Mathématique - Corrigé DS n°8

Exercice 1

1. (a) On calcule $f(1,0) = \frac{1}{13}(5,-12)$ et $f(0,1) = \frac{1}{13}(-12,-5)$.

Alors,
$$A = M_{\mathcal{B}_0}(f) = \frac{1}{13} \begin{pmatrix} 5 & -12 \\ -12 & -5 \end{pmatrix}$$

(b) On calcule $A^2 = \frac{1}{169} \begin{pmatrix} 25 + 144 & -60 + 60 \\ -60 + 60 & 14425 \end{pmatrix} = I_2$. On a donc $\underline{f} \circ \underline{f} = id_{\mathbb{R}^2}$.

Alors, par théorème, f est une symétrie par rapport à Ker(f-id) parallèlement à Ker(f+id). On calcule ces deux noyaux :

$$(x,y) \in \operatorname{Ker}(f-id) \iff \begin{cases} 5x - 12y - 13x &= 0 \\ -12x - 5y - 13y &= 0 \end{cases} \iff \begin{cases} -8x - 12y &= 0 \\ -12x - 18y &= 0 \end{cases}$$
$$\iff 2x + 3y = 0 \iff \exists \alpha \in \mathbb{R}, \quad (x,y) = \alpha(3,-2)$$

Donc Ker(f - id) = Vect((3, -2))

Ensuite,

$$(x,y) \in \operatorname{Ker}(f+id) \iff \begin{cases} 5x - 12y + 13x &= 0 \\ -12x - 5y + 13y &= 0 \end{cases} \iff \begin{cases} 18x - 12y &= 0 \\ -12x + 8y &= 0 \end{cases}$$
$$\iff 3x - 2y = 0 \iff \exists \alpha \in \mathbb{R}, \quad (x,y) = \alpha(2,3)$$

Donc Ker(f + id) = Vect((2,3))

Alors f est la symétrie par rapport à Vect(3, -2) parallèlement à Vect(2, 3)

(c) On a $(3,-2)\perp(2,3)$ donc les sous-espaces Ker(f-id) = Vect(3,-2) et Ker(f+id) = Vect(2,3) sont orthogonaux ce qui prouve que

f est la symétrie orthogonale par rapport à Vect(3,-2).

2. On cherche les vecteurs invariants de g :

$$(x,y,z) \in \operatorname{Ker}(g-id) \iff \begin{cases} -\sqrt{2}y + \sqrt{2}z - 2x &= 0 \\ \sqrt{2}x + y + z - 2y &= 0 \\ -\sqrt{2}x + y + z - 2z &= 0 \end{cases} \iff \begin{cases} -2x - \sqrt{2}y + \sqrt{2}z &= 0 \\ \sqrt{2}x - y + z &= 0 \\ -\sqrt{2}x + y - z &= 0 \end{cases}$$
$$\iff \begin{cases} x &= 0 \\ y - z &= 0 \end{cases} \iff \exists \alpha \in \mathbb{R} : (x,y,z) = \alpha(0,1,1)$$

Alors, on pose $\overrightarrow{n} = \frac{1}{\sqrt{2}}(0,1,1)$ Puis on pose $\overrightarrow{a} = (1,0,0)$ qui est orthogonal à \overrightarrow{n} . Enfin, on calcule $\overrightarrow{b} = \overrightarrow{n} \wedge \overrightarrow{a} = \frac{1}{\sqrt{2}}(0,1,-1)$. La famille $(\overrightarrow{n},\overrightarrow{a},\overrightarrow{b})$ est une base orthonormée directe.

La matrice de passage P de la base canonique à la base $(\overrightarrow{n}, \overrightarrow{a}, \overrightarrow{b})$.

On remarque que $P^t P = I_3$ donc $P^{-1} = {}^t P$

On calcule ensuite la matrice de g dans la base $(\overrightarrow{n}, \overrightarrow{a}, \overrightarrow{b})$:

$$g(\overrightarrow{a}) = \frac{1}{2}(0, \sqrt{2}, -\sqrt{2}) = \frac{1}{\sqrt{2}}(0, 1, -1) = \overrightarrow{b}$$
 et $g(\overrightarrow{b}) = \frac{1}{2\sqrt{2}}(-2\sqrt{2}, 0, 0) = (-1, 0, 0) = \overrightarrow{a}$

et, on sait que $g(\overrightarrow{n}) = \overrightarrow{n}$.

