Part II — Probability and Measure

Based on lectures by Dr Sarkar

Michaelmas 2023

Contents

0	Holes in classical theory Introduction		1	
1			3	
	1.1	Definitions	3	
	1.2	Rings and algebras	4	
	1.3	Uniqueness of extension		
	1.4	Borel measures	11	
	1.5	Lebesgue measure	12	
	1.6	Existence of non-measurable sets	15	
	1.7	Probability spaces	15	
	1.8	Borel–Cantelli lemmas	17	
2	Mea	asurable Functions	19	
	2.1	Definition	19	
	2.2	Monotone class theorem	20	
	2.3	Image measures	21	
	2.4	Random variables	22	
	2.5	Constructing independent random variables	23	
	2.6	Convergence of measurable functions	24	
	2.7	Kolmogorov's zero-one law		

§0 Holes in classical theory

Analysis

- 1. What is the "volume" of a subset of \mathbb{R}^d .
- 2. Integration (Riemann Integration has holes)

- $\{f_n\}$ a sequence of continuous functions on [0,1] s.t.
 - $-0 \le f_n(x) \le 1 \ \forall \ x \in [0,1].$
 - $f_n(x)$ is monotonically decreasing on $n \to \infty$, i.e. $f_n(x) \ge f_{n+1}(x) \ \forall \ x/$

So, $\lim_{n\to\infty} f_n(x)$ exists. But f is not Riemann integrable. We want a theory of integration s.t. f is integrable and $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$.

3. $L^1=()$ If $f\in L^1$ is f Riemann integrable? Will have to change the definition of integral. L^2 a hilbert space

Probability

- 1. Discrete probability has its limitations,
 - Toss a unbiased coin 5 times. What is the probability if getting 3 heads?
 - Take an infinite sequence of coin tosses $(E = \{0,1\}^{\mathbb{N}})$ which is uncountable) and an event A that depends on that infinite sequence. How do you define $\mathbb{P}(A)$? E.g. $X_i \sim \operatorname{Ber}\left(\frac{1}{2}\right)$ and $A = \frac{\sum_{i=1}^n X_i}{n}$, the average number of heads. By strong law of large numbers $\mathbb{P}\left(\frac{\sum_{i=1}^n X_i}{n} \to \frac{1}{2}\right) = 1$.
 - How to draw a point uniformly at random from [0,1]? $U \sim U[0,1]$. Probability needs axioms to be made rigorous.
- 2. Define Expectation for a r.v.. Also would want the following if $0 \le X_n \le 1$ and $X_n \downarrow X$ then $\mathbb{E}X_n \to \mathbb{E}X$.

§2 Measurable Functions

§2.1 Definition

Definition 2.1 (Measurable)

Let $(E, \mathcal{E}), (G, \mathcal{G})$ be measurable spaces. A function $f: E \to G$ is called **measurable** if $f^{-1}(A) \in \mathcal{E} \ \forall \ A \in \mathcal{G}$, where $f^{-1}(A)$ is the preimage of A under f i.e. $f^{-1}(A) = \{x \in E: f(x) \in A\}$.

If $G = \mathbb{R}$ and $\mathcal{G} = \mathcal{B}$, we can just say that $f: (E, \mathcal{E}) \to G$ is measurable. Moreover, if E is a topological space and $\mathcal{E} = \mathcal{B}(E)$, we say f is Borel measurable.

Note that preimages f^{-1} commute with many set operations such as intersection, union, and complement. This implies that $\{f^{-1}(A) \mid A \in \mathcal{G}\}$ is a σ -algebra over E, and likewise, $\{A: f^{-1}(A) \in \mathcal{E}\}$ is a σ -algebra over G. Hence, if A is a collection of subsets s.t. $G \supset \sigma(A)$ then if $f^{-1}(A) \in \mathcal{E}$ for all $A \in A$, the class $\{A: f^{-1} \in \mathcal{E}\}$ is a σ -algebra that contains A and so $\sigma(A)$. So f is measurable.

If $f: (E, \mathcal{E}) \to \mathbb{R}$, the collection $\mathcal{A} = \{(-\infty, y] : y \in \mathbb{R}\}$ generates \mathcal{B} (Sheet 1). Hence f is Borel measurable iff $f^{-1}((-\infty, y]) = \{x \in E : f(x) \le y\} \in \mathcal{E}$ for all $y \in \mathbb{R}$.

