Eksamen i Statistik 1, vejledende besvarelse 29. juni 2017

Dette er en vejledende besvarelse. Se og kør evt. også R-programmet august 17. R.

Opgave 1

1. Likelihoodfunktionen er (proportional med)

$$L_{x}(\theta) = \prod_{i=1}^{n} \theta t_{i} x_{i}^{\theta t_{i}-1} \propto \theta^{n} \prod_{i=1}^{n} x_{i}^{\theta t_{i}}$$

Vi får således (på nær en additiv) konstant

$$\ell_{x}(\theta) = -\log L_{x}(\theta) = -n\log \theta - \theta \sum_{i=1}^{n} t_{i} \log x_{i}$$

og dermed

$$S_x(\theta) = \ell_x'(\theta) = -\frac{n}{\theta} - \sum_{i=1}^n t_i \log x_i$$
$$I_x(\theta) = S_x'(\theta) = \frac{n}{\theta^2}$$
$$i(\theta) = E_\theta I_X(\theta) = \frac{n}{\theta^2}$$

2. Vi løser først scoreligningen for en observation x:

$$S_{x,y}(\theta) = 0 \Leftrightarrow \frac{n}{\theta} = -\sum_{i=1}^{n} t_i \log x_i \Leftrightarrow \theta = -\frac{n}{\sum_{i=1}^{n} t_i \log x_i}$$

Der er således et entydigt stationært punkt. Da der desuden gælder $I_x(\theta) > 0$ for alle $\theta > 0$, giver det stationære punkt anledning til et minimum for $\ell_{x,y}$. Bemærk at løsningen til scoreligningen er positiv da alle $x_i \in (0,1)$, så løsningen ligger i parametermængden.

Ovenstående gælder for alle $x \in (0,1)^n$, så vi får at ML estimatoren er

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} t_i \log X_i}.$$

Den asympotiske fordeling af $\hat{\theta}$ er

$$\hat{\theta} \stackrel{as}{\sim} N(\theta, i(\theta)^{-1}), \text{ dvs. } \hat{\theta} \stackrel{as}{\sim} N(\theta, \frac{\theta^2}{n})$$

3. Lad t > 0 være givet og lad X have tæthed $f(x) = \theta t \cdot x^{\theta t - 1}$ for x > 0. Definer desuden funktionen $h: (0,1) \to (0,\infty)$ ved $h(x) = -t \log x$ og Y = h(X). Funktionen h er strengt aftagende, og dermed bijektiv, samt kontinuert differentiabel. Vi får følgende:

$$h^{-1}(y) = e^{-y/t}, \quad Dh^{-1}(y) = -\frac{1}{t}e^{-y/t}, \quad y > 0,$$

og det følger fra den endimensionale transformationssætning af tætheden for Y er givet ved g(y) = 0 for ≤ 0 og

$$g(y) = f(h^{-1}(y))|Dh^{-1}(y)| = \theta t(e^{-y/t})^{\theta y - 1} \frac{1}{t} e^{-y/t} = \theta e^{-\theta y}$$

for y > 0. Således er Y eksponentialfordelt med middelværdi $1/\theta$ eller gammafordelt med formparameter 1 og skalaparameter $1/\theta$: $Y_i \sim \Gamma(1, 1/\theta)$.

Altså er Y_1, \ldots, Y_n uafhængige (fordi X_i 'erne er det) og alle $Y_i \sim \Gamma(1, 1/\theta)$. Pga. foldningsegenskaben for gammafordelingen, får vi så $S_Y \sim \Gamma(n, 1/\theta)$ og endelig $\theta S_Y \sim \Gamma(n, 1)$.

Således er θS_Y en pivot, og hvis g_1 og g_2 er 2.5% og 97.5% fraktilerne i $\Gamma(n,1)$ fordelingen, så er

$$0.95 = P(g_1 < \theta S_Y < g_2) = P\left(\frac{g_1}{S_Y} < \theta < \frac{g_2}{S_Y}\right)$$

og

$$\left(\frac{g_1}{S_Y}, \frac{g_2}{S_Y}\right)$$

er et eksakt 95% konfidensinterval for θ .

