Lecture 23: Dual Methods

Niao He

29th April 2019

Niao He

Recan

Dual Subgradien Method

Augmente Lagrangiar Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary an

Outline

Recap

Dual Subgradient Method

Augmented Lagrangian Method

Alternating Direction Method of Multipliers (ADMM)

Summary and Outlook

Niao He

Recap

Dual Subgradient Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary ar

Recap: Subgradient Methods

Simple Constrained Convex Problems

min
$$f(x)$$

s.t. $x \in X$

Subgradient Method

$$x_{t+1} = \Pi_X(x_t - \gamma_t g_t), \quad g_t \in \partial f(x_t)$$

Bundle Methods

- ▶ Kelley method
- ► Level-set method

Niao He

Recap

Dual Subgradient Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary ar

Recap: Constrained Subgradient Methods

General Constrained Convex Problems

$$\min_{x \in X} f_0(x)$$
s.t. $f(x) \le 0$

Constrained Subgradient Method

$$x_{t+1} = \Pi_X (x_t - \gamma_t \frac{g_t}{\|g_t\|_2})$$

where

$$g_t = \begin{cases} f_0'(x_t), & \text{if } f(x_t) < \gamma_t || f'(x_t) ||_2 \\ f'(x_t), & \text{if } f(x_t) \ge \gamma_t || f'(x_t) ||_2 \end{cases}$$

Generic Two-stage Schemes

Constrained Level Method

Niao He

Recap

Linearly Constrained Convex Problems

$$\min_{x} f(x)$$

s.t. $Ax = b$

s.t.
$$Ax = b$$

Conic Constrained Convex Problems

$$\min_{x} f(x)$$

$$\min_{x} f(x)$$
s.t. $Ax - b \in K$

Niao He

Recap

Dual Subgradient Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary an

Examples

► Sparse recovery:

$$\min_{x} ||x||_{1}$$
s.t. $Ax = b$

Generalized Lasso:

$$\min_{x} \|Ax - b\|_{2}^{2} + \lambda \|Dx\|_{1} \iff \min_{x,y} \|Ax - b\|_{2}^{2} + \lambda \|y\|_{1}$$

s.t. $Dx = y$

► Minimizing over Intersection of Convex Sets:

$$\min_{x} f(x) \iff \min_{x,y} f(x) + I_{C_1}(x) + I_{C_2}(y)$$

s.t.
$$x \in C_1 \cap C_2$$
 s.t. $x = y$

Niao He

Dagan

Dual Subgradient Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary ar

Dual Problem

Linearly Constrained Convex Problems

$$\min_{x} f(x)$$

s.t.
$$Ax = b$$

Dual Problem

$$\max_{\lambda} h(\lambda) := -f^*(-A^T\lambda) - b^T\lambda$$

Subgradient of the Dual

- $ightharpoonup \partial h(\lambda) = A\partial f^*(-A^T\lambda) b$
- $u \in \partial f^*(-A^T\lambda) \Leftrightarrow u \in \operatorname{argmin}_x\{f(x) + \lambda^T A x\}$
- ▶ If f is strictly convex, f* is differentiable.

Niao He

Dual Subgradient Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary ar

Dual Subgradient Method

- 0. Initialize λ^1
- 1. For $t \ge 1$, compute

$$x^{t+1} \in \underset{x}{\operatorname{argmin}} \{ f(x) + (\lambda^t)^T A x \}$$
$$\lambda^{t+1} = \lambda^t + \beta_t (A x^{t+1} - b)$$

- ▶ If f is strictly convex, we get dual gradient ascent.
- ▶ If f is μ -strongly convex, we can set constant $\beta_t \leq \mu$.
- ▶ Otherwise, we need to set β_t to be diminishing.
- ► Convergence follows what have for subgradient method.

Niao He

Recan

Dual Subgradient

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary an

Dual Decomposition (1960s)

$$\min_{x} \quad \sum_{i=1}^{n} f_i(x_i)$$
s.t.
$$Ax = b$$

- 0. Initialize λ^1
- 1. For $t \ge 1$, compute

$$x_i^{t+1} \in \underset{x_i}{\operatorname{argmin}} \{ f_i(x_i) + (\lambda^t)^T A_i x_i \}, i = 1, \dots, n$$
$$\lambda^{t+1} = \lambda^t + \beta_t (\sum_{i=1}^n A_i x_i^{t+1} - b)$$

