ALGORITHM EFFICIENCY

LECTURE 12-1

JIM FIX, REED COLLEGE CSCI 121

BINARY SEARCH TREES

- Binary search trees are a way of keeping track of a sorted collection.
- Here, we are using them as an ordered dictionary.
- For our dictionaries, there is at most one entry per key.
- ▶ The link structure sorts the entries; maintains a sorted order.
 - The keys are usually organized alphabetically when strings.
 - The keys are usually sorted smaller/larger if numbers.
- (Generally, in binary search trees, keys might appear more than once; have multiple entries.)
- (Generally, in binary search trees, the nodes might only contain keys without associated values.)

A BST CLASS

Operations:

- Searching for an entry by key.
- Adding or updating an entry, ordered according to key, storing the value.
- Removing an entry.
- Visiting all the entries in sorted order.
- The first three operations rely on a search.
 - This works from the root, moving left or right.

SEARCHING FOR AN ENTRY IN A BST

```
class BSTNode:
    def init (self,k,v):
        self.key = k
        self.value = v
        self.left = None
        self.right = None
class BSTree:
    def init (self):
        self.root = None
    def contains(self,k):
        curr = self.root
        while curr is not None:
            if k == curr.key:
                return True
            if k < curr.key:</pre>
                curr = curr.left
            if k > curr.key:
                curr = curr.right
        return False
```


ADDING AN ENTRY TO A BST

```
class BSTree:
    def update(self,k,v):
        parent = None
        curr = self.root
        while curr is not None:
            parent = curr
             if k == curr.key:
                 curr.value = v
                 return
             if k < curr.key:</pre>
                 curr = curr.left
             if k > curr.key:
                 curr = curr.right
        newNode = BSTNode(k, v)
        if parent is None:
             self.root = newNode
        elif k < prnt:</pre>
            parent.left = newNode
        else:
            parent.right = newNode
```


A BST CLASS

Operations:

- Searching for an entry by key.
- Adding or updating an entry, ordered according to key, storing the value.
- Removing an entry.
- Visiting all the entries in sorted order.
- The first three operations rely on a search.
 - This works from the root, moving left or right.
- ► The last is *in-order traversal*. It is a recursive. **Example:** printing all the entries
 - You print all of the entries left of the root entry.
 - Then you print the root entry.
 - And then you print all of the entries right of the root entry.

TRAVERSING A BST

```
def printBST(node):
    if node is not None:
        printBst(node.left)
        entry = str(k)+":"+str(v)
        print(entry,end=' ')
class BSTree:
    def output(self):
        printBST(self.root)
        print()
>>> t.print()
abe:17 bob:22 bzz:22 cat:3 dog:5
mia:12 pig:8 xao:33
>>>
```


A TOUR OF THE BST CLASS CODE

▶ Look at BSTree.py

WRITING BETTER CODE

- As you become a more sophisticated programmer, you'll be driven to write good code. Some measures of "goodness":
 - Is it correct?
 - Is it readable?
 - Is it maintainable?
 - And sometimes writing efficient code is important, too.

EFFICIENT CODE

- Efficient code is code that uses fewer resources when run.
 Examples:
 - It makes fewer calculations and/or takes fewer steps.
 - It uses less memory with its data structures.
- For both of these, a program will typically compute its answer faster.
 - It runs faster.
- Today we'll focus on running time.

MEASURING RUNNING TIME

- Suppose you have two programs that compute the same result:
 - program A and program B.
 - Q: How do we determine which one is faster?
 - A: Run the code on typical inputs, measure the time it takes.

```
>>> import timeit
>>> i = 'import pow2'
>>> s = 'pow2.pow2(20)'
>>> timeit.timeit(stmt=s,setup=i,number=100)
0.0002275099977850914
```

► This will time 100 evaluations of **pow2 (20)** then report the elapsed time in seconds.

MEASURING RUNNING TIME

- Suppose you have two programs that compute the same result:
 - program A and program B.
- But maybe...
 - You don't have an exact sense of the typical inputs.
 - The size of typical inputs increases over the lifetime of the algorithms' use.
 - The size and typicality of inputs might vary widely, depending on the application of the algorithm.
 - The computer might get upgraded in some near future. Or the programs might be rewritten for some unknown system.

