

MATHAGO

Schularbeit

Wachstum & Zerfall

Die Mathago Schularbeit besteht aus 6 kurzen Aufgaben (Ankreuzaufgaben, Grundkompetenzen, etc.) und 2 bis 3 längeren Textaufgaben. Diese stammen aus dem Aufgabenpool und den Kompensationsprüfungen des BMBWF. Die Punkteverteilung sieht wie folgt aus:

22 – 24 Punkte	Sehr Gut
19 – 21 Punkte	Gut
16 – 18 Punkte	Befriedigend
12 – 15 Punkte	Genügend
0 – 11 Punkte	Nicht Genügend

Aufgabe 1 (2 Punkte)

Die Zeit, die ein Mensch einem bestimmten Schallpegel täglich ausgesetzt werden darf, wird *Einwirkungsdauer* genannt. Sie kann durch die nachstehende Funktion *f* modelliert werden.

 $f(x) = a \cdot 0.8^{x}$

x ... Schallpegel in Dezibel (dB)

f(x) ... Einwirkungsdauer beim Schallpegel x in min

Bei einem Schallpegel von 100 dB beträgt die Einwirkungsdauer 12 min.

1) Ermitteln Sie den Parameter a.

Aufgabe 2 (2 Punkte)

Auch ein Hund wurde von Milben befallen.

Ohne Therapie verdoppelt sich die Anzahl der Milben jeweils in einem Zeitraum von T Tagen.

1) Ordnen Sie den beiden Satzanfängen jeweils das zutreffende Satzende aus A bis D zu.

Im Zeitintervall [0; $2 \cdot T$]	
Im Zeitintervall $\left[0; \frac{T}{2}\right]$	

А	erhöht sich die Anzahl der Milben um 100 %.
В	halbiert sich die Anzahl der Milben.
С	vervierfacht sich die Anzahl der Milben.
D	erhöht sich sich die Anzahl der Milben um etwa 41 %.

Aufgabe 3 (2 Punkte)

Im Rahmen eines biologischen Experiments werden sechs Zellkulturen günstigen und ungünstigen äußeren Bedingungen ausgesetzt, wodurch die Anzahl der Zellen entweder exponentiell zunimmt oder exponentiell abnimmt.

Dabei gibt $N_i(t)$ die Anzahl der Zellen in der jeweiligen Zellkultur t Tage nach Beginn des Experiments an (i = 1, 2, 3, 4, 5, 6).

Ordnen Sie den vier beschriebenen Veränderungen jeweils die zugehörige Funktionsgleichung (aus A bis F) zu!

Die Anzahl der Zellen verdoppelt sich pro Tag.	
Die Anzahl der Zellen nimmt pro Tag um 85 % zu.	
Die Anzahl der Zellen nimmt pro Tag um 85 % ab.	
Die Anzahl der Zellen nimmt pro Tag um die Hälfte ab.	

А	$N_1(t) = N_1(0) \cdot 0.15^t$
В	$N_2(t) = N_2(0) \cdot 0.5^t$
С	$N_3(t) = N_3(0) \cdot 0.85^t$
D	$N_4(t) = N_4(0) \cdot 1,5^t$
Е	$N_5(t) = N_5(0) \cdot 1,85^t$
F	$N_6(t) = N_6(0) \cdot 2^t$

Aufgabe 4 (2 Punkte)

Das radioaktive Isotop ¹³⁷Cs (Cäsium) hat eine Halbwertszeit von etwa 30 Jahren.

Die Funktion f gibt in Abhängigkeit von der Zeit t an, wie viel Prozent der Ausgangsmenge an 137 Cs noch vorhanden sind (t in Jahren, f(t) in % der Ausgangsmenge). Die zum Zeitpunkt t=0 vorhandene Menge an 137 Cs wird als Ausgangsmenge bezeichnet.

Zeichnen Sie im nachstehenden Koordinatensystem im Zeitintervall [0; 60] den Graphen von f ein.

Aufgabe 5 (2 Punkte)

Die nachstehenden Abbildungen zeigen die Graphen von Exponentialfunktionen, die jeweils die Abhängigkeit der Menge einer radioaktiven Substanz von der Zeit beschreiben. Dabei gibt M(t) die Menge (in mg) zum Zeitpunkt t (in Tagen) an.

Ordnen Sie den vier Graphen jeweils die entsprechende Halbwertszeit (aus A bis F) zu!

