UKŁADY CYFROWE LABORATORIUM – informacje pomocnicze

Informacje:

- a) Strona czołowa sprawozdania studenckiego z zajęć laboratoryjnych
- b) Układy cyfrowe i elementy elektroniczne dostępne na każdym stanowisku laboratoryjnym
- c) Przykładowe rozwiązania wybranych zadań laboratoryjnych

Politechnika Gdańska	Politechnika Gdańska Wydział ETI			KSA - KSDiR			
UKŁADY CYFROWE – LABORATORIUM							
CYKL ĆWICZEŃ GRUPOWYCH ĆWICZENIE NR							
Tytuł ćwiczenia:							
Skład grupy ćwiczeniowej:				Rok studiów:			
1Imię i Nazwisko		nr indeksu		Semestr:			
2Imię i Nazwisko		nr indeksu		Grupa dziekańska:			
3Imię i Nazwisko	nr indeksu		Specjalność:				
Sprawdzenie stanu przewodów z wt	yczkami bananowym	ni:					
- przewody koloru:		- sztuk					
- przewody koloru:		- sztuk					
POTWIERDZENIE WYKONANIA ZAD	AŃ:		DATA WY	KONANIA ĆWICZENIA:			
1. Zadanie 1:							
2. Zadanie 2:		OCENA:					
3. Zadanie 3:							

ĆWICZENIE 2 - BADANIE BRAMEK LOGICZNYCH

```
Na stanowisku dydaktycznym dostępne są:
```

- układ 7400 bramki NAND 2 wejściowe (4 szt.),
- układ 7437 bramki NAND 2 wejściowe (4 szt.),
- układ 74HCT132 bramki NAND z histerezą 2 wejściowe (4 szt.),
- układ 7406 bramki NOT z otwartym kolektorem (6 szt.),
- układ 75451 bramki NAND z wyjściem analogowym 2 wejściowe (2 szt.).

Pozostałe układy:

- układ 7404,
- układ 74LS32,
- układ 74LS86,
- układ 74LS125,
- układ 74HCT02,
- układ 74HCT04,
- układ 74HC08,
- układ 74HC4050,
- układ MC14504B,
- układ 4009B,
- układ 4071B,
- układ 4011B,
- układ 4049B.

Inne dostępne elementy:

- diody świecące (LED): czerwona, żółta, zielona, czerwono-zielona,
- diody,
- tranzystory,
- transoptory,
- przekaźniki,
- oporniki:

```
R1 = 150\Omega, R2 = 510\Omega, R3 = 2.2k\Omega, R4 = 4.7k\Omega,
```

$$R5 = 12k\Omega$$
, $R6 = 30k\Omega$, $R7 = 150\Omega$, $R8 = 510\Omega$,

$$R9 = 1k\Omega$$
, $R10 = 4.7k\Omega$, $R11 = 10k\Omega$, $R12 = 22k\Omega$,

$$R13 = 100\Omega$$
, $R14 = 200\Omega$, $R15 = 390\Omega$, $R16 = 510\Omega$,

$$R17 = 750\Omega$$
, $R18 = 1k\Omega$, $R19 = 1k\Omega$, $R20 = 1.5k\Omega$,

$$R21 = 3.3k\Omega$$
, $R22 = 4.7k\Omega$, $R23 = 10k\Omega$, $R24 = 12k\Omega$,

 $R_z = 12\Omega$.

Na stanowisku dostępny jest oscyloskop 2-kanałowy.

Łączenie układów odbywa się za pomocą przewodów bananowych.

ĆWICZENIE 3 - UKŁADY ITERACYJNE

Na stanowisku dydaktycznym dostępne są:

- multipleksery mpx 16/1 (4 szt.) do realizacji logiki pojedynczego bloku iteracyjnego,
- multiplekser mpx 8/1 (1 szt.) do realizacji logiki dekodera wyjściowego (na końcu kaskady).

