II. Ионная спектроскопия (продолжение)

- 4. Резерфордовское обратное рассеяние (РОР)
- 5. Спектроскопия рассеяния медленных ионов (СРМИ)
- 6. Вторичная ионная масс-спектрометрия (ВИМС)

Резерфордовское обратное рассеяние

- 1 падающий пучок частиц
- 2 образец
- 3 рассеянные частицы
- 4 детектор
- 5 угол рассеяния θ
- 6 телесный угол Ω захвата детектора

Резерфордовское обратное рассеяние (РОР)

- Rutherford backscattering spectroscopy (RBS).
- Упругое рассеяние ускоренных ионов (¹H+, ²D+, ⁴He+, ⁴He++) с энергией от сотен кэВ до 2-3 МэВ.
- Энергия рассеянных частиц зависит от массы атома проведение элементного анализа материала.
- Глубина анализа определяется начальной энергией иона, геометрией испытаний, массы атомов мишени, тормозной способности мишени.

• Избирательность метода определяется массовым разрешением $\Delta M/M_1$, где ΔM — минимальная разница в массе соседних элементов, которые ещё можно различить на энергетическом спектре.

- Разрешение спектра $\Delta E = E_2 E_1 = \Delta (K_{M_2})_i \cdot E_0$:
 - $\theta \approx 160^{\circ} 170^{\circ}$ ограничение из-за конечных размеров детектора.
 - Для разрешения элементов с близкими массами целесообразно выбирать высокое значение E_0 , но менее 2-3 МэВ, чтобы не возникали эффект резонанса и ядерные реакции.

Анализ **лёгких**элементов – ¹H⁺
Анализ **тяжёлых**элементов – ⁴He⁺

Ширина спектра в РОР

$$\Delta E = \Delta t \cdot [S]$$

Форма спектра обратного рассеяния

Полное число зарегистрированных частиц Q_D , или **выход рассеяния** Y, от тонкого слоя атомов Δt равно

$$Q_D \equiv Y = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cdot \Omega \cdot Q \cdot N \cdot \Delta t = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cdot \Omega \cdot Q \cdot N_S$$

где Q — число падающих частиц;

N — объёмная концентрация атомов мишени;

 N_{s} - поверхностная концентрация атомов мишени.

$$Y(t) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cdot \Omega \cdot Q \cdot N \cdot \Delta t$$

$$=k_c^2 \left(\frac{Z_1 Z_2 e^2}{4E(t)}\right)^2 \cdot Q \cdot N \cdot \Delta t \cdot \Omega$$

$$Y(t) \propto \frac{1}{E(t)^2}$$

Ташлыкова-Бушкевич, И.И. Метод резерфордовского обратного рассеяния при анализе состава твёрдых тел / уч.-метод. пособие, БГУИР. – Минск, 2003.

Количественный анализ

Относительное содержание элемента A в материале с химической формулой $A_m B_n$ определяется как

$$\frac{H_A \cdot \Delta E_A}{H_B \cdot \Delta E_B} = \frac{Y_A}{Y_B} = \frac{\mathrm{d}\sigma_A/\mathrm{d}\Omega \cdot \Omega \cdot Q \cdot N_A \cdot \Delta t}{\mathrm{d}\sigma_B/\mathrm{d}\Omega \cdot \Omega \cdot Q \cdot N_B \cdot \Delta t} \approx \frac{\mathrm{d}\sigma_A/\mathrm{d}\Omega}{\mathrm{d}\sigma_B/\mathrm{d}\Omega} \cdot \frac{N_A}{N_B} \approx \frac{N_A}{N_B} \cdot \left(\frac{Z_A}{Z_B}\right)^2$$

$$\frac{N_A}{N_B} = \left(\frac{H_A}{H_B} \cdot \frac{\Delta E_A}{\Delta E_B}\right)^{-1} \cdot \left(\frac{Z_A}{Z_B}\right)^2 \approx \left(\frac{H_A}{H_B}\right)^{-1} \cdot \left(\frac{Z_A}{Z_B}\right)^2$$

Расчётное задание № 1 (POP)

Ионы гелия 4 Не ${}^{+}$ с энергией 2,5 МэВ бомбардируют поверхность плёнки толщиной t, напылённой на подложку и сверху покрытой тонким слоем металла (толщиной можно пренебречь).

- 1. Постройте кривые зависимости сечения торможения от энергии иона (от 0,5 до 3 МэВ).
- 2. Постройте спектр обратного рассеяния, укажите особенности спектра.

Каналирование

1965, Линдхард. Каналирование - локализация ионов / электронов в твёрдом теле

Плёнка SiO₂ / Si

Ориентирование угла падения пучка ионов таким образом, чтобы

обеспечивалось каналирование в

монокристаллическом кремнии.

Анализ содержания водорода

- Для анализа лёгких элементов применяется <u>спектрометрия</u> <u>атомов отдачи</u>.
- Измеряется энергия не обратно рассеянных частиц, а ионов отдачи.

$$E_{2} = \frac{4M_{1}M_{2}}{(M_{1} + M_{2})^{2}} \cdot \cos^{2} \varphi \cdot E_{0}$$

Предел чувствительности

- Сечение рассеяния $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto Z_2^2$, что означает чувствительность к тяжёлым элементам.
- Распыление.

