

"ALEACIONES NO FERROSAS"

CIENCIA DE LOS MATERIALES

Dr. Claudio Careglio

Hay cerca de 70 elementos de metales no ferrosos

Elemento		Fe	Mg	Ti	Mn	Zn	Ni	Cu	Pb
%	7.5	4.7	1.9	0.58	0.1	0.02	0.018	0.01	0.002

- El Al es uno de los elementos de mayor disponibilidad en la Tierra, pero no se utiliza tan extensamente como el Fe.
- La principal industria de metal en el mundo son las aleaciones ferrosas. Sin embargo estas tienen varias desventajas:
 - Alta densidad
 - Baja conductividad eléctrica
 - Susceptibilidad a la corrosión en algunos medio ambientes comunes
- Debido a las limitaciones / desventajas de aleaciones ferrosas anteriormente, los metales no ferrosos son una alternativa.
- Los metales no ferrosos son cada vez más importante en la ingeniería, ya que pueden proporcionar una gama ilimitada de propiedades.

- Metales o aleaciones no férreas:
 - Se definen como metales o aleaciones para las que el principal constituyente no es el hierro
 - Ejemplos: aluminio (Al), cobre (Cu), magnesio (Mg), zinc (Zn), titáneo (Ti), etc.
- No ferrosos generalmente tienen alto costo, ya que se requiere de mayor costo de producción y en algunos casos hay baja disponibilidad.
- No ferrosos se pueden clasificar en:
 - Metales ligeros: Densidad (ρ) <4.5g cm⁻³; por ejemplo Li, Be, Al, Mg
 - Metales pesados: Densidad (ρ)>4.5g cm⁻³; por ejemplo Cu, Pb, Mn,
 Co

- Los metales puros no ferrosos son mejores si se combinan con una pequeña cantidad de otros elementos: esto se denomina aleaciones
- Aleaciones no ferrosas pueden ser:
 - Aleaciones de fundición: aleaciones que generalmente son frágiles, donde la conformación y formación no es posible
 - Aleaciones forjadas aleaciones que pueden ser modificadas por deformación mecánica

- Comentarios adicionales:
 - Aleaciones
 - Moldeadas: sólo se conforman por moldeo dada su fragilidad.
 - Hechuradas: aquellas que soportan deformaciones plásticas.
 - Aleaciones "tratables térmicamente".
 - Resistencia específica a la tensión
 - Relación entre resistencia a la tracción y densidad (aunque una aleación de estos metales tenga una resistencia inferior a la de un material más denso, como por ej. el acero, para un peso determinado puede soportar una carga mayor)

- Proceso de fabricación:
 - Los procesos de fabricación de metales no ferrosos son similares a los aleaciones ferrosas
 - Procesos de fabricación / manufactura de metales:
 - Trabajo en caliente

Ej: forjado, laminación (en caliente), extrusión

Trabajo en frío

Ej.: laminación (en frío), trefilado, estampado

Fundición

- En su estado puro, es la columna vertebral de la industria eléctrica.
- Latón y bronce: son aleaciones de cobre
- 3 factores principales para la aplicación del cobre:
 - Alta conductividad eléctrica y térmica
 - Alta ductilidad
 - Resistencia a la corrosión

Clasificación de las aleaciones de Cu (1)

	Aleaciones forjadas
C1xxxx	Cobres* y aleaciones con alto contenido de cobre†
C2xxxx	Aleaciones de cobre-zinc (latones)
C3xxxx	Aleaciones de cobre-zinc-plomo (latones plomados)
C4xxxx	Aleaciones de cobre-zinc-estaño (latones de estaño)
C5xxxx	Aleaciones de cobre-estaño (bronces de fósforo)
Сбхххх	Aleaciones de cobre-aluminio (bronces de aluminio), aleaciones de cobre-silicio (bronces de silicio) y aleaciones diversas de cobre-zinc
C7xxxx	Aleaciones de cobre-níquel y de cobre-níquel-zinc (niquelados plateados)
	Aleaciones fundidas
C8xxxx	Cobres forjados, aleaciones con alto contenido de cobre, latones fundidos de diversos tipos, aleaciones fundidas de manganeso-bronce y aleaciones fundidas de cobre-zinc-silicio
C9xxxx	Aleaciones fundidas de cobre-estaño, aleaciones de cobre-estaño-plomo, aleaciones de cobre-estaño-níquel, aleaciones de cobre-aluminio-hierro y aleaciones de cobre-níquel-hierro y de cobre-níquel-zinc

^{*}Los "cobres" tienen un contenido mínimo de 99.3 por ciento o más de cobre.

