

Overview

- Adsorption technologies
- Modeling of adsorption beds
- Pressure swing adsorption
 - Multi-bed modeling
- Accelerating the convergence of PSA simulations
 - Self-interacting Bed
 - Convergence schemes
- Conclusions

Adsorption technologies

Adsorption technologies

Overview

- Gas-phase processes (PSA, VSA, TSA)
 - Hydrogen purification
 - Air separation: O₂ or N₂ enrichment
 - CO₂ capture
 - Recovery of gasoline vapors from air
 - Ethanol dehydration
- Liquid-phase processes (SMB, chromatography)
 - UOP Sorbex processes
 e.g. separation of mixed aromatic C₈
 isomers (ParexTM, EbexTM, MX SorbexTM)

Modeling of adsorption processes

Main considerations/challenges

Spatially varying properties

- Axial & radial variations in the adsorbent bed
- Adsorbed species diffuse through pores in adsorbent
- Inherently dynamic processes
 - Complex operating procedures ("cycle schedules")
 - Major discontinuities (e.g. flow reversals)
- Process improvement
 - Optimisation of equipment design & operating procedure
 - Usually meaningful only at cyclic steady state

gPROMS already a leading modeling tool for adsorption R&D

e.g. Google Scholar search for "swing adsorption gPROMS" → ~300 hits

Modeling of adsorption beds

Modeling of adsorption beds

Modeling of adsorption processes

Main considerations/challenges

Spatially varying properties

- Axial & radial variations in the adsorbent bed
- Adsorbed species diffuse through pores in adsorbent
- Inherently dynamic processes
 - Complex operating procedures ("cycle schedules")
 - Major discontinuities (e.g. flow reversals)
- Process improvement
 - Optimisation of equipment design & operating procedure
 - Usually meaningful only at cyclic steady state

gPROMS already a leading modeling tool for adsorption R&D

e.g. Google Scholar search for "swing adsorption gPROMS" → ~300 hits

Modeling of adsorption beds in gPROMS ProcessBuilder

Modeling of adsorption beds in gPROMS ProcessBuilder

Pressure swing adsorption

Advantages demonstrated:

- New applications complex dynamic processes
- Comprehensive model libraries
- Complex schedules
- Equation-oriented power

Pressure Swing Adsorption (PSA)

- Process operation cycles between adsorption and regeneration steps
- Multibed systems: continuous product delivery

- Example: Skarstrom cycle
 - Pressurisation
 - Adsorption
 - Depressurisation
 - Regeneration

Modeling Challenges

- Described by PDAEs
 - Concentration / temperature profiles vary both spatially and temporally
 - Sometimes multiple spatial dimensions present
 - Axial, radial, intra-particle
- Boundary conditions change throughout each cycle (adsorption, regeneration, etc.)
- Process design and optimisation normally meaningful only at cyclic steady state (CSS)

Production of hydrogen from natural gas

- Hydrogen produced from catalytic reforming of natural gas
 - $CH_4 + H_2O \rightleftharpoons 3H_2 + CO$
 - combined with water gas shift reaction: $CO + H_2O \Rightarrow H_2 + CO_2$

PSA process for hydrogen purification

- Feed molar fractions
 - H₂: 73.3 | CO₂: 16.6 | CH₄: 3.5 | CO: 2.9 | N₂: 3.7
- 2-layer beds
 - 50% activated carbon → CO₂ + CH₄ + H₂O
 - 50% zeolite → CO + N₂
- Adsorption isotherm: Multisite Langmuir model
- 4-bed, 12-step process

Steps:	1	2	3	4	5	6	7	8	9	10	11	12
Bed 1:	Feed			D1 D2		Bd	Pg	P1	P2		Pres	
Bed 2:	P2 Pres		Feed		D1		D2	Bd	Pg	P1		
Bed 3:	Bd	Pg	P1	P2	Pres Pres		Feed		D1		D2	
Bed 4:	D1 D2			Bd	Pg	P1	P2 Pres Feed			ed		
	$t_{cycle} = 4xt_{feed}$; $t_{D1} = t_{D2} = t_{P1} = t_{P2} = t_{pres} = t_{feed}/2$; $t_{blowd} = t_{purge} = t_{feed}/4$											

PSA process for hydrogen purification

Modeling of PSA processes

Modeling of PSA processes

Modeling of PSA processes

- Simulation of 10 cycles ≈ 1601s (CPU time)
- Getting to cyclic steady state is computationally expensive
- → Potential improvements?

