Package 'swt'

July 3, 2025

Description This R package provides tools for data analysis and visualization by Swisstransplant--the national organisation for organ donation and

Type Package

Version 0.3

Title Swisstransplant R Package

transplantation in Switzerland.	
Imports ggplot2, grDevices, utils, hms, data.table, testit, segmented, lubridate	
LazyData true	
License file LICENSE	
Encoding UTF-8	
RoxygenNote 7.3.2	
Depends R (>= $3.5.0$)	
Contents	
date2num	2
egfr_ckd_epi	2
egfr_schwartz	3
exam.device	3
exam.organ	4
exam.sumstats	5
exam.timeseries	6
fmt_hla	6
freq_perc	7
get_days_in_year	7
hla_mismatch	8
hla_parse	9
kidmo_hr2rank	9
kidmo_model	0
lifeport_d2	0
lifeport_d2toRank	1
lifeport_process	1
lifeport read	2

lifeport_sumstats12mean_sd13median_iqr13miss_perc14

2 egfr_ckd_epi

Index		21
	uk_kdri	20
	uk_dcd_score	
	tidy_rmsfit	
	tidy_pvalues	18
	tidy_missing	18
	swt_style	17
	swt_skeleton	17
	swt_colors	16
	optn_kdri	15
	num2date	15
	nearest	14

date2num

Convert date to Excel numeric days

Description

Convert POSIXct data type (date/time) to Excel days since origin.

Usage

```
date2num(dates)
```

Arguments

dates

character string in the form of YYYY-mm-dd

Value

number of days

egfr_ckd_epi

CKD-EPI Creatinine Equation (2021)

Description

Calculates eGFR according to the 2021 formula.

Usage

```
egfr_ckd_epi(SCr, age, sex, units = "SI")
```

Arguments

SCr	serum creatinine in	n mg/dL (US	or umol/L (S)
501	ber ann creatinine i	II III CO) Of difford (D)

age age in years

sex either "F" for female, or "M" for male

units unit for SCr, either "SI" (umol/L; default) or "US" (mg/dL)

egfr_schwartz 3

Details

See equation and references at https://www.kidney.org/ckd-epi-creatinine-equation-2021.

Value

eGFR in mL/min/1.73m2

egfr_schwartz

Revised Schwartz Equation (2009)

Description

Calculates eGFR for pediatric patients.

Usage

```
egfr_schwartz(SCr, height, units = "SI")
```

Arguments

SCr serum creatinine in mg/dL (US) or umol/L (S)

height height in cm

unit for SCr, either "SI" (umol/L; default) or "US" (mg/dL)

Details

See equation and examples at https://www.mdcalc.com/calc/10008/revised-schwartz-equation-glomerular-fevidence.

Value

eGFR in mL/min/1.73m2

exam.device

EXAM device data

Description

Example data form the LifePort kidney transporter.

Usage

exam.device

4 exam.organ

Format

A data frame with self explaining variable names:

SerialNumber serial number of the device

Type type note

SubType subtype note

UnitID name given to the device

FirmwareVersion firmware version

FileID file id

StartTime start date and time of machine

DataState data state, if it is complete

HasGaps whether data has haps

Runtime run time of the machine

StopTime time and date of machine stop

Filename file name#'

Source

https://data.swisstransplant.org/

exam.organ

EXAM organ data

Description

Example data form the LifePort kidney transporter.

Usage

exam.organ

Format

A data frame with self explaining variable names:

OrganID identifier entered into the machine

KidneySide left or right kidney

BloodType self explaining

CrossClampTime.Date self explaining

CrossClampTimezone self explaining

TotalIschemicTime self explaining

PerfusateLot self explaining

PerfusateExpirationDate self explaining

PerfusateUsed self explaining

Cannula self explaining

exam.sumstats 5

CannulaExpirationDate self explaining
CassetteLot. self explaining
CasetteExpirationDate self explaining
ID self explaining
DonorID self explaining

Source

https://data.swisstransplant.org/

exam.sumstats

EXAM summary statistics

Description

Example data form the LifePort kidney transporter.

