- Joint.mat
 - Joint angles
 - pos: Matrix of positions (Maybe you don't need)
 - ts: timestamps (absolute time)
 - gyro: angular velocity of body
 - acc: acceleration of body
 - rpy: roll, pitch and yaw angles of body
 - Head_angles = [Neck angle(yaw), head angle(Pitch)];
 - Ft_I, ft_r: Torque/Force sensor of left and right foot (Maybe you don't need)

- lidar.mat
 - t: 1.4268e+09(absolute time)
 - rsz: 4324 (You don't need it)
 - pose: [0 0 0] (global odometry)
 - res: 0.0044 (radian, resolution) (theta = -135:0.25:135)
 - rpy: [-0.0120 -0.0164 -0.1107] (IMU roll pitch yaw)
 - scan: [1x1081 single] (Scan data, range -135deg to 135 deg)
- lidar.rpy and joint.rpy are identical I for the same time stamps

- Odometry
 - lidar{i}.pose: [x, y, theta]
 - +x: forward from robot
 - +y: left from robot
 - +z: up from robot
 - theta: rotation around +z

- Relative pose based on the odometry $(o_{t+1} \ominus o_t)$
 - Given global odometry
 - Find delta x, delta y and delta theta

$$\begin{bmatrix} O_{x_{-}t} \\ O_{y_{-}t} \end{bmatrix} = \begin{bmatrix} \cos \theta_{t-1} & \sin \theta_{t-1} \\ -\sin \theta_{t-1} & \cos \theta_{t-1} \end{bmatrix} \times \begin{bmatrix} x_{t} - x_{t-1} \\ y_{t} - y_{t-1} \end{bmatrix}$$

$$O_{\theta_{-}t} = \theta_{t} - \theta_{t-1}$$
Transform to local coordinate frame!!!!

Adding random noise

- Random noises (mu = 0, sigma = σ) to odometry
- For N particles, generate N random noise values
- Prediction[P_{x_t} , P_{y_t} , P_{θ_t}]

$$\bullet \quad \begin{bmatrix} P_{x_{-}t} \\ P_{y_{-}t} \end{bmatrix} = \begin{bmatrix} P_{x_{t-1}} \\ P_{y_{t}-1} \end{bmatrix} + \begin{bmatrix} \cos P_{\theta_{t-1}} & -\sin P_{\theta_{t-1}} \\ \sin P_{\theta_{t-1}} & \cos P_{\theta_{t-1}} \end{bmatrix} \times \begin{bmatrix} O_{x_{-}t} \\ O_{y_{-}t} \end{bmatrix}$$

- $\bullet \quad P_{\theta_{-}t} = P_{\theta_t 1} + O_{\theta_{-}t}$
- Note : $P_{\theta_{t-1}}$ is the heading of a particle

$$p_{t+1} = p_t \oplus (o_{t+1} \ominus o_t)$$

- The number of particles: 50 ~ 150
- Map resolution: 0.05
- Noise (when interval is 10)
 - Normal random([0.01, 0.01, 0.5*pi/180])
 - If norm(odo) $< \varepsilon$, noise is also zero
- Log odds Parameter
 - logOddOcc = 3, logOddFree = -1
 - Maximum: 120
 - Minimum:-120

- Input
 - $pf(x, y, \theta)$
 - Body roll and pitch: r, p
 - Head yaw and pitch

 $T = T_{xyz}(pf(x), pf(y), l_3)R_z(pf(\theta))R_y(p)R_x(r)T_z(l_2)R_z(head_yaw)R_y(head_pitch)T_z(l_1)$

scan =
$$[x_1, y_1, z_1;$$

...
 $x_{1081}, y_{1081}, z_{1081}]$

Polar Coordinate

Cartesian Coordinate w. r. t lidar frame

 $scan_world = T \times scan$

Мар

Range measurement

- Correlation-based Matching
 - Generate hypotheses (particles)

- Correlation-based Matching
 - For each hypothesis

- Correlation-based Matching
 - Build a local map from the measurement in a form that can be compared with the global map

- Correlation-based Matching
 - Evaluate hypotheses
 - score the hypothesis

- Correlation-based Matching (Find the best*)
 - Among all the hypotheses, choose the one that has the largest score in order to represent your current location

