LECTURER: TAI LE QUY

MACHINE LEARNING

UNSUPERVISED LEARNING AND FEATURE ENGINEERING

INTRODUCTION TO UNSUPERVISED MACHINE LEARNING AND FEATURE ENGINEERING	1
CLUSTERING	2
DIMENSIONALITY REDUCTION	3
FEATURE ENGINEERING	4
FEATURE SELECTION	5
AUTOMATED FEATURE GENERATION	6

UNIT 6

AUTOMATED FEATURE GENERATION

- Explain how to automatically generate transformation features.
- Understand how to automatically generate aggregation features.
- Analyze the advantages and limitations of the techniques used to automatically generate features.

1. Explain the difference between **transformations** and **aggregations**.

2. Explain what is meant by the term "complex features".

3. Explain what **feature retrieval** is.

UNIT CONTENT

Image 1: Unit content - Automated Feature Generation

Deep Feature Synthesis (DFS)

Deep Learning (DL)

DEEP FEATURE SYNTHESIS

Tabular datasets into derived feature matrices

Transformations

Aggregations

— Example: Python's featuretools

Table 1: Feature matrix

t	sales	var(h=3)	max(h=7)	range(h=30)
1	234	1	234	30
2	321	2	321	32
3	323	3	323	24

Featuretools:

- Open source Python library framework for automatic generation of features
- Transforms transactional and relational datasets into adapted feature matrices for machine learning
- Works on a concept known as Deep Feature Synthesis (DFS)
- DFS allows us to automatically create multiple features either as transformations or aggregations
- Transformations: are done to one or more columns on a single table
- Aggregations: using different primitives applied to several tables

DEEP FEATURE SYNTHESIS

Entities

- (Dataframe) Tables
- Must have a unique index identifying each row

Entitysets

- Multiple relational tables
- Hierarchical: Each relationship links an Entity parent to an Entity child

Primitives

 Aggregation operations: used to form new features across one entity or several entities

Table 1: Feature matrix

t	sales	var(h=3)	max(h=7)	range(h=30)
1	234	1	234	30
2	321	2	321	32
3	323	3	323	24

DEEP FEATURE SYNTHESIS

Primitive levels

- 1st depth: Mean
- 2nd depth: Max of means
- Complex features (depth > 1)

Deep Feature Synthesis

- Automated multi-depth aggregations
- Based on defined entity relationships

Table 1: Feature matrix

t	sales	var(h=3)	max(h=7)	range(h=30)
1	234	1	234	30
2	321	2	321	32
3	323	3	323	24

TRANSFORMATION PRIMITIVES

Transformation Primitives in the Featuretools Library			
multiply_boo- lean	Element-wise multiplication of two lists of Boolean values		
year	Determines the year value of a datetime		
day	Determines the day of the month based on a datetime		
weekday()	Returns the day of the week from a datetime value. Weeks start on Monday (day 0) and run through Sunday (day 6).		
divide_by_fea- ture	Divides a scalar by each value in the list		
equal	Determines if values in one list are equal to another list		

AGGREGATION PRIMITIVES

Aggregation Primitives in the featuretools Library			
all	Calculates if all values are 'True' in a list		
std	Computes the standard deviation which is the dispersion relative to the mean value, ignoring `NaN`,		
num_unique	Determines the number of distinct values, ignoring `NaN` values		
n_most_com- mon	Determines the `n` most common elements		
mean	Computes the average for a list of values		
num_true	Counts the number of `True` values		
median	Determines the middlemost value in a list of values		

EXAMPLE

 Each customer orders a certain number of products and each product has a certain price.

Customer Table		
Customer_ID	Customer_name	Creation-date
C1	Martin	2018-08-15
C2	Julia	2020-05-05

Customer Orders	
Order ID	Customer ID
1	C1
2	C2
3	C1
4	C1
5	C2

Customer Payments		
Order_ID	Price	
1	500	
5	200	
3	300	
4	100	
2	900	

DFS is a concept allowing us to automatically generate new features from single and multiple entities (DataFrame).

DEEP LEARNING

- Convolutional Neural Networks (CNN)
- Generate distinctive features from input images
- "Hidden" layers in the network architecture
- Feature retrieval
 - Extracting this information to be used by any machine learning algorithm

DEEP LEARNING

Filters

- Kernel functions
- Applied to each image pixel
- Considering neighboring pixels
- Example: Detecting vertical/horizontal lines

DEEP LEARNING

Pooling

- Aggregating convoluted data
- Various pooling functions
 - Max
 - Min
 - Mean
 - etc.

- Explain how to automatically generate transformation features.
- Understand how to automatically generate aggregation features.
- Analyze the advantages and limitations of the techniques used to automatically generate features.

SESSION 6

TRANSFER TASK

TRANSFER TASKS

A start-up that **sells sustainable products in smaller stores worldwide** has been very successful in recent years.

You as a Data Scientist and your team came up with a machine learning model **clustering similar products** (based on products, customers, stocks, tables). Although this clustering supports ordering and shipment, you and your team feel there is still unleashed potential, and the model **does not use all relevant information**. You have already generated several features **manually**, but this did not considerably improve the model's performance.

Discuss ways to **systematically** and **automatically generate additional features** from the existing data. Also, evaluate the **risks** in creating many more features and how these risks can be **mitigated**.

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

- 1. Which one of the following operators is an example of a transformation primitive?
 - a) max
 - b) weekday
 - c) min
 - d) sum

- 2. Which of the following applies to a feature that was generated as the min(mean()) value?
 - a) It is of depth 1.
 - b) It is of depth 2.
 - c) It is not an interpretable feature.
 - d) It is not a complex feature.

- 3. In a convolutional neural network, kernel filters...
 - a) ... generate the feature map.
 - b) ... reduce the dimensionality of the feature map.
 - c) ... are assigned a probability to an input image.
 - d) ... flatten the feature map.

LIST OF SOURCES

<u>Text</u>

Kanter, J. M., & Veeramachaneni, K. (2015). Deep feature synthesis: Towards automating data science endeavors. 2015 IEEE international conference on data science and advanced analytics (DSAA) (pp. 1—10). IEEE.

<u>Images</u>

Müller-Kett, 2021.

Müller-Kett, 2023.

Microsoft Archive.

<u>Table</u>

Müller-Kett, 2023.

How did you like the course?

HOW DID YOU LIKE THE COURSE?

