10707 Deep Learning: Spring 2020

Andrej Risteski

Machine Learning Department

Lecture 4: Convolutional architectures

Neural networks for vision

Prototypical task in vision is object recognition: given an input image, identify what kind of object it contains.

Are feedforward networks the right architecture for this?

Desiderata for networks for vision

- Inputs are very high-dimensional: 150×150 pixels = 22500 inputs, or 3×22500 if RGB pixels instead of grayscale.
- Should leverage the spatial locality (in the pixel sense) of data
- Solution invariance to natural variations: translation, illumination, etc.

Convolutional architectures are designed for this:

- Social connectivity (reflects spatial locality and decreases # params)
- Second Parameter sharing (further decreases # params)
- **Solution**
- Soling / subsampling hidden units

Local Connectivity

Use local connectivity of hidden units

Secondary Each hidden unit is connected only to a subregion (patch) of the input image.

It is connected to all channels: 1 if grayscale, 3 (R, G, B) if color image

Why this is a good idea:

- Fully connected layer has a lot of parameters to fit, which requires a lot of training data
- Image data isn't arbitrary: neighboring pixels are "meaningfully related" – e.g. if a node is to be a "dog nose" detector – need to look at small patch of pixels.

$$r$$
 = receptive field

Decrease in # of parameters

Fully connected: 200x200 image, 40K hidden units, ~2B parameters!

Convolutional: 200x200 image, 40K hidden units, window size 10x10, ~4M parameters!

Parameter Sharing

Prior approach makes weights sensitive to translations: e.g.

nose detector here

Parameter sharing

Share matrix of parameters across some units

- Units that are organized into the "feature map" share parameters
- Hidden units within a feature map cover different positions in the image

Computer Vision

Our goal is to design neural networks that are specifically adapted for such problems

- Must deal with very high-dimensional inputs: 150 x 150 pixels = 22500 inputs, or 3 x 22500 if RGB pixels
- Some Can exploit the 2D topology of pixels (or 3D for video data)
- Some Can build in invariance to certain variations: translation, illumination, etc.

Convolutional networks leverage these ideas

- S Local connectivity
- S Parameter sharing
- S Convolution
- Soling / subsampling hidden units

Parameter Sharing

Each feature map forms a 2D grid of features

Can be computed with a discrete convolution (*) of a kernel matrix k_{ij}

Jarret et al. 2009

$$y_j = g_j \tanh(\sum_i k_{ij} * x_i)$$

- x_i is the ith channel of input
- k_{ii} is the convolution kernel
- g_i is a learned scaling factor
- y_i is the hidden layer

Can add bias

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

Example:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

Example:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

Example: $1 \times 0 + 0.5 \times 80 + 0.25 \times 20 + 0 \times 40 = 45$

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

Example:

$$1 \times 80 + 0.5 \times 40 + 0.25 \times 40 + 0 \times 0 = 110$$

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

Example: $1 \times 20 + 0.5 \times 40 + 0.25 \times 0 + 0 \times 0 = 40$

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

Example: $1 \times 40 + 0.5 \times 0 + 0.25 \times 0 + 0 \times 40 = 40$

Example of a convolution

Adding non-linearity

With a non-linearity, we get a detector of a feature at any position in

0

0.5

0.5

0

the image:

 $x * k_{ij}$,

Adding non-linearity

With a non-linearity, we get a detector of a feature at any position in

0

0.5

0.5

0

the image:

$$x * k_{ij}$$
,

Example of ReLU non-linearity

Padding

• Can use "zero padding" to allow going over the borders (*)

The picture so far

From Rob Fergus tutorial (http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf)

Computer Vision

Our goal is to design neural networks that are specifically adapted for such problems

- Must deal with very high-dimensional inputs: 150 x 150 pixels = 22500 inputs, or 3 x 22500 if RGB pixels
- Some Can exploit the 2D topology of pixels (or 3D for video data)
- Some Can build in invariance to certain variations: translation, illumination, etc.

