Quality of Activity

Executive Summary

Using a Human Activity Benchmarking dataset created by 4 healthy subjects, this project builds a model to determine how a subject performs an excersize. There are 5 possible outcomes: sitting-down, standing-up, standing, walking, and sitting. A fitted model trained by data representing x, y, and z movements as recorded by various devices such as magnets and accelerators reveals the most optimal model is a Random Forest. The model here predicts how an excersize is performed with 99.45% accuracy. The model is then used to successfully predict results for 20 measures.

Pre-Processing

Data acquisition

Data for analysis is downloaded into the working directory and loaded into memory.

```
#test for existence to save download time from repeated runs of the project
if (!file.exists("training.csv"))
   download.file("http://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv","training.csv")
if (!file.exists("testing.csv"))
   download.file("http://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv","testing.csv")
#Read data into memory
training<-read.csv("training.csv", header=T,na.strings=c(""," ","na", "NA"))
testing<-read.csv("testing.csv", header=T,na.strings=c(""," ","na", "NA"))</pre>
```

Data processing

With data loaded, we build a tidy dataset by removing columns that are not valid for the model (too many NA values, not a measure of activity, etc).

```
#start a dataframe to hold the number of rows in the training & testing sets
tidyTrain<-data.frame(1:nrow(training))</pre>
tidyTest<-data.frame(1:nrow(testing))</pre>
#truncate the columns
tidyTrain<-tidyTrain[-1]
tidyTest<-tidyTest[-1]
#iterate through the training data
for (n in names(training)) {
  #determine the % of NA records
  x<-sum(is.na(training[n]))/nrow(training)
  #add the column to the tidy dataset if it has less than 90% NA values
  if (x<.9) {
    tidyTrain<-cbind(tidyTrain,training[n])</pre>
    #classe down not exist in the testing dataset, so avoid if the current column is classe
    if (n!="classe")
      tidyTest<-cbind(tidyTest,testing[n])</pre>
```

```
#Columns 1:7 can be removed from the tidy dataset as they represent
#information about who and when the excersize was performed and are
#not a measure of how the excersize was performed
tidyTrain<-tidyTrain[,-c(1:7)]
tidyTest<-tidyTest[,-c(1:7)]</pre>
```

Develop training and test sets

From the dataset available, create a training set using 75% of the data and a testing set using the remining 25%.

```
set.seed(12345)
#partition data 75/25 to build the model
inTrain<-createDataPartition(y=tidyTrain$classe,p=.75,list=F)
trainSet<-tidyTrain[inTrain,]
testSet<-tidyTrain[-inTrain,]</pre>
```

Modeling

Fitting various models

To derive the best model, compare results of Random Forest and Linear Discriminant Analysis. For each model, fit and predict

```
#Random Forest
fitRF<-randomForest(classe~.,data=trainSet,method="rf")
pRF<-predict(fitRF,newdata=testSet)
#LDA
fitLDA<-train(classe~.,data=trainSet,method="lda")
## Loading required package: MASS</pre>
```

```
pLDA<-predict(fitLDA,newdata=testSet)
```

Note: Generalized Linear Model is not compared as it is unable to determine final tuning parameters. In order to avoid overfitting, Naive-Bayes is not used.

Comparing the models

In comparing the models through a confusion matrix, Random Forest produces 99.45% accuracy whereas LDA results in 69.8% accuracy.

```
#Random Forest
confusionMatrix(pRF,testSet$classe)$overall[1]

## Accuracy
## 0.9944943

#Linear Discriminant Analysis
confusionMatrix(pLDA,testSet$classe)$overall[1]

## Accuracy
## 0.6980016
```

Choosing the best model

Due to its higher accuracy in testing, the Random Forest model is selected to predict the outcome of the input values in scope for this project.

Predicting the outcome

With the correct model identified, the following predicts the classe values using the Random Forest model.

```
p<-predict(fitRF,newdata=tidyTest)</pre>
```

Prediction Results

The following are the prediction results

```
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ## B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E
```

[1] "saving to file: problem 20 .txt - answer:

As a final step, results from running this model are also output to files in the working directory.

```
for (v in p) {
  i < -i + 1
  print(paste("saving to file: problem",i,".txt - answer: ",v))
  write(v,file=paste("problem",i,".txt"),append=F)
## [1] "saving to file: problem 1 .txt - answer:
## [1] "saving to file: problem 2 .txt - answer:
## [1] "saving to file: problem 3 .txt - answer:
## [1] "saving to file: problem 4 .txt - answer:
## [1] "saving to file: problem 5 .txt - answer:
## [1] "saving to file: problem 6 .txt - answer:
## [1] "saving to file: problem 7 .txt - answer:
## [1] "saving to file: problem 8 .txt - answer:
## [1] "saving to file: problem 9 .txt - answer:
## [1] "saving to file: problem 10 .txt - answer: A"
## [1] "saving to file: problem 11 .txt - answer:
## [1] "saving to file: problem 12 .txt - answer:
## [1] "saving to file: problem 13 .txt - answer:
## [1] "saving to file: problem 14 .txt - answer:
## [1] "saving to file: problem 15 .txt - answer:
## [1] "saving to file: problem 16 .txt - answer:
## [1] "saving to file: problem 17 .txt - answer:
## [1] "saving to file: problem 18 .txt - answer:
## [1] "saving to file: problem 19 .txt - answer:
```

Citations

Ugulino, W.; Cardador, D.; Vega, K.; Velloso, E.; Milidiu, R.; Fuks, H. Wearable Computing: Accelerometers' Data Classification of Body Postures and Movements. Proceedings of 21st Brazilian Symposium on Artificial Intelligence. Advances in Artificial Intelligence - SBIA 2012. In: Lecture Notes in Computer Science., pp. 52-61. Curitiba, PR: Springer Berlin / Heidelberg, 2012. ISBN 978-3-642-34458-9. DOI: 10.1007/978-3-642-34459-6_6.

More information, including the datasets themselves, is available at the following location: $\frac{http://groupware.}{http://groupware.}$ les.inf.puc-rio.br/har