

2022 牛客 OI 赛前集训营-提高组(第二场)

比赛地址: https://ac.nowcoder.com/acm/contest/40646

题目名称	躲避技能	奶茶兑换券	帮助	神奇的变换
题目类型	传统型	传统型	传统型	传统型
每个测试点	C/C++ 2 秒,	C/C++1秒,	C/C++ 2 秒,	C/C++ 5 秒,
时限	其他语言 4 秒	其他语言 2 秒	其他语言 4 秒	其他语言 10 秒
内存限制	C/C++ 256MB,	C/C++ 256MB,	C/C++ 256MB,	C/C++ 256MB,
	其他语言 512MB	其他语言 512MB	其他语言 512MB	其他语言 512MB
子任务数目	25	10	20	25
测试点是否	是	是	是	是
等分				

注意事项

- 1、所有参与牛客 OI 赛前集训营的选手必须遵守约定的纪律:
 - (1) 比赛账号不能外传。
 - (2) 比赛中不能抄袭代码。
 - (3) 比赛中不能恶意卡评测。
- 2、报名支付账号即为比赛账号。
- 3、一旦报名牛客 OI 赛前集训营活动,不支持退费,请考虑清楚后报名。
- 4、本活动解释权归牛客网所有,活动介绍未尽事宜以牛客网官方解释为准。

欢迎关注"比赛自动姬"公众号,关注更多比赛资讯~

1. 躲避技能

【题目描述】

鸡尾酒是一个多操手,他可以同时操作 m 个账号。今天,他使用这些账号一起打一个 boss。这个 boss 战的地图共有 n 个关键点,其中有 n-1 条边,每条边连接着两个不同的点,使得从任意点出发可以到达其他所有的点。鸡尾酒的 m 个账号分别编号 1 至 m ,一开始,第 i 个账号在点 s_i 。可能有两个账号在同一位置。

现在, boss 放出了一个致命技能。boss 在地图上标出了 m 个关键点, 想成功躲避这个技能, 必须在每一个被标记的点上, 都有一个账号站在上面。注意, 可能会有点被多次标记, 多次标记的点需要有多个账号站在上面。

由于鸡尾酒无法分身,所以他必须先把一个账号移动到一个位置,才能动另一个账号,不能同时移动多个账号。假设鸡尾酒的任意账号通过第 i 条边的时间为 w_i ,请帮鸡尾酒求出他成功躲避技能所需要的最少时间。

【输入格式】

一行两个正整数 n 和 m . 分别表示关键点的数量和标记点的数量。

后面一行 m 个数字 $s_1, s_2, ..., s_m, s_i$ 表示第 i 个账号的初始位置。

再后面一行 m 个数字,表示标记点的位置。

后面 n-1 行每行三个数字 u_i, v_i, w_i ,表示有一条连接 u_i, v_i 的边,经过时间为 w_i 。

由于boss想要为难鸡尾酒,所以所有的 wi 都是反着给出的,即低位在前,高位

在后,没有前导零(输入的最后一位)。

【输出格式】

一行一个正整数,表示最少时间。

【样例1 输入】

- 6 4
- 5132
- 4212
- 125
- 236
- 247
- 154
- 164

【样例1 输出】

22

【样例2输入】

- 103
- 234
- 1810
- 125
- 136
- 147
- 3 5 11

- 4 6 11
- 5 9 43
- 6 7 34
- 9 10 13
- 7 8 42

【样例2输出】

159

【样例3输入】

- 2 10
- 1111111111
- 222222222
- 1 2 1234567891001987654321

【样例3输出】

12345678910019876543210

【数据范围】

请使用较快的输入方式。

本题共 25 个数据点,每个测试点等分(即一个测试点 4 分)。

保证对于所有数据, $1 \le n, m \le 10^5, 1 \le w_i \le 10^{100}$ 。

保证对于 20% 的数据, $1 \le n, m \le 10, 1 \le w_i \le 10^5$ 。

保证对于另外 20% 的数据, $1 \le m \le 10, 1 \le w_i \le 10^5$ 。

保证对于另外 40% 的数据, $1 \le w_i \le 10^5$ 。

2. 奶茶兑换券

【题目描述】

玥玥有无限张价值 *m* 的奶茶代金券,每次玥玥会使用代金券购买两杯奶茶。只有当代金券的总价值大于等于奶茶的总价值才可以购买,但是奶茶店是不找零的。假设每张代金券价值 10 元,然后买了一杯 11 元和一杯 4 元的奶茶。则需要两张代金券才能购买,但是两张代金券价值 20,奶茶总价值 15,即我们可以认为玥玥这样做浪费了 5 元。

现在已知玥玥总共购买了 n 种价值的奶茶,第 i 种奶茶购买的数量为 a_i ,价格为 b_i 。请问玥玥最少浪费多少钱?

