Techniques d'apprentissage IFT 603-712 Classification linéaire Par Pierre-Mare Jodoin / Hugo Larochelle

Notation

Ensemble d'entraı̂nement: $D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_N, t_N)\}$

 $\vec{x}_{\scriptscriptstyle n} \in \Re^d$ vecteur de données du n-ème élement $t_{\scriptscriptstyle R} \in \{c_1, c_2, ..., c_{\scriptscriptstyle K}\}$ étiquette de classe du i-ème élément

Fonctions: avec D, on doit apprendre une fonction de classification

$$y_{\vec{w}}(\vec{x}): \Re^d \rightarrow \{c_1, c_1, \dots, c_k\}$$

qui nous informe à quelle classe appartient le vecteur \vec{x} .

Au menu: 5 méthodes

Régression Modèles génératifs

Émettent l'hypothèse que les données sont gau Discriminant de Fisher

Solution de type « closed form » (inversion de matrice)

Régression logistique

Introduction à la classification linéaire

Au tableau !!!

Séparation linéaire

(2D et 2 classes)

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2$$

$$= w_0 + \vec{w}^T \vec{x}$$

$$= \vec{w}'^T \vec{x}'$$

$$y_{\vec{w}}(\vec{x}) = \vec{w}^T \vec{x}$$

$$y_{\vec{w}}(\vec{x}) = \vec{w}$$

$$y_{\vec{w}}(\vec{x}) = \vec{w}$$

$$y_{\vec{w}}(\vec{x}$$

	1
,	
Régression Émettent l'hypothèque que les données sont gaussiennes	
Modeles generatifs	
Discriminant de Fisher Solution de type « <i>closed form</i> » (inversion de matrice)	
۱ ,	
Perceptron Émettent aucune hypothèse quant à la distribution des données	
Régression logistique Solution obtenue grâce à une descente de gradient.	
J solution solvente grave a une descente de g. matem.	
11	
]
)	
Régression par les moindres carrés	
regression par les momeres carres	
(section 4.1.3, Bishop)	
	-
12	
Régression par les moindres carrés	
Cas 2 classes	-
Cao 2 0100000	
On peut classifier des données en utilisant une approche de	
régression comme celle vue au chapitre précédent.	
 On pourrait prédire directement la valeur de la cible (t=1.0 vs t=-1.0) Si y_w(x̄) ≥ 0 on classifie dans Classe1 sinon dans Classe2 	
Si $y_{\widetilde{w}}(x) \ge 0$ on classific datis Classer sition datis Classez	
13	
13	

Régression par les moindres carrés

Cas K>2 classes

On va traiter le cas K classes comme une régression multiple

- Cible : vecteur à K dim. indiquant a quelle classe appartient l'entrée
- Exemple : Pour K=5 classes et un entrée associée à la classe 2

$$t_n = \begin{pmatrix} -1 & 1 & -1 & -1 \end{pmatrix}^T$$

 Classification: On classifie dans la classe k une donnée dont la valeur de \(\mathcal{Y}_{\vec{w},k}(\vec{x}) \) est la plus élevée.

17

Régression par les moindres carrés

Cas K>2 classes

Le modèle doit maintenant prédire un vecteur

$$y_{\rm W}(\vec{x}) = {\rm W}^{\rm T}\vec{x}$$

où W est une matrice K x d

Chaque ligne de W peut être vue comme un vecteur $\vec{\mathbf{w}}_k$ du modèle $y_{\vec{\mathbf{w}}_k}(\vec{x})\!=\!\vec{\mathbf{w}}_k^T\!\vec{x}$ pour la k cible

18

Cas K=3 classes Example (1.1, -2.0) $y_{w,s}(\vec{x}) \text{ est max}$ $y_{w,s}(\vec{x}) \text{ est max}$

	-
20	
20	
	1
n/ · 1	
Régression Modèles génératifs Émettent l'hypothèque que les données sont gaussiennes	
Modèles génératifs Discriminant de Fisher Solution de type « closed form » (inversion de matrice)	
Discriminant de l'isner	
Perceptron Émettent aucune hypothèse quant à la distribution des	
Régression logistique	
Solution obtenue grâce à une descente de gradient.	
21	
	1
Modèles probabilistes génératifs	
(section 4.2, Bishop)	
(Section 1.2, Dishop)	
22	/

Prenons le cas 1D, 2 Classes

Ex: examen de mathématique avec étudiants en math et en informatique

T est le seuil qui minimise l'erreur de classification

$$P(\inf O)P(x = T \mid \inf O) = P(\operatorname{math})P(x = T \mid \operatorname{math})$$

$$P(\inf O)P(x | \inf O) \stackrel{\inf O}{\underset{\text{math}}{\gtrless}} P(\operatorname{math})P(x | \operatorname{math})$$

