Decentralized Systems [WIP] Fundamentals, Modeling, and Applications

Alle Angaben ohne Gewähr. Keine Garantie auf Vollständigkeit oder Richtigkeit.

1	Intro	oduction	2
	1.1	What is a distributed system?	2
		1.1.1 Characteristics by van Steen and Tanenbaum	2
		1.1.2 Consequences of characteristic 1	
		1.1.3 Consequences of characteristic 2	2
		1.1.4 Observations	2
	1.2	What makes a distributed system a decentralized system?	2
		1.2.1 Three types of Decentralization (Vitalik Buterin)	2
		1.2.2 Our definition of decentralized systems	3
	1.3	Reasons for decentralization	3
		1.3.1 Reasons for architectural decentralization	3
		1.3.2 Reasons for political decentralization	3
		1.3.3 Reasons for logical decentralization	3
	1.4	Risks of decentralization	3
	1.5	Two Generals' Problem	3

Decentralized Systems [WIP]

Fundamentals, Modeling, and Applications Sommersemester 2023

1 Introduction

1.1 What is a distributed system?

1.1.1 Characteristics by van Steen and Tanenbaum

"A distributed system is a collection of autonomous computing elements that appears to its users as a single coherent system." ([van Steen and Tanenbaum, 2016]), daraus gehen zwei Charakteristiken hervor:

- 1. "Collection of autonomous computing elements": "In practice, nodes are programmed to achieve common goals, which are realized by exchanging messages with each other" ([van Steen and Tanenbaum, 2016])
- 2. "Appears as a single coherent system": Appears as a single large system

1.1.2 Consequences of characteristic 1

- "we cannot assume that there is something like a global clock" ([van Steen and Tanenbaum, 2016]), therefore the synchronization and coordination between must be worked out
- "The fact that we are dealing with a collection of nodes implies that we may also need to manage the membership and organization of that collection" ([van Steen and Tanenbaum, 2016]), therefore we need to think about identities and possible access-restrictions

1.1.3 Consequences of characteristic 2

• "To assist the development of distributed applications, distributed systems are often organized to have a separate layer of software that is logically placed on top of the respective operating systems of the computers that are part of the system [...] leading to what is known as middleware" ([van Steen and Tanenbaum, 2016])

1.1.4 Observations

- Distributing tasks and aggregating a result from them is not easy at all
- The coordination of those tasks is still centralized

1.2 What makes a distributed system a decentralized system?

According to **ISO/TC 307**: "distributed system wherein control is distributed among the persons or organizations participating in the operation of the system"

1.2.1 Three types of Decentralization (Vitalik Buterin)

Vitalik Buterin defines three types of Decentralization:

- Architectural (de)centralization: How many physical computers is a system made up of? How many of those computers can it tolerate breaking down at any single time?
- **Political (de)centralization**: How many **individuals or organizations** ultimately control the computers that the system is made up of?
- Logical (de)centralization: Does the interface and data structures that the system presents and maintains look more like a single monolithic object, or an amorphous swarm? One simple heuristic is: if you cut the system in half, including both providers and users, will both halves continue to fully operate as independent units?

Decentralized Systems [WIP] Fundamentals, Modeling, and Applications

Fundamentals, Modeling, and Applications Sommersemester 2023

1.2.2 Our definition of decentralized systems

- A decentralized system has political decentralization, where multiples parties are making their own independent decisions
- If a system is architecturally but not politically decentralized, we call it a distributed system
- Decentralized systems can be logically decentralized or centralized
- Decentralized systems can be open systems (anybody can participate) or closed systems

1.3 Reasons for decentralization

1.3.1 Reasons for architectural decentralization

- Reduce latency
- Scale the number of machines running the system
- Increase fault tolerance and availability, remove single point of failures
- Increase attack resistance, because no central points exist

1.3.2 Reasons for political decentralization

- Increate **collusion resistance**, it is harder to act in ways that benefit a small group at the expense of other participants
- Power can be distributed "equally"

1.3.3 Reasons for logical decentralization

Logical decentralization is not always possible or even wanted, especially in use cases we cover. An example are **Distributed Ledgers**, where the goal is to have one commonly agreed state of the system at any point in time.

1.4 Risks of decentralization

Decentralized systems come with risks/challenges to avoid harm to the system or its participants:

- Impersonation or Misrepresentation
- Fraudulent actions
- Collusion
- Denial-of-Service-attacks

1.5 Two Generals' Problem

Cryptography can be used to ensure authenticity, integrity and confidentiality of a message sent over an (unreliable) channel. But it's not possible to ensure **availability** (that a message has been delivered), we can only reduce the probability of these events by using heuristics like *sequence numbers* or *retransmissions*.

Decentralized Systems [WIP] Fundamentals, Modeling, and Applications

References

[van Steen and Tanenbaum, 2016] van Steen, M. and Tanenbaum, A. S. (2016). A brief introduction to distributed systems. Computing, 98(10):967-1009.