

Expressão Gráfica em Engenharia Mecânica

PME-3120

Prof. Dr. Marcelo Alves

1ª Edição

2019

Agradecimento:

A digitalização dessas notas de aula não seria possível sem a parceria entre o PME Departamento de Engenharia Mecânica com o PET-Mecânica, a colaboração do Prof. Dr. Marcelo Alves que auxiliou durante todo o processo, a gentileza dos alunos Lucas Vilanova, Andrei Steschenko e Lucas Hattori, ao fornecerem e permitir que utilizemos suas anotações e figuras e os integrantes do PET-Mecânica, Caique Kobayashi, Gabriel Araújo, Lucas Hattori, Pietra Brizot Vargas e Rodrigo Chiusolli que trabalharam na digitalização, formatação e revisão de conteúdo de todo o material.

Expressão Gráfica em Engenharia Mecânica

Sumário

1.	Info	rmações Gerais	1
	1.1.	Critério de Avaliação:	1
	1.2.	Bibliografia	1
	1.3.	Horário de Atendimento:	1
	1.4.	Materiais:	1
2.	Dese	enho	2
	2.1.	Normas Técnicas	2
	2.2.	Legenda e Folhas	2
	2.3.	Linhas	3
	2.4.	Perspectivas e projeções	4
	2.5.	Escalas	5
	2.6.	Cotagem	5
	2.7.	Cortes	6
1	2.8.	Vistas Auxiliares	7
f	2.9.	Tolerâncias Dimensionais	8
K	2.10.	Tolerâncias Geométricas	10
f	2.10.1.	Macrogeométricas	11
1	2.10	, = , = , = , = = =	12
	2.10	.1.2. Orientação	13
	2.10	5	16
	2.10		17
	2.10	.1.5. Referências	18
	2.10.2.	Rugosidade	18
	2.11.	Tipos de desenho em projeto mecânico	
	2.11.1.	Desenho de conjunto	21
	2.11.2.		22
3.	Elen	nentos de Máquinas	23
	3.1.	Uniões	23
	3.1.1.	Roscas	23
	3.1.2.	Parafusos	24
	3.1.3.	Rebites	25
	3.1.4.	Prisioneiros	
	3.1.5.	Soldagem	26

Expressão Gráfica em Engenharia Mecânica

3.1.6.	Travamento	27
3.2. T	ransmissões	28
3.2.1.	Engrenagens	28
3.2.2.	Rodas Dentadas e Correntes	29
3.2.2.1.	Correias	29
3.2.2.2.	Mancais	30
3.2.3.	Cubo-eixo	
3.2.4.	Chavetas	33
3.2.5.	Travas de Posicionamento Axial	33
3.2.6.	Uniões Cubo-Eixo	33
3.3. T	ravamento e Posicionamento	34
1.7.7		

1. Informações Gerais

1.1. Critério de Avaliação:

A média final é igual a uma prova escrita semestral mais a somatória das avaliações em cada atividade de laboratório, dividido pelo número de atividades, mais o projeto semestral dividido por três.

$$M\'{e}dia\ Final = \frac{Prova + \frac{\sum Nota\ Lab.}{n^olabs} + Projeto}{3}$$

1.2. Bibliografia

Giesecke, F E et al. – Technical Drawing, Pearson Prentice Hall, 2008

Normas ABNT para desenho técnico.

1.3. Horário de Atendimento:

Preferencialmente de segunda feira, das 07:30 às 11:30 horas.

1.4. Materiais:

- Compasso
- Lapiseira (grafite fino) e lapiseira/lápis (grafite grosso 2x gramatura do grafite fino)
- Esquadros
- Régua
- Folha margeada para desenho técnico (dependendo da solicitação podem ser utilizadas A3, A4 e A2)

2. Desenho

- Os desenhos técnicos têm como objetivo a obtenção de uma representação fiel de objetos 3D no plano (papel, lousa, etc.);
- Principal comunicação técnica de projetos;
- Atualmente temos desenhos "eletrônicos" (numéricos/matemáticos) que facilitam a fabricação direta;
- Linguagem concisa e universal → não admite interpretação;
- Difere do desenho artístico por ser objetivo, claro e sem espaço para subjetividade.

2.1. Normas Técnicas

- O desenho técnico é normalizado e padronizado mundialmente:
 - o Mundial → ISO (Organismo Internacional de Padronização);
 - o Brasil → ABNT (Associação Brasileira de Normas Técnicas);
 - Alemanha → DIN:
 - o Japão → JIS.
- As normas técnicas existem para garantir a sua objetividade e universalidade.
- Algumas normas técnicas estão disponíveis no site do PET Mecânica para consulta dos alunos.

2.2. Legenda e Folhas

- As folhas de desenho técnico devem ser margeadas (NBR 10068) e possuírem tamanhos A0, A1, A2, A3 ou A4. As dobras para as folhas A0 a A3 devem ser feitas de acordo com a NBR 13142, disponível no site.
- A legenda deve ser posicionada no canto inferior direito do desenho e deve possuir as seguintes medidas e formato:

2.3. Linhas

- NBR 8403, disponível no site. Para exemplos do emprego das linhas, consultar norma.
- Diferentes linhas no desenho técnico representam diferentes entidades e/ou características da peça.
- A linha estreita deve possuir metade (ou menos) da espessura da linha larga.

