

					Pri	inted	l Pa	ge: 1	of 2
				Sul	bjec	t Co	de:	KAI	[073
Roll No:									

BTECH

(SEM VII) THEORY EXAMINATION 2023-24 TEXT ANALYTICS AND NATURAL LANGUGAE PROCESSING

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief. 2 x 10 =	= 20
Q no.	Question	Marks
a.	What are the key challenges in processing human language?	2
b.	How do these linguistic principles form the foundation of NLP and text analytics?	2
c.	How does MaxEnt address some of the limitations of traditional approaches?	2
d.	How does transformation-based tagging differ from other tagging approaches?	2
e.	Explore the concept of semantic attachments in natural language processing.	2
f.	How does the syntax of a language contribute to the semantic representation of knowledge?	2
g.	How does the vocal tract shape affect the acoustic characteristics of speech sounds?	2
h.	Provide examples of how different articulators contribute to speech.	2
i.	Discuss the significance of using a warped frequency scale and its impact on speech feature analysis.	2
j.	How does DTW address the challenges of time misalignment in speech recognition, and what are its limitations?	2

SECTION B

2. Attempt any <i>three</i> of the following:

 $10 \times 3 = 30$

	Tittempt any unce of the following.	
a.	Discuss the role of stop words in text analytics and NLP. How can the identification and removal of stop words impact the quality of language processing tasks?	10
b.	Explain the concepts of interpolation and backoff in the context of language modeling. Provide examples illustrating how these techniques enhance the performance of N-gram models.	10
c.	Investigate the various types of relations that can exist between different senses of words. How do these relations influence the construction of semantic networks? Provide examples to illustrate your answer.	10
d.	Elaborate on the Short-Time Fourier Transform method and its significance in analyzing speech signals. How does the STFT overcome challenges in representing time-varying characteristics of speech?	10
e.	Compare and contrast Cepstral Distances, Weighted Cepstral Distances, and Filtering techniques in the context of speech feature extraction. Provide examples of scenarios where each method may be more suitable.	10

SECTION C

3.	Attempt any <i>one</i> part of the following: 10 x 1 =	= 10
a.	Examine the impact of language variations and nuances on NLP applications.	10
	How do regional dialects, slang, and cultural differences pose challenges in	
	developing robust natural language processing systems?	

					Pri	intec	l Pa	ge: 2	2 of 2
				Sul	bjec	t Co	de:	KAI	[073
Roll No:									

BTECH

(SEM VII) THEORY EXAMINATION 2023-24 TEXT ANALYTICS AND NATURAL LANGUGAE PROCESSING

TIME: 3 HRS M.MARKS: 100

b.	Explore the significance of syntactic parsing in natural language processing.	10	l
	How does syntactic parsing contribute to the extraction of meaningful		
	information from sentences, and what are the common approaches used in		
	parsing?		

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

a.	Elaborate on the role of Hidden Markov Models in part-of-speech tagging. How	10
	do HMMs model the sequence of POS tags, and what advantages do they offer	
	over other approaches?	
b.	Analyze the strengths and weaknesses of rule-based and stochastic tagging	10
	methods. Provide examples to demonstrate scenarios where one approach might	
	outperform the other.	

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

a.	Compare and contrast supervised methods for Word Sense Disambiguation.	10
	Discuss the challenges associated with supervised approaches and provide	C
	examples of how they can be effectively applied in real-world NLP tasks.	
b.	Explore the concept of bootstrapping in the context of Word Sense	10
	Disambiguation. Discuss different bootstrapping methods and their applications	
	in improving the accuracy of WSD systems.	

6. Attempt any *one* part of the following:

 $^{\circ}$ 10 x 1 = 10

a.	Provide an in-depth review of Linear Predictive Coding methods in speech	10
	processing. How are LPC coefficients calculated, and what role do they play in	
	speech analysis and synthesis?	
b.	Discuss the relationship between articulatory phonetics and acoustic phonetics	10
	in the context of speech sound production. How does the articulatory process	
	influence the acoustic characteristics of speech?	

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

a.	Investigate the role of Multiple Time-Alignment Paths in speech processing.	10
	How does considering multiple alignment paths contribute to the robustness and	
	accuracy of speech recognition systems?	
b.	Provide an in-depth comparison of LPC, PLP, and MFCC coefficients as feature	10
	extraction methods in speech processing. Discuss their respective strengths and	
	weaknesses in capturing relevant information from speech signals.	