Заметки по машинному обучению и анализу данных. Том 2

Подвойский А.О.

Здесь приводятся заметки по некоторым вопросам, касающимся машинного обучения, анализа данных, программирования на языках Python, R и прочим сопряженным вопросам так или иначе, затрагивающим работу с данными.

Краткое содержание

1 Приемы работы с библиотеками Gym и Ecole	1
Список иллюстраций	2
Список литературы	3
Содержание	
1 Приемы работы с библиотеками Gym и Ecole	1
1.1 Gym	1
1.2 Ecole	2
1.2.1 Observations	2
Список иллюстраций	2
Список литературы	3

1. Приемы работы с библиотеками Gym и Ecole

1.1. Gym

Функция окружения (environment) step возвращает четыре значения:

- observation (object): это объект, специфичный для окружающей среды и представляющий результат наблюдения за этой средой (например, состояние доски в настольной игре),
- reward (float): вознаграждение, полученное за предыдущее действие. Масштаб варьируется в зависимости от среды, но цель всегда в том, чтобы сделать суммарное вознаграждение как можно больше,
- done (boolean): флаг завершения эпизода. Многие (но не все) задачи разделены на четко определенные эпизоды, и done = True указывает на то, что эпизод завершился (например, мы потеряли последнюю жизнь в игре),
- info (dict): диагонстическая информация, полезная для отладки.

Это просто реализация классического цикла «агент – среда». На каждом шаге агент совершает то или иное действие и среда возвращает наблюдения (observation) и вознаграждение (reward).

Процесс запускается вызовом функции reset(), которая возвращает первое приближение observation.

```
import gym
env = gym.make('CartPole-v0')
for i_episode in range(20):
    observation = env.reset()
    for t in range(100):
        env.render()
        print(observation)
        action = env.action_space.sample()
        observation, reward, done, info = env.step(action)
        if done:
            print("Episode finished after {} timesteps".format(t+1))
            break
env.close()
```

В этом примере мы отбирали случайные действия из пространства действий среды. Каждая среда поставляется с атрибутами action_space и observation_space. Эти атрибуты имеют тип Space и описывают формат допустимых действий и наблюдений

Пространство Descrete описывает фиксированный диапазон неотрицательных чисел, так что в данном случае допустимыми действиями будет 0 или 1. Пространство Box представляет n-мерный ящик, так что в данном случае допустимыми наблюдениями будут 4-мерные массивы.

1.2. Ecole

Полезный ресурс о специальных приемах работы с задачами линейного программирования в частично-целочисленного постановке https://www.gams.com/37/docs/UG_LanguageFeatures.html?search=sos1

1.2.1. Observations

Knacc ecole.observation.NodeBipartiteObs: двудольный граф наблюдений для узлов branchand-bound дерева. Оптимизационная задача представляется в виде гетерогенного двудольного графа. Между переменной и ограничением будет существовать ребро, если переменная присутствует в ограничении с ненулевым коэффициентом.

Meтод reset() в Ecole принимает в качестве аргумента экземпляр проблемы.

Список иллюстраций

Список литературы

- 1. $\it Лути, M.$ Изучаем Python, 4-е издание. Пер. с англ. СПб.: Символ-Плюс, 2011. 1280 с.
- 2. $\mathit{Бизли}\ \mathcal{A}.$ Python. Подробный справочник. Пер. с англ. СПб.: Символ-Плюс, 2010. 864 с.