If E is a topological space and $\mathcal{E} = \mathcal{B}(E)$, then if $f: E \to \mathbb{R}$ is continuous, the preimages of open sets B are open, and hence Borel sets. The open sets in \mathbb{R} generate the σ -algebra \mathcal{B} . Hence, continuous functions to the real line are measurable.

Example 2.1

Consider the indicator function 1_A of a set $A \subset E$. $1_A^{-1}(1) = A$ and $1_A^{-1}(0) = A^c$ hence measurable iff $A \in \mathcal{E}$.

Example 2.2

The composition of measurable functions is measurable. Note that given a collection of maps $\{f_i \colon E \to (G,\mathcal{G}) \mid i \in I\}$, we can make them all measurable by taking \mathcal{E} to be a large enough σ -algebra, for instance $\sigma(\{f_i^{-1}(A) : A \in \mathcal{G}, i \in I\})$ called the σ -algebra generated by $\{f_i\}_{i \in I}$.

Proposition 2.1

If f_1, f_2, \ldots are measurable \mathbb{R} -valued. Then $f_1 + f_2$, $f_1 f_2$, $\inf_n f_n$, $\sup_n f_n$, $\liminf_n f_n$, $\lim_n f_n$,

Proof. See Sheet 1. \Box

§2.2 Monotone class theorem

Theorem 2.1 (Monotone class theorem)

Let (E, \mathcal{E}) be a measurable space and \mathcal{A} be a π -system that generates the σ -algebra \mathcal{E} . Let \mathcal{V} be a vector space of bounded maps from E to \mathbb{R} s.t.

- 1. $1_E \in \mathcal{V}$;
- 2. $1_A \in \mathcal{V}$ for all $A \in \mathcal{A}$;
- 3. if f is bounded and $f_n \in \mathcal{V}$ are nonnegative functions that form an increasing sequence that converge pointwise to f on E, then $f \in \mathcal{V}$.

Then \mathcal{V} contains all bounded measurable functions $f \colon E \to \mathbb{R}$.

Proof. Define $\mathcal{D} = \{A \in \mathcal{E} : 1_A \in \mathcal{V}\}$. Then \mathcal{D} is a d-system as $1_E \in \mathcal{V}$ and for $A \subseteq B$, $1_{B \setminus A} = 1_B - 1_A \in \mathcal{V}$ as \mathcal{V} a vector space so $B \setminus A \in \mathcal{D}$.

If $A_n \in \mathcal{D}$ increases to A, we have 1_{A_n} increases pointwise to 1_A , which lies in \mathcal{V} by the (3.) so $A \in \mathcal{D}$.

 \mathcal{D} contains \mathcal{A} by (2.), as well as E itself. So by Dynkin's lemma \mathcal{D} contains $\sigma(\mathcal{A}) = \mathcal{E}$ so $\mathcal{E} = \mathcal{D}$ i.e. $1_A \in V \ \forall \ A \in \mathcal{E}$.

Since V a vector space it contains all finite linear combinations of indicators of measurable sets. Let $f \colon E \to \mathbb{R}$ be a bounded measurable function, which we will assume at first is nonnegative. We define

$$f_n(x) = 2^{-n} \lfloor 2^n f(x) \rfloor$$

$$= 2^{-n} \sum_{j=0}^{\infty} 1_{A_{n,j}}(x)$$

$$A_{n,j} = \{2^n f(x) \in [j, j+1)\}$$

$$= f^{-1} \left(\left[\frac{j}{2^n}, \frac{j+1}{2^n} \right) \right) \in \mathcal{E}.$$

As f is bounded we do not need an infinite sum but only a finite one. Then $f_n \leq f \leq f_n + 2^{-n}$. Hence $|f_n - f| \leq 2^{-n} \to 0$ and $f_n \uparrow f$.

So $0 \le f_n \uparrow f, f_n \in \mathcal{V}$ and f is bounded non-negative so $f \in \mathcal{V}$ by (3.).

Finally, for any f bounded and measurable, $f = f^{+a} - f^{-b}$. f^+, f^- are bounded, nonnegative and measurable, so in \mathcal{V} and \mathcal{V} a vector space thus $f \in \mathcal{V}$.

