۳۰۱ استاندارد IEEE برای حساب ممیز شناور

اولین کامپیوتر بنام 23 در سال ۱۹۴۱ توسط کُنراد تسوزه در برلین ساخته شد. 23 یک کامپیوتر الکترومکانیکی با دستگاه اعدادش دودویی بود که در سال ۱۹۴۳ در جریان بمبارانهای جنگ جهانی دوم نابود شد. گفته میشود اولین کامپیوتر کاملا الکترونیکی، اِنیاک است که در سال ۱۹۴۵ در دانشگاه پنسیلوانیا ساخته شد و دارای دستگاه اعداد دهدهی بود.

اولین استفادههایی که از کامپیوتر در دههی ۱۹۵۰ میشد، محاسبات عددی در کاربردهای علمی بود اما در دههی ۱۹۶۰ استفادهی اصلی آنها در تجارت بود و نه برای محاسبات عددی. امروزه بیشتر کاربران از کامپیوترها برای پردازش اطلاعاتی چون متن، تصویر و فیلم، فایلهای صوتی و سایر انواع اطلاعات استفاده میکنند بدون آنکه اطلاع داشته باشند که پردازش چنین اطلاعاتی نیاز به حجم بزرگی از محاسبات عددی دارد.

درابتدای عصر محاسبات، حساب ممیز شناور در هر کامپیوتر بصورت خاص همان کامپیوتر پیادهسازی شده بود . در نتیجه حاصل هر محاسبه بستگی به نوع خاص کامپیوتر در حال استفاده داشت و همچنین امکان انتقال برنامههای نوشته شده در یک کامپیوتر به کامپیوترهای دیگر بسیار محدود بود یعنی برنامه ای که بسیار خوب در یک کامپیوتر اجرا می شد ، می توانست در کامپیوتر دیگری غیر قابل اجرا باشد. در آن دوره هم پیاده سازی حساب ممیز شناور در کامپیوترها متفاوت بود یعنی مثلا تعداد بیتهای اختصاص داده شده به مانتیس و نما در پیاده سازی های مختلف حساب ممیز شناور تفاوت داشت، علاوه بر اینکه مبنای دستگاه اعداد کامپیوترهای مختلف متفاوت بود. جدول زیر را ببینید.

كامپيوتر	β	p	U = -L
IBM 7090	2	27	2^7
Borroughs 5000 Series	8	13	2^6
IBM 360/370	16	6	2^{6}
DEC 11/780 VAX	2	24	2^{7}
Hewlett Packard 67	10	10	99

درسال ۱۹۸۵ در نتیجه ی همکاری دانشمندان علوم کامپیوتر از دانشگاهها و متخصصان سختافزار از صنعت، یک استاندارد برای نمایش اعداد ممیزشناور دودویی و حساب ممیزشناور آنها بوجود آمد. این

Konrad Zuse

ENIAC: Electronic Numerical Integrator and Computer (

استاندارد که IEEE p754 نام دارد با حمایت انجمن مهندسین برق و الکترونیک که ((آی-تریپل-ای)) خوانده می شود، ارائه شد. سرپرستی دانشمندان دانشگاهی علوم کامپیوتر به عهده ی ویلیام کاهان استاد دانشگاه کالیفرنیا در برکلی بود و کارخانجات کامپیوتری همچون Motorola ،Hp ،Intel و Apple نیز درگیر ایجاد این استاندارد بودند.

شکل ۶۰۱ راست: آلن تورینگ، چپ: ویلیام کاهان. تورینگ ریاضیدان بریتانیایی فارغالتحصیل دانشگاههای کیمبریج و پرینستون و از پیشگامان علوم کامپیوتر و تحلیل خطای محاسبات عددی بود. مدل ریاضی وی از محاسبه بنام ((ماشین تورینگ)) از اساسیترین مفاهیمی است که امروزه در درس نظریهی اتوماتا در دوره ی کارشناسی رشته ی علوم کامپیوتر و بعضا در جبر مجرد تدریس می شود. وی تاثیر مستقیمی در شکستن کد دستگاههای مکالمات سری نازی ها موسوم به انیگما و پایان جنگ جهانی دوم داشت. کاهان بخاطر تلاشهای خستگی ناپذیرش در به نتیجه رساندن استاندارد آی-تریپل-ای برای حساب ممیز شناور که اهمیت بسیاری در زندگی انسان امروزی دارد، جایزه ی تورینگ را دریافت کرد. (عکسها از اینترنت)

این استاندارد تاثیر شگرفی بر صنعت کامپیوتر داشته و ویلیام کاهان در سال ۱۹۸۹ بخاطر سرپرستی استاندارد، جایزهی معتبر تورینگ را که از انجمن ماشین آلات محاسباتی دریافت کرد. در سال ۱۹۸۵، استاندارد دیگری بنام IEEE p854 برای هر دو مبنای ۲ و ۱۰ ابداع شد.

