This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

his Page Blank (uspto)

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) N° de publication :
(à n'utiliser que pour les

.

2 701 762

(21) № d'enregistrement national :

commandes de reproduction)

93 01903

(51) Int CIs : G 01 C 1/00, 21/02, G 02 B 23/00, G 01 S 3/78

(12)

DEMANDE DE BREVET D'INVENTION

A1

- 22 Date de dépôt : 19.02.93.
- (30) Priorité :

- (71) Demandeur(s): CENTRE NATIONAL D'ETUDES SPATIALES FR.
- Date de la mise à disposition du public de la demande : 26.08.94 Bulletin 94/34.
- 56 Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.
- (60) Références à d'autres documents nationaux apparentés :
- 72) Inventeur(s): Lazard Bruno, Buil Christian et Maisonobe Luc.
- 73) Titulaire(s) :
- 74 Mandataire : Brevatome.

54 Dispositif de restitution d'orbite de corps célestes, notamment de satellites artificiels, par écartométrie.

57) Selon l'invention, des moyens sont prévus pour mesurer l'écart angulaire entre le satellite et une étoile à l'aide d'un télescope (10) équipé d'une caméra à CCD (12) et d'un obturateur (19). Des moyens (14, 16) de traitement numérique des images en déduisent l'orbite.

Application à l'espace.

FR 2 701 762 - A1

7

DISPOSITIF DE RESTITUTION D'ORBITE DE CORPS CELESTES, NOTAMMENT DE SATELLITES ARTIFICIELS, PAR ECARTOMETRIE

DESCRIPTION

Domaine technique

La présente invention a pour objet un disposi10 tif de restitution d'orbite de corps célestes. Elle s'applique notamment à la restitution d'orbite de satellites artificiels, en particulier de satellites géostationnaires. Mais elle peut s'appliquer également à des corps célestes qui ne sont pas des satellites à
15 proprement parler, comme des débris d'objets divers (fusées, plateformes spatiales, satellites, etc).

Le déposant désigne son dispositif par l'acronyme ROSACE signifiant "Restitution d'Orbite par Système Autonome CCD d'Ecartométrie".

20

5

Etat de la technique antérieure.

L'orbite d'un satellite peut être définie par la position et la vitesse du satellite à un instant 25 donné. Mais cette manière de définir une orbite est peu représentative et on lui préfère en général la définition de six paramètres datés, qui sont traditionnellement:

- le demi-grand axe de l'orbite, noté a,
- 30 l'excentricité. notée e,
 - l'inclinaison du plan de l'orbite sur le plan équatorial, notée i,
 - l'ascension droite du noeud ascendant.
- l'argument du périgée, noté ω,

- l'anomalie vraie, notée v.

Les paramètres, i, ω , Λ définissent le plan de l'orbite et les paramètres a et e la forme de cette orbite.

5 L'anomalie vraie, v, est l'angle entre la direction du périgée et celle du satellite.

Lorsqu'il s'agit de satellites géostationoccupent des orbites quasi-circulaires naires, qui situées pratiquement dans le plan équatorial, 10 l'inclinaison i et l'excentricité e sont quasi nulles de sorte que l'argument du périgée ω et l'ascension deviennent indéterminées. On utiliser alors un autre jeu de paramètres, plus commode, qui est le suivant :

- a :qui est encore le demi-grand axe,
 - ex : égal a ecos ($\omega + \Lambda$)
 - ey : égal à esin($\omega + \Lambda$)
 - ix : égal à icos 12
 - iy : égal à isin ∩
- 20 ℓ : qui est la longitude du satellite (égale à $\omega + \infty + v$ temps sidéral)

La présente invention vise à déterminer de tels paramètres, a, e, i, , , , , v pour des satellites quelconques et a, ex, ey, ix, iy, & pour des satellites géostationnaires, et ceci à partir d'une observation du satellite.

Classiquement, la localisation d'un satellite géostationnaire s'effectue par des mesures de distance et des mesures angulaires. Les mesures de distance sont obtenues en déterminant le déphasage entre une onde électromagnétique émise depuis une station au sol et l'onde reçue en retour après réémission par un transpondeur embarqué à bord du satellite.

35 Les stations de localisation fournissent

également des mesures angulaires, obtenues par lecture des rotations autour des axes des montures d'antennes.

