HW1

Please type or photograph your solution and turn it into a pdf before submitting it to Canvas. The first two problems will be graded for correctness.

- 1. Let A be a set.
 - (a) Let S be a non empty set of equivalence relations on A. Show that $\bigcap S$ is an equivalence relation on A.
 - (b) Let R be a relation between A and A. Show that there is a unique equivalence relation on A, called \sim_R , such that any equivalence relation \sim on A which contains R has \sim_R as a subset.
- 2. Let A and B be two sets, $f: A \to B$ a function. Define function $F: P(B) \to P(A)$ as $F(C) = f^{-1}(C)$. Show that F is an injection iff f is a surjection, F is a surjection iff f is an injection.
- 3. Show that $\sim = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x-y \in \mathbb{Q}\}$ is an equivalence relation on \mathbb{R} .
- 4. Let A and B be two sets. $C = \{(x,i) \in (A \cup B) \times \{0,1\} : x \in A \text{ if } i = 0, x \in B \text{ if } i = 1\}$. Show that there are injections $k : A \to C, j : B \to C,$ such that C = k(A) + j(B) and $k(A) \cap j(B) = \emptyset$.
- 5. Let $f:A\to B$ be a function. Show that there is a set C, an injection $g:A\to C$, and a surjection $h:C\to B$, such that $f=h\circ g$. (Hint: You may want to use the solution for the previous problem).