- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^* \to R^*, f(x) = \frac{1}{x}$
- 4. Дано еліптичну криву $y^2=x^3+x+1$ у полі Z_{17} . Знайти точку A на кривій таку що $y\neq 0$. Обчислити A+A

Варіант 2

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=105, k=15
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 3

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня п група за множенням усіх невироджених матриць порядку п з коефіцієнтами з поля P
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^+ \to R, f(x)=\log_2 x$
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати систему рівнянь $\begin{cases} 9x+2y=8 \\ 2x+3y=11 \end{cases}$ в полі Z_{13}
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку $\mathbf n$, обернені до яких також ϵ цілочисельними
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти круговий многочлен Q_{81}

Варіант 6

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix}1&3\\0&2\end{pmatrix}\in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f: R \to R^+, f(x) = 2^x$
- 4. Знайти круговий многочлен Q_{60}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Розв'язати рівняння $x^2 + x\sqrt{3} 7 + 3\sqrt{3} = 0$ у полі $Q(\sqrt{3})$.
- 4. Дано еліптичну криву $y^2=x^3+2x+3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0\leq y\leq 6$. Обчислити їх суму

Варіант 9

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M=\{1,2,\ldots,n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{179}, a=96$.
- 4. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Дано еліптичну криву $y^2=x^3+7x+8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0\leq y\leq 5$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 12

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3}).$
- 4. Знайти круговий многочлен Q_{35}

Варіант 13

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного п-кутника
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z) = \frac{z}{|z|}$
- 4. Знайти круговий многочлен Q_{48}

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Дано еліптичну криву $y^2 = x^3 + 2x + 3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0 \le y \le 6$. Обчислити їх суму

Варіант 16

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Знайти круговий многочлен Q_{81}

Варіант 17

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Знайти круговий многочлен Q_{35}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to Z, f(x)=[x]$
- 4. Знайти круговий многочлен Q_{48}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 20

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Дано еліптичну криву $y^2=x^3+7x+8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0\leq y\leq 5$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{150}, a=101.$
- 4. Знайти круговий многочлен Q_{60}

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку \mathbf{n} , обернені до яких також ϵ цілочисельними
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^* \to R^*, f(x) = \frac{1}{x}$
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

Варіант 23

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3})$.
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі \mathbb{Z}_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 26

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix}\in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Дано еліптичну криву $y^2 = x^3 + x + 1$ у полі Z_{17} . Знайти точку A на кривій таку що $y \neq 0$. Обчислити A + A

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку $\mathbf n$, обернені до яких також ϵ цілочисельними
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 29

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 30

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{O}$
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{150}, a=101.$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі Z_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Дано еліптичну криву $y^2=x^3+7x+8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0\leq y\leq 5$. Обчислити їх суму

Варіант 33

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Розв'язати систему рівнянь $\begin{cases} 9x + 2y = 8 \\ 2x + 3y = 11 \end{cases}$ в полі Z_{13}
- 4. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M=\{1,2,\ldots,n\}$ у себе відносно суперпозиції відображень.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Знайти круговий многочлен Q_{35}

Варіант 36

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z) = \frac{z}{|z|}$
- 4. Знайти круговий многочлен Q_{48}

Варіант 37

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{179}, a=96$.
- 4. Дано еліптичну криву $y^2=x^3+2x+3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0\leq y\leq 6$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=105, k=15
- 4. Знайти круговий многочлен Q_{60}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to R^+, f(x)=2^x$
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

Варіант 40

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку \mathbf{n} , обернені до яких також ϵ цілочисельними
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^+ \to R, f(x)=\log_2 x$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Розв'язати рівняння $x^2 + x\sqrt{3} 7 + 3\sqrt{3} = 0$ у полі $Q(\sqrt{3})$.
- 4. Дано еліптичну криву $y^2=x^3+x+1$ у полі Z_{17} . Знайти точку A на кривій таку що $y\neq 0$. Обчислити A+A

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f: R \to Z, f(x) = [x]$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 43

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Знайти круговий многочлен Q_{48}

Варіант 44

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R \to Z, f(x) = [x]$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі Z_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix}1&3\\0&2\end{pmatrix}\in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти круговий многочлен Q_{35}

Варіант 47

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Розв'язати систему рівнянь $\begin{cases} 9x+2y=8 \\ 2x+3y=11 \end{cases}$ в полі Z_{13}
- 4. Дано еліптичну криву $y^2=x^3+7x+8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0\leq y\leq 5$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M=\{1,2,\dots,n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Дано еліптичну криву $y^2=x^3+2x+3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0\leq y\leq 6$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Розв'язати рівняння $x^2 + x\sqrt{3} 7 + 3\sqrt{3} = 0$ у полі $Q(\sqrt{3})$.
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

