Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 0 940 470 A2 (11)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 08.09.1999 Bulletin 1999/36

(21) Application number: 98660149.0

(22) Date of filing: 29.12.1998

(51) Int. Cl.6: C12N 15/62, C12N 9/88, C07K 14/62, C07K 14/47, G01N 33/564

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

> MC NL PT SE **Designated Extension States:** AL LT LV MK RO SI

(30) Priority: 29.01.1998 US 15399

(71) Applicant: WALLAC OY 20101 Turku (FI)

(72) Inventor: Hinkkanen, Ari 20720 Turku (FI)

(74) Representative: Öhman, Ann-Marie Turun Patenttitoimisto Oy, P.O. Box 99 20521 Turku (FI)

(54)A fusion protein and its use for the simultaneous detection of autoantibodies related to insulin-dependent diabetes mellitus

The invention relates to a fusion protein having (57)epitopes of at least two of the autoantigens glutamic acid decarboxylase (GAD65), islet cell antigen (IA2) and preproinsulin (PPINS) wherein said epitopes are connected with a linker peptide. The fusion protein must be able to bind to a solid phase.

The invention also concerns the cDNA, and a vector and cell comprising said cDNA. Furthermore, this invention relates to the use of said fusion protein in an immunoassay for the simultaneous detection of autoantibodies related to insulin-dependent diabetes mellitus.

Description

10

FIELD OF THE INVENTION

[0001] This invention relates to a new fusion protein, its cDNA, and a vector and a cell comprising said cDNA. Furthermore, this invention relates to the use of said fusion protein in an immunoassay for simultaneous detection of autoantibodies related to insulin dependent diabetes mellitus.

BACKGROUND OF THE INVENTION

[0002] The publications and other materials used herein to illuminate the background of the invention, and in particular, cases to provide additional details respecting the practice, are incorporated by reference.

[0003] GAD65, IA2 and insulin are pancreatic proteins produced by the beta cells (for review see Atkinson and Maclaren 1993). Autoantibodies to these proteins are detected in patients with insulin-dependent diabetes mellitus (IDDM) and healthy individuals at risk for developing the disease. More than 80 % of newly-diagnosed IDDM patients have antibodies against at least one of these proteins (Baekkeskov et al. 1982). The risk of diabetes in relatives of IDDM patients increases markedly when the number of autoantibodies detected in the serum increases (Bingley et al. 1994; Verge et al. 1994). In a group of high genetic risk, presence in serum of antibodies to one or more of these autoantigens predicted the disease onset accurately (Verge et al. 1996). Also permanently healthy subjects (as regards IDDM) may have temporarily or permanently antibodies against one of the three antigens, but antibodies against multiple antigens occur extremely rarely. It is therefore sought to simultaneously determine reactivity against two or all three of the proteins, as the positivity for more than one of these autoantibodies remarkably increases disease risk (Bingley et al. 1994).

[0004] GAD65 (Bu et al. 1992) has several epitopes recognised by autoantibodies (Falorni et al. 1996). These are located mostly at the center and C-terminus of the molecule whereas the N-terminal quarter of the molecule is thought to contribute to membrane docking of the protein, and to contain few if any IDDM-informative epitopes (Falorni et al. 1996).

[0005] IA2 (also known as ICA512) (Rabin et al. 1994) is a transmembrane protein with still unknown function. The intracellular part of the molecule (IA2_{ic}, about 40 kDa) contains a domain with similarity to the active center of protein phosphatases (Fischer et al. 1991), but no enzymatic activity has been ascribed the IA2 molecule. The informative epitopes of IA2 reside in the cytoplasmic domain and herein they are concentrated at the C-terminal half (Lampasona et al. 1996; Zhang et al. 1997).

[0006] Insulin (Bell et al. 1980) is made by pancreatic β-cells as a precursor preproinsulin which is cleaved to proinsulin. The proinsulin is further processed to give the insulin consisting of A and B chains connected together with two disulphide bridges.

[0007] More than 20% of sera collected from newly-diagnosed IDDM-patients contain insulin autoantibodies (IAA) (Sabbah et al. 1996). As, however, the immunity to insulin may have arisen through formation of response to prepro- or proinsulins (Snorgaard et al. 1996), it is relevant to use these peptides in this assay system. Tolerance to this autoantigen may be induced by oral insulin feeding in non-obese diabetic (NOD) mice (Zhang et al. 1991).

[0008] In addition to linear epitopes, autoantibodies are thought to recognize important conformational epitopes resulting from the three-dimensional structure of the protein (Kim et al. 1993). Antigen molecules produced or assayed using techniques which destroy these structures are less informative as regards IDDM or prediabetes.

[0009] Several methods for detection of autoantibodies in IDDM sera have been elaborated. One method exploits in vitro transcription-translation for producing radioactively labeled autoantigen (IA2, GAD65) (Petersen et al. 1994), while in another method biotin-labeled GAD65 is added to the patient sera and after formation of immune complexes, free label is detected and quantitated (Mehta et al. 1996). These methods all suffer from suboptimal niveau of informativity, as they employ only one specific autoantigen. Moreover they have the drawbacks associated with the use of radiochemicals.

[0010] Using a protein molecule in which a combination of the epitopes from at least two but preferably three different autoantigens are represented should detect a larger panel of autoantibodies thus revealing more specifically the population of individuals at risk of developing the disease.

SUMMARY OF THE INVENTION

[0011] According to one aspect, this invention relates to a new fusion protein having epitopes of at least two of the autoantigens glutamic acid decarboxylase (GAD65), islet cell antigen (IA2) and preproinsulin (PPINS) wherein said epitopes are connected with a linker peptide, said fusion protein being able to bind to a solid phase.

[0012] According to another aspect, the invention concerns a cDNA sequence encoding the said fusion protein.

[0013] According to a third aspect, the invention concerns a vector and a cell comprising said cDNA.

[0014] According to a fourth aspect, the invention concerns an immunoassay for the simultaneous determination in a sample of a person's body fluid of at least two insulin-dependent diabetes mellitus (IDDM) -related autoantibodies, wherein each autoantibody is specific for an epitope of the autoantigens glutamic acid decarboxylase (GAD65), islet cell antigen (IA2) or prepriorinsulin (PPINS). The immunoassay comprises the steps of

- incubating said sample with said autoantigens or, alternatively, with the fusion protein according to this invention, said autoantigens or said fusion protein being bound to a solid support,
- adding at least one labeled reagent capable of binding to one or more of said autoantibodies, and
- quantifying the signals from the labels bound to the solid phase.

[0015] According to still one aspect, the invention concerns a method for diagnosing a person's risk of developing insulin-dependent diabetes mellitus (IDDM), said method comprising the determination in a sample of said person's body fluid of at least two insulin dependent diabetes mellitus (IDDM) -related autoantibodies specific for an epitope of the autoantigens glutamic acid decarboxylase (GAD65), islet cell antigen (IA2) or preproinsulin (PPINS), wherein the presence of at least two of said autoantibodies are indicative for said person's risk of developing IDDM. The order of appearance of these autoantibodies is used to predict the time point of onset of the disease.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016]

10

20

25

35

Figures 1a and 1b show the cDNA construct for a fusion protein according to this invention (flag peptide (SEQ ID NO: 1); Not I (SEQ ID NO: 2); poly-his (SEQ ID NO: 3) and Sgf I (SEQ ID NO: 4)),

Figure 2a shows the amino acid sequence of the IA2 protein SEQ ID NO: 5),

Figure 2b shows the amino acid sequence of the GAD65 protein (SEQ ID NO: 6),

Figure 2c shows the amino acid sequence of preproinsulin (PPINS) (SEQ ID NO: 7),

Figure 3 shows the fusion protein according to this invention attached to a solid support, autoantibodies attached to epitopes of said protein, and labeled reagents bound to said autoantibodies, wherein the reagents are labeled with different labels, and

Figure 4 shows the fusion protein according to this invention attached to a solid support, autoantibodies attached to epitopes of said protein, and labeled reagents bound to said autoantibodies, wherein the reagents are labeled with the same label.

40 [0017] The nucleotide sequence encoding GAD65 is SEQ ID NO: 8, the nucleotide sequence encoding IA2 is SEQ ID NO: 9 and the human insulin gene is SEQ ID NO: 10.

DETAILED DESCRIPTION OF THE INVENTION

45 [0018] The term "epitope" can be an amino acid sequence anything from very few (about 5 to 10) amino acids of the autoantigens up to the whole autoantigen. Preferable lengths of the epitopes are represented by the underlined amino acid sequences in Figures 2a and 2b, and the whole antigen sequence is disclosed in Figure 2c. Thus, the epitope of IA2 comprises preferably the amino acids 771-979 of the amino acid sequence shown in Figure 2a. Another preferred alternative is the whole intracellular domain (amino acids ranging from about 576 to 979 of the sequence in Figure 2a).
50 The epitope of GAD65 comprises preferably the amino acids 102-585 of the amino acid sequence shown in Figure 2b,

The epitope of GAD65 comprises preferably the amino acids 102-585 of the amino acid sequence shown in Figure 2b, and the epitope of PPINS comprises preferably all the amino acids 1-110 of the polypeptide shown in Figure 2c. It should be noted that the above mentioned specific sequences are examples only.

[0019] According to a preferred embodiment, the fusion protein has epitopes of each of the autoantigens GAD65, IA2 and PPINS. Such a fusion protein allows simultaneous detection of autoantibodies specific for any of said autoantigens.

[0020] Said fusion protein containing epitopes of GAD65, IA2 and PPINS is formed by combining these domains via

short peptides consisting of amino acid residues, e.g. lysine and arginine residues.

[0021] The epitopes from distinct autoantigens will be linked together via short peptides containing e.g. several lysine residues, which allows preferential labeling of these lys-residues. For construction of the polygenic cDNA, the linker-

encoding cDNA contains a recognition site for a rarely cutting restriction enzyme such as Not I or Sgf I (see Figure 1a and 1b).

[0022] These linker residues may be connected to a member of an affinity binding pair so as to enable the binding of said fusion protein to a solid phase. The bioaffinity pair may be e.g. biotin - streptavidin. The residues (lysine) can be biotinylated after which the fusion protein is attached to a streptavidin-coated solid phase. The solid phase can e.g. be a well of a microtitration strip or plate. Alternatively, the solid phase consists of microparticles.

[0023] The fusion protein can alternatively be bound to the solid phase by direct adsorption. Furthermore, the fusion protein can be covalently linked to the solid phase. In this case the fusion protein must be provided with groups able to create a covalent bond with the solid phase.

[0024] Figures 2 and sequences SEQ ID NO: 8 - 10 show the amino acid sequences and the nucleotide sequences, respectively, of the preferred epitopes.

[0025] The following illustrates the construction of the fusion protein and its preparation.