Late Late

$$P(\inf O)P(x \mid \inf O) \underset{\text{math}}{\stackrel{\text{info}}{\geq}} P(\operatorname{math})P(x \mid \operatorname{math})$$

est équivalent à un maximum a posteriori

$$t = \arg \max_{t} P(t \mid x)$$
 où $t \in \{\text{math,info}\}$

$$=(\cdots)$$

$$= \arg\max_{t} P(t) P(x \mid t)$$

24

Prenons le cas 1D, 2 Classes

Ex: examen de math avec étudiant en math et en informatique

$$P(\inf O)P(x \mid \inf O) \gtrsim_{\text{math}}^{\inf O} P(\operatorname{math})P(x \mid \operatorname{math})$$

Si on suppose que la vraisemblance de chaque classe est gaussienne:

$$P(x \mid \text{info}) = \frac{1}{\sqrt{2\pi}\sigma_{\text{info}}} \exp\left(-\frac{\left(x - \mu_{\text{info}}\right)^2}{2\sigma_{\text{info}}^2}\right)$$

$$P(x \mid \text{math}) = \frac{1}{\sqrt{2\pi}\sigma_{\text{math}}} \exp\left(-\frac{\left(x - \mu_{\text{math}}\right)^2}{2\sigma_{\text{math}}^2}\right)$$

où $\mu_{\rm math}: {\rm moyenne} \ {\rm des} \ {\rm \acute{e}tudiants} \ {\rm de} \ {\rm math} \ .$ $\sigma_{\rm math}: {\rm \acute{e}cart-type} \ {\rm des} \ {\rm \acute{e}tudiants} \ {\rm de} \ {\rm math}.$

Prenons le cas 1D, 2 Classes

Ex: examen de math avec étudiant en math et en informatique

$$P(\inf O)P(x \mid \inf O) \underset{\text{math}}{\overset{\text{info}}{\geq}} P(\operatorname{math})P(x \mid \operatorname{math})$$

Si on suppose que la vraisemblance de chaque classe est gaussienne:

$$P(x \mid \text{info}) = \frac{1}{\sqrt{2\pi}\sigma_{\text{info}}} \exp\left(-\frac{\left(x - \mu_{\text{info}}\right)^2}{2\sigma_{\text{info}}^2}\right)$$

$$P(x \mid \text{math}) = \frac{1}{\sqrt{2\pi}\sigma_{\text{math}}} \exp\left(-\frac{\left(x - \mu_{\text{minh}}\right)^2}{2\sigma_{\text{math}}^2}\right)$$

et que

 $P(\text{info}) = \frac{\text{nb \'etudiants info}}{\text{nb tot \'etudiants}}$

(Proportion des étudiants en info)

 $P(\text{math}) = \frac{\text{nb \'etudiants math}}{\text{nb tot \'etudiants}}$

(Proportion des étudiants en math)

Modèle probabiliste génératif

Algorithme du seuil « optimal »

$$\begin{split} & \mu_{\text{info}} = \frac{1}{N_{\text{info}}} \sum_{s,\text{-info}} x_{s}, \ \mu_{\text{outh}} = \frac{1}{N_{\text{muth}}} \sum_{s,\text{-info}} X_{s} \\ & \sigma_{\text{info}}^{2} = \frac{1}{N_{\text{info}}} \sum_{s,\text{-info}} (x_{s} - \mu_{\text{info}})^{2}, \ \sigma_{\text{outh}}^{2} = \frac{1}{N_{\text{muth}}} \sum_{s,\text{-info}} (x_{s} - \mu_{\text{info}})^{2} \\ & P(\text{math}) = \frac{N_{\text{info}}}{N_{\text{info}} + N_{\text{outh}}}, P(\text{info}) = \frac{N_{\text{info}}}{N_{\text{info}} + N_{\text{info}}} \end{split}$$

POUR CHAQUE note x FAIRE

$$\begin{split} P_{i} &= \frac{P(\text{info})}{\sqrt{2\pi}\sigma_{\text{info}}} \exp\!\left(\!-\frac{\left(x - \mu_{\text{info}}\right)^{2}}{2\sigma_{\text{info}}^{2}}\right) \\ P_{\text{ss}} &= \frac{P(\text{math})}{\sqrt{2\pi}\sigma_{\text{math}}} \exp\!\left(\!-\frac{\left(x - \mu_{\text{into}}\right)^{2}}{2\sigma_{\text{into}}^{2}}\right) \end{split}$$

 $SI P_i > P_m ALORS$

t=1 /* étudiant « info » */
SINON

t = 0 /* étudiant « math » */

27

L'algorithme de la page précédente revient à un classificateur quadratique

$$y_{\vec{w}}(x) = w_2 x^2 + w_1 x + w_0 = 0$$

Modèle probabiliste génératif

Classificateur quadratique, cas 1D, 2 Classes

$$\begin{split} &P(\mathrm{info})P(x\,|\,\mathrm{info}) = P(\mathrm{math})P(x\,|\,\mathrm{math}) \\ &\frac{P(\mathrm{info})}{\sqrt{2\pi}\sigma_{\mathrm{utb}}} \exp\!\left(-\frac{\left(x-\mu_{\mathrm{utb}}\right)^2}{2\sigma_{\mathrm{utb}}^2}\right) = \frac{P(\mathrm{math})}{\sqrt{2\pi}\sigma_{\mathrm{uutb}}} \exp\!\left(-\frac{\left(x-\mu_{\mathrm{untb}}\right)^2}{2\sigma_{\mathrm{uutb}}^2}\right) \end{split}$$

