

Fakultät für Mathematik

Institut für Angewandte und Numerische Mathematik Arbeitsgruppe Numerik

Numerik

Marlis Hochbruck

SS 2010 - WS 2011/12

Copyright (C) Marlis Hochbruck, Karlsruhe Institute of Technology, SS 2010 - WS 2011/12

INHALTSVERZEICHNIS

	1.	Numerische Integration
		1.1 Erste Beispiele von Quadraturformeln
		1.2 Ordnung einer Quadraturformel
		1.3 Integrale mit Gewichtsfunktion
		1.4 Untersuchung des Quadraturfehlers
		1.5 Quadraturformeln mit erhöhter Ordnung
)		1.6 Orthogonalpolynome
		1.7 Gauß-Quadraturformeln
		1.8 Numerische Berechnung von Gauß-Quadraturformeln
		1.9 Ein adaptives Programm
		1.10 Konvergenzbeschleunigung mit dem ϵ -Algorithmus
	2.	Interpolation und Approximation
	2.	2.1 Newton'sche Interpolationsformel
		2.2 Fehler bei der Polynominterpolation
		2.3 Tschebyscheff-Interpolation
		2.4 Splineinterpolation
		2.5 Fehler bei der Splineinterpolation
	3.	Lineare Gleichungssysteme
	<i>J</i> .	3.1 Gauß-Elimination
		3.2 Wahl der Pivotelemente – Gleitpunktarithmetik
		3.5 Cholesky-Zerlegung
		3.6 Lineare Ausgleichsrechnung
		3.7 QR-Zerlegung
		3.8 Singulärwertzerlegung und Pseudoinverse
)	4.	Nichtlineare Gleichungssysteme
		4.1 Fixpunktiteration
4		4.2 Newton-Verfahren
		4.3 Vereinfachtes Newton-Verfahren
		4.4 Das gedämpfte Newton-Verfahren
		4.5 Das Sekantenverfahren
	5.	Schnelle Fouriertransformation und Anwendungen
		5.1 Trigonometrische Interpolation und diskrete Fouriertransformation
		5.2 Schnelle Fouriertransformation (FFT)
		5.3 Inverses Faltungsproblem, Regularisierung, Filter

		5.4	Schnelle Poisson-Löser
	6.	Eige	nwerte und Eigenvektoren
	٠.	6.1	Grundlagen
0)		6.2	Normalformen
12		6.3	Störungstheorie, Einschließungssätze
2011/1		6.4	Potenzenmethode
20		6.5	QR-Algorithmus
NS NS		6.6	Effiziente Implementierung des QR-Algorithmus
		6.7	QR-Algorithmus zur Berechnung der Singulärwertzerlegung
0		6.8	Trägheit einer Matrix, Bisektionsverfahren
2010		0.0	Tragnote emer natural, Bisometons vertained 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
SS	7.	Kryl	ov-Verfahren zur Lösung linearer Gleichungssysteme
		7.1	Krylov-Verfahren, Arnoldi-Prozess
8		7.2	Verfahren basierend auf dem Arnoldi-Prozess
010		7.3	Nichtsymmetrisches Lanczos-Verfahren
JIIC		7.4	Verfahren basierend auf dem Lanczos-Prozess
ecl		7.5	Das Verfahren der konjugierten Gradienten
		7.6	Vorkonditionierung
Karlsruhe Institute of Technology,			
ute	8.	•	ge-Kutta-Verfahren
stit		8.1	Beispiele von Differentialgleichungen
In		8.2	Theorie gewöhnlicher Differentialgleichungen
he		8.3	Euler-Verfahren
STU		8.4	Einfluss von Rundungsfehlern
ırls		8.5	Runge-Kutta-Verfahren
K		8.6	Taylor-Entwicklung und Bäume
K,		8.7	Ordnungsbedingungen für Runge-Kutta-Verfahren
LNC		8.8	Konstruktion expliziter Runge-Kutta-Verfahren
hb		8.9	Schrittweitensteuerung durch eingebettete Runge-Kutta-Verfahren 190
Hochbruck,		8.10	Stetige numerische Lösung bei Runge-Kutta-Verfahren
SE	9.	Meh	rschrittverfahren
Copyright (C) Marlis	9.	9.1	Adams-Verfahren
\mathbb{M}_{2}		9.2	BDF-Verfahren
		9.3	Ordnung von Mehrschrittverfahren
\bigcirc		9.4	Stabilität von Mehrschrittverfahren
ght		9.5	Konvergenz von Mehrschrittverfahren
TI		9.6	Variable Schrittweite
dc		9.7	Schrittweiten- und Ordnungssteuerung
Ŭ		9.8	Numerische Vergleiche
		9.0	Numerische Vergieiche
	10	. Steif	e Differentialgleichungen
		10.1	Einführung
		10.2	Stabilitätsbereiche, A-Stabilität
			Mehrschrittverfahren
		10.4	Ordnungsschranke für A -stabile Mehrschrittverfahren
		10.5	Kollokationsverfahren

