STATISTICS - III

THE LAW OF TOTAL PROBABILITY

Let S_1 , S_2 , S_3 ,..., S_k be mutually exclusive and exhaustive events (that is, one and only one must happen). Then the probability of any event A can be written as

$$P(A) = P(A \cap S_1) + P(A \cap S_2) + ... + P(A \cap S_k)$$

= $P(S_1)P(A|S_1) + P(S_2)P(A|S_2) + ... + P(S_k)P(A|S_k)$

THE LAW OF TOTAL PROBABILITY

$$P(A) = P(A \cap S_1) + P(A \cap S_2) + ... + P(A \cap S_k)$$

= $P(S_1)P(A|S_1) + P(S_2)P(A|S_2) + ... +$
 $P(S_k)P(A|S_k)$

DISCRETE PROBABILITIES

CONTINUOUS PROBABILITIES

INDEPENDENT EVENTS

- one event has no influence on the outcome of another event
- if events A & B are independent

then
$$P(A\&B) = P(A)*P(B)$$

- if P(A&B) = P(A)*P(B)
 then events A & B are independent
- coin flipping

if
$$P(H) = P(T) = .5$$
 then
 $P(HTHTH) = P(HHHHHH) = .5*.5*.5*.5*.5 = .5^5 = .03$

CONDITIONAL PROBABILITY

- concern the odds of one event occurring, given that another event <u>has</u> occurred
- P(A|B)=Prob of A, given B

BAYES' RULE

Let S_1 , S_2 , S_3 ,..., S_k be mutually exclusive and exhaustive events with prior probabilities $P(S_1)$, $P(S_2),...,P(S_k)$. If an event A occurs, the posterior probability of S_i , given that A occurred is

$$P(S_i | A) = \frac{P(S_i)P(A | S_i)}{\sum P(S_i)P(A | S_i)} \text{ for } i = 1, 2,...k$$

Proof

$$P(A \mid S_i) = \frac{P(AS_i)}{P(S_i)} \longrightarrow P(AS_i) = P(S_i)P(A \mid S_i)$$

$$P(S_i \mid A) = \frac{P(AS_i)}{P(A)} = \frac{P(S_i)P(A \mid S_i)}{\sum P(S_i)P(A \mid S_i)}$$

$$P(S_i \mid A) = \frac{P(AS_i)}{P(A)} = \frac{P(S_i)P(A \mid S_i)}{\sum P(S_i)P(A \mid S_i)}$$

From a previous example, we know that 49% of the population are female. Of the female patients, 8% are high risk for heart attack, while 12% of the male patients are high risk. A single person is selected at random and found to be high risk. What is the probability that it is a male?

Define H: high risk F: female M: male

$$P(M | H) = \frac{P(M)P(H | M)}{P(M)P(H | M) + P(F)P(H | F)}$$
$$= \frac{.51(.12)}{.51(.12) + .49(.08)} = .61$$

Suppose a rare disease infects one out of every 1000 people in a population. And suppose that there is a good, but not perfect, test for this disease: if a person has the disease, the test comes back positive 99% of the time. On the other hand, the test also produces some false positives: 2% of uninfected people are also test positive. And someone just tested positive. What are his chances of having this disease?

Define A: has the disease B: test positive

We know:

$$P(A) = .00 I$$
 $P(A^c) = .999$
 $P(B|A) = .99$ $P(B|A^c) = .02$

We want to know P(A|B)=?

$$P(A \mid B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A^{c})P(B|A^{c})}$$

$$= \frac{.001 \times .99}{.001 \times .99 + .999 \times .02} = .0472$$

A survey of job satisfaction² of teachers was taken, giving the following results

Job Satisfaction

Satisfied Unsatisfied Total College 43 74 117 Ε High School 224 171 395 140 Elementary 126 266 424 354 778 Total

² "Psychology of the Scientist: Work Related Attitudes of U.S. Scientists" (*Psychological Reports* (1991): 443 – 450).

If all the cells are divided by the total number surveyed, 778, the resulting table is a table of empirically derived probabilities.

