This print-out should have 39 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Determine

$$\lim_{x \to 0} \left(\frac{2}{x^2 + 2x} - \frac{1}{x} \right) .$$

- 1. limit = $-\frac{1}{3}$
- **2.** $\lim_{x \to 0} 1 = -2$
- **3.** limit = $\frac{1}{3}$
- **4.** limit = $\frac{1}{2}$
- 5. $\lim_{x \to 0} 1 = -\frac{1}{2}$
- **6.** $\lim_{x \to 0} 1 = 2$

002 10.0 points

Determine if the limit

$$\lim_{x \to 0} \frac{\frac{6}{x+1} - 6}{x}$$

exists, and if it does, find its value.

- 1. $\lim_{\to} 1 = -6$
- 2. limit does not exist
- 3. $\lim_{\to} = 6$
- 4. $\lim_{x \to 0} 1 = 7$
- **5.** $\lim_{\to} -7$

003 10.0 points

Determine which, if any, of

$$f(x) = 6^{-x} + 3,$$

$$g(x) = 6^{3-x},$$

$$h(x) = -6^{x-3},$$

define the same function.

- 1. only f, h
- **2.** only g, h
- 3. f, g, and h
- **4.** only g, f
- **5.** no two of f, g, or h

004 10.0 points

Determine which, if any, of the following

$$f(x) = 9^x + 9$$
,

$$g(x) = 3^{2x+3}$$

$$h(x) = 27(9^x) ,$$

define the same function.

- 1. f, g, and h
- **2.** only f, h
- **3.** only g, h
- **4.** only q, f
- **5.** none of f, g, or h

005 (part 1 of 2) 10.0 points

Write the polynomial

$$6 - 5x + 5x^4 - 7x^9$$

in standard form.

a) What is its degree?

006 (part 2 of 2) 10.0 points

b) What is the leading coefficient?

007 10.0 points

If f is a function having

as its graph, which of the following could be the graph of f'?

008 10.0 points

Determine

$$\lim_{x \to 0} \frac{x-1}{x^2(x+8)}.$$

1. $\lim_{x \to 0} 1$

2. limit =
$$-\frac{1}{8}$$

3. $\lim_{n \to \infty} 1$

4. $\lim_{n \to \infty} 1$

5. $\lim_{t \to 0} t = 0$

6. none of the other answers

If a, b are the solutions of the exponential equation

$$3^{x^2} = 9^{-\frac{3}{2}x+9}$$

calculate the value of |a+b|.

1.
$$|a+b| = -3$$

2.
$$|a+b| = 3$$

3.
$$|a+b| = 5$$

4.
$$|a+b| = 11$$

5.
$$|a+b|=4$$

010 10.0 points

Which function has

as its graph?

1.
$$f(x) = 3^x - 3$$

2.
$$f(x) = 3^{-x} - 2$$

3.
$$f(x) = 2 - 3^{-x}$$

4.
$$f(x) = 2^{-x-1} - 2$$

5.
$$f(x) = 2^{x-1} - 3$$

6.
$$f(x) = 2 - 2^{-x-1}$$

011 10.0 points

The straight line ℓ is parallel to y + 4x = 5 and passes through the point P(4, 3). Find its y-intercept.

1.
$$y$$
-intercept = 20

2.
$$y$$
-intercept = 21

3.
$$y$$
-intercept = 19

4. y-intercept
$$= -13$$

5. y-intercept
$$= -12$$

012 10.0 points

Sketch the graph of the function

$$f(x) = (x+8)^2.$$

6. None of these

013 10.0 points

Find all values of x at which the function f defined by

$$f(x) = \frac{x-8}{x^2+9}$$

is not continuous?

1.
$$x = 3$$

2.
$$x = -3, 8$$

3.
$$x = -3, 3$$

4.
$$x = 8$$

5.
$$x = -3$$

6. no values of x

014 10.0 points

Determine which of the following functions (if any) are the same.

$$f(x) = 9^{-x} + 7$$
$$g(x) = 9^{7-x}$$
$$h(x) = -9^{x-7}$$

1.
$$f(x) = g(x) = h(x)$$

2. None of these

3.
$$g(x) = f(x)$$
 only

4.
$$g(x) = h(x)$$
 only

5.
$$f(x) = h(x)$$
 only

015 10.0 points

Find all values of x at which the function f defined by

$$f(x) = \frac{x-7}{x^2-x-42}$$

is continuous, expressing your answer in interval notation.