On peut facilement démontrer que

$$y_{\bar{w}}(x) = w_2 x^2 + w_1 x + w_0 = 0$$

$$w_2 = \frac{\sigma_{\text{math}}^2 - \sigma_{\text{info}}^2}{2}$$

$$w_1 = \mu_{\text{math}} \sigma_{\text{info}}^2 - \mu_{\text{info}} \sigma_{\text{math}}^2$$

$$w_0 = \frac{\mu_{\text{info}}^2 \sigma_{\text{math}}^2}{2} - \frac{\mu_{\text{math}}^2 \sigma_{\text{info}}^2}{2} - \sigma_{\text{info}}^2 \sigma_{\text{math}}^2 \ln \left(\frac{\sigma_{\text{math}} P(\text{info})}{\sigma_{\text{info}} P(\text{math})} \right)$$

Modèle probabiliste génératif

Classificateur linéaire, cas 1D, 2 Classes

Si on suppose que $\sigma_{\text{info}} = \sigma_{\text{math}} = \sigma$

$$P(\inf_{x \in \mathcal{X}}) = P(\operatorname{math}) P(x \mid \operatorname{math})$$

$$\frac{P(\inf o)}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(x - \mu_{\min o}\right)^2}{2\sigma^2}\right) = \frac{P(\operatorname{math})}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(x - \mu_{\min o}\right)^2}{2\sigma^2}\right)$$

$$y_{\vec{\mathbf{w}}}(x) = w_1 x + w_0 = 0$$

$$w_1 = \frac{\left(\mu_{\text{math}} - \mu_{\text{info}}\right)}{\sigma^2}$$

$$w_0 = \frac{\mu_{\text{info}}^2}{2\sigma^2} - \frac{\mu_{\text{math}}^2}{2\sigma^2} - \ln\left(\frac{P(\text{info})}{P(\text{math})}\right)$$

30

Modèle probabiliste génératif

Classificateur linéaire, cas d-D, 2 Classes

$$y_{\vec{\mathbf{w}}}(\vec{x}) = \vec{\mathbf{w}}^{\mathsf{T}} \vec{x} + w_0 = 0$$

$$\vec{\mathbf{w}} = \boldsymbol{\Sigma}^{-1} (\vec{\boldsymbol{\mu}}_1 - \vec{\boldsymbol{\mu}}_2)$$

$$w_0 = \frac{\vec{\mu}_2^{\mathrm{T}} \Sigma^{-1} \vec{\mu}_2}{2} - \frac{\vec{\mu}_1^{\mathrm{T}} \Sigma^{-1} \vec{\mu}_1}{2} - \ln \left(\frac{P(C_2)}{P(C_1)} \right)$$

Tel que mentionné au chapitre 4.2.2, lorsque les 2 classes n'ont pas la même variance-covariance, on peut utiliser le modèle linéaire mais avec la matrice

$$\Sigma = P(C_1)\Sigma_1 + P(C_2)\Sigma_2$$

32

Modèle probabiliste génératif

Classificateur linéaire, cas 1D, 2 Classes

Maximum de

Si on suppose que P(info) = P(math)

$$P(\text{info}) P(x | \text{info}) = P(\text{inath}) P(x | \text{math})$$

$$\frac{P(\text{info})}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x - \mu_{\text{math}})^2}{2\sigma^2}\right) = \frac{P(\text{inath})}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x - \mu_{\text{math}})^2}{2\sigma^2}\right)$$

$$y_{\vec{\mathbf{w}}}(x) = w_1 x + w_0 = 0$$

$$w_1 = \frac{\left(\mu_{\text{math}} - \mu_{\text{info}}\right)}{2}$$

$$w_0 = \frac{\mu_{\text{info}}^2}{2\sigma^2} - \frac{\mu_{\text{math}}^2}{2\sigma^2} - \ln\left(\frac{P(\text{info})}{P(\text{math})}\right)$$

33

Modèle probabiliste génératif

Classificateur linéaire, cas d-D, K Classes

On peut généraliser au cas à plusieurs classes

➤ Voir fin des sections 4.2 et 4.2.1

	-
35	
Régression Modèles génératifs Émettent l'hypothèque que les données sont gaussiennes	
Modèles génératifs Discriminant de Fisher Emettent l'hypothèque que les données sont gaussiennes Solution de type « closed form » (inversion de matrice)	
l ,	
Perceptron Régression logistique Émettent aucune hypothèse quant à la distribution des données	
Solution obtenue grâce à une descente de gradient.	
	-
36	
Discriminant linéaire de Fisher	-
(section 4.1.4, Bishop)	
37	

Classification linéaire = Projection 1D

(2D et 2 classes)

 $y_{\vec{w}}(\vec{x}) = w_0 + \vec{w}^{\mathrm{T}} \vec{x}$

$$\vec{w} = \arg\max_{\vec{u}} \left| \vec{w}^{\mathrm{T}} (\vec{\mu}_1 - \vec{\mu}_2) \right|$$

Ce **problème est mal posé** car il suffit d'augmenter **W** infiniment pour maximiser cette fonction.

