

If these criteria are not met, corrective action must be taken. If no error is determined, a new initial calibration must be analyzed and all samples analyzed since the last valid calibration check must be reanalyzed.

6.6 Sample Analysis by GC/MS

Sample extracts may be analyzed only after the GC/MS system has met the instrument performance check, initial calibration, and continuing calibration requirements. The same instrument conditions must be employed for the analysis of samples as were used for calibration. The sample extract is concentrated to a predetermined pre-injection volume (PIV). The typical PIV for this analysis is .25 mL, although smaller and larger volumes are acceptable. Internal standards are added to the extract at a concentration of 500 ng/mL and the extracts are analyzed.

6.6.1 Sample Dilutions

If any split or dilution of the extract is made, the split ratio must be taken into account during final calculations.

If the response of any target compound in any sample exceeds the initial calibration range by more than 10%, that sample extract must be diluted, the internal standard concentration must be readjusted, and the sample extract must be reanalyzed. Guidance in performing dilution and exceptions to this requirement are given below.

Use the results of the original analysis to determine the approximate dilution factor required getting the largest analyte peak within the initial calibration range.

The dilution factor chosen should keep the response of the largest peak for a target compound in the upper half of the calibration range of the instrument.

7. Data Analysis and Calculations

7.1 Qualitative Identification

7.1.1 Identification of Target Compounds

An analyst competent in the interpretation of mass spectra identifies the compounds by comparing the sample mass spectrum to the mass spectrum of the standard of the suspected compound. Comparison is also made to other reference standards such as the standard reference material

standard, and/or other project specific oil samples analyzed. Two criteria must be satisfied to verify the identifications:

- 1. Elution of the sample analyte within GC retention time windows
- 2. Correspondence of the sample analyte and calibration standard component mass spectra

7.1.1.1 GC Retention Time. For establishing correspondence of the GC retention time (RT), the sample component RRT must compare within 0.5 minutes of the standard component. The characteristic masses of each analyte of interest must maximize in the same or within one scan of each other. The retention time must fall within + 10 s of the retention time of the authentic compound or alkyl homologue grouping determined by analysis of reference material.

7.1.1.2 Mass Spectra. For comparison of standard and sample component mass spectra, evaluate the presence of the primary quantiation ion and the confirmation ions of that in the sample and the standard. The relative peak heights of the primary ion compared to the confirmation or secondary ion masses for parent compounds must fall within 20% percent of the relative intensities of these masses in a reference mass spectrum.

In some instances, a compound that does not meet secondary ion confirmation criteria may still be determined to be present in a sample after evaluation. This may occur in the cases where interference is present. Supportive data for this determination should include at the minimum the presence of the secondary ion even though ratio criteria are not met. Document such determinations.

Ions greater than 10.0 percent in the sample spectrum but not present in the standard spectrum must be considered and accounted for by the analyst making the comparison.

Calculations

7.1.2 Target Compounds

Identified target compounds are quantitated by the internal standard method. The internal standard used shall be the one assigned to that analyte for quantitation. The EICP area of primary characteristic ions of analytes listed is used for quantitation.

Integration of peak areas may be performed by an automated computer routine or manually. It is expected that situations will arise where the automated quantitation procedures in the GC/MS software provide inappropriate quantitations. This normally occurs when there is compound coelution, baseline noise, or matrix interferences. In these circumstances, perform a manual quantitation. Manual quantitations are performed by integrating the area of the quantitation ion of the compound. This integration shall only include the area attributable to the specific compound. Do not not include baseline background noise. The area integrated shall not extend past the point where the sides of the peak intersect with the baseline noise. Manual integration is not to be used solely to meet QC criteria, nor is it to be used as a substitute for corrective action on the chromatographic system. Any instance of manual integration must be documented. The average relative response factor (RRF) from the initial calibration analysis is used to calculate the concentration in the sample. Secondary ion quantitation is allowed ONLY when there are sample interferences with the primary ion. If secondary ion quantitation is performed, document the reason. The area of a secondary ion cannot be used for the area of a primary ion unless a relative response factor is calculated using the secondary ion.

Calculate the concentration in the sample using the relative response factor (RRF) and the following equations.

7.1.2.1 Water Equation 5

Concentration
$$ng / L = \frac{(Ax)(I_s)}{(A_{is})(RRF)(V_0)} \times \frac{1}{SF}$$

Where,

Ax = Area of the characteristic ion for the compound to be measured

Ais = Area of the characteristic ion for the internal standard

Is = Amount of internal standard injected in nanograms (ng)

Vo = Volume of water extracted in milliliters (mL)

RRF = Relative response factor determined from the 12-hour calibration standard

7.1.2.2 Soil/Sediment

Equation 6

Concentration
$$ug / kg$$
 (dry weight basis) = $\frac{(A_x)(I_s)}{(A_{is})(RRF)(W_s)} \times \frac{1}{SF}$

Where,

Ax, Is, Ais are as given for water, above.

 $D = 100 - \% \text{ moisture} \times 100$

Ws = Dry weight of sample extracted in grams (g)

RRF= Relative response factor determined from the initial calibration.

7.1.2.3 Tissue

Equation 7

Concentration
$$ug/kg$$
 (dry weight basis) = $\frac{(Ax)(I_s)}{(A_{is})(RRF)(W_s)} \times \frac{1}{SF}$

Where,

Ax, Is, Ais are as given for water, above.

 $D = 100 - \% \text{ moisture} \times 100$

Ws = Dry weight of sample extracted in grams (g)

RRF= Relative response factor determined from the initial calibration.

7.1.2.4 Calculation Versus Surrogate Compounds. There are cases where is s desirable to have compound results compensated for the extraction and preparation efficiency. This is performed by correcting results for the recovery of the appropriate surrogate. It is recommended that this correction be performed after the calculation of sample results as described above. It is permissible to perform this correction during the calculation by substituting the surrogate compounds for the internal compounds in the calculations. This requires that all initial and continuing calibration standards and QC samples by calculated in a similar manner.

7.1.3 Minimum Reporting Limit Calculations

If the compound is not qualitatively identified as described by the criteria above, report the compound as "not detected" at the minimum reporting limit (MRL) calculated as follows: **Equation 8**

$$MRL = (C_{ls})(PIV)(SF) \times \frac{1}{SS}$$

Where,

Cls = Concentration of the low standard

PIV = Pre-injection volume

SF = Split factor

SS = Sample size

7.1.4 Surrogate Recoveries

Calculate surrogate standard recovery on all samples, blanks, matrix spikes and matrix spike duplicates. Determine if recovery is within limits and report the recovery.

Calculate the concentrations of the surrogate compounds using the same equations as used for the target compounds. Calculate the recovery of each surrogate using the following equation:

Equation 9

% R =
$$\frac{(Ax)(Is)(SF)}{(Ais)(RRF)} \times \frac{1}{Qsc} \times 100$$

Where.

Ax, Is, Ais are as given in equation 6

SF = Split factor

RRF = Relative response factor determined from the initial calibration.

7.1.5 Technical Acceptance Criteria for Sample Analysis

The laboratory will spike all samples and quality control samples with surrogate compounds that include DBOFB, PCB103, and PCB198 prior to extraction. The determination of surrogate recoveries will assist in assessing the efficiency of sample preparation and analysis. The sample must have an acceptable surrogate recovery. The sample surrogate recovery will be considered acceptable if it meets the following requirements:

<u>Surrogate</u>	<u>Acceptance Criteria %</u>
DBOFB	50-125
PCB103	50-125
PCB198	50-125

The laboratory will take and document corrective action whenever the surrogate recovery for any one or more surrogates is outside the acceptance criteria for sediment, water, tissue and oil matrices.

The samples must be analyzed on a properly tuned GC/MS system meeting initial calibration, continuing calibration, and blank technical acceptance criteria.

The sample must be extracted and analyzed within holding times.

The sample must have an associated method blank meeting the blank technical acceptance criteria. The instrumental response (EICP area) for each of the internal standards must be within the inclusive range of -50.0 percent and +100.0 percent of the response of the internal standards in the first continuing calibration analysis of the sequence. If internal standard concentrations have been adjusted in the sample extract, adjust areas accordingly for evaluation.

The retention time shift for each of the internal standards must be within 0.50 minutes between the sample and the most recent continuing calibration standard analysis.

No ion may saturate the detector. No target compound area may exceed the upper limit of the initial calibration standards.

7.1.6 Corrective Action

7.1.6.1 Corrective Action for Sample Analysis. The sample technical acceptance criteria must be met before data are reported. Samples contaminated from laboratory sources, or sample results submitted not meeting the sample technical acceptance criteria, will require re-extraction and/or reanalysis.

7.1.6.2 Corrective Action for Surrogate Recoveries Which Fail to Meet Their Acceptance Criteria. If the surrogate compounds fail to meet their recovery acceptance criteria, check calculations, sample preparation logs, the surrogate compound spiking solutions, and the instrument operation. If the calculations were incorrect, correct the calculations and verify that the surrogate compound recoveries meet their acceptance criteria.

If the sample preparation logs indicate that the incorrect amount of surrogate compound spiking solution was added, then re-extract/reanalyze the sample after adding the correct amount of surrogate spiking solution.

If the surrogate compound spiking solution was improperly prepared, concentrated, or degraded, re-prepare solutions and re-extract/reanalyze samples. If the surrogate recoveries were outside the lower surrogate acceptance limit and the extract from the sample was cleaned up or fractionated, verify that the proper amount was injected on the clean-up column. If insufficient sample volume was injected on the clean-up column, the sample must be re-prepared and reanalyzed.

If the instrument malfunctioned, correct the instrument problem and reanalyze the sample extract. Verify that the surrogate recoveries meet their acceptance criteria. If the instrument malfunction affected the calibrations, recalibrate the instrument before reanalyzing the sample extract. If the recoveries of more than one of the surrogates are below 20 percent and the cause is not due to dilution, then re-extract and/or reanalyze the sample if possible. Re-extraction and re-analysis is sometimes not possible because of limited sample volumes. If there is no sample present to reextract, analyze the extract archive (if retained). If none is available, reanalyze the original extract. If the upper recovery limit is greatly exceeded (i.e., > 150%R) for only one quantification surrogate and the instrument calibration, surrogate standard concentration, etc. are acceptable, it can be concluded that an interference specific to the surrogate was present. The presence of this type of interference can be confirmed by evaluating the chromatographic peak shapes in ion intensities of the surrogate. If it is determined that the surrogate recovery is affected by an interfering compound, report the result with an appropriate qualifier. It may be necessary to reextract and/or reanalyze the sample to confirm interference.

If the recoveries of the surrogates are chronically outside acceptable limits, then cease all sample

processing and analysis until the cause has been determined and corrected. "Chronically outside acceptable limits" is defined as surrogates outside limits for more than 6 samples for 3 consecutive batches.

In cases where it is necessary to confirm a sample matrix effect, take the following corrective action steps.

- Re-extract and reanalyze the sample.
- If the surrogate compound recoveries meet acceptance criteria in the re-extracted/reanalyzed sample, submit data from the re-extraction/reanalysis.
- If the surrogate compound recoveries fail to meet the acceptance criteria in the reextracted/ reanalyzed sample, then report the original analysis.

7.1.6.3 Corrective Action for Internal Standard Compound Responses Which Fail to Meet Their Acceptance Criteria. If the internal standards fail to meet their acceptance criteria, check calculations, the internal standard compound spiking solutions, and the instrument operation. If the calculations were incorrect, correct the calculations and verify that the internal standard response met their acceptance criteria. If the internal standard compound spiking solution was improperly prepared, concentrated, or degraded, re-prepare solutions and re-extract/reanalyze samples. If the instrument malfunctioned, correct the instrument problem and reanalyze the sample extract. If the instrument malfunction affected the calibration, recalibrate the instrument before reanalyzing the sample extract.

In cases where it is necessary to confirm a sample matrix effect, take the following corrective action steps.

- Re-extract and reanalyze the sample.
- If the internal standard compound recoveries meet acceptance criteria in the reanalyzed sample extract, then submit data from the reanalysis.

If the internal standard compound recoveries fail to meet their acceptance windows in the reanalyzed sample extract, then submit data from the original analyses.

7.1.6.4 Corrective Action for Surrogate Compounds Relative Retention Times/Internal Standard Compound Retention Times Outside Acceptance Criteria.

If the surrogate compounds relative retention times or internal standard compounds retention times are not within their acceptance criteria, check the instrument for malfunctions. If the instrument malfunctioned, correct the instrument problem and reanalyze the sample extract. If the instrument malfunction affected the calibration, recalibrate the instrument before reanalyzing the sample extract.

In cases where it is necessary to confirm a sample matrix effect, take the following corrective action steps.

- Re-extract and reanalyze the sample.
- If the surrogate compounds relative retention times and internal standard compounds retention times are within the acceptance criteria in the reanalyzed sample extract, then report data from the reanalysis with the surrogate compounds relative retention times and the internal standard compound retention times within the acceptance limits.
- If the surrogate compounds relative retention times or internal standard compounds retention times are outside the acceptance criteria in the reanalyzed sample extract, then submit data the original analysis.

7.1.6.5 Corrective Action for Failure to Meet Instrument Performance Checks and Initial and Continuing Calibration. These must be must be completed before the analysis of samples.

8. Quality Assurance/Quality Control

8.1 Sample Collection and Preservation

Water samples may be collected in 1 L (or 1 quart) amber glass containers, fitted with screw caps

lined with Teflon. If amber containers are not available, the samples should be protected from light. Soil samples may be collected in glass containers or closed end tubes (e.g., brass sleeves) in sufficient quantity to perform the analysis.

All samples must be iced or refrigerated at 4 °C from the time of collection until extraction.

8.2 Procedure for Sample Storage

Unless project specific requirements stated otherwise, the following procedures are followed. The samples must be protected from light and refrigerated at 4 °C from the time of receipt. After 90 days from receipt, the samples may be disposed of in a manner that complies with all applicable regulations.

The samples must be stored in an atmosphere demonstrated to be free of all potential contaminants.

Sample extracts must be protected from light and stored at less than 4 °C but not greater than 6 °C until 365 days after receipt.

Samples, sample extracts, and standards must be stored separately.

8.3 Holding Times

Extraction of water samples by continuous liquid-liquid procedures must be started within 7 days or sample collection. Extraction of soil/sediment samples must be started within 14 days of collection.

Exceptions for extended holding times may be made for frozen soil, sediment, and tissue samples as described in the project specific workplan.

8.3.1 Extract Holding Times

Analyze the extracts as soon as possible but within 40 days of extraction. Analysis beyond this date and any reanalysis are acceptable if results produce acceptable surrogate recoveries and associated QC results are acceptable.

8.4 Interferences

Contaminants in solvents, reagents, glassware, and other sample processing hardware may cause interferences that lead to discrete artifacts and/or elevated baselines in the ion current profiles. Demonstrate that all of these materials are free from interferences under the conditions of the analysis by running laboratory reagent blanks.

Contaminants coextracted from the sample may cause matrix interferences. The extent of matrix interferences will vary considerably from source to source, depending upon the nature of the environment being sampled. An interference which is unique to this method can arise from the presence of a co-eluting compound which contains the quantification mass ion. This results in a positive interference to the reported value for the compound of interest. This interference is controlled to some degree by acquiring data for a confirmation ion. If the ion ratios between the quantification ion and the confirmation ion are not within the specified limits, then interferences may be present.

8.5 Method Blanks

8.5.1 Summary of Method Blanks

A method blank is a volume of a clean reference matrix (reagent water for water samples, or purified sodium sulfate for soil/sediment samples) that is carried through the entire analytical procedure. The volume or weight of the reference matrix must be approximately equal to the volume or weight of samples associated with the blank. The purpose of a method blank is to determine the levels of contamination associated with the processing and analysis of samples. An acceptable procedural blank analysis must not contain any target compound in Table 1 at concentrations 5 times greater than MDL.

8.5.2 Frequency of Method Blanks

Method blank extraction and analysis must be performed whenever samples are extracted by the same procedure and once for the following, whichever is most frequent:

For every 20 samples extracted, or with every extraction batch.

8.5.3 Technical Acceptance Criteria for Method Blank Analysis

All blanks must be extracted and analyzed at the frequency described above on a GC/MS system meeting the initial calibration, and continuing calibration technical acceptance criteria.

An acceptable procedural blank analysis must not contain any target compound at concentrations 5 times greater than the MDL.

The blank must meet the sample acceptance criteria.

8.5.4 Corrective Action for Method Blanks

If a procedural blank analysis contains a target compound at a concentration 5 times the MDL, address the possible source of the contamination and analyze an acceptable procedural blank before continuing sample processing.

If contamination is the problem, then the source of the contamination must be investigated and appropriate corrective measures must be taken and documented before further sample analysis proceeds. It is required that interferences caused by contaminants in solvent, reagents, glassware, and sample storage and processing hardware that lead to discrete artifacts and/or elevated baselines in the GC/MS be eliminated. Samples associated with the contaminated blank must be re-extracted and reanalyzed.

If surrogate recoveries in the method blank do not meet the acceptance criteria, first reanalyze the method blank. If the surrogate recoveries do not meet the acceptance criteria after reanalysis, the method blank and all samples associated with that method blank must be re-extracted and reanalyzed.

If the method blank does not meet internal standard response requirements, check calculations, the internal standard spiking solutions, and the instrument operation. If the calculations were incorrect, correct the calculations and verify that the internal standard responses meet their acceptance criteria. If the internal standard compound spiking solution was improperly prepared, concentrated, or degraded, re-prepare solutions and re-extract/reanalyze samples. If the instrument malfunctioned, correct the instrument problem and reanalyze the method blank. If the instrument malfunction affected the calibration, recalibrate the instrument before reanalyzing the blank. Document the resolution of the problem before proceeding with sample analysis. If the method blank does not meet the retention time requirements for internal standards or the surrogate, check the instrument for malfunction, and recalibrate. Reanalyze the method blank. Sample analyses cannot proceed until the method blank meets these requirements.

8.6 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

8.6.1 Summary of MS/MSD

In order to evaluate the effects of the sample matrix on the methods a mixture of target compounds is spiked into two aliquots of a sample and analyzed in accordance with the appropriate method.

8.6.2 Frequency of MS/MSD Analyses

Frequency is dictated by the project specific workplan. Typically, a matrix spike and matrix spike duplicate are be extracted and analyzed for every 20 field samples of a similar matrix.

8.6.2.1 Calculations for MS/MSD. Calculate the recovery of each matrix spike compound in the matrix spike and matrix spike duplicate and report. Calculate the concentrations of the matrix spike compounds using the same equations as used for target compounds (Equations 5, 6, and 7). Calculate the recovery of each matrix spike compound as follows:

Equation 10

$$\% R = \frac{SSR - SR}{SA} \times 100$$

Where,

SSR = Spike Sample Result

SR = Sample Result

SA = Spike Added

Calculate the relative percent difference (RPD) of the recoveries of each compound in the matrix spike and matrix spike duplicate as follows:

Equation 11

% RPD =
$$\frac{|MSR - MSRD|}{\overline{SR}} \times 100$$

Where,

RPD = Relative Percent Difference

MSR = Matrix Spike Recovery

MSDR = Matrix Spike Duplicate Recovery

SR = Average Spike Recovery

The vertical bars in the formula above indicate the absolute value of the difference, hence RPD is always expressed as a positive value.

8.6.3 Technical Acceptance Criteria for MS/MSD

All MS/MSD must be prepared and analyzed at a frequency described above of in the project specific workplan. All MS/MSD must be analyzed on a properly tuned GC/MS system meeting initial and continuing calibration technical acceptance criteria and the method blank technical acceptance criteria.

The MS/MSD must have an associated method blank meeting the blank technical acceptance criteria.

The MS/MSD must be extracted and analyzed within the contract holding time.

The retention time shift for each of the internal standards must be within 0.50 minutes between the MS/MSD sample and the most recent continuing calibration standard.

The retention time for the surrogate must be within 0.5 minutes of its retention time in the continuing calibration standard.

The percent recovery for matrix spike compounds is 50-125%, and the relative percent difference is $\leq 35\%$. As these limits are only advisory, no further action by the laboratory is required, however, frequent failures to meet the limits for recovery or RPD warrant investigation by the laboratory.

8.6.4 Corrective Action for MS/MSD

Any MS/MSD that does not meet the acceptance criteria for MS/MSD must be reanalyzed if the system can not be demonstrated to have been in control. The blank spike sample may be used to evaluate the extraction system.

8.7 Standard Reference Material

8.7.1 Summary

Analyze one sediment SRM (SRM 1941a) and one tissue SRM (SRM 1974a) with each batch of sediments and tissues respectively. In addition, analyze an SRM PAH solution (SRM 1493) with each sample batch run on the GC/MS system. Report the results of the SRM analyses to the Case Leader in spreadsheet or graphical format. Due to the detection limits of this method, only the certified analytes are target analytes for SRM 1974a; other analytes are reported if detected. The

data quality requirements are outlined in Table 5.

8.7.2 Frequency

SRM 1493 is analyzed with every sequence to measure the accuracy and precision of the instrumental analysis. The frequency for analyzing the sediment SRM 1941a and tissue SRM 1974a is dictated by the project specific workplan. Typically the matrix SRMs are extracted and analyzed for every 20 field samples of a similar matrix.

8.7.3 Corrective Action

If the sediment or tissue SRM results do not meet the QC criteria, report the SRM results to the Case Leader and/or Laboratory Manager. The Case Leader/Laboratory Manager will suggest appropriate corrective action, as necessary, based on review of the SRM data.

If the instrument SRM 1493 does not meet the QC criteria outlined in Table 4, a new initial calibration needs to be analyzed and a new SRM 1493 evaluated. Prior to analyzing a new calibration, a new column or a cleaned source may need to be installed. Consult the Laboratory Supervisor/Laboratory Manager for troubleshooting ideas.

8.8 General Corrective Actions

In all cases of QC results not meeting acceptance criteria, perform the following:

- Check the calculations to assure there are no errors
- Confer with the Facility Supervisor, Laboratory Manager, and/or the Quality Assurance Manager
- Inform the Case Leader or Director In Charge of the QC issue
- Include a narrative description of the problem encountered and the corrective action taken with the data package

8.9 MS/MSD or BS/BSD corrective action:

If the matrix spike or blank spike criteria are not met, report the data for the sample, but qualify the data as being outside the acceptance criteria of the method.

8.10 Method Detection Limits

Determine the actual analytical method detection limits (MDLs) for all target analytes following procedures outlined in Federal Register (1984), Vol. 49 No. 209: 198-199 based on each group of SOPs (sample extraction, fractionation, and analysis). Repeat this determination at least once per year.

8.11 Documentation

Enter all information on field and laboratory identifications, surrogate and internal standard spiking amounts, extract and fraction weights, sample and extract splits into the GC/MS data system for use in reducing raw data into quantification reports containing concentration values for the target analytes. Transfer these preliminary quantification reports to the database for further manipulation and presentation.

9. Reporting

9.1 Reporting Units

Report units in ng/L for water samples, ng/g (dry weight) for sediment and tissue samples, and mg/Kg for oil samples. Report units in ng/mL for SRM 1493.

9.2 Minimum Reporting Limits

Reporting limits for PCB congeners are 10 ng/L for water (2-L) samples, 10 ng/g for sediment samples, and 10 ng/g for tissues. Alternatively, the reporting limits may be based on the low standard (refer to Equation 8).

9.3 Reporting Results

Record the amount of internal standards added to the sample extracts in the laboratory notebook and use to calculate surrogate recoveries. Create a report that contains the results of the PCB congener analysis and appropriate data qualifiers. Report all PCB results with concentrations above the instrument detection limits (IDLs) of the GC/MS SIM. Also include in the report, the recoveries of the surrogate compounds, total extract weight, and any fraction weights determined

according to the extraction and fractionation SOPs. Report data to two (2) significant figures.

9.3.1 Matrix Spike/Blank Spike Results

Report the percent recoveries of the target analytes spiked into the matrix spike (or blank spike) samples with each batch of samples.

9.3.2 SRM Results

Report the results of SRMs 1941a and 1974a on a ng/g dry weight basis. Report the results of SRM 1493 as ng/mL of solution analyzed.

10. Proficiency Measure

Conduct training for this SOP concurrently with training for the extraction SOPs (e.g., ADL-2823) and the fractionation/clean up SOPs (ADL-2821 and ADL-2826). A trained GC/MS operator should have a working knowledge of the hardware and software requirements and techniques in operating the GC and MS and accompanying data system. Analysts without training in this procedure and/or the GC/MS system must work under the supervision of the Laboratory Manager or his/her designee. Analysts may work independently once they have successfully completed the following tasks:

- Tune the mass spectrometer
- Prepare autosampler for analysis
- Conduct GC/MS analysis for both full-scan and SIM acquisition
- Properly identify and integrate target PAH compounds and alkyl homologue patterns
- Demonstrate understanding of sample calculations
- Reduce raw data into quantification reports and ASCII text files
- Perform cleaning and electronic maintenance of the gas chromatograph and mass spectrometer that include cleaning the source, changing injection port liners, and changing the chromatographic column.

Record the successful completion of this training in the trainee's personal file.

11. Safety

Instruct and inform the analyst in the safety considerations in using this method, including the following:

• The location and use of eyewashes, emergency showers, fire extinguishers, fire blankets, and first aid kits.

The proper handling and disposal of organic solvents, acids, and other reagents necessary to the procedure.

• The proper handling of gas tanks and syringes.

Table 1: PCB Target Analyte List

PCB Congeners No.

8	2,4'-dichlorobiphenyl
18	2,2',5-trichlorobiphenyl
28	2,4,4'-trichlorobiphenyl
44	2,2',3,5'-tetrachlorobiphenyl
52	2,2',5,5'-tetrachlorobiphenyl
66	2,3',4,4'-tetrachlorobiphenyl
77	3,3',4,4'-tetrachlorobiphenyl
101	2,2',4,5,5'-pentachlorobiphenyl
105	2,3,3',4,4'-pentachlorobiphenyl
118	2,3',4,4',5-pentachlorobiphenyl
126	3,3',4,4',5-pentachlorobiphenyl
128	2,2',3,3',4,4'-hexachlorobiphenyl
138	2,2',3,4,4',5'-hexachlorobiphenyl
153	2,2',4,4',5,5'-hexachlorobiphenyl
170	2,2',3,3',4,4',5-heptachlorobiphenyl
180	2,2',3,4,4',5,5'-heptachlorobiphenyl
187	2,2',3,4',5,5',6-heptachlorobiphenyl
195	2,2',3,3',4,4',5,6-octachlorobiphenyl
206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl
209	decachlorobiphenyl

Table 2: Ions for SIM to Determine PCBs by Acquiring Data for Five Ion Sets

Group 1	Group 2	Group 3	Group 4	Group 5
152	186	254	288	356
153	188	256	290	358
186	220	288	322	360
188	222	290	324	390
190	254	322	326	392
220	255	323	356	394
221	256	324	357	424
222	258	326	358	425
224	288	328	360	426
243	289	357	362	428
244	290	358	391	430
255	292	360	392	432
256	294	362	394	462
258	323	392	396	464
290	324	394	398	466
292	326	396	428	496
294	328	398	430	498
296	358		432	499
456	360			500
	362			502

Table 3: PCB Mass Spectral Quantification and Confirmation lons

Group No.	Analyte	Quant Ion	Confirm Ion	% Confirm Ion
				_
1	Monchlorobiphenyls	188	190	
1	Dichlorobiphenyls	222	224	
1	Trichlorobiphenyls	256	258	
1	Tetrachlorobiphenyls	292	290,294	
1	TCMX (IS)	244	243	
1	DBOFB (SURR)	296	456	
2	Trichlorobiphenyls	256	258	
2	Tetrachlorobiphenyls	292	290,294	
2	Pentachlorobiphenyls	326	324,328	
2	Hexachlorobiphenyls	360	358,362	
3	Pentachlorobiphenyls	326	324,328	
3	Hexachlorobiphenyls	360	358,362	
3	Heptachlorobiphenyls	394	392,396	
4	Hexachlorobiphenyls	360	358,362	
4	Heptachlorobiphenyls	394	392,396,398	
4	Octachlorobiphenyls	430	428,432	
5	Octachlorobiphenyls	430	428,432	
5	Nonachlorobiphenyls	464	460,462,466	
5	Decachlorobiphenyls	498	494,496,500	

Table 4: Data Quality Objectives and Criteria – PCBs by GC/MS SIM

Element or Sample Type	Minimum Frequency	Data Quality Objective/Acceptance Criteria				
MS Tuning	Prior to each run sequence using PFTBA	m/e 69: Base Peak (~100,000 counts minimum) m/e 219: 40-65% Base Peak abundance m/e 502: 4-12% Base Peak abundance				
Initial Calibration	Prior to every batch sequence.	Minimum 3 point curve. $%RSD \le 25\%$ for 90% of analytes and $\le 35\%$ for all analytes.				
Continuing Calibration	Must end analytical sequence and every 14-18 hours	%RSD ≤25% for 90% of analytes. %RSD ≤ 35% for all analytes.				
Procedural Blank	Every batch / every 15-20 samples	No more than 2 analytes to exceed 5x target MDL unless analyte not detected in associated sample(s) or associated sample analyte concentration is > 5x blank value.				
Laboratory Control Sample (LCS) / LCS Duplicate (blank spike sample)	Every batch/every 15-20 samples	50-125% recovery, RPD ≤35% for target analytes present at concentrations 5x MDL.				
Matrix Spike (MS) / MS Duplicate	One each per batch of field sample	%recovery 50-125% RPD ≤ 35% for target analytes present at concentration 5x MDL				
Surrogate Recovery/Internal Standards	Every Sample	50-125% IS response 50-200% of CCV				
Instrumental SRM (SRM 1493)	One set per PAH GC/MS run sequence	Values ≤ 20% difference of true value for all certified analytes.				

Arthur D. Little (ADL) Standard Data Qualifiers (Flags).

Where applicable, the following data qualifiers were used to flag all analytical data throughout the PCB leach rate study.

Qualifier	Definition/Meaning
J	Concentration above zero and below the minimum reporting limit (MRL).
E	Estimated result exceeds highest level calibration response by greater than 10%.
D	Concentration reported from dilution analysis.
В	Result detected in the associated procedural blank and sample result is than 5 times the result found in the procedural blank.
I	Estimated result due to interference.
RE	Result reported from a re-analysis for which there was an original result reported.
&	Quality control result exceeds quality control criteria as specified in the laboratory work plan.
&I	Quality control result exceeds quality control criteria as specified in the laboratory work plan AND Estimated result due to interference.
E&	Estimated result exceeds highest level calibration response by greater than 10% AND Quality control result exceeds quality control criteria as specified in the laboratory work plan.
JB	Concentration above zero and below the minimum reporting limit (MRL) AND Result detected in the associated procedural blank and sample result is than 5 times the result found in the procedural blank.
JD	Concentration above zero and below the minimum reporting limit (MRL) AND Concentration reported from dilution analysis.
ND	Non-detect

APPENDIX C: SAMPLE-SPECIFIC DATA AND ANALYTICAL DATA QUALITY, ANALYTICAL LABORATORY QA/QC, AND LEACHING EXPERIMENT QA/QC

See the Experimental Details section for complete descriptive experimental details corresponding to the results tabulated in this Appendix.

Analytical Results, Detection Limits, Quantitation Limits, and Data Reduction

The tabulated data below correspond to sample-specific concentrations, minimum detection limits and minimum reporting limits (practical quantitation limits), and reduction of concentration data into PCB mass for all samples associated with each leaching experiment. The analytical results are cross-referenced with sample delivery group (SDG) number for batch-specific data in the QA/QC sections subsequent to this section. Flags are included in these tables, for which a listing of data qualifiers (flags) and meanings is included at the end of **APPENDIX B**. Raw concentration values less than the MDL were considered non-detected (ND) and reported as zero and not included in subsequent data treatment as discussed in the report text. Raw concentration values less than the MRL (PQL) were identified in the sample but the reported value is considered an estimate, below the lowest calibration standard in the analysis. The data reported below are surrogate-corrected to adjust for sample-specific extraction efficiencies. Rare exceptions to this occur when all three surrogate analyses were zero (ND) or consistently did not meet QA/QC data quality objectives. This occurred most often because a dilution was required and surrogates were diluted to below detection limits (ND). In all cases, values detected above the MDL and below the MRL were used in reduction and analysis phases of the data treatment, even though these were considered estimated values. Leachate samples are those indicated by Sample IDs with an appended -T#. The volumes analyzed for each of these samples was the entire leaching volume for that incremental leaching experiment and these volumes were used to calculate mass released and average leach rate for each leaching interval as described in the Leach Rate Calculations section. The analysis volumes listed for the A1254 leachate sample 212-147A-S-T45 (0.17 L) and the A1268 leachate sample 214-59B-S1-T20 (0.47 L) were split samples. These were adjusted for data reduction and analysis purposes to reflect true dis

Aroclor 1254 (A1254) Experiment: Analytical Results (ng/L)

Sample ID	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-
	147A-S	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-											
		B62	B009	T1	T10	T14	T17	T21	T23	T25	T27	T30	T33	T36	T40	T45	T49	T51
Sample Date	7/05/01	7/05/01	6/06/00	4/12/00	4/13/00	4/18/00	5/03/00	5/24/00	6/13/00	6/20/00	8/01/00	9/05/00	10/17/00	11/28/00	1/23/01	3/08/01	4/17/01	6/19/01
Units	ng	ng	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L										
C11	0	0.44	0.27	0	13	53	100	98	93	35	82	66	63	52	66	61	28	39
Qual_Cl1	ND	J	J	ND														
C12	33000	10	3.8	0	37	140	300	320	290	130	330	270	250	240	260	280	170	200
Qual_Cl2	J			ND														

Sample ID	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-
	147A-S	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-
DCD0	7200	B62	B009	T1	T10 9.3	T14 57	T17	T21	T23	T25 63	T27 140	T30	T33	T36	T40	T45	T49 74	T51
PCB8	7300	4.2	1	0	9.3	57	120	140	130	63	140	120	110	100	110	110	/4	81
Qual_PCB8	J	J	J	ND	10	00	240	200	200	100	220	200	260	200	220	250	150	100
C13	95000	52	5	0	12	98	240	280	280	180	330	280	260	290	220	250	170	190
Qual_Cl3	1.1000		0.00	ND		2.6		110	100		100	110	0.5	0.7	100	100	=-	0.4
PCB18	14000	11	0.98	0	4.7	36	87	110	100	58	120	110	95	95	100	120	79	84
Qual_PCB18	J		J	ND	2.5		0.1	0.4	100		440	0.2	- 0	0.2	70		2.1	10
PCB28	34000	14	1.8	0	2.5	31	81	94	100	72	110	92	78	93	58	55	34	43
Qual_PCB28	J		J	ND	J													
C14	3600000	2100	94	0	30	620	2300	3800	3800	3700	5500	4800	3200	5900	3200	3200	2300	2700
Qual_Cl4				ND														
PCB44	450000	400	14	0	6	130	430	660	680	520	750	480	670	820	690	620	500	350
Qual_PCB44		D		ND			D	D	D	D	D	D	D	D		D		D
PCB49	220000	160	6.2	0	1.9	47	180	250	300	250	310	260	240	410	220	230	160	160
Qual_PCB49				ND	J													
PCB52	1000000	940	30	0	11	270	910	1600	1500	1100	1600	1100	1400	1800	1200	1400	980	900
Qual_PCB52		D		ND			D	D	D	D	D	D	D	D	D	D	D	D
PCB66	180000	49	4.1	0	0	7.4	44	83	110	140	100	100	97	200	68	60	14	39
Qual_PCB66				ND	ND													
PCB77	0	0	0	0	0	0	0	0	1.4	0	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND	ND
C15	9300000	4600	120	0	0	130	950	2500	3100	4300	5100	4100	2900	8300	2700	2400	1400	1700
Qual_Cl5				ND	ND													
PCB87	800000	380	8.7	0	0	5.8	57	170	230	290	300	200	240	620	220	180	74	110
Qual_PCB87				ND	ND													
PCB101	1600000	480	16	0	0	10	98	280	320	350	390	210	410	1000	350	280	140	180
Qual_PCB101		D		ND	ND				D	D	D	D						
PCB105	600000	72	2	0	0	0.7	9.1	40	64	87	99	58	84	200	50	32	8.2	12
Qual_PCB105			J	ND	ND	J												
PCB114	41000	0	0	0	0	0	0	0	3.5	0	4.9	2.8	4.5	8.4	0	0	0	0
Qual_PCB114		ND	ND	ND	ND	ND	ND	ND		ND			J		ND	ND	ND	ND
PCB118	1500000	110	5.2	0	0	1.4	22	87	150	200	240	150	170	440	100	62	16	21
Qual_PCB118				ND	ND	J												
PCB123	190000	23	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0
Qual_PCB123			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND

Sample ID	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-
Sample 1D	147A-S	147A-S-																
		B62	B009	T1	T10	T14	T17	T21	T23	T25	T27	T30	T33	T36	T40	T45	T49	T51
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND																	
C16	4900000	1100	20	0	0	0	30	160	240	430	650	440	380	1200	470	350	140	200
Qual_Cl6				ND	ND	ND												
PCB128	270000	38	0	0	0	0	0	4.6	7.6	12	17	10	18	47	16	10	0	6.2
Qual_PCB128			ND	ND	ND	ND	ND										ND	
PCB138	1100000	180	0	0	0	0	1.9	16	32	48	78	48	69	210	58	39	10	17
Qual_PCB138			ND	ND	ND	ND	J											
PCB153	1400000	81	2.5	0	0	0	0	6.1	0	60	35	22	81	220	68	48	3.8	20
Qual_PCB153			J	ND	ND	ND	ND		ND								J	
PCB156	160000	8.7	0	0	0	0	0	0	1.8	0	5.3	2.7	4.8	11	4.5	2.8	0	0
Qual_PCB156			ND	ND	ND	ND	ND	ND	J	ND			J		J	J	ND	ND
PCB157	50000	2.5	0	0	0	0	0	0	0	0	1.1	0	1.4	0	0	0	0	0
Qual_PCB157		J	ND	J	ND	J	ND	ND	ND	ND	ND							
PCB167	54000	2.8	0	0	0	0	0	0	0	0	1.5	0	0	4	0	0	0	0
Qual_PCB167		J	ND	J	ND	ND	J	ND	ND	ND	ND							
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND																	
C17	810000	74	0	0	0	0	0	0	0	0	0	0	0	69	0	0	0	0
Qual_Cl7			ND		ND	ND	ND	ND										
PCB170	120000	6.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170			ND															
PCB180	140000	7	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0
Qual_PCB180			ND	J	ND	ND	ND	ND										
PCB183	42000	3.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB183		J	ND															
PCB184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND																	
PCB187	50000	4.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB187		J	ND															
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND																	
C18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl8	ND																	

Sample ID	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-
_	147A-S	147A-S-																
		B62	B009	T1	T10	T14	T17	T21	T23	T25	T27	T30	T33	T36	T40	T45	T49	T51
PCB195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB206	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_C110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB209	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Min Reporting Limit	35000	5	2.6	2.6	2.7	2.7	2.6	2.8	2.7	2.7	2.7	2.7	5.4	5.4	5.4	3.7	5.4	5.4
MDL_cong_Cl1	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL_cong_Cl2	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL8	2600	0.42	0.45	0.45	0.46	0.46	0.45	0.47	0.45	0.45	0.46	0.45	0.45	0.46	0.45	0.31	0.45	0.45
MDL_cong_Cl3	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL18	3000	0.64	0.68	0.68	0.69	0.69	0.68	0.72	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.47	0.69	0.69
MDL28	3200	0.53	0.56	0.56	0.57	0.57	0.56	0.59	0.56	0.56	0.57	0.56	0.56	0.57	0.56	0.39	0.56	0.56
MDL_cong_Cl4	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL44	2600	3.4	0.71	0.71	0.73	0.73	7.1	7.6	7.2	7.2	3.6	7.2	14	7.3	0.72	2.5	0.72	3.6
MDL49	7000	0.75	0.79	0.79	0.81	0.81	0.79	0.84	0.8	0.8	0.81	0.8	0.8	0.81	0.8	0.55	0.8	0.8
MDL52	3300	1.5	0.31	0.31	0.32	0.32	3.1	3.3	3.2	3.2	1.6	3.2	6.3	3.2	1.6	1.1	1.6	1.6
MDL66	3800	0.64	0.68	0.68	0.7	0.7	0.68	0.72	0.69	0.69	0.7	0.69	0.69	0.7	0.69	0.47	0.69	0.69
MDL77	4800	0.56	0.6	0.6	0.61	0.61	0.6	0.63	0.6	0.6	0.61	0.6	0.6	0.61	0.6	0.41	0.6	0.6
MDL_cong_Cl5	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL87	7000	0.77	0.81	0.81	0.83	0.83	0.81	0.86	0.82	0.82	0.83	0.82	0.82	0.83	0.82	0.56	0.82	0.82
MDL101	2800	1.8	0.38	0.38	0.39	0.39	0.38	0.41	3.9	3.9	2	3.9	0.39	0.39	0.39	0.27	0.39	0.39
MDL105	4600	0.41	0.43	0.43	0.44	0.44	0.43	0.46	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.3	0.44	0.44
MDL114	7000	0.68	0.72	0.72	0.74	0.74	0.72	0.76	0.73	0.73	0.74	0.73	0.73	0.74	0.73	0.5	0.73	0.73
MDL118	7000	0.66	0.7	0.7	0.71	0.71	0.7	0.74	0.7	0.7	0.71	0.7	0.7	0.71	0.7	0.48	0.7	0.7
MDL123	7000	0.77	0.82	0.82	0.84	0.84	0.82	0.87	0.83	0.83	0.84	0.83	0.83	0.84	0.83	0.57	0.83	0.83
MDL126	10000	0.67	0.71	0.71	0.73	0.73	0.71	0.76	0.72	0.72	0.73	0.72	0.72	0.73	0.72	0.49	0.72	0.72
MDL_cong_Cl6	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL128	4900	0.25	0.26	0.26	0.27	0.27	0.26	0.28	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.18	0.27	0.27
MDL138	6800	0.55	0.58	0.58	0.59	0.59	0.58	0.61	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.4	0.59	0.59

Sample ID	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-
_	147A-S	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-	147A-S-		147A-S-									
		B62	B009	T1	T10	T14	T17	T21	T23	T25	T27	T30	T33	T36	T40	T45	T49	T51
MDL153	5200	0.27	0.28	0.28	0.29	0.29	0.28	0.3	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.2	0.29	0.29
MDL156	7000	0.62	0.66	0.66	0.67	0.67	0.66	0.7	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.46	0.67	0.67
MDL157	7000	0.61	0.65	0.65	0.66	0.66	0.65	0.68	0.65	0.65	0.66	0.65	0.65	0.66	0.65	0.45	0.65	0.65
MDL167	7000	0.64	0.68	0.68	0.69	0.69	0.68	0.71	0.68	0.68	0.69	0.68	0.68	0.69	0.68	0.47	0.68	0.68
MDL169	7000	0.59	0.63	0.63	0.64	0.64	0.63	0.66	0.63	0.63	0.64	0.63	0.63	0.64	0.63	0.43	0.63	0.63
MDL-cong_Cl7	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL170	3100	0.64	0.68	0.68	0.69	0.69	0.68	0.71	0.68	0.68	0.69	0.68	0.68	0.69	0.68	0.47	0.68	0.68
MDL180	6800	0.65	0.69	0.69	0.71	0.71	0.69	0.73	0.7	0.7	0.71	0.7	0.7	0.71	0.7	0.48	0.7	0.7
MDL183	7000	0.37	0.39	0.39	0.4	0.4	0.39	0.42	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.27	0.4	0.4
MDL184	7000	0.5	0.54	0.54	0.55	0.55	0.54	0.57	0.54	0.54	0.55	0.54	0.54	0.55	0.54	0.37	0.54	0.54
MDL187	3000	0.65	0.69	0.69	0.71	0.71	0.69	0.73	0.7	0.7	0.71	0.7	0.7	0.71	0.7	0.48	0.7	0.7
MDL189	7000	0.71	0.75	0.75	0.77	0.77	0.75	0.79	0.76	0.76	0.77	0.76	0.76	0.77	0.76	0.52	0.76	0.76
MDL_cong_Cl8	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL195	4700	0.58	0.62	0.62	0.63	0.63	0.62	0.65	0.62	0.62	0.63	0.62	0.62	0.63	0.62	0.43	0.62	0.62
MDL_cong_Cl9	7000	0.5	0.53	0.53	0.54	0.54	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.37	0.54	0.54
MDL206	7800	0.23	0.24	0.24	0.24	0.24	0.24	0.25	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.17	0.24	0.24
MDL_cong_Cl10	5400	0.57	0.61	0.61	0.62	0.62	0.61	0.64	0.61	0.61	0.62	0.61	0.61	0.62	0.61	0.42	0.61	0.61
MDL209	5400	0.57	0.61	0.61	0.62	0.62	0.61	0.64	0.61	0.61	0.62	0.61	0.61	0.62	0.61	0.42	0.61	0.61
Sample Delivery	NC34SD	NC34SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC28SD	NC28SD	NC28SD	NC28SD	NC28SD	NC34SD
Group	G006	G004	G015	G006	G006	G007	G009	G012	G015	G016	G021	G025	G002	G007	G011	G016	G022	G002
Sample Size	1	1	0.94	0.94	0.92	0.92	0.94	0.89	0.93	0.93	0.92	0.93	0.93	0.92	0.93	0.93	0.93	0.93
Size Units			L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Aroclor 1254 (A1254) Experiment: PCB Mass per Sample (ng)

Field ID	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-
	147A-S	147A-S-																
		B62	B009	T1	T10	T14	T17	T21	T23	T25	T27	T30	T33	T36	T40	T45	T49	T51
C11	0.0E+00	4.4E-01	2.5E-01	0.0E+00	1.2E+01	4.9E+01	9.4E+01	8.7E+01	8.6E+01	3.3E+01	7.5E+01	6.1E+01	5.9E+01	4.8E+01	6.1E+01	5.7E+01	2.6E+01	3.6E+01
C12	3.3E+04	1.0E+01	3.6E+00	0.0E+00	3.4E+01	1.3E+02	2.8E+02	2.8E+02	2.7E+02	1.2E+02	3.0E+02	2.5E+02	2.3E+02	2.2E+02	2.4E+02	2.6E+02	1.6E+02	1.9E+02
PCB8	7.3E+03	4.2E+00	9.4E-01	0.0E+00	8.6E+00	5.2E+01	1.1E+02	1.2E+02	1.2E+02	5.9E+01	1.3E+02	1.1E+02	1.0E+02	9.2E+01	1.0E+02	1.0E+02	6.9E+01	7.5E+01
C13	9.5E+04	5.2E+01	4.7E+00	0.0E+00	1.1E+01	9.0E+01	2.3E+02	2.5E+02	2.6E+02	1.7E+02	3.0E+02	2.6E+02	2.4E+02	2.7E+02	2.0E+02	2.3E+02	1.6E+02	1.8E+02
PCB18	1.4E+04	1.1E+01	9.2E-01	0.0E+00	4.3E+00	3.3E+01	8.2E+01	9.8E+01	9.3E+01	5.4E+01	1.1E+02	1.0E+02	8.8E+01	8.7E+01	9.3E+01	1.1E+02	7.3E+01	7.8E+01
PCB28	3.4E+04	1.4E+01	1.7E+00	0.0E+00	2.3E+00	2.9E+01	7.6E+01	8.4E+01	9.3E+01	6.7E+01	1.0E+02	8.6E+01	7.3E+01	8.6E+01	5.4E+01	5.1E+01	3.2E+01	4.0E+01

EL-14 ID	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
Field ID	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-	212-
	147A-S	147A-S- B62	147A-S- B009	147A-S- T1	147A-S- T10	147A-S- T14	147A-S- T17	147A-S- T21	147A-S- T23	147A-S- T25	147A-S- T27	147A-S- T30	147A-S- T33	147A-S- T36	147A-S- T40	147A-S- T45	147A-S- T49	147A-S- T51
Cl4	3.6E+06	2.1E+03	8.8E+01	0.0E+00	2.8E+01	5.7E+02	2.2E+03	3.4E+03	_	3.4E+03	5.1E+03	4.5E+03	3.0E+03	5.4E+03	3.0E+03	3.0E+03	2.1E+03	2.5E+03
_									3.5E+03									
PCB44	4.5E+05	4.0E+02	1.3E+01	0.0E+00	5.5E+00	1.2E+02	4.0E+02	5.9E+02	6.3E+02	4.8E+02	6.9E+02	4.5E+02	6.2E+02	7.5E+02	6.4E+02	5.8E+02	4.7E+02	3.3E+02
PCB49	2.2E+05	1.6E+02	5.8E+00	0.0E+00	1.7E+00	4.3E+01	1.7E+02	2.2E+02	2.8E+02	2.3E+02	2.9E+02	2.4E+02	2.2E+02	3.8E+02	2.0E+02	2.1E+02	1.5E+02	1.5E+02
PCB52	1.0E+06	9.4E+02	2.8E+01	0.0E+00	1.0E+01	2.5E+02	8.6E+02	1.4E+03	1.4E+03	1.0E+03	1.5E+03	1.0E+03	1.3E+03	1.7E+03	1.1E+03	1.3E+03	9.1E+02	8.4E+02
PCB66	1.8E+05	4.9E+01	3.9E+00	0.0E+00	0.0E+00	6.8E+00	4.1E+01	7.4E+01	1.0E+02	1.3E+02	9.2E+01	9.3E+01	9.0E+01	1.8E+02	6.3E+01	5.6E+01	1.3E+01	3.6E+01
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+00	0.0E+00								
C15	9.3E+06	4.6E+03	1.1E+02	0.0E+00	0.0E+00	1.2E+02	8.9E+02	2.2E+03	2.9E+03	4.0E+03	4.7E+03	3.8E+03	2.7E+03	7.6E+03	2.5E+03	2.2E+03	1.3E+03	1.6E+03
PCB87	8.0E+05	3.8E+02	8.2E+00	0.0E+00	0.0E+00	5.3E+00	5.4E+01	1.5E+02	2.1E+02	2.7E+02	2.8E+02	1.9E+02	2.2E+02	5.7E+02	2.0E+02	1.7E+02	6.9E+01	1.0E+02
PCB101	1.6E+06	4.8E+02	1.5E+01	0.0E+00	0.0E+00	9.2E+00	9.2E+01	2.5E+02	3.0E+02	3.3E+02	3.6E+02		3.8E+02	9.2E+02	3.3E+02	2.6E+02	1.3E+02	1.7E+02
PCB105	6.0E+05	7.2E+01	1.9E+00	0.0E+00	0.0E+00	6.4E-01	8.6E+00	3.6E+01	6.0E+01	8.1E+01	9.1E+01	5.4E+01	7.8E+01	1.8E+02	4.7E+01	3.0E+01	7.6E+00	1.1E+01
PCB114	4.1E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.3E+00	0.0E+00	4.5E+00	2.6E+00	4.2E+00	7.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	1.5E+06	1.1E+02	4.9E+00	0.0E+00	0.0E+00	1.3E+00	2.1E+01	7.7E+01	1.4E+02	1.9E+02	2.2E+02	1.4E+02	1.6E+02	4.0E+02	9.3E+01	5.8E+01	1.5E+01	2.0E+01
PCB123	1.9E+05	2.3E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+01	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C16	4.9E+06	1.1E+03	1.9E+01	0.0E+00	0.0E+00	0.0E+00	2.8E+01	1.4E+02	2.2E+02	4.0E+02	6.0E+02	4.1E+02	3.5E+02	1.1E+03	4.4E+02	3.3E+02	1.3E+02	1.9E+02
PCB128	2.7E+05	3.8E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.1E+00	7.1E+00	1.1E+01	1.6E+01	9.3E+00	1.7E+01	4.3E+01	1.5E+01	9.3E+00	0.0E+00	5.8E+00
PCB138	1.1E+06	1.8E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E+00	1.4E+01	3.0E+01	4.5E+01	7.2E+01	4.5E+01	6.4E+01	1.9E+02	5.4E+01	3.6E+01	9.3E+00	1.6E+01
PCB153	1.4E+06	8.1E+01	2.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E+00	0.0E+00	5.6E+01	3.2E+01	2.0E+01	7.5E+01	2.0E+02	6.3E+01	4.5E+01	3.5E+00	1.9E+01
PCB156	1.6E+05	8.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.7E+00	0.0E+00	4.9E+00	2.5E+00	4.5E+00	1.0E+01	4.2E+00	2.6E+00	0.0E+00	0.0E+00
PCB157	5.0E+04	2.5E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.0E+00	0.0E+00	1.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	5.4E+04	2.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	3.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	8.1E+05	7.4E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.3E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	1.2E+05	6.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	1.4E+05	7.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	4.2E+04	3.5E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	5.0E+04	4.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl10	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	1.9E+07	7.9E+03	2.3E+02	0.0E+00	8.5E+01	9.6E+02	3.7E+03	6.4E+03	7.3E+03	8.2E+03	1.1E+04	9.3E+03	6.6E+03	1.5E+04	6.4E+03	6.1E+03	3.9E+03	4.7E+03

Aroclor 1254 (A1254) Experiment: Mass Balance

	Remaining PCBs in			Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in Solid	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs in Leachate)	Release (% of tPCBs in Leachate)
Cl1	0.0E+00	7.9E+02	7.9E+02	3.7E-05	4.2E-03		8.1E-01	III Leachate)
Cl2	3.3E+04	3.0E+03	3.6E+04	1.7E-03	1.9E-01		3.1E+00	
PCB8	7.3E+03	1.3E+03	8.6E+03	4.1E-04	1.52 01	4.5E-02	3.12.00	1.3E+00
Cl3	9.5E+04	2.9E+03	9.8E+04	4.6E-03	5.2E-01		3.0E+00	
PCB18	1.4E+04	1.1E+03	1.5E+04	7.2E-04		8.0E-02		1.2E+00
PCB28	3.4E+04	8.9E+02	3.5E+04	1.7E-03		1.9E-01		9.1E-01
Cl4	3.6E+06	4.4E+04	3.6E+06	1.7E-01	1.9E+01		4.5E+01	
PCB44	4.5E+05	7.2E+03	4.6E+05	2.2E-02		2.4E+00		7.4E+00
PCB49	2.2E+05	3.0E+03	2.2E+05	1.1E-02		1.2E+00		3.0E+00
PCB52	1.0E+06	1.6E+04	1.0E+06	4.8E-02		5.4E+00		1.6E+01
PCB66	1.8E+05	1.0E+03	1.8E+05	8.6E-03		9.6E-01		1.1E+00
PCB77	0.0E+00	1.3E+00	1.3E+00	6.2E-08		6.9E-06		1.3E-03
C15	9.3E+06	4.1E+04	9.3E+06	4.4E-01	5.0E+01		4.2E+01	
PCB87	8.0E+05	2.9E+03	8.0E+05	3.8E-02		4.3E+00		3.0E+00
PCB101	1.6E+06	4.2E+03	1.6E+06	7.6E-02		8.5E+00		4.3E+00
PCB105	6.0E+05	7.6E+02	6.0E+05	2.8E-02		3.2E+00		7.8E-01
PCB114	4.1E+04	2.2E+01	4.1E+04	1.9E-03		2.2E-01		2.3E-02
PCB118	1.5E+06	1.6E+03	1.5E+06	7.1E-02		8.0E+00		1.7E+00
PCB123	1.9E+05	3.6E+01	1.9E+05	9.0E-03		1.0E+00		3.7E-02
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C16	4.9E+06	5.4E+03	4.9E+06	2.3E-01	2.6E+01		5.6E+00	
PCB128	2.7E+05	1.8E+02	2.7E+05	1.3E-02		1.4E+00		1.8E-01
PCB138	1.1E+06	7.6E+02	1.1E+06	5.2E-02		5.8E+00		7.8E-01
PCB153	1.4E+06	6.0E+02	1.4E+06	6.6E-02		7.4E+00		6.2E-01
PCB156	1.6E+05	3.9E+01	1.6E+05	7.6E-03		8.5E-01		4.0E-02
PCB157	5.0E+04	4.8E+00	5.0E+04	2.4E-03		2.7E-01		5.0E-03
PCB167	5.4E+04	7.9E+00	5.4E+04	2.6E-03		2.9E-01		8.1E-03
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C17	8.1E+05	1.4E+02	8.1E+05	3.8E-02	4.3E+00		1.4E-01	
PCB170	1.2E+05	6.7E+00	1.2E+05	5.7E-03		6.4E-01		6.9E-03
PCB180	1.4E+05	1.1E+01	1.4E+05	6.6E-03		7.4E-01		1.1E-02
PCB183	4.2E+04	3.5E+00	4.2E+04	2.0E-03		2.2E-01		3.6E-03

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB187	5.0E+04	4.2E+00	5.0E+04	2.4E-03		2.7E-01		4.3E-03
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
tPCBs	1.9E+07	9.7E+04	1.9E+07	8.9E-01				

Black Rubber Pipe Hanger Liner (BRPHL) Experiment: Analytical Results (ng/L)

C 1 ID	DCNIC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DCMC	DOME
Sample ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
	636-62-	636-62-	636-62-	636-62-								636-62-					636-62-	636-62-	636-62-
	4A	4A-B68	4A-B7	4A-T1					4A-T21	4A-T24		4A-T29	4A-T32			4A-T42			
Sample Date	07/11/0	07/11/0	05/03/0	03/22/0	03/23/0		04/05/0	04/19/0	05/10/0	05/30/0	07/04/0		09/26/0	11/07/0	01/02/0	02/13/0	03/27/0	04/24/0	07/10/0
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Units	ng	ng	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Cl1	3100	0	0	0	0	5.5	0	8.3	9.8	0	14	14	12	11	18	12	12	7.1	17
Qual_Cl1	J	ND	ND	ND	ND		ND			ND									
C12	19000	0	0	0	0	15	44	11	1.6	1.5	17	19	12	1.3	2.1	7.3	11	16	13
Qual_Cl2		ND	ND	ND	ND				J	J				J	J				
PCB8	3700	0	0	0	0	0.74	0.98	1.1	1.6	1.4	1.9	2.1	1.4	1.3	1.9	1.3	1.6	1.3	2.1
Qual_PCB8	J	ND	ND	ND	ND	J	J	J	J	J	J	J	J	J	J	J	J	J	J
C13	63000	0	0	0	0	6.3	8.3	10	8.2	12	14	21	13	46	46	6.9	9.6	12	22
Qual_Cl3		ND	ND	ND	ND														
PCB18	5900	0	0	0	0	0.98	1.2	1.2	2	1.6	2.8	2.5	1.8	2.1	2	1.7	1.8	2.1	2.8
Qual_PCB18	J	ND	ND	ND	ND	J	J	J	J	J		J	J	J	J	J	J	J	J
PCB28	20000	0	0	0	0	1.4	1.8	1.8	3.6	2.6	3.3	8.2	2.2	5.7	0	0	1.9	1.3	0
Qual_PCB28		ND	ND	ND	ND	J	J	J		J			J		ND	ND	J	J	ND
C14	1200000	41	0	0	0	22	32	48	69	94	85	86	62	58	39	38	43	38	63
Qual_Cl4			ND	ND	ND														
PCB44	170000	4.5	0	0	0	3	5.7	7.7	11	12	14	14	11	9.1	7.3	7.5	7.4	7	9.9

Sample ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-										
Sumpre 12	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-		636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-
	4A	4A-B68	4A-B7	4A-T1		4A-T13	4A-T15	4A-T17	4A-T21	4A-T24	4A-T26	4A-T29	4A-T32	4A-T36	4A-T39	4A-T42	4A-T45	4A-T47	4A-T49
Qual_PCB44		J	ND	ND	ND														
PCB49	87000	2.4	0	0	0	1.8	2.7	3	4.6	4.6	5.8	5.2	4	3	2.3	2.1	2.7	2.3	3
Qual_PCB49		J	ND	ND	ND	J	В							J	J	J	J	J	J
PCB52	370000	9.4	0	0	0	5.7	11	16	22	24	27	27	21	19	16	16	15	14	20
Qual_PCB52			ND	ND	ND														
PCB66	77000	1.5	0	0	0	0.35	0.82	1.1	1.9	2.4	3	2.3	1.5	2	0.41	0.6	1	1.6	1.2
Qual_PCB66		J	ND	ND	ND	J	J	J	J	J		J	J	J	J	J	J	J	J
PCB77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND	ND	ND										
C15	2300000	46	0	0	0	18	16	40	40	67	80	86	52	53	15	27	23	31	43
Qual_Cl5			ND	ND	ND														
PCB87	210000	3.5	0	0	0	0	0.87	1.8	2.6	4.2	4.1	4.3	2.8	2.6	0	1.4	1.8	0	0
Qual_PCB87		J	ND	ND	ND	ND	J	J	J					J	ND	J	J	ND	ND
PCB101	420000	4.6	0	0	0	0.63	1.8	3.9	4.9	7.2	8	7.5	4.7	4.6	2.1	2.5	2.4	1.4	2.5
Qual_PCB101		J	ND	ND	ND	J	J							J	J	J	J	J	J
PCB105	140000	0	0	0	0	0	0	0	0.79	1.6	0	2	0	0	0	0.54	0	0	0
Qual_PCB105		ND	J	J	ND	J	ND	ND	ND	J	ND	ND	ND						
PCB114	9600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB114	J	ND	ND	ND	ND	ND	ND	ND	ND	ND									
PCB118	390000	0	0	0	0	0	0.51	1.7	2.5	4.6	4.7	4.6	0	1.9	0	0.96	0	0	0
Qual_PCB118		ND	ND	ND	ND	ND	J	J	J				ND	J	ND	J	ND	ND	ND
PCB123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB123	ND	ND	ND	ND	ND	ND	ND	ND	ND										
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND										
Cl6	860000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl6		ND	ND	ND	ND	ND	ND	ND	ND	ND									
PCB128	49000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB128		ND	ND	ND	ND	ND	ND	ND	ND	ND									
PCB138	210000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB138		ND	ND	ND	ND	ND	ND	ND	ND	ND									
PCB153	200000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB153		ND	ND	ND	ND	ND	ND	ND	ND	ND									
PCB156	27000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Sample ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62- 4A-T29	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-
Qual PCB156	4A	4A-B68 ND	4A-B7 ND	4A-T1 ND	4A-T11 ND	4A-T13 ND	4A-T15 ND	4A-T17 ND	4A-T21 ND	4A-T24 ND	4A-T26 ND	4A-129 ND	4A-T32 ND	4A-T36 ND	4A-T39 ND	4A-T42 ND	4A-T45 ND	4A-T47 ND	4A-T49 ND
PCB157	10000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB157	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	9400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual PCB167	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl7	94000	0	0	5.3	4.9	9.3	7.7	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl7		ND	ND					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB170	10000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB180	13000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB180	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB183	7900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB183	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0.82	0.8	0.9	1.1	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	J	J		J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB187	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB187	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB206	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB209	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Min Reporting Limit	18000	5	2.6	2.7	2.7	2.7	2.6	2.6	2.7	2.8	2.7	2.6	2.7	5.4	5.4	2.7	5.4	5.4	5.4

Sample ID	PSNS- 636-62-																		
	4A	4A-B68	4A-B7	4A-T1	4A-T11	4A-T13	4A-T15	4A-T17	4A-T21	4A-T24	4A-T26	4A-T29	4A-T32			4A-T42	4A-T45		
MDL_cong_Cl1	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL_cong_Cl2	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL8	1300	0.42	0.45	0.46	0.46	0.46	0.45	0.45	0.45	0.47	0.45	0.45	0.45	0.46	0.46	0.23	0.45	0.45	0.45
MDL_cong_Cl3	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL18	1500	0.64	0.68	0.69	0.69	0.69	0.68	0.68	0.69	0.72	0.69	0.68	0.69	0.69	0.69	0.34	0.69	0.69	0.69
MDL28	1600	0.53	0.56	0.57	0.57	0.57	0.56	0.56	0.56	0.59	0.56	0.56	0.56	0.57	0.57	0.28	0.56	0.56	0.56
MDL_cong_Cl4	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL44	1300	0.67	0.71	0.73	0.73	0.73	0.71	0.71	0.72	0.76	0.72	0.71	0.72	0.73	0.73	0.36	0.72	0.72	0.72
MDL49	3500	0.75	0.79	0.81	0.81	0.81	0.79	0.79	0.8	0.84	0.8	0.79	0.8	0.81	0.81	0.4	0.8	0.8	0.8
MDL52	1600	0.29	0.31	0.32	0.32	0.32	0.31	0.31	0.32	0.33	0.32	0.31	0.32	0.32	0.32	0.16	0.32	0.32	0.32
MDL66	1900	0.64	0.68	0.7	0.7	0.7	0.68	0.68	0.69	0.72	0.69	0.68	0.69	0.7	0.7	0.35	0.69	0.69	0.69
MDL77	2400	0.56	0.59	0.61	0.61	0.61	0.6	0.6	0.6	0.63	0.6	0.6	0.6	0.61	0.61	0.3	0.6	0.6	0.6
MDL_cong_Cl5	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL87	3500	0.77	0.81	0.83	0.83	0.83	0.81	0.81	0.82	0.86	0.82	0.81	0.82	0.83	0.83	0.41	0.82	0.82	0.82
MDL101	1400	0.36	0.38	0.39	0.39	0.39	0.38	0.38	0.39	0.41	0.39	0.38	0.39	0.39	0.39	0.19	0.39	0.39	0.39
MDL105	2300	0.41	0.43	0.44	0.44	0.44	0.43	0.43	0.44	0.46	0.44	0.43	0.44	0.44	0.44	0.22	0.44	0.44	0.44
MDL114	3500	0.68	0.72	0.74	0.74	0.74	0.72	0.72	0.73	0.76	0.73	0.72	0.73	0.74	0.74	0.36	0.73	0.73	0.73
MDL118	3500	0.66	0.7	0.71	0.71	0.71	0.7	0.7	0.7	0.74	0.7	0.7	0.7	0.71	0.71	0.35	0.7	0.7	0.7
MDL123	3500	0.77	0.82	0.84	0.84	0.84	0.82	0.82	0.83	0.87	0.83	0.82	0.83	0.84	0.84	0.42	0.83	0.83	0.83
MDL126	5100	0.67	0.71	0.73	0.73	0.73	0.71	0.71	0.72	0.76	0.72	0.71	0.72	0.73	0.73	0.36	0.72	0.72	0.72
MDL_cong_Cl6	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL128	2500	0.25	0.26	0.27	0.27	0.27	0.26	0.26	0.27	0.28	0.27	0.26	0.27	0.27	0.27	0.13	0.27	0.27	0.27
MDL138	3400	0.55	0.58	0.59	0.59	0.59	0.58	0.58	0.59	0.61	0.59	0.58	0.59	0.59	0.59	0.29	0.59	0.59	0.59
MDL153	2600	0.27	0.28	0.29	0.29	0.29	0.28	0.28	0.29	0.3	0.29	0.28	0.29	0.29	0.29	0.14	0.29	0.29	0.29
MDL156	3500	0.62	0.66	0.67	0.67	0.67	0.66	0.66	0.67	0.7	0.67	0.66	0.67	0.67	0.67	0.33	0.67	0.67	0.67
MDL157	3500	0.61	0.64	0.66	0.66	0.66	0.65	0.65	0.65	0.68	0.65	0.65	0.65	0.66	0.66	0.33	0.65	0.65	0.65
MDL167	3500	0.64	0.68	0.69	0.69	0.69	0.68	0.68	0.68	0.71	0.68	0.68	0.68	0.69	0.69	0.34	0.68	0.68	0.68
MDL169	3500	0.59	0.63	0.64	0.64	0.64	0.63	0.63	0.63	0.66	0.63	0.63	0.63	0.64	0.64	0.32	0.63	0.63	0.63
MDL-cong_Cl7	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL170	1600	0.64	0.68	0.69	0.69	0.69	0.68	0.68	0.68	0.71	0.68	0.68	0.68	0.69	0.69	0.34	0.68	0.68	0.68
MDL180	3400	0.65	0.69	0.71	0.71	0.71	0.69	0.69	0.7	0.73	0.7	0.69	0.7	0.71	0.71	0.35	0.7	0.7	0.7
MDL183	3500	0.37	0.39	0.4	0.4	0.4	0.39	0.39	0.4	0.42	0.4	0.39	0.4	0.4	0.4	0.2	0.4	0.4	0.4
MDL184	3500	0.5	0.54	0.55	0.55	0.55	0.54	0.54	0.54	0.57	0.54	0.54	0.54	0.55	0.55	0.27	0.54	0.54	0.54
MDL187	1500	0.65	0.69	0.71	0.71	0.71	0.69	0.69	0.7	0.73	0.7	0.69	0.7	0.71	0.71	0.35	0.7	0.7	0.7

Sample ID	PSNS-																		
	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-
	4A	4A-B68	4A-B7	4A-T1	4A-T11	4A-T13	4A-T15	4A-T17	4A-T21	4A-T24	4A-T26	4A-T29	4A-T32	4A-T36	4A-T39	4A-T42	4A-T45	4A-T47	4A-T49
MDL189	3500	0.71	0.75	0.77	0.77	0.77	0.75	0.75	0.76	0.79	0.76	0.75	0.76	0.77	0.77	0.38	0.76	0.76	0.76
MDL_cong_Cl8	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL195	2300	0.58	0.62	0.63	0.63	0.63	0.62	0.62	0.62	0.65	0.62	0.62	0.62	0.63	0.63	0.31	0.62	0.62	0.62
MDL_cong_Cl9	3500	0.5	0.53	0.54	0.54	0.54	0.53	0.53	0.54	0.56	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL206	3900	0.23	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.25	0.24	0.24	0.24	0.24	0.24	0.12	0.24	0.24	0.24
MDL_cong_Cl1 0	2700	0.57	0.6	0.62	0.62	0.62	0.61	0.61	0.61	0.64	0.61	0.61	0.61	0.62	0.62	0.31	0.61	0.61	0.61
MDL209	2700	0.57	0.6	0.62	0.62	0.62	0.61	0.61	0.61	0.64	0.61	0.61	0.61	0.62	0.62	0.31	0.61	0.61	0.61
Sample Delivery	NC34S	NC34S	NC22S	NC28S	NC28S	NC28S	NC28S	NC28S	NC28S	NC34S									
Group	DG006	DG005	DG010	DG003	DG003	DG004	DG005	DG007	DG010	DG013	DG018	DG023	DG001	DG005	DG010	DG013	DG019	DG023	DG005
Sample Size	1	1	0.94	0.92	0.92	0.92	0.94	0.94	0.93	0.89	0.93	0.94	0.93	0.92	0.92	0.93	0.93	0.93	0.93
Size Units			L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Black Rubber Pipe Hanger Liner (BRPHL) Experiment: PCB Mass per Sample (ng)

	DCNIC	DCMC	DCNIC	DCMC	DCMC	DCMC	DCNIC	DCNIC	DCNIC	DCMC	DCNIC								
	PSNS-																		
	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-	636-62-		636-62-	636-62-	636-62-	636-62-		636-62-	636-62-	636-62-
Field ID	4A	4A-B68	4A-B7	4A-T1	4A-T11	4A-T13	4A-T15	4A-T17	4A-T21	4A-T24	4A-T26	4A-T29	4A-T32	4A-T36	4A-T39	4A-T42	4A-T45	4A-T47	4A-T49
C11	3.1E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.1E+00	0.0E+00	7.8E+00	9.1E+00	0.0E+00	1.3E+01	1.3E+01	1.1E+01	1.0E+01	1.7E+01	1.1E+01	1.1E+01	6.6E+00	1.6E+01
C12	1.9E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E+01	4.1E+01	1.0E+01	1.5E+00	1.3E+00	1.6E+01	1.8E+01	1.1E+01	1.2E+00	1.9E+00	6.8E+00	1.0E+01	1.5E+01	1.2E+01
PCB8	3.7E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.8E-01	9.2E-01	1.0E+00	1.5E+00	1.2E+00	1.8E+00	2.0E+00	1.3E+00	1.2E+00	1.7E+00	1.2E+00	1.5E+00	1.2E+00	2.0E+00
C13	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.8E+00	7.8E+00	9.4E+00	7.6E+00	1.1E+01	1.3E+01	2.0E+01	1.2E+01	4.2E+01	4.2E+01	6.4E+00	8.9E+00	1.1E+01	2.0E+01
PCB18	5.9E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.0E-01	1.1E+00	1.1E+00	1.9E+00	1.4E+00	2.6E+00	2.4E+00	1.7E+00	1.9E+00	1.8E+00	1.6E+00	1.7E+00	2.0E+00	2.6E+00
PCB28	2.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+00	1.7E+00	1.7E+00	3.3E+00	2.3E+00	3.1E+00	7.7E+00	2.0E+00	5.2E+00	0.0E+00	0.0E+00	1.8E+00	1.2E+00	0.0E+00
Cl4	1.2E+06	4.1E+01	0.0E+00	0.0E+00	0.0E+00	2.0E+01	3.0E+01	4.5E+01	6.4E+01	8.4E+01	7.9E+01	8.1E+01	5.8E+01	5.3E+01	3.6E+01	3.5E+01	4.0E+01	3.5E+01	5.9E+01
PCB44	1.7E+05	4.5E+00	0.0E+00	0.0E+00	0.0E+00	2.8E+00	5.4E+00	7.2E+00	1.0E+01	1.1E+01	1.3E+01	1.3E+01	1.0E+01	8.4E+00	6.7E+00	7.0E+00	6.9E+00	6.5E+00	9.2E+00
PCB49	8.7E+04	2.4E+00	0.0E+00	0.0E+00	0.0E+00	1.7E+00	2.5E+00	2.8E+00	4.3E+00	4.1E+00	5.4E+00	4.9E+00	3.7E+00	2.8E+00	2.1E+00	2.0E+00	2.5E+00	2.1E+00	2.8E+00
PCB52	3.7E+05	9.4E+00	0.0E+00	0.0E+00	0.0E+00	5.2E+00	1.0E+01	1.5E+01	2.0E+01	2.1E+01	2.5E+01	2.5E+01	2.0E+01	1.7E+01	1.5E+01	1.5E+01	1.4E+01	1.3E+01	1.9E+01
PCB66	7.7E+04	1.5E+00	0.0E+00	0.0E+00	0.0E+00	3.2E-01	7.7E-01	1.0E+00	1.8E+00	2.1E+00	2.8E+00	2.2E+00	1.4E+00	1.8E+00	3.8E-01	5.6E-01	9.3E-01	1.5E+00	1.1E+00
PCB77	0.0E+00																		
C15	2.3E+06	4.6E+01	0.0E+00	0.0E+00	0.0E+00	1.7E+01	1.5E+01	3.8E+01	3.7E+01	6.0E+01	7.4E+01	8.1E+01	4.8E+01	4.9E+01	1.4E+01	2.5E+01	2.1E+01	2.9E+01	4.0E+01
PCB87	2.1E+05	3.5E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.2E-01	1.7E+00	2.4E+00	3.7E+00	3.8E+00	4.0E+00	2.6E+00	2.4E+00	0.0E+00	1.3E+00	1.7E+00	0.0E+00	0.0E+00
PCB101	4.2E+05	4.6E+00	0.0E+00	0.0E+00	0.0E+00	5.8E-01	1.7E+00	3.7E+00	4.6E+00	6.4E+00	7.4E+00	7.1E+00	4.4E+00	4.2E+00	1.9E+00	2.3E+00	2.2E+00	1.3E+00	2.3E+00

	PSNS- 636-62-																		
Field ID	4A	4A-B68	4A-B7	4A-T1	4A-T11	4A-T13	4A-T15	4A-T17	4A-T21	4A-T24		4A-T29	4A-T32	4A-T36		4A-T42	4A-T45	4A-T47	4A-T49
PCB105	1.4E+05	0.0E+00	7.3E-01	1.4E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	5.0E-01	0.0E+00	0.0E+00	0.0E+00						
PCB114	9.6E+03	0.0E+00																	
PCB118	3.9E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.8E-01	1.6E+00	2.3E+00	4.1E+00	4.4E+00	4.3E+00	0.0E+00	1.7E+00	0.0E+00	8.9E-01	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00																		
PCB126	0.0E+00																		
C16	8.6E+05	0.0E+00																	
PCB128	4.9E+04	0.0E+00																	
PCB138	2.1E+05	0.0E+00																	
PCB153	2.0E+05	0.0E+00																	
PCB156	2.7E+04	0.0E+00																	
PCB157	1.0E+04	0.0E+00																	
PCB167	9.4E+03	0.0E+00																	
PCB169	0.0E+00																		
C17	9.4E+04	0.0E+00	0.0E+00	4.9E+00	4.5E+00	8.6E+00	7.2E+00	0.0E+00											
PCB170	1.0E+04	0.0E+00																	
PCB180	1.3E+04	0.0E+00																	
PCB183	7.9E+03	0.0E+00																	
PCB184	0.0E+00	0.0E+00	0.0E+00	7.5E-01	7.4E-01	8.3E-01	1.0E+00	0.0E+00											
PCB187	0.0E+00																		
PCB189	0.0E+00																		
C18	0.0E+00																		
PCB195	0.0E+00																		
C19	0.0E+00																		
PCB206	0.0E+00																		
C110	0.0E+00																		
PCB209	0.0E+00																		
tPCBs	4.5E+06	8.7E+01	0.0E+00	4.9E+00	4.5E+00	7.0E+01	1.0E+02	1.1E+02	1.2E+02	1.6E+02	2.0E+02	2.1E+02	1.4E+02	1.6E+02	1.1E+02	8.5E+01	9.2E+01	9.7E+01	1.5E+02

Black Rubber Pipe Hanger Liner (BRPHL) Experiment: Mass Balance

	Remaining PCBs in Leached Solid (ng)	Total PCBs Released (ng)	Initial PCBs in Solid (ng)	Initial Weight Fraction PCBs in	Initial Homologue % of tPCBs in Solid	Initial Congener % of tPCBs in Solid	`	Total Congener Release (% of tPCBs
CH	3.1E+03	1.3E+02	3.2E+03	Solid 1.1E-06	7.1E-02		in Leachate) 6.9E+00	in Leachate)
Cl1								
Cl2	1.9E+04	1.6E+02	1.9E+04	6.6E-06	4.2E-01	0.000.00	8.5E+00	4.0700
PCB8	3.7E+03	1.9E+01	3.7E+03	1.3E-06		8.2E-02		1.0E+00
C13	6.3E+04	2.2E+02	6.3E+04	2.2E-05	1.4E+00		1.2E+01	
PCB18	5.9E+03	2.5E+01	5.9E+03	2.0E-06		1.3E-01		1.3E+00
PCB28	2.0E+04	3.1E+01	2.0E+04	6.9E-06		4.4E-01		1.7E+00
Cl4	1.2E+06	7.6E+02	1.2E+06	4.1E-04	2.6E+01		4.0E+01	
PCB44	1.7E+05	1.2E+02	1.7E+05	5.8E-05		3.7E+00		6.5E+00
PCB49	8.7E+04	4.6E+01	8.7E+04	3.0E-05		1.9E+00		2.4E+00
PCB52	3.7E+05	2.4E+02	3.7E+05	1.3E-04		8.2E+00		1.3E+01
PCB66	7.7E+04	2.0E+01	7.7E+04	2.6E-05		1.7E+00		1.1E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C15	2.3E+06	5.9E+02	2.3E+06	7.9E-04	5.1E+01		3.1E+01	
PCB87	2.1E+05	2.8E+01	2.1E+05	7.2E-05		4.6E+00		1.5E+00
PCB101	4.2E+05	5.5E+01	4.2E+05	1.4E-04		9.3E+00		2.9E+00
PCB105	1.4E+05	4.5E+00	1.4E+05	4.8E-05		3.1E+00		2.4E-01
PCB114	9.6E+03	0.0E+00	9.6E+03	3.3E-06		2.1E-01		0.0E+00
PCB118	3.9E+05	2.0E+01	3.9E+05	1.3E-04		8.6E+00		1.1E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
Cl6	8.6E+05	0.0E+00	8.6E+05	3.0E-04	1.9E+01		0.0E+00	
PCB128	4.9E+04	0.0E+00	4.9E+04	1.7E-05		1.1E+00		0.0E+00
PCB138	2.1E+05	0.0E+00	2.1E+05	7.2E-05		4.6E+00		0.0E+00
PCB153	2.0E+05	0.0E+00	2.0E+05	6.9E-05		4.4E+00		0.0E+00
PCB156	2.7E+04	0.0E+00	2.7E+04	9.3E-06		5.9E-01		0.0E+00
PCB157	1.0E+04	0.0E+00	1.0E+04	3.4E-06		2.2E-01		0.0E+00
PCB167	9.4E+03	0.0E+00	9.4E+03	3.2E-06		2.1E-01		0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C17	9.4E+04	2.5E+01	9.4E+04	3.2E-05	2.1E+00		1.3E+00	
PCB170	1.0E+04	0.0E+00	1.0E+04	3.4E-06		2.2E-01		0.0E+00
PCB180	1.3E+04	0.0E+00	1.3E+04	4.5E-06		2.9E-01		0.0E+00
PCB183	7.9E+03	0.0E+00	7.9E+03	2.7E-06		1.7E-01		0.0E+00
PCB184	0.0E+00	3.4E+00	3.4E+00	1.2E-09		7.4E-05		1.8E-01
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
tPCBs	4.5E+06	1.9E+03	4.5E+06	1.6E-03				

Electrical Cable (EC) Experiment: Analytical Results (ng/L)

Sample ID	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-	01-18-6-
	6-L-3B	_	-		6-L-3B-		-				6-L-3B-			L-3B-	L-3B-	L-3B-	L-3B-	6-L-	L-3B-
		B68	В9	T11	T13	T2	T21	T23	T27	T30	T32	T35	T38	T41	T44	T47	T50	3B-T52	T54
Sample Date	7/5/01	7/5/01	5/3/00	3/9/00	3/14/00	3/8/00	3/28/00	4/18/00	5/9/00	6/6/00	7/11/00	8/22/00	10/3/00	11/14/00	1/2/01	2/13/01	3/27/01	4/24/01	6/26/01
Units	ng	ng	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
C11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 1 014	3.75	175	275	3.75					275	375	275		275	3.75	3.75	115		3.15	
Qual_Cl1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C12	0	0	0	0	47	0	0	6	0	19	0	0	0	0	0	0	0	0	0
Qual_Cl2	ND	ND	ND	ND		ND	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C13	17000	0	0	0	0	0	0	0.62	0	0	1.9	0	0	0	0	0	0	0	0
Qual_Cl3	J	ND	ND	ND	ND	ND	ND	J	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
PCB18	0	0	0	0	0	0	0	0.41	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB18	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB28	15000	0	0	0	0	0	0	0	0	0	1.5	0	0	0	0	0	0	0	0
Qual_PCB28	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
C14	34000 00	38	0	0	8.2	0	25	39	31	36	40	43	53	39	35	33	51	46	38
Qual_Cl4			ND	ND		ND													
PCB44	40000	3.6	0	0	1.7	0	4.3	5.1	6.1	6	6.4	6.6	8.2	5.6	4.3	5.2	7.6	5.5	4.9

Sample ID	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-	01-18-6-
	6-L-3B	6-L-3B-		6-L-3B-	6-L-3B-	L-3B-	L-3B-	L-3B-	L-3B-	6-L-	L-3B-								
0. 1. DCD 44		B68	B9	T11	T13	T2	T21	T23	T27	T30	T32	T35	T38	T41	T44	T47	T50	3B-T52	T54
Qual_PCB44	1.000	J	ND	ND	J	ND		4.0	4.0	1.0	1.0				J		2.5	1.0	J
PCB49	16000	1.4	0	0	0.95	0	1.7	1.9	1.8	1.9	1.9	1.7	3	2	0	1.3	2.7	1.8	2
Qual_PCB49		J	ND	ND	J	ND	J	J	J	J	J	J	J	J	ND	J	J	J	J
PCB52	88000	8.7	0	0	3	0	8.4	10	11	11	14	13	18	12	11	12	18	12	11
Qual_PCB52			ND	ND		ND													
PCB66	19000 0	1.2	0	0	0	0	0.83	1.2	1.4	0.74	1	1.5	2.3	1.2	0.89	1.1	1.6	1.6	0
Qual_PCB66		J	ND	ND	ND	ND	J	J	J	J	J	J	J	J	J	J	J	J	ND
PCB77	0	0	0	0	0	0	0	0	0	0	1.5	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
C15	16000 000	100	0	0	17	0	32	64	61	63	67	88	120	53	22	50	64	73	42
Qual_Cl5			ND	ND		ND													
PCB87	13000 00	5.3	0	0	0	0	1.9	2.9	3.7	3.7	4.7	4.2	4.4	3.8	0	3.2	6.6	4.6	2.3
Qual_PCB87			ND	ND	ND	ND	J							J	ND			J	J
PCB101	24000 00	9.8	0	0	0.88	0	3.3	5.4	6.6	7	9.6	7	7.6	5.4	3.7	5.2	10	5.4	3.8
Qual_PCB101			ND	ND	J	ND									J				J
PCB105	12000 00	2.9	0	0	0	0	0.85	1.3	1.6	1.7	3	1.5	0	1.4	0	1.1	2.6	0	0
Qual_PCB105		J	ND	ND	ND	ND	J	J	J	J		J	ND	J	ND	J	J	ND	ND
PCB114	52000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB114	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
PCB118	29000 00	5.7	0	0	0	0	1.8	3.6	4.4	5.3	6.5	4.4	3.5	2.9	0	2.4	4.9	2.1	0
Qual_PCB118			ND	ND	ND	ND	J						J	J	ND	J	J	J	ND
PCB123	38000 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB123		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C16	10000 000	25	0	0	0	0	2.7	16	0	22	40	28	0	0	0	12	20	0	0
Qual_Cl6			ND	ND	ND	ND			ND				ND	ND	ND			ND	ND
PCB128	65000	0	0	0	0	0	0	0	0	0	2.3	0	0	0	0	0	0	0	0

Sample ID	01-18-		01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-		01-18-6-				01-18-6-
_	6-L-3B	6-L-3B-	6-L-3B-		6-L-3B-			6-L-3B-	6-L-3B-			6-L-3B-	6-L-3B-	L-3B-	L-3B-	L-3B-	L-3B-	6-L-	L-3B-
	^	B68	В9	T11	T13	T2	T21	T23	T27	T30	T32	T35	T38	T41	T44	T47	T50	3B-T52	T54
	0																		<u> </u>
Qual_PCB128		ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
PCB138	26000 00	3.9	0	0	0	0	0	0.76	0	2.2	2.6	1.6	0	0	0	1.2	2.9	0	0
Qual_PCB138		J	ND	ND	ND	ND	ND	J	ND	J	J	J	ND	ND	ND	J	J	ND	ND
PCB153	30000 00	3.7	0	0	0	0	0	0	0	1.9	3	2.7	0	0	0	1.1	2.6	0	0
Qual_PCB153		J	ND	ND	ND	ND	ND	ND	ND	J			ND	ND	ND	J	J	ND	ND
PCB156	36000 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB156		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB157	13000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB157		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	14000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB167		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C17	27000 00	0	0	0	3.4	0	8.9	0	0	4.2	0	0	0	0	0	0	0	0	0
Qual_Cl7		ND	ND	ND		ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB170	34000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB180	33000 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB180		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB183	99000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB183		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0	0.72	0	0.65	0	0	0.71	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	J	ND		ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB187	14000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB187		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-	01-18-6-
Sumple 1D	6-L-3B		6-L-3B-	6-L-3B-	6-L-3B-	6-L-3B-		6-L-3B-	6-L-3B-		6-L-3B-	6-L-3B-	6-L-3B-	L-3B-	L-3B-	L-3B-	L-3B-	6-L-	L-3B-
		B68	В9	T11	T13	T2	T21	T23	T27	T30	T32	T35	T38	T41	T44	T47	T50	3B-T52	T54
C18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	0	0	0	0	0	0	0	0	0	0	2.5	0	0	0	0	0	0	0	0
Qual_C19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
PCB206	0	0	0	0	0	0	0	0	0	0	1.6	0	0	0	0	0	0	0	0
Qual_PCB206	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
C110	0	0	0	0	0	0	0	0	0	0	1.4	0	0	0	0	0	0	0	0
Qual_Cl10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
PCB209	0	0	0	0	0	0	0	0	0	0	1.4	0	0	0	0	0	0	0	0
Qual_PCB209	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
Min Reporting Limit	88000	5	2.6	2.7	2.6	2.7	2.7	2.7	2.7	2.9	2.7	2.7	3.6	5.4	5.4	2.7	5.4	5.4	5.4
MDL_cong_Cl1	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54
MDL_cong_Cl2	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54
MDL8	6400	0.42	0.45	0.46	0.45	0.46	0.46	0.46	0.46	0.49	0.45	0.45	0.61	0.46	0.46	0.23	0.45	0.45	0.45
MDL_cong_Cl3	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54
MDL18	7600	0.64	0.68	0.69	0.68	0.69	0.7	0.69	0.69	0.74	0.69	0.69	0.92	0.69	0.69	0.35	0.69	0.69	0.69
MDL28	8000	0.53	0.56	0.57	0.56	0.57	0.58	0.57	0.57	0.61	0.56	0.56	0.76	0.57	0.57	0.28	0.56	0.56	0.56
MDL_cong_Cl4	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54
MDL44	6500	0.67	0.71	0.73	0.71	0.73	0.74	0.73	0.73	0.78	0.72	0.72	0.97	0.73	0.73	0.36	0.72	0.72	0.72
MDL49	17000	0.75	0.79	0.81	0.79	0.81	0.82	0.81	0.81	0.87	0.8	0.8	1.1	0.81	0.81	0.4	0.8	0.8	0.8
MDL52	8300	0.29	0.31	0.32	0.31	0.32	0.32	0.32	0.32	0.34	0.32	0.32	0.43	0.32	0.32	0.16	0.32	0.32	0.32
MDL66	9600	0.64	0.68	0.7	0.68	0.7	0.71	0.7	0.7	0.75	0.69	0.69	0.93	0.7	0.7	0.35	0.69	0.69	0.69
MDL77	12000	0.56	0.59	0.61	0.6	0.61	0.62	0.61	0.61	0.65	0.6	0.6	0.81	0.61	0.61	0.3	0.6	0.6	0.6
MDL_cong_Cl5	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54
MDL87	17000	0.77	0.81	0.83	0.81	0.83	0.84	0.83	0.83	0.89	0.82	0.82	1.1	0.83	0.83	0.42	0.82	0.82	0.82
MDL101	7100	0.36	0.38	0.39	0.38	0.39	0.4	0.39	0.39	0.42	0.39	0.39	0.52	0.39	0.39	0.2	0.39	0.39	0.39
MDL105	12000	0.41	0.43	0.44	0.43	0.44	0.45	0.44	0.44	0.47	0.44	0.44	0.59	0.44	0.44	0.22	0.44	0.44	0.44
MDL114	17000	0.68	0.72	0.74	0.72	0.74	0.74	0.74	0.74	0.79	0.73	0.73	0.98	0.74	0.74	0.37	0.73	0.73	0.73
MDL118	17000	0.66	0.7	0.71	0.7	0.71	0.72	0.71	0.71	0.76	0.7	0.7	0.95	0.71	0.71	0.36	0.7	0.7	0.7
MDL123	17000	0.77	0.82	0.84	0.82	0.84	0.85	0.84	0.84	0.9	0.83	0.83	1.1	0.84	0.84	0.42	0.83	0.83	0.83
MDL126	26000	0.67	0.71	0.73	0.71	0.73	0.74	0.73	0.73	0.78	0.72	0.72	0.97	0.73	0.73	0.36	0.72	0.72	0.72
MDL_cong_Cl6	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54

Sample ID	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-	01-18-6-
	6-L-3B	6-L-3B-	6-L-3B-	6-L-3B-	6-L-3B-	6-L-3B-		6-L-3B-	6-L-3B-	6-L-3B-		6-L-3B-	6-L-3B-	L-3B-	L-3B-	L-3B-	L-3B-	6-L-	L-3B-
		B68	В9	T11	T13	T2	T21	T23	T27	T30	T32	T35	T38	T41	T44	T47	T50	3B-T52	T54
MDL128	12000	0.25	0.26	0.27	0.26	0.27	0.27	0.27	0.27	0.29	0.27	0.27	0.36	0.27	0.27	0.14	0.27	0.27	0.27
MDL138	17000	0.55	0.58	0.59	0.58	0.59	0.6	0.59	0.59	0.63	0.59	0.59	0.79	0.59	0.59	0.3	0.59	0.59	0.59
MDL153	13000	0.27	0.28	0.29	0.28	0.29	0.29	0.29	0.29	0.31	0.29	0.29	0.39	0.29	0.29	0.14	0.29	0.29	0.29
MDL156	17000	0.62	0.66	0.67	0.66	0.67	0.68	0.67	0.67	0.72	0.67	0.67	0.9	0.67	0.67	0.34	0.67	0.67	0.67
MDL157	17000	0.61	0.64	0.66	0.65	0.66	0.67	0.66	0.66	0.71	0.65	0.65	0.88	0.66	0.66	0.33	0.65	0.65	0.65
MDL167	17000	0.64	0.68	0.69	0.68	0.69	0.7	0.69	0.69	0.74	0.68	0.68	0.92	0.69	0.69	0.34	0.68	0.68	0.68
MDL169	17000	0.59	0.63	0.64	0.63	0.64	0.65	0.64	0.64	0.69	0.63	0.63	0.86	0.64	0.64	0.32	0.63	0.63	0.63
MDL-cong_Cl7	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54
MDL170	7800	0.64	0.68	0.69	0.68	0.69	0.7	0.69	0.69	0.74	0.68	0.68	0.92	0.69	0.69	0.34	0.68	0.68	0.68
MDL180	17000	0.65	0.69	0.71	0.69	0.71	0.72	0.71	0.71	0.76	0.7	0.7	0.94	0.71	0.71	0.35	0.7	0.7	0.7
MDL183	17000	0.37	0.39	0.4	0.39	0.4	0.41	0.4	0.4	0.43	0.4	0.4	0.54	0.4	0.4	0.2	0.4	0.4	0.4
MDL184	17000	0.5	0.54	0.55	0.54	0.55	0.55	0.55	0.55	0.59	0.54	0.54	0.73	0.55	0.55	0.27	0.54	0.54	0.54
MDL187	7500	0.65	0.69	0.71	0.69	0.71	0.72	0.71	0.71	0.76	0.7	0.7	0.94	0.71	0.71	0.35	0.7	0.7	0.7
MDL189	17000	0.71	0.75	0.77	0.75	0.77	0.78	0.77	0.77	0.82	0.76	0.76	1	0.77	0.77	0.38	0.76	0.76	0.76
MDL_cong_Cl8	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54
MDL195	12000	0.58	0.62	0.63	0.62	0.63	0.64	0.63	0.63	0.68	0.62	0.62	0.84	0.63	0.63	0.32	0.62	0.62	0.62
MDL_cong_Cl9	17000	0.5	0.53	0.54	0.53	0.54	0.55	0.54	0.54	0.58	0.54	0.54	0.72	0.54	0.54	0.27	0.54	0.54	0.54
MDL206	19000	0.23	0.24	0.24	0.24	0.24	0.25	0.24	0.24	0.26	0.24	0.24	0.33	0.24	0.24	0.12	0.24	0.24	0.24
MDL_cong_Cl10	13000	0.57	0.6	0.62	0.61	0.62	0.63	0.62	0.62	0.66	0.61	0.61	0.83	0.62	0.62	0.31	0.61	0.61	0.61
MDL209	13000	0.57	0.6	0.62	0.61	0.62	0.63	0.62	0.62	0.66	0.61	0.61	0.83	0.62	0.62	0.31	0.61	0.61	0.61
Sample Delivery	NC34S	NC34S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC28SD	NC28S	NC28S	NC28S	NC28S	NC34S
Group	DG006	DG004	DG010	DG001	DG002	DG001	DG004	DG007	DG010	DG014	DG019	DG024	DG054	G006	DG010	DG013	DG019	DG023	DG003
Sample Size	1	1	0.94	0.92	0.94	0.92	0.91	0.92	0.92	0.86	0.93	0.93	0.69	0.92	0.92	0.92	0.93	0.93	0.93
Size Units			L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Electrical Cable (EC) Experiment: PCB Mass per Sample (ng)

Field ID	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-
	L-3B	L-3B-	L-3B-B9	L-3B-	L-3B-	L-3B-T2	L-3B-												
		B68		T11	T13		T21	T23	T27	T30	T32	T35	T38	T41	T44	T47	T50	T52	T54
Cl1	0.0E+00																		
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.4E+01	0.0E+00	0.0E+00	5.5E+00	0.0E+00	1.6E+01	0.0E+00								
PCB8	0.0E+00																		

Field ID	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-
	L-3B	L-3B- B68	L-3B-B9	L-3B- T11	L-3B- T13	L-3B-T2	L-3B- T21	L-3B- T23	L-3B- T27	L-3B- T30	L-3B- T32	L-3B- T35	L-3B- T38	L-3B- T41	L-3B- T44	L-3B- T47	L-3B- T50	L-3B- T52	L-3B- T54
C13	1.7E+04		0.0E+00	0.0E+00		0.0E+00	0.0E+00	5.7E-01		0.0E+00		0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.8E-01	0.0E+00			0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB28	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C14	3.4E+06	3.8E+01	0.0E+00	0.0E+00	7.7E+00	0.0E+00	2.3E+01	3.6E+01	2.9E+01	3.1E+01	3.7E+01	4.0E+01	3.7E+01	3.6E+01	3.2E+01	3.0E+01	4.7E+01	4.3E+01	3.5E+01
PCB44	4.0E+05	3.6E+00	0.0E+00	0.0E+00	1.6E+00	0.0E+00	3.9E+00	4.7E+00	5.6E+00	5.2E+00	6.0E+00	6.1E+00	5.7E+00	5.2E+00	4.0E+00	4.8E+00	7.1E+00	5.1E+00	4.6E+00
PCB49	1.6E+05	1.4E+00	0.0E+00	0.0E+00	8.9E-01	0.0E+00	1.5E+00	1.7E+00	1.7E+00	1.6E+00	1.8E+00	1.6E+00	2.1E+00	1.8E+00	0.0E+00	1.2E+00	2.5E+00	1.7E+00	1.9E+00
PCB52	8.8E+05	8.7E+00	0.0E+00	0.0E+00	2.8E+00	0.0E+00	7.6E+00	9.2E+00	1.0E+01	9.5E+00	1.3E+01	1.2E+01	1.2E+01	1.1E+01	1.0E+01	1.1E+01	1.7E+01	1.1E+01	1.0E+01
PCB66	1.9E+05	1.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.6E-01	1.1E+00	1.3E+00	6.4E-01	9.3E-01	1.4E+00	1.6E+00	1.1E+00	8.2E-01	1.0E+00	1.5E+00	1.5E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	1.6E+07	1.0E+02	0.0E+00	0.0E+00	1.6E+01	0.0E+00	2.9E+01	5.9E+01	5.6E+01	5.4E+01	6.2E+01	8.2E+01	8.3E+01	4.9E+01	2.0E+01	4.6E+01	6.0E+01	6.8E+01	3.9E+01
PCB87	1.3E+06	5.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.7E+00	2.7E+00	3.4E+00	3.2E+00	4.4E+00	3.9E+00	3.0E+00	3.5E+00	0.0E+00	2.9E+00	6.1E+00	4.3E+00	2.1E+00
PCB101	2.4E+06	9.8E+00	0.0E+00	0.0E+00	8.3E-01	0.0E+00	3.0E+00	5.0E+00	6.1E+00	6.0E+00	8.9E+00	6.5E+00	5.2E+00	5.0E+00	3.4E+00	4.8E+00	9.3E+00	5.0E+00	3.5E+00
PCB105	1.2E+06	2.9E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.7E-01	1.2E+00	1.5E+00	1.5E+00	2.8E+00	1.4E+00	0.0E+00	1.3E+00	0.0E+00	1.0E+00	2.4E+00	0.0E+00	0.0E+00
PCB114	5.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	2.9E+06	5.7E+00		0.0E+00	0.0E+00		1.6E+00	3.3E+00	4.0E+00	4.6E+00	6.0E+00	4.1E+00			0.0E+00	2.2E+00	4.6E+00	2.0E+00	0.0E+00
PCB123	3.8E+05				0.0E+00			0.0E+00										0.0E+00	
PCB126		0.0E+00			0.0E+00	0.0E+00		0.0E+00	0.0E+00			0.0E+00			0.0E+00	0.0E+00		0.0E+00	0.0E+00
C16	1.0E+07				0.0E+00	0.0E+00	2.5E+00		0.0E+00			2.6E+01	0.0E+00		0.0E+00	1.1E+01		0.0E+00	0.0E+00
PCB128			0.0E+00		0.0E+00	0.0E+00		0.0E+00			2.1E+00	0.0E+00			0.0E+00			0.0E+00	
PCB138			0.0E+00		0.0E+00		0.0E+00				2.4E+00	1.5E+00		****	0.0E+00				0.0E+00
PCB153			0.0E+00		0.0E+00			0.0E+00			2.8E+00		0.0E+00		0.0E+00		2.4E+00	0.0E+00	0.0E+00
PCB156			0.0E+00		0.0E+00			0.0E+00			0.0E+00		0.0E+00			0.0E+00	0.0E+00	0.0E+00	
PCB157	1.3E+05		0.0E+00		0.0E+00	0.0E+00		0.0E+00	0.0E+00			0.0E+00	0.0E+00	****	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	1.4E+05		0.0E+00		0.0E+00			0.0E+00			0.0E+00			0.0E+00			0.0E+00	0.0E+00	0.0E+00
PCB169 Cl7			0.0E+00 0.0E+00		0.0E+00 3.2E+00			0.0E+00						0.0E+00 0.0E+00		0.0E+00 0.0E+00		0.0E+00 0.0E+00	
PCB170														0.0E+00					
PCB170 PCB180	3.4E+05		0.0E+00		0.0E+00			0.0E+00						0.0E+00				0.0E+00	
PCB180 PCB183			0.0E+00		0.0E+00	0.0E+00		0.0E+00				0.0E+00	0.0E+00		0.0E+00			0.0E+00	
PCB183		0.0E+00		0.0E+00		0.0E+00			0.0E+00		0.0E+00	0.0E+00	0.0E+00		0.0E+00	0.0E+00		0.0E+00	0.0E+00
PCB184 PCB187		0.0E+00			0.8E-01 0.0E+00	0.0E+00		0.0E+00			0.0E+00	0.0E+00			0.0E+00	0.0E+00		0.0E+00	0.0E+00
PCB189		0.0E+00			0.0E+00	0.0E+00		0.0E+00	0.0E+00			0.0E+00			0.0E+00	0.0E+00	0.0E+00	0.0E+00	
C18	****	****												0.0E+00			****		
C10	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	0.0E±00	U.UE⊤UU	0.0E±00

Field ID	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-	01-18-6-
	L-3B	L-3B-	L-3B-B9	L-3B-	L-3B-	L-3B-T2	L-3B-												
		B68		T11	T13		T21	T23	T27	T30	T32	T35	T38	T41	T44	T47	T50	T52	T54
PCB195	0.0E+00																		
C19	0.0E+00	2.3E+00	0.0E+00																
PCB206	0.0E+00	1.5E+00	0.0E+00																
C110	0.0E+00	1.3E+00	0.0E+00																
PCB209	0.0E+00	1.3E+00	0.0E+00																
tPCBs	3.2E+07	1.6E+02	0.0E+00	0.0E+00	7.1E+01	0.0E+00	6.2E+01	1.2E+02	8.5E+01	1.2E+02	1.4E+02	1.5E+02	1.2E+02	8.5E+01	5.2E+01	8.7E+01	1.3E+02	1.1E+02	7.4E+01

Electrical Cable (EC) Experiment: Mass Balance

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs	
				Solid			in Leachate)	in Leachate)
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
C12	0.0E+00	6.6E+01	6.6E+01	2.5E-09	2.1E-04		4.2E+00	
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C13	1.7E+04	2.3E+00	1.7E+04	6.4E-07	5.3E-02		1.5E-01	
PCB18	0.0E+00	3.8E-01	3.8E-01	1.4E-11		1.2E-06		2.4E-02
PCB28	1.5E+04	1.4E+00	1.5E+04	5.7E-07		4.7E-02		8.9E-02
Cl4	3.4E+06	5.0E+02	3.4E+06	1.3E-04	1.1E+01		3.2E+01	
PCB44	4.0E+05	7.3E+01	4.0E+05	1.5E-05		1.2E+00		4.7E+00
PCB49	1.6E+05	2.3E+01	1.6E+05	6.0E-06		5.0E-01		1.5E+00
PCB52	8.8E+05	1.6E+02	8.8E+05	3.3E-05		2.7E+00		1.0E+01
PCB66	1.9E+05	1.5E+01	1.9E+05	7.2E-06		5.9E-01		9.5E-01
PCB77	0.0E+00	1.4E+00	1.4E+00	5.3E-11		4.3E-06		8.9E-02
C15	1.6E+07	8.2E+02	1.6E+07	6.0E-04	5.0E+01		5.3E+01	
PCB87	1.3E+06	4.7E+01	1.3E+06	4.9E-05		4.0E+00		3.0E+00
PCB101	2.4E+06	8.2E+01	2.4E+06	9.0E-05		7.5E+00		5.3E+00
PCB105	1.2E+06	1.7E+01	1.2E+06	4.5E-05		3.7E+00		1.1E+00
PCB114	5.2E+04	0.0E+00	5.2E+04	2.0E-06		1.6E-01		0.0E+00
PCB118	2.9E+06	4.3E+01	2.9E+06	1.1E-04		9.0E+00		2.8E+00
PCB123	3.8E+05	0.0E+00	3.8E+05	1.4E-05		1.2E+00		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
Cl6	1.0E+07	1.5E+02	1.0E+07	3.8E-04	3.1E+01		9.8E+00	

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid		Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
PCB128	6.5E+05	2.1E+00	6.5E+05	2.4E-05		2.0E+00		1.4E-01
PCB138	2.6E+06	1.4E+01	2.6E+06	9.8E-05		8.1E+00		9.1E-01
PCB153	3.0E+06	1.4E+01	3.0E+06	1.1E-04		9.3E+00		9.0E-01
PCB156	3.6E+05	0.0E+00	3.6E+05	1.4E-05		1.1E+00		0.0E+00
PCB157	1.3E+05	0.0E+00	1.3E+05	4.9E-06		4.0E-01		0.0E+00
PCB167	1.4E+05	0.0E+00	1.4E+05	5.3E-06		4.4E-01		0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C17	2.7E+06	1.5E+01	2.7E+06	1.0E-04	8.4E+00		9.5E-01	
PCB170	3.4E+05	0.0E+00	3.4E+05	1.3E-05		1.1E+00		0.0E+00
PCB180	3.3E+05	0.0E+00	3.3E+05	1.2E-05		1.0E+00		0.0E+00
PCB183	9.9E+04	0.0E+00	9.9E+04	3.7E-06		3.1E-01		0.0E+00
PCB184	0.0E+00	1.9E+00	1.9E+00	7.1E-11		5.8E-06		1.2E-01
PCB187	1.4E+05	0.0E+00	1.4E+05	5.3E-06		4.4E-01		0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C19	0.0E+00	2.3E+00	2.3E+00	8.8E-11	7.2E-06		1.5E-01	
PCB206	0.0E+00	1.5E+00	1.5E+00	5.6E-11		4.6E-06		9.5E-02
C110	0.0E+00	1.3E+00	1.3E+00	4.9E-11	4.1E-06		8.3E-02	
PCB209	0.0E+00	1.3E+00	1.3E+00	4.9E-11		4.1E-06		8.3E-02
tPCBs	3.2E+07	1.6E+03	3.2E+07	1.2E-03				

Foam Rubber/Ensolite® (FRE) Experiment: Analytical Results (ng/L)

