Banco de Dados - Parte 01

Apresentação da Disciplina Introdução a Banco de Dados Modelagem ER/EER

1

Apresentações

- Eu
 - Marcel Oliveira
 - marcel@dimap.ufrn.br
 - http://www.dimap.ufrn.br/~marcel
 - Sala B323 (IMD)- Ramal 119

Introdução à Disciplina

- Objetivo
 - Conceitos de banco de dados
 - Modelos de banco de dados
 - Mapeamentos entre modelos
 - Transações e Concorrência
 - SQL
 - Aplicações
 - Bancos de Dados Não-Relacionais
- Estrutura em 4 partes (2 aulas cada)

"Reforçar conhecimento sobre bancos relacionais e aprender sobre bancos NoSQL"

"... solidificar os conceitos atrelados à modelagem"

"Aprender os principais conceitos de bancos relacionais e nãorelacionais, para que eu possa aplicar na prática do TRE-RN"

3

Estrutura e Cronograma da Disciplina

- Parte 01
 - 29/07/2022 10:00 às 13:00
 - Introdução a Banco de Dados
 - Modelo ER e Modelo EER
 - 05/08/2022 10:00 às 13:00
 - LAB₁: Exercícios de Laboratório (ER/EER)
 - PROJ₁: Desenvolvimento de Projeto (Modelo ER/EER)

Estrutura e Cronograma da Disciplina

- Parte 02
 - 12/08/2022 10:00 às 13:00
 - Modelo Relacional
 - Mapeamento ER-EER para Relacional
 - Dependências e Normalização
 - 19/08/2022 10:00 às 13:00
 - LAB₂: Exercícios de Laboratório (Modelo Relacional)
 - LAB₃: Exercícios de Laboratório (Normalização)
 - PROJ,: Desenvolvimento de Projeto (Modelo Relacional)
 - PROJ₃: Desenvolvimento de Projeto (Normalização)

5

Estrutura e Cronograma da Disciplina

- Parte 03
 - 26/08/2022 10:00 às 13:00
 - SQL
 - 02/09/2022 10:00 às 13:00
 - Programação para BD
 - Transações
 - LAB₄: Exercícios de Laboratório (SQL)
 - **PROJ**₄: Desenvolvimento de Projeto (Construção do BD)

Estrutura e Cronograma da Disciplina

- Parte 04
 - 09/09/2022 10:00 às 13:00
 - Bancos de dados não relacionais (MongoDB)
 - •16/09/2022 10:00 às 13:00
 - Bancos de dados não relacionais (MongoDB)
 - LAB₅: Exercícios de Laboratório

7

Avaliação

- Exercícios de Laboratório
 - INDIVIDUAL
 - LAB = $(2*LAB_1 + 1*LAB_2 + 2*LAB_3 + 3*LAB_4 + 2*LAB_5) / 10$
- Projetos
 - GRUPO
 - PROJ = $(PROJ_1 + PROJ_2 + PROJ_3 + PROJ_4)/4$
- Conceito
 - NOTA = (6*LAB + 4*PROJ) / 10

Bibliografia

- Fundamentals of Database Systems (7th Edition 2016) Ramez Elmasri and Shamkant B. Navathe
- Manual MySQL
- Manual MongoDB

9

PARTE 01 Estrutura da Aula

- Introdução a Banco de Dados e SGBD
- Modelagem ER
- Modelagem EER
- Laboratório: Ferramentas de Modelagem ER
- Projeto: Criação de Modelo ER/EER

11

BDs no Cotidiano

- Aplicações tradicionais
 - Informações textuais e numéricas

BDs no Cotidiano

- Aplicações Inovadoras
 - Multimídia

13

- Aplicações Inovadoras
 - Banco de dados ativos e de tempo real

BDs no Cotidiano

- Aplicações Inovadoras
 - Informações geográficas

15

BDs no Cotidiano

- Aplicações Inovadoras
 - Data warehouse e mineração de dados
 - BigdataNoSQL

BDs no Cotidiano

- Aplicações Inovadoras
 - IoT & Smart Cities

17

BDs no Cotidiano

- Neste curso, concentraremos nas aplicações tradicionais
- Porém, faremos uma introdução a NoSQL

Introdução

- •Banco de Dados
 - Coleção de dados relacionados
 - Dados são fatos com significados implícitos
 - Exemplo: Agenda de contatos
 - Que dados
 - Como armazenar?
 - · Agenda tradicional
 - Planilha Excel
 - · Microsoft Access

