

Part 1

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Mauro Dell'Amico

Consider a wood worker making tables and chairs. The wood worker has 15 units of wood. Each table requires 3 units of wood and each chair requires 2 units of wood. The person has 15 hours to spend on making the tables and chairs. Each table requires 2 hours of work and each chair requires 3 hours. The wood worker earns 80 Euro per table and 70 Euro per chair. How many tables and chairs should the wood worker make to maximize his revenue?

Can we write a mathematical model for the problem ?

Can we write a mathematical model for the problem ?

x = number of tables y = number of chairs

Can we write a mathematical model for the problem ?

x = number of tables

y = number of chairs

Resources: wood (15 units) time (15 hours)

Mauro Dell'Amico

Can we write a mathematical model for the problem ?

x = number of tables

y = number of chairs

Resources: wood (15 units) time (15 hours)

wood: 3x + 2y ≤ 15

hours:

 $2x + 3y \leq 15$

Can we write a mathematical model for the problem ?

...

x = number of tables

y = number of chairs

Resources: wood (15 units) time (15 hours)

wood: 3x + 2y

 ≤ 15

hours: 2x + 3y

 ≤ 15

Revenue:

max 80x + 70y

Mauro Dell'Amico

UNIMORE

Mauro Dell'Amico

Part 2

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Some mathematics

z = 80x + 70y is a Linear objective function

Some mathematics

z = 80x + 70y is a Linear objective function

A general objective function is $z = f(x_1, x_2, \dots, x_n)$

Mauro Dell'Amico

Some mathematics

z = 80x + 70y is a Linear objective function

A general objective function is $z=f(x_1,x_2,\ldots,x_n)$ The *gradient* of f is $\nabla f=\frac{\partial f}{\partial x_1}e_1+\frac{\partial f}{\partial x_2}e_2,+\cdots+\frac{\partial f}{\partial x_n}e_n$, where e_i is the unit vector in the i-th coordinate direction.

The gradient computed in a point indicates the direction of the greatest rate of increase of f in that point.

Some mathematics

z = 80x + 70y is a Linear objective function

A general objective function is $z=f(x_1,x_2,\ldots,x_n)$ The *gradient* of f is $\nabla f=\frac{\partial f}{\partial x_1}e_1+\frac{\partial f}{\partial x_2}e_2,+\cdots+\frac{\partial f}{\partial x_n}e_n$, where e_i is the unit vector in the i-th coordinate direction.

The gradient computed in a point indicates the direction of the greatest rate of increase of f in that point.

When f() is Linear the gradient is given by the coefficients of the variables, ex. f = 80x + 70y $\nabla f = (80, 70)$

200

Another example

Mauro Dell'Amico

Part 3

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Mauro Dell'Amico

Standard format

- Only equations
- Only non-negative variables

 s_1 and s_2 are called **slack** variables We have an immediate solution with s_1 and s_2

Mauro Dell'Amico

Standard format

- Only equations
- Only non-negative variables

 s_1 and s_2 are called **slack** variables

We have an immediate solution with \emph{s}_1 and \emph{s}_2

z =	80x	+70 <i>y</i>			
$s_1 =$	-3x	-2y	+ 15	(0,0,15,15)	z = 0
$s_2 =$	-2x	-3y	+ 15		

It is convenient to increase x ! But how much ? (let y=0)

Mauro Dell'Amico

It is convenient to increase x ! But how much ? (let y=0)

$$\begin{cases} s_1 = -3x + 15 \ge 0 \\ s_2 = -2x + 15 \ge 0 \end{cases} \qquad \begin{cases} x \le 5 \\ x \le \frac{15}{2} \end{cases} \Rightarrow x = 5, s_1 = 0$$

 $x \uparrow$ enters in the solution, $s_1 \downarrow$ exit

It is convenient to increase x! But how much ? (let y = 0)

$$\begin{cases} s_1 = -3x & +15 & \ge 0 \\ s_2 = -2x & +15 & \ge 0 \end{cases} \qquad \begin{cases} x & \le 5 \\ x & \le \frac{15}{2} \end{cases} \Rightarrow x = 5, s_1 = 0$$

