

TUGAS AKHIR TF 141581

PREDIKSI NILAI *LEVEL* DAN *PRESSURE* PADA *STEAM DRUM BOILER* DENGAN PENDEKATAN *NEURAL NETWORK* DI PLTU PAITON UNIT 5 DAN 6

RACHMAT ARIESTYO PUTRA PRATAMA NRP 2412 100 005

Dosen Pembimbing Ir. Ya'umar, M.T.

JURUSAN TEKNIK FISIKA
Fakultas Teknologi Industri
Institut Teknologi Sepuluh Nopember
Surabaya
2016

FINAL PROJECT TF 141581

PREDICTION LEVEL AND PRESSURE IN STEAM DRUM BOILER PLANT WITH NEURAL NETWORK AT PLTU PAITON UNIT 5 AND 6

RACHMAT ARIESTYO PUTRA PRATAMA NRP 2412 100 005

Supervisor Ir. Ya'umar, M.T.

ENGINEERING PHYSICS DEPARTMENT
Faculty of Industrial Technology
Sepuluh Nopember Institute of Technology
Surabaya
2016

LEMBAR PENGESAHAN

PREDIKSI NILAI LEVEL DAN PRESSURE PADA STEAM DRUM BOILER DENGAN PENDEKATAN NEURAL NETWORK DI PLTU PAITON UNIT 5 DAN 6

Oleh:

Rachmat Ariestyo Putra Pratama NRP. 2412 100 005

Surabaya, 20 Juli 2016 Mengetahui/Menyetujui

Pembimbing

<u>Ir. Ya'umar, MT.</u> NIP. 19540406 198103 1 003

gus Muhammad Hatta, ST, Msi, Ph.D

NIP 19780902 200312 1 002

PREDIKSI NILAI LEVEL DAN PRESSURE PADA STEAM DRUM BOILER DENGAN PENDEKATAN NEURAL NETWORK DI PLTU PAITON UNIT 5 DAN 6

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada

Bidang Studi Rekayasa Instrumentasi dan Kontrol Program Studi S-1 Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

Oleh:

RACHMAT ARIESTYO PUTRA PRATAMA NRP. 2412 100 005

Disetujui oleh Tim Penguji Tugas Akhir:

1. Ir. Ya'umar, MT

Pembimbing

2. Dr. Ir. Ali Musyafa, MSc

Ketua Penguji

3. Hendra Cordova, ST, MT

Penguji I

4. Ir. Matradji, MKom

-ARD

Penguji II

SURABAYA

Juli, 2016

PREDIKSI NILAI LEVEL DAN PRESSURE PADA STEAM DRUM BOILER DENGAN PENDEKATAN NEURAL NETWORK DI PLTU PAITON UNIT 5 DAN 6

Nama Mahasiswa : Rachmat Ariestyo Putra Pratama

NRP : 2412 100 005
Jurusan : Teknik Fisika
Dosen Pembimbing : Ir. Ya'umar, MT

Abstrak

Steam Drum Boiler merupakan bagian penting dari suatu Power Plant dimana pada Steam Drum ini terdapat dua fase yang berbeda dalam satu tempat yaitu air dan uap. Steam Drum juga memiliki karakter yang kompleks untuk dimodelkan. Level dan Pressure merupakan dua variabel utama yang harus dipantau kondisinya pada sebuah Steam Drum. Oleh karena itu, pada Tugas Akhir ini dilakukan prediksi nilai level dan pressure dalam pemodelannya menggunakan Jaringan Syaraf Tiruan dengan metode training Levenberg Marquadt. Kelebihan dari sistem Jaringan Syaraf Tiruan adalah mampu menghitung secara pararel dengan cara belajar dari pola-pola yang diajarkan. Rancangan sistem Jaringan Syaraf Tiruan mempunyai struktur Multi Layer Perceptron. Arsitektur untuk prediksi level menghasilkan RMSE pada saat training sebesar 0,196, dan error rata-rata saat testing sebesar 0,623%. Sedangkan untuk prediksi pressure menghasilkan RMSE pada saat training sebesar 0,05, dan error rata-rata saat testing sebesar 0,973%.

Kata Kunci : Steam Drum Boiler , Jaringan Syaraf Tiruan , Levenberg-Marquardt , Mean Squared Error

PREDICTION LEVEL AND PRESSURE IN STEAM DRUM BOILER PLANT WITH NEURAL NETWORK AT PLTU PAITON UNIT 5 AND 6

Name : Rachmat Ariestyo Putra Pratama

Student Number : 2412 100 005

Department : Engineering Physics Supervisor : Ir. Ya'umar, MT

Abstract

Steam Boiler Drum is an important part of a Power Plant where the steam drum, there are two different phases in one place, namely water and steam. Steam Drum also has a complex character to be modeled. Level and Pressure are the two main variables that should be monitored condition in a Steam Drum. Therefore, in this final project is done predictive value and the level of pressure in the modeling using artificial neural network with Levenberg Marquadt training methods. Advantages of Neural Network system is capable of calculating in parallel by learning from the patterns that are taught. The design of the system has a structure Neural Networks Multi Layer Perceptron. Architecture to generate the prediction RMSE level during training at 0.196, and the average error when testing amounted to 0.623%. As for the prediction of pressure generating RMSE during training at 0.05, and the average error when testing amounted to 0.973%.

Key Words: Steam Drum Boiler, Artificial Neural Network, Levenberg-Marquardt, Mean Squared Error

KATA PENGANTAR

Alhamdulillahirabbil'aalamiin, rasa syukur atas segala limpahan rahmat, kesehatan, keselamatan, dan ilmu yang Allah SWT berikan kepada penulis hingga mampu menyelesaikan laporan tugas akhir dengan judul:

PREDIKSI NILAI LEVEL DAN PRESSURE PADA STEAM DRUM BOILER DENGAN PENDEKATAN NEURAL NETWORK DI PLTU PAITON UNIT 5 DAN 6

Dalam penyusunan laporan tugas akhir ini, tidak terlepas dari semua pihak yang turut membantu baik moril maupun materiil. Untuk itu penulis mengucapkan terima kasih kepada:

- 1. Orang tua yang selalu senantiasa memberikan doa, dukungan, dan perhatian kepada penulis.
- 2. Bapak Agus Muhammad Hatta, ST, M.Si, Ph.D selaku Ketua Jurusan Teknik Fisika ITS
- 3. Bapak Ir. Yaumar M.T , selaku dosen pembimbing yang dengan sabar membimbing, memberikan waktu, saran dan kritiknya.
- 4. Ibu Ir. Apriani K, MSc selaku dosen wali yang selalu memberikan motivasi kepada penulis.
- 5. Bapak Indra Hadi Kurniawan, S.T, dan Bapak Fahru, S.T, selaku Asisten Engineer PT. YTL, PLTU Paiton Jawa Timur yang telah membantu, membimbing, dan memfasilitasi selama pengambilan data di lapangan.
- 6. Teman-teman Teknik Fisika Angkatan 2012, teman-teman Asisten Laboratorium Rekayasa Instrumentasi dan Kontrol, dan semua pihak yang telah membantu dalam pelaksanaan dan penyusunan laporan tugas akhir ini.

Demikian laporan tugas akhir ini dibuat dengan sebaikbaiknya. Semoga laporan ini bermanfaat bagi semua pihak, khususnya untuk kemajuan industri di Indonesia.

> Surabaya, Juni 2016 Penulis

DAFTAR ISI

LEMB	AR PENGESAHAN	V
ABSTF	RAK	IX
ABSTE	RACT	XI
DAFT	AR ISI	.XV
DAFT	AR GAMBARX	VII
DAFT	AR TABEL	XIX
BAB I.		1
PENDA	AHULUAN	1
1.2	LATAR BELAKANGPERMASALAHAN	2
1.4	TUJUANBATASAN MASALAHSISTEMATIKA LAPORAN	2
BAB II		5
TEORI	I PENUNJANG	5
2.2 2.3 2.4 2.5 EXOGE	STEAM DRUM BOILER NEURAL NETWORK ARSITEKTUR JARINGAN SYARAF TIRUAN PELATIHAN SUPERVISI DAN TANPA SUPERVISI NEURAL NETWORK NON-LINIER AUTO-REGRESIVE WI NOUS INPUT (NN NARX)	6 8 TH 9
2.7	ALGORITMA LEVENBERG-MARQUADT NEURAL NETWORK SEBAGAI SISTEM IDENTIFIKASI	11
	I	
METO	DOLOGI	15
3.2 PER	IGAMBILAN DATA PLANTANCANGAN ARSITEKTUR JARINGAN SYARAF TIRUAN SIALISASI PARAMETER TRAINING JST	17

3.4 P	REPROCESSING DATA	18
	RAINING, VALIDASI, DAN TESTING JARINGAN SYARAF	
Tiru	AN	18
BAB	IV	21
HAS	IL DAN PEMBAHASAN	21
4.1 J	ARINGAN SYARAF TIRUAN PREDIKSI LEVEL	21
	ARINGAN SYARAF TIRUAN PREDIKSI PRESSURE	
BAB	V	61
KES	IMPULAN DAN SARAN	61
5.1	KESIMPULAN	61
	SARAN	
DAF	TAR PUSTAKA	63
LAN	IPIRAN	65

DAFTAR GAMBAR

Gambar 2. 1 Skema dari Proses pada Steam drum Boiler[6]	5
Gambar 2. 2 Bentuk Dasar Neuron	
Gambar 2. 3 Multi-Layer Feedforward Network	7
Gambar 2. 4 Arsitektur NARX	
Gambar 2. 5 Diagram Blok sistem kontrol langsung	.12
Gambar 2. 6 Blok diagram sistem kontrol tidak langsung	.12
Gambar 3. 1 Flowchart Pengerjaan Tugas Akhir	16
Gambar 3. 2 Arsitektur JST Prediksi Level	
Gambar 3. 3 Arsitektur JST Prediksi Pressure	.18
Gambar 3. 4 Flowchart Algoritma Levenberg-Marquadt	19
Gambar 4. 1 Grafik Flow Feedwater	.22
Gambar 4. 2 Grafik Flow Steam	.22
Gambar 4. 3 Grafik Level Steam Drum	.22
Gambar 4. 4 Grafik Performansi Training 1 Hidden Nouron	.23
Gambar 4. 5 Grafik Perbandingan Prediksi dan Target	.24
Gambar 4. 6 Grafik Performansi Training 2 Hidden Neuron	
Gambar 4. 7 Grafik Perbandingan Prediksi dan Target	.25
Gambar 4. 8 Grafik Performansi Training 3 Hidden Neuron	.26
Gambar 4. 9 Grafik Perbandingan Prediksi dan Target	.26
Gambar 4. 10 Grafik Performansi Training 4 Hidden Neuron	
Gambar 4. 11 Grafik Perbandingan Prediksi dan Target	.28
Gambar 4. 12 Grafik Performansi Training 5 Hidden Neuron	.28
Gambar 4. 13 Grafik Perbandingan Prediksi dan Target	.29
Gambar 4. 14 Grafik Performansi Training 6 Hidden Neuron	
Gambar 4. 15 Grafik Perbandingan Prediksi dan Target	
Gambar 4. 16 Grafik Performansi Training 7 Hidden Neuron	
Gambar 4. 17 Grafik Perbandingan Prediksi dan Target	
Gambar 4. 18 Grafik Performansi Training 8 Hidden Neuron	
Gambar 4. 19 Grafik Perbandingan Prediksi dan Target	
Gambar 4. 20 Grafik Performansi Training 9 Hidden Neuron	
Gambar 4. 21 Grafik Perbandingan Prediksi dan Target	.35
Gambar 4. 22 Grafik Performansi Training 10 Hidden Neuron	.35
Gambar 4. 23 Grafik Perbandingan Prediksi dan Target	
Gambar 4. 24 Grafik Flow Feedwater	41

Gambar 4. 25 Grafik Flow Steam	.41
Gambar 4. 26 Grafik Pressure Steam Drum	.42
Gambar 4. 27 Grafik Performansi Training 1 Hidden Nouron	.42
Gambar 4. 28 Grafik Perbandingan Prediksi dan Target	.43
Gambar 4. 29 Grafik Performansi Training 2 Hidden Neuron	.44
Gambar 4. 30 Grafik Perbandingan Prediksi dan Target	.44
Gambar 4. 31 Grafik Performansi Training 3 Hidden Neuron	.45
Gambar 4. 32 Grafik Perbandingan Prediksi dan Target	.46
Gambar 4. 33 Grafik Performansi Training 4 Hidden Neuron	.46
Gambar 4. 34 Grafik Perbandingan Prediksi dan Target	.47
Gambar 4. 35 Grafik Performansi Training 5 Hidden Neuron	.48
Gambar 4. 36 Grafik Perbandingan Prediksi dan Target	.48
Gambar 4. 37 Grafik Performansi Training 6 Hidden Neuron	.49
Gambar 4. 38 Grafik Perbandingan Prediksi dan Target	
Gambar 4. 39 Grafik Performansi Training 7 Hidden Neuron	.50
Gambar 4. 40 Grafik Perbandingan Prediksi dan Target	.51
Gambar 4. 41 Grafik Performansi Training 8 Hidden Neuron	.52
Gambar 4. 42 Grafik Perbandingan Prediksi dan Target	.52
Gambar 4. 43 Grafik Performansi Training 9 Hidden Neuron	.53
Gambar 4. 44 Grafik Perbandingan Prediksi dan Target	
Gambar 4. 45 Grafik Performansi Training 10 Hidden Neuron.	
Gambar 4. 46 Grafik Perbandingan Prediksi dan Target	. 55

DAFTAR TABEL

Tabel 4. 1 Tabel Validasi Prediksi Level	37
Tabel 4. 2 Tabel Error Testing Level	38
Tabel 4. 3 Tabel Nilai Ketidakpastian Prediksi Level	
Tabel 4. 4 Tabel Validasi Prediksi Pressure	56
Tabel 4. 5 Tabel Error Testing Prediksi Pressure	57
Tabel 4 6 Tabel Validasi Prediksi Pressure	59

BAB I PENDAHULUAN

1.1 Latar Belakang

Boiler adalah bagian terpenting dalam sebuah power plant, tidak terkecuali pada PLTU Paiton Jawa Timur. Boiler adalah komponen yang digunakan untuk mengubah air menjadi uap dengan proses pemanasan. Uap selanjutnya digunakan untuk menggerakkan turbin generator yang akan membangkitkan listrik.[1] Salah satu elemen terpenting dalam boiler adalah penampung uap dan air yaitu steam drum. Di dalam steam drum terdapat dua fase berbeda dari fluida proses, maka diperlukan dua variable kontrol yang menentukan kondisi dari steam drum tersebut. Level air pada steam drum dijaga pada kondisi normal (set point). Jika level air mencapai titik tinggi, maka hal tersebut dapat merusak alat pemisah uap-air. Jika level air mencapai titik terendah, maka hal tersebut dapat mempengaruhi siklus penguapan yang dapat memicu terjadinya ledakan pada boiler. Begitu juga pressure dari uap air yang ada dalam steam drum yang dijaga kestabilannya agar kondisi *steam drum* tetap terjaga dalam kondisi yang normal. Sehingga kedua variable memiliki pengaruh yang besar sebagai parameter stabilnya sistem yang sedang berjalan.

