Assignment_8

Weijie Gao

11/28/2017

```
suppressWarnings(library(forecast))
suppressWarnings(library(xts))
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
suppressWarnings(library(fGarch))
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Attaching package: 'timeSeries'
## The following object is masked from 'package:zoo':
##
##
       time<-
## Loading required package: fBasics
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
dataPath <- "~/Google Drive/2017 Fall/Time Series/Week8"</pre>
seat price <- read.csv(paste(dataPath, "seat price.csv", sep='/'), header=TRUE)</pre>
classification_data <- read.csv(paste(dataPath, "Contracts_Classification.csv"</pre>
,sep='/'), header=TRUE)
```

```
volume_data <- read.csv(paste(dataPath, "Contracts_Volume.csv", sep='/'), heade</pre>
r=TRUE)
head(seat_price)
##
       Date
                CME
                         IMM
                                 IOM
## 1 2001/1 188000 183125.0 130000
## 2 2001/2 250000 225000.0 170000
## 3 2001/3 250000 292500.0 242500
## 4 2001/4 287500 298750.0 291500
## 5 2001/5 325000 305000.0 275750
## 6 2001/6 375000 355333.3 260000
head(classification data)
     Commodity.Code Division
##
## 1
                  48
                          CME
## 2
                  56
                          CME
## 3
                  62
                          CME
## 4
                  ΒZ
                          CME
## 5
                  CB
                          CME
## 6
                 CP0
                          CME
head(volume data)
           Date Commodity.Indicator Product.Short.Desc Future.Option
##
## 1 01/01/2000
                                   ED
                                            EURO DLR FUT
                                                                       F
                                                                       F
## 2 01/01/2000
                                   SP
                                             S&P 500 FUT
## 3 01/01/2000
                                   ES
                                           EMINI S&P FUT
                                                                       F
## 4 01/01/2000
                                   ED
                                           EURO DLR CALL
                                                                       0
## 5 01/01/2000
                                            EURO DLR PUT
                                                                       0
                                   ED
## 6 01/01/2000
                                   J1
                                           JAPAN YEN FUT
                                                                       F
     Electronic.Volume Total.Volume
##
## 1
                232,796
                             8379642
## 2
                 88,426
                             1915082
## 3
             1,302,447
                             1305618
## 4
                  6,600
                              972970
                  6,303
## 5
                              942420
## 6
                 39,288
                              436505
1. CME
```

