Partiel de Physique

Les calculatrices et les documents ne sont pas autorisés.

QCM(4 points-pas de points négatifs).

Entourer la bonne réponse

- 1- Le champ magnétique d'une onde électromagnétique qui se propage dans le vide est d'expression : $\vec{B}(x,t) = B_0 \cos(k \cdot x - \omega t) \vec{e}_v$, tels que B_0 , k et ω sont des constantes positives. Le Laplacien appliqué au vecteur \vec{B} donne :

 - a) $\Delta \vec{B} = -\omega k \vec{B}$ (b) $\Delta \vec{B} = -k^2 \vec{B}$ (c) $\Delta \vec{B} = -\omega^2 \vec{B}$ d) $\Delta \vec{B} = \omega^2 \vec{B}$
- 2- Parmi les expressions suivantes laquelle n'a pas de sens ?
 - a) div(grad(f))
- b) $\overrightarrow{rot}(\overrightarrow{rot}(\overrightarrow{U}))$
- c) $\overrightarrow{rot}(f)$ d) $\overrightarrow{grad}(\Delta f)$
- 3- Le flux du champ magnétique à travers une surface fermée S vérifie :
 - a) $\oiint \vec{B} \cdot \vec{dS} > 0$
- (b) $\oiint \vec{B} \cdot \vec{dS} = 0$ c) $\oiint \vec{B} \cdot \vec{dS} < 0$
- 4- L'équation locale Maxwell-Faraday : $\overrightarrow{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$ exprime le phénomène auto-induction.
 - a) vrai
- b) faux
- 5- Dans l'équation locale Maxwell-Ampère : $ro\vec{t}(\vec{B}) = \mu . \vec{J} + \mu \varepsilon \frac{\partial \vec{E}}{\partial t}$, la grandeur \vec{J} représente
 - a le vecteur densité de courant de déplacement
 - (b) le vecteur densité de courant stationnaire
 - c) le courant induit
- 6- La célérité des ondes électromagnétiques dans le milieu vide s'exprime par :
 - a) $c^2 = \mu_0 \varepsilon_0$
- b) $c^2 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ (c) $c^2 = \frac{1}{\mu_0 \varepsilon_0}$ d) $c^2 = \mu_0 + \varepsilon_0$
- 7- Le champ électrique d'une onde électromagnétique sinusoïdale qui se propage dans l'air est :
 - $\vec{E}(z,t) = E_0 \cos(k.z \omega t) \vec{e}_x$, sachant que E_0 , k et ω sont des constantes positives.
- La dérivée seconde par rapport au temps donne :
- a) $\frac{\partial^2 \vec{E}}{\partial t^2} = \omega \vec{E}$ b) $\frac{\partial^2 \vec{E}}{\partial t^2} = -k^2 \vec{E}$ c) $\frac{\partial^2 \vec{E}}{\partial t^2} = -\omega^2 \vec{E}$ d) $\frac{\partial^2 \vec{E}}{\partial t^2} = -\omega \vec{E}$
- 8- Une onde électromagnétique est une onde matérielle
 - a) Vrai
- b) Faux

Exercice 1 Partie Cours (6 points)

Les équations locales de Maxwell dans un milieu matériel quelconque sont données par :

$$div(\vec{E}) = \frac{\rho}{\varepsilon} \tag{1}$$

$$div(\vec{B}) = 0 \tag{2}$$

$$ro\vec{t}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$
 (3)

$$ro\vec{t}(\vec{B}) = \mu \vec{J} + \mu \varepsilon \frac{\partial \vec{E}}{\partial t}$$
 (4)

- 1- a) Interpréter l'équation (2) de Maxwell.
 - b) Retrouver l'équation (1) à partir du théorème de Gauss. On donne : $\iint_S \vec{U} \cdot d\vec{S} = \iiint_\tau div(\vec{U}) d\tau$

- 2- a) Comment s'écrivent les grandeurs : densité de charge volumique ρ , densité de courant \vec{J} , perméabilité magnétique μ et permittivité diélectrique ε dans le vide.
 - b) Réécrire les quatre équations de Maxwell dans le vide.

La) dans le vide: pas de charges => P=091 1) pas de courants => F= devoité de courant = 0. E= E et M = Mo.

b) Les équations de Maxwell devienment dans le viole!

(1)
$$div(\vec{E}') = 0$$
 (3) $rot'(\vec{E}') = -\frac{\partial \vec{B}'}{\partial t}$.

