Nº Orden	Apellido y nombre	L.U.	Cantidad de hojas

Organización del Computador 2 Recuperatorio primer parcial – 2 de julio de 2009

Normas Generales

- Numere las hojas entregadas. Complete en la primera hoja la cantidad total de hojas entregadas.
- Está permitido tener los manuales y los apuntes con las listas de instrucciones durante el exámen.
 Está prohibido compartir manuales o apuntes entre alumnos en el examen.
- Cada ejercicio debe realizarse en hojas separadas y numeradas. Debe identificarse cada hoja con nombre, apellido y LU.
- La devolución de los exámenes corregidos es personal. Los pedidos de revisión se realizarán por escrito, antes de retirar el examen corregido del aula.
- La codificación de los ejercicios debe estar debidamente comentada.
- Por favor entregar esta hoja junto al examen.

Ej. 1. (40 puntos)

El filtro de suavizado de promedio cargado se utiliza para eliminar ruido en las imágenes. Consiste en aplicar una máscara por convolusión a todos los pixeles de la imagen. La máscara que se utiliza es la siguiente:

Es decir,
$$b_{i,j} = \frac{a_{i-1,j-1} + 2a_{i-1,j} + a_{i-1,j+1} + 2a_{i,j-1} + 4a_{i,j} + 2a_{i,j+1} + a_{i+1,j-1} + 2a_{i+1,j} + a_{i+1,j+1}}{16}$$

Escriba una función en lenguaje ensamblador que, dada una matriz A que contiene los pixels de una imagen en escala de grises (1 pixel = 1 byte) de dimensión $n \times n$ (n de 16 bits sin signo, múltiplo de 2), aplique el filtro de suavizado y devuelva una nueva matrix B con el resultado de la operación. El prototipo de la función es: void suavizar(char* A, char* B, unsigned short n);

Aclaraciones:

- 1. Fuera del rango en el cual se puede realizar la convolusión, la imágen resultante no se debe modificar.
- 2. Si bien el resultado del cálculo debe almacenarse en 8 bits, los cálculos intermedios deben realizarse con 16 bits de precisión.
- 3. Para optimizar el cálculo se pide utilizar las intrucciones SIMD y procesar de a 4 pixeles por ciclo.

Ej. 2. (40 puntos)

En procesamiento de señales (por ejemplo audio) se utilizan filtros Gaussianos para no rebasar valores máximo (saturación) y reducir los cambios bruscos de la señal en el tiempo. Un caso particular de filtro Gaussiano es el filtro de Gabor cuya función matemática viene dada por:

$$g(x) = ke^{2\pi cos(\theta)x - ax^2}$$
 $con k, a \in \Re$ $y \quad 0 \le \theta \le 2\pi$

Escriba una función en lenguaje ensamblador que dada una señal de audio almacenada en un vector de números de punto flotante de precisión simple de longitud n (n de 16 bits sin signo), aplique el filtro de Gabor para eliminar la saturación. El prototipo de la función es el siguiente:

void filtroGabor(float* A, float k, float a, float tita, unsigned short n);

Ej. 3. (20 puntos)

Explique y escriba el código en lenguaje ensamblador correspondiente al siguiente pseodocódigo de un salto condicional: if (a > 0) then a = b else a = c;

- $1.\ \,$ Si los datos $a,\,b$ y c
 corresponden a registros de la FPU que contienen números en punto flotante de 32 bits de precisión.
- 2. Si los datos a, b y c corresponden a registros SSE que contienen 4 números enteros signados de 32 bits de precisión y la comparación a > 0 se interpreta como que todos los enteros empaquetados del registro a deben ser mayores que cero.