Zusammenfassung Analysis III

(C) (BY) Tim Baumann, http://timbaumann.info/uni-spicker

Maßtheorie

Problem (Schwaches Maßproblem). Gesucht ist eine Abbildung $\mu: \mathcal{P}(\mathbb{R}^n) \to [\mathbb{R}, \infty]$ mit folgenden Eigenschaften:

- Normierung: $\mu([0,1]^n) = 1$
- Endliche Additivität: Sind $A, B \subset \mathbb{R}^n$ disjunkt, so gilt $\mu(A \cup B) = \mu(A) + \mu(B).$
- Bewegungsinvarianz: Für eine euklidische Bewegung $f: \mathbb{R}^n \to \mathbb{R}^n$ und $A \subset \mathbb{R}^n$ gilt $\mu(f(A)) = \mu(A)$.

Satz (Hausdorff). Das schwache Maßproblem ist für $n \ge 3$ unlösbar.

Satz (Banach). Das schwache Maßproblem ist für n = 1, 2 lösbar, aber nicht eindeutig lösbar.

Problem (Starkes Maßproblem). Gesucht ist eine Abbildung $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ wie im schwachen Maßproblem, die anstelle der endlichen Additivität die Eigenschaft der σ -Additivität besitzt:

• Für eine Folge $(A_n)_{n\in\mathbb{N}}$ pw. disjunkter Teilmengen des \mathbb{R}^n ist

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n=0}^{\infty}\mu(A_n).$$

Satz. Das starke Maßproblem besitzt keine Lösung.

Notation. Sei im Folgenden Ω eine Menge.

Def. $\mathfrak{R} \subset \mathcal{P}(\Omega)$ heißt **Ring**, wenn für alle $A, B \in \mathfrak{R}$ gilt:

- $\emptyset \in \mathfrak{R}$ Abgeschlossenheit unter Differenzen: $A \setminus B \in \mathfrak{R}$
- Abgeschlossenheit unter endlichen Vereinigungen: $A \cup B \in \mathfrak{R}$

Def. $\mathfrak{A} \subset \mathcal{P}(\Omega)$ heißt **Algebra**, wenn für alle $A, B \in \mathfrak{A}$ gilt:

- $\emptyset \in \mathfrak{A}$ Abgeschlossenheit unter Komplementen: $A^c = \Omega \setminus A \in \mathfrak{A}$
- Abgeschlossenheit unter endlichen Vereinigungen: $A \cup B \in \mathfrak{A}$

Def. Eine Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$ heißt σ -Algebra, wenn \mathfrak{A} unter abzählbaren Vereinigungen abgeschlossen ist, d. h. für jede Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{A} gilt $\bigcup A_n\in\mathfrak{A}$.

Bem. • Jede Algebra ist auch ein Ring.

- Ein Ring $\mathfrak{R} \subset \mathcal{P}(\Omega)$ ist auch unter endlichen Schnitten abgeschlossen, da $A \cap B = A \setminus (B \setminus A) \in \mathfrak{R}$.
- Ein Ring $\mathfrak{R} \subset \mathcal{P}(\Omega)$ ist genau dann eine Algebra, wenn $\Omega \in \mathfrak{R}$.
- Eine σ -Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$ ist auch unter abzählbaren Schnitten abgeschlossen: Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in \mathfrak{A} , dann gilt

$$\bigcap_{n\in\mathbb{N}} A_n = \left(\bigcup_{n\in\mathbb{N}} (A_n)^c\right)^c \in \mathfrak{A}.$$

Notation. Sei im Folgenden $\mathfrak{R} \subset \mathcal{P}(\Omega)$ ein Ring.

Satz. Sei $(A_i)_{i\in I}$ eine Familie von Ringen / Algebren / σ -Algebren Def. Für eine Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ heißen über Ω . Dann ist auch $\bigcap_{i \in I} A_i$ ein Ring / eine Algebra / eine σ -Algebra über Ω .

Def. Sei $E \subset \mathcal{P}(\Omega)$. Setze

$$\begin{split} \mathcal{R}(E) &\coloneqq \{\mathfrak{R} \subset \mathcal{P}(\Omega) \,|\, E \subset \mathfrak{R}, \mathfrak{R} \text{ Ring} \} \text{ und} \\ \mathcal{A}(E) &\coloneqq \{\mathfrak{A} \subset \mathcal{P}(\Omega) \,|\, E \subset \mathfrak{A}, \mathfrak{A} \text{ σ-Algebra} \}. \end{split}$$

Dann heißen $\Re(E) := \bigcap_{\Re \in \mathcal{R}(E)} \Re, \quad \Im(E) := \bigcap_{\Re \in \mathcal{A}(E)} \Im$ von E erzeugter Ring bzw. von E erzeugte σ -Algebra.

Def. Ist (Ω, \mathcal{O}) ein topologischer Raum, dann heißt $\mathfrak{B} := \mathfrak{B}(\Omega, \mathcal{O}) := \mathfrak{A}(\mathcal{O})$ Borelsche σ -Algebra von (Ω, \mathcal{O}) .

Bem. Die Borelsche σ -Algebra $\mathfrak{B}(\mathbb{R})$ wird auch erzeugt von $\{I \subset \mathbb{R} \mid I \text{ Intervall }\}$. Dabei spielt es keine Rolle, ob man nur geschlossene, nur offene, nur nach einer Seite halboffene Intervalle oder gar nur Intervalle obiger Art mit Endpunkten in Q zulässt.

Def. Eine Funktion $\mu: \mathfrak{R} \to [0, \infty]$ heißt **Inhalt** auf \mathfrak{R} , falls

• $\mu(\emptyset) = 0$ • $\mu(A \sqcup B) = \mu(A) + \mu(B)$ für disjunkte $A, B \in \mathfrak{R}$.

Def. Ein Inhalt $\mu: \mathfrak{R} \to [0, \infty]$ heißt **Prämaß** auf \mathfrak{R} , wenn μ σ -additiv ist, d. h. wenn für jede Folge $(A_n)_{n\in\mathbb{N}}$ paarweise disjunkter Elemente von \mathfrak{R} mit $\coprod A_n \in \mathfrak{R}$ gilt:

$$\mu\left(\bigsqcup_{n\in\mathbb{N}}A_n\right) = \sum_{n=0}^{\infty}\mu(A_n)$$

Def. Ein Maß ist ein Prämaß auf einer σ -Algebra.

Satz. Für einen Inhalt μ auf \Re gilt für alle $A, B \in \Re$:

- $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$
- $A \subset B \implies \mu(A) < \mu(B)$
- Aus $A \subset B$ und $\mu(B) < \infty$ folgt $\mu(B \setminus A) = \mu(B) \mu(A)$
- Für $A_1, \ldots, A_n \in \mathfrak{R}$ ist $\mu\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n \mu(A_i)$ (Subadditivität)

(Monotonie)

• Ist $(A_n)_{n\in\mathbb{N}}$ eine Folge disjunkter Elemente aus \mathfrak{R} , sodass $\bigsqcup_{n\in\mathbb{N}} A_n \in \mathfrak{R}, \text{ so gilt } \mu\left(\bigsqcup_{n\in\mathbb{N}} A_n\right) \ge \sum_{n=0}^{\infty} \mu(A_n).$

Def. Ein Inhalt / Maß auf einem Ring \Re / einer σ -Algebra $\mathfrak A$ heißt endlich, falls $\mu(A) < \infty$ für alle $A \in \Re$ bzw. $A \in \mathfrak{A}$.

Satz. Ein Maß auf einer σ -Algebra \mathfrak{A} ist σ -subadditiv. d. h. es gilt

$$\mu(\bigcup_{n\in\mathbb{N}}A_n)\leq \sum_{n=0}^{\infty}\mu(A_n)$$
 für alle Folgen $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{A} .

Def. Die Indikatorfunktion oder char. Funktion von $A \subset \Omega$ ist

$$\chi_A = \mathbbm{1}_A: \Omega \to \mathbb{R}, \quad \omega \mapsto |\{\star \, | \, \omega \in A\}| = \begin{cases} 1, & \text{falls } \omega \in A, \\ 0, & \text{falls } \omega \not \in A. \end{cases}$$

Def. Eine Folge $(A_n)_{n\in\mathbb{N}}$ konvergiert gegen $A\subset\Omega$, notiert $\lim_{n\to\infty} A_n = A$, wenn $(\mathbb{I}_{A_n})_{n\in\mathbb{N}}$ punktweise gegen \mathbb{I}_A konvergiert.

 $\limsup A_n := \{ \omega \in \Omega \mid \omega \text{ liegt in unendlich vielen } A_n \}$

 $\liminf A_n := \{ \omega \in \Omega \mid \omega \text{ liegt in allen bis auf endlich vielen } A_n \}$

Limes Superior bzw. Limes Inferior der Folge A_n . Es gilt

$$\limsup_{n \to \infty} A_n = \bigcap_{n=0}^{\infty} \bigcup_{k=n}^{\infty} A_k, \quad \liminf_{n \to \infty} A_n = \bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Satz. Es gilt $\lim_{n\to\infty} A_n = A \iff \liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n = A$.

Def. Eine Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ heißt

- monoton wachsend, wenn für alle $n \in \mathbb{N}$ gilt $A_n \subset A_{n+1}$,
- monoton fallend, wenn für alle $n \in \mathbb{N}$ gilt $A_n \supset A_{n+1}$.

Satz. Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in $\mathcal{P}(\Omega)$.

- Ist (A_n) monoton wachsend, so gilt $\lim_{n\to\infty} A_n = \bigcup_{n\in\mathbb{N}} A_n$.
- Ist (A_n) monoton fallend, so gilt $\lim_{n\to\infty} A_n = \bigcap_{n \in \mathbb{N}} A_n$.

Satz. Sei μ ein Inhalt auf $\mathfrak{R} \subset \mathcal{P}(\Omega)$. Wir betrachten die Aussagen:

- (i) μ ist ein Prämaß auf \Re .
- (ii) Stetigkeit von unten: Für jede monoton wachsende Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{R} mit $A:=\lim_{n\to\infty}A_n=\bigcup_{n=0}^\infty A_n\in\mathfrak{R}$ gilt $\lim_{n\to\infty}\mu(A_n)=\mu(A).$
- (iii) Stetigkeit von oben: Für jede monoton fallende Folge $(A_n)_{n\in\mathbb{N}}$ in \Re mit $\mu(A_0) < \infty$ und $A := \lim_{n \to \infty} A_n = \bigcap_{n=0}^{\infty} A_n \in \Re$ gilt $\lim_{n \to \infty} \mu(A_n) = \mu(A).$
- (iv) Für jede monoton fallende Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{R} mit $\mu(A_0)<\infty$ und $\lim_{n\to\infty} A_n = \bigcap_{n=0}^{\infty} A_n = \emptyset$ gilt $\lim_{n\to\infty} \mu(A_n) = 0$.

Dann gilt (i) \iff (ii) \implies (iii) \iff (iv). Falls μ endlich ist, so gilt auch (iii) \Longrightarrow (ii).

Satz. Sei μ ein Maß auf einer σ -Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$. Dann gilt:

- Für eine Folge $(A_n)_{n\in\mathbb{N}}$ in \mathfrak{A} gilt $\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}(\mu(A_n))$
- Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in \mathfrak{A} , sodass es ein $N\in\mathbb{N}$ gibt mit $\mu\left(\bigcup_{n=N}^{\infty} A_n\right) < \infty$, dann gilt $\mu\left(\limsup_{n \to \infty} A_n\right) \ge \limsup_{n \to \infty} \mu(A_n)$.
- Sei μ endlich und $(A_n)_{n\in\mathbb{N}}$ eine Folge in \mathfrak{A} , dann gilt $\mu\left(\liminf_{n\to\infty}A_n\right) \le \liminf_{n\to\infty}\mu(A_n) \le \limsup_{n\to\infty}\mu(A_n) \le \mu\left(\limsup_{n\to\infty}A_n\right).$
- Sei μ endlich und $(A_n)_{n\in\mathbb{N}}$ eine gegen A konvergente Folge in \mathfrak{A} , dann gilt $A \in \mathfrak{A}$ und $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

Def. Ein Inhalt auf einem Ring $\mathfrak{R} \subset \mathcal{P}(\Omega)$ heißt σ -endlich, wenn gilt: Es gibt eine Folge $(S_n)_{n\in\mathbb{N}}$ in \mathfrak{R} , sodass

$$\Omega = \bigcup_{n \in \mathbb{N}} S_n$$
 und $\mu(S_n) < \infty$ für alle $n \in \mathbb{N}$.

Def. Eine Funktion $f: \Omega \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ wird numerische Funktion genannt.

Def. Eine num. Fkt. $\mu^* : \mathcal{P}(\Omega) \to \overline{\mathbb{R}}$ heißt **äußeres Maß** auf Ω , wenn

- $A \subset B \implies \mu^*(A) < \mu^*(B)$ (Monotonie)
- Für eine Folge $(A_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ gilt $\mu^*\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq \sum_{n=0}^{\infty}\mu^*(A_n)$.

