MIT 8.02 Spring 2002 Assignment #8 Solutions

Problem 8.1

An LRC circuit.

(a) As discussed in lecture (and in Giancoli Section 31-6, p. 780), in an *LRC* circuit, the driving frequency at which the current reaches a maximum (resonance) is

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(0.015)(5 \times 10^{-6})}} = 3651.5 \,\text{rad/s}$$
.

(b) From Giancoli Section 31-5 (pp. 776-779), we have

$$I(t) = I_0 \sin(\omega t - \phi) = \frac{V_0}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \sin(\omega t - \phi) .$$

(Note: Giancoli adopts the convention t=0 when the current in the circuit I(t)=0. In this problem, our convention is to take t=0 when the source voltage V(t)=0. So, to apply Giancoli's results to our situation, we shift the origin in time according to $\omega t_{\rm Giancoli} = \omega t_{\rm us} - \phi$.)

Thus we have

ω	$\omega \text{ (rad/s)}$	$\frac{1}{\omega C} (\Omega)$	$\omega L(\Omega)$	$\sqrt{R^2 + (\omega L - 1/\omega C)^2} \ (\Omega)$	I_0 (A)
$0.25 \omega_0$	913	219	13.7	220	0.18
ω_0	3651	54.8	54.8	80	0.50
$4 \omega_0$	14606	13.7	219	220	0.18

(c) For $\omega = \omega_0$, $\omega L = 1/\omega C$, and thus the phase angle ϕ between the peak current and peak source voltage is zero (see Giancoli Equation (31-10a), p. 778). This gives

$$I(t) = \frac{V_0}{R} \sin \omega_0 t .$$

Since I = dQ/dt, we have for the charge on the capacitor

$$Q(t) = -\frac{V_0}{\omega_0 R} \cos \omega_0 t .$$

(The "integration constant" must be zero: our solution for the circuit behavior has assumed that the voltage across the capacitor, and hence the charge on the capacitor, is purely sinusoidal in time.) So,

$$U_C(t) = \frac{1}{2} \frac{Q^2}{C} = \frac{V_0^2}{2\omega_0^2 R^2 C} \cos^2(\omega_0 t) = \frac{V_0^2 L}{2R^2} \cos^2(\omega_0 t)$$

$$= (0.0019) \cos^2(\omega_0 t) \quad \text{(Joules)},$$

$$I(t) = \frac{1}{2} L I^2 = \frac{V_0^2 L}{2R^2} \sin^2(\omega_0 t)$$

$$= (0.0019) \sin^2(\omega_0 t) \quad \text{(Joules)}.$$

Problem 8.2

Average power dissipated in an LRC circuit. (Giancoli 31-20)

(In the opinion of the solution author, the instantaneous power P = IV of this problem should be called the "power delivered by the power supply", not the "power dissipated in the circuit".)

From $I = I_0 \sin(\omega t)$ and $V = V_0 \sin(\omega t + \phi)$, we have

$$P = IV = I_0 V_0 \sin(\omega t) \sin(\omega t + \phi) .$$

Next we make use of the trigonometric identity

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta ,$$

giving

$$P = I_0 V_0 [\sin^2(\omega t) \cos \phi + \sin(\omega t) \cos(\omega t) \sin \phi] .$$

The average of $\sin^2(\omega t)$ over one period is $\frac{1}{2}$, while the average of $\sin(\omega t)\cos(\omega t)$ is zero, so we have

$$\overline{P} = \frac{1}{2} I_0 V_0 \cos \phi \quad ,$$

as advertised.

Width of resonance peak. (Giancoli 31-30)

(Note: to be consistent with previous notation, the problem statement should really ask for the difference between the two frequencies where $I_0 = \frac{1}{2}I_{0,\text{max}}$.)

The results of problem 8.1(b) suggest that driving frequencies $\omega = \alpha \omega_0$ and $\omega = \alpha^{-1}\omega_0$ will give the same peak current I_0 . We can see this plainly if we use $\omega_0 = 1/\sqrt{LC}$ to recast the expression for I_0 :

$$I_{0} = \frac{V_{0}}{\sqrt{R^{2} + (\omega L - 1/\omega C)^{2}}} = \frac{V_{0}}{R\sqrt{1 + \frac{L}{R^{2}C} (\omega/\omega_{0} - \omega_{o}/\omega)^{2}}} . \tag{1}$$

