

Lecture 10: Dimensionality Reduction with Principal Component Analysis

Yi, Yung (이용)

Mathematics for Machine Learning
https://yung-web.github.io/home/courses/mathml.html
KAIST EE

April 7, 2021

April 7, 2021 1 / 42

Warm-Up

Please watch this tutorial video by Luis Serrano on PCA.

https://www.youtube.com/watch?v=g-Hb26agBFg

2 / 42

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

April 7, 2021 3 / 42

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

L10(1) April 7, 2021 4 / 42

Dimensionality Reduction

- High-dimensional data
 - hard to analyze and visualize
 - Often, overcomplete and many dimensionas are redundant
- Compact data representation is always preferred just like compression.
- PCA (Principal Component Analysis) is a representative method.

L10(1) April 7, 2021 5 / 42

Example: Housing Data

- 5 dimensions
 - 1. Size
 - 2. Number of rooms
 - 3. Number of bathrooms
 - 4. Schools around
 - 5. Crime rate
- 2 dimensions
 - Size feature
 - Location feature

L10(1) April 7, 2021 6 / 42

- **S1.** Centering. Centering the data by subtracting mean
- **S2.** Standardization. Divide the data points by the standard deviation for every dimension (original feature) $d = 1, \dots, D$
- **S3.** Eigenvalue/vector. Compute the M-largest eigenvalues and the eigenvectors of the data covariance matrix (M is the dimension that needs to be reduced)
- **S4.** Projection. Project all data points onto the space defined by the eigenvectors (i.e., principal subspace).
- **S5.** Undo standardization and centering.

L10(1) April 7, 2021 7 / 42

PCA Illustration

KAIST EE

April 7, 2021

8 / 42

(a) Original dataset.

(b) Step 1: Centering by subtracting the mean from each data point.

(c) Step 2: Dividing by the standard deviation to make the data unit free. Data has variance 1 along each axis.

(d) Step 3: Compute eigenval-

L10(1)

(e) Step 4: Project data onto

(f) Undo the standardization and move projected data back into the original data space

ues and eigenvectors (arrows) the principal subspace. of the data covariance matrix (ellipse). from (a).

Data Matrix and Data Covariance Matrix

- N: number of samples, D: number of measurements (or original features)
- iid dataset $\mathcal{X} = \{x_1, \dots, x_N\}$ whose mean is 0 (well-centered), where each $x_i \in \mathbb{R}^D$, and its corresponding data matrix

$$m{X} = (m{x}_1 \ \cdots \ m{x}_N) = \left(egin{array}{cccc} x_{1,1} & x_{1,2} & \dots & x_{1,N} \\ x_{2,1} & x_{2,2} & \dots & x_{2,N} \\ & \vdots & & & \\ x_{D,1} & x_{D,2} & \dots & x_{D,N} \end{array}
ight) \in \mathbb{R}^{D \times N}$$

• (data) covariance matrix

$$oldsymbol{S} = rac{1}{N} oldsymbol{X} oldsymbol{X}^\mathsf{T} = rac{1}{N} \sum_{n=1}^N oldsymbol{x}_n oldsymbol{x}_n^\mathsf{T} \in \mathbb{R}^{D imes D}$$

L10(1) April 7, 2021 9 / 42

Covariance Matrix and Data Covariance Matrix

• Covaiance matrix for a random vector $\mathbf{Y} = (Y_1, \dots, Y_D)^\mathsf{T}$,

$$\Sigma_{\mathbf{Y}} = \begin{pmatrix} \operatorname{cov}(Y_1, Y_1) & \operatorname{cov}(Y_1, Y_2) & \cdots \operatorname{cov}(Y_1, Y_D) \\ \vdots & \vdots & \vdots \\ \operatorname{cov}(Y_D, Y_1) & \operatorname{cov}(Y_n, Y_2) & \cdots \operatorname{cov}(Y_D, Y_D) \end{pmatrix}$$