Task A

```
seat <- "CME"
commodity <- c(as.character(classification_data$Commodity.Code[classification</pre>
data$Division=="CME"]))
commodity <- unique(commodity)</pre>
commodity
                "56"
                        "62"
                                "BZ"
                                                              "DA"
                                                                      "DB"
## [1] "48"
                                       "CB"
                                               "CP0"
                                                       "CSC"
                                                                              "DK"
## [11] "DP"
                "DY"
                        "EG"
                                "EQ"
                                       "ET"
                                               "FB"
                                                       "FC"
                                                               "GD"
                                                                      "GN"
                                                                              "GNP"
                "H2"
                        "H3"
                                       "ISM"
                                               "LB"
                                                       "LC"
                                                              "LH"
                                                                              "MX"
## [21] "H1"
                                "H4"
                                                                      "LN"
```

```
## [31] "NF" "PB" "PC" "UF" "UL" "Z-BB" "Z-BD" "Z-E" "Z-ET" "Z-LB"
## [41] "Z-LU" "Z-PO" "Z-PY" "Z-ST" "Z-TR" "Z-UC"
tradable_commodity <- is.element(volume_data$Commodity.Indicator,commodity)</pre>
head(tradable_commodity,3)
## [1] FALSE FALSE FALSE
volume <- volume data[tradable commodity,]</pre>
head(volume, 3)
            Date Commodity.Indicator Product.Short.Desc Future.Option
## 9 01/01/2000
                                           LV CATTLE FUT
                                   48
                                                                      F
## 17 01/01/2000
                                   LN
                                           LEAN HOGS FUT
## 23 01/01/2000
                                          FDR CATTLE FUT
                                                                      F
      Electronic.Volume Total.Volume
##
## 9
                       0
                               347290
## 17
                               175399
                       0
## 23
                       0
                                73232
volume$Electronic.Volume <- as.numeric(gsub(",","",volume$Electronic.Volume,f</pre>
ixed=TRUE))
volume$Floor.Volume <- volume$Total.Volume-volume$Electronic.Volume</pre>
head(volume,3)
##
            Date Commodity.Indicator Product.Short.Desc Future.Option
## 9 01/01/2000
                                   48
                                           LV CATTLE FUT
## 17 01/01/2000
                                   LN
                                           LEAN HOGS FUT
                                                                      F
## 23 01/01/2000
                                   62
                                          FDR CATTLE FUT
                                                                      F
      Electronic.Volume Total.Volume Floor.Volume
##
## 9
                       0
                               347290
                                            347290
## 17
                       0
                               175399
                                            175399
## 23
                       0
                                73232
                                             73232
# aggregate upon derivative types.
cme_volume_0 <- aggregate(cbind(Electronic.Volume, Floor.Volume,</pre>
Total.Volume)~Date+Commodity.Indicator, data=volume, sum)
head(cme volume 0,3)
           Date Commodity.Indicator Electronic.Volume Floor.Volume
##
## 1 01/01/2000
                                  48
                                                      0
                                                              397437
## 2 01/01/2001
                                  48
                                                      0
                                                              595662
## 3 01/01/2002
                                  48
                                                              371730
     Total.Volume
## 1
           397437
## 2
           595662
## 3
           371730
dim(cme_volume_0)
## [1] 2038
```

```
# drop any data before date 1/1/2001
cme_volume <- cme_volume_0[!as.Date(cme_volume_0$Date, "%m/%d/%Y") < as.Date(</pre>
"2001-01-01"),]
head(cme volume,3)
           Date Commodity.Indicator Electronic.Volume Floor.Volume
## 2 01/01/2001
                                                               595662
## 3 01/01/2002
                                   48
                                                               371730
## 4 01/01/2003
                                   48
                                                               411141
##
     Total.Volume
## 2
           595662
## 3
           371730
## 4
           411141
dim(cme volume)
## [1] 1942
                5
names(cme volume)
## [1] "Date"
                               "Commodity.Indicator" "Electronic.Volume"
## [4] "Floor.Volume"
                               "Total.Volume"
# aggregate CME based on Date
cme_volume<-aggregate(cbind(Electronic.Volume, Floor.Volume, Total.Volume)~Da</pre>
te, data=cme volume, sum)
head(cme volume,3)
##
           Date Electronic. Volume Floor. Volume Total. Volume
                                          939008
                                                        939008
## 1 01/01/2001
                                 0
## 2 01/01/2002
                                          633643
                                                        633650
## 3 01/01/2003
                               929
                                          729796
                                                        730725
# order by date
cme_volume <- cme_volume[order(as.Date(cme_volume$Date, "%m/%d/%Y")),]</pre>
head(cme_volume,5)
##
            Date Electronic. Volume Floor. Volume Total. Volume
## 1 01/01/2001
                                   0
                                           939008
                                                         939008
## 14 02/01/2001
                                   0
                                           692906
                                                         692906
## 27 03/01/2001
                                   0
                                           803275
                                                         803275
## 40 04/01/2001
                                   0
                                           612603
                                                         612603
## 53 05/01/2001
                                   0
                                           714467
                                                         714467
tail(cme volume,5)
             Date Electronic. Volume Floor. Volume Total. Volume
##
## 104 08/01/2013
                             1851029
                                            309396
                                                         2160425
## 117 09/01/2013
                             2309003
                                            389281
                                                         2698284
## 130 10/01/2013
                                                         2590049
                             2208718
                                            381331
## 143 11/01/2013
                             2013552
                                            370374
                                                         2383926
## 156 12/01/2013
                             1679846
                                            317249
                                                         1997095
```

```
# combine trading volume with seat price.
cme_seat_price <- seat_price[[toupper(seat)]]</pre>
head(cme_seat_price)
## [1] 188000 250000 250000 287500 325000 375000
cme volume$Seat.Price <- cme seat price</pre>
head(cme_volume,3)
##
            Date Electronic.Volume Floor.Volume Total.Volume Seat.Price
## 1 01/01/2001
                                          939008
                                                       939008
                                                                   188000
## 14 02/01/2001
                                  0
                                          692906
                                                        692906
                                                                   250000
## 27 03/01/2001
                                  0
                                          803275
                                                       803275
                                                                   250000
Split data into train and test
# Partion the training and testing data based on the date of trading.
# training data: data with date before year 2013
# testing data: data with date in year 2013
cme_train <- cme_volume[as.Date(cme_volume$Date,"%m/%d/%Y") < as.Date("2013-0")</pre>
1-01"),]
cme test <- cme volume[!as.Date(cme volume$Date,"%m/%d/%Y") < as.Date("2013-0")</pre>
1-01"),]
# create an empty list to store forecast values
seat_price_forecast <- list()</pre>
1.1 Linear regression
cme lm <- lm(Seat.Price~Electronic.Volume+Floor.Volume, data=cme train)</pre>
summary(cme_lm)
##
## Call:
## lm(formula = Seat.Price ~ Electronic.Volume + Floor.Volume, data = cme_tra
in)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -498555 -141758 -31015
                             66022 936120
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     9.297e+04 6.514e+04
                                             1.427
                                             6.094 9.95e-09 ***
## Electronic.Volume 1.658e-01 2.721e-02
## Floor.Volume
                     4.308e-01 5.954e-02
                                             7.235 2.73e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 235200 on 141 degrees of freedom
## Multiple R-squared: 0.3251, Adjusted R-squared: 0.3155
## F-statistic: 33.96 on 2 and 141 DF, p-value: 9.144e-13
seat_price_forecast$lm <- predict(cme_lm, cme_test)</pre>
```

```
1.2 Linear regression with ARMA errors (use arima with xreg)
cme_lm_arma_errors <- auto.arima(cme_train$Seat.Price, xreg=cme_train[,c(2,3)]</pre>
], allowdrift = FALSE)
summary(cme_lm_arma_errors)
## Series: cme train$Seat.Price
## Regression with ARIMA(1,1,2) errors
##
## Coefficients:
                                   Electronic.Volume Floor.Volume
##
             ar1
                     ma1
                              ma2
##
         -0.5312 0.5857
                          0.3338
                                               0.0414
                                                             0.0090
## s.e.
          0.1497 0.1480 0.0928
                                               0.0367
                                                             0.0249
##
## sigma^2 estimated as 3.787e+09: log likelihood=-1777.43
## AIC=3566.85
                 AICc=3567.47
                                 BIC=3584.63
##
## Training set error measures:
                                                          MAPE
##
                             RMSE
                                       MAE
                                                 MPE
                                                                  MASE
                     ME
## Training set 806.638 60241.22 40170.73 0.1031762 6.501965 1.00873
##
                        ACF1
## Training set -0.01528629
seat_price_forecast$lm_arma_errors <- predict(cme_lm_arma_errors, n.ahead=12,</pre>
newxreg = cme\_test[,c(2,3)])$mean
1.3 ARIMA
cme arima <- auto.arima(cme train$Seat.Price, allowdrift = FALSE)</pre>
summary(cme_arima)
## Series: cme_train$Seat.Price
## ARIMA(1,1,2)
##
## Coefficients:
##
                     ma1
                              ma2
             ar1
##
         -0.5097 0.5635
                          0.3139
          0.1527 0.1538 0.0915
## s.e.
##
## sigma^2 estimated as 3.792e+09: log likelihood=-1778.53
## AIC=3565.05 AICc=3565.34
                               BIC=3576.9
##
## Training set error measures:
                      ME
                              RMSE
                                        MAE
                                                   MPE
                                                           MAPE
                                                                    MASE
## Training set 1180.256 60715.16 40093.21 0.1353883 6.484681 1.006783
                        ACF1
## Training set -0.01507773
seat price forecast$arima <- forecast(cme arima,h=12)$mean</pre>
```

1.4 Seasonal ARIMA (SARIMA)

```
cme sarima <- auto.arima(ts(cme train$Seat.Price, frequency = 12), allowdrift</pre>
= FALSE)
summary(cme_sarima)
## Series: ts(cme_train$Seat.Price, frequency = 12)
## ARIMA(1,1,2)
##
## Coefficients:
##
             ar1
                 ma1
                            ma2
        -0.5097 0.5635 0.3139
##
## s.e. 0.1527 0.1538 0.0915
## sigma^2 estimated as 3.792e+09: log likelihood=-1778.53
## AIC=3565.05 AICc=3565.34 BIC=3576.9
##
## Training set error measures:
                            RMSE
                                      MAE
                                                MPE
                                                        MAPE
                                                                  MASE
##
                     ME
## Training set 1180.256 60715.16 40093.21 0.1353883 6.484681 0.2048874
##
                       ACF1
## Training set -0.01507773
```

