1. Relación entre variables del primal y del dual:

X1 - Y6

X2 - Y7

X3 - Y8

X4 - Y1

X5 - Y2

X6 - Y3

X7 - Y4

X8 - Y5

Tabla óptima del dual:

			3000	480	120	-40	80			
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8
480	Y2	400/3	5	1	0	0	0	-1/3	0	0
-40	Y4	200	10	0	-1	1	0	-1	0	1
0	Y7	150	10	0	0	0	-1	-1	1	0
Z=56000		-1000	0	-80	0	-80	-120	0	-40	

Parametrizamos C1.

Estudiamos intervalo de confianza.

• $2000 - C1 \le 0 \iff C1 \ge 2000$ $Con \ C1 \in [2000; \infty)$:

$$X1=120$$

$$Z = 56000$$

$$Y2 = 400/3$$

Tabla con C1 = 2000:

			2000	480	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
480	Y2	400/3	5	1	0	0	0	-1/3	0	0	80/3
-40	Y4	200	10	0	-1	1	0	-1	0	1	20
0	Y7	150	10	0	0	0	-1	-1	1	0	15
	Z = 560	000	0*	0	-80	0	-80	-120	0	-40	

Entra Y1, sale Y7.

			C1	480	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
480	Y2	175/3	0	1	0	0	1/2	1/6	-1/2	0	
-40	Y4	50	0	0	-1	1	1	0	-1	1	
C1	Y1	15	1	0	0	0	-1/10	-1/10	1/10	0	
Z=50	6000 -	- 15 C1	0	0	-80	0	120-C1/10	80-C1/10	-200+C1/10	-40	

- $120 C1/10 \le 0 \iff C1 \ge 120$
- $80 C1/10 \le 0 \iff C1 \ge 800$

• $-200 + C1/10 \le 0 \iff C1 \le 2000$ Con $C1 \in [1200; 2000]$:

$$X1 = |80 - C1/10|$$

 $Z = 56000 + 15C1$
 $Y2 = 175/3$

			1200	480	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
480	Y2	175/3	0	1	0	0	1/2	1/6	-1/2	0	350/3
-40	Y4	50	0	0	-1	1	1	0	-1	1	50
1200	Y1	15	1	0	0	0	-1/10	-1/10	1/10	0	-
Z=74000		0	0	-80	0	0*	-40	-80	-40		

Entra Y5, sale Y4

			C1	480	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
480	Y2	100/3	0	1	1/2	-1/2	0	1/6	0	-1/2	
80	Y5	50	0	0	-1	1	1	0	-1	1	
C1	Y1	20	1	0	-1/10	1/10	0	-1/10	0	1/10	
Z=20	0000 +	⊢ 20 C1	0	0	40-C1/10	-120+C1/10	0	80-C1/10	-80	-160+C1/10	

- $40 C1/10 \le 0 \iff C1 \ge 400$
- $-120 + C1/10 \le 0 \iff C1 \le 1200$
- $80 C1/10 \le 0 \iff C1 \ge 800$
- $-160 + C1/10 \le 0 \iff C1 \le 1600$ Con $C1 \in [800; 1200]$:

$$X1 = |80 - C1/10|$$

 $Z = 20000 + 20C1$
 $Y2 = 100/3$

1 Gráficos

Figure 1: Variación de la cantidad de servicios SM al variar la disponibilidad de componentes.

Figure 2: Variación del valor marginal de técnicos al variar la disponibilidad de componentes.

2. Caso 1:

			3000	780	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	heta
780	Y2	400/3	5	1	0	0	0	-1/3	0	0	400/15
-40	Y4	200	10	0	-1	1	0	-1	0	1	20
0	Y7	150	10	0	0	0	-1	-1	1	0	15
	Z=56000		500	0	-80	0	-80	-220	0	-40	

Entra Y1, sale Y7

				3000	780	120	-40	80				
	Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
	780	Y2	175/3	0	1	0	0	1/2	1/6	-1/2	0	
.	-40	Y4	50	0	0	-1	1	1	0	-1	1	
3	8000	Y1	15	1	0	0	0	-1/10	-1/10	1/10	0	
	Z	Z = 885	00	0	0	-30	0	-80	-170	-130	-40	

Llegamos a la tabla óptima.

Ganamos $88500 - 45000 = 43500 < 56000 \Rightarrow$ No conviene.

 ${\bf Caso~2:}$

			3000	80	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	heta
80	Y2	400/3	5	1	0	0	0	-1/3	0	0	400/15
-40	Y4	200	10	0	-1	1	0	-1	0	1	20
0	Y7	150	10	0	0	0	-1	-1	1	0	15
Z=8	000/3	= 2666.6	-3000	0	-80	0	-80	40/3	0	-40	

Como el dual tiene solución óptima no acotada el primal no tiene soluciones posibles. Por lo tanto este opción tampoco sirve.

Se puede validar esto dado que no se llegue a proveer la demanda de 40 SM (X3) con solo 40 técnicos. Se necesitan por lo menos 120 técnicos para cubrir la demanda.

3. Trabajamos en el primal.

			400	450	200						
Ck	Xk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
400	X1	120	1	1	0	0	1/3	0	1	0	120
200	X3	40	0	0	1	0	0	0	-1	0	-
0	X4	1000	0	-10	0	1	-5	0	-10	0	-
0	X6	80	0	0	0	0	0	1	1	0	-
0	X8	80	0	1	0	0	0	0	0	1	80
Z	Z = 560	00	0	-50	0	0	400/3	0	200	0	

			400	450	200						
Ck	Xk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
400	X1	40	1	0	0	0	1/3	0	1	-1	
200	X3	40	0	0	1	0	0	0	-1	0	
0	X4	1800	0	0	0	1	-5	0	-10	10	
0	X6	80	0	0	0	0	0	1	1	0	
450	X2	80	0	1	0	0	0	0	0	1	
Z	Z = 600	00	0	0	0	0	400/3	0	200	50	

Llegamos a la tabla óptima. El beneficio es de 60000 y se aumentó la ganancia en 4000 \Rightarrow Conviene.