Systematic Literature Review Report

1. Research project

1.1. Title

A vehicle type recognition model based on audio data from its drive-through

1.2. Supervisor

mgr inż. Szymon Zaporowski

1.3. Goals and short description

The goal of the project is to develop a deep neural network model that is capable of recognizing the type of passing vehicle based on the input of an audio file. The approach presented in the literature can be used as a reference for developing researchers own more advanced model using e.g. Transformers.

Main tasks to accomplish are:

- 1. Literature review
- 2. Training data analysis
- 3. Labelling additional data
- 4. Network architecture selection
- 5. Model training
- 6. Model verification
- 7. Analysis of results

2. Systematic Literature Review plan

2.1. Goals and questions

The goal of the SLR is to get knowledge about models used to recognize vehicles by their sound. Furthermore, we would like to see the advantages and disadvantages of those models in our field of interest and also find out what results we should be expecting from our implementation.

So, the question is:

What machine learning models are used in vehicle type recognition based on the sound? PL: Jakie modele uczenia maszynowego są używane do rozpoznawania typu pojazdu na podstawie dźwięku?

2.2. Keywords

- machine learning, deep learning, neural network
- vehicle type recognition, classification, identification
- sound, acoustics

2.3. Search strings

- ("machine learning" OR "deep learning" OR "neural network")

- ("vehicle recognition" OR "vehicle classification" OR "vehicle identification" OR "car recognition")
- (sound OR acoustic)
- final search string: ("machine learning" OR "deep learning" OR "neural network") AND ("vehicle recognition" OR "vehicle classification" OR "vehicle identification" OR "car recognition") AND (sound OR acoustic)

2.4. Literature databases

- Scopus
- SpringerLink
- IEEExplore
- ACM Digital Library optional only if there will be not enough articles in three above

2.5. Inclusion criteria

- conference and journal papers published 2016-2022 (article, conference paper, conference review)
- publications in English
- only vehicle recognition (classification)
- vehicle recognition based on sound

2.6. Exclusion criteria

- research related to electric vehicles
- articles closely related to other articles (e.g. extended versions, reference work)
- research not related to machine learning approach
- vehicle recognition not only based on sound
- recognition of different objects (eg. road surface wetness detection, road surface quality detection based on gravel) based on sound

2.7. Quality criteria

- paper reviews or compares machine learning models for sound recognition
- the similarity of the recognized vehicle types to ours (cars and similar urban vehicles)
- the description of the model(s) used (details about the model)

2.8. Data extraction

- models for vehicle sound recognition with its pros and cons with regard to our topic

2.9. SLR process

2.9.1. Steps

- 1. Plan definition, verification and acceptance
- 2. Search string construction and validation
- 3. Databases search with search string and inclusion criteria
- 4. Selection 1st phase based on paper titles, abstracts and exclusion criteria (scoring from 0 to 2 by each person). Only articles with summary scoring >=4 are taken into further consideration.
- 5. Reading paper content and assessment of quality criteria each article is given score from **1 to 5**
- 6. Final selection of papers based on score (>=3) and quality
- 7. Snowball sampling review of references in the selected papers
- 8. Extraction of the models from each paper
- 9. Aggregation and compilation of a final list of models that we can use in our project
- 10. Selecting the model or models that suits our needs best

2.9.2. Assignments

Step	Executioners	Reviewers
1, 2	МН	ME, DK
3, 4	DK(S), ME(SL), MH(IE)	DK, ME, MH
5	DK(A), ME(B), MH(C)	DK, ME, MH
6	DK	МН
7	ME	DK
8	MH, DK	ME
9	ME	МН
10	DK, ME, MH	DK, ME, MH

ME – Mateusz Erezman

S – Scopus

A, B, C – groups that each contains 1/3 out of all articles from previous step

MH – Michał Hajdasz

SL – SpringerLink

DK – Dariusz Kobiela

IE - IEEExplore

2.9.3. Tools to use

- mendeley.com for easy articles storage
- clickup.com for task assignment and workflow control
- Discord for online meetings and problems discussing
- Google Spreedsheets for statistics, charts, reviewing and scoring process

