PROYECTO FINAL

Integrantes:

- Cruces Salhuana, Diego Axel
- Moore Salazar, Jhon Antony
- Modesto Calixto, Keler
- Ortiz Urbai, Sebastian
- Quispe Fajardo, Adrian Ismael
- Ramírez García, Jorge Armando

- Introducción
- Planteamiento del problema
- Objetivos
- Componentes del Sistema
- Diseño Metodológico del Sistema
- Diagrama General de Arquitectura
- Caracterización del Sistema y Variables
- Resultados
- Conclusiones
- Bibliografía

Revisión del estado del arte

RFID Based Security and Access Control System

Describe un sistema de seguridad para hostales universitarios utilizando RFID y biometría para mejorar la identificación y restringir el acceso.

RFID Applications and Security Review

Análisis profundo sobre la evolución de la tecnología RFID, destacando su papel crucial en el Internet de las Cosas (IoT), gestión de inventarios, localización de activos y control de acceso.

Specifics of RFID Based Access
Control Systems Used in
Logistics Centers

Analiza el uso de sistemas de control de acceso basados en RFID en centros logísticos, mejorando la seguridad y trazabilidad de personal, vehículos y mercancías.

Planteamiento del problema

FALTA DE AUTOMATIZACIÓN

Los sistemas actuales requieren intervención manual, generando cuellos de botella.

AUSENCIA DE CONECTIVIDAD

La carencia de una red que permita la integración de datos impide la gestión centralizada.

ESCALABILIDAD LIMITADA

La solución vigente no permite la expansión o adaptación a mayores volúmenes de usuarios.

FALTA DE SEGURIDAD

La ineficiencia en el control de accesos aumenta el riesgo de intrusiones y robos en la institución.

Objetivos

Diseñar e implementar un sistema de acceso basado en IoT, utilizando molinetes inteligentes con tecnología RFID, que permita automatizar, registrar y monitorear de manera eficiente el ingreso a la Facultad.

OBJETIVOS ESPECÍFICOS

Identificar los componentes necesarios para la construcción del molinete inteligente.

Diseñar la arquitectura del sistema, incluyendo hardware y software.

Implementar la conectividad para el almacenamiento y monitoreo de datos.

Desarrollar una interfaz de usuario para la gestión del sistema.

Cumplir con el ODS número 4 de la ONU, contribuyendo a la educación de calidad mediante la creación de un entorno seguro y organizado en centros educativos.

COMPONENTES DEL SISTEMA

Diseño Metodológico del Sistema

El desarrollo del proyecto se llevó a cabo bajo la metodología ágil Scrum, que facilitó la iteración continua y la entrega progresiva de funcionalidades.

Rol	Miembro del equipo
Scrum Master	Keler Modesto Calixto
Product Owner	
Desarrolladores	Sebastián Ortiz Urbai, Adrian Ismael Quispe Fajardo, Jorge Armando Ramírez García,Moore Salazar, Jhon Antony
Testers	Todos los integrantes participarán en las pruebas
Maquetado	Diego Axel Cruces Salhuana

Historias de Usuario

ID	Historia de Usuario	Descripción
HU_01	Registro de acceso con RFID	Como usuario registrado, quiero que el sistema valide mi tarjeta RFID para poder acceder a la facultad de manera eficiente.
HU_02	Acceso denegado para personas no registradas	Como persona no autorizada, quiero que el molinete me notifique con un LED rojo y un sonido de alerta, para saber que mi acceso fue denegado.
HU_03	Acceso concedido para personas registradas	Como persona autorizada, quiero que el sistema me permita el acceso y me muestre una alerta visual y sonora, para confirmar que puedo ingresar al sistema.
HU_04	Monitoreo en tiempo real	Como administrador, quiero visualizar en un dashboard el registro de accesos en tiempo real, para conocer el flujo de personas.
HU_05	Historial de accesos	Como administrador, quiero consultar un historial de accesos filtrado por fecha y usuario, para analizar el uso del sistema.
HU_06	Gestión de tarjetas RFID	Como administrador, quiero registrar, editar o eliminar tarjetas RFID autorizadas, para mantener actualizado el sistema de acceso.
HU_07	Mapa interactivo	Como usuario, quiero poder visualizar un mapa que marque mis entradas y salidas

