

<110> Yosef, Shaul Zemel, Romi

<120> HEPATITIS B VIRUS BINDING PROTEINS AND USES THEREOF

1

<130> 27169

<160> 14

<170> PatentIn version 3.3

<210> 1

<211> 2512 <212> DNA <213> Homo sapiens

<213> Ho	mo sapiens					
<400> 1	g acggatatga	ataaastaat	atasasasas	225002220	tattaataa	60
_						
	g tcccagacgc					120
tacctctgc	c ttccgaaaac	agcccagatt	attgtcaata	atgaacagcc	tcagcaggaa	180
acacaacca	g cagaaggaac	ctcaggggca	accaccgggg	ttgtagctgc	cagcagcatg	240
gcaaccagt	g gagtgttgcc	cgggggtggt	tttgtggcca	gtgctgctgc	agtcgcaggc	300
cctgaaatg	c agactggccg	aaataacttt	gtcatccggc	ggaacccagc	tgaccctcag	360
cgcattccc	t ccaacccttc	ccaccgtatc	cagtgtgcag	caggctacga	gcaaagtgaa	420
cacaacgtg	t gccaagacat	agacgagtgc	actgcaggga	cgcacaactg	tagagcagac	480
caagtgtgc	a tcaatttacg	gggatccttt	gcatgtcagt	gccctcctgg	atatcagaag	540
cgaggggag	c agtgcgtaga	catagatgaa	tgtaccatcc	ctccatattg	ccaccaaaga	600
tgcgtgaat	a caccaggete	attttattgc	cagtgcagtc	ctgggtttca	attggcagca	660
aacaactat	a cctgcgtaga	tataaatgaa	tgtgatgcca	gcaatcaatg	tgctcagcag	720
tgctacaac	a ttcttggttc	attcatctgt	cagtgcaatc	aaggatatga	gctaagcagt	780
gacaggctc	a actgtgaaga	cattgatgaa	tgcagaacct	caagctacct	gtgtcaatat	840
caatgtgtc	a atgaacctgg	gaaattctca	tgtatgtgcc	cccagggata	ccaagtggtg	900
agaagtaga	a catgtcaaga	tataaatgag	tgtgagacca	caaatgaatg	ccgggaggat	960
gaaatgtgt	t ggaattatca	tggcggcttc	cgttgttatc	cacgaaatcc	ttgtcaagat	1020
ccctacatt	c taacaccaga	gaaccgatgt	gtttgcccag	tctcaaatgc	catgtgccga	1080
gaactgccc	c agtcaatagt	ctacaaatac	atgagcatcc	gatctgatag	gtctgtgcca	1140
tcagacato	t tccagataca	ggccacaact	atttatgcca	acaccatcaa	tacttttcgg	1200
attaaatct	g gaaatgaaaa	tggagagttc	tacctacgac	aaacaagtcc	tgtaagtgca	1260
atgcttgtg	c tcgtgaagtc	attatcagga	ccaagagaac	atatcgtgga	cctggagatg	1320
ctgacagtc	a gcagtatagg	gaccttccgc	acaagctctg	tgttaagatt	gacaataata	1380
gtggggcca	t tttcatttta	gtcttttcta	agagtcaacc	acaggcattt	aagtcagcca	1440
aagaatatt	g ttaccttaaa	gcactatttt	atttatagat	atatctagtg	catctacatc	1500
tctatactg	t acactcaccc	ataacaaaca	attacaccat	ggtataaagt	gggcatttaa	1560
tatgtaaag	a ttcaaagttt	gtctttatta	ctatatgtaa	attagacatt	aatccactaa	1620
actggtctt	c ttcaagagag	ctaagtatac	actatctggt	gaaacttgga	ttctttccta	1680

