

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190305801

FCC REPORT

Applicant: Comarch S.A.

Address of Applicant: al.Jana Pawla II 39A, 31-864 Krakow, Poland

Equipment Under Test (EUT)

Product Name: Comarch BLE Module

Model No.: CBM001

FCC ID: 2AEN7-CBM001

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 15 Mar., 2019

Date of Test: 18 Mar., to 09 May, 2019

Date of report issued: 09 May, 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description	
00	27 Mar., 2019	Original	
01	09 May, 2019	 Updated test plot on P.17 Added Conducted Emission and test setup photo. 	

Tested by: One Date: 09 May, 2019

Test **⊈**ngineer

Reviewed by: 09 May, 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	16
	6.6	BAND EDGE	18
	6.6.1	Conducted Emission Method	18
	6.6.2	2 Radiated Emission Method	20
	6.7	SPURIOUS EMISSION	25
	6.7.1		
	6.7.2	Radiated Emission Method	27
7	TES	T SETUP PHOTO	32
R	FUT	CONSTRUCTIONAL DETAILS	34

4 Test Summary

Test Items	Section in CFR 47	Result			
Antenna requirement	15.203 & 15.247 (c)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(3)	Pass			
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass			
Power Spectral Density	15.247 (e)	Pass			
Band Edge	15.247 (d)	Pass			
Spurious Emission	15.205 & 15.209	Pass			
Pass: The EUT complies with the essential requirements in the standard.					

Pass: The EUT complies with the essential requirements in the standard N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Comarch S.A.
Address: al.Jana Pawla II 39A, 31-864 Krakow, Poland	
Manufacturer/ Factory:	Comarch S.A.
Address:	al.Jana Pawla II 39A, 31-864 Krakow, Poland

5.2 General Description of E.U.T.

Product Name:	Comarch BLE Module
Model No.:	CBM001
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Chip Antenna
Antenna gain:	0.5 dBi
Power supply:	DC 3V
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE190305801

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antonno	COLIMADZDECK	EMZD4640D	00044	03-16-2018	03-15-2019
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2019	03-15-2020
DiCanil on Antonna	COLIMADZDECK	\/I II D0400	407	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2019	03-15-2020
Llara Antonna	CCHWADZDECK	DDLLA0420D	016	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2019	03-15-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	١	ersion: 6.110919/	b
Pre-amplifier	HP	8447D	2944A09358	03-07-2019	03-06-2020
Pre-amplifier	CD	PAP-1G18	11804	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2019	03-06-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2019	03-06-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2019	03-06-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2019	03-06-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Manufacturer Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2019	03-06-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2019	03-06-2020	
		03-19-2018	03-18-2019			
LISN	CHASE	MN2050D	1447	03-19-2019	03-18-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2019	03-06-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Chip antenna which cannot replace by end-user, the best-case gain of the antenna is 0.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:			(dBuV)				
Elittic.	Frequency range (MHz)	Prequency range (MHz) Quasi-peak Average					
	0.15-0.5						
	0.5-5	56	46				
	5-30	60	50				
Test procedure	* Decreases with the logar 1. The E.U.T and simula	ithm of the frequency. ators are connected to the					
	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test setup:	LISN 40cm		AC power				
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for det	tails					
	Passed						

Measurement Data:

Product name:	Comarch BLE Module	Product model:	CBM001	
Test by:	Carey	Test mode:	BLE Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line	
Test voltage:	DC 3V	Environment:	Temp: 22.5℃ Huni: 55%	