1.5 Fractional ARIMA (ARFIMA)

```
acf(cme_train$Seat.Price, main = "CME Seat Price Before 2013")
```

CME Seat Price Before 2013


```
cme_arfima <- arfima(cme_train$Seat.Price)</pre>
summary(cme_arfima)
##
## Call:
     arfima(y = cme_train$Seat.Price)
##
##
## Coefficients:
            Estimate Std. Error
##
                                  z value Pr(>|z|)
           2.744e-01 7.653e-02 3.585e+00 0.000337 ***
## d
## ar.ar1 2.708e-01 3.446e-11 7.860e+09 < 2e-16 ***
## ar.ar2 6.374e-01 2.677e-10 2.381e+09 < 2e-16 ***
## ma.ma1 -4.392e-01 4.964e-02 -8.848e+00 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## sigma[eps] = 61381.44
## [d.tol = 0.0001221, M = 100, h = 1.889e-05]
## Log likelihood: -1792 ==> AIC = 3594.38 [5 deg.freedom]
seat_price_forecast$arfima <- forecast(cme_arfima , h=12)$mean</pre>
```

cme_seat_price_xts <- xts(cme_train\$Seat.Price, order.by = as.Date(cme_train\$</pre>

1.6 ARMA and GARCH combination

Date, "%m/%d/%Y"))

```
cme_log <- log(cme_seat_price_xts)
# in order to make data stationary, need to take first difference of cme_log
cme_log <- diff(cme_log)[-1]
plot(cme_log)</pre>
```

cme_log


```
# find p,q
cme_arma <- auto.arima(cme_log)</pre>
summary(cme_arma)
## Series: cme log
## ARIMA(0,0,0) with zero mean
## sigma^2 estimated as 0.007943:
                                    log likelihood=142.83
## AIC=-283.66
                 AICc=-283.63
                                 BIC=-280.7
##
## Training set error measures:
                                   RMSE
                                               MAE MPE MAPE
                                                                  MASE
                         ME
##
## Training set 0.005604398 0.08912215 0.06304191 100 100 0.7582197
##
                       ACF1
## Training set 0.04236152
# from summary results, we will choose p=2, q=2
cme_garch <- garchFit(~arma(2,2) + garch(1,1), data=cme_log, cond.dist = "std</pre>
```

```
", trace=F)
summary(cme_garch)
##
## Title:
## GARCH Modelling
##
## Call:
   garchFit(formula = ~arma(2, 2) + garch(1, 1), data = cme_log,
##
      cond.dist = "std", trace = F)
##
## Mean and Variance Equation:
## data ~ arma(2, 2) + garch(1, 1)
## <environment: 0x7f8b47118c78>
## [data = cme_log]
##
## Conditional Distribution:
## std
##
## Coefficient(s):
##
           mu
                       ar1
                                    ar2
                                                 ma1
                                                              ma2
##
   0.00077357
                0.28505793
                             0.48505406
                                        -0.17507216
                                                     -0.43417078
##
                    alpha1
                                  beta1
                                               shape
        omega
## 0.00724948
                0.49659210
                             0.00000001
                                          2.79138169
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
##
           Estimate Std. Error t value Pr(>|t|)
## mu
          7.736e-04
                      2.221e-03
                                  0.348 0.72756
          2.851e-01
                                   1.031 0.30265
## ar1
                      2.765e-01
## ar2
         4.851e-01 1.569e-01
                                3.091 0.00200 **
                                  -0.644 0.51974
## ma1
         -1.751e-01
                      2.720e-01
## ma2
         -4.342e-01
                                 -3.150 0.00163 **
                      1.378e-01
         7.249e-03
## omega
                                  1.362 0.17304
                      5.321e-03
## alpha1 4.966e-01
                      6.139e-01
                                   0.809 0.41855
                      6.784e-01
## beta1
         1.000e-08
                                   0.000 1.00000
## shape
         2.791e+00
                      9.903e-01
                                   2.819 0.00482 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log Likelihood:
## 164.562
              normalized: 1.150784
##
## Description:
## Fri Dec 1 21:42:35 2017 by user:
##
##
## Standardised Residuals Tests:
```

```
##
                                   Statistic p-Value
##
   Jarque-Bera Test
                       R
                            Chi^2 31.49075 1.451682e-07
                                   0.949012 4.179596e-05
## Shapiro-Wilk Test R
                            W
## Ljung-Box Test
                       R
                            Q(10) 3.674726 0.9608301
## Ljung-Box Test
                       R
                            Q(15) 10.31597 0.7994079
## Ljung-Box Test
                       R
                            Q(20) 12.52497 0.8968233
## Ljung-Box Test
                       R^2 Q(10) 7.148593 0.7113464
## Ljung-Box Test
                       R^2 Q(15) 8.476763 0.903251
## Ljung-Box Test
                       R^2 Q(20) 15.39135 0.7535939
## LM Arch Test
                            TR^2
                                   8.116551 0.7759572
                       R
##
## Information Criterion Statistics:
                   BIC
##
         ATC
                             SIC
                                      HQIC
## -2.175693 -1.989220 -2.183007 -2.099919
# forecast value
forecast cme log garch <- predict(cme garch, n.ahead=12)$meanForecast</pre>
# compute the price from forecast cme log garch
seat_price_forecast$garch <- as.numeric(tail(cme_seat_price_xts,1)*exp(cumsum</pre>
(forecast cme log garch)))
Task B (sMAPE)
smape <- function(fitted, actual) {</pre>
          return(2*mean(abs(fitted - actual) / (abs(fitted) + abs(actual))))
cme_smape <- mapply(smape, seat_price_forecast, list(cme_test$Seat.Price))</pre>
cme_smape
##
                 arima
                          arfima
          lm
                                     garch
## 0.3697493 0.1173591 0.0920966 0.1194568
cme_smape[which.min(cme_smape)]
      arfima
##
## 0.0920966
```

From sMAPE results, the ARFIMA model is the best one to forecast monthly prices for CME seat classes since ARFIMA model has the smallest sMAPE thus the best.