41

Classification linéaire = Projection 1D

(2D et 2 classes)

 $y_{\vec{w}}(\vec{x}) = w_0 + \vec{w}^{\mathrm{T}} \vec{x}$

$$\vec{w} = \arg\max_{\vec{w}} \left| \vec{w}^{\mathrm{T}} (\vec{\mu}_1 - \vec{\mu}_2) \right|$$

Par contre si on impose que la **norme de** w = 1 on obtient que

$$\vec{w} \propto (\vec{\mu}_1 - \vec{\mu}_2)$$

(preuve au tableau)

42

Discriminant linéaire

Une fois \mathbf{w} calculé, il faut trouver le biais w_0

> Un choix fréquent lorsque les classes sont balancées

$$w_0 = -\frac{\vec{w}^{T} \vec{\mu}_1 + \vec{w}^{T} \vec{\mu}_2}{2}$$

➤ Sinon

$$w_0 = -\vec{w}^{\mathrm{T}} \left(\frac{N_1}{N_1 + N_2} \vec{\mu}_1 + \frac{N_2}{N_1 + N_2} \vec{\mu}_2 \right)$$

où N1 et N2 sont le nombre d'éléments dans chaque classe.

Discriminant linéaire

(2D et 2 classes)

$$x_{2} \xrightarrow{y_{4}(\bar{x}) < 0} \xrightarrow{y_{5}(\bar{x}) = 0} \xrightarrow{y_{5}(\bar{x}) = 0} \xrightarrow{y_{5}(\bar{x}) = 0} \xrightarrow{y_{5}(\bar{x}) = 0} \xrightarrow{y_{4}(\bar{x}) < 0} \xrightarrow{\bar{\mu}_{1} = \bar{w}^{T} \bar{\mu}_{1} + w_{6}} \xrightarrow{y_{4}(\bar{x}) < 0} \xrightarrow{y_{4}(\bar{x}) < 0} \xrightarrow{x_{1}} \xrightarrow{x_{1}} \xrightarrow{x_{2} = \bar{w}^{T} \bar{\mu}_{2} + w_{6}} \xrightarrow{\bar{\mu}_{1} = \bar{w}^{T} \bar{\mu}_{1} + w_{6}} \xrightarrow{\bar{\mu}_{2} = \bar{w}^{T} \bar{\mu}_{2} + w_{6}} \xrightarrow{\bar{\sigma}_{1}^{2} = \bar{w}^{T} \bar{\Sigma}_{1} \bar{w}} \xrightarrow{\bar{\sigma}_{2}^{2} = \bar{w}^{T} \bar{\Sigma}_{2} \bar{w}} \xrightarrow{44}$$

Discriminant linéaire de Fisher (2D et 2 classes)

Sans minimisation intra-classe
$$\vec{w} \propto (\vec{\mu}_1 - \vec{\mu}_2)$$
 $\vec{w} \propto (\vec{\mu}_1 - \vec{\mu}_2)$

Avec minimisation intra-classe $\vec{w} \propto \Sigma_{\vec{w}}^{-1}(\vec{\mu}_1 - \vec{\mu}_2)$

Discriminant linéaire de Fisher

Algorithme 2-Classes, entraînement

Calculer
$$\vec{\mu}_1, \vec{\mu}_2$$

$$\Sigma_{\vec{w}} = \sum_{i_n = C_1} (\vec{x}_n - \vec{\mu}_1) (\vec{x}_n - \vec{\mu}_1)^T + \sum_{i_n = C_2} (\vec{x}_n - \vec{\mu}_2) (\vec{x}_n - \vec{\mu}_2)^T$$

$$\vec{w} = \Sigma_{\vec{w}}^{-1} (\vec{\mu}_1 - \vec{\mu}_2)$$

$$w_0 = -\frac{\vec{w}^T \vec{\mu}_1 + \vec{w}^T \vec{\mu}_2}{2} \quad \left(\text{ou } w_0 = -\vec{w}^T \left(\frac{N_1}{N_1 + N_2} \vec{\mu}_1 + \frac{N_2}{N_1 + N_2} \vec{\mu}_2 \right) \right)$$

Algorithme 2-Classes, généralisation

POUR CHAQUE donnée test \bar{x} FAIRE $t = y_0(\bar{x}) = \bar{w}^T \hat{x} + w_0$ SI t < 0 ALORS t = I SINON t = 2

Discriminant linéaire de Fisher

• On peut voir l'analyse discriminante linéaire comme un cas particulier des **moindres carrés**

➤ voir section 4.1.5

• Il est possible de généraliser au cas à **plus de 2 classes** ➤ voir section 4.1.6

	-
50	
Régression	-
Modèles génératifs	
Discriminant de Fisher Solution de type « closed form » (inversion de matrice)	
,	
Perceptron Émettent aucune hypothèse quant à la distribution des données	
Régression logistique donnees Solution obtenue grâce à une descente de gradient.	
J Solution cottinue grate a and account at granten.	
51	
3.)	
Perceptron	
(section 4.1.7, Bishop)	
(Section 4.1.7, Dishop)	
52	

Perceptron (2 classes)