19

Introdução

- Propriedades
 - Representam aspectos do mundo real (minimundo)
 - Coleção lógica e coerente de dados com significado inerente
 - Atende a uma proposta específica
 - Projetado, construído e povoado por dados
 - Possui grupo de usuários e aplicações bem definidas

Introdução

- Complexidade
 - Simples
 - Agenda de contatos
 - Médio
 - Catálogo de livros da biblioteca
 - Complexo
 - Cadastro de pessoa física na Receita Federal

21

Introdução

- •Geração e Manutenção
 - Manual
 - Catálogo de Biblioteca
 - Computadorizado
 - Aplicativos são utilizados para criar e manter o BD

Atores

- Administradores de BD
 - Autorização
 - Coordenação
 - Monitoramento de uso
- Projetistas de BD
 - Identificação de dados
 - Definição de estrutura
 - Comunicação com usuários
 - Definição de visões

"Guide us, Oh Database Manager!

23

Atores

- Usuário Final
 - Iniciantes ou Parametrizáveis
 - Utilizam transações customizadas
 - Casual
 - Utilizam linguagens de consulta
 - Sofisticados
 - Utilizam facilidades do SGBD
 - Autônomos
 - Possuem BD próprio usando programas como o Microsoft Access
- Engenheiros de Software

Atores

- Bastidores
 - Projetistas e implementadores de sistemas de SGBD
 - Desenvolvedores de ferramentas
 - Manutenção e operadores

25

Introdução

• Sistema de Banco de Dados

Introdução

SGBD

- Sistema Gerenciador de Banco de Dados
- Coleção de programas que permitem:
 - Definição
 - Tipos de dados, estruturas, restrições
 - Construção
 - Armazenamento dos dados em mídia gerenciada pelo SGBD
 - Manipulação
 - Pesquisa, atualização, relatório
 - Compartilhamento
 - Concorrência entre múltiplos usuários

- Proteção
 - Mau funcionamento e falhas
- Segurança
 - Evitar acessos não autorizados
- Manutenção
 - Evolução do BD de acordo com a evolução do minimundo

27

Vantagens SGBD

- Múltiplas Visões
 - Um BD oferece várias visões do banco de dados
 - Sub-conjunto dos dados armazenados
 - Visão virtual dos dados
 - É transparente para o usuário se os dados são armazenados ou derivados

- Concorrência
 - O BD deve permitir que vários usuários tenham acesso a um mesmo dado, mas de maneira controlada Processamento de Transações On-line

29

Vantagens SGBD

- Transações
 - Processo com um ou mais acessos a um BD
 - Isolamento: podem ser executadas de maneira isolada
 - Atomicidade: todas as operações de uma transação são executadas (ou nenhuma)
 - Fundamental para várias aplicações

- •Controle de Redundância
 - Evitar armazenar o mesmo dados várias vezes
 - Espaço de armazenamento
 - Duplicação de esforços
 - Possibilidade de inconsistência

31

Vantagens SGBD

- •Controle de Redundância
 - Redundância controlada
 - Melhora de performance
 - Importante: SGBD deve impedir inconsistência

- •Restrição de Acesso
 - SGBD deve garantir segurança e um subsistema de autorização
 - Funcionalidade
 - Controle de acesso à informação
 - Controle de tipo de operação

33

Vantagens SGBD

- SGBD oferece a execução de atualizações e consultas eficientemente
 - Uso de estrutura de dados especializadas que aumentam a eficiência da execução de operações em disco
 - Índices (Indexes)
 - Estrutura de dados adequadamente adaptados para a pesquisa em disco
 - Buffer
 - Mantém parte do BD em memória

- Backup e Recuperação
 - SGBDs possuem um sistema de backup e recuperação de falhas
 - Falha no meio de uma transação
 - Backtracking
 - Resume
- Múltiplas Interfaces
 - Fornecimento de interfaces diferentes para usuários diferentes
 - Linguagens de consultas para usuários casuais
 - Interfaces de linguagens de programação para programadores
 - Interfaces gráficas para usuários parametrizáveis e autônomos

35

Vantagens SGBD

- Relacionamentos complexos entre dados
 - Representar a variedade de relacionamentos complexos entre os dados
 - Recuperar e atualizar dados relacionados eficientemente