2. IMM

Task A

```
# IMM commodity subset
seat <- "IMM"
commodity_imm <- c(as.character(classification_data$Commodity.Code[classification_data$Division=="IMM"]))
commodity_imm <- unique(commodity_imm)
commodity_imm</pre>
```

```
##
     [1] "16E"
                 "36E"
                         "3F"
                                "AC"
                                        "AD"
                                               "AJ"
                                                       "AN"
                                                               "BF"
                                                                      "BP"
                                                                              "BY"
    [11] "C1"
                 "CA"
                         "CC"
                                "CD"
                                        "CN"
                                                "CNH"
                                                       "CU"
                                                               "CY"
                                                                      "CZ"
                                                                              "DJ"
##
    [21] "DNV"
                 "E1"
                         "E5B"
                                "E7"
                                        "EB"
                                               "EC"
                                                       "ED"
                                                               "EED"
                                                                      "EK"
                                                                              "EL"
##
    [31] "EM"
                 "EY"
                         "FR"
                                "FT"
                                        "FXD"
                                                "HC"
                                                       "IS"
                                                               "IY"
                                                                      "J1"
                                                                              "J7"
##
                                "KE"
##
    [41] "JB"
                 "JY"
                                        "KEV"
                                               "KFV"
                                                       "KJ"
                                                               "KRW"
                                                                      "KTV"
                                                                              "LBA"
                                                       "MB"
##
    [51] "M6A"
                 "M6B"
                         "M6C"
                                "M6E"
                                        "M6J"
                                               "M6S"
                                                               "MCD"
                                                                      "MIR"
                                                                              "MJY"
                 "MSF"
                         "NB"
                                "NE"
                                        "OSP"
                                               "PZ"
                                                       "R"
                                                               "RF"
                                                                      "RMB"
                                                                              "RME"
##
    [61] "MNH"
    [71] "RMY"
                 "RP"
                         "RU"
                                "RY"
                                        "S0"
                                               "S2"
                                                       "S5"
                                                               "SE"
                                                                      "SEV"
                                                                              "SF"
##
                                        "TB"
    [81] "SIR"
                 "SJ"
                         "SKV"
                                "T1"
                                               "TRE"
                                                       "TRY"
                                                               "TZ"
                                                                      "UN"
                                                                              "YR"
##
                 "ZAR"
                         "Z-DC" "Z-DD" "Z-DM" "Z-DP" "Z-DY" "Z-FE" "Z-FM" "Z-FR
    [91] "Z"
##
## [101] "Z-IP" "Z-JM" "Z-MS" "Z-RD" "Z-RP" "Z-RY"
# filter out tradable commodities
tradable_commodity_imm <- is.element(volume_data$Commodity.Indicator,commodit</pre>
head(tradable_commodity_imm,3)
## [1] TRUE FALSE FALSE
volume_imm <- volume_data[tradable_commodity_imm,]</pre>
head(volume_imm,3)
##
            Date Commodity.Indicator Product.Short.Desc Future.Option
## 1 01/01/2000
                                             EURO DLR FUT
                                   ED
## 4 01/01/2000
                                    ED
                                            EURO DLR CALL
                                                                        0
## 5 01/01/2000
                                   ED
                                             EURO DLR PUT
                                                                        0
     Electronic.Volume Total.Volume
##
## 1
                232,796
                              8379642
## 4
                  6,600
                               972970
## 5
                  6,303
                               942420
# floor volume
volume_imm$Electronic.Volume <- as.numeric(gsub(",","",volume_imm$Electronic.</pre>
Volume, fixed=TRUE))
volume_imm$Floor.Volume <- volume_imm$Total.Volume-volume_imm$Electronic.Volu</pre>
me
head(volume_imm,3)
            Date Commodity.Indicator Product.Short.Desc Future.Option
                                             EURO DLR FUT
## 1 01/01/2000
                                   ED
```

```
## 4 01/01/2000
                                   ED
                                           EURO DLR CALL
## 5 01/01/2000
                                   ED
                                            EURO DLR PUT
                                                                       0
##
     Electronic.Volume Total.Volume Floor.Volume
## 1
                 232796
                             8379642
                                           8146846
## 4
                   6600
                              972970
                                            966370
## 5
                   6303
                              942420
                                            936117
# aggregate upon derivative types.
imm_volume_0 <- aggregate(cbind(Electronic.Volume, Floor.Volume,</pre>
Total.Volume)~Date+Commodity.Indicator, data=volume imm, sum)
head(imm volume 0,3)
           Date Commodity.Indicator Electronic.Volume Floor.Volume
##
## 1 02/01/2011
                                  16E
                                                                     0
## 2 03/01/2011
                                  16E
                                                      24
                                                                     0
## 3 04/01/2011
                                  16E
                                                      85
##
     Total.Volume
## 1
                11