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	dB	dBu₹	dBu∜	<u>d</u> B	
1	0.154	52.72	-0.45	10.78	63.05	65.78	-2.73	QP
2	0.156	41.61	-0.44	10.77	51.94	55.65	-3.71	Average
3	0.162	50.27	-0.44	10.77	60.60	65.34	-4.74	QP
4	0.212	48.92	-0.41	10.76	59.27	63.14	-3.87	QP
1 2 3 4 5 6 7 8 9	0.214	37.13	-0.41	10.76	47.48	53.05	-5.57	Average
6	0.410	25.51	-0.37	10.72	35.86	47.64	-11.78	Average
7	0.724	42.77	-0.38	10.78	53.17	56.00	-2.83	QP
8	0.735	33.41	-0.38	10.79	43.82	46.00	-2.18	Average
9	0.783	43.14	-0.38	10.81	53.57	56.00	-2.43	QP
10	1.236	33.88	-0.39	10.90	44.39	56.00	-11.61	QP
11	1.236	29.89	-0.39	10.90	40.40	46.00	-5.60	Average
12	1.441	28.20	-0.40	10.92	38.72	46.00		Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Comarch BLE Module	Product model:	CBM001
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	DC 3V	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∀	₫B	₫B	dBu∀	₫₿uѶ	<u>ab</u>	
1	0.150	39.80	-0.68	10.78	49.90	56.00	-6.10	Average
2	0.155	53.63	-0.68	10.77	63.72	65.74	-2.02	QP
3	0.204	50.42	-0.69	10.76	60.49	63.45	-2.96	QP
4	0.206	32.09	-0.69	10.76	42.16	53.36	-11.20	Average
5	0.211	50.62	-0.68	10.76	60.70	63.18	-2.48	
6	0.415	27.51	-0.64	10.73	37.60	47.55	-9.95	Average
1 2 3 4 5 6 7 8 9	0.735	34.25	-0.64	10.79	44.40	46.00		Average
8	0.743	43.42	-0.64	10.79	53.57	56.00	-2.43	
9	1.236	29.71	-0.64	10.90	39.97	46.00	-6.03	Average
10	1.441	32.28	-0.65	10.92	42.55	56.00	-13.45	
11	1.441	27.34	-0.65	10.92	37.61	46.00	-8.39	Average
12	3.123	30.03	-0.67	10.92	40.28	56.00	-15.72	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.68		
Middle	-1.25	30.00	Pass
Highest	-0.35		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.714			
Middle	0.696	>500	Pass	
Highest	0.714			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.044			
Middle	1.050	N/A	N/A	
Highest	1.050			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-2.82		
Middle	-1.40	8.00	Pass
Highest	-0.45		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

6.6.2 Radiated Emission Method

0.0.2	6.6.2 Radiated Emission Method								
Tes	st Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Tes	st Method:	ANSI C63.10: 2013 and KDB 558074							
Tes	st Frequency Range:	2.3GHz to 2.5	GHz						
Tes	st Distance:	3m							
Red	ceiver setup:	Frequency	Detecto		RBW	VBW		Remark	
		Above 1GHz	Peak		1MHz	3MHz		Peak Value	
			RMS		1MHz		MHz	Average Value	
Lim	nit:	Frequer	ncy	Lin	nit (dBuV/m @3	sm)	Λ,	Remark	
		Above 10	3Hz		54.00 74.00			verage Value Peak Value	
	et Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						ed 360 degrees ce-receiving e-height antenna meters above eld strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and 0 dB lower than I the peak values ons that did not sing peak, quasi-	
1 65	οι σσιαμ.	AE (T	EUT	Ground I	Horn Antenna Ampiñer Contr	Antenna T	Cower Service		
Tes	st Instruments:	Refer to section	n 5.8 for d	letails	S				
Tes	st mode:	Refer to section 5.3 for details							
Tes	st results:	Passed							

roduct	Name:	Comarch	BLE Modu	ule	Pr	Product Model:		CBM001		
est By:	:	Caffrey Lowest channel				Test mode: Polarization:		BLE Tx mode Vertical		
est Ch	annel:									
est Vo	Itage:	AC 120/60)Hz		En	vironment	:	Temp: 24℃	Huni: 57	7 %
Lou	vol /dDu\//m\				•		•			
110	vel (dBuV/m)			W	4					
100					-					
80								FC(C PART 15 (F	Act
-								, ,	J FAIRT TO (I	
60								EC/	PART 15 (A	NA.
~~	mm		~~~~	~~~	www	~~~~~	harron	many	PART TOTAL	AV)
40								2	2	
20										
20										
023	10 2320			2350		-1				240
					uency (MH					
	Freq	KeadA Level	ntenna Factor				Limit Line		Remark	
	MHz	dBu₹	dB/m	<u>d</u> B	₫₿	dBuV/m	dBu√/m	dB		
1	2390.000		27.37 27.37	4.69	0.00	52.22	74.00	-21.78	Peak	
2	2390,000	8.62	27.37	4.69	0.00	42, 36	54,00	-11.64	Average	

