VARIÁVEL ALEATÓRIA

Introdução

Ao lançar um dado dez vezes, foram obervados os seguintes resultados:

numero	valor
Lançamento 1	6
Lançamento 2	3
Lançamento 3	3
Lançamento 4	6
Lançamento 5	1
Lançamento 6	4
Lançamento 7	5
Lançamento 8	2
Lançamento 9	5
Lançamento 10	5

Vamos contar quantas vezes saiu cada uma das faces e elaboramos uma nova tabela:

numero	frequência
1	1
2	1
3	2
4	1

numero	frequência
5	3
6	2

Esta tabela constitui o que chamamos de *Distribuição da Variável Aleatória* com sua frequência n.

Distribuição de probabilidade

Com isso, podemos calcular uma distribuição de probabilidade.

VA\$probabilidade = VA\$frequência/10
VA %>% flextable()

numero	frequência	probabilidade
1	1	0.1
2	1	0.1
3	2	0.2
4	1	0.1
5	3	0.3
6	2	0.2

Podemos agora calcular o valor esperado.

$$E[x] = x * p(x)$$

$$E[x] = 1 * 0, 1 + 2 * 0, 1 + 3 * 0, 2 + 4 * 0, 1 + 5 * 0, 3 + 6 * 0, 2 = 4$$