Producto Interno

by gira

10/10/2009

1. Definición

Sea V un \mathbb{C} -espacio vectorial, y sean $u \in V$, $v \in V$, $w \in V$ y $\alpha \in \mathbb{C}$, entonces $(\cdot, \cdot) : V_{\mathbb{C}} \times V_{\mathbb{C}} \to \mathbb{C}$ es un *producto interno* (pi) en V si se cumplen los siguientes axiomas:

$$a_1$$
) $(u,v) = \overline{(v,u)}$ \vee $(u,v) = (v,u)$ si V es \mathbb{R} -ev

$$a_2$$
) $(u+v,w) = (u,w) + (v,w)$

$$a_3$$
) $(\alpha u, v) = \overline{\alpha}(u, v) \quad \lor \quad (\alpha u, v) = \alpha(u, v) \text{ si } V \text{ es } \mathbb{R}\text{-ev}$

$$a_3$$
) $(u,u) > 0$ \wedge $(u,u) = 0$ \iff $u = 0_V$

2. Propiedades del pi

$$(i) (u, v + w) = (u, v) + (u, w)$$

$$(ii)$$
 $(u, \alpha v) = \alpha(u, v)$

$$(iii) (v, 0_V) = 0$$

El producto interno canónico (pic)

En
$$\mathbb{R}^n$$
: $(u, v) = u^T v$

En
$$\mathbb{C}^n$$
: $(u, v) = u^H v = \overline{(u^T)}v$

En
$$\mathbb{R}^{nxn}$$
: $(A,B) = \sum_{\substack{i=1\\j=1}}^{n} a_{ij}b_{ij}$

3. Norma y distancia

Sea V un EVPI (espacio vectorial con prod. int.), se define como norma al número real

$$||u|| = (u, u)$$

y la distancia entre dos elementos u y v de V se define como:

$$d(u,v) = ||v - u||$$

3.1. Propiedades de la norma

$$(i) ||u|| > 0 \wedge ||u|| = 0 \iff u = 0_V$$

(ii)
$$||ku|| = |k| ||u||$$
 $(k \in K)$

(iii)
$$||u+v|| \le ||u|| + ||v||$$
 (Designaldad Triangular)

4. Desigualdad de Cauchy-Schwarz

Ver apunte 7.

5. Ortogonalidad

5.1. Definición

Dos elementos u y v de V (EVPI) son ortogonales \iff (u,v)=0

Atención: La ortogonalidad depende del producto interno del correspondiente espacio vectorial

5.2. Propiedad Pitagórica

Si u y v son ortogonales \implies $||u+v||^2 = ||u||^2 + ||v||^2$

Si el espacio vectorial es Real entonces se cumple el "si y solo si".

5.3. Conjuntos Ortogonales

<u>Definición</u>: $\{u_1, u_2,, u_r\}$ es un conjunto ortogonal \iff $(u_i, u_j) = 0 \quad \forall i \neq j$

Propiedad: Todo conjunto ortogonal que no contenga al 0_V es LI

B es una base ortogonal (BOG) si es base y es ortogonal

5.4. Conjuntos Ortonormales

B es una base ortonormal (BON) si es base y es ortonormal

 $\frac{v}{\|v\|}$ es llamado versor~asociado~a~vy tiene norma 1.

6. Matriz del Producto Interno (Matriz de Gram)

Sea $B = \{u_1, u_2, ..., u_r\}$ base de V (EVPI), y sean v y w de V, entonces:

$$(v,w) = [v]_B^H . G_B . [w]_B$$
 // Con la otra notación: $(v,w) = C_B(v)^H . G_B . C_B(w)$

$$\operatorname{donde} G_B = \begin{pmatrix} (u_1, u_1) & (u_1, u_2) & \cdots & (u_1, u_r) \\ (u_2, u_1) & (u_2, u_2) & \cdots & (u_2, u_r) \\ \vdots & \vdots & \ddots & \vdots \\ (u_r, u_1) & (u_r, u_2) & \cdots & (u_r, u_r) \end{pmatrix}$$

