

Scanned with CamScanner

$$\sum_{j=2}^{n} dj = \sum_{j=2}^{n} \frac{1}{2+3+44+-+n+1}$$

$$\sum_{j=2}^{n} (j-1) = \sum_{j=2}^{n} (j-1) = 1+2+3+-+n-1$$

$$\sum_{j=2}^{n} \frac{1}{2+2+3+-+n-1} = n(n-1)$$

$$\sum_{j=2}^{n} \frac{(n-1)(n+1-1)}{(n+1-1)} = n(n-1)$$

$$\sum_{j=2}^{n} \frac{(n-1)(n+1-1)}{(n-1)(n+1)} = n(n-1)$$

$$\sum_{j=2}^{n} \frac{(n-1)(n+1)}{(n-1)(n+1)} + c_{0}(n-1)$$

$$\sum_{j=2}^{n} \frac{(n-1)(n+1)(n+1)}{(n-1)(n+1)} + c_{0}(n-1)$$

$$\sum_{j=2}^{n} \frac{(n-1)(n+1)(n+1)}{(n-1)(n+1)} + c_{0}(n-1)$$

$$\sum_{j=2}^{n} \frac{(n-1)(n+1)(n+1)(n+1)}{(n-1)(n+1)} = n(n-1)$$

the design of the second

time as and c :

The second control of the second control of

The state of the s

COST: The RAM model combins instructions Commonly found in real Computors: arithmetic (such as add, subtract, multiply, divide, remainder, floroge, ceiling) data movement (load, stone, copy) and Control (Conditional and unconditional), Subsoutine all & return. Each Such instruction takes a Constant amount of time. A constant, time is required to execute each line of ourse preudo code, Ci.