Job Satisfaction

		Satisfied	Unsatisfied	Total
L	College	0.095	0.055	0.150
V E	High School	0.288	0.220	0.508
L	Elementary	0.162	0.180	0.342
	Total	0.545	0.455	1.000

For convenience, let C stand for the event that the teacher teaches college, S stand for the teacher being satisfied and so on. Let's look at some probabilities and what they mean.

	100 25		
	Satisfied	Unsatisfied	Total
College	0.095	0.055	0.150
High School	0.288	0.220	0.508
Elementary	0.162	0.180	0.342
Total	0.545	0.455	1.000

lab Catiofostion

$$P(C) = 0.150$$
 is the proportion of teachers who are college teachers.

$$P(S) = 0.545$$
 is the proportion of teachers who are satisfied with their job.

 $P(C \cap S) = 0.095$ is the proportion of teachers who are college teachers and who are satisfied with their job.

Job Satisfaction

P(C S)=	$\frac{P(C \cap S)}{P(C \cap S)}$
(P(S)
_ 0.09	$\frac{5}{2} = 0.175$
$=\frac{0.53}{0.54}$	0.173 5

is the proportion of teachers who are college teachers given they are satisfied. Restated: This is the proportion of satisfied that are college teachers.

		100 25		
		Satisfied	Unsatisfied	Total
	College	0.095	0.055	0.150
•	High School	0.288	0.220	0.508
	Elementary	0.162	0.180	0.342
	Total	0.545	0.455	1.000

$$P(S | C) = \frac{P(S \cap C)}{P(C)}$$

$$= \frac{P(C \cap S)}{P(C)} = \frac{0.095}{0.150}$$

$$= 0.632$$

is the proportion of teachers who are satisfied given they are college teachers. Restated: This is the proportion of college teachers that are satisfied.

Job Satisfaction

Are C and S independent events?

	Satisfied	Unsatisfied	Total
College	0.095	0.055	0.150
High School	0.288	0.220	0.508
Elementary	0.162	0.180	0.342
Total	0.545	0.455	1.000

$$P(C) = 0.150 \text{ and } P(C|S) = \frac{P(C \cap S)}{P(S)} = \frac{0.095}{0.545} = 0.175$$

 $P(C|S) \neq P(C)$ so C and S are dependent events.

Job Satisfaction

P(C2S)?

	Satisfied	Unsatisfied	Total
College	0.095	0.055	0.150
High School	0.288	0.220	0.508
Elementary	0.162	0.180	0.658
Total	0.545	0.455	1.000

$$P(C) = 0.150, P(S) = 0.545 \text{ and}$$

 $P(C|S) = 0.095, \text{ so}$
 $P(C|S) = P(C) + P(S) - P(C|S)$
 $= 0.150 + 0.545 - 0.095$
 $= 0.600$

Tom and Dick are going to take

a driver's test at the nearest DMV office. Tom estimates that his chances to pass the test are 70% and Dick estimates his as 80%. Tom and Dick take their tests independently.

Define D = {Dick passes the driving test}

T = {Tom passes the driving test}

T and D are independent.

$$P(T) = 0.7, P(D) = 0.8$$

What is the probability that at most one of the two friends will pass the test?

P(At most one person pass)

$$= P(D^c \cap T^c) + P(D^c \cap T) + P(D \cap T^c)$$

$$= (1 - 0.8) (1 - 0.7) + (0.7) (1 - 0.8) + (0.8) (1 - 0.7)$$

$$= .44$$

P(At most one person pass)

$$= I-P(both pass) = I-0.8 \times 0.7 = .44$$

What is the probability that at least one of the two friends will pass the test?

P(At least one person pass)

$$= P(D \cup T)$$

$$= 0.8 + 0.7 - 0.8 \times 0.7$$

$$= .94$$

P(At least one person pass)

=
$$I-P(neither passes) = I-(I-0.8) x (I-0.7) = .94$$

Suppose we know that only one of the two friends passed the test. What is the probability that it was Dick?

