

Grado en Ingeniería de Computadores

Tema 1: Modelado de sistemas digitales en FPGAs

WAH

- Consumos Altos
- Complejidad baja
- Costes "altos"
- No reconfigurables
- Pocos fiables

- Alternativas al diseño digital
 - Circuitos muy rápidos
 - Consumos muy bajos
 - Complejidad muy alta
 - Costes "bajos"
 - Reconfigurables
 - Fiabilidad alta

☐ FPGA: Field Programmable Gate Array

- Basadas en arrays bidimensionales de bloques lógicos que se pueden interconectar entre sí y con el exterior.
- Configuración :
 - SRAM: reprogramables (Xilinx)

Artix-7 Architecture Overview

Modelado de Sistemas Computacionales (GIC)

3

FPGAs de XILIX

Recursos

- CLBs : Configurable Logic Blocs
 - · Contienen lógica combinatorial y registros
 - · IOBs :Input Output Blocs
 - · Interface entre la FPGA y el exterior
- Interconexiones programables
- Otros recursos
 - · Memoria
 - Multiplicadores
 - · Digital Clock Managers
 - · Global clock buffers
 - · Boundary scan
 - Microprocesadores

_

5

□ IOBs

- Estructura interna de las FPGAs de Xilinx
 - Estructurada basada en tres bloques: entrada, salida, y tri-estado.
 - Biestables:
 - Buffer de salida:

- CLBs.
- □ Cada CLB contiene 2 slices.
- □ Se conecta a la "switch matrix" para unirse a otros recursos de la FPGA.

7

Estructura interna de las FPGAs de Xilinx

- ☐ Slices.
- □ 4 Look Up Tables (LUT) de 6 entradas
- 4 flip-flop
- ☐ Líneas de propagación de acarreo (carry chain)
- Varios multiplexores
- El diseño se debe realizar para utilizar de la mejor forma posible los recursos

■ Memoria RAM distribuida

Single	Dual	Simple	Quad
Port	Port	Dual Port	Port
32x2 32x4 32x6 32x8 64x1 64x2 64x3 64x4 128x1 128x2 256x1	32x2 D 32x4 D 64x1 D 64x2 D 128x1 D	32x6 SDP 64x3 SDP	32x2 Q 64x1 Q

- Utiliza las LUTs
- □ El ciclo de escritura es síncrono y el lectura asíncrono
- Hay varias configuraciones
 - Single port
 - Dual port (D)
 - Quad-port (Q)
 - 1 read / write port + 3 read-only ports
 - ROM

- Otros recursos
 - Multiplicadores dedicados
 - □ Bloques de BRAM/SelectRAM.

Modelado de Sistemas Computacionales (GIC)

9

(DAH

Estructura interna de las FPGAs de Xilinx

□ Interconexiones

☐ Distribución de la señal de reloj.

- ☐ GCLK0-GCLK7 Entradas de relojes globales.
- BUFGMUX: Multiplexores de relojes globales.
- Distribuyen otras señales de bajo skew y alto fanout:
 - Relojes adicionales.
 - Clock enables.
 - Reset.
 - Control tri-estate.

Modelado de Sistemas Computacionales (GIC)

11

Programación de las FPGAs de Xilinx

Platform Flash PROM Spartan-6 FPGA(1) D[7:0] D[7:0] **XCFxxP CCLK** CLK

(d) Master SelectMAP/BPI Mode

- O Diseño sencillo.
- Tiempo de diseño corto.
- Costes fijos bajos.
- No penalizan los cambios.
- Tamaño de los diseños limitado.
- Complejidad de los diseños limitada.
- Rendimiento limitado.
- **©** Consumos altos.
- Coste por unidad alto.

13

Metodología de diseño

Metodología de diseño

Diseñar un sistema digital que almacene el resultado de la suma de dos números **A** y **B** de 4 bits más una entrada de acarreo **Cin**. La suma se almacena siempre que la señal **CE** sea un nivel alto. El sistema dispone de una entrada **RST** de inicialización asíncrona que lleva todos los bits de la salida a nivel bajo.

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity dis is
  port (
        : in
               std_logic_vector(3 downto 0);
std_logic;
    Cin : in
               std_logic;
    CE : in std_logic;
RST : in std_logic;
         : out std_logic_vector(3 downto 0));
end dis:
architecture RTL of dis is
  signal aux : std_logic_vector(3 downto 0);
begin
  process (A, B, Cin)
  begin
    if cin = '1' then
      aux <= std_logic_vector(unsigned(A)+unsigned(B)+1);</pre>
    else
      aux <= std logic vector(unsigned(A)+unsigned(B));</pre>
    end if:
  end process;
  process (CLK, RST)
  begin
    if RST = '1' then
S <= "0000";
    elsif CLK'event and CLK = '1' then
  if CE = '1' then
        S <= aux;
      end if;
    end if;
  end process;
end RTL;
```

Simulación funcional

■ Síntesis

Modelado de Sistemas Computacionales (GIC)

17

ØUAH

Metodología de diseño

El resultado de la síntesis depende de la herramienta utilizada

19

Departamento de Electrónica

□ Place

Metodología de diseño

■ Route

Modelado de Sistemas Computacionales (GIC)

21

Metodología de diseño

□ Simulación temporal