Now, let ω_+ and ω_- be the two driving frequencies on either side of the resonance peak that give $I_0 = \frac{1}{2}I_{0,\max} = \frac{1}{2}V_0/R$. In view of (??), they will evidently be related to ω_0 by $\omega_+ = \alpha\omega_0$ and $\omega_- = \alpha^{-1}\omega_0$ for some α . If the resonance peak is sharp, $I_0(\omega)$ falls of very quickly on either side of ω_0 , so ω_+ and ω_- must be relatively close to ω_0 . Thus we can take $\alpha = 1 + \delta$, with $\delta \ll 1$. This gives $\omega_+ = (1 + \delta)\omega_0$, $\omega_- = (1 + \delta)^{-1}\omega_0 \approx (1 - \delta)\omega_0$, and $\Delta\omega \equiv \omega_+ - \omega_- \approx 2\delta\omega_0$. For $\omega =$ either ω_+ or ω_- ,

$$\left(\frac{\omega_{\pm}}{\omega_{0}} - \frac{\omega_{0}}{\omega_{\pm}}\right)^{2} \approx \left((1 \pm \delta) - \frac{1}{(1 \pm \delta)}\right)^{2} \approx (\pm 2\delta)^{2} = 4\delta^{2} \approx \frac{(\Delta\omega)^{2}}{\omega_{0}^{2}} = LC(\Delta\omega)^{2} . \tag{2}$$

We can now find $\Delta \omega$ by plugging (??) into (??):

$$I_0 = \frac{1}{2}I_{0,\text{max}} \implies \frac{V_0}{R\sqrt{1 + \frac{L^2}{R^2}(\Delta\omega)^2}} \approx \frac{V_0}{2R}$$
.

This solves easily to give

$$\Delta\omega \approx \frac{\sqrt{3}R}{L} \ ,$$

as we were to show.

Traveling waves on a string.

(a) For any traveling wave of the form

$$y = a\sin(kx - \omega t) \quad ,$$

a is the amplitude, k is the wavenumber, $\lambda=2\pi/k$ is the wavelength, ω is the frequency in radians per second $(f=\omega/2\pi)$ is the frequency in Hertz), $T=2\pi/\omega$ is the period, and $v=\omega/k$ is the speed of the wave. For our wave,

$$y = 0.4\sin[\pi(0.5x - 200t)]$$
 (x, y in cm, t in sec)

and we have

$$a = 0.4 \, \text{cm}$$

 $k = 0.5\pi = 1.57 \, \text{cm}^{-1}$
 $\lambda = 2\pi/k = 4 \, \text{cm}$
 $\omega = 200\pi = 628 \, \text{rad/s}$
 $(f = \omega/2\pi = 100 \, \text{Hz})$
 $T = 2\pi/\omega = 0.01 \, \text{sec}$
 $v = \omega/k = 400 \, \text{cm/s}$.

(b) At t = 0, the equation of the wave is

$$y(x,t)|_{t=0} = 0.5\sin(1.57x)$$
.

At $t = 1/400 \sec (= T/4)$, the equation is

$$y(x,t)|_{t=1/400} = 0.5\sin(1.57x - \pi/2) = -0.5\cos(1.57x)$$
.

Following is a plot of y vs. x for these two times:

(c) The transverse (y-direction) speed of a point on our string is

$$\frac{dy}{dt} = a\omega\cos(kx - \omega t) \quad ,$$

with maximum value

$$\frac{dy}{dt}\Big|_{\text{max}} = a\omega = 251 \,\text{cm/s}$$
 .

(d) If we clamp the string at two points a distance L cm apart and observe a standing wave of the same wavelength as above, then L must be an integer number of half-wavelengths:

$$L = n\lambda/2$$
 $(n = 1, 2, 3, 4, ...)$.

For our value of $\lambda = 4$ cm, the first three possibilities are:

$$n = 1$$

$$L = 2 \text{ cm}$$

$$n = 2$$

$$L = 4 \text{ cm}$$

$$L = 6 \text{ cm}$$

If L is to be strictly less than 10 cm, there are 4 possible values for L: 2 cm, 4 cm, 6 cm, and 8 cm.

Problem 8.5

Standing waves on a string.

(a) A standing wave of the form

$$y = a\sin(kx)\cos(\omega t)$$

has the same wavelength, etc. as given in 8.3(a) above. Thus, for

$$y = 0.3\sin(3x)\cos(1200t)$$

with x, y in centimeters and t in seconds, we have

$$k = 3 \, \mathrm{cm}^{-1}$$

 $\lambda = 2\pi/k = 2.1 \, \mathrm{cm}$
 $\omega = 1200 \, \mathrm{rad/s}$
 $(f = \omega/2\pi = 191 \, \mathrm{Hz})$
 $T = 2\pi/\omega = 5.24 \times 10^{-3} \, \mathrm{s}$.

