EECS 127/227AT Optimization Models in Engineering Spring 2020

Discussion 4

1. Convexity of Sets

Definition. A set C is convex if and only if the line segment between any two points in C lies in C:

C is convex
$$\iff \forall \vec{x}_1, \vec{x}_2 \in C, \ \forall \theta \in [0,1], \ \theta \vec{x}_1 + (1-\theta)\vec{x}_2 \in C$$

(a) Show that the intersection of convex sets is convex:

$$C_1, C_2$$
 are convex $\implies C = C_1 \cap C_2$ is convex

Solution: Consider $\vec{x}_1, \vec{x}_2 \in C$ and $\theta \in [0, 1]$. Then $\vec{x}_1, \vec{x}_2 \in C_1$ and $\vec{x}_1, \vec{x}_2 \in C_2$. Since C_1 and C_2 are convex we have, $\theta \vec{x}_1 + (1 - \theta)\vec{x}_2 \in C_1$ and $\theta \vec{x}_1 + (1 - \theta)\vec{x}_2 \in C_2$, which implies $\theta \vec{x}_1 + (1 - \theta)\vec{x}_2 \in C$.

- (b) Show that the following sets are convex:
 - i. [Optional] A vector subspace of \mathbb{R}^n Solution: If C is a vector subspace of \mathbb{R}^n then $\forall \vec{x}_1, \vec{x}_2 \in C$, and $\forall \alpha, \beta \in \mathbb{R}$, $\alpha \vec{x}_1 + \beta \vec{x}_2 \in C$. So $\forall \vec{x}_1, \vec{x}_2 \in C$, $\forall \theta \in [0, 1]$, $\theta \vec{x}_1 + (1 - \theta) \vec{x}_2 \in C$.
 - ii. [Optional] A hyperplane, $\mathcal{L} = \{\vec{x} \mid \vec{a}^{\top}\vec{x} = b\}$. Solution: $\forall \vec{x}_1, \vec{x}_2 \in H, \forall \theta \in [0, 1]$:

$$\vec{a}^{\top}(\theta \vec{x}_1 + (1 - \theta)\vec{x}_2) = \theta(\vec{a}^{\top} \vec{x}_1) + (1 - \theta)(\vec{a}^{\top} \vec{x}_2)$$
$$= \theta b + (1 - \theta)b$$
$$= b.$$

So, $\theta \vec{x}_1 + (1 - \theta) \vec{x}_2 \in H$ and H is convex.

Other proof: an hyperplane is the intersection of two half-spaces, therefore it is convex.

iii. A halfspace, $\mathcal{H} = \{\vec{x} \mid \vec{a}^{\top} \vec{x} \leq b\}.$

Solution: $\forall \vec{x}_1, \vec{x}_2 \in H, \forall \theta \in [0, 1]$:

$$\vec{a}^{\top}(\theta\vec{x}_1 + (1 - \theta)\vec{x}_2) = \theta(\vec{a}^{\top}\vec{x}_1) + (1 - \theta)(\vec{a}^{\top}\vec{x}_2)$$

$$\leq \theta b + (1 - \theta)b$$

$$= b.$$

So, $\theta \vec{x}_1 + (1 - \theta) \vec{x}_2 \in H$ and H is convex.

Definition. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine if it is the sum of a linear function and a constant,

$$f(\vec{x}) = A\vec{x} + \vec{b},$$

for $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$.

(c) [Optional] Conservation of convexity through affine transformation. Prove that if $S \subseteq \mathbb{R}^n$ is convex, then the image of S under an affine function f,

$$f(S) = \{ f(\vec{x}) \mid \vec{x} \in S \},\$$

is convex.

Solution: Let $\vec{y}_1, \vec{y}_2 \in f(S)$. This implies there exist $\vec{x}_1, \vec{x}_2 \in S$ such that $\vec{y}_1 = A\vec{x}_1 + \vec{b}$ and $\vec{y}_2 = A\vec{x}_2 + \vec{b}$.

