

Deep Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

mehran.safayani

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Supervised Learning

Input(x)	Output (y)	Application
Home features	Price	Real Estate
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging
Audio	Text transcript	Speech recognition
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving

Basics of Neural Network Programming

Binary Classification

Binary Classification

1 (cat) vs 0 (non cat)

```
Blue

Green
Red

255 134 93 22
Red

255 134 202 22 2
2
255 231 42 22 4 30
123 94 83 2 192 124
34 44 187 92 34 142
34 76 232 124 94
67 83 194 202
```

Binary classification

• Notation

$$(\vec{x}, y)$$
 $x \in R^{n_x}, y \in \{0,1\}$

Binary classification

• m training example: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}, ..., (x^{(m)}, y^{(m)})\}$

Logistic Regression

• Given x , output $\hat{y} = P(y=1|x)$ $0 \le \hat{y} \le 1$ $x \in \mathbb{R}^{n_x}$ parameters: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$

$$\hat{y} = w^T x + b$$

Sigmoid function $\sigma(z) = \frac{1}{1+e^{-z}}$

if z large $\sigma(z) \approx 1$

if z large negative $\sigma(z) \approx 0$

Logistic Regression

•
$$\hat{y} = \sigma(\underbrace{w^T x + b}_{z})$$

$$\hat{y} = w^T x$$

$$x_0 = 1, x \in \mathbb{R}^{n_x + 1}$$

$$\begin{bmatrix} b = w_0 \\ w_1 \\ w_2 \\ w_3 \\ \vdots \\ \vdots \\ w \end{bmatrix}$$
• w

Logistic Regression cost function

- Loss (error) function: $L(\hat{y}, y) = \frac{1}{2}(\hat{y} y)^2 = \frac{1}{2}(\sigma(w^Tx + b) y)^2$ SE: Square Error
- What is the problem?

•

Convexity

Function h(u) with $u \in X$ is convex if for any $u, v \in X$ and for any $0 \le \lambda \le 1$ we have:

$$h(\lambda u + (1 - \lambda)v) \leq \lambda h(u) + (1 - \lambda) h(v)$$

برای توابع محدب هر بهینه محلی یک بهینه سراسری است.

Cross Entropy

• $L(\hat{y}, y) = -(y \log \hat{y} + (1-y)\log(1-\hat{y}))$

if
$$y=1$$
: $L(\hat{y}, y) = -\log \hat{y}$

if
$$y=0$$
: $L(\hat{y}, y) = -\log(1-\hat{y})$

• Cost function:
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \right]$$

Cost Function

Minimize $J(b, w_1)$

$$b, w_1$$

If
$$J(w_1) = (w_1 - 2)^2$$

$$\frac{dJ(w_1)}{dw_1} = 0$$

$$\frac{dJ(w_1)}{dw_1} = 2 (w_1 - 2) = 0 \longrightarrow w_1 = 2$$

Minimize
$$J(b, w_1)$$

 b, w_1

Minimize
$$J(b, w_1, ..., w_n)$$

 $b, w_1, ..., w_n$

Repeat until convergence: {

For j=0,...,n

$$w_j = w_j - \alpha \frac{dJ(b, w_1, ..., w_n)}{dw_j}$$

 α is learning rate

Updating all w_j Simultaneously

Convergence condition:

$$||W^{t+1} - W^t||_2 \le \varepsilon$$

Correct form

temp0 =
$$\boldsymbol{b} - \alpha \frac{d\boldsymbol{J}(\boldsymbol{b}, \boldsymbol{w}_1)}{d\boldsymbol{b}}$$

temp0 =
$$b - \alpha \frac{3(b, w_1)}{db}$$

temp1 = $w_1 - \alpha \frac{dJ(b, w_1)}{dw_1}$

$$w_1 = w_1 - \alpha \frac{dJ(b, w_1)}{dw_1}$$

b = temp0 w_1 = temp1

Incorrect form

$$\boldsymbol{b} = \boldsymbol{b} - \alpha \frac{dJ(b, w_1)}{db}$$

$$w_1 = w_1 - \alpha \frac{dJ(b, w_1)}{dw_1}$$

خطوط مماس نشان داده شده دارای شیب یا مشتق مثبت هستند. در نتیجه:

$$\frac{dJ(w^1)}{dw^1} > 0, \ \alpha > 0 \implies \alpha \frac{dJ(w^1)}{dw^1} > 0$$

$$\implies w^2 = w^1 - \alpha dw^1$$

w کوچکتر میشود و به سمت چپ حرکت میکنیم.

خطوط مماس نشان داده شده دارای شیب یا مشتق مثبت هستند. در نتیجه:

$$\frac{dJ(w^1)}{dw^1} < 0, \ \alpha > 0 \implies \alpha \frac{dJ(w^1)}{dw^1} < 0$$

$$\implies w^2 = w^1 - \alpha dw^1$$

w بزرگتر میشود و به سمت راست حرکت میکنیم.