taaaagtggg	accaagcaat	gatgatcttc	tgtggtgctt	aaggaaactt	actagagete	1740
cactaacagt	ctcataagga	ggcagccatc	ataaccattg	aatagcatgc	aagggtaaga	1800
atgagttttt	aactgctttg	taagaaaatg	gaaaaggtca	ataaagatat	atttctttag	1860
aaaatgggga	tctgccatat	ttgtgttggt	ttttatttc	atatccagcc	taaaggtggt	1920
tgtttattat	atagtaataa	atcattgctg	tacaacatgc	tggtttctgt	agggtatttt	1980
taattttgtc	agaaatttta	gattgtgaat	attttgtaaa	aaacagtaag	caaaattttc	2040
cagaattccc	aaaatgaacc	agataccccc	tagaaaatta	tactattgag	aaatctatgg	2100
ggaggatatg	agaaaataaa	ttccttctaa	accacattgg	aactgacctg	aagaagcaaa	2160
ctcggaaaat	ataataacat	ccctgaattc	aggcattcac	aagatgcaga	acaaaatgga	2220
taaaaggtat	ttcactggag	aagttttaat	ttctaagtaa	aatttaaatc	ctaacacttc	2280
actaatttat	aactaaaatt	tctcatcttc	gtacttgatg	ctcacagagg	aagaaaatga	2340
tgatggtttt	tattcctggc	atccagagtg	acagtgaact	taagcaaatt	accctcctac	2400
ccaattctat	ggaatatttt	atacgtctcc	ttgtttaaaa	tctgactgct	ttactttgat	2460
gtatcatatt	tttaaataaa	aataaatatt	cctttagaag	atcactctaa	aa	2512

<210> 2

<211> 387

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Thr Ser Gly Val Leu Pro Gly Gly Gly Phe Val Ala Ser Ala 1 5 10 15

Ala Ala Val Ala Gly Pro Glu Met Gln Thr Gly Arg Asn Asn Phe Val 20 25 30

Ile Arg Arg Asn Pro Ala Asp Pro Gln Arg Ile Pro Ser Asn Pro Ser 35 40 45

His Arg Ile Gln Cys Ala Ala Gly Tyr Glu Gln Ser Glu His Asn Val

Cys Gln Asp Ile Asp Glu Cys Thr Ala Gly Thr His Asn Cys Arg Ala 65 70 75 80

Asp Gln Val Cys Ile Asn Leu Arg Gly Ser Phe Ala Cys Gln Cys Pro 85 90 95

Pro Gly Tyr Gln Lys Arg Gly Glu Gln Cys Val Asp Ile Asp Glu Cys
100 105 110

Thr Ile Pro Pro Tyr Cys His Gln Arg Cys Val Asn Thr Pro Gly Ser

Phe Tyr Cys Gln Cys Ser Pro Gly Phe Gln Leu Ala Ala Asn Asn Tyr 130 135 140

Thr Cys Val Asp Ile Asn Glu Cys Asp Ala Ser Asn Gln Cys Ala Gln 145 150 150 160

Gln Cys Tyr Asn Ile Leu Gly Ser Phe Ile Cys Gln Cys Asn Gln Gly 165 170 175

Tyr Glu Leu Ser Ser Asp Arg Leu Asn Cys Glu Asp Ile Asp Glu Cys 180 185 190

Arg Thr Ser Ser Tyr Leu Cys Gln Tyr Gln Cys Val Asn Glu Pro Gly
195 200 205

Lys Phe Ser Cys Met Cys Pro Gln Gly Tyr Gln Val Val Arg Ser Arg 210 215 220

Thr Cys Gln Asp Ile Asn Glu Cys Glu Thr Thr Asn Glu Cys Arg Glu 225 230 235 240

Asp Glu Met Cys Trp Asn Tyr His Gly Gly Phe Arg Cys Tyr Pro Arg 245 250 255

Asn Pro Cys Gln Asp Pro Tyr Ile Leu Thr Pro Glu Asn Arg Cys Val

Cys Pro Val Ser Asn Ala Met Cys Arg Glu Leu Pro Gln Ser Ile Val 275 280 285

Tyr Lys Tyr Met Ser Ile Arg Ser Asp Arg Ser Val Pro Ser Asp Ile 290 295 300

Phe Gln Ile Gln Ala Thr Thr Ile Tyr Ala Asn Thr Ile Asn Thr Phe 305 310 315 320

Arg Ile Lys Ser Gly Asn Glu Asn Gly Glu Phe Tyr Leu Arg Gln Thr 325 330 335

Ser Pro Val Ser Ala Met Leu Val Leu Val Lys Ser Leu Ser Gly Pro 340 345 350

Arg Glu His Ile Val Asp Leu Glu Met Leu Thr Val Ser Ser Ile Gly 355 360 365

Thr Phe Arg Thr Ser Ser Val Leu Arg Leu Thr Ile Ile Val Gly Pro

Phe Ser Phe 385

<210> 3

<211> 2019

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (22)..(22)