4. Vi har fra tidligere at

$$\log L_{x}(\theta) = n \log \theta + \theta \sum_{i=1}^{n} t_{i} \log x_{i} = n \log \theta - n \theta \bar{y},$$

og at $\hat{\theta} = 1/\bar{y}$. Derfor er

$$LR(\theta, x) = 2\left(\log L_x(\hat{\theta}) - \log L_x(\theta)\right)$$

$$= 2\left(-n\log \bar{y} - n - n\log \theta + n\theta \bar{y}\right)$$

$$= 2n\left(-\log \bar{y} - 1 - \log \theta + \theta \bar{y}\right).$$

For hypotesen $H: \theta = 4$ fås LR(4,x) = 1.83. Hvis vi benytter χ_1^2 approksimationen til fordelingen af $LR(\theta,X)$ under hypotesen, fås p-værdien $P(LR(X,4) \ge 1.83) = 0.18$, så vi kan ikke afvise hypotesen: Der er altså ikke evidens i data for at θ er forskellig fra 4.

5. For det givne datasæt og n = 10 er

$$S_v = 1.578$$
, $\bar{y} = 0.1578$, $\hat{\theta} = 6.337$, $g_1 = 4.795$, $g_2 = 17.08$

Det eksakte 95% konfidensinterval er således

$$\left(\frac{g_1}{S_v}, \frac{g_2}{S_v}\right) = (3.039, 10.827).$$

Konfidensintervallet baseret på $LR(\theta, X)$ er defineret ved

$$\{\theta > 0 | LX(\theta, x) < q_{0.95}\}$$

hvor $q_{0.95}=3.84$ er 95% fraktilen i χ^2 fordelingen med en frihedsgrad. Eftersom $\theta \to LR(\theta,x)$ er konveks og $LR(\hat{\theta},x)=0$, er endepunkterne i konfidensintervallet løsningerne til ligningen $LR(\theta,x)=3.841$. Hvis vi indsætter $\theta=3.1754$ og $\theta=11.1151$ i udtrykket for $LR(\theta,x)$ får vi netop 3.841 (på nær afrundingsfejl).

6. Den asymptotiske fordeling af $\hat{\theta}$ er $N(\theta, \theta^2/n)$, specielt er spredning for $\hat{\theta}$ approximativt θ/\sqrt{n} . Jeg fik følgende skema med 5000 simulationer:

		Simulation		Asymptotisk fordeling	
n	θ	middelværdi	spredning	gennemsnit	spredning
10	5	5.59	1.99	5	1.58
25	5	5.21	1.08	5	1
250	5	5.02	0.32	5	0.32

Vi ser at middelværdi og spredning i den asympotiske fordeling først er fornuftige for n = 250. For n = 10 og n = 25 er den faktiske middelværdi og den faktiske varians begge større end den asymptotiske fordeling tilsiger.

Specielt er $\hat{\theta}$ ikke en central estimator, thi så skulle den have den korrekte middelværdi også for små værdier af n. (Derimod er $1/\hat{\theta}$ faktisk central for $1/\theta$, hvoraf det i øvrigt via Jensens ulighed følger at $\hat{\theta}$ ikke er central for θ .)

Opgave 2

1. Hvis vi definerer

$$C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix},$$

så er Y = CX, og tranformationssætningen for normalfordelingen giver

$$Y = CX \sim N(0, C\Sigma C^T).$$

Variansmatricen viser sig at være

$$VY = C\Sigma C^T = \begin{pmatrix} 13 & 19 \\ 19 & 30 \end{pmatrix}.$$

Variansmatricen har determinant 29 og er dermed regulær, så Y er regulært normalfordelt på \mathbb{R}^2 .

2. Vi har at $\det(\Sigma) = 0$, så X er singulært normalfordelt på \mathbb{R}^3 .

Sæt $D = \begin{pmatrix} 1 & -1 \end{pmatrix}$. Så er $Z = X_1 - X_2 - X_3 = DX \sim N(0, D\Sigma S^T) = N(0, 0)$. Altså er Z = 0, eller $X_3 = X_1 - X_2$, med sandsynlighed 1, dvs. $P(X \in V) = 1$. Det er desuden klart at X ikke kan være koncentreret på en mængde af lavere dimension eftersom fx $(X_1, X_2)^T$ er regulært normalfordelt på \mathbb{R}^2 .