 $[^]a$ max(f,0)

 $^{^{}b}$ max(-f,0)

§2.3 Image measures

Definition 2.2

Let $f: (E, \mathcal{E}) \to (G, \mathcal{G})$ be a measurable function, and μ is a measure on (E, \mathcal{E}) . Then the *image measure* $\nu = \mu \circ f^{-1}$ is obtained from assigning $\nu(A) = \mu(f^{-1}(A))$ for all $A \in \mathcal{G}$.

Lemma 2.1

Let $g: \mathbb{R} \to \mathbb{R}$ be an increasing, right-continuous function, and set $g(\pm \infty) = \lim_{z \to \pm \infty} g(z)$. On $I = (g(-\infty), g(+\infty))$ we define the generalised inverse

$$f(x) = \inf \{ y \in \mathbb{R} \mid x \le g(y) \}$$

for $x \in I$. Then f is increasing, left-continuous, and $f(x) \leq y$ if and only if $x \leq g(y)$ for all $x \in I, y \in \mathbb{R}$.

Remark 15. f and g form a Galois connection.

Proof. Let $J_x = \{y \in \mathbb{R} \mid x \leq g(y)\}$. Since $x > g(-\infty)$, J_x is nonempty and bounded below. Hence f(x) is a well-defined real number. If $y \in J_x$, then $y' \geq y$ implies $y' \in J_x$ since g is increasing. Further, if y_n converges from the right to y, and all $y_n \in J_x$, we can take limits in $x \leq g(y_n)$ to find $x \leq \lim_n g(y_n) = g(y)$ since g is right-continuous. Hence $y \in J_x$. So $J_x = [f(x), \infty)$. Hence $f(x) \leq y \iff x \leq g(y)$ as required.

If $x \leq x'$, we have $J_x \supseteq J_{x'}$ by definition, so $f(x) \leq f(x')$. Similarly, if x_n converges from the left to x, we have $J_x = \bigcap_n J_{x_n}$, so $f(x_n) \to f(x)$ as $x_n \to x$.

Theorem 2.2

Let $g: \mathbb{R} \to \mathbb{R}$ be an increasing, right-continuous function, and set $g(\pm \infty) = \lim_{z \to \pm \infty} g(z)$. Then there exists a unique Radon measure μ_g on \mathbb{R} such that $\mu_g((a,b]) = g(b) - g(a)$ for all a < b. Further, all Radon measures can be obtained in this way.

Proof. We will show that the generalised inverse f as defined above is measurable. For all $z \in \mathbb{R}$, we find $f^{-1}((-\infty, z]) = \{x : f(x) \le z\} = \{x : x \le g(z)\} = [-g(\infty), g(z)]$ which is measurable. Since \mathcal{B} is generated by these such sets, f is $\mathcal{B}(I)$ - \mathcal{B} measurable as required. Therefore, the image measure $\mu_g = \mu \circ f^{-1}$, where μ is the Lebesgue measure on I, exists. Then for any $-\infty < a < b < \infty$, we have

$$\mu_g((a,b]) = \mu(f^{-1}((a,b]))$$

$$= \mu(\{x : a < f(x) \le f(b)\})$$

= $\mu(\{x : g(a) < x \le g(b)\})$
= $g(b) - g(a)$

This uniquely determines μ_g by the same argument as shown previously for the Lebesgue measure μ on \mathbb{R} . Since g maps into \mathbb{R} , $g(b) - g(a) \in \mathbb{R}$ so any compact set has finite measure as it is a subset of a closed bounded interval.

Conversely, let ν be a Radon measure on \mathbb{R} . Define

$$g(y) = \begin{cases} \nu((0, y]) & \text{if } y \ge 0\\ -\nu((y, 0]) & \text{if } y < 0 \end{cases}$$

This is an increasing function in y, since ν is a measure. Since we are using right-closed intervals, g is right-continuous. Finally, $\nu((a,b]) = g(b) - g(a)$ which can be seen by case analysis and additivity of the measure ν . By uniqueness as before, this characterises ν in its entirety.

Remark 16. Such image measures μ_g are called Lebesgue–Stieltjes measures, where g is the Stieltjes distribution.

Example 2.3

The *Dirac measure at x*, written δ_x , is defined by

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

This has Stieltjes distribution $g(x) = 1_{[x,\infty)}$.

