CORDIC in Matlab / Octave

Octave Special Functions

Copyright (c) 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Based on the following site:

John Burkardt

CORDIC Approximation of Elementary Functions

http://people.sc.fsu.edu/~jburkardt/m_src/cordic/cordic.html

angle shift (1)

if
$$\alpha < \beta$$

if
$$\alpha < \beta$$
 $\gamma = \beta - mod(\beta - \alpha, 2\pi) + 2\pi$

else

$$y = \beta + mod(\alpha - \beta, 2\pi)$$

$$\beta = -\pi$$

if
$$\alpha < -\pi$$

if
$$\alpha < -\pi$$
 $\gamma = \pi - mod(-\pi - \alpha, 2\pi)$

$$y = -\pi + mod(\alpha + \pi, 2\pi)$$

$$-\pi < \gamma < +\pi$$

angle_shift (2)

$$if \quad \alpha < -\pi \qquad y = \pi - mod(-\pi - \alpha, 2\pi)$$

$$else \qquad \gamma = -\pi + mod(\alpha + \pi, 2\pi)$$

angle_shift (3)

$$if \quad \alpha < -\pi \qquad \gamma = \pi - mod(-\pi - \alpha, 2\pi)$$

$$else \qquad \gamma = -\pi + mod(\alpha + \pi, 2\pi)$$

$$-\pi < \gamma < +\pi$$

angle_shift (3)

cossin cordic (1)

input

 β angle in radian

the number of iterations

$$\theta = angle _shift(\beta, -\pi)$$

$$-\pi < \theta < +\pi$$

$$\theta < -\frac{\pi}{2}$$
 $\theta \leftarrow \theta + \pi$

$$\theta \leftarrow \theta + \pi$$

 $signfactor \leftarrow -1.0$

$$\theta > +\frac{\pi}{2}$$
 $\theta \leftarrow \theta - \pi$

$$\theta \leftarrow \theta - \pi$$

 $signfactor \leftarrow +1.0$

$$-\frac{\pi}{2} < \theta < +\frac{\pi}{2}$$
 , signfactor

$$\cos(\theta - \pi) = -\cos\theta$$
$$\sin(\theta - \pi) = -\sin\theta$$

$$\tan(\theta - \pi) = -\tan\theta$$

cossin_cordic (2)

$$\theta < 0 \Rightarrow \sigma = -1$$
 $\theta > 0 \Rightarrow \sigma = +1$

$$\theta = \theta - \sigma \cdot angle$$

$$60 < j+1$$
 angle = angle/2
angle = angles(j+1)

angles (60)
angles (1)
$$\Rightarrow \tan^{-1}(\frac{1}{2})$$

angles (2) $\Rightarrow \tan^{-1}(\frac{1}{2^2})$
angles (3) $\Rightarrow \tan^{-1}(\frac{1}{2^3})$

$$poweroftwo = 1.0$$

$$factor = \sigma \cdot poweroftwo$$

$$\left(\frac{1}{2}\right)^{L} = \left(\frac{1}{2}\right)^{j-1}$$

$$j = 1$$
 \Rightarrow poweroftwo = 1.0
 $j = 2$ \Rightarrow poweroftwo = $1/2^{1}$
 $j = 3$ \Rightarrow poweroftwo = $1/2^{2}$

cossin_cordic (3)

$$R = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{bmatrix}$$
$$= \cos \theta_i \begin{bmatrix} 1 & -\tan \theta_i \\ \tan \theta_i & 1 \end{bmatrix}$$

$$\tan \theta_i = \pm 1, \ \pm \frac{1}{2}, \ \pm \frac{1}{2^{2}}, \cdots$$

 $factor = \sigma \cdot poweroftwo$

References

- [1] http://en.wikipedia.org/
- [2] http://people.sc.fsu.edu/~jburkardt/m_src/cordic/cordic.html