On en déduit la matrice B' de g dans la base $(\overrightarrow{n}, \overrightarrow{a}, \overrightarrow{b})$:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \text{ qui est de la forme : } \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

avec
$$cos(\theta) = 0$$
 et $sin(\theta) = 1$ soit $\theta = \frac{\pi}{2}$.

On a prouvé que g est une rotation vectorielle autour de $\overrightarrow{n} = \frac{1}{\sqrt{2}}(0, 1, 1)$ d'angle $\frac{\pi}{2}$

Exercice 2

1. Soit $P \in \mathbb{R}_2[X]$. Alors, $P(\frac{X}{2})$ et $P(\frac{X+1}{2})$ sont des polynômes et par somme f(P) est un polynôme. De plus, $\deg(P(\frac{X}{2})) = \deg(P(\frac{X+1}{2})) = \deg(P)$ et par somme, $\deg(f(P)) \leq \deg(P) \leq 2$, donc $f(P) \in \mathbb{R}_2[X]$.

Soit $(P,Q) \in \mathbb{R}_2[X]^2$ et $\alpha \in \mathbb{R}$.

$$f(\alpha P + Q) = \frac{1}{2} \left((\alpha P + Q) \left(\frac{X}{2} \right) + (\alpha P + Q) \left(\frac{X+1}{2} \right) \right)$$
$$= \alpha \frac{1}{2} \left(P \left(\frac{X}{2} \right) + P \left(\frac{X+1}{2} \right) \right) + \frac{1}{2} \left(Q \left(\frac{X}{2} \right) + Q \left(\frac{X+1}{2} \right) \right)$$
par propriété des polynômes.

Alors, $f(\alpha P + Q) = \alpha f(P) + f(Q)$. On en déduit que f est un endomorphisme de $\mathbb{R}_2[X]$

2. Soit $(P,Q) \in \mathbb{R}_2[X]^2$ et $\alpha \in \mathbb{R}$. Alors $\varphi(\alpha P + Q) = (\alpha P + Q)(1) = \alpha P(1) + Q(1)$ par propriété des polynômes. On en déduit $\varphi(\alpha P + Q) = \alpha \varphi(P) + \varphi(Q)$ donc φ est linéaire.

On a
$$\varphi(1) = 1$$
, $\varphi(X) = 1$, $\varphi(X^2) = 1$ donc $M_{\mathscr{B}_0,(1)}(\varphi) = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$.

3. On a f(1) = 1, $f(X) = \frac{1}{2} \left(\frac{X}{2} + \frac{X+1}{2} \right) = \frac{X}{2} + \frac{1}{4}$ et $f(X^2) = \frac{1}{2} \left(\frac{X^2}{4} + \frac{(X+1)^2}{4} \right) = \frac{1}{8} \left(X^2 + X^2 + 2X + 1 \right) = \frac{1}{4} X^2 + \frac{1}{4} X + \frac{1}{8} X + \frac{1}{8} X^2 + \frac{1}{4} X + \frac{1}{8} X +$

On en déduit que la matrice de f dans la base canonique est $A = M_{\mathscr{B}_0}(f) = \frac{1}{8}\begin{pmatrix} 8 & 2 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 2 \end{pmatrix}$

4. La matrice A est échelonnée et elle a 3 pivots donc elle est de rang 3.

Alors, A est de rang maximal donc elle est inversible. Il s'ensuit que f est un automorphisme de $\mathbb{R}_2[X]$

Donc | f | est injective et surjective

5. On résout $\varphi(P) = 0$ avec $P \in \mathbb{R}_2[X]$. On a

$$P \in \operatorname{Ker} \varphi \iff P(1) = 0 \iff 1$$
 est racine de $P \iff P$ est multiple de $X - 1$

Et comme $P \in \mathbb{R}_2[X]$, on en déduit que P = (aX + b)(X - 1) = aX(X - 1) + b(X - 1) avec $(a, b) \in \mathbb{R}^2$.

Alors,
$$\operatorname{Ker} \varphi = \operatorname{Vect}(X(X-1),(X-1))$$

Les deux polynômes X(X-1) et (X-1) sont échelonnés en degré, alors ils forment une famille libre. Comme ils forment une famille génératrice de $\operatorname{Ker} \varphi$, (X(X-1),(X-1)) est une base de $\operatorname{Ker} \varphi$

 $\overline{\dim}\operatorname{Ker}\varphi=2\ |.$

6. Comme $\operatorname{Ker} \varphi \neq \{\overrightarrow{0}\}, \varphi \text{ n'est pas injective } \}$

Alors, comme φ est un endomorphisme en dimension finie, φ n'est pas surjective.