• Data convariance matrix $m{S} \in \mathbb{R}^{D \times D}$

• Each Y_i has N samples $(x_{i,1} \cdots x_{i,N})$

$$\mathbf{S}_{ij} = \text{cov}(Y_i, Y_j) = \frac{1}{N} \sum_{k=1}^{N} x_{i,k} \cdot x_{j,k}$$

$$= \text{average covariance (over samples) btwn feastures } i \text{ and } j$$

L10(1) April 7, 2021 10 / 42

Code: Low Dimensional Representation

• Low-dimensional compressed representation, also called code:

$$z_n = \mathbf{B}^\mathsf{T} \mathbf{x}_n \in \mathbb{R}^M$$

where the projection matrix is $\boldsymbol{B} := (\boldsymbol{b}_1, \dots, \boldsymbol{b}_M) \in \mathbb{R}^{D \times M}$,

- Assume that the columns of \boldsymbol{B} are orthonormal, i.e., $\boldsymbol{b}_i^{\mathsf{T}}\boldsymbol{b}_j=0$ if $i\neq j,$ and $\boldsymbol{b}_i^{\mathsf{T}}\boldsymbol{b}_i=1$ if i=j.
- Seek an M-dimensional subspace $U \subset \mathbb{R}^D$, $\dim(U) = M < D$ onto which we project data
- $\tilde{\mathbf{x}}_n \in \mathbb{R}^D$: projected data, \mathbf{z}_n : their coordinates w.r.t. the basis vectors of \mathbf{B} .

L10(1) April 7, 2021 11 / 42

PCA: Encoder and Decoder Viewpoint

- Find a suitable matrix B such that $z = B^T x$ and $\tilde{x} = Bz$
- **B**^T: encoder, **B**: decoder
- Example. MNIST dataset
 - $^{\circ}$ handwritten digits, N=60,000 data samples, D=28 imes 28=784 pixels

0123456789

L10(1) April 7, 2021 12 / 42

¹In L3(8), the coordinate in the projected space becomes $\lambda = (B^T B)^{-1} B^T x$, which is simply $B^T x$ for orthonormal bases B.

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

L10(2) April 7, 2021 13 / 42

Idea

- Information content in the data
 - space filling
 - o information in the data by looking at how much data is spread out
- PCA
 - a dimensinoality reduction algorithm that maximizes the variance in the low-dimensional data representation.

source: Youtube channel by Luis Serrano

L10(2) April 7, 2021 14 / 42

Matrix Again: B, z_n , and x_n

• $m{B} = (m{b_1} \ m{b_2} \ \dots \ m{b_M})$, where $m{b_i} \in \mathbb{R}^D$ and $m{B} \in \mathbb{R}^{D \times M}$

•
$$m{B}^{\mathsf{T}} = egin{pmatrix} m{b}_1^{\mathsf{T}} \\ \vdots \\ m{b}_M^{\mathsf{T}} \end{pmatrix} \in \mathbb{R}^{M \times D}, \ m{b}_i^{\mathsf{T}} \in \mathbb{R}^{1 \times D}, \ m{x}_i \in \mathbb{R}^{D \times 1}$$

•
$$\mathbf{z}_n = \begin{pmatrix} z_{1n} \\ \vdots \\ z_{Mn} \end{pmatrix} = \mathbf{B}^\mathsf{T} \mathbf{x}_n = \begin{pmatrix} \mathbf{b}_1^\mathsf{T} \\ \vdots \\ \mathbf{b}_M^\mathsf{T} \end{pmatrix} \mathbf{x}_n = \begin{pmatrix} \mathbf{b}_1^\mathsf{T} \mathbf{x}_n \\ \vdots \\ \mathbf{b}_M^\mathsf{T} \mathbf{x}_n \end{pmatrix}$$

• z_{in} : new coordinate (for x_n) in the projected space by the basis b_i

L10(2) April 7, 2021 15 / 42

What We Will Do Is ...