Convolutional networks leverage these ideas

- S Local connectivity
- S Parameter sharing
- **S** Convolution
- Soling / subsampling hidden units

Pooling

Pool hidden units in same neighborhood

Pooling is performed in non-overlapping neighborhoods (subsampling)

$$y_{ijk} = \max_{p,q} x_{i,j+p,k+q}$$

Jarret et al. 2009

- x_i is the ith channel of input
- $x_{i,j,k}$ is value of the ith feature map at position j,k
- p is vertical index in local neighborhood
- q is horizontal index in local neighborhood
- y_{ijk} is pooled / subsampled layer

Pooling

Pool hidden units in same neighborhood

An alternative to "max" pooling is "average" pooling

$$y_{ijk} = \frac{1}{m^2} \sum_{p,q} x_{i,j+p,k+q}$$

Jarret et al. 2009

- x_i is the ith channel of input
- $x_{i,j,k}$ is value of the ith feature map at position j,k
- p is vertical index in local neighborhood
- q is horizontal index in local neighborhood
- y_{ijk} is pooled / subsampled layer
- m is the neighborhood height/width

Example: Pooling

Illustration of pooling/subsampling operation

Why pooling?

- Introduces invariance to local translations
- Reduces the number of hidden units in hidden layer

Example: Pooling

Can we make the detection robust to the exact location of the eye?

Example: Pooling

Translation Invariance

Illustration of local translation invariance

Both images result in the same feature map after pooling/subsampling

Convolutional Network

Convolutional neural network alternates between convolutional and pooling layers

From Yann LeCun's slides

Generating Additional Examples

Elastic Distortions

Can add "elastic" deformations (useful in character recognition)

We can do this by applying a "distortion field" to the image

A distortion field specifies where to displace each pixel value

Bishop's book

Elastic Distortions

Can add "elastic" deformations (useful in character recognition)

We can do this by applying a "distortion field" to the image

A distortion field specifies where to displace each pixel value

Bishop's book

Elastic Distortions

Can add "elastic" deformations (useful in character recognition)

We can do this by applying a "distortion field" to the image

A distortion field specifies where to displace each pixel value

Bishop's book

Conv Nets: Examples

Optical Character Recognition, House Number and Traffic Sign classification

Conv Nets: Examples

Pedestrian detection

Conv Nets: Examples

Object Detection

Sermanet et al. "OverFeat: Integrated recognition, localization" arxiv 2013 Girshick et al. "Rich feature hierarchies for accurate object detection" arxiv 2013 Szegedy et al. "DNN for object detection" NIPS 2013

ImageNet Dataset

1.2 million images, 1000 classes

Examples of Hammer

Deng et al. "Imagenet: a large scale hierarchical image database" CVPR 2009

Important Breakthroughs

Deep Convolutional Nets for Vision (Supervised)

Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.

1.2 million training images 1000 classes

Architecture

How can we select the "right" architecture:

Manual tuning of features is now replaced with the manual tuning of architectures

- **S** Depth
- **S** Width
- S Parameter count

How to Choose Architecture

Many hyper-parameters:

Number of layers, number of feature maps

- **S** Cross Validation
- \$\mathscr{G}\$ Grid Search (need lots of GPUs)
- Smarter Strategies
 - Random search [Bergstra & Bengio JMLR 2012]
 - Bayesian Optimization

AlexNet

8 layers total

Trained on Imagenet dataset [Deng et al. CVPR'09]

18.2% top-5 error

[From Rob Fergus' CIFAR 2016 tutorial]

Remove top fully connected layer 7

Drop ~16 million parameters

Only 1.1% drop in performance!

[From Rob Fergus' CIFAR 2016 tutorial]

Remove both fully connected layers 6,7

Drop ∼50 million parameters

5.7% drop in performance!

Remove upper feature extractor layers (Layers 3 & 4)

Drop ∼1 million parameters

3% drop in performance.

[From Rob Fergus' CIFAR 2016 tutorial]

Let us remove upper feature extractor layers and fully connected:

Layers 3,4, 6 and 7

33.5% drop in performance!

Depth of the network is the key.

