DISCS Jim Gray Feb 1989

OUTLINE

DEBIT CREDT STANDARDIZATION

DISC TRENDS & ECONOMICS

DISC PHYSICS

DISC SUBSYSTEMS

Debit Credit Council

Renamed:

Transaction Processing Performance Council

Benchmark: TPC Benchmark ATM

Members:

ATT, Biin, CDC, Computer Associates, Cullinet, DG, DEC, Fujitsu, HP, HB, IBM, ICL, Informix, NCR, Oracle, Prime, Pyramid, RTI, Sequent, Sequoia, Stratus, Sun, Sybase, Tandem, Teradata, Tolerant, Unisys, Wang

Harder:

Measure response time at driver system

Reply must return new balance

Easier

Shrink terminal net by 10X

Eliminate Presentation Services

Shrink history file by 3x

Response time: 90% @ 2 seconds (vs 95% @ 1 sec)

BIG DEBATE:

How to characterize the network?

LAN? WAN?

Contact:

Omri Serlin,

ITOM International

POB 1450

Los Altos, CA 94022

415-948-4516

OUTLINE

DEBIT CREDT STANDARDIZATION

DISC TRENDS & ECONOMICS

DISC PHYSICS

DISC SUBSYSTEMS

DISC ECONOMICS / TRENDS

Hoagland: Disc Magnetic Areal Density (MAD) = $10^{\text{(year-1970)/10}}$ Mb/in²

Moore: RAM Memory Density = 10 (year-1970)/5 Kb/chip

Disc ~ 5\$/MB- 20\$/MB .1\$/access - 4k\$/access

RAM: 100\$/MB-5k\$/MB ????????

Next Decade: Disc & Controller ~ 100\$ ~1GB => .1\$/MB

RAM Wafer: $\sim 1K$ \$ $\sim .5GB \Rightarrow 1$ \$/MB

DISC ECONONOMICS TODAY

Someday:

Disc will be "tape"

Cheap archive sequential storage,

NOT Random Block Access Storage Device

Today: 5 minute rule applies:

keep it in ram if accessed every 5 minutes

J. Gray, F. Putzolu, The 5 Minute Rule for Trading Memory for Disc

Accesses, and the 10 Byte Rule for Trading Memory for CPU Instructions,

ACM SIGMOD Proceedings, June 1987,

THE BIG DISC PROBLEM: Disc Delivers 25accesses/second:

100MB 1 a/s/4MB, 1GB 1 a/s/40MB 100GB 1 a/s/4GB

EVEN TODAY, DISC NEEDS TO BE USED SEQUENTIALLY

DISC SPEED vs TIME

- 1. ACCESS RATE NOT MUCH IMPROVED
- 2. SEQUENTIAL 100X RANDOM

SO: USE SEQUENTIAL "DISC IS TAPE!"

LARGE BLOCK TRANSFERS
CONVERT RANDOM IO TO LOG IO

OUTLINE

DEBIT CREDT STANDARDIZATION
DISC TRENDS & ECONOMICS

DISC PHYSICS

DISC SUBSYSTEMS

Laws of Nature

Discs rotate at 60rps (1800 -> 2400 -> 3600)

=> 60 io/sec max (50 due to creep)

=> ~16ms/rotation

May rise in future

Service_time = Seek + Settle + Rotate + Transfer

Settle ~ 2ms

Rotate ~ 1/2 (16ms) ~ 8ms

Work on Seek & Transfer

SEEK TIME

Seek_time $\sim \sqrt{\text{distance}}$

because:

1: constant acceleration

Velocity vs Time @ Constant Acceleration

2. area under curve (distance) ~ time²

Expected seek distance:

If random access, then $\frac{1}{3}$ of total tracks (difference of two random variables).

