Ausgewählte Ergebnisse zur 3. Übung am 25. September 2023 Thema: Lineare Gleichungssysteme, weitere Aufgaben zu Rechenoperationen, zu Termumformungen und zum Lösen und Umstellen von Gleichungen

Aufgabe 1

(a) genau eine Lösung: x = 3, y = -1

Geometrische Deutung: Die beiden durch die Gleichungen x + y = 2 und 2x - 3y = 9 beschriebenen Geraden schneiden sich im Punkt (3, -1).

(b) keine Lösung

Geometrische Deutung: Die beiden durch die Gleichungen 3x - 6y = 7 und -2x + 4y = -1 beschriebenen Geraden sind (echt) parallel zueinander.

(c) unendlich viele Lösungen: $x=t,\,y=2t-1\ (t\in\mathbb{R})$

Geometrische Deutung: Die Gleichungen 2x-y=1 und -4x+2y=-2 beschreiben ein und dieselbe Gerade.

(d) genau eine Lösung: x = -1, y = 3

Geometrische Deutung: Die beiden durch die Gleichungen 3x = 4y - 15 und 5y = 11 - 4x beschriebenen Geraden schneiden sich im Punkt (-1,3).

Aufgabe 2

genau eine Lösung: x = 1, y = -4, z = -2

Geometrische Deutung: Die drei durch die Gleichungen x - 2y + 2z = 5, -x + y - z = -3 und 3x + 2y - 3z = 1 beschriebenen Ebenen schneiden sich im Punkt (1, -4, -2).

Aufgabe 3

Die Lösungen lassen sich beschreiben durch $x=5-7t, y=4-5t, z=t \ (t\in\mathbb{R}).$

Geometrische Deutung: Die durch die Gleichungen x-y+2z=1 und -2x+3y+z=2 beschriebenen Ebenen schneiden sich in einer Geraden. Eine Parameterdarstellung dieser Geraden lautet

$$\overrightarrow{x} = \begin{pmatrix} 5\\4\\0 \end{pmatrix} + t \begin{pmatrix} -7\\-5\\1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

Aufgabe 4

$$a = \frac{3}{2}, \quad b = \frac{5}{2}, \quad c = 2$$

Aufgabe 5

- (a) (a1) 91 (a2) 31 (a3) 6
- (b) (b1) Es wird die Summe der ersten n positiven natürlichen Zahlen berechnet, also die Summe aller natürlichen Zahlen von 1 bis n.

- (b2) Es wird die Summe der ersten n positiven Quadratzahlen berechnet.
- (b3) Es wird die Summe der ersten n (positiven) ungeraden Zahlen berechnet.
- (b4) Es wird n mal die Zahl 1 addiert. (Die Summe ist offenbar gleich n.)
- (c) $x = \frac{1}{5}$
- (d) n = 25

Aufgabe 6

- (a) x^8 (b) x^{12} (c) x^{-1}

- (d) x^2 (e) $x^{\frac{1}{2}}$ (f) $x^{\frac{3}{4}}$
- (g) $x^{\frac{3}{2}}$ (h) $x^{\frac{1}{2}}$ (i) $x^{\frac{5}{6}}$

Aufgabe 7

- (a) 16 (b) $\frac{9}{16}$ (c) $\frac{3}{16}$ (d) $\frac{9}{4}$ (e) 8 (f) 4

- (g) 2 (h) $\frac{4}{5}$ (i) 1 (j) 1000000 (k) 32 (l) 4

- (m) $\frac{1}{27}$ (n) 16 (o) 125 (p) 3

Aufgabe 8

- (a) wahr
- (b) wahr
- (c) falsch
- (d) falsch
- (e) falsch
- (f) falsch

Aufgabe 9

- (a) 1 (b) 0 (c) 2 (d) $\frac{3}{2}$ (e) -1

- (f) -1 (g) 3 (h) -1 (i) -3 (j) $\frac{1}{2}$

- (k) $\frac{5}{3}$ (l) $\frac{1}{2}$ (m) $\frac{1}{4}$ (n) $-\frac{1}{3}$ (o) $-\frac{3}{4}$

- (p) 1 (q) 3 (r) $\frac{1}{2}$ (s) -5 (t) $\frac{5}{2}$

Aufgabe 10

(a) (a1)
$$s = t \cdot v, \quad t = \frac{s}{v}$$

(a2)
$$s = 500 \,\mathrm{m}$$

(a3)
$$t = 43.2 \,\mathrm{s}$$

(b) (b1)
$$a = \frac{2s}{t^2}$$
, $t = \sqrt{\frac{2s}{a}}$

(b2)
$$t = 10 \,\mathrm{s}$$

(c) (c1)
$$h = \frac{A}{2\pi r} - r$$
, $r = -\frac{h}{2} + \sqrt{\frac{h^2}{4} + \frac{A}{2\pi}}$

(c2)
$$h \approx 35,79 \, \text{cm}$$

(c3)
$$r \approx 9.97 \,\mathrm{cm}$$

(d) (d1)
$$R = \frac{R_1 R_2}{R_1 + R_2}$$
, $R_1 = \frac{R R_2}{R_2 - R}$

(d2)
$$R_1 = 24 \Omega$$

Aufgabe 11

Mit \mathcal{L} wird im Folgenden jeweils die Lösungsmenge der Gleichung bezeichnet.

(a)
$$\mathcal{L} = \left\{ \frac{8}{9} \right\}$$

(a)
$$\mathcal{L} = \left\{ \frac{8}{9} \right\}$$
 (b) $\mathcal{L} = \left\{ \frac{1}{2}, 1 \right\}$ (c) $\mathcal{L} = \{0\}$

$$(c) \mathcal{L} = \{0\}$$

(d)
$$\mathcal{L} = \{-4$$

Aufgabe 12

Mit \mathcal{L} wird im Folgenden jeweils die Lösungsmenge der Gleichung bezeichnet.

(a)
$$\mathcal{L} = \{7\}$$

(a)
$$\mathcal{L} = \{7\}$$
 (b) $\mathcal{L} = \{0, 2\}$ (c) $\mathcal{L} = \{9\}$ (d) $\mathcal{L} = \{1\}$

(c)
$$\mathcal{L} = \{9\}$$

(d)
$$\mathcal{L} = \{1$$