А	1 Tag
В	2 Tage
С	3 Tage
D	5 Tage
Е	10 Tage
F	mehr als 10 Tage

Aufgabe 6 (2 Punkte)

Die drei Exponentialfunktionen N_1 , N_2 und N_3 beschreiben jeweils einen Zerfallsprozess mit den zugehörigen Halbwertszeiten τ_1 , τ_2 und τ_3 .

Nachstehend sind Ausschnitte der Graphen dieser drei Funktionen abgebildet.

Ordnen Sie die Halbwertszeiten $\tau_{\rm 1},~\tau_{\rm 2}$ und $\tau_{\rm 3}$ der Größe nach. Beginnen Sie mit der kürzesten Halbwertszeit.

Aufgabe 7 (4 Punkte)

Die Vitamin-D-Konzentration in Claudias Blut sinkt ab Herbstbeginn und lässt sich durch die Funktion N beschreiben.

$$N(t) = N_{\scriptscriptstyle 0} \cdot e^{\scriptscriptstyle -0,0173 \cdot t}$$

- t ... Zeit ab Herbstbeginn in Tagen
- N(t) ... Vitamin-D-Konzentration in Claudias Blut zur Zeit t in Nanogramm pro Milliliter (ng/ml)
- N_{\circ} ... Vitamin-D-Konzentration in Claudias Blut zu Herbstbeginn in ng/ml

Der Körper ist ausreichend mit Vitamin D versorgt, wenn dessen Konzentration im Blut mindestens 30 ng/ml beträgt.

Claudia möchte wissen, wie hoch die Vitamin-D-Konzentration im Blut zu Herbstbeginn mindestens sein muss, damit ihr Körper nach 60 Tagen noch ausreichend mit Vitamin D versorgt ist.

1) Berechnen Sie die dafür notwendige Vitamin-D-Konzentration zu Herbstbeginn.

Im obigen Modell beträgt die Halbwertszeit beim Abbau von Vitamin D in Claudias Körper 40 Tage.

2) Kreuzen Sie die zutreffende Aussage an. [1 aus 5]

Nach 80 Tagen ist noch die Hälfte von $N_{\rm o}$ vorhanden.	
Nach 100 Tagen ist noch ein Drittel von $N_{\rm o}$ vorhanden.	
Nach 120 Tagen ist noch ein Viertel von $N_{\rm o}$ vorhanden.	
Nach 140 Tagen ist noch ein Achtel von $N_{\rm o}$ vorhanden.	
Nach 160 Tagen ist noch ein Sechzehntel von $N_{\rm o}$ vorhanden.	

Aufgabe 8 (4 Punkte)

Eine Heizung beginnt um 15 Uhr, einen Wohnraum zu erwärmen. Ab diesem Zeitpunkt kann die Raumtemperatur durch die Funktion T beschrieben werden.

$$T(t) = 24 - 6 \cdot e^{-\lambda \cdot t}$$

 $t \dots$ Heizdauer in h mit t = 0 für 15 Uhr

T(t) ... Raumtemperatur nach der Heizdauer t in °C

1) Bestimmen Sie die Raumtemperatur um 15 Uhr.

Um 16 Uhr beträgt die Raumtemperatur 21 °C.

2) Berechnen Sie den Parameter λ .

Aufgabe 9 (4 Punkte)

Eine Technikerin modelliert die Datenübertragungsrate in Abhängigkeit von der Entfernung von einem Access-Point mit einer Exponentialfunktion *d*.

$$d(x) = c \cdot a^x$$

x ... Entfernung in m

d(x) ... Datenübertragungsrate in einer Entfernung x in Mbit/s

Sie ermittelt folgende Messwerte:

Entfernung in m	5	50
Datenübertragungsrate in Mbit/s	500	10

- 1) Berechnen Sie die Parameter a und c der Exponentialfunktion d.
- 2) Kreuzen Sie die auf diese Exponentialfunktion d nicht zutreffende Aussage an. [1 aus 5]

Die Funktionswerte der 1. Ableitung der Funktion d sind negativ.	
Die x-Achse ist für den Graphen der Funktion d eine Asymptote.	
Wird der Änderungsfaktor a in der Form e^k geschrieben, muss k positiv sein.	
Die Funktion d hat an der Stelle $x = 0$ den Funktionswert c .	
Die Funktionswerte der 2. Ableitung der Funktion d sind positiv.	