Sample ID	PSNS-																	
	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-
	9A	9A-B67	9A-B13	9A-T1	9A-T11	9A-T13	9A-T16	9A-T18	9A-T23	9A-T25	9A-T28	9A-T31	9A-T35	9A-T38	9A-T41	9A-T44	9A-T46	9A-T48
Sample Date	7/5/01	7/5/01	6/6/00	3/14/00	3/15/00	3/21/00	4/4/00	4/25/00	5/24/00	6/27/00	8/8/00	9/19/00	10/31/00	12/12/00	1/23/01	3/6/01	4/17/01	6/26/01
Units	ng	ng	ng/L															
C11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl1	ND																	
C12	0	0	0	0	17	5	24	22	4	20	4.4	3.6	24	3.8	3.2	14	14	20
Qual_Cl2	ND	ND	ND	ND								J		J	J			

Sample ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
•	647-165-		647-165-	647-165-	647-165-	647-165-	647-165-			647-165-				647-165-	647-165-	647-165-	647-165-	
	9A	9A-B67	9A-B13	9A-T1	9A-T11		9A-T16	9A-T18	9A-T23	9A-T25	9A-T28	9A-T31	9A-T35	9A-T38		9A-T44		
PCB8	0	0	0	0	0	1.6	3	3.1	4	3.3	3.2	3.6	3.5	3.6	3.1	2.8	2.5	3.4
Qual_PCB8	ND	ND	ND	ND	ND	J						J	J	J	J		J	J
C13	34000	1.4	0	0	1.7	6	15	9.7	11	13	14	14	15	11	12	11	17	16
Qual_Cl3	J	J	ND	ND	J													
PCB18	0	0	0	0	0	1.4	2.7	2.9	3.4	2.7	3.3	3.2	1.2	2.8	3	2.6	2.3	2.8
Qual_PCB18	ND	ND	ND	ND	ND	J						J	J	J	J	J	J	J
PCB28	21000	1.3	0	0	1.4	2.2	4.1	4.3	4.2	4.3	4.1	4.3	4.2	3.4	2.8	2.5	2.6	3
Qual_PCB28	J	J	ND	ND	J	J						J	J	J	J	J	J	J
C14	2600000	110	0	0	4.2	82	170	200	240	220	250	210	220	170	150	120	140	160
Qual_Cl4			ND	ND														
PCB44	340000	15	0	0	1.1	13	33	40	39	44	48	44	41	36	30	27	27	29
Qual_PCB44			ND	ND	J													
PCB49	120000	4.8	0	0	0.52	4.4	10	12	12	13	13	13	11	10	8.1	7.7	8	7.6
Qual_PCB49		J	ND	ND	J													
PCB52	600000	28	0	0	1.5	24	61	71	76	77	79	78	72	63	56	52	52	55
Qual_PCB52			ND	ND	J													
PCB66	180000	4.8	0	0	0	1.9	7.1	7.6	9.4	10	9.6	8.6	9.7	6.5	5.3	3.6	4.9	0
Qual_PCB66		J	ND	ND	ND	J									J		J	ND
PCB77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C15	1000000	320	0	0	0	75	220	260	360	360	420	360	350	240	190	160	160	180
Qual_Cl5			ND	ND	ND													
PCB87	910000	20	0	0	0	4.2	18	20	27	30	29	27	25	19	16	13	10	10
Qual_PCB87			ND	ND	ND													
PCB101	1700000	33	0	0	0	7	29	34	47	51	48	47	42	27	22	17	15	16
Qual_PCB101			ND	ND	ND													
PCB105	780000	8.7	0	0	0	1.6	7.3	9.3	13	16	14	13	11	7.2	6	3.4	3.1	3.3
Qual_PCB105			ND	ND	ND	J											J	J
PCB114	57000	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Qual_PCB114	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND
PCB118	1800000	17	0	0	0	3.2	16	21	28	33	29	28	25	15	12	7.6	5.2	4.8
Qual_PCB118			ND	ND	ND					İ		İ	İ			İ	J	J
PCB123	37000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual PCB123	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
	647-165-					647-165-					647-165-						647-165-	
PCB126	9A 0	9A-B67 0	9A-B13 0	9A-T1 0	9A-T11 0	9A-T13	9A-T16 0	9A-T18	9A-T23 0	9A-T25 0	9A-T28 0	9A-T31 0	9A-T35	9A-T38	9A-T41 0	9A-T44 0	9A-T46 0	9A-T48 0
Oual PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl6	8900000	110	0	0	0	0	32	48	88	83	140	96	120	72	78	38	48	0
Qual Cl6	8900000	110	ND	ND	ND	ND	32	40	00	63	140	90	120	12	76	36	40	ND
PCB128	440000	5.2	0	0	0	0	1.9	2.7	4	4.8	4.9	4.6	4.7	4.4	3.3	1.5	0	0
Qual PCB128	440000	3.2	ND	ND	ND	ND	J.9	2.7	4	4.0	4.9	4.0 J	4.7	4.4 J	J.5	1.5 J	ND	ND
PCB138	2000000	12	0	0	0	0	5.7	7.5	12	17	15	15	15	10	8.3	4.1	2.6	0
	2000000	12	ND		ND		5.7	7.5	12	1/	15	15	15	10	8.3	4.1		
Qual_PCB138	2100000	12		ND		ND	5.7	7.0	<i>C</i> 4	1.5	1.4	1.5	14	0.0	6.0	2.0	J	ND
PCB153	2100000	13	0 ND	0	0 ND	0 ND	5.7	7.8	6.4	15	14	15	14	8.8	6.8	3.9	0 ND	0
Qual_PCB153	200000	1.0		ND			0.72	1	1.0	2.2		2.2	2.6	0	0	0		ND
PCB156	280000	1.9	0	0	0	0	0.72	1	1.9	2.2	2	2.2	2.6	0	0	0	0	0
Qual_PCB156	00000	J	ND	ND	ND	ND	J	J	J	J	J	J	J	ND	ND	ND	ND	ND
PCB157	99000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB157	100000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	100000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB167		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C17	1700000	0	0	0	6.6	5.2	28	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl7		ND	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB170	240000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB180	300000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB180		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB183	81000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB183	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0	0.72	0.79	0.81	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	J	J	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB187	91000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB187		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
	647-165- 9A	647-165- 9A-B67	647-165- 9A-B13	647-165- 9A-T1	647-165- 9A-T11	647-165- 9A-T13		647-165- 9A-T18	647-165- 9A-T23	647-165- 9A-T25	647-165- 9A-T28	647-165- 9A-T31	647-165- 9A-T35	647-165- 9A-T38	647-165-	647-165- 9A-T44	647-165- 9A-T46	
PCB195	9A 0	9A-B07	0 0	0 0	0	9A-113	0	0 0	9A-123	9A-123	9A-128	9A-131	9A-133	9A-138	0	9A-144	9A-140	9A-148
Qual PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB206	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB209	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Min Reporting Limit	88000	2.6	5	2.6	2.7	2.7	2.6	2.7	2.8	2.7	2.7	5.4	5.4	5.4	5.4	2.7	5.4	5.4
MDL_cong_Cl1	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL_cong_Cl2	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL8	6400	0.45	0.42	0.45	0.46	0.45	0.45	0.46	0.47	0.45	0.45	0.92	0.46	0.45	0.45	0.23	0.46	0.46
MDL_cong_Cl3	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL18	7600	0.68	0.64	0.68	0.69	0.69	0.68	0.69	0.72	0.69	0.69	1.4	0.69	0.69	0.69	0.35	0.69	0.69
MDL28	8000	0.56	0.53	0.56	0.57	0.56	0.56	0.57	0.59	0.56	0.56	1.1	0.57	0.56	0.56	0.28	0.57	0.57
MDL_cong_Cl4	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL44	6500	0.71	0.67	0.71	0.73	0.72	0.71	0.73	0.76	0.72	0.72	1.5	0.73	0.72	0.72	0.36	0.73	0.73
MDL49	17000	0.79	0.75	0.79	0.81	0.8	0.79	0.81	0.84	0.8	0.8	1.6	0.81	0.8	0.8	0.4	0.81	0.81
MDL52	8300	0.31	0.29	0.31	0.32	0.32	0.31	0.32	0.33	0.32	0.32	0.64	0.32	0.32	0.32	0.16	0.32	0.32
MDL66	9600	0.68	0.64	0.68	0.7	0.69	0.68	0.7	0.72	0.69	0.69	1.4	0.7	0.69	0.69	0.35	0.7	0.7
MDL77	12000	0.6	0.56	0.6	0.61	0.6	0.6	0.61	0.63	0.6	0.6	1.2	0.61	0.6	0.6	0.3	0.61	0.61
MDL_cong_Cl5	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL87	17000	0.81	0.77	0.81	0.83	0.82	0.81	0.83	0.86	0.82	0.82	1.7	0.83	0.82	0.82	0.42	0.83	0.83
MDL101	7100	0.38	0.36	0.38	0.39	0.39	0.38	0.39	0.41	0.39	0.39	0.79	0.39	0.39	0.39	0.2	0.39	0.39
MDL105	12000	0.43	0.41	0.43	0.44	0.44	0.43	0.44	0.46	0.44	0.44	0.88	0.44	0.44	0.44	0.22	0.44	0.44
MDL114	17000	0.72	0.68	0.72	0.74	0.73	0.72	0.74	0.76	0.73	0.73	1.5	0.74	0.73	0.73	0.37	0.74	0.74
MDL118	17000	0.7	0.66	0.7	0.71	0.7	0.7	0.71	0.74	0.7	0.7	1.4	0.71	0.7	0.7	0.36	0.71	0.71
MDL123	17000	0.82	0.77	0.82	0.84	0.83	0.82	0.84	0.87	0.83	0.83	1.7	0.84	0.83	0.83	0.42	0.84	0.84
MDL126	26000	0.71	0.67	0.71	0.73	0.72	0.71	0.73	0.76	0.72	0.72	1.5	0.73	0.72	0.72	0.36	0.73	0.73
MDL_cong_Cl6	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL128	12000	0.26	0.25	0.26	0.27	0.27	0.26	0.27	0.28	0.27	0.27	0.54	0.27	0.27	0.27	0.14	0.27	0.27
MDL138	17000	0.58	0.55	0.58	0.59	0.59	0.58	0.59	0.61	0.59	0.59	1.2	0.59	0.59	0.59	0.3	0.59	0.59

Sample ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
_	647-165-	647-165-																647-165-
	9A	9A-B67	9A-B13		9A-T11				9A-T23		9A-T28	9A-T31		9A-T38				9A-T48
MDL153	13000	0.28	0.27	0.28	0.29	0.29	0.28	0.29	0.3	0.29	0.29	0.58	0.29	0.29	0.29	0.14	0.29	0.29
MDL156	17000	0.66	0.62	0.66	0.67	0.67	0.66	0.67	0.7	0.67	0.67	1.3	0.67	0.67	0.67	0.34	0.67	0.67
MDL157	17000	0.65	0.61	0.65	0.66	0.65	0.65	0.66	0.68	0.65	0.65	1.3	0.66	0.65	0.65	0.33	0.66	0.66
MDL167	17000	0.68	0.64	0.68	0.69	0.68	0.68	0.69	0.71	0.68	0.68	1.4	0.69	0.68	0.68	0.34	0.69	0.69
MDL169	17000	0.63	0.59	0.63	0.64	0.63	0.63	0.64	0.66	0.63	0.63	1.3	0.64	0.63	0.63	0.32	0.64	0.64
MDL-cong_Cl7	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL170	7800	0.68	0.64	0.68	0.69	0.68	0.68	0.69	0.71	0.68	0.68	1.4	0.69	0.68	0.68	0.34	0.69	0.69
MDL180	17000	0.69	0.65	0.69	0.71	0.7	0.69	0.71	0.73	0.7	0.7	1.4	0.71	0.7	0.7	0.35	0.71	0.71
MDL183	17000	0.39	0.37	0.39	0.4	0.4	0.39	0.4	0.42	0.4	0.4	0.8	0.4	0.4	0.4	0.2	0.4	0.4
MDL184	17000	0.54	0.5	0.54	0.55	0.54	0.54	0.55	0.57	0.54	0.54	1.1	0.55	0.54	0.54	0.27	0.55	0.55
MDL187	7500	0.69	0.65	0.69	0.71	0.7	0.69	0.71	0.73	0.7	0.7	1.4	0.71	0.7	0.7	0.35	0.71	0.71
MDL189	17000	0.75	0.71	0.75	0.77	0.76	0.75	0.77	0.79	0.76	0.76	1.5	0.77	0.76	0.76	0.38	0.77	0.77
MDL_cong_Cl8	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL195	12000	0.62	0.58	0.62	0.63	0.62	0.62	0.63	0.65	0.62	0.62	1.3	0.63	0.62	0.62	0.32	0.63	0.63
MDL_cong_Cl9	17000	0.53	0.5	0.53	0.54	0.54	0.53	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL206	19000	0.24	0.23	0.24	0.24	0.24	0.24	0.24	0.25	0.24	0.24	0.49	0.24	0.24	0.24	0.12	0.24	0.24
MDL_cong_Cl10	13000	0.61	0.57	0.61	0.62	0.61	0.61	0.62	0.64	0.61	0.61	1.2	0.62	0.61	0.61	0.31	0.62	0.62
MDL209	13000	0.61	0.57	0.61	0.62	0.61	0.61	0.62	0.64	0.61	0.61	1.2	0.62	0.61	0.61	0.31	0.62	0.62
Sample Delivery	NC34SD	NC22SD	NC34SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC28SD	NC28SD	NC28SD	NC28SD	NC28SD	NC34SD
Group	G006	G015	G004	G002	G002	G003	G005	G008	G012	G017	G022	G026	G004	G009	G011	G016	G022	G003
Sample Size	1	0.94	1	0.94	0.92	0.93	0.94	0.92	0.89	0.93	0.93	0.92	0.92	0.93	0.93	0.92	0.92	0.92
Size Units		L		L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Foam Rubber/EnsoliteTM (FRE) Experiment: PCB Mass per Sample (ng)

Field ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-
	9A	9A-B67	9A-B13	9A-T1	9A-T11	9A-T13	9A-T16	9A-T18	9A-T23	9A-T25	9A-T28	9A-T31	9A-T35	9A-T38	9A-T41	9A-T44	9A-T46	9A-T48
C11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.6E+01	4.7E+00	2.3E+01	2.0E+01	3.6E+00	1.9E+01	4.1E+00	3.3E+00	2.2E+01	3.5E+00	3.0E+00	1.3E+01	1.3E+01	1.8E+01
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+00	2.8E+00	2.9E+00	3.6E+00	3.1E+00	3.0E+00	3.3E+00	3.2E+00	3.3E+00	2.9E+00	2.6E+00	2.3E+00	3.1E+00
C13	3.4E+04	1.4E+00	0.0E+00	0.0E+00	1.6E+00	5.6E+00	1.4E+01	8.9E+00	9.8E+00	1.2E+01	1.3E+01	1.3E+01	1.4E+01	1.0E+01	1.1E+01	1.0E+01	1.6E+01	1.5E+01
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+00	2.5E+00	2.7E+00	3.0E+00	2.5E+00	3.1E+00	2.9E+00	1.1E+00	2.6E+00	2.8E+00	2.4E+00	2.1E+00	2.6E+00
PCB28	2.1E+04	1.3E+00	0.0E+00	0.0E+00	1.3E+00	2.0E+00	3.9E+00	4.0E+00	3.7E+00	4.0E+00	3.8E+00	4.0E+00	3.9E+00	3.2E+00	2.6E+00	2.3E+00	2.4E+00	2.8E+00
Cl4	2.6E+06	1.1E+02	0.0E+00	0.0E+00	3.9E+00	7.6E+01	1.6E+02	1.8E+02	2.1E+02	2.0E+02	2.3E+02	1.9E+02	2.0E+02	1.6E+02	1.4E+02	1.1E+02	1.3E+02	1.5E+02

14-16. 14-16.	Field ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
Pich Pich																			647-165-
New Property Ne		_																	
Part																			
RCRG 1.8FE-05 0.0FE-00 0.0FE-00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
Part	PCB52	6.0E+05		0.0E+00	0.0E+00	1.4E+00	2.2E+01	5.7E+01						6.6E+01					
Class 1.0E+07 3.2E+02 0.0E+04 0.0E+																			
CRSR 9.18—0. 2.0E—01 0.0E—00	PCB77	0.0E+00		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101 1.7-646 3.8-3-0. 0.0-040 0.0-040 0.5-640 1.7-640 1.8-640 <	C15	1.0E+07	3.2E+02	0.0E+00	0.0E+00	0.0E+00	7.0E+01	2.1E+02	2.4E+02	3.2E+02	3.3E+02	3.9E+02	3.3E+02	3.2E+02	2.2E+02	1.8E+02	1.5E+02	1.5E+02	1.7E+02
PCB105 R.SE+05 8.7E+040 0.0E+00 <	PCB87	9.1E+05	2.0E+01	0.0E+00	0.0E+00	0.0E+00	3.9E+00	1.7E+01	1.8E+01	2.4E+01	2.8E+01	2.7E+01	2.5E+01	2.3E+01	1.8E+01	1.5E+01	1.2E+01	9.2E+00	9.2E+00
PCB114 5.7.E+04 O.Ge+00 <	PCB101	1.7E+06	3.3E+01	0.0E+00	0.0E+00	0.0E+00	6.5E+00	2.7E+01	3.1E+01	4.2E+01	4.7E+01	4.5E+01	4.3E+01	3.9E+01	2.5E+01	2.0E+01	1.6E+01	1.4E+01	
PCB118 1.8 E+06 1.7 E+01 0.0 E+00	PCB105	7.8E+05	8.7E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+00	6.9E+00	8.6E+00	1.2E+01	1.5E+01	1.3E+01	1.2E+01	1.0E+01	6.7E+00	5.6E+00	3.1E+00	2.9E+00	3.0E+00
PCB123 3.7E+04 0.0E+00 0.0E+00 <t< td=""><td>PCB114</td><td>5.7E+04</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>9.2E-01</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td></t<>	PCB114	5.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.2E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126 Column C	PCB118	1.8E+06	1.7E+01	0.0E+00	0.0E+00	0.0E+00	3.0E+00	1.5E+01	1.9E+01	2.5E+01	3.1E+01	2.7E+01	2.6E+01	2.3E+01	1.4E+01	1.1E+01	7.0E+00	4.8E+00	4.4E+00
Clear Special Speci	PCB123	3.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128 4.4E+05 5.2E+00 0.0E+00 0.0E+00 <t< td=""><td>PCB126</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td></t<>	PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138 2.0E+06 1.2E+01 0.0E+06 0.0E+	Cl6	8.9E+06	1.1E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.0E+01	4.4E+01	7.8E+01	7.7E+01	1.3E+02	8.8E+01	1.1E+02	6.7E+01	7.3E+01	3.5E+01	4.4E+01	0.0E+00
PCB153	PCB128	4.4E+05	5.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E+00	2.5E+00	3.6E+00	4.5E+00	4.6E+00	4.2E+00	4.3E+00	4.1E+00	3.1E+00	1.4E+00	0.0E+00	0.0E+00
PCB156 2.8E+05 1.9E+00 0.0E+00 0.0E+00 <th< td=""><td>PCB138</td><td>2.0E+06</td><td>1.2E+01</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>5.4E+00</td><td>6.9E+00</td><td>1.1E+01</td><td>1.6E+01</td><td>1.4E+01</td><td>1.4E+01</td><td>1.4E+01</td><td>9.3E+00</td><td>7.7E+00</td><td>3.8E+00</td><td>2.4E+00</td><td>0.0E+00</td></th<>	PCB138	2.0E+06	1.2E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E+00	6.9E+00	1.1E+01	1.6E+01	1.4E+01	1.4E+01	1.4E+01	9.3E+00	7.7E+00	3.8E+00	2.4E+00	0.0E+00
PCB157 9.9E+04 0.0E+00 0.0E+00 <th< td=""><td>PCB153</td><td>2.1E+06</td><td>1.3E+01</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>5.4E+00</td><td>7.2E+00</td><td>5.7E+00</td><td>1.4E+01</td><td>1.3E+01</td><td>1.4E+01</td><td>1.3E+01</td><td>8.2E+00</td><td>6.3E+00</td><td>3.6E+00</td><td>0.0E+00</td><td>0.0E+00</td></th<>	PCB153	2.1E+06	1.3E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E+00	7.2E+00	5.7E+00	1.4E+01	1.3E+01	1.4E+01	1.3E+01	8.2E+00	6.3E+00	3.6E+00	0.0E+00	0.0E+00
PCB167 1.0E+05 0.0E+00 0.0E+00 <th< td=""><td>PCB156</td><td>2.8E+05</td><td>1.9E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>6.8E-01</td><td>9.2E-01</td><td>1.7E+00</td><td>2.0E+00</td><td>1.9E+00</td><td>2.0E+00</td><td>2.4E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td></th<>	PCB156	2.8E+05	1.9E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.8E-01	9.2E-01	1.7E+00	2.0E+00	1.9E+00	2.0E+00	2.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169 0.0E+00 0.0E+	PCB157	9.9E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17 1.7E+06 0.0E+00	PCB167	1.0E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170 2.4E+05 0.0E+00 0.0E+00 <th< td=""><td>PCB169</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td></th<>	PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	Cl7	1.7E+06	0.0E+00	0.0E+00	0.0E+00	6.1E+00	4.8E+00	2.6E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183 8.1E+04 0.0E+00 0.0E+00 <th< td=""><td>PCB170</td><td>2.4E+05</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td></th<>	PCB170	2.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.6E-01 7.3E-01 7.6E-01 0.0E+00 0.0E+00 <th< td=""><td>PCB180</td><td>3.0E+05</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td></th<>	PCB180	3.0E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187 9.1E+04 0.0E+00 0.0E+00 <t< td=""><td>PCB183</td><td>8.1E+04</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td></t<>	PCB183	8.1E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189 0.0E+00 0.0E+00 <th< td=""><td>PCB184</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>6.6E-01</td><td>7.3E-01</td><td>7.6E-01</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td><td>0.0E+00</td></th<>	PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.6E-01	7.3E-01	7.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	PCB187	9.1E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195 0.0E+00	PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19 0.0E+00 0.	C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206 0.0E+00	PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110 0.0E+00 0	PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Field ID	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-	PSNS-
	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-	647-165-
	9A	9A-B67	9A-B13	9A-T1	9A-T11	9A-T13	9A-T16	9A-T18	9A-T23	9A-T25	9A-T28	9A-T31	9A-T35	9A-T38	9A-T41	9A-T44	9A-T46	9A-T48
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	2.3E+07	5.4E+02	0.0E+00	0.0E+00	2.7E+01	1.6E+02	4.6E+02	5.0E+02	6.3E+02	6.5E+02	7.7E+02	6.3E+02	6.7E+02	4.6E+02	4.0E+02	3.2E+02	3.5E+02	3.5E+02

Foam Rubber/EnsoliteTM (FRE) Experiment: Mass Balance

			Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in Solid	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs in Leachate)	Release (% of tPCBs in Leachate)
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	in Leachate)
Cl2	0.0E+00	1.7E+02	1.7E+02	6.3E-08	7.1E-04		2.6E+00	
PCB8	0.0E+00	3.8E+01	3.8E+01	1.4E-08	7.12 01	1.6E-04	2.01.00	5.9E-01
Cl3	3.4E+04	1.5E+02	3.4E+04	1.3E-05	1.5E-01	1.02 01	2.4E+00	3.92 01
PCB18	0.0E+00	3.2E+01	3.2E+01	1.2E-08	1.52 01	1.4E-04	2.12.00	5.0E-01
PCB28	2.1E+04	4.4E+01	2.1E+04	8.1E-06		9.1E-02		6.9E-01
Cl4	2.6E+06	2.2E+03	2.6E+06	1.0E-03	1.1E+01		3.4E+01	***
PCB44	3.4E+05	4.2E+02	3.4E+05	1.3E-04		1.5E+00		6.6E+00
PCB49	1.2E+05	1.2E+02	1.2E+05	4.6E-05		5.2E-01		1.9E+00
PCB52	6.0E+05	7.5E+02	6.0E+05	2.3E-04		2.6E+00		1.2E+01
PCB66	1.8E+05	7.8E+01	1.8E+05	6.9E-05		7.7E-01		1.2E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C15	1.0E+07	3.1E+03	1.0E+07	3.8E-03	4.3E+01		4.8E+01	
PCB87	9.1E+05	2.3E+02	9.1E+05	3.5E-04		3.9E+00		3.6E+00
PCB101	1.7E+06	3.7E+02	1.7E+06	6.5E-04		7.3E+00		5.8E+00
PCB105	7.8E+05	1.0E+02	7.8E+05	3.0E-04		3.4E+00		1.6E+00
PCB114	5.7E+04	9.2E-01	5.7E+04	2.2E-05		2.5E-01		1.4E-02
PCB118	1.8E+06	2.1E+02	1.8E+06	6.9E-04		7.7E+00		3.3E+00
PCB123	3.7E+04	0.0E+00	3.7E+04	1.4E-05		1.6E-01		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
Cl6	8.9E+06	7.8E+02	8.9E+06	3.4E-03	3.8E+01		1.2E+01	
PCB128	4.4E+05	3.4E+01	4.4E+05	1.7E-04		1.9E+00		5.3E-01
PCB138	2.0E+06	1.0E+02	2.0E+06	7.7E - 04		8.6E+00		1.6E+00
PCB153	2.1E+06	9.0E+01	2.1E+06	8.1E-04		9.0E+00		1.4E+00
PCB156	2.8E+05	1.2E+01	2.8E+05	1.1E - 04		1.2E+00		1.8E-01

		Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	`	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
PCB157	9.9E+04	0.0E+00	9.9E+04	3.8E-05		4.3E-01		0.0E+00
PCB167	1.0E+05	0.0E+00	1.0E+05	3.8E-05		4.3E-01		0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C17	1.7E+06	3.7E+01	1.7E+06	6.5E-04	7.3E+00		5.9E-01	
PCB170	2.4E+05	0.0E+00	2.4E+05	9.2E-05		1.0E+00		0.0E+00
PCB180	3.0E+05	0.0E+00	3.0E+05	1.2E-04		1.3E+00		0.0E+00
PCB183	8.1E+04	0.0E+00	8.1E+04	3.1E-05		3.5E-01		0.0E+00
PCB184	0.0E+00	2.2E+00	2.2E+00	8.3E-10		9.3E-06		3.4E-02
PCB187	9.1E+04	0.0E+00	9.1E+04	3.5E-05		3.9E-01		0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
tPCBs	2.3E+07	6.4E+03	2.3E+07	8.9E-03				

Aroclor 1268 (A1268) Experiment: Analytical Results (ng/L)

Sample ID	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-
	S1	S1-B53	S1-B24	S1-T1	S1-T10	S1-T12	S1-T20	S1-T22	S1-T24	S1-T26	S1-T28	S1-T3	S1-T5	S1-T7
Sample Date	6/19/02	6/19/02	11/28/01	6/13/01	7/24/01	8/21/01	10/2/01	12/19/01	3/6/02	5/1/02	6/19/02	6/14/01	6/19/01	7/3/01
Units	ng	ng	ng	ng/L										
C11	0	0	0	0	0	0	0	0	0	0	0	13	33	9.7
Qual_Cl1	ND													
C12	480	0	0	0	520	250	140	39	7.1	0.92	0	220	1100	950
Qual_Cl2	J	ND	ND	ND						J	ND			
PCB8	400	0	0	0	400	190	63	21	4.5	0.92	0	89	420	630
Qual_PCB8	J	ND	ND	ND					J	J	ND			
C13	14000	93	41	0	4800	4500	2700	2000	710	160	220	250	2200	4000
Qual_Cl3				ND										
PCB18	1900	6.2	2.1	0	1200	1100	570	330	170	30	39	91	620	1400

Sample ID	214-59B- S1	214-59B- S1-B53	214-59B- S1-B24	214-59B- S1-T1	214-59B- S1-T10	214-59B- S1-T12	214-59B- S1-T20	214-59B- S1-T22	214-59B- S1-T24	214-59B- S1-T26	214-59B- S1-T28	214-59B- S1-T3	214-59B- S1-T5	214-59B- S1-T7
Qual PCB18	J	J	J	ND	51-110	31-112	51-120	51-122	51-124	31-120	51-126	51-13	51-13	51-17
PCB28	5300	31	11	0	1200	1300	760	210	230	47	71	41	380	1100
Qual PCB28	J			ND	D	D	D						D	D
C14	73000	500	110	0	3500	3400	3200	3100	2100	380	560	74	780	1900
Qual Cl4				ND										
PCB44	5900	85	4	0	520	530	450	360	290	86	140	5.4	100	280
Qual PCB44	J		J	ND				D						
PCB49	3400	50	3	0	260	260	220	230	140	36	65	1.9	41	140
Qual_PCB49	J		J	ND								J		
PCB52	5800	99	5.5	0	470	500	390	360	320	97	160	5.8	94	280
Qual_PCB52	J			ND				D						
PCB66	9500	45	4.9	0	250	220	190	170	92	16	28	1.9	28	99
Qual_PCB66			J	ND								J		
PCB77	3600	5.4	0	0	61	57	55	42	7.9	0	0	0	5.2	21
Qual_PCB77	J	J	ND	ND						ND	ND	ND	J	
C15	40000	200	0	0	240	220	310	330	350	81	82	0	0	120
Qual_Cl5			ND	ND		В						ND	ND	
PCB87	2300	17	0	0	13	16	15	21	12	4.7	6.6	0	0	4.1
Qual_PCB87	J		ND	ND						J	J	ND	ND	J
PCB101	4200	18	0	0	18	19	20	22	16	6.5	7.6	0	0	6.8
Qual_PCB101	J		ND	ND		В					J	ND	ND	
PCB105	6300	26	0	0	21	23	27	36	19	4.7	6.3	0	0	5.2
Qual_PCB105	J		ND	ND						J	J	ND	ND	J
PCB114	0	0	0	0	0	0	0	2.2	0	0	0	0	0	0
Qual_PCB114	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND
PCB118	6800	17	0	0	22	22	26	26	17	3.8	4.5	0	0	5
Qual_PCB118			ND	ND						J	J	ND	ND	J
PCB123	0	2.6	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB123	ND	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C16	25000	34	0	0	18	22	36	28	44	2.4	0.81	0	0	0
Qual_Cl6			ND	ND						J	J	ND	ND	ND
PCB128	0	2	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB128	ND	J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID	214-59B- S1	214-59B- S1-B53	214-59B- S1-B24	214-59B- S1-T1	214-59B- S1-T10	214-59B- S1-T12	214-59B- S1-T20	214-59B- S1-T22	214-59B- S1-T24	214-59B- S1-T26	214-59B- S1-T28	214-59B- S1-T3	214-59B- S1-T5	214-59B- S1-T7
PCB138	1300	3.3	0	0	0	0	0	2.1	0	0	0	0	0	0
Qual PCB138	J	J	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND
PCB153	10000	18	0	0	5.1	6.3	7.3	6.2	6.8	2.3	2.8	0	0	0
Qual PCB153	J	J	ND	ND	J	В				J	J	ND	ND	ND
PCB156	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB156	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB157	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB157	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl7	1300000	240	0	0	40	74	130	81	180	22	19	0	0	0
Qual_Cl7			ND	ND							J	ND	ND	ND
PCB170	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB180	280000	58	0	0	6.1	0	8.5	9.7	12	2.5	3.3	0	0	0
Qual_PCB180			ND	ND		ND				J	J	ND	ND	ND
PCB183	33000	6.1	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB183		J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB187	840000	93	0	0	8.2	9.8	14	17	17	5.6	8.8	0	0	0
Qual_PCB187			ND	ND						J	J	ND	ND	ND
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C18	13000000	190	0	0	0	0	10	10	0	0	0	0	0	0
Qual_Cl8			ND	ND	ND	ND			ND	ND	ND	ND	ND	ND
PCB195	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	12000000	22	0	9.7	0	0	0	5.1	0	0	0	4.9	0	0
Qual_Cl9	D		ND		ND	ND	ND		ND	ND	ND	J	ND	ND
PCB206	6900000	8.9	0	9.6	0	0	0	0	0	0	0	4.9	0	0
Qual_PCB206		J	ND		ND	J	ND	ND						
C110	1600000	2.1	0	0	0	0	0	0	0	0	0	0	0	0

Sample ID	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-
Qual Cl10	S1 D	S1-B53	S1-B24 ND	S1-T1 ND	S1-T10 ND	S1-T12 ND	S1-T20 ND	S1-T22 ND	S1-T24 ND	S1-T26 ND	S1-T28 ND	S1-T3 ND	S1-T5 ND	S1-T7 ND
PCB209	1600000	2.1	0	0	0	0	0	0	0	0	0	0	0	0
Qual PCB209	1000000	J.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Min Reporting	6600	10	5	5.4	5.3	5.4	5.3	2.7	5.4	5.6	11	5.3	5.3	5.4
Limit	0000	10	3	3.4	5.5	5.4	3.3	2.7	3.4	3.0	11	3.3	3.3	3.4
MDL_cong_Cl1	2200	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL_cong_Cl2	2200	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL8	810	0.42	0.42	0.45	0.45	0.45	0.45	0.23	0.46	0.47	0.45	0.44	2.2	2.1
MDL_cong_Cl3	2200	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL18	950	0.64	0.64	0.69	3.4	3.4	0.68	2.3	0.69	0.71	0.68	0.67	3.4	3.2
MDL28	1000	0.53	0.53	0.56	2.8	2.8	2.8	0.28	0.57	0.58	0.56	0.55	2.8	2.7
MDL_cong_Cl4	2200	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL44	820	0.67	0.67	0.72	0.71	0.72	0.71	2.4	0.73	0.75	0.71	0.71	0.71	0.72
MDL49	2200	0.75	0.75	0.8	0.79	0.8	0.79	0.4	0.81	0.83	0.79	0.78	0.79	0.8
MDL52	1000	0.29	0.29	0.32	0.31	0.32	0.31	1.1	0.32	0.33	0.31	0.31	0.31	0.32
MDL66	1200	0.64	0.64	0.69	0.68	0.69	0.68	0.35	0.7	0.72	0.68	0.68	0.68	0.69
MDL77	1500	0.56	0.56	0.6	0.6	0.6	0.6	0.3	0.61	0.62	0.6	0.59	0.6	0.6
MDL_cong_Cl5	2200	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL87	2200	0.77	0.77	0.82	0.81	0.82	0.81	0.42	0.83	0.85	0.81	0.81	0.81	0.82
MDL101	890	0.36	0.36	0.39	0.38	0.39	0.38	0.2	0.39	0.4	0.38	0.38	0.38	0.39
MDL105	1400	0.41	0.41	0.44	0.43	0.44	0.43	0.22	0.44	0.45	0.43	0.43	0.43	0.44
MDL114	2200	0.68	0.68	0.73	0.72	0.73	0.72	0.37	0.74	0.75	0.72	0.71	0.72	0.73
MDL118	2200	0.66	0.66	0.7	0.7	0.7	0.7	0.36	0.71	0.73	0.7	0.69	0.7	0.7
MDL123	2200	0.77	0.77	0.83	0.82	0.83	0.82	0.42	0.84	0.86	0.82	0.81	0.82	0.83
MDL126	3200	0.67	0.67	0.72	0.71	0.72	0.71	0.36	0.73	0.75	0.71	0.71	0.71	0.72
MDL_cong_Cl6	2200	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL128	1600	0.25	0.25	0.27	0.26	0.27	0.26	0.14	0.27	0.28	0.26	0.26	0.26	0.27
MDL138	2100	0.55	0.55	0.59	0.58	0.59	0.58	0.3	0.59	0.61	0.58	0.57	0.58	0.59
MDL153	1600	0.27	0.27	0.29	0.28	0.29	0.28	0.14	0.29	0.3	0.28	0.28	0.28	0.29
MDL156	2200	0.62	0.62	0.67	0.66	0.67	0.66	0.34	0.67	0.69	0.66	0.65	0.66	0.67
MDL157	2200	0.61	0.61	0.65	0.65	0.65	0.65	0.33	0.66	0.68	0.65	0.64	0.65	0.65
MDL167	2200	0.64	0.64	0.68	0.68	0.68	0.68	0.34	0.69	0.71	0.68	0.67	0.68	0.68
MDL169	2200	0.59	0.59	0.63	0.63	0.63	0.63	0.32	0.64	0.66	0.63	0.62	0.63	0.63
MDL-cong_Cl7	2200	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL170	990	0.64	0.64	0.68	0.68	0.68	0.68	0.34	0.69	0.71	0.68	0.67	0.68	0.68

Sample ID	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-
	S1	S1-B53	S1-B24	S1-T1	S1-T10	S1-T12	S1-T20	S1-T22	S1-T24	S1-T26	S1-T28	S1-T3	S1-T5	S1-T7
MDL180	2100	0.65	0.65	0.7	0.69	0.7	0.69	0.35	0.71	0.72	0.69	0.69	0.69	0.7
MDL183	2200	0.37	0.37	0.4	0.39	0.4	0.39	0.2	0.4	0.41	0.39	0.39	0.39	0.4
MDL184	2200	0.5	0.5	0.54	0.54	0.54	0.54	0.27	0.55	0.56	0.54	0.53	0.54	0.54
MDL187	940	0.65	0.65	0.7	0.69	0.7	0.69	0.35	0.71	0.72	0.69	0.69	0.69	0.7
MDL189	2200	0.71	0.71	0.76	0.75	0.76	0.75	0.38	0.77	0.78	0.75	0.74	0.75	0.76
MDL_cong_Cl8	2200	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL195	1500	0.58	0.58	0.62	0.62	0.62	0.62	0.32	0.63	0.65	0.62	0.61	0.62	0.62
MDL_cong_Cl9	85000	0.5	0.5	0.54	0.53	0.54	0.53	0.27	0.54	0.56	0.53	0.53	0.53	0.54
MDL206	120000	0.23	0.23	0.24	0.24	0.24	0.24	0.12	0.24	0.25	0.24	0.24	0.24	0.24
MDL_cong_Cl10	85000	0.57	0.57	0.61	0.61	0.61	0.61	0.31	0.62	0.63	0.61	0.6	0.61	0.61
MDL209	85000	0.57	0.57	0.61	0.61	0.61	0.61	0.31	0.62	0.63	0.61	0.6	0.61	0.61
Sample Delivery	CSC81SD	CSC81SD	NC34SDG	NC34SDG	NC34SDG	NC34SDG	NC34SDG	CSC81SD	CSC81SD	CSC81SD	CSC81SD	NC34SDG	NC34SDG	NC34SDG
Group	G013	G012	013	001	007	008	010	G001	G006	G010	G012	001	002	004
Sample Size	1	1	1	0.93	0.94	0.93	0.92	0.92	0.92	0.9	0.94	0.95	0.94	0.93
Size Units				L	L	L	L	L	L	L	L	L	L	L

Aroclor 1268 (A1268) Experiment: PCB Mass per Sample (ng)

Field ID	214-59B-S1	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-	214-59B-
		S1-B53	S1-B24	S1-T1	S1-T10	S1-T12	S1-T20	S1-T22	S1-T24	S1-T26	S1-T28	S1-T3	S1-T5	S1-T7
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E+01	3.1E+01	9.0E+00
C12	4.8E+02	0.0E+00	0.0E+00	0.0E+00	4.9E+02	2.3E+02	1.3E+02	3.6E+01	6.5E+00	8.3E-01	0.0E+00	2.1E+02	1.0E+03	8.8E+02
PCB8	4.0E+02	0.0E+00	0.0E+00	0.0E+00	3.8E+02	1.8E+02	5.8E+01	1.9E+01	4.1E+00	8.3E-01	0.0E+00	8.5E+01	3.9E+02	5.9E+02
C13	1.4E+04	9.3E+01	4.1E+01	0.0E+00	4.5E+03	4.2E+03	2.5E+03	1.8E+03	6.5E+02	1.4E+02	2.1E+02	2.4E+02	2.1E+03	3.7E+03
PCB18	1.9E+03	6.2E+00	2.1E+00	0.0E+00	1.1E+03	1.0E+03	5.2E+02	3.0E+02	1.6E+02	2.7E+01	3.7E+01	8.6E+01	5.8E+02	1.3E+03
PCB28	5.3E+03	3.1E+01	1.1E+01	0.0E+00	1.1E+03	1.2E+03	7.0E+02	1.9E+02	2.1E+02	4.2E+01	6.7E+01	3.9E+01	3.6E+02	1.0E+03
C14	7.3E+04	5.0E+02	1.1E+02	0.0E+00	3.3E+03	3.2E+03	2.9E+03	2.9E+03	1.9E+03	3.4E+02	5.3E+02	7.0E+01	7.3E+02	1.8E+03
PCB44	5.9E+03	8.5E+01	4.0E+00	0.0E+00	4.9E+02	4.9E+02	4.1E+02	3.3E+02	2.7E+02	7.7E+01	1.3E+02	5.1E+00	9.4E+01	2.6E+02
PCB49	3.4E+03	5.0E+01	3.0E+00	0.0E+00	2.4E+02	2.4E+02	2.0E+02	2.1E+02	1.3E+02	3.2E+01	6.1E+01	1.8E+00	3.9E+01	1.3E+02
PCB52	5.8E+03	9.9E+01	5.5E+00	0.0E+00	4.4E+02	4.7E+02	3.6E+02	3.3E+02	2.9E+02	8.7E+01	1.5E+02	5.5E+00	8.8E+01	2.6E+02
PCB66	9.5E+03	4.5E+01	4.9E+00	0.0E+00	2.4E+02	2.0E+02	1.7E+02	1.6E+02	8.5E+01	1.4E+01	2.6E+01	1.8E+00	2.6E+01	9.2E+01
PCB77	3.6E+03	5.4E+00	0.0E+00	0.0E+00	5.7E+01	5.3E+01	5.1E+01	3.9E+01	7.3E+00	0.0E+00	0.0E+00	0.0E+00	4.9E+00	2.0E+01
C15	4.0E+04	2.0E+02	0.0E+00	0.0E+00	2.3E+02	2.0E+02	2.9E+02	3.0E+02	3.2E+02	7.3E+01	7.7E+01	0.0E+00	0.0E+00	1.1E+02

Field ID	214-59B-S1	214-59B- S1-B53	214-59B- S1-B24	214-59B- S1-T1	214-59B- S1-T10	214-59B- S1-T12	214-59B- S1-T20	214-59B- S1-T22	214-59B- S1-T24	214-59B- S1-T26	214-59B- S1-T28	214-59B- S1-T3	214-59B- S1-T5	214-59B- S1-T7
PCB87	2.3E+03	1.7E+01	0.0E+00	0.0E+00	1.2E+01	1.5E+01	1.4E+01	1.9E+01	1.1E+01	4.2E+00	6.2E+00	0.0E+00	0.0E+00	3.8E+00
PCB101	4.2E+03	1.8E+01	0.0E+00	0.0E+00	1.7E+01	1.8E+01	1.8E+01	2.0E+01	1.5E+01	5.9E+00	7.1E+00	0.0E+00	0.0E+00	6.3E+00
PCB105	6.3E+03	2.6E+01	0.0E+00	0.0E+00	2.0E+01	2.1E+01	2.5E+01	3.3E+01	1.7E+01	4.2E+00	5.9E+00	0.0E+00	0.0E+00	4.8E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	6.8E+03	1.7E+01	0.0E+00	0.0E+00	2.1E+01	2.0E+01	2.4E+01	2.4E+01	1.6E+01	3.4E+00	4.2E+00	0.0E+00	0.0E+00	4.7E+00
PCB123	0.0E+00	2.6E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	2.5E+04	3.4E+01	0.0E+00	0.0E+00	1.7E+01	2.0E+01	3.3E+01	2.6E+01	4.0E+01	2.2E+00	7.6E-01	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	1.3E+03	3.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	1.0E+04	1.8E+01	0.0E+00	0.0E+00	4.8E+00	5.9E+00	6.7E+00	5.7E+00	6.3E+00	2.1E+00	2.6E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	1.3E+06	2.4E+02	0.0E+00	0.0E+00	3.8E+01	6.9E+01	1.2E+02	7.5E+01	1.7E+02	2.0E+01	1.8E+01	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	2.8E+05	5.8E+01	0.0E+00	0.0E+00	5.7E+00	0.0E+00	7.8E+00	8.9E+00	1.1E+01	2.3E+00	3.1E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	3.3E+04	6.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	8.4E+05	9.3E+01	0.0E+00	0.0E+00	7.7E+00	9.1E+00	1.3E+01	1.6E+01	1.6E+01	5.0E+00	8.3E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	1.3E+07	1.9E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.2E+00	9.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	1.2E+07	2.2E+01	0.0E+00	9.0E+00	0.0E+00	0.0E+00	0.0E+00	4.7E+00	0.0E+00	0.0E+00	0.0E+00	4.7E+00	0.0E+00	0.0E+00
PCB206	6.9E+06	8.9E+00	0.0E+00	8.9E+00	0.0E+00	4.7E+00	0.0E+00	0.0E+00						
C110	1.6E+06	2.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	1.6E+06	2.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	2.8E+07	1.3E+03	1.5E+02	9.0E+00	8.6E+03	7.9E+03	6.0E+03	5.1E+03	3.1E+03	5.8E+02	8.3E+02	5.3E+02	3.9E+03	6.5E+03

Aroclor 1268 (A1268) Experiment: Mass Balance

	Remaining PCBs in Leached Solid (ng)		Initial PCBs in Solid	Initial Weight Fraction PCBs in	Initial Homologue % of tPCBs in Solid	Initial Congener % of tPCBs in Solid	Total Homologue	Total Congener Release (% of tPCBs
	Leached Solid (lig)	(ng)	(ng)	Solid	of treds in solid	of treds iii soild	in Leachate)	in Leachate)
Cl1	0.0E+00	5.2E+01	5.2E+01	2.6E-06	1.9E-04		1.2E-01	III Deachare)
C12	4.8E+02	3.0E+03	3.5E+03	1.7E-04	1.2E-02		7.0E+00	
PCB8	4.0E+02	1.7E+03	2.1E+03	1.0E-04		7.5E-03		3.9E+00
C13	1.4E+04	2.0E+04	3.4E+04	1.7E-03	1.2E-01		4.7E+01	
PCB18	1.9E+03	5.2E+03	7.1E+03	3.5E-04		2.5E-02		1.2E+01
PCB28	5.3E+03	5.0E+03	1.0E+04	5.1E-04		3.7E-02		1.2E+01
C14	7.3E+04	1.8E+04	9.1E+04	4.5E-03	3.2E-01		4.1E+01	
PCB44	5.9E+03	2.6E+03	8.6E+03	4.2E-04		3.0E-02		5.9E+00
PCB49	3.4E+03	1.3E+03	4.7E+03	2.4E-04		1.7E-02		3.0E+00
PCB52	5.8E+03	2.5E+03	8.4E+03	4.2E-04		3.0E-02		5.8E+00
PCB66	9.5E+03	1.0E+03	1.1E+04	5.2E-04		3.8E-02		2.4E+00
PCB77	3.6E+03	2.3E+02	3.8E+03	1.9E-04		1.4E-02		5.4E-01
C15	4.0E+04	1.6E+03	4.2E+04	2.1E-03	1.5E-01		3.7E+00	
PCB87	2.3E+03	8.6E+01	2.4E+03	1.2E-04		8.6E-03		2.0E-01
PCB101	4.2E+03	1.1E+02	4.3E+03	2.1E-04		1.5E-02		2.5E-01
PCB105	6.3E+03	1.3E+02	6.5E+03	3.2E-04		2.3E-02		3.0E-01
PCB114	0.0E+00	2.0E+00	2.0E+00	1.0E-07		7.2E-06		4.7E-03
PCB118	6.8E+03	1.2E+02	6.9E+03	3.4E-04		2.5E-02		2.7E-01
PCB123	0.0E+00	0.0E+00	2.6E+00	1.3E-07		9.3E-06		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C16	2.5E+04	1.4E+02	2.5E+04	1.2E-03	9.0E-02		3.2E-01	
PCB128	0.0E+00	0.0E+00	2.0E+00	9.9E-08		7.1E-06		0.0E+00
PCB138	1.3E+03	1.9E+00	1.3E+03	6.5E-05		4.6E-03		4.5E-03
PCB153	1.0E+04	3.4E+01	1.0E+04	5.0E-04		3.6E-02		7.9E-02
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
Cl7	1.3E+06	5.0E+02	1.3E+06	6.4E-02	4.6E+00		1.2E+00	
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB180	2.8E+05	3.9E+01	2.8E+05	1.4E-02		1.0E+00		9.0E-02
PCB183	3.3E+04	0.0E+00	3.3E+04	1.6E-03		1.2E-01		0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB187	8.4E+05	7.4E+01	8.4E+05	4.2E-02		3.0E+00		1.7E-01

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid		Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C18	1.3E+07	1.8E+01	1.3E+07	6.4E-01	4.6E+01		4.3E-02	
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C19	1.2E+07	1.8E+01	1.2E+07	5.9E-01	4.3E+01		4.3E-02	
PCB206	6.9E+06	1.4E+01	6.9E+06	3.4E-01		2.5E+01		3.1E-02
C110	1.6E+06	0.0E+00	1.6E+06	7.9E-02	5.7E+00		0.0E+00	
PCB209	1.6E+06	0.0E+00	1.6E+06	7.9E-02		5.7E+00		0.0E+00
tPCBs	2.8E+07	4.3E+04	2.8E+07	1.4E+00				

Bulkhead Insulation (BHI) Experiment: Analytical Results (ng/L)

Sample ID	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-
	E-5A	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-
		B65	B12	T1	T11	T13	T15	T17	T20	T24	T26	T28	T31	T34	T38	T40	T43	T47	T48	T50
Sample Date	7/5/01	7/5/01	6/6/00	3/22/00	3/23/00	3/29/00	4/5/00	4/12/00	5/3/00	5/30/00	6/13/00	7/18/00	9/5/00	10/17/0	11/28/0	1/2/01	2/13/01	3/27/01	4/24/01	6/19/01
Units	ng	ng	ng/L	0 ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L										
Cl1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl1	ND	ND	ND	ND	ND	ND	ND													
C12	0	0	0	0	0	8.7	14	0.68	1	0.96	0	0.79	0.76	0.52	0	0	0	0	0	0
Qual_Cl2	ND	ND	ND	ND	ND			J	J	J	ND	J	J	J	ND	ND	ND	ND	ND	ND
PCB8	0	0	0	0	0	0.98	0.93	0.67	1	0.92	0	0.79	0.74	0.52	0	0	0	0	0	0
Qual_PCB8	ND	ND	ND	ND	ND	J	J	J	J	J	ND	J	J	J	ND	ND	ND	ND	ND	ND
C13	90	0.68	0	0	0.77	12	12	11	17	20	12	18	18	14	16	10	12	13	17	19
Qual_Cl3	J	J	ND	ND	J															
PCB18	0	0	0	0	0	1.3	1.5	1.1	2.1	0.92	1.3	2	2	1.4	1.9	0	1.2	1.4	0	0
Qual_PCB18	ND	ND	ND	ND	ND	J	J	J	J	J	J	J	J	J	J	ND	J	J	ND	ND
PCB28	90	0.64	0	0	0.53	3.3	4	3.7	6.2	6.4	5	6.8	7.3	5	5.2	3.8	2.8	4	2.4	2.6
Qual_PCB28	J	J	ND	ND	J									J	J	J		J	J	J
Cl4	18000	140	0	0	18	150	230	270	380	680	360	460	870	400	480	340	280	330	260	230
Qual_Cl4			ND	ND																
PCB44	1700	19	0	0	2.1	25	37	42	65	91	64	86	120	75	87	57	57	60	46	39
Qual_PCB44			ND	ND	J															
PCB49	780	8.1	0	0	0.89	8.2	12	14	21	27	21	28	36	24	25	19	16	20	12	12

Sample ID	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-
Sumpre 1B	E-5A	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-
		B65	B12	T1	T11	T13	T15	T17	T20	T24	T26	T28	T31	T34	T38	T40	T43	T47	T48	T50
Qual_PCB49	J		ND	ND	J															
PCB52	3000	39	0	0	3.5	39	59	66	100	140	100	140	200	130	160	100	100	120	87	73
Qual_PCB52			ND	ND																
PCB66	1800	7.1	0	0	0.43	7.5	10	16	20	32	22	21	44	24	28	12	12	13	9.2	7.2
Qual_PCB66			ND	ND	J															
PCB77	0	0	0	0	0	0	0.42	0	0	0	0	0.82	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	J	ND							
C15	100000	700	0	0	17	140	250	490	570	1600	910	890	2400	820	1000	490	580	500	460	390
Qual_Cl5			ND	ND																
PCB87	8100	63	0	0	0	12	20	36	48	100	69	74	140	80	75	54	47	52	37	33
Qual_PCB87			ND	ND	ND															
PCB101	16000	100	0	0	0.73	16	33	57	79	160	110	120	240	120	110	77	69	77	56	47
Qual_PCB101			ND	ND	J															
PCB105	7400	17	0	0	0	3.7	7	14	19	50	32	34	66	36	20	15	11	8.2	6.5	4.1
Qual_PCB105			ND	ND	ND															J
PCB114	530	0	0	0	0	0	0	0.91	1.2	3	1.8	0	3.1	1.7	0	0	0	0	0	0
Qual_PCB114	J	ND	ND	ND	ND	ND	ND	J	J		J	ND		J	ND	ND	ND	ND	ND	ND
PCB118	19000	25	0	0	0	7.7	17	34	48	110	76	79	170	72	43	29	21	15	10	6.4
Qual_PCB118			ND	ND	ND															
PCB123	2500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB123		ND																		
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C16	68000	260	0	0	0	23	28	72	89	370	160	180	610	190	200	78	140	100	130	130
Qual_Cl6			ND	ND	ND															
PCB128	3800	10	0	0	0	0	1.4	2.4	4.4	14	7.6	7.9	16	8.6	5.6	0	4.4	3.2	0	
Qual_PCB128			ND	ND	ND	ND	J	J								ND		J	ND	ND
PCB138	18000	45	0	0	0	1.9	3.8	9.4	14	49	30	31	78	35	24	19	16	11	13	7.9
Qual_PCB138			ND	ND	ND	J														
PCB153	20000	18	0	0	0	1.1	2.5	5	19	21	19	17	42	39	27	27	17	15	12	9.7
Qual_PCB153			ND	ND	ND	J	J													
PCB156	2200	2.6	0	0	0	0	0	0	1.4	5	2.2	2.7	6.5	2.6	0	0	0	0	0	0
Qual_PCB156		J	ND	ND	ND	ND	ND	ND	J		J			J	ND	ND	ND	ND	ND	ND
PCB157	760	0	0	0	0	0	0	0	0	0	0	0	0	0.84	0	0	0	0	0	0

Sample ID	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-
	E-5A	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-
Qual PCB157	J	B65 ND	B12 ND	T1 ND	T11 ND	T13 ND	T15 ND	T17 ND	T20 ND	T24 ND	T26 ND	T28 ND	T31 ND	T34 J	T38 ND	T40 ND	T43 ND	T47 ND	T48 ND	T50 ND
PCB167	920	0	0 0	0	0	0	0	0	0	0	0	0	2	1.1	0	0	0	0	0	0
	920											, i	_	-					_	-
Qual_PCB167	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	J	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl7	20000	62	0	0	10	8.6	6.3	0	0	0	15	0	45	19	0	0	0	0	0	0
Qual_Cl7	2400	ND	ND	ND				ND	ND	ND		ND	2.5		ND	ND	ND	ND	ND	ND
PCB170	2400	3.3	0	0	0	0	0	0	0	0	0	0	2.5	0	0	0	0	0	0	0
Qual_PCB170		J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND
PCB180	3300	4	0	0	0	0	0	0	0	0	0	0	2.7	1.9	0	0	0	0	0	0
Qual_PCB180		J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		J	ND	ND	ND	ND	ND	ND
PCB183	1100	1.4	0	0	0	0	0	0	0	0	0.96	0	1.6	0	0	0	0	0	0	0
Qual_PCB183		J	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	J	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0	0.95	0.64	0.77	0	0	0	0.82	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	J		J	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB187	1600	2.9	0	0	0	0	0	0	0	0	0.92	0	2.2	1.8	0	0	0	0	0	0
Qual_PCB187		J	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	J	J	ND	ND	ND	ND	ND	ND
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C18	2000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl8		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB206	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB209	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Min Reporting Limit	880	5	2.6	2.8	2.7	2.7	2.6	2.6	2.6	2.8	2.7	2.7	2.7	5.4	5.4	5.4	2.7	5.4	5.4	5.4
MDL_cong_Cl1	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL_cong_Cl2	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54

Sample ID	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-
Sumpre 12	E-5A	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-
		B65	B12	T1	T11	T13	T15	T17	T20	T24	T26	T28	T31	T34	T38	T40	T43	T47	T48	T50
MDL8	64	0.42	0.45	0.47	0.46	0.45	0.45	0.45	0.45	0.47	0.45	0.45	0.46	0.45	0.46	0.46	0.23	0.46	0.45	0.45
MDL_cong_Cl3	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL18	76	0.64	0.68	0.71	0.69	0.69	0.68	0.68	0.68	0.72	0.69	0.69	0.69	0.69	0.69	0.69	0.35	0.69	0.69	0.69
MDL28	80	0.53	0.56	0.58	0.57	0.56	0.56	0.56	0.56	0.59	0.56	0.56	0.57	0.56	0.57	0.57	0.28	0.57	0.56	0.56
MDL_cong_Cl4	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL44	65	0.67	0.71	0.75	0.73	0.72	0.71	0.71	0.71	0.76	0.72	0.72	0.73	0.72	0.73	0.73	0.36	0.73	0.72	0.72
MDL49	170	0.75	0.79	0.83	0.81	0.8	0.79	0.79	0.79	0.84	0.8	0.8	0.81	0.8	0.81	0.81	0.4	0.81	0.8	0.8
MDL52	83	0.29	0.31	0.33	0.32	0.32	0.31	0.31	0.31	0.33	0.32	0.32	0.32	0.32	0.32	0.32	0.16	0.32	0.32	0.32
MDL66	96	0.64	0.68	0.72	0.7	0.69	0.68	0.68	0.68	0.72	0.69	0.69	0.7	0.69	0.7	0.7	0.35	0.7	0.69	0.69
MDL77	120	0.56	0.6	0.62	0.61	0.6	0.6	0.6	0.6	0.63	0.6	0.6	0.61	0.6	0.61	0.61	0.3	0.61	0.6	0.6
MDL_cong_Cl5	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL87	170	0.77	0.81	0.85	0.83	0.82	0.81	0.81	0.81	0.86	0.82	0.82	0.83	0.82	0.83	0.83	0.42	0.83	0.82	0.82
MDL101	71	0.36	0.38	0.4	0.39	0.39	0.38	0.38	0.38	0.41	0.39	0.39	0.39	0.39	0.39	0.39	0.2	0.39	0.39	0.39
MDL105	120	0.41	0.43	0.45	0.44	0.44	0.43	0.43	0.43	0.46	0.44	0.44	0.44	0.44	0.44	0.44	0.22	0.44	0.44	0.44
MDL114	170	0.68	0.72	0.75	0.74	0.73	0.72	0.72	0.72	0.76	0.73	0.73	0.74	0.73	0.74	0.74	0.37	0.74	0.73	0.73
MDL118	170	0.66	0.7	0.73	0.71	0.7	0.7	0.7	0.7	0.74	0.7	0.7	0.71	0.7	0.71	0.71	0.36	0.71	0.7	0.7
MDL123	170	0.77	0.82	0.86	0.84	0.83	0.82	0.82	0.82	0.87	0.83	0.83	0.84	0.83	0.84	0.84	0.42	0.84	0.83	0.83
MDL126	260	0.67	0.71	0.75	0.73	0.72	0.71	0.71	0.71	0.76	0.72	0.72	0.73	0.72	0.73	0.73	0.36	0.73	0.72	0.72
MDL_cong_Cl6	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL128	120	0.25	0.26	0.28	0.27	0.27	0.26	0.26	0.26	0.28	0.27	0.27	0.27	0.27	0.27	0.27	0.14	0.27	0.27	0.27
MDL138	170	0.55	0.58	0.61	0.59	0.59	0.58	0.58	0.58	0.61	0.59	0.59	0.59	0.59	0.59	0.59	0.3	0.59	0.59	0.59
MDL153	130	0.27	0.28	0.3	0.29	0.29	0.28	0.28	0.28	0.3	0.29	0.29	0.29	0.29	0.29	0.29	0.14	0.29	0.29	0.29
MDL156	170	0.62	0.66	0.69	0.67	0.67	0.66	0.66	0.66	0.7	0.67	0.67	0.67	0.67	0.67	0.67	0.34	0.67	0.67	0.67
MDL157	170	0.61	0.65	0.68	0.66	0.65	0.65	0.65	0.65	0.68	0.65	0.65	0.66	0.65	0.66	0.66	0.33	0.66	0.65	0.65
MDL167	170	0.64	0.68	0.71	0.69	0.68	0.68	0.68	0.68	0.71	0.68	0.68	0.69	0.68	0.69	0.69	0.34	0.69	0.68	0.68
MDL169	170	0.59	0.63	0.66	0.64	0.63	0.63	0.63	0.63	0.66	0.63	0.63	0.64	0.63	0.64	0.64	0.32	0.64	0.63	0.63
MDL-cong_Cl7	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL170	78	0.64	0.68	0.71	0.69	0.68	0.68	0.68	0.68	0.71	0.68	0.68	0.69	0.68	0.69	0.69	0.34	0.69	0.68	0.68
MDL180	170	0.65	0.69	0.72	0.71	0.7	0.69	0.69	0.69	0.73	0.7	0.7	0.71	0.7	0.71	0.71	0.35	0.71	0.7	0.7
MDL183	170	0.37	0.39	0.41	0.4	0.4	0.39	0.39	0.39	0.42	0.4	0.4	0.4	0.4	0.4	0.4	0.2	0.4	0.4	0.4
MDL184	170	0.5	0.54	0.56	0.55	0.54	0.54	0.54	0.54	0.57	0.54	0.54	0.55	0.54	0.55	0.55	0.27	0.55	0.54	0.54
MDL187	75	0.65	0.69	0.72	0.71	0.7	0.69	0.69	0.69	0.73	0.7	0.7	0.71	0.7	0.71	0.71	0.35	0.71	0.7	0.7
MDL189	170	0.71	0.75	0.78	0.77	0.76	0.75	0.75	0.75	0.79	0.76	0.76	0.77	0.76	0.77	0.77	0.38	0.77	0.76	0.76
MDL_cong_Cl8	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54

Sample ID	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-
	E-5A	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-
		B65	B12	T1	T11	T13	T15	T17	T20	T24	T26	T28	T31	T34	T38	T40	T43	T47	T48	T50
MDL195	120	0.58	0.62	0.65	0.63	0.62	0.62	0.62	0.62	0.65	0.62	0.62	0.63	0.62	0.63	0.63	0.32	0.63	0.62	0.62
MDL_cong_Cl9	170	0.5	0.53	0.56	0.54	0.54	0.53	0.53	0.53	0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL206	190	0.23	0.24	0.25	0.24	0.24	0.24	0.24	0.24	0.25	0.24	0.24	0.24	0.24	0.24	0.24	0.12	0.24	0.24	0.24
MDL_cong_Cl1	130	0.57	0.61	0.63	0.62	0.61	0.61	0.61	0.61	0.64	0.61	0.61	0.62	0.61	0.62	0.62	0.31	0.62	0.61	0.61
MDL209	130	0.57	0.61	0.63	0.62	0.61	0.61	0.61	0.61	0.64	0.61	0.61	0.62	0.61	0.62	0.62	0.31	0.62	0.61	0.61
Sample Delivery	NC34S	NC34S	NC22S	NC28S	NC28S	NC28S	NC28S	NC28S	NC28S	NC34S										
Group	DG006	DG004	DG015	DG003	DG003	DG004	DG005	DG006	DG009	DG013	DG015	DG020	DG025	DG002	DG007	DG010	DG013	DG019	DG023	DG002
Sample Size	1	1	0.94	0.9	0.92	0.93	0.94	0.94	0.94	0.89	0.93	0.93	0.92	0.93	0.92	0.92	0.92	0.92	0.93	0.93
Size Units			L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Bulkhead Insulation (BHI) Experiment: PCB Mass per Sample (ng)

			1	1	ı							ı						ı	ı	_
Field ID	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-
	E-5A	E-5A-	_	E-5A-T1	_	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-	E-5A-
G14	0.07.00	B65	B12	0.05.00	T11	T13	T15	T17	T20	T24	T26	T28	T31	T34	T38	T40	T43	T47	T48	T50
C11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.1E+00	1.3E+01	6.4E-01	9.4E-01	8.5E-01	0.0E+00	7.3E-01	7.0E-01	4.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.1E-01	8.7E-01	6.3E-01	9.4E-01	8.2E-01	0.0E+00	7.3E-01	6.8E-01	4.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C13	9.0E+01	6.8E-01	0.0E+00	0.0E+00	7.1E-01	1.1E+01	1.1E+01	1.0E+01	1.6E+01	1.8E+01	1.1E+01	1.7E+01	1.7E+01	1.3E+01	1.5E+01	9.2E+00	1.1E+01	1.2E+01	1.6E+01	1.8E+01
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E+00	1.4E+00	1.0E+00	2.0E+00	8.2E-01	1.2E+00	1.9E+00	1.8E+00	1.3E+00	1.7E+00	0.0E+00	1.1E+00	1.3E+00	0.0E+00	0.0E+00
PCB28	9.0E+01	6.4E-01	0.0E+00	0.0E+00	4.9E-01	3.1E+00	3.8E+00	3.5E+00	5.8E+00	5.7E+00	4.7E+00	6.3E+00	6.7E+00	4.7E+00	4.8E+00	3.5E+00	2.6E+00	3.7E+00	2.2E+00	2.4E+00
Cl4	1.8E+04	1.4E+02	0.0E+00	0.0E+00	1.7E+01	1.4E+02	2.2E+02	2.5E+02	3.6E+02	6.1E+02	3.3E+02	4.3E+02	8.0E+02	3.7E+02	4.4E+02	3.1E+02	2.6E+02	3.0E+02	2.4E+02	2.1E+02
PCB44	1.7E+03	1.9E+01	0.0E+00	0.0E+00	1.9E+00	2.3E+01	3.5E+01	3.9E+01	6.1E+01	8.1E+01	6.0E+01	8.0E+01	1.1E+02	7.0E+01	8.0E+01	5.2E+01	5.2E+01	5.5E+01	4.3E+01	3.6E+01
PCB49	7.8E+02	8.1E+00	0.0E+00	0.0E+00	8.2E-01	7.6E+00	1.1E+01	1.3E+01	2.0E+01	2.4E+01	2.0E+01	2.6E+01	3.3E+01	2.2E+01	2.3E+01	1.7E+01	1.5E+01	1.8E+01	1.1E+01	1.1E+01
PCB52	3.0E+03	3.9E+01	0.0E+00	0.0E+00	3.2E+00	3.6E+01	5.5E+01	6.2E+01	9.4E+01	1.2E+02	9.3E+01	1.3E+02	1.8E+02	1.2E+02	1.5E+02	9.2E+01	9.2E+01	1.1E+02	8.1E+01	6.8E+01
PCB66	1.8E+03	7.1E+00	0.0E+00	0.0E+00	4.0E-01	7.0E+00	9.4E+00	1.5E+01	1.9E+01	2.8E+01	2.0E+01	2.0E+01	4.0E+01	2.2E+01	2.6E+01	1.1E+01	1.1E+01	1.2E+01	8.6E+00	6.7E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.9E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	1.0E+05	7.0E+02	0.0E+00	0.0E+00	1.6E+01	1.3E+02	2.4E+02	4.6E+02	5.4E+02	1.4E+03	8.5E+02	8.3E+02	2.2E+03	7.6E+02	9.2E+02	4.5E+02	5.3E+02	4.6E+02	4.3E+02	3.6E+02
PCB87	8.1E+03	6.3E+01	0.0E+00	0.0E+00	0.0E+00	1.1E+01	1.9E+01	3.4E+01	4.5E+01	8.9E+01	6.4E+01	6.9E+01	1.3E+02	7.4E+01	6.9E+01	5.0E+01	4.3E+01	4.8E+01	3.4E+01	3.1E+01
PCB101	1.6E+04	1.0E+02	0.0E+00	0.0E+00	6.7E-01	1.5E+01	3.1E+01	5.4E+01	7.4E+01	1.4E+02	1.0E+02	1.1E+02	2.2E+02	1.1E+02	1.0E+02	7.1E+01	6.3E+01	7.1E+01	5.2E+01	4.4E+01
PCB105	7.4E+03	1.7E+01	0.0E+00	0.0E+00	0.0E+00	3.4E+00	6.6E+00	1.3E+01	1.8E+01	4.5E+01	3.0E+01	3.2E+01	6.1E+01	3.3E+01	1.8E+01	1.4E+01	1.0E+01	7.5E+00	6.0E+00	3.8E+00
PCB114	5.3E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.6E-01	1.1E+00	2.7E+00	1.7E+00	0.0E+00	2.9E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Field ID	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-	1-51-0-
	E-5A	E-5A- B65	E-5A- B12	E-5A-T1	E-5A- T11	E-5A- T13	E-5A- T15	E-5A- T17	E-5A- T20	E-5A- T24	E-5A- T26	E-5A- T28	E-5A- T31	E-5A- T34	E-5A- T38	E-5A- T40	E-5A- T43	E-5A- T47	E-5A- T48	E-5A- T50
PCB118	1.9E+04		0.0E+00	0.0E+00				,						_			_			6.0E+00
PCB123	2.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C16	6.8E+04	2.6E+02	0.0E+00	0.0E+00	0.0E+00	2.1E+01	2.6E+01	6.8E+01	8.4E+01	3.3E+02	1.5E+02	1.7E+02	5.6E+02	1.8E+02	1.8E+02	7.2E+01	1.3E+02	9.2E+01	1.2E+02	1.2E+02
PCB128	3.8E+03	1.0E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+00	2.3E+00	4.1E+00	1.2E+01	7.1E+00	7.3E+00	1.5E+01	8.0E+00	5.2E+00	0.0E+00	4.0E+00	2.9E+00	0.0E+00	0.0E+00
PCB138	1.8E+04	4.5E+01	0.0E+00	0.0E+00	0.0E+00	1.8E+00	3.6E+00	8.8E+00	1.3E+01	4.4E+01	2.8E+01	2.9E+01	7.2E+01	3.3E+01	2.2E+01	1.7E+01	1.5E+01	1.0E+01	1.2E+01	7.3E+00
PCB153	2.0E+04	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.0E+00	2.4E+00	4.7E+00	1.8E+01	1.9E+01	1.8E+01	1.6E+01	3.9E+01	3.6E+01	2.5E+01	2.5E+01	1.6E+01	1.4E+01	1.1E+01	9.0E+00
PCB156	2.2E+03	2.6E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+00	4.5E+00	2.0E+00	2.5E+00	6.0E+00	2.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	7.6E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	9.2E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E+00	1.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	2.0E+04	6.2E+01	0.0E+00	0.0E+00	9.2E+00	8.0E+00	5.9E+00	0.0E+00	0.0E+00	0.0E+00	1.4E+01	0.0E+00	4.1E+01	1.8E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	2.4E+03	3.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	3.3E+03	4.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.5E+00	1.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	1.1E+03	1.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.9E-01	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.7E-01	6.0E-01	7.2E-01	0.0E+00	0.0E+00	0.0E+00	7.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	1.6E+03	2.9E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.6E-01	0.0E+00	2.0E+00	1.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	2.0E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0. 0E+00	0.0E+00	0. 0E+00	0.0E+00	0.0E+00	0. 0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E + 00
tPCBs	2.1E+05	1.2E+03	0.0E+00	0.0E+00	4.2E+01	3. 2E+02	5.1E+02	7.9E+02	9.9E+02	2.4E+03	1.4E+03	1.4E+03	3.6E+03	1.3E+03	1.6E+03	8.4E+02	9. 3E+02	8.7E+02	8.1E+02	7. 2E+0 2

Bulkhead Insulation (BHI) Experiment: Balance (ng)

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
C12	0.0E+00	2.6E+01	2.6E+01	4.9E-08	1.1E-02		1.4E-01	

	Remaining PCBs in Leached Solid (ng)	Total PCBs Released (ng)	Initial PCBs in Solid (ng)	Initial Weight Fraction PCBs in Solid	Initial Homologue % of tPCBs in Solid	Initial Congener % of tPCBs in Solid	Total Homologue Release (% of tPCBs in Leachate)	Total Congener Release (% of tPCBs in Leachate)
PCB8	0.0E+00	6.1E+00	6.1E+00	1.2E-08		2.7E-03	III Leachate)	3.3E-02
C13	9.0E+01	2.1E+02	3.0E+02	5.7E-07	1.3E-01		1.1E+00	0.02
PCB18	0.0E+00	1.7E+01	1.7E+01	3.2E-08		7.4E-03		9.1E-02
PCB28	9.0E+01	6.4E+01	1.5E+02	3.0E-07		6.8E-02		3.4E-01
C14	1.8E+04	5.3E+03	2.3E+04	4.5E-05	1.0E+01		2.9E+01	
PCB44	1.7E+03	8.8E+02	2.6E+03	5.0E-06		1.1E+00		4.8E+00
PCB49	7.8E+02	2.7E+02	1.1E+03	2.0E-06		4.7E-01		1.5E+00
PCB52	3.0E+03	1.5E+03	4.5E+03	8.7E-06		2.0E+00		8.1E+00
PCB66	1.8E+03	2.6E+02	2.1E+03	4.0E-06		9.1E-01		1.4E+00
PCB77	0.0E+00	1.2E+00	1.2E+00	2.2E-09		5.1E-04		6.2E-03
C15	1.0E+05	1.1E+04	1.1E+05	2.1E-04	4.9E+01		5.7E+01	
PCB87	8.1E+03	8.1E+02	9.0E+03	1.7E-05		3.9E+00		4.4E+00
PCB101	1.6E+04	1.3E+03	1.7E+04	3.3E-05		7.6E+00		6.8E+00
PCB105	7.4E+03	3.0E+02	7.7E+03	1.5E-05		3.4E+00		1.6E+00
PCB114	5.3E+02	1.1E+01	5.4E+02	1.0E-06		2.4E-01		5.8E-02
PCB118	1.9E+04	6.8E+02	2.0E+04	3.8E-05		8.7E+00		3.7E+00
PCB123	2.5E+03	0.0E+00	2.5E+03	4.8E-06		1.1E+00		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C16	6.8E+04	2.3E+03	7.1E+04	1.4E-04	3.1E+01		1.2E+01	
PCB128	3.8E+03	6.9E+01	3.9E+03	7.5E-06		1.7E+00		3.7E-01
PCB138	1.8E+04	3.2E+02	1.8E+04	3.5E-05		8.1E+00		1.7E+00
PCB153	2.0E+04	2.5E+02	2.0E+04	3.9E-05		8.9E+00		1.4E+00
PCB156	2.2E+03	1.9E+01	2.2E+03	4.3E-06		9.8E-01		1.0E-01
PCB157	7.6E+02	7.8E-01	7.6E+02	1.5E-06		3.3E-01		4.2E-03
PCB167	9.2E+02	2.9E+00	9.2E+02	1.8E-06		4.1E-01		1.5E-02
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C17	2.0E+04	9.6E+01	2.0E+04	3.9E-05	8.8E+00		5.2E-01	
PCB170	2.4E+03	2.3E+00	2.4E+03	4.6E-06		1.1E+00		1.2E-02
PCB180	3.3E+03	4.3E+00	3.3E+03	6.4E-06		1.5E+00		2.3E-02
PCB183	1.1E+03	2.4E+00	1.1E+03	2.1E-06		4.8E-01		1.3E-02
PCB184	0.0E+00	3.0E+00	3.0E+00	5.7E-09		1.3E-03		1.6E-02
PCB187	1.6E+03	4.6E+00	1.6E+03	3.1E-06		7.1E-01		2.5E-02
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
Cl8	2.0E+03	0.0E+00	2.0E+03	3.8E-06	8.8E-01		0.0E+00	

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
tPCBs	2.1E+05	1.9E+04	2.3E+05	4.4E-04				

Felt Gasket/Inner (FGI) Experiment: Analytical Results (ng/L)

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
_	Q-3B	Q-3B-	Q-3B-	Q-3B-		Q-3B-T2	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-
		B68	B15	T11	T13		T21	T23	T26	T30	T32	T35	T38	T42	T46	T49	T51	T53
Sample Date	7/5/01	7/5/01	6/20/00	3/9/00	3/14/00	3/8/00	3/28/00	4/11/00	5/3/00	5/30/00	7/4/00	8/15/00	9/26/00	11/7/00	1/23/01	3/6/01	4/17/01	6/26/01
Units	ng	ng	ng/L															
Cl1	0	0	0	0	0	0	0	0	0	0	3.1	0	3.2	0	0	6.1	2.4	3.5
Qual_Cl1	ND		ND		ND	ND		J	J									
C12	0	5.3	0	39	15	0	140	86	75	37	41	56	45	46	65	60	34	50
Qual_Cl2	ND		ND			ND												
PCB8	0	0.99	0	2	8.1	0	16	13	16	14	17	21	17	17	25	26	14	17
Qual_PCB8	ND	J	ND	J		ND												
C13	0	17	0	9.2	24	0	52	50	56	60	71	110	61	63	83	98	64	79
Qual_Cl3	ND		ND			ND												
PCB18	0	2.8	0	1.6	8.3	0	19	17	21	19	21	27	22	21	32	32	19	20
Qual_PCB18	ND	J	ND	J		ND												
PCB28	0	4	0	1	5.8	0	13	13	15	14	16	20	14	14	17	19	10	13
Qual_PCB28	ND	J	ND	J		ND												
C14	0	29	0	3.1	16	0	28	35	49	53	57	71	46	44	44	53	44	39
Qual_Cl4	ND		ND			ND												
PCB44	0	2.9	0	0	1.8	0	5	5.9	6.9	7	8.3	9.8	6.7	6	7.6	9	5.3	5.1
Qual_PCB44	ND	J	ND	ND	J	ND											J	J
PCB49	0	1.4	0	0.35	1.5	0	2.5	2.9	3.1	3.1	3.6	3.9	3.2	2.4	3	3.5	3	2.8
Qual_PCB49	ND	J	ND	J	J	ND	J							J	J		J	J
PCB52	0	3.8	0	0.32	2	0	5.9	6.2	7.6	7.4	8.6	10	7.6	6.3	8.5	10	7.4	6.7

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
r ·	Q-3B	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-T2	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-
		B68	B15	T11	T13		T21	T23	T26	T30	T32	T35	T38	T42	T46	T49	T51	T53
Qual_PCB52	ND	J	ND	J	J	ND												
PCB66	0	1.9	0	0	0.6	0	1.2	1.7	1.8	2.4	2.3	3.1	1.6	1.4	1.4	1.5	0	0
Qual_PCB66	ND	J	ND	ND	J	ND	J	J	J	J	J		J	J	J	J	ND	ND
PCB77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C15	0	43	0	0	0	0	11	20	15	28	39	36	20	22	0	24	0	0
Qual_Cl5	ND		ND	ND	ND	ND									ND		ND	ND
PCB87	0	1.1	0	0	0	0	0.54	0	0.95	0	0	1.9	1.2	0	0	0	0	0
Qual_PCB87	ND	J	ND	ND	ND	ND	J	ND	J	ND	ND	J	J	ND	ND	ND	ND	ND
PCB101	0	1.8	0	0	0	0	0.93	1.5	2	2.6	2.7	3.1	1.9	2	0	0	0	0
Qual_PCB101	ND	J	ND	ND	ND	ND	J	J	J	J			J	J	ND	ND	ND	ND
PCB105	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB105	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB114	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB118	0	0.88	0	0	0	0	0	0	1.6	0	2	1.4	0	0	0	0	0	0
Qual_PCB118	ND	J	ND	ND	ND	ND	ND	ND	J	ND	J	J	ND	ND	ND	ND	ND	ND
PCB123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB123	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C16	0	9.8	0	0	0	0	2.7	15	19	0	32	32	0	2.5	0	0	0	0
Qual_Cl6	ND		ND	ND	ND	ND				ND			ND	J	ND	ND	ND	ND
PCB128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB128	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB138	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB138	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB153	0	2.2	0	0	0	0	0	1.3	1.8	0	4.1	3.9	0	1.8	0	0	0	0
Qual_PCB153	ND	J	ND	ND	ND	ND	ND	J	J	ND			ND	J	ND	ND	ND	ND
PCB156	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB156	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB157	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB157	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
p.v 1D	Q-3B	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-T2	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-
		B68	B15	T11	T13		T21	T23	T26	T30	T32	T35	T38	T42	T46	T49	T51	T53
Qual_PCB167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl7	6600000	110	11	0	10	0	15	45	62	99	130	100	57	67	63	64	35	5.6
Qual_Cl7				ND		ND												
PCB170	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB180	6900000	20	0	0	0	0	1.2	6	10	18	15	15	6.3	11	7.6	8.5	4.9	0
Qual_PCB180			ND	ND	ND	ND	J										J	ND
PCB183	0	3.4	0	0	0	0	0	0	2.4	0	3.2	3.1	1.9	2.7	0	0	0	0
Qual_PCB183	ND	J	ND	ND	ND	ND	ND	ND	J	ND			J	J	ND	ND	ND	ND
PCB184	0	0	0	0	0.58	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	J	ND												
PCB187	1600000	40	3.2	0	0	0	2.6	12	26	40	39	41	22	27	18	17	5.9	4.2
Qual_PCB187				ND	ND	ND	J											J
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C18	2800000 00	410	31	0	0	0	25	140	250	350	230	220	87	140	88	140	66	31
Qual_Cl8				ND	ND	ND												
PCB195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	3000000 00	110	4.8	0	0	0	12	37	130	100	49	57	36	43	9.3	43	27	0
Qual_Cl9				ND	ND	ND												ND
PCB206	1500000 00	61	1.6	0	0	0	3.6	37	87	67	30	29	8.3	12	9.2	12	5.8	0
Qual_PCB206			J	ND	ND	ND												ND
C110	3600000 0	1.3	0	0	0	0	0	0	2.1	1.8	0	0	0	0	0	0	0	0
Qual_Cl10		J	ND	ND	ND	ND	ND	ND	J	J	ND							
PCB209	3600000 0	1.3	0	0	0	0	0	0	2.1	1.8	0	0	0	0	0	0	0	0
Qual_PCB209		J	ND	ND	ND	ND	ND	ND	J	J	ND							
Min Reporting	3500000	5	2.7	2.7	2.6	2.7	2.7	2.7	2.7	2.8	2.7	2.6	2.7	5.4	5.4	2.7	5.4	5.4

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
	Q-3B	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-T2	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-
		B68	B15	T11	T13		T21	T23	T26	T30	T32	T35	T38	T42	T46	T49	T51	T53
Limit				0.54							0.54							
MDL_cong_Cl1	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL_cong_Cl2	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL8	260000	0.42	0.45	0.46	0.45	0.45	0.46	0.45	0.46	0.48	0.45	0.45	0.45	0.46	0.46	0.23	0.45	0.45
MDL_cong_Cl3	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL18	300000	0.64	0.69	0.69	0.68	0.69	0.7	0.69	0.69	0.72	0.69	0.68	0.69	0.69	0.69	0.35	0.69	0.69
MDL28	320000	0.53	0.56	0.57	0.56	0.56	0.58	0.56	0.57	0.6	0.56	0.56	0.56	0.57	0.57	0.28	0.56	0.56
MDL_cong_Cl4	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL44	260000	0.67	0.72	0.73	0.71	0.72	0.74	0.72	0.73	0.76	0.72	0.71	0.72	0.73	0.73	0.36	0.72	0.72
MDL49	700000	0.75	0.8	0.81	0.79	0.8	0.82	0.8	0.81	0.85	0.8	0.79	0.8	0.81	0.81	0.4	0.8	0.8
MDL52	330000	0.29	0.32	0.32	0.31	0.32	0.32	0.32	0.32	0.33	0.32	0.31	0.32	0.32	0.32	0.16	0.32	0.32
MDL66	380000	0.64	0.69	0.7	0.68	0.69	0.71	0.69	0.7	0.73	0.69	0.68	0.69	0.7	0.7	0.35	0.69	0.69
MDL77	480000	0.56	0.6	0.61	0.6	0.6	0.62	0.6	0.61	0.64	0.6	0.6	0.6	0.61	0.61	0.3	0.6	0.6
MDL_cong_Cl5	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL87	700000	0.77	0.82	0.83	0.81	0.82	0.84	0.82	0.83	0.87	0.82	0.81	0.82	0.83	0.83	0.42	0.82	0.82
MDL101	280000	0.36	0.39	0.39	0.38	0.39	0.4	0.39	0.39	0.41	0.39	0.38	0.39	0.39	0.39	0.2	0.39	0.39
MDL105	460000	0.41	0.44	0.44	0.43	0.44	0.45	0.44	0.44	0.46	0.44	0.43	0.44	0.44	0.44	0.22	0.44	0.44
MDL114	700000	0.68	0.73	0.74	0.72	0.73	0.74	0.73	0.74	0.77	0.73	0.72	0.73	0.74	0.74	0.37	0.73	0.73
MDL118	700000	0.66	0.7	0.71	0.7	0.7	0.72	0.7	0.71	0.74	0.7	0.7	0.7	0.71	0.71	0.36	0.7	0.7
MDL123	700000	0.77	0.83	0.84	0.82	0.83	0.85	0.83	0.84	0.88	0.83	0.82	0.83	0.84	0.84	0.42	0.83	0.83
MDL126	1000000	0.67	0.72	0.73	0.71	0.72	0.74	0.72	0.73	0.76	0.72	0.71	0.72	0.73	0.73	0.36	0.72	0.72
MDL_cong_Cl6	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL128	490000	0.25	0.27	0.27	0.26	0.27	0.27	0.27	0.27	0.28	0.27	0.26	0.27	0.27	0.27	0.14	0.27	0.27
MDL138	680000	0.55	0.59	0.59	0.58	0.59	0.6	0.59	0.59	0.62	0.59	0.58	0.59	0.59	0.59	0.3	0.59	0.59
MDL153	520000	0.27	0.29	0.29	0.28	0.29	0.29	0.29	0.29	0.3	0.29	0.28	0.29	0.29	0.29	0.14	0.29	0.29
MDL156	700000	0.62	0.67	0.67	0.66	0.67	0.68	0.67	0.67	0.7	0.67	0.66	0.67	0.67	0.67	0.34	0.67	0.67
MDL157	700000	0.61	0.65	0.66	0.65	0.65	0.67	0.65	0.66	0.69	0.65	0.65	0.65	0.66	0.66	0.33	0.65	0.65
MDL167	700000	0.64	0.68	0.69	0.68	0.68	0.7	0.68	0.69	0.72	0.68	0.68	0.68	0.69	0.69	0.34	0.68	0.68
MDL169	700000	0.59	0.63	0.64	0.63	0.63	0.65	0.63	0.64	0.67	0.63	0.63	0.63	0.64	0.64	0.32	0.63	0.63
MDL-cong_Cl7	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL170	310000	0.64	0.68	0.69	0.68	0.68	0.7	0.68	0.69	0.72	0.68	0.68	0.68	0.69	0.69	0.34	0.68	0.68
MDL180	680000	0.65	0.7	0.71	0.69	0.7	0.72	0.7	0.71	0.74	0.7	0.69	0.7	0.71	0.71	0.35	0.7	0.7
MDL183	700000	0.37	0.4	0.4	0.39	0.4	0.41	0.4	0.4	0.42	0.4	0.39	0.4	0.4	0.4	0.2	0.4	0.4
MDL184	700000	0.5	0.54	0.55	0.54	0.54	0.55	0.54	0.55	0.57	0.54	0.54	0.54	0.55	0.55	0.27	0.54	0.54

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
	Q-3B	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-T2	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-
		B68	B15	T11	T13		T21	T23	T26	T30	T32	T35	T38	T42	T46	T49	T51	T53
MDL187	300000	0.65	0.7	0.71	0.69	0.7	0.72	0.7	0.71	0.74	0.7	0.69	0.7	0.71	0.71	0.35	0.7	0.7
MDL189	700000	0.71	0.76	0.77	0.75	0.76	0.78	0.76	0.77	0.8	0.76	0.75	0.76	0.77	0.77	0.38	0.76	0.76
MDL_cong_Cl8	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL195	470000	0.58	0.62	0.63	0.62	0.62	0.64	0.62	0.63	0.66	0.62	0.62	0.62	0.63	0.63	0.32	0.62	0.62
MDL_cong_Cl9	700000	0.5	0.54	0.54	0.53	0.54	0.55	0.54	0.54	0.57	0.54	0.53	0.54	0.54	0.54	0.27	0.54	0.54
MDL206	780000	0.23	0.24	0.24	0.24	0.24	0.25	0.24	0.24	0.26	0.24	0.24	0.24	0.24	0.24	0.12	0.24	0.24
MDL_cong_Cl10	540000	0.57	0.61	0.62	0.61	0.61	0.63	0.61	0.62	0.65	0.61	0.61	0.61	0.62	0.62	0.31	0.61	0.61
MDL209	540000	0.57	0.61	0.62	0.61	0.61	0.63	0.61	0.62	0.65	0.61	0.61	0.61	0.62	0.62	0.31	0.61	0.61
Sample Delivery	NC34SD	NC34SD	NC22SD	NC28SD	NC28SD	NC28SD	NC28SD	NC28SD	NC34SD									
Group	G006	G004	G016	G001	G002	G001	G004	G006	G009	G013	G018	G023	G001	G005	G011	G016	G022	G003
Sample Size	1	1	0.93	0.92	0.94	0.93	0.91	0.93	0.92	0.88	0.93	0.94	0.93	0.92	0.92	0.92	0.93	0.93
Size Units			L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Felt Gasket/Inner (FGI) Experiment: PCB Mass per Sample (ng)

Field ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
	Q-3B	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-T2	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-
		B68	B15	T11	T13		T21	T23	T26	T30	T32	T35	T38	T42	T46	T49	T51	T53
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.9E+00	0.0E+00	3.0E+00	0.0E+00	0.0E+00	5.6E+00	2.2E+00	3.3E+00
Cl2	0.0E+00	5.3E+00	0.0E+00	3.6E+01	1.4E+01	0.0E+00	1.3E+02	8.0E+01	6.9E+01	3.3E+01	3.8E+01	5.3E+01	4.2E+01	4.2E+01	6.0E+01	5.5E+01	3.2E+01	4.7E+01
PCB8	0.0E+00	9.9E-01	0.0E+00	1.8E+00	7.6E+00	0.0E+00	1.5E+01	1.2E+01	1.5E+01	1.2E+01	1.6E+01	2.0E+01	1.6E+01	1.6E+01	2.3E+01	2.4E+01	1.3E+01	1.6E+01
Cl3	0.0E+00	1.7E+01	0.0E+00	8.5E+00	2.3E+01	0.0E+00	4.7E+01	4.7E+01	5.2E+01	5.3E+01	6.6E+01	1.0E+02	5.7E+01	5.8E+01	7.6E+01	9.0E+01	6.0E+01	7.3E+01
PCB18	0.0E+00	2.8E+00	0.0E+00	1.5E+00	7.8E+00	0.0E+00	1.7E+01	1.6E+01	1.9E+01	1.7E+01	2.0E+01	2.5E+01	2.0E+01	1.9E+01	2.9E+01	2.9E+01	1.8E+01	1.9E+01
PCB28	0.0E+00	4.0E+00	0.0E+00	9.2E-01	5.5E+00	0.0E+00	1.2E+01	1.2E+01	1.4E+01	1.2E+01	1.5E+01	1.9E+01	1.3E+01	1.3E+01	1.6E+01	1.7E+01	9.3E+00	1.2E+01
Cl4	0.0E+00	2.9E+01	0.0E+00	2.9E+00	1.5E+01	0.0E+00	2.5E+01	3.3E+01	4.5E+01	4.7E+01	5.3E+01	6.7E+01	4.3E+01	4.0E+01	4.0E+01	4.9E+01	4.1E+01	3.6E+01
PCB44	0.0E+00	2.9E+00	0.0E+00	0.0E+00	1.7E+00	0.0E+00	4.6E+00	5.5E+00	6.3E+00	6.2E+00	7.7E+00	9.2E+00	6.2E+00	5.5E+00	7.0E+00	8.3E+00	4.9E+00	4.7E+00
PCB49	0.0E+00	1.4E+00	0.0E+00	3.2E-01	1.4E+00	0.0E+00	2.3E+00	2.7E+00	2.9E+00	2.7E+00	3.3E+00	3.7E+00	3.0E+00	2.2E+00	2.8E+00	3.2E+00	2.8E+00	2.6E+00
PCB52	0.0E+00	3.8E+00	0.0E+00	2.9E-01	1.9E+00	0.0E+00	5.4E+00	5.8E+00	7.0E+00	6.5E+00	8.0E+00	9.4E+00	7.1E+00	5.8E+00	7.8E+00	9.2E+00	6.9E+00	6.2E+00
PCB66	0.0E+00	1.9E+00	0.0E+00	0.0E+00	5.6E-01	0.0E+00	1.1E+00	1.6E+00	1.7E+00	2.1E+00	2.1E+00	2.9E+00	1.5E+00	1.3E+00	1.3E+00	1.4E+00	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.0E+01	1.9E+01	1.4E+01	2.5E+01	3.6E+01	3.4E+01	1.9E+01	2.0E+01	0.0E+00	2.2E+01	0.0E+00	0.0E+00
PCB87	0.0E+00	1.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.9E-01	0.0E+00	8.7E-01	0.0E+00	0.0E+00	1.8E+00	1.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101	0.0E+00	1.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.5E-01	1.4E+00	1.8E+00	2.3E+00	2.5E+00	2.9E+00	1.8E+00	1.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E + 00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E + 00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E + 00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E + 00

Field ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
	Q-3B	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-T2	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-	Q-3B-
	`	B68	B15	T11	T13		T21	T23	T26	T30	T32	T35	T38	T42	T46	T49	T51	T53
PCB118	0.0E+00	8.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	1.9E+00	1.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	9.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.5E+00	1.4E+01	1.7E+01	0.0E+00	3.0E+01	3.0E+01	0.0E+00	2.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	2.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E+00	1.7E+00	0.0E+00	3.8E+00	3.7E+00	0.0E+00	1.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl7	6.6E+07	1.1E+02	1.0E+01	0.0E+00	9.4E+00	0.0E+00	1.4E+01	4.2E+01	5.7E+01	8.7E+01	1.2E+02	9.4E+01	5.3E+01	6.2E+01	5.8E+01	5.9E+01	3.3E+01	5.2E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	6.9E+06	2.0E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+00	5.6E+00	9.2E+00	1.6E+01	1.4E+01	1.4E+01	5.9E+00	1.0E+01	7.0E+00	7.8E+00	4.6E+00	0.0E+00
PCB183	0.0E+00	3.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.2E+00	0.0E+00	3.0E+00	2.9E+00	1.8E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.5E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	1.6E+07	4.0E+01	3.0E+00	0.0E+00	0.0E+00	0.0E+00	2.4E+00	1.1E+01	2.4E+01	3.5E+01	3.6E+01	3.9E+01	2.0E+01	2.5E+01	1.7E+01	1.6E+01	5.5E+00	3.9E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl8	2.8E+08	4.1E+02	2.9E+01	0.0E+00	0.0E+00	0.0E+00	2.3E+01	1.3E+02	2.3E+02	3.1E+02	2.1E+02	2.1E+02	8.1E+01	1.3E+02	8.1E+01	1.3E+02	6.1E+01	2.9E+01
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	3.0E+08	1.1E+02	4.5E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+01	3.4E+01	1.2E+02	8.8E+01	4.6E+01	5.4E+01	3.3E+01	4.0E+01	8.6E+00	4.0E+01	2.5E+01	0.0E+00
PCB206	1.5E+08	6.1E+01	1.5E+00	0.0E+00	0.0E+00	0.0E+00	3.3E+00	3.4E+01	8.0E+01	5.9E+01	2.8E+01	2.7E+01	7.7E+00	1.1E+01	8.5E+00	1.1E+01	5.4E+00	0.0E+00
C110	3.6E+07	1.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.9E+00	1.6E+00	0.0E+00							
PCB209	3.6E+07	1.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.9E+00	1.6E+00	0.0E+00							
tPCBs	6.8E+08	7.4E+02	4.4E+01	4.7E+01	6.1E+01	0.0E+00	2.6E+02	4.0E+02	6.1E+02	6.4E+02	6.1E+02	6.4E+02	3.3E+02	3.9E+02	3.2E+02	4.5E+02	2.5E+02	1.9E+02

Felt Gasket/Inner (FGI) Experiment: Mass Balance

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
Cl1	0.0E+00	1.7E+01	1.7E+01	5.7E-09	2.5E-06		3.2E-01	
C12	0.0E+00	7.3E+02	7.3E+02	2.5E-07	1.1E-04		1.4E+01	
PCB8	0.0E+00	2.1E+02	2.1E+02	7.0E-08		3.0E-05		3.9E+00
C13	0.0E+00	8.1E+02	8.3E+02	2.8E-07	1.2E-04		1.5E+01	
PCB18	0.0E+00	2.6E+02	2.6E+02	8.8E-08		3.8E-05		4.9E+00
PCB28	0.0E+00	1.7E+02	1.7E+02	5.9E-08		2.6E-05		3.2E+00

	Remaining PCBs in Leached Solid (ng)	Total PCBs Released (ng)	Initial PCBs in Solid (ng)	Initial Weight Fraction PCBs in Solid	Initial Homologue % of tPCBs in Solid	Initial Congener % of tPCBs in Solid	Total Homologue Release (% of tPCBs in Leachate)	Total Congener Release (% of tPCBs in Leachate)
Cl4	0.0E+00	5.4E+02	5.7E+02	1.9E-07	8.3E-05		1.0E+01	Í
PCB44	0.0E+00	7.8E+01	8.1E+01	2.7E-08		1.2E-05		1.5E+00
PCB49	0.0E+00	3.6E+01	3.7E+01	1.3E-08		5.5E-06		6.8E-01
PCB52	0.0E+00	8.7E+01	9.1E+01	3.1E-08		1.3E-05		1.7E+00
PCB66	0.0E+00	1.8E+01	1.9E+01	6.6E-09		2.8E-06		3.3E-01
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C15	0.0E+00	2.0E+02	2.4E+02	8.1E-08	3.5E-05		3.8E+00	
PCB87	0.0E+00	4.3E+00	5.4E+00	1.8E-09		7.9E-07		8.1E-02
PCB101	0.0E+00	1.5E+01	1.7E+01	5.8E-09		2.5E-06		2.9E-01
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB118	0.0E+00	4.6E+00	5.5E+00	1.9E-09		8.1E-07		8.9E-02
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
Cl6	0.0E+00	9.6E+01	1.1E+02	3.6E-08	1.6E-05		1.8E+00	
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB153	0.0E+00	1.2E+01	1.4E+01	4.8E-09		2.1E-06		2.3E-01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C17	6.6E+07	7.0E+02	6.6E+07	2.2E-02	9.7E+00		1.3E+01	
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB180	6.9E+06	9.5E+01	6.9E+06	2.3E-03		1.0E+00		1.8E+00
PCB183	0.0E+00	1.2E+01	1.6E+01	5.3E-09		2.3E-06		2.4E-01
PCB184	0.0E+00	5.5E-01	5.5E-01	1.8E-10		8.0E-08		1.0E-02
PCB187	1.6E+07	2.4E+02	1.6E+07	5.4E-03		2.3E+00		4.5E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C18	2.8E+08	1.7E+03	2.8E+08	9.5E-02	4.1E+01		3.1E+01	
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C19	3.0E+08	5.0E+02	3.0E+08	1.0E-01	4.4E+01		9.6E+00	
PCB206	1.5E+08	2.8E+02	1.5E+08	5.1E-02		2.2E+01		5.3E+00
C110	3.6E+07	3.5E+00	3.6E+07	1.2E-02	5.3E+00		6.7E-02	

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
PCB209	3.6E+07	3.5E+00	3.6E+07	1.2E-02		5.3E+00		6.7E-02
tPCBs	6.8E+08	5.2E+03	6.8E+08	2.3E-01				

Felt Gasket/Outer (FGO) Experiment: Analytical Results (ng/L)

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
_	Q-3D	Q-3D-																
		B65	В9	T1	T10	T14	T17	T21	T23	T25	T28	T31	T34	T36	T39	T42	T44	T46
Sample Date	7/11/01	7/11/01	6/6/00	4/12/00	4/13/00	4/18/00	5/3/00	5/24/00	6/20/00	8/1/00	9/5/00	10/17/00	11/28/00	1/2/01	2/13/01	3/27/01	4/24/01	7/10/01
Units	ng	ng	ng/L															
C11	0	0	0	0	0	0	0	0	0	2.4	0	0	0	0	0	0	0	0
Qual_Cl1	ND	J	ND															
C12	0	0	0	0	0	15	28	33	33	24	20	24	22	5.9	16	21	20	28
Qual_Cl2	ND	ND	ND	ND	ND													
PCB8	0	0	0	0	0	2	7.8	8.8	11	8.6	8.3	8.3	7.9	5.3	5.5	5.8	5.2	8.2
Qual_PCB8	ND	ND	ND	ND	ND	J								J			J	
C13	50000	15	0	0	0	14	34	42	58	49	40	38	45	37	28	30	33	40
Qual_Cl3	J		ND	ND	ND													
PCB18	0	2.7	0	0	0	3.4	11	14	18	15	14	13	14	9.2	9.1	9.7	9.2	12
Qual_PCB18	ND	J	ND	ND	ND													
PCB28	50000	2	0	0	0	2.8	9.7	11	14	11	10	10	9	7.2	6	6.6	6	6.8
Qual_PCB28	J	J	ND	ND	ND													
C14	87000	30	0	0	0	7.3	31	38	58	49	49	41	57	26	28	22	23	29
Qual_Cl4	J		ND	ND	ND													
PCB44	0	2.7	0	0	0	1.2	3.8	4.9	7.1	5.7	5.5	5.4	5.6	3.1	3.5	3.2	3.2	4.9
Qual_PCB44	ND	J	ND	ND	ND	J								J		J	J	J
PCB49	0	0	0	0	0	0.72	2.1	3.3	3.4	3.3	2.3	2.6	2.8	1.9	1.7	1.5	0	3.6
Qual_PCB49	ND	ND	ND	ND	ND	J	J				J	J	J	J	J	J	ND	J
PCB52	87000	2.6	0	0	0	1.4	4.2	5.6	8	6.4	5.8	5.8	6.9	4.8	4.4	4.4	4.5	4.5
Qual_PCB52	J	J	ND	ND	ND	J								J		J	J	J
PCB66	0	0	0	0	0	0	3	1.4	2.6	1.5	1.2	1.6	1.5	0	0.93	0.79	0	0
Qual_PCB66	ND	ND	ND	ND	ND	ND		J	J	J	J	J	J	ND	J	J	ND	ND
PCB77	0	0	0	0	0	0	1.1	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	J	ND										

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
Sumple 1B	Q-3D	Q-3D-																
		B65	В9	T1	T10	T14	T17	T21	T23	T25	T28	T31	T34	T36	T39	T42	T44	T46
C15	170000	0	0	0	0	0	14	17	21	27	19	12	16	0	12	0	0	0
Qual_Cl5	J	ND	ND	ND	ND	ND								ND		ND	ND	ND
PCB87	0	0	0	0	0	0	0	0	0	0.84	0	1.2	0	0	0	0	0	0
Qual_PCB87	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	J	ND	ND	ND	ND	ND	ND
PCB101	0	0	0	0	0	0	0.83	1.5	2.3	2	1.3	1.9	2.4	0	1.2	0	0	0
Qual_PCB101	ND	ND	ND	ND	ND	ND	J	J	J	J	J	J	J	ND	J	ND	ND	ND
PCB105	0	0	0	0	0	0	1.1	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB105	ND	ND	ND	ND	ND	ND	J	ND										
PCB114	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB118	0	0	0	0	0	0	1.3	0	0	1.1	0	0	0	0	0	0	0	0
Qual_PCB118	ND	ND	ND	ND	ND	ND	J	ND	ND	J	ND							
PCB123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB123	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C16	160000	0	0	0	0	0	0	0	0	14	0	8.8	0	0	24	0	0	0
Qual_Cl6	J	ND		ND		ND	ND		ND	ND	ND							
PCB128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB128	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB138	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB138	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB153	270000	0	0	0	0	0	0	0	0	1.3	0	1.9	0	0	0.77	0	0	0
Qual_PCB153	J	ND	J	ND	J	ND	ND	J	ND	ND	ND							
PCB156	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB156	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB157	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB157	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C17	1100000	110	0	0	0	0	0	2.9	13	37	26	47	12	13	37	28	6.7	4.9
Qual_Cl7			ND	ND	ND	ND	ND											J