Man kan også argumentere udfra resultatet i spørgsmål 1: Fordelingen af Y er singulær, dvs. $Y_2 = a + bY_1$ med sandsynlighed 1 for passende værdier a og b. Udfra middelværdierne ser vi at a = 0, udfra varianserne at b = 2. Altså er $Y_2 = 2Y_1$, eller $X_3 = X_1 - X_2$.

Opgave 3

1. Modellen er en multipel regressionsmodel og fittes med kommandoen

Residualplot og QQ-plot for de standardiserede residualer er vist nedenfor:

Begge plots ser yderst fornuftige ud! I residualplottet ligger værdierne cirka symmetrisk om nul og med cirka samme spredning henover *x*-aksen. I QQ-plottet ligger punkterne nydeligt omkring 0/1 linien.

Bemærkning: Alle tre prædiktorer har kun to mulige værdier (0/1), og den multiple regressionsmodel er derfor sammenfaldende med den additive tresidede variansanalysemodel fra Stat2.

2. Estimaterne er følgende:

$$\hat{\alpha} = 0.4425, \ \hat{\beta}_1 = 0.9906, \ \hat{\beta}_1 = 0.8469, \ \hat{\beta}_1 = 0.3963, \ \hat{\sigma}^2 = 0.1705^2 = 0.0291.$$

Parameteren α er den forventede styrke uden tilsætning af nogen af de tre komponenter. Parametrene $\beta_1, \beta_2, \beta_3$ er den forventede ændring i styrke når A, B hhv. C tilsættes. Endelig er σ spredningen i fordelingen, dvs. udtryk for den "typiske" afvigelse fra middelværdien.

3. Den prædikterede værdi er

$$\hat{y} = \hat{\alpha} + \hat{\beta}_1 + \hat{\beta}_3 = 1.829.$$

Prædiktionsintervallet er givet i eksempel 10.31, og kan beregnes i R vha. funktionen predict:

Vi får intervallet (1.474, 2.185). En ny observation med A og C, men ikke B tilsat vil med 95% sandsynlighed havne i dette interval.

4. Den interessante parameterfunktion er $\delta = \beta_1 - \beta_2$. Denne kan skrives som

$$\delta = \begin{pmatrix} 0 & 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \psi^T \gamma$$

hvor definitionen af ψ og γ fremgår af opskrivningen. Vi kan nu bruge eksempel 10.30 til at bestemme de relevante størrelser:

$$\hat{\bar{\delta}} = \psi^T \hat{\gamma} = 0.1438$$

$$\operatorname{Var}(\hat{\bar{\delta}}) = \psi^T \operatorname{Var}(\hat{\gamma}) \psi = 0.003632$$

$$\operatorname{SE}(\hat{\bar{\delta}}) = 0.0603.$$

Vi kan bruge vcov til at finde variansmatricen i R. Det tilhørende 95% konfidensinterval er

$$0.1438 \pm 2.007 \cdot 0.0603 = (0.0228, 0.2647)$$

hvor vi har benyttet at 97.5% fraktilen i t_{52} fordelingen er 2.007. Konfidensintervallet indeholder ikke nul, så der er tegn på at komponent A virker bedre end komponent B.

Alternativt kan vi teste hypotesen $H: \beta_1 = \beta_2$. Vi får

$$t = \frac{\hat{\delta}}{\text{SE}(\hat{\delta})} = 2.39$$

der skal vurderes in t_{52} fordelingen. Dette giver p-værdien 0.021, så hypotesen forkastes og konklusionen er (naturligvis) som før.

5. Synergieffekten svarer til at middelværdien har formen

$$EY_i = \alpha + \beta_1 A_i + \beta_2 B_i + \beta_3 C_i + \varphi A_i B_i, \quad i = 1, ..., 56$$

hvor det sidste led jo netop er 1 hvis både A og B er tilsat. Modellen fittes fx som følger, hvor vi først laver produktvariablen AB:

```
limData <- transform(limData, AB=A*B)
model2 <- lm(styrke ~ A + B + C + AB, data=limData)</pre>
```

Synergiparameteren estimeres til $\hat{\varphi} = 0.0333$ med 95% konfidensinterval (-0.1660, 0.2326). Hypotesen $H: \varphi = 0$ kan testes med et t-test hvor man får t = 0.336 og p = 0.74. Der er altså ikke evidens for synergi.