Blok może mieć 1 lub 2 wejścia (dane binarne zadawane z klawiszy).

Blok może mieć 1, 2 lub 3 przeniesienia.

Blok może mieć 1 indywidualne wyjście.

Wszystkie multipleksery mpx 16/1 mają wspólne adresowanie (D C B A): ($D=A_3$, $C=A_2$, $B=A_1$, $A=A_0$).

Adresowanie multipleksera mpx 8/1 realizującego funkcję dekodera wyjściowego (C B A): ($C = p_2$, $B = p_1$, $A = p_0$).

Za pomocą multiplekserów realizowany jest jeden blok iteracyjny.

Testując zaprojektowany układ obserwujemy pracę kaskady 8 identycznych bloków.

Stałe logiczne (0 i 1) zadawane są z przełączników.

Łączenie układów odbywa się za pomocą mini-przewodów.

ĆWICZENIE 4 - UKŁADY CZASOWE

Na stanowisku dydaktycznym dostępne są:

- układy monostabilne 74121 (2 szt., obydwa z możliwością regulacji stałej czasowej T),
- układy monostabilne 74123 (2 szt., jeden z możliwością regulacji stałej czasowej T),
- układ czasowy 555,
- układ czasowy 4047,
- licznik synchroniczny 74193,
- multiplekser mpx 8/1 (74151),
- przerzutniki synchroniczne D (2 szt.),
- bramki NAND 3 wejściowe (3 szt.),
- bramki NAND z histerezą 2 wejściowe (3 szt.),
- bramki NOT (3 szt.),
- diody (2 szt.),
- przełączniki (8 szt.) do zadawania stałych logicznych (0 i 1).

Na stanowisku dostępny jest oscyloskop umożliwiający obserwację 4 przebiegów TTL (na kanale A) i przebieg analogowy (na kanale B).

Łączenie układów odbywa się za pomocą przewodów bananowych.

ĆWICZENIE 5 - UKŁADY SYNCHRONICZNE

Na stanowisku dydaktycznym dostępne są:

- przerzutniki synchroniczne JK (5 szt.),
- bramki NAND 2 wejściowe (9 szt.),
- bramki NAND 3 wejściowe (8 szt.),
- bramki NAND 4 wejściowe (6 szt.),
- bramki XOR 2 wejściowe (4 szt.),
- bramki NOT (10 szt.),
- bramki AND-OR-INVERT 2 we. + 2 we. (6 szt.),
- bramki AND-OR-INVERT 3 we. + 3 we. (6 szt.),
- rejestry przesuwne z wpisem równoległym (dane we/wy),
- przełączniki (8 szt.) do zadawania stałych logicznych (0 i 1).

Wejścia zegarowe przerzutników są podłączone do wbudowanego układu taktującego (użytkownik nie ma dostępu do wejść zegarowych przerzutników).

Łączenie układów odbywa się za pomocą mini-przewodów.

ĆWICZENIE 6 - LICZNIKI SCALONE

Na stanowisku dydaktycznym dostępne są:

- licznik asynchroniczny 7490,
- licznik asynchroniczny 7492,
- licznik asynchroniczny 7493,
- licznik synchroniczny 74160,
- licznik synchroniczny 74190 (2 szt.),
- licznik synchroniczny 74192,
- licznik synchroniczny 74193,
- układy 7447 dekodujące BCD na kod 7-segm. z wyświetlaczami (2 szt.),
- bramki NAND 3 wejściowe (2 szt.),
- bramki NAND 2 wejściowe (2 szt.),
- bramki XOR 2 wejściowe (2 szt.),
- bramki NOT (3 szt.),
- przerzutnik asynchroniczny SR,
- przełączniki (6 szt.) do zadawania stałych logicznych (0 i 1).

Łączenie układów odbywa się za pomocą mini-przewodów.