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:			Comarch E	BLE Module	е	Product Model:			CBM001				
Test By:		C	Caffrey			Test mod	e:	BLE '	Tx mode				
Test Cha	annel:	L	_owest char	nnel		Polarizati	on:	Horiz	Horizontal			Horizontal	
Test Voltage: AC 120/60Hz Environment: Temp: 24℃			Huni: 57%										
Lou	ol /dDuV	Uma l											
110 Lev	/el (dBuV	ли)											
100			_										
80									FCC	PART 15 (PK			
										J			
60			_						FCC	PART 15 (AV)			
60	~~~	~~~~	~~~	~~~~	m	-varrance	~~~~	~~~	FCC	PART 15 (AV)			
60	~~~	~~~	~~~	www	m		.~~~	~~~	FCC	PART 15 (AV)			
_	~~~	~~~~	~~~	www.	mm			~~~	FCC	PART 15 (AV)			
_	~~~	~~~~	~~~	money	~~~			~~~	FCC	PART 15 (AV)			
40	~~~	~~~	~~~	mm	~~~	-ww		~~~	FCC	PART 15 (AV)			
40	~~~	~~~		m	~~~			~~~	FCC				
40	10 23	20		m	2350 Frequ	Jency (MHz		~~~~	FCC	PART 15 (AV)			
40	10 23	20		untenna	Frequ Cable	Preamp		Limit	Over	24			
40		20 Freq		untenna Factor	Frequ Cable	Preamp			Over	24			
40		17			Frequ Cable	Preamp Factor		Line	Over Limit	24 Remark			
40 20		Freq	Level — <u>dBu</u> V	Factor	Frequence Cable Loss dB	Preamp Factor dB	Level dBuV/m 50.22	Line dBuV/m 74.00	Over Limit — dB -23.78	Remark			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:				Product Model: CBM001				
Test By:	Caffrey		Test mod	Test mode: BLE Tx mode				
Test Channel:	Highest channel		Polarizat	tion:	Vertical			
Test Voltage:	AC 120/60Hz		Environr	nent:	Temp: 24℃	Huni: 57%		
110 Level (dBuV/m) 100 80 60 40	1					PART 15 (PK) PART 15 (AV)		
0 2478 Freq 	ReadAntenna Level Factor dBuV dB/m 18.87 27.57 8.47 27.57	Loss Fac	amp tor Lev dB dBu	Limit gel Line 7/m dBuV/m 95 74.00 55 54.00	Limit dB -21.05	Peak		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.00 -21.06 Peak

54.00 -11.23 Average

Product Name:		Comarch BLE Module			Product Model:			CBM001		
Test By:	(Caffrey Highest channel		Test mode: Polarization:		BLE	BLE Tx mode			
Test Channel:	H					Horiz	Horizontal			
Test Voltage: AC 120/60Hz			Hz		Environm	nent:	Temp	o: 24 ℃	Huni: 57%	
110 Level (dBuV 100 80 60 40 20 2478	(/m)	2		Free	quency (MH	(z)			PART 15 (PK) PART 15 (AV)	
· · · · · · · · · · · · · · · · · · ·		Read	int enna	Cable	Preamp	4 14	Limit	Over		
Fi	req	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
<u>]</u>	WHz	dBu∀	─dB/m	dB	dB	dBuV/m	dBuV/m			

Remark:

1

2

2483.500

2483.500

18.86

8.69

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.57

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81

4.81

0.00

0.00

52.94

42.77

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Method								
Test Requirement:	FCC Part 15 C		205 and 15.209)				
Test Method:	ANSI C63.10:20)13						
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	RBW VBW Remark				
	30MHz-1GHz	Quasi-peal		300		Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3M		Peak Value		
Limite	Frequency	RMS ,	1MHz Limit (dBuV/m @	3M	HZ	Average Value Remark		
Limit:	30MHz-88M		40.0	2011)		Quasi-peak Value		
	88MHz-216MHz 43.5 Quasi-peak Vi							
	216MHz-960N		46.0			Quasi-peak Value		
	960MHz-1G	Hz	54.0		C	Quasi-peak Value		
	Above 1GH	l ₇	54.0			Average Value		
			74.0			Peak Value		
Test Procedure:						table 0.8m(below		
						3 meter camber.		
	highest rad		360 degrees	io dete	mme	the position of the		
	_		meters away	from th	ne inte	erference-receiving		
						ble-height antenna		
	tower.							
						four meters above		
						the field strength. antenna are set to		
		neasuremer	•	lions o	1 1116 6	dillerilla ale sel lo		
				EUT wa	as arra	anged to its worst		
						from 1 meter to 4		
				from 0	degre	es to 360 degrees		
		maximum re	•					
			tem was set ith Maximum F			tect Function and		
						s 10 dB lower than		
						nd the peak values		
						ssions that did not		
						using peak, quasi-		
		erage meth	nod as specifie	ed and	then i	reported in a data		
Toot coture	sheet.							
Test setup:	Below 1GHz							
					Antenna	Tower		
			. ~					
	ş	3m <			Search	1		
	EUT _	¥			Antenn	a		
	\ <u>\</u>	4m		D.F.	Tr			
		<u> </u>			Test eiver —	\neg		
						\		
	Turn Table	0.8m 1m			\	_		
	Table	^ ^		_	7			
	777777777	iniii.	<i></i>	//// ///				
	Ground Plane							
	Above 1GHz							

