

Traffic Engineering of Unicast Services

Modelação e Desempenho de Redes e Serviços Prof. Amaro de Sousa (asou@ua.pt) DETI-UA, 2022/2023

Traffic engineering of unicast services

A unicast service is defined by a set of point-to-point traffic flows on a given telecommunication network.

- Consider a network composed by a set of point-to-point links and supporting one unicast service defined by a set of traffic flows *T*, such that the packets of all flows have the same statistics.
 - The network is modelled by a graph G=(N,A). Set N is the set of network nodes. Set A is the set of network links: the arc $(i,j) \in A$ represents the link between nodes $i \in N$ and $j \in N$ from i to j whose capacity is given by c_{ij} in bps (usually $c_{ij} = c_{jj}$).
 - Each traffic flow $t \in T$ is defined by its origin node o_t , destination node d_t , average throughput from origin to destination b_t (in bps) and average throughput from destination to origin \underline{b}_t (in bps).
 - For each flow $t \in T$, P_t is the set of the candidate routing paths in graph G from its origin node o_t to its destination node d_t .

The <u>traffic engineering</u> task is the task of choosing for each flow $t \in T$ the percentage of its average throughput that must be routed through each of its candidate routing paths of P_t in each direction.

Traffic engineering with single path routing

- In single path routing, each traffic flow must be routed through one single path (no flow bifurcation is allowed).
- Symmetrical routing might be required or not; when required, the routing path from a node $j \in N$ to a node $i \in N$ must use the same links as the routing path from node $i \in N$ to node $j \in N$.

Consider a binary variable x_{tp} associated to each traffic flow $t \in T$ and each routing path $p \in P_t$ that, when is 1, indicates that traffic flow t is routed through path p.

Any traffic engineering solution with single path routing must be compliant with the following constraints:

- For each flow $t \in T$, one of its associated variables x_{tp} must be 1 and all other associated variables must be 0.
- At each arc (i,j) ∈ A, the sum of the throughput values (either b_t or b_t) of all flows routed through it cannot be higher than its capacity c_{ij}.

Example

Example network:

All links with 10 Gbps of capacity (in general, these values can be different)

Flow 1:

Path $1 =$	1	2	4		
Path 2 =	1	3	2	4	
Path 3 =	1	5	4		
Path 4 =	1	2	5	4	
Path $5 =$	1	3	2	5	_

Path $6 = 1 \ 5 \ 2 \ 4$

Flow 2:

Path
$$1 = 1 5$$

Path $2 = 1 2 5$
Path $3 = 1 2 4 5$
Path $4 = 1 3 2 5$
Path $5 = 1 3 2 4 5$

Traffic flows:

t	O_t	d_{t}	b_t (Gbps)	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Flow 3:

Path $1 = 2 \ 4$ Path $2 = 2 \ 5 \ 4$

Path $3 = 2 \ 1 \ 5 \ 4$

Path $4 = 2 \ 3 \ 1 \ 5 \ 4$

Flow 4:

Path 1 = 3 2 5 Path 2 = 3 2 4 5 Path 3 = 3 1 5 Path 4 = 3 1 2 5

Path $5 = 3 \ 2 \ 1 \ 5$

Path $6 = 3 \ 1 \ 2 \ 4 \ 5$

In general, these values are different

Routing paths ordered from shortest to

longest lengths

Example: one possible solution

Example network:

All links with 10 Gbps of capacity

Flow 1: Path 1 = 1 2 4 Path 2 = 1 3 2 4 Path 3 = 1 5 4 Path 4 = 1 2 5 4 Path 5 = 1 3 2 5 4 Path 6 = 1 5 2 4

Flow 2:
Path
$$1 = 1 5$$

Path $2 = 1 2 5$
Path $3 = 1 2 4 5$
Path $4 = 1 3 2 5$
Path $5 = 1 3 2 4 5$

Traffic flows:

t	o_t	d_t	$b_t(Gbps)$	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Path $6 = 3 \ 1 \ 2 \ 4 \ 5$

One routing path assigned for each traffic flow

Example: another possible solution

Example network:

All links with 10 Gbps of capacity

Flow 1: Path $1 = 1 \ 2 \ 4$ Path $2 = 1 \ 3 \ 2 \ 4$ Path $3 = 1 \ 5 \ 4$ Path $4 = 1 \ 2 \ 5 \ 4$ Path $4 = 1 \ 3 \ 2 \ 5$ Path $5 = 1 \ 3 \ 2 \ 5 \ 4$ Path $5 = 1 \ 3 \ 2 \ 4 \ 5$ Path $6 = 1 \ 5 \ 2 \ 4$

Flow 2:
Path
$$1 = 1 5$$

Path $2 = 1 2 5$
Path $3 = 1 2 4 5$
Path $4 = 1 3 2 5$
Path $5 = 1 3 2 4 6$

Traffic flows:

t	o_t	d_t	$b_t(Gbps)$	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Flow 3:
Path
$$1 = 2 4$$

Path $2 = 2 5 4$
Path $3 = 2 1 5 4$
Path $4 = 2 3 1 5 4$

Flow 4:					
Path 1 =	3	2	5		
Path $2 =$	3	2	4	5	
Path $3 =$	3	1	5		
Path $4 =$	3	1	2	5	
Path $5 =$	3	2	1	5	
Path 6 =	3	1	2	4	5

Different assignments provide different solutions 6

Traffic engineering objectives

The traffic engineering task aims to:

- optimize at least one parameter related with either the performance or the operational cost of the network;
- optionally, guarantee (maximum or minimum) values for other parameters.

Examples of optimization parameters:

- the average service packet delay (to minimize the delay performance of the service);
- the worst average packet delay among all traffic flows (to minimize the delay performance fairness among all traffic flows);
- the worst link load (to maximize the robustness of the network to unpredictable traffic growth);
- the energy consumption of the network (to minimize operational costs).

The best traffic engineering solution depends on the optimization objective of interest. Different optimization objectives might be conflicting:

 for example, to reduce the energy consumption, more links must be put in sleeping mode; consequently, the same traffic is concentrated in less links and the worst link load increases.

Example - network

Consider the following network with 20 routers and 33 links where all links have a capacity of 1 Gbps.

The length of the links varies between 88 km (between nodes 10 and 12) and 759 km (between nodes 1 and 11) and the link propagation delay is determined by the speed of light over a optical fibre (approximately 2×10^8 meters/s).