Uwaga:

W zestawie laboratoryjnym wyprowadzenia wszystkich liczników scalonych nie posiadają oznaczeń symbolicznych, ale są odpowiednio ponumerowane (zgodnie z numeracją podaną na kartach katalogowych odpowiednich układów). Dlatego na każdym przygotowanym schemacie muszą się pojawić numery wszystkich wyprowadzeń (w przeciwnym razie uruchomienie układu liczącego nie będzie możliwe).

ĆWICZENIE 7 - REJESTRY SCALONE

Na stanowisku dydaktycznym dostępne są:

- rejestry przesuwne z szeregowym wejściem i równoległym wyjściem 74164 (2 szt.),
- rejestry przesuwne z równoległym wejściem i szeregowym wyjściem 74165 (2 szt.),
- rejestry przesuwne z równoległym wejściem i równoległym wyjściem 74198 (2 szt.),
- sumator iteracyjny 1-bitowy,
- sumator 4-bitowy: układ 7483,
- przerzutniki synchroniczne D (4 szt.): układ 74175,
- bramki NAND 2 wejściowe (4 szt.),
- bramki XOR 2 wejściowe (8 szt.),
- bramki NOT (4 szt.),
- przełączniki (8 szt.) do zadawania stałych logicznych (0 i 1).

Łączenie układów odbywa się za pomocą przewodów bananowych.

ĆWICZENIE 8 - UKŁADY ASYNCHRONICZNE

Na stanowisku dydaktycznym dostępne są:

- bramki NAND 4 wejściowe (4 szt.),
- bramki NAND 3 wejściowe (6 szt.),
- bramki NAND 2 wejściowe (12 szt.),
- bramki NOT (6 szt.),
- przerzutniki asynchroniczne SR (4 szt.),
- rejestry (3 szt.) do wprowadzania sekwencji binarnych (sygnały wejściowe).

Na stanowisku dostępny jest oscyloskop umożliwiający obserwację 4 przebiegów TTL.

Łączenie układów odbywa się za pomocą przewodów bananowych.

ĆWICZENIE 9 - STEROWANIE SZYNĄ DANYCH

Ćwiczenie ilustruje sposób przesyłania informacji pomiędzy kilkoma układami. Szyna danych, jak też wszystkie nadajniki i odbiorniki są układami 4-bitowymi. W zestawie wykorzystuje się układ arytmetyczno-logiczny (ALU) 74181. W ćwiczeniu nie wykonuje się jakichkolwiek połączeń za pomocą przewodów (zadanie polega na napisaniu prostego programu).

Nadajnikiem może być:

- rejestr A (RA),
- rejestr B (RB),
- rejestr C (RC),
- układ arytmetyczno-logiczny (ALU),
- klawiatura (4 klawisze) do wprowadzania 4-bitowych danych wejściowych (DANE),
- klawiatura do zadawania instrukcji (INSTRUKCJA).

Odbiornikiem może być:

- rejestr A (RA),
- rejestr B (RB),
- rejestr C (RC),
- rejestr pomocniczy (R1),
- rejestr pomocniczy (R2),
- rejestr wyjściowy (Rwy),
- rejestr instrukcji (RI).

Aby wysłać daną z wybranego nadajnika (ozn. symbolem T) do wybranego odbiornika (ozn. symbolem C) należy na odpowiednie wejścia T i C podać sygnał logiczny 1.

