ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Ασαφή Συστήματα

Εργασία #3 ~ Regression

Δημήτρης Παππάς

AEM: 8391

e-mail: dspappas@ece.auth.gr

Περιεχόμενα 3. Εργασία #3: Regr

3.	. Εργασία #3: Regression	3
	3.1 Part 1 - Εφαρμογή σε απλό dataset	
	3.1.1 TSK model 1	
	3.1.2 TSK model 2	
	3.1.3 TSK model 3	10
	3.1.4 TSK model 4	13
	3.1.5 Συμπεράσματα και Επιλογή μοντέλου	17
	3.2 Part 2 - Εφαρμογή σε dataset με υψηλή διαστασιμότητα	18
	3.2.1 Αποτελέσματα Σφαλμάτων του Grid Search	
	3.2.2 Διαγράμματα Grid Search	
	3 3 3 Βέλτιστο Μοντέλο	23

3. Εργασία #3: Regression

3.1 Part 1 - Εφαρμογή σε απλό dataset

Σε αυτή την εργασία μελετάμε την ικανότητα των TSK μοντέλων (Takagi Sugeno Kang) στην μοντελοποίηση μοντέλων με πολλές μεταβλητές.

Δημιουργούμε 4 μοντέλα:

	Πλήθος συναρτήσεων συμμετοχής	Μορφή εξόδου
TSK_model_1	2	Singleton
TSK_model_2	3	Singleton
TSK_model_3	2	Polynomial
${\it TSK_model_4}$	3	Polynomial

Σχήμα 64: ΤSK μοντέλα

Το dataset που θα χρησιμοποιήσουμε είναι το "Airfoil Self-Noise" από το UCI repository, το οποίο περιέχει 1503 δεδομένα και αποτελείται από 5 features και 1 output.

Για κάθε ένα από τα μοντέλα υπολογίζουμε τα σφάλματα RMSE, NMSE, NDEI, R2, με τη συνάρτηση "calculate.m", ώστε να αποφασίσουμε ποιό είναι το βέλτιστο.

Χωρίζουμε το dataset σε τρία υποσύνολα, 60% training data, 20% validation data, 20% checking data.

Για την εκπαίδευση του μοντέλου χρησιμοπούμε τη συνάρτηση anfis και επιλέγουμε EpochNumber = 200.

Επίσης, δημιουργούμε διαγράμματα για τις τελικές εκβάσεις των μοντέλων και των Συναστήσεων Συμμετοχής, για την καμπύλη εκμάθησης και για το σφάλμα πρόβλεψης.

Οι είσοδοι των μοντέλων είναι:

- frequency (Hz)
- angle of attack (degrees)
- chord length (m)
- free-stream velocity (m/s)

suction side displacement thickness (m)

ενώ η έξοδος είναι :

• scaled sound pressure level (dB)

Παρακάτω φαίνονται οι τιμές των εισόδων και της εξόδου.

Σχήμα 65: Input & Output Values

3.1.1 TSK model 1

Το μοντέλο 1 υλοποιείται με το script "Regression_TSK_model_1.m".

Χρησιμοποιεί μέθοδο ομαδοποίησης grid partition, 2 συναρτήσεις συμμετοχής "gbellmf" και "Singleton" output (constant).

Συναρτήσεις Συμμετοχής Πριν την Εκπαίδευση

Σχήμα 66: mf Before Training

Συναρτήσεις Συμμετοχής Μετά την Εκπαίδευση

Σχήμα 67: mf After Training

Καμπύλη Εκμάθησης

Σχήμα 68: Learning Curve

RMSE

Σχήμα 69: RMSE

Πραγματικές Τιμές VS Τιμές Πρόβλεψης & Σφάλμα Πρόβλεψης

Σχήμα 70: Real VS Prediction Values & Prediction Error

Error	RMSE	NMSE	NDEI	R2
TSK model 1	5.9544	0.6277	0.7923	0.3723

3.1.2 TSK model 2

Το μοντέλο 2 υλοποιείται με το script "Regression_TSK_model_2.m".

Χρησιμοποιεί μέθοδο ομαδοποίησης grid partition, 3 συναρτήσεις συμμετοχής "gbellmf" και "Singleton" output (constant).

Συναρτήσεις Συμμετοχής Πριν την Εκπαίδευση

Σχήμα 71: mf Before Training

Συναρτήσεις Συμμετοχής Μετά την Εκπαίδευση

Σχήμα 72: mf After Training

Καμπύλη Εκμάθησης

Σχήμα 73: Learning Curve

RMSE

Σχήμα 74: RMSE

Πραγματικές Τιμές VS Τιμές Πρόβλεψης & Σφάλμα Πρόβλεψης

Σχήμα 75: Real VS Prediction Values & Prediction Error

Error	RMSE	NMSE	NDEI	R2
TSK model 2	42.6229	32.1637	5.6713	-31.1637

3.1.3 TSK model 3

Το μοντέλο 3 υλοποιείται με το script "Regression_TSK_model_3.m".