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
	Q-3D	Q-3D-																
		B65	В9	T1	T10	T14	T17	T21	T23	T25	T28	T31	T34	T36	T39	T42	T44	T46
PCB170	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170	ND																	
PCB180	1600000	11	0	0	0	0	0	0	0	2.3	0	2.4	0	0	3.3	2	0	0
Qual_PCB180			ND	J	ND	J	ND	ND		J	ND	ND						
PCB183	350000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB183	J	ND																
PCB184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND																	
PCB187	4000000	31	0	0	0	0	0	2.2	7.1	10	7.5	12	8.2	12	9.7	6.4	5.5	3.1
Qual_PCB187			ND	ND	ND	ND	ND	J										J
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND																	
C18	5400000	280	0	0	0	0	0	0	22	10	12	59	0	0	15	14	17	0
Qual_Cl8			ND	ND	ND	ND	ND	ND					ND	ND				ND
PCB195	650000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB195		ND																
C19	4300000	86	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl9			ND															
PCB206	2300000	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB206			ND															
C110	3600000	2.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl10		J	ND															
PCB209	3600000	2.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB209		J	ND															
Min Reporting Limit	440000	5	2.6	2.6	2.7	2.7	2.6	2.8	2.7	2.7	2.7	5.4	5.4	5.4	2.7	5.4	5.4	5.4
MDL_cong_Cl1	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL_cong_Cl2	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL8	32000	0.42	0.45	0.45	0.46	0.46	0.45	0.48	0.45	0.45	0.45	0.45	0.45	0.46	0.23	0.46	0.45	0.46
MDL_cong_Cl3	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL18	38000	0.64	0.68	0.68	0.69	0.69	0.68	0.72	0.69	0.69	0.69	0.69	0.69	0.69	0.35	0.69	0.69	0.69
MDL28	40000	0.53	0.56	0.56	0.57	0.57	0.56	0.6	0.56	0.56	0.56	0.56	0.56	0.57	0.28	0.57	0.56	0.57
MDL_cong_Cl4	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
Sumpre 13	Q-3D	Q-3D-																
	-	B65	В9	T1	T10	T14	T17	T21	T23	T25	T28	T31	T34	T36	T39	T42	T44	T46
MDL44	32000	0.67	0.71	0.71	0.73	0.73	0.71	0.76	0.72	0.72	0.72	0.72	0.72	0.73	0.36	0.73	0.72	0.73
MDL49	87000	0.75	0.79	0.79	0.81	0.81	0.79	0.85	0.8	0.8	0.8	0.8	0.8	0.81	0.4	0.81	0.8	0.81
MDL52	41000	0.29	0.31	0.31	0.32	0.32	0.31	0.33	0.32	0.32	0.32	0.32	0.32	0.32	0.16	0.32	0.32	0.32
MDL66	48000	0.64	0.68	0.68	0.7	0.7	0.68	0.73	0.69	0.69	0.69	0.69	0.69	0.7	0.35	0.7	0.69	0.7
MDL77	60000	0.56	0.6	0.6	0.61	0.61	0.6	0.64	0.6	0.6	0.6	0.6	0.6	0.61	0.3	0.61	0.6	0.61
MDL_cong_Cl5	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL87	87000	0.77	0.81	0.81	0.83	0.83	0.81	0.87	0.82	0.82	0.82	0.82	0.82	0.83	0.42	0.83	0.82	0.83
MDL101	35000	0.36	0.38	0.38	0.39	0.39	0.38	0.41	0.39	0.39	0.39	0.39	0.39	0.39	0.2	0.39	0.39	0.39
MDL105	58000	0.41	0.43	0.43	0.44	0.44	0.43	0.46	0.44	0.44	0.44	0.44	0.44	0.44	0.22	0.44	0.44	0.44
MDL114	87000	0.68	0.72	0.72	0.74	0.74	0.72	0.77	0.73	0.73	0.73	0.73	0.73	0.74	0.37	0.74	0.73	0.74
MDL118	87000	0.66	0.7	0.7	0.71	0.71	0.7	0.74	0.7	0.7	0.7	0.7	0.7	0.71	0.36	0.71	0.7	0.71
MDL123	87000	0.77	0.82	0.82	0.84	0.84	0.82	0.88	0.83	0.83	0.83	0.83	0.83	0.84	0.42	0.84	0.83	0.84
MDL126	130000	0.67	0.71	0.71	0.73	0.73	0.71	0.76	0.72	0.72	0.72	0.72	0.72	0.73	0.36	0.73	0.72	0.73
MDL_cong_Cl6	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL128	62000	0.25	0.26	0.26	0.27	0.27	0.26	0.28	0.27	0.27	0.27	0.27	0.27	0.27	0.14	0.27	0.27	0.27
MDL138	85000	0.55	0.58	0.58	0.59	0.59	0.58	0.62	0.59	0.59	0.59	0.59	0.59	0.59	0.3	0.59	0.59	0.59
MDL153	65000	0.27	0.28	0.28	0.29	0.29	0.28	0.3	0.29	0.29	0.29	0.29	0.29	0.29	0.14	0.29	0.29	0.29
MDL156	87000	0.62	0.66	0.66	0.67	0.67	0.66	0.7	0.67	0.67	0.67	0.67	0.67	0.67	0.34	0.67	0.67	0.67
MDL157	87000	0.61	0.65	0.65	0.66	0.66	0.65	0.69	0.65	0.65	0.65	0.65	0.65	0.66	0.33	0.66	0.65	0.66
MDL167	87000	0.64	0.68	0.68	0.69	0.69	0.68	0.72	0.68	0.68	0.68	0.68	0.68	0.69	0.34	0.69	0.68	0.69
MDL169	87000	0.59	0.63	0.63	0.64	0.64	0.63	0.67	0.63	0.63	0.63	0.63	0.63	0.64	0.32	0.64	0.63	0.64
MDL-cong_Cl7	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL170	39000	0.64	0.68	0.68	0.69	0.69	0.68	0.72	0.68	0.68	0.68	0.68	0.68	0.69	0.34	0.69	0.68	0.69
MDL180	85000	0.65	0.69	0.69	0.71	0.71	0.69	0.74	0.7	0.7	0.7	0.7	0.7	0.71	0.35	0.71	0.7	0.71
MDL183	87000	0.37	0.39	0.39	0.4	0.4	0.39	0.42	0.4	0.4	0.4	0.4	0.4	0.4	0.2	0.4	0.4	0.4
MDL184	87000	0.5	0.54	0.54	0.55	0.55	0.54	0.57	0.54	0.54	0.54	0.54	0.54	0.55	0.27	0.55	0.54	0.55
MDL187	37000	0.65	0.69	0.69	0.71	0.71	0.69	0.74	0.7	0.7	0.7	0.7	0.7	0.71	0.35	0.71	0.7	0.71
MDL189	87000	0.71	0.75	0.75	0.77	0.77	0.75	0.8	0.76	0.76	0.76	0.76	0.76	0.77	0.38	0.77	0.76	0.77
MDL_cong_Cl8	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL195	58000	0.58	0.62	0.62	0.63	0.63	0.62	0.66	0.62	0.62	0.62	0.62	0.62	0.63	0.32	0.63	0.62	0.63
MDL_cong_Cl9	87000	0.5	0.53	0.53	0.54	0.54	0.53	0.57	0.54	0.54	0.54	0.54	0.54	0.54	0.27	0.54	0.54	0.54
MDL206	97000	0.23	0.24	0.24	0.24	0.24	0.24	0.26	0.24	0.24	0.24	0.24	0.24	0.24	0.12	0.24	0.24	0.24
MDL_cong_Cl10	67000	0.57	0.61	0.61	0.62	0.62	0.61	0.65	0.61	0.61	0.61	0.61	0.61	0.62	0.31	0.62	0.61	0.62
MDL209	67000	0.57	0.61	0.61	0.62	0.62	0.61	0.65	0.61	0.61	0.61	0.61	0.61	0.62	0.31	0.62	0.61	0.62

Sample ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
_	Q-3D	Q-3D-																
		B65	В9	T1	T10	T14	T17	T21	T23	T25	T28	T31	T34	T36	T39	T42	T44	T46
Sample Delivery	NC34SD	NC34SD	NC22SD	NC28SD	NC28SD	NC28SD	NC28SD	NC28SD	NC28SD	NC34SD								
Group	G006	G005	G015	G006	G006	G007	G009	G012	G016	G021	G025	G002	G007	G010	G013	G019	G023	G005
Sample Size	1	1	0.94	0.94	0.92	0.92	0.94	0.88	0.93	0.93	0.93	0.93	0.93	0.92	0.92	0.92	0.93	0.92
Size Units			L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Felt Gasket/Outer (FGO) Experiment: PCB Mass per Sample (ng)

	1		1	1		1			1		1			1		1		
Field ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
	Q-3D	Q-3D-	Q-3D-B9	Q-3D-T1	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-
		B65			T10	T14	T17	T21	T23	T25	T28	T31	T34	T36	T39	T42	T44	T46
C11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.2E+00	0.0E+00							
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E+01	2.6E+01	2.9E+01	3.1E+01	2.2E+01	1.9E+01	2.2E+01	2.0E+01	5.4E+00	1.5E+01	1.9E+01	1.9E+01	2.6E+01
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E+00	7.3E+00	7.7E+00	1.0E+01	8.0E+00	7.7E+00	7.7E+00	7.3E+00	4.9E+00	5.1E+00	5.3E+00	4.8E+00	7.5E+00
C13	5.0E+04	1.5E+01	0.0E+00	0.0E+00	0.0E+00	1.3E+01	3.2E+01	3.7E+01	5.4E+01	4.6E+01	3.7E+01	3.5E+01	4.2E+01	3.4E+01	2.6E+01	2.8E+01	3.1E+01	3.7E+01
PCB18	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	3.1E+00	1.0E+01	1.2E+01	1.7E+01	1.4E+01	1.3E+01	1.2E+01	1.3E+01	8.5E+00	8.4E+00	8.9E+00	8.6E+00	1.1E+01
PCB28	5.0E+04	2.0E+00	0.0E+00	0.0E+00	0.0E+00	2.6E+00	9.1E+00	9.7E+00	1.3E+01	1.0E+01	9.3E+00	9.3E+00	8.4E+00	6.6E+00	5.5E+00	6.1E+00	5.6E+00	6.3E+00
C14	8.7E+04	3.0E+01	0.0E+00	0.0E+00	0.0E+00	6.7E+00	2.9E+01	3.3E+01	5.4E+01	4.6E+01	4.6E+01	3.8E+01	5.3E+01	2.4E+01	2.6E+01	2.0E+01	2.1E+01	2.7E+01
PCB44	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+00	3.6E+00	4.3E+00	6.6E+00	5.3E+00	5.1E+00	5.0E+00	5.2E+00	2.9E+00	3.2E+00	2.9E+00	3.0E+00	4.5E+00
PCB49	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.6E-01	2.0E+00	2.9E+00	3.2E+00	3.1E+00	2.1E+00	2.4E+00	2.6E+00	1.7E+00	1.6E+00	1.4E+00	0.0E+00	3.3E+00
PCB52	8.7E+04	2.6E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+00	3.9E+00	4.9E+00	7.4E+00	6.0E+00	5.4E+00	5.4E+00	6.4E+00	4.4E+00	4.0E+00	4.0E+00	4.2E+00	4.1E+00
PCB66	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.8E+00	1.2E+00	2.4E+00	1.4E+00	1.1E+00	1.5E+00	1.4E+00	0.0E+00	8.6E-01	7.3E-01	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.0E+00	0.0E+00										
C15	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+01	1.5E+01	2.0E+01	2.5E+01	1.8E+01	1.1E+01	1.5E+01	0.0E+00	1.1E+01	0.0E+00	0.0E+00	0.0E+00
PCB87	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.8E-01	0.0E+00	1.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.8E-01	1.3E+00	2.1E+00	1.9E+00	1.2E+00	1.8E+00	2.2E+00	0.0E+00	1.1E+00	0.0E+00	0.0E+00	0.0E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.0E+00	0.0E+00										
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E+00	0.0E+00	0.0E+00	1.0E+00	0.0E+00							
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	1.6E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+01	0.0E+00	8.2E+00	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Field ID	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-	1-123-1-
	Q-3D	`	Q-3D-B9	Q-3D-T1	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-	Q-3D-
		B65			T10	T14	T17	T21	T23	T25	T28	T31	T34	T36	T39	T42	T44	T46
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	2.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E+00	0.0E+00	1.8E+00	0.0E+00	0.0E+00	7.1E-01	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	1.1E+07	1.1E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.6E+00	1.2E+01	3.4E+01	2.4E+01	4.4E+01	1.1E+01	1.2E+01	3.4E+01	2.6E+01	6.2E+00	4.5E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	1.6E+06	1.1E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.1E+00	0.0E+00	2.2E+00	0.0E+00	0.0E+00	3.0E+00	1.8E+00	0.0E+00	0.0E+00
PCB183	3.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	4.0E+06	3.1E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.9E+00	6.6E+00	9.3E+00	7.0E+00	1.1E+01	7.6E+00	1.1E+01	8.9E+00	5.9E+00	5.1E+00	2.9E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	5.4E+07	2.8E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.0E+01	9.3E+00	1.1E+01	5.5E+01	0.0E+00	0.0E+00	1.4E+01	1.3E+01	1.6E+01	0.0E+00
PCB195	6.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	4.3E+07	8.6E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	2.3E+07	3.0E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	3.6E+06	2.8E+00	0.0E+00															
PCB209	3.6E+06	2.8E+00	0.0E+00															
tPCBs	1.1E+08	5.2E+02	0.0E+00	0.0E+00	0.0E+00	3.3E+01	1.0E+02	1.2E+02	1.9E+02	2.0E+02	1.5E+02	2.1E+02	1.4E+02	7.5E+01	1.5E+02	1.1E+02	9.3E+01	9.4E+01

Felt Gasket/Outer (FGO) Experiment: Mass Balance

	Remaining PCBs in Leached Solid (ng)	Total PCBs Released (ng)	Initial PCBs in Solid (ng)	Initial Weight Fraction PCBs in	Initial Homologue % of tPCBs in Solid			Total Congener Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
C11	0.0E+00	2.2E+00	2.2E+00	2.3E-09	2.0E-06		1.0E-01	
C12	0.0E+00	2.7E+02	2.7E+02	2.8E-07	2.4E-04		1.2E+01	
PCB8	0.0E+00	8.6E+01	8.6E+01	9.0E-08		7.6E-05		3.9E+00
C13	5.0E+04	4.7E+02	5.0E+04	5.3E-05	4.5E-02		2.1E+01	
PCB18	0.0E+00	1.4E+02	1.4E+02	1.5E-07		1.3E-04		6.5E+00
PCB28	5.0E+04	1.0E+02	5.0E+04	5.2E-05		4.5E-02		4.7E+00

	Remaining PCBs in Leached Solid (ng)	Total PCBs Released (ng)	Initial PCBs in Solid (ng)	Initial Weight Fraction PCBs in Solid	Initial Homologue % of tPCBs in Solid	Initial Congener % of tPCBs in Solid	Total Homologue Release (% of tPCBs in Leachate)	Total Congener Release (% of tPCBs in Leachate)
Cl4	8.7E+04	4.5E+02	8.7E+04	9.2E-05	7.8E-02		2.1E+01	,
PCB44	0.0E+00	5.5E+01	5.5E+01	5.8E-08		4.9E-05		2.5E+00
PCB49	0.0E+00	2.7E+01	2.7E+01	2.8E-08		2.4E-05		1.2E+00
PCB52	8.7E+04	6.4E+01	8.7E+04	9.1E-05		7.8E-02		2.9E+00
PCB66	0.0E+00	1.3E+01	1.3E+01	1.4E-08		1.2E-05		6.1E-01
PCB77	0.0E+00	1.0E+00	1.0E+00	1.1E-09		9.2E-07		4.7E-02
C15	1.7E+05	1.3E+02	1.7E+05	1.8E-04	1.5E-01		5.8E+00	
PCB87	0.0E+00	1.9E+00	1.9E+00	2.0E-09		1.7E-06		8.7E-02
PCB101	0.0E+00	1.2E+01	1.2E+01	1.3E-08		1.1E-05		5.7E-01
PCB105	0.0E+00	1.0E+00	1.0E+00	1.1E-09		9.2E-07		4.7E-02
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB118	0.0E+00	2.2E+00	2.2E+00	2.4E-09		2.0E-06		1.0E-01
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C16	1.6E+05	4.3E+01	1.6E+05	1.7E-04	1.4E-01		2.0E+00	
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB153	2.7E+05	3.7E+00	2.7E+05	2.8E-04		2.4E-01		1.7E-01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
Cl7	1.1E+07	3.2E+02	1.1E+07	1.2E-02	9.8E+00		1.5E+01	
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB180	1.6E+06	2.0E+01	1.6E+06	1.7E-03		1.4E+00		9.3E-01
PCB183	3.5E+05	0.0E+00	3.5E+05	3.7E-04		3.1E-01		0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB187	4.0E+06	1.1E+02	4.0E+06	4.2E-03		3.6E+00		5.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C18	5.4E+07	4.2E+02	5.4E+07	5.7E-02	4.8E+01		1.9E+01	
PCB195	6.5E+05	0.0E+00	6.5E+05	6.8E-04		5.8E-01		0.0E+00
C19	4.3E+07	8.6E+01	4.3E+07	4.5E-02	3.8E+01		3.9E+00	
PCB206	2.3E+07	3.0E+01	2.3E+07	2.4E-02		2.1E+01		1.4E+00
C110	3.6E+06	2.8E+00	3.6E+06	3.8E-03	3.2E+00		1.3E-01	

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
PCB209	3.6E+06	2.8E+00	3.6E+06	3.8E-03		3.2E+00		1.3E-01
tPCBs	1.1E+08	2.2E+03	1.1E+08	1.2E-01				

Aluminized Paint (AP) Experiment: Analytical Results (ng/L)

Sample ID	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-
•	E-4B	E-4B-	E-4B-	E-4B-T1	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-
		B67	B13		T11	T13	T16	T18	T23	T25	T28	T31	T35	T38	T41	T44	T46	T48
Sample Date	6/28/01	6/28/01	6/6/00	3/14/00	3/15/00	3/21/00	4/4/00	4/25/00	5/24/00	6/27/00	8/8/00	9/19/00	10/31/00	12/12/00	1/23/01	3/6/01	4/17/01	6/26/01
Units	ng	ng	ng/L															
C11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl1	ND																	
C12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl2	ND																	
PCB8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C13	0	0	0	0	0	0	2.1	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl3	ND	ND	ND	ND	ND	ND	J	ND										
PCB18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB28	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB28	ND	ND	ND	ND	ND	ND		ND										
C14	10000	0	0	0	0	3.9	8.2	3.6	4.7	6.2	13	11	6.8	2.3	2.4	9.1	2.7	5.7
Qual_Cl4		ND	ND	ND	ND									J	J		J	
PCB44	1400	0	0	0	0	0	0.9	0	1.3	0	1.6	1.3	0	0	0	1.5	0	1.3
Qual_PCB44		ND	ND	ND	ND	ND	J	ND	J	ND	J	J	ND	ND	ND	J	ND	J
PCB49	440	0	0	0	0	0.58	0.62	0	0.53	0	0.6	0	0	0	0	0	0	0
Qual_PCB49	J	ND	ND	ND	ND	J		ND	J	ND	J	ND						
PCB52	3100	0	0	0	0	0.77	1.3	1.7	2.1	1.9	2.6	2.4	2.7	2.4	2.1	3.1	2.2	1.7
Qual_PCB52		ND	ND	ND	ND	J	J	J	J	J	J	J	J	J	J		J	J
PCB66	230	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB66	J	ND																
PCB77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-
	E-4B	E-4B-	E-4B-	E-4B-T1	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-
015	120000	B67	B13	0	T11	T13	T16	T18	T23	T25	T28	T31	T35	T38	T41	T44	T46	T48
C15	130000	0	0	0	0	0	18	23	30	22	43	33	29	0	1.6	37	0	0
Qual_C15	10000	ND	ND	ND	ND	ND	0.00		4.6	4.6	1.0			ND	J	^	ND	ND
PCB87	10000	0	0	0	0	0	0.92	1	1.6	1.6	1.9	1.7	0	0	0	0	0	0
Qual_PCB87		ND	ND	ND	ND	ND	J	J	J	J	J	J	ND	ND	ND	ND	ND	ND
PCB101	19000	0	0	0	0	0	1.6	1.7	2.7	2.8	3	2.5	3.3	0	1.5	0	0	0
Qual_PCB101		ND	ND	ND	ND	ND	J	J	J			J	J	ND	J	ND	ND	ND
PCB105	11000	0	0	0	0	0	0.48	0.61	0	0	1.1	0.85	0	0	0	0	0	0
Qual_PCB105		ND	ND	ND	ND	ND	J	J	ND	ND	J	J	ND	ND	ND	ND	ND	ND
PCB114	700	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB114	J	ND																
PCB118	19000	0	0	0	0	0	0.77	1.3	1.7	2.4	2.2	2	0	0	0	0	0	0
Qual_PCB118		ND	ND	ND	ND	ND	J	J	J	J	J	J	ND	ND	ND	ND	ND	ND
PCB123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB123	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl6	240000	0	0	0	0	0	8.9	0	23	16	28	19	0	0	0	0	0	0
Qual_Cl6		ND	ND	ND	ND	ND		ND					ND	ND	ND	ND	ND	ND
PCB128	16000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB128		ND																
PCB138	60000	0	0	0	0	0	0.63	0	1.5	2.4	1.9	1.5	0	0	0	0	0	0
Qual_PCB138		ND	ND	ND	ND	ND	J	ND	J	J	J	J	ND	ND	ND	ND	ND	ND
PCB153	68000	0	0	0	0	0	0.98	0	1.2	2.4	2.9	2.3	0	0	0	0	0	0
Qual_PCB153		ND	ND	ND	ND	ND	J	ND	J	J		J	ND	ND	ND	ND	ND	ND
PCB156	11000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB156		ND																
PCB157	3200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB157		ND																
PCB167	3400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB167		ND																
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C17	110000	0	0	0	4.4	4.4	7.4	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl7		ND	ND	ND				ND										

Sample ID	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-
Sumpre 12	E-4B	E-4B-	E-4B-	E-4B-T1	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-
		B67	B13		T11	T13	T16	T18	T23	T25	T28	T31	T35	T38	T41	T44	T46	T48
PCB170	20000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170		ND																
PCB180	26000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB180		ND																
PCB183	5000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB183		ND																
PCB184	0	0	0	0	0.76	0.67	0.85	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	J	J	J	ND										
PCB187	8600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB187		ND																
PCB189	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189		ND																
C18	28000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl8		ND																
PCB195	1700	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB195		ND																
C19	4000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl9		ND																
PCB206	4000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB206		ND																
C110	1500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl10		ND																
PCB209	1500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB209		ND																
Min Reporting Limit	880	5	2.6	2.6	2.6	2.7	2.7	2.7	2.8	2.7	2.7	5.4	5.4	5.4	5.4	2.7	5.4	5.4
MDL_cong_Cl1	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL_cong_Cl2	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL8	64	0.42	0.45	0.45	0.45	0.45	0.46	0.46	0.47	0.45	0.45	0.92	0.46	0.45	0.45	0.23	0.45	0.45
MDL_cong_Cl3	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL18	76	0.64	0.68	0.68	0.68	0.69	0.69	0.69	0.72	0.69	0.69	1.4	0.69	0.69	0.69	0.34	0.69	0.69
MDL28	80	0.53	0.56	0.56	0.56	0.56	0.57	0.57	0.59	0.56	0.56	1.1	0.57	0.56	0.56	0.28	0.56	0.56
MDL_cong_Cl4	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL44	65	0.67	0.71	0.71	0.71	0.72	0.73	0.73	0.76	0.72	0.72	1.5	0.73	0.72	0.72	0.36	0.72	0.72
MDL49	170	0.75	0.79	0.79	0.79	0.8	0.81	0.81	0.84	0.8	0.8	1.6	0.81	0.8	0.8	0.4	0.8	0.8

Sample ID	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-
Sample 1D	E-4B	E-4B-	E-4B-	5-110-0- E-4B-T1	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-
	LID	B67	B13	L ID II	T11	T13	T16	T18	T23	T25	T28	T31	T35	T38	T41	T44	T46	T48
MDL52	83	0.29	0.31	0.31	0.31	0.32	0.32	0.32	0.33	0.32	0.32	0.64	0.32	0.32	0.32	0.16	0.32	0.32
MDL66	96	0.64	0.68	0.68	0.68	0.69	0.7	0.7	0.72	0.69	0.69	1.4	0.7	0.69	0.69	0.35	0.69	0.69
MDL77	120	0.56	0.6	0.6	0.6	0.6	0.61	0.61	0.63	0.6	0.6	1.2	0.61	0.6	0.6	0.3	0.6	0.6
MDL_cong_Cl5	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL87	170	0.77	0.81	0.81	0.81	0.82	0.83	0.83	0.86	0.82	0.82	1.7	0.83	0.82	0.82	0.41	0.82	0.82
MDL101	71	0.36	0.38	0.38	0.38	0.39	0.39	0.39	0.41	0.39	0.39	0.79	0.39	0.39	0.39	0.19	0.39	0.39
MDL105	120	0.41	0.43	0.43	0.43	0.44	0.44	0.44	0.46	0.44	0.44	0.88	0.44	0.44	0.44	0.22	0.44	0.44
MDL114	170	0.68	0.72	0.72	0.72	0.73	0.74	0.74	0.76	0.73	0.73	1.5	0.74	0.73	0.73	0.36	0.73	0.73
MDL118	170	0.66	0.7	0.7	0.7	0.7	0.71	0.71	0.74	0.7	0.7	1.4	0.71	0.7	0.7	0.35	0.7	0.7
MDL123	170	0.77	0.82	0.82	0.82	0.83	0.84	0.84	0.87	0.83	0.83	1.7	0.84	0.83	0.83	0.42	0.83	0.83
MDL126	260	0.67	0.71	0.71	0.71	0.72	0.73	0.73	0.76	0.72	0.72	1.5	0.73	0.72	0.72	0.36	0.72	0.72
MDL_cong_Cl6	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL128	120	0.25	0.26	0.26	0.26	0.27	0.27	0.27	0.28	0.27	0.27	0.54	0.27	0.27	0.27	0.13	0.27	0.27
MDL138	170	0.55	0.58	0.58	0.58	0.59	0.59	0.59	0.61	0.59	0.59	1.2	0.59	0.59	0.59	0.29	0.59	0.59
MDL153	130	0.27	0.28	0.28	0.28	0.29	0.29	0.29	0.3	0.29	0.29	0.58	0.29	0.29	0.29	0.14	0.29	0.29
MDL156	170	0.62	0.66	0.66	0.66	0.67	0.67	0.67	0.7	0.67	0.67	1.3	0.67	0.67	0.67	0.33	0.67	0.67
MDL157	170	0.61	0.65	0.65	0.65	0.65	0.66	0.66	0.68	0.65	0.65	1.3	0.66	0.65	0.65	0.33	0.65	0.65
MDL167	170	0.64	0.68	0.68	0.68	0.68	0.69	0.69	0.71	0.68	0.68	1.4	0.69	0.68	0.68	0.34	0.68	0.68
MDL169	170	0.59	0.63	0.63	0.63	0.63	0.64	0.64	0.66	0.63	0.63	1.3	0.64	0.63	0.63	0.32	0.63	0.63
MDL-cong_Cl7	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL170	78	0.64	0.68	0.68	0.68	0.68	0.69	0.69	0.71	0.68	0.68	1.4	0.69	0.68	0.68	0.34	0.68	0.68
MDL180	170	0.65	0.69	0.69	0.69	0.7	0.71	0.71	0.73	0.7	0.7	1.4	0.71	0.7	0.7	0.35	0.7	0.7
MDL183	170	0.37	0.39	0.39	0.39	0.4	0.4	0.4	0.42	0.4	0.4	0.8	0.4	0.4	0.4	0.2	0.4	0.4
MDL184	170	0.5	0.54	0.54	0.54	0.54	0.55	0.55	0.57	0.54	0.54	1.1	0.55	0.54	0.54	0.27	0.54	0.54
MDL187	75	0.65	0.69	0.69	0.69	0.7	0.71	0.71	0.73	0.7	0.7	1.4	0.71	0.7	0.7	0.35	0.7	0.7
MDL189	170	0.71	0.75	0.75	0.75	0.76	0.77	0.77	0.79	0.76	0.76	1.5	0.77	0.76	0.76	0.38	0.76	0.76
MDL_cong_Cl8	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL195	120	0.58	0.62	0.62	0.62	0.62	0.63	0.63	0.65	0.62	0.62	1.3	0.63	0.62	0.62	0.31	0.62	0.62
MDL_cong_Cl9	170	0.5	0.53	0.53	0.53	0.54	0.54	0.54	0.56	0.54	0.54	1.1	0.54	0.54	0.54	0.27	0.54	0.54
MDL206	190	0.23	0.24	0.24	0.24	0.24	0.24	0.24	0.25	0.24	0.24	0.49	0.24	0.24	0.24	0.12	0.24	0.24
MDL_cong_Cl10	130	0.57	0.61	0.61	0.61	0.61	0.62	0.62	0.64	0.61	0.61	1.2	0.62	0.61	0.61	0.31	0.61	0.61
MDL209	130	0.57	0.61	0.61	0.61	0.61	0.62	0.62	0.64	0.61	0.61	1.2	0.62	0.61	0.61	0.31	0.61	0.61
Sample Delivery	NC34SD	NC34SD	NC22SD		NC22SD	NC22SD	NC22SD	NC22SD	NC22SD	NC22SD		NC22SD	NC28SD	NC28SD		NC28SD		NC34SD
Group	G006	G003	G015	G002	G002	G003	G005	G008	G012	G017	G022	G026	G004	G009	G011	G016	G022	G003
Sample Size	1	1	0.94	0.94	0.94	0.93	0.92	0.92	0.89	0.93	0.93	0.92	0.92	0.93	0.93	0.93	0.93	0.93

Sample ID	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-
	E-4B	E-4B-	E-4B-	E-4B-T1	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-
		B67	B13		T11	T13	T16	T18	T23	T25	T28	T31	T35	T38	T41	T44	T46	T48
Size Units			L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Aluminized Paint (AP) Experiment: PCB Mass per Sample (ng)

E: 11 ID	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0	5 110 0
Field ID	5-110-0- E-4B	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-T1	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-	5-110-0- E-4B-
	E-4D	E-4B- B67	B13	E-4D-11	E-4B- T11	E-4B- T13	E-4B- T16	E-4B- T18	E-4B- T23	E-4B- T25	E-4B- T28	T31	E-4B- T35	T38	E-4B- T41	E-4B- T44	E-4B- T46	E-4B- T48
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C13	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.9E+00	0.0E+00										
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB28	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.1E-01	0.0E+00										
Cl4	1.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.6E+00	7.5E+00	3.3E+00	4.2E+00	5.8E+00	1.2E+01	1.0E+01	6.3E+00	2.1E+00	2.2E+00	8.5E+00	2.5E+00	5.3E+00
PCB44	1.4E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.3E-01	0.0E+00	1.2E+00	0.0E+00	1.5E+00	1.2E+00	0.0E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	1.2E+00
PCB49	4.4E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E-01	5.7E-01	0.0E+00	4.7E-01	0.0E+00	5.6E-01	0.0E+00						
PCB52	3.1E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.2E-01	1.2E+00	1.6E+00	1.9E+00	1.8E+00	2.4E+00	2.2E+00	2.5E+00	2.2E+00	2.0E+00	2.9E+00	2.0E+00	1.6E+00
PCB66	2.3E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	1.3E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.7E+01	2.1E+01	2.7E+01	2.0E+01	4.0E+01	3.0E+01	2.7E+01	0.0E+00	1.5E+00	3.4E+01	0.0E+00	0.0E+00
PCB87	1.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.5E-01	9.2E-01	1.4E+00	1.5E+00	1.8E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101	1.9E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+00	1.6E+00	2.4E+00	2.6E+00	2.8E+00	2.3E+00	3.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00
PCB105	1.1E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.4E-01	5.6E-01	0.0E+00	0.0E+00	1.0E+00	7.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114	7.0E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	1.9E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.1E-01	1.2E+00	1.5E+00	2.2E+00	2.0E+00	1.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	2.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.2E+00	0.0E+00	2.0E+01	1.5E+01	2.6E+01	1.7E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	1.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	6.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.8E-01	0.0E+00	1.3E+00	2.2E+00	1.8E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	6.8E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.0E-01	0.0E+00	1.1E+00	2.2E+00	2.7E+00	2.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Field ID	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-	5-110-0-
	E-4B	E-4B-	E-4B-	E-4B-T1	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-	E-4B-
		B67	B13		T11	T13	T16	T18	T23	T25	T28	T31	T35	T38	T41	T44	T46	T48
PCB156	1.1E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	3.2E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	3.4E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl7	1.1E+05	0.0E+00	0.0E+00	0.0E+00	4.1E+00	4.1E+00	6.8E+00	0.0E+00										
PCB170	2.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	2.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	5.0E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.1E-01	6.2E-01	7.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	8.6E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	1.0E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	2.8E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	1.7E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	4.0E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	4.0E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	1.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	1.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	5.2E+05	0.0E+00	0.0E+00	0.0E+00	4.1E+00	7.7E+00	4.1E+01	2.4E+01	5.1E+01	4.1E+01	7.8E+01	5.8E+01	3.3E+01	2.1E+00	3.7E+00	4.3E+01	2.5E+00	5.3E+00

Aluminized Paint (AP) Experiment: Mass Balance

	Remaining PCBs in	Total PCBs Released	Initial PCBs in Solid	Initial Weight	Initial Homologue %	Initial Congener %	Total Homologue	Total Congener
	Leached Solid (ng)	(ng)	(ng)	Fraction PCBs in	of tPCBs in Solid	of tPCBs in Solid	Release (% of tPCBs	Release (% of tPCBs
				Solid			in Leachate)	in Leachate)
C11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C13	0.0E+00	1.9E+00	1.9E+00	1.6E-09	3.7E-04		4.9E-01	
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB28	0.0E+00	3.1E-01	3.1E-01	2.6E-10		6.0E-05		7.9E-02
Cl4	1.0E+04	7.4E+01	1.0E+04	8.2E-06	1.9E+00		1.9E+01	
PCB44	1.4E+03	7.3E+00	1.4E+03	1.2E-06		2.7E-01		1.8E+00
PCB49	4.4E+02	2.1E+00	4.4E+02	3.6E-07		8.4E-02		5.4E-01

	Remaining PCBs in Leached Solid (ng)	Total PCBs Released (ng)	Initial PCBs in Solid (ng)	Initial Weight Fraction PCBs in Solid	Initial Homologue % of tPCBs in Solid	Initial Congener % of tPCBs in Solid	Total Homologue Release (% of tPCBs in Leachate)	Total Congener Release (% of tPCBs in Leachate)
PCB52	3.1E+03	2.5E+01	3.1E+03	2.6E-06		6.0E-01		6.3E+00
PCB66	2.3E+02	0.0E+00	2.3E+02	1.9E-07		4.4E-02		0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C15	1.3E+05	2.2E+02	1.3E+05	1.1E-04	2.5E+01		5.5E+01	
PCB87	1.0E+04	8.0E+00	1.0E+04	8.2E-06		1.9E+00		2.0E+00
PCB101	1.9E+04	1.8E+01	1.9E+04	1.6E-05		3.6E+00		4.4E+00
PCB105	1.1E+04	2.8E+00	1.1E+04	9.0E-06		2.1E+00		7.1E-01
PCB114	7.0E+02	0.0E+00	7.0E+02	5.7E-07		1.3E-01		0.0E+00
PCB118	1.9E+04	9.5E+00	1.9E+04	1.6E-05		3.6E+00		2.4E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C16	2.4E+05	8.7E+01	2.4E+05	2.0E-04	4.6E+01		2.2E+01	
PCB128	1.6E+04	0.0E+00	1.6E+04	1.3E-05		3.1E+00		0.0E+00
PCB138	6.0E+04	7.3E+00	6.0E+04	4.9E-05		1.1E+01		1.8E+00
PCB153	6.8E+04	9.0E+00	6.8E+04	5.6E-05		1.3E+01		2.3E+00
PCB156	1.1E+04	0.0E+00	1.1E+04	9.0E-06		2.1E+00		0.0E+00
PCB157	3.2E+03	0.0E+00	3.2E+03	2.6E-06		6.1E-01		0.0E+00
PCB167	3.4E+03	0.0E+00	3.4E+03	2.8E-06		6.5E-01		0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00
C17	1.1E+05	1.5E+01	1.1E+05	9.0E-05	2.1E+01		3.8E+00	
PCB170	2.0E+04	0.0E+00	2.0E+04	1.6E-05		3.8E+00		0.0E+00
PCB180	2.6E+04	0.0E+00	2.6E+04	2.1E-05		5.0E+00		0.0E+00
PCB183	5.0E+03	0.0E+00	5.0E+03	4.1E-06		9.5E-01		0.0E+00
PCB184	0.0E+00	2.1E+00	2.1E+00	1.7E-09		4.0E-04		5.4E-01
PCB187	8.6E+03	0.0E+00	8.6E+03	7.0E-06		1.6E+00		0.0E+00
PCB189	1.0E+03	0.0E+00	1.0E+03	8.2E-07		1.9E-01		0.0E+00
C18	2.8E+04	0.0E+00	2.8E+04	2.3E-05	5.3E+00		0.0E+00	
PCB195	1.7E+03	0.0E+00	1.7E+03	1.4E-06		3.2E-01		0.0E+00
C19	4.0E+03	0.0E+00	4.0E+03	3.3E-06	7.6E-01		0.0E+00	
PCB206	4.0E+03	0.0E+00	4.0E+03	3.3E-06		7.6E-01		0.0E+00
C110	1.5E+03	0.0E+00	1.5E+03	1.2E-06	2.9E-01		0.0E+00	
PCB209	1.5E+03	0.0E+00	1.5E+03	1.2E-06		2.9E-01		0.0E+00
tPCBs	5.2E+05	4.0E+02	5.2E+05	4.3E-04				

Analytical Surrogate Data

The data tabulated below correspond to the results of analyses performed for three surrogate analytes, PCB103 (2,2',4,5',6-Pentachlorobiphenyl), PCB198 (2,2',3,3',4,5,5',6-Octachlorobiphenyl), and dibromo-octafluoro-biphenyl as internal standards in all seawater leachate samples analyzed throughout the course of the leaching experiments. Flags are included in these tables, for which a listing of data qualifiers (flags) and meanings is included at the end of **APPENDIX B**. Results were evaluated against data quality criteria and used to surrogate-correct the raw concentrations of measured PCB-LRS analytes for each sample to account for any sample-specific effects of the extraction and analysis. Surrogate results are cross-referenced by sample delivery group (SDG) batch number and are reported in percent recovery (%Rec) units.

