The wave equation: - maxwell's equation: - maxwell's equation: - are

(i) $\nabla \cdot D = \beta$ (ii) $\nabla \cdot B = 0$ (iii) $\nabla \times E = -\frac{\partial B}{\partial t}$ (iv) $\nabla \times H = J + \frac{\partial J}{\partial t}$

In a uniform linear media, having permittivity \mathbf{p} Earnd no charge permeability μ then $\mathcal{J} = \mathbf{E} \mathbf{E}$, $\mathcal{B} = \mu \mathbf{H}$, $\mathcal{J} = \mathbf{\sigma} \mathbf{E}$, $f = \mathbf{e}$ maxwell's eqs. for this medium can be written as

(iii) $\nabla \cdot \vec{E} = 0$ (ii) $\nabla \cdot H = 0$ (iii) $\nabla \times H = 0$ (iv) $\nabla \times H = 0$

Curl $(\nabla XE) = -\mu \frac{\partial}{\partial t} (\nabla XH)$ $\sigma = conductivity of medium . Substituting the value of ... <math>\nabla XH$

Curl curl $E = -\mu \frac{\partial}{\partial t} \left(\sigma E + E \frac{\partial E}{\partial t} \right)$ $= -\mu \sigma \frac{\partial E}{\partial t} - \mu E \frac{\partial^2 E}{\partial t^2}$ (V)

Similarly; taking und of maxwell's eq.(iv)

curl $(\nabla XH) = -\mu \sigma \frac{\partial H}{\partial t} - \mu \varepsilon \frac{\partial^2 H}{\partial t^2} - - - - (vi)$

Using vector identity curl curl A = grad oliv A - V'A Eqs. (V) and (Vi)

and $\nabla^2 H - \mu \sigma \frac{\partial E}{\partial t} - \mu E \frac{\partial^2 E}{\partial t^2} = 0$ (Viii)

Egs. (vii) and (viii) are the wave eqs of emfelds in a linear homogeneous medium where chare density is zero. Its plane em wave solution is of the form

 $E(r,t) = E_0 \cdot e^{ik\cdot r - i\omega t}$, r is position vector

Eo is the complex complitude which is constant in space & line

k is the wave propagation vector defined as

 $k = \frac{27T}{\lambda} \cdot n = \frac{\omega}{v} n$, n being unit vector along k. $v \longrightarrow phase velocity of wave.$

N.T(5)

One of the simplest and familiar wave form is some wave $f(z,t) = A \cos \left[k(z-vt) + S\right]$

A is the amplitude, S is the phase constant. The time period of wave $T = \frac{2\pi}{kv}$

The frequency $v = \frac{1}{T} = \frac{kv}{2\pi} = \frac{v}{2}$

angular frequency $\omega = 271 \nu = k \nu$

Interms of ω , the wave equation can be written as $f(z,t) = A \cos(kz - \omega t + S)$

If the wave is trowelling towards left, then $f(z,t) = A \cos(kz + \omega t - S)$

The wave equan also be represented in complex notation using Euler's formula eight cost is into

f(3t) = Re [A & 2-wt+s)]

where he represents the real part of complex no.