3. Systematic Literature Review results

3.1. Results in numbers

3.1.1. Step 3 – search with constraints

- Scopus 48 articles
- SpringerLink 65 articles
- IEEExplore 134 article
- All together 247 articles

3.1.2. Step 4 – Selection 1st Phase

- 21 articles
- 3.1.3. Step 6 Final selection
 - 16 articles

3.1.4. Step 8 - Snowballing

- 6 additional articles

3.2. Articles selected for data extraction

	2020 Signal		
	Processing:		
	Algorithms,		
	Architectures,	A Kurowski, S	
1D convolutional contact awars architectures for accustic		A. Kurowski; S.	
1D convolutional context-aware architectures for acoustic	Arrangements, and	Zaporowski; A.	2020
sensing and recognition of passing vehicle type	Applications (SPA)	Czyżewski	2020
		Wu JD., Wong	
Acoustic Emission Signal Classification Using Feature Analysis	Fluctuation and	YH., Luo WJ.,	
and Deep Learning Neural Network	Noise Letters	Yao KC.	2021
Acoustic Signal Classification Using Symmetrized Dot Pattern		Wu JD., Luo	
and Convolutional Neural Network	Machines	WJ., Yao KC.	2022
	ICASSP 2020 - 2020		
	IEEE International		
	Conference on	L. Becker; A.	
	Acoustics, Speech	Nelus; J. Gauer; L.	
	and Signal	Rudolph; R.	
Audio Feature Extraction for Vehicle Engine Noise Classification	Processing (ICASSP)	Martin	2020
	2019 Signal		
	Processing:		
	Algorithms,		
	Architectures,	A. Kurowski; A.	
Automatic labeling of traffic sound recordings using	Arrangements, and	Czyżewski; S.	
autoencoder-derived features	Applications (SPA)	Zaporowski	2019
	2020 28th European		
	Signal Processing	M. Scarpiniti; D.	
Deep Recurrent Neural Networks for Audio Classification in	Conference	Comminiello; A.	
Construction Sites	(EUSIPCO)	Uncini; YC. Lee	2021
	2020 IEEE	·	
	International		
	Instrumentation and		
	Measurement	H. Chen; Z. Zhang;	
Hybrid Neural Network based on Feature Fusion for Vehicle	Technology	W. Yin; M. Wang;	
Type Identification	Conference (I2MTC)	M. Lifan; X. Hao	2020
Type Identification	International Journal	IVI. Ellall, X. Hao	2020
	of Automotive and		
Recognition of Moving Tracked and Wheeled Vehicles Based on	Mechanical	Jackowski J.,	
Sound Analysis and Machine Learning Algorithms	Engineering	Jakubowski J.	2021
Journa Analysis and Machine Learning Algorithms	2021 International	Jakubowski J.	2021
Sound-Convolutional Recurrent Neural Networks for Vehicle	Conference on Smart		
Classification Based on Vehicle Acoustic Signals	City and Green Energy, ICSCGE 2021	Luo Y., Chen L., Wu Q., Zhang X.	2021

	1	i	
	ICASSP 2019 - 2019		
	IEEE International		
	Conference on		
	Acoustics, Speech		
Sound-based Transportation Mode Recognition with	and Signal	L. Wang; D.	
Smartphones	Processing (ICASSP)	Roggen	2019
		Alicja	
		Wieczorkowska,	
		Elżbieta Kubera	
		Tomasz Słowik	
Spectral features for audio based vehicle and engine	Journal of Intelligent	Krzysztof	
classification	Information Systems	Skrzypiec	2018
Transportation mode detection using cumulative acoustic	Frontiers of	Dinesh VijNaveen	
sensing and analysis	Computer Science	Aggarwal	2020
Unsupervised vehicle recognition using incremental reseeding	Lecture Notes in	Sunu J., Percus	
of acoustic signatures	Computer Science	A.G., Hunter B.	2018
	2021 IEEE 4th		
	International		
	Conference on		
Vehicle Identification Based on Improved 1/3 Octave and	Electronics	Q. Wang; Y. He; Z.	
Bark-Scale Wavelet Packet Methods	Technology (ICET)	Chen; Y. Luo	2021