<223> n is a, c, g, or t

<400> 3

acceeggege teteceegtg tnetetecae gaetegeteg geecetetgg aataaaacae

ccgcgagccc cgagggccca	gaggaggccg	acgtgcccga	gctcctccgg	gggtcccgcc	120
cgcaagcttt cttctcgcct	tcgcatctcc	tcctcgcgcg	tcttggacat	gccaggaata	180
aaaaggatac tcactgttac	cattctggct	ctctgtcttc	caagccctgg	gaatgcacag	240
gcacagtgca cgaatggctt	tgacctggat	cgccagtcag	gacagtgttt	agatattgat	300
gaatgeegaa eeateeeega	ggcctgccga	ggagacatga	tgtgtgttaa	ccaaaatggg	360
gggtatttat gccattcccg	gacaaaccct	gtgtatcgag	ggccctactc	gaacccctac	420
tegacecect acteaggtee	gtacccagca	gctgccccac	cactctcagc	tccaaactat	480
cccacgatct ccaggcctct	tatatgccgc	tttggatacc	agatggatga	aagcaaccaa	540
tgtgtggatg tggacgagtg	tgcaacagat	tcccaccagt	gcaaccccac	ccagatttgc	600
atcaatatga agggcgggta	cacctgctcc	tgcaccgacg	gatattggct	tttggaaggc	660
cagtgcttag acattgatga	atgtcgctat	ggttactgcc	agcagctctg	tgcgaatgtt	720
cctggatcct attcttgtac	atgcaaccct	ggttttaccc	tcaatgagga	tggaaggtct	780
tgccaagatg tgaacgagtg	tgccaccgag	aacccctgcg	tgcaaacctg	cgtcaacacc	840
tacggctctt tcatctgccg	ctgtgaccca	ggatatgaac	ttgaggaaga	tggcgttcat	900
tgcagtgata tggacgagtg	cagcttctct	gagttcctct	gccaacatga	gtgtgtgaac	960
cagcccggca catacttctg	ctcctgccct	ccaggctaca	tcctgctgga	tgacaaccga	1020
agctgccaag acatcaacga	atgtgagcac	aggaaccaca	cgtgcaacct	gcagcagacg	1080
tgctacaatt tacaaggggg	cttcaaatgc	atcgacccca	tccgctgtga	ggagccttat	1140
ctgaggatca gtgataaccg	ctgtatgtgt	cctgctgaga	accetggetg	cagagaccag	1200
ccctttacca tcttgtaccg	ggacatggac	gtggtgtcag	gacgctccgt	tcccgctgac	1260
atcttccaaa tgcaagccac	gacccgctac	cctggggcct	attacatttt	ccagatcaaa	1320
tctgggaatg agggcagaga	attttacatg	cggcaaacgg	gccccatcag	tgccaccctg	1380
gtgatgacac gccccatcaa	agggccccgg	gaaatccagc	tggacttgga	aatgatcact	1440
gtcaacactg tcatcaactt	cagaggcagc	tccgtgatcc	gactgcggat	atatgtgtcg	1500
cagtacccat tctgagcctc	gggctggagc	ctccgacgct	gcctctcatt	ggcaccaagg	1560
gacaggagaa gagaggaaat	aacagagaga	atgagagcga	cacagacgtt	aggcatttcc	1620
tgctgaacgt ttccccgaag	agtcagcccc	gacttcctga	ctctcacctg	tactattgca	1680
gacctgtcac cctgcaggac	ttgccacccc	cagttcctat	gacacagtta	tcaaaaagta	1740
ttatcattgc tcccctgata	gaagattgtt	ggtgaatttt	caaggccttc	agtttatttc	1800
cactattttc aaagaaaata	gattaggttt	gcgggggtct	gagtctatgt	tcaaagactg	1860
tgaacagett getgteaett	cttcacctct	tccactcctt	ctctcactgt	gttactgctt	1920
tgcaaagacc cggggagctg	gcggggaaac	cctggggagt	agctagtttg	ctttttgcgt	1980
acacagaaga aggctatgta	aacaaaccac	agcaggatc			2019

