Protokollbeschreibung rob6server – Version 1.0a

Floris Ernst

11. November 2010

Inhaltsverzeichnis

1	Ein	itung
2	Anr	eldevorgang
	2.1	Anmeldung eines Clients am Server
		2.1.1 Verbindungsaufbau mit dem Roboterserver
		2.1.2 Initiale Kommunikation zwischen Server und Client
3	Bef	ılsübersicht
	3.1	Befehle zum Servermanagement
	3.2	Kommandos für den Bewegungsmodus
	3.3	Kommandos zur Steuerung der Bewegung
		3.3.1 Genauigkeit der Bewegung
		3.3.2 Geschwindigket und Beschleunigung
		3.3.3 Achsenlimits
		3.3.4 Bewegung
		3.3.5 Positionsabfrage
	3.4	Greifer-Kommandos
	3.5	Weitere Befehle

1 Einleitung

In diesem Dokument wird das Kommunikationsprotokoll für die Kommunikation mit dem rob6server beschrieben.

2 Anmeldevorgang

Voraussetzung für die Anmeldung eines Clients ist der gestartete Roboterserver (rob6server). Der Startvorgang beinhaltet die Initialisierung des Roboters und des Servers. Nach erfolgreichem Starten wartet der Roboterserver auf Clients.

2.1 Anmeldung eines Clients am Server

2.1.1 Verbindungsaufbau mit dem Roboterserver

Über TCP-Sockets wird eine Verbindung zum Roboterserver aufgebaut. Standardmäßig verbinden sich Clients auf Port 5005, der Server ist **nicht** Multi-Client-fähig.

Bespiel:

```
start telnet 127.0.0.1 5005
receive Trying 127.0.0.1...
receive Connected to 127.0.0.1.
receive Escape character is '^]'
receive Welcome to rob6server 0.1.01 !
```

2.1.2 Initiale Kommunikation zwischen Server und Client

Um die Kommunikation mit dem Roboter zu initialisieren, muss das Kommando Hello Robot gesendet werden:

Be spiel:

```
send Hello Robot receive accepted
```

3 Befehlsübersicht

3.1 Befehle zum Servermanagement

• GetRobot

Gibt den Robotertyp zurück. Mögliche Antworten sind ad850, kaw_fs, kr3rt, kr16rt und (veraltet) kr3, kr16

Beispiel:

send GetRobot receive ad850

• Is[Adept|Kuka|Kawa|KR3|KR16]

Liefert true, wenn der angeschlossene Roboter vom angefragten Typ ist.

Beispiel:

send GetRobot receive ad850 send IsAdept receive true send IsKawa receive false

• GetVersion

Liefert die Version des Servers.

Beispiel:

send GetVersion receive 0.1.01

• Quit

Beendet die Verbindung.

Beispiel:

send Quit receive bye!

• Shutdown

Beendet die Verbindung und fährt den Server herunter.

Beispiel:

send Quit
receive bye!
shutting down ...

GetTimestamp

Fragt die momentane Zeit des Servers ab.

Beispiel:

send GetTimestamp receive 1285831711.121

• PingRobot num wait

Nur Adept-Roboter

Bestimmt die Kommunikationslatenz zwischen Server und Roboter. Hier ist num die Anzahl der durchzuführenden Pings und wait die Wartezeit zwischen zwei Pings in Millisekunden.

Beispiel:

send PingRobot 100 50

receive 0.003414 3659.8930000000 1285828592.9111907482 -0.00016902738 1.4625943e-05

Hier ist die erste Zahl die mittlere Antwortzeit des Roboters (in Sekunden), die zweite Zahl der Nullpunkt der Roboterzeit, die dritte Zahl der Nullpunkt der Server-Zeit und die vierten und fünften Werte sind Koeffizienten eines Polynoms 2. Grades, um die Zeiten aufeinander zu kalibrieren.

• CM_PING

Führt ein Ping aus.