【输入格式】

输入第一行包含两个正整数 n, m, 表示共有 n 条信息, 每张代金券价值 m 元。 $(1 \le n \le 10^5, 1 \le m \le 10^9)$

接下来 n 行每行包含两个正整数 $a_i, b_i (1 \le a_i, b_i \le 10^9)$,保证给出的所有 b_i 不会重复,且所有 a 之和为一个小于 10^9 的偶数。

【输出格式】

输出一行一个整数表示最少浪费的钱数。

【样例1 输入】

- 3 10
- 2 21
- 1 18
- 1 20

【样例1 输出】

10

【样例1 说明】

注意,不能一次购买两杯 21 元的奶茶和一杯 18 元的奶茶,因为每次只能购买两杯奶茶,所以只能用四张优惠券购买一杯 21 元的奶茶和一杯 18 元的奶茶,浪费 40-21-18=1 元,再用 5 张优惠券购买一杯 21 元和一杯 20 元的奶茶,浪费 9 元,共浪费 1+9=10 元。

【数据范围】

对于 1-3 测试点, 有 $1 \le n \le 10^3$

对于 4-6 测试点,有 $\frac{m}{2} \le b_i \le m$

对于 100% 的数据, 有 $1 \le n \le 10^5$, $1 \le m \le 10^9$

3.帮助

【题目描述】

小明所在的班级有 n 个学生,每个人完成了作业中的 f_i 道题,并且他们完成的题目互不相同。因为学生们的个性不同,所以他们只会接受一部分同学的帮助,他们也只会选择帮助一部分同学。更具体地来说,第 i 个同学有一个成绩 t_i ,他只会接受成绩在 $[a_i,b_i]$ 的学生的帮助,只会帮助成绩在 $[c_i,d_i]$ 的学生。

小明找到了你,请问在同学们尽可能互相帮助的情况下,每个人会完成多少道题。

请注意一下几点:

- 1. 只有同学 A 愿意帮助同学 B, 同学 B 愿意接受同学 A 的帮助,两个条件同时成立的情况下,同学 A 才会帮助同学 B。
- 2. 同学们很有"版权意识",如果同学 *A* 一开始做出了一道题,并将这一道题"帮助"给了同学 *B*,同学 *B* 是不会将这道题"帮助"给其他同学的,只有原来就做出这道题的人(这个例子中是同学 *A*) 才可以将这道题"帮助"给别人。
- 3. 同学们独立完成的题目互不相同。

【输入格式】

第一行一个自然数 n ,表示学生的总数。

第二行 n 个自然数,第 i 个数是 f_i ,表示第 i 个学生完成题目的数量。

第三行 n 个自然数,第 i 个数是 t_i 表示第 i 个学生的考试成绩。

后面的 n 行中各有 4 个自然数, 第 i 行的分别表示 a_i, b_i, c_i, d_i 。表示第 i 名

学生只会接受成绩在 $[a_i, b_i]$ 的学生的帮助,只会帮助成绩在 $[c_i, d_i]$ 的学生。

【输出格式】

一行 n 个自然数,表示这 n 个同学每个人分别能做出的题目数量。

【样例1 输入】

5

34567

246810

4 10 1 1

6613

7745

5533

11 11 1 3

【样例1 输出】

14 9 5 6 7

【样例1 说明】

学生2与学生5帮助学生1。

学生3帮助学生2。

此外没有任何学生互相帮助。

【数据范围】

对于 100% 的数据:

 $0 \leqslant n \leqslant 10^5$

 $0 \le f_i, t_i \le 10^9$

 $0 \leqslant a_i \leqslant b_i \leqslant 10^9$

 $0 \leqslant c_i \leqslant d_i \leqslant 10^9$

测试点编号	$n \leqslant$	特殊限制
1	1	无
$2\sim 6$	1000	无
$7\sim 8$	10^{5}	$orall 1 \leqslant i < n, t_i = t_{i+1}$
$9\sim10$	10^5	$orall 1\leqslant i\leqslant n, t_i\leqslant 10$
$11\sim12$	10^{5}	$\forall 1 \leqslant i \leqslant n, a_i = b_i = c_i = d_i$
$13\sim14$	10^{5}	$orall 1\leqslant i\leqslant n, a_i=0$ $ extbf{\exists}$ $b_i=10^9$
$15\sim 20$	10^{5}	无

