ODR: Cvičné příklady—lineární diferenciální rovnice

- 1. Pro každou z následujících levých stran lineárních rovnic s konstantními koeficienty

- a) y'' 4y' + 3y; b) y'' 2y' + 5y; c) y''' 4y'' + 13y';
- d) $y^{(4)} + 9y''$

najděte metodou odhadu obecnou formu partikulárního řešení (tedy nemusíte dopočítávat hodnotu koeficientů) pro všechny následující speciální pravé strany:

- α) $(x+1)e^{3x}$;

- 1) e^{3x} ; β) $x^2 + 1$; γ) $12\sin(3x)$; δ) $(x^2 3)e^{2x}$; ε) $2e^x\sin(2x) + (x 1)e^x\cos(2x)$.

Najděte obecné řešení následujících rovnic:

2. $y''' - 2y'' = 2e^x - 1$:

- 5. $y'' + 4y = 1 + 2\sin(2x)$:
- **3.** $x'' 3x' + 2x = \sin(t) t\cos(t) 1;$ **6.** $y'' 2y' = 2x 1 + xe^x;$
- **4.** $x'' 3x' + 2x = 2e^t + 2t^2 1$:
- 7. $y'' 2y' = 5\sin(x) + 10\cos(x) 8\cos(2x)$.

Vyřešte následující Cauchyho (počáteční) úlohy:

- 8. $y'' 2y' = 2e^{2x} 5\cos(x) + 6$, y(0) = 2, y'(0) = 2;
- **9.** $y'' 7y' + 12y = e^{4x} + 12x 19$, y(0) = 0, y'(0) = 5;
- **10.** $y'' 6y' + 9y = 4e^x + 9x + 12$, y(0) = 2, y'(0) = -1;
- **11.** $y'' 4y' + 5y = 8\sin(x) + 25x$, y(0) = 5, y'(0) = 6;
- **12.** $y''' + y'' 4y' 4y = 6e^x 4x$, y(0) = -3, y'(0) = 1, y''(0) = -2;
- **13.** $x'' 2x' = 2\sinh(2t)$, $x(0) = -\frac{1}{8}$, $x'(0) = \frac{1}{4}$;
- **14.** $y'' 4y = 13\sin(3x) 5\cos(x)$, y(0) = 3, y'(0) = 1;
- **15.** $y'' + 4y = 9t\sin(t) 5e^t$, y(0) = -3, y'(0) = 1;
- **16.** $y'' 3y' + 2y = 2x + (\pi^4 + 5\pi^2 + 4)\sin(\pi x), \qquad y(1) = \frac{5}{2} 3\pi + e, \ y'(1) = 1 \pi(2 \pi^2) + e;$
- **17.** $\ddot{x} + x = \sin(t) + e^t \sin(t), \qquad x(0) = -\frac{2}{5}, \ \dot{x}(0) = \frac{13}{10}.$

Řešení

1.

a: Levá strana $y'' - 4y' + 3y = \cdots$: Char. pol. $p(\lambda) = \lambda^2 - 4\lambda + 3$, char. čísla $\lambda = 1, 3$.

a α) $y'' - 4y' + 3y = (x+1)e^{3x}$: Levá strana: $\lambda = 1, 3$;

pravá strana: stupeň polynomu je 1, nejsou siny/kosiny, tedy $\lambda = 3 + 0i = 3$, má překryv s levou stranou násobnosti m = 1, proto odhad $y_p(x) = x^1(Ax + B)e^{3 \cdot x} = (Ax^2 + Bx)e^{3x}$.

a β) $y'' - 4y' + 3y = x^2 + 1$: Levá strana: $\lambda = 1, 3$;

pravá strana: stupeň polynomu je 2, nejsou exponenciály ani siny/kosiny, tedy $\lambda = 0 + 0i = 0$, nemá překryv s levou stranou, proto odhad $y_p(x) = Ax^2 + Bx + C$.