استاندارد آی-تریپل-ای دو نوع پایهای از اعداد ممیزشناور را معین میکند: یگانه و دوگانه (نوع دیگری بنام چهارگانه نیز در استاندارد معرفی شده که در مورد آنها بحث نخواهیم کرد). در استاندارد، تعدادی

Institute of Electrical and Electronics Engineers \

William Kahan ⁷

Association of Computing Machinery (ACM)

single*

double[∆]

quad

نماد خاص معرفی شده اند. برخی از آنها عبارتنداز ۱ اسما ۱ و ۱ استا دو نماد ۱ استا و ۱ مقادیر مشابه با مفاهیم ریاضی ∞ بوده و نماد ۱ اسما ۱ برای مواقعی همچون ۱ استا که حاصل یک عمل ممیزشناور تعریف نشده باشد، پیش بینی شده است. کمیت دیگری که بصورت خاص در استاندارد مشخص می شود، عدد صفر است. استاندارد آی-تریپل-ای چگونگی انجام اعمال حساب ممیزشناور در سبکهای مختلف گردکردن را نیز مشخص می کند.

ساختار کلی هر دو نوع پایهای یگانه و دوگانه در مبنای دو یکی بوده و تنها در تعداد بیتهای اختصاصیافته به مانتیس و همچنین تعداد بیتهای اختصاصیافته به توان متفاوتند. در قالب یگانه کلا ۳۲ بیت داریم که اولی به علامت عدد ۲، هشت بیت بعدی به توان و نهایتا ۲۳ بیت پایانی به مانتیس اختصاص یافتهاند. پس به کمک ایده بیت پنهان در این قالب، دقت برابر است با p=23+1 و در نتیجه ایسیلون ماشین برابر است با

$$\varepsilon_M = 2^{-(p-1)} = 2^{-23} \approx 1.2 \times 10^{-7}.$$

استاندارد مملو از جزییات دیگری است که به آنها نپرداخته ایم از جمله اینکه به منظور ذخیره ی توان اعداد نرمال در هر دو قالب یگانه و دوگانه از ایده ای به نام توان اریب استفاده می شود تا جلوی اختصاص یکی از بیتهای توان به علامت توان گرفته شود. محدوده ی توان دودویی اعداد نرمال در قالب یگانه بین -126 و -127 است. کوچکترین عدد نرمال مثبت در این قالب عبارت است از

$$N_{\text{min}} = (1.00 \cdots 0)_2 \times 2^{-126} = 2^{-126} \approx 1.2 \times 10^{-38}$$

و بزرگترین عدد نرمال مثبت در قالب یگانه برابر است با

$$N_{\text{max}} = (1.11 \cdots 1)_2 \times 2^{+127} \approx 1.7 \times 10^{+38}.$$

به قالب دوگانه (که پیشفرض در بسیاری از نرم افزارهای محاسبات علمی همچون متلب است) دو برابرِ کل قالب یگانه یعنی ۶۴ بیت اختصاص داده شده که اولی برای ذخیره سازی علامت عدد، ۱۱ بیت بعدی برای توان و نهایتا ۵۲ بیت پایانی ویژه ی مانتیس هستند. با توجه به ایده ی بیت پنهان داریم p = 52 + 1 برای توان و نهایتا ۵۲ بیت پایانی ویژه ی مانتیس هستند.

Not a Number \

sign bit

و در نتیجه

$$\varepsilon_M = 2^{-(p-1)} = 2^{-52} \approx 2.2 \times 10^{-16}$$
.