Χρησιμοποιεί μέθοδο ομαδοποίησης grid partition, 2 συναρτήσεις συμμετοχής "gbellmf" και "Polynomial" output (linear).

Συναρτήσεις Συμμετοχής Πριν την Εκπαίδευση

Σχήμα 76: mf Before Training

Συναρτήσεις Συμμετοχής Μετά την Εκπαίδευση

Σχήμα 77: mf After Training

Καμπύλη Εκμάθησης

Σχήμα 78: Learning Curve

RMSE

Σχήμα 79: RMSE

Πραγματικές Τιμές VS Τιμές Πρόβλεψης & Σφάλμα Πρόβλεψης

Σχήμα 80: Real VS Prediction Values & Prediction Error

Error	RMSE	NMSE	NDEI	R2
TSK model 3	478.1159	4047.1	63.6170	-4046.1

3.1.4 TSK model 4

Το μοντέλο 4 υλοποιείται με το script "Regression_TSK_model_3.m".

Χρησιμοποιεί μέθοδο ομαδοποίησης grid partition, 3 συναρτήσεις συμμετοχής "gbellmf" και "Polynomial" output (linear).

Συναρτήσεις Συμμετοχής Πριν την Εκπαίδευση

Σχήμα 81: mf Before Training

Συναρτήσεις Συμμετοχής Μετά την Εκπαίδευση

Σχήμα 82: mf After Training

Καμπύλη Εκμάθησης

Σχήμα 83: Learning Curve

RMSE

Σχήμα 84: RMSE

Πραγματικές Τιμές VS Τιμές Πρόβλεψης & Σφάλμα Πρόβλεψης

Σχήμα 85: Real VS Prediction Values & Prediction Error

Error	RMSE	NMSE	NDEI	R2
TSK model 4	24685	10787850.9	3284.5	-10787849.9

3.1.5 Συμπεράσματα και Επιλογή μοντέλου

Σφάλματα και των τεσσάρων μοντέλων.

Μοντέλο\Σφάλμα	RMSE	NMSE	NDEI	R2
TSK model 1	5.9544	0.6277	0.7923	0.3723
TSK model 2	42.6229	32.1637	5.6713	-31.1637
TSK model 3	478.1159	4047.1	63.6170	-4046.1
TSK model 4	24685	10787850.9	3284.5	-10787849.9

Το καλύτερο μοντέλο είναι το μοντέλο 1.

Το χειρότερο μοντέλο είναι το μοντέλο 4. Αν και το σφάλμα είναι ακραία μεγάλο, οπότε υπάρχει η πιθανότητα λάθους στον υπολογισμό.

Τα μοντέλα με Polynomial έξοδο παρουσιάζουμε μεμονωμένα μεγάλες τιμές Prediction Error, πράγμα που χαλάει την ακρίβεια του μοντέλου και μεγαλώνει το μέσο όρο του σφάλματος.

Τα μοντέλα φαίνεται από το Learning Curve να κάνουν υπερεκπαίδευση, αλλά στη συνέχεια σταθεροποιείται η καμπύλη. Τα μοντέλα με 3 mf είναι πιο επιρρεπή σε αυτή τη συμπεριφορά.

3.2 Part 2 - Εφαρμογή σε dataset με υψηλή διαστασιμότητα

Στο δεύτερο μέρος της εργασίας θα χρησιμοποιήσουμε το dataset "Superconductinity" από το UCI repository, το οποίο είναι dataset με υψηλό βαθμό διαστασιμότητας. Περιέχει 21263 δεδομένα και αποτελείται από 81 features και 1 output.

Είναι απαραίτητο να επιλέξουμε ένα μικρότερο σύνολο features με τα οποία θα εργαστούμε, διότι τα 81 είναι απαγορευτικά μεγάλο νούμερο, λογω της έκρηξης των κανόνων If-Then.

Το μοντέλο υλοποιείται στο script "Regression part2 v2.m".

Σύμφωνα με το script δοκιμάζουμε διαφορετικές τιμές για τον αριθμό των σημαντικότερων features που θα κρατήσουμε για να τροφοδοτήσουμε το μοντέλο, καθώς και διάφορες τιμές για την ακτίνα Ra των clusters. Χρησιμοποιούμε την τεχνική Grid Search και διαχωρίζουμε τα δεδομένα με την μέθοδο CV Partition k-fold με k=5.

Η μέθοδος ομαδοποίησης για την δημιουργία των κανόνων είναι η "Subtractive Clustering", που υλοποιείται με την εντολή genfis2.