 $a\gamma$) $y'' - 4y' + 3y = 12\sin(3x)$: Levá strana: $\lambda = 1, 3$;

pravá strana: stupeň polynomu je 0, nejsou exponenciály, tedy $\lambda = 0 + 3i = 3i$, překryv s levou stranou není, proto odhad $y_p(x) = A\sin(3x) + B\cos(3x)$.

a δ) $y'' - 4y' + 3y = (x^2 - 3)e^{2x}$: Levá strana: $\lambda = 1, 3$;

pravá strana: stupeň polynomu je 2, nejsou siny/kosiny, tedy $\lambda = 2 + 0i = 2$, není překryv s levou stranou, proto odhad $y_n(x) = (Ax^2 + Bx + C)e^{2x}$.

a ε) $y'' - 4y' + 3y = 2e^x \sin(2x) + (x - 1)e^x \cos(2x)$: Levá strana: $\lambda = 1, 3$;

pravá strana: Je exponenciála i (ko)sinus, proto $\lambda = 1 + 2i$, není překryv, tedy m = 0; max. stupeň polynomu je d = 1; máme proto $y_p(x) = e^x[(Ax + B)\sin(2x) + (Cx + D)\cos(2x)]$.

b: Levá strana $y'' - 2y' + 5y = \cdots$: Char. pol. $p(\lambda) = \lambda^2 - 2\lambda + 5$, char. čísla $\lambda = 1 \pm 2i$;

b α) $y'' - 2y' + 5y = (x+1)e^{3x}$: Levá strana: $\lambda = 1 \pm 2i$;

pravá strana: stupeň polynomu je 1; máme $\lambda = 3 + 0i = 3$, bez překryvu s levou stranou, proto odhad $y_p(x) = (Ax + B)e^{3x}$.

b β) $y'' - 2y' + 5y = x^2 + 1$: Levá strana: $\lambda = 1 \pm 2i$;

pravá strana: stupeň polynomu je 2, máme $\lambda = 0 + 0i = 0$, bez překryvu s levou stranou, proto odhad $y_p(x) = Ax^2 + Bx + C$.

b γ) $y'' - 2y' + 5y = 12\sin(3x)$: Levá strana: $\lambda = 1 \pm 2i$;

pravá strana: stupeň polynomu je 0; máme $\lambda = 0 + 3i = 3i$, není překryv s levou stranou, proto odhad $y_p(x) = A\sin(3x) + B\cos(3x)$.

b δ) $y'' - 2y' + 5y = (x^2 - 3)e^{2x}$:

Levá strana: $\lambda = 1 \pm 2i$;

pravá strana: stupeň polynomu je 2, máme $\lambda=2+0i=2$, bez překryvu s levou stranou, proto odhad $y_p(x)=(Ax^2+Bx+C)e^{2x}$.

b ε) $y'' - 2y' + 5y = 2e^x \sin(2x) + (x - 1)e^x \cos(2x)$: Levá strana: $\lambda = 1 \pm 2i$;

pravá strana: maximální stupeň polynomu je d=1; máme $\lambda=1+2i$, je zde překryv s levou stranou, násobnost překryvu je m=1; proto odhad $y_p(x)=x^1e^x[(Ax+B)\sin(x)+(Cx+D)\cos(x)]$

 $= e^x [(Ax^2 + Bx)\sin(2x) + (Cx^2 + Dx)\cos(2x)].$

c: Levá strana $y'''-4y''+13y'=\cdots$: Char. pol. $p(\lambda)=\lambda^3-4\lambda^2+13\lambda$, char. čísla $\lambda=0,2\pm3i;$

c α) $y''' - 4y'' + 13y' = (x+1)e^{3x}$: Levá strana: $\lambda = 0, 2 \pm 3i$;

pravá strana: stupeň polynomu je 1; máme $\lambda = 3 + 0i = 3$, bez překryvu s levou stranou, proto odhad $y_p(x) = (Ax + B)e^{3x}$.

c β) $y''' - 4y'' + 13y' = x^2 + 1$: Levá strana: $\lambda = 0, 2 \pm 3i$;

pravá strana: stupeň polynomu je 2; máme $\lambda = 0 + 0i = 0$, je zde jednonásobný překryv s levou stranou, proto odhad $y_p(x) = x^1(Ax^2 + Bx + C) = Ax^3 + Bx^2 + Cx$.

 c_{γ}) $y''' - 4y'' + 13y' = 12\sin(3x)$: Levá strana: $\lambda = 0, 2 \pm 3i$;

pravá strana: stupeň je d=0; máme $\lambda=0+3i=3i$, bez překryvu s levou stranou, proto odhad $y_p(x)=A\sin(3x)+B\cos(3x)$.