Choosing Learning Rate

Gradient Descent Weakness

• 1) $\alpha > 0$

Repeat {

$$w = w - \alpha \frac{dJ(w)}{\underbrace{d(w)}_{dw}}$$

}until convergence

$$w = w - \alpha dw$$

$$z = w^T x + b$$

- $\hat{y} = a = \sigma(z)$
- $L(a, y) = -(y \log a + (1 y) \log(1 a))$

$L(a, y) = -(y \log a + (1 - y) \log(1 - a))$

Computational Graph

$$\frac{da}{dz} = \dot{\sigma}(z) = \underbrace{\sigma(z)}_{a} \underbrace{(1 - \sigma(z))}_{1-a}$$

$$\frac{dz}{dz} = \dot{\sigma}(z) = \underbrace{\sigma(z)}_{a} \underbrace{(1 - \sigma(z))}_{1-a}$$

$$a = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$a = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$x_1$$

$$x_2$$

$$x_2$$

$$x_2$$

$$x_2$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_4$$

$$x_4$$

$$x_4$$

$$x_5$$

$$x_4$$

$$x_5$$

$$x_4$$

$$x_5$$

$$x_6$$

$$x_6$$

$$x_7$$

$$x_8$$

$$da = \frac{dL}{da} = \frac{-y}{a} + \frac{1-y}{1-a} = \frac{a-y}{a(1-a)}$$

$$dz = \frac{dL}{dz} = \frac{dL(a, y)}{dz} = \frac{dL}{da} \times \frac{da}{dz} = \frac{a - y}{a(1 - a)} \times a(1 - a) = a - y$$

$$dw_1 = \frac{dL}{dw_1} = \frac{dL}{\underbrace{dz}} \times \underbrace{\frac{dz}{dw_1}}_{x_1} = x_1 dz \qquad dw_2 = x_2 dz$$

$$db = \frac{dL}{db} = \frac{dL}{dz} \times \frac{\widetilde{dz}}{db} = dz$$

L(a, y)

•
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(a^{(i)}, y^{(i)})$$

•
$$a^{(i)} = \hat{y}^{(i)} = \sigma(z^{(i)}) = \sigma(wx^{(i)} + b)$$

•
$$dw_j = \frac{1}{m} \sum_{i=1}^{m} \frac{dL(a^{(i)}, y^{(i)})}{dw_j}$$

Logistic regression on m examples

$$J = 0; \quad dw_1 = 0; \quad dw_2 = 0; \quad db = 0; \\ w_1 \leftarrow \text{random} \quad w_2 \leftarrow \text{random} \quad b \leftarrow \text{random} \\ Repeat \{ \\ For \quad i = 1 \quad to \quad m \\ z^{(i)} = w^T x^{(i)} + b \\ a^{(i)} = \sigma(z^{(i)}) \\ J + = \left[y^{(i)} Loga^{(i)} + (1 - y^{(i)}) Log(1 - a^{(i)}) \right] \\ dz^{(i)} = a^{(i)} - y^{(i)} \\ dw_1 + = x_1^{(i)} dz^{(i)} \quad dw_2 + = x_2^{(i)} dz^{(i)} \quad db + = dz^{(i)} \\ J /= m; \quad dw_1 /= m; \quad dw_2 /= m; \quad db /= m;$$

$$w^t = \begin{bmatrix} w_1^t \\ w_2^t \\ w_2^t \\ w_2^t \end{bmatrix} \\ \|w^{t+1} = \begin{bmatrix} w_1^{t+1} \\ w_2^{t+1} \\ w_2^{t+1} \\ b^t \end{bmatrix}$$

$$dw = \begin{bmatrix} dw_1 \\ dw_2 \\ db \end{bmatrix}$$

$$dw = \begin{bmatrix} dw_1 \\ dw_2 \\ db \end{bmatrix}$$

$$\|dw\| \le \varepsilon = 10^{-4}$$

 $w_1 = w_1 - \alpha \, dw_1 \quad w_2 = w_2 - \alpha \, dw_2 \qquad b = b - \alpha \, db$

What's wrong with the code?

} until convergence

Logistic regression on m examples

```
w^t = \begin{bmatrix} w_1^t \\ w_2^t \\ h^t \end{bmatrix} w^{t+1} = \begin{bmatrix} w_1^{t+1} \\ w_2^{t+1} \\ h^{t+1} \end{bmatrix}
w_1 \leftarrow \text{random} \quad w_2 \leftarrow \text{random} \quad b \leftarrow \text{random}
Repeat{
J = 0; dw_1 = 0; dw_2 = 0; db = 0;
                                                                                                                 \|w^{t+1} - w^t\|_2 \le \varepsilon
            For i=1 to m
                                                                                                                                   dw = \begin{bmatrix} dw_1 \\ dw_2 \\ dh \end{bmatrix}
                        z^{(i)} = w^T x^{(i)} + h
                        a^{(i)} = \sigma(z^{(i)})
                                                                                                                                    ||dw|| \le \varepsilon = 10^{-4}
                        J += [y^{(i)}Loga^{(i)} + (1 - y^{(i)})Log(1 - a^{(i)})]
                        dz^{(i)} = a^{(i)} - v^{(i)}
                        dw_1 += x_1^{(i)} dz^{(i)} dw_2 += x_2^{(i)} dz^{(i)} db += dz^{(i)}
I/=m; dw_1/=m;
                                                    dw_2/=m; db/=m:
w_1 = w_1 - \alpha \, dw_1 w_2 = w_2 - \alpha \, dw_2 b = b - \alpha \, db
            } until convergence
```