Cette méthode exige des moyens complexes. En outre, elle conduit à une précision médiocre eu égard à la surpopulation qui règne dans certaines zones (c'est le cas, par exemple, de la fenêtre située à -19° de longitude contenant les satellites TDF1 et TDF2).

Dans cette méthode, les mesures angulaires sont imprécises (typiquement 0,1°, 0,01° pour des stations particulièrement bien équipées). Ces valeurs sont donc en général insuffisantes pour permettre une restitution d'orbite très précise.

L'erreur commise est due à plusieurs fac
teurs : l'axe d'antenne ne suit le satellite qu'avec
une certaine erreur, liée à la longueur d'onde très
importante de la porteuse (domaine radio) et à la cinématique de l'antenne (sensible surtout pour les satellites bas et en phase de mise à poste). La mesure elle
20 même est réalisée sur l'axe avec une précision limitée
et l'axe peut subir des torsions dues par exemple au
vent. Enfin, la réfraction de l'atmosphère doit être
modélisée pour reporter une mesure par rapport à une
référence au sol dans un repère inertiel.

Une autre méthode, plus lourde mais plus précise, consiste à utiliser deux stations au sol (méthode dite du "turn-around".

Exposé de l'invention

30

25

La présente invention a justement pour but de remédier à ces inconvénients. A cette fin, elle propose un dispositif conduisant à une meilleure précision pour un coût plus faible.

35 Le principe général de l'invention consiste

à prévoir des moyens de mesure de l'écart angulaire du satellite par rapport à une référence qui est elle-même céleste, à savoir une (ou des) étoile(s). On s'affranchit ainsi de tous les postes d'erreur liés au sol (lecture des axes, torsion des axes, position du lobe par rapport aux axes, position du satellite par rapport au lobe). La réfraction continue de jouer mais il suffit de modéliser son effet de façon différentielle entre l'étoile et le satellite, dans un champ La taille du "lobe" optique est liée très faible. à la diffraction et à la turbulence atmosphérique. La diffraction limite ainsi le pouvoir séparateur d'un instrument de 50 cm de diamètre à environ 0,3 seconde, et la turbulence atmosphérique est généralement de l'ordre de la seconde d'arc (elle dépend du site d'observation et de la météorologie). En choisissant convenablement le temps de pose et pour des champs faibles, la turbulence peut être en partie éliminée lors du prétraitement de la mesure. D'autre part, on peut calibrer son influence et associer à chaque mesure une estimation de l'erreur, ce qui permet d'améliorer restitution d'orbite des étapes finales traitement.

10

15

20

35

Selon une caractéristique importante de l'invention, on effectue une prise de vue d'un champ contenant le satellite et la ou les étoile(s) de référence, en utilisant un dispositif à transfert de charges, (appelé généralement CCD pour "Charges Coupled Device"). Il s'agit d'un dispositif optoélectronique permettant de numériser l'image obtenue, ce qui autorise ensuite un traitement numérique.

Selon une autre caractéristique importante de l'invention, il est fait usage d'un obturateur associé à une horloge précise. On peut ainsi hacher le temps de pose de la prise de vues, par exemple en ou-

vrant l'obturateur pendant 2 s, en le fermant pendant l s, en l'ouvrant à nouveau pendant 2 s, en le fermant à nouveau pendant l s, etc... et ceci pendant toute la durée de la pose qui peut être par exemple de l ou de quelques minutes. On peut ainsi dater avec précision un grand nombre de positions intermédiaires des étoiles par rapport au satellite.

L'invention peut être mise en oeuvre de manière complète et autonome sur un même site, ce qui la 10 rend particulièrement commode.

Le dispositif de l'invention pourrait rapà certains égards, une technique connue de surveillance des satellites, appelé **GEODSS** Ground-based Electro-Optical Deep Space Surveillance"). Ce procédé consiste à prendre des images d'une zone du ciel où sont censés se trouver des satellites, et à mémoriser sous forme numérique les zones d'intérêt. La première image (qui est prise avec une exposition 20 prolongée) est prise comme référence du champ d'étoiles et elle est soustraite de toutes les images suivantes. C'est donc une technique de réjection ("background rejection"). On obtient ainsi des images sans étoiles fixes. Ces images sont soumises alors 25 à un programme de détection de traînées, qui différencie objets en mouvement des fausses alarmes satellite géosynchrone a typiquement une angulaire apparente par rapport aux étoiles de 15"/s).

