AA 274 Principles of Robotic Autonomy

Tutorial 3: Scientific Computing in Python

Boris Ivanovic

Overview for Today

Linear Algebra Review

+

Linear Algebra in Python

Introduction to Jupyter Notebooks

+

(Brief) Introduction to TensorFlow

Vector Review

$$\boldsymbol{v} = (x_1, x_2)$$

Magnitude:
$$||v|| = \sqrt{x_1^2 + x_2^2}$$

If
$$||v|| = 1$$
, then v is a **UNIT** vector. E.g. $\frac{v}{||v||} = \left(\frac{x_1}{||v||}, \frac{x_2}{||v||}\right)$ is a unit vector.

Orientation:
$$\theta = \tan^{-1} \left(\frac{x_1}{x_2} \right)$$

Vector Review

$$\mathbf{v} + \mathbf{w} = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

 $\mathbf{v} - \mathbf{w} = (x_1, x_2) - (y_1, y_2) = (x_1 - y_1, x_2 - y_2)$
 $a\mathbf{v} = a(x_1, x_2) = (ax_1, ax_2)$

Matrix Review

$$A_{n \times m} = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix}$$

Sum:
$$C_{n \times m} = A_{n \times m} + B_{n \times m} \Rightarrow c_{ij} = a_{ij} + b_{ij}$$

A and B must have the same dimensions!

Example:
$$\begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ 4 & 6 \end{bmatrix}$$

Matrices and Vectors (In Python)

import numpy as np

A supremely-optimized, well-maintained scientific computing package for Python.

As time goes on, you'll learn to appreciate NumPy more and more.

Years later, I'm still learning new things about it!

Matrices and Vectors (In Python)

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

import numpy as np

```
M = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
```

*Never use np.matrix, stay consistent and only use np.array.

Matrices and Vectors (in Python, cont'd)

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

```
print M.shape
>>> (3, 3)

print v.shape
>>> (3, 1)

v_single_dim = np.array([1, 2, 3])
print v_single_dim.shape
>>> (3,)
```

Matrices and Vectors (in Python, cont'd)

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

```
print v + v
>>> [[2]
     [4]
     [6]]
```

```
print 3*v
>>> [[3]
     [6]
     [9]]
```

Other Ways to Create Matrices and Vectors

NumPy provides many convenience functions for creating matrices/vectors.

```
a = np.zeros((2,2)) # Create an array of all zeros
print a  # Prints "[[ 0. 0.]
                 # [ 0. 0.11"
b = np.ones((1,2)) # Create an array of all ones
print b  # Prints "[[ 1. 1.]]"
c = np.full((2,2), 7) # Create a constant array
print c  # Prints "[[ 7. 7.]
                  # [ 7. 7.11"
d = np.eye(2) # Create a 2x2 identity matrix
print d
                 # Prints "[[ 1. 0.]
                 # [ 0. 1.11"
e = np.random.random((2,2)) # Create an array filled with random values
                       # Might print "[[ 0.91940167 0.08143941]
print e
                                    [ 0.68744134  0.87236687]]"
```

Other Ways to Create Matrices and Vectors (cont'd) $M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \ v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

```
v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])
v3 = np.array([7, 8, 9])
M = np.vstack([v1, v2, v3])
print M
>>> [[1 2 3]
       [4 5 6]
       [7 8 9]]
```

There is also a way to do this horizontally =>
hstack

Matrix Indexing

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

```
print M
>>> [[1 2 3]
        [4 5 6]
        [7 8 9]]

print M[:2, 1:3]
>>> [[2 3]
        [5 6]]
```

