# Linear Classifiers

Song Liu (song.liu@bristol.ac.uk)

Office hour: Thursday 2-3pm

#### Reference



Today's class *roughly* follows Chapter 4-4.2.

Pattern Recognition and Machine Learning

Christopher Bishop, 2006

#### Outline

- Geometry of decision function
- Non probabilistic classifiers
  - Least square classifier
  - Fisher discriminant analysis
- Probabilistic classifiers
  - Generative Classifiers

#### **Binary Classification**

- Input:  $\{x_i\}_{i=1}^n$
- Output:  $y \in \{-1, +1\}$
- A decision boundary is defined by a function f(x)



# Geometry of Binary Classification

Suppose  $f(x) = \langle w, x \rangle + w_0$ 



#### Multi-class Classification

- Input:  $\{x_i\}_{i=1}^n$
- **Output**:  $y \in \{1 ... K\}$
- The geometry gets a lot more complicated...
  - Cannot simply check the sign of a single f(x).



#### One versus The Other

- Construct K-1 classifier
- ullet Classify Class k vs. the rest of classes



#### One versus The Other

One versus the other also creates confusion!



#### One versus One

We can create pairwise classifiers and check majority vote.



#### One versus One

One versus one creates confusion as well...



#### Multi-class Classification

- Rather than relying on sign of f to make predictions, we estimate K functions:
- $\{f_k(x; w_k)\}_{k=1}^K$
- Given an x, prediction is  $\hat{k} = \max_{k} f_k(x; w_j)$ ,
- **Problem**:  $f_k$  does not have a simple geometry interpretation anymore.
- However,  $f_k$  does have probabilistic interpretation.

# How do we obtain the prediction function f?

Can we use least squares?

- For binary classification, import *D* in LS.
- $\mathbf{w}_{\mathrm{LS}} \coloneqq \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in D} [y_i f(\mathbf{x}_i; \mathbf{w})]^2$ 
  - Now  $y_i$  takes binary value 1 or -1

- Prediction function  $f(x_i; w_{LS})$ .
- The predicted label  $\hat{y} := \text{sign}(f(x_i; w_{LS}))$



- You can use feature transform  $\phi$  for f as well.
- $f(x; w) \coloneqq \langle w, \phi(x) \rangle$ ,
- e.g. poly., trigonometric, RBF, kernel.



Data may not be separable in the original space but can be separable in the **feature space** created by  $\phi$ !



#### Multi-class LS classification

- LS can be adapted to multi-class classification.
- Suppose output  $y \in \{1 \dots K\}$
- Replace  $y_i = k$  in D with  $t_i \in \{0,1\}^K$ .
  - $t_i^{(k)} = 1$ .
  - $t_i^{(j)} = 0, \forall j \neq k$
- "One-hot encoding"

- $W_{\mathrm{LS}} \coloneqq \operatorname{argmin}_{W} \sum_{i \in D} || \boldsymbol{t}_{i} \boldsymbol{W}^{\mathsf{T}} \, \widetilde{\boldsymbol{X}}_{i} ||^{2}$
- $\boldsymbol{W}_{\mathrm{LS}} \in R^{(d+1) \times K}$ ,  $\widetilde{\boldsymbol{X}} \coloneqq \left[ \boldsymbol{X}_{i}^{\mathsf{T}}, \boldsymbol{1} \right]^{\mathsf{T}}$ ,  $\boldsymbol{X}_{i} \coloneqq \left[ \boldsymbol{x}_{i}, \boldsymbol{x}_{i} \ldots \right] \in R^{d \times K}$ .

# Why not to use LS Classifier?

- Square loss does not make sense in classification tasks.
- Data point far away from decision boundary can influence the decision boundary by a lot.



# Why not to use LS Classifier?

- Unlike LS regression,
- LS classification lacks a probabilistic interpretation.
- It cannot be interpreted as Maximum Likelihood of some probabilistic model on D.

# Fisher Discriminant Analysis (FDA)



#### **Embedding by Inner Product**

• The inner product  $\langle w, x \rangle$  "embeds" x, onto a one-dimensional line along w direction.



# **Embedding by Inner Product**

- What would be a good embedding?
- Clearly, we prefer w to w', as the embedding is more separated between + and .

 We want points within the class close, but points between two classes far apart.