## 2
                24
## 3
                85
dim(imm_volume_0)
## [1] 5723
                5
# drop any data before date 1/1/2001
imm_volume <- imm_volume_0[!as.Date(imm_volume_0$Date, "%m/%d/%Y") < as.Date(</pre>
"2001-01-01"),]
head(imm volume,3)
##
           Date Commodity. Indicator Electronic. Volume Floor. Volume
## 1 02/01/2011
                                  16E
                                                      11
                                                                     0
## 2 03/01/2011
                                 16E
                                                      24
                                                                     0
## 3 04/01/2011
                                 16E
                                                      85
                                                                     0
##
     Total.Volume
## 1
## 2
                24
## 3
                85
dim(imm_volume)
## [1] 5539
                5
# aggregate IMM based on Date
imm_volume<-aggregate(cbind(Electronic.Volume, Floor.Volume, Total.Volume)~Da
te, data=imm_volume,sum)
head(imm volume,3)
           Date Electronic. Volume Floor. Volume Total. Volume
## 1 01/01/2001
                            619988
                                        22520720
                                                      23140708
## 2 01/01/2002
                           1069075
                                        29434061
                                                      30503136
## 3 01/01/2003
                           1383632
                                        18505884
                                                      19889516
```

```
# order by date
imm volume <- imm_volume[order(as.Date(imm_volume$Date, "%m/%d/%Y")),]</pre>
head(imm_volume,3)
##
            Date Electronic. Volume Floor. Volume Total. Volume
## 1 01/01/2001
                             619988
                                        22520720
                                                      23140708
## 14 02/01/2001
                             554640
                                        17537808
                                                      18092448
## 27 03/01/2001
                             730558
                                        21537410
                                                      22267968
# combine trading volume with seat price.
imm_seat_price <- seat_price[[toupper(seat)]]</pre>
head(imm_seat_price)
## [1] 183125.0 225000.0 292500.0 298750.0 305000.0 355333.3
imm_volume$Seat.Price <- imm_seat_price</pre>
head(imm volume,3)
##
            Date Electronic.Volume Floor.Volume Total.Volume Seat.Price
## 1 01/01/2001
                             619988
                                        22520720
                                                      23140708
## 14 02/01/2001
                                        17537808
                                                      18092448
                             554640
                                                                   225000
## 27 03/01/2001
                             730558
                                        21537410
                                                      22267968
                                                                   292500
Split data into train and test
imm_train <- imm_volume[as.Date(imm_volume$Date,"%m/%d/%Y") < as.Date("2013-0")</pre>
1-01"),]
imm test <- imm volume[!as.Date(imm volume$Date,"%m/%d/%Y") < as.Date("2013-0")</pre>
1-01"),]
# create an empty list to store forecast values
seat price forecast imm <- list()</pre>
2.1 Linear regression
imm lm <- lm(Seat.Price~Electronic.Volume+Floor.Volume, data=imm train)
summary(imm lm)
##
## Call:
## lm(formula = Seat.Price ~ Electronic.Volume + Floor.Volume, data = imm_tra
in)
##
## Residuals:
##
       Min
                10 Median
                                 3Q
                                        Max
                      -7386
                              47466 453221
## -239141 -73553
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                     1.235e+05 3.584e+04
                                             3.445 0.000752 ***
## Electronic.Volume 3.761e-03 4.276e-04
                                             8.794 4.54e-15 ***
                     8.460e-03 1.407e-03 6.014 1.48e-08 ***
## Floor.Volume
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 119600 on 141 degrees of freedom
## Multiple R-squared: 0.3719, Adjusted R-squared: 0.363
## F-statistic: 41.75 on 2 and 141 DF, p-value: 5.736e-15
2.2 Linear regression with ARMA errors (use arima with xreg)
imm lm arma errors <- auto.arima(imm train$Seat.Price, xreg=imm train[,c(2,3)</pre>
], allowdrift = FALSE)
summary(imm_lm_arma_errors)
## Series: imm train$Seat.Price
## Regression with ARIMA(0,0,0) errors
##
## Coefficients:
##
         Electronic.Volume Floor.Volume
##
                    0.0048
                                   0.0127
## s.e.
                    0.0003
                                   0.0007
##
## sigma^2 estimated as 1.54e+10: log likelihood=-1892.26
## AIC=3790.51 AICc=3790.68 BIC=3799.42
## Training set error measures:
                             RMSE
                                                 MPE
                                                         MAPE
                                                                   MASE
                      ME
                                        MAE
## Training set 9546.991 123219.7 91730.28 -2.75446 22.19796 3.748694
##
                     ACF1
## Training set 0.6110219
seat_price_forecast_imm$lm_arma_errors <- predict(imm_lm_arma_errors, n.ahead</pre>
=12, newxreg = imm_test[,c(2,3)])$mean
2.3 ARIMA
imm_arima <- auto.arima(imm_train$Seat.Price, allowdrift = FALSE)</pre>
summary(imm_arima)
## Series: imm_train$Seat.Price
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
##
         0.4417
## s.e. 0.0768
##
## sigma^2 estimated as 1.233e+09: log likelihood=-1699.18
## AIC=3402.36 AICc=3402.45 BIC=3408.29
##
## Training set error measures:
##
                       ME
                              RMSE
                                         MAE
                                                    MPE
                                                            MAPE
                                                                       MASE
## Training set -83.58633 34863.45 22949.52 -0.2361661 5.862202 0.9378663
                      ACF1
## Training set 0.01505295
```

```
seat_price_forecast_imm$arima <- forecast(imm_arima,h=12)$mean</pre>
2.4 Seasonal ARIMA (SARIMA)
imm_sarima <- auto.arima(ts(imm_train$Seat.Price,frequency = 12), allowdrift</pre>
= FALSE)
summary(imm_sarima)
## Series: ts(imm_train$Seat.Price, frequency = 12)
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
##
         0.4417
## s.e. 0.0768
##
## sigma^2 estimated as 1.233e+09: log likelihood=-1699.18
## AIC=3402.36
                 AICc=3402.45
                                 BIC=3408.29
##
## Training set error measures:
                               RMSE
                                         MAE
                                                     MPE
                                                             MAPE
                                                                       MASE
##
                       ME
## Training set -83.58633 34863.45 22949.52 -0.2361661 5.862202 0.1951832
##
## Training set 0.01505295
seat_price_forecast_imm$sarima <- forecast(imm_sarima , h=12)$mean</pre>
2.5 Fractional ARIMA (ARFIMA)
acf(imm_train$Seat.Price, main = "IMM Seat Price Before 2013")
```