- ▶ Broadcast: send λ to each processor to find x_i in parallel
- ▶ Gather: collect $A_i x_i$ from each processor to update λ

Niao He

Recap

Dual Subgradien Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary an

Augmented Lagrangian

Original Problem

$$\min_{x} f(x)$$
s.t. $Ax = b$

Transformed Problem

$$\min_{x} f(x) + \frac{\rho}{2} ||Ax - b||_{2}^{2}$$

s.t. $Ax = b$

Augmented Lagrangian

$$L_{\rho}(x; \lambda) = f(x) + \lambda^{T}(Ax - b) + \frac{\rho}{2}||Ax - b||_{2}^{2}$$

- ▶ Adding the term $\frac{\rho}{2} ||Ax b||_2^2$ does not change problem
- ▶ Note if *A* is full rank, primal becomes strongly convex

Niao He

Recar

Dual Subgradien Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary ar

Augmented Lagrangian Method (1960s)

- 0. Initialize λ^1
- 1. For $t \ge 1$, compute

$$x^{t+1} = \underset{x}{\operatorname{argmin}} \{ f(x) + (\lambda^t)^T A x + \frac{\rho}{2} ||Ax - b||_2^2 \}$$
$$\lambda^{t+1} = \lambda^t + \rho (Ax^{t+1} - b)$$

- ► Also know as the method of multipliers.
- ► Improve convergence properties
- Require solving harder subproblems
- ► Lose decomposability (non-separable subproblems)

Q. why choosing stepsize $\beta_t = \rho$?

Niao He

Alternating Direction Method of Multipliers (ADMM)

Alternating Direction Method of Multipliers (ADMM)

Linear Constrained Convex Problem

$$\min_{x,y} f(x) + g(y)$$
s.t. $Ax + By = c$

s.t.
$$Ax + By = c$$

Augmented Lagrangian

$$L_{\rho}(x, y; \lambda) = f(x) + g(y) + \lambda^{T} (Ax + By - c) + \frac{\rho}{2} ||Ax + By - c||_{2}^{2}$$

Method of Multiplier performs the primal update

$$(x^{t+1}, y^{t+1}) = \underset{x,y}{\operatorname{argmin}} L_{\rho}(x, y; \lambda^{t})$$

Niao He

can

Dual Subgradien Method

Augmented Lagrangiar Method

Alternating Direction Method of Multipliers (ADMM)

Summary an

ADMM

- 0. Initialize λ^1, x^1, y^1
- 1. For $t \ge 1$, compute

$$x^{t+1} = \underset{x}{\operatorname{argmin}} \ L_{\rho}(x, y^{t}; \lambda^{t})$$

$$y^{t+1} = \underset{y}{\operatorname{argmin}} \ L_{\rho}(x^{t+1}, y; \lambda^{t})$$

$$\lambda^{t+1} = \lambda^{t} + \rho(Ax^{t+1} + By^{t+1} - c)$$

- ightharpoonup Alternative min over x, y rather than joint minimization
- Preserve good convergence as the method of multiplier
- Achieve the decomposability.
- Convergence results are well established now.
- ► Equivalent to Douglas-Rachford splitting method.

Niao He

2000

Dual Subgradien

Augmented Lagrangian Method

Alternating Direction Method of Multipliers (ADMM)

Summary an

Illustration: LASSO

min
$$||Ax - b||_2^2 + \lambda ||x||_1$$

Figure: Algorithms for solving the LASSO problem

Niao He

2025

Dual Subgradie Method

Augmente Lagrangiar Method

Alternating Direction Method of Multipliers (ADMM)

Summary ar

Extensions and Variations of ADMM

- Varying penalty parameter
 - increasing ρ when infeasibility error is large
 - ightharpoonup decreasing ho when objective error is large
- General augmented terms
 - $\frac{\rho}{2} ||r||_2^2 \rightarrow \frac{\rho}{2} ||r||_P^2$ with $P \succeq 0$
 - sometimes lead to easy-to-compute subproblems
- Jacobi style update
 - $\triangleright x^{t+1} = \operatorname{argmin}_{x} L_{\rho}(x, y^{t}; \lambda^{t})$
 - $y^{t+1} = \operatorname{argmin}_{y} L_{\rho}(x^{t}, y; \lambda^{t})$
 - ▶ (x, y) can be updated in parallel
- ▶ Inexact minimization / Linearization
 - Subproblems are approximately solved through some iterative routines.
- Multi-block extension
 - Active research topic

Niao He

Dual Subgradier Method

Augmente Lagrangia Method

Alternating Direction Method of Multipliers (ADMM)

Summary ar

Relate back to Barrier Method

General Conic Programs

$$\min_{x} f(x)$$
s.t. $Ax - b \in \mathcal{K}$

Barrier Method: given a penalty parameter t > 0 and barrier function $F(\cdot)$ on int(\mathcal{K}), need to solve subproblems

$$\min \{t \cdot f(x) + F(Ax - b)\}$$

$$\min \{t \cdot f(x) + F(y) : Ax - y = b\}$$

Remark. ADMM could also be used as a subroutine to solve barrier problems (active research topic).

