IS703: Decision Support and Optimization

Week 3: Dynamic Programming & Greedy Method

Lau Hoong Chuin School of Information Systems

Dynamic Programming

- Richard Bellman coined the term dynamic programming in 1957
- Solves problems by combining the solutions to subproblems that contain common sub-sub-problems.
- Difference between DP and Divide-and-Conquer:
 - Using Divide and Conquer to solve these problems is inefficient as the same common sub-sub-problems have to be solved many times.
 - DP will solve each of them once and their answers are stored in a table for future reference.

Intuitive Explanation

- Optimization Problem
 - Many solutions, each solution has a (objective) value
 - The goal is to find a solution with the optimal value
 - Minimization problems: e.g. Shortest path
 - Maximization problems: e.g. Tour planning
- Given a problem P, obtain a sequence of problems Q_0, Q_1, \ldots, Q_m , where:
 - You have a solution to Q_0
 - The solution to a problem Q_j , j > 0, can be obtained from solutions to problems Q_k , k < j, that appear earlier in the "sequence".

Intuitive Explanation

You know how to compute solution to Q_0

Elements of Dynamic Programming

DP is used to solve problems with the following characteristics:

- Optimal sub-structure (Principle of Optimality)
 - an optimal solution to the problem contains within it optimal solutions to sub-problems.
- Overlapping subproblems
 - there exist some places where we solve the same subproblem more than once

Optimal Sub-structure

Bellman's optimality principle

The discarded solutions for the smaller problem remain discarded because the optimal solution dominates them.

Steps to Designing a Dynamic Programming Algorithm

- 1. Characterize optimal sub-structure
- 2. Recursively define the value of an optimal solution
- 3. Compute the value bottom up
- 4. (if needed) Construct an optimal solution

Review: Matrix Multiplication

```
A: p \times q
                                                B: qxr
Matrix-Multiply(A,B):
       if columns[A] != rows[B] then
               error "incompatible dimensions"
3
       else for i = 1 to rows[A] do
              for j = 1 to columns[B] do
5
                      C[i,j] = 0
6
                      for k = 1 to columns[A] do
                              C[i,i] = C[i,i] + A[i,k] * B[k,i]
8
       return C
```

Time complexity = O(pqr), where |A|=pxq and |B|=qxr

Matrix Chain Multiplication (MCM) Problem

Input: Matrices $A_1, A_2, ..., A_n$, each A_i of size $p_{i-1}xp_i$,

Output: Fully parenthesised product $A_1A_2...A_n$ that minimizes the number of scalar multiplications.

A product of matrices is fully parenthesised if it is either

- a) a single matrix, or
- b) the product of 2 fully parenthesised matrix products surrounded by parentheses.

Example: A₁ A₂ A₃ A₄ can be fully parenthesised as:

1.
$$(A_1 (A_2 (A_3 A_4)))$$
 4. $((A_1 (A_2 A_3))A_4)$

2.
$$(A_1 ((A_2 A_3)A_4))$$
 5. $(((A_1 A_2)A_3)A_4)$

3.
$$((A_1 A_2)(A_3 A_4))$$
 Note: Matrix multiplication is associative

Matrix Chain Multiplication Problem

Example: 3 matrices:

 $A_1 : 10x100$

 $A_2 : 100x5$

 $A_3 : 5x50$

Q: What is the cost of multiplying matrices of these sizes?

For $((A_1A_2)A_3)$,

number of multiplications = 10x100x5 + 10x5x50 = 7500

For $(A_1(A_2A_3))$, it is 75000

Matrix Chain Multiplication Problem

Let the number of different parenthesizations be P(n). Then

$$P(n) = \begin{cases} 1 & \text{if } n = 1 \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{if } n \geq 2 \end{cases}$$

Using generating function, we have

P(n)=C(n-1), the n-1th Catalan number where

$$C(n) = 1/(n+1)C_n^{2n} = \Omega(4^n/n^{3/2})$$

Exhaustively checking all possible parenthesizations take exponential time!

