

Recurrent Kernel Networks

Dexiong Chen [†] Laurent Jacob [‡] Julien Mairal [†]

Inria - firstname.lastname@inria.fr

[‡]CNRS - firstname.lastname@univ-lyon1.fr

Overview

Kernel supervised learning for sequence objects

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i)) + \frac{\mu}{2} ||f||_{\mathcal{H}}^2$$

• $\mathbf{x}_1, \dots \mathbf{x}_n \in \mathcal{X}$ are sequences (biological sequences or texts).

Goal: learning a **predictive** and **interpretable** function f.

From k-mers to gap-allowed k-mers modeling

Convolutional kernel networks [1] that model k-mers:

$$K_{\mathsf{CKN}}(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{|\mathbf{x}|} \sum_{j=1}^{|\mathbf{x}'|} K_0\left(\mathbf{x}[i:i+k], \mathbf{x}'[j:j+k]\right)$$

- K_0 is a Gaussian kernel over one-hot representations of k-mers.
- A natural feature map of \mathbf{x} is $\sum_{j=1}^{|\mathbf{x}|} \varphi_0(\mathbf{x}[j:j+k])$ with φ_0 the kernel mapping associated to K_0 .
- Scalable and data or task-adaptive with Nyström approximation. Interpretable using end-to-end training with few filters.
- Unable to capture gappy motifs.

Recurrent kernel networks that generalize k-mers with gaps:

$$K_{\mathsf{RKN}}(\mathbf{x}, \mathbf{x}') = \sum_{\mathbf{i} \in \mathcal{I}(k, |\mathbf{x}|)} \sum_{\mathbf{j} \in \mathcal{I}(k, |\mathbf{x}'|)} \lambda_{\mathbf{i}, |\mathbf{x}|} \lambda_{\mathbf{j}, |\mathbf{x}'|} K_0(\mathbf{x}[\mathbf{i}], \mathbf{x}'[\mathbf{j}])$$

- Take gapped k-mers into account. $\lambda_{\mathbf{j},|\mathbf{x}'|}$ penalizes the gaps, e.g. $\lambda_{\mathbf{i},|\mathbf{x}'|} = \lambda^{\mathsf{gaps}(\mathbf{i})}.$
- A nature feature map is $\sum_{\mathbf{i} \in \mathcal{I}(k,|\mathbf{x}|)} \lambda_{\mathbf{i},|\mathbf{x}|} \varphi_0(\mathbf{x}[\mathbf{i}])$.
- Computationally fast using dynamic programming.
- The gate components in RNNs play the same role as gap penalization in substring kernels.

Definition of gap-allowed k-mers

- For $1 \le k \le n \in \mathbb{N}$, we denote by $\mathcal{I}(k,n)$ the set of sequences of indices with k elements $\mathbf{i} = (i_1, \dots, i_k)$, with $1 \le i_1 < \dots < i_k \le n$.
- For a sequence $\mathbf{x} = x_1 \dots x_n \in \mathcal{X}$ of length n, for a sequence of indices $\mathbf{i} \in \mathcal{I}(k, n)$, we define a k-substring as:

$$\mathbf{x}[\mathbf{i}] = x_{i_1} x_{i_2} \dots x_{i_k}.$$

The length of the gaps in the substring is

$$gaps(i) = i_k - i_1 - k + 1.$$

A feature map of RKN

 A feature vector of RKN for x is a mixture of Gaussians centered at $x[\mathbf{i}]$, weighted by the corresponding $\lambda_{\mathbf{i},|x|}$.

Nyström approximation and RNNs

Nyström approximation:

Given a set of anchor points $Z=(z_1,\ldots,z_q)$ with $z_i\in\mathbb{R}^{k\times d}$, we project $\varphi_0(x)$ orthogonally onto \mathcal{E}_0 such that $K_0(x,x') \approx \langle \psi_0(x), \psi_0(x') \rangle$. Then we obtain an approximate feature map for K_{RKN}

$$\psi_k(\mathbf{x}) = \sum_{\mathbf{i} \in \mathcal{I}(k,|\mathbf{x}|)} \lambda_{\mathbf{i},|\mathbf{x}|} \psi_0(\mathbf{x}[\mathbf{i}]) = K_{ZZ}^{-\frac{1}{2}} \sum_{\mathbf{i} \in \mathcal{I}(k,|\mathbf{x}|)} \lambda_{\mathbf{i},|x|} K_Z(\mathbf{x}[\mathbf{i}]). \tag{1}$$