- Goal: Find the orthonormal bases ${\pmb B}=\left({\pmb b}_1\ {\pmb b}_2\ \dots\ {\pmb b}_M\right)$ that maximizes the variance.
- Result: For the M-largest eigenvalues $\lambda_1, \ldots, \lambda_M$ of the data covariance matrix \boldsymbol{S} , their corresponding M eigenvectors become $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_M$
- Question. Why data covariance matrix? Why eigenvectors ordered by their eigenvalues?
- Strategy: Induction
 - Step 1. We seek a single vector \mathbf{b}_1 that maximizes the variance of the projected data, assuming that we project the data onto an 1D line. We show that \mathbf{b}_1 is the eigenvector of the largest eigenvalue.
 - Step k. Suppose that we found b_1, \ldots, b_{k-1} for the variance maximization. Then, we seek b_k that maximizes the variance of the projected data onto k-D plain with the constraint that b_k is orthogonal to b_1, \ldots, b_{k-1} . We prove that b_k is the eigenvector of the k-th largest eigenvalue.

L10(2) April 7, 2021 16 / 42

Step 1: Finding b_1 (1)

• Variance (over N sample data) of the first coordinate z_1 of $\mathbf{z} \in \mathbb{R}^M$, so that

$$V_1 := \text{var}[z_1] = \frac{1}{N} \sum_{n=1}^{N} z_{1n}^2, \quad z_{1n} = \boldsymbol{b}_1^\mathsf{T} \boldsymbol{x}_n$$

where z_{1n} (z_{in}) is the first (i-th) coordinate of the low-dimensional representation z_n of x_n

$$V_1 = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{b}_1^\mathsf{T} \boldsymbol{x}_n)^2 = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{b}_1^\mathsf{T} \boldsymbol{x}_n \boldsymbol{x}_n^\mathsf{T} \boldsymbol{b}_1 = \boldsymbol{b}_1^\mathsf{T} \Big(\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n \boldsymbol{x}_n^\mathsf{T} \Big) \boldsymbol{b}_1 = \boldsymbol{b}_1^\mathsf{T} \boldsymbol{S} \boldsymbol{b}_1$$

• Find b_1 that maximizes V_1 .

$$\mathsf{max}_{m{b}_1} \ m{b}_1^\mathsf{T} m{S} m{b}_1, \quad \mathsf{subject to} \quad \|m{b}_1\|^2 = 1$$

L10(2) April 7, 2021 17 / 42

Step 1: Finding b_1 (2)

Optimization problem

$$\mathsf{max}_{m{b}_1} \ m{b}_1^\mathsf{T} m{S} m{b}_1, \quad \mathsf{subject to} \quad \left\| m{b}_1
ight\|^2 = 1$$

Using the Lagrange multiplier method, we get:

$$extbf{\textit{Sb}}_1 = \lambda_1 extbf{\textit{b}}_1, \quad extbf{\textit{b}}_1^\mathsf{T} extbf{\textit{b}}_1 = 1 \implies \lambda_1$$
: eigenvalue, $extbf{\textit{b}}_1$: eigenvector of $extbf{\textit{S}}$

- Then, $V_1 = {m b}_1^{\sf T} {m S} {m b}_1 = \lambda_1 {m b}_1^{\sf T} {m b}_1 = \lambda_1$ (the variance V_1 is the eigenvalue of S)
- To maximize the variance, we take the largest eigenvalue, and the corresponding eigenvector is called the (first) principal component.

L10(2) April 7, 2021 18 / 42

Step k: Finding b_k (1)

• Finding k-th principal component: Solving the following optimization problem

$$\max_{\boldsymbol{b}} \boldsymbol{b}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}$$
, subject to $\boldsymbol{b}^{\mathsf{T}} \boldsymbol{b} = 1$ and $\boldsymbol{b}^{\mathsf{T}} \boldsymbol{b}_i$, $i = 1, \dots, k-1$

- Claim. The solution of the above is the eigenvector of \boldsymbol{S} corresponding to its k-th largest eigenvalue.
- Proof. By induction hypothesis, $\boldsymbol{b}_1, \dots, \boldsymbol{b}_k$ are the orthonormal eigenvectors of \boldsymbol{S} . Denote the *i*-th largest eigenvalue of \boldsymbol{S} by λ_i , where note that $\boldsymbol{S}\boldsymbol{b}_i = \lambda_i\boldsymbol{b}_i$. The lagrangian of the objective function is:

$$\mathcal{L}(\boldsymbol{b}) = \boldsymbol{b}^\mathsf{T} \boldsymbol{S} \boldsymbol{b} - \lambda (\boldsymbol{b}^\mathsf{T} \boldsymbol{b} - 1) + \sum_{i=1}^k \eta_i \boldsymbol{b}^\mathsf{T} \boldsymbol{b}_i$$