We want to show that $\lambda \vec{y}_1 + (1 - \lambda)\vec{y}_2 \in f(S)$ for $0 \le \lambda \le 1$.

Since S is convex we have $\lambda \vec{x}_1 + (1-\lambda)\vec{x}_2 \in S$. Further $A(\lambda \vec{x}_1 + (1-\lambda)\vec{x}_2) + \vec{b} = \lambda \vec{y}_1 + (1-\lambda)\vec{y}_2$. This shows that $\lambda \vec{y}_1 + (1-\lambda)\vec{y}_2 \in f(S)$.

2. Convexity of Functions

<u>Definition.</u> A function $f :: \mathbb{R}^n \to \mathbb{R}$ is convex if dom(f) is a convex set and if for all $\vec{x}, \vec{y} \in dom(f)$ and $\theta \in [0, 1]$, we have,

$$f(\theta \vec{x} + (1 - \theta)\vec{y}) \le \theta f(\vec{x}) + (1 - \theta)f(\vec{y}). \tag{1}$$

The function f is strictly convex if the inequality is strict.

<u>Definition.</u> A function $f :: \mathbb{R}^n \to \mathbb{R}$ is concave if dom(f) is a convex set and if for all $\vec{x}, \vec{y} \in dom(f)$ and θ with $0 \le \theta \le 1$, we have,

$$f(\theta \vec{x} + (1 - \theta)\vec{y}) \ge \theta f(\vec{x}) + (1 - \theta)f(\vec{y}).$$

The function f is strictly concave if the inequality is strict.

<u>Property.</u> A function f is concave if and only if -f is convex. An affine function is both convex and concave.

Property: Jensen's inequality. The inequality in Equation (1) is known as **Jensen's Inequality**. This can be extended to convex combinations of more than one point. If f is convex, and $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k \in \text{dom}(f)$, and $\theta_1, \theta_2, \ldots, \theta_k \geq 0$ with $\sum_{i=1}^k \theta_i = 1$ then,

$$f(\theta_1 \vec{x}_1 + \theta_2 \vec{x}_2 + \dots + \theta_k \vec{x}_k) \le \theta_1 f(\vec{x}_1) + \theta_2 f(\vec{x}_2) + \dots + \theta_k f(\vec{x}_k).$$

Property: First order condition. Suppose f is differentiable. Then f is convex if and only if dom(f) is convex and

$$f(\vec{y}) \ge f(\vec{x}) + \nabla f(\vec{x})^{\top} (\vec{y} - \vec{x}),$$

for all $\vec{x}, \vec{y} \in \text{dom}(f)$.

Property: Second order condition. Suppose f is twice differentiable. Then f is convex if and only if, dom(f) is convex and the Hessian of f, $\nabla^2 f(\vec{x})$, is positive semi-definite for all $\vec{x} \in dom(f)$.

(a) Under what condition on $A \in \mathbb{R}^{n \times n}$, where A is symmetric, is the function $f : \vec{x} \to \vec{x}^\top A \vec{x}$ convex?

Solution: We have $\nabla^2 f(x) = 2A$ and for f to be convex we require A to be positive semi-definite.

(b) [Optional] Restriction to a line. Show that a function f is convex if and only if for all $\vec{x} \in \text{dom}(f)$ and all \vec{v} , the function $g: \text{dom}(g) \to \mathbb{R}$ given by $g(t) = f(\vec{x} + t\vec{v})$ is convex for $\text{dom}(g) = \{t \in \mathbb{R} \mid \vec{x} + t\vec{v} \in \text{dom}(f)\}.$

