Group 2: Assignment 1.1

Niv Adam, David Kaufmann, Casper Kristiansson, Nicole Wijkman

October 19, 2023

1 B-Level Problem (1.2)

Let $B = \{b_1, ..., b_n\}$ and $C = \{c_1, ..., c_m\}$ be sets containing buildings and customers as defined in the task description. We define the following algorithm.

Algorithm 1: B-level problem

```
1 Function kSuppliers (k, B, C):
2 | Let b \in B be the building, so \exists c \in C : d(b,c) \leq d(b',c') \forall b' \in B, c' \in C
3 | Let S = \{b\}
4 | while |S| < k do
5 | Let c_i \in C be such that d(c_i, S) is maximized
6 | Let b_j \in B be such that d(b_j, c_i) is minimized
7 | S \leftarrow S \cup \{b_j\}
8 | return S
```

1.1 Approximation Ratio

Let S_{Opt} be the optimal set of buildings. S_{Opt} partitions C into k clusters. Customer c_i belongs to cluster x if x is the point in S_{Opt} closest to c_i . Additionally, we say b_j lays within cluster x if $d(b_j, x) \leq Opt$. With this we can define the following lemmas.

Lemma 1.1. If x, y lay within the same cluster $d(x, y) \leq 2Opt$

Proof. See lecture slides Lecture 3 slide 45 [1].

Note that 1.1 is true for all points within the cluster. Independent of whether they are buildings or customers.

Lemma 1.2. If the algorithm selects building b, a customer c exists such that $d(b,c) \leq Opt$.

Proof. We can assume customer c is the closest to b from all customers. Then c must have been the customer furthest away from S_{Alg} before adding b. We also know that customer c belongs to some cluster x. Let us assume d(b,c) > Opt and contradict it.

Case 1: $b \in S_{Opt}$. Then customer c belongs to cluster b since it is the closest building. But then the optimal solution can not be Opt since d(b,c) > Opt.

Case 2: $b \notin S_{Opt}$. The optimal solution can't be Opt either, since

$$\forall b_x \in B : d(b_x, c) \ge d(b, c) > Opt$$

Therefore the assumption d(b,c) > Opt must be wrong.

Note that this also is true for the first selected building, since

$$Opt = \max_{i=1..m} d(c_i, S_{Opt}) \ge \min_{\substack{i=1..m, \ j=1..n}} d(c_i, b_j)$$

Lemma 1.3. If the algorithm picks one building from within each cluster then $Alg \leq 2Opt$.

Proof. See lecture slides Lecture 3 slide 47 [1].

Lemma 1.4. If the algorithm selects both b_i and b_j from within the same cluster x then $Alg \le d(b_i, b_j) + d(b_j, c)$

Proof. Suppose b_i is picked first, then b_j . When b_j is picked, it is the building closest to the customer c that is furthest away from all previously picked buildings.

Case 1: $c \in X$ then using Lemma 1.1 $Alg \leq d(b_i, c) \leq 2Opt$

Case 2: $c \notin X$ then using Lemma 1.2 $Alg \le d(b_i, c) \le d(b_i, b_i) + d(b_i, c) \le 3Opt$

So we have $Alg = \max_{k=1,\dots,n} d(b_k, S_{Alg}) \leq d(b_i, b_j)$.

Conclusion We are left with the following cases of how the buildings we choose with the algorithm are spread across the clusters:

- Case 1: We pick two buildings b_i, b_j from within the same cluster. With Lemma 1.4 (using 1.1 and 1.2) follows that $Alg \leq 3Opt$.
- Case 2: We pick a building b that is not within any cluster. Lemma $1.2 \Rightarrow$ customer c exists with $d(c,b) \leq Opt$. Lemma $1.1 \Rightarrow$ all customers c_y in the same cluster as c have a distance lower than $d(b,c) + d(c,c_y) \leq 3Opt$ to b. Therefore $Alg \leq 3Opt$
- Case 3: We pick one building from each cluster. Lemma $1.3 \Rightarrow Alg \leq 2Opt \leq 3Opt$

This in total gives $Alg \leq 3Opt$.

1.2 Time Analysis

1.2.1 Steps

- 1. Finding the shortest distance between a customer and a building requires comparing all buildings from set B with the distance of all customers from set C. This will have a time complexity of $O(|B| \cdot |C|)$.
- 2. The while loop will then run for k-1 iterations since we have initialized S with one building. The algorithm will do the following in each iteration:

- Find the maximum distance between a customer and a set S of buildings which will take $O(k \cdot |C|)$.
- Check the closest building to it which takes O(|B|)

Therefore, each iteration of the while loop will take $O(k \cdot |C| + |B|)$.

1.2.2 Overall Time Complexity

The overall time complexity is the sum of the initialization step and the time spent in the while loop.

Time complexity =
$$O(|B| \cdot |C| + (k-1)(k \cdot |C| + |B|)) \rightarrow O(|B| \cdot |C|) + O(k^2 \cdot |C| + k \cdot |B|))$$

It follows that the time complexity is in $O(|B|^2 \cdot |C|)$

References

[1] P. Austrin, "Lecture 3: Greedy approximation algorithms," September 2023.