Exploring Two Open Questions in Meta-Agent Design

Overview

Background

- Automated Design of Agentic Systems
- Archon: An Architecture Search Framework for Inference-Time Techniques
- Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
- Large Language Models as Tool Makers
- AFlow: Automating Agentic Workflow Generation

Research Problems

Simple Abstractions (SA)

```
import LanguageModel
output_fields = ["reasoning", "answer"] # Example output fields
lm_agent = LanguageModel(output_fields, mode="standard")
instruction = "Please think step by step and then solve the task."
stask_context = "Solve the equation x^2 - 4 = 0 for real x."
# Directly unpack the fields using the callable interface
reasoning, answer = lm_agent(task_context, instruction)

class AgentSystem:
    def __init__(self):
        # Initialize LanguageModel instances here.
        pass
def forward(self, prompt: str):
# Abstract method to be implemented by subclasses.
# Args: prompt (str): The input prompt for the agent.
# Returns: str: The agent's response.
raise NotImplementedError("Subclasses must implement.")
```

Dataset	ADAS Abstractions (172 lines)		Simple Abstractions (17 lines)	
	Agent Name	Test Acc.	Agent Name	Test Acc.
MGSM	LLM Debate	47.7 ± 4.3	LLM Debate	55.47 ± 4.3
MMLU	LLM Debate	72.7 ± 3.9	Chain of Thought	75.0 ± 3.7
DROP	Self-Quality-Diversity	67.2 ± 1.2	Majority Vote	73.93 ± 3.6

Table 2: Performance of Initial Agents with Simpler Abstractions, Test Acc. ± Std

Dynamic Context Management (DCM)

Dataset	CoT	ADAS	DCM	SA+DCMS
MGSM	35.9 ± 4.1	57.0 ± 4.3	66.4 ± 4.1	70.3 ± 3.9
MMLU	64.8 ± 4.1	74.2 ± 3.7	75.0 \pm 3.7	75.0 ± 3.7
DROP	63.5 ± 1.0	67.2 ± 1.2	74.0 ± 1.2	75.3 ± 3.5

Selected on Training

ADAS

 48.4 ± 4.3

 65.6 ± 4.1

 64.5 ± 1.0

DCM

64.8 \pm 4.1

 65.6 ± 4.1

74.0 \pm 1.2

Initial

 47.7 ± 4.3

 65.6 ± 4.1

 67.2 ± 1.2

Selected on Test

ADAS

 57.0 ± 4.3

 74.2 ± 3.7

 67.2 ± 1.2

Initial

 47.7 ± 4.3

 72.7 ± 3.9

 67.2 ± 1.2

DCM

66.4 \pm 4.1

75.0 \pm 3.7

74.0 \pm 1.2

0.02

Test Cost

0.03

0.04

0.00

Baseline

CoT

 35.9 ± 4.1

 64.8 ± 4.1

 63.5 ± 1.0

Dataset

MGSM

MMLU

DROP

Retrieval Augmented Routing (RADAR)

Dataset	CoT	ADAS	SA+DCMS	SA+DCMS+R		
MGSM	35.9 ± 4.1	48.4 ± 4.3	63.28 ± 4.1	71.09 ± 3.9		
DROP	63.5 ± 1.0	64.5 ± 1.0	67.68 ± 3.85	64.57 ± 3.9		

0.02

Test Cost

0.03

0.00

0.02

0.04

Test Cost

0.06