$$G_B \in K^{rxr} \quad (\operatorname{Si} \operatorname{dim}(V) = r)$$

$$\bullet \operatorname{Hermitica} \quad (\operatorname{Simétrica})$$

$$\bullet \operatorname{Definida Positiva}$$

$$\bullet \operatorname{Inversible}$$

6.1. Observaciones

- $A \in \mathbb{C}^{nxn}$ es $hermítica \iff A = A^H \ (a_{ij} = \overline{a_{ji}})$
- $A \in \mathbb{R}^{nxn}$ es simétrica \iff $A = A^T$ $(a_{ij} = a_{ji})$
- Si $K = \mathbb{C}$, entonces sea $A \in \mathbb{C}^{nxn}$ hermítica \implies A es $definida positiva <math>\iff$ $x^H A x \geq 0$ \forall $x \land x^H A x = 0 \iff x = 0$
- Si $K = \mathbb{R}$, entonces sea $A \in \mathbb{R}^{nxn}$ simétrica \implies A es definida positiva \iff $x^TAx \ge 0$ \forall $x \land x^TAx = 0 \iff x = 0$
- Sea $A \in \mathbb{C}^{nxn}$ (\mathbb{R}^{nxn}) hermítica (simétrica) $\Longrightarrow A$ es definida positiva \iff todos los subdeterminantes (o menores) principales de A son > 0
- Sea $A \in \mathbb{C}^{nxn}$ (\mathbb{R}^{nxn}) hermítica (simétrica) \Longrightarrow A es definida positiva \iff todos los autovalores de A son > 0

6.2. Casos Especiales

•
$$B = \{g_1, g_2, ..., g_r\}$$
 BOG de $V \implies G_B = \begin{pmatrix} (g_1, g_1) & 0 & \cdots & 0 \\ 0 & (g_2, g_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & (g_r, g_r) \end{pmatrix}$ (Diagonal)

•
$$B = \{u_1, u_2, ..., u_r\}$$
 BON de $V \implies G_B = I$ (pues $||u_i|| = 1$)

7. Proyecciones Ortogonales

Sea V un $EVPI,\,S$ un subespacio de V y $v\in V$:

7.1. Definición

$$\widehat{v} \text{ es la proyección de v sobre S} \iff \left\{ \begin{array}{l} \widehat{v} \in S \\ v - \widehat{v} \perp S \end{array} \right. \lor \left. \left(v - \widehat{v}, w \right) = 0 \ \, \forall \, w \in S \end{array} \right.$$

Notación:
$$\hat{v} = p_S(v)$$
 ó $\hat{v} = p_S v$

7.2. Propiedades

- \bullet Si existe la proyección de v sobre $S \implies p_S(v)$ es única
- $p_S(u+v) = p_S(u) + p_S(v)$
- $p_S(kv) = kp_S(v)$
- $p_S(v) = v \iff v \in S$
- $p_S(v) = 0_V \iff v \perp S$

7.3. Fórmula de proyección

Sea S un subespacio de V y $B=\{g_1,g_2,....,g_r\}$ una BOG de S, entonces:

$$p_S(v) = \sum_{i=1}^r \frac{(g_i, v)}{\|g_i\|^2} g_i$$

<u>Caso particular:</u> Si $B = \{u_1, u_2,, u_r\}$ es BON de S, entonces:

$$p_S(v) = \sum_{i=1}^r (u_i, v).u_i$$

7.4. Método de Gram-Schmidt (Construcción de una BOG)

Sea S subespacio de V y $B = \{v_1, v_2,, v_r\}$ base de $S \implies \exists B' = \{g_1, g_2,, g_r\}$ BOG de S donde:

$$g_1 = v_1$$

$$g_i = v_i - p_{S_{i-1}}(v_i)$$
 donde $S_{i-1} = \{g_1, ..., g_{i-1}\}$ con $2 \le i \le r$

7.5. La proyección como mejor aproximación

Sea S subespacio de V y $v \in V$, si $\hat{v} = p_S(v)$ resulta:

$$d(v, \widehat{v}) \le d(v, w) \quad \forall \ w \in S \qquad (\|v - \widehat{v}\| \le \|v - w\|)$$

es decir, \hat{v} es el vector de S que está "más cerca" de v o "mejor aproxima" a v.