Beispiel:

send CM_PING receive PONG

• SetVerbosity num

Stellt die "Geschwätzigkeit" des Roboter-Servers ein. Für num sind Werte zwischen 0 und 4 erlaubt. Die Bedeutung der Werte:

0 — keine Ausgaben

1 — Nur Fehler

2 — Fehler & Warnungen

3 — Fehler, Warnungen und Kommunikationsdaten

4 — Alles

Beispiel:

send SetVerbosity 4

receive true

3.2 Kommandos für den Bewegungsmodus

• EnableAlter

Aktiviert den Echtzeit-Modus. Abhängig vom angeschlossenen Roboter und der auf dem Roboter laufenden Serversoftware ist dieser Modus mehr oder weniger "hart". Echte Echtzeitsteuerung funktioniert bei kr3rt und kr16rt.

Beispiel:

send EnableAlter

receive true

• DisableAlter

Deaktiviert den Echtzeit-Modus. Bewegungen finden im Point-to-Point Modus statt, d.h., der Server wartet nach jedem Bewegungskommando, bis der Roboter die Zielposition erreicht hat.

Beispiel:

send DisableAlter

receive true

• EnableAdeptAlter

Nur Adept-Roboter

Aktiviert den harten Echtzeit-Modus für den ad850, wenn serveralter läuft.

Beispiel:

send EnableAdeptAlter

receive true

• SetRTSpeedControl 0|1

Nur KUKA-Roboter

Bestimmt das Verhalten im Realtime-Modus. Ist RTSpeedControl aktiviert, wird auch im Realtime-Modus mit Rampen gefahren, sonst werden die Gelenke so bewegt, dass sie gleichzeitig ankommen.

Beispiel:

send SetRTSpeedControl 1

receive true

3.3 Kommandos zur Steuerung der Bewegung

3.3.1 Genauigkeit der Bewegung

ullet SetAdeptFine v

Nur Adept-Roboter

Aktiviert die Feinregelung der Positionierung und fordert eine Positioniergenauigkeit von v Prozent der Standardgenauigkeit der Gelenke.

Beispiel:

send SetAdeptFine 50

receive true

ullet SetAdeptFine v

Nur Adept-Roboter

Aktiviert die Grobregelung der Positionierung und fordert eine Positioniergenauigkeit von v Prozent der Standardgenauigkeit der Gelenke.

Beispiel:

send SetAdeptFine 50

receive true

3.3.2 Geschwindigket und Beschleunigung

ullet SetAdeptSpeed v

Nur Adept-Roboter

Bestimmt die Geschwindigkeit. Die Geschwindigkeit ist in Prozent des Maximalwerts anzugegen, es sind Werte bis 120 erlaubt.

Beispiel:

send SetAdeptSpeed 100

receive true

SetAdeptAccel a₁ a₂

Nur Adept-Roboter

Bestimmt die Beschleunigungswerte. Es sind zwei Beschleunigungswerte (Anfahren und Bremsen) in Prozent des Maximalwerts anzugegen, es sind Werte bis 120 erlaubt.

Beispiel:

send SetAdeptAccel 100 50

receive true

ullet SetKukaRTSpeed v_1 v_2 v_3 v_4 v_5 v_6

Nur KUKA-Roboter mit RT-Interface

Bestimmt die Geschwindigkeit. Es werden sechs Parameter für die einzelnen Achsen erwartet.

Beispiel:

send SetKukaRTSpeed 0.3 0.1 0.1 0.1 0.1 0.1

receive true

ullet SetJointsMaxSpeed v_1 v_2 v_3 v_4 v_5 v_6

Nur KUKA-Roboter

Bestimmt die Geschwindigkeit. Es werden sechs Parameter für die einzelnen Achsen erwartet.

Beispiel:

send SetJointsMaxSpeed 0.3 0.1 0.1 0.1 0.1 0.1

receive true

ullet SetSingleJointMaxSpeed j a

Nur KUKA-Roboter

Bestimmt die Geschwindigkeit für eine einzelne Achse.

Beispiel:

send SetSingleJointMaxSpeed 3 0.3

receive true

ullet SetJointsMaxAcceleration a_1 a_2 a_3 a_4 a_5 a_6

Nur KUKA-Roboter

Bestimmt die Beschleunigung. Es werden sechs Parameter für die einzelnen Achsen erwartet.