Contrairement aux approches précédentes, le perceptron n'émet pas l'hypothèse que les données sont gaussiennes

Le perceptron part de la definition brute de la classification binaire par hyperplan

$$y_{\vec{w}}(\vec{x}) = sign(\vec{w}^T \vec{x})$$

$$= sign(w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d)$$
biais
poids

Nouvelle fonction de coût pour **apprendre** W

<u>Le but</u>: avec des données d'entraı̂nement $D = \{(\bar{x}_i, t_i), (\bar{x}_2, t_2), ..., (\bar{x}_y, t_x)\}$, estimer w afin que:

$$y_{\vec{w}}(\vec{x}_n) = t_n \quad \forall n$$

En d'autres mots, minimiser l'erreur d'entraînement

$$E_D(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} l(y_{\vec{w}}(\vec{x}_n), t_n)$$

où l(.,.) est une fonction de perte (loss function en anglais).

Trouver la bonne fonction de perte et le bon algorithme **d'optimisation** est un sujet central en **apprentissage machine**.

Régression et classification

Vous vous souvenez de la régression?

Maximum de vraisemblance

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} \frac{(t_n - y_{\vec{w}}(\vec{x}_n))^2}{2}$$
 $E_D(\vec{w})$

Maximum a posteriori

 $\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (t_n - y_{\vec{w}}(\vec{x}_n))^2 + \lambda \vec{w}^T \vec{w}$
 $E_D(\vec{w})$

C'est un peu la même idée pour le Perceptron mais avec une nouvelle fonction de coût.

Critère du perceptron (perte)

Observation

Une donnée mal classée survient lorsque

$$\vec{w}^{\mathrm{T}}\vec{x}_n > 0$$
 et $t_n = -1$

$$\vec{w}^{\mathrm{T}}\vec{x}_{n} < 0 \text{ et } t_{n} = +1.$$

DONC $-\vec{w}^{\mathrm{T}}\vec{x}_{n}t_{n}$ est TOUJOURS positif pour des données mal classés

Critère du perceptron

Le critère du perception est une function qui pénalise les données mal classées

$$E_D(\vec{w}) = \sum_{\vec{x}_n \in M} - \vec{w}^T \vec{x}_n t_n \qquad \text{où } M \text{ est l'ensemble des données mal classées}$$

 $E_D(\vec{w}) = 464.15$

Perceptron

Question: comment trouver la meilleure solution \vec{w} avec cette function de perte?

Réponse: une solution frequente est la descente de gradient.

Descente de gradient de base

Initialiser \vec{w}

Initialiser w k=0 FAIRE k=k+1 $\overline{w}=\overline{w}-\eta\nabla E_D(\overline{w})$ JUSQU'À ce que toutes les données soient bien classées

Perceptron

Pour le critère du Perceptron

$$\nabla E_D(\vec{w}) = \sum_{\vec{x}_n \in M} -t_n \vec{x}_n$$

Batch optimization

Initialiser \vec{w} k=0 DO k=k+1

$$\vec{w} = \vec{w} - \eta \left(\sum_{\vec{x}_n \in M} -t_n \vec{x}_n \right)$$

UNTIL toutes les données sont bien classées

NOTE importante sur le taux d'apprentissage η :

- Trop faible => convergence lente
 Trop grand => peut ne pas converger (et même diverger)
 Peut décroître à chaque itération (e.g. $\eta^{(i)} = cst/k$)

73

Perceptron

Une autre version de l'algorithme consiste à analyser <u>une donnée par itération</u>.

Descente de gradient stochastique

Initialiser \vec{w} k=0 DO k=k+1 FOR n = 1 to N IF $\vec{w}^T \vec{x}_n t_n < 0$ THEN /* donnée mal classée */ $\vec{w} = \vec{w} + \eta t_n \vec{x}_n$ donnée mal classée */

Critère du perceptron

Fonctions d'énergie similaires au critère du Perceptron dont le gradient est le même

 $E_D(\vec{w}) = \sum_{\vec{x} \in M} - \vec{w}^T \vec{x}_n t_n \qquad \text{où } M \text{ est l'ensemble des données mal classées}$

 $E_D(\vec{w}) = \sum_{n=1}^{N} \max(0, -t_n \vec{w}^T \vec{x}_n)$

 $E_D(\vec{w}) = \sum_{n=1}^{N} \max(0.1 - t_n \vec{w}^T \vec{x}_n)$ "Hinge Loss" or "SVM" Loss

Chapitre 6

Perceptron Multiclasse

Exemple d'entraı̂nement (η =l)

$$\vec{x}_n = (0.4, -1), t_n = 0$$

$$y_{W}(\vec{x}) = \begin{bmatrix} -2 & 3.6 & 0.5 \\ -4 & 2.4 & 4.1 \\ -6 & 4 & -4.9 \end{bmatrix} \begin{bmatrix} 1 \\ 0.4 \\ -1 \end{bmatrix} = \begin{bmatrix} -1.6 \\ -7.1 \\ 0.5 \end{bmatrix}$$
Classe 2
FAUX!

