Colored Scotogenic

with Dirac neutrino masses

Diego Restrepo

May 22, 2018

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on arXiv:1803.08528

In collaboration with

Mario Reig, Jose Valle (IFIC Valencia), Oscar Zapata (UdeA)

Table of Contents

- 1. Exotic B L
- 2. (Dirac) Neutrino masses
- 3. Dark matter

Exotic B-L

SM-like B - L model

Field	$U(1)_{B-L}$
L	-1
Н	0
$(\nu_R)^{\dagger}_i$	$ u_{i}$

If
$$\nu_i \neq 0$$

- · No neutrino masses.
- · No DM,

 $SM+\nu_R$ with exotic B-L charges is equivalent to SM

six massless neutrinos instead of three

(Dirac) Neutrino masses

Seesaw mechanism

For Dirac neutrino masses: we require to introduce at least one SM-singlet heavy Dirac fermion (Weyl fermion notation)

$$\mathcal{L} = i \left(\psi_{L} \right)^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \psi_{L} - m \left(\psi_{R} \right)^{\dagger} \psi_{L} + \text{h.c.}$$
 (1)

The required U(1) symmetry is identified with B-L

Field	$U(1)_{B-L}$
L	-1
Н	0
$(u_R)_i^\dagger$	$ u_{i}$
$(\psi_{R})^{\dagger}$	r
ψ_{L}	<u>-r</u>

3

tree-level

$$(\psi_L)^{\dagger} \nu_R \sigma \to \nu_R \nu_R \sigma$$

Radiative Dirac seesaw

Soft breaking term induced:

$$\mathcal{L}\supset \kappa\sigma\eta^{\dagger}H\,,$$

where
$$\kappa = \lambda \langle {\rm S} \rangle$$
 .

Exotic $(\nu_R)^{\dagger}$ with $\nu \neq -1$, and vector-like Dirac fermion with $r \neq 1$

Soft breaking term induced:

$$\mathcal{L}\supset \kappa\sigma\eta^{\dagger}H\,,$$

where $\kappa = \lambda \langle S \rangle$.

 \mathbf{V}_R

Particles	$U(1)_{B-L}$	$(SU(3)_c, SU(2)_L)_{\gamma}$
Li	-1	$(1,2)_{-1/2}$
Н	0	$(1,2)_{1/2}$
$(u_{Ri})^\dagger$	ν	$(1,1)_0$
ψ_{L}	-r	$(N_c,1)_0$
$(\psi_{R})^\dagger$	r	$(N_c, 1)_0$
σ_a	$\nu - r$	$(N_c,1)_0$
η_a	1 – <i>r</i>	$(N_c, 2)_{1/2}$
S	$\nu - 1$	$(N_c, 2)_{1/2}$

 $N_c = 1$.

 $-\mathbf{r} = -\nu + \sigma$ $\sigma = \eta + \mathsf{S}$

The model: colored scotogenic

Soft breaking term induced:

$$\mathcal{L}\supset \kappa\sigma\eta^{\dagger}H\,,$$

Particles	U(1) _{B-L}	$(SU(3)_c, SU(2)_L)_Y$
Li	-1	$(1,2)_{-1/2}$
Н	0	$(1,2)_{1/2}$
$(\nu_{Ri})^{\dagger}$	ν	$(1,1)_0$
Q_{L}	-r	$(N_c, 1)_0$
$(\mathcal{Q}_R)^\dagger$	r	$\left(\left(\mathbf{N}_{c},1\right) _{0}\right)$
σ_a	$\nu - r$	$(N_c, 1)_0$
η_a	1 – <i>r</i>	$(N_c, 2)_{1/2}$