• Relacionamentos complexos entre dados

37

Vantagens SGBD

- Restrições de integridade
 - Funcionalidades para a definição e garantia destas restrições

Tipo de Dados (Turma está entre 1 e 5)

Relacionamento (Todo registro de disciplina deve estar relacionado com um curso)

- Identificadas pelos projetistas durante o projeto
- Automatizadas pelo SGBD x verificadas pelo programa

- •Inferências e Ações
 - Sistemas de banco de dados dedutivos
 - Permitem a definição de regras de dedução por inferência que geram novas informações
 - Exemplo: regras que definem que alunos estão em recuperação

39

Vantagens SGBD

- Potencial para garantir padrões
 - Vários usuários são forçados a seguirem o padrão do BD
- Redução de cerca de 75% do tempo de desenvolvimento utilizando sistema de arquivos

- Flexibilidade
 - Permitem alterações evolutivas
- Disponibilidade imediata de dados atualizados
- Economias de escala
 - Centralização da informação gera economia dos projetos
 - Capacidade de investimento em equipamentos centrais

41

Quando não usar (BD tradicionais)

- BD e aplicações simples, bem definidas e sem previsão de mudanças
- Requisitos de tempo real difíceis de serem atendidos devido ao overhead inerente ao SGBD
- Sem necessidade de múltiplos usuários e acesso concorrente
- Quantidade massiva de dados com requisitos de alta performance

Modelos de Dados

- Permite abstração de dados
 - Ocultam detalhes do armazenamento dos dados
- Conjunto de conceitos usados para descrever a estrutura e as operações básicas de um BD
 - Tipos de dados
 - Relacionamentos
 - Restrições

43

Modelos de Dados Categorias

- Modelos de dados conceituais
 - Alto nível
 - Descrevem os dados como os usuários os percebem
- Modelos de dados representacionais
 - Implementação
 - Podem ser estendidos e utilizados pelos usuários finais
 - Não estão distante do modelo físico
- Modelos de dados físicos
 - Baixo nível
 - Descrevem os detalhes de como os dados estão armazenados no computador

Modelos de Dados Conceituais

- Utiliza conceitos como:
 - Entidades
 - Atributo
 - Relacionamentos
 - Generalização/Especialização

45

Modelos de Dados de Implementação

- São os mais utilizados pelos SGBD comerciais
- Exemplos
 - Modelo relacional
 - Modelos legados
 - Rede
 - Hierárquico
 - Modelo de dados OO
 - Mais próximos dos modelos conceituais, sendo usado algumas vezes como tal

Modelos de Dados Físicos

- Descrevem
 - Como os dados estão armazenados em arquivos no computador
 - Formato do registro
 - Ordem dos registros
 - Rotas de acesso

47

Esquemas, Instâncias e Estados de BD

- •Esquema de BD (Intenção)
 - Descrição do BD definida durante o projeto do BD
 - Dada ao SGBD na construção do BD
 - Poucas alterações
 - Diagrama esquemático
 - Nome dos tipos de registro, itens de dados, e restrições

Esquemas, Instâncias e Estados de BD

- •Estado do BD (Extensão)
 - Snapshot em um determinado momento dos dados que estão no BD
 - Inicialmente vazio
 - Conjunto corrente de instâncias

49

Esquemas, Instâncias e Estados de BD

- •Estado do BD (Extensão)
 - SGBD é responsável por verificar que cada estado é válido
 - SGBD armazena descrição dos construtores e restrições

Esquemas, Instâncias e Estados de BD

- Evolução do esquema
 - Alteração do esquema do BD
 - Evolução dinâmica é suportada pela maioria dos BDs modernos

51

Linguagens de SGBD

- Linguagem de Definição de Dados (DDL)
 - Usada pelos DBA e pelos projetistas para definir os esquemas conceitual e interno do BD

Linguagens de SGBD

- Linguagem de Definição de Armazenamento (SDL)
 - Usada em BDs que separam claramente o esquema conceitual do interno para especificar o último (bytes por campo, ordenação física, indexação,...)
- Mapeamentos entre esquema conceitual e interno é feito usando quaisquer uma dessas linguagens