Niao He

Recap

Dual Subgradient Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary and Outlook

Summary and Outlook

Niao He

Dual Subgradien Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary and Outlook

Topics covered so far

- ► Classical Convex Optimization (– 1970s)
 - Convex sets, convex functions, convex programs
 - Convex geometry
 - Separation theorems and theorems on alternatives
 - Subgradient, conjugacy, optimality
 - Duality and minimax theorems
 - Polynomial solvability, Ellipsoid method
- ► Modern Convex Optimization (1980s –)
 - Conic programs (LP, SOCP, SDP)
 - Conic duality
 - SDP relaxations
 - ▶ Barriers, self-concordance
 - ► Interior Point Method
- ► Large-scale Convex Optimization
 - Subgradient method and bundle methods
 - Constrained subgradient methods
 - Dual subgradient methods
 - Augmented Lagrangian and ADMM

Niao He

can

Dual Subgradier Method

Augmente Lagrangiar Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary and

Algorithms covered so far

Polynomial algorithms

- Ellipsoid method
- Interior point method

(Super) Linear-convergent algorithms

- Center of gravity method
- Ellipsoid method
- (Damped) Newton method
- ► GD/ALM/ADMM under smooth and strong convexity

► First-order algorithms

- Subgradient methods, Mirror Descent
- Constrained subgradient methods
- Localization methods

Second-order algorithms

(Damped) Newton method

Niao He

.....

Dual Subgradier Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary and Outlook

What's beyond

First-order algorithms

- Accelerated Gradient Descent and its cousins
- Conditional gradient (Frank-Wolfe) and its variants
- Coordinate descent method and its variants
- Proximal gradient method and its acceleration
- Stochastic gradient methods (SGD, AdaGrad, etc)
- Variance-reduced methods (SVRG, SAGA, etc.)
- Distributed and asynchronous gradient methods
- Online gradient methods
- ·

► Other algorithms

- ▶ Proximal point algorithms
- ► Splitting algorithms
- ► Sample average approximation
- **...** ...

Check my lecture notes for IE 598: Big Data Optimization.

Niao He

Dual Subgradien

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary and Outlook

What were your expectations for the course?

Niao He

.

Dual Subgradier Method

Augmented Lagrangian Method

Alternating
Direction Metho
of Multipliers
(ADMM)

Summary and Outlook

Something you should have learned

- Understand basic concepts
- Detect convexity of sets, functions, and programs
- ☑ Reformulate problems into convex forms
- Characterize optimality and duality of convex programs
- Know to appropriately choose algorithms in practice
 - Should I use Ellipsoid Method or Interior Point Method?
 - When to use first-order or second-order method?
 - ▶ Should I expect linear or sublinear convergence?
 - ► How should I choose hyperparameters?
 - ▶ What can I possibly do to improve the performance?

Niao He

Dual Subgradien Method

Augmente Lagrangiar Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary and Outlook

Where to go from here?

Theory/Modeling/Algorithm/Application

Book:

https://web.stanford.edu/ boyd/cvxbook/

Blogs:

- https://blogs.princeton.edu/imabandit/
- http://www.offconvex.org/
- https://sunju.org/research/nonconvex/

Conferences:

- ▶ INFORMS, IOS, SIAM-OPT, ICCOPT, ICSP, MOPTA
- ► ICML/NIPS workshops, Simons Institute workshops

Read lots and lots of papers!

Niao He

Recan

Dual Subgradient Method

Augmented Lagrangian Method

Alternating
Direction Method
of Multipliers
(ADMM)

Summary and Outlook

Last Thing

Final Exam 7:00-10:00 p.m., Monday, May 6

Project Final Report 11:59 p.m., Friday, May 10

Niao He

Summary and Outlook

Thank you!

Please fill in the ICES form for me.