BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-325785

(43)公開日 平成7年(1995)12月12日

(51) Int.Cl.6

體別記号

庁内整理番号

FΙ

技術表示箇所

G06F 15/00

330 B 7459-5L

G09C 1/00 HO4L-12/40-

9364-5L

H04L 11/00

320

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21)出願番号

特願平6-121093

(22)出顧日

平成6年(1994)6月2日

(71)出願人 000005223

富士涌株式会社

神奈川県川崎市中原区上小田中1015番地

(72)発明者 菊池 浩明

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 黒田 康嗣

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 井桁 貞一

(54)【発明の名称】 ネットワーク利用者**認証方法および暗号**化通信方法とアプリケーションクライアントおよびサー バ

(57)【要約】

【目的】ネットワークのセキュリティを向上させる方法 に関し、従来のパスワード認証方式と互換性をもち、暗 号鍵の管理を安全·容易にし、利用者の個別追加·取消 が容易であり、再送攻撃を無効にする。

【構成】利用者識別子IDとパスワードPWとをクライ アントから送信し、サーバは該当するIDとPWとが存 在することを確認することで利用者認証を行うネットワ ークアプリケーションシステムにおいて、クライアント はIDとPWとを公開鍵方式のサーバの公開鍵Kpで暗 号化してサーバへ送信し、サーバは自分の秘密鍵Ksで それを復号化することによりIDとPWとを取り出す。 また、認証の初めにサーバが乱数Rをクライアントに送 信し、クライアントが I DとPWと受信した乱数Rとを ふくめて公開鍵Kpで暗号化してサーバへ送信し、サー パは、復号化した乱数R'が先に送信した乱数Rと同じ であることを確認する。

1

【特許請求の範囲】

€.

【請求項1】 利用者識別子(ID)とパスワード(P W) とをクライアント(C) からサーバ(S) へ送信 し、サーパ(S)はファイルを参照して該当する利用者 識別子(ID)とパスワード(PW)とが存在すること を確認することで利用者認証を行うネットワークアプリ ケーションシステムにおいて、

クライアント(C)は、利用者識別子(ID)とパスワ ード (PW) とを公開鍵方式のサーバ (S) の公開鍵-(Kp)で暗号化してサーバ(S)へ送信し、

サーバ(S)は自分の秘密鍵(Ks)でそれを復号化す ることにより、利用者識別子(ID!)とパスワード (PW') とを取り出すことを特徴とするネットワーク 利用者認証方法。

【請求項2】 認証の初めにサーバ(S)が乱数(R) をクライアント(C)に送信し、

クライアント(C)が利用者識別子(ID)とパスワー ド (PW) と受信した乱数 (R) とをふくめて公開鍵 (Kp)で暗号化してサーバ(S)へ送信し、

サーバ(S)は、復号化した乱数(R')が先に送信し 20 た乱数(R)と同じであることを確認することを特徴と する請求項1に記載のネットワーク利用者認証方法。

【請求項3】 請求項1または請求項2に記載のネット ワーク利用者認証方法において、クライアント (C) は 共通鍵方式のセッション暗号鍵(SK)を発生させ、利 用者識別子 (ID) とパスワード (PW) と共に前記の セッション暗号鍵 (SK) をふくめて公開鍵 (Kp) で 暗号化して送信し、

サーバ(S)、クライアント(C)共に、認証以後のセ ッション全体を前記のセッション暗号鍵(SK)に基づ 30 いて暗号化することを特徴とする暗号化通信方法。

【請求項4】 請求項1または請求項2に記載の利用者 認証方法を用いるネットワークアプリケーションクライ アントまたは讃求項3に配載の暗号化通信方法を用いる ネットワークアプリケーションクライアント。

【請求項5】 請求項1または請求項2に記載の利用者 認証方法を用いるネットワークアプリケーションサー パ、または請求項3に記載の暗号化通信方法を用いるネ ットワークアプリケーションサーバ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は多数の計算機が接続され ているネットワーク環境において、セキュリティを向上 させる方法に関する。