Linia programu (mikrocykl) ma postać:

I₂ I₁ I₀ - oznacza numer instrukcji (od 000 do maksymalnie 111)

 C_1 C_0 - oznacza numer mikrocyklu (00, 01, 10, 11)

Kodowanie wyboru nadajnika:

 $C_T B_T A_T = 000 \text{ (INSTRUKCJA)}$

 $C_T B_T A_T = 0.01 (RA)$

 $C_T B_T A_T = 0.10 (RB)$

 $C_T B_T A_T = 0.11 (RC)$

 $C_T B_T A_T = 100 (ALU)$

 $C_T B_T A_T = 101 (DANE)$

Kodowanie wyboru odbiornika:

 $C_C B_C A_C = 000 (RI)$

 $C_C B_C A_C = 001 (RA)$

 $C_{C} B_{C} A_{C} = 0.10 (RB)$

 $C_C B_C A_C = 0.1.1 (RC)$

 $C_C B_C A_C = 100 (R1)$

 $C_C B_C A_C = 101 (R2)$

 $C_C B_C A_C = 110 (Rwy)$

Jeśli dana instrukcja programu wykonuje operację arytmetyczno-logiczną (układ 74181), to w kolumnach W_1 i W_2 linii programu należy wpisać właściwe sygnały S_3 S_2 S_1 S_0 (zgodnie z tabelą ALU).

I_2	I_1	I_0	C_1	C_0	C_{T}	\mathbf{B}_{T}	A_T	C_{C}	B_{C}	$A_{\rm C}$	\mathbf{W}_1	W_2
X	X	X	0	0							M	S_3
			0	1							$egin{array}{c} M \ S_2 \ x \end{array}$	S_1
			1	0							X	S_0
			1	1							X	X

Układ arytmetyczno-logiczny 74181 (ALU) realizuje funkcje podane w tabeli (dane A i B są 4-bitowe).

S_3	S_2	S_1	S_0	M = 0	M = 1
				funkcje arytmetyczne	funkcje logiczne
0	0	0	0	Y = 0	$Y = \overline{R}_1$
0	0	0	1	$Y = R_1 + R_2$	$Y = \overline{R_1 \wedge R_2}$
0	0	1	0	$Y = R_1 \times R_2 - 1$	$Y = \overline{R}_1 \vee R_2$
0	0	1	1	$Y = R_1 \div R_2$	Y = 1
0	1	0	0	$Y = R_1^2 - R_2^2$	$Y = R_1 \oplus R_2$
0	1	0	1	$Y = R_1 \times 2$	$Y = \overline{R_1 \Leftrightarrow R_2}$
0	1	1	0	$Y = (R_1 + R_2) / 2$	$Y = R_1 \Rightarrow R_2$
0	1	1	1	$Y = R_1 \times R_2$	$Y = R_1 \vee R_2$
1	0	0	0	$Y = R_1 \% R_2$	$Y = \overline{R_1 \Longrightarrow R_2}$
1	0	0	1	$Y = R_1 + 2$	$Y = \overline{\overline{R}_1 \wedge R_2}$
1	0	1	0	$Y = (R_1 \times R_2) - (R_1 + R_2)$	$Y = R_1 \wedge R_2$
1	0	1	1	$Y = R_1 - R_2$	$Y = \overline{R_1 \oplus R_2}$
1	1	0	0	$Y = (R_1 - R_2)^2$	$Y = \overline{R}_2$
1	1	0	1	$Y = R_1$	$Y = \overline{R_1 \vee R_2}$
1	1	1	0	$Y = R_1^2$	$Y = R_1 \Leftrightarrow R_2$
1	1	1	1	$Y = R_1 - 1$	$Y = \overline{R_1 \oplus R_2}$

Aby wykonać wybrane działanie należy wpisać liczby do rejestrów R1 i R2.

W przypadku wykonywania operacji dodawania arytmetycznego układ nie udostępnia bitu przeniesienia.

W dalszej części podany jest przykładowy program.

c) Przykładowe rozwiązania wybranych zadań laboratoryjnych

Ćwiczenie 2: Badanie bramek logicznych

Zadanie:

Zbudować układ zamieniający przebieg prostokatny (0-2V) na przebieg prostokatny (0-5V).

Zmianę amplitudy lub przesuwanie poziomu sygnału uzyskuje się stosując klucze tranzystorowe.