Beispiel:

send SetJointsMaxAcceleration 0.005 0.001 0.01 0.01 0.01 0.05

receive true

ullet SetSingleJointMaxAcceleration j a

Nur KUKA-Roboter

Bestimmt die Beschleunigung für eine einzelne Achse.

Beispiel:

send SetSingleJointMaxAcceleration 3 0.1

receive true

GetJointsMaxSpeed

Nur KUKA-Roboter

Fragt die Geschwindigkeit der einzelnen Achsen ab.

Beispiel:

send GetJointsMaxSpeed

receive 0.187200 0.187200 0.187200 0.396000 0.396000 0.738000

• GetJointsMaxAcceleration

Nur KUKA-Roboter

Fragt die Beschleunigung der einzelnen Achsen ab.

Beispiel:

send GetJointsMaxAcceleration

receive 0.005000 0.005000 0.005000 0.005000 0.005000

• ResetJointsMaxSpeed

Nur KUKA-Roboter

Setzt die Geschwindigkeit auf Standardwerte zurück.

Beispiel:

send ResetJointsMaxAcceleration

receive true

• ResetJointsMaxAcceleration

Nur KUKA-Roboter

Setzt die Beschleunigung auf Standardwerte zurück.

Beispiel:

 ${\tt send} \qquad {\tt ResetJointsMaxAcceleration}$

receive true

3.3.3 Achsenlimits

 $\bullet \ {\tt GetJointsMaxChange}$

Liefert den maximalen Drehwinkel der Gelenke pro Bewegung zurück.

Beispiel:

send GetJointsMaxChange

receive 370.000000 175.000000 284.000000 700.000000 250.000000 700.000000

ullet SetJointsMaxChange $lpha_1$ $lpha_2$ $lpha_3$ $lpha_4$ $lpha_5$ $lpha_6$

Setzt den maximalen Drehwinkel pro Bewegung der Gelenke. Es werden sechs Winkelwerte erwartet.

Beispiel:

send SetJointsMaxChange 10 10 10 10 10 10

receive true

ullet SetSingleJointMaxChange j lpha

Setzt den maximalen Drehwinkel pro Bewegung des Gelenks j auf α .

Beispiel:

send SetSingleJointMaxChange 3 20 receive true

GetJointsMaxTurnMax

Liefert den maximalen Drehwinkel der Gelenke zurück.

Beispiel:

send GetJointsMaxTurnMax receive 185.000000 20.000000 154.000000 350.000000 125.000000 350.000000

ullet SetJointsMaxTurnMax $lpha_1$ $lpha_2$ $lpha_3$ $lpha_4$ $lpha_5$ $lpha_6$

Setzt den maximalen Drehwinkel der Gelenke. Es werden sechs Winkelwerte erwartet.

Beispiel:

send SetJointsMaxTurnMax 10 10 10 10 10 10 receive true

ullet SetSingleJointMaxTurnMax j lpha

Setzt den maximalen Drehwinkel des Gelenks j auf α .

Beispiel:

send SetSingleJointMaxTurnMax 3 40 receive true

• GetJointsMaxChange

Liefert den minimalen Drehwinkel der Gelenke zurück.

Beispiel:

send GetJointsMaxTurnMin receive -185.000000 -155.000000 -130.000000 -350.000000 -125.000000 -350.000000

ullet SetJointsMaxTurnMin $lpha_1$ $lpha_2$ $lpha_3$ $lpha_4$ $lpha_5$ $lpha_6$

Setzt den minimalen Drehwinkel der Gelenke. Es werden sechs Winkelwerte erwartet.

Beispiel:

send SetJointsMaxTurnMin -10 -10 -10 -10 -10 -10 receive true

ullet SetSingleJointMaxTurnMin j lpha

Setzt den minimalen Drehwinkel des Gelenks j auf α .

Beispiel:

send SetSingleJointMaxTurnMin 3 -40 receive true

ullet ResetJointsMaxChange j lpha

Setzt den maximalen Drehbereich der Gelenke zurück.

