Probabilités I

STEP, MINES ParisTech

9 décembre 2020 (#a46c5a3)

Question 1 (réponse multiple) Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité. Soient $A, B \in \mathcal{A}$ tels que $A \subset B$. On a :

- \square A: $\mathbb{P}(A) \leq \mathbb{P}(B)$
- \square B: $\mathbb{P}(A^c) \ge \mathbb{P}(B^c)$
- \square C: Si $\mathbb{P}(A) > 0$, alors $\mathbb{P}(B|A) = \frac{\mathbb{P}(B)}{\mathbb{P}(A)}$

Question 2 Soit $(\Omega, (A), \mathbb{P}) = (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \mathbb{P})$ où \mathbb{P} est la loi exponentielle de paramètre θ . Soit la variable aléatoire

$$X:\omega\in\Omega\mapsto\left\{\begin{array}{ll}0&\text{ si }\omega\in[0,1],\\1&\text{ si }\omega\in]1,+\infty[\end{array}\right.$$

- \square A: $\mathbb{P}(X = 0) = \frac{1}{2}$ \square B: $\mathbb{P}(X = 1) = e^{-\theta}$
- \Box C: $\mathbb{P}(X \in \{0,1\}) = 1$

Question 3 (réponse multiple) Soit X une variable aléatoire telle que $\mathbb{P}(X \in [0,1]) = 0$. Alors

- \square A: $X(\omega) = 0$ quand $\omega \in [0, 1]$
- \square B: La fonction de répartition F associée est nulle sur [0, 1]
- \square C: Si X est de densité f, alors f est nulle sur [0, 1].

Question 4 Soit X une variable aléatoire réelle suivant une loi normale de paramètres μ et σ^2 , quelle est la loi de 2X?

- \square A: $\mathcal{N}(\mu, \sigma^2)$
- $\Box \text{ B: } \mathcal{N}(2\mu, (2\sigma)^2)$ $\Box \text{ C: } \mathcal{N}(\frac{1}{2}\mu, \sigma^2)$ $\Box \text{ D: } \mathcal{N}(\mu, (2\sigma)^2)$

Question 5 Soit U une variable aléatoire réelle de loi uniforme sur [0,1]. U^2 admet-elle une densité?

- $\begin{array}{l} \square \ \text{A: Non} \\ \square \ \text{B: Oui} : \frac{1}{2\sqrt{x}} 1_{[0,1]}(x) \\ \square \ \text{C: Oui} : 2x 1_{[0,1]}(x) \end{array}$