Лабораторна робота № 1.

Термін виконання: вересень 2020 р.

Лабораторна робота № 1

ГЕНЕРУВАННЯ ПСЕВДОВИПАДКОВИХ ЧИСЕЛ

Написати програму, що реалізує десять генераторів псевдовипадкових чисел. Кожний генератор викликати за допомогою меню, яке реагує на ввід цілого числа: $1, \dots, 10$. Згенерувати послідовність псевдовипадковіх чисел, яка має якнайдовший період (не менше 100). Перевірка умов застосування алгоритмів є обов'язковою.

Побудувати гістограму, яка ілюструє розподіл чисел на інтервалах [0;1] (для нормального розподілу), [-3;3] (для нормального розподілу), [0;100] — для решти розподілів. Гістограму подати у вигляді таблиці. Наприклад, для рівномірного розподілу вона виглядатиме приблизно так. Частота обчислюється як дріб, чисельником якого є кількість потраплянь випадкових чисел в певний інтервал, в знаменником — повна кількість згенерованих чисел.

Інтервал	Частота
[0; 0,1]	0.05
[0.1;0.2]	0.15
[0.2;0.3]	0.1
[0.3;0.4]	0.12
[0.4;0.5]	0.1
[0.5;0.6]	0.15
[0.6;0.7]	0.05
[0.7;0.8]	0.08
[0.8;0.9]	0.16
[0.9;1.0]	0.04

Генератори псевдовипадкових чисел, як правило, породжують ціле число X, яке лежить в інтервалі від 0 до деякого заздалегідь заданого числа m. Тому дійсні псевдовипадкові числа, рівномірно розподілені між 0 і 1, обчислються за формулою U = X/m.

І. МЕТОДИ ГЕНЕРУВАННЯ РІВНОМІРНО РОЗПОДІЛЕНИХ ЧИСЕЛ

I.

1. Лінійний конгруентний метод. [Кнут, т.2., с. 29–39]

$$X_{n+1} = (aX_n + c) \operatorname{mod} m,$$
 $U_{n+1} = \frac{X_{n+1}}{m}, n \ge 0,$

де m – модуль, m > 0, a – множник, $0 \le a < m$, c – приріст, $0 \le c < m$, X_0 – початкове значення, $0 \le X_0 < m$.

Вибір модуля. Модуль повинен бути достатньо великим, оскільки період не може містить менше m чисел. Нехай w – довжина комп'ютерного слова, наприклад, 2^{32} . В якості m рекомендується брати найбільше просте число, яке не перевищує w.

Вибір множника. Цей вибір визначається наступною теоремою: лінійна конгруентна послідовність, визначена числами m, a, c і X_0 має період m тоді і лише тоді, коли виконуються три умови:

- 1) числа c і m ϵ взаємно простими;
- 2) число b = a 1 є кратним числу p для кожного простого числа p, яке є дільником числа m;
- 3) число $b \in \text{кратним } 4$, якщо число $m \in \text{кратним } 4$.

2. Квадратичний конгруентний метод [Кнут, т.2., с. 46, 57 (вправа 8)]

$$X_{n+1} = \left(dX_n^2 + aX_n + c\right) \operatorname{mod} m$$
 , $U_{n+1} = \frac{X_{n+1}}{m}$, $n \ge 0$.

Вибір параметрів. Цей вибір визначається наступною теоремою: квадратична конгруентна послідовність, визначена числами m, a, c, d і X_0 , має період m тоді і лише тоді, коли виконуються чотири умови:

- 1) числа c і m є взаємно простими;
- 2) числа d і a–1 ϵ кратними числу p для всіх чисел p, які ϵ простими непарними дільниками числа m;
- 3) число $d \in$ парним і $d \equiv a-1 \mod 4$, якщо число $m \in$ кратним 4; число $d \equiv a-1 \mod 2$, якщо число $m \in$ кратним 2;
- 4) $d \not\equiv 3c \mod 9$, якщо число $m \in \text{кратним } 3$.

3. Числа Фібоначчі [Кнут, т.2., с. 47]

$$\begin{split} X_{n+1} &= \left(X_n + X_{n-1}\right) \text{mod } m \text{, } n \geq 0. \\ U_{n+1} &= \frac{X_{n+1}}{m} \end{split}$$

4. Обернена конгруентна послідовність [Кнут, т.2., с. 53, 61 (вправа 36)]

$$X_{n+1} = \left(aX_n^{-1} + c\right) \operatorname{mod} \ p \, ,$$
 $U_{n+1} = rac{X_{n+1}}{m}, \, n \geq 0,$

де p — просте число, число X_n набуває значень із множини $\{0,1,...,p-1,\infty\}$, а обертання визначається за правилами $0^{-1}=\infty$, $\infty^{-1}=0$. В інших випадках $XX^{-1}\equiv 1 \bmod p$. [Кнут, т.2., с. 53]

Вибір параметрів. Обернена конгруентна послідовність

$$X_{n+1} = (aX_n^{-1} + c) \mod 2^e, X_0 = 1, e \ge 3$$

має період 2^{e-1} , якщо $a \mod 4 = 1$ і $c \mod 4 = 2$.

