The functors π_0 and π_1

Last revision: 9th March 2021.

Contents

1.	Set Theory prerequisites	1
2.	Paths	2
3.	The functor $\pi_0: \mathbf{Top} \to \mathbf{Set}$	3
4.	The functor $\pi_1: \mathbf{Top}_{\cdot} \to \mathbf{Grp}$	

1. Set Theory prerequisites

Lemma 1.1. Let X and Y be two sets, \mathcal{E} be a partition of X and $f: X \to Y$ be a function with the property: f(E) is a singleton for $E \in \mathcal{C}$. Then there exists one and only one function $f^*: \mathcal{C} \to Y$ such that commutes

where $p: X \to \mathcal{C}$ is the function that maps each $a \in X$ into the unique $E \in \mathcal{C}$ such that $a \in E$.

Proof. Consider the relation

$$f^* := \{(E, b) \in \mathcal{C} \times Y \mid \text{exists } a \in X \text{ such that } p(a) = E \text{ and } f(a) = b\}$$
.

Picked any $E \in \mathcal{C}$, since it is not empty, we can have an $a \in E$ and then we have the element f(a) of B: thus $(E, f(a)) \in f^*$. Furthermore, consider the pairs (E, b) and (E, c) of f^* : therefore b = f(u) and c = f(v) for some $u, v \in E$; but, since f(E) in a singleton, we must conclude b = c. We have shown that the relation f^* actually is a function $\mathcal{C} \to Y$. Besides such function satisfies $f^*p = f$. It remains only the uniqueness part. Assume you have a function $g: \mathcal{C} \to Y$ such that gp = f. Now, for every $E \in \mathcal{C}$ we have at least an $a \in E$, and $g(E) = g(p(a)) = f^*(p(a)) = f^*(E)$.

Proposition 1.2. Let X and Y be two sets, ε_X and ε_Y equivalence relation on X and on Y respectively. Then for every function $f: X \to Y$ that satisfies

(1.1) for every
$$a, b \in X$$
 if $a\varepsilon_X b$ then $f(a)\varepsilon_Y f(b)$

there exist one and only one function $f_{\sharp}: X/\varepsilon_X \to Y/\varepsilon_Y$ such that

$$X \xrightarrow{f} Y$$

$$p_X \downarrow \qquad \downarrow p_Y$$

$$X/\varepsilon_X \xrightarrow{f_\sharp} Y/\varepsilon_X$$

commutes, where p_X and p_Y are the canonical projections.

Proof. The function $p_Y f: X \to Y/\varepsilon_Y$ is constant on ε_X -equivalence classes: in fact, for every $a, b \in X$ we have

$$\underbrace{a\varepsilon_X b \implies f(a)\varepsilon_Y f(b)}_{\text{cause (1.1)}} \implies p_Y(f(a)) = p_Y(f(b)).$$

Apply the previous lemma, and the proof is done.

2. Paths

We indicate with I the interval [0,1] equipped with the Euclidean topology inherited from \mathbb{R} .

Definition 2.1 (Paths, junction and inversion). Let X be a topological space and $a, b \in X$. A path from a to b in X is a continuous function

$$\gamma: I \to X$$
 such that $\gamma(0) = a$ and $\gamma(1) = b$.

 $\Omega(X,a,b)$ denotes the set of the paths in X from a to b. There is a function called *junction*:

$$*: \Omega(X, a, b) \times \Omega(X, b, c) \rightarrow \Omega(X, a, c)$$

where

$$(\alpha * \beta)(t) := \begin{cases} \alpha(2t) & \text{if } 0 \le t \le \frac{1}{2} \\ \beta(2t - 1) & \text{otherwise} \end{cases}$$

and one named inversion:

inv:
$$\Omega(X, a, b) \to \Omega(X, b, a)$$

where

$$\operatorname{inv} \varphi(t) := \varphi(1-t)$$
.

Note that the junction is not associative in a strict sense, that is not always $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$ holds. It is quite simple to demonstrate that

$$\operatorname{inv}(\alpha * \beta) = \operatorname{inv} \beta * \operatorname{inv} \alpha$$

for every $\alpha \in \Omega(X, a, b)$ and $\beta \in \Omega(X, b, c)$.

Lemma 2.2. Let X and Y be topological spaces, $a, b \in X$. For every continuous function $f: X \to Y$, $\alpha \in \Omega(X, a, b)$ and $\beta \in \Omega(Y, b, c)$ we have

$$f(\alpha * \beta) = f\alpha * f\beta$$

$$f(\text{inv } \alpha) = \text{inv}(f\alpha).$$

Proof. Since f is continuous, then

$$f\alpha \in \Omega(Y, f(a), f(b))$$
 and $f\beta \in \Omega(Y, f(b), f(c))$.

