

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14120101401

FCC REPORT (BLE)

Applicant: XTIM SARL

Address of Applicant: 10,Bd Maire 13008 Marseille, France

Equipment Under Test (EUT)

Product Name: Bionicbird

Model No.: BB1

Trade mark: Bionicbird

FCC ID: 2ADQDBB1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 02 Dec., 2014

Date of Test: 02 Dec., to 09 Dec., 2014

Date of report issued: 09 Dec., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	09 Dec., 2014	Original

Prepared by: Yoy0 Lu0 Date: 09 Dec., 2014

Report Clerk

Reviewed by: 09 Dec., 2014

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5		ERAL INFORMATION	
O .	GEN	ERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	18
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	27
	6.7.1	00.1440.04	
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not applicable.

5 General Information

5.1 Client Information

Applicant:	XTIM SARL
Address of Applicant:	10,Bd Maire 13008 Marseille, France
Manufacturer:	XTIM SARL
Address of Manufacturer:	10,Bd Maire 13008 Marseille, France

5.2 General Description of E.U.T.

Product Name:	Bionicbird
Model No.:	BB1
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-45mAh
Test Voltage:	AC 120V/60Hz

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

Report No: CCIS14120101401

5.3 Test environment and mode

Operating Environment:	Operating Environment:				
Temperature: 24.0 °C					
Humidity:	54 % RH				
Atmospheric Pressure: 1010 mbar					
Test mode:					
Operation mode Keep the EUT in continuous transmitting with modulation					
Charging mode Keep the EUT in DC 5V by PC mode					

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC
MERCURY	Wireless router	MW150R	12922104015	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	03-31-2015	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-05-2015	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015	

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-09-2015		
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be							
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-3-0 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN AUX Filter AC power LISN Line impedence Slabulization Network Test table/Insulation plane Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	Test Requirement:	FCC Part 15 C Section 15.207	7				
Class Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 50 50 60 50 50 60 50 5	Test Method:	ANSI C63.4: 2003					
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 *Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN Aux EUT. Equipment Under Test LISN Line Impedence Stabilization Network Test table Insulation plane Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	Test Frequency Range:	150 kHz to 30 MHz					
Limit: Frequency range (MHz)	Class / Severity:	Class B					
Test procedure Test procedure O.15-0.5 68 to 56* 56 to 46*	Receiver setup:	RBW=9kHz, VBW=30kHz					
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN	Limit:	[[[]] [] [] [] [] [] [] [] [Limit (c	dBuV)			
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Regulpment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details		Quasi-peak Average					
Test procedure Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Reference Plane							
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Reference Plane Refull Test LISN LINE Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details							
1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Reference Plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0 tim Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details				50			
a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.6m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details	-						
Test Instruments: Refer to section 5.3 for details Refer to section 5.3 for details		 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted 					
AUX Equipment E.U.T EMI Receiver	Test setup:	Refere	nce Plane				
Test mode: Refer to section 5.3 for details		AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilizatio	J.T EMI Receiver	er — AC power			
	Test Instruments:	Refer to section 5.7 for details					
Test results: Passed	Test mode:	Refer to section 5.3 for details					
	Test results:	Passed					

Measurement data:

Neutral:

Trace: 1

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Bionicbird EUT

Model : BB1

Test Mode

Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
200	MHz	dBu∜	dB	₫B	dBu₹	dBu∇	<u>dB</u>	
1	0.154	23.36	0.25	10.78	34.39	55.78	-21.39	Average
2	0.158	25.99	0.25	10.78	37.02	65.56	-28.54	QP
3	0.277	22.04	0.26	10.74	33.04	60.90	-27.86	QP
4	0.299	17.30	0.26	10.74	28.30	50.28	-21.98	Average
2 3 4 5 6 7	0.337	16.11	0.26	10.73	27.10	49.27	-22.17	Average
6	0.751	20.29	0.19	10.79	31.27	56.00	-24.73	QP
7	0.751	14.66	0.19	10.79	25.64	46.00	-20.36	Average
8	1.060	16.73	0.23	10.88	27.84	56.00	-28.16	QP
8	17.199	20.92	0.25	10.91	32.08	50.00	-17.92	Average
10	18.524	22.19	0.26	10.91	33.36	60.00	-26.64	QP
11	22.535	24.00	0.38	10.89	35.27	50.00	-14.73	Average
12	22.775	24.99	0.39	10.89	36.27	60.00	-23.73	QP

