

SCHOTTKY BIPOLAR LSI MICROCOMPUTER SET

3214 INTERRUPT CONTROL UNIT

The INTEL Bipolar Microcomputer Set is a family of Schottky bipolar LSI circuits which simplify the construction of microprogrammed central processors and device controllers. These processors and controllers are truly microprogrammed in the sense that their control logic is organized around a separate readonly memory called the microprogram memory. Control signals for the various processing elements are generated by the microinstructions contained in the microprogram memory. In the implementation of a typical central processor, as shown below, the microprogram interprets a higher level of instructions called macroinstructions, similar to those found in a small computer. For device controllers, the microprograms directly implement the required control functions.

The Intel 3214 Interrupt Control Unit (ICU) implements multi-level interrupt capability for systems designed with Series 3000 computing elements.

The ICU accepts an asynchronous interrupt strobe from the 3001 Microprogram Control Unit or a bit in microprogram memory and generates a synchronous interrupt acknowledge and an interrupt vector which may be directed to the MCU or CP Array to uniquely identify the interrupt source.

The ICU is fully expandable in 8-level increments and provides the following system capabilities:

Eight unique priority levels per ICU

Automatic Priority Determination

Programmable Status

N-level expansion capability

Automatic interrupt vector generation

High Performance — 80 ns Cycle Time

Compatible with Intel 3001 MCU and 3002 CPE

8-Bit Priority Interrupt Request Latch

4-Bit Priority Status Latch

3-Bit Priority Encoder with Open Collector Outputs

DTL and TTL Compatible

8-Level Priority Comparator

Fully Expandable

24-Pin DIP

Other members of the INTEL Bipolar Microcomputer Set:

3001 Microprogram Control Unit 3002 Central Processing Element

3003 Look-Ahead Carry Generator

3212 Multi-Mode Latch Buffer 3226 Inverting Bi-Directional Bus Driver 3301A Schottky Bipolar ROM (256 x 4) 3304A Schottky Bipolar ROM (512 x 8) 3601 Schottky Bipolar PROM (256 x 4)

3604 Schottky Bipolar PROM (512 x 8)

CONTENTS

																													1
Introduction				•					•	٠	٠	•	•	•		•	•	٠	•	•	•	•	•	•		•	•	•	1
Package Configuration																							•	•	•				2
Pin Description																					٠							•	3
Logical and Functional Description .																													4
D.C. and Operating Characteristics .																		•				•	٠			•			5
A.C. Characteristics and Waveforms		٠	٠	٠	•	٠	•	•		٠	_•				٠	٠	٠	•	•					٠	•				6
APPENDIX																													
Typical Configurations																												•	۲

PACKAGE CONFIGURATION

PACKAGE OUTLINE

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE(1)
1-3	B ₀ -B ₂	Current Status Inputs	Active LOW
		The Current Status inputs carry the binary value modulo 8 of the current priority level to the current status latch.	
1	SGS	Status Group Select Input	Active LOW
		The Status Group Select input informs the ICU that the current priority level does belong to the group level assigned to the ICU.	
5	IA	Interrupt Acknowledge	Active LOW
		The Interrupt Acknowledge Output will only be active from the ICU (multi-ICU system) which has received a priority request at a level superior to the current status. It signals the controlled device (usually the processor) and the other ICUs OR-tied on the Interrupt Acknowledge line that an interrupt request has been recognized.	Open-Collector Output
		The IA signal also sets the Interrupt Disable flip-flop (it overrides the clear function of the ECS input).	
3	CLK	Clock Input	
		The Clock input is used to synchronize the interrupt acknowledge with the operation of the device which it controls.	ω.
7	ISE	Interrupt Strobe Enable Input	
		The Interrupt Strobe Enable input informs the ICU that it is authorized to enter the interrupt mode.	
3—10	A_0-A_2	Request Level Outputs	Active LOW
		When valid, the Request Level outputs carry the binary value (modulo 8) of the highest priority request present at the priority request inputs or stored in the priority request latch. The request level outputs can become active only with the ICU which has received the highest priority request with a level superior to the current status.	Open-Collector
11	ELR	Enable Level Read Input	Active LOW
		When active, the Enable Level Read input enables the Request Level output buffers (A_0-A_2) .	
12	GND	Ground	
3	ETLG	Enable This Level Group Input	
		The Enable This Level Group input allows a higher priority ICU in multi-ICU systems to inhibit interrupts within the next lower priority ICU (and all the following ICUs).	
14	ENLG	Enable Next Level Group Output	
		The Enable Next Level Group output allows the ICU to inhibit interrupts within the lower priority ICU in a multi-ICU system.	
15-22	R_0-R_7	Priority Interrupt Request Inputs	Active LOW
		The Priority Interrupt Request inputs are the inputs of the priority Interrupt Request Latch. The lowest priority level interrupt request signal is attached to R_0 and the highest is attached to R_7 .	
23	ECS	Enable Current Status Input	Active LOW
		The Enable Current Status input controls the current status latch and the clear function of the Interrupt Inhibit flip-flop.	
24	V _{CC}	+5 Volt Supply	

NOTE

(1) Active HIGH, unless otherwise noted.

