The open source CFD toolbox

Home	Products	Services	Download	Code	Documentation	Community	Governance	News	

About us Contact Jobs Legal

FOLLOW US ON **Ewitter**

User Guide

Contents

- 1 Introduction
- ± 2 OpenFOAM cases
- ± 3 Running applications
- ± 4 Mesh generation and conversion
- ± 5 Models and physical properties
- 5.1 Boundary Conditions
- 5.2 Thermophysical models
- 5.3 Turbulence models
- ± 6 Solvina
- ± 7 Post-processing
- ± A Reference

Index

5.2 Thermophysical models

Thermophysical models are used to describe cases where the thermal energy, compressibility or mass transfer is important.

OpenFOAM allows thermophysical properties to be constant, or functions of temperature, pressure and composition. Thermal energy can be described in form of enthalpy or internal energy. The p-v-T relation can be described with various equations of state or as isobaric system.

The thermophysical Properties dictionary is read by any solver that uses the thermophysical model library. A thermophysical model is constructed in OpenFOAM as a pressure-temperature p-T system from which other properties are computed. There is one compulsory dictionary entry called thermoType which specifies the complete thermophysical model that is used in the simulation. The thermophysical modelling starts with a layer that defines the basic equation of state and then adds further layers for the thermodynamic, transport and mixture modelling, as listed in Table 5.1.

Equation of State — equationOfState

icoPolynomial	Incompressible polynomial equation of state, e.g. for liquids
---------------	---

perfectGas Perfect gas equation of state

Basic thermophysical properties — thermo

eConstThermo Constant specific heat C_p model with evaluation of internal energy e and entropy s hConstThermo Constant specific heat C_p model with evaluation of enthalpy h and entropy s

hPolynomialThermo c_p evaluated by a function with coefficients from polynomials, from which h,s are evaluated janafThermo c_p evaluated by a function with coefficients from JANAF thermodynamic tables, from which h,s are evaluated

Derived thermophysical properties — specieThermo

specieThermo	Thermophysical properties of species,	derived from C_p , h and/or s

Transport properties — transport

constTransport Constant transport properties
polynomialTransport Polynomial based temperature-dependent transport properties
sutherlandTransport Sutherland's formula for temperature-dependent transport properties

Mixture properties — mixture

pureMixture General thermophysical model calculation for passive gas mixtures homogeneousMixture Combustion mixture based on normalised fuel mass fraction b inhomogeneousMixture Combustion mixture based on b and total fuel mass fraction f_t veryInhomogeneousMixture Combustion mixture based on b, f_t and unburnt fuel mass fraction f_u

dieselMixture Combustion mixture based on f_t and f_u basicMultiComponentMixture Basic mixture based on multiple components multiComponentMixture Derived mixture based on multiple components

reactingMixture Combustion mixture using thermodynamics and reaction schemes

egrMixture Exhaust gas recirculation mixture

Thermophysical model — thermoModel

hePsiThermo General thermophysical model calculation based on enthalpy \hbar or internal energy e, and

compressibility ψ

heRhoThermo General thermophysical model calculation based on enthalpy h or internal energy e, and

density P

hePsiMixtureThermo Calculates enthalpy for combustion mixture based on enthalpy h or internal energy e, and

 ψ

heRhoMixtureThermo Calculates enthalpy for combustion mixture based on enthalpy h or internal energy e, and

 ρ

heheuMixtureThermo Calculates enthalpy \hbar or internal energy e for unburnt u gas and combustion mixture

Table 5.1: Layers of thermophysical modelling.

Various combinations are available as 'packages', specified using, e.g.

17

18thermoType

19{

24

20 type heRhoThermo;
21 mixture pureMixture;
22 transport const;
23 thermo hConst;

equationOfState perfectGas;

antation/user guide/thermanhyeisel.nbn

```
25
       specie
26
                           sensibleEnthalpy;
       energy
27
28
29mixture
30 {
31
       specie
32
             molWeight
                               28.96:
33
34
       thermodynamics
35
36
37
                                    1004.4;
             Ср
38
                                    0;
39
40
       transport
41
42
                                    1.831e-05;
43
                                    0.705;
             Pr
44
45
46
47
48//
```

Only certain combinations are predefined. One method to identify the possible combinations from Table 5.1 is to use a nonexistent setting for one of the entries, e.g. banana and execute the solver. OpenFOAM will issue an error message and list all possible combinations to the terminal.