A – Contínua Larga	Contornos visíveis Arestas visíveis
B – Contínua Estreita	Linhas de interseção imaginárias Linhas de cotas; Linhas auxiliares Linhas de chamadas; Hachuras; Contornos de seções rebatidas na própria vista; Linhas de centros curtas
C – Contínua Estreita a mão livre	Limites de vistas ou cortes parciais ou interrompidas se o limite não coincidir com linhas traço e ponto
D – Contínua Estreita em ziguezague	 Desenhos confeccionados por máqui- nas – redução na representação de ele- mentos compridos.
E/F – Tracejada larga ou estreita ou ou	Contornos e arestas não visíveis
G – Traço e ponto es- treita	 Linhas de centro, simetria ou trajetória
H – Traço e ponto estreita, larga nas extremidades e em mudanças de direção	Planos de corte
J – Traço e ponto larga	Linhas ou superfícies com indicação especial
K – Traço e dois pontos estreita	Contornos de peças adjacentes Posição limite de peças móveis Linhas de centro de gravidade Cantos antes da conformação Detalhes situados antes do plano de corte

- Se ocorrer coincidência de duas ou mais linhas de diferentes tipos deve-se dar a seguinte ordem de prioridade:
 - o Arestas e contornos visíveis (linha contínua larga A);
 - o Arestas e contornos não visíveis (linha tracejada E ou F);
 - Superfícies de cortes e seções (traço e ponto estreitos larga nas extremidades e na mudança de direção H);
 - o Linhas de centro (traço e ponto estreita, G);
 - o Linhas de centro de gravidade (traço e dois pontos tipo de linha K);
 - o Linhas de cota e auxiliar (linha contínua estreita linha B).

2.4. Perspectivas e projeções

- Dificuldade é representar objetos 3D em 2 dimensões de forma fiel:
 - o Perspectiva:
 - o Distorções na forma;
 - o Dimensões não correspondem as reais.

2.4.1. Projeções (vistas):

• Ortográficas:

- Orientar o objeto em relação aos planos de projeção;
- Superfícies da peça paralelas ou perpendiculares aos planos;
- Face/superfície paralela à vista frontal com maior número de detalhes.
- Sistema de projeção:
 - o Brasil, Europa, Japão → 1º Diedro
 - EUA \rightarrow 3° Diedro
- Indicação no desenho do Diedro utilizado:

• É importante ressaltar também que o CAD é capaz de representar peças em 2D, por meio de desenhos em projeção, e em 3D, por meio do uso de informação, matemática e geometria (modelador de sólidos);

2.5. Escalas

- NBR 8196. Disponível no site.
- Há três tipos de escala:
 - Natural (1:1), para representações fiéis ao tamanho das peças
 - o Em redução (x:y, com x<y), para representações menores que o original
 - o Em ampliação (y:x, com x<y), para representações maiores que o original.
- É importante ressaltar de antemão que em qualquer representação ou escala, <u>as medidas cotadas permanecem às da peça original em milímetros.</u>
- Em qualquer escala, a relação entre x e y (escala x:y) deve seguir uma progressão geométrica de razão q, onde que q=(10)^n, onde n é o número de elementos de série.
 - O Exemplo: R5: 1; 1,6; 2,5; 4; 6,3; 10, etc., de forma a crescer de forma percentualmente constante.
 - O De acordo com a NBR 8196, as escalas permitidas em desenho técnico são 10:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:10.

2.6. Cotagem

- A cotagem não tem como objetivo apenas informar a medida de certa peça, mas também informar como será medida e fabricada.
- No exemplo ao lado, pode-se observar que as tolerâncias precisam mais o tamanho de cada região, enquanto a segunda imagem se preocupa mais com a delimitação de tal região em relação a uma base de referência.

- As cotas não devem encostar na peça, mas não devem também ficar distantes
- Devem ser feitas com linha fina (os contornos visíveis das peças são feitos com linhas grossas)
- São constituídas por linhas de chamada e linhas de cota
- As cotas não devem ser redundantes
- Dicas:
 - Não cruzar linhas de chamadas.
- Não se cotam contornos não visíveis.

- O corte de uma peça é utilizado para representar com contornos visíveis parte da peça/conjunto/máquina que ficaria encoberta sem este.
- O corte é representado na vista não cortada por uma linha traço-ponto no plano de corte.
- O plano de corte é sempre paralelo a um dos planos de projeção, e remove-se uma parte do sólido, hachurando-se as regiões cortadas (na maioria dos casos).

- Hachuras:
 - o São feitas na interseção do plano de corte com a peça.
 - Linhas não visíveis não aparecem em representações em corte
 - Devem ser espaçadas homogeneamente e inclinadas a 45°
 - Utilizar linhas cheias e mais finas que o contorno visível
- Na imagem da direita, pode-se observar a área cortada (hachurada). Nesta imagem, não foi representada uma "vista" em corte, mas sim uma seção da peça (só a área cortada). Na imagem da esquerda, há realmente vistas em corte.

Para diferenciar:

Mais exemplos de cortes:

Mais exemplos de seções:

2.7.1. Exceção à regra de Hachuras

Não são hachuradas peças:

- De revolução, cheias, cortadas por plano que contém o eixo longitudinal;
- Nervuras, raios não são hachurados em cortes longitudinais, ou quando o plano de corte for paralelo ou plano principal destes detalhes

2.7.2. Hachuras em desenhos de montagem

- Utilizar hachuras diferentes para peças diferentes
- Peças de lados não contíguos podem utilizar mesma hachura
- Corte parcial: Apenas uma parte do conjunto em corte
- Seção: Mostra apenas o que pertence ao plano de corte

2.8. Vistas Auxiliares

- Vistas auxiliares são utilizadas para visualização de superfícies e contornos não paralelos aos planos de projeção.
- Nos rebatimentos, os planos e contornos passam a ser paralelos a um dos planos de projeção.

• Há outras situações nas quais são empregados rebatimentos.