[0026] The N-terminus of the hybrid protein and the single proteins will contain a flag peptide NH2-DYKDDDDK-COOH (SEQ ID NO: 1) with a free N-terminal amino group to allow recognition of the protein using M1 monoclonal antibody (ATCC cell line nr. HB 9259). This enables detection of the protein in SDS-PAGE where not all monoclonals function

[0027] At the carboxy-terminal end of the fusion protein and in the single antigens a motif X-X-G-S-H-H-H-H-H (SEQ ID NO: 11) is introduced to allow purification of the protein with metal chelate affinity chromatography and detection with monoclonal antibody against this epitope (Cedarlane Laboratories Ltd, Canada).

[0028] The GAD65 gene (Bu et al. 1992) is, for example, amplified with PCR (nucleotides 1311-1755) in such a manner that 101 amino acid residues are removed from the N-terminus.

[0029] The 3' -end oligonucleotide contains 17 bases complementary to the mRNA of GAD65 and an additional sequence encoding half of a peptide forming the bridge between GAD65 and IA2 domains.

[0030] The nucleotide sequence of the bridge is for example

25

30

35

Not I

GAD65-AAGAAGAAGCGCCGCGAAAGAAGAAG-IA2 (SEQ ID NO: 12; amino acid sequence of the peptide KKKRPRKKK (SEQ ID NO: 2)), or

Sgf I

GAD65-AAGAAGAAGCGATCGCGAAAGAAGAAG-IA2 (SEQ ID NO:13; amino

acid sequence KKKRSRKKK (SEQ ID NO: 4)). The restriction enzyme recognition sites are underlined in the middle. The fragments are made from a plasmid harbouring said cDNAs with PCR and digested with appropriate restriction enzymes (e.g. Not I or Sgf I) and cloned into appropriate vectors. The GAD65 part is linked to IA2 and this to PPINS, using general cloning techniques.

[0031] The IA2 gene and the PPINS gene 5'-oligo contain half of the polylysine-arginine-encoding sequence with a Not I or Sgf I site for coupling to GAD65 and the IA2 gene 3'-end, respectively. The 3'-oligo of PPINS has a histidine hexapeptide-encoding sequence to enable antibody recognition and metal chelate chromatography purification and/or immobilization if necessary (Mauch et al. 1993).

[0032] Purified, restriction enzyme-treated PCR fragments are cloned in a FastBac derivative and E.coli DH10Bac cells are transfected with the plasmid. Recombinant clones are selected and DNA isolated and transfected into Sf9 insect cells.

[0033] Virus-producing cells are cultivated and stock virus made. Large-scale cultures are used to produce recombinant single proteins and the polyprotein.

[0034] SDS-PAGE/Western analysis is used to analyse size and immunoreactivity of the recombinant polyproteins. The proteins are blotted onto a nitrocellulose or nylon membrane and GAD/IA2/PPINS antibodies used to detect the product visualised with enhanced chemiluminescence, ECL.

[0035] For purification of the polyprotein GAD65-specific monoclonal antibody (GAD6, Developmental Studies Hybridoma Bank, Iowa University) is immobilized to Sepharose 4B activated with cyanogen bromide (Pharmacia, Uppsala, Sweden). Elution of the protein is performed at low pH (3-4) and solubility is achieved by adding detergents (e.g. Nonidet or Tween) to allow dissociation from for example residual cell debris. Alternatively, M1 antibody (ATCC cell line no.

HB 9259) recognising the N-terminal flag epitope is coupled to Sepharose and the single proteins and the polyproteins are bound in the presence of calcium ions and elution is achieved via calcium depletion.

[0036] The steps from cloning to large scale production can be described in more detail as follows:

- 1. Cloning into the pK503-9 vector (Kari Keinānen VTT Finland), a derivative of pFastBac (Gibco BRL Paisley Scotland) of GAD65, or IA2 or PPINS gene, each containing a flag recognition signal (FLAG^R, Immunex Corporation) for antibody detection and a signal peptide for ecdysone glucotransferase (EGT) for transport into the endoplasmatic reticulum for removal of the signal peptide with simultaneous release of N-terminal aspartate for M1 antibody recognition. The constructs contain each a X-X-G-S-H-H-H-H-H-Carboxyterminal peptide (SEQ ID NO: 11) to allow metal chelate affinity purification and detection with specific antibody (Cedarlane, Canada) of the product.
- 2. Transformation into competent E. coli DH10Bac cells of the plasmids containing the single genes.
- 3. Isolation of recombinant Bacmid DNA and transfection with the fused DNA of the Sf9 or Hi-5 insect cells.
- 4. Production of recombinant stock virus.

5

10

15

20

25

5. Large scale production of the proteins.

- 6. Cloning into pK503-9 vector of a cDNA construct for the fusion protein (FP) comprising GAD65 (nt 1311-1755; aa 102-585)-IA2(nt 2313-2937; aa 771-979)PPINS (nt 2424-2610 and 3396-3539 (of the genomic DNA sequence, accession No. V00565); aa 1-110) in all alternative orders.
- 7. Transformation into competent E. coli DH10Bac cells of the plasmids containing the fusion protein.
- 8. Isolation of recombinant Bacmid DNA and transfection with the fused DNA of the Sf9 or Hi-5 insect cells.
- 9. Production of recombinant stock virus.
- 10. Large scale production of the fusion protein.
- [0037] In case the baculovirus expression system does not work optimally, alternative systems such as E.coli, yeast, or in vitro transcription translation assay (Petersen et al. 1994) will be used for production of said polypeptides.
 - [0038] The present invention relates further to the use of the fusion protein in an immunoassay for the detection of several pancreatic beta-cell autoantibodies in IDDM patients and prediabetic sera. The assay may detect patients at risk of developing IDDM, i.e. having a pre-IDDM condition. As a multicomponent assay, the method could also be used to predict the time point of onset of the disease. The methodology which combines epitopes of several islet beta cell autoantigens increases the informativity and prediction value of the test aimed at prediction of risk and onset of disease in individuals genetically predisposed to IDDM.
- [0039] In the immunoassay according to this invention, a sample of the person's body fluid (e.g. serum) is incubated with the fusion protein bound to a solid surface, e.g. a microtitration plate or solid gel beads. The bound autoantigens are thereafter detected with a labeled reagent. The reagents can be the single autoantigens GAD65, IA2 and PPINS; or proteins comprising epitopes thereof. These reagents are used to detect free antigen-binding regions (V-regions) on the bound autoantibodies. One variant of the method will be used for differential detection of the individual autoantigen specificities of the antibody in one assay if individual autoantigens (AAGs) labeled with three different labels are used (see Figure 3). Alternatively, when the polyprotein (the fusion protein) is labeled with only one label, it can be used to reveal the sum of these three reactivities in the sample (Figure 4). The same result is achieved if the single antigens are all labeled with the same label. The labeled reagent can further be an anti-human monoclonal antibody. In this case the assay can reveal only the sum of the three autoantibodies.
- [0040] The technique which involves use of the label attached to the fusion protein or individual autoantigens circumvents several problems encountered in the conventional assays. First, there is little or no nonspecific binding to the vials due to the fact that the carrier surfaces have already been blocked with the corresponding antigen. Second, the attachment via a bioaffinity pair such as streptavidin/biotin interaction to the vial and use of a flexible peptide between the individual antigenic epitopes enable free motion and folding of the protein in the solution (Figure 4).
- [0041] The label can be any suitable label. However, according to a preferred embodiment, the label is a lanthanide. In case three different labels are used, said labels can be e.g. Eu, Sm, Tb and Dy (Siitari et al. 1990; Hemmilä et al. 1993). In such a case the detection is based on time-resolved fluorescence.
- [0042] The free labeled reagent can be removed after the incubation step before the signal is quantified (heterogeneous assay), or the signal can be quantified without foregoing removal of the free labelled reagent (homogeneous assay).

[0043] The procedures are preferably automatized. Automatization of the procedures involves laboratory robots which apply samples onto cover slips and the fluorescence is detected in an micro array system in an appropriate unit (Wallac OY, Finland).

[0044] The simultaneous detection of antibodies against the three autoantigens increases the capacity to process large sample series. The use of a micro array system substantially increases the capacity. This has become necessary as nationwide screenings of newborns are undertaken in several research centers.

[0045] The test principle using time-resolved fluoroimmunoassay (TR-FIA) offers an extremely sensitive means for detection of autoantibodies with minimum amount of nonspecific reactivity due to used specific antigen label. The longevity of the lanthanide label is also an advantage as compared to radiolabel.

[0046] The system allows retaining of important conformational epitopes of the antigen as immobilization of the polyprotein is via specific flexible intervening sequences and causes minimal tortion to the antigen.

[0047] The following illustrates the use of the fusion protein in an immunoassay:

[0048] To the polyprotein (fusion protein) biotin is bound in limiting conditions to prevent other than the lysine residues of the linker peptide to be biotinylated. Streptavidine-coated microscope slides are treated with biotin - fusion protein and the residual sites are blocked with bovine serum albumin or another suitable binding protein.

[0049] M1 flag-specific monoclonal antibody will be used to monitor binding onto solid support of free recombinant autoantigens while autoantigen-specific monoclonals (e.g. GAD1, GAD6, MICA-3 (Boehringer) etc.) will be used to detect availability of specific epitopes. After incubation with sample sera, Eu-labeled GAD65, Sm-labeled IA2 and Tb-labeled PPINS (produced as a single protein with the baculosystem) are printed robotically onto the microscope slides in four quadrants covering an area of about 1 cm², allowed to bind, washed and dried in vacuum, and the fluorescence is measured on TR fluorometer.

[0050] The functionality of the method is tested using IDDM sera known to be positive for one or more of the antigens used.

[0051] For specificity testing recombinant GAD65, IA2 and PPINS, or fusion protein are added into patient sample to preadsorb specific antibodies.

[0052] The informativity will be compared with conventional systems. Statistical tests will be used to create best possible segregation of the positive and negative assay values.

[0053] The high density array system is fully automatized.

[0054] The invention is further illustrated by the following examples.

Example 1

30

Labeling procedure

[0055] Isothiocyantophenyl-DTTA-Eu, or Tb, or Sm (Mukkala 1989) will be used for labeling of the FP or the single autoantigens. Mainly the protocols of Lövgren & Petterson (1990) and Hemmilä et al. (1984) will be followed. 30-100 fold molar excess of the label substance will be used giving approximately 10-12 lanthanide molecules per protein molecule. For Tb, 500 fold excess will be used. The coupling is carried out for 18 hr at 0 °C in 0.1 M bicarbonate buffer pH 9.2. The Eu (Tb,Sm)-AAg complex is separated from free Eu (Tb, Sm) by gel filtration in a Sepharose 6B column equilibrated with 0.05 M Tris-HCl buffer pH 7.75 containing 0.9% NaCl and 0.05% NaN₃. The Eu-AAg complex is stored at 4 °C.

Example 2

5 immunoassay

[0056] The assay is performed in the wells of polystyrene microtitration strip coated with unlabeled autoantigen preparate for 18 hr at 25 °C in 0.1 M bicarbonate buffer pH 9.6 (Siitari & Kurppa 1987). The strips are washed prior to use with 0.9% NaCl containing 0.05 % Tween 20 and 0.3% Germal II. To each well 100 μ l of diluted (1:10) serum is added and incubated for 1 hr at 40 °C, washed 2x with the wash solution and 200 μ l of the Eu-labeled autoantigen fraction (50 ng/well) is added.