Solution: In the first direction: assume f is convex and consider $\vec{x} \in \text{dom}(f)$, \vec{v} and the function $g: \text{dom}(g) \to \mathbb{R}$ given by $g(t) = f(\vec{x} + t\vec{v})$ where $\text{dom}(g) = \{t \in \mathbb{R} \mid \vec{x} + t\vec{v} \in \text{dom}(f)\}$. Because f is convex, dom(f) is convex, therefore dom(g) is also convex. For $t_1, t_2 \in \text{dom}(g)$ and $\lambda \in [0, 1]$:

$$g(\lambda t_1 + (1 - \lambda)t_2) = f(\vec{x} + (\lambda t_1 + (1 - \lambda)t_2)\vec{v})$$

$$= f(\lambda(\vec{x} + t_1\vec{v}) + (1 - \lambda)(\vec{x} + t_2\vec{v}))$$

$$\leq \lambda f(\vec{x} + t_1\vec{v}) + (1 - \lambda)f(\vec{x} + t_2\vec{v})$$

$$= \lambda g(t_1) + (1 - \lambda)g(t_2)$$

Therefore g is convex.

In the other direction: Consider $\vec{x}_1, \vec{x}_2 \in \text{dom}(f)$ and $\lambda \in [0, 1]$. Define $g: t \to f(\vec{x}_2 + t(\vec{x}_1 - \vec{x}_2))$. g is convex and $0 \in \text{dom}(g)$ and $1 \in \text{dom}(g)$, so $[0, 1] \in \text{dom}(g)$. Therefore $\lambda \vec{x}_1 + (1 - \lambda)\vec{x}_2 \in \text{dom}(f)$ and dom(f) is convex.

Because g is convex:

$$g(\lambda 1 + (1 - \lambda)0) = g(\lambda) \le \lambda g(1) + (1 - \lambda)g(0)$$

$$f(\vec{x}_2 + \lambda(\vec{x}_1 - \vec{x}_2)) \le \lambda f(\vec{x}_2 + 1(\vec{x}_1 - \vec{x}_2)) + (1 - \lambda)f(\vec{x}_2 + 0(\vec{x}_1 - \vec{x}_2))$$

$$f(\lambda \vec{x}_2 + (1 - \lambda)\vec{x}_2) \le \lambda f(\vec{x}_1) + (1 - \lambda)f(\vec{x}_2)$$

Therefore f is convex.

(c) [Optional] Non-negative weighted sum. Show that the non-negative weighted sum of convex functions is convex: i.e. if f_1, \ldots, f_n are n convex functions from \mathbb{R}^n to \mathbb{R} and $w_1, \ldots, w_n \in \mathbb{R}_+$ are n positive scalars, then the function:

$$f = \sum_{i=1}^{n} w_i f_i$$

is convex. To make the question easier, you can assume that the functions f_1, \ldots, f_n are twice-differentiable.

Solution: Check convexity by using the second order condition. First, the weighted sum of twice-differentiable function is also twice-differentiable:

$$\nabla^2 f = \nabla^2 \left(\sum_{i=1}^n w_i f_i \right)$$

$$= \sum_{i=1}^n w_i \nabla^2 f_i \qquad \text{(linearity of } \nabla^2\text{)}$$

Next we check that $\nabla^2 f$ is PSD.

$$\begin{split} \forall \vec{y}, \forall \vec{x} \quad \vec{y}^{\top}(\nabla^2 f(\vec{x})) \vec{y} &= \vec{y}^{\top}(\sum_{i=1}^n w_i \nabla^2 f_i(\vec{x})) \vec{y} \\ &= \sum_{i=1}^n w_i \vec{y}^{\top}(\nabla^2 f_i(\vec{x})) \vec{y} \\ &\geq 0 \qquad \qquad (\vec{y}^{\top}(\nabla^2 f_i(\vec{x})) \vec{y} \geq 0, \text{ because } f_i \text{ is convex}) \end{split}$$

So $\forall \vec{x}, \ \nabla^2 f(\vec{x})$ is PSD, so f is convex.

(d) [Optional] Point-wise maximum Show that if f_1 and f_2 are convex functions then their pointwise maximum f, defined by

$$f(\vec{x}) = \max(f_1(\vec{x}), f_2(\vec{x})),$$

with $dom(f) = dom(f_1) \cap dom(f_2)$, is also convex.