Parenthesization

If we multiply these matrices first the cost is $2N^3$

(N³ multiplications and N³ additions).

Resulting matrix

NXN

Parenthesization

Cost of multiplication is N^2 .

Thus, total cost is proportional to $N^3 + N^2 + N$ if we parenthesize the expression in this way.

Different Ordering

Cost is proportional to N^2

The Ordering Matters!

Cost depends on parameters of the operands.

How to parenthesize to minimize total cost?

Let $A_{i..j}$ (i<j) denote the result of multiplying $A_iA_{i+1}...A_j$.

 $A_{i..j}$ can be obtained by splitting it into $A_{i..k}$ and $A_{k+1..j}$ and then multiplying the sub-products.

There are j-i possible splits (i.e. k=i,..., j-1)

Let $A_{i..j}$ (i<j) denote the result of multiplying $A_iA_{i+1}...A_j$.

 $A_{i..j}$ can be obtained by splitting it into $A_{i..k}$ and $A_{k+1..j}$ and then multiplying the sub-products.

There are j-i possible splits (i.e. k=i,...,j-1)

Let $A_{i..j}$ (i<j) denote the result of multiplying $A_iA_{i+1}...A_j$.

 $A_{i..j}$ can be obtained by splitting it into $A_{i..k}$ and $A_{k+1..j}$ and then multiplying the sub-products.

There are j-i possible splits (i.e. k=i,...,j-1)

Within the optimal parenthesization of A_{i..i},

- (a) the parenthesization of $A_{i,k}$ must be optimal
- (b) the parenthesization of $A_{k+1..j}$ must be optimal Why?

Step 2: Recursive (Recurrence) Formulation

Need to find $A_{1..n}$

Let $m[i,j] = \min \#$ of scalar multiplications needed to compute $A_{i..j}$. Since $A_{i..j}$ can be obtained by breaking it into $A_{i..k}$ $A_{k+1..j}$, we have

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} & \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

Note: The sizes of $A_{i..k}$ is p_{i-1} p_k , $A_{k+1..i}$ is p_k p_i , and

 $\boldsymbol{A}_{i..k} \; \boldsymbol{A}_{k+1..j} \; is \; \boldsymbol{p}_{i\text{--}1} \; \boldsymbol{p}_{j} \; after \; \boldsymbol{p}_{i\text{--}1} \; \boldsymbol{p}_{k} \; \boldsymbol{p}_{j} \; scalar \; multiplications.$

Let s[i,j] be the value k where the optimal split occurs

Step 3: Computing the Optimal Costs

Step 3: Computing the Optimal Costs

Matrix-Chain-Order(p)

```
1 n = length[p]-1 //p is the array of matrix sizes
2 for i = 1 to n do
      m[i,i] = 0 // no multiplication for 1 matrix
4 for len = 2 to n do // len is length of sub-chain
    for i = 1 to n-len+1 do //i: start of sub-chain
5
      j = i+len-1 // j: end of sub-chain
6
      m[i,j] = \infty
      for k = i to j-1 do
9
            q = m[i,k] + m[k+1,j] + p_{i-1}p_k p_i
            if q < m[i,j] then
10
11
                  m[i,j] = q
12
                  s[i,i] = k
13 return m and s
 Time complexity = O(n^3)
```

Example

Solve the following MCM instance:

Matrix	Dimension
A_1	30x35
A_2	35x15
A_3	15x5
A_4	5x10
A_5	10x20
A_6	20x25
p=[30,35,15,5,10,20,25]	
See CLRS Figure 15.3	

Figure 15.3 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6 and the following matrix dimensions:

matrix	dimension
A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

The tables are rotated so that the main diagonal runs horizontally. Only the main diagonal and upper triangle are used in the m table, and only the upper triangle is used in the s table. The minimum number of scalar multiplications to multiply the 6 matrices is m[1, 6] = 15,125. Of the darker entries, the pairs that have the same shading are taken together in line 9 when computing

