Your Name Goes Here Math 387 Analysis I Homework 14

Problem List

7.3 {1,2,3} **7.4** {1,2}

Spring 2016 Due: Wednesday, May 11

H/T: Last Names

Unassigned, but suggested: Problem 4 in Section 7.3 Unassigned, but suggested: Problem 4 in Section 7.4

14.1 Problem 7.3.1

Let (X,d) be a metric space and let $A \subset X$. Let E be the set of all $x \in X$ such that there exists a sequence $\{x_n\}$ in A that converges to x . Show $E = \overline{A}$.	
Solution.	
14.2 Problem 7.3.2	
a) Show that $d(x,y) := \min\{1, x-y \}$ defines a metric on \mathbb{R} . b) Show that a sequence converges if it converges in the standard metric. c) Find a bounded sequence in (\mathbb{R}, d) that contains no converge.	
Solution.	
14.3 Problem 7.3.3	
Prove Proposition 7.3.4 which says a convergent sequence in a metric space is bounded.	
Solution.	
14.4 Problem 7.4.1 Let (X, d) be a metric space and A a finite subset of X . Show that A is compact.	
Solution.	

Problem 7.4.2 14.5

Let $A = \{1/n : n \in \mathbb{N}\} \subset \mathbb{R}$. a) Show that A is not compact directly using the definition. b) Show that $A \cup \{0\}$ is compact directly using the definition.

Solution.	
-----------	--