AMENDMENT TO THE CLAIMS

Please amend the claims as follows:

1	1.	(previously presented)A memory system comprising:
2		a first memory controller;
3		a first memory component;
4		a first address and control bus connected to the first memory controller and the first
5		memory component, the first address and control bus including a plurality of
6		signal conductors that extend from the first memory controller to the first
7		memory component; and
8		a first data bus connected to the first memory controller and to the first memory
9		component, wherein the first data bus uses differential signaling and has a
10		first data bus symbol time that is shorter than a first address and control bus
11		symbol time of the first address and control bus.
1	2.	(original) The memory system of claim 1 further comprising:
2		a second memory component connected to the first address and control bus and to
3		the first data bus.
1	3.	(original) The memory system of claim 1 further comprising:
2		a second memory component connected to the first address and
3		control bus; and
4		a second data bus connected to the first memory controller and to the second

5		memory component, wherein the second data bus uses differential signaling
6		and has a second data bus symbol time that is shorter than the first address
7		and control bus symbol time of the first address and control bus.
1	4.	(original)The memory system of claim 1 wherein a quotient of the first data bus
2		symbol time divided by the first address and control bus symbol time is less than or
3		equal to 1/8.
1	5.	(previously presented)A memory system comprising:
2		a first memory controller;
3		a first memory component;
4		a first address and control bus connected to the first memory controller and to the
5		first memory component, the first address and control bus including a
6		plurality of signal conductors that extend from the first memory controller to
7		the first memory component;
8		a first clock signal conductor connected to the first memory controller and to the
9		first memory component; and
10		a first data bus connected to the first memory controller and to the first memory
11		component, wherein the first data bus has a first data bus symbol time that is
12		shorter than a first address and control bus symbol time of the first address
13		and control bus and wherein the first address and control bus symbol time is
14		shorter than a first clock signal cycle time of the first clock signal.

1

2

6.

a second memory component connected to the first address and control bus, to the

(original) The memory system of claim 5 further comprising:

- 3 first clock signal conductor, and to the first data bus.
- 1 7. (original) The memory system of claim 5 further comprising:
- a second memory component connected to the first address and control bus and to
- 3 the first clock signal conductor; and
- a second data bus connected to the first memory controller and to the second
- 5 memory component, wherein the second data bus uses differential signaling
- and has a second data bus symbol time that is shorter than the first address
- 7 and control bus symbol time of the first address and control bus.
- 1 8. (original) The memory system of claim 5 wherein a first quotient of the first data
- 2 bus symbol time divided by the first address and control bus symbol time is less
- than or equal to 1/8 and a second quotient of the first address and control bus
- 4 symbol time divided by the first clock signal cycle time is less than or equal to 1/2.
- 1 9. (previously presented)A memory system comprising:
- 2 a first memory controller;
- a first memory component;
- 4 a first address and control bus connected to the first memory controller and to the
- 5 first memory component, the first address and control bus including a
- 6 plurality of signal conductors that extend from the first memory controller to
- 7 the first memory component; and
- 8 a first data bus connected to the first memory controller and to the first memory
- 9 component, wherein the first memory component includes a first termination
- structure connected to the first data bus and wherein the first data bus has a

- first data bus symbol time that is shorter than a first address and control symbol time of the first address and control bus.
 - 1 10. (original) The memory system of claim 9 further comprising:
- a second memory component connected to the first address and control bus; and
- a second data bus connected to the first memory controller and to the second
- 4 memory component, wherein the second memory component includes a
- second termination structure connected to the second data bus and wherein the
- first data bus symbol time is shorter than the first address and control bus
- 7 symbol time of the first address and control bus.
- 1 11. (original) The memory system of claim 9 wherein the first memory controller
- 2 includes a third termination structure connected to the first data bus.
- 1 12. (original)The memory system of claim 9 wherein a quotient of the first data bus
- 2 symbol time divided by the first address and control bus symbol time is less than or
- 3 equal to 1/8.
- 1 13. (original)The memory system of claim 9 wherein a calibration process is used to
- 2 adjust a first termination value of the first termination structure.
- 1 14. (Previously presented)A memory system comprising:
- 2 a first memory controller;
- a first memory component;
- a first address and control bus connected to the first memory controller and to the

5	first memory component, the first address and control bus including a	

- 6 plurality of signal conductors that extend from the first memory controller to
- 7 the first memory component; and
- 8 a first data bus connected to the first memory controller and to the first memory
- 9 component, wherein the first memory component includes a first termination
- structure connected to the first data bus, wherein the first data bus uses
- differential signaling, and wherein the first address and control bus uses non-
- differential signaling.
- 1 15. (original) The memory system of claim 14 further comprising:
- a second memory component connected to the first address and control bus; and
- a second data bus connected to the first memory controller and to the second
- 4 memory component, wherein the second memory component includes a
- 5 second termination structure connected to the second data bus and wherein the
- 6 second data bus uses differential signaling.
- 1 16. (original) The memory system of claim 14 wherein the first memory controller
- 2 includes a third termination structure connected to the first data bus.
- 1 17. (original) The memory system of claim 14 wherein a calibration process is used to
- 2 adjust a first termination value of the first termination structure.
- 1 18. (previously presented)A memory system comprising:
- 2 a first memory controller;
- a first memory component;

4	a first address and control bus connected to the first memory controller and to the
5	first memory component, the first address and control bus including a

plurality of signal conductors that extend from the first memory controller to 6

the first memory component; and 7

data bus.

