2.AdvExps 进阶性实验

本文件夹中的所有实验均为本讲中进阶的实验,基于 0.ApiExps、1.BasicExps 文件夹中的实验,用户在已经熟悉基于 RflySim 平台开发本章中的实验,该文件夹中的实验均为本讲的进阶例程,如:进阶场景和模型导入方法。

序号	实验名称	简介	文件地址	版本
1	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接口	e0_AdvApiExps\.	个人版
		类实验,基于 0.ApiExps、1.BasicExps 文件夹		
		中的实验, 本文件夹中均为针对本章的进阶性		
		接口类实验,如:进阶场景开发工具入门、完		
		整场景控制接口和模型调整接口		
2	蓝图模型导入	本文件夹中的实验包括 RflySim3D 的蓝图接	e1_BlueprintModel\nan	集合版
		口调用方法和导入蓝图模型的流程		
3	RflySim3D 蓝图接口实验	在进行仿真前,保证 Copter 以"蓝图形式"导	e1_BlueprintModel\1.BlueprintBuild\Readme.pdf	个人集合版
		入 RflySim3D/RflySimUE5, 仿真时通过调用蓝		
		图接口来控制场景中的 Copter。		
4	虚幻商城固定翼蓝图模	熟悉将固定翼蓝图模型导入到 RflySim3D, 并	e1_BlueprintModel\2.BPModelLoad\Readme.pdf	个人集合版
	型导入	能确保其正常工作的流程		
5	Python 场景控制高级接	在进行仿真时, Python 函数通过调用	e1_BlueprintModel\3.BPModelCrtlPy\Readme.pdf	个人集合版
	口验证实验	RflySim3D 的命令接口函数或蓝图接口函数,		
		实现包括发送命令、更新无人机状态、附加无		
		人机等操作。		
6	基于 Cesium 全球大场景	本文件夹中的实验目前提供倾斜摄影转换场	e2_CesiumScene\nan	集合版

	的构建	景导入 RflySim3D 的例程		
7	基于 Cesium 的全球大场 景构建	熟悉将航拍摄影数据转化得到的 OSGB 模型, 在 CesiumLab 中转换为 RflySim3D 能识别的 3D Tiles 格式,并导入 RflySim3D 的流程	e2_CesiumScene\1.ObliModelMap\Readme.pdf	个人集合版
8	Twinmotion 演示场景导入实验	-	e3_TwinmotionContent\Readme.pdf	个人集合版

所有文件列表

序号	实验名称	简介	文件地址	版本
1	进阶性实验	本文件夹中的所有实验均为本讲中进	Readme.pdf	个 人
		阶的实验,基于 0.ApiExps、1.BasicExps		集合
		文件夹中的实验,用户在已经熟悉基		版
		于 RflySim 平台开发本章中的实验, 该		
		文件夹中的实验均为本讲的进阶例		
		程,如:进阶场景和模型导入方法。		
2	进阶接口类实验	本文件夹中的所有实验均为本讲中进	e0_AdvApiExps\.	个 人
		阶接口类实验,基于 0.ApiExps、		版
		1.BasicExps 文件夹中的实验,本文件		
		夹中均为针对本章的进阶性接口类实		
		验,如:进阶场景开发工具入门、完整		
		场景控制接口和模型调整接口		
3	进阶场景开发工	本文件夹中的所有实验均为本讲中进	e0_AdvApiExps\e0_DevToolsUsage\.	个 人
	具入门实验	阶 场 景 开 发 工 具 介 绍 , 基 于		版
		0.ApiExps\e0_DevToolsUsage 文件夹		
		中的实验,包括常用的三维处理软件		
		和 UE 导入接口		
4	SketchUp 安装与	熟悉 SketchUp 的编辑界面和基本操	e0_AdvApiExps\e0_DevToolsUsage\1.SketchUpUsage\Readme.pdf	个 人
	简单使用实验	作, 掌握搭建简单 3D 模型的流程, 为		版
		后续复杂模型场景的搭建打下基础。		
5	Twinmotion 安装	安装好 Twinmotion,并熟悉编辑界面	e0_AdvApiExps\e0_DevToolsUsage\2.TwinmotionUsage\Readme.pdf	个 人