FUNCTIONAL AND LOGICAL DESCRIPTION

The ICU adds interrupt capability to suitably microprogrammed processors or controllers. One or more of these units allows external signals called interrupt requests to cause the processor/controller to suspend execution of the active process, save its status, and initiate execution of a new task as requested by the interrupt signal.

It is customary to strobe the ICU at the end of each instruction execution. At that time, if an interrupt request is acknowledged by the ICU, the MCU is forced to follow the interrupt microprogram sequence.

Figure 1 shows the block diagram of the ICU. Interrupt requests pass through the interrupt request latch and priority encoder to the magnitude comparator. The output of the priority encoder is the binary equivalent of the highest active priority request. At the comparator, this value is compared with the Current Status (currently active priority level) contained in the current status latch. A request, if acknowledged at interrupt strobe time, will cause the interrupt flip-flop to enter the "interrupt active" state for one microinstruction cycle. This action causes the interrupt acknowledge (IA) signal to go low and sets the interrupt disable flip-flop.

The IA signal constitutes the interrupt command to the processor. It can directly force entry into the interrupt service routine as demonstrated in the appendix. As part of this routine, the microprogram normally reads the requesting level via the request level output bus. This information which is saved in the request latch can be enabled onto one of the processor input data buses using the enable level read input. Once the interrupt handler has determined the requesting level, it normally writes this level back into the current status register of the ICU. This action resets the interrupt disable flipflop and acts to block any further request at this level or lower levels.

Entry into a macro level interrupt service routine may be vectored using the request level information to generate a subroutine address which corresponds to the level. Exit from such a macroprogram should normally restore the prior status in the current status latch.

The Enable This Level Group (ETLG) input and the Enable Next Level Group (ENLG) output can be used in a daisy chain fashion, as each ICU is capable of inhibiting interrupts from all of the following ICUs in a multiple ICU configuration.

The interrupt acknowledge flip-flop is set to the active LOW state on the rising edge of the clock when the following conditions are met:

An active request level (R_0-R_7) is greater than the current status B_0-B_2

The interrupt mode (ISE) is active ETLG is enabled

The interrupt disable flip-flop is reset

When active, the IA signal asynchronously sets the disable flip-flop and holds the requests in the request latch until new current status information (B_0-B_2 , SGS) is enabled (ECS) into the current status latch. The disable flip-flop is reset at the completion of this load operation.

During this process, ENLG will be enabled only if the following conditions are met:

ETLG is enabled

The current status (SGS) does not belong to this level group

There is no active request at this level

The request level outputs A_0-A_2 and the IA output are open-collector to permit bussing of these lines in multi-ICU configuration.

Figure 1. 3214 Block Diagram.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias															
Ceramic														65°C to -	+75°C
Plastic														0° C to -	+75°C
Storage Temperature														-65° C to +	160°C
All Output and Supply Voltages .														0.5V to	o +7V
All Input Voltages															
Output Currents															

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = 0^{\circ}C \text{ to } +75^{\circ}C$

SYMBOL	PARAMETER		MIN	LIMITS TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
$V_{\mathbb{C}}$	Input Clamp Voltage (all	inputs)			-1.0	V	I _C = -5 mA, V _{CC} = 4.75V
lF	Input Forward Current:	ETLG input all other inputs		15 08	-0.5 -0.25	mA mA	$V_F = 0.45V$, $V_{CC} = 5.25V$
IR	Input Reverse Current:	ETLG input all other inputs			80 40	μ Α μ Α	$V_R = 5.25V, V_{CC} = 5.25V$
VIL	Input LOW Voltage:	all inputs			0.8	V	V _{CC} = 5.0V
VIH	Input HIGH Voltage:	all inputs	2.0			V	V _{CC} = 5.0V
^l cc	Power Supply Current			90	130	mA	$V_{CC} = 5.25V^{(2)}$
VOL	Output LOW Voltage:	all outputs		.3	.45	V	$I_{OL} = 15 \text{ mA}, V_{CC} = 4.75 \text{V}$
V _{OH}	Output HIGH Voltage:	ENLG output	2.4	3.0		V	$I_{OH} = -1 \text{ mA}, V_{CC} = 4.75 \text{V}$
los	Short Circuit Output Cur	rent: ENLG output	-20	-35	-55	mA	$V_{OS} = 0V$
CEX	Output Leakage Current:	IA and $A_0 - A_2$ outputs			100	μΑ	$V_{CEX} = 5.25V, V_{CC} = 5.25V$