7.5.1. Distancia de un vector a un subespacio

$$d(v, S) = ||v - \widehat{v}||$$

7.6. Complemento Ortogonal

7.6.1. Definición

Sea S subespacio de V (EVPI) entonces el complemento ortogonal de S se define como:

$$S^\perp = \{v \in V \ / \ (v,w) = 0 \ \forall \ w \in S\}$$

 S^\perp es subespacio de V

Si
$$S = gen\{v_1, v_2, ..., v_q\} \subset V \implies S^{\perp} = \{v \in V \mid (v, v_1) = 0, ..., (v, v_q) = 0\}$$

7.6.2. Propiedad

Sea $S \subseteq V$ un subespacio de V tal que $\forall v \in V$ existe $p_S(v)$

$$\implies S \oplus S^{\perp} = V \qquad \left(S \cap S^{\perp} = \{ 0_V \} \land S + S^{\perp} = V \right)$$

7.6.3. Corolarios

(i) Si
$$dim(S)$$
 es finita $\implies \exists p_S(v) \ \forall v \in V \implies S \oplus S^{\perp} = V$

(ii) Si
$$dim(V) = n \implies dim(S \oplus S^{\perp}) = dim(S) + dim(S^{\perp}) = n$$

$$(iii) \ \ \mathrm{Si} \ S \oplus S^{\perp} = V \ \implies \ (S^{\perp})^{\perp} = S$$

(iv) Si
$$S \oplus S^{\perp} = V \implies v = p_S(v) + p_{S^{\perp}}(v) \ \forall \ v \in V$$

7.6.4. Casos Especiales

• Si
$$S = Nul(A) = \{x \in \mathbb{R}^n / Ax = 0\},$$

En general, para p.i. canónico:

$$x \in Nul(A) \iff Ax = 0 \iff (F_i^T, x) = 0 \iff x \perp Fil(A) \iff x \in [Fil(A)]^{\perp} \implies [Nul(A) = [Fil(A)]^{\perp}]$$

$$\implies S^{\perp} = Fil(A)$$

• Si
$$S = Nul(A^T) = \{x \in \mathbb{R}^n / A^T x = 0\},$$

$$Nul(A^T) \perp Fil(A^T) = Col(A) \implies \boxed{Nul(A^T) = [Col(A)]^{\perp}} \implies S^{\perp} = Col(A)$$

7.8. Matriz de Proyección

Atención: A partir de ahora usamos sólo p.i. canónico.

Sea $V = K^n$ (p.i.c.), S subespacio de V:

7.8.1. Definición

 $P \in K^n$ es la matriz de proyección sobre S si $P.v = p_S(v)$ tal que $P = QQ^H$, con $Q = [u_1 \ u_2 \ \ u_r]$ y $B = \{u_1, u_2,, u_r\}$ una BON de S.

7.8.2. Propiedades

• P es única

•
$$Q = [u_1 \ u_2 \ \ u_r] \implies Col(Q) = gen\{u_1, u_2,, u_r\} = S$$

$$Q^HQ = I$$

•
$$Col(P) = Col(Q) = S$$

•
$$P^H = P$$
 (Hermítica) $\wedge P^2 = P$ (Idempotente)

Obs:
$$rg(P) = dim(S) = r$$

7.8.3. Relación entre P_S y $P_{S^{\perp}}$

Si P_S la matriz de proyección sobre S y P_{S^\perp} la matriz de proyección sobre S^\perp entonces:

$$v = p_S(v) + p_{S^{\perp}}(v) \quad \forall \ v \in \mathbb{R}^n$$

$$v = P_S.v + P_{S^{\perp}}.v$$

$$I.v = (P_S + P_{S^{\perp}}).v \implies P_S + P_{S^{\perp}} = I$$

7.8.4. Un par de observaciones

•
$$P.v \in Col(P) \implies v - P.v \in [Col(P)]^{\perp}$$

•
$$P$$
 es inversible \iff $\det(P) \neq 0 \iff$... \iff $\underline{P} = \underline{I}$

• Si
$$P \neq I \implies rg(P) \leq (n-1)$$

$$\bullet \ \ P^T = P \implies Nul(P^T) = [Col(P)]^{\perp} \implies Nul(P) = [Col(P)]^{\perp} \implies Nul(P) \perp Col(P)$$

$$\Longrightarrow \boxed{Nul(P) \oplus Col(P) = R^n}$$