7. \mathcal{B}' est une famille de polynômes échelonnés en degré, alors elle est libre.

Comme \mathscr{B}' a trois vecteurs et comme dim $\mathbb{R}_2[X] = 3$, on en déduit que \mathscr{B}' est une base de $\mathbb{R}_2[X]$

8. On écrit la matrice
$$Q$$
 de passage de \mathscr{B} à $\mathscr{B}': Q = P_{\mathscr{B} \to \mathscr{B}'} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & -6 \\ 0 & 0 & 6 \end{pmatrix}$

On a la relation de changement de base pour la matrice d'un endomorphisme : $M = Q^{-1}AQ$ où M est la matrice de f dans la base \mathcal{B}' et A est la matrice de f dans \mathcal{B} .

On calcule
$$Q^{-1}$$
: on résout le système $Q\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

$$\iff \begin{cases} x+y+z &= a \\ -2y-6z &= b \\ 6z &= c \end{cases} \iff \begin{cases} x+y &= a-c/6 \\ -2y &= b+c \\ z &= c/6 \end{cases} \iff \begin{cases} x &= a+b/2+c/3 \\ y &= -b/2-c/2 \\ z &= c/6 \end{cases}$$

Ce qui donne
$$Q^{-1} = \frac{1}{6} \begin{pmatrix} 6 & 3 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$
 Puis, on calcule $Q^{-1}A = \frac{1}{48} \begin{pmatrix} 48 & 24 & 16 \\ 0 & -12 & -12 \\ 0 & 0 & 2 \end{pmatrix}$ Et enfin

$$Q^{-1}AQ = \frac{1}{48} \begin{pmatrix} 48 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 12 \end{pmatrix} \qquad \text{Soit} \boxed{M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}}.$$

9.
$$M$$
 est diagonale, alors, par propriété, pour $n \in \mathbb{N}$, $M^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2^n & 0 \\ 0 & 0 & 1/4^n \end{pmatrix}$.

Par ailleurs, on sait que $M = Q^{-1}AQ$ ce qui donne $A = QM Q^{-1}$.

Soit $n \in \mathbb{N}$. On sait que M^n est la matrice de f^n dans la base \mathscr{B}' et A^n est la matrice de f^n dans la base B, alors on a la relation de changement de base :

On calcule
$$QM^n = \begin{pmatrix} 1 & 1/2^n & 1/4^n \\ 0 & -2/2^n & -6/4^n \\ 0 & 0 & 6/4^n \end{pmatrix}$$
 $Q^{-1} = \frac{1}{6} \begin{pmatrix} 6 & 3 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & 1 \end{pmatrix}$

On calcule
$$QM^n = \begin{pmatrix} 1 & 1/2^n & 1/4^n \\ 0 & -2/2^n & -6/4^n \\ 0 & 0 & 6/4^n \end{pmatrix}$$
 $Q^{-1} = \frac{1}{6} \begin{pmatrix} 6 & 3 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & 1 \end{pmatrix}$ et
$$A^n = \frac{1}{6} \begin{pmatrix} 6 & 3 - 3/2^n & 2 - 3/2^n + 1/4^n \\ 0 & 6/2^n & 6/2^n - 6/4^n \\ 0 & 0 & 6/4^n \end{pmatrix}.$$
 $A = M_{\mathscr{B}_0}(f) = \frac{1}{8} \begin{pmatrix} 8 & 2 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 2 \end{pmatrix}$

Exercice 3

- 1. (a) On cherche $P_{S_k}(S_{k+1})$ pour $k \in [[1, N-1]]$, c'est la probabilité de franchir la salle «k+1» sachant qu'on a franchi la salle «k». La salle «k + 1» contient k + 1 portes équiprobables, alors pour $k \in [[1, N-1]], P_{S_k}(S_{k+1}) = \frac{1}{k+1}$.
 - (b) On a $X(\Omega) = [2, N]$ car on peut échouer à chacune des salles entre 2 et N et (X = N) représente la réussite à toutes les salles.
 - (c) On a pour $k \in [[1, N-1]]$, $(X = k) = S_1 \cap S_2 \cap ... \cap S_{k-1} \cap S_k \cap \overline{S_{k+1}}$ On utilise la formule des probabilités totales : $P(X=k) = P\left(S_1 \cap S_2 \cap ... \cap S_{k-1} \cap S_k \cap \overline{S_{k+1}}\right)$ $= P(S_1) \times P_{S_1}(S_2) \times P_{S_1 \cap S_2}(S_3) \times ... \times P_{S_1 \cap S_2 \cap ... \cap S_{k-1}}(\overline{S_k}) \times P_{S_1 \cap S_2 \cap ... \cap S_k}(\overline{S_{k+1}})$ $P(X=k) = 1 \times \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{k} \times \left(1 - \frac{1}{k+1}\right)$