MEASURING RUNNING TIME

- Suppose you have two programs that compute the same result:
 - program A and program B.
- But maybe...
 - You don't have an exact sense of the typical inputs.
 - The size of typical inputs increases over the lifetime of the algorithms' use.
 - The size and typicality of inputs might vary widely, depending on the application of the algorithm.
 - The computer might get upgraded in some near future. Or the programs might be rewritten for some unknown system.
- We then also work to estimate running times.
 - We use running time analysis.

RUNNING TIME ANALYSIS

- Typical major concerns of running time estimation:
 - How does the running time scale (roughly) with input complexity?
 E.g. searching for an item in a list of size n
 - ◆ We will estimate "limiting" or asymptotic running time.
 - For a particular input sizer, what are the trickiest inputs the code will face?
 - E.g. the search might have to scan the whole list.
 - We sometimes give bounds on the worst cases.

RUNNING TIME ANALYSIS

- Typical lesser concerns of running time estimation:
 - e.g., Something that runs 11% faster on one machine over another.
 - e.g., Program A runs a little slower on small inputs well on large inputs (0.2sec versus 0.15sec for Program B), even though Program A runs must faster on large inputs (20sec versus 1000sec for Program B).

ASYMPTOTIC EQUIVALENCE

- Let's formalize some of these ideas:
 - Two algorithms' running times are asymptotically equal if, for large inputs, which algorithm is faster depends on the relative speed of their executing computers.
- Example scenario:
 - Suppose algorithm A takes n^3 $4n^2$ steps on an n-bit input.
 - Suppose algorithm B takes $10n^3+15$ steps on an n-bit input.
 - If A and B run on the same computer, A runs faster.
 - If B runs on a 100x speedier machine, it beats A on large inputs.

ASYMPTOTIC EFFICIENCY

- Let's formalize some of these ideas:
 - Two algorithms' running times are asymptotically equal if, for large inputs, which algorithm is faster depends on the relative speed of their executing computers.
- ▶ We define $\Theta(g(n))$, the set of functions asymptotically equal to g, with:

Definition: f(n) is in the set $\Theta(g(n))$ whenever there exist positive constants L and U, and a positive constant m where $Lg(n) \le f(n) \le Ug(n)$ for all $n \ge m$.

BIG THETA

Definition: f(n) is in the class $\Theta(g(n))$ whenever there exist positive constants L and U, and a positive constant m where $L g(n) \le f(n) \le U g(n)$

for all $n \ge m$.

Examples:

 n^3 - $4n^2$ is in the class $\Theta(10n^3+15)$

 $10n^3+15$ is in the class $\Theta(n^3-4n^2)$

 n^3 - $4n^2$ is in the class $\Theta(n^3)$

 $10n^3+15$ is in the class $\Theta(n^3)$

NOTE: All these functions grow as *cubic functions* of *n*.

BIG THETA

Definition: f(n) is in the class $\Theta(g(n))$ whenever there exist positive constants L and U, and a positive constant m where $Lg(n) \le f(n) \le Ug(n)$

for all $n \ge m$.

Examples from the last lecture:

Searching... an entire list of length n takes $\Theta(n)$ time. ...a balanced BST of size n to discover that a key is missing is $\Theta(\log_2(n))$ time.

A nested pair of loops that sum the products i^*j takes $\Theta(n^2)$ time. Computing **pow2** (**n**) using repeated squaring takes $\Theta(\log_2(n))$ time. Computing **pow2** (**n**) by multiplying 2 of n times takes $\Theta(n)$ time. Computing **pow2** (**n**) by summing n takes n times.

BIG OH

Definition: f(n) is in the class O(g(n)) whenever there are positive U and m such that

$$0 \le f(n) \le U g(n)$$

for all $n \ge m$.