Dot Product

$$v \cdot w = (x_1, x_2) \cdot (y_1, y_2) = x_1 y_1 + x_2 y_2$$

The inner product is a **SCALAR!**

$$v \cdot w = (x_1, x_2) \cdot (y_1, y_2) = ||v|| \cdot ||w|| \cos(\alpha)$$

If $v \perp w$, then $v \cdot w = 0$

Cross Product

$$u = v \times w$$

The cross product is a **VECTOR!**

Magnitude:
$$||u|| = ||v \times w|| = ||v|| \cdot ||w|| \sin(\alpha)$$

If
$$v // w$$
, then $u = 0$

Cross Product

$$i = (1,0,0)$$
 $||i|| = 1$ $i = j \times k$
 $j = (0,1,0)$ $||j|| = 1$ $j = k \times i$
 $k = (0,0,1)$ $||k|| = 1$ $k = i \times j$

$$\mathbf{u} = \mathbf{v} \times \mathbf{w} = (x_1, x_2, x_3) \times (y_1, y_2, y_3)$$

= $(x_2y_3 - x_3y_2)\mathbf{i} + (x_3y_1 - x_1y_3)\mathbf{j} + (x_1y_2 - x_2y_1)\mathbf{k}$

Matrix Multiplication

$$A_{n \times m} = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix} \boldsymbol{a_i}$$

$$B_{m \times p} = \begin{bmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{mp} \end{bmatrix}$$

Product:

$$C_{n\times p} = A_{n\times m} B_{m\times p}$$

$$c_{ij} = \boldsymbol{a_i} \cdot \boldsymbol{b_j} = \sum_{k=1}^m a_{ik} b_{kj}$$

A and B must have compatible dimensions!

$$A_{n \times n} B_{n \times n} \neq B_{n \times n} A_{n \times n}$$

Basic Operations – Dot Multiplication

$$M = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Basic Operations - Cross Multiplication

```
v_1 = \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 4 \\ 9 \\ 2 \end{bmatrix}
print v1.cross(v2)
>>> Traceback (most recent call last):
        File "<stdin>", line 1, in <module>
     AttributeError: 'numpy.ndarray' object has no attribute
      'cross'
# Yeah... Slightly convoluted because np.cross() assumes
# horizontal vectors.
print np.cross(v1, v2, axisa=0, axisb=0).T
>>> [[-15]
       \begin{bmatrix} -21 \end{bmatrix}
       [ 3911
```

Basic Operations - Element-wise Multiplication

$$M = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

print np.multiply(v, v)
>>> [[1]
 [4]
 [9]]

This works because of something called **broadcasting** where NumPy will implicitly replicate arrays across dimensions that aren't the same.

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.broadcasting.html

Orthonormal Basis

= Orthogonal and Normalized Basis

$$i = (1,0) ||i|| = 1$$
 $j = (0,1) ||j|| = 1 (i \cdot j = 0)$

$$\boldsymbol{v} = (x_1, x_2)$$
 $\boldsymbol{v} = x_1 \boldsymbol{i} + x_2 \boldsymbol{j}$

$$\mathbf{v} \cdot \mathbf{i} = (x_1 \mathbf{i} + x_2 \mathbf{j}) \cdot \mathbf{i} = x_1 1 + x_2 0 = x_1$$

 $\mathbf{v} \cdot \mathbf{j} = (x_1 \mathbf{i} + x_2 \mathbf{j}) \cdot \mathbf{j} = x_1 0 + x_2 1 = x_2$

Transpose

Definition:
$$\boldsymbol{C}_{m \times n} = \boldsymbol{A}_{n \times m}^T$$
 $c_{ij} = a_{ji}$

Identities:
$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$
 $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$

If $A = A^T$, then A is symmetric.

Basic Operations – Transpose

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Matrix Determinant

Useful value computed from the elements of a *square* matrix A.

$$\det[a_{11}] = a_{11}$$

$$\det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\det\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}$$

Matrix Inverse

Does not exist for all matrices, necessary (but not sufficient) that the matrix is square

$$AA^{-1} = A^{-1}A = I$$

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}, \quad \det(A) \neq 0$$

If det(A) = 0, then A does not have an inverse.