IMM Seat Price Before 2013


```
imm arfima <- arfima(imm train$Seat.Price)</pre>
summary(imm_arfima)
##
## Call:
     arfima(y = imm_train$Seat.Price)
##
##
## Coefficients:
##
          Estimate Std. Error z value Pr(>|z|)
                                0.593
## d
           0.03585
                      0.06041
                                         0.553
## ar.ar1 0.94468
                      0.15868
                                5.953 2.63e-09 ***
## ma.ma1 -0.43898
                      0.03266 -13.440 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## sigma[eps] = 34603.46
## [d.tol = 0.0001221, M = 100, h = 1.802e-05]
## Log likelihood: -1709 ==> AIC = 3426.743 [4 deg.freedom]
seat_price_forecast_imm$arfima <- forecast(imm_arfima, h=12)$mean</pre>
```

2.6 ARMA and GARCH combination

```
imm_seat_price_xts <- xts(imm_train$Seat.Price, order.by = as.Date(imm_train$
Date, "%m/%d/%Y"))
imm_log <- log(imm_seat_price_xts)</pre>
```

```
# in order to make data stationary, need to take first difference of imm_log
imm_log <- diff(imm_log)[-1]
plot(imm_log)</pre>
```

imm_log


```
# find p,q
imm_arma <- auto.arima(imm_log)</pre>
summary(imm_arma)
## Series: imm_log
## ARIMA(1,1,1)
##
## Coefficients:
##
            ar1
                     ma1
         0.3045
                 -0.9694
##
## s.e. 0.0858
                  0.0282
##
## sigma^2 estimated as 0.006914: log likelihood=151.58
## AIC=-297.16
                 AICc=-296.98
                                 BIC=-288.29
##
## Training set error measures:
                                                                  MASE
##
                          ME
                                   RMSE
                                                MAE MPE MAPE
## Training set -0.01429273 0.08227589 0.05985959 NaN Inf 0.7920005
```

```
##
                       ACF1
## Training set -0.01195338
# from summary results, we will choose p=0, q=2
imm_garch <- garchFit(\sim arma(0,2) + garch(1,1), data=imm_log, cond.dist = "std")
", trace=F)
summary(imm_garch)
##
## Title:
## GARCH Modelling
##
## Call:
   garchFit(formula = ~arma(0, 2) + garch(1, 1), data = imm_log,
       cond.dist = "std", trace = F)
##
##
## Mean and Variance Equation:
## data \sim arma(0, 2) + garch(1, 1)
## <environment: 0x7f8b495e8a68>
## [data = imm_log]
##
## Conditional Distribution:
## std
##
## Coefficient(s):
##
                        ma1
                                     ma2
                                                omega
                                                            alpha1
            mu
## -0.00520074
                 0.24340748
                              0.02667907
                                           0.75169186
                                                        0.00000001
##
         beta1
                      shape
## 0.93755904
                 2.00038512
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
            Estimate Std. Error
                                 t value Pr(>|t|)
##
                      6.399e-03 -8.130e-01
## mu
          -5.201e-03
                                             0.4164
## ma1
          2.434e-01
                      6.217e-02 3.915e+00 9.03e-05 ***
          2.668e-02
## ma2
                     7.117e-02 3.750e-01
                                            0.7078
         7.517e-01
                      4.153e-01 1.810e+00
                                            0.0703 .
## omega
## alpha1 1.000e-08
                      4.564e+01 0.000e+00
                                             1.0000
## beta1
          9.376e-01
                      1.914e-02 4.898e+01 < 2e-16 ***
                      2.470e-09 8.100e+08 < 2e-16 ***
## shape
          2.000e+00
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Log Likelihood:
## 173.5959
                normalized: 1.213958
##
## Description:
## Fri Dec 1 21:42:38 2017 by user:
```

```
##
##
## Standardised Residuals Tests:
##
                                   Statistic p-Value
##
   Jarque-Bera Test
                       R
                            Chi^2 68.38173 1.44329e-15
##
   Shapiro-Wilk Test R
                            W
                                   0.9453694 2.157733e-05
## Ljung-Box Test
                       R
                            Q(10) 8.713318 0.5595097
## Ljung-Box Test
                       R
                            Q(15) 15.49319 0.4165094
## Ljung-Box Test
                       R
                            Q(20) 20.26966 0.4411787
## Ljung-Box Test
                       R^2 Q(10) 4.586855 0.9170157
## Ljung-Box Test
                       R^2 Q(15) 6.671226 0.9661393
## Ljung-Box Test
                       R^2 Q(20) 14.23188 0.8185472
## LM Arch Test
                            TR^2
                       R
                                   6.608638 0.8823567
##
## Information Criterion Statistics:
                   BIC
                                      HQIC
                             SIC
## -2.330013 -2.184979 -2.334514 -2.271078
# forecast value
forecast imm log garch <- predict(imm garch, n.ahead=12)$meanForecast</pre>
# compute the price from forecast_cme_log_garch
seat_price_forecast_imm$garch <- as.numeric(tail(imm_seat_price_xts,1)*exp(cu</pre>
msum(forecast_imm_log_garch)))
Task B
smape <- function(fitted, actual) {</pre>
          return(2*mean(abs(fitted - actual) / (abs(fitted) + abs(actual))))
imm_smape <- mapply(smape, seat_price_forecast_imm, list(imm_test$Seat.Price)</pre>
imm smape
##
       arima
                sarima
                          arfima
                                     garch
## 0.1829424 0.1829424 0.1347388 0.2192750
imm smape[which.min(imm smape)]
##
      arfima
## 0.1347388
```

From sMAPE results, the Fractional ARIMA model is the best one to forecast monthly prices for IMM seat classes since ARFIMA model has the smallest sMAPE thus the best.

