Nonconservative Discontinuous Galerkin Method for Generalized Shallow Water Equations

Caleb Logemann James Rossmanith

> Mathematics Department. Iowa State University

logemann@iastate.edu

March 05, 2021

Overview

- 1 Generalized Shallow Water Equations
- 2 Nonconservative Products
- 3 Nonconservative DG Formulation
- 4 Results

Incompressible Navier Stokes Equations with a free surface

$$abla \cdot \mathbf{u} = 0$$

$$\mathbf{u}_t +
abla \cdot (\mathbf{u}\mathbf{u}) = -\frac{1}{\rho}
abla p + \frac{1}{\rho}
abla \cdot \sigma + \mathbf{g}$$

$$(h_s)_t + [u(t, x, y, h_s), v(t, x, y, h_s)]^T \cdot \nabla h_s = w(t, x, y, h_s)$$

$$(h_b)_t + [u(t, x, y, h_b), v(t, x, y, h_b)]^T \cdot \nabla h_b = w(t, x, y, h_b)$$

Generalized Shallow Water Equations

•00000

Generalized Shallow Water Equations

000000

$$\tilde{u}(t,x,y,\zeta) = u_m(t,x,y) + u_d(t,x,y,\zeta)
= u_m(t,x,y) + \sum_{j=1}^{N} (\alpha_j(t,x,y)\phi_j(\zeta))
\tilde{v}(t,x,y,\zeta) = v_m(t,x,y) + v_d(t,x,y,\zeta)
= v_m(t,x,y) + \sum_{j=1}^{N} (\beta_j(t,x,y)\phi_j(\zeta))$$

Orthogonality Condition

$$\int_0^1 \phi_j(\zeta)\phi_i(\zeta) \,\mathrm{d}\zeta = 0 \quad \text{for } j \neq i$$

$$\phi_0(\zeta) = 1$$
, $\phi_1(\zeta) = 1 - 2\zeta$, $\phi_2(\zeta) = 1 - 6\zeta + 6\zeta^2$

Constant Moments

Generalized Shallow Water Equations

000000

Continuity Equation

$$h_t + (hu_m)_x + (hv_m)_v = 0$$

Conservation of Momentum Equations

$$(hu_{m})_{t} + \left(h\left(u_{m}^{2} + \sum_{j=1}^{N} \frac{\alpha_{j}^{2}}{2j+1}\right) + \frac{1}{2}ge_{z}h^{2}\right)_{x}$$

$$+ \left(h\left(u_{m}v_{m} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right)\right)_{y} = -\frac{\nu}{\lambda}\left(u_{m} + \sum_{j=1}^{N} \alpha_{j}\right) + hg(e_{x} - e_{z}(h_{b})_{x})$$

$$(hv_{m})_{t} + \left(h\left(v_{m}^{2} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right) + \frac{1}{2}ge_{z}h^{2}\right)_{y}$$

$$+ \left(h\left(u_{m}v_{m} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right)\right) = -\frac{\nu}{\lambda}\left(v_{m} + \sum_{j=1}^{N} \beta_{j}\right) + hg(e_{y} - e_{z}(h_{b})_{y})$$

Higher Order Moments

$$(h\alpha_{i})_{t} + \left(2hu_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\alpha_{k}\right)_{x} + \left(hu_{m}\beta_{i} + hv_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\beta_{k}\right)_{y}$$

$$= u_{m}D_{i} - \sum_{j,k=1}^{N} B_{ijk}D_{j}\alpha_{k} - (2i+1)\frac{\nu}{\lambda}\left(u_{m} + \sum_{j=1}^{N}\left(1 + \frac{\lambda}{h}C_{ij}\right)\alpha_{j}\right)$$

$$(h\beta_{i})_{t} + \left(hu_{m}\beta_{i} + hv_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\beta_{k}\right)_{x} + \left(2hv_{m}\beta_{i} + h\sum_{j,k=1}^{N} A_{ijk}\beta_{j}\beta_{k}\right)_{y}$$

$$= v_{m}D_{i} - \sum_{j,k=1}^{N} B_{ijk}D_{j}\beta_{k} - (2i+1)\frac{\nu}{\lambda}\left(v_{m} + \sum_{j=1}^{N}\left(1 + \frac{\lambda}{h}C_{ij}\right)\beta_{j}\right)$$

