1. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & -4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 17 \\ 3 & 6 & 0 & 6 & 24 \end{bmatrix}$$
. Find a basis for $\operatorname{Col}(A)$, $\operatorname{Null}(A)$ and $\operatorname{Row}(A)$. What is $\operatorname{rank}(A)$?

Solution.

$$\begin{bmatrix} 1 & 2 & 3 & -4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 17 \\ 3 & 6 & 0 & 6 & 24 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 2 & 3 & -4 & 8 \\ 0 & 0 & -3 & 6 & 0 \\ 0 & 0 & -9 & 18 & 1 \\ 0 & 0 & -9 & 18 & 0 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 2 & 3 & -4 & 8 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & -9 & 18 & 1 \\ 0 & 0 & -9 & 18 & 0 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis for
$$\operatorname{Col}(A)$$
 is $\left\{ \begin{bmatrix} 1\\1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\0\\-3\\0 \end{bmatrix}, \begin{bmatrix} 8\\8\\17\\24 \end{bmatrix} \right\}$.

A basis for
$$\operatorname{Row}(A)$$
 is $\left\{ \begin{bmatrix} 1\\2\\0\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$.

A basis for Null(A) is
$$\left\{ \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\2\\1\\0 \end{bmatrix} \right\}.$$

rank(A) = 3.

2. Let
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 3 & 1 & -1 \\ 3 & 6 & -4 \end{bmatrix}$$
.

- a) (3 points) Find the characteristic polynomial of A.
- b) (2 points) Find the eigenvalues of A.

Solution.

a)

$$C_A(\lambda) = \det(A - \lambda I_3) = \begin{vmatrix} -1 - \lambda & 0 & 0 \\ 3 & 1 - \lambda & -1 \\ 3 & 6 & -4 - \lambda \end{vmatrix} = -(1 + \lambda)(-1)^{1+1} \begin{vmatrix} 1 - \lambda & -1 \\ 6 & -4 - \lambda \end{vmatrix}$$
$$= -(1 + \lambda)((1 - \lambda)(-4 - \lambda) + 6) = -(1 + \lambda)(-4 - \lambda + 4\lambda + \lambda^2 + 6)$$
$$= -(\lambda + 1)^2(\lambda + 2)$$

- b) $\lambda_1 = -1, \ \lambda_2 = -2.$
- 3. Let $A = \begin{bmatrix} -2 & -1 & -2 \\ 2 & 1 & 4 \\ 1 & 1 & 1 \end{bmatrix}$. The eigenvalues of A are $\lambda_1 = -1$, with $a_{\lambda_1} = 2$, and $\lambda_2 = 2$, with $a_{\lambda_2} = 1$.
 - a) (4 points) Find a basis for each eigenspace of A.
 - b) (2 point) Is A diagonalizable? Explain. If so, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. Note: You do not have to find P^{-1} .

Solution.

a) \bullet $E_{\lambda_1}(A) = \text{Null}(A + I_3)$:

$$A + I_3 = \begin{bmatrix} -1 & -1 & -2 \\ 2 & 2 & 4 \\ 1 & 1 & 2 \end{bmatrix} \quad \begin{array}{c} -R_1 \\ \sim \\ \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 1 & 1 & 2 \end{bmatrix} \quad \begin{array}{c} \sim \\ R_2 - 2R_1 \\ R_3 - R_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

A basis for
$$E_{\lambda_1}(A)$$
 is $\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\1 \end{bmatrix} \right\}$.

• $E_{\lambda_1}(A) = \text{Null}(A - 2I_3)$:

$$A-2I_3 = \begin{bmatrix} -4 & -1 & -2 \\ 2 & -1 & 4 \\ 1 & 1 & -1 \end{bmatrix} \quad \begin{matrix} R_1 \leftrightarrow R_3 \\ \sim \end{matrix} \quad \begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 4 \\ -4 & -1 & -2 \end{bmatrix} \quad \begin{matrix} \sim \\ R_2 - 2R_1 \\ R_3 + 4R_1 \end{matrix} \quad \begin{bmatrix} 1 & 1 & -1 \\ 0 & -3 & 6 \\ 0 & 3 & -6 \end{bmatrix} \quad \begin{matrix} \sim \\ -1/3R_2 \end{matrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -2 \\ 0 & 3 & -6 \end{bmatrix} \quad \begin{array}{c} R_1 - R_2 \\ \sim \\ R_3 - 3R_2 \end{array} \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

A basis for $E_{\lambda_2}(A)$ is $\left\{ \begin{bmatrix} -1\\2\\1 \end{bmatrix} \right\}$.

b) A is diagonalizable because $g_{\lambda_1} = 2 = a_{\lambda_1}$ and $g_{\lambda_2} = 1 = a_{\lambda_2}$.

$$P = \begin{bmatrix} -1 & -2 & -1 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

4. Let $\vec{x} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$ and $\vec{u} = \begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix}$. Find the closest point to \vec{x} in $H = \text{Span}\{\vec{u}\}$. What is

the shortest distance from \vec{x} to H? You do not need to simplify your answer.

Solution. The closest point to \vec{x} in H is given by

$$\operatorname{proj}_{\vec{u}}\vec{x} = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}\vec{u} = \frac{3(2) + 1(-1) + 1(-2)}{2^2 + (-1)^2 + (-2)^2} \begin{bmatrix} 2\\ -1\\ -2 \end{bmatrix}$$
$$= \frac{3}{9} \begin{bmatrix} 2\\ -1\\ -2 \end{bmatrix} = \begin{bmatrix} 2/3\\ -1/3\\ -2/3 \end{bmatrix}$$

The shortest distance is given by $\|\vec{x} - \operatorname{proj}_{\vec{u}}\vec{x}\|$.

$$\vec{x} - \text{proj}_{\vec{u}}\vec{x} = \begin{bmatrix} 7/3 \\ 4/3 \\ 5/3 \end{bmatrix} \Rightarrow \|\vec{x} - \text{proj}_{\vec{u}}\vec{x}\| = \frac{1}{3}\sqrt{7^2 + 4^2 + 5^2} = \frac{1}{3}\sqrt{90}.$$

- 5. For each of the following, determine if the statement is true or false. You do not need to justify your answer.
 - a) If $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a linearly independent set of vectors in a subspace H, then $\dim(H) \geq p$.
 - b) If A is an $n \times n$ matrix and the equation $A\vec{x} = \vec{b}$ is inconsistent for some $\vec{b} \in \mathbb{R}^n$, then the equation $A\vec{x} = \vec{0}$ has infinitely many solutions.
 - c) If -1 is an eigenvalue of a square invertible matrix A, then -1 is also an eigenvalue of A^{-1} .

Solution. All true.

6. (BONUS) Let $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ be an orthogonal set of vectors in \mathbb{R}^n and let t_1, t_2, t_3 be real numbers. Show that $\{t_1\vec{v}_1, t_2\vec{v}_2, t_3\vec{v}_3\}$ is an orthogonal set.

Solution. For $i \neq j$:

$$(t_i \vec{v}_i) \cdot (t_j \vec{v}_j) = (t_i t_j)(\vec{v}_i \cdot \vec{v}_j) = 0.$$