In that case:

$$f((\alpha * \beta)(t)) := \begin{cases} f(\alpha(t)) & \text{if } 0 \le t \le \frac{1}{2} \\ f(\beta(t)) & \text{otherwise} \end{cases} = f(\alpha(t)) * f(\beta(t)).$$

The proof of the other identity is quite similar.

Definition 2.3 (Connected points). Let X be a topological space and a and b two of its points. We write $a \sim_X b$ whenever $\Omega(X, a, b) \neq \emptyset$.

Proposition 2.4. For X topological space, \sim_X is an equivalence relation.

Proof. For every $a \in X$ there exists the constant path

$$c_a: I \to X$$
, $c_a(t) := a$ for every $t \in I$:

Hence $a \sim_X a$ for every $a \in X$. Besides, for every $a, b \in X$ and for every $\lambda \in \Omega(X, a, b)$ there is the inverse path, that is inv $\lambda \in \Omega(X, b, a)$: so, if $a \sim_X b$, then $b \sim_X a$. Finally, for every $a, b, c \in X$ and $\alpha \in \Omega(X, a, b)$ and $\beta \in \Omega(X, b, c)$ there is the jointed path $\alpha * \beta \in \Omega(X, a, c)$: thus, if $a \sim_X b$ and $b \sim_X c$, then $a \sim_X c$.

The writing $[x]_{\sim_X}$ indicates the \sim_X -equivalence class of $x \in X$.

3. The functor
$$\pi_0 : \mathbf{Top} \to \mathbf{Set}$$

Proposition 3.1. There exists a functor

$$\pi_0: \mathbf{Top} \to \mathbf{Set}$$

described as follows:

- maps each topological space X into the set $\pi_0(X) := X/\sim_X$;
- maps every continuous function $f: X \to Y$ into the set function

$$\pi_0(f): X/\sim_X \to Y/\sim_Y, \ \pi_0([x]_{\sim_X}):=[f(x)]_{\sim_Y}.$$

Proof. Any topological space X has the set of \sim_X -equivalence classes of X/\sim_X , so it is natural to take into account the function

$$|\mathbf{Top}| \to |\mathbf{Set}|, X \to X/\sim_X$$
.

Take two topological spaces X and Y and a continuous function $f: X \to Y$ and consider $a, b \in X$ such that $a \sim_X b$, that is there exists a path $\lambda: I \to X$ from a to b. Since f is a continuous function, so is $f\lambda: I \to Y$: this is a path in Y from f(a) to f(b), so $f(a) \sim_Y f(b)$ too. Thus, by Proposition 1.2, there exists a unique function $f_{\sharp}: X/\sim_X \to Y/\sim_Y$ such that

$$f_{\sharp}([a]_{\sim_X}) = [f(a)]_{\sim_Y}$$
 for every $a \in X$.

In other words, for X and Y topological spaces we have the function

$$\mathbf{Top}(X,Y) \to \mathbf{Set}(X/\sim_X,Y/\sim_Y), \ f \to f_{\mathsf{H}}.$$

We prove the functoriality. Taken two continuous maps $f: X \to Y$ and $g: Y \to Z$, we have to demonstrate that $(gf)_{\sharp} = g_{\sharp}f_{\sharp}$: for every $a \in X$

$$\begin{split} (gf)_{\sharp}([a]_{\sim_X}) &= [gf(a)]_{\sim_Z} = \\ &= g_{\sharp}([f(a)]_{\sim_Y}) = \\ &= g_{\sharp}(f_{\sharp}([a]_{\sim_X})) = \\ &= (g_{\sharp}f_{\sharp})([a]_{\sim_X}) \,. \end{split}$$

It remains to investigate what $(\mathrm{id}_X)_{\sharp}$ actually is, for X topological space and id_X its identity: for each $a \in X$ we have

$$(\mathrm{id}_X)_{\sharp}([a]_{\sim_X}) = [\mathrm{id}_X(a)]_{\sim_X} = [a]_{\sim_X},$$

that is $(\mathrm{id}_X)_{\sharp} = \mathrm{id}_{X/\sim_X}$. Finally, we have a functor $\pi_0 : \mathbf{Top} \to \mathbf{Set}$ defined as follows:

$$\pi_0(X) = X/\sim_X \text{ and } \pi_0(f) = f_{\sharp}.$$

4. The functor
$$\pi_1 : \mathbf{Top}_* \to \mathbf{Grp}$$

Definition 4.1 (Homotopy). Let X be a topological space, a and b be two of its points and $\alpha, \beta \in \Omega(X, a, b)$. A homotopy (plural: homotopies) from α to β is a continuous function

$$\Gamma: I \times I \to X$$

such that:

- (1) $\Gamma(-,0) = \alpha$ and $\Gamma(-,1) = \beta$
- (2) $\Gamma(0,t) = a$ and $\Gamma(1,t) = b$ for every $t \in I$.