- có) $y''' 4y'' + 13y' = (x^2 3)e^{2x}$: Levá strana: $\lambda = 0, 2 \pm 3i$; pravá strana: stupeň polynomu je 2; máme $\lambda = 2 + 0i = 2$, bez překryvu s levou stranou, proto odhad $y_p(x) = (Ax^2 + Bx + C)e^{2x}$.
- $\mathbf{c}\varepsilon$) $y''' 4y'' + 13y' = 2e^x \sin(2x) + (x-1)e^x \cos(2x)$: Levá strana: $\lambda = 0, 2 \pm 3i$; pravá strana: max. stupeň polynomu je d = 1, máme $\lambda = 1 + 2i$, bez překryvu s levou stranou, proto odhad $y_p(x) = e^x[(Ax + B)\sin(2x) + (Cx + D)\cos(2x)]$.
- $\mathbf{d}\alpha$) Levá strana: $y^{(4)} + 9y'' = \cdots$:

Char. pol. $p(\lambda) = \lambda^4 + 9\lambda^2$, char. čísla $\lambda = 0$ (2×), $\pm 3i$;

- $\mathbf{d}\alpha$) $y^{(4)} + 9y'' = (x+1)e^{3x}$: Levá strana: $\lambda = 0$ $(2\times), \pm 3i$; pravá strana: stupeň polynomu je 1; máme $\lambda = 3 + 0i = 3$, bez překryvu s levou stranou, proto odhad $y_p(x) = (Ax + B)e^{3x}$.
- **d** β) $y^{(4)} + 9y'' = x^2 + 1$: Levá strana: $\lambda = 0$ $(2\times), \pm 3i$; pravá strana: stupeň polynomu je 2; máme $\lambda = 0 + 0i = 0$, je překryv s levou stranou o násobnosti m = 2; proto odhad $y_p(x) = x^2(Ax^2 + Bx + C) = Ax^4 + Bx^3 + Cx^2$.
- $\mathbf{d}\gamma$) $y^{(4)} + 9y'' = 12\sin(3x)$: Levá strana: $\lambda = 0$ $(2\times), \pm 3i$; pravá strana: stupeň polynomu je 0; máme $\lambda = 0 + 3i = 3i$, překryv s levou stranou násobnosti m = 1; proto odhad $y_p(x) = x^1[\sin(3\cdot x) + B\cos(3\cdot x)] = Ax\sin(3x) + Bx\cos(3x)$.
- **d** δ) $y^{(4)} + 9y'' = (x^2 3)e^{2x}$: Levá strana: $\lambda = 0$ $(2 \times), \pm 3i$; pravá strana: stupeň polynomu je 2; máme $\lambda = 2 + 0i = 2$, bez překryvu s levou stranou, proto odhad $y_p(x) = (Ax^2 + Bx + C)e^{2x}$.
- $\mathbf{d}\varepsilon$) $y^{(4)} + 9y'' = 2e^x \sin(2x) + (x-1)e^x \cos(2x)$: Levá strana: $\lambda = 0$ $(2\times), \pm 3i$; pravá strana: max. stupeň polynomu je d = 1; máme $\alpha = 1 + 2i$, bez překryvu s levou stranou, proto odhad $y_p(x) = e^x[(Ax + B)\sin(2x) + (Cx + D)\cos(2x)]$.
- **2.** Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^3 2\lambda^2$, char. čísla $\lambda = 0$ (2×), 2; fund. syst. $\{1, x, e^{2x}\}$; obecné řešení homogenní rovnice je $y_b(x) = a + bx + c e^{2x}$, $x \in \mathbb{R}$.

Pravá strana je speciální, přesněji kombinace dvou speciálních pravých stran.

- $2e^x$: d=0; $\lambda=1+0i=1$, bez překryvu, proto $y_1(x)=Ae^x$.
- \bullet –1: $d=0;\;\lambda=0+0i=0,$ překryv s levou stranou násobnosti m=2; proto $y_2(x)=x^2C=Cx^2.$

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = A e^x + Cx^2$, dosadíme do dané rovnice a dostaneme

$$-A\,e^x - 4C = 2e^x - 1, \text{ odtud } A = -2, \, C = \frac{1}{4},$$
obecné řešení je $y(x) = y_p(x) + y_h(x) = \frac{1}{4}x^2 - 2e^x + a + bx + c\,e^{2x}, \, x \in I\!\!R.$