53

Linguagens de SGBD

- Linguagem de Definição de Visões (VDL)
 - Seria usada para especificar visões e seus mapeamentos
 - Porém na maioria dos SGBD a DDL é usada na definição dos esquemas conceitual e externo
- Linguagem de Manipulação de Dados (DML)
 - Usada para manipular o BD
 - Recuperação, inserção, remoção e modificação

Linguagens de SGBD

- •Nos SGBDs atuais, os tipos de linguagens são consideradas linguagens não distintas
- Linguagens integradas
 - Exemplo: SQL
 - DDL + VDL + DML + Comandos para...
 - Restrições, evolução de esquema, etc
 - SDL foi removida da SQL para mantê-la apenas nos níveis conceitual e externo

55

Interfaces do SGBD

- Interfaces baseadas em menu para clientes Web
- Interfaces baseadas em formulários
 - Exibição de formulários para cada usuário
 - Alguns SGBDs possuem linguagens para especificação de formulários
 - Exemplo: formulários do Access
- Interface gráficas para usuários (GUI)
 - Exibe esquema para usuário para formulário diagramático
 - Usuário especifica consulta manipulando o diagrama

Interfaces do SGBD

- Interfaces com linguagem natural
 - Query em linguagem natural
 - Tentativa de interpretação
 - Inicial
 - Iterativa
- Interface para usuários parametrizáveis
 - Interface especial para cada tipo de usuários permitindo uso mínimo de teclas
 - Exemplo
 - caixas de banco
 - ATM para clientes do banco
- Interface para o DBA

57

Utilitários do SGBD

- Carregamento
 - Usado para carregar arquivo de dados existentes para dentro do BD
 - Ferramentas de conversão

Utilitários do SGBD

- Backup
 - Dumping
 - Incremental
- Reorganização
 - Busca melhora de desempenho
- Monitoramento de desempenho
 - Estatísticas de desempenho e uso
- Classificação e
 Compressão de dados

59

Outras Ferramentas

- Ferramentas CASE para fase de projeto
 - http://www.databaseanswers.org/modelling_tools.htm
 - Modelo ER
 - Dia
 - Draw.io
 - BRModelo
 - Lucid Chart
 - ERWin

Outras Ferramentas

- Relacional
 - Microsoft Access
 - PhPMyAdmin
 - Quantum DB
 - MySQL Workbench
 - PostgreSQL
- http://en.wikipedia.org/wiki/Comparison_of_database_tools

61

Estrutura da Aula

- Apresentação da disciplina
- Introdução a Banco de Dados e SGBD
- Modelagem ER
- Modelagem EER
- Laboratório: Ferramentas de Modelagem ER
- Projeto: Criação de Modelo ER/EER

Exemplo - EMPRESA

- Leitura de material adicional
 - Descrição dos requisitos
 - Diagrama ER

Entidades e Atributos

- Entidade
 - Objeto básico do modelo ER
 - Representa algo do mundo real
 - Objetos físicos e conceituais

71

Entidades e Atributos

- Atributos
 - Propriedades das entidades
 - Exemplos

Tipos de Atributos Composição

- Simples
 - Não divisíveis
- Compostos
 - Podem ser divididos em sub-partes
 - Podem formar uma hierarquia

73

Tipos de Atributos Valoração

- Monovalorado
 - Um valor para cada entidade
- Multivalorado
 - Vários valores diferentes para cada entidade
 - Podemos restringir o número de valores mínimo e máximo
- Exemplo
 - CPF
 - Cor de carro

Tipos de Atributos Armazenamento

- Armazenados
 - O atributo é realmente armazenado do BD
- Derivados
 - O atributo é derivado a partir de outros valores armazenados (ou até mesmo derivados) no BD
- Exemplo
 - Data de nascimento
 - Idade
 - Número de empregados do departamento

75

Tipos de Atributos Null

- Entidades podem n\u00e3o ter um valor para determinado atributo
- Valor especial null
- Exemplos
 - Não-aplicável
 - Titulação
 - Desconhecido
 - Número de apartamento

Tipos de Atributos Atributos Complexos

- Aninhamento de atributos compostos e multi-valorados
- Notação textual: Componentes de atributos compostos usando parênteses e vírgulas e atributos multivalorados entre chaves

77

Tipos de Atributos Atributos Complexos

Exemplo

Tipos Entidade e Conjunto de Entidades

- Tipos Entidade
 - Define uma coleção de entidades que possuem os mesmos atributos
 - Esquema ou intenção
- Conjunto de Entidades
 - Coleção de todas as entidades de um tipo entidade
 - Normalmente chamado pelo mesmo nome do tipo entidade

