## Отчет по лабораторной работе №2 «Решение нелинейных уравнений» Вариант №22

Левицкий Валентин А-13-22 НИУ «МЭИ»

2024

## Задача 2.1

Методом простой итерации найти вещественные корни нелинейного уравнения f(x)=0 с точностью  $\varepsilon=10^{-8}$ .

$$f(x) = x^3 - 0.9x^2 - x - 0.1.$$

## Решение

Построим график функции и определим отрезки локализации для каждого корня:



Определим производную f(x):

$$f'(x) = 3x^2 - 1.8x - 1.$$

Построим график производной и отметим на нём границы отрезков локализации:



Из графика видно, что на отрезках локализации производная функции сохраняет постоянный знак.

Для каждого корня определим итерационный параметр  $\alpha$  и параметр q, используя формулы:

$$\alpha = \frac{2}{M1 + m1},$$

$$q = \left| \frac{M1 - m1}{M1 + m1} \right|,$$

где 
$$M1 = \max_{x \in [a,b]} f'(x), \ m1 = \min_{x \in [a,b]} f'(x).$$

Составим программу для нахождения корня с заданной точностью  $\varepsilon$  по методу простых итераций. В качестве расчетной формулы используем метод простой итерации с параметром:

$$x_{n+1} = x_n - \alpha f(x_n).$$

```
def MPI(x0, M1, m1, f, eps):
    alpha = 2 / (M1 + m1)
    q = np.abs((M1 - m1) / (M1 + m1))
    x1 = x0 - alpha * f(x0)
    it = 1
    while abs(x1 - x0) > (1 - q) * eps / q:
        x0, x1 = x1, x1 - alpha * f(x1)
        it += 1
    print(f"Выполнено {it} итераций, x = {x1}")
    return x1
```

Запишем результаты вычислений в таблицу:

| Левицкий Валентин Димитриевич А-13-22 |               |         |         |          |        | Вариант №22             |
|---------------------------------------|---------------|---------|---------|----------|--------|-------------------------|
| $f(x) = x^3 - 0.9x^2 - x - 0.1$       |               |         |         |          |        | $\varepsilon = 10^{-8}$ |
| Корни                                 | [a,b]         | $M_1$   | $m_1$   | $\alpha$ | q      | Итерации                |
| $x_1 = -0.56224597$                   | [-0.65, -0.5] | 1.4375  | 0.65    | 0.9581   | 0.3772 | 8                       |
| $x_2 = -0.11291429$                   | [-0.25, 0.25] | -0.3625 | -1.2625 | -1.2308  | 0.5538 | 8                       |
| $x_3 = 1.57516025$                    | [1.5, 1.75]   | 5.0375  | 3.05    | -0.1129  | 1.5752 | 8                       |