On voit donc, en fait, que le dispositif de l'invention se distingue nettement de cette technique connue, en ce sens qu'il ne rejette pas le champ d'étoiles, bien au contraire, puisqu'il en fait une référence. C'est que l'invention vise à restituer une orbite pour un satellite identifié, alors que le procédé connu

vise à détecter un satellite et non à en restituer l'orbite.

De façon précise, la présente invention a donc pour objet un dispositif de restitution d'orbite de corps célestes, caractérisé par le fait qu'il comprend :

- un télescope solidaire d'une monture à deux axes de rotation équipés de moyens de motorisation de précision aptes à pointer le télescope vers une région du ciel contenant le corps dont on veut restituer l'orbite et au moins une étoile, et à suivre ce corps,
- une caméra à dispositif à transfert de charges, lequel dispositif est placé dans le plan focal du télescope, cette caméra étant apte à prendre des vues de cette région du ciel avec un certain temps de pose et à délivrer un signal numérique correspondant,
 - une horloge de précision,

10

15

30

- un obturateur disposé entre le télescope et la caméra, cet obturateur étant commandé par des moyens synchronisés sur l'horloge, ces moyens étant aptes à commander, pendant le temps de pose, des ouvertures et fermetures successives de l'obturateur, la trace de l'image de l'étoile sur le dispositif à transfert de charge étant alors composée d'une suite de segments,
 - des moyens de traitement numérique reliés à la caméra et à l'horloge, ces moyens étant aptes à :
 - dater le début et la fin de chaque segment de la trace sur l'image,
 - effectuer une mesure d'écartométrie donnant, à chaque instant, l'écart angulaire entre le corps céleste et l'étoile prise comme référence,
- en déduire les paramètres de l'orbite du

corps.

L'horloge peut être constituée par un récepteur GPS ("Global Positioning System") ou une horloge au césium, ou tout autre système donnant le temps avec précision.

Brève description des dessins

- La figure l montre schématiquement une 10 installation de mise en oeuvre du procédé de l'invention;
 - la figure 2 illustre la suite des opérations effectuées ;
- la figure 3 est un schéma fonctionnel d'un dispositif de mise en oeuvre de l'invention ;
 - la figure 4 est un ensemble de courbes montrant l'erreur commise sur divers paramètres d'orbite, en fonction de la cadence de mesures.

20 Exposé détaillé d'un mode de réalisation

25

0د

On voit, sur la figure 1, un télescope 10 dirigé vers un satellite S et une étoile E. Dans le plan focal du télescope se trouve une caméra à CCD 12. Cette caméra est reliée à une carte électronique d'interface 14, elle-même reliée à des moyens de traitement numérique 16.

La prise de vue s'effectue pendant un temps de pose qui varie entre environ une et quelques secondes. Chaque point du dispositif CCD est analysé et transformé en une tension proportionnelle à l'éclairement reçu. La carte 14 délivre ainsi une image numérique du champ de vue.

Par ailleurs, pendant le temps de pose, un 35 obturateur est successivement ouvert et fermé ce qui

hâche le temps de pose comme expliqué plus haut.

La prise de vue étant faite dans le plan focal du télescope, la position des objets dans ce plan est directement donnée par leur écartement angulaire par rapport à l'axe optique par la formule

$h \simeq f tg(\propto),$

où f est la longueur focale et $oldsymbol{lpha}$ l'écart angulaire lo par rapport au centre du champ.

Les phénomènes de diffraction font que l'image n'est pas un point mais une tache d'AIRY, et la turbulence déplace cette tache. On observe donc un étalement de l'image sur plusieurs pixels. On en tire avantage en localisant le centre de la tache par une méthode barycentrique avec une précision de l'ordre du dixième du pixel.

Les caractéristiques typiques d'un système peuvent être :

20 - diamètre = 500 mm

15

30

35

- focale = 1900 mm

- matrice CCD = 512 x 512 pixels

- taille du pixel : 19 µm x 19 µm

- champ total : $0.3^{\circ} \times 0.3^{\circ}$

25 - champ de pixel : 2,1" x 2,1"

Le champ d'observation est très faible $(0,3^{\circ} \times 0,3^{\circ})$, mais l'expérience montre qu'il y a presque toujours un objet de magnitude ll dans un champ quelconque du ciel de cette taille.