4.神奇的变换

【题目描述】

有一天,玥玥在电视上,看到了一种神奇的数字变换。

这种变换是这样的:

首先我们拿到一个正整数,然后对它分别进行以下分解:

- 1. 分解它的质因数,数一数其质因数的指数,如果有一个质因数的指数 ≥ 2, 写下 0;否则,若有奇数个质因数,写下 -1,否则写下 1。
- 2. 分解其所有正约数, 写下其约数个数以及约数总和。

显然,对于每一个数 x,经过变换后将得到 3 个整数。

玥玥试了试,发现他算出了正确的答案,他太开心了!

然而,很不幸,这一切被玥玥的老师看见了。老师总算是找到了给玥玥出题的机会,于是在第二天,老师给玥玥留了一道《好》题。

老师给玥玥了 n 个正整数,排成一排。老师让玥玥仔细看看这个序列(名字叫a),然后告诉了玥玥他会问 q 个问题。每一个问题中,老师给出两个数 l,r,让玥玥算出数字 x 的答案,其中 $x=\prod_{i=l}^r a_i$ 。

"老师,这个数(指x)太大了怎么办?"

"没关系,你只需要告诉我答案对 10⁹ + 7 取模的结果就行了(完全理解成了答案太大)。实在不行的话,可以请别人帮忙哦。"

这下可把玥玥难住了。她请班上 OI 最强的你来帮他解决这个问题, 毕竟, 这可能会给她加不少德育分啊!

老师比较善良,所以每一次回答问题时,只需要回答答案中的第 type 问就可以 $(1 \le type \le 3)$ 。注意,这里的输出 x 的答案指的是输出 x 经过上述变换得 到的 3 个整数中的第 type 个。

由于老师的问题是一个一个问的,所以本题强制在线。

【输入格式】

第一行三个整数 n,q,type , 其中 type 表示询问种类。

第二行 n 个整数,第 i 个整数代表 a_i 。

后面 q 行每行两个整数 l',r', 表示一个询问。

设 last 为上次询问的答案,初始为 0。则询问的区间为 $[l=l'xor\ last, r=$

第 11 页 共 14 页

 $r'xor\ last$],保证 $1 \le l \le r \le n$ 。

你需要对该区间回答第 type 种询问。

【输出格式】

对于每一次询问,输出一行一个整数表示答案取模后的结果。

【样例1 输入】

531

12345

2 4

3 5

13

【样例1 输出】

0

0

1

【样例1 说明】

样例询问的区间为[2,4],[3,5],[1,3],由于 type 为 1,所以回答的是区间乘积的素因子分解的特点(1、0、-1)

【样例2输入】

532

12345

2 4

11 13

13 15

【样例2输出】

8

12

4

【样例2说明】

样例询问的区间为[2,4],[3,5],[1,3], 由于 type 为 2, 所以回答的是区间乘积的因子数量。

当得到第一问的结果为 8 时,第二次询问 11,13,我们可以通过 11 异或 8 得到 3,13 异或 8 得到 5。这样就可以知道第二次询问的区间是 [3,5] 了,算出结果 12 之后,再去用 12 和第三次询问进行异或,得到第三次询问的内容 [1,3]

【样例3输入】

533

12345

2 4

63 57

169 171

【样例3 输出】

60

168

12

【样例3说明】

样例询问的区间为[2,4],[3,5],[1,3], 由于 type 为 3, 输出的是因子和

【数据范围】

 $1 \le n, q \le 10^5$

 $1 \le a_i \le 10^8$

 $1 \le \text{type} \le 3$

对于所有编号模 5 余 1 的测试点, type = 1。

对于所有编号模 5 余 2,3 的测试点, type = 2。

对于所有编号模 5 余 4,0 的测试点, type = 3。

测试点编号	$n \leq$	$q \leq$	特殊限制
$1\sim 5$	1	1	无
$6\sim 10$	10^{3}	10^{3}	无
$11\sim15$	10^{5}	10^{5}	$a_i \leq 10^3$
$16\sim 20$	10^5	10^5	$\prod\limits_{j=l_i}^{r_i}a_j\leq 10^7$
$21\sim25$	10^{5}	10^{5}	无