Generalized Shallow Water Equations

000000

1D model with h_b constant, $e_x=e_y=0$, and $e_z=1$ Constant System

$$\begin{bmatrix} h \\ h u_m \end{bmatrix}_t + \begin{bmatrix} h u_m \\ h u_m^2 + \frac{1}{2}gh^2 \end{bmatrix}_x = -\frac{\nu}{\lambda} \begin{bmatrix} 0 \\ u_m \end{bmatrix}$$

Flux Jacobian Eigenvalues, $u_m \pm \sqrt{gh}$ Linear System, $\tilde{u} = u_m + \alpha_1 \phi_1$

$$\begin{bmatrix} h \\ hu_m \\ h\alpha_1 \end{bmatrix}_t + \begin{bmatrix} hu_m \\ hu_m^2 + \frac{1}{2}gh^2 + \frac{1}{3}h\alpha_1^2 \\ 2hu_m\alpha_1 \end{bmatrix}_x = Q \begin{bmatrix} h \\ hu_m \\ h\alpha_1 \end{bmatrix}_x - \mathbf{s}$$

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & u_m \end{bmatrix} \quad \mathbf{s} = \frac{\nu}{\lambda} \begin{bmatrix} 0 \\ u_m + \alpha_1 \\ 3(u_m + \alpha_1 + 4\frac{\lambda}{h}\alpha_1) \end{bmatrix}$$

Quasilinear Matrix Eigenvalues, $u_m \pm \sqrt{gh + \alpha_1^2}$, u_m

Generalized Shallow Water Equations

000000

1 dimensional with h_b constant, $e_x = e_y = 0$, and $e_z = 1$ Quadratic Vertical Profile, $\tilde{u} = u + \alpha_1 \phi_1 + \alpha_2 \phi_2$

$$\begin{bmatrix} h \\ hu \\ h\alpha_1 \\ h\alpha_2 \end{bmatrix}_t + \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 + \frac{1}{3}h\alpha_1^2 + \frac{1}{5}h\alpha_2^2 \\ 2hu\alpha_1 + \frac{4}{5}h\alpha_1\alpha_2 \\ 2hu\alpha_2 + \frac{2}{3}h\alpha_1^2 + \frac{2}{7}h\alpha_2^2 \end{bmatrix}_x = Q \begin{bmatrix} h \\ hu \\ h\alpha_1 \\ h\alpha_2 \end{bmatrix}_x - \mathbf{s}$$

Quasilinear Matrix Eigenvalues, $u \pm c\sqrt{gh}$

Nonconservative Products, (Dal Maso, Lefloch, and Murat [2])

Model Equation

$$\mathbf{q}_t + \nabla \cdot \mathbf{f}(\mathbf{q}) + g_i(\mathbf{q})\mathbf{q}_{x_i} = \mathbf{s}(\mathbf{q}) \quad \text{for } (\mathbf{x}, t) \in \Omega \times [0, T]$$

Traditionally searching for weak solutions, find \mathbf{q} such that

$$\int_0^T \int_{\Omega} (\mathbf{q}_t + \nabla \cdot \mathbf{f}(\mathbf{q}) + g_i(\mathbf{q}) \mathbf{q}_{x_i}) v \, d\mathbf{x} \, dt = \int_0^T \int_{\Omega} \mathbf{s}(\mathbf{q}) v \, d\mathbf{x} \, dt$$

for all
$$v \in C^1_0(\Omega \times [0, T])$$

Consider Lipschitz continuous paths, $\psi:[0,1]\times\mathbb{R}^p\times\mathbb{R}^p\to\mathbb{R}^p$, that satisfy the following properties.