We say that α is *homotopic* to β , and write $\alpha \simeq \beta$, whenever there is an homotopy from α to β ; in that case, one may write

$$\Gamma \cdot \alpha \sim \beta$$

to specify that Γ is one of these homotopies.

Proposition 4.2. Paths in convex sets $E \subseteq \mathbb{R}^n$ are homotopic.

Proof. Since E is convex, take $a, b \in X$ and $\alpha, \beta \in \Omega(X, a, b)$ and consider

$$\Gamma: I \times I \to E, \ \Gamma(s,t) := (1-t)\alpha(s) + t\beta(s).$$

This function is a homotopy from α to β .

Lemma 4.3. Let X be a topological space and $a, b \in X$. For every $\alpha \in \Omega(X, a, b)$ and $\varphi \in \Omega(I, 0, 1)$ we have

$$\alpha \simeq \alpha \varphi$$
.

Proof. There is, in fact, the homotopy

$$\Lambda: I \times I \to X$$
, $\Lambda(s,t) := \alpha((1-t)s + t\varphi(s))$.

Proposition 4.4. \simeq is an equivalence relation.

Proof. Let X be a topological space and $a, b \in X$.

(1) $\alpha \in \Omega(X, a, b)$ is homotopic to itself: one of these homotopies is

$$\Gamma: I \times I \to X, \ \Gamma(s,t) := \alpha(s).$$

(2) Take $\alpha, \beta \in \Omega(X, a, b)$ and a homotopy $\Lambda : \alpha \simeq \beta$. Then

$$\Lambda': I \times I \to X$$
, $\Lambda'(s,t) := \Lambda(s,1-t)$

is a homotopy $\beta \simeq \alpha$.

(3) Now take $\alpha, \beta, \gamma \in \Omega(X, a, b)$ and homotopies $\Delta_1 : \alpha \simeq \beta, \Delta_2 : \beta \simeq \gamma$. The function

$$\Delta_3: I \times I \to X$$
, $\Delta_3(s,t) := \begin{cases} \Delta_1(s,2t) & \text{if } 0 \le t \le \frac{1}{2} \\ \Delta_2(s,2t-1) & \text{otherwise} \end{cases}$

is a homotopy.

(Calculations are simple, and left to the reader.)

Proposition 4.5. * is compatible with \simeq . That is: given a topological space X, a, b, $c \in X$, α_1 , $\beta_1 \in \Omega(X, a, b)$ and α_2 , $\beta_2 \in \Omega(X, a, b)$ we have

$$\alpha_1 \simeq \beta_1 \text{ and } \alpha_2 \simeq \beta_2 \implies \alpha_1 * \alpha_2 \simeq \beta_1 * \beta_2$$
.

Proof. Consider homotopies $\Gamma : \alpha_1 \simeq \beta_1$ and $\Delta : \alpha_2 \simeq \beta_2$. A homotopy $\alpha_1 * \alpha_2 \simeq \beta_1 * \beta_2$ is the following function

$$\Xi:I\times I\to X\,,\ \Xi(s,t):=\begin{cases} \Gamma(2s,t) & \text{if }0\leq s\leq\frac{1}{2}\\ \Delta(2s-1,t) & \text{otherwise} \end{cases}. \qed$$

The previous proposition is crucial for our purposes, because it permits a group structure upon a quotient set. Let's start with the magmatic base and then discover a bunch of properties which makes it a group.

Definition 4.6. Let X be a topological space and $a \in X$.

$$\pi_1(X,a) := \Omega(X,a,a)/\simeq$$

whose elements are written as $[\alpha]$, where $\alpha \in \Omega(X, a, a)$. Due to the Proposition 4.5, we can define the following operation:

$$\pi_1(X, a) \times \pi_1(X, a) \to \pi_1(X, a)$$

 $([f], [g]) \to [f][g] := [f * g].$

Lemma 4.7. Consider a topological space X and an $a \in X$. Then:

(1) for every $f, g, h \in \Omega(X, a, a)$

$$(f * g) * h \simeq f * (g * h)$$

(2) the path $c_a: I \to X$ which maps every $t \in I$ into a has the property: for every $f \in \Omega(X, a, a)$

$$c_a * f \simeq f \simeq f * c_a$$

(3) for every $f \in \Omega(X, a, a)$ we have

$$f * \text{inv } f \simeq \text{inv } f * f \simeq c_a$$
.