【0002】近年の分散処理環境では、ネットワークを 介して遠隔地にある計算機をあたかも直接接続されてい るかのように操作することのできる遠隔仮想端末アプリ ケーション (telnet) や、ファイル転送アプリケーショ ン (ftp)などが広く利用されている。

商用化ネットワーク時代における計算機の遠隔保守作業 や、ソフトウェアのオンライン流通などのサービスを実 現する必須要素と考えられる。しかし、これらのネット ワークアプリケーションは開放的なアーキテクチャに基 づいて構築されており、通常、利用者認証方式として利

用者識別子とパスワードとをそのまま転送するプロトコ ルを採用している。この場合は各種の監視装置などによ る盗聴が比較的容易に行えてしまう。盗聴は即パスワー

ドの盗難につながるため致命的である。

10 [0004]

【従来の技術】これまで、パスワードによる認証に代わ る方式として、暗号理論に基づく様々な認証方式が提案 されている。なお、暗号方式には大別して共通鍵方式と 公開鍵方式とがある。

【0005】共通鍵方式は、送信側の暗号化鍵と受信側 の復号化鍵とが同じ暗号鍵であり、その暗号鍵によって 送信側で通信文(平文)を暗号化して送信し、受信側で 受け取った通信文(暗号文)を同じ暗号鍵で復号化する ものである。送信側、受信側共に暗号鍵を秘密に管理し ておかなければならない。秘密鍵方式、慣用暗号方式と もいう。

【0006】公開鍵方式は、送信側の暗号化鍵と受信側 の復号化鍵とが異なった暗号鍵であり、一方(公開鍵) を公開し、他方(秘密鍵)を秘密にするものである。暗 号化認証方式の例を以下に示す。

- ① 認証サーバを設け、クライアントは認証サーバから チケットを発行してもらい、そのチケットを共通鍵方式 により暗号化してアプリケーションサーバに送ることで 認証する方式。
- ② 公開鍵方式により、各利用者が自分専用の秘密鍵と 公開鍵とを生成して秘密鍵を管理し、公開鍵を公開ファ イルに登録しておき、自分の秘密鍵によりメッセージ (パスワード) を暗号化して送り、サーバは公開ファイ ルから利用者の公開鍵を取り出して復号化して検査す る、電子署名を利用してサーバが利用者を認証する方

【0007】これらの他にも、零知識証明を用いるも の、公開鍵として意味のある識別子を用いるもの等さま ざまな試みが提案されている。しかし、これらの方式 40 は、従来のネットワークアプリケーションと互換性がな く、実際に適用するには、大きな変更が必要である。例 えば①では、認証サーバが別に必要であり、利用者はア プリケーションサーバの他に認証サーバとも通信しなけ ればならないこと、②では全利用者がそれぞれ秘密鍵を もち、公開鍵を登録しなければならないこと、かつ、そ の秘密鍵を安全に管理すること等が必要である。

【0008】特に、組織間接続等の応用場面において は、セキュリテイを必要とする利用者は限られており、 従来のネットワークアプリケーションとも併用すること 【0003】これらのネットワークアプリケーションは 50 が多いことを考慮すると、これらの変更は大きな負担と ۴.

なりうる。また操作方法が大幅に変わるのは利用者にと って抵抗感を生じさせることにもなる。

【0009】そこで、従来のバスワード認証に暗号技術 を適用してセキュリテイを強化する方法が提案されてい る。これは、利用者識別子とパスワードを含むセッショ ンをまるごと共通鍵暗号で暗号化するというものであ る。しかし、その際用いられる暗号鍵をどう管理する か、という問題が残されている。