(1) Sistema de la "Copper Development Association"

[†]Las aleaciones de alto contenido de cobre tienen menos de 99.3 por ciento de Cu, pero más del 96 por ciento y no encajan en los otros grupos de aleaciones de cobre.

Propiedades mecánicas características y aplicaciones

Número de	Composición		Resistencia a la tensión		Límite elástico		Elongación		
aleación	química (% en peso)	Estado	ksi	MPa	ksi	MPa	en 2 pulg (%)	Aplicaciones típicas	
		A	Lleacion	es forjad	as				
C10100	99.99 Cu	Recocido Trabajado en frío	32 50	220 345	10 45	69 310	45 6	Conductores comunes, guías de ondas, conductores huecos, alambre de acometida y ánodos para tubos de vacío, sellos al vacío, componentes de transistores, sellos de vidrio a metal, cables y tubo coaxiales, klistrones, tubos de microondas, rectificadores	
C11000 (ETP)	99.9 Cu, 0.04 O	Recocido Trabajado en frío	32 50	220 345	10 45	69 310	45 6	Canalones, techos, juntas, ra- diadores de automóvil, barra- colectoras, clavos, cilindros de impresión, remaches, partes para equipo de radio	
C26000	70 Cu, 30 Zn	Recocido Trabajado en frío	47 76	325 525	15 63	105 435	62 8	Elementos y tanques de ra- diador, cuerpos cilíndricos de lámparas de mano, accesorios de iluminación, sujetadores, cerraduras, bisagras, componentes de munición, accesorios de plomería, goznes, remaches	
C28000	60 Cu, 40 Zn	Recocido Trabajado en frío	54 70	370 485	21 50	145 345	45 10	Tuercas y pernos grandes para arquitectura, varillas de soldadura, placas de con- densador, tuberías de inter- cambiadores de calor y con- densadores, forjas en caliente	
C17000	99.5 Cu, 1.7 Be, 0.20 Co	SHT* SHT, CW, PH*	60 180	410 1 240	28 155	190 1 070	60 4	Fuelles, tubos Bourdon, diafrag mas, sujetafusibles, retenes, arandelas de presión, resorte: partes de interruptor, pasado- res de rodillos, válvulas, equipo para soldar	
C61400	95 Cu, 7 Al, 2 Fe	Recocido Trabajado en frío	80 89	550 615	40 60	275 415	40 32	Tuercas, pernos, riostras y miembros roscados, recipientes y tanques resistentes a la corrosión, componentes estructurales, partes de máquinas, tubos y sistemas de tubería para condensadores, revestimientos de protección y sujetadores marítimos	
C71500 te tratada: CW	70 Cu, 30 Ni V = trabajado en frío; PH	Recocido Trabajado en frío = endurecido por	55 84 precip	380 580 itación.	18 79	125 545	36 3	Relés de comunicaciones, condensadores, placas de condensador, resortes eléctri- cos, tubos de evaporadores e intercambiadores de calor, casquillos, resistores	

^{*}SHT = solución térmicamente tratada; CW = trabajado en frío; PH = endurecido por precipitación

 Propiedades mecánicas características y aplicaciones (...continuación)

		A	leacion	es fundid	as			
C80500	99.75 Cu	Fundido tosco	25	172	9	62	40	Conductores eléctricos y térmicos; aplicaciones resis- tentes a la corrosión y a la oxidación
C82400	96.4 Cu, 1.70 Be, 0.25 Co	Fundido tosco Tratamiento térmico	72 150	497 1 035	37 140	255 966	20 1	Herramientas de seguridad, moldes para partes de plástico, levas, boquillas, cojinetes, válvulas, partes de bomba, engranajes
C83600	85 Cu, 5 Sn, 5 Pb, 5 Zn	Fundido tosco	37	255	17	117	30	Válvulas, bridas, accesorios de cañería, productos de plomería, fundiciones de bombas, ruedas de paletas y carcasas de bombas, accesorios ornamentales, engranajes pequeños
C87200	89 Cu, 4 Si	Fundido tosco	55	379	25	172	30	Cojinetes, cinturones, ruedas de paletas para bombas y componentes de válvulas, anillos de cerrado, codos que favorecen la resistencia a la corrosión
C90300	93 Cu, 8 Sn, 4 Zn	Fundido tosco	45	310	21	145	30	Cojinetes, boquillas, ruedas de paletas para bombas, anillos de pistón, compo- nentes de válvulas, anillos de sellado, conectores para vapor, engranajes
C95400	85 Cu, 4 Fe, 11 Al	Fundido tosco Tratamiento térmico	85 105	586 725	35 54	242 373	18 8	Cojinetes, engranajes, tornillos sin fin, asientos y guías de válvula, ganchos de decapado
C96400	69 Cu, 30 Ni, 0.9 Fe	Fundido tosco	68	469	37	255	28	Válvulas, carcasas de bomba, bridas, codos que favorecen la resistencia a la corrosión por agua de mar

