1. Even proof

Proposition: Suppose $a,b \in \mathbb{Z}$, If a and b are even, then ab is even.

Proof: Suppose $a,b\in Z$, by definition of even there exists integers K and Q such that a=2K and b=2Q. From this ab=2k2Q which we can then simplify into 4KQ=2(2KQ). Let M=2KQ. Since Z is closed under multiplication and $2,K,Q\in Z$, $2KQ\in Z$. Thus ab=2M where 2M is an integer and so by definition, ab is even. \blacksquare

2. Divides

Definition: Suppose that $a,b \in \mathbb{Z}$. We say that b divides a, denoted b|a, when there exists an integer k such that a = bk.

Does 2|10? Yes 2|10 because 10 = 2*5. Does 4|10? 4 does not divide 10 because if 10 = 4k then k = 2.5 $/\in \mathbb{Z}$

Synonyms:

- b is a divisor of a
- b is a factor of a
- a is a multiple of b
- $\frac{a}{b}$ is an integer. [k = $\frac{a}{b}$]

3. Proofs

Prove the following:

Proposition: Suppose that $a,b,c \in \mathbb{Z}$. If b|a and b|c then b|(a+c).

Proof: Suppose that $a,b,c\in Z$. By definition of divides there exists an integer k where a = bk and an integer k_1 where $c = bk_1$. So from this we get $(a+c) = b(k+k_1)$. Since the integers are closed under addition $k+k_1$ must be an integer. Because of that by definition of divides b|(a+c).

Proposition: Suppose that $x,y,z \in \mathbb{Z}$. If x|y and y|z, then x|z.

Proof: Suppose that $x,y,z\in Z$. By definition of divides there exists an integer g where y=xg and an integer f where z=yf. From this we can get z=xgf, simplifying it would get $\frac{z}{xg}=f$. Because $\frac{z}{y}$ is an integer, $\frac{x}{zg}$ must be an integer. (Or Since Z is closed under multiplication, $\frac{x}{zg}\in Z$). Therefore x|z.

• From this we can get z = xgf. Here I can actually just set z = x(gf) and then follow it with Since Z is closed under multiplication $x(gf) \in Z$.

Therefore $x \mid z$.

I just made it a little more complicated then needed.

My professors proof for the second:

Proposition: Suppose that $x,y,z \in \mathbb{Z}$. If x|y and y|z, then x|z.

Proof: Suppose $x,y,z\in Z$ and x|y and y|z. Then by definition, there exists integers k and m such that y=xk and z=ym. So combining these equations we see that z=xkm. Let n=km, Since Z is closed under multiplication $n=km\in Z$. Therefore sinc z=xn and $n\in Z$, x|z.