Bem. Wegen $\mu^*(\emptyset) = 0$ und der Monotonie nimmt ein äußeres Maß nur Werte in $[0, \infty]$ an.

Def. Eine Teilmenge $A \subset \Omega$ heißt μ^* -messbar, falls

$$\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A)$$
 für alle $Q \subset \Omega$.

Satz (Carathéodory). Für ein äußeres Maß $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ ist

- $\mathfrak{A}^* := \{A \subset \Omega \mid A \text{ ist } \mu^*\text{-messbar }\}$ eine σ -Algebra und
- $\mu^*|_{\mathfrak{A}^*}$ ein Maß auf \mathfrak{A}^* .

Satz (Fortsetzungssatz). Sei μ ein Prämaß auf einem Ring \Re , dann gibt es ein Maß $\tilde{\mu}$ auf der von \Re erzeugten σ -Algebra $\mathfrak{A}(\Re)$ mit $\tilde{\mu}|_{\mathfrak{R}} = \mu$. Falls μ σ -endlich ist, so ist $\tilde{\mu}$ eindeutig bestimmt.

Bem. Im Beweis wird ein äußeres Maß auf Ω so definiert:

$$\mathfrak{U}(Q) := \left\{ (A_n)_{n \in \mathbb{N}} \,\middle|\, Q \subset \bigcup_{n=0}^{\infty} A_n \text{ und } A_n \text{ Folge in } \mathfrak{R} \right\},$$
$$\mu^*(Q) := \inf \left(\left\{ \sum_{i=0}^{\infty} \mu(A_n) \,\middle|\, (A_n)_{n \in \mathbb{N}} \in \mathfrak{U}(Q) \right\} \cup \{\infty\} \right).$$

Das äußere Maß μ^* eingeschränkt auf $\mathfrak{A}^* \supset \mathfrak{A}(\mathfrak{R})$ ist ein Maß.

Satz. Sei $(\Omega, \mathfrak{A}, \mu)$ ein σ -endlicher Maßraum und \mathcal{E} ein Erzeuger von \mathfrak{A} , der unter Schnitten abgeschlossen ist. Es gebe eine Folge $(E_n)_{n\in\mathbb{N}}$ mit $E_n \uparrow \Omega$ und $\mu(E_n) < \infty$ für jedes $n \in \mathbb{N}$. Dann ist μ durch die Werte auf \mathcal{E} eindeutig festgelegt.

Das Lebesgue-Borel-Maß

Notation. Für $a = (a_1, \ldots, a_n)$ und $b = (b_1, \ldots, b_n)$ schreibe

- $a \triangleleft b$, falls $a_i < b_i$ für alle $j = 1, \ldots, n$.
- $a \leq b$, falls $a_i \leq b_i$ für alle $j = 1, \ldots, n$.

Def. Für $a, b \in \mathbb{R}^n$ heißen

$$(a,b) := \{x \in \mathbb{R}^n \mid a \lhd x \lhd b\}, \quad \mu((a,b)) := \prod_{j=1}^n (b_j - a_j)$$

Elementarquader und Elementarinhalt. Sei im Folgenden \mathcal{E} die Menge aller Elementarquader.

Satz. Für alle $A \in \mathfrak{R}(\mathcal{E})$ gibt es paarweise disjunkte Elementarquader $Q_1, \ldots Q_p \in \mathcal{E}$ sodass $A = Q_1 \sqcup \ldots \sqcup Q_p$.

Def. Für
$$A \in \mathfrak{R}(\mathcal{E})$$
 setze $\mu(A) := \sum_{i=1}^{p} \mu(Q_i)$, wenn $A = Q_1 \sqcup \ldots \sqcup Q_p$ für paarweise disjunkte Q_1, \ldots, Q_p .

Satz. μ definiert ein Prämaß auf $\Re(\mathcal{E})$, genannt das Lebesgue-Borel-Prämaß auf \mathbb{R}^n .

Def. Die eindeutige (da μ σ -endlich) Fortsetzung $\tilde{\mu}$ von μ auf $\mathfrak{A}(\mathcal{E}) = \mathfrak{B}(\mathbb{R}^n)$ wird **Lebesgue-Borel-Maß** genannt.

Bem. Nur das Lebesgue-Borel-Maß ist ein Maß auf $\mathfrak{B}(\mathbb{R}^n)$, welches iedem Elementarquader seinen Elementarinhalt zuordnet.

Def. Sei μ ein Maß auf einer σ -Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$. Eine Menge $N \subset \Omega$ heißt (μ) -Nullmenge, wenn es $A \in \mathfrak{A}$ gibt mit $N \subset A$ und $\mu(A) = 0$. Die Menge aller Nullmengen ist $\mathfrak{N}_{\mu} \subset \mathcal{P}(\Omega)$.

Def. Sei μ das Lebesgue-Borel-Maß auf $\mathfrak{B}(\mathbb{R}^n)$. Dann heißt die von $\mathfrak{B}(\mathbb{R}^n)$ und den entsprechenden Nullmengen erzeugte σ -Algebra $\tilde{\mathfrak{A}}_{\mu}$ **Lebesguesche** σ -Algebra, notiert $\mathfrak{L}(\mathbb{R}^n)$, und das fortgesetzte Maß Lebesgue-Maß.

Def. Sei Ω eine Menge und $\mathfrak{A} \subset \mathcal{P}(\Omega)$ eine σ -Algebra auf Ω , sowie ggf. μ ein Maß auf \mathfrak{A} . Dann heißt

- das Tupel (Ω, \mathfrak{A}) messbarer Raum,
- das Tripel $(\Omega, \mathfrak{A}, \mu)$ Maßraum.

Def. Seien (Ω, \mathfrak{A}) und (Ω', \mathfrak{A}') zwei messbare Räume. Eine Abbildung $f: \Omega \to \Omega'$ heißt **messbar** oder genauer $(\mathfrak{A}, \mathfrak{A}')$ -messbar, wenn für alle $A' \in \Omega'$ gilt $f^{-1}(A') \in \Omega$ oder, kürzer, $f^{-1}(\mathfrak{A}') \subset \mathfrak{A}$.

Bem. Die messbaren Räume bilden eine Kategorie mit messbaren Abbildungen als Morphismen, d. h. die Identitäts- abbildung von einem messbaren Raum zu sich selbst ist messbar und die Verkettung zweier messbarer Abbildungen ist messbar.

Satz. • Seien (Ω, \mathfrak{A}) ein messbarer Raum, Ω' eine Menge und $f:\Omega\to\Omega'$ eine Abbildung. Die größte σ -Algebra auf Ω' , sodass fmessbar ist, ist dann $\mathfrak{A}' := \{A' \subset \Omega' \mid f^{-1}(A') \in \mathfrak{A}\}.$

- Ist Ω eine Menge und (Ω', \mathfrak{A}') ein messbarer Raum sowie $f:\Omega\to\Omega'$ eine Abbildung. Dann ist $f^{-1}(\mathfrak{A}')$ eine σ -Algebra.
- Seien I eine Indexmenge, Ω eine Menge, $(\Omega_i, \mathfrak{A}_i), i \in I$ messbare Räume und $f_i: \Omega \to \Omega_i$ Abbildungen, dann ist

$$\mathfrak{A} := \mathfrak{A}\left(\bigcup_{i \in I} f_i^{-1}(\mathfrak{A}_i)\right)$$

die kleinste σ -Algebra auf Ω , sodass alle Abbildungen f_i , $i \in I$, messbar sind. Diese σ -Algebra wird die von der Familie $\{f_i \mid i \in I\}$ erzeugte σ -Algebra genannt.

Satz. Sei $f: \Omega \to \Omega'$ eine Abbildung und $\mathcal{E}' \subset \mathcal{P}(\Omega')$, dann ist

$$\mathfrak{A}(f^{-1}(\mathcal{E}'))=f^{-1}(\mathfrak{A}(\mathcal{E}')).$$

Satz. Sei (Ω, \mathfrak{A}) ein messbarer Raum und $f: \Omega \to \Omega'$ eine Abbildung, sowie $\mathcal{E}' \subset \mathcal{P}(\Omega')$. Dann gilt:

$$f$$
 ist $(\mathfrak{A},\mathfrak{A}(\mathcal{E}'))$ -messbar $\iff f^{-1}(\mathcal{E}') \subset \mathfrak{A}$

Satz. Seien (Ω, \mathcal{O}) und (Ω', \mathcal{O}') zwei topol. Räume und $\mathfrak{A} := \mathfrak{A}(\mathcal{O})$ bzw. $\mathfrak{A}' := \mathfrak{A}(\mathcal{O}')$ die dazugehörigen Borelschen σ -Algebren. Dann ist jede stetige Abbildung $f: \Omega \to \Omega'$ ($\mathfrak{A}, \mathfrak{A}'$)-messbar.

Satz (Projektionssatz). Seien I eine Indexmenge, $(\Omega_0, \mathfrak{A}_0)$ sowie $(\Omega_i, \mathfrak{A}_i), i \in I$ messbare Räume und Ω eine Menge. Seien $g_i: \Omega \to \Omega_i, i \in I \text{ und } f: \Omega_0 \to \Omega \text{ Abbildungen. Wir setzen}$ $\mathfrak{A}:=\mathfrak{A}\left(\bigcup_{i\in I}g_i^{-1}(\mathfrak{A}_i)\right)$. Dann sind folgende Aussagen äquivalent:

- f ist $(\mathfrak{A}_0, \mathfrak{A})$ -messbar.
- Für alle $i \in I$ sind die Abbildungen $q_i \circ f(\mathfrak{A}_0, \mathfrak{A}_i)$ -messbar.

Satz. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und (Ω', \mathfrak{A}') ein messbarer Raum und $f: \Omega \to \Omega'$ eine messbare Abbildung, dann ist

$$\mu' = f_*(\mu) = \mu \circ f^{-1} : \mathfrak{A}' \to [0, \infty], \quad A' \mapsto \mu(f^{-1}(A'))$$

ein Maß auf (Ω', \mathfrak{A}') , genannt das **Bildmaß** von f.

Bem. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum, (Ω', \mathfrak{A}') und $(\Omega'', \mathfrak{A}'')$ messbare Räume und $f: \Omega' \to \Omega'', g: \Omega \to \Omega'$ messbare Abbildungen, dann gilt $(f \circ q)_* \mu = f_*(q_* \mu)$.

Def. Die σ -Algebra der Borelmengen auf $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ ist

$$\mathfrak{B}(\overline{\mathbb{R}}) = \{A, A \cup \{+\infty\}, A \cup \{-\infty\}, A \cup \{\pm\infty\} \mid A \in \mathfrak{B}(\mathbb{R})\}.$$

Satz. $\mathfrak{B}(\overline{\mathbb{R}}) = \mathfrak{A}(\{[a,\infty] \mid a \in \mathbb{R}\})$

Notation. Seien $f, g: \Omega \to \overline{\mathbb{R}}$ zwei numerische Funktionen. Setze

$$\{f \le g\} := \{\omega \in \Omega \mid f(\omega) \le g(\omega)\} \subset \Omega$$

und definiere analog $\{f < g\}, \{f \ge g\}, \{f > g\}, \{f = g\}, \{f \ne g\}.$

Satz. Für eine numerische Fkt. $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ sind äquivalent:

- f ist messbar $\forall a \in \mathbb{R} : \{f \ge a\} = f^{-1}([a, \infty]) \in \mathfrak{A}$
- $\bullet \ \forall a \in \mathbb{R} : \{f < a\} \in \mathfrak{A}$ • $\forall a \in \mathbb{R} : \{f > a\} \in \mathfrak{A}$
- $\forall a \in \mathbb{R} : \{f < a\} \in \mathfrak{A}$

Satz. Für zwei numerische Funktionen $f,g:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ gilt:

- $\{f < g\} \in \mathfrak{A}$ $\{f > g\} \in \mathfrak{A}$ $\{f = g\} \in \mathfrak{A}$

- $\{f < q\} \in \mathfrak{A}$ $\{f > q\} \in \mathfrak{A}$ $\{f \neq q\} \in \mathfrak{A}$

Satz. Seien $f, q: (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})$ messbare numerische Funktionen und $\lambda, \mu \in \mathbb{R}$. Dann auch messbar (‡: falls $0 \notin \text{Bild}(f)$):

•
$$\lambda \cdot f$$
 • $f + \mu \cdot g$ • $f \cdot g$ • $\frac{1}{f} (\ddagger)$

Satz. Seien $f_n:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}}), n\in\mathbb{N}$ messbare numerische Funktionen, dann auch messbar:

- $\sup f_n$
- $\liminf_{n \in \mathbb{N}} f_n$ $\limsup_{n \in \mathbb{N}} f_n$

Dabei werden Infimum, Supremum, usw. punktweise gebildet.

Satz. Seien $f_1, \ldots, f_n : (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})$ messbare numerische Fkt., dann sind auch $\max(f_1, \ldots, f_n)$ und $\min(f_1, \ldots, f_n)$ messbar.

