1. El empleo de la tecnología de redes punto a punto para las redes WAN se caracteriza por,

- a) Su bajo coste económico de cableado frente a la tecnología de difusión.
- b) La comunicación directa a nivel de enlace entre cualquier par de nodos de la red.
- c) La transmisión de un único paquete para enviar información a todos los nodos de la red.
- d) La tolerancia a fallos que presenta si existen varios caminos a un determinado destino.

2. El empleo de la multidifusión en una red LAN permite,

- a) El envío de información a todas las estaciones de la red transmitiendo un paquete.
- b) El envío de información a un grupo de estaciones de la red transmitiendo un paquete.
- c) El envío de información a una sola estación de la red transmitiendo más de un paquete.
- d) El envío de información a un grupo de estaciones de la red transmitiendo más de un paquete.

3. Si en una red de conmutación de paquetes basada en datagramas, un nodo deja de funcionar es cierto que,

- a) Sólo los paquetes en tránsito en el nodo no alcanzarán su destino.
- b) Todos los paquetes que hayan pasado por ese nodo han de ser reenviados.
- c) Todas las estaciones de la red quedan incomunicadas.
- d) Las estaciones que emplean ese nodo para intercambiar paquetes han de determinar una nueva ruta para sus destinos.

4. La comunicación vertical en una arquitectura de red se caracteriza porque,

- a) Se establece entre las capas que son adyacentes en la arquitectura.
- b) Se establece entre la capa n y la capa par n-1 de la arquitectura.
- c) Se establece entre las capas pares de la arquitectura.
- d) Se establece entre las capas n+1 y n-1 de la arquitectura.

5. Si se detecta un error en el funcionamiento de la capa n de una arquitectura de red podemos asegurar que,

- a) Al menos se ha producido un fallo en las capas superiores a la capa n.
- b) Se ha producido algún fallo en la capa n o en las capas inferiores a la capa n.
- c) Se ha producido un fallo en la capa superior n+1 p la arquitectura de red.
- d) Siempre existe un fallo en alguna capa superior a la capa n.

6. La fragmentación de una PDU en la capa de red de la arquitectura OSI produce,

- a) Varias PDU's con cabeceras de los protocolos de red, transporte y aplicación.
- b) Varias PDU's con cabecera del protocolo de red en todas ellas.
- c) Varias PDU's con cabeceras del protocolo de transporte en todas ellas.
- d) Varias PDU's con cabeceras del protocolo de aplicación en todas ellas.

7. La capa de transporte en la arquitectura TCP/IP se caracteriza por,				
a) Emplear un protocolo de control del flujo en la comunicación fiable con TCP.				
b) Aumentar el aprovechamiento del medio físico empleando el control del flujo del protocolo				
UDP.				
c) Gestionar una comunicación fiable estableciendo circuitos virtuales extremo a extremo con				
el protocolo TCP.				
d) Proporcionar siempre a la capa de aplicación una comunicación no segura, debido al				
funcionamiento con datagramas de la subred.				
8. Una señal que es transmitida por un medio físico se distorsiona si,				
a) Aumenta el ancho banda del medio físico.				
b) Aumenta la relación señal-ruido.				
c) Aumenta la velocidad de transmisión de la señal.				
d) Disminuye el número de niveles en la señal.				
9. Una señal digital periódica de 8 bits, con un periodo de 10ms, se envía por un medio con				
un ancho de banda ideal de 240Hz que comienza en la frecuencia 280Hz. ¿Cuántas				
componentes armónicas de la señal llegarán correctamente al destino?				
a) 2.				
b) 3.				
c) 4.				
d) 5.				
10. ¿ Qué velocidad de transmisión es necesaria para enviar a través de un medio físico DOS				
señales analógicas de 100 KHz de ancho de banda empleando una modulación PCM de 6 bits?				
a) 12800 Kbps.				
b) 25600 Kbps.				
c) 1200 Kbps.				
d) 2400 Kbps.				