Level dan pressure harus senantiasa di monitoring untuk memastikan sistem berjalan dengan kondisi normal. Sedangkan instrument pengukur yang bersangkutan tidak luput dari kesalahan, dan memerlukan maintenance secara berkala. Hal ini akan mengakibatkan kondisi level dan pressure sebagai variable penting tidak dapat dimonitoring saat dilakukan maintenance. Menurut Astrom (2000), sistem *steam drum* merupakan sistem yang kompleks dengan proses terdistribusi non linier. Dalam sistem yang kompleks tersebut apabila terdapat kesalahan kecil pada komponen sistem akan berakibat besar. [2]

Teknologi komputasi dewasa ini yang sudah berkembang dengan berbagai algoritma yang cerdas, memberikan solusi tepat dalam sistem kontrol berbasis model. *Neural Network* adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan

berdasarkan jaringan syaraf manusia (Aprijani dan Sufandi, 2011). Neural Network ini merupakan sistem adaptif yang dapat merubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut. Secara sederhana Neural Network adalah sebuah alat pemodelan data statistik non-linear, dan dapat digunakan untuk memodelkan hubungan kompleks antara input dan output untuk menemukan pola-pola data. Diikuti dengan proses training dan validasi, dapat dibuat model dari suatu plant. Dalam tugas akhir ini akan dilakukan prediksi nilai level dan pressure dari steam drum dengan mentraining sistem Neural Network berdasarkan pola-pola data variable sekitar yang mempengaruhi kondisi level dan pressure di steam drum PLTU Paiton Unit 5 & 6.

1.2 Permasalahan

Berdasarkan latar belakang yang telah dijelaskan sebelumnya, maka masalah yang dapat diambil yaitu bagaimana melakukan prediksi variable level dan pressure pada steam drum PLTU Paiton Unit 5 & 6 dengan menerapkan algoritma Neural Network.

1.3 Tujuan

Berdasarkan permasalahan yang ada didapatkan tujuan dari tugas akhir ini adalah untuk membuat sistem Neural Netwok yang dapat memprediksi nilai dari variable level dan pressure pada steam drum di PLTU Paiton Unit 5 & 6.

1.4 Batasan Masalah

Batasan masalah dalam tugas akhir ini antara lain:

- 1. *Plant* yang ditinjau pada *Steam drum Boiler* PLTU Paiton Jawa Timur
- 2. Analisa sistem menggunakan software Matlab
- 3. Arsitektur Neural Network menggunakan Multi Layer Feedforward Network
- 4. Struktur model yang digunakan adalah NARX (Non-Linier AutoRegresive with eXogenous Input)
- 5. Dan metode training yang digunakan adalah metode Levenberg-Marquad

1.5 Sistematika Laporan

Sistematika laporan dalam penyusunan laporan tugas akhir ini adalah sebagai berikut :

1. Bab I Pendahuluan

Berisi tentang latar belakang, permasalahan, tujuan, batasan masalah, dan sistematika laporan

2. Bab II Teori Penunjang

Berisi tentang teori yang berhubungan dengan proses yang terjadi pada steam drum, sistem neural network, arsitektur neural network, serta metode training dari nerual network.

3. Bab III Metodologi

Berisi tentang metode yang digunakan dalam pengerjaan penelitian, pengolahan data.

4. Bab IV Analisa Data dan pembahasan

Berisi tentang evaluasi pengolahan data, hasil rancangan arsitektur sistem Neural Network, proses training dan validasi dari sistem Neural Network yang telah dibuat.

5. Bab V Penutup

Berisi tentang hasil penelitian, kesimpulan dari penelitian yang telah dilakukan, serta saran sebagai bentuk keberlanjutan dan pengembangan penelitian selanjutnya.

Halaman Ini Memang Dikosongkan

BAB II TEORI PENUNJANG

2.1 Steam Drum Boiler

Pada *steam drum* terdapat dua fasa zat yaitu fasa cair dan gas. Fasa cair adalah air yang nantinya akan diubah menjadi uap dalam bentuk fasa gas. Pada Gambar 1. akan tampak skema dari proses pada *steam drum boiler*.

Gambar 2. 1. Skema dari Proses pada Steam drum Boiler[6]

Air yang akan dievaporasi dimasukkan kedalam *drum*. Air dalam *drum* akan turun melalui pipa-pipa *downcomers*, yang terletak diluar *drum*. Air kemudian menuju pipa-pipa *riser* yang menuju kembali ke *drum*. Pada tahap ini air berevaporasi dengan adanya panas yang ditambahkan ketika air melewati *riser*, uap kemudian naik dan kembali menuju *drum*. Kondisi uap yang berada dibawah air ketika masuk kembali ke dalam *drum* membuat fenomena gelombang pada air sehingga membuat pengendalian *level* pada *steam drum* sulit Keluaran dari *riser* melewati separator untuk memisahkan antara uap dan air.^[2]

Sifat kunci dari *boiler* adalah terdapatnya perpindahan panas yang sangat efisien pada proses *boiling* dan kondensasi. Semua bagian dari sistem yang ter-*contact* dengan campuran uap-cair jenuh akan berada pada kesetimbangan panas. Energy yang

tersimpan didalam uap dan air akan terlepas atau diserap dengan sangat cepat ketika terjadi perubahan tekanan.^[2]

2.2 Neural Network

Secara umum Neural Network (NN) adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan syaraf manusia. NN ini merupakan sistem adaptif yang dapat merubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut. Secara sederhana NN adalah sebuah alat pemodelan data statistik non-linear. NN dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data. Secara mendasar, sistem pembelajaran merupakan proses penambahan pengetahuan pada NN yang sifatnya kontinuitas sehingga pada saat digunakan pengetahuan tersebut akan dieksploitasikan secara maksimal dalam mengenali suatu objek. Neuron adalah bagian dasar dari pemrosesan suatu Neural Network.

Dibawah ini merupakan bentuk dasar dari suatu neuron.

Gambar 2. 2. Bentuk Dasar Neuron

Keterangan Gambar 8.1 di atas adalah sebagai berikut.

- 1. Input, merupakan masukan yang digunakan baik saat pembelajaran maupun dalam mengenali suatu objek.
- 2. Weight, beban yang selalu berubah setiap kali diberikan input sebagai proses pembelajaran.

- 3. Processing Unit, merupakan tempat berlangsungnya proses pengenalan suatu objek berdasarkan pembebanan yang diberikan.
- 4. Output, keluaran dari hasil pengenalan suatu objek.

Adapun keuntungan penggunaan Neural Network yaitu sebagai berikut:

- 1. Perangkat yang mampu untuk mengenali suatu objek secara non-linier.
- 2. Mempermudah pemetaan input menjadi suatu hasil tanpa mengetahui proses sebenarnya.
- 3. Mampu melakukan adaptasi terhadap pengenalan suatu objek.
- 4. Perangkat yang memiliki toleransi terhadap suatu kesalahan dalam pengenalan suatu objek.
- 5. Neural Network mampu diimplementasikan pada suatu Hardware atau perangkat keras.

2.3 Arsitektur Jaringan Syaraf Tiruan

Pemodelan dari suatu struktur pemrosesan informasi terdistribusi dilakukan dengan cara menentukan pola hubungan antar neuron dari model yang akan dibuat atau bisa disebut arsitekturnya. Pola hubungan yang umum adalah hubungan antar lapisan (*layer*). Arsitektur yang digunakan dalam tugas akhir ini adalah Multi-Layer Feedforward Network. Pada jenis arsitektur ini, diantara lapisan input dan output terdapat lapisan terembunyi atau yang biasa disebut dengan hidden layer. Hubungan dari tiaptiap lapisan atau layer berlangsung satu arah.

Gambar 2. 3. Multi-Layer Feedforward Network

2.4 Pelatihan Supervisi dan Tanpa Supervisi

Berdasarkan cara mengubah nilai bobot pelatihan dari sistem jaringan syaraf tiruan dibagi menjadi dua, yaitu dengan supervisi (supervised) dan tanpa supervisi (unsupervised). Pada pelatihan dengan supervisi, terdapat sejumlah pasangan data (masukan target keluaran) yang dipakai untuk melatih jaringan hingga diperoleh bobot yang diinginkan. Pasangan data tersebut sebagai "guru" untuk melatih jaringan hingga diperoleh bentuk yang terbaik. "Guru" akan memberikan informasi yang jelas tentang bagaimana sistem harus mengubah dirinya untuk meningkatkan kerjanya. Pada setiap pelatihan, suatu input diberikan ke jaringan. Jaringan akan memproses dan mengeluarkan keluaran. Selisih antara keluaran jaringan dengan target (keluaran yang diinginkan) merupakan kesalahan yang terjadi. Jaringan yang memodifikasi bobot sesuai dengan kesalahan tersebut. Jaringan dengan model backpropagation merupakan salah satu model yang menggunakan pelatihan dengan supervisi.

Sebaliknya, dalam pelatihan tanpa supervisi (unsupervised learning) tidak ada ''guru '' yang akan mengarahkan proses pelatihan. Dalam pelatihannya perubahan bobot jaringan dilakukan berdasarkan parameter tertentu dan jaringan dimodifikasi menurut ukuran parameter tersebut. Sebagai contoh, dalam model jaringan kompetitif, jaringan terdiri dari dua layar, yaitu layar input dan layar kompetisi. Layar input menerima data eksternal. Layar kompetitif berisi neuron-neuron yang saling berkompetisi agar memperoleh kesempatan untuk merespon sifat-sifat yang ada dalam data masukan. Neuron yang akan memenangkan kompetisi akan memperoleh sinyal yang berikutnya diteruskan. Bobot neuron pemenang akan dimodifikasi sehingga lebih menyerupai data masukan. Sebagai ilustrasi, pelatihan dengan supervisi dapat diandaikan sebagai skripsi yang dibimbing oleh seorang dosen. Pada setiap kali pengumpulan berkas skripsi, dosen akan mengkritik, mengarahkan dan meminta perbaikan agar kualitas skripsi meningkat. Sebaliknya, dalam pelatihan tanpa supervisi dapat dibayangkan sebagai skripsi tanpa dosen pembimbing. Mahasiswa mengerjakan skripsi sebaik-baiknya berdasarkan ukuran tertentu (misal dibandingkan dengan skripsi yang sudah ada sebelumnya atau dibandingkan dengan hasil skripsi temannya). Berdasarkan hasil yang pernah dilaporkan, model pelatihan dengan supervisi lebih banyak digunakan dan terbukti cocok dipakai dalam berbagai aplikasi. Akan tetapi kelemahan utama pelatihan dengan supervisi adalah dalam hal pertumbuhan waktu komputasinya yang berorder eksponensial. Ini berarti untuk data pelatihan yang cukup banyak, prosesnya menjadi lebih lambat.

2.5 Neural Network Non-Linier Auto-regresive with eXogenous Input (NN NARX)

Bergantung pada konfigurasi aliran sinyalnya, NN dapat diklasifikasikan ke dalam feedforward NN dan recurrent NN. Dalam feedforward NN, output dihitung langsung dari input melalui koneksi feedforward. Feedforward NN sebagian besar adalah jaringan statis. Sedangkan recurrent NN sifatnya lebih dinamis dan memiliki setidaknya satu tanggapan lingkaran. Oleh karena itu output jaringan bukanlah hasil dari proses input eksternal saja.

NARX merupakan bagian dari recurrent NN. Sistemnya memiliki feedback yang terkoneksi kembali melampirkan beberapa lapisan jaringan. Arsitektur yang mencakup taped delay lines (TDL) yang menahan pola dari input yang sudah masuk. Hal ini membuat sistem tersebut lebih cocok untuk prediksi ke depan (prediksi time-series) dari jaringan feedforward. Oleh karena itu lebih tepat untuk menggunakannya untuk pemodelan dinamis. Input biasanya berupa vektor masukan yang terjadi dalam urutan waktu tertentu. Sebuah model NARX secara umum didefinisikan oleh persamaan:

$$y(t) = f(y(t-1), y(t-2), ..., y(t-n_v); u(t-1), u(u-2), u(t-n_u))$$
 (2.1)

y(t) adalah nilai saat ini dari sinyal output yang dinyatakan dalam fungsi dari nilai sebelumnya dari sinyal output y(t-1), $y(t-2), \dots, y(t-n_y)$ dan nilai-nilai sebelumnya dari sinyal independen input $u(t-1), u(u-2), u(t-n_u)$. Adapun skema dari penggunaan data dengan arsitektur NARX dapat dilihat pada gambar 2.3.

Gambar 2. 4. Arsitektur NARX

2.6 Algoritma Levenberg-Marquadt

Algoritma pembelajaran yang digunakan dalam penelitian ini adalah algoritma Levenberg Marquardt dalam Norgaard,2000. Meskipun algoritma ini lebih kompleks dibandingkan algoritma backpropagation, tetapi algoritma ini dapat memberikan hasil yang lebih baik, terutama pada proses dengan orde banyak (lebih dari satu). Penurunan algoritma ini dapat dijelaskan sebagai berikut :

- Inisialisasi bobot dan bias dengan bilangan acak, epoch maksimum, dan minimal goal (performance yang dihitung dengan MSE).
- 2. Menentukan parameter yang dibutuhkan, antara lain :
 - Parameter Levenberg Marquardt yang nilainya harus lebih besar dari nol
 - Parameter faktor Beta (β) yang digunakan sebagai parameter yang dikalikan atau dibagi dengan parameter Levenberg Marquardt. Penjelasan ada pada step berikutnya.
- 3. Menghitung maju (feedforward) pada hidden dan ouput layer seperti langkah-langkah pada algoritma error backpropagation.
- 4. Menghitung nilai MSE
- 5. Menghitung error dan total error jaringan
 - Rumus untuk error : er = tr yrr merupakan input ke-r
 (2.2)

• Rumus untuk menghitung total error :

$$e = [e1 \ e2 \ e3 \ ... \ eN]^{T}$$
 (2.3)

e merupakan vektor kesalahan berukuran Nx1 yang terdiri dari er r = 1,2,3...N

6. Menghitung matriks Jacobian J(x) x merupakan matriks yang berisi nilai bobot dan bias dari keseluruhan jaringan.

$$X = [v11, v12, ..., vij; v01, v02, ..., v0j; w11, w12, ..., wjk; w01, w02, ..., w0K]$$

Matriks Jacobian berisi turunan pertama error jaringan terhadap bobot dan bias jaringan. Rumus untuk mencari Jacobian Matriks antara lain.

$$J = \left[\frac{\partial er}{\partial w}\right] \tag{2.5}$$

7. Setelah didapatkan nilai J(x) maka dapat dihitung perubahan koreksi bobot dan biasnya dengan rumus berikut :

$$\Delta x = [J(x)^T J(x) + \mu I]^{-1} * Gradient$$
 (2.6)

$$Gradient = J(x)^T * e$$
 (2.7)

- 8. Setelah didapatkan nilai ΔX tahap selanjutnya adalah pengoreksian bobot dengan rumus yang sama seperti pada algoritma error back propagation.
- 9. Menghitung maju (feedforward) dengan bobot dan bias yang baru.
- 10. Menghitung MSE jaringan dengan bobot dan bias yang baru. Kemudian tes kondisi berhenti.
- 11. Jika epoch atau iterasi masih berlanjut maka akan terdapat 2 kemungkinan kondisi berikut :
 - Jika MSE naik βμx
 - Jika MSE turun βμ

Kemudian melakukan kembali langkah 5 sampai langkah 8

2.7 Neural Network Sebagai Sistem Identifikasi

Karakteristik Jaringan Syaraf Tiruan sebagai sistem nonlinier adalah sesuai bagi penerapan pada sistem kontrol maupun identifikasi. Secara garis besar penerapan Jaringan Syaraf Tiruan pada sistem nonlinier dapat dibedakan menjadi :

1. Desain sistem kontrol langsung (Direct control system design)

Pada desain sistem kontrol langsung, Jaringan Syaraf Tiruan akan digunakan sebagai pengendali non-linier secara langsung. Artinya, Jaringan Syaraf Tiruan akan membangkitkan sinyal kontrol yang diaplikasikan pada plant.