⁽¹⁾ Typical values are for T_A = 25°C and nominal supply voltage. (2) B_0-B_2 , SGS, CLK, R_0-R_4 grounded, all other inputs and all outputs open.

A.C. CHARACTERISTICS AND WAVEFORMS

 $T_A = 0^{\circ}C$ to +75°C, $V_{CC} = +5V \pm 5\%$

SYMBOL	PARAMETER	MIN	TYP(1)	MAX	UNIT
^t CY	CLK Cycle Time	80			ns
^t PW	CLK, ECS, IA Pulse Width	25	15		ns
	Interrupt Flip-Flop Next State Determination:				
^t ISS	ISE Set-Up Time to CLK	16	12		ns
^t ISH	ISE Hold Time After CLK	20	10		ns
tercs ²	ETLG Set-Up Time to CLK	25	12		ns
tETCH ²	ETLG Hold Time After CLK	20	10		ns
teccs ³	ECS Set-Up Time to CLK (to clear interrupt inhibit prior to CLK)	35	25		ns
tECCH ³	ECS Hold Time After CLK (to hold interrupt inhibit)	0			ns
tecrs ³	ECS Set-Up Time to CLK (to enable new requests through the request latch)	110	70		ns
tecrh ³	ECS Hold Time After CLK (to hold requests in request latch)	0			
tecss ²	ECS Set-Up Time to CLK (to enable new status through the status latch)	75	70		ns
tecsh ²	ECS Hold Time After CLK (to hold status in status latch)	0			ns
t _{DCS} ²	SGS and B _Ø -B ₂ Set-Up Time to CLK (current status latch enabled)	70	50		ns
t _{DCH} ²	SGS and B_{\emptyset} - B_2 Hold Time After CLK (current status latch enabled)	0			ns
tRCS ³	R _Ø -R ₇ Set-Up Time to CLK (request latch enabled)	90	55		ns
tRCH ³	R _Ø -R ₇ Hold Time After CLK (request latch enabled)	0			ns
^t ICS	IA Set-Up Time to CLK (to set interrupt inhibit F.F. before CLK)	55	35		ns
^t CI	CLK to IA Propagation Delay		15	25	ns
	Contents of Request Latch and Request Level Output Status Determination:				
tRIS ⁴	R _Ø -R ₇ Set-Up Time to IA	10	0		ns
tRIH ⁴	Rø-R7 Hold Time After IA	35	20		ns
^t RA	Rø-R7 to Aø-A2 Propagation Delay (request latch enabled)		80	100	ns
^t ELA	ELR to A _Ø -A ₂ Propagation Delay		40	55	ns
^t ECA	ECS to A_{\emptyset} - A_2 Propagation Delay (to enable new requests through request lat	tch)	100	120	ns
^t ETA	ETLG to A _Ø -A ₂ Propagation Delay		35	70	ns
^t IA	A _Ø -A ₂ Settling Time After IA		120	145	ns

A.C. CHARACTERISTICS AND WAVEFORMS (cont.)

SYMBOL	PARAMETER	MIN	- LIMITS TYP(1)	MAX	UNIT
	Contents of Current Priority Status Latch Determination:				(
tDECS4	SGS and B ₀ -B ₂ Set-Up Time to ECS	15	10		ns
tDECH4	SGS and B ₀ -B ₂ Hold Time After ECS	15	10		ns
	Enable Next Level Group Determination:				
^t REN	R _Ø -R ₇ to ENLG Propagation Delay		45	70	ns
^t ETEN	ETLG to ENLG Propagation Delay		20	25	ns
^t ECRN	ECS to ENLG Propagation Delay (enabling new request through the request latch)		85	90	ns
^t ECSN	ECS to ENLG Propagation Delay (enabling new SGS through status latch)		35	55	ns
^t IEN	ENLG Settling Time After IA		100	120	ns

NOTES:

TEST CONDITIONS:

Input pulse amplitude: 2.5 volts.