	与使用实验	和导入导出模型的流程		版
6	Cesium for	根据教程,在 UE 中使用 Cesium for	e0_AdvApiExps\e0_DevToolsUsage\3.CesiumForUnrealUsage\Readme.pdf	个 人
	Unreal 安装与使	Unreal 插件导入 Ceisum ion 的地球与		版
	用实验	影像、并导入美国伊利诺伊州芝加哥		
		的城市白膜建筑。		
7	UE5 默认场景导	将 UE5 自带场景导入 RflySim 平台,	e0_AdvApiExps\e0_DevToolsUsage\4.UE5StarterContent\Readme.pdf	个 人
	入实验	熟悉从 UE5 中烘焙场景并导入		版
		RflySimUE5\RflySim3D 和 CopterSim		
		的流程		
8	完整场景控制接	本文件夹中的所有实验均为本讲中进	e0_AdvApiExps\e1_UEMapCtrl\.	个 人
	口实验	阶 场 景 开 发 工 具 介 绍 , 基 于		版
		0.ApiExps\e6_RflySim3DCtrlAPI 文件		
		夹中的实验,包括各种快速布置场景		
		的方法和特效的调用方法		
9	通过快捷键与	在特定场景中,通过快捷键创建标靶,	e0_AdvApiExps\e1_UEMapCtrl\1.TargetCreateKey\Readme.pdf	个 人
	xml 文件快速布	并通过修改 xml 文件使之与地形匹		版
	置标靶场景实验	配,是新生成的标靶与原有标靶相同。		
10	基于 Cesium 的	熟悉导入高精度大场景和任意指定飞	e0_AdvApiExps\e1_UEMapCtrl\10.CesiumPlugin\Readme.pdf	个 人
	全球大场景使用	机 GPS 起点坐标三维仿真的方法		版
11	RflySim3D 自带	展示平台内置的一些模型特效生成和	e0_AdvApiExps\e1_UEMapCtrl\11.EffectPlugins\Readme.pdf	个 人
	特效使用方法	使用方法,如虚拟管道和一些固定翼		版
		飞机模型		
12	爆炸特效触发实	验证蓝图模型的爆炸特效接口。	e0_AdvApiExps\e1_UEMapCtrl\12.DamageModel\Readme.pdf	个 人
	验			版
13	可视化 UE 显示	通过调用 python 接口, 创建目标以	e0_AdvApiExps\e1_UEMapCtrl\13.RflySim3DMsgDispDemo\Readme.pdf	个 人
	接口调用	及设置目标的标签属性等。		版

14	通过 python 脚本	在不同场景中, 通过运行 python 脚本	e0_AdvApiExps\e1_UEMapCtrl\2.TargetCreatePy\Readme.pdf	个	人
	布置标靶场景实	同时创建三个标靶,并通过修改	ooy law ipizipo loz o ziwap och zimar gotor odtor y illoda molpar	版	
	验	python 脚本中对应的命令(发送的 Z		712	
	100	轴坐标) 使之与地形匹配, 使新生成			
		的标靶与原有标靶相同。			
15	│ │ 场景布置与快速	在山地场景中, 通过运行 python 脚本	e0_AdvApiExps\e1_UEMapCtrl\3.TargetPlace\Readme.pdf	个	人
13	地形匹配实验	创建人物,并通过修改 python 脚本中	eo_AdvApiExps\e1_OElviapeti1\o.1aigetFlace\i\eadine.pdi	版	
	地沙匹癿头池	对应的命令(发送的 Z 轴坐标)使之		ЛХ	
1.0	C' I' . I ## ## ##	与地形匹配。	. O A J A : 'E \ - 1	_	1
16	Simulink 获取地	在山地场景中,通过 MATLAB 获取地	e0_AdvApiExps\e1_UEMapCtrl\4.TrajGen\Readme.pdf		人
	形并模拟物体运	形高度图矩阵,并通过运行 Simulink		版	
	动轨迹实验	模块生成贴合地面运动的各种模型。			
17	Simulink 同构模	在山地场景中,通过 MATLAB 获取地	e0_AdvApiExps\e1_UEMapCtrl\5.TrajGenMulti\Readme.pdf		人
	型运动轨迹实验	形高度图矩阵,并通过运行 Simulink		版	
		模块生成贴合地形运动的同构模型。			
18	Simulink 异构多	在山地场景中,通过 MATLAB 获取地	e0_AdvApiExps\e1_UEMapCtrl\6.HeterTrajGenMulti\Readme.pdf	个	人
	物体运动轨迹实	形高度图矩阵,并通过运行 Simulink		版	
	验	模块生成贴合地形运动的异构模型。			
19	车队圆环轨迹实	在山地场景中,通过 MATLAB 获取地	e0_AdvApiExps\e1_UEMapCtrl\7.TenCarCircleCtrl\Readme.pdf	个	人
	验	形高度图矩阵,并通过运行 Simulink		版	
		模块生成在冰面上方运动的车辆圆环			
		编队。			
20	RflySim3D 切换	RflySim3D 能自动识别指定目录下的	e0_AdvApiExps\e1_UEMapCtrl\8.TXTMapCrtlScript\Readme.pdf	个	人
	地图控制脚本实	txt 脚本,创建一个脚本并输入控制台		版	
	验	命令,让 RflySim3D 在进入某个地图			
		时,自动运行脚本,来完成一些场景			

