CC40A - Examen

Prof. Gonzalo Navarro 22 de Julio de 2010

El examen suma 8 puntos, con tope de nota 7.0.

P1 (1 pt)

Modifique la estructura de árbol binario de búsqueda (ABB) para que los elementos a insertar indiquen además una *prioridad*, de modo que el árbol garantice, además de los invariantes usuales del ABB, que el padre siempre tiene mayor prioridad que los hijos. Describa los algoritmos de inserción y borrado (puede referenciar algoritmos vistos en clase sin detallarlos).

P2 (2.5 pt)

Considere un algoritmo online aleatorizado para el problema de arrendar los esquíes. Si el costo de arrendar por día es a y de comprar es c, este algoritmo decide comprar el día $\lfloor c/(2a) \rfloor + 1$ com probabilidad p, y sino compra el día $\lfloor c/a \rfloor + 1$ como el determinístico.

- 1. (0.5pt) Halle el costo esperado que paga el algoritmo aleatorizado hasta el día t, que es el día (desconocido) en el que se debe volver del resort. Separe en casos $t \le c/(2a)$, $c/(2a) < t \le c/a$, y t > c/a.
- 2. (1pt) Encuentre el valor de p que optimiza la competitividad esperada del algoritmo y muestre que ésta resulta ser menos que 2.
- 3. (1 pt) Muestre que ningún algoritmo determinístico puede ser mejor que 2-competitivo.

P3 (3.5 pt)

Considere paralelizar el algoritmo Quick Select que encuentra el k-ésimo elemento en tiempo esperado O(n).

- 1. (1pt) Resuelva el problema de particionar un arreglo de n elementos en menores y mayores a un pivote dado en $T(n) = O(\log n)$ y W(n) = O(n) (pruebe estas cotas).
- 2. (0.5pt) Utilizando una variante del punto anterior, diseñe un algoritmo tipo Las Vegas que obtenga un pivote a distancia a lo menos αn de ambos extremos, para una constante $0 < \alpha < 1$.
- 3. (0.5pt) Con los dos puntos anteriores, obtenga el algoritmo final con costos esperados $T(n) = O(\log^2 n)$ y W(n) = O(n) (pruebe estas cotas).
- 4. (0.5pt) Calcule el speedup S(n, p), eficiencia E(n, p), tiempo T(n, p) con p procesadores, y número óptimo de procesadores p^* para su algoritmo.
- 5. (1pt) Considere paralelizar el algoritmo de peor caso O(n) visto en clases, y comente acerca del problema que surge.

Tiempo: 3 horas — Tres hojas de apuntes — Responder en hojas separadas