1.
$$(-\infty, -6) \cup (-6, \infty)$$

2.
$$(-\infty, -7) \cup (-7, 6) \cup (6, \infty)$$

3.
$$(-\infty, 7) \cup (7, \infty)$$

4.
$$(-\infty, -6) \cup (-6, 7) \cup (7, \infty)$$

5.
$$(-\infty, -6) \cup (-6, -7) \cup (-7, \infty)$$

016 (part 1 of 5) 10.0 points

At which point on the graph

is the slope greatest (i.e., most positive)?

- **1.** *B*
- **2.** *A*
- **3.** C
- **4.** *E*
- **5.** *F*
- **6.** *D*

017 (part 2 of 5) 10.0 points

At which point is the slope smallest (i.e., most negative)?

- **1.** *D*
- **2.** *E*
- **3.** C
- **4.** *F*
- **5.** *B*
- **6.** *A*

018 (part 3 of 5) 10.0 points

At which point does the slope change from

positive to negative?

- **1.** *E*
- **2.** C
- **3.** *F*
- **4.** A
- **5.** *D*
- **6.** *B*

019 (part 4 of 5) 10.0 points

At which point does the slope change from negative to positive?

- **1.** *E*
- **2.** *B*
- **3.** *D*
- **4.** *F*
- **5.** A
- **6.** C

020 (part 5 of 5) 10.0 points

At which point is the tangent line parallel to the secant line \overline{BF} ?

- **1.** *E*
- **2.** C
- **3.** *B*
- **4.** *F*
- **5.** A
- **6.** *D*

021 (part 1 of 3) 10.0 points

A certain function f is given by the graph

(i) What is the value of

$$\lim_{x \to -\infty} f(x)$$

- 1. limit does not exist
- 2. limit = 2
- 3. $\lim_{\to} 1 = -2$
- 4. $\lim_{x \to a} 1 = 3$
- **5.** $\lim_{x \to 0} 1 = -3$

022 (part 2 of 3) 10.0 points

(ii) What is the value of

$$\lim_{x \to \infty} f(x)?$$

- 1. $\lim_{x \to 0} 1 = 2$
- 2. limit does not exist
- 3. $\lim_{\to} 1 = -3$
- **4.** $\lim_{x \to a} 1 = 3$
- 5. $\lim_{\to} 1 = -2$

023 (part 3 of 3) 10.0 points

(iii) What is the value of

$$\lim_{x \to -2} f(x)?$$

- 1. $\lim_{x \to 0} 1 = -2$
- 2. limit = ∞
- **3.** $\lim_{x \to 0} 1 = 2$
- 4. limit = 3
- 5. $\lim_{\to} = -3$

024 10.0 points

Find the largest value of c so that the function g defined by

$$g(x) = \begin{cases} x^2 - 3x - c^2, & x > 3, \\ cx - 4, & x \le 3, \end{cases}$$

is continuous for all x.

- 1. c = 4
- **2.** c = 5
- 3. c = -5
- 4. none of these
- 5. c = -4

025 10.0 points

Below is the graph of a function f.

Use the graph to determine

$$\lim_{x \to 3} f(x).$$

- 1. $\lim_{x \to 0} 1 = 8$
- **2.** $\lim_{x \to 0} 12$
- 3. limit = 6
- 4. limit does not exist
- 5. $\lim_{x \to 0} 1 = 3$

026 10.0 points

Which of the following is the graph of

$$f(x) = 2^{x-1} - 3?$$

027 10.0 points

Determine which of the following could be

the graph of f near the origin when

$$f(x) = \begin{cases} \frac{x^2 - 7x + 10}{2 - x}, & x \neq 2, \\ 2, & x = 2. \end{cases}$$

028 10.0 points

Evaluate

$$\lim_{x \to -2} \frac{x+2}{x^2 - 4x - 12}.$$

- 1. $\lim_{x \to 0} \frac{1}{4}$
- **2.** limit = $-\frac{1}{8}$
- **3.** limit does not exist
- **4.** limit = $-\frac{1}{4}$
- **5.** limit = $\frac{1}{8}$
- **6.** $\lim_{x \to 0} 1 = -4$

029 10.0 points

Find the value of

$$\lim_{x \to 0} \frac{(3x-2)^2 - 4}{5x}$$

if the limit exists.