Sprints

Sprint	Historias de Usuario	Descripción
Sprint 1	HU_01, HU_02	Levantamiento de requerimientos y diseño del sistema. Implementación del control de acceso con RFID y validación de tarjetas.
Sprint 2	HU_02, HU_03, HU_04,	Implementación del hardware y desarrollo del firmware para el control del molinete. Desarrollo del dashboard de monitoreo en tiempo real y consulta de historial de accesos.
Sprint 3	HU_02, HU_03, HU_05, HU_06,	Creación del módulo de gestión de tarjetas RFID, implementación de las alertas de seguridad, y pruebas de acceso denegado y concedido.
Sprint 4	HU_07	Implementación de la interfaz de gestión de molinetes, pruebas finales del sistema, ajustes y despliegue.

Diagrama de arquitectura

Categorización de variables

Categoría	Variable	Descripción
Variables de Entrada	Número de tarjeta RFID	Identificador único que permite autenticar a cada usuario mediante su tarjeta asignada.
	ID de ingreso	Identificador único asignado a cada evento de acceso.
	Dispositivo	Identificador del lector RFID que registró el evento.
Variables de Salida	Estado de acceso	Resultado del proceso de verificación, determinando si se concede o deniega el acceso.
	Alertas visuales y sonoras	Uso de LEDs para indicar visualmente el estado y buzzer para alertas auditivas.
	Registro de datos	Almacenamiento de información relevante que permite el monitoreo y análisis de eventos para auditoría y optimización.
Variables de Conectividad	Transmisión de datos vía MQTT	Comunicación en tiempo real entre el sistema y otros dispositivos, permitiendo la integración y supervisión remota.
	Tiempo de respuesta del dashboard	Mide la rapidez con la que los datos se actualizan en la interfaz, afectando la experiencia del usuario.
	Marca temporal	Registra el momento exacto del evento para auditoría y análisis.
	Evento detectado	Valor booleano que confirma si el evento de acceso fue efectivamente registrado.

Eficiencia en el Control de Acceso:

 El sistema permitió reducir significativamente los tiempos de validación en el ingreso, facilitando el flujo de usuarios y disminuyendo las colas.

• Mejora en la Seguridad:

 La implementación del sistema RFID combinado con alertas visuales y sonoras redujo los intentos de acceso no autorizados, aumentando la seguridad en la entrada de la facultad.

Monitoreo en Tiempo Real:

 El dashboard demostró ser una herramienta eficaz para el monitoreo y análisis del flujo de personas, al proporcionar datos en tiempo real

• Escalabilidad y Conectividad:

 La arquitectura basada en IoT y servicios en la nube permitió la integración de múltiples dispositivos, asegurando que el sistema pueda adaptarse a futuros requerimientos sin perder rendimiento.

Resultados

Conclusiones

- La automatización del control de acceso mediante molinetes inteligentes mejora la seguridad y optimiza el flujo de usuarios.
- La integración de hardware y software mediante una arquitectura escalable permite la conexión en tiempo real con sistemas de gestión y monitoreo.
- La metodología ágil (Scrum) facilitó la coordinación del equipo y permitió adaptarse a cambios y requerimientos a lo largo del desarrollo.
- La solución propuesta sienta las bases para futuras mejoras y ampliaciones, consolidándose como un modelo replicable en otras instituciones educativas.

Bibliografía

Kaushal, G., Mishra, R., Chaurasiya, N., & Singh, P. (2015). RFID BASED SECURITY AND ACCESS CONTROL SYSTEM USING ARDUINO WITH GSM MODULE. https://www.semanticscholar.org/paper/RFID-BASED-SECURITY-AND-ACCESS-CONTROL-SYSTEM-USING-Kaushal-Mishra/0a28343d557de97b1bdd129e44c202f83a91f80a

Lenko, F. (2021). Specifics of RFID Based Access Control Systems Used in Logistics Centers. Transportation Research Procedia, 55, 1613-1619. https://doi.org/10.1016/j.trpro.2021.07.151

Munoz-Ausecha, C., Ruiz-Rosero, J., & Ramirez-Gonzalez, G. (2021). RFID Applications and Security Review. Computation, 9(6), 69. https://doi.org/10.3390/computation9060069