PARCIJALNE DIFERENCIJALNE JEDNAČINE

Homogena linearna parcijalna diferencijalna jednačina

Oblika je:

$$X_1(x_1,x_2,...x_n)\frac{\partial u}{\partial X_1} + X_2(x_1,x_2,...x_n)\frac{\partial u}{\partial X_2} + + X_n(x_1,x_2,...x_n)\frac{\partial u}{\partial X_n} = 0$$

Iz date jednačine formiramo sistem jednačina u simetričnom obliku:

$$\frac{dX_1}{X_1(x_1, x_2, ..., x_n)} = \frac{dX_2}{X_2(x_1, x_2, ..., x_n)} = = \frac{dX_n}{X_n(x_1, x_2, ..., x_n)}$$

Rešimo ovaj sistem, i dobijemo integrale(rešenja)

$$\psi_{1}(x_{1}, x_{2}, ..., x_{n})$$

$$\psi_{2}(x_{1}, x_{2}, ..., x_{n})$$

$$\psi_{n}(x_{1}, x_{2}, ..., x_{n})$$

$$U = \phi \left(\psi_{1}, \psi_{2}, ..., \psi_{n} \right)$$
 je opšte rešenje
$$\psi_{n}(x_{1}, x_{2}, ..., x_{n})$$

Košijev zadatak:

Dat je neki početni uslov, njega zamenimo u ψ_1 , ψ_2 ,..., ψ_n , i rešavamo po x_1 ,..., x_{n-1} , to zamenimo u traženo Košijevo rešenje.

Znači moramo da eliminišemo nepoznate (najčešće x,y i z) i sve predstavimo preko :

 $\overline{\psi_1}$, $\overline{\psi_2}$, ...Nađemo vezu između njih i vratimo prava rešenja.

Nehomogena linearna parcijalna diferencijalna jednačina

Oblika je:
$$X_1(x_1,x_2,...x_n,u)\frac{\partial u}{\partial X_1} + X_2(x_1,x_2,...x_n,u)\frac{\partial u}{\partial X_2} + + X_n(x_1,x_2,...x_n,u)\frac{\partial u}{\partial X_n} = R(x_1,...,x_n,u)$$

Formiramo sistem: $\frac{dX_1}{X_1(x_1, x_2, ..., x_n, u)} = \frac{dX_2}{X_2(x_1, x_2, ..., x_n, u)} = = \frac{dX_n}{X_n(x_1, x_2, ..., x_n, u)} = \frac{du}{R(x_1, ..., x_n, u)}$

Kao rešenje dobijamo n-nezavisnih prvih integrala:

$$\psi_1(x_1, x_2, ..., x_n, u)$$
 $\psi_2(x_1, x_2, ..., x_n, u)$
 \vdots
 $\psi_n(x_1, x_2, ..., x_n, u)$

Košijev zadatak rešavamo isto kao kod homogene.

Važno: Ovde uvek moramo proveriti nezavisnost prvih integrala:

Na primer, ako imamo dve nepoznate x i y ,tada je:

$$\frac{D(\psi_1, \psi_2)}{D(x, y)} \neq 0$$

Ako imamo tri nepoznate: x,y,z onda je:

$$\frac{D(\psi_1, \psi_2, \psi_3)}{D(x, y, z)} \neq 0 \quad \text{itd.}$$

Ako se negde javi p i q , znamo da je $p = \frac{\partial z}{\partial x}$ i $q = \frac{\partial z}{\partial y}$