- $\exists k > 0, \ \forall \mathbf{q}_L, \mathbf{q}_R \in \mathbb{R}^p, \ \forall s \in [0, 1], \ \left| \frac{\partial \psi}{\partial s}(s, \mathbf{q}_L, \mathbf{q}_R) \right| \leq k |\mathbf{q}_L \mathbf{q}_R|$ elementwise
- $\exists k > 0, \ \forall \mathbf{q}_L, \mathbf{q}_R, \mathbf{u}_L, \mathbf{u}_R \in \mathbb{R}^p, \ \forall s \in [0, 1], \ \text{elementwise}$

$$\left|\frac{\partial \psi}{\partial s}(s, \mathbf{q}_L, \mathbf{q}_R) - \frac{\partial \psi}{\partial s}(s, \mathbf{u}_L, \mathbf{u}_R)\right| \leq k(|\mathbf{q}_L - \mathbf{u}_L| + |\mathbf{q}_R - \mathbf{u}_R|)$$

Let $u = u_0 + H(x - x_0)(u_1 - u_0)$, then regularize

$$u^{\varepsilon}(x) = \begin{cases} u_0 & x < x_0 - \varepsilon \\ \psi(\frac{x - x_0 + \varepsilon}{2\varepsilon}, u_0, u_1) & x_0 - \varepsilon < x < x_0 + \varepsilon \\ u_1 & x > x_0 + \varepsilon \end{cases}$$

Let $\mathbf{q} \in BV(\Omega \to \mathbb{R}^p)$ and $g \in C^1(\mathbb{R}^p \to \mathbb{R}^p \times \mathbb{R}^p)$, then μ is a Borel measure.

1 If **q** is continuous on a Borel set $B \subset \Omega$, then

$$\mu(B) = \int_{B} g(\mathbf{q}) \frac{\mathrm{d}\mathbf{q}}{\mathrm{d}x} \,\mathrm{d}x$$

2 If **q** is discontinuous at a point $x_0 \in \Omega$, then

$$\mu(x_0) = \int_0^1 g(\psi(s; \mathbf{q}(x_0^-), \mathbf{q}(x_0^+))) \frac{\partial \psi}{\partial s}(s; \mathbf{q}(x_0^-), \mathbf{q}(x_0^+)) \, \mathrm{d}s$$

Define

$$\mu = \left[g(\mathbf{q}) \frac{\mathrm{d}\mathbf{q}}{\mathrm{d}x} \right]_{\psi}$$

If there exists f(q) such that f'(q) = g(q), then

$$[g(\mathbf{q})\mathbf{q}_{\mathsf{x}}]_{\psi} = \mathbf{f}(\mathbf{q})_{\mathsf{x}}$$

or

$$\int_0^1 \mathbf{f}'(\psi(s,\mathbf{q}_L,\mathbf{q}_R)) \frac{\partial \psi}{\partial s}(s,\mathbf{q}_L,\mathbf{q}_R) \, \mathrm{d}s = \mathbf{f}(\mathbf{q}_L) - \mathbf{f}(\mathbf{q}_R)$$

Find weak solution **q** such that

$$\int_{0}^{T} \int_{\Omega} \mathbf{q} v_{t} \, d\mathbf{x} \, dt + \int_{0}^{T} \int_{\Omega} \mathbf{f}(\mathbf{q}) \nabla \cdot \mathbf{v} \, d\mathbf{x} \, dt$$

$$+ \int_{0}^{T} \int_{\Omega} [g_{i}(\mathbf{q}) \mathbf{q}_{x_{i}}]_{\psi} \mathbf{v} \, d\mathbf{x} \, dt = \int_{0}^{T} \int_{\Omega} \mathbf{s}(\mathbf{q}) \mathbf{v} \, d\mathbf{x} \, dt$$

for all $v \in C_0^1(\Omega \times [0, T])$.

Semi Discrete formulation find $\mathbf{q} \in V_h = \left\{ v \in L^1(\Omega) \middle| \left. v \middle|_{K_j} \in \mathbb{P}^M(K_j) \right\} \right.$ such that

$$\int_{\Omega} v_h \mathbf{q}_t \, \mathrm{d}x + \int_{\Omega} v_h \nabla \cdot \mathbf{f}(\mathbf{q}) \, \mathrm{d}x + \int_{\Omega} v_h [g_i(\mathbf{q}) \mathbf{q}_{x_i}]_{\psi} = \int_{\Omega} v_h \mathbf{s}(\mathbf{q}) \, \mathrm{d}x$$