Solution: Because f_1 and f_2 are convex, then $dom(f_1)$ and $dom(f_2)$ are convex sets. Because convexity of sets is preserved under intersection, $dom(f) = dom(f_1) \cap dom(f_2)$ is also convex.

```
\begin{aligned} & \operatorname{epi}(f) = \{ (\vec{x}, t) \mid x \in \operatorname{dom}(f), f(\vec{x}) \leq t \} \\ & = \{ (\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f), \operatorname{max}(f_1(\vec{x}), f_2(\vec{x})) \leq t \} \\ & = \{ (\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f_1) \cap \operatorname{dom}(f_2), f_1(\vec{x}) \leq t \text{ and } f_2(\vec{x}) \leq t \} \\ & = \{ (\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f_1), f_1(\vec{x}) \leq t \} \cap \{ (\vec{x}, t) \mid \vec{x} \in \operatorname{dom}(f_2), f_2(\vec{x}) \leq t \} \\ & = \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2) \end{aligned}
```

Because f_1 and f_2 are convex, then $epi(f_1)$ and $epi(f_2)$ are convex. Because convexity of sets is preserved under intersection, epi(f) is convex. Because of the equivalence between the convexity of functions and the convexity of their epigraphs, f is convex.

(e) Show that a piece-wise linear function that can be written as,

$$f(\vec{x}) = \max(\vec{a}_1^{\top} \vec{x} + \vec{b}_1, \vec{a}_2^{\top} \vec{x} + \vec{b}_2, ..., \vec{a}_m^{\top} \vec{x} + \vec{b}_m),$$

is convex.

Solution: $f(\vec{x})$ is the point-wise maximum of affine (hence convex) functions and is therefore convex.

3. Disproving convexity: Finding counter-examples

Though we spend a lot of time in this course learning how to prove convexity of sets and functions, in practical scenarios we may not have a mathematical representation of a set/function and so it is not possible to prove convexity. Instead, we may be able to represent this set/function in terms of a query $Q(\vec{x})$ that returns some information about the element \vec{x} in relation to the set/function. For example, instead representing the set $S = \{\vec{x} \mid \text{some condition on } \vec{x}\}$ we only have $Q(\vec{x})$ which returns whether or not $\vec{x} \in S$.

In these cases we can **disprove** convexity by showing that one or more of the properties of convex sets/functions are violated by finding counterexamples. In this problem we will see how we can disprove convexity for sets/functions given limited information that can be accessed via certain types of queries.

(a) Disproving convexity of set S (Proving non-convexity of set S)

Assume that we know that the set lies within some \mathcal{D} .

Query: $Q(\vec{x})$: For $\vec{x} \in \mathcal{D}$ that returns True if $\vec{x} \in S$ and False if $\vec{x} \notin S$. How can you use Q to check/disprove convexity of S?

Solution: Choose \vec{x} and \vec{y} randomly in \mathcal{D} and if both lie in S then check if $(\vec{x} + \vec{y})/2$ lies in S. We can choose any point on line segment joining $\vec{x}, \vec{y} \in S$ instead of the mid-point.

- (b) Disproving convexity of function f (Proving non-convexity of function f). Assume that we know dom(f), denoted as \mathcal{D} and that \mathcal{D} is convex.
 - i. Query: $G(\vec{x})$:For $\vec{x} \in \mathcal{D}$, returns function value $f(\vec{x})$. How can you use G to check/disprove convexity of f? Solution: Get $G(\vec{x}), G(\vec{y})$ for $\vec{x}, \vec{y} \in \mathcal{D}$ and then check if $G(\frac{\vec{x}+\vec{y}}{2}) \leq \frac{G(\vec{x})+G(\vec{y})}{2}$. Can also check for other points on line segment joining \vec{x} and \vec{y} .
 - ii. Query: $H(\vec{x})$: For $\vec{x} \in \mathcal{D}$, returns $f(\vec{x})$ and $\nabla f(\vec{x})$. (Here we assume that f is differentiable). How can you use H to check/disprove convexity of f?

 Solution: Check first order condition $f(\vec{y}) \geq f(\vec{x}) + \nabla f(\vec{x})^{\top} (\vec{y} \vec{x})$.