3.3. Snowballed articles

Environmental Intelligence for Embedded Real-time Traffic Sound Classification	P. Montino; D. Pau	2019
Sound event classification using neural networks and feature selection based methods	A. Ahmed; Y. Serrestou; K. Raoof; JF. Diouris	2021
Machine Learning Inspired Sound-Based Amateur Drone Detection for Public Safety Applications	M. Z. Anwar; Z. Kaleem; A. Jamalipour	2019
Research on Environmental Sound Classification Algorithm Based on Multi-feature Fusion	Ruixue Li; Bo Yin; Yongchao Cui; Zehua Du; Kexin Li	2020
VehicleSense: A Reliable Sound-based Transportation Mode Recognition System for Smartphones	Sungyong Lee, Jinsung Lee, Kyunghan Lee	2017
Moving Vehicle Noise Classification using Multiple Classifiers	N. Abdul Rahim, Paulraj M P, A. H. Adom, and S. Sathish Kumar	2011

3.4. Article statistics

STATISTICS				
Sum of all articles at the beginning	247			
Sum of articles after removing duplicates				
Sum of articles after exclusion criteria (removing books, articles < 2016 and				
referenceWorks) [1st selection]	184			
Sum of articles with the highest rating (6, 5 and 4 points) [2nd selection]	21			
Sum of articles after final scoring (1-5) and quality criteria [articles with mark >= 3]	16			
Sum of articles after snowballing				
FINAL SUM OF ARTICLES	22			

After rating 0-2 by title and abstract		
No. points	No. articles	
6 points	14	
5 points	3	
4 points	4	
SUM	21	

Number of articles in different databases

Histogram of articles publication year [all articles]

Histogram of articles publication year [final selection]

Scores (1st phase)

Scores by content and quality of paper

3.5. Initial extracted data

	Technologi					
MODEL	Input data	Output data	es used	Pros (+)	Cons (-)	
DNN, classical						
Deep Neural						
Network (10	engine				Focuses more on	
models, the	acoustic		Python,		data preprocessing	
hidden layer	emission		Tensorflow,		then modelling,	
is set to three	signal:		Anaconda,		compares 3 methods:	
layers,	engine speed		Numpy,		time domain,	
wherein the	at 750 rpm		Spyder,	unsupervised	frequency domain	
specified	(gained by	classified and	scikit-learn,	learning method (no	and the wavelet	
gravity is 1.5,	PCB 426E01	identified	matplotlib,	need to tag the	transform domain	
2.5 and 1.5,)	microphone)	vehicle types	Labview	data)	(DWT)	
	traditional					
	engine					
	vehicle noise					
	and electric					
	motor noise					
	data					
CNN	presented in					
(Convolutiona						
l Neural	visualised					
Network):	sound signals					
four	(as a dot	recognition				
convolutional	pattern =	(classification				
layers and	symmetrical) of				
four pooling	point map,	non-electrical				
layers, finally	snowflakes).	and electrical		Uses innovative		
leading to a	The vehicle	Vehicles		technique - sound as		
fully	speed was	(different		image classification	Only one model,	
connected	maintained	types of	Python,	(sound symmetry	both non and	
layer	at 750 rpm.	vehicle noise)	Tensorflow	point pattern)	electrical vahicles	
Siamese						
neural						
network	classifying				not clear conclusion	
(SNN), used	vehicles 				about models (only	
mainly for	based on	l			claim about the	
binary	audio 	diesel vs.			advantage of the	
classification	recordings;	petrol and			proposed approach	
tasks (inside	features are	heavy goods		2 models used	compared	
16	based on	vehicle		together; f1 score	to conventional	
convolution	the	vs. personal		highest (>90%) with	feature	
layers, so	mel-spectrog	car		the usage of HGV/PC		
CNN also	ram (MFCC);	classification	-	dataset	classifiers)	

