Multiplicação em binário

Uma aplicação para o Ahmes

Pensando bem ... como se multiplica?

(3 dígitos x 4 dígitos = 7 dígitos!)

Pensando bem ... como se multiplica?

```
654
 \times 3210
        0 = 0 \times 1 \times 654
    6540 = 1 \times 10 \times 654
 130800 = 2 \times 100 \times 654
1962000 = 3 \times 1000 \times 654
2099340
```

Em binário, as regras são as mesmas! (muda somente a base)

Exemplo: multiplicação de int. positivos

```
111010
```

 \times 110101

(6 dígitos x 6 dígitos = 12 dígitos!)

Em binário, as regras são as mesmas! (muda somente a base)

Exemplo: multiplicação de int. positivos

```
111010
    \times 110101
       111010 = 1 x
                              1 \times 111010
     0000000 = 0x
                             10 \times 111010
    11101000 = 1 x
                           100 \times 111010
  000000000 = 0 \times 1000 \times 111010
 11101000000 = 1 \times 100000 \times 1110010
111010000000 = 1 \times 1000000 \times 1110010
```

110000000010

Mas, como os dígitos do multiplicador só podem ser 0 ou 1, só existem 2 valores possíveis para os produtos parciais:

```
111010
   x 110101
      111010 ← bit multiplicador = 1
     000000 \leftarrow bit multiplicador = 0
   111010
  000000
 111010
111010
```

110000000010

Os produtos parciais podem ser acumulados à medida em que são calculados; o resultado obtido é o mesmo

Algoritmo básico – generalizado para n digitos

- 1. Início: i \leftarrow 0, produto \leftarrow 0
- 2. Se o bit de ordem 'i' do multiplicador for zero, ir para 4 (otimização ...)
- Somar o multiplicando ao produto (produto ← produto + multiplicando)
- Deslocar o multiplicando para a esquerda em 1 bit (multiplicando ← multiplicando x 2)
- 5. Incrementar 'i' de uma unidade (i \leftarrow i + 1)
- 6. Se 'i' for menor que n, ir para 2
- 7. Terminar

Cada vez que um produto parcial é calculado, fica definido um dos dígitos menos significativos do produto final e este não é mais afetado pelas somas seguintes:

111010 x 110101
0111010
00111010 111010
100100010
0100100010 111010
10011000010 111010
11000000010

 ← lembre-se: aqui já foi feita uma adição; o produto parcial inicial era zero

Logo, deslocando as somas parciais um dígito para a direita a cada etapa, também poderíamos representar o processo de cálculo assim:

Algoritmo adaptado para uso em computador (P e p são as duas metades do produto, M = multiplicando e m = multiplicador, c = carry)

- 1. Início: $i \leftarrow 0$, $P \leftarrow 0$, $p \leftarrow 0$
- Se o bit de ordem 'i' de m for zero, fazer c ← 0 e ir para 4
- 3. Somar M a P (P \leftarrow P + M); c \leftarrow 'vai um' da soma
- 4. Deslocar os 2n bits do produto para a direita e inserir c como bit mais significativo do produto (P p) ← deslocamento p/direita de (c P p)
- 5. Incrementar 'i' de uma unidade (i \leftarrow i + 1)
- 6. Se 'i' for menor que n, ir para 2
- 7. Terminar

Algoritmo melhorado para uso em computador (P e p são as duas metades do produto, M = multiplicando e m = multiplicador, c = carry)

- 1. Início: i \leftarrow 'n', P \leftarrow 0
- 2. Deslocar m para a direita junto com o carry (m c ← deslocamento p/direita de m)
- 3. Se c = 0, ir para 5
- 4. Somar M a P (P \leftarrow P + M); c \leftarrow 'vai um' da soma
- 5. Deslocar os 2n bits do produto para a direita e inserir c como bit mais significativo do produto (P p) ← deslocamento p/direita de (c P p)
- 6. Decrementar 'i' de uma unidade (i ← i 1)
- 7. Se 'i' não for zero, ir para 2
- 8. Terminar. Resultado em (Pp)

Algoritmo adaptado para uso no Ahmes (P e p são as duas metades do produto, M = multiplicando e m = multiplicador, c = carry)

- 1. Início: i \leftarrow 'n', P \leftarrow 0
- Deslocar m para a direita junto com o carry m c ← SHR (m)
- 3. Se c = 0, ir para 5
- 4. Somar M a P (P \leftarrow P + M); c \leftarrow 'vai um' da soma
- 5. Deslocar os 2n bits do produto para a direita e inserir c como bit mais significativo do produto (P c) ← ROR (c P) e (p c) ← ROR (c p)
- 6. Decrementar 'i' de uma unidade (i ← i 1)
- 7. Se 'i' não for zero, ir para 2
- 8. Terminar. Resultado em (P p)

Implementação no Ahmes

0	32	136	LDA	136	30	32	131	LDA	131
2	16	132	STA	132	32	226		ROR	
4	32	134	LDA	134	33	16	131	STA	131
6	16	130	STA	130	35	32	132	LDA	132
8	32	129	LDA		37	112	135	SUB	135
					39	16	132	STA	132
10	16	133	STA	133	41	164	12	JNZ	12
12	32	133	LDA	133	43	240		HLT	
14	224		SHR		4.00				
15	16	133	STA	133	128	0		M	
			DIA	133	129	0		m	
17	180	25	JNC	25	130	0		P	
19	32	128	LDA	130	131	0		p	
21	48	130	ADD	128	132	0		i	
23	16	130	STA	130	133	0		m′	
25	32	130	LDA	130	134	0		=0	
	226		ROR		135	1		=1	
					136	8		=8	
28	16	130	STA	130	130	3		_0	

Truncando o produto (P p) para n bits (multiplicação de valores positivos !)