【0010】例えば、ある利用者が一時的に他の組織- (研究組合等) に属し、WANを経由して元の組織 (本 10 来の所属)のLANにアクセスする場合を考える。この 場合、利用者は、他の組織の計算機を利用してネットワ ークアプリケーションを利用するので、その計算機のフ ァイル内に暗号鍵などの重要な情報を蓄えるのは危険で ある。その計算機の管理者になりすまして他者がファイ ルの内容を強制的に読み出すことが可能であるためであ る。

【0011】一般に、一つのサーバに対してクライアン トは多数存在する。つまり、WANを経由してアクセス する利用者も多いということである。これらの利用者全 20 てに共通の暗号鍵を与えると、だれかが暗号鍵を漏らし たりすれば、その影響は全員におよぶ。また、その内の 一人でも、利用者資格が無くなればそのサーバの利用者 全部に新しい暗号鍵を再配付しなければならない。利用 者毎に別の暗号鍵を作って管理するのはサーバの負担が 大である。また、利用者は多数のサーバにアクセスする 可能性がある。サーバごとに秘密の暗号鍵があると利用 者にとって、その管理がさらに面倒になる。

【0012】一方、ネットワーク上の不正行為として は、情報を盗み出す「盗聴」の他に、ネットワークに妨 30 害を与える「攻撃」がある。特に攻撃のなかには再送攻 撃というものがある。これは、たとえ通信文が暗号化さ れていても、盗聴によりそのセッションを取り出しその まま配憶しておき、後で再びサーバにそのまま送信する ことでクライアントになりすまし、サーバの混乱を招く というものである。この再送攻撃に対する対策も必要で ある。

[0013]

【発明が解決しようとする課題】本発明は、ネットワー クアプリケーションにおいて、

- ① 従来のバスワード認証方式と互換性をもち、
- ② クライアントにおける暗号鍵の管理を安全・容易に し、
- ③ 利用者の個別追加・取消が容易であり、
- ④ 再送攻撃を無効にするようなセキュリテイ対策を目 的としている。

[0014]

【課題を解決するための手段】図1は本発明の原理図で

とをクライアントCからサーパSへ送信し、サーパSは ファイルを参照して該当する利用者識別子IDとパスワ ードPWとが存在することを確認することで利用者認証 を行うネットワークアプリケーションシステムにおい て、クライアントCは、利用者識別子IDとパスワード PWとを公開鍵方式のサーパSの公開鍵Kpで暗号化し てサーバSへ送信し、サーバSは自分の秘密鍵Ksでそ れを復号化することにより、利用者識別子 I D'とパス ワードPW'とを取り出す。

【0015】請求項2の発明: 請求項1の発明におい て、認証の初めにサーバSが乱数RをクライアントCに 送信し、クライアントCが利用者識別子IDとバスワー ドPWと受信した乱数Rとをふくめて公開鍵Kpで暗号 化してサーバSへ送信し、サーバSは、照合により、復 号化した乱数R'が先に送信した乱数Rと同じであるこ とを確認する。

【0016】 請求項3の発明: ネットワークアプリケ ーションシステムにおいて、クライアントCは共通鍵方 式のセッション暗号鍵SKを発生させ、請求項1または 請求項2の発明によって、利用者識別子IDとパスワー ドPWと共に前記のセッション暗号鍵SKをふくめて公 開鍵Kpで暗号化して送信し、サーバS、クライアント C共に、認証以後のセッション全体を前記のセッション 暗号鍵SKに基づいて暗号化する。

【0017】 請求項4の発明: ネットワークアプリケ ーションクライアントにおいて、 請求項1または請求項 2 に記載の利用者認証方法を用いる。または請求項3に 記載の暗号化通信方法を用いる。

【0018】 請求項5の発明: ネットワークアプリケ ーションサーバにおいて、請求項1または請求項2に記 載の利用者認証方法を用いる、または請求項3に記載の 暗号化通信方法を用いる。

[0019]

【作用】

請求項1の発明: クライアントCは、利用者識別子 I DとパスワードPWとを公開鍵方式のサーバSの公開鍵 Kpで暗号化してサーバSへ送信する。従って通信路上 には秘密情報であるパスワードPWはそのまま現れるこ とはない。

