MAST20005/MAST90058: Week 6 Problems

1. To analyse the data from a brain study, we use the regression model: $Y_i = \alpha + \beta x_i + \varepsilon_i$, $\varepsilon_i \sim N(0, \sigma^2), i = 1, \dots, n$. The response is the brain weight (on a log-scale) for n = 62terrestrial mammals, while the predictor is the body weight (also on a log-scale). Consider the following (partial) R output:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.13479 0.75169 Х

0 *** 0.001 ** 0.01 * 0.05 . 0.1 Signif. codes: Residual standard error: 0.6943 on 60 degrees of freedom Multiple R-squared: 0.9208, Adjusted R-squared: 0.9195 F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16

Recall that $var(\hat{\beta}) = \sigma^2/K$, where $K = \sum_i (x_i - \bar{x})^2$. Find a 95% confidence interval for β . You may use the following information:

> sd(x)[1] 3.123128 > qt(c(0.999, 0.99, 0.975, 0.95), df = 60)[1] 3.231 2.39 2.00 1.67

2. Consider random variables X_1, X_2, X_3 having joint density $f(x_1, x_2, x_3)$. Suppose that

$$\mathbb{E}(X_3 \mid X_1 = x_1, X_2 = x_2) = \alpha + \beta_1(x_1 - \mu_1) + \beta_2(x_2 - \mu_2)$$

where $\mu_i = \mathbb{E}(X_i)$. Show that:

- (a) $\alpha = \mu_3$,
- (b) both of:

$$\beta_1 = \frac{\sigma_{13}\sigma_2^2 - \sigma_{12}\sigma_{23}}{\sigma_1^2\sigma_2^2 - \sigma_{12}^2}, \quad \beta_2 = \frac{\sigma_{23}\sigma_1^2 - \sigma_{12}\sigma_{13}}{\sigma_1^2\sigma_2^2 - \sigma_{12}^2}$$

where $\sigma_i^2 = \text{var}(X_i)$ and $\sigma_{ij} = \text{cov}(X_i, X_j)$.

- 3. Consider the simple linear model $Y = \alpha_0 + \beta(x_i \bar{x}) + \varepsilon$ where $\varepsilon \sim N(0, \sigma^2)$.
 - (a) Show that

$$\sum_{i=1}^{n} \left[Y_i - \alpha_0 - \beta (x_i - \bar{x}) \right]^2 = n(\hat{\alpha}_0 - \alpha_0)^2 + (\hat{\beta} - \beta)^2 \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} \left[Y_i - \hat{\alpha}_0 - \hat{\beta} (x_i - \bar{x}) \right]^2$$

(b) For an appropriate value of c (which one?), show that the endpoints for a $100 \cdot (1-\gamma)\%$ confidence interval for α_0 are:

$$\hat{\alpha}_0 \pm c \frac{\hat{\sigma}}{\sqrt{n}}.$$

(c) Letting F^{-1} be the inverse cdf of χ^2_{n-2} , show that a $100 \cdot (1-\gamma)\%$ confidence interval for σ^2 is:

$$\left(\frac{(n-2)\hat{\sigma}^2}{F^{-1}(1-\gamma/2)}, \frac{(n-2)\hat{\sigma}^2}{F^{-1}(\gamma/2)}\right).$$

- 4. Explain why the model $\mu(x) = \beta_1 e^{\beta_2 x}$ is not a linear model.
- 5. To fit the quadratic curve $y = \beta_1 + \beta_2 x + \beta_3 x^2$ to a set of points, we minimise

$$h(\beta_1, \beta_2, \beta_3) = \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i - \beta_3 x_i^2)^2.$$

By setting the three first partial derivatives of h with respect to β_1 , β_2 and β_3 to zero, show that β_1 , β_2 and β_3 satisfy the normal equations:

$$\sum y_i = \beta_1 n + \beta_2 \sum x_i + \beta_3 \sum x_i^2$$

$$\sum x_i y_i = \beta_1 \sum x_i + \beta_2 \sum x_i^2 + \beta_3 \sum x_i^3$$

$$\sum x_i^2 y_i = \beta_1 \sum x_i^2 + \beta_2 \sum x_i^3 + \beta_3 \sum x_i^4$$

6. (a) Show that:

$$\sum_{i=1}^{n} (x_i - \bar{x}) y_i = \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} x_i (y_i - \bar{y})$$
$$= \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i$$

(b) Prove the following identity for the sum of squared residuals:

$$d^{2} = \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} - \frac{\left[\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})\right]^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

7. The following table gives the leaf area, y, of a particular type of tree at age x years.

\overline{x}	8	11	17	20	23	26
\overline{y}	14.8	17.3	20.8	24.4	29.3	35.0
	9.0		23.7	28.9		33.4
	11.0			27.8		37.8

Some useful statistics:

$$n = 13$$
 $\sum x_i y_i = 6282.3$ $\sum (x_i - \bar{x})(y_i - \bar{y}) = 741.1$
 $\sum x_i = 230$ $\sum x_i^2 = 4648$ $\sum (x_i - \bar{x})^2 = 578.8$
 $\sum y_i = 313.2$ $\sum y_i^2 = 8546.0$ $\sum (y_i - \bar{y})^2 = 1000.2$

Using a simple linear regression model, calculate the following:

- (a) Estimates of all of the parameters
- (b) Standard errors for all of the regression coefficients
- (c) A 95% confidence interval for the expectation of Y when x = 18
- (d) A 95% prediction interval for Y when x = 18