2.9. Tolerâncias Dimensionais

- Não há como controlar todas as variáveis de um processo de fabricação, como o desgaste do torno, de uma broca, etc.
- Há sérios problemas quando, por exemplo, são fabricadas peças intercambiáveis, pois ao se fazerem pares, há certeza de suas características de montagem, mas ao trocarem-se peças dentre esses pares, caso não sejam obedecidas certos requisitos talvez o encaixe não seja possível.

• Exemplo:

- Pistão (1) *←Interferência* → Pino (2) *← folga* → Biela (3)
- O que varia entre eles para gerar estes ajustes?
- O A tolerância, pois a dimensão nominal dos três é a mesma.
- o Tolerância única: Mesma dimensão; Não escalonado; Fabricação.
- o Tolerâncias diferentes: Facilidade de montagem
- As tolerâncias dimensionais representam o quanto uma medida pode variar de seu valor nominal.
- Geralmente, espera-se uma distribuição da medida das peças de acordo com uma distribuição normal de Gauss.
- A ISO 286-1 é a norma internacional de tolerâncias.
- Uma tolerância é representada seguindo duas características:
 - o Amplitude (representada por algarismos)
 - Afastamento (representada por letras)

• As faixas são definidas de acordo com a dimensão nominal.

Ajuste (ISO 286-1): Combinação de tolerâncias para determinado fim;

Definido por: Funcionamento, montagem, custo (qualidade de trabalho)

- Com folga: Rotativo ou deslizante
- Incerto
- <u>Com interferência:</u> Montagem manual, montagem com ferramenta, montagem em prensa, montagem com diferença de temperatura.

Amplitude: Varia conforme a qualidade do trabalho (IT)

Afastamento:

- Ajustes A/a gerarão grande folga
- Ajustes Z/z gerarão grande interferência.
- Para eixos, utilizam-se letras minúsculas, e para furos são utilizadas letras maiúscula.

Exemplo:

- o Furo Ø10H8 (+0,022 mm; +0,000 mm) com pino Ø10k5 (+0,007 mm; +0,001 mm).
- o Considerando as maiores medidas possíveis de cada componente:
- \circ 10,002 (eixo)- 10,007 (furo) = +0,0015 (folga de 0,0015 mm)
- \circ 10,000 10,007 = -0,007 (interferência de 0,007 mm).

Calibrador:

- Passa não passa: Não passa mínimo; Passa máximo
 - O calibrador necessita ter uma precisão maior que a medida, logo, apresenta alto custo.

- Furo base (H) e eixo base (h): h5, h6, h7 (h9, h11)
 - o Mais comum por ser mais difícil controlar a tolerância em furos

Tolerância Geral (ISO 2768)

• Utilizada quando não é necessária uma tolerância muito rígida.

Exemplo:

Tipo	6 30	30 — 120
Fina (f)	± 0,1mm	± 0,15mm
Média (m)	± 0,2mm	± 0,3mm
Grosseira (c)	± 0,5mm	± 0,8mm
Muito Grosseira (sc)	± 1,0mm	± 1,5mm

Ps. Comprimentos ou direções lineares

Dica para laboratório: Baixar aplicativo "ISO Fits" sobre Tolerâncias Dimensionais.

2.10. Tolerâncias Geométricas

- Norma: ISO 1101; NBR 6409.
- Macrogeométricas (retilineidade, circularidade, cilindricidade, planeza) e microgeométricas (rugosidade).
- Dica: Baixar aplicativo Zeiss sobre Tolerâncias Geométricas

2.10.1. Macrogeométricas

• <u>Tipos:</u> Há três tipos principais de tolerâncias macrogeométricas:

• Representação: Nos desenhos, as tolerâncias de forma e posição devem ser inscritas em um retângulo dividido em duas ou mais partes, chamado quadro de tolerância.

• Nas divisões são apresentados:

o O símbolo da característica;

O valor da tolerância na unidade usada para dimensões lineares. Este valor é precedido pelo símbolo Ø, se a zona de tolerância for circular ou cilíndrica;

 Quando for o caso, letra ou letras para identificar o elemento ou os elementos de referência.

• <u>Indicação</u>: O quadro de tolerância deve ser ligado ao elemento tolerado por uma linha de chamada terminada por uma flecha.

• Esta linha deve tocar:

O contorno de um elemento ou o prolongamento do contorno (mas não uma linha de cota), se a tolerância se aplicar à linha ou à própria superfície.

A linha de extensão, em prolongamento à linha de cota, quando a tolerância for aplicada ao eixo ou ao plano médio do elemento cotado.

O eixo, quando a tolerância for aplicada ao eixo ou ao plano médio de todos os elementos comuns a este eixo ou este plano médio.

• Exemplo:

De acordo com a NBR 6409, várias características podem ser toleradas:

Características		Símbolo
	Retilineidade	(
	Planicidade (planeza)	
FORMA PARA	Circularidade	0
ELEMENTOS ISOLADOS	Cilindricidade	Ø
	Forma de uma linha qualquer	$\overline{}$
	Forma de uma Superfície qualquer	
ORIENTAÇÃO PARA	Paralelismo	//
ELEMENTOS	Perpendicularidade	L
ASSOCIADOS	Inclinação	_
POSIÇÃO PARA	Localização de um elemento	+
ELEMENTOS	Concentricidade e Coaxilidade	0
ASSOCIADOS	Simetria	=
	Superfície indicada	1
BATIMENTO	Total	21

A descrição dessas tolerâncias, de acordo com a norma, segue:

Observação: Abreviou-se c.t. – campo de tolerância; "t" - valor de tolerância em milímetros ; s.t. – seção transversal; tol. – tolerância;

2.10.1.1. Forma

- Retitude de uma linha:
 - O c.t. é limitado por duas linhas paralelas afastadas de "t", se a tol. for especificada somente em um plano.
 - O c.t. é limitado por um paralelepípedo de s.t. "t1 x t2", se a tol. for especificada em dois planos perpendiculares entre si.
 - Exemplo: A linha de centro da peça deve estar contida dentro de um paralelepípedo de 0,1 mm na vertical e 0,2 mm na horizontal.