Trends:

As discs get smaller $14" -> 9" -> 8" -> 5\frac{1}{4}" -> 3\frac{1}{2}"$:

seek distance decreases (linear)

seek time decresases $\sqrt[2]{\text{stroke}}$

arms are $\sqrt{\text{lighter}}$ => faster acceletation

less power, stress => reliable and cheap

MAD decrease implies less seek needed: $\sqrt[2]{10} \sim 3x/\text{decade}$

TRANSFER TIME

Transfer_time ~ bytes/bandwidth

Typical Bandwidth: 1MB/s ... 10MB/s

Bandwidth ~ Rotations/sec * Bytes/track

but Rotations/sec ~ 60 is a universal constant so

~ Bytes/track

~ (Bytes/inch) * (inches/track)

~ √MAD * Diameter

Trend: Discs are shirinking $14'' -> 9'' -> 8'' -> 5\frac{1}{4}'' -> 3\frac{1}{2}''$:

=> Diameter is shrinking (3x in this decade)
Perhaps this will end.

=>√MAD decreases ~3/decade

Net: zero change in bandwidth

"Solution": Parallel read from multiple heads

FORMATTING

Disc Track formatted into **Blocks** or **Sectors** (512 is typical) Separated by Gaps

Gaps are fixed by

switching times,

speed of light to controler/cpu

As density increases, gaps dominate space.

At present 25% gap, 75% data is typical.

=> Formatted capacity ~ .75 rated capacity

=> Data Bandwidth

~.75 rated bandwidth

"Solution": Bigger blocks 4KB => 8x fewer blocks

97% used space

at present toly = 13 dby these

SUMMARY OF DISC PHYSICS

Service_time = Seek + Settle + Rotate + Transfer

Work on Queue, Seek & Transfer

OUTLINE

DEBIT CREDT STANDARDIZATION

DISC TRENDS & ECONOMICS

DISC PHYSICS

DISC SUBSYSTEMS

PREDICTED:

SERVICE TIME VS UTILIZATION

PREDICTED:

MEASURED:

R.A. Scranton & D.A. Thompson, The Access Time Myth, IBM Research Report RC 10197 (#45223) 9/21/83

PREDICTED:

MEASURED:

MOST SEEKS ARE SHORT

SUGGESTION: AVOID ZERO-LENGTH SEEKS

PREDICTED:

MEASURED:

10% RPS MISS BECAUSE CONTROLLER BUSY CHANNEL BUSY CPU BUSY

SUGGESTION:

ABANDON RPS
PUT BUFFER ON DISC CONTROLLER

PREDICTED:

MEASURED:

CHANNEL CONTENTION
BECAUSE SLOW DEVICES
BAD PROTOCOLS

SUGGESTION:

BUFFER CHANNEL BURST MULTIPLEX CHANNEL

TO AVOID QUEUEING WANT MANY Arms
Controllers
Channels

CONTROLLER PER DISC AVOIDS QUEUES

TO AVOID QUEUEING WANT MANY

ARMS
CONTROLLERS
CHANNELS

TO AVOID RPS MISS and
TO ALLOW BURST MULTIPLEX CHANNEL WANT
BUFFERED CONTROLLERS

WHAT IF DISC BUFFER MUCH (10X) CHEAPER

4k PAGE @ 5k\$/MB => 20\$

4k PAGE @ 500\$/MB => 2\$

3k ins @ 50K\$/MIP => 150\$/ACCESSchannel + controller @ 300 a/s => 500\$/A

BREAK EVEN IS ABOUT 30 SECONDS

SO CASE:

HOT SPOT (RI < 30sec): MAIN MEMORY

WARM SPOT (RI in [30,1000]): DISC BUFFER

COLD SPOT (RI > 1000): DISC

MIRRORED DISCS

- DUAL MODULES (controller, disc)
- DUAL DATA PATHS (4 paths to data)
- READ ANY, WRITE BOTH
- EACH MODULE IS FAIL FAST (disc, controller, path)
- MTBF₂ $\sim \frac{\text{MTBF}}{\text{MTTR}}$

DOES DISC DUPLEXING WORK?