[0057] The strips are incubated for 1 hr at 40 °C. The strips are washed 5x with the washing solution. Thereafter Enhancement Solution (Wallac) 200 µl/well is added. Strips are shaken for 10 min in a plate shaker and measured in EG&G Wallac Victor fluorometer for 1s/specimen. The photons emitted are measured as counts/s. Automated data reduction program calculates mean value of duplicates and the coefficient of variation (CV%).

[0058] For future development, the assay formate will be miniaturized e.g. by immobilizing the autoantigen molecules onto microparticles (Lövgren et al. 1997) or as a microarray onto glass cover slips.

[0059] It will be appreciated that the methods of the present invention can be incorporated in the form of a variety of

embodiments, only a few of which are disclosed herein. It will be apparent for the specialist in the field that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.

5 REFERENCES

- [0060] Atkinson MA, Kaufman DL, Newman D, Tobin AJ, MacLaren NK. 1993. Islet cell cytoplasmic autoantibody reactivity to glutamate decarboxylase in insulin-dependent diabetes. J. Clin Invest. 91: 350-56.
- [0061] Baekkeskov S, Nielsen, JH, Marner B, Blide T, Ludvigson J. Lenmark Å, 1982. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature. 298:167-169.
- [0062] Bell, GI, Pictet, RL, Rutter, WJ, Cordell, B, Tischer, E and Goodman, HM 1980. Sequence of the human insulingene. Nature. 284: 26-32.
- [0063] Berg H, Walter M, Mauch L, Seissler J, Northemann W. 1993. Recombinant human preproinsulin. Expression, purification and reaction with insulin autoantibodies in sera from patients with insulin-dependent diabetes mellitus. J Immunol Methods. 164: 221-31.
- [0064] Bingley PJ, Christie MR, Bonifacio E, et al. 1994. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes. 43: 1113-1120.
- [0065] Bu DF, Erlander MG, Hits BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin-AJ. 1992. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc. 20 Natl. Acad. Sci. U.S.A. 89: 2115-2119.
 - [0066] Falorni A, Ackefors M, Carlberg C, Daniels T, Persson B, Robertson J, Lernmark Å. 1996. Diagnostic sensitivity of immunodominant epitopes of glutamic acid decarboxylase (GAD65) autoantibodies in childhood IDDM. Diabetologia. 39: 1091-1098.
 - [0067] Fischer EH, Charbonnean H, Tonks NH. 1991. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science. 253: 401-406.
 - [0068] Hemmilä I, Dakubu S, Mukkala V-M, Siitari H, Lövgren T. 1984. Europium as a label in time-resolved immunofluorimetric assays. Anal. Biochem. 137: 335-343.
 - [0069] Hemmilá I, Mukkala V-M, Latva M, Kiilholma P. 1993. Di- and tetracarboxylate derivatives of pyridines, bipyridines and terpyridines as luminogenic reagents for time-resolved fluorometric determination of terbium and dysprosium. Journal of Biochemical and Biophysical Methods. 26: 283-290.
 - [0070] Kim, J, M Namchuk, T Bugawan, Q Fu, M Jaffe, Y G Shi, H J Aanstoot, C W Turck, H Erlich, V Lennon, and S Baekkeskov. 1994. Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD(65), distinguish Stiff-Man syndrome from insulin-dependent diabetes mellitus. Journal of Experimental Medicine. 180: 595-606.
- [0071] Lampasona V, Bearzatto M, Genovese S, Bosi E, Ferrari M, Bonifacio E. 1996. Autoantibodies in insulin-dependent diabetes recognize distinct cytoplasmic domains of the protein tyrosine phosphatase-like IA-2 autoantigen. J. Immunol. 157: 2707-2711.
- [0072] Lövgren, T, Heinonen, P, Lehtinen, P, Hakala, H, Heinola J, Harju J., Takalo, H., Mukkala, V-M, Schmiod, R, Lönnberg, H, Petterson, K and litiä, A 1997. Sensitive bioaffinity assays with individual microparticles and time-resolved fluorometry. Clin. Chem. 43: 1937-1943.
 - [0073] Lövgren T and Petterson K 1990. Time-resolved fluoroimmunoassay: advatages and limitations. In: CRC Luminescence immunoassays and molecular applications, Eds. van Dyke K, van Dyke R CRC Press Inc. Boca Raton, FL, pp. 233-253.
- [0074] Mauch, L Seissler, J, Haubruck, H, Cook, NJ, Abney, CC, Berthold, H, Wirbelauer, C, Liedvogel, B, Scherbaum, WA and Northemann, W 1993. Baculovirus-mediated expression of human 65 kDa and 67 kDa glutamic acid decarbox-ylases in SF9 insect cells and their relevance in diagnosis of insulin-dependent diabetes mellitus. J. Biochem. Tokyo. 113: 600-704
 - [0075] Mehta HB, Vold BS, Minkin S, Ullman E. 1996. DELISA: sensitive nonisotopic assay for GAD65 autoantibodies, a key risk-assessment marker for insulin-dependent diabetes mellitus. Clin. Chem. 42: 263-269.
- [0076] Mukkala V-M, Mikola H, Hemmila I. 1989. The synthesis and use of activated N-benzyl derivatives of diethylenetriaminetetraacetic acids: alternative reagents for labeling of antibodies with metal ions. Anal. Biochem. 176: 319-
 - [0077] Petersen, JS, Moody HA, Karlsen AE, et al. 1994. Detction of GAD65 antibodies in diabetes and other autoimmune diseases using a simple radioligand assay. Diabetes. 43: 459-467.
- [9078] Rabin DU, Pleasic SM, Shapiro JA, Yoo-Warren H, Oles J, Hicks JM, Goldstein DE, Rae PMM. 1994. Islet cell antigen 512 is a diabetes-specific islet autoantigen related to protein tyrosine phosphatases. J. Immunol 152: 3183-3188.
 - [0079] Sabbah, E, Kulmala P, Veijola R, Vahasalo P, Karjalainen J, Tuomilehto-Wolf E, Akerblom HK, and Knip M.

- 1996. Glutamic acid decarboxylase antibodies in relation to other autoantibodies and genetic risk markers in children with newly diagnosed insulin-dependent diabetes. J. Clin. Endocrinol. Metab. 81: 2455-2459.
- [0080] Siitari & Kurppa 1987. Time-resolved fluoroimmunoassay in the detection of plant viruses. J. Gen. Virol. 68: 1423-1428.
- [0081] Siitari, H, Turunen, P, Schrimsher, J & Nunn, M 1990. New sensitive and specific assay for human immunodeficiency virus antibodies using labeled recombinant fusion protein and time-resolved fluoroimmunoassay. J. Clin. Microbiol. 28: 2022-2029.
 - [0082] Snorgaard O, Kiens LL, Roder ME, Hartling SG, Dinesen B, Binder C. Proinsulin immunoreactivity inrecent-onset IDDM: the significance of insulin antibodies and insulin autoantibodies. Diabetes-Care. 19: 146-150.
- 10083] Verge CF, Gianani R, Kawasaki E, Yu L, Pietropaolo M, Chase HP, and Eisenbarth GS. 1996, 379-383 and Verge CF, Howard NJ, and Rowley MJ et al. 1994. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetologia. 37: 1113-1120.
 - [0084] Zhang, ZJ, Davidson L, Eisenbarth G, and Weiner HL. 1991. Suppression of Diabetes in Nonobese Diabetic Mice by Oral Administration of Porcine Insulin. Proc. Natl. Acad. Sci. U.S.A. 88: 10252-10256.
- 15 [0085] Zhang, B, Lan, M, and Notkins, AL 1997. Autoantibodies to IA-2 in IDDM: Location of major antigenic determinants. Diabetes. 46: 40-43.

20

25

30

35

40

45

50

55

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
•	(i) APPLICANT: Hinkkanen, Ari
10	(ii) TITLE OF INVENTION: A New Fusion Protein and Its Use in an Immunoassay for the Simultaneous Detection of Autoantibodies Related to Insulin-Dependent Diabetes Mellitus
	(iii) NUMBER OF SEQUENCES: 13
15	 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Rothwell, Figg, Ernst & Kurz, P.C. (B) STREET: 555 Thirteenth Street N.W., Suite 701-E (C) CITY: Washington (D) STATE: D.C. (E) COUNTRY: USA (F) ZIP: 20004
20	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release \$1.0, Version \$1.30
25	 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: US 09/015,399 (B) FILING DATE: 29-JAN-1998 (C) CLASSIFICATION:
30	<pre>(viii) ATTORNEY/AGENT INFORMATION:</pre>
	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 202-783-6040 (B) TELEFAX: 202-783-6031
35	(2) INFORMATION FOR SEQ ID NO:1:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
	(v) FRAGMENT TYPE: N-terminal
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
	Asp Tyr Lys Asp Asp Asp Lys 1 5
50	(2) INFORMATION FOR SEQ ID NO:2:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids

55

			(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
5		(ii)	MOLECULE TYPE: peptide
		(v)	FRAGMENT TYPE: internal
10		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:2:
		Lys 1	Lys Lys Arg Pro Arg Lys Lys Lys 5
	(2)	INFO	RMATION FOR SEQ ID NO:3:
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
00		(ii)	MOLECULE TYPE: peptide
20		(V)	FRAGMENT TYPE: C-terminal
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:3:
25		Cys 1	Asn Gly Ser His His His His His 5 10
	(2)	INFO	RMATION FOR SEQ ID NO:4:
30		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: peptide
35		(V)	FRAGMENT TYPE: internal
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:4:
40		Lys 1	Lys Lys Arg Ser Arg Lys Lys Lys 5
	(2)	INFO	RMATION FOR SEQ ID NO:5:
45		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 979 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: protein
50		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:5:
		Met 1	Arg Arg Pro Arg Arg Pro Gly Gly Leu Gly Gly Ser Gly Gly Leu 5