Def. Für $f:\Omega\to\overline{\mathbb{R}}$ heißen die Funktionen

- $|f| := \max(f, -f) : \Omega \to [0, \infty]$ Betrag von f
- $f^+ := \max(f,0) : \Omega \to [0,\infty]$ Positivteil von f
- $f^- := -\min(f, 0) : \Omega \to [0, \infty]$ Negativteil von f

Bem. $f = f^+ - f^- \text{ und } |f| = f^+ + f^-$

Satz. Falls $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ messbar, dann auch |f|, f^+ und f^- .

Das Lebesguesche Integral

Def. Eine Funktion $f:(\Omega,\mathfrak{A})\to(\mathbb{R},\mathfrak{B})$ heißt **einfache Funktion** oder **Elementarfunktion** auf (Ω,\mathfrak{A}) , wenn gilt:

• f ist messbar • $f(\Omega) \subset [0, \infty)$ • $f(\Omega)$ ist endlich Die Menge aller einfachen Funktionen auf (Ω, \mathfrak{A}) ist $\mathbb{E}(\Omega, \mathfrak{A})$.

Def. Sei $f \in \mathbb{E}(\Omega, \mathfrak{A})$ und $\Omega = A_1 \sqcup \ldots \sqcup A_k$ eine disjunkte Vereinigung von Mengen mit $A_j \in \mathfrak{A}$ für alle $j = 1, \ldots, k$, sodass $f(A_j) = \{y_j\}$, dann heißt die Darstellung

$$f = \sum_{j=1}^{k} y_j \cdot \mathbb{1}_{A_j}$$
 kanonische Darstellung.

Bem. Die kanonische Darstellung ist nicht eindeutig.

Satz. Seien $f, g \in \mathbb{E}(\Omega, \mathfrak{A})$ und a > 0. Dann auch in $\mathbb{E}(\Omega, \mathfrak{A})$:

• f + g • $f \cdot g$ • $\max(f, g)$ • $\min(f, g)$ • $a \cdot f$

Def. Sei $f \in \mathbb{E}(\Omega, \mathfrak{A})$ und $f = \sum_{j=1}^k y_j \mathbb{1}_{A_j}$ eine kanonische

Darstellung von f. Sei ferner μ ein Maß auf $\mathfrak A$. Dann heißt die Größe

$$\smallint_{\Omega} f \, \mathrm{d} \mu \coloneqq \textstyle\sum_{j=1}^k y_j \mu(A_j) \quad \textbf{Lebesgue-Integral} \text{ von } f \text{ bzgl. } \mu.$$

Bem. Obige Größe ist wohldefiniert, d. h. unabhängig von der kanonischen Darstellung.

Satz. Seien $f, g \in \mathbb{E}(\Omega, \mathfrak{A})$, μ ein Maß auf \mathfrak{A} und $\alpha \geq 0$, dann gilt

•
$$\int_{\Omega} (\alpha \cdot f + g) d\mu = \alpha \cdot \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$$
 (Linearität)

• Falls
$$g \leq f$$
, dann $\int\limits_{\Omega} g \, \mathrm{d}\mu \leq \int\limits_{\Omega} f \, \mathrm{d}\mu$ (Monotonie)

Satz. Angenommen, die Funktionen $f_n \in \mathbb{E}(\Omega, \mathfrak{A}, \mu), n \in \mathbb{N}$ bilden eine monoton wachsende Funktionenfolge und für $g \in \mathbb{E}(\Omega, \mathfrak{A})$ gilt $g \leq \sup_{n \in \mathbb{N}} f_n$, dann gilt $\int_{\Omega} g \, \mathrm{d} \mu \leq \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d} \mu$.

Kor. Seien $f_n, g_n \in \mathbb{E}(\Omega, \mathfrak{A}), n \in \mathbb{N}$ und die Funktionenfolgen f_n und g_n monoton wachsend mit $\sup_{n \in \mathbb{N}} f_n = \sup_{n \in \mathbb{N}} g_n$. Dann gilt

$$\sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \int_{\Omega} g_n \, \mathrm{d}\mu.$$

Def. Sei $\overline{\mathbb{E}}(\Omega, \mathfrak{A})$ die Menge aller Funktionen $f: \Omega \to \overline{\mathbb{R}}$, die Grenzfunktionen (pktw. Konvergenz) monoton wachsender Funktionenfolgen in $\mathbb{E}(\Omega, \mathfrak{A})$ sind.

Def. Für eine Funktion $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A})$ (d. h. es existiert eine Folge $(g_n)_{n \in \mathbb{N}}$ in $\mathbb{E}(\Omega, \mathfrak{A})$ mit $f = \sup_{n \in \mathbb{N}} g_n$) und ein Maß μ auf \mathfrak{A} heißt

$$\smallint_{\Omega} f \, \mathrm{d} \mu \coloneqq \sup_{n \in \mathbb{N}} \smallint_{\Omega} g_n \, \mathrm{d} \mu \quad \mathbf{Lebesgue\text{-}Integral} \text{ von } f \text{ bzgl. } \mu.$$

Satz. $\overline{\mathbb{E}}(\Omega, \mathfrak{A}) = \{ f : (\Omega, \mathfrak{A}) \to (\overline{\mathbb{R}}, \mathfrak{B}) \mid f \text{ messbar und } f > 0 \}$

Satz. Die Eigenschaften des Integrals für einfache Funktionen (Linearität, Monotonie) übertragen sich auf das Lebesgue-Integral.

Satz (von der monotonen Konvergenz).

Sei $(f_n)_{n\in\mathbb{N}}$ eine monoton wachsende Folge von Fkt. in $\overline{\mathbb{E}}(\Omega,\mathfrak{A})$, dann gilt für $f\coloneqq\lim_{n\to\infty}f_n=\sup_{n\in\mathbb{N}}f_n\in\overline{\mathbb{E}}(\Omega,\mathfrak{A})$ und jedes Maß μ auf \mathfrak{A} :

$$\lim_{n \to \infty} \int_{\Omega} f_n \, d\mu = \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, d\mu = \int_{\Omega} f \, d\mu$$

Bem. Die Aussage ist für monoton fallende Fktn. i. A. falsch.

Def. Eine messbare Funktion $f:(\Omega,\mathfrak{A})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ heißt **integrierbar** bzw. μ -integrierbar (im Sinne von Lebesgue), falls

$$\int_{\Omega} f^{+} d\mu < \infty \quad \text{und} \quad \int_{\Omega} f^{-} d\mu < \infty.$$

In diesem Fall definieren wir das Lebesgue-Integral von f als

$$\int_{\Omega} f \, \mathrm{d}\mu := \int_{\Omega} f^+ \, \mathrm{d}\mu - \int_{\Omega} f^- \, \mathrm{d}\mu.$$

Notation. $\mathcal{L}^1(\Omega, \mathfrak{A}, \mu) = \mathcal{L}^1(\mu)$ bezeichnet die Menge der μ -integrierbaren Funktionen auf Ω .

Satz. Für eine messbare Fkt. $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ sind äquivalent:

- $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$.
- $|f| \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$.
- $f^+, f^- \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$.
- $\exists g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu) \text{ mit } |f| \leq g.$
- Es gibt nicht negative $u, v \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$ mit f = u v.

Im letzten Fall gilt $\int_{\Omega} f d\mu = \int_{\Omega} u d\mu - \int_{\Omega} v d\mu$.

Satz. • $\mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$ ist ein \mathbb{R} -VR und die Abbildung

$$\int : \mathcal{L}^1(\Omega, \mathfrak{A}, \mu) \to \mathbb{R}, \quad f \mapsto \int_{\Omega} f \, d\mu$$
 ist linear.

- $f, g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu) \implies \max(f, g), \min(f, g) \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$
- $\bullet \ f,g \in \mathcal{L}^1(\Omega,\mathfrak{A},\mu), \, f \leq g \implies \smallint_{\Omega} f \, \mathrm{d}\mu \leq \smallint_{\Omega} g \, \mathrm{d}\mu \qquad \qquad \text{(Monotonie)}$
- $|\iint_{\Omega} d\mu| \le \iint_{\Omega} |f| d\mu$ für alle $f \in \mathcal{L}^{1}(\Omega, \mathfrak{A}, \mu)$ (\triangle -Ungleichung)

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum, $A \in \mathfrak{A}$ und $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A}, \mu)$ oder $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$. Dann ist das μ -Integral von f über A

$$\int_{A} f \, \mathrm{d}\mu = \int_{\Omega} (\mathbb{1}_{A} \cdot f) \, \mathrm{d}\mu.$$

Def. Ein Maßraum $(\Omega, \mathfrak{A}, \mu)$ heißt **vollständig**, wenn jede Nullmenge $N \subset \Omega$ in \mathfrak{A} liegt.

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum. Setze

$$\begin{split} &\tilde{\mathfrak{N}}_{\mu} \coloneqq \{ N \subset \Omega \, | \, N \text{ ist } \mu\text{-Nullmenge } \}, \\ &\tilde{\mathfrak{A}}_{\mu} \coloneqq \{ A \cup N \, | \, A \in \mathfrak{A}, \, N \in \tilde{\mathfrak{N}}_{\mu} \}. \end{split}$$

Dann ist $\tilde{\mathfrak{A}}_{\mu}$ eine σ -Algebra und mit $\tilde{\mu}(A \cup N) := \mu(A)$ ist $(\Omega, \tilde{\mathfrak{A}}_{\mu}, \tilde{\mu})$ ein Maßraum, genannt **Vervollständigung** von $(\Omega, \mathfrak{A}, \mu)$.

Def. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und $E(\omega)$ eine Aussage für alle $\omega \in \Omega$. Man sagt, E ist (μ) -fast-tiberall wahr, wenn $\{\omega \in \Omega \mid \neg E(\omega)\}$ eine Nullmenge ist.

Zwei Funktionen $f,g:\Omega\to X$ heißen $(\mu\text{--})$ fast-überall gleich, notiert $f\stackrel{\text{f. ii.}}{=}g$, wenn $\{\omega\in\Omega\,|\,f(\omega)\neq g(\omega)\}$ eine Nullmenge ist. Eine Funktion $f:\Omega\to\overline{\mathbb{R}}$ heißt $(\mu\text{--}$ fast-überall endlich, wenn $\{\omega\in\Omega\,|\,f(\omega)=\infty\}$ eine Nullmenge ist.

Bem. Das Cantorsche Diskontinuum ist eine Menge $C \subset [0,1]$, $C \in \mathfrak{B}$, welche die bemerkenswerte Eigenschaft hat, dass sie gleichzeitig überabzählbar ist und Maß 0 besitzt. Da außerdem $\mathfrak{B} \cong \mathbb{R}$ gilt, folgt $\mathcal{P}(C) \cong \mathcal{P}(\mathbb{R}) \not\cong \mathbb{R} \cong \mathfrak{B}$. Somit gibt es eine Nullmenge $N \subset C$, die nicht in \mathfrak{B} liegt. Es folgt:

Satz. Der Maßraum $(\mathbb{R}, \mathfrak{B}, \mu)$ ist nicht vollständig.

Def. Sei $(\mathbb{R}^n, \mathfrak{B}_L^n, \lambda)$ die Vervollständigung von $(\mathbb{R}^n, \mathfrak{B}^n, \mu, \text{dann}$ heißt \mathfrak{B}_L die **Lebesguesche** σ-**Algebra** und λ das **Lebesgue-Maß** auf \mathbb{R}^n (analog: $(\overline{\mathbb{R}}, \overline{\mathfrak{B}}, \lambda)$).

Satz. Sei $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A}, \mu)$, dann gilt $\int_{\Omega} f \, d\mu = 0 \iff f \stackrel{\text{f.ü.}}{=} 0$.

Satz. Seien $f, g: (\Omega, \mathfrak{A}, \mu) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})$ messbar mit $f \stackrel{\text{f.ü.}}{=} g$, dann gilt:

- Wenn $f, g \in \overline{\mathbb{E}}(\Omega, \mathfrak{A})$, dann $\int_{\Omega} f d\mu = \int_{\Omega} g d\mu$.
- Wenn $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$, dann $g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$ mit $\int\limits_{\Omega} f \, \mathrm{d}\mu = \int\limits_{\Omega} g \, \mathrm{d}\mu$.

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ eine messbare Fkt. und $g\in\mathcal{L}^1(\Omega,\mathfrak{A},\mu), g\geq 0$. Wenn $|f|\stackrel{\mathrm{f.ü.}}{\leq} g$, dann gilt $f\in\mathcal{L}^1(\Omega,\mathfrak{A},\mu)$.

Lem (von Fatou). Sei $(f_n)_{n\in\mathbb{N}}$ eine Funktionenfolge mit f_n μ -integrierbar und $f_n \overset{\text{f.ü.}}{\geq} 0$. Dann $\int\limits_{\Omega} (\liminf_{n\to\infty} f_n) \, \mathrm{d}\mu \leq \liminf_{n\to\infty} \int\limits_{\Omega} f_n \, \mathrm{d}\mu$.

