hochschule mannheim

Development of a mobile application with the technology of RFID for managing drugs in hospitals and pharmacies

Jacqueline Franßen

Bachelor Thesis

for the acquisition of the academic degree Bachelor of Science (B.Sc.)

Course of Studies: Medical Informatics

Department of Computer Science
University of Applied Sciences Mannheim

31.08.2018

Tutors

Prof. Dr. Miriam Föller-Nord, Hochschule Mannheim Prof. Dr. Thomas Smits, Hochschule Mannheim

Franßen, Jacqueline:

Development of a mobile application with the technology of RFID for managing drugs in hospitals and pharmacies / Jacqueline Franßen. $\,-\,$

Bachelor Thesis, Mannheim: University of Applied Sciences Mannheim, 2018. 10 pages.

Franßen, Jacqueline:

Entwicklung einer mobilen RFID-Anwendung zum Arznei-Management in Krankenhäusern und Apotheken / Jacqueline Franßen.

Bachelor-Thesis, Mannheim: Hochschule Mannheim, 2018. 10 Seiten.

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ich bin damit einverstanden, dass meine Arbeit veröffentlicht wird, d. h. dass die Arbeit elektronisch gespeichert, in andere Formate konvertiert, auf den Servern der Hochschule Mannheim öffentlich zugänglich gemacht und über das Internet verbreitet werden darf.

Mannheim, 31.08.2018

Jacqueline Franßen

Abstract

Development of a mobile application with the technology of RFID for managing drugs in hospitals and pharmacies

The following thesis is focussed on the development of an mobile hybride application which can be run on Android as well as on iOS devices. The application is specialized in the use in hospitals and pharmacies. The scope of the application contains the registration, tracking as well as the management of pharmaceuticals and drugs, realized by the technology of RFID.

Entwicklung einer mobilen RFID-Anwendung zum Arznei-Management in Krankenhäusern und Apotheken

In der folgenden Arbeit wird die Entwicklung einer mobilen, hybriden Anwendung für Android- und iOS-Smartphones beschrieben. Die Anwendung wurde für den Einsatz in Krankenhäusern und Apotheken entwickelt. Das User-Szenario beinhaltet die Erfassung, Verfolgung und Verwaltung von medizinischen Arzneimitteln und Medikamenten, welche mittels der RFID-Technologie realisiert wurde.

Contents

1.	RFIE) Techn	ology	1
	1.1.	Motiva	tion	1
		1.1.1.	1	1
	1.2.		I Information	1
		1.2.1.	State of the Art	1
		1.2.2.	Examples	1
2.	Dev	elopme	nt of Medication Tracking Application	3
	2.1.	Used p	latforms and technologies	3
		2.1.1.	Native Development with NativeScript	3
		2.1.2.	NoSQL Technology: MongoDB	4
		2.1.3.	Impinj RFID Lector and Antenna	4
	2.2.	Applica	ation development	4
		2.2.1.	Challenges during development	4
		2.2.2.	Progress of development	5
		2.2.3.	Possibilities of extension	5
3.	Einb	inden v	on Grafiken und Sourcecode	7
	3.1.	Bilder		7
	3.2.	Formel	satz	9
	3.3.	Source	code	9
		3.3.1.	Aus einer Datei	9
		3.3.2.	Inline	9
Lis	st of A	Abbrevi	ations	'ii
Lis	st of 7	Tables	i	ix
Lis	st of F	igures		χi
Lis	stings	5	xi	iii
Bil	oliogi	raphy	x	(V
Ind	lex	-	ΥV	/ii

\sim				
(:	\cap r	nte	חנ	tc

Α.	Erster Anhang	xvii
В.	Zweiter Anhang	xix

Chapter 1

RFID Technology

- 1.1. Motivation
- 1.1.1. Aim and Scope
- 1.2. General Information

different types of RFID (frequency: small, middle, large - distances)

1.2.1. State of the Art

[1]

[2] spanish company Dipole

1.2.2. Examples

Chapter 2

Development of Medication Tracking Application

2.1. Used platforms and technologies

2.1.1. Native Development with NativeScript

There exist several ways to create a mobile application. But the challenge is to develop a consistent solution for the existing systems, like e.g. Android or iOS. To face the challenge of developing both an Android and iOS application, one has to think of the usage of web development technologies, like for example HTML5, CSS and Javascript. These technologies provide the advantage of using the access to browser/internet connection.