Soit
$$\forall k \in [[1, N-1]], \quad P(X=k) = \frac{k}{(k+1)!}$$

(d) L'événement (X = N) correspond à la réussite du jeu, c'est à dire au passage de tous les niveaux. On a $(X = N) = S_1 \cap S_2 \cap ... \cap S_{N-1} \cap S_N$

En utilisant la formule des probabilités totales, on trouve :

$$P(X = k) = P(S_1) \times P_{S_1}(S_2) \times P_{S_1 \cap S_2}(S_3) \times ... \times P_{S_1 \cap S_2 \cap ... \cap S_{N-1}}(S_N)$$

$$P(X = k) = 1 \times \frac{1}{2} \times \frac{1}{3} \times \dots \times \frac{1}{N-1} \times \frac{1}{N}$$
 Donc $P(X = N) = \frac{1}{N!}$

2. On calcule
$$\sum_{k=1}^{N} P(X=k) = \sum_{k=1}^{N-1} P(X=k) + P(X=N) = \sum_{k=1}^{N-1} \frac{k}{(k+1)!} + \frac{1}{N!}$$

On utilise
$$k = (k+1) - 1$$
 soit $\frac{k}{(k+1)!} = \frac{k+1}{(k+1)!} - \frac{1}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!}$

Alors,
$$\sum_{k=1}^{N-1} \frac{k}{(k+1)!} = \sum_{k=1}^{N-1} \left(\frac{1}{k!} - \frac{1}{(k+1)!} \right)$$
 est une somme télescopique donc : $\sum_{k=1}^{N-1} \frac{k}{(k+1)!} = 1 - \frac{1}{N!}$

On trouve donc:
$$\sum_{k=1}^{N} P(X=k) = 1 - \frac{1}{N!} + \frac{1}{N!} \quad \text{Soit} \left[\sum_{k \in X(\Omega)} P(X=k) = 1 \right]$$

3. (a) L'événement S_3 correspond au passage des salles 1, 2 et 3 donc on a $S_3 = S_1 \cap S_2 \cap S_3$ ou encore $S_3 = \overline{(X=3)}$.

La probabilité de S_3 est donnée par la formule des probabilités composées :

$$P(S_3) = P(S_1) \times P_{S_1}(S_2) \times P_{S_1 \cap S_2}(S_3) = 1 \times \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$
 $P(S_3) = \frac{1}{6}$

(b) On remarque que S_3 est exactement l'événement «on atteint ou on dépasse la salle 4».

On note Y la variable aléatoire égale au nombre de fois où on atteint la salle 4. On répète 4 fois la même expérience «jouer au jeu», de manière indépendante, avec deux issues possibles : «atteindre la salle 4» ou «ne pas atteindre la salle 4» et Y compte le nombre de succès alors Y suit une loi binomiale de paramètres P et P

On a donc
$$P(Y \ge 3) = P(Y = 3) + P(Y = 4) = {4 \choose 3} \frac{1}{6^3} \times \frac{5}{6} + \frac{1}{6^4} = \frac{21}{6^4} = \frac{7}{432}$$

4. On utilise le théorème de transfert : $E(f(X)) = \sum_{k \in X(\Omega)} f(k)P(X = k)$:

$$E(X+1) = \sum_{k \in X(\Omega)} (k+1)P(X=k) = \sum_{k=1}^{N} (k+1)P(X=k) = \sum_{k=1}^{N-1} (k+1)\frac{k}{(k+1)!} + \frac{N+1}{N!}$$

$$= \sum_{k=1}^{N-1} \frac{1}{(k-1)!} + \frac{1}{(N-1)!} + \frac{1}{N!} = \sum_{j=0}^{N-2} \frac{1}{j!} + \frac{1}{(N-1)!} + \frac{1}{N!} \quad \text{soit} \quad E(X+1) = \sum_{k=0}^{N} \frac{1}{k!} = U_N$$

Par linéarité, E(X) = E(X+1) - E(1) = E(X+1) - 1.