L10(2) April 7, 2021 19 / 42

Step k: Finding b_k (2)

• Letting the solution be denoted by b_{k+1} , the first-order necessary condition for optimality is:

$$\nabla \mathcal{L}(\boldsymbol{b}_{k+1}) = 2\boldsymbol{S}\boldsymbol{b}_{k+1} - 2\lambda \boldsymbol{b}_{k+1} + \sum_{i=1}^{k} \eta_{i} \boldsymbol{b}_{i} = 0$$
 (*)

• Now, for any $j \in \{1, \ldots, k\}$,

$$0 = \boldsymbol{b}_{j}^{\mathsf{T}} \nabla \mathcal{L}(\boldsymbol{b}_{k+1}) = 2\boldsymbol{b}_{j}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}_{k+1} - 2\lambda \boldsymbol{b}_{j}^{\mathsf{T}} \boldsymbol{b}_{k+1} + \sum_{i=1}^{k} \eta_{i} \boldsymbol{b}_{j}^{\mathsf{T}} \boldsymbol{b}_{i} = 2(\boldsymbol{S} \boldsymbol{b}_{j})^{\mathsf{T}} \boldsymbol{b}_{k+1} + \eta_{j}$$
$$= 2(\lambda \boldsymbol{b}_{j})^{\mathsf{T}} \boldsymbol{b}_{k+1} + \eta_{j} = 2\lambda \boldsymbol{b}_{j}^{\mathsf{T}} \boldsymbol{b}_{k+1} + \eta_{j} = \eta_{j}$$

- From $\eta_j = 0$ and (*), $\mathbf{S}\mathbf{b}_{k+1} = \lambda \mathbf{b}_{k+1}$. $\Longrightarrow \lambda$ is an eigenvalue and its corresponding eigenvector is \mathbf{b}_{k+1} .
- Note that the objective function is λ , because $\mathbf{b}^{\mathsf{T}}\mathbf{S}\mathbf{b} = \lambda \mathbf{b}^{\mathsf{T}}\mathbf{b}$.

L10(2) April 7, 2021 20 / 42

Step k: Finding b_k (3)

- Question. How can we choose the largest λ with the constraint that $\boldsymbol{b}_{k+1} \perp (\boldsymbol{b}_1, \dots \boldsymbol{b}_k)$?
- Clearly, if \boldsymbol{b}_{k+1} is equal to any of these eigenvectors (up to sign), the constraint will be violated, so, to maximize λ , \boldsymbol{b}_{k+1} should be a unit eigenvector of \boldsymbol{S} corresponding to (k+1)-th largest eigenvalue.
- By spectral theorem, we can choose this vector in such a way that it is orthogonal to b_1, \ldots, b_k .

L10(2) April 7, 2021 21 / 42

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

L10(3) April 7, 2021 22 / 42

Storyline

- An ordered orthonormal bais (ONB) $B = (m{b}_1, \dots, m{b}_D)$
- $m{B} = (m{b}_1 \;\; m{b}_2 \; \dots \; m{b}_M)$, where $m{b}_i \in \mathbb{R}^D$ and $m{B} \in \mathbb{R}^{D imes M}$
- Encoding: $\mathbf{z}_n = \phi(\mathbf{x}_n)$ for some mapping $\phi(\cdot)$
- Decoding: $\tilde{\mathbf{x}}_n := \mathbf{B}\mathbf{z}_n = \sum_{m=1}^M z_{mn} \mathbf{b}_m$
- Goal: find the best linear projection of $\mathcal{X} = \{x_1, \dots, x_N\}$ onto a lower-dimensional subspace U (also, called principal subspace) of \mathbb{R}^D with dim(U) = M.
- Formally, minimize the following reconstruction error