	Arg	Leu	Leu	Leu 20	Cys	Leu	Leu	Leu	Leu 25	Ser	Ser	Arg	Pro	€1y 30	Gly	Cys
5	Ser	Ala	Val 35	Ser	Ala	His	Gly	Cys 40	Leu	Phe	Asp	Arg	Arg 45	Leu	Cys	Ser
	His	Leu 50	Glu	Val	Cys	Ile	Gln 55	Asp	Gly	Leu	Phe	Gly 60	Gln	Суз	Gln	Val
10	Gly 65	Val	Gly	Gln	Ala	Arg 70	Pro	Leu	Leu	Gln	Val 75	Thr	Ser	Pro	Val	Leu 80
	Gln	Arg	Leu	Gln	Gly 85	Val	Leu	Arg	Gln	Leu 90	Met	Ser	Gln	Gly	Leu 95	Ser
15	Trp	His	Asp	Asp 100	Leu	Thr	Gln	Tyr	Val 105	Ile	Ser	Gln	Glu	Met 110	Glu	Arg
	Ile	Pro	Arg 115	Leu	Arg	Pro	Pro	Glu 120	Pro	Arg	Pro	Arg	Asp 125	Arg	Ser	Gly
20	Leu	Ala 130	Pro	Lys	Arg	Pro	Gly 135	Pro	Ala	Gly	Glu	Leu 140	Leu	Leu	Gln	Asp
	Ile 145	Pro	Thr	Gly	Ser	Ala 150	Pro	Ala	Ala	Gln	His 155	Arg	Leu	Pro	Gln	Pro 160
-	Pro	Val	Gly	Lys	Gly 165	Gly	Ala	Gly	Ala	Ser 170	Ser	Ser	Leu	Ser	Pro 175	Leu
25	Gln	Ala	Glu	Leu 180	Leu	Pro	Pro	Leu	Leu 185	Glu	His	Leu	Leu	Leu 190	Pro	Pro
	Gln	Pro	Pro 195	His	Pro	Ser	Leu	Ser 200	Tyr	Glu	Pro	Ala	Leu 205	Leu	Gln	Pro
30	Tyr	Leu 210	Phe	His	Gln	Phe	Gly 215	Ser	Arg	Asp	Gly	Ser 220	Arg	Val	Ser	Glu
	Gly 225	Ser	Pro	Gly	Met	Val 230	Ser	Val	Gly	Pro	Leu 235	Pro	Lys	Ala	Glu	Ala 240
35	Pro	Ala	Leu	Phe	Ser 245	Arg	Thr	Ala	Ser	Lys 250	Gly	Ile	Phe	Gly	Asp 255	His
	Pro	Gly	His	Ser 260	Tyr	Gly	Asp	Leu	Pro 265	Gly	Pro	Ser	Pro	Ala 270	Gln	Leu
40	Phe	Gln	Asp 275	Ser	Gly	Leu	Leu	Tyr 280	Leu	Ala	Gln	Glu	Leu 285	Pro	Ala	Pro
	Ser	Arg 290	Ala	Arg	Val	Pro	Arg 295	Leu	Pro	Glu	Gln	Gly 300	Ser	Ser	Ser	Arg
45	Ala 305	Glu	Asp	Ser	Pro	Glu 310	Gly	Tyr	Glu	Lys	Glu 315	Gly	Leu	Gly	Asp	Arg 320
	Gly	Glu	Lys	Pro	Ala 325	Ser	Pro	Ala	Val	Gln 330	Pro	Asp	Ala	Ala	Leu 335	Gln
50	Arg	Leu	Ala	Ala 340	Val	Leu	Ala	Gly	Туг 345	Gly	Val	Glu	Leu	Arg 350	Gln	Leu
	Thr	Pro	Glu 355		Leu	Ser	Thr	Leu 360	Leu	Thr	Leu	Leu	Gln 365	Leu	Leu	Pro

	Lys	Gly 370	Ala	Gly	Arg	Asn	Pro 375	Gly	Gly	Val	Val	Asn 380	Val	Gly	Ala	Asp
5	Ile 385	Lys	Lys	Thr	Met	Glu 390	Gly	Pro	Val	Glu	Gly 395	Arg	Asp	Thr	Ala	Glu 400
	Leu	Pro	Ala	Arg	Thr 405	Ser	Pro	Met	Pro	Gly 410	His	Pro	Thr	Ala	Ser 415	Pro
10	Thr	Ser	Ser	Glu 420	Val	Gln	Gln	Val	Pro 425	Ser	Pro	Val	Ser	Ser 430	Glu	Pro
	Pro	Lys	Ala 435	Ala	Arg	Pro	Pro	Val 440	Thr	Pro	Val	Leu	Leu 445	Glu	Lys	Lys
15	Ser	Pro 450	Leu	Gly	Gln	Ser	Gln 455	Pro	Thr	Val	Ala	Gly 460	Gln	Pro	Ser	Ala
	Arg 465	Pro	Ala	Ala	Glu	Glu 470	Tyr	Gly	Tyr	Ile	Val 475	Thr	Asp	Gln	Lys	Pro 480
20	Leu	Ser	Leu	Ala	Ala 485	Gly	Val	Lys	Leu	Leu 490	Glu	Ile	Leu	Ala	Glu 495	His
	Val	His	Met	Ser 500	Ser	Gly	Ser	Phe	Ile 505	Asn	Ile	Ser	Val	Val 510	Gly	Pro
25	Ala	Leu	Thr 515	Phe	Arg	Ile	Arg	His 520	Asn	Glu	Gln	Asn	Leu 525	Ser	Leu	Ala
	Asp	Val 530	Thr	Gln	Gln	Ala	Gly 535	Leu	Val	Lys	Ser	Glu 540	Leu	Glu	Ala	Gln
30	Thr 545	Gly	Leu	Gln	Ile	Leu 550	Gln	Thr	Gly	Val	Gly 555	Gln	Arg	Glu	Glu	Ala 560
	Ala	Ala	Vāl	Leu	Pro 565	Gln	Thr	Ala	His	Ser 570	Thr	Ser	Pro	Met	Arg 575	Ser
	Val	Leu	Leu	Thr 580	Leu	Val	Ala	Leu	Ala 585	Gly	Val	Ala	Gly	Leu 590	Leu	Val
35	Ala	Leu	Ala 595	Val	Ala	Leu	Cys	Val 600	Arg	Gln	His	Ala	Arg 605	Gln	Gln	Asp
	Lys	Glu 610	Arg	Leu	Ala	Ala	Leu 615	Gly	Pro	Glu	Gly	Ala 620	His	Gly	Asp	Thr
40	Thr 625	Phe	Glu	Tyr	Gln	Asp 630	Leu	Cys	Arg	Gln	His 635	Met	Ala	Thr	Lys	Ser 640
	Leu	Phe	Asn	Arg	Ala 645	Glu	Gly	Pro	Pro	Glu 650	Pro	Ser	Arg	Val	Ser 655	Ser
4 5	Val	Ser	Ser	Gln 660	Phe	Ser	Asp	Ala	Ala 665	Gln	Ala	Ser	Pro	Ser 670	Ser	His
	Ser	Ser	Thr 675	Pro	Ser	Trp	Cys	Glu 680	Glu	Prc	Ala	Gln	Ala 685	Asn	Met	Asp
50		690					695					700				Arg
	Asn 705	Arg	Asp	Arg	Leu	Ala 710	Lys	Glu	Trp	Glr	Ala 715	Leu	Cys	Ala	Tyr	Gln 720

	Ala Glu E	Pro Asn	Thr Cys	s Ala	Thr	Ala	Gln 730	Gly	Glu	Gly	Asn	Ile 735	Lys
5	Lys Asn A	Arg His 740	Pro Asi	p Phe	Leu	Pro 745	Tyr	Asp	His	Ala	Arg 750	Ile	Lys
	Leu Lys	Val Glu 755	Ser Se	r Pro	Ser 760	Arg	Ser	Asp	Tyr	11e 765	Asn	Ala	Ser
10	Pro Ile 770	Ile Glu	His As	p Pro 775	Arg	Met	Pro	Ala	Tyr 780	Ile	Ala	Thr	Gln
	Gly Pro 1 785	Leu Ser	His Th		Ala	Asp	Phe	Trp 795	Gln	Met	Val	Trp	Glu 800
15	Ser Gly	Cys Thr	Val Il 805	e Val	Met	Leu	Thr 810	Pro	Leu	Val	Glu	Asp 815	Gly
	Val Lys (Gln Cys 820	Asp Ar	g Tyr	Trp	Pro 825	Asp	Glu	Gly	Ala	Ser 830	Leu	Tyr
20	His Val	Tyr Glu 835	Val As	n Leu	Val 840	Ser	Glu	His	Ile	Trp 845	Суз	Glu	Asp
	Phe Leu 850	Val Arg	Ser Ph	e Tyr 855	Leu	Lys	Asn	Val	Gln 860	Thr	Gln	Glu	Thr
25	Arg Thr 3	Leu Thr	Gln Ph 87		Phe	Leu	Ser	Trp 875	Pro	Ala	Glu	Gly	Thr 880
	Pro Ala	Ser Thr	Arg Pr 885	o Leu	Leu	Asp	Phe 890	Arg	Arg	Lys	Val	Asn 895	Lys
20	Cys Tyr	Arg Gly 900	Arg Se	r Cys	Pro	11 e 905	Ile	Val	His	Cys	Ser 910	Asp	Gly
30	Ala Gly	Arg Thr 915	Gly Th	r Tyr	11e 920	Leu	Ile	Asp	Met	Val 925	Leu	Asn	Arg
	Met Ala 930	Lys Gly	Val Ly	s Glu 935	Ile	Asp	Ile	Ala	Ala 940	Thr	Leu	Glu	His
35	Val Arg 945	Asp Gln	Arg Pr 95		Leu	Val	Arg	Ser 955		Asp	Gln	Phe	Glน 960
	Phe Ala	Leu Thr	Ala Va 965	ıl Ala	Glu	Glu	Val 970		Ala	Ile	Leu	Lys 975	Ala
40	Leu Pro	Gln											
(.	2) INFORMATI	ON FOR	SEQ ID	NO:6:									
4 5	(B) (C)	JENCE CH LENGTH TYPE: STRAND TOPOLO	: 585 a amino a EDNESS:	mino cid		5							
	(ii) MOLE	CULE TY	PE: pro	otein									
50	(xi) SEQU												
	Met Ala 1	Ser Pro	Gly Se	er Gly	Phe	Trp	Ser 10	· Phe	: Gly	Ser	Glu	Asp 15	Gly
55													

	Ser	Gly	Asp	Ser 20	Glu	Asn	Pro	Gly	Thr 25	Ala	Arg	Ala	Trp	Cys 30	Gln	Val
5	Ala	Gln	Lys 35	Phe	Thr	Gly	Gly	Ile 40	Gly	Asn	Lys	Leu	Cys 45	Ala	Leu	Leu
	Tyr	Gly 50	Asp	Ala	Glu	Lys	Pro 55	Ala	Glu	Ser	Gly	Gly 60	Ser	Gln	Pro	Pro
10	Arg 65	Ala	Ala	Ala	Arg	Lys 70	Ala	Ala	Cys	Ala	Cys 75	Asp	Gln	Lys	Pro	Cys 80
	Ser	Cys	Ser	Lys	Val 85	Asp	Val	Asn	Tyr	Ala 90	Phe	Leu	His	Ala	Thr 95	Asp
15	Leu	Leu	Pro	Ala 100	Cys	Asp	Gly	Glu	Arg 105	Pro	Thr	Leu	Ala	Phe 110	Leu	Gln
	Asp	Val	Met 115	Asn	Ile	Leu	Leu	Gln 120	Tyr	Val	Val	Lys	Ser 125	Phe	Asp	Arg
20		130	•			Asp	135					140				
	145					Ala 150					155					160
25			-		165	Thr				170					175	
	-	. -		180		Leu			185					190		
30		-	195			Ser		200					205			
•		210				Val	215					220				
٥٢	225					Trp 230					235					240
35		_			245					250					255	
	•			260		Val	_		265					270		
40			275			Ser		280					285			
		290				Ile	295					300				
4 5	305					Met 310					315					320
					325					330					335	Ala
50				340		Gly			345					350		
	Ile	Cys	Lys 355		Tyr	Lys	Ile	Trp 360	Met	His	Val	Asp	365	Ala	Trp	Gly

