

Probability

Sanja Lazarova-Molnar

Uncertainty

- Let action A_t = leave for airport t minutes before flight
 - Will A_t get me there on time?
- Problems:
 - Partial observability (road state, other drivers' plans, etc.)
 - Uncertainty in action outcomes (flat tire, etc.)
 - Complexity of modeling and predicting traffic
- Hence a purely logical approach either
 - Risks falsehood: "A₂₅ will get me there on time," or
 - Leads to conclusions that are too weak for decision making:
 - A₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact, etc., etc.
 - A₁₄₄₀ might reasonably be said to get me there on time but I'd have to stay overnight in the airport

Probability

Probabilistic assertions summarize effects of

- Laziness: failure to enumerate exceptions, qualifications, etc.
- Ignorance: lack of explicit theories, relevant facts, initial conditions, etc.
- Intrinsically random behavior

Making decisions under uncertainty

Suppose the agent believes the following:

```
P(A<sub>25</sub> gets me there on time) = 0.04
P(A<sub>90</sub> gets me there on time) = 0.70
P(A<sub>120</sub> gets me there on time) = 0.95
P(A<sub>1440</sub> gets me there on time) = 0.9999
```

Which action should the agent choose?

Making decisions under uncertainty

Suppose the agent believes the following:

```
P(A<sub>25</sub> gets me there on time) = 0.04
P(A<sub>90</sub> gets me there on time) = 0.70
P(A<sub>120</sub> gets me there on time) = 0.95
P(A<sub>1440</sub> gets me there on time) = 0.9999
```

- Which action should the agent choose?
 - Depends on preferences for missing flight vs. time spent waiting
 - Encapsulated by a utility function
- The agent should choose the action that maximizes the expected utility:

```
P(A_t \text{ succeeds}) * U(A_t \text{ succeeds}) + P(A_t \text{ fails}) * U(A_t \text{ fails})
```

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Monty Hall problem

 You're a contestant on a game show. You see three closed doors, and behind one of them is a prize. You choose one door, and the host opens one of the other doors and reveals that there is no prize behind it. Then he offers you a chance to switch to the remaining door. Should you take it?

Monty Hall problem

- With probability 1/3, you picked the correct door, and with probability 2/3, picked the wrong door. If you picked the correct door and then you switch, you lose. If you picked the wrong door and then you switch, you win the prize.
- Expected payoff of switching:

$$(1/3) * 0 + (2/3) * Prize$$

Expected payoff of not switching:

http://www.shodor.org/interactivate/activities/SimpleMontyHall/

Where do probabilities come from?

Frequentism

- Probabilities are relative frequencies
- For example, if we toss a coin many times, P(heads) is the proportion of the time the coin will come up heads

Subjectivism

- Probabilities are degrees of belief
- But then, how do we assign belief values to statements?

Random variables

- We describe the (uncertain) state of the world using random variables
 - Denoted by capital letters
 - R: It will rain tomorrow
 - W: Weather condition
 - D: Outcome of rolling two dice
 - S: Speed of my car (in KPH)
- Just like variables in CSP's, random variables take on values in a domain
 - Domain values must be mutually exclusive and exhaustive
 - R in {True, False}
 - W in {Sunny, Cloudy, Rainy, Snow}
 - **D** in {(1,1), (1,2), ... (6,6)}
 - **S** in [0, 260]

Events

- Probabilistic statements are defined over events, or sets of world states
 - "It will rain tomorrow"
 - "The weather is either cloudy or snowy"
 - "The sum of the two dice rolls is 11"
 - "My car is going between 50 and 90 kilometers per hour"
- Events are described using propositions:
 - R = True
 - W = "Cloudy" ∨ W = "Snowy"
 - $D \in \{(5,6), (6,5)\}$
 - 50 ≤ S ≤ 90
- Notation: P(A) is the probability of the set of world states in which proposition A holds
 - P(X = x), or P(x) for short, is the probability that random variable X has taken on the value x

Kolmogorov's axioms of probability

- For any propositions (events) A, B
 - $0 \le P(A) \le 1$
 - P(True) = 1 and P(False) = 0
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$

- Subtraction accounts for double-counting
- Based on these axioms, what is P(¬A)?
- These axioms are sufficient to completely specify probability theory for discrete random variables
 - For continuous variables, need density functions