Idea for the proof. Use Lemma 4.3. (Proof yet to TFX-ify...) $\hfill\Box$

Proposition 4.8. Let X be a topological space and $a \in X$. The set $\pi_1(X, a)$ shipped with the multiplication defined above is a group. In particular, $[c_a]$ with $a \in X$ is the identity and $[\alpha]^{-1} = [\text{inv } \alpha]$.

Proof. Direct consequence of the previous lemma.

The group $\pi_1(X, a)$ has some names: fundamental group, first homotopy group, or Poincaré group.

Proposition 4.9. For X topological space and $a, b \in X$, if $\Omega(X, a, b) \neq \emptyset$ then $\pi_1(X, a) \cong \pi_1(X, b)$.

Proof. So there exists $\alpha \in \Omega(X, a, b)$. Then consider the function

$$\lambda_{\alpha} : \pi_1(X, a) \to \pi_1(X, b), \ \lambda_{\alpha}([f]) := [\alpha]^{-1}[f][\alpha].$$

At a first glance, the function λ_{α} is a bijective since

$$\lambda_{\operatorname{inv}\alpha}\lambda_\alpha=\operatorname{id}_{\pi_1(X,a)}\text{ and }\lambda_\alpha\lambda_{\operatorname{inv}\alpha}=\operatorname{id}_{\pi_1(X,b)}.$$

It just remains to show λ_{α} is a homomorphism:

$$\lambda_{\alpha}([f][g]) = [\alpha]^{-1}[f][g][\alpha] =$$

$$= [\alpha]^{-1}[f][\alpha][\alpha]^{-1}[g][\alpha] =$$

$$= \lambda_{\alpha}([f])\lambda_{\alpha}([g]).$$

for
$$f, g \in \Omega(X, a, a)$$
.

The previous fact has important consequences concerning path-connected spaces: for any pair of its points a and b we have $\pi_1(X,a) \cong \pi_1(X,b)$. To put it in other words: no matter which point you choose, the corresponding fundamental groups are the same. In some sense, that said, we can use expressions as 'the fundamental group of X' and write $\pi_1(X)$ to mean any of the groups $\pi_1(X,a)$, with $a \in X$.

Definition 4.10 (Simply connected space). A path-connected topological space X is said to be *simply connected* whenever its fundamental group is banal.

Maybe, it is better to recall what the category \mathbf{Top}_* is:

- its objects are the *pointed topological spaces*, viz topological spaces from which one point is highlighted; formally, a pointed topological space is a pair (X, a), where X is a topological space and a is any of its points;
- a morphism $f:(X,a)\to (Y,b)$ is precisely a continuous function $f:X\to Y$ such that f(a)=b;
- the composition occurs in the same way as it does in **Top**.

Proposition 4.11 (The functor $\pi_1 : \mathbf{Top}_* \to \mathbf{Grp}$). There exists a functor

$$\pi_1: \mathbf{Top}_* \to \mathbf{Grp}$$

so described:

- it maps a pointed topological space (X, x_0) into the group $\pi_1(X, x_0)$;
- for (X, a) and (Y, b) pointed topological spaces, it maps a continuous function $f: (X, a) \to (Y, b)$ into the homomorphism

$$f_*: \pi_1(X, a) \to \pi_1(X, b), \ f_*([\alpha]) := [f\alpha].$$

Proof. Consider a continuous function $f:(X,a)\to (Y,b)$ of pointed topological spaces: such a function induces the function

$$f': \Omega(X, a, a) \to \Omega(Y, b, b), f'(\alpha) := f\alpha.$$

Now, let $\alpha, \beta \in \Omega(X, a, a)$ with the homotopy $\Lambda : \alpha \simeq \beta$: the function $f\Lambda : I \times I \to Y$ is a homotopy from $f\alpha$ to $f\beta$ too. By Proposition 1.2, this implies that there exists one and only one function $f_* : \pi_1(X, a) \to \pi_1(Y, b)$ that does what we need. Now, we have to prove it is a homomorphism and the functoriality of $(\cdot)_*$.