Gorenstein Fano 3-folds of Picard number 1 with a 2-torus action

juw. Jürgen Hausen

arxiv: 2108.03029

github.com/abaene-le/fano-3d-lt-gor-rho-1

Q-factorial Fano 3-folds with a torus action

Tax 3-dim. norm. Q-fact. proj. variety/C, -Kx ample, log terminal.

Complexity: dim X -dimT, Picard number: p=rk (Pic(X)), Gorenstein indexit=min {k≥1;-kKx Cartier}

Some classification results:

	toric		CPIX 1			cplx 22		
smooth:	18	[BN 81]		20	[Six, 40]		67	[Is 77/78], [MoMu 81/82]
terminal;	233 (634)	[Ka06]	(p=1)	47	[BellaHuN: 16]			
canonical:	(634) 12,190 (674,688)	[Ka 10]	(p=1, =1)	538	[_4~21]	(cplx2)	≥4 9	[H: W- 13]

[BrKa22]: = 39,550 Hilbert series of sr. Mori-Fano 3-folds

Fake weighted projective spaces

$$H = C^* \times C$$
, $C = C(m_k) \times ... \times C(m_k)$

Hom. coord. [20,..., Zd], [2] = [2'] 4=0 2' = h. &

$$C[T_0,...,T_d] = \bigoplus C[T_0,...,T_d]_{\omega}$$

$$\omega \in \mathbb{X}(H)$$

$$D_i = V(T_i) := \{ [2] \in \mathbb{Z} ; \ z_i = 0 \}, \quad U_i := \mathbb{Z} \setminus D_i \}$$

$$0 \rightarrow P^{\text{Div}^{\top}}(\mathcal{Z}) \rightarrow W^{\text{Div}^{\top}}(\mathcal{Z}) \rightarrow Cl(\mathcal{Z}) \rightarrow 0$$

$$= \int_{\mathcal{Z}^{\text{div}}}^{\text{div}(\mathcal{X}^{*})} = \int_{\mathcal{X}^{\text{div}}}^{\mathcal{Z}_{\text{div}}} = \int_{\mathcal{X}^{\text{div}}}^{\mathcal{Z}_{\text{div}}} = 0$$

$$0 \rightarrow X(T) \rightarrow X(T^{\text{div}}) \rightarrow X(H) \rightarrow 0$$

$$0 \to \mathbb{X}(T) \to \mathbb{X}(T^{\mathbb{A}^{1}}) \to \mathbb{X}(H) \to$$

$$H = \mathbb{C}^* \times \{\pm 1\}$$

$$(\omega_{0}, ..., \omega_{4}) = \begin{pmatrix} 2 & 2 & 2 & 3 & 1 \\ 7 & 0 & 0 & 7 & 0 \end{pmatrix}$$

$$(t, 3) \cdot 2 = (t^{2} 3 2_{0}, t^{2} 2_{1}, t^{2} 2_{2}, t^{3} 2_{3}, t^{2} 2_{3}, t^{2} 2_{4})$$

$$P\left(\begin{array}{cccc} 2 & 2 & 2 & 3 & 1 \\ 7 & 0 & 0 & 7 & 6 \end{array}\right) = \left(\left(\begin{array}{c} 5 \\ 2 & 2 & 2 \end{array}\right) / \left(\begin{array}{c} * \\ 2 & 2 \end{array}\right)$$

A natural embedding

X non-toric Q-fact. Fano 3-fold, cplx1, p=1.

There are (i)
$$r \ge 2$$
, (ii) $n_0 \ge ... \ge n_r \ge 1$, (iii) $m \ge 0$,

(iv)
$$l_i \in \mathbb{Z}_{\geq 1}^{n_i}$$
, $n_i l_{i_1} > 1$, (v) $\lambda_1, ..., \lambda_{r-2} \in \mathbb{C}^* \setminus \{1\}$,

With n+m= n.+ ... +n+m= ++3, such that:

$$\times = \bigvee \begin{pmatrix} T^{l_{+}} & T^{l_{1}} & T^{l_{1}} \\ \lambda_{1}T^{l_{+}} & T^{l_{1}} & T^{l_{2}} \\ \vdots & \vdots & \vdots \\ \lambda_{rx}T^{l_{r}} & T^{l_{r}} & T^{l_{r}} \end{pmatrix} \subseteq \mathbb{P} \left(\omega_{ij}, \omega_{k}; 0 \leq i \leq r, 1 \leq j \leq n_{i}, 1 \leq k \leq n_{i} \right) = Z$$

with deg(go)=...= deg(gr-z), Dijlx, Dklx pw. dist. prime div., Cl(X)≅Cl(Z).