Example – traffic flow matrix

Consider the following flow matrix (values in Mbps) where the packets of all flows are exponentially distributed with an average packet size B = 1000 Bytes:

```
10.6 45.5
                                   10.6
                                         12.9
                                                 9.8
                                                       9.8
                                                           13.6 11.4 11.4 41.7 12.9
                                                                                          10.6
47.0
                  32.6
                       33.3 189.4
                                   59.8 47.0
                                                49.2
                                                      38.6
                                                            59.1 53.0
                                                                       38.6 212.1 31.8
                                                                                          48.5
                                                                                                 40.9
                                                                                                       43.9
                                         14.4 18.9
                                                     14.4
                                                            11.4 36.4
                                                                       12.9 63.6
65.9
                        13.6
                              53.0
                                   13.6
                                                                                   13.6 14.4
                                                                                                11.4
                                                                                                      13.6
                                         12.1 11.4
                                                    12.9
                       12.9
                                                            31.1 12.1
                                                                         9.1 31.8
           13.6
                   0.0
                              31.1 14.4
                                                                                   11.4 10.6
                                                                                                14.4
                                                                                                      12.9
                 14.4
                         0.0
                              55.3
                                    11.4
                                           9.1
                                                 9.8
                                                      12.9
                                                            36.4
                                                                  11.4
                                                                       12.9
                                                                              46.2
                                                                                    12.9
                                                                                            7.6
                                                                                                12.1
                                                                                                      15.9
                 55.3
                        38.6
                               0.0
                                    39.4
                                          47.0
                                                41.7
                                                      40.9
                                                            53.8
                                                                  44.7
                                                                        42.4 212.1
                                                                                    40.9
                                                                                           71.2
                                                                                                 62.9
                                                                        56.8
                       12.9
                                                12.1 12.9 12.1 14.4
                                                                             55.3
                                                                                      9.8
                11.4
                              54.5
                                     0.0
                                           7.6
                                                                                            9.1
                                                                                                13.6
                                                                                                      15.9
                                                12.1
                                                       9.1
                                                                  13.6
                                                                        12.1
                                                                              57.6
                                                                                      9.8
                                                                                          10.6
                                                                                                  9.8
                 11.4
                         9.8
                              37.9
                                    10.6
                                           0.0
                                                           11.4
     33.3 16.7 12.1 14.4
                             38.6
                                   12.9
                                           9.8
                                                 0.0
                                                      11.4
                                                            13.6
                                                                   9.1
                                                                       13.6
                                                                              56.1 11.4
                                                                                         13.6
                                                                                                12.1 15.2
                              46.2
                                   13.6
                                          10.6
                                                10.6
                                                       0.0
                                                                   9.8
                                                                        11.4
                                                                              42.4
                                                                                    10.6
           10.6
                        11.4
                                                                                                10.6
                                                             9.1
                                                                                          11.4
                              40.9
                                                             0.0
                                                                        10.6
                  31.1
                       33.3
                                     9.8
                                          10.6
                                                12.1
                                                      14.4
                                                                   9.8
                                                                             47.7
                                                                                      9.1 11.4
                                                                                                  8.3
                                                                                                             12.9
                                           8.3
                                                      10.6
                                                            12.1
                                                                                      9.8
                                                                                           28.0
           35.6
                   9.8
                         9.8
                              59.8
                                    14.4
                                                 8.3
                                                                   0.0
                                                                          9.8
                                                                              33.3
                                                                                                  9.8
                                                                                                        9.1
                                                                                                             14.4
                                                                                         12.9
                         9.1 35.6
             9.1
                 12.1
                                    59.8
                                          10.6
                                                 9.8
                                                      14.4
                                                             9.8
                                                                  13.6
                                                                         0.0
                                                                              41.7
                                                                                    11.4
                                                                                                13.6
                                                                                                      15.9
                        42.4 189.4
                                                                  33.3
                                                                        46.2
                                                                                    40.9
                                                                                           57.6
                  56.1
                                   55.3
                                          64.4
                                                57.6
                                                      31.8
                                                            31.8
                                                                               0.0
                                                                                                 40.2
                                                                                                       48.5
                                                             9.8
                                                                  12.1
           10.6
                   9.8
                        10.6
                              37.1
                                     8.3
                                          14.4
                                                 8.3
                                                      10.6
                                                                        11.4
                                                                              47.7
                                                                                      0.0
                                                                                          11.4
                                                                                                10.6
                                                                                                       10.6
                                                                                                                   28.8
                 11.4
                       11.4
                              44.7
                                     9.8
                                          11.4
                                                10.6
                                                       9.1
                                                             9.1
                                                                  12.9
                                                                          9.1
                                                                               56.8
                                                                                    14.4
                                                                                            0.0
                                                                                                11.4
                                                                                                        9.1
                                                                                                                   30.3
                                                                 12.9
                 10.6
                       13.6
                              55.3
                                    12.1
                                          12.9
                                                 9.8
                                                      11.4
                                                            10.6
                                                                              44.7
                                                                                    10.6
                                                                                            9.1
                                                                                                  0.0
                                                                                                       10.6
                                                                                                                   20.5
                                                                          9.1
                              40.9
                                         18.2
                                               13.6
                                                     18.9 12.9 10.6
                                                                        17.4
                                                                              40.9
                                                                                    11.4
           11.4
                   9.8
                       18.9
                                   11.4
                                                                                          12.9
                                                                                                  9.8
                                                                                                        0.0
                       12.9
                              53.0
                                    12.1
                                           9.8
                                               15.9
                                                      13.6
                                                           15.2
                                                                  10.6
                                                                        18.9
                                                                              47.0
                                                                                    12.9
                                                                                            9.8
                       34.1
                              65.9
                                    25.8
                                          30.3
                                               15.9
                                                      22.7
                                                            30.3
                                                                  28.0
                                                                               65.2
                                                                                   34.1
                                                                                          25.8
                                                                        34.1
```

Example – one possible solution

One possible solution is to route each traffic flow $t \in T$ by the routing path with the shortest length (minimizing, in this way, the propagation delay of each flow).