9

10

11

12

a first data bus connected to the first memory controller and to the first memory component, wherein the first data bus uses differential signaling and wherein the first memory component accesses a first word stored in the first memory component, the first word being wider than a first data bus width of the first

- (original) The memory system of claim 18 further comprising: 1 19.
- 2 a second memory component connected to the first address and control bus and to 3 the first data bus.
- (original) The memory system of claim 18 further comprising: 1 20.
- 2 a second memory component connected to the first address and control bus; and a 3 second data bus connected to the first memory controller and to the second memory component, wherein the second data bus uses differential signaling 5 and wherein the second memory component accesses a second word stored in the second memory component, the second word being wider than a second 6 7 data bus width of the second data bus.
- 1 21. (currently amended) A memory system comprising:
- 2 a first memory controller;
- 3 a first memory component;

4	a first address and control bus connected to the first memory controller and to the
5	first memory component, the first address and control bus including a
6	plurality of signal conductors that extend-form from the first memory
7	controller to the first memory component; and
8	a first data bus connected to the first memory controller and to the first memory
9	component, wherein the first memory controller includes a first receive circuit
10	having a first read timing adjustment subcircuit for adjusting a first adjustable
11	read data sampling time point for first read data sampled from the first data
12	bus and wherein the first data bus uses differential signaling.

- 22. (original) The memory system of claim 21 further comprising:
- a second memory component connected to the first address and control bus; and
 a second data bus connected the first memory controller and to the second memory
 component, wherein the first memory controller includes a second receive
 circuit having a second read timing adjustment subcircuit for adjusting a
 second adjustable read data sampling time point for second read data sampled
 from the second data bus and wherein the second data bus uses differential
 signaling.
 - 23. (original) The memory system of claim 21 wherein a calibration process is used to adjust the first adjustable read data sampling time point.
- 24. (original) The memory system of claim 21 wherein the first memory controller
 contains a first transmit circuit having a first write timing adjustment subcircuit for
 adjusting a first adjustable write data driving time point for first write data driven

1

1

2

- 4 on the first data bus.
- 1 25. (Currently Amended) A memory system comprising:
- 2 a first memory controller;
- a first memory component;
- a first address and control bus connected to the first memory controller and to the
- 5 first memory component, the first address and control bus including a
- 6 plurality of signal conductors that extend form from the first memory
- 7 controller to the first memory component; and
- 8 a first data bus connected to the first memory controller and to the first memory
- 9 component, wherein the first memory controller component includes a first
- receive circuit having a first read timing adjustment subcircuit for adjusting a
- first adjustable read data sampling time point for first read data sampled from
- the first data bus and wherein the first memory component includes a first
- termination structure connected to the first data bus.
 - 26. (original) The memory system of claim 25 further comprising:
- a second memory component connected to the first address and control bus; and
- a second data bus connected to the first memory controller and to the second
- 4 memory component, wherein the first memory controller includes a second
- 5 receive circuit having a second read timing adjustment subcircuit for adjusting
- a second adjustable read data sampling time point for second read data
- 7 sampled from the second data bus and wherein the second memory
- 8 component includes a second termination structure connected to the second

1

- 9 data bus.
- 1 27. (original) The memory system of claim 25 wherein a calibration process is used to 2 adjust the first adjustable read data sampling time point.
- 28. (original) The memory system of claim 25 wherein the first memory controller includes a first transmit circuit having a first write timing adjustment subcircuit for adjusting a first adjustable write data driving time point for first write data driven on the first data bus.
- 29. (original) The memory system of claim 25 wherein the first memory controller includes a third termination structure connected to the first data bus.
- 1 30. (previously presented)The memory system of claim 1 further comprising a memory
 2 module having the first memory component disposed thereon, and wherein the
 3 plurality of signal conductors include, at least in part, conductive traces disposed on
 4 the memory module.
- 1 31. (previously presented)The memory system of claim 5 further comprising a memory
 2 module having the first memory component disposed thereon, and wherein the
 3 plurality of signal conductors include, at least in part, conductive traces disposed on
 4 the memory module.
- 1 32. (previously presented)The memory system of claim 9 further comprising a memory
 2 module having the first memory component disposed thereon, and wherein the
 3 plurality of signal conductors include, at least in part, conductive traces disposed on

- 4 the memory module.
- 1 33. (previously presented) The memory system of claim 14 further comprising a
- 2 memory module having the first memory component disposed thereon, and wherein
- 3 the plurality of signal conductors include, at least in part, conductive traces
- 4 disposed on the memory module.
- 1 34. (previously presented) The memory system of claim 18 further comprising a
- 2 memory module having the first memory component disposed thereon, and wherein
- 3 the plurality of signal conductors include, at least in part, conductive traces
- 4 disposed on the memory module.
- 1 35. (previously presented) The memory system of claim 21 further comprising a
- 2 memory module having the first memory component disposed thereon, and wherein
- 3 the plurality of signal conductors include, at least in part, conductive traces
- 4 disposed on the memory module.
- 1 36. (previously presented) The memory system of claim 25 further comprising a
- 2 memory module having the first memory component disposed thereon, and wherein
- 3 the plurality of signal conductors include, at least in part, conductive traces
- 4 disposed on the memory module