Satz. Sei $(f_n)_{n\in\mathbb{N}}$ Folge messbarer Fkt. $f_n:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ und $g\in\mathcal{L}^1(\Omega,\mathfrak{A},\mu),g\geq 0$, sodass $\forall\,n\in\mathbb{N}:|f_n|\overset{\mathrm{f.ü.}}{\leq}g$. Dann:

$$\int_{\Omega} (\liminf_{n \to \infty} (f_n)) d\mu \le \liminf_{n \to \infty} (\int_{\Omega} f_n d\mu) \le
\le \limsup_{n \to \infty} (\int_{\Omega} f_n d\mu) \le \int_{\Omega} (\limsup_{n \to \infty} f_n) d\mu.$$

Satz (von der major. Konvergenz). Sei $g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu), g \geq 0$.

Sei $(f_n)_{n\in\mathbb{N}}$ Folge messbarer Fkt. $f_n:(\Omega,\mathfrak{A},\mu)\to(\overline{\mathbb{R}},\overline{\mathfrak{B}})$ mit $|f_n|\stackrel{\mathrm{f.ü.}}{\leq}g$ (Majorisierung). Sei ferner $f:\Omega\to\overline{\mathbb{R}}$ $(\mathfrak{A},\overline{\mathfrak{B}})$ -messbar mit $f_n\xrightarrow[n\to\infty]{\mathrm{f.ü.}}f$, d. h. $\{\omega\in\Omega\mid\lim_{n\to\infty}f_n(\omega)=f(\omega)\text{ falsch}\}$ ist Nullmenge.

Dann ist f integrierbar mit $\int\limits_{\Omega}f\,\mathrm{d}\mu=\lim_{n\to\infty}\int\limits_{\Omega}f_n\,\mathrm{d}\mu.$

Satz. Sei $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A}, \mu)$ bzw. $f \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$, $(A_n)_{n \in \mathbb{N}}$ Folge in \mathfrak{A} , $A_n \cap A_m = \emptyset$ für $n \neq m$, $A = \bigsqcup_{n=1}^{\infty} A_n$. Dann:

$$\int_{A} f \, \mathrm{d}\mu \coloneqq \int_{\Omega} f \cdot \mathbb{1}_{A} \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \left(\int_{A_{n}} f \, \mathrm{d}\mu \right).$$

Satz. Seien $f, f_j: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}, \mathfrak{B}), j \in \mathbb{N}$ messbare Funktionen, $g: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}, \mathfrak{B})$ integrierbar, sodass $|\sum_{j=1}^n f_j| \stackrel{\text{f.ü.}}{\leq} g \, \forall n \in \mathbb{N}$ und $f \stackrel{\text{f.ü.}}{=} \sum_{n=1}^\infty f_j$. Dann sind f, f_j integrierbar mit $\int_{\Omega} f \, \mathrm{d}\mu = \sum_{j=1}^\infty \int_{\Omega} f_j \, \mathrm{d}\mu$.

Satz (Ableiten unter Integral). Seien $a, b \in \mathbb{R}$ mit a < b, $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und sei $f : (a, b) \times \Omega \to (\mathbb{R}, \mathfrak{B})$ eine Funktion, sodass:

- Für alle $t \in (a, b)$ ist die Abbildung $f(t, -) : \Omega \to \mathbb{R}$ μ -integrierbar.
- Für alle $\omega \in \Omega$ ist die Abbildung $f(-,\omega):(a,b)\to \mathbb{R}$ diff'bar.
- Es gibt eine Funktion $g \in \mathcal{L}^1(\Omega, \mathfrak{A}, \mu)$ mit $g \geq 0$, sodass für alle $t \in (a, b)$ und fast alle $\omega \in \Omega$ gilt: $|f(-, \omega)'(t)| \leq g(\omega)$.

Dann ist die Funktion $F:(a,b)\to\mathbb{R}, t\mapsto\int\limits_{\Omega}f_t\,\mathrm{d}\mu$ differenzierbar mit $F'(t)=\int\limits_{\Omega}h_t\,\mathrm{d}\mu, \text{ wobei } h_t:\Omega\to\mathbb{R},\,\omega\mapsto f(-,\omega)'(t).$

Satz. Sei $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A}, \mu)$. Dann ist die Abbildung

$$f\mu: \mathfrak{A} \to [0,\infty], \quad A \mapsto \int_A f \,\mathrm{d}\mu$$

ein Maß, genannt Maß mit der Dichte f bzgl. μ oder Stieltjes-Maß zu f.

Zusammenhang mit dem Riemann-Integral

Def. Eine **Zerlegung** eines Intervalls [a, b] ist eine geordnete endliche Teilmenge $\{a = x_0 < x_1 < \ldots < x_k = b\} \subset [a, b]$.

Notation. Die Menge aller Zerlegungen von [a, b] ist $\mathcal{Z}([a, b])$.

Def. Die **Feinheit** einer Zerlegung $\{x_0 < \ldots < x_k\} \in \mathcal{Z}([a,b])$ ist

$$|Z| := \max\{x_j - x_{j-1} \mid j \in \{1, \dots, n\}\}.$$

Def. Für eine beschränkte Funktion $f:[a,b] \to \mathbb{R}$ und eine Zerlegung $Z = \{a_0, \dots, a_n\} \in \mathcal{Z}([a,b])$ bezeichnen

$$O(f,Z) := \sum_{i=1}^{n} (\sup\{f(x) \mid x \in [x_{j-1}, x_j]\})(x_j - x_{j-1}),$$

$$U(f,Z) := \sum_{j=1}^{n} (\inf\{f(x) \mid x \in [x_{j-1}, x_j]\})(x_j - x_{j-1})$$

die (Darbouxschen) Ober- und Untersummen von f bzgl. Z.

Notation.

$$O_*(f) := \inf\{O(f, Z) \mid Z \in \mathcal{Z}([a, b])\}$$

$$U^*(f) := \sup\{U(f, Z) \mid Z \in \mathcal{Z}([a, b])\}$$

Def. Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ heißt Riemann-integrierbar, wenn $O_*(f)=U^*(f)$. In diesem Fall heißt

$$\int_{a}^{b} f(x) dx := O_*(f) = U^*(f) \quad \textbf{Riemann-Integral von } f.$$

Notation. Sei $(Z_k)_{k\in\mathbb{N}}$ eine Folge in $\mathcal{Z}([a,b])$ mit $Z_k=\{a_0^k,a_1^k,\ldots,a_{n_k}^k\}$. Für eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ definieren wir $f^k,f_k,f^*,f_k:[a,b]\to\mathbb{R}$ durch

$$\textstyle f^k = \sup f([a,a_1^k]) \cdot \mathbbm{1}_{[a,a_1^k]} + \sum\limits_{j=2}^{n_k} \sup f([a_{j-1}^k,a_j^k]) \cdot \mathbbm{1}_{\left(a_{j-1}^k,a_j^k\right]},$$

$$f_k = \inf f([a, a_1^k]) \cdot \mathbbm{1}_{[a, a_1^k]} + \sum_{j=2}^{n_k} \inf f([a_{j-1}^k, a_j^k]) \cdot \mathbbm{1}_{\left(a_{j-1}^k, a_j^k\right]}$$

$$f^*(x) = \liminf_{y \to x} f(y) = \lim_{\epsilon \downarrow 0} \inf \{ f(y) \mid y \in [x - \epsilon, x + \epsilon] \cap [a, b] \}$$

$$f^*(x) = \limsup_{y \to x} f(y) = \limsup_{\epsilon \downarrow 0} \{ f(y) \mid y \in [x - \epsilon, x + \epsilon] \cap [a, b] \}$$

Bem. Es gilt: $f_* \leq f \leq f^*$ und $f_*(x_0) = f(x_0) = f^*(x_0)$ für $x_0 \in [a,b]$ genau dann, wenn f in x_0 stetig ist.

Satz. Sei $f:[a,b]\to\mathbb{R}$ beschränkt und $(Z_k)_{k\in\mathbb{N}}$ eine Folge in $\mathcal{Z}([a,b])$ mit $\lim_{n\to\infty}|Z_k|=0$. Dann gilt:

• Sei $R = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{n_k} \{a_j^k\}$ die Vereinigung aller Zerlegungen $Z_k, k \in \mathbb{N}$. Für alle $x \in [a, b] \setminus R$ gilt dann

$$\lim_{k \to \infty} f^k(x) = f^*(x) \quad \text{und} \quad \lim_{k \to \infty} f_k(x) = f_*(x).$$

• Die Funktionen f^* und f_* sind Borel-messbar und integrierbar bzgl. des Borel-Maßes μ mit

$$\int_{[a,b]} f^* d\mu = O_*(f) \quad \text{und} \quad \int_{[a,b]} f_* d\mu = O^*(f).$$

Satz. Sei $f:[a,b]\to\mathbb{R}$ beschränkt. Dann sind äquivalent:

- f ist Riemann-integrierbar.
- f ist fast-überall stetig (im Sinne des Lebesgue-Borel-Maßes).

Satz. Ist eine beschränkte Fkt. $f:[a,b]\to\mathbb{R}$ Riemann-integrierbar, so ist sie auch auf [a,b] Lebesgue-integrierbar bzgl. λ und es gilt

$$\int_{a}^{b} f(x) dx = \int_{[a,b]} f d\lambda.$$

Satz. Sei I ein Intervall und $f:I\to\mathbb{R}$ über jedem kompakten Teilintervall von I Riemann-integrierbar. Dann sind äquivalent:

- |f| ist auf I uneigentlich Riemann-integrierbar.
- \bullet f ist auf I Lebesgue-integrierbar.

Falls eine der Bedingungen erfüllt ist, so stimmt das Riemann-Integral von f auf I mit dem Lebesgue-Integral von f auf I überein.

Miscellanea

Satz. Sei $f:[a,b]\to\mathbb{R}$ Lebesgue-integrierbar. Dann ist $F:[a,b]\to\mathbb{R}, t\mapsto\int\limits_{[a,t]}f\,\mathrm{d}\lambda$ stetig.

Satz. Sei $f:[a,b]\to\mathbb{R}$ Lebesgue-integrierbar. Wenn $\forall\,t\in[a,b]$ gilt: $\int\limits_{[a,t]}f\,\mathrm{d}\lambda=F(t)=0,\,\mathrm{dann}\,\,f\stackrel{\mathrm{f.\ddot{u}.}}{=}0.$

Notation. Sei $f: \mathbb{R} \to \mathbb{R}$ eine Abbildung, dann setzen wir

$$\begin{split} C(f) &:= \{x \in \mathbb{R} \,|\, f \text{ stetig in } x\} \text{ und} \\ D(f) &:= \{x \in \mathbb{R} \,|\, f \text{ unstetig in } x\} = \mathbb{R} \setminus C(f). \end{split}$$

Def. Sei $A \subset \mathbb{R}$, A heißt

- G_{δ} -Menge, wenn gilt: $A = \bigcap_{n \in \mathbb{N}} O_n$, $O_n \subseteq \mathbb{R} \ \forall n \in \mathbb{N}$
- F_{σ} -Menge, wenn gilt: $A = \bigcup_{n \in \mathbb{N}} F_n, F_n \in \mathbb{R} \ \forall n \in \mathbb{N}$

Bem. A ist G_{δ} -Menge \iff A^C ist F_{σ} -Menge.

Satz (Young). Sei $f : \mathbb{R} \to \mathbb{R}$ eine beliebige Abbildung. Dann ist C(f) eine G_{δ} -Menge (und somit D(f) eine F_{σ} -Menge).

Kor. Es gibt keine Abbildung $f: \mathbb{R} \to \mathbb{R}$ mit $D(f) = \mathbb{R} \setminus \mathbb{Q}$.

Def. Ein Maß μ auf $\mathfrak{B}(\mathbb{R}^d)$ heißt **translationsinvariant**, wenn für jedes $v \in \mathbb{R}^d$ gilt $(T_v)_*\mu = \mu$, wobei $T_v : \mathbb{R}^d \to \mathbb{R}^d$, $x \mapsto x + v$ die Translation um den Vektor v bezeichnet.

Notation. Bezeichne mit μ_{LB} das Borel-Lebesgue-Maß auf \mathbb{R}^d .

Notation. Der Einheitswürfel im \mathbb{R}^d ist $W_1 := ((0,...,0),(1,...,1)]$.

Satz. Ist μ ein translations invariantes Maß auf $\mathfrak{B}(\mathbb{R}^d)$ mit $\alpha := \mu(W_1) < \infty$, dann gilt $\mu = \alpha \cdot \mu_{LB}$.

Satz. Sei $A \in GL_d(\mathbb{R}) = \{A \in \mathbb{R}^{d \times d} \mid \det A \neq 0\}$, dann gilt

$$A_*\mu_{LB} = \frac{1}{|\det(A)|} \cdot \mu_{LB}.$$

Satz. Das Lebesgue-Borel-Maß μ_{LB} ist invariant unter Transformationen in $\mathrm{SL}_n(\mathbb{R})$. Ferner ist μ_{LB} invariant unter Euklidischen Bewegungen.