 $x \uparrow$ enters in the solution, $s_1 \downarrow$ exit

Mauro Dell'Amico

$$z = +\frac{50}{3}y - \frac{80}{3}s_1 + 400$$

$$x = -\frac{2}{3}y - \frac{1}{3}s_1 + 5$$

$$s_2 = -\frac{5}{3}y + \frac{2}{3}s_1 + 5$$

$$(5, 0, 0, 5) \quad z = 400$$

y should enter the solution (let $s_1 = 0$)

$$z = +\frac{50}{3}y - \frac{80}{3}s_1 + 400$$

$$x = -\frac{2}{3}y - \frac{1}{3}s_1 + 5$$

$$s_2 = -\frac{5}{3}y + \frac{2}{3}s_1 + 5$$

$$(5, 0, 0, 5) \quad z = 400$$

y should enter the solution (let $s_1=0$)

$$\begin{cases} x = -\frac{2}{3}y + 5 \ge 0 \\ s_2 = -\frac{5}{3}y + 5 \ge 0 \end{cases} \qquad \begin{cases} y \le \frac{15}{2} \\ y \le 3 \end{cases} \Rightarrow y = 3, s_2 = 0$$

 $y \uparrow$ enters in the solution $s_2 \downarrow$ exit.

$$z = -20s_1 -10s_2 + 450$$

$$x = -\frac{3}{5}s_1 + \frac{2}{5}s_2 + 3$$

$$y = +\frac{2}{5}s_1 - \frac{3}{5}s_2 + 3$$

$$(3,3,0,0) \quad z = 450$$

No increase is possible: optimal solution!

Solutions explored:

$$z = 80x +70y$$

$$s_1 = -3x -2y +15$$

$$s_2 = -2x -3y +15$$

$$(0,0,15,15)$$
 $z=0$

$$z = +\frac{50}{3}y - \frac{80}{3}s_1 + 400$$

$$x = -\frac{2}{3}y - \frac{1}{3}s_1 + 5$$

$$s_2 = -\frac{5}{3}y + \frac{2}{3}s_1 + 5$$

$$(5,0,0,5) \quad z = 400$$

$$(5,0,0,5)$$
 $z=400$

$$(3,3,0,0)$$
 $z=450$

Solutions explored:

UNIMORE SERVICES

Mauro Dell'Amico

Part 4

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Tableau

		s_2	s_1	У	X	
-z	0	0	0	70	80	
C1	15		1		(3)	
s_1	15	U		2		
s ₂	15	1	0	3	2	

Mauro Dell'Amico

4 □ ▶	4 A >	4 3 1	4 E b	 200

		s_2	s_1	У	X
-z	0	0	0	70	80
<i>S</i> ₁	15	0	1	2	(3)
<i>s</i> ₂	15	1	0	3	2

 $x \uparrow$ enters in the solution, $s_1 \downarrow$ exit

		s_2	s_1	У	X
-z	0	0	0	70	80
s_1	15	0	1	2	(3)
s ₂	15	1	0	3	2

 $x \uparrow$ enters in the solution, $s_1 \downarrow$ exit

z =	$+\frac{50}{3}y$	$-\frac{80}{3}s_1$	+ 400
x =	$-\frac{2}{3}y$	$-\frac{1}{3}s_1$	+ 5
$s_2 =$	$-\frac{5}{3}y$	$+\frac{2}{3}s_1$	+5

When \boldsymbol{x} enters in a solution it must appear in ONE equation

x ha coefficient 1 in one equation

 \boldsymbol{x} ha coefficient 0 in all other equations, including the obj. function

Mauro Dell'Amico

		s_2	s_1	У	X
-z	0	0	0	70	80
<i>S</i> 1	15	0	1	2	(3)
S 2	15	1	0	3	2

 $x \uparrow$ enters in the solution, $s_1 \downarrow$ exit

$$z = +\frac{50}{3}y - \frac{80}{3}s_1 + 400$$

$$x = -\frac{2}{3}y - \frac{1}{3}s_1 + 5$$

$$s_2 = -\frac{5}{3}y + \frac{2}{3}s_1 + 5$$

When \boldsymbol{x} enters in a solution it must appear in ONE equation

x ha coefficient 1 in one equation

x ha coefficient 0 in all other equations, including the obj. function

		s_2	s_1	У	X	
-z	-400	0	$-\frac{80}{3}$	<u>50</u> 3	0	
X	5	0	$\frac{1}{3}$	$\frac{2}{3}$	1	
s ₂	5	1	$-\frac{2}{3}$	<u>5</u> 3	0	

