LIMITE D'UNE FONCTION

Limite infinie en $\pm \infty$ (f tend vers $\pm \infty$ en $\pm \infty$)

- $\lim_{x \to +\infty} f(x) = +\infty$ si $\forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in \mathcal{D}_f, (x > x_0 \Rightarrow f(x) > A)$
- $\lim_{x \to +\infty} f(x) = -\infty$ si $\forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in \mathcal{D}_f, (x > x_0 \Rightarrow f(x) < A)$
- $\lim_{x \to -\infty} f(x) = +\infty$ si $\forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in \mathcal{D}_f, (x < x_0 \Rightarrow f(x) > A)$
- $\lim_{x \to -\infty} f(x) = -\infty$ si $\forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in \mathcal{D}_f, (x < x_0 \Rightarrow f(x) < A)$

Limite finie en $\pm \infty$ (f tend vers un réel ℓ en $\pm \infty$)

En $+\infty$ et en $-\infty$

- $\lim_{x \to +\infty} f(x) = \ell$ si $\forall \varepsilon > 0, \exists x_0 \in \mathbb{R}, \forall x \in \mathcal{D}_f, (x > x_0 \Rightarrow |f(x) \ell| < \varepsilon)$
- $\lim_{x \to -\infty} f(x) = \ell$ si $\forall \varepsilon > 0, \exists x_0 \in \mathbb{R}, \forall x \in \mathcal{D}_f, (x < x_0 \Rightarrow |f(x) \ell| < \varepsilon)$

Exemple:

Limite infinie en un réel a (f tend vers $\pm \infty$ en un réel a)

- $\lim_{x \to a} f(x) = +\infty$ si $\forall A \in \mathbb{R}, \exists \delta > 0, \forall x \in \mathcal{D}_f, (|x a| < \delta \Rightarrow f(x) > A)$
- $\lim_{x \to a} f(x) = -\infty$ si $\forall A \in \mathbb{R}, \exists \delta > 0, \forall x \in \mathcal{D}_f, (|x a| < \delta \Rightarrow f(x) < A)$

Exemple:

Limite finie en un réel a (f tend vers un réel ℓ en un réel a)

$$\lim_{x \to a} f(x) = \ell \quad \text{si} \quad \forall \varepsilon > 0, \exists \delta > 0, (|x - a| < \delta \Rightarrow |f(x) - \ell| < \varepsilon)$$

Remarque: si $\lim_{x\to a} f(x) = f(a)$ alors on dit que f est continue en a.

Autrement dit f est continue en a si $\forall \varepsilon > 0, \exists \delta > 0, (|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$