

CIS2520 Data Structures

Sample Final Questions

1)
Let I and K be two nonempty sets.
A table of items of type I and keys of type K is a finite subset T of I $ imes$ K such that

2) Consider the AVL tree below. Draw the tree after insertion of FRA.

3)The worst-case running time for a search in a hash table is O(_____), where n is the number of _____.

4) The worst-case running time for a search in a 2-4 tree is $O(\underline{\hspace{0.2cm}})$, where n is the number of $\underline{\hspace{0.2cm}}$.

5) Consider two functions f and g from \mathbb{Z}_+ to \mathbb{R}_+ , where \mathbb{Z}_+ is the set of positive integers and \mathbb{R}_+ the set of positive real numbers. We say that f is O(g) if and only if:

6	

Consider four functions f_1 , f_2 , g_1 and g_2 from \mathbb{Z}_+ to \mathbb{R}_+ , where \mathbb{Z}_+ is the set of positive integers and \mathbb{R}_+ the set of positive real numbers. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then

f_1+f_2 is	 	
f_1 – f_2 is	 	
f ₁ f ₂ is	 	
f ₁ /f ₂ is		

7)

Consider the Queue ADT operations below. Write 4 axioms.

Create: Ø → Queue[T]

Enqueue: TxQueue[T] → Queue[T]

Dequeue: Queue[T] → Queue[T]

Full: Queue[T] → Boolean **Empty**: Queue[T] → Boolean

Size: Queue[T] → N Head: Queue[T] → T Tail: Queue[T] → T

8)

Consider the binary search tree below. Draw the tree after removal of 12.

9)

Write a C function that returns the sum of the n first nonnegative integers.

int	sum	(int	n)	{	
).					

10)

Consider the C function below. The call foo(7); outputs _____.

```
void foo (int n) {
    if(n<=10) {
        foo(n+1);
        printf("%d",n);
}</pre>
```

11)

The figure below represents a stack, after initialization and insertion of an item x. Represent the stack after insertion of a second item, y.

12)

Let the symbol A be the base 26 expansion of 0, let B be the base 26 expansion of 1, etc. According to the division method, the hash address of GLA in a hash table with 11 slots is

13)

We say that a problem is tractable if _____

14)

Consider the graph below. What is its adjacency matrix?

15)

The graph below is not connected because

16)

As seen in class, a tree can be defined as follows:

- (a) The empty tuple () is a tree.
- (b) Any tuple $(N,T_1,T_2,...,T_n)$ where $n\ge 0$ and $T_1,T_2,...,T_n$ are trees is a tree.

The tree represented below is the tuple _

17)

Draw the expression tree that represents the polynomial fraction $\frac{1+5x}{2-x}$.

18)

Which ones of these trees, if any, are AVL trees?

19)

To print the structured document represented by the tree below, use ______ traversal.

20)

A queue is implemented using a circular array of size 5. Assume the queue is empty, and then the following operations are performed: enqueue 4, then 8, then 3; dequeue; enqueue 7; dequeue; enqueue 6, then 1. Draw the resulting array with its elements.