85

Perceptron Multiclasse

Exemple d'entraînement ($\eta = I$)

$$\vec{x}_n = (0.4, -1.0), t_n = 0$$

$$\vec{w}_0 \leftarrow \vec{w}_0 + \vec{x}_n$$

$$\begin{bmatrix} -2.0 \\ 3.6 \\ 0.5 \end{bmatrix} + \begin{bmatrix} 1 \\ 0.4 \\ -1 \end{bmatrix} = \begin{bmatrix} -1.0 \\ 4.0 \\ -0.5 \end{bmatrix}$$

$$\vec{w}_2 \leftarrow \vec{w}_2 - \vec{x}_n$$

$$\begin{bmatrix} -6.0 \\ 4.0 \\ -4.9 \end{bmatrix} - \begin{bmatrix} 1 \\ 0.4 \\ -1 \end{bmatrix} = \begin{bmatrix} -7.0 \\ 3.6 \\ -3.9 \end{bmatrix}$$

86

En résumé

2 classes

$$\begin{split} E_D(\vec{w}) &= \sum_{\vec{x}_i \in M} -t_n \vec{w}^T \vec{x}_n \qquad \text{où } M \text{ est l'ensemble des données mal classées} \\ E_D(\vec{w}) &= \sum_{n=1}^N \max \{0, -t_n \vec{w}^T \vec{x}_n\} \\ E_D(\vec{w}) &= \sum_{n=1}^N \max \{0, 1 -t_n \vec{w}^T \vec{x}_n\} \end{split}$$
 "Hinge Loss" or "SVM" Loss

K classes

$$\begin{split} E_D(W) &= \sum_{\vec{x}_c \in M} \left(\vec{w}_j^T \vec{x}_n - \vec{w}_{i_c}^T \vec{x}_n \right) \quad \text{où } M \text{ est } \text{l'ensemble des données mal classées} \\ E_D(W) &= \sum_{n=1}^{N} \sum_{j} \max \left(0, \vec{w}_j^T \vec{x}_n - \vec{w}_{i_c}^T \vec{x}_n \right) \\ E_D(W) &= \sum_{n=1}^{N} \sum_{j} \max \left(0, 1 + \vec{w}_j^T \vec{x}_n - \vec{w}_{i_c}^T \vec{x}_n \right) \quad \text{"Hinge Loss" or "SVM" Loss} \\ \end{split}$$

Comment améliorer le Perceptron?

Trois façons d'améliorer le Perceptron

- 1. Nouvelle fonction d'activation + nouvelle fonction de coût
- 2. Utiliser des fonctions de base

Régression logistique

3. Nouveau réseau

→ Méthodes à noyau (chap. 5-6)

Réseaux de neurones multicouches (chap. 7)

Régression logistique (Sections 4.2.0, 4.3.2, 5.2.0 –Bishop)

Amélioration du Perceptron

(2D, 2 classes) Nouvelle fonction d'activation : **sigmoïde logistique**

$$\sigma(v) = \frac{1}{1 + e^{-v}}$$

$$y_{\vec{w}}(\vec{x}) = \sigma(\vec{w}^T \vec{x}) = \frac{1}{1 + e^{-\vec{w}^T \vec{x}}}$$

Amélioration du Perceptron

(2D, 2 classes)

Nouvelle fonction d'activation : sigmoïde logistique

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

Neurone

$$y_{\vec{w}}(\vec{x}) = \sigma(\vec{w}^T \vec{x}) = \frac{1}{1 + e^{-\vec{w}^T \vec{x}}}$$

94

Amélioration du Perceptron

Exemple

$$\vec{x}_n = (0.4, -1.0), \vec{w} = [2.0, -3.6, 0.5]$$

Puisque 0.125 est inférieur à $0.5, \vec{x}_n$ est <u>derrière</u> le plan.

Amélioration du Perceptron

Avec une sigmoïde, on peut simuler une probabilité conditionnelle sur cı étant donné \vec{x}

$$y_{\vec{w}}(\vec{x}) = \sigma(\vec{w}^T \vec{x}) \Longrightarrow P(c_1 \mid \vec{x})$$

Preuve:

$$P(c_{1} | \vec{x}) = \frac{P(\vec{x} | c_{1})P(c_{1})}{P(\vec{x} | c_{0})P(c_{0}) + P(\vec{x} | c_{1})P(c_{1})}$$
(Bayes)
$$1$$

$$= \frac{1}{1 + \frac{P(\vec{x} \mid c_0)P(c_0)}{P(\vec{x} \mid c_1)P(c_1)}}$$

$$= \frac{1}{1 + e^{-a}} \qquad \text{où } a = \ln \left[\frac{P(\vec{x} \mid c_0) P(c_0)}{P(\vec{x} \mid c_1) P(c_1)} \right]$$
$$= \sigma(a)$$

Amélioration du Perceptron (N-D, 2 classes)

En d'autres mots, si on entraîne correctement un réseau logistique, on fini par apprendre la probabilité conditionnelle de la classe ci.

Quelle est la function de coût d'un réseau logistique?

Fonction de coût d'un réseau logistique?