P(D | exactly one person passed)

- = P(D ∩ exactly one person passed) / P(exactly one person passed)
- $= P(D \cap T^c) / (P(D \cap T^c) + P(D^c \cap T))$
- $= 0.8 \times (1-0.7)/(0.8 \times (1-0.7)+(1-.8) \times 0.7)$
- = .63

RANDOM VARIABLES

- A quantitative variable x is a **random variable** if the value that it assumes, corresponding to the outcome of an experiment is a chance or random event.
- Random variables can be discrete or continuous.

• Examples:

- $\checkmark x = SAT$ score for a randomly selected student
- $\checkmark x$ = number of people in a room at a randomly selected time of day
- $\checkmark x$ = number on the upper face of a randomly tossed die

FOR DISCRETE RANDOM VARIABLES

The probability distribution for a discrete random variable x resembles the relative frequency distributions we constructed in Chapter 2. It is a graph, table or formula that gives the possible values of x and the probability p(x) associated with each value.

We must have

$$0 \le p(x) \le 1$$
 and $\sum p(x) = 1$

Toss a fair coin three times and define x = number of heads.

	<u>X</u>
1/8	3
	2
1/0	2
1/8	2
1/8	2
1/8	I
1/8	I
1/8	I
1/8	0
	1/8 1/8 1/8 1/8

P(x = 0) =	1/8
P(x = 1) =	3/8
P(x = 2) =	3/8
P(x = 3) =	1/8

X	p(x)
0	1/8
1	3/8
2	3/8
3	1/8

Toss two dice and define

x = sum of two dice.

			•	•	
•••					
					
•••					
• ***					

X	p(x)
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

PROBABILITY DISTRIBUTIONS

Probability distributions can be used to describe the population, just as we described samples in Chapter 2.

- **Shape:** Symmetric, skewed, mound-shaped...
- Outliers: unusual or unlikely measurements
- Center and spread: mean and standard deviation. A population mean is called μ and a population standard deviation is called σ .

THE MEAN AND STANDARD DEVIATION

Let x be a discrete random variable with probability distribution p(x). Then the mean, variance and standard deviation of x are given as

Mean:
$$\mu = \sum xp(x)$$

Mean:
$$\mu = \sum xp(x)$$

Variance: $\sigma^2 = \sum (x - \mu)^2 p(x)$
Standard deviation: $\sigma = \sqrt{\sigma^2}$

Standard deviation :
$$\sigma = \sqrt{\sigma^2}$$

Toss a fair coin 3 times and record x the number of heads.

X	p(x)	xp(x)	$(x-\mu)^2 p(x)$
0	1/8	0	$(-1.5)^2(1/8)$
1	3/8	3/8	$(-0.5)^2(3/8)$
2	3/8	6/8	$(0.5)^2(3/8)$
3	1/8	3/8	$(1.5)^2(1/8)$

$$\mu = \sum xp(x) = \frac{12}{8} = 1.5$$

$$\sigma^2 = \sum (x - \mu)^2 p(x)$$

$$\sigma^2 = .28125 + .09375 + .09375 + .28125 = .75$$

$$\sigma = \sqrt{.75} = .688$$

The probability distribution for x the number of heads in tossing 3 fair coins.

SUMMARY

KEY CONCEPTS

I. Experiments and the Sample Space

- I. Experiments, events, mutually exclusive events, simple events
- 2. The sample space

II. Probabilities

- I. Relative frequency definition of probability
- 2. Properties of probabilities
 - a. Each probability lies between 0 and 1.
 - b. Sum of all simple-event probabilities equals 1.
- 3. P(A), the sum of the probabilities for all simple events in A

CONCEPTS

III. Counting Rules

- I. mn Rule; extended mn Rule

2. Permutations:
$$P_r^n = \frac{n!}{(n-r)!}$$
3. Combinations:
$$C_r^n = \frac{n!}{r!(n-r)!}$$

IV. Event Relations

- I. Unions and intersections
- 2. Events
 - a. Disjoint or mutually exclusive: $P(A \cap B) = 0$
 - b. Complementary: $P(A) = I P(A^C)$

KEY

3. Conditional probability:

- $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
- 4. Independent and dependent events
- 5. Additive Rule of Probability:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

6. Multiplicative Rule of Probability:

$$P(A \cap B) = P(A)P(B \mid A)$$

- 7. Law of Total Probability
- 8. Bayes' Rule