- O c.t. é limitado por um cilindro com diâmetro "t", se t for precedido pelo símbolo Ø.
- Tolerância de planeza:
 - O c.t. é limitado por dois planos paralelos afastados de "t".
 - Exemplo: A superfície deve estar contida entre dois planos paralelos afastados em 0,08 mm.

• Tolerância de circularidade:

- O c.t. é limitado por dois círculos concêntricos afastados "t".
- Tolerância de cilindricidade:
 - O c.t. é limitado por dois cilindros coaxiais afastados "t".
- Tolerância de forma de uma linha qualquer
 - O c.t. é limitado por duas linhas geradas por um círculo de diâmetro "t", em milímetros, cujo centro situa-se sobre a linha geométrica teórica.
- Tolerância de forma de uma superfície qualquer
 - O c.t. é limitado por duas superfícies geradas por duas esferas de diâmetro "t", em milímetros, cujos centros situam-se sobre a superfície geométrica teórica.
 - Exemplo: A superfície deve estar compreendida entre duas superfícies geradas por esferas com 0,02 mm de diâmetro, cujos centros situam-se sobre a superfície geométrica teórica

2.10.1.2. Orientação

- Tolerância de paralelismo
 - De uma **linha** em relação a uma **linha de referência**. O c.t. é limitado por:
 - Duas linhas retas paralelas, afastadas de "t" e paralelas à linha de referência, se a tol. for especificada em um só plano.
 Exemplo: A linha de centro do furo superior deve estar contida entre duas retas afastadas em 0,1 mm, que são paralelas à linha de centro do furo inferior (linha de referência A). A tolerância se aplica somente no plano vertical.

- Duas retas paralelas, afastadas de "t" e paralelas à reta de referência, se a tol. for especificada em uma única direção, quando projetado em um plano.
- Um paralelepípedo de s.t. t1 x t2 e paralelo à linha de referência, se a tol. for especificada em duas direções perpendiculares entre si. Exemplo: A linha de centro do furo superior deve estar contida no paralelepípedo de seção transversal 0,1 mm na vertical e 0,2 mm na horizontal. O paralelepípedo deve estar paralelo à linha de centro do furo inferior (linha de referência A)

 De uma linha em relação a uma superfície de referência. O c.t. é limitado por dois planos paralelos, afastados de "t" e paralelos à superfície de referência.

Exemplo: A linha de centro do furo deve estar contida entre dois planos afastados em 0,01 mm e paralelos à superfície de referência B.

- De uma superfície em relação a uma linha de referência. O c.t. é limitado por dois planos paralelos, afastados de "t" e paralelos a linha de referência.
- De uma superfície em relação a uma superfície de referência. O c.t. é limitado por dois planos paralelos afastados de "t" e paralelos à superfície de referência.

Exemplo: A linha de centro do furo deve estar contida entre dois planos afastados em 0,01 mm e paralelos à superfície de referência B.

- Tolerância de perpendicularidade
 - De uma linha em relação a uma linha de referência. O c.t. é limitado por duas retas paralelas, afastadas de "t" e perpendiculares à linha de referência.
 - o De uma linha em relação a uma superfície de referência.
 - O c.t., quando projetado em um plano é limitado por duas retas paralelas, afastadas de "t" e perpendiculares à superfície de referência, se a tol for especificada somente em uma direção.
 - O c.t. é limitado por um paralelepípedo de s.t. t1 x t2 e perpendicular ao plano de referência, se a tol. for especificada em duas direções perpendiculares entre si.

Exemplo: A linha de centro do cilindro deve estar contida em um paralelepípedo de s.t. 0,1 x 0,2 mm, que é perpendicular à superfície da base.

O c.t. é limitado por um cilindro de diâmetro "t" perpendicular à superfície de referência, se o t for precedido pelo símbolo Ø.
 Exemplo: A linha de centro da peça deve estar contida em um cilindro de diâmetro 0,01 mm perpendicular à superfície da base.

- De uma superfície em relação a uma linha de referência. O c.t. é limitado por dois planos paralelos afastados de "t" e perpendiculares à linha de referência.
- De uma **superfície** em relação a uma **superfície de referência**. O c.t. é limitado por dois planos paralelos, afastados de "t" e perpendiculares à superfície de referência.
- Tolerância de inclinação
 - De uma linha em relação a uma linha de referência.
 - Linhas em mesmo plano: O c.t. é limitado por duas retas paralelas, afastadas de "t" e inclinadas em relação à linha de referência com ângulo especificado.

Exemplo: A linha de centro do furo deve estar contida entre duas retas paralelas, afastadas em 0.08 mm e inclinadas em 60° em relação à linha de centro

- Linhas em planos distintos: O c.t. é aplicado à projeção da linha considerada em um plano contendo a linha de referência e paralelo à linha considerada.
- De uma linha em relação a uma superfície de referência. O c.t., quando projetado em um plano, é limitado por duas retas paralelas, afastadas de "t" e inclinadas em relação à superfície de referência com ângulo especificado

- De uma superfície em relação a uma linha de referência. O c.t. é limitado por dois planos paralelos, afastados de "t" e inclinados em relação à linha de referência, com ângulo especificado.
- De uma superfície em relação a uma superfície de referência. O c.t. é limitado por dois planos paralelos, afastados de "t" e inclinados em relação à superfície de referência com o ângulo especificado.

