HW3

April 1, 2019

1 Homework 3

Collaborators: * Olivier Cloux (236079) * Zoé Baraschi (219665)

2 Simulate

```
In [2]: from helpers import compute
In [3]: df = compute(80)
In [4]: plt.figure(figsize=(15,10))
        plt.plot(df['Start'], range(len(df)), label="Arrived")
        plt.step(df['T22'], range(len(df)), label="Served")
        plt.title("Number of requests arrived and served")
        plt.legend()
        plt.show()
```



```
In [5]: plt.figure(figsize=(15,10))
        plt.step(df['Start'][100:150], range(50), label="Arrived")
        plt.step(df['T22'][100:150], range(50), label="Served")
        plt.title("Number of requests arrived and served (zoomed)")
        plt.legend()
        plt.show()
```


2.0.1 average response time (event average)

2.0.2 Average number of jobs served per second

As we see, the number of jobs served per second is in both cases close to 80, as the server can keep up with the requests rate, of 80 requests/seconds. So the queue being most of the time almose empty, the rate is obviously close to 80.

3 2

For which values of is the system stationary? The graphs show a stationary regime for lambda in the range (25, 150).

The system is stationary when the mean arrival time between 2 arrivals in the queue does not recede the sum of the mean of the log normal (1.5, 0.6) and the uniform distribution (0.6, 1).

As seen below, this is around 6.166 ms.

```
In [13]: m = np.exp(1.5+(0.6**2)/2) + 0.8

print("Sum of mean of log-normal(1.5, 0.6)\

and normal(0.6, 1) = ", m, "ms")
```

Sum of mean of log-normal(1.5, 0.6) and normal(0.6, 1) = 6.165555971121974 ms

After looping through the values, we see that the max lambda for which there is a stationary regime is 162, after that the queue is saturated and the walk to infinity begins.

What happens on the plots when the system is not stationary? The system becomes unstable once the input rate is larger than the service capacity.

The buffer occupancy grows unbounded and the mean queue length increases. There is a walk to infinity.

4 3 Remove Transients

4.1 With transient present

```
4.1.1 \lambda = 60
```

```
In [15]: from helpers import get_type_i_in_queue, plot_type_i_in_queue
In [16]: df60 = compute(60, iterations=30)
         interesting_times60, type1_in_queue_60, type2_in_queue_60 = get_type_i_in_queue(df60)
```

In [17]: plot_type_i_in_queue(interesting_times60, type1_in_queue_60, type2_in_queue_60)

CI for median

```
In [18]: from helpers import ci_median
In [19]: 1,h = ci_median(len(interesting_times60))
         a = np.sort(type1_in_queue_60)
         b = np.sort(type2 in queue 60)
         print("The CI for median with lambda=60 are, \
         at 95% confidence, between\n\
         \ttype1: {} and {}\n\ttype2: {} and {}\".format(a[1], a[h], b[1], b[h]))
The CI for median with lambda=60 are, at 95% confidence, between
        type1: 1 and 1
        type2: 0 and 1
CI for mean
In [20]: from helpers import ci_mean_large_n
In [21]: ci_means_type1 = ci_mean_large_n(type1_in_queue_60)
         ci_means_type2 = ci_mean_large_n(type2_in_queue_60)
         print("The CI for median with lambda=60 are, at 95% confidence,\
         between\nttype1: {:.3f} and {:.3f}\n\
         \ttype2: {:.3f} and {:.3f}".format(ci_means_type1[0], ci_means_type1[1],
                                            ci_means_type2[0], ci_means_type2[1]))
The CI for median with lambda=60 are, at 95% confidence, between
        type1: 0.565 and 0.868
        type2: 0.563 and 0.871
4.2 \lambda = 160
CI for median
In [22]: df160 = compute(160, iterations=30)
         interesting_times160,
         type1_in_queue_160,
         type2_in_queue_160 = get_type_i_in_queue(df160)
         plot_type_i_in_queue(interesting_times160, type1_in_queue_160, type2_in_queue_160)
```


CI for mean

4.3 With the transient removed

For $\lambda=60$, the analysis is the same as before, as there seems to be no transient. Indeed, the buffer is most of the time empty or nearly empty, steadily across time. Thus we do not repeat the calculation.

For $\lambda = 160$, we use as transient period the time until the buffer size reaches the mean of both objects (that is 97.884). Everything before this threshold is reached is considered transient period

CI for mean

5 4 Little's Law

Little's Law: $\lambda \overline{R} = \overline{N}$, where λ is the number of customer's arriving per second, \overline{R} is the average time a customer spends in the system and \overline{N} is the average number of customers observed in the system.

```
In [29]: \# /n - lambda* r/ = 0
```

```
In [30]: #lambda = 60 (with and without transient is the same)
         df60['Tot-Serv'] = df60['T22']-df60['Start'] # serv time for type2
         r = df60['Tot-Serv'].mean()
         n = np.mean(type1_in_queue_60 + type2_in_queue_60)
         lambda = 60
         print(np.abs(n - lambda_*r))
696.2032113333277
In [31]: #without transient removal, lambda = 160
         df160['Tot-Serv'] = df160['T22']-df160['Start'] # serv time for type2
         r = df160['Tot-Serv'].mean()
         n = np.mean(type1_in_queue_160 + type2_in_queue_160)
         lambda = 160
         print(np.abs(n - lambda_*r))
203309.81944
In [32]: \#with\ transient\ removal, lambda = 160
         df160['Tot-Serv'] = df160['T22']-df160['Start'] # serv time for type2
         r = df160['Tot-Serv'][threshold crossing:].mean()
         n = np.mean((type1_in_queue_160 + type2_in_queue_160)[threshold_crossing:])
         lambda = 160
         print(np.abs(n - lambda_*r))
207013.93200567894
```

So apparently, Little's law doesn't verify here. This strongly suggests a mistake earlier, but unfortunately we are unable to spot it.

6 5 Parameter Estimation And Confidence Interval

A new request arriving in the system is of type 1 with probability $1 - \epsilon$ and of type 2 with probability ϵ and we want to assume that ϵ is zero or almost zero.

First experiment: 10 random requests, all of type 1.

The confidence interval for p when we observe z=0 successes is $[0, p_0(n)]$, with $p_0(n) = 1 - (\frac{1-\gamma}{2})^{\frac{1}{n}}$.

```
For \gamma = 0.95 and n = 10, we have: p_0(10) = 1 - (\frac{1 - 0.95}{2})^{\frac{1}{10}} = 0.308
```

Confidence interval for ϵ : [0, 0.308]

Confidence interval for the stability region of the system:

Second experiment: In order to assure that $\epsilon < 1\%$ with a 95% confidence, assuming that a sample is always a type 1 request, we want $p_0(n) < 0.01$.

$$1 - \left(\frac{1 - 0.95}{2}\right)^{\frac{1}{n}} < 0.01$$

$$(0.025)^{\frac{1}{n}} > 0.99$$

$$\log 0.025^{\frac{1}{n}} > \log 0.99$$

```
\begin{split} &\frac{\log 0.025}{n} > \log 0.99 \\ &\frac{-3.68888}{n} > -0.0100503 \\ \$ & n > 367.04\$ \end{split} We need to pick 368 samples in order to assure \epsilon < 1\% with 95% confidence.
```

0.30849710781876083 367.0404161497511