^{*}SHT = solución térmicamente tratada; CW = trabajado en frío; PH = endurecido por precipitación.

COBRE Y SUS ALEACIONES: Latón

- cobre + cinc = latón
- Características
 - Aleaciones con 5 a 40% de Zn
 - Buena moldeabilidad
 - Resistencia a la corrosión
 - Capacidad de endurecimiento en frío

- En la mayoría de los casos el latón aumenta su dureza con el aumento en el contenido de zinc
- Aplicaciones
 - joyería de fantasía, radiadores de automóviles, monedas, etc.

COBRE Y SUS ALEACIONES: Latón

Diagrama fases

α y η: fases terminales
 (fases en solución sólida que se presentan al final de los diagramas de fases en los

final de los diagramas de fases, en los imites de los componentes puros)

- β, γ, δ y ε: fases intermedias

 (se presentan en un rango de composiciones dentro del diagrama de fases y están separadas de otras fases en un diagrama binario, por regiones de dos fases)
- 5 puntos peritécticos

fase intermedia δ)

1 punto eutectoide
 (en el punto más bajo de la región de la

COBRE Y SUS ALEACIONES: Latón

- Ejemplos de microestructuras
 - Microestructuras de cartuchos de latón

70%Cu-30%Zn

Estructura (una fase): α

 Plancha de metal Muntz laminado en caliente

60%Cu-40%Zn

Estructura: fases β (oscura) y α (clara)

COBRE Y SUS ALEACIONES: Bronce

- cobre + estaño = bronce
- Más resistente que el latón.
- Aumenta la resistencia si el estaño contenido es de hasta el 20% en peso (aunque la aleación se vuelva frágil para determinado % de Sn).
- Otras características:
 - Buena resistencia y tenacidad
 - Resistencia al desgaste
 - Resistencia a la corrosión (aunque desarrollan pátina que es la capa de sales de cobre que se produce sobre la superficie de dicho metal tras el proceso de la corrosión del cobre)
 - Bajo coeficiente de fricción
- Aplicaciones
 - cojinetes, engranajes y accesorios sometidos a carga de compresión alta, etc.

COBRE Y SUS ALEACIONES: cobre-berilio

Características

- 0.6 a 2% de Be
- Estas aleaciones endurecen por precipitación y pueden ser tratadas en caliente y trabajadas en frío para obtener alta resistencia (1463 MPa)
- Resistencia a la corrosión, buena propiedades de dureza y a la fatiga.
- Relativamente costosos.

Aplicaciones

herramientas que requieren dureza y no desprenden chispas.

- Características del aluminio y de sus aleaciones
 - Relativamente baja densidad (2.7 g cm⁻³), en comparación con la del acero (7,9 g cm⁻³)
 - Alta conductividad eléctrica y térmica
 - Resistencia a la corrosión (debido a la película de óxido tenaz que se forma en su superficie)
 - Alta ductilidad, el Al puro se puede laminar y es fácil de conformar
- Principales elementos de aleación en aleaciones de Al:
 Cu, Mg, Si, Mn y Zn
- Aplicaciones
 - transporte, construcción, , embalaje (debido a sus características no tóxicas), productos del hogar, producto, piezas de máquinas, etc.

