L1 Mathématiques Analyse 1

Université de Brest

Feuille 3

Fonctions continues

Questions de cours.

- 1. Donner la définition d'une fonction continue sur un intervalle I de $\mathbb R$.
- 2. Énoncer le théorème des valeurs intermédiaires.
- 3. Énoncer le théorème de la bijection.

Exercice 1. Soit $f: \mathbb{R} \setminus \{\frac{1}{3}\} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \frac{2x+3}{3x-1}$. Pour tout $\varepsilon > 0$, déterminer $\delta \in \mathbb{R}_+^*$ tel que : $\left(x \neq \frac{1}{3} \text{ et } |x| \leq \delta\right) \Longrightarrow |f(x) + 3| \leq \varepsilon$. Que peut-on conclure?

Exercice 2 (Composition de fonctions). Soient A et B deux parties de \mathbb{R} et $f:A\longrightarrow B, g:B\longrightarrow \mathbb{R}$ deux fonctions. Montrer que si f est continue en $x_0 \in A$ et g continue en $f(x_0) \in B$, alors $g \circ f$ est continue en x_0 .

Exercice 3. Préciser dans chacun des cas suivants le domaine de définition de la fonction f et dire si elle est continue. A l'aide du théorème des valeurs intermédiaires, déterminer l'image de chacune de ces fonctions.

1.
$$f: x \longmapsto \frac{1}{x^2 + 1}$$

$$3. \ f: x \longmapsto \frac{x-3}{x-2}$$

$$5. \ f: x \longmapsto \sqrt{x^2 - x - 6}$$

2.
$$f: x \longmapsto \frac{x^2 + 1}{x^2 - 1}$$

4.
$$f: x \longmapsto \sqrt{4x^4 + 1}$$

1.
$$f: x \longmapsto \frac{1}{x^2 + 1}$$
 3. $f: x \longmapsto \frac{x - 3}{x - 2}$ 5. $f: x \longmapsto \sqrt{x^2 - x - 3}$ 2. $f: x \longmapsto \frac{x^2 + 1}{x^2 - 1}$ 4. $f: x \longmapsto \sqrt{4x^4 + 1}$ 6. $f: x \longmapsto \sqrt{\frac{2 + 3x}{5 - 2x}}$

Exercice 4. Soient $f: \mathscr{D}_f \longrightarrow \mathbb{R}$ une fonction et $x \in \mathbb{R}$. Montrer que f tend vers l au point x si et seulement si

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ y \in \mathscr{D}_f, \ |y - x| \le \delta \Longrightarrow |f(y) - l| \le \varepsilon$$
.

En déduire que f est continue en $x_0 \in \mathscr{D}_f$ si et seulement si $\lim_{x \to x_0} f(x)$ existe et vaut $f(x_0)$.

Exercice 5. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x & \text{si } x < 1\\ x^2 & \text{si } x \in [1; 4]\\ 8\sqrt{x} & \text{si } x > 4 \end{cases}$$

- 1. Tracer le graphe de f. Que peut-on dire de la continuité de la fonction f?
- 2. Donner l'expression de la fonction réciproque f^{-1} et étudier sa continuité.

Exercice 6. Soit $a,b,c \in \mathbb{R} \cup \{\pm \infty\}$ tels que a < b < c. On suppose que $f:]a;b] \longrightarrow \mathbb{R}$ et $g:[b\,;\,c[\longrightarrow\mathbb{R}$ sont continues et que f(b)=g(b). Est-ce que la fonction $h:]a\,;\,c[\longrightarrow\mathbb{R}$ définie par

$$h(x) = \begin{cases} f(x) & \text{si } x \in]a; b] \\ g(x) & \text{si } x \in [b; c] \end{cases}$$

est continue?

Exercice 7 (Caractérisation séquentielle de la continuité). Soit $f:A\longrightarrow \mathbb{R}$ une fonction. Montrer que f est continue en $a \in A$ si et seulement si, pour toute suite $(x_n)_{n \in \mathbb{N}}$ de points de A convergeant vers a, la suite $(f(x_n))_n$ converge vers f(a).

Exercice 8. Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

$$f: x \longmapsto x \sin\left(\frac{1}{x}\right) \qquad g: x \longmapsto \frac{1}{x} \ln\left(\frac{e^x + e^{-x}}{2}\right) \qquad h: x \longmapsto \frac{1}{1-x} - \frac{2}{1-x^2}$$
.

Exercice 9. Soit $k \in \mathbb{R}_+^*$ et $f: I \longrightarrow \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . La fonction fest dite k-lipschitzienne si pour tout $x, y \in I$, $|f(x) - f(y)| \le k|x - y|$.

- 1. Montrer qu'une fonction k-lipschitzienne est continue.
- 2. Soit $f:[a;b] \longrightarrow [a;b]$ une fonction k-lipschitzienne avec k < 1. Montrer que f admet un unique point fixe, c'est-à-dire qu'il existe un unique $x \in [a; b]$ tel que f(x) = x.

Exercice 10. Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ une fonction croissante telle que la fonction $x \longmapsto \frac{f(x)}{x}$ est décroissante. Montrer que f est continue sur \mathbb{R}_+^* .

Exercice 11. Soit I un intervalle de \mathbb{R} et f, g deux fonctions continues sur I. On rappelle que pour tout $x, y \in \mathbb{R}$, $\max(x, y) = \frac{x + y + |x - y|}{2}$ et $\min(x, y) = \frac{x + y - |x - y|}{2}$.

- 1. Montrer que la fonction $x \mapsto |x|$ est continue sur \mathbb{R} .
- 2. Montrer que les fonctions $\min(f, g)$ et $\max(f, g)$ définies par $\min(f, g)(x) = \min(f(x), g(x))$ et $\max(f, g)(x) = \max(f(x), g(x))$ sont continues sur I.

Exercice 12. On note |x| la partie entière du réel x. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = x(|2x| - 2|x|)$$
.

- 1. Tracer la courbe représentative de f sur l'intervalle $[-2\,;\,2[$.
- 2. Déterminer les points de \mathbb{R} où la fonction f est continue.

Exercice 13. Soit $f:[0;1] \longrightarrow \mathbb{R}$ une fonction continue telle que f(0)=f(1). Montrer que pour

tout entier $n \in \mathbb{N}^*$, il existe $\alpha_n \in [0\,;\,1]$ tel que $f(\alpha_n) = f\left(\alpha_n + \frac{1}{n}\right)$.

Indication : Introduire la fonction φ définie sur $\left[0\,;1-\frac{1}{n}\right]$ par $\varphi(x) = f(x) - f\left(x + \frac{1}{n}\right)$ et calculer la somme $\varphi(0) + \varphi\left(\frac{1}{n}\right) + \ldots + \varphi\left(\frac{n-1}{n}\right)$.

Exercice 14. Soient f et g deux fonctions continues sur [0; 1] telles que : $\forall x \in [0; 1], f(x) < g(x)$. Montrer qu'il existe m > 0 tel que pour tout $x \in [0; 1], f(x) + m < g(x)$. Est-ce que ce résultat reste vrai si on remplace l'intervalle [0; 1] par l'intervalle ouvert]0; 1[?

Exercice 15. Soit $(u_n)_n$ la suite définie par $u_0 = 2$ et

$$u_{n+1} = 2 - \frac{5}{u_n + 4}.$$

- 1. Quel est le sens de variation de la suite $(u_n)_n$?
- 2. Montrer que la suite $(u_n)_n$ converge et calculer sa limite.
- 3. Reprendre l'exercice avec $u_0 = 1$ et $u_0 = 0$.