- **3.** Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 3\lambda + 2$, char. čísla $\lambda = 1, 2$; fund. syst. $\{e^t, e^{2t}\}$; obecné řešení homogenní rovnice je $x_h(t) = a\,e^t + b\,e^{2t}$, $t \in \mathbb{R}$. Pravá strana je speciální, přesněji kombinace dvou speciálních pravých stran.
- $\sin(t) t\cos(t)$: d = 1; $\lambda = 0 + 1i = i$, bez překryvu s levou stranou, proto $x_1(t) = (At + B)\sin(t) + (Ct + D)\cos(t)$.
- -1: $d=0; \lambda=0+0$ i=0, bez překryvu s levou stranou, proto $x_2(t)=E.$

Odhad partikulárního řešení $x_p(t) = x_1(t) + x_2(t) = (At + B)\sin(t) + (Ct + D)\cos(t) + E$, dosadíme do dané rovnice a dostaneme

$$[(B - 3A + 3D - 2C) + (A + 3C)t]\sin(t) + [(D - 3B - 3C + 2A) + (C - 3A)t]\cos(t) + 2E$$

$$= \sin(t) - t\cos(t) - 1,$$

tedy B - 3A + 3D - 2C = 1, A + 3C = 0, D - 3B - 3C + 2A = 0, C - 3A = -1, 2E = -1, odtud $A = \frac{3}{10}$, $B = \frac{11}{25}$, $C = \frac{-1}{10}$, $D = \frac{21}{50}$, $E = -\frac{1}{2}$, obecné řešení je $x(t) = x_p(t) + x_h(t) = \left(\frac{3}{10}t + \frac{11}{25}\right)\sin(t) + \left(\frac{21}{50} - \frac{1}{10}t\right)\cos(t) - \frac{1}{2} + ae^t + be^{2t}$, $t \in \mathbb{R}$.

4. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 - 3\lambda + 2$, char. čísla $\lambda = 1, 2$; fund. syst. $\{e^t, e^{2t}\}$; obecné řešení homogenní rovnice je $x_h(t) = a \, e^t + b \, e^{2t}, \, t \in I\!\!R$.

Pravá strana je speciální, přesněji kombinace dvou speciálních pravých stran.

- $2e^t$: d=0; $\lambda=1+0i=1$, překryv jednonásobný s levou stranou, proto $x_1(t)=t[A\,e^t]=At\,e^t$.
- $2t^2 1$: d = 2; $\lambda = 0 + 0i = 0$, bez překryvu, proto $x_2(t) = Ct^2 + Dt + E$.

Odhad partikulárního řešení $x_p(t) = x_1(t) + x_2(t) = Ate^t + Ct^2 + Dt + E$, dosadíme do dané rovnice a dostaneme

$$-Ae^t + (2C - 3D + 2E) + (2D - 6C)t + 2Ct^2 = 2e^t + 2t^2 - 1,$$
odtud $A = -2$, $2C - 3D + 2E = -1$, $2D - 6C = 0$, $C = 1$, tedy $E = 3$, $D = 3$, obecné řešení je $x(t) = x_p(t) + x_h(t) = -2te^t + t^2 + 3t + 3 + ae^t + be^{2t}$, $t \in \mathbb{R}$.

5. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 4$, char. čísla $\lambda = \pm 2i$; fund. syst. $\{\sin(2x), \cos(2x)\}$; obecné řešení homogenní rovnice je $y_h(x) = a\sin(2x) + b\cos(2x), x \in \mathbb{R}$.

Pravá strana je speciální, přesněji kombinace dvou speciálních pravých stran.

- 1: d=0; $\lambda=0+0$; $\lambda=0$, bez překryvu s levou stranou, proto $y_1(x)=A$.
- $2\sin(2x)$: d=0; $\lambda=0+2i=2i$, jednonásobný překryv s levou stranou, proto $y_2(x)=x[C\sin(2x)+D\cos(2x)]$.

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = A + Cx\sin(2x) + Dx\cos(2x)$, dosadíme do dané rovnice a dostaneme

$$4A + (-4D)\sin(2x) + (4C)\cos(2x) = 1 + 2\sin(2x)$$
, odtud $A = \frac{1}{4}$, $C = 0$, $D = -\frac{1}{2}$, obecné řešení je $y(x) = y_p(x) + y_h(x) = \frac{1}{4} - \frac{1}{2}x\cos(2x) + a\sin(2x) + b\cos(2x)$, $x \in \mathbb{R}$.

