CSCI 210: Computer Architecture Lecture 15: Boolean Algebra

Stephen Checkoway
Slides from Cynthia Taylor

CS History: Augustus de Morgan

- British, born in 1871
- Published De Morgan's Laws in 1947
- Introduced the term induction
- Didn't receive an MA from Cambridge because it required passing a theological test and he was an atheist
- Ada Lovelace was his student
- Dedicated to making scientific knowledge available to the public – wrote numerous articles about many topics

Boolean Algebra

 Branch of algebra in which all variables are 1 or 0 (equivalently true or false)

Introduced by George Boole in 1847

Multiple notations

$$-x \wedge y \qquad x \vee y$$

$$-xy$$
 $x + y$

Boolean laws

• Commutativity
$$x + y = y + x$$

$$xy = yx$$

$$x + (y + z) = (x + y) + z$$
 $x(yz) = (xy)z$

$$x(yz) = (xy)z$$

• Distributivity
$$x + yz = (x + y)(x + z)$$
 $x(y + z) = xy + xz$

$$x(y + z) = xy + xz$$

• Idempotence
$$x + x = x$$

$$x + x = x$$

$$xx = x$$

Which pair of statements is true? (The identity laws)

A.
$$x + 0 = x$$
, $x0 = x$

B.
$$x + 0 = x$$
, $x1 = x$

C.
$$x + 1 = x$$
, $x0 = x$

D.
$$x + 1 = x$$
, $x1 = x$

Which pair of statements is true? (The complementation laws)

A.
$$\overline{x} + x = 0$$
, $\overline{x}x = 0$

B.
$$\overline{x} + x = 0$$
, $\overline{x}x = 1$

C.
$$\overline{x} + x = 1$$
, $\overline{x}x = 0$

D.
$$\overline{x} + x = 1$$
, $\overline{x}x = 1$

Which pair of statements is true? (The annihilator laws)

A.
$$x + 0 = 0$$
, $x0 = 0$

B.
$$x + 1 = 1$$
, $x0 = 0$

C.
$$x + 0 = 0$$
, $x1 = 1$

D.
$$x + 1 = 1$$
, $x1 = 1$

Simplifying Expressions

$$F = XYZ + XY\overline{Z} + \overline{X}Z$$

A.
$$F = XY + \overline{X}Z$$

B.
$$F = X(YZ + \underline{Y}\overline{Z} + \underline{Z})$$

$$\text{C. } F = X \dot{Y} (Z + \overline{Z}) + \overline{X} \dot{Z}$$

D. This cannot be simplified further

- Identity law: A+0=A and $A\cdot 1=A$
- ullet Zero and One laws: A+1=1 and $A\cdot 0=0$
- lacktriangle Inverse laws: $A+\overline{A}=1$ and $A\cdot\overline{A}=0$
- lacktriangle Commutative laws: A+B=B+A and $A\cdot B=B\cdot A$
- lacksquare Associative laws: A+(B+C)=(A+B)+C and $A\cdot(B\cdot C)=(A\cdot B)\cdot C$
- lacksquare Distributive laws: $A\cdot (B+C)=(A\cdot B)+(A\cdot C)$ and $A+(B\cdot C)=(A+B)\cdot (A+C)$

Simplifying Expressions

$$F = XYZ + XY\overline{Z} + \overline{X}Z$$

- Identity law: A+0=A and $A\cdot 1=A$
- ullet Zero and One laws: A+1=1 and $A\cdot 0=0$
- lacksquare Inverse laws: $A+\overline{A}=1$ and $A\cdot\overline{A}=0$
- lacksquare Commutative laws: A+B=B+A and $A\cdot B=B\cdot A$
- Associative laws: A+(B+C)=(A+B)+C and $A\cdot(B\cdot C)=(A\cdot B)\cdot C$
- lacksquare Distributive laws: $A\cdot (B+C)=(A\cdot B)+(A\cdot C)$ and $A+(B\cdot C)=(A+B)\cdot (A+C)$

De Morgan's Law

- De Morgan's Law
 - Use to obtain the complement of an expression

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
$$\overline{xy} = \overline{x} + \overline{y}$$

What is AB + AC?

A.
$$\overline{A}B+\overline{A}C$$

C.
$$(A + B)(A + C)$$

D.
$$(A + B)(A + C)$$

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
$$\overline{xy} = \overline{x} + \overline{y}$$

Questions on Boolean Algebra?

Sum of Products form of Boolean function f

- Developed from the truth table for $f(x_1, ..., x_n)$
- Find all the rows of the truth table in which f = 1
- By definition, $f(x_1, ..., x_n) = 1$ if and only if the input $x_1, ..., x_n$ match one of these rows

- We can write f as an OR (sum) of expressions checking if the input matches one of the rows:
 - f = (input matches row 1) OR (input matches row 4) OR ...

Sum of Products

- Developed from the truth table
 - Each product term contains each input exactly once, complemented or not.
 - Need to OR together set of AND terms to satisfy table
 - One product for each 1 in F column

X	Υ	F
0	0	0
0	1	1
1	0	1
1	1	0

What is the Sum of Products of F?

$$A. \overline{A} + BC$$

B.
$$ABC + ABC + ABC$$

C.
$$ABC + ABC + ABC + ABC + ABC$$

D.
$$ABC + ABC + ABC + ABC + ABC$$

Product of Sums

- Express the same function as the AND of ORs
- Write out the sum of products for F and then take the complement using DeMorgan's law

X	Υ	F
0	0	0
0	1	1
1	0	1
1	1	0

Product of Sums

 Simplified: Select the rows where F is 0 and take the complements of the inputs to form the ORs

X	Υ	F
0	0	0
0	1	1
1	0	1
1	1	0

What is the Product of Sums of F?

A.
$$F = (A + B + C)(A + B + C)(A + B + C)$$

B.
$$F = (A + B + C)(A + B + C)(A + B + C)$$

C.
$$F = (A+B+C)(A+B+C)(A+B+C)$$

D.
$$F = (A+B+C)(A+B+C)(A+B+C)(A+B+C)$$

Programmable Logic Array

- Simple way to create a logical circuit from a truth table, using sum of products
- Set of inputs and inverted inputs
- Array of AND gates
 - Form set of product terms
- Array of OR gates
 - Logical sum of product terms

Uses

Either programmed during manufacture, or can be reprogrammed

Used in CPUs, microprocessors

Creating a PLA

- Prepare the truth table
- Write the Boolean expression in sum of products form.
- Decide the input connection of the AND matrix for generating the required product term.
- Then decide the input connections of OR matrix to generate the sum terms.
- Program the PLA.

Size

 Only truth table entries that have a True (1) output are represented

 Each different product term will have only one entry in the PLA, even if the product term is used in multiple outputs

Multiple outputs

Inputs			Outputs		
A	B	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Output functions: D(A, B, C), E(A, B, C), F(A, B, C)

Inputs		Outputs			
A	B	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

	Sum of Products for output D
Α	ABC + ABC + ABC + ABC + ABC + ABC + ABC
В	ABC + ABC + ABC + ABC + ABC + ABC
С	(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)
D	ABC + ABC + ABC + ABC + ABC + ABC + ABC

E

D = ABC + ABC + ABC + ABC	+ ABC + ABC +	ABC
---------------------------	---------------	-----

$$E = ABC + ABC + ABC$$

F = ABC

Inputs			Outputs		
A	B	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Field Programmable PLAs

Figure 3-15. A 12-input, 6-output programmable logic array.

Reading

- Next lecture: Combinational Logic
 - Section 3.3 (Skip Don't Cares section)