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
01-18-6-L-3B	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
01-18-6-L-3B	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
01-18-6-L-3B	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
01-18-6-L-3B-B68	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC
01-18-6-L-3B-B68	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
01-18-6-L-3B-B68	NC34SDG004	Dibromo-octafluoro-biphenyl	85		%REC
01-18-6-L-3B-B9	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
01-18-6-L-3B-B9	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
01-18-6-L-3B-B9	NC22SDG010	Dibromo-octafluoro-biphenyl	74		%REC
01-18-6-L-3B-T11	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
01-18-6-L-3B-T11	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC
01-18-6-L-3B-T11	NC22SDG001	Dibromo-octafluoro-biphenyl	77		%REC
01-18-6-L-3B-T13	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
01-18-6-L-3B-T13	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
01-18-6-L-3B-T13	NC22SDG002	Dibromo-octafluoro-biphenyl	94		%REC
01-18-6-L-3B-T2	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
01-18-6-L-3B-T2	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
01-18-6-L-3B-T2	NC22SDG001	Dibromo-octafluoro-biphenyl	69		%REC
01-18-6-L-3B-T21	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
01-18-6-L-3B-T21	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	119		%REC
01-18-6-L-3B-T21	NC22SDG004	Dibromo-octafluoro-biphenyl	96		%REC
01-18-6-L-3B-T23	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
01-18-6-L-3B-T23	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	136	&	%REC
01-18-6-L-3B-T23	NC22SDG007	Dibromo-octafluoro-biphenyl	88		%REC
01-18-6-L-3B-T27	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
01-18-6-L-3B-T27	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
01-18-6-L-3B-T27	NC22SDG010	Dibromo-octafluoro-biphenyl	80		%REC
01-18-6-L-3B-T30	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
01-18-6-L-3B-T30	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
01-18-6-L-3B-T30	NC22SDG014	Dibromo-octafluoro-biphenyl	81		%REC
01-18-6-L-3B-T32	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
01-18-6-L-3B-T32	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
01-18-6-L-3B-T32	NC22SDG019	Dibromo-octafluoro-biphenyl	60		%REC
01-18-6-L-3B-T35	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
01-18-6-L-3B-T35	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	140	&	%REC
01-18-6-L-3B-T35	NC22SDG024	Dibromo-octafluoro-biphenyl	71		%REC
01-18-6-L-3B-T38	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	52		%REC
01-18-6-L-3B-T38	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC
01-18-6-L-3B-T38	NC22SDG054	Dibromo-octafluoro-biphenyl	42	&	%REC
01-18-6-L-3B-T41	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
01-18-6-L-3B-T41	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
01-18-6-L-3B-T41	NC28SDG006	Dibromo-octafluoro-biphenyl	70		%REC
01-18-6-L-3B-T44	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
01-18-6-L-3B-T44	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	66		%REC
01-18-6-L-3B-T44	NC28SDG010	Dibromo-octafluoro-biphenyl	45		%REC
01-18-6-L-3B-T47	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
01-18-6-L-3B-T47	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	130	&	%REC
01-18-6-L-3B-T47	NC28SDG013	Dibromo-octafluoro-biphenyl	63		%REC
01-18-6-L-3B-T50	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	66		%REC
01-18-6-L-3B-T50	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
01-18-6-L-3B-T50	NC28SDG019	Dibromo-octafluoro-biphenyl	45		%REC
01-18-6-L-3B-T52	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
01-18-6-L-3B-T52	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
01-18-6-L-3B-T52	NC28SDG023	Dibromo-octafluoro-biphenyl	63		%REC
01-18-6-L-3B-T54	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
01-18-6-L-3B-T54	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
01-18-6-L-3B-T54	NC34SDG003	Dibromo-octafluoro-biphenyl	70		%REC
01-18-6-L-3E	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
01-18-6-L-3E	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
01-18-6-L-3E	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
01-18-6-L-3E-B61	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
01-18-6-L-3E-B61	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	135	&	%REC
01-18-6-L-3E-B61	NC34SDG005	Dibromo-octafluoro-biphenyl	81		%REC
01-18-6-L-3E-T1	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
01-18-6-L-3E-T1	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
01-18-6-L-3E-T1	NC22SDG010	Dibromo-octafluoro-biphenyl	67		%REC
01-18-6-L-3E-T11	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
01-18-6-L-3E-T11	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC
01-18-6-L-3E-T11	NC22SDG013	Dibromo-octafluoro-biphenyl	55		%REC
01-18-6-L-3E-T13	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
01-18-6-L-3E-T13	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	150	&	%REC
01-18-6-L-3E-T13	NC22SDG016	Dibromo-octafluoro-biphenyl	77		%REC
01-18-6-L-3E-T15	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
01-18-6-L-3E-T15	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
01-18-6-L-3E-T15	NC22SDG020	Dibromo-octafluoro-biphenyl	68		%REC
01-18-6-L-3E-T18	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
01-18-6-L-3E-T18	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	164	&	%REC
01-18-6-L-3E-T18	NC22SDG024	Dibromo-octafluoro-biphenyl	73		%REC
01-18-6-L-3E-T21	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
01-18-6-L-3E-T21	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	145	&	%REC
01-18-6-L-3E-T21	NC22SDG054	Dibromo-octafluoro-biphenyl	82		%REC
01-18-6-L-3E-T24	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
01-18-6-L-3E-T24	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	120		%REC
01-18-6-L-3E-T24	NC28SDG006	Dibromo-octafluoro-biphenyl	64		%REC
01-18-6-L-3E-T27	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
01-18-6-L-3E-T27	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC
01-18-6-L-3E-T27	NC28SDG010	Dibromo-octafluoro-biphenyl	48		%REC
01-18-6-L-3E-T30	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	103		%REC
01-18-6-L-3E-T30	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	150	&	%REC
01-18-6-L-3E-T30	NC28SDG013	Dibromo-octafluoro-biphenyl	98		%REC
01-18-6-L-3E-T33	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
01-18-6-L-3E-T33	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
01-18-6-L-3E-T33	NC28SDG019	Dibromo-octafluoro-biphenyl	39	&	%REC
01-18-6-L-3E-T36	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
01-18-6-L-3E-T36	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
01-18-6-L-3E-T36	NC34SDG005	Dibromo-octafluoro-biphenyl	65		%REC
01-18-6-L-3E-T7	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
01-18-6-L-3E-T7	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	108		%REC
01-18-6-L-3E-T7	NC22SDG010	Dibromo-octafluoro-biphenyl	68		%REC
01-18-6-L-3E-T9	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC
01-18-6-L-3E-T9	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	142	&	%REC
01-18-6-L-3E-T9	NC22SDG011	Dibromo-octafluoro-biphenyl	82		%REC
01-18-6-L-3F	NC22SDG050	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
01-18-6-L-3F	NC22SDG050	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
01-18-6-L-3F	NC22SDG050	Dibromo-octafluoro-biphenyl	63		%REC
01-18-6-L-3F	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	242	&	%REC
01-18-6-L-3F	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
01-18-6-L-3F	NC22SDG053	Dibromo-octafluoro-biphenyl	92		%REC
01-18-6-L-3F INNER CABLE	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	144	&	%REC
01-18-6-L-3F INNER CABLE	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
01-18-6-L-3F INNER CABLE	NC22SDG053	Dibromo-octafluoro-biphenyl	125		%REC
01-18-6-L-3F MIDDLE CABLE	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	109		%REC
01-18-6-L-3F MIDDLE CABLE	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
01-18-6-L-3F MIDDLE CABLE	NC22SDG053	Dibromo-octafluoro-biphenyl	93		%REC
01-18-6-L-3G-B1	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
01-18-6-L-3G-B1	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
01-18-6-L-3G-B1	CSC81SDG014	Dibromo-octafluoro-biphenyl	73		%REC
01-18-6-L-3G-SR	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
01-18-6-L-3G-SR	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
01-18-6-L-3G-SR	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
01-18-6-L-3G-SR	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
01-18-6-L-3G-SR	CSC81SDG014	Dibromo-octafluoro-biphenyl	107		%REC
01-18-6-L-3G-SR	CSC81SDG014	Dibromo-octafluoro-biphenyl	78		%REC
01-18-6-L-3G-T1	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
01-18-6-L-3G-T1	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC
01-18-6-L-3G-T1	CSC81SDG001	Dibromo-octafluoro-biphenyl	67		%REC
01-18-6-L-3G-T11	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
01-18-6-L-3G-T11	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
01-18-6-L-3G-T11	CSC81SDG001	Dibromo-octafluoro-biphenyl	63		%REC
01-18-6-L-3G-T13	CSC81SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
01-18-6-L-3G-T13	CSC81SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	129	&	%REC
01-18-6-L-3G-T13	CSC81SDG004	Dibromo-octafluoro-biphenyl	88		%REC
01-18-6-L-3G-T15	CSC81SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	60		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
01-18-6-L-3G-T15	CSC81SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
01-18-6-L-3G-T15	CSC81SDG005	Dibromo-octafluoro-biphenyl	51		%REC
01-18-6-L-3G-T17	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	77		%REC
01-18-6-L-3G-T17	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
01-18-6-L-3G-T17	CSC81SDG007	Dibromo-octafluoro-biphenyl	73		%REC
01-18-6-L-3G-T19	CSC81SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
01-18-6-L-3G-T19	CSC81SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
01-18-6-L-3G-T19	CSC81SDG011	Dibromo-octafluoro-biphenyl	77		%REC
01-18-6-L-3G-T21	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
01-18-6-L-3G-T21	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
01-18-6-L-3G-T21	CSC81SDG014	Dibromo-octafluoro-biphenyl	65		%REC
01-18-6-L-3G-T3	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
01-18-6-L-3G-T3	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	120		%REC
01-18-6-L-3G-T3	CSC81SDG001	Dibromo-octafluoro-biphenyl	74		%REC
01-18-6-L-3G-T5	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
01-18-6-L-3G-T5	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
01-18-6-L-3G-T5	CSC81SDG001	Dibromo-octafluoro-biphenyl	69		%REC
01-18-6-L-3G-T7	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
01-18-6-L-3G-T7	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
01-18-6-L-3G-T7	CSC81SDG001	Dibromo-octafluoro-biphenyl	64		%REC
01-18-6-L-3G-T9	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
01-18-6-L-3G-T9	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
01-18-6-L-3G-T9	CSC81SDG001	Dibromo-octafluoro-biphenyl	58		%REC
1-123-1-Q-3B	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
1-123-1-Q-3B	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
1-123-1-Q-3B	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
1-123-1-Q-3B-B15	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
1-123-1-Q-3B-B15	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
1-123-1-Q-3B-B15	NC22SDG016	Dibromo-octafluoro-biphenyl	79		%REC
1-123-1-Q-3B-B68	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	112		%REC
1-123-1-Q-3B-B68	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	138	&	%REC
1-123-1-Q-3B-B68	NC34SDG004	Dibromo-octafluoro-biphenyl	88		%REC
1-123-1-Q-3B-T11	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
1-123-1-Q-3B-T11	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
1-123-1-Q-3B-T11	NC22SDG001	Dibromo-octafluoro-biphenyl	76		%REC
1-123-1-Q-3B-T13	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3B-T13	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	136	&	%REC
1-123-1-Q-3B-T13	NC22SDG002	Dibromo-octafluoro-biphenyl	96		%REC
1-123-1-Q-3B-T2	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
1-123-1-Q-3B-T2	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
1-123-1-Q-3B-T2	NC22SDG001	Dibromo-octafluoro-biphenyl	66		%REC
1-123-1-Q-3B-T21	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	108		%REC
1-123-1-Q-3B-T21	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
1-123-1-Q-3B-T21	NC22SDG004	Dibromo-octafluoro-biphenyl	99		%REC
1-123-1-Q-3B-T23	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	111		%REC
1-123-1-Q-3B-T23	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	148	&	%REC
1-123-1-Q-3B-T23	NC22SDG006	Dibromo-octafluoro-biphenyl	92		%REC
1-123-1-Q-3B-T26	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
1-123-1-Q-3B-T26	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
1-123-1-Q-3B-T26	NC22SDG009	Dibromo-octafluoro-biphenyl	95		%REC
1-123-1-Q-3B-T30	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	109		%REC
1-123-1-Q-3B-T30	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	174	&	%REC
1-123-1-Q-3B-T30	NC22SDG013	Dibromo-octafluoro-biphenyl	71		%REC
1-123-1-Q-3B-T32	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC
1-123-1-Q-3B-T32	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	163	&	%REC
1-123-1-Q-3B-T32	NC22SDG018	Dibromo-octafluoro-biphenyl	81		%REC
1-123-1-Q-3B-T35	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
1-123-1-Q-3B-T35	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	177	&	%REC
1-123-1-Q-3B-T35	NC22SDG023	Dibromo-octafluoro-biphenyl	72		%REC
1-123-1-Q-3B-T38	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	107		%REC
1-123-1-Q-3B-T38	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	156	&	%REC
1-123-1-Q-3B-T38	NC28SDG001	Dibromo-octafluoro-biphenyl	89		%REC
1-123-1-Q-3B-T42	NC28SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
1-123-1-Q-3B-T42	NC28SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	149	&	%REC
1-123-1-Q-3B-T42	NC28SDG005	Dibromo-octafluoro-biphenyl	69		%REC
1-123-1-Q-3B-T46	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
1-123-1-Q-3B-T46	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	121		%REC
1-123-1-Q-3B-T46	NC28SDG011	Dibromo-octafluoro-biphenyl	39	&	%REC
1-123-1-Q-3B-T49	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	43	&	%REC
1-123-1-Q-3B-T49	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	109		%REC
1-123-1-Q-3B-T49	NC28SDG016	Dibromo-octafluoro-biphenyl	24	&	%REC
1-123-1-Q-3B-T51	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	113		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3B-T51	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	153	&	%REC
1-123-1-Q-3B-T51	NC28SDG022	Dibromo-octafluoro-biphenyl	86		%REC
1-123-1-Q-3B-T53	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	109		%REC
1-123-1-Q-3B-T53	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
1-123-1-Q-3B-T53	NC34SDG003	Dibromo-octafluoro-biphenyl	84		%REC
1-123-1-Q-3C	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
1-123-1-Q-3C	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	12998	&	%REC
1-123-1-Q-3C	NC22SDG053	Dibromo-octafluoro-biphenyl	76		%REC
1-123-1-Q-3D	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
1-123-1-Q-3D	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
1-123-1-Q-3D	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
1-123-1-Q-3D-B65	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
1-123-1-Q-3D-B65	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
1-123-1-Q-3D-B65	NC34SDG005	Dibromo-octafluoro-biphenyl	76		%REC
1-123-1-Q-3D-B9	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
1-123-1-Q-3D-B9	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	142	&	%REC
1-123-1-Q-3D-B9	NC22SDG015	Dibromo-octafluoro-biphenyl	86		%REC
1-123-1-Q-3D-T1	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
1-123-1-Q-3D-T1	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	137	&	%REC
1-123-1-Q-3D-T1	NC22SDG006	Dibromo-octafluoro-biphenyl	83		%REC
1-123-1-Q-3D-T10	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
1-123-1-Q-3D-T10	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
1-123-1-Q-3D-T10	NC22SDG006	Dibromo-octafluoro-biphenyl	74		%REC
1-123-1-Q-3D-T14	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
1-123-1-Q-3D-T14	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
1-123-1-Q-3D-T14	NC22SDG007	Dibromo-octafluoro-biphenyl	46		%REC
1-123-1-Q-3D-T17	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
1-123-1-Q-3D-T17	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	107		%REC
1-123-1-Q-3D-T17	NC22SDG009	Dibromo-octafluoro-biphenyl	83		%REC
1-123-1-Q-3D-T21	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
1-123-1-Q-3D-T21	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
1-123-1-Q-3D-T21	NC22SDG012	Dibromo-octafluoro-biphenyl	79		%REC
1-123-1-Q-3D-T23	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
1-123-1-Q-3D-T23	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	126	&	%REC
1-123-1-Q-3D-T23	NC22SDG016	Dibromo-octafluoro-biphenyl	57		%REC
1-123-1-Q-3D-T25	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	124		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3D-T25	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	168	&	%REC
1-123-1-Q-3D-T25	NC22SDG021	Dibromo-octafluoro-biphenyl	95		%REC
1-123-1-Q-3D-T28	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC
1-123-1-Q-3D-T28	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
1-123-1-Q-3D-T28	NC22SDG025	Dibromo-octafluoro-biphenyl	92		%REC
1-123-1-Q-3D-T31	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
1-123-1-Q-3D-T31	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
1-123-1-Q-3D-T31	NC28SDG002	Dibromo-octafluoro-biphenyl	82		%REC
1-123-1-Q-3D-T34	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	54		%REC
1-123-1-Q-3D-T34	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	107		%REC
1-123-1-Q-3D-T34	NC28SDG007	Dibromo-octafluoro-biphenyl	34	&	%REC
1-123-1-Q-3D-T36	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
1-123-1-Q-3D-T36	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
1-123-1-Q-3D-T36	NC28SDG010	Dibromo-octafluoro-biphenyl	46		%REC
1-123-1-Q-3D-T39	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
1-123-1-Q-3D-T39	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
1-123-1-Q-3D-T39	NC28SDG013	Dibromo-octafluoro-biphenyl	57		%REC
1-123-1-Q-3D-T42	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
1-123-1-Q-3D-T42	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
1-123-1-Q-3D-T42	NC28SDG019	Dibromo-octafluoro-biphenyl	58		%REC
1-123-1-Q-3D-T44	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
1-123-1-Q-3D-T44	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	137	&	%REC
1-123-1-Q-3D-T44	NC28SDG023	Dibromo-octafluoro-biphenyl	53		%REC
1-123-1-Q-3D-T46	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
1-123-1-Q-3D-T46	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
1-123-1-Q-3D-T46	NC34SDG005	Dibromo-octafluoro-biphenyl	52		%REC
1-123-1-Q-3E	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
1-123-1-Q-3E	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	2323	&	%REC
1-123-1-Q-3E	NC22SDG053	Dibromo-octafluoro-biphenyl	95		%REC
1-123-1-Q-3H	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
1-123-1-Q-3H	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
1-123-1-Q-3H	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
1-123-1-Q-3H-B61	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
1-123-1-Q-3H-B61	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
1-123-1-Q-3H-B61	NC34SDG005	Dibromo-octafluoro-biphenyl	86		%REC
1-123-1-Q-3H-T1	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3H-T1	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC
1-123-1-Q-3H-T1	NC22SDG010	Dibromo-octafluoro-biphenyl	63		%REC
1-123-1-Q-3H-T11	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
1-123-1-Q-3H-T11	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	150	&	%REC
1-123-1-Q-3H-T11	NC22SDG013	Dibromo-octafluoro-biphenyl	54		%REC
1-123-1-Q-3H-T13	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
1-123-1-Q-3H-T13	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	137	&	%REC
1-123-1-Q-3H-T13	NC22SDG016	Dibromo-octafluoro-biphenyl	78		%REC
1-123-1-Q-3H-T15	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
1-123-1-Q-3H-T15	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
1-123-1-Q-3H-T15	NC22SDG020	Dibromo-octafluoro-biphenyl	73		%REC
1-123-1-Q-3H-T18	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
1-123-1-Q-3H-T18	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	162	&	%REC
1-123-1-Q-3H-T18	NC22SDG024	Dibromo-octafluoro-biphenyl	64		%REC
1-123-1-Q-3H-T21	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
1-123-1-Q-3H-T21	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	159	&	%REC
1-123-1-Q-3H-T21	NC22SDG054	Dibromo-octafluoro-biphenyl	86		%REC
1-123-1-Q-3H-T24	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
1-123-1-Q-3H-T24	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
1-123-1-Q-3H-T24	NC28SDG006	Dibromo-octafluoro-biphenyl	63		%REC
1-123-1-Q-3H-T27	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	56		%REC
1-123-1-Q-3H-T27	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	66		%REC
1-123-1-Q-3H-T27	NC28SDG010	Dibromo-octafluoro-biphenyl	38	&	%REC
1-123-1-Q-3H-T30	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	107		%REC
1-123-1-Q-3H-T30	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	160	&	%REC
1-123-1-Q-3H-T30	NC28SDG013	Dibromo-octafluoro-biphenyl	85		%REC
1-123-1-Q-3H-T33	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
1-123-1-Q-3H-T33	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	107		%REC
1-123-1-Q-3H-T33	NC28SDG019	Dibromo-octafluoro-biphenyl	51		%REC
1-123-1-Q-3H-T36	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
1-123-1-Q-3H-T36	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	120		%REC
1-123-1-Q-3H-T36	NC34SDG005	Dibromo-octafluoro-biphenyl	66		%REC
1-123-1-Q-3H-T7	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
1-123-1-Q-3H-T7	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC
1-123-1-Q-3H-T7	NC22SDG010	Dibromo-octafluoro-biphenyl	61		%REC
1-123-1-Q-3H-T9	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3H-T9	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	155	&	%REC
1-123-1-Q-3H-T9	NC22SDG011	Dibromo-octafluoro-biphenyl	74		%REC
1-123-1-Q-3I	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
1-123-1-Q-3I	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
1-123-1-Q-3I	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
1-123-1-Q-3I-B57	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	60		%REC
1-123-1-Q-3I-B57	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
1-123-1-Q-3I-B57	NC34SDG005	Dibromo-octafluoro-biphenyl	49		%REC
1-123-1-Q-3I-T1	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
1-123-1-Q-3I-T1	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
1-123-1-Q-3I-T1	NC22SDG014	Dibromo-octafluoro-biphenyl	88		%REC
1-123-1-Q-3I-T11	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
1-123-1-Q-3I-T11	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
1-123-1-Q-3I-T11	NC22SDG017	Dibromo-octafluoro-biphenyl	65		%REC
1-123-1-Q-3I-T13	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
1-123-1-Q-3I-T13	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
1-123-1-Q-3I-T13	NC22SDG020	Dibromo-octafluoro-biphenyl	54		%REC
1-123-1-Q-3I-T15	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
1-123-1-Q-3I-T15	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	162	&	%REC
1-123-1-Q-3I-T15	NC22SDG023	Dibromo-octafluoro-biphenyl	65		%REC
1-123-1-Q-3I-T18	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
1-123-1-Q-3I-T18	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	166	&	%REC
1-123-1-Q-3I-T18	NC22SDG026	Dibromo-octafluoro-biphenyl	74		%REC
1-123-1-Q-3I-T22	NC28SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
1-123-1-Q-3I-T22	NC28SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
1-123-1-Q-3I-T22	NC28SDG004	Dibromo-octafluoro-biphenyl	75		%REC
1-123-1-Q-3I-T25	NC28SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
1-123-1-Q-3I-T25	NC28SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	109		%REC
1-123-1-Q-3I-T25	NC28SDG009	Dibromo-octafluoro-biphenyl	59		%REC
1-123-1-Q-3I-T28	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
1-123-1-Q-3I-T28	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	120		%REC
1-123-1-Q-3I-T28	NC28SDG011	Dibromo-octafluoro-biphenyl	51		%REC
1-123-1-Q-3I-T32	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
1-123-1-Q-3I-T32	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	135	&	%REC
1-123-1-Q-3I-T32	NC28SDG016	Dibromo-octafluoro-biphenyl	50		%REC
1-123-1-Q-3I-T33	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3I-T33	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC
1-123-1-Q-3I-T33	NC28SDG022	Dibromo-octafluoro-biphenyl	89		%REC
1-123-1-Q-3I-T35	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	45		%REC
1-123-1-Q-3I-T35	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
1-123-1-Q-3I-T35	NC34SDG005	Dibromo-octafluoro-biphenyl	37	&	%REC
1-123-1-Q-3I-T6	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
1-123-1-Q-3I-T6	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
1-123-1-Q-3I-T6	NC22SDG014	Dibromo-octafluoro-biphenyl	89		%REC
1-123-1-Q-3I-T9	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
1-123-1-Q-3I-T9	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
1-123-1-Q-3I-T9	NC22SDG015	Dibromo-octafluoro-biphenyl	75		%REC
1-123-1-Q-3J-B32	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
1-123-1-Q-3J-B32	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
1-123-1-Q-3J-B32	NC34SDG009	Dibromo-octafluoro-biphenyl	90		%REC
1-123-1-Q-3J-B44	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
1-123-1-Q-3J-B44	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
1-123-1-Q-3J-B44	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
1-123-1-Q-3J-B44	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	13163	&	%REC
1-123-1-Q-3J-B44	CSC81SDG002	Dibromo-octafluoro-biphenyl	0	&	%REC
1-123-1-Q-3J-B44	CSC81SDG002	Dibromo-octafluoro-biphenyl	69		%REC
1-123-1-Q-3J-T1	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC
1-123-1-Q-3J-T1	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	163	&	%REC
1-123-1-Q-3J-T1	NC28SDG012	Dibromo-octafluoro-biphenyl	104		%REC
1-123-1-Q-3J-T11	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	51		%REC
1-123-1-Q-3J-T11	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
1-123-1-Q-3J-T11	NC28SDG016	Dibromo-octafluoro-biphenyl	29	&	%REC
1-123-1-Q-3J-T13	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
1-123-1-Q-3J-T13	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	146	&	%REC
1-123-1-Q-3J-T13	NC28SDG017	Dibromo-octafluoro-biphenyl	93		%REC
1-123-1-Q-3J-T15	NC28SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	119		%REC
1-123-1-Q-3J-T15	NC28SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	189	&	%REC
1-123-1-Q-3J-T15	NC28SDG018	Dibromo-octafluoro-biphenyl	106		%REC
1-123-1-Q-3J-T17	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
1-123-1-Q-3J-T17	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	78		%REC
1-123-1-Q-3J-T17	NC28SDG019	Dibromo-octafluoro-biphenyl	49		%REC
1-123-1-Q-3J-T19	NC28SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3J-T19	NC28SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
1-123-1-Q-3J-T19	NC28SDG021	Dibromo-octafluoro-biphenyl	75		%REC
1-123-1-Q-3J-T21	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	109		%REC
1-123-1-Q-3J-T21	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	175	&	%REC
1-123-1-Q-3J-T21	NC34SDG001	Dibromo-octafluoro-biphenyl	94		%REC
1-123-1-Q-3J-T25	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
1-123-1-Q-3J-T25	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	150	E&	%REC
1-123-1-Q-3J-T25	NC34SDG007	Dibromo-octafluoro-biphenyl	64		%REC
1-123-1-Q-3J-T26	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	37	&	%REC
1-123-1-Q-3J-T26	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	46		%REC
1-123-1-Q-3J-T26	NC34SDG009	Dibromo-octafluoro-biphenyl	31	&	%REC
1-123-1-Q-3J-T28	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
1-123-1-Q-3J-T28	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	140	&	%REC
1-123-1-Q-3J-T28	NC34SDG012	Dibromo-octafluoro-biphenyl	98		%REC
1-123-1-Q-3J-T3	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
1-123-1-Q-3J-T3	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	138	&	%REC
1-123-1-Q-3J-T3	NC28SDG012	Dibromo-octafluoro-biphenyl	84		%REC
1-123-1-Q-3J-T30	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
1-123-1-Q-3J-T30	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
1-123-1-Q-3J-T30	CSC81SDG001	Dibromo-octafluoro-biphenyl	72		%REC
1-123-1-Q-3J-T5	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	29	&	%REC
1-123-1-Q-3J-T5	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	45		%REC
1-123-1-Q-3J-T5	NC28SDG013	Dibromo-octafluoro-biphenyl	23	&	%REC
1-123-1-Q-3J-T7	NC28SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
1-123-1-Q-3J-T7	NC28SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	108		%REC
1-123-1-Q-3J-T7	NC28SDG014	Dibromo-octafluoro-biphenyl	84		%REC
1-123-1-Q-3J-T9	NC28SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
1-123-1-Q-3J-T9	NC28SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	144	&	%REC
1-123-1-Q-3J-T9	NC28SDG015	Dibromo-octafluoro-biphenyl	90		%REC
1-123-1-Q-3K-T1	NC34SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC
1-123-1-Q-3K-T1	NC34SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
1-123-1-Q-3K-T1	NC34SDG011	Dibromo-octafluoro-biphenyl	88		%REC
1-123-1-Q-3K-T11	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
1-123-1-Q-3K-T11	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	167	&	%REC
1-123-1-Q-3K-T11	NC34SDG013	Dibromo-octafluoro-biphenyl	74		%REC
1-123-1-Q-3K-T13	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3K-T13	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	129	&	%REC
1-123-1-Q-3K-T13	CSC81SDG001	Dibromo-octafluoro-biphenyl	66		%REC
1-123-1-Q-3K-T3	NC34SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	111		%REC
1-123-1-Q-3K-T3	NC34SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	135	&	%REC
1-123-1-Q-3K-T3	NC34SDG011	Dibromo-octafluoro-biphenyl	101		%REC
1-123-1-Q-3K-T5	NC34SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	115		%REC
1-123-1-Q-3K-T5	NC34SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	147	&	%REC
1-123-1-Q-3K-T5	NC34SDG011	Dibromo-octafluoro-biphenyl	100		%REC
1-123-1-Q-3K-T7	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
1-123-1-Q-3K-T7	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
1-123-1-Q-3K-T7	NC34SDG012	Dibromo-octafluoro-biphenyl	80		%REC
1-123-1-Q-3K-T9	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
1-123-1-Q-3K-T9	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
1-123-1-Q-3K-T9	NC34SDG012	Dibromo-octafluoro-biphenyl	96		%REC
1-123-1-Q-3L-B1	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
1-123-1-Q-3L-B1	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
1-123-1-Q-3L-B1	CSC81SDG014	Dibromo-octafluoro-biphenyl	68		%REC
1-123-1-Q-3L-SR	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
1-123-1-Q-3L-SR	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
1-123-1-Q-3L-SR	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
1-123-1-Q-3L-SR	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
1-123-1-Q-3L-SR	CSC81SDG014	Dibromo-octafluoro-biphenyl	102		%REC
1-123-1-Q-3L-SR	CSC81SDG014	Dibromo-octafluoro-biphenyl	66		%REC
1-123-1-Q-3L-T1	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
1-123-1-Q-3L-T1	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC
1-123-1-Q-3L-T1	CSC81SDG001	Dibromo-octafluoro-biphenyl	58		%REC
1-123-1-Q-3L-T11	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
1-123-1-Q-3L-T11	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
1-123-1-Q-3L-T11	CSC81SDG001	Dibromo-octafluoro-biphenyl	78		%REC
1-123-1-Q-3L-T13	CSC81SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	108		%REC
1-123-1-Q-3L-T13	CSC81SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	127	&	%REC
1-123-1-Q-3L-T13	CSC81SDG004	Dibromo-octafluoro-biphenyl	94		%REC
1-123-1-Q-3L-T15	CSC81SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
1-123-1-Q-3L-T15	CSC81SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
1-123-1-Q-3L-T15	CSC81SDG005	Dibromo-octafluoro-biphenyl	61		%REC
1-123-1-Q-3L-T17	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-123-1-Q-3L-T17	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	119		%REC
1-123-1-Q-3L-T17	CSC81SDG007	Dibromo-octafluoro-biphenyl	75		%REC
1-123-1-Q-3L-T19	CSC81SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
1-123-1-Q-3L-T19	CSC81SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
1-123-1-Q-3L-T19	CSC81SDG011	Dibromo-octafluoro-biphenyl	73		%REC
1-123-1-Q-3L-T21	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
1-123-1-Q-3L-T21	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
1-123-1-Q-3L-T21	CSC81SDG014	Dibromo-octafluoro-biphenyl	83		%REC
1-123-1-Q-3L-T3	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
1-123-1-Q-3L-T3	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
1-123-1-Q-3L-T3	CSC81SDG001	Dibromo-octafluoro-biphenyl	58		%REC
1-123-1-Q-3L-T5	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
1-123-1-Q-3L-T5	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
1-123-1-Q-3L-T5	CSC81SDG001	Dibromo-octafluoro-biphenyl	71		%REC
1-123-1-Q-3L-T7	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
1-123-1-Q-3L-T7	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
1-123-1-Q-3L-T7	CSC81SDG001	Dibromo-octafluoro-biphenyl	62		%REC
1-123-1-Q-3L-T9	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
1-123-1-Q-3L-T9	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
1-123-1-Q-3L-T9	CSC81SDG001	Dibromo-octafluoro-biphenyl	72		%REC
1-51-0-E-5A	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	49		%REC
1-51-0-E-5A	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	73		%REC
1-51-0-E-5A	NC34SDG006	Dibromo-octafluoro-biphenyl	45		%REC
1-51-0-E-5A-B12	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
1-51-0-E-5A-B12	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	148	&	%REC
1-51-0-E-5A-B12	NC22SDG015	Dibromo-octafluoro-biphenyl	88		%REC
1-51-0-E-5A-B65	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
1-51-0-E-5A-B65	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
1-51-0-E-5A-B65	NC34SDG004	Dibromo-octafluoro-biphenyl	78		%REC
1-51-0-E-5A-T1	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	42		%REC
1-51-0-E-5A-T1	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	59		%REC
1-51-0-E-5A-T1	NC22SDG003	Dibromo-octafluoro-biphenyl	31	&	%REC
1-51-0-E-5A-T11	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
1-51-0-E-5A-T11	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	132	&	%REC
1-51-0-E-5A-T11	NC22SDG003	Dibromo-octafluoro-biphenyl	68		%REC
1-51-0-E-5A-T13	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-51-0-E-5A-T13	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
1-51-0-E-5A-T13	NC22SDG004	Dibromo-octafluoro-biphenyl	86		%REC
1-51-0-E-5A-T15	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
1-51-0-E-5A-T15	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	120		%REC
1-51-0-E-5A-T15	NC22SDG005	Dibromo-octafluoro-biphenyl	81		%REC
1-51-0-E-5A-T17	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC
1-51-0-E-5A-T17	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	140	&	%REC
1-51-0-E-5A-T17	NC22SDG006	Dibromo-octafluoro-biphenyl	80		%REC
1-51-0-E-5A-T20	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
1-51-0-E-5A-T20	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	108		%REC
1-51-0-E-5A-T20	NC22SDG009	Dibromo-octafluoro-biphenyl	84		%REC
1-51-0-E-5A-T24	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
1-51-0-E-5A-T24	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	143	&	%REC
1-51-0-E-5A-T24	NC22SDG013	Dibromo-octafluoro-biphenyl	57		%REC
1-51-0-E-5A-T26	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
1-51-0-E-5A-T26	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
1-51-0-E-5A-T26	NC22SDG015	Dibromo-octafluoro-biphenyl	67		%REC
1-51-0-E-5A-T28	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
1-51-0-E-5A-T28	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
1-51-0-E-5A-T28	NC22SDG020	Dibromo-octafluoro-biphenyl	56		%REC
1-51-0-E-5A-T31	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
1-51-0-E-5A-T31	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
1-51-0-E-5A-T31	NC22SDG025	Dibromo-octafluoro-biphenyl	91		%REC
1-51-0-E-5A-T34	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	115		%REC
1-51-0-E-5A-T34	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	158	&	%REC
1-51-0-E-5A-T34	NC28SDG002	Dibromo-octafluoro-biphenyl	94		%REC
1-51-0-E-5A-T38	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	46		%REC
1-51-0-E-5A-T38	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	96		%REC
1-51-0-E-5A-T38	NC28SDG007	Dibromo-octafluoro-biphenyl	34	&	%REC
1-51-0-E-5A-T40	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	47		%REC
1-51-0-E-5A-T40	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
1-51-0-E-5A-T40	NC28SDG010	Dibromo-octafluoro-biphenyl	32	&	%REC
1-51-0-E-5A-T43	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
1-51-0-E-5A-T43	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
1-51-0-E-5A-T43	NC28SDG013	Dibromo-octafluoro-biphenyl	71		%REC
1-51-0-E-5A-T47	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	54		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-51-0-E-5A-T47	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
1-51-0-E-5A-T47	NC28SDG019	Dibromo-octafluoro-biphenyl	38	&	%REC
1-51-0-E-5A-T48	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	65		%REC
1-51-0-E-5A-T48	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
1-51-0-E-5A-T48	NC28SDG023	Dibromo-octafluoro-biphenyl	51		%REC
1-51-0-E-5A-T50	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
1-51-0-E-5A-T50	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
1-51-0-E-5A-T50	NC34SDG002	Dibromo-octafluoro-biphenyl	80		%REC
1-51-0-E-5B	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
1-51-0-E-5B	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	71		%REC
1-51-0-E-5B	NC22SDG053	Dibromo-octafluoro-biphenyl	73		%REC
1-51-0-E-5D	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	112		%REC
1-51-0-E-5D	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81	D	%REC
1-51-0-E-5D	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81	D	%REC
1-51-0-E-5D	NC34SDG006	Dibromo-octafluoro-biphenyl	72		%REC
1-51-0-E-5D	NC34SDG006	Dibromo-octafluoro-biphenyl	87		%REC
1-51-0-E-5D-B58	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
1-51-0-E-5D-B58	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
1-51-0-E-5D-B58	NC34SDG005	Dibromo-octafluoro-biphenyl	70		%REC
1-51-0-E-5D-T1	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
1-51-0-E-5D-T1	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	140	&	%REC
1-51-0-E-5D-T1	NC22SDG013	Dibromo-octafluoro-biphenyl	56		%REC
1-51-0-E-5D-T11	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
1-51-0-E-5D-T11	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
1-51-0-E-5D-T11	NC22SDG016	Dibromo-octafluoro-biphenyl	69		%REC
1-51-0-E-5D-T13	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
1-51-0-E-5D-T13	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
1-51-0-E-5D-T13	NC22SDG019	Dibromo-octafluoro-biphenyl	61		%REC
1-51-0-E-5D-T15	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
1-51-0-E-5D-T15	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
1-51-0-E-5D-T15	NC22SDG022	Dibromo-octafluoro-biphenyl	65		%REC
1-51-0-E-5D-T18	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
1-51-0-E-5D-T18	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	146	&	%REC
1-51-0-E-5D-T18	NC22SDG026	Dibromo-octafluoro-biphenyl	55		%REC
1-51-0-E-5D-T21	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
1-51-0-E-5D-T21	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	152	&	%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-51-0-E-5D-T21	NC28SDG003	Dibromo-octafluoro-biphenyl	92		%REC
1-51-0-E-5D-T24	NC28SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
1-51-0-E-5D-T24	NC28SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
1-51-0-E-5D-T24	NC28SDG008	Dibromo-octafluoro-biphenyl	60		%REC
1-51-0-E-5D-T27	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	65		%REC
1-51-0-E-5D-T27	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
1-51-0-E-5D-T27	NC28SDG011	Dibromo-octafluoro-biphenyl	49		%REC
1-51-0-E-5D-T31	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
1-51-0-E-5D-T31	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC
1-51-0-E-5D-T31	NC28SDG016	Dibromo-octafluoro-biphenyl	42	&	%REC
1-51-0-E-5D-T32	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
1-51-0-E-5D-T32	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	109		%REC
1-51-0-E-5D-T32	NC28SDG022	Dibromo-octafluoro-biphenyl	66		%REC
1-51-0-E-5D-T34	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	60		%REC
1-51-0-E-5D-T34	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
1-51-0-E-5D-T34	NC34SDG005	Dibromo-octafluoro-biphenyl	49		%REC
1-51-0-E-5D-T6	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
1-51-0-E-5D-T6	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	138	&	%REC
1-51-0-E-5D-T6	NC22SDG013	Dibromo-octafluoro-biphenyl	51		%REC
1-51-0-E-5D-T9	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
1-51-0-E-5D-T9	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
1-51-0-E-5D-T9	NC22SDG014	Dibromo-octafluoro-biphenyl	78		%REC
1-51-0-E-5E	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
1-51-0-E-5E	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
1-51-0-E-5E	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	65		%REC
1-51-0-E-5E	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
1-51-0-E-5E	CSC81SDG007	Dibromo-octafluoro-biphenyl	71		%REC
1-51-0-E-5E	CSC81SDG007	Dibromo-octafluoro-biphenyl	75		%REC
1-51-0-E-5E-B1	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
1-51-0-E-5E-B1	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
1-51-0-E-5E-B1	CSC81SDG007	Dibromo-octafluoro-biphenyl	94		%REC
1-51-0-E-5E-SR	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	31	&	%REC
1-51-0-E-5E-SR	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	38	&	%REC
1-51-0-E-5E-SR	CSC81SDG007	Dibromo-octafluoro-biphenyl	28	&	%REC
1-51-0-E-5E-T1	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
1-51-0-E-5E-T1	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	140	&	%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-51-0-E-5E-T1	NC28SDG016	Dibromo-octafluoro-biphenyl	72		%REC
1-51-0-E-5E-T11	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
1-51-0-E-5E-T11	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
1-51-0-E-5E-T11	NC28SDG019	Dibromo-octafluoro-biphenyl	63		%REC
1-51-0-E-5E-T13	NC28SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
1-51-0-E-5E-T13	NC28SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
1-51-0-E-5E-T13	NC28SDG021	Dibromo-octafluoro-biphenyl	64		%REC
1-51-0-E-5E-T15	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	114		%REC
1-51-0-E-5E-T15	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	138	&	%REC
1-51-0-E-5E-T15	NC28SDG023	Dibromo-octafluoro-biphenyl	89		%REC
1-51-0-E-5E-T17	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
1-51-0-E-5E-T17	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
1-51-0-E-5E-T17	NC34SDG001	Dibromo-octafluoro-biphenyl	62		%REC
1-51-0-E-5E-T19	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
1-51-0-E-5E-T19	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	135	&	%REC
1-51-0-E-5E-T19	NC34SDG007	Dibromo-octafluoro-biphenyl	66		%REC
1-51-0-E-5E-T22	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
1-51-0-E-5E-T22	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
1-51-0-E-5E-T22	NC34SDG009	Dibromo-octafluoro-biphenyl	71		%REC
1-51-0-E-5E-T24	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
1-51-0-E-5E-T24	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC
1-51-0-E-5E-T24	NC34SDG012	Dibromo-octafluoro-biphenyl	87		%REC
1-51-0-E-5E-T26	CSC81SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
1-51-0-E-5E-T26	CSC81SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	127	&	%REC
1-51-0-E-5E-T26	CSC81SDG004	Dibromo-octafluoro-biphenyl	85		%REC
1-51-0-E-5E-T28	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	65		%REC
1-51-0-E-5E-T28	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
1-51-0-E-5E-T28	CSC81SDG007	Dibromo-octafluoro-biphenyl	66		%REC
1-51-0-E-5E-T3	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
1-51-0-E-5E-T3	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
1-51-0-E-5E-T3	NC28SDG017	Dibromo-octafluoro-biphenyl	79		%REC
1-51-0-E-5E-T5	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
1-51-0-E-5E-T5	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
1-51-0-E-5E-T5	NC28SDG017	Dibromo-octafluoro-biphenyl	77		%REC
1-51-0-E-5E-T7	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
1-51-0-E-5E-T7	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
1-51-0-E-5E-T7	NC28SDG017	Dibromo-octafluoro-biphenyl	84		%REC
1-51-0-E-5E-T9	NC28SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	131	&	%REC
1-51-0-E-5E-T9	NC28SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	184	&	%REC
1-51-0-E-5E-T9	NC28SDG018	Dibromo-octafluoro-biphenyl	129	&	%REC
212-147A-S	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
212-147A-S	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
212-147A-S	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
212-147A-S-A	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
212-147A-S-A	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
212-147A-S-A	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
212-147A-S-A-B57	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
212-147A-S-A-B57	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
212-147A-S-A-B57	NC34SDG005	Dibromo-octafluoro-biphenyl	72		%REC
212-147A-S-A-T1	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
212-147A-S-A-T1	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	130	&	%REC
212-147A-S-A-T1	NC22SDG014	Dibromo-octafluoro-biphenyl	86		%REC
212-147A-S-A-T11	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
212-147A-S-A-T11	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC
212-147A-S-A-T11	NC22SDG017	Dibromo-octafluoro-biphenyl	65		%REC
212-147A-S-A-T13	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
212-147A-S-A-T13	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
212-147A-S-A-T13	NC22SDG020	Dibromo-octafluoro-biphenyl	58		%REC
212-147A-S-A-T15	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
212-147A-S-A-T15	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	198	&	%REC
212-147A-S-A-T15	NC22SDG023	Dibromo-octafluoro-biphenyl	78		%REC
212-147A-S-A-T18	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
212-147A-S-A-T18	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	161	&	%REC
212-147A-S-A-T18	NC22SDG026	Dibromo-octafluoro-biphenyl	76		%REC
212-147A-S-A-T20	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	77		%REC
212-147A-S-A-T20	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	144	&	%REC
212-147A-S-A-T20	NC22SDG054	Dibromo-octafluoro-biphenyl	69		%REC
212-147A-S-A-T23	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
212-147A-S-A-T23	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
212-147A-S-A-T23	NC28SDG006	Dibromo-octafluoro-biphenyl	68		%REC
212-147A-S-A-T26	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
212-147A-S-A-T26	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
212-147A-S-A-T26	NC28SDG010	Dibromo-octafluoro-biphenyl	50		%REC
212-147A-S-A-T29	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
212-147A-S-A-T29	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	158	&	%REC
212-147A-S-A-T29	NC28SDG013	Dibromo-octafluoro-biphenyl	84		%REC
212-147A-S-A-T32	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
212-147A-S-A-T32	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
212-147A-S-A-T32	NC28SDG019	Dibromo-octafluoro-biphenyl	46		%REC
212-147A-S-A-T38	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
212-147A-S-A-T38	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	78		%REC
212-147A-S-A-T38	NC34SDG005	Dibromo-octafluoro-biphenyl	50		%REC
212-147A-S-A-T6	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
212-147A-S-A-T6	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
212-147A-S-A-T6	NC22SDG014	Dibromo-octafluoro-biphenyl	67		%REC
212-147A-S-A-T9	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
212-147A-S-A-T9	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC
212-147A-S-A-T9	NC22SDG015	Dibromo-octafluoro-biphenyl	71		%REC
212-147A-S-B009	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	100		%REC
212-147A-S-B009	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	150	&	%REC
212-147A-S-B009	NC22SDG015	Dibromo-octafluoro-biphenyl	96		%REC
212-147A-S-B62	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	111		%REC
212-147A-S-B62	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
212-147A-S-B62	NC34SDG004	Dibromo-octafluoro-biphenyl	86		%REC
212-147A-S-T1	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
212-147A-S-T1	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	135	&	%REC
212-147A-S-T1	NC22SDG006	Dibromo-octafluoro-biphenyl	69		%REC
212-147A-S-T10	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	103		%REC
212-147A-S-T10	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	135	&	%REC
212-147A-S-T10	NC22SDG006	Dibromo-octafluoro-biphenyl	83		%REC
212-147A-S-T14	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
212-147A-S-T14	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
212-147A-S-T14	NC22SDG007	Dibromo-octafluoro-biphenyl	70		%REC
212-147A-S-T17	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
212-147A-S-T17	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
212-147A-S-T17	NC22SDG009	Dibromo-octafluoro-biphenyl	82		%REC
212-147A-S-T21	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
212-147A-S-T21	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
212-147A-S-T21	NC22SDG012	Dibromo-octafluoro-biphenyl	75		%REC
212-147A-S-T23	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
212-147A-S-T23	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
212-147A-S-T23	NC22SDG015	Dibromo-octafluoro-biphenyl	67		%REC
212-147A-S-T25	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
212-147A-S-T25	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
212-147A-S-T25	NC22SDG016	Dibromo-octafluoro-biphenyl	69		%REC
212-147A-S-T27	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
212-147A-S-T27	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
212-147A-S-T27	NC22SDG021	Dibromo-octafluoro-biphenyl	75		%REC
212-147A-S-T30	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	103		%REC
212-147A-S-T30	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	121		%REC
212-147A-S-T30	NC22SDG025	Dibromo-octafluoro-biphenyl	87		%REC
212-147A-S-T33	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
212-147A-S-T33	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
212-147A-S-T33	NC28SDG002	Dibromo-octafluoro-biphenyl	83		%REC
212-147A-S-T36	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
212-147A-S-T36	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
212-147A-S-T36	NC28SDG007	Dibromo-octafluoro-biphenyl	45		%REC
212-147A-S-T40	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
212-147A-S-T40	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
212-147A-S-T40	NC28SDG011	Dibromo-octafluoro-biphenyl	46		%REC
212-147A-S-T45	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
212-147A-S-T45	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
212-147A-S-T45	NC28SDG016	Dibromo-octafluoro-biphenyl	52		%REC
212-147A-S-T46	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
212-147A-S-T46	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
212-147A-S-T46	NC28SDG016	Dibromo-octafluoro-biphenyl	51		%REC
212-147A-S-T49	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
212-147A-S-T49	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
212-147A-S-T49	NC28SDG022	Dibromo-octafluoro-biphenyl	76		%REC
212-147A-S-T51	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC
212-147A-S-T51	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	182	&	%REC
212-147A-S-T51	NC34SDG002	Dibromo-octafluoro-biphenyl	88		%REC
212-147A-S-UF-B37	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
212-147A-S-UF-B37	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
212-147A-S-UF-B37	NC34SDG013	Dibromo-octafluoro-biphenyl	65		%REC
214-59B-S1	CSC81SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
214-59B-S1	CSC81SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	823	&	%REC
214-59B-S1	CSC81SDG013	Dibromo-octafluoro-biphenyl	115		%REC
214-59B-S1-B24	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
214-59B-S1-B24	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
214-59B-S1-B24	NC34SDG013	Dibromo-octafluoro-biphenyl	84		%REC
214-59B-S1-B53	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
214-59B-S1-B53	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	77		%REC
214-59B-S1-B53	CSC81SDG012	Dibromo-octafluoro-biphenyl	71		%REC
214-59B-S1-T1	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
214-59B-S1-T1	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	153	&	%REC
214-59B-S1-T1	NC34SDG001	Dibromo-octafluoro-biphenyl	62		%REC
214-59B-S1-T10	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
214-59B-S1-T10	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	151	&	%REC
214-59B-S1-T10	NC34SDG007	Dibromo-octafluoro-biphenyl	54		%REC
214-59B-S1-T12	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
214-59B-S1-T12	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	96		%REC
214-59B-S1-T12	NC34SDG008	Dibromo-octafluoro-biphenyl	56		%REC
214-59B-S1-T20	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
214-59B-S1-T20	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC
214-59B-S1-T20	NC34SDG010	Dibromo-octafluoro-biphenyl	63		%REC
214-59B-S1-T21G	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
214-59B-S1-T21G	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
214-59B-S1-T21G	NC34SDG013	Dibromo-octafluoro-biphenyl	68		%REC
214-59B-S1-T22	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	58		%REC
214-59B-S1-T22	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
214-59B-S1-T22	CSC81SDG001	Dibromo-octafluoro-biphenyl	39	&	%REC
214-59B-S1-T24	CSC81SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	53		%REC
214-59B-S1-T24	CSC81SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	56		%REC
214-59B-S1-T24	CSC81SDG006	Dibromo-octafluoro-biphenyl	42	&	%REC
214-59B-S1-T26	CSC81SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	42	&	%REC
214-59B-S1-T26	CSC81SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	49		%REC
214-59B-S1-T26	CSC81SDG010	Dibromo-octafluoro-biphenyl	41	&	%REC
214-59B-S1-T28	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
214-59B-S1-T28	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	71		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
214-59B-S1-T28	CSC81SDG012	Dibromo-octafluoro-biphenyl	59		%REC
214-59B-S1-T3	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC
214-59B-S1-T3	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	155	&	%REC
214-59B-S1-T3	NC34SDG001	Dibromo-octafluoro-biphenyl	83		%REC
214-59B-S1-T5	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
214-59B-S1-T5	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
214-59B-S1-T5	NC34SDG002	Dibromo-octafluoro-biphenyl	74		%REC
214-59B-S1-T7	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
214-59B-S1-T7	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
214-59B-S1-T7	NC34SDG004	Dibromo-octafluoro-biphenyl	68		%REC
214-59B-S2	CSC81SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
214-59B-S2	CSC81SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	806	&	%REC
214-59B-S2	CSC81SDG013	Dibromo-octafluoro-biphenyl	100		%REC
214-59B-S2-B24	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
214-59B-S2-B24	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
214-59B-S2-B24	NC34SDG013	Dibromo-octafluoro-biphenyl	74		%REC
214-59B-S2-B53	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
214-59B-S2-B53	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
214-59B-S2-B53	CSC81SDG012	Dibromo-octafluoro-biphenyl	75		%REC
214-59B-S2-T1	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
214-59B-S2-T1	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	178	&	%REC
214-59B-S2-T1	NC34SDG001	Dibromo-octafluoro-biphenyl	74		%REC
214-59B-S2-T10	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
214-59B-S2-T10	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	155	&	%REC
214-59B-S2-T10	NC34SDG007	Dibromo-octafluoro-biphenyl	67		%REC
214-59B-S2-T12	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
214-59B-S2-T12	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
214-59B-S2-T12	NC34SDG008	Dibromo-octafluoro-biphenyl	62		%REC
214-59B-S2-T18	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
214-59B-S2-T18	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
214-59B-S2-T18	NC34SDG010	Dibromo-octafluoro-biphenyl	54		%REC
214-59B-S2-T22	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	59		%REC
214-59B-S2-T22	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
214-59B-S2-T22	CSC81SDG001	Dibromo-octafluoro-biphenyl	35	&	%REC
214-59B-S2-T24	CSC81SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	46		%REC
214-59B-S2-T24	CSC81SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	58		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
214-59B-S2-T24	CSC81SDG006	Dibromo-octafluoro-biphenyl	38	&	%REC
214-59B-S2-T26	CSC81SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
214-59B-S2-T26	CSC81SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
214-59B-S2-T26	CSC81SDG010	Dibromo-octafluoro-biphenyl	65		%REC
214-59B-S2-T28	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	66		%REC
214-59B-S2-T28	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	67		%REC
214-59B-S2-T28	CSC81SDG012	Dibromo-octafluoro-biphenyl	58		%REC
214-59B-S2-T3	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
214-59B-S2-T3	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	175	&	%REC
214-59B-S2-T3	NC34SDG001	Dibromo-octafluoro-biphenyl	86		%REC
214-59B-S2-T5	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	109		%REC
214-59B-S2-T5	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	191	&	%REC
214-59B-S2-T5	NC34SDG002	Dibromo-octafluoro-biphenyl	97		%REC
214-59B-S2-T7	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	107		%REC
214-59B-S2-T7	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	147	&	%REC
214-59B-S2-T7	NC34SDG004	Dibromo-octafluoro-biphenyl	85		%REC
225-27B-HP-QC-B01	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	113		%REC
225-27B-HP-QC-B01	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
225-27B-HP-QC-B01	NC28SDG001	Dibromo-octafluoro-biphenyl	76		%REC
225-27B-HP-QC-B02	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
225-27B-HP-QC-B02	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
225-27B-HP-QC-B02	NC28SDG001	Dibromo-octafluoro-biphenyl	82		%REC
225-27B-HP-QC-B03	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
225-27B-HP-QC-B03	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
225-27B-HP-QC-B03	NC28SDG001	Dibromo-octafluoro-biphenyl	82		%REC
225-27B-HP-QC-B04	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	114		%REC
225-27B-HP-QC-B04	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	178	&	%REC
225-27B-HP-QC-B04	NC22SDG054	Dibromo-octafluoro-biphenyl	58		%REC
225-27B-HP-QC-B05	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
225-27B-HP-QC-B05	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	153	&	%REC
225-27B-HP-QC-B05	NC22SDG054	Dibromo-octafluoro-biphenyl	92		%REC
225-27B-HP-QC-B06	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
225-27B-HP-QC-B06	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
225-27B-HP-QC-B06	NC22SDG054	Dibromo-octafluoro-biphenyl	84		%REC
225-27B-HP-QC-B07	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
225-27B-HP-QC-B07	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
225-27B-HP-QC-B07	NC28SDG006	Dibromo-octafluoro-biphenyl	73		%REC
225-27B-HP-QC-B08	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
225-27B-HP-QC-B08	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
225-27B-HP-QC-B08	NC28SDG007	Dibromo-octafluoro-biphenyl	56		%REC
225-27B-HP-QC-B09	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
225-27B-HP-QC-B09	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
225-27B-HP-QC-B09	NC28SDG007	Dibromo-octafluoro-biphenyl	49		%REC
225-27B-MS-B001	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
225-27B-MS-B001	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	129	&	%REC
225-27B-MS-B001	NC22SDG001	Dibromo-octafluoro-biphenyl	64		%REC
225-27B-MS-B002	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	103		%REC
225-27B-MS-B002	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	138	&	%REC
225-27B-MS-B002	NC22SDG002	Dibromo-octafluoro-biphenyl	94		%REC
225-27B-MS-B003	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
225-27B-MS-B003	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
225-27B-MS-B003	NC22SDG004	Dibromo-octafluoro-biphenyl	81		%REC
225-27B-MS-B004	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
225-27B-MS-B004	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
225-27B-MS-B004	NC22SDG007	Dibromo-octafluoro-biphenyl	75		%REC
225-27B-MS-B005	NC22SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
225-27B-MS-B005	NC22SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC
225-27B-MS-B005	NC22SDG008	Dibromo-octafluoro-biphenyl	85		%REC
225-27B-MS-B006	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
225-27B-MS-B006	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC
225-27B-MS-B006	NC22SDG009	Dibromo-octafluoro-biphenyl	84		%REC
225-27B-MS-B007	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	100		%REC
225-27B-MS-B007	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
225-27B-MS-B007	NC22SDG010	Dibromo-octafluoro-biphenyl	73		%REC
225-27B-MS-B008	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
225-27B-MS-B008	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
225-27B-MS-B008	NC22SDG011	Dibromo-octafluoro-biphenyl	81		%REC
225-27B-MS-B009	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC
225-27B-MS-B009	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	152	&	%REC
225-27B-MS-B009	NC22SDG011	Dibromo-octafluoro-biphenyl	82		%REC
225-27B-MS-B010	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
225-27B-MS-B010	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
225-27B-MS-B010	NC22SDG012	Dibromo-octafluoro-biphenyl	91		%REC
225-27B-MS-B011	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
225-27B-MS-B011	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	148	&	%REC
225-27B-MS-B011	NC22SDG013	Dibromo-octafluoro-biphenyl	62		%REC
225-27B-MS-B012	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC
225-27B-MS-B012	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	137	&	%REC
225-27B-MS-B012	NC22SDG014	Dibromo-octafluoro-biphenyl	91		%REC
225-27B-MS-B013	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
225-27B-MS-B013	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
225-27B-MS-B013	NC22SDG016	Dibromo-octafluoro-biphenyl	70		%REC
225-27B-MS-B014	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
225-27B-MS-B014	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
225-27B-MS-B014	NC22SDG017	Dibromo-octafluoro-biphenyl	72		%REC
225-27B-MS-B015	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
225-27B-MS-B015	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	158	&	%REC
225-27B-MS-B015	NC22SDG018	Dibromo-octafluoro-biphenyl	60		%REC
225-27B-MS-B016	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
225-27B-MS-B016	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
225-27B-MS-B016	NC22SDG020	Dibromo-octafluoro-biphenyl	58		%REC
225-27B-MS-B017	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
225-27B-MS-B017	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	73		%REC
225-27B-MS-B017	NC22SDG021	Dibromo-octafluoro-biphenyl	70		%REC
225-27B-MS-B018	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	108		%REC
225-27B-MS-B018	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
225-27B-MS-B018	NC22SDG022	Dibromo-octafluoro-biphenyl	81		%REC
225-27B-MS-B019	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
225-27B-MS-B019	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	182	&	%REC
225-27B-MS-B019	NC22SDG023	Dibromo-octafluoro-biphenyl	81		%REC
225-27B-QC-B001	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
225-27B-QC-B001	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC
225-27B-QC-B001	NC22SDG019	Dibromo-octafluoro-biphenyl	64		%REC
225-27B-QC-B003	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
225-27B-QC-B003	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
225-27B-QC-B003	NC22SDG019	Dibromo-octafluoro-biphenyl	61		%REC
225-27B-QC-B004	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
225-27B-QC-B004	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	99		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
225-27B-QC-B004	NC22SDG019	Dibromo-octafluoro-biphenyl	53		%REC
225-27B-QC-B005	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
225-27B-QC-B005	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
225-27B-QC-B005	NC22SDG019	Dibromo-octafluoro-biphenyl	59		%REC
225-27B-QC-B006	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
225-27B-QC-B006	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
225-27B-QC-B006	NC22SDG019	Dibromo-octafluoro-biphenyl	59		%REC
225-27B-QC-B007	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
225-27B-QC-B007	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
225-27B-QC-B007	NC22SDG019	Dibromo-octafluoro-biphenyl	62		%REC
225-27B-QC-B008	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	77		%REC
225-27B-QC-B008	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
225-27B-QC-B008	NC22SDG019	Dibromo-octafluoro-biphenyl	62		%REC
225-27B-QC-B009	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
225-27B-QC-B009	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
225-27B-QC-B009	NC22SDG019	Dibromo-octafluoro-biphenyl	62		%REC
225-27B-QC-B010	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
225-27B-QC-B010	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
225-27B-QC-B010	NC22SDG019	Dibromo-octafluoro-biphenyl	61		%REC
225-27B-QC-B011	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
225-27B-QC-B011	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
225-27B-QC-B011	NC22SDG019	Dibromo-octafluoro-biphenyl	62		%REC
225-27B-QC-B014	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
225-27B-QC-B014	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	161	&	%REC
225-27B-QC-B014	NC22SDG024	Dibromo-octafluoro-biphenyl	70		%REC
225-27B-QC-B015	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
225-27B-QC-B015	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	165	&	%REC
225-27B-QC-B015	NC22SDG024	Dibromo-octafluoro-biphenyl	70		%REC
225-27B-QC-B016	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
225-27B-QC-B016	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
225-27B-QC-B016	NC22SDG025	Dibromo-octafluoro-biphenyl	82		%REC
225-27B-QC-B017	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	123		%REC
225-27B-QC-B017	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	175	&	%REC
225-27B-QC-B017	NC22SDG025	Dibromo-octafluoro-biphenyl	101		%REC
225-27B-QC-B018	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
225-27B-QC-B018	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
225-27B-QC-B018	NC28SDG002	Dibromo-octafluoro-biphenyl	58		%REC
225-27B-QC-B019	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	103		%REC
225-27B-QC-B019	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	119		%REC
225-27B-QC-B019	NC28SDG002	Dibromo-octafluoro-biphenyl	94		%REC
225-27B-QC-B020	NC28SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
225-27B-QC-B020	NC28SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	132	&	%REC
225-27B-QC-B020	NC28SDG005	Dibromo-octafluoro-biphenyl	82		%REC
225-27B-QC-B021	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
225-27B-QC-B021	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
225-27B-QC-B021	NC28SDG007	Dibromo-octafluoro-biphenyl	45		%REC
225-27B-QC-B022	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
225-27B-QC-B022	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	121		%REC
225-27B-QC-B022	NC28SDG016	Dibromo-octafluoro-biphenyl	56		%REC
225-27B-QC-B023	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	31	&	%REC
225-27B-QC-B023	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	74		%REC
225-27B-QC-B023	NC28SDG016	Dibromo-octafluoro-biphenyl	20	&	%REC
225-27B-QC-B024	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
225-27B-QC-B024	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
225-27B-QC-B024	NC28SDG019	Dibromo-octafluoro-biphenyl	66		%REC
225-27B-QC-B025	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
225-27B-QC-B025	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC
225-27B-QC-B025	NC28SDG022	Dibromo-octafluoro-biphenyl	65		%REC
225-27B-QC-B026	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	111		%REC
225-27B-QC-B026	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	153	&	%REC
225-27B-QC-B026	NC28SDG023	Dibromo-octafluoro-biphenyl	87		%REC
225-27B-QC-B027	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	111		%REC
225-27B-QC-B027	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	195	&	%REC
225-27B-QC-B027	NC34SDG002	Dibromo-octafluoro-biphenyl	95		%REC
225-27B-QC-B028	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	117		%REC
225-27B-QC-B028	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	163	&	%REC
225-27B-QC-B028	NC34SDG007	Dibromo-octafluoro-biphenyl	99		%REC
225-27B-QC-B030	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
225-27B-QC-B030	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
225-27B-QC-B030	NC34SDG010	Dibromo-octafluoro-biphenyl	71		%REC
225-27B-QC-B031	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
225-27B-QC-B031	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	142	&	%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
225-27B-QC-B031	NC34SDG012	Dibromo-octafluoro-biphenyl	93		%REC
225-27B-QC-B032	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
225-27B-QC-B032	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	149	&	%REC
225-27B-QC-B032	NC34SDG013	Dibromo-octafluoro-biphenyl	74		%REC
225-27B-QC-B033	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
225-27B-QC-B033	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
225-27B-QC-B033	CSC81SDG001	Dibromo-octafluoro-biphenyl	69		%REC
225-27B-QC-B034	CSC81SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	47		%REC
225-27B-QC-B034	CSC81SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	59		%REC
225-27B-QC-B034	CSC81SDG006	Dibromo-octafluoro-biphenyl	47		%REC
225-27B-QC-B035	CSC81SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
225-27B-QC-B035	CSC81SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
225-27B-QC-B035	CSC81SDG011	Dibromo-octafluoro-biphenyl	61		%REC
225-27B-SRM-01	NC22SDG052	103 - 2,2',4,5',6-Pentachlorobiphenyl	111		%REC
225-27B-SRM-01	NC22SDG052	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
225-27B-SRM-01	NC22SDG052	Dibromo-octafluoro-biphenyl	114		%REC
225-27B-SRM-02	NC22SDG052	103 - 2,2',4,5',6-Pentachlorobiphenyl	114		%REC
225-27B-SRM-02	NC22SDG052	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
225-27B-SRM-02	NC22SDG052	Dibromo-octafluoro-biphenyl	119		%REC
236-99A-S2	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
236-99A-S2	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	211	&	%REC
236-99A-S2	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
236-99A-S2	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
236-99A-S2	CSC81SDG002	Dibromo-octafluoro-biphenyl	0	&	%REC
236-99A-S2	CSC81SDG002	Dibromo-octafluoro-biphenyl	98		%REC
236-99A-S2-B22	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	144	&	%REC
236-99A-S2-B22	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
236-99A-S2-B22	NC34SDG009	Dibromo-octafluoro-biphenyl	82		%REC
236-99A-S2-B32	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	110		%REC
236-99A-S2-B32	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC
236-99A-S2-B32	NC34SDG013	Dibromo-octafluoro-biphenyl	68		%REC
236-99A-S2-T11	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	119		%REC
236-99A-S2-T11	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
236-99A-S2-T11	NC34SDG004	Dibromo-octafluoro-biphenyl	78		%REC
236-99A-S2-T14	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	198	&	%REC
236-99A-S2-T14	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
236-99A-S2-T14	NC34SDG008	Dibromo-octafluoro-biphenyl	64		%REC
236-99A-S2-T21	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	212	&	%REC
236-99A-S2-T21	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	144	&	%REC
236-99A-S2-T21	NC34SDG010	Dibromo-octafluoro-biphenyl	71		%REC
236-99A-S2-T22	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC
236-99A-S2-T22	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
236-99A-S2-T22	CSC81SDG001	Dibromo-octafluoro-biphenyl	60		%REC
236-99A-S2-T7	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
236-99A-S2-T7	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	132	&	%REC
236-99A-S2-T7	NC28SDG023	Dibromo-octafluoro-biphenyl	58		%REC
236-99A-S2-T8d	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
236-99A-S2-T8d	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	162	&	%REC
236-99A-S2-T8d	NC34SDG001	Dibromo-octafluoro-biphenyl	65		%REC
236-99A-S2-T9	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC
236-99A-S2-T9	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	152	&	%REC
236-99A-S2-T9	NC34SDG001	Dibromo-octafluoro-biphenyl	81		%REC
236-99A-S3-T1	CSC81SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
236-99A-S3-T1	CSC81SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
236-99A-S3-T1	CSC81SDG008	Dibromo-octafluoro-biphenyl	75		%REC
236-99A-S3-T11	CSC81SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
236-99A-S3-T11	CSC81SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
236-99A-S3-T11	CSC81SDG010	Dibromo-octafluoro-biphenyl	76		%REC
236-99A-S3-T13	CSC81SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
236-99A-S3-T13	CSC81SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
236-99A-S3-T13	CSC81SDG011	Dibromo-octafluoro-biphenyl	68		%REC
236-99A-S3-T15	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
236-99A-S3-T15	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	69		%REC
236-99A-S3-T15	CSC81SDG012	Dibromo-octafluoro-biphenyl	51		%REC
236-99A-S3-T3	CSC81SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
236-99A-S3-T3	CSC81SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	96		%REC
236-99A-S3-T3	CSC81SDG008	Dibromo-octafluoro-biphenyl	82		%REC
236-99A-S3-T5	CSC81SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
236-99A-S3-T5	CSC81SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC
236-99A-S3-T5	CSC81SDG008	Dibromo-octafluoro-biphenyl	77		%REC
236-99A-S3-T7	CSC81SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
236-99A-S3-T7	CSC81SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	70		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
236-99A-S3-T7	CSC81SDG009	Dibromo-octafluoro-biphenyl	68		%REC
236-99A-S3-T9	CSC81SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
236-99A-S3-T9	CSC81SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	74		%REC
236-99A-S3-T9	CSC81SDG009	Dibromo-octafluoro-biphenyl	68		%REC
236-99A-S-B1	NC28SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	107		%REC
236-99A-S-B1	NC28SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	133	&	%REC
236-99A-S-B1	NC28SDG020	Dibromo-octafluoro-biphenyl	89		%REC
236-99A-S-T1	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
236-99A-S-T1	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
236-99A-S-T1	NC28SDG019	Dibromo-octafluoro-biphenyl	28	&	%REC
236-99A-S-T11	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
236-99A-S-T11	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	128	&	%REC
236-99A-S-T11	NC28SDG023	Dibromo-octafluoro-biphenyl	74		%REC
236-99A-S-T3	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
236-99A-S-T3	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
236-99A-S-T3	NC28SDG019	Dibromo-octafluoro-biphenyl	36	&	%REC
236-99A-S-T5	NC28SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	190	&I	%REC
236-99A-S-T5	NC28SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	142	&I	%REC
236-99A-S-T5	NC28SDG020	Dibromo-octafluoro-biphenyl	77		%REC
236-99A-S-T9	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	100		%REC
236-99A-S-T9	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC
236-99A-S-T9	NC28SDG023	Dibromo-octafluoro-biphenyl	59		%REC
5-110-0-E-4B	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	54		%REC
5-110-0-E-4B	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	62		%REC
5-110-0-E-4B	NC34SDG006	Dibromo-octafluoro-biphenyl	51		%REC
5-110-0-E-4B-B13	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
5-110-0-E-4B-B13	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	150	&	%REC
5-110-0-E-4B-B13	NC22SDG015	Dibromo-octafluoro-biphenyl	92		%REC
5-110-0-E-4B-B67	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
5-110-0-E-4B-B67	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
5-110-0-E-4B-B67	NC34SDG003	Dibromo-octafluoro-biphenyl	89		%REC
5-110-0-E-4B-T1	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
5-110-0-E-4B-T1	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
5-110-0-E-4B-T1	NC22SDG002	Dibromo-octafluoro-biphenyl	87		%REC
5-110-0-E-4B-T11	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	105		%REC
5-110-0-E-4B-T11	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	128	&	%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
5-110-0-E-4B-T11	NC22SDG002	Dibromo-octafluoro-biphenyl	95		%REC
5-110-0-E-4B-T13	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC
5-110-0-E-4B-T13	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC
5-110-0-E-4B-T13	NC22SDG003	Dibromo-octafluoro-biphenyl	77		%REC
5-110-0-E-4B-T16	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
5-110-0-E-4B-T16	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
5-110-0-E-4B-T16	NC22SDG005	Dibromo-octafluoro-biphenyl	78		%REC
5-110-0-E-4B-T18	NC22SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
5-110-0-E-4B-T18	NC22SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
5-110-0-E-4B-T18	NC22SDG008	Dibromo-octafluoro-biphenyl	94		%REC
5-110-0-E-4B-T23	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
5-110-0-E-4B-T23	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
5-110-0-E-4B-T23	NC22SDG012	Dibromo-octafluoro-biphenyl	88		%REC
5-110-0-E-4B-T25	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
5-110-0-E-4B-T25	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
5-110-0-E-4B-T25	NC22SDG017	Dibromo-octafluoro-biphenyl	71		%REC
5-110-0-E-4B-T28	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
5-110-0-E-4B-T28	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	146	&	%REC
5-110-0-E-4B-T28	NC22SDG022	Dibromo-octafluoro-biphenyl	75		%REC
5-110-0-E-4B-T31	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
5-110-0-E-4B-T31	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	132	&	%REC
5-110-0-E-4B-T31	NC22SDG026	Dibromo-octafluoro-biphenyl	88		%REC
5-110-0-E-4B-T35	NC28SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
5-110-0-E-4B-T35	NC28SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
5-110-0-E-4B-T35	NC28SDG004	Dibromo-octafluoro-biphenyl	59		%REC
5-110-0-E-4B-T38	NC28SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
5-110-0-E-4B-T38	NC28SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
5-110-0-E-4B-T38	NC28SDG009	Dibromo-octafluoro-biphenyl	60		%REC
5-110-0-E-4B-T41	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
5-110-0-E-4B-T41	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
5-110-0-E-4B-T41	NC28SDG011	Dibromo-octafluoro-biphenyl	53		%REC
5-110-0-E-4B-T44	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	29	&	%REC
5-110-0-E-4B-T44	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
5-110-0-E-4B-T44	NC28SDG016	Dibromo-octafluoro-biphenyl	17	&	%REC
5-110-0-E-4B-T46	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
5-110-0-E-4B-T46	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
5-110-0-E-4B-T46	NC28SDG022	Dibromo-octafluoro-biphenyl	82		%REC
5-110-0-E-4B-T48	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
5-110-0-E-4B-T48	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
5-110-0-E-4B-T48	NC34SDG003	Dibromo-octafluoro-biphenyl	67		%REC
5-110-0-E-4C	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
5-110-0-E-4C	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
5-110-0-E-4C	NC22SDG053	Dibromo-octafluoro-biphenyl	77		%REC
5-110-0-E-4E	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	52		%REC
5-110-0-E-4E	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
5-110-0-E-4E	NC34SDG006	Dibromo-octafluoro-biphenyl	45		%REC
5-110-0-E-4E-B58	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
5-110-0-E-4E-B58	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
5-110-0-E-4E-B58	NC34SDG005	Dibromo-octafluoro-biphenyl	73		%REC
5-110-0-E-4E-T1	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
5-110-0-E-4E-T1	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	119		%REC
5-110-0-E-4E-T1	NC22SDG013	Dibromo-octafluoro-biphenyl	39	&	%REC
5-110-0-E-4E-T11	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
5-110-0-E-4E-T11	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	136	&	%REC
5-110-0-E-4E-T11	NC22SDG016	Dibromo-octafluoro-biphenyl	73		%REC
5-110-0-E-4E-T13	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
5-110-0-E-4E-T13	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
5-110-0-E-4E-T13	NC22SDG019	Dibromo-octafluoro-biphenyl	61		%REC
5-110-0-E-4E-T15	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
5-110-0-E-4E-T15	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	156	&	%REC
5-110-0-E-4E-T15	NC22SDG022	Dibromo-octafluoro-biphenyl	77		%REC
5-110-0-E-4E-T18	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	103		%REC
5-110-0-E-4E-T18	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	164	&	%REC
5-110-0-E-4E-T18	NC22SDG026	Dibromo-octafluoro-biphenyl	84		%REC
5-110-0-E-4E-T21	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
5-110-0-E-4E-T21	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	135	&	%REC
5-110-0-E-4E-T21	NC28SDG003	Dibromo-octafluoro-biphenyl	98		%REC
5-110-0-E-4E-T24	NC28SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
5-110-0-E-4E-T24	NC28SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC
5-110-0-E-4E-T24	NC28SDG008	Dibromo-octafluoro-biphenyl	66		%REC
5-110-0-E-4E-T27	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
5-110-0-E-4E-T27	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
5-110-0-E-4E-T27	NC28SDG011	Dibromo-octafluoro-biphenyl	55		%REC
5-110-0-E-4E-T31	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	33	&	%REC
5-110-0-E-4E-T31	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
5-110-0-E-4E-T31	NC28SDG016	Dibromo-octafluoro-biphenyl	20	&	%REC
5-110-0-E-4E-T32	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
5-110-0-E-4E-T32	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC
5-110-0-E-4E-T32	NC28SDG022	Dibromo-octafluoro-biphenyl	84		%REC
5-110-0-E-4E-T34	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
5-110-0-E-4E-T34	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
5-110-0-E-4E-T34	NC34SDG005	Dibromo-octafluoro-biphenyl	61		%REC
5-110-0-E-4E-T6	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
5-110-0-E-4E-T6	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	133	&	%REC
5-110-0-E-4E-T6	NC22SDG013	Dibromo-octafluoro-biphenyl	59		%REC
5-110-0-E-4E-T9	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
5-110-0-E-4E-T9	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	109		%REC
5-110-0-E-4E-T9	NC22SDG014	Dibromo-octafluoro-biphenyl	78		%REC
AP-LT-PB	CSC81SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
AP-LT-PB	CSC81SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
AP-LT-PB	CSC81SDG013	Dibromo-octafluoro-biphenyl	70		%REC
AP-LT-PB-B32	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
AP-LT-PB-B32	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
AP-LT-PB-B32	NC34SDG013	Dibromo-octafluoro-biphenyl	64		%REC
AP-LT-PB-B61	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	77		%REC
AP-LT-PB-B61	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	75		%REC
AP-LT-PB-B61	CSC81SDG012	Dibromo-octafluoro-biphenyl	77		%REC
AP-LT-PB-T1	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	113		%REC
AP-LT-PB-T1	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	163	&	%REC
AP-LT-PB-T1	NC28SDG023	Dibromo-octafluoro-biphenyl	75		%REC
AP-LT-PB-T10	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
AP-LT-PB-T10	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	108		%REC
AP-LT-PB-T10	NC34SDG012	Dibromo-octafluoro-biphenyl	54		%REC
AP-LT-PB-T12	CSC81SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	46		%REC
AP-LT-PB-T12	CSC81SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	60		%REC
AP-LT-PB-T12	CSC81SDG006	Dibromo-octafluoro-biphenyl	42	&	%REC
AP-LT-PB-T14	CSC81SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	66		%REC
AP-LT-PB-T14	CSC81SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
AP-LT-PB-T14	CSC81SDG010	Dibromo-octafluoro-biphenyl	65		%REC
AP-LT-PB-T16	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
AP-LT-PB-T16	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	75		%REC
AP-LT-PB-T16	CSC81SDG012	Dibromo-octafluoro-biphenyl	60		%REC
AP-LT-PB-T3	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
AP-LT-PB-T3	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	126	&	%REC
AP-LT-PB-T3	NC34SDG007	Dibromo-octafluoro-biphenyl	49		%REC
AP-LT-PB-T5	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
AP-LT-PB-T5	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
AP-LT-PB-T5	NC34SDG008	Dibromo-octafluoro-biphenyl	66		%REC
AP-RT-PB	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	100		%REC
AP-RT-PB	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104	Е	%REC
AP-RT-PB	NC34SDG006	Dibromo-octafluoro-biphenyl	81		%REC
AP-RT-PB-B27	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
AP-RT-PB-B27	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
AP-RT-PB-B27	NC34SDG003	Dibromo-octafluoro-biphenyl	82		%REC
AP-RT-PB-T09	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
AP-RT-PB-T09	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	141	&	%REC
AP-RT-PB-T09	NC28SDG013	Dibromo-octafluoro-biphenyl	71		%REC
AP-RT-PB-T1	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
AP-RT-PB-T1	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC
AP-RT-PB-T1	NC28SDG001	Dibromo-octafluoro-biphenyl	80		%REC
AP-RT-PB-T11	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	46		%REC
AP-RT-PB-T11	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
AP-RT-PB-T11	NC28SDG019	Dibromo-octafluoro-biphenyl	22	&	%REC
AP-RT-PB-T4	NC28SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
AP-RT-PB-T4	NC28SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	133	&	%REC
AP-RT-PB-T4	NC28SDG005	Dibromo-octafluoro-biphenyl	60		%REC
AP-RT-PB-T6	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
AP-RT-PB-T6	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	74		%REC
AP-RT-PB-T6	NC28SDG010	Dibromo-octafluoro-biphenyl	45		%REC
Blank Spike	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
Blank Spike	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	107		%REC
Blank Spike	CSC81SDG001	Dibromo-octafluoro-biphenyl	61		%REC
Blank Spike	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	47		%REC
Blank Spike	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	56		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike	CSC81SDG002	Dibromo-octafluoro-biphenyl	28	&	%REC
Blank Spike	CSC81SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike	CSC81SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
Blank Spike	CSC81SDG004	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike	CSC81SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	47		%REC
Blank Spike	CSC81SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	55		%REC
Blank Spike	CSC81SDG005	Dibromo-octafluoro-biphenyl	49		%REC
Blank Spike	CSC81SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	37	&	%REC
Blank Spike	CSC81SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	53		%REC
Blank Spike	CSC81SDG006	Dibromo-octafluoro-biphenyl	34	&	%REC
Blank Spike	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	58		%REC
Blank Spike	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	57		%REC
Blank Spike	CSC81SDG007	Dibromo-octafluoro-biphenyl	55		%REC
Blank Spike	CSC81SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
Blank Spike	CSC81SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	72		%REC
Blank Spike	CSC81SDG008	Dibromo-octafluoro-biphenyl	61		%REC
Blank Spike	CSC81SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
Blank Spike	CSC81SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	72		%REC
Blank Spike	CSC81SDG009	Dibromo-octafluoro-biphenyl	57		%REC
Blank Spike	CSC81SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Blank Spike	CSC81SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Blank Spike	CSC81SDG010	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike	CSC81SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Blank Spike	CSC81SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Blank Spike	CSC81SDG011	Dibromo-octafluoro-biphenyl	66		%REC
Blank Spike	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
Blank Spike	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	77		%REC
Blank Spike	CSC81SDG012	Dibromo-octafluoro-biphenyl	55		%REC
Blank Spike	CSC81SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
Blank Spike	CSC81SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
Blank Spike	CSC81SDG013	Dibromo-octafluoro-biphenyl	62		%REC
Blank Spike	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Blank Spike	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Blank Spike	CSC81SDG014	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Blank Spike	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike	NC22SDG001	Dibromo-octafluoro-biphenyl	59		%REC
Blank Spike	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Blank Spike	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Blank Spike	NC22SDG002	Dibromo-octafluoro-biphenyl	78		%REC
Blank Spike	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Blank Spike	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
Blank Spike	NC22SDG003	Dibromo-octafluoro-biphenyl	65		%REC
Blank Spike	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Blank Spike	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
Blank Spike	NC22SDG004	Dibromo-octafluoro-biphenyl	70		%REC
Blank Spike	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Blank Spike	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	99		%REC
Blank Spike	NC22SDG005	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
Blank Spike	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Blank Spike	NC22SDG006	Dibromo-octafluoro-biphenyl	65		%REC
Blank Spike	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Blank Spike	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Blank Spike	NC22SDG007	Dibromo-octafluoro-biphenyl	61		%REC
Blank Spike	NC22SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike	NC22SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Blank Spike	NC22SDG008	Dibromo-octafluoro-biphenyl	68		%REC
Blank Spike	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Blank Spike	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
Blank Spike	NC22SDG009	Dibromo-octafluoro-biphenyl	75		%REC
Blank Spike	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
Blank Spike	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Blank Spike	NC22SDG010	Dibromo-octafluoro-biphenyl	58		%REC
Blank Spike	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Blank Spike	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Blank Spike	NC22SDG011	Dibromo-octafluoro-biphenyl	59		%REC
Blank Spike	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Blank Spike	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	75		%REC
Blank Spike	NC22SDG012	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
Blank Spike	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike	NC22SDG013	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
Blank Spike	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
Blank Spike	NC22SDG014	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
Blank Spike	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Blank Spike	NC22SDG015	Dibromo-octafluoro-biphenyl	72		%REC
Blank Spike	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Blank Spike	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Blank Spike	NC22SDG016	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Blank Spike	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Blank Spike	NC22SDG017	Dibromo-octafluoro-biphenyl	65		%REC
Blank Spike	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Blank Spike	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Blank Spike	NC22SDG018	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Blank Spike	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Blank Spike	NC22SDG019	Dibromo-octafluoro-biphenyl	66		%REC
Blank Spike	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
Blank Spike	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC
Blank Spike	NC22SDG020	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Blank Spike	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC
Blank Spike	NC22SDG021	Dibromo-octafluoro-biphenyl	48		%REC
Blank Spike	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Blank Spike	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
Blank Spike	NC22SDG022	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	50		%REC
Blank Spike	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	65		%REC
Blank Spike	NC22SDG023	Dibromo-octafluoro-biphenyl	29	&	%REC
Blank Spike	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Blank Spike	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
Blank Spike	NC22SDG024	Dibromo-octafluoro-biphenyl	47		%REC
Blank Spike	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
Blank Spike	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	133	&	%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike	NC22SDG025	Dibromo-octafluoro-biphenyl	76		%REC
Blank Spike	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
Blank Spike	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Blank Spike	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	133	&	%REC
Blank Spike	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Blank Spike	NC22SDG026	Dibromo-octafluoro-biphenyl	56		%REC
Blank Spike	NC22SDG026	Dibromo-octafluoro-biphenyl	86		%REC
Blank Spike	NC22SDG050	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Blank Spike	NC22SDG050	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	57		%REC
Blank Spike	NC22SDG050	Dibromo-octafluoro-biphenyl	49		%REC
Blank Spike	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Blank Spike	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	63		%REC
Blank Spike	NC22SDG053	Dibromo-octafluoro-biphenyl	57		%REC
Blank Spike	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
Blank Spike	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
Blank Spike	NC22SDG054	Dibromo-octafluoro-biphenyl	78		%REC
Blank Spike	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Blank Spike	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	108		%REC
Blank Spike	NC28SDG001	Dibromo-octafluoro-biphenyl	71		%REC
Blank Spike	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	53		%REC
Blank Spike	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	48		%REC
Blank Spike	NC28SDG002	Dibromo-octafluoro-biphenyl	47		%REC
Blank Spike	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	107		%REC
Blank Spike	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	119		%REC
Blank Spike	NC28SDG003	Dibromo-octafluoro-biphenyl	82		%REC
Blank Spike	NC28SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Blank Spike	NC28SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
Blank Spike	NC28SDG004	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike	NC28SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
Blank Spike	NC28SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
Blank Spike	NC28SDG005	Dibromo-octafluoro-biphenyl	59		%REC
Blank Spike	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Blank Spike	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Blank Spike	NC28SDG006	Dibromo-octafluoro-biphenyl	60		%REC
Blank Spike	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	77		%REC
Blank Spike	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike	NC28SDG007	Dibromo-octafluoro-biphenyl	56		%REC
Blank Spike	NC28SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Blank Spike	NC28SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Blank Spike	NC28SDG008	Dibromo-octafluoro-biphenyl	60		%REC
Blank Spike	NC28SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	65		%REC
Blank Spike	NC28SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC
Blank Spike	NC28SDG009	Dibromo-octafluoro-biphenyl	56		%REC
Blank Spike	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	56		%REC
Blank Spike	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	60		%REC
Blank Spike	NC28SDG010	Dibromo-octafluoro-biphenyl	45		%REC
Blank Spike	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Blank Spike	NC28SDG011	Dibromo-octafluoro-biphenyl	53		%REC
Blank Spike	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Blank Spike	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
Blank Spike	NC28SDG012	Dibromo-octafluoro-biphenyl	81		%REC
Blank Spike	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	60		%REC
Blank Spike	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Blank Spike	NC28SDG013	Dibromo-octafluoro-biphenyl	55		%REC
Blank Spike	NC28SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
Blank Spike	NC28SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	74		%REC
Blank Spike	NC28SDG014	Dibromo-octafluoro-biphenyl	56		%REC
Blank Spike	NC28SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
Blank Spike	NC28SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
Blank Spike	NC28SDG015	Dibromo-octafluoro-biphenyl	78		%REC
Blank Spike	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	51		%REC
Blank Spike	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	61		%REC
Blank Spike	NC28SDG016	Dibromo-octafluoro-biphenyl	42	&	%REC
Blank Spike	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
Blank Spike	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
Blank Spike	NC28SDG017	Dibromo-octafluoro-biphenyl	58		%REC
Blank Spike	NC28SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Blank Spike	NC28SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
Blank Spike	NC28SDG018	Dibromo-octafluoro-biphenyl	82		%REC
Blank Spike	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Blank Spike	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike	NC28SDG019	Dibromo-octafluoro-biphenyl	53		%REC
Blank Spike	NC28SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Blank Spike	NC28SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
Blank Spike	NC28SDG020	Dibromo-octafluoro-biphenyl	60		%REC
Blank Spike	NC28SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Blank Spike	NC28SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Blank Spike	NC28SDG021	Dibromo-octafluoro-biphenyl	47		%REC
Blank Spike	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Blank Spike	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	68		%REC
Blank Spike	NC28SDG022	Dibromo-octafluoro-biphenyl	70		%REC
Blank Spike	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
Blank Spike	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Blank Spike	NC28SDG023	Dibromo-octafluoro-biphenyl	73		%REC
Blank Spike	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Blank Spike	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
Blank Spike	NC34SDG001	Dibromo-octafluoro-biphenyl	66		%REC
Blank Spike	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Blank Spike	NC34SDG002	Dibromo-octafluoro-biphenyl	75		%REC
Blank Spike	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Blank Spike	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Blank Spike	NC34SDG003	Dibromo-octafluoro-biphenyl	75		%REC
Blank Spike	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Blank Spike	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
Blank Spike	NC34SDG004	Dibromo-octafluoro-biphenyl	78		%REC
Blank Spike	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	60		%REC
Blank Spike	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	69		%REC
Blank Spike	NC34SDG005	Dibromo-octafluoro-biphenyl	52		%REC
Blank Spike	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Blank Spike	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Blank Spike	NC34SDG006	Dibromo-octafluoro-biphenyl	63		%REC
Blank Spike	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
Blank Spike	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
Blank Spike	NC34SDG007	Dibromo-octafluoro-biphenyl	52		%REC
Blank Spike	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
Blank Spike	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike	NC34SDG008	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
Blank Spike	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
Blank Spike	NC34SDG009	Dibromo-octafluoro-biphenyl	71		%REC
Blank Spike	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
Blank Spike	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
Blank Spike	NC34SDG010	Dibromo-octafluoro-biphenyl	63		%REC
Blank Spike	NC34SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike	NC34SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
Blank Spike	NC34SDG011	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
Blank Spike	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
Blank Spike	NC34SDG012	Dibromo-octafluoro-biphenyl	75		%REC
Blank Spike	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Blank Spike	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC
Blank Spike	NC34SDG013	Dibromo-octafluoro-biphenyl	48		%REC
Blank Spike Duplicate	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Blank Spike Duplicate	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
Blank Spike Duplicate	CSC81SDG001	Dibromo-octafluoro-biphenyl	63		%REC
Blank Spike Duplicate	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	52		%REC
Blank Spike Duplicate	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	53		%REC
Blank Spike Duplicate	CSC81SDG002	Dibromo-octafluoro-biphenyl	45		%REC
Blank Spike Duplicate	CSC81SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Blank Spike Duplicate	CSC81SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	108		%REC
Blank Spike Duplicate	CSC81SDG004	Dibromo-octafluoro-biphenyl	73		%REC
Blank Spike Duplicate	CSC81SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	58		%REC
Blank Spike Duplicate	CSC81SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	60		%REC
Blank Spike Duplicate	CSC81SDG005	Dibromo-octafluoro-biphenyl	49		%REC
Blank Spike Duplicate	CSC81SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	37	&	%REC
Blank Spike Duplicate	CSC81SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	54		%REC
Blank Spike Duplicate	CSC81SDG006	Dibromo-octafluoro-biphenyl	48		%REC
Blank Spike Duplicate	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	54		%REC
Blank Spike Duplicate	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	51		%REC
Blank Spike Duplicate	CSC81SDG007	Dibromo-octafluoro-biphenyl	50		%REC
Blank Spike Duplicate	CSC81SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
Blank Spike Duplicate	CSC81SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	75		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike Duplicate	CSC81SDG008	Dibromo-octafluoro-biphenyl	62		%REC
Blank Spike Duplicate	CSC81SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	62		%REC
Blank Spike Duplicate	CSC81SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	73		%REC
Blank Spike Duplicate	CSC81SDG009	Dibromo-octafluoro-biphenyl	60		%REC
Blank Spike Duplicate	CSC81SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
Blank Spike Duplicate	CSC81SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC
Blank Spike Duplicate	CSC81SDG010	Dibromo-octafluoro-biphenyl	59		%REC
Blank Spike Duplicate	CSC81SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Blank Spike Duplicate	CSC81SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Blank Spike Duplicate	CSC81SDG011	Dibromo-octafluoro-biphenyl	68		%REC
Blank Spike Duplicate	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Blank Spike Duplicate	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	71		%REC
Blank Spike Duplicate	CSC81SDG012	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike Duplicate	CSC81SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Blank Spike Duplicate	CSC81SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
Blank Spike Duplicate	CSC81SDG013	Dibromo-octafluoro-biphenyl	66		%REC
Blank Spike Duplicate	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Blank Spike Duplicate	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	78		%REC
Blank Spike Duplicate	CSC81SDG014	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike Duplicate	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
Blank Spike Duplicate	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Blank Spike Duplicate	NC22SDG001	Dibromo-octafluoro-biphenyl	61		%REC
Blank Spike Duplicate	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike Duplicate	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
Blank Spike Duplicate	NC22SDG002	Dibromo-octafluoro-biphenyl	72		%REC
Blank Spike Duplicate	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike Duplicate	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC
Blank Spike Duplicate	NC22SDG003	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike Duplicate	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
Blank Spike Duplicate	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Blank Spike Duplicate	NC22SDG004	Dibromo-octafluoro-biphenyl	65		%REC
Blank Spike Duplicate	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Blank Spike Duplicate	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	107		%REC
Blank Spike Duplicate	NC22SDG005	Dibromo-octafluoro-biphenyl	80		%REC
Blank Spike Duplicate	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
Blank Spike Duplicate	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike Duplicate	NC22SDG006	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike Duplicate	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Blank Spike Duplicate	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Blank Spike Duplicate	NC22SDG007	Dibromo-octafluoro-biphenyl	60		%REC
Blank Spike Duplicate	NC22SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
Blank Spike Duplicate	NC22SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Blank Spike Duplicate	NC22SDG008	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike Duplicate	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Blank Spike Duplicate	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Blank Spike Duplicate	NC22SDG009	Dibromo-octafluoro-biphenyl	72		%REC
Blank Spike Duplicate	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
Blank Spike Duplicate	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Blank Spike Duplicate	NC22SDG010	Dibromo-octafluoro-biphenyl	53		%REC
Blank Spike Duplicate	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
Blank Spike Duplicate	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Blank Spike Duplicate	NC22SDG011	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike Duplicate	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
Blank Spike Duplicate	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	77		%REC
Blank Spike Duplicate	NC22SDG012	Dibromo-octafluoro-biphenyl	72		%REC
Blank Spike Duplicate	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Blank Spike Duplicate	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	99		%REC
Blank Spike Duplicate	NC22SDG013	Dibromo-octafluoro-biphenyl	59		%REC
Blank Spike Duplicate	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
Blank Spike Duplicate	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC
Blank Spike Duplicate	NC22SDG014	Dibromo-octafluoro-biphenyl	79		%REC
Blank Spike Duplicate	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Blank Spike Duplicate	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
Blank Spike Duplicate	NC22SDG015	Dibromo-octafluoro-biphenyl	80		%REC
Blank Spike Duplicate	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Blank Spike Duplicate	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC
Blank Spike Duplicate	NC22SDG016	Dibromo-octafluoro-biphenyl	59		%REC
Blank Spike Duplicate	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
Blank Spike Duplicate	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Blank Spike Duplicate	NC22SDG017	Dibromo-octafluoro-biphenyl	73		%REC
Blank Spike Duplicate	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
Blank Spike Duplicate	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike Duplicate	NC22SDG018	Dibromo-octafluoro-biphenyl	54		%REC
Blank Spike Duplicate	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Blank Spike Duplicate	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Blank Spike Duplicate	NC22SDG019	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike Duplicate	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Blank Spike Duplicate	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC
Blank Spike Duplicate	NC22SDG020	Dibromo-octafluoro-biphenyl	62		%REC
Blank Spike Duplicate	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
Blank Spike Duplicate	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	121		%REC
Blank Spike Duplicate	NC22SDG021	Dibromo-octafluoro-biphenyl	53		%REC
Blank Spike Duplicate	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Blank Spike Duplicate	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC
Blank Spike Duplicate	NC22SDG022	Dibromo-octafluoro-biphenyl	45		%REC
Blank Spike Duplicate	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
Blank Spike Duplicate	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	73		%REC
Blank Spike Duplicate	NC22SDG023	Dibromo-octafluoro-biphenyl	42	&	%REC
Blank Spike Duplicate	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Blank Spike Duplicate	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
Blank Spike Duplicate	NC22SDG024	Dibromo-octafluoro-biphenyl	51		%REC
Blank Spike Duplicate	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Blank Spike Duplicate	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Blank Spike Duplicate	NC22SDG025	Dibromo-octafluoro-biphenyl	46		%REC
Blank Spike Duplicate	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
Blank Spike Duplicate	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
Blank Spike Duplicate	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	127	&	%REC
Blank Spike Duplicate	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	137	&	%REC
Blank Spike Duplicate	NC22SDG026	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike Duplicate	NC22SDG026	Dibromo-octafluoro-biphenyl	81		%REC
Blank Spike Duplicate	NC22SDG050	103 - 2,2',4,5',6-Pentachlorobiphenyl	56		%REC
Blank Spike Duplicate	NC22SDG050	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	58		%REC
Blank Spike Duplicate	NC22SDG050	Dibromo-octafluoro-biphenyl	51		%REC
Blank Spike Duplicate	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	59		%REC
Blank Spike Duplicate	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	65		%REC
Blank Spike Duplicate	NC22SDG053	Dibromo-octafluoro-biphenyl	61		%REC
Blank Spike Duplicate	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Blank Spike Duplicate	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike Duplicate	NC22SDG054	Dibromo-octafluoro-biphenyl	75		%REC
Blank Spike Duplicate	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Blank Spike Duplicate	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
Blank Spike Duplicate	NC28SDG001	Dibromo-octafluoro-biphenyl	68		%REC
Blank Spike Duplicate	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
Blank Spike Duplicate	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
Blank Spike Duplicate	NC28SDG002	Dibromo-octafluoro-biphenyl	85		%REC
Blank Spike Duplicate	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	111		%REC
Blank Spike Duplicate	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
Blank Spike Duplicate	NC28SDG003	Dibromo-octafluoro-biphenyl	90		%REC
Blank Spike Duplicate	NC28SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
Blank Spike Duplicate	NC28SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
Blank Spike Duplicate	NC28SDG004	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike Duplicate	NC28SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
Blank Spike Duplicate	NC28SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
Blank Spike Duplicate	NC28SDG005	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike Duplicate	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	66		%REC
Blank Spike Duplicate	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	77		%REC
Blank Spike Duplicate	NC28SDG006	Dibromo-octafluoro-biphenyl	56		%REC
Blank Spike Duplicate	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
Blank Spike Duplicate	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Blank Spike Duplicate	NC28SDG007	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike Duplicate	NC28SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike Duplicate	NC28SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
Blank Spike Duplicate	NC28SDG008	Dibromo-octafluoro-biphenyl	63		%REC
Blank Spike Duplicate	NC28SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
Blank Spike Duplicate	NC28SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	69		%REC
Blank Spike Duplicate	NC28SDG009	Dibromo-octafluoro-biphenyl	56		%REC
Blank Spike Duplicate	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Blank Spike Duplicate	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	59		%REC
Blank Spike Duplicate	NC28SDG010	Dibromo-octafluoro-biphenyl	41	&	%REC
Blank Spike Duplicate	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
Blank Spike Duplicate	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Blank Spike Duplicate	NC28SDG011	Dibromo-octafluoro-biphenyl	51		%REC
Blank Spike Duplicate	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
Blank Spike Duplicate	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike Duplicate	NC28SDG012	Dibromo-octafluoro-biphenyl	79		%REC
Blank Spike Duplicate	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
Blank Spike Duplicate	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
Blank Spike Duplicate	NC28SDG013	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike Duplicate	NC28SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
Blank Spike Duplicate	NC28SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	77		%REC
Blank Spike Duplicate	NC28SDG014	Dibromo-octafluoro-biphenyl	65		%REC
Blank Spike Duplicate	NC28SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike Duplicate	NC28SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
Blank Spike Duplicate	NC28SDG015	Dibromo-octafluoro-biphenyl	82		%REC
Blank Spike Duplicate	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	48		%REC
Blank Spike Duplicate	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	68		%REC
Blank Spike Duplicate	NC28SDG016	Dibromo-octafluoro-biphenyl	30	&	%REC
Blank Spike Duplicate	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
Blank Spike Duplicate	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	65		%REC
Blank Spike Duplicate	NC28SDG017	Dibromo-octafluoro-biphenyl	62		%REC
Blank Spike Duplicate	NC28SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
Blank Spike Duplicate	NC28SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
Blank Spike Duplicate	NC28SDG018	Dibromo-octafluoro-biphenyl	63		%REC
Blank Spike Duplicate	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Blank Spike Duplicate	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	74		%REC
Blank Spike Duplicate	NC28SDG019	Dibromo-octafluoro-biphenyl	59		%REC
Blank Spike Duplicate	NC28SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Blank Spike Duplicate	NC28SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
Blank Spike Duplicate	NC28SDG020	Dibromo-octafluoro-biphenyl	65		%REC
Blank Spike Duplicate	NC28SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Blank Spike Duplicate	NC28SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Blank Spike Duplicate	NC28SDG021	Dibromo-octafluoro-biphenyl	53		%REC
Blank Spike Duplicate	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
Blank Spike Duplicate	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	70		%REC
Blank Spike Duplicate	NC28SDG022	Dibromo-octafluoro-biphenyl	61		%REC
Blank Spike Duplicate	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Blank Spike Duplicate	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
Blank Spike Duplicate	NC28SDG023	Dibromo-octafluoro-biphenyl	64		%REC
Blank Spike Duplicate	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
Blank Spike Duplicate	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike Duplicate	NC34SDG001	Dibromo-octafluoro-biphenyl	78		%REC
Blank Spike Duplicate	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	77		%REC
Blank Spike Duplicate	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Blank Spike Duplicate	NC34SDG002	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike Duplicate	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Blank Spike Duplicate	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Blank Spike Duplicate	NC34SDG003	Dibromo-octafluoro-biphenyl	73		%REC
Blank Spike Duplicate	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Blank Spike Duplicate	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
Blank Spike Duplicate	NC34SDG004	Dibromo-octafluoro-biphenyl	77		%REC
Blank Spike Duplicate	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
Blank Spike Duplicate	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	66		%REC
Blank Spike Duplicate	NC34SDG005	Dibromo-octafluoro-biphenyl	55		%REC
Blank Spike Duplicate	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Blank Spike Duplicate	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	78		%REC
Blank Spike Duplicate	NC34SDG006	Dibromo-octafluoro-biphenyl	61		%REC
Blank Spike Duplicate	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Blank Spike Duplicate	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
Blank Spike Duplicate	NC34SDG007	Dibromo-octafluoro-biphenyl	47		%REC
Blank Spike Duplicate	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
Blank Spike Duplicate	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
Blank Spike Duplicate	NC34SDG008	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike Duplicate	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
Blank Spike Duplicate	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
Blank Spike Duplicate	NC34SDG009	Dibromo-octafluoro-biphenyl	67		%REC
Blank Spike Duplicate	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Blank Spike Duplicate	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Blank Spike Duplicate	NC34SDG010	Dibromo-octafluoro-biphenyl	69		%REC
Blank Spike Duplicate	NC34SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Blank Spike Duplicate	NC34SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
Blank Spike Duplicate	NC34SDG011	Dibromo-octafluoro-biphenyl	89		%REC
Blank Spike Duplicate	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
Blank Spike Duplicate	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Blank Spike Duplicate	NC34SDG012	Dibromo-octafluoro-biphenyl	71		%REC
Blank Spike Duplicate	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
Blank Spike Duplicate	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Blank Spike Duplicate	NC34SDG013	Dibromo-octafluoro-biphenyl	68		%REC
CRI040300-MB-B01	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
CRI040300-MB-B01	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	121		%REC
CRI040300-MB-B01	NC22SDG006	Dibromo-octafluoro-biphenyl	76		%REC
CRI040300-MB-B02	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
CRI040300-MB-B02	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
CRI040300-MB-B02	NC22SDG007	Dibromo-octafluoro-biphenyl	83		%REC
CRI040300-MB-B03	NC22SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
CRI040300-MB-B03	NC22SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
CRI040300-MB-B03	NC22SDG008	Dibromo-octafluoro-biphenyl	92		%REC
CRI042500-MB-B01	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
CRI042500-MB-B01	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
CRI042500-MB-B01	NC22SDG009	Dibromo-octafluoro-biphenyl	90		%REC
CRI042500-MB-B02	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
CRI042500-MB-B02	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	109		%REC
CRI042500-MB-B02	NC22SDG010	Dibromo-octafluoro-biphenyl	73		%REC
CRI042500-MB-B03	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
CRI042500-MB-B03	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
CRI042500-MB-B03	NC22SDG012	Dibromo-octafluoro-biphenyl	83		%REC
CRI050200-MB-B01	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
CRI050200-MB-B01	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
CRI050200-MB-B01	NC22SDG011	Dibromo-octafluoro-biphenyl	71		%REC
CRI052300-MB-B01	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
CRI052300-MB-B01	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC
CRI052300-MB-B01	NC22SDG013	Dibromo-octafluoro-biphenyl	60		%REC
CRI052300-MB-B02	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
CRI052300-MB-B02	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	108		%REC
CRI052300-MB-B02	NC22SDG017	Dibromo-octafluoro-biphenyl	70		%REC
CRI052300-MB-B03	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
CRI052300-MB-B03	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	149	&	%REC
CRI052300-MB-B03	NC22SDG018	Dibromo-octafluoro-biphenyl	72		%REC
Instrument Reference Standard	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC
Instrument Reference Standard	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	CSC81SDG001	Dibromo-octafluoro-biphenyl	93		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	CSC81SDG001	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	72		%REC
Instrument Reference Standard	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	CSC81SDG002	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	CSC81SDG002	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	CSC81SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	CSC81SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	CSC81SDG004	Dibromo-octafluoro-biphenyl	98		%REC
Instrument Reference Standard	CSC81SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
Instrument Reference Standard	CSC81SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Instrument Reference Standard	CSC81SDG005	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	CSC81SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	CSC81SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
Instrument Reference Standard	CSC81SDG006	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Instrument Reference Standard	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	77		%REC
Instrument Reference Standard	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	CSC81SDG007	Dibromo-octafluoro-biphenyl	87		%REC
Instrument Reference Standard	CSC81SDG007	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	CSC81SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	CSC81SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	CSC81SDG008	Dibromo-octafluoro-biphenyl	96		%REC
Instrument Reference Standard	CSC81SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	CSC81SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	CSC81SDG009	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	CSC81SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	CSC81SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
Instrument Reference Standard	CSC81SDG010	Dibromo-octafluoro-biphenyl	96		%REC
Instrument Reference Standard	CSC81SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
Instrument Reference Standard	CSC81SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Instrument Reference Standard	CSC81SDG011	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	CSC81SDG012	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	CSC81SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
Instrument Reference Standard	CSC81SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
Instrument Reference Standard	CSC81SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	96		%REC
Instrument Reference Standard	CSC81SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
Instrument Reference Standard	CSC81SDG013	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	CSC81SDG013	Dibromo-octafluoro-biphenyl	97		%REC
Instrument Reference Standard	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
Instrument Reference Standard	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
Instrument Reference Standard	CSC81SDG014	Dibromo-octafluoro-biphenyl	96		%REC
Instrument Reference Standard	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
Instrument Reference Standard	NC22SDG001	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	NC22SDG001	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
Instrument Reference Standard	NC22SDG002	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	NC22SDG002	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC22SDG003	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Instrument Reference Standard	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	NC22SDG004	Dibromo-octafluoro-biphenyl	92		%REC
Instrument Reference Standard	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Instrument Reference Standard	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	NC22SDG005	Dibromo-octafluoro-biphenyl	92		%REC
Instrument Reference Standard	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC22SDG006	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC22SDG007	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC22SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	NC22SDG008	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
Instrument Reference Standard	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	NC22SDG009	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	NC22SDG009	Dibromo-octafluoro-biphenyl	89		%REC
Instrument Reference Standard	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
Instrument Reference Standard	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	NC22SDG010	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	NC22SDG010	Dibromo-octafluoro-biphenyl	89		%REC
Instrument Reference Standard	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Instrument Reference Standard	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Instrument Reference Standard	NC22SDG011	Dibromo-octafluoro-biphenyl	82		%REC
Instrument Reference Standard	NC22SDG011	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Instrument Reference Standard	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
Instrument Reference Standard	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Instrument Reference Standard	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC22SDG012	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC22SDG012	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Instrument Reference Standard	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Instrument Reference Standard	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
Instrument Reference Standard	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC22SDG013	Dibromo-octafluoro-biphenyl	82		%REC
Instrument Reference Standard	NC22SDG013	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC22SDG014	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Instrument Reference Standard	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Instrument Reference Standard	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
Instrument Reference Standard	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	NC22SDG015	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC22SDG015	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Instrument Reference Standard	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Instrument Reference Standard	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	NC22SDG016	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
Instrument Reference Standard	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC22SDG017	Dibromo-octafluoro-biphenyl	85		%REC
Instrument Reference Standard	NC22SDG017	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Instrument Reference Standard	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
Instrument Reference Standard	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Instrument Reference Standard	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC22SDG018	Dibromo-octafluoro-biphenyl	85		%REC
Instrument Reference Standard	NC22SDG018	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Instrument Reference Standard	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Instrument Reference Standard	NC22SDG019	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC22SDG019	Dibromo-octafluoro-biphenyl	96		%REC
Instrument Reference Standard	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Instrument Reference Standard	NC22SDG020	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG020	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
Instrument Reference Standard	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Instrument Reference Standard	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Instrument Reference Standard	NC22SDG021	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC22SDG021	Dibromo-octafluoro-biphenyl	96		%REC
Instrument Reference Standard	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
Instrument Reference Standard	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC
Instrument Reference Standard	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Instrument Reference Standard	NC22SDG022	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG022	Dibromo-octafluoro-biphenyl	91		%REC
Instrument Reference Standard	NC22SDG022	Dibromo-octafluoro-biphenyl	96		%REC
Instrument Reference Standard	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Instrument Reference Standard	NC22SDG023	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC
Instrument Reference Standard	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Instrument Reference Standard	NC22SDG024	Dibromo-octafluoro-biphenyl	91		%REC
Instrument Reference Standard	NC22SDG024	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
Instrument Reference Standard	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Instrument Reference Standard	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
Instrument Reference Standard	NC22SDG025	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
Instrument Reference Standard	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC22SDG026	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG026	Dibromo-octafluoro-biphenyl	92		%REC
Instrument Reference Standard	NC22SDG050	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC22SDG050	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC22SDG050	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Instrument Reference Standard	NC22SDG050	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Instrument Reference Standard	NC22SDG050	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC22SDG050	Dibromo-octafluoro-biphenyl	96		%REC
Instrument Reference Standard	NC22SDG052	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	NC22SDG052	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	77		%REC
Instrument Reference Standard	NC22SDG052	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC
Instrument Reference Standard	NC22SDG053	Dibromo-octafluoro-biphenyl	103		%REC
Instrument Reference Standard	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
Instrument Reference Standard	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	74		%REC
Instrument Reference Standard	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
Instrument Reference Standard	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
Instrument Reference Standard	NC22SDG054	Dibromo-octafluoro-biphenyl	85		%REC
Instrument Reference Standard	NC22SDG054	Dibromo-octafluoro-biphenyl	89		%REC
Instrument Reference Standard	NC22SDG054	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
Instrument Reference Standard	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
Instrument Reference Standard	NC28SDG001	Dibromo-octafluoro-biphenyl	85		%REC
Instrument Reference Standard	NC28SDG001	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
Instrument Reference Standard	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Instrument Reference Standard	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG002	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC28SDG002	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG003	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC28SDG003	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC28SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG004	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC28SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC28SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG005	Dibromo-octafluoro-biphenyl	91		%REC
Instrument Reference Standard	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Instrument Reference Standard	NC28SDG006	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Instrument Reference Standard	NC28SDG007	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC28SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG008	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC28SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG009	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG010	Dibromo-octafluoro-biphenyl	91		%REC
Instrument Reference Standard	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
Instrument Reference Standard	NC28SDG011	Dibromo-octafluoro-biphenyl	83		%REC
Instrument Reference Standard	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
Instrument Reference Standard	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG012	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG013	Dibromo-octafluoro-biphenyl	89		%REC
Instrument Reference Standard	NC28SDG013	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC28SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	NC28SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC28SDG014	Dibromo-octafluoro-biphenyl	89		%REC
Instrument Reference Standard	NC28SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
Instrument Reference Standard	NC28SDG015	Dibromo-octafluoro-biphenyl	86		%REC
Instrument Reference Standard	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Instrument Reference Standard	NC28SDG016	Dibromo-octafluoro-biphenyl	92		%REC
Instrument Reference Standard	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Instrument Reference Standard	NC28SDG017	Dibromo-octafluoro-biphenyl	92		%REC
Instrument Reference Standard	NC28SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC28SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG018	Dibromo-octafluoro-biphenyl	90		%REC
Instrument Reference Standard	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG019	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC28SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
Instrument Reference Standard	NC28SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC28SDG020	Dibromo-octafluoro-biphenyl	89		%REC
Instrument Reference Standard	NC28SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	NC28SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Instrument Reference Standard	NC28SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG021	Dibromo-octafluoro-biphenyl	106		%REC
Instrument Reference Standard	NC28SDG021	Dibromo-octafluoro-biphenyl	95		%REC
Instrument Reference Standard	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG022	Dibromo-octafluoro-biphenyl	93		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC28SDG022	Dibromo-octafluoro-biphenyl	97		%REC
Instrument Reference Standard	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Instrument Reference Standard	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Instrument Reference Standard	NC28SDG023	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	NC28SDG023	Dibromo-octafluoro-biphenyl	97		%REC
Instrument Reference Standard	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	99		%REC
Instrument Reference Standard	NC34SDG001	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	NC34SDG001	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	99		%REC
Instrument Reference Standard	NC34SDG002	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	NC34SDG002	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	NC34SDG003	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
Instrument Reference Standard	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	103		%REC
Instrument Reference Standard	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Instrument Reference Standard	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Instrument Reference Standard	NC34SDG004	Dibromo-octafluoro-biphenyl	88		%REC
Instrument Reference Standard	NC34SDG004	Dibromo-octafluoro-biphenyl	92		%REC
Instrument Reference Standard	NC34SDG004	Dibromo-octafluoro-biphenyl	96		%REC
Instrument Reference Standard	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	108		%REC
Instrument Reference Standard	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
Instrument Reference Standard	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC
Instrument Reference Standard	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Instrument Reference Standard	NC34SDG005	Dibromo-octafluoro-biphenyl	100		%REC
Instrument Reference Standard	NC34SDG005	Dibromo-octafluoro-biphenyl	92		%REC
Instrument Reference Standard	NC34SDG005	Dibromo-octafluoro-biphenyl	98		%REC
Instrument Reference Standard	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
Instrument Reference Standard	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Instrument Reference Standard	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Instrument Reference Standard	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
Instrument Reference Standard	NC34SDG006	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	NC34SDG006	Dibromo-octafluoro-biphenyl	97		%REC
Instrument Reference Standard	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
Instrument Reference Standard	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
Instrument Reference Standard	NC34SDG007	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
Instrument Reference Standard	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
Instrument Reference Standard	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Instrument Reference Standard	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Instrument Reference Standard	NC34SDG008	Dibromo-octafluoro-biphenyl	94		%REC
Instrument Reference Standard	NC34SDG008	Dibromo-octafluoro-biphenyl	97		%REC
Instrument Reference Standard	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Instrument Reference Standard	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Instrument Reference Standard	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Instrument Reference Standard	NC34SDG009	Dibromo-octafluoro-biphenyl	87		%REC
Instrument Reference Standard	NC34SDG009	Dibromo-octafluoro-biphenyl	91		%REC
Instrument Reference Standard	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Instrument Reference Standard	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Instrument Reference Standard	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC
Instrument Reference Standard	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	99		%REC
Instrument Reference Standard	NC34SDG010	Dibromo-octafluoro-biphenyl	89		%REC
Instrument Reference Standard	NC34SDG010	Dibromo-octafluoro-biphenyl	98		%REC
Instrument Reference Standard	NC34SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
Instrument Reference Standard	NC34SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Instrument Reference Standard	NC34SDG011	Dibromo-octafluoro-biphenyl	91		%REC
Instrument Reference Standard	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Instrument Reference Standard	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
Instrument Reference Standard	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
Instrument Reference Standard	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Instrument Reference Standard	NC34SDG012	Dibromo-octafluoro-biphenyl	93		%REC
Instrument Reference Standard	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
Instrument Reference Standard	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
Instrument Reference Standard	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	74		%REC
Instrument Reference Standard	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	83		%REC
Instrument Reference Standard	NC34SDG013	Dibromo-octafluoro-biphenyl	85		%REC
Instrument Reference Standard	NC34SDG013	Dibromo-octafluoro-biphenyl	90		%REC
JMG020100-MB-B01	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
JMG020100-MB-B01	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
JMG020100-MB-B01	NC22SDG001	Dibromo-octafluoro-biphenyl	63		%REC
JMG031500-MB-B02	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
JMG031500-MB-B02	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
JMG031500-MB-B02	NC22SDG002	Dibromo-octafluoro-biphenyl	76		%REC
JMG031500-MB-B03	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
JMG031500-MB-B03	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	136	&	%REC
JMG031500-MB-B03	NC22SDG003	Dibromo-octafluoro-biphenyl	71		%REC
JMG031500-MB-B04	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
JMG031500-MB-B04	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
JMG031500-MB-B04	NC22SDG004	Dibromo-octafluoro-biphenyl	73		%REC
JMG031500-MB-B05	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
JMG031500-MB-B05	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	107		%REC
JMG031500-MB-B05	NC22SDG005	Dibromo-octafluoro-biphenyl	70		%REC
KML-060500-MB-B01	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
KML-060500-MB-B01	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	132	&	%REC
KML-060500-MB-B01	NC22SDG014	Dibromo-octafluoro-biphenyl	89		%REC
KML060500-MB-B02	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
KML060500-MB-B02	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
KML060500-MB-B02	NC22SDG015	Dibromo-octafluoro-biphenyl	64		%REC
KML061200-MB-B01	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
KML061200-MB-B01	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
KML061200-MB-B01	NC22SDG016	Dibromo-octafluoro-biphenyl	78		%REC
KML061200-MB-B02	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
KML061200-MB-B02	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
KML061200-MB-B02	NC22SDG022	Dibromo-octafluoro-biphenyl	80		%REC
KML070600-MB-B01	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
KML070600-MB-B01	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	96		%REC
KML070600-MB-B01	NC22SDG020	Dibromo-octafluoro-biphenyl	62		%REC
KML071800-HP-B1	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
KML071800-HP-B1	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	155	&	%REC
KML071800-HP-B1	NC22SDG026	Dibromo-octafluoro-biphenyl	70		%REC
KML071800-HP-B2	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
KML071800-HP-B2	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	132	&	%REC
KML071800-HP-B2	NC22SDG026	Dibromo-octafluoro-biphenyl	68		%REC
KML071800-MB-B01	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	47		%REC
KML071800-MB-B01	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	52		%REC
KML071800-MB-B01	NC22SDG021	Dibromo-octafluoro-biphenyl	37	&	%REC
KML071800-MB-B02	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
KML071800-MB-B02	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	173	&	%REC
KML071800-MB-B02	NC22SDG023	Dibromo-octafluoro-biphenyl	81		%REC
KML091900-HP-B1	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
KML091900-HP-B1	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	131	&	%REC
KML091900-HP-B1	NC22SDG054	Dibromo-octafluoro-biphenyl	72		%REC
KML0919-HP-B02	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
KML0919-HP-B02	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	120		%REC
KML0919-HP-B02	NC28SDG003	Dibromo-octafluoro-biphenyl	85		%REC
KML0919-HP-B03	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	106		%REC
KML0919-HP-B03	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	136	&	%REC
KML0919-HP-B03	NC28SDG003	Dibromo-octafluoro-biphenyl	81		%REC
KML0919-HP-B04	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
KML0919-HP-B04	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
KML0919-HP-B04	NC28SDG003	Dibromo-octafluoro-biphenyl	88		%REC
KML0919-HP-B05	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
KML0919-HP-B05	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	120		%REC
KML0919-HP-B05	NC28SDG003	Dibromo-octafluoro-biphenyl	85		%REC
Procedural Blank	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
Procedural Blank	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
Procedural Blank	CSC81SDG001	Dibromo-octafluoro-biphenyl	69		%REC
Procedural Blank	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Procedural Blank	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Procedural Blank	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Procedural Blank	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	93		%REC
Procedural Blank	CSC81SDG002	Dibromo-octafluoro-biphenyl	56		%REC
Procedural Blank	CSC81SDG002	Dibromo-octafluoro-biphenyl	57		%REC
Procedural Blank	CSC81SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Procedural Blank	CSC81SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC
Procedural Blank	CSC81SDG004	Dibromo-octafluoro-biphenyl	74		%REC
Procedural Blank	CSC81SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Procedural Blank	CSC81SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	51		%REC
Procedural Blank	CSC81SDG005	Dibromo-octafluoro-biphenyl	53		%REC
Procedural Blank	CSC81SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	40	&	%REC
Procedural Blank	CSC81SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	44	&	%REC
Procedural Blank	CSC81SDG006	Dibromo-octafluoro-biphenyl	33	&	%REC
Procedural Blank	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	51		%REC
Procedural Blank	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	60		%REC
Procedural Blank	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	61		%REC
Procedural Blank	CSC81SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
Procedural Blank	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	55		%REC
Procedural Blank	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	65		%REC
Procedural Blank	CSC81SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Procedural Blank	CSC81SDG007	Dibromo-octafluoro-biphenyl	49		%REC
Procedural Blank	CSC81SDG007	Dibromo-octafluoro-biphenyl	58		%REC
Procedural Blank	CSC81SDG007	Dibromo-octafluoro-biphenyl	65		%REC
Procedural Blank	CSC81SDG007	Dibromo-octafluoro-biphenyl	70		%REC
Procedural Blank	CSC81SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
Procedural Blank	CSC81SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	60		%REC
Procedural Blank	CSC81SDG008	Dibromo-octafluoro-biphenyl	60		%REC
Procedural Blank	CSC81SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
Procedural Blank	CSC81SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	69		%REC
Procedural Blank	CSC81SDG009	Dibromo-octafluoro-biphenyl	60		%REC
Procedural Blank	CSC81SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
Procedural Blank	CSC81SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Procedural Blank	CSC81SDG010	Dibromo-octafluoro-biphenyl	64		%REC
Procedural Blank	CSC81SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Procedural Blank	CSC81SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
Procedural Blank	CSC81SDG011	Dibromo-octafluoro-biphenyl	59		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Procedural Blank	CSC81SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Procedural Blank	CSC81SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC
Procedural Blank	CSC81SDG012	Dibromo-octafluoro-biphenyl	67		%REC
Procedural Blank	CSC81SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Procedural Blank	CSC81SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Procedural Blank	CSC81SDG013	Dibromo-octafluoro-biphenyl	59		%REC
Procedural Blank	CSC81SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Procedural Blank	CSC81SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
Procedural Blank	CSC81SDG014	Dibromo-octafluoro-biphenyl	66		%REC
Procedural Blank	NC22SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
Procedural Blank	NC22SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
Procedural Blank	NC22SDG001	Dibromo-octafluoro-biphenyl	72		%REC
Procedural Blank	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
Procedural Blank	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC
Procedural Blank	NC22SDG002	Dibromo-octafluoro-biphenyl	75		%REC
Procedural Blank	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
Procedural Blank	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC
Procedural Blank	NC22SDG003	Dibromo-octafluoro-biphenyl	65		%REC
Procedural Blank	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Procedural Blank	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	96		%REC
Procedural Blank	NC22SDG004	Dibromo-octafluoro-biphenyl	73		%REC
Procedural Blank	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
Procedural Blank	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
Procedural Blank	NC22SDG005	Dibromo-octafluoro-biphenyl	79		%REC
Procedural Blank	NC22SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
Procedural Blank	NC22SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
Procedural Blank	NC22SDG006	Dibromo-octafluoro-biphenyl	67		%REC
Procedural Blank	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
Procedural Blank	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	94		%REC
Procedural Blank	NC22SDG007	Dibromo-octafluoro-biphenyl	70		%REC
Procedural Blank	NC22SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
Procedural Blank	NC22SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	76		%REC
Procedural Blank	NC22SDG008	Dibromo-octafluoro-biphenyl	61		%REC
Procedural Blank	NC22SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
Procedural Blank	NC22SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Procedural Blank	NC22SDG009	Dibromo-octafluoro-biphenyl	72		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Procedural Blank	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Procedural Blank	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
Procedural Blank	NC22SDG010	Dibromo-octafluoro-biphenyl	65		%REC
Procedural Blank	NC22SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
Procedural Blank	NC22SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	88		%REC
Procedural Blank	NC22SDG011	Dibromo-octafluoro-biphenyl	62		%REC
Procedural Blank	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	54		%REC
Procedural Blank	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	56		%REC
Procedural Blank	NC22SDG012	Dibromo-octafluoro-biphenyl	49		%REC
Procedural Blank	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Procedural Blank	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC
Procedural Blank	NC22SDG013	Dibromo-octafluoro-biphenyl	57		%REC
Procedural Blank	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
Procedural Blank	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC
Procedural Blank	NC22SDG014	Dibromo-octafluoro-biphenyl	69		%REC
Procedural Blank	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
Procedural Blank	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Procedural Blank	NC22SDG015	Dibromo-octafluoro-biphenyl	74		%REC
Procedural Blank	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
Procedural Blank	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
Procedural Blank	NC22SDG016	Dibromo-octafluoro-biphenyl	76		%REC
Procedural Blank	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
Procedural Blank	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	79		%REC
Procedural Blank	NC22SDG017	Dibromo-octafluoro-biphenyl	66		%REC
Procedural Blank	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	77		%REC
Procedural Blank	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Procedural Blank	NC22SDG018	Dibromo-octafluoro-biphenyl	75		%REC
Procedural Blank	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
Procedural Blank	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	86		%REC
Procedural Blank	NC22SDG019	Dibromo-octafluoro-biphenyl	63		%REC
Procedural Blank	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
Procedural Blank	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Procedural Blank	NC22SDG020	Dibromo-octafluoro-biphenyl	78		%REC
Procedural Blank	NC22SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Procedural Blank	NC22SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	108		%REC
Procedural Blank	NC22SDG021	Dibromo-octafluoro-biphenyl	57		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Procedural Blank	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Procedural Blank	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Procedural Blank	NC22SDG022	Dibromo-octafluoro-biphenyl	67		%REC
Procedural Blank	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	48		%REC
Procedural Blank	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	68		%REC
Procedural Blank	NC22SDG023	Dibromo-octafluoro-biphenyl	34	&	%REC
Procedural Blank	NC22SDG024	103 - 2,2',4,5',6-Pentachlorobiphenyl	65		%REC
Procedural Blank	NC22SDG024	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Procedural Blank	NC22SDG024	Dibromo-octafluoro-biphenyl	59		%REC
Procedural Blank	NC22SDG025	103 - 2,2',4,5',6-Pentachlorobiphenyl	86		%REC
Procedural Blank	NC22SDG025	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	101		%REC
Procedural Blank	NC22SDG025	Dibromo-octafluoro-biphenyl	78		%REC
Procedural Blank	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
Procedural Blank	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
Procedural Blank	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC
Procedural Blank	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	72		%REC
Procedural Blank	NC22SDG026	Dibromo-octafluoro-biphenyl	53		%REC
Procedural Blank	NC22SDG026	Dibromo-octafluoro-biphenyl	59		%REC
Procedural Blank	NC22SDG050	103 - 2,2',4,5',6-Pentachlorobiphenyl	56		%REC
Procedural Blank	NC22SDG050	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
Procedural Blank	NC22SDG050	Dibromo-octafluoro-biphenyl	48		%REC
Procedural Blank	NC22SDG052	103 - 2,2',4,5',6-Pentachlorobiphenyl	116		%REC
Procedural Blank	NC22SDG052	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
Procedural Blank	NC22SDG052	Dibromo-octafluoro-biphenyl	121		%REC
Procedural Blank	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Procedural Blank	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
Procedural Blank	NC22SDG053	Dibromo-octafluoro-biphenyl	54		%REC
Procedural Blank	NC22SDG054	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
Procedural Blank	NC22SDG054	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Procedural Blank	NC22SDG054	Dibromo-octafluoro-biphenyl	77		%REC
Procedural Blank	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
Procedural Blank	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	82		%REC
Procedural Blank	NC28SDG001	Dibromo-octafluoro-biphenyl	76		%REC
Procedural Blank	NC28SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Procedural Blank	NC28SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	87		%REC
Procedural Blank	NC28SDG002	Dibromo-octafluoro-biphenyl	78		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Procedural Blank	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
Procedural Blank	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Procedural Blank	NC28SDG003	Dibromo-octafluoro-biphenyl	81		%REC
Procedural Blank	NC28SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
Procedural Blank	NC28SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
Procedural Blank	NC28SDG004	Dibromo-octafluoro-biphenyl	61		%REC
Procedural Blank	NC28SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
Procedural Blank	NC28SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	71		%REC
Procedural Blank	NC28SDG005	Dibromo-octafluoro-biphenyl	65		%REC
Procedural Blank	NC28SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
Procedural Blank	NC28SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	73		%REC
Procedural Blank	NC28SDG006	Dibromo-octafluoro-biphenyl	58		%REC
Procedural Blank	NC28SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	56		%REC
Procedural Blank	NC28SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	59		%REC
Procedural Blank	NC28SDG007	Dibromo-octafluoro-biphenyl	50		%REC
Procedural Blank	NC28SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	69		%REC
Procedural Blank	NC28SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
Procedural Blank	NC28SDG008	Dibromo-octafluoro-biphenyl	63		%REC
Procedural Blank	NC28SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	64		%REC
Procedural Blank	NC28SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	72		%REC
Procedural Blank	NC28SDG009	Dibromo-octafluoro-biphenyl	55		%REC
Procedural Blank	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Procedural Blank	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
Procedural Blank	NC28SDG010	Dibromo-octafluoro-biphenyl	45		%REC
Procedural Blank	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	59		%REC
Procedural Blank	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	58		%REC
Procedural Blank	NC28SDG011	Dibromo-octafluoro-biphenyl	44	&	%REC
Procedural Blank	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
Procedural Blank	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	136	&	%REC
Procedural Blank	NC28SDG012	Dibromo-octafluoro-biphenyl	74		%REC
Procedural Blank	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	60		%REC
Procedural Blank	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	71		%REC
Procedural Blank	NC28SDG013	Dibromo-octafluoro-biphenyl	52		%REC
Procedural Blank	NC28SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	65		%REC
Procedural Blank	NC28SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	85		%REC
Procedural Blank	NC28SDG014	Dibromo-octafluoro-biphenyl	28	&	%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Procedural Blank	NC28SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Procedural Blank	NC28SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
Procedural Blank	NC28SDG015	Dibromo-octafluoro-biphenyl	70		%REC
Procedural Blank	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	55		%REC
Procedural Blank	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	61		%REC
Procedural Blank	NC28SDG016	Dibromo-octafluoro-biphenyl	36	&	%REC
Procedural Blank	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
Procedural Blank	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	66		%REC
Procedural Blank	NC28SDG017	Dibromo-octafluoro-biphenyl	61		%REC
Procedural Blank	NC28SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	60		%REC
Procedural Blank	NC28SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	74		%REC
Procedural Blank	NC28SDG018	Dibromo-octafluoro-biphenyl	49		%REC
Procedural Blank	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	75		%REC
Procedural Blank	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	78		%REC
Procedural Blank	NC28SDG019	Dibromo-octafluoro-biphenyl	63		%REC
Procedural Blank	NC28SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
Procedural Blank	NC28SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	63		%REC
Procedural Blank	NC28SDG020	Dibromo-octafluoro-biphenyl	50		%REC
Procedural Blank	NC28SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	58		%REC
Procedural Blank	NC28SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
Procedural Blank	NC28SDG021	Dibromo-octafluoro-biphenyl	36	&	%REC
Procedural Blank	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
Procedural Blank	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	65		%REC
Procedural Blank	NC28SDG022	Dibromo-octafluoro-biphenyl	61		%REC
Procedural Blank	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
Procedural Blank	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Procedural Blank	NC28SDG023	Dibromo-octafluoro-biphenyl	71		%REC
Procedural Blank	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Procedural Blank	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
Procedural Blank	NC34SDG001	Dibromo-octafluoro-biphenyl	57		%REC
Procedural Blank	NC34SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
Procedural Blank	NC34SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Procedural Blank	NC34SDG002	Dibromo-octafluoro-biphenyl	48		%REC
Procedural Blank	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
Procedural Blank	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	97		%REC
Procedural Blank	NC34SDG003	Dibromo-octafluoro-biphenyl	73		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
Procedural Blank	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	99		%REC
Procedural Blank	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	109		%REC
Procedural Blank	NC34SDG004	Dibromo-octafluoro-biphenyl	75		%REC
Procedural Blank	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	66		%REC
Procedural Blank	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	61		%REC
Procedural Blank	NC34SDG005	Dibromo-octafluoro-biphenyl	60		%REC
Procedural Blank	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
Procedural Blank	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	84		%REC
Procedural Blank	NC34SDG006	Dibromo-octafluoro-biphenyl	62		%REC
Procedural Blank	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
Procedural Blank	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
Procedural Blank	NC34SDG007	Dibromo-octafluoro-biphenyl	47		%REC
Procedural Blank	NC34SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	71		%REC
Procedural Blank	NC34SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
Procedural Blank	NC34SDG008	Dibromo-octafluoro-biphenyl	56		%REC
Procedural Blank	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	100		%REC
Procedural Blank	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
Procedural Blank	NC34SDG009	Dibromo-octafluoro-biphenyl	63		%REC
Procedural Blank	NC34SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
Procedural Blank	NC34SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
Procedural Blank	NC34SDG010	Dibromo-octafluoro-biphenyl	79		%REC
Procedural Blank	NC34SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
Procedural Blank	NC34SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
Procedural Blank	NC34SDG011	Dibromo-octafluoro-biphenyl	86		%REC
Procedural Blank	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	76		%REC
Procedural Blank	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	90		%REC
Procedural Blank	NC34SDG012	Dibromo-octafluoro-biphenyl	77		%REC
Procedural Blank	NC34SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
Procedural Blank	NC34SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	91		%REC
Procedural Blank	NC34SDG013	Dibromo-octafluoro-biphenyl	62		%REC
PSNS-636-62-4A	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
PSNS-636-62-4A	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
PSNS-636-62-4A	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
PSNS-636-62-4A-B68	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
PSNS-636-62-4A-B68	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	92		%REC
PSNS-636-62-4A-B68	NC34SDG005	Dibromo-octafluoro-biphenyl	71		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
PSNS-636-62-4A-B7	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
PSNS-636-62-4A-B7	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC
PSNS-636-62-4A-B7	NC22SDG010	Dibromo-octafluoro-biphenyl	71		%REC
PSNS-636-62-4A-T1	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
PSNS-636-62-4A-T1	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	136	&	%REC
PSNS-636-62-4A-T1	NC22SDG003	Dibromo-octafluoro-biphenyl	72		%REC
PSNS-636-62-4A-T11	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	103		%REC
PSNS-636-62-4A-T11	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC
PSNS-636-62-4A-T11	NC22SDG003	Dibromo-octafluoro-biphenyl	80		%REC
PSNS-636-62-4A-T13	NC22SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
PSNS-636-62-4A-T13	NC22SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
PSNS-636-62-4A-T13	NC22SDG004	Dibromo-octafluoro-biphenyl	91		%REC
PSNS-636-62-4A-T15	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
PSNS-636-62-4A-T15	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
PSNS-636-62-4A-T15	NC22SDG005	Dibromo-octafluoro-biphenyl	63		%REC
PSNS-636-62-4A-T17	NC22SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
PSNS-636-62-4A-T17	NC22SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
PSNS-636-62-4A-T17	NC22SDG007	Dibromo-octafluoro-biphenyl	82		%REC
PSNS-636-62-4A-T21	NC22SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
PSNS-636-62-4A-T21	NC22SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC
PSNS-636-62-4A-T21	NC22SDG010	Dibromo-octafluoro-biphenyl	69		%REC
PSNS-636-62-4A-T24	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	81		%REC
PSNS-636-62-4A-T24	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	140	&	%REC
PSNS-636-62-4A-T24	NC22SDG013	Dibromo-octafluoro-biphenyl	55		%REC
PSNS-636-62-4A-T26	NC22SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
PSNS-636-62-4A-T26	NC22SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	161	&	%REC
PSNS-636-62-4A-T26	NC22SDG018	Dibromo-octafluoro-biphenyl	84		%REC
PSNS-636-62-4A-T29	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	88		%REC
PSNS-636-62-4A-T29	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	171	&	%REC
PSNS-636-62-4A-T29	NC22SDG023	Dibromo-octafluoro-biphenyl	76		%REC
PSNS-636-62-4A-T32	NC28SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
PSNS-636-62-4A-T32	NC28SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	134	&	%REC
PSNS-636-62-4A-T32	NC28SDG001	Dibromo-octafluoro-biphenyl	93		%REC
PSNS-636-62-4A-T36	NC28SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
PSNS-636-62-4A-T36	NC28SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	142	&	%REC
PSNS-636-62-4A-T36	NC28SDG005	Dibromo-octafluoro-biphenyl	71		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
PSNS-636-62-4A-T39	NC28SDG010	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
PSNS-636-62-4A-T39	NC28SDG010	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
PSNS-636-62-4A-T39	NC28SDG010	Dibromo-octafluoro-biphenyl	51		%REC
PSNS-636-62-4A-T42	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
PSNS-636-62-4A-T42	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	138	&	%REC
PSNS-636-62-4A-T42	NC28SDG013	Dibromo-octafluoro-biphenyl	65		%REC
PSNS-636-62-4A-T45	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
PSNS-636-62-4A-T45	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	98		%REC
PSNS-636-62-4A-T45	NC28SDG019	Dibromo-octafluoro-biphenyl	52		%REC
PSNS-636-62-4A-T47	NC28SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
PSNS-636-62-4A-T47	NC28SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	147	&	%REC
PSNS-636-62-4A-T47	NC28SDG023	Dibromo-octafluoro-biphenyl	85		%REC
PSNS-636-62-4A-T49	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
PSNS-636-62-4A-T49	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	107		%REC
PSNS-636-62-4A-T49	NC34SDG005	Dibromo-octafluoro-biphenyl	59		%REC
PSNS-636-62-4B	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	118		%REC
PSNS-636-62-4B	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	70		%REC
PSNS-636-62-4B	NC22SDG053	Dibromo-octafluoro-biphenyl	77		%REC
PSNS-636-62-4D	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
PSNS-636-62-4D	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
PSNS-636-62-4D	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
PSNS-636-62-4D-B57	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
PSNS-636-62-4D-B57	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	89		%REC
PSNS-636-62-4D-B57	NC34SDG005	Dibromo-octafluoro-biphenyl	74		%REC
PSNS-636-62-4D-T1	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	95		%REC
PSNS-636-62-4D-T1	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	130	&	%REC
PSNS-636-62-4D-T1	NC22SDG014	Dibromo-octafluoro-biphenyl	82		%REC
PSNS-636-62-4D-T11	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	78		%REC
PSNS-636-62-4D-T11	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	102		%REC
PSNS-636-62-4D-T11	NC22SDG017	Dibromo-octafluoro-biphenyl	63		%REC
PSNS-636-62-4D-T13	NC22SDG020	103 - 2,2',4,5',6-Pentachlorobiphenyl	51		%REC
PSNS-636-62-4D-T13	NC22SDG020	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	62		%REC
PSNS-636-62-4D-T13	NC22SDG020	Dibromo-octafluoro-biphenyl	43	&	%REC
PSNS-636-62-4D-T15	NC22SDG023	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
PSNS-636-62-4D-T15	NC22SDG023	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	164	&	%REC
PSNS-636-62-4D-T15	NC22SDG023	Dibromo-octafluoro-biphenyl	64		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
PSNS-636-62-4D-T18	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
PSNS-636-62-4D-T18	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	144	&	%REC
PSNS-636-62-4D-T18	NC22SDG026	Dibromo-octafluoro-biphenyl	76		%REC
PSNS-636-62-4D-T22	NC28SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	74		%REC
PSNS-636-62-4D-T22	NC28SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	129	&	%REC
PSNS-636-62-4D-T22	NC28SDG004	Dibromo-octafluoro-biphenyl	65		%REC
PSNS-636-62-4D-T25	NC28SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	68		%REC
PSNS-636-62-4D-T25	NC28SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	104		%REC
PSNS-636-62-4D-T25	NC28SDG009	Dibromo-octafluoro-biphenyl	60		%REC
PSNS-636-62-4D-T28	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	65		%REC
PSNS-636-62-4D-T28	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	117		%REC
PSNS-636-62-4D-T28	NC28SDG011	Dibromo-octafluoro-biphenyl	53		%REC
PSNS-636-62-4D-T32	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	51		%REC
PSNS-636-62-4D-T32	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
PSNS-636-62-4D-T32	NC28SDG016	Dibromo-octafluoro-biphenyl	34	&	%REC
PSNS-636-62-4D-T33	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
PSNS-636-62-4D-T33	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
PSNS-636-62-4D-T33	NC28SDG022	Dibromo-octafluoro-biphenyl	77		%REC
PSNS-636-62-4D-T35	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	49		%REC
PSNS-636-62-4D-T35	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	80		%REC
PSNS-636-62-4D-T35	NC34SDG005	Dibromo-octafluoro-biphenyl	45		%REC
PSNS-636-62-4D-T6	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
PSNS-636-62-4D-T6	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
PSNS-636-62-4D-T6	NC22SDG014	Dibromo-octafluoro-biphenyl	86		%REC
PSNS-636-62-4D-T9	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
PSNS-636-62-4D-T9	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC
PSNS-636-62-4D-T9	NC22SDG015	Dibromo-octafluoro-biphenyl	74		%REC
PSNS-647-165-9A	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
PSNS-647-165-9A	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
PSNS-647-165-9A	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
PSNS-647-165-9A-B13	NC22SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	100		%REC
PSNS-647-165-9A-B13	NC22SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	147	&	%REC
PSNS-647-165-9A-B13	NC22SDG015	Dibromo-octafluoro-biphenyl	96		%REC
PSNS-647-165-9A-B67	NC34SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
PSNS-647-165-9A-B67	NC34SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC
PSNS-647-165-9A-B67	NC34SDG004	Dibromo-octafluoro-biphenyl	73		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
PSNS-647-165-9A-T1	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
PSNS-647-165-9A-T1	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
PSNS-647-165-9A-T1	NC22SDG002	Dibromo-octafluoro-biphenyl	96		%REC
PSNS-647-165-9A-T11	NC22SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	104		%REC
PSNS-647-165-9A-T11	NC22SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	128	&	%REC
PSNS-647-165-9A-T11	NC22SDG002	Dibromo-octafluoro-biphenyl	98		%REC
PSNS-647-165-9A-T13	NC22SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	109		%REC
PSNS-647-165-9A-T13	NC22SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	142	&	%REC
PSNS-647-165-9A-T13	NC22SDG003	Dibromo-octafluoro-biphenyl	85		%REC
PSNS-647-165-9A-T16	NC22SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	90		%REC
PSNS-647-165-9A-T16	NC22SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	113		%REC
PSNS-647-165-9A-T16	NC22SDG005	Dibromo-octafluoro-biphenyl	77		%REC
PSNS-647-165-9A-T18	NC22SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
PSNS-647-165-9A-T18	NC22SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC
PSNS-647-165-9A-T18	NC22SDG008	Dibromo-octafluoro-biphenyl	99		%REC
PSNS-647-165-9A-T23	NC22SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
PSNS-647-165-9A-T23	NC22SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
PSNS-647-165-9A-T23	NC22SDG012	Dibromo-octafluoro-biphenyl	83		%REC
PSNS-647-165-9A-T25	NC22SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	87		%REC
PSNS-647-165-9A-T25	NC22SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	105		%REC
PSNS-647-165-9A-T25	NC22SDG017	Dibromo-octafluoro-biphenyl	74		%REC
PSNS-647-165-9A-T28	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	102		%REC
PSNS-647-165-9A-T28	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	126	&	%REC
PSNS-647-165-9A-T28	NC22SDG022	Dibromo-octafluoro-biphenyl	76		%REC
PSNS-647-165-9A-T31	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
PSNS-647-165-9A-T31	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	137	&	%REC
PSNS-647-165-9A-T31	NC22SDG026	Dibromo-octafluoro-biphenyl	75		%REC
PSNS-647-165-9A-T35	NC28SDG004	103 - 2,2',4,5',6-Pentachlorobiphenyl	82		%REC
PSNS-647-165-9A-T35	NC28SDG004	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	122		%REC
PSNS-647-165-9A-T35	NC28SDG004	Dibromo-octafluoro-biphenyl	67		%REC
PSNS-647-165-9A-T38	NC28SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
PSNS-647-165-9A-T38	NC28SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	115		%REC
PSNS-647-165-9A-T38	NC28SDG009	Dibromo-octafluoro-biphenyl	62		%REC
PSNS-647-165-9A-T41	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	72		%REC
PSNS-647-165-9A-T41	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	107		%REC
PSNS-647-165-9A-T41	NC28SDG011	Dibromo-octafluoro-biphenyl	52		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
PSNS-647-165-9A-T44	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	67		%REC
PSNS-647-165-9A-T44	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	118		%REC
PSNS-647-165-9A-T44	NC28SDG016	Dibromo-octafluoro-biphenyl	50		%REC
PSNS-647-165-9A-T46	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
PSNS-647-165-9A-T46	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	100		%REC
PSNS-647-165-9A-T46	NC28SDG022	Dibromo-octafluoro-biphenyl	74		%REC
PSNS-647-165-9A-T48	NC34SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	107		%REC
PSNS-647-165-9A-T48	NC34SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	112		%REC
PSNS-647-165-9A-T48	NC34SDG003	Dibromo-octafluoro-biphenyl	82		%REC
PSNS-647-165-9B	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	111		%REC
PSNS-647-165-9B	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	48		%REC
PSNS-647-165-9B	NC22SDG053	Dibromo-octafluoro-biphenyl	67		%REC
PSNS-647-165-9B PAINT CHIPS	NC22SDG053	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
PSNS-647-165-9B PAINT CHIPS	NC22SDG053	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	64		%REC
PSNS-647-165-9B PAINT CHIPS	NC22SDG053	Dibromo-octafluoro-biphenyl	76		%REC
PSNS-647-165-9D	NC34SDG006	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
PSNS-647-165-9D	NC34SDG006	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
PSNS-647-165-9D	NC34SDG006	Dibromo-octafluoro-biphenyl	0	&	%REC
PSNS-647-165-9D-B58	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	73		%REC
PSNS-647-165-9D-B58	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	81		%REC
PSNS-647-165-9D-B58	NC34SDG005	Dibromo-octafluoro-biphenyl	70		%REC
PSNS-647-165-9D-T1	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
PSNS-647-165-9D-T1	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
PSNS-647-165-9D-T1	NC22SDG013	Dibromo-octafluoro-biphenyl	36	&	%REC
PSNS-647-165-9D-T11	NC22SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	85		%REC
PSNS-647-165-9D-T11	NC22SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	133	&	%REC
PSNS-647-165-9D-T11	NC22SDG016	Dibromo-octafluoro-biphenyl	74		%REC
PSNS-647-165-9D-T13	NC22SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
PSNS-647-165-9D-T13	NC22SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	95		%REC
PSNS-647-165-9D-T13	NC22SDG019	Dibromo-octafluoro-biphenyl	63		%REC
PSNS-647-165-9D-T15	NC22SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	94		%REC
PSNS-647-165-9D-T15	NC22SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	150	&	%REC
PSNS-647-165-9D-T15	NC22SDG022	Dibromo-octafluoro-biphenyl	69		%REC
PSNS-647-165-9D-T18	NC22SDG026	103 - 2,2',4,5',6-Pentachlorobiphenyl	96		%REC
PSNS-647-165-9D-T18	NC22SDG026	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	156	&	%REC
PSNS-647-165-9D-T18	NC22SDG026	Dibromo-octafluoro-biphenyl	79		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
PSNS-647-165-9D-T21	NC28SDG003	103 - 2,2',4,5',6-Pentachlorobiphenyl	107		%REC
PSNS-647-165-9D-T21	NC28SDG003	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	137	&	%REC
PSNS-647-165-9D-T21	NC28SDG003	Dibromo-octafluoro-biphenyl	92		%REC
PSNS-647-165-9D-T24	NC28SDG008	103 - 2,2',4,5',6-Pentachlorobiphenyl	80		%REC
PSNS-647-165-9D-T24	NC28SDG008	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	109		%REC
PSNS-647-165-9D-T24	NC28SDG008	Dibromo-octafluoro-biphenyl	67		%REC
PSNS-647-165-9D-T27	NC28SDG011	103 - 2,2',4,5',6-Pentachlorobiphenyl	63		%REC
PSNS-647-165-9D-T27	NC28SDG011	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
PSNS-647-165-9D-T27	NC28SDG011	Dibromo-octafluoro-biphenyl	40	&	%REC
PSNS-647-165-9D-T31	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	59		%REC
PSNS-647-165-9D-T31	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
PSNS-647-165-9D-T31	NC28SDG016	Dibromo-octafluoro-biphenyl	36	&	%REC
PSNS-647-165-9D-T32	NC28SDG022	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
PSNS-647-165-9D-T32	NC28SDG022	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	139	&	%REC
PSNS-647-165-9D-T32	NC28SDG022	Dibromo-octafluoro-biphenyl	86		%REC
PSNS-647-165-9D-T34	NC34SDG005	103 - 2,2',4,5',6-Pentachlorobiphenyl	70		%REC
PSNS-647-165-9D-T34	NC34SDG005	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	106		%REC
PSNS-647-165-9D-T34	NC34SDG005	Dibromo-octafluoro-biphenyl	50		%REC
PSNS-647-165-9D-T7	NC22SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	91		%REC
PSNS-647-165-9D-T7	NC22SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	143	&	%REC
PSNS-647-165-9D-T7	NC22SDG013	Dibromo-octafluoro-biphenyl	63		%REC
PSNS-647-165-9D-T9	NC22SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
PSNS-647-165-9D-T9	NC22SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
PSNS-647-165-9D-T9	NC22SDG014	Dibromo-octafluoro-biphenyl	73		%REC
PSNS-647-165-9E-B32	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
PSNS-647-165-9E-B32	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	111		%REC
PSNS-647-165-9E-B32	NC34SDG009	Dibromo-octafluoro-biphenyl	91		%REC
PSNS-647-165-9E-B44	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	0	&	%REC
PSNS-647-165-9E-B44	CSC81SDG002	103 - 2,2',4,5',6-Pentachlorobiphenyl	1215	&	%REC
PSNS-647-165-9E-B44	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	0	&	%REC
PSNS-647-165-9E-B44	CSC81SDG002	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	674	&	%REC
PSNS-647-165-9E-B44	CSC81SDG002	Dibromo-octafluoro-biphenyl	0	&	%REC
PSNS-647-165-9E-B44	CSC81SDG002	Dibromo-octafluoro-biphenyl	521	&	%REC
PSNS-647-165-9E-T1	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	79		%REC
PSNS-647-165-9E-T1	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	125		%REC
PSNS-647-165-9E-T1	NC28SDG012	Dibromo-octafluoro-biphenyl	73		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
PSNS-647-165-9E-T11	NC28SDG016	103 - 2,2',4,5',6-Pentachlorobiphenyl	65		%REC
PSNS-647-165-9E-T11	NC28SDG016	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	114		%REC
PSNS-647-165-9E-T11	NC28SDG016	Dibromo-octafluoro-biphenyl	45		%REC
PSNS-647-165-9E-T13	NC28SDG017	103 - 2,2',4,5',6-Pentachlorobiphenyl	83		%REC
PSNS-647-165-9E-T13	NC28SDG017	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
PSNS-647-165-9E-T13	NC28SDG017	Dibromo-octafluoro-biphenyl	87		%REC
PSNS-647-165-9E-T15	NC28SDG018	103 - 2,2',4,5',6-Pentachlorobiphenyl	174	&	%REC
PSNS-647-165-9E-T15	NC28SDG018	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	237	&	%REC
PSNS-647-165-9E-T15	NC28SDG018	Dibromo-octafluoro-biphenyl	192	&	%REC
PSNS-647-165-9E-T17	NC28SDG019	103 - 2,2',4,5',6-Pentachlorobiphenyl	58		%REC
PSNS-647-165-9E-T17	NC28SDG019	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	71		%REC
PSNS-647-165-9E-T17	NC28SDG019	Dibromo-octafluoro-biphenyl	45		%REC
PSNS-647-165-9E-T19	NC28SDG021	103 - 2,2',4,5',6-Pentachlorobiphenyl	89		%REC
PSNS-647-165-9E-T19	NC28SDG021	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	116		%REC
PSNS-647-165-9E-T19	NC28SDG021	Dibromo-octafluoro-biphenyl	76		%REC
PSNS-647-165-9E-T21	NC34SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	124		%REC
PSNS-647-165-9E-T21	NC34SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	182	&	%REC
PSNS-647-165-9E-T21	NC34SDG001	Dibromo-octafluoro-biphenyl	102		%REC
PSNS-647-165-9E-T25	NC34SDG007	103 - 2,2',4,5',6-Pentachlorobiphenyl	100		%REC
PSNS-647-165-9E-T25	NC34SDG007	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	148	&	%REC
PSNS-647-165-9E-T25	NC34SDG007	Dibromo-octafluoro-biphenyl	62		%REC
PSNS-647-165-9E-T26	NC34SDG009	103 - 2,2',4,5',6-Pentachlorobiphenyl	107		%REC
PSNS-647-165-9E-T26	NC34SDG009	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	110		%REC
PSNS-647-165-9E-T26	NC34SDG009	Dibromo-octafluoro-biphenyl	86		%REC
PSNS-647-165-9E-T28	NC34SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	97		%REC
PSNS-647-165-9E-T28	NC34SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	123		%REC
PSNS-647-165-9E-T28	NC34SDG012	Dibromo-octafluoro-biphenyl	84		%REC
PSNS-647-165-9E-T3	NC28SDG012	103 - 2,2',4,5',6-Pentachlorobiphenyl	93		%REC
PSNS-647-165-9E-T3	NC28SDG012	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
PSNS-647-165-9E-T3	NC28SDG012	Dibromo-octafluoro-biphenyl	90		%REC
PSNS-647-165-9E-T30	CSC81SDG001	103 - 2,2',4,5',6-Pentachlorobiphenyl	92		%REC
PSNS-647-165-9E-T30	CSC81SDG001	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	124		%REC
PSNS-647-165-9E-T30	CSC81SDG001	Dibromo-octafluoro-biphenyl	77		%REC
PSNS-647-165-9E-T5	NC28SDG013	103 - 2,2',4,5',6-Pentachlorobiphenyl	98		%REC
PSNS-647-165-9E-T5	NC28SDG013	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	141	&	%REC
PSNS-647-165-9E-T5	NC28SDG013	Dibromo-octafluoro-biphenyl	81		%REC

Sample ID	Sample Delivery Group	Analyte	Raw result	Qualifier	Units
PSNS-647-165-9E-T7	NC28SDG014	103 - 2,2',4,5',6-Pentachlorobiphenyl	84		%REC
PSNS-647-165-9E-T7	NC28SDG014	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	109		%REC
PSNS-647-165-9E-T7	NC28SDG014	Dibromo-octafluoro-biphenyl	82		%REC
PSNS-647-165-9E-T9	NC28SDG015	103 - 2,2',4,5',6-Pentachlorobiphenyl	101		%REC
PSNS-647-165-9E-T9	NC28SDG015	198 - 2,2',3,3',4,5,5',6-Octachlorobiphenyl	151	&	%REC
PSNS-647-165-9E-T9	NC28SDG015	Dibromo-octafluoro-biphenyl	107		%REC

Analytical QA/QC Data

Laboratory batch QA/QC data are tabulated below for analytical instrument reference standard (IRM), analytical laboratory blank spike (BS), analytical laboratory blank spike duplicates (BSD), and analytical laboratory procedural blanks (PB). Flags are included in these tables, for which a listing of data qualifiers (flags) and meanings is included at the end of **APPENDIX B**. Analyses for these samples were performed for all PCB-LRS analytes and surrogate analytes, just as with leachate samples. Results are sorted by laboratory batch/sample delivery group (SDG).

Analytical Blank Spike (BS) Data

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	45		90	%REC
CSC81SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	48		96	%REC
CSC81SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
CSC81SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	42		84	%REC
CSC81SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	52		104	%REC
CSC81SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
CSC81SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	53		106	%REC
CSC81SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
CSC81SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
CSC81SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
CSC81SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	54		108	%REC
CSC81SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
CSC81SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	47		94	%REC
CSC81SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
CSC81SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
CSC81SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
CSC81SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	56		112	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0]
CSC81SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
CSC81SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
CSC81SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0]
CSC81SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
CSC81SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	57		114	%REC
CSC81SDG001	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	51		102	%REC
CSC81SDG002	1		8 - 2,4'-Dichlorobiphenyl	10	0.74	ng	24		24	%REC
CSC81SDG002	1		18 - 2,2',5-Trichlorobiphenyl	10	0.86	ng	0	ND	0	
CSC81SDG002	1		28 - 2,4,4'-Trichlorobiphenyl	10	0.91	ng	46		46	%REC
CSC81SDG002	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.74	ng	0	ND	0	
CSC81SDG002	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.94	ng	50		50	%REC
CSC81SDG002	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	10	1.1	ng	0	ND	0	
CSC81SDG002	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	10	1.4	ng	58		58	%REC
CSC81SDG002	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	2	ng	0	ND	0	<u> </u>
CSC81SDG002	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.81	ng	64		64	%REC
CSC81SDG002	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	1.3	ng	0	ND	0	
CSC81SDG002	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	<u> </u>
CSC81SDG002	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	10	2.9	ng	0	ND	0	
CSC81SDG002	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	1.4	ng	60		60	%REC
CSC81SDG002	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	1.9	ng	0	ND	0	
CSC81SDG002	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	10	1.5	ng	58		58	%REC
CSC81SDG002	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.9	ng	0	ND	0	
CSC81SDG002	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	1.9	ng	59		59	%REC
CSC81SDG002	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.86	ng	0	ND	0	-

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG002	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	1.3	ng	0	ND	0	
CSC81SDG002	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	2.2	ng	57		57	%REC
CSC81SDG002	1		209 - Decachlorobiphenyl	10	1.5	ng	60		60	%REC
CSC81SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	51		102	%REC
CSC81SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	56		112	%REC
CSC81SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
CSC81SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	53		106	%REC
CSC81SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	64		128	%REC
CSC81SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
CSC81SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	66		132	%REC
CSC81SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
CSC81SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0.22	J	0	
CSC81SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
CSC81SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	68		136	%REC
CSC81SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
CSC81SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	59		118	%REC
CSC81SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
CSC81SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
CSC81SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
CSC81SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	66		132	%REC
CSC81SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
CSC81SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
CSC81SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
CSC81SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
CSC81SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
CSC81SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	65		130	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG004	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	59		118	%REC
CSC81SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
CSC81SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	54		108	%REC
CSC81SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	48		96	%REC
CSC81SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	48		96	%REC
CSC81SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	59		118	%REC
CSC81SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	52		104	%REC
CSC81SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	51		102	%REC
CSC81SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
CSC81SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	50		100	%REC
CSC81SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
CSC81SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	51		102	%REC
CSC81SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	53		106	%REC
CSC81SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	66		132	%REC
CSC81SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	70		140	%REC
CSC81SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	66		132	%REC
CSC81SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	64		128	%REC
CSC81SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	72		144	%REC
CSC81SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	65		130	%REC
CSC81SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	64		128	%REC
CSC81SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
CSC81SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	66		132	%REC
CSC81SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
CSC81SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	70		140	%REC
CSC81SDG006	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	71		142	%REC
CSC81SDG007	0.05	L	8 - 2,4'-Dichlorobiphenyl	100	8.4	ng/L	940		94	%REC
CSC81SDG007	0.05	L	18 - 2,2',5-Trichlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	28 - 2,4,4'-Trichlorobiphenyl	200	10	ng/L	950		0	
CSC81SDG007	0.05	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG007	0.05	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	200	5.9	ng/L	1100		0	
CSC81SDG007	0.05	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ng/L	800		80	%REC
CSC81SDG007	0.05	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ng/L	0	ND	0	
CSC81SDG007	0.05	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ng/L	1100		110	%REC
CSC81SDG007	0.05	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ng/L	0	ND	0	
CSC81SDG007	0.05	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ng/L	0	ND	0	
CSC81SDG007	0.05	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ng/L	0	ND	0	
CSC81SDG007	0.05	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ng/L	770		77	%REC
CSC81SDG007	0.05	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ng/L	0	ND	0	
CSC81SDG007	0.05	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	300	5.4	ng/L	870		0	
CSC81SDG007	0.05	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ng/L	0	ND	0	
CSC81SDG007	0.05	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	200	12	ng/L	0	ND	0	
CSC81SDG007	0.05	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ng/L	0	ND	0	
CSC81SDG007	0.05	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	200	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	200	13	ng/L	690		0	
CSC81SDG007	0.05	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ng/L	0	ND	0	
CSC81SDG007	0.05	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ng/L	0	ND	0	
CSC81SDG007	0.05	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	200	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ng/L	0	ND	0	
CSC81SDG007	0.05	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ng/L	0	ND	0	
CSC81SDG007	0.05	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ng/L	710		71	%REC
CSC81SDG007	0.05	L	209 - Decachlorobiphenyl	100	11	ng/L	840		84	%REC
CSC81SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
CSC81SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0.53	ng/L	51		102	%REC
CSC81SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.29	ng/L	60		120	%REC
CSC81SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	53		106	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	56		112	%REC
CSC81SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	43		86	%REC
CSC81SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0.27	ng/L	48		96	%REC
CSC81SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0.61	ng/L	0	ND	0	
CSC81SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0.65	ng/L	41		82	%REC
CSC81SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.65	ng/L	0	ND	0	
CSC81SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	48		96	%REC
CSC81SDG008	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	50		100	%REC
CSC81SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	59		118	%REC
CSC81SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0.53	ng/L	56		112	%REC
CSC81SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.29	ng/L	58		116	%REC
CSC81SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	54		108	%REC
CSC81SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	65		130	%REC
CSC81SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	52		104	%REC
CSC81SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0.27	ng/L	59		118	%REC
CSC81SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0.61	ng/L	0	ND	0	
CSC81SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0.65	ng/L	45		90	%REC
CSC81SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.65	ng/L	0	ND	0	
CSC81SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	55		110	%REC
CSC81SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	57		114	%REC
CSC81SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	57		114	%REC
CSC81SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0.53	ng/L	56		112	%REC
CSC81SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.29	ng/L	57		114	%REC
CSC81SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	53		106	%REC
CSC81SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	56		112	%REC
CSC81SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	48		96	%REC
CSC81SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0.27	ng/L	56		112	%REC
CSC81SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0.61	ng/L	0	ND	0	
CSC81SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0.65	ng/L	45		90	%REC
CSC81SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.65	ng/L	0	ND	0	
CSC81SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	45		90	%REC
CSC81SDG010	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	47		94	%REC
CSC81SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.42	ng/L	52		104	%REC
CSC81SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0.53	ng/L	51		102	%REC
CSC81SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0.75	ng/L	0	ND	0	
CSC81SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0.29	ng/L	55		110	%REC
CSC81SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0.56	ng/L	49		98	%REC
CSC81SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0.77	ng/L	0	ND	0	
CSC81SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.36	ng/L	51		102	%REC
CSC81SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.41	ng/L	0	ND	0	
CSC81SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0.68	ng/L	0	ND	0	
CSC81SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0.66	ng/L	0	ND	0	
CSC81SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	10	0.77	ng/L	0	ND	0	
CSC81SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.25	ng/L	45		90	%REC
CSC81SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	0.55	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0.27	ng/L	52		104	%REC
CSC81SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0.62	ng/L	0	ND	0	
CSC81SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0.61	ng/L	0	ND	0	
CSC81SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0.59	ng/L	0	ND	0	
CSC81SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0.64	ng/L	0	ND	0	
CSC81SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0.65	ng/L	43		86	%REC
CSC81SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.37	ng/L	0	ND	0	
CSC81SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0.5	ng/L	0	ND	0	
CSC81SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0.65	ng/L	0	ND	0	
CSC81SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0.71	ng/L	0	ND	0	
CSC81SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0.58	ng/L	0	ND	0	
CSC81SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.23	ng/L	50		100	%REC
CSC81SDG011	1	L	209 - Decachlorobiphenyl	10	0.57	ng/L	52		104	%REC
CSC81SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.42	ng/L	49		98	%REC
CSC81SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0.53	ng/L	50		100	%REC
CSC81SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0.75	ng/L	0	ND	0	
CSC81SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0.29	ng/L	54		108	%REC
CSC81SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0.56	ng/L	56		112	%REC
CSC81SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0.77	ng/L	0	ND	0	
CSC81SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.36	ng/L	56		112	%REC
CSC81SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.41	ng/L	0	ND	0	
CSC81SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0.68	ng/L	0	ND	0	
CSC81SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0.66	ng/L	0	ND	0	
CSC81SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	20	0.77	ng/L	0	ND	0	
CSC81SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.25	ng/L	53		106	%REC
CSC81SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	20	0.55	ng/L	0	ND	0	
CSC81SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0.27	ng/L	56		112	%REC
CSC81SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0.62	ng/L	0	ND	0	
CSC81SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0.61	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0.59	ng/L	0	ND	0	
CSC81SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0.64	ng/L	0	ND	0	
CSC81SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0.65	ng/L	47		94	%REC
CSC81SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.37	ng/L	0	ND	0	
CSC81SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0.5	ng/L	0	ND	0	
CSC81SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0.65	ng/L	0	ND	0	
CSC81SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0.71	ng/L	0	ND	0	
CSC81SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0.58	ng/L	0	ND	0	
CSC81SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.23	ng/L	57		114	%REC
CSC81SDG012	1	L	209 - Decachlorobiphenyl	10	0.57	ng/L	56		112	%REC
CSC81SDG013	1		8 - 2,4'-Dichlorobiphenyl	20	2.4	ng	100		100	%REC
CSC81SDG013	1		18 - 2,2',5-Trichlorobiphenyl	20	2.9	ng	0	ND	0	
CSC81SDG013	1		28 - 2,4,4'-Trichlorobiphenyl	40	3	ng	99		99	%REC
CSC81SDG013	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	20	2.5	ng	0	ND	0	
CSC81SDG013	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	40	3.2	ng	110		110	%REC
CSC81SDG013	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	20	3.6	ng	0	ND	0	
CSC81SDG013	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	20	4.6	ng	110		110	%REC
CSC81SDG013	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	20	2.7	ng	120		120	%REC
CSC81SDG013	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	20	4.4	ng	0	ND	0	
CSC81SDG013	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	40	6.7	ng	0	ND	0	
CSC81SDG013	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	20	9.7	ng	0	ND	0	
CSC81SDG013	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	20	4.7	ng	100		100	%REC
CSC81SDG013	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	40	6.5	ng	0	ND	0	
CSC81SDG013	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	60	5	ng	110		110	%REC
CSC81SDG013	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	40	6.7	ng	0	ND	0	
CSC81SDG013	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	40	3	ng	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG013	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	40	6.5	ng	96		96	%REC
CSC81SDG013	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	40	2.8	ng	0	ND	0	
CSC81SDG013	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	20	4.4	ng	0	ND	0	
CSC81SDG013	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	20	7.4	ng	110		110	%REC
CSC81SDG013	1		209 - Decachlorobiphenyl	20	5.1	ng	110		110	%REC
CSC81SDG014	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.42	ng/L	65		130	%REC
CSC81SDG014	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG014	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0.53	ng/L	54		108	%REC
CSC81SDG014	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG014	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0.75	ng/L	0	ND	0	
CSC81SDG014	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0.29	ng/L	59		118	%REC
CSC81SDG014	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG014	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0.56	ng/L	56		112	%REC
CSC81SDG014	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0.77	ng/L	0	ND	0	
CSC81SDG014	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.36	ng/L	64		128	%REC
CSC81SDG014	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.41	ng/L	0	ND	0	
CSC81SDG014	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0.68	ng/L	0	ND	0	
CSC81SDG014	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0.66	ng/L	0	ND	0	
CSC81SDG014	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	20	0.77	ng/L	0	ND	0	
CSC81SDG014	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG014	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.25	ng/L	56		112	%REC
CSC81SDG014	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	20	0.55	ng/L	0	ND	0	
CSC81SDG014	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0.27	ng/L	57		114	%REC
CSC81SDG014	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0.62	ng/L	0	ND	0	
CSC81SDG014	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0.61	ng/L	0	ND	0	
CSC81SDG014	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG014	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0.59	ng/L	0	ND	0	
CSC81SDG014	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0.64	ng/L	0	ND	0	
CSC81SDG014	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0.65	ng/L	44		88	%REC
CSC81SDG014	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.37	ng/L	0	ND	0	
CSC81SDG014	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0.5	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG014	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0.65	ng/L	0	ND	0	<u> </u>
CSC81SDG014	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0.71	ng/L	0	ND	0	
CSC81SDG014	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0.58	ng/L	0	ND	0	
CSC81SDG014	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.23	ng/L	57		114	%REC
CSC81SDG014	1	L	209 - Decachlorobiphenyl	10	0.57	ng/L	57		114	%REC
NC22SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	100		100	%REC
NC22SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	96		96	%REC
NC22SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	99		99	%REC
NC22SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	110		110	%REC
NC22SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	100		100	%REC
NC22SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND	0	
NC22SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	100		100	%REC
NC22SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND	0	
NC22SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	100		100	%REC
NC22SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	110		110	%REC
NC22SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND	0	Ì
NC22SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND	0	- I
NC22SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	- I
NC22SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND	0	Ì
NC22SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND	0	1

