Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA" CORSO DI LAUREA IN INFORMATICA

Sviluppo software per la gestione di offerte di fornitura e richieste di acquisto di beni materiali

Tesi di laurea

Relatore	
Prof.Tullio	Vardanega

Laure and oRiccardo Tassetto

Anno Accademico 2019-2020

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di circa trecento ore, dal laureando Riccardo Tassetto presso l'azienda San Marco Group S.p.A. Gli obbiettivi da raggiungere erano molteplici.

In primo luogo era richiesto lo sviluppo di ... In secondo luogo era richiesta l'implementazione di un ... Tale framework permette di registrare gli eventi di un controllore programmabile, quali segnali applicati Terzo ed ultimo obbiettivo era l'integrazione ...

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Tullio Vardanega, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute.

Padova, Dicembre 2020

Riccardo Tassetto

Indice

1	Ana	alisi del contesto aziendale	1
	1.1	L'azienda San Marco Group	1
	1.2	Organizzazione del lavoro	1
	1.3	Tecnologie utilizzate	1
	1.4	Organizzazione del testo	1
2	Pro	getto di stage	3
	2.1	Processo sviluppo prodotto	3
3	Des	crizione dello stage	5
	3.1	Introduzione al progetto	5
	3.2	Analisi preventiva dei rischi	5
	3.3	Requisiti e obiettivi	5
	3.4	Pianificazione	5
4	Ana	alisi dei requisiti	7
	4.1	Casi d'uso	7
	4.2	Tracciamento dei requisiti	8
5	Pro	gettazione e codifica	11
	5.1	Tecnologie e strumenti	11
	5.2	Ciclo di vita del software	11
	5.3	Progettazione	11
	5.4	Design Pattern utilizzati	11
	5.5	Codifica	11
6	Ver	ifica e validazione	13
7	Cor	nclusioni	15
	7.1	Consuntivo finale	15
	7.2	Raggiungimento degli obiettivi	15
	7.3	Conoscenze acquisite	15
	7.4	Valutazione personale	15
A	App	f oendice $f A$	17
Bi	blios	crafia	21

Elenco delle figure

Elenco delle tabelle	
4.1 Tabella del tracciamento dei requisti funzionali	9

Analisi del contesto aziendale

Introduzione al contesto applicativo.

Esempio di utilizzo di un termine nel glossario Application Program Interface (API).

Esempio di citazione in linea site:agile-manifesto.

Esempio di citazione nel pie' di pagina citazione $^{\rm l}$

1.1 L'azienda San Marco Group

Descrizione dell'azienda.

1.2 Organizzazione del lavoro

Introduzione all'idea dello stage.

1.3 Tecnologie utilizzate

Descrizione delle tecnologie utilizzate.

1.4 Organizzazione del testo

Il secondo capitolo descrive ...

Il terzo capitolo approfondisce ...

Il quarto capitolo approfondisce ...

Il quinto capitolo approfondisce ...

 $^{^{1}}$ womak: lean-thinking.

Il sesto capitolo approfondisce ...

Nel settimo capitolo descrive ...

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- *per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[{\rm g}]};$
- $\ast\,$ i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere corsivo.

Progetto di stage

Brevissima introduzione al capitolo

2.1 Processo sviluppo prodotto

Descrizione dello stage

Breve introduzione al capitolo

3.1 Introduzione al progetto

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'I-DE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = functionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia 2

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Bibliografia