(b) The times of interest are t = 0, $t = 1.31 \times 10^{-3}$ s = T/4, and $t = 2.62 \times 10^{-3}$ s = T/2:

$$\begin{aligned} y(x,t)|_{t=0} &= 0.3\sin(3x) \\ y(x,t)|_{t=1.31\times10^{-3}} &= 0.3\sin(3x)\cos(\pi/2) \equiv 0 \\ y(x,t)|_{t=2.62\times10^{-3}} &= 0.3\sin(3x)\cos(\pi) = -0.3\sin(3x) \end{aligned}.$$

Following is a plot of y vs. x for these three times:

Compare the evolution of this standing wave with the evolution of the traveling wave of problem 8.3.

(c) As in 8.3(c), the maximum transverse speed is

$$\left. \frac{dy}{dt} \right|_{\text{max}} = a\omega = 360 \,\text{cm/s}$$
.

(d) One could interpret this question in one of two ways. If by "speed of propagation" we mean the so-called phase speed, then it is

$$v = \omega/k = 400 \,\mathrm{cm/s}$$
 .

If on the other hand we mean the speed with which this *particular* waveform (standing wave) travels along the string, then it is zero. (See plot under (b) above.)

Distance sensing with sound.

(a) The time T between the emission and return of the bat's pulse to a wall L meters away is $T=2L/v_{\rm a}$, where $v_{\rm a}$ is the speed of sound in air. Thus a distance uncertainty ΔL corresponds to a time uncertainty $\Delta T=2\Delta L/v_{\rm a}$. For $\Delta L=\pm 0.2\,{\rm m}$ and $v_{\rm a}=344\,{\rm m/s}$ (1 atm at 20°C), we have

$$\Delta T = \pm 1.2 \times 10^{-3} \,\mathrm{sec} \ .$$

(b) Suppose the bat in our methane-filled cave sends out a pulse which covers a distance L_{actual} . The bat will receive the reflected pulse after a time $T = 2L_{\text{actual}}/v_{\text{m}}$, where v_{m} is the speed of sound in methane. If the bat perceives that he is in air, he will interpret this time delay as being due to an apparent distance

$$L_{\text{apparent}} = \frac{v_{\text{a}}T}{2} = \frac{v_{\text{a}}}{v_{\text{m}}}L_{\text{actual}}$$
.

For $v_a = 344 \,\mathrm{m/s}$ and $v_m = 432 \,\mathrm{m/s}$, this gives

$$L_{\rm apparent} = 0.8 L_{\rm actual}$$
.

So the bat will perceive things as being closer than they actually are by a factor of 0.8, because the signals return faster than he expects.

Design a flute.

(a) When the system oscillates in the fundamental mode, the length of the tube (open open) is half the wavelength, so the length of the flute should be $L = \lambda/2$. Wavelength is related to frequency f (in Hertz) and sound speed v_a by $f\lambda = v_a$, or $\lambda = v_a/f$, so that $L = v_a/2f$. For f = 261.7 Hz and $v_a = 344$ m/s,

$$L = 0.657 \,\mathrm{meters}$$
 .

(b) For a modern equal-tempered scale, the frequency of any given note is $\sqrt[12]{2} \simeq 1.0595$ times the frequency of the note one half-step below (note frequencies may also be found tabulated). This allows us to calculate the necessary effective tube lengths for each note from $L = v_a/2f$, and hence the corresponding key spacings ΔL :

Note	f (Hz)	L (m)	$\Delta L \text{ (m)}$
C	261.7	0.657	(0)
$C\sharp/Dlat$	277.3	0.620	0.037
D	293.7	0.586	0.034
$D\sharp/Elat$	311.2	0.553	0.033
E	329.7	0.522	0.031
F	349.3	0.492	0.030
$F\sharp/G\flat$	370.1	0.465	0.027
G	392.1	0.439	0.026
$G\sharp/Alat$	415.4	0.414	0.025
A	440.1	0.391	0.023
$A\sharp/Blat$	466.3	0.369	0.022
B	494.0	0.348	0.021
C	523.4	0.329	0.019

(Note: the somewhat jumpy progression of ΔL 's is due to round-off error.)

END