Fast computation with dynamic programming:

For any $j \in \{1, \ldots, k\}$ and $t \in \{1, \ldots, |\mathbf{x}|\}$,

$$\psi_j(\mathbf{x}_{1:t}) = K_{Z_j Z_j}^{-\frac{1}{2}} \begin{cases} \mathbf{c}_j[t] & \text{if } \lambda_{\mathbf{i},|\mathbf{x}|} = \lambda^{|\mathbf{x}| - i_1 - j + 1}, \\ \mathbf{h}_j[t] & \text{if } \lambda_{\mathbf{i},|\mathbf{x}|} = \lambda^{\text{gaps}(\mathbf{i})}, \end{cases}$$

where $\mathbf{c}_{i}[t]$ and $\mathbf{h}_{i}[t]$ in \mathbb{R}^{q} obeying the recursion

$$\mathbf{c}_{j}[1] = \mathbf{h}_{j}[1] = 0 \qquad 1 \leq j \leq k,$$

$$\mathbf{c}_{0}[t] = 1 \qquad 1 \leq t \leq |\mathbf{x}| - 1,$$

$$\mathbf{c}_{j}[t] = \lambda \mathbf{c}_{j}[t - 1] + \mathbf{c}_{j-1}[t - 1] \odot \kappa(Z_{j}\mathbf{x}_{t}) \qquad 1 \leq j \leq k,$$

$$\mathbf{h}_{j}[t] = \mathbf{h}_{j}[t - 1] + \mathbf{c}_{j-1}[t - 1] \odot \kappa(Z_{j}\mathbf{x}_{t}) \qquad 1 \leq j \leq k,$$

$$(2)$$

where κ is a non-linear function $\kappa(x) = e^{\alpha(x-1)}$ and Z_i is a matrix in \mathbb{R}^{qd} whose *i*-th row is the *j*-th row of z_i .

Learning strategies

The supervised learning problem becomes

$$\min_{\mathbf{w} \in \mathbb{R}^q} \frac{1}{n} \sum_{i=1}^n L\left(\langle \psi_k(\mathbf{x}^i), \mathbf{w} \rangle, y^i\right) + \frac{\mu}{2} \|\mathbf{w}\|^2, \tag{3}$$

where ψ_k depends on Z. The model can be trained in 2 ways:

- Unsupervised: learning Z with K-means using (subsampled) k-mers (eventually with gaps). Then train a linear classifier.
- Supervised: jointly learning Z and \mathbf{w} with SGD.

Max pooling in RKHS and extensions

- The sum can be replaced by a max, the corresponding recursive equations can be obtained by replacing all the sum with max.
- Generalized max pooling (GMP): build a representation φ_{gmp} such that $\langle \varphi_{gmp}, \varphi_i \rangle_{\mathcal{H}} = 1$ for a set of features $(\varphi_1, \dots, \varphi_N)$ in \mathcal{H}^N .
- Multilayer extension and link with string kernels can be found in [1].

Experiments

Protein fold recognition on SCOP 1.67

Method	pooling	on	e-hot	BLOSUM62	
		auROC	auROC50	auROC	auROC50
LA-kernel				0.834	0.504
LSTM		0.830	0.566		
CKN [1]		0.837	0.572	0.866	0.621
RKN	mean	0.829	0.541	0.840	0.571
RKN	max	0.844	0.587	0.871	0.629
RKN	GMP	0.848	0.570	0.852	0.609
RKN (unsup)	mean	0.805	0.504	0.833	0.570

Protein fold classification on SCOP 2.06

Method	#Params	Accuracy		Level-stratified accuracy (top1/top5)		
		top 1	top 5	family	superfamily	fold
PSI-BLAST	-	84.53	86.48	82.20/84.50	86.90/88.40	18.90/35.100
DeepSF	920k	73.00	90.25	75.87/91.77	72.23/90.08	51.35/67.57
CKN (512 filters)	843k	84.11	94.29	90.24/95.77	82.33/94.20	45.41/69.19
RKN (512 filters)	843k	85.29	94.95	84.31/94.80	85.99/95.22	71.35/84.86

Relevant reference

[1] D. Chen, L. Jacob, and J. Mairal. Biological sequence modeling with convolutional kernel networks. Bioinformatics, 35(18):3294--3302, 02 2019.