Gambar 2. 5. Diagram Blok sistem kontrol langsung

2. Desain sistem kontrol tidak langsung (Indirect control system design)

Pada desain sistem kontrol tidak langsung, Jaringan Syaraf Tiruan akan lebih digunakan sebagai model proses nonlinier daripada pengendali nonlinier. Oleh karena itu, desain adalah sistem kontrol berbasis model. Artinya, sebuah model digunakan secara eksplisit dalam perhitungan untuk mendapatkan sinyal kontrol yang diaplikasikan pada plant.

Gambar 2. 6. Blok diagram sistem kontrol tidak langsung

Penerapan sistem jaringan syaraf tiruan sebagai sistem identifikasi mendekati sistem kontrol tidak langsung, dimana

sistem identifikasi dari jaringan syaraf tiruan yang akan dibuat mempelajari pola atau menganut model dari suatu plan, sehingga peran identifikasi yang dijalankan oleh sebuah jaringan syaraf tiruan ini mengamati terlebih dahulu kondisi yang sudah terjadi pada suatu plan lalu diterapkan kembali pada plan yang bersangkutan.

Halaman Ini Memang Dikosongkan

BAB III METODOLOGI

Pada bab ini akan dijelaskan metodologi penelitian yang dilaksanakan pada Tugas Akhir ini. Metodologi yang dilaksanakan dijelaskan melalui tahap-tahap berikut:

- a. Pengambilan data berupa spesifikasi *Steam drum Boiler*, data Input-Output yaitu Flow Feedwater Inlet, Flow Steam Outlet, Level dan Pressure pada Steam Drum. Pengambilan data dilakukan di PLTU Paiton Jawa Timur.
- b. Pengelompokan data Input dan Output untuk sistem jaringan syaraf tiruan yang akan dirancang. Flow Feedwater inlet dan Flow Steam Outlet sebagai input lalu Level dan Pressure yang akan diprediksi sebagai Output.
- c. Perancangan arsitektur Jaringan Syaraf Tiruan, dimana arsitektur model yang digunakan adalah jaringan syaraf tiruan Multi Layer Perceptron dengan struktur NN NARX (Neural Network Non-Linier Auto-regresive with eXogenous Input). Dimana perancangan arsitektur yaitu dengan dua input satu output, terdapat dua sistem jaringan syaraf tiruan yang masing-masing sebagai prediksi level dan pressure.
- d. Inisialisasi parameter-parameter untuk training yang akan dilakukan pada sistem jaringan syaraf tiruan. Yaitu nilai error maksimal, nilai epoch maksimal, nilai learning rate, dsb.
- e. Training Jaringan Syaraf Tiruan dengan metode Levenberg-Marquadt.
- f. Melakukan validasi dan testing terhadap sistem jaringan syaraf tiruan yang telah ditraining.
- g. Analisis hasil berupa performance, error histogram, dan grafik regresi dari training, validasi, dan test,
- h. Penyusunan laporan tugas akhir.

Flowchart pengerjaan tugas akhir ditunjukkan pada Gambar 3.1

Gambar 3. 1. Flowchart Pengerjaan Tugas Akhir

3.1 Pengambilan Data Plant

Data yang dibutuhkan untuk membuat sistem Jaringan Syaraf Tiruan adalah variabel yang ada di sekitar steam drum boiler. Selain dari Pressure dan Level dari steam drum boiler tersebut dibutuhkan data Flow Feedwater Inlet dan Flow Steam Outlet yang berperan sebagai input sistem jaringan syaraf tiruan untuk memprediksi nilai Level dan Pressure. Data didapat dari ruang CCR (*Central Control Room*) PT. YTL PLTU Paiton Jawa Timur

Unit 5 & 6. Keempat variable data tersebut diambil data per jam selama 1 bulan penuh.

3.2 Perancangan Arsitektur Jaringan Syaraf Tiruan

Dalam penelitian ini struktur model yang digunakan adalah Jaringan Syaraf Tiruan Multi Layer Perceptron dengan struktur NN NARX (Neural Network Non-Linier AutoRegresive eXogenous Input) dimana variabel input dan output jaringan syaraf tiruan mengandung nilai input dan output masa sekarang dan masa lampau, secara umum seperti yang sudah dipaparkan pada sub bab 2.5. Dari dua variabel input dibuat 2 sistem jaringan syaraf tiruan secara terpisah untuk prediksi level dan pressure.

Gambar 3. 2 Arsitektur JST Prediksi Level

Arsitektur sistem jaringan syaraf tiruan yang pertama adalah untuk prediksi nilai level steam drum dengan input dari sistem yaitu flow feed water dan flow steam dapat dilihat pada gambar 3.2. Sedangkan untuk sistem jaringan syaraf tiruan yang kedua adalah untuk prediksi nilai pressure dengan input yang sama yaitu flow feed water dan flow steam, dapat dilihat pada gambar 3.3.

Gambar 3. 3 Arsitektur JST Prediksi Pressure

Untuk kedua sistem setiap neuron dalam hidden layer terdapat fungsi aktifasi yang terdapat pada arsitektur jaringan tersebut. Fungsi aktivasi pada hidden layer menggunakan bipolar sigmoid sedangkan pada output layer menggunakan fungsi aktivasi linier.

3.3 Inisialisasi Parameter Training JST

Inisialisasi parameter training dari Jaringan Syaraf Tiruan yang akan dibuat yaitu nilai error maksimum, nilai epoch maksimum.

3.4 Preprocessing data

Preprocessing data adalah normalisasi data yang mana data yang dimiliki akan disesuaikan nilainya menjadi -1 sampai dengan 1. Penyesuaian atau normalisasi ini disesuaikan dengan tipe arsitektur fungsi aktivasi yang digunakan yaitu bipolar sigmoid yang memiliki nilai antara -1 sampai dengan 1. Hal ini juga dapat disebut sebagai data scalling. Data scalling diperlukan untuk mempercepat konvergensi pada saat melakukan training data.

3.5 Training, Validasi, dan Testing Jaringan Syaraf Tiruan

Pembagian dari data yang dimiliki adalah 70% untuk training, 15% untuk validasi dan 15% untuk testing.

Training dilakukan dengan menggunakan algoritma Levenberg-Marquadt. Algoritma Levenberg-Marquard merupakan pengembangan dari algoritma error back propagation. Dimana algoritma ini dibangun untuk mengatasi beberaa kekurangan yang ada pada algoritma error back propagation dengan memanfaatkan teknik optimisasi numerik standar yaitu menggunakan pendekatan matriks jacobian. Tujuan dari Levenberg Marquardt adalah

meminimalkan total error. Adapun urutan dari algoritma Levenberg-Marquardt dapat dilihat pada gambar 3.4.

Gambar 3. 4 Flowchart Algoritma Levenberg-Marquadt

Halaman Ini Memang Dikosongkan

BAB IV HASIL DAN PEMBAHASAN

Dalam penelitian ini metode penentuan bobot yang digunakan pada training jaringan syaraf tiruan yaitu metode Levenberg-Marquardt dengan struktur jaringan syaraf tiruan menggunakan Multi Layer Perceptron (MLP) dan struktur input NN NARX (Neural Network Non-Linier Autoregresive eXogenous Input). Struktur input jaringan syaraf tiruan yang terdiri dari 2 input yaitu flow feedwater dan flow steam , 2 hidden neuron , dan 1 output yaitu level atau pressure. Sehingga terdapat matrik 2x2 yang merupakan bobot pengali antara input layer ke hidden layer, dan 1x2 yang merupakan bobot pengali antara hidden layer dan output layer. Proses training pada dasarnya adalah untuk menentukan bobot antara input layer dan hidden layer serta bobot antara hidden layer dan output layer.

Adapun untuk proses training 710 pasang data, validasi terdapat 117 pasang data, sedangkan proses testing disediakan 100 pasang data.

Kriteria pemodelan proses yang dihasilkan dinyatakan dalam MSE (Mean Square Error) dimana semakin kecil nilai MSE yang dihasilkan (mendekati nilai 0) akan menghasilkan prediksi output yang lebih baik.

4.1 Jaringan Syaraf Tiruan Prediksi Level

Struktur input jaringan syaraf tiruan menggunakan Multi Layer Perceptron yang terdiri dari 1 input layer, 1 hidden layer, dan 1 output layer. Input yang digunakan untuk sistem jaringan syaraf tiruan prediksi level ini adalah flow feedwater inlet dan flow steam outlet.

Adapun grafik data dari input yaitu berupa flow dari feedwater dan flow dari steam yang akan digunakan dapat dilihat pada gambar berikut:

Gambar 4. 1. Grafik Flow Feedwater

Gambar 4. 2. Grafik Flow Steam

Sedangkan grafik data dari output yaitu level ditampilkan pada gambar berikut:

Gambar 4. 3. Grafik Level Steam Drum

Dalam penelitian ini dilakukan variasi arsitektur yaitu variasi jumlah hidden neuron. Variasi dilakukan dengan jumlah hidden neuron 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10.

1. Arsitektur 1 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 1 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 4. Grafik Performansi Training 1 Hidden Nouron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 1 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0.040 pada epoch pertama.

Gambar 4. 5. Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,72. Dan prosentase error sebesar 0,68%. Perhitungan error dapat dilihat pada lampiran Tabel A1.

2. Arsitektur 2 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 2 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 6 Grafik Performansi Training 2 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 2 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,031365 pada epoch ke-33.

Sistem jaringan syaraf tiruan yang telah dibuat di testing dengan data yang telah disiapkan, dan dihitung nilai error rataratanya. Grafik perbandingan dari prediksi nilai yang dilakukan oleh sistem jaringan syaraf tiruan yang telah dibuat dengan nilai target atau aktual dapat dilihat pada gambar berikut:

Gambar 4. 7. Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,50. Dan prosentase error sebesar 0,627%. Perhitungan error dapat dilihat pada lampiran Tabel A1.

3. Arsitektur 3 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 3 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 8 Grafik Performansi Training 3 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 3 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,038515 pada epoch ke-40.

Gambar 4. 9 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,49. Dan prosentase error sebesar 0,623%. Perhitungan error dapat dilihat pada lampiran Tabel A1.

4. Arsitektur 4 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 4 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 10 Grafik Performansi Training 4 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 4 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,041319 pada epoch ke-129.

Gambar 4. 11 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,56. Dan prosentase error sebesar 0,639%. Perhitungan error dapat dilihat pada lampiran Tabel A1.

5. Arsitektur 5 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 5 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 12 Grafik Performansi Training 5 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 5 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,041319 pada epoch ke-129.

Sistem jaringan syaraf tiruan yang telah dibuat di testing dengan data yang telah disiapkan, dan dihitung nilai error rataratanya. Grafik perbandingan dari prediksi nilai yang dilakukan oleh sistem jaringan syaraf tiruan yang telah dibuat dengan nilai target atau aktual dapat dilihat pada gambar berikut:

Gambar 4. 13 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,72. Dan prosentase error sebesar 0,681%. Perhitungan error dapat dilihat pada lampiran Tabel A1.

6. Arsitektur 6 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 6 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 14 Grafik Performansi Training 6 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 6 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0310 pada epoch ke-123.

Gambar 4. 15 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,78. Dan prosentase error sebesar 0,69%. Perhitungan error dapat dilihat pada lampiran Tabel A2.

7. Arsitektur 7 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 7 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 16 Grafik Performansi Training 7 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 7 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0301 pada epoch ke-45.

Gambar 4. 17 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,55. Dan prosentase error sebesar 0,638%. Perhitungan error dapat dilihat pada lampiran Tabel A2.

8. Arsitektur 8 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 8 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 18 Grafik Performansi Training 8 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 8 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,042 pada epoch ke-2.

Gambar 4. 19 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,72. Dan prosentase error sebesar 0,679%. Perhitungan error dapat dilihat pada lampiran Tabel A2.

9. Arsitektur 9 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 9 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 20 Grafik Performansi Training 9 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 9 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0318 pada epoch ke-50.

Gambar 4. 21 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,57. Dan prosentase error sebesar 0,642%. Perhitungan error dapat dilihat pada lampiran Tabel A2.

10. Arsitektur 10 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 10 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 22 Grafik Performansi Training 10 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 10 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,040397 pada epoch ke-13.

Sistem jaringan syaraf tiruan yang telah dibuat di testing dengan data yang telah disiapkan, dan dihitung nilai error rataratanya. Grafik perbandingan dari prediksi nilai yang dilakukan oleh sistem jaringan syaraf tiruan yang telah dibuat dengan nilai target atau aktual dapat dilihat pada gambar berikut:

Gambar 4. 23 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,64. Dan prosentase error sebesar 0,661%. Perhitungan error dapat dilihat pada lampiran Tabel A2.

Berdasarkan 10 variasi dari arsitektur yang telah dilakukan, didapatkan hasil error rata-rata yang dijelaskan pada tabel berikut:

Tabel 4. 1 Tabel Validasi Prediksi Level

Hidden Neuron	RMSE Validasi	Epoch
1	0,19621	1
2	0,176918	33
3	0,196214	40
4	0,203224	129
5	0,193391	49
6	0,169706	123
7	0,173494	45
8	0,204939	2
9	0,178326	50
10	0,2	13

Berdasarkan hasil variasi dari arsitektur dengan hidden neuron 1-10. Dilakukan proses testing sistem jaringan syaraf tiruan yang telah dibuat. Dengan menggunakan 100 data baru yang lalu dihitung nilai error dan error rata-ratanya.