Выход распыления

Выход распыления Y_s — количество атомов, покидающих поверхность мишени, в расчёте на 1 налетающий ион.

$$Y_S = \frac{\Delta N_S \cdot a}{Q},$$

где ΔN_s – убыль атомов поверхности, см⁻²;

- a площадь пятна, создаваемая пучком ионов, см 2 ;
- Q количество налетающих ионов.

Необходимо, чтобы эрозия была меньше толщины плёнки $\Delta N_s < N_s$.

$$Q_D = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cdot \Omega \cdot Q \cdot N_S$$

$$\frac{Y_{s} \cdot Q}{a} < \frac{Q_{D}}{\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cdot \Omega \cdot Q}$$

$$Q < \sqrt{\frac{a \cdot Q_D}{Y_S \cdot \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cdot \Omega}}$$

$$N_{S} > \sqrt{\frac{Y_{S} \cdot Q_{D}}{a \cdot \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \cdot \Omega}}$$

Для плёнки золота ($Z_2 = 79$), бомбардируемой ионами гелия с энергией 2 МэВ, рассеивающимся под углом $\theta = 170^\circ$, сечение рассеяния составляет порядка $\frac{d\sigma}{d\Omega} = 10$ бн/ср, телесный угол захвата детектора при площади поверхности $1~{\rm cm}^2$ и расстоянии от мишени $5~{\rm cm}$ составляет $\Omega =$ $4 \cdot 10^{-2}$ ср. Выход продуктов распыления $Y_s = 1 \cdot 10^{-3}$, сечение пучка a = 10^{-2} см². Число регистраций $Q_D = 10^2$.

$$N_{\rm s} > 5 \cdot 10^{12} \, {\rm ar/cm^2} \approx 1/1000 \,$$
 монослоя

 $Q < 5 \cdot 10^{13}$ ионов $\to I < 0,2$ мкА при t = 40 сек

Разрешение по глубине

Возможность использования спектроскопии РОР для определения изменения состава мишени по глубине определяется разрешением δt , которое связано с разрешением по энергии как:

$$\delta t = \frac{\delta E}{[S]}$$

$$\delta t = \frac{\delta E}{[S]} = \frac{\delta E}{K_{M_2} \cdot \frac{\mathrm{d}E}{\mathrm{d}x}\Big|_{E_0} + \frac{1}{|\cos\theta|} \cdot \frac{\mathrm{d}E}{\mathrm{d}x}\Big|_{E_1}}$$

Для увеличения разрешения δt (уменьшения значения) необходимо увеличить потери. Достигается это методом скользящих углов, когда детектирование $\theta \approx 90^{\circ}$ осуществляется под углом $(\cos \theta \rightarrow 0)$. Разрешение $\delta t \approx 20 \,\text{Å}$.

Факторы, ограничивающие разрешение по глубине:

- 1. Конечный угол захвата детектора.
- 2. Шероховатость поверхности исследуемого образца.
- 3. Флуктуация потерь энергии (страгглинг).

Предел разрешения по энергии δE_1 устанавливается разрешением детектора δE_d и страгглингом δE_s так, что

$$(\delta E_1)^2 = (\delta E_d)^2 + (\delta E_s)^2.$$

В результате движения ионов вглубь материала происходит потеря энергии. Этот процесс подвержен статистическим флуктуациям. Частицы с одинаковой энергией E_0 после прохождения расстояния t будут иметь разброс энергии δE_s – энергетический страгглинг.

Распределение частиц по энергиям подчиняется закону Гаусса.

Вероятность то, что частица попадёт в интервал энергий от E до $E+\mathrm{d}E$ равна

$$p(E)dE = \frac{1}{\sqrt{2\pi\xi^2}} \exp\left(-\frac{E^2}{2\xi^2}\right) d\Delta E,$$

где ξ — среднеквадратичное отклонение.

Формула Бора для энергетического страгглинга:

$$\xi^2 = 4\pi k_c^2 Z_1^2 e^4 N Z_2 t.$$

Разрешение составляет $\delta E_{s} \approx 2{,}35\xi$.

$$\delta E_{\rm S} \propto Z_1, N, Z_2, t$$
.

Страгглинг накладывает фундаментальное ограничение на разрешение по глубине.

Поверхностно-барьерный детектор

Энергия образования электроннодырочной пары $E_{\text{обр}} \approx 3E_g$ (3,8 эВ для Si и 2,9 для Ge).

Число электронно-дырочных пар:

$$N = \frac{E}{E_{\text{off}}}$$

Амплитуда сигнала $\propto E$.

Разрешение $\delta E_d = 10 - 20$ кэВ.

Поверхностно-барьерный детектор

Резюме по РОР

- Неразрушающий метод.
- Позволяет определить состав материала и распределение элементов по глубине (разрешение по глубине – несколько нм).
- Количественный анализ без эталонов.
- Чувствительность метода: для лёгких элементов доли % (ат.), для тяжёлых доли ppm.