Usage

exam.sumstats

Format

A data frame with self explaining variable names:

perfusion.dur perfusion duration in minutes perfusion.dur.str perfusion duration in HH:MM:SS systolicPressure.md self explaining diastolicPressure.mean self explaining flowRate.mean self explaining organResistance.mean self explaining organResistance.sd self explaining organResistance.x1 self explaining organResistance.y1 self explaining organResistance.x2 self explaining organResistance.y2 self explaining organResistance.delta self explaining organResistance.slope self explaining iceContainerTemperature.mean self explaining iceContainerTemperature.sd self explaining iceContainerTemperature.minAbove self explaining iceContainerTemperature.minAbove.str self explaining infuseTemperature.mean self explaining infuseTemperature.sd self explaining infuseTemperature.start self explaining

6 fmt_hla

infuseTemperature.minAbove self explaining
infuseTemperature.minAbove.str self explaining
D2temp self explaining
Ptemp self explaining
D2perf self explaining
Pperf self explaining

Source

https://data.swisstransplant.org/

exam.timeseries

EXAM time series data

Description

Example data form the LifePort kidney transporter.

Usage

exam.timeseries

Format

A list of data frames with time series data:

SerialNumber serial number of the device

FlowRate flow rate ...

Source

https://data.swisstransplant.org/

 fmt_hla

Format HLA

Description

Helper function to format strings for broads, e.g. A(10) becomes A10 and A becomes NA.

Usage

fmt_hla(v_char)

Arguments

v_char

character vector

Value

formatted character vector

freq_perc 7

freq_perc

Returns frequency count and percentage

Description

Helper function for tidy formatting.

Usage

```
freq_perc(x, count.na = TRUE, d2 = 1)
```

Arguments

x logical vector

count.na count NAs in denominator

d2 number of digits

Value

character object

get_days_in_year

Get the number of days in a year

Description

Helper function useful in survival analysis to convert event times.

Usage

```
get_days_in_year()
```

Value

number of days

8 hla_mismatch

hla_mismatch

Calculates HLA mismatches.

Description

The function calculates HLA mismatches for SOAS data.

Usage

```
hla_mismatch(

D.A1,

D.A2,

D.B1,

D.B2,

D.DR1,

D.DR2,

R.A1,

R.A2,

R.B1,

R.B2,

R.DR1,

R.DR2
```

Arguments

D.A1	donor HLA Antigen on allele 1 locus A
D.A2	donor HLA Antigen on allele 2 locus A
D.B1	donor HLA Antigen on allele 1 locus B
D.B2	donor HLA Antigen on allele 2 locus B
D.DR1	donor HLA Antigen on allele 1 locus DR
D.DR2	donor HLA Antigen on allele 2 locus DR
R.A1	recipient HLA Antigen on allele 1 locus A
R.A2	recipient HLA Antigen on allele 2 locus A
R.B1	recipient HLA Antigen on allele 1 locus B
R.B2	recipient HLA Antigen on allele 2 locus B
R.DR1	recipient HLA Antigen on allele 1 locus DR
R.DR2	recipient HLA Antigen on allele 2 locus DR

Details

The serological nomenclature in SOAS as follows: L[p, q] with L is the locus A B or DR, p and q are the two alleles of the locus L, and the convention is $p \le q$. The case p != q is known as heterozygote, A[2, 25]. Homozygote, if p = q, such as in DR[11,11].

The HLA-matching process has to handle broad and splits. Two alleles p and r on the same locus L match if they are equal or if one of the allele is the broad of the other allele. Two different splits of same broad do not match. To calculate mismatch, we look up donor antigens and match them in the recipient. In other words, how many unknown antigens are transferred to the donor?

hla_parse 9

Value

data frame with mismatch information

hla_parse

Parse HLA data

Description

Parser to convert unstructured SOAS HLA information into structured data.

Usage

```
hla_parse(D_HLA, R_HLA)
```

Arguments

D_HLA donor HLA antigens; character string from SOAS variable D HLA Ag.

R_HLA recipient HLA antigens; character string from SOAS variable R HLA Ag.

Value

data frame with structured HLA information

kidmo_hr2rank

KIDMO rank

Description

Conversion of hazard ratio into percentile rank.

Usage

kidmo_hr2rank(hr)

Arguments

hr

hazard ratio

Value

percentile

10 lifeport_d2

kidmo_model

KIDMO prediction model

Description

Returns KIDMO prediction model fit.

Usage

```
kidmo_model()
```

Value

model fit

lifeport_d2

D-squared for LifePort data

Description

Calculate Mahalanobis distance D-squared for LifePort temperature and perfusion data.

Usage

```
lifeport_d2(data, type)
```

Arguments

data frame or matrix with temperature or perfusion data

type string, type of D-square either "temp" or "perf"

Value

vector with D-squared

lifeport_d2toRank 11

lifeport_d2toRank

Rank of D-squared for LifePort data

Description

Returns the percentile rank of the temperature or perfusion D-squared.