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

```
• z=0;

For i in range(n_x)

z += w[i] * x[i] First method

z += b
```

•
$$z=0$$
;
$$z = np.dot(w, x) + b$$
Second method
SIMD
GPU

$$z^{(1)} = w^{T}x^{(1)} + b \ z^{(2)} = w^{T}x^{(2)} + b$$

$$a^{(1)} = \sigma(z^{(1)}) \qquad a^{(2)} = \sigma(z^{(2)}) \qquad a^{(m)} = \sigma(z^{(m)}) + b$$

$$x = \begin{bmatrix} x^{(1)}x^{(2)} & \dots & x^{(m)} \\ x^{(1)}x^{(2)} & \dots & x^{(m)} \end{bmatrix} \in R^{n_{x} \times m} \qquad \underbrace{[w_{1} \dots w_{n_{x}}]}_{w^{T}} \begin{bmatrix} x^{(1)}x^{(2)} & \dots & x^{(m)} \\ x^{(1)}x^{(2)} & \dots & x^{(m)} \end{bmatrix}$$

$$z^{(m)} = w^{T}x^{(m)} + b$$

$$x^{(m)} = \sigma(z^{(m)}) + b$$

•
$$Z = \underbrace{np \cdot dot(w \cdot T, X)}_{1,m} + \underbrace{b}_{(1,1)}$$
 "broadcasting" $[b, b \dots, b]_{1 \times m}$

•
$$A = [a^{(1)}, a^{(2)}, ..., a^{(m)}] = \sigma(\underbrace{Z})$$

• $dz^{(1)} = a^{(1)} - y^{(1)}$ $dz^{(2)} = a^{(2)} - y^{(2)}$

• $dZ = [dz^{(1)} dz^{(2)} ... dz^{(m)}]_{1 \times m}$

• $A = [a^{(1)} a^{(2)} ... a^{(m)}]$ $Y = [y^{(1)} y^{(2)} ... y^{(m)}]$

• $dZ = A - Y = [a^{(1)} - y^{(1)} a^{(2)} - y^{(2)} ... a^{(m)} - y^{(m)}]$

• $dw = 0$ $db = 0$

• $db = 0$

$$dw = \frac{1}{m} \left[x^{(1)} dz^1 + x^{(2)} dz^2 + \dots + x^{(m)} dz^m \right]$$

$$\overline{dw = \frac{1}{m}X dz^{T}} = \frac{1}{m} \begin{bmatrix} x^{(1)}x^{(2)} & \dots & x^{(m)} \\ \vdots & \vdots & \vdots \\ dz^{m} \end{bmatrix} \times \begin{bmatrix} dz^{2} \\ dz^{3} \\ \vdots \\ dz^{m} \end{bmatrix}$$

• $w_1, w_2, b \leftarrow random$

For iter in range(1000)

$$Z = W^{T}X + b = np \cdot dot(w.T,X) + b$$

$$A = \sigma(Z)$$

$$dZ = A - Y$$

$$dw = \frac{1}{m}X dz^{T}$$

$$db = \frac{1}{m}np.sum(dz)$$

$$w = w - \alpha dw$$

$$b = b - \alpha db$$

 $w = np \cdot random \cdot randn(n_x, 1)$

Logistic Regression Cost function

•
$$\hat{y} = \sigma(w^T x + b)$$
 $0 < \sigma(z) = \frac{1}{1 + e^{-z}} < 1$

$$\bullet \ \hat{y} = p(y = 1|x)$$

• if
$$y = 1$$
: $p(y|x) = \hat{y}$
• if $y = 0$: $p(y|x) = 1 - \hat{y}$

• *if*
$$y = 0 : p(y|x) = 1 - \hat{y}$$

•
$$p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$
 distribution? Bernoulli

• if
$$y = 1$$
: $p(y|x) = \hat{y}$

• *if*
$$y = 0 : p(y|x) = 1 - \hat{y}$$

•
$$\log p(y|x) = \log[\hat{y}^y(1-\hat{y})^{1-y}] = y \log \hat{y} + (1-y) \log(1-\hat{y})$$

= $-L(\hat{y}, y)$ Max Likelihood

Logistic Regression Cost function

- $\log P(labels in trainingset) = \log \prod_{i=1}^{m} P(y^i \mid x^i)$
- $\log P(\dots) = \sum_{i=1}^{m} \log P(y^{(i)} \mid x^{(i)}) = -\sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$

• Cost function
$$\underbrace{J(w,b)}_{minimize} = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$

Neural Networks

