رياضية	ريا علوم	<u>2 بكالو</u>
الختبر	عبدالله بن	<u>۔۔۔</u> ذ : د

تجريبى رقم <u>02</u> دورة أبريل 2017

ثانوية موسى بن نصير مديرية الخميسات

مدة الإنجاز: أربع ساعات

التمرين الأول: (3,5 ن)

0,5

0,75

0,75

0,75

0,75

0,5

0,5

.
$$x * y = \frac{2xy}{(1-x)(1-y)+2xy}$$
: نضع $= [0,1]$ نضع $= [0,1]$ نضع $= [0,1]$

.
$$f(x) = \frac{e^x}{2 + e^x}$$
: نضع (\mathbb{R} من x من (2

.
$$f^{-1}$$
نحو $f(0,1],*)$ نحو $f(\mathbb{R},+)$ ، و حدد تقابله العكسي أ-

$$x$$
 بنية $(*, 1]$ ، ينبغي تحديد العنصر المحايد و x مماثل كل عنصر x من $(0,1[,*]$

.
$$H = \left\{ \frac{3^n}{2+3^n} / n \in \mathbb{Z} \right\}$$
: نعتبر المجموعة (3

.
$$(]0,1[,*)$$
 بين أن $(H,*)$ زمرة جزئية للزمرة

.
$$(]0,1[\,,*\,)$$
 في $(x^{(n)})$ في استنتج مماثل $(x^{(n)})$ في المائة والمائة والمائة

التمرين الثاني: (3,5 ن)

.
$$(E)$$
: $z^2+(1+2i)z+1+7i=0$: المعادلة $\mathbb C$ ، المعادلة - $\mathbb I$

.
$$u = -7 - 24i$$
 حدد الجذرين المربعين للعدد العقدي 1)- حدد الجذرين المربعين العدد العقدي

. Re
$$(z_2)$$
 < 0: حدد الحلين z_2 و z_1 للمعادلة (E) بحيث (z_2 حدد الحلين بالمعادلة (z_2)

.
$$\frac{z_1}{z_2} = \sqrt{2.}e^{i.\frac{3\pi}{4}}$$
: تحقق أن -(3)

.
$$v=1+7i$$
ليكن $heta$ عمدة ل z_2 . أكتب بدلالة $heta$ الشكل المثلثي للعدد العقدي (4

$$O$$
 و اللتان لحقاهما على التوالي هما $a=-2+i$ و مركزه $b=1-3i$ و اللتان لحقاهما على التوالي مركزه $a=-2+i$

و زاویته
$$\frac{\pi}{2}$$
 .

.
$$C = r(A)$$
 حدد $c = aff(C)$ میث (0,25

يكون الرباعي
$$OCDB$$
 متوازي الأضلاع . d

.
$$(\overrightarrow{DB}, \overrightarrow{DC}) \equiv \frac{\pi}{4} [2\pi]$$
: أـ حدد العدد العقدي d ، ثم بين أن أـ حدد العدد العد

$$oldsymbol{arphi}$$
 بين أن النقط O و A و B متداورة

التمرين الثالث: (3)

الجزءان I- و II- مستقلان فيما بينهما

.
$$a\in\mathbb{Z}-\{1\}$$
 و $n\in\mathbb{N}^*$ نضع : $S_n=1+a+a^2+...+a^{n-1}$ و I

.
$$(a-1)\wedge a^n=1$$
: ثم استنتج أن $(a-1) imes S_n=a^n-1$: نحقق أن $(a-1) imes S_n=a^n-1$

.
$$(E)$$
: $a^n x + (a-1) y = a$: المعادلة ، \mathbb{Z}^2 حل في (2)

.
$$\mathbb{Z}^2$$
في $(F): 10^n x + 2^{n+2} y = 10 \times 2^{n-1}$: في $(F): 10^n x + 2^{n+2} y = 10 \times 2^{n-1}$

.
$$(G)$$
: $2^n\equiv 1$ $[n]$: المعادلة ، $\mathbb{N}^*-\{1\}$ فيتبر في - II

.
$$d=m\wedge n$$
 : نضع (m,n) من (m,n) ککل (1)

.
$$(\forall p \in \mathbb{N}^* - \{1\}); \begin{cases} 2^m \equiv 1[p] \\ 2^n \equiv 1[p] \end{cases} \Rightarrow 2^d \equiv 1[p]:$$
 0,5

.
$$n$$
 عدیث العدد $\mathbb{N}^*-\{1\}$ من $\mathbb{N}^*-\{1\}$ بحیث العدد n عدد العدد العدد \mathbb{N}^*