Basic Operations - Determinant and Inverse

$$M = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

```
print np.linalg.inv(M)
>>> [[ 0.2  0.2  0. ]
       [-0.2  0.3  1. ]
       [ 0.2 -0.3 -0. ]]
```

Be careful of matrices that are not invertible!

```
print np.linalg.det(M)
>>> 10.0 # Thankfully ours is.
```

Matrix Eigenvalues and Eigenvectors

An eigenvalue λ and eigenvector $oldsymbol{u}$ satisfies

$$Au = \lambda u$$

where A is a square matrix.

=> Multiplying $oldsymbol{u}$ by $oldsymbol{A}$ scales $oldsymbol{u}$ by λ

Matrix Eigenvalues and Eigenvectors

Rearranging the previous equation gives the form

$$A\mathbf{u} - \lambda \mathbf{u} = (A - \lambda I)\mathbf{u} = 0$$

which has a solution if and only if $\det(A - \lambda I) = 0$

- => The eigenvalues are roots of this determinant which is polynomial in λ .
- => Substitute the resulting eigenvalues back into $Au=\lambda u$ and solve to obtain the corresponding eigenvector.

Basic Operations - Eigenvalues, Eigenvectors

$$M = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

NOTE: Please read the NumPy docs on this function before using it, lots more information about multiplicity of eigenvalues and etc there:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

Singular Value Decomposition

Singular values: Non-negative square roots of the eigenvalues of A^TA . Denoted as σ_i , i=1,...,n

SVD: If A is a real $m \times n$ matrix, then there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that:

$$A = U\Sigma V^{-1}$$
 and $U^{-1}AV = \Sigma = \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_n \end{bmatrix}$

Singular Value Decomposition

Suppose we know the singular values of A and we know r are non-zero

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r \ge \sigma_{r+1} = \cdots = \sigma_p = 0$$

- Rank(\mathbf{A}) = r
- Null(A) = span{ v_{r+1} , ..., v_n }
- Range(A) = span{ $u_1, ..., u_r$ }

$$\left| |A| \right|_{F^2} = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_p^2 \qquad \left| |A| \right|_2 = \sigma_1$$

Numerical rank: If k singular values of A are larger than a given number ε , then the ε rank of A is k.

Distance of a matrix of rank n from being a matrix of rank $k = \sigma_{k+1}$

```
Singular Value Decomposition M = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
U, S, Vtranspose = np.linalg.svd(M)
print U
>>> [[-0.95123459 0.23048583 -0.20500982]
      [-0.28736244 - 0.90373717 0.31730421]
      [-0.11214087 \quad 0.36074286 \quad 0.92589903]
print S
>>> [ 3.72021075  2.87893436  0.93368567]
print Vtranspose
>>> [[-0.9215684
                       -0.03014369 -0.387043981
      [-0.38764928]
                       0.1253043 0.913250711
       [ 0.02096953  0.99166032 -0.12716166]]
```

More Information

Here's a fantastic Python/NumPy tutorial from CS 231N: http://cs231n.github.io/python-numpy-tutorial/

There's also an IPython notebook containing the above tutorial:

https://github.com/kuleshov/cs228-material/blob/master/tutorials/python/cs228-python-tutorial.ipynb

The rest of the internet!

- NumPy is a very popular package => There's lots written about it!
- Documentation: https://docs.scipy.org/doc/numpy/reference/index.html

Jupyter Notebooks + TensorFlow

Speaking of Jupyter Notebooks, let's look at using them!

Also, since you'll be using TensorFlow on HW2, I'll introduce it now too.

Demo!

TensorFlow

A **very** popular machine learning / graph computation framework actively developed and open-sourced by Google in late 2015.

TensorFlow

The most confusing part about using TensorFlow is grappling with its *mental model* and how that translates to code.

Imperative vs. Graph

Imperative: sum([1.0, 2.0]) => 3.0

<u>Graph</u>: d = tf.sum([a, b, c]) => NOTHING! This simply creates a node in the computation graph you're building.

TensorBoard

A TensorFlow visualization dashboard.

tensorboard --logdir=<path to log directory>

Most commonly used for visualizing training progress.

Thanks!

Questions?