Ce qui donne : $E(X) = U_N - 1$

5. En utilisant le théorème de transfert,

$$E((X+1)(X-1)) = \sum_{k \in X(\Omega)} (k+1)(k-1)P(X=k) = \sum_{k=1}^{N-1} (k+1)(k-1)\frac{k}{(k+1)!} + \frac{(N-1)(N+1)}{N!} = 0 + 0 + \sum_{k=1}^{N-1} \frac{1}{(k-2)!} + \frac{(N-1)N}{N!} + \frac{(N-1)}{N!} = \sum_{k=1}^{N-3} \frac{1}{k!} + \frac{1}{(N-2)!} + \frac{1}{(N-1)!}$$

Finalement,
$$E((X+1)(X-1)) = \sum_{k=0}^{N-1} \frac{1}{k!} = U_{N-1}$$

On a $E((X+1)(X-1)) = E(X^2-1) = E(X^2)-1$ par linéarité et par formule de l'espérance pour une VA constante.

Puis,
$$V(X) = E(X^2) - (E(X))^2$$
 par la formule de Koenig-Huyghens, d'où $V(X) = U_{N-1} + 1 - (U_N - 1)^2$

Exercice 4

1. On a $P(X = 1) = \frac{1}{n}$ car il y a dans l'urne 1 boule verte et n boules en tout.

 $(X=2)=R_1\cap V_2$ d'où $P(X=2)=P(R_1)\times P_{R_1}(V_2)$ avec $P(R_1)=\frac{n-1}{n}$ et $P_{R_1}(V_2)=\frac{1}{n-1}$ car après avoir tiré une boule rouge, l'urne contient une boule verte et n-1 boules en tout.

On a donc
$$P(X=2) = \frac{1}{n}$$

 $(X = 3) = R_1 \cap R_2 \cap V_3$ et en utilisant la formule des probabilités conditionnelles : $P(X = 3) = P(R_1) \times P_{R_1}(R_2) \times P_{R_1 \cap R_2}(V_3)$

On trouve
$$P(X = 3) = \frac{n-1}{n} \times \frac{n-2}{n-1} \times \frac{1}{n-2}$$
 qui donne $P(X = 3) = \frac{1}{n}$.

2. On a $X(\Omega) = [[1, n]]$. Aucun des rangs d'apparition de la boule verte n'est privilégié : elle a la même probabilité d'être tirée à chaque rang, donc $\forall k \in [[1, n]], \quad P(X = k) = \frac{1}{n}$.

Si on veut le prouver formellement, pour $k \in [[1, n]]$,

 $(X = k) = R_1 \cap R_2 \cap ... \cap R_{k-1} \cap V_k$ et en utilisant la formule des probabilités conditionnelles :

$$P(X=k) = P(R_1) \times P_{R_1}(R_2) \times \dots \times P_{R_1 \cap R_2 \dots \cap R_{k-2}}(R_{k-1}) \times P_{R_1 \cap R_2 \cap \dots \cap R_{k-1}}(V_k)$$

On a $P_{R_1 \cap R_2 \dots \cap R_j}(R_{j+1}) = \frac{n-j-1}{n-j}$ car après j tirages d'une boule rouge, l'urne contient n-j boules dont n-j-1 rouges et 1 verte.

On trouve $P(X = k) = \frac{n-1}{n} \times \frac{n-2}{n-1} \times ... \times \frac{N-k}{n-(k-1)} \times \frac{1}{n-k}$ et après simplification, comme le produit est télescopique, $P(X = k) = \frac{1}{n}$.

La variable aléatoire X suit la loi uniforme sur [[1, n]].

3. On sait que l'espérance d'une variable aléatoire X qui suit la loi uniforme sur [1, n] est $E(X) = \frac{n+1}{2}$

Calcul:
$$\sum_{k=1}^{n} kP(X=k) = \frac{n(n+1)}{2} \frac{1}{n} = \frac{n+1}{2}$$

4. Si on choisit l'urne U_A , on est dans la configuration de la première partie, alors la variable aléatoire suit la même loi que la variable $X: P_{U_A}(Y=j) = P(X=j)$ soit $P_{U_A}(Y=j) = \frac{1}{n}$.