(2) $div(\vec{B}') = 0$ (4) $rot'(\vec{B}') = \mu_0 \mathcal{E}_0 \frac{\partial \vec{E}'}{\partial t}$.

(avec $\mu_0 \mathcal{E}_0 = \frac{1}{C_0}$).

3- Utiliser l'identité remarquable: $\Delta \vec{U} = \overline{\text{grad}}(\text{div}(\vec{U})) - \overline{\text{rot}}(\overline{\text{rot}}(\vec{U}))$ ainsi que les équations de Maxwell dans le vide pour retrouver l'équation de D'Alembert donnée par : $\Delta \vec{E} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial r^2} = \vec{0}$.

on pose
$$U = \vec{E}$$
 (on applique l'iclentité l'emerquable à \vec{E}).

 $\Delta \vec{E} = opad(phie \vec{E}) - rot (not (\vec{E}))$.

 $= opad(o) - rot (-rot (\vec{E}))$.

 $= opad(o) - rot (rot (\vec{E}))$.

(on peut permuter rot avec $rot = rot = rot$

Exercises 2 (5 points)

On considère un cylindre de longueur infiniment grande L, d'axe Oz, de rayon R, chargé avec une densité volumique variable, d'expression $\rho(r) = \rho_0 \frac{r^2}{R^2}$, avec ρ_0 une constante positive.

1- Utiliser les symétries et les invariances pour trouver la direction et les variables de dépendance du champ

2- Utiliser l'équation Maxwell-Gauss pour retrouver l'expression du champ électrique dans les régions :

r < R et r > R. Le champ électrique est continu en r = R.

On donne la divergence d'un vecteur \vec{U} en coordonnées cylindriques : $div(\vec{U}) = \frac{1}{r} \frac{\partial}{\partial r} (rU_r) + \frac{1}{r} \frac{\partial U_{\theta}}{\partial \theta} + \frac{\partial U_z}{\partial z}$

Continuité en 91- R => C = COR3 => C = POR 175 R => C = POR 48 E(n) = PORE /11

Exercice 3 (5 points)

Une onde électromagnétique sinusoïdale se propage dans le vide avec une célérité : $c = 3.10^8 ms^{-1}$. Le champ électrique de cette onde est d'expression : $\vec{E}(x,t) = E_0 \cos(k.x - \omega t) \vec{e}_y$; tels que E_0 , k et ω sont des constantes positives.

1- a) Exprimer $\overrightarrow{rot}(\vec{E})$.

b) En déduire l'expression du vecteur champ magnétique de cette onde, en utilisant l'équation (3) de Maxwell. Les constantes d'intégrations seront nulles.

a)
$$\operatorname{Nor}(E') = \overline{\nabla} A E = \left(\frac{\partial}{\partial u}\right) \wedge \left(\frac{\partial}{\partial y}(x_{1}t)\right)$$
 $\operatorname{Nor}(E') = \left(\frac{\partial}{\partial y}(0) - \frac{\partial}{\partial y}(E(n,t))\right) = \left(\frac{\partial}{\partial y}(0) - \frac{\partial}{\partial y}(E(n,t))\right) = \left(\frac{\partial}{\partial y}(0) - \frac{\partial}{\partial y}(0)\right) = \left(\frac{\partial}{\partial y}(0)$

2- a) Exprimer les composantes du vecteur de Poynting \vec{S} qui représente la puissance surfacique de l'onde. On donne : $\vec{S} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$

b) En déduire l'expression la valeur maximale S_0 du vecteur \vec{S} . Préciser l'unité de la grandeur S_0 .

On donne: $E_0 = 3.10^6 Vm^{-1}$, $B_0 = 10^{-2} T$ et $\mu_0 = 4\pi.10^{-7} SI$. $\overline{S} = \overline{E} / \overline{B} = \overline{J}_{0} / \overline{C} / \overline{C$ $=\frac{1}{mo}\begin{pmatrix} EB \\ 0 \end{pmatrix} = \frac{1}{mo} \cdot \frac{E_0 \cdot kE_0}{w} \cdot \frac{2}{mo} \begin{pmatrix} Rm-wr \end{pmatrix} U$ = (Eo k cos (fen - wr) un. avec Bo = fe Mo w) Amplitude de S' = Valen eman A.N: So = 3.10°. 10° a 0,25.10° Wm représente (danné clars l'én encé) la pouissance infacço, son unité est danc W.m²