Tabel 4. 2 Tabel Error Prediksi Level

Hidden Neuron	% Error Testing
1	0,679
2	0,627
3	0,623
4	0,639
5	0,681
6	0,695
7	0,638
8	0,679
9	0,642
10	0,661

Perhitungan % error didapatkan dari nilai mean absolut error (MAE) yang dibandingkan dengan nilai rata-rata dari target atau data yang ada. Berdasarkan hasil variasi dari arsitektur dengan hidden neuron 1-10. Didapatkan untuk nilai % error testing paling kecil yang dapat diperoleh adalah 0,623% yaitu pada arsitektur jaringan syaraf tiruan dengan hidden neuron berjumlah 3.

Selanjutnya dilakukan analisis nilai ketidakpastian tipe A. Dimana nilai ketidakpastian tipe A ini ditandai dengan adanya data pengukuran, sehingga didapatkan nilai rata-rata dan standar deviasi. Perhitungan nilai ketidakpastian tipe A dengan rumus:

$$U_A = \frac{\sigma}{\sqrt{n}}$$

Dimana,

 U_A = Nilai ketidakpastian tipe A

 σ = Standar deviasi

n = jumlah pengambilan data

Adapun perhitungan dari nilai ketidakpastian dari hasil prediksi variasi arsitektur 1 hidden neuron berdasarkan data real plant adalah sebagai berikut

Didapatkan nilai standar deviasi (σ) dengan rumus:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{(n-1)}}$$

Dimana.

 x_i = nilai data ke-i

 \bar{x} = nilai rata-rata dari data keseluruhan

n = jumlah data

Didapatkan

$$\sigma = \sqrt{\frac{1471,37}{(100-1)}}$$

$$\sigma = \sqrt{14,8623}$$

$$\sigma = 3,855168$$

Maka, nilai ketidakpastian

$$U_A = \frac{\sigma}{\sqrt{n}}$$

$$U_A = \frac{3,855168}{\sqrt{1}}$$

$$U_A = 3,855168$$

Adapun untuk nilai ketidakpastian dari masing-masing variasi arsitektur yang digunakan dilakukan perhitungan dengan cara yang sama dengan data hasil prediksi masing-masing, dan hasilnya dapat dilihat pada tabel berikut:

Tabel 4. 3 Tabel Nilai Ketidakpastian Prediksi Level

Hidden Neuron	Nilai Ketidakpastian U _A (mm)
1	3,855168
2	4,078926
3	4,202258
4	4,314172
5	5,007771
6	5,309279
7	4,553151
8	4,336406
9	4,528114
10	4,457786

4.2 Jaringan Syaraf Tiruan Prediksi Pressure

Struktur input jaringan syaraf tiruan menggunakan Multi Layer Perceptron yang terdiri dari 1 input layer, 1 hidden layer, dan 1 output layer. Input yang digunakan untuk sistem jaringan syaraf tiruan prediksi pressure ini adalah flow feedwater inlet dan flow steam outlet.

Adapun grafik data dari input yaitu berupa flow dari feedwater dan flow dari steam yang akan digunakan dapat dilihat pada gambar berikut:

Gambar 4. 24 Grafik Flow Feedwater

Gambar 4. 25 Grafik Flow Steam

Sedangkan grafik data dari output yaitu pressure ditampilkan pada gambar berikut:

Gambar 4. 26 Grafik Pressure Steam Drum

Dalam penelitian ini dilakukan variasi arsitektur yaitu variasi jumlah hidden neuron. Variasi dilakukan dengan jumlah hidden neuron 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10.

1. Arsitektur 1 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 1 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 27 Grafik Performansi Training 1 Hidden Nouron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 1 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,000258 pada epoch ke-6.

Sistem jaringan syaraf tiruan yang telah dibuat di testing dengan data yang telah disiapkan, dan dihitung nilai error rataratanya. Grafik perbandingan dari prediksi nilai yang dilakukan oleh sistem jaringan syaraf tiruan yang telah dibuat dengan nilai target atau aktual dapat dilihat pada gambar berikut:

Gambar 4. 28 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 1,69. Dan prosentase error sebesar 0,97%. Perhitungan error dapat dilihat pada lampiran B1.

2. Arsitektur 2 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 2 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 29 Grafik Performansi Training 2 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 2 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0185 pada epoch ke-4.

Gambar 4. 30 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 1,77. Dan prosentase error sebesar 1,02%. Perhitungan error dapat dilihat pada lampiran B2.

3. Arsitektur 3 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 3 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 31 Grafik Performansi Training 3 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 3 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0022786 pada epoch ke-10.

Gambar 4. 32 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 1,79. Dan prosentase error sebesar 1,027%. Perhitungan error dapat dilihat pada lampiran B3.

4. Arsitektur 4 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 4 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 33 Grafik Performansi Training 4 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 4 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,002139 pada epoch ke-155.

Sistem jaringan syaraf tiruan yang telah dibuat di testing dengan data yang telah disiapkan, dan dihitung nilai error rataratanya. Grafik perbandingan dari prediksi nilai yang dilakukan oleh sistem jaringan syaraf tiruan yang telah dibuat dengan nilai target atau aktual dapat dilihat pada gambar berikut:

Gambar 4. 34 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 1,74. Dan prosentase error sebesar 0,998%. Perhitungan error dapat dilihat pada lampiran B4.

5. Arsitektur 5 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 5 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 35 Grafik Performansi Training 5 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 5 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0012822 pada epoch ke-78.

Gambar 4. 36 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 1,83. Dan prosentase error sebesar 1,05%. Perhitungan error dapat dilihat pada lampiran B5.

6. Arsitektur 6 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 6 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 37 Grafik Performansi Training 6 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 6 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0015096 pada epoch ke-142.

Gambar 4. 38 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,76. Dan prosentase error sebesar 1,01%. Perhitungan error dapat dilihat pada lampiran B6.

7. Arsitektur 7 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 7 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 39 Grafik Performansi Training 7 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 7 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,00135751 pada epoch ke-23.

Sistem jaringan syaraf tiruan yang telah dibuat di testing dengan data yang telah disiapkan, dan dihitung nilai error rataratanya. Grafik perbandingan dari prediksi nilai yang dilakukan oleh sistem jaringan syaraf tiruan yang telah dibuat dengan nilai target atau aktual dapat dilihat pada gambar berikut:

Gambar 4. 40 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 1,76. Dan prosentase error sebesar 1,01%. Perhitungan error dapat dilihat pada lampiran B7.

8. Arsitektur 8 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 8 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 41 Grafik Performansi Training 8 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 8 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0015307 pada epoch ke-47.

Gambar 4. 42 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 1,79. Dan prosentase error sebesar 1,02%. Perhitungan error dapat dilihat pada lampiran B8.

9. Arsitektur 9 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 9 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 43 Grafik Performansi Training 9 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 9 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0016203 pada epoch ke-454.

Sistem jaringan syaraf tiruan yang telah dibuat di testing dengan data yang telah disiapkan, dan dihitung nilai error rataratanya. Grafik perbandingan dari prediksi nilai yang dilakukan oleh sistem jaringan syaraf tiruan yang telah dibuat dengan nilai target atau aktual dapat dilihat pada gambar berikut:

Gambar 4. 44 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 2,85. Dan prosentase error sebesar 1,06%. Perhitungan error dapat dilihat pada lampiran B9.

10. Arsitektur 10 Hidden Neuron

Training arsitektur jaringan syaraf tiruan dengan 10 hidden neuron, menghasilkan grafik performansi sebagai berikut:

Gambar 4. 45 Grafik Performansi Training 10 Hidden Neuron

Berdasarkan hasil training yang telah didapat menggunakan arsitektur 10 hidden neuron, didapatkan nilai terbaik dari validasi yaitu dengan MSE = 0,0019305 pada epoch ke-207.

Sistem jaringan syaraf tiruan yang telah dibuat di testing dengan data yang telah disiapkan, dan dihitung nilai error rataratanya. Grafik perbandingan dari prediksi nilai yang dilakukan oleh sistem jaringan syaraf tiruan yang telah dibuat dengan nilai target atau aktual dapat dilihat pada gambar berikut:

Gambar 4. 46 Grafik Perbandingan Prediksi dan Target

Berdasarkan testing yang telah dilakukan pada sistem jaringan syaraf tiruan yang telah dibuat, didapatkan nilai rata-rata error yaitu 1,89. Dan prosentase error sebesar 1,08%. Perhitungan error dapat dilihat pada lampiran B10.

Berdasarkan 10 variasi dari arsitektur yang telah dilakukan, didapatkan hasil dari error rata-rata yang dijelaskan pada tabel berikut:

Tabel 4. 4 Tabel Error Prediksi Pressure

Hidden Neuron	RMSE Validasi	Epoch
1	0,050794	6
2	0,043012	4
3	0,047645	10
4	0,046152	155
5	0,035777	78
6	0,03873	142
7	0,037014	23
8	0,039115	47
9	0,040249	454
10	0,043932	207

Perhitungan % error didapatkan dari nilai mean absolut error (MAE) yang dibandingkan dengan nilai rata-rata dari target atau data yang ada.

Berdasarkan hasil variasi dari arsitektur dengan hidden neuron 1-10. Dilakukan proses testing sistem jaringan syaraf tiruan yang telah dibuat. Dengan menggunakan 100 data baru yang lalu dihitung nilai error dan prosentase error rata-ratanya.

Tabel 4. 5 Tabel Error Prediksi Pressure

Hidden Neuron	% Error Testing
1	0,973
2	1,020
3	1,027
4	0,998
5	1,050
6	1,010
7	1,011
8	1,027
9	1,061
10	1,085

Didapatkan untuk nilai % error testing paling kecil yang dapat diperoleh adalah 0,973% yaitu pada arsitektur jaringan syaraf tiruan dengan hidden neuron berjumlah 1.

Selanjutnya dilakukan analisis nilai ketidakpastian tipe A. Dimana nilai ketidakpastian tipe A ini ditandai dengan adanya data pengukuran, sehingga didapatkan nilai rata-rata dan standar deviasi. Perhitungan nilai ketidakpastian tipe A dengan rumus:

$$U_A = \frac{\sigma}{\sqrt{n}}$$

Dimana,

 U_A = Nilai ketidakpastian tipe A

 σ = Standar deviasi

n = jumlah pengambilan data

Adapun perhitungan dari nilai ketidakpastian dari hasil prediksi variasi arsitektur 1 hidden neuron berdasarkan data real plant adalah sebagai berikut

Didapatkan nilai standar deviasi (σ) dengan rumus:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{(n-1)}}$$

Dimana.

 x_i = nilai data ke-i

 \bar{x} = nilai rata-rata dari data keseluruhan

n = jumlah data

Didapatkan

$$\sigma = \sqrt{\frac{10062,5}{(100-1)}}$$

$$\sigma = \sqrt{101,641}$$

$$\sigma = 10,0817$$

Maka, nilai ketidakpastian

$$U_A = \frac{\sigma}{\sqrt{n}}$$

$$U_A = \frac{10,0817}{\sqrt{1}}$$

$U_{\Delta} = 10,0817$

Adapun untuk nilai ketidakpastian dari masing-masing variasi arsitektur yang digunakan dilakukan perhitungan dengan cara yang sama dengan data hasil prediksi masing-masing, dan hasilnya dapat dilihat pada tabel berikut:

Tabel 4. 6 Tabel Nilai Ketidakpastian Prediksi Pressure

Hidden Neuron	Nilai Ketidakpastian U _A (bar)
1	10,08171
2	10,21311
3	10,25513
4	10,38457
5	10,34409
6	10,33502
7	10,28295
8	10,10747
9	10,4957
10	10,71862

Berdasarkan nilai hasil prediksi dari level dan pressure pada steam drum boiler ini terdapat fluktuasi atau naik turun nya nilai dari level dan pressure pada prediksi yang bersamaan.

Dapat diambil contoh dari prediksi dengan sistem jaringan syaraf tiruan arsitektur 1 hidden neuron. Pada saat nilai prediksi level naik , maka nilai prediksi pressure akan turun, begitu juga sebaliknya. Hal ini dapat dikatakan sesuai dengan kondisi nyata, dimana level yang diukur pada steam drum ini adalah level dari air,

sedangkan pressure yang diukur dari steam drum ini adalah pressure dari uap. Dimana jika kondisi level air turun, maka kuantitas dari uap didalam steam drum akan semakin banyal, hal ini yang menyebabkan variabel pressure akan naik, begitu pula sebaliknya.

Adapun hasil dari perhitungan nilai ketidakpastian tipe A yang paling baik atau dalam hal ini nilai yang paling kecil didapatkan dari sistem jaringan syaraf tiruan dengan arsitektur 1 hidden neuron, yaitu untuk level $\pm 3,855$ mm dan untuk pressure $\pm 10,08171$ bar.

LAMPIRAN A

Tabel A. 1 Tabel Perhitungan Error Testing Prediksi Level Dengan Hidden Neuron 1-5

	Nilai Aktual		Variasi 1 Neu		Variasi 2 I Neur		Variasi 3 H Neuro		Variasi 4 H Neuro		Variasi 5 Neui	
Flow In	Flow Out	Level Aktual	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error
434,304	464,362	410,107	411,905	1,799	412,812	2,705	413,440	3,333	411,188	1,081	407,489	2,618
547,008	552,169	401,343	401,092	0,251	401,207	0,136	401,459	0,116	401,418	0,075	401,423	0,080
578,560	580,061	400,707	399,250	1,457	399,048	1,659	399,114	1,593	399,160	1,546	399,063	1,643
569,152	576,052	396,813	399,598	2,784	399,846	3,033	400,019	3,206	400,737	3,924	399,973	3,159
568,128	573,861	397,067	399,654	2,587	399,866	2,800	399,929	2,862	399,668	2,601	400,000	2,934
570,304	574,558	395,120	399,561	4,441	399,687	4,567	399,717	4,597	399,286	4,166	399,799	4,679
563,968	572,866	404,137	399,845	4,292	400,069	4,067	400,199	3,938	400,411	3,725	400,235	3,902
510,336	524,374	404,433	405,488	1,055	405,029	0,596	405,341	0,908	405,519	1,086	404,717	0,284
512,320	524,945	401,173	405,229	4,056	404,985	3,812	405,280	4,106	405,565	4,392	404,734	3,560
512,128	524,029	404,897	405,271	0,374	405,134	0,238	405,368	0,472	405,737	0,841	404,895	0,002
565,504	569,703	399,483	399,797	0,313	399,897	0,414	399,817	0,334	398,681	0,802	400,054	0,571
581,440	579,487	396,050	399,170	3,120	397,974	1,924	397,824	1,774	397,509	1,459	397,991	1,941
580,544	578,763	392,623	399,198	6,575	398,051	5,427	397,896	5,273	397,347	4,723	398,081	5,458
572,544	574,690	397,953	399,476	1,523	399,339	1,386	399,290	1,337	398,353	0,400	399,433	1,479
565,504	569,703	399,483	399,797	0,313	399,897	0,414	399,817	0,334	398,681	0,802	400,054	0,571
522,368	536,012	405,743	403,792	1,952	403,347	2,396	403,724	2,019	403,594	2,149	403,273	2,470
577,536	577,684	395,503	399,292	3,789	398,755	3,252	398,682	3,179	398,117	2,614	398,800	3,297
570,816	575,493	401,217	399,536	1,681	399,697	1,520	399,770	1,446	399,737	1,480	399,804	1,412
576,512	576,480	394,613	399,330	4,717	398,724	4,111	398,615	4,002	397,625	3,012	398,788	4,175
516,352	525,940	410,190	404,710	5,480	404,785	5,405	404,996	5,194	405,374	4,816	404,658	5,532
555,712	565,315	395,333	400,350	5,017	400,513	5,180	400,437	5,104	399,206	3,873	400,718	5,385
570,368	573,570	397,577	399,565	1,988	399,576	1,999	399,542	1,965	398,596	1,019	399,689	2,112
565,888	573,743	394,740	399,751	5,011	399,995	5,255	400,122	5,382	400,410	5,670	400,148	5,408
558,784	567,001	398,717	400,157	1,441	400,373	1,656	400,316	1,599	399,126	0,409	400,569	1,852
556,736	567,360	398,930	400,271	1,341	400,395	1,465	400,390	1,460	399,139	0,209	400,592	1,662