- 5. On a $P_{U_B}(Y=j)=0$ pour $1 \le j \le n-1$ car si on choisit l'urne U_B , on tirera toutes les boules donc Y prendra la valeur n et donc $P_{U_B}(Y=n)=1$.
- 6. Les événements U_A et U_B forment un système complet d'événements car $U_A \cap U_B = \emptyset$ et $U_A \cup U_B = \Omega$. Alors, on peut utiliser la formule des probabilités totales avec $P(U_A) = P(U_B) = \frac{1}{2}$,

Pour
$$j \in [[1, n-1]]$$
, $P(Y = j) = P(U_A)P_{U_A}(Y = j) + P(U_B)P_{U_B}(Y = j) = \frac{1}{2} \times \frac{1}{n} + \frac{1}{2} \times 0 = \frac{1}{2n}$.
Et $P(Y = n) = P(U_A)P_{U_A}(Y = n) + P(U_B)P_{U_B}(Y = n) = \frac{1}{2} \times \frac{1}{n} + \frac{1}{2} \times 1 = \frac{1}{2} + \frac{1}{2n}$.
On a donc $pour j \in [[1, n-1]]$, $P(Y = j) = \frac{1}{2n}$ et $P(Y = n) = \frac{1}{2} + \frac{1}{2n}$.

7.
$$E(Y) = \sum_{j=1}^{n} jP(Y=j) = \sum_{j=1}^{n-1} jP(Y=j) + nP(Y=n) = \sum_{j=1}^{n-1} \frac{j}{2n} + n\left(\frac{1}{2} + \frac{1}{2n}\right)$$

 $E(Y) = \frac{n(n-1)}{2} \frac{1}{2n} + \frac{n}{2} + \frac{1}{2} = \frac{n-1}{4} + \frac{2n}{4} + \frac{2}{4}$ d'où $E(Y) = \frac{3n+1}{4}$.

D'après le théorème de transfert,
$$E(Y^2) = \sum_{j=1}^{n-1} j^2 P(Y=j) + n^2 P(Y=n) = \sum_{j=1}^{n-1} \frac{j^2}{2n} + n^2 \left(\frac{1}{2} + \frac{1}{2n}\right)$$

$$E(Y^2) = \frac{(n-1)n(2n-1)}{12n} + \frac{n^2}{2} + \frac{n}{2} = \frac{2n^2 - 3n + 1}{12} + \frac{6n^2}{12} + \frac{6n}{12} = \frac{8n^2 + 3n + 1}{12}$$

Puis, d'après la formule de Koenig-Huyghens, $V(Y) = E(Y^2) - (E(Y))^2 = \frac{8n^2 + 3n + 1}{12} - \frac{(3n+1)^2}{16}$

Ce qui donne :
$$V(Y) = \frac{32n^2 + 12n + 4}{48} - \frac{3(9n^2 + 6n + 1)}{48}$$
 On trouve $V(Y) = \frac{5n^2 - 6n + 1}{48}$

Exercice 5

1. (a) On a
$$\ln(1+x) = x - \frac{x^2}{2} + x^2 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

On pose $x = \frac{1}{n}$, alors $\lim_{n \to +\infty} x = 0$ et $\ln\left(1 + \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{n^2} \varepsilon\left(\frac{1}{n}\right)$

On a donc $v_n = -1 + 1 - \frac{1}{2n} + \frac{1}{n} \varepsilon\left(\frac{1}{n}\right)$ soit $v_n = -\frac{1}{2n} + \frac{1}{n} \varepsilon\left(\frac{1}{n}\right)$ ce qui prouve que $v_n \approx -\frac{1}{2n}$.

(b) La série harmonique $\sum \frac{1}{n}$ est une série de Riemann divergente, alors $\sum \frac{1}{2n}$ est également divergente.

On a $-v_n \sim \frac{1}{2n}$ donc $(-v_n)$ est une suite positive à partir d'un certain rang.

Par le critère d'équivalence des séries à termes positifs, $\sum -\nu_n$ diverge donc $\sum \nu_n$ diverge

Comme $\sum v_n$ est une série à termes négatifs, d'après le théorème de la limite monotone, $\sum v_n$ tend

On a donc
$$\lim_{n\to+\infty} V_n = -\infty$$

2. (a) On a pour tout entier naturel non nul
$$n$$
, $M_n > 0$. On calcule
$$\frac{M_{n+1}}{M_n} = \frac{n!}{(n+1)!} \frac{(n+1)^{n+1}}{n^n} \frac{e^n}{e^{n+1}} = \frac{1}{n+1} \frac{(n+1)^{n+1}}{n^n} \frac{1}{e} = \frac{1}{e} \left(1 + \frac{1}{n}\right)^n$$
 Alors, $\ln\left(\frac{M_{n+1}}{M_n}\right) = \ln(e^{-1}) + n\ln\left(1 + \frac{1}{n}\right)$ Soit pour tout $n \in \mathbb{N}^*$, $v_n = \ln\left(\frac{M_{n+1}}{M_n}\right)$.