【0020】サーバSは自分の秘密鍵Ksでそれを復号 化することにより、利用者識別子ID'とパスワードP W'とを取り出す。これらの利用者識別子ID'とバス ワードPW'とは正しく暗号化・復号化されているな ら、クライアントCで暗号化される前の利用者識別子 I DとパスワードPWと一致するはずである。従って、利 用者認証には、従来通り、ファイルに該当する利用者識 別子IDとパスワードPWが存在するかどうかをチェッ クすればよい。

【0021】 請求項2の発明: 認証の初めにサーバS 請求項1の発明: 利用者識別子1DとパスワードPW 50 が送信した乱数Rが、公開鍵Kpで暗号化されてサーバ

Sへ戻ってくる。これを復号化した乱数R'が先に送信 した乱数Rと同じであることを確認することにより、利 用者認証を確実にすることができる。すなわち、盗聴に より前回の内容を使って再送攻撃をしても乱数Rが異な っているので無効である。

【0022】請求項3の発明: クライアントCは乱数 等に基づいて共通鍵方式のセッション暗号鍵SKを発生 させ、請求項1または請求項2の発明によって、利用者 識別子 I DとパスワードPWと共に公開鍵Kpで暗号化 して送信する。クライアントC、サーバS共に、認証以 10 後のセッション全体を前記のセッション暗号鍵SKに基 づいて暗号化する。これにより、通信文が暗号化され る。かつ、そのセッション暗号鍵SKはそのセッション 限りのものであって、クライアントC、サーバS共に、 保存・管理する必要がない。

[0023]

【実施例】以下、図面を参照して本発明の実施例を説明 する。図2は本発明の実施例のサーバ、およびクライア ントの構成図を示す。

【0024】アプリケーションシステムは、クライアン 20 トとなる端末(ワークステーション、パーソナルコンピ ュータ等)とサーバとなる計算機(汎用機、ワークステ ーション、パーソナルコンピュータ等) とがネットワー クで結合されたハードウェアと、クライアントで実行さ れるクライアントプログラムCPと、サーバで実行され るサーバプログラムSPとからなる。サーバプログラム SP(およびクライアントプログラムCP) は複数ある 場合があり、それぞれが別のハードウェア(計算機)上 にあってもよいし、同一のハードウェア上にあってもよ い。以下1つのアプリケーションについてハードウェア 30 とプログラムとを一体にしてクライアントC、サーバS と呼ぶ。利用者は個々に利用者識別子IDとパスワード PWとをもつ。

【0025】クライアントCは、ネットワーク間通信を 制御する通信処理部14、ユーザインタフェース (入力) 部)18、認証情報(利用者識別子IDとパスワードPW 他)を暗号化する公開鍵方式暗号化処理部11、サーバS の秘密鍵Ksに対応する公開鍵Kpを管理する公開鍵デ ータベース(サーバが複数ある場合である。図示はして ない。)、取り出した公開鍵Kpを保持する公開鍵格納 40 も小さなもので済む。 部12、サーバSから受信した乱数Rを格納する乱数格納 部13、要求したサービスの実行を行うサービス実行部 (図示してない)、セッション鍵SKを生成するセッシ ョン鍵生成部16、セッション鍵SKを保持するセッショ ン鍵格納部17、セッションの暗号化・復号化を行う共通 鍵方式暗号化・復号化処理部15、全体を制御する統括制 御部 (図示してない) からなる。

【0026】サーバSは、ネットワーク間通信を制御す る通信処理部24、認証情報を復号化する公開鍵方式復号 ライアントCへ送信する乱数Rを生成する乱数生成部2 6、乱数Rを保持する乱数格納部23、乱数Rと受信して 復号化した乱数R'とを照合する乱数照合部29、全利用 者の利用者識別子IDと、パスワードPWとを管理する ID/PWファイル30、パスワード照合部28、要求されたサ ーピスの実行を行うサービス実行部(図示してない)、 セッションの暗号化・復号化を行う共通鍵方式暗号化・ 復号化処理部25、全体を制御する統括制御部(図示して ない) からなる。

