Statistical and computational methods for bioinformatics and social network analysis

or how did I learn to stop worrying and love the bomb

George G Vega Yon

University of Southern California, Department of Preventive Medicine

October 9, 2019

Statistical and computational methods for bioinformatics and social network analysis

- ▶ We live in a non-IID world.
- ▶ Some times, looking the whole helps understanding the parts.
- ▶ We have the computational tools to do such.

Contents

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Things that are very interesting but I most probably won't have any time to discuss with the attendees

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Things that are very interesting but I most probably won't have any time to discuss with the attendees

Exponential Family Random Graph Models, aka ERGMs are:

- ► Statistical models of (social) networks
- ▶ In simple terms: statistical inference on what network patterns/structures/motifs govern the data-generating process

A vector of

A vector of model parameters sufficient statistics

$$\Pr\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$
All possible networks
$$\underset{\text{constant}}{\text{Constant}}$$

The normalizing constant has $2^{n(n-1)}$ terms!

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to the millions of vertices)

- ► Semi-parametric bootstrap
- Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- ► Equilibrium Expectation Algorithm (millions of vertices)

What about small networks?

Do we care about small networks?

Keck School of Medicine of USC

We see small networks everywhere

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- Online networks (sometimes)
- ► etc.

ERGMs for small networks

From the methodological point of view, current methods are great, but:

- ► Possible accuracy issues (error rates)
- ▶ Prone to degeneracy problems (sampling and existance of MLE)
- ► It is not MLE...

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.

Figure 1 Random sample of 5 networks simulated using the ergmito package

ulated using the ergmito package	Table 1 Fitted	ERGIVIITOS	using the	Tivenets	datase
We performed a large simulation study prove	comparing MC-M	LE (ergm)	with ML	E (ergn	nito).

	Edgecount	Full model
Edgecount	-0.69*	-1.70**
	(0.27)	(0.54)
Homophily (on Gender)		1.59*
		(0.64)
AIC	78.38	73.34
BIC	80.48	77.53
Log Likelihood	-38.19	-34.67
Num. networks	5	5

Standard errors in parenthesis. *** p < 0.001, ** p < 0.01, * p < 0.05

		P(Type I	error)	
Sample size	N. Simulations	MC-MLE	MLE	chi2
5	2,189	0.084	0.057	11.71 ***
10	2,330	0.070	0.045	12.46 ***
15	2,395	0.084	0.066	5.55 *
20	2,430	0.074	0.060	3.58
30	2,460	0.057	0.052	0.67
50	2,495	0.046	0.044	0.17
100	2,499	0.048	0.048	0.00

Table 2 Empirical Type I error rates. The χ^2 statistic is from a 2-sample test for equality of proportions, and the significance levels are given by *** p < 0.001, ** p < 0.01, and * p < 0.05. The lack of fitted samples in some levels is due to failure of the estimation method.

Paper 1 Simulation Studies: Elapsed time

Keck School of Medicine of USC

▶ more results

Key takeaways

- ► New extension of ERGMs using exact statistics for small networks (families, teams, ego-centered, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods.

Next steps

- ► Revisit measurment of goodness-of-fit.
- ► Explore extending this method for (very) large networks.

Contents

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Things that are very interesting but I most probably won't have any time to discuss with the attendees

How we organize the information about genes (According to the Gene Ontology)

Molecular function Active transport GO:0005215

Cellular component
Mitochondrian GO:0004016

Biological process

Heart contraction GO:0060047

Diastole (filling)

- \blacktriangleright Currently, the Gene Ontology Project has: 44,945 validated terms, \sim 6,400,000 annotations on \sim 1,150,000 species.
- lacktriangle Of all annotations, about \sim 500,000 are on human genes.
- ▶ Knowledge about gene functions can accelerate bio-medical research.

Example of GO term

Name heart contraction Ontology biological_process Synonyms heart beating, cardiac contraction, hemolymph circulation Alternate IDs None The multicellular organismal process in which the heart decreases in volume in a characteristic way to propel blood through the body. Source: GOC:dph	Accession	GO:0060047
Synonyms heart beating, cardiac contraction, hemolymph circulation Alternate IDs None The multicellular organismal process in which the heart decreases in volume	Name	heart contraction
Alternate IDs None The multicellular organismal process in which the heart decreases in volume	Ontology	biological_process
The multicellular organismal process in which the heart decreases in volume	Synonyms	heart beating, cardiac contraction, hemolymph circulation
Definition	Alternate	IDs None
	Definition	The multicellular organismal process in which the heart decreases in volume
		in a characteristic way to propel blood through the body. Source: GOC:dph

Table 3 Heart Contraction Function. source: amigo.geneontology.org

You know what is interesting about this function?

These four species have a gene with that function... and two of these are part of the same evolutionary tree!

Phylogenetic Trees

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.
- ► A single phylogenetic tree can host multiple species

Figure 2 Random annotated phylogenetic tree.

We can use the evolutionary tree

to infer presence/absence of gene functions (annotations)!

- ► Initial (spontaneous) gain of function.
- ▶ We control for human error.