(b) On sait que $\lim_{n\to+\infty}\sum_{k=0}^{\infty}\nu_{k}=-\infty$ d'après la question précédente.

Mais,
$$\sum_{k=1}^n v_k = \sum_{k=1}^n \ln\left(\frac{M_{k+1}}{M_k}\right) = \sum_{k=1}^n \ln(M_{k+1}) - \ln(M_k)$$
 est une somme télescopique.

On trouve
$$\sum_{k=1}^{n} v_k = \ln(M_{n+1}) - \ln(M_1)$$
 soit $\ln(M_{n+1}) = \ln(M_1) + \sum_{k=1}^{n} v_k = \ln(M_1) + V_n$.

En prenant l'exponentielle de chaque membre : pour tout entier $n \in \mathbb{N}^*$, $M_{n+1} = M_1 e^{V_n}$.

On a $\lim_{n\to+\infty} V_n = -\infty$, alors par composition de limites, $\lim_{n\to+\infty} M_n = 0$.

On en déduit que $n^n e^{-n} = o(n!)$.

- 3. (a) La fonction $x \mapsto x^n$ est polynomiale donc \mathscr{C}^{∞} sur \mathbb{R} et la fonction $x \mapsto e^{-x}$ est \mathscr{C}^{∞} sur \mathbb{R} , alors par produit et combinaison linéaire, pour tout $n \in \mathbb{N}^*$, f_n est \mathscr{C}^{∞} sur \mathbb{R} .
 - (b) On a $f'_n(x) = \frac{nx^{n-1}}{n!}e^{-x} \frac{x^n}{n!}e^{-x}$ qui se factorise en $f'_n(x) = \frac{x^{n-1}}{n!}(n-x)e^{-x}$ pour tout $x \in \mathbb{R}_+$.
 - (c) On a pour $x \in \mathbb{R}_+$, $f'_n(x) \ge 0 \iff 0 \le x \le n$.

On a f(0) = 0, $f(n) = \frac{n^n}{n!}e^{-n} = M_n$ et $\lim_{x \to +\infty} f_n(x) = 0$ car par croissance comparée, pour tout entier n, $\lim_{x \to +\infty} \frac{x^n}{e^x} = 0$.

On en déduit le tableau de variations suivant :

x	0		n	+∞			
$f_n'(x)$		+	0	_			
$f_n(x)$			M_n				
	0			0			

4. (a) La fonction f_n est continue sur \mathbb{R}_+ , alors par théorème, $x \mapsto \int_0^x f_n(t) dt$ est l'unique primitive de f_n qui s'annule en 0.

On en déduit que F_n est définie, dérivable et de classe \mathscr{C}^1 sur \mathbb{R}_+

De plus,
$$\forall x \in \mathbb{R}_+, \qquad F'_n(x) = f_n(x) = \frac{x^n}{n!} e^{-x}$$
.

On a $F'_n = f_n$ et on a montré précédemment que sur $[0, +\infty[$, on a $f_n \ge 0$,

+alors F_n est croissante sur $[0, +\infty[$

(b) Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}_+$. On a $f_{n+1}(x) = \frac{x^{n+1}}{(n+1)!}e^{-x}$ qui donne en dérivant :

$$f'_{n+1}(x) = \frac{x^n}{(n)!}e^{-x} - \frac{x^{n+1}}{(n+1)!}e^{-x}$$

On a donc $\forall x \in \mathbb{R}$, $f'_{n+1}(x) = f_n(x) - f_{n+1}(x)$ ce qui prouve $\forall n \in \mathbb{N}^*$, $f'_{n+1} = f_n - f_{n+1}$

(c) Les fonctions f'_{n+1} , f_n et f_{n+1} sont continues sur \mathbb{R} donc sur \mathbb{R}_+ , alors pour x > 0, on peut les intégrer sur [0, x] ce qui donne :

$$\int_0^x f'_{n+1}(t) dt = \int_0^x (f_n(t) - f_{n+1}(t)) dt = \int_0^x f_n(t) dt - \int_0^x f_{n+1}(t) dt$$

Comme f_{n+1} est \mathscr{C}^1 sur \mathbb{R}_+ , on a, par théorème, $\int_0^x f'_{n+1}(t) dt = f_{n+1}(x) - f_{n+1}(0)$

Et par définition de F_n et F_{n+1} , on a la relation pour tout x>0 et pour tout $n\in\mathbb{N}^*$: $f_{n+1}(x) =$ $F_n(x) - F_{n+1}(x).$

La relation précédente est encore vraie pour x=0, alors $\forall n \in \mathbb{N}^*, \qquad f_{n+1}=F_n-F_{n+1}$

$$\forall n \in \mathbb{N}^*, \qquad f_{n+1} = F_n - F_{n+1}$$

(d) Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}_+$. On a pour $k \in [[1, n-1]]$, $f_{k+1} = F_k - F_{k+1}$.

