Índice general

1.	Anil	llos	1
	1.1.	Operaciones binarias	1
	1.2.	Ideales y anillos cociente	3
	1.3.	Operaciones con ideales	4
	1.4.	Los Teoreamas de Isomorfía y Chino de los Restos	5

Capítulo 1

Anillos

1.1. Operaciones binarias

Sea X un conjunto. Una operación binaria en X es una aplicación $*: X \times X \to X$. La imagen de (a,b) la denotamos por a*b. Decimos que * es:

- Conmutativa si x * y = y * x para todo $x, y \in X$.
- Asociativa si x * (y * z) = (x * y) * z para todo $x, y, z \in X$.

Un elemento $x \in X$ se dice que es:

- Neutro por la izquierda (neutro por la derecha) de X con respecto a * si x * y = y para todo $y \in X$ (y * x = y para todo $y \in X$).
- Cancelable por la izquierda (cancelable por la derecha) en X respecto a * si para cada dos elementos distintos a y b de X se verifica $x * a \neq x * b$ ($a * x \neq b * x$).
- Supongamos que e es un elemento neutro de X con respecto a *. Sean x e y elementos de X. Decimos que x es simétrico de y por la izquierda y que y es simétrico de x por la derecha con respecto a * si se verifica que x * y = e.

Decimos que x es

- Neutro de X con respecto a * si es neutro por la izquierda y por la derecha de X con respecto a *.
- Cancelable en X con respecto a * si es cancelable en X con respecto a * por los dos lados.
- Simétrico de y con respecto a * si es simétrico de y con respecto a * por los dos lados. En tal caso decimos que x es invertible de X respecto a *.

Un par (X,*) formado por un conjunto y una operación binaria * decimos que es un

- \blacksquare Semigrupo si * es asociativa.
- Monoide si es un semigrupo que tiene un elemento neutro con respecto a *.
- \blacksquare Grupo si es un monoide y todo elemento de X es invertible con respecto a *.
- Grupo abeliano si es un grupo y * es conmutativa.

En el futuro simplificaremos la terminología y en lugar de decir "operación binaria" diremos simplemente "operación". Por otro lado nos ahorraremos los "con respecto a" cuando la operación esté clara por el contexto y los "de X" o "en X" cuando el conjunto X esté claro por el contexto o diremos que e es neutro, neutro por un lado, inverso, invertible o cancelable en (X, *).

Veamos algunos ejemplos.

Ejemplos 1.1. Operaciones

- (1) La suma es una operación en los conjuntos \mathbb{N} de los números naturales, $\mathbb{Z}^{\geq 0}$ de los enteros no negativos, \mathbb{Z} de los números enteros, \mathbb{Q} de los números racionales, \mathbb{R} de los números reales y \mathbb{C} de los números complejos. En todos los casos se trata de una operación conmutativa y asociativa. Además 0 es neutro. Todo elemento a de \mathbb{Z} , \mathbb{Q} , \mathbb{R} y \mathbb{C} es cancelable y es invertible con respecto a la suma y su simétrico es su opuesto -a. Por tanto $(\mathbb{N}, +)$ es un semigrupo conmutativo, $(\mathbb{Z}^{\geq 0}, +)$ es un monoide conmutativo, y $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ y $(\mathbb{C}, +)$ son grupos abelianos.
- (2) Otra operación conmutativa y asociativa en \mathbb{N} , $\mathbb{Z}^{\geq 0}$, \mathbb{Q} , \mathbb{R} y \mathbb{C} es el producto. En este caso el 1 es el neutro y todo elemento $a \neq 0$ de \mathbb{Q} , \mathbb{R} y \mathbb{C} es invertible y su simétrico es su inverso a^{-1} . Sin embargo, en \mathbb{Z} solamente 1 y -1 son invertibles respecto del producto mientras que 1 es el único elemento invertible de \mathbb{N} y $\mathbb{Z}^{\geq 0}$. Por tanto, el producto define en todos estos conjuntos una estructura de monoide conmutativo y define una estructura de grupo abeliano en $\mathbb{Q} \{0\}$, $\mathbb{R} \{0\}$ y $\mathbb{C} \{0\}$. El único elemento de estos conjuntos que no es cancelativo con respecto al producto es el cero.
- (3) Sea A un conjunto y sea $X = A^A$, el conjunto de las aplicaciones de A en A. La composición de aplicaciones define una operación asociativa en X para la que la identidad 1_X es neutro. Por tanto, (A^A, \circ) es un monoide. Sin embargo, esta operación no es conmutativa si A tiene al menos dos elementos.
- (4) Sea A un conjunto y sea $X=\mathbb{R}^A$ el conjunto de las aplicaciones de A en \mathbb{R} . Definimos la suma en X poniendo