5. Метод об'єднання [Кнут, т.2., с. 55]

$$egin{aligned} Z_n &= \left(X_n - Y_n
ight) \mathrm{mod} \ m\,, \ 0 &\leq X_n < m\,, \ 0 &\leq Y_n < m' \leq m\,, \ U_{n+1} &= rac{Z_{n+1}}{m}\,, \, n \geq 0. \end{aligned}$$

ІІ. МЕТОДИ ГЕНЕРУВАННЯ НОРМАЛЬНО РОЗПОДІЛЕНИХ ЧИСЕЛ

$$N(0,1): \quad F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt$$

6. Правило "3 сігма" [Мейн, Савитч, с. 119]

$$X_n = m + (sum - 6)\sigma,$$

де m — медіана, σ — дисперсія, sum — сума дванадцяти випадкових чисел, рівномірно розподілених на інтервалі [a, b]. Якщо [a, b] = [0; 1], то m = 0, а $\sigma = 1$. Правило 3-сігма стверджує, на проміжку $[m-3\sigma; m+3\sigma]$ міститься 99,7% всіх випадкових чисел, що мають розподіл $N(m,\sigma^2)$. Отже для побудови гістограми розподілу N(0,1) достатньо обмежитись інтервалом [-3;3].

7. Метод полярних координат [Кнут, т.2., с. 146]

7.1. Нехай U_1 і U_2 — випадкові числа, взяті із генеральної сукупності всіх чисел, рівномірно розподілених на інтервалі [0; 1]. Виконати такі перетворення.

$$V_1 \leftarrow 2U_1 - 1$$
, $V_2 \leftarrow 2U_2 - 1$.

Числа V_1 і V_2 належать генеральній сукупності чисел, рівномірно розподілених на інтервалі [-1; 1].

- 7.2. $S \leftarrow V_1^2 + V_2^2$.
- 7.3. Якщо $S \ge 1$, виконати пункти 7.1 і 7.2.
- 7.4. Виконати такі перетворення.

$$egin{aligned} X_1 \leftarrow V_1 \sqrt{rac{-2 \ln S}{S}} \,, \ X_2 \leftarrow V_2 \sqrt{rac{-2 \ln S}{S}} \,. \end{aligned}$$

7.5. Видати числа X_1 і X_2 .

8. Метод співвідношень [Кнут, т.2., с. 155]

8.1. Згенерувати дві незалежні випадкові величини, рівномірно розподілені на інтервалі [0; 1]: $U \neq 0$ і V.

8.2.
$$X \leftarrow \sqrt{\frac{8}{e}} \frac{V - \frac{1}{2}}{U}$$
.

- 8.3. (Необов'язкова перевірка верхньої грані.) Якщо $X^2 \leq 5 4e^{\frac{1}{4}}U$, то результатом є число X. Завершити алгоритм.
- 8.4. (Необов'язкова перевірка нижньої грані.) Якщо $X^2 \geq \frac{4e^{-1.35}}{U} + 1.4$, то повернутися на крок 8.1.
- 8.5. (Остаточна перевірка.) Якщо $X^2 \le -4 \ln U$, то видати число X і завершити алгоритм, інакше повернутися на крок 8.1.

III. Методи генерування інших розподілів

9. Метод логарифму для генерування показового розподілу [Кнут, т.2., с. 157]

$$F(x) = 1 - e^{-\frac{x}{\mu}}, x \ge 0.$$

Якщо
$$y=F\left(x\right)=1-e^{-\frac{x}{\mu}}$$
, то $x=F^{-1}\left(y\right)=-\mu\ln\left(1-y\right)$. Таким чином, величина
$$x=-\mu\ln\left(1-U\right),$$

має експоненційний розподіл, якщо число U належить генеральній сукупності випадкових величин, рівномірно розподілених на інтервалі [0; 1]. Оскільки величина 1-U має той же самий розподіл, формулу можна спростити:

$$x = -\mu \ln U$$
.

10. Метод Аренса для генерування гамма-розподілу порядку a > 1

$$F\left(x\right) = \frac{1}{\Gamma\left(a\right)} \int\limits_{0}^{x} t^{a-1} e^{-t} dt, \, x \geq 0, \, a > 0 \, .$$

10.1. (Генерування кандидата.) Згенерувати випадкове число U, що належить генеральній сукупності випадкових величин, рівномірно розподілених на інтервалі [0; 1]. Виконати операції

$$Y \leftarrow tg(\pi U),$$

 $X \leftarrow \sqrt{2a-1}Y + a - 1.$

- 10.2. (Перша перевірка.) Якщо $X \le 0$, повернутися на крок 10.1.
- 10.3. (Остаточна перевірка). Згенерувати випадкове число V, що належить генеральній сукупності випадкових величин, рівномірно розподілених на інтервалі [0; 1].

Якщо
$$V > \left(1 + Y^2\right) \exp\left((a-1)\ln\left(\frac{X}{a-1}\right) - \sqrt{2a-1}Y\right)$$
, повернутися на крок 10.1.

10.4. Видати число Х.