		Gly	Gly 370	Leu	Leu	Met	Ser	Arg 375	Lys	His	Lys	Trp	Lys 380	Leu	Ser	Gly	Val
5		Glu 385	Arg	Ala	Asn	Ser	Val 390	Thr	Trp	Asn	Pro	His 395	Lys	Met	Met	Gly	Val 400
		Pro	Leu	Gln	Cys	Ser 405	Ala	Leu	Leu	Val	Arg 410	Glu	Glu	Gly	Leu	Met 415	Gln
10		Asn	Cys	Asn	Gln 420	Met	His	Ala	Ser	Tyr 425	Leu	Phe	Gln	Gln	Asp 430	Lys	His
		Tyr	Asp	Leu 435	Ser	туг	Asp	Thr	Gly 440	Asp	Lys	Ala	Leu	Gln 445	Cys	Gly	Arg
15		His	Val 450	Asp	Val	Phe	Lys	Leu 455	Trp	Leu	Met	Trp	Arg 460	Ala	Lys	Gly	Thr
		Thr 465	Gly	Phe	Glu	Ala	His 470	Val	Asp	Lys	Cys	Leu 475	Glu	Leu	Ala	Glu	Tyr 480
20		Leu	Tyr	Asn	Ile	Ile 485	Lys	Asn	Arg	Glu	Gly 490	Tyr	Glu	Met	Val	Phe 495	Asp
		Gly	Lys	Pro	Gln 500	His	Thr	Asn	Val	Cys 505	Phe	Trp	Tyr	Ile	Pro 510	Pro	Ser
25		Leu	Arg	Thr 515	Leu	Glu	Asp	Asn	Glu 520	Glu	Arg	Met	Ser	Arg 525	Leu	Ser	Lys
		Val	Ala 530	Pro	Val	Ile	Lys	Ala 535	Arg	Met	Met	Glu	Tyr 5 4 0	Gly	Thr	Thr	Met
30		Val 545	Ser	Tyr	Gln	Pro	Leu 550	Gly	Asp	Lys	Val	Asn 555	Phe	Phe	Arg	Met	Val 560
		Ile	Ser	Asn	Pro	Ala 565	Ala	Thr	His	Gln	Asp 570	Ile	Asp	Phe	Leu	Ile 575	Glu
35		Glu	Ile	Glu	Arg 580		Gly	Gln	Asp	Leu 585							
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:7:									
40		(i)	(A (B (C) LE) TY) ST	NGTH PE: RAND	: 11 amin EDNE	TERI 0 am o ac SS: line	ino id		s							
		(ii)	MOL	ECUL	E TY	PE:	prot	ein									
45		(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	EQ 1	D NO	7:						
		Met 1	Ala	Leu	Trp	Met 5	Arg	Leu	Leu	Pro	Leu 10	Leu	Ala	Leu	Leu	Ala 15	Leu
50		_	_		20					25					30		Gly
		Ser	His	Leu 35	Val	Glu	Ala	Leu	Tyr 40	Leu	val	. Cys	Gly	/ Glu 45	Arg	Gly	Phe

	Phe	Tyr 50	Thr	Pro	Lys	Thr	Arg 55	Arg	Glu	Ala	Glu	Asp 60	Leu	Gln	Val	Gly	
5	Gln 65	Val	Glu	Leu	Gly	Gly 70	Gly	Pro	Gly	Ala	Gly 75	Ser	Leu	Gln	Pro	Leu 80	
	Ala	Leu	Glu	Gly	Ser 85	Leu	Gln	Lys	Arg	Gly 90	Ile	Val	Glu	Gln	Cys 95	Cys	
10	Thr	Ser	Ile	Cys 100	Ser	Leu	Tyr	Gln	Leu 105	Glu	Asn	Tyr	C)·s	Asn 110			
	(2) INFO	RMAT:	ION I	FOR S	EQ :	ID NO	0:8:										
15	(i)	(A) (B) (C)	LEN TYI	E CHANGTH: PE: r RANDE POLOG	24! ucle DNE	57 ba eic a SS: o	ase p acid doubl	oairs	3								
	(ii)	MOL	ECULI	E TYP	E: ¢	DNA											
20	(xi)	SEQ	UENCI	E DES	CRI	PTIO	N: SI	EO II	NO:	:8:							
	ACCCGCCC	-						_			СССТО	CTC	C G	CCAC	ACGGG	:	60
	ACGCACGC	SC G	CGCA	GGCC	: AA	GCCG!	AGGC	AGC	CGCC	CGC .	AGCT	CGCA	CT C	GCTG	SCGA	2	120
25	CTGCTCCAC	ST C	rcca)	AAGCO	GA:	rggc	ATCT	CCGC	GCT	CTG (GCT T :	rTGG:	C T	TTCG	GTC	}	180
	GAAGATGG	CT C	rggg	SATTO	CG	AGAA:	rccc	GGC	CAG	CGC	GAGC	TGG:	rg c	CAAG:	rggc:	Γ	240
	CAGAAGTTO	CA C	GGGC	GGCAT	CG	GAAA	CAAA	CTGT	rece	ccc '	TGCT	CTAC	GG A	GACG	CCGA	3	300
30	AAGCCGGC	GG A	GAGC	GCGG	GA	GCCAJ	ACCC	CCGC	cece	CCG	CCGC	CCGG	la G	GCCG	CTG	;	360
	GCCTGCGA	CC A	GAAG	CCT	CA	GCTG	CTCC	AAA	stgg/	ATG	TCAA	CTAC	GC G'	TTTC	CCAT	r	420
	GCAACAGAG	CC TO	CTG	CCGGC	GTO	GTGA:	rgga	GAAA	AGGC	CCA	CTTT	GCG:	T T	CTGC	\AGA	ŗ	480
35	GTTATGAA	CA T	TTTA	CTTC	A GT	ATGT	GGTG	AAA	AGTT:	rcg .	ATAG	ATCA	AC C	AAAG:	rga t :	ŗ	540
	GATTTCCA	TT A	rcct;	AAT GA	GC:	TTCT	CCAA	GAAT	ATAT	ATT	GGGA	ATTG	GC A	GACC	AACC	4	600
	CAAAATTT	GG A	GGAAJ	ATTT	GA:	rgca:	rtgc	CAAA	ACAA	CTC	TAAAI	TAT	GC A	LATTA	AAAC?	A.	660
40	GGGCATCC	ra G	ATAC:	rtca.	TC	AACT:	TCT	ACTO	GTT	rgg .	ATAT	GGTT	GG A	TTAG	CAGC	4	720
	GACTGGCT	GA C	ATCAJ	ACAGO	: AA	ATAC	TAAC	ATG	TCA	CT.	ATGA	ATT	GC T	CCAG:	TTAT	7	780
	GTGCTTTT	GG A	ATATO	STCAC	AC:	AAA1	AAA	ATG	AGAGA	AAA	TCAT	rggc	rg g	CCAG	GGGG	2	840
4 5	TCTGGCGA	rg go	GATA:	ודדדכ	TC	ccsg:	rggc	GCC	TAT	CTA.	ACAT	TAT	GC C	ATGA:	rgat(:	900
***	GCACGCTT	A AT	GATG:	rtccc	: AG	AAGT	CAAG	GAGA	AAAG	GAA	TGGC:	IGCI	T TO	CCCA	GCT	:	960
	ATTGCCTTC	CA CO	STCT	GAACA	A TAC	GTCA:	TTT	TCTC	CTCA	AGA .	AGGG	AGCT	GC A	GCCT:	raggo	;	1020
.	ATTGGAACA	AG AG	CAGC	GTGAI	TC	rgat:	AAA	TGT	SATG	AGA	GAGG	LAAAS	AT G	ATTC	CATC	ŗ	1080
50	GATCTTGAJ	VA G	AAGG/	ATTCI	TG	AA GC(CAAA	CAG	AAA G(GT	TTGT	CCT:	TT C	CTCG:	rgag?	3	1140
	GCCACAGCT	rg GA	AACCA	ACCG1	GT	ACGG/	AGCA	TTTC	SACC	cc	TCTT	AGCT	GT C	GCTG	CAT		1200

	TGCAAAAAGT ATAAGATCTG GATGCATGT	G GATGCAGCTT GG	GGTGGGGG AT	TACTGATG 1	260
	TCCCGAAAAC ACAAGTGGAA ACTGAGTGG	GTGGAGAGGG CC	AACTCTGT GA	CGTGGAAT 1	320
5	CCACACAGA TGATGGGAGT CCCTTTGCA	TGCTCTGCTC TC	CTGGTTAG AG	RAGAGGGA 1	1380
	TTGATGCAGA ATTGCAACCA AATGCATGC	TCCTACCTCT TT	CAGCAAGA TA	AACATTAT 1	440
	GACCTGTCCT ATGACACTGG AGACAAGGC	C TTACAGTGCG GA	CGCCACGT TG	ATGTTTTT 1	1500
10	AAACTATGGC TGATGTGGAG GGCAAAGGG	G ACTACCGGGT TT	GAAGCGCA TG	TTGATAAA 1	1560
	TGTTTGGAGT TGGCAGAGTA TTTATACAA	C ATCATAAAAA AC	CGAGAAGG AT	ATGAGATG]	1620
	GTGTTTGATG GGAAGCCTCA GCACACAAA	T GTCTGCTTCT GG	STACATICC TO	CAAGCTTG 1	1680
15	CGTACTCTGG AAGACAATGA AGAGAGAAT	G AGTCGCCTCT CG	SAAGGTGGC TC	CAGTGATT	1740
	AAAGCCAGAA TGATGGAGTA TGGAACCAC	A ATGGTCAGCT AC	CAACCCTT GG	GAGACAAG I	1800
	GTCAATTTCT TCCGCATGGT CATCTCAAA	C CCAGCGGCAA CT	CACCAAGA CA	TTGACTTC :	1860
20	CTGATTGAAG AAATAGAACG CCTTGGACA	A GATTTATAAT AA	ACCTTGCTC AC	CAAGCTGT	1920
	TCCACTTCTC TAGAGAACAT GCCCTCAGC	T AAGCCCCCTA CT	rgagaaact to	CTTTGAGA	1980
	ATTGTGCGAC TTCACAAAAT GCAAGGTGA	A CACCACTTTG TO	CTCTGAGAA CA	GACGTTAC	2040
25	CAATTATGGA GTGTCACCAG CTGCCAAAA	T CGTAGGTGTT GO	CTCTGCTG GT	CACTGGAG	2100
	TAGTTGCTAC TCTTCAGAAT ATGGACAAA	G AAGGCACAGG TO	GTAAATATA GI	AGCAGGAT :	2160
	GAGGAACCTC AAACTGGGTA TCATTTGCA	C GTGCTCTTCT GT	TTCTCAAAT GO	CTAAATGCA :	2220
30	AACACTGTGT ATTTATTAGT TAGGTGTGC	C AAACTACCGT TO	CCCAAATTG GT	rGTTTCTGA :	2280
	ATGACATCAA CATTCCCCCA ACATTACTC	C ATTACTAAAG AG	CAGAAAAAA AT	TADAAAAA	2340
	AAAATATACA AACATGTGGC AACCTGTTC	T TCCTACCAAA TA	ATAAACTTG TO	STATGATCC	2400
35	AAGTATTTTA TCTGTGTTGT CTCTCTAAA	C CCAAATAAAT G1	TGTAAATGT GO	BACACA	2457
55	(2) INFORMATION FOR SEQ ID NO:	:			
4 0	(i) SEQUENCE CHARACTERISTI (A) LENGTH: 3613 base (B) TYPE: nucleic aci (C) STRANDEDNESS: dou (D) TOPOLOGY: linear	pairs d			
	(ii) MOLECULE TYPE: cDNA				
4 5	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:9:			
	CAGCCCCTCT GGCAGGCTCC CGCCAGCG	C GCTGCGGCTC C	GGCCCGGGA G	CGAGCGCCC	60
	GGAGCTCGGA AAGATGCGGC GCCCGCGG				120
50	CCGGCTGCTC CTCTGCCTCC TGCTGCTG				180
	TGCCCACGGC TGTCTATTTG ACCGCAGGG				240
	TGGCTTGTTT GGGCAGTGCC AGGTGGGA	T GGGGCAGGCC C	GGCCCCTTT TO	GCAAGTCAC	300