【0027】暗号方式としては、公知の方式を使用すれ ばよい。例えば、認証情報の暗号化には公開鍵方式暗号 RSAを、セッションの暗号化には共通鍵方式暗号DE SのCFB64運用モードを用いる。

【0028】以下に図3のプロトコル説明図によって、 動作手順を説明する。

ステップ1:クライアントCはサーバSへ認証要求を送 信する。

ステップ2:サーバSは乱数Rを生成し、クライアント Cへ返信する。

【0029】ステップ3:クライアントCはセッション 鍵SKをランダムに生成し、IDとPWとサーバSから 送られた乱数Rと共に、サーバSの公開鍵Kpで暗号化 して、サーバSへ送信する。

【0030】ステップ4:サーバSは、受信した暗号化 データを自身の秘密鍵Ksで復号化して利用者識別子I D'、パスワードPW'を取り出す。

ステップ5:サーパSは、R'がステップ2で送信した Rと同一であるかを確認し、ID'、PW'が内部デー タベースに登録されているかを確認し、その結果をクラ イアントCへ通知する。

【0031】ここまでが認証のステップであり、ステッ ブ5で異常がなければセッションに入る。

ステップ6:以後のセッションは、全体がセッション鍵 SKで暗号化されており、クライアントCとサーバSは 共にセッション鮭SKで暗号化した情報を送り、受け取 った情報をセッション鍵SKで復号化する。

【0032】ここで、利用者からみたインタフェース は、IDとPWとを入力するだけであり、従来のパスワ ード認証と変わりはない。またアプリケーションの変更

【0033】本実施例では、秘密情報PWはサーバSの 他には利用者が記憶しているだけであり、通信路上では 暗号化されている。サーバSの秘密鍵はサーバSがもっ ているだけであり、通信路には現れない。クライアント Cまたは途中に入る計算機、監視装置等には、サーバS の公開鍵(これは秘密情報ではない)が残るだけで秘密 情報は残らない。利用者の追加や取消し等はサーバSの データペース(ファイル)を変更することにより行えば よく、他の利用者に影響が生じることはない。なお、サ 化処理部21、秘密鍵Ksを保持する秘密鍵格納部22、ク 50 ーパSのファイルに蓄積されている利用者認証情報(秘

密情報 PWを含む) が盗まれる可能性があるが、これ は、別途、暗号化してファイルしておき、認証時に復号 化して使用するようにすればよい。

【0034】始めに(ステップ2)サーバSからクライ アントCに乱数Rが送信されるが、この値はサーバSで 決められ、かつ毎回異なった値が用いられるため、たと え第三者がネットワークに流れる暗号化認証情報を盗聴 して記録しておき、後でクライアントCになりすまして サーバSに送る、いわゆる再送攻撃を試みても成功する 確率は無視できるほど小さくできる。

【0035】 認証時にクライアントCが任意に生成した セッション鍵SKをサーバSに渡し、以後のセッション 全体を共通鍵方式で暗号化して通信するため、盗聴や改 ざんを防止することができる。なお、セッション鍵SK は毎回異なっており、また、それをサーバSに渡すとき には、サーバSの公開鍵Kpで暗号化しているので、サ ーパSの秘密鍵Ksがない限りセッション鍵SKを解読 される可能性は非常に少ない。

[0036]

【発明の効果】以上説明したように、本発明によれば、 利用者からみたインタフェースは、利用者識別子IDと パスワードPWとを入力するだけであり、従来のパスワ ード認証と変わりはない。またアプリケーションの変更 も小さなもので済む。