Flow In	Flow Out	Level Aktual	Level Prediksi	Error								
501,824	517,814	401,470	406,666	5,196	405,980	4,510	406,132	4,662	406,329	4,859	405,463	3,993
458,816	476,916	417,050	410,989	6,061	411,950	5,100	412,369	4,681	412,327	4,723	418,221	1,171
565,504	569,703	399,483	399,797	0,313	399,897	0,414	399,817	0,334	398,681	0,802	400,054	0,571
452,608	474,204	404,223	411,289	7,066	412,202	7,978	412,711	8,487	412,427	8,204	419,200	14,976
453,504	473,797	406,003	411,255	5,251	412,275	6,272	412,751	6,748	412,672	6,669	418,842	12,839
455,296	475,645	404,857	411,164	6,308	412,077	7,220	412,556	7,699	412,399	7,543	419,929	15,072
465,344	495,957	408,837	410,454	1,617	408,265	0,571	408,499	0,338	406,493	2,343	409,611	0,774
581,696	574,306	397,660	399,186	1,526	394,564	3,096	394,251	3,409	392,344	5,316	394,296	3,364
579,968	578,143	396,307	399,217	2,911	398,036	1,730	397,867	1,560	397,077	0,770	398,079	1,772
552,064	552,033	398,590	400,722	2,132	399,661	1,071	400,113	1,523	400,248	1,658	400,005	1,415
580,224	580,801	397,363	399,198	1,835	398,814	1,450	398,850	1,487	398,889	1,526	398,810	1,447
576,064	578,009	401,090	399,337	1,753	399,195	1,895	399,223	1,867	399,108	1,982	399,243	1,847
580,096	581,957	395,247	399,197	3,950	399,076	3,829	399,222	3,975	399,119	3,872	399,068	3,821
567,936	572,072	402,487	399,673	2,813	399,778	2,709	399,741	2,745	398,701	3,785	399,914	2,573
518,016	524,428	397,703	404,534	6,831	404,581	6,878	404,505	6,802	404,896	7,193	404,603	6,900
570,944	572,950	396,940	399,546	2,606	399,370	2,430	399,280	2,340	398,018	1,078	399,484	2,544
578,752	576,492	399,437	399,261	0,176	397,853	1,584	397,636	1,801	396,160	3,277	397,929	1,508
584,832	580,901	394,230	399,077	4,847	397,006	2,776	396,767	2,537	396,874	2,644	396,992	2,762
580,096	580,119	401,217	399,205	2,012	398,673	2,543	398,657	2,559	398,634	2,583	398,678	2,539
587,136	582,270	393,680	399,018	5,338	396,478	2,798	396,208	2,528	396,827	3,147	396,419	2,739
584,768	583,595	397,070	399,068	1,998	398,251	1,181	398,262	1,192	398,382	1,312	398,190	1,120
575,104	579,061	400,833	399,363	1,470	399,482	1,351	399,638	1,195	399,891	0,942	399,541	1,292
572,864	575,608	401,597	399,459	2,137	399,422	2,174	399,421	2,176	398,891	2,706	399,508	2,088
572,352	575,014	400,200	399,481	0,719	399,428	0,772	399,408	0,792	398,688	1,512	399,521	0,679
481,856	487,738	412,263	409,301	2,962	408,118	4,146	407,969	4,294	407,048	5,215	407,699	4,564
460,608	475,874	405,280	410,907	5,627	411,895	6,615	412,224	6,944	412,060	6,780	415,511	10,231
443,136	447,270	405,363	411,753	6,389	406,214	0,851	405,291	0,073	406,781	1,418	405,150	0,213
565,504	569,703	399,483	399,797	0,313	399,897	0,414	399,817	0,334	398,681	0,802	400,054	0,571
575,872	577,920	396,517	399,344	2,827	399,218	2,701	399,248	2,732	399,136	2,620	399,268	2,752
511,744	523,836	401,807	405,323	3,516	405,163	3,357	405,397	3,590	405,762	3,955	404,914	3,107
510,848	520,762	400,497	405,495	4,998	405,577	5,080	405,565	5,068	406,079	5,583	405,388	4,892

Flow In	Flow Out	Level Aktual	Level Prediksi	Error								
584,960	582,362	392,663	399,068	6,405	397,687	5,024	397,567	4,903	397,897	5,233	397,649	4,986
580,288	578,643	398,847	399,206	0,359	398,108	0,739	397,958	0,888	397,385	1,461	398,140	0,706
581,312	581,299	390,677	399,166	8,489	398,644	7,967	398,660	7,984	398,720	8,043	398,629	7,952
567,360	575,174	401,383	399,677	1,706	399,926	1,457	400,100	1,283	400,888	0,496	400,068	1,315
563,392	571,614	400,413	399,882	0,532	400,114	0,299	400,183	0,230	399,698	0,715	400,285	0,128
571,520	576,636	400,877	399,503	1,374	399,695	1,182	399,821	1,056	400,172	0,704	399,795	1,081
568,768	576,022	399,737	399,613	0,123	399,865	0,128	400,049	0,313	400,860	1,124	399,995	0,258
570,304	573,972	395,883	399,565	3,682	399,632	3,749	399,625	3,742	398,879	2,996	399,745	3,861
570,880	575,916	396,687	399,531	2,844	399,716	3,029	399,816	3,130	399,996	3,309	399,823	3,137
567,296	574,297	401,213	399,686	1,528	399,930	1,283	400,049	1,165	400,297	0,916	400,073	1,141
570,496	577,124	400,580	399,538	1,042	399,786	0,794	399,985	0,595	400,737	0,157	399,900	0,680
564,608	571,044	400,117	399,828	0,288	400,055	0,062	400,059	0,058	399,142	0,975	400,218	0,101
568,256	573,917	401,093	399,648	1,445	399,858	1,235	399,920	1,174	399,659	1,435	399,991	1,103
568,768	572,600	398,887	399,635	0,749	399,713	0,826	399,678	0,792	398,671	0,216	399,841	0,954
569,216	575,130	398,550	399,601	1,051	399,824	1,274	399,932	1,382	400,141	1,591	399,949	1,399
563,008	570,367	400,073	399,910	0,164	400,144	0,071	400,154	0,081	399,202	0,871	400,319	0,245
558,784	568,467	405,833	400,144	5,689	400,322	5,512	400,330	5,503	399,195	6,639	400,514	5,319
565,504	569,703	399,483	399,797	0,313	399,897	0,414	399,817	0,334	398,681	0,802	400,054	0,571
461,632	475,015	412,517	410,860	1,656	411,690	0,826	411,943	0,574	411,559	0,958	413,588	1,071
514,432	523,548	403,247	404,994	1,747	405,102	1,855	405,171	1,924	405,619	2,372	404,972	1,726
509,376	521,484	403,587	405,664	2,077	405,530	1,943	405,667	2,081	406,115	2,528	405,247	1,660
565,504	569,703	399,483	399,797	0,313	399,897	0,414	399,817	0,334	398,681	0,802	400,054	0,571
588,480	585,301	391,523	398,978	7,455	397,435	5,912	397,355	5,832	397,826	6,303	397,335	5,812
585,472	583,380	397,573	399,052	1,479	397,905	0,332	397,848	0,274	398,143	0,570	397,847	0,274
576,320	578,491	399,313	399,326	0,013	399,225	0,088	399,279	0,035	399,281	0,032	399,269	0,044
571,072	574,038	403,757	399,535	4,222	399,518	4,238	399,486	4,270	398,591	5,166	399,624	4,132
572,608	574,800	400,667	399,473	1,193	399,345	1,322	399,300	1,367	398,402	2,264	399,437	1,230
586,880	580,702	394,273	399,029	4,756	395,582	1,308	395,222	0,949	395,302	1,029	395,475	1,202
582,912	582,738	398,167	399,118	0,951	398,577	0,410	398,627	0,460	398,654	0,487	398,536	0,370
579,072	581,583	401,170	399,228	1,942	399,200	1,970	399,369	1,801	399,277	1,893	399,207	1,963
577,088	581,200	399,820	399,289	0,531	399,430	0,390	399,664	0,156	399,559	0,261	399,466	0,354

Flow In	Flow Out	Level Aktual	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error
572,544	574,690	397,953	399,476	1,523	399,339	1,386	399,290	1,337	398,353	0,400	399,433	1,479
565,504	569,703	399,483	399,797	0,313	399,897	0,414	399,817	0,334	398,681	0,802	400,054	0,571
522,368	536,012	405,743	403,792	1,952	403,347	2,396	403,724	2,019	403,594	2,149	403,273	2,470
577,536	577,684	395,503	399,292	3,789	398,755	3,252	398,682	3,179	398,117	2,614	398,800	3,297
570,816	575,493	401,217	399,536	1,681	399,697	1,520	399,770	1,446	399,737	1,480	399,804	1,412
576,512	576,480	394,613	399,330	4,717	398,724	4,111	398,615	4,002	397,625	3,012	398,788	4,175
516,352	525,940	410,190	404,710	5,480	404,785	5,405	404,996	5,194	405,374	4,816	404,658	5,532
555,712	565,315	395,333	400,350	5,017	400,513	5,180	400,437	5,104	399,206	3,873	400,718	5,385
570,368	573,570	397,577	399,565	1,988	399,576	1,999	399,542	1,965	398,596	1,019	399,689	2,112
565,888	573,743	394,740	399,751	5,011	399,995	5,255	400,122	5,382	400,410	5,670	400,148	5,408
565,504	569,703	399,483	399,797	0,313	399,897	0,414	399,817	0,334	398,681	0,802	400,054	0,571
461,632	475,015	412,517	410,860	1,656	411,690	0,826	411,943	0,574	411,559	0,958	413,588	1,071
514,432	523,548	403,247	404,994	1,747	405,102	1,855	405,171	1,924	405,619	2,372	404,972	1,726
Rata	i-rata	400,2443		2,72164		2,510		2,4946		2,5600		2,7287

Tabel A. 2 Tabel Perhitungan Error Testing Prediksi Level Dengan Hidden Neuron 6-10

	Nilai Aktual		Variasi 6 Hidden Neuron		Variasi 7 Hidden Neuron		Variasi 8 Hidden Neuron		Variasi 9 Hidden Neuron		Variasi 10 Hidden Neuron	
Flow In	Flow Out	Level Aktual	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error
434,304	464,362	410,107	421,840	11,733	416,916	6,809	412,847	2,740	416,635	6,528	417,377	7,270
547,008	552,169	401,343	401,310	0,034	401,123	0,221	400,671	0,672	401,652	0,308	400,707	0,637
578,560	580,061	400,707	399,174	1,533	399,083	1,623	399,055	1,652	398,919	1,788	399,180	1,527
569,152	576,052	396,813	399,934	3,120	400,070	3,257	399,406	2,593	400,088	3,275	399,870	3,056
568,128	573,861	397,067	399,648	2,581	399,664	2,598	399,451	2,384	399,567	2,501	399,824	2,758
570,304	574,558	395,120	399,536	4,416	399,421	4,301	399,373	4,253	399,287	4,167	399,647	4,527
563,968	572,866	404,137	399,634	4,503	399,998	4,139	399,588	4,549	399,968	4,169	400,010	4,127
510,336	524,374	404,433	405,154	0,721	405,651	1,218	405,912	1,479	405,306	0,873	405,085	0,652
512,320	524,945	401,173	405,291	4,118	405,474	4,301	405,707	4,534	405,214	4,041	405,100	3,927
512,128	524,029	404,897	405,529	0,632	405,547	0,650	405,739	0,842	405,366	0,469	405,252	0,355

Flow In	Flow Out	Level Aktual	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error	Level Prediksi	Error
565,504	569,703	399,483	399,354	0,130	399,265	0,219	399,547	0,064	399,124	0,360	399,700	0,217
581,440	579,487	396,050	397,892	1,842	397,628	1,578	398,933	2,883	397,474	1,424	398,318	2,268
580,544	578,763	392,623	397,963	5,340	397,672	5,049	398,966	6,343	397,492	4,869	398,357	5,733
572,544	574,690	397,953	399,077	1,124	398,892	0,939	399,287	1,334	398,730	0,777	399,298	1,345
565,504	569,703	399,483	399,354	0,130	399,265	0,219	399,547	0,064	399,124	0,360	399,700	0,217
522,368	536,012	405,743	403,345	2,398	403,770	1,974	404,272	1,471	403,328	2,416	403,604	2,139
577,536	577,684	395,503	398,658	3,154	398,411	2,908	399,090	3,587	398,182	2,678	398,868	3,364
570,816	575,493	401,217	399,693	1,523	399,589	1,627	399,352	1,865	399,469	1,747	399,690	1,527
576,512	576,480	394,613	398,523	3,909	398,272	3,659	399,129	4,515	398,068	3,455	398,812	4,199
516,352	525,940	410,190	405,286	4,904	405,075	5,115	405,318	4,872	404,888	5,302	404,965	5,225
555,712	565,315	395,333	399,876	4,542	399,945	4,612	399,885	4,552	399,176	3,843	400,298	4,965
570,368	573,570	397,577	399,245	1,668	399,116	1,539	399,371	1,794	398,982	1,406	399,496	1,919
565,888	573,743	394,740	399,709	4,969	399,966	5,226	399,524	4,784	399,950	5,210	399,963	5,223
558,784	567,001	398,717	399,781	1,064	399,818	1,102	399,777	1,061	399,247	0,530	400,179	1,462
556,736	567,360	398,930	399,682	0,752	399,887	0,957	399,833	0,903	399,273	0,343	400,207	1,277
501,824	517,814	401,470	405,439	3,969	406,697	5,227	407,070	5,600	406,327	4,857	405,845	4,375
458,816	476,916	417,050	414,976	2,074	412,681	4,369	412,816	4,234	413,084	3,966	413,644	3,406
565,504	569,703	399,483	399,354	0,130	399,265	0,219	399,547	0,064	399,124	0,360	399,700	0,217
452,608	474,204	404,223	420,067	15,844	413,788	9,565	413,403	9,180	414,394	10,171	415,144	10,921
453,504	473,797	406,003	418,833	12,830	413,561	7,558	413,241	7,238	414,196	8,193	414,881	8,878
455,296	475,645	404,857	418,285	13,428	413,330	8,473	413,212	8,355	413,872	9,015	414,581	9,724
465,344	495,957	408,837	414,363	5,526	411,100	2,264	413,147	4,310	408,529	0,308	408,670	0,167
581,696	574,306	397,660	396,685	0,975	394,691	2,969	398,828	1,168	395,380	2,280	396,033	1,627
579,968	578,143	396,307	397,943	1,637	397,623	1,316	398,987	2,680	397,440	1,134	398,332	2,025
552,064	552,033	398,590	399,518	0,928	400,429	1,839	400,355	1,765	402,143	3,553	399,283	0,693
580,224	580,801	397,363	398,825	1,461	398,788	1,424	398,992	1,628	398,661	1,297	398,995	1,632
576,064	578,009	401,090	399,285	1,805	399,067	2,023	399,151	1,939	398,852	2,238	399,259	1,831
580,096	581,957	395,247	399,243	3,996	399,358	4,112	398,999	3,752	399,343	4,097	399,253	4,006
567,936	572,072	402,487	399,342	3,144	399,269	3,218	399,461	3,026	399,143	3,344	399,658	2,829
518,016	524,428	397,703	404,815	7,111	404,893	7,189	405,165	7,462	404,724	7,020	404,850	7,147
570,944	572,950	396,940	398,888	1,948	398,780	1,840	399,347	2,407	398,690	1,750	399,274	2,334