Clasificación de aleaciones de Al

Para forja

Familia de aluminio	Designación
Aluminio puro, 99% mínimo	1xxx
Aluminio-Cobre	2xxx
Aluminio-Manganeso	3xxx
Aluminio-Silicio	4xxx
Aluminio-Magnesio	5xxx
Aluminio-Magnesio-Silicio	6xxx
Aluminio-Zinc	7xxx
Otros elementos, Al-Sn, etc.	8xxx

Para fundición

Aluminio, 99.00% como mínimo o más	1xx.x
Aleaciones de aluminio agrupadas según los principales elementos aleados:	
Cobre	2xx.x
Silicio con cobre y/o magnesio agregado	3xx.x
Silicio	4xx.x
Magnesio	5xx.x
Zinc	7xx.x
Estaño	8xx.x
Otros elementos	9xx.x
Series no utilizadas	6xx.x

Designación por grado de endurecimiento

Designación	Subdivisión	Tratamiento
F		Material tal como se ha fabricado. Sin control en el endurecimiento por deformación.
0		Recocida y recristalizada. Endurecimiento con mínima resistencia y máxima ductilidad.
Н		Endurecimiento por deformación, trabajada en frío.
	H1	Endurecido sólo por deformación. El grado de endurecimiento se indica mediante un segundo dígito, H12, hasta el endurecimiento total, H18, que proporciona aproximadamente una reducción del 75%.
	H2	Endurecido por deformación y recocido parcial. Igualmente se indica con un segundo dígito el nivel de trabajado en frío.
	H3	Endurecido por deformación y estabilizado a bajas temperaturas para evitar el endurecimiento por envejecimiento.

Designación por tratamiento térmico

T1: Producto enfriado desde la temperatura de fabricación, y luego envejecido naturalmente

T3 : Solución, trabajada en frío y envejecimiento natural

T4 : Solución y envejecimiento natural

T5: igual a T1, pero envejecimiento artificial

T6: igual a T4, pero envejecimiento artificial

T7 : Solución y estabilizado

T8 : Solución, trabajado en frío y envejecimiento artificial

Propiedades mecánicas características y aplicaciones

	Composición química, % peso	Tratamiento	Resistencia a tracción MPa	Limite elástico MPa	Alargamiento %	Aplicaciones típicas
	N .		Aleacion	nes par	a forja	
1100	>99Al, 0.12Cu	Recocido (O) Trab. en frío (H14)	89 124	24 97	25 4	Componentes eléctricos, hojas metálicas finas (papel).
3003	1.2Mn	Recocido (O) Trab. en frío (H14)	117 159	34 149	23 7	Recipientes a presión, resistencia a corrosión, hojas metálicas finas.
5052	2.5Mg, 0.25Cr	********	193 262	65 179	18 4	Transportes, metal de relleno en soldadura, recipientes, componentes marinos.
2024	4.4Cu, 1.5Mg, 0.6Mn	Recocido (O) Tratamiento T6	220 442	97 345	12 5	Estructuras aeronáuticas.
6061	1.0Mg, 0.6Si, 0.27Cu, 0.2Cr	Recocido (O) Tratamiento T6	152 290	82 345	16 10	Transportes, estructuras aeronáuticas y marinas y otras de alta resistencia.
7075	5.6Zn, 2.5Mg, 1.6Cu, 0.23Cr	Recocido (O) Tratamiento T6	276 504	145 428	10 8	Estructuras aeronáuticas y aerospaciales.
		7	Aleacione	s para f	undición	
355,0	5Si, 1.2Cu	Arena (T6) Molde metálico (T6)	220 285	138 -	2.0 1.5	Bombas domésticas, accesorios aeronáutica, cárter aviación.
356,0	7Si, 0.3Mg	Arena (T6), Molde metálico (T6)	207 229	138 152	3.0 3.0	Fundiciones de gran complejidad, ejes portadores de las motoras, ruedas de camiones.
332,0	9.5Si, 3Cu, 1.0Mg	Molde metálico (T5)	214			Pistones de automóviles.
413,0	12Si, 2Fe	Fundición en coquilla	297	145	2.5	Fundiciones complicadas.

Endurecimiento por precipitación

Endurecimiento por precipitación de una aleación binaria en general
 En una aleación tratada térmicamente
 crear dispersión de partículas precipitadas
 en una matriz de metal deformable.
 Estas partículas obstaculizan el movimiento de las dislocaciones.

Diagrama de fases binario para dos metales A y B que tienen una solución sólida terminal α que tiene una solubilidad sólida decreciente de B en A conforme baja la temperatura.

