Ingineria Reglarii Automate (IRA) *Laborator*

Identificarea experimentală a modelelor dinamice pentru procese fizice

Breviar teoretic

Introducere

• Pentru procesele a carui comportament poate fi aproximat cu un sistem de ord. I, poate fi aplicata o procedura simpla de identificare experimentala

Introducere

• Trebuie sa determinam K_P , T_P si τ care fac ca raspunsul real sa fie cat mai apropiat de reaspunsul ideal al unui sistem de ord. I

Identificare parametri

Pe baza raspunsului indicial

$$H_P(s) = \frac{K_P}{T_P \cdot s + 1} \cdot e^{-\tau \cdot s}$$

$$K_P = \frac{y_{st} - y_0}{u_{st} - u_0}$$

 τ – de pe grafic

$$t_t = \tau + 3 \cdot T_P \to T_P = \frac{t_t - \tau}{3}$$

Timpul tranzitoriu – t_t [sec]

Def: reprezintă intervalul de timp de la momentul în care se aplică treapta de referință la intrarea sistemului până la momentul în care ieșirea **intră și nu mai părăsește** o bandă de \pm 5% din valoarea de staționar (y_{st}) raportată la valoarea inițială a ieșirii (y_0).

Obs: Valoarea ieşirii la momentul de timp t_t (limitele benzii de $\pm 5\%$) sunt:

$$y_{t_t} = y_0 + 0.95 \cdot (y_{st} - y_0) \text{ sau } y_{t_t} = y_0 + 1.05 \cdot (y_{st} - y_0)$$

- 1. Determin limitele benzii de +5%
- 2. Determin ultimul punct de intersectie
- 3. Determin valoarea timpului in acel punct
- 4. Determin intervalul de timp de la aplicarea treptei

Sist. ord. I

Timpul mort – τ [sec]

Def: reprezintă intervalul de timp de la momentul aplicării treptei de referință până la momentul în care sistemul începe să răspundă (ieșirea începe să crească).

Sist. ord. I

Determinarea raspunsului indicial pentru o instalatie fizica

1. Se trasează caracteristica statică

Caracteristica statică reprezintă dependența în regim staționar a ieșirii în funcție de intrare.

 $[u_{min}, u_{max}]$ – domeniul admisibil al comenzii determinat de caracteristicile / capabilitatile Elementului de Executie (EE)

2. Se determină domeniul de liniaritate pe care se va efectua identificarea

Obs: Ne propunem aproximarea comportamentului instalatiei cu o functie de transfer (model liniar), astfel, cea mai buna aproximare o vom obtine in domeniul de liniaritate

 $[u_1, u_2]$ – domeniul de liniaritate in care comportamentul instalatiei este cel mai apropiat de o functie de transfer

3. Se alege în interiorul domeniului de liniaritate un Punct Static de Funcționare (PSF)

PSF reprezinta vecinatatea in care instalatia in timpul functionarii se va afla de cele mai multe ori (comanda pentru regimul nominal de functionare)

PSF – definit de obiectivele tehnologice ale proceselor implicate

4. Se aleg valorile unei trepte de comandă în jurul PSF pentru a trasa raspunsul indicial

Obs: se recomanda ca cele doua limite ale treptei de comanda (u_0, u_{st}) sa se aleaga simetric in jurul PSF, evitandu-se capetele domeniului de liniaritate

5. Se traseaza caracteristica dinamica (raspunsul indicial) utilizand treapta de comanda de la pasul anterior

Caracteristica dinamică reprezintă variația în timp a ieșirii sistemului la aplicarea unui anumit semnal la intrare (treapta in acest caz)

- 6. Se identifică pe caracteristica dinamică y_0 , y_{st} , τ și t_t .
- 7. Se determină analitic parametri modelului de ord. I cu timp mort (K_P , T_P si τ)

$$K_P = \frac{y_{st} - y_0}{u_{st} - u_0}$$

 τ – de pe grafic

$$t_t = \tau + 3 \cdot T_P \to T_P = \frac{t_t - \tau}{3}$$

$$H_P(s) = \frac{K_P}{T_P \cdot s + 1} \cdot e^{-\tau \cdot s}$$