МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

На правах рукопису

alls

ОЛІХ ОЛЕГ ЯРОСЛАВОВИЧ

УДК 534.29, 537.312.5/.6/.9

АКУСТО- ТА РАДІАЦІЙНОІНДУКОВАНІ ЯВИЩА В ПОВЕРХНЕВО-БАР'ЄРНИХ КРЕМНІЄВИХ ТА АРСЕНІД ГАЛІЄВИХ СТРУКТУРАХ

Спеціальність 01.04.07- фізика твердого тіла

Автореферат дисертації на здобуття наукового ступеня доктора фізико-математичних наук

Дисертацією є рукопис.

Робота виконана на кафедрі загальної фізики фізичного факультету Київського національного університету імені Тараса Шевченка.

Офіційні опоненти:

доктор фізико-математичних наук, професор,

Перший Имя Отчество,

Не очень длинное название для места работы, старший научный сотрудник

доктор фізико-математичних наук, професор,

Другий Имя Отчество,

Основное место работы с длинным длинным длинным длинным названием,

старший научный сотрудник доктор фізико-математи-

чних наук, професор,

Третій Имя Отчество,

Основное место работы с длинным длинным длинным длинным названием,

старший научный сотрудник

Захист відбудеться "01" вересня 2018 р. о 14^{15} годині на засіданні спеціалізованої вченої ради Д 26.001.23 при Київському національному університеті імені Тараса Шевченка за адресою: 03022, Київ, просп. академіка Глушкова 4, корп. 1, фізичний факультет, ауд. 500.

3 дисертацією можна ознайомитись у Науковій бібліотеці ім. М. Максимовича Київського національного університету імені Тараса Шевченка за адресою: 01033, Київ, вул. Володимирська, 58

Автореферат розісланий "01" вересня 2018 р..

Вчений секретар спеціалізованої вченої ради Д 26.001.23, доктор фізико-математичних наук, професор

Quend

М.П. Семенько

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. Напівпровідникові поверхнево-бар'єрні структури ϵ основою мікроелектроніки та сонячної енергетики — галузей, розвиток яких на сучасному етапі багато в чому визначає загальний прогрес. Незважаючи на все різноманіття існуючих типів фотовольтаїчних перетворювачів, ринок промислового використання належить моно- та полікристалічним кремнієвим сонячним елементам. Загалом, серед всіх напіпровідникових систем кремнієві структури використовують найширше. Це пов'язано, насамперед, з величезними запасами даного елементу (він є другим за поширеністю у корі Землі), його нетоксичністю та високою технологічністю як вирощування самих кристалів, так і створення різноманітних структур. Зокрема кремнієві структури з контактом Шотткі зазвичай застосовують при виготовленні високошвидкісних логічних та інтегральних елементів. В цьому ж самому сегменті високочастотних мікроелектронних пристроїв достатньо широко представлені системи на основі арсеніду галію — матеріалу, який характеризується високою рухливістю носіїв заряду. У дисертаційній роботі наводяться результати дослідження кремнієвих сонячних елементів та структур метал-напівпровідник на основі кремнію та арсеніду галію, що визначає її актуальність з прикладної точки зору.

Загальною задачею матеріалознавства є створення матеріалів та структур із заданими властивостями. Для її реалізації необхідне чітке розуміння процесів, які відбуваються в матеріалах за різних умов. Зокрема, умови функціонування напівпровідникових приладів нерідко передбачають наявність різноманітного радіаційного впливу. Звичайно, вивченню радіаційностимульованих процесів в напівпровідниках присвячено величезна кількість досліджень (що побічно свідчить про актуальність подібних робіт), проте деякі аспекти, наприклад немонотонність зміни характеристик діодів Шотткі при дії γ -квантів чи механізми модифікації приповерхневого шару при мікрохвильовому опроміненні, залишалися поза увагою. У роботі показано взаємозв'язок між ступенем неоднорідності контакту Шотткі та характером дозової немонотонності зміни висоти бар'єру, а також з'ясовано, що перетворення у дефектній структурі приповерхневого шару пов'язані зі збільшенням концентрації міжвузольних атомів. Іншим зовнішнім чинником, який може впливати на параметри напівпровідникових структур, є знакозмінні високочастотні пружні деформації, пов'язані, наприклад, з поширенням акустичних хвиль, У роботі вперше проведено дослідження перенесення заряду в кремнієвих бар'єрних структурах за умов ультразвукового навантаження. Все це свідчить про актуальність роботи з точки зору матеріалознавства.

Вирішення матеріалознавчих задач потребує розробки методів керування параметрами матеріалів та структур. Відомо, що дефекти структури є визначальними для фізичних властивостей кристалів і мають фундаментальне значення у фізиці твердого тіла. Для напівпровідникових матеріалів найпоширенішими способами впливу на дефектну підсистему є радіаційне опромінення

та термообробка, які суттєво впливають на стан кристала в цілому. Водночає представлені результати свідчать про здатність ультразвукового навантаження навіть допорогової інтенсивності модифікувати дефекти в кремнієвих кристалах, причому до переваг такого способу варто віднести вибірковість впливу саме на області з порушеннями періодичності та оборотність змін при кімнатних температурах. Тобто дана робота ϵ актуальною з точки зору розробки нових методів керування параметрами бар'єрних структур.

Встановленими причинами змін стану точкових дефектів у напівпровідникових кристалах під дією акустичних хвиль вважаються вимушені коливання дислокацій, акустостимульована дифузія домішок та генерація дефектів при надпороговій інтенсивності пружних коливань. Проте у малодислокаційних матеріалах, таких як кремній, при допороговій інтенсивності ультразвуку ці механізми незастосовні для пояснення оборотних акустоіндукованих ефектів. Проведене дослідження особливостей акусто—дефектної взаємодії при ультразвуковому навантаженні та ідентифікація «акустоактивних» (тобто здатних до ефективної взаємодії з пружними коливаннями) дефектів, у тому числі і радіаційних, ϵ актуальною задачею з наукової точки зору.

Отже, дослідження фізичних закономірностей та встановлення механізмів акусто— та радіаційностимульованих ефектів у поверхнево—бар'єрних напівпровідникових структурах ϵ важливим для вирішення перелічених вище проблем та визнача ϵ актуальність дисертаційної роботи як з наукової, так і практичної точок зору.

Зв'язок роботи з науковими програмами, планами, темами, грантами. Дисертаційна робота пов'язана із планами науково-дослідних робіт, які проводились в рамках держбюджетних тем та міжнародних проектів на кафедрі загальної фізики фізичного факультету Київського національного університету імені Тараса Шевченка. А саме: №01БФ051-09 «Теоретичне та експериментальне дослідження фізичних властивостей неоднорідних систем на основі матеріалів акусто-опто-електроніки та мікроелектроніки» (№ держ. реєстрації 01БФ051-09, 2001-2005pp.); №06БФ051-04 «Експериментальне та теоретичне дослідження структури та фізичних властивостей низькорозмірних систем на основі напівпровідникових структур, різних модифікацій вуглецю та композитів» (№ держ. реєстрації 0106U006390, 2006–2010рр.); №11БФ051–01 «Фундаментальні дослідження в галузі фізики конденсованого стану і елементарних частинок, астрономії і матеріалознавства для створення основ новітніх технологій» (№ держ. реєстрації 0111U004954, 2011–2015рр.); №16БФ051–01 «Формування та фізичні властивості наноструктурованих композитних матеріалів та функціональних поверхневих шарів на основі карбону, напівпровідникових та діелектричних складових» (№ держ. реєстрації 0116U004781, 2016-2018pp.) та проект УНТЦ №3555 «Дослідження та створення методів опто- акустичного контролю матеріалів» (2006-2008рр.).

Мета і завдання дослідження. Метою дисертаційної роботи ϵ встановлення фізичних закономірностей акустоїндукованих динамічних ефектів у

кремнієвих структурах з p-n переходом та контактом Шотткі, визначення фізичних механізмів впливу опромінення та ультразвукового навантаження на проходження струму в напівпровідникових поверхнево-бар'єрних структурах.

Для досягнення поставленої мети вирішувалися наступні задачі:

- Підбір бар'єрних структур для досліджень та вибір режимів опромінення (тип частинок, доза) і ультразвукового навантаження (тип акустичних хвиль, частота, інтенсивність);
- Встановлення механізмів перенесення заряду в широкому температурному діапазоні як у вихідних структурах, так і в радіаційно-модифікованих, визначення характерних параметрів (висота бар'єру, фактор неідеальності, час життя неосновних носіїв заряду тощо).
- Встановлення закономірностей впливу ультразвукового навантаження на процеси проходження струму та фотоелектричного перетворення у поверхневобар'єрних структурах до та після опромінення;
- Проведення порівняльного аналізу та оптимізації методів визначення параметрів напівпровідникових бар'єрних структур.
- Визначення фізичних механізмів та розробка фізичних моделей акусто- та радіаційноіндукованих ефектів.
- З'ясування механізмів впливу мікрохвильового опромінення та акустичного навантаження на параметри глибоких рівнів, пов'язаних з порушеннями кристалічної структури, визначення основних акусто-активних дефектів.

Об'єкт дослідження – проходження струму в напівпровідникових структурах.

Предмет дослідження— вплив ультразвукового навантаження та опромінення на процеси проходження струму та фотоелектричного перетворення у поверхнево—бар'єрних напівпровідникових структурах.

Методи дослідження. Для виконання поставлених завдань було використано комплекс технологічних, експериментальних та розрахункових методів, який включає вольт—амперні характеристики; вольт—фарадні характеристики; акустоелектрична релаксаційна спектроскопія та метод диференційних коефіцієнтів ВАХ для визначення параметрів глибоких рівнів; метод стаціонарного струму короткого замикання для визначення довжини дифузії неосновних носіїв; аналітичні та чисельні методи визначення параметрів діодів Шотткі; еволюційні алгоритми мінімізації функцій; імпульсний метод вимірювання поглинання акустичної хвилі; резонансний метод вимірювання імпедансу навантаженого акустичного перетворювача; профілометрія; рентгенівська дифрактометрія поверхні; рентгенівська топографія; контрольоване радіаційне та мікрохвильове опромінення для зміни дефектного стану зразків; метод ультразвукового навантаження.

Наукова новизна отриманих результатів. В процесі виконання дисертаційної роботи було отримано ряд нових науково-обгрунтованих результатів, які визначають розв'язок актуальної проблеми фізики твердого тіла — визначення

впливу опромінення та акустичного навантаження на процеси перенесення заряду в поверхнево—бар'єрних напівпровідникових структурах. Наукова новизна зумовлена застосуванням нових ультразвукових методів динамічного керування станом дефектів у напівпровідникових структурах, а також вперше проведеними ретельними та повними дослідженнями низки фундаментальних процесів електропереносу та рекомбінації нерівноважних носіїв заряду у кремнієвих та арсенід галієвих поверхнево—бар'єрних структурах за умов керованих змін системи кристалічних дефектів, як за допомогою радіаційного опромінення, так і акустичного навантаження. Зіставлення отриманих експериментальних результатів з даними теоретичного аналізу та окремими результатами інших авторів, дозволили повністю якісно і, у більшості випадків, кількісно описати всі виявлені ефекти. Досягнутий рівень розуміння деталей процесів протікання струму в поверхнево—бар'єрних структурах дозволяє надійно оцінювати ефективність роботи відповідних приладів і передбачати поведінку подібних напівпровідникових пристроїв.

- Вперше виявлено оборотні ефекти впливу ультразвукового навантаження на електрофізичні властивості кремнієвих структур з p-n переходом і контактом метал-напівпровідник та встановлено їх закономірності.
- Вперше встановлено відмінності впливу акустичного навантаження на параметри неопромінених та радіаційно-опромінених кремнієвих поверхнево-бар'єрних структур, зумовлені різницею дефектного складу; вперше визначено основні акустоактивні радіаційні дефекти.
- Запропонована фізична модель акусто-активного комплексного дефекту для пояснення особливостей виявлених акустоіндукованих ефектів.
- Вперше проведено порівняльний аналіз аналітичних, чисельних та еволюційних методів розрахунку параметрів діодів Шотткі з вольт–амперних характеристик та визначено найбільш оптимальні з точки зору точності та швидкодії.
- Використовуючи модель поглинання ультразвуку Брейсфорда, встановлено механізми акустоіндукованих ефектів в кремнієвих структурах метал-напівпровідник.
- $\bullet\,$ Вперше виявлено взаємозв'язок характеру немонотонності дозової залежності зміни висоти бар'єру Шотткі при $\gamma-$ опроміненні зі ступенем неоднорідності контакту.
- ullet Встановлено, що вплив мікрохвильового випромінювання на параметри дефектів, розташованих у приповерхневих шарах кристалів GaAs, 6H–SiC та на внутрішніх границях арсенід галієвих епітаксійних структур, пов'язаний зі збільшення кількості міжвузольних атомів.

