Indian Institute of Information Technology Kottayam

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY KOTTAYAM

Department of Electronics and Communication Engineering IEC 111 ELECTRONIC CIRCUITS & MEASUREMENTS

First Mid Semester Examination, Dec 17, 2022

Course Instructors: Dr. Narendra Kumar Reddy/Dr. Rajesh G/Dr. Lidiya Lilly Thampi

Time: 10:00 - 11:30 AM Semester I Max marks: 50

Answer all questions

- (a) If silicon is doped with boron, _____type semiconductor is obtained. (1)
 - (b) The unit of current density $(J_p \text{ or } J_n)$ is _____ (1)
 - (c) If both N_A and N_D are increased by a factor of 10 each, the junction built-in voltage (1)increases by _____

Write the formulae for:

- (d) Approximate hole concentration in a doped (doping concentration= N_D atoms/ cm^3) (1)n-type semiconductor, $p_n =$
- (e) Diffusion electron current density in a semiconductor material, $J_n =$ (1)
- 2. The linear electron-concentration profile them in the figure below has been established in a piece of silicon. If $n_o=10^{17}/cm^3$ and $W=1\mu m$, find the electron-current density in microamperes per micron squared $(\mu A/\mu m^2)$. If a diffusion current of 1 mA is required, what must the cross-sectional area (in a direction perpendicular to the page) be? Recall that $D_n=35 \text{ cm}^2/\text{s}$.

- 3. A young designer, aiming to develop intuition concerning conducting paths within an integrated circuit, examines the end-to-end resistance of a connecting bar 15 μm long, $4\mu\mathrm{m}$ wide and $2\mu\mathrm{m}$ thick made of various materials. The designer considers:
 - (a) intrinsic silicon n-doped-silicon with $N_D=5 \times 10^{18}/\text{cm}^3$
- B=7.3×10

(5)

(5)

- (b) n-doped silicon with $N_D = 5 \times 10^{18}/\text{cm}^3$
- (c) n-doped silicon with $N_D=5 \times 10^{16}/\text{cm}^3$

- (d) p-doped silicon with $N_A=5 \times 10^{16}/\mathrm{cm}^3$
- (e) aluminium with resistivity of 4.8 $\mu\Omega$.cm

Find the resistance in each case. For intrinsic silicon, $\mu_n = 1350 \text{cm}^2/\text{V.s}$, $\mu_p = 480 \text{cm}^2/\text{V.s}$. Assume room temperature T=27°C. For doped silicon, assume $\mu_n = 3\mu_p = 1200 \text{cm}^2/\text{V.s}$. (Recall that $R = \rho l/A$)

4. Calculate the built-in voltage of a junction in which the p and n regions are doped equally with 5×10^{16} atoms /cm³. With the terminals left open, what is the width of the depletion region, and how far does it extend into the p and n regions? If the cross-sectional area of the junction is $20 \ \mu\text{m}^2$, find the magnitude of the charge stored on either side of the junction. The relative permittivity of silicon, ϵ_r is 11.7 and the permittivity of free space is $\epsilon_o = 8.854 \times 10^{-12} \text{F/m}$. Charge of electron is 1.6×10^{-19} C.

(5)

(3)

- 5. Derive an analytical expression that describes the current-voltage relationship of the pn junction, when a voltage V is applied across the junction. Plot the minority carrier concentration profile in the n and p regions $(p_n(x))$ and $n_p(x)$ when the bias voltage is applied.
- 6. For the circuits shown in figure below, find the values of voltages and currents indicated.

 Assume the diodes are ideal.

- 7. (a) Draw the circuit diagrams of half-wave rectifier, full-wave rectifier using center-tapped transformer and bridge rectifier. Assuming ideal diodes, sketch the input and output waveforms for sinusoidal inputs.
 - (b) Derive the expressions for average (dc) value and root-mean-squared (rms) value of both half and full wave rectifier output voltage. Show that a full-wave rectifier is twice as efficient as a half-wave rectifier.
- 8. Assume that the diode in the figure has $V_{on} = 0.7 \text{V}$, but is otherwise ideal. Find the value of the current i_2 .