Inteiros positivos

```
pode ser truncado

xx...xx bb...bb
```

não pode ser truncado se algum x ≠ 0

Complemento de 2

```
pode ser truncado

xx...xx xb...bb
```

não pode ser truncado se algum x ≠ 0

O que pode ser melhorado (1)?

 Depois do teste de carry (JNC), os dois ramos iniciam com a instrução (LDA 130). Como LDA não afeta os códigos de condição B, C e V, podemos colocá-la antes do teste do carry, "economizando" uma instrução:

```
15
   STA 133
                         15 STA 133
17
   JNC 25
                        17 LDA 130
19 LDA 130
                         19
                            JNC 25
21 ADD 128
                        21 ADD 128
23 STA 130
                        23 STA 130
25
   LDA 130
                        25 ROR
27
   ROR
                        26 STA 130
28 STA 130
                         28 LDA 131
30
   LDA 131
                         30 ROR
32
   ROR
                         31
                            STA 131
33
   STA 131
```

. . .

O que pode ser melhorado (2) ?

 Com a modificação feita, a instrução STA no na palavra 23 não é mais necessária, pois em seguida o AC é girado para a direita e só armazenado novamente na palavra 130; nova "economia":

15	STA 133	15	STA 133	15	STA 133
17	JNC 25	17	LDA 130	17	LDA 130
19	LDA 130	19	JNC 25	19	JNC 23
21	ADD 128	21	ADD 128	21	ADD 128
23	STA 130	23	STA 130	23	ROR
25	LDA 130	25	ROR	24	STA 130
27	ROR	26	STA 130	26	LDA 131
28	STA 130	28	LDA 131	28	ROR
30	LDA 131	30	ROR	29	STA 131
32	ROR	31	STA 131	• • •	
33	STA 131	• • •			

. . .

O que pode ser melhorado (3) ?

 Considerando os deslocamentos do multiplicador (m) e dos resultados parciais (P p) para a direita, durante o processo de multiplicação, pode-se usar a mesma variável para guardar 'm' e 'p':

Mas, para economizar esta palavra, o algoritmo fica novamente mais longo e precisamos de mais uma constante. Quanto ao desempenho, este melhora.

Compartilhamento de 1 palavra por p e m'

0	32	136	LDA	136	32	16	131	STA	131
2	16	132	STA	132	34	32	132	LDA	132
4	32	134	LDA	134	36	112	135	SUB	135
6	16	130	STA	130	38	16	132	STA	132
8	32	129	LDA	129	40	164	12	JNZ	12
10	16	131	STA	131	42	240		HLT	
12	32	131	LDA	131	128	0		M	
14	224		SHR		129				
15	16	131	STA	131	130			m P	
17	32	130	LDA	130					/
19	180	23	JNC	23	131			p e	ш
21	48	128	ADD	128	132			i	
23	226		ROR		134	0		=0	
24		130		120	135	1		=1	
					136	8		=8	
26	180	34	JNC	34	137	128		=128	3
28	32	131	LDA	131					-
30	64	137	OR	137					

Inteiro positivo

$$10101 = 1.2^{4}+0.2^{3}+1.2^{2}+0.2^{1}+1.2^{0}$$
$$= 16 + 0 + 4 + 0 + 1$$
$$= 21$$

Complemento de 2

$$10101 = -1.24 + 0.23 + 1.22 + 0.21 + 1.20$$
$$= -16 + 0 + 4 + 0 + 1$$
$$= -11$$

Consequência: na última iteração, se o bit mais significativo do multiplicador for um, o multiplicando deve ser subtraído do resultado parcial.

011010 x 110101
0011010 0000000
00011010 01101000
010000010 00000000
0010000010 0110100000
00000100010 -01101000000
111011100010

Depois de cada adição, o novo bit mais significativo será:

- igual ao sinal anterior se a soma/subtração não provocou estouro (ou se não houve soma/subtração), ou
- o complemento do sinal anterior se a soma/subtração provocou estouro (isto corrige o estouro)

(no Ahmes, a ocorrência de estouro liga o código de condição V ... ②)

$$= -286$$

Portanto, existem quatro situações a considerar:

- •resultado positivo, sem estouro (N=0, V=0)
 - \rightarrow o novo bit deve ser 0 (SHR P)
- •resultado positivo, com estouro (N=0, V=1)
 - → o novo bit deve ser 1 (SHR P, OR #128)
- •resultado negativo, sem estouro (N=1, V=0)
 - → o novo bit deve ser 1 (idem ao anterior)
- •resultado negativo, com estouro (N=1, V=1)
 - → o novo bit deve ser 0 (SHR P)

Obs: após isto, ainda é preciso fazer um ROR para acertar os bits menos significativos do produto (p)!

Soluções alternativas

Para o Ahmes

Converter os fatores em positivos, multiplicar usando o algoritmo para inteiros positivos e depois acertar o sinal do produto de acordo com os sinais dos fatores

Genérica
 Método de Booth

Truncando o produto (Pp) para n bits (multiplicação de valores em complemento de 2)

Complemento de 2, positivo

não pode ser truncado se algum $x \neq 0$

Complemento de 2, negativo

```
11...111b...bbpode ser truncado1x...xxxb...bb
```

não pode ser truncado se algum $x \neq 1$