1. limit =
$$-\frac{12}{5}$$

2. limit =
$$\frac{12}{5}$$

3. limit =
$$\frac{6}{5}$$

4. limit does not exist

5. limit
$$= -\frac{6}{5}$$

030 10.0 points

Let F be the function defined by

$$F(x) = \frac{x^2 - 9}{|x - 3|}.$$

Determine if

$$\lim_{x \to 3^{-}} F(x)$$

exists, and if it does, find its value.

- 1. limit does not exist
- **2.** $\lim_{x \to 0} 1 = -3$
- 3. $\lim_{x \to 0} 1 = 3$
- **4.** $\lim_{\to} 1 = -6$
- 5. $\lim_{\to} 6$

031 10.0 points

If the function f defined by

$$f(x) = \begin{cases} cx + 4, & x < 2, \\ 4x^2 - 4, & x \ge 2, \end{cases}$$

is continuous everywhere on $(-\infty, \infty)$, what is the value of f(1)?

1.
$$f(1) = 9$$

2.
$$f(1) = 12$$

3.
$$f(1) = 10$$

4.
$$f(1) = 8$$

5.
$$f(1) = 11$$

032 10.0 points

If f is a function having

as its graph, which of the following is the graph of the derivative f' of f?

4.

5.

033 10.0 points

If the function f is continuous everywhere and

$$f(x) = \frac{x^2 - 9}{x - 3}$$

when $x \neq 3$, find the value of f(3).

1.
$$f(3) = 3$$

2.
$$f(3) = 6$$

3.
$$f(3) = -3$$

4.
$$f(3) = -9$$

5.
$$f(3) = 9$$

6.
$$f(3) = -6$$

034 (part 1 of 3) 10.0 points

Determine the value of

$$\lim_{x \to 2+} \frac{x-8}{x-2}.$$

- 1. none of the other answers
- 2. limit = 4
- 3. $\lim_{n \to \infty} 1$
- **4.** $\lim_{x \to 0} 1 = -4$
- 5. $\lim_{n \to \infty} 1$

035 (part 2 of 3) 10.0 points

Determine the value of

$$\lim_{x \to 2-} \frac{x-8}{x-2}.$$

- 1. limit $= -\infty$
- **2.** $\lim_{x \to a} 1 = 4$
- 3. $\lim_{n \to \infty} 1$
- 4. none of the other answers
- **5.** $\lim_{\to} 1 = -4$

036 (part 3 of 3) 10.0 points

Determine the value of

$$\lim_{x \to 2} \frac{x-8}{x-2}.$$

- 1. $\lim_{n \to \infty} 1$
- **2.** $\lim_{x \to a} 1 = 4$
- 3. $\lim_{n \to \infty} 1$
- **4.** $\lim_{x \to 0} 1 = -4$
- **5.** none of the other answers

037 10.0 points

Below is the graph of a function f.

Use the graph to determine all the values of x on (-6, 6) at which f fails to be continuous.

- 1. x = -4, 1
- 2. none of the other answers
- **3.** x = 1
- **4.** x = -4
- **5.** no values of x

038 10.0 points

Find the solution of the exponential equation

$$4^{15x} = 16^{\frac{9}{2}x - 4}.$$

039 10.0 points

A tank holds 1000 gallons of water, which drains from the bottom of the tank in half an hour. The values in the table

t (min)	5	10	15	20	25	30
V (gal)	644	466	212	116	19	0

show the volume, V(t), of water remaining in the tank (in gallons) after t minutes.

If P is the point (15, V(15)) on the graph of V as a function of time t, find the slope of the secant line PQ when Q = (25, V(25)).

1. slope =
$$-38.6$$

2. slope =
$$-19.3$$

3. slope =
$$-43.2$$

4. slope =
$$-9.6$$

5. slope =
$$-25.4$$