We implemented the model using Felsensteins' pruning algorithm (linear complexity) in the R package aphylo • more.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ψ_0	0.00	0.00	0.23	0.25	0.00	0.00	0.21	0.25
ψ_1	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01
μ_{d0}	0.01	0.01	0.97	0.96	1.00	0.01	1.00	0.98
μ_{d1}	0.01	0.02	0.52	0.58	0.25	0.02	0.51	0.58
$\mu_{ m s0}$	0.00	0.00	0.05	0.06	0.07	0.00	0.05	0.06
μ_{s1}	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02
π	0.81	0.91	0.78	0.45	0.82	0.91	0.83	0.49
Tree count	88	88	141	141	88	88	141	141
Method	МСМС	МСМС	мсмс	мсмс	MLE	MLE	MLE	MLE
Prior	Uniform	Beta	Uniform	Beta	Uniform	Beta	Uniform	Beta
Inferred	Yes	Yes	No	No	Yes	Yes	No	No
AUC	1.00	1.00	0.69	0.67	0.98	1.00	0.70	0.67
P. Score (obs)	1.00	1.00	0.81	0.81	0.92	1.00	0.81	0.81
P. Score (random)	0.71	0.71	0.61	0.61	0.71	0.71	0.61	0.61

 Table 4 Parameter estimates using different estimation methods, priors, and types of annotations.

Keck School of Medicine of USC

Annotated Phylogenetic Tree

Prediction with real data: Out-of-sample prediction

Keck School of of USC

Adenosine Deaminase (PTHR11409) AUCs:={0.80, 0.67, -}

Key takeaways

- ▶ (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Next steps

▶ Adapt the model to incorporate joint estimation of functions using pseudo-likelihood.

$$P(a,b,c) \approx P(a,b)P(b,c)P(a,c)$$

▶ Make the model hierarchical when pooling trees: different mutation rates.

Statistical and computational methods for bioinformatics and social network analysis

or how did I learn to stop worrying and love the bomb

George G Vega Yon

University of Southern California, Department of Preventive Medicine

October 9, 2019

Thanks!

Here are some by-products of my research here at USC

- ► The slurmR R package
- ► The pruner C++ library
- ► The fmcmc R package

References I

Dodd, D. M. B. (1989). Reproductive isolation as a consequence of adaptive divergence in drosophila pseudoobscura. *Evolution*, 43(6), 1308–1311. Retrieved from http://www.jstor.org/stable/2409365

Sufficient statistics have various forms

Representation	Description
○←► ()	Mutual Ties (Reciprocity)
	$\sum_{i eq j} y_{ij} y_{ji}$
\rightarrow	Transitive Triad (Balance)
\bigcirc	$\sum_{i \neq j \neq k} y_{ij} y_{jk} y_{ik}$
	Homophily
	$\sum_{i\neq j}y_{ij}1\left(x_{i}=x_{j} ight)$
	Covariate Effect for Incoming Ties
	$\sum_{i \neq j} y_{ij} x_j$
\bigcirc	Four Cycle
	$\sum_{i\neq j\neq k\neq l} y_{ij} y_{jk} y_{kl} y_{li}$

One of the most popular methods for estimating ERGMs is the MC-MLE approach (citations here) This consists on the folling steps

- 1. Start from a sensible guess on what should be the population parameters (usually done using pseudo-MLE esimtation)
- 2. While the algorithm doesn't converge, do:
 - 2.1 Simulate a stream of networks with the current state of the parameter, $heta_t$
 - 2.2 Using the law of large numbers, approximate the ratio of likelihoods based on the parameter θ_t , this is the objective function
 - 2.3 Update the parameter by a Newton-Raphson step
 - 2.4 Next iteration

The ergmito

- ► Implements estimation of ERGMs using exact statistics for small networks
- Metaprogramming allows specifying likelihood (and gradient) functions for joint models
- ► Includes tools for simulating, and postestimation checks
- ► Getting ready for CRAN!

Paper 1 Simulation Studies

We performed a simulation study with the following features:

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks
- ▶ We estimated the models using MC-MLE and MLE.

Paper 1 Simulation Studies: Empirical Bias

Keck School of Medicine of USC

An evolutionary model of gene functions (algorithmic view)

Keck School of Medicine of USC

```
Data: A phylogenetic tree, \{\pi, \mu, \psi\} (Model probabilities)
Result: An annotated tree
for n \in PostOrder(N) do
   Nodes gain/loss function depending on their parent;
   switch class of n do
       case root node do
           Gain function with probability \pi:
       case interior node do
           if Parent has the function then Keep it with prob. (1 - \mu_1):
           else Gain it with prob. \mu_0:
   end
   Finally, we allow for mislabeling:
   if n is leaf then
       if has the function then Mislabel with prob. \psi_1:
       else Mislabel with prob. \psi_0:
end
```

▶ go back

Figure 3 11989DoddDodd (): After one year of isolation, flies showed a significant level or assortativity in mating (wikimedia)

Figure 4 A key part of molecular innovation, gene duplication provides opportunity for new functions to emerge (wikimedia)

GGVY

The aphylo

- ▶ Pruning algorithm implemeted in C++ using the pruner template library (implemeted in this project).
- ▶ The estimation is done using either Maximum Likelihood, Maximum A Posteriory, or MCMC.
- ► The MCMC estimation is done via the fmcmc R package using adaptive MCMC (also implemeted as part of this project)

◀ go back