Covid-19 Impact

Group 5

CONTENTS

Introduction of Covid-19 situation

Select five features to generate clusters and combine with COVID-19 data to do the prediction

Make comparison between HCA and K-Means model

Multi-regression to predict unemployed number

Covid-19 Data Analysis

0.0M

Data Selection

Cluster

Prediction

Procedure

 Select GDP per capita, income per capita, industry percent, inflation rate and life expectancy as five main features to cluster countries

 Select U.S, Taiwan and Japan as three main countries to predict the unemployment based on confirmed cases and death number

Cluster – Data Preprocessing

gdp_per_ca pita_yearly_ growth

income_per _person

industry_pe rcent_of_g dp

inflation_an nual_perce nt

life_expecta ncy_years

Merge Files

Replace Missing Value

0 1 2 3 4	country Afghanistan Albania Algeria Andorra Angola	gdp_per_cap 3.02 5.03 2.63 NaN 3.46	 inflation 0.792 0.948 7.560 0.896 34.800	life_exp 63.7 78.3 77.9 NaN 64.6	country Afghanistan Albania Algeria Andorra Angola	3.020000 5.030000 2.630000 2.913517 3.460000	1740.0 12300.0 13900.0 51500.0 5730.0	inflation 0.792000 0.948000 7.560000 0.896000 34.800000	life_exp 63.700000 78.300000 77.900000 72.996703 64.600000
180 181 182 183 184	Venezuela Vietnam Yemen Zambia Zimbabwe	-0.56 4.90 1.28 2.89 2.87	 NaN 3.400 47.200 9.330 28.000	75.2 74.6 68.1 63.7 61.7	Venezuela Vietnam Yemen Zambia Zimbabwe	-0.560000 4.900000 1.280000 2.890000 2.870000	12500.0 6610.0 2360.0 3740.0 2620.0	5.288489 3.400000 47.200000 9.330000 28.000000	75.200000 74.60000 68.100000 63.700000 61.700000

merge all colums into one dataset

```
merged_inner1 = pd.merge(gdp_df, income_df, on='country')
merged_inner2 = pd.merge(merged_inner1, industry_percent_df, on='country')
merged_inner3 = pd.merge(merged_inner2, inflation_df, on='country')
merged_total= pd.merge(merged_inner3, life_exp_df, on='country')
```

from sklearn.preprocessing import Imputer

replce nan value to mean

imputer = Imputer(missing_values=np.nan, strategy='mean')

Cluster – Pairplot

Show relationships between variables

Cluster - Dimension Reduction

2D

3D

4D

```
n clusters = 2, silhouette score 0.390532
n clusters = 3, silhouette score 0.407605
n clusters = 4, silhouette score 0.395579
n clusters = 5, silhouette score 0.417256
n clusters = 6, silhouette score 0.373466
n clusters = 7, silhouette score 0.369369
n clusters = 8, silhouette score 0.377828
n clusters = 2, silhouette score 0.324499
n clusters = 3, silhouette score 0.311090
n clusters = 4, silhouette score 0.330543
n_clusters = 5, silhouette score 0.314995
n clusters = 6, silhouette score 0.346927
n_clusters = 7, silhouette score 0.342908
n clusters = 8, silhouette score 0.362966
n_clusters = 2, silhouette score 0.325129
n clusters = 3, silhouette score 0.290669
n clusters = 4, silhouette score 0.333702
```

n_clusters = 5, silhouette score 0.351264
n_clusters = 6, silhouette score 0.336181
n_clusters = 7, silhouette score 0.304214
n clusters = 8, silhouette score 0.304703

After two, three and four dimensional comparison, we can see that the model performs best when n = 5 and d = 2

Cluster - Model Comparison

	HCA	K-Means			
n clusters	silhouette score	n clusters	silhouette score		
2	0.324499	2	0.390532		
3	0.311090	3	0.407605		
	0.330543	4	0.395579		
5	0.314995	5	0.417256		
	0.346927	6	0.373466		
7	0.342908	7	0.369369		
	0.362966	8	0.377828		

To determine the best k values, 2-8 clusters are tested, we can see from the table when model is K-Means and n = 5 the result is the best, thus I choose K-Means model and divide countries in 5 clusters

Cluster – Result

- Above is the code snippet used to build cluster model
- Finally 5 clusters are established
- Scatter Plots to show cluster results

Cluster – Result

Prediction - Overview

Random Forest

- Higher accuracy
- Better at handling missing values while maintaining accuracy
- Low bias due to Bagging & Ensembling

Linear Regression

 Helpful to use if direct linear relationship between Covid cases & Unemployment exists

Prediction - Liberties with the data

Covid cases in the future cannot be predicted with any real accuracy.

Too many variables to consider such as:

- Economic factors
- Political Factors
- Medical research progress
- •Many more

Covid-19 case for each country were manually predicted based on information available and educated guesses

Confirmed Cases Prediction

Prediction - Results

Model/Country	US	Japan	Taiwan
RF F1 Score	96%	87%	72%
Linear Regression R Squared	75%	22%	13%

Unemployment Prediction, US

Random Forest F1 Score = 96% Linear Regression R squared = 75%

Unemployment Prediction, Japan

Random Forest F1 Score = 87% Linear Regression R squared = 22%

Unemployment Prediction, Taiwan

Random Forest F1 Score = 72% Linear Regression R squared = 13%

THANKS Group 5

Menghe Dou Parashara, Praharsh Tianyu Wei Ahmed, Awadh Srivastava, Ullas