

The Costs of Ignoring Stock Structure

How VMS and logbook data might be used to compliment surveys

Colin Millar European Commission Joint Research Center

The problem with fishers is that they do not 'sample' uniformly

A uniform distribution

$$Index = \frac{N}{n} \sum_{i=1}^{n} catch_{i}$$

n = no. of samplesN = no. of sampling units

Fishing tends to be a focused activity

$$Index \neq \frac{N}{n} \sum_{i=1}^{n} catch_{i}$$

n = no. of samplesN = no. of sampling units

So there is an unequal probability of sampling

Unequal probability sampling Hansen-Hurwitz estimator

$$Index = \frac{1}{n} \sum_{i=1}^{n} \frac{catch_i}{p_i}$$

n = no. of samples $p_i = \text{probability of sampling}$

Catch = $q \times Abundance$ (in fished area)

There are also regions that are never sampled

A non uniform distribution with regions of **zero** sampling probability

Index_{fished population}

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{catch_{i}}{p_{i}}$$

Catch = $q \times Abundance$ (in fished area)

What is the probability of sampling?

Use the spatial location of fishing pings to estimate the probability of sampling

Index_{fished population}

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{catch_{i}}{\hat{p}_{i}}$$

Comparing with Survey Data

We can also estimate the surface of $q \times Abundance$

Use the spatial location of fishing pings and catch observations to estimate a **smooth** density surface

$$E[catch_i] = D_{loc(i)}$$

where *D* has spatial structure

Filling in the gaps

To combine we need the ratio in catchabilities

$$E[catch_i] = D_{loc(i)}$$

 $E[survey_j] = r \times D_{loc(j)}$

where

$$r=rac{q_{surv}}{q}$$

Filling in the gaps

Combining survey and catch data

$$\frac{1}{n}\sum_{i=1}^{n}\frac{catch_{i}}{\hat{p}_{i}}+r\frac{N_{s}}{n_{s}}\sum_{i=1}^{n_{s}}survey_{i}$$

 $n_s = \text{no. of survey samples}$

 $N_s = \text{no. of 'unfished' units}$ r = the catchability ratio

VMS - Vessel Monitoring System

Reports the position of a vessel every 2 hours Also reports speed and vessel ID