- **6.** Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 2\lambda$, char. čísla $\lambda = 0, 2$; fund. syst. $\{1, e^{2x}\}$; obecné řešení homogenní rovnice je $y_h(x) = a + b e^{2x}$, $x \in \mathbb{R}$. Pravá strana je speciální, přesněji kombinace dvou speciálních pravých stran.
- 2x-1: d=1; $\lambda=0+0i=0$, jednonásobný překryv s levou stranou, proto $y_1(x)=x(Ax+B)=Ax^2+Bx$.
- $x e^x$: d = 1; $\lambda = 1 + 0i = 1$, bez překryvu s levou stranou, proto $y_2(x) = (Cx + D)e^x$. Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = Ax^2 + Bx + (Cx + D)e^x$, dosadíme do dané rovnice a dostaneme

$$\begin{split} [(2A-2B)-4Ax]+[-Cx-D]e^x &= 2x-1+x\,e^x,\\ \text{odtud } 2A-2B=-1,\,\,A=-\frac{1}{2},\,\,C=-1,\,\,D=0,\,\,\text{tedy }B=0,\,\,\text{obecn\'e \'re\'sen\'i je}\\ y(x)&=y_p(x)+y_h(x)=-\frac{1}{2}x^2-x\,e^x+a+b\,e^{2x},\,\,x\in I\!\!R. \end{split}$$

- 7. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 2\lambda$, char. čísla $\lambda = 0, 2$; fund. syst. $\{1, e^{2x}\}$; obecné řešení homogenní rovnice je $y_h(x) = a + b e^{2x}$, $x \in \mathbb{R}$. Pravá strana je speciální, přesněji kombinace dvou speciálních pravých stran.
- $5\sin(x) + 10\cos(x)$: d = 0; $\lambda = 0 + 1i = i$, bez překryvu s levou stranou, proto $y_1(x) = A\sin(x) + B\cos(x)$.
- $-8\cos(2x)$: d=0; $\lambda=0+2i=2i$, bez překryvu s levou stranou, proto $y_2(x)=C\sin(2x)+D\cos(2x)$.

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = A\sin(x) + B\cos(x) + C\sin(2x) + D\cos(2x)$, dosadíme do dané rovnice a dostaneme

$$[2B - A]\sin(x) + [-2A - B]\cos(x) + [4D - 4C]\sin(2x) + [-4C - 4D]\cos(2x)$$

= $5\sin(x) + 10\cos(x) - 8\cos(2x)$,

tedy
$$2B-A=5, -2A-B=10, 4D-4C=0, -4C-4D=-8,$$
 odtud $A=-5, B=0, C=1, D=1,$ obecné řešení je $y(x)=-5\sin(x)+\sin(2x)+\cos(2x)+a+b\,e^{2x}, x\in\mathbb{R}.$

8. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 - 2\lambda$, char. čísla $\lambda = 0, 2$; fund. syst. $\{1, e^{2x}\}$; obecné řešení homogenní rovnice je $y_h(x) = a + b e^{2x}$, $x \in \mathbb{R}$.

Pravá strana je kombinace tří speciálních pravých stran.

- $2e^{2x}$: d=0; $\lambda=2$, překryv násobnosti m=1 s levou stranou, proto korekce, $y_1(x)=Ax\,e^{2x}$.
- $-5\cos(x)$: d=0; $\lambda=i$, bez překryvu s levou stranou, proto $y_2(x)=B\cos(x)+C\sin(x)$.
- 6: d=0; $\lambda=0$, překryv násobnosti m=1 s levou stranou, proto korekce, $y_3(x)=Dx$.

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) + y_3(x) = Ax e^{2x} + B\cos(x) + C\sin(x) + Dx$, dosadíme do dané rovnice a dostaneme

$$2A e^{2x} + [-B - 2C]\cos(x) + [2B - C]\sin(x) - 2D = 2e^{2x} - 5\cos(x) + 6,$$

tedy 2A=2, -B-2C=-5, 2B-C=0, -2D=6, odtud A=1, B=1, C=2, D=-3, obecné řešení je

$$y(x) = y_p(x) + y_h(x) = x e^{2x} + \cos(x) + 2\sin(x) - 3x + a + b e^{2x}, x \in \mathbb{R}.$$

Poč. podmínky: $y(x) = x e^{2x} + \cos(x) + 2\sin(x) - 3x + e^{2x}, x \in \mathbb{R}$.

9. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 - 7\lambda + 12$, char. čísla $\lambda = 3, 4$; fund. syst. $\{e^{3x}, e^{4x}\}$; obecné řešení homogenní rovnice je $y_h(x) = a e^{3x} + b e^{4x}$, $x \in \mathbb{R}$.