محدوده ی توان دودویی اعداد نرمال در قالب دوگانه بین 1022 و 1023 بوده و کوچکترین و بزرگترین اعداد نرمال مثبت عبارتند از:

$$N_{\min} = (1.00 \cdots 0)_2 \times 2^{-1022} = 2^{-1022} \approx 2.2 \times 10^{-308},$$

$$N_{\text{max}} = (1.11 \cdots 1)_2 \times 2^{+1023} \approx 1.8 \times 10^{+308}.$$

در نمادهای realmin ،eps و realmax در نرم افزار متلب به ترتیب با $N_{
m min}$ ، ε_M و نمادهای realmax بالا (به طور پیشفرض در قالب دوگانه) متناظر هستندا

همانگونه که دیدیم هر چه از صفر دورتر می شویم فاصله ی بین اعداد ممیز شناور نیز بیشتر می شود. در ulp(x) مورد استاندارد آی-تریپل-ای می توان این موضوع را در متلب به کمک دستور (x) همان (x) می می می است و فاصله ی بین عدد x و نزدیک ترین عدد مجاور x در دستگاه اعداد ممیز شناور را مشخص می کند مشاهده کرد:

```
>> eps
ans =
    2.2205e-16
>> eps(1)
ans =
    2.2205e-16
>> eps(10)
ans =
    1.7764e-15
>> eps(100000)
```

در قالب دوگانه کوچکترین عدد ((نرمال)) مثبت است و نه کوچکترین عدد مثبت. مقدار کوچکترین عدد مثبت در قالب دوگانه تقریبا برابر است با 10^{-324} . این عدد، زیرنرمال میباشد.

```
ans =
    1.4552e-11
>> eps(realmin)
ans =
    4.9407e-324
>> eps(realmax)
ans =
    1.9959e+292
```

این تفاوتها بسیار چشمگیر است . با این حال فاصلهی نسبی اعداد ممیزشناور در سرتاسر خط اعداد ماشین تقریبا یکنواخت است:

```
>> eps(realmin)/realmin
ans =
    2.2205e-16
>> x = 10000; eps(x)/x
ans =
    1.8190e-16
>> eps(realmax)/realmax
ans =
    1.1103e-16
```

۱۰۳۰۱ حساب ممیز شناور

مجموعه ی اعداد حقیقی تحت هرچهار عمل اصلی بسته است اما یکی از مهمترین مشکلات حساب ممیز $x,y\in F_{\beta,p}^{L,U}$ است. یعنی اگر $x,y\in F_{\beta,p}^{L,U}$ است. یعنی اگر $x,y\in F_{\beta,p}^{L,U}$ است. یعنی اگر بختیات حسابی است. یعنی اگر بختیات که شناور بسته نبودن مجموعه ی اعداد ماشین تحت عملیات حسابی $x,y\notin F_{\beta,p}^{L,U}$ است را در نظر بگیرید که حاصل آن، در مبنای دو یا ده، دارای بینهایت رقم بوده و در نتیجه نمایش آن در دستگاههایی با دقت متناهی حاصل آن، در مبنای دو یا ده، دارای بینهایت رقم بوده و در نتیجه نمایش آن در دستگاههایی با دقت متناهی همچون $x,y\in F_{\beta,p}^{L,U}$ قطعا منجر به مقداری خطا خواهد بود\.

پس راهی که برای انجام محاسبات روی مجموعه ی اعداد ماشین به ذهن می رسد، این است که جواب عمل ممیزشناور را که به طور کلی عددی در \mathbb{R} است، گردکرده و با عددی متعلق به $F_{\beta,p}^{L,U}$ تقریب بزنیم. فرض کنید $* \in \{+,-,\times,/\}$ تقریب بزنیم متناظر با $* \in \{+,-,\times,/\}$ باشد. خوشبختانه استاندارد آی-تریپل-ای برای حساب ممیزشناور تضمین زیر را که به خاصیت بیشترین کیفیت معروف است برای چهار عمل اصلی ارائه می کند:

$$x,y \in F_{\beta,p}^{L,U}, \quad * \in \{+,-,\times,/\} \quad \Longrightarrow \quad x \circledast y = fl(x*y).$$

به بیان دیگر حاصل عمل ممیز شناور با دقت متناهی y با سناریویی که ابتدا x*y به صورت ریاضی با دقت بینهایت محاسبه شده و پاسخ کاملا درست ریاضی آن که عددی در $\mathbb R$ است تنها یکبار به عدد ممیزشناور همسایه گرد شود مطابقت خواهد داشت.