Zakładając, że napięcie wejściowe zmienia się skokowo w zakresie $0 \, \text{V} \div 2 \, \text{V}$ przy napięciu zasilania wynoszącym $U_{\text{CC}} = + 5 \, \text{V}$, można dobrać wartości rezystorów następująco:

$$R_B = \left(U_{we} - U_{BE} \right) / \ I_B = \left(2 \ V - 0.7 \ V \right) / \ 1 \ mA = 1.3 \ k\Omega \quad , \quad R_C = 1 \ k\Omega \div 4.7 \ k\Omega \ .$$

Wówczas dla $U_{we} = 2 \text{ V}$ tranzystor nasyca się poprzez wymuszenie prądu bazy $I_B = 1 \text{ mA}$. Wartość rezystora R_C natomiast jest typowa, gdy sygnał wyjściowy ma być podany dalej na wejście TTL (logiczne "1" w układach TTL to napięcie +5 V podłączone do rezystora $1 \text{ k}\Omega \div 4.7 \text{ k}\Omega$).

Ćwiczenie 3: Układy iteracyjne

Zadanie:

Zbudować iteracyjny komparator liczb binarnych poczynając od bitów młodszych.

Tabela komparatora liczb binarnych (od bitów młodszych)

p_1	p_0	а	b	p_1	p_0	Przeniesienia – kodowanie
0	0	0	0	0	0	
0	0	0	1	0	1	$a = b$ $p_1 p_0$
0	0	1	0	1	0	$\boxed{0 0 a = b \text{ (równe)}}$
0	0	1	1	0	0	$ \begin{vmatrix} 0 & 0 & a & b & (10 \text{ mic}) \\ 0 & 1 & a < b & (a \text{ mniejsze}) \end{vmatrix} $
0	1	0	0	0	1	$\begin{bmatrix} 1 & 0 & a > b \ (a \text{ większe}) \end{bmatrix}$
0	1	0	1	0	1	
0	1	1	0	1	0	
0	1	1	1	0	1	
1	0	0	0	1	0	
1	0	0	1	0	1	a > b $a > b$
1	0	1	0	1	0	n, ,
1	0	1	1	1	0) John John John John John John John John
1	1	0	0	X	X	$p_0 \longrightarrow p_0$
1	1	0	1	X	X	nie używane
1	1	1	0	X	X	\(\text{inc azy wanc} \)
1	1	1	1	X	X]

$$p_1' = f(p_1, p_0, a, b) = \Sigma (2, 6, 8, 10, 11, (12, 13, 14, 15))$$

 $p_0' = g(p_1, p_0, a, b) = \Sigma (1, 4, 5, 7, 9, (12, 13, 14, 15))$

Realizacja na dwóch mpx 16/1: (**przeniesienia początkowe:** p_1 p_0 = 0 0)

Ćwiczenie 4: Układy czasowe

Zadanie:

Zbudować układ opóźniający narastające zbocze impulsu wejściowego o czas τ (regulowany).

Układ przepuszcza impuls wejściowy (we) na wyjście (wy) opóźniając pojawienie się jego narastającego zbocza o regulowany czas τ ($\tau \sim R \cdot C$). Narastające zbocze impulsu wejściowego powoduje uruchomienie układu monostabilnego 74123 odmierzającego impuls o czasie τ . Jednocześnie stan wysoki na wejściu odblokowuje przerzutnik D ustawiając stan "1" na wejściu kasującym (Res) przerzutnika. Zakończenie impulsu odmierzanego przez układ monostabilny powoduje, że na wyjściu negowanym układu 74123 pojawia się zbocze narastające. Zbocze to przepisuje wartość "1" z wejścia D przerzutnika na wyjście Q przerzutnika (wpis synchroniczny). W momencie zakończenia impulsu wejściowego niski stan wejścia (podłączonego do wejścia kasującego Res przerzutnika) zmienia wyjście przerzutnika na "0". Impuls wyjściowego, ale jego narastające zbocze jest opóźnione o czas τ (odmierzany przez układ 74123) w relacji do impulsu wejściowego.