Etapas del endurecimiento por precipitación

- Tratamiento térmico
- Templado
- Envejecimiento
 - Natural:

Envejecimiento de la aleación a temperatura ambiente

Artificial:

Envejecimiento de la aleación a temperatura entre 15% a 25% de la diferencia de temperatura entre la temperatura ambiente y la del tratamiento térmico de la solución

- Endurecimiento por precipitación en aleaciones de Al:
 - Zonas de precipitación o GP (Guinier y Preston).

ALUMINIO Y SUS ALEACIONES: Al-Cu

- Endurecimiento por precipitación
 - Serie 2XXX (Al-Cu). Ejemplo: Endurecimiento por precipitación de una

aleación Al – 4%Cu

Diagrama de fases Al-Cu

- Tratamiento térmico de precipitación
 - 1.Tratamiento térmico por solución: Solubilización a 515°C
 - 2.Templado: enfriado en agua a temperatura ambiente
 - 3.Envejecimiento: envejecido artificial (rango 130 a 190°C)
- Otras aleaciones endurecibles por precipitación
 - Serie 6XXX, Al-Mg-Si
 - Serie 7XXX, Al- Zn-Mg

- Características del magnesio y sus aleaciones
 - Pobre resistencia a termofluencia, fatiga y desgaste.
 - Aleaciones de difícil colabilidad y que en estado fundido arde en contacto con el aire.
 - Ductilidad limitada: su transformación en frío resulta difícil al cristalizar el Mg en una estructura hexagonal densa que no favorece su deformación.
 - Baja resistencia a la corrosión
 - Fractura frágil
 - Alta resistencia respecto a su peso (o alta relación resistencia/peso)

Propiedades:

- El más ligero de los metales de importancia comercial (densidad 1.75 g cm⁻³)
- Relativamente débil en estado puro
- Punto de fusión 651°C

- Tipos de aleaciones de Mg
 - Aleaciones de forja
 - Aleaciones de fundición.

En ambos tipos las aleaciones pueden mejorarse mecánicamente por tratamientos de deformación y tratamientos térmicos de envejecimiento.

- Elementos comunes de aleación
 - Al, Cu, Cd, Zr, Mn, Pb, Zn, Fe, Ni, Cr, Sn, Li
 - Al, Zn, Zr: promueve el endurecimiento por precipitación
 - Mn: aumento de la resistencia a la corrosión
 - Sn: aumenta la moldeabilidad

Propiedades mecánicas características y aplicaciones

UNE	Composición química, % peso	Tratamiento	Resistencia a tracción MPa	Límite elástico MPa	Alargamiento %	Aplicaciones típicas			
	Aleaciones para forja								
AZ31B	3AI, 1Zn,	Recocido	228		11	Equipos de cargas en aviones,			
	0.2Mn	Trab. frío (H24)	248	159	7	estantes y armarios metálicos.			
HM21A	2Th, 0.8Mn	Tratamiento T8	228	138	6	Láminas y chapas de misiles, hasta 425°C.			
Zk60	6Zn, 0.5Zr	Tratamiento T5	310	235	5	Usos espaciales en situaciones de elevadas deformaciones; extrusiones piezas forjadas.			
			Aleacion	es para fu	ındición				
AZ63A	6Zn, 3Al,	Molde metálico	179	76	4	Fundiciones en arena que requieren			
	0.15Mn	Tratamiento T6	235	110	3	buena resistencia a temperatura ambiente.			
EZ33A	3TR, 3Zn, 0.7Zr	Tratamiento T5	138	97	2	Fundiciones en molde metálico utilizados a 150-160°C.			

TR = Tierras raras.

- Características del titanio y sus aleaciones
 - Resistente
 - Liviano
 - Resistencia a la corrosión
 - Densidad: 4.54 g/cm³
 - Punto de fusión 1668°C
 - Límite elástico que puede ser elevado por elementos de aleación y tratamiento térmico, comparable a aleación de acero, pero la densidad es menor que la del acero (7,9 g cm⁻³).
 - Puede ser empleado en aplicaciones en condiciones de alta temperatura (ver "Superaleaciones")

- Desventajas
 - Alto costo
 - Dificultades de fabricación
 - Alta reactividad a elevadas temperatura
- Aplicaciones
 - industria química, aeroespacial, náutica, equipamientos varios, etc.