or

$$\begin{split} \sum_{j} \left(\int_{\mathcal{K}_{j}} v_{h} \mathbf{q}_{t} \, \mathrm{d}x \right) - \sum_{j} \left(\int_{\mathcal{K}_{j}} \nabla \cdot v_{h} \mathbf{f}(\mathbf{q}) \, \mathrm{d}x \right) \\ + \sum_{I} \left(\left(v_{h}^{L} - v_{h}^{R} \right) \hat{\mathbf{f}} \right) + \sum_{j} \left(\int_{\mathcal{K}_{j}} v_{h} g_{j}(\mathbf{q}) \mathbf{q}_{x_{i}} \, \mathrm{d}x \right) \\ + \sum_{I} \left(\int_{I} \hat{v}_{h} \left(\int_{0}^{1} g \left(\psi \left(s, \mathbf{q}_{h}^{L}, \mathbf{q}_{h}^{R} \right) \right) \psi_{s} \left(s, \mathbf{q}_{h}^{L}, \mathbf{q}_{h}^{R} \right) \, \mathrm{d}s \, \mathbf{n} \right) \mathrm{d}I \right) = \int_{\Omega} v_{h} \mathbf{s}(\mathbf{q}) \, \mathrm{d}x \end{split}$$

for all $v_h \in V_h$.

Test Function Flux,

$$\hat{\mathbf{v}}_h = \frac{1}{2} \big(\mathbf{v}_h^+ + \mathbf{v}_h^- \big)$$

consistent with conservative DG formulation when $\mathbf{h}'(\mathbf{q}) = g(\mathbf{q})$.

Local Lax-Friedrichs Numerical Flux

$$\begin{split} \lambda &= \max_{q \in \left[\mathbf{q}_h^-, \mathbf{q}_h^+\right]} \left\{ \rho(\mathbf{f}'(\mathbf{q}) + g(\mathbf{q})) \right\} \\ \mathbf{\hat{f}} &= \frac{1}{2} (\mathbf{f}(\mathbf{q}_h^+) + \mathbf{f}(\mathbf{q}_h^-)) - \frac{1}{2} \lambda (\mathbf{q}_h^+ - \mathbf{q}_h^-) \end{split}$$

Shallow Water Equations, constant vertical velocity profile

	1st Order		2nd Order		3rd Order	
n	error	order	error	order	error	order
20	0.226	_	8.57×10^{-3}	_	1.67×10^{-4}	
40	0.117	0.96	2.17×10^{-3}	1.98	2.07×10^{-5}	3.02
80	0.058	1.00	5.40×10^{-4}	2.01	2.57×10^{-6}	3.01
160	0.028	1.06	$1.35 imes 10^{-4}$	2.00	3.21×10^{-7}	3.00
320	0.014	0.99	3.37×10^{-5}	2.00	4.01×10^{-8}	3.00

	4th Order	5th Order	r	
n	error	order	error	order
20	3.172×10^{-6}	_	7.606×10^{-8}	0.00
40	1.982×10^{-7}	4.00	2.380×10^{-9}	5.00
80	$1.240 imes 10^{-8}$	4.00	7.713×10^{-11}	4.95
160	7.755×10^{-10}	4.00	4.035×10^{-11}	0.93
320	4.849×10^{-11}	4.00	8.085×10^{-11}	-1.00

One moment, linear vertical velocity profile

	1st Order		2nd Order		3rd Order	
n	error	order	error	order	error	order
20 40 80 160 320	2.53×10^{-1} 1.30×10^{-1} 6.47×10^{-2} 3.13×10^{-2} 1.58×10^{-2}	0.96 1.00 1.05 0.99	9.97×10^{-3} 2.52×10^{-3} 6.28×10^{-4} 1.57×10^{-4} 3.92×10^{-5}	1.98 2.00 2.00 2.00	1.71×10^{-3} 3.85×10^{-4} 6.13×10^{-5} 9.09×10^{-6} 1.73×10^{-6}	2.15 2.65 2.75 2.39

	4th Orde	5th Order		
n	error	order	error	order
20	$1.14 imes 10^{-4}$	_	2.68×10^{-5}	_
40	1.74×10^{-5}	2.72	8.01×10^{-7}	5.06
80	7.50×10^{-7}	4.53	$1.53 imes 10^{-8}$	5.71
160	1.25×10^{-7}	2.59	4.04×10^{-10}	5.25
320	8.79×10^{-9}	3.83	$8.40 imes 10^{-11}$	2.27