Satz (Kurt Hensel). Sei $\Phi: \mathrm{GL}_n(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \cdot)$ ein Gruppenhomomorphismus, dann gibt es einen Gruppenautomorphismus $\phi: (\mathbb{R} \setminus \{0\}, \cdot) \to (\mathbb{R} \setminus \{0\}, \cdot)$, sodass $\Phi = \phi \circ \det$.

Satz. Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum und $h \in \overline{\mathbb{E}}(\Omega, \mathfrak{A})$. Eine messbare Funktion $f: \Omega \to \overline{\mathbb{R}}$ ist genau dann $h\mu$ -integrierbar, wenn $(f \cdot h)$ μ -integrierbar ist. In diesem Fall gilt

$$\int_{\Omega} f \, \mathrm{d}(h\mu) = \int_{\Omega} f \cdot h \, \mathrm{d}\mu.$$

Obige Gleichung ist auch erfüllt, wenn lediglich $f \in \overline{\mathbb{E}}(\Omega, \mathfrak{A})$ gilt.

Bem. Somit ist $g(h\mu) = (g \cdot h)\mu$.

Satz. Sei $U, \widetilde{U} \subseteq \mathbb{R}^d$, $\phi: U \to \widetilde{u}$ ein \mathcal{C}^1 -Diffeomorphismus, dann gilt:

$$\phi_*^{-1}\mu_{LB}|_{\widetilde{U}} = \underbrace{|\det(D\phi)|}_{U\to\mathbb{R}_{>0} \text{ stetig}} \mu_{LB}|_U$$

Satz. Sei $U,\widetilde{U} \subset \mathbb{R}^d$, $\phi: U \to \widetilde{u}$ ein \mathcal{C}^1 -Diffeomorphismus und $Q = (a,b) \subset U$ Elementarquader mit $a \lhd b$, dann gilt

$$\mu_{LB}(Q) \cdot \inf_{q \in Q} |\det D\phi(q)| \leq \mu_{LB}(\phi(Q)) \leq \mu_{LB}(Q) \cdot \sup_{q \in Q} |\det(D(\phi(q)))|.$$

Satz (Transformationssatz). Sei $U, \widetilde{U} \subseteq \mathbb{R}^d$ und sei $\phi : U \to \widetilde{U}$ ein Satz (Existenz von Produktmaßen). Die Abbildungen \mathcal{C}^1 -Diffeomorphismus. Dann ist eine Funktion $f: \widetilde{U} \to \overline{\mathbb{R}}$ genau dann auf U Lebesgue-Borel-integrierbar, wenn $(f \circ \phi) \cdot |\det(D\phi)| : U \to \overline{\mathbb{R}}$ auf U Lebesgue-Borel-interierbar ist. In diesem Fall gilt

$$\int\limits_{U} (f \circ \phi) \cdot |\det(D\phi)| \, \mathrm{d}\mu_{LB} = \int\limits_{\phi(U)} f \, \mathrm{d}\mu_{LB} = \int\limits_{\widetilde{U}} f \, \mathrm{d}\mu_{LB}.$$

Obige Gleichung ist auch erfüllt, wenn lediglich $f \in \overline{\mathbb{E}}(\widetilde{U}, \mathfrak{B}(\widetilde{U}))$ gilt.

Bem. Im Transformationssatz kann man "Lebesgue-Borel" durch "Lebesgue" ersetzen.

Def. Seien $(\Omega_j, \mathfrak{A}_j, \mu_j)$ Maßräume für $j = 1, \ldots, n$. Die kleinste σ -Algebra \mathfrak{A} auf σ , sodass alle π_i , $i=1,\ldots,n$ $(\mathfrak{A},\mathfrak{A}_i)$ -messbar sind, heißt **Produkt** der σ -Algebren $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$, notiert $\mathfrak{A} =: \mathfrak{A}_1 \otimes \ldots \otimes \mathfrak{A}_n.$

Satz. Sei \mathcal{E}_i Erzeugendensystem von \mathfrak{A}_i , $i=1,\ldots,n$, d. h. $\mathfrak{A}(\mathcal{E}_i) = \mathfrak{A}_i$. Annahme: Für alle $i \in \{1, \dots, n\}$ gibt es eine monoton gegen Ω_i wachsende Folge $(E_k^j)_{k\in\mathbb{N}}$ in \mathcal{E}_i . Dann ist

$$\mathfrak{A}_1 \otimes \ldots \otimes \mathfrak{A}_n = \mathfrak{A}(\mathcal{E}_1 \times \ldots \times \mathcal{E}_n)$$
 mit
$$\mathcal{E}_1 \times \ldots \times \mathcal{E}_n = \{E_1 \times \ldots \times E_n \mid E_j \in \mathcal{E}_j, j = 1, \ldots, n\}.$$

Satz.
$$\mathfrak{B}(\mathbb{R}^n) = \underbrace{\mathfrak{B}(\mathbb{R}) \otimes \ldots \otimes \mathfrak{B}(\mathbb{R})}_{n\text{-mal}}$$
.

Satz (Eindeutigkeit von Produktmaßen). Seien $(\Omega_i, \mathfrak{A}_i, \mu_i)$ Maßräume und E_j ein Erzeugendensystem von \mathfrak{A}_j für $j=1,\ldots,n$. Angenommen, E_i ist stabil unter Schnitten und $\exists (E_k^{(j)})_{k \in \mathbb{N}} \uparrow \Omega_i$ mit $\mu_j(E_k^{(j)}) < \infty$ für alle j. Dann gibt es höchstens ein Maß $\nu: \mathfrak{A}_1 \otimes \ldots \otimes \mathfrak{A}_n \to [0, \infty]$, sodass für alle $E_j \in \mathcal{E}_j, j \in \{1, \ldots, n\}$ gilt:

$$\nu(E_1 \times \ldots \times E_n) = \mu_1(E_1) \cdot \ldots \cdot \mu_n(E_n).$$

Def. Sei Ω eine Menge. Eine Teilmenge $\mathfrak{D} \subset \Omega$ heißt Dynkin-System, wenn gilt:

- $\Omega \in \mathfrak{D}$ $D \in \mathfrak{D} \implies D^C = \Omega \setminus D \in \mathfrak{D}$
- $(D_n)_{n\in\mathbb{N}}$ Folge pw. disjunkter Mengen in \mathfrak{D} , dann: $\bigcup D_n \in \mathfrak{D}$

Notation. Seien Ω_1, Ω_2 Mengen, $\Omega \subset \Omega_1 \otimes \Omega_2, \omega_1 \in \Omega_1, \omega_2 \in \Omega_2$

$$Q_{\omega_1} := \{ \omega_2 \in \Omega_2 \, | \, (\omega_1, \omega_2) \in Q \} = \pi_2(\pi_1^{-1}(\{\omega_1\}) \cap Q)$$
$$Q_{\omega_2} := \{ \omega_1 \in \Omega_1 \, | \, (\omega_1, \omega_2) \in Q \} = \pi_1(\pi_2^{-1}(\{\omega_2\}) \cap Q)$$

Satz. $Q \subset \mathfrak{A}_1 \otimes \mathfrak{A}_2, \omega_1 \in \Omega_1, \omega_2 \in \Omega_2 \implies Q_{\omega_1} \in \mathfrak{A}_2, Q_{\omega_2} \in \mathfrak{A}_1.$

Satz. (Cavalieri 1) Seien $(\Omega_1, \mathfrak{A}_1, \mu_1)$ und $(\Omega_2, \mathfrak{A}_2, \mu_2)$ σ -endliche Maßräume, $Q \in \mathfrak{A}_1 \otimes \mathfrak{A}_2$. Dann:

- $h_Q^1: \Omega_1 \to [0, \infty], \ \omega_1 \mapsto \mu_2(Q_{\omega_1}) \ \text{ist } (\mathfrak{A}_1, \overline{\mathfrak{B}})\text{-messbar}.$
- $h_O^2: \Omega_2 \to [0, \infty], \ \omega_2 \mapsto \mu_1(Q_{\omega_2})$ ist $(\mathfrak{A}_2, \overline{\mathfrak{B}})$ -messbar.

$$u_1: \mathfrak{A}_1 \otimes \mathfrak{A}_2 \to [0, \infty], \quad Q \mapsto \int_{\Omega_1} \mu_2(Q\omega_1) \,\mathrm{d}\mu_1$$

$$\nu_2: \mathfrak{A}_2 \otimes \mathfrak{A}_1 \to [0, \infty], \quad Q \mapsto \int_{\Omega_2} \mu_1(Q\omega_2) \,\mathrm{d}\mu_2$$

sind Maße und es gilt für alle $A_1 \in \mathfrak{A}_1$ und $A_2 \in \mathfrak{A}_2$

$$\nu_1(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2) = \nu_2(A_1 \times A_2)$$

und somit $\nu_1 = \nu_2$. Dieses Maß $\mu_1 \otimes \mu_2 := \nu_1 = \nu_2$ heißt **Produktmaß** von μ_1 und μ_2 .

Notation. Für $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ und $\omega_1 \in \Omega_1, \omega_2 \in \Omega_2$ schreibe

$$f_{\omega_1}:\Omega_2\to\overline{\mathbb{R}},\,\omega_2\mapsto f(\omega_1,\omega_2),\qquad f_{\omega_2}:\Omega_1\to\overline{\mathbb{R}},\,\omega_1\mapsto f(\omega_1,\omega_2)$$

Lem. Angenommen, $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ ist $(\mathfrak{A}_1 \otimes \mathfrak{A}_2, \overline{\mathfrak{B}})$ -messbar. Dann ist auch für alle $\omega_1 \in \Omega_1$ die Abbildung $f_{\omega_1}(\mathfrak{A}_2, \overline{\mathfrak{B}})$ -messbar und für alle $\omega_2 \in \Omega_2$ die Abbildung $f_{\omega_2}(\mathfrak{A}_1, \overline{\mathfrak{B}})$ -messbar.

Satz (Tonelli). Sei $f \in \overline{\mathbb{E}}(\Omega_1 \times \Omega_2, \mathfrak{A}_1 \otimes \mathfrak{A}_2)$, dann:

- $\Omega_2 \to [0, \infty]$, $\omega_2 \mapsto \int_{\Omega_1} f_{\omega_2} d\mu_1$ ist $(\mathfrak{A}_2, \overline{\mathfrak{B}})$ -messbar,
- $\Omega_1 \to [0,\infty]$, $\omega_1 \mapsto \int_{\Omega_2} f_{\omega_1} d\mu_2$ ist $(\mathfrak{A}_1, \overline{\mathfrak{B}})$ -messbar,
- $\bullet \int_{\Omega_1 \otimes \Omega_2} f \, \mathrm{d}(\mu_1 \otimes \mu_2) = \int_{\Omega_1} \left(\int_{\Omega_2} f_{\omega_1} \, \mathrm{d}\mu_2 \right) \mathrm{d}\mu_1 = \int_{\Omega_2} \left(\int_{\Omega_1} f_{\omega_2} \, \mathrm{d}\mu_1 \right) \mathrm{d}\mu_2.$

Satz (Fubini). Sei $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ ($\mu_1 \otimes \mu_2$)-integrierbar. Dann ist für μ_1 -fast-alle $\omega_1 \in \Omega_1$ der Schnitt f_{ω_1} μ_2 -integrierbar, und die μ_1 -fast-überall definierte Funktion $\omega_1 \mapsto \int f_{\omega_1} d\mu_2$ ist

 $\mu_1\text{-integrierbar}.$ Analoges gilt mit 1 und 2 vertauscht. Es gilt:

Alternierende Multilinearformen

Notation. Sei im Folgenden V ein n-dimensionaler \mathbb{R} -Vektorraum.

Def. Eine alternierende k-Form auf V ist eine Abb.

$$\omega: \underbrace{V \times \ldots \times V}_{k\text{-fach}} \to \mathbb{R} \quad \text{mit}$$

• ω ist multilinear, d. h. linear in jedem Argument, d. h. für alle $l \in \{1, \dots, k\}$ und $v_1, \dots, v_{l-1}, v_{l+1}, \dots, v_k \in V$ ist

$$\omega(v_1,\ldots,v_{l-1},-,v_{l+1},\ldots,v_k)\in \operatorname{Hom}(V,\mathbb{R}).$$

• Falls $v_j = v_l$ für j < l, dann ist $\omega(v_1, \ldots, v_j, \ldots, v_l, \ldots, v_k) = 0$.

Bsp. Die Determinante ist eine alternierende n-Form auf \mathbb{R}^n .