Działanie układu ilustruje przebieg czasowy.

Ćwiczenie 5: Układy synchroniczne

Zadanie:

Zbudować układ synchroniczny konwersji szeregowej kodu binarnego na kod Graya.

Zamianę kodu binarnego na kod Graya opisuje wzór:

$$\begin{cases} g_n = b_n & \text{przepisać najstarszy bit} \\ g_i = b_{i+1} \oplus b_i & \text{dla} \quad i = N-1 \dots 0 \end{cases}$$

Konwersja realizowana jest od bitów starszych do bitów młodszych.

Stan układu to zapamiętany poprzedni bit binarny $(q_i = b_{i+1})$, a wejściem jest bieżący bit binarny (b_i) .

Wyjście układu (bit w kodzie Graya) wynika ze wzoru: $g_i = g_i \oplus b_i$.

Graf układu oraz tabele przejść stanów (klasyczna i Karnaugha) mają postać:

q	b	q'	g
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

q^{b}	0	1
0	0/0	1/1
1	0/1	1/0

Sterowanie przerzutnikiem JK dla bitu q Tabela wyjścia g

Zasada działania przerzutnika JK

q^{b}	0	1
0	0/x\	/ 1\x
1	$\mathbf{x}, 1$	$\langle x/0 \rangle$

q^{b}	0	1
0	0	(1)
1		0

Wyniki: J = b, $K = \overline{b}$, $g = \overline{q} \cdot b + q \cdot \overline{b} = q \oplus b$

Stan początkowy przerzutnika: q = 0.

Liczbę binarną należy wpisać do rejestru i wyjście rejestru podłączyć do wejścia b układu.

Wynik g konwersji szeregowej wpisywać do drugiego rejestru.

W zestawie wejścia zegarowe wszystkich układów są podłączone do wspólnego sygnału taktującego (gen).

Ćwiczenie 6: Liczniki scalone

Zadanie:

Zmodyfikować licznik 74160, tak aby liczyć: 1 ... 5.

Sygnał synchronicznego wpisu (LE) ładuje wejścia P₃ P₂ P₁ P₀ = "0001" na wyjścia Q₃ Q₂ Q₁ Q₀ licznika.

W podanym rozwiązaniu wykrywany kod binarny "0101" ($\mathbf{Q} = \mathbf{5}$) jest ostatnim stanem należącym do grafu licznika (liczenie 1 ... 5). Ponieważ wejście ładujące ma charakter synchroniczny, podanie sygnału aktywnego (LE = 0) nie wywołuje początkowo żadnego efektu. Dopiero pojawienie się najbliższego narastającego zbocza sygnału taktującego (tzn. zbocza wyznaczającego koniec stanu $\mathbf{Q} = \mathbf{5}$) powoduje załadowanie wejść równoległych "0001" ($\mathbf{P} = \mathbf{1}$) na wyjście.

Uwaga:

W zestawie laboratoryjnym wyprowadzenia wszystkich liczników scalonych nie posiadają oznaczeń symbolicznych, ale są odpowiednio ponumerowane (zgodnie z numeracją z kart katalogowych odpowiednich układów). Dlatego na każdym schemacie wykorzystywanym w laboratorium muszą się pojawić numery wszystkich wyprowadzeń. Brak takich oznaczeń uniemożliwia uruchomienie zaprojektowanego licznika.

Ćwiczenie 7: Rejestry scalone

Zadanie:

Zbudować licznik Johnsona (4 bity, 8 stanów).

Zadanie było rozwiązywane na zajęciach projektowych.

Wynik liczenia obserwowany jest na wyjściach Q₀ Q₁ Q₂ Q₃ rejestru.