Flow In	Flow Out	Level Aktual	Level Prediksi	Error								
578,752	576,492	399,437	397,732	1,704	397,360	2,077	399,027	0,409	397,243	2,193	398,166	1,271
584,832	580,901	394,230	397,199	2,969	396,688	2,458	398,796	4,566	396,734	2,504	397,700	3,470
580,096	580,119	401,217	398,631	2,585	398,521	2,696	398,994	2,222	398,351	2,865	398,862	2,355
587,136	582,270	393,680	396,878	3,198	396,185	2,505	398,713	5,033	396,462	2,782	397,399	3,719
584,768	583,595	397,070	397,973	0,903	398,144	1,074	398,831	1,761	398,388	1,318	398,614	1,544
575,104	579,061	400,833	399,840	0,993	399,769	1,064	399,185	1,648	399,657	1,176	399,570	1,263
572,864	575,608	401,597	399,327	2,270	399,119	2,477	399,276	2,321	398,938	2,658	399,407	2,190
572,352	575,014	400,200	399,248	0,952	399,056	1,144	399,295	0,905	398,887	1,313	399,394	0,806
481,856	487,738	412,263	405,792	6,472	408,624	3,639	409,499	2,764	407,070	5,194	407,089	5,174
460,608	475,874	405,280	412,883	7,603	412,133	6,853	412,366	7,086	412,382	7,102	412,673	7,393
443,136	447,270	405,363	405,242	0,121	406,196	0,833	408,314	2,951	404,961	0,403	405,914	0,551
565,504	569,703	399,483	399,354	0,130	399,265	0,219	399,547	0,064	399,124	0,360	399,700	0,217
575,872	577,920	396,517	399,312	2,796	399,093	2,577	399,159	2,642	398,880	2,363	399,278	2,762
511,744	523,836	401,807	405,543	3,736	405,589	3,782	405,780	3,973	405,405	3,599	405,274	3,467
510,848	520,762	400,497	406,091	5,595	405,794	5,297	405,882	5,385	405,818	5,322	405,685	5,189
584,960	582,362	392,663	397,516	4,853	397,414	4,751	398,810	6,147	397,540	4,877	398,183	5,520
580,288	578,643	398,847	398,012	0,834	397,727	1,119	398,977	0,130	397,540	1,306	398,395	0,452
581,312	581,299	390,677	398,578	7,902	398,577	7,900	398,951	8,274	398,494	7,817	398,867	8,190
567,360	575,174	401,383	399,849	1,535	400,106	1,278	399,469	1,914	400,157	1,226	399,927	1,457
563,392	571,614	400,413	399,602	0,811	399,852	0,561	399,612	0,801	399,701	0,712	400,032	0,382
571,520	576,636	400,877	399,865	1,011	399,795	1,082	399,323	1,554	399,707	1,170	399,724	1,153
568,768	576,022	399,737	399,939	0,203	400,123	0,386	399,419	0,318	400,166	0,429	399,887	0,150
570,304	573,972	395,883	399,377	3,493	399,249	3,366	399,373	3,490	399,109	3,226	399,568	3,685
570,880	575,916	396,687	399,783	3,097	399,706	3,019	399,348	2,662	399,605	2,919	399,725	3,038
567,296	574,297	401,213	399,750	1,464	399,903	1,310	399,476	1,737	399,871	1,342	399,911	1,302
570,496	577,124	400,580	400,036	0,544	400,151	0,429	399,355	1,225	400,177	0,403	399,834	0,746
564,608	571,044	400,117	399,572	0,545	399,628	0,489	399,577	0,540	399,437	0,680	399,942	0,175
568,256	573,917	401,093	399,647	1,446	399,656	1,437	399,446	1,647	399,557	1,536	399,817	1,277
568,768	572,600	398,887	399,311	0,424	399,222	0,335	399,430	0,544	399,098	0,211	399,606	0,720
569,216	575,130	398,550	399,784	1,234	399,804	1,254	399,409	0,859	399,739	1,189	399,819	1,269
563,008	570,367	400,073	399,606	0,467	399,721	0,353	399,630	0,443	399,472	0,601	400,025	0,048

Flow In	Flow Out	Level Aktual	Level Prediksi	Error								
558,784	568,467	405,833	399,644	6,189	399,860	5,973	399,766	6,067	399,383	6,451	400,165	5,669
565,504	569,703	399,483	399,354	0,130	399,265	0,219	399,547	0,064	399,124	0,360	399,700	0,217
461,632	475,015	412,517	412,744	0,227	411,716	0,801	412,041	0,475	411,776	0,741	411,865	0,652
514,432	523,548	403,247	405,604	2,357	405,346	2,100	405,513	2,267	405,262	2,015	405,263	2,016
509,376	521,484	403,587	405,942	2,355	405,910	2,324	406,050	2,463	405,821	2,234	405,602	2,016
565,504	569,703	399,483	399,354	0,130	399,265	0,219	399,547	0,064	399,124	0,360	399,700	0,217
588,480	585,301	391,523	397,065	5,542	397,095	5,572	398,707	7,184	397,825	6,302	398,078	6,555
585,472	583,380	397,573	397,626	0,053	397,688	0,114	398,801	1,228	397,941	0,368	398,358	0,785
576,320	578,491	399,313	399,373	0,059	399,181	0,132	399,141	0,172	398,979	0,334	399,301	0,012
571,072	574,038	403,757	399,230	4,527	399,080	4,676	399,344	4,412	398,936	4,821	399,452	4,304
572,608	574,800	400,667	399,101	1,566	398,911	1,755	399,285	1,382	398,746	1,921	399,307	1,360
586,880	580,702	394,273	396,802	2,528	395,417	1,144	398,693	4,420	395,641	1,368	396,813	2,540
582,912	582,738	398,167	398,438	0,271	398,578	0,412	398,896	0,729	398,659	0,493	398,846	0,680
579,072	581,583	401,170	399,464	1,706	399,562	1,608	399,036	2,134	399,527	1,643	399,359	1,811
577,088	581,200	399,820	399,882	0,062	400,037	0,217	399,107	0,713	400,039	0,219	399,574	0,246
572,544	574,690	397,953	399,077	1,124	398,892	0,939	399,287	1,334	398,730	0,777	399,298	1,345
565,504	569,703	399,483	399,354	0,130	399,265	0,219	399,547	0,064	399,124	0,360	399,700	0,217
522,368	536,012	405,743	403,345	2,398	403,770	1,974	404,272	1,471	403,328	2,416	403,604	2,139
577,536	577,684	395,503	398,658	3,154	398,411	2,908	399,090	3,587	398,182	2,678	398,868	3,364
570,816	575,493	401,217	399,693	1,523	399,589	1,627	399,352	1,865	399,469	1,747	399,690	1,527
576,512	576,480	394,613	398,523	3,909	398,272	3,659	399,129	4,515	398,068	3,455	398,812	4,199
516,352	525,940	410,190	405,286	4,904	405,075	5,115	405,318	4,872	404,888	5,302	404,965	5,225
555,712	565,315	395,333	399,876	4,542	399,945	4,612	399,885	4,552	399,176	3,843	400,298	4,965
570,368	573,570	397,577	399,245	1,668	399,116	1,539	399,371	1,794	398,982	1,406	399,496	1,919
565,888	573,743	394,740	399,709	4,969	399,966	5,226	399,524	4,784	399,950	5,210	399,963	5,223
565,504	569,703	399,483	399,354	0,130	399,265	0,219	399,547	0,064	399,124	0,360	399,700	0,217
461,632	475,015	412,517	412,744	0,227	411,716	0,801	412,041	0,475	411,776	0,741	411,865	0,652
514,432	523,548	403,247	405,604	2,357	405,346	2,100	405,513	2,267	405,262	2,015	405,263	2,016
Rata	-rata	400,244		2,782		2,554		2,720		2,571		2,647

LAMPIRAN B

Tabel B. 1 Tabel Perhitungan Error Testing Prediksi Pressure Dengan Hidden Neuron 1-5

	Nilai Aktu	al	Variasi 1 Hidden Neuron		Variasi 2 Hidden		Variasi 3 Hidden		Variasi 4 Hidden		Variasi 5 Hidden	
	T T		_	_	Neuro	I	Neuro		Neur		Neuro	
Flow In	Flow	Pressure	Pressure	Error	Pressure	Error	Pressure	Error	Pressure	Error	Pressure	Error
	Out	Aktual	Prediksi		Prediksi		Prediksi		Prediksi		Prediksi	
434,304	464,362	145,938	148,395	2,457	147,914	1,976	147,945	2,007	144,374	1,564	147,217	1,279
547,008	552,169	177,884	174,443	3,441	174,295	3,590	174,332	3,553	174,151	3,734	174,105	3,779
578,560	580,061	181,191	180,637	0,554	180,567	0,624	180,599	0,592	180,607	0,584	180,536	0,655
569,152	576,052	180,558	180,186	0,372	180,245	0,312	180,253	0,305	180,099	0,459	179,845	0,712
568,128	573,861	178,762	179,753	0,990	179,798	1,036	179,814	1,052	179,451	0,688	179,703	0,941
570,304	574,558	180,000	179,817	0,183	179,826	0,174	179,851	0,149	179,486	0,514	179,708	0,292
563,968	572,866	177,731	179,704	1,973	179,826	2,095	179,824	2,093	179,806	2,075	179,726	1,995
510,336	524,374	167,938	165,104	2,834	165,167	2,771	165,250	2,688	165,434	2,504	165,467	2,471
512,320	524,945	169,438	165,201	4,237	165,235	4,203	165,316	4,121	165,401	4,036	165,485	3,953
512,128	524,029	168,198	164,772	3,426	164,802	3,395	164,897	3,301	164,951	3,247	165,042	3,156
565,504	569,703	177,227	178,876	1,649	178,883	1,656	178,915	1,688	178,419	1,193	179,533	2,306
581,440	579,487	178,611	180,418	1,807	180,279	1,668	180,334	1,723	180,730	2,119	180,187	1,576
580,544	578,763	180,771	180,305	0,466	180,171	0,600	180,226	0,545	180,576	0,195	180,036	0,735
572,544	574,690	177,973	179,753	1,780	179,712	1,738	179,750	1,777	179,500	1,526	179,736	1,763
565,504	569,703	177,227	178,876	1,649	178,883	1,656	178,915	1,688	178,419	1,193	179,533	2,306
522,368	536,012	169,929	169,582	0,347	169,626	0,303	169,618	0,311	169,291	0,638	169,636	0,293
577,536	577,684	180,582	180,199	0,384	180,108	0,474	180,154	0,429	180,208	0,375	179,902	0,680
570,816	575,493	178,251	180,001	1,750	180,016	1,765	180,037	1,786	179,710	1,459	179,734	1,483
576,512	576,480	179,567	179,984	0,417	179,890	0,323	179,939	0,372	179,981	0,414	179,781	0,215
516,352	525,940	167,324	165,318	2,006	165,278	2,046	165,357	1,968	165,215	2,109	165,388	1,936
555,712	565,315	178,458	178,200	0,258	178,355	0,103	178,352	0,106	178,165	0,293	178,711	0,253
570,368	573,570	179,762	179,591	0,171	179,576	0,186	179,609	0,153	179,249	0,513	179,747	0,016
565,888	573,743	179,016	179,820	0,804	179,914	0,898	179,917	0,902	179,769	0,753	179,707	0,691
558,784	567,001	176,438	178,501	2,063	178,618	2,180	178,623	2,185	178,265	1,827	179,090	2,652