【0037】本発明では、秘密情報PWはサーバSの他 には利用者が記憶しているだけであり、通信路上では暗 号化されている。サーバSの秘密鍵KsはサーバSがも っているだけであり、通信路には現れない。クライアン トCまたはネットワークの途中に入る計算機、監視装置 等には、サーバSの公開鍵Kp(これは秘密情報ではな 30 15 共通鍵方式暗号化・復号化処理部 25 共通鍵方式 い)が残るだけで秘密情報は残らない。従って、暗号鍵 の管理が容易であり、安全である。

【0038】利用者の追加や取消し等は、従来と同様 に、サーバSのデータベースを変更することにより行え ばよく、他の利用者に影響が生じることはない。本発明 の第2の発明では、始めに(実施例のステップ2)サー パSからクライアントCに乱数Rが送信される。この値 はサーバSで決められ、かつ毎回異なった値が用いられ るため、たとえ第三者がネットワークに流れる暗号化認

証情報を盗聴して記録しておき、後でクライアントにな りすましてサーバに送る、いわゆる再送攻撃を試みても 成功する確率は無視できるほど小さくできる。

【0039】本発明の第3の発明では、認証時にクライ アントCが任意に生成したセッション鍵SKをサーバに 渡し、以後のセッション全体を暗号化して通信するた め、盗聴やかいざんを防止することができる。なお、セ ッション鍵SKは毎回異なっており、また、それをサー バSに渡すときには、サーバSの公開鍵Kpで暗号化し 10 ているので、サーバSの秘密鍵Ksがない限りセッショ

- 【図面の簡単な説明】

【図1】 原理図

【図2】 実施例の構成図

【図3】 実施例のプロトコル説明図

ン鍵SKを解説される可能性は非常に少ない。

【符号の説明】

ID, ID' 利用者識別子

PW, PW' パスワード

R, R' 乱数

20 Kp 公開鍵

Ks 秘密鍵

SK セッション鍵

C クライアント

11 公開鍵方式暗号化処理部 21 公開鍵方式

S サーバ

24 通信処理部

復号化処理部

12 公開鍵格納部 22 秘密鍵格納

部

13 乱数格納部 23 乱数格納部 14 通信処理部

暗号化・復号化処理部

16 セッション鮮牛成部 26 乱数生成部 27 セッション

17 セッション鍵格納部

18 ユーザインタフェース部 28 パスワード

雅合照

鍵格納部

29 乱数照合部

30 I D/PWファイル

【図3】

実施例のプロトコル数別図

Reference 3

Japanese Patent Application Public-disclosure No. 7-325785 Japanese Patent Application Public-disclosure date: December 12, 1995

Title of the invention: Method for authenticating a network user, encrypted communication method, application client and server Japanese Patent Application No. 6-121093

Japanese Patent Application date: June 2, 1994

Applicant: Fujitsu Ltd.

Inventors: Hiroaki Kikuchi and Yasutsugu Kuroda

[Means for solving the problems]

Fig. 1 is a diagram illustrating a principle of the present invention.

Invention of Claim 1: In a network application system wherein client C transmits user identifier ID and password PW to server S, which verifies by referring to a file that the corresponding ID and PW actually exist, thereby authenticating the user, the client Cencrypts the user identifier ID and password PW with public key Kp of the server S according to a public key system, and sends the encrypted ID and PW to the server S, and the server S decrypts the ID and PW using their own secret key Ks to extract user ID' and password PW'.

Invention of Claim 2: In the invention of Claim 1, the server S sends random number R to the client C at the beginning of authentication, and the client C encrypts the user identifier ID, password PW and received random number R with the public key Kp and transmits the encrypted ID, PW and R to the server S, which verifies, by comparing decrypted random number R' against the random number R, that the decrypted random number R' is truly the previously transmitted random number R.

[Embodiment]

Hereafter, an embodiment of the present invention will

be described with reference to the attached drawings. Fig. 2 is a schematic diagram illustrating a server and client of the embodiment of the present invention.