Pivot

 ${\bf Pivot} = {\bf transform}$ the system of equations in an equivalent system with exactly one '1' in the column of the entering variable

X	У	s_1	s_2		
0	<u>50</u> 3	$-\frac{80}{3}$	0	-400	-z
1	$\frac{2}{3}$	$\frac{1}{3}$	0	5	X
0	$\left(\frac{5}{3}\right)$	$-\frac{2}{3}$	1	5	s ₂

Mauro Dell'Amico

Pivot

 ${\bf Pivot} = {\bf transform}$ the system of equations in an equivalent system with exactly one '1' in the column of the entering variable

_				-	
		s_2	s_1	У	X
-z	-400	0	$-\frac{80}{3}$	<u>50</u> 3	0
X	5	0	$\frac{1}{3}$	$\frac{2}{3}$	1
s ₂	5	1	$-\frac{2}{3}$	5/3	0
		s_2	s_1	У	X
-z	-450	-10	- 20	0	0
X	3	$-\frac{2}{5}$	<u>3</u> 5	0	1
у	3	<u>3</u> 5	$-\frac{2}{5}$	1	0

x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7		
1	-2	-6	0	0	0	0	0	
1	0			0		0	2	
0	1	0	0	1 0	0	0	3	(0,0,0, 2,3,3,4)
0	0	1	0	0	1	0	3	2,3,3,4)
1	1	1	0	0	0	1	4	

Mauro Dell'Amico

x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7		
1	-2	-6	0	0	0	0	0	
1	0	0	1	0	0	0	2	
0	1	0	0	1	0	0	3	(0,0,0,
0	0	1	0	0	1	0	3	2,3,3,4)
1	1	1	0	0	0	1	4	
x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7		
1	0	-6	0	2	0	0	6	
					-			
1	0	0	1	0	0	0	2	
0	0 1	0 0	1 0	0 1	0		-	(0,3,0,
			_	•		0	2	(0,3,0, 2,0,3,1)

x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7		
1	-2	-6	0	0	0	0	0	
1	0	0	1	0	0	0	2	
0	1	0	0	1	0	0	3	(0,0,0,
0	0	1	0	0	1	0	3	2,3,3,4)
1	1	1	0	0	0	1	4	
X_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7		
1	0	-6	0	2	0	0	6	
1	0	0	1	0	0	0	2	
0	1	0	0	1	0	0	3	(0,3,0,
0	0	1	0	0	1	0	3	2,0,3,1)
1	0	1	0	-1	0	1	1	
x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7		
7	0	0	0	-4	0	6	12	
1	0	0	1	0	0	0	2	
0	1	0	0	1	0	0	3	(0,3,1,
-1	0	0	0	1	1	-1	2	2,0,2,0)
1	0	1	0	-1	0	1	1	

Mauro Dell'Amico

4 □ > 4 □ > 4 ≥	▶ < E > E	2000
-----------------	-----------	------

x_1	x_2	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7		
7	0	0	0	-4	0	6	12	
1	0	0	1	0	0	0	2	
0	1	0	0	1	0	0	3	(0,3,1,
-1	0	0	0	1	1	-1	2	(0,3,1, 2,0,2,0)
1	0	1		-1		1	1	

	20	2	4	0	0	0	0	3
	2	0	0	0	1	0	0	1
(0,1,3,	1	1	-1	0	0	0	1	1
2,2,0,0)	2	-1	1	1	0	0	0	-1
(0,1,3, 2,2,0,0) ottimo	3	0	1	0	0	1	0	0

UNIMORE SERVICES

Mauro Dell'Amico

Part 5

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

x_1	<i>x</i> ₂	<i>x</i> ₃	X_4		
1	3	0	0	0	-z
1	-2	1	0	4	<i>x</i> ₃
1	-1	0	1	8	<i>X</i> ₄