Κάθε μοντέλο εκπαιδεύεται με την μέθοδο anfis και χρησιμοποιούμε 100 EpochNumber.

Η επιλογή των σημαντικότερων features έγινε με την εντολή Relieff.

3.2.1 Αποτελέσματα Σφαλμάτων του Grid Search

- Πίνακας **RMSE** (Root Mean Square Error)

Features\Ra	0.2	0.4	0.6	0.8	1
5	16.4775	17.6595	18.7122	20.3321	20.4394
8	16.9144	16.8142	17.5359	20.1406	20.2999
11	36.3985	15.6254	16.6085	17.9002	18.1107
14	20.4471	15.2011	15.8688	17.2750	17.8301

- Πίνακας **NMSE** (Normalized Mean Square Error)

Features\Ra	0.2	0.4	0.6	0.8	1
5	0.2314	0.2658	0.2985	0.3523	0.3560
8	0.2459	0.2411	0.2621	0.3457	0.3512
11	2.6399	0.2081	0.2351	0.2732	0.2796
14	0.4280	0.1969	0.2146	0.2544	0.2710

- Πίνακας **NDEI** (Root of NMSE)

Features\Ra	0.2	0.4	0.6	0.8	1
5	0.4810	0.5155	0.5462	0.5935	0.5967
8	0.4938	0.4908	0.5119	0.5879	0.5926
11	1.0618	0.4561	0.4848	0.5225	0.5287
14	0.5970	0.4437	0.4632	0.5043	0.5205

- Πίνακας **R2** (Coefficient of Determination)

Features\Ra	0.2	0.4	0.6	0.8	1
5	0.7685	0.7341	0.7014	0.6476	0.6439
8	0.7540	0.7588	0.7378	0.6542	0.6487
11	-1.6399	0.7918	0.7648	0.7267	0.7203
14	0.5719	0.8030	0.7853	0.7455	0.7289

Σύμφωνα με τα παραπάνω αποτελέσματα πετυχαίνουμε το ελάχιστο σφάλμα

RMSE = 15.2011 με παραμέτρους:

- features = 14
- rules = 9
- radius = 0.4

3.2.2 Διαγράμματα Grid Search

Παρακάτω φαίνονται τα διαγράμματα scatters για το σφάλμα RMSE συναρτήσει του αριθμού των σημαντικότερων features, του αριθμού των κανόνων και της ακτίνας Ra.

RMSE - Number of Rules

Σχήμα 86: RMSΕ συναρτήσει του Αριθμού των Κανόνων

RMSE – Number of Features

Σχήμα 87: RMSE συναρτήσει του Αριθμού των Features

RMSE – Radius Ra

Σχήμα 88: RMSE συναρτήσει της Ακτίνας Ra

Συμπεραίνουμε ότι το σφάλμα RMSE μεγαλώνει, όσο αυξάνεται η ακτίνα Ra, θεωρόντας σταθερό τον αριθμό των features. Με μικρή ακτίνα το μοντέλο εκπαιδεύεται με καλύτερη ακρίβεια και κάνει καλύτερες προβλέψεις. Αυτό όμως ισχύει μέχρι ένα σημείο, διότι με πολύ μικρή ακτίνα το μοντέλο κάνει overfitting και δεν μπορεί να εφαρμώσει αυτά που έμαθε και να τα γενικεύσει στο checking dataset. Γι αυτό το λόγο η βέλτιστη ακτίνα είναι η 0.4 και όχι η 0.2, όπως μας επιβεβαιώνει και το script "Regression_part2_v2.m".

Επίσης, παρατηρούμε ότι το σφάλμα RMSE μειώνεται όσο αυξάνουμε τον αριθμό των features που χρησιμοπούμε. Αυτό είναι λογικό, διότι τροφοδοτούμε το μοντέλο με περισσότερη πληροφορία. Όμως, δεν μπορούμε να το αυξήσουμε παραπάνω, γιατί ο χρόνος εκπαίδευσης αυξάνει εκθετικά και το μοντέλο θα γίνει μη λειτουργικό.

3.3.3 Βέλτιστο Μοντέλο

Το βέλτιστο μοντέλο επιλέχθηκε από το script "Regression_part2_v2.m" και υλοποιείται στο script "Optimal_TSK_model.m".

Αποτελείται από 8 κανόνες, 14 features και 0.4 ακτίνα.

- Πίνακας Σφαλμάτων Βέλτιστου Μοντέλου:

Error	RMSE	NMSE	NDEI	R2
Optimal Model	15.1346	0.1952	0.4418	0.8047

Παρατηρούμε ότι πετυχαίνουμε πολύ ικανοποιητικά αποτελέσματα.