Dans le cas d'un réseau logistique nous avons

Ensemble d'entraı̂nement : $D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_n, t_n)\}$ Sortie du réseau: $y_{\vec{w}}(\vec{x}) = \sigma(\vec{w}^T \vec{x}) = P(c_i \mid \vec{w}, \vec{x})$

$$\begin{split} P(D \mid \vec{w}) &= \prod_{n=1}^{N} P(c_1 \mid \vec{w}, \vec{x}_n)^{t_n} (1 - P(c_1 \mid \vec{w}, \vec{x}_n))^{1-t_n} \\ &= \prod_{n=1}^{N} y_{\vec{w}} (\vec{x}_n)^{t_n} (1 - y_{\vec{w}} (\vec{x}_n))^{1-t_n} \end{split}$$

105

Fonction de coût d'un réseau logistique? (2 classes)

$$P(D \mid \vec{w}) = \prod_{n=1}^{N} y_{\vec{w}} (\vec{x}_n)^{t_n} (1 - y_{\vec{w}} (\vec{x}_n))^{1-t_n}$$

Solution: Maximum de vraisemblance

$$\begin{split} W &= \arg \max_{W} P(D \mid W) \\ &= \arg \max_{W} \prod_{n=1}^{N} y_{W} (\vec{x}_{n})^{t_{n}} \left(1 - y_{W} (\vec{x}_{n})\right)^{1 - t_{n}} \\ &= \arg \min_{W} \sum_{n=1}^{N} - \ln \left[y_{W} (\vec{x}_{n})^{t_{n}} \left(1 - y_{W} (\vec{x}_{n})\right)^{1 - t_{n}} \right] \\ &= \arg \min_{W} - \sum_{n=1}^{N} t_{n} \ln \left(y_{W} (\vec{x}_{n}) \right) + \left(1 - t_{n}\right) \ln \left(1 - y_{W} (\vec{x}_{n})\right) \end{split}$$

Fonction de coût d'un réseau logistique? (2 classes)

$$P(D \mid \vec{w}) = -\prod_{n=1}^{N} y_{\vec{w}}(\vec{x}_n)^{t_n} (1 - y_{\vec{w}}(\vec{x}_n))^{1-t_n}$$

La fonction de coût est –**ln de la vraisemblance**

$$E_{D}(\vec{w}) = -\sum_{n=1}^{\infty} t_{n} \ln(y_{\vec{w}}(\vec{x}_{n})) + (1 - t_{n}) \ln(1 - y_{\vec{w}}(\vec{x}_{n}))$$

On peut également démontrer que

Entropie croisée (Cross entropy)

$$\nabla_{\vec{w}} E_D(\vec{w}) = \sum_{n=1}^{N} (y_{\vec{w}}(\vec{x}_n) - t_n) \vec{x}_n$$

Preuve en classe ou en devoir Contrairement au Perceptron le gradient ne depend pas seulement des données mal classées

Et pour K>2 classes?

$$P(D | W) = \prod_{n=1}^{N} \prod_{k=1}^{K} (P(t_n | W, \vec{x}_n))^{t_{nk}}$$

Entropie croisée (cross entropy)

$$E_{D}(W) = -\ln(P(D|W)) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln P(t_{n}|W,\vec{x}_{n})$$

Puisqu'on veut que la sortie du réseau $y_w(\vec{x}_n)$ soit égale à $P(t_n | W, \vec{x}_n)$

114

Et pour K>2 classes?

En general, on ajoute 1/N pour normaliser le calcul de la loss

$$E_D(\mathbf{W}) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_W(\vec{x}_n)$$

On peut montrer que

$$\nabla_{W} E_{D}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \vec{x}_{n} (y_{W}(\vec{x}_{n}) - t_{kn})$$

115

Optimisation d'un réseau logistique multiclasse

Optimisation par batch

Initialiser W k=0, i=0 DO k=k+1

$$\nabla_{W} E(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} (y_{W}(\vec{x}_{n}) - t_{n}) \vec{x}_{n}$$

 $W = W - \eta \nabla_{y} E(W)$

UNTIL K=K_MAX.

Descente de gradient stochastique

Initialiser W k=0, i=0 DO k=k+1

DO k=k+1 FOR n = 1 to N

 $W = W - \eta (y_W(\vec{x}_n) - t_n) \vec{x}_n$

UNTIL K==K_MAX.

Wow! Beaucoup d'information...

Résumons...

Fonctions de coûts

2 classes

$$\begin{split} E_D(\vec{w}) &= \sum_{\vec{u}_a \in M} -t_n \vec{w}^T \vec{x}_n & \text{où } M \text{ est l'ensemble} \\ \text{des données mal classées} \\ E_D(\vec{w}) &= \sum_{n=1}^{N} \max(0, -t_n \vec{w}^T \vec{x}_n) \end{split}$$

$$E_D(\vec{w}) = \sum_{n=1}^{N} \max(0, 1 - t_n \vec{w}^T \vec{x}_n)$$

"Hinge Loss" ou "SVM" Loss

$$E_{D}(\vec{w}) = -\sum_{n=1}^{N} t_{n} \ln(y_{\vec{w}}(\vec{x}_{n})) + (1 - t_{n}) \ln(1 - y_{\vec{w}}(\vec{x}_{n}))$$