UNIMORE SECRET SECRET

$$\begin{cases} x_3 = -x_1 + 4 \ge 0 \\ x_4 = -x_1 + 8 \ge 0 \end{cases} \qquad \begin{cases} x_1 \le 4 \\ x_1 \le 8 \end{cases} \Rightarrow x_1 = 4, x_3 = 0$$

 $x_1 \uparrow$ enters in the solution, $x_3 \downarrow$ exit

x_1	<i>x</i> ₂	x_3	x_4		
1	3	0	0	0	-z
1	-2	1	0	4	<i>X</i> 3
1	-1	0	1	8	<i>X</i> 4

$$\begin{cases} x_3 = -x_1 + 4 \ge 0 \\ x_4 = -x_1 + 8 \ge 0 \end{cases} \qquad \begin{cases} x_1 \le 4 \\ x_1 \le 8 \end{cases} \Rightarrow x_1 = 4, x_3 = 0$$

 $x_1 \uparrow$ enters in the solution, $x_3 \downarrow$ exit

X_1	x_2	<i>x</i> ₃	x_4		_
0	5	-1	0	-4	-z
1	-2	1	0	4	x_1
0	1	-1	1	4	<i>X</i> ₄

UNIMORE SOURCE TO BE THE BEST OF BEST

Mauro Dell'Amico

x_1	x_2	x_3	x_4		
0	5	-1	0	-4	-z
1	-2	1	0	4	x_1
0	1	-1	1	4	X4

$$\left\{\begin{array}{lll} x_1=&2x_2&+4&\geq 0\\ x_4=&-x_2&+4&\geq 0 \end{array}\right. \qquad \left\{\begin{array}{ll} \text{always true}\\ x_2&\leq 4 \end{array}\right. \Rightarrow x_2=4, \quad x_4=0$$

 $x_2 \uparrow$ enters in the solution, $x_4 \downarrow$ exit

	x_4	<i>x</i> ₃	x_2	x_1	
4	0	-1	5	0	
4	0	1	-2	1	
4	1	-1	1	0	

$$\left\{\begin{array}{lll} x_1=&2x_2&+4&\geq 0\\ x_4=&-x_2&+4&\geq 0 \end{array}\right. \qquad \left\{\begin{array}{ll} \text{always true}\\ x_2&\leq 4 \end{array}\right. \Rightarrow x_2=4, \quad x_4=0$$

 $x_2 \uparrow$ enters in the solution, $x_4 \downarrow$ exit

x_1	x_2	x_3	x_4		
0	0	4	-5	-24	-z
1	0	-1	2	12	x_1
0	1	-1	1	4	<i>X</i> ₂

Mauro Dell'Amico

$$\left\{\begin{array}{lll} x_1=&2x_2&+4&\geq 0\\ x_4=&-x_2&+4&\geq 0 \end{array}\right. \qquad \left\{\begin{array}{ll} \text{always true}\\ x_2&\leq 4 \end{array}\right. \Rightarrow x_2=4, \quad x_4=0$$

 $x_2 \uparrow$ enters in the solution, $x_4 \downarrow$ exit

x_1	x_2	x_3	X_4		
0	0	4	-5	-24	-z
1	0	-1	2	12	x_1
0	1	-1	1	4	<i>x</i> ₂

$$\left\{\begin{array}{lll} x_1=&x_3&+12&\geq 0\\ x_2=&x_3&+4&\geq 0 \end{array}\right. \quad \left\{\begin{array}{ll} \text{always true}\\ \text{always true} \end{array}\right.$$

$$\max z = x_1 + 3x_2 \\ s.t \qquad x_1 - 2x_2 \le 4 \\ x_1 - x_2 \le 8 \\ x_1, \quad x_2 \ge 0$$

$$\lim_{Mairo Dell'Amico} \lim_{N \to \infty} \lim_{N \to \infty$$

Pivot: rules

Column:

select a column with **positive** obj. coeff. (maximization) select a column with **negative** obj. coeff. (minimization)

Row:

select the row with minimum ratio (rhs)/(column coeff.) for ${f positive}$ coefficients

 \Rightarrow if no positive coefficient exists the problem is **unbounded**