3. IOM

Task A

```
# IOM commodity subset
seat <- "IOM"
commodity_iom <- c(as.character(classification_data$Commodity.Code[classification_data$Division=="IOM"]))</pre>
```

```
commodity_iom <- unique(commodity_iom)</pre>
head(commodity_iom, 30)
## [1] "12" "13" "48" "56" "62" "1#" "1A" "1B" "1C" "1F" "1J" "1K" "1P" "1S"
## [15] "1T" "1U" "1X" "1Y" "1Z" "2#" "2A" "2B" "2C" "2D" "2J" "2K" "2P" "2S"
## [29] "2T" "2U"
# filter out tradable commodities
tradable_commodity_iom <- is.element(volume_data$Commodity.Indicator,commodit</pre>
y iom)
head(tradable_commodity_iom,3)
## [1] TRUE TRUE TRUE
volume_iom <- volume_data[tradable_commodity_iom,]</pre>
head(volume_iom,3)
##
           Date Commodity.Indicator Product.Short.Desc Future.Option
## 1 01/01/2000
                                  ED
                                            EURO DLR FUT
                                                                      F
## 2 01/01/2000
                                  SP
                                             S&P 500 FUT
                                                                      F
## 3 01/01/2000
                                  ES
                                           EMINI S&P FUT
                                                                      F
     Electronic.Volume Total.Volume
## 1
               232,796
                             8379642
## 2
                             1915082
                88,426
## 3
             1,302,447
                             1305618
# floor volume
volume_iom$Electronic.Volume <- as.numeric(gsub(",","",volume_iom$Electronic.</pre>
Volume, fixed=TRUE))
volume iom$Floor.Volume <- volume iom$Total.Volume-volume iom$Electronic.Volu</pre>
head(volume_iom,3)
           Date Commodity.Indicator Product.Short.Desc Future.Option
                                            EURO DLR FUT
## 1 01/01/2000
                                  ED
## 2 01/01/2000
                                  SP
                                             S&P 500 FUT
                                                                      F
                                           EMINI S&P FUT
                                                                      F
## 3 01/01/2000
                                  ES
     Electronic.Volume Total.Volume Floor.Volume
                 232796
                             8379642
## 1
                                           8146846
## 2
                 88426
                             1915082
                                           1826656
## 3
               1302447
                             1305618
                                              3171
# aggregate upon derivative types.
iom_volume_0 <- aggregate(cbind(Electronic.Volume, Floor.Volume,</pre>
Total.Volume)~Date+Commodity.Indicator, data=volume iom, sum)
head(iom_volume_0,3)
##
           Date Commodity.Indicator Electronic.Volume Floor.Volume
## 1 01/01/2008
                                  1A
                                                                   25
## 2 01/01/2013
                                                                   20
                                  1A
                                                   1095
## 3 02/01/2012
                                  1A
                                                    388
                                                                    0
## Total.Volume
```

```
## 1
               25
## 2
             1115
## 3
              388
# drop any data before date 1/1/2001
iom_volume <- iom_volume_0[!as.Date(iom_volume_0$Date, "%m/%d/%Y") < as.Date(</pre>
"2001-01-01"),]
head(iom volume,3)
##
           Date Commodity.Indicator Electronic.Volume Floor.Volume
## 1 01/01/2008
                                  1A
                                                                   25
## 2 01/01/2013
                                  1A
                                                   1095
                                                                   20
## 3 02/01/2012
                                  1A
                                                    388
                                                                    0
     Total.Volume
## 1
               25
## 2
             1115
## 3
              388
# aggregate IOM based on Date
iom volume<-aggregate(cbind(Electronic.Volume, Floor.Volume, Total.Volume)~Da
te, data=iom volume, sum)
head(iom_volume,3)
           Date Electronic. Volume Floor. Volume Total. Volume
## 1 01/01/2001
                           4765408
                                        26755761
                                                     31521169
## 2 01/01/2002
                           9805903
                                        34264048
                                                     44069951
## 3 01/01/2003
                          19835643
                                        23001043
                                                     42836686
# order by date
iom volume <- iom volume[order(as.Date(iom volume$Date, "%m/%d/%Y")),]</pre>
head(iom_volume,3)
##
            Date Electronic. Volume Floor. Volume Total. Volume
## 1 01/01/2001
                            4765408
                                         26755761
                                                      31521169
## 14 02/01/2001
                            4787364
                                         21688980
                                                      26476344
## 27 03/01/2001
                            6623579
                                         27416016
                                                      34039595
# combine trading volume with seat price.
iom_seat_price <- seat_price[[toupper(seat)]]</pre>
head(iom_seat_price)
## [1] 130000 170000 242500 291500 275750 260000
iom_volume$Seat.Price <- iom_seat_price</pre>
head(iom_volume,3)
##
            Date Electronic. Volume Floor. Volume Total. Volume Seat. Price
## 1 01/01/2001
                            4765408
                                         26755761
                                                      31521169
                                                                    130000
## 14 02/01/2001
                            4787364
                                         21688980
                                                      26476344
                                                                    170000
## 27 03/01/2001
                            6623579
                                         27416016
                                                      34039595
                                                                    242500
```

```
Split data into train and test
# Partion the training and testing data based on the date of trading.
# training data: data with date before year 2013
# testing data: data with date in year 2013
iom_train <- iom_volume[as.Date(iom_volume$Date,"%m/%d/%Y") < as.Date("2013-0")</pre>
1-01"),
iom test <- iom volume[!as.Date(iom_volume$Date,"%m/%d/%Y") < as.Date("2013-0")</pre>
1-01"),]
# create an empty list to store forecast values
seat_price_forecast_iom <- list()</pre>
3.1 Linear regression
iom lm <- lm(Seat.Price~Electronic.Volume+Floor.Volume, data=iom train)
summary(iom_lm)
##
## Call:
## lm(formula = Seat.Price ~ Electronic.Volume + Floor.Volume, data = iom_tra
##
## Residuals:
                1Q Median
       Min
                                 3Q
##
                                        Max
## -167073 -73531 -26641 53026 441262
##
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    6.018e+04 3.463e+04
                                          1.738
                                                  0.0844
## Electronic.Volume 3.927e-04 1.861e-04
                                          2.110
                                                  0.0366 *
                    5.491e-03 1.083e-03 5.071 1.23e-06 ***
## Floor.Volume
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 100200 on 141 degrees of freedom ## Multiple R-squared: 0.1578, Adjusted R-squared: 0.1458 ## F-statistic: 13.21 on 2 and 141 DF, p-value: 5.537e-06

seat_price_forecast_iom\$lm <- predict(iom_lm, iom_test)</pre>

3.2 Linear regression with ARMA errors (use arima with xreg)

##

```
iom lm arma errors <- auto.arima(iom train$Seat.Price, xreg=iom train[,c(2,3)</pre>
], allowdrift = FALSE)
summary(iom lm arma errors)
## Series: iom train$Seat.Price
## Regression with ARIMA(0,0,0) errors
##
## Coefficients:
         Electronic.Volume Floor.Volume
##
                                   0.0072
##
                     6e-04
                                   0.0005
## s.e.
                      2e-04
##
```

```
## sigma^2 estimated as 1.017e+10: log likelihood=-1862.42
                                 BIC=3739.76
## AIC=3730.85
                AICc=3731.02
## Training set error measures:
##
                      MF
                           RMSE
                                     MAE
                                               MPE
                                                       MAPE
                                                                 MASE
                                                                           ACF1
## Training set 3496.334 100164 77969.5 -16.07025 39.36036 4.640622 0.8024459
3.3 ARIMA
iom_arima <- auto.arima(iom_train$Seat.Price, allowdrift = FALSE)</pre>
summary(iom_arima)
## Series: iom train$Seat.Price
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
##
         0.3028
## s.e. 0.0825
##
## sigma^2 estimated as 697499902: log likelihood=-1658.41
## AIC=3320.82
                 AICc=3320.91
                                 BIC=3326.75
##
## Training set error measures:
                              RMSE
                                         MAE
                                                    MPE
                                                            MAPE
                       ME
                                                                       MASE
## Training set -360.7213 26226.18 15843.39 -0.7418089 7.064388 0.9429735
##
## Training set -0.01440655
seat_price_forecast_iom$arima <- forecast(iom_arima,h=12)$mean</pre>
3.4 Seasonal ARIMA (SARIMA)
iom_sarima <- auto.arima(ts(iom_train$Seat.Price,frequency = 12), allowdrift</pre>
= FALSE)
summary(iom sarima)
## Series: ts(iom train$Seat.Price, frequency = 12)
## ARIMA(0,1,1)(0,0,1)[12]
##
## Coefficients:
##
                    sma1
            ma1
##
         0.2997 -0.1322
## s.e. 0.0833
                  0.0852
## sigma^2 estimated as 689493117: log likelihood=-1657.18
## AIC=3320.37
                 AICc=3320.54 BIC=3329.26
##
## Training set error measures:
                                                   MPE
                                                           MAPE
                       ME
                              RMSE
                                         MAE
                                                                      MASE
## Training set -377.2664 25983.24 15709.39 -0.866572 7.043824 0.1808763
                       ACF1
## Training set -0.01406828
```