اً- بین أن
$$n$$
 عدد فردي . $0,25$

.
$$(p-1) \land n = 1$$
 : بين أن 0,25

.
$$2^{p-1} \equiv 1[p]$$
 و $2^n \equiv 1[p]$. $2^{p-1} \equiv 1[p]$

$$(G)$$
 استنتج مما سبق مجموعة حلول المعادلة (G)

التمرين الرابع: (3,75 ن)

0,5

: يلي الدالة المعرفة على
$$]1,+\infty$$
 بما يلي F

$$\left(\forall x \in \left]1, +\infty\right[\right); F\left(x\right) = \int_{x}^{x+1} \frac{e^{2-t}}{t-1} dt$$

.
$$(\forall t \in]1, +\infty[); 0 \le (t-1)e^{2-t} \le 1$$
 : أ- بين أن $(1 - 1)e^{2-t} \le 1$

.
$$(\forall x \in]1,+\infty[);0 \le F(x) \le \frac{1}{x(x-1)}$$
: 0,25

ج- استنتج النهاية :
$$\lim_{x o +\infty} F(x)$$
 ، ثم أعط تأويلها الهندسي المناسب .

. ب- استنتج النهاية :
$$\lim_{x \to 1^+} F(x)$$
 : ثم أعط تأويلها الهندسي المناسب . 0,5

$$. \left(\forall x \in]1, +\infty[\right); F'(x) = \frac{e^{1-x}}{x(1-x)} \cdot \left[(e-1)x + 1 \right]$$

منظم . (
$$C_F$$
) في معلم متعامد و ممنظم . F منظم نعامد و ممنظم .

التمرين الخامس: (6,25 ن)

لجزء الأول:

0,75

: لتكن
$$g$$
 الدالة المعرفة على $]0,+\infty$ بما يلي \Rightarrow

$$. \left(\forall t \in [0, +\infty[); g(t)] = \ln(1 + \sqrt{t}) - \sqrt{t} \right)$$

: و أن ين أن
$$g$$
 متصلة على $]\infty,+\infty[$ و قابلة للاشتقاق على $]\infty,+\infty[$ و أن ا

$$. \left(\forall t \in \left] 0, +\infty \right[\right); g'(t) = \frac{-1}{2\left(1 + \sqrt{t}\right)}$$

.
$$(\forall t \in]0, +\infty[)(\exists c \in]0, t^2[); \frac{\ln(1+t)-t}{t^2} = \frac{-1}{2(1+\sqrt{c})}$$
: بين أن -(2)

.
$$\lim_{t\to 0^+} \frac{\ln(1+t)-t}{t^2} = \frac{-1}{2}$$
: ناتج أن -(3)

الجزء الثاني:

0,5

0,5

0,5

0,75

0,5

: الدالة المعرفة على $[0,+\infty]$ بما يلي f

$$. \left(\forall x \in \left]0, +\infty\right[\right); f\left(x\right) = x^2. \ln\left(\frac{x+1}{x}\right) \circ f\left(0\right) = 0$$

. اليمين أن f متصلة و قابلة للاشتقاق على اليمين في الصفر .

. (-(3 استعمل نتيجة الجزء الأولى 2) بجوار
$$+\infty$$
 بجوار $+\infty$ بجوار $+\infty$ المنحنى للمنحنى للمنحنى (2 الكنهائي المنحنى)

$$. \left(\forall x \in \left] 0, +\infty \right[\right); f'\left(x\right) = x \left(2\ln\left(\frac{x+1}{x}\right) - \frac{1}{x+1} \right)$$

.
$$f$$
 تغيرات ، $(\forall x \in]0,+\infty[);2\ln(\frac{x+1}{x})-\frac{1}{x+1}>0$: نم ضع جدول تغيرات 0,75

.
$$\left(O, \vec{i}, \vec{j}
ight)$$
ارسم المنحنى المنحنى الميام في معلم متعامد و ممنظم (C_f

.
$$\lambda \in]0,1[$$
 حیث $I(\lambda) = \int_{\lambda}^{1} \left(f(x) - x + \frac{1}{2}\right) dx$ خیث (5

ب عبر عن
$$I(\lambda)$$
 بدلالة λ ، ثم احسب النهاية الهندسي وأعط تأويلها الهندسي .

.
$$n \in \mathbb{N}^* - \{1\}$$
نضع : $S_n = \frac{1}{n} \cdot \sum_{k=1}^n f\left(\frac{k}{n}\right)$: نضع : (6

.
$$(\forall n \in \mathbb{N}^* - \{1\}); \frac{1}{n}.f(\frac{1}{n}) + \int_{\frac{1}{n}}^1 f(t)dt \le S_n \le \frac{1}{n}.f(1) + \int_{\frac{1}{n}}^1 f(t)dt : 0,5$$

ب- استنتج أن المتتالية
$$(S_n)_{n\in\mathbb{N}^*-\{1\}}$$
 متقاربة محددا نهايتها .