Sashwat Tanay

canay.github.io/site 000-0002-2964-7102
ogle Scholar profile
2016-2022
ry ns 2009-2013
2023-2025
2022-2023
2016-2022
2013-2015
2023-2025
2022
2016-2020
2013-2015
nal mode ringdown
Summer 2023
Jan 2024
Jan 2024
Aug 2023
Jul 2023
- 1

 $\mathrm{Jun}\ 2022$

Apr 2022

Univ. of Illinois Urbana-Champaign (lecture workshop; lecture notes here)

Montana State Univ. (Relativity, Astrophysics and Space Science Seminar)

${\it Max\ Planck\ Inst.\ for\ Gravitational\ Physics\ Potsdam\ (ACR\ Seminar,\ remote)}$	Jun 2021
Simon Fraser Univ. (Cosmology Seminar, remote)	Sep 2020

PROFESSIONAL SERVICE

Referee Physical Review & Physical Review Letters	Feb 2023-present
MENTORING	
Manuel Alva (undergrad, Universidad Nacional de Trujillo, Peru)	Nov 2023-present
Tom Colin (postgrad, Paris Observatory)	Oct 2023-present
Rickmoy Samanta (postdoc, ISI Kolkata) worked on Publication (2)	Sep 2021-Sep 2022
Pranav Kasetty (undergrad thesis co-advisor, IISc Bengaluru)	Oct 2021-Apr 2022

COMPUTER SKILLS

• Mathematica, C/C++, Python, Fortran, Matlab, Jekyll (web development), Bash • GitHub profile

OUTREACH & SERVICE

• Invited Public Talk on Astronomy - Univ. of MS (2023) • Judge at The Speaker's Edge Competition 2022 - Univ. of MS • Organized STEM Summer Camp - Univ. of MS (2018, 19) • Organized Spooky Physics Night - Univ. of MS (2016, 17, 18) • YouTube videos on research and popular science

PUBLICATIONS

- 1. **S. Tanay**. Towards a more robust algorithm for computing the Kerr quasinormal mode frequencies, 2022, arXiv:2210.03657 (to be submitted)
- 2. R. Samanta, S. Tanay, and L. C. Stein. Closed-form solutions of spinning, eccentric binary black holes at 1.5 post-Newtonian order. *Phys. Rev. D*, 108(14):124039, 2023, arXiv:2210.01605
- 3. **S. Tanay**, G. Cho, and L. C. Stein. Action-angle variables of a binary black hole with arbitrary eccentricity, spins, and masses at 1.5 post-Newtonian order. *Phys. Rev. D*, 107(26):103040, 2021, arXiv:2110.15351
- 4. G. Cho, **S. Tanay**, A. Gopakumar, and H. M. Lee. Generalized quasi-Keplerian solution for eccentric, nonspinning compact binaries at 4PN order and the associated inspiral-merger-ringdown waveform. *Phys. Rev. D*, 105(6):064010, 2022, arXiv: 2110.09608
- 5. **S. Tanay**, L. C. Stein, and J. T. Gálvez Ghersi. Integrability of eccentric, spinning black hole binaries up to second post-Newtonian order. *Phys. Rev. D*, 103(6):064066, 2021, arXiv: 2012.06586
- S. Tanay, A. Klein, E. Berti, and A. Nishizawa. Convergence of Fourier-domain templates for inspiraling eccentric compact binaries. *Phys. Rev. D*, 100(6):064006, 2019, arXiv:1905.08811
- 7. S. Tanay, M. Haney, and A. Gopakumar. Frequency and time domain inspiral templates for comparable mass compact binaries in eccentric orbits. *Phys. Rev. D*, 93(6):064031, 2016, arXiv:1602.03081