

Capstone Summer 2020: IR Theremin

Academic Advisor: Elaine Reeves, Joseph Decuir Industry Advisor: Asaad Kaadan Young Beum Cho Scott Bryar Geoffrey Powell-Isom Patricia Fang

SCHOOL OF STEM, ELECTRICAL ENGINEERING SCHOOL OF STEM, COMPUTER ENGINEERING UNIVERSITY OF WASHINGTON BOTHELL

Hexabitz IR Theremin Team Presents,

Height Adjustable Wheelchair

- Reducing strain injuries caused by overbearing load on patients upper bodies attempting to use the facilities.

HOW?

Past Development (Electrical)

- 4-Push Button Panel has been designed and installed to adjust wheelchair height
- Emergency Stop Panel has been designed and installed
- 4-Push Button Panel, Emergency Stop Panel, Motor Controller, and Arduino has been assembled

Push Button Panel Circuit Diagram

Past Development (Software)

- Initial Operation Stage has been created to avoid damage in gearbox (1.5cm Elevation)
- Emergency stop function has been implemented

Software Flowchart (Before)

Open Loop

Edge Cases

Another Approach: Multifunction Toilet Wheelchair

Past Development:

- Wheelchair allowing patients to access toilets without the need of leaving their wheelchair was developed.
- Crossbars with underside clearance was installed.
- Screw Jack Drivetrain used to raise and lower the lift is installed.
- Level circuitry, emergency stop button, and code
- 3D-printed mechatronic prototype

What to improve

- Accessing the facilities, through the seat.
- Lifting mechanism
 - Slow (appr. 2.8 cm/min, 1.437 rps)
 - Inefficient height control
 - Creates unwanted strain on upper extremities
 - Modular
- Better efficiently update position value using EEPROM with Arduino and tackle software edge cases

Types of Stepper Motors

HT17- less than .54 N*m of holding torque

HT23 - .59 to 1.90 N*m of holding torque

HT24 - .86 to 2.50 N*m of holding torque

Required for a 91 kg human

.7062 N*m

Choices

HT23, specifically the HT23-601

- 1.8996 N*m
- \$94.34

Torque vs rps

Initial Design

2nd Iteration

2nd Iteration mount connection

Control placement

Motor Mount

Edge Cases

Solution: Voltage Regulator & Power Loss Detector

System Damage	1 otomiai damage to	
Upon Failure	Arduino (Can be	X
	caused by broken	
	voltage regulator)	
O: Solved, X: Not Solved		

Unified Battery

Regulator

Supply & Voltage

Potential damage to

Power Outage

0

X

Detector

Criteria

Edge Case [1]

Edge Case [2]

System Damage

Power Loss Detector Circuit Chosen

X Arduino (Can be caused by broken voltage regulator)

Both

0

0

Potential damage to

Prototype A

By adding three capacitors in parallel, circuit is able to provide approximately 0.2seconds till Arduino turns off. (6600uF*1.5V)/0.05A = 0.198sec.

• Arduino needs at least 5V to operate

Prototype B

Causes Complexity

[Prototype C (Chosen)]

Capacitors are fully charged before the moment V1 disconnects from the circuit. This can be signified as 0⁻ of time.

- Arduino has embedded "analogRead()" method which can be utilized to measure 0~5V.
- When battery splits off from the circuit, C1 and R2 can be considered as a battery = 7.8V at time = 0^{-}

Capacitors starts to discharge after the moment V1 disconnects from the circuit. This can be signified as 0⁺ of time.

- C1 and R2 behaves as a battery until Arduino receives below 5V (Least Operating Voltage)
- Circuit becomes Voltage Divider

$$Vs = Vin$$

$$V_{A1} = Vs \ \frac{R_1}{R_1 + R_3}$$

When
$$Vs = 8V$$
, $V_{A1} = 8 \frac{510}{299 + 510} = 5.043V$

When
$$Vs = 7.5V$$
, $V_{A1} = 7.5 \frac{510}{299 + 510} = 4.728V$

- Current System is chosen to stop working at instant when incoming voltage to A1 < 4.99V.
- When Vs = 7.9V, the system will trigger Maintenance Mode (To be Shown in next Flowchart)
- The value of which Arduino determines the status of power loss is highly flexible according to resistors used to make the circuit and the target value within the program.

Arduino Pin Diagram

- Power Loss Detector Circuit has been designed and installed to Arduino to further aid patients by storing position data more frequently and accurately
- Pins plugged into Arduino is more converged and easier for access

Software Flowchart

Motor wiring diagram

In action!

What we solved!

- Milled AI 6016 mounts and shafts
- Power Loss Detector triggering when Incoming Voltage to Arduino < 7.9V
 has been designed and implemented
- Two-seconds delay before and after pushing buttons within maintenance mode has been designed and implemented to prevent the following scenario: users accidentally pressing buttons immediately after Maintenance Mode is triggered.
- Emergency stop has been implemented to stop the rotation of motor shaft during level transition
- Increased height adjustment speed from approximately 1.437 rps to 5 rps, increase
- Created a modular design with the new motor mount

Future Improvements

New lifting mechanism removing seat "scissor action"

Additional gear reduction, reducing torque required for motor.