§2.4 Random variables

Definition 2.3

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and (E, \mathcal{E}) be a measurable space. An E-valued random variable X is an \mathcal{F} - \mathcal{E} measurable map $X : \Omega \to E$. When $E = \mathbb{R}$ or \mathbb{R}^d with the Borel σ -algebra, we simply call X a random variable or random vector.

The law or distribution μ_X of a random variable X is given by the image measure $\mu_X = \mathbb{P} \circ X^{-1}$. When E is the real line, this measure has a distribution function

$$F_X(z) = \mu_X((-\infty, z]) = \mathbb{P}(X^{-1}(-\infty, z]) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \le z\}) = \mathbb{P}(X \le z)$$

This uniquely determines μ_X by the π -system argument given above.

Using the properties of measures, we can show that any distribution function satisfies:

- 1. F_X is increasing;
- 2. F_X is right-continuous;
- 3. $\lim_{z\to-\infty} F_X(z) = \mu_X(\emptyset) = 0$;
- 4. $\lim_{z\to\infty} F_X(z) = \mu_X(\mathbb{R}) = \mathbb{P}(\Omega) = 1$.

Given any function F_X satisfying each property, we can obtain a random variable X on $(\Omega, \mathcal{F}, \mathbb{P}) = ((0,1), \mathcal{B}((0,1)), \mu)$ by $X(\omega) = \inf\{x \mid \omega \leq f(x)\}$, and then F_X is the distribution function of X.

Definition 2.4

Consider a countable collection $(X_i: (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E}))$ for $i \in I$. This collection of random variables is called *independent* if the σ -algebras $\sigma(\{X_i^{-1}(A): A \in \mathcal{E}\})$ are independent.

For $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B})$ we show on an example sheet that this is equivalent to the condition

$$\mathbb{P}\left(X_{1} \leq x_{1}, \dots, X_{n} \leq x_{n}\right) = \mathbb{P}\left(X_{1} \leq x_{1}\right) \dots \mathbb{P}\left(X_{n} \leq x_{n}\right)$$

for all finite subsets $\{X_1, \ldots, X_n\}$ of the X_i .

§2.5 Constructing independent random variables

We now construct an infinite sequence of independent random variables with prescribed distribution functions on $(\Omega, \mathcal{F}, \mathbb{P}) = ((0, 1), \mathcal{B}, \mu)$ with μ the Lebesgue measure on (0, 1). We start with Bernoulli random variables.

Any $\omega \in (0,1)$ has a binary representation given by $(\omega_i) \in \{0,1\}^{\mathbb{N}}$, which is unique if we exclude infinitely long tails of zeroes from the binary representation. We can then define the *nth Rademacher function* $R_n(\omega) = \omega_n$ which extracts the *nth* bit from the binary expansion. Since each R_n can be given as the sum of 2^{n-1} indicator functions on measurable sets, they are measurable functions and are hence random variables. Their distribution is given by $\mathbb{P}(R_n = 1) = \frac{1}{2} = \mathbb{P}(R_n = 0)$, so we have constructed Bernoulli random variables with parameter $\frac{1}{2}$. We show they are independent. For a finite set $(x_i)_{i=1}^n$,

$$\mathbb{P}(R_1 = x_1, \dots, R_n = x_n) = 2^{-n} = \mathbb{P}(R_1 = x_1) \dots \mathbb{P}(R_n = x_n)$$

Therefore, the R_n are all independent, so countable sequences of independent random variables indeed exist. Now, take a bijection $m \colon \mathbb{N}^2 \to \mathbb{N}$ and define $Y_{nk} = R_{m(n,k)}$, which are independent random variables. We can now define $Y_n = \sum_k 2^{-k} Y_{nk}$. This converges for all $\omega \in \Omega$ since $|Y_{nk}| \leq 1$, and these are still independent. We show the Y_n are uniform random variables, by showing the distribution coincides with the uniform

distribution on the π -system of intervals $\left(\frac{i}{2^m}, \frac{i+1}{2^{m+1}}\right]$ for $i = 0, \dots, 2^m - 1$, which generates \mathcal{B} .

$$\mathbb{P}\left(Y_n \in \left(\frac{i}{2^m}, \frac{i+1}{2^m}\right]\right) = \mathbb{P}\left(\frac{i}{2^m} < \sum_{k} 2^{-k} Y_{nk} \le \frac{i+1}{2^n}\right) = 2^{-m} = \mu\left(\frac{i}{2^m}, \frac{i+1}{2^{m+1}}\right)$$

Hence $\mu_{Y_n} = \mu|_{(0,1)}$ by the uniqueness theorem, and so we have constructed an infinite sequence of independent uniform random variables Y_n . If F_n are probability distribution functions, taking the generalised inverse, we see that the $F_n^{-1}(Y_n)$ are independent and have distribution function F_n .

