Summary and Concluding Remarks

Q: What are the fundamental limits and capabilities of computers?

We saw the following topics:

- * Automata Theory:
 - Regular languages : DFA, NFA, Regerp, Clorure Properties, Pumping lemma, Mybill Nevole
 - Content-Free languages: CFG, PDA, Chambey Normal Form, Ambiguity, Pumping lemma, CYK Algorithm
- * Computability Theory!
 - Turing Machines: Variants like multitape, NTM, Church Turing Theirs

- Decidable and Underdable languages:

 Decidable languages such as ADFA, KNFA,

 EDFA, ACFA, ERDFA etc. ATM is

 underdable. (Countable and uncountable sets)
- Reductions: Underidable languages meh as HALTTM, REGULARTM. Rice's theorem. Computation Histories. PCP.

* Complexity Theory:

- Time Complexity: P, NP, Verifier
 model for NP, Polynomial time reductions,
 NP-completeness, Cook-levin theorem
 (SAT is NP-Complete), Other NP-Complete
 Problems.
- Space Complinity: Basic Model for Space Complexity, Relation between time and space complexity.

Classes L and NL, NL-Completeness, Smitch's theorem, Other results (NL=CO.NL and PSPACE-Completeness).

Topies that can be puremed!

- * Chapter 9 and 10 of Sipser.
- * Hierarchy Theorems, Relatinization, Oxacles, Polynomial Hierarchy,
- * Cimit Complexity
- + landomized Computation
- * Counting Complexity
- + Interactine Proofs.

(Check out my NPTEL course on Computational Complexity)

Finally

- * let me know any feedback.
- * Write to me at SUBRUK @ CSE. IITH. AC. IN
- * Hope you conjoyed leaving and will continue to be interested in these topics.

THANK YOU!

NPTEL