Beispiel:

send ResetJointsMaxChange receive true

ullet ResetJointsMaxTurn j lpha

Setzt die maximalen und minimalen Drehwinkel der Gelenke zurück.

Beispiel:

send ResetJointsMaxTurn

receive true

3.3.4 Bewegung

 $\bullet \ \texttt{MoveMinChangeRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \\ \bullet \ \texttt{MoveMinChangeRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \\ \bullet \ \texttt{MoveMinChangeRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \\ \bullet \ \texttt{MoveMinChangeRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \\ \bullet \ \texttt{MoveMinChangeRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \\ \bullet \ \texttt{MoveMinChangeRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \\ \bullet \ \texttt{MoveMinChangeRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,4} \ m_{3,4}$

flip|noflip|toggleHand|noToggleHand ← up|down|toggleElbow|noToggleElbow ← lefty|righty|toggleArm|noToggleArm

Dieses Kommando führt eine PTP-Bewegung aus, bei der die Zielmatrix (homogene Koordinaten, zeilenweise) und die gewünschte/erlaubte Roboterkonfiguration vorgegeben wird. Ist das Erreichen der Zielposition in mehreren Konfigurationen möglich, und sind diese Konfigurationen durch die Status-Flags auch zulässig, so wird die Position angefahren, bei der die Gelenkwinkeländerung am geringsten ist.

Beispiel:

send MoveMinChangeRowWiseStatus 0 0 -1 1768 0 -1 0 0 -1 0 0 640 flip toggleElbow toggleArm receive true

ullet MovePTPJoints $j_1\ j_2\ j_3\ j_4\ j_5\ j_6$

Bewegt den Roboter im PTP-Modus an eine neue Stellung der Gelenke.

Beispiel:

send MovePTPJoints 10 0 0 0 0 0 receive true

• MoveRTHomRowWise $m_{1,1}$ $m_{1,2}$ $m_{1,3}$ $m_{1,4}$ $m_{2,1}$ $m_{2,2}$ $m_{2,3}$ $m_{2,4}$ $m_{3,1}$ $m_{3,2}$ $m_{3,3}$ $m_{3,4}$

Dieses Kommando führt eine RT-Bewegung durch, bei der die Zielmatrix (homogene Koordinaten, zeilenweise) mit der momentanen Konfiguration angefahren wird.

Beispiel:

```
send MoveRTHomRowWise 0 0 -1 1768 0 -1 0 0 -1 0 0 640 receive true
```

 $\bullet \ \mathtt{MoveRTHomRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \bullet \ \mathtt{MoveRTHomRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \bullet \ \mathtt{MoveRTHomRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \bullet \ \mathtt{MoveRTHomRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,3} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,3} \ m_{3,4} \leftarrow \\ \bullet \ \mathtt{MoveRTHomRowWiseStatus} \ m_{1,1} \ m_{1,2} \ m_{1,3} \ m_{1,4} \ m_{2,1} \ m_{2,2} \ m_{2,4} \ m_{2,4} \ m_{3,1} \ m_{3,2} \ m_{3,4} \ m_{3,$

Nur für KUKA, KUKA RT und Adept im Soft-RT-Modus

Dieses Kommando führt eine RT-Bewegung aus, bei der die Zielmatrix (homogene Koordinaten, zeilenweise) und die gewünschte/erlaubte Roboterkonfiguration vorgegeben wird. Ist das Erreichen der Zielposition in mehreren Konfigurationen möglich, und sind diese Konfigurationen durch die Status-Flags auch zulässig, so wird die Position angefahren, bei der die Gelenkwinkeländerung am geringsten ist.

Beispiel:

```
send MoveRTHomRowWiseStatus 0 0 ^{-1} 1768 0 ^{-1} 0 0 ^{-1} 0 0 640 flip toggleElbow toggleArm receive true
```

ullet MoveRTJoints j_1 j_2 j_3 j_4 j_5 j_6

Nur für KUKA, KUKA RT und Adept im Soft-RT-Modus

Dieses Kommando führt eine RT-Bewegung aus, bei der das Ziel in Gelenkwinkeln angegeben ist.

