A MODEST TAKE ON AUTOMATED SEGMENTATION OF CORONARY ARTERIES

DIONYSIOS RIGATOS

TASK & APPROACH

- The ASOCA challenge
 - Online biomedical imaging competition from 2020
 - Semantic 3D segmentation of Computed Tomography Coronary Angiography (CTCA) scans

- **Solution**: Swin-UNETRv2
 - MONAl Framework
 - PyTorch wrapper
 - Preprocessing, models, evaluation, optimization and more

SHIFTED WINDOW UNET TRANSFORMER I

- UNET
 - Default choice for semantic segmentation in medical imaging
 - Limited kernel size, long-range information loss
- Swin-UNET Transformer (v2)
 - Transformers excellent at keeping long-range information;
 problem reformulated as seq2seq
 - Shifted Windows: Key to ViTs
 - Compute attention for collection of patches instead of whole image
 - Cyclic shift for cross-window connections
 - v2: Reintroduce convolutions before blocks

3D UNET Architecture

SWIN Attention

SHIFTED WINDOW UNET TRANSFORMER II

DATASET

- 60 CTCA scans
 - 30 healthy cases
 - 30 diseased cases
 - Manually labeled by experts
- Splits; all are 50/50 between healthy/diseased
 - Training: 36 scans
 - Validation: 4 scans
 - **Testing**: 20 scans (hidden labels)
- EDA only on training data!

PRETRAINING

- Difficult task, small dataset
 - Pretrained models can give significant initial boost
 - Sadly, lack of models online due to niche problem/model
- Approach #I BTCV Challenge
 - Trained on 30 3D CT volumes
 - Multi-class segmentation, 14 classes
 - Publicly available SWIN-UNETR weights online
- Approach #2 BTCV + ImageCAS
 - Contains 1000 3D CTCA scans, we choose subset of 111
 - Data highly relevant to our task
 - Use approach #I, then train on ImageCAS and generate weights for finetuning on the ASOCA dataset

Project Pipeline

Project Pipeline

Project Pipeline

Project Pipeline

EXPLORATORY DATA ANALYSIS - APPROACH

- 3D Slicer
 - Visualize 3D CT images and their segments
 - Useful initially, prefer programmatic approach
- MONAl's Auto3DSeg DataAnalyzer
 - Provides complete pipeline, we only use the analyzer
 - Exports useful statistics about the input images
 - Key to picking the right transformation values

Diseased Sample in 3D Slicer

EXPLORATORY DATA ANALYSIS - KEY STATISTICS

- Mean image shape of [512, 512, 215]
- I channel (grayscale)
- Image Intensity (5/99.5 percentiles) of [150, 623]*
- Image Spacing (99.5 percentile) of [0.49, 0.49, 0.63]*

Healthy Sample Segmentation (3D)

PROCESSING – DATA AUGMENTATION

- CT image data is usually complex and machine-dependent
 - Normalization and processing is necessary
- Dataset is small, need to enrich and modify samples
- MONAl provides transforms tailored to biomedical imaging

Post-Transform Healthy Sample Slice w/ label

DATA PROCESSING – KEY TRANSFORMS

Applied to all splits and phases!

ScaleIntensityRange

- CT images have fixed range, highlight important features
- Squishes the range to [0, 1], values outside that range are omitted
- *Chosen based on EDA with values [min, max] of [150, 623]

Orientation

- Sets fixed orientation for all of our inputs based on the affine matrix
- RAS (Right, Anterior, Superior)

Spacing

- Adjusts samples so as to ensure that everything is consistently spaced across the dataset
- *Chosen based on EDA with values of [0.49, 0.49, 0.63]

DATA PROCESSING – TRAINING TRANSFORMS

Only applied during training!