$$J_{M} := \frac{1}{N} \sum_{n=1}^{N} \|\boldsymbol{x}_{n} - \tilde{\boldsymbol{x}}_{n}\|^{2},$$

where the variables are $(z_n : n = 1, ..., N)$ and $(b_1, ..., b_M)$

L10(3) April 7, 2021 23 / 42

Two-step Approach

- **Step 1.** We optimize the coordinate z_n in the space U for a given ONB (b_1, \ldots, b_M)
- **Step 2.** Then, we find the optimal ONB, knowing the optimal z_n in **Step 1**.

L10(3) April 7, 2021 24 / 42

Step 1: Optimal coordinate z_n for a given ONB

Intuition: Orthogonal projection

L3(8)

Result:
$$\tilde{\mathbf{x}}_n = \mathbf{B}(\mathbf{B}^\mathsf{T}\mathbf{B})^{-1}\mathbf{B}^\mathsf{T}\mathbf{x}_n = \mathbf{B}\mathbf{B}^\mathsf{T}\mathbf{x}_n = \mathbf{B}\mathbf{z}_n, \mathbf{z}_n = \mathbf{B}^\mathsf{T}\mathbf{x}_n$$

• Proof. Assume an ONB $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$. Noting that J_M is a function of $\tilde{\boldsymbol{x}}_n$ and $\tilde{\boldsymbol{x}}_n$ is a function of z_n ,

$$\frac{\partial J_M}{\partial z_{in}} = \frac{\partial J_M}{\partial \tilde{\boldsymbol{x}}_n} \frac{\partial \tilde{\boldsymbol{x}}_n}{\partial z_{in}}, \quad \frac{\partial J_M}{\partial \tilde{\boldsymbol{x}}_n} = -\frac{2}{N} (\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n)^\mathsf{T}, \quad \frac{\partial \tilde{\boldsymbol{x}}_n}{\partial z_{in}} = \frac{\partial}{\partial z_{in}} \left(\sum_{m=1}^M z_{mn} \boldsymbol{b}_m \right) = \boldsymbol{b}_i$$

$$\frac{\partial J_M}{\partial z_{in}} = -\frac{2}{N} (\boldsymbol{x}_n - \tilde{\boldsymbol{x}}_n)^{\mathsf{T}} \boldsymbol{b}_i = -\frac{2}{N} \left(\boldsymbol{x}_n - \sum_{m=1}^{M} z_{mn} \boldsymbol{b}_m \right)^{\mathsf{T}} \boldsymbol{b}_i \stackrel{\mathsf{ONB}}{=} -\frac{2}{N} (\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{b}_i - z_{in} \boldsymbol{b}_i^{\mathsf{T}} \boldsymbol{b}_i)$$
$$= -\frac{2}{N} (\boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{b}_i - z_{in})$$

• $z_{in} = \mathbf{x}_n^\mathsf{T} \mathbf{b}_i = \mathbf{b}_i^\mathsf{T} \mathbf{x}_n$ for $i = 1, \dots, M$ and $n = 1, \dots, N$ (ortho. proj. onto 1D L3(8)) L10(3)

Step 2: Finding Optimal Basis $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$ (1)

April 7, 2021

25 / 42

• The difference:
$$\mathbf{x}_n - \tilde{\mathbf{x}}_n = \left(\sum_{j=M+1}^{D} \mathbf{b}_j \mathbf{b}_j^{\mathsf{T}}\right) \mathbf{x}_n = \sum_{j=M+1}^{D} (\mathbf{x}_n^{\mathsf{T}} \mathbf{b}_j) \mathbf{b}_j$$

$$\tilde{\mathbf{x}}_n = \sum_{m=1}^{M} z_{mn} \mathbf{b}_m \stackrel{\mathsf{Step 1}}{=} \sum_{m=1}^{M} (\mathbf{x}_n^{\mathsf{T}} \mathbf{b}_m) \mathbf{b}_m = \sum_{m=1}^{M} \mathbf{b}_m (\mathbf{b}_m^{\mathsf{T}} \mathbf{x}_n) = \left(\sum_{m=1}^{M} \mathbf{b}_m \mathbf{b}_m^{\mathsf{T}}\right) \mathbf{x}_n$$

