

UNIDADE III: REPRESENTAÇÃO DO CONHECIMENTO E RACIOCÍNIO

•Sumário:

- Introdução
- Agentes baseados em conhecimento
- •Representação do conhecimento e lógica

Objectivos

- Adquirir a noção de representação do conhecimento raciocínio em IA
- Adquirir a noção de agente baseado em conhecimento
- Adquirir uma noção sobre a utilização da lógica no processo de representação do conhecimento e raciocínio

Representação do conhecimento e raciocínio

- Constituem elementos chaves dentro do campo da IA
- O uso de conhecimento e de mecanismos de raciocínio permite aumentar o desempenho dos agentes artificiais
- agentes de busca possuem capacidades de representação de conhecimento e de raciocínio genéricas e elementares:
 - Conhecimento → mecanismo de avaliar situações e heurísticas para guiar a busca
 - Raciocínio → método sistemático de percorrer grafos

Agentes baseados em conhecimento (1/8)

- Sacam benefício do conhecimento que se expressa de forma geral, combinando a informação de maneira a ajustar-se a variadíssimas situações
- O conhecimento e o raciocínio permitem lidar com ambientes parcialmente observáveis
 - A partir do conhecimento geral e das percepções actuais o agente pode inferir aspectos ocultos do estado actual
 - Diagnóstico médico, interpretação de linguagem natural

Agentes baseados em conhecimento (2/8)

- São flexíveis, podem assumir novas tarefas na forma de objectivos definidos explicitamente
 - Podem adquirir competências facilmente sendo ensinados ou aprendendo sobre o ambiente
 - Podem adaptar-se às mudanças no ambiente actualizando conhecimentos relevantes

Agentes baseados em conhecimento (3/8)

- O componente central de um agente baseado em conhecimento é a sua base de conhecimento
- A base de conhecimento é formada por um conjunto de sentenças que representam afirmações acerca do mundo
- As sentenças se expressam numa linguagem de representação de conhecimento

Agentes baseados em conhecimento (4/8)

- Deve existir uma forma de adicionar novas sentenças à base de conhecimento e outra de consultar o que se conhece
- Ambas tarefas podem envolver inferência, ou seja, derivação de novas sentenças a partir das velhas

Agentes baseados em conhecimento (5/8)

Agentes baseados em conhecimento (6/8)

- Ao chamar o programa do agente:
 - Informa-se a base de conhecimento o que o agente percebe do ambiente
 - Consulta a base de conhecimento qual deve ser a próxima acção a ser executada
 - Um extensivo processo de **raciocínio** pode ser realizado sobre o actual estado do mundo, as consequências de possíveis sequências de acções, etc.
 - Regista a acção escolhida e executa a mesma

Agentes baseados em conhecimento (7/8)

- Os detalhes da linguagem de representação se ocultam no interior das funções
 - FAZ-SENTENÇA-PERCEPÇÃO(),
 - FAZ-CONSULTA-ACÇÃO() e
 - FAZ-SENTENÇA-ACÇÃO()
- Os detalhes dos mecanismos de inferência se ocultam no interior das funções
 - INFORMA() e
 - CONSULTA()

Agentes baseados em conhecimento (8/8)

- Podem ser utilizadas diferentes abordagens no desenho da linguagem de representação
 - Declarativa
 - Procedimental
 - Híbrida

O mundo do wumpus

- Caverna com vários compartimentos interconectados
- Num deles se encontra o wumpus, fera ³
 que devora qualquer indivíduo que entrar
- O wumpus pode ser morto pelo agente, mas este só tem uma flecha
- Algumas salas têm poços sem fundo nos quais cairá quem passar por elas, excepto o wumpus
- Existe ouro em algumas salas

O mundo do wumpus: PEAS (1/2)

- Medida de desempenho: +1000 por apanhar ouro, -1000 por cair num poço ou ser comido pelo wumpus, -1 por cada acção executada e -10 por usar a flecha
- Ambiente: grelha de salas de 4x4. ² posição inicial do agente [1, 1] virado para a direita. Posições do wumpus, do ouro e dos poços escolhidas aleatoriamente
- Acções: O agente pode mover-se para frente, virar 90º à esquerda, virar 90º à direita, agarrar um objeto e atirar a flecha

O mundo do wumpus: PEAS (2/2)