Adjunction formula: - Kx = - Kz/x-(-1) deg(g.).

Goal: Good bounds.

$$r=2$$
, $n_0=2$, $n_1=n_2=1$, $m=1$, $l_0=(2,1)$, $l_1=(3)$, $l_2=(2)$.

$$X = \bigvee \left(T_{0A}^{2} T_{02} + T_{AA}^{3} + T_{2A}^{2} \right)$$

$$\subseteq \mathbb{P} \left(\frac{2}{4} \frac{2}{0} \frac{2}{0} \frac{3}{4} \frac{1}{0} \right)$$

deg (go) =
$$\left(\frac{6}{0}\right)$$

- $K_{x} = \left(\frac{10}{0}\right) - \left(\frac{6}{0}\right) = \left(\frac{4}{0}\right) \in \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

Log terminality

Theorem [BeHalfun:16]:

 $(a_1b_1c) = (x,y,1), (y,2,2), (5,3,2), (43,2), (3,3,2).$

(iii)
$$\Gamma = 4$$
, $n_0 = n_1 = 2$, $n_2 = n_3 = n_4 = 1$, $m = 0$.
(iv) $\Gamma = 2$, $n_0 = 3$, $n_4 = n_2 = 1$, $m = 0$.
(v) $\Gamma = 3$, $n_0 = 3$, $n_4 = n_2 = 1$, $m = 0$.

(iv)
$$\Gamma = 2_{\ell}$$
 $n_0 = 3$, $n_1 = n_2 = 1$, $m = 0$.
(v) $\Gamma = 3$, $n_0 = 3$, $n_1 = n_2 = n_3 = 1$, $m = 0$.

(vi)
$$\Gamma = 2$$
, $n_0 = 2$, $n_1 = n_2 = 1$, $m = 1$.

((a, l, l, l, l) = (2,3,2) Case (a,b,c)=(y,2,2)

(loz, lm, lzn) = (1,3,2) Case (a,b,c)=(x,y,1)

(vi)
$$\Gamma = 2$$
, $n_0 = 2$, $n_4 = n_2 = 7$, $m = 7$.
(vii) $\Gamma = 3$, $n_a = 2$, $n_4 = n_2 = n_3 = 1$, $m = 1$.

(i) r = 2, $n_0 = n_1 = 2$, $n_2 = 1$, m = 0.

(ii) r=3, no= n1 = 2, n2 = n3=1, m=0.

 $X = V(T_{01}^{2}T_{02} + T_{41}^{3} + T_{21}^{3})$

(viii)
$$\Gamma = 2$$
, $n_a = n_1 = n_2 = 1$, $m = 2$.

Gorenstein

 $X \subseteq Z$. $CL(X) \cong CL(Z)$. In general $Pic(X) \neq Pic(Z)$.

Z' & Z min. with X = Z'. Pic(X) = Pic(Z').

vo,..., Va prim. ray gen. of ∑(Z), U:⊆Z.

D=a.D.+..+a.D. Cartier Dlu: = div (X") lui

 \mathcal{D} -div $(\chi^{\alpha}) = (\alpha_i - \langle u_i v_i \rangle) \mathcal{D}_i$

 $X = V(T_{0}^{2}T_{1}+T_{2}+T_{3}^{2}) \subseteq Z' \subseteq \mathbb{P}(\omega_{0},...,\omega_{4}), \omega_{i} = (w_{i}, y_{i})$ $-k_{x} = -w_{0} + w_{2} + w_{3} + w_{4} = a_{i} w_{i}, i = 0,1,4$

$$\langle (W_0, ..., W_4) \rangle = \ker \begin{pmatrix} -1 - a_0 & 0 & 1 & 1 & 1 \\ -1 & -a_1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 & 1 - a_4 \\ -2 & -1 & y & 0 & 0 \\ -2 & -1 & 0 & 2 & 0 \end{pmatrix} = : G$$