$$\mathbf{x}_n = \sum_{j=1}^{D} z_{dn} \mathbf{b}_d = \left(\sum_{m=1}^{M} \mathbf{b}_m \mathbf{b}_m^{\mathsf{T}}\right) \mathbf{x}_n + \left(\sum_{j=M+1}^{D} \mathbf{b}_j \mathbf{b}_j^{\mathsf{T}}\right) \mathbf{x}_n$$

 The projection of the data point onto the orthogonal complement of the principal subspace L3(6)

26 / 42 L10(3) April 7, 2021

Step 2: Finding Optimal Basis $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$ (2)

$$J_{M} = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_{n} - \tilde{\mathbf{x}}_{n}\|^{2} = \frac{1}{N} \sum_{n=1}^{N} \left\| \sum_{j=M+1}^{D} (\mathbf{b}_{j}^{\mathsf{T}} \mathbf{x}_{n}) \mathbf{b}_{j} \right\|^{2} = \frac{1}{N} \sum_{n=1}^{N} \sum_{j=M+1}^{D} (\mathbf{b}_{j}^{\mathsf{T}} \mathbf{x}_{n})^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{j=M+1}^{D} \mathbf{b}_{j}^{\mathsf{T}} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{b}_{j} = \sum_{j=M+1}^{D} \mathbf{b}_{j}^{\mathsf{T}} \left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} \right) \mathbf{b}_{j} = \sum_{j=M+1}^{D} \mathbf{b}_{j}^{\mathsf{T}} \mathbf{S} \mathbf{b}_{j}$$

- minimizing the squared reconstruction error = minimizing the variance when projected onto the orthogonal complement of the principal subspace = maximizing the variance of the projection in the principal subspace
- $J_M = \sum_{j=M+1}^D \lambda_j$ (because of the projection). To minimize this error, we need to choose the smallest D-M eigenvalues, which means that we need to choose the M largest eigenvalues and take their corresponding eigenvectors for projection.

L10(3) April 7, 2021 27 / 42

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

L10(4) April 7, 2021 28 / 42

Eigenvector Computation

Approach 1: EVD

L4(4)

- Perform an eigendecomposition and compute the eigenvalues and eigenvectors of the symmetric matrix S directly.
- Approach 2: SVD

L4(5)

- SVD of the data matrix \mathbf{X} : $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} ([D \times N] = [D \times D] \cdot [D \times N] \cdot [N \times N])$
- \circ **U** and **V**^T: orthogonal matrices, Σ : only nonzero entries are the singular values $\sigma_{ii} \geq 0$.

$$\boldsymbol{S} = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^\mathsf{T} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^\mathsf{T} \boldsymbol{V} \boldsymbol{\Sigma}^\mathsf{T} \boldsymbol{U}^\mathsf{T} \overset{(\boldsymbol{V}^\mathsf{T} = \boldsymbol{V}^{-1})}{=} \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^\mathsf{T} \boldsymbol{U}^\mathsf{T}$$

- The columns of \boldsymbol{U} are the eigenvectors of $\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}}$ (thus \boldsymbol{S})
- \circ The eigenvalues λ_d of ${m S}$ are related to the singular values of ${m X}$: $\lambda_d=rac{\sigma_d^2}{N}$

L10(4) April 7, 2021 29 / 42

PCA as Low-Rank Matrix Approximations

- In SVD, **U** corresponds to the projection matrix **B**, so that we maximize the variance of the projected data or minimize the average squared reconstruction error.
- Consider the best rank-M approximation

$$ilde{oldsymbol{X}}_{M} := \arg\min_{\operatorname{rk}(oldsymbol{A}) = M} \|oldsymbol{X} - oldsymbol{A}\|_{2}$$

• From Eckart-Young Theorem, by truncating the SVD at the top-M singular value, we obtain the reconstructed data matrix \tilde{X}_M as: L4(5), L4(6)

$$\tilde{\boldsymbol{X}}_{M} = \overbrace{\boldsymbol{U}_{M}}^{D \times M} \overbrace{\boldsymbol{\Sigma}_{M}}^{M \times M} \overbrace{\boldsymbol{V}_{M}^{\mathsf{T}}}^{M \times N} \iff \tilde{\boldsymbol{X}}_{M} = \sum_{i=1}^{M} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\mathsf{T}},$$

where σ_i is the *i*-th singular value.