79

Tipos Entidade e Conjunto de Entidades

Exemplo

Atributos-chave

- Atributo cujos valores são distintos para cada entidade do conjunto de entidades
- Restrição de unicidade
 - Proíbe quaisquer duas entidades de terem, ao mesmo tempo, o mesmo valor para o atributochave

81

Atributos-chave

- •Vários atributos que juntos formam uma chave
 - Combinação dos valores dos atributos devem ser distintas para cada entidade
 - Atributo composto como chave

Atributos - chave • Exemplo • Placas amarelas RJ-RIO DE JANETRO GB 4795 estado cidade letras números números

83

Atributos-chave

• Entidades podem ter mais de um atributo-chave

• Entidades sem atributo-chaves são chamadas entidades fracas

Domínios dos Atributos

- Conjunto de valores que um determinado atributo pode assumir
 - Números inteiros
 - Números reais
 - Strings
 - Intervalos
 - Tipos enumerados

EMPREGADO Nome, Idade, Salario

θ₁ •

(John Smith, 55, 80k)

 θ_2

(Fred Brown, 40, 30K)

e₃

(Judy Clark, 25, 20K)

:

85

Projeto Conceitual Inicial do BD da EMPRESA

DEPARTAMENTO
Nome, Numero,{Localizacoes}, Gerente, DataInicioGerencia

PROJETO
Nome, Numero, Localizacao, DepartamentoControle

EMPREGADO

Nome (PNome, InicialM, UNome), SSN, Sexo, Endereco, Salario, DataNascimento, Departamento, Supervisor, {TrabalhaEm (Projeto, Horas)}

DEPENDENTE

Empregado, NomeDependente, Sexo, DataNascimento, Parentesco

Projeto Conceitual Inicial do BD da EMPRESA

• Ainda não modelamos os relacionamentos entre os tipos de entidade

87

Relacionamentos

- Quando o atributo de uma entidade refere-se a outra entidade
- No exemplo, temos vários relacionamentos implícitos

Relacionamentos

- No modelo ER essas dependências são representadas por relacionamentos
- A idéia é refinar o modelo anterior para transformar dependências em relacionamentos

89

Tipos Relacionamento

• Um tipo relacionamento R entre n tipos entidade E_n ..., E_n define um conjunto de relacionamentos entre entidades destes tipos

Tipos Relacionamento

• Matematicamente TRABALHA_PARA = { (e,,d,), (e,,d,), (e,,d,), ... }

91

Grau de Tipo de Relacionamento

- Número de tipos de entidade que participam desse relacionamento
- Qual o grau de TRABALHA_PARA?
 - 2 (Binário)

Grau de Tipo de Relacionamento

• Exemplo de tipo de relacionamento ternário

93

Relacionamentos como Atributos

- Algumas vezes, podemos pensar em relacionamentos como atributos
- Qual é o conjunto de valores para o atributo Departamento?

Relacionamentos como Atributos

- Na verdade, temos outra opção
 - Atributo multivalorado EMPREGADOS em DEPARTAMENTO
 - Qual o conjunto de valores possíveis para o atributo EMPREGADOS
- Para todo relacionamento binário temos duas opções de representação como atributos

95

Papéis

• Cada tipo de entidade que participa de um relacionamento executa um **papel** no mesmo

Relacionamentos Recursivos

• O mesmo tipo de entidade participa mais de uma vez em um relacionamento

1 – Supervisor

2 – Supervisionado

97

Restrições

- Limitam a possibilidade de combinações de entidades que podem participar de um conjunto de relacionamentos
- Dois tipos principais
 - Razão de cardinalidade
 - Participação

Razão de Cardinalidade

• Especifica o número <u>máximo</u> de instâncias de relacionamentos em que uma entidade pode participar

99

Razão de Cardinalidade

- Possibilidades para relacionamentos binários
 - 1:1
 - 1:N
 - N:1
 - N:M

Restrição de Participação

- Determina o número mínimo de instâncias de relacionamento em que cada entidade pode participar
- Determina se a existência de uma entidade depende de sua existência relacionada a outra entidade
- Dois tipos
 - Total
 - Parcial

101

Restrição de Participação

- Total (Dependência de existência)
 - Todo empregado deve trabalhar para um departamento

