清华大学本科生考试试题专用纸

	微积分 A(2)期	用中考试样题		
系名	i	班级	姓名	学号
- .	填空题(每空3分,	共 15 题)(请将答案	直接填写在试题组	纸横线上!)
1.	$\lim_{(x,y)\to(0,0)} (1+x^2+y^2)$	$\frac{x^2 + 2}{x^2 + y^2} = \underline{\hspace{1cm}}$	_•	
2.	已知函数 $f(x, y)$ 在 $f(x, y)$	点(2,1)处的微分df=2	$2dx + dy , \iiint_{t \to 0} \frac{f}{dt}$	$\frac{f(2+2t,1+t)-f(2,1)}{t} = \underline{\hspace{1cm}}$
3.	若 $z = y^x$,则 $\frac{\partial^2 z}{\partial x \partial y}$ (1,e) =。		
4.	设 f 可导且 f'(0)=1	1,则函数 z(x,y) = xy +	$-f(\frac{y}{x})$ 在点(1,0)女	上的微分 dz =。
5.	从 $(u_0, v_0) = (2,1)$ 的令	邓域到 $(x_0, y_0) = (3,4)$ 自	的邻域中,向量值	函数 $\begin{cases} x = u + v \\ y = u^2 v^2 \end{cases}$ 有可微的逆向量
		则 $\frac{\partial u}{\partial x}(3,4) = \underline{\hspace{1cm}}$		
6.	设函数 $f(u,v) \in \mathbb{C}^{(1)}$,函数 $w(x, y, z) = f(x - y)$	- y, x - z),则 grad	l w =
				\mathbf{l} 的方向导数 $\frac{\partial f}{\partial \mathbf{l}}(1,1) = 0$,则
	l=。			
8.		F Peano 余项的二阶 Ta	ylor 展开式为	
9.	曲线 $\begin{cases} x = e^t \\ y = 2\sin t + \cos t \\ z = 1 + e^{3t} \end{cases}$	$\mathbf{s}t$ 在 $t=0$ 所对应的点	处的切线方程为_	
10.		$= 9$ 和曲面 $3x^2 + y^2$	$-z^2 = 0$ 的交线者	E点 (1,-1,2) 处的法平面方程
	为	•		
11.	曲面 $e^z + xy - z = 3$ 有	E点 (2,1,0) 处的法线方	程为	0
12.	已知 $z = z(x, y)$ 由方	程 $x^2 + 2y^2 + 3z^2 - 2xy$	-z-7=0确定的	一个隐函数,则 $z = z(x, y)$ 的驻
	点 $(x_0, y_0) = $	o		
13.	设 $I(y) = \int_{y}^{y^2} e^{x^2 y} dx$,	则 $I'(1) = $	o	
	-		, .	

14.
$$\lim_{y \to +\infty} \int_{1}^{+\infty} \frac{e^{-xy}}{1+x^2} dx = \underline{\hspace{1cm}}$$

15. 所有 2 阶实数方阵
$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$
 组成一个 4 维线性空间 V ,定义向量值函数 $\mathbf{f}: V \to V$,

$$\mathbf{f}(X) = X^2$$
,则 $\mathbf{f}(X)$ 在 $X_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 处全微分为______。

二. 计算题(每题10分,共4题)(请写出详细的计算过程和必要的根据!)

16. 设
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0) \end{cases}$$
, 回答以下问题:

- (I) 函数 f(x, y) 在原点处是否连续,说明理由;
- (II) 函数 f(x, y) 在原点处沿任意给定的方向 u = (a, b) ($a^2 + b^2 = 1$) 的方向导数是否存在? 若存在,求出这个方向导数,若不存在,说明理由;
- (III) 函数 f(x,y) 在原点处是否可微,若可微,求出这个微分,若不可微,说明理由。

17. 已知方程
$$2z - e^z + 1 + \int_y^{x^2} \sin(t^2) dt = 0$$
 在 $(x_0, y_0, z_0) = (1,1,0)$ 的某个邻域中确定了一个隐函数

$$z = z(x, y)$$
 $\otimes \stackrel{?}{R} \frac{\partial^2 z}{\partial x \partial y} (1, 1)$ \otimes

18. 设实数
$$a \ge 0$$
,求 $\int_0^{+\infty} \frac{1 - e^{-ax}}{re^x} dx$ 。

- - (I) 求 f 在平面 R^2 上的所有极值;
 - (II) 求 f 在曲线 $x^2 xy + y^2 = 1$ 上的最大值和最小值。
- 三. 证明题(请写出详细的证明过程!)

20. (8 分)设
$$f: \mathbf{R} \to \mathbf{R}$$
 连续,满足 $f(0) \neq -1$, $\int_0^1 f(x) dx = 0$ 。

(I) 证明存在 $t_0=1$ 的邻域 U 和 $x_0=0$ 的邻域 V 以及 $\mathbf{C}^{(1)}$ 函数 $g:U\to V$ 使得对任意

$$(t,x) \in U \times V$$
, $\int_{x}^{t} f(u) du = x \stackrel{\text{def}}{=} \mathbb{E} \{X \stackrel{\text{def}}{=} x = g(t) \}$

- (Ⅱ) 求 g'(1)。
- 21. (7 分)设 $\alpha > 0$, $f \in C[0,1]$ 且 f(x) > 0。 根据参数 α 的不同值,研究函数

$$g(y) = \int_0^1 \frac{y^{\alpha} f(x)}{x^2 + y^2} dx \quad (y \in [0, +\infty)) \text{ 的连续性, 并证明你的结论。}$$