Accelerating the convergence of PSA simulations Self-interacting Bed

Explicit vs. implicit representations of multi-bed process

Identical CSS

Multiple beds

Use for studying detailed PSA process dynamics

- start-up
- effects of disturbances
- control system design & tuning

Single self-interacting bed

Use for process design & rating

focus on CSS, not on transient behavior

- All beds reach exactly the same cyclic steady state (CSS)
 - → it should be possible to compute the CSS by explicitly modeling **only one** of these beds
- Bed-bed interactions: At CSS, material entering bed A from bed B during a step in the cycle is identical to material leaving bed A during a different step

Steps:	1	2	3	4	5	6	5	7	8	9	10	11	12
Bed 1:	ed 1: Feed			D1	l	D	2	Bd	Pg	- P1	P2		Pres
Bed 2:	P	2	Pres	Feed		ed .		D1		– D2	Bd	Pg	P1
Bed 3:	Bd	Pg	P1	P2		Pı	es	Feed		D1		D2	
Bed 4:	I	01	D2	Bd	Pg	P	l	P	2	Pres		Fe	ed

- All beds reach exactly the same cyclic steady state (CSS)
 - → it should be possible to compute the CSS by explicitly modeling **only one** of these beds
- Bed-bed interactions: At CSS, material entering bed A from bed B during a step in the cycle is identical to material leaving bed A during a different step

 ...similarly for downstream pressure "seen" by any material *leaving* bed A...

Cancel

Reset all

values during the same or later cycles

Self-interacting bed – Results

- Simulation of 10 cycles ≈ 137s (CPU time) [~2 min]
 - much less than the original 1601s [~1/2 hour]

But can we do significantly better than this?

Novel methods for accelerated CSS computation Ongoing R&D programme

Example #1: 1-bed, 2-step RPSA process

	Cycle Simulations	CPU time (sec)
Conventional approach	> 4000	2383
Method 1	1456+10*	867
Method 2	379+10*	198
Method 3	98+10*	57
Method 4	47+10*	28

*10 successive cycles used to provide a good initial guess

Example #2: 2-bed, 6-step Skarstrom cycle process

	(sec)
90	306
1824+10*	6202
614+10*	2088
33+10*	110
31+10*	106
	1824+10* 614+10* 33+10*

^{*10} successive cycles used to provide a good initial guess

Parametric sensitivity analysis for PSA processes

 Example: adjust feed pressure, analyze resulting changes in KPIs (average exit composition, power use, production rate)

As a Average production (kg N₂ / hour)

Power (Watts)

Increasing production

Increasing production

3.5

Increasing production

The production (kg N₂ / hour)

Power (Watts)

Increasing production

The production (kg N₂ / hour)

Power (Watts)

Feed Pressure (Bar)

1-bed, 2-step RPSA process

2-bed, 6-step Skarstrom cycle process

Repeated determination of CSS

13 parametric points for each example

Parametric sensitivity analysis for PSA processes

Numerical solution performance

1-bed, 2-step RPSA process	Cycle simulations per parameter point (median across all 13 points)
Method 3	80
Method 4a	52
Method 4b	38
Method 4c	12

2-bed, 6-step Skarstrom cycle process	Cycle simulations per parameter point (median across all 13 points)
Method 3	29
Method 4a	28
Method 4b	10
Method 4c	10

- Technique generally applicable
 to all periodic processes
 PSA, TSA, SMB, ...
- Work in progress!

cf. 57 cycles for one-off simulation (>4000 cycles with conventional method)

cf. 41 cycles for one-off simulation (90 cycles with conventional method)

Conclusions

Conclusions – I

- Detailed modeling of
 - physics of adsorption bed
 - cycle schedules of periodic adsorption process
- gPROMS ProcessBuilder advantages
 - easy setup and initial solution
 - rapid solution of CSS
 - allows direct integration of adsorption units with other units

Catalytic reforming of methane + water gas shift + PSA-based hydrogen purification

Hybrid membrane/PSA process for hydrogen purification

- ProcessBuilder brings power of gPROMS® platform to adsorption processes
 - Custom modeling
 - customisation of adsorption isotherms,
 mass & heat transfer coefficient correlations, etc.
 - Parameter estimation
 - estimation of mass transfer characteristics from breakthrough experiments
 - Optimisation of bed design parameters, operating conditions, cycle schedule
 - dynamic optimization problem
 - efficient handling of cyclic steady state poses special problems
- Ongoing R&D aiming at significant breakthroughs in periodic process simulations