	CTCCCCAGTT	CTCCAACGCT	TACAAGGTGT	GCTCCGACAA	CTCATGTCCC	AAGGATTGTC	360
	CTGGCACGAT	GACCTCACCC	AGTATGTGAT	CTCTCAGGAG	ATGGAGCGCA	TCCCCAGGCT	420
5	TCGCCCCCCA	GAGCCCCGTC	CAAGGGACAG	GTCTGGCTTG	GCACCCAAGA	GACCTGGTCC	480
	TGCTGGAGAG	CTGCTTTTAC	AGGACATCCC	CACTGGCTCC	GCCCCTGCTG	CCCAGCATCG	540
	GCTTCCACAA	CCACCAGTGG	GCAAAGGTGG	AGCTGGGGCC	AGCTCCTCTC	TGTCCCCTCT	600
10	GCAGGCTGAG	CTGCTCCCGC	CTCTCTTGGA	GCACCTGCTG	CTGCCCCCAC	AGCCTCCCCA	660
	CCCTTCACTG	AGTTACGAAC	CTGCCTTGCT	GCAGCCCTAC	CTGTTCCACC	AGTTTGGCTC	720
	CCGTGATGGC	TCCAGGGTCT	CAGAGGGCTC	CCCAGGGATG	GTCAGTGTCG	GCCCCTGCC	780
15	CAAGGCTGAA	GCCCCTGCCC	TCTTCAGCAG	AACTGCCTCC	AAGGGCATAT	TTGGGGACCA	840
	CCCTGGCCAC	TCCTACGGGG	ACCTTCCAGG	GCCTTCACCT	GCCCAGCTTT	TTCAAGACTC	900
	TGGGCTGCTC	TATCTGGCCC	AGGAGTTGCC	AGCACCCAGC	AGGGCCAGGG	TGCCAAGGCT	960
20	GCCAGAGCAA	GGGAGCAGCA	GCCGGGCAGA	GGACTCCCCA	GAGGGCTATG	AGAAGGAAGG	1020
	ACTAGGGGAT	CGTGGAGAGA	AGCCTGCTTC	CCCAGCTGTG	CAGCCAGATG	CGGCTCTGCA	1080
	GAGGCTGGCC	GCTGTGCTGG	CGGGCTATGG	GGTAGAGCTG	CGTCAGCTGA	CCCCTGAGCA	1140
25	GCTCTCCACA	CTCCTGACCC	TGCTGCAGCT	ACTGCCCAAG	GGTGCAGGAA	GAAATCCGGG	1200
25	AGGGGTTGTA	AATGTTGGAG	CTGATATCAA	GAAAACAATG	GAGGGGCCGG	TGGAGGGCAG	1260
	AGACACAGCA	GAGCTTCCAG	CCCGCACATC	CCCCATGCCT	GGACACCCCA	CTGCCAGCCC	1320
	TACCTCCAGT	GAAGTCCAGC	AGGTGCCAAG	CCCTGTCTCC	TCTGAGCCTC	CCAAAGCTGC	1380
30	CAGACCCCCT	GTGACACCTG	TCCTGCTAGA	GAAGAAAAGC	CCACTGGGCC	AGAGCCAGCC	1440
	CACGGTGGCA	GGACAGCCCT	CAGCCCGCCC	AGCAGCAGAG	GAATATGGCT	ACATCGTCAC	1500
	TGATCAGAAG	CCCCTGAGCC	TGGCTGCAGG	AGTGAAGCTG	CTGGAGATCC	TGGCTGAGCA	1560
35	TGTGCACATG	TCCTCAGGCA	GCTTCATCAA	CATCAGTGTG	GTGGGACCAG	CCCTCACCTT	1620
	CCGCATCCGG	CACAATGAGC	AGAACCTGTC	TTTGGCTGAT	GTGACCCAAC	AAGCAGGGCT	1680
	GGTGAAGTCT	GAACTGGAAG	CACAGACAGG	GCTCCAAATC	TTGCAGACAG	GAGTGGGACA	1740
40	GAGGGAGGAG	GCAGCTGCAG	TCCTTCCCCA	AACTGCGCAC	AGCACCTCAC	CCATGCGCTC	1800
	AGTGCTGCTC	ACTCTGGTGG	CCCTGGCAGG	TGTGGCTGGG	CTGCTGGTGG	CTCTGGCTGT	1860
	GGCTCTGTGT	GTGCGGCAGC	ATGCGCGGCA	GCAAGACAAG	GAGCGCCTGG	CAGCCCTGGG	1920
4 5	GCCTGAGGGG	GCCCATGGTG	ACACTACCTT	TGAGTACCAG	GACCTGTGCC	GCCAGCACAT	1980
	GGCCACGAAG	TCCTTGTTCA	ACCGGGCAGA	GGGTCCACCG	GAGCCTTCAC	GGGTGAGCAG	2040
	TGTGTCCTCC	CAGTTCAGCG	ACGCAGCCCA	GGCCAGCCCC	AGCTCCCACA	GCAGCACCCC	2100
50	GTCCTGGTGC	GAGGAGCCGG	CCCAAGCCAA	CATGGACATC	TCCACGGGAC	ACATGATTCT	2160
50	GGCATACATG	GAGGATCACC	TGCGGAACCG	GGACCGCCTT	GCCAAGGAGT	GGCAGGCCCT	2220
	CTGTGCCTAC	CAAGCAGAGC	CAAACACCTG	TGCCACCGCG	CAGGGGGAGG	GCAACATCAA	2280

	AMAGMACCGG	CATCCIGACI	ICCIGCCCIA	TOACCATGCC	CGCHIMANAC	1GAAGG1GGA	2340
	GAGCAGCCCT	TCTCGGAGCG	ATTACATCAA	CGCCAGCCCC	ATTATTGAGC	ATGACCCTCG	2400
5	GATGCCAGCC	TACATAGCCA	CGCAGGGCCC	GCTGTCCCAT	ACCATCGCAG	ACTTCTGGCA	2460
	GATGGTGTGG	GAGAGCGGCT	GCACCGTCAT	CGTCATGCTG	ACCCCGCTGG	TGGAGGATGG	2520
	TGTCAAGCAG	TGTGACCGCT	ACTGGCCAGA	TGAGGGTGCC	TCCCTCTACC	ACGTATATGA	2580
10	GGTGAACCTG	GTGTCGGAGC	ACATCTGGTG	CGAGGACTTT	CTGGTGCGGA	GCTTCTACCT	2640
	GAAGAACGTG	CAGACCCAGG	AGACGCGCAC	GCTCACGCAG	TTCCACTTCC	TCAGCTGGCC	2700
	GGCAGAGGGC	ACACCGGCCT	CCACGCGGCC	CCTGCTGGAC	TTCCGCAGGA	AGGTGAACAA	2760
15	GTGCTACCGG	GGCCGCTCCT	GCCCCATCAT	CGTGCACTGC	AGTGATGGTG	CGGGGAGGAC	2820
	CGGCACCTAC	ATCCTCATCG	ACATGGTCCT	GAACCGCATG	GCAAAAGGAG	TGAAGGAGAT	2880
	TGACATCGCT	GCCACCCTGG	AGCATGTCCG	TGACCAGCGG	CCTGGCCTTG	TCCGCTCTAA	2940
20	GGACCAGTTT	GAATTTGCCC	TGACAGCCGT	GGCGGAGGAA	GTGAATGCCA	TCCTCAAGGC	3000
	CCTGCCCCAG	TGAGACCCTG	GGGCCCCTTG	GCGGGCAGCC	CAGCCTCTGT	CCCTCTTTGC	3060
	CTGTGTGAGC	ATCTCTGTGT	ACCCACTCCT	CACTGCCCCA	CCAGCCACCT	CTTGGGCATG	3120
25	CTCAGCCCTT	CCTAGAAGAG	TCAGGAAGGG	AAAGCCAGAA	GGGGCACGCC	TGCCCAGCCT	3180
25	CGCATGCCAG	AGCCTGGGGC	ATCCCAGAGC	CCAGGGCATC	CCATGGGGGT	GCTGCAGCCA	3240
	GGAGGAGAGG	AAAGGACATG	GGTAGCAATT	CTACCCAGAG	CCTTCTCCTG	CCTACATTCC	3300
	CTGGCCTGGC	TCTCCTGTAG	CTCTCCTGGG	GTTCTGGGAG	TTCCCTGAAC	ATCTGTGTGT	3360
30	GTCCCCCTAT	GCTCCAGTAT	GGAAGAATGG	GGTGGAGGGT	CGCCACACCC	GGCTCCCCCT	3420
	GCTTCTCAGC	CCCGGGCCTG	CCTCTGACTC	ACACTTGGGC	GCTCTGCCCT	CCCTGGCCTC	3480
	ACGCCCAGCC	TGGTCCCACC	ACCCTCCCAC	CATGCGCTGC	TCAACCTCTC	TCCTTCTGGC	3540
35	GCAAGAGAAC	ATTTCTAGAA	AAAACTACTT	TTGTACCAGT	GTGAATAAAG	TTAGTGTGTT	3600
	GTCTGTGCAG	CTG					3613
	(2) INFORMA	ATION FOR SE	Q ID NO:10:	:			
4 0	(QUENCE CHAF (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	4992 base r cleic acid NESS: singl	pairs			
45	(ii) MC	LECULE TYPE	: DNA (geno	omic)			
	(xi) SE	QUENCE DESC	RIPTION: SE	Q ID NO:10:			
					ACACCCTCCA	GGCTTGACCG	60
50	GCCAGGGTGT	CCCCTTCCTA	CCTTGGAGAG	AGCAGCCCCA	GGGCATCCTG	CAGGGGGTGC	120
	TGGGACACCA	CCTCCCCTTC	AAGGTCTCTG	CCTCCCTCCA	CCCACCCAC	TACACGCTCC	3.00