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	110		110	%REC
NC22SDG001	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	110		110	%REC
NC22SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	99		99	%REC
NC22SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	98		98	%REC
NC22SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	98		98	%REC
NC22SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	110		110	%REC
NC22SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	100		100	%REC
NC22SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND	0	
NC22SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	95		95	%REC
NC22SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND	0	
NC22SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	96		96	%REC
NC22SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	110		110	%REC
NC22SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND	0	
NC22SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND	0	
NC22SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	110		110	%REC
NC22SDG002	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	110		110	%REC
NC22SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	98		98	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	99		99	%REC
NC22SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	100		100	%REC
NC22SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	120		120	%REC
NC22SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	110		110	%REC
NC22SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	110		110	%REC
NC22SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	110		110	%REC
NC22SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	130		130	%REC
NC22SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	120		120	%REC
NC22SDG003	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	120		120	%REC
NC22SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	100		100	%REC
NC22SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	100		100	%REC
NC22SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	100		100	%REC
NC22SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	120		120	%REC
NC22SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	110		110	%REC
NC22SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	110		110	%REC
NC22SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	110		110	%REC
NC22SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	120		120	%REC
NC22SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	110		110	%REC
NC22SDG004	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	110		110	%REC
NC22SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	93		93	%REC
NC22SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	100		100	%REC
NC22SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	100		100	%REC
NC22SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	120		120	%REC
NC22SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	110		110	%REC
NC22SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	110		110	%REC
NC22SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	110		110	%REC
NC22SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	120		120	%REC
NC22SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	110		110	%REC
NC22SDG005	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	110		110	%REC
NC22SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	47		94	%REC
NC22SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	46		92	%REC
NC22SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	47		94	%REC
NC22SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	55		110	%REC
NC22SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	48		96	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	50		100	%REC
NC22SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	50		100	%REC
NC22SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	51		102	%REC
NC22SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	50		100	%REC
NC22SDG006	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	48		96	%REC
NC22SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	38		76	%REC
NC22SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	45		90	%REC
NC22SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	47		94	%REC
NC22SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	54		108	%REC
NC22SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	49		98	%REC
NC22SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	48		96	%REC
NC22SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	50		100	%REC
NC22SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	52		104	%REC
NC22SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	46		92	%REC
NC22SDG007	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	48		96	%REC
NC22SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	41		82	%REC
NC22SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	43		86	%REC
NC22SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	42		84	%REC
NC22SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	49		98	%REC
NC22SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	43		86	%REC
NC22SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	44		88	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	43		86	%REC
NC22SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	43		86	%REC
NC22SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	40		80	%REC
NC22SDG008	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	40		80	%REC
NC22SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	46		92	%REC
NC22SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	48		96	%REC
NC22SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	46		92	%REC
NC22SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	51		102	%REC
NC22SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	47		94	%REC
NC22SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	48		96	%REC
NC22SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	46		92	%REC
NC22SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	48		96	%REC
NC22SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	47		94	%REC
NC22SDG009	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	47		94	%REC
NC22SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	53		106	%REC
NC22SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	55		110	%REC
NC22SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	54		108	%REC
NC22SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	61		122	%REC
NC22SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	55		110	%REC
NC22SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	57		114	%REC
NC22SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	55		110	%REC
NC22SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	56		112	%REC
NC22SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	61		122	%REC
NC22SDG010	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	57		114	%REC
NC22SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	48		96	%REC
NC22SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	47		94	%REC
NC22SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	45		90	%REC
NC22SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	50		100	%REC
NC22SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	48		96	%REC
NC22SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	49		98	%REC
NC22SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	48		96	%REC
NC22SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	53		106	%REC
NC22SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	56		112	%REC
NC22SDG011	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	50		100	%REC
NC22SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	56		112	%REC
NC22SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	55		110	%REC
NC22SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	53		106	%REC
NC22SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	59		118	%REC
NC22SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	56		112	%REC
NC22SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	51		102	%REC
NC22SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	50		100	%REC
NC22SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	55		110	%REC
NC22SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	57		114	%REC
NC22SDG012	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	55		110	%REC
NC22SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	49		98	%REC
NC22SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	50		100	%REC
NC22SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	49		98	%REC
NC22SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	51		102	%REC
NC22SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	50		100	%REC
NC22SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	50		100	%REC
NC22SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	48		96	%REC
NC22SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	58		116	%REC
NC22SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	64		128	%REC
NC22SDG013	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	55		110	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG014	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	80		80	%REC
NC22SDG014	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG014	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	80		80	%REC
NC22SDG014	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG014	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG014	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	80		80	%REC
NC22SDG014	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG014	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	92		92	%REC
NC22SDG014	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG014	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	86		86	%REC
NC22SDG014	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG014	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG014	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG014	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG014	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG014	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	88		88	%REC
NC22SDG014	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG014	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	88		88	%REC
NC22SDG014	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG014	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG014	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG014	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG014	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG014	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	100		100	%REC
NC22SDG014	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG014	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG014	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG014	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG014	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG014	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	100		100	%REC
NC22SDG014	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	95		95	%REC
NC22SDG015	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	100		100	%REC
NC22SDG015	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG015	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	97		97	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG015	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG015	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG015	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	98		98	%REC
NC22SDG015	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG015	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	100		100	%REC
NC22SDG015	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG015	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	100		100	%REC
NC22SDG015	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG015	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG015	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG015	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG015	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG015	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	97		97	%REC
NC22SDG015	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG015	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	98		98	%REC
NC22SDG015	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG015	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG015	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG015	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG015	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG015	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	100		100	%REC
NC22SDG015	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG015	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG015	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG015	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG015	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG015	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	96		96	%REC
NC22SDG015	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	90		90	%REC
NC22SDG016	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	52		104	%REC
NC22SDG016	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG016	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	52		104	%REC
NC22SDG016	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG016	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG016	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	51		102	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG016	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG016	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	57		114	%REC
NC22SDG016	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG016	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	52		0	
NC22SDG016	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG016	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG016	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG016	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG016	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG016	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	52		104	%REC
NC22SDG016	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG016	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	50		100	%REC
NC22SDG016	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG016	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG016	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG016	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG016	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG016	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	60		120	%REC
NC22SDG016	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG016	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG016	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG016	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG016	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG016	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	62		124	%REC
NC22SDG016	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	62		0	
NC22SDG017	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	51		102	%REC
NC22SDG017	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG017	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	51		102	%REC
NC22SDG017	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG017	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG017	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	50		100	%REC
NC22SDG017	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG017	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	56		112	%REC
NC22SDG017	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG017	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	52		104	%REC
NC22SDG017	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG017	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG017	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG017	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG017	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG017	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	51		102	%REC
NC22SDG017	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG017	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	48		96	%REC
NC22SDG017	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG017	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG017	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG017	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG017	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG017	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	53		106	%REC
NC22SDG017	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG017	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG017	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG017	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG017	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG017	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	44		88	%REC
NC22SDG017	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	46		92	%REC
NC22SDG018	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	54		108	%REC
NC22SDG018	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG018	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	51		102	%REC
NC22SDG018	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG018	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG018	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	51		102	%REC
NC22SDG018	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG018	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	50		100	%REC
NC22SDG018	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG018	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	48		96	%REC
NC22SDG018	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG018	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG018	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG018	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG018	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG018	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	42		84	%REC
NC22SDG018	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG018	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	47		94	%REC
NC22SDG018	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG018	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG018	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG018	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG018	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG018	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	54		108	%REC
NC22SDG018	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG018	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG018	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG018	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG018	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG018	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	60		120	%REC
NC22SDG018	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	58		116	%REC
NC22SDG019	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	58		116	%REC
NC22SDG019	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG019	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	54		108	%REC
NC22SDG019	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG019	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG019	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	55		110	%REC
NC22SDG019	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG019	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	58		116	%REC
NC22SDG019	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG019	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	53		106	%REC
NC22SDG019	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG019	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG019	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG019	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG019	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG019	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	56		112	%REC
NC22SDG019	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG019	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	53		106	%REC
NC22SDG019	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG019	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG019	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG019	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG019	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG019	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	60		120	%REC
NC22SDG019	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG019	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG019	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG019	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG019	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG019	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	59		118	%REC
NC22SDG019	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	58		116	%REC
NC22SDG020	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	47		94	%REC
NC22SDG020	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG020	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	45		90	%REC
NC22SDG020	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG020	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG020	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	45		90	%REC
NC22SDG020	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG020	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	50		100	%REC
NC22SDG020	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG020	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	46		92	%REC
NC22SDG020	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG020	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG020	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG020	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG020	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG020	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	45		90	%REC
NC22SDG020	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG020	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	45		90	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG020	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG020	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG020	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG020	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG020	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG020	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	45		90	%REC
NC22SDG020	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG020	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG020	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG020	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG020	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG020	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	52		104	%REC
NC22SDG020	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	45		90	%REC
NC22SDG021	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	38		76	%REC
NC22SDG021	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG021	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	38		76	%REC
NC22SDG021	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG021	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG021	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	41		82	%REC
NC22SDG021	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG021	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	46		92	%REC
NC22SDG021	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG021	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	42		84	%REC
NC22SDG021	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND	0	
NC22SDG021	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG021	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG021	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG021	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG021	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	41		82	%REC
NC22SDG021	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND	0	
NC22SDG021	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	42		84	%REC
NC22SDG021	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG021	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG021	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG021	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG021	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG021	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	46		92	%REC
NC22SDG021	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND	0	
NC22SDG021	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND	0	
NC22SDG021	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG021	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG021	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG021	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	43		86	%REC
NC22SDG021	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	41		82	%REC
NC22SDG022	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	52		104	%REC
NC22SDG022	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG022	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	50		100	%REC
NC22SDG022	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG022	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG022	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	48		96	%REC
NC22SDG022	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG022	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	49		98	%REC
NC22SDG022	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG022	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	47		94	%REC
NC22SDG022	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG022	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG022	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG022	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG022	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG022	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	47		94	%REC
NC22SDG022	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG022	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	46		92	%REC
NC22SDG022	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG022	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG022	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG022	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG022	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG022	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	56		112	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG022	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG022	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG022	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG022	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG022	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG022	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	52		104	%REC
NC22SDG022	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	53		106	%REC
NC22SDG023	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	53		106	%REC
NC22SDG023	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG023	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	49		98	%REC
NC22SDG023	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG023	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG023	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	50		100	%REC
NC22SDG023	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG023	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	62		124	%REC
NC22SDG023	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG023	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	59		118	%REC
NC22SDG023	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG023	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG023	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG023	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG023	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG023	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	61		122	%REC
NC22SDG023	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG023	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	61		122	%REC
NC22SDG023	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG023	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG023	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG023	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG023	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG023	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	65		130	%REC
NC22SDG023	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG023	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG023	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG023	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG023	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG023	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	66		132	%REC
NC22SDG023	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	65		130	%REC
NC22SDG024	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	47		93	%REC
NC22SDG024	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG024	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	48		96	%REC
NC22SDG024	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG024	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG024	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	48		96	%REC
NC22SDG024	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG024	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	69		138	%REC
NC22SDG024	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG024	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	62		124	%REC
NC22SDG024	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG024	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG024	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG024	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG024	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG024	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	63		126	%REC
NC22SDG024	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG024	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	63		126	%REC
NC22SDG024	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG024	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG024	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG024	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG024	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG024	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	72		144	%REC
NC22SDG024	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG024	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG024	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG024	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG024	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG024	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	74		148	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG024	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	70		140	%REC
NC22SDG025	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	40		80	%REC
NC22SDG025	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG025	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	45		90	%REC
NC22SDG025	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG025	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG025	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	46		92	%REC
NC22SDG025	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG025	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	63		126	%REC
NC22SDG025	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG025	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	55		110	%REC
NC22SDG025	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG025	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG025	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG025	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG025	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG025	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	57		114	%REC
NC22SDG025	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG025	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	56		112	%REC
NC22SDG025	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG025	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG025	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG025	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG025	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG025	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	66		132	%REC
NC22SDG025	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG025	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG025	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG025	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG025	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG025	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	55		110	%REC
NC22SDG025	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	48		96	%REC
NC22SDG026	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	45		90	%REC
NC22SDG026	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG026	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	46		92	%REC
NC22SDG026	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG026	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	48		96	%REC
NC22SDG026	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	54		108	%REC
NC22SDG026	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	58		116	%REC
NC22SDG026	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG026	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	52		104	%REC
NC22SDG026	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	53		106	%REC
NC22SDG026	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND	0	
NC22SDG026	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0.22	J	0	
NC22SDG026	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG026	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG026	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	54		108	%REC
NC22SDG026	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	57		114	%REC
NC22SDG026	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND	0	
NC22SDG026	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	52		104	%REC
NC22SDG026	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	56		112	%REC
NC22SDG026	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG026	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG026	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG026	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	58		116	%REC
NC22SDG026	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	61		122	%REC
NC22SDG026	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND	0	
NC22SDG026	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND	0	
NC22SDG026	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG026	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG026	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	57		114	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG026	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	58		116	%REC
NC22SDG026	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	58		116	%REC
NC22SDG050	0.25	g	8 - 2,4'-Dichlorobiphenyl	160	12	ug/Kg	4000		100	%REC
NC22SDG050	0.25	g	18 - 2,2',5-Trichlorobiphenyl	160	14	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	28 - 2,4,4'-Trichlorobiphenyl	160	14	ug/Kg	3900		98	%REC
NC22SDG050	0.25	g	44 - 2,2',3,5'-Tetrachlorobiphenyl	160	12	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	49 - 2,2',4,5'-Tetrachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	52 - 2,2',5,5'-Tetrachlorobiphenyl	160	15	ug/Kg	4000		100	%REC
NC22SDG050	0.25	g	66 - 2,3',4,4'-Tetrachlorobiphenyl	160	17	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	77 - 3,3',4,4'-Tetrachlorobiphenyl	160	22	ug/Kg	4200		105	%REC
NC22SDG050	0.25	g	87 - 2,2',3,4,5'-Pentachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	101 - 2,2',4,5,5'-Pentachlorobiphenyl	160	13	ug/Kg	4100		103	%REC
NC22SDG050	0.25	g	105 - 2,3,3',4,4'-Pentachlorobiphenyl	160	21	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	114 - 2,3,4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	118 - 2,3',4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	123 - 2',3,4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	126 - 3,3',4,4',5-Pentachlorobiphenyl	160	47	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	160	22	ug/Kg	4100		103	%REC
NC22SDG050	0.25	g	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	160	31	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	160	24	ug/Kg	4100		103	%REC
NC22SDG050	0.25	g	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	160	14	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	160	31	ug/Kg	4600		115	%REC
NC22SDG050	0.25	g	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	160	14	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	160	21	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	160	36	ug/Kg	5200		124	%REC
NC22SDG050	0.25	g	209 - Decachlorobiphenyl	160	25	ug/Kg	4600		113	%REC
NC22SDG053	0.25	g	8 - 2,4'-Dichlorobiphenyl	32	34	ug/Kg	4200		105	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG053	0.25	g	18 - 2,2',5-Trichlorobiphenyl	32	70	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	28 - 2,4,4'-Trichlorobiphenyl	32	48	ug/Kg	4000		100	%REC
NC22SDG053	0.25	g	44 - 2,2',3,5'-Tetrachlorobiphenyl	32	24	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	49 - 2,2',4,5'-Tetrachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	52 - 2,2',5,5'-Tetrachlorobiphenyl	32	21	ug/Kg	4100		102	%REC
NC22SDG053	0.25	g	66 - 2,3',4,4'-Tetrachlorobiphenyl	32	26	ug/Kg	18	JB	0	
NC22SDG053	0.25	g	77 - 3,3',4,4'-Tetrachlorobiphenyl	32	38	ug/Kg	4800		120	%REC
NC22SDG053	0.25	g	87 - 2,2',3,4,5'-Pentachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	101 - 2,2',4,5,5'-Pentachlorobiphenyl	32	19	ug/Kg	4000		99	%REC
NC22SDG053	0.25	g	105 - 2,3,3',4,4'-Pentachlorobiphenyl	32	22	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	118 - 2,3',4,4',5-Pentachlorobiphenyl	32	26	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	126 - 3,3',4,4',5-Pentachlorobiphenyl	32	59	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	32	26	ug/Kg	4500		112	%REC
NC22SDG053	0.25	g	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	32	29	ug/Kg	95	В	0	
NC22SDG053	0.25	g	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	32	26	ug/Kg	4800		119	%REC
NC22SDG053	0.25	g	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	32	100	ug/Kg	550	В	0	
NC22SDG053	0.25	g	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	32	29	ug/Kg	4900		116	%REC
NC22SDG053	0.25	g	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	32	53	ug/Kg	11	JB	0	
NC22SDG053	0.25	g	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	32	45	ug/Kg	170	В	0	
NC22SDG053	0.25	g	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	32	21	ug/Kg	9.2	JB	0	
NC22SDG053	0.25	g	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	32	18	ug/Kg	5500	В	45	%REC
NC22SDG053	0.25	g	209 - Decachlorobiphenyl	32	21	ug/Kg	4800	В	90	%REC
NC22SDG054	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	41		82	%REC
NC22SDG054	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG054	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	41		82	%REC
NC22SDG054	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG054	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG054	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	43		86	%REC
NC22SDG054	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG054	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	46		92	%REC
NC22SDG054	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG054	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	46		92	%REC
NC22SDG054	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG054	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG054	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG054	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG054	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG054	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	45		90	%REC
NC22SDG054	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG054	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	46		92	%REC
NC22SDG054	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG054	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG054	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG054	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG054	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG054	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	48		96	%REC
NC22SDG054	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG054	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG054	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG054	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG054	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG054	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	50		100	%REC
NC22SDG054	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	49		98	%REC
NC28SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	44		88	%REC
NC28SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	45		90	%REC
NC28SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	47		94	%REC
NC28SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	57		114	%REC
NC28SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	53		106	%REC
NC28SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	50		100	%REC
NC28SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	50		100	%REC
NC28SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	54		108	%REC
NC28SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	52		104	%REC
NC28SDG001	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	50		100	%REC
NC28SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.84	ng/L	43		86	%REC
NC28SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	10	1.3	ng/L	0	ND	0	
NC28SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	1	ng/L	42		84	%REC
NC28SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	1.3	ng/L	0	ND	0	
NC28SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	1.5	ng/L	0	ND	0	
NC28SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.59	ng/L	46		92	%REC
NC28SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	1.3	ng/L	0	ND	0	
NC28SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	1.1	ng/L	43		86	%REC
NC28SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	1.5	ng/L	0	ND	0	
NC28SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.72	ng/L	49		98	%REC
NC28SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.81	ng/L	0	ND	0	
NC28SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	1.4	ng/L	0	ND	0	
NC28SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	1.3	ng/L	0	ND	0	
NC28SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	10	1.5	ng/L	0	ND	0	
NC28SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	1.3	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.5	ng/L	44		88	%REC
NC28SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	1.1	ng/L	0	ND	0	
NC28SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	10	0.54	ng/L	49		98	%REC
NC28SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	1.2	ng/L	0	ND	0	
NC28SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	1.2	ng/L	0	ND	0	
NC28SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	1.3	ng/L	0	ND	0	
NC28SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	1.2	ng/L	0	ND	0	
NC28SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	1.3	ng/L	0	ND	0	
NC28SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	1.3	ng/L	46		92	%REC
NC28SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.74	ng/L	0	ND	0	
NC28SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	1	ng/L	0	ND	0	
NC28SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	1.3	ng/L	0	ND	0	
NC28SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	1.4	ng/L	0	ND	0	
NC28SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	1.2	ng/L	0	ND	0	
NC28SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.45	ng/L	49		98	%REC
NC28SDG002	1	L	209 - Decachlorobiphenyl	10	1.1	ng/L	60		120	%REC
NC28SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	39		78	%REC
NC28SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	40		80	%REC
NC28SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	42		84	%REC
NC28SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	49		98	%REC
NC28SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	48		96	%REC
NC28SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	45		90	%REC
NC28SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	48		96	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	48		96	%REC
NC28SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	45		90	%REC
NC28SDG003	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	44		88	%REC
NC28SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	49		98	%REC
NC28SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	53		106	%REC
NC28SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	54		108	%REC
NC28SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	68		136	%REC
NC28SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	65		130	%REC
NC28SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	60		120	%REC
NC28SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	62		124	%REC
NC28SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	65		130	%REC
NC28SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	66		132	%REC
NC28SDG004	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	64		128	%REC
NC28SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	47		94	%REC
NC28SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	51		102	%REC
NC28SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	55		110	%REC
NC28SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	69		138	%REC
NC28SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	67		134	%REC
NC28SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	60		120	%REC
NC28SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	65		130	%REC
NC28SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	74		148	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	74		148	%REC
NC28SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	67		134	%REC
NC28SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	100		100	%REC
NC28SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	96		96	%REC
NC28SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	96		96	%REC
NC28SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	100		100	%REC
NC28SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	95		95	%REC
NC28SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	97		97	%REC
NC28SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	99		99	%REC
NC28SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	110		110	%REC
NC28SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	120		120	%REC
NC28SDG006	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	110		110	%REC
NC28SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	47		94	%REC
NC28SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	51		102	%REC
NC28SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	55		110	%REC
NC28SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	68		136	%REC
NC28SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	63		126	%REC
NC28SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	64		128	%REC
NC28SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	65		130	%REC
NC28SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	72		144	%REC
NC28SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	72		144	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG007	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	63		126	%REC
NC28SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	58		116	%REC
NC28SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	59		118	%REC
NC28SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	60		120	%REC
NC28SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	62		124	%REC
NC28SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	62		124	%REC
NC28SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	62		124	%REC
NC28SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	64		128	%REC
NC28SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	67		134	%REC
NC28SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	62		124	%REC
NC28SDG008	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	60		120	%REC
NC28SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	56		112	%REC
NC28SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	55		110	%REC
NC28SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	53		106	%REC
NC28SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	49		98	%REC
NC28SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	49		98	%REC
NC28SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	50		100	%REC
NC28SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	50		100	%REC
NC28SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	50		100	%REC
NC28SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	51		102	%REC
NC28SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	49		98	%REC
NC28SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	54		108	%REC
NC28SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	53		106	%REC
NC28SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	53		106	%REC
NC28SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	56		112	%REC
NC28SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	52		104	%REC
NC28SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	53		106	%REC
NC28SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	57		114	%REC
NC28SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	55		110	%REC
NC28SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	55		110	%REC
NC28SDG010	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	54		108	%REC
NC28SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	50		100	%REC
NC28SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	53		106	%REC
NC28SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	56		112	%REC
NC28SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	63		126	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	64		128	%REC
NC28SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	58		116	%REC
NC28SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	61		122	%REC
NC28SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	62		124	%REC
NC28SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	63		126	%REC
NC28SDG011	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	56		112	%REC
NC28SDG012	0.25	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	190		95	%REC
NC28SDG012	0.25	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG012	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	190		95	%REC
NC28SDG012	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG012	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG012	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	190		95	%REC
NC28SDG012	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG012	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	230		115	%REC
NC28SDG012	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG012	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	200		100	%REC
NC28SDG012	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG012	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG012	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG012	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG012	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG012	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	250		125	%REC
NC28SDG012	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG012	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	220		110	%REC
NC28SDG012	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG012	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG012	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG012	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG012	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG012	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	260		130	%REC
NC28SDG012	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG012	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG012	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG012	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG012	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG012	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	310		155	%REC
NC28SDG012	0.25	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	290		145	%REC
NC28SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	53		106	%REC
NC28SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	49		98	%REC
NC28SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	46		92	%REC
NC28SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	58		116	%REC
NC28SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	50		100	%REC
NC28SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	58		116	%REC
NC28SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	51		102	%REC
NC28SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	69		138	%REC
NC28SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	68		136	%REC
NC28SDG013	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	64		128	%REC
NC28SDG014	0.25	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	100		100	%REC
NC28SDG014	0.25	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG014	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	110		110	%REC
NC28SDG014	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG014	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG014	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	100		100	%REC
NC28SDG014	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG014	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	120		120	%REC
NC28SDG014	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG014	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	110		110	%REC
NC28SDG014	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG014	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG014	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG014	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG014	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG014	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	110		110	%REC
NC28SDG014	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG014	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	110		110	%REC
NC28SDG014	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG014	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG014	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG014	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG014	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG014	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	120		120	%REC
NC28SDG014	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG014	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG014	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG014	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG014	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG014	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	120		120	%REC
NC28SDG014	0.25	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	110		110	%REC
NC28SDG015	0.25	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	100		100	%REC
NC28SDG015	0.25	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG015	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	100		100	%REC
NC28SDG015	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG015	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG015	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	100		100	%REC
NC28SDG015	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG015	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	110		110	%REC
NC28SDG015	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG015	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	100		100	%REC
NC28SDG015	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG015	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG015	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG015	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG015	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG015	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	97		97	%REC
NC28SDG015	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG015	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	96		96	%REC
NC28SDG015	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG015	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG015	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	<u> </u>
NC28SDG015	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG015	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG015	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	110		110	%REC
NC28SDG015	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG015	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG015	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG015	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG015	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG015	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	130		130	%REC
NC28SDG015	0.25	L	209 - Decachlorobiphenyl	5	0.57	ng/L	120		120	%REC
NC28SDG016	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	24		96	%REC
NC28SDG016	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG016	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	24		96	%REC
NC28SDG016	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG016	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG016	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	25		100	%REC
NC28SDG016	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG016	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	27		108	%REC
NC28SDG016	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG016	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	24		96	%REC
NC28SDG016	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG016	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG016	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG016	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG016	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG016	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	24		96	%REC
NC28SDG016	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG016	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	26		104	%REC
NC28SDG016	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	- I
NC28SDG016	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	- I
NC28SDG016	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	- I
NC28SDG016	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG016	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	1

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG016	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	28		112	%REC
NC28SDG016	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG016	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG016	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG016	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG016	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG016	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	30		120	%REC
NC28SDG016	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	32		128	%REC
NC28SDG017	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	26		104	%REC
NC28SDG017	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG017	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	23		92	%REC
NC28SDG017	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG017	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG017	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	26		104	%REC
NC28SDG017	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG017	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	22		88	%REC
NC28SDG017	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG017	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	22		88	%REC
NC28SDG017	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG017	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG017	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG017	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG017	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG017	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	20		80	%REC
NC28SDG017	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG017	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	20		80	%REC
NC28SDG017	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG017	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG017	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG017	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG017	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG017	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	23		92	%REC
NC28SDG017	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG017	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG017	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG017	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG017	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG017	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	23		92	%REC
NC28SDG017	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	24		96	%REC
NC28SDG018	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
NC28SDG018	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG018	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	49		98	%REC
NC28SDG018	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG018	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG018	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	45		90	%REC
NC28SDG018	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG018	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	47		94	%REC
NC28SDG018	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG018	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	44		88	%REC
NC28SDG018	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG018	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG018	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG018	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG018	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG018	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	42		84	%REC
NC28SDG018	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG018	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	40		80	%REC
NC28SDG018	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG018	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG018	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG018	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG018	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG018	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	45		90	%REC
NC28SDG018	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG018	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG018	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG018	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG018	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG018	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	41		82	%REC
NC28SDG018	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	42		84	%REC
NC28SDG019	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	49		98	%REC
NC28SDG019	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG019	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	49		98	%REC
NC28SDG019	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG019	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG019	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	49		98	%REC
NC28SDG019	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG019	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	56		112	%REC
NC28SDG019	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG019	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	55		110	%REC
NC28SDG019	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG019	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG019	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG019	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG019	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG019	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	55		110	%REC
NC28SDG019	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG019	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	53		106	%REC
NC28SDG019	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG019	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG019	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG019	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG019	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG019	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	58		116	%REC
NC28SDG019	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG019	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG019	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG019	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG019	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG019	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	53		106	%REC
NC28SDG019	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	58		116	%REC
NC28SDG020	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	28		112	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG020	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG020	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	26		104	%REC
NC28SDG020	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG020	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG020	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	25		100	%REC
NC28SDG020	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG020	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	24		96	%REC
NC28SDG020	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG020	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	26		104	%REC
NC28SDG020	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG020	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG020	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG020	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG020	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG020	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	23		92	%REC
NC28SDG020	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG020	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	23		92	%REC
NC28SDG020	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG020	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG020	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG020	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG020	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG020	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	25		100	%REC
NC28SDG020	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG020	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG020	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG020	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG020	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG020	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	23		92	%REC
NC28SDG020	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	23		92	%REC
NC28SDG021	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	28		112	%REC
NC28SDG021	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG021	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	26		104	%REC
NC28SDG021	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG021	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG021	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	27		108	%REC
NC28SDG021	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG021	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	33		132	%REC
NC28SDG021	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG021	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	28		112	%REC
NC28SDG021	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG021	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG021	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG021	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG021	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG021	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	32		128	%REC
NC28SDG021	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG021	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	28		112	%REC
NC28SDG021	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG021	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG021	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG021	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG021	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG021	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	36		144	%REC
NC28SDG021	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG021	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG021	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG021	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG021	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG021	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	32		128	%REC
NC28SDG021	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	36		144	%REC
NC28SDG022	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	54		108	%REC
NC28SDG022	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG022	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	47		94	%REC
NC28SDG022	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG022	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG022	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	50		100	%REC
NC28SDG022	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG022	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	44		88	%REC
NC28SDG022	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG022	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	48		96	%REC
NC28SDG022	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG022	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG022	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG022	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG022	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG022	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	38		76	%REC
NC28SDG022	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG022	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	39		78	%REC
NC28SDG022	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG022	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG022	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG022	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG022	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG022	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	47		94	%REC
NC28SDG022	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG022	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG022	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG022	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG022	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG022	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	43		86	%REC
NC28SDG022	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	43		86	%REC
NC28SDG023	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	55		110	%REC
NC28SDG023	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG023	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	53		106	%REC
NC28SDG023	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG023	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG023	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	55		110	%REC
NC28SDG023	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG023	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	52		104	%REC
NC28SDG023	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG023	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	51		102	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG023	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG023	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG023	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG023	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG023	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG023	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	46		92	%REC
NC28SDG023	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG023	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	43		86	%REC
NC28SDG023	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG023	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG023	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG023	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG023	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG023	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	49		98	%REC
NC28SDG023	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG023	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG023	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG023	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG023	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG023	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	55		110	%REC
NC28SDG023	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	54		108	%REC
NC34SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	43		86	%REC
NC34SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	48		96	%REC
NC34SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	44		88	%REC
NC34SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	56		112	%REC
NC34SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	60		120	%REC
NC34SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	54		108	%REC
NC34SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	50		100	%REC
NC34SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	53		106	%REC
NC34SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	62		124	%REC
NC34SDG001	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	62		124	%REC
NC34SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	49		98	%REC
NC34SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	51		102	%REC
NC34SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	48		96	%REC
NC34SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	48		96	%REC
NC34SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	58		116	%REC
NC34SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	45		90	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	50		100	%REC
NC34SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	48		96	%REC
NC34SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	48		96	%REC
NC34SDG002	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	48		96	%REC
NC34SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	41		82	%REC
NC34SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	43		86	%REC
NC34SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	42		84	%REC
NC34SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	38		76	%REC
NC34SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	46		92	%REC
NC34SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	38		76	%REC
NC34SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	40		80	%REC
NC34SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	41		82	%REC
NC34SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	42		84	%REC
NC34SDG003	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	39		78	%REC
NC34SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	39		78	%REC
NC34SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	40		80	%REC
NC34SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	39		78	%REC
NC34SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	36		72	%REC
NC34SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	45		90	%REC
NC34SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	39		78	%REC
NC34SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	41		82	%REC
NC34SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	37		74	%REC
NC34SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	41		82	%REC
NC34SDG004	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	39		78	%REC
NC34SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	57		114	%REC
NC34SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	58		116	%REC
NC34SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	52		104	%REC
NC34SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	55		110	%REC
NC34SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	59		118	%REC
NC34SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	53		106	%REC
NC34SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	55		110	%REC
NC34SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	55		110	%REC
NC34SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	55		110	%REC
NC34SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	60		120	%REC
NC34SDG006	1		8 - 2,4'-Dichlorobiphenyl	10	0.74	ng	75		75	%REC
NC34SDG006	1		18 - 2,2',5-Trichlorobiphenyl	10	0.86	ng	0	ND	0	
NC34SDG006	1		28 - 2,4,4'-Trichlorobiphenyl	10	0.91	ng	80		80	%REC
NC34SDG006	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.74	ng	0	ND	0	
NC34SDG006	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.94	ng	81		81	%REC
NC34SDG006	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	10	1.1	ng	0	ND	0	
NC34SDG006	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	10	1.4	ng	83		83	%REC
NC34SDG006	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.81	ng	91		91	%REC
NC34SDG006	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	1.3	ng	0	ND	0	
NC34SDG006	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	10	2.9	ng	0	ND	0	
NC34SDG006	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	1.4	ng	84		84	%REC
NC34SDG006	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	1.9	ng	0	ND	0	
NC34SDG006	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	10	1.5	ng	88		88	%REC
NC34SDG006	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.9	ng	0	ND	0	
NC34SDG006	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	1.9	ng	86		86	%REC
NC34SDG006	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.86	ng	0	ND	0	
NC34SDG006	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	2	ng	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG006	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	1.3	ng	0	ND	0	
NC34SDG006	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	2.2	ng	93		93	%REC
NC34SDG006	1		209 - Decachlorobiphenyl	10	1.5	ng	87		87	%REC
NC34SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	53		106	%REC
NC34SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	56		112	%REC
NC34SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	51		102	%REC
NC34SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	56		112	%REC
NC34SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	64		128	%REC
NC34SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	60		120	%REC
NC34SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	57		114	%REC
NC34SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	52		104	%REC
NC34SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	61		122	%REC
NC34SDG007	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	58		116	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	48		96	%REC
NC34SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	53		106	%REC
NC34SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	47		87	%REC
NC34SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	48		96	%REC
NC34SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	60		110	%REC
NC34SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	49		98	%REC
NC34SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	52		98	%REC
NC34SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	54		108	%REC
NC34SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	56		112	%REC
NC34SDG008	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	49		98	%REC
NC34SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	52		104	%REC
NC34SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	55		110	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	53		106	%REC
NC34SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	57		114	%REC
NC34SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	61		122	%REC
NC34SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	53		106	%REC
NC34SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	54		108	%REC
NC34SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	54		108	%REC
NC34SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	56		112	%REC
NC34SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	55		110	%REC
NC34SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	48		96	%REC
NC34SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	51		102	%REC
NC34SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	45		90	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	52		104	%REC
NC34SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	56		112	%REC
NC34SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	50		100	%REC
NC34SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	51		102	%REC
NC34SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	53		106	%REC
NC34SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	47		94	%REC
NC34SDG010	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	50		100	%REC
NC34SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	41		82	%REC
NC34SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	44		88	%REC
NC34SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	42		84	%REC
NC34SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	50		100	%REC
NC34SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	51		102	%REC
NC34SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	42		84	%REC
NC34SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	46		92	%REC
NC34SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	43		86	%REC
NC34SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	39		78	%REC
NC34SDG011	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	40		80	%REC
NC34SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
NC34SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	54		108	%REC
NC34SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	49		98	%REC
NC34SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	51		102	%REC
NC34SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	60		120	%REC
NC34SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	52		104	%REC
NC34SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	52		104	%REC
NC34SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	50		100	%REC
NC34SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	57		114	%REC
NC34SDG012	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	54		108	%REC
NC34SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	52		104	%REC
NC34SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	52		104	%REC
NC34SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	51		102	%REC
NC34SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	55		110	%REC
NC34SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	55		110	%REC
NC34SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting	Min Detection	Units	Raw result	Qualifier	QC Result	QC Units
				Limit	Limit					
NC34SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	64		128	%REC
NC34SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	47		94	%REC
NC34SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	63		126	%REC
NC34SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	73		146	%REC
NC34SDG013	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	68		136	%REC

Analytical Blank Spike Duplicate (BSD) Data

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	46		92	%REC
CSC81SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	, , , ,
CSC81SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	49	1,2	98	%REC
CSC81SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	, vice e
CSC81SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
CSC81SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	44		88	%REC
CSC81SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	52		104	%REC
CSC81SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
CSC81SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	55		110	%REC
CSC81SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
CSC81SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
CSC81SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
CSC81SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	56		112	%REC
CSC81SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
CSC81SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	50		100	%REC
CSC81SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
CSC81SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
CSC81SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
CSC81SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	52		104	%REC
CSC81SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
CSC81SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
CSC81SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
CSC81SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
CSC81SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
CSC81SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	54		108	%REC
CSC81SDG001	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	51		102	%REC
CSC81SDG002	1		8 - 2,4'-Dichlorobiphenyl	10	0.74	ng	53		53	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG002	1		18 - 2,2',5-Trichlorobiphenyl	10	0.86	ng	0	ND	0	
CSC81SDG002	1		28 - 2,4,4'-Trichlorobiphenyl	10	0.91	ng	61		61	%REC
CSC81SDG002	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.74	ng	0	ND	0	
CSC81SDG002	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.94	ng	59		59	%REC
CSC81SDG002	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	10	1.1	ng	0	ND	0	
CSC81SDG002	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	10	1.4	ng	60		60	%REC
CSC81SDG002	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.81	ng	70		70	%REC
CSC81SDG002	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	1.3	ng	0	ND	0	
CSC81SDG002	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	10	2.9	ng	0	ND	0	
CSC81SDG002	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	1.4	ng	63		63	%REC
CSC81SDG002	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	1.9	ng	0	ND	0	
CSC81SDG002	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	10	1.5	ng	58		58	%REC
CSC81SDG002	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.9	ng	0	ND	0	
CSC81SDG002	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	1.9	ng	59		59	%REC
CSC81SDG002	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.86	ng	0	ND	0	
CSC81SDG002	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	2	ng	0	ND	0	
CSC81SDG002	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	1.3	ng	0	ND	0	
CSC81SDG002	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	2.2	ng	63		63	%REC
CSC81SDG002	1		209 - Decachlorobiphenyl	10	1.5	ng	62		62	%REC
CSC81SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	54		108	%REC
CSC81SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	58		116	%REC
CSC81SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	51		102	%REC
CSC81SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	67		134	%REC
CSC81SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
CSC81SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	67		134	%REC
CSC81SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
CSC81SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
CSC81SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
CSC81SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
CSC81SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	64		128	%REC
CSC81SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
CSC81SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	63		126	%REC
CSC81SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
CSC81SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
CSC81SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
CSC81SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
CSC81SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	69		138	%REC
CSC81SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
CSC81SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
CSC81SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
CSC81SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
CSC81SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
CSC81SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	64		128	%REC
CSC81SDG004	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	58		116	%REC
CSC81SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	47		94	%REC
CSC81SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	49		98	%REC
CSC81SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	48		96	%REC
CSC81SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	48		96	%REC
CSC81SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	55		0	
CSC81SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	48		96	%REC
CSC81SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	51		102	%REC
CSC81SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
CSC81SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	48		96	%REC
CSC81SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
CSC81SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	49		98	%REC
CSC81SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	48		96	%REC
CSC81SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	71		142	%REC
CSC81SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	70		140	%REC
CSC81SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	68		136	%REC
CSC81SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	65		130	%REC
CSC81SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	74		148	%REC
CSC81SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	60		120	%REC
CSC81SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	62		124	%REC
CSC81SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
CSC81SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	70		140	%REC
CSC81SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
CSC81SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	70		140	%REC
CSC81SDG006	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	64		128	%REC
CSC81SDG007	0.05	L	8 - 2,4'-Dichlorobiphenyl	100	8.4	ng/L	880		88	%REC
CSC81SDG007	0.05	L	18 - 2,2',5-Trichlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	28 - 2,4,4'-Trichlorobiphenyl	200	10	ng/L	970		0	
CSC81SDG007	0.05	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ng/L	0	ND	0	
CSC81SDG007	0.05	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	200	5.9	ng/L	1000		0	
CSC81SDG007	0.05	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ng/L	790		79	%REC
CSC81SDG007	0.05	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ng/L	0	ND	0	
CSC81SDG007	0.05	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ng/L	1000		100	%REC
CSC81SDG007	0.05	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ng/L	0	ND	0	
CSC81SDG007	0.05	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ng/L	0	ND	0	
CSC81SDG007	0.05	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ng/L	0	ND	0	
CSC81SDG007	0.05	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ng/L	740		74	%REC
CSC81SDG007	0.05	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG007	0.05	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	300	5.4	ng/L	970		0	
CSC81SDG007	0.05	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ng/L	0	ND	0	
CSC81SDG007	0.05	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	200	12	ng/L	0	ND	0	
CSC81SDG007	0.05	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ng/L	0	ND	0	
CSC81SDG007	0.05	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	200	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	200	13	ng/L	690		0	
CSC81SDG007	0.05	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ng/L	0	ND	0	
CSC81SDG007	0.05	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ng/L	0	ND	0	
CSC81SDG007	0.05	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	200	13	ng/L	0	ND	0	
CSC81SDG007	0.05	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ng/L	0	ND	0	
CSC81SDG007	0.05	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ng/L	0	ND	0	
CSC81SDG007	0.05	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ng/L	800		80	%REC
CSC81SDG007	0.05	L	209 - Decachlorobiphenyl	100	11	ng/L	790		79	%REC
CSC81SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
CSC81SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0.53	ng/L	53		106	%REC
CSC81SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.29	ng/L	59		118	%REC
CSC81SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	49		98	%REC
CSC81SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	54		108	%REC
CSC81SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	46		92	%REC
CSC81SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0.27	ng/L	51		102	%REC
CSC81SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0.61	ng/L	0	ND	0	
CSC81SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0.65	ng/L	45		90	%REC
CSC81SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.65	ng/L	0	ND	0	
CSC81SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	50		100	%REC
CSC81SDG008	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	49		98	%REC
CSC81SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	59		118	%REC
CSC81SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0.53	ng/L	55		110	%REC
CSC81SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.29	ng/L	60		120	%REC
CSC81SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	56		112	%REC
CSC81SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	63		126	%REC
CSC81SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	52		104	%REC
CSC81SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0.27	ng/L	58		116	%REC
CSC81SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0.61	ng/L	0	ND	0	
CSC81SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0.65	ng/L	44		88	%REC
CSC81SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.65	ng/L	0	ND	0	
CSC81SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
CSC81SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	54		108	%REC
CSC81SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	56		112	%REC
CSC81SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	58		116	%REC
CSC81SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0.53	ng/L	57		114	%REC
CSC81SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
CSC81SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.29	ng/L	60		120	%REC
CSC81SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	53		106	%REC
CSC81SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	58		116	%REC
CSC81SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
CSC81SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
CSC81SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
CSC81SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
CSC81SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
CSC81SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	48		96	%REC
CSC81SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
CSC81SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0.27	ng/L	55		110	%REC
CSC81SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
CSC81SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0.61	ng/L	0	ND	0	
CSC81SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
CSC81SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
CSC81SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0.65	ng/L	45		90	%REC
CSC81SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
CSC81SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
CSC81SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.65	ng/L	0	ND	0	
CSC81SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
CSC81SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	52		104	%REC
CSC81SDG010	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	54		108	%REC
CSC81SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.42	ng/L	53		106	%REC
CSC81SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0.53	ng/L	51		102	%REC
CSC81SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0.75	ng/L	0	ND	0	
CSC81SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0.29	ng/L	55		110	%REC
CSC81SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0.56	ng/L	49		98	%REC
CSC81SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0.77	ng/L	0	ND	0	
CSC81SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.36	ng/L	53		106	%REC
CSC81SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.41	ng/L	0	ND	0	
CSC81SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0.68	ng/L	0	ND	0	
CSC81SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0.66	ng/L	0	ND	0	
CSC81SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	10	0.77	ng/L	0	ND	0	
CSC81SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.25	ng/L	49		98	%REC
CSC81SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	0.55	ng/L	0	ND	0	
CSC81SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0.27	ng/L	52		104	%REC
CSC81SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0.62	ng/L	0	ND	0	
CSC81SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0.61	ng/L	0	ND	0	
CSC81SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0.59	ng/L	0	ND	0	
CSC81SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0.64	ng/L	0	ND	0	
CSC81SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0.65	ng/L	43		86	%REC
CSC81SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.37	ng/L	0	ND	0	
CSC81SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0.5	ng/L	0	ND	0	
CSC81SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0.65	ng/L	0	ND	0	
CSC81SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0.71	ng/L	0	ND	0	
CSC81SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0.58	ng/L	0	ND	0	
CSC81SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.23	ng/L	49		98	%REC
CSC81SDG011	1	L	209 - Decachlorobiphenyl	10	0.57	ng/L	53		106	%REC
CSC81SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.42	ng/L	50		100	%REC
CSC81SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0.53	ng/L	51		102	%REC
CSC81SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0.75	ng/L	0	ND	0	
CSC81SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0.29	ng/L	56		112	%REC
CSC81SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0.56	ng/L	53		106	%REC
CSC81SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0.77	ng/L	0	ND	0	
CSC81SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.36	ng/L	56		112	%REC
CSC81SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.41	ng/L	0	ND	0	
CSC81SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0.68	ng/L	0	ND	0	
CSC81SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0.66	ng/L	0	ND	0	
CSC81SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	20	0.77	ng/L	0	ND	0	
CSC81SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.25	ng/L	49		98	%REC
CSC81SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	20	0.55	ng/L	0	ND	0	
CSC81SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0.27	ng/L	55		110	%REC
CSC81SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0.62	ng/L	0	ND	0	
CSC81SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0.61	ng/L	0	ND	0	
CSC81SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0.59	ng/L	0	ND	0	
CSC81SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0.64	ng/L	0	ND	0	
CSC81SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0.65	ng/L	42		84	%REC
CSC81SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.37	ng/L	0	ND	0	
CSC81SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0.5	ng/L	0	ND	0	
CSC81SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0.65	ng/L	0	ND	0	
CSC81SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0.71	ng/L	0	ND	0	
CSC81SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0.58	ng/L	0	ND	0	
CSC81SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.23	ng/L	51		102	%REC
CSC81SDG012	1	L	209 - Decachlorobiphenyl	10	0.57	ng/L	51		102	%REC
CSC81SDG013	1		8 - 2,4'-Dichlorobiphenyl	20	2.4	ng	110		110	%REC
CSC81SDG013	1		18 - 2,2',5-Trichlorobiphenyl	20	2.9	ng	0	ND	0	
CSC81SDG013	1		28 - 2,4,4'-Trichlorobiphenyl	40	3	ng	100		100	%REC
CSC81SDG013	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	20	2.5	ng	0	ND	0	
CSC81SDG013	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	40	3.2	ng	110		110	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG013	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	20	3.6	ng	0	ND	0	
CSC81SDG013	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	20	4.6	ng	110		110	%REC
CSC81SDG013	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	20	2.7	ng	120		120	%REC
CSC81SDG013	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	20	4.4	ng	0	ND	0	
CSC81SDG013	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	40	6.7	ng	0	ND	0	
CSC81SDG013	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	20	9.7	ng	0	ND	0	
CSC81SDG013	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	20	4.7	ng	100		100	%REC
CSC81SDG013	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	40	6.5	ng	0	ND	0	
CSC81SDG013	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	60	5	ng	110		110	%REC
CSC81SDG013	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	40	6.7	ng	0	ND	0	
CSC81SDG013	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	40	3	ng	0	ND	0	
CSC81SDG013	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	40	6.5	ng	90		90	%REC
CSC81SDG013	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	40	2.8	ng	0	ND	0	
CSC81SDG013	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	20	6.7	ng	0	ND	0	
CSC81SDG013	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	20	4.4	ng	0	ND	0	
CSC81SDG013	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	20	7.4	ng	110		110	%REC
CSC81SDG013	1		209 - Decachlorobiphenyl	20	5.1	ng	110		110	%REC
CSC81SDG014	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.42	ng/L	65		130	%REC
CSC81SDG014	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG014	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0.53	ng/L	57		114	%REC
CSC81SDG014	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG014	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0.75	ng/L	0	ND	0	
CSC81SDG014	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0.29	ng/L	61		122	%REC
CSC81SDG014	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG014	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0.56	ng/L	54		108	%REC
CSC81SDG014	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0.77	ng/L	0	ND	0	
CSC81SDG014	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.36	ng/L	61		122	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
CSC81SDG014	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.41	ng/L	0	ND	0	
CSC81SDG014	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0.68	ng/L	0	ND	0	
CSC81SDG014	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0.66	ng/L	0	ND	0	
CSC81SDG014	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	20	0.77	ng/L	0	ND	0	
CSC81SDG014	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0.67	ng/L	0	ND	0	
CSC81SDG014	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.25	ng/L	54		108	%REC
CSC81SDG014	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	20	0.55	ng/L	0	ND	0	
CSC81SDG014	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0.27	ng/L	57		114	%REC
CSC81SDG014	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0.62	ng/L	0	ND	0	
CSC81SDG014	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0.61	ng/L	0	ND	0	
CSC81SDG014	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0.64	ng/L	0	ND	0	
CSC81SDG014	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0.59	ng/L	0	ND	0	
CSC81SDG014	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0.64	ng/L	0	ND	0	
CSC81SDG014	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0.65	ng/L	47		94	%REC
CSC81SDG014	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.37	ng/L	0	ND	0	
CSC81SDG014	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0.5	ng/L	0	ND	0	
CSC81SDG014	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0.65	ng/L	0	ND	0	
CSC81SDG014	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0.71	ng/L	0	ND	0	
CSC81SDG014	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0.58	ng/L	0	ND	0	
CSC81SDG014	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.23	ng/L	55		110	%REC
CSC81SDG014	1	L	209 - Decachlorobiphenyl	10	0.57	ng/L	59		118	%REC
NC22SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	100		100	%REC
NC22SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	99		99	%REC
NC22SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	100		100	%REC
NC22SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	110		110	%REC
NC22SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	100		100	%REC
NC22SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND	0	
NC22SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	100		100	%REC
NC22SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND	0	
NC22SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	100		100	%REC
NC22SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	110		110	%REC
NC22SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND	0	
NC22SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND	0	
NC22SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	120		120	%REC
NC22SDG001	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	120		120	%REC
NC22SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	98		98	%REC
NC22SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	95		95	%REC
NC22SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	98		98	%REC
NC22SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	110		110	%REC
NC22SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	100		100	%REC
NC22SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND	0	
NC22SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	100		100	%REC
NC22SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND	0	
NC22SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	100		100	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	120		120	%REC
NC22SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND	0	
NC22SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND	0	
NC22SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	110		110	%REC
NC22SDG002	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	110		110	%REC
NC22SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	100		100	%REC
NC22SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	110		110	%REC
NC22SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	100		100	%REC
NC22SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	140		140	%REC
NC22SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	110		110	%REC
NC22SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	120		120	%REC
NC22SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	120		120	%REC
NC22SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	140		140	%REC
NC22SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	120		120	%REC
NC22SDG003	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	120		120	%REC
NC22SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	110		110	%REC
NC22SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	100		100	%REC
NC22SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	110		110	%REC
NC22SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	120		120	%REC
NC22SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	110		110	%REC
NC22SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	110		110	%REC
NC22SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	110		110	%REC
NC22SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	120		120	%REC
NC22SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	100		100	%REC
NC22SDG004	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	110		110	%REC
NC22SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	94		94	%REC
NC22SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	94		94	%REC
NC22SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	96		96	%REC
NC22SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	110		110	%REC
NC22SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	100		100	%REC
NC22SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	100		100	%REC
NC22SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	100		100	%REC
NC22SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	120		120	%REC
NC22SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	100		100	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG005	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	100		100	%REC
NC22SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	49		98	%REC
NC22SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	48		96	%REC
NC22SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	47		94	%REC
NC22SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	52		104	%REC
NC22SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	48		96	%REC
NC22SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	48		96	%REC
NC22SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	48		96	%REC
NC22SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	52		104	%REC
NC22SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	47		94	%REC
NC22SDG006	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	48		96	%REC
NC22SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	53		106	%REC
NC22SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	50		100	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	50		100	%REC
NC22SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	55		110	%REC
NC22SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	49		98	%REC
NC22SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	52		104	%REC
NC22SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	50		100	%REC
NC22SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	53		106	%REC
NC22SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	51		102	%REC
NC22SDG007	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	50		100	%REC
NC22SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	40		80	%REC
NC22SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	41		82	%REC
NC22SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	40		80	%REC
NC22SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	46		92	%REC
NC22SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	40		80	%REC
NC22SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	41		82	%REC
NC22SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	40		80	%REC
NC22SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	40		80	%REC
NC22SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	39		78	%REC
NC22SDG008	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	40		80	%REC
NC22SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	47		94	%REC
NC22SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	48		96	%REC
NC22SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	47		94	%REC
NC22SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	49		98	%REC
NC22SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	46		92	%REC
NC22SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	47		94	%REC
NC22SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	45		90	%REC
NC22SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	45		90	%REC
NC22SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	44		88	%REC
NC22SDG009	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	45		90	%REC
NC22SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	50		100	%REC
NC22SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	54		108	%REC
NC22SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	52		104	%REC
NC22SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	56		112	%REC
NC22SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	53		106	%REC
NC22SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	53		106	%REC
NC22SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	52		104	%REC
NC22SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	52		104	%REC
NC22SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	60		120	%REC
NC22SDG010	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	56		112	%REC
NC22SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	53		106	%REC
NC22SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	50		100	%REC
NC22SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	48		96	%REC
NC22SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	50		100	%REC
NC22SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	48		96	%REC
NC22SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	46		92	%REC
NC22SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	45		90	%REC
NC22SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	54		108	%REC
NC22SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	57		114	%REC
NC22SDG011	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	50		100	%REC
NC22SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	56		112	%REC
NC22SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	55		110	%REC
NC22SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	53		106	%REC
NC22SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	58		116	%REC
NC22SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	56		112	%REC
NC22SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	48		96	%REC
NC22SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	50		100	%REC
NC22SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	54		108	%REC
NC22SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	52		104	%REC
NC22SDG012	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	51		102	%REC
NC22SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	53		106	%REC
NC22SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	54		108	%REC
NC22SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	53		106	%REC
NC22SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	56		112	%REC
NC22SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	54		108	%REC
NC22SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	53		106	%REC
NC22SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	52		104	%REC
NC22SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	59		118	%REC
NC22SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	67		134	%REC
NC22SDG013	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	58		116	%REC
NC22SDG014	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	83		83	%REC
NC22SDG014	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG014	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	84		84	%REC
NC22SDG014	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG014	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG014	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	84		84	%REC
NC22SDG014	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG014	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	91		91	%REC
NC22SDG014	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG014	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	86		86	%REC
NC22SDG014	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG014	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG014	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG014	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG014	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG014	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	87		87	%REC
NC22SDG014	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG014	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	86		86	%REC
NC22SDG014	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG014	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG014	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG014	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG014	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG014	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	100		100	%REC
NC22SDG014	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG014	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG014	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG014	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG014	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG014	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	100		100	%REC
NC22SDG014	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	90		90	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG015	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	100		100	%REC
NC22SDG015	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG015	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	98		98	%REC
NC22SDG015	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG015	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG015	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	96		96	%REC
NC22SDG015	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG015	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	100		100	%REC
NC22SDG015	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG015	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	96		96	%REC
NC22SDG015	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG015	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG015	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG015	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG015	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG015	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	93		93	%REC
NC22SDG015	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG015	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	96		96	%REC
NC22SDG015	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG015	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG015	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG015	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG015	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG015	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	99		99	%REC
NC22SDG015	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG015	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG015	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG015	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG015	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG015	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	93		93	%REC
NC22SDG015	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	88		88	%REC
NC22SDG016	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	52		104	%REC
NC22SDG016	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG016	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	53		106	%REC
NC22SDG016	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG016	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG016	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	51		102	%REC
NC22SDG016	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG016	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	63		126	%REC
NC22SDG016	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG016	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	56		0	
NC22SDG016	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG016	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG016	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG016	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG016	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG016	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	58		116	%REC
NC22SDG016	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG016	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	54		108	%REC
NC22SDG016	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG016	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG016	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG016	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG016	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG016	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	66		132	%REC
NC22SDG016	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG016	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG016	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG016	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG016	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG016	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	69		138	%REC
NC22SDG016	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	69		0	
NC22SDG017	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	50		100	%REC
NC22SDG017	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG017	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	48		96	%REC
NC22SDG017	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG017	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG017	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	48		96	%REC
NC22SDG017	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG017	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	54		108	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG017	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG017	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	51		102	%REC
NC22SDG017	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG017	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG017	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG017	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG017	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG017	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	49		98	%REC
NC22SDG017	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG017	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	47		94	%REC
NC22SDG017	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG017	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG017	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG017	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG017	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG017	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	51		102	%REC
NC22SDG017	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG017	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG017	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG017	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG017	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG017	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	42		84	%REC
NC22SDG017	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	44		88	%REC
NC22SDG018	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	50		100	%REC
NC22SDG018	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG018	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	50		100	%REC
NC22SDG018	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG018	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG018	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	52		104	%REC
NC22SDG018	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG018	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	60		120	%REC
NC22SDG018	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG018	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	52		104	%REC
NC22SDG018	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG018	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG018	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG018	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG018	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG018	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	48		96	%REC
NC22SDG018	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG018	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	52		104	%REC
NC22SDG018	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG018	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG018	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG018	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG018	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG018	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	53		106	%REC
NC22SDG018	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG018	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG018	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG018	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG018	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG018	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	60		120	%REC
NC22SDG018	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	65		130	%REC
NC22SDG019	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	54		108	%REC
NC22SDG019	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG019	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	51		102	%REC
NC22SDG019	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG019	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG019	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	51		102	%REC
NC22SDG019	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG019	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	56		112	%REC
NC22SDG019	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG019	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	50		100	%REC
NC22SDG019	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG019	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG019	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG019	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG019	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG019	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	54		108	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG019	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG019	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	52		104	%REC
NC22SDG019	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG019	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG019	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG019	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG019	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG019	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	60		120	%REC
NC22SDG019	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG019	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG019	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG019	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG019	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG019	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	58		116	%REC
NC22SDG019	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	55		110	%REC
NC22SDG020	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	52		104	%REC
NC22SDG020	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG020	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	50		100	%REC
NC22SDG020	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG020	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG020	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	51		102	%REC
NC22SDG020	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG020	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	56		112	%REC
NC22SDG020	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG020	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	51		102	%REC
NC22SDG020	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG020	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG020	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG020	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG020	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG020	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	50		100	%REC
NC22SDG020	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG020	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	50		100	%REC
NC22SDG020	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG020	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG020	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG020	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG020	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG020	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	53		106	%REC
NC22SDG020	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG020	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG020	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG020	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG020	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG020	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	59		118	%REC
NC22SDG020	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	52		104	%REC
NC22SDG021	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	40		80	%REC
NC22SDG021	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG021	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	40		80	%REC
NC22SDG021	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG021	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG021	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	43		86	%REC
NC22SDG021	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG021	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	58		116	%REC
NC22SDG021	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG021	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	48		96	%REC
NC22SDG021	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG021	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG021	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG021	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG021	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG021	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	52		104	%REC
NC22SDG021	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG021	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	51		102	%REC
NC22SDG021	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG021	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG021	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG021	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG021	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG021	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	61		122	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG021	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG021	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG021	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG021	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG021	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG021	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	61		122	%REC
NC22SDG021	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	53		106	%REC
NC22SDG022	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	52		104	%REC
NC22SDG022	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG022	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	51		102	%REC
NC22SDG022	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG022	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG022	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	48		96	%REC
NC22SDG022	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG022	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	49		98	%REC
NC22SDG022	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG022	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	49		98	%REC
NC22SDG022	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG022	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG022	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG022	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG022	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG022	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	48		96	%REC
NC22SDG022	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG022	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	48		96	%REC
NC22SDG022	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG022	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG022	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG022	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG022	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG022	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	59		118	%REC
NC22SDG022	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG022	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG022	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG022	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG022	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG022	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	52		104	%REC
NC22SDG022	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	55		110	%REC
NC22SDG023	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	55		110	%REC
NC22SDG023	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG023	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	50		100	%REC
NC22SDG023	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG023	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG023	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	50		100	%REC
NC22SDG023	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG023	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	60		120	%REC
NC22SDG023	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG023	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	57		114	%REC
NC22SDG023	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG023	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG023	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG023	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG023	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG023	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	54		108	%REC
NC22SDG023	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG023	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	59		118	%REC
NC22SDG023	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG023	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG023	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG023	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG023	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG023	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	59		118	%REC
NC22SDG023	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG023	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG023	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG023	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG023	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG023	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	57		114	%REC
NC22SDG023	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	61		122	%REC
NC22SDG024	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	50		99	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG024	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG024	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	50		100	%REC
NC22SDG024	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG024	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG024	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	50		100	%REC
NC22SDG024	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG024	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	66		132	%REC
NC22SDG024	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG024	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	60		120	%REC
NC22SDG024	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG024	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG024	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG024	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG024	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG024	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	61		122	%REC
NC22SDG024	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG024	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	60		120	%REC
NC22SDG024	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG024	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG024	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG024	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG024	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG024	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	70		140	%REC
NC22SDG024	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG024	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG024	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG024	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG024	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG024	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	72		144	%REC
NC22SDG024	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	67		134	%REC
NC22SDG025	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	35		70	%REC
NC22SDG025	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG025	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	43		86	%REC
NC22SDG025	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG025	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG025	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	46		92	%REC
NC22SDG025	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG025	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	54		108	%REC
NC22SDG025	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG025	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	56		112	%REC
NC22SDG025	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG025	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG025	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG025	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG025	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG025	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	51		102	%REC
NC22SDG025	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG025	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	55		110	%REC
NC22SDG025	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG025	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG025	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG025	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG025	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG025	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	62		124	%REC
NC22SDG025	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG025	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG025	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG025	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG025	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG025	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	54		108	%REC
NC22SDG025	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	49		98	%REC
NC22SDG026	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	39		78	%REC
NC22SDG026	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	46		92	%REC
NC22SDG026	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	42		84	%REC
NC22SDG026	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	45		90	%REC
NC22SDG026	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG026	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	44		88	%REC
NC22SDG026	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	47		94	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG026	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	52		104	%REC
NC22SDG026	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	59		118	%REC
NC22SDG026	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG026	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	49		98	%REC
NC22SDG026	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	54		108	%REC
NC22SDG026	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND	0	
NC22SDG026	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG026	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND	0	
NC22SDG026	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	52		104	%REC
NC22SDG026	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	57		114	%REC
NC22SDG026	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND	0	
NC22SDG026	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	53		106	%REC
NC22SDG026	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	57		114	%REC
NC22SDG026	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG026	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG026	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG026	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	58		116	%REC
NC22SDG026	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	64		128	%REC
NC22SDG026	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND	0	
NC22SDG026	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND	0	
NC22SDG026	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND	0	
NC22SDG026	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND	0	
NC22SDG026	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND	0	
NC22SDG026	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	56		112	%REC
NC22SDG026	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	60		120	%REC
NC22SDG026	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	54		108	%REC
NC22SDG026	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	58		116	%REC
NC22SDG050	0.25	g	8 - 2,4'-Dichlorobiphenyl	160	12	ug/Kg	4000		100	%REC
NC22SDG050	0.25	g	18 - 2,2',5-Trichlorobiphenyl	160	14	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	28 - 2,4,4'-Trichlorobiphenyl	160	14	ug/Kg	4000		100	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG050	0.25	g	44 - 2,2',3,5'-Tetrachlorobiphenyl	160	12	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	49 - 2,2',4,5'-Tetrachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	52 - 2,2',5,5'-Tetrachlorobiphenyl	160	15	ug/Kg	4100		103	%REC
NC22SDG050	0.25	g	66 - 2,3',4,4'-Tetrachlorobiphenyl	160	17	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	77 - 3,3',4,4'-Tetrachlorobiphenyl	160	22	ug/Kg	4300		108	%REC
NC22SDG050	0.25	g	87 - 2,2',3,4,5'-Pentachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	101 - 2,2',4,5,5'-Pentachlorobiphenyl	160	13	ug/Kg	4200		105	%REC
NC22SDG050	0.25	g	105 - 2,3,3',4,4'-Pentachlorobiphenyl	160	21	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	114 - 2,3,4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	118 - 2,3',4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	123 - 2',3,4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	126 - 3,3',4,4',5-Pentachlorobiphenyl	160	47	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	160	22	ug/Kg	4200		105	%REC
NC22SDG050	0.25	g	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	160	31	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	160	24	ug/Kg	4100		103	%REC
NC22SDG050	0.25	g	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	160	14	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	160	31	ug/Kg	4500		113	%REC
NC22SDG050	0.25	g	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	160	14	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	160	32	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	160	21	ug/Kg	0	ND	0	
NC22SDG050	0.25	g	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	160	36	ug/Kg	5200		124	%REC
NC22SDG050	0.25	g	209 - Decachlorobiphenyl	160	25	ug/Kg	4700		116	%REC
NC22SDG053	0.25	g	8 - 2,4'-Dichlorobiphenyl	32	34	ug/Kg	4200		105	%REC
NC22SDG053	0.25	g	18 - 2,2',5-Trichlorobiphenyl	32	70	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	28 - 2,4,4'-Trichlorobiphenyl	32	48	ug/Kg	4000		100	%REC
NC22SDG053	0.25	g	44 - 2,2',3,5'-Tetrachlorobiphenyl	32	24	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	49 - 2,2',4,5'-Tetrachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	52 - 2,2',5,5'-Tetrachlorobiphenyl	32	21	ug/Kg	4100		102	%REC
NC22SDG053	0.25	g	66 - 2,3',4,4'-Tetrachlorobiphenyl	32	26	ug/Kg	18	JB	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG053	0.25	g	77 - 3,3',4,4'-Tetrachlorobiphenyl	32	38	ug/Kg	4800		120	%REC
NC22SDG053	0.25	g	87 - 2,2',3,4,5'-Pentachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	101 - 2,2',4,5,5'-Pentachlorobiphenyl	32	19	ug/Kg	4100		102	%REC
NC22SDG053	0.25	g	105 - 2,3,3',4,4'-Pentachlorobiphenyl	32	22	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	118 - 2,3',4,4',5-Pentachlorobiphenyl	32	26	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	126 - 3,3',4,4',5-Pentachlorobiphenyl	32	59	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	32	26	ug/Kg	4400		110	%REC
NC22SDG053	0.25	g	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	32	29	ug/Kg	51	В	0	
NC22SDG053	0.25	g	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	32	26	ug/Kg	4800		119	%REC
NC22SDG053	0.25	g	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	32	100	ug/Kg	450	В	0	
NC22SDG053	0.25	g	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	32	29	ug/Kg	4700		111	%REC
NC22SDG053	0.25	g	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	32	53	ug/Kg	8.3	JB	0	
NC22SDG053	0.25	g	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	32	53	ug/Kg	0	ND	0	
NC22SDG053	0.25	g	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	32	45	ug/Kg	130	В	0	
NC22SDG053	0.25	g	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	32	21	ug/Kg	6	JB	0	
NC22SDG053	0.25	g	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	32	18	ug/Kg	5100	В	35	%REC
NC22SDG053	0.25	g	209 - Decachlorobiphenyl	32	21	ug/Kg	4600	В	85	%REC
NC22SDG054	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	42		84	%REC
NC22SDG054	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG054	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	43		86	%REC
NC22SDG054	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG054	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC22SDG054	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	44		88	%REC
NC22SDG054	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG054	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	47		94	%REC
NC22SDG054	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG054	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	48		96	%REC
NC22SDG054	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC22SDG054	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC22SDG054	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC22SDG054	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC22SDG054	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC22SDG054	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	44		88	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC22SDG054	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC22SDG054	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	47		94	%REC
NC22SDG054	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC22SDG054	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	
NC22SDG054	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG054	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC22SDG054	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC22SDG054	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	53		106	%REC
NC22SDG054	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC22SDG054	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC22SDG054	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC22SDG054	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC22SDG054	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC22SDG054	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	50		100	%REC
NC22SDG054	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	50		100	%REC
NC28SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	43		86	%REC
NC28SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC28SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	45		90	%REC
NC28SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC28SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND	0	
NC28SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	48		96	%REC
NC28SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC28SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	54		108	%REC
NC28SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC28SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	53		106	%REC
NC28SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND	0	
NC28SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND	0	
NC28SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND	0	
NC28SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND	0	
NC28SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND	0	
NC28SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	50		100	%REC
NC28SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND	0	
NC28SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	48		96	%REC
NC28SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND	0	
NC28SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC28SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND	0	
NC28SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND	0	
NC28SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	53		106	%REC
NC28SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND	0	
NC28SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND	0	
NC28SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND	0	
NC28SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND	0	
NC28SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	46		92	%REC
NC28SDG001	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	46		92	%REC
NC28SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	45		90	%REC
NC28SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	46		92	%REC
NC28SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	45		90	%REC
NC28SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	50		100	%REC
NC28SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	50		100	%REC
NC28SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	49		98	%REC
NC28SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	49		98	%REC
NC28SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	53		106	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	48		96	%REC
NC28SDG002	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	49		98	%REC
NC28SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	40		80	%REC
NC28SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	42		84	%REC
NC28SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	43		86	%REC
NC28SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	50		100	%REC
NC28SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	48		96	%REC
NC28SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	45		90	%REC
NC28SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	48		96	%REC
NC28SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	48		96	%REC
NC28SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	46		92	%REC
NC28SDG003	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	44		88	%REC
NC28SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	47		94	%REC
NC28SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	51		102	%REC
NC28SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	52		104	%REC
NC28SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	66		132	%REC
NC28SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	64		128	%REC
NC28SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	60		120	%REC
NC28SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	61		122	%REC
NC28SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	64		128	%REC
NC28SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	67		134	%REC
NC28SDG004	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	61		122	%REC
NC28SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	48		96	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	52		104	%REC
NC28SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	56		112	%REC
NC28SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	66		132	%REC
NC28SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	65		130	%REC
NC28SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	60		120	%REC
NC28SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	60		120	%REC
NC28SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	72		144	%REC
NC28SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	65		130	%REC
NC28SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	62		124	%REC
NC28SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	110		110	%REC
NC28SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	110		110	%REC
NC28SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	110		110	%REC
NC28SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	120		120	%REC
NC28SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	110		110	%REC
NC28SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	110		110	%REC
NC28SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	110		110	%REC
NC28SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	120		120	%REC
NC28SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	120		120	%REC
NC28SDG006	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	120		120	%REC
NC28SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
NC28SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	53		106	%REC
NC28SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	57		114	%REC
NC28SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	71		142	%REC
NC28SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	67		134	%REC
NC28SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	64		128	%REC
NC28SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	65		130	%REC
NC28SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	72		144	%REC
NC28SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	71		142	%REC
NC28SDG007	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	67		134	%REC
NC28SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	54		108	%REC
NC28SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	56		112	%REC
NC28SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	57		114	%REC
NC28SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	57		114	%REC
NC28SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	60		120	%REC
NC28SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	59		118	%REC
NC28SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	57		114	%REC
NC28SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	55		110	%REC
NC28SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	56		112	%REC
NC28SDG008	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	55		110	%REC
NC28SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	56		112	%REC
NC28SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	51		102	%REC
NC28SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	52		104	%REC
NC28SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	46		92	%REC
NC28SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	48		96	%REC
NC28SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	50		100	%REC
NC28SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	48		96	%REC
NC28SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	50		100	%REC
NC28SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	50		100	%REC
NC28SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	49		98	%REC
NC28SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	49		98	%REC
NC28SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	48		96	%REC
NC28SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	47		94	%REC
NC28SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	51		102	%REC
NC28SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	48		96	%REC
NC28SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	47		94	%REC
NC28SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	53		106	%REC
NC28SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	52		104	%REC
NC28SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	51		102	%REC
NC28SDG010	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	53		106	%REC
NC28SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	52		104	%REC
NC28SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	56		112	%REC
NC28SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	57		114	%REC
NC28SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	65		130	%REC
NC28SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	65		130	%REC
NC28SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	57		114	%REC
NC28SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	65		130	%REC
NC28SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	68		136	%REC
NC28SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	63		126	%REC
NC28SDG011	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	56		112	%REC
NC28SDG012	0.25	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	190		95	%REC
NC28SDG012	0.25	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0.34	J	0	
NC28SDG012	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	200		100	%REC
NC28SDG012	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG012	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG012	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	200		100	%REC
NC28SDG012	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG012	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	260		130	%REC
NC28SDG012	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG012	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	230		115	%REC
NC28SDG012	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG012	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG012	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG012	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG012	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG012	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	260		130	%REC
NC28SDG012	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG012	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	260		130	%REC
NC28SDG012	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG012	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG012	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG012	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG012	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG012	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	340		170	%REC
NC28SDG012	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG012	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG012	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG012	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG012	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG012	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	360		180	%REC
NC28SDG012	0.25	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	320		160	%REC
NC28SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	50		100	%REC
NC28SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	48		96	%REC
NC28SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	47		91	%REC
NC28SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	55		110	%REC
NC28SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	51		98	%REC
NC28SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	51		102	%REC
NC28SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	49		94	%REC
NC28SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	61		122	%REC
NC28SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	62		124	%REC
NC28SDG013	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	59		118	%REC
NC28SDG014	0.25	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	94		94	%REC
NC28SDG014	0.25	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG014	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	94		94	%REC
NC28SDG014	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG014	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG014	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	94		94	%REC
NC28SDG014	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG014	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	100		100	%REC
NC28SDG014	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG014	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	95		95	%REC
NC28SDG014	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG014	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG014	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG014	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG014	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG014	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	97		97	%REC
NC28SDG014	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG014	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	93		93	%REC
NC28SDG014	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG014	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG014	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG014	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG014	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG014	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	100		100	%REC
NC28SDG014	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG014	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG014	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG014	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG014	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG014	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	100		100	%REC
NC28SDG014	0.25	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	95		95	%REC
NC28SDG015	0.25	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	91		91	%REC
NC28SDG015	0.25	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG015	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	89		89	%REC
NC28SDG015	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG015	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG015	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	88		88	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG015	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG015	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	94		94	%REC
NC28SDG015	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG015	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	91		91	%REC
NC28SDG015	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG015	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG015	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG015	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG015	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG015	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	85		85	%REC
NC28SDG015	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG015	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	87		87	%REC
NC28SDG015	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG015	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG015	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG015	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG015	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG015	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	100		100	%REC
NC28SDG015	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG015	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG015	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG015	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG015	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG015	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	110		110	%REC
NC28SDG015	0.25	L	209 - Decachlorobiphenyl	5	0.57	ng/L	100		100	%REC
NC28SDG016	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	27		108	%REC
NC28SDG016	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG016	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	28		112	%REC
NC28SDG016	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG016	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG016	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	29		116	%REC
NC28SDG016	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG016	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	32		128	%REC
NC28SDG016	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG016	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	28		112	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG016	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG016	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG016	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG016	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG016	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG016	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	30		120	%REC
NC28SDG016	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG016	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	32		128	%REC
NC28SDG016	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG016	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG016	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG016	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG016	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG016	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	34		136	%REC
NC28SDG016	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG016	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG016	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG016	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG016	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG016	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	33		132	%REC
NC28SDG016	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	32		128	%REC
NC28SDG017	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	24		96	%REC
NC28SDG017	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG017	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	23		92	%REC
NC28SDG017	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG017	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG017	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	24		96	%REC
NC28SDG017	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG017	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	21		84	%REC
NC28SDG017	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG017	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	20		80	%REC
NC28SDG017	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG017	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG017	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG017	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG017	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG017	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	18		72	%REC
NC28SDG017	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG017	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	21		84	%REC
NC28SDG017	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG017	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG017	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG017	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG017	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG017	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	23		92	%REC
NC28SDG017	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG017	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG017	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG017	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG017	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG017	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	26		104	%REC
NC28SDG017	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	24		96	%REC
NC28SDG018	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	49		98	%REC
NC28SDG018	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG018	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	45		90	%REC
NC28SDG018	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG018	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG018	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	42		84	%REC
NC28SDG018	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG018	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	47		94	%REC
NC28SDG018	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG018	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	43		86	%REC
NC28SDG018	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG018	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG018	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG018	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG018	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG018	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	41		82	%REC
NC28SDG018	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG018	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	42		84	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG018	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG018	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG018	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG018	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG018	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG018	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	45		90	%REC
NC28SDG018	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG018	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG018	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG018	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG018	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG018	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	46		92	%REC
NC28SDG018	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	46		92	%REC
NC28SDG019	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	54		108	%REC
NC28SDG019	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG019	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	52		104	%REC
NC28SDG019	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG019	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG019	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	52		104	%REC
NC28SDG019	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG019	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	56		112	%REC
NC28SDG019	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG019	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	56		112	%REC
NC28SDG019	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG019	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG019	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG019	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG019	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG019	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	54		108	%REC
NC28SDG019	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG019	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	51		102	%REC
NC28SDG019	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG019	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG019	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG019	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG019	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG019	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	58		116	%REC
NC28SDG019	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG019	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG019	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG019	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG019	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG019	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	53		106	%REC
NC28SDG019	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	56		112	%REC
NC28SDG020	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	26		104	%REC
NC28SDG020	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG020	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	28		112	%REC
NC28SDG020	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG020	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG020	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	26		104	%REC
NC28SDG020	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG020	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	27		108	%REC
NC28SDG020	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG020	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	27		108	%REC
NC28SDG020	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG020	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG020	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG020	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG020	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG020	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	25		100	%REC
NC28SDG020	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG020	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	27		108	%REC
NC28SDG020	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG020	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG020	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG020	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG020	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG020	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	30		120	%REC
NC28SDG020	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG020	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG020	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG020	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG020	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG020	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	29		116	%REC
NC28SDG020	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	28		112	%REC
NC28SDG021	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	25		100	%REC
NC28SDG021	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG021	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	25		100	%REC
NC28SDG021	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG021	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND	0	
NC28SDG021	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	24		96	%REC
NC28SDG021	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG021	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	30		120	%REC
NC28SDG021	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND	0	
NC28SDG021	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	27		108	%REC
NC28SDG021	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND	0	
NC28SDG021	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG021	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG021	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND	0	
NC28SDG021	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND	0	
NC28SDG021	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	28		112	%REC
NC28SDG021	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND	0	
NC28SDG021	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	27		108	%REC
NC28SDG021	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND	0	
NC28SDG021	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG021	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG021	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND	0	
NC28SDG021	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND	0	
NC28SDG021	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	31		124	%REC
NC28SDG021	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND	0	
NC28SDG021	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND	0	
NC28SDG021	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND	0	
NC28SDG021	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND	0	
NC28SDG021	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND	0	
NC28SDG021	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	29		116	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG021	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	26		104	%REC
NC28SDG022	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	53		106	%REC
NC28SDG022	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG022	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	48		96	%REC
NC28SDG022	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG022	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG022	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	55		110	%REC
NC28SDG022	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG022	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	50		100	%REC
NC28SDG022	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG022	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	48		96	%REC
NC28SDG022	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG022	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG022	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG022	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG022	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG022	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	47		94	%REC
NC28SDG022	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG022	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	42		84	%REC
NC28SDG022	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG022	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG022	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG022	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG022	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG022	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	51		102	%REC
NC28SDG022	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG022	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG022	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG022	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG022	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG022	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	51		102	%REC
NC28SDG022	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	50		100	%REC
NC28SDG023	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	52		104	%REC
NC28SDG023	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG023	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	52		104	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC28SDG023	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG023	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC28SDG023	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	53		106	%REC
NC28SDG023	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG023	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	54		108	%REC
NC28SDG023	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG023	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	53		106	%REC
NC28SDG023	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC28SDG023	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC28SDG023	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC28SDG023	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC28SDG023	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC28SDG023	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	46		92	%REC
NC28SDG023	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC28SDG023	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	46		92	%REC
NC28SDG023	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC28SDG023	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC28SDG023	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG023	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC28SDG023	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC28SDG023	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	54		108	%REC
NC28SDG023	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC28SDG023	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC28SDG023	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC28SDG023	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC28SDG023	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC28SDG023	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	56		112	%REC
NC28SDG023	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	57		114	%REC
NC34SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	44		88	%REC
NC34SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	47		94	%REC
NC34SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	44		88	%REC
NC34SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	48		96	%REC
NC34SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	55		110	%REC
NC34SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	50		100	%REC
NC34SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	48		96	%REC
NC34SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	46		92	%REC
NC34SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	54		108	%REC
NC34SDG001	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	51		102	%REC
NC34SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
NC34SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	52		104	%REC
NC34SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	47		94	%REC
NC34SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	51		102	%REC
NC34SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	57		114	%REC
NC34SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	47		94	%REC
NC34SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	50		100	%REC
NC34SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	53		106	%REC
NC34SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	59		118	%REC
NC34SDG002	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	54		108	%REC
NC34SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	44		88	%REC
NC34SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	47		94	%REC
NC34SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	44		88	%REC
NC34SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	40		80	%REC
NC34SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	47		94	%REC
NC34SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	43		86	%REC
NC34SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	44		88	%REC
NC34SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	43		86	%REC
NC34SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	40		80	%REC
NC34SDG003	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	43		86	%REC
NC34SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	38		76	%REC
NC34SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	39		78	%REC
NC34SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	37		74	%REC
NC34SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	37		74	%REC
NC34SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	44		88	%REC
NC34SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	38		76	%REC
NC34SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	43		86	%REC
NC34SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	42		84	%REC
NC34SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	41		82	%REC
NC34SDG004	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	40		80	%REC
NC34SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	53		106	%REC
NC34SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	54		108	%REC
NC34SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	52		104	%REC
NC34SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	49		98	%REC
NC34SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	56		112	%REC
NC34SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	48		96	%REC
NC34SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	47		94	%REC
NC34SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	48		96	%REC
NC34SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	52		104	%REC
NC34SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	53		106	%REC
NC34SDG006	1		8 - 2,4'-Dichlorobiphenyl	10	0.74	ng	69		69	%REC
NC34SDG006	1		18 - 2,2',5-Trichlorobiphenyl	10	0.86	ng	0	ND	0	
NC34SDG006	1		28 - 2,4,4'-Trichlorobiphenyl	10	0.91	ng	78		78	%REC
NC34SDG006	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.74	ng	0	ND	0	
NC34SDG006	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.94	ng	80		80	%REC
NC34SDG006	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	10	1.1	ng	0	ND	0	
NC34SDG006	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	10	1.4	ng	81		81	%REC
NC34SDG006	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.81	ng	86		86	%REC
NC34SDG006	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	1.3	ng	0	ND	0	
NC34SDG006	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	10	2.9	ng	0	ND	0	
NC34SDG006	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	1.4	ng	80		80	%REC
NC34SDG006	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	1.9	ng	0	ND	0	
NC34SDG006	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	10	1.5	ng	82		82	%REC
NC34SDG006	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.9	ng	0	ND	0	
NC34SDG006	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	1.9	ng	76		76	%REC
NC34SDG006	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.86	ng	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG006	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	2	ng	0	ND	0	
NC34SDG006	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	1.3	ng	0	ND	0	
NC34SDG006	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	2.2	ng	86		86	%REC
NC34SDG006	1		209 - Decachlorobiphenyl	10	1.5	ng	83		83	%REC
NC34SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	50		100	%REC
NC34SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	52		104	%REC
NC34SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	49		98	%REC
NC34SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	55		110	%REC
NC34SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	60		120	%REC
NC34SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	58		116	%REC
NC34SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	54		108	%REC
NC34SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	54		108	%REC
NC34SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	55		110	%REC
NC34SDG007	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	53		106	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
NC34SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	53		106	%REC
NC34SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	50		93	%REC
NC34SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	53		106	%REC
NC34SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	59		108	%REC
NC34SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	54		108	%REC
NC34SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	55		104	%REC
NC34SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	53		106	%REC
NC34SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	60		120	%REC
NC34SDG008	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	56		112	%REC
NC34SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	53		106	%REC
NC34SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	52		104	%REC
NC34SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	49		98	%REC
NC34SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	57		114	%REC
NC34SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	60		120	%REC
NC34SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	54		108	%REC
NC34SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	55		110	%REC
NC34SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	56		112	%REC
NC34SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	55		110	%REC
NC34SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	56		112	%REC
NC34SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	51		102	%REC
NC34SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	54		108	%REC
NC34SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	46		92	%REC
NC34SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	48		96	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	55		110	%REC
NC34SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	48		96	%REC
NC34SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	48		96	%REC
NC34SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	44		88	%REC
NC34SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	46		92	%REC
NC34SDG010	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	42		84	%REC
NC34SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	48		96	%REC
NC34SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	48		96	%REC
NC34SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	43		86	%REC
NC34SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	48		96	%REC
NC34SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	52		104	%REC
NC34SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	44		88	%REC
NC34SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	43		86	%REC
NC34SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	46		92	%REC
NC34SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	41		82	%REC
NC34SDG011	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	45		90	%REC
NC34SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	50		100	%REC
NC34SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	56		112	%REC
NC34SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	48		96	%REC
NC34SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	50		100	%REC
NC34SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	56		112	%REC
NC34SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	48		96	%REC

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	QC Result	QC Units
NC34SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	50		100	%REC
NC34SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	
NC34SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	50		100	%REC
NC34SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	50		100	%REC
NC34SDG012	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	50		100	%REC
NC34SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	55		110	%REC
NC34SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	54		108	%REC
NC34SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND	0	
NC34SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	48		96	%REC
NC34SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	53		106	%REC
NC34SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	51		102	%REC
NC34SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND	0	
NC34SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND	0	
NC34SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND	0	
NC34SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND	0	
NC34SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND	0	
NC34SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	48		96	%REC
NC34SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND	0	
NC34SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	45		90	%REC
NC34SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND	0	
NC34SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND	0	

Sample Delivery	Sample	Size	Analyte	Min Reporting	Min Detection	Units	Raw	Qualifier	QC	QC Units
Group	Size	Units		Limit	Limit		result		Result	
NC34SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND	0	
NC34SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND	0	
NC34SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	54		108	%REC
NC34SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND	0	
NC34SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND	0	
NC34SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND	0	
NC34SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND	0	
NC34SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND	0	
NC34SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	60		120	%REC
NC34SDG013	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	58		116	%REC