Met Pro Gly Ile Lys Arg Ile Leu Thr Val Thr Ile Leu Ala Leu Cys

<210> 4 <211> 448

<212> PRT

<213> Homo sapiens

<400> 4

1 5 10 15

Leu Pro Ser Pro Gly Asn Ala Gln Ala Gln Cys Thr Asn Gly Phe Asp 20 25 30

Leu Asp Arg Gln Ser Gly Gln Cys Leu Asp Ile Asp Glu Cys Arg Thr \$35\$ \$40\$ \$45\$

Ile Pro Glu Ala Cys Arg Gly Asp Met Met Cys Val Asn Gln Asn Gly
50 60

Gly Tyr Leu Cys His Ser Arg Thr Asn Pro Val Tyr Arg Gly Pro Tyr 65 70 75 80

Ser Asn Pro Tyr Ser Thr Pro Tyr Ser Gly Pro Tyr Pro Ala Ala Ala 85 90 95

Pro Pro Leu Ser Ala Pro Asn Tyr Pro Thr Ile Ser Arg Pro Leu Ile 100 105 110

Cys Arg Phe Gly Tyr Gln Met Asp Glu Ser Asn Gln Cys Val Asp Val 115 120 125

Asp Glu Cys Ala Thr Asp Ser His Gln Cys Asn Pro Thr Gln Ile Cys 130 135 140

Ile Asn Met Lys Gly Gly Tyr Thr Cys Ser Cys Thr Asp Gly Tyr Trp 145 150 150 155

Leu Leu Glu Gly Gln Cys Leu Asp Ile Asp Glu Cys Arg Tyr Gly Tyr
165 170 175

Cys Gln Gln Leu Cys Ala Asn Val Pro Gly Ser Tyr Ser Cys Thr Cys 180 185 190

Asn Pro Gly Phe Thr Leu Asn Glu Asp Gly Arg Ser Cys Gln Asp Val

Asn Glu Cys Ala Thr Glu Asn Pro Cys Val Gln Thr Cys Val Asn Thr 210 215 220

Tyr Gly Ser Phe Ile Cys Arg Cys Asp Pro Gly Tyr Glu Leu Glu Glu 225 230 235 240

Asp Gly Val His Cys Ser Asp Met Asp Glu Cys Ser Phe Ser Glu Phe 245 250 255

Leu Cys Gln His Glu Cys Val Asn Gln Pro Gly Thr Tyr Phe Cys Ser 260 265 270

Cys Pro Pro Gly Tyr Ile Leu Leu Asp Asp Asn Arg Ser Cys Gln Asp 275 280 285

Ile Asn Glu Cys Glu His Arg Asn His Thr Cys Asn Leu Gln Gln Thr 290 295 300

Cys Tyr Asn Leu Gln Gly Gly Phe Lys Cys Ile Asp Pro Ile Arg Cys 305 310 315 320

Glu Glu Pro Tyr Leu Arg Ile Ser Asp Asn Arg Cys Met Cys Pro Ala 325 330 335

Glu Asn Pro Gly Cys Arg Asp Gln Pro Phe Thr Ile Leu Tyr Arg Asp 340 345 350

Met Asp Val Val Ser Gly Arg Ser Val Pro Ala Asp Ile Phe Gln Met 355 360 365

Gln Ala Thr Thr Arg Tyr Pro Gly Ala Tyr Tyr Ile Phe Gln Ile Lys 370 375 380

Ser Gly Asn Glu Gly Arg Glu Phe Tyr Met Arg Gln Thr Gly Pro Ile 385 390 395 400

Ser Ala Thr Leu Val Met Thr Arg Pro Ile Lys Gly Pro Arg Glu Ile 405 410 415

Gln Leu Asp Leu Glu Met Ile Thr Val Asn Thr Val Ile Asn Phe Arg 420 425 430

Gly Ser Ser Val Ile Arg Leu Arg Ile Tyr Val Ser Gln Tyr Pro Phe 435 440 445