5.2.1 Thermophysical property data

The basic thermophysical properties are specified for each species from input data. Data entries must contain the name of the specie as the keyword, e.g. 02, H20, mixture, followed by sub-dictionaries of coefficients, including: specie

 $containing \it i.e. \ number of moles, \it nMoles, of the specie, and molecular weight, \it molWeight in units of g/mol; \\$

thermo

containing coefficients for the chosen thermodynamic model (see below);

transport

containing coefficients for the chosen transport model (see below).

The thermodynamic coefficients are ostensibly concerned with evaluating the specific heat C_p from which other properties are derived. The current thermo models are described as follows:

hConstThermo

assumes a constant c_p and a heat of fusion H_f which is simply specified by a two values c_p H_f , given by keywords C_p and H_f .

eConstThermo

assumes a constant c_v and a heat of fusion H_f which is simply specified by a two values c_v H_f , given by keywords c_v and H_f .

janafThermo

calculates \mathcal{C}_p as a function of temperature T from a set of coefficients taken from JANAF tables of thermodynamics. The ordered list of coefficients is given in Table 5.2. The function is valid between a lower and upper limit in temperature T_l and T_h respectively. Two sets of coefficients are specified, the first set for temperatures above a common temperature T_c (and below T_h , the second for temperatures below T_c (and above T_l). The function relating \mathcal{C}_p to temperature is:

$$c_p = R((((a_4T + a_3)T + a_2)T + a_1)T + a_0)$$
 (5.1)

In addition, there are constants of integration, a_5 and a_6 , both at high and low temperature, used to evaluating h and s respectively.

hPolynomialThermo

calculates C_p as a function of temperature by a polynomial of any order. The following case provides an example of its use: $FOAM_TUTORIALS/lagrangian/porousExplicitSourceReactingParcelFoam/filter$

Description		Entry Keyword		
	Lower temperature limit	$T_l(K)$	Tlow	
	Upper temperature limit	T_h (K)	Thigh	
	Common temperature	T_c (K)	Tcommon	
	High temperature coefficients	$a_0 \dots a_4$	highCpCoeffs (a0 a1 a2 a3 a4	

Table 5.2: JANAF thermodynamics coefficients.

The transport coefficients are used to to evaluate dynamic viscosity μ , thermal conductivity κ and laminar thermal conductivity (for enthalpy equation) α . The current transport models are described as follows: constTransport

assumes a constant μ and Prandtl number $Pr=c_p\mu/\kappa$ which is simply specified by a two keywords, mu and \Pr , respectively.

suther land Transport

calculates μ as a function of temperature T from a Sutherland coefficient A_s and Sutherland temperature T_s , specified by keywords As and Ts; μ is calculated according to:

$$\mu = \frac{A_s\sqrt{T}}{1 + T_s/T} \tag{5.2}$$

polynomialTransport

calculates μ and κ as a function of temperature T from a polynomial of any order.

The following is an example entry for a specie named fuel modelled using sutherlandTransport and janafThermo:

```
fuel
{
        specie
        {
                nMoles
                                    1;
                molWeight
                                 16.0428;
        thermodynamics
        {
                T1ow
                                      200;
                Thigh
                                     6000;
                                   1000;
                Tcommon
                highCpCoeffs (1.63543 0.0100844 -3.36924e-06 5.34973e-10
                                            -3.15528e-14 -10005.6 9.9937);
                lowCpCoeffs
                               (5. 14988 -0. 013671 4. 91801e-05 -4. 84744e-08
                                            1.66694e-11 -10246.6 -4.64132);
       }
        transport
        {
                As
                                        1.67212e-06;
                Ts
                                        170.672;
        }
}
```

The following is an example entry for a specie named air modelled using constTransport and hConstThermo:

```
air
{
         specie
        {
                 nMoles
                                            1:
                                         28.96:
                 molWeight
        }
         thermodynamics
                                                 1004.5;
                 Cn
                                                 2.544e+06;
        }
        transport
        {
                                                 1.8e-05;
                 Pr
                                                0.7;
        }
}
```

Creative Commons BY-NC-ND License

© 2004-2011, 2016-2018 OpenCFD Ltd (ESI Group)

Terms of Use | Privacy Policy.

Design by 1234.info | Modified by OpenCFD | Content generated using tex4ht XHTML 1.0 | CSS 2.0