AWS Accelerated Computing auf Deutsch

Was ist Accelerated Computing? (AWS Accelerated Computing)

In AWS bezeichnet Accelerated Computing EC2-Instanzen, die spezielle Hardware-Beschleuniger (wie GPU, FPGA und AWS Inferentia) verwenden, um bestimmte rechenintensive Workloads zu beschleunigen. Diese Beschleuniger ermöglichen eine deutlich schnellere Verarbeitung als herkömmliche CPU-basierte Berechnungen.

† Eigenschaften:

- ✓ Nutzt spezielle Hardware (GPU, FPGA, ASIC), um rechenintensive Workloads zu beschleunigen
- ✓ Optimiert für Anwendungen wie **künstliche Intelligenz**, **maschinelles Lernen**, **Deep** Learning und Videoverarbeitung
- ✓ Ermöglicht parallele Verarbeitung und Datenparallelität für große Datensätze
- ✓ Ideal für Anwendungen mit hohen Leistungsanforderungen

EC2-Instanztypen für Accelerated Computing

Die folgenden EC2-Instanztypen gehören zur Kategorie Accelerated Computing in AWS:

Instanztyp Eigenschaften		Anwendungsfälle
P4d	Nvidia A100 GPU, hohe Leistung für Deep Learning	Deep Learning, maschinelles Lernen
G4dn	Nvidia T4 GPU, Video-Encoding und Gaming- Server	Grafikverarbeitung, Video- Transcoding
Inf1	AWS Inferentia, optimiert für maschinelles Lernen	Modell-Inferenz, KI- Anwendungen
F1	FPGA-Beschleuniger, anpassbare Berechnungen	Hochleistungs-FPGA- Anwendungen
Р3	Nvidia V100 GPU, Deep Learning und wissenschaftliches Rechnen	Deep Learning, Genomanalyse
G5	Nvidia A10G GPU, optimiert für Grafik- und Gaming-Workloads	Gaming, Grafikverarbeitung, AR/VR

🦞 P4d und P3 sind ideal für rechenintensive Workloads wie Deep Learning und maschinelles Lernen. G4dn und G5 sind besser für Grafik- und Videoverarbeitung geeignet.

Accelerated Computing ist ideal für folgende Workloads:

□ Maschinelles Lernen und Deep Learning

- Training von Modellen mit TensorFlow, PyTorch, MXNet
- ✓ **GPU- und Inferentia-Beschleuniger** verkürzen die Trainingszeit bei großen Datensätzen erheblich.

D Gaming und Grafikverarbeitung

- Gaming-Server, Video-Transcoding und Rendering
- ▼ **T4- und A10G-GPUs** sorgen für eine schnelle Grafikverarbeitung.

S■ Wissenschaftliches Rechnen

- Biologische Forschung, Genomanalyse, Simulationen
- **▼ P3- und P4d-Instanzen** bieten mehr Rechenleistung für schnellere Analysen.

4 □ Y III III

- Echtzeit-KI-Modelle, Sprach- und Bildverarbeitung
- ☑ Inferentia-ASIC-Beschleuniger ermöglichen eine effiziente KI-Inferenz.

5 ♦ Finanzdienstleistungen und Handel

- Algorithmischer Handel, Risikoanalyse, Big Data-Verarbeitung
- **▼ FPGA-Beschleuniger** bieten eine extrem schnelle Datenanalyse.

Accelerated Computing vs. Andere Instanztypen

Eigenschaft	Accelerated Computing (P/G/F-Serie)	General Purpose (M-Serie)	Compute Optimized (C- Serie)
Einsatzbereich	GPU- und FPGA- Workloads, maschinelles Lernen	Ausgewogene CPU- und RAM-Nutzung	Hohe CPU-Lasten
Typische Workloads	Deep Learning, Grafikverarbeitung, FPGA- Anwendungen	Webserver, Unternehmensanwendungen	Gaming-Server, Videoverarbeitung
Beispielinstanzen	P4d, G4dn, Inf1, F1	M7i, M6i	C7g, C6i

🚀 Ja, wenn:

- ✓ Du **hohe Rechenleistung und parallele Verarbeitung** benötigst (z. B. für Deep Learning, KI oder Grafikverarbeitung)
- ✓ Du Anwendungen für **maschinelles Lernen und künstliche Intelligenz** entwickelst
- ✓ Du Grafik-Rendering, Video-Encoding oder Gaming-Server betreiben möchtest.