Usage

```
lifeport_d2toRank(d2, type)
```

Arguments

d2 D-squared

type string, type of D-square either "temp" or "perf"

Value

percentile rank

lifeport_process

Process LifePort data

Description

Processing of LifPort data adds runtime, clock time, and smoothed time series.

Usage

```
lifeport_process(lpdat, window_size = 15)
```

Arguments

lpdat list with data from lifeport_read()
window_size rolling window size for filtering

Value

list with LifePort data

12 lifeport_sumstats

lifeport_read

Read LifePort raw data

Description

Function to read LifePort binary as well as ASCII raw data files.

Usage

```
lifeport_read(file, format = "guess")
```

Arguments

file data file with path

format guess (default), binary or plaintxt

Value

list with LifePort data

lifeport_sumstats

Summary statistics for LifePort data

Description

Adds summary statistics for pressure, flow, resistance, and temperature time series.

Usage

```
lifeport_sumstats(lpdat, ice_threshold = 2.5, infuse_threshold = 10)
```

Arguments

lpdat list with data from lifeport_process()

ice_threshold threshold for ice temperature in degrees Celsius

infuse_threshold

threshold for infuse temperature in degrees Celsius

Value

list with LifePort data

mean_sd 13

 ${\sf mean_sd}$

Returns mean and SD as string

Description

Helper function for tidy formatting.

Usage

```
mean_sd(x, d1 = 1, d2 = 1)
```

Arguments

x numeric vector
 d1 number of digits
 d2 number of digits

Value

character object

median_iqr

Returns median and interquartile range IQR

Description

Helper function for tidy formatting.

Usage

```
median_iqr(x, d1 = 1, d2 = 1, d3 = 1, compact = FALSE)
```

Arguments

X	numeric vector
d1	number of digits
d2	number of digits
d3	number of digits

 $\mbox{compact} \qquad \mbox{use en dash instead of "from X to Y"}$

Value

character object

14 nearest

miss_perc

Returns frequency count and percentage of missing data.

Description

Helper function for tidy formatting.

Usage

```
miss_perc(x, d2 = 1)
```

Arguments

x vector

d2 number of digits

Value

character object

nearest

Nearest element

Description

Nearest element in vector for a given set of values.

Usage

```
nearest(y, q)
```

Arguments

y vector to be searched

q vector of values of interest

Value

indices of the nearest elements in y for a set of values in q

num2date 15

num2date

Convert Excel numeric days to date

Description

Convert Excel days since origin to POSIXct data type (date/time).

Usage

```
num2date(
  days,
  origin = "1899-12-30",
  tz = "CET",
  filter = TRUE,
  pattern = "[0-9]{2}\\.[0-9]{2}\\.[0-9]{4}",
  format = "%d.%m.%Y",
  round = TRUE
)
```

Arguments

days	days since origin as numeric or string
origin	origin, default in excel is 1899-12-30
tz	time zone to be forced upon
filter	apply fix for dates not recognized (default is TRUE)
pattern	the pattern to find dates not recognized
format	format to convert dates not recognized, e.g. %d.%m.%Y %H:%M:%OS
round	recommended when format has no time, only date information

Value

date of the type POSIXct

Description

Calculates the OPTN KDRI according to the 2024 version.

swt_colors

Usage

```
optn_kdri(
  D_age,
  D_height,
  D_weight,
  D_hypertension,
  D_diabetes,
  D_CVA,
  D_SCr,
  D_DCD,
  scaling = 1.40436817065005
)
```

Arguments

D_age donor age in years
D_height donor height in cm
D_weight donor weight in kg
D_hypertension donor hypertension
D_diabetes donor diabetes

D_CVA donor cause of death is cardiovascular accident

D_SCr serum creatinine in mg/dL
D_DCD donation after cardiac death

scaling scaling factor that is published every year by the OPTN

Details

See details under "Learn about KDPI" at https://optn.transplant.hrsa.gov/data/allocation-calculators/kdpi-calculator/.

Value

KDRI hazard ratio

swt_colors SWT colors

Description

Easy access to official SWT color scheme.

Usage

```
swt_colors()
```

Value

a SWT color object

swt_skeleton 17

Examples

```
mycolors = swt_colors()
mycolors$red.liver
```

swt_skeleton

SWT skeleton

Description

This internal function enables a Swisstransplant Document in Quarto for RStudio projects.