2.10.1.3. **Posição**

- Tolerância de localização
 - Ponto: O c.t. é limitado por um círculo de diâmetro "t", com o centro na p.t.
 - o Linha: O c.t. é limitado por duas retas paralelas afastadas "t" e dispostas simetricamente em relação à p.t. das linhas consideradas (tol. especificada em uma única direção), por um paralelepípedo de s.t. t1 x t2, cuja linha de centro está na p.t. (tol. especificada em direções perpendiculares entre si) ou por um cilindro de diâmetro "t" e com linha de centro na p.t. (t precedido pelo símbolo ∅).
 - O Superfície: O c.t. é limitado por dois planos paralelos, afastados de "t" e dispostos simetricamente em relação à p.t. da superfície considerada.
- Tolerância de concentricidade
 - Ponto: O c.t. é limitado por um círculo de diâmetro "t", cujo centro coincide com o centro de referência.
 - Exemplo: O centro de um círculo ao qual o quadro de tolerância está ligado deve estar contido em um círculo de diâmetro 0,01 mm, concêntrico com o centro do círculo A.

- Tolerância de coaxialidade
 - O c.t. é limitado por um cilindro de diâmetro "t", cuja linha de centro coincide com a linha de referência, se t for precedido pelo símbolo Ø.
- Tolerância de simetria
 - Plano médio: O c.t. é limitado por dois planos paralelos, afastados "t" e dispostos simetricamente em relação à linha de referência ou plano de referência.

Linha ou Eixo: O c.t. é limitado por duas retas paralelas, ou dois planos paralelos, afastados "t" e dispostos simetricamente em relação à linha de referência ou plano de referência (tol. especificada em uma única direção), ou por um paralelepípedo de s.t. t1 x t2, cuja linha de centro coincide com a linha de referência (tol. especificada em duas direções perpendiculares entre si).

2.10.1.4. Batimento

- Batimento circular
 - o Radial
 - O c.t. é limitado, em qualquer plano perpendicular à linha de centro, por dois círculos concêntricos, afastados de "t", cujos centros coincidem com a linha de referência.
 - Exemplo: O batimento radial, na parte tolerada, não deve ser maior que 0,2 mm em qualquer plano durante a rotação em torno do centro do furo A.

- O c.t. é limitado em qualquer posição radial por duas circunferências idênticas, afastadas axialmente "t", definindo uma superfície cilíndrica cuja linha de centro coincide com a linha de referência.
- o Em qualquer direção
 - O c.t. é limitado por duas circunferências, afastadas radialmente de "t", pertencentes a uma superfície de revolução cuja linha de centro coincide com a linha de referência. A menos que especificado em contrário, a direção de medição é perpendicular à superfície.
- o Em direção especificada
 - O campo de tolerância é limitado por duas circunferências, afastadas radialmente de uma distância "t", pertencentes a qualquer superfície de revolução com ângulo especificado, cuja linha de centro coincide com a linha de referência.

- Exemplo: O batimento, na direção especificada, não deve ser maior que 0,1 mm em qualquer seção transversal, durante uma rotação, em torno da linha de referência C.
- Batimento total
 - Radial

 O c.t. é limitado por duas superfícies cilíndricas coaxiais, afastadas de "t", cujas linhas de centro coincidem com a linha de referência.

Axial

 O campo de tolerância é limitado por dois planos paralelos, afastados de uma distância "t" e perpendicular à linha de referência

2.10.1.5. Referências

 Para tolerâncias de elementos não isolados, deve-se referenciar a tolerância a algum elemento. O elemento ou os elementos de referência são identificados por uma letra maiúscula enquadrada, conectada a um triângulo cheio ou vazio.

- As referências devem ser posicionadas no contorno da peça, em sua linha de contorno, plano ou linha média:
 - O A base do triângulo está localizada no contorno do elemento ou no prolongamento do contorno (mas não sobre uma linha de cota), se o elemento de referência for a linha ou a superfície representada.
 - A base do triângulo está localizada em uma extensão da linha de cota, quando o elemento de referência for um eixo ou um plano médio da parte cotada.
 - A base do triângulo está localizada sobre o eixo ou plano médio, quando o elemento de referência for: a) o eixo ou plano médio de um elemento único, por exemplo um cilindro; b) o eixo comum ou plano formado por dois elementos.

Dica: Geralmente é cobrado nas provas os vários tipos de tolerância, os locais corretos para emprego de cada uma e o posicionamento correto dos elementos de referência. É bastante coisa mas é importante.

2.10.2. Rugosidade

- Ordem de grandeza: µm
- Superfície ideal ≠ superfície real
- Varia com o tipo de processo de fabricação e material.
- Afeta o atrito/desgaste, aplicação de revestimentos e aparência.
- Para a escolha da rugosidade correta de cada superfície, deve-se observar a função da superfície (estética, deslizante, fixação por interferência), o processo de fabricação da peça, a necessidade de recobrimento por tinta, óleo, etc.

- Há dois tipos de rugosidade: Ra (média) medida com o rugosímetro e Rz
- Para cada processo de fabricação, em geral, é possível atribuir-se um certo valor obtido de rugosidade Ra
- A rugosidade representada nos desenhos de fabricação pode ser qualitativa (acabamento superficial) ou quantitativa (símbolo indicativo de rugosidade)
- Uma padronização atribui a cada valor NZ, com Z variando de 1 a 12, uma rugosidade Ra permitida para a peça.