<210> 5

<211> 1661

<212> DNA

<213> Homo sapiens

<400> 5 atgeteeect gegeeteetg cetaceeggg tetetactge tetgggeget getactgttg 60 ctcttgggat cagcttctcc tcaggattct gaagagcccg acagctacac ggaatgcaca 120 gatggctata cccagacagc caactgccgg gatgtcaacg agtgtctgac catccctgag 180 gcctgcaagg gggaaatgaa gtgcatcaac cactacgggg gctacttgtg cctgcccgc 240 teegetgeeg teateaacga cetacaegge gagggaeece egecaeeagt geeteeegte 300 aacacccaac ccctgcccac aggctatgag cccgacgatc aggacagctg tgtggatgtg 360 420 gacgagtgtg cccaggccct gcacgactgt cgccccagcc aggactgcca taacttgcct 480 ggctcctatc agtgcacctg ccctgatggt taccgcaaga tcgggcccga gtgtgtggac atagacgagt gccgctaccg ctactgccag caccgctgcg tgaacctgcc tggctccttc 540 cgctgccagt gcgagccggg cttccagctg gggcctaaca accgctcctg tgttgatgtg 600 aacgagtgtg acatgggggc cccatgcgag cagcgctgct tcaactccta tgggaccttc 660 ctgtgtcgct gccaccaggg ctatgagctg catcgggatg gcttctcctg cagtgatatt 720 gatgagtgta gctactccag ctacctctgt cagtaccgct gcgtcaacga gccaggccgt 780 ttctcctgcc actgcccaca gggttaccag ctgctggcca cacgcctctg ccaagacatt 840 gatgagtgtg agtctggtgc gcaccagtgg tccgaggccc aaacctgtgt caatttccat 900 gggggctacc gctgcgtgga caccaaccgc tgcgtggagc cctacatcca ggtctctgag 960 1020 aaccgctgtc tctgcccggc ctccaaccct ctatgtcgag agcagccttc atccattgtg

caccgctaca tgaccatcac ctcggaagcg gagagacccg ctgacgtgtt ccagatccag 1080 gegaceteeg tetacecegg tgeetacaat geettteaga teegtgetgg aaactegeag 1140 ggggactttt acattaggca aatcaacaac gtcagcgcca tgctggtcct cgcccggccg 1200 gttacgggcc cccgggagta cgtgctggac ctggagatgg tcaccatgaa ttccctcatg 1260 1320 agctaccggg ccagctctgt actgaggctc accgtctttg taggggccta caccttctga ggagcaggag ggagccaccc tccctgcagc taccctagct gaggagcctg ttgtgagggg 1380 cagaatgaga aaggeecagg ggeececatt gacaggaget gggagetetg caccacgage 1440 ttcagtcacc ccgagaggag aggaggtaac gaggagggcg gacttccags cccsgsccag 1500 1560 agatttggac ttggctggct tgcaggggtc ctaagaaact ccactctgga cagcgccagg aggecetggg ttecatteet aactetgeet caaactgtac atttggataa geeetagtag 1620 1661 ttccctgggc ctgtttttct ataaaacgag gcaactggaa a

<210> 6

<211> 439

<212> PRT

<213> Homo sapiens

<400> 6

Met Leu Pro Cys Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala 1 5 10 15