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : Bionicbird

Model : BB1

Test Mode

Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Re

lemark	: Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	−−−dB	dBu₹	dBu∜	<u>dB</u>	
1	0.154	28.99	0.27	10.78	40.04	65.78	-25.74	QP
2	0.154	21.11	0.27	10.78	32.16	55.78	-23.62	Average
3	0.299	17.77	0.26	10.74	28.77	50.28	-21.51	Average
1 2 3 4 5 6 7	0.318	24.70	0.26	10.74	35.70		-24.05	
5	0.739	21.19	0.22	10.79	32.20	56.00	-23.80	QP
6	0.747	13.71	0.23	10.79	24.73	46.00	-21.27	Average
7	1.016	16.96	0.25	10.87	28.08	56.00	-27.92	QP
8	8.235	14.91	0.32	10.86	26.09	50.00	-23.91	Average
9	18.524	25.20	0.33	10.91	36.44	60.00	-23.56	QP
10	18.524	22.58	0.33	10.91	33.82	50.00	-16.18	Average
11	22.535	26.10	0.44	10.89	37.43	60.00	-22.57	QP
12	22.655	24.37	0.44	10.89	35.70	50.00	-14.30	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.07		
Middle	-0.11	30.00	Pass
Highest	-0.05		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	>500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.77			
Middle	0.75	>500	Pass	
Highest	0.77			

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.10		
Middle	1.09	N/A	N/A
Highest	1.10		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-0.72		
Middle	-0.47	8.00	Pass
Highest	-1.05		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
Test Instruments:	Ground Reference Plane Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

 .2 Radiated Emiosion Motified							
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 20	003					
Test Frequency Range:	2.3GHz to 2.5G	Hz					
Test site:	Measurement [Distance: 3m					
Receiver setup:	Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Valu RMS 1MHz 3MHz Average Valu						
Limit:		TOTAL TIVILIZ OWN IZ					
	Frequency Limit (dBuV/m @3m) Remark						
	Above '	1GHz	54.0 74.0		Average Value Peak Value		
Test Procedure:	the ground to determine to determine to determine antenna, we tower. 3. The antenna the ground Both horizon make their 4. For each so case and to find the 5. The test-results of the emist the limit spoof the EUT have 10 dis	at a 3 meter cane the position of the position of the position of the position of the position and height is variable to determine the post and vertical and vertical and vertical and vertical the rota table maximum reading the position of	amber. The too the highest saway from the don the too ed from one maximum al polarization was turned to maximum He EUT in peasting could bred. Otherw be re-tested	table was rost radiation. the interfer op of a variation are meter to for a value of the ons of the are to heights of the degree at Detect old Mode. It is mode was the stopped arise the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 the ees to 360 degrees		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier						
Test Instruments:	Refer to section						
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Bionicbird

: BB1 Model Test mode : BLE-L mode
Power Rating : DC 3.7V
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

III.			Antenna Factor						Remark
- 12	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000				0.00 0.00				

Test channel: Lowest

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Bionicbird
Model : BB1
Test mode : BLE-L mode
Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen

REMARK :

	Freq		Antenna Factor					
,	MHz	dBu∜		 <u>d</u> B	dBuV/m	dBu∀/m	<u>dB</u>	
	2390,000 2390,000							

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Bionicbird

: BB1 Model Test mode : BLE-H mode
Power Rating : DC 3.7V
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen

REMARK

1 2

Freq		Antenna Factor				Limit Line	(C) (C) (C) (C) (C)	
MHz	dBu₹	dB/m	d <u>B</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
2483.500 2483.500								

Test channel: Highest

Vertical:

Site Condition 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL EUT

: Bionicbird Model BB1

Test mode : BLE-H mode
Power Rating : DC 3.7V
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

1 2

Freq		Antenna Factor						
MHz	dBu∜	dB/m	₫Ē	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Date: 4.DEC.2014 13:40:57

30MHz~25GHz

Date: 4.DEC.2014 13:26:31

30MHz~25GHz

Date: 4.DEC.2014 13:21:28

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4:200)3							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 10112	RMS	1MHz	3MHz	Average Value				
Limit:		T							
	Frequency Limit (dBuV/m @3m) Remark								
	30MHz-88MHz 40.0 Quasi-peak Value								
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH		46.0		Quasi-peak Value				
	960MHz-1GHz		54.0 54.0		Quasi-peak Value Average Value				
	Above 1GHz	<u> </u>	54.0 74.0		Peak Value				
Test Procedure:	the ground to determin 2. The EUT vantenna, was tower. 3. The antenrathe ground Both horizon make the make the make the make the make to find the maters and to find the material materials. 5. The test-respective B. 6. If the emission of the EUT have 10 dB.	ras placed on at a 3 meter e the position was set 3 m hich was mount a height is very to determine ontal and very neasurement. Suspected emperate the rota table maximum reactives system and width with sion level of the cified, then to would be repart and some succession would be repart and some succession would some succession with the succession would some succession would some succession with the succession would some succession with the succession would some succession would some succession with the succession would be succession with the succession would some succession with the succession with the succession would be succession with the succession with the succession would be succession.	the top of a camber. The of the highes eters away funted on the taried from one the maximulical polarizations, the Ena was turned ding. In was set of Maximum Hore EUT in peresting could be orted. Other did be re-tested.	table was st radiation. From the in op of a variance meter to um value of ions of the EUT was and to height from 0 deg to Peak Dold Mode. ak mode we stopped wise the erd one by on	le 0.8 meters above rotated 360 degrees				