# Within Class and Between Class Scatterness



$$\mu_1 \longleftrightarrow \mu \longleftrightarrow \mu_2$$

#### Within-class Scatterness

- Embedding is  $\mathbf{w}^{\mathsf{T}}\mathbf{x}$ .
- Embedded center for class k:

$$\bullet \ \hat{\mu}_k = \frac{1}{n_k} \sum_{i, \mathbf{y_i} = k} \mathbf{w}^{\mathsf{T}} \mathbf{x}_i$$

Within class scatterness of class k:

$$\bullet s_{\mathbf{w},k} = \sum_{i,\mathbf{y}_i=k} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - \hat{\mu}_k)^2$$

• Sum over points in individual classes.

#### Between-class Scatterness

Embedded dataset center:

$$\bullet \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}$$

Between-class scatterness

$$\bullet s_{b,k} = n_k (\hat{\mu}_k - \hat{\mu})^2$$

•  $n_k$  is needed to make  $s_{b,k}$  at the same scale with  $s_{w,k}$ .

# Fisher Discriminant Analysis

- Maximizing between class scatterness  $\forall_k$ .
- Minimize within class scatterness  $\forall_k$  .

• 
$$\max_{\mathbf{w}} \sum_{k} s_{\mathbf{b},k} / \sum_{k} s_{\mathbf{w},k}$$

- If K=2, this has a simple solution that
- $ullet w\coloneqq oldsymbol{S}_{oldsymbol{w}}^{-1}(oldsymbol{\mu}_{+}-oldsymbol{\mu}_{-}), oldsymbol{S}_{oldsymbol{w}}\coloneqq \sum_{k=1}^{K}oldsymbol{S}_{k}$
- $S_k$  is sample covariance of class k times  $n_k$ .
- Read PRML 4.14 for its derivation

# Fisher Discriminant Analysis

- However, FDA does not learn a decision function f.
- $f(x; w_{FDA}) = \langle w_{FDA}, x \rangle$  obtained by FDA cannot be directly used for making a prediction:
- In general,  $f(x; w_{FDA}) > 0$  does not mean x is predicted as positive or negative data point: FDA does not care about classification accuracy, a.k.a., minimizing FP or FN.

# Probabilistic Generative Classifiers

#### Probabilistic Classification

How to put classification problem under a problem framework?

Minimize Expected Loss:

$$\hat{y} := \operatorname{argmin}_{y_0} \mathbb{E}_{p(y|x)} [L(y, y_0) | x]$$

- We need:  $p(y|x), y \in \{1, ..., K\}$
- Discriminative: Infer p(y|x) directly.
- Generative: Infer  $p(y|x) \propto p(x|y)p(y)$ , infer p(x|y)!

#### Continuous Input Variable

- To infer p(x|y), we need a model.
- If x is continuous, MVN is a natural choice for p(x|y).
- Model  $p(x|y=k;w)\coloneqq N_x(\mu_k,\Sigma_k)$
- Assuming IID-ness over all  $x_i$ , and shared covariance  $\Sigma$
- Write down the likelihood over D:

• 
$$p(D|\mathbf{w}) = \prod_{i \in D} p(\mathbf{x}_i, y_i|\mathbf{w}) = \prod_{i \in D} p(\mathbf{x}_i|y_i; \mathbf{w})p(y_i)$$
  
=  $\prod_{i \in D} N_{\mathbf{x}}(\boldsymbol{\mu}_{y_i}; \boldsymbol{\Sigma}) p(y_i)$ 

# Continuous Input Variable

- $\widehat{\boldsymbol{\mu}}_{1...K}$ ,  $\widehat{\boldsymbol{\Sigma}} := \arg\max_{\boldsymbol{\mu}_{1...k}, \boldsymbol{\Sigma}} \sum_{i \in D} \log N_{\boldsymbol{x}}(\boldsymbol{\mu}_{y_i}; \boldsymbol{\Sigma}) p(y_i)$
- 1. Plug in estimates for  $p(y_i)$ , which is  $\frac{n_k}{n}$ .
- 2. Now work out the MLE for  $\widehat{\mu}_k \coloneqq \frac{1}{n_k} \sum_{i \in D, y_i = k} x_i$
- 3. Plug in  $\widehat{\mu}_k$  to work out

$$\widehat{\boldsymbol{\Sigma}} \coloneqq \sum_{k=1...K}^{K} \frac{n_k}{n} \sum_{i \in D, y_i = k} (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k)^{\mathsf{T}}$$

MLE of covariance of individual classes!