- Sensores: cinco, proporcionando cada
 1 bit de informação
 - Em quadrados adjacentes ao Wumpus, excepto diagonal, o agente sente o *cheiro* do wumpus
 - Em quadrados adjacentes a um poço, excepto diagonal, o agente sente uma brisa
 - Quadrados onde existe ouro o agente percebe o *brilho* do ouro
 - Ao caminhar contra uma parede o agente sente um *impacto*
 - Quando o Wumpus morre o agente ouve um *grito*

O mundo do wumpus: passo 1

- Sensores:
 - [nada, nada, nada, nada, nada]
- Conclusão:
 - [1,2] e [2,1] são seguros
- Movimento escolhido
 - -[2,1]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
0K 1,1 A	2,1	3,1	4,1
ок	ок		

O mundo do wumpus: passo 2

• Sensores:

– [nada, brisa, nada, nada, nada]

• Conclusão:

 Há poço em [2,2], [3,1] ou ambos

Movimento escolhido:

- [1,1] e depois [1,2]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ок			
1,1 V OK	2,1 A B OK	3,1 P?	4,1

O mundo do wumpus: passo 3

Sensores:

– [cheiro, nada, nada, nada, nada]

• Conclusão:

- Há Wumpus em [1,3] ou [2,2]
- Wumpus n\u00e3o pode estar em [2,2]
- Wumpus em [1,3]
- Não existe poço em [2,2]
- Poço em [3,1]
- [2,2] é seguro

Movimento escolhido:

-[2,2]

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2A S	2,2	3,2	4,2
ок 1,1 v ок	2,1 B V OK	3,1 P!	4,1

Agentes lógicos

- As sentenças que constituem a base de conhecimento se expressam numa linguagem lógica
- Um dos exemplos mais antigos do uso da lógica provém de Aristóteles
 - Todos os homens são mortais; Sócrates é um homem; logo Sócrates é mortal

Lógica: conceitos básicos

- Qualquer linguagem lógica se estrutura ao redor de um conjunto de elementos básicos
 - Sintaxe
 - Semântica
 - Modelo
 - Consequência lógica
 - Mecanismo de inferência...

Lógica: sintaxe

- Especifica as sentenças que são permitidas ou fórmulas bem formadas
 - Por exemplo em matemática "x + y = 4" é uma sentença bem formada enquanto "x2y+=" não é

Lógica: semântica

- Está relacionada com o "significado" das sentenças
- Define a verdade de cada sentença com relação a cada possível mundo
 - A sentença "x + y = 4" é verdadeira num mundo em que x = 2 e y = 2, mas é falsa num mundo em que x = 1 e y = 1

Lógica: consequência

- O raciocínio lógico envolve a relação de consequência entre sentenças
- O conceito se utiliza quando uma sentença decorre logicamente de outra
 - $-\alpha \models \beta \rightarrow \beta$ decorre logicamente de α
 - A sentença "4 = x + y" decorre da sentença "x + y = 4"

Lógica: mundo do wumpus (1/6)

Base de conhecimento:

- Nada em [1,1]
- Brisa em [2,1]
- Regras do mundo de Wumpus

• Interesse do agente:

Saber se os quadrados [1,2], [2,2]e [3,1] contém poços.

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
OK	21 —	2.1	4.1
1,1 V OK	2,1 A B OK	3,1 P?	4,1

Lógica: mundo do wumpus (2/6)

- Possíveis modelos:
 - $-2^3=8$

Lógica: mundo do wumpus (3/6)

- A base de conhecimento é falsa em modelos que contradizem o que o agente sabe
- Há apenas 3 modelos em que a base de conhecimento é verdadeira

Lógica: mundo do wumpus (4/6)

- Considerando a possível conclusão:
 - c¹ = "não existe nenhum poço em [1,2]"
- É possivel afirmar que BC $= c^1$

Lógica: mundo do wumpus (5/6)

- Considerando a possível conclusão:
 - c² = "não existe nenhum poço em
 [2,2]"
- É possivel afirmar que BC ≠ c²

Lógica: mundo do wumpus (6/6)

- Consequência lógica pode ser utilizada para realizar inferência lógica (derivar conclusões)
- Algoritmo de inferência ilustrado se denomina verificação de modelo (model checking)
 - Enumera todos os modelos possíveis para verificar se uma sentença dada é verdadeira em todos modelos nos quais BC é verdadeira

Tipos de lógica

- Que tipo de lógica utilizar para representar a base de conhecimento?
 - Lógica proposicional
 - Lógica de primeira ordem...

Bibliografia

- Russell & Norvig, 194 204
- Costa & Simões, 121 131
- Palma Méndez & Marín Morales, 33 36