1 Teorema dei residui

Motivazione dello studio del teorema: è il calcolo di integrali in campo complesso e anche in campo reale.

Se f è olomorfa su $\Omega \subseteq \mathbb{C} \implies \int_{\gamma} f(z)dz = 0$ dove γ è un circuito omotopo a un punto. Se f è olomorfa su Ω tranne che in un numero finito di punti, come si calcola $\int_{\gamma} f(z)dz$?

Definizione

Se z_0 è una singolarità isolata per f si dice residuo di f in z_0 il coefficiente c_{-1} dello sviluppo in serie di Laurent di f di centro z_0 .

1.1 Calcolo dei residui

- Se z_0 è una singolarità eliminabile: $\operatorname{Res}(f,z_0)=0$ poiché la parte singolare dello sviluppo $\equiv 0$
- $\bullet \ z_0$ singolarità essenziale: non c'è modo diretto di calcolare il residuo (serve calcolare lo sviluppo)
- Se z_0 è un polo di ordine ν

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{1}{(\nu - 1)!} D^{(\nu - 1)} [(z - z_0)^{\nu} f(z)]$$

In particolare se z_0 è un polo semplice

Res
$$(f, z_0) = \lim_{z \to z_0} [(z - z_0)f(z)]$$

Dimostrazione polo semplice

 z_0 polo semplice $\implies f(z) = \sum_{n \ge -1} c_n (z - z_0)^n$, con $c_{-1} \ne 0$

$$(z-z_0)f(z) = \sum_{n \ge -1} c_n(z-z_0)^{n+1} = c_{-1} + c_0(z-z_0) + c_1(z-z_0)^2 + o(z-z_0)^2$$

$$\lim_{z \to z_0} [(z - z_0)f(z)] = c_{-1}$$

Osservazione: $\operatorname{Res}(\frac{g}{h}, z_0) = \frac{g(z_0)}{h'(z_0)}$ con g olomorfa, h con uno zero di ordine 1 in z_0 .

Dimostrazione

Caso $g(z_0) \neq 0 \implies z_0$ polo semplice

$$(z-z_0)\frac{g(z)}{h(z)} = \frac{g(z_0)(z-z_0) + o(z-z_0)}{h'(z_0)(z-z_0) + o(z-z_0)} \to \frac{g(z_0)}{h'(z_0)}$$

Tramite la formula per il residuo del polo semplice

$$\operatorname{Res}(\frac{g}{h}, z_0) = \frac{g(z_0)}{h'(z_0)}$$

Caso $G(z_0)=0$ Dico che z_0 è una singolarità eliminabile

$$\frac{g}{h} = \frac{g'(z_0)(z - z_0) + o(z - z_0)}{h'(z_0(z - z_0) + o(z - z_0))} \to \frac{g'(z_0)}{h'(z_0)} \in \mathbb{C}$$

1.2 Definizione e calcolo dell'indice di avvolgimento

Definizione (intuitivia)

Sia γ circuito $\subseteq \mathbb{C}$ e sia $z_0 \notin \gamma$.

Si dice indice di avvolgimento di γ rispetto a z_0 è il numero di volte che γ gira attorno a z_0 , contate con segno + nel caso di verso antiorario

Definizione (formale)

Sia $r(t):[a,b]\to\mathbb{C}$ parametrizzazione di γ (γ) circuito $\subseteq \mathbb{C},\ z_0\not\in\mathbb{C}$. Sia $\rho(t):=|r(t)-z_0|$. Allora $\exists \theta:[a,b]\to\mathbb{C}$ tale che $r(t)=z_0+\rho(t)e^{i\theta(t)}$.

$$\operatorname{Ind}(\gamma, z_0) := \frac{\theta(b) - \theta(a)}{2\pi} \in \mathbb{Z}$$

L'indice è un numero $\in \mathbb{Z}$ poiché $r(a)=r(b) \implies \rho(a)=|r(a)-z_0|=|r(b)-z_0|=\rho(b)$

$$r(a) = \rho(a) + e^{i\theta(a)}$$

$$r(b) = \rho(b) + e^{i\theta(b)}$$

$$\implies e^{i\theta(a)} = e^{i\theta(b)}$$

$$\implies i\theta(a) - i\theta(b) = 2k\pi i = \theta(a) - \theta(b) = 2k\pi$$

Osservazioni

- 1. L'indice non cambia per parametrizzazioni equivalenti (dello stesso circuito)
- 2. L'indice di avvolgimento non cambia sostituendo γ con un circuito omotopo a γ in $\mathbb{C} \setminus \{z_0\}$

1.2.1 Modalità analitica per calcolare l'indice

$$\operatorname{Ind}(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz$$

Dimostrazione

 $r(t) = z_0 + \rho(t)e^{i\theta(t)}, \ t \in [a, b].$

$$\begin{split} &\int_{\gamma} \frac{1}{z - z_0} dz = \int_a^b \frac{\rho'(t)e^{i\theta(t)} + \rho(t)i\theta'(t)e^{i\theta(t)}}{z_0 + \rho(t)e^{i\theta(t)} - z_0} dt \\ &= \int_a^b \frac{\rho'(t)etsi\theta(t)}{\rho(t)e^{i\theta(t)}} dt + i\int_a^b \frac{\rho(t)\theta'(t)e^{i\theta(t)}}{\rho(t)e^{i\theta(t)}} dt \\ &= \log \rho(t)|_a^b + i[\theta(b) - \theta(a)] = i[\theta(b) - \theta(a)] \end{split}$$

Dunque dividendo

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz = \frac{\theta(b) - \theta(a)}{2\pi}$$

1.3 Teorema dei residui

Sia Ω aperto $\subseteq \mathbb{C}$ e sia $\gamma \subseteq \mathbb{C}$ circuito omotopo a un punto (in Ω). Sia $f: \Omega \setminus S \to \mathbb{C}$ olomorfa, dove S "insieme singolare" soddisfa

- $\bullet \ \gamma \subseteq \Omega \setminus S$
- $acc(S) \cap \Omega = \emptyset$

Allora:

 $\operatorname{Ind}(\gamma,z_0)\neq 0$ per al più un numero finito di punti e vale

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{z_0 \in S} \operatorname{Res}(f, z_0) \operatorname{Ind}(\gamma, z_0)$$