	TGGGATCCTG G.	ATCTCAGCT	CCCTGGCCGA	CAACACTGGC	AAACTCCTAC	TCATCCACGA	240
	AGGCCCTCCT G	GGCATGGTG	GTCCTTCCCA	GCCTGGCAGT	CTGTTCCTCA	CACACCTTGT	300
5	TAGTGCCCAG C	CCCTGAGGT	TGCAGCTGGG	GGTGTCTCTG	AAGGGCTGTG	AGCCCCCAGG	360
	AAGCCCTGGG G	AAGTGCCTG	CCTTGCCTCC	CCCCGGCCCT	GCCAGCGCCT	GGCTCTGCCC	420
	TCCTACCTGG G	CTCCCCCCA	TCCAGCCTCC	CTCCCTACAC	ACTCCTCTCA	AGGAGGCACC	480
10	CATGTCCTCT C	CAGCTGCCG	GGCCTCAGAG	CACTGTGGCG	TCCTGGGGCA	GCCACCGCAT	540
	GTCCTGCTGT G	GCATGGCTC	AGGGTGGAAA	GGGCGGAAGG	GAGGGGTCCT	GCAGATAGCT	600
	GGTGCCCACT A	CCAAACCCG	CTCGGGGCAG	GAGAGCCAAA	GGCTGGGTGT	GTGCAGAGCG	660
15	GCCCCGAGAG G	TTCCGAGGC	TGAGGCCAGG	GTGGGACATA	GGGATGCGAG	GGGCCGGGGC	720
	ACAGGATACT C	CAACCTGCC	TGCCCCCATG	GTCTCATCCT	CCTGCTTCTG	GGACCTCCTG	780
	ATCCTGCCCC T	GGTGCTAAG	AGGCAGGTAA	GGGGCTGCAG	GCAGCAGGGC	TCGGAGCCCA	840
20	TGCCCCCTCA C	CATGGGTCA	GGCTGGACCT	CCAGGTGCCT	GTTCTGGGGA	GCTGGGAGGG	900
	CCGGAGGGGT G	STACCCCAGG	GGCTCAGCCC	AGATGACACT	ATGGGGGTGA	TGGTGTCATG	960
	GGACCTGGCC A	AGGAGAGGGG	AGATGGGCTC	CCAGAAGAGG	AGTGGGGGCT	GAGAGGGTGC	1020
05	CTGGGGGGCC A	AGGACGGAGC	TGGGCCAGTG	CACAGCTTCC	CACACCTGCC	CACCCCAGA	1080
25	GTCCTGCCGC C	CACCCCAGA	TCACACGGAA	GATGAGGTCC	GAGTGGCCTG	CTGAGGACTT	1140
	GCTGCTTGTC C	CCAGGTCCC	CAGGTCATGC	CCTCCTTCTG	CCACCCTGGG	GAGCTGAGGG	1200
	CCTCAGCTGG G	GCTGCTGTC	CTAAGGCAGG	GTGGGAACTA	GGCAGCCAGC	AGGGAGGGGA	1260
30	CCCCTCCCTC A	ACTCCCACTC	TCCCACCCCC	ACCACCTTGG	CCCATCCATG	GCGGCATCTT	1320
	GGGCCATCCG G	GGACTGGGGA	CAGGGGTCCT	GGGGACAGGG	GTCCGGGGAC	AGGGTCCTGG	1380
	GGACAGGGGT G	STGGGGACAG	GGGTCTGGGG	ACAGGGGTGT	GGGGACAGGG	GTGTGGGGAC	1440
35	AGGGGTCTGG G	GGACAGGGGT	GTGGGGACAG	GGGTCCGGGG	ACAGGGGTGT	GGGGACAGGG	1500
	GTCTGGGGAC A	AGGGGTGTGG	GGACAGGGGT	GTGGGGACAG	GGGTCTGGGG	ACAGGGGTGT	1560
	GGGGACAGGG G	STCCTGGGGA	CAGGGGTGTG	GGGACAGGGG	TGTGGGGACA	GGGGTGTGGG	1620
40	GACAGGGGTG T	rggggacagg	GGTCCTGGGG	ATAGGGGTGT	GGGGACAGGG	GTGTGGGGAC	1680
	AGGGGTCCCG G	GGGACAGGGG	TGTGGGGACA	GGGGTGTGGG	GACAGGGGTC	CTGGGGACAG	1740
	GGGTCTGAGG A	ACAGGGGTGT	GGGCACAGGG	GTCCTGGGGA	CAGGGGTCCT	GGGGACAGGG	1800
45	GTCCTGGGGA C	CAGGGGTCTG	GGGACAGCAG	CGCAAAGAGC	CCCGCCCTGC	AGCCTCCAGC	1860
	TCTCCTGGTC 1	TAATGTGGAA	AGTGGCCCAG	GTGAGGGCTT	TGCTCTCCTG	GAGACATTTG	1920
	CCCCCAGCTG 1	TGAGCAGGGA	CAGGTCTGGC	CACCGGGCCC	CTGGTTAAGA	CTCTAATGAC	1980
50	CCGCTGGTCC T	TGAGGAAGAG	GTGCTGACGA	CCAAGGAGAT	CTTCCCACAG	ACCCAGCACC	2040
50	AGGGAAATGG T	TCCGGAAATT	GCAGCCTCAG	CCCCCAGCCA	TCTGCCGACC	CCCCCACCCC	2100
	GCCCTAATGG (GCCAGGCGGC	AGGGGTTGAC	AGGTAGGGGA	GATGGGCTCT	GAGACTATAA	2160

	CAAGCAGGTC	TGTTCCAAGG	GCCTTTGCGT	CAGGTGGGCT	CAGGGTTCCA	GGGTGGCTGG	2280
5	ACCCCAGGCC	CCAGCTCTGC	AGCAGGGAGG	ACGTGGCTGG	GCTCGTGAAG	CATGTGGGGG	2340
	TGAGCCCAGG	GGCCCCAAGG	CAGGGCACCT	GGCCTTCAGC	CTGCCTCAGC	CCTGCCTGTC	2400
	TCCCAGATCA	CTGTCCTTCT	GCCATGGCCC	TGTGGATGCG	CCTCCTGCCC	CTGCTGGCGC	2460
10	TGCTGGCCCT	CTGGGGACCT	GACCCAGCCG	CAGCCTTTGT	GAACCAACAC	CTGTGCGGCT	2520
	CACACCTGGT	GGAAGCTCTC	TACCTAGTGT	GCGGGGAACG	AGGCTTCTTC	TACACACCCA	2580
	AGACCCGCCG	GGAGGCAGAG	GACCTGCAGG	GTGAGCCAAC	CGCCCATTGC	TGCCCCTGGC	2640
15	CGCCCCAGC	CACCCCCTGC	TCCTGGCGCT	CCCACCCAGC	ATGGGCAGAA	GGGGGCAGGA	2700
	GGCTGCCACC	CAGCAGGGGG	TCAGGTGCAC	AAAATTTTTT	AGAAGTTCTC	TTGGTCACGT	2760
	CCTAAAAGTG	ACCAGCTCCC	TGTGGCCCAG	TCAGAATCTC	AGCCTGAGGA	CGGTGTTGGC	2820
20	TTCGGCAGCC	CCGAGATACA	TCAGAGGGTG	GGCACGCTCC	TCCCTCCACT	CGCCCCTCAA	2880
	ACAAATGCCC	CGCAGCCCAT	TTCTCCACCC	TCATTTGATG	ACCGCAGATT	CAAGTGTTTT	2940
	GTTAAGTAAA	GTCCTGGGTG	ACCTGGGGTC	ACAGGGTGCC	CCACGCTGCC	TGCCTCTGGG	3000
25	CGAACACCCC	ATCACGCCCG	GAGGAGGCG	TGGCTGCCTG	CCTGAGTGGG	CCAGACCCCT	3060
	GTCGCCAGCC	TCACGGCAGC	TCCATAGTCA	GGAGATGGGG	AAGATGCTGG	GGACAGGCCC	3120
	TGGGGAGAAG	TACTGGGATC	ACCTGTTCAG	GCTCCCACTG	TGACGCTGCC	CCGGGGCGGG	3180
30	GGAAGGAGGT	GGGACATGTG	GGCGTTGGGG	CCTGTAGGTC	CACACCCAGT	GTGGGTGACC	3240
	CTCCCTCTAA	CCTGGGTCCA	GCCCGGCTGG	AGATGGGTGG	GAGTGCGACC	TAGGGCTGGC	3300
	GGGCAGGCGG	GCACTGTGTC	TCCCTGACTG	TGTCCTCCTG	TGTCCCTCTG	CCTCGCCGCT	3360
	GTTCCGGAAC	CTGCTCTGCG	CGGCACGTCC	TGGCAGTGGG	GCAGGTGGAG	CTGGGCGGGG	3420
35	GCCCTGGTGC	AGGCAGCCTG	CAGCCCTTGG	CCCTGGAGGG	GTCCCTGCAG	AAGCGTGGCA	3480
	TTGTGGAACA	ATGCTGTACC	AGCATCTGCT	CCCTCTACCA	GCTGGAGAAC	TACTGCAACT	3540
	AGACGCAGCC	TGCAGGCAGC	CCCACACCCG	CCGCCTCCTG	CACCGAGAGA	GATGGAATAA	3600
40	AGCCCTTGAA	CCAGCCCTGC	TGTGCCGTCT	GTGTGTCTTG	GGGGCCCTGG	GCCAAGCCCC	3660
	ACTTCCCGGC	ACTGTTGTGA	GCCCCTCCCA	GCTCTCTCCA	CGCTCTCTGG	GTGCCCACAG	3720
	GTGCCAACGC	CAGGCAGGCC	CAGCATGCAG	TGGCTCTCCC	CAAAGCGGCC	ATGCCTGTTG	3780
45	GCTGCCTGCT	GCCCCCACCC	TGTGGCTCAG	GGTCCAGTAT	GGGAGCTTCG	GGGGTCTCTG	3840
	AGGGGCCAGG	GATGGTGGGG	CCACTGAGAA	GTGACTCTGT	CAGTAGCCGA	CCTGGAGTCC	3900
	CCAGAGACCT	TGTTCAGGAA	AGGGAATGAG	AACATTCCAG	CAATTTTCCC	CCCACCTAGC	3960
50						GAGGAGGCTG	4020
						GCTGCCGAGA	4080
	GCCACCGGCT	ATCCCCAGCT	CTGGGCAGCC	CCGGGACAGT	CACACACCCT	GGCCTCGCGG	4140