Atomic events

- Atomic event: a complete specification of the state of the world, or a complete assignment of domain values to all random variables
 - Atomic events are mutually exclusive and exhaustive
- E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

```
Cavity = false \land Toothache = false
Cavity = false \land Toothache = true
Cavity = true \land Toothache = false
Cavity = true \land Toothache = true
```

Joint probability distributions

 A joint distribution is an assignment of probabilities to every possible atomic event

Atomic event	Р
Cavity = false \(\tau \) Toothache = false	0.8
Cavity = false ∧ Toothache = true	0.1
Cavity = true \(\tau \) Toothache = false	0.05
Cavity = true ∧ Toothache = true	0.05

 From the axioms of probability it follows that the probabilities of all possible atomic events must sum to 1.

Joint probability distributions

- Suppose we have a joint distribution $P(X_1, X_2, ..., X_n)$ of n random variables with domain sizes d
 - What is the size of the probability table?
 - Impossible to write out completely for all but the smallest distributions

Notation:

- P(X = x) is the probability that random variable X takes on value x
- P(X) is the distribution of probabilities for all possible values of X

Marginal probability distributions

 Suppose we have the joint distribution P(X,Y) and we want to find the marginal distribution P(Y)

P(Cavity, Toothache)	
Cavity = false ∧Toothache = false	0.8
Cavity = false \(\tau \) Toothache = true	0.1
Cavity = true ∧ Toothache = false	0.05
Cavity = true ∧ Toothache = true	0.05

P(Cavity)	
Cavity = false	?
Cavity = true	?

P(Toothache)	
Toothache = false	?
Toothache = true	?

Marginal probability distributions

 Suppose we have the joint distribution P(X,Y) and we want to find the marginal distribution P(X)

$$P(X = x) = P((X = x \land Y = y_1) \lor \dots \lor (X = x \land Y = y_n))$$

= $P((x, y_1) \lor \dots \lor (x, y_n)) = \sum_{i=1}^{n} P(x, y_i)$

 General rule: to find P(X = x), sum the probabilities of all atomic events where X = x.

Conditional probability

Probability of cavity given toothache:

P(Cavity = true | Toothache = true)

• For any two events A and B, $P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(A,B)}{P(B)}$

Conditional probability

P(Cavity, Toothache)	
Cavity = false \times Toothache = false	0.8
Cavity = false \(\tau \) Toothache = true	0.1
Cavity = true ∧ Toothache = false	0.05
Cavity = true \(\tau \) Toothache = true	0.05

P(Cavity)	
Cavity = false	0.9
Cavity = true	0.1

P(Toothache)	
Toothache = false	0.85
Toothache = true	0.15

- What is P(Cavity = true | Toothache = false)?
 0.05 / 0.85 = 0.059
- What is P(Cavity = false | Toothache = true)?
 0.1 / 0.15 = 0.667

Conditional distributions

 A conditional distribution is a distribution over the values of one variable given fixed values of other variables

P(Cavity, Toothache)	
Cavity = false \times Toothache = false	0.8
Cavity = false \(\tau \) Toothache = true	0.1
Cavity = true ∧ Toothache = false	0.05
Cavity = true \(\tau \) Toothache = true	0.05

P(Cavity Toothache = true)	
Cavity = false	0.667
Cavity = true	0.333

P(Cavity Toothache = false)	
Cavity = false	0.941
Cavity = true	0.059

P(Toothache Cavity = true)	
Toothache= false	0.5
Toothache = true	0.5

P(Toothache Cavity = false)	
Toothache= false	0.889
Toothache = true	0.111

Normalization trick

To get the whole conditional distribution P(X | y) at once, select all entries in the joint distribution matching Y = y and renormalize them to sum to one

P(Cavity, Toothache)	
Cavity = false ∧Toothache = false	0.8
Cavity = false ∧ Toothache = true	0.1
Cavity = true ∧ Toothache = false	0.05
Cavity = true ∧ Toothache = true	0.05

Select

Toothache, Cavity = false	
Toothache= false	0.8
Toothache = true	0.1

Renormalize

P(Toothache Cavity = false)	
Toothache= false	0.889
Toothache = true	0.111

Product rule

- Definition of conditional probability: $P(A \mid B) = \frac{P(A,B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

Product rule

- Definition of conditional probability: $P(A \mid B) = \frac{P(A,B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

The chain rule:

$$P(A_1,...,A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1,A_2)...P(A_n \mid A_1,...,A_{n-1})$$

$$= \prod_{i=1}^n P(A_i \mid A_1,...,A_{i-1})$$

Bayes Rule

Rev. Thomas Bayes (1702-1761)

 The product rule gives us two ways to factor a joint distribution:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

• Therefore,
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- Why is this useful?
 - Can get diagnostic probability P(cavity | toothache) from causal probability P(toothache | cavity)
 - Can update our beliefs based on evidence
 - Important tool for probabilistic inference

Bayes Rule example

• Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year (5/365 = 0.014). Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on Marie's wedding?