Sekwencja liczenia: $0000 \rightarrow 1000 \rightarrow 1100 \rightarrow 1110 \rightarrow 1111 \rightarrow 0111 \rightarrow 0011 \rightarrow 0001 \rightarrow 0000$ itd.

Ćwiczenie 8: Układy asynchroniczne

Zadanie:

Zbudować synchroniczny przerzutnik typu D zatrzask.

Dla C=1 dana D przechodzi na wyjście Y, a dla C=0 wyjście Y nie zmienia się (zatrzask).

D C	7				
0	00	01	11	10	Y
A	A	C	ı	D	0
В	В	C	-	Е	1
C	A	C	F	ı	0
D	A	ı	F	D	0
E	В	ı	F	E	1
F	-	С	F	Е	1

D	C	Y stan Q
0	0	0 = A
0	0	1 = B
0	1	0 = C
0	1	1 niemożliwe
1	0	0 = D
1	0	1 = E
1	1_	0 niemożliwe
1	1	1 = F

Minimalizacja liczby stanów:

Pary stanów zgodnych: (AC, AE, AG, BF, CG, DF, DH, FH)

Rodzina minimalna (skreślenia nie zachodzą): { ACD, BEF }.

Graf minimalny Moore'a: ($\alpha = ACD$, $\beta = BEF$), $\alpha = 0$, $\beta = 1$.

sterowanie S R dla q:	$\overline{S} = \overline{D} + \overline{C}$	$, \ \overline{\mathbf{R}} = D + \overline{C} \ .$

DC	0 0	0 1	1 1	1 0
q				
0	1 x	1/x	0\1	1 x
1	x 1	1(0)	x <i>1</i> 1	x 1

Q	Q'	\overline{S}	$\overline{\mathbf{R}}$
0	0	1	×
0	1	0	1
1	0	1	0
1	1	×	1

Rozwiązanie 1: Sieć sprzężeniowa NAND (bramka oznaczona kolorem czerwonym usuwa hazard).

Rozwiązanie 2: Sieć z przerzutnikiem S R.

Ćwiczenie 9: Sterowanie szyną danych

Zadanie:

Napisać i zakodować program (może być maksymalnie 8 instrukcji):

- a) wczytać dwie liczby 4-bitowe A i B (do rejestrów RA i RB),
- b) wyzerować rejestr Rwy (wykorzystując operację XOR),
- c) wykonać dodawanie arytmetyczne (A plus B) i wynik wysłać do rejestru RC.

I_2	I_1	I_0	C_1	C_0	C_{T}	B_T	A _T	Cc	Bc	Ac	\mathbf{W}_1	W_2
0	0	0	0	0	0	0	0	0	0	0	X	X
			0	1	1	0	1	0	1	0	X	X
			1	0	0	1	0	0	0	1	X	X
a)			1	1	1	0	1	0	1	0	X	X
0	0	1	0	0	0	0	0	0	0	0	1	0
			0	1	0	0	1	1	0	0	1	0
			1	0	0	0	1	1	0	1	X	0
b)			1	1	1	0	0	1	1	0	X	X
0	1	0	0	0	0	0	0	0	0	0	0	0
			0	1	0	0	1	1	0	0	0	0
			1	0	0	1	0	1	0	1	X	1
c)			1	1	1	0	0	0	1	1	X	X

Bity C_T B_T A_T C_C B_C A_C W_1 W_2 (oznaczone kolorem czerwonym) kolejnych linii programu oraz numer instrukcji (I_2 I_1 I_0) wprowadzane są z klawiatury, natomiast numer mikrocyklu (C_1 C_0) zmienia się automatycznie i jest widoczny na diodach świecących.

Uwaga:

Każda instrukcja jest realizowana w 4 mikrocyklach. Pierwszy mikrocykl (tj. dla C_1 $C_0 = 0$ 0) każdej instrukcji ma zawsze postać (C_T B_T A_T C_C B_C $A_C = 0$ 0 0 0 0 0).