پس تنها خطایی که در هر تک مرحله از اجرای یکی از چهارعمل اصلی در حساب ممیز شناور با دقت متناهی وجود خواهد داشت همان خطای پایانی گردکردن در $F_{\beta,p}^{L,U}$ میباشد. نتیجهی مهم این که لزومی ندارد جزییات الگوریتمهای پیادهسازی عملیات ممیزشناور پایهای در مبنای دو را (که بیشتر مبحثی علوم کامپیوتری است تا ریاضی) بدانیم تا بتوانیم در مورد میزان درستی جوابی که از آنها میگیریم مطلع شویم! قضیهی زیر نتیجهی مستقیم قضیهی ۱۰۲۰۱ و خاصیت بیشترین کیفیت حساب ممیز شناور است.

قضیه x .۱.۳۰۱ فرض کنید x و y دو عدد ممیزشناور نرمال باشند. در این صورت میزان خطای نسبی چهار عمل اصلی ممیزشناور به یکی از دو صورت زیر کران دار می شود:

 $^{1 - \}frac{1}{3} = (0.1)_3 imes 3^0$ چنانچه دستگاه اعدادی با مبنای سه داشتیم، جواب را میشد بدون خطا نمایش داد! چراکه $1 - \frac{1}{3} = (0.1)_3 imes 3^0$

• اگر از یکی از دو سبک گردکردن به پایین یا بالا استفاده شود آنگاه

$$\frac{|x * y - x \circledast y|}{|x * y|} < \varepsilon_M.$$

• اگر از سبک گردکردن به نزدیکترین استفاده شود آنگاه

$$\frac{|x*y - x \circledast y|}{|x*y|} \le \frac{\varepsilon_M}{2}.$$

تاکنون دو قضیهی مهم را آموخته ایم که به ترتیب حداکثر میزان خطای گردکردن در نمایش یک عدد حقیقی و میزان خطای گردکردن در هر دفعه اجرای یکی از چهار عمل اصلی در محدوده ی نرمال را مشخص میکرد. در مورد اول دیدیم که

$$\frac{|fl(x) - x|}{|x|} \le u \tag{Y-1}$$

که در سبک گردکردن به نزدیکترین $u=\epsilon_M/2$ و در سبکهای گردکردن به پایین و بالا $u=\epsilon_M$ میباشد. اکنون قرار دهید

$$\delta := \frac{fl(x) - x}{x}.\tag{A.1}$$

پس δ میتواند کمیتی مثبت، منفی یا صفر باشد و طبق (۷۰۱) داریم: $|\delta| \leq u$ از رابطه یا حالیم:

$$fl(x) = x\delta + x = x(1+\delta).$$

پس رابطهی (۷.۱) را میتوان به صورت معادل زیر نیز بیان کرد:

$$fl(x) = x(1+\delta), \quad |\delta| \le u.$$

 $*\in\{+,-, imes,/\}$ باشند، $F^{L,U}_{eta,p}$ باشند، و y دو عدد ماشین عضو دستگاه ممیزشناور $F^{L,U}_{eta,p}$ باشند. با توجه یکی از چهار عمل اصلی ریاضی بوده و $\{\oplus,\ominus,\otimes,\oslash\}$ باشند. با توجه

به این که طبق خاصیت بیشترین کیفیت (که بعنوان نمونه در استاندارد آی-تریپل-ای تضمین شده) داریم

$$x \circledast y = fl(x * y)$$

و طبق قضیهی قبل هم دیدیم که

$$\frac{|x * y - x \circledast y|}{|x * y|} \le u.$$

پس برای هر دو عدد ماشین x و y به طرز مشابه با قبل داریم:

$$x \circledast y = (x * y)(1 + \delta), \quad |\delta| \le u.$$

به بیان سردستی، فرمولهای بالا چیزی نیستند جز بازنویسی رابطهی

مقدار درست – مقدار تقریبی
$$= \frac{خطای مطلق}{$$
مقدار درست مقدار درست

به صورت

(خطای نسبی
$$+ (1 + 1) \times (1 + 1)$$
 مقدار درست) خطای نسبی (خطای نسبی الله تقریبی (خطای نسبی (خطای نسبی الله تقریبی (خطای نسبی (خطای