$$(f+g)(a) = f(a) + g(a), \quad a \in A$$

Esta es una operación commutativa y asociativa, la aplicación 0 dada por 0(a) = 0 para todo $a \in A$ es un neutro y para toda aplicación $f : A \to \mathbb{R}$, el simétrico de f con respecto a + es la aplicación -f dada por (-f)(a) = -f(a). Por tanto, $(\mathbb{R}^A, +)$ es un grupo abeliano.

Definimos ahora el producto \cdot en X poniendo

$$(f \cdot q)(a) = f(a)q(a), \quad a \in A$$

Esta operación también es conmutativa y asociativa y tiene por neutro la aplicación 1 dada por 1(a) = 1 para todo $a \in A$. Para que un elemento f de X sea invertible es necesario y suficiente que $f(a) \neq 0$ para todo $a \in A$. En tal caso el simétrico de f con respecto a · es la aplicación g dada por $g(a) = g(a)^{-1}$. Luego (\mathbb{R}^A, \cdot) es un monoide conmutativo.

Veamos ahora algunas propiedades básicas de las definiciones dadas más arriba.

Proposición 1.1. Sea * una operación en un conjunto X.

(1) Si * es conmutativa entonces todo neutro por un lado, es neutro, todo elemento cancelativo por un lado es cancelativo y todo elemento que tenga simétrico por un lado es invertible.

- (2) Si e es un neutro por la izquierda y f es un neutro por la derecha de X con respecto a * entonces e = f. En particular, X tiene a lo sumo un neutro.
- (3) Supongamos que (X,*) es un monoide y sea $a \in X$.
 - (a) Si x es simétrico por la izquierda de a e y es un simétrico por la derecha de a entonces x = y.
 - (b) Si a tiene un simétrico por un lado entonces es cancelable por ese mismo lado. En particular todo elemento invertible es cancelable.

Demostración.

- (1) Es obvio.
- (2) Como e es neutro por la izquierda y f es neutro por la derecha tenemos

$$f = e * f = e$$

(3a) Ahora suponemos que (X, *) es un monoide. Por (2), (X, *) tiene un único neutro que vamos a denotar por e. Como x es inverso por la izquierda de a e y es inverso por la derecha de a, usando la propiedad asociativa, tenemos que

$$y = e * y = (x * a) * y = x * (a * y) = x * e = x$$

(3b) Supongamos que a es un elemento de X que tiene un inverso por la izquierda b y que a*x = a*y para $x, y \in X$. Usando la asociatividad una vez más concluimos que

$$x = e * x = (b * a) * x = b * (a * x) = b * (a * y) = (b * a) * y = e * y = y$$

Por la proposición 1.1, si (X, *) es un monoide cada elemento invertible a sólo tiene un simétrico que habitualmente se denota por a^{-1} .

1.2. Ideales y anillos cociente

Teorema 1.1 (Teorema de la Correspondencia). Si I es un ideal de un anillo A, las asignaciones $J \mapsto J/I$ y $X \mapsto \pi^{-1}(X)$ definen aplicaciones biyectivas (una inversa de la otra) que conservan la inclusión entre el conjunto de los ideales de A que contienen al I y el conjunto de los ideales de A/I.

Demostración.