Restrição de Participação

- Parcial
 - Nem todo empregado gerencia um departamento

103

Razão de Cardinalidade e Restrição de Participação

• Juntas, chamamos de restrições estruturais

Atributos de Tipos de Relacionamento

• Tipos de relacionamento também podem ter atributos assim como os tipos de entidade

105

Atributos de Tipos de Relacionamento

- Migração
 - Decisão do projetista
 - Atributos de relacionamentos 1:1
 - Atributos de relacionamentos 1:N
 - Atributos de relacionamentos N:M

Tipo de Entidade Fraca

- Tipos de entidades que não têm seus próprios atributos chave
- Identificadas por estarem relacionadas a entidades específicas de um outro tipo de entidade

107

Tipo de Entidade Fraca

• Nomenclatura

 Um tipo de entidade fraca sempre possui uma dependência de existência em relação ao seu relacionamento identificador

Tipo de Entidade Fraca

- Nem toda dependência de existência resulta num tipo de entidade fraca
 - Exemplo
 - Carteira de habilitação
 - Possui sua própria chave
 - Só pode existir relacionada com uma pessoa

109

Tipo de Entidade Fraca

- Observação
 - Dois dependentes de dois empregados distintos podem ter o mesmo valores para seus atributos e ainda assim serão entidades distintas
- Chave parcial
 - Conjunto de atributos que identifica as entidades fracas que estão relacionadas com uma mesma entidade dominante
 - Ex: Não existem dois dependentes de um mesmo empregado com o mesmo primeiro nome
 - Pior caso: todos os atributos são a chave parcial

Relacionamentos n-ários

Restrições

- (I,S,C) em OFERECE apenas se
 - (I,S) em ENSINOU_DURANTE
 - (C,S) em OFERECIDO_DURANTE
 - (I,C) em PODE_ENSINAR
- E o contrário?

117

Relacionamentos n-ários

- Em geral, três relacionamentos binários não podem substituir um ternário
- Porém, no nosso exemplo...

Relacionamentos n-ários

 É possível termos tipos de entidade fracas com um tipo relacionamento de identificação ternário

119

Restrições em Relacionamentos n-ários

- Duas notações
 - 1, M, N
 - •(min, max)

Dicas

- Em geral, dada uma descrição da aplicação
 - Substantivos são entidades
 - Verbos são relacionamentos
 - Atributos são substantivos adicionais que descrevem os substantivos que são entidades

123

Decisões de Projeto

- Diretrizes para definir se um conceito é um tipo entidade, tipo relacionamento ou atributo
- Em geral, o modelo ER deve ser refinado através de iterações
 - Atributos que se referem a outras entidades podem ser refinados em um relacionamento
 - Atributos existentes em várias entidades podem ser refinados para um tipo entidade
 - Tipos de entidade relacionados com apenas um outro tipo entidade podem ser refinados para atributo

Ferramentas

- Dia Diagram Editor (Aplicação Desktop)
- Draw.io (Aplicação Web)
- Lucid Chart
- ERDPlus
- Erwin
- brModelo
- Case Wise
- S-Designer
- ER/Studio
- Visio Professional

125

Ferramentas

- Draw.io e Dia Diagram Editor
 - Ferramentas gratuitas
 - Possui inúmeros tipos de diagrama além do ER, como UML
 - Ferramenta elegante e com ótimo acabamento visual nos diagramas (ER)
 - Permite exportar para diversos formatos (PDF, PNG, JPEG, etc)
 - Suporte limitado à notação do EER de herança

Estrutura da Aula

- Apresentação da disciplina
- Introdução a Banco de Dados e SGBD
- Modelagem ER
- Modelagem EER
- Laboratório: Ferramentas de Modelagem ER
- Projeto: Criação de Modelo ER/EER

A Seguir...