In halts verzeichn is3

	10.6 A-stabile Runge-Kutta-Verfahren	. 230
	10.7 Implementierung impliziter Runge-Kutta-Verfahren	. 233
	10.8 Implizites Euler-Verfahren bei Dgl. mit einseitiger Lipschitz-Bedingung	
	10.9 Kontraktive Runge-Kutta-Verfahren	
7	10.10Beispiel von Prothero und Robinson	
1	10.11Konvergenz bei kontraktiven Differentialgleichungen	
7011	10.12Existenz von Runge-Kutta-Lösungen	
	10.13Exponentielle Integratoren	
>	11. Elliptische partielle Differentialgleichungen	. 257
\supset	11.1 Motivation: Eindimensionale Probleme	
7010	11.2 Ritz-Galerkin-Approximationen	
2	11.3 Lineare Splineräume – Methode der finite Elemente	
2	11.4 Zweidimensionale Probleme – Green'sche Formel	
\hat{a}	11.5 Variationelle Approximation – Ritz-Galerkin	
010	11.6 Einschub: Lineare Operatoren	
ecnnology	11.7 Lemma von Lax-Milgram, schwache Lösungen	
SCI	11.8 Sobolev-Räume	
_	11.9 Dirichlet— und Neumann-Probleme	
OI	11.5 Birtemet and realizable 1	. 202
116	12. Methode der finiten Elemente	. 287
	12.1 Einführung	
nsı	12.2 Finite Elemente	
e I	12.3 Zusammensetzen von finiten Elementen	
un	12.4 Aufstellen des Galerkin-Systems	
ISL	12.5 Fehlerabschätzungen und Konvergenz: Vorbemerkungen	
g	12.6 Fehlerabschätzungen für lineare finite Elemente	
, P	12.7 Kompakte Einbettungen, Satz von Rellich	
CK	12.8 Approximationssätze für Polynominterpolation	
oru	12.8 Approximationssatze fur r orynommiterpolation	. 505
cnoruck,	13. Mehrgitterverfahren	307
ŎŢ	13.1 Klassische Iterationsverfahren – Splittingverfahren	307
S	13.2 Zweigitterverfahren	
	13.3 Mehrgitterverfahren	
MS	13.4 Skalen von Normen	
opyrignt (C) Mariis	13.5 Gitterabhängige Normen	
žni	13.6 Konvergenz des Zweigitterverfahrens	
	13.7 Konvergenz des W-Zyklus	
þ	13.8 Konvergenz in der Energienorm	
\mathcal{I}	13.9 Fehler bei geschachtelter Iteration	. 327
	14. Parabolische Differentialgleichungen	320
	14.1 Schwache Formulierung parabolischer Probleme	
	14.2 Finite Element-Diskretisierung im Raum	
	14.3 Vollständige Diskretisierung mit dem impliziten Euler-Verfahren	
	14.4 Zeitdiskretisierung mit BDF-Verfahren	
	14.5 Die Burgers-Gleichung	
	14.6 BDF-Verfahren bei nichtlinearen Problemen	. 360

Inhaltsverzeichnis