- 11. Se desea enviar por un medio físico dos señales PCM multiplexadas en el tiempo. Una de las señales se corresponde con un canal de comunicación a 64 Kbps y la otra con un canal de 96 Kbps. El medio físico transmitirá bits de información a una velocidad de,
- a) 128 Kbps.
- b) 96 Kbps.
- c) 64 Kbps.
- d) 160 Kbps.
- 12. La codificación binaria bipolar y la Manchester tienen la característica común de,
- a) Emplear los mismos niveles de voltaje en la señal.
- b) Interpretar la información por el valor de amplitud de la señal.
- c) Interpretar la información por los cambios en el tipo de transiciones de la señal.
- d) Incorporar información de sincronización en la propia señal.
- 13. Indica en cuál de los siguientes medios físicos el efecto de la dispersión intermodal es mayor.
- a) Cable coaxial blindado.
- b) Fibra óptica de índice gradual.
- c) Fibra óptica monomodo.
- d) Fibra óptica multimodo.
- 14. Si se desea aumentar la velocidad de transmisión obtenida en una fibra óptica monomodo sin modificar la codificación del número de niveles, es necesario:
- a) Cambiar la fibra al tipo multimodo de mayor ancho de banda.
- b) Aumentar la potencia del dispositivo emisor de luz en el extremo de la fibra.
- c) Aumentar la sensibilidad del dispositivo receptor de luz en el extremo de la fibra.
- d) Realizar un multiplexado de longitud de onda para incorporar varios haces de luz.
- 15. La detección de errores empleando la técnica de paridad por filas y columnas se caracteriza por,
- a) Permite detectar errores cuando se producen en un número par.
- b) Permite detectar errores sólo en filas.
- c) Permite detectar errores sólo en columnas.
- d) Permite detectar dos errores en cualquier posición de la matriz.
- 16. En un protocolo de ventana deslizante de envío continuo con repetición selectiva es cierto que,
- a) La ventana del emisor referencia las tramas ya enviadas correctamente al receptor.
- b) El receptor acepta los paquetes erróneos con secuencias que están dentro de su ventana.
- c) La ventana del emisor tiene un tamaño que no varía durante el funcionamiento del protocolo.
- d) La ventana del receptor tiene un tamaño menor que el número de secuencias de numeración.
- 17. ¿ Qué afirmación es cierta sobre el funcionamiento del protocolo CSMA/CD?
- a) Elimina las colisiones en el medio físico esperando un tiempo aleatorio antes de transmitir
- un paquete.
- b) Si el medio físico está libre siempre se espera un lapso de tiempo antes de transmitir el paquete.
- c) Después de transmitir un paquete al medio físico se comprueba si el medio presenta colisiones.
- d) Si el medio físico está libre antes de la transmisión, nunca se producirán colisiones.

18. En un paquete Ethernet con el formato IEEE 802.3, ¿ cómo se distingue si el contenido es un paquete IP o un paquete ARP ?

- a) Empleando el campo preámbulo de la cabecera IEEE 802.3.
- b) Empleando el campo tipo de la cabecera IEEE 802.3.
- c) Empleando el campo tipo de la cabecera LLC.
- d) Empleando el campo longitud de la cabecera IEEE 802.3.

19. ¿ En qué configuración de interconexión de segmentos Ethernet existe un dominio de

colisión mayor?

- a) Interconexión de 2 concentradores (half-duplex) Ethernet.
- b) Interconexión de 3 conmutadores (full-duplex) Ethernet.
- c) Interconexión de 4 concentradores (half-duplex) Ethernet.
- d) Interconexión de 5 conmutadores (full-duplex) Ethernet.

20. ¿ En qué tecnología Ethernet no se emplea la codificación 8B/10B?

- a) Ethernet 1000BaseLX.
- b) Ethernet 1000BaseSX.
- c) Ethernet 1000BaseTX.
- d) Ethernet 1000BaseCX.