Notation. $\Lambda^k V^* := \{k \text{-Formen auf } V\} \text{ für } k \in \mathbb{N}^*$

Bem.
$$\Lambda^1 V^* = V^*, \Lambda^0 V^* := \mathbb{K} = \mathbb{R}$$

Lem. Sei $\omega \in \Lambda V^*$, $\sigma \in S_k$, dann gilt:

$$\omega(v_{\sigma(1)},\ldots,v_{\sigma(k)}) = \operatorname{sgn}(\sigma) \cdot \omega(v_1,\ldots,v_k).$$

Def. Für $\phi_1, \ldots, \phi_k \in \Lambda^1 V^* = V^*$ ist das **Dachprodukt** $\phi_1 \wedge \ldots \wedge \phi_k \in \Lambda^k V^*$ definiert durch

$$\phi_1 \wedge \ldots \wedge \phi_k : V \times \ldots \times V \to \mathbb{R}$$

$$(v_1, \dots, v_k) \mapsto \det \begin{pmatrix} \phi_1(v_1) & \phi_1(v_2) & \dots & \phi_1(v_k) \\ \phi_2(v_1) & \phi_2(v_2) & \dots & \phi_2(v_k) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_k(v_1) & \phi_k(v_2) & \dots & \phi_k(v_k) \end{pmatrix}$$

Eigenschaften. • Das Dachprodukt von Elementen aus V^* ist in jedem Argument linear.

• Für $\sigma \in S_k$ gilt $\phi_{\sigma(1)} \wedge \ldots \wedge \phi_{\sigma(k)} = \operatorname{sgn}(\sigma) \cdot (\phi_1 \wedge \ldots \wedge \phi_k)$.

Prop. • Ist $\{\phi_1, \ldots, \phi_n\}$ eine Basis von V^* , dann ist $\{\phi_{j_1} \wedge \ldots \wedge \phi_{j_k} \mid 1 \leq j_1 < j_2 < \ldots < j_k \leq n\}$ eine Basis von $\Lambda^k V^*$.

• $\dim(\Lambda^k V^*) = \binom{n}{k}$ • $\Lambda^k V^* = \{0\}$ für k > n

Prop. Seien $\phi_1, \ldots, \phi_k \in V^*$ und $A = (a_{il}) \in \mathbb{R}^{k \times k}$ gegeben. Dann gilt für $\varphi_j := \sum_{l=1}^{\kappa} a_{jl} \phi_l \in V^*, j = 1, \dots, k$:

$$\varphi_1 \wedge \ldots \wedge \varphi_k = \det(A) \cdot (\phi_1 \wedge \ldots \wedge \phi_k).$$

Satz. Seien $k, l, m \in \mathbb{N}^*$. Dann gilt:

• Es gibt eine eindeutig bestimmte bilineare Abbildung

$$(\Lambda^k V^*) \times (\Lambda^l V^*) \to \Lambda^{k+l} V^*, \quad (\omega, \widetilde{\omega}) \mapsto \omega \wedge \widetilde{\omega},$$

sodass für $\omega = \phi_1 \wedge ... \wedge \phi_k$ und $\widetilde{\omega} = \widetilde{\phi}_1 \wedge ... \wedge \widetilde{\phi}_l \ (\phi_i, \widetilde{\phi}_i \in V^*)$ gilt: $(\phi_1 \wedge \cdots \wedge \phi_k) \wedge (\widetilde{\phi}_1 \wedge \cdots \wedge \widetilde{\phi}_l) = \phi_1 \wedge \cdots \wedge \phi_k \wedge \widetilde{\phi}_1 \wedge \cdots \wedge \widetilde{\phi}_l.$

 • Sei $\{\phi_1,\ldots,\phi_k\}$ eine Basis von V^* , dann gilt für $\omega = \sum_{i_1 < \ldots < i_k} a_{i_1} \cdots_{i_k} (\phi_{i_1} \wedge \ldots \wedge \phi_{i_k}) \text{ und } \widetilde{\omega} = \sum_{j_1 < \ldots < j_k} \widetilde{a}_{j_1 \ldots j_k} (\phi_{j_1} \wedge \ldots \wedge \phi_{j_k}) :$

$$\omega \wedge \widetilde{\omega} = \sum_{\substack{i_1 < \dots < i_k \\ j_1 < \dots < j_l}} (a_{i_1} \dots i_k \cdot \widetilde{a}_{j_1} \dots j_l) \cdot (\phi_{i_1} \wedge \dots \wedge \phi_{i_k} \wedge \phi_{j_1} \wedge \dots \wedge \phi_{j_l})$$

Differentialformen

Notation. Sei im Folgenden $u \in U \subset \mathbb{R}^n$. Setze $T_u U := \{u\} \times \mathbb{R}^n = \{(u, V) \mid V \in \mathbb{R}^n\} \cong \mathbb{R}^n$

Bem. T_uU ist ein \mathbb{R} -Vektorraum mit

• (u, V) + (u, W) = (u, V + W), • $\lambda(u, V) = (u, \lambda V).$

Bem. Für $U_1, U_2 \otimes \mathbb{R}^n$, $u \in U_1 \cap U_2$ gilt $T_u U_1 = T_u U_2$.

Def. • Tangentialbündel an $U \otimes \mathbb{R}^n$: $TU = ||T_uU||$

- Dualraum von T_uU : $T_u^* = \{\alpha : T_uU \to \mathbb{R} \mid \alpha \text{ linear } \}$
- Kotangentialbündel an $U: T^*U = ||T_u^*U||$
- **Einsform** (Differentialform von Grad 1, Pfaffsche Form) auf *U*:

$$\omega: U \to T^*U \quad \text{mit} \quad \omega(u) \in T_u^*U$$

Bsp. Sei $f: U \to \mathbb{R}$ total diff'bar, dann heißt die Einsform $df: U \to T^*U, \quad u \mapsto (u, V) \mapsto D_u f(V)$ totales Differential.

Notation.
$$x_j: U \to \mathbb{R}, \quad (u_1, \dots, u_n) \mapsto u_j$$

Bem. $dx_i(v_1,\ldots,v_n)=v_i$

Def. Eine k-Form auf $U, k \in \mathbb{N}^*$, ist eine Abbildung $\omega: U \to \coprod_{u \in U} \Lambda^k T_u^* U$ mit $\omega(u) \in \Lambda^k T_u^* U$ für alle $u \in U$.

Eine 0-Form ist eine Abbildung $\omega: U \to \mathbb{R}$.

Beob. Sei ω eine k-Form auf U, dann gibt es $\binom{n}{k}$ Funktionen $f_{j_1 \cdots j_k} : U \to \mathbb{R}, \ 1 \le j_1 < \ldots < j_k \le n, \text{ sodass}$

$$\omega = \sum_{j_1 < \dots < j_k} f_{j_1} \dots_{j_k} dx_{j_1} \wedge \dots \wedge dx_{j_k}.$$

Def. Die k-Form ω auf U heißt stetig/diff'bar/ \mathcal{C}^k , wenn alle $\binom{n}{k}$ Abbildungen $f_{i_1 \cdots i_k} : U \to \mathbb{R}$ stetig/total diff'bar/ \mathcal{C}^k sind.

Beob. • $\{k\text{-Form auf }U\}$ ist Modul über $\{f:U\to\mathbb{R}\}$

• Für eine k-Form ω und eine l-Form η ist $\omega \wedge \eta$ definiert durch $(\omega \wedge \eta)(u) := \omega(u) \wedge \eta(u)$ für $u \in U$ eine (k+l)-Form auf U.

Def. Sei $\omega = \sum f_{j_1 \cdots j_k} (\mathrm{d} x_{j_1} \wedge \ldots \wedge \mathrm{d} x_{j_k})$ eine diff'bare k-Form auf U, dann heißt die (k+1)-Form

$$\mathrm{d}\omega \coloneqq \sum_{j_1 < \ldots < j_k} \mathrm{d}f_{j_1 \cdots j_k} \wedge \mathrm{d}x_{j_1} \wedge \ldots \wedge \mathrm{d}x_{j_k} \quad \text{\"außere Ableitung}.$$

Bem. • Für eine diff'bare Einsform $\omega = \sum_{j=1}^{n} f_j dx_j$ auf U gilt

$$d\omega = \sum_{j < l} \left(\frac{\partial f_l}{\partial x_j} - \frac{\partial f_j}{\partial x_l} \right) dx_j \wedge dx_l.$$

• Eine diff'bare (n-1)-Form ω auf U können wir schreiben als

$$\omega = \sum_{j=1}^{n} (-1)^{j-1} f_j dx_1 \wedge \ldots \wedge \widehat{dx_j} \wedge \ldots \wedge x_n$$

mit total diff'baren Funktionen $f_i:U\to\mathbb{R}$. Dann ist

$$d\omega = \left(\sum_{j=1}^{n} \frac{\partial f_j}{\partial x_j}\right) dx_1 \wedge \ldots \wedge dx_n.$$

Satz. • $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$

• $d(\lambda \omega_1 + \omega_2) = \lambda d\omega_1 + d\omega_2$ • $d(d\omega) = 0$, falls ωC^2 ist

Def. Sei $U \subseteq \mathbb{R}^n$, $\widetilde{U} \subseteq \mathbb{R}^m$, $\phi : \widetilde{U} \to U$ total diff'bar und ω eine k-Form auf U. Die k-Form $\phi^*\omega$ auf \widetilde{U} , welche durch

$$(\phi^*\omega(\widetilde{u}))(X_1,\ldots,X_k)=(\omega(\phi(\widetilde{u})))(D_{\widetilde{u}}\phi(X_1),\ldots,D_{\widetilde{u}}\phi(X_k))$$

für alle $\widetilde{u} \in \widetilde{U}, X_1, \dots, X_k \in T_{\widetilde{u}}\widetilde{U}$ definiert ist, heißt **Rücktransport** von ω über ϕ .

Anmerkung. Sei $\phi: \widetilde{U} \to U$ total diff'bar. Sei $\widetilde{u} \in \widetilde{U}$, dann ist $D_{\widetilde{u}}\phi: T_{\widetilde{u}}\widetilde{U} \to T_{\phi(\widetilde{u})}U$ linear.

Satz. Sei $\check{U} \subset \mathbb{R}^d$, $\widetilde{U} \subset \mathbb{R}^m$, $U \subset \mathbb{R}^n$ und $\psi : \check{U} \to \widetilde{U}$ und $\phi : \widetilde{U} \to U$ Physiker-Notation. Für Vektoranalysis im \mathbb{R}^3 verwendet man: total diff'bar. Seien $\omega, \omega_1, \omega_2$ k-Formen auf U, η ein l-Form auf Uund $\lambda \in \mathbb{R}$. Dann gilt

- $\phi^*(\lambda\omega_1 + \omega_2) = \lambda\phi^*(\omega_1) + \phi^*(\omega_2)$ (Linearität)
- $\phi^*(\omega \wedge \eta) = (\phi^*\omega) \wedge (\phi^*\eta)$ (Verträglichkeit mit ∧)
- $\psi^*(\phi^*\omega) = (\phi \circ \psi)^*\omega$ (Funktorialität)
- $d(\varphi^*\omega) = \phi^*(d\omega)$, falls ω diff'bar und ϕ eine \mathcal{C}^2 -Abb. ist
- Wenn $\omega = \sum_{j_1 < \dots < j_k} f_{j_1 \dots f_k} dx_{j_1} \wedge \dots \wedge dx_{j_k} : U \to \mathbb{R}$, dann gilt:

$$\phi^* \omega = \sum_{j_1 < \dots < j_k} (f_{j_1 \dots j_k} \circ \phi) d\phi_{j_1} \wedge \dots \wedge d\phi_{j_k}$$

Def. • Für k > 1 heißt eine k-Form auf U exakt, wenn es eine diff'bare (k-1)-Form η auf U gibt, sodass $\omega = d\eta$.

• Eine diff'bare k-Form ω auf U heißt geschlossen, wenn $d\omega = 0$.

Beob. Jede diff'bare exakte k-Form auf U ist geschlossen.

Def. Eine Teilmenge $U \subset \mathbb{R}^n$ heißt sternförmig, falls es einen Punkt $u_0 \in U$ gibt, sodass für alle anderen Punkte $u \in U$ die Verbindungsstrecke von u_0 nach u in U liegt.

Lem (Poincaré). Ist U sternförmig, dann ist jede geschlossene, stetig diff'bare k-Form mit k > 1 auch exakt.

Bem. Statt Sternförmigkeit kann man auch nur Zusammenziehbarkeit fordern.

Lem. Sei $U \otimes \mathbb{R}^n$ und $V \otimes \mathbb{R}^{n+1} = \mathbb{R} \times \mathbb{R}^n$, sodass der Zylinder $[0,1] \times U$ in V liegt. Sei σ eine geschlossene stetig diff'bare k-Form auf V mit k > 1 und sei $\varphi_r : U \to V$, $u \mapsto (r, u)$ für $r \in \{0, 1\}$. Dann gibt es eine stetig diff'bare (k-1)-Form η auf U mit $\varphi_1^*\sigma - \varphi_2^*\sigma = \mathrm{d}\eta$.