RandCropByPosNegLabel

- Crops a patch from the image
- Images have high dimensionality; can't process efficiently without resizing
- **Solution**: process a random patch of the original image at every iteration
- Opted for size [128, 128, 128]
- Oversampling for patches with segments (2:1)

RandAffine

- Dataset is small, can introduce noise so as to improve generalization capabilities
- Scale and rotate patch with probability 50%

DATA PROCESSING – POST TRANSFORMS

- Applied to labels during validation/testing!
- Some key transforms altered spacing, orientation
 - Invert these transforms for final ASOCA submission

Activations

Applies the sigmoid activation to the outputs

AsDiscrete

- Discretizes the outputs (0: Background, 1: Segment)
- Requires 75% probability for (1)

KeepLargestConnectedComponent

- In order to omit small noisy segments, we can filter them out if they aren't connected
- Opt for 3 components

TRAINING - OPTIMIZATION

- Loss Function: DiceFocalLoss
 - Combination of Dice and Focal loss (weighted sum)
 - Dice loss measures dissimilarity between prediction and ground truth segments
 - Focal loss regulates learning by weighing high confidence prediction down, focusing on missclassified examples
 - Better than DiceCELoss or standalone DiceLoss in my experiments
- Optimizer: AdamW
 - Improvement over Adaptive Momentum (ADAM), weight decay directly on parameters instead of gradient
 - Learning rate of 2e-4
 - Weight decay of 1e-6
 - Linear warmup of 6 epochs
 - Significantly better than SGD, Novograd in my experiments

FINAL MODEL

- Pre-trained weights from subset of ImageCAS
 - III examples (101 train, 10 val)
 - Identical EDA & transforms, initialized with BTCV weights
 - Trained for 160 epochs
 - Approximately 6.7 hours on one RTX 4090
- Final model SwinUNETRv2
 - Trained for 500 epochs, validation every 10
 - Validation and testing using sliding window inferer with window of size equal to the patches (128)
 - Approximately 6.7 hours on one RTX 4090
 - Inference time of approximately 10 minutes good enough
 - Lots of transforms, inversions, saving the outputs etc...

EVALUATION – QUANTITATIVE METRICS (DICE)

EVALUATION – QUANTITATIVE METRICS (HD95)

EVALUATION – ASOCA LEADERBOARD

- After weeks of waiting (and a couple emails), access to the ASOCA challenge submissions!
- Hidden test labels; scores are undisputable and concrete
 - No doubt about data leakage or "beneficial" choice of test set
- Satisfying results given constraints
 - 83% Dice, 17th on the leaderboard
 - BTCV-only pretraining also worthy of mention, 79% Dice

Best model - BTCV + ImageCAS Pretrain

EVALUATION – QUALITATIVE ANALYSIS (3D)

Healthy Test Sample 0 – Prediction (3D Slicer)

EVALUATION – QUALITATIVE ANALYSIS (3D)

Healthy Test Sample 0 – Prediction (3D Slicer)

EVALUATION – QUALITATIVE ANALYSIS (2D)

CARBON FOOTPRINT

- Model underwent training plenty of times
 - Both for parameter tuning as well as trial-and-error
- Computationally demanding
 - Cybele computers are the minimum; wont run on less VRAM than a RTX4090
 - Also RAM heavy due to dataloders; ImageCAS especially
- A total training time of approximately:
 - 4635.98 minutes or
 - **77.26** hours or
 - 3.2 days
- Power consumption for RTX 4090 (450W TDP)
 - Average of 90% usage, approximately 405W or 0.405kW
 - 0.405 kW for 77.26 hours = 31.30 kWh
- Tesla Model X Plaid (18.1 kWh/100 km)
 - Could approximately drive 172.93km
 - or 98817.14 left coronary arteries

DISCUSSION

- Half the task was figuring out the transforms
- BTCV-only pretraining was satisfactory
- If there was more time:
 - nnUNET
 - Tailored pre-training on ImageCAS
 - More random transformations, longer pretraining
 - Maybe steal the 9th position on the leadearboard? :D
- Overall more than satisfied with the results
- Very fun task
 - Sometimes lack of documentation in MONAI
 - Lab assistants were very helpful

THANK YOU FOR YOUR ATTENTION¹

DIONYSIOS RIGATOS