Analytical Instrument Reference Standard (IRM) Data

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG001	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2060		Comment	-3.74	%DIF
CSC81SDG001	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2140			0	%DIF
CSC81SDG001	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
CSC81SDG001	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2100			2.04	%DIF
CSC81SDG001	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2240			0	
CSC81SDG001	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2000			-2.63	%DIF
CSC81SDG001	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2160			5.16	%DIF
CSC81SDG001	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1990			-3.72	%DIF
CSC81SDG001	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2040			-1.31	%DIF
CSC81SDG001	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1900			-7.36	%DIF
CSC81SDG001	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2000			-2.49	%DIF
CSC81SDG001	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2000			-4.62	%DIF
CSC81SDG001	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2140			2.05	%DIF
CSC81SDG001	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1820			-12	%DIF
CSC81SDG001	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2050			-0.918	%DIF
CSC81SDG001	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1900			-6.63	%DIF
CSC81SDG001	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1980			-2.7	%DIF
CSC81SDG001	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1920			-5.97	%DIF
CSC81SDG001	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2070			1.37	%DIF
CSC81SDG001	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1950			-5.52	%DIF
CSC81SDG001	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2080			0.775	%DIF
CSC81SDG001	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1880			-9.44	%DIF
CSC81SDG001	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2070			-0.289	%DIF
CSC81SDG001	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1910			-7.24	%DIF
CSC81SDG001	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2140			3.93	%DIF
CSC81SDG001	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1830			-9.72	%DIF
CSC81SDG001	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	2020			-0.345	%DIF
CSC81SDG001	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1790			-12.2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG001	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1840			-9.8	%DIF
CSC81SDG001	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1800			-12	%DIF
CSC81SDG001	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2120			3.67	%DIF
CSC81SDG001	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1800			-12.6	%DIF
CSC81SDG001	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	2050			-0.485	%DIF
CSC81SDG001	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1890			-7.67	%DIF
CSC81SDG001	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2270			10.9	%DIF
CSC81SDG001	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG001	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1830			-10.8	%DIF
CSC81SDG001	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1990			-3.02	%DIF
CSC81SDG001	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1690			-15.5	%DIF
CSC81SDG001	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1890			-5.55	%DIF
CSC81SDG001	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1910			-7.37	%DIF
CSC81SDG002	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	7.4	ug/L	2140			0	%DIF
CSC81SDG002	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2130			-0.467	%DIF
CSC81SDG002	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	8.6	ug/L	2070			0.583	%DIF
CSC81SDG002	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2140			3.98	%DIF
CSC81SDG002	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	9.1	ug/L	2240			0	
CSC81SDG002	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	7.4	ug/L	2000			-2.63	%DIF
CSC81SDG002	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2080			1.26	%DIF
CSC81SDG002	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2080			0.629	%DIF
CSC81SDG002	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	9.4	ug/L	2040			-1.31	%DIF
CSC81SDG002	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1900			-7.36	%DIF
CSC81SDG002	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1960			-4.44	%DIF
CSC81SDG002	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1920			-8.44	%DIF
CSC81SDG002	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	14	ug/L	2000			-4.62	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG002	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1860			-10.1	%DIF
CSC81SDG002	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	20	ug/L	1820			-12	%DIF
CSC81SDG002	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1890			-7.12	%DIF
CSC81SDG002	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	8.1	ug/L	1900			-6.63	%DIF
CSC81SDG002	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1910			-6.46	%DIF
CSC81SDG002	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	13	ug/L	1920			-5.97	%DIF
CSC81SDG002	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1950			-5.52	%DIF
CSC81SDG002	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	20	ug/L	1950			-5.52	%DIF
CSC81SDG002	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1750			-15.7	%DIF
CSC81SDG002	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	29	ug/L	1880			-9.44	%DIF
CSC81SDG002	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2040			-0.923	%DIF
CSC81SDG002	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	14	ug/L	1910			-7.24	%DIF
CSC81SDG002	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1820			-10.2	%DIF
CSC81SDG002	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	19	ug/L	1830			-9.72	%DIF
CSC81SDG002	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1750			-14.2	%DIF
CSC81SDG002	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	15	ug/L	1790			-12.2	%DIF
CSC81SDG002	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	9	ug/L	1800			-12	%DIF
CSC81SDG002	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1830			-10.5	%DIF
CSC81SDG002	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1790			-13.1	%DIF
CSC81SDG002	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	19	ug/L	1800			-12.6	%DIF
CSC81SDG002	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG002	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	8.6	ug/L	1890			-7.67	%DIF
CSC81SDG002	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1960			-4.25	%DIF
CSC81SDG002	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
CSC81SDG002	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1690			-17.6	%DIF
CSC81SDG002	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	13	ug/L	1830			-10.8	%DIF
CSC81SDG002	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1620			-19	%DIF
CSC81SDG002	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	22	ug/L	1690			-15.5	%DIF
CSC81SDG002	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1830			-11.2	%DIF
CSC81SDG002	0.05	mL	209 - Decachlorobiphenyl	100	15	ug/L	1910			-7.37	%DIF
CSC81SDG004	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2110			-1.4	%DIF
CSC81SDG004	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2040			-0.875	%DIF
CSC81SDG004	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2060			0.292	%DIF
CSC81SDG004	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
CSC81SDG004	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1940			-5.41	%DIF
CSC81SDG004	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2010			-4.15	%DIF
CSC81SDG004	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1760			-14.9	%DIF
CSC81SDG004	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1910			-6.14	%DIF
CSC81SDG004	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1950			-4.5	%DIF
CSC81SDG004	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1960			-5.04	%DIF
CSC81SDG004	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1670			-19.6	%DIF
CSC81SDG004	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1890			-8.21	%DIF
CSC81SDG004	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1850			-8.73	%DIF
CSC81SDG004	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1770			-13.2	%DIF
CSC81SDG004	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1790			-12.5	%DIF
CSC81SDG004	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1890			-8.25	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG004	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1870			-8.65	%DIF
CSC81SDG004	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG004	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1650			-19.6	%DIF
CSC81SDG004	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1630			-18.5	%DIF
CSC81SDG004	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1710			-17.1	%DIF
CSC81SDG005	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2070			-3.27	%DIF
CSC81SDG005	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
CSC81SDG005	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1980			0	
CSC81SDG005	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1950			-5.06	%DIF
CSC81SDG005	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1950			-5.66	%DIF
CSC81SDG005	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1950			-4.92	%DIF
CSC81SDG005	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2040			-2.72	%DIF
CSC81SDG005	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1830			-11.6	%DIF
CSC81SDG005	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1940			-4.67	%DIF
CSC81SDG005	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1940			-5	%DIF
CSC81SDG005	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1920			-6.98	%DIF
CSC81SDG005	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1860			-10.4	%DIF
CSC81SDG005	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1900			-7.72	%DIF
CSC81SDG005	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1840			-9.22	%DIF
CSC81SDG005	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1830			-10.3	%DIF
CSC81SDG005	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1810			-11.5	%DIF
CSC81SDG005	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1880			-8.74	%DIF
CSC81SDG005	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG005	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1930			-5.72	%DIF
CSC81SDG005	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG005	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1770			-13.7	%DIF
CSC81SDG005	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1770			-11.5	%DIF
CSC81SDG005	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1880			-8.83	%DIF
CSC81SDG006	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2040			-4.67	%DIF
CSC81SDG006	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1960			-4.76	%DIF
CSC81SDG006	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1850			0	
CSC81SDG006	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1820			-11.4	%DIF
CSC81SDG006	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1940			-6.14	%DIF
CSC81SDG006	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1790			-12.7	%DIF
CSC81SDG006	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2050			-2.24	%DIF
CSC81SDG006	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1680			-18.8	%DIF
CSC81SDG006	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1760			-13.5	%DIF
CSC81SDG006	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1710			-16.2	%DIF
CSC81SDG006	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1830			-11.3	%DIF
CSC81SDG006	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1800			-13.3	%DIF
CSC81SDG006	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1730			-16	%DIF
CSC81SDG006	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1760			-13.2	%DIF
CSC81SDG006	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1770			-13.2	%DIF
CSC81SDG006	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1740			-14.9	%DIF
CSC81SDG006	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1810			-12.1	%DIF
CSC81SDG006	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1670			-18.4	%DIF
CSC81SDG006	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG006	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1740			-15.2	%DIF
CSC81SDG006	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1670			-16.5	%DIF
CSC81SDG006	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1760			-14.6	%DIF
CSC81SDG007	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1950			-8.88	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG007	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2000			-6.54	%DIF
CSC81SDG007	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1960			-4.76	%DIF
CSC81SDG007	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2060			0.0972	%DIF
CSC81SDG007	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	200	10	ug/L	1970			0	
CSC81SDG007	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	200	10	ug/L	2070			0	
CSC81SDG007	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2100			2.24	%DIF
CSC81SDG007	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2170			5.65	%DIF
CSC81SDG007	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	200	5.9	ug/L	2220			0	
CSC81SDG007	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	200	5.9	ug/L	2340			0	
CSC81SDG007	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1730			-15.6	%DIF
CSC81SDG007	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1810			-11.8	%DIF
CSC81SDG007	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1980			-5.58	%DIF
CSC81SDG007	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1990			-5.1	%DIF
CSC81SDG007	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1980			-4.3	%DIF
CSC81SDG007	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2010			-2.85	%DIF
CSC81SDG007	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1870			-8.11	%DIF
CSC81SDG007	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1880			-7.62	%DIF
CSC81SDG007	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1880			-7.93	%DIF
CSC81SDG007	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2060			0.881	%DIF
CSC81SDG007	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2040			-1.16	%DIF
CSC81SDG007	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2050			-0.678	%DIF
CSC81SDG007	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1640			-21	%DIF
CSC81SDG007	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1820			-12.3	%DIF
CSC81SDG007	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1800			-12.6	%DIF
CSC81SDG007	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1910			-7.24	%DIF
CSC81SDG007	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1680			-17.1	%DIF
CSC81SDG007	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1690			-16.6	%DIF
CSC81SDG007	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	300	5.4	ug/L	1830			0	
CSC81SDG007	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	300	5.4	ug/L	1840			0	
CSC81SDG007	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG007	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	200	13	ug/L	1330			0	
CSC81SDG007	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	200	13	ug/L	1540			0	
CSC81SDG007	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	200	13	ug/L	1400			0	
CSC81SDG007	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	200	13	ug/L	1530			0	
CSC81SDG007	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	200	13	ug/L	1860			0	
CSC81SDG007	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	200	13	ug/L	2020			0	
CSC81SDG007	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG007	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1600			-22	%DIF
CSC81SDG007	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1690			-17.6	%DIF
CSC81SDG007	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1690			-15.5	%DIF
CSC81SDG007	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1740			-13	%DIF
CSC81SDG007	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1770			-14.2	%DIF
CSC81SDG007	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1960			-4.95	%DIF
CSC81SDG008	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2140			0	%DIF
CSC81SDG008	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2030			-1.36	%DIF
CSC81SDG008	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	200	10	ug/L	2060			-0.483	%DIF
CSC81SDG008	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2060			0.292	%DIF
CSC81SDG008	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	200	5.9	ug/L	2290			10.8	%DIF
CSC81SDG008	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1890			-7.85	%DIF
CSC81SDG008	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2150			2.53	%DIF
CSC81SDG008	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2060			-0.435	%DIF
CSC81SDG008	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1890			-7.12	%DIF
CSC81SDG008	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2010			-1.57	%DIF
CSC81SDG008	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2040			-1.16	%DIF
CSC81SDG008	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1790			-13.8	%DIF
CSC81SDG008	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2010			-2.38	%DIF
CSC81SDG008	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1720			-15.1	%DIF
CSC81SDG008	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	300	5.4	ug/L	1900			-6.86	%DIF
CSC81SDG008	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG008	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	200	13	ug/L	1730			-15.4	%DIF
CSC81SDG008	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	200	13	ug/L	1700			-17.5	%DIF
CSC81SDG008	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	200	13	ug/L	2030			-0.83	%DIF
CSC81SDG008	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG008	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	2020			-1.56	%DIF
CSC81SDG008	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1870			-6.55	%DIF
CSC81SDG008	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2070			0.388	%DIF
CSC81SDG009	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2240			4.67	%DIF
CSC81SDG009	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1860			-9.62	%DIF
CSC81SDG009	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	200	10	ug/L	2010			-2.9	%DIF
CSC81SDG009	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1990			-3.12	%DIF
CSC81SDG009	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	200	5.9	ug/L	2300			11.3	%DIF
CSC81SDG009	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1990			-2.97	%DIF
CSC81SDG009	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2010			-4.15	%DIF
CSC81SDG009	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2020			-2.37	%DIF
CSC81SDG009	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1970			-3.19	%DIF
CSC81SDG009	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1960			-4.02	%DIF
CSC81SDG009	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1990			-3.58	%DIF
CSC81SDG009	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1820			-12.3	%DIF
CSC81SDG009	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1870			-9.18	%DIF
CSC81SDG009	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1990			-1.82	%DIF
CSC81SDG009	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	300	5.4	ug/L	1980			-2.94	%DIF
CSC81SDG009	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	200	13	ug/L	1650			-19.3	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG009	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	200	13	ug/L	1680			-18.4	%DIF
CSC81SDG009	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	200	13	ug/L	1980			-3.27	%DIF
CSC81SDG009	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG009	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1750			-14.7	%DIF
CSC81SDG009	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1760			-12	%DIF
CSC81SDG009	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1960			-4.95	%DIF
CSC81SDG010	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2350			9.81	%DIF
CSC81SDG010	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1810			-12	%DIF
CSC81SDG010	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	200	10	ug/L	2090			0.966	%DIF
CSC81SDG010	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2150			4.67	%DIF
CSC81SDG010	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	200	5.9	ug/L	2350			13.7	%DIF
CSC81SDG010	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2180			6.29	%DIF
CSC81SDG010	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2100			0.143	%DIF
CSC81SDG010	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2180			5.36	%DIF
CSC81SDG010	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2050			0.737	%DIF
CSC81SDG010	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2030			-0.588	%DIF
CSC81SDG010	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2210			7.07	%DIF
CSC81SDG010	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2030			-2.22	%DIF
CSC81SDG010	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1910			-7.24	%DIF
CSC81SDG010	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	2130			5.08	%DIF
CSC81SDG010	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	300	5.4	ug/L	2100			2.94	%DIF
CSC81SDG010	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	200	13	ug/L	1780			-13	%DIF
CSC81SDG010	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	200	13	ug/L	1840			-10.7	%DIF
CSC81SDG010	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	200	13	ug/L	2180			6.5	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG010	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
CSC81SDG010	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1970			-4	%DIF
CSC81SDG010	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1910			-4.55	%DIF
CSC81SDG010	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2050			-0.582	%DIF
CSC81SDG011	0.05	mL	8 - 2,4'-Dichlorobiphenyl	200	8.4	ug/L	2200			2.8	%DIF
CSC81SDG011	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	200	13	ug/L	1820			-11.6	%DIF
CSC81SDG011	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	400	10	ug/L	1980			-4.35	%DIF
CSC81SDG011	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	200	13	ug/L	2030			-1.17	%DIF
CSC81SDG011	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	200	15	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	400	5.9	ug/L	2230			7.88	%DIF
CSC81SDG011	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	200	13	ug/L	1960			-4.44	%DIF
CSC81SDG011	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	200	11	ug/L	2010			-4.15	%DIF
CSC81SDG011	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	200	15	ug/L	1970			-4.78	%DIF
CSC81SDG011	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	200	7.2	ug/L	1870			-8.11	%DIF
CSC81SDG011	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	200	8.1	ug/L	2010			-1.57	%DIF
CSC81SDG011	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	200	14	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	2110			2.23	%DIF
CSC81SDG011	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	200	15	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	1880			-9.44	%DIF
CSC81SDG011	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	200	5	ug/L	1920			-6.75	%DIF
CSC81SDG011	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	200	11	ug/L	1710			-15.6	%DIF
CSC81SDG011	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	600	5.4	ug/L	1990			-2.45	%DIF
CSC81SDG011	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	400	12	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	200	13	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	400	13	ug/L	1650			-19.3	%DIF
CSC81SDG011	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	400	13	ug/L	1720			-16.5	%DIF
CSC81SDG011	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	200	7.4	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	200	10	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	400	13	ug/L	2040			-0.342	%DIF
CSC81SDG011	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	200	14	ug/L	0	ND		0	
CSC81SDG011	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	200	12	ug/L	1880			-8.38	%DIF
CSC81SDG011	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	200	4.5	ug/L	1820			-9.04	%DIF
CSC81SDG011	0.05	mL	209 - Decachlorobiphenyl	200	11	ug/L	1930			-6.4	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG012	0.05	mL	8 - 2,4'-Dichlorobiphenyl	200	8.4	ug/L	2110			-1.4	%DIF
CSC81SDG012	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	200	13	ug/L	1900			-7.68	%DIF
CSC81SDG012	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	400	10	ug/L	2090			0.966	%DIF
CSC81SDG012	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	200	13	ug/L	2040			-0.682	%DIF
CSC81SDG012	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	200	15	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	400	5.9	ug/L	2410			16.6	%DIF
CSC81SDG012	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	200	13	ug/L	2100			2.39	%DIF
CSC81SDG012	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	200	11	ug/L	2180			3.96	%DIF
CSC81SDG012	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	200	15	ug/L	2030			-1.88	%DIF
CSC81SDG012	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	200	7.2	ug/L	2000			-1.72	%DIF
CSC81SDG012	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	200	8.1	ug/L	2080			1.86	%DIF
CSC81SDG012	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	200	14	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	2160			4.65	%DIF
CSC81SDG012	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	400	15	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	1940			-6.55	%DIF
CSC81SDG012	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	200	5	ug/L	1940			-5.78	%DIF
CSC81SDG012	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	400	11	ug/L	1790			-11.7	%DIF
CSC81SDG012	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	600	5.4	ug/L	2030			-0.49	%DIF
CSC81SDG012	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	400	12	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	200	13	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	400	13	ug/L	1690			-17.4	%DIF
CSC81SDG012	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	400	13	ug/L	1750			-15	%DIF
CSC81SDG012	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	200	7.4	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	200	10	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	400	13	ug/L	2020			-1.32	%DIF
CSC81SDG012	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	200	14	ug/L	0	ND		0	
CSC81SDG012	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	200	12	ug/L	1820			-11.3	%DIF
CSC81SDG012	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	200	4.5	ug/L	1830			-8.54	%DIF
CSC81SDG012	0.05	mL	209 - Decachlorobiphenyl	200	11	ug/L	1980			-3.98	%DIF
CSC81SDG013	0.05	mL	8 - 2,4'-Dichlorobiphenyl	200	8.4	ug/L	2740			28	%DIF
CSC81SDG013	0.05	mL	8 - 2,4'-Dichlorobiphenyl	200	8.4	ug/L	3060			43	%DIF
CSC81SDG013	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	200	13	ug/L	1680			-18.4	%DIF
CSC81SDG013	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	200	13	ug/L	1770			-14	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG013	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	400	10	ug/L	1960			-5.31	%DIF
CSC81SDG013	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	400	10	ug/L	2020			-2.42	%DIF
CSC81SDG013	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	200	13	ug/L	2030			-1.17	%DIF
CSC81SDG013	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	200	15	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	400	5.9	ug/L	2220			7.4	%DIF
CSC81SDG013	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	400	5.9	ug/L	2300			11.3	%DIF
CSC81SDG013	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	200	13	ug/L	1980			-3.46	%DIF
CSC81SDG013	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	200	13	ug/L	2150			4.83	%DIF
CSC81SDG013	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	200	11	ug/L	2020			-3.67	%DIF
CSC81SDG013	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	200	11	ug/L	2080			-0.811	%DIF
CSC81SDG013	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	200	15	ug/L	1960			-5.27	%DIF
CSC81SDG013	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	200	15	ug/L	2020			-2.37	%DIF
CSC81SDG013	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	200	7.2	ug/L	1910			-6.14	%DIF
CSC81SDG013	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	200	7.2	ug/L	1960			-3.68	%DIF
CSC81SDG013	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	200	8.1	ug/L	1910			-6.46	%DIF
CSC81SDG013	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	200	8.1	ug/L	1990			-2.55	%DIF
CSC81SDG013	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	200	14	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	2060			-0.194	%DIF
CSC81SDG013	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	2090			1.26	%DIF
CSC81SDG013	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	400	15	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	1910			-8	%DIF
CSC81SDG013	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	1970			-5.1	%DIF
CSC81SDG013	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	200	5	ug/L	1910			-7.24	%DIF
CSC81SDG013	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	200	5	ug/L	1930			-6.26	%DIF
CSC81SDG013	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	400	11	ug/L	1680			-17.1	%DIF
CSC81SDG013	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	400	11	ug/L	1780			0	
CSC81SDG013	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	600	5.4	ug/L	1950			-4.41	%DIF
CSC81SDG013	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	600	5.4	ug/L	2000			-1.96	%DIF
CSC81SDG013	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	400	12	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	200	13	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	400	13	ug/L	1690			-17.4	%DIF
CSC81SDG013	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	400	13	ug/L	1700			-16.9	%DIF
CSC81SDG013	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	400	13	ug/L	1750			-15	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG013	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	400	13	ug/L	1810			-12.1	%DIF
CSC81SDG013	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	200	7.4	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	200	10	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	400	13	ug/L	1980			-3.27	%DIF
CSC81SDG013	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	400	13	ug/L	2000			-2.3	%DIF
CSC81SDG013	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	200	14	ug/L	0	ND		0	
CSC81SDG013	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	200	12	ug/L	1820			-11.3	%DIF
CSC81SDG013	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	200	12	ug/L	1890			-7.89	%DIF
CSC81SDG013	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	200	4.5	ug/L	1800			-10	%DIF
CSC81SDG013	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	200	4.5	ug/L	1820			-9.04	%DIF
CSC81SDG013	0.05	mL	209 - Decachlorobiphenyl	200	11	ug/L	1900			-7.86	%DIF
CSC81SDG013	0.05	mL	209 - Decachlorobiphenyl	200	11	ug/L	1940			-5.92	%DIF
CSC81SDG014	0.05	mL	8 - 2,4'-Dichlorobiphenyl	200	8.4	ug/L	2550			19.2	%DIF
CSC81SDG014	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	200	13	ug/L	1810			-12	%DIF
CSC81SDG014	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	400	10	ug/L	2010			-2.9	%DIF
CSC81SDG014	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	200	13	ug/L	2060			0.292	%DIF
CSC81SDG014	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	200	15	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	400	5.9	ug/L	2280			10.3	%DIF
CSC81SDG014	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	200	13	ug/L	1990			-2.97	%DIF
CSC81SDG014	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	200	11	ug/L	2470			17.8	%DIF
CSC81SDG014	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	200	15	ug/L	2030			-1.88	%DIF
CSC81SDG014	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	200	7.2	ug/L	1930			-5.16	%DIF
CSC81SDG014	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	200	8.1	ug/L	1860			-8.91	%DIF
CSC81SDG014	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	200	14	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	2060			-0.194	%DIF
CSC81SDG014	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	400	15	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	200	13	ug/L	1900			-8.48	%DIF
CSC81SDG014	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	200	5	ug/L	1850			-10.2	%DIF
CSC81SDG014	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	400	11	ug/L	1740			-14.2	%DIF
CSC81SDG014	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	600	5.4	ug/L	1980			-2.94	%DIF
CSC81SDG014	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	400	12	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	200	13	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	200	12	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	400	13	ug/L	1650			-19.3	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
CSC81SDG014	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	400	13	ug/L	1670			-18.9	%DIF
CSC81SDG014	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	200	7.4	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	200	10	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	400	13	ug/L	1960			-4.25	%DIF
CSC81SDG014	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	200	14	ug/L	0	ND		0	
CSC81SDG014	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	200	12	ug/L	1720			-16.2	%DIF
CSC81SDG014	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	200	4.5	ug/L	1820			-9.04	%DIF
CSC81SDG014	0.05	mL	209 - Decachlorobiphenyl	200	11	ug/L	1960			-4.95	%DIF
NC22SDG001	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			5	%DIF
NC22SDG001	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			5	%DIF
NC22SDG001	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG001	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			5	%DIF
NC22SDG001	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG001	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			5	%DIF
NC22SDG001	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			5	%DIF
NC22SDG001	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2100			5	%DIF
NC22SDG001	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG001	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG001	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-5	%DIF
NC22SDG001	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-5	%DIF
NC22SDG001	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-5	%DIF
NC22SDG001	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-5	%DIF
NC22SDG001	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG001	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG001	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG001	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG001	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-5	%DIF
NC22SDG001	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			0	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG001	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG001	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG001	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG001	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1900			-5	%DIF
NC22SDG001	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG001	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	2000			0	%DIF
NC22SDG001	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2100			5	%DIF
NC22SDG002	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			5	%DIF
NC22SDG002	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			5	%DIF
NC22SDG002	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG002	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			5	%DIF
NC22SDG002	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG002	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			5	%DIF
NC22SDG002	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			5	%DIF
NC22SDG002	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2100			5	%DIF
NC22SDG002	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG002	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG002	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-5	%DIF
NC22SDG002	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-5	%DIF
NC22SDG002	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-5	%DIF
NC22SDG002	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-5	%DIF
NC22SDG002	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG002	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG002	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG002	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG002	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-5	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG002	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG002	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG002	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG002	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1900			-5	%DIF
NC22SDG002	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG002	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	2000			0	%DIF
NC22SDG002	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2100			5	%DIF
NC22SDG003	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			5	%DIF
NC22SDG003	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			5	%DIF
NC22SDG003	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG003	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			5	%DIF
NC22SDG003	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG003	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			5	%DIF
NC22SDG003	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG003	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			5	%DIF
NC22SDG003	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			0	%DIF
NC22SDG003	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			0	%DIF
NC22SDG003	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			0	%DIF
NC22SDG003	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG003	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG003	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG003	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-5	%DIF
NC22SDG003	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-5	%DIF
NC22SDG003	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-5	%DIF
NC22SDG003	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-5	%DIF
NC22SDG003	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG003	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG003	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG003	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG003	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-5	%DIF
NC22SDG003	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG003	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG003	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG003	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			0	%DIF
NC22SDG003	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG003	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1900			-5	%DIF
NC22SDG003	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG003	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2100			5	%DIF
NC22SDG004	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG004	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG004	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG004	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2200			7.1	%DIF
NC22SDG004	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG004	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG004	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2100			2.4	%DIF
NC22SDG004	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG004	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2100			1.5	%DIF
NC22SDG004	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2100			3.2	%DIF
NC22SDG004	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG004	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG004	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2100			1.7	%DIF
NC22SDG004	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG004	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG004	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG004	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-6.3	%DIF
NC22SDG004	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG004	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG004	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG004	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG004	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG004	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG004	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			-2.9	%DIF
NC22SDG004	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG004	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG004	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG004	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG004	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG004	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG004	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG005	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG005	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG005	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG005	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2200			7.1	%DIF
NC22SDG005	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG005	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG005	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2100			2.4	%DIF
NC22SDG005	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG005	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2100			1.5	%DIF
NC22SDG005	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2100			3.2	%DIF
NC22SDG005	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG005	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG005	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2100			1.7	%DIF
NC22SDG005	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG005	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG005	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG005	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-6.3	%DIF
NC22SDG005	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG005	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG005	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG005	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG005	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG005	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG005	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			-2.9	%DIF
NC22SDG005	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG005	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG005	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG005	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG005	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG005	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG005	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG006	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG006	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG006	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG006	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			2.2	%DIF
NC22SDG006	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG006	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG006	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG006	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG006	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG006	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG006	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG006	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG006	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			-3.1	%DIF
NC22SDG006	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG006	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG006	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG006	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-6.3	%DIF
NC22SDG006	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG006	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG006	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG006	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG006	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG006	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-7.1	%DIF
NC22SDG006	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG006	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG006	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG006	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG006	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG006	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG006	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG006	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG007	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG007	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG007	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG007	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			2.2	%DIF
NC22SDG007	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG007	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG007	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG007	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG007	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG007	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG007	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG007	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG007	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			-3.1	%DIF
NC22SDG007	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG007	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG007	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG007	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-6.3	%DIF
NC22SDG007	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG007	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG007	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG007	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG007	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG007	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-7.1	%DIF
NC22SDG007	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG007	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG007	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG007	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG007	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG007	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG007	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG007	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG008	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG008	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.8	%DIF
NC22SDG008	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG008	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.4	%DIF
NC22SDG008	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG008	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.4	%DIF
NC22SDG008	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.4	%DIF
NC22SDG008	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0	%DIF
NC22SDG008	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.4	%DIF
NC22SDG008	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG008	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG008	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG008	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2200			6.8	%DIF
NC22SDG008	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG008	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.6	%DIF
NC22SDG008	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			-2.9	%DIF
NC22SDG008	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	2000			-1.5	%DIF
NC22SDG008	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG008	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG008	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG008	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG008	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG008	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-6.9	%DIF
NC22SDG008	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG008	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG008	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG008	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.4	%DIF
NC22SDG008	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG008	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	2000			-2.4	%DIF
NC22SDG008	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG008	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1900			-7.8	%DIF
NC22SDG009	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG009	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG009	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2000			-2.8	%DIF
NC22SDG009	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG009	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG009	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG009	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG009	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG009	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG009	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG009	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1800			-14	%DIF
NC22SDG009	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG009	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG009	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG009	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG009	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-1.7	%DIF
NC22SDG009	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1900			-7	%DIF
NC22SDG009	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG009	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG009	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG009	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2200			6.6	%DIF
NC22SDG009	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG009	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1700			-18	%DIF
NC22SDG009	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG009	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG009	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			-2.9	%DIF
NC22SDG009	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG009	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	2000			-1.3	%DIF
NC22SDG009	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG009	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG009	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG009	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG009	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG009	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG009	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG009	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-7.1	%DIF
NC22SDG009	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG009	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG009	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG009	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG009	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG009	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG009	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG009	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG009	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	2000			-2.5	%DIF
NC22SDG009	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1700			-15	%DIF
NC22SDG009	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG009	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1800			-13	%DIF
NC22SDG009	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1900			-7.8	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG010	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG010	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG010	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2000			-2.8	%DIF
NC22SDG010	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG010	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG010	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG010	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG010	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG010	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG010	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG010	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1800			-14	%DIF
NC22SDG010	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG010	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG010	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG010	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG010	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-1.7	%DIF
NC22SDG010	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1900			-7	%DIF
NC22SDG010	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG010	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG010	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG010	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2200			6.6	%DIF
NC22SDG010	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG010	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1700			-18	%DIF
NC22SDG010	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG010	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG010	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			-2.9	%DIF
NC22SDG010	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG010	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	2000			-1.3	%DIF
NC22SDG010	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG010	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG010	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG010	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG010	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG010	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG010	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG010	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-7.1	%DIF
NC22SDG010	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG010	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG010	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG010	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG010	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG010	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG010	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG010	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG010	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	2000			-2.5	%DIF
NC22SDG010	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1700			-15	%DIF
NC22SDG010	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG010	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1800			-13	%DIF
NC22SDG010	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1900			-7.8	%DIF
NC22SDG011	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG011	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG011	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG011	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			2.2	%DIF
NC22SDG011	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG011	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG011	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG011	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG011	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1900			-9.4	%DIF
NC22SDG011	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG011	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1800			-13	%DIF
NC22SDG011	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG011	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG011	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-1.7	%DIF
NC22SDG011	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1900			-7	%DIF
NC22SDG011	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG011	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG011	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1900			-7.9	%DIF
NC22SDG011	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG011	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG011	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG011	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG011	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG011	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG011	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG011	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG011	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG011	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG011	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG011	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG011	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG011	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG011	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG011	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG011	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG011	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG011	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG011	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1900			-7.8	%DIF
NC22SDG012	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG012	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG012	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG012	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG012	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG012	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1900			-7.5	%DIF
NC22SDG012	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			2.2	%DIF
NC22SDG012	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2200			7.1	%DIF
NC22SDG012	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG012	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG012	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG012	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG012	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG012	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1900			-9.4	%DIF
NC22SDG012	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG012	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG012	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG012	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG012	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-1.7	%DIF
NC22SDG012	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG012	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2100			2.8	%DIF
NC22SDG012	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG012	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1900			-7.9	%DIF
NC22SDG012	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2100			1.7	%DIF
NC22SDG012	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG012	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG012	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG012	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG012	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			-2.9	%DIF
NC22SDG012	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG012	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-6.3	%DIF
NC22SDG012	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG012	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG012	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG012	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG012	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG012	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG012	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG012	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-7.1	%DIF
NC22SDG012	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG012	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG012	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2100			1.9	%DIF
NC22SDG012	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG012	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG012	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG012	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2100			2.6	%DIF
NC22SDG012	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG012	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG012	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG012	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1900			-7.4	%DIF
NC22SDG012	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG012	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	2000			-0.05	%DIF
NC22SDG012	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1900			-7.8	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG012	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG012	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2100			1.8	%DIF
NC22SDG013	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG013	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG013	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG013	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG013	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			2.2	%DIF
NC22SDG013	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2200			7.1	%DIF
NC22SDG013	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG013	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG013	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG013	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG013	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG013	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG013	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-1.7	%DIF
NC22SDG013	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG013	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2100			2.8	%DIF
NC22SDG013	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG013	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1900			-7.9	%DIF
NC22SDG013	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2100			1.7	%DIF
NC22SDG013	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG013	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG013	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG013	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG013	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			-2.9	%DIF
NC22SDG013	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG013	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-6.3	%DIF
NC22SDG013	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG013	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG013	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG013	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG013	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG013	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG013	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG013	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-7.1	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG013	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG013	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2100			1.9	%DIF
NC22SDG013	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG013	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG013	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG013	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2100			2.6	%DIF
NC22SDG013	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG013	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG013	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1900			-7.4	%DIF
NC22SDG013	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG013	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	2000			-0.05	%DIF
NC22SDG013	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG013	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2100			1.8	%DIF
NC22SDG014	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG014	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG014	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG014	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2200			7.1	%DIF
NC22SDG014	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG014	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG014	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG014	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG014	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG014	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-1.7	%DIF
NC22SDG014	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2100			2.8	%DIF
NC22SDG014	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG014	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2100			1.7	%DIF
NC22SDG014	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG014	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG014	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			-2.9	%DIF
NC22SDG014	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-6.3	%DIF
NC22SDG014	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG014	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG014	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG014	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG014	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG014	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1900			-7.1	%DIF
NC22SDG014	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2100			1.9	%DIF
NC22SDG014	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG014	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG014	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2100			2.6	%DIF
NC22SDG014	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG014	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1900			-7.4	%DIF
NC22SDG014	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	2000			-0.05	%DIF
NC22SDG014	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2100			1.8	%DIF
NC22SDG015	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2000			-6.5	%DIF
NC22SDG015	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG015	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2300			7.5	%DIF
NC22SDG015	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG015	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG015	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG015	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	2000			0	
NC22SDG015	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG015	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			2.2	%DIF
NC22SDG015	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG015	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1900			-8.1	%DIF
NC22SDG015	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG015	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG015	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG015	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG015	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG015	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG015	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG015	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG015	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-1.7	%DIF
NC22SDG015	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG015	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG015	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			-3.1	%DIF
NC22SDG015	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2100			1.7	%DIF
NC22SDG015	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG015	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG015	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG015	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG015	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG015	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			-2.9	%DIF
NC22SDG015	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG015	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1900			-6.3	%DIF
NC22SDG015	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG015	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG015	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG015	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG015	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG015	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG015	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG015	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	2000			-2.2	%DIF
NC22SDG015	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG015	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG015	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG015	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG015	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG015	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG015	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2100			2.6	%DIF
NC22SDG015	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG015	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG015	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1900			-7.4	%DIF
NC22SDG015	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1700			-15	%DIF
NC22SDG015	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG015	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG015	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1800			-13	%DIF
NC22SDG015	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG016	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2000			-6.5	%DIF
NC22SDG016	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2300			7.5	%DIF
NC22SDG016	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG016	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG016	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG016	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			2.2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG016	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG016	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1900			-8.1	%DIF
NC22SDG016	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG016	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG016	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG016	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG016	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG016	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG016	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG016	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG016	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	2000			-1.7	%DIF
NC22SDG016	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG016	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG016	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			-3.1	%DIF
NC22SDG016	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG016	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG016	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG016	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	2000			-2.9	%DIF
NC22SDG016	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG016	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG016	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.9	%DIF
NC22SDG016	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG016	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG016	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG016	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG016	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG016	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	2000			-2.2	%DIF
NC22SDG016	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG016	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG016	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG016	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG016	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG016	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2100			2.6	%DIF
NC22SDG016	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG016	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG016	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1900			-7.4	%DIF
NC22SDG016	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1700			-15	%DIF
NC22SDG016	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG016	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1800			-13	%DIF
NC22SDG016	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG017	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2000			-6.5	%DIF
NC22SDG017	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG017	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG017	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG017	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG017	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG017	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG017	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1900			-8.1	%DIF
NC22SDG017	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG017	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG017	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG017	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG017	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG017	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG017	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG017	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1900			-7.9	%DIF
NC22SDG017	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			-3.1	%DIF
NC22SDG017	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG017	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG017	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG017	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG017	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG017	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG017	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG017	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG017	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG017	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG017	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG017	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG017	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1800			-13	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG017	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			-2.9	%DIF
NC22SDG017	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG017	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG017	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG017	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG017	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG017	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG017	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1700			-15	%DIF
NC22SDG017	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG017	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1800			-13	%DIF
NC22SDG017	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1900			-7.8	%DIF
NC22SDG018	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG018	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG018	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG018	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2200			6.9	%DIF
NC22SDG018	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG018	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG018	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2100			2.2	%DIF
NC22SDG018	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG018	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG018	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG018	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG018	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG018	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG018	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2100			0.14	%DIF
NC22SDG018	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG018	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG018	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG018	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG018	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG018	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1900			-7.9	%DIF
NC22SDG018	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG018	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG018	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG018	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG018	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG018	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG018	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG018	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	2000			-2	%DIF
NC22SDG018	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG018	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG018	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG018	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG018	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG018	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG018	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG018	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			-2.9	%DIF
NC22SDG018	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG018	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG018	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2000			-2.3	%DIF
NC22SDG018	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG018	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG018	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG018	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1900			-7.8	%DIF
NC22SDG018	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG019	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2000			-6.5	%DIF
NC22SDG019	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	1900			-7.7	%DIF
NC22SDG019	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2000			-2.8	%DIF
NC22SDG019	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG019	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1900			-7.5	%DIF
NC22SDG019	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG019	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG019	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1900			-8.1	%DIF
NC22SDG019	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG019	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG019	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG019	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG019	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1800			-13	%DIF
NC22SDG019	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG019	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG019	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1900			-7	%DIF
NC22SDG019	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG019	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG019	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1900			-7.9	%DIF
NC22SDG019	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG019	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG019	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG019	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG019	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1700			-16	%DIF
NC22SDG019	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG019	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1700			-17	%DIF
NC22SDG019	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG019	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG019	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG019	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG019	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG019	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG019	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG019	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1700			-17	%DIF
NC22SDG019	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG019	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG019	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG019	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG019	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG019	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG019	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG019	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG019	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG019	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG020	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2000			-6.5	%DIF
NC22SDG020	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2000			-2.8	%DIF
NC22SDG020	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG020	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1900			-7.5	%DIF
NC22SDG020	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG020	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1800			-13	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG020	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG020	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1800			-12	%DIF
NC22SDG020	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG020	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG020	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1800			-13	%DIF
NC22SDG020	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1900			-8.2	%DIF
NC22SDG020	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1800			-12	%DIF
NC22SDG020	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG020	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1800			-12	%DIF
NC22SDG020	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1900			-7	%DIF
NC22SDG020	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG020	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG020	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1900			-7.9	%DIF
NC22SDG020	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG020	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1700			-18	%DIF
NC22SDG020	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1900			-8.5	%DIF
NC22SDG020	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG020	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			-7.7	%DIF
NC22SDG020	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1700			-16	%DIF
NC22SDG020	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG020	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1700			-17	%DIF
NC22SDG020	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG020	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG020	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG020	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG020	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG020	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG020	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG020	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1900			-7.8	%DIF
NC22SDG020	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			-2.9	%DIF
NC22SDG020	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG020	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG020	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1800			-12	%DIF
NC22SDG020	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG020	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG020	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG020	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1800			-12	%DIF
NC22SDG020	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1600			-20	%DIF
NC22SDG020	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG020	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1800			-13	%DIF
NC22SDG020	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG021	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2000			-6.5	%DIF
NC22SDG021	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG021	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	1900			-7.7	%DIF
NC22SDG021	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG021	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG021	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1900			-7.5	%DIF
NC22SDG021	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG021	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG021	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1900			-8.1	%DIF
NC22SDG021	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG021	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1800			-12	%DIF
NC22SDG021	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG021	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1900			-9.4	%DIF
NC22SDG021	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG021	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1700			-18	%DIF
NC22SDG021	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1700			-16	%DIF
NC22SDG021	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG021	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1800			-12	%DIF
NC22SDG021	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG021	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1700			-18	%DIF
NC22SDG021	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG021	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1700			-18	%DIF
NC22SDG021	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1700			-17	%DIF
NC22SDG021	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG021	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1600			-21	%DIF
NC22SDG021	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1700			-16	%DIF
NC22SDG021	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1700			-17	%DIF
NC22SDG021	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG021	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG021	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG021	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG021	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1600			-22	%DIF
NC22SDG021	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG021	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1700			-17	%DIF
NC22SDG021	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG021	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG021	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1800			-12	%DIF
NC22SDG021	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG021	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG021	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1600			-20	%DIF
NC22SDG021	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1700			-15	%DIF
NC22SDG021	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1700			-18	%DIF
NC22SDG021	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1800			-13	%DIF
NC22SDG022	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2000			-6.5	%DIF
NC22SDG022	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG022	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	1900			- 7.7	%DIF
NC22SDG022	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2000			-2.8	%DIF
NC22SDG022	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG022	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1900			-7.5	%DIF
NC22SDG022	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG022	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG022	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1800			-13	%DIF
NC22SDG022	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1900			-8.1	%DIF
NC22SDG022	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1800			-12	%DIF
NC22SDG022	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1900			-9.4	%DIF
NC22SDG022	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG022	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1700			-18	%DIF
NC22SDG022	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1800			-13	%DIF
NC22SDG022	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1700			-16	%DIF
NC22SDG022	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1800			-12	%DIF
NC22SDG022	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1800			-12	%DIF
NC22SDG022	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG022	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1700			-18	%DIF
NC22SDG022	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1800			-13	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG022	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG022	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1700			-18	%DIF
NC22SDG022	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1700			-17	%DIF
NC22SDG022	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG022	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1700			-16	%DIF
NC22SDG022	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1700			-17	%DIF
NC22SDG022	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG022	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG022	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG022	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG022	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1600			-22	%DIF
NC22SDG022	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG022	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1700			-17	%DIF
NC22SDG022	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	2000			-2.9	%DIF
NC22SDG022	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG022	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG022	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1800			-12	%DIF
NC22SDG022	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG022	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG022	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1600			-20	%DIF
NC22SDG022	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1700			-15	%DIF
NC22SDG022	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1800			-13	%DIF
NC22SDG023	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2100			-1.9	%DIF
NC22SDG023	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2	%DIF
NC22SDG023	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG023	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG023	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG023	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.2	%DIF
NC22SDG023	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG023	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG023	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1700			-18	%DIF
NC22SDG023	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG023	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1800			-12	%DIF
NC22SDG023	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG023	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1700			-18	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG023	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG023	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1700			-18	%DIF
NC22SDG023	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG023	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1600			-21	%DIF
NC22SDG023	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1700			-17	%DIF
NC22SDG023	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG023	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG023	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG023	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG023	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG023	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1700			-17	%DIF
NC22SDG023	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG023	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG023	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1800			-12	%DIF
NC22SDG023	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG023	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG023	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1700			-15	%DIF
NC22SDG023	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1700			-18	%DIF
NC22SDG024	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2070			-3.27	%DIF
NC22SDG024	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2110			-1.4	%DIF
NC22SDG024	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2060			0.0972	%DIF
NC22SDG024	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2.04	%DIF
NC22SDG024	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG024	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1980			-3.6	%DIF
NC22SDG024	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2040			-0.682	%DIF
NC22SDG024	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG024	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1860			-10	%DIF
NC22SDG024	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1960			-5.18	%DIF
NC22SDG024	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1790			-12.7	%DIF
NC22SDG024	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1880			-8.34	%DIF
NC22SDG024	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1980			-5.58	%DIF
NC22SDG024	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2050			-2.24	%DIF
NC22SDG024	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1710			-17.4	%DIF
NC22SDG024	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1760			-14.9	%DIF
NC22SDG024	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1810			-11	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG024	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1880			-7.62	%DIF
NC22SDG024	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1810			-11.4	%DIF
NC22SDG024	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG024	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1720			-16.7	%DIF
NC22SDG024	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1730			-16.2	%DIF
NC22SDG024	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG024	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1720			-17.1	%DIF
NC22SDG024	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1740			-16.2	%DIF
NC22SDG024	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1740			-15.5	%DIF
NC22SDG024	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1790			-13.1	%DIF
NC22SDG024	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1650			-18.6	%DIF
NC22SDG024	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1710			-15.6	%DIF
NC22SDG024	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1660			-18.6	%DIF
NC22SDG024	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1710			-16.2	%DIF
NC22SDG024	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG024	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG024	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG024	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG024	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1660			-18.8	%DIF
NC22SDG024	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1670			-18.3	%DIF
NC22SDG024	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1670			-18.9	%DIF
NC22SDG024	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1710			-17	%DIF
NC22SDG024	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG024	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG024	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1770			-13.5	%DIF
NC22SDG024	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1840			-10.1	%DIF
NC22SDG024	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG024	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1660			-19.1	%DIF
NC22SDG024	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1680			-18.1	%DIF
NC22SDG024	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1680			-16	%DIF
NC22SDG024	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1740			-13	%DIF
NC22SDG024	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1730			-16.1	%DIF
NC22SDG024	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1830			-11.2	%DIF
NC22SDG025	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	1980			-7.48	%DIF
NC22SDG025	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2110			-1.4	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG025	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	1970			-4.28	%DIF
NC22SDG025	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2100			2.04	%DIF
NC22SDG025	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG025	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1940			-5.55	%DIF
NC22SDG025	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2040			-0.682	%DIF
NC22SDG025	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG025	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1880			-9.05	%DIF
NC22SDG025	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1960			-5.18	%DIF
NC22SDG025	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1790			-12.7	%DIF
NC22SDG025	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1880			-8.34	%DIF
NC22SDG025	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1980			-5.58	%DIF
NC22SDG025	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2030			-3.2	%DIF
NC22SDG025	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1710			-17.4	%DIF
NC22SDG025	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1770			-14.4	%DIF
NC22SDG025	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1780			-12.5	%DIF
NC22SDG025	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1880			-7.62	%DIF
NC22SDG025	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1810			-11.4	%DIF
NC22SDG025	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1880			-7.93	%DIF
NC22SDG025	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG025	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1730			-16.2	%DIF
NC22SDG025	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1760			-14.7	%DIF
NC22SDG025	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG025	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1700			-18.1	%DIF
NC22SDG025	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1740			-16.2	%DIF
NC22SDG025	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1710			-16.9	%DIF
NC22SDG025	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1790			-13.1	%DIF
NC22SDG025	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1650			-18.6	%DIF
NC22SDG025	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1680			-17.1	%DIF
NC22SDG025	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1710			-16.2	%DIF
NC22SDG025	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1720			-15.7	%DIF
NC22SDG025	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG025	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG025	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG025	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG025	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1670			-18.3	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG025	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1700			-17.5	%DIF
NC22SDG025	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1710			-17	%DIF
NC22SDG025	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG025	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG025	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1820			-11.1	%DIF
NC22SDG025	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1840			-10.1	%DIF
NC22SDG025	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG025	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1670			-18.6	%DIF
NC22SDG025	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1680			-18.1	%DIF
NC22SDG025	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1650			-17.5	%DIF
NC22SDG025	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1740			-13	%DIF
NC22SDG025	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1730			-16.1	%DIF
NC22SDG025	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1830			-11.2	%DIF
NC22SDG026	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2040			-4.67	%DIF
NC22SDG026	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2140			0	%DIF
NC22SDG026	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	1980			-3.79	%DIF
NC22SDG026	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2080			1.07	%DIF
NC22SDG026	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG026	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1890			-7.98	%DIF
NC22SDG026	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2060			0.292	%DIF
NC22SDG026	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG026	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1920			-7.11	%DIF
NC22SDG026	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2000			-3.24	%DIF
NC22SDG026	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1870			-8.82	%DIF
NC22SDG026	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1980			-3.46	%DIF
NC22SDG026	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1920			-8.44	%DIF
NC22SDG026	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1990			-5.1	%DIF
NC22SDG026	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1800			-13	%DIF
NC22SDG026	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1870			-9.62	%DIF
NC22SDG026	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1850			-9.09	%DIF
NC22SDG026	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1880			-7.62	%DIF
NC22SDG026	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1890			-7.44	%DIF
NC22SDG026	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1910			-6.46	%DIF
NC22SDG026	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG026	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1840			-10.8	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG026	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG026	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1860			-10.4	%DIF
NC22SDG026	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1940			-6.55	%DIF
NC22SDG026	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1790			-13.1	%DIF
NC22SDG026	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1830			-11.1	%DIF
NC22SDG026	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1780			-12.2	%DIF
NC22SDG026	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1870			-7.74	%DIF
NC22SDG026	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1770			-13.2	%DIF
NC22SDG026	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1850			-9.31	%DIF
NC22SDG026	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG026	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG026	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG026	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG026	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1820			-11	%DIF
NC22SDG026	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1830			-10.5	%DIF
NC22SDG026	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1850			-10.2	%DIF
NC22SDG026	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1930			-6.31	%DIF
NC22SDG026	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG026	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG026	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1840			-10.1	%DIF
NC22SDG026	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	2050			0.146	%DIF
NC22SDG026	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG026	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1760			-14.2	%DIF
NC22SDG026	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1790			-12.8	%DIF
NC22SDG026	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1740			-13	%DIF
NC22SDG026	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG026	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1770			-14.2	%DIF
NC22SDG026	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1910			-7.37	%DIF
NC22SDG050	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ng/L	2000			-6.5	%DIF
NC22SDG050	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2000			-6.5	%DIF
NC22SDG050	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ng/L	2000			-2.8	%DIF
NC22SDG050	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	1900			-7.7	%DIF
NC22SDG050	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ng/L	0	ND		0	
NC22SDG050	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG050	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ng/L	1900			-7.5	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG050	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG050	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ng/L	0	ND		0	
NC22SDG050	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG050	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ng/L	2000			-3.2	%DIF
NC22SDG050	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1900			-8.1	%DIF
NC22SDG050	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ng/L	2000			-2.5	%DIF
NC22SDG050	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1900			-7.4	%DIF
NC22SDG050	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ng/L	2000			-4.6	%DIF
NC22SDG050	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG050	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ng/L	1900			-8.2	%DIF
NC22SDG050	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1800			-13	%DIF
NC22SDG050	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ng/L	1900			-6.6	%DIF
NC22SDG050	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG050	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ng/L	1900			-7	%DIF
NC22SDG050	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1900			-7	%DIF
NC22SDG050	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ng/L	0	ND		0	
NC22SDG050	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG050	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ng/L	1900			-7.9	%DIF
NC22SDG050	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1800			-13	%DIF
NC22SDG050	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ng/L	0	ND		0	
NC22SDG050	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG050	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ng/L	1900			-8.5	%DIF
NC22SDG050	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF
NC22SDG050	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ng/L	1900			- 7.7	%DIF
NC22SDG050	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1900			- 7.7	%DIF
NC22SDG050	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ng/L	1800			-11	%DIF
NC22SDG050	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1700			-16	%DIF
NC22SDG050	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ng/L	1800			-12	%DIF
NC22SDG050	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1700			-17	%DIF
NC22SDG050	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ng/L	0	ND		0	
NC22SDG050	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG050	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ng/L	0	ND		0	
NC22SDG050	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG050	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ng/L	0	ND		0	
NC22SDG050	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG050	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ng/L	0	ND		0	
NC22SDG050	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG050	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ng/L	1800			-12	%DIF
NC22SDG050	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-17	%DIF
NC22SDG050	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ng/L	1900			-7.8	%DIF
NC22SDG050	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1700			-17	%DIF
NC22SDG050	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ng/L	0	ND		0	
NC22SDG050	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG050	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ng/L	0	ND		0	
NC22SDG050	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG050	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ng/L	1900			-7.2	%DIF
NC22SDG050	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG050	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ng/L	0	ND		0	
NC22SDG050	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG050	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ng/L	1800			-12	%DIF
NC22SDG050	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG050	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ng/L	1900			-5	%DIF
NC22SDG050	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1800			-10	%DIF
NC22SDG050	0.05	mL	209 - Decachlorobiphenyl	100	23	ng/L	2000			-3	%DIF
NC22SDG050	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG052	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2200			2.8	%DIF
NC22SDG052	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2400			17	%DIF
NC22SDG052	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG052	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2000			-2.6	%DIF
NC22SDG052	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG052	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	2100			1.6	%DIF
NC22SDG052	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	2000			-2.5	%DIF
NC22SDG052	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	2000			-4.6	%DIF
NC22SDG052	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	2000			-3.3	%DIF
NC22SDG052	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1900			-6.6	%DIF
NC22SDG052	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	2000			-2	%DIF
NC22SDG052	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC22SDG052	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	2000			-3.1	%DIF
NC22SDG052	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG052	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1800			-13	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG052	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1800			-12	%DIF
NC22SDG052	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1800			-11	%DIF
NC22SDG052	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1800			-12	%DIF
NC22SDG052	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG052	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG052	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG052	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG052	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1800			-12	%DIF
NC22SDG052	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1700			-17	%DIF
NC22SDG052	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG052	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG052	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.2	%DIF
NC22SDG052	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG052	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17	%DIF
NC22SDG052	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1900			-5	%DIF
NC22SDG052	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	2000			-3	%DIF
NC22SDG053	1	mL	8 - 2,4'-Dichlorobiphenyl	1	0.88	ug/L	21			5	%DIF
NC22SDG053	1	mL	18 - 2,2',5-Trichlorobiphenyl	1	1.2	ug/L	20			0	%DIF
NC22SDG053	1	mL	28 - 2,4,4'-Trichlorobiphenyl	1	2.4	ug/L	21			5	%DIF
NC22SDG053	1	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	1	0.78	ug/L	22			10	%DIF
NC22SDG053	1	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	1	1	ug/L	0	ND		0	
NC22SDG053	1	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	1	0.9	ug/L	22			10	%DIF
NC22SDG053	1	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	1	0.74	ug/L	19			-5	%DIF
NC22SDG053	1	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	1	1.3	ug/L	22			10	%DIF
NC22SDG053	1	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	1	1	ug/L	0	ND		0	
NC22SDG053	1	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	1	0.92	ug/L	22			10	%DIF
NC22SDG053	1	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	1	1.4	ug/L	21			5	%DIF
NC22SDG053	1	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	1	0.88	ug/L	23			15	%DIF
NC22SDG053	1	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	1	1.1	ug/L	22			10	%DIF
NC22SDG053	1	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	1	0.76	ug/L	22			10	%DIF
NC22SDG053	1	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	1	1.2	ug/L	22			10	%DIF
NC22SDG053	1	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	1	0.6	ug/L	23			15	%DIF
NC22SDG053	1	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	1	1	ug/L	0	ND		0	
NC22SDG053	1	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	1	1	ug/L	0	ND		0	
NC22SDG053	1	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	1	0.066	ug/L	21			5	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG053	1	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	1	1.8	ug/L	23			15	%DIF
NC22SDG053	1	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	1	1	ug/L	0	ND		0	
NC22SDG053	1	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	1	1	ug/L	0	ND		0	
NC22SDG053	1	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	1	1.4	ug/L	22			10	%DIF
NC22SDG053	1	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	1	1.4	ug/L	22			10	%DIF
NC22SDG053	1	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	1	1.1	ug/L	21			17	%DIF
NC22SDG053	1	mL	209 - Decachlorobiphenyl	1	1.3	ug/L	23			15	%DIF
NC22SDG054	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	1960			-8.41	%DIF
NC22SDG054	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2080			-2.8	%DIF
NC22SDG054	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2090			-2.34	%DIF
NC22SDG054	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	1920			-6.7	%DIF
NC22SDG054	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	1970			-4.28	%DIF
NC22SDG054	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2040			-0.875	%DIF
NC22SDG054	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC22SDG054	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	1920			-6.52	%DIF
NC22SDG054	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2010			-2.14	%DIF
NC22SDG054	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC22SDG054	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1890			-8.56	%DIF
NC22SDG054	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1940			-6.14	%DIF
NC22SDG054	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1980			-4.21	%DIF
NC22SDG054	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1850			-9.8	%DIF
NC22SDG054	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1880			-8.34	%DIF
NC22SDG054	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1930			-5.9	%DIF
NC22SDG054	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1870			-10.8	%DIF
NC22SDG054	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1940			-7.49	%DIF
NC22SDG054	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1960			-6.53	%DIF
NC22SDG054	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1770			-14.4	%DIF
NC22SDG054	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1820			-12	%DIF
NC22SDG054	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1850			-10.6	%DIF
NC22SDG054	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1860			-8.6	%DIF
NC22SDG054	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1870			-8.11	%DIF
NC22SDG054	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1800			-11.8	%DIF
NC22SDG054	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1860			-8.91	%DIF
NC22SDG054	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1960			-4.01	%DIF
NC22SDG054	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG054	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1760			-14.7	%DIF
NC22SDG054	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1790			-13.3	%DIF
NC22SDG054	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1890			-8.43	%DIF
NC22SDG054	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC22SDG054	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1700			-18.1	%DIF
NC22SDG054	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1710			-17.6	%DIF
NC22SDG054	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1850			-10.9	%DIF
NC22SDG054	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1680			-18.4	%DIF
NC22SDG054	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1760			-14.5	%DIF
NC22SDG054	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1790			-13.1	%DIF
NC22SDG054	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1820			-10.2	%DIF
NC22SDG054	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1890			-6.76	%DIF
NC22SDG054	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1940			-4.29	%DIF
NC22SDG054	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1640			-19.6	%DIF
NC22SDG054	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1700			-16.7	%DIF
NC22SDG054	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1760			-13.7	%DIF
NC22SDG054	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG054	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG054	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC22SDG054	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC22SDG054	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1640			-19.8	%DIF
NC22SDG054	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-16.9	%DIF
NC22SDG054	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1860			-9.05	%DIF
NC22SDG054	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1770			-14.1	%DIF
NC22SDG054	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1780			-13.6	%DIF
NC22SDG054	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1790			-13.1	%DIF
NC22SDG054	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC22SDG054	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC22SDG054	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1770			-13.5	%DIF
NC22SDG054	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.18	%DIF
NC22SDG054	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1950			-4.74	%DIF
NC22SDG054	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC22SDG054	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1650			-19.6	%DIF
NC22SDG054	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1750			-14.7	%DIF
NC22SDG054	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1920			-6.43	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC22SDG054	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1660			-17	%DIF
NC22SDG054	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1720			-14	%DIF
NC22SDG054	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1860			-7.05	%DIF
NC22SDG054	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1650			-20	%DIF
NC22SDG054	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1880			-8.83	%DIF
NC22SDG054	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1930			-6.4	%DIF
NC28SDG001	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2060			-3.74	%DIF
NC28SDG001	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	17	ug/L	2090			-2.34	%DIF
NC28SDG001	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2020			-1.85	%DIF
NC28SDG001	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	26	ug/L	2040			-0.875	%DIF
NC28SDG001	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	21	ug/L	0	ND		0	
NC28SDG001	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2010			-2.14	%DIF
NC28SDG001	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	27	ug/L	2020			-1.66	%DIF
NC28SDG001	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	30	ug/L	0	ND		0	
NC28SDG001	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1980			-4.21	%DIF
NC28SDG001	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	12	ug/L	1990			-3.72	%DIF
NC28SDG001	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1880			-8.34	%DIF
NC28SDG001	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	26	ug/L	1910			-6.87	%DIF
NC28SDG001	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1920			-8.44	%DIF
NC28SDG001	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	22	ug/L	1960			-6.53	%DIF
NC28SDG001	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1770			-14.4	%DIF
NC28SDG001	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	31	ug/L	1920			-7.2	%DIF
NC28SDG001	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1860			-8.6	%DIF
NC28SDG001	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	14	ug/L	1940			-4.67	%DIF
NC28SDG001	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1860			-8.91	%DIF
NC28SDG001	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	16	ug/L	1920			-5.97	%DIF
NC28SDG001	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	27	ug/L	0	ND		0	
NC28SDG001	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1790			-13.3	%DIF
NC28SDG001	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	26	ug/L	1870			-9.4	%DIF
NC28SDG001	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	31	ug/L	0	ND		0	
NC28SDG001	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1710			-17.6	%DIF
NC28SDG001	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	27	ug/L	1820			-12.3	%DIF
NC28SDG001	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1760			-14.5	%DIF
NC28SDG001	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	10	ug/L	1810			-12.1	%DIF
NC28SDG001	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1820			-10.2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG001	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	22	ug/L	1860			-8.24	%DIF
NC28SDG001	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1700			-16.7	%DIF
NC28SDG001	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	11	ug/L	1750			-14.2	%DIF
NC28SDG001	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC28SDG001	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC28SDG001	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	25	ug/L	0	ND		0	
NC28SDG001	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	24	ug/L	0	ND		0	
NC28SDG001	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1700			-16.9	%DIF
NC28SDG001	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	25	ug/L	1790			-12.5	%DIF
NC28SDG001	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1740			-15.5	%DIF
NC28SDG001	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	26	ug/L	1770			-14.1	%DIF
NC28SDG001	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG001	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ug/L	0	ND		0	
NC28SDG001	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1900			-7.18	%DIF
NC28SDG001	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	26	ug/L	1990			-2.78	%DIF
NC28SDG001	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	28	ug/L	0	ND		0	
NC28SDG001	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1700			-17.2	%DIF
NC28SDG001	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	23	ug/L	1750			-14.7	%DIF
NC28SDG001	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1640			-18	%DIF
NC28SDG001	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	9	ug/L	1720			-14	%DIF
NC28SDG001	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1760			-14.6	%DIF
NC28SDG001	0.05	mL	209 - Decachlorobiphenyl	100	23	ug/L	1930			-6.4	%DIF
NC28SDG002	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1980			-7.48	%DIF
NC28SDG002	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2010			-6.07	%DIF
NC28SDG002	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1970			-4.28	%DIF
NC28SDG002	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1990			-3.3	%DIF
NC28SDG002	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG002	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1880			-8.47	%DIF
NC28SDG002	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1960			-4.58	%DIF
NC28SDG002	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG002	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1890			-8.56	%DIF
NC28SDG002	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1910			-7.6	%DIF
NC28SDG002	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1830			-10.8	%DIF
NC28SDG002	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1900			-7.36	%DIF
NC28SDG002	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1990			-5.1	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG002	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2060			-1.76	%DIF
NC28SDG002	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1780			-14	%DIF
NC28SDG002	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1860			-8.6	%DIF
NC28SDG002	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1930			-5.16	%DIF
NC28SDG002	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1870			-8.42	%DIF
NC28SDG002	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1930			-5.48	%DIF
NC28SDG002	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG002	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1780			-13.8	%DIF
NC28SDG002	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1930			-6.49	%DIF
NC28SDG002	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG002	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1730			-16.7	%DIF
NC28SDG002	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1800			-13.3	%DIF
NC28SDG002	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1780			-13.6	%DIF
NC28SDG002	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1810			-12.1	%DIF
NC28SDG002	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1830			-9.72	%DIF
NC28SDG002	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1840			-9.22	%DIF
NC28SDG002	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1700			-16.7	%DIF
NC28SDG002	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1830			-10.3	%DIF
NC28SDG002	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG002	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG002	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG002	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG002	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1720			-15.9	%DIF
NC28SDG002	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1810			-11.5	%DIF
NC28SDG002	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1730			-16	%DIF
NC28SDG002	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1850			-10.2	%DIF
NC28SDG002	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG002	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG002	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1900			-7.18	%DIF
NC28SDG002	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1950			-4.74	%DIF
NC28SDG002	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG002	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1830			-10.8	%DIF
NC28SDG002	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1880			-8.38	%DIF
NC28SDG002	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1720			-14	%DIF
NC28SDG002	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1880			-6.05	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG002	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1840			-10.8	%DIF
NC28SDG002	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2060			-0.097	%DIF
NC28SDG003	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2010			-6.07	%DIF
NC28SDG003	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2060			-3.74	%DIF
NC28SDG003	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1990			-3.3	%DIF
NC28SDG003	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2000			-2.82	%DIF
NC28SDG003	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG003	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1960			-4.58	%DIF
NC28SDG003	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2050			-0.195	%DIF
NC28SDG003	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG003	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1890			-8.56	%DIF
NC28SDG003	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1990			-3.72	%DIF
NC28SDG003	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1830			-10.8	%DIF
NC28SDG003	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1990			-2.97	%DIF
NC28SDG003	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2060			-1.76	%DIF
NC28SDG003	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2190			4.43	%DIF
NC28SDG003	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1780			-14	%DIF
NC28SDG003	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1910			-7.68	%DIF
NC28SDG003	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1860			-8.6	%DIF
NC28SDG003	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1980			-2.7	%DIF
NC28SDG003	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1930			-5.48	%DIF
NC28SDG003	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2000			-2.06	%DIF
NC28SDG003	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG003	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1780			-13.8	%DIF
NC28SDG003	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1990			-3.58	%DIF
NC28SDG003	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG003	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1730			-16.7	%DIF
NC28SDG003	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1910			-8	%DIF
NC28SDG003	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1810			-12.1	%DIF
NC28SDG003	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1860			-9.66	%DIF
NC28SDG003	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1830			-9.72	%DIF
NC28SDG003	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1870			-7.74	%DIF
NC28SDG003	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1700			-16.7	%DIF
NC28SDG003	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1910			-6.37	%DIF
NC28SDG003	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG003	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG003	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG003	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG003	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1770			-13.4	%DIF
NC28SDG003	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1810			-11.5	%DIF
NC28SDG003	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1730			-16	%DIF
NC28SDG003	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1900			-7.77	%DIF
NC28SDG003	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG003	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG003	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1950			-4.74	%DIF
NC28SDG003	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2040			-0.342	%DIF
NC28SDG003	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG003	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1780			-13.2	%DIF
NC28SDG003	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1880			-8.38	%DIF
NC28SDG003	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1760			-12	%DIF
NC28SDG003	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1880			-6.05	%DIF
NC28SDG003	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1910			-7.37	%DIF
NC28SDG003	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2060			-0.097	%DIF
NC28SDG004	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2010			-6.07	%DIF
NC28SDG004	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1990			-3.3	%DIF
NC28SDG004	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG004	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1960			-4.58	%DIF
NC28SDG004	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG004	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1890			-8.56	%DIF
NC28SDG004	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1830			-10.8	%DIF
NC28SDG004	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2060			-1.76	%DIF
NC28SDG004	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1780			-14	%DIF
NC28SDG004	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1860			-8.6	%DIF
NC28SDG004	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1930			-5.48	%DIF
NC28SDG004	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG004	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1780			-13.8	%DIF
NC28SDG004	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG004	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1730			-16.7	%DIF
NC28SDG004	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1810			-12.1	%DIF
NC28SDG004	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1830			-9.72	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG004	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1700			-16.7	%DIF
NC28SDG004	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG004	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG004	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG004	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG004	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1810			-11.5	%DIF
NC28SDG004	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1730			-16	%DIF
NC28SDG004	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG004	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG004	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1950			-4.74	%DIF
NC28SDG004	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG004	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1880			-8.38	%DIF
NC28SDG004	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1880			-6.05	%DIF
NC28SDG004	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2060			-0.097	%DIF
NC28SDG005	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2060			-3.74	%DIF
NC28SDG005	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1950			-5.25	%DIF
NC28SDG005	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG005	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2000			-2.63	%DIF
NC28SDG005	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG005	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1940			-6.14	%DIF
NC28SDG005	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1810			-11.8	%DIF
NC28SDG005	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2110			0.62	%DIF
NC28SDG005	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1800			-13	%DIF
NC28SDG005	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1840			-9.58	%DIF
NC28SDG005	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1920			-5.97	%DIF
NC28SDG005	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG005	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1720			-16.7	%DIF
NC28SDG005	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG005	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1710			-17.6	%DIF
NC28SDG005	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1680			-18.4	%DIF
NC28SDG005	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1910			-5.77	%DIF
NC28SDG005	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1690			-17.2	%DIF
NC28SDG005	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG005	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG005	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG005	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG005	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1910			-6.6	%DIF
NC28SDG005	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1960			-4.85	%DIF
NC28SDG005	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG005	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG005	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2110			3.08	%DIF
NC28SDG005	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG005	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1910			-6.92	%DIF
NC28SDG005	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1840			-8.04	%DIF
NC28SDG005	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1950			-5.43	%DIF
NC28SDG006	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2010			-6.07	%DIF
NC28SDG006	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
NC28SDG006	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG006	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2060			0.292	%DIF
NC28SDG006	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG006	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1950			-5.66	%DIF
NC28SDG006	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1940			-5.41	%DIF
NC28SDG006	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2370			13	%DIF
NC28SDG006	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1880			-9.13	%DIF
NC28SDG006	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC28SDG006	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1920			-5.97	%DIF
NC28SDG006	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG006	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1870			-9.4	%DIF
NC28SDG006	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG006	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1850			-10.9	%DIF
NC28SDG006	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1880			-8.69	%DIF
NC28SDG006	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1880			-7.25	%DIF
NC28SDG006	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1790			-12.2	%DIF
NC28SDG006	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG006	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG006	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG006	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG006	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2040			-0.244	%DIF
NC28SDG006	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1920			-6.8	%DIF
NC28SDG006	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG006	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG006	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2000			-2.3	%DIF
NC28SDG006	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG006	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1920			-6.43	%DIF
NC28SDG006	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1870			-6.55	%DIF
NC28SDG006	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1910			-7.37	%DIF
NC28SDG007	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2010			-6.07	%DIF
NC28SDG007	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
NC28SDG007	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG007	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2060			0.292	%DIF
NC28SDG007	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG007	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1950			-5.66	%DIF
NC28SDG007	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1940			-5.41	%DIF
NC28SDG007	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2370			13	%DIF
NC28SDG007	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1880			-9.13	%DIF
NC28SDG007	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC28SDG007	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1920			-5.97	%DIF
NC28SDG007	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG007	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1870			-9.4	%DIF
NC28SDG007	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG007	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1850			-10.9	%DIF
NC28SDG007	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1880			-8.69	%DIF
NC28SDG007	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1880			-7.25	%DIF
NC28SDG007	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1790			-12.2	%DIF
NC28SDG007	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG007	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG007	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG007	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG007	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2040			-0.244	%DIF
NC28SDG007	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1920			-6.8	%DIF
NC28SDG007	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG007	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG007	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2000			-2.3	%DIF
NC28SDG007	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG007	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1920			-6.43	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG007	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1870			-6.55	%DIF
NC28SDG007	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1910			-7.37	%DIF
NC28SDG008	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2080			-2.8	%DIF
NC28SDG008	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1970			-4.28	%DIF
NC28SDG008	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG008	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2070			0.779	%DIF
NC28SDG008	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG008	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1970			-4.69	%DIF
NC28SDG008	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1940			-5.41	%DIF
NC28SDG008	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1970			-6.06	%DIF
NC28SDG008	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1830			-11.6	%DIF
NC28SDG008	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC28SDG008	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1930			-5.48	%DIF
NC28SDG008	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG008	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1940			-6.01	%DIF
NC28SDG008	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG008	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1800			-13.3	%DIF
NC28SDG008	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1940			-5.78	%DIF
NC28SDG008	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1880			-7.25	%DIF
NC28SDG008	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1820			-10.8	%DIF
NC28SDG008	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG008	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG008	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG008	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG008	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1840			-10	%DIF
NC28SDG008	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1820			-11.6	%DIF
NC28SDG008	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG008	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG008	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1820			-11.1	%DIF
NC28SDG008	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG008	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1910			-6.92	%DIF
NC28SDG008	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1750			-12.5	%DIF
NC28SDG008	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1830			-11.2	%DIF
NC28SDG009	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2080			-2.8	%DIF
NC28SDG009	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1970			-4.28	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG009	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG009	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2070			0.779	%DIF
NC28SDG009	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG009	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1970			-4.69	%DIF
NC28SDG009	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1940			-5.41	%DIF
NC28SDG009	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1970			-6.06	%DIF
NC28SDG009	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1830			-11.6	%DIF
NC28SDG009	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC28SDG009	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1930			-5.48	%DIF
NC28SDG009	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG009	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1940			-6.01	%DIF
NC28SDG009	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG009	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1800			-13.3	%DIF
NC28SDG009	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1940			-5.78	%DIF
NC28SDG009	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1880			-7.25	%DIF
NC28SDG009	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1820			-10.8	%DIF
NC28SDG009	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG009	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG009	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG009	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG009	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1840			-10	%DIF
NC28SDG009	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1820			-11.6	%DIF
NC28SDG009	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG009	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG009	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1820			-11.1	%DIF
NC28SDG009	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG009	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1910			-6.92	%DIF
NC28SDG009	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1750			-12.5	%DIF
NC28SDG009	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1830			-11.2	%DIF
NC28SDG010	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1990			-7.01	%DIF
NC28SDG010	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1940			-5.73	%DIF
NC28SDG010	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG010	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1910			-7.01	%DIF
NC28SDG010	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG010	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1940			-6.14	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG010	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1880			-8.34	%DIF
NC28SDG010	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1870			-10.8	%DIF
NC28SDG010	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1850			-10.6	%DIF
NC28SDG010	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1860			-8.6	%DIF
NC28SDG010	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1850			-9.4	%DIF
NC28SDG010	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG010	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1900			-7.94	%DIF
NC28SDG010	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG010	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1770			-14.7	%DIF
NC28SDG010	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1790			-13.1	%DIF
NC28SDG010	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1760			-13.2	%DIF
NC28SDG010	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1880			-7.84	%DIF
NC28SDG010	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG010	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG010	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG010	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG010	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1680			-17.8	%DIF
NC28SDG010	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1780			-13.6	%DIF
NC28SDG010	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG010	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG010	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1740			-15	%DIF
NC28SDG010	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG010	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1710			-16.7	%DIF
NC28SDG010	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1770			-11.5	%DIF
NC28SDG010	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1760			-14.6	%DIF
NC28SDG011	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2090			-2.34	%DIF
NC28SDG011	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2020			-1.85	%DIF
NC28SDG011	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG011	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2050			-0.195	%DIF
NC28SDG011	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG011	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
NC28SDG011	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1980			-3.46	%DIF
NC28SDG011	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2050			-2.24	%DIF
NC28SDG011	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1980			-4.3	%DIF
NC28SDG011	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1900			-6.63	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG011	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1960			-4.02	%DIF
NC28SDG011	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG011	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1910			-7.46	%DIF
NC28SDG011	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG011	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1690			-18.6	%DIF
NC28SDG011	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1780			-13.6	%DIF
NC28SDG011	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1850			-8.73	%DIF
NC28SDG011	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1740			-14.7	%DIF
NC28SDG011	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG011	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG011	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG011	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG011	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1810			-11.5	%DIF
NC28SDG011	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1770			-14.1	%DIF
NC28SDG011	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG011	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG011	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1900			-7.18	%DIF
NC28SDG011	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG011	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1790			-12.8	%DIF
NC28SDG011	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1750			-12.5	%DIF
NC28SDG011	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1680			-18.5	%DIF
NC28SDG012	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2020			-5.61	%DIF
NC28SDG012	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2060			-3.74	%DIF
NC28SDG012	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1990			-3.3	%DIF
NC28SDG012	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2010			-2.33	%DIF
NC28SDG012	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG012	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1990			-3.12	%DIF
NC28SDG012	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2100			2.24	%DIF
NC28SDG012	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG012	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1940			-6.14	%DIF
NC28SDG012	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1950			-5.66	%DIF
NC28SDG012	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1830			-10.8	%DIF
NC28SDG012	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1870			-8.82	%DIF
NC28SDG012	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2000			-4.62	%DIF
NC28SDG012	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2100			0.143	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG012	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1760			-14.9	%DIF
NC28SDG012	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1870			-9.62	%DIF
NC28SDG012	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1830			-10.1	%DIF
NC28SDG012	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1910			-6.14	%DIF
NC28SDG012	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1800			-11.8	%DIF
NC28SDG012	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1900			-6.95	%DIF
NC28SDG012	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG012	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1820			-11.8	%DIF
NC28SDG012	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1860			-9.88	%DIF
NC28SDG012	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG012	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1710			-17.6	%DIF
NC28SDG012	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1730			-16.7	%DIF
NC28SDG012	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1700			-17.4	%DIF
NC28SDG012	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1750			-15	%DIF
NC28SDG012	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1800			-11.2	%DIF
NC28SDG012	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1890			-6.76	%DIF
NC28SDG012	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1690			-17.2	%DIF
NC28SDG012	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1730			-15.2	%DIF
NC28SDG012	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG012	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG012	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG012	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG012	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1800			-12	%DIF
NC28SDG012	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2040			-0.244	%DIF
NC28SDG012	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1740			-15.5	%DIF
NC28SDG012	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1890			-8.25	%DIF
NC28SDG012	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG012	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG012	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1890			-7.67	%DIF
NC28SDG012	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1960			-4.25	%DIF
NC28SDG012	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG012	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1700			-17.2	%DIF
NC28SDG012	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	2000			-2.53	%DIF
NC28SDG012	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1650			-17.5	%DIF
NC28SDG012	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1820			-9.04	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG012	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1780			-13.7	%DIF
NC28SDG012	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1920			-6.89	%DIF
NC28SDG013	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2030			-5.14	%DIF
NC28SDG013	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2060			-3.74	%DIF
NC28SDG013	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2010			-2.33	%DIF
NC28SDG013	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG013	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2050			-0.195	%DIF
NC28SDG013	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2100			2.24	%DIF
NC28SDG013	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG013	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1950			-5.66	%DIF
NC28SDG013	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
NC28SDG013	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1870			-8.82	%DIF
NC28SDG013	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1880			-8.34	%DIF
NC28SDG013	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2060			-1.76	%DIF
NC28SDG013	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2100			0.143	%DIF
NC28SDG013	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1830			-11.6	%DIF
NC28SDG013	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1870			-9.62	%DIF
NC28SDG013	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1860			-8.6	%DIF
NC28SDG013	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1910			-6.14	%DIF
NC28SDG013	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1880			-7.93	%DIF
NC28SDG013	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1900			-6.95	%DIF
NC28SDG013	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG013	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1830			-11.3	%DIF
NC28SDG013	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1860			-9.88	%DIF
NC28SDG013	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG013	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1730			-16.7	%DIF
NC28SDG013	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1740			-16.2	%DIF
NC28SDG013	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1750			-15	%DIF
NC28SDG013	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1850			-10.2	%DIF
NC28SDG013	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1780			-12.2	%DIF
NC28SDG013	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1890			-6.76	%DIF
NC28SDG013	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1730			-15.2	%DIF
NC28SDG013	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1760			-13.7	%DIF
NC28SDG013	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG013	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG013	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG013	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG013	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1870			-8.56	%DIF
NC28SDG013	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2040			-0.244	%DIF
NC28SDG013	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1720			-16.5	%DIF
NC28SDG013	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1890			-8.25	%DIF
NC28SDG013	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG013	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG013	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1810			-11.6	%DIF
NC28SDG013	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1960			-4.25	%DIF
NC28SDG013	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG013	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1650			-19.6	%DIF
NC28SDG013	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	2000			-2.53	%DIF
NC28SDG013	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1720			-14	%DIF
NC28SDG013	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1820			-9.04	%DIF
NC28SDG013	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1810			-12.2	%DIF
NC28SDG013	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1920			-6.89	%DIF
NC28SDG014	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2030			-5.14	%DIF
NC28SDG014	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2010			-2.33	%DIF
NC28SDG014	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG014	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2050			-0.195	%DIF
NC28SDG014	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG014	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
NC28SDG014	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1880			-8.34	%DIF
NC28SDG014	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2060			-1.76	%DIF
NC28SDG014	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1830			-11.6	%DIF
NC28SDG014	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1860			-8.6	%DIF
NC28SDG014	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1880			-7.93	%DIF
NC28SDG014	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG014	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1830			-11.3	%DIF
NC28SDG014	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG014	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1740			-16.2	%DIF
NC28SDG014	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1850			-10.2	%DIF
NC28SDG014	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1780			-12.2	%DIF
NC28SDG014	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1760			-13.7	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG014	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG014	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG014	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG014	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG014	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1870			-8.56	%DIF
NC28SDG014	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1720			-16.5	%DIF
NC28SDG014	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG014	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG014	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1810			-11.6	%DIF
NC28SDG014	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG014	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1650			-19.6	%DIF
NC28SDG014	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1720			-14	%DIF
NC28SDG014	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1810			-12.2	%DIF
NC28SDG015	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2070			-3.27	%DIF
NC28SDG015	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
NC28SDG015	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG015	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2060			0.292	%DIF
NC28SDG015	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG015	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
NC28SDG015	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1900			-7.36	%DIF
NC28SDG015	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2030			-3.2	%DIF
NC28SDG015	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1850			-10.6	%DIF
NC28SDG015	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1900			-6.63	%DIF
NC28SDG015	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1960			-4.02	%DIF
NC28SDG015	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG015	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1870			-9.4	%DIF
NC28SDG015	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG015	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1760			-15.2	%DIF
NC28SDG015	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1810			-12.1	%DIF
NC28SDG015	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1830			-9.72	%DIF
NC28SDG015	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1730			-15.2	%DIF
NC28SDG015	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG015	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG015	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG015	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG015	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1830			-10.5	%DIF
NC28SDG015	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1780			-13.6	%DIF
NC28SDG015	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG015	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG015	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1890			-7.67	%DIF
NC28SDG015	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG015	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1670			-18.6	%DIF
NC28SDG015	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1730			-13.5	%DIF
NC28SDG015	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1870			-9.31	%DIF
NC28SDG016	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1980			-7.48	%DIF
NC28SDG016	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1980			-3.79	%DIF
NC28SDG016	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG016	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2130			3.7	%DIF
NC28SDG016	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG016	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1980			-4.21	%DIF
NC28SDG016	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1870			-8.82	%DIF
NC28SDG016	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1920			-8.44	%DIF
NC28SDG016	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1920			-7.2	%DIF
NC28SDG016	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1900			-6.63	%DIF
NC28SDG016	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1800			-11.8	%DIF
NC28SDG016	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG016	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1790			-13.3	%DIF
NC28SDG016	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG016	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1720			-17.1	%DIF
NC28SDG016	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1780			-13.6	%DIF
NC28SDG016	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1780			-12.2	%DIF
NC28SDG016	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1820			-10.8	%DIF
NC28SDG016	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG016	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG016	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG016	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG016	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1950			-4.64	%DIF
NC28SDG016	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1840			-10.7	%DIF
NC28SDG016	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG016	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG016	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1900			-7.18	%DIF
NC28SDG016	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG016	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1790			-12.8	%DIF
NC28SDG016	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1650			-17.5	%DIF
NC28SDG016	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1840			-10.8	%DIF
NC28SDG017	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1980			-7.48	%DIF
NC28SDG017	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1980			-3.79	%DIF
NC28SDG017	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG017	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2130			3.7	%DIF
NC28SDG017	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG017	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1980			-4.21	%DIF
NC28SDG017	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1870			-8.82	%DIF
NC28SDG017	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1920			-8.44	%DIF
NC28SDG017	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1920			-7.2	%DIF
NC28SDG017	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1900			-6.63	%DIF
NC28SDG017	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1800			-11.8	%DIF
NC28SDG017	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG017	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1790			-13.3	%DIF
NC28SDG017	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG017	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1720			-17.1	%DIF
NC28SDG017	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1780			-13.6	%DIF
NC28SDG017	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1780			-12.2	%DIF
NC28SDG017	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1820			-10.8	%DIF
NC28SDG017	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG017	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG017	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG017	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG017	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1950			-4.64	%DIF
NC28SDG017	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1840			-10.7	%DIF
NC28SDG017	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG017	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG017	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1900			-7.18	%DIF
NC28SDG017	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG017	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1790			-12.8	%DIF
NC28SDG017	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1650			-17.5	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG017	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1840			-10.8	%DIF
NC28SDG018	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2030			-5.14	%DIF
NC28SDG018	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2010			-2.33	%DIF
NC28SDG018	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG018	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2020			-1.66	%DIF
NC28SDG018	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG018	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1920			-7.11	%DIF
NC28SDG018	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1930			-5.9	%DIF
NC28SDG018	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2110			0.62	%DIF
NC28SDG018	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1790			-13.5	%DIF
NC28SDG018	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1840			-9.58	%DIF
NC28SDG018	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1910			-6.46	%DIF
NC28SDG018	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG018	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1840			-10.8	%DIF
NC28SDG018	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG018	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1700			-18.1	%DIF
NC28SDG018	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1820			-11.6	%DIF
NC28SDG018	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1910			-5.77	%DIF
NC28SDG018	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1720			-15.7	%DIF
NC28SDG018	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG018	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG018	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG018	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG018	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1800			-12	%DIF
NC28SDG018	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1730			-16	%DIF
NC28SDG018	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG018	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG018	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1860			-9.14	%DIF
NC28SDG018	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG018	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1770			-13.7	%DIF
NC28SDG018	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1750			-12.5	%DIF
NC28SDG018	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1820			-11.7	%DIF
NC28SDG019	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2000			-6.54	%DIF
NC28SDG019	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1980			-3.79	%DIF
NC28SDG019	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG019	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1780			-13.3	%DIF
NC28SDG019	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG019	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1920			-7.11	%DIF
NC28SDG019	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1910			-6.87	%DIF
NC28SDG019	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1880			-10.3	%DIF
NC28SDG019	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1830			-11.6	%DIF
NC28SDG019	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1920			-5.65	%DIF
NC28SDG019	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1930			-5.48	%DIF
NC28SDG019	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG019	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1940			-6.01	%DIF
NC28SDG019	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG019	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1820			-12.3	%DIF
NC28SDG019	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1870			-9.18	%DIF
NC28SDG019	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1820			-10.2	%DIF
NC28SDG019	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1730			-15.2	%DIF
NC28SDG019	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG019	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG019	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG019	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG019	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1910			-6.6	%DIF
NC28SDG019	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1810			-12.1	%DIF
NC28SDG019	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG019	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG019	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1910			-6.69	%DIF
NC28SDG019	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG019	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1730			-15.7	%DIF
NC28SDG019	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1700			-15	%DIF
NC28SDG019	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1830			-11.2	%DIF
NC28SDG020	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1980			-7.48	%DIF
NC28SDG020	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1950			-5.25	%DIF
NC28SDG020	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG020	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1990			-3.12	%DIF
NC28SDG020	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG020	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1860			-10	%DIF
NC28SDG020	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1810			-11.8	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG020	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2110			0.62	%DIF
NC28SDG020	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1800			-13	%DIF
NC28SDG020	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1860			-8.6	%DIF
NC28SDG020	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1810			-11.4	%DIF
NC28SDG020	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG020	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1800			-12.8	%DIF
NC28SDG020	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG020	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1750			-15.7	%DIF
NC28SDG020	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1790			-13.1	%DIF
NC28SDG020	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1780			-12.2	%DIF
NC28SDG020	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1700			-16.7	%DIF
NC28SDG020	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG020	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG020	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG020	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG020	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1850			-9.54	%DIF
NC28SDG020	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1790			-13.1	%DIF
NC28SDG020	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG020	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG020	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1890			-7.67	%DIF
NC28SDG020	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG020	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1710			-16.7	%DIF
NC28SDG020	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1750			-12.5	%DIF
NC28SDG020	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1840			-10.8	%DIF
NC28SDG021	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2010			-6.07	%DIF
NC28SDG021	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2020			-5.61	%DIF
NC28SDG021	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2010			-2.33	%DIF
NC28SDG021	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2020			-1.85	%DIF
NC28SDG021	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG021	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1890			-7.98	%DIF
NC28SDG021	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1990			-3.12	%DIF
NC28SDG021	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG021	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1940			-6.14	%DIF
NC28SDG021	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1970			-4.69	%DIF
NC28SDG021	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1930			-5.9	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG021	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1970			-3.95	%DIF
NC28SDG021	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2450			16.8	%DIF
NC28SDG021	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2510			19.7	%DIF
NC28SDG021	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1820			-12	%DIF
NC28SDG021	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1920			-7.2	%DIF
NC28SDG021	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1860			-8.6	%DIF
NC28SDG021	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1950			-4.18	%DIF
NC28SDG021	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1730			-15.3	%DIF
NC28SDG021	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1930			-5.48	%DIF
NC28SDG021	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG021	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1700			-17.6	%DIF
NC28SDG021	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2010			-2.62	%DIF
NC28SDG021	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG021	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1760			-15.2	%DIF
NC28SDG021	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1900			-8.48	%DIF
NC28SDG021	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1870			-9.18	%DIF
NC28SDG021	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1930			-6.26	%DIF
NC28SDG021	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1850			-8.73	%DIF
NC28SDG021	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1890			-6.76	%DIF
NC28SDG021	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1640			-19.6	%DIF
NC28SDG021	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1810			-11.3	%DIF
NC28SDG021	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG021	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG021	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG021	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG021	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1880			-8.07	%DIF
NC28SDG021	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1960			-4.16	%DIF
NC28SDG021	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1910			-7.28	%DIF
NC28SDG021	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	2000			-2.91	%DIF
NC28SDG021	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG021	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG021	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1790			-12.6	%DIF
NC28SDG021	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1880			-8.16	%DIF
NC28SDG021	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG021	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1770			-13.7	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG021	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1780			-13.2	%DIF
NC28SDG021	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1770			-11.5	%DIF
NC28SDG021	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1940			-3.05	%DIF
NC28SDG021	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1820			-11.7	%DIF
NC28SDG021	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2100			1.84	%DIF
NC28SDG022	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2030			-5.14	%DIF
NC28SDG022	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2060			-3.74	%DIF
NC28SDG022	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2030			-1.36	%DIF
NC28SDG022	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
NC28SDG022	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG022	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2020			-1.66	%DIF
NC28SDG022	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2100			2.24	%DIF
NC28SDG022	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG022	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1960			-5.18	%DIF
NC28SDG022	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
NC28SDG022	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1870			-8.82	%DIF
NC28SDG022	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1890			-7.85	%DIF
NC28SDG022	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2040			-2.72	%DIF
NC28SDG022	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2100			0.143	%DIF
NC28SDG022	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1850			-10.6	%DIF
NC28SDG022	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1900			-8.17	%DIF
NC28SDG022	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1770			-13	%DIF
NC28SDG022	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1960			-3.68	%DIF
NC28SDG022	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1800			-11.8	%DIF
NC28SDG022	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1860			-8.91	%DIF
NC28SDG022	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG022	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1780			-13.8	%DIF
NC28SDG022	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1910			-7.46	%DIF
NC28SDG022	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG022	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1710			-17.6	%DIF
NC28SDG022	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1760			-15.2	%DIF
NC28SDG022	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1700			-17.4	%DIF
NC28SDG022	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1820			-11.6	%DIF
NC28SDG022	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1770			-12.7	%DIF
NC28SDG022	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.26	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG022	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1680			-17.6	%DIF
NC28SDG022	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1690			-17.2	%DIF
NC28SDG022	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG022	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG022	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG022	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG022	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1860			-9.05	%DIF
NC28SDG022	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1920			-6.11	%DIF
NC28SDG022	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1740			-15.5	%DIF
NC28SDG022	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1770			-14.1	%DIF
NC28SDG022	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG022	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG022	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1780			-13	%DIF
NC28SDG022	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1870			-8.65	%DIF
NC28SDG022	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG022	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1710			-16.7	%DIF
NC28SDG022	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1730			-15.7	%DIF
NC28SDG022	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1740			-13	%DIF
NC28SDG022	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1770			-11.5	%DIF
NC28SDG022	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1800			-12.7	%DIF
NC28SDG022	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1950			-5.43	%DIF
NC28SDG023	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2030			-5.14	%DIF
NC28SDG023	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2060			-3.74	%DIF
NC28SDG023	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2030			-1.36	%DIF
NC28SDG023	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
NC28SDG023	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG023	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2020			-1.66	%DIF
NC28SDG023	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2100			2.24	%DIF
NC28SDG023	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG023	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1960			-5.18	%DIF
NC28SDG023	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
NC28SDG023	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1870			-8.82	%DIF
NC28SDG023	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1890			-7.85	%DIF
NC28SDG023	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2040			-2.72	%DIF
NC28SDG023	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2100			0.143	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG023	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1850			-10.6	%DIF
NC28SDG023	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1900			-8.17	%DIF
NC28SDG023	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1770			-13	%DIF
NC28SDG023	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1960			-3.68	%DIF
NC28SDG023	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1800			-11.8	%DIF
NC28SDG023	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1860			-8.91	%DIF
NC28SDG023	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG023	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1780			-13.8	%DIF
NC28SDG023	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1910			-7.46	%DIF
NC28SDG023	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC28SDG023	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1710			-17.6	%DIF
NC28SDG023	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1760			-15.2	%DIF
NC28SDG023	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1700			-17.4	%DIF
NC28SDG023	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1820			-11.6	%DIF
NC28SDG023	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1770			-12.7	%DIF
NC28SDG023	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.26	%DIF
NC28SDG023	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1680			-17.6	%DIF
NC28SDG023	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1690			-17.2	%DIF
NC28SDG023	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG023	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG023	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC28SDG023	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC28SDG023	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1860			-9.05	%DIF
NC28SDG023	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1920			-6.11	%DIF
NC28SDG023	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1740			-15.5	%DIF
NC28SDG023	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1770			-14.1	%DIF
NC28SDG023	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC28SDG023	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC28SDG023	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1780			-13	%DIF
NC28SDG023	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1870			-8.65	%DIF
NC28SDG023	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC28SDG023	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1710			-16.7	%DIF
NC28SDG023	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1730			-15.7	%DIF
NC28SDG023	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1740			-13	%DIF
NC28SDG023	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1770			-11.5	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC28SDG023	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1800			-12.7	%DIF
NC28SDG023	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1950			-5.43	%DIF
NC34SDG001	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1920			-10.3	%DIF
NC34SDG001	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2060			-3.74	%DIF
NC34SDG001	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1950			-5.25	%DIF
NC34SDG001	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1960			-4.76	%DIF
NC34SDG001	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG001	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1910			0	
NC34SDG001	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1950			-5.06	%DIF
NC34SDG001	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2080			1.26	%DIF
NC34SDG001	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG001	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1920			-7.11	%DIF
NC34SDG001	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
NC34SDG001	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1800			-12.2	%DIF
NC34SDG001	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2050			-0.0488	%DIF
NC34SDG001	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1790			-14.6	%DIF
NC34SDG001	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2100			0.143	%DIF
NC34SDG001	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1800			-13	%DIF
NC34SDG001	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2010			-2.85	%DIF
NC34SDG001	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC34SDG001	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2000			-1.72	%DIF
NC34SDG001	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1710			-16.2	%DIF
NC34SDG001	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2080			1.86	%DIF
NC34SDG001	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG001	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1690			-18.1	%DIF
NC34SDG001	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2010			-2.62	%DIF
NC34SDG001	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG001	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1770			-14.7	%DIF
NC34SDG001	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2010			-3.18	%DIF
NC34SDG001	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1750			-15	%DIF
NC34SDG001	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1930			-6.26	%DIF
NC34SDG001	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1760			-13.2	%DIF
NC34SDG001	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	2090			3.11	%DIF
NC34SDG001	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1680			-17.6	%DIF
NC34SDG001	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1870			-8.33	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG001	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG001	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG001	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG001	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG001	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1770			-13.4	%DIF
NC34SDG001	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2000			-2.2	%DIF
NC34SDG001	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1700			-17.5	%DIF
NC34SDG001	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1940			-5.82	%DIF
NC34SDG001	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG001	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG001	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1810			-11.6	%DIF
NC34SDG001	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1970			-3.76	%DIF
NC34SDG001	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG001	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1690			-17.6	%DIF
NC34SDG001	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	2030			-1.07	%DIF
NC34SDG001	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1660			-17	%DIF
NC34SDG001	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1910			-4.55	%DIF
NC34SDG001	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1740			-15.6	%DIF
NC34SDG001	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2120			2.81	%DIF
NC34SDG002	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1920			-10.3	%DIF
NC34SDG002	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2100			-3.74	%DIF
NC34SDG002	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1900			-5.25	%DIF
NC34SDG002	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1960			-4.76	%DIF
NC34SDG002	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG002	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1910			0	
NC34SDG002	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1950			-5.06	%DIF
NC34SDG002	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2100			1.26	%DIF
NC34SDG002	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG002	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1920			-7.11	%DIF
NC34SDG002	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2000			-3.24	%DIF
NC34SDG002	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1800			-12.2	%DIF
NC34SDG002	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2000			-0.0488	%DIF
NC34SDG002	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1790			-14.6	%DIF
NC34SDG002	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2100			0.143	%DIF
NC34SDG002	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1800			-13	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG002	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2000			-2.85	%DIF
NC34SDG002	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC34SDG002	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2000			-1.72	%DIF
NC34SDG002	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1710			-16.2	%DIF
NC34SDG002	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2100			1.86	%DIF
NC34SDG002	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG002	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1690			-18.1	%DIF
NC34SDG002	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2000			-2.62	%DIF
NC34SDG002	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG002	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1770			-14.7	%DIF
NC34SDG002	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2000			-3.18	%DIF
NC34SDG002	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1750			-15	%DIF
NC34SDG002	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1900			-6.26	%DIF
NC34SDG002	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1760			-13.2	%DIF
NC34SDG002	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	2100			3.11	%DIF
NC34SDG002	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1680			-17.6	%DIF
NC34SDG002	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1900			-8.33	%DIF
NC34SDG002	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG002	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG002	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG002	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG002	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1770			-13.4	%DIF
NC34SDG002	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2000			-2.2	%DIF
NC34SDG002	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1700			-17.5	%DIF
NC34SDG002	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1900			-5.82	%DIF
NC34SDG002	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG002	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG002	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1810			-11.6	%DIF
NC34SDG002	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2000			-3.76	%DIF
NC34SDG002	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG002	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1690			-17.6	%DIF
NC34SDG002	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	2000			-1.07	%DIF
NC34SDG002	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1660			-17	%DIF
NC34SDG002	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1900			-4.55	%DIF
NC34SDG002	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1740			-15.6	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG002	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2100			2.81	%DIF
NC34SDG003	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1920			-10.3	%DIF
NC34SDG003	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1960			-4.76	%DIF
NC34SDG003	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1910			0	
NC34SDG003	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1950			-5.06	%DIF
NC34SDG003	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG003	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1920			-7.11	%DIF
NC34SDG003	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1800			-12.2	%DIF
NC34SDG003	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1790			-14.6	%DIF
NC34SDG003	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1800			-13	%DIF
NC34SDG003	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC34SDG003	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1710			-16.2	%DIF
NC34SDG003	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG003	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1690			-18.1	%DIF
NC34SDG003	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG003	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1770			-14.7	%DIF
NC34SDG003	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1750			-15	%DIF
NC34SDG003	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1760			-13.2	%DIF
NC34SDG003	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1680			-17.6	%DIF
NC34SDG003	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG003	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG003	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG003	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG003	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1770			-13.4	%DIF
NC34SDG003	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1700			-17.5	%DIF
NC34SDG003	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG003	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG003	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1810			-11.6	%DIF
NC34SDG003	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG003	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1690			-17.6	%DIF
NC34SDG003	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1660			-17	%DIF
NC34SDG003	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1740			-15.6	%DIF
NC34SDG004	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1920			-10.3	%DIF
NC34SDG004	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1970			-7.94	%DIF
NC34SDG004	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2030			-5.14	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG004	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1960			-4.76	%DIF
NC34SDG004	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1970			-4.28	%DIF
NC34SDG004	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG004	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1910			0	
NC34SDG004	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1960			0	
NC34SDG004	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1950			-5.06	%DIF
NC34SDG004	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2030			-1.17	%DIF
NC34SDG004	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2070			0.779	%DIF
NC34SDG004	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG004	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1920			-7.11	%DIF
NC34SDG004	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1950			-5.66	%DIF
NC34SDG004	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1800			-12.2	%DIF
NC34SDG004	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1820			-11.3	%DIF
NC34SDG004	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1910			-6.87	%DIF
NC34SDG004	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1740			-17	%DIF
NC34SDG004	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1790			-14.6	%DIF
NC34SDG004	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1810			-13.7	%DIF
NC34SDG004	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1800			-13	%DIF
NC34SDG004	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1840			-11.1	%DIF
NC34SDG004	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1870			-9.62	%DIF
NC34SDG004	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1820			-10.6	%DIF
NC34SDG004	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC34SDG004	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1950			-4.18	%DIF
NC34SDG004	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1710			-16.2	%DIF
NC34SDG004	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1720			-15.8	%DIF
NC34SDG004	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1860			-8.91	%DIF
NC34SDG004	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG004	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1690			-18.1	%DIF
NC34SDG004	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1860			-9.88	%DIF
NC34SDG004	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1920			-6.98	%DIF
NC34SDG004	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG004	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1750			-15.7	%DIF
NC34SDG004	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1770			-14.7	%DIF
NC34SDG004	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1790			-13.8	%DIF
NC34SDG004	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1660			-19.4	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG004	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1750			-15	%DIF
NC34SDG004	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1840			-10.6	%DIF
NC34SDG004	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1760			-13.2	%DIF
NC34SDG004	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1940			-4.29	%DIF
NC34SDG004	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1990			-1.82	%DIF
NC34SDG004	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1680			-17.6	%DIF
NC34SDG004	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1720			-15.7	%DIF
NC34SDG004	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1760			-13.7	%DIF
NC34SDG004	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG004	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG004	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG004	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG004	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1770			-13.4	%DIF
NC34SDG004	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1970			-3.67	%DIF
NC34SDG004	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2020			-1.22	%DIF
NC34SDG004	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1700			-17.5	%DIF
NC34SDG004	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1730			-16	%DIF
NC34SDG004	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1770			-14.1	%DIF
NC34SDG004	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG004	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG004	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1810			-11.6	%DIF
NC34SDG004	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1840			-10.1	%DIF
NC34SDG004	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1870			-8.65	%DIF
NC34SDG004	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG004	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1690			-17.6	%DIF
NC34SDG004	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1770			-13.7	%DIF
NC34SDG004	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1870			-8.87	%DIF
NC34SDG004	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1660			-17	%DIF
NC34SDG004	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1680			-16	%DIF
NC34SDG004	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1720			-14	%DIF
NC34SDG004	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1740			-15.6	%DIF
NC34SDG004	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1800			-12.7	%DIF
NC34SDG004	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1860			-9.8	%DIF
NC34SDG005	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1920			-10.3	%DIF
NC34SDG005	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2030			-5.14	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG005	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2080			-2.8	%DIF
NC34SDG005	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1850			-10.1	%DIF
NC34SDG005	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1960			-4.76	%DIF
NC34SDG005	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2080			1.07	%DIF
NC34SDG005	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG005	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1930			0	
NC34SDG005	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1960			0	
NC34SDG005	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1880			-8.47	%DIF
NC34SDG005	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2030			-1.17	%DIF
NC34SDG005	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2050			-0.195	%DIF
NC34SDG005	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG005	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1820			-11.9	%DIF
NC34SDG005	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1950			-5.66	%DIF
NC34SDG005	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2020			-2.27	%DIF
NC34SDG005	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1890			-7.85	%DIF
NC34SDG005	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1910			-6.87	%DIF
NC34SDG005	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2030			-1.02	%DIF
NC34SDG005	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1810			-13.7	%DIF
NC34SDG005	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1960			-6.53	%DIF
NC34SDG005	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2020			-3.67	%DIF
NC34SDG005	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1790			-13.5	%DIF
NC34SDG005	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1870			-9.62	%DIF
NC34SDG005	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2010			-2.85	%DIF
NC34SDG005	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1820			-10.6	%DIF
NC34SDG005	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1850			-9.09	%DIF
NC34SDG005	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1950			-4.18	%DIF
NC34SDG005	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1720			-15.8	%DIF
NC34SDG005	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1810			-11.4	%DIF
NC34SDG005	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1930			-5.48	%DIF
NC34SDG005	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG005	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1840			-10.8	%DIF
NC34SDG005	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1860			-9.88	%DIF
NC34SDG005	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2040			-1.16	%DIF
NC34SDG005	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG005	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1710			-17.6	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG005	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1790			-13.8	%DIF
NC34SDG005	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1950			-6.07	%DIF
NC34SDG005	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1730			-16	%DIF
NC34SDG005	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1820			-11.6	%DIF
NC34SDG005	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1840			-10.6	%DIF
NC34SDG005	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1920			-5.28	%DIF
NC34SDG005	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1990			-1.82	%DIF
NC34SDG005	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1720			-15.7	%DIF
NC34SDG005	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1740			-14.7	%DIF
NC34SDG005	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1820			-10.8	%DIF
NC34SDG005	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG005	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG005	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG005	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG005	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1660			-18.8	%DIF
NC34SDG005	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2000			-2.2	%DIF
NC34SDG005	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2020			-1.22	%DIF
NC34SDG005	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1730			-16	%DIF
NC34SDG005	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1820			-11.6	%DIF
NC34SDG005	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1940			-5.82	%DIF
NC34SDG005	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG005	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG005	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1700			-17	%DIF
NC34SDG005	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1840			-10.1	%DIF
NC34SDG005	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1890			-7.67	%DIF
NC34SDG005	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG005	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1660			-19.1	%DIF
NC34SDG005	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1770			-13.7	%DIF
NC34SDG005	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1890			-7.89	%DIF
NC34SDG005	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1680			-16	%DIF
NC34SDG005	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1720			-14	%DIF
NC34SDG005	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1850			-7.55	%DIF
NC34SDG005	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1790			-13.2	%DIF
NC34SDG005	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1800			-12.7	%DIF
NC34SDG005	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1830			-11.2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG006	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1940			-9.34	%DIF
NC34SDG006	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2020			-5.61	%DIF
NC34SDG006	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2200			2.8	%DIF
NC34SDG006	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1960			-4.76	%DIF
NC34SDG006	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2050			-0.389	%DIF
NC34SDG006	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
NC34SDG006	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1990			0	
NC34SDG006	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2060			0	
NC34SDG006	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2150			0	
NC34SDG006	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2020			-1.66	%DIF
NC34SDG006	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2090			1.75	%DIF
NC34SDG006	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2150			4.67	%DIF
NC34SDG006	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG006	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1960			-5.18	%DIF
NC34SDG006	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2020			-2.27	%DIF
NC34SDG006	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2060			-0.339	%DIF
NC34SDG006	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1840			-10.3	%DIF
NC34SDG006	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1970			-3.95	%DIF
NC34SDG006	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2040			-0.536	%DIF
NC34SDG006	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1940			-7.49	%DIF
NC34SDG006	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2050			-2.24	%DIF
NC34SDG006	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1850			-10.6	%DIF
NC34SDG006	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1980			-4.3	%DIF
NC34SDG006	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2060			-0.435	%DIF
NC34SDG006	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1840			-9.58	%DIF
NC34SDG006	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1990			-2.21	%DIF
NC34SDG006	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2000			-1.72	%DIF
NC34SDG006	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1850			-9.4	%DIF
NC34SDG006	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1960			-4.02	%DIF
NC34SDG006	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2080			1.86	%DIF
NC34SDG006	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG006	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1880			-8.91	%DIF
NC34SDG006	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2030			-1.65	%DIF
NC34SDG006	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2120			2.71	%DIF
NC34SDG006	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG006	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1750			-15.7	%DIF
NC34SDG006	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1890			-8.96	%DIF
NC34SDG006	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2050			-1.25	%DIF
NC34SDG006	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1740			-15.5	%DIF
NC34SDG006	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2040			-0.923	%DIF
NC34SDG006	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2050			-0.437	%DIF
NC34SDG006	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1760			-13.2	%DIF
NC34SDG006	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1860			-8.24	%DIF
NC34SDG006	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.26	%DIF
NC34SDG006	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1820			-10.8	%DIF
NC34SDG006	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1970			-3.43	%DIF
NC34SDG006	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	2040			0	%DIF
NC34SDG006	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG006	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG006	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG006	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG006	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1660			-18.8	%DIF
NC34SDG006	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1950			-4.64	%DIF
NC34SDG006	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2050			0.244	%DIF
NC34SDG006	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1780			-13.6	%DIF
NC34SDG006	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1950			-5.34	%DIF
NC34SDG006	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	2100			1.94	%DIF
NC34SDG006	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG006	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG006	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1900			-7.18	%DIF
NC34SDG006	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1990			-2.78	%DIF
NC34SDG006	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2090			2.1	%DIF
NC34SDG006	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG006	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1680			-18.1	%DIF
NC34SDG006	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1880			-8.38	%DIF
NC34SDG006	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1910			-6.92	%DIF
NC34SDG006	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1720			-14	%DIF
NC34SDG006	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1790			-10.5	%DIF
NC34SDG006	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1980			-1.05	%DIF
NC34SDG006	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1770			-14.2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG006	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1900			-7.86	%DIF
NC34SDG006	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2100			1.84	%DIF
NC34SDG007	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	1990			-7.01	%DIF
NC34SDG007	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	1920			-6.7	%DIF
NC34SDG007	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1950			0	
NC34SDG007	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2110			2.73	%DIF
NC34SDG007	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG007	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1950			-5.66	%DIF
NC34SDG007	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2000			-2.49	%DIF
NC34SDG007	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1910			-8.92	%DIF
NC34SDG007	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1810			-12.5	%DIF
NC34SDG007	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1970			-3.19	%DIF
NC34SDG007	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1780			-12.8	%DIF
NC34SDG007	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG007	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1930			-6.49	%DIF
NC34SDG007	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG007	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1880			-9.44	%DIF
NC34SDG007	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1900			-7.72	%DIF
NC34SDG007	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	2100			3.6	%DIF
NC34SDG007	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1880			-7.84	%DIF
NC34SDG007	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG007	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG007	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG007	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG007	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1980			-3.18	%DIF
NC34SDG007	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1720			-16.5	%DIF
NC34SDG007	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG007	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG007	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1960			-4.25	%DIF
NC34SDG007	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG007	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1880			-8.38	%DIF
NC34SDG007	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1790			-10.5	%DIF
NC34SDG007	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1750			-15.1	%DIF
NC34SDG008	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2020			-5.61	%DIF
NC34SDG008	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2070			-3.27	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG008	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2030			-1.36	%DIF
NC34SDG008	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2050			-0.389	%DIF
NC34SDG008	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1950			0	
NC34SDG008	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2150			0	
NC34SDG008	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	1970			-4.09	%DIF
NC34SDG008	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2020			-1.66	%DIF
NC34SDG008	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG008	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1960			-5.18	%DIF
NC34SDG008	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2020			-2.27	%DIF
NC34SDG008	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1900			-7.36	%DIF
NC34SDG008	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1970			-3.95	%DIF
NC34SDG008	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1950			-7.01	%DIF
NC34SDG008	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2050			-2.24	%DIF
NC34SDG008	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1830			-11.6	%DIF
NC34SDG008	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2060			-0.435	%DIF
NC34SDG008	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1900			-6.63	%DIF
NC34SDG008	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2000			-1.72	%DIF
NC34SDG008	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1940			-5	%DIF
NC34SDG008	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1960			-4.02	%DIF
NC34SDG008	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG008	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2030			-1.65	%DIF
NC34SDG008	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2040			-1.16	%DIF
NC34SDG008	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG008	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1890			-8.96	%DIF
NC34SDG008	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1940			-6.55	%DIF
NC34SDG008	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1850			-10.2	%DIF
NC34SDG008	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2050			-0.437	%DIF
NC34SDG008	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1820			-10.2	%DIF
NC34SDG008	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1860			-8.24	%DIF
NC34SDG008	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1930			-5.39	%DIF
NC34SDG008	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1970			-3.43	%DIF
NC34SDG008	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG008	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG008	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG008	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG008	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1840			-10	%DIF
NC34SDG008	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1950			-4.64	%DIF
NC34SDG008	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1860			-9.71	%DIF
NC34SDG008	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1950			-5.34	%DIF
NC34SDG008	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG008	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG008	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1900			-7.18	%DIF
NC34SDG008	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1990			-2.78	%DIF
NC34SDG008	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG008	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1900			-7.41	%DIF
NC34SDG008	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1910			-6.92	%DIF
NC34SDG008	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1790			-10.5	%DIF
NC34SDG008	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1880			-8.83	%DIF
NC34SDG008	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1900			-7.86	%DIF
NC34SDG009	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2220			3.74	%DIF
NC34SDG009	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2310			7.94	%DIF
NC34SDG009	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2150			4.47	%DIF
NC34SDG009	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2290			11.3	%DIF
NC34SDG009	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG009	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2130			0	
NC34SDG009	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2110			2.73	%DIF
NC34SDG009	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2200			7.11	%DIF
NC34SDG009	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG009	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2150			4.02	%DIF
NC34SDG009	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2200			6.43	%DIF
NC34SDG009	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1910			-6.87	%DIF
NC34SDG009	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2080			1.41	%DIF
NC34SDG009	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1940			-7.49	%DIF
NC34SDG009	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2100			0.143	%DIF
NC34SDG009	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1980			-4.3	%DIF
NC34SDG009	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2030			-1.88	%DIF
NC34SDG009	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1990			-2.21	%DIF
NC34SDG009	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2100			3.19	%DIF
NC34SDG009	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1900			-6.95	%DIF
NC34SDG009	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2120			3.82	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG009	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG009	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2100			1.74	%DIF
NC34SDG009	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2120			2.71	%DIF
NC34SDG009	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG009	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1940			-6.55	%DIF
NC34SDG009	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2060			-0.771	%DIF
NC34SDG009	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2000			-2.86	%DIF
NC34SDG009	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2020			-1.89	%DIF
NC34SDG009	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1860			-8.24	%DIF
NC34SDG009	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	2040			0.641	%DIF
NC34SDG009	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1840			-9.8	%DIF
NC34SDG009	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1980			-2.94	%DIF
NC34SDG009	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG009	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG009	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG009	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG009	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1820			-11	%DIF
NC34SDG009	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1850			-9.54	%DIF
NC34SDG009	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1960			-4.85	%DIF
NC34SDG009	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	2090			1.46	%DIF
NC34SDG009	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG009	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG009	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1840			-10.1	%DIF
NC34SDG009	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2210			7.96	%DIF
NC34SDG009	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG009	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1850			-9.84	%DIF
NC34SDG009	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1940			-5.46	%DIF
NC34SDG009	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1760			-12	%DIF
NC34SDG009	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1820			-9.04	%DIF
NC34SDG009	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1930			-6.4	%DIF
NC34SDG009	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2070			0.388	%DIF
NC34SDG010	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2070			-3.27	%DIF
NC34SDG010	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2140			0	%DIF
NC34SDG010	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2070			0.583	%DIF
NC34SDG010	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG010	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2130			3.7	%DIF
NC34SDG010	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG010	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	1940			-6.14	%DIF
NC34SDG010	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2040			-1.31	%DIF
NC34SDG010	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2030			-1.02	%DIF
NC34SDG010	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2120			3.36	%DIF
NC34SDG010	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1850			-11.8	%DIF
NC34SDG010	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1870			-10.8	%DIF
NC34SDG010	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1890			-8.65	%DIF
NC34SDG010	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1960			-3.68	%DIF
NC34SDG010	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2060			1.23	%DIF
NC34SDG010	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1900			-6.95	%DIF
NC34SDG010	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2100			2.84	%DIF
NC34SDG010	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG010	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1990			-3.58	%DIF
NC34SDG010	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2060			-0.194	%DIF
NC34SDG010	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG010	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1840			-11.4	%DIF
NC34SDG010	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1910			-8	%DIF
NC34SDG010	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1880			-8.69	%DIF
NC34SDG010	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1940			-5.78	%DIF
NC34SDG010	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1770			-12.7	%DIF
NC34SDG010	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1850			-8.73	%DIF
NC34SDG010	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1830			-10.3	%DIF
NC34SDG010	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1990			-2.45	%DIF
NC34SDG010	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG010	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG010	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG010	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG010	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1770			-13.4	%DIF
NC34SDG010	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1830			-10.5	%DIF
NC34SDG010	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1850			-10.2	%DIF
NC34SDG010	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1920			-6.8	%DIF
NC34SDG010	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG010	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG010	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1950			-4.74	%DIF
NC34SDG010	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1970			-3.76	%DIF
NC34SDG010	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG010	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1790			-12.8	%DIF
NC34SDG010	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	2100			2.34	%DIF
NC34SDG010	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1730			-13.5	%DIF
NC34SDG010	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1780			-11	%DIF
NC34SDG010	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1730			-16.1	%DIF
NC34SDG010	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1860			-9.8	%DIF
NC34SDG011	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2140			0	%DIF
NC34SDG011	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2200			6.9	%DIF
NC34SDG011	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2050			0	
NC34SDG011	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2090			1.75	%DIF
NC34SDG011	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG011	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2020			-2.27	%DIF
NC34SDG011	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1900			-7.36	%DIF
NC34SDG011	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2140			2.05	%DIF
NC34SDG011	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1930			-6.72	%DIF
NC34SDG011	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1960			-3.68	%DIF
NC34SDG011	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1910			-6.46	%DIF
NC34SDG011	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG011	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2170			5.14	%DIF
NC34SDG011	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG011	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1920			-7.51	%DIF
NC34SDG011	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1980			-3.84	%DIF
NC34SDG011	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1880			-7.25	%DIF
NC34SDG011	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1860			-8.82	%DIF
NC34SDG011	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG011	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG011	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG011	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG011	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1790			-12.5	%DIF
NC34SDG011	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1910			-7.28	%DIF
NC34SDG011	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG011	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG011	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1960			-4.25	%DIF
NC34SDG011	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG011	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1900			-7.41	%DIF
NC34SDG011	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1730			-13.5	%DIF
NC34SDG011	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1830			-11.2	%DIF
NC34SDG012	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2040			-4.67	%DIF
NC34SDG012	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2210			3.27	%DIF
NC34SDG012	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2020			-1.85	%DIF
NC34SDG012	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2230			8.36	%DIF
NC34SDG012	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	1920			0	
NC34SDG012	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2230			0	
NC34SDG012	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2030			-1.17	%DIF
NC34SDG012	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2180			6.13	%DIF
NC34SDG012	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG012	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2020			-2.27	%DIF
NC34SDG012	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2030			-1.79	%DIF
NC34SDG012	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1940			-5.41	%DIF
NC34SDG012	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2040			-0.536	%DIF
NC34SDG012	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1900			-9.39	%DIF
NC34SDG012	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2080			-0.811	%DIF
NC34SDG012	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1850			-10.6	%DIF
NC34SDG012	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1890			-8.65	%DIF
NC34SDG012	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1880			-7.62	%DIF
NC34SDG012	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2030			-0.246	%DIF
NC34SDG012	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1920			-5.97	%DIF
NC34SDG012	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2020			-1.08	%DIF
NC34SDG012	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG012	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1920			-6.98	%DIF
NC34SDG012	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1950			-5.52	%DIF
NC34SDG012	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG012	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1790			-13.8	%DIF
NC34SDG012	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1820			-12.3	%DIF
NC34SDG012	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1900			-7.72	%DIF
NC34SDG012	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1950			-5.29	%DIF
NC34SDG012	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1820			-10.2	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG012	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1900			-6.26	%DIF
NC34SDG012	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1820			-10.8	%DIF
NC34SDG012	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1930			-5.39	%DIF
NC34SDG012	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG012	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG012	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG012	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG012	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1830			-10.5	%DIF
NC34SDG012	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1860			-9.05	%DIF
NC34SDG012	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1860			-9.71	%DIF
NC34SDG012	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1920			-6.8	%DIF
NC34SDG012	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG012	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG012	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1800			-12.1	%DIF
NC34SDG012	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2160			5.52	%DIF
NC34SDG012	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG012	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1850			-9.84	%DIF
NC34SDG012	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1830			-8.54	%DIF
NC34SDG012	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1920			-4.05	%DIF
NC34SDG012	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1820			-11.7	%DIF
NC34SDG012	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	2130			3.3	%DIF
NC34SDG013	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2250			5.14	%DIF
NC34SDG013	0.05	mL	8 - 2,4'-Dichlorobiphenyl	100	8.4	ug/L	2390			11.7	%DIF
NC34SDG013	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2140			3.98	%DIF
NC34SDG013	0.05	mL	18 - 2,2',5-Trichlorobiphenyl	100	13	ug/L	2450			19	%DIF
NC34SDG013	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2080			0	
NC34SDG013	0.05	mL	28 - 2,4,4'-Trichlorobiphenyl	100	10	ug/L	2590			0	
NC34SDG013	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2080			1.26	%DIF
NC34SDG013	0.05	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ug/L	2230			8.57	%DIF
NC34SDG013	0.05	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG013	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2050			-0.822	%DIF
NC34SDG013	0.05	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	100	5.9	ug/L	2210			6.92	%DIF
NC34SDG013	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	1860			-9.31	%DIF
NC34SDG013	0.05	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ug/L	2230			8.73	%DIF
NC34SDG013	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	1950			-7.01	%DIF

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier	Result Comment	QC Result	QC Units
NC34SDG013	0.05	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ug/L	2190			4.43	%DIF
NC34SDG013	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	1910			-7.68	%DIF
NC34SDG013	0.05	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ug/L	2000			-3.33	%DIF
NC34SDG013	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	1940			-4.67	%DIF
NC34SDG013	0.05	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ug/L	2120			4.18	%DIF
NC34SDG013	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	1830			-10.4	%DIF
NC34SDG013	0.05	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ug/L	2070			1.37	%DIF
NC34SDG013	0.05	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG013	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1770			-14.2	%DIF
NC34SDG013	0.05	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2160			4.65	%DIF
NC34SDG013	0.05	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ug/L	0	ND		0	
NC34SDG013	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	1680			-19.1	%DIF
NC34SDG013	0.05	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ug/L	2230			7.42	%DIF
NC34SDG013	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	1840			-10.6	%DIF
NC34SDG013	0.05	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ug/L	2190			6.36	%DIF
NC34SDG013	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1670			-17.6	%DIF
NC34SDG013	0.05	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ug/L	1950			-3.8	%DIF
NC34SDG013	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1790			-12.2	%DIF
NC34SDG013	0.05	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	5.4	ug/L	1870			-8.33	%DIF
NC34SDG013	0.05	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG013	0.05	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG013	0.05	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ug/L	0	ND		0	
NC34SDG013	0.05	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ug/L	0	ND		0	
NC34SDG013	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	1710			-16.4	%DIF
NC34SDG013	0.05	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	13	ug/L	2090			2.2	%DIF
NC34SDG013	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	1760			-14.6	%DIF
NC34SDG013	0.05	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	13	ug/L	2020			-1.94	%DIF
NC34SDG013	0.05	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ug/L	0	ND		0	
NC34SDG013	0.05	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ug/L	0	ND		0	
NC34SDG013	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	1920			-6.2	%DIF
NC34SDG013	0.05	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	13	ug/L	2240			9.43	%DIF
NC34SDG013	0.05	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ug/L	0	ND		0	
NC34SDG013	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1770			-13.7	%DIF
NC34SDG013	0.05	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ug/L	1940			-5.46	%DIF
NC34SDG013	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1650			-17.5	%DIF

Sample Delivery	Sample	Size	Analyte	Min Reporting	Min Detection	Units	Raw	Qualifier	Result	QC Result	QC Units
Group	Size	Units		Limit	Limit		result		Comment		
NC34SDG013	0.05	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ug/L	1930			-3.55	%DIF
NC34SDG013	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1790			-13.2	%DIF
NC34SDG013	0.05	mL	209 - Decachlorobiphenyl	100	11	ug/L	1990			-3.49	%DIF

Analytical Procedural Blank (PB) Data

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND
CSC81SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
CSC81SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
CSC81SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
CSC81SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND
CSC81SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
CSC81SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
CSC81SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
CSC81SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
CSC81SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
CSC81SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
CSC81SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
CSC81SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND
CSC81SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
CSC81SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
CSC81SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND
CSC81SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
CSC81SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
CSC81SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
CSC81SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
CSC81SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
CSC81SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
CSC81SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
CSC81SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
CSC81SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
CSC81SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
CSC81SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
CSC81SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
CSC81SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
CSC81SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
CSC81SDG001	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
CSC81SDG002	1		8 - 2,4'-Dichlorobiphenyl	100	7.4	ng	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG002	1		18 - 2,2',5-Trichlorobiphenyl	100	8.6	ng	0	ND
CSC81SDG002	1		28 - 2,4,4'-Trichlorobiphenyl	100	9.1	ng	0	ND
CSC81SDG002	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	100	7.4	ng	0	ND
CSC81SDG002	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	100	9.4	ng	0	ND
CSC81SDG002	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	100	11	ng	0	ND
CSC81SDG002	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	100	14	ng	0	ND
CSC81SDG002	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	8.1	ng	0	ND
CSC81SDG002	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	13	ng	0	ND
CSC81SDG002	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	100	29	ng	0	ND
CSC81SDG002	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	14	ng	0	ND
CSC81SDG002	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	19	ng	0	ND
CSC81SDG002	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	100	15	ng	0	ND
CSC81SDG002	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	100	9	ng	0	ND
CSC81SDG002	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	100	19	ng	0	ND
CSC81SDG002	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	100	8.6	ng	0	ND
CSC81SDG002	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	20	ng	0	ND
CSC81SDG002	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	13	ng	0	ND
CSC81SDG002	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	22	ng	0	ND
CSC81SDG002	1		209 - Decachlorobiphenyl	100	15	ng	0	ND
CSC81SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND
CSC81SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
CSC81SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
CSC81SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
CSC81SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
CSC81SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
CSC81SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
CSC81SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
CSC81SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
CSC81SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
CSC81SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
CSC81SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND
CSC81SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
CSC81SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
CSC81SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND
CSC81SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
CSC81SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
CSC81SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
CSC81SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
CSC81SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
CSC81SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
CSC81SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
CSC81SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
CSC81SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
CSC81SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
CSC81SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
CSC81SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
CSC81SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
CSC81SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
CSC81SDG004	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
CSC81SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
CSC81SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
CSC81SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
CSC81SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
CSC81SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
CSC81SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
CSC81SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
CSC81SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
CSC81SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
CSC81SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
CSC81SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
CSC81SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
CSC81SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
CSC81SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
CSC81SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
CSC81SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
CSC81SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
CSC81SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
CSC81SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
CSC81SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
CSC81SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
CSC81SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
CSC81SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
CSC81SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
CSC81SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
CSC81SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
CSC81SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG006	1	L	209 - Decachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG007	0.05	L	8 - 2,4'-Dichlorobiphenyl	100	8.4	ng/L	0	ND
CSC81SDG007	1		8 - 2,4'-Dichlorobiphenyl	10	2.4	ng	0	ND
CSC81SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
CSC81SDG007	0.05	L	18 - 2,2',5-Trichlorobiphenyl	100	13	ng/L	0	ND
CSC81SDG007	1		18 - 2,2',5-Trichlorobiphenyl	10	2.9	ng	0	ND
CSC81SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG007	0.05	L	28 - 2,4,4'-Trichlorobiphenyl	200	10	ng/L	0	ND
CSC81SDG007	1		28 - 2,4,4'-Trichlorobiphenyl	20	3	ng	0	ND
CSC81SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0.53	ng/L	0	ND
CSC81SDG007	0.05	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	100	13	ng/L	0	ND
CSC81SDG007	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	10	2.5	ng	0	ND
CSC81SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
CSC81SDG007	0.05	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	100	15	ng/L	0	ND
CSC81SDG007	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
CSC81SDG007	0.05	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	200	5.9	ng/L	0	ND
CSC81SDG007	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	20	3.2	ng	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.29	ng/L	0	ND
CSC81SDG007	0.05	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	100	13	ng/L	0	ND
CSC81SDG007	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	10	3.6	ng	0	ND
CSC81SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG007	0.05	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	100	11	ng/L	0	ND
CSC81SDG007	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	10	4.6	ng	0	ND
CSC81SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
CSC81SDG007	0.05	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	100	15	ng/L	0	ND
CSC81SDG007	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
CSC81SDG007	0.05	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	100	7.2	ng/L	0	ND
CSC81SDG007	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	2.7	ng	0	ND
CSC81SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
CSC81SDG007	0.05	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	100	8.1	ng/L	0	ND
CSC81SDG007	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	4.4	ng	0	ND
CSC81SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
CSC81SDG007	0.05	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	100	14	ng/L	0	ND
CSC81SDG007	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
CSC81SDG007	0.05	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	100	13	ng/L	0	ND
CSC81SDG007	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
CSC81SDG007	0.05	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	100	15	ng/L	0	ND
CSC81SDG007	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
CSC81SDG007	0.05	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	100	13	ng/L	0	ND
CSC81SDG007	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	10	9.7	ng	0	ND
CSC81SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
CSC81SDG007	0.05	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	100	5	ng/L	0	ND
CSC81SDG007	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	4.7	ng	0	ND
CSC81SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
CSC81SDG007	0.05	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	100	11	ng/L	0	ND
CSC81SDG007	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	6.5	ng	0	ND
CSC81SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
CSC81SDG007	0.05	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	300	5.4	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG007	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	5	ng	0	ND
CSC81SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0.27	ng/L	0	ND
CSC81SDG007	0.05	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	100	12	ng/L	0	ND
CSC81SDG007	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
CSC81SDG007	0.05	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	200	12	ng/L	0	ND
CSC81SDG007	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	6.7	ng	0	ND
CSC81SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0.61	ng/L	0	ND
CSC81SDG007	0.05	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	100	13	ng/L	0	ND
CSC81SDG007	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG007	0.05	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	100	12	ng/L	0	ND
CSC81SDG007	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
CSC81SDG007	0.05	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	200	13	ng/L	0	ND
CSC81SDG007	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	3	ng	0	ND
CSC81SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.64	ng/L	0	ND
CSC81SDG007	0.05	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	200	13	ng/L	0	ND
CSC81SDG007	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	6.5	ng	0	ND
CSC81SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0.65	ng/L	0	ND
CSC81SDG007	0.05	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	100	7.4	ng/L	0	ND
CSC81SDG007	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
CSC81SDG007	0.05	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	100	10	ng/L	0	ND
CSC81SDG007	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
CSC81SDG007	0.05	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	200	13	ng/L	0	ND
CSC81SDG007	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	2.8	ng	0	ND
CSC81SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.65	ng/L	0	ND
CSC81SDG007	0.05	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	100	14	ng/L	0	ND
CSC81SDG007	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	6.7	ng	0	ND
CSC81SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
CSC81SDG007	0.05	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	100	12	ng/L	0	ND
CSC81SDG007	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	4.4	ng	0	ND
CSC81SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG007	0.05	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	100	4.5	ng/L	0	ND
CSC81SDG007	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	7.4	ng	0	ND
CSC81SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
CSC81SDG007	0.05	L	209 - Decachlorobiphenyl	100	11	ng/L	0	ND
CSC81SDG007	1		209 - Decachlorobiphenyl	10	5.1	ng	0	ND
CSC81SDG007	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
CSC81SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0	ng/L	0	ND
CSC81SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG008	1	L	209 - Decachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
CSC81SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0.53	ng/L	0	ND
CSC81SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
CSC81SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
CSC81SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.29	ng/L	0	ND
CSC81SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
CSC81SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
CSC81SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
CSC81SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
CSC81SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
CSC81SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
CSC81SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
CSC81SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
CSC81SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
CSC81SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
CSC81SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0.27	ng/L	0	ND
CSC81SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
CSC81SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0.61	ng/L	0	ND
CSC81SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
CSC81SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
CSC81SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.64	ng/L	0	ND
CSC81SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0.65	ng/L	0	ND
CSC81SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
CSC81SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
CSC81SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.65	ng/L	0	ND
CSC81SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
CSC81SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
CSC81SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
CSC81SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
CSC81SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	15	0	ng/L	0	ND
CSC81SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG010	1	L	209 - Decachlorobiphenyl	5	0	ng/L	0	ND
CSC81SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.42	ng/L	0	ND
CSC81SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0.64	ng/L	0	ND
CSC81SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0.53	ng/L	0	ND
CSC81SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.67	ng/L	0	ND
CSC81SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0.75	ng/L	0	ND
CSC81SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0.29	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0.64	ng/L	0	ND
CSC81SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0.56	ng/L	0	ND
CSC81SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0.77	ng/L	0	ND
CSC81SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.36	ng/L	0	ND
CSC81SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.41	ng/L	0	ND
CSC81SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0.68	ng/L	0	ND
CSC81SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0.66	ng/L	0	ND
CSC81SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	10	0.77	ng/L	0	ND
CSC81SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0.67	ng/L	0	ND
CSC81SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.25	ng/L	0	ND
CSC81SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	0.55	ng/L	0	ND
CSC81SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0.27	ng/L	0	ND
CSC81SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0.62	ng/L	0	ND
CSC81SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0.61	ng/L	0	ND
CSC81SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0.64	ng/L	0	ND
CSC81SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0.59	ng/L	0	ND
CSC81SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0.64	ng/L	0	ND
CSC81SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0.65	ng/L	0	ND
CSC81SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.37	ng/L	0	ND
CSC81SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0.5	ng/L	0	ND
CSC81SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0.65	ng/L	0	ND
CSC81SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0.71	ng/L	0	ND
CSC81SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0.58	ng/L	0	ND
CSC81SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.23	ng/L	0	ND
CSC81SDG011	1	L	209 - Decachlorobiphenyl	10	0.57	ng/L	0	ND
CSC81SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	10	0.42	ng/L	0	ND
CSC81SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0.64	ng/L	0	ND
CSC81SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0.53	ng/L	0	ND
CSC81SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.67	ng/L	0	ND
CSC81SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0.75	ng/L	0	ND
CSC81SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0.29	ng/L	0	ND
CSC81SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0.64	ng/L	0	ND
CSC81SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0.56	ng/L	0	ND
CSC81SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0.77	ng/L	0	ND
CSC81SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.36	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0.41	ng/L	0	ND
CSC81SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0.68	ng/L	0	ND
CSC81SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0.66	ng/L	0	ND
CSC81SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	20	0.77	ng/L	0	ND
CSC81SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0.67	ng/L	0	ND
CSC81SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0.25	ng/L	0	ND
CSC81SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	20	0.55	ng/L	0	ND
CSC81SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0.27	ng/L	0	ND
CSC81SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0.62	ng/L	0	ND
CSC81SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0.61	ng/L	0	ND
CSC81SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0.64	ng/L	0	ND
CSC81SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0.59	ng/L	0	ND
CSC81SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0.64	ng/L	0	ND
CSC81SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0.65	ng/L	0	ND
CSC81SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0.37	ng/L	0	ND
CSC81SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0.5	ng/L	0	ND
CSC81SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0.65	ng/L	0	ND
CSC81SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0.71	ng/L	0	ND
CSC81SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0.58	ng/L	0	ND
CSC81SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0.23	ng/L	0	ND
CSC81SDG012	1	L	209 - Decachlorobiphenyl	10	0.57	ng/L	0	ND
CSC81SDG013	1		8 - 2,4'-Dichlorobiphenyl	20	0.74	ng	0	ND
CSC81SDG013	1		18 - 2,2',5-Trichlorobiphenyl	20	0.86	ng	0	ND
CSC81SDG013	1		28 - 2,4,4'-Trichlorobiphenyl	40	0.91	ng	0	ND
CSC81SDG013	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	20	0.74	ng	0	ND
CSC81SDG013	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	40	0.95	ng	0	ND
CSC81SDG013	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	20	1.1	ng	0	ND
CSC81SDG013	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	20	1.4	ng	0	ND
CSC81SDG013	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	20	0.81	ng	0	ND
CSC81SDG013	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	20	1.3	ng	0	ND
CSC81SDG013	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	40	2	ng	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG013	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	20	2.9	ng	0	ND
CSC81SDG013	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	20	1.4	ng	0	ND
CSC81SDG013	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	40	1.9	ng	0	ND
CSC81SDG013	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	60	1.5	ng	0	ND
CSC81SDG013	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	40	2	ng	0	ND
CSC81SDG013	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	40	0.9	ng	0	ND
CSC81SDG013	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	40	1.9	ng	0	ND
CSC81SDG013	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	40	0.86	ng	0	ND
CSC81SDG013	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	20	2	ng	0	ND
CSC81SDG013	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	20	1.3	ng	0	ND
CSC81SDG013	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	20	2.2	ng	0	ND
CSC81SDG013	1		209 - Decachlorobiphenyl	20	1.5	ng	0	ND
CSC81SDG014	1	L	8 - 2,4'-Dichlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	18 - 2,2',5-Trichlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	28 - 2,4,4'-Trichlorobiphenyl	20	0	ng/L	0	ND
CSC81SDG014	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	20	0	ng/L	0	ND
CSC81SDG014	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	20	0	ng/L	0	ND
CSC81SDG014	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	20	0	ng/L	0	ND
CSC81SDG014	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	30	0	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
CSC81SDG014	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	20	0	ng/L	0	ND
CSC81SDG014	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	20	0	ng/L	0	ND
CSC81SDG014	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	20	0	ng/L	0	ND
CSC81SDG014	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	20	0	ng/L	0	ND
CSC81SDG014	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	0	ng/L	0	ND
CSC81SDG014	1	L	209 - Decachlorobiphenyl	10	0	ng/L	0	ND
NC22SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG001	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG002	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG003	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0.67	J
NC22SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG004	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0.28	J