[From Rob Fergus' CIFAR 2016 tutorial]

Issue: multiscale nature of images

 $\underline{https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202}$

Larger kernel good for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any given level.

24-layer model that uses so-called **inception module**.

GoogLeNet inception module:

Multiple filter scales at each layer

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

GoogLeNet inception module:

- Multiple filter scales at each layer
- Solution Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

- Width of inception modules ranges from 256 filters (in early modules) to 1024 in top inception modules.
- Sometime Can remove fully connected layers on top completely
- Solution
 Number of parameters is reduced to 5 million

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

Residual Networks

Really, really deep convnets do not train well, E.g. CIFAR10:

Reason: gradients involve multiplications of a # of matrices proportional to depth.

Vanishing/exploding gradients: gradients get very small/very large.

Key idea: introduce "identity shortcut" connection, skipping one or more layers.

Intuition: network can easily simulate shallower network (at initialization, F is not too far from 0 map), so performance should not degrade by going deeper.

[He, Zhang, Ren, Sun, CVPR 2016]

Residual Networks

Really, really deep convnets do not train well, E.g. CIFAR10:

Key idea: introduce "identity shortcut"

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

With ensembling, 3.57% top-5 test error on ImageNet

[He, Zhang, Ren, Sun, CVPR 2016]

Dense Convolutional Networks

Information in ResNets is only carried implicitly, through addition.

Idea: explicitly forward output of layer to *all* future layers (by concatenation).

Figure 2. A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature map sizes via convolution and pooling.

Intuition: helps vanishing gradients; encourage reuse features (& hence reduce parameter count);

Layers	Output Size	DenseNet- $121(k = 32)$	DenseNet-169 $(k = 32)$	DenseNet-201 $(k = 32)$	DenseNet- $161(k = 48)$	
Convolution	112 × 112	7×7 conv, stride 2				
Pooling	56 × 56	3 × 3 max pool, stride 2				
Dense Block	5656	[1×1 conv]	[1 × 1 conv]	[1 × 1 conv]	[1 × 1 conv]	
(1)	56 × 56	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$				
(1)	28 × 28	2×2 average pool, stride 2				
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	
Transition Layer	28 × 28	$1 \times 1 \text{ conv}$				
(2)	14 × 14	2×2 average pool, stride 2				
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 36 \end{bmatrix}$	
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 30}$	
Transition Layer	14 × 14	1 × 1 conv				
(3)	7 × 7	2×2 average pool, stride 2				
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 16 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 24 \end{bmatrix}$	
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	
Classification	1 × 1	7×7 global average pool				
Layer		1000D fully-connected, softmax				

Full architecture for Imagenet

[Huang, Liu, Weinberger, van der Maaten, CVPR 2017]

- Sheck gradients numerically by finite differences
- Solution
 Visualize features (feature maps need to be uncorrelated) and have high variance

Good training: hidden units are sparse across samples

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

- Sometimes of the contraction of the contraction
- Solution
 Visualize features (feature maps need to be uncorrelated) and have high variance

Bad training: many hidden units ignore the input and/or exhibit strong correlations

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

- Sheck gradients numerically by finite differences
- Solution
 Visualize features (feature maps need to be uncorrelated) and have high variance
- Wisualize parameters: learned features should exhibit structure and should be uncorrelated and are uncorrelated

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

- Sheck gradients numerically by finite differences
- Solution
 Visualize features (feature maps need to be uncorrelated) and have high variance
- Wisualize parameters: learned features should exhibit structure and should be uncorrelated and are uncorrelated
- Measure error on both training and validation set
- \mathfrak{S} Test on a small subset of the data and check the error $\rightarrow 0$.

When it does not work

Training diverges:

- Learning rate may be too large → decrease learning rate
- ➤ Backprop is buggy → numerical gradient checking

Parameters collapse / loss is minimized but accuracy is low

- Check loss function: is it appropriate for the task you want to solve?
- Does it have degenerate solutions?

Network is underperforming

- Compute flops and nr. params. → if too small, make net larger
- ➤ Visualize hidden units/params → fix optimization

Network is too slow

GPU, distrib. framework, make net smaller