

CLAIMS

WHAT IS CLAIMED IS:

1 1. A method of manufacturing an integrated circuit, the
2 method comprising:

3 providing a first gate structure and a second gate structure
4 on a semiconductor substrate including a strained semiconductor layer,
5 the first gate structure and the second gate structure each including a
6 first spacer, wherein the first gate structure is provided above a first area
7 of the strained semiconductor layer and the second gate structure is
8 provided above a second area of the strained semiconductor layer;

9 providing a first masking layer above the first area;

10 forming first deep source and drain regions in the strained
11 semiconductor layer in the second area;

12 removing the first masking layer;

13 masking the second area with a second masking layer;

14 providing a second spacer to the first gate structure; and

15 forming second deep source and drain regions in the strained
16 semiconductor layer in the second area.

1 2. The method of claim 1, further comprising:

2 activating the first and second deep source and drain regions
3 in an annealing process.

1 3. The method of claim 2, wherein the annealing process
2 operates at less than 600°C.

1 4. The method of claim 3, wherein the removing step is a
2 dry-etching step.

1 5. The method of claim 4, wherein the first and second
2 spacers comprise nitride.

1 6. The method of claim 1, further comprising:

2 siliciding the first and second gate structures and the first
3 and second source and drain regions.

1 7. The method of claim 1, wherein the first and second
2 gate structures includes a polysilicon conductor.

1 8. The method of claim 1, further comprising:
2 covering at least a portion of the semiconductor substrate
3 with an insulative layer.

1 9. The method of claim 1, wherein the second spacers
2 are approximately 500 angstroms wide.

1 10. The method of claim 9, wherein the second source
2 and drain regions include Arsenic.

1 11. A method of manufacturing an ultra-large scale
2 integrated circuit including a plurality of field effect transistors having
3 gate structures, the method comprising the steps of:
4 selectively providing deep source and drain regions for a first
5 group of the field effect transistors;
6 selectively providing offset spacers for a second group of the
7 field effect transistors, the second group of the field effect transistors
8 being different than the first group of the field effect transistors, wherein
9 the first group and the second group are provided on a top surface of a
10 strained semiconductor layer; and
11 selectively providing source and drain regions for the second
12 group.

1 12. The method of claim 11, further comprising:
2 providing a silicide layer above the source and drain regions
3 for the first group and the second group.

1 13. The method of claim 12, further comprising:
2 providing a silicon dioxide layer over the silicide layer.

1 14. The method of claim 11, wherein the strained
2 semiconductor layer includes silicon.

1 15. The method of claim 14, wherein the silicon is above a
2 silicon/germanium layer.

1 16. The method of claim 15, wherein the offset spacers
2 are approximately 500-2000 angstroms high and approximately 500
3 angstroms wide.

1 17. A process of forming source and drain regions on a
2 semiconductor substrate, the process comprising:

3 forming a plurality of gate structures on a top surface of a
4 strained silicon layer;

5 covering a first set of gate structures;

6 forming deep source and drain regions on each side of a
7 second set of the gate structures;

8 uncovering the first set of gate structures;

9 covering the second set of gate structures;

10 providing spacers for the first set of gate structures; and

11 forming deep source and drain regions on each side of the
12 first set of the gate structures.

1 18. The process of claim 17, further comprising:

2 annealing the strained silicon layer after the providing steps.

1 19. The process of claim 18, wherein the strained silicon
2 layer is provided above a silicon geranium layer.

1 20. The process of claim 19, wherein the deep source and
2 drain regions are provided by ion implantation.