Measurement Data (worst case):

Below 1GHz:

Product Name:	Comarch BLE Module	Product Model:	CBM001	
Test By:	Caffrey	Test mode:	BLE Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical	
Test Voltage:	DC 3V	Environment:	Temp: 24℃	Huni: 57%

Remark:

6

247.682

49.28

13.22

2.81

28.55

36.76

46.00

-9.24 QP

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product N	oduct Name:		Comarch BLE Module				el:	CBM001		
Test By:		Caffrey			Tes	Test mode: BLE Tx mode			le	
Test Freq	uency:	30 MHz ~	1 GHz		Pol	Polarization: Environment:		Horizontal		
Test Volta	age:	DC 3V			En			Temp: 24℃ Huni: 579		
80 Leve	el (dBuV/m)									
70										
60								FCC	PART 15.247	
50								rcc	PART 13.247	
50						. 4 5				
40			-							
30				dia 1			Milated		6	
	l.		July July	ALLINA III II	ALL ALL			Markey wanter	the property of the state of th	
20	The same of the sa	se while I	WHILL WHILL	. Alla			re juli	TT BLANK		
10 4	Harry Way	, N								
030	50		100		200			500	100	
30	50		100					300	100	
					uency (MH:					
	E		Antenna	Cable	Preamp		Limit		Domoule	
	Freq		Antenna Factor	Cable					Remark	
-	Freq MHz		Factor	Cable Loss	Preamp Factor		Line	Limit	Remark	
1		Level dBuV 55.46	Factor dB/m 9.28	Cable Loss dB	Preamp Factor dB	Level	Line dBuV/m 43.50	Limit dB -5.21		
1 2	MHz 166.068 176.269	Level dBuV 55.46 57.30	Factor dB/m 9.28 9.65	Cable Loss dB 2.63 2.70	Preamp Factor dB 29.08 29.00	Level dBuV/m 38.29 40.65	Line dBuV/m 43.50 43.50	Limit	 QP QP	
1 2 3 4 5	MHz 166.068	Level dBuV 55.46	Factor dB/m 9.28	Cable Loss dB	Preamp Factor ————————————————————————————————————	Level dBuV/m 38.29 40.65	Line dBuV/m 43.50	Limit	QP QP QP	

Remark:

6

801.786

33.61

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

21.01

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.34

28.19

30.77

46.00 -15.23 QP

Above 1GHz

Test channel: Lowest channel									
			De	tector: Peak	v Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	47.23	35.99	6.80	41.81	48.21	74.00	-25.79	Vertical	
4804.00	48.15	35.99	6.80	41.81	49.13	74.00	-24.87	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	38.62	35.99	6.80	41.81	39.60	54.00	-14.40	Vertical	
4804.00	38.41	35.99	6.80	41.81	39.39	54.00	-14.61	Horizontal	
	Test channel: Middle channel								
			De	tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	48.53	36.38	6.86	41.84	49.93	74.00	-24.07	Vertical	
4884.00	47.15	36.38	6.86	41.84	48.55	74.00	-25.45	Horizontal	
			Dete	ctor: Averaç	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	38.63	36.38	6.86	41.84	40.03	54.00	-13.97	Vertical	
4884.00	38.46	36.38	6.86	41.84	39.86	54.00	-14.14	Horizontal	
			Test ch	annel: High	est channel				
			De	tector: Peak	Value				

	Test channel: Highest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	47.57	36.71	6.91	41.87	49.32	74.00	-24.68	Vertical			
4960.00	47.19	36.71	6.91	41.87	48.94	74.00	-25.06	Horizontal			
			Dete	ctor: Averaç	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	38.52	36.71	6.91	41.87	40.27	54.00	-13.73	Vertical			
4960.00	37.98	36.71	6.91	41.87	39.73	54.00	-14.27	Horizontal			

Remark.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.