```
seat_price_forecast_iom$sarima <- forecast(iom_sarima , h=12)$mean

3.5 Fractional ARIMA (ARFIMA)
acf(iom_train$Seat.Price, main = "IOM Seat Price Before 2013")</pre>
```

IOM Seat Price Before 2013


```
iom arfima <- arfima(iom train$Seat.Price)</pre>
summary(iom_arfima)
##
## Call:
     arfima(y = iom_train$Seat.Price)
##
##
## Coefficients:
##
          Estimate Std. Error z value Pr(>|z|)
                      0.03120
                                1.235
## d
           0.03855
                                       0.21665
## ar.ar1 1.19938
                      0.08587
                               13.967
                                      < 2e-16 ***
## ar.ar2 -0.24362
                      0.08444
                              -2.885 0.00391 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## sigma[eps] = 26205.18
## [d.tol = 0.0001221, M = 100, h = 1.76e-05]
## Log likelihood: -1669 ==> AIC = 3346.682 [4 deg.freedom]
seat_price_forecast_iom$arfima <- forecast(iom_arfima, h=12)$mean</pre>
```

3.6 ARMA and GARCH combination

```
iom_seat_price_xts <- xts(iom_train$Seat.Price, order.by = as.Date(iom_train$
Date, "%m/%d/%Y"))
iom_log <- log(iom_seat_price_xts)
# in order to make data stationary, need to take first difference of iom_log
iom_log <- diff(iom_log)[-1]
plot(iom_log)</pre>
```

iom_log


```
# find p,q
iom_arma <- auto.arima(iom_log)
summary(iom_arma)

## Series: iom_log
## ARIMA(0,0,1) with zero mean
##
## Coefficients:
## ma1
## 0.2545
## s.e. 0.0798

##
## sigma^2 estimated as 0.0101: log likelihood=126.14
## AIC=-248.28 AICc=-248.19 BIC=-242.35
##</pre>
```

```
## Training set error measures:
##
                          ME
                                  RMSE
                                              MAE MPE MAPE
                                                                MASE
## Training set -0.004016066 0.1001315 0.07078396 Inf Inf 0.7964714
##
                        ACF1
## Training set -0.004951168
# from summary results, we will choose p=2, q=0
iom_garch <- garchFit(~arma(2,0) + garch(1,1), data=iom_log, cond.dist = "std</pre>
", trace=F)
summary(iom_garch)
##
## Title:
## GARCH Modelling
##
## Call:
    garchFit(formula = ~arma(2, 0) + garch(1, 1), data = iom_log,
       cond.dist = "std", trace = F)
##
##
## Mean and Variance Equation:
## data \sim arma(2, 0) + garch(1, 1)
## <environment: 0x7f8b45d89540>
## [data = iom_log]
##
## Conditional Distribution:
## std
##
## Coefficient(s):
##
           mu
                      ar1
                                  ar2
                                            omega
                                                       alpha1
                                                                    beta1
                0.2771151 -0.1130667
                                                    0.3862317
## -0.0076529
                                        0.0028510
                                                                0.5838514
##
        shape
##
   2.6862100
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
##
          Estimate Std. Error t value Pr(>|t|)
## mu
                       0.005926
                                -1.291 0.19654
          -0.007653
## ar1
          0.277115
                       0.085677
                                   3.234 0.00122 **
## ar2
          -0.113067
                       0.070787
                                  -1.597 0.11020
                                  1.022 0.30689
## omega
          0.002851
                       0.002790
## alpha1 0.386232
                       0.360624
                                  1.071 0.28417
                                   2.990
                                          0.00279 **
## beta1
          0.583851
                       0.195253
## shape
          2.686210
                      0.837810
                                   3.206 0.00134 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Log Likelihood:
## 148.5329 normalized: 1.038691
```

```
##
## Description:
## Fri Dec 1 21:42:42 2017 by user:
##
##
## Standardised Residuals Tests:
##
                                 Statistic p-Value
##
   Jarque-Bera Test
                      R
                           Chi^2 94.65229 0
##
   Shapiro-Wilk Test R
                                 0.9285878 1.328659e-06
                           W
##
   Ljung-Box Test
                      R
                           Q(10)
                                 4.307938 0.932388
## Ljung-Box Test
                      R
                           Q(15) 10.46502 0.7895149
## Ljung-Box Test
                           Q(20) 25.34871 0.1884145
                      R
## Ljung-Box Test
                      R^2 Q(10) 2.639922 0.9886761
## Ljung-Box Test
                      R^2 Q(15) 4.690286 0.9944397
## Ljung-Box Test
                      R^2 Q(20) 16.08586 0.7112834
## LM Arch Test
                      R
                           TR^2
                                 4.710597 0.9669535
##
## Information Criterion Statistics:
##
        AIC
                  BIC
                            SIC
                                    HQIC
## -1.979481 -1.834446 -1.983982 -1.920546
```

Task B (sMAPE)

```
smape <- function(fitted, actual) {
        return(2*mean(abs(fitted - actual) / (abs(fitted) + abs(actual))))
        }
iom_smape <- mapply(smape, seat_price_forecast_iom, list(iom_test$Seat.Price))
iom_smape

## lm arima sarima arfima
## 0.9694257 0.1539462 0.1815043 0.5300529

iom_smape[which.min(iom_smape)]

## arima
## 0.1539462</pre>
```

From sMAPE results, the ARIMA model is the best one to forecast monthly prices for IOM seat classes since the ARIMA combination model has the smallest sMAPE.