Bayes Rule example

 Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year (5/365 = 0.014). Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on Marie's wedding?

$$P(\text{Rain} | \text{Predict}) = \frac{P(\text{Predict} | \text{Rain})P(\text{Rain})}{P(\text{Predict} | \text{Rain})P(\text{Rain})}$$

$$= \frac{P(\text{Predict} | \text{Rain})P(\text{Rain})}{P(\text{Predict} | \text{Rain})P(\text{Rain}) + P(\text{Predict} | \neg \text{Rain})P(\neg \text{Rain})}$$

$$= \frac{0.9*0.014}{0.9*0.014 + 0.1*0.986} = 0.111$$

Bayes rule: Another example

• 1% of women at age forty who participate in routine screening have breast cancer. 80% of women with breast cancer will get positive mammographies. 9.6% of women without breast cancer will also get positive mammographies. A woman in this age group had a positive mammography in a routine screening. What is the probability that she actually has breast cancer?

Bayes rule: Another example

 1% of women at age forty who participate in routine screening have breast cancer. 80% of women with breast cancer will get positive mammographies. 9.6% of women without breast cancer will also get positive mammographies. A woman in this age group had a positive mammography in a routine screening. What is the probability that she actually has breast cancer?

$$P(\text{Cancer} | \text{Positive}) = \frac{P(\text{Positive} | \text{Cancer})P(\text{Cancer})}{P(\text{Positive} | \text{Cancer})P(\text{Cancer})}$$

$$= \frac{P(\text{Positive} | \text{Cancer})P(\text{Cancer})}{P(\text{Positive} | \text{Cancer})P(\text{Cancer}) + P(\text{Positive} | \neg \text{Cancer})P(\neg \text{Cancer})}$$

$$= \frac{0.8*0.01}{0.8*0.01 + 0.096*0.99} = 0.0776$$

Independence

- Two events A and B are independent if and only if P(A ∧ B) = P(A) P(B)
 - In other words, $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$
 - This is an important simplifying assumption for modeling, e.g., *Toothache* and *Weather* can be assumed to be independent
- Are two mutually exclusive events independent?
 - No, but for mutually exclusive events we have $P(A \lor B) = P(A) + P(B)$
- Conditional independence: A and B are conditionally independent given C iff P(A \ B | C) = P(A | C) P(B | C)

Conditional independence: Example

- Toothache: boolean variable indicating whether the patient has a toothache
- Cavity: boolean variable indicating whether the patient has a cavity
- Catch: whether the dentist's probe catches in the cavity
- If the patient has a cavity, the probability that the probe catches in it doesn't depend on whether he/she has a toothache

```
P(Catch | Toothache, Cavity) = P(Catch | Cavity)
```

- Therefore, Catch is conditionally independent of Toothache given Cavity
- Likewise, Toothache is conditionally independent of Catch given Cavity
 P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
- Equivalent statement:

```
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
```

Conditional independence: Example

- How many numbers do we need to represent the joint probability table P(Toothache, Cavity, Catch)?
 - $2^3 1 = 7$ independent entries, or 8 values in table
- Write out the joint distribution using chain rule:

```
P(Toothache, Catch, Cavity)
= P(Cavity) P(Catch | Cavity) P(Toothache | Catch, Cavity)
= P(Cavity) P(Catch | Cavity) P(Toothache | Cavity)
```

How many numbers do we need to represent these distributions?

```
1 + 2 + 2 = 5 independent numbers
```

 In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n

Probabilistic inference

- In general, the agent observes the values of some random variables X₁, X₂, ..., X_n and needs to reason about the values of some other unobserved random variables Y₁, Y₂, ..., Y_m
 - Figuring out a diagnosis based on symptoms and test results
 - Classifying the content type of an image or a document based on some features
- This will be the subject of the next classes