-r = -r

 $-\mathbf{r} = -\nu + \sigma$ $\sigma = \eta + \mathsf{S}$

 \cdot ν_i are free parameter and could be fixed if we impose U(1)_{B-L} to be local

$$r \neq 1$$
,
$$\sum_{i} \nu_{i} = 3$$
,
$$\sum_{i} \nu_{i}^{3} = 3$$

$$(\nu_{R})_{1}^{\dagger} \quad (\nu_{R})_{2}^{\dagger} \quad (\nu_{R})_{3}^{\dagger}$$

$$U(1)_{B-L} \quad +4 \quad +4 \quad -5$$

$$U(1)_{B-L} \quad -6 \quad +\frac{10}{3} \quad +\frac{17}{3}$$

 \cdot ν_i are free parameter and could be fixed if we impose U(1)_{B-L} to be local

$$r \neq 1$$
,
$$\sum_{i} \nu_{i} = 3$$
,
$$\sum_{i} \nu_{i}^{3} = \frac{(\nu_{R})_{1}^{\dagger} \quad (\nu_{R})_{2}^{\dagger} \quad (\nu_{R})_{3}^{\dagger}}{U(1)_{B-L} \quad +4 \quad +4 \quad -5}$$

$$U(1)_{B-L} \quad -6 \quad +\frac{10}{3} \quad +\frac{17}{3}$$

- To have at least a rank 2 neutrino mass matrix we need either:
 - · At least two heavy Dirac fermions \mathcal{Q}_a , $a=1,2,\ldots$
 - At least two sets of scalars η_{a} , σ_{a}

 \cdot ν_i are free parameter and could be fixed if we impose U(1)_{B-L} to be local

$$r \neq 1$$
,
$$\sum_{i} \nu_{i} = 3$$
,
$$\sum_{i} \nu_{i}^{3}$$

$$U(1)_{B-L} + 4 + 4 -5$$

$$U(1)_{B-L} - 6 + \frac{10}{3} + \frac{17}{3}$$

- To have at least a rank 2 neutrino mass matrix we need either:
 - · At least two heavy Dirac fermions \mathcal{Q}_a , $a=1,2,\ldots$
 - · At least two sets of scalars η_a , σ_a

 $\cdot \nu_i$ are free parameter and could be fixed if we impose U(1)_{B-L} to be local

$$r \neq 1$$
,
$$\sum_{i} \nu_{i} = 3$$
,
$$\sum_{i} \nu_{i}^{3} = 3$$
$$U(1)_{B-L} + 4 + 4 - 5$$
$$U(1)_{B-L} - 6 + \frac{10}{3} + \frac{17}{3}$$

- To have at least a rank 2 neutrino mass matrix we need either:
 - · At least two heavy Dirac fermions \mathcal{Q}_a , $a=1,2,\ldots$
 - At least two sets of scalars η_a , σ_a

.

$$\mathcal{L} \supset \left[M_{\mathcal{Q}} \left(\mathcal{Q}_{\mathcal{R}} \right)^{\dagger} \mathcal{Q}_{\mathcal{L}} + h_{i}^{a} \left(\mathcal{Q}_{\mathcal{R}} \right)^{\dagger} \widetilde{\eta}_{a}^{\dagger} L_{i} + y_{i}^{a} \overline{\nu_{\mathcal{R}i}} \ \sigma_{a}^{*} \mathcal{Q}_{\mathcal{L}} + \text{h.c} \right] + \kappa^{ab} \ \sigma_{a} \eta_{b}^{\dagger} H + \dots$$

5

$$(\mathcal{M}_{\nu})_{ij} = N_{c} \frac{M_{\mathcal{Q}}}{64\pi^{2}} \sum_{a=1}^{2} h_{i}^{a} y_{j}^{a} \frac{\sqrt{2}\kappa_{aa} v}{m_{S_{2R}^{a}}^{2} - m_{S_{1R}^{a}}^{2}} \left[F\left(\frac{m_{S_{2R}^{a}}^{2}}{M_{\mathcal{Q}}^{2}}\right) - F\left(\frac{m_{S_{1R}^{a}}^{2}}{M_{\mathcal{Q}}^{2}}\right) \right] + (R \to I)$$
 (2)

where $F(m_{S_{\beta}}^2/M_Q^2) = m_{S_{\beta}}^2 \log(m_{S_{\beta}}^2/M_Q^2)/(m_{S_{\beta}}^2 - M_Q^2)$. The four CP-even mass eigenstates are denoted as $S_{1R}^1, S_{2R}^1, S_{2R}^2, S_{2R}^2$, with a similar notation for the CP-odd ones.