Практичне значення отриманих результатів. Отримані в роботі результати сприяють більш глибокому розумінню фізичних процесів у поверхнево-бар'єрних структурах при дії зовнішніх чинників (надвисокочастотного-, нейтронного- та γ -опромінення, знакозмінних механічних навантажень), що дозволяє підвищити точність прогнозування реальних робочих характеристик

подібних систем в залежності від умов їх функціонування. Запропоновано новий метод динамічного акустичного керування струмом напівпровідникових діодів різного типу, а саме сонячних елементів та структур з контактом Шотткі. Дослідження частотних, амплітудних та температурних залежностей акустоіндукованих ефектів у бар'єрних структурах дозволяє ефективно контролювати процеси перенесення заряду. Проведене тестування та порівняльне дослідження методів визначення параметрів діодів Шотткі дозволяє вибрати найефективніший залежно від експериментальних умов вимірювання характеристик, типу структур, вимог до швидкодії. Запропоновано новий метод оптимізації вибору діапазону даних для побудови аналітичних функцій, що дозволяє підвищити точність визначення параметрів структур метал—напівпровідник. Виявлені зміни амплітудної залежності акустоіндукованого зростання зворотного струму діодів Шотткі після дії гамма—квантів можуть бути використані для створення нових сенсорів опромінення.

Особистий внесок здобувача. Внесок автора у отримання наукових результатів полягає у постановці задач та визначенні методів їх вирішення, виборі об'єктів та формулюванні основних напрямків досліджень, розробці методології експериментальних досліджень та програмного забезпечення для обробки експериментальних даних. Переважна більшість експериментальних та теоретичних досліджень виконані автором особисто. 12 з 25 наукових статей, опублікованих за темою дисертації, є одноосібними роботами здобувача. У наукових працях, опублікованих зі співавторами, автору належить проведення значної частини досліджень та аналіз і узагальнення отриманих даних, інтерпретація результатів, участь у написанні наукових статей. Співавторами частини робіт ([1, 3, 4, 6, 20]) були студенти фізичного факультету Київського національного університету імені Тараса Шевченка, які виконували кваліфікаційні роботи під керівництвом здобувача. В роботах [1,3,4,6,18-20] автором здійснено підбір структур для досліджень, вибір режимів вимірювань та радіаційного опромінення, проведено переважну частину експериментальних вимірювань та аналіз механізмів перенесення заряду і впливу ультразвукових хвиль на ці процеси, підготовлено тексти статей. В роботі [1] автором запропоновано модель акустоактивного дефектного комплексу, в роботі [3] - встановлено можливість застосування моделі поглинання ультразвуку внаслідок руху дислокаційних перегинів до пояснення акустоіндукованих змін параметрів діодів Шотткі. Внесок здобувача у роботу [8] визначався проведенням розрахунків в межах моделей дислокаційного поглинання ультразвуку. В роботі [12] вимірювання вольт-фарадних характеристик були проведені співробітником фізичного факультету, канд. фіз.-мат. наук Надточієм А. Б. У роботах [14, 23] проводився пошук та аналіз літературних даних щодо впливу ультразвуку на параметри напівпровідникових кристалів та структур на їх основі, а також їх узагальнення. Внесок здобувача у роботу [16] визначався постановкою дослідів по вимірюванню вольт-амперних характеристик, інтерпретацією відповідних результатів (саме ця частину представлена у дисертаційній роботі),

участю у написанні статті. В роботах [21,22] автор провів дослідження параметрів глибоких рівнів з використанням методу акустоелектронної релаксаційної спектроскопії, здійснив аналіз отриманих даних, взяв участь у написанні статей. Постановка наукової задачі в цих роботах, а також загальна інтерпретація результатів виконана сумісно з докт. техн. наук Конаковою Р. В.; рентгенографічні та профілометричні дослідження проводились канд. фіз.-мат. наук Литвином П. М. (обидва — Інститут фізики напівпровідників ім. В. Є. Лашкарьова НАНУ). Основна частина результатів представлялася автором особисто на вітчизняних і міжнародних конференціях та наукових семінарах кафедри загальної фізики Київського національного університету імені Тараса Шевченка.

Апробація результатів дисертації. Основні результати, викладені в роботі, доповідались на наукових семінарах кафедри загальної фізики Київського національного університету імені Тараса Шевченкаі були представлені на наступних наукових конференціях: I, III, IV, V, VI та VII Українська наукова конференція з фізики напівпровідників (Одеса, Україна, 2002; Одеса, Україна, 2007; Запоріжжя, Україна, 2009; Ужгород, Україна, 2011; Чернівці, Україна, 2013; Дніпро, Україна, 2016); III международная конференция «Радиационнотермические эффекты и процессы в неорганических материалах» (Томск, Россия, 2002); 1-ша та 6-та Міжнародна науково-технічна конференція «Сенсорна електроніка і мікросистемні технології СЕМСТ» (Одеса, Україна, 2004; 2014); 2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference (Montreal, Canada, 2004); Девятая международная научно-техническая конференция «Актуальные проблемы твердотельной электроники и микроэлектроники» (Дивноморское, Россия, 2004); 2005 та 2014 IEEE International Ultrasonics Symposium (Rotterdam, Netherlands, 2005; Chicago, USA, 2014); 2007 ta 2015 International Congress on Ultrasonics (Vienna, Austria, 2007; Metz, France, 2015); MRS 2007 Spring Meeting, Symposium F: Semiconductor Defect Engineering - Materials, Synthetic Structures, and Devices II (San Francisco, USA, 2007); VI та VII Міжнародна школа-конференція «Актуальні проблеми фізики напівпровідників» (Дрогобич, Україна, 2008; 2010); 13th International Conference on Defects - Recognition, Imaging and Physics in Semiconductors (Wheeling, USA, 2009); XII та XIV Міжнародна конференція «Фізика і технологія тонких плівок та наносистем» (Івано-Франківськ, Україна, 2009; Буковель, Україна, 2013); Четверта міжнародна науково-практична конференція «Матеріали електронної техніки та сучасні інформаційні технології» (Кременчук, Україна, 2010); Всеукраїнська наукова конференція «Актуальні проблеми теоретичної, експериментальної та прикладної фізики» (Тернопіль, Україна, 2012); International research and practice conference «Nanotechnology and nanomaterials» (Bukovel, Ukraine, 2013); IV міжнародна конференція «Сучасні проблеми фізики конденсованого стану» (Київ, Україна, 2015); II Всеукраїнська науково-практична конференція MEICS-2017 (Дніпро, Україна, 2017).

Публикації. За результатами дослідження опубліковано 54 наукові праці: 25 наукових статей у фахових журналах (17 статей у виданнях, які входять

до наукометричної бази даних Scopus); 29 тез доповідей на наукових конференціях.

Структура та обсяг дисертації. Дисертація складається із вступу, шести розділів, загальних висновків та списку використаних джерел. Загальних обсяг дисертації становить 367 сторінок, включаючи 124 рисунки та 31 таблицю. Список використаних джерел містить 657 найменувань.

основний зміст роботи

У <u>вступі</u> обгрунтовано актуальність вибраної теми, сформульовано мету і завдання дослідження, показано наукову новизну та практичну значимість отриманих результатів, а також надано інформацію щодо зв'язку роботи з науковими темами, апробації результатів та особистого внеску здобувача.

У першому розділі стисло проаналізовані основні роботи, присвячені дослідженням взаємодії пружних хвиль з дефектами у напівпровідникових кристалах. Зокрема, вказано, що а) високоінтенсивні акустичні хвилі здатні стимулювати дифузію, перебудову та генерацію точкових дефектів у бінарних та однокомпонентних напівпровідникових кристалах, гетеросистемах та бар'єрних пристроях на їх основі, що, в свою чергу, є причиною залишкових змін електричних, механічних, оптичних та люмінесцентних властивостей; б) ультразвукова обробка (УЗО) радіаційномодифікованих кристалів та структур може викликати часткове відновлення деградованих властивостей внаслідок низькотемпературного акустовідпалу; в) дослідження особливостей поширення акустичних хвиль та акустоелектронної взаємодії дозволяють характеризувати як власні, так і домішкові дефекти; г) ультразвук може використовуватися як додатковий позитивний фактор впливу під час різноманітних технологічних операціях, зокрема при іонній імплантації; д) під час поширення пружних хвиль в напівпровідникових кристалах та приладах на їх основі виникає чимало різноманітних оптичних та електрофізичних ефектів, причиною яких вважається коливальний рух дислокацій чи дія п'єзоелектричного поля. Водночас підкреслено, що дані про вплив опромінення на акусто-дефектну взаємодію в літературі відсутні, а динамічні акустоїндуковані ефекти в бар'єрних структурах на основі неп'єзоелектричних малодислокаційних напівпровідників фактично не досліджувалися.

У другому розділі представлені результати експериментальних досліджень вперше виявлених оборотних акустоїндукованих ефектів у опромінених та вихідних кремнієвих структурах з p-n переходом (сонячних елементах).

На початку представлені методики дослідження параметрів бар'єрних структур за умов ультразвукового навантаження (УЗН), зокрема зосереджено

увагу на схемі експерименту, яка унеможливлювала проникненню п'єзоелектричного поля у зразок (рис. 1), методах визначення параметрів акустичних хвиль та використаних режимах УЗН.

Дослідження показали, що в діапазоні $290 \div 340~{\rm K}$ при УЗН (частота ультразвуку $f_{\rm US} = 4 \div 8~{\rm M}$ Пц, інтенсивність $W_{\rm US} \le 0.4~{\rm Br/cm^2})$ у вихідних кремнієвих сонячних елементах відбувається деградація фотоелектричних властивостей, а саме спостерігається зменшення густини струму короткого замикання J_{sc} (до 10%), напруги холостого ходу V_{oc} (до 15%) та фактору форми вольт–амперних характеристик (ВАХ) FF (до 5%). Зміни оборотні, значення параметрів після припинення УЗН та витримки зразків при кімнатній температурі протягом декількох десятків хвилин повертаються до своїх вихідних значень. Величини акустоїндукованих змін слабко залежать від температури, водночає при використанні поперечних хвиль зменшення параметрів більш суттєві, ніж у випадку повздовжніх хвиль з тією ж інтенсивністю. Останнє свідчить про те, що ефективність впливу УЗ визначається насамперед зміщеннями атомів.

З метою встановлення фізичного механізму виявлених ефектів проведено дослідження впливу УЗН на такі електрофізичні параметри як ефективний час життя носіїв заряду в області просторового заряду τ_g , фактор неідеальності $n_{\rm id}$, час життя неосновних носіїв у базі діода τ_n та шунтуючий опір R_{sh} . Визначення параметрів проводилось шляхом апроксимації ВАХ згідно з моделлю подвійного діода:

$$J(V,T) = -J_{ph} + \frac{qn_{i}d}{2\tau_{g}} \left\{ \exp\left[\frac{q(V-JR_{s})}{n_{\mathrm{id}}kT}\right] - 1 \right\} + \frac{qn_{i}^{2}}{p_{p}} \sqrt{\frac{\mu_{n}kT}{\tau_{n}}} \left\{ \exp\left[\frac{q(V-JR_{s})}{kT}\right] - 1 \right\} + \frac{V-JR_{s}}{R_{sh}}, \quad (1)$$

Рис. 1. Зліва — схема УЗН. 1 — екран; 2 — п'єзоелектричний перетворювач; 3 — контакти для вимірювання ВАХ; 4 — контакти для збудження ультразвуку. Справа — типові ВАХ, виміряні при температурах 301 К (криві 1 та 2) та 341 К (2 та 4) за умов УЗН (2, 4) та для акустично ненавантаженого зразка (1 та 3) Точки — експеримент, лінії — апроксимація згідно з (1)

де J — густина струму, V — прикладена напруга, J_{ph} — густина фотогенерованого струму, n_i — концентрація власних носіїв заряду, d — товщина області просторового заряду, p_p — концентрація основних носіїв заряду в p—області, R_s — послідовний опір, μ_n — рухливість неосновних носіїв у базі діода. При апроксимації (рис. 1) використовувався метод диференційної еволюції та враховувались температурні та польові залежності n_i , d, μ_n . Крім того, оцінка τ_n проводилася за температурною залежністю струму короткого замикання.