		布置,或者 UE 控制的任务。			
21	获取 RflySim3D 内所有动态创建物体位置、碰撞数据实验	通过平台提供的 python 接口获取 RflySim3D 内所有动态创建物体位 置、碰撞数据。	e0_AdvApiExps\e1_UEMapCtrl\9.RflySim3DPosGet\Readme.pdf	个版	人
22	三维模型调整接口实验	本文件夹中的所有实验均为本讲中进 阶场景开发工具介绍,包括各种模型 各执行器的调整和模型整体的调整	e0_AdvApiExps\e2_UAVCtrl\.	个版	人
23	执行器绑定实验	通过 xml 脚本绑定相互关联的执行器 组件。	e0_AdvApiExps\e2_UAVCtrl\1.ActuatorBinding\Readme.pdf	个版	人
24	执行器控制实验	通过修改 xml 文件验证超 8 维执行器 控制。	e0_AdvApiExps\e2_UAVCtrl\2.ActuatorCtrl\Readme.pdf	个版	人
25	Simulink 载具模 型绑定实验	利用 simulinks 调整模型相对关系	e0_AdvApiExps\e2_UAVCtrl\3.ModelBindSim\Readme.pdf	个版	人
26	Python 载具模型 绑定实验	使用 Python 调整模型之间的相对关系	e0_AdvApiExps\e2_UAVCtrl\4.VehicleAttachPy\Readme.pdf	个版	人
27	蓝图模型导入	本文件夹中的实验包括 RflySim3D 的 蓝图接口调用方法和导入蓝图模型的 流程	e1_BlueprintModel\nan	集版	合
28	RflySim3D 蓝图 接口实验	在进行仿真前,保证 Copter 以"蓝图形式"导入 RflySim3D/RflySimUE5,仿真时通过调用蓝图接口来控制场景中的 Copter。	e1_BlueprintModel\1.BlueprintBuild\Readme.pdf		人合
29	虚幻商城固定翼 蓝图模型导入	熟悉将固定翼蓝图模型导入到 RflySim3D,并能确保其正常工作的流 程	e1_BlueprintModel\2.BPModelLoad\Readme.pdf		人 合

30	Python 场景控制	在进行仿真时,Python 函数通过调用	e1_BlueprintModel\3.BPModelCrtlPy\Readme.pdf	个 人
	高级接口验证实	RflySim3D 的命令接口函数或蓝图接		集合
	验	口函数,实现包括发送命令、更新无		版
		人机状态、附加无人机等操作。		
31	RflySim3D 蓝图	在进行仿真前,保证 Copter 以"蓝图	e1_BlueprintModel\1.BlueprintBuild\Readme.pdf	个 人
	接口实验	形式"导入 RflySim3D/RflySimUE5,仿		集合
		真时通过调用蓝图接口来控制场景中		版
		的 Copter。		
32	虚幻商城固定翼	熟悉将固定翼蓝图模型导入到	e1_BlueprintModel\2.BPModelLoad\Readme.pdf	个 人
	蓝图模型导入	RflySim3D,并能确保其正常工作的流		集合
		程		版
33	Python 场景控制	在进行仿真时,Python 函数通过调用	e1_BlueprintModel\3.BPModelCrtlPy\Readme.pdf	个 人
	高级接口验证实	RflySim3D 的命令接口函数或蓝图接		集合
	验	口函数,实现包括发送命令、更新无		版
		人机状态、附加无人机等操作。		
34	基于 Cesium 全	本文件夹中的实验目前提供倾斜摄影	e2_CesiumScene\nan	集合
	球大场景的构建	转换场景导入 RflySim3D 的例程		版
35	基于 Cesium 的	熟悉将航拍摄影数据转化得到的	e2_CesiumScene\1.ObliModelMap\Readme.pdf	个 人
	全球大场景构建	OSGB 模型,在 CesiumLab 中转换为		集合
		RflySim3D 能识别的 3D Tiles 格式, 并		版
		导入 RflySim3D 的流程		
36	基于 Cesium 的	熟悉将航拍摄