Summary of MATLAB Onramp

2/12/25, 7:24 PM MATLAB Onramp

Basic Syntax

Example	Description
Example	Describitori

 $\underline{x = pi}$ Create variables and assign values with the equal sign (=).

The left side (x) is the variable name, and the right side (pi) is its value.

 $y = \sin(-5)$ Provide inputs to a function using parentheses.

Desktop Management

Function	Example	Description
<u>save</u>	save data.mat	Save your current workspace to a MAT-file.
<u>load</u>	load data.mat	Load the variables in a MAT-file to the workspace.
<u>clear</u>	clear	Clear all variables from the workspace.
<u>clc</u>	clc	Clear all text from the Command Window.
<u>format</u>	format long	Change how numeric output appears in the Command Window.

Array Types

Example	Description
4	scalar
[3 5]	row vector
[1;3]	column vector
[3 4 5; 6 7 8]	matrix

Evenly Spaced Vectors

Example	Description	
1:4	Create a vector from 1 to 4, spaced by 1, using the colon operator (:).	
1:0.5:4	Create a vector from 1 to 4, spaced by 0.5.	
<u>linspace</u> (1,10,5)	Create a vector with 5 elements. The values are evenly spaced from 1 to 10.	

Matrix Creation

Example	Description	
<u>rand</u> (2)	Create a square matrix with 2 rows and 2 columns.	
<u>zeros</u> (2,3)	Create a rectangular matrix with 2 rows and 3 columns of 0 s.	
ones(2,3)	Create a rectangular matrix with 2 rows and 3 columns of 1s.	

Array Indexing

Example	Description	
A(<u>end</u> , 2)	Access the element in the second column of the last row.	
A(2,:)	Access the entire second row.	
A(1:3,:)	Access all columns of the first three rows.	
A(2) = 11	Change the value of the second element of an array to 11.	

Array Operations

Example Description Perform array addition. [1 2; 3 4] + 1 ans = 2 3 4 5 Perform matrix multiplication. [1 1; 1 1]*[2 2; 2 2] ans = 4 4 4 4 [1 1; 1 1].*[2 2; 2 2] Perform element-wise multiplication. ans = 2 2

Multiple Outputs

2

Example

Evample

2

Description

Docorintion

 $[xrow, xcol] = \underline{size}(x)$ Save the number of rows and columns in x to two different variables. $[xMax, idx] = \underline{max}(x)$ Calculate the maximum value of x and its corresponding index value.

Documentation

Example

Description

doc randi Open the documentation page for the randi function.

Plots

Example	Description
<pre>plot(x,y,"ro",LineWidth=5)</pre>	Plot a red (r) dashed () line with a circle (o) marker, with a heavy line width.
<u>hold</u> on	Add the next line to the existing plot.
hold off	Create new axes for the next plotted line.
<pre>title("My Title")</pre>	Add a title to a plot.
xlabel("x") ylabel("y")	Add labels to axes.
<u>legend</u> ("a","b","c")	Add a legend to a plot.

Tables

Example	Description
<u>data.HeightYards</u>	Extract the variable HeightYards from the table data.
data.HeightMeters = data.HeightYards*0.9144	Derive a table variable from existing data.

Example

Description

Replace all values in x that are equal to 999 with the value 1.

 $[5\ 10\ 15] > 12$ Compare the elements of a vector to the value 12. v1(v1 > 6)Extract all elements of v1 that are greater than 6. x(x==999) = 1

Programming

Example

Description

$$\begin{array}{ll} \underline{if} \hspace{0.1cm} x > 0.5 & \text{If } x \text{ is greater than } 0.5, \text{ set } y \text{ to } 3. \\ y = 3 & \text{else} & \text{Otherwise, set } y \text{ to } 4. \\ y = 4 & \text{end} & \\ \hline \underline{for} \hspace{0.1cm} c = 1:3 & \text{The loop counter } (c) \text{ progresses through the } \\ \underline{disp(c)} & \text{values } 1:3 \hspace{0.1cm} (1, 2, \text{ and } 3). \\ \hline \text{end} & \text{The loop body displays each value of } c. \end{array}$$