Beispiel:

```
send MoveRTJoints 10 20 10 10 10 10 receive true
```

3.3.5 Positionsabfrage

• GetPositionHomRowWise

Liefert die momentane Position als homogene Matrix (zeilenweise) zurück.

Beispiel:

```
send
        GetPositionHomRowWise
```

receive $0.000000 - 0.173648 - 0.984808 1741.140107 \leftarrow$ 0.000000 -0.984808 0.173648 -307.009978 \hookleftarrow -1.000000 -0.000000 -0.000000 640.000000

• GetPositionJoints

Liefert die momentanen Gelenkwinkel.

Beispiel:

send GetPositionJoints

receive

• GetStatus

Liefert die momentane Konfiguration zurück. Die Rückgabe erfogt als flip|noflip up|down lefty|righty

Beispiel:

send GetStatus

receive noflip down lefty

Greifer-Kommandos 3.4

• HasGripper

Nur Adept-Roboter

Prüft, ob der serielle Greifer angeschlossen ist und funktioniert.

Beispiel:

send HasGripper receive true

• GripperGoHome

Nur Adept-Roboter

Bewegt den Greifer in die Referenzposition (etwa 4 cm weit offen).

Beispiel:

send GripperGoHome

receive

true

• GripperMove amp

Nur Adept-Roboter

Bewegt den Greifer mit der in amp angegebenen Ampere-Zahl. Negative Werte schließen den Greifer, positive Werte öffnen den Greifer.

Beispiel:

send GripperMove -1

receive Start moving with amperage -1.000

true

• GripperMoveToPosition pos

Nur Adept-Roboter

Bewegt den Greifer an die angegebene Position pos (Öffnung in m)

Beispiel:

send GripperMoveToPosition 0.025

receive

true

3.5 Weitere Befehle

ullet ForwardCalc j_1 j_2 j_3 j_4 j_5 j_6

Berechnet die einer Gelenkstellung entsprechende homogene Matrix.

Beispiel:

```
send ForwardCalc 10 0 0 0 0 0 0 receive 0.000000 -0.173648 -0.984808 1741.140107 ← 0.000000 -0.984808 0.173648 -307.009978 ← -1.000000 -0.000000 -0.000000 640.000000 noflip up lefty
```

• BackwardCalc $m_{1,1}$ $m_{1,2}$ $m_{1,3}$ $m_{1,4}$ $m_{2,1}$ $m_{2,2}$ $m_{2,3}$ $m_{2,4}$ $m_{3,1}$ $m_{3,2}$ $m_{3,3}$ $m_{3,4} \leftarrow$ flip|noflip up|down

Berechnet aus einer angebenen Matrix und der korrespondierenden Roboterkonfiguration die zugehörigen Gelenkwinkel.

Beispiel:

```
send BackwardCalc \leftarrow 0.000000 -0.173648 -0.984808 1741.140107 \leftarrow 0.000000 -0.984808 0.173648 -307.009978 \leftarrow -1.000000 -0.000000 -0.000000 640.000000 \leftarrow noflip up lefty receive 10.000001 -0.000055 0.000110 0.000000 -0.000055 0.000000
```

• DirectAdeptCmd MSG

Nur Adept-Roboter

Sendet MSG an den Adept und führt das Kommando dort aus.

Beispiel:

```
send DirectAdeptCmd jmove 0,0,0,0,0
receive true
```

Protokollhistorie

 $1.0a\ Fehlerkorrektur\ ({\tt SetVerbosity}\ war\ nicht\ dokumentiert)$

1.0 Initiale Version

Achtung! Zur Zeit sind folgende Kommandos implementiert aber nicht dokumentiert:

DisableLin, DisableRoutetest, DoAlterCart, DoAlterJoint, EnableLin, EnableRoutetest, GetAllowedStatus, GetJointsRowWise, GetMinChangeWeights, IsPossible, MoveLINHomRowWise, MovePTPHomRowWise, MovePTPHomRowWiseStatusTurn, MovePTPJointsStatus, ResetAllowedStatus, ResetMinChangeWeights, RoutetestJoints, RoutetestRowWiseStatus, SetAllowedStatus, SetMinChangeWeights, GetRTSpeedControl