- EER = Extensão do modelo ER +
 - Classes/subclasses
 - Tipos de herança
 - Especialização e generalização
 - Restrições a especialização e generalização
 - Categoria

129

Subclasse, Superclasse e Herança

- Em alguns casos um tipo entidade tem numerosos subgrupos dessas entidades, que são significativos e que precisam ser representados explicitamente
 - EMPREGADA
 - {SECRETARIA, TECNICA, ENGENHEIRA}
 - {GERENTE}
 - {HORISTA, ASSALARIADA}

Especialização

- Especialização
 - Definir um conjunto de subclasses de uma tipo entidade

Especialização

• Relacionamento subclasse/superclasse deve ser 1:1 em nível de instâncias, porém a entidade é a mesma

133

Especialização

- Por que relacionamentos subclasses/superclasses
 - Alguns atributos podem ser usados em algumas, mas não em todas as entidades da superclasse
 - Membros da subclasse compartilham seus atributos com os membros da superclasse

Especialização

- Por que relacionamentos subclasses/superclasses
 - Apenas as entidades que sejam membros de alguma subclasse podem participar de algum tipo de relacionamento

Generalização

- Processo invertido de abstração
 - Suprimos as diferenças de diversos tipos de entidades
 - Identificamos suas características comuns
 - Generalizamos em uma única superclasse
- Processo de definição de um tipo de entidade generalizada a partir de tipos de entidade fornecidos

Restrições

• Especializações com um única subclasse não exigem o círculo

Restrições

- Definição de subclasses
 - por condição, por atributo, pelo usuário

141

Restrições

• Restrição de Disjunção

Restrições

- Restrições de disjunção e integralidade são independentes
 - Disjunção parcial
 - Disjunção total
 - Sobreposição total
 - Sobreposição parcial

145

Disjunção Parcial

Restrições

• Em geral, superclasses identificadas pelo processo de generalização é **total**

Restrições

- Regras de inserção e remoção
 - Remoção de uma entidade da superclasse exige sua remoção automática das subclasses
 - Inserir uma entidade na superclasse implica em
 - Sua inserção obrigatória em todas as subclasses definidas por predicado (ou atributo) para as quais a entidade satisfizer o predicado
 - Sua inserção obrigatória em pelo menos uma subclasse se o relacionamento for total

151

Hierarquia e Herança Múltipla

- Subclasses podem ter, elas mesmas, outras subclasses, formando uma hierarquia
- Uma subclasse pode participar de mais de um relacionamento classe/subclasse

Hierarquia e Herança Múltipla

Observações

- Subclasses herdam atributos de todas as suas superclasses (diretas e indiretas)
- Entidades podem existir em diversos nós folhas da hierarquia ALUNO_GRADUADO e ASSISTENTE_ENSINO
- Herança múltipla implica na existência de um reticulado
- Atributos de PESSOA são herdados apenas uma vez por ASSISTENTE_ALUNO

Refinamento de Esquemas Conceituais

- Basicamente temos duas abordagens
 - Top-down
 - Bottom-up
- Geralmente as combinamos

155

Categorias

• Todos os relacionamentos superclasse/subclasse tem uma superclasse única

Categorias

- Como modelar tais relacionamentos onde podemos ter mais de uma superclasse?
 - CATEGORIAS
 - A subclasse representa uma coleção de objetos que é o resultado da união de diferentes tipos de entidade

157

Categorias x Subclasses

- GERENTE_ENGENHARIA deve ser ENGENHEIRO, GERENTE, e EMPREGADO_ASSALARIADO
 GERENTE_ENGENHARIA herda todos os
- GERENTE_ENGENHARIA herda todos os atributos de ENGENHEIRO, GERENTE, e EMPREGADO_ASSALARIADO

- PROPRIETARIO deve ser ou PESSOA, ou BANCO, ou EMPRESA
- PROPRIETARIO herda os atributos ou de PESSOA, ou de BANCO, ou de EMPRESA, dependendo do que ele seja

159

Categorias x Subclasses

• VEICULO_REGISTRADO inclui alguns membros de CARRO e alguns membros de CAMINHÃO, mas não todos eles.

 Todo CARRO e todo CAMINHÃO referese a um veículo

Categorias

- Total
 - Controla a união de todas as entidades em suas superclasses
- Parcial
 - Controla um subconjunto da união de todas as entidades em suas superclasses

161

Categorias

 As superclasses de uma categoria podem ter atributoschave diferentes, ou não

Estrutura da Aula

- Apresentação da disciplina
- Introdução a Banco de Dados e SGBD
- Modelagem ER
- Modelagem EER
- Laboratório: Ferramentas de Modelagem ER
- Projeto: Criação de Modelo ER/EER

- Laboratório ER_EER.pdf (disponível no SIGAA)
 - Conhecendo o DIA / Lucid Chart
 - Exercícios
- Construindo o Modelo ER/EER do seu projeto