Vektoranalysis

Def. Sei $f: U \to \mathbb{R}$ stetig diff'bar, dann heißt das stetige Vektorfeld

$$\operatorname{grad} f: U \to \mathbb{R}^n, \quad u \mapsto \left(\frac{\partial f}{\partial x_1}(u), \dots, \frac{\partial f}{\partial x_n}(u)\right)^T \quad \textbf{Gradient von } f.$$

Def. Sei $F = (F_1, \dots, F_n)^T : U \to \mathbb{R}^n$ ein \mathcal{C}^1 -VF, dann heißt

$$\operatorname{div} F: U \to \mathbb{R}, \quad u \mapsto \sum_{j=1}^{n} \frac{\partial F_{j}}{\partial x_{j}}$$
 Divergenz von F .

Def. Ist n=3 und $F=(F_1,F_2,F_3)^T:U\to\mathbb{R}^3$ ein \mathcal{C}^1 -VF, dann ist die Rotation von f definiert als folgendes Vektorfeld:

$$\operatorname{rot} F: U \to \mathbb{R}^{3}, \quad u \mapsto \left(\frac{\partial F_{3}}{\partial x_{2}} - \frac{\partial F_{2}}{\partial x_{3}}, \frac{\partial F_{1}}{\partial x_{3}} - \frac{\partial F_{3}}{\partial x_{1}}, \frac{\partial F_{2}}{\partial x_{1}} - \frac{\partial F_{1}}{\partial x_{2}}\right)^{T}(u)$$

Physiker-Notation. Nabla-Operator: $\vec{\nabla} \coloneqq \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)^T$ Damit schreibt man auch:

$$\operatorname{grad} f = \vec{\nabla} f, \quad \operatorname{div} F = \vec{\nabla} \cdot F, \quad \operatorname{rot} F = \vec{\nabla} \times F$$

$$d\vec{s} := (dx_1, dx_2, dx_3)^T$$

$$d\vec{S} := (dx_2 \wedge dx_3, dx_3 \wedge dx_1, dx_1 \wedge dx_2)^T$$

$$dV := dx_1 \wedge dx_2 \wedge dx_3$$

Bem. Sei ω_i eine i-Form auf $U \otimes \mathbb{R}^3$ für $i \in \{0, 1, 2, 3\}$. Dann gilt für passende $f, q: U \to \mathbb{R}$ und Vektorfelder $F. G: U \to \mathbb{R}^3$:

$$\omega_0 = f$$
, $\omega_1 = F \cdot d\vec{s}$, $\omega_2 = G \cdot d\vec{S}$, $\omega_3 = g dV$

Angenommen, f, q, F, G sind stetig differenzierbar. Dann gilt:

$$df = \operatorname{grad} f \cdot d\vec{s}, \quad d(F \cdot d\vec{s}) = \operatorname{rot} F \cdot d\vec{S}, \quad d(G \cdot d\vec{S}) = \operatorname{div} G dV$$

Lem. Für $f: U \to \mathbb{R}$ und $F: U \to \mathbb{R}^3$ zweimal stetig diff'bar gilt rot(grad f) = 0 und div(rot F) = 0.

Lem. Sei $U \subseteq \mathbb{R}^n$ sternförmig und $F, G: U \to \mathbb{R}^3$ stetig diffbar.

- Wenn rot F = 0, dann ex. $f: U \to \mathbb{R}$ stetig diff'bar mit $F = \operatorname{grad} f$.
- Wenn div G = 0, dann ex. $F: U \to \mathbb{R}^3$ stetig diff'bar mit $G = \operatorname{rot} F$.

Integration von Differentialformen

Def. Sei $U \otimes \mathbb{R}^n$, $\omega = f dx_1 \wedge \ldots \wedge dx_n$ eine *n*-Form, wobei $f: U \to \mathbb{R}$ Lebesgue-integrierbar sei. Für eine Borel-Menge $C \subset U$ heißt dann

$$\int\limits_C \omega \,\mathrm{d} \coloneqq \int\limits_C f \,\mathrm{d} \lambda_n \in \mathbb{R} \qquad \mathbf{Integral} \text{ von } \omega \text{ ""ber } C.$$

Def. Seien $U, \tilde{U} \subset \mathbb{R}^n$. Ein \mathcal{C}^1 -Diffeomorphismus $\phi: \tilde{U} \to U$ heißt

- orientierungserhaltend, wenn $\det(J_{\tilde{u}}\phi) > 0$ für alle $\tilde{u} \in \tilde{U}$,
- orientierungsumkehrend, wenn $\det(J_{\tilde{u}}\phi) < 0$ für alle $\tilde{u} \in \tilde{U}$.

Lem. Seien $U, \tilde{U} \subset \mathbb{R}^n$ offen und $\phi: \tilde{U} \to U$ total diff'bar. Dann gilt für eine *n*-Form $\omega = f dx_1 \wedge ... \wedge x_n$ auf *U*:

$$\phi^*\omega = ((f \circ \phi) \cdot \det(D\phi)) \, \mathrm{d}x_1 \wedge \ldots \wedge \mathrm{d}x_n$$

Satz. Seien $U, \tilde{U} \subseteq \mathbb{R}^n$, $C \subset \tilde{U}$ kompakt, $\phi : \tilde{U} \to U$ ein \mathcal{C}^1 -Diffeo und $\omega = f dx_1 \wedge \ldots \wedge dx_n$ eine stetige n-Form auf U. Dann gilt:

- Wenn ϕ orientierungserhaltend: $\int_{\phi(C)} f \, d\lambda_n = \int_{\phi(C)} \omega = \int_{C} \phi^* \omega$

Bem (Teilung der Eins). Setze

$$g: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} \exp\left(\frac{1}{x^2 - 1}\right), & \text{für } |x| < 0 \\ 0, & \text{für } |x| \ge 1 \end{cases}$$

$$G: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \sum_{k \in \mathbb{Z}} g(x - k)$$

$$h_k: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{g(x - k)}{G(x)} \quad \text{für alle } k \in \mathbb{Z}.$$

Dann gilt $h_k \in C^{\infty}(\mathbb{R}, \mathbb{R})$ und $\operatorname{supp}(h_k) = [k-1, k+1]$ für alle $k \in \mathbb{Z}$. Die Menge $\{h_k \mid k \in \mathbb{Z}\}$ bildet eine **Teilung der Eins**, da

$$\forall x \in \mathbb{R} : \sum_{k \in \mathbb{Z}} h_k(x) = \sum_{k \in \mathbb{Z}} \frac{g(x-k)}{G(x)} = \frac{1}{G(x)} \sum_{k \in \mathbb{Z}} g(x-k) = 1.$$

Integration von Differentialformen auf UMFen

Def. Eine k-dimensionale **Untermannigfaltigkeit** (UMF) des \mathbb{R}^n ist eine nichtleere Teilmenge $M \subset \mathbb{R}^n$, sodass für alle $x \in M$ gilt:

$$\exists \, \text{Umgebung} \, \widetilde{U} \, \, \text{von} \, \, x \, : \, \exists \, \widetilde{V} \, \otimes \, \mathbb{R}^n \, : \, \exists \, \widetilde{\phi} : \widetilde{U} \to \widetilde{V} \, \, \text{Diffeo} \, : \\ \widetilde{\phi}(M \cap \widetilde{U}) = \widetilde{V} \cap \{(x_1, \dots, x_k, 0, \dots, 0) \, | \, x_1, \dots, x_k \in \mathbb{R}\} \cong \widetilde{V} \cap \mathbb{R}^k$$

Nomenklatur. $\widetilde{\phi}:\widetilde{U}\to\widetilde{V}$ heißt **UMF-Karte**, notiert $(\widetilde{\phi},\widetilde{U})$.

Notation. Für $n \ge k$: $\pi_k : \mathbb{R}^n \to \mathbb{R}^k$, $(x_1, \dots, x_n) \mapsto (x_1, \dots, x_k)$.

Notation.
$$U := M \cap \widetilde{U}, \ V := \pi_k(\widetilde{V})$$

Def. $\widetilde{\mathcal{A}} = \{(\widetilde{\phi}_i, \widetilde{U}_i) \mid i \in I\}$ mit $M \subset \bigcup_{i \in I} \widetilde{U}_i$ heißt **UMF-Atlas**.

Beob. Sei $\widetilde{\phi}: \widetilde{U} \to \widetilde{V}$ UMF-Karte von M, dann ist $U = M \cup \widetilde{U} \odot M$ und $V = \widetilde{V} \cap \mathbb{R}^k \odot \mathbb{R}^k$ (bzgl. Relativtopologie).

Def. Sei $\widetilde{\phi}:\widetilde{U}\to \widetilde{V}$ eine UMF-Karte mit $x\in U=M\cap \widetilde{U}$. Dann heißt der Homöo $\phi:=\pi_k\circ\widetilde{\phi}|_U:U\to V$ Karte von M um x.

Def. Sei $\widetilde{A} = \{(\widetilde{\phi}_i, \widetilde{U}_i) | i \in I\}$ ein UMF-Atlas, dann heißt die Menge der davon induzierten Karten $\mathcal{A} = \{(\phi_i, U_i) | i \in I\}$ Atlas von M.

Def. Ein Atlas $\mathcal{A} = \{(\phi_i, U_i) | i \in I\}$ heißt **orientiert**, wenn alle **Kartenwechsel**, das sind die Diffeomorphismen

$$\phi_j \circ \phi_i^{-1}|_{\phi_i(U_i \cap U_j)} : \phi(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$$

für $i, j \in I$ mit $U_i \cap U_j \neq \emptyset$ orientierungserhaltend sind.

Def. • Eine UMF M von \mathbb{R}^n heißt orientierbar, wenn M einen orientierten Atlas besitzt.

- Zwei orientierte Atlanten A₁, A₂ von M heißen gleichorientiert, wenn A = A₁ ∪ A₂ ein orientierter Atlas ist.
- $\bullet\,$ Eine Orientierung auf einer orientierbaren UMF M ist eine Äquivalenzklasse bzgl. der Äquivalenzrelation

$$A_1 \sim A_2 : \iff A_1 \text{ und } A_2 \text{ sind gleichorientiert}$$

auf der Menge der Atlanten auf M.

• M orientierbare UMF, [A] Orientierung von M, dann heißt (M, [A]) orientierte Untermannigfaltigkeit.

 Ein orientierter Atlas A' von (M, [A]) heißt positiv orientiert, wenn A' ∈ [A].

Notation. Folgender Diffeomorphismus ist orientierungsumkehrend:

$$\tau: \mathbb{R}^m \to \mathbb{R}^m, \quad (x_1, \dots, x_m) \mapsto (x_1, \dots, x_{m-1}, -x_m)$$

Def. Sei (M, [A]) eine orientierte UMF, $A = \{(\phi_i, U_i) | i \in I\}$ ein positiv orientierter Atlas. Dann ist auch

$$\mathcal{A}' = \{ (\phi_i', U_i) \mid i \in I \} \quad \text{mit} \quad \phi_i' = \tau \circ \phi_i : U_i \to \tau(V_i)$$

ein orientierter Atlas von M, aber $\mathcal{A}' \not\in [A]$.

Dann heißt -[A] := [A'] die zu [A] entgegengesetzte Orientierung.

Bem. Wenn (M, [A]) nicht zusammenhängend ist, gibt es nicht nur die zwei Orientierungen [A] und -[A].

Def. Sei $\hat{U} \otimes \mathbb{R}^n$ und $M \subset \hat{U}$ eine orientierbare k-dimensionale UMF und $[\mathcal{A}]$ eine Orientierung von M. Sei ω eine stetige k-Form auf \hat{U} . Sei außerdem $C \subset M$ kompakt.

• Angenommen, es gibt eine Karte $\phi: U \to V$ mit $C \subset U$ in einem positiv orientierten Atlas \mathcal{A} von $(M, [\mathcal{A}])$. Dann setzen wir

$$\int_{C} \omega := \int_{C} \omega := \int_{C} (\phi^{-1})^* \omega.$$

 Angenommen, es gibt keine solche Karte. Dann wählen wir eine passende Teilung der Eins, also eine endliche Familie

$$\{\alpha_j: C \to \mathbb{R} \text{ stetig} | j \in \{1, \dots, r\}\} \text{ mit } \forall x \in C: \sum_{i=1}^r \alpha_j(x) = 1,$$

sodass es für jedes $j \in \{1, ..., r\}$ eine Karte $\phi_j : U_j \to V_j$ aus einem positiv orientierten Atlas von $(M, [\mathcal{A}])$ mit $\operatorname{supp}(\alpha_j) \subset U_j$ gibt. Setze $C_j := \operatorname{supp}(\alpha_j) \cap C$ für $j \in \{1, ..., r\}$ und definiere

$$\int_{C} \omega := \int_{C} \omega := \sum_{j=1}^{r} \int_{\phi_{j}(C_{j})} (\alpha_{j} \circ \phi_{j}^{-1}) \cdot (\phi_{j}^{-1})^{*} \omega.$$

Notation. $H_k := \{(x_1, \dots, x_k) \subset \mathbb{R}^k \mid x_1 \leq 0\}$ heißt Halbraum.