Une analyse grossière du catalogue de l'Observatoire de Strasbourg, qui contient 258.884 étoiles jusqu'à la magnitude ll (soit quatre fois moins que pour le catalogue définitif qui sera dressé à partir des résultats donnés par le satellite HIPPARCOS), permet

de dire qu'il y a un intervalle moyen de 2 minutes 40 entre deux mesures si toutes les étoiles de magnitude 11 ayant une déclinaison $\mathcal{E} = -6,62^{\circ} \pm 0,15^{\circ}$ étaient utilisables. Si ce champ est retenu, la précision est meilleure que 2" à 3 σ (6.10⁻⁴°) ce qui permet d'obtenir une précision de restitution de 5 m sur le demi grand axe, de 3.10^{-6} sur l'excentricité, de 10^{-4} ° sur l'inclinaison, de 3.10^{-4} ° sur la longitude 1 (à 3 σ) en deux nuits de six heures de mesures.

10

15

20

25

30

35

5

mesure élémentaire effectuée dispositif de l'invention est une mesure d'écartométrie entre la traînée laissée par l'étoile par suite de la rotation de la terre (15" par seconde) et la tache laissée par le satellite (si l'on suppose que la pose est faite en coupant les moteurs du télescope). faut souligner qu'on mesure un angle d'écartométrie, et non pas la direction de l'écart, ce qui supposerait que l'on oriente le CCD d'une façon particulière autour de l'axe optique, et donc qu'il existerait une référence On n'effectue pas non plus une réduction (au sens astrométrique) de la position du satellite par rapport aux étoiles, ce qui supposerait qu'il y ait au moins trois étoiles de référence dans le champ. S'il y a effectivement trois étoiles dans le champ, on produira trois mesures élémentaires, on ne condensera pas en deux coordonnées (& , S) satellite. La mesure est donc tout à fait spécifique du problème traité et ne relève pas de l'astrométrie classique. Une telle condensation correspondrait à un premier filtrage sur les mesures avant d'entrer dans le filtre de restitution d'orbite : c'est à lui et à lui seul de combiner ces mesures non seulement entre elles mais également avec toutes les autres mesures issues d'autres prises de vue et avec

dynamique de l'orbite restituée. Une condensation correspond à une perte d'information et produit des mesures corrélées (\propto et S); elle ne se justifie que lorsque le nombre de mesures élémentaires est très élevé, ce qui n'est pas le cas ici.

La chaîne de mesure est représentée plus en détail sur la figure 2. On trouve, en partant du photorécepteur à CCD 12, successivement les blocs et les opérations suivantes :

20 : contrôle de l'acquisition de l'image,

22 : conversion analogique-numérique,

24 : filtrage électronique et cosmique,

26 : correction des distorsions et de la réfraction,

28 : extraction des objets,

30 : catalogue d'étoiles,

32 : reconnaissance des objets,

34 : mesure élémentaire d'un écart angulaire entre le satellite et une étoile de référence,

36 : restitution d'orbite,

38 : stockage des paramètres d'orbite,

40 : plan de mesures (cadence, pose, etc).

25

30

35

10

15

20

Toutes ces opérations sont accomplies de préférence par logiciels. Il s'agit le plus souvent de logiciels de traitement d'image (filtre médian pour éliminer le bruit électronique, correction du gain de chaque pixel à l'aide d'une carte d'obscurité de référence, calcul des positions des centres des objets du champ etc). D'autres logiciels, également classiques, permettent la reconnaissance des étoiles, des satellites, la correction des déformations du champ, la correction différentielle de la réfraction, la mesure

des distances, l'estimation de la turbulence, l'estimation de l'erreur de mesure, la datation etc.

D'autres logiciels encore permettent de commander la caméra (déclenchement des horloges de prise de vue, de l'acquisition) voire l'ensemble du télescope pour une implantation destinée à être pilotée à distance ou à fonctionner de façon automatique.

Une caméra pour un usage astronomique peut convenir à l'invention. Il peut s'agir d'une caméra 10 512 x 512 pixels MPP (caractérisée par un bruit thermique très faible, ce qui simplifie au maximum le problème du refroidissement du CCD), dont la partie commande et lecture passe par une interface à haut débit.