Usage

```
swt_skeleton(path)
```

Arguments

path

project path

swt_style

SWT theme for ggplot

Description

This function allows you to add the SWT theme to your ggplot graphics.

Usage

```
swt_style(
  title_size = 14,
  subtitle_size = 14,
  font_size = 10,
  grey_theme = FALSE,
  legend_position = "top"
)
```

Arguments

title_size font size of the title subtitle_size font size of the subtitle

font_size font font size of the legend, axis text, and axis titles

grey_theme whether to use the grey theme instead (TRUE or FALSE)

 ${\tt legend_position}$

position of the legend (top, bottom, left or right)

18 tidy_pvalues

Examples

```
library(ggplot2)
ggplot(mtcars, aes(wt, mpg)) +
   geom_point() +
   swt_style()
```

tidy_missing

Tidy missing data summary

Description

Calculates missing data for each variable in data frame.

Usage

```
tidy_missing(df)
```

Arguments

df

data frame with raw data

Value

data frame with summary data

tidy_pvalues

Formats p-values.

Description

Helper function for tidy formatting.

Usage

```
tidy_pvalues(x, compact = FALSE)
```

Arguments

x numerical vector with p-valuescompact logical, no asterisks when TRUE

Value

formatted p-values as character vector

tidy_rmsfit 19

tidy_rmsfit	Tidy rms model fit results	

Description

Shows tidy regression table with results as data frame.

Usage

```
tidy_rmsfit(fit, ...)
```

Arguments

fit model fit from rms

... optional arguments to summary of the rms fit object.

Value

formatted data.frame

uk_dcd_score	UK DCD Risk Score
un_ucu_sco. c	CH DCD Rush Score

Description

Calculates the UK DCD Risk Score that can range between 0 and 27.

Usage

```
uk_dcd_score(D_age, D_BMI, fWIT, CIT, R_age, R_MELD, retpx)
```

Arguments

D_age	donor age in years
D_BMI	donor BMI in kg/m^2
fWIT	functional warm ischemia time in minutes
CIT	cold ischemia time in hours
R_age	recipient age in years
R_MELD	recipient lab MELD score
retpx	whether the aim is a retransplant

Details

Reference: Schlegel A, Kalisvaart M, Scalera I, et al. The UK DCD Risk Score: A new proposal to define futility in donation-after-circulatory-death liver transplantation. J Hepatol. 2018;68(3):456-464. doi:10.1016/j.jhep.2017.10.034

Value

UK DCD Risk Score

20 uk_kdri

uk_kdri	UK KDRI 2019	

Description

Calculates the UK KDRI version from 2019.

Usage

```
uk_kdri(D_age, D_height, D_hypertension, D_female, D_CMV, D_eGFR, D_days_hosp)
```

Arguments

D_age donor age in years
D_height donor height in cm
D_hypertension donor hypertension
D_female donor is female

D_CMV donor cytomegalovirus positive

D_eGFR estimated glomerular filtration rate (eGFR) in mL/min/1.73m2

D_days_hosp days in hospital

Details

Reference: Kim JJ, Curtis RMK, Reynolds B, et al. The UK kidney donor risk index poorly predicts long-term transplant survival in paediatric kidney transplant recipients. Front Immunol. 2023;14:1207145. doi:10.3389/fimmu.2023.1207145

Calculator at https://www.glasgowtransplant.com/tools/ukkdri.html.

Value

UK KDRI 2019 hazard ratio

Index

```
tidy_pvalues, 18
* datasets
    exam.device, 3
                                                     tidy_rmsfit, 19
    exam.organ, 4
                                                     uk_dcd_score, 19
    exam.sumstats, 5
                                                     uk_kdri, 20
    exam.timeseries, 6
date2num, 2
egfr_ckd_epi, 2
egfr_schwartz, 3
exam. device, 3
\verb|exam.organ|, 4
exam.sumstats, 5
exam.timeseries, 6
fmt_hla, 6
freq_perc, 7
get_days_in_year, 7
\verb|hla_mismatch|, 8|
hla_parse, 9
kidmo_hr2rank,9
kidmo_model, 10
lifeport_d2, 10
lifeport_d2toRank, 11
lifeport\_process, \\ 11
lifeport_read, 12
lifeport_sumstats, 12
mean\_sd, 13
median_iqr, 13
miss_perc, 14
nearest, 14
num2date, 15
optn_kdri, 15
swt_colors, 16
swt_skeleton, 17
swt_style, 17
\texttt{tidy\_missing}, \textcolor{red}{18}
```