used inside)					
,				Results achieved by	
				Hybrid CNN-LSTM	
	Features			model are better	
	extracted			than SVM classifier	
	from audio			(about 98% vs 92%).	
	signal (MFCC,			Also, only CNN	
Hybrid - LSTM				perform worse than	
1	Short-Term	classified		CNN-LSTM hybrid	
	Energy)	vehicle	_	(3,39% worse).	_
	audio data			,	
	preprocessed				Method was checked
1	using PSD				only on the specified
1	(power				subset. After aplying
1	spectral				sequential feature
I I	density -			linear kernel used	selection, the
SVM (Support	•	vehicle		for SVM, very simple	accuracy for both
1 ' ' 1	transform)	classification		methods. Very good	models took 100%.
Machine) and	and LPC	as a wheeled		results for SVM	Of course, this result
I	(linear	or tracked		(99.5% accuracy)	will probably be
nearest	predictive	one (binary		and k-NN (96,4%	lower on different
neighbours)	coding)	classification)	Python	accuracy)	data set.
	Acoustic data		-	-	
	of airplane,				
	on-road(buse				
	s, cars,				
	auto-ricksha				
	w and				
	pedestrian)				
	and train.	Classification			
	Then	into classes:			
	windowed	airplane,			
SVM (Support	and feature	on-road(buse			
Vector	extracted	s, cars,		Usage of normal and	Fails to detect then
Machine),	using MFCC,	auto-ricksha		noise dataset (better	heavy music is played
DNN (Deep	wavelet	w and		to generalize	in the vehicle.
Neural	transform	pedestrian)		network). Accuracy	Classification of also
Network)	(WPT)	and train	-	up to 97,62%.	airplanes and trains
1	classified				
	vehicle audio				
	frames		Python,		
	1st model:	classified	Pandas,	Results for triplet	
CNN with	single frame	vehicles	SciPy,	input model are	Still not very
triplet	2nd model:	(heavy car,	Tensorflow,	slightly better then	impresive results
consecutive	three	light car) or	Scikit-posth	single input.	(about 80%
frames	consecutive	silence	ocs	Easy to implement.	correctness)

[
frames	
Three	
different	
frame	
lengths: 50,	
100, 200,	
400ms	
Concatenatio	
n of several	
spectral	
features, like	
MFCCs,	
mel-scaled	
spectrogram,	
chroma and	
DRNN + LSTM spectral Great result - 97%	
	unat hi-l
	y not higher
recurrent construction then DBN). then DC	
	ction site
	es may be
	classify then
	nicles, so the
softmax lengths: 30, tools, 5 CuDNNLST time correlations accuracy	y may be
decision)50msclasses)M, cuDNNof audio data.worse.	
It can efficiently pick	
up local acoustic	
features.	
It provides	
translation invariant	
convolution in time	
and space. And it	
can	
well extract	
high-level acoustic	
features from	
low-level acoustic	
classified features.	
vehicles (car, Enables to mine	
bus temporal and	
motocycle) semantic	
S-CRNN (CNN Mel and information in	
+ RNN) + spectrograms components acoustic data.	
LSTM/GRU out of road (engine, Python, GRU makes training	
(3 CNN layers vehicle wheels, librosa, faster and it's just a	
and on RNNsoundcompressor,Keras,little bit worse then	
layer) recordings brakes) TensorFlow LSTM in terms of High cor	