Input rise and fall times: 5 ns between 1 and 2 volts.

Output loading of 15 mA and 30 pf.

Speed measurements taken at the 1.5V levels.

CAPACITANCE (5)

 $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	MIN	LIMITS TYP(1)	MAX	UNIT
CIN	Input Capacitance		5	10	pf
C _{OUT}	Output Capacitance		7	12	pf

TEST CONDITIONS:

 $V_{BIAS} = 2.5V$, $V_{CC} = 5V$, $T_A = 25^{\circ}C$, f = 1 MHz

NOTE

(5) This parameter is periodically sampled and not 100% tested.

⁽¹⁾ Typical values are for T_A = 25°C and nominal supply voltage.

⁽²⁾ Required for proper operation if ISE is enabled during next clock pulse.

⁽³⁾ These times are not required for proper operation but for desired change in interrupt flip-flop.

⁽⁴⁾ Required for new request or status to be properly loaded.

TYPICAL CONFIGURATIONS

The ICU has been designed for use with the INTEL Series 3000 Bipolar Microcomputer Set. It operates from the single common system clock and can accept an interrupt strobe (ISE) generated by the 3001 Micropgoram Control Unit or by a bit in microprogram memory as shown in Figures 2 and 3.

The ICU responds to interrupt requests of sufficient priority by entering the interrupt active mode. Its output (IA) can be tied to the row enable input (ERA) of the 3001 MCU. This gates an alternate row address onto the microprogram memory ad-

dress bus which forces the system to execute an interrupt handling routine. Alternatively, the ICU output can be used to directly modify the MCU jump instruction (AC inputs) so that the next microprogram address corresponds to the start of the interrupt routine rather than the start of the macroinstruction fetch sequence. Of course, in the case of this particular implementation, the interrupt strobe must be generated one clock period earlier and the ISE output of the MCU should not be used.

As shown in Figure 4, when several ICUs are used together to provide a

multiple of 8 priority levels, most control lines will be bussed. The Intel 3205 Decoder may be used to decode the high order bits of the request level, the information being derived from the daisy-chain group level signals.

As mentioned in the functional description, the request level information (A_0-A_2) may be sent to the 3001 MCU or the 3002 CP array as a constant through the Mask (K) bus or as data through the memory (M) or data (I) busses. Similarly, the status information can be generated by the CP array and carried to the ICU by the data (D) output bus of the CP array.

TYPICAL CONFIGURATIONS (cont.)

Figure 2. Interfacing 3214 with 3001.

Interrupt strobe generated by MCU. Interrupt routine start address at column 15 row 31. Macro-instruction fetch start address at column 15 row \emptyset .

Figure 3. Interfacing 3214 with 3001.

Interrupt strobe generated by the microprogram memory. Interrupt routine start address at column 14 row \emptyset . Macro-instruction fetch start address at column 15 row \emptyset .

Figure 4. Using Several 3214 Interrupt Chips to Provide more than Eight Priority Levels. (The 3214 at the upper right is used to encode the high order bits of the requesting level)

ORDERING INFORMATION

P3214

Part Number Description Interrupt

Control Unit

Intel Corporation

3065 Bowers Avenue

Santa Clara, California 95051

Tel: (408) 246-7501 TWX: 910-338-0026 Telex: 34-6372

WESTERN

1651 East 4th Street

Suite 228

Santa Ana, California 92701

Tel: (714) 835-9642 TWX: 910-595-1114

MID-AMERICA

6350 L.B.J. Freeway

Suite 178

Dallas, Texas 75240 Tel: (214) 661-8829 TWX: 910-860-5487

GREAT LAKES REGION

8312 North Main Street Dayton, Ohio 45415 Tel: (513) 890-5350 TELEX: 288-004

EASTERN

2 Militia Drive

Suite 4

Lexington, Massachusetts 02173

Tel: (617) 861-1136 TWX: 710-321-0187

MID-ATLANTIC

520 Pennsylvania Avenue

Suite 102

Fort Washington, Pennsylvania 19034

Tel: (215) 542-9444 TWX: 510-661-3055

EUROPE

Belgium

Intel Office 216 Avenue Louise Brussels B1050

Tel: 649-20-03 TELEX: 24814

ORIENT

Japan

Intel Japan Corporation Kasahara Bldg. 1-6-10, Uchikanda Chiyoda-ku

Tokyo 101 Tel: (03) 295-5441 TELEX: 781-28426