Pravá strana je kombinace dvou speciálních pravých stran.

- e^{4x} : d=0; $\lambda=4$, překryv násobnosti m=1 s levou stranou, proto korekce, $y_1(x)=Ax\,e^{4x}$.
- 12x 19: d = 1; $\lambda = 0$, bez překryvu s levou stranou, proto $y_2(x) = Bx + C$.

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = Ax e^{4x} + Bx + C$, dosadíme do dané rovnice a dostaneme

$$Ae^{4x} + 12Bx + [-7B + 12C] = e^{4x} + 12x - 19,$$

tedy $A=1,\,12B=12,\,-7B+12C=-19,\,$ odtud $B=1,\,C=-1,\,$ obecné řešení je

 $y(x) = y_p(x) + y_h(x) = x e^{4x} + x - 1 + a e^{3x} + b e^{4x}, x \in \mathbb{R}.$

Poč. podmínky: $y(x) = x e^{4x} + x - 1 + e^{3x}, x \in \mathbb{R}$.

10. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 - 6\lambda + 9 = (\lambda - 3)^2$, char. čísla $\lambda = 2$ (2×); fund. syst. $\{e^{3x}, x e^{3x}\}$; obecné řešení homogenní rovnice je $y_h(x) = a e^{3x} + bx e^{3x}$, $x \in \mathbb{R}$.

Pravá strana je kombinace dvou speciálních pravých stran.

- $4e^x$: d=0; $\lambda=1$, bez překryvu s levou stranou, proto $y_1(x)=Ae^x$.
- 9x + 12: d = 1; $\lambda = 0$, bez překryvu s levou stranou, proto $y_2(x) = Bx + C$.

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = Ae^x + Bx + C$, dosadíme do dané rovnice a dostaneme

$$4Ae^{x} + 9Bx + [-6B + 9C] = 4e^{x} + 9x + 12,$$

tedy $4A=4,\,9B=9,\,-6B+9C=12,$ odtud $A=1,\,B=1,\,C=2,$ obecné řešení je

 $y(x) = y_p(x) + y_h(x) = e^x + x + 2 + a e^{3x} + bx e^{3x}, x \in \mathbb{R}.$

Poč. podmínky: $y(x) = x + 2 + e^x - e^{3x}, x \in \mathbb{R}$.

11. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 - 4\lambda + 5$, char. čísla $\lambda = 2 \pm i$; fund. syst. $\{e^{2x}\cos(x), e^{2x}\sin(x)\}$; obecné řešení homogenní rovnice je $y_h(x) = a e^{2x}\cos(x) + b e^{2x}\sin(x), x \in \mathbb{R}$.

Pravá strana je kombinace dvou speciálních pravých stran.

- $\sin(x)$: d=0; $\lambda=i$, bez překryvu s levou stranou, proto $y_1(x)=A\cos(x)+B\sin(x)$.
- 25x: d=1; $\lambda=0$, bez překryvu s levou stranou, proto $y_1(x)=Cx+D$.

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = A\cos(x) + B\sin(x) + Cx + D$, dosadíme do dané rovnice a dostaneme

$$[4A + 4B]\cos(x) + [-4A + 4B]\cos(x) + 5Cx + [-4C + 5D] = 8\sin(x) + 25x + 0,$$

tedy 4A+4B=8, -4A+4B=0, 5C=25, -4C+5D=0, odtud A=1, B=1, C=5, D=4, obecné řešení je

 $y(x) = \cos(x) + \sin(x) + 5x + 4 + ae^{2x}\cos(x) + be^{2x}\sin(x), x \in \mathbb{R}.$

Poč. podmínky: $y(x) = \cos(x) + \sin(x) + 5x + 4$, $x \in \mathbb{R}$.

12. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^3 + \lambda^2 - 4\lambda - 4 = (\lambda+1)(\lambda-2)(\lambda+2)$, jeden kořen tipneme, třeba $\lambda=-1$, pak dělením $p(\lambda)=(\lambda+1)(\lambda^2-4)$. Char. čísla $\lambda=-1,2,-2$; fund. syst. $\{e^{-x},e^{2x},e^{-2x}\}$; obecné řešení homogenní rovnice je $y_h(x)=a\,e^{-x}+b\,e^{2x}+c\,e^{-2x},\,x\in\mathbb{R}$.

Pravá strana je kombinace dvou speciálních pravých stran.