Examples:

```
n^3 - 4n^2 is in the class O(10n^3 + 15)

10n^3 + 15 is in the class O(n^3 - 4n^2)

n^2 is in the class O(n^3)

100000n + 987987987 is in the class O(n)
```

▶ We use "big Oh" to say "asymptotically grows no faster than..."

BIG OH

Definition: f(n) is in the class O(g(n)) whenever there are positive U and m such that

$$0 \le f(n) \le U g(n)$$

for all $n \ge m$.

Examples:

Searching a list of length n takes O(n) time. Searching a balanced BST of size n takes $O(\log_2(n))$ time. Searching a BST of size n takes O(n) time.

▶ We use "big Oh" to say "asymptotically grows no faster than..."

A CASE STUDY: SEARCHING A LIST

SEARCHING A LIST

```
def search(item, someList):
    i, n = 0, len(someList)
    while i < n:
        if someList[i] == item: return True
        i += 1
    return False</pre>
```

SEARCHING A SORTED LIST

Can we do better if a list is sorted?

▶ Suppose that someList[0] ≤ someList[1] ≤ ... ≤ someList[n-1]

SEARCHING A SORTED LIST

```
def binarySearch(item, someList):
    left, right = 0, len(someList)-1
    while left <= right:
        middle = (left + right) // 2
        if item == someList[middle]:
            return True
        elif item < someList[middle]:</pre>
            right = middle-1
        else:
            left = middle+1
    return False
```

SEARCHING A SORTED LIST

```
def binarySearch(item, someList):
    left, right = 0, len(someList)-1
    while left <= right:
        middle = (left + right) // 2
        if item == someList[middle]:
            return True
        elif item < someList[middle]:
            right = middle-1
        else:
            left = middle+1
        return False</pre>
```

- With each someList[middle] check, we eliminate half the undetermined list items from consideration.
- ▶ This means we inspect the list $O(log_2(n))$ times.

ANOTHER CASE STUDY: SORTING A LIST

BUBBLE SORT

- With bubble sort we make several left-to-right scans over the list.
 - We swap out-of-order values at neighboring locations
 - This "bubbles up" larger values so they "rise" to the right.

BUBBLE SORT

- With bubble sort we make several left-to-right scans over the list.
 - We swap out-of-order values at neighboring locations
 - This "bubbles up" larger values so they "rise" to the right.

```
def bubbleSort(aList):
    n = len(aList)
    for scan in range(1,n):
        i = 0
        while i < n - scan
        if aList[i+1] < aList[i]: #swap?
            aList[i], aList[i+1] = aList[i+1], aList[i]
        i += 1</pre>
```

▶ This means we only need to make *n* -1 scans.

BUBBLE SORT

- With bubble sort we make several left-to-right scans over the list.
 - We swap out-of-order values at neighboring locations
 - This "bubbles up" larger values so they "rise" to the right.

```
def bubbleSort(aList):
    n = len(aList)
    for scan in range(1,n):
        i = 0
        while i < n - scan)
        if aList[i+1] < aList[i]: #swap?
            aList[i], aList[i+1] = aList[i+1], aList[i]
        i += 1</pre>
```

- ▶ This means we only need to make *n* -1 scans.
- This means we can stop the scan earlier for later passes.

BUBBLE SORT ANALYSIS

What is the running time of bubble sort?

The if statement runs n-1 times on the first scan, then n-2 times on the second scan, then n-3 times on the third scan, ...

BUBBLE SORT ANALYSIS

What is the running time of bubble sort?

The if statement runs n-1 times on the first scan, then n-2 times on the second scan, then n-3 times on the third scan, ...

The total number of swaps is

$$n(n-1)/2 = (n-1) + (n-2) + ... + 3 + 2 + 1$$

▶ Its running time scales *quadratically* with *n*.

SUMMARY

- In running time analysis use asymptotic notation to describe efficiency.
 - We use Big Theta for asymptotic equivalence.
 - We use Big Oh for asymptotic guarantees, i.e. upper bounds.
- Two classic searching and sorting algorithms:
 - Binary search is a logarithmic time algorithm. It works on sorted lists.
 - Bubble sort is a quadratic time algorithm. It sorts a list.
- Can we sort faster than in quadratic time?