Two moments, quadratic vertical velocity profile

1st Order		2nd Order		3rd Order		
n	error	order	error	order	error	order
20	2.778×10^{-1}	_	1.141×10^{-2}	_	5.350×10^{-3}	
40	$1.424 imes 10^{-1}$	0.96	2.884×10^{-3}	1.98	6.466×10^{-4}	3.05
80	7.121×10^{-2}	1.00	7.191×10^{-4}	2.00	$7.836 imes 10^{-5}$	3.04
160	3.454×10^{-2}	1.04	$1.797 imes 10^{-4}$	2.00	$1.270 imes 10^{-5}$	2.63
320	1.740×10^{-2}	0.99	4.493×10^{-5}	2.00	2.546×10^{-6}	2.32

	4th Orde	r	5th Order		
n	error	order	error	order	
20	3.688×10^{-4}	_	5.194×10^{-5}	_	
40	2.461×10^{-5}	3.91	1.121×10^{-6}	5.53	
80	$1.403 imes 10^{-6}$	4.13	$1.934 imes 10^{-8}$	5.86	
160	1.144×10^{-7}	3.62	5.859×10^{-10}	5.04	
320	1.092×10^{-8}	3.39	8.791×10^{-11}	2.74	

Three moments, cubic vertical velocity profile

	1st Order		2nd Order		3rd Order	
n	error	order	error	order	error	order
20	3.024×10^{-1}	_	1.300×10^{-2}	_	7.015×10^{-3}	_
40	$1.556 imes 10^{-1}$	0.96	3.283×10^{-3}	1.99	6.992×10^{-4}	3.33
80	7.808×10^{-2}	0.99	8.188×10^{-4}	2.00	1.183×10^{-4}	2.56
160	3.802×10^{-2}	1.04	2.046×10^{-4}	2.00	$2.545 imes 10^{-5}$	2.22
320	1.916×10^{-2}	0.99	5.117×10^{-5}	2.00	5.110×10^{-6}	2.32

	4th Orde	5th Order		
n	error	order	error	order
20	3.167×10^{-4}	_	5.571×10^{-5}	_
40	2.384×10^{-5}	3.73	1.099×10^{-6}	5.66
80	$2.509 imes 10^{-6}$	3.25	$2.639 imes 10^{-8}$	5.38
160	3.168×10^{-7}	2.99	1.371×10^{-9}	4.27
320	$4.675 imes 10^{-8}$	2.76	1.171×10^{-10}	3.55

Effect of Higher Moments

Effect of Higher Moments

Conclusions

Results

- Discontinuous Galerkin Method for Generalized Shallow Water Equations
- High Order Method
- Properly Discretized Nonconservative Product

Future Work

- Two Dimensional Meshes
- Icosahedral Spherical Mesh
- Shallow Water test cases on the sphere

Supported by SIAM Student Travel Award

Bibliography I

- [1] Bernardo Cockburn and Chi-Wang Shu. "The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems". In: *Journal of Computational Physics* 141.2 (1998), pp. 199–224.
- [2] Gianni Dal Maso, Philippe G Lefloch, and François Murat. "Definition and weak stability of nonconservative products". In: Journal de mathématiques pures et appliquées 74.6 (1995), pp. 483–548.
- [3] Julia Kowalski and Manuel Torrilhon. "Moment Approximations and Model Cascades for Shallow Flow". In: arXiv preprint arXiv:1801.00046 (2017).
- [4] Philippe Le Floch. "Shock waves for nonlinear hyperbolic systems in nonconservative form". In: (1989).

Bibliography II

- [5] Randall J LeVeque et al. *Finite volume methods for hyperbolic problems.* Vol. 31. Cambridge university press, 2002.
- [6] Scott A Moe, James A Rossmanith, and David C Seal. "A simple and effective high-order shock-capturing limiter for discontinuous Galerkin methods". In: arXiv preprint arXiv:1507.03024 (2015).
- [7] Sander Rhebergen, Onno Bokhove, and Jaap JW van der Vegt. "Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations". In: *Journal of Computational Physics* 227.3 (2008), pp. 1887–1922.
- [8] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.