- $6e^x$: d=0; $\lambda=1$, bez překryvu s levou stranou, proto $y_1(x)=Ae^x$.
- -4x: d=1; $\lambda=0$, bez překryvu s levou stranou, proto $y_2(x)=Bx+C$.

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = Ae^x + Bx + C$, dosadíme do dané rovnice a dostaneme

$$-6A\,e^x-4Bx+[-4B-4C]=6e^x-4x+0,$$
tedy $-6A=6,\ -4B=-4,\ -4B-4C=0,\ \text{odtud}\ A=-1,\ B=1,\ C=-1,\ \text{obecn\'e \'r\'e\'sen\'e}$ je $y(x)=y_p(x)+y_h(x)=-e^x+x-1+a\,e^{-x}+b\,e^{2x}+c\,e^{-2x},\ x\in I\!\!R.$

 $y(x) = y_p(x) + y_h(x) = -e^x + x - 1 + ue^x + ve^x + ce^x$, $x \in \mathbb{R}$. Poč. podmínky: $y(x) = y_p(x) + y_h(x) = x - 1 - e^x - e^{-x}$, $x \in \mathbb{R}$.

- 13. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 2\lambda$, char. čísla $\lambda = 0, 2$; fund. syst. $\{1, e^{2t}\}$; obecné řešení homogenní rovnice je $x_h(t) = a + b e^{2t}$, $t \in \mathbb{R}$. Zadaná pravá strana není speciální, ale takto $2 \sinh(2t) = e^{2t} e^{-2t}$ je, přesněji je to kombinace dvou speciálních pravých stran.
- e^{2t} : d=0; $\lambda=2$, jednonásobný překryv s levou stranou, proto $x_1(t)=t^1[A\,e^{2t}]=At\,e^{2t}$.
- e^{-2t} : d=0; $\lambda=-2$, bez překryvu s levou stranou, proto $x_2(t)=Be^{-2t}$.

Odhad partikulárního řešení $x_p(t) = x_1(t) + x_2(t) = At e^{2t} + B e^{-2t}$, dosadíme do dané rovnice a dostaneme

$$2A\,e^{2t} + 8B\,e^{-2t} = e^{2t} - e^{-2t}, \text{ odtud } A = \frac{1}{2}, \, B = -\frac{1}{8},$$
 obecné řešení je $x(t) = x_p(t) + x_h(t) = \frac{1}{2}t\,e^{2t} - \frac{1}{8}e^{-2t} + a + b\,e^{2t}, \, t \in I\!\!R.$ Poč. podmínky: $x(t) = \frac{1}{2}t\,e^{2t} - \frac{1}{8}e^{-2t} - \frac{1}{2}, \, t \in I\!\!R.$

14. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 - 4$, char. čísla $\lambda = \pm 2$; fund. syst. $\{e^{-2x}, e^{2x}\}$; obecné řešení homogenní rovnice je $y_h(x) = a e^{2x} + b e^{-2x}$, $x \in \mathbb{R}$.

Pravá strana je kombinace dvou speciálních pravých stran.

- $13\sin(3x)$: d=0; $\lambda=3i$, bez překryvu s levou stranou, proto $y_1(x)=A\sin(3x)+B\cos(3x)$.
- $-5\cos(x)$: d=0; $\lambda=i$, bez překryvu s levou stranou, proto $y_2(x)=C\sin(x)+D\cos(x)$. Odhad partikulárního řešení

 $y_p(x) = y_1(x) + y_2(x) = A\sin(3x) + B\cos(3x) + C\sin(x) + D\cos(x)$, dosadíme do dané rovnice a dostaneme

$$(-13A)\sin(3x) + (-13B)\cos(3x) + (-5C)\sin(x) + (-5D)\cos(x) = 13\sin(3x) - 5\cos(x), \\ \text{odtud } A = -1, \ B = 0, \ C = 1, \ D = 0, \text{ obecn\'e r\'e\'sen\'e je} \\ y(x) = \cos(x) - \sin(3x) + a \ e^{2x} + b \ e^{-2x}, \ x \in I\!\!R.$$

Poč. podmínky: $y(x) = \cos(x) - \sin(3x) + 2e^{2x}$, $x \in \mathbb{R}$.

15. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 4$, char. čísla $\lambda = \pm 2i$; fund. syst. $\{\sin(2t), \cos(2t)\}$; obecné řešení homogenní rovnice je $y_h(t) = a\sin(2t) + b\cos(2t)$, $t \in \mathbb{R}$.

