Mohó algoritmusok ***

Mozi

Egy nagyon várt film vetítésére a szervező jegyrendeléseket fogad. Minden igénylő egy jegyet igényelhet, az igénylésben megad egy ülőhely sorszámot. A feltétel az, hogy ha egy igénylő az igényében az s sorszámot adta meg, akkor el kell fogadnia olyan u sorszámú ülőhelyet, amelyre teljesül, hogy s≤u≤s+K, ahol K egy előre rögzített nemnegatív szám. A szervező feladata, hogy az igénylések közül kiválassza azt a legtöbb igényt, amelyet ki tud elégíteni. Bármely ülőhelyet legfeljebb egy igénylő kaphat meg.

Készíts programot, amely kiszámítja, hogy legjobb esetben hány igénylő kérését lehet kielégíteni! A program adjon is meg egy megfelelő jegykiosztást!

Bemenet

A standard bemenet első sorában az ülőhelyek száma ($1 \le M \le 3000$), az igények száma ($1 \le M \le 1000$) és a K ($0 \le K \le 100$) értéke van. A második sor pontosan N egész számot tartalmaz (egy-egy szóközzel elválasztva): az i-edik szám annak az ülőhelynek a sorszáma, amelyet az i-edik igénylő szeretne megkapni ($1 \le S_i \le M$).

Kimenet

A standard kimenet első sora egy L egész számot tartalmazzon, a legtöbb kielégíthető igény számát! A következő L sor egy megfelelő jegykiosztást tartalmazzon! Minden sorban két egész szám legyen egy szóközzel elválasztva, az első szám egy igénylő sorszáma, a második pedig annak az ülőhelynek a sorszáma legyen, amelyiket ez az igénylő kap! A kiírás sorrendje tetszőleges. Több megoldás esetén bármelyik megadható.

Példa

Bemenet

5	7	1				
4	2	1	3	2	4	5

K	menet
5	
3	1
2	2
5	3
4	4
1	5

Korlátok

Időlimit: 0.1 mp.

Memórialimit: 32 MB