1 Secure Ciphers

A cipher is perfectly safe if $P(M = m \mid C = c) = P(M = m)$, where M and C refer to random variables for message and ciphertext, and m and c are particular messages and ciphertexts.

This can be interpreted as not gaining any information about what the message might be by intercepting a ciphertext.

This definition is equivalent to:

 $\forall m, n \in \mathcal{M}, \forall c \in \mathcal{C}, P(Enc_k(m) = c) = P(Enc_k(n) = c), \text{ where } \mathcal{M} \text{ is the space of all possible messages, and } \mathcal{C} \text{ is the space of all possible ciphertexts.}$

It is also equivalent to this game:

Let \mathcal{A} be an adversary and \mathcal{C} , the defender.

The game works as follows:

- 1. \mathcal{A} chooses m_0 and m_1 and sends them to \mathcal{C} .
- 2. C then randomly chooses $b_{\mathcal{C}} \in \{0,1\}$ and sends back $Enc_k(m_{b_{\mathcal{C}}}) = c$.
- 3. \mathcal{A} finally chooses $b_{\mathcal{A}} \in \{0,1\}$ and wins the game if $b_{\mathcal{A}} = b_{\mathcal{C}}$.

The cipher is valid if $\forall \mathcal{A}, P(\mathcal{A} \ wins) = \frac{1}{2}$.

2 RSA

2.1 Preparation

- 1. Choose two random primes p and q
- 2. Let $n = p \cdot q$
- 3. Choose e such that $1 < e < \phi(n)$ and $gcd(e, \phi(n)) = 1$, where $\phi(n)$ is Euler's totient function.
- 4. Determine $d \equiv (e^{-1}) \pmod{\phi(n)}$, the modular inverse of e modulo $\phi(n)$ i.e. the unique d such that $d \cdot e \equiv 1 \pmod{\phi(n)}$ Since e was chosen such that $\gcd(e,\phi(n)) = 1$, d can be determined using Euclid's Extended Algorithm.

2.1.1 Public Key

The public information consists of n and e.

2.1.2 Private Key

The private information constists of d.

2.2 Encryption

Assume Bob wants to send information to Alice, and Alice has published her public key: n and e.

Let m be the message Bob wants to transmit, with $0 \le m < n$. Bob first computes $c \equiv m^e \pmod{n}$ and then sends c to Alice.

2.3 Decryption

After Alice has received c from Bob, she can decode the original message m as $m \equiv c^d \pmod{n}$.

2.3.1 Proof

Decrypting the message, we have $c^d \equiv (m^e)^d \equiv m^{e \cdot d} \pmod{n}$

Remember that d was chosen such that $e \cdot d \equiv 1 \pmod{\phi(n)}$.

Therefore, we can write $e \cdot d$ as $k * \phi(n) + 1$, where $k \in \mathbb{N}$. Substituting, we have $m^{e \cdot d} = m^{k * \phi(n) + 1} = m^{k * \phi(n)} \cdot m^1$.

Euler's theorem states that and $a^{\phi(n)} \equiv 1 \pmod{n} \ \forall a \text{ such that } \gcd(a,n) = 1.$

As such, $m^{k \cdot \phi(n)} = (m^{\phi(n)})^k \equiv (1)^k \equiv 1 \pmod{n}$. Then $m^{k \cdot \phi(n)} \cdot m^1 \equiv m \pmod{n} \implies c^d \equiv m \pmod{n}$

3 Random Number Generators

A random number generator is a function $G: \{0, 1\}^s \to \{0, 1\}^l$ where l << s.

3.1 Secure RNG

Consider the following game, where C is the defender:

- 1. C randomly chooses $b \in \{0, 1\}$
 - (a) if b = 0, then \mathcal{C} randomly chooses $r \in \{0, 1\}^l$ and sends o = r to \mathcal{A} .
 - (b) if b=1, then $\mathcal C$ randomly chooses $r\in\{0,\ 1\}^s$ and sends o=G(r) to $\mathcal A$.
- 2. A receives o and tries to guess b as b'. A wins the game if b' = b.

G is a secure random number generator if $\forall \mathcal{A}$ adversary, \mathcal{A} has a negligible advantage in this game.

 \mathcal{A} has a negligible advantage in this game $\iff P(\mathcal{A} \ wins) \leq \frac{1}{2} + u$, where u is negligible.

The function u is negligible if it is an inverse of an exponential function defined on the parameters of the generator.

For instance, $u = \frac{1}{2^s}$ is negligible, while $u = \frac{1}{s^2}$ and $u = \frac{1}{3}$ are not negligible.