- (1) Si J es un ideal de A que contiene a I entonces J/I es un ideal de A/I y $\pi^{-1}(J/I) = J$.
- (2) Si X es un ideal de A/I entonces $\pi^{-1}(X)$ es un ideal de A que contiene a I y $\pi^{-1}(X)/I = X$.
- (3) Si $J \subseteq K$ son ideales de A que contienen a I entonces entonces $J/I \subseteq K/I$.
- (4) Si $X \subseteq Y$ son ideales de A/I entonces $\pi^{-1}(X) \subseteq \pi^{-1}(Y)$.

1.3. Operaciones con ideales

Sea A un anillo. Recordemos que X es un subconjunto de A entonces llamamos ideal de A generado por X al menor ideal de A que contiene a X y que

$$(X) = \left\{ \sum_{i=1}^{n} a_i x_i : n \ge 0, a_i \in A, x_i \in X \right\}$$

Es fácil ver que la intersección de una familia de ideales de A es un ideal de A. Eso implica que (X) es también la intersección de todos los ideales de A que contienen a X.

Si I y J son dos ideales de A entonces la suma y el producto de A son los conjuntos

$$I + J = \{x + y : x \in y \in J\}$$

$$IJ = \{x_1y_1 + \dots + x_ny_n : x_1 + \dots + x_n \in I, y_1, \dots, y_n \in J\}$$

Más generalmente, si I_1, \ldots, I_n son ideales, entonces la suma de estos ideales es

$$I_1 + \dots + I_n = \{x_1 + \dots + x_n : x_1 \in I_1, \dots, x_n \in I_n\}$$

y el producto $I_1 \cdots I_n$, es el ideal formado por las sumas de productos de la forma $x_1 \cdots x_n$ donde $x_1 \in I_1, \dots, x_n \in I_n$.

Aún más general, si $\{I_x : x \in X\}$ es una familia de ideales de A entonces

$$\sum_{x \in X} I_x = \left\{ \sum_{x \in X} a_x : a_x \in I_x \text{ para todo } x \in X \text{ y } a_x = 0 \text{ para casi todo } x \in X \right\}$$

y $\prod_{x \in X} I_x$ es el ideal formado por las sumas de productos de la forma $\prod_{x \in X} a_x$ donde $a_x \in I_x$ para todo $x \in X$ y $a_x = 1$ para casi todo $x \in X$.

Proposición 1.2. Si $\{I_x : x \in X\}$ es una familia de ideales de un anillo A entonces:

- (1) $\sum_{x \in X} I_x$ es el menor ideal de A que contiene a todos los I_x , o sea el ideal generado por $\bigcup_{x \in X} I_x$.
- (2) Si I_1, \ldots, I_n son ideales de A entonces $I_1 \cdots I_n$ es el menor ideal de A generado por los productos $x_1 \cdots x_n$ con $x_1 \in I_1, \ldots, x_n \in I_n$.

Ejemplo 1.1. Operaciones con ideales

(1) Sean $n \ y \ m$ dos números enteros y consideremos los ideales $(n) \ y \ (m)$ de \mathbb{Z} . Claramente (n)(m) = (nm). Por otro lado, $(n) \cap (m)$ está formado por los números enteros que son múltiplos de $n \ y \ m$. Esos son precisamente los múltiplos del mínimo común múltiplo de $n \ y$ de m. Finalmente, (n)+(m) es el menor ideal (d) de \mathbb{Z} que contiene a $(n) \ y \ (m)$, (d) = (n)+(m) si y solo si d divide a $n \ y \ a \ m$ y es múltiplo de todos los divisores comunes de $n \ y \ m$. O sea, d es el máximo común divisor de $n \ y \ m$. En resumen:

$$(n)(m) = (nm), \quad (n) \cap (m) = (\text{mcm}(n, m)), \quad (n) + (m) = (\text{mcd}(n, m))$$

(2) Consideremos ahora el anillo $\mathbb{Z}[X]$ de los polinomios con coeficientes enteros. Entonces (2) + (X) está formado por los polinomios cuyo término independiente es par. Vamos a ver que este ideal no es principal. Supongamos por reducción al absurdo que (2) + (X) = (a) para algún $a \in \mathbb{Z}[X]$. Entonces 2 = ab para algún polinomio b, lo que que implica que $a \in \mathbb{Z}$. Además, como $a \in (2, X)$, necesariamente a es par, lo que implica $X \notin (a) = (2) + (X)$, una contradicción.