21. Sobre el funcionamiento de un conmutador VLAN es cierto que,

- a) El formato de los paquetes en los enlaces de acceso es diferente al de los enlaces troncales.
- b) Todos los puertos de un conmutador VLAN tienen que estar asociados a la misma VLAN.
- c) Un puerto de enlace de acceso puede estar asociado a varias VLAN diferentes.
- d) En un conmutador VLAN sólo puede existir un único puerto de enlace troncal.

22. Sobre el funcionamiento de un punto de acceso (AP) de una red inalámbrica es cierto que,

a) El punto de acceso emplea una portadora o subcanal para cada equipo asociado al punto de acceso.

b) Dos AP con un mismo SSID no pueden emplear el mismo subcanal o portadora si tienen

coberturas solapadas.

- c) Dos AP con un mismo SSID tienen que emplear siempre el mismo subcanal o portadora.
- d) Una estación asociada a un AP tiene cobertura con todas las estaciones asociadas al AP.

23.	Indica cuál	de los siguientes	es un mecanismo	de autenticación en	WPA2.

- a) TKIP.
- b) PSK.
- c) AES.
- d) LEAP.

24. ¿ Cuál de las siguientes situaciones indica que existe congestión en la red?

- a) Presencia de mensajes Host Unreachable.
- b) Presencia de mensajes TTL Exceeded in Transit.
- c) Presencia de mensajes Source Quench.
- d) Un router detecta que el uso de su CPU para el encaminamiento es del 25%.

25. Un router que emplea BGP para establecer sus tablas de encaminamiento se caracteriza por,

- a) Conocer sólo las redes del sistema autónomo al que pertenece.
- b) Emplear como puerta de enlace por defecto el router BGP que tenga más cercano.
- c) Establecer conexiones con el resto de routers BGP de Internet.
- d) Determinar las rutas óptimas entre los diferentes destinos en Internet.

26. Si un router envía un mensaje RIP versión 1 en una red LAN Ethernet, el paquete emplea como dirección MAC de destino,

- a) La dirección FF:FF:FF:FF:FF.
- b) La dirección 255.255.255.255.
- c) La dirección 224.0.0.9.
- d) Una dirección MAC de multidifusión.

27. Sobre el protocolo de encaminamiento OSPF es FALSO que,

- a) Emplea el algoritmo de Dijkstra para obtener la solución de encaminamiento en la red.
- b) Intercambia menos información de encaminamiento que RIP.
- c) Utiliza la difusión para el envío de los mensajes OSPF en la red.
- d) Los enlaces entre routers OSPF pueden modificar su valor de coste del enlace.

28. Si un paquete IP es enviado a la dirección 224.0.0.7 es cierto que,

- a) El paquete es recibido por todos los equipos de Internet que responden a esa dirección.
- b) La dirección IP de destino se cambia por 224.255.255 para que llegue a todos los equipos de la red.
- c) Los routers que reciben este paquete lo envían a todos los routers multicasting de Internet.
- d) El paquete es recibido por todos los equipos de la red donde es transmitido y pertenecen al grupo de multidifusión 224.0.0.7.

29. En el protocolo TCP, la fase de "arranque lento" está relacionada con:

- a) El control del flujo.
- b) El control de la congestión.
- c) El establecimiento de una conexión.
- d) La liberación de una conexión.

30. En el protocolo TCP, cuando un extremo A comunica al otro extremo B su ventana de recepción, está indicando:

- a) El tiempo que el extremo B ha de esperar para enviar más datos.
- b) El número máximo de paquetes que el extremo B puede enviar al extremo A.
- c) El número máximo de bytes que el extremo B puede enviar al extremo A.
- d) El número total de bytes que el extremo A recibió correctamente.

SOLUCIONES

1D

2B

3A

4A

5B

6B

7A

8C

9В

10D

11D

12D

13D

14D

15D

16D

17B

18C

19C

20C

21A

22B

23D

24C

25C

26A

27C

28D

29B

30C