Варіант 50

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{150}, a=101.$
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

Варіант 51

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку $\mathbf n$, обернені до яких також ϵ цілочисельними
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z)=\frac{z}{|z|}$
- 4. Знайти круговий многочлен Q_{60}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3})$.
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі \mathbb{Z}_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 54

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^* \to R^*, f(x)=\frac{1}{x}$
- 4. Дано еліптичну криву $y^2=x^3+x+1$ у полі Z_{17} . Знайти точку A на кривій таку що $y\neq 0$. Обчислити A+A

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

Варіант 57

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{179}, a=96$.
- 4. Знайти круговий многочлен Q_{48}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=105, k=15
- 4. Дано еліптичну криву $y^2=x^3+x+1$ у полі Z_{17} . Знайти точку A на кривій таку що $y\neq 0$. Обчислити A+A

Варіант 60

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix}\in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^+ \to R, f(x) = \log_2 x$
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку \mathbf{n} , обернені до яких також ϵ цілочисельними
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Дано еліптичну криву $y^2=x^3+2x+3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0\leq y\leq 6$. Обчислити їх суму

Варіант 63

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to R^+, f(x)=2^x$
- 4. Знайти круговий многочлен Q_{35}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix}1&3\\0&2\end{pmatrix}\in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^* \to R^*, f(x)=\frac{1}{x}$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 66

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix}1&3\\0&2\end{pmatrix}\in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{179}, a=96$.
- 4. Знайти круговий многочлен Q_{81}

Варіант 69

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f: R^+ \to R, f(x) = \log_2 x$
- 4. Знайти круговий многочлен Q_{60}

Варіант 70

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Дано еліптичну криву $y^2=x^3+7x+8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0\leq y\leq 5$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3})$.
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Знайти круговий многочлен Q_{48}

Варіант 73

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Дано еліптичну криву $y^2=x^3+7x+8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0\leq y\leq 5$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

Варіант 76

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку \mathbf{n} , обернені до яких також ϵ цілочисельними
- 3. Розв'язати рівняння $x^2 + x\sqrt{3} 7 + 3\sqrt{3} = 0$ у полі $Q(\sqrt{3}).$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Розв'язати систему рівнянь $\begin{cases} 9x+2y=8\\ 2x+3y=11 \end{cases}$ в полі Z_{13}
- 4. Дано еліптичну криву $y^2=x^3+x+1$ у полі Z_{17} . Знайти точку A на кривій таку що $y\neq 0$. Обчислити A+A

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=105, k=15
- 4. Знайти круговий многочлен Q_{60}

Варіант 79

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 80

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники ε степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z) = \frac{z}{|z|}$
- 4. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to Z, f(x)=[x]$
- 4. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа n
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to R^+, f(x)=2^x$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі Z_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 83

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{150}, a=101.$
- 4. Знайти круговий многочлен Q_{35}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Дано еліптичну криву $y^2=x^3+2x+3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0\leq y\leq 6$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники ϵ дільниками фіксованого натурального числа n.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 2. Скласти таблице 7... 1. 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Дано еліптичну криву $y^2 = x^3 + 7x + 8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0 \le y \le 5$. Обчислити їх суму

Варіант 86

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, ..., n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля компле-
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^* \to R^*, f(x) = \frac{1}{x}$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі \mathbb{Z}_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку n, обернені до яких також ϵ цілочисельними
- 3. З'ясувати, чи буде множина М відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M = Z_{150}, a = 101.$
- 4. Дано еліптичну криву $y^2=x^3+2x+3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0\leq y\leq 6$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Знайти круговий многочлен Q_{60}

Варіант 89

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R \to Z, f(x) = [x]$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку $\mathbf n$, обернені до яких також ϵ цілочисельними
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z) = \frac{z}{|z|}$
- 4. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 92

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g = \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня п група за множенням усіх невироджених матриць порядку п з коефіцієнтами з поля P
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^+ \to R, f(x) = \log_2 x$
- 4. Дано еліптичну криву $y^2=x^3+x+1$ у полі Z_{17} . Знайти точку A на кривій таку що $y\neq 0$. Обчислити A+A

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix}1&3\\0&2\end{pmatrix}\in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 95

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа n
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Знайти круговий многочлен Q_{35}