Виявлені температурні залежності величин $n_{\rm id}$ та τ_g ($n_{\rm id}(T) \sim T_{\rm id}/T$, $\tau_g(T) \sim \exp{(-E_{\tau g}/kT)}$, де $T_{\rm id}$ та $E_{\tau g}$ певні характерні величини), а також їх абсолютні значення ($n_{\rm id} > 2$, $\tau_g \approx (10^{-8} \div 10^{-7})$ с), свідчать, що рекомбінація в області просторового заряду досліджених структур відбувається відповідно до моделі рекомбінації в системі спарених рівнів двох окремих дефектів [1*]. УЗН викликає оборотне зростання $n_{\rm id}$ (до 0,04) та зменшення τ_g (до 30%). Оборотність акустоїндукованих змін та незмінність $T_{\rm id}$ і $E_{\tau g}$ вказують на сталість концентрації рекомбінаційних центрів та відсутність їх перебудова при УЗН. Дослідження також показали, що а) рекомбінація у квазі—нейтральній області може бути описана в рамках моделі Шоклі—Ріда—Хола, б) величина τ_n , яка безпосередньо пов'язана з цими процесами, при УЗН суттєво (до 90%) зменшується, причому $\tau_n^{-1} \sim u_{\rm US}^2$ (де $u_{\rm US}$ — амплітуда зміщень атомів при поширенні ультразвуку).

3 метою визначення типів основних рекомбінаційних центрів було проведено дослідження впливів інтенсивного (2 кВт/м²) довготривалого (до 15 год) освітлення та відпалу (при 200 °C) на параметри сонячних елементів. Аналіз залишкових змін та перехідних процесів після припинення освітлення засвідчив, що дефектами, які приймають участь як у рекомбінаційних процесах, так і у акусто-дефектній взаємодії є кисневмісні преципітати (переважно) та пари Fe_iB_s (частково). Цей висновок також підтверджено за допомогою методу диференційним коефіцієнтів ВАХ [4*], застосування якого дозволило з'ясувати, що основними дефектами в області просторового заряду вихідних сонячних елементів ϵ кисневмісні преципітати (яким відповідають рівні у забороненій зоні з розташуванням $E_c-(0.46 \div 0.48)$ eB та $E_c-0.40$ eB), дислокації $(E_c-0.36\ {
m eB})$ та комплекси ${
m Fe}_i{
m O}_i$ $(E_c-0.43\ {
m eB})$. Додатково показано, що при УЗН відбувається незначне (близько 10 меВ) зменшення енергії активації та збільшується внесок у рекомбінацію більш мілких рівнів, зокрема пов'язаних з преципітатами, причому зміни відносних внесків різних центрів лінійно залежать від u_{US} .

Виявлено оборотне зменшення величини шунтуючого опору (до 30%) при УЗН. Спираючись на температурну залежність R_{sh} показано, що його поява може бути описана в рамках моделі дислокаційно–індукованого імпедансу [2*], а акустоіндуковані зміни викликані зростанням ефективності захоплення електронів лінійними дефектами, розташованими в області p-n переходу.

Проведені в рамках дводіодної моделі чисельні розрахунки показали, що акустоїндуковані зміни J_{sc} пов'язані зі зменшенням τ_n , тоді як зменшення τ_q

викликає деградацію як V_{oc} , так і FF. Ефект деградації підсилюється внаслідок акустоіндукованого зменшення R_{sh} та частково компенсується зростанням n_{id} .

Для пояснення виявлених ефектів запропонована модель акустоактивного комплексного рекомбінаційного центру, який складається з нееквівалентних компонент. При поширенні акустичної хвилі на точковий дефект дії періодична сила, амплітуда якої залежить від зміни об'єму кристалу, що припадає на один дефект $\Delta\Omega_d$ [3*] ($\Delta\Omega_d<0$ для дефектів вакансійного типу). В рамках запропонованої моделі за умов УЗН компоненти (якими у випадку рекомбінації в системі спарених рівнів є дефекти донорного та акцепторного типу, а при рекомбінації Шоклі–Ріда–Хола — частини комплексного точкового рекомбінаційного центру) здійснюють гармонічні коливання, частота та вісь яких визначаються акустичною хвилею, тоді як амплітуди та фази залежить також і від $\Delta\Omega_d^{\rm D}$ та $\Delta\Omega_d^{\rm A}$ кожної з них — рис. 2. При цьому відстань між компонентами при УЗН $r_{\rm US}$ залежить від часу

$$r_{\text{US}}(t) = \left\{ [r_{in} + u_{\text{A}}\cos(2\pi f_{\text{US}}t + \delta) - u_{\text{D}}\cos(2\pi f_{\text{US}}t)]^{2}\cos^{2}\varphi + [u_{\text{A}}\cos(2\pi f_{\text{US}}t + \delta) - u_{\text{D}}\cos(2\pi f_{\text{US}}t)]^{2}\sin^{2}\varphi \right\}^{0.5}, \quad (2)$$

де r_{in} — вихідна відстань, $u_{\rm D}$ та $u_{\rm A}$ — амплітуди коливань компонент, $u_{\rm D}, u_{\rm A} \sim u_{\rm US}, ~\delta$ — зсув фаз між коливаннями компонент, φ — кут між віссю комплексу та напрямом зміщень в акустичній хвилі. В рамках запропонованої моделі проведено розрахунки очікуваних акустоіндукованих змін поперечного перерізу захоплення σ_n та параметра зв'язку, які визначають темп зникнення нерівноважних носіїв у вищеназваних рекомбінаційних моделях. Зокрема а) розглянуто ефективність впливу УЗН при збудженні поперечних та повздовжніх хвиль із врахуванням наявності просторово орієнтованих дислокацій та показано, що найбільші зміни очікуються у випадку, коли комплекс складається з компонент міжвузольного та вакансійного типу ($\Delta\Omega_d^{\rm D}$ — $\Delta\Omega_d^{\rm A}$ < 0) в умовах поперечних коливань; б) показано, що збільшення σ_n та зменшення параметра зв'язку має викликати зменшення τ_q та зростання $n_{\rm id}$, що спостерігається на експерименті;

Рис. 2. Модель поведінки дефектного комплексу за умов УЗН

в) при УЗН має бути справедливим співвідношення

$$\tau_{n,\text{US}}^{-1} = \tau_{n,in}^{-1} + u_{\text{US}}^2 \sum_{j} N_{d,j} \, \sigma_{n,j}^{in} \, K_{\text{US},j} \, v_{\text{th},n} \,, \tag{3}$$

де кількість доданків у сумі визначається загальним числом різних акустоактивних рекомбінаційних центрів, кожний з яких характеризуються концентрацією $N_{d,j},\,v_{{\rm th},n}$ — теплова швидкість електронів $K_{{\rm US},j}$ описує взаємодію ультразвуку з дефектом j-го типу.

В розділі також представлені результати досліджень впливу УЗН на властивості кремнієвих сонячних елементів, опромінених γ –квантами 60 Со (дози 10^6 і 10^7 рад) та реакторними нейтронами (флюєнс $4\cdot 10^{11}$ см $^{-2}$). Використовуючи літературні дані показано, що при нейтронному опроміненні виникають пари C_iO_i , вакансійні кластери V_n та пари VO_i , тоді як γ –промені викликають появу лише C_iO_i та VO_i ; проведено оцінку концентрацій радіаційних дефектів та їх впливу на τ_n .

Рис. 3. Температурні залежності фактора неідеальності для неопроміненого (криві 1, 2), нейтронно–опроміненого (3, 4) та γ –опромінених (5, 6 та 7, 8 для доз 10^6 та 10^7 рад, відповідно) зразків. Криві 1, 3, 5 та 6 отримані без УЗН, криві 2, 4, 9 та 8 відповідають УЗН (поперечні хвилі; 4,2 МГц; 0,4 Вт/см²)

Проведені дослідження показали, що а) характер температурних залежностей τ_g та $n_{\rm id}$ співпадає з вихідними структурами (рис. 3 та 4), проте зміна $T_{\rm id}$ та $E_{\tau g}$ вказує на участь радіаційних дефектів в процесах рекомбінації в системі спарених рівнів; б) акустоіндуковані зміни $n_{\rm id}$ в радіаційно модифікованих структурах більші за величиною та протилежні за знаком до змін у вихідних сонячних елементах; в рамках моделі акустоактивного комплексного рекомбінаційного центру це свідчить про те, що до опромінення $\Delta\Omega_d^{\rm D} \cdot \Delta\Omega_d^{\rm A} > 0$, а після $\Delta\Omega_d^{\rm D} \cdot \Delta\Omega_d^{\rm A} < 0$; в) за умов УЗН величини $T_{\rm id}$ та $E_{\tau g}$ у γ -опромінених структурах оборотно змінюються, що засвідчує акустоіндуковану перебудову метастабільного дефекту (VO $_i$). Виявлено, що при УЗН величина τ_n^{-1} для

Рис. 4. Температурні залежності τ_g . Позначення кривих збігаються з рис. 3 опромінених структур також лінійно залежить від $u_{\rm US}^2$. Використовуючи співвідношення (3), визначено коефіцієнти, які характеризують взаємодію акустичних хвиль з радіаційними дефектами (для ${\rm C}_i{\rm O}_i~K_{\rm US}^{\rm CO}=0$, тобто цей дефект не є акустоактивним, для дивакансії $K_{\rm US}=(42\pm15)~{\rm cm}^2~{\rm Br}^{-1})$ та кисневмісними преципітатами ($K_{\rm US}>5~{\rm cm}^2~{\rm Br}^{-1}$).

Рис. 5. Залежності акустоїндукованих зменшення фотоструму від амплітуди зміщень атомів в неопроміненому (1, 2) та нейтронно–опроміненому (3, 4) зразках. $f_{\rm US}$, $\Gamma_{\rm U}$: 8,0 (1, 3); 26,1 (2, 4)

Виявлено, що УЗН γ -опромінених структур, як і вихідних, викликає зменшення величини J_{ph} , що цілком узгоджується з виявленим акустоіндукованим підвищенням активності рекомбінаційних центрів (зменшенням τ_n). Водночає у нейтронно-опромінених зразках зміни J_{ph} практично не спостерігаються — рис. 5. Дослідження температурних залежностей J_{ph} та довжини дифузії неосновних носіїв заряду L_n , засвідчило наявність у нейтронно-опромінених структурах додаткового механізму (ймовірно — акустоіндукована зміна заселеності рівнів, пов'язаних з вакансійними кластерами, що викликає зменшення коефіцієнта відбивання) впливу УЗН.

Отримані результати підтверджують практичну перспективність динамічного акустичного керування характеристиками напівровідникових приладів.

У **третьому розділі** наведено результати порівняльного аналізу та оптимізації методів розрахунку параметрів (струму насичення I_s , висоти бар'єру Шотткі Φ_b , фактора неідеальності та послідовного опору) структур метал—напівпровідник з вольт—амперних характеристик в наближенні термоелектронної емісії (ТЕ):

$$I = I_s \left\{ \exp\left[\frac{q(V - IR_s)}{n_{id}kT}\right] - 1 \right\} =$$

$$= AA^* T^2 \exp\left(-\frac{q\Phi_b}{kT}\right) \left\{ \exp\left[\frac{q(V - IR_s)}{n_{id}kT}\right] - 1 \right\}, \tag{4}$$

де A— площа діода Шотткі, A^* — ефективна стала Річардсона. Були розглянуті 10 аналітичних методів (використовують інтегрування ВАХ (метод Катіпякі I), побудову різноманітних допоміжних функцій (чи їх масиву) та лінійну (методи Chung, Lee та Kaminski II) чи нелінійну (Gromov) апроксимацію або пошук екстремумів (Cibils); також для побудови функцій застосовують додаткові параметри (методи Norde та Bohlin) або диференційні коефіцієнти першого (Werner) або вищого порядків (Mikhelashvili)) 2 чисельних методи (метод найменших квадратів зі статичними ваговими коефіцієнтами застосовувався безпосередньо до рівняння (4) та до його розв'язку, вираженого через W—функцію Ламберта) та 4 еволюційних алгоритми (диференційної еволюції (DE), оптимізації зграї частинок (PSO), модифікованої штучної бджолиної сім'ї (МАВС) та оптимізованого викладання та навчання (TLBO)). Всі методи були застосовані до а) ВАХ, синтезованих за допомогою виразу (4); б) ВАХ, синтезованих за допомогою виразу (4) з врахуванням можливих випадкових похибок вимірювань; в) експериментально виміряних ВАХ кремнієвих діодів Шотткі.