On peut aussi utiliser une caméra à CCD 15 refroidie par un fluide cryogénique, par exemple de l'azote liquide ou de la neige carbonique.

La figure 3 montre de manière plus concrète les différents moyens d'une station autonome conforme à l'invention. On y retrouve le télescope 10, repré-20 senté fixé sur une monture 11, par exemple une monture azimutale, avec des moyens de déplacement en site et en azimut (par exemple un moteur pas à pas à vitesse pilotée de 0 à \pm 10° par s). Le télescope est représen-25 té, par ailleurs, avec un baffle 13, permettant une observation par pleine lune, avec un moteur de mise au point 15, un obturateur 19. Cet obturateur peut être associé à un optocoupleur constitué par une diode électroluminescente et un photorécepteur capables de 30 détecter la fermeture et l'ouverture de l'obturateur. Tel que représenté, le dispositif comprend encore une caméra à CCD 12 reliée à une carte 14, laquelle est reliée à un ensemble de traitement 16.

Cet ensemble 16 peut être constitué par un 35 ordinateur quelconque, à condition qu'il soit suffisam-

ment puissant pour pouvoir gérer plusieurs logiciels en parallèle. Une station de la Marque SUN, modèle SPARC, peut convenir par exemple. Elle est équipée de prises de transfert de données de type RS 232 et 5 S BUS.

Par ailleurs, une horloge 42, précise à mieux que 10⁻³s, synchronise les horloges de l'ensemble 16 et définit les instants de datation et d'obturation. L'ensemble 16 commande l'obturateur et l'optocoupleur 19, la caméra 12, et la monture 11, le moteur de mise au point 15.

On voit encore un réseau 44 délivrant à l'ensemble 16 divers ordres de programmation, de maintenance et de mesure.

Divers autres moyens sont représentés de manière schématique comme une coupole motorisée 50, un thermomètre 52, un anémomètre et un capteur de pluie 54, tous moyens en liaison avec l'ensemble 16. On peut y ajouter des moyens d'orientation du dispositif à 20 transfert de charges, des moyens correcteurs de champ pour obtenir une image plus plane, etc...

La précision de la restitution d'orbite obtenue selon l'invention dépend de la cadence de mesure. Les considérations qui suivent permettent d'apprécier cette dépendance, dans le cas d'un satellite géostationnaire et permettent de choisir la meilleure cadence.

25

30

Les planches de la figure 4 montrent l'erreur commise sur divers paramètres de l'orbite (paramètre porté en ordonnées) en fonction de la durée h d'une nuit de mesure, durée portée en abscisses et comptée en heures. La cadence est prise comme paramètre et est exprimée par un nombre m, qui est le nombre de minutes séparant deux mesures consécutives. Pour la courbe la plus basse de chaque planche, une mesure

est effectuée toutes les 5 mm; pour la courbe suivante toutes les 10 mm, et ainsi de suite pour des écarts de 30 mm, 1 h, 2 h, 4 h et enfin toutes les 6 h pour la courbe la plus haute.

La planche (a) correspond à l'erreur Da commise sur le demi-grand axe de l'orbite (a) à 3 sigmas, erreur exprimée en mètres.

La planche (b) correspond à l'erreur Dl sur l, toujours à 3 sigmas, erreur exprimée en 10^{-4} degré.

La planche (c) correspond à l'erreur Dex commise sur ex, à 3 sigmas, exprimée en 10^{-6} .

La planche (d) correspond à l'erreur Dey commise sur ey à 3 sigmas, exprimée en 10^{-6} .

La planche (e) correspond à l'erreur Dix, 15 commise sur ix à 3 sigmas, erreur exprimée en 10^{-4} degré.

La planche (f) correspond à l'erreur Diy commise sur iy à 3 sigmas, et exprimée en 10^{-4} degré.

Sur toutes ces planches, le trait horizontal 20 mixte correspond à l'erreur commise avec la technique connue dite du "turn-around". Ce trait permet donc de comparer l'erreur commise selon l'invention avec celle de l'art antérieur.

De ces graphiques on peut conclure que :

- le plan de mesure minimum permettant le maintien à poste d'un satellite est de 2 nuits de 4 heures avec l mesure toutes les heures,
- le plan de mesure minimum pour assurer une orbite de qualité est de 2 nuits de 6 heures avec 30 l mesure toutes les demi-heures.
 - le plan de mesure optimal et réaliste avec des stations à latitude élevée est de 2 nuits de 6 heures avec 1 mesure toutes les cinq minutes.

