Quantum Search

Renato Neves

Table of Contents

Overview

Overview 2 / 21

Grover's Problem

The Problem

Take a function $f: \{0,1\}^n \rightarrow \{0,1\}$

There exists one $x \in \{0,1\}^n$ such that f(x) = 1

Discover the x

Classically, need to evaluate f 2^n times in the worst case

Overview 3 / 21

Grover's Problem

The Problem

Take a function $f: \{0,1\}^n \rightarrow \{0,1\}$

There exists one $x \in \{0,1\}^n$ such that f(x) = 1

Discover the x

Classically, need to evaluate f 2^n times in the worst case

Overview 3 / 21

Grover's Problem

The Problem

Take a function $f: \{0,1\}^n \rightarrow \{0,1\}$

There exists one $x \in \{0,1\}^n$ such that f(x) = 1

Discover the x

Classically, need to evaluate f 2^n times in the worst case

Quantumly, need to evaluate f around $\sqrt{2^n}$ times

Overview 3 / 21

Applications

Grover's problem occurs in a multitude of scenarios

- Searching through unstructured databases
- Finding passwords
- Route planning
- Solving SAT problems
- NP-problems in general

Overview 4 / 21

Key Ideas

Like in all previous quantum algorithms, we will rely on

- 1. superposition
- 2. interference (to decrease amplitude of wrong answers and increase amplitude of the right ones)

Renato Neves Overview 5 / 21

Take $f: \{0,1\}^2 \to \{0,1\}$ with f(10) = 1

Renato Neves Overview 6 / 21

Inversion about the <u>mean</u>: $(x \mapsto (-x + mean) + mean)$

Intuitively mass of some states was given to others

Renato Neves Overview 7 / 21

Key Ideas: Interference pt. II

Mind the following particular case of inversion about the mean

Intuitively, mass of wrong answers was given to the right one

Renato Neves Overview 8 / 21

Table of Contents

Overview

Putting inversion into practice

Grover's performance

The Steps

- 1. Put all possible answers in uniform superposition
- 2. Negate phases of the right answer
- 3. Invert about the mean
- 4. Repeat steps 2 and 3 until ensured we will measure the right answer with high probability ($\approx \sqrt{2^n}$ times)

The Circuit

N.B. It is often convenient to omit the bottom qubit

Adding Local Phases

Recall from last lectures the notion of phase kickback and that

$$U_f |x\rangle |-\rangle = (-1)^{f(x)} |x\rangle |-\rangle$$

In particular, if x is as solution of f we obtain a phase flip

$$U_f |x\rangle |-\rangle = (-1) |x\rangle |-\rangle$$

Inversion About the Mean pt. I

We start with the operation that phase flips basis states different from $|0\rangle$, *i.e.*

$$P = 2 |0\rangle \langle 0| - I$$

Then we calculate

$$H^{\otimes n}(2|0\rangle\langle 0|-I)H^{\otimes n}$$

$$= (H^{\otimes n}(2|0\rangle\langle 0|) - H^{\otimes n})H^{\otimes n}$$

$$= H^{\otimes n}(2|0\rangle\langle 0|)H^{\otimes n} - H^{\otimes n}H^{\otimes n}$$

$$= 2H^{\otimes n}|0\rangle\langle 0|H^{\otimes n} - I$$

Denoting $H^{\otimes n}|0\rangle$ by $|\psi\rangle$ we obtain,

$$2\left|\psi\right\rangle \left\langle \psi\right| - I$$

Inversion About the Mean pt. II

- 1. Prove that $|\psi\rangle\langle\psi|=\frac{1}{N}\sum_{x,y\in N}|x\rangle\langle y|$ with $N=2^n$
- 2. Prove that $2\left|\psi\right\rangle \left\langle \psi\right|-I$ is the desired inversion about the mean

Inversion About the Mean pt. III

$$\left(2\frac{1}{N} \sum_{x,y \in N} |x\rangle \langle y| - I \right) \sum_{k \in N} \alpha_k |k\rangle$$

$$= 2\frac{1}{N} \sum_{x,y \in N} |x\rangle \langle y| \left(\sum_{k \in N} \alpha_k |k\rangle \right) - \sum_k \alpha_k |k\rangle$$

$$= 2\frac{1}{N} \sum_{x,y \in N} \left(\sum_{k \in N} \alpha_k \langle y, k\rangle |x\rangle \right) - \sum_k \alpha_k |k\rangle$$

$$= 2\frac{1}{N} \sum_{x,y \in N} \alpha_y |x\rangle - \sum_k \alpha_k |k\rangle$$

$$= 2\frac{1}{N} \sum_{y \in N} \alpha_y \sum_{x \in N} |x\rangle - \sum_k \alpha_k |k\rangle$$

$$= 2\frac{1}{N} \sum_{y \in N} \alpha_y \sum_{x \in N} |x\rangle - \sum_k \alpha_k |k\rangle$$

$$= \sum_{x \in N} 2\alpha |x\rangle - \sum_k \alpha_k |k\rangle$$

$$= \sum_{k \in N} (-\alpha_k + 2\alpha) |k\rangle$$

Example: $N = 2^3 = 8, w = 011$

Example: $N = 2^3 = 8, w = 011$

Example: $N = 2^3 = 8, w = 011$

At the end probability of measuring 011 is $\approx 94.5\%$

Table of Contents

Overview

Putting inversion into practice

Grover's performance

Renato Neves Grover's performance 19 / 21

In order to further analyse Grover's algorithm, it is useful to take a 2-dimensional geometrical perspective

Renato Neves Grover's performance 20 / 21

In order to further analyse Grover's algorithm, it is useful to take a 2-dimensional geometrical perspective

Take the vectors $|w\rangle$ and $|r\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x\rangle$. We obtain a 2-dimensional vector space with orthonormal basis $\{|w\rangle, |r\rangle\}$

Renato Neves Grover's performance 20 / 21

In order to further analyse Grover's algorithm, it is useful to take a 2-dimensional geometrical perspective

Take the vectors $|w\rangle$ and $|r\rangle = \frac{1}{\sqrt{N-1}} \sum_{x\neq w} |x\rangle$. We obtain a 2-dimensional vector space with orthonormal basis $\{|w\rangle, |r\rangle\}$

Additionally, the uniform superposition $|\psi\rangle$ can be rewritten as

$$\frac{1}{\sqrt{N}}\ket{w} + \sqrt{\frac{N-1}{N}}\ket{r}$$

In order to further analyse Grover's algorithm, it is useful to take a 2-dimensional geometrical perspective

Take the vectors $|w\rangle$ and $|r\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x\rangle$. We obtain a 2-dimensional vector space with orthonormal basis $\{|w\rangle, |r\rangle\}$

Additionally, the uniform superposition $|\psi\rangle$ can be rewritten as

$$\frac{1}{\sqrt{N}}\ket{w} + \sqrt{\frac{N-1}{N}}\ket{r}$$

This gives ...

where $\sin(\frac{\theta}{2}) = \frac{1}{\sqrt{N}}$. Our goal is to rotate the vector to become as close as possible to $|w\rangle$

Renato Neves Grover's performance 21 / 21