

# Universidad Peruana Cayetano Heredia Facultad de Ciencias e Ingeniería Departamento de Ciencias Exactas

# Programación Avanzada 2025

# Lab. 3.3. Introducción al paquete NumPy. Vectores con NumPy.

Septiembre 06, 2025

Cree una carpeta (folder) en el disco D, nómbrela con su apellido paterno seguido de su código. Ejemplo: LOPEZ12345

NumPy es un paquete para Computación Científica, entre muchas otras herramientas soporta objetos array de N dimensiones. NumPy no pertenece directamente a Python, por lo que antes de usarlo debemos instalarlo.

#### **Instalando NumPy**

Primer caso: Si Python fue agregado al PATH de Windows durante la instalación, es decir, usted colocó check a la opción ( $\square$  Add Python 3.13.7 to PATH).

Ingresar a la aplicación Símbolo del Sistema (línea de comandos del Sistema Operativo) de Windows **como Administrador**. Debe mostrar algo similar a lo siguiente:

## C:\Users\tu\_nombre\_de\_usuario>

Para instalar Numpy coloque el siguiente comando:

## C:\Users\tu\_nombre\_de\_usuario> pip install numpy

Con este último comando se habrá instalado Numpy.

Para probar si NumPy está instalado, colocamos el siguiente comando en el interpretador de Python (IDLE):

```
>>>import numpy
```

Si no devuelve ningún error es que el programa está instalado correctamente.

Si logró instalar Numpy, entonces puedes instalar también Matplotlib y Pandas:

# C:\Users\tu\_nombre\_de\_usuario> pip install matplotlib C:\Users\tu\_nombre\_de\_usuario> pip install pip pandas

## Ejemplo de uso de NumPy:

Coloque en el interpretador de Python, IDLE:

#### Segundo caso: Si Python NO fue agregado al PATH de Windows durante la instalación.

a) Ingresar a la aplicación Símbolo del Sistema (línea de comandos del Sistema Operativo) de Windows **como Administrador**. Debe mostrar algo similar a lo siguiente:

```
C:\Users\tu_nombre_de_usuario>
```

b) Ubicar la carpeta donde se encuentra instalado Python, esto depende de la instalación. La carpeta podría estar en la siguiente ruta **C:\Program Files\Python313** (la carpeta *Program Files* podría estar con el nombre *Archivos de programas*).

Si la ruta fuera **C:\Program Files\Python313**, ejecutar el siguiente comando:

```
C:\Users\ tu_nombre_de_usuario>CD C:\Program Files\Python313
```

Ahora el cursor nos dice que estamos en la carpeta de Python:

## C:\Program Files\Python313>

c) Colocar el siguiente comando (fíjese que al parámetro **user** le antecede **dos guiones**):

## C:\Archivos de programas\Python312>python -m pip install numpy --user

Con el último comando NumPy debió instalarse.

d) Ya que logró instalar NumPy, aproveche en instalar Matplotlib y Pandas, paquetes que usaremos más tarde. En el último comando solo hay que cambiar el nombre numpy por matplotlib o pandas:

# C:\Archivos de programas\Python313>python -m pip install matplotlib --user C:\Archivos de programas\Python313>python -m pip install pandas --user

Para probar si NumPy y Matplotlib están instalados, colocamos el siguiente comando en el interpretador de Python (IDLE):

```
>>>import numpy (import matplotlib para Matplotlib, import pandas para Pandas)
```

Si no devuelve ningún error es que los programas están instalados correctamente.

#### Ejemplo de uso de NumPy:

Coloque en el interpretador de Python, IDLE:

# Para los siguientes ejercicios, elabore un programa en Python. Verifique los programas ejecutando y probando con distintas entradas. Use la librería NumPy.

- 1. Generar un vector A de N elementos con valores aleatorios del intervalo [10,99]
  - a) Genere un nuevo vector con los valores impares del vector A.
  - b) Genere un nuevo vector con los valores impares de A reemplazados por -1. Tener cuidado en no alterar el vector A.
  - c) Genere un nuevo vector con los valores de A invertidos.
  - d) Genere un nuevo vector negando (cambiando de signo) todos los elementos de A que estén entre 30 y 60 ambos inclusive. Tener cuidado en no alterar el vector A.
  - e) Ordenar el vector A en forma descendente.
- 2. Generar dos vectores numéricos A y B de N y M elementos respectivamente.
  - a) Determinar los elementos comunes de ambos vectores
  - b) Generar un nuevo vector eliminando todos los elementos del vector A presentes en el vector B. Tener cuidado en no alterar el vector A.
  - c) Generar un nuevo vector sumando 1 a todos los elementos de posiciones pares del vector A. Tener cuidado en no alterar el vector A.
  - d) Verificar si los vectores A y B son iguales, cuando las longitudes sean iguales y cuando sean diferentes.
  - e) Convierta al vector B en inmutable, es decir, solo de lectura.
  - f) Guarde los vectores A y B en un archivo en formato comprimido (.npz), luego leer los vectores desde el archivo.
- 3. Dado un vector A de números enteros:
  - a) Generar un nuevo vector, con los elementos de A desplazados en dos posiciones hacia la derecha.
  - b) Determinar la cantidad de elementos positivos, negativos y ceros.
  - c) Determinar cuántos elementos son iguales que el máximo.
- 4. Dado los vectores X e Y que contienen las coordenadas (Xi, Yi) de N puntos en el plano cartesiano, determinar:
  - a) El radio del menor círculo, con centro en el origen de coordenadas, que encierre a todos los puntos.
  - b) El punto que se encuentra más alejado del eje de las ordenadas (Y)
  - c) La distancia mayor entre todos los puntos y mostrar los puntos que cumplieron la condición.
  - d) Determinar la distancia del origen de coordenadas a la recta que pasa por los puntos que tuvieron la mayor distancia.

Guarde todos vuestros programas en una carpeta con el nombre su **Apellido** paterno seguido de vuestro **DNI**, luego comprima esta carpeta. Envíe este archivo a Katherine Navarro <u>katherine.navarro@upch.pe</u> especificando como asunto **Lab3.3**.