Dans ces conditions, les erreurs commises sur la restitution d'orbite sont respectivement :

Da < 5 m

5

 $Dex < 3.10^{-6}$

 $Dey < 1.10^{-6}$

 $Dix < 0,5.10^{-4} degré$

Diy $< 1.10^{-4}$ degré

D1 < 3.10^{-4} degré

ce qui donne des résultats bien meilleurs qu'avec un réseau de type "turn-around" sur a, ix, iy et l.

Par rapport aux systèmes usuels de mesures de distance et d'angles avec une seule station, le gain en précision est considérable pour un coût beaucoup plus faible. On gagne environ un facteur 14 sur Da, un facteur 6 sur De, un facteur 80 sur Di et un facteur 15 sur Dl.

Le dispositif de l'invention est avantageusement placé dans un site où l'observation du ciel s'effectue dans de bonnes conditions (au Chili, en Afrique du Sud, aux Canaries, à Hawaï, etc...).

REVENDICATIONS

- 1. Dispositif de restitution d'orbite de corps célestes, caractérisé par le fait qu'il comprend : un télescope (10) solidaire d'une monture
- 5 (11) à deux axes de rotation équipés de moyens de motorisation de précision aptes à pointer le télescope vers une région du ciel contenant le corps (S) dont on veut restituer l'orbite et au moins une étoile (E), et à suivre ce corps (S),
- une caméra à dispositif à transfert de charges (12), lequel dispositif est placé dans le plan focal du télescope (10), cette caméra (12) étant apte à prendre des vues de cette région du ciel avec un certain temps de pose et à délivrer un signal numérique correspondant,
 - une horloge de précision (42),
 - un obturateur (19) disposé entre le télescope (10) et la caméra (12), cet obturateur (19) étant
 commandé par des moyens synchronisés sur l'horloge,
 ces moyens étant aptes à commander, pendant le temps
 de pose, des ouvertures et fermetures successives de
 l'obturateur, la trace de l'image de l'étoile sur le
 dispositif à transfert de charges étant alors composée
 d'une suite de segments,

20

35

٠. ٠

- des moyens (16) de traitement numérique reliés à la caméra (12) et à l'horloge (42), ces moyens étant aptes à :
 - dater le début et la fin de chaque segment de la trace sur l'image,
- effectuer une mesure d'écartométrie donnant, à chaque instant, l'écart angulaire entre le corps céleste (S) et l'étoile (E) prise comme référence,
 - en déduire les paramètres de l'orbite du corps céleste (S).

- 2. Dispositif selon la revendication l, caractérisé par le fait que les moyens de traitement numérique sont en même temps aptes à :
 - planifier les prises de vues,
- 5 commander l'obturateur (19),
 - piloter la monture (11) du télescope (10),
 - commander la caméra (12).
- 3. Dispositif selon la revendication 1, carac10 térisé par le fait que la monture (11) du télescope (10) est une monture azimutale avec des moyens de déplacement en site et en azimut.
- 4. Dispositif selon la revendication l,
 15 caractérisé par le fait que la caméra à dispositif
 à transfert de charges (12) comprend des moyens d'orientation du dispositif à transfert de charges.

FIG. 1

FIG. 2

REPUBLIQUE FRANÇAISE

2701762

N° d'enregistrement national

INSTITUT NATIONAL

de la

1

PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE

établi sur la base des dernières revendications déposées avant le commencement de la recherche FR 9301903 FA 485855

Catégorie	MENTS CONSIDERES COMME PERTINENTS Citation du document avec indication, en cas de besoin, des parties pertinentes		concernées de la demande examinée	
A	SKY AND TELESCOPE vol. 63, no. 5, Mai 1982, USA pages 469 - 473 J. KELLY BEATY 'THE GEODSS DI * page 471 *	1-4	DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5) G01C B64G	
Date d'achèvement de la recherche 28 OCTOBRE 1993		i	Examinateur HUNT J.H.	
CATEGORIE DES DOCUMENTS CITES X: particulièrement pertinent à lui seul Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie A: pertinent à l'encontre d'au moins une revendication ou arrière-plan technologique général		T: théorie ou principe à la base de l'invention E: document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D: cité dans la demande L: cité pour d'autres raisons		