 Indicação nos desenhos de fabricação, sobre as faces às quais se atribui as rugosidades:

	QUADRO 1: SÍMBOLO SEM INDICAÇÃO		
SÍMBOLO	SIGNIFICADO		
\checkmark	Símbolo básico; só pode ser usado quando seu significado for complementado por uma indicação.		
\forall	Caracteriza uma superfície usinada, sem mais detalhes.		
\checkmark	Caracteriza uma superfície na qual a remoção de material não é permitida e indica que a superfície deve permanecer no estado resultante de um processo de fabricação anterior, mesmo se ela tiver sido obtida por usinagem.		

SÍMBOLO A remoção do material é:			
			SIGNIFICADO
facultativa	exigida	não permitida	2
3,2/ _{ou} N8/	3,2/ ou N8/	3,2/ N8/ ou 9	Superfície con rugosidade de valo máximo Ra = 3,2 mm
6,3 N9 1,6/ N7/ ou V	6,3 N9 1,6 N7	6,3 N9 1,6 N7	Superfície con rugosidade de valo máximo Ra=6,3 mmo mínimo Ra=1,6 mm

SÍMBOLO	SIGNIFICADO
fresar	Processo de fabricação: fresar.
2,5	Comprimento de amostragem <i>cut off</i> = 2,5 mm.
$\sqrt{\bot}$	Direção das estrias: perpendicular ao plano; projeção da vista.
2 🗸	Sobremetal para usinagem = 2mm.
\(\sqrt{(Rt=0,4)}	Indicação (entre parênteses) de um outro parâmetro de rugosidade diferente de Ra, por exemplo, Rt = 0,4 mm.

• Para representar uma rugosidade para toda a peça, indica-se no canto superior esquerdo do desenho: "rugosidade geral (rugosidade específica da face 1, rugosidade específica da face 2, etc.)"

• Um exemplo de representação da rugosidade pode ser observado a seguir:

2.11. Tipos de desenho em projeto mecânico

2.11.1. Desenho de conjunto

- Apresenta a configuração de um dispositivo/equipamento/máquina. Permite entender como funciona/ como é montado;
- Feito em escala, sem indicação de medida;
- Apresenta a máquina na sua configuração de uso:
 - o Funcionamento;
 - o Montagem;
 - Mais de uma peça;
 - o Identificação das peças lista de peças, a B.O.M. (Bill of Materials).
- Linhas de chamada não coincidem com contornos contínuos;
- Os balões ficam alinhados e em sequência, geralmente são numerados em sentido horário;
- As linhas acabam dentro da peça.

2.11.2. Desenho de fabricação

- Apresenta as informações para fabricar e controlar as dimensões e forma de uma "peça única";
- Feito em escala;
- Com dimensões indicadas.

3. Elementos de Máquinas

3.1. Uniões

3.1.1. Roscas

- Hélices sobre sólidos de revolução, os quais podem ser cilindros ou cones.
- Podem ser externas ou internas, e suas representações variam de acordo com a posição da rosca, podendo ser nos parafusos ou furos, como mostrado ao lado.

• Furos não-passantes: são furos que não atravessam completamente a peça em que foram feitos. Se possuírem rosca, possuem representação como mostrado abaixo.

- A distância entre dois vértices iguais no perfil da rosca é denominada "passo" e é representada pela letra *t* nos desenhos.
- Há diferentes perfis de rosca. O principal tipo é a triangular usada para a fixação de elementos - porém também são usadas roscas quadrangulares e trapezoidais – usadas para transmissão de movimentos.

Rosca métrica (M): é

o tipo de rosca padrão, de perfil triangular, de passo 1,0mm e com ângulo nominal de 60° entre os 'triângulos' da rosca.

Nomenclatura de peças com rosca: a representação completa para peças com o perfil
de roscas se dá através da forma R d x t x l, onde R é o tipo de rosca, d é o diâmetro
nominal da peça, t é o passo da rosca e l é o comprimento da peça.

Por exemplo, uma peça com rosca métrica, de diâmetro 12mm, passo 1mm e comprimento 30mm é representada da forma *M* 12 x 1,0 x 30.

3.1.2. Parafusos

Usados para a fixação de diferentes peças carregadas axialmente em relação ao parafuso. O parafuso não une peças que fazem força na direção perpendicular ao eixo do parafuso. Caso o parafuso esteja sujeito a cargas não-axiais, ele pode fletir ou cisalhar, o que compromete o seu desempenho. O parafuso comprime as peças 1 e 2, portanto trabalha sob tração (somente)

O trecho com rosca do parafuso é representado pelas linhas paralelas ao eixo no interior do parafuso. As linhas devem coincidir na ponta do parafuso com a angulação dada.

3.1.3. Rebites

- Usados para unir peças de matérias não-similares (por exemplo, polímeros, madeiras e metais), ligas que não podem ser soldadas ou em aeronaves.
- Este tipo de união permite: separação mediante destruição do rebite; manter as peças em posições fixas durante a fabricação da união; cisalhamento do rebite ou da chapa, dependendo da resistência dos materiais usados da quantidade de rebites.
- Rebites são instalados através da conformação (a quente ou a frio) de uma das extremidades do rebite.

• Rebites unilaterais: são rebites usados quando não é possível se obter acesso a um dos lados das peças a serem unidas. O pino central é puxado por uma ferramenta, o que deforma o material do rebite de maneira a formar uma união similar a um rebite normal.