On somme ces relations :
$$\sum_{k=1}^{n-1} f_{k+1} = \sum_{k=1}^{n-1} (F_k - F_{k+1})$$
.

La somme est télescopique ce qui donne : $\sum_{k=1}^{n-1} f_{k+1} = F_1 - F_n$ soit $F_n = F_1 - \sum_{k=1}^{n} f_k$.

On calcule pour $x \in \mathbb{R}_+$, $F_1(x) = \int_0^x f_n(t) dt = \int_0^x t e^{-t} dt = \left[-(1+t)e^{-t} \right]_0^x = 1 - (1+x)e^{-x}$.

Alors, pour $x \in \mathbb{R}_+$, $F_n(x) = 1 - (1+x)e^{-x} - \sum_{k=2}^n \frac{x^k}{k!}e^{-x} = 1 - \sum_{k=0}^n \frac{x^k}{k!}e^{-x}$

$$\forall n \in \mathbb{N}^*, \quad \forall x \in \mathbb{R}_+, \quad F_n(x) = 1 - e^{-x} \sum_{k=0}^n \frac{x^k}{k!}$$

(e) On a $F'_n = f_n$ dont on connaît le signe et $F_n(0) = 0$. Par croissance comparée, on a $\lim_{n \to \infty} x^k e^{-x} = 0$ pour tout entier k, donc $\lim_{x\to +\infty} F_n(x) = 1$. On obtient le tableau suivant :

x	0		+∞		
$f_n(x)$	0	+			
$F_n(x)$	0		1		

5. (a) Soit $n \in \mathbb{N}^*$, on calcule $u_{n+1} - u_n = F_{n+1}(n+1) - F_n(n) = \int_{-n}^{n} f_{n+1}(t) dt - \int_{-n}^{n} f_n(t) dt$ $u_{n+1}-u_n = \int_0^n f_{n+1}(t) dt - \int_0^n f_n(t) dt + \int_n^{n+1} f_{n+1}(t) dt = \int_0^n (f_{n+1}(t)-f_n(t)) dt + \int_n^{n+1} f_{n+1}(t) dt$ Or $f'_{n+1} = f_n - f_{n+1}$, d'où $u_{n+1} - u_n = -\int_0^n f'_{n+1}(t) dt + \int_0^{n+1} f_{n+1}(t) dt = -[f_{n+1}(t)]_0^n + \int_0^{n+1} f_{n+1}(t) dt$ $u_{n+1} - u_n = -f_{n+1}(n) + f_{n+1}(0) + \int_n^{n+1} f_{n+1}(t) dt. \quad \text{Mais } f_{n+1}(0) = 0.$ Finalement, $\forall n \in \mathbb{N}^*, \quad u_{n+1} - u_n = \int_n^{n+1} f_{n+1}(t) dt - f_{n+1}(n)$.

(b) Soit $n \in \mathbb{N}^*$. f_{n+1} est croissante sur [0, n+1], alors, pour $t \in [n, n+1]$, on a $f(t) \ge f(n)$. L'intégrale est croissante et $n \le n+1$ et les fonctions f_{n+1} et $t \mapsto f_{n+1}(n)$ sont continues sur

$$\int_{n}^{n+1} f_{n+1}(t) dt \ge \int_{n}^{n+1} f_{n+1}(n) dt \quad \text{Ce qui donne} \quad \int_{n}^{n+1} f_{n+1}(t) dt \ge f_{n+1}(n)$$

soit $\forall n \in \mathbb{N}^*$, $u_{n+1} - u_n \ge 0$. On a $u_n = F_n(n)$ et on a montré que pour tout $x \in \mathbb{R}_+$, $0 \le F_n(x) \le 1 \text{ alors, } \forall n \in \mathbb{N}^*, \quad 0 \le u_n \le 1.$

La suite (u_n) est croissante et majorée, alors d'après le théorème de la limite monotone,

 (u_n) converge vers une limite réelle L

Comme $\forall n \in \mathbb{N}^*$, $0 \le u_n \le 1$, par passage à la limite, $0 \le L \le 1$