§2.6 Convergence of measurable functions

Definition 2.5

We say that a property defining a set $A \in \mathcal{E}$ holds μ -almost everywhere if $\mu(A^c) = 0$ for a measure μ on \mathcal{E} . If $\mu = \mathbb{P}$, we say a property holds \mathbb{P} -almost surely or with probability one, if $\mathbb{P}(A) = 1$.

Definition 2.6

If f_n and f are measurable functions on (E, \mathcal{E}, μ) , we say f_n converges to f μ -almost everywhere if $\mu(\{x \in E \mid f_n(x) \nrightarrow f(x)\}) = 0$. We say f_n converges to f in μ -measure if for all $\varepsilon > 0$, $\mu(\{x \in E \mid |f_n(x) - f(x)| > \varepsilon\}) \to 0$ as $n \to \infty$. For random variables, we say $X_n \to X$ \mathbb{P} -almost surely or in \mathbb{P} -probability, written $X_n \to^p X$, respectively. If X_n, X take values in \mathbb{R} , we say $X_n \to X$ in distribution, written $X_n \to^d X$ if $\mathbb{P}(X_n \leq x) \to \mathbb{P}(X \leq x)$ at all points x for which the limit $x \mapsto \mathbb{P}(X \leq x)$ is continuous.

We can show that $X_n \to^p X \implies X^n \to^d X$.

Theorem 2.3

Let $f_n: (E, \mathcal{E}, \mu) \to \mathbb{R}$ be measurable functions. Then,

- 1. if $\mu(E) < \infty$, then $f_n \to 0$ almost everywhere implies that $f_n \to 0$ in measure;
- 2. if $f_n \to 0$ in measure, $f_{n_k} \to 0$ almost everywhere on some subsequence.

Proof. Let $\varepsilon > 0$.

$$\mu(|f_n| < \varepsilon) \ge \mu \left(\bigcap_{m \ge n} \{|f_m| \le \varepsilon\}\right)$$

The sequence $\left(\bigcap_{m\geq n}\{|f_m|\leq \varepsilon\}\right)_n$ increases to $\bigcup_n\bigcap_{m\geq n}\{|f_m|\leq \varepsilon\}$. So by count-

able additivity,

$$\mu\left(\bigcap_{m\geq n} \{|f_m| \leq \varepsilon\}\right) \to \mu\left(\bigcup_n \bigcap_{m\geq n} \{|f_m| \leq \varepsilon\}\right)$$

$$= \mu(|f_n| \leq \varepsilon \text{ eventually})$$

$$\geq \mu(|f_n| \to 0) = \mu(E)$$

Hence,

$$\liminf_{n} \mu(|f_n| \le \varepsilon) \ge \mu(E) \implies \limsup_{n} \mu(|f_n| > \varepsilon) \le 0 \implies \mu(|f_n| > \varepsilon) \to 0$$

For the second part, by hypothesis, we have

$$\mu\Big(|f_n|>\frac{1}{k}\Big)<\varepsilon$$

for sufficiently large n. So choosing $\varepsilon = \frac{1}{k^2}$, we see that along some subsequence n_k we have

$$\mu\Big(|f_{n_k}| > \frac{1}{k}\Big) \le \frac{1}{k^2}$$

Hence,

$$\sum_{k} \mu \left(|f_{n_k}| > \frac{1}{n} \right) < \infty$$

So by the first Borel–Cantelli lemma, we have

$$\mu\Big(|f_{n_k}| > \frac{1}{k} \text{ infinitely often}\Big) = 0$$

so $f_{n_k} \to 0$ almost everywhere.