Leu Leu Leu Leu Leu Gly Ser Ala Ser Pro Gln Asp Ser Glu Glu 20 25 30

Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Thr Gln Thr Ala Asn \$35\$

Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala Cys Lys Gly 50 60

Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys Leu Pro Arg 65 70 75 80

Ser Ala Ala Val Ile Asn Asp Leu His Gly Glu Gly Pro Pro Pro Pro 85 90 95

Val Pro Pro Val Asn Thr Gln Pro Leu Pro Thr Gly Tyr Glu Pro Asp 100 105 110

Asp Gln Asp Ser Cys Val Asp Val Asp Glu Cys Ala Gln Ala Leu His

Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro Gly Ser Tyr Gln 130 135 140

Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp 145 150 155 160

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu 165 170 175 Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 180 185 190

Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro 195 200 205

Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys 210 215 220

His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile 225 230 235 240

Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 245 250 255

Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 260 265 270

Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His 275 280 285

Gln Trp Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg 290 295 300

Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu 305 310 315 320

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 325 330 335

Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Glu Ala Glu Arg 340 345 350

Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala 355 360 365

Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr 370 375 380

Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 385 390 395 400

Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met
405 410 415

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val

Phe Val Gly Ala Tyr Thr Phe

<210> 7

<211> 534

<212> DNA

<213> Artificial sequence

<220>

<223> HBV preS1 derived construct

60

120

180

240300

360

480

534

<400> 7 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcatgactgg tggacagcaa atgggtcggg atctgtacga cgatgacgat aaggatccga gctcgagatc ttcaaaacct cgcaaaggca tggggacgaa tctttctgtt cccaatcctc tgggattctt tcccgatcat cagttggacc ctgcattcgg agccaactca aacaatccag attgggactt caaccccgtc aaggacgact ggccagcagc caaccaagta ggagtgggag cattcgggcc aaggctcacc cctccacacg gcggtatttt ggggtggagc cctcaggctc agggcatatt gaccacagtg tcaacaattc ctcctcctgc ctccaccaat cggcagtcag gaaggcagcc tactcccatc tetecacete taagagacag teateeteag gecatgeagt ggaattegaa gettgateeg gctgctaaca aagcccgaaa ggaagctgag ttggctgctg ccaccgctga gcaa <210> 8 <211> 178 <212> PRT <213> Artificial sequence <220> <223> Recombinant HBV derived polypeptide <400> 8 Met Arg Gly Ser His His His His His Gly Met Ala Ser Met Thr Gly Gln Gln Met Gly Arg Asp Leu Tyr Asp Asp Asp Asp Lys Asp Pro Ser Ser Arg Ser Ser Lys Pro Arg Lys Gly Met Gly Thr Asn Leu 35 40 Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Val Lys Asp Asp Trp Pro Ala Ala Asn Gln Val Gly Val Gly Ala Phe Gly Pro Arg Leu Thr Pro Pro His Gly Gly Ile Leu Gly Trp Ser Pro Gln 105

Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu 130 135 140

Ala Gln Gly Ile Leu Thr Thr Val Ser Thr Ile Pro Pro Pro Ala Ser

Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Lys Leu Asp Pro 145 150 155 160

Ala Ala Asn Lys Ala Arg Lys Glu Ala Glu Leu Ala Ala Ala Thr Ala 165 170 175

Glu Gln

<213> Artificial sequence

```
<210>
       29
 <211>
 <212> PRT
 <213> Artificial sequence
 <223> Synthetic HBV derived polypeptide
 Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala
                                    10
 Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Gly Lys
            20
 <210> 10
 <211>
       26
 <212> DNA
 <213> Artificial sequence
 <223> Single strand DNA oligonucleotide
 ggagatette aaaacetgge aaagge
                                                                      26
 <210> 11
 <211> 20
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> Single strand DNA oligonucleotide
 <400> 11
                                                                      20
 gaattccact gcatggcctg
 <210> 12
 <211> 21
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> Single strand DNA oligonucleotide
 <400> 12
                                                                      21
 gacttgaatt cctgtggttg a
 <210> 13
 <211> 21
 <212> DNA
 <213> Artificial sequence
 <223> Single strand DNA oligonucleotide
                                                                    21
 gccagcacca tggcaaccag t
. <210> 14
 <211> 21
 <212> DNA
```

<220>
<223> Single strand DNA oligonucleotide

<400> 14 gacttgaatt cctgtggttg a

21