Pravá strana je kombinace dvou speciálních pravých stran.

- $9t\sin(t)$: d=1; $\lambda=i$, bez překryvu s levou stranou, proto
- $y_1(t) = (At + B)\sin(t) + (Ct + D)\cos(t).$
- $-5e^t$: d=0; $\lambda=1$, bez překryvu s levou stranou, proto $y_2(t)=Ee^t$.

Odhad partikulárního řešení $y_p(t) = y_1(t) + y_2(t) = (At + B)\sin(t) + (Ct + D)\cos(t) + Ee^t$, dosadíme do dané rovnice a dostaneme

$$[3B-2C+3At]\sin(t)+[3D+2A+3Ct]\cos(t)+5Et^t=9t\sin(t)-5e^t,$$
tedy $3B-2C=0,\ 3A=9,\ 3D+2A=0,\ 3C=0,\ 5E=-5,\ {\rm odtud}\ A=3,\ B=0,\ C=0,$ $D=-2,\ E=-1,\ {\rm obecn\acute{e}}$ řešení je

$$y(t) = y_p(t) + y_h(t) = 3t\sin(t) - 2\cos(t) - e^t + a\sin(2t) + b\cos(2t), t \in \mathbb{R}.$$

Poč. podmínky: $y(t) = 3t\sin(t) - 2\cos(t) - e^t + \sin(2t), t \in \mathbb{R}.$

16. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 - 3\lambda + 2$, char. čísla $\lambda = 1, 2$; fund. syst. $\{e^x, e^{2x}\}$; obecné řešení homogenní rovnice je $y_h(x) = a e^x + b e^{2x}$, $x \in \mathbb{R}$.

Pravá strana je speciální, přesněji kombinace dvou speciálních pravých stran.

- 2x: d=1; $\lambda=0$, bez překryvu s levou stranou, proto $y_1(x)=Ax+B$.
- $(\pi^4 + 5\pi^2 + 4)\sin(\pi x)$: d = 0; $\lambda = \pi i$, bez překryvu s levou stranou, proto $y_2(x) = C\sin(\pi x) + D\cos(\pi x)$.

Odhad partikulárního řešení $y_p(x) = y_1(x) + y_2(x) = Ax + B + C\sin(\pi x) + D\cos(\pi x)$, dosadíme do dané rovnice a dostaneme

$$[(2B - 3A) + 2Ax] + [2C - \pi^2 C + 3\pi D]\sin(x) + [2D - \pi^2 D - 3\pi C]\cos(x)$$

= $2x + (\pi^4 + 5\pi^2 + 4)\sin(\pi x)$,

tedy 2B - 3A = 0, 2A = 2, $(2 - \pi^2)C + 3\pi D = (\pi^4 + 5\pi^2 + 4)$, $(2 - \pi^2)D - 3\pi C = 0$, odtud A = 1, $B = \frac{3}{2}$, $C = 2 - \pi^2$, $D = 3\pi$, obecné řešení je

$$y(x) = y_p(x) + y_h(x) = \frac{3}{2} + x + (2 - \pi^2)\sin(\pi x) + 3\pi\cos(\pi x) + ae^x + be^{2x}, x \in \mathbb{R}.$$

Poč. podmínky: $y(x) = \frac{3}{2} + x + (2 - \pi^2)\sin(\pi x) + 3\pi\cos(\pi x) + e^x, x \in \mathbb{R}.$

17. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 1$, char. čísla $\lambda = \pm i$; fund. syst. $\{\sin(t), \cos(t)\}$; obecné řešení homogenní rovnice je $x_h(t) = a\sin(t) + b\cos(t)$, $t \in \mathbb{R}$.

Pravá strana je kombinace dvou speciálních pravých stran.

- $\sin(t)$: d = 0; $\lambda = i$, překryv násobnosti m = 1 s levou stranou, proto $x_1(t) = t[A\sin(t) + B\cos(t)]$.
- $e^t \sin(t)$: d = 0; $\lambda = 1 + i$, bez překryvu s levou stranou, proto $x_2(t) = e^t [C \sin(t) + D \cos(t)]$.

Odhad partikulárního řešení

 $x_p(t) = x_1(t) + x_2(t) = At\sin(t) + Bt\cos(t) + Ce^t\sin(t) + De^t\cos(t)$, dosadíme do dané rovnice a dostaneme