Remark 17. Condition (i) is false if $\mu(E)$ is infinite: consider $f_n = 1_{(n,\infty)}$ on $(\mathbb{R}, \mathcal{B}, \mu)$, since $f_n \to 0$ almost everywhere but $\mu(f_n) = \infty$. Condition (ii) is false if we do not restrict to subsequences: consider independent events A_n such that $\mathbb{P}(A_n) = \frac{1}{n}$, then $1_{A_n} \to 0$ in probability since $\mathbb{P}(1_{A_n} > \varepsilon) = \mathbb{P}(A_n) = \frac{1}{n} \to 0$, but $\sum_n \mathbb{P}(A_n) = \infty$, and by the second Borel-Cantelli lemma, $\mathbb{P}(1_{A_n} > \varepsilon)$ infinitely often) = 1, so $1_{A_n} \to 0$ almost surely.

Example 2.4

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent exponential random variables distributed by $\mathbb{P}(X_1 \leq x) = 1 - e^{-x}$ for $x \geq 0$. Define $A_n = \{X_n \geq \alpha \log n\}$ where $\alpha > 0$, so $\mathbb{P}(A_n) = n^{-\alpha}$, and in particular, $\sum_n \mathbb{P}(A_n) < \infty$ if and only if $\alpha > 1$. By the Borel–Cantelli lemmas, we have for all $\varepsilon > 0$,

$$\mathbb{P}\left(\frac{X_n}{\log n} \geq 1 \text{ infinitely often}\right) = 1; \quad \mathbb{P}\left(\frac{X_n}{\log n} \geq 1 + \varepsilon \text{ infinitely often}\right) = 0$$

In other words, $\limsup_{n \to \infty} \frac{X_n}{\log n} = 1$ almost surely.

§2.7 Kolmogorov's zero-one law

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables. We can define $\mathcal{T}_n = \sigma(X_{n+1}, X_{n+2}, \dots)$. Let $\mathcal{T} = \bigcap_{n\in\mathbb{N}} \mathcal{T}_n$ be the *tail* σ -algebra, which contains all events in \mathcal{F} that depend only on the limiting behaviour of (X_n) .

Theorem 2.4

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent random variables. Let $A\in\mathcal{T}$ be an event in the tail σ -algebra. Then $\mathbb{P}(A)=1$ or $\mathbb{P}(A)=0$. If $Y:(\Omega,\mathcal{T})\to(\mathbb{R},\mathcal{B})$ is measurable, it is constant almost surely.

Proof. Define $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ to be the σ -algebra generated by the first n elements of (X_n) . This is also generated by the π -system of sets $A = (X_1 \leq x_1, \dots, X_n \leq x_n)$ for any $x_i \in \mathbb{R}$. Note that the π -system of sets $B = (X_{n+1} \leq x_{n+1}, \dots, X_{n+k} \leq x_{n+k})$, for arbitrary $k \in \mathbb{N}$ and $x_i \in \mathbb{R}$, generates \mathcal{T}_n . By independence of the sequence, we see that $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ for all such sets A, B, and so the σ -algebras \mathcal{T}_n , \mathcal{F}_n generated by these π -systems are independent.

Let $\mathcal{F}_{\infty} = \sigma(X_1, X_2, \dots)$. Then, $\bigcup_n \mathcal{F}_n$ is a π -system that generates \mathcal{F}_{∞} . If $A \in \bigcup_n \mathcal{F}_n$, we have $A \in \mathcal{F}_n$ for some n, so there exists \overline{n} such that $B \in \mathcal{T}_{\overline{n}}$ is independent of A. In particular, $B \in \bigcap_n \mathcal{T}_n = \mathcal{T}$. By uniqueness, \mathcal{F}_{∞} is independent of \mathcal{T} .

Since $\mathcal{T} \subseteq \mathcal{F}_{\infty}$, if $A \in \mathcal{T}$, A is independent from A. So $\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)\mathbb{P}(A)$, so $\mathbb{P}(A)^2 - \mathbb{P}(A) = 0$ as required.

Finally, if $Y: (\Omega, \mathcal{T}) \to (\mathbb{R}, \mathcal{B})$, the preimages of $\{Y \leq y\}$ lie in \mathcal{T} , which give probability one or zero. Let $c = \inf\{y \mid F_Y(y) = 1\}$, so Y = c almost surely.