#### **Linear Decision Boundary**

- **Prove**: when using shared covariance matrix MVN model, the decision boundary is piecewise-linear.
- Prediction:  $\hat{y} := \operatorname{argmax}_{y} p(y|x; \hat{w}) \propto p(x|y; \hat{w}) p(y)$
- The decision boundary is

$$\{x|p(y=k|x;\widehat{w}) = p(y=k'|x;\widehat{w})\}\$$
$$\forall k \neq k'$$

Which is the same as the set

$$\left\{ x \middle| \frac{p(x|y=k; \widehat{\boldsymbol{w}})p(y=k)}{p(x|y=k'; \widehat{\boldsymbol{w}})p(y=k')} = 1 \right\}$$

$$\forall k \neq k'$$

**Hint**: take log on both sides of the equality.

#### **Linear Decision Boundary**



# Continuous Input Variable

- You can also assume for each class k, there are different covariance matrices  $\Sigma_k$ .
- The MLE reduces to estimating individual  $\mu_k$  and  $\Sigma_k$ .
- The decision boundary is no longer linear.





#### Discrete Input Variable x

- In many classification tasks, we are dealing with discrete variables as x. For example, in a spam filter,
- $\mathbf{x} \coloneqq \begin{bmatrix} x^{(1)}, \dots, x^{(d)} \end{bmatrix}^\mathsf{T}$  are frequencies of words in a document. This is called "bag of words" representation.
- $y \in \{\text{spam, ham}\}.$
- For example, the document "to be or not to be"
- x := [to = 2, be = 2, or = 1, not = 1, question = 0]
- $x^{(i)} \in \{\text{to, be, or, not, question}\}\$

# Naïve Bayes

- Assume  $x^{(1)} \dots x^{(d)}$  are conditionally independent given y
- $p(\mathbf{x}|\mathbf{y}) = \prod_{i=1...d} p(\mathbf{x}^{(i)}|\mathbf{y})$
- $p(x^{(i)}|y=k)$  is the probability of word i occurs in class k.
- It is easy to estimate:

$$p(x^{(i)}|y=k) \approx \frac{\sum_{j \in D, y_j=k} x_j^{(i)}}{\sum_{j \in D, y_j=k} \sum_{i=1}^d x_j^{(i)}}$$

• p(to|y = spam) is occurrences of the word "to" in "spam" emails divided by total number of words in "spam" emails in our training dataset.

#### Naïve Bayes

• Prediction:  $\hat{y} := \operatorname{argmax}_{y} p(x = x_0 | y) p(y)$ 

• 
$$p(y=k): \frac{n_k}{n}$$

- $p(x = x_0|y): \prod_{i=1...d} p(x^{(i)}|y)^{x_0^{(i)}}$ 
  - $p(x^{(i)}|y)$  has been obtained by previous counting.
  - Power  $x_0^{(i)}$  is used assuming occur. of words are independent.
- p(x = "to be or not to be"|y):  $p(to|y)^2 p(be|y)^2 p(or|y) p(not|y)$

#### Conclusion

We have studied classification problem:

- Geometry of decision function
- Least square classifier
- Fisher discriminant analysis
  - Within and between scatterness

- Generative Classifiers:
  - MVN for continuous input variable
  - Naïve Bayes for discrete input variable

#### Homework

Prove the statement on page 32.

- Put Naïve Bayes under an MLE framework.
- **Hint:** Assume  $p(x|\pi_{1...d})$  is a multinomial distribution with event probabilities  $\pi_{1...d}$ .
- $\bullet \, \frac{\boldsymbol{x}^{(i)}}{\sum_{i=1}^{d} \boldsymbol{x}^{(i)}} \, \text{is the MLE of} \, \boldsymbol{\pi}_i \, \, \text{given} \, D = \{\boldsymbol{x}\} = \left\{ \left[\boldsymbol{x}^{(1)} \dots \boldsymbol{x}^{(d)}\right] \right\}$

# Computing Lab

• Implement a version of Perception classifier: "Simplitron"

• Demo.