NativeScript Sidekick

editor for writing simultaneously apps at one moment (both for Android and iOS devices)

The architecture of NativeScript Applications

Figure 2.1.: The adopted from [3]

2.1.2. NoSQL Technology: MongoDB

Characteristics of NoSQL Databases

Reasons and Advantages of MongoDB

strong consistency and atomicity secondary indexes ad hoc queries querying/indexing/updating similar to relative databases (like SQL/Microsoft Access)

2.1.3. Impinj RFID Lector and Antenna

General Information

Examples

2.2. Application development

2.2.1. Challenges during development

Mongodb integration within nativescript application -> with Node JS package installer but synchronization with data from Mongodb was difficult

2.2.2. Progress of development

User Scenario

Software Architecture

picture of general software architecture: 2 antennas, 1 lector (RFID Impinj), Database (MongoDB), GUI: Android and iOS Application

2.2.3. Possibilities of extension

The developed system architecture of the mobile RFID application

Figure 2.2.

Chapter 3

Einbinden von Grafiken und Sourcecode

3.1. Bilder

Natürlich können auch Grafiken und Bilder eingebunden werden, siehe z. B. Abbildung 3.1.

Figure 3.1.: Ein Nasa Rover

Man kann sich auch selber ein Makro für das Einfügen von Bildern schreiben:

Figure 3.2.: Point to Point

3.2. Formelsatz

Eine Formel gefällig? Mitten im Text $a_2 = \sqrt{x^3}$ oder als eigener Absatz (siehe Formel 3.1):

$$\begin{bmatrix} 1 & 4 & 2 \\ 4 & 0 & -3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 0 \\ -2 & 3 & 5 \\ 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} -7 & 15 & 28 \\ 4 & 1 & -12 \end{bmatrix}$$
 (3.1)

3.3. Sourcecode

Man kann mit Latex auch ganz toll Sourcecode in den Text aufnehmen.

3.3.1. Aus einer Datei

Listing 3.1: Crypter-Interface

3.3.2. Inline

```
/**
 * Testet den Schlüssel auf Korrektheit: Er muss mindestens die Länge 1
 * haben und darf nur Zeichen von A-Z enthalten.
```

Listing 3.2: Methode checkKey()

List of Abbreviations

List of Tables

List of Figures

2.1.	The adopted from [3]	4
2.2.		6
3.1.	Ein Nasa Rover	7
3.2.	Point to Point	7
3.3.	Sehr große Grafiken kann man drehen, damit sie auf die Seite passen	8

Listings

3.1.	Crypter-Interface													9
3.2.	Methode checkKey()													Ç

Bibliography

- [1] (Apr. 15, 2016). Considering RFID to track healthcare inventory?, DAIC, [Online]. Available: https://www.dicardiology.com/videos/considering-rfid-track-healthcare-inventory (visited on 03/07/2018).
- [2] (). RFID Hospital Sanidad Dipole, [Online]. Available: http://www.dipolerfid.es/es/RFID-Hospital-Sanidad (visited on 03/07/2018).
- [3] *nativescript-cli: Command-line interface for building NativeScript apps*, original-date: 2014-06-30T10:21:20Z, Mar. 7, 2018. [Online]. Available: https://github.com/NativeScript/nativescript-cli (visited on 03/08/2018).

Appendix A

Erster Anhang

Hier ein Beispiel für einen Anhang. Der Anhang kann genauso in Kapitel und Unterkapitel unterteilt werden, wie die anderen Teile der Arbeit auch.

Appendix B

Zweiter Anhang

Hier noch ein Beispiel für einen Anhang.