Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica

Tarea 4

Aprendizaje Automático

Integrantes:

Carlos Barrantes Castro

Salomón Ramírez Quirós

Profesor:

Dr.-Ing. José Pablo Alvarado Moya

8 de mayo de 2022

1. Método SVM

En la Fig. 1 se puede observar los resultados obtenidos de *recalls* y *precisions* para los diferentes hiperparámetros escogidos y también la matriz de confusión para los mejores parámetros.

Figura 1: Resultados para SVM.

1.1. Simulación SVM

Figura 2: Simulación para SVM.

2. Método RDF

En la Fig. 3 se puede observar los resultados obtenidos de *recalls* y *precisions* para los diferentes hiperparámetros escogidos y también la matriz de confusión para los mejores parámetros.

(a) Evaluación de varios hiperparámetros

(b) Matriz de confusión

Figura 3: Resultados para RDF.

2.1. Simulación RDF

Figura 4: Simulación para RDF.

3. Método kNN

En la Fig. 5 se puede observar los resultados obtenidos de *recalls* y *precisions* para los diferentes hiperparámetros escogidos y también la matriz de confusión para los mejores parámetros.

(a) Evaluación de varios hiperparámetros

(b) Matriz de confusión

Figura 5: Resultados para kNN.

3.1. Simulación kNN

Figura 6: Simulación para kNN.

4. Método ANN

Una vez seleccionados los parámetros para la red neuronal artificial, se obtiene la matriz de confusión tras evaluar un set de datos con las etiquetas de cada clase.

	0	1	2	3	4	5	6	7	8	9
0	966	0	1	3	1	2	4	1	2	0
1	0	1123	3	2	0	1	1	2	3	0
2	5	2	1004	5	1	0	2	7	5	1
3	0	3	4	985	0	5	1	5	7	0
4	0	0	6	0	966	0	5	1	1	3
5	3	1	0	8	2	861	7	1	7	2
6	6	1	3	1	5	3	934	0	5	0
7	0	5	9	3	2	1	0	1001	1	6
8	5	0	2	9	8	5	2	3	937	3
9	4	3	0	6	13	2	1	5	5	970

(a) Matriz de confusión

	precision	recall	f1-score	suppor
0	0.98	0.99	0.98	980
1	0.99	0.99	0.99	1135
2	0.97	0.97	0.97	1032
3	0.96	0.98	0.97	1010
4	0.97	0.98	0.98	982
5	0.98	0.97	0.97	892
6	0.98	0.97	0.98	958
7	0.98	0.97	0.97	1028
8	0.96	0.96	0.96	974
9	0.98	0.96	0.97	1009
accuracy			0.97	10000
macro avg	0.97	0.97	0.97	10000
weighted avg	0.97	0.97	0.97	10000

(b) Análisi de la red

Figura 7: Resultados para ANN.

4.1. Resultados obtenidos para ANN

Figura 8: Simulación para ANN.

5. Mejor método

El mejor método que se puede utilizar para este caso sería el ANN. Dicho método presentó mejores datos de precisión y exhaustividad, como se puede evidenciar en las imágenes presentadas en este documento. Además, se pueden agregar diversas capas de entrenamiento y de optimización, con lo cual se pueden obtener mejores resultados.