L10(4) April 7, 2021 30 / 42

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

L10(4) April 7, 2021 31 / 42

PCA as Low-Rank Matrix Approximations

- In some practical cases, $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{D \times D}$, where D is pretty high.
 - \circ Example. 100 \times 100 pixel image: D = 10,000.
- What if N << D?
 - With no duplicate data, $rk(\mathbf{S}) = N$, and D N + 1 eigenvalues are $0! \implies$ no need to maintain $D \times D$ data covariance matrix.
- In PCA, ${\bf S}{\bf b}_m = \lambda_m {\bf b}_m, \ m = 1, \dots, M.$

$$\mathbf{S}\mathbf{b}_{m} = \frac{1}{N}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{b}_{m} = \lambda_{m}\mathbf{b}_{m} \implies \frac{1}{N}\underbrace{\mathbf{X}^{\mathsf{T}}\mathbf{X}}_{N\times N}\underbrace{\mathbf{X}^{\mathsf{T}}\mathbf{b}_{m}}_{:=\mathbf{c}_{m}} = \lambda_{m}\mathbf{X}^{\mathsf{T}}\mathbf{b}_{m} \Longleftrightarrow \frac{1}{N}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{c}_{m} = \lambda_{m}\mathbf{c}_{m}$$

- λ_m is an eigenvalue of $\frac{1}{N} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}$ with its associated eigenvector $\boldsymbol{c}_m = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{b}_m$
- $\frac{1}{N} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \in \mathbb{R}^{N \times N}$, so much easier to compute the eigenstuff
- To recover the eigenvector of \boldsymbol{S} , by left-multiplying X, we get $\frac{1}{N}\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{c}_{m}=\lambda_{m}\boldsymbol{X}\boldsymbol{c}_{m}$

L10(4) April 7, 2021 32 / 42

PCA Algorithm

- **S1.** Centering. Centering the data by subtracting mean
- **S2.** Standardization. Divide the data points by the standard deviation for every dimension (original feature) d = 1, ..., D
- **S3.** Eigenvalue/vector. Compute the *M*-largest eigenvalues and the eigenvectors of the data covariance matrix (*M* is the dimension that needs to be reduced)
- **S4.** Projection. Project all data points onto the space defined by the eigenvectors (i.e., principal subspace).
- **S5.** Undo standardization and centering.

L10(4) April 7, 2021 33 / 42

Roadmap

- (1) Problem Setting
- (2) Maximum Variance Perspective
- (3) Projection Perspective
- (4) Eigenvector Computation and Low-Rank Approximations
- (5) PCA in High Dimensions
- (6) Key Steps of PCA in Practice
- (7) Latent Variable Perspective

L10(7) April 7, 2021 34 / 42

Generative Modeling with Latent Variables

Please go back to L8(4) for the background on generative models via latent variable models (LVMs).

L10(7) April 7, 2021 35 / 42

Probabilistic PCA: Linear Latent Models

- $p(z) = \mathcal{N}(0, I)$
- A linear relationship between z and x: For Guassian observation noise $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ and affine mapping defined by $\boldsymbol{B} \in \mathbb{R}^{D \times M}$ and $\boldsymbol{\mu} \in \mathbb{R}^D$,

$$\mathbf{x} = \mathbf{B}\mathbf{z} + \mathbf{\mu} + \mathbf{\epsilon} \in \mathbb{R}^D$$

· Conditional distribution for the links between latent and observed variables

$$p(\mathbf{x}|\mathbf{z}, \mathbf{B}, \boldsymbol{\mu}, \sigma^2) = \mathcal{N}(\mathbf{x}|\mathbf{B}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