1.4. Los Teoreamas de Isomorfía y Chino de los Restos

Teorema 1.2 (Primer teorema de isomorfía). Sea $f:A\to B$ un homomorfismo de anillos. Entonces existe un único isomorfismo de anillos $\overline{f}:A/\operatorname{Ker} f\to\operatorname{Im} f$ que hace conmutativo el diagrama

$$\begin{array}{c|c}
A & \xrightarrow{f} & B \\
\downarrow p & \uparrow i \\
A / \operatorname{Ker} f - \overline{f} - - > \operatorname{Im} f
\end{array}$$

es decir, $i \circ \overline{f} \circ p = f$, donde i es la inclusión y p es la proyección. En particular,

$$A/\operatorname{Ker} f \simeq \operatorname{Im} f$$

Demostración. Sean $K = \operatorname{Ker} f$ e $I = \operatorname{Im} f$. La aplicación $\overline{f}: A/K \to I$ dada por $\overline{f}(x+K) = f(x)$ está bien definida (no depende de representantes) pues si x+K=y+K entonces $x-y\in K$ y por lo tanto f(x)-f(y)=f(x-y)=0, es decir, f(x)=f(y). Además es elemental ver que es un homomorfismo de anillos y que es suprayectiva. Para ver que es inyectiva, veamos que su nucleo es nulo. Si x+K está en el núcleo de \overline{f} entonces $0=\overline{f}(x+K)=f(x)$, de modo que $x\in K$ y así x+K=0+K. Es decir $\operatorname{Ker} \overline{f}=0$ y por lo tanto f es inyectiva. En conclusión, \overline{f} es un isomorfismo, y hace conmutativo el diagrama porque, para cada $x\in A$, se tiene

$$i\left(\overline{f}\left(p(x)\right)\right) = \overline{f}(x+K) = f(x)$$

En cuanto a la unicidad, supongamos que otro homomorfismo $\widehat{f}: A/K \longrightarrow I$ verifica que $i \circ \widehat{f} \circ p = f$; entonces para cada $x \in A$ se tiene $\widehat{f}(x+K) = i(\widehat{f}(p(x))) = f(x) = \overline{f}(x+K)$, y por lo tanto $\widehat{f} = \overline{f}$.

Teorema 1.3 (Segundo teorema de isomorfía). Sea A un anillo y sean I y J dos ideales tales $I \subseteq J$. Entonces J/I es ideal de A/I y existe un isomorfismo de anillos

$$\frac{A/I}{J/I} \simeq A/J$$

Demostración. Por el teorema de la correspondencia 1.1, J/I es un ideal de A/I. Sea $f:A/I \to A/J$ la aplicación definida por f(a+I)=a+J. Es elemental ver que f está bien definida, que es un homomorfismo suprayectivo de anillos y que Ker f=J/I. Entonces el isomorfismo buscado se obtiene aplicando el primer teorma de isomorfía.

Teorema 1.4 (Tercer teorema de isomorfía). Sea A un anillo con un subanillo B y un ideal I. Entonces:

- (1) $B \cap I$ es un ideal de B.
- (2) B + I es un subanillo de A que contiene a I como ideal.
- (3) Se tiene el isomorfismo de anillos

$$\frac{B}{B \cap I} \simeq \frac{B+I}{I}$$

Demostración. Los dos primeros apartados se dejan como ejercicio. En cuanto al último, sea $f: B \to A/I$ la composición de la inclusión $j: B \to A$ con la proyección $p: A \to A/I$. Es claro que Ker $f = B \cap I$ y que Im f = (B+I)/I, por lo que el resultado se sigue del primer teorema de isomorfía.