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 = 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13000, \\ m[2,3] + m[4,5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \\ m[2,4] + m[5,5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11375 \end{cases}$$

$$= 7125.$$

Step 4: Constructing an Optimal Solution

To get the optimal solution $A_{1..6}$, s[] is used as follows:

$$A_{1..6}$$

$$= (A_{1..3} A_{4..6}) since s[1,6] = 3$$

$$= ((A_{1..1} A_{2..3})(A_{4..5} A_{6..6})) since s[1,3] = 1 and s[4,6] = 5$$

$$= ((A_1 (A_2 A_3))((A_4 A_5)A_6))$$

MCM can be solved in O(n³) time

Recap: Elements of Dynamic Programming

DP is used to solve problems with the following characteristics:

- Optimal substructure (Principle of Optimality)
 - Example. In MCM, $A_{1..6} = A_{1..3} A_{4..6}$
- Overlapping subproblems
 - there exist some places where we solve the same subproblem more than once
 - Example. In MCM, $A_{2..3}$ is common to the subproblems $A_{1..3}$ and $A_{2..4}$
 - Effort wasted in solving common sub-problems repeatedly

Overlapping Subproblems

Recursive-Matrix-Chain(p,i,j)

See CLRS Figure 15.5

Figure 15.5 The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN(p, 1, 4). Each node contains the parameters i and j. The computations performed in a shaded subtree are replaced by a single table lookup in MEMOIZED-MATRIX-CHAIN(p, 1, 4).

Overlapping Subproblems

Let T(n) be the time complexity of Recursive-Matrix-Chain(p,1,n)

For n > 1, we have

$$T(n)= 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1)$$

- a) 1 is used to cover the cost of lines 1-3, and 8
- b) 1 is used to cover the cost of lines 6-7

Using substitution, we can show that $T(n) \ge 2^{n-1}$

Hence $T(n) = \Omega(2^n)$

Memoization

- *Memoization* is one way to deal with overlapping subproblems
 - After computing the solution to a subproblem,
 store it in a table
 - Subsequent calls just do a table lookup
- Can modify recursive algo to use memoziation

Memoization

```
Memoized-Matrix-Chain(p) // Compare with Matrix-Chain-Order
      n = length[p] - 1
1
      for i = 1 to n do
3
           for j = i to n do
4
               m[i,i] = \infty
5
      return Lookup-Chain(p,1,n)
Lookup-Chain(p,i,j)
   if m[i,j] < \infty // m[i,j] has been computed
   then return m[i,j]
   if i = j // only one matrix
      then m[i,j] = 0
      else for k = i to j - 1 do
         q = Lookup-Chain(p,i,k) +
                Lookup-Chain(p,k+1,j) + p_{i-1}p_kp_j
          if q < m[i,j]
8
             then m[i,j] = q
9
   return m[i,j]
                       Time complexity: O(n<sup>3</sup>) Why?
```

Example: Traveling Salesman Problem

Given: A set of n cities $V = \{x_1, x_2, ..., x_n\}$ and distance matrix c, containing cost to travel between cities, find a minimum-cost tour.

- <u>David Applegate, Robert Bixby, Vašek Chvátal, William Cook</u> (http://www.math.princeton.edu/tsp/)
- Exhaustive search:
 - Find optimal tour by systematically examining all tours
 - enumerate all permutations of the cities and evaluate tour (given by particular vertex order)
 - Keep track of shortest tour
 - (n-1)! permutations, each takes O(n) time to evaluate
 - Don't look at all n permutations, since we don't care about starting point of tour: A,B,C,(A) is same tour as C,A,B,(C)
 - Unacceptable for large n