	CCCAAGCTGG CAGCCGTCTG CAGCCACAGC TTATGCCAGC CCAGGTCCAT CCAGACACCT	4200					
5	GAGGGACCCA CTGGTGCCTT GGAGGAAGCA GGAGAGGTCA GATGGCACCA TGAGCTGGGG	4260					
	CAGGTGCAGG GACCGTGGCA GCACCTGGCA GGGCCTCAGA ACCCATGCCT TGGGCACCCC	4320					
	GGCCATGAGG CCCTGAGGAT TGCAGCCCAA GAGAAGCAGG GAACGCCAGG GCCACAGGGG	4380					
	CAGAGACCAG GCCAGGGTCC CTTGCGGCCC TTAGCCCACC CCCTCCCAGT AAGCAGGGGC	4440					
10	TGCTTGGCTA GGCTTCCTTT TGCTACAGAC CTGCTGCTCA CCCAGAGGCC CACGGGCCCT	4500					
	AGTGACAAGG TCGTTGTGGC TCCAGGTCCT TGGGGGTCCT GACACAGAGC CTCTTCTGCA	4560					
	GCACCCCTGA GGACAGGGTG CTCCGCTGGG CACCCAGCCT AGTGGGCAGA CGAGAACCTA	4620					
15	GGGGCTGCCT GGGCCTACTG TGGCCTGGGA GGTCAGCGGG TGACCCTAGC TACCCTGTGG	4680					
	CTGGGCCAGT CTGCCTGCCA CCCAGGCCAA ACCAATCTGC ACCTTTCCTG AGAGCTCCAC	4740					
	CCAGGGCTGG GCTGGGGATG GCTGGGCCTG GGGCTGGCAT GGGCTGTGGC TGCAGACCAC	4800					
20	TGCCAGCTTG GGCCTCGAGG CCAGGAGCTC ACCCTCCAGC TGCCCCGCCT CCAGAGTGGG	4860					
	GGCCAGGGCT GGGCAGGCGG GTGGACGGCC GGACACTGGC CCCGGAAGAG GAGGGAGGCG	4920					
	GTGGCTGGGA TCGGCAGCAG CCGTCCATGG GAACACCCAG CCGGCCCCAC TCGCACGGGT	4980					
	AGAGACAGGC GC	4992					
25	(2) INFORMATION FOR SEQ ID NO:11:						
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear						
	(ii) MOLECULE TYPE: peptide						
	(v) FRAGMENT TYPE: C-terminal						
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	•					
	Xaa Xaa Gly Ser His His His His His His 10						
40	(2) INFORMATION FOR SEQ ID NO:12:						
4 5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 						
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "DNA for bridge peptide"						
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:						
	AAGAAGAAGC GGCCGCGAAA GAAGAAG						
	(2) INFORMATION FOR SEQ ID NO:13:						

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C).STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "DNA for bridge peptide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

AAGAAGAAGC GATCGCGAAA GAAGAAG

27

5

10

15

25

30

45

Claims

- A fusion protein having epitopes of at least two of the autoantigens glutamic acid decarboxylase (GAD65), islet cell
 antigen (IA2) and preproinsulin (PPINS) wherein said epitopes are connected with a linker peptide, said fusion protein being able to bind to a solid phase.
 - 2. The fusion protein according to claim 1 having epitopes of each of the autoantigens GAD65, IA2 and PPINS.
 - 3. The fusion protein according to claim 2 wherein
 - the epitope of IA2 comprises the amino acids 771-979 of the amino acid sequence shown in Figure 2a,
 - the epitope of GAD65 comprises the amino acids 102-585 of the amino acid sequence shown in Figure 2b, and
 - the epitope of PPINS comprises all the amino acids 1-110 of the amino acid sequence shown in Figure 2c.
 - 4. The fusion protein according to claim 1 wherein the linker peptide comprises lysine and argine residues.
- 5. The fusion protein according to claim 4 wherein said linker peptide is provided with a member of an affinity binding pair so as to enable the binding of said fusion protein to the solid phase.
 - 6. The fusion protein according to claim 5 wherein the affinity binding pair is biotin streptavidin.
- A cDNA encoding the fusion protein according to claim 1 wherein said cDNA comprises the nucleotide sequences
 encoding the epitopes of at least two of the autoantigens glutamic acid decarboxylase (GAD65), islet cell antigen
 (IA2) and preproinsulin (PPINS).
 - 8. A cDNA encoding the fusion protein according to claim 3 wherein said cDNA comprises the nucleotide sequences
 - a) nucleotides 1311 to 1755 of the sequence according to SEQ ID NO: 8 encoding GAD65, aa 102-585,
 - b) nucleotides 2313 to 2937 of the sequence according to SEQ ID NO: 9 encoding IA2, aa 771-979, and
 - c) nucleotides 2424 to 2610 and 3397 to 3539 of the sequence according to SEQ ID NO: 10 encoding PPINS, aa 1-110, where said nucleotide sequences a), b) and c) can appear in any relative order.
- 50 9. A vector comprising the cDNA according to claim 7 or 8.
 - 10. An E. coli cell encompassing the cDNA according to claim 7.
- 11. An immunoassay for the simultaneous determination in a sample of a person's body fluid of at least two insulin dependent diabetes mellitus (IDDM) related autoantibodies, wherein each autoantibody is specific for an epitope of the autoantigens glutamic acid decarboxylase (GAD65), islet cell antigen (IA2) or preproinsulin (PPINS), said immunoassay comprising the steps of

- incubating said sample with a fusion protein according to claim 1, said fusion protein being bound to a solid support.
- adding at least one labeled reagent capable of binding to one or more of said autoantibodies, and
- quantifying the signals from the labels bound to the solid phase.

10

20

25

30

35

40

45

50

- 12. The immunoassay according to claim 11 wherein the labeled reagent is an anti-human monoclonal antibody.
- 13. The immunoassay according to claim 11 wherein the labeled reagent comprises at least two antigens labeled with different labels, each antigen being one of the autoantigens GAD65, IA2 or PPINS; or proteins comprising epitopes thereof.
- 14. The immunoassay according to claim 11 wherein the labeled reagent comprises three antigens labeled with the same label, each antigen being one of the autoantigens GAD65, IA2 or PPINS; or proteins comprising epitopes thereof.
- 15. The immunoassay according to claim 11 wherein the label is a fluorescent lanthanide chelate.
- 16. A method for diagnosing a person's risk of developing insulin dependent diabetes mellitus (IDDM), said method comprising the determination in a sample of said person's body fluid of at least two insulin dependent diabetes mellitus (IDDM) related autoantibodies specific for an epitope of the autoantigens glutamic acid decarboxylase (GAD65), islet cell antigen (IA2) or preproinsulin (PPINS), wherein the presence of at least two of said autoantibodies are indicative for said person's risk of developing IDDM.

S poly-his --CNGSHHHHHHH Not I PPINS -KKKRPRKKK -----IA2 --KKKRPRKKK---Not I GAD65 Flag-peptide DYKDDDDDK---

FIG. 1a

Sgf I PPINS poly-his KKKRSRKKK ------CNGSHIHHHHH IA2 Sgf I --- KKKRSRKKK ----GAD65 Flag-peptide DYKDDDDK----

FIG. 1b

1A2 Underlined aa 771-979 Accession No. L18983

ASPSSHSSTPSWCEEPAQANMDISTGHMILAYMEDHLRNRDRLAKEWQALCAYQAEPNTCATAQGEGNIKKNRHPDFLPYDH ARIKLKVESSPSRSDYINASPIT<u>EHDPRMPAYIATOGPLSHTIADFWOMVWESGCTVIVMLTPLVEDGVKOCDRYWPDEGASLY</u> GSFINISVVGPALTFRIRHNEQNL.SLADVTQQAGLVKSELEAQTGLQILQTGVGQREEAAAVLPQTAHSTSPMRSVLLTLVALA GVAGLLVALAVALCVRQHARQQDKERLAALGPEGAHGDTIFEYQDLCRQHMATKSLFNRAEGPPEPSRVSSVSSQFSDAAQ MRRPRRPGGLGGSGGLRLLLCLLLLSSRPGGCSAVSAHGCLFDRRLCSHLEVCIQDGLFGQCQVGVGQARPLLQVTSPVLQRL AGASSSLSPLQAELLPPLIEHLLLPPQPPHPSLSYEPALLQPYLFHQFGSRDGSRVSEGSPGMVSVGPLPKAEAPALFSRTASKGI QRLAAVLAGYGVELRQLTPEQLSTLLTLQLLPKGAGRNPGGVVNVGADIKKTMEGPVEGRDTAELPARTSPMPGHPTASPT SSEVQQVPSPVSSEPPKAARPPVTPVLLEKKSPLGQSQPTVAGQPSARPAAEEYGYIVTDQKPLSLAAGVKLLEILAEHVHMSS QGVLRQLMSQGLSWHDDLTQYVISQEMERIPRLRPPEPRPRDRSGLAPKRPGPAGELLLQDIPTGSAPAAQHRLPQPPVGKGG FGDHPGHSYGDLPGPSPAQLFQDSGLLYLAQELPAPSRARVPRLPEQGSSSRAEDSPEGYEKEGLGDRGEKPASPAVQPDAAL HVYEVNĮ VSEHIWCEDFLVRSEYLKNVOTOETRTĮ, TOFHFLS WPAEGTPASTRPLLDFRRK VNKCYRGRSCPIIVHCSDGAGR TGTYILIDMVLNRMAKGVKEIDIAATLEHVRDORPGLVRSKDOFEFALTAVAEEVNAILKALPO

FIG. 2a

GAD65 Underlined aa102-585 Accession No. M74826

<u>"VSATAGTTVYGAFDPLLAVADICKKYKIWMHVDAAWGGGLLMSRKHKWKLSGVERANSVTWNPHKMMGVPLOCSALLV</u> MASPGSGFWSFGSEDGSGDSENPGTARAWCQVAQKFTGGIGNKLCALLYGDAEKPAESGGSOPPRAAARKAACACDOKPCS <u>NMYAMMIARFKMFPEVKEKGMAALPRLIAFTSEHSHFSLKKGAAALGIGTDSVILIKCDERGKMIPSDLERRILEAKOKGFVPF</u> CSKVDVNYAFLHATDLLPACDGERPTLAFLODVMNILLQYVVKSFDRSTKVIDFHYPNELLOEYNWELADOPONLEEILMHC OTTLKY AIKTGHPRYFNOLSTGLDMVGLAADWLTSTANTNMFTYEIAPVFVLLEYVTLKKMREIIGWPGGSGDGIFSPGGAIS <u>REEGLMONCNOMHASYLFOODKHYDLSYDTGDKALOCGRHYDVFKLWLMWRAKGTTGFEAHVDKCLELAEYLYNIKNR</u> EGYEMVFDGKPOHTNVCFWYTPPSLRTLEDNEERMSRLSKVAPVIKARMMEYGTTMVSYOPLGDKVNFFRMVISNPAATHQ

FIG 2h

Translation Human preproinsulin. EMBL accession nr. v00565

MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYT PKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQ LENYCN

FIG. 2c

FIG. 3

FIG. 4