Flow In	Flow	Level Aktual	Level	Error								
	Out		Prediksi		Prediksi		Prediksi		Prediksi		Prediksi	
556,736	567,360	177,056	178,696	1,640	178,881	1,825	178,870	1,814	178,929	1,873	179,357	2,302
501,824	517,814	165,978	162,686	3,292	162,779	3,198	162,900	3,077	163,288	2,689	163,112	2,865
458,816	476,916	152,956	150,123	2,833	149,281	3,675	148,929	4,027	149,154	3,801	149,022	3,934
565,504	569,703	177,227	178,876	1,649	178,883	1,656	178,915	1,688	178,419	1,193	179,533	2,306
452,608	474,204	152,649	149,748	2,901	148,881	3,768	148,603	4,046	148,083	4,566	148,495	4,154
453,504	473,797	152,760	149,614	3,146	148,815	3,945	148,536	4,224	148,265	4,495	148,501	4,259
455,296	475,645	153,800	149,973	3,827	149,086	4,714	148,763	5,037	148,608	5,192	148,741	5,059
465,344	495,957	157,222	155,920	1,302	154,435	2,787	154,443	2,779	152,361	4,861	151,947	5,276
581,696	574,306	176,027	179,265	3,238	178,962	2,936	179,072	3,045	180,355	4,328	180,014	3,988
579,968	578,143	180,624	180,199	0,425	180,064	0,560	180,121	0,503	180,460	0,164	179,929	0,695
552,064	552,033	177,111	174,030	3,081	173,640	3,471	173,725	3,386	174,450	2,661	174,039	3,072
580,224	580,801	181,124	180,719	0,405	180,627	0,497	180,664	0,460	180,791	0,333	180,715	0,409
576,064	578,009	179,358	180,323	0,965	180,270	0,912	180,304	0,946	180,185	0,828	180,013	0,655
580,096	581,957	182,171	180,938	1,233	180,862	1,309	180,890	1,281	180,966	1,205	181,227	0,944
567,936	572,072	177,071	179,347	2,276	179,356	2,285	179,385	2,314	178,942	1,871	179,751	2,680
518,016	524,428	167,396	164,428	2,967	164,361	3,034	164,459	2,936	164,494	2,902	164,409	2,987
570,944	572,950	176,144	179,422	3,277	179,376	3,232	179,418	3,274	179,138	2,994	179,787	3,643
578,752	576,492	177,180	179,895	2,715	179,747	2,567	179,811	2,631	180,181	3,001	179,801	2,621
584,832	580,901	179,973	180,572	0,599	180,390	0,417	180,453	0,480	181,194	1,221	180,464	0,490
580,096	580,119	179,211	180,593	1,382	180,493	1,282	180,534	1,323	180,692	1,481	180,462	1,251
587,136	582,270	181,069	180,752	0,317	180,549	0,520	180,614	0,455	181,544	0,475	180,832	0,237
584,768	583,595	181,404	181,075	0,330	180,936	0,468	180,977	0,427	181,433	0,029	181,601	0,196
575,104	579,061	180,216	180,569	0,353	180,551	0,335	180,571	0,356	180,415	0,199	180,387	0,171
572,864	575,608	178,262	179,943	1,680	179,914	1,652	179,947	1,685	179,680	1,418	179,734	1,472
572,352	575,014	177,342	179,833	2,491	179,804	2,462	179,838	2,496	179,557	2,215	179,724	2,382
481,856	487,738	158,864	151,918	6,947	151,819	7,045	152,303	6,561	151,929	6,936	152,321	6,543
460,608	475,874	151,542	149,789	1,754	149,107	2,435	148,768	2,775	148,939	2,603	148,976	2,566
443,136	447,270	146,036	145,905	0,131	146,856	0,820	146,966	0,930	147,879	1,844	146,582	0,547
565,504	569,703	177,227	178,876	1,649	178,883	1,656	178,915	1,688	178,419	1,193	179,533	2,306
575,872	577,920	180,473	180,312	0,162	180,262	0,212	180,295	0,178	180,165	0,308	179,999	0,475
511,744	523,836	168,549	164,713	3,836	164,749	3,800	164,844	3,705	164,919	3,630	164,999	3,550

Flow In	Flow Out	Level Aktual	Level Prediksi	Error								
510,848	520,762	166,342	163,296	3,046	163,356	2,986	163,495	2,847	163,478	2,864	163,558	2,785
584,960	582,362	181,342	180,845	0,497	180,687	0,656	180,738	0,604	181,329	0,013	181,026	0,316
580,288	578,643	178,262	180,290	2,028	180,159	1,897	180,214	1,951	180,540	2,278	180,017	1,755
581,312	581,299	181,569	180,775	0,794	180,669	0,900	180,708	0,861	180,921	0,648	180,843	0,726
567,360	575,174	179,889	180,071	0,182	180,155	0,266	180,158	0,269	180,082	0,193	179,770	0,119
563,392	571,614	177,740	179,440	1,700	179,552	1,812	179,555	1,815	179,359	1,619	179,741	2,001
571,520	576,636	179,047	180,215	1,168	180,235	1,188	180,252	1,205	179,988	0,942	179,872	0,825
568,768	576,022	177,831	180,195	2,364	180,262	2,431	180,267	2,436	180,157	2,326	179,855	2,024
570,304	573,972	177,500	179,686	2,186	179,682	2,182	179,711	2,211	179,341	1,841	179,726	2,226
570,880	575,916	179,187	180,089	0,902	180,110	0,924	180,129	0,942	179,828	0,641	179,774	0,588
567,296	574,297	177,956	179,884	1,928	179,956	2,000	179,964	2,009	179,729	1,773	179,705	1,749
570,496	577,124	179,831	180,355	0,524	180,401	0,570	180,410	0,579	180,286	0,455	180,034	0,203
564,608	571,044	177,100	179,250	2,150	179,319	2,219	179,333	2,233	178,907	1,807	179,713	2,613
568,256	573,917	177,620	179,760	2,140	179,803	2,183	179,820	2,200	179,455	1,835	179,703	2,083
568,768	572,600	178,171	179,435	1,264	179,436	1,265	179,467	1,296	179,049	0,878	179,756	1,585
569,216	575,130	180,193	179,987	0,206	180,031	0,162	180,045	0,148	179,750	0,443	179,725	0,468
563,008	570,367	177,660	179,158	1,498	179,252	1,592	179,261	1,601	178,898	1,238	179,679	2,019
558,784	568,467	177,089	178,882	1,793	179,039	1,950	179,034	1,945	178,959	1,870	179,518	2,429
565,504	569,703	177,227	178,876	1,649	178,883	1,656	178,915	1,688	178,419	1,193	179,533	2,306
461,632	475,015	151,302	149,544	1,758	148,974	2,328	148,644	2,658	148,627	2,675	148,902	2,400
514,432	523,548	168,236	164,326	3,909	164,322	3,913	164,428	3,808	164,341	3,895	164,450	3,785
509,376	521,484	168,118	163,782	4,336	163,846	4,271	163,969	4,148	164,096	4,022	164,134	3,984
565,504	569,703	177,227	178,876	1,649	178,883	1,656	178,915	1,688	178,419	1,193	179,533	2,306
588,480	585,301	182,578	181,250	1,328	181,068	1,510	181,115	1,462	181,915	0,662	182,099	0,479
585,472	583,380	181,842	181,013	0,829	180,860	0,983	180,906	0,937	181,470	0,372	181,441	0,401
576,320	578,491	181,082	180,411	0,672	180,361	0,722	180,392	0,690	180,277	0,805	180,131	0,951
571,072	574,038	177,818	179,668	1,850	179,647	1,829	179,681	1,863	179,349	1,531	179,737	1,919
572,608	574,800	176,284	179,775	3,491	179,735	3,450	179,772	3,488	179,521	3,237	179,733	3,449
586,880	580,702	177,767	180,457	2,691	180,226	2,459	180,304	2,538	181,406	3,639	180,294	2,528
582,912	582,738	178,604	180,984	2,380	180,868	2,263	180,905	2,301	181,203	2,599	181,355	2,751
579,072	581,583	180,484	180,905	0,421	180,843	0,359	180,868	0,384	180,887	0,403	181,140	0,656

	ı	Г						1				
577,088	581,200	181,602	180,903	0,700	180,871	0,731	180,889	0,714	180,856	0,747	181,131	0,471
572,544	574,690	177,973	179,753	1,780	179,712	1,738	179,750	1,777	179,500	1,526	179,736	1,763
565,504	569,703	177,227	178,876	1,649	178,883	1,656	178,915	1,688	178,419	1,193	179,533	2,306
522,368	536,012	169,929	169,582	0,347	169,626	0,303	169,618	0,311	169,291	0,638	169,636	0,293
577,536	577,684	180,582	180,199	0,384	180,108	0,474	180,154	0,429	180,208	0,375	179,902	0,680
570,816	575,493	178,251	180,001	1,750	180,016	1,765	180,037	1,786	179,710	1,459	179,734	1,483
576,512	576,480	179,567	179,984	0,417	179,890	0,323	179,939	0,372	179,981	0,414	179,781	0,215
516,352	525,940	167,324	165,318	2,006	165,278	2,046	165,357	1,968	165,215	2,109	165,388	1,936
555,712	565,315	178,458	178,200	0,258	178,355	0,103	178,352	0,106	178,165	0,293	178,711	0,253
570,368	573,570	179,762	179,591	0,171	179,576	0,186	179,609	0,153	179,249	0,513	179,747	0,016
565,888	573,743	179,016	179,820	0,804	179,914	0,898	179,917	0,902	179,769	0,753	179,707	0,691
565,504	569,703	177,227	178,876	1,649	178,883	1,656	178,915	1,688	178,419	1,193	179,533	2,306
461,632	475,015	151,302	149,544	1,758	148,974	2,328	148,644	2,658	148,627	2,675	148,902	2,400
514,432	523,548	168,236	164,326	3,909	164,322	3,913	164,428	3,808	164,341	3,895	164,450	3,785
Rata	-rata	174,421487		1,697		1,780		1,792		1,742		1,832

Tabel B. 2 Tabel Perhitungan Error Testing Prediksi Pressure Dengan Hidden Neuron 6-10

Nilai Aktual		Variasi 6 Hidden Neuron		Variasi 7 Hidden Neuron		Variasi 8 Hidden Neuron		Variasi 9 Hidden Neuron		Variasi 10 Hidden Neuron		
Flow In	Flow Out	Pressure Aktual	Pressure Prediksi	Error	Pressure Prediksi	Error	Pressure Prediksi	Error	Pressure Prediksi	Error	Pressure Prediksi	Error
434,304	464,362	145,938	148,145	2,208	146,449	0,511	150,075	4,137	142,136	3,801	144,081	1,857
547,008	552,169	177,884	174,175	3,710	174,323	3,561	174,181	3,703	174,275	3,609	173,853	4,031
578,560	580,061	181,191	180,580	0,611	180,624	0,567	180,496	0,695	180,491	0,700	180,503	0,688
569,152	576,052	180,558	180,175	0,382	180,258	0,300	179,997	0,561	179,941	0,616	180,119	0,439
568,128	573,861	178,762	179,605	0,843	179,816	1,054	179,790	1,028	179,601	0,838	179,577	0,815
570,304	574,558	180,000	179,611	0,389	179,858	0,142	179,703	0,297	179,571	0,429	179,543	0,457
563,968	572,866	177,731	179,869	2,138	179,816	2,085	179,990	2,259	179,859	2,128	179,876	2,145
510,336	524,374	167,938	165,578	2,360	165,648	2,290	165,577	2,360	166,028	1,910	165,881	2,057
512,320	524,945	169,438	165,516	3,921	165,668	3,770	165,604	3,834	166,024	3,414	165,768	3,670
512,128	524,029	168,198	165,049	3,149	165,271	2,926	165,182	3,015	165,587	2,610	165,331	2,866
565,504	569,703	177,227	178,628	1,402	178,917	1,690	179,515	2,288	179,355	2,128	178,735	1,508

Flow In	Flow Out	Level Aktual	Level Prediksi	Error								
581,440	579,487	178,611	180,647	2,036	180,362	1,751	180,062	1,451	180,183	1,572	180,405	1,794
580,544	578,763	180,771	180,506	0,265	180,253	0,518	179,893	0,878	180,032	0,739	180,269	0,502
572,544	574,690	177,973	179,563	1,590	179,762	1,789	179,574	1,601	179,628	1,655	179,468	1,495
565,504	569,703	177,227	178,628	1,402	178,917	1,690	179,515	2,288	179,355	2,128	178,735	1,508
522,368	536,012	169,929	169,553	0,376	169,167	0,762	168,939	0,990	168,806	1,123	169,390	0,539
577,536	577,684	180,582	180,175	0,407	180,175	0,407	179,775	0,807	179,817	0,766	179,983	0,600
570,816	575,493	178,251	179,826	1,575	180,045	1,794	179,780	1,529	179,627	1,376	179,745	1,494
576,512	576,480	179,567	179,964	0,398	179,959	0,392	179,579	0,012	179,760	0,193	179,796	0,229
516,352	525,940	167,324	165,274	2,050	165,544	1,780	165,551	1,773	165,879	1,445	165,461	1,864
555,712	565,315	178,458	178,397	0,061	178,326	0,132	178,318	0,140	178,520	0,062	178,769	0,311
570,368	573,570	179,762	179,363	0,399	179,617	0,145	179,624	0,138	179,589	0,174	179,316	0,446
565,888	573,743	179,016	179,867	0,851	179,914	0,898	179,947	0,931	179,793	0,777	179,853	0,838
558,784	567,001	176,438	178,528	2,091	178,606	2,169	178,870	2,432	178,900	2,463	178,803	2,366
556,736	567,360	177,056	179,061	2,005	178,843	1,787	179,058	2,002	179,234	2,178	179,365	2,309
501,824	517,814	165,978	163,309	2,668	163,082	2,896	162,858	3,120	162,357	3,621	163,718	2,259
458,816	476,916	152,956	149,160	3,796	148,830	4,126	149,186	3,770	148,786	4,169	147,918	5,038
565,504	569,703	177,227	178,628	1,402	178,917	1,690	179,515	2,288	179,355	2,128	178,735	1,508
452,608	474,204	152,649	148,624	4,025	148,314	4,335	149,249	3,400	147,834	4,815	146,945	5,704
453,504	473,797	152,760	148,716	4,044	148,288	4,472	149,031	3,729	148,061	4,699	147,203	5,557
455,296	475,645	153,800	148,849	4,951	148,566	5,234	149,246	4,554	148,330	5,470	147,281	6,519
465,344	495,957	157,222	149,589	7,633	154,198	3,025	155,182	2,041	151,340	5,883	144,649	12,574
581,696	574,306	176,027	180,747	4,720	179,112	3,085	179,377	3,350	181,018	4,992	181,010	4,984
579,968	578,143	180,624	180,403	0,221	180,147	0,477	179,755	0,869	179,955	0,669	180,176	0,449
552,064	552,033	177,111	174,641	2,470	173,792	3,319	173,919	3,192	174,461	2,650	174,596	2,515
580,224	580,801	181,124	180,730	0,394	180,692	0,432	180,665	0,459	180,712	0,412	180,659	0,466
576,064	578,009	179,358	180,196	0,838	180,323	0,965	179,957	0,599	179,868	0,510	180,049	0,691
580,096	581,957	182,171	180,935	1,236	180,921	1,250	181,219	0,952	181,268	0,903	181,117	1,054
567,936	572,072	177,071	179,109	2,038	179,388	2,317	179,668	2,597	179,541	2,470	179,127	2,056
518,016	524,428	167,396	164,374	3,022	164,651	2,745	164,803	2,592	165,315	2,081	164,841	2,555
570,944	572,950	176,144	179,225	3,081	179,429	3,284	179,573	3,429	179,679	3,535	179,201	3,056
578,752	576,492	177,180	180,167	2,987	179,836	2,656	179,480	2,300	179,973	2,793	180,002	2,822

