Lipides et Lipoprotéines

- Généralités Classification
- Acides gras et eicosanoïdes
- Glycérides et lipases
- Lipides complexes et phospholipases
- Stérols et stéroïdes
- Lipoprotéines
- Principales voies du métabolisme des lipides

Références bibliographiques

- C. Moussard, Biochimie Structurale et Métabolique, 3ème éd., De Boeck, 2006
- R.K. Murray et al. Biochimie de Harper, 3ème éd. française, De Boeck, 2008
- L. Stryer et al. Biochimie, 5ème éd.,
 Flammarion, 2003
- B. Sablonnière et al. Biochimie et Biologie Moléculaire, Omniscience, 2006

- Définition: « petites molécules hydrophobes ou amphipathiques qui dérivent de la condensation de thioesters ou d'unités isopréniques »
- Molécule contenant généralement un (ou +) acide gras
- Classification
 - selon la structure chimique
 - selon les fonctions:
 - lipides de réserve et/ou de transport
 - lipides de structure
 - lipides bioactifs / seconds messagers

- Classification internationale (www.lipidmaps.org)
 - acides gras
 - glycérolipides
 - glycérophospholipides
 - sphingolipides
 - stérols (et dérivés)
 - dérivés isopréniques
 - saccharolipides
 - polycétides

 Solubilité **HYDROPHILIE** acides gras Groupements fonctionnels glycosphingolipides glycérophospholipides Phosphate Choline glycérolipides (ex: TAG) stérols et dérivés dérivés isopréniques (ex: carotène)

NE PAS DI

HYDROPHOBICITE

ENSEIGNANT

Solubilité dans solvants organiques

- Séparation :
 - chromatographie en phase gazeuse: CPG
 - séparation des esters méthyliques d'acides gras
 - sur support hydrophobe

Séparation :

– chromatographie d'adsorption: CCM (TLC)

Partage des molécules (solutés) entre

- phase stationnaire (gel de silice) et
- phase mobile (mélange de solvants)

Sur colonne

Sur plaque : CCM

2.1. Acides gras linéaires saturés

Abréviation	Nom systématique	Nom usuel
C _{4:0}	BUTANOÏQUE	BUTYRIQUE
C _{12:0}	DODECANOÏQUE	LAURIQUE
C _{16:0}	HEXADECANOÏQUE	PALMITIQUE
C _{18:0}	OCTADECANOÏQUE	STEARIQUE
C _{20:0}	EICOSANOÏQUE	ARACHIDIQUE
C _{26:0}	HEXACOSANOÏQUE	CEROTIQUE

2.2. Acides gras linéaires insaturés

Exemple: Acide linoléique (ou \(\Delta \)9,12-octadécadiénoïque)

Nomenclature:

- longueur (nombre de C) C18:2

- nombre de doubles liaisons (Cn:x)

- position de la (des) Δ 9(10),12(13)

- configuration de la (des) Δ cis

- série métabolique (n-x ou ω x) n-6 (ou ω 6)

Exemple: Acide linoléique

2.2. Acides gras linéaires insaturés

Acide oléique

(ou cis-∆9-octadécénoïque)

(Acides gras naturels)

Acide élaïdique

(ou trans-∆9-octadécénoïque)

Cours de L1 - T. Levade NE PAS DIFFUSER SANS L'ACCORD DE L'ENSEIGNANT

2.2. Acides gras linéaires insaturés

Notion de séries métaboliques (chez homme) :

- désaturation des AG saturés par une Δ9-désaturase
- possibilité d'élongation et désaturation
- MAIS pas de nouvelle Δ entre une Δ existante et CH₃
- → Acides gras « indispensables/essentiels »

Série oléique : **n-9 (
$$\omega$$
9)** $C_{18:1} \rightarrow C_{18:2} \rightarrow C_{20:2} \rightarrow C_{20:3}$
Série linoléique : **n-6 (ω 6)** $C_{18:2} \rightarrow C_{18:3} \rightarrow C_{20:3} \rightarrow C_{20:4}$
Série α -linolénique : **n-3 (ω 3)** $C_{18:3} \rightarrow C_{18:4} \rightarrow C_{20:4} \rightarrow C_{20:5}$

2.2. Acides gras linéaires insaturés

- mono-insaturés: acide oléique (C18:1, ω9, Δ9)

- poly-insaturés:

acide linoléique (C18:2, ω 6, Δ 9,12) acide arachidonique (C20:4, ω 6, Δ 5,8,11,14) acide α -linolénique (C18:3, ω 3, Δ 9,12,15) acide eicosapentaénoïque (C20:5, ω 3, Δ 5,8,11,14,17)

Cours de L1 - T. Le

NE PAS DIFFUSER SANS L'ACCORD DE L'ENSEIGNANT

2.3. Autres acides gras

- acides α-hydroxylés
- acides ramifiés :

2.4. Propriétés des AG

- hydrophobicité fonction de longueur et insaturation
- → « solubilité » dans eau (selon pH: ionisation à pH alcalin)
- fixation d'iode
- oxydation

3. Eicosanoïdes

3.1. Prostaglandines (PG) et thromboxanes (TX)

- dérivés de l'acide prostanoïque (prostanoïdes)

- 3 groupes:

```
. C18:2 \omega6 \rightarrow C20:3 \omega6 \rightarrow groupe 1
. C18:2 \omega6 \rightarrow C20:3 \omega6 \rightarrow C20:4 \omega6 \rightarrow groupe 2
. C18:3 \omega3 \rightarrow C20:5 \omega3 \rightarrow groupe 3
```

- formés par des cyclooxygénases (inhibées par les AINS, ex: aspirine, indométhacine, ibuprofène)
- molécules bioactives (inflammation, agrégation plaquettaire, vaso- et broncho-constriction, ...)

3. Eicosanoïdes

3.1. Prostaglandines (PG) et thromboxanes (TX)

PLA2

Phospholipides → C20:4 ω6

3. Eicosanoïdes

3.2. Leucotriènes (LT) et lipoxines (LX)

- Formés par des lipoxygénases à partir du C20:4 ω6
- Leucotriènes:
 - . Triènes conjugués
 - . Certains peptidoleucotriènes
 - . Régulateurs (réactions d'hypersensibilité)

Exemple: LTC4