Entropie croisée (ou cross entropy)

120

Fonctions de coûts

K classes

$$E_{\scriptscriptstyle D}\big(\mathbf{W}\big) = \sum_{\vec{\imath} = 1} \left(\mathbf{W}_{\scriptscriptstyle I_n}^{\mathsf{T}} \vec{x}_n - \mathbf{W}_{\scriptscriptstyle I_n}^{\mathsf{T}} \vec{x}_n\right) \qquad \text{où } M \text{ est l'ensemble des données mal classées}$$

$$E_D(\mathbf{W}) = \sum_{n=1}^{M} \sum_{i} \max(0, \mathbf{W}_{i}^{T} \vec{x}_{n} - \mathbf{W}_{i_{n}}^{T} \vec{x}_{n})$$

$$E_{D}(\mathbf{W}) = \sum_{n=1}^{N} \sum_{j=1}^{N} \max \left(0, 1 + \mathbf{W}_{j}^{\mathrm{T}} \vec{x}_{n} - \mathbf{W}_{t_{n}}^{\mathrm{T}} \vec{x}_{n} \right) \qquad \text{"Hinge Loss" ou "SVM" Loss}$$

$$E_D(\mathbf{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W,k} (\vec{x}_n)$$

Entropie croisée avec « one hot vector » (ou cross entropy)

121

Optimisation

Descente de gradient

$$\vec{\mathbf{w}}^{[k+1]} = \vec{\mathbf{w}}^{[k]} - \boldsymbol{\eta}^{[k]} \nabla E$$
 Gradient de la function de coût Taux d'apprentissage ou "learning rate".

Optimisation par Batch

Initialiser \vec{w} k=0 FAIRE k=k+1

$$\vec{w} = \vec{w} - \eta^{[k]} \sum_{i} \nabla E(\vec{x}_i)$$

JUSQU'À ce que toutes les données sont bien classées ou k—MAX_ITER Descente de gradient stochastique

Parfois $\eta^{[k]} = cst/k$

Régularisation

Régularisation

Différents poids peuvent donner le même score

$$\vec{x} = (1.0, 1.0, 1.0)$$

 $\vec{w}_1 = [1,0,0]$
 $\vec{w}_2 = [1/3, 1/3, 1/3]$

Quels poids sont les meilleurs?

$$\vec{w}_1 \vec{x} = \vec{w}_2 \vec{x} = 1$$

124

Maximum a posteriori

Régularisation

 $= \underset{w}{\operatorname{argmin}} \sum_{n=1}^{N} -\ln P(t_n \mid \vec{x}_n, W)$ $E_D(W)$

Maximum a posteriori

 $\hat{W} = \underset{w}{\operatorname{argmax}} P(W \mid D)$

 $= \underset{w}{\operatorname{argmin}} \sum_{n=1}^{N} -\ln P(t_{n} \mid \vec{x}_{n}, W) + \lambda R(W)$ $E_D(W)$

Note:

il est fréquent de combiner différentes fonctions de coût avec différentes fonctions de régularisation

127

Maximum a posteriori

$$E(\mathbf{W}) = \sum_{n=1}^{N} l(y_{W}(\vec{x}_{n}), t_{n}) + \lambda R(\mathbf{W})$$
Fonction de perte

Regularisation

$$R(\theta) = \|W\|_{1} \text{ ou } \|W\|_{2}$$

128

Maximum a posteriori

 $\underline{\textbf{Exemple}}: \textit{Hinge loss} + \textbf{r\'egularisation L2}$

$$E(\mathbf{w}) = \sum_{n=1}^{N} \max(0, 1 - t_n \mathbf{w}^T \vec{x}_n) + \lambda \|\mathbf{w}\|^2$$

$$\nabla_{\mathbf{W}} E(\mathbf{w}) = \sum_{\vec{x}.\in M} -t_n \vec{x}_n + 2\lambda \sum_{d=0}^{D} w_d$$

Maximum a posteriori

 ${\color{red} \textbf{Exemple}: entropie\ crois\'ee + r\'egularisation\ L2}$

$$\begin{split} & \underset{\boldsymbol{W}}{\operatorname{arg\,min}} - \ln \left(P(D \mid \boldsymbol{W}) \right) + \lambda \left\| \boldsymbol{W} \right\|^2 \\ & \underset{\boldsymbol{W}}{\operatorname{arg\,min}} - \sum_{n=0}^{N} t_n \ln \left(y_{\boldsymbol{W}} \left(\vec{\boldsymbol{x}}_{n} \right) \right) + \left(1 - t_n \right) \ln \left(1 - y_{\boldsymbol{W}} \left(\vec{\boldsymbol{x}}_{n} \right) \right) + \lambda \sum_{i=1}^{d} \left(w_{i} \right)^2 \end{split}$$

$$\nabla_W E(\mathbf{w}) = \sum_{n=1}^{N} (y_W(\vec{x}_n) - t_n) \vec{x}_n + 2\lambda \sum_{d=0}^{D} w_d$$

130

Exemples

from sklearn.linear_model import SGDClassifier

131

Mieux comprendre

Entropie croisée vs Hinge loss

133