3.1.4. Prisioneiros

- "Parafusos sem cabeça"
- Instalados através de porcas
- Cabeça cilíndrica do tipo 'Allen'

3.1.5. Soldagem

- Fusão de partes diferentes do material das peças a unir com o material de enchimento, formando uma única peça. Essa fusão pode se dar de diversas formas, tais quais:
 - o Arco elétrico;
 - o Chama:
 - o Laser;
 - o Plasma
 - o Atrito
- O material de enchimento e o material soldado devem ter mesma composição ou composições muito semelhantes;
- Trata-se de uma junção contínua e definitiva, o que significa que os esforços são distribuídos ao longo da solda e, efetivamente, cria-se uma peça única
- Representação: a solda é representada por um triângulo unindo as peças

 Na solda, devem estar indicados a dimensão transversal da solda, o tipo de solda, o comprimento da solda e o código do processo de solda, da forma mostrada abaixo.

- Zona Termicamente Afetada (ZTA ou HAZ do inglês Heat Affected Zone) é a região ao redor da solda onde as altas temperaturas podem iniciar algum fenômeno que modifique (prejudique) o material ali usado, causando deformações locais e tensões residuais no mesmo.
- Arco elétrico:
 - o Eletrodo consumível, que pode ou não ser revestido
 - o Eletrodo permanente ou não consumível

- Atmosfera de gás inerte
- Soldagem por atrito:
 - Temperatura constante no perímetro da junção
 - o FSW: Friction stir welding
 - o Soldagem por atrito e agitação

3.1.6. Travamento

- Esforço de aperto inicial: o maior esforço de aperto inicial garante uma melhor fixação das peças unidas por elementos com roscas
- Contra Porca / Porca de Travamento: consiste num segundo elemento colocado após a porca que permite baixa frequência de variação da posição da porca, melhorando a fixação da união.

- Arruelas de pressão / Mordentes: peça que se deforma, tencionando ainda mais a união com rosca.
- Porcas com inserto: porca com polímero numa de suas pontas, de uso único, em que ao ser instalada, tem o polímero usinado pelo parafuso, o que aumenta o atrito da união. Pode ser chamado também de "par-lock".

- Adesivo: a utilização de adesivos na união, embora resulte na melhor fixação das peças, pode: tornar a união sujeita a o ataque de solventes ou à interferência do calor e da luz; deixar a união com propriedades não-uniformes (devido ao processo de cura do adesivo).
- Perfil modificado de rosca: a rosca possui uma ponta que ser deforma rosquear a peça, garantindo uma melhor fixação da peça. Entretanto, o alto custo para este tipo de rosca é um

empecilho para sua utilização.

modificada

 Entrelaçamento com arame/fio de aço: usada muito na aviação, esta técnica se baseia na fixação entre si de parafusos furados e amarrados com fios de metal. O alto custo e o tempo demorado de instalação tornam esta técnica utilizada em uniões que não devem ser desfeitas.

3.2. Transmissões

3.2.1. Engrenagens

• Dentes: têm o perfil definido por curvas envolventes de circunferências; não é preciso detalhar o formato dos dentes na representação gráfica.

• Cálculo do tamanho dos dentes da engrenagem: Pode-se fazer o cálculo do diâmetro primitivo (d_p) da engrenagem pela relação

$$\pi \cdot d_p = p \cdot z \implies d_p = m \cdot z$$
 , onde $m = \frac{p}{\pi}$,

Sendo p o passo da engrenagem e z o número de dentes. A partir daí, pode-se calcular o diâmetro externo (d_e) e o diâmetro interno (d_i) da engrenagem pelas relações

$$d_e = d_p + 2m e d_i = d_p - 2,5m$$

 Vista frontal: é composta pelos diâmetros externo, interno e primitivo/cinemático da engrenagem.

 Vista lateral: deve-se representar o diâmetro primitivo da engrenagem utilizando linhas do tipo 'traçoponto', igual ao do furo central; dentes cortados longitudinalmente não devem ser hachurados.

• Representação de união engrenada: os diâmetros primitivos das engrenagens devem coincidir no ponto de contato entre ambas.

3.2.2. Rodas Dentadas e Correntes

3.2.2.1. Correias

- Funcionam devido ao atrito entre a correia e as peças da máquina.
- Idealmente, correias não deslizam e não deformam
- Correias podem possui perfis de contato para aumentar a sua superfície de contato ou melhorar sua flexibilidade de acordo com a necessidade. O perfil é normalmente plano (em desuso), trapezoidal ou com múltiplos canais.

- A correia trapezoidal não encosta no final do canal, pois isto interferiria em sua função de atrito lateral com a polia. A fita geralmente possui ângulo (do "v") entre 33° 38°, pois caso seja muito pequeno a correia ficaria presa no dente.
- A correia, de borracha vulcanizada (com enxofre), possui cordonéis de poliamida (Nylon) em seu interior, e é revestida exteriormente também por este material.
 - Os cordonéis tem a função de resistir à tração
- O ângulo de abraçamento/arco de contato (α) varia de acordo com o raio da polia.
- Podemos considerar correta a premissa de que a correia é ideal através da Lei de Euler. Para o sistema abaixo

Temos a relação $e^{\alpha\mu} \ge \frac{F_1}{F_2}$ é válida se a correia for ideal.

