Observemos que, como o domínio da função seno é \mathbb{R} , a senoide continua para a direita de 2π e para a esquerda de 0. No retângulo em destaque está representado apenas um período da função. Notemos ainda que as dimensões desse retângulo são $2\pi \times 2$, isto é, aproximadamente 6,28 \times 2 e, em escala, 10,5 \times 3,2.

EXERCÍCIOS

Determine o período e a imagem e faça o gráfico de um período completo das funções dadas nos exercícios 128 a 147.

128. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = -\operatorname{sen} x$.

Solução

Vamos contruir uma tabela em três etapas:

- 1ª) atribuímos valores a x;
- 2^{a}) associamos a cada x o valor de sen x;
- 3^a) multiplicamos sen x por -1.

Х	sen x	у
0		
$\frac{\pi}{2}$		
π		
$\frac{3\pi}{2}$		
2π)

X	sen x	у
0	0	
$\frac{\pi}{2}$	1	
π	0	
$\frac{3\pi}{2}$	-1	
2π	0	

х	sen x	у
0	0	0
$\frac{\pi}{2}$	1	-1
π	0	0
$\frac{3\pi}{2}$	-1	1
2π	0	0

Com essa tabela podemos obter 5 pontos do gráfico, que é simétrico da senoide em relação ao eixo dos x.

É imediato que: Im(f) = [-1, 1]

$$p(f) = 2\pi$$

129. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = 2 \cdot \text{sen } x$.

Solução

Vamos construir uma tabela em três etapas:

- 1^{a}) atribuímos valores a x;
- 2^{a}) associamos a cada x o valor de sen x;
- 3^a) multiplicamos sen x por 2.

х	sen x	у
0		
$\frac{\pi}{2}$		
π		
$\frac{3\pi}{2}$		
2π		

х	sen x	у
0	0	
$\frac{\pi}{2}$	1	
π	0	
$\frac{3\pi}{2}$	-1	
2π	0	<i></i>

х	sen x	у
0	0	0
$\frac{\pi}{2}$	1	2
π	0	0
$\frac{3\pi}{2}$	-1	-2
2π	0	0)

Com essa tabela podemos obter 5 pontos do gráfico, que deve apresentar para cada x uma ordenada y que é o dobro da ordenada correspondente da senoide.

É imediato que:

$$Im(f) = [-2, 2]$$

 $p(f)\,=\,2\pi$

130. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = -2 \cdot \text{sen } x$.

131. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = |\sin x|$.

Solução

Recordemos inicialmente que, para um dado número real a, temos:

$$a \ge 0 \Rightarrow |a| = a$$

$$a < 0 \Rightarrow |a| = -a$$

Aplicando essa definição, temos:

$$sen x \ge 0 \Rightarrow |sen x| = sen x$$

(quando sen $x \ge 0$, os gráficos y = |sen x| e y = sen x coincidem)

$$sen x < 0 \implies |sen x| = -sen x$$

(quando sen x < 0, os gráficos y = |sen x| e y = sen x são simétricos em relação ao eixo dos x).

É imediato que:

$$Im(f) = [0, 1]$$

$$p(f) = \pi$$

132. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = |3 \cdot \text{sen } x|$.

133. f: $\mathbb{R} \to \mathbb{R}$ dada por f(x) = sen 2x.

Solução

Vamos construir uma tabela em três etapas:

- 1^{a}) atribuímos valores a t = 2x;
- 2ª) associamos a cada 2x o correspondente sen 2x;
- 3^{a}) calculamos $x\left(x=\frac{t}{2}\right)$.

		_
X	t = 2x	у
	0	
	$\frac{\pi}{2}$	
	π	
	$\frac{3\pi}{2}$	
	2π	

х	t = 2x	у
	0	0
	$\frac{\pi}{2}$	1
	π	0
	$\frac{3\pi}{2}$	-1
	2π	0

х	t = 2x	у
0	0	0
$\frac{\pi}{4}$	$\frac{\pi}{2}$	1
$\frac{\pi}{2}$	π	0
$\frac{3\pi}{4}$	$\frac{3\pi}{2}$	-1
π	2π	0

Com base nessa tabela, podemos obter 5 pontos da curva. Notemos que o gráfico deve apresentar para cada x uma ordenada y que é o seno do dobro de x. Notemos ainda que para sen t

completar um período é necessário que t = 2x percorra o intervalo $[0, 2\pi]$, isto é, x percorra o intervalo $[0, \pi]$.

Assim, o período de f é:

$$p(f)=\pi-0=\pi$$

É imediato que: Im(f) = [-1, 1]

134. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = \operatorname{sen} \frac{x}{2}$.

Solução

Х	$t = \frac{x}{2}$	у
	0	
	$\frac{\pi}{2}$	
	π	
	$\frac{3\pi}{2}$	
	2π	

X	$t = \frac{x}{2}$	у
	0	0
	$\frac{\pi}{2}$	1
	π	0
	$\frac{3\pi}{2}$	-1
	2π	0)

x	$t = \frac{x}{2}$	у
0	0	0
π	$\frac{\pi}{2}$	1
2π	π	0
3π	$\frac{3\pi}{2}$	-1
4π	2π	0)

135. f: $\mathbb{R} \to \mathbb{R}$ dada por f(x) = sen 3x.

Solução

x	t = 3x	у
	0	
	$\frac{\pi}{2}$	
	π	
	$\frac{3\pi}{2}$	
	2π	

X	t = 3x	у
	0	0
	$\frac{\pi}{2}$	1
	π	0
	$\frac{3\pi}{2}$	-1
	2π	0

х	t = 3x	у
0	0	0
$\frac{\pi}{6}$	$\frac{\pi}{2}$	1
$\frac{\pi}{3}$	π	0
$\frac{\pi}{2}$	$\frac{3\pi}{2}$	-1
$\frac{2\pi}{3}$	2π	0

É imediato que:

$$Im(f) = [-1, 1]$$

$$p(f)=\frac{2\pi}{3}$$

136. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = -\text{sen } \frac{x}{3}$.

137. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = 3 \cdot \text{sen } 4x$.

138. f: $\mathbb{R} \to \mathbb{R}$ dada por f(x) = 1 + sen x.

Solução

Х	sen x	у
0		
$\frac{\pi}{2}$		
π		
$\frac{3\pi}{2}$		
2π		

X	sen x	у
0	0	
$\frac{\pi}{2}$	1	
π	0	
$\frac{3\pi}{2}$	-1	
2π	0	

х	sen x	у
0	0	1
$\frac{\pi}{2}$	1	2
π	0	1
$\frac{3\pi}{2}$	-1	0
2π	0	1

Notemos que o gráfico deve apresentar para cada x uma ordenada y que é igual ao seno de x mais uma unidade. Se cada seno sofre um acréscimo de 1, então a senoide sofre uma translação de uma unidade "para cima".

É imediato que:

$$Im(f) = [0, 2]$$

$$p(f) = 2\pi$$

139. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = -2 + \operatorname{sen} x$.

140. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = 1 + 2 \cdot \text{sen } x$.

141. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = 2 - \operatorname{sen} x$.

142. f: $\mathbb{R} \to \mathbb{R}$ dada por f(x) = -1 + sen 2x.

143. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = 1 + 3 \cdot \text{sen } \frac{x}{2}$.

144. f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = sen\left(x - \frac{\pi}{4}\right)$.

Solução

	1							
Х	$t = x - \frac{\pi}{4}$	у	X	$t = x - \frac{\pi}{4}$	у	х	$t = x - \frac{\pi}{4}$	у
	0			0	0	$\frac{\pi}{4}$	0	0
	$\frac{\pi}{2}$			$\frac{\pi}{2}$	1	$\frac{3\pi}{4}$	$\frac{\pi}{2}$	1
	π			π	0	$\frac{5\pi}{4}$	π	0
	<u>3π</u> 2			<u>3π</u> 2	-1	$\frac{7\pi}{4}$	<u>3π</u> 2	-1
	2π			2π	0	$\frac{9\pi}{4}$	2π	0

Notemos que o gráfico deve apresentar para cada x uma ordenada y que é o seno de $x-\frac{\pi}{4}$. Notemos que para sen t completar um período é necessário que t = $x-\frac{\pi}{4}$ percorra o intervalo $[0,2\pi]$, isto é, x percorra o intervalo $\left[\frac{\pi}{4},\frac{9\pi}{4}\right]$.

Assim, o período de f é:

$$p(f)=\frac{9\pi}{4}-\frac{\pi}{4}=2\pi$$

- **145.** f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = \operatorname{sen}\left(x + \frac{\pi}{3}\right)$.
- **146.** f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = \text{sen}\left(2x \frac{\pi}{3}\right)$.
- **147.** f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = 1 + 2 \cdot \text{sen}\left(\frac{x}{2} \frac{\pi}{6}\right)$.
- 148. Sendo a, b, c, d números reais e positivos, determine imagem e período da função f: $\mathbb{R} \to \mathbb{R}$ dada por $f(x) = a + b \cdot sen (cx + d)$.

Solução

Façamos cx + d = t. Quando x percorre \mathbb{R} , t percorre \mathbb{R} (pois a função afim t = cx + d é sobrejetora) e, em consequência, sen t percorre o intervalo [-1, 1], b · sen t percorre o intervalo [-b, b] e y = a + b · sen t percorre o intervalo [a - b, a + b], que é a imagem de f.

Para que f complete um período é necessário que t varie de 0 a 2π , então:

$$t = 0 \implies cx + d = 0 \implies x = -\frac{d}{c}$$

$$t = 2\pi \implies cx + d = 2\pi \implies x = \frac{2\pi}{c} - \frac{d}{c}$$

$$p = \triangle x = \left(\frac{2\pi}{c} - \frac{d}{c}\right) - \left(-\frac{d}{c}\right) = \frac{2\pi}{c}.$$

149. Determine o período da função dada por y = 3 sen $\left(2\pi x + \frac{\pi}{2}\right)$.

150. Construa o gráfico de um período da função f: $\mathbb{R} \to \mathbb{R}$ tal que

$$f(x) = 1 - 2 \cdot sen\left(2x - \frac{\pi}{3}\right).$$

151. Para que valores de m existe x tal que sen x = 2m - 5?

Solução

Para que exista x satisfazendo a igualdade acima, devemos ter:

$$-1 \le 2m - 5 \le 1 \Leftrightarrow 4 \le 2m \le 6 \Leftrightarrow 2 \le m \le 3.$$

152. Em cada caso abaixo, para que valores de *m* existe *x* satisfazendo a igualdade:

a) sen
$$x = 2 - 5m$$
;

b) sen
$$x = \frac{m-1}{m-2}$$
?

V. Função cosseno

111. Definição

Dado um número real x, seja P sua imagem no ciclo. Denominamos cosseno de x (e indicamos $\cos x$) a abscissa $\overline{OP_2}$ do ponto P em relação ao sistema uOv. Denominamos **função cosseno** a função f: $\mathbb{R} \to \mathbb{R}$ que associa a cada real x o real $OP_2 = \cos x$, isto é, $f(x) = \cos x$.

112. Propriedades

As propriedades da razão trigonométrica cosseno, já vistas no capítulo IV, item 57, a saber: (a) se x é do primeiro ou do quarto quadrante, então cos x é positivo; (b) se x é do segundo ou do terceiro quadrante, então cos x é negativo; (c) se x percorre o