Propiedades mecánicas características y aplicaciones

Material	Resistencia a tracción (MPa)	Límite Elástico (MPa)	Alargamiento %
Titanio puro comercial 99,5% Ti 99,0% Ti	241 552	172 483	24 15
Aleaciones Ti α 5% Al, 2,5% Sn	862	779	15
Aleaciones Ti β 13% V, 11% <u>Cr</u> , 3% Al	1290	1214	5
Aleaciones Ti casi α 8% Al, 1% Mo, 1% V 6% Al, 4% Zr, 2% Sn, 2% Mo,	966 1007	828 993	14 3
Aleaciones Ti α + β 8% Mn 6% Al, 4% V 7% Al, 4% Mo 6% Al, 6% V, 2% Sn	966 1034 1172 1103	862 966 1034 1034	15 8 10 12

METALES REFRACTARIOS

- Metales que tienen muy alta temperatura de fusión
- Ejemplos: niobio (Nb), molibdeno (Mo), tungsteno (W), tantalio (Ta)
- Temperatura de fusión entre 2468-3410°C
- Propiedades
 - Gran módulo elástico
 - Alta resistencia y dureza a temperatura ambiente

METALES REFRACTARIOS

Aplicaciones

- Ta y Mb son elementos utilizados en aceros inoxidables para mejorar la resistencia a la corrosión.
- Mb utilizado en moldes (o matrices) de extrusión y en partes estructurales en vehículos espaciales, filamentos de luces incandecentes y tubos de rayos x
- W utilizado en electrodos de soldadura
- Ta para mejorar la resistencia química en todo medio ambiente por debajo de 150 ° C, usado para materiales resistentes a la corrosión

SUPERALIACIONES

- Se utilizan especialmente para componentes que tienen que soportar exposición a ambientes severamente oxidantes y altas temperaturas por períodos de tiempo razonables
- Se clasifican de acuerdo al componente principal de la aleación, que pueden ser: Co, Ni, Fe.
- Otros elementos incluidos son: metales refractarios (Nb, Mo, W, Ta), Cr y Ti
- Aplicaciones
 - reactores nucleares, equipos petroquímicos, componentes de las turbinas de los aviones, etc.

SUPERALIACIONES

METALES NOBLES

- Metales nobles son: plata, oro, platino, paladio, rodio, rutenio, iridio y osmio
- Tienen características físicas similares
- Costosos
- Superiores en sus propiedades. Por ejemplo: ductilidad, resistencia al calor, estabilidad química, altamente resistentes a la corrosión y oxidación.

METALES NOBLES

Aplicaciones

- Joyas
- Monedas. Por ejemplo la plata esterlina o "sterling silver" ("plata de ley") también llamada "Plata .925" tiene 92.5% de plata (la cual es blanda) y 7.5% de otro metal (generalmente cobre) para darle resistencia y conservar la ductilidad conservando la belleza del metal precioso. Es una de las más usadas para joyería y monedas de plata
- Aleación de oro y plata se utiliza en la restauración dental
- Oro se utiliza como contactos de circuitos integrados
- Platino en equipos químicos de laboratorio como catalizador y como termocupla para medir elevadas temperaturas

OTROS

- También debe considerarse
 - Niquel y sus aleaciones
 - Plomo y sus aleaciones
 - Estaño y sus aleaciones

21.5

19.3

RESUMEN

Criterio	Metal y sus	Density (g/cm³)						
Critcrio	aleaciones	25						
Baja densidad	Mg, Al, Ti	20 -						
(aleaciones ligeras)		15 -						10.5
Bajo punto de	Pb, Zn, Sn, Al, Mg	10 -			7.9	8.9	8.9	10.5
fusión		5 2	2.7	4.5				
Resistencia a la	Cu, Ni, Ti, Al	1.7	2.7					
corrosión		0	Δ1	т:	Fo	<u></u>	NI:	Λα
Resistencia al calor	W, Co, Ni, Cr, Mo	Mg	Al	Ti	Fe	Cu	Ni	Ag
Conductividad	Ag, Cu, Al	landanation a						
térmica y eléctrica		low density			\rightarrow		noble m	
Propiedades	Pb, Sn, Cu, Al (como	Mg				\	(Au, Pt,	Ag) T
antifricción	aleación)	_			Al	Pt	0	Cu

RESUMEN