- Διαγράμματα Βέλτιστου Μοντέλου:

Συναρτήσεις Συμμετοχής πριν την εκπαίδευση

Σχήμα 89: mf Before Training

Συναρτήσεις Συμμετοχής μετά την εκπαίδευση

Σχήμα 90: mf After Training

Τιμές Πρόβλεψης

Σχήμα 91: Prediction Values

Πραγματικές Τιμές

Σχήμα 92: Real Values

Σφάλμα Πρόβλεψης

Σχήμα 93: Prediction Error

Καμπύλη Εκμάθησης

Σχήμα 94: Learning Curve

- Οι κανόνες εκπαίδευσης είναι 8 και φαίνονται από την εντολή trainedFis.Rules:
- 1 "in1==in1cluster1 & in2==in2cluster1 & in3==in3cluster1 & in4==in4cluster1 & in5==in5cluster1 & in6==in6cluster1 & in7==in7cluster1 & in8==in8cluster1 & in9==in9cluster1 & in10==in10cluster1 & in11==in11cluster1 & in12==in12cluster1 & in13==in13cluster1 & in14==in14cluster1 => out1=out1cluster1 (1)"
- 2 "in1==in1cluster2 & in2==in2cluster2 & in3==in3cluster2 & in4==in4cluster2 & in5==in5cluster2 & in6==in6cluster2 & in7==in7cluster2 & in8==in8cluster2 & in9==in9cluster2 & in10==in10cluster2 & in11==in11cluster2 & in12==in12cluster2 & in13==in13cluster2 & in14==in14cluster2 => out1=out1cluster2 (1)"
- 3 "in1==in1cluster3 & in2==in2cluster3 & in3==in3cluster3 & in4==in4cluster3 & in5==in5cluster3 & in6==in6cluster3 & in7==in7cluster3 & in8==in8cluster3 & in9==in9cluster3 & in10==in10cluster3 & in11==in11cluster3 & in12==in12cluster3 & in13==in13cluster3 & in14==in14cluster3 => out1=out1cluster3 (1)"
- 4 "in1==in1cluster4 & in2==in2cluster4 & in3==in3cluster4 & in4==in4cluster4 & in5==in5cluster4 & in6==in6cluster4 & in7==in7cluster4 & in8==in8cluster4 & in9==in9cluster4 & in10==in10cluster4 & in11==in11cluster4 & in12==in12cluster4 & in13==in13cluster4 & in14==in14cluster4 => out1=out1cluster4 (1)"
- 5 "in1==in1cluster5 & in2==in2cluster5 & in3==in3cluster5 & in4==in4cluster5 & in5==in5cluster5 & in6==in6cluster5 & in7==in7cluster5 & in8==in8cluster5 & in9==in9cluster5 & in10==in10cluster5 & in11==in11cluster5 & in12==in12cluster5 & in13==in13cluster5 & in14==in14cluster5 => out1=out1cluster5 (1)"
- 6 "in1==in1cluster6 & in2==in2cluster6 & in3==in3cluster6 & in4==in4cluster6 & in5==in5cluster6 & in6==in6cluster6 & in7==in7cluster6 & in8==in8cluster6 & in9==in9cluster6 & in10==in10cluster6 & in11==in11cluster6 & in12==in12cluster6 & in13==in13cluster6 & in14==in14cluster6 => out1=out1cluster6 (1)"
- 7 "in1==in1cluster7 & in2==in2cluster7 & in3==in3cluster7 & in4==in4cluster7 & in5==in5cluster7 & in6==in6cluster7 & in7==in7cluster7 & in8==in8cluster7 & in9==in9cluster7 & in10==in10cluster7 & in11==in11cluster7 & in12==in12cluster7 & in13==in13cluster7 & in14==in14cluster7 => out1=out1cluster7 (1)"
- 8 "in1==in1cluster8 & in2==in2cluster8 & in3==in3cluster8 & in4==in4cluster8 & in5==in5cluster8 & in6==in6cluster8 & in7==in7cluster8 & in8==in8cluster8 & in9==in9cluster8 & in10==in10cluster8 & in11==in11cluster8 & in12==in12cluster8 & in13==in13cluster8 & in14==in14cluster8 => out1=out1cluster8 (1)"

- Συμπεράσματα

Από τα διαγράμματα παρατηρούμε ότι το μοντέλο προβλέπει σε ικανοποιητικό βαθμό τις πραγματικές τιμές.

Αν χρησιμοποιούσαμε Grid Partition αντί για Subtractive Clustering και υποθέσουμε ότι για κάθε είσοδο είχαμε 3 Ασαφή Σύνολα, αυτό σημαίνει ότι το μοντέλο θα χρειαζόταν 3^{14} κανόνες, έναντι των 8 που χρησιμοποιούμε σε αυτή την εργασία.