Bem.
$$\partial H_k = \{(0, x_2, \dots, x_k) \in \mathbb{R}^k \mid x_2, \dots, x_k \in \mathbb{R}\}$$

Beob. ∂H_k ist eine (k-1)-dimensionale UMF von \mathbb{R}^k mit Atlas $\mathcal{A} = \{(\beta, \partial H_k)\}$, wobei die Karte β definiert ist durch

$$\tilde{\beta}: \mathbb{R}^k \to \mathbb{R}^k, \quad (x_1, \dots, x_k) \mapsto (x_2, \dots, x_k, x_1),$$

$$\beta: \mathbb{R}^k \to \mathbb{R}^{k-1}, \quad (0, x_2, \dots, x_k) \mapsto (x_2, \dots, x_k).$$

Def. Sei $C \subset M \subset \mathbb{R}^n$, wobei C kompakt und M eine k-dim. UMF. Ein Punkt $x \in M$ heißt **Randpunkt** von C relativ zu M, wenn gilt:

$$\forall \, \underline{U} \ \underline{\otimes} \ \underline{M} \ \text{mit} \ x \in U \ : \ U \cap C \neq \emptyset \ \text{ und } \ U \cap (M \setminus C) \neq \emptyset.$$
in der Relativtopologie

Notation. $\partial_M C := \{ \text{Randpunkte von } C \text{ relativ zu } M \}$

Def. Sei $C \subset M \subset \mathbb{R}^n$, wobei C kompakt und M eine k-dim. UMF. Dann hat C glatten Rand in M, wenn gilt: Für alle $x \in \partial_M C$ gibt es eine UMF-Karte $\widetilde{\phi} : \widetilde{U} \to \widetilde{V}$ mit $x \in \widetilde{U}$, sodass für die Karte ϕ gilt:

• $\phi(U \cap C) = V \cap H_k$

• $\phi(U \cap \partial_M C) = V \cap \partial H_k$

Def. Eine UMF-Karte $(\widetilde{\phi},\widetilde{U})$ (bzw. eine Karte (ϕ,U)), die diese Bedingungen erfüllt, heißt **Rand-adaptiert**.

Notation. $\rho: \mathbb{R}^n \to \mathbb{R}^n, \ (x_1, ..., x_n) \mapsto (x_2, ..., x_k, x_1, x_{k+1}, ..., x_n)$

Lem. Sei $M \subset \mathbb{R}^n$ eine k-dimensionale UMF mit $k \geq 2$ und $C \subset M$ ein Kompaktum mit glattem Rand. Dann gilt:

- Es gibt einen UMF-Atlas $\mathcal{A} = \{(\widetilde{\phi}_i, \widetilde{U}_i) | i \in I\}$ bestehend aus bzgl. C Rand-adaptierten UMF-Karten von M.
- Ist $\mathcal A$ ein solcher UMF-Atlas, dann ist ein UMF-Atlas von $\partial_M C$:

$$\mathcal{A}' := \{ (\phi_i', \widetilde{U}_i) \mid i \in I \}. \quad \text{mit} \quad \phi_i' := \rho \circ \widetilde{\phi}$$

Insbesondere ist $\partial_M C$ eine (k-1)-dimensionale UMF

• Ist M orientiert, dann gibt es einen positiv orientierten, Randadaptierten Atlas $\mathcal{A} = \{(\widetilde{\phi}_i, \widetilde{U}_i) | i \in I\}$ von M. Sodann ist \mathcal{A}' ein orientierter UMF-Atlas von $\partial_M C$.

Def. $[\mathcal{A}']$ heißt induzierte Orientierung auf $\partial_M C$.

Lem. Sei ω eine stetig diff'bare (k-1)-Form auf \mathbb{R}^k mit kompaktem Träger. Dann gilt:

$$\int_{H_k} \mathrm{d}\omega = \int_{\partial H_k} \omega$$

Satz (Stokes). Sei $M \subset \mathbb{R}^n$ eine orientierte k-dim. UMF von \mathbb{R}^n und $C \subset M$ kompakt mit glattem Rand $\partial_M C$. Sei $U \otimes \mathbb{R}^n$ mit $M \subset U$ sowie ω eine stetig diff'bare (k-1)-Form auf U. Dann gilt (bzgl. der induzierten Orientierung auf $\partial_M C$):

$$\int_{C} d\omega = \int_{M} \omega$$

Kor. Sei ω stetig diff'bare (k-1)-Form auf $\widehat{U} \otimes \mathbb{R}^n$, $M \subset \widehat{U}$ eine orientierte k-dimensionale kompakte UMF. Dann gilt: $\int\limits_{M} \mathrm{d}\omega = 0$

Satz (Divergenzsatz). Sei $C \subset \hat{U} \subset \mathbb{R}^n$ kompakt mit glattem Rand, $C^{\circ} \neq \emptyset$, $C = \overline{C^{\circ}}$, $G : \hat{U} \to \mathbb{R}^n$ ein C^1 -Vektorfeld, dann gilt:

$$\int_C (\operatorname{div} G) \, d\lambda_n = \int_{\partial_C} \langle G, \nu \rangle \, d\mathcal{A}.$$

Def. Eine (n-1)-dimensionale UMF $M \subset \mathbb{R}^n$ heißt **Hyperfläche**.

Def. Sei $M \subset \mathbb{R}^n$ eine UMF und $c: (-\epsilon, \epsilon) \to \mathbb{R}^n$ C^{∞} mit $\operatorname{im}(c) \subset M$, dann heißt der Vektor $(c(0), c'(0)) \in T_{c(0)}\mathbb{R}^n$ **Tangentialvektor** an M in c(0) = x.

Def. Die Menge aller Tangentialvektoren

 $T_xM = \{(x,v) \in T_x\mathbb{R}^n \mid (x,v) \text{ Tangential$ $vektor an } M \text{ in } x\}$ heißt Tangentialraum an M in x.

Prop. Sei $\widetilde{\phi}:\widetilde{U}\to\widetilde{V}$ (mit $U,V\subseteq\mathbb{R}^n,$ ϕ ein Diffeomorphismus) eine UMF-Karte von M um x und ϕ sei die induzierte Karte. Dann gilt

$$T_x M = \{x\} \times D(\widetilde{\phi}^{-1})(\phi(x)) \{ y \in \mathbb{R}^n \mid y_{k+1} = \dots = y_n = 0 \}$$

= $\{x\} \times \text{span}\{\partial_1 \phi^{-1}(\phi(x)), \dots, \partial_k \phi^{-1}(\phi(x)) \}.$

Def. $N_x M := (T_x M)^{\perp}$ heißt **Normalraum** an M in X

Def. Sei $M \subset \mathbb{R}^n$ eine Hyperfläche. Eine stetige Abb. $\nu: M \to S^{n-1}$ heißt **Einheitsnormalenvektorfeld** (ENF) auf M, wenn

$$\forall x \in X : \langle x, \nu(x) \rangle \in N_x M.$$

Def. Sei (M, [A]) eine orientierte HF in \mathbb{R}^n . Ein ENF $\nu: M \to S^{n-1}$ heißt **positiv orientiert**, wenn

$$\forall x \in U : \det(\nu(x), \partial_1 \phi^{-1}(\phi(x)), \dots, \partial_{n-1} \phi^{-1}(\phi(x))) > 0,$$

wobei (ϕ, U) eine positiv orientierte Karte von M.

Satz. Sei $M \subset \mathbb{R}^n$ eine Hyperfläche.

- Ist [A] eine Orientierung von M, so gibt es ein eindeutig bestimmtes positiv orientiertes (bzgl. [A]) ENF auf M.
- Ist ν ein ENF auf M, dann trägt M genau eine Orientierung, sodass ν positiv orientiert ist.

 $\mathbf{Def.} \ \mathrm{Sei} \ \phi: \partial C \cap U \to V \ @ \ \mathbb{R}^n$ eine Karte von $\partial C.$ Dann heißt

$$g = g_{\phi}: V \to \mathbb{R}^{2 \times 2}, \quad v \mapsto \begin{pmatrix} \langle \partial_1 \phi^{-1}(v), \partial_1 \phi^{-1}(v) \rangle & \langle \partial_2 \phi^{-1}(v), \partial_1 \phi^{-1}(v) \rangle \\ \langle \partial_1 \phi^{-1}(v), \partial_2 \phi^{-1}(v) \rangle & \langle \partial_2 \phi^{-1}(v), \partial_2 \phi^{-1}(v) \rangle \end{pmatrix}$$

1. Fundamentalform von ∂C bzgl. ϕ .

Def. Sei $M\subset\mathbb{R}^n$ eine k-dimensionale UMF mit endlichen UMF-Atlas und $\{(\tilde{\phi}_j,U_j)\,|\,j=1,\ldots,m\}$ der davon induzierte Atlas. Ist nun $\{\alpha_j\,|\,j=1,\ldots,m\}$ eine stetige Teilung der Eins auf $\bigcup_{j=1}^m \tilde{U}_j$

mit $\alpha_j(x) = 0$ für $x \in (\bigcup_{l=1}^m \hat{U}_l) \setminus U_j$. Das **Oberflächenintegral** einer stetigen Funktion $f: M \to \mathbb{R}$ ist

$$\int\limits_{M} f \, \mathrm{d}S \coloneqq \sum_{j=1}^{m} \int\limits_{\phi_{j}(U_{j})} ((\alpha_{j} \cdot f) \circ \phi_{j}^{-1}) \sqrt{\det(g_{\phi_{j}})} \, \mathrm{d}\lambda_{k}$$

Satz (Gauß-Ostrogradski). Sei $\hat{U} \otimes \mathbb{R}^3$, $G = (G_1, ..., G_3)^T : \hat{U} \to \mathbb{R}^3$ ein \mathcal{C}^1 -Vektorfeld und $C \subset \hat{U}$ kompakt. Dann gilt

$$\int\limits_C (\operatorname{div} G) \, \mathrm{d} V = \int\limits_{\partial C} G \cdot \, \mathrm{d} \vec{S}, \qquad \int\limits_C (\operatorname{div} G) \, \mathrm{d} \lambda_3 = \int\limits_{\partial C} \langle G, \nu \rangle \, \mathrm{d} S$$

Def. Sei $f:\mathbb{R}^n{ o}\mathbb{R}$ stetig, $\gamma:[a,b]\to\mathbb{R}^n$ eine \mathcal{C}^1 -Kurve. Dann heißt

$$\int\limits_{\gamma} f \, \mathrm{d}s \coloneqq \int\limits_{a}^{b} f(\gamma(t)) \cdot \|\gamma'(t)\| \, \mathrm{d}t \quad \mathbf{Kurvenintegral} \text{ von } f \text{ längs } \gamma.$$

Satz (Stokes, klassisch). Sei $\hat{U} \otimes \mathbb{R}^3$, $M \subset \hat{U}$, eine 2-dimensionale UMF (also eine HF) mit positiv orientierten ENF ν . Sei $C \subset M$ kompakt mit glattem Rand und τ das Einheitstangentialvektorfeld von $\partial_M C$. Dann gilt für ein \mathcal{C}^1 -Vektorfeld $F: \hat{U} \to \mathbb{R}^3$:

$$\int_{\partial_M C} \langle F, \tau \rangle \, \mathrm{d}s = \int_C \langle \operatorname{rot} F, \nu \rangle \, \mathrm{d}S$$

Bem. Wir identifizieren $\mathbb{R}^2 \cong \mathbb{C}$ mit $(x,y)^T \mapsto x + iy$.

Def. Sei $U \subset \mathbb{C}$ eine \mathcal{C}^1 -Abbildung $f: U \to \mathbb{C}$ heißt **holomorph**, wenn ihre (totalen) Ableitungen in jedem Punkt von U \mathbb{C} -linear sind.

Beob. Eine \mathcal{C}^1 -Abbildung $f=u+iv:U\to\mathbb{C}$ ist genau dann holomorph, wenn folgende Differentialgleichungen von Cauchy-Riemann erfüllt sind:

$$\partial_1 u = \partial_2 v$$
, und $\partial_2 u = -\partial_1 v$

 $\mathbf{Def.}\;$ Sei $\gamma\colon\![a,b]\!\to\!\mathbb{C}$ stetig diff'bar und $f\colon\!\mathbb{C}\!\to\mathbb{C}$ stetig. Dann heißt

$$\iint\limits_{\gamma} dz \coloneqq \int\limits_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t \quad \text{komplexes Kurvenintegral}.$$

Satz (Cauchyscher Integralsatz). Sei $V \otimes \mathbb{C}$ und $f: U \to \mathbb{C}$ holomorph. Sei ferner $\gamma: [a,b] \to \mathbb{C}$ eine glatte reguläre einfach geschlossene Kurve und $C \subset \mathbb{C}$ das Kompaktum, welches vom Bild von γ berandet wird. Dann gilt

$$\int_{\gamma} f \, \mathrm{d}z = 0$$