Flow In	Flow Out	Level Aktual	Level Prediksi	Error								
584,832	580,901	179,973	181,096	1,122	180,488	0,515	180,294	0,320	180,587	0,613	180,822	0,849
580,096	580,119	179,211	180,624	1,413	180,561	1,350	180,394	1,183	180,414	1,203	180,473	1,262
587,136	582,270	181,069	181,423	0,354	180,654	0,415	180,579	0,490	181,039	0,030	181,167	0,098
584,768	583,595	181,404	181,300	0,105	181,016	0,388	181,455	0,050	181,494	0,090	181,473	0,069
575,104	579,061	180,216	180,462	0,247	180,590	0,375	180,371	0,155	180,376	0,161	180,439	0,223
572,864	575,608	178,262	179,748	1,485	179,959	1,697	179,656	1,393	179,604	1,342	179,632	1,370
572,352	575,014	177,342	179,631	2,289	179,850	2,507	179,616	2,274	179,599	2,257	179,530	2,188
481,856	487,738	158,864	152,759	6,105	152,275	6,589	152,947	5,918	152,743	6,121	153,109	5,755
460,608	475,874	151,542	149,113	2,430	148,725	2,817	148,901	2,641	148,545	2,997	147,930	3,612
443,136	447,270	146,036	145,982	0,054	147,520	1,485	146,800	0,764	147,960	1,924	147,792	1,756
565,504	569,703	177,227	178,628	1,402	178,917	1,690	179,515	2,288	179,355	2,128	178,735	1,508
575,872	577,920	180,473	180,180	0,294	180,313	0,160	179,944	0,529	179,852	0,621	180,035	0,439
511,744	523,836	168,549	165,017	3,532	165,229	3,320	165,132	3,417	165,535	3,014	165,311	3,238
510,848	520,762	166,342	163,526	2,816	163,883	2,459	163,752	2,590	163,513	2,829	163,911	2,431
584,960	582,362	181,342	181,191	0,151	180,775	0,567	180,858	0,484	181,131	0,211	181,056	0,286
580,288	578,643	178,262	180,473	2,211	180,240	1,978	179,874	1,611	180,008	1,746	180,239	1,977
581,312	581,299	181,569	180,839	0,730	180,739	0,830	180,781	0,788	180,867	0,702	180,776	0,793
567,360	575,174	179,889	180,138	0,249	180,159	0,270	180,003	0,114	179,940	0,051	180,084	0,195
563,392	571,614	177,740	179,504	1,764	179,545	1,805	179,855	2,115	179,685	1,945	179,584	1,844
571,520	576,636	179,047	180,085	1,039	180,262	1,215	179,929	0,882	179,808	0,761	180,008	0,962
568,768	576,022	177,831	180,218	2,387	180,271	2,440	180,022	2,191	179,995	2,164	180,162	2,331
570,304	573,972	177,500	179,462	1,962	179,719	2,219	179,653	2,153	179,570	2,070	179,404	1,904
570,880	575,916	179,187	179,939	0,752	180,137	0,950	179,841	0,654	179,691	0,505	179,859	0,673
567,296	574,297	177,956	179,849	1,893	179,964	2,009	179,898	1,943	179,732	1,777	179,819	1,864
570,496	577,124	179,831	180,345	0,514	180,418	0,587	180,114	0,283	180,156	0,325	180,301	0,470
564,608	571,044	177,100	179,121	2,021	179,328	2,228	179,711	2,611	179,500	2,400	179,209	2,109
568,256	573,917	177,620	179,608	1,988	179,822	2,202	179,786	2,166	179,599	1,979	179,578	1,958
568,768	572,600	178,171	179,198	1,027	179,472	1,301	179,659	1,488	179,562	1,391	179,192	1,021
569,216	575,130	180,193	179,875	0,319	180,050	0,143	179,850	0,344	179,687	0,506	179,818	0,376
563,008	570,367	177,660	179,111	1,451	179,252	1,592	179,667	2,007	179,488	1,828	179,241	1,581
558,784	568,467	177,089	179,115	2,026	179,014	1,925	179,347	2,258	179,396	2,307	179,362	2,273

Flow In	Flow Out	Level Aktual	Level Prediksi	Error								
565,504	569,703	177,227	178,628	1,402	178,917	1,690	179,515	2,288	179,355	2,128	178,735	1,508
461,632	475,015	151,302	149,008	2,295	148,638	2,665	148,760	2,543	148,313	2,989	147,798	3,504
514,432	523,548	168,236	164,374	3,862	164,763	3,472	164,736	3,499	165,064	3,172	164,705	3,531
509,376	521,484	168,118	164,171	3,947	164,365	3,753	164,200	3,918	164,243	3,874	164,538	3,580
565,504	569,703	177,227	178,628	1,402	178,917	1,690	179,515	2,288	179,355	2,128	178,735	1,508
588,480	585,301	182,578	181,722	0,856	181,162	1,416	181,695	0,882	181,573	1,005	182,035	0,542
585,472	583,380	181,842	181,321	0,522	180,945	0,897	181,253	0,589	181,437	0,405	181,358	0,484
576,320	578,491	181,082	180,289	0,794	180,412	0,670	180,087	0,996	179,998	1,084	180,161	0,922
571,072	574,038	177,818	179,448	1,630	179,690	1,872	179,612	1,794	179,594	1,777	179,382	1,564
572,608	574,800	176,284	179,584	3,300	179,785	3,500	179,580	3,296	179,623	3,339	179,486	3,201
586,880	580,702	177,767	181,381	3,614	180,342	2,576	180,070	2,303	180,554	2,787	181,096	3,329
582,912	582,738	178,604	181,104	2,499	180,940	2,336	181,280	2,676	181,348	2,744	181,223	2,619
579,072	581,583	180,484	180,877	0,392	180,897	0,413	181,139	0,655	181,211	0,727	181,054	0,570
577,088	581,200	181,602	180,878	0,725	180,915	0,688	181,137	0,466	181,307	0,295	181,124	0,478
572,544	574,690	177,973	179,563	1,590	179,762	1,789	179,574	1,601	179,628	1,655	179,468	1,495
565,504	569,703	177,227	178,628	1,402	178,917	1,690	179,515	2,288	179,355	2,128	178,735	1,508
522,368	536,012	169,929	169,553	0,376	169,167	0,762	168,939	0,990	168,806	1,123	169,390	0,539
577,536	577,684	180,582	180,175	0,407	180,175	0,407	179,775	0,807	179,817	0,766	179,983	0,600
570,816	575,493	178,251	179,826	1,575	180,045	1,794	179,780	1,529	179,627	1,376	179,745	1,494
576,512	576,480	179,567	179,964	0,398	179,959	0,392	179,579	0,012	179,760	0,193	179,796	0,229
516,352	525,940	167,324	165,274	2,050	165,544	1,780	165,551	1,773	165,879	1,445	165,461	1,864
555,712	565,315	178,458	178,397	0,061	178,326	0,132	178,318	0,140	178,520	0,062	178,769	0,311
570,368	573,570	179,762	179,363	0,399	179,617	0,145	179,624	0,138	179,589	0,174	179,316	0,446
565,888	573,743	179,016	179,867	0,851	179,914	0,898	179,947	0,931	179,793	0,777	179,853	0,838
565,504	569,703	177,227	178,628	1,402	178,917	1,690	179,515	2,288	179,355	2,128	178,735	1,508
461,632	475,015	151,302	149,008	2,295	148,638	2,665	148,760	2,543	148,313	2,989	147,798	3,504
514,432	523,548	168,236	164,374	3,862	164,763	3,472	164,736	3,499	165,064	3,172	164,705	3,531
Rata	-rata	174,421487		1,762		1,765		1,792		1,851		1,893

LAMPIRAN C

Source Code Program Matlab 2014a

Training program dan validasi

```
clc; clear all
%Membaca Data
data = xlsread('DataTA.xlsx','IO','B2:E887');
%Normalisasi Data
[in n,in s] = mapminmax (input);
[out n,out s] = mapminmax (output);
%==Pelatihan NN==
net = feedforwardnet([1], 'trainlm');
%Metode Lavenberg-Marguardt
net.layers{1}.transferFcn = 'tansig';
%Fungsi aktivasi hidden layer 1 bipolar sigmoid
net.layers{2}.transferFcn = 'purelin';
%Fungsi aktivasi output layer linear
net.trainParam.epochs = 500;
%Maksimal epoch
net.trainParam.goal = 1e-3;
%Error Target
net.trainParam.max fail = 100;
%Maksimal kegagalan saat training
net.divideParam.trainRatio = 80/100;
%80% data digunakan u/ pelatihan
net.divideParam.valRatio = 20/100;
%20% data digunakan u/ validasi
net.divideParam.testRatio = 0/100;
%0% data digunakan u/ pengujian
%Training dimulai
[net,tr] = train(net,in n,out n);
```

```
%Menampilkan bobot dan bias
wb = formwb(net,net.b,net.iw,net.lw);
[b,iw,lw] = separatewb(net,wb);
%Menyimpan
save(level7)
```

Testing Jaringan Syaraf Tiruan yang telah dibuat:

```
%Membaca Data
data = xlsread('validasilev.xlsx',1,'A1:D100');
input = data (:,3:4)';
output = data (:,1)';
[in n,in s] = mapminmax (input);
[out n,out s] = mapminmax (output);
%Hasil training disimulasikan dengan data input
sims = sim(net, in n);
%Hasil simulasi dikembalikan ke nilai awal
sim result = mapminmax ('reverse', sims, out s);
tsim result = sim result';
%Tampilkan target, output, dan error setiap data
display = [(1:size(input,2))' output'
sim result' (output'-sim result')];
sprintf('%2d %9.2f %7.2f %10.2f\n', display')
%figure (1)
%plot([1:size(input, 2)]', output, 'bo', [1:size(inp
ut, 2) ]', tsim result, 'r*');
%title ('Hasil pelatihan - target terhadap
output');
%xlabel('Data ke-');
%ylabel('Target/output');
```

BAB V KESIMPULAN DAN SARAN

1.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan pada perancangan sistem jaringan syaraf tiruan untuk memprediksi ariabel level dan pressure pada steam drum di PLTU Paiton Jawa Timur didapatkan kesimpulan sebagai berikut:

- Telah dibuat sistem jaringan syaraf tiruan untuk memprediksi nilai variabel level dan pressure di PLTU Paiton dengan arsitektur Multi Layer Perceptron.
- Hasil perancangan sistem jaringan syaraf tiruan prediksi level dengan arsitektur 2 input, 3 hidden neuron, dan 1 output. Sistem jaringan syaraf tiruan prediksi pressure dengan arsitektur 2 input, 1 hidden neuron, dan 1 output.
- Hasil perancangan sistem jaringan syaraf tiruan untuk prediksi level mampu mengestimasi dengan nilai RMSE = 0,196 dan rata-rata error testing sebesar 0,623 %. Sedangkan prediksi pressure menghasilkan nilai RMSE = 0,05 dan rata-rata error testing sebesar 0,973%.

1.2 Saran

Adapun saran yang dapat diberikann setelah dilakukannya penelitian ini adalah untuk penelitian selanjutnya dapat mencoba metode training yang lain , serta dapat menambah lebih banyak data input agar nilai error bisa lebih kecil.

Halaman Ini Memang Dikosongkan

DAFTAR PUSTAKA

- [1] Astrom, K.J.; Bell, R.D.;, "Drum-Boiler Dynamic," *Elsevier*, no. 36, pp. 363-378, 2000.
- [2] Musyafa, Ali; Kristianingsih, Luluk;, "Risk Management and Safety System Assessment from Power Plant Steam Boiler in Power Systems Unit 5, Paiton-Indonesia," *Australian Journal of Basic and Applied Sciences*, pp. 349-356, 2013.
- [3] Beale MH, Hagan MT, Demuth HB. Neural network toolboxTM user's guide (R2014a). The MathWorks, Inc., Massachusetts.
- [4] Eni Oko, Meihong Wang, Jie Zhang. Neural Network Approach for Predicting drum pressure and level in Coal-Fired Subcritical Power Plant. 10th European Conference on Coal Research and its Applications, University of Hull, UK, 2015
- [5] Chetouani Y. Nonlinear modelling of a reactor–exchanger by using NARX neural networks. In: Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, September 16–20, 2007; 2007.
- [6] Morilla, F.; "Benchmark for PID control based on the Boiler Control Problem," in IFAC Conference on Advances in PID Control, Brescia, 2012.
- [7] Diaconescu, E. "The use of NARX Neural Networks to predict Chaotic Time Series" University of Pitesti, Romania, 2008.
- [8] Rahmat; Setiawan, R; Hery, M. "Perbandingan Algoritma *Levenberg-Marquadt* dengan Metoda *Backpropagation* padaproses *Learning* Jaringan Syaraf Tiruan Untuk Pengenalan Pola Sinyal Elektrokardiograf" Jurusan Teknik Elektro Institut Teknologi Sepuluh Nopember, Surabaya, 2006.
- [9] Rinda, V. "Analisis Perbandingan Metode Backpropagation dan Radial Basis Function Untuk Memprediksi Curah Hujan dengan Jaringan Syaraf Tiruan" Teknik Informatika Universitas Dian Nuswantoro, Semarang, 2012.
- [10] Kurdianto, Hafit; Yaumar. "Prediksi Kondisi Iklim di Surabaya Menggunakan Jaringan Syaraf Tiruan", Teknik Fisika Institut Teknologi Sepuluh Nopember, Surabaya, 2008.
- [11] Misnarni, Jajoek; Yaumar. "Prediksi Terjadinya Hujan di Surabaya Menggunakan Metode Jaringan Syaraf Tiruan", Teknik Fisika Institut Teknologi Sepuluh Nopember, Surabaya, 2008.

- [12] Dwi, Silvia; Siti, Aulia; Abadi, Imam. "Perancangan Soft Sensor Kecepatan Rotasi Kompresor Mesin Pesawat BOEING 737-300 Tipe CFM56-3B-1 Menggunakan Jaringan Syaraf Tiruan di PT Merpati Maintenance Fasilities Bandara Internasional Juanda" Teknik Fisika Institut Teknologi Sepuluh Nopember, Surabaya, 2012.
- [13] Dhana, Nugraha; Ilyas, Moch. "Perancangan Soft Sensor Specific Gravity Dalam Gas Compressor Petani Gas Plant Dengan Metode Jaringan Syaraf Tiruan Di PT. Chevron Pasific Indonesia" Teknik Fisika Institut Teknologi Sepuluh Nopember, Surabaya, 2009.
- [14] Jek Jong, Siang. "Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab", Penerbit Andi, Yogyakarta, 2005.

BIODATA PENULIS

Rachmat Ariestyo Putra Pratama merupakan nama lengkap penulis dengan nama panggilannya, Tyo. Penulis dilahirkan di Jakarta, pada tanggal 23 Maret 1995 sebagai anak tunggal dari pasangan Bapak Yavat Dimvati dan Ibu Safitri Yuliani. Riwayat pendidikan penulis adalah SD Negeri Ngaglik 1 Batu tahun (2001-2007), SMP Negeri 1 Batu tahun (2007–2010), SMA Negeri 1 Batu tahun (2010-2012). Penulis diterima sebagai mahasiswa S1 Teknik Fisika

ITS pada tahun 2012, kemudian fokus pada bidang minat rekayasa instrumentasi dan kontrol untuk menyelesaikan tugas akhirnya. Semasa perkuliahan, penulis aktif sebagai asisten Laboratorium Rekayasa Instrumentasi dan Kontrol, Jurusan Teknik Fisika, ITS. Selain itu penulis juga aktif di bidang minat penelitian mobil listrik yaitu tergabung dalam tim Zelena Electric Car, Jurusan Teknik Fisika, ITS. Penulis dapat dihubungi melalui email: r.ariestyo@gmail.com.