Using the Kleinrock approximation, we obtain the following performance parameters:

Worst average packet delay = 6.06 ms

Worst link load = 99.3%

Number of active links = 33 out of 33

However, it is possible to obtain better traffic engineering solutions through appropriate optimization algorithms.

Example – optimal solutions

Minimization of the worst average packet delay:

Worst average packet delay = 5.21 ms

Worst link load = 93.6%

Number of active links = 33 out of 33

Minimization of the worst link load:

Worst average packet delay = 8.63 ms

Worst link load = 69.9%

Number of active links = 33 out of 33

Minimization of the number of active links:

Worst average packet delay = 10.54 ms

Worst link load = 82.4%

Number of active links = 26 out of 33

Conclusion:

- Each traffic engineering solution is a different trade-off between the different optimization objectives.
- It is up to the operator to select the best routing solution.

Optimization methods

Exact methods

- Based on mathematical models (for example, Integer Linear Programming)
- In the general case, computationally hard
- Theoretically, they are able to compute the optimal solutions
- Inefficient for large problem instances (they either take too long to even compute feasible solutions or finish due to out-of-memory)

Heuristic methods

- Based on simple programming algorithms
- Easy to implement and quick to find solutions
- Do not guarantee optimality
- For larger runtimes, they find better solutions (than exact methods)
- Efficient for large problem instances

Heuristic method versus heuristic algorithm

Heuristic method: a generic approach to search for good solutions that can be applied to any optimization problem.

Heuristic algorithm: an optimization algorithm that has resulted from applying an heuristic method to a particular optimization problem.

Many heuristic methods (usually, also the simplest ones) are based on two algorithmic strategies:

- 1. To build a solution starting from the scratch.
 - Examples: random, greedy, greedy randomized, etc...
- 2. To get a better solution from a known solution.
 - Examples: hill climbing, tabu search, simulated annealing, etc...
 (we will address only the hill climbing strategy).

Building a solution from the scratch

Building one solution from the scratch (I)

1. Random strategy:

- The solution is built by assigning a random routing path $p \in P_t$ for each flow $t \in T$
- We might obtain better solutions if we consider higher probabilities to routing paths $p \in P_t$ with "better characteristics"
 - For example, paths with a smaller number of links, paths containing links of larger capacity, etc...

2. Greedy strategy:

- Start by considering the network without any routing path
- Then, for each flow $t \in T$:
 - assign the first routing path $p \in P_t$ that, together with the previous assigned routing paths, gives the best objective function value

Building one solution from the scratch (II)

3. Greedy randomized strategy:

The aim is to obtain a different solution on different runs.

First alternative:

- First, choose a random order of the flows $t \in T$
- Then, apply the greedy strategy (previous slide) by the chosen order

Second alternative:

- Start by considering the network without any routing path
- Then, for each flow t ∈ T:
 - compute the α routing paths of P_t that, together with the previous assigned routing paths, give the best objective function values
 - α is a parameter of the algorithm
 - assign randomly one of the previous α routing paths to flow $t \in T$

Third alternative:

To combine the 2 previous alternatives

Minimizing the worst link load: greedy strategy

Example network:

All links with 10 Gbps of capacity

Flow 2:

Path $1 = 1 \, 5$

Path $2 = 1 \ 2 \ 5$

Flow 1:

Path
$$1 = 1 \ 2 \ 4$$

Path $2 = 1 \ 3 \ 2 \ 4$

Path
$$3 = 1 \ 5 \ 4$$
 Path $3 = 1 \ 2 \ 4 \ 5$

Path
$$4 = 1 \ 2 \ 5 \ 4$$
 Path $4 = 1 \ 3 \ 2 \ 5$

Path
$$5 = 1 \ 3 \ 2 \ 5 \ 4$$
 Path $5 = 1 \ 3 \ 2 \ 4 \ 5$

Path
$$6 = 1 \ 5 \ 2 \ 4$$

Traffic flows:

t	o_t	d_t	b_t (Gbps)	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Flow 3:

Path
$$1 = 2 \ 4$$

Path
$$2 = 2 \ 5 \ 4$$

Path
$$3 = 2 \ 1 \ 5 \ 4$$

Path
$$4 = 2 \ 3 \ 1 \ 5 \ 4$$

Flow 4:

Path
$$1 = 3 \ 2 \ 5$$

Path
$$2 = 3 \ 2 \ 4 \ 5$$

Path
$$3 = 3 \ 1 \ 5$$

Path
$$4 = 3 \ 1 \ 2 \ 5$$

Path
$$5 = 3 \ 2 \ 1 \ 5$$

Path
$$6 = 3 \ 1 \ 2 \ 4 \ 5$$

Current solution:

Updated solution:

Traffic flows:

t	O_t	d_t	$b_t(Gbps)$	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Flow 1:

Path $1 = 1 \ 2 \ 4$

Path $2 = 1 \ 3 \ 2 \ 4$

Path $3 = 1 \ 5 \ 4$

Path $4 = 1 \ 2 \ 5 \ 4$

Path $5 = 1 \ 3 \ 2 \ 5 \ 4$

Path $6 = 1 \ 5 \ 2 \ 4$

Selected path:

Path $1 = 1 \ 2 \ 4$

Path minimizing the worst link load in the updated solution

Current solution:

Updated solution:

Traffic flows:

t	O_t	d_t	$b_t(Gbps)$	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Flow 2:

Path $1 = 1 \, 5$

Path $2 = 1 \ 2 \ 5$

Path $3 = 1 \ 2 \ 4 \ 5$

Path $4 = 1 \ 3 \ 2 \ 5$

Path $5 = 1 \ 3 \ 2 \ 4 \ 5$

Selected path:

Path $1 = 1 \ 5$

Path minimizing the worst link load in the updated solution

Current solution:

Updated solution:

Traffic flows:

t	o_t	d_t	$b_t(Gbps)$	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Flow 3:

Path $1 = 2 \ 4$

Path $2 = 2 \ 5 \ 4$

Path $3 = 2 \ 1 \ 5 \ 4$

Path $4 = 2 \ 3 \ 1 \ 5 \ 4$

Selected path:

Path $2 = 2 \ 5 \ 4$

Current solution:

Updated solution:

Traffic flows:

t	O_t	d_t	$b_t(Gbps)$	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Flow 4:

Path $1 = 3 \ 2 \ 5$

Path $2 = 3 \ 2 \ 4 \ 5$

Path $3 = 3 \ 1 \ 5$

Path $4 = 3 \ 1 \ 2 \ 5$

Path $5 = 3 \ 2 \ 1 \ 5$

Path $6 = 3 \ 1 \ 2 \ 4 \ 5$

Selected path:

Path $3 = 3 \ 1 \ 5$

Path minimizing the worst link load in the updated solution

Greedy strategy: FINAL SOLUTION

Current solution:

All links with 10 Gbps of capacity

Worst link load \rightarrow Link(s) with the worst link load \rightarrow Unused links \rightarrow

Traffic flows:

t	o_t	d_t	$b_t(Gbps)$	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

FINAL SOLUTION:

Flow 1:

Path
$$1 = 1 \ 2 \ 4$$

Flow 2:

Path
$$1 = 1 \, 5$$

Flow 3:

Path
$$3 = 2 \ 5 \ 4$$

Flow 4:

Path
$$3 = 3 \ 1 \ 5$$

Greedy randomized strategy

Current solution:

All links with 10 Gbps of capacity

Worst link load \rightarrow Link(s) with the worst link load \rightarrow (1,5), (5,1), (2,4) and (4,2) Unused links \rightarrow

Traffic flows:

t	o_t	d_t	b_t (Gbps)	$\underline{b}_t(\text{Gbps})$
1	1	4	1.0	1.0
2	1	5	2.0	2.0
3	2	4	3.0	3.0
4	3	5	2.0	2.0

Taking the random order $3 \rightarrow 1 \rightarrow 2 \rightarrow 4$:

Flow 3:

Path
$$1 = 2 \ 4$$

Flow 1:

Path
$$3 = 1 \ 5 \ 4$$

Flow 2:

Path
$$3 = 1 \ 2 \ 5$$

Flow 4:

Path
$$3 = 3 \ 1 \ 5$$

Optimization algorithm

• In a problem aiming to minimize function F(x), it works as follows:

until Stopping Criteria is met

- Examples of Stopping Criteria:
 - Run a predefined time duration
 - Run a predefined number of iterations
 - Run until f_{best} not improving a predefined number of iterations