Temos também a relação $Mt = \frac{(F1-F2)d1}{2}$

- A lei de Euler também é aplicável à:
 - o Correias.
 - Cabresntante (capstan)
 - o Polias e cabos.
- Pode-se utilizar um esticador na região não muito tracionada da correia (em que se observa uma certa folga) para aumentar o ângulo de abraçamento
 - O abraçador compensa o haceamento na correia, que é devido ao seu comportamento visco-elástico
 - Ps. Se o sistema for reversível não se usa esticador, mas se aumenta a distância entre polias.
- Os principais fabricantes são: Continental, Gates, Goodyear
- O diâmetro das polias <u>não é padronizado</u>
- Caso necessário, podem-se utilizar várias correias para cumprir os diâmetros mínimos.
- Neste caso, ao romper uma das correias, deve-se trocar todo o jogo pois caso se substitua apenas uma correia esta (nova) não estará laceada e aguentará grande parte da tração sozinha, rompendo brevemente.
- Geralmente as polias são posicionadas em balanço (na ponta do eixo), pois isso facilita montagem e desmontagem da correia, por mais que haja o problema da flexão do eixo devido ao peso da polia e às forças transmitidas.

3.2.2.2. Mancais

• Função: apoiar o eixo sem limitar a rotação;

- Transmissão de esforços para a estrutura e vice-versa sem atrito ou com atrito mínimo para evitar o consumo de energia:
 - Deslizamento:
 - Lubrificante, que pode ser líquido, pastoso ou sólido.

- o Rolamento:
 - Magnético;
 - Pneumático.
- Mancal de rolamento;
 - Entre o eixo (móvel) e estrutura (fixa) há elementos que rolam sem escorregar.

- Rolamento vs Rolo:
 - o Rolamento:
 - Resiste a menos pressão;
 - Mais barato.
 - o Rolo:
 - Resiste a maior pressão;
 - Mais caro.

- Lubrificante líquido:
 - Óleo, que pode ser mineral ou sintético;
 - Viscosidade (µ), que pode ser calculado da seguinte forma:

$$\tau = \mu \cdot \frac{\partial v}{\partial y}$$

3.2.3. Cubo-eixo

- Mecanismo de transmissão de torque;
- Sem movimento relativo;
- Atrito: Ajuste forçado com interferência
 - Torque determinado pela interferência mínima

Cubo

- $\circ \quad Fat_{m\acute{a}x} = \mu . N$
- O $N = \frac{Fa}{\sin \alpha}$; onde α é o ângulo de conicidade
- o $T = F_{at} \cdot \frac{d}{2}$; onde d é diâmetro médio do cone

• Flange

- o $F_{at} = (\mu . F_a). Z_b$; onde Zb é o número de parafusos
- $\circ \quad T = F_{at} \cdot \frac{d}{2}$
- o Não ocorre redução da área do eixo
- o Incerteza quanto à capacidade de transmissão de torque:

 - Controle do aperto dos parafusos

• <u>Cubo fendido</u>

- Desbalanceado:
 - Necessidade de balancear o rotor
 - Limite de rotação baixo

• Cubo bi-partido

 Também há limite de rotação

Interposição de uma terceira peça

- Pino
 - Cônico
 - Elástico
- Todo esforço é concentrado em dois pontos do eixo apenas
 - o Eixo menos resistente
 - \circ T = f.d
 - $\circ \quad F_{m\acute{a}x} = \tau_{m\acute{a}x}.\,A_p\;;$

onde Ap é a área transversal do pino e Tmáx é a resistência máxima do material do pino.

3.2.4. Chavetas

• Paralela:

- Meia Lua
 - o Desvantagem: remove muito mais material
 - o Vantagem: Mais fácil de fazer
- Para pontas de eixo se usam chavetas cilíndricas ou chavetas em cunha
 - Chaveta cilíndrica(pino)
 - o Chaveta em cunha

3.2.5. Travas de Posicionamento Axial

- Usadas para impedir o deslizamento de uma peça ao longo de um eixo
- São presas a partir de:
 - o Cola:
 - o Anéis elásticos;
 - São usados na ponta do eixo porque o rasgo enfraquece o eixo
 - o Buchas.
- O rebaixo tem a função de fornecer esquadria e garantir a posição relativa ao comprimento do eixo

3.2.6. Uniões Cubo-Eixo

- Processos de fabricação
 - o Eixo
 - Entalhado (4,6,8,10,12 dentes)
 - Forjado (conformação plástica)
 - Usinado
 - o Cubo
 - Usinado
 - Metalurgia do pó

- Conformação plástica
- Entalhado
 - o Mais de 2 chavetas
 - o Eixo de diâmetro relativamente pequeno
 - o Vantagem: permite deslocamento axial
- Formato dos dentes
 - o Retangular
 - o Arco ou semi-círculo
 - o Triangular
 - o Evolvente
- A centragem pode ser feita de duas formas: no fundo ou no topo do dente, como mostra a figura.

- Perfis não-circulares de eixos
 - o Dificuldade na usinagem do furo e centralização
 - Os furos geralmente ficam com cantos arredondados
 - Formatos poligonais mais comuns são quadrados e sextavado e são representados assim:

3.3. Travamento e Posicionamento

- Parafuso de ponta atuante
- Acoplamentos
 - o Podem ser permanentes (rígidos, flexíveis, articulados) ou intermitentes
- Acoplamento rígido
 - Posicionamento relativo dos eixos não é determinado pelo acoplamento, o que aumenta o custo.
- Acoplamentos flexíveis
 - o Marcas mais famosas são Flender e Falk
 - O elemento flexível causa perda de energia

O rendimento é dado por:

$$\eta = \frac{T_2.\omega_2}{T_1.\omega_1} = \frac{adicionado}{motor}$$

- o E seu valor costuma estar entre 98% e 99%.
- o Peça deformável limita o torque transmitido
- Acoplamentos articulados:
 - o Juntas Cardan: não transmite a mesma velocidade angular.

O Juntas homocinéticas: transmitem a mesma velocidade angular pois os dois eixos acoplados são paralelos.