TSP

- Let $S = \{x_1, x_2, ..., x_k\}$ be a subset of the vertices in V
- A path P from v to w covers S if $P=[v, x_1, x_2, ..., x_k, w]$, where x_i may appear in any order but each must appear exactly once
- Example, path from a to a, covering {c, d, f, e, b}

Dynamic Programming

- Let d(v, w, S) be cost of shortest path from v to w covering S
- Need to find d(v, v, V-{v})
- Recurrence relation:

$$d(v, w, S) = \begin{cases} c(v, w) & \text{if } S = \{\} \\ \\ min \ \forall x \ \left(c(v, x) + d(x, w, S - \{x\})\right) & \text{otherwise} \end{cases}$$

- Solve all subproblems where |S|=0, |S|=1, etc.
- How many subproblems d(x, y, S) are there? $(n-1)2^{n-1}$
 - S could be any of the 2ⁿ⁻¹ distinct subsets of n-1 vertices
- Takes O(n) time to compute each d(v, w, S)

Dynamic Programming

- Total time $O(n^22^{n-1})$
- Much faster than O(n!)
- Example:
 - n=1, algorithm takes 1 micro sec.
 - n=20, running time about 3 minutes (vs. 1 million years)

Summary

- DP is suitable for problems with:
 - Optimal substructure: optimal solution to problem consists of optimal solutions to subproblems
 - Overlapping subproblems: few subproblems in total, many recurring instances of each
- Solve bottom-up, building a table of solved subproblems that are used to solve larger ones
- Dynamic Programming applications

Exercise (Knapsack Problem)

- You are the ops manager of an equipment which can be used to process one job at a time
- There are a set of jobs, each incurs a processing cost (weight) and reaps an associated profit (value), all numbers are non-negative integers
- Jobs may be processed in any order
- Your equipment has a processing capacity
- Question: What jobs should you take to maximize the profit?

Exercise (Knapsack Problem)

Design a dynamic programming algorithm to solve the Knapsack Problem.

Your algorithm should run in O(nW) time, where n is the number of jobs and W is the processing capacity.

Greedy Algorithms

Reference:

• CLRS Chapters 16.1-16.3, 23

Objectives:

- To learn the Greedy algorithmic paradigm
- To apply Greedy methods to solve several optimization problems
- To analyse the correctness of Greedy algorithms

Greedy Algorithms

- Key idea: Makes the choice that looks best at the moment
 - The hope: a locally optimal choice will lead to a globally optimal solution
- Everyday examples:
 - Driving
 - Shopping

Applications of Greedy Algorithms

Scheduling

- Activity Selection (Chap 16.1)
- Scheduling of unit-time tasks with deadlines on single processor (Chap. 16.5)
- Graph Algorithms
 - Minimum Spanning Trees (Chap 23)
 - Dijkstra's (shortest path) Algorithm (Chap 24)
- Other Combinatorial Optimization Problems
 - Knapsack (Chap 16.2)
 - Traveling Salesman (Chap 35.2)
 - Set-covering (Chap 35.3)

Greedy vs Dynamic

- Dynamic Programming
 - Bottom up (while Greedy is top-down)
- Dynamic programming can be overkill; greedy algorithms tend to be easier to code

Real-World Applications

- Get your \$\$ worth out of a carnival
 - Buy a passport that lets you onto any ride
 - Lots of rides, each starting and ending at different times
 - Your goal: ride as many rides as possible
- Tour planning
- Customer satisfaction planning
- Room scheduling

Application: Activity-Selection Problem

- Input: a list S of n activities = $\{a_1, a_2, ..., a_n\}$ $s_i = \text{start time of activity } i$ $f_i = \text{finish time of activity } i$ S is sorted by finish time, i.e. $f_1 \le f_2 \le ... \le f_n$
- Output: a subset *A* of compatible activities of maximum size
 - Activities are compatible if $[s_i, f_i) \cap [s_j, f_j)$ is null

How many possible solutions are there?