Для методів Norde та Bohlin визначені оптимальні (для кремнієвих діодів Шотткі при вимірюваннях в діапазоні температур $130 \div 330$ К) величини додаткових параметрів (1,8 для Norde та 1,6 і 3,5 для Bohlin). Запропоновано модифікацію методу Mikhelashvili, яка дозволяє застосовувати його в автоматичному режимі до множини BAX; вона полягає у послідовному використанні медіанного фільтру та процедури згладжування функції $\alpha(V) = d(\ln I)/d(\ln V)$ перед визначенням положення її максимуму; показано доцільність застосування запропонованої процедури при опрацюванні реальних BAX для підвищення точності методу. Запропоновано адаптивну процедуру вибору діапазону BAX, який використовується для побудови допоміжних функцій при застосуванні аналітичних методів визначення параметрів та показано, що вона дозволяє підвищити точність визначення параметрів (приблизно на порядок при кімнатних температурах у випадку низького рівня похибок вимірювання) і не викликає критичного збільшення часу розрахунку.

Виявлено, що а) відносні похибки визначення R_s , Φ_b та $n_{\rm id}$ лінійно залежать як від величин відносних похибок вимірювання напруги, так і сили струму, причому в останньому випадку залежність слабша; б) помилки визначення Φ_b та $n_{\rm id}$ значно менші, ніж помилки визначення R_s за тих самих умов

н. 1 нас визнатенни наражетри дтодив шотткі								
Метод	Метод Час роботи, с		Час роботи, с					
Norde	$(2.6 \div 3.7) \cdot 10^{-5}$	Werner	$(4.0 \div 4.5) \cdot 10^{-5}$					
Cibils	$(0.2 \div 5.3) \cdot 10^{-3}$	Kaminskii I	$(4.5 \div 8.0) \cdot 10^{-5}$					
Kaminskii II	$(0.3 \div 2.6) \cdot 10^{-3}$	Bohlin	$(4.0 \div 6.3) \cdot 10^{-5}$					
Lee	$(0.2 \div 3.6) \cdot 10^{-3}$	Gromov	$2.2 \cdot 10^{-2}$					
Cheung	$(2.0 \div 3.2) \cdot 10^{-5}$	Mikhelashvili	$(2.9 \div 4.7) \cdot 10^{-5}$					
Ordinary LS	$1.8 \div 460$	Lambert LS	$7.6 \div 540$					
DE	$0,36 \div 0,73$	PSO	$0,14 \div 0,35$					
MABC	$5.7 \cdot 10^{-2} \div 0.20$	TLBO	$5.4 \div 19,2$					

Табл. 1 — Час визначення параметрів діодів Шотткі

вимірювання. Проведено порівняльний аналіз точності (рис. 7 та 6) та швидкодії (табл. 1) визначення параметрів різними методами. Показано, що найбільша точність досягається при використанні еволюційних алгоритмів, чисельних методів, методу Gromov з адаптивною процедурою та методу Lee. Використання функції Ламберта при застосуванні чисельних методів дозволяє зменшити помилки визначення параметрів. Визначено вплив абсолютних величин кожного з параметрів на точність визначення R_s , Φ_b та $n_{\rm id}$. Зокрема показано, що еволюційні алгоритми дозволяють отримати найбільш коректні результати при малих (декілька Ом) значеннях R_s або високих температурах, а найбільш стійкими до величин параметрів є точності чисельних методів.

Рис. 6. Середні значення відносного відхилення розрахованих значень сили струму від експериментальних даних

Важливо підкреслити, що представлені результати огляду, тестування та порівняльного аналізу методів визначення параметрів діодів Шотткі можуть бути корисними під час досліджень та розробок пристроїв з контактом метал-напівпровідник на базі не лише кремнію, але й інших напівпровідників.

У **четвертому розділі** представлені результати досліджень впливу γ -опромінення на структури $Al-n-n^+$ -Si-Al з контактом Шотткі та вперше виявлених динамічних акустоїндукованих ефектів в цих структурах при кімнатних температурах.

Рис. 7. Температурні залежності відносних похибок визначення R_s (а — в), Φ_b (г — е) та $n_{\rm id}$ (є — з) при застосуванні методів до синтезованих ВАХ

Рис. 8. Температурні залежності висоти бар'єру структур $Al-n-n^+$ –Si-Al. Пунктирна лінія — залежність ширини забороненої зони кремнію

Встановлено, що поява при низьких ($T<210~{\rm K}$) температурах додаткової компоненти прямого струму, а також температурні залежності висоти бар'єру та фактору неідеальності можуть бути пояснені з точки зору моделі ТЕ через неоднорідний контакт [5*]. Визначені середня висота бар'єру Шотткі Φ_b^0 та її стандартне відхилення σ_Φ : $0.872\pm0.004~{\rm B}$ та $0.099\pm0.001~{\rm B}$ при $(130\div220)~{\rm K}$ та $0.663\pm0.003~{\rm B}$ та $0.040\pm0.005~{\rm B}$ при $(230\div330)~{\rm K}$, відповідно. Визначено середнє значення висоти бар'єру Шотткі в області зі зниженим бар'єром (так званого патчу) $54\pm4~{\rm mB}$. Показано, що при зворотних зміщеннях струм I_R складається з двох компонент — рис. 9,а. Перша з яких, $I_{\rm TE}$, пов'язана з ТЕ процесами через неоднорідний контакт, тоді як друга, $I_{\rm FN}$, викликана процесами тунелювання за участю центру з енергетичним положенням $E_c-(120\pm5)~{\rm meB}$, пов'язаним, найімовірніше, з міжвузольним атомом вуглецю C_i .

Проведені дослідження показали, що при опроміненні γ –квантами 60 Со з дозами $D=10^6$ рад та $D=10^7$ рад відбувається немонотонні зміни висоти бар'єра Шотткі — рис. 8. При зворотному зміщенні в опромінених структурах з'являється додаткова компонента струму, $I_{\rm MPT}$, пов'язана з тунельною багатофононною іонізацією глибоких домішкових центрів $[6^*]$.

Виявлено, що при 10^6 рад домінуючим механізмом перенесення заряду при $120 \div 240$ K як при прямому зміщенні, так і при зворотному стає тунелювання за участю рівнів у забороненій, що пов'язано з утворенням радіаційних дефектів. При T>260 K основним механізмом залишається TE

Рис. 9. Зворотні ВАХ структур $Al-n-n^+$ –Si–Al з різним ступенем опромінення. $T=305~\rm K$. Заповнені та порожні точки відповідають вимірам за умов УЗН та без нього, відповідно. $f_{\rm US}=9.6~\rm M\Gamma$ ц. Розривні лінії відображають окремі складові зворотного струму для ненавантажених структур, суцільні — їх суму

через неоднорідний контакт, проте значення Φ_b^0 та σ_Φ зростають до 0,772 В та 0,1 В, відповідно. Поява при низьких температурах додаткового струму, як і для неопромінених структур, пов'язана з ефективним проходженням носіїв через області зниженого бар'єру, причому висота бар'єру в області патчів зростає (з 54 до 74 мВ). Причиною змін бар'єру Шотткі є накопичення на інтерфейсній границі радіаційних дефектів акцепторного типу. Крім того, радіаційно–підсилене дислокаційне ковзання викликає перегрупування патчів з утворенням більших за розміром скупчень. Це призводить до збільшення впливу патчів, що маскує зростання висоти бар'єру за їх межами і викликає ефективне зменшення Φ_b , яка визначається безпосередньо з ВАХ (рис. 8).

Показано, що при збільшенні дози до 10^7 рад тунельний струм стає переважаючим при прямому зміщенні при $T=150 \div 220 \text{ K}$, а при зворотному — у всьому дослідженому температурному інтервалі. При $T=260 \div 330~{\rm K}$ прямий струм пов'язаний як з тунелюванням, так і з ТЕ процесами через однорідний бар'єр висотою близько 710 мВ. Виявлені зміни механізму перенесення заряду пов'язані із суттєвим збільшенням концентрації радіаційних дефектів та ефективним гетеруванням патчами від'ємно заряджених центрів. Це, в свою чергу, призводить до того, що патчі починають виконувати роль тунельних шунтів і перестають впливати на процеси TE, а також спричинює зменшення Φ_b в однорідній області. Таким чином, показано що характер немонотонності залежності $\Phi_b(D)$ залежить від ступеня неоднорідності: для переважної частини контакту області має місця «зростання-спад», проте ефект може маскуватися внаслідок впливу патчів. Зауважимо, що в літературі повідомляється про спостереження обох типів немонотонності («спад-зростання» та «зростання-спад»), проте причини подібного різноманіття характеру радіаційноіндукованих змін висоти бар'єру залишалися невідомими.

У розділі також повідомляється про виявлені оборотні зміни характеристик структур $Al-n-n^+$ -Si-Al під дією УЗН при T=305 К. УЗН викликає зменшення Φ_b (рис. 10,a), причому a) залежність $\Phi_b(W_{\text{IIS}})$ в неопромінених структурах має пороговий характер; б) після γ -опромінення ефективність впливу УЗ знижується і змінюється характер амплітудної залежності; в) зі збільшення дози зростають величини акустоіндукованих змін. Показано, що в неопромінених структурах зменшення висоти бар'єру пов'язане зі зміною рівня нейтральності інтерфейсних станів внаслідок іонізації дефектів на границі розділу, викликане коливаннями дислокаційних відрізків у акустичному полі. Опромінення викликає а) закріплення сегментів лінійних дефектів внаслідок гетерування точкових дефектів; б) появу акустоактивних точкових радіаційних дефектів (А-центрів, дивакансій), що спричинює зміну механізму акусто-дефектної взаємодії. Незначні акустоїндуковані зміни фактора неідеальності спостерігаються лише у випадку, коли $n_{\rm id} > 1.1$ (рис. 10,6), що пов'язано з впливом УЗ та стан патчів внаслідок взаємодії з радіаційними дефектами, захопленими в областях неоднорідності.

Рис. 10. Залежності висоти бар'єру Шотткі (а) та фактора неідеальності (б) від інтенсивності УЗ для структур $Al-n-n^+$ –Si—Al з різним ступенем опромінення. $T=305~{\rm K.}~f_{\rm US}=9,6~{\rm M\Gamma}$ ц. Горизонтальні пунктирні лінії відповідають значенням параметрів, виміряних без УЗН

За умов УЗН спостерігається збільшення величини зворотного струму — рис. 9. Ефект послаблюється зі збільшенням зміщення, амплітудна залежність як для неопромінених, так і опромінених структур аналогічна акустоіндукованим змінам висоти бар'єру. Враховуючи, що акустоіндуковані зміни зворотного струму можуть досягати декількох десятків відсотків, запропоновано використовувати цей ефект для створення сенсору γ —опромінення. Показано, що акустоіндуковані зміни I_R пов'язані з впливом пружних хвиль лише на ТЕ складову, тоді як незмінність при УЗН тунельних струму свідчить, що відповідні дефекти (зокрема C_i) не ϵ акустоактивними.

У **п'ятому розділі** представлені результати досліджень оборотних акустоіндукованих ($f_{\rm US}=4.1,~8.4~{\rm Ta}~27.8~{\rm M}$ Гц) змін параметрів діодів Шотткі ${\rm Mo}/n-n^+$ –Si в інтервалі температур $130\div330~{\rm K}$.