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0.6	J
NC22SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG005	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG006	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG007	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG008	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG009	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG010	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG011	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG012	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG013	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG014	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG014	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG014	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG014	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG014	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG014	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG014	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG014	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG014	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG014	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG014	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG014	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG014	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG014	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG014	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG014	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG014	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG014	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG014	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG014	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG014	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG014	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG014	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG014	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG014	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG014	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG014	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG014	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG014	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG014	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG014	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG015	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG015	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG015	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG015	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG015	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG015	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG015	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG015	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG015	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG015	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG015	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG015	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG015	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG015	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG015	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG015	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG015	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG015	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG015	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG015	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG015	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG015	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG015	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG015	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG015	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG015	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG015	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG015	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG015	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG015	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG015	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG016	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG016	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG016	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG016	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG016	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG016	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG016	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG016	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG016	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG016	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG016	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG016	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG016	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG016	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG016	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG016	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG016	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG016	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG016	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG016	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG016	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG016	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG016	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG016	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG016	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG016	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG016	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG016	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG016	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG016	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG016	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG017	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG017	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG017	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG017	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG017	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG017	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG017	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG017	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG017	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG017	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG017	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG017	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG017	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG017	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG017	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG017	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG017	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG017	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG017	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG017	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG017	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG017	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG017	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG017	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG017	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG017	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG017	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG017	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG017	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG017	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG017	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG018	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG018	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG018	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG018	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG018	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG018	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG018	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG018	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG018	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG018	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG018	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG018	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG018	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG018	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG018	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG018	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG018	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG018	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG018	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG018	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG018	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG018	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG018	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG018	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG018	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG018	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG018	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG018	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG018	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG018	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG018	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG019	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG019	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG019	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG019	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG019	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG019	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG019	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG019	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG019	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG019	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG019	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG019	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG019	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG019	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG019	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG019	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG019	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG019	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG019	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG019	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG019	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG019	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG019	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG019	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG019	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG019	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG019	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG019	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG019	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG019	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG019	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG020	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	0	ND
NC22SDG020	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	0	ND
NC22SDG020	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND
NC22SDG020	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	0	ND
NC22SDG020	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	0	ND
NC22SDG020	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND
NC22SDG020	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	0	ND
NC22SDG020	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND
NC22SDG020	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND
NC22SDG020	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND
NC22SDG020	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	0	ND
NC22SDG020	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND
NC22SDG020	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	0	ND
NC22SDG020	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND
NC22SDG020	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND
NC22SDG020	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND
NC22SDG020	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND
NC22SDG020	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND
NC22SDG020	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG020	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG020	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND
NC22SDG020	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	0	ND
NC22SDG020	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	0	ND
NC22SDG021	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG021	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG021	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG021	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG021	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG021	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG021	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG021	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG021	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG021	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG021	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG021	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG021	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG021	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG021	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG021	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG021	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG021	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG021	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG021	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG021	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG021	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG021	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG021	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG021	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG021	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG021	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG021	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG021	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG021	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG021	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG022	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG022	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG022	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG022	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG022	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG022	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG022	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG022	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG022	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG022	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG022	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG022	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG022	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG022	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG022	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG022	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG022	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG022	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG022	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG022	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG022	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG022	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG022	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG022	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG022	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG022	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG022	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG022	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG022	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG022	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG022	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG023	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG023	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG023	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG023	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG023	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG023	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG023	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG023	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG023	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG023	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG023	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG023	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG023	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG023	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG023	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG023	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG023	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG023	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG023	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG023	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG023	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG023	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG023	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG023	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG023	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG023	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG023	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG023	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG023	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG023	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG023	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG024	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0.33	J
NC22SDG024	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG024	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG024	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG024	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG024	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG024	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG024	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG024	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG024	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG024	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG024	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG024	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG024	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG024	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG024	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG024	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG024	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG024	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG024	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG024	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG024	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG024	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG024	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG024	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG024	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG024	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG024	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG024	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG024	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG024	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG025	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG025	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG025	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC22SDG025	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG025	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG025	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG025	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG025	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG025	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG025	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG025	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG025	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG025	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG025	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG025	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG025	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG025	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG025	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG025	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG025	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG025	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG025	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG025	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG025	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG025	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG025	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG025	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG025	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG025	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG025	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG025	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC22SDG026	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.84	ng/L	0	ND
NC22SDG026	1	L	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	1	ng/L	0	ND
NC22SDG026	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ng/L	0	ND
NC22SDG026	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ng/L	0	ND
NC22SDG026	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ng/L	0	ND
NC22SDG026	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ng/L	0	ND
NC22SDG026	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ng/L	0	ND
NC22SDG026	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ng/L	0	ND
NC22SDG026	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ng/L	0	ND
NC22SDG026	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ng/L	0	ND
NC22SDG026	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ng/L	0	ND
NC22SDG026	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG026	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ng/L	0	ND
NC22SDG026	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ng/L	0	ND
NC22SDG026	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND
NC22SDG026	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ng/L	0	ND
NC22SDG026	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ng/L	0	ND
NC22SDG026	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ng/L	0	ND
NC22SDG026	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ng/L	0	ND
NC22SDG026	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ng/L	0	ND
NC22SDG026	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ng/L	0	ND
NC22SDG026	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ng/L	0	ND
NC22SDG026	1	L	209 - Decachlorobiphenyl	5	1.1	ng/L	0	ND
NC22SDG050	0.25	g	8 - 2,4'-Dichlorobiphenyl	160	12	ug/Kg	0	ND
NC22SDG050	0.25	g	18 - 2,2',5-Trichlorobiphenyl	160	14	ug/Kg	0	ND
NC22SDG050	0.25	g	28 - 2,4,4'-Trichlorobiphenyl	160	14	ug/Kg	0	ND
NC22SDG050	0.25	g	44 - 2,2',3,5'-Tetrachlorobiphenyl	160	12	ug/Kg	0	ND
NC22SDG050	0.25	g	49 - 2,2',4,5'-Tetrachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	52 - 2,2',5,5'-Tetrachlorobiphenyl	160	15	ug/Kg	0	ND
NC22SDG050	0.25	g	66 - 2,3',4,4'-Tetrachlorobiphenyl	160	17	ug/Kg	0	ND
NC22SDG050	0.25	g	77 - 3,3',4,4'-Tetrachlorobiphenyl	160	22	ug/Kg	0	ND
NC22SDG050	0.25	g	87 - 2,2',3,4,5'-Pentachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	101 - 2,2',4,5,5'-Pentachlorobiphenyl	160	13	ug/Kg	0	ND
NC22SDG050	0.25	g	105 - 2,3,3',4,4'-Pentachlorobiphenyl	160	21	ug/Kg	0	ND
NC22SDG050	0.25	g	114 - 2,3,4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	118 - 2,3',4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	123 - 2',3,4,4',5-Pentachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	126 - 3,3',4,4',5-Pentachlorobiphenyl	160	47	ug/Kg	0	ND
NC22SDG050	0.25	g	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	160	22	ug/Kg	0	ND
NC22SDG050	0.25	g	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	160	31	ug/Kg	0	ND
NC22SDG050	0.25	g	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	160	24	ug/Kg	0	ND
NC22SDG050	0.25	g	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG050	0.25	g	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	160	14	ug/Kg	0	ND
NC22SDG050	0.25	g	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	160	31	ug/Kg	0	ND
NC22SDG050	0.25	g	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	160	14	ug/Kg	0	ND
NC22SDG050	0.25	g	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	160	32	ug/Kg	0	ND
NC22SDG050	0.25	g	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	160	21	ug/Kg	0	ND
NC22SDG050	0.25	g	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	160	36	ug/Kg	230	
NC22SDG050	0.25	g	209 - Decachlorobiphenyl	160	25	ug/Kg	73	J
NC22SDG052	1	mL	8 - 2,4'-Dichlorobiphenyl	5	0.84	ug/L	0	ND
NC22SDG052	1	mL	18 - 2,2',5-Trichlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	28 - 2,4,4'-Trichlorobiphenyl	5	1	ug/L	0	ND
NC22SDG052	1	mL	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	1.5	ug/L	0	ND
NC22SDG052	1	mL	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.59	ug/L	0	ND
NC22SDG052	1	mL	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	1.1	ug/L	0	ND
NC22SDG052	1	mL	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	1.5	ug/L	0	ND
NC22SDG052	1	mL	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.72	ug/L	0	ND
NC22SDG052	1	mL	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.81	ug/L	0	ND
NC22SDG052	1	mL	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	1.4	ug/L	0	ND
NC22SDG052	1	mL	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	1.5	ug/L	0	ND
NC22SDG052	1	mL	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.5	ug/L	0	ND
NC22SDG052	1	mL	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	1.1	ug/L	0	ND
NC22SDG052	1	mL	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.54	ug/L	0	ND
NC22SDG052	1	mL	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	1.2	ug/L	0	ND
NC22SDG052	1	mL	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	1.2	ug/L	0	ND
NC22SDG052	1	mL	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	1.2	ug/L	0	ND
NC22SDG052	1	mL	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.74	ug/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG052	1	mL	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	1	ug/L	0	ND
NC22SDG052	1	mL	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	1.3	ug/L	0	ND
NC22SDG052	1	mL	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	1.4	ug/L	0	ND
NC22SDG052	1	mL	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	1.2	ug/L	0	ND
NC22SDG052	1	mL	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.45	ug/L	0	ND
NC22SDG052	1	mL	209 - Decachlorobiphenyl	5	1.1	ug/L	0	ND
NC22SDG053	0.25	g	8 - 2,4'-Dichlorobiphenyl	32	34	ug/Kg	0	ND
NC22SDG053	0.25	g	18 - 2,2',5-Trichlorobiphenyl	32	70	ug/Kg	0	ND
NC22SDG053	0.25	g	28 - 2,4,4'-Trichlorobiphenyl	32	48	ug/Kg	2	J
NC22SDG053	0.25	g	44 - 2,2',3,5'-Tetrachlorobiphenyl	32	24	ug/Kg	7.8	J
NC22SDG053	0.25	g	49 - 2,2',4,5'-Tetrachlorobiphenyl	32	53	ug/Kg	18	J
NC22SDG053	0.25	g	52 - 2,2',5,5'-Tetrachlorobiphenyl	32	21	ug/Kg	18	J
NC22SDG053	0.25	g	66 - 2,3',4,4'-Tetrachlorobiphenyl	32	26	ug/Kg	28	J
NC22SDG053	0.25	g	77 - 3,3',4,4'-Tetrachlorobiphenyl	32	38	ug/Kg	0	ND
NC22SDG053	0.25	g	87 - 2,2',3,4,5'-Pentachlorobiphenyl	32	53	ug/Kg	18	J
NC22SDG053	0.25	g	101 - 2,2',4,5,5'-Pentachlorobiphenyl	32	19	ug/Kg	32	
NC22SDG053	0.25	g	105 - 2,3,3',4,4'-Pentachlorobiphenyl	32	22	ug/Kg	11	J
NC22SDG053	0.25	g	118 - 2,3',4,4',5-Pentachlorobiphenyl	32	26	ug/Kg	29	J
NC22SDG053	0.25	g	126 - 3,3',4,4',5-Pentachlorobiphenyl	32	59	ug/Kg	0	ND
NC22SDG053	0.25	g	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	32	26	ug/Kg	5	J
NC22SDG053	0.25	g	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	32	29	ug/Kg	45	
NC22SDG053	0.25	g	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	32	26	ug/Kg	46	
NC22SDG053	0.25	g	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	32	53	ug/Kg	0	ND
NC22SDG053	0.25	g	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	32	53	ug/Kg	0	ND
NC22SDG053	0.25	g	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	32	100	ug/Kg	2000	
NC22SDG053	0.25	g	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	32	29	ug/Kg	260	
NC22SDG053	0.25	g	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	32	53	ug/Kg	38	
NC22SDG053	0.25	g	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	32	53	ug/Kg	30	J
NC22SDG053	0.25	g	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	32	45	ug/Kg	580	
NC22SDG053	0.25	g	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	32	21	ug/Kg	33	
NC22SDG053	0.25	g	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	32	18	ug/Kg	3700	
NC22SDG053	0.25	g	209 - Decachlorobiphenyl	32	21	ug/Kg	1200	
NC22SDG054	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC22SDG054	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG054	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC22SDG054	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG054	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC22SDG054	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC22SDG054	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG054	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC22SDG054	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG054	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC22SDG054	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC22SDG054	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC22SDG054	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC22SDG054	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC22SDG054	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC22SDG054	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC22SDG054	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC22SDG054	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC22SDG054	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC22SDG054	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC22SDG054	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG054	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC22SDG054	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC22SDG054	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG054	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC22SDG054	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC22SDG054	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC22SDG054	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC22SDG054	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC22SDG054	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC22SDG054	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC28SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.42	ng/L	0	ND
NC28SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.64	ng/L	0	ND
NC28SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.53	ng/L	0	ND
NC28SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC28SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.75	ng/L	0	ND
NC28SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC28SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.64	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.56	ng/L	0	ND
NC28SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC28SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.36	ng/L	0	ND
NC28SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.41	ng/L	0	ND
NC28SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.68	ng/L	0	ND
NC28SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.66	ng/L	0	ND
NC28SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.77	ng/L	0	ND
NC28SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.67	ng/L	0	ND
NC28SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC28SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.55	ng/L	0	ND
NC28SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC28SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.62	ng/L	0	ND
NC28SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.61	ng/L	0	ND
NC28SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC28SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.59	ng/L	0	ND
NC28SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.64	ng/L	0	ND
NC28SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC28SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC28SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.5	ng/L	0	ND
NC28SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.65	ng/L	0	ND
NC28SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.71	ng/L	0	ND
NC28SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.58	ng/L	0	ND
NC28SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.23	ng/L	0	ND
NC28SDG001	1	L	209 - Decachlorobiphenyl	2.5	0.57	ng/L	0	ND
NC28SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG002	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG003	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG004	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG006	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG006	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG006	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG006	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG006	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG006	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG006	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG006	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG006	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG006	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG006	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG006	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG006	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG006	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG006	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG006	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG006	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG006	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG006	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG006	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG006	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG006	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG006	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG006	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG006	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG006	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG006	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG006	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG006	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG006	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG006	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG007	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG008	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG010	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG011	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG012	0.25	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND
NC28SDG012	0.25	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG012	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
NC28SDG012	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG012	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC28SDG012	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
NC28SDG012	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG012	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG012	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
NC28SDG012	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG012	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
NC28SDG012	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG012	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG012	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
NC28SDG012	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG012	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG012	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC28SDG012	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
NC28SDG012	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
NC28SDG012	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG012	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG012	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG012	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG012	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG012	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG012	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC28SDG012	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG012	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
NC28SDG012	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC28SDG012	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
NC28SDG012	0.25	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND
NC28SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
NC28SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC28SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
NC28SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
NC28SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
NC28SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
NC28SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND
NC28SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC28SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
NC28SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
NC28SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC28SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
NC28SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC28SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
NC28SDG013	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG014	0.25	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND
NC28SDG014	0.25	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG014	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
NC28SDG014	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG014	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC28SDG014	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
NC28SDG014	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG014	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG014	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
NC28SDG014	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG014	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
NC28SDG014	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG014	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG014	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
NC28SDG014	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG014	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND
NC28SDG014	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC28SDG014	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
NC28SDG014	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
NC28SDG014	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG014	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG014	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG014	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG014	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG014	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG014	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC28SDG014	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG014	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
NC28SDG014	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC28SDG014	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
NC28SDG014	0.25	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG015	0.25	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG015	0.25	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG015	0.25	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG015	0.25	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG015	0.25	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG015	0.25	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG015	0.25	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG015	0.25	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG015	0.25	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG015	0.25	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG015	0.25	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG015	0.25	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG015	0.25	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG015	0.25	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG015	0.25	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG015	0.25	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG015	0.25	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG015	0.25	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG015	0.25	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG015	0.25	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG015	0.25	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG015	0.25	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG015	0.25	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG015	0.25	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG015	0.25	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG015	0.25	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG015	0.25	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG015	0.25	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG015	0.25	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG015	0.25	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG015	0.25	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG016	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND
NC28SDG016	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG016	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
NC28SDG016	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG016	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC28SDG016	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
NC28SDG016	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG016	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG016	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
NC28SDG016	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG016	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
NC28SDG016	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG016	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG016	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
NC28SDG016	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG016	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND
NC28SDG016	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC28SDG016	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
NC28SDG016	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
NC28SDG016	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG016	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG016	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG016	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG016	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG016	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG016	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC28SDG016	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG016	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
NC28SDG016	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC28SDG016	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
NC28SDG016	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG017	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG017	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG017	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
NC28SDG017	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG017	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC28SDG017	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
NC28SDG017	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG017	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG017	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
NC28SDG017	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG017	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
NC28SDG017	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG017	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG017	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
NC28SDG017	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG017	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND
NC28SDG017	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC28SDG017	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
NC28SDG017	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
NC28SDG017	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG017	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG017	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG017	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG017	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG017	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG017	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC28SDG017	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG017	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
NC28SDG017	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC28SDG017	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
NC28SDG017	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG018	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG018	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG018	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG018	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG018	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG018	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG018	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG018	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG018	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG018	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG018	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG018	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG018	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG018	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG018	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG018	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG018	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG018	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG018	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG018	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG018	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG018	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG018	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG018	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG018	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG018	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG018	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG018	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG018	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG018	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG018	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG019	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG019	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG019	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG019	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG019	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG019	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG019	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG019	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG019	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG019	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG019	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG019	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG019	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG019	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG019	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG019	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG019	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG019	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG019	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG019	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG019	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG019	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG019	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG019	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG019	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG019	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG019	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG019	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG019	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG019	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG019	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG020	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND
NC28SDG020	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG020	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
NC28SDG020	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG020	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC28SDG020	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
NC28SDG020	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG020	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG020	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
NC28SDG020	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG020	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
NC28SDG020	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG020	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG020	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
NC28SDG020	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG020	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND
NC28SDG020	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND
NC28SDG020	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
NC28SDG020	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
NC28SDG020	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG020	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG020	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG020	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG020	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG020	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG020	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC28SDG020	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG020	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
NC28SDG020	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC28SDG020	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
NC28SDG020	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG021	1	L	8 - 2,4'-Dichlorobiphenyl	2.5	0.21	ng/L	0	ND
NC28SDG021	1	L	18 - 2,2',5-Trichlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG021	1	L	28 - 2,4,4'-Trichlorobiphenyl	2.5	0.26	ng/L	0	ND
NC28SDG021	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG021	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	2.5	0.37	ng/L	0	ND
NC28SDG021	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	2.5	0.15	ng/L	0	ND
NC28SDG021	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG021	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG021	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	2.5	0.38	ng/L	0	ND
NC28SDG021	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG021	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	2.5	0.2	ng/L	0	ND
NC28SDG021	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG021	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG021	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	2.5	0.39	ng/L	0	ND
NC28SDG021	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	2.5	0.34	ng/L	0	ND
NC28SDG021	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	2.5	0.12	ng/L	0	ND
NC28SDG021	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	2.5	0.27	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG021	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	2.5	0.13	ng/L	0	ND
NC28SDG021	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	2.5	0.31	ng/L	0	ND
NC28SDG021	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG021	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG021	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	2.5	0.3	ng/L	0	ND
NC28SDG021	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	2.5	0.32	ng/L	0	ND
NC28SDG021	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG021	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	2.5	0.18	ng/L	0	ND
NC28SDG021	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	2.5	0.25	ng/L	0	ND
NC28SDG021	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	2.5	0.33	ng/L	0	ND
NC28SDG021	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.5	0.35	ng/L	0	ND
NC28SDG021	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	2.5	0.29	ng/L	0	ND
NC28SDG021	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2.5	0.11	ng/L	0	ND
NC28SDG021	1	L	209 - Decachlorobiphenyl	2.5	0.28	ng/L	0	ND
NC28SDG022	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG022	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG022	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG022	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG022	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG022	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG022	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG022	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG022	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG022	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG022	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG022	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG022	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG022	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG022	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG022	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG022	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG022	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG022	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG022	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG022	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG022	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG022	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG022	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG022	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC28SDG022	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG022	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG022	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG022	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG022	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG022	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC28SDG023	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC28SDG023	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG023	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC28SDG023	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG023	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC28SDG023	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC28SDG023	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG023	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC28SDG023	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG023	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC28SDG023	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC28SDG023	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC28SDG023	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC28SDG023	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC28SDG023	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC28SDG023	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC28SDG023	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC28SDG023	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC28SDG023	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC28SDG023	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC28SDG023	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG023	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC28SDG023	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC28SDG023	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG023	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC28SDG023	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC28SDG023	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC28SDG023	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC28SDG023	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC28SDG023	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC28SDG023	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG001	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG001	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG001	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG001	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG001	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG001	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG001	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG001	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG001	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG001	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG001	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG001	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG001	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG001	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG001	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG001	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG001	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG001	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG001	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG001	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG001	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG001	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG001	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG001	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG001	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG001	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG001	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG001	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG001	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG001	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG001	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG002	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG002	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG002	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG002	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG002	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG002	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG002	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG002	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG002	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG002	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG002	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG002	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG002	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG002	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG002	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG002	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG002	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG002	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG002	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG002	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG002	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG002	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG002	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG002	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG002	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG002	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG002	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG002	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG002	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG002	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG002	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG003	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG003	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG003	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG003	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG003	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG003	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG003	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG003	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG003	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG003	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG003	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG003	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG003	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG003	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG003	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG003	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG003	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG003	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG003	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG003	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG003	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG003	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG003	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG003	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG003	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG003	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG003	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG003	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG003	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG003	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG003	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG004	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG004	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG004	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG004	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG004	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG004	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG004	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG004	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG004	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG004	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG004	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG004	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG004	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG004	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG004	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG004	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG004	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG004	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG004	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG004	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG004	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG004	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG004	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG004	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG004	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG004	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG004	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG004	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG004	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG004	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG004	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG005	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG005	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG005	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG005	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG005	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG005	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG005	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG005	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG005	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG005	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG005	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG005	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG005	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG005	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG005	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG005	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG005	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG005	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG005	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG005	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG005	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG005	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG005	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG005	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG005	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG005	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG005	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG005	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG005	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG005	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG005	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG006	1		8 - 2,4'-Dichlorobiphenyl	10	0.74	ng	0	ND
NC34SDG006	1		18 - 2,2',5-Trichlorobiphenyl	10	0.86	ng	0	ND
NC34SDG006	1		28 - 2,4,4'-Trichlorobiphenyl	10	0.91	ng	0	ND
NC34SDG006	1		44 - 2,2',3,5'-Tetrachlorobiphenyl	10	0.74	ng	0	ND
NC34SDG006	1		49 - 2,2',4,5'-Tetrachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		52 - 2,2',5,5'-Tetrachlorobiphenyl	10	0.94	ng	0	ND
NC34SDG006	1		66 - 2,3',4,4'-Tetrachlorobiphenyl	10	1.1	ng	0	ND
NC34SDG006	1		77 - 3,3',4,4'-Tetrachlorobiphenyl	10	1.4	ng	0	ND
NC34SDG006	1		87 - 2,2',3,4,5'-Pentachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		101 - 2,2',4,5,5'-Pentachlorobiphenyl	10	0.81	ng	0	ND
NC34SDG006	1		105 - 2,3,3',4,4'-Pentachlorobiphenyl	10	1.3	ng	0	ND
NC34SDG006	1		114 - 2,3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		118 - 2,3',4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		123 - 2',3,4,4',5-Pentachlorobiphenyl	10	2	ng	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG006	1		126 - 3,3',4,4',5-Pentachlorobiphenyl	10	2.9	ng	0	ND
NC34SDG006	1		128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	10	1.4	ng	0	ND
NC34SDG006	1		138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	10	1.9	ng	0	ND
NC34SDG006	1		153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	10	1.5	ng	0	ND
NC34SDG006	1		156 - 2,3,3',4,4',5-Hexachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	10	0.9	ng	0	ND
NC34SDG006	1		180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	10	1.9	ng	0	ND
NC34SDG006	1		183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	10	0.86	ng	0	ND
NC34SDG006	1		189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	10	2	ng	0	ND
NC34SDG006	1		195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	10	1.3	ng	0	ND
NC34SDG006	1		206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10	2.2	ng	0	ND
NC34SDG006	1		209 - Decachlorobiphenyl	10	1.5	ng	0	ND
NC34SDG007	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG007	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG007	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG007	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG007	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG007	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG007	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG007	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG007	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG007	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG007	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG007	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG007	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG007	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG007	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG007	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG007	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG007	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG007	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG007	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG007	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG007	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG007	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG007	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG007	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG007	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG007	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG007	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG007	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG007	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG007	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG008	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG008	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG008	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG008	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG008	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG008	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	3.7	J
NC34SDG008	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG008	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG008	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG008	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	5.2	
NC34SDG008	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG008	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG008	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	4.1	J
NC34SDG008	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG008	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG008	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG008	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	2.8	J
NC34SDG008	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	3.2	J
NC34SDG008	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG008	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG008	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG008	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG008	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG008	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG008	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG008	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG008	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG008	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG008	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG008	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG008	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG009	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG009	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG009	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG009	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG009	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG009	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG009	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG009	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG009	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG009	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG009	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG009	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG009	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG009	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG009	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG009	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG009	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG009	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG009	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG009	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG009	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG009	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG009	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG009	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG009	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG009	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG009	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG009	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG009	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG009	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG009	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG010	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG010	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG010	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG010	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG010	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG010	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG010	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG010	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG010	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG010	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG010	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG010	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG010	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG010	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG010	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG010	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG010	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG010	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG010	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG010	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG010	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG010	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG010	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG010	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG010	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG010	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG010	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG010	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG010	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG010	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG010	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG011	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG011	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG011	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG011	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG011	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG011	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG011	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG011	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG011	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG011	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG011	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG011	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG011	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG011	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG011	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG011	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG011	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG011	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG011	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG011	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG011	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG011	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG011	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG011	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG011	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG011	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG011	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG011	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG011	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG011	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG011	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG012	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG012	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG012	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG012	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG012	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG012	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG012	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG012	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG012	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG012	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG012	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG012	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG012	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG012	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG012	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG012	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG012	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG012	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG012	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG012	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG012	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG012	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG012	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG012	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG012	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG012	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG012	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG012	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG012	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG012	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG012	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND
NC34SDG013	1	L	8 - 2,4'-Dichlorobiphenyl	5	0.42	ng/L	0	ND
NC34SDG013	1	L	18 - 2,2',5-Trichlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG013	1	L	28 - 2,4,4'-Trichlorobiphenyl	5	0.53	ng/L	0	ND
NC34SDG013	1	L	44 - 2,2',3,5'-Tetrachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG013	1	L	49 - 2,2',4,5'-Tetrachlorobiphenyl	5	0.75	ng/L	0	ND
NC34SDG013	1	L	52 - 2,2',5,5'-Tetrachlorobiphenyl	5	0.29	ng/L	0	ND
NC34SDG013	1	L	66 - 2,3',4,4'-Tetrachlorobiphenyl	5	0.64	ng/L	0	ND

Sample Delivery Group	Sample Size	Size Units	Analyte	Min Reporting Limit	Min Detection Limit	Units	Raw result	Qualifier
NC34SDG013	1	L	77 - 3,3',4,4'-Tetrachlorobiphenyl	5	0.56	ng/L	0	ND
NC34SDG013	1	L	87 - 2,2',3,4,5'-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG013	1	L	101 - 2,2',4,5,5'-Pentachlorobiphenyl	5	0.36	ng/L	0	ND
NC34SDG013	1	L	105 - 2,3,3',4,4'-Pentachlorobiphenyl	5	0.41	ng/L	0	ND
NC34SDG013	1	L	114 - 2,3,4,4',5-Pentachlorobiphenyl	5	0.68	ng/L	0	ND
NC34SDG013	1	L	118 - 2,3',4,4',5-Pentachlorobiphenyl	5	0.66	ng/L	0	ND
NC34SDG013	1	L	123 - 2',3,4,4',5-Pentachlorobiphenyl	5	0.77	ng/L	0	ND
NC34SDG013	1	L	126 - 3,3',4,4',5-Pentachlorobiphenyl	5	0.67	ng/L	0	ND
NC34SDG013	1	L	128 - 2,2',3,3',4,4'-Hexachlorobiphenyl	5	0.25	ng/L	0	ND
NC34SDG013	1	L	138 - 2,2',3,4,4',5'-Hexachlorobiphenyl	5	0.55	ng/L	0	ND
NC34SDG013	1	L	153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	5	0.27	ng/L	0	ND
NC34SDG013	1	L	156 - 2,3,3',4,4',5-Hexachlorobiphenyl	5	0.62	ng/L	0	ND
NC34SDG013	1	L	157 - 2,3,3',4,4',5'-Hexachlorobiphenyl	5	0.61	ng/L	0	ND
NC34SDG013	1	L	167 - 2,3',4,4',5,5'-Hexachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG013	1	L	169 - 3,3',4,4',5,5'-Hexachlorobiphenyl	5	0.59	ng/L	0	ND
NC34SDG013	1	L	170 - 2,2',3,3',4,4',5-Heptachlorobiphenyl	5	0.64	ng/L	0	ND
NC34SDG013	1	L	180 - 2,2',3,4,4',5,5'-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG013	1	L	183 - 2,2',3,4,4',5',6-Heptachlorobiphenyl	5	0.37	ng/L	0	ND
NC34SDG013	1	L	184 - 2,2',3,4,4',6,6'-Heptachlorobiphenyl	5	0.5	ng/L	0	ND
NC34SDG013	1	L	187 - 2,2',3,4',5,5',6-Heptachlorobiphenyl	5	0.65	ng/L	0	ND
NC34SDG013	1	L	189 - 2,3,3',4,4',5,5'-Heptachlorobiphenyl	5	0.71	ng/L	0	ND
NC34SDG013	1	L	195 - 2,2',3,3',4,4',5,6-Octachlorobiphenyl	5	0.58	ng/L	0	ND
NC34SDG013	1	L	206 - 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	5	0.23	ng/L	0	ND
NC34SDG013	1	L	209 - Decachlorobiphenyl	5	0.57	ng/L	0	ND

Leaching Procedural Blank Data

The data below correspond to analytical results for leaching procedural blanks collected by SSCSD as negative controls over the course of the laboratory leaching effort. Flags are included in these tables, for which a listing of data qualifiers (flags) and meanings is included at the end of **APPENDIX B**. These leachate samples correspond to leaching experiments with the only difference being that they were performed without PCBs or a shipboard solid in the stainless steel cage. The leaching and sample treatment was performed in the same manner as that for shipboard solid leaching experiments with leachate analyzed for the same suite of PCB analytes (homologues and congeners) to provide an empirical measure of the degree of cross-contamination from laboratory processes, e.g. leaching, sampling, and analytical protocols, that could potentially impact leaching results for shipboard solids being treated in an identical manner. A "leach rate" was not calculated from these data, as there is no leaching source present.

Procedural Blank 1 Experiment: Analytical Results (ng/L)

Sample ID	AP-RT-PB	AP-RT-PB-B27	AP-RT-PB-T09	AP-RT-PB-T1	AP-RT-PB-T11	AP-RT-PB-T4	AP-RT-PB-T6
Sample Date	6/20/01	6/20/01	2/13/01	9/26/00	3/27/01	11/7/00	1/2/01
Units	ng	ng	ng/L	ng/L	ng/L	ng/L	ng/L
C11	0	0	0	0	0	0	0
Qual_Cl1	ND	ND	ND	ND	ND	ND	ND
C12	0	0	0	0	0	0	0
Qual_Cl2	ND	ND	ND	ND	ND	ND	ND
PCB8	0	0	0	0	0	0	0
Qual_PCB8	ND	ND	ND	ND	ND	ND	ND
C13	0	0	0	0	0	0	0
Qual_Cl3	ND	ND	ND	ND	ND	ND	ND
PCB18	0	0	0	0	0	0	0
Qual_PCB18	ND	ND	ND	ND	ND	ND	ND
PCB28	0	0	0	0	0	0	0
Qual_PCB28	ND	ND	ND	ND	ND	ND	ND
C14	0	0	0	0	0	0	0
Qual_Cl4	ND	ND	ND	ND	ND	ND	ND
PCB44	0	0	0	0	0	0	0
Qual_PCB44	ND	ND	ND	ND	ND	ND	ND
PCB49	0	0	0	0	0	0	0
Qual_PCB49	ND	ND	ND	ND	ND	ND	ND
PCB52	0	0	0	0	0	0	0

Sample ID	AP-RT-PB	AP-RT-PB-B27	AP-RT-PB-T09	AP-RT-PB-T1	AP-RT-PB-T11	AP-RT-PB-T4	AP-RT-PB-T6
Qual_PCB52	ND	ND	ND	ND	ND	ND	ND
PCB66	0	0	0	0	0	0	0
Qual_PCB66	ND	ND	ND	ND	ND	ND	ND
PCB77	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND
C15	2.3	0	0	0	0	0	0
Qual_Cl5	J	ND	ND	ND	ND	ND	ND
PCB87	0	0	0	0	0	0	0
Qual_PCB87	ND	ND	ND	ND	ND	ND	ND
PCB101	0	0	0	0	0	0	0
Qual_PCB101	ND	ND	ND	ND	ND	ND	ND
PCB105	0	0	0	0	0	0	0
Qual_PCB105	ND	ND	ND	ND	ND	ND	ND
PCB114	0	0	0	0	0	0	0
Qual_PCB114	ND	ND	ND	ND	ND	ND	ND
PCB118	0	0	0	0	0	0	0
Qual_PCB118	ND	ND	ND	ND	ND	ND	ND
PCB123	0	0	0	0	0	0	0
Qual_PCB123	ND	ND	ND	ND	ND	ND	ND
PCB126	2.3	0	0	0	0	0	0
Qual_PCB126	J	ND	ND	ND	ND	ND	ND
C16	0	0	0	0	0	0	0
Qual_Cl6	ND	ND	ND	ND	ND	ND	ND
PCB128	0	0	0	0	0	0	0
Qual_PCB128	ND	ND	ND	ND	ND	ND	ND
PCB138	0	0	0	0	0	0	0
Qual_PCB138	ND	ND	ND	ND	ND	ND	ND
PCB153	0	0	0	0	0	0	0
Qual_PCB153	ND	ND	ND	ND	ND	ND	ND
PCB156	0	0	0	0	0	0	0
Qual_PCB156	ND	ND	ND	ND	ND	ND	ND
PCB157	0	0	0	0	0	0	0
Qual_PCB157	ND	ND	ND	ND	ND	ND	ND
PCB167	0	0	0	0	0	0	0
Qual_PCB167	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0

Sample ID	AP-RT-PB	AP-RT-PB-B27	AP-RT-PB-T09	AP-RT-PB-T1	AP-RT-PB-T11	AP-RT-PB-T4	AP-RT-PB-T6
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND
C17	0	0	0	0	0	0	0
Qual_Cl7	ND	ND	ND	ND	ND	ND	ND
PCB170	0	0	0	0	0	0	0
Qual_PCB170	ND	ND	ND	ND	ND	ND	ND
PCB180	0	0	0	0	0	0	0
Qual_PCB180	ND	ND	ND	ND	ND	ND	ND
PCB183	0	0	0	0	0	0	0
Qual_PCB183	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	ND	ND	ND
PCB187	0	0	0	0	0	0	0
Qual_PCB187	ND	ND	ND	ND	ND	ND	ND
PCB189	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND
C18	0	0	0	0	0	0	0
Qual_Cl8	ND	ND	ND	ND	ND	ND	ND
PCB195	0	0	0	0	0	0	0
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND
C19	0	0	0	0	0	0	0
Qual_Cl9	ND	ND	ND	ND	ND	ND	ND
PCB206	0	0	0	0	0	0	0
Qual_PCB206	ND	ND	ND	ND	ND	ND	ND
C110	0	0	0	0	0	0	0
Qual_Cl10	ND	ND	ND	ND	ND	ND	ND
PCB209	0	0	0	0	0	0	0
Qual_PCB209	ND	ND	ND	ND	ND	ND	ND
Min Reporting Limit	10	5	2.7	2.7	5.4	5.4	5.4
MDL_cong_Cl1	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL_cong_Cl2	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL8	0.74	0.42	0.23	0.45	0.45	0.46	0.46
MDL_cong_Cl3	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL18	0.86	0.64	0.35	0.69	0.69	0.69	0.69
MDL28	0.91	0.53	0.28	0.56	0.56	0.57	0.57
MDL_cong_Cl4	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL44	0.74	0.67	0.36	0.72	0.72	0.73	0.73

Sample ID	AP-RT-PB	AP-RT-PB-B27	AP-RT-PB-T09	AP-RT-PB-T1	AP-RT-PB-T11	AP-RT-PB-T4	AP-RT-PB-T6
MDL49	2	0.75	0.4	0.8	0.8	0.81	0.81
MDL52	0.94	0.29	0.16	0.32	0.32	0.32	0.32
MDL66	1.1	0.64	0.35	0.69	0.69	0.7	0.7
MDL77	1.4	0.56	0.3	0.6	0.6	0.61	0.61
MDL_cong_Cl5	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL87	2	0.77	0.42	0.82	0.82	0.83	0.83
MDL101	0.81	0.36	0.2	0.39	0.39	0.39	0.39
MDL105	1.3	0.41	0.22	0.44	0.44	0.44	0.44
MDL114	2	0.68	0.37	0.73	0.73	0.74	0.74
MDL118	2	0.66	0.36	0.7	0.7	0.71	0.71
MDL123	2	0.77	0.42	0.83	0.83	0.84	0.84
MDL126	2.9	0.67	0.36	0.72	0.72	0.73	0.73
MDL_cong_Cl6	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL128	1.4	0.25	0.14	0.27	0.27	0.27	0.27
MDL138	1.9	0.55	0.3	0.59	0.59	0.59	0.59
MDL153	1.5	0.27	0.14	0.29	0.29	0.29	0.29
MDL156	2	0.62	0.34	0.67	0.67	0.67	0.67
MDL157	2	0.61	0.33	0.65	0.65	0.66	0.66
MDL167	2	0.64	0.34	0.68	0.68	0.69	0.69
MDL169	2	0.59	0.32	0.63	0.63	0.64	0.64
MDL-cong_Cl7	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL170	0.9	0.64	0.34	0.68	0.68	0.69	0.69
MDL180	1.9	0.65	0.35	0.7	0.7	0.71	0.71
MDL183	2	0.37	0.2	0.4	0.4	0.4	0.4
MDL184	2	0.5	0.27	0.54	0.54	0.55	0.55
MDL187	0.86	0.65	0.35	0.7	0.7	0.71	0.71
MDL189	2	0.71	0.38	0.76	0.76	0.77	0.77
MDL_cong_Cl8	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL195	1.3	0.58	0.32	0.62	0.62	0.63	0.63
MDL_cong_Cl9	2	0.5	0.27	0.54	0.54	0.54	0.54
MDL206	2.2	0.23	0.12	0.24	0.24	0.24	0.24
MDL_cong_Cl10	1.5	0.57	0.31	0.61	0.61	0.62	0.62
MDL209	1.5	0.57	0.31	0.61	0.61	0.62	0.62
Sample Delivery Group	NC34SDG006	NC34SDG003	NC28SDG013	NC28SDG001	NC28SDG019	NC28SDG005	NC28SDG010
Sample Size	1	1	0.92	0.93	0.93	0.92	0.92
Size Units			L	L	L	L	L

Procedural Blank 1 Experiment: PCB Mass per Sample (ng)

Sample ID	AP-RT-PB	AP-RT-PB-B27	AP-RT-PB-T09	AP-RT-PB-T1	AP-RT-PB-T11	AP-RT-PB-T4	AP-RT-PB-T6
C11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C13	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB28	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C14	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB44	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB49	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB52	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB66	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	2.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB87	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	2.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C16	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Sample ID	AP-RT-PB	AP-RT-PB-B27	AP-RT-PB-T09	AP-RT-PB-T1	AP-RT-PB-T11	AP-RT-PB-T4	AP-RT-PB-T6
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	2.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Procedural Blank 2 Experiment: Analytical Results (ng/L)

Sample ID	AP-LT-PB	AP-LT-PB-B61	AP-LT-PB-B32	AP-LT-PB-T1	AP-LT-PB-T10	AP-LT-PB-T12	AP-LT-PB-T14	AP-LT-PB-T16	AP-LT-PB-T3	AP-LT-PB-T5
Sample Date	06/19/02	06/19/02	11/28/01	04/25/01	11/06/01	03/06/02	05/01/02	06/19/02	07/24/01	08/21/01
Units	ng	ng	ng	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Cl1	0	0	0	0	0	0	0	0	0	0
Qual_Cl1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C12	0	0	0	0	0	0	0	0	0	0
Qual_Cl2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB8	0	0	0	0	0	0	0	0	0	0
Qual_PCB8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl3	0	0	0	0	0	0	0	0	0	0
Qual_Cl3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB18	0	0	0	0	0	0	0	0	0	0
Qual_PCB18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB28	0	0	0	0	0	0	0	0	0	0
Qual_PCB28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl4	3.2	0	0	0	0	0	0	0	0	24
Qual_Cl4	J	ND	ND	ND	ND	ND	ND	ND	ND	В
PCB44	0	0	0	0	0	0	0	0	0	3.5
Qual_PCB44	ND	ND	ND	ND	ND	ND	ND	ND	ND	J
PCB49	0	0	0	0	0	0	0	0	0	1.4

Sample ID	AP-LT-PB	AP-LT-PB-B61	AP-LT-PB-B32	AP-LT-PB-T1	AP-LT-PB-T10	AP-LT-PB-T12	AP-LT-PB-T14	AP-LT-PB-T16	AP-LT-PB-T3	AP-LT-PB-T5
Qual_PCB49	ND	ND	ND	ND	ND	ND	ND	ND	ND	J
PCB52	5.1	0	0	0	0	0	0	0	0	5.8
Qual_PCB52	J	ND	ND	ND	ND	ND	ND	ND	ND	В
PCB66	0	0	0	0	0	0	0	0	0	1.6
Qual_PCB66	ND	ND	ND	ND	ND	ND	ND	ND	ND	J
PCB77	0	0	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C15	15	0	0	0	0	0	0	0	0	61
Qual_Cl5	J	ND	ND	ND	ND	ND	ND	ND	ND	В
PCB87	0	0	0	0	0	0	0	0	0	3.1
Qual_PCB87	ND	ND	ND	ND	ND	ND	ND	ND	ND	J
PCB101	0	0	0	0	0	0	0	0	0	3.8
Qual_PCB101	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB105	0	0	0	0	0	0	0	0	0	0
Qual_PCB105	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB114	0	0	0	0	0	0	0	0	0	0
Qual_PCB114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB118	0	0	0	0	0	0	0	0	0	4.4
Qual_PCB118	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB123	0	0	0	0	0	0	0	0	0	0
Qual_PCB123	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB126	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cl6	0	0	0	0	0	0	0	0	0	0
Qual_Cl6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB128	0	0	0	0	0	0	0	0	0	0
Qual_PCB128	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB138	0	0	0	0	0	0	0	0	0	0
Qual_PCB138	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB153	0	0	0	0	0	0	0	0	0	0
Qual_PCB153	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB156	0	0	0	0	0	0	0	0	0	0
Qual_PCB156	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB157	0	0	0	0	0	0	0	0	0	0
Qual_PCB157	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	0	0	0	0	0	0	0	0	0	0

Sample ID	AP-LT-PB	AP-LT-PB-B61	AP-LT-PB-B32	AP-LT-PB-T1	AP-LT-PB-T10	AP-LT-PB-T12	AP-LT-PB-T14	AP-LT-PB-T16	AP-LT-PB-T3	AP-LT-PB-T5
Qual_PCB167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C17	20	0	0	0	0	0	0	0	0	0
Qual_Cl7	J	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB170	0	0	0	0	0	0	0	0	0	0
Qual_PCB170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB180	0	0	0	0	0	0	0	0	0	0
Qual_PCB180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB183	0	0	0	0	0	0	0	0	0	0
Qual_PCB183	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB187	0	0	0	0	0	0	0	0	0	0
Qual_PCB187	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB189	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C18	0	0	0	0	0	0	0	0	0	0
Qual_Cl8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB195	0	0	0	0	0	0	0	0	0	0
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	0	0	0	0	0	0	0	0	0	0
Qual_Cl9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB206	0	0	0	0	0	0	0	0	0	0
Qual_PCB206	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C110	0	0	0	0	0	0	0	0	0	0
Qual_Cl10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB209	0	0	0	0	0	0	0	0	0	0
Qual_PCB209	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Min Reporting Limit	2.0E+01	1.0E+01	5.0E+00	5.3E+00	5.6E+00	5.5E+00	5.4E+00	1.1E+01	5.5E+00	5.4E+00
MDL_cong_Cl1	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL_cong_Cl2	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL8	2.4E+00	4.2E-01	4.2E-01	4.5E-01	4.7E-01	4.6E-01	4.6E-01	4.5E-01	4.6E-01	4.5E-01
MDL_cong_Cl3	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL18	2.9E+00	6.4E-01	6.4E-01	6.8E-01	7.1E-01	7.0E-01	6.9E-01	6.8E-01	7.0E-01	6.9E-01

Sample ID	AP-LT-PB	AP-LT-PB-B61	AP-LT-PB-B32	AP-LT-PB-T1	AP-LT-PB-T10	AP-LT-PB-T12	AP-LT-PB-T14	AP-LT-PB-T16	AP-LT-PB-T3	AP-LT-PB-T5
MDL28	3.0E+00	5.3E-01	5.3E-01	5.6E-01	5.8E-01	5.8E-01	5.7E-01	5.6E-01	5.8E-01	5.6E-01
MDL_cong_Cl4	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL44	2.5E+00	6.7E-01	6.7E-01	7.1E-01	7.5E-01	7.4E-01	7.3E-01	7.1E-01	7.4E-01	7.2E-01
MDL49	6.7E+00	7.5E-01	7.5E-01	7.9E-01	8.3E-01	8.2E-01	8.1E-01	7.9E-01	8.2E-01	8.0E-01
MDL52	3.2E+00	2.9E-01	2.9E-01	3.1E-01	3.3E-01	3.2E-01	3.2E-01	3.1E-01	3.2E-01	3.2E-01
MDL66	3.6E+00	6.4E-01	6.4E-01	6.8E-01	7.2E-01	7.1E-01	7.0E-01	6.8E-01	7.1E-01	6.9E-01
MDL77	4.6E+00	5.6E-01	5.6E-01	6.0E-01	6.2E-01	6.2E-01	6.1E-01	6.0E-01	6.2E-01	6.0E-01
MDL_cong_Cl5	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL87	6.7E+00	7.7E-01	7.7E-01	8.1E-01	8.5E-01	8.4E-01	8.3E-01	8.1E-01	8.4E-01	8.2E-01
MDL101	2.7E+00	3.6E-01	3.6E-01	3.8E-01	4.0E-01	4.0E-01	3.9E-01	3.8E-01	4.0E-01	3.9E-01
MDL105	4.4E+00	4.1E-01	4.1E-01	4.3E-01	4.5E-01	4.5E-01	4.4E-01	4.3E-01	4.5E-01	4.4E-01
MDL114	6.7E+00	6.8E-01	6.8E-01	7.2E-01	7.5E-01	7.4E-01	7.4E-01	7.2E-01	7.4E-01	7.3E-01
MDL118	6.7E+00	6.6E-01	6.6E-01	7.0E-01	7.3E-01	7.2E-01	7.1E-01	7.0E-01	7.2E-01	7.0E-01
MDL123	6.7E+00	7.7E-01	7.7E-01	8.2E-01	8.6E-01	8.5E-01	8.4E-01	8.2E-01	8.5E-01	8.3E-01
MDL126	9.7E+00	6.7E-01	6.7E-01	7.1E-01	7.5E-01	7.4E-01	7.3E-01	7.1E-01	7.4E-01	7.2E-01
MDL_cong_Cl6	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL128	4.7E+00	2.5E-01	2.5E-01	2.6E-01	2.8E-01	2.7E-01	2.7E-01	2.6E-01	2.7E-01	2.7E-01
MDL138	6.5E+00	5.5E-01	5.5E-01	5.8E-01	6.1E-01	6.0E-01	5.9E-01	5.8E-01	6.0E-01	5.9E-01
MDL153	5.0E+00	2.7E-01	2.7E-01	2.8E-01	3.0E-01	2.9E-01	2.9E-01	2.8E-01	2.9E-01	2.9E-01
MDL156	6.7E+00	6.2E-01	6.2E-01	6.6E-01	6.9E-01	6.8E-01	6.7E-01	6.6E-01	6.8E-01	6.7E-01
MDL157	6.7E+00	6.1E-01	6.1E-01	6.5E-01	6.8E-01	6.7E-01	6.6E-01	6.5E-01	6.7E-01	6.5E-01
MDL167	6.7E+00	6.4E-01	6.4E-01	6.8E-01	7.1E-01	7.0E-01	6.9E-01	6.8E-01	7.0E-01	6.8E-01
MDL169	6.7E+00	5.9E-01	5.9E-01	6.3E-01	6.6E-01	6.5E-01	6.4E-01	6.3E-01	6.5E-01	6.3E-01
MDL-cong_Cl7	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL170	3.0E+00	6.4E-01	6.4E-01	6.8E-01	7.1E-01	7.0E-01	6.9E-01	6.8E-01	7.0E-01	6.8E-01
MDL180	6.5E+00	6.5E-01	6.5E-01	6.9E-01	7.2E-01	7.2E-01	7.1E-01	6.9E-01	7.2E-01	7.0E-01
MDL183	6.7E+00	3.7E-01	3.7E-01	3.9E-01	4.1E-01	4.1E-01	4.0E-01	3.9E-01	4.1E-01	4.0E-01
MDL184	6.7E+00	5.0E-01	5.0E-01	5.4E-01	5.6E-01	5.5E-01	5.5E-01	5.4E-01	5.5E-01	5.4E-01
MDL187	2.8E+00	6.5E-01	6.5E-01	6.9E-01	7.2E-01	7.2E-01	7.1E-01	6.9E-01	7.2E-01	7.0E-01
MDL189	6.7E+00	7.1E-01	7.1E-01	7.5E-01	7.8E-01	7.8E-01	7.7E-01	7.5E-01	7.8E-01	7.6E-01
MDL_cong_Cl8	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL195	4.4E+00	5.8E-01	5.8E-01	6.2E-01	6.5E-01	6.4E-01	6.3E-01	6.2E-01	6.4E-01	6.2E-01
MDL_cong_Cl9	6.7E+00	5.0E-01	5.0E-01	5.3E-01	5.6E-01	5.5E-01	5.4E-01	5.3E-01	5.5E-01	5.4E-01
MDL206	7.4E+00	2.3E-01	2.3E-01	2.4E-01	2.5E-01	2.5E-01	2.4E-01	2.4E-01	2.5E-01	2.4E-01
MDL_cong_Cl1	5.1E+00	5.7E-01	5.7E-01	6.1E-01	6.3E-01	6.3E-01	6.2E-01	6.1E-01	6.3E-01	6.1E-01

Sample ID	AP-LT-PB	AP-LT-PB-B61	AP-LT-PB-B32	AP-LT-PB-T1	AP-LT-PB-T10	AP-LT-PB-T12	AP-LT-PB-T14	AP-LT-PB-T16	AP-LT-PB-T3	AP-LT-PB-T5
MDL209	5.1E+00	5.7E-01	5.7E-01	6.1E-01	6.3E-01	6.3E-01	6.2E-01	6.1E-01	6.3E-01	6.1E-01
Sample Delivery	CSC81SDG013	CSC81SDG012	NC34SDG013	NC28SDG023	NC34SDG012	CSC81SDG006	CSC81SDG010	CSC81SDG012	NC34SDG007	NC34SDG008
Group										
Sample Size	1.0E+00	1.0E+00	1.0E+00	9.4E-01	9.0E-01	9.1E-01	9.2E-01	9.4E-01	9.1E-01	9.3E-01
Size Units				L	L	L	L	L	L	L

Procedural Blank 2 Experiment: PCB Mass per Sample (ng)

Sample ID	AP-LT-PB	AP-LT-PB-B61	AP-LT-PB-B32	AP-LT-PB-T1	AP-LT-PB-T10	AP-LT-PB-T12	AP-LT-PB-T14	AP-LT-PB-T16	AP-LT-PB-T3	AP-LT-PB-T5
C11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C13	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB28	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C14	3.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.2E+01
PCB44	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.3E+00
PCB49	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E+00
PCB52	5.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E+00
PCB66	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	1.5E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.7E+01
PCB87	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.9E+00
PCB101	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.5E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.1E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C16	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Sample ID	AP-LT-PB	AP-LT-PB-B61	AP-LT-PB-B32	AP-LT-PB-T1	AP-LT-PB-T10	AP-LT-PB-T12	AP-LT-PB-T14	AP-LT-PB-T16	AP-LT-PB-T3	AP-LT-PB-T5
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	2.0E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	3.8E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.9E+01

Seawater Blank Data

The data below correspond to analytical results for artificial seawater blanks collected by SSCSD over the course of the laboratory leaching effort. Flags are included in these tables, for which a listing of data qualifiers (flags) and meanings is included at the end of **APPENDIX B**. These samples were not leachate samples. Rather, they were seawater samples collected for QA/QC purposes and were analyzed for the same suite of PCB analytes (homologues and congeners) to provide an empirical measure of the degree of possible contamination during artificial seawater preparation or during laboratory analytical chemistry processes. A "leach rate" was not calculated from these data, as there is no leaching source present, but a data reduction into PCB mass was performed. "Seawater Blanks A" Sample IDs below reflect the preparer initials and date of preparation. Samples in "Seawater Blanks B" below were analyzed blindly, i.e they were disguised as leachate samples, and did not have Sample IDs similar to those in "Seawater Blanks A".

Seawater Blanks A: Analytical Results (ng/L)

Sample ID	CRI04	CRI04	CRI04	CRI04	CRI04	CRI04	CRI05	CRI05	CRI05	CRI05	JMG02	JMG03	JMG03	JMG03	JMG03	KML-	KML0	KML0	KML0	KML0	KML0	KML0
_	0300-	0300-	0300-	2500-	2500-	2500-	0200-	2300-	2300-	2300-	0100-	1500-	1500-	1500-	1500-	060500	60500-	61200-	61200-	70600-	71800-	71800-
	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	-MB-	MB-	MB-	MB-	MB-	MB-	MB-
	B01	B02	B03	B01	B02	B03	B01	B01	B02	B03	B01	B02	B03	B04	B05	B01	B02	B01	B02	B01	B01	B02
Sample	4/13/00	4/19/00	4/27/00	5/4/00	5/11/00	5/25/00	5/18/00	6/1/00	6/28/00	7/6/00	3/9/00	3/15/00	3/23/00	3/29/00	4/5/00	6/7/00	6/15/00	6/22/00	8/10/00	7/20/00	8/3/00	8/17/00
Date																						
Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	Units	ng/L
Cl1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.52
Qual_Cl2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J
PCB8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.48
Qual_PCB 8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J
C13	0	0	0	0	0	0	0	0	0	0	0	0	0	0.44	0	0	0	0	0	0	0	0
Qual_Cl3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
PCB18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB28	0	0	0	0	0	0	0	0	0	0	0	0	0	0.43	0	0	0	0	0	0	0	0
Qual_PCB 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND	ND	ND	ND
Cl4	0	0	0	0	0	0	0	0	0	0	0	0	0	0.47	0.6	0	0	0	0	0	0	19
Qual_Cl4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	J	ND	ND	ND	ND	ND	ND	

Sample ID	CRI04	CRI04	CRI04	CRI04	CRI04	CRI04	CRI05	CRI05	CRI05	CRI05	JMG02	JMG03	JMG03	JMG03	JMG03	KML-	KML0	KML0	KML0	KML0	KML0	KML0
	0300-	0300-	0300-	2500-	2500-	2500-	0200-	2300-	2300-	2300-	0100-	1500-	1500-	1500-	1500-	060500	60500-	61200-	61200-	70600-	71800-	71800-
	MB- B01	MB- B02	MB-	MB-	MB-	MB- B03	MB-	MB- B01	MB- B02	MB- B03	MB- B01	MB-	MB- B03	MB- B04	MB- B05	-MB- B01	MB- B02	MB- B01	MB-	MB-	MB-	MB-
PCB44	0	0	B03 0	B01 0	B02 0	0	B01 0	0	0	0	0	B02 0	0	0	0	0	0	0	B02 0	B01 0	B01 0	B02
Qual PCB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J.0
44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J
PCB49	0	0	0	0	0	0	0	0	0	0	0	0	0	0.44	0.54	0	0	0	0	0	0	0
Qual_PCB 49	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J		ND	ND	ND	ND	ND	ND	ND
PCB52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.4
Qual_PCB 52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 66	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB87	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 87	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB101	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 101	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB105	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 105	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB114	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB118	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 118	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 123	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID	CRI04	CRI04	CRI04	CRI04	CRI04	CRI04	CRI05	CRI05	CRI05	CRI05	JMG02	JMG03	JMG03	JMG03	JMG03	KML-	KML0	KML0	KML0	_	KML0	KML0
	0300-	0300-	0300-	2500-	2500-	2500-	0200-	2300-	2300-	2300-	0100-	1500-	1500-	1500-	1500-	060500	60500-	61200-	61200-	70600-	71800-	71800-
	MB-	MB- B01	MB-	MB-	MB-	MB-	MB-	MB-	MB- B05	-MB-	MB-	MB-	MB-	MB-	MB-	MB-						
C16	B01 0	B02 0	B03 0	B01 0	B02 0	B03 0	B01 0	0	B02 0	B03 0	B01 0	B02 0	B03 0	B04 0	0	B01 0	B02 0	B01 0	B02 0	B01 0	B01 0	B02 0
	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND									
Qual_Cl6	- '-								- ,-	'-	- ,					ND				,-	ND	ND
PCB128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 128	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB138	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 138	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB153	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 153	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB156	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 156	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB157	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 157	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C17	0	0	0	0	0	0	0	0	0	0	0	0	5	1.2	6.5	0	0	0	0	0	0	0
Qual_Cl7	ND	ND	ND	ND	ND		J		ND													
PCB170	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB183	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 183	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0	0	0	0	0	0	0	0	0	0.82	0.84	0.54	0	0	0	0	0	0	0
Qual_PCB 184	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J		J	ND						

Sample ID	CRI04	CRI04	CRI04	CRI04	CRI04	CRI04	CRI05	CRI05	CRI05	CRI05	JMG02		JMG03		JMG03		KML0	KML0	KML0	_		
	0300-	0300-	0300-	2500-	2500-	2500-	0200-	2300-	2300-	2300-	0100-	1500-	1500-	1500-	1500-	060500	60500-	61200-	61200-	70600-	71800-	71800-
	MB- B01	MB- B02	MB- B03	MB- B01	MB- B02	MB- B03	MB- B01	MB- B01	MB- B02	MB- B03	MB- B01	MB- B02	MB- B03	MB- B04	MB- B05	-MB- B01	MB- B02	MB- B01	MB- B02	MB- B01	MB- B01	MB- B02
PCB187	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oual PCB	ND	ND	ND	ND	ND	ND	ND															
187					·	·				- , -		·						·				
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 189	ND	ND	ND	ND	ND	ND	ND															
C18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl8	ND	ND	ND	ND	ND	ND	ND															
PCB195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 195	ND	ND	ND	ND	ND	ND	ND															
C19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl9	ND	ND	ND	ND	ND	ND	ND															
PCB206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 206	ND	ND	ND	ND	ND	ND	ND															
C110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl10	ND	ND	ND	ND	ND	ND	ND															
PCB209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB 209	ND	ND	ND	ND	ND	ND	ND															
Min	2.6	2.6	2.4	2.5	2.6	2.9	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.9	2.6	2.7	2.6	2.8	2.6	2.6
Reporting Limit																						
MDL_cong Cl1	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
MDL_cong Cl2	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
MDL8	0.44	0.44	0.41	0.42	0.44	0.49	0.44	0.44	0.45	0.44	0.44	0.44	0.44	0.43	0.44	0.49	0.43	0.46	0.45	0.47	0.45	0.45
MDL_cong Cl3	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
MDL18	0.66	0.66	0.62	0.64	0.66	0.74	0.66	0.66	0.68	0.66	0.67	0.66	0.67	0.65	0.66	0.74	0.65	0.7	0.68	0.71	0.68	0.68
MDL28	0.54	0.55	0.52	0.53	0.54	0.61	0.55	0.54	0.56	0.55	0.55	0.55	0.55	0.54	0.55	0.61	0.54	0.58	0.56	0.58	0.56	0.56
MDL_cong Cl4	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
MDL44	0.69	0.7	0.66	0.67	0.69	0.78	0.7	0.69	0.71	0.7	0.71	0.7	0.71	0.68	0.7	0.78	0.68	0.74	0.71	0.75	0.71	0.71
MDL49	0.77	0.78	0.73	0.75	0.77	0.87	0.78	0.77	0.79	0.78	0.78	0.78	0.78	0.76	0.78	0.87	0.76	0.82	0.79	0.83	0.79	0.79

Sample ID	CRI04	CRI04	CRI04	CRI04	CRI04	CRI04	CRI05	CRI05	CRI05	CRI05	JMG02	JMG03	JMG03	JMG03	JMG03	KML-	KML0	KML0	KML0	KML0	KML0	KML0
p	0300-	0300-	0300-	2500-	2500-	2500-	0200-	2300-	2300-	2300-	0100-	1500-	1500-	1500-	1500-	060500	60500-	61200-	61200-	70600-	71800-	71800-
	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	-MB-	MB-	MB-	MB-	MB-	MB-	MB-
107.50	B01	B02	B03	B01	B02	B03	B01	B01	B02	B03	B01	B02	B03	B04	B05	B01	B02	B01	B02	B01	B01	B02
MDL52	0.3	0.31	0.29	0.29	0.3	0.34	0.31	0.3	0.31	0.31	0.31	0.31	0.31	0.3	0.31	0.34	0.3	0.32	0.31	0.33	0.31	0.31
MDL66	0.66	0.67	0.63	0.64	0.66	0.75	0.67	0.66	0.68	0.67	0.68	0.67	0.68	0.66	0.67	0.75	0.66	0.71	0.68	0.72	0.68	0.68
MDL77	0.58	0.58	0.55	0.56	0.58	0.65	0.58	0.58	0.6	0.58	0.59	0.58	0.59	0.57	0.58	0.65	0.57	0.62	0.6	0.62	0.6	0.6
MDL_cong _Cl5	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
MDL87	0.79	0.8	0.75	0.77	0.79	0.89	0.8	0.79	0.81	0.8	0.81	0.8	0.81	0.78	0.8	0.89	0.78	0.84	0.81	0.85	0.81	0.81
MDL101	0.37	0.38	0.35	0.36	0.37	0.42	0.38	0.37	0.38	0.38	0.38	0.38	0.38	0.37	0.38	0.42	0.37	0.4	0.38	0.4	0.38	0.38
MDL105	0.42	0.42	0.4	0.41	0.42	0.47	0.42	0.42	0.43	0.42	0.43	0.42	0.43	0.41	0.42	0.47	0.41	0.45	0.43	0.45	0.43	0.43
MDL114	0.7	0.71	0.66	0.68	0.7	0.79	0.71	0.7	0.72	0.71	0.71	0.71	0.71	0.69	0.71	0.79	0.69	0.74	0.72	0.75	0.72	0.72
MDL118	0.68	0.68	0.64	0.66	0.68	0.76	0.68	0.68	0.7	0.68	0.69	0.68	0.69	0.67	0.68	0.76	0.67	0.72	0.7	0.73	0.7	0.7
MDL123	0.8	0.8	0.76	0.77	0.8	0.9	0.8	0.8	0.82	0.8	0.81	0.8	0.81	0.79	0.8	0.9	0.79	0.85	0.82	0.86	0.82	0.82
MDL126	0.69	0.7	0.66	0.67	0.69	0.78	0.7	0.69	0.71	0.7	0.71	0.7	0.71	0.68	0.7	0.78	0.68	0.74	0.71	0.75	0.71	0.71
MDL_cong Cl6	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
MDL128	0.26	0.26	0.24	0.25	0.26	0.29	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.29	0.26	0.27	0.26	0.28	0.26	0.26
MDL138	0.56	0.57	0.54	0.55	0.56	0.63	0.57	0.56	0.58	0.57	0.57	0.57	0.57	0.56	0.57	0.63	0.56	0.6	0.58	0.61	0.58	0.58
MDL153	0.28	0.28	0.26	0.27	0.28	0.31	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.27	0.28	0.31	0.27	0.29	0.28	0.3	0.28	0.28
MDL156	0.64	0.64	0.61	0.62	0.64	0.72	0.64	0.64	0.66	0.64	0.65	0.64	0.65	0.63	0.64	0.72	0.63	0.68	0.66	0.69	0.66	0.66
MDL157	0.63	0.63	0.6	0.61	0.63	0.71	0.63	0.63	0.65	0.63	0.64	0.63	0.64	0.62	0.63	0.71	0.62	0.67	0.65	0.68	0.65	0.65
MDL167	0.66	0.66	0.62	0.64	0.66	0.74	0.66	0.66	0.68	0.66	0.67	0.66	0.67	0.65	0.66	0.74	0.65	0.7	0.68	0.71	0.68	0.68
MDL169	0.61	0.61	0.58	0.59	0.61	0.69	0.61	0.61	0.63	0.61	0.62	0.61	0.62	0.6	0.61	0.69	0.6	0.65	0.63	0.66	0.63	0.63
MDL-	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
cong_Cl7																						
MDL170	0.66	0.66	0.62	0.64	0.66	0.74	0.66	0.66	0.68	0.66	0.67	0.66	0.67	0.65	0.66	0.74	0.65	0.7	0.68	0.71	0.68	0.68
MDL180	0.67	0.68	0.64	0.65	0.67	0.76	0.68	0.67	0.69	0.68	0.69	0.68	0.69	0.66	0.68	0.76	0.66	0.72	0.69	0.72	0.69	0.69
MDL183	0.38	0.38	0.36	0.37	0.38	0.43	0.38	0.38	0.39	0.38	0.39	0.38	0.39	0.38	0.38	0.43	0.38	0.41	0.39	0.41	0.39	0.39
MDL184	0.52	0.52	0.49	0.5	0.52	0.59	0.52	0.52	0.54	0.52	0.53	0.52	0.53	0.51	0.52	0.59	0.51	0.55	0.54	0.56	0.54	0.54
MDL187	0.67	0.68	0.64	0.65	0.67	0.76	0.68	0.67	0.69	0.68	0.69	0.68	0.69	0.66	0.68	0.76	0.66	0.72	0.69	0.72	0.69	0.69
MDL189	0.73	0.74	0.69	0.71	0.73	0.82	0.74	0.73	0.75	0.74	0.74	0.74	0.74	0.72	0.74	0.82	0.72	0.78	0.75	0.78	0.75	0.75
MDL_cong _Cl8	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
MDL195	0.6	0.61	0.57	0.58	0.6	0.68	0.61	0.6	0.62	0.61	0.61	0.61	0.61	0.59	0.61	0.68	0.59	0.64	0.62	0.65	0.62	0.62
MDL_cong Cl9	0.52	0.52	0.49	0.5	0.52	0.58	0.52	0.52	0.53	0.52	0.53	0.52	0.53	0.51	0.52	0.58	0.51	0.55	0.53	0.56	0.53	0.53
MDL206	0.23	0.24	0.22	0.23	0.23	0.26	0.24	0.23	0.24	0.24	0.24	0.24	0.24	0.23	0.24	0.26	0.23	0.25	0.24	0.25	0.24	0.24

Sample ID	CRI04	CRI04	CRI04	CRI04	CRI04	CRI04	CRI05	CRI05	CRI05	CRI05	JMG02	JMG03	JMG03	JMG03	JMG03	KML-	KML0	KML0	KML0	KML0	KML0	KML0
	0300-	0300-	0300-	2500-	2500-	2500-	0200-	2300-	2300-	2300-	0100-	1500-	1500-	1500-	1500-	060500	60500-	61200-	61200-	70600-	71800-	71800-
	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	-MB-	MB-	MB-	MB-	MB-	MB-	MB-
	B01	B02	B03	B01	B02	B03	B01	B01	B02	B03	B01	B02	B03	B04	B05	B01	B02	B01	B02	B01	B01	B02
MDL_cong	0.59	0.59	0.56	0.57	0.59	0.66	0.59	0.59	0.61	0.59	0.6	0.59	0.6	0.58	0.59	0.66	0.58	0.63	0.61	0.63	0.61	0.61
_C110																						
MDL209	0.59	0.59	0.56	0.57	0.59	0.66	0.59	0.59	0.61	0.59	0.6	0.59	0.6	0.58	0.59	0.66	0.58	0.63	0.61	0.63	0.61	0.61
Sample	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S	NC22S
Delivery	DG006	DG007	DG008	DG009	DG010	DG012	DG011	DG013	DG017	DG018	DG001	DG002	DG003	DG004	DG005	DG014	DG015	DG016	DG022	DG020	DG021	DG023
Group																						
Sample	0.97	0.96	1	1	0.97	0.86	0.96	0.97	0.94	0.96	0.95	0.96	0.95	0.98	0.96	0.86	0.98	0.91	0.94	0.9	0.94	0.94
Size																						
Size Units	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Seawater Blanks A: PCB Mass per Sample (ng)

			1			1	1	1	1	1		1		1	1		1			1		
Sample	CRI04	CRI04	CRI04	CRI04	CRI04	CRI04	CRI05	CRI05	CRI05	CRI05	JMG02	JMG03		JMG03	JMG03	KML-	KML0	KML0		KML0	KML0	KML0
ID	0300-	0300-	0300-	2500-	2500-	2500-	0200-	2300-	2300-	2300-	0100-	1500-	1500-	1500-	1500-	060500	60500-	61200-	61200-	70600-	71800-	71800-
	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	MB-	-MB-	MB-	MB-	MB-	MB-	MB-	MB-
	B01	B02	B03	B01	B02	B03	B01	B01	B02	B03	B01	B02	B03	B04	B05	B01	B02	B01	B02	B01	B01	B02
Cl1	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C12	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	4.9E-
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	01
PCB8	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	4.5E-
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	01
C13	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	4.3E-	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	01	0	0	0	0	0	0	0	0
PCB18	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB28	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	4.2E-	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	01	0	0	0	0	0	0	0	0
Cl4	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	4.6E-	5.8E-	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	1.8E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	01	01	0	0	0	0	0	0	1
PCB44	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	1.5E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB49	0.0E±0	0.0E±0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E±0	0.0E+0	0.0E+0	0.0E+0	0.0E±0	4.3E-	5.2E-	0.0E+0	0.0E+0	0.0E±0	0.0E+0	0.0E+0	0.0E±0	0.0E±0
1 02 .,	0.02	0.02	0	0.02	0	0.02	0.02	0.02	0	0	0	0.02	0.02	01	01	0	0.02	0.02	0	0.02	0	0.02
PCB52	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	3.2E±0
1 0002	0.02.0	0.02.0	0	0	0	0.02.0	0	0	0	0.02	0	0	0	0.02.0	0	0.02.0	0	0	0	0	0	0
PCB66	v	0.0E+0	0.0E+0	0.0E+0	0.0E+0	v	0.0E+0	0.0E+0	0.0E+0	V	0.0E+0	0.0E+0	0.0E+0	Ů	0.0E+0	V	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E±0
LCD00	0.01	0.01	0.02.0	0.0210	0.02 10	0.02.10	0.02.10	0.02.10	0.02.10	0.02.10	0.02.10	0.02.70	0.01	0.02 10	0.01	0.02.10	0.02.10	0.01	0.01	0.02 10	0.02.0	0.02.10
	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

								·			I		1								· · · · · · · · · · · · · · · · · · ·	
Sample		CRI04	CRI04	CRI04	CRI04	CRI04	CRI05	CRI05	CRI05	CRI05	JMG02	JMG03	JMG03	JMG03	JMG03	KML-	KML0	KML0	KML0	KML0	KML0	KML0
ID	0300-	0300-	0300-	2500-	2500-	2500-	0200-	2300-	2300-	2300-	0100-	1500-	1500-	1500-	1500-	060500	60500-	61200-	61200-	70600-	71800-	71800-
	MB-	MB-	MB-	-MB-	MB-	MB-	MB-	MB-	MB-	MB-												
	B01	B02	B03	B01	B02	B03	B01	B01	B02	B03	B01	B02	B03	B04	B05	B01	B02	B01	B02	B01	B01	B02
PCB77	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E + 0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C15	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E + 0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E + 0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB87	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB10	0.0E+0	0.0E+0	0.0E±0	0.0E±0	0.0E+0	0.0E±0	0.0E+0	0.0E+0	0.0E+0	0.0E±0	0.0E+0	0.0E±0	0.0E±0	0.0E+0	0.0E+0	0.0E±0	0.0E±0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E±0
1	0.02	0	0.02	0.02	0	0.02	0	0.02	0.02	0	0.02	0.02	0	0	0.02	0.02	0	0	0.02	0	0.02	0.02
PCB10	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E±0	0.0E±0	0.0E+0	0.0E+0	0.0E+0	0.0E±0	0.0E+0	0.0E±0	0.0E±0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E±0
5	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02	0.02.0	0.02.0	0.02.0	0.02.0
PCB11	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0	·		0.0E+0	0.0E+0	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
1	0.01.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01.0	0.01	0.01.0
PCB11	0.0E+0	U	0.0E+0	0.0E±0	V	0.0E+0	v	0.0E+0	V	Ü	0.0E+0	·	0.0E+0	0.0E+0	0.0E+0	·	v	0.0E+0	0.0E+0		0.0E±0	0.0E+0
Q	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
DCD12	0.0E+0	0.0E+0	0.05+0	0.05+0	0.0E+0	0.05+0	0.0E+0	0.05+0	V	0.05+0	V	Ů	0.0E+0	0.05+0	0.05+0	V	Ů	0.0E+0	0.0E+0	0.05+0	0.05+0	0.0E+0
2	0.0E±0	0.0E±0	0.0E±0	0.0ETO	0.0E±0	0.0E±0	0.0E+0	0.0ETO	0.0E±0	0.0E±0	0.0E+0	0.0E±0	0.0ETO	0.0E±0	0.0E±0	0.0E±0	0.0E±0	0.0E±0	0.0ETO	0.0E±0	0.0E±0	0.0E±0
DCD12		U	0.05.0	0.05.0	0.05.0	v	U	0.05.0	v	0.05+0	Ů	Ů	0.05.0	0.05+0	0.05+0	Ů	U	0.05+0	0.05.0	0.05.0	0.05+0	v
PCB12	0.0E+0	0.0E+0	0.0E+0	0.0E+0			0.0E+0	0.0E+0	0.0E+0		0.0E+0		0.0E+0	0.0E+0					0.0E+0	0.0E+0	0.0E+0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C16		0.0E+0	0.0E+0		0.0E+0		0.0E+0			_	0.0E+0			_			0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB12	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB13	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB15	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB15	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB15	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E + 0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB16	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E + 0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB16	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C17	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	4.8E+0	1.2E+0	6.2E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCB17	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0		0.0E+0	0.0E+0		0.0E+0	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E±0
0	0.01.0	0.01	0.02.0	0.02.0	0	0	0.01	0	0.02.0	0.01.0	0.02.0	0.01	0.01.0	0.01.0	0.02.0	0.02.0	0.01	0	0	0.02.0	0.02.0	0.01.0
PCR18	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0	·	0.0E+0	0.0E+0	0.0E+0	0.0E+0		0.0E+0	0.0E+0	0.0E+0	0.0E+0	·	0.0E+0	0.0E+0	0.0E+0	0.0E+0	v
0	0.01	0.01	0.01	0.01.0	0.01	0.01	0.01	0.02.0	0.01	0.01	0.01	0.01	0.01	0.01.0	0.01	0.01	0.01	0.01	0.02.0	0.01	0.01	0.01
DCB10	0.0E+0	0.0E+0	0 0E±0	0.0E±0	Ů	v	Ů	0.0E+0	v	Ů	Ů	Ů	0.0E±0	0.0E±0	Ů	Ů	Ů	0 0E±0	0.0E+0	0 0E±0		v
LCDIO	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU	U.UETU

ID	0 0 0.0E+0 0.0E+0 0 0 0.0E+0 0.0E+0 0 0
MB- MB- MB- B02 B03 B01 B02 B03 B01 B02 B03 B01 B02 B03 B01 B02 B03 B01 B02 B03 B01 B02 B03 B01 B02 B03 B01 B02 B03 B04 B05 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B03 B04 B05 B01 B02 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05 B03 B04 B05	MB- MB- B01 B02 0 0 0.0E+0 0.0E+0 0 0 0.0E+0 0.0E+0 0 0 0.0E+0 0.0E+0 0 0
B01 B02 B03 B01 B02 B03 B01 B02 B03 B01 B01 B02 B03 B01 B02 B03 B01 B02 B03 B04 B05 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B02 B01 B03 B04 B05 B01 B02 B01 B02 B01 B03 B04 B05 B01 B05 B05 B01 B05 B05 B01 B05	B01 B02 0 0 0.0E+0 0.0E+0 0 0 0.0E+0 0.0E+0 0 0 0.0E+0 0.0E+0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0.0E+0 0.0E+0 0 0 0.0E+0 0.0E+0 0 0 0.0E+0 0.0E+0 0 0
PCB18	0.0E+0
4 0	0 0 0.0E+0 0.0E+0 0 0 0.0E+0 0.0E+0 0 0
PCB18	0 0 0.0E+0 0.0E+0 0 0
7 0	0 0 0.0E+0 0.0E+0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0.0E+0 0.0E+0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0E+0
	0
	0 0
PCB19 0.0E+0 0.0	0.0E+0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
$ \begin{bmatrix} \text{C19} & & & & & & & & & & & & & & & & & & &$	0.0E+0 0.0E+0
	0 0
$ \left \text{PCB20} \right 0.0E+0 \right 0.0E+0 \right 0.0E+0 \right 0.0E+0 \\ \left 0.0E+0$	0.0E+0 $0.0E+0$
	0 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0E+0 0.0E+0
	0 0
PCB20 0.0E+0 0.0E	0.0E+0 0.0E+0
	0 0
tPCBs 0.0E+0 0.0E	0.0E+0 1.8E+0
	0 1

Seawater Blanks B: Analytical Results (ng/L)

Sample ID	225-27B-	225-	225-27B-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-
	QC-B014	27B-	QC-B018	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-
		QC-		QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-
		B016		B019	B020	B021	B022	B023	B024	B025	B026	B027	B028	B030	B031	B032	B033	B034	B035
Sample Date	8/24/00	9/7/00	10/17/00	10/19/00	11/9/00	11/29/00	3/8/01	3/9/01	3/28/01	4/19/01	4/25/01	6/21/01	7/26/01	10/2/01	11/8/01	11/29/01	12/19/01	3/6/02	5/16/02
Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	Units	ng/L
C11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C13	0	0	0	0	0.85	0	0	0	0	0	0	0	0	0	4.3	0	0	0	0

Sample ID	225-27B-	225-	225-27B-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-
	QC-B014	27B-	QC-B018	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-
		QC- B016		QC- B019	QC- B020	QC- B021	QC- B022	QC- B023	QC- B024	QC- B025	QC- B026	QC- B027	QC- B028	QC- B030	QC- B031	QC- B032	QC- B033	QC- B034	QC- B035
Qual_Cl3	ND	ND	ND	ND	J	ND	J	ND	ND	ND	ND								
PCB18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB28	0	0	0	0	0.76	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB28	ND	ND	ND	ND	J	ND													
Cl4	0	0	0	0	0	0	0	0	0	0	0	0	9.7	24	0	0	0	0	0
Qual_Cl4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND
PCB44	0	0	0	0	0	0	0	0	0	0	0	0	0	1.9	0	0	0	0	0
Qual_PCB44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND
PCB49	0	0	0	0	0	0	0	0	0	0	0	0	2.2	1.8	0	0	0	0	0
Qual_PCB49	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	J	ND	ND	ND	ND	ND
PCB52	0	0	0	0	0	0	0	0	0	0	0	0	3	3.5	0	0	0	0	0
Qual_PCB52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	J	ND	ND	ND	ND	ND
PCB66	0	0	0	0	0	0	0	0	0	0	0	0	0	1.3	0	0	0	0	0
Qual_PCB66	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND
PCB77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C15	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0
Qual_Cl5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
PCB87	0	0	0	0	0	0	0	0	0	0	0	0	0	3.2	0	0	0	0	0
Qual_PCB87	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND
PCB101	0	0	0	0	0	0	0	0	0	0	0	0	0	3.6	0	0	0	0	0
Qual_PCB101	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND
PCB105	0	0	0	0	0	0	0	0	0	0	0	0	0	3.4	0	0	0	0	0
Qual_PCB105	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND
PCB114	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB118	0	0	0	0	0	0	0	0	0	0	0	0	0	3.8	0	0	0	0	0
Qual_PCB118	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND
PCB123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB123	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB126	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB126	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID	225-27B-	225-	225-27B-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-
	QC-B014	27B-	QC-B018	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-
		QC- B016		QC- B019	QC- B020	QC- B021	QC- B022	QC- B023	QC- B024	QC- B025	QC- B026	QC- B027	QC- B028	QC- B030	QC- B031	QC- B032	QC- B033	QC- B034	QC- B035
Cl6	0	0	0	0	0	0	0	0	0	0	0	0	0	19	0	0	0	0	0
Qual_Cl6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
PCB128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB128	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB138	0	0	0	0	0	0	0	0	0	0	0	0	0	3.4	0	0	0	0	0
Qual_PCB138	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND
PCB153	0	0	0	0	0	0	0	0	0	0	0	0	0	3.5	0	0	0	0	0
Qual PCB153	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	J	ND	ND	ND	ND	ND
PCB156	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB156	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB157	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB157	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB167	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB167	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB169	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB169	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB170	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB183	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB183	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB184	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB187	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB187	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB189	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Sample ID	225-27B-	225-	225-27B-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-
	QC-B014	27B-	QC-B018	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-
		QC- B016		QC- B019	QC- B020	QC- B021	QC- B022	QC- B023	QC- B024	QC- B025	QC- B026	QC- B027	QC- B028	QC- B030	QC- B031	QC- B032	QC- B033	QC- B034	QC- B035
Qual_PCB195	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB206	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_Cl10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Qual_PCB209	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Min Reporting Limit	2.6	2.6	5.3	5.3	5.2	5.3	2.7	2.8	5.3	5.6	5.5	5.3	5.4	5.4	5.7	5.6	2.6	5.6	11
MDL_cong_Cl	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
MDL_cong_Cl 2	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
MDL8	0.44	0.44	0.45	0.45	0.44	0.45	0.23	0.24	0.45	0.47	0.46	0.44	0.46	0.46	0.48	0.47	0.22	0.47	0.47
MDL_cong_Cl	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
MDL18	0.66	0.66	0.68	0.68	0.66	0.68	0.34	0.36	0.68	0.72	0.7	0.67	0.69	0.69	0.72	0.72	0.33	0.71	0.71
MDL28	0.55	0.55	0.56	0.56	0.55	0.56	0.28	0.3	0.56	0.59	0.58	0.55	0.57	0.57	0.6	0.59	0.27	0.58	0.58
MDL_cong_Cl 4	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
MDL44	0.7	0.7	0.71	0.71	0.7	0.71	0.36	0.38	0.71	0.76	0.74	0.71	0.73	0.73	0.76	0.76	0.35	0.75	0.75
MDL49	0.78	0.78	0.79	0.79	0.78	0.79	0.4	0.42	0.79	0.84	0.82	0.78	0.81	0.81	0.85	0.84	0.39	0.83	0.83
MDL52	0.31	0.31	0.31	0.31	0.31	0.31	0.16	0.16	0.31	0.33	0.32	0.31	0.32	0.32	0.33	0.33	0.15	0.33	0.33
MDL66	0.67	0.67	0.68	0.68	0.67	0.68	0.35	0.36	0.68	0.72	0.71	0.68	0.7	0.7	0.73	0.72	0.34	0.72	0.72
MDL77	0.58	0.58	0.6	0.6	0.58	0.6	0.3	0.31	0.6	0.63	0.62	0.59	0.61	0.61	0.64	0.63	0.29	0.62	0.62
MDL_cong_Cl 5	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
MDL87	0.8	0.8	0.81	0.81	0.8	0.81	0.41	0.43	0.81	0.86	0.84	0.81	0.83	0.83	0.87	0.86	0.4	0.85	0.85
MDL101	0.38	0.38	0.38	0.38	0.38	0.38	0.19	0.2	0.38	0.41	0.4	0.38	0.39	0.39	0.41	0.41	0.19	0.4	0.4
MDL105	0.42	0.42	0.43	0.43	0.42	0.43	0.22	0.23	0.43	0.46	0.45	0.43	0.44	0.44	0.46	0.46	0.21	0.45	0.45
MDL114	0.71	0.71	0.72	0.72	0.71	0.72	0.36	0.38	0.72	0.76	0.74	0.71	0.74	0.74	0.77	0.76	0.35	0.75	0.75
MDL118	0.68	0.68	0.7	0.7	0.68	0.7	0.35	0.37	0.7	0.74	0.72	0.69	0.71	0.71	0.74	0.74	0.34	0.73	0.73
MDL123	0.8	0.8	0.82	0.82	0.8	0.82	0.42	0.43	0.82	0.87	0.85	0.81	0.84	0.84	0.88	0.87	0.4	0.86	0.86
MDL126	0.7	0.7	0.71	0.71	0.7	0.71	0.36	0.38	0.71	0.76	0.74	0.71	0.73	0.73	0.76	0.76	0.35	0.75	0.75

Sample ID	225-27B-	225-	225-27B-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-
	QC-B014	27B-	QC-B018	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-
		QC- B016		QC- B019	QC- B020	QC- B021	QC- B022	QC- B023	QC- B024	QC- B025	QC- B026	QC- B027	QC- B028	QC- B030	QC- B031	QC- B032	QC- B033	QC- B034	QC- B035
MDL cong Cl	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
6	0.52	0.52	0.55	0.55	0.52	0.55	0.27	0.20	0.55	0.50	0.55	0.55	0.51	0.51	0.57	0.50	0.20	0.50	0.50
MDL128	0.26	0.26	0.26	0.26	0.26	0.26	0.13	0.14	0.26	0.28	0.27	0.26	0.27	0.27	0.28	0.28	0.13	0.28	0.28
MDL138	0.57	0.57	0.58	0.58	0.57	0.58	0.29	0.31	0.58	0.61	0.6	0.57	0.59	0.59	0.62	0.61	0.28	0.61	0.61
MDL153	0.28	0.28	0.28	0.28	0.28	0.28	0.14	0.15	0.28	0.3	0.29	0.28	0.29	0.29	0.3	0.3	0.14	0.3	0.3
MDL156	0.64	0.64	0.66	0.66	0.64	0.66	0.33	0.35	0.66	0.7	0.68	0.65	0.67	0.67	0.7	0.7	0.32	0.69	0.69
MDL157	0.63	0.63	0.65	0.65	0.63	0.65	0.33	0.34	0.65	0.68	0.67	0.64	0.66	0.66	0.69	0.68	0.32	0.68	0.68
MDL167	0.66	0.66	0.68	0.68	0.66	0.68	0.34	0.36	0.68	0.71	0.7	0.67	0.69	0.69	0.72	0.71	0.33	0.71	0.71
MDL169	0.61	0.61	0.63	0.63	0.61	0.63	0.32	0.33	0.63	0.66	0.65	0.62	0.64	0.64	0.67	0.66	0.31	0.66	0.66
MDL- cong_Cl7	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
MDL170	0.66	0.66	0.68	0.68	0.66	0.68	0.34	0.36	0.68	0.71	0.7	0.67	0.69	0.69	0.72	0.71	0.33	0.71	0.71
MDL180	0.68	0.68	0.69	0.69	0.68	0.69	0.35	0.37	0.69	0.73	0.72	0.69	0.71	0.71	0.74	0.73	0.34	0.72	0.72
MDL183	0.38	0.38	0.39	0.39	0.38	0.39	0.2	0.21	0.39	0.42	0.41	0.39	0.4	0.4	0.42	0.42	0.19	0.41	0.41
MDL184	0.52	0.52	0.54	0.54	0.52	0.54	0.27	0.28	0.54	0.57	0.55	0.53	0.55	0.55	0.57	0.57	0.26	0.56	0.56
MDL187	0.68	0.68	0.69	0.69	0.68	0.69	0.35	0.37	0.69	0.73	0.72	0.69	0.71	0.71	0.74	0.73	0.34	0.72	0.72
MDL189	0.74	0.74	0.75	0.75	0.74	0.75	0.38	0.4	0.75	0.79	0.78	0.74	0.77	0.77	0.8	0.79	0.37	0.78	0.78
MDL_cong_Cl	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
MDL195	0.61	0.61	0.62	0.62	0.61	0.62	0.31	0.33	0.62	0.65	0.64	0.61	0.63	0.63	0.66	0.65	0.3	0.65	0.65
MDL_cong_Cl	0.52	0.52	0.53	0.53	0.52	0.53	0.27	0.28	0.53	0.56	0.55	0.53	0.54	0.54	0.57	0.56	0.26	0.56	0.56
MDL206	0.24	0.24	0.24	0.24	0.24	0.24	0.12	0.13	0.24	0.25	0.25	0.24	0.24	0.24	0.26	0.25	0.12	0.25	0.25
MDL_cong_Cl	0.59	0.59	0.61	0.61	0.59	0.61	0.31	0.32	0.61	0.64	0.63	0.6	0.62	0.62	0.65	0.64	0.3	0.63	0.63
MDL209	0.59	0.59	0.61	0.61	0.59	0.61	0.31	0.32	0.61	0.64	0.63	0.6	0.62	0.62	0.65	0.64	0.3	0.63	0.63
Sample	NC22SD	NC22S	NC28SD	NC28S	NC28S	NC28S	NC28S	NC28S	NC28S	NC28S	NC28S	NC34S	NC34S	NC34S	NC34S	NC34S	CSC81S	CSC81	CSC81S
Delivery Group	G024	DG025	G002	DG002	DG005	DG007	DG016	DG016	DG019	DG022	DG023	DG002	DG007	DG010	DG012	DG013	DG001	SDG00	DG011
Sample Size	0.96	0.96	0.94	0.94	0.96	0.94	0.93	0.89	0.94	0.89	0.91	0.95	0.92	0.92	0.88	0.89	0.96	0.9	0.9
Size Units	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Seawater Blanks B: PCB Mass per Sample (ng)

Sample	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-
ID	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-	27B-
	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-	QC-
G14	B014	B016	B018	B019	B020	B021	B022	B023	B024	B025	B026	B027	B028	B030	B031	B032	B033	B034	B035
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C13	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB28	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.3E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl4	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.9E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB44	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB49	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.0E+00	1.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB52	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.8E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB66	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.2E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB87	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.9E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.3E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.5E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.7E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00				0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00	0.0E+00		0.0E+00	0.0E+00		0.0E+00	
PCB180	0.0E+00	****	0.0E+00	0.0E+00	****	0.0E+00	0.0E+00	****		0.0E+00		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
PCB183	0.0E+00		0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00		0.0E+00		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	****	****	****	****	****	****	****	****	****	****				0.0E+00	****	****	****	0.0E+00	
. CD104	0.0E 100	0.0E+00	0.0E+00	0.0E+00	0.0E 100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E 100	0.0D 100	0.0E 100	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0L 100

Sample	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-	225-
ID	27B-																		
	QC-																		
	B014	B016	B018	B019	B020	B021	B022	B023	B024	B025	B026	B027	B028	B030	B031	B032	B033	B034	B035
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.2E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.9E+00	1.3E+02	3.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Data Quality Analysis

The leachate analytical chemistry data quality met or exceeded data quality objectives. At the conclusion of the leaching experiments, each solid-specific dataset was evaluated to verify analysis of the correct number and type of samples, and to ascertain whether the analytical data from each chemical analysis were internally consistent. The data were also inspected to ensure that all appropriate quality assurance/quality control procedures were followed, and that the data were scientifically or experimentally meaningful, from a practical leaching experiment perspective. If an issue was noted during this evaluation, the data were reanalyzed blindly, i.e. without any information provided to the analyst for the sample/data issue in question. A revised/corrected dataset then replaced the original/incorrect dataset, and was treated like a new dataset, i.e. subjected to the inspection process again. The original dataset was retained as an archived preliminary draft. Using this methodology, a high quality dataset for each leaching experiment was finalized for use in the data reduction and analysis phase. The analytical chemistry QAPP specified in this study used a performance-based QA/QC evaluation with ongoing quality control evaluations using standard reference materials/certified reference materials (SRM/CRM) and other quality checks that required repreping/reanalysis as corrective action if QA/QC criteria were not met. This lessens the need to have 3rd party validation as normally done under CLP because "unuseable" data are not reported (they are rerun instead). Analytical chemistry data and associated analytical QA/QC can be found in this APPENDIX C.

In addition to the general data quality evaluation/validation described above, an evaluation of uncertainty or confidence level was performed for each analyte on a congener-specific detection limit basis, i.e. individual congener detection and congener detection within the homolog groups. (The term "detection limit" is used throughout to mean sample-specific method detection limit, unless indicated otherwise.) In cases where a congener was detected above the sample-specific detection limit, but below the sample-specific minimum reporting limit (MRL), the value was marked or J-flagged, indicated less confidence in the value because it was below the lowest calibration standard. Congener analysis results below the detection limit were flagged as ND. Because a process (leaching) was being sampled and evaluated, much different from sampling a distribution (e.g. sampling in the natural environment), all experimentally determined congener and homolog data were considered valid, and used in this study as measured. For similar reasons, non-detected (ND) congeners and homologs were not assigned a value of zero, or estimated, and were thus not treated quantitatively or included as part of an experimental leaching curve.

An important reason for measuring PCB homolog group concentrations with GC-MS/SIM method is to provide an empirical value for tPCBs by summing the measured homolog values. This approach is not as widely used for environmental studies because, historically, many regulatory sampling and analysis programs have required only the measurement of specific congeners of interest and subsequently an estimation of tPCBs from the environmental concentrations of those congeners was performed. Much of the toxicological and risk assessment information available is also centered on congeners and estimated tPCBs. In this effort, we were presented with the opportunity to obtain an empirical value for tPCBs, vice an estimation of tPCBs. Thus, to reduce this type of uncertainty, we measured and summed homologs for tPCBs as this provided a more accurate tPCB value.

The data quality analysis for homologs is performed as with congener analytes (on a congener-specific and sample specific detection limit basis) except this is only for congeners *detected* within each homolog group (mass-selected at the detector). For *undetected* congeners in the homolog group, as a reasonable estimation of the maximum congener concentration (conservative congener limit), it is generally accepted that the amount that could be present at undetectable levels, would be ½ the sample-specific detection limit (DL) for that congener.[1, 2] This is derived by assuming that the likely mean concentration of results is randomly distributed below the detection limit with a normal distribution. For a homolog group, which is comprised of all congeners mass selected and detected at the molecular

weight for congeners in that homolog group, the contributing/present congeners in that homolog group need not be isolated chromatographically to quantify the total amount of that homolog group present (can be done if all of those congeners are specifically separated and analyzed for as target congeners). What this means is that non-target (not isolated chromatographically) congeners in a homolog group can be quantified, even for a GC peak with multiple coeluting congeners belonging to a given homolog group, as part of that homolog group, by molecular weight without separation into individual GC peaks. Rarely, if ever, are all of the possible congeners (209) distributed across all homolog groups (10) determined specifically in analyses of environmental samples, due to coelution of difficult-to-separate congeners. Because of this, it is necessary to derive an approach for estimating a *conservative homolog upper limit*, similar to that described for the conservative congener limit above.

The algorithm developed for calculating conservative homolog limits is based on the average sample-specific congener DL across all (31) target congeners. A homolog DL is calculated by multiplying the number of possible GC peaks corresponding to both the non-detected target congeners and non-target congeners in a given homolog group, by this average sample-specific DL. The number of peaks in each homolog group is initially reduced by the number of co-eluting congeners[3, 4, 5,6] and reduced further by the number of detected (target) congeners. The algorithm then compares the sum of detected target congeners in a homolog group to the total possible congeners in that homolog group, and calculates the hypothetical concentration possible (conservative limit) for that homolog group. This estimated conservative limit is defined as the concentration where all of the congeners in the homolog group could be present (50% of the time) at just under their detection limit. Of the possible 209 congeners, 31 congeners, spread across the ten homolog groups, were measured specifically in this study. Those detected in a given sample are used as indicated above to first decrease both the measured homolog group value (Equation 1) and the calculated homolog conservative limit value (Equation 2), giving an increased confidence to the hypothetical homolog value. In addition, co-elution of multiple congeners within GC peaks (if peak not detected, multiple congeners in that peak are therefore not detected) was used as indicated above to decrease the hypothetical conservative limit for a homolog group measurement. Finally, after minimizing the conservative limit in this way, it was then compared to the residual homolog value to gain insight into how well the residual measured homolog value represents both the non-target and non-detected target congeners in the homolog group. This algorithm was applied to each sample analyzed in the leach rate dataset, on a sample-specific basis (based on sample specific detection limits) to determine a reasonable conservative limit for all non-detected and detected (below MDL value) homolog groups in all samples analyzed.

Equation 1

$$RHV_h = DHV_h - DCV_h$$

where RHV_h (ng/L) is the residual homolog value for a given homolog group, DHV_h (ng/L) is the detected homolog value for a given homolog group, and DCV_h (ng/L) is the detected (target) congener values within a given homolog group.

Equation 2

$$EHM = \frac{AvgCDL_h(\#NDC_h + \#NTC_h)}{2}$$

where EHM (ng/L) is the estimated homolog minimum for a given homolog group, #NDC_h is the number of non-detected (target) congener peaks for a given homolog group, and AvgCDL_h (ng/L) is the average target congener sample specific MDL. The use of #NDC_h and #NTC_h takes into account the number of congeners that may co-elute in any given GC peak. (If a peak is not detected, then all co-eluting congeners in that peak are not detected). Results of this homolog uncertainty analysis for all leaching experiment data are included in the Shipboard-Solid-Specific Homolog Data Quality Evaluation and Validation section below.

Shipboard-Solid-Specific Homologue Data Quality Evaluation and Validation

As described in the Data Quality Analysis section, an additional evaluation was also developed and performed for each dataset by evaluating the detection on a total homologue basis. Homologue detection limits were calculated on a sample specific basis, using assumptions regarding the non-target-congeners and the corresponding non-target-congener-specific detection limits. The approach used to estimate this quantity is outlined below. Again, for reasons described above, all experimentally determined homologue (and congener) data values, except for non-detects, were considered valid and used in this study as measured. A level of confidence evaluation was performed, but this evaluation was at no time used as justification for replacement of a low or non-detected analyte value with an estimated (more uncertain) value. Non-detect (ND) results were also validated, but no numerical value was assigned to them for subsequent data reduction to avoid skewing the process trend (curve) in an invalid manner. The homologue data quality evaluation assured that the regression analysis of leach rate curves would be valid.

The following description is focused specifically on evaluating low or near detection limit homologue data for purposes of determining how well the measured homologue values in any given leachate sample represented all of the congeners (both target and non-target) in each homologue group. This is similar to how one would evaluate the confidence in a measured value for a single analyte relative to detection limit. However, several important differences exist when evaluating the confidence to be placed in a homologue value. Because a homologue analysis by GC-MS (SIM) is essentially a summation of all congener analytes separated and detected by mass as part of the homologue group as they come off of the chromatographic column, a sample-specific "detection limit" for a homologue group does not exist in the analyte sense. Rather, a homologue detection limit is based upon the individual detection limits for each of the congeners in the homologue group. The logical extension of this is an "estimated homologue minimum", or EHM, defined as the hypothetical concentration possible for that homologue group using the detection limits for all congeners in the group. The EHM is equal to the concentration where all of the undetected target and non-target congeners (all congeners except the detected congeners) in the homologue group would be present, on average 50% of the time, at just below their detection limits. (See Equation 3 and Equation 4 in the Data Quality Analysis section.) The approach developed to evaluate homologue group data compares this EHM to the residual homologue value, or RHV, defined as the measured homologue value minus the sum of all detected target congeners in that homologue group. EHM values were calculated for each analytical sample and also include an adjustment for co-elution of multiple congeners within GC peaks for each homologue group (if peak is not detected, multiple congeners in that peak are therefore not detected). The EHM to RHV comparison was then performed to evaluate how well the RHV value represented the sum of non-target and nondetected target congeners in the homologue group. This was especially useful for samples with very low or near detection limit homologue concentrations observed, providing an indicator of what the possible maximum homologue concentration could be in that sample.

This algorithm was applied to each homologue value detected for the entire leaching concentration dataset, on a sample-specific basis, using an average of the sample-specific target

congener detection limits (for the 31 measured target congeners) to calculate EHM. For each leachate sample collected during a leaching experiment, the detected homologues, the sum of detected target congeners, and the calculated RHV and EHM were compared to show where the low or near detection limit homologues were observed in the leaching process. The homologue analysis results shown in the leaching-experiment-specific Figures below are only for those experiments with homologue groups that exhibited very low or near detection limit values at least once across the experimental leaching series; identifiable as those RHV values (blue bars) that were detected below the EHM (cyan bars) for that homologue group. This generally occurs early and/or late in the leaching experiments, when leaching levels are lowest (just beginning or decreased to a very low level). Homologue groups for experiments that never exhibited RHVs less than EHMs across the entire leaching experiment are not shown because these large homologue data values were considered truly representative of the homologue group. Greater RHVs relative to the EHM indicates greater the confidence in the measured homologue, whereas a larger EHM relative to RHV indicates a lower confidence in how well the measured homologue represents the homologue group. The homologue group upper limit can thus be estimated as the measured homologue value + the EHM – the RHV.

Aroclor 1254 (A1254) Homologue Data Evaluation

RHV-EHM comparisons for homologue Cl3 are shown in Figure 1 below for the A1254 control leaching experiment. This was the only homologue group in this leaching experiment that exhibited any low RHVs relative to EHMs (RHV < EHM), specifically in sample number 3. The difference between RHV and EHM in this sample is what would be added to the measured Cl3 homologue value to provide an estimated upper limit or maximum possible value for the homologue group. What this means is that the Cl3 leach rate calculated from the sample (#3) where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the A1254 leaching experiment.

Figure 1. Cl3 homologue data evaluation for pure Aroclor 1254.

Black Rubber Pipe Hanger Liner (BRPHL) Homologue Data Evaluation

RHV-EHM comparison results are shown below in Figure 2 (a-c) for Cl2, Cl3, and Cl7 homologue groups in the BRPHL leaching experiment, where a lower RHV (dark blue bars) relative to EHM (cyan bars) was occasionally observed (i.e. RHV < EHM) in leachate samples. The difference between RHV and EHM in such samples added to the measured homologue value provides an estimated upper limit or maximum possible homologue value. What this means is that the Cl2, Cl3, and Cl7 leach rates calculated from those samples where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the BRPHL leaching experiment.

Figure 2 (a-c). Cl2, Cl3, and Cl7 homologue data evaluation for BRPHL.

Electrical Cable (EC) Homologue Data Evaluation

RHV-EHM comparisons for homologue groups Cl3, Cl4, Cl6, and Cl7 are shown in Figure 3 (ad) for the EC leaching experiment. Again, in some samples, a lower RHV (dark blue bars) was present relative to EHM (cyan bars), i.e. RHV < EHM. The difference between RHV and EHM added to the measured homologue value in those samples provides an estimated upper limit provides an estimated upper limit or maximum possible homologue value. What this means is that the Cl3, Cl4, Cl6, and Cl7 leach rates calculated from those samples where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the EC leaching experiment.

Figure 3 (a-d). Cl3, Cl4, Cl6, and Cl7 homologue data evaluation for EC.

Foam Rubber/Ensolite (FRE) Homologue Data Evaluation

RHV-EHM comparisons for homologue groups Cl2, Cl3, Cl4, and Cl7 are shown in Figure 4 (a-d) for the FRE leaching experiment. Samples with RHV lower than EHM are indicated where dark blue bars are lower than cyan bars (RHV < EHM). The difference between RHV and EHM added to the measured homologue value provides an estimated upper limit or maximum possible homologue value in such samples. What this means is that the Cl2, Cl3, Cl4, and Cl7 leach rates calculated from those samples where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the FRE leaching experiment.

Figure 4 (a-d). Cl2, Cl3, Cl4, and Cl7 homologue data evaluation for FRE.

Aroclor 1268 (A1268) Homologue Data Evaluation

RHV-EHM comparisons for homologue groups Cl2, Cl6, and Cl9 are shown in Figure 5 (a-c) for the A1268 leaching experiment. RHV lower than EHM occurs in samples where dark blue bars are lower than cyan bars (where RHV < EHM). The difference between RHV and EHM added to the measured homologue value provides an estimated upper limit or maximum possible homologue value in those samples. What this means is that the Cl2, Cl6, and Cl9 leach rates calculated from those samples where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the A1268 leaching experiment.

Figure 5 (a-c). Cl2, Cl6, and Cl9 homologue data evaluation for A1268.

Bulkhead Insulation (BHI) Homologue Data Evaluation

RHV-EHM comparisons for homologue groups Cl2, Cl3, and Cl7 are shown in Figure 6 (a-c) for the BHI leaching experiment, homologue groups where RHVs (dark blue bars) are occasionally lower than EHMs (cyan bars) in leachate samples, or RHV < EHM. The difference between RHV and EHM added to the measured homologue value provides an estimated upper limit or maximum possible homologue value in those samples. What this means is that the Cl2, Cl3, and Cl7 leach rates calculated from those samples where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the BHI leaching experiment.

Figure 6 (a-c). Cl2, Cl3, and Cl7 homologue data evaluation for BHI.

Felt Gasket/Inner (FGI) Homologue Data Evaluation

RHV-EHM comparisons for homologue groups Cl4, Cl6, Cl7, Cl9, and Cl10 are shown in Figure 7 (a-e) for the FGI leaching experiment. These are the homologue groups where RHV < EHM, that is the RHVs (dark blue bars) were noted to be lower than EHMs (cyan bars) in some leachate samples. The difference between RHV and EHM added to the measured homologue value provides an estimated upper limit or maximum possible homologue value in those samples. What this means is that the Cl4, Cl6, Cl7, Cl9, and Cl10 leach rates calculated from those samples where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the FGI leaching experiment.

Figure 7 (a-e). Cl4, Cl6, Cl7, Cl9, and Cl10 homologue data evaluation for FGI.

Felt Gasket/Outer (FGO) Homologue Data Evaluation

RHV-EHM comparisons for homologue groups Cl2, Cl4, Cl6, and Cl7 are shown in Figure 8 (ad) for the FGO leaching experiment. RHV (dark blue bars) was lower than EHM (cyan bars) in some leachate samples, meaning RHV < EHM. The difference between RHV and EHM added to the measured homologue value provides an estimated upper limit or maximum possible homologue value in such samples. What this means is that the Cl2, Cl4, Cl6, and Cl7 leach rates calculated from those samples where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the FGO leaching experiment.

Figure 8 (a-d). C12, C14, C16, and C17 homologue data evaluation for FGO.

Aluminized Paint (AP) Homologue Data Evaluation

RHV-EHM comparisons for homologue groups Cl3, Cl4, Cl5, Cl6, and Cl7 are shown in Figure 9 (a-e) for the AP leaching experiment. The figures show where RHV < EHM, or RHV (dark blue bars) is lower than EHM (cyan bars) in some of the leachate samples. The difference between RHV and EHM added to the measured homologue value provides an estimated upper limit or maximum possible homologue value in those samples. What this means is that the Cl3, Cl4, Cl5, Cl6, and Cl7 leach rates calculated from those samples where RHV < EHM corresponds to where there is the most analytical uncertainty for homologues measured in the AP leaching experiment.

Figure 9 (a-e). Cl3, Cl4, Cl5, Cl6, and Cl7 homologue data evaluation for AP.

REFERENCES.

- 1. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C., "Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites", Publication OSWER 9285.6-10, December 1992, and "Supplemental Guidance to RAGS: Calculating the Concentration Term", Publication 9285.7-08I, May 1992.
- 2. See for example, EPA Regional Guidance on Handling Chemical Concentration Data Near the Detection Limit in Risk Assessments (mid-Atlantic Risk Assessment Technical Guidance Manual), and references therein, http://www.epa.gov/reg3hwmd/risk/human/info/guide3.htm, November 1991.
- 3. Roy, S.; and Camp, H. Personal Communication, regarding co-eluted PCB congeners in the Leach Rate Study using ADL-modified EPA Method 680, based on Frame's study of PCB congener retention and coelution on high resolution gas chromatographic columns [5] and Cochran and Frame's review article on high resolution gas chromatography of PCBs [6].
- 4. Sather, P. J., Ikonomou, M. G., Addison, R. F., He, T., Ross, P. S., and Fowler, B. "Similarity of an Aroclor-Based and a Full Congener-Based Method in Determining Total PCBs and a Modeling Approach to Estimate Aroclor Speciation from Congener Specific PCB Data", Environ. Sci. Technol. 35 (2001) 4874-4880.
- 5. Frame, G. M. "A Collaborative Study of 209 PCB Congeners and 6 Aroclors on 20 Different HRGC Columns, 1. Retention and Coelution Database", Fres. J. Anal. Chem. 357 (1997) 701-713.
- 6. Cochran, J. W.; and Frame, G. M. "Recent Developments in the High-Resolution Gas Chromatography of Polychlorinated Biphenyls", J. Chromat. A 843 (1999) 323-368.

APPENDIX D: DATASET FOR LABORATORY SIMULATED SHALLOW-WATER LEACHING STUDY

Leaching results for each of the materials tested are tabulated below. Multiple data sections as a function of leaching time are included for each solid tested and correspond to cumulative PCB concentrations over time (ng/L), and average leach rates (ng/g shipboard solid-day) calculated for intervals between listed leaching times, and normalized to the mass of shipboard solid tested, as described in the Leach Rate Calculations section. Cumulative leaching concentrations are calculated for the total leachate exposure volume for each shipboard solid leaching experiment as included in each subsection of the Shipboard Solid Specific Leaching Data section.