- Data point generation: ancestral sampling
 - First, sample z_n from p(z)
 - Then, use \pmb{z}_n to generate a sample $\pmb{x}_n \sim p(\pmb{x}|\pmb{z}_n, \pmb{B}, \pmb{\mu}, \sigma^2)$

L10(7) April 7, 2021 36 / 42

Probabilistic Model and Likelihood

· Probabilistic model: joint distribution

$$p(\mathbf{x}, \mathbf{z}|\mathbf{B}, \boldsymbol{\mu}, \sigma^2) = p(\mathbf{x}|\mathbf{z}, \mathbf{B}, \boldsymbol{\mu}, \sigma^2)p(\mathbf{z})$$

Likelihood

$$\begin{split} \rho(\pmb{x}|\pmb{B},\pmb{\mu},\sigma^2) &= \int \rho(\pmb{x}|\pmb{z},\pmb{B},\pmb{\mu},\sigma^2)\rho(\pmb{z})\mathrm{d}\pmb{z} = \int \mathcal{N}(\pmb{x}|\pmb{B}\pmb{z}+\pmb{\mu},\sigma^2\pmb{I})\mathcal{N}(\pmb{z}|0,\pmb{I})\mathrm{d}\pmb{z} \\ &= \mathcal{N}(\pmb{\mu},\pmb{B}\pmb{B}^\mathsf{T}+\sigma^2\pmb{I}) \end{split}$$

Using the property of marginal and conditional Gaussians

L6(5)

L10(7) April 7, 2021 37 / 42

Posterior Distribution

• The joint Gaussian distribution $p(\mathbf{x}, \mathbf{z} | \mathbf{B}, \boldsymbol{\mu}, \sigma^2)$ leads us to the posterior distribution

$$p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mathbf{m}, \mathbf{C}), \text{ where}$$

$$\mathbf{m} = \mathbf{B}^{\mathsf{T}} (\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^2 \mathbf{I})^{-1} (\mathbf{x} - \boldsymbol{\mu}), \ \mathbf{C} = \mathbf{I} - \mathbf{B}^{\mathsf{T}} (\mathbf{B}\mathbf{B}^{\mathsf{T}} + \sigma^2 \mathbf{I})^{-1} \mathbf{B}$$

L10(7) April 7, 2021 38 / 42

Learning Probabilistic PCA: MLE

• For data samples $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$, we are able to compute the likelihood as:

$$\log p(\boldsymbol{X}|\boldsymbol{B},\boldsymbol{\mu},\sigma^2) = \sum_{n=1}^{N} \log p(\boldsymbol{x}_n|\boldsymbol{B},\boldsymbol{\mu},\sigma^2)$$

$$m{\mu}_{\mathrm{ML}} = rac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n, \; m{B}_{\mathrm{ML}} = m{U} (m{\Lambda} - \sigma^2 m{I})^{1/2} m{R}, \; \sigma_{\mathrm{ML}} = rac{1}{D-M} \sum_{j=M+1}^{D} \lambda_j, \; \mathrm{where}$$

- \circ $\textbf{\textit{U}}$ is a $D \times M$ matrix whose columns are eigenvectors of $\textbf{\textit{S}}$
- \circ Λ is a $M \times M$ diagonal matrix whose elements are eigenvalues of ${m S}$
- **R** is an arbitrary orthogonal matrix (i.e., rotation)
- In the noise-free limit where $\sigma \to 0$, PPCA and PCA provide the identical solution.

L10(7) April 7, 2021 39 / 42

PCA as Linear Auto-Encoder

- Non-linear auto-encoder: we replace the linear mapping of PCA with a non-linear mapping. An example is a deep auto-encoder with deep neutral networks.
- (Fully) Bayesian PCA: place a prior on the model parameters and integrate them out, rather than having a point estimate.
- Factor analysis: allow each observation dimension d to have a different variance σ_d^2

L10(7) April 7, 2021 40 / 42

Questions?

L10(7) April 7, 2021 41 / 42

Review Questions

1)

L10(7) April 7, 2021 42 / 42