Показано, що у досліджених структурах перенесення заряду відбувається відповідно до моделі ТЕ через неоднорідний контакт, причому для опису температурної залежності висоти бар'єру Шотткі доцільно застосовувати наближення подвійного розподілу Гауса [7*]:

$$\Phi_{b,H} = -\frac{kT}{q} \ln \left[\varrho_1 \exp \left(-\frac{q\Phi_{b,1}^0}{kT} + \frac{q^2 \sigma_{\Phi,1}^2}{2k^2 T^2} \right) + \varrho_2 \exp \left(-\frac{q\Phi_{b,2}^0}{kT} + \frac{q^2 \sigma_{\Phi,2}^2}{2k^2 T^2} \right) \right], \tag{5}$$

 $\varrho_1,\ \varrho_2$ — вагові коефіцієнти кожного з розподілів. Виявлено, що ультразвук викликає оборотні збільшення фактора неідеальності та зміни Φ_b , величина і знак

Рис. 11. Залежності змін висоти бар'єру високотемпературної компоненти струму від температури (а) та інтенсивності введеного УЗ (б). $f_{\rm US}=4.1~{\rm M}\Gamma_{\rm U}$ яких залежить від температури — рис. 11. Розрахунки, проведені відповідно до моделі [3*,7*] показали, що за умов УЗН відбувається зростання $\Phi_{b,1}^0$ (від 780 мВ до, наприклад при $f_{\rm US}=4.1~{\rm M}\Gamma_{\rm U},$ $W_{\rm US}=0.17~{\rm BT/cm^2},$ 810 мВ), $\Phi_{b,2}^0$ (від 1100 до 1200 мВ), $\sigma_{\Phi,1}$ (від 20 до 50 мВ), $\sigma_{\Phi,2}$ (від 120 до 130 мВ) та зростання внеску другого розподілу (в чотири рази). Також виявлено, що УЗН викликає зміни висоти бар'єру в області патчів, які немонотонним чином залежать від $W_{\rm US}$; зростання ефективної густини патчів (від від 0,2 до 2 мм $^{-2}$) та зменшення (від 2,7 · 10^{-5} до 2,5 · 10^{-5} м $^2/^3 \cdot {\rm B}^{1/3}$) величини $3(R_p^2\Delta_p/4)^{1/3}$, де Δ_p та R_p — зниження висоти бар'єру в області патча та його розмір, відповідно. Основні виявлені особливості впливу УЗН на стан контакту метал—напівпровідник якісно узагальнено на рис.12.

Встановлено, що температурні та частотні залежності акустоіндукованих змін в структурах $\mathrm{Mo}/n-n^+$ –Si (рис.13) можуть бути пояснені в рамках моделі Брейсфолда [8*], яка передбачає акстостимульовану дифузію дислокаційних перегинів. Зокрема, зміни висоти бар'єру описуються виразом

$$\Delta\Phi_{b,H}\left(f_{\text{US}},T\right) \sim \frac{f_{\text{US}}}{T} \frac{\left(f_{\text{US}}/f_k\right) \exp\left(\frac{W_k}{kT}\right)}{1 + \left(f_{\text{US}}/f_k\right)^2 \exp\left(\frac{2W_k}{kT}\right)} W_{\text{US}},\tag{6}$$

де W_k — енергія активації дифузії, а параметр f_k пов'язаний з середньою довжиною дислокаційного сегмента та абсолютним значенням коефіцієнта дифузії. Визначені в рамках моделі величини становлять $W_k=(90\pm 10)$ меВ та $f_k=(3\pm 2)\cdot 10^9\,$ Гц.

Виявлено, що при зворотному зміщенні а) перенесення заряду пов'язане з процесами ТЕ (I_{TE}) та тунелюванням, стимулюваним фононами, з електронних

Рис. 12. Схематичне зображення просторового розподілу поверхневого потенціалу що відображає різницю між випадком УЗН (верхня площина та верхня контурна поверхня) та його відсутністю (нижня площина та нижня контурна поверхня). Рисунок зроблено у припущенні, що наявні два патчі.

станів поблизу границі розділу (I_{PAT}) [9*] і може бути описане виразом

$$I_{R} = I_{TE} + I_{PAT} = P_{t}I_{0}T^{2} \exp\left(-\frac{q\Phi_{b}}{kT}\right) \left[1 - \exp\left(-\frac{V_{s}}{kT}\right)\right] + \frac{P_{t}q^{2}F_{m}AN_{ss}}{\sqrt{8m^{*}\epsilon_{t}}} \left(1 - \frac{\gamma}{\gamma_{1}}\right)^{1/2} \exp\left\{-\frac{4\sqrt{2m^{*}}}{3qF_{m}\hbar} \frac{\epsilon_{t}^{3/2} (\gamma_{1} - \gamma)^{2}}{3qF_{m}\hbar} [\gamma_{1} + \frac{1}{2}\gamma]\right\}$$

$$\gamma_{1} = (1 + \gamma^{2})^{1/2}, \quad \gamma = \frac{a_{e-ph}\hbar\omega_{ph}^{2}\sqrt{2m^{*}}}{qF_{m}\sqrt{\epsilon_{t}}} \left\{\frac{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) + 1}{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) - 1}\right\},$$

$$\gamma_{1} = (1 + \gamma^{2})^{1/2}, \quad \gamma = \frac{a_{e-ph}\hbar\omega_{ph}^{2}\sqrt{2m^{*}}}{qF_{m}\sqrt{\epsilon_{t}}} \left\{\frac{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) + 1}{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) - 1}\right\},$$

$$\gamma_{1} = (1 + \gamma^{2})^{1/2}, \quad \gamma = \frac{a_{e-ph}\hbar\omega_{ph}^{2}\sqrt{2m^{*}}}{qF_{m}\sqrt{\epsilon_{t}}} \left\{\frac{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) + 1}{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) - 1}\right\},$$

$$\gamma_{1} = (1 + \gamma^{2})^{1/2}, \quad \gamma = \frac{a_{e-ph}\hbar\omega_{ph}^{2}\sqrt{2m^{*}}}{qF_{m}\sqrt{\epsilon_{t}}} \left\{\frac{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) + 1}{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) - 1}\right\},$$

$$\gamma_{1} = (1 + \gamma^{2})^{1/2}, \quad \gamma = \frac{a_{e-ph}\hbar\omega_{ph}^{2}\sqrt{2m^{*}}}{qF_{m}\sqrt{\epsilon_{t}}} \left\{\frac{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) + 1}{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) - 1}\right\},$$

$$\gamma_{1} = (1 + \gamma^{2})^{1/2}, \quad \gamma = \frac{a_{e-ph}\hbar\omega_{ph}^{2}\sqrt{2m^{*}}}{qF_{m}\sqrt{\epsilon_{t}}} \left\{\frac{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) + 1}{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) - 1}\right\},$$

$$\gamma_{2} = (1 + \gamma^{2})^{1/2}, \quad \gamma = \frac{a_{e-ph}\hbar\omega_{ph}^{2}\sqrt{2m^{*}}}{qF_{m}\sqrt{\epsilon_{t}}} \left\{\frac{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) + 1}{\exp\left(\frac{\hbar\omega_{ph}}{kT}\right) - 1}\right\},$$

Рис. 13. Температурні залежності змін висоти бар'єру Шотткі при УЗН на різних частотах. Точки — експеримент, лінії — апроксимація згідно з формулою (6)

де P_t — ймовірність тунелювання через діелектричний прошарок, N_{ss} — густина заповнених рівнів поблизу інтерфейсу, $\hbar\omega_{ph}$ — енергія фонону, $a_{\rm e-ph}$ — константа електрон-фононної взаємодії, ϵ_t — глибина залягання рівнів, F_m — напруженість електричного поля на границі напівпровідник-метал; б) висота бар'єру та ϵ_t зменшуються при зростанні зворотної напруги ($\Phi_b = \Phi_{b0} - \alpha_F F_m$, $\epsilon_t = \epsilon_{t0} - \beta_F F_m^{1/2}$), що пов'язано з впливом інтерфейсних станів [5*] та ефектом Пула-Френкеля; в) за умов УЗН зареєстроване оборотне зростання I_R , викликане акустоіндукованим зменшенням ряду параметрів — див. табл. 2; г) причиною появи тунелювання є кластери позитивно заряджених дефектів, а акустоіндукованих змін I_{PAT} — модифікація розміру кластера, викликана локальним підвищенням температури скупчення дефектів у акустичному полі [2*].

Табл. 2 — Параметри, визначені для структур $\mathrm{Mo}/n-n^+$ –Si зі зворотних гілок ВАХ за умов УЗН та без нього

$W_{\mathtt{US}},$	$f_{\mathtt{US}},$	$\Phi_{b0}(0),$	α_F ,	ϵ_{t0} ,	$\beta_F \cdot 10^5$,	N_{ss} ,
Вт/см2	МГц	мВ	HM	меВ	$eB \cdot M^{1/2} \cdot B^{-1/2}$	$10^{11} { m cm}^{-2}$
0	_	960 ± 10	66 ± 7	610 ± 10	$10,5 \pm 0,3$	$5,3 \pm 0,7$
0,17	8,4	870 ± 10	51 ± 5	540 ± 10	$8,1 \pm 0,5$	$1,2 \pm 0,2$
0,65	4,1	790 ± 10	36 ± 7	520 ± 10	$7,1 \pm 0,5$	0.8 ± 0.2

У **шостому розділі** представлені результати досліджень необоротних змін арсенід галієвих структур, викликаних мікрохвильовою та ультразвуковою обробками.

Зокрема, досліджено вплив надвисокочастотного випромінювання (частота 2,45 ГГц, питома потужність 1,5 Вт/см², час обробки — до 80 с) на параметри глибоких центрів, розташованих у приповерхневій області монокристалів n–6H–SiC та n–GaAs, а також арсенід галієвих епітаксійних структур за допомогою методу акустоелектричної релаксаційної спектроскопії. Виявлено, що до опромінення в структурах спостерігаються комплекси вакансійного типу: $V_{\rm Si}V_{\rm C}$ (положення рівня E_c — 0,33 еВ) в n–6H–SiC та $V_{\rm As}$ (E_c — 0,32 еВ) і $V_{\rm Ga}$ Ga $_iV_{\rm As}$ (E_c — 0,49 еВ) в n–GaAs, а також $V_{\rm Ga}V_{\rm As}$ (E_c — 0,24 еВ), $V_{\rm As}$ As $_i$ (E_c — (0,43 — 0,46) еВ) і $V_{\rm Ga}$ Ga $_{\rm As}$ (E_c — 0,40 еВ) на границі розділу епітаксійних структур n–n+–GaAs. Внаслідок мікрохвильового опромінення біля поверхні збільшується концентрація міжвузольних атомів та відбуваються перетворення в дефектній підсистемі внаслідок їх взаємодії з вихідними дефектами:

$$\begin{split} \text{SiC} & : & V_{Si} \ V_C + V_{Si} \ V_C + C_{\it i} + C_{\it i} \to V_{Si} + V_{Si} \to V_{Si} \ V_{Si} \ ; \\ & V_{Si} \ V_{Si} + \text{Si}_{\it i} + \text{Si}_{\it i} \to 0 \ ; \\ \text{GaAs} & : & V_{As} + \text{As}_{\it i} \to V_{Si} \ \text{As}_{\it i} \to 0 \ ; \\ & V_{Ga} \ \text{Ga}_{\it i} \ V_{As} \to \text{Ga}_{Ga} \ V_{As} \to \text{Ga}_{As} \ V_{Ga} \ ; \\ & V_{Ga} \ V_{As} + \text{Ga}_{\it i} + \text{As}_{\it i} \to V_{As} \ \text{As}_{\it i} \ ; \\ & V_{Ga} \ \text{Ga}_{As} + \text{As}_{\it i} \to \text{Ga}_{Ga} \ V_{As} + \text{As}_{\it i} \to V_{As} \ \text{As}_{\it i} \ . \end{split}$$

Рис. 14. Порівняльні розподіли величини зворотного струму (при $V_R=2$ В) для структур Au–TiB $_x$ –n–n+–GaAs до ультразвукової обробки (а) та після неї(б). $W_{\rm US}=1,8$ Вт/см 2 , $f_{\rm US}=4,1$ МГц, $t_{\rm UST}=10$ год. По вертикалі відкладена частка діодів, для яких струм перебуває у відповідному діапазоні. Загальна кількість діодів — 40. Лінії — апроксимація відповідно до розподілу Гауса. Середнє значення, A: $(2,8\pm0,2)\cdot 10^{-8}$ (а), $(1,31\pm0,01)\cdot 10^{-7}$ (б). Дисперсія: 9 ± 2 (а), $3,3\pm0,2$ (б)

Крім того, мікрохвильова обробка викликає модифікацію (у декілька разів) поперечного перерізу захоплення електронів, яка пов'язані зі зміною напруженості електричного поля в околі дефектів. Отримані результати щодо зміни параметрів дефектів корелюють з вимірами радіуса кривизни структур та деформації у приповерхневому шарі. Показано, що наявність механічних напруг сприяє радіаційно стимульованим перетворенням точкових дефектів.