An application system consists of: hardware comprising a terminal as a client (workstation, personal computer or the like) and a computer as a server (general purpose machine, workstation, personal computer or the like), the terminal and the computer being coupled via a network; client program CP to be executed by the client; and server program SP to be executed by the server. There are often multiple server programs SP (and client programs CP), which may be stored in different hardware (different computers) or in the same hardware. Hereafter, hardware and (a) client program(s) and hardware and (a) server program(s) will be respectively considered as a single unit for each application and referred to as client C and server S respectively. Each user has his (her) own user identifier ID and password PW.

The client C comprises: a communication processing section 14 for controlling communications between networks; a user interface (input section) 18; a public key system encryption processing section 11 for encrypting authentication information (user identifier ID and password PW or the like); a public key database for managing public keys Kp corresponding to secret keys Ks of servers S (applicable when there are multiple servers S, which is not depicted in the drawing); a public key storage section 12 for storing extracted public key Kp; a random number storage section 13 for storing random number R received from the server S; a service execution section for executing requested service (not indicated in the drawing); a session key generation section 16 for generating a session key SK; a session key storage section 17 for storing a session key SK; a secret key system encryption/decryption processing 15 for encrypting/decrypting a session; and a centralized control section (which is not indicated in the drawing) for controlling the entire system.

The server S comprises: a communication processing section

24 for controlling communications between networks; a public key system decryption processing section 21 for decrypting authentication information; a secret key storage section 22 for storing a secret key Ks; a random number generation means 26 for generating a random number R to be sent to the client C; a random number storage section 23 for storing a random number R; a random number checking section 29 for comparing the random number R against a received and decrypted random number R'; an ID/PW file 30 for managing all users' user identifiers IDs and passwords PWs; a password checking section 28; a service execution section for executing requested service (not indicated in the drawing); a secret key system encryption/decryption processing section 25 for encrypting/decrypting a session; and a centralized control section (not indicated in the drawing) for controlling the entire system.

As an encryption system, a publicly known system can be employed. For example, a public key system encryption RSA may be employed to encrypt authentication information and a CFB64 application mode of a secret key system encryption DES may be employed to encrypt a session.

Hereafter, an operation procedure will be described by means of the protocol schematic diagram in Fig. 3.

Step 1: The client C transmits an authentication request to the server S.

Step 2: The server S generates a random number R and sends the random number R back to the client C.

Step 3: The client C randomly generates a session key SK, encrypts the session key SK together with ID, PW and random number R sent from the server S by the public key Kp of the server S, and transmits them to the server S.

Step 4: The server S decrypts the received encrypted data using their own secret key Ks and extracts user identifier ${\tt ID'}$ and password ${\tt PW'}$.

Step 5: The server S checks to see whether R' is identical to the random number R sent at Step 2 and whether ID' and PW' are

registered in the internal database and notifies the client C of the result.

The above-described procedure from Step 1 through Step 5 is an authentication procedure and if it is verified at Step 5 that R' is identical to R and that ID' and PW' are registered, the operation proceeds to the next step for "session".

[Brief explanation of the drawings]

Fig. 1 is a principle diagram.

Fig. 2 is a schematic diagram illustrating a constitution of an embodiment of the present invention.

Fig. 3 is a diagram illustrating a protocol of the embodiment of the present invention.

[Description of referential symbols]

ID, ID': user identifier

PW, PW': password

R, R': random number

Kp: public key

Ks: secret key

SK: session key

C: client

S: server

11: public key system encryption processing section

12: secret key storage section

13: random number storage section

14: communication processing section

15: secret key system encryption/decryption processing section

16: session key generation section

17: session key storage section

18: user interface section

21: public key system

22: secret key storage section

23: random number storage section

24: communication processing section

25: secret key system encryption/decryption processing section

26: random number generation section

27: session key storage section

28: password checking section

29: random number checking section

30: ID/PW file

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.