				classification.	
	1/3 Octave			Despite of simplicity	
	and	classified		of network results	
	Bark-Scale	vehicles			
	Wavelet out			are pretty good	
DAVA		(truck, bus,		(90% accuracy)	
PNN	of road	motocycle,		thanks to use of	
	vehicle	small vehicle,		nowel sound	
neural	sound 	medium	MATLAB,	extraction methods.	Too simple network
network)	recordings	vehicle)	GoldWave	Simple model.	for our project.
				Good results on	
	Denoised			simple CNN network	
	MFCC (using			(86% accuracy).	
	Dual-Tree			Can be combined	
	Complex			with more advanced	
	Discrete			neural network.	
	Wavelet			De-noise process	
	Transform)	classified		made great	
	out of road	vehicles		improvement on the	
	vehicle	(truck, bus,		results.	Long and
CNN,	sound	motocycle,		Well discribed data	complicated
ConvNet	recordings	car)	-	preparing process.	Denoising process.
				Good results 85%	
				accuracy,	
				recognition	
				performance	
				using sound can be	
				improved by	
				optimizing the CNN	
		Transport		architecture and by	
		mode (Still,		combining with	
DNN		Walk, Run,		other modalities	
(fully-connect	original	Bike, Car,		such as motion and	
ed neural	spectrogram	Bus, Train		GPS	
network)	image	and Subway)	Matlab	sensors	High complexity
		Transport			
		mode			
		(bicycles,			
		motorcycles			
		(including			
		scooters),			
		cars		Good in multi-class	
		(including		classi-fication results	
		minibuses),	R (h2o,	for the multi-class	
	the obtained	vans (light		classifiers for big	
DL neural		trucks, up to	est, and	truck, car, and	
network	vector	3.5 t), small	e1071)	motorcycle 97%	High complexity
	1.0000	3.3 c ₁ , 3111a11	010,1,	1	on complexity

		trucks (above			
		3.5 t), big			
		trucks (above			
		3.5 t with			
		trailers or			
		semi-			
		trailers),			
		buses, and			
		tractors			
		(including			
		rollers,			
		excavators			
		etc.))			
	feature				
	vector				
	(zero-crossin	Transport			
	g rate and	mode (Still,			
	mel-frequenc	Walk, Run,			
	y cepstral	Bike, Car,		Classical machine	
SVM, KNN,	coefficients	Bus, Train		learning, very simple	poor accuracy about
DT, RF, NB	(MFCC)	and Subway)	Matlab	methods	62%
	Audio data		Spectral		
	preproeceed		clustering,		
	ed using		Incrementa	unsupervised	Identification of
	short-time	classified and	I Reseeding	learning method (no	similar vehicles,
	Fourier	identified	(INCRES)	need to tag the	Overtraining possible
-	transform	vehicles	Algorithm	data)	in our case

4. Conclusions

4.1. SLR process

Systematic Literature Review is a time consuming process, but it is worth the effort if we want to discover what is the current research state in our area of interest and gain valuable answers to our research question.

It is important to formulate the right questions of the SLR and to overthink the goals before proceeding to the main SLR process.

Through reading articles we can also gain more comprehensive knowledge of the topic and find out problems that we hadn't considered before.

4.2. SLR results

MODEL	COUNT
CNN (Convolutional Neural Network)	9
SVM (Support Vector Machine)	7
DNN (Deep Neural Network)	7
LSTM (Long-Short Term Memory Neural Network)	4
RNN (Recurrent Neural Network)	2
k-NN (k Nearest Neighbours)	2
SNN (Siamese Neural Network)	1
PNN (Probabilistic Neural Network)	1
Hybrid: S-CRNN (CNN + RNN)	1
Hybrid: LSTM+CNN	1
Random Forest	1
Decision tree	1
Naive Bayes	1
GRU (Gated Recurrent Unit Neural Network)	1

We found out that the most common models used in vehicle type recognition based on sound are CNN, SVM, DNN and LSTM.

Also, these models are frequently combined with each other to create more advanced network models and achieve better results.

Thanks to our SLR, we also discovered that sound features extraction that goes into network input is as important, or even more important, than the model used.

Some articles focus on creating a complex network and while others focus on best extraction features out of recorded vehicle sound.

In our approach we would like to combine well extracted and denoised feature vector with advanced model to outperform existing networks for vehicle sound classification.

Whole results of our SLR process are included in Google Spreadsheets document: https://docs.google.com/spreadsheets/d/1187Cnw3iHvhH 7k5SF4xBH34L8GkEzaF/

5. Literature

- Systematic Literature Review, Research methods in informatics lecture, Jakub Miler
- Systematic Literature Review Plan Example, J. Miler, O. Springer