If $(\mu_{\eta}^{aa})^2 \gg M_{\mathcal{Q}}^2$ one has

$$(\mathcal{M}_{\nu})_{ij} = N_{c} \frac{M_{\mathcal{Q}}}{32\pi^{2}} \sqrt{2} v \sum_{a=1}^{2} \kappa^{aa} \frac{h_{i}^{a} y_{j}^{a}}{(\mu_{\eta}^{aa})^{2}}$$

$$\sim 0.03 \, \text{eV} \left(\frac{M_{\mathcal{Q}}}{9.5 \, \text{TeV}}\right) \left(\frac{\kappa^{aa}}{1 \, \text{GeV}}\right) \left(\frac{50 \, \text{TeV}}{\mu_{\eta}^{aa}}\right)^{2} \left(\frac{h_{i}^{a} y_{j}^{a}}{10^{-6}}\right).$$

$$(3)$$

Dark matter

Colored dark matter: De Luca , Mitridate, Redi, Smirnov & Strumia, arXiv:1801.01135

(Switch to Dirac fermions)
Because Q is a Dirac fermion, QQ is also stable

 $QQ \rightarrow g$,

 $\overline{QQ} \rightarrow q$.

Q-onlyum

Step two

Direct detection

The Daily U

Sunday, June 30, 2018

Dark matter discovered by X

Lorem ipsum dolor sit amet, arcu eget et facilisis ac pede. Quia justo per eros sapien amet feugiat, aliquet in senectus curabitur vivamus, vel consectetuer mi quam scelerisque suspendisse, lorem nostra nunc sapien mauris. Est fusce in faucibus tristique, pretium sagittis turpis rutrum eget,

cras mauris, cras enim posuere phasellus risus consectetuer massa, Praesent metus aliquet convallis, etiam dapibus aliquet, eu massa, inceptos sodales dolor, risus ligula in lectus adipiscing non. Ac et justo, libero odio ediam orci in, ultrices nascetur mauris. Dolor eu.

Rer

that rela the beh of a exp

The New Yi

Sunday June 24, 2029

Quonlyum disovered at the '

amet, arcu eget et facilisis posuere phasellus risus ac pede. Quia justo per eros consectetuer sapien amet feugiat, Praesent metus aliquet aliquet in senectus convallis, etiam dapibus curabitur vivamus, vel consectetuer mi quam scelerisque suspendisse. lorem nostra nunc sapien mauris. Est fusce in faucibus tristique, pretium sagittis turpis rutrum eget,

Lorem ipsum dolor sit cras mauris, cras enim massa. aliquet, eu massa, inceptos sodales dolor, risus ligula in lectus adipiscing non. Ac et justo, libero odio leo diam orci in ultrices nascetur mauris. Dolor eu. in I

Long lived hadrons

$$p + p \longrightarrow Q + \overline{Q}$$

$$\downarrow \downarrow$$

$$Q \to Qg \qquad Q \to Qq\overline{q}$$

$$\sqrt{s}=65$$
 TeV needed to discover $\textit{M}_{\mathcal{Q}}=9.5$ TeV .

Conclusions

Conclusions

Standard Model with right-handed neutrinos of exotic B - L charges

Dirac neutrino masses and DM

- Spontaneously broken $U(1)_{B-L}$ generates a radiative Dirac Type-I seesaw.
- A remnant symmetry makes the lightest field circulating the loop stable and good dark matter candidate.
- · If color is also circulating the loop, the colored dark matter scenario can be realized

DM is made of two color octets with mass around 9.5 TeV

- For standard cosmology:
 - · A single point to be discovered in Direct Detection.
 - · Crosscheck at future colliders possible.