We claim:-

5

10

15

- 1. A process for the preparation of aqueous solutions of epichlorohydrinamine polymers, comprising the following process steps:
 - (a) Reaction of at least two different amines with at least one epichlorohydrin derivative as an alkylating agent in water over a period which is sufficient for free alkylating agents to be no longer detectable, a reaction mixture (I) resulting;
 - (b) if appropriate, cooling of the reaction mixture (I) resulting from process step (a);
 - (c) addition of at least one acid and, if appropriate, water to this reaction mixture (I) until the pH of the reaction mixture (I) is from 4 to 10, a reaction mixture (II) resulting, and
 - (d) if appropriate, reaction of the reaction mixture (Π) with a cationizing agent.
- 2. A process as claimed in claim 1, wherein the at least two different amines are selected from the group consisting of benzylamine, bis-2-aminoethyl ether, N,N-dimethylethylenediamine, piperazine, ethylenediamine, dimethylaminopropylamine, methylbis(3-aminopropyl)amine, methylbis(2-aminoethyl)amine, N-(2-aminoethylpiperazine), diethylenetriamine, dipropylenetriamine, triethylenetetraamine, 4,7-dimethyltriethylenetetraamine, tetraethylenepentaamine.
- 3. A process as claimed in claim 1 or 2, wherein the at least one epichlorohydrin derivative is selected from the group consisting of α-epichlorohydrin, bisepoxides, bischlorohydroxy compounds and phosgene.
- 4. A process as claimed in any of claims 1 to 3, wherein the ratio of amines to epichlorohydrin derivative or derivatives is from 0.8: 1.2 to 1.2: 0.8.
 - 5. A process as claimed in any of claims 1 to 4, wherein the reaction in process step (a) is effected at from 40 to 100°C.
- 35 6. An epichlorohydrinamine polymer obtainable by a process as claimed in any of claims 1 to 5.

7. An epichlorohydrinamine polymer as claimed in claim 6, wherein the polymer has at least two general structural units (I) and (II)

5

10

where R^1 , R^2 , R^3 , R^4 and R^5 have the following meanings:

 R^1 and R^2 : -(CH₂)₃N(CH₃)₂, -CH₂C₆H₅, -(CH₂)₂NH₂, -(CH₂)₂OH, -(CH₂)₂NH (CH₂)₂NH₂

 R^3 :

H, alkyl

R⁴ and R⁵: H or OH.

- 15 8. An epichlorohydrinamine polymer as claimed in claim 6 or 7, wherein the amine and/or ammonium units are derived from dimethylaminopropylamine and benzylamine, the amine and/or ammonium units being composed of from 0.5 to 0.8 part of dimethylaminopropylamine and from 0.2 to 0.5 part of benzylamine.
- 9. An epichlorohydrinamine polymer as claimed in any of claims 6 to 8, wherein the polymer has a weight average molecular weight of from $1 \cdot 10^2$ to $2 \cdot 10^5$ g/mol.
 - 10. The use of an epichlorohydrinamine polymer as claimed in any of claims 6 to 9 for the surface treatment of semifinished leather products.

25