Aroclor 1254 (A1254) Results

Cumulative Leaching Concentration (ng/L)

Leaching	0.002	1.026	6.057	21.291	42.298	62.093	69.284	111.084	146.056	188.067	230.049	286.074	330.526	370.053	433.287
Time															
(days)	0.000	1.001	- 001	15.004	21.005	10.505	- 101	44.0	24052	12 011	44.000	56.005	11.150	20.525	(2.22.4
sampling	0.002	1.024	5.031	15.234	21.007	19.795	7.191	41.8	34.972	42.011	41.982	56.025	44.452	39.527	63.234
time (Δt)															
Cl1	0.0E+00	8.6E-01	4.4E+00	1.1E+01	1.7E+01	2.4E+01	2.6E+01	3.1E+01	3.6E+01	4.0E+01	4.4E+01	4.8E+01	5.2E+01	5.4E+01	5.6E+01
C12	0.0E+00	2.5E+00	1.2E+01	3.2E+01	5.3E+01	7.2E+01	8.1E+01	1.0E+02	1.2E+02	1.4E+02	1.5E+02	1.7E+02	1.9E+02	2.0E+02	2.1E+02
PCB8	0.0E+00	6.2E-01	4.4E+00	1.3E+01	2.1E+01	3.0E+01	3.4E+01	4.4E+01	5.2E+01	5.9E+01	6.6E+01	7.3E+01	8.0E+01	8.5E+01	9.1E+01
C13	0.0E+00	7.9E-01	7.3E+00	2.4E+01	4.1E+01	6.0E+01	7.2E+01	9.4E+01	1.1E+02	1.3E+02	1.5E+02	1.6E+02	1.8E+02	1.9E+02	2.1E+02
PCB18	0.0E+00	3.1E-01	2.7E+00	8.6E+00	1.6E+01	2.2E+01	2.6E+01	3.4E+01	4.2E+01	4.8E+01	5.4E+01	6.1E+01	6.9E+01	7.4E+01	8.0E+01
PCB28	0.0E+00	1.7E-01	2.2E+00	7.7E+00	1.4E+01	2.0E+01	2.5E+01	3.3E+01	3.9E+01	4.4E+01	5.0E+01	5.4E+01	5.8E+01	6.0E+01	6.3E+01
Cl4	0.0E+00	2.0E+00	4.3E+01	2.0E+02	4.4E+02	7.0E+02	9.4E+02	1.3E+03	1.6E+03	1.8E+03	2.2E+03	2.4E+03	2.7E+03	2.8E+03	3.0E+03
PCB44	0.0E+00	4.0E-01	9.0E+00	3.8E+01	8.0E+01	1.3E+02	1.6E+02	2.1E+02	2.4E+02	2.9E+02	3.4E+02	3.9E+02	4.3E+02	4.6E+02	4.9E+02
PCB49	0.0E+00	1.3E-01	3.2E+00	1.5E+01	3.1E+01	5.2E+01	6.8E+01	8.9E+01	1.1E+02	1.2E+02	1.5E+02	1.6E+02	1.8E+02	1.9E+02	2.0E+02
PCB52	0.0E+00	7.3E-01	1.9E+01	8.0E+01	1.8E+02	2.8E+02	3.6E+02	4.6E+02	5.4E+02	6.3E+02	7.5E+02	8.3E+02	9.2E+02	9.9E+02	1.0E+03
PCB66	0.0E+00	0.0E+00	4.9E-01	3.5E+00	8.8E+00	1.6E+01	2.6E+01	3.2E+01	3.9E+01	4.5E+01	5.9E+01	6.3E+01	6.7E+01	6.8E+01	7.1E+01
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.4E-02	9.4E-02	9.4E-02	9.4E-02	9.4E-02	9.4E-02	9.4E-02	9.4E-02	9.4E-02	9.4E-02
C15	0.0E+00	0.0E+00	8.6E+00	7.3E+01	2.3E+02	4.4E+02	7.3E+02	1.1E+03	1.3E+03	1.5E+03	2.1E+03	2.3E+03	2.4E+03	2.5E+03	2.6E+03
PCB87	0.0E+00	0.0E+00	3.8E-01	4.2E+00	1.5E+01	3.1E+01	5.0E+01	7.0E+01	8.3E+01	9.9E+01	1.4E+02	1.6E+02	1.7E+02	1.7E+02	1.8E+02
PCB101	0.0E+00	0.0E+00	6.6E-01	7.3E+00	2.5E+01	4.7E+01	7.0E+01	9.6E+01	1.1E+02	1.4E+02	2.0E+02	2.3E+02	2.5E+02	2.6E+02	2.7E+02
PCB105	0.0E+00	0.0E+00	4.6E-02	6.6E-01	3.2E+00	7.5E+00	1.3E+01	2.0E+01	2.4E+01	2.9E+01	4.3E+01	4.6E+01	4.8E+01	4.9E+01	4.9E+01
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.3E-01	2.3E-01	5.6E-01	7.5E-01	1.0E+00	1.6E+00	1.6E+00	1.6E+00	1.6E+00	1.6E+00
PCB118	0.0E+00	0.0E+00	9.3E-02	1.6E+00	7.2E+00	1.7E+01	3.1E+01	4.6E+01	5.7E+01	6.8E+01	9.7E+01	1.0E+02	1.1E+02	1.1E+02	1.1E+02

Leaching	0.002	1.026	6.057	21.291	42.298	62.093	69.284	111.084	146.056	188.067	230.049	286.074	330.526	370.053	433.287
Time															
(days)	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.45.01	0.45.01	0.45.01	0.45.01
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.4E-01	9.4E-01	9.4E-01	9.4E-01
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C16	0.0E+00	0.0E+00	0.0E+00	2.0E+00	1.2E+01	2.8E+01	5.7E+01	1.0E+02	1.3E+02	1.6E+02	2.3E+02	2.7E+02	2.9E+02	3.0E+02	3.1E+02
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.9E-01	8.0E-01	1.6E+00	2.7E+00	3.4E+00	4.6E+00	7.7E+00	8.8E+00	9.5E+00	9.5E+00	9.9E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	1.3E-01	1.2E+00	3.3E+00	6.5E+00	1.2E+01	1.5E+01	2.0E+01	3.3E+01	3.7E+01	4.0E+01	4.1E+01	4.2E+01
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.9E-01	3.9E-01	4.4E+00	6.7E+00	8.2E+00	1.4E+01	2.8E+01	3.3E+01	3.6E+01	3.6E+01	3.8E+01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-01	1.2E-01	4.7E-01	6.5E-01	9.7E-01	1.7E+00	2.0E+00	2.2E+00	2.2E+00	2.2E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.3E-02	7.3E-02	1.7E-01	1.7E-01	1.7E-01	1.7E-01	1.7E-01	1.7E-01
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.9E-02	9.9E-02	9.9E-02	3.6E-01	3.6E-01	3.6E-01	3.6E-01	3.6E-01
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl7	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.6E+00	4.6E+00	4.6E+00	4.6E+00	4.6E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.6E-01	2.6E-01	2.6E-01	2.6E-01	2.6E-01
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	6.1E+00	7.5E+01	3.4E+02	8.0E+02	1.3E+03	1.9E+03	2.7E+03	3.4E+03	3.8E+03	4.9E+03	5.4E+03	5.8E+03	6.1E+03	6.4E+03

Dissolution Rate (ng/g shipboard solid-day)

Leaching	0.002	1.026	6.057	21.291	42.298	62.093	69.284	111.084	146.056	188.067	230.049	286.074	330.526	370.053	433.287
Time															
(days)															
sampling	0.002	1.024	5.031	15.234	21.007	19.795	7.191	41.8	34.972	42.011	41.982	56.025	44.452	39.527	63.234
time (Δt)															
Cl1	0.0E+00	5.5E+02	4.6E+02	2.9E+02	2.0E+02	2.1E+02	2.1E+02	8.6E+01	8.3E+01	6.6E+01	5.4E+01	5.2E+01	6.0E+01	3.1E+01	2.7E+01
C12	0.0E+00	1.6E+03	1.2E+03	8.8E+02	6.4E+02	6.5E+02	8.0E+02	3.4E+02	3.4E+02	2.6E+02	2.5E+02	2.0E+02	2.8E+02	1.9E+02	1.4E+02

Leaching	0.002	1.026	6.057	21.291	42.298	62.093	69.284	111.084	146.056	188.067	230.049	286.074	330.526	370.053	433.287
Time	0.002	1.020	0.037	21.271	42.276	02.073	07.204	111.004	140.030	100.007	230.047	200.074	330.320	370.033	733.207
(days)															
PCB8	0.0E+00	4.0E+02	4.9E+02	3.5E+02	2.8E+02	2.9E+02	3.9E+02	1.5E+02	1.5E+02	1.2E+02	1.0E+02	8.7E+01	1.1E+02	8.3E+01	5.6E+01
C13	0.0E+00	5.1E+02	8.5E+02	7.0E+02	5.6E+02	6.2E+02	1.1E+03	3.4E+02	3.5E+02	2.7E+02	3.0E+02	1.7E+02	2.5E+02	1.9E+02	1.3E+02
PCB18	0.0E+00	2.0E+02	3.1E+02	2.5E+02	2.2E+02	2.2E+02	3.6E+02	1.3E+02	1.4E+02	1.0E+02	9.9E+01	7.9E+01	1.2E+02	8.8E+01	5.9E+01
PCB28	0.0E+00	1.1E+02	2.7E+02	2.4E+02	1.9E+02	2.2E+02	4.4E+02	1.1E+02	1.2E+02	8.2E+01	9.7E+01	4.6E+01	5.5E+01	3.8E+01	3.0E+01
Cl4	0.0E+00	1.3E+03	5.4E+03	6.7E+03	7.6E+03	8.5E+03	2.3E+04	5.7E+03	6.0E+03	3.4E+03	6.1E+03	2.5E+03	3.2E+03	2.6E+03	1.9E+03
PCB44	0.0E+00	2.6E+02	1.1E+03	1.3E+03	1.3E+03	1.5E+03	3.2E+03	7.8E+02	6.0E+02	7.0E+02	8.5E+02	5.4E+02	6.1E+02	5.6E+02	2.4E+02
PCB49	0.0E+00	8.1E+01	4.1E+02	5.3E+02	5.0E+02	6.7E+02	1.5E+03	3.2E+02	3.3E+02	2.5E+02	4.3E+02	1.7E+02	2.3E+02	1.8E+02	1.1E+02
PCB52	0.0E+00	4.7E+02	2.3E+03	2.7E+03	3.2E+03	3.3E+03	6.7E+03	1.7E+03	1.4E+03	1.5E+03	1.9E+03	9.4E+02	1.4E+03	1.1E+03	6.3E+02
PCB66	0.0E+00	0.0E+00	6.4E+01	1.3E+02	1.7E+02	2.4E+02	8.6E+02	1.0E+02	1.3E+02	1.0E+02	2.1E+02	5.3E+01	5.9E+01	1.6E+01	2.7E+01
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.1E+00	0.0E+00								
C15	0.0E+00	0.0E+00	1.1E+03	2.8E+03	5.0E+03	6.9E+03	2.6E+04	5.3E+03	5.2E+03	3.0E+03	8.6E+03	2.1E+03	2.4E+03	1.6E+03	1.2E+03
PCB87	0.0E+00	0.0E+00	5.0E+01	1.7E+02	3.4E+02	5.1E+02	1.8E+03	3.1E+02	2.5E+02	2.5E+02	6.4E+02	1.7E+02	1.8E+02	8.3E+01	7.7E+01
PCB101	0.0E+00	0.0E+00	8.7E+01	2.9E+02	5.6E+02	7.1E+02	2.1E+03	4.1E+02	2.6E+02	4.3E+02	1.0E+03	2.8E+02	2.8E+02	1.6E+02	1.3E+02
PCB105	0.0E+00	0.0E+00	6.1E+00	2.7E+01	8.0E+01	1.4E+02	5.3E+02	1.0E+02	7.3E+01	8.8E+01	2.1E+02	3.9E+01	3.2E+01	9.1E+00	8.4E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.8E+00	0.0E+00	5.1E+00	3.5E+00	4.7E+00	8.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	1.2E+01	6.4E+01	1.7E+02	3.3E+02	1.2E+03	2.5E+02	1.9E+02	1.8E+02	4.6E+02	7.9E+01	6.1E+01	1.8E+01	1.5E+01
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+01	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	8.8E+01	3.2E+02	5.3E+02	2.6E+03	6.8E+02	5.5E+02	4.0E+02	1.2E+03	3.7E+02	3.5E+02	1.6E+02	1.4E+02
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.2E+00	1.7E+01	7.4E+01	1.8E+01	1.3E+01	1.9E+01	4.9E+01	1.3E+01	9.9E+00	0.0E+00	4.3E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	5.6E+00	3.2E+01	7.1E+01	2.9E+02	8.1E+01	6.0E+01	7.2E+01	2.2E+02	4.6E+01	3.9E+01	1.1E+01	1.2E+01
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E+01	0.0E+00	3.7E+02	3.7E+01	2.8E+01	8.5E+01	2.3E+02	5.3E+01	4.8E+01	4.2E+00	1.4E+01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.0E+00	0.0E+00	5.5E+00	3.4E+00	5.0E+00	1.1E+01	3.5E+00	2.8E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	4.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.2E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Leaching	0.002	1.026	6.057	21.291	42.298	62.093	69.284	111.084	146.056	188.067	230.049	286.074	330.526	370.053	433.287
Time															
(days)															
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	3.9E+03	9.0E+03	1.1E+04	1.4E+04	1.7E+04	5.4E+04	1.3E+04	1.3E+04	7.4E+03	1.7E+04	5.4E+03	6.5E+03	4.7E+03	3.5E+03

Black Rubber Pipe Hanger Liner (BRPHL) Results

Cumulative Leaching Concentration (ng/L)

Leaching Time	0.006	1.169	7.074	14.081	28.153	49.204	69.272	104.181	146.122	188.072	230.109	286.142	328.083	370.110	398.072	475.124
(days) sampling	0.006	1.163	5.905	7.007	14.072	21.051	20.068	34.909	41.941	41.95	42.037	56.033	41.941	42.027	27.962	77.052
time (Δt)	0.000	1.105	0.500	7.007	1 7 2	21.001	20.000	5, 0,	,	.1.50	.2.037	00.055	,	.2.027	27.502	77.002
Cl1	0.0E+00	0.0E+00	3.4E-01	3.4E-01	8.7E-01	1.5E+00	1.5E+00	2.4E+00	3.2E+00	4.0E+00	4.7E+00	5.8E+00	6.6E+00	7.3E+00	7.8E+00	8.8E+00
C12	0.0E+00	0.0E+00	9.3E-01	3.7E+00	4.4E+00	4.5E+00	4.6E+00	5.7E+00	6.9E+00	7.6E+00	7.7E+00	7.8E+00	8.3E+00	9.0E+00	1.0E+01	1.1E+01
PCB8	0.0E+00	0.0E+00	4.6E-02	1.1E-01	1.8E-01	2.8E-01	3.6E-01	4.8E-01	6.1E-01	7.0E-01	7.8E-01	9.0E-01	9.8E-01	1.1E+00	1.2E+00	1.3E+00
C13	0.0E+00	0.0E+00	3.9E-01	9.2E-01	1.6E+00	2.1E+00	2.8E+00	3.7E+00	5.0E+00	5.8E+00	8.7E+00	1.2E+01	1.2E+01	1.3E+01	1.3E+01	1.5E+01
PCB18	0.0E+00	0.0E+00	6.1E-02	1.4E-01	2.1E-01	3.4E-01	4.3E-01	6.1E-01	7.7E-01	8.8E-01	1.0E+00	1.1E+00	1.2E+00	1.4E+00	1.5E+00	1.7E+00
PCB28	0.0E+00	0.0E+00	8.7E-02	2.0E-01	3.2E-01	5.4E-01	7.0E-01	9.0E-01	1.4E+00	1.6E+00	1.9E+00	1.9E+00	1.9E+00	2.0E+00	2.1E+00	2.1E+00
Cl4	0.0E+00	0.0E+00	1.4E+00	3.4E+00	6.4E+00	1.1E+01	1.6E+01	2.2E+01	2.7E+01	3.1E+01	3.5E+01	3.7E+01	4.0E+01	4.2E+01	4.5E+01	4.9E+01
PCB44	0.0E+00	0.0E+00	1.9E-01	5.5E-01	1.0E+00	1.7E+00	2.4E+00	3.3E+00	4.2E+00	4.9E+00	5.5E+00	5.9E+00	6.4E+00	6.9E+00	7.3E+00	7.9E+00
PCB49	0.0E+00	0.0E+00	1.1E-01	2.8E-01	4.7E-01	7.6E-01	1.0E+00	1.4E+00	1.7E+00	2.0E+00	2.2E+00	2.3E+00	2.4E+00	2.6E+00	2.8E+00	2.9E+00
PCB52	0.0E+00	0.0E+00	3.5E-01	1.1E+00	2.1E+00	3.4E+00	4.9E+00	6.6E+00	8.3E+00	9.6E+00	1.1E+01	1.2E+01	1.3E+01	1.4E+01	1.5E+01	1.6E+01
PCB66	0.0E+00	0.0E+00	2.2E-02	7.4E-02	1.4E-01	2.6E-01	4.1E-01	6.0E-01	7.4E-01	8.4E-01	9.6E-01	9.8E-01	1.0E+00	1.1E+00	1.2E+00	1.3E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	1.1E+00	2.1E+00	4.7E+00	7.2E+00	1.1E+01	1.6E+01	2.2E+01	2.5E+01	2.8E+01	2.9E+01	3.1E+01	3.2E+01	3.4E+01	3.7E+01
PCB87	0.0E+00	0.0E+00	0.0E+00	5.5E-02	1.7E-01	3.3E-01	5.8E-01	8.4E-01	1.1E+00	1.3E+00	1.5E+00	1.5E+00	1.5E+00	1.7E+00	1.7E+00	1.7E+00
PCB101	0.0E+00	0.0E+00	3.9E-02	1.5E-01	4.0E-01	7.1E-01	1.1E+00	1.6E+00	2.1E+00	2.4E+00	2.7E+00	2.8E+00	3.0E+00	3.1E+00	3.2E+00	3.4E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.0E-02	1.5E-01	1.5E-01	2.7E-01	2.7E-01	2.7E-01	2.7E-01	3.1E-01	3.1E-01	3.1E-01	3.1E-01
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Leaching	0.006	1.169	7.074	14.081	28.153	49.204	69.272	104.181	146.122	188.072	230.109	286.142	328.083	370.110	398.072	475.124
Time																
(days)																
PCB118	0.0E+00	0.0E+00	0.0E+00	3.2E-02	1.4E-01	3.0E-01	5.7E-01	8.7E-01	1.2E+00	1.2E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	3.3E-01	6.3E-01	1.2E+00	1.7E+00												
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	5.1E-02	1.0E-01	1.6E-01	2.3E-01												
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	3.3E-01	6.3E-01	5.4E+00	1.2E+01	2.0E+01	2.8E+01	3.8E+01	5.1E+01	6.6E+01	7.5E+01	8.6E+01	9.3E+01	9.9E+01	1.1E+02	1.1E+02	1.2E+02

Leach Rate (ng/g shipboard solid-day)

Leaching	0.006	1.169	7.074	14.081	28.153	49.204	69.272	104.181	146.122	188.072	230.109	286.142	328.083	370.110	398.072	475.124
Time																
(days)																
sampling	0.006	1.163	5.905	7.007	14.072	21.051	20.068	34.909	41.941	41.95	42.037	56.033	41.941	42.027	27.962	77.052
time (Δt)																

Leaching Time	0.006	1.169	7.074	14.081	28.153	49.204	69.272	104.181	146.122	188.072	230.109	286.142	328.083	370.110	398.072	475.124
(days) Cl1	0.0E+00	0.0E+00	2.9E-01	0.0E+00	1.9E-01	1.5E-01	0.0E+00	1.3E-01	1.1E-01	9.1E-02	8.3E-02	1.0E-01	9.1E-02	9.1E-02	8.1E-02	7.0E-02
C12	0.0E+00	0.0E+00	8.0E-01	2.0E+00	2.5E-01	2.4E-02	2.3E-02	1.6E-01	1.5E-01	9.1E-02	9.8E-03	1.2E-02	5.6E-02	8.4E-02	1.8E-01	5.4E-02
PCB8	0.0E+00	0.0E+00	4.0E-02	4.5E-02	2.5E-02	2.4E-02	2.1E-02	1.7E-02	1.6E-02	1.1E-02	9.8E-03	1.1E-02	9.9E-03	1.2E-02	1.5E-02	8.7E-03
C13	0.0E+00	0.0E+00	3.4E-01	3.8E-01	2.3E-01	1.2E-01	1.8E-01	1.3E-01	1.6E-01	9.9E-02	3.5E-01	2.6E-01	5.3E-02	7.3E-02	1.4E-01	9.1E-02
PCB18	0.0E+00	0.0E+00	5.2E-02	5.5E-02	2.8E-02	3.0E-02	2.4E-02	2.6E-02	1.9E-02	1.4E-02	1.6E-02	1.1E-02	1.3E-02	1.4E-02	2.4E-02	1.2E-02
PCB28	0.0E+00	0.0E+00	7.5E-02	8.3E-02	4.1E-02	5.5E-02	4.0E-02	3.0E-02	6.3E-02	1.7E-02	4.3E-02	0.0E+00	0.0E+00	1.4E-02	1.5E-02	0.0E+00
Cl4	0.0E+00	0.0E+00	1.2E+00	1.5E+00	1.1E+00	1.0E+00	1.4E+00	7.8E-01	6.6E-01	4.7E-01	4.4E-01	2.2E-01	2.9E-01	3.3E-01	4.3E-01	2.6E-01
PCB44	0.0E+00	0.0E+00	1.6E-01	2.6E-01	1.8E-01	1.7E-01	1.8E-01	1.3E-01	1.1E-01	8.4E-02	6.8E-02	4.1E-02	5.7E-02	5.6E-02	8.0E-02	4.1E-02
PCB49	0.0E+00	0.0E+00	9.6E-02	1.2E-01	6.9E-02	7.0E-02	7.0E-02	5.3E-02	4.0E-02	3.0E-02	2.3E-02	1.3E-02	1.6E-02	2.1E-02	2.6E-02	1.2E-02
PCB52	0.0E+00	0.0E+00	3.1E-01	5.1E-01	3.7E-01	3.3E-01	3.7E-01	2.5E-01	2.1E-01	1.6E-01	1.4E-01	9.0E-02	1.2E-01	1.1E-01	1.6E-01	8.3E-02
PCB66	0.0E+00	0.0E+00	1.9E-02	3.8E-02	2.5E-02	2.9E-02	3.7E-02	2.7E-02	1.8E-02	1.1E-02	1.5E-02	2.3E-03	4.6E-03	7.6E-03	1.8E-02	5.0E-03
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	9.6E-01	7.4E-01	9.2E-01	6.1E-01	1.0E+00	7.3E-01	6.6E-01	4.0E-01	4.0E-01	8.5E-02	2.1E-01	1.7E-01	3.5E-01	1.8E-01
PCB87	0.0E+00	0.0E+00	0.0E+00	4.0E-02	4.1E-02	3.9E-02	6.4E-02	3.8E-02	3.3E-02	2.1E-02	2.0E-02	0.0E+00	1.1E-02	1.4E-02	0.0E+00	0.0E+00
PCB101	0.0E+00	0.0E+00	3.4E-02	8.3E-02	8.9E-02	7.4E-02	1.1E-01	7.3E-02	5.8E-02	3.6E-02	3.5E-02	1.2E-02	1.9E-02	1.8E-02	1.6E-02	1.0E-02
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-02	2.4E-02	0.0E+00	1.5E-02	0.0E+00	0.0E+00	0.0E+00	4.1E-03	0.0E+00	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	2.4E-02	3.9E-02	3.8E-02	7.0E-02	4.3E-02	3.5E-02	0.0E+00	1.4E-02	0.0E+00	7.3E-03	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl7	2.7E+02	1.3E+00	5.0E-01	3.5E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	4.1E+01	2.2E-01	4.8E-02	5.1E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Leaching	0.006	1.169	7.074	14.081	28.153	49.204	69.272	104.181	146.122	188.072	230.109	286.142	328.083	370.110	398.072	475.124
Time																
(days)																
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	2.7E+02	1.3E+00	4.1E+00	5.0E+00	2.7E+00	2.0E+00	2.7E+00	1.9E+00	1.7E+00	1.1E+00	1.3E+00	6.8E-01	6.9E-01	7.5E-01	1.2E+00	6.6E-01

Electrical Cable (EC) Results

Leaching	0.003	1.077	6.009	20.035	40.989	62.235	90.010	125.028	166.998	208.968	250.982	300.024	341.964	383.993	411.955	474.981
Time (days)																
sampling	0.003	1.074	4.932	14.026	20.954	21.246	27.775	35.018	41.97	41.97	42.014	49.042	41.94	42.029	27.962	63.026
time (Δt)																
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	3.0E+00	3.0E+00	3.4E+00	3.4E+00	4.6E+00									
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C13	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.9E-02	3.9E-02	3.9E-02	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02
PCB28	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02
Cl4	0.0E+00	0.0E+00	5.3E-01	2.1E+00	4.6E+00	6.5E+00	8.7E+00	1.1E+01	1.4E+01	1.7E+01	1.9E+01	2.1E+01	2.3E+01	2.7E+01	3.0E+01	3.2E+01
PCB44	0.0E+00	0.0E+00	1.1E-01	3.8E-01	7.0E-01	1.1E+00	1.4E+00	1.9E+00	2.3E+00	2.7E+00	3.0E+00	3.3E+00	3.6E+00	4.1E+00	4.5E+00	4.8E+00
PCB49	0.0E+00	0.0E+00	6.2E-02	1.7E-01	2.9E-01	4.0E-01	5.2E-01	6.4E-01	7.5E-01	8.9E-01	1.0E+00	1.0E+00	1.1E+00	1.3E+00	1.4E+00	1.5E+00
PCB52	0.0E+00	0.0E+00	1.9E-01	7.2E-01	1.4E+00	2.1E+00	2.7E+00	3.6E+00	4.4E+00	5.3E+00	6.1E+00	6.8E+00	7.5E+00	8.7E+00	9.4E+00	1.0E+01
PCB66	0.0E+00	0.0E+00	0.0E+00	5.2E-02	1.3E-01	2.2E-01	2.6E-01	3.3E-01	4.2E-01	5.3E-01	6.1E-01	6.6E-01	7.3E-01	8.4E-01	9.4E-01	9.4E-01
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02	9.6E-02
C15	0.0E+00	0.0E+00	1.1E+00	3.1E+00	7.2E+00	1.1E+01	1.5E+01	1.9E+01	2.5E+01	3.0E+01	3.4E+01	3.5E+01	3.8E+01	4.2E+01	4.7E+01	5.0E+01
PCB87	0.0E+00	0.0E+00	0.0E+00	1.2E-01	3.0E-01	5.4E-01	7.6E-01	1.1E+00	1.3E+00	1.5E+00	1.8E+00	1.8E+00	2.0E+00	2.4E+00	2.7E+00	2.8E+00
PCB101	0.0E+00	0.0E+00	5.7E-02	2.6E-01	6.1E-01	1.0E+00	1.4E+00	2.1E+00	2.5E+00	2.9E+00	3.2E+00	3.4E+00	3.8E+00	4.4E+00	4.8E+00	5.0E+00

Leaching	0.003	1.077	6.009	20.035	40.989	62.235	90.010	125.028	166.998	208.968	250.982	300.024	341.964	383.993	411.955	474.981
Time																
(days) PCB105	0.0E+00	0.0E+00	0.0E+00	5.3E-02	1.4E-01	2.4E-01	3.4E-01	5.3E-01	6.3E-01	6.3E-01	7.2E-01	7.2E-01	7.9E-01	9.5E-01	9.5E-01	9.5E-01
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	1.1E-01	3.4E-01	6.2E-01	9.4E-01	1.4E+00	1.6E+00	1.8E+00	2.0E+00	2.0E+00	2.1E+00	2.5E+00	2.6E+00	2.6E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.2E-01 0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00						
PCB126																
C16	0.0E+00	0.0E+00	0.0E+00	1.7E-01	1.2E+00	1.2E+00	2.5E+00	5.1E+00	6.9E+00	6.9E+00	6.9E+00	6.9E+00	7.6E+00	8.9E+00	8.9E+00	8.9E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.8E-02	4.8E-02	1.8E-01	3.5E-01	4.5E-01	4.5E-01	4.5E-01	4.5E-01	5.2E-01	7.1E-01	7.1E-01	7.1E-01
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E-01	3.1E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	5.5E-01	7.2E-01	7.2E-01	7.2E-01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl7	0.0E+00	0.0E+00	2.2E-01	7.8E-01	7.8E-01	7.8E-01	1.0E+00	1.0E+00	1.0E+00	1.0E+00	1.0E+00	1.0E+00	1.0E+00	1.0E+00	1.0E+00	1.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	4.7E-02	8.8E-02	8.8E-02	8.8E-02	1.3E-01	1.3E-01	1.3E-01	1.3E-01	1.3E-01	1.3E-01	1.3E-01	1.3E-01	1.3E-01	1.3E-01
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.0E-01	1.0E-01	1.0E-01	1.0E-01	1.0E-01	1.0E-01	1.0E-01	1.0E-01	1.0E-01
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02
tPCBs	0.0E+00	0.0E+00	4.9E+00	9.2E+00	1.7E+01	2.3E+01	3.2E+01	4.1E+01	5.2E+01	6.0E+01	6.6E+01	6.9E+01	7.5E+01	8.4E+01	9.2E+01	9.7E+01

Leach Rate (ng/g shipboard solid-day)

Leaching	0.003	1.077	6.009	20.035	40.989	62.235	90.010	125.028	166.998	208.968	250.982	300.024	341.964	383.993	411.955	474.981
Time																
(days)																

Leaching Time	0.003	1.077	6.009	20.035	40.989	62.235	90.010	125.028	166.998	208.968	250.982	300.024	341.964	383.993	411.955	474.981
(days) sampling	0.003	1.074	4.932	14.026	20.954	21.246	27.775	35.018	41.97	41.97	42.014	49.042	41.94	42.029	27.962	63.026
time (Δt)																
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl2	0.0E+00	0.0E+00	3.4E-01	0.0E+00	9.9E-03	0.0E+00	2.2E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C13	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.0E-03	0.0E+00	0.0E+00	1.9E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.8E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB28	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C14	0.0E+00	0.0E+00	5.9E-02	6.1E-02	6.5E-02	5.1E-02	4.2E-02	4.0E-02	3.6E-02	3.3E-02	3.2E-02	2.5E-02	2.7E-02	4.3E-02	5.8E-02	2.1E-02
PCB44	0.0E+00	0.0E+00	1.2E-02	1.1E-02	8.4E-03	9.9E-03	7.0E-03	6.4E-03	5.5E-03	5.1E-03	4.6E-03	3.0E-03	4.3E-03	6.3E-03	6.9E-03	2.7E-03
PCB49	0.0E+00	0.0E+00	6.8E-03	4.2E-03	3.1E-03	2.9E-03	2.2E-03	1.9E-03	1.4E-03	1.9E-03	1.6E-03	0.0E+00	1.1E-03	2.3E-03	2.3E-03	1.1E-03
PCB52	0.0E+00	0.0E+00	2.2E-02	2.1E-02	1.7E-02	1.8E-02	1.3E-02	1.4E-02	1.1E-02	1.1E-02	9.9E-03	7.8E-03	9.9E-03	1.5E-02	1.5E-02	6.1E-03
PCB66	0.0E+00	0.0E+00	0.0E+00	2.0E-03	2.0E-03	2.3E-03	8.6E-04	1.0E-03	1.3E-03	1.4E-03	9.9E-04	6.3E-04	9.1E-04	1.3E-03	2.0E-03	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	1.2E-01	7.8E-02	1.1E-01	9.9E-02	7.3E-02	6.7E-02	7.3E-02	7.4E-02	4.4E-02	1.6E-02	4.1E-02	5.3E-02	9.1E-02	2.3E-02
PCB87	0.0E+00	0.0E+00	0.0E+00	4.6E-03	4.8E-03	6.0E-03	4.3E-03	4.7E-03	3.5E-03	2.7E-03	3.1E-03	0.0E+00	2.6E-03	5.5E-03	5.8E-03	1.3E-03
PCB101	0.0E+00	0.0E+00	6.3E-03	8.1E-03	8.9E-03	1.1E-02	8.2E-03	9.6E-03	5.8E-03	4.7E-03	4.5E-03	2.6E-03	4.3E-03	8.3E-03	6.8E-03	2.1E-03
PCB105	0.0E+00	0.0E+00	0.0E+00	2.1E-03	2.2E-03	2.6E-03	2.0E-03	3.0E-03	1.3E-03	0.0E+00	1.2E-03	0.0E+00	9.1E-04	2.2E-03	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	4.4E-03	6.0E-03	7.2E-03	6.2E-03	6.5E-03	3.7E-03	2.2E-03	2.4E-03	0.0E+00	2.0E-03	4.1E-03	2.6E-03	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	6.6E-03	2.6E-02	0.0E+00	2.6E-02	4.0E-02	2.3E-02	0.0E+00	0.0E+00	0.0E+00	9.9E-03	1.7E-02	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.3E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-03	0.0E+00	2.6E-03	2.6E-03	1.3E-03	0.0E+00	0.0E+00	0.0E+00	9.9E-04	2.4E-03	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.2E-03	3.0E-03	2.3E-03	0.0E+00	0.0E+00	0.0E+00	9.1E-04	2.2E-03	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	0.0E+00	2.4E-02	2.2E-02	0.0E+00	0.0E+00	4.9E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Leaching	0.003	1.077	6.009	20.035	40.989	62.235	90.010	125.028	166.998	208.968	250.982	300.024	341.964	383.993	411.955	474.981
Time																
(days)																
PCB184	0.0E+00	0.0E+00	5.2E-03	1.6E-03	0.0E+00	0.0E+00	8.3E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.5E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl10	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	0.0E+00	5.4E-01	1.7E-01	2.1E-01	1.5E-01	1.7E-01	1.5E-01	1.3E-01	1.1E-01	7.6E-02	4.0E-02	7.8E-02	1.1E-01	1.5E-01	4.4E-02

Foam Rubber/EnsoliteTM (FRE) Results

Leaching	0.007	1.099	7.022	21.077	42.045	71.237	105.078	147.083	189.026	231.000	273.122	315.039	357.003	399.019	469.032
Time															
(days)															
sampling	0.007	1.092	5.923	14.055	20.968	29.192	33.841	42.005	41.943	41.974	42.122	41.917	41.964	42.016	70.013
time (Δt)															
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	1.1E+00	1.5E+00	3.1E+00	4.6E+00	4.8E+00	6.2E+00	6.4E+00	6.7E+00	8.3E+00	8.5E+00	8.7E+00	9.7E+00	1.1E+01	1.2E+01
PCB8	0.0E+00	0.0E+00	1.1E-01	3.1E-01	5.2E-01	7.7E-01	9.9E-01	1.2E+00	1.4E+00	1.7E+00	1.9E+00	2.1E+00	2.3E+00	2.5E+00	2.7E+00
C13	0.0E+00	1.1E-01	5.2E-01	1.5E+00	2.2E+00	2.9E+00	3.8E+00	4.7E+00	5.6E+00	6.6E+00	7.4E+00	8.2E+00	8.9E+00	1.0E+01	1.1E+01
PCB18	0.0E+00	0.0E+00	9.4E-02	2.8E-01	4.7E-01	6.9E-01	8.7E-01	1.1E+00	1.3E+00	1.4E+00	1.6E+00	1.8E+00	1.9E+00	2.1E+00	2.3E+00
PCB28	0.0E+00	9.3E-02	2.4E-01	5.2E-01	8.0E-01	1.1E+00	1.4E+00	1.6E+00	1.9E+00	2.2E+00	2.4E+00	2.6E+00	2.8E+00	3.0E+00	3.2E+00
C14	0.0E+00	2.8E-01	5.8E+00	1.7E+01	3.1E+01	4.6E+01	6.1E+01	7.8E+01	9.1E+01	1.1E+02	1.2E+02	1.3E+02	1.4E+02	1.4E+02	1.6E+02
PCB44	0.0E+00	7.3E-02	9.5E-01	3.2E+00	5.8E+00	8.3E+00	1.1E+01	1.5E+01	1.7E+01	2.0E+01	2.3E+01	2.5E+01	2.6E+01	2.8E+01	3.0E+01
PCB49	0.0E+00	3.5E-02	3.3E-01	1.0E+00	1.8E+00	2.6E+00	3.4E+00	4.3E+00	5.2E+00	5.9E+00	6.6E+00	7.1E+00	7.6E+00	8.2E+00	8.7E+00
PCB52	0.0E+00	1.0E-01	1.7E+00	5.8E+00	1.1E+01	1.5E+01	2.1E+01	2.6E+01	3.1E+01	3.6E+01	4.0E+01	4.4E+01	4.7E+01	5.1E+01	5.4E+01
PCB66	0.0E+00	0.0E+00	1.3E-01	6.1E-01	1.1E+00	1.7E+00	2.4E+00	3.0E+00	3.6E+00	4.2E+00	4.7E+00	5.0E+00	5.3E+00	5.6E+00	5.6E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	5.0E+00	2.0E+01	3.7E+01	6.0E+01	8.4E+01	1.1E+02	1.4E+02	1.6E+02	1.8E+02	1.9E+02	2.0E+02	2.1E+02	2.2E+02

Leaching	0.007	1.099	7.022	21.077	42.045	71.237	105.078	147.083	189.026	231.000	273.122	315.039	357.003	399.019	469.032
Time															
(days) PCB87	0.0E+00	0.0E+00	2.8E-01	1.5E+00	2.8E+00	4.6E+00	6.6E+00	8.5E+00	1.0E+01	1.2E+01	1.3E+01	1.4E+01	1.5E+01	1.6E+01	1.7E+01
PCB101	0.0E+00	0.0E+00	4.7E-01	2.4E+00	4.7E+00	7.7E+00	1.1E+01	1.4E+01	1.7E+01	2.0E+01	2.2E+01	2.4E+01	2.5E+01	2.6E+01	2.7E+01
PCB105	0.0E+00	0.0E+00	1.1E-01	6.0E-01	1.2E+00	2.1E+00	3.1E+00	4.1E+00	4.9E+00	5.7E+00	6.1E+00	6.5E+00	6.8E+00	7.0E+00	7.2E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	6.6E-02	6.6E-02	6.6E-02	6.6E-02	6.6E-02	6.6E-02	6.6E-02
PCB118	0.0E+00	0.0E+00	2.1E-01	1.3E+00	2.7E+00	4.5E+00	6.7E+00	8.7E+00	1.1E+01	1.2E+01	1.3E+01	1.4E+01	1.4E+01	1.5E+01	1.5E+01
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	2.2E+00	5.4E+00	1.1E+01	1.7E+01	2.6E+01	3.2E+01	4.0E+01	4.5E+01	5.0E+01	5.3E+01	5.6E+01	5.6E+01
PCB128	0.0E+00	0.0E+00	0.0E+00	1.3E-01	3.1E-01	5.6E-01	8.9E-01	1.2E+00	1.5E+00	1.8E+00	2.1E+00	2.3E+00	2.4E+00	2.4E+00	2.4E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	3.9E-01	8.8E-01	1.7E+00	2.8E+00	3.8E+00	4.8E+00	5.8E+00	6.5E+00	7.0E+00	7.3E+00	7.5E+00	7.5E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	3.9E-01	9.0E-01	1.3E+00	2.3E+00	3.3E+00	4.3E+00	5.2E+00	5.8E+00	6.2E+00	6.5E+00	6.5E+00	6.5E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	4.9E-02	1.2E-01	2.4E-01	3.8E-01	5.2E-01	6.7E-01	8.4E-01	8.4E-01	8.4E-01	8.4E-01	8.4E-01	8.4E-01
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	4.4E-01	7.9E-01	2.7E+00	2.7E+00	2.7E+00	2.7E+00	2.7E+00	2.7E+00	2.7E+00	2.7E+00	2.7E+00	2.7E+00	2.7E+00	2.7E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	4.8E-02	1.0E-01	1.6E-01											
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	2.0E+00	1.4E+01	4.7E+01	8.3E+01	1.3E+02	1.7E+02	2.3E+02	2.8E+02	3.2E+02	3.6E+02	3.9E+02	4.1E+02	4.3E+02	4.6E+02

Leach Rate (ng/g shipboard solid-day)

Leaching	0.007	1.099	7.022	21.077	42.045	71.237	105.078	147.083	189.026	231.000	273.122	315.039	357.003	399.019	469.032
Time	0.007	1.0	7.022	21.077	12.015	, 1.23 /	103.070	117.003	109.020	231.000	273.122	313.037	337.003	377.017	109.032
(days)															
sampling	0.007	1.092	5.923	14.055	20.968	29.192	33.841	42.005	41.943	41.974	42.122	41.917	41.964	42.016	70.013
time (Δt)	0.0E+00														
Cl2			3.0E-01							2.0E-01			1.2E-01		
	0.0E+00	5.5E+00		6.2E-01	3.7E-01	4.7E-02	2.1E-01	3.7E-02	3.0E-02		3.2E-02	2.7E-02		1.2E-01	1.0E-01
PCB8	0.0E+00	0.0E+00	9.6E-02	7.7E-02	5.2E-02	4.7E-02	3.5E-02	2.7E-02	3.0E-02	2.9E-02	3.0E-02	2.6E-02	2.4E-02 9.2E-02	2.1E-02	1.7E-02
Cl3 PCB18	0.0E+00 0.0E+00	5.5E-01	3.6E-01 8.4E-02	3.8E-01 6.9E-02	1.6E-01 4.9E-02	1.3E-01 4.0E-02	1.4E-01 2.8E-02	1.2E-01	1.2E-01 2.7E-02	1.3E-01 1.0E-02	9.3E-02 2.4E-02	1.0E-01	9.2E-02 2.2E-02	1.4E-01	8.1E-02 1.4E-02
		0.0E+00	8.4E-02 1.3E-01				4.5E-02	2.8E-02		3.5E-02	2.4E-02 2.9E-02	2.6E-02	2.2E-02 2.1E-02	1.9E-02	
PCB28 Cl4	0.0E+00 0.0E+00	4.5E-01 1.4E+00	4.9E+00	1.1E-01 4.4E+00	7.2E-02 3.4E+00	4.9E-02 2.8E+00	4.5E-02 2.3E+00	3.5E-02 2.1E+00	3.6E-02 1.8E+00	1.8E+00	1.4E+00	2.4E-02 1.3E+00	1.0E+00	2.2E-02 1.2E+00	1.5E-02 8.1E-01
PCB44	0.0E+00 0.0E+00	3.6E-01	7.8E-01	8.5E-01	6.7E-01	4.6E-01	4.6E-01	4.1E-01	3.7E-01	3.4E-01	3.0E-01	2.6E-01	2.3E-01	2.3E-01	1.5E-01
PCB44 PCB49	0.0E+00 0.0E+00	1.7E-01	2.6E-01	2.6E-01	2.0E-01	1.4E-01	1.4E-01	1.1E-01	1.1E-01	9.2E-02	8.5E-02	6.9E-02	6.5E-02	6.7E-02	3.8E-02
PCB49 PCB52	0.0E+00 0.0E+00	4.8E-01	1.4E+00	1.6E+00	1.2E+00	8.9E-01	8.1E-01	6.7E-01	6.6E-01	6.1E-01	5.3E-02	4.8E-01	4.4E-01	4.4E-01	2.8E-01
PCB32 PCB66	0.0E+00 0.0E+00	0.0E+00	1.4E+00 1.1E-01	1.8E-01	1.2E+00 1.3E-01	1.1E-01	1.1E-01	8.1E-02	7.2E-02	8.2E-02	5.5E-01	4.8E-01 4.5E-02	3.0E-02	4.4E-01 4.1E-02	0.0E+00
PCB00 PCB77	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00 0.0E+00
Cl5	0.0E+00 0.0E+00	0.0E+00 0.0E+00	4.5E+00	5.6E+00	4.4E+00	4.2E+00	3.8E+00	3.6E+00	3.0E+00	2.9E+00	2.0E+00	1.6E+00	1.3E+00	1.3E+00	9.1E-01
PCB87	0.0E+00	0.0E+00 0.0E+00	2.5E-01	4.6E-01	3.4E-01	3.2E-01	3.2E-01	2.5E-01	2.3E-01	2.9E+00 2.1E-01	1.6E-01	1.4E-01	1.1E-01	8.4E-02	5.0E-02
PCB87 PCB101	0.0E+00 0.0E+00	0.0E+00 0.0E+00	4.2E-01	7.4E-01	5.4E-01 5.7E-01	5.5E-01	5.4E-01	4.1E-01	4.0E-01	3.5E-01	2.3E-01	1.4E-01 1.9E-01	1.1E-01 1.4E-01	1.3E-01	8.1E-02
PCB101	0.0E+00 0.0E+00	0.0E+00 0.0E+00	9.6E-02	1.9E-01	1.6E-01	1.5E-01	1.7E-01	1.2E-01	1.1E-01	9.2E-02	6.1E-02	5.1E-02	2.9E-02	2.6E-02	1.7E-02
PCB103	0.0E+00 0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.4E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114 PCB118	0.0E+00	0.0E+00 0.0E+00	1.9E-01	4.1E-01	3.5E-01	3.3E-01	3.5E-01	2.5E-01	2.4E-01	2.1E-01	1.3E-01	1.0E-01	6.4E-02	4.4E-02	2.4E-02
PCB123	0.0E+00	0.0E+00 0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.4E-02 0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00 0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	8.2E-01	8.1E-01	1.0E+00	8.7E-01	1.2E+00	8.1E-01	1.0E+00	6.1E-01	6.6E-01	3.2E-01	4.0E-01	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	4.9E-02	4.5E-02	4.7E-02	5.1E-02	4.2E-02	3.9E-02	4.0E-02	3.7E-02	2.8E-02	1.3E-02	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	1.5E-01	1.3E-01	1.4E-01	1.8E-01	1.3E-01	1.3E-01	1.3E-01	8.5E-02	7.1E-02	3.4E-02	2.2E-02	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	1.5E-01	1.3E-01	7.5E-02	1.6E-01	1.2E-01	1.3E-01	1.2E-01	7.4E-02	5.8E-02	3.3E-02	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	1.8E-02	1.7E-02	2.2E-02	2.3E-02	1.7E-02	1.9E-02	2.2E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00														
PCB167	0.0E+00														
PCB169	0.0E+00														
C17	0.0E+00	2.1E+00	3.1E-01	7.2E-01	0.0E+00										
PCB170	0.0E+00														
PCB180	0.0E+00														
PCB183	0.0E+00														
1 02 103	5.5L · 00	0.0L · 00	0.0L · 00	0.0L · 00	0.0L · 00	0.0L · 00	0.0L · 00	0.0E · 00	0.0L · 00	0.0L · 00	0.0L · 00	0.0L · 00	0.0L · 00	0.0L · 00	0.0L · 00

Leaching	0.007	1.099	7.022	21.077	42.045	71.237	105.078	147.083	189.026	231.000	273.122	315.039	357.003	399.019	469.032
Time															
(days)															
PCB184	0.0E+00	2.3E-01	4.8E-02	2.1E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	9.5E+00	1.0E+01	1.3E+01	9.1E+00	8.2E+00	7.3E+00	7.0E+00	5.7E+00	6.1E+00	4.2E+00	3.7E+00	2.9E+00	3.2E+00	1.9E+00

Aroclor 1268 (A1268) Results

Leaching Time (days)	0.003	1.011	5.980	19.900	40.844	68.836	110.906	188.861	265.837	322.019	371.008
sampling time	0.003	1.008	4.969	13.92	20.944	27.992	42.07	77.955	76.976	56.182	48.989
(Δt)											
Cl1	0.0E+00	1.2E+00	4.2E+00	5.1E+00							
C12	0.0E+00	2.0E+01	1.2E+02	2.1E+02	2.6E+02	2.8E+02	2.9E+02	2.9E+02	3.0E+02	3.0E+02	3.0E+02
PCB8	0.0E+00	8.3E+00	4.7E+01	1.0E+02	1.4E+02	1.6E+02	1.6E+02	1.7E+02	1.7E+02	1.7E+02	1.7E+02
C13	0.0E+00	2.3E+01	2.3E+02	5.9E+02	1.0E+03	1.4E+03	1.7E+03	1.9E+03	1.9E+03	1.9E+03	2.0E+03
PCB18	0.0E+00	8.5E+00	6.5E+01	1.9E+02	3.0E+02	4.0E+02	4.5E+02	4.8E+02	5.0E+02	5.0E+02	5.1E+02
PCB28	0.0E+00	3.8E+00	3.9E+01	1.4E+02	2.5E+02	3.7E+02	4.4E+02	4.5E+02	4.8E+02	4.8E+02	4.9E+02
Cl4	0.0E+00	6.9E+00	7.9E+01	2.5E+02	5.7E+02	8.8E+02	1.2E+03	1.4E+03	1.6E+03	1.7E+03	1.7E+03
PCB44	0.0E+00	5.0E-01	9.7E+00	3.5E+01	8.3E+01	1.3E+02	1.7E+02	2.0E+02	2.3E+02	2.4E+02	2.5E+02
PCB49	0.0E+00	1.8E-01	3.9E+00	1.7E+01	4.1E+01	6.4E+01	8.4E+01	1.0E+02	1.2E+02	1.2E+02	1.3E+02
PCB52	0.0E+00	5.4E-01	9.2E+00	3.5E+01	7.8E+01	1.2E+02	1.6E+02	1.9E+02	2.2E+02	2.3E+02	2.4E+02
PCB66	0.0E+00	1.8E-01	2.8E+00	1.2E+01	3.5E+01	5.5E+01	7.2E+01	8.7E+01	9.5E+01	9.7E+01	9.9E+01
PCB77	0.0E+00	0.0E+00	4.8E-01	2.4E+00	8.0E+00	1.3E+01	1.8E+01	2.2E+01	2.3E+01	2.3E+01	2.3E+01
C15	0.0E+00	0.0E+00	0.0E+00	1.1E+01	3.3E+01	5.3E+01	8.1E+01	1.1E+02	1.4E+02	1.5E+02	1.6E+02
PCB87	0.0E+00	0.0E+00	0.0E+00	3.7E-01	1.6E+00	3.0E+00	4.4E+00	6.3E+00	7.3E+00	7.8E+00	8.4E+00

Leaching Time (days)	0.003	1.011	5.980	19.900	40.844	68.836	110.906	188.861	265.837	322.019	371.008
PCB101	0.0E+00	0.0E+00	0.0E+00	6.2E-01	2.3E+00	4.0E+00	5.8E+00	7.8E+00	9.2E+00	9.8E+00	1.0E+01
PCB105	0.0E+00	0.0E+00	0.0E+00	4.7E-01	2.4E+00	4.5E+00	6.9E+00	1.0E+01	1.2E+01	1.2E+01	1.3E+01
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.0E-01	2.0E-01	2.0E-01	2.0E-01
PCB118	0.0E+00	0.0E+00	0.0E+00	4.5E-01	2.5E+00	4.5E+00	6.8E+00	9.2E+00	1.1E+01	1.1E+01	1.1E+01
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C16	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.7E+00	3.7E+00	6.9E+00	9.4E+00	1.3E+01	1.4E+01	1.4E+01
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.9E-01	1.9E-01	1.9E-01	1.9E-01
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.7E-01	1.0E+00	1.7E+00	2.3E+00	2.9E+00	3.1E+00	3.3E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl7	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.7E+00	1.0E+01	2.2E+01	2.9E+01	4.6E+01	4.8E+01	4.9E+01
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.6E-01	5.6E-01	1.3E+00	2.2E+00	3.3E+00	3.5E+00	3.8E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.5E-01	1.6E+00	2.9E+00	4.4E+00	6.0E+00	6.5E+00	7.3E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.0E-01	1.8E+00	1.8E+00	1.8E+00	1.8E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	8.8E-01	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.8E+00	1.8E+00	1.8E+00	1.8E+00
PCB206	8.7E-01	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	8.8E-01	5.3E+01	4.3E+02	1.1E+03	1.9E+03	2.7E+03	3.3E+03	3.8E+03	4.1E+03	4.1E+03	4.2E+03

Dissolution Rate (ng/g shipboard solid-day)

Leaching Time	0.003	1.011	5.980	19.900	40.844	68.836	110.906	188.861	265.837	322.019	371.008
(days)											
sampling time	0.003	1.008	4.969	13.92	20.944	27.992	42.07	77.955	76.976	56.182	48.989

Leaching Time	0.003	1.011	5.980	19.900	40.844	68.836	110.906	188.861	265.837	322.019	371.008
(days)											
(Δt)	0.05+00	(15+02	2.15+02	2.25+01	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00	0.05+00
Cl1	0.0E+00	6.1E+02	3.1E+02	3.2E+01	0.0E+00	0.0E+00			0.0E+00		0.0E+00
Cl2	0.0E+00	1.0E+04	1.0E+04	3.1E+03	1.2E+03	4.1E+02	1.5E+02	2.3E+01	4.2E+00		0.0E+00 0.0E+00
PCB8	0.0E+00	4.2E+03	3.9E+03	2.1E+03	8.9E+02	3.1E+02	6.8E+01	1.2E+01	2.7E+00		
Cl3	0.0E+00	1.2E+04	2.1E+04	1.3E+04	1.1E+04	7.4E+03	2.9E+03	1.2E+03	4.2E+02		2.1E+02
PCB18	0.0E+00	4.2E+03	5.8E+03	4.6E+03	2.7E+03	1.8E+03	6.2E+02	1.9E+02	1.0E+02		3.7E+01
PCB28	0.0E+00	1.9E+03	3.6E+03	3.6E+03	2.7E+03	2.1E+03	8.2E+02	1.2E+02	1.4E+02		6.7E+01
Cl4	0.0E+00	3.5E+03	7.3E+03	6.3E+03	7.8E+03	5.6E+03	3.5E+03	1.8E+03	1.2E+03		5.3E+02
PCB44	0.0E+00	2.5E+02	9.4E+02	9.3E+02	1.2E+03	8.7E+02	4.9E+02	2.1E+02	1.7E+02		1.3E+02
PCB49	0.0E+00	8.9E+01	3.8E+02	4.6E+02	5.8E+02	4.3E+02	2.4E+02	1.3E+02	8.3E+01	2.9E+01	6.2E+01
PCB52	0.0E+00	2.7E+02	8.8E+02	9.3E+02	1.0E+03	8.2E+02	4.2E+02	2.1E+02	1.9E+02		1.5E+02
PCB66	0.0E+00	8.9E+01	2.6E+02	3.3E+02	5.6E+02	3.6E+02	2.1E+02	9.9E+01	5.4E+01	1.3E+01	2.7E+01
PCB77	0.0E+00	0.0E+00	4.9E+01	6.9E+01	1.4E+02	9.4E+01	6.0E+01	2.5E+01	4.7E+00		0.0E+00
C15	0.0E+00	0.0E+00	0.0E+00	4.0E+02	5.3E+02	3.6E+02	3.4E+02	1.9E+02	2.1E+02		7.8E+01
PCB87	0.0E+00	0.0E+00	0.0E+00	1.4E+01	2.9E+01	2.6E+01	1.6E+01	1.2E+01	7.1E+00		6.3E+00
PCB101	0.0E+00	0.0E+00	0.0E+00	2.3E+01	4.0E+01	3.1E+01	2.2E+01	1.3E+01	9.5E+00		7.2E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	1.7E+01	4.7E+01	3.8E+01	2.9E+01	2.1E+01	1.1E+01	3.7E+00	6.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		1.3E+00	0.0E+00		0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	1.7E+01	4.9E+01	3.6E+01	2.8E+01	1.5E+01	1.0E+01	3.0E+00	4.3E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.0E+01	3.6E+01	3.9E+01	1.6E+01	2.6E+01	1.9E+00	7.7E-01
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+01	1.0E+01	7.9E+00		4.0E+00		2.7E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00
Cl7	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.9E+01	1.2E+02	1.4E+02	4.7E+01	1.1E+02	1.7E+01	1.8E+01
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			0.0E+00		0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E+01	0.0E+00	9.2E+00	5.7E+00	7.1E+00	2.0E+00	3.1E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E+01	1.6E+01	1.5E+01	9.9E+00	1.0E+01	4.4E+00	8.4E+00

Leaching Time	0.003	1.011	5.980	19.900	40.844	68.836	110.906	188.861	265.837	322.019	371.008
(days)											
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+01	5.8E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	1.3E+05	2.3E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	1.3E+05	2.3E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	1.3E+05	2.6E+04	3.9E+04	2.3E+04	2.0E+04	1.4E+04	7.1E+03	3.3E+03	2.0E+03	5.1E+02	8.4E+02

Bulkhead Insulation (BHI) Results

Leaching Time (days)	0.007	1.170	7.076	14.083	21.097	42.226	69.301	83.139	118.135	167.104	209.131	251.192	286.150	328.092	370.117	398.079	454.319
sampling time (Δt)	0.007	1.163	5.906	7.007	7.014	21.129	27.075	13.838	34.996	48.969	42.027	42.061	34.958	41.942	42.025	27.962	56.24
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	5.2E-01	1.4E+00	1.4E+00	1.5E+00	1.5E+00	1.5E+00	1.6E+00								
PCB8	0.0E+00	0.0E+00	5.8E-02	1.1E-01	1.5E-01	2.1E-01	2.7E-01	2.7E-01	3.1E-01	3.6E-01	3.9E-01						
C13	0.0E+00	4.5E-02	7.6E-01	1.5E+00	2.1E+00	3.1E+00	4.3E+00	5.0E+00	6.1E+00	7.1E+00	7.9E+00	8.9E+00	9.5E+00	1.0E+01	1.1E+01	1.2E+01	1.3E+01
PCB18	0.0E+00	0.0E+00	7.7E-02	1.7E-01	2.3E-01	3.6E-01	4.1E-01	4.9E-01	6.1E-01	7.2E-01	8.1E-01	9.2E-01	9.2E-01	9.9E-01	1.1E+00	1.1E+00	1.1E+00
PCB28	0.0E+00	3.1E-02	2.3E-01	4.7E-01	6.9E-01	1.1E+00	1.4E+00	1.7E+00	2.1E+00	2.5E+00	2.8E+00	3.1E+00	3.4E+00	3.5E+00	3.8E+00	3.9E+00	4.1E+00
Cl4	0.0E+00	1.1E+00	9.9E+00	2.4E+01	4.0E+01	6.3E+01	1.0E+02	1.2E+02	1.5E+02	2.0E+02	2.2E+02	2.5E+02	2.7E+02	2.9E+02	3.1E+02	3.2E+02	3.4E+02
PCB44	0.0E+00	1.2E-01	1.6E+00	3.8E+00	6.3E+00	1.0E+01	1.5E+01	1.9E+01	2.4E+01	3.1E+01	3.6E+01	4.1E+01	4.4E+01	4.7E+01	5.1E+01	5.4E+01	5.6E+01
PCB49	0.0E+00	5.2E-02	5.4E-01	1.3E+00	2.1E+00	3.3E+00	4.9E+00	6.1E+00	7.8E+00	9.9E+00	1.1E+01	1.3E+01	1.4E+01	1.5E+01	1.6E+01	1.7E+01	1.7E+01
PCB52	0.0E+00	2.0E-01	2.5E+00	6.0E+00	1.0E+01	1.6E+01	2.4E+01	3.0E+01	3.8E+01	5.0E+01	5.8E+01	6.7E+01	7.3E+01	7.9E+01	8.6E+01	9.1E+01	9.5E+01
PCB66	0.0E+00	2.5E-02	4.7E-01	1.1E+00	2.0E+00	3.2E+00	5.0E+00	6.3E+00	7.6E+00	1.0E+01	1.2E+01	1.3E+01	1.4E+01	1.5E+01	1.5E+01	1.6E+01	1.6E+01
PCB77	0.0E+00	0.0E+00	0.0E+00	2.5E-02	2.5E-02	2.5E-02	2.5E-02	2.5E-02	7.4E-02								
C15	0.0E+00	1.0E+00	9.3E+00	2.4E+01	5.4E+01	8.8E+01	1.8E+02	2.3E+02	2.8E+02	4.3E+02	4.7E+02	5.3E+02	5.6E+02	6.0E+02	6.2E+02	6.5E+02	6.7E+02
PCB87	0.0E+00	0.0E+00	7.1E-01	1.9E+00	4.1E+00	6.9E+00	1.3E+01	1.7E+01	2.1E+01	2.9E+01	3.4E+01	3.8E+01	4.2E+01	4.4E+01	4.7E+01	5.0E+01	5.1E+01
PCB101	0.0E+00	4.3E-02	9.9E-01	3.0E+00	6.4E+00	1.1E+01	2.0E+01	2.7E+01	3.4E+01	4.8E+01	5.5E+01	6.1E+01	6.6E+01	7.0E+01	7.4E+01	7.8E+01	8.1E+01
PCB105	0.0E+00	0.0E+00	2.2E-01	6.4E-01	1.5E+00	2.6E+00	5.4E+00	7.3E+00	9.4E+00	1.3E+01	1.5E+01	1.7E+01	1.7E+01	1.8E+01	1.9E+01	1.9E+01	1.9E+01

Leaching	0.007	1.170	7.076	14.083	21.097	42.226	69.301	83.139	118.135	167.104	209.131	251.192	286.150	328.092	370.117	398.079	454.319
Time																	
(days) PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E-02	1.3E-01	3.0E-01	4.0E-01	4.0E-01	5.8E-01	6.8E-01	6.8E-01	6.8E-01	6.8E-01	6.8E-01	6.8E-01	6.8E-01
PCB118	0.0E+00	0.0E+00	4.6E-01	1.5E+00	3.5E+00	6.4E+00	1.3E+01	1.7E+01	2.2E+01	3.2E+01	3.6E+01	3.9E+01	4.0E+01	4.1E+01	4.2E+01	4.3E+01	4.3E+01
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	1.4E+00	3.0E+00	7.3E+00	1.3E+01	3.4E+01	4.3E+01	5.4E+01	8.9E+01	1.0E+02	1.1E+02	1.2E+02	1.3E+02	1.3E+02	1.4E+02	1.5E+02
PCB128	0.0E+00	0.0E+00	0.0E+00	8.4E-02	2.3E-01	4.9E-01	1.3E+00	1.7E+00	2.2E+00	3.1E+00	3.6E+00	4.0E+00	4.0E+00	4.2E+00	4.4E+00	4.4E+00	4.4E+00
PCB138	0.0E+00	0.0E+00	1.1E-01	3.4E-01	9.0E-01	1.7E+00	4.5E+00	6.3E+00	8.1E+00	1.3E+01	1.5E+01	1.6E+01	1.7E+01	1.8E+01	1.9E+01	2.0E+01	2.0E+01
PCB153	0.0E+00	0.0E+00	6.5E-02	2.1E-01	5.1E-01	1.7E+00	2.8E+00	4.0E+00	5.0E+00	7.4E+00	9.7E+00	1.1E+01	1.3E+01	1.4E+01	1.5E+01	1.5E+01	1.6E+01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.4E-02	3.7E-01	5.0E-01	6.6E-01	1.0E+00	1.2E+00	1.1E+01 1.2E+00	1.2E+00	1.4E+01	1.3E+01	1.3E+01	1.0E+01
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-01	1.8E-01	1.8E-01	1.8E-01	1.8E-01	1.8E-01	1.8E-01	1.8E-01
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	5.9E-01	1.1E+00	1.5E+00	1.5E+00	1.5E+00	1.5E+00	2.4E+00	2.4E+00	5.0E+00	6.1E+00	6.1E+00	6.1E+00	6.1E+00	6.1E+00	6.1E+00	6.1E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-01	2.7E-01	2.7E-01	2.7E-01	2.7E-01	2.7E-01	2.7E-01	2.7E-01
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.7E-02	5.7E-02	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01
PCB184	0.0E+00	5.6E-02	9.4E-02	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.9E-01	1.9E-01	1.9E-01	1.9E-01	1.9E-01	1.9E-01	1.9E-01	1.9E-01	1.9E-01	1.9E-01
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E-02	5.4E-02	1.8E-01	2.9E-01	2.9E-01	2.9E-01	2.9E-01	2.9E-01	2.9E-01	2.9E-01
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	2.7E+00	2.3E+01	5.5E+01	1.1E+02	1.7E+02	3.2E+02	4.1E+02	5.0E+00	7.3E+02	8.1E+02	9.1E+02	9.7E+02	1.0E+03	1.1E+03	1.1E+03	1.2E+03
u CDS	0.0E±00	∠./E⊤00	∠.3E⊤01	3.3E±01	1.1E±02	1./E⊤02	3.∠E±02	4.1E⊤02	3.0E±02	7.3E±02	0.1E⊤0Z	9.1E±02	9./E⊤02	1.0E±03	1.1E±03	1.1E±03	1.∠E⊤03

Leach Rate (ng/g shipboard solid-day)

Leaching	0.007	1.170	7.076	14.083	21.097	42.226	69.301	83.139	118.135	167.104	209.131	251.192	286.150	328.092	370.117	398.079	454.319
Time																	
(days)																	
sampling	0.007	1.163	5.906	7.007	7.014	21.129	27.075	13.838	34.996	48.969	42.027	42.061	34.958	41.942	42.025	27.962	56.24

Leaching Time	0.007	1.170	7.076	14.083	21.097	42.226	69.301	83.139	118.135	167.104	209.131	251.192	286.150	328.092	370.117	398.079	454.319
(days)																	
time (Δt)	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl2	0.0E+00	0.0E+00	2.6E+00	3.6E+00	1.8E-01	8.6E-02	6.1E-02	0.0E+00	4.0E-02	2.7E-02	2.2E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	3.0E-01	2.4E-01	1.7E-01	8.6E-02	5.8E-02	0.0E+00	4.0E-02	2.7E-02	2.2E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl3	0.0E+00	1.2E+00	3.6E+00	3.1E+00	2.8E+00	1.5E+00	1.3E+00	1.6E+00	9.2E-01	6.5E-01	6.0E-01	6.7E-01	5.1E-01	5.1E-01	5.5E-01	1.1E+00	6.0E-01
PCB18	0.0E+00	0.0E+00	3.9E-01	3.9E-01	2.8E-01	1.8E-01	5.8E-02	1.7E-01	1.0E-01	7.2E-02	6.0E-02	8.0E-02	0.0E+00	5.1E-02	5.9E-02	0.0E+00	0.0E+00
PCB28	0.0E+00	8.1E-01	1.0E+00	1.0E+00	9.5E-01	5.3E-01	4.0E-01	6.5E-01	3.5E-01	2.6E-01	2.1E-01	2.2E-01	1.9E-01	1.2E-01	1.7E-01	1.5E-01	8.3E-02
Cl4	0.0E+00	2.7E+01	4.5E+01	5.9E+01	7.0E+01	3.3E+01	4.3E+01	4.7E+01	2.4E+01	3.1E+01	1.7E+01	2.0E+01	1.7E+01	1.2E+01	1.4E+01	1.7E+01	7.3E+00
PCB44	0.0E+00	3.2E+00	7.6E+00	9.5E+00	1.1E+01	5.6E+00	5.8E+00	8.3E+00	4.4E+00	4.3E+00	3.2E+00	3.7E+00	2.9E+00	2.4E+00	2.5E+00	2.9E+00	1.2E+00
PCB49	0.0E+00	1.4E+00	2.5E+00	3.1E+00	3.6E+00	1.8E+00	1.7E+00	2.7E+00	1.4E+00	1.3E+00	1.0E+00	1.1E+00	9.6E-01	6.7E-01	8.4E-01	7.7E-01	3.8E-01
PCB52	0.0E+00	5.3E+00	1.2E+01	1.5E+01	1.7E+01	8.6E+00	8.9E+00	1.3E+01	7.2E+00	7.2E+00	5.5E+00	6.7E+00	5.1E+00	4.2E+00	5.1E+00	5.6E+00	2.3E+00
PCB66	0.0E+00	6.5E-01	2.3E+00	2.6E+00	4.1E+00	1.7E+00	2.0E+00	2.8E+00	1.1E+00	1.6E+00	1.0E+00	1.2E+00	6.1E-01	5.1E-01	5.5E-01	5.9E-01	2.3E-01
PCB77	0.0E+00	0.0E+00	0.0E+00	1.1E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.2E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	2.6E+01	4.2E+01	6.4E+01	1.3E+02	4.9E+01	1.0E+02	1.2E+02	4.5E+01	8.7E+01	3.5E+01	4.2E+01	2.5E+01	2.4E+01	2.1E+01	2.9E+01	1.2E+01
PCB87	0.0E+00	0.0E+00	3.6E+00	5.2E+00	9.3E+00	4.1E+00	6.3E+00	8.9E+00	3.8E+00	5.1E+00	3.4E+00	3.2E+00	2.7E+00	2.0E+00	2.2E+00	2.4E+00	1.0E+00
PCB101	0.0E+00	1.1E+00	4.8E+00	8.5E+00	1.5E+01	6.8E+00	1.0E+01	1.4E+01	6.1E+00	8.7E+00	5.1E+00	4.6E+00	3.9E+00	2.9E+00	3.2E+00	3.6E+00	1.5E+00
PCB105	0.0E+00	0.0E+00	1.1E+00	1.8E+00	3.6E+00	1.6E+00	3.2E+00	4.1E+00	1.7E+00	2.4E+00	1.5E+00	8.4E-01	7.6E-01	4.6E-01	3.5E-01	4.2E-01	1.3E-01
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.3E-01	1.0E-01	1.9E-01	2.3E-01	0.0E+00	1.1E-01	7.2E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	2.3E+00	4.4E+00	8.8E+00	4.1E+00	7.0E+00	9.8E+00	4.0E+00	6.1E+00	3.1E+00	1.8E+00	1.5E+00	8.9E-01	6.3E-01	6.4E-01	2.0E-01
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C16	0.0E+00	0.0E+00	7.0E+00	7.2E+00	1.9E+01	7.6E+00	2.3E+01	2.1E+01	9.2E+00	2.2E+01	8.1E+00	8.4E+00	3.9E+00	5.9E+00	4.2E+00	8.3E+00	4.1E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	3.6E-01	6.2E-01	3.8E-01	8.9E-01	9.8E-01	4.0E-01	5.8E-01	3.7E-01	2.4E-01	0.0E+00	1.9E-01	1.3E-01	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	5.8E-01	9.8E-01	2.4E+00	1.2E+00	3.1E+00	3.9E+00	1.6E+00	2.8E+00	1.5E+00	1.0E+00	9.6E-01	6.7E-01	4.6E-01	8.3E-01	2.5E-01
PCB153	0.0E+00	0.0E+00	3.3E-01	6.4E-01	1.3E+00	1.6E+00	1.3E+00	2.5E+00	8.7E-01	1.5E+00	1.7E+00	1.1E+00	1.4E+00	7.2E-01	6.3E-01	7.7E-01	3.1E-01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-01	3.2E-01	2.8E-01	1.4E-01	2.3E-01	1.1E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.6E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.2E-02	4.7E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl7	0.0E+00	1.5E+01	2.6E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	1.9E+00	0.0E+00	1.6E+00	8.1E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.0E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.8E-02	8.1E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-01	0.0E+00	5.8E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	1.4E+00	1.9E-01	2.0E-01	0.0E+00	0.0E+00	0.0E+00	1.1E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Leaching	0.007	1.170	7.076	14.083	21.097	42.226	69.301	83.139	118.135	167.104	209.131	251.192	286.150	328.092	370.117	398.079	454.319
Time																	
(days)																	
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-01	0.0E+00	7.9E-02	7.7E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	7.0E+01	1.0E+02	1.4E+02	2.2E+02	9.0E+01	1.7E+02	1.9E+02	7.9E+01	1.4E+02	6.1E+01	7.1E+01	4.6E+01	4.3E+01	4.0E+01	5.5E+01	2.4E+01

Felt Gasket/Inner (FGI) Results

Leaching	0.004	1.080	6.006	20.030	33.992	56.248	83.156	118.062	159.993	201.953	243.987	320.997	362.963	404.974	474.979
Time															
(days)															
	0.004	1.076	4.926	14.024	13.962	22.256	26.908	34.906	41.931	41.96	42.034	77.01	41.966	42.011	70.005
C11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.1E-01	2.1E-01	4.2E-01	4.2E-01	4.2E-01	8.3E-01	9.9E-01	1.2E+00
C12	0.0E+00	2.6E+00	3.6E+00	1.3E+01	1.9E+01	2.4E+01	2.6E+01	2.9E+01	3.2E+01	3.5E+01	3.9E+01	4.3E+01	4.7E+01	4.9E+01	5.2E+01
PCB8	0.0E+00	1.3E-01	6.8E-01	1.7E+00	2.6E+00	3.7E+00	4.6E+00	5.7E+00	7.1E+00	8.3E+00	9.4E+00	1.1E+01	1.3E+01	1.4E+01	1.5E+01
C13	0.0E+00	6.1E-01	2.2E+00	5.7E+00	9.0E+00	1.3E+01	1.7E+01	2.1E+01	2.9E+01	3.3E+01	3.7E+01	4.3E+01	4.9E+01	5.3E+01	5.9E+01
PCB18	0.0E+00	1.1E - 01	6.7E-01	1.9E+00	3.1E+00	4.5E+00	5.7E+00	7.1E+00	8.9E+00	1.0E+01	1.2E+01	1.4E+01	1.6E+01	1.7E+01	1.9E+01
PCB28	0.0E+00	6.6E-02	4.6E-01	1.3E+00	2.2E+00	3.2E+00	4.1E+00	5.1E+00	6.5E+00	7.4E+00	8.4E+00	9.5E+00	1.1E+01	1.1E+01	1.2E+01
Cl4	0.0E+00	2.1E-01	1.3E+00	3.1E+00	5.5E+00	8.7E+00	1.2E+01	1.6E+01	2.1E+01	2.4E+01	2.7E+01	3.0E+01	3.3E+01	3.6E+01	3.9E+01
PCB44	0.0E+00	0.0E+00	1.2E-01	4.5E-01	8.5E-01	1.3E+00	1.7E+00	2.3E+00	3.0E+00	3.4E+00	3.8E+00	4.3E+00	4.9E+00	5.3E+00	5.6E+00
PCB49	0.0E+00	2.3E-02	1.3E-01	2.9E-01	4.8E-01	6.9E-01	8.9E-01	1.1E+00	1.4E+00	1.6E+00	1.8E+00	2.0E+00	2.2E+00	2.4E+00	2.6E+00
PCB52	0.0E+00	2.1E-02	1.6E-01	5.4E-01	9.6E-01	1.5E+00	1.9E+00	2.5E+00	3.2E+00	3.7E+00	4.1E+00	4.7E+00	5.3E+00	5.8E+00	6.3E+00
PCB66	0.0E+00	0.0E+00	4.1E-02	1.2E-01	2.3E-01	3.5E-01	5.1E-01	6.6E-01	8.7E-01	9.8E-01	1.1E+00	1.2E+00	1.3E+00	1.3E+00	1.3E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	0.0E+00	7.2E-01	2.1E+00	3.1E+00	4.8E+00	7.5E+00	9.9E+00	1.1E+01	1.3E+01	1.3E+01	1.4E+01	1.4E+01	1.4E+01
PCB87	0.0E+00	0.0E+00	0.0E+00	3.5E-02	3.5E-02	9.9E-02	9.9E-02	9.9E-02	2.3E-01	3.1E-01	3.1E-01	3.1E-01	3.1E-01	3.1E-01	3.1E-01
PCB101	0.0E+00	0.0E+00	0.0E+00	6.1E-02	1.6E-01	2.9E-01	4.6E-01	6.4E-01	8.5E-01	9.8E-01	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00

Leaching Time	0.004	1.080	6.006	20.030	33.992	56.248	83.156	118.062	159.993	201.953	243.987	320.997	362.963	404.974	474.979
(days) PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E-01	1.1E-01	2.4E-01	3.4E-01						
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	1.8E-01	1.2E+00	2.4E+00	2.4E+00	4.6E+00	6.8E+00	6.8E+00	6.9E+00	6.9E+00	6.9E+00	6.9E+00	6.9E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.7E-02	2.1E-01	2.1E-01	4.8E-01	7.5E-01	7.5E-01	8.7E-01	8.7E-01	8.7E-01	8.7E-01	8.7E-01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl7	0.0E+00	0.0E+00	6.8E-01	1.7E+00	4.7E+00	8.8E+00	1.5E+01	2.4E+01	3.1E+01	3.4E+01	3.9E+01	4.3E+01	4.7E+01	5.0E+01	5.0E+01
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	7.9E-02	4.8E-01	1.1E+00	2.3E+00	3.3E+00	4.3E+00	4.7E+00	5.5E+00	6.0E+00	6.5E+00	6.9E+00	6.9E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-01	1.6E-01	3.7E-01	5.8E-01	7.1E-01	8.9E-01	8.9E-01	8.9E-01	8.9E-01	8.9E-01
PCB184	0.0E+00	0.0E+00	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02
PCB187	0.0E+00	0.0E+00	0.0E+00	1.7E-01	9.8E-01	2.7E+00	5.2E+00	7.9E+00	1.1E+01	1.2E+01	1.4E+01	1.5E+01	1.6E+01	1.7E+01	1.7E+01
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	1.6E+00	1.1E+01	2.8E+01	5.0E+01	6.5E+01	8.0E+01	8.6E+01	9.5E+01	1.0E+02	1.1E+02	1.1E+02	1.2E+02
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	7.9E-01	3.3E+00	1.2E+01	1.8E+01	2.2E+01	2.5E+01	2.8E+01	3.1E+01	3.1E+01	3.4E+01	3.6E+01	3.6E+01
PCB206	0.0E+00	0.0E+00	0.0E+00	2.4E-01	2.7E+00	8.5E+00	1.3E+01	1.5E+01	1.7E+01	1.7E+01	1.8E+01	1.9E+01	2.0E+01	2.0E+01	2.0E+01
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-01	2.5E-01								
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-01	2.5E-01								
tPCBs	0.0E+00	3.4E+00	7.8E+00	2.7E+01	5.5E+01	9.9E+01	1.5E+02	1.9E+02	2.4E+02	2.6E+02	2.9E+02	3.1E+02	3.4E+02	3.6E+02	3.8E+02

Leach Rate (ng/g shipboard solid-day)

Leaching	0.004	1.080	6.006	20.030	33.992	56.248	83.156	118.062	159.993	201.953	243.987	320.997	362.963	404.974	474.979
Time															
(days)															

Leaching	0.004	1.080	6.006	20.030	33.992	56.248	83.156	118.062	159.993	201.953	243.987	320,997	362.963	404.974	474.979
Time	0.001	1.000	0.000	20.030	33.772	30.210	03.130	110.002	137.773	201.755	213.507	320.771	302.703	101.571	171.575
(days)															
	0.004	1.076	4.926	14.024	13.962	22.256	26.908	34.906	41.931	41.96	42.034	77.01	41.966	42.011	70.005
C11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.8E-02	0.0E+00	2.4E-02	0.0E+00	0.0E+00	4.5E-02	1.8E-02	1.6E-02
C12	0.0E+00	1.1E+01	9.7E-01	3.1E+00	1.9E+00	1.0E+00	4.1E-01	3.7E-01	4.2E-01	3.4E-01	3.4E-01	2.6E-01	4.4E-01	2.5E-01	2.2E-01
PCB8	0.0E+00	5.8E-01	5.2E-01	3.5E-01	2.9E-01	2.2E-01	1.5E-01	1.5E-01	1.6E-01	1.3E-01	1.3E-01	1.0E-01	1.9E-01	1.0E-01	7.6E-02
C13	0.0E+00	2.7E+00	1.5E+00	1.1E+00	1.1E+00	7.8E-01	6.6E-01	6.4E-01	8.3E-01	4.6E-01	4.7E-01	3.3E-01	7.3E-01	4.8E-01	3.5E-01
PCB18	0.0E+00	4.6E-01	5.3E-01	4.2E-01	3.8E-01	2.9E-01	2.1E-01	1.9E-01	2.0E-01	1.6E-01	1.6E-01	1.3E-01	2.4E-01	1.4E-01	9.0E-02
PCB28	0.0E+00	2.9E-01	3.7E-01	2.8E-01	2.9E-01	2.1E-01	1.5E-01	1.4E-01	1.5E-01	1.0E-01	1.0E-01	6.9E-02	1.4E-01	7.5E-02	5.8E-02
C14	0.0E+00	9.0E-01	1.0E+00	6.1E-01	7.9E-01	6.8E-01	5.9E-01	5.1E-01	5.4E-01	3.4E-01	3.3E-01	1.8E-01	3.9E-01	3.3E-01	1.7E-01
PCB44	0.0E+00	0.0E+00	1.2E-01	1.1E-01	1.3E-01	9.6E-02	7.7E-02	7.5E-02	7.4E-02	5.0E-02	4.4E-02	3.1E-02	6.7E-02	4.0E-02	2.3E-02
PCB49	0.0E+00	1.0E-01	9.7E-02	5.5E-02	6.5E-02	4.3E-02	3.4E-02	3.2E-02	3.0E-02	2.4E-02	1.8E-02	1.2E-02	2.6E-02	2.2E-02	1.3E-02
PCB52	0.0E+00	9.2E-02	1.3E-01	1.3E-01	1.4E-01	1.1E-01	8.2E-02	7.7E-02	7.6E-02	5.7E-02	4.7E-02	3.4E-02	7.4E-02	5.5E-02	3.0E-02
PCB66	0.0E+00	0.0E+00	3.9E-02	2.6E-02	3.8E-02	2.5E-02	2.7E-02	2.1E-02	2.3E-02	1.2E-02	1.0E-02	5.6E-03	1.1E-02	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	0.0E+00	2.4E-01	4.5E-01	2.1E-01	3.1E-01	3.5E-01	2.7E-01	1.5E-01	1.6E-01	0.0E+00	1.8E-01	0.0E+00	0.0E+00
PCB87	0.0E+00	0.0E+00	0.0E+00	1.2E-02	0.0E+00	1.3E-02	0.0E+00	0.0E+00	1.4E-02	9.0E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101	0.0E+00	0.0E+00	0.0E+00	2.0E-02	3.4E-02	2.8E-02	2.9E-02	2.4E-02	2.3E-02	1.4E-02	1.5E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.2E-02	0.0E+00	1.8E-02	1.1E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C16	0.0E+00	0.0E+00	0.0E+00	5.9E-02	3.4E-01	2.7E-01	0.0E+00	2.9E-01	2.4E-01	0.0E+00	1.8E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.9E-02	2.5E-02	0.0E+00	3.7E-02	3.0E-02	0.0E+00	1.3E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	0.0E+00	6.4E-01	3.3E-01	1.0E+00	8.7E-01	1.1E+00	1.2E+00	7.6E-01	4.3E-01	5.0E-01	2.5E-01	4.7E-01	2.6E-01	2.5E-02
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	2.6E-02	1.3E-01	1.4E-01	2.0E-01	1.3E-01	1.1E-01	4.7E-02	8.1E-02	3.1E-02	6.3E-02	3.7E-02	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.4E-02	0.0E+00	2.9E-02	2.3E-02	1.4E-02	2.0E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	3.7E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Leaching	0.004	1.080	6.006	20.030	33.992	56.248	83.156	118.062	159.993	201.953	243.987	320.997	362.963	404.974	474.979
Time															
(days)															
PCB187	0.0E+00	0.0E+00	0.0E+00	5.7E-02	2.7E-01	3.6E-01	4.4E-01	3.5E-01	3.1E-01	1.6E-01	2.0E-01	7.3E-02	1.3E-01	4.4E-02	1.9E-02
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl8	0.0E+00	0.0E+00	0.0E+00	5.5E-01	3.1E+00	3.5E+00	3.9E+00	2.1E+00	1.7E+00	6.5E-01	1.0E+00	3.6E-01	1.0E+00	4.9E-01	1.4E-01
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	2.6E-01	8.3E-01	1.8E+00	1.1E+00	4.4E-01	4.3E-01	2.7E-01	3.2E-01	3.8E-02	3.2E-01	2.0E-01	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	7.9E-02	8.3E-01	1.2E+00	7.4E-01	2.7E-01	2.2E-01	6.2E-02	8.9E-02	3.7E-02	8.9E-02	4.3E-02	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.9E-02	2.0E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.9E-02	2.0E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	1.5E+01	4.2E+00	6.3E+00	9.6E+00	9.2E+00	8.0E+00	5.9E+00	5.2E+00	2.7E+00	3.2E+00	1.4E+00	3.6E+00	2.0E+00	9.3E-01

Felt Gasket/Outer (FGO) Results

Leaching	0.003	1.025	6.057	21.319	42.298	69.295	111.087	146.059	188.072	230.155	265.096	307.037	349.066	377.029	454.092
Time (days)															
(days)	0.003	1.022	5.032	15.262	20.979	26.997	41.792	34.972	42.013	42.083	34.941	41.941	42.029	27.963	77.063
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01
C12	0.0E+00	0.0E+00	1.0E+00	2.9E+00	5.0E+00	7.2E+00	8.8E+00	1.0E+01	1.2E+01	1.3E+01	1.4E+01	1.5E+01	1.6E+01	1.7E+01	1.9E+01
PCB8	0.0E+00	0.0E+00	1.3E-01	6.6E-01	1.2E+00	2.0E+00	2.5E+00	3.1E+00	3.6E+00	4.2E+00	4.5E+00	4.9E+00	5.3E+00	5.6E+00	6.2E+00
C13	0.0E+00	0.0E+00	9.3E-01	3.2E+00	5.9E+00	9.8E+00	1.3E+01	1.6E+01	1.8E+01	2.1E+01	2.4E+01	2.6E+01	2.8E+01	3.0E+01	3.3E+01
PCB18	0.0E+00	0.0E+00	2.3E-01	9.7E-01	1.9E+00	3.1E+00	4.1E+00	5.0E+00	5.9E+00	6.8E+00	7.4E+00	8.0E+00	8.7E+00	9.3E+00	1.0E+01
PCB28	0.0E+00	0.0E+00	1.9E-01	8.4E-01	1.5E+00	2.5E+00	3.2E+00	3.9E+00	4.6E+00	5.2E+00	5.6E+00	6.0E+00	6.5E+00	6.9E+00	7.3E+00
Cl4	0.0E+00	0.0E+00	4.8E-01	2.6E+00	5.0E+00	8.9E+00	1.2E+01	1.5E+01	1.8E+01	2.2E+01	2.4E+01	2.6E+01	2.7E+01	2.9E+01	3.1E+01
PCB44	0.0E+00	0.0E+00	8.0E-02	3.4E-01	6.5E-01	1.1E+00	1.5E+00	1.9E+00	2.2E+00	2.6E+00	2.8E+00	3.1E+00	3.3E+00	3.5E+00	3.8E+00
PCB49	0.0E+00	0.0E+00	4.8E-02	1.9E-01	4.0E-01	6.3E-01	8.5E-01	1.0E+00	1.2E+00	1.4E+00	1.5E+00	1.6E+00	1.7E+00	1.7E+00	1.9E+00
PCB52	0.0E+00	0.0E+00	9.3E-02	3.8E-01	7.3E-01	1.3E+00	1.7E+00	2.1E+00	2.5E+00	2.9E+00	3.3E+00	3.6E+00	3.8E+00	4.1E+00	4.4E+00
PCB66	0.0E+00	0.0E+00	0.0E+00	2.0E-01	2.9E-01	4.7E-01	5.7E-01	6.5E-01	7.6E-01	8.6E-01	8.6E-01	9.2E-01	9.7E-01	9.7E-01	9.7E-01
PCB77	0.0E+00	0.0E+00	0.0E+00	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02
C15	0.0E+00	0.0E+00	0.0E+00	9.5E-01	2.0E+00	3.4E+00	5.2E+00	6.5E+00	7.3E+00	8.4E+00	8.4E+00	9.2E+00	9.2E+00	9.2E+00	9.2E+00
PCB87	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.6E-02	5.6E-02	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01
PCB101	0.0E+00	0.0E+00	0.0E+00	5.6E-02	1.5E-01	3.1E-01	4.4E-01	5.3E-01	6.5E-01	8.2E-01	8.2E-01	9.0E-01	9.0E-01	9.0E-01	9.0E-01

Leaching Time	0.003	1.025	6.057	21.319	42.298	69.295	111.087	146.059	188.072	230.155	265.096	307.037	349.066	377.029	454.092
(days)															
PCB105	0.0E+00	0.0E+00	0.0E+00	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02	7.5E-02
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	8.8E-02	8.8E-02	8.8E-02	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01	1.6E-01
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.4E-01	9.4E-01	1.5E+00	1.5E+00	1.5E+00	3.1E+00	3.1E+00	3.1E+00	3.1E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.7E-02	8.7E-02	2.1E-01	2.1E-01	2.1E-01	2.7E-01	2.7E-01	2.7E-01	2.7E-01
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-01	1.1E+00	3.5E+00	5.3E+00	8.4E+00	9.2E+00	1.0E+01	1.3E+01	1.4E+01	1.5E+01	1.5E+01
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-01	1.5E-01	3.2E-01	3.2E-01	3.2E-01	5.3E-01	6.7E-01	6.7E-01	6.7E-01
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-01	6.2E-01	1.3E+00	1.8E+00	2.6E+00	3.1E+00	3.9E+00	4.6E+00	5.0E+00	5.4E+00	5.6E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+00	2.1E+00	3.0E+00	6.9E+00	6.9E+00	6.9E+00	7.9E+00	8.8E+00	1.0E+01	1.0E+01
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	0.0E+00	2.4E+00	9.7E+00	1.8E+01	3.2E+01	4.6E+01	5.7E+01	7.3E+01	8.3E+01	8.8E+01	9.9E+01	1.1E+02	1.1E+02	1.2E+02

Leach Rate (ng/g shipboard solid-day)

Leaching	0.003	1.025	6.057	21.319	42.298	69.295	111.087	146.059	188.072	230.155	265.096	307.037	349.066	377.029	454.092
Time															
(days)															

Leaching	0.003	1.025	6.057	21.319	42.298	69.295	111.087	146.059	188.072	230.155	265.096	307.037	349.066	377.029	454.092
Time	0.003	1.023	0.037	21.319	42.296	09.293	111.007	140.039	100.072	230.133	203.090	307.037	349.000	311.029	434.092
(days)															
	0.003	1.022	5.032	15.262	20.979	26.997	41.792	34.972	42.013	42.083	34.941	41.941	42.029	27.963	77.063
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.6E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	2.9E+00	1.8E+00	1.4E+00	1.2E+00	5.6E-01	5.6E-01	5.6E-01	5.1E-01	1.6E-01	3.7E-01	4.8E-01	7.0E-01	3.5E-01
PCB8	0.0E+00	0.0E+00	3.8E-01	5.0E-01	3.9E-01	4.0E-01	2.0E-01	2.3E-01	1.9E-01	1.8E-01	1.5E-01	1.3E-01	1.3E-01	1.8E-01	1.0E-01
C13	0.0E+00	0.0E+00	2.7E+00	2.2E+00	1.8E+00	2.1E+00	1.1E+00	1.1E+00	8.8E-01	1.0E+00	1.0E+00	6.4E-01	6.9E-01	1.1E+00	5.0E-01
PCB18	0.0E+00	0.0E+00	6.5E-01	7.1E-01	6.1E-01	6.5E-01	3.5E-01	3.9E-01	3.0E-01	3.2E-01	2.5E-01	2.1E-01	2.2E-01	3.2E-01	1.5E-01
PCB28	0.0E+00	0.0E+00	5.4E-01	6.3E-01	4.8E-01	5.0E-01	2.6E-01	2.8E-01	2.3E-01	2.1E-01	2.0E-01	1.4E-01	1.5E-01	2.1E-01	8.5E-02
Cl4	0.0E+00	0.0E+00	1.4E+00	2.0E+00	1.7E+00	2.1E+00	1.1E+00	1.4E+00	9.5E-01	1.3E+00	7.2E-01	6.4E-01	5.0E-01	8.0E-01	3.6E-01
PCB44	0.0E+00	0.0E+00	2.3E-01	2.5E-01	2.2E-01	2.6E-01	1.3E-01	1.5E-01	1.3E-01	1.3E-01	8.5E-02	8.0E-02	7.3E-02	1.1E-01	6.1E-02
PCB49	0.0E+00	0.0E+00	1.4E-01	1.4E-01	1.4E-01	1.2E-01	7.7E-02	6.4E-02	6.0E-02	6.5E-02	5.2E-02	3.9E-02	3.4E-02	0.0E+00	4.5E-02
PCB52	0.0E+00	0.0E+00	2.7E-01	2.7E-01	2.5E-01	2.9E-01	1.5E-01	1.6E-01	1.3E-01	1.6E-01	1.3E-01	1.0E-01	1.0E-01	1.6E-01	5.6E-02
PCB66	0.0E+00	0.0E+00	0.0E+00	1.9E-01	6.1E-02	9.4E-02	3.5E-02	3.3E-02	3.7E-02	3.5E-02	0.0E+00	2.1E-02	1.8E-02	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	7.1E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	0.0E+00	9.0E-01	7.5E-01	7.6E-01	6.3E-01	5.3E-01	2.8E-01	3.7E-01	0.0E+00	2.8E-01	0.0E+00	0.0E+00	0.0E+00
PCB87	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.0E-02	0.0E+00	2.8E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101	0.0E+00	0.0E+00	0.0E+00	5.4E-02	6.6E-02	8.3E-02	4.7E-02	3.6E-02	4.4E-02	5.6E-02	0.0E+00	2.8E-02	0.0E+00	0.0E+00	0.0E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	7.1E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	8.4E-02	0.0E+00	0.0E+00	2.6E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.3E-01	0.0E+00	2.0E-01	0.0E+00	0.0E+00	5.5E-01	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.0E-02	0.0E+00	4.4E-02	0.0E+00	0.0E+00	1.8E-02	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-01	4.7E-01	8.6E-01	7.2E-01	1.1E+00	2.8E-01	3.6E-01	8.5E-01	6.4E-01	2.3E-01	6.1E-02
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	5.4E-02	0.0E+00	5.6E-02	0.0E+00	0.0E+00	7.6E-02	4.6E-02	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Leaching	0.003	1.025	6.057	21.319	42.298	69.295	111.087	146.059	188.072	230.155	265.096	307.037	349.066	377.029	454.092
Time															
(days)															
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	9.7E-02	2.6E-01	2.3E-01	2.1E-01	2.8E-01	1.9E-01	3.3E-01	2.2E-01	1.5E-01	1.9E-01	3.9E-02
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	7.9E-01	2.3E-01	3.3E-01	1.4E+00	0.0E+00	0.0E+00	3.4E-01	3.2E-01	5.9E-01	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	0.0E+00	6.9E+00	6.9E+00	5.8E+00	7.4E+00	4.9E+00	4.6E+00	5.3E+00	3.5E+00	2.3E+00	3.7E+00	2.6E+00	3.5E+00	1.3E+00

Aluminized Paint (AP) Results

Leaching	0.008	1.101	7.022	21.076	42.044	71.241	105.081	147.088	189.030	231.006	273.125	315.042	357.008	399.022	469.032
Time (days)															
	0.008	1.093	5.921	14.054	20.968	29.197	33.84	42.007	41.942	41.976	42.119	41.917	41.966	42.014	70.01
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C12	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C13	0.0E+00	0.0E+00	0.0E+00	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01	1.4E-01
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB28	0.0E+00	0.0E+00	0.0E+00	2.3E-02	2.3E-02	2.3E-02	2.3E-02	2.3E-02	2.3E-02	2.3E-02	2.3E-02	2.3E-02	2.3E-02	2.3E-02	2.3E-02
Cl4	0.0E+00	0.0E+00	2.6E-01	8.0E-01	1.0E+00	1.3E+00	1.8E+00	2.6E+00	3.4E+00	3.8E+00	4.0E+00	4.1E+00	4.7E+00	4.9E+00	5.3E+00
PCB44	0.0E+00	0.0E+00	0.0E+00	6.0E-02	6.0E-02	1.4E-01	1.4E-01	2.5E-01	3.4E-01	3.4E-01	3.4E-01	3.4E-01	4.4E-01	4.4E-01	5.2E-01
PCB49	0.0E+00	0.0E+00	3.9E-02	8.0E-02	8.0E-02	1.1E-01	1.1E-01	1.5E-01							
PCB52	0.0E+00	0.0E+00	5.2E-02	1.4E-01	2.5E-01	3.8E-01	5.1E-01	6.9E-01	8.5E-01	1.0E+00	1.2E+00	1.3E+00	1.5E+00	1.7E+00	1.8E+00
PCB66	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	0.0E+00	1.2E+00	2.7E+00	4.6E+00	6.1E+00	9.0E+00	1.1E+01	1.3E+01	1.3E+01	1.3E+01	1.6E+01	1.6E+01	1.6E+01
PCB87	0.0E+00	0.0E+00	0.0E+00	6.1E-02	1.3E-01	2.3E-01	3.4E-01	4.6E-01	5.8E-01						
PCB101	0.0E+00	0.0E+00	0.0E+00	1.1E-01	2.2E-01	3.9E-01	5.8E-01	7.8E-01	9.5E-01	1.2E+00	1.2E+00	1.3E+00	1.3E+00	1.3E+00	1.3E+00

Leaching Time	0.008	1.101	7.022	21.076	42.044	71.241	105.081	147.088	189.030	231.006	273.125	315.042	357.008	399.022	469.032
(days)															
PCB105	0.0E+00	0.0E+00	0.0E+00	3.2E-02	7.2E-02	7.2E-02	7.2E-02	1.5E-01	2.0E-01						
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	5.1E-02	1.4E-01	2.5E-01	4.1E-01	5.5E-01	6.9E-01						
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	5.9E-01	5.9E-01	2.1E+00	3.1E+00	5.0E+00	6.3E+00						
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	4.2E-02	4.2E-02	1.4E-01	3.0E-01	4.3E-01	5.3E-01						
PCB153	0.0E+00	0.0E+00	0.0E+00	6.5E-02	6.5E-02	1.4E-01	3.0E-01	5.0E-01	6.5E-01						
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	3.0E-01	5.9E-01	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00	1.1E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	5.1E-02	9.6E-02	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01	1.5E-01
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	3.0E-01	8.5E-01	3.8E+00	5.6E+00	9.3E+00	1.2E+01	1.8E+01	2.2E+01	2.4E+01	2.5E+01	2.5E+01	2.8E+01	2.8E+01	2.8E+01

Leach Rate (ng/g shipboard solid-day)

Leaching	0.008	1.101	7.022	21.076	42.044	71.241	105.081	147.088	189.030	231.006	273.125	315.042	357.008	399.022	469.032
Time															
(days)															

Leaching	0.008	1.101	7.022	21.076	42.044	71.241	105.081	147.088	189.030	231.006	273.125	315.042	357.008	399.022	469.032
Time															
(days)	0.008	1.093	5.921	14.054	20.968	29.197	33.84	42.007	41.942	41.976	42.119	41.917	41.966	42.014	70.01
Cl1	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl2	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl3	0.0E+00	0.0E+00	0.0E+00	1.1E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB28	0.0E+00	0.0E+00	0.0E+00	1.8E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl4	0.0E+00	0.0E+00	5.0E-01	4.4E-01	1.3E-01	1.2E-01	1.4E-01	2.4E-01	2.0E-01	1.2E-01	4.2E-02	4.4E-02	1.6E-01	4.9E-02	6.2E-02
PCB44	0.0E+00	0.0E+00	0.0E+00	4.8E-02	0.0E+00	3.2E-02	0.0E+00	2.9E-02	2.3E-02	0.0E+00	0.0E+00	0.0E+00	2.7E-02	0.0E+00	1.4E-02
PCB49	0.0E+00	0.0E+00	7.4E-02	3.3E-02	0.0E+00	1.3E-02	0.0E+00	1.1E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB52	0.0E+00	0.0E+00	9.9E-02	7.0E-02	6.1E-02	5.2E-02	4.3E-02	4.7E-02	4.3E-02	4.8E-02	4.3E-02	3.8E-02	5.6E-02	4.0E-02	1.8E-02
PCB66	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB77	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C15	0.0E+00	0.0E+00	0.0E+00	9.6E-01	8.3E-01	7.5E-01	4.9E-01	7.8E-01	5.9E-01	5.2E-01	0.0E+00	2.9E-02	6.7E-01	0.0E+00	0.0E+00
PCB87	0.0E+00	0.0E+00	0.0E+00	4.9E-02	3.6E-02	4.0E-02	3.6E-02	3.4E-02	3.0E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB101	0.0E+00	0.0E+00	0.0E+00	8.6E-02	6.1E-02	6.7E-02	6.3E-02	5.4E-02	4.5E-02	5.9E-02	0.0E+00	2.7E-02	0.0E+00	0.0E+00	0.0E+00
PCB105	0.0E+00	0.0E+00	0.0E+00	2.6E-02	2.2E-02	0.0E+00	0.0E+00	2.0E-02	1.5E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB114	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB118	0.0E+00	0.0E+00	0.0E+00	4.1E-02	4.7E-02	4.2E-02	5.4E-02	4.0E-02	3.6E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB123	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB126	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
Cl6	0.0E+00	0.0E+00	0.0E+00	4.8E-01	0.0E+00	5.7E-01	3.6E-01	5.1E-01	3.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB128	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB138	0.0E+00	0.0E+00	0.0E+00	3.4E-02	0.0E+00	3.7E-02	5.4E-02	3.4E-02	2.7E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB153	0.0E+00	0.0E+00	0.0E+00	5.2E-02	0.0E+00	3.0E-02	5.4E-02	5.2E-02	4.1E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB156	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB157	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB167	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB169	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C17	0.0E+00	3.1E+00	5.7E-01	4.0E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB170	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB180	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB183	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB184	0.0E+00	5.3E-01	8.6E-02	4.5E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Leaching	0.008	1.101	7.022	21.076	42.044	71.241	105.081	147.088	189.030	231.006	273.125	315.042	357.008	399.022	469.032
Time															
(days)															
PCB187	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB189	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C18	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB195	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C19	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB206	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
C110	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PCB209	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
tPCBs	0.0E+00	3.1E+00	1.1E+00	2.4E+00	9.5E-01	1.4E+00	9.9E - 01	1.5E+00	1.1E+00	6.4E-01	4.2E-02	7.3E-02	8.4E-01	4.9E-02	6.2E-02

APPENDIX E: RATE CURVES FOR DATA COLLECTED AT LOW TEMPERATURE (4°C) AND AMBIENT PRESSURE (1 BAR)

Aroclor 1254 (A1254) Dissolution Rates at 4°C

Black Rubber Pipe Hanger Liner (BRPHL) Leach Rates at 4°C

Electrical Cable (EC) Leach Rates at 4°C

Foam Rubber/EnsoliteTM (FRE) Leach Rates at 4°C

Aroclor 1268 (A1268) Dissolution Rates at 4°C

Bulkhead Insulation (BHI) Leach Rates at 4°C

Felt Gasket/Inner (FGI) Leach Rates at 4°C

Felt Gasket/Outer (FGO) Leach Rates at 4°C

Aluminized Paint (AP) Leach Rates at 4°C

Comparison of Leach Rates at 4°C to Leach Rates at 25°C

To address the absence of more samples (leaching of additional samples) at 25°C, the low temperature leaching results were corrected for temperature and evaluated to provide confidence that they are sufficiently representative. This evaluation is based on enthalpy of solution data from the literature to correct for temperature effects on dissolution properties[Dickhut, R.M. et al 1986] and uses the integrated form of the van't Hoff equation for dilute solutions as shown below. This equation can be used to calculate the concentration of a soluble chemical species (e.g. a PCB congener) at a given temperature.

$$\Delta H_{ss} = RT(C-ln(x))$$

where ΔH_{ss} is the enthalpy of solution of the solid, C is an experimentally determined integration constant, x is concentration, T is temperature, and R is the universal gas constant. Requirements for using this approach included identifying a PCB congener, for which ΔH_{ss} and C were reported, and that was consistently detected in most of the leaching experiments for all shipboard solids at both temperatures. Fortunately, a congener was identified (one of the few noted), PCB101 (2,2'4,5,5'pentachlorobiphenyl), that met all of these requirements. Using temperature dependent solubility parameters for PCB101[Dickhut, R.M. et al 1986], in which C was experimentally determined to be -8.0159, and ΔH_{ss} determined to be 31.9 kJ/mol, the respective concentrations for each of the leaching temperatures (4°C & 25°C) were calculated. The ratio of these (4°C concentration to 25°C concentration) was then used to initially correct for the temperature dependence of the dissolution component in the 4°C A1254 dissolution curve, which is the experiment in the leach rate study that should bear a close similarity to a solubility study. This result provided a very good correspondence upon comparison to the 25°C curve for A1254. In a similar manner, this approach was also then used to correct the 4°C EC (Electrical Cable) experiment, and it compared well to EC at 25°C. We then assumed that the behavior of PCB101 was representative of the other congeners in the pentchlorobiphenyl homologue group and performed similar corrections for the congener and the homologue leach rate curves for A1254 and EC at 4°C and compared them to the A1254 and EC curves at 25°C. All of these results described for A1254 and EC are included for comparison below, in addition to similar corrections and comparisons of leaching results for other shipboard solid materials and Aroclor 1268 (A1268) at 4°C.

While this approach can not likely be extrapolated to the other homologues in each sample, the data treatment and close correspondence between temperature-corrected 4°C and the corresponding empirical 25°C curves provides a reasonable level of confidence in the use of the empirical leach rate study results to represent mass release for materials onboard a vessel.

4C A1254 Leach Rate Curves Corrected to 25C

25C A1254 Leach Rate Curves

4C EC LR Curves Corrected to 25C

25C EC LR Curves

4C BHI LR Curves Corrected to 25C

25C BHI LR Curves

4C AP LR Corrected to 25C

25C AP LR Curves

4C BRPHL LR Curves Corrected to 25C

25C BRPHL LR curves

4C FRE LR Curves Corrected to 25C

25C FRE LR Curves

4C A1268 LR Curves Corected to 25C

25C A1268 LR Curves

4C FGI LR Curve Corrected to 25C

25C FGI LR Curve

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information.

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
04–2006	Technical	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
	EASE RATES FROM SELECTED SHIPBOARD ABORATORY-SIMULATED SHALLOW OCEAN MENTS	5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
		JOC. I ROGRAM ELEMENT NOMBER
6. AUTHORS R. D. George R. D. Gau	thier	5d. PROJECT NUMBER
C. R. In W. J. Wile R. K. Johnston	d	5e. TASK NUMBER
C. A. Kurtz P. F. Seligman		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAM SSC San Diego San Diego, CA 92152–5001	ME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER TR 1936
9. SPONSORING/MONITORING AGEN Program Executive Office Ships (I	` ,	10. SPONSOR/MONITOR'S ACRONYM(S)
Artificial Reef Program Office 1333 Isaac Hull Avenue SE Stop 2 Washington Navy Yard, DC 20376		11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

This is the work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated without restriction. Many SSC San Diego public release documents are available in electronic format at http://www.spawar.navy.mil/sti/publications/pubs/index.html

14. ABSTRACT

Release behaviors of polychlorinated biphenyls in solid materials (PCBs-ISM) were investigated under laboratory-simulated shallow-water leaching conditions for a series of intact representative shipboard solids found onboard vessels considered for use as artificial reefs. This effort focused on the following broad classes of shipboard solids: Electrical Cable, Felt Gasket, Bulkhead Insulation, Foam Rubber, Black Rubber, and Paint. Neat Aroclor[®] 1254 and 1268 were also evaluated under conditions identical to shipboard solids and serve as positive analytical controls. In this report, complete shipboard solid PCB leach rate results and data treatments for ambient pressure (~1 bar) and 25°C are provided, with particular emphasis on using these empirical leach rate data in a risk assessment framework concerned with the re-use of ex-Navy vessels in constructing artificial reefs in coastal areas. Leach rate behaviors as a function of time were evaluated for short- and long-term impacts, with particular emphasis on how to best utilize the empirical leach rates for sunken vessel ecological and/or human health risk assessment scenarios. In such assessments, it is strongly recommended that shipboard-solid-specific empirical leach rates and regression analyses described in this investigation be used to characterize the temporal variability of the PCB mass flux and to support the choice of long-term leach rate values.

15. SUBJECT TERMS

Mission Area: Environmental Science

polychlorinated biphenyls artificial reefs analytical controls

shipboard solid leach rates Aroclor®

16. SECURITY CLASSIFICATION OF:				18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	R. D. George
				1 AGES	19B. TELEPHONE NUMBER (Include area code)
U	U	U	UU	1016	(619) 553–2776

INITIAL DISTRIBUTION

20012 21511 21512 21513 246210	Patent Counsel J. Andrews Library Archive/Stock R. D. George	(1) (1) (2) (3) (15)		
Defense Technical Information Center Fort Belvoir, VA 22060–6218 (1)				
SSC San Die C/O PEO-SC Arlington, V	(1)			
Center for Na Alexandria,	(1)			
Office of Naval Research ATTN: NARDIC Philadelphia, PA 19111-5078 (1)				
	-Industry Data Exchange erations Center 91718–8000	(1)		