$$1 = \frac{1}{a_{4}} + \frac{1}{2a_{1}} + \frac{1}{y} \left(\frac{2}{a_{0}} + \frac{1}{a_{1}} \right) = \frac{1}{a_{0}y} + \frac{1}{a_{0}y} + \frac{1}{2a_{1}} + \frac{1}{a_{1}y} + \frac{1}{a_{4}}$$

$$X = V(T_0^2 T_1 + T_2^3 + T_3^2) \subseteq P(\frac{2}{3} = \frac{2}{5} = \frac{3}{5} = \frac{1}{5}) = Z$$

$$Cl(X) = Cl(Z) = Z \times Z/2Z$$

$$P_{ic}(x) = \langle \begin{pmatrix} 4 \\ \bar{o} \end{pmatrix} \rangle \neq \langle \begin{pmatrix} 42 \\ \bar{o} \end{pmatrix} \rangle = P_{ic}(z)$$

Max. cones of 21:

cone (V₄₁V₂₁V₃₁V₄), cone (V₆₁V₂₁V₃₁V₄), cone (V₆₁V₄₁V₂₁V₃), cone (V₆₁V₄₁V₄).

$$y = 3$$
, $(W_0, ..., W_4) = (2, 2, 2, 3, 1)$

$$G_{1} = \begin{pmatrix} -3 & 0 & 1 & 1 & 1 \\ -1 & -2 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 & -3 \\ -2 & -1 & 3 & 0 & 0 \\ -2 & -1 & 0 & 2 & 0 \end{pmatrix}$$

$$1 = \frac{1}{4} + \frac{1}{22} + \frac{1}{3} \left(\frac{2}{2} + \frac{1}{2} \right) = \frac{1}{6} + \frac{1}{6} + \frac{1}{4} + \frac{1}{6} + \frac{1}{4}$$

Classification

X Q-fact log term. Gorenstein Fano 3-fold, p=1, cplx 1.

log terminal

log terminal

5 plat. exp. - conf.

Gorenstein

Matrices Go/weights (Wo,..., Wo)

$$(\Gamma, h_0, ..., h_r, m) = (2, 2, 1, 1, 1)$$

$$(l_{01}, l_{11}, l_{21}) = (2, 3, 2); (y, 2, 2)$$

 $(l_{02}, l_{11}, l_{21}) = (1, 3, 2); (x, y, 1)$

$$a_0 = a_1 = 2$$
, $a_4 = 4$, $(w_1, ..., w_4) = (2, 2, 2, 3, 1)$

$$V(T_{0}^{2}T_{1}+T_{2}^{3}+T_{3}^{2}) \subseteq \begin{cases} P(2,2,2,3,1) \\ P(\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{1}{5}) \end{cases}$$

Classification results

Theorem [_Ha]: There are 538 families of non-toric, Q-factorial, log terminal, Gorenstein Fano 3-folds of complexity 1 and Picard number 1. Every such X is isomorphic to exactly one member of one of those families.

divisor class group	$sporadic\ varieties$	$true\ families$
$\mathbb Z$	242	$\it 3~one\mbox{-}dim.$
$\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$	163	$4\ one$ -dim.
$\mathbb{Z}\times(\mathbb{Z}/2\mathbb{Z})^2$	46	$5 \ one\text{-}dim., \ 1 \ two\text{-}dim.$
$\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^3$	6	$1\ one-dim.$
$\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$	4	$1\ one\mbox{-}dim.$
$\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/6\mathbb{Z}$	1	0
$\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$	26	$1\ one-dim.$
$\mathbb{Z} \times (\mathbb{Z}/3\mathbb{Z})^2$	1	0
$\mathbb{Z} imes \mathbb{Z}/4\mathbb{Z}$	18	$1\ one\mbox{-}dim.$
$\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$	4	0
$\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$	8	0
$\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$	2	0

Outlook

Direct generalization for L = 2.

Direct generalization to higher dimensions

Almost every smooth Fano 3-fold with p=1 has a small one-parameter degeneration to a normal Generation Fano 3-fold of $cplx \le 1$.

(*Constructed explicitly except for X_{14})

Thank you for your attention!