Greedy Algorithm

```
Greedy-Activity-Selection(s,f)

1. n := length[s]

2. A := \{a_1\}

3. j := 1

4. for k := 2 to n do

5. if s_k >= f_j // compatible activity

6. then A := A \cup \{a_k\}

7. j := k
```

8. Return A

Example Run

When does Greedy Work?

• Two key ingredients:

1. Optimal sub-structure

An optimal solution to the entire problem contains within it optimal solutions to subproblems (this is also true of dynamic programming)

2. Greedy choice property

 Greedy choice + Optimal sub-structure establish the correctness of the greedy algorithm

Optimal Sub-structure

Let A be an optimal solution to problem with input S. Let a_k be the activity in A with the earliest finish time. Then $A - \{a_k\}$ is an optimal solution to the subproblem with input $S' = \{i \in S: s_i \ge f_k\}$

– In other words: the optimal solution S contains within it an optimal solution for the sub-problem on activities that are compatible with a_k

Proof by Contradiction (Cut-and-Paste Argument):

Suppose $A - \{a_k\}$ is not optimal to S'.

Then, \exists optimal solution *B* to *S*' with $|B| > |A - \{a_k\}|$,

Clearly, $B \cup \{a_k\}$ is a solution for S.

But, $|B \cup \{a_k\}| > |A|$ (Contradiction)

Greedy Choice Property

- Locally optimal choice
 - Make best choice available at a given moment
- Locally optimal choice \Rightarrow globally optimal solution
 - In other words, the greedy choice is always safe
 - How to prove? Use Exchange Argument usually.
- Contrast with dynamic programming
 - Choice at a given step may depend on solutions to subproblems (bottom-up)

Greedy Choice Property

• Theorem: (paraphrased from CLRS Theorem 16.1)

Let a_k be a compatible activity with the earliest finish time. Then, there exists an optimal solution that contains a_k .

Proof by Exchange Argument:

For any optimal solution B that does not contain a_k , we can always replace first activity in B with a_k (*Why?*). Same number of activities, thus optimal.

Application: Knapsack Problem

- Recall *0-1 Knapsack problem*:
 - choose among n items, where the ith item worth v_i dollars and weighs w_i pounds
 - knapsack carries at most W pounds
 - maximize value
 - Note: assume v_i , w_i , and W are all integers
 - "0-1", since each item must be taken or left in entirety
 - solved by Dynamic Programming
- A variant Fractional Knapsack problem:
 - can take fractions of items
 - can be solved by a Greedy algorithm

Knapsack Problem

- The optimal solution to the fractional knapsack problem can be found with a greedy algorithm
 - *How?*
- The optimal solution to the 0-1 problem cannot be found with the same greedy strategy
 - Proof by a counter example
 - Greedy strategy: take in order of dollars/kg
 - Example: 3 items weighing 10, 20, and 30 kg, knapsack can hold 50 kg
 - Suppose item 2 is worth \$100. Assign values to the other items so that the greedy strategy will fail

Knapsack Problem: Greedy vs Dynamic

- The fractional problem can be solved greedily
- The 0-1 problem cannot be solved with a greedy approach
 - It can, however, be solved with dynamic programming (recall previous lesson)

Summary

- Greedy algorithms works under:
 - Greedy choice property
 - Optimal sub-structure property
- Design of Greedy algorithms to solve:
 - Some scheduling problems
 - Fractional knapsack problem

Exercise (Traveling Salesman Problem)

Design a greedy algorithm to solve TSP.

Demonstrate that greedy fails by giving a counter example.

Exercise (Interval Coloring Problem)

Suppose that we have a set of activities to schedule among a large number of lecture halls. We wish to schedule *all* the activities using minimum number of lecture halls.

Give an efficient greedy algorithm to determine which activity should use which lecture hall.

Next Week

Read CLRS Chapters 22-26 (Graphs and Networks)

Do Assignment 2!