1987 Tandem:

50,000hr MTBF (6 years)

5hr MTTR

=> ~ 65,000 year MTBF

OBSERVED IN LAST 24 MONTHS:

35 double fails on ~46,400 pair/years

~ 1300 years

CONCLUSION:

IT WORKS WELL (200x better than no duplex).

FAILURES

NOT INDEPENDENT

NOT UNIFORM

INVOLVE CONTROLLERS...

(50x worse than theory)

MIRRORED DISC PERFORMANCE

The % 0 10 20	read 16.8 16.8 16.0	17.3 17.6	avg 16.8 17.2
30	15.9	18.1	17.5
40	15.0	18.6	17.1
50	14.7	19.3	17.0
60	14.2	19.8	16.4
70	13.6	20.4	14.6
90	12.4	21.6	13.4
100	11.7	22.2	11.7

Read from closest arm => seek $\sim \frac{1}{6}$ tracks

Write farthest arm => seek $\sim \frac{1}{2}$ tracks

Mix gives curve above

Note: Shortest service time includes shortest rotation

=> save an additional
$$\frac{1}{6}$$
 16 = \sim 3ms

Total savings on mirrored reads: ~8ms (5+3)

MIRRORED DISC ARM SCHEDULING

Assume FIFO scheduling of requests.

Write scheduling is no-brainer

Read scheduling could be:

Shortest Seek

Shortest Service time

Other?

For low loads all are about the same

Between 30% and 90% Shortest Service time is best (~8%)

Read only case:

Even better for mixed reads and writes.

Bitton, D., Gray, J., Disk Shadowing, VLDB 1988 Proceedings, Morgan Kauffman, Sept 1988. Bitton, D., Arm Scheduling in Shadowed Disks, COMPCON 1989, IEEE Press, March 1989. Gray, J., H. Sammer, S. Whitford, Shortest Seek vs Shortest Service Time Scheduling of Mirrored Disc Reads, Tandem Computers December 1988

WHAT ABOUT USING ARRAYS OF SMALL DISCS

SMALL IS BEAUTIFUL:

MASS PRODUCTION:

LOW COST

DISC IS FIELD REPLACEABLE UNIT

PARALLELISM => performance: disc striping => 10x bamdwidth

PROBLEM WITH STRIPING:

THE BIG DISC PROBLEM:

Disc Delivers 25accesses/second:

100MB 1 a/s/4MB,

1GB 1 a/s/40MB

10GB 1 a/s/400MB

100GB 1 a/s/4GB

Arms are the scarce/queueing resource

Good if DISC is treated as TAPE: Purely Sequential

WHAT ABOUT USING SMALL DISCS

PROBLEM:

MANY SMALL DISCS => MANY ERRORS

SOLUTIONS:

DUPLEX Discs, Controllers, Paths, Power,...:
Good for small read+writes

RAID (Redundant Arrays of Independent Discs)

N data discs + parity disc.

Good for

Space utilization
read cost (single read if no error)
write cost is 3x (read parity, write data, parity)
compared to duplex 2x

- G. Gibson, R. Katz, D. Patterson, A Case for Redundant Arrays of Inexpensive Discs, (RAID), SIGMOD 88.
- M. Kim, Synchronized Discs Interleaving, IEEE TOC, V. C35 #11, Nov 1986
- S. Ng, Design Alternatives for Disc Duplexing, IBM RJ 5481, Jan 1987
- S. Ng, Lang, D., Sellinger, R., Tradeoffs Between Devices and Paths In achieving Disc Interleving, IBM RJ 6140, Mar 1988
- S. Ng, Some Design Issues of Disc Arrays, Compcon 89
- G. Gibson, Peter Chen, R. Katz, D. Patterson, *Introduction To Redundant Arrays of Inexpensive Discs (RAID)*, Compcon 89
- M. Schulze, G. Gibson, R. Katz, D. Patterson, How Reliable is RAID?, Compcon 89

OUTLINE

DEBIT CREDT STANDARDIZATION

DISC TRENDS & ECONOMICS

DISC PHYSICS

DISC SUBSYSTEMS