Below 1GHz

Horizontal:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL

EUT : Bionicbird

Model : BB1 Test mode : BLE Mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK :

LMAKK									
	Freq		Antenna Factor						
=	MHz	dBu∇	<u>dB</u> /π		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>db</u>	
1	278.067	31.89	12.63	1.71	28.49	17.74	46.00	-28.26	QP
2	454.310	32.16	15.58	2.27	28.88	21.13	46.00	-24.87	QP
3	629.477	38.66	18.57	2.72	28.84	31.11	46.00	-14.89	QP
4	796.183	38.71	20.01	3.16	28.22	33.66	46.00	-12.34	QP
5	903.309	41.89	21.12	3.36	27.87	38.50	46.00	-7.50	QP
6	965.542	42.51	21.52	3.48	27.63	39.88	54.00	-14.12	QP

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Bionicbird Condition

EUT : BB1 Model : BLE Mode Test mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen

REMARK

Freq								
MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
107.134	33.39	12.49	1.02	29.48	17.42	43.50	-26.08	QP
129.015	34.09	9.12	1.19	29.33	15.07	43.50	-28.43	QP
647.386	39.85	18.62	2.78	28.79	32.46	46.00	-13.54	QP
782.345	41.73	19.82	3.13	28.29	36.39	46.00	-9.61	QP
900.147	41.12	21.09	3.35	27.88	37.68	46.00	-8.32	QP
968.934	37.66	21.55	3.49	27.61	35.09	54.00	-18.91	QP
	MHz 107.134 129.015 647.386 782.345 900.147	MHz dBuV 107.134 33.39 129.015 34.09 647.386 39.85 782.345 41.73 900.147 41.12	MHz dBuV dB/m 107.134 33.39 12.49 129.015 34.09 9.12 647.386 39.85 18.62 782.345 41.73 19.82 900.147 41.12 21.09	Freq Level Factor Loss MHz dBuV dB/m dB 107.134 33.39 12.49 1.02 129.015 34.09 9.12 1.19 647.386 39.85 18.62 2.78 782.345 41.73 19.82 3.13 900.147 41.12 21.09 3.35	MHz dBuV dB/m dB dB 107.134 33.39 12.49 1.02 29.48 129.015 34.09 9.12 1.19 29.33 647.386 39.85 18.62 2.78 28.79 782.345 41.73 19.82 3.13 28.29 900.147 41.12 21.09 3.35 27.88	MHz dBuV dB/m dB dB dB dBuV/m 107.134 33.39 12.49 1.02 29.48 17.42 129.015 34.09 9.12 1.19 29.33 15.07 647.386 39.85 18.62 2.78 28.79 32.46 782.345 41.73 19.82 3.13 28.29 36.39 900.147 41.12 21.09 3.35 27.88 37.68	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dB dBuV/m dBuV/m	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB

Above 1GHz

Т	Test channel:			Lowest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.88	31.53	8.90	40.24	47.07	74.00	-26.93	Vertical
4804.00	47.65	31.53	8.90	40.24	47.84	74.00	-26.16	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	37.02	31.53	8.90	40.24	37.21	54.00	-16.79	Vertical
4804.00	36.77	31.53	8.90	40.24	36.96	54.00	-17.04	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	47.56	31.58	8.98	40.15	47.97	74.00	-26.03	Vertical
4884.00	48.77	31.58	8.98	40.15	49.18	74.00	-24.82	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	37.88	31.58	8.98	40.15	38.29	54.00	-15.71	Vertical
4884.00	38.69	31.58	8.98	40.15	39.10	54.00	-14.90	Horizontal

T	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.88	31.69	9.08	40.03	47.62	74.00	-26.38	Vertical
4960.00	48.76	31.69	9.08	40.03	49.50	74.00	-24.50	Horizontal

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.74	31.69	9.08	40.03	37.48	54.00	-16.52	Vertical
4960.00	38.57	31.69	9.08	40.03	39.31	54.00	-14.69	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366