Також досліджено вплив ультразвукової обробки $(f_{\rm US}=(4,1\div30)\ {\rm M}\Gamma{\rm II},\ W_{\rm US}=(0,3\div3)\ {\rm BT/m^2},\ {\rm час}\ {\rm обробки}\ t_{\rm UST}=(5\div15)\ {\rm год})$ на параметри структур Au–TiB $_x$ -n- n^+ -GaAs, виготовлених за технологією з інтегральним тепловідведенням. Виявлено, що при $W_{\rm US}<2,5\ {\rm BT/m^2}\ {\rm V3O}$ викликає зменшення розкиду висоти бар'єру, фактора неідеальності та величини зворотного струму (рис. 14) діодів Шотткі, виготовлених в єдиному технологічному процесі. Ефект пов'язаний акустостимульованою дифузією точкових дефектів, яка призводить до згладжування локальних неоднорідностей границі розділу. Виявлено, що зі збільшенням частоти ультразвука інтенсифікуються процеси перебудови дефектів, що відображається у зміні характеристичного параметра тунельної компоненти зворотного струму. При перевищенні $W_{\rm US}$ порогу ($\sim 2,5\ {\rm Bt/cm^2})$ спостерігається зменшення Φ_b та зростання $n_{\rm id}$ і зворотного струму, що пов'язано з генерацією дефектів акустичною хвилею.

У шостому розділі також повідомляється про результати досліджень, спрямованих на з'ясування можливості відновлення характеристик структур

Рис. 15. Зворотні (а) та прямі (б) ВАХ структур Si–SiO₂–Au до (криві 1) та після (2–4) опромінення γ –квантами. $t_{\rm UST}$, хв: 0 (2), 30 (3), 60 (4). $T=300~{\rm K}$. Точки — експеримент, лінії — апроксимація за формулами (4) (суцільні) та (9) (пунктир)

Si–SiO $_2$ –Au, деградованих внаслідок γ –опромінення ($D=5\cdot 10^7$ рад). Виявлено, що опромінення суттєво змінює процеси перенесення заряду — рис. 15. Показано, що при малих прямих зміщеннях переважаючим стає струм, обмежений просторовим зарядом, для якого

$$I = I_0 V^{m_{\rm F}},$$
 (8)

причому I_0 залежить від концентрації пасток N_t ($I_0 \sim 1/N_t^{m_{\rm F}-1}$), а $m_{\rm F}$ відображає енергетичний розподіл їх рівнів [10^*]. Поява даної компоненти струму пов'язана з утворенням ненасичених зв'язків на границі Si–SiO $_2$ (P_b –центрів). Накопичення P_b –центрами від'ємного заряду на інтерфейсі викликає зменшення ТЕ складової струму. Опромінення також є причиною появи E'–центрів (вакансій кисню), що викликає появу при зворотному зміщенні струму втрат, пов'язаного з тунелюванням по пасткам, для якого

$$I = I_{0,\text{TAT}} \left(U_d + V_R \right) \exp \left(-R_{\text{TAT}} / F_m \right), \tag{9}$$

де параметр $I_{0,\mathrm{TAT}}$ пропорційний концентрації пасток. Виявлено, що ультразвукова обробка ($f_{\mathrm{US}}=4$ МГц, $W_{\mathrm{US}}=2$ Вт/м², $t_{\mathrm{UST}}=(0.5\div1)$ год) викликає зменшення концентрації E'-центрів ($I_{0,\mathrm{TAT}}$ зменшується в ~25 разів) та P_b -центрів (I_0 зростає в ~30 разів), а також звуження енергетичного спектра останніх (m_{F} змінюється з 1,3 до 1,8). Акустоїндуковані ефекти пов'язані з акустостимульованою дифузію атомів кисню та водню, причому ефективність пасивації останніми ненасичених зв'язків залежить від рівня механічних напруг в околі дефекту.

ВИСНОВКИ

1. Вперше експериментально досліджено вплив ультразвукового навантаження на параметри монокристалічних кремнієвих сонячних елементів у

діапазоні температур 290 ÷ 340 К та виявлена оборотна акустоіндукована деградація фотоелектричних властивостей, пов'язана зі зменшенням часу життя носіїв заряду в акустичному полі. Виявлено, що в умовах акустичного навантаження збільшується внесок у рекомбінаційні процеси більш мілких рівнів. Встановлено, що кисневмісні преципітати ефективно впливають на процеси рекомбінації та беруть участь у акусто—дефектній взаємодії. Запропоновано модель акустоактивного комплексного дефекту для пояснення особливостей акустоіндукованих ефектів. Виявлено ефект акустоіндукованого зменшення шунтуючого опору та запропоновано його пояснення із залученням моделі дислокаційно—індукованого імпедансу.

- 2. Вперше досліджено вплив ультразвукового навантаження на параметри кремнієвих структур з p-n переходом, які були опромінені реакторними нейтронами та γ -квантами 60 Со. Виявлено, що в опромінених структурах, порівняно з неопроміненими, спостерігається підвищення ефективності акустоіндукованого зменшення шунтуючого опору та часу життя неосновних носіїв заряду в базі діода. З'ясовано, що акустоіндуковані оборотні зміни фактора неідеальності та часу життя носіїв в області просторового заряду мають різний знак в опромінених та неопромінених структурах. Встановлено, що нейтронно-опромінених діодах основними акустоактивними центрами ϵ дивакансії, а в γ -опромінених комплекс вакансії та міжвузольного кисню Виявлено, що комплекс з міжвузольного вуглецю та міжвузольного кисню практично не прийма ϵ участі в акусто-дефектній вза ϵ модії.
- 3. Проведено порівняльний аналіз та тестування 16 основних методів визначення параметрів діодів Шотткі з вольт-амперних характеристик. Спираючись на результати тестування методів на експериментальних та синтезованих ВАХ, запропоновано шляхи оптимізації методів Nord, Bohlin та Mikhelashvili з метою збільшення точності розрахунку. Запропоновано адаптивну процедуру оптимізації вибору діапазону ВАХ, який використовується для побудови допоміжних функцій при застосуванні аналітичних методів визначення параметрів структур метал-напівпровідник. Показано, що така процедура дозволяє суттєво (приблизно на порядок при кімнатних температурах у випадку низького рівня похибок вимірювання) підвищити точність визначення параметрів.
- 4. Встановлено, що найбільш ефективними методами з точки зору точності визначення параметрів та швидкості розрахунків є еволюційні алгоритми, метод Gromov з адаптивною процедурою та метод Lee. Показано, що використання функції Ламберта при чисельному визначенні параметрів діодів Шотткі дозволяє зменшити похибки. Визначено залежності точності визначення послідовного опору, висоти бар'єру Шотткі та фактора неідельності від величин параметрів та рівня випадкових помилок вимірювання вольт–амперних характеристик.
- 5. Встановлено, що при прямому зміщенні перенесення заряду в структурах $Al-n-n^+$ –Si—Al з бар'єром Шотткі у діапазоні температур $130 \div 330~{\rm K}$ відбувається внаслідок термоелектронної емісії через неоднорідний контакт.

Показано, що при низьких температурах ($T < 220~{\rm K}$) суттєвим стає проходження заряду через області зі зниженим бар'єром і визначено середнє значення висоти бар'єру Шотткі в цих областях. Виявлено, що при зворотному зміщенні в структурах ${\rm Al-}n{\rm -}n^{\rm +}{\rm -}{\rm Si-}{\rm Al}$ перенесення заряду відбувається як внаслідок термоелектронної емісії через неоднорідний бар'єр, так і завдяки процесам тунелювання через глибокий центр (міжвузольний атом вуглецю).

- 6. Показано, що опромінення γ -квантами ⁶⁰Со структур Al $-n-n^+$ -Si-Al суттєво підсилює процеси тунелювання носіїв заряду як при прямому зміщенні, так і при зворотному. Встановлено, що при прямому зміщенні тунельний механізм перенесення заряду стає основним в низькотемпературній області (T < 250 K), а при зворотному — з'являється компонента струму, пов'язана з багатофононним тунелюванням. Виявлено, що висота бар'єру, фактор неідеальності та величина зворотного струму немонотонно змінюються при збільшенні поглинутої дози. З'ясовано, що у випадку поглинутої дози 10^6 рад зміна електрофізичних параметрів відбувається внаслідок накопичення дефектів акцепторного типу на границі метал-напівпровідник та укрупнення патчів, викликаного радіаційно підсиленим дислокаційним ковзанням. При 107 рад визначальними механізмами змін властивостей діодів Шотткі є інтенсифікація процесів тунелювання внаслідок утворення значної кількості радіаційних дефектів та гетерування останніх в областях зі зниженим бар'єром. Встановлено взаємозв'язок характеру дозової немонотонності зміни висоти бар'єру Шотткі та ступеню неоднорідності контакту.
- 7. Вперше досліджено вплив ультразвукового навантаження у динамічному режимі при кімнатній температурі на параметри кремнієвих діодів Шотткі $Al-n-n^+$ -Si-Al. Виявлено, що при поширенні акустичних хвиль спостерігаються оборотні зменшення висоти бар'єру, збільшення зворотного струму та струму насичення, тоді як фактор неідеальності практично не змінюється. З'ясовано, що ультразвукове навантаження практично не впливає на процеси прямого тунелювання та багатофононного тунелювання. Встановлено, що вплив акустичного навантаження на термоемісійну складову струму структур пояснюється іонізацією дефектів на межі метал-напівпровідник внаслідок взаємодії ультразвуку з дислокаціями та радіаційними точковими порушеннями періодичності в неопромінених та опромінених структурах, відповідно.
- 8. Вперше експериментально досліджено динамічний вплив ультразвукового навантаження в діапазоні частот $8 \div 28$ МГц на електричні властивості структур Мо/n-n^+-Si з бар'єром Шотткі в діапазоні температур $130 \div 330$ К. Виявлено акустоїндуковані оборотні зміни фактора неідеальності та висоти бар'єру Шотткі, причому зміни немонотонно залежать від температури і найбільш ефективний вплив ультразвуку спостерігається поблизу 200 К. Показано, що зі збільшенням частоти ультразвуку спостерігається як загальне підвищення ефективності акустичного впливу на параметри кремнієвих діодів Шотткі, так і зростання температури максимуму ефективності. Використовуючи модель

неоднорідного контакту встановлено, що за умов ультразвукового навантаження відбувається збільшення висоти бар'єру як в області розташування патчів, так і за їх межами, а також уширюється розподіл параметрів патчів та збільшується їх ефективна густина. З'ясовано, що механізм акустоїндукованих змін параметрів структур $\text{Mo}/n-n^+$ –Si пов'язаний з рухом дислокаційних перегинів.

- 9. Виявлено ефект оборотного збільшення зворотного струму структур $\text{Mo}/n-n^+-\text{Si}$ за умов акустичного навантаження. Встановлено, що ефект послаблюється при збільшенні температури та зміщення та посилюється при зростанні частоти ультразвуку. Показано, що основними механізмами зворотного струму є термоелектронна емісія та тунелювання, стимульоване фононами; в умовах поширення акустичних хвиль відбувається зменшення енергії активації рівнів, що беруть участь у тунелюванні, густини заповнених інтерфейсних станів та коефіцієнта Пула-Френкеля.
- 10. Виявлено вплив мікрохвильового опромінення на параметри точкових дефектів у монокристалах n–6H–SiC, n–GaAs та епітаксійних структурах на основі арсеніду галію. Встановлено, що причинами радіаційностимульованих змін поперечного перерізу захоплення електронів та розташування енергетичних рівнів пасток у забороненій зоні є збільшення кількості міжвузольних атомів у приповерхневому шарі. Показано, що викликані високочастотним опроміненням процеси перетворення дефектних комплексів інтенсифікуються за наявності механічних напруг.
- 11. Вперше експериментально досліджено вплив ультразвукової обробки на параметри структури $\mathrm{Au-TiB}_x$ –n– n^+ – GaAs з контактом Шотткі залежно від частоти та потужності акустичних хвиль. Встановлено, що при допороговій (менше 2,5 $\mathrm{Br/cm^2}$) інтенсивності ультразвуку відбувається збільшення однорідності параметрів арсенід галієвих діодів Шотткі, створених в єдиному технологічному процесі, пов'язане з акустостимульованою дифузією точкових дефектів.
- 12. Встановлено, що ультразвукова обробка викликає зменшення концентрації та звуження енергетичного спектра радіаційноіндукованих пасток на інтерфейсі системи $Si\text{--}SiO_2$.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1*. Explanation of commonly observed shunt currents in c-Si solar cells by means of recombination statistics beyond the Shockley-Read-Hall approximation / S. Steingrube, O. Breitenstein, K. Ramspeck et al. // *J. Appl. Phys.* 2011. Vol. 110, no. 1. P. 014515.
- 2*. *Gopal, V.* Contribution of Dislocations to the Zero-Bias Resistance-Area Product of LWIR HgCdTe Photodiodes at Low Temperatures / V. Gopal, S. Gupta // *IEEE Trans. Electron Devices.* 2004. Vol. 51, no. 7. P. 1078–1083.
- 3^* . *Mirzade, F.* Elastic wave propagation in a solid layer with laser-induced point defects / F. Mirzade // *J. Appl. Phys.* -2011. Vol. 110, no. 6. P. 064906.

- 4*. Определение параметров глубоких уровней по дифференциальным коэффициентам вольт–амперных характеристик / С.В. Булярский, М.О. Воробьев, Н.С. Грушко, А.В. Лакалин // Письма в эксурнал технической физики. 1999. Т. 25, № 5. С. 22–27.
- 5*. *Tung, R.T.* Recent advances in Schottky barrier concept / R.T. Tung // *Materials Science and Engineering: R: Reports.* 2001. Vol. 35, no. 1–3. P. 1–138.
- 6*. Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors / S. D. Ganichev, E. Ziemann, W. Prettl et al. // *Phys. Rev. B.* 2000. Vol. 61, no. 15. P. 10361–10365.
- 7^* . Schottky Barrier Height Inhomogeneity of Ti/n-GaAs Contact Studied by the I-V-T Technique / Y.-L. Jiang, G.-P. Ru, F. Lu et al. // *Chin. Phys. Lett.* -2002. Vol. 19, no. 4. P. 553–556.
- 8*. *Brailsford, A. D.* Abrupt–Kink Model of Dislocation Motion / A. D. Brailsford // *Phys. Rev.* 1961. Vol. 122, no. 3. P. 778–786.
- 9*. *Pipinys, P.* Temperature dependence of reverse-bias leakage current in GaN Schottky diodes as a consequence of phonon-assisted tunneling / P. Pipinys, V. Lapeika // *J. Appl. Phys.* 2006. Vol. 99, no. 9. P. 093709.
- 10*. *Jafar, M.M.A.-G.* High-bias current-voltage-temperature characteristics of undoped rf magnetron sputter deposited boron carbide (B₅C)/p-type crystalline silicon heterojunctions / M.M.A.-G. Jafar // *Semicond. Sci. Technol.* 2003. Vol. 18, no. 1. P. 7–22.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

Наукові праці, в яких опубліковано основні наукові результати дисертації

- 1. Acousto-defect interaction in irradiated and non-irradiated silicon n^+-p structure / O. Ya. Olikh, A. M. Gorb, R. G. Chupryna, O. V. Pristay-Fenenkov // *J. Appl. Phys.* 2018. Apr. Vol. 123, no. 16. P. 161573–1–161573–12.
- 2. *Olikh, O.Ya.* Acoustically driven degradation in single crystalline silicon solar cell / O.Ya. Olikh // *Superlattices Microstruct.* 2018. May. Vol. 117. P. 173–188.
- 3. *Olikh, O.* On the mechanism of ultrasonic loading effect in silicon-based Schottky diodes / O. Olikh, K. Voytenko // *Ultrasonics*. 2016. Mar. Vol. 66, no. 1. P. 1–3.
- Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure / O. Ya. Olikh, K. V. Voytenko, R. M. Burbelo, Ja. M. Olikh // Journal of Semiconductors. — 2016. — Dec. — Vol. 37, no. 12. — P. 122002–1–122002–7.
- 5. *Olikh, O. Ya.* Review and test of methods for determination of the Schottky diode parameters / O. Ya. Olikh // *J. Appl. Phys.* 2015. Jul. Vol. 118, no. 2. P. 024502–1–024502–14.

- 6. *Olikh, O. Ya.* Ultrasound influence on I–V–T characteristics of silicon Schottky barrier structure / O. Ya. Olikh, K. V. Voytenko, R. M. Burbelo // *J. Appl. Phys.* 2015. Jan. Vol. 117, no. 4. P. 044505–1–044505–7.
- 7. *Olikh, O.*. Reversible influence of ultrasound on γ -irradiated Mo/n-Si Schottky barrier structure / O. Olikh // *Ultrasonics*. -2015. Feb. Vol. 56. P. 545–550.
- 8. Особливості дислокаційного поглинання ультразвуку в безсубблочних кристалах $Cd_{0,2}Hg_{0,8}Te$ / І. О. Лисюк, Я. М. Оліх, О. Я. Оліх, Г. В. Бекетов // УФЖ. 2014. Т. 59, № 1. С. 50–57.
- 9. *Olikh, O. Ya.* Non-Monotonic γ -Ray Influence on Mo/n-Si Schottky Barrier Structure Properties / O. Ya. Olikh // *IEEE Trans. Nucl. Sci.* 2013. Feb. Vol. 60, no. 1. P. 394–401.
- 10. Оліх, О. Я. Особливості впливу ультразвуку на перенесення заряду в кремнієвих структурах з бар'єром Шотки залежно від дози γ-опромінення / О. Я. Оліх // Сенсорна електроніка і мікросистемні технології. 2013. Т. 10, № 1. С. 47–55.
- 11. *Олих, О. Я.* Влияние ультразвукового нагружения на протекание тока в структурах Mo/n–n⁺–Si с барьером Шоттки / О. Я. Олих // Физика и техника полупроводников. 2013. Т. 47, № 7. С. 979–984.
- 12. *Оліх, О. Я.* Особливості перенесення заряду в структурах Мо/n–Si з бар'- єром Шотки / О. Я. Оліх // УФЖ. 2013. Т. 58, № 2. С. 126–134.
- 13. *Олих, О. Я.* Особенности динамических акустоиндуцированных изменений фотоэлектрических параметров кремниевых солнечных элементов / О. Я. Олих // Физика и техника полупроводников. 2011. Т. 45, № 6. С. 816–822.
- 14. *Оліх, Я. М.* Інформаційний чинник акустичної дії на структуру дефектних комплексів у напівпровідниках / Я. М. Оліх, О. Я. Оліх // *Сенсорна електроніка і мікросистемні технології.* 2011. Т. 2(8), № 2. С. 5–12.
- 15. *Оліх, О. Я.* Особливості впливу нейтронного опромінення на динамічну акустодефектну взаємодію у кремнієвих сонячних елементах / О. Я. Оліх // УФЖ. 2010. Т. 55, № 7. С. 770–776.
- 16. Ultrasonically Recovered Performance of γ-Irradiated Metal-Silicon Structures / A.M. Gorb, O.A. Korotchenkov, O.Ya Olikh, A.O. Podolian // *IEEE Trans. Nucl. Sci.* 2010. June. Vol. 57, no. 3. P. 1632–1639.
- 17. *Олих, О. Я.* Изменение активности рекомбинационных центров в кремниевых р-п-структурах в условиях акустического нагружения / О. Я. Олих // Физика и техника полупроводников. 2009. Т. 43, № 6. С. 774—779.
- 18. *Оліх, О. Я.* Робота кремнієвих сонячних елементів в умовах акустичного навантаження мегагерцового діапазону / О. Я. Оліх, Р. М. Бурбело, М. К. Хіндерс // *Сенсорна електроніка і мікросистемні технології.* 2007. Т. 4, № 3. С. 40–45.

- 19. *Burbelo, R. M.* The Dynamic Ultrasound Influence on the Diffusion and Drift of the Charge Carriers in Silicon p-n Structures / R. M. Burbelo, O. Y. Olikh, M. K. Hinders // *MRS Proceedings*. 2007. Vol. 994. P. 0994–F03–11.
- 20. Олих, О. Я. Акустостимулированные коррекции вольт–амперных характеристик арсенид–галлиевых структур с контактом Шоттки / О. Я. Олих, Т. Н. Пинчук // Письма в Журнал Технической Физики. 2006. Т. 32, № 12. С. 22–27.
- 21. *Конакова, Р.В.* Влияние микроволновой обработки на уровень остаточной деформации и параметры глубоких уровней монокристаллах карбида кремния / Р.В. Конакова, П.М. Литвин, О.Я. Олих // *Физика и химия обработки материалов.* 2005. № 2. С. 19–22.
- 22. *Конакова, Р.В.* Влияние микроволновой обработки на глубокие уровни монокристаллов GaAs и SiC / Р.В. Конакова, П.М. Литвин, О.Я. Олих // *Петербургский журнал электроники.* 2004. № 1. С. 20–24.
- 23. *Olikh, Ja. M.* Active ultrasound effects in the future usage in sensor electronics / Ja. M. Olikh, O.Ya. Olikh // Сенсорна електроніка і мікросистемні технології. 2004. Т. 1, № 1. С. 19–29.
- 24. *Olikh, O.Ya.* Acoustoelectric transient spectroscopy of microwave treated GaAs-based structures / O.Ya. Olikh // *Semiconductor Physics, Quantum Electronics & Optoelectronics.* 2003. Vol. 6, no. 4. P. 450–453.
- 25. *Оліх, О.Я.* Акустостимульовані динамічні ефекти в сонячних елементах на основі кремнію / О.Я. Оліх // *Вісник Київського ун-ту, Сер.: Фізико-математичні науки.* 2003. № 4. С. 408–414.

Наукові праці, які засвідчують апробацію матеріалів дисертації

- 26. *Оліх, О. Я.* Ефекти активного ультразвуку в напівпровідникових кристалах / О. Я. Оліх // 1–а Українська наукова конференція з фізики напівпровідників, Одеса, Україна. Т. 1. Одеса: 2002. С. 80.
- 27. Влияние СВЧ облучения на остаточный уровень внутренних механических напряжений и параметры глубоких уровней в эпитак-сиальных структурах GaAs / Р. В. Конакова, А. Б. Камалов, О. Я. Олих и др. // Труды III международной конференции «Радиационно-термические эффекты и процессы в неорганических материалах», Томск, Россия. Томск: 2002. С. 338–339.
- 28. *Оліх, О. Я.* Про роль теплових і деформаційних механізмів дії ультразвуку на роботу кремнієвих сонячних елементів / О. Я. Оліх // Міжнародна науково-технічна конференція «Сенсорна електроніка і мікросистемні технології СЕМСТ-1», Одеса, Україна. Тези доповідей. Одеса: 2004. С. 163.
- Olikh, O. Investigation of microwave treated epitaxial GaAs structures by acoustoelectric method / O. Olikh // 2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference. Montreal, Canada. Abstracts. — Montreal: 2004. — P. 230–231.

- 30. Олих, О. Я. Влияние СВЧ облучения на остаточный уровень внутренних механических напряжений и параметры глубоких уровней в эпитак-сиальных структурах GaAs / О. Я. Олих // Труды девятой международной научно-технической конференции «Актуальные проблемы твердотельной электроники и микроэлектроники», Дивноморское, Россия. Дивноморское: 2004. С. 278–279.
- 31. Influence of acoustic wave on forming and characteristics of silicon p–n junction / J. Olikh, A. Evtukh, B. Romanyuk, O. Olikh // 2005 IEEE International Ultrasonics Symposium and Short Courses. Rotterdam, Netherlands. Abstracts. Rotterdam: 2005. P. 542.
- 32. *Olikh, O.* Dynamic ultrasound effects in silicon solar sell / O. Olikh, R. Burbelo, Hinders M. // 2007 International Congress on Ultrasonics. Program and Book of Abstracts. Vienna, Austria. Vienna: 2007. P. 94.
- 33. *Olikh, O.* Influence of the ultrasound treatment on Au-TiB-n-n⁺-GaAs structure electrical properties / O. Olikh // 2007 International Congress on Ultrasonics. Program and Book of Abstracts. Vienna, Austria. Vienna: 2007. P. 94.
- 34. Olikh, O. The Dynamic Ultrasound In-fluence on Diffusion and Drift of the Charge Carriers in Silicon p–n Structures / O. Olikh, R. Burbelo, M. Hinders // MRS 2007 Spring Meeting, Symposium F: Semiconductor Defect Engineering Materials, Synthetic Structures, and Devices II. San Francisco, USA. San Francisco: 2007. P. 3.11.
- 35. *Оліх, О. Я.* Робота кремнієвих сонячних елементів в умовах акустичного навантаження мегагерцового діапазону / О. Я. Оліх // ІІІ Українська наукова конференція з фізики напівпровідників УНКФН–3, Одеса, Україна. Тези доповідей. Одеса: 2007. С. 322.
- 36. *Оліх, О. Я.* Вплив ультразвукової обробки на вольт–амперні характеристики опромінених кремнієвих структур / О. Я. Оліх, А. М. Горб // VI Міжнародна школа–конференція «Актуальні проблеми фізики напівпровідників», Дрогобич, Україна. Тези доповідей. Дрогобич: 2008. С. 114.
- 37. *Оліх, О. Я.* Акустичні збурення дефектної підсистеми кремнієвих р–п–структур / О. Я. Оліх // VI Міжнародна школа–конференція «Актуальні проблеми фізики напівпровідників», Дрогобич, Україна. Тези доповідей. Дрогобич: 2008. С. 174.
- 38. *Оліх, О. Я.* Особливості механізму ультразвукового впливу на фото-електричний струм у нейтронно-опромінених Si-p-n-структурах / О. Я. Оліх // IV Українська наукова конференція з фізики напівпровідників, Запоріжжя, Україна. Тези доповідей. Т. 2. Запоріжжя: 2009. С. 59.
- 39. *Olikh, O.* Ultrasound influence on the recombination centers in silicon p-n-structures / O. Olikh // 13th International Conference on Defects Recognition, Imaging and Physics in Semiconductors. Wheeling, USA. Final program. Wheeling: 2009. P. 9–10.

- 40. Оліх, Я. М. Про можливості практичного застосування ультразвуку для керування характеристиками перетворювачів сонячної енергії / Я. М. Оліх, О. Я. Оліх // Четверта міжнародна науково-практична конференція «Матеріали електронної техніки та сучасні інформаційні технології», Кременчук, Україна. Тези доповідей. Кременчук: 2010. С. 147–148.
- 41. *Оліх, О. Я.* Немонотонний вплив γ -опромінення на електричні властивості кремнієвих структур з бар'єром Шотки / О. Я. Оліх, С. В. Онисюк // VII Міжнародна школа-конференція «Актуальні проблеми фізики напівпровідників», Дрогобич, Україна. Тези доповідей. Дрогобич: 2010. С. 171–172.
- 42. *Оліх, О. Я.* Особливості динамічного ультразвукового впливу на γ -опромінені кремнієві m-s-структури / О. Я. Оліх, С. В. Онисюк // Збірник тез V Української наукової конференції з фізики напівпровідників УНКФН–5, Ужгород, Україна. Ужгород: 2011. С. 339–340.
- 43. *Оліх, О. Я.* Вплив ультразвуку на термоемісійні процеси в Mo/n-n⁺-Si структурах / О. Я. Оліх // Матеріали Всеукраїнської наукової конференції «Актуальні проблеми теоретичної, експериментальної та прикладної фізики», Тернопіль, Україна. Тернопіль: 2012. С. 101–103.
- 44. Olikh, O. Ya. Reversible Alteration of Reverse Current in Mo/n–Si Structures Under Ultrasound Loading / O. Ya. Olikh, Ya. M. Olikh // Фізика і технологія тонких плівок та наносистем. Матеріали XIV Міжнародної конференції / Під ред. Д.М. Фреїка. Івано-Франківськ: Видавництво Прикарпатського національного університету імені Василя Стефаника, 2013. С. 322.
- 45. *Olikh, O. Ya.* Modification of reverse current in the Mo/n–Si structures under conditions of ultrasonic loading / O. Ya. Olikh, K. V. Voytenko // VIII International school–conference «Actual problems of semiconductor physics», Drohobych, Ukraine. Abstract book. Drohobych: 2013. P. 101–102.
- 46. *Olikh, Ya. M.* About acoustical–stimulated a self–organization defect structures in semiconductor during ion implantation / Ya. M. Olikh, O. Ya. Olikh // International research and practice conference «Nanotechnology and nanomaterials», Bukovel, Ukraine. Abstract book. Bukovel: 2013. P. 240.
- 47. *Оліх, О. Я.* Вплив γ-опромінення на механізм перенесення заряду в структурах Mo/n-Si / O. Я. Оліх // VI Українська наукова конференція з фізики напівпровідників УНКФН-6. Чернівці, Україна. Тези доповідей. Чернівці: 2013. С. 121-122.
- 48. *Olikh, Ya.* New approach to ultrasonic absorption in subgrain–free Cd_{0,2}Hg_{0,8}Te crystals / Ya. Olikh, I. Lysyuk, O. Olikh // 2014 IEEE International Ultrasonics Symposium. Chicago, Illinois, USA. Abstract book. Chicago: 2014. P. 439–440.
- 49. *Olikh, O.* Ultrasonically induced effects in Schottky barrier structure depending on a γ -irradiation / O. Olikh // 2014 IEEE International Ultrasonics Symposium. Chicago, Illinois, USA. Abstract book. Chicago: 2014. P. 645–646.

- 50. Оліх, О. Я. Характеризація у—опромінених кремнієвих р—п-структур методом диференційних коефіцієнтів / О. Я. Оліх, О. В. Пристай // 6-та Міжнародна науково-технічна конференція «Сенсорна електроніка і мікросистемні технології», Одеса, Україна. Тези доповідей. Одеса: 2014. С. 193.
- 51. *Olikh, O.Ya.*. Ultrasonic Loading Effects on Silicon–based Schottky Diodes / O.Ya. Olikh, K. V. Voytenko // 2015 International Congress on Ultrasonics. Metz, France. Abstract book. Metz: 2015. P. 225.
- 52. *Оліх, О. Я.* Порівняння ефективності методів визначення параметрів діодів Шотки / О. Я. Оліх // Сучасні проблеми фізики конденсованого стану: Праці IV–ї міжнародної конференції. Київ, Україна. Київ: 2015. С. 32–34.
- 53. Ультразвукова модифікація стимульованого фононами тунелювання у кремнієвих діодах Шотки / О. Я. Оліх, К. В. Войтенко, Р. М. Бурбело, Я. М. Оліх // VII Українська наукова конференція з фізики напівпровідників УНКФН–7. Дніпро, Україна. Тези доповідей. Дніпро: 2016. С. 190–191.
- 54. *Оліх, О. Я.* Акусто–керована модифікація властивостей кремнієвих фотоелектроперетворювачів / О. Я. Оліх // Перспективні напрямки сучасної електроніки, інформаційних і комп'ютерних систем. Тези доповідей на ІІ Всеукраїнській науково–практичній конференції МЕІСS–2017. Дніпро, Україна. Дніпро: 2017. С. 302–303.

АНОТАЦІЯ

Оліх О. Я. Акусто— та радіаційноіндуковані явища в поверхнево-бар'єрних кремнієвих та арсенід галієвих структурах. — Рукопис.

Дисертація на здобуття наукового ступеня доктора фізико-математичних наук за спеціальністю 01.04.07— фізика твердого тіла. — Київський національний університет імені Тараса Шевченка, МОН України, Київ, 2018.

Досліджено вплив ультразвукового навантаження на проходження струму в кремнієвих сонячних елементах, у тому числі опромінених. Виявлено оборотні процеси зменшення ефективності фотоелектричного перетворення, пов'язані з акустоіндукованою перебудовою точкових рекомбінаційних центрів. Запропонована модель акустоактивного комплексного дефекту. Показано, що акустоактивними радіаційними дефектами в кремнії є дивакансія та А-центр. Проведено порівняльний аналіз аналітичних, чисельних та еволюційних методів визначення параметрів діодів Шотки. Показано взаємозв'язок між характером немонотонності дозової залежності зміни висоти бар'єру Шотки та ступенем неоднорідності контакту. Виявлено оборотній вплив ультразвуку на властивості структур кремній-метал, встановлено його закономірності та показано, що він пов'язаний з рухом дислокаційних перегинів. Показано, що вплив мікрохвильового опромінення на дефектну структуру приповерхневого шару

монокристалів GaAs і SiC та епітаксійних структур GaAs пов'язаний зі зростанням концентрації міжвузольних атомів. Виявлено, що ультразвукова обробка викликає гомогенізацію параметрів арсенід галієвих діодів Шотки та енергетичного спектру радіаційноіндукованих пасток на інтерфейсі системи $Si-SiO_2$.

Ключові слова: ультразвук, γ -опромінення, кремній, бар'єрні структури, акусто-дефектна взаємодія, перенесення заряду, оборотні акустоіндуковані зміни.

АННОТАЦИЯ

Олих О.Я. Акусто— и радиационноиндуцированные явления в поверхностно-баръерных кремниевых и арсенид галиевых структурах. — Рукопись.

Диссертация на соискание научной степени доктора физико-математических наук по специальности 01.04.07 – физика твердого тела. – Киевский национальный университет имени Тараса Шевченко МОН Украины, Киев, 2018.

В диссертационной работе проведено исследование влияния ультразвукового нагрузки на процессы переноса заряда в кремниевых солнечных элементах, в том числе и радиационно облученных. Выявлено обратимые процессы уменьшения эффективности фотоэлектрического преобразования, связанные с акустоиндукованной перестройкой точечных рекомбинационных центров. Предложенная модель акустоактивного комплексного дефекта. Показано, что основными акустоактивнимы радиационными дефектами в кремнии являются дивакансии и А-центр. Проведен сравнительный анализ аналитических, численных и эволюционных методов определения параметров диодов Шоттки. Определены механизмы переноса заряда и обратимого возрастания тока при ультразвуковом нагружении в структурах $Al-n-n^+-Si-Al$ и их модификация вследствие у-облучения. Обнаружены и исследованы эффект обратимого акустоиндуцированного влияния на свойства структур $Mo/n-n^+-Si$ в широком диапазоне температур и показано, что они связаны с движением дислокационных перегибов и изменением размеров дефектных кластеров. Исследовано влияние микроволнового облучения на дефектную структуру приповерхностного слоя монокристаллов GaAs и SiC и эпитаксиальных структур GaAs; показано, что ее изменения связаны с ростом концентрации междоузельных атомов. Экспериментально показано, что ультразвуковая обработка способна вызвать гомогенизацию как параметров арсенид галлиевых диодов Шоттки, созданных в едином технологическом процессе, так и энергетического спектра радиацийноиндуцированніх ловушек на интерфейсе системы Si-SiO₂.

Ключевые слова: ультразвук, γ -облучение, кремний, баръерные структуры, акусто-дефектное взаимодействие, перенесение заряда, обратимые акустоиндуцированные изменения.

ABSTRACT

Olikh O. Ya. Acoustically and radiation induced phenomena in surface barrier silicon and gallium arsenide structures. — Manuscript.

Thesis for the Doctor's of Science Degree (Physics and Mathematics) by specialty 01.04.07 – Solid-state Physics. - Kyiv National Taras Shevchenko University, Ministry of Education and Science of Ukraine, Kyiv, 2018.

The thesis concerns the research of ultrasonic loading influence on current in silicon solar cells, including irradiated. It has been revealed the reversible decreasing in the photoelectric transformation efficiency, which is related to acoustically induced rebuilding of point recombination centers. A model of acoustic complex defect is proposed. It is shown that the main acoustically active radiation defects are divacancy and A-center. A comparative analysis of analytical, numerical and evolutionary methods for Schottky diode parameters determination has been carried out. The relationship between the type of the non-monotonicity of the Schottky barrier height dose dependence and the contact inhomogeneity degree is revealed. The reversible influence of ultrasound on the properties of silicon-metal structures is reveled and its features are established. It is shown that this effect is associated with the dislocation overhangs movement and the defective clusters size change. The influence of microwave irradiation on the defect structure of the near-surface layer of GaAs and SiC single crystals as well as GaAs epitaxial structures has been investigated. It is shown that defect structure changes are deals with the increase of interstitial atoms concentration. It has been found that ultrasonic treatment can causes increase in the homogeneity of both the parameters of GaAs Schottky diodes and the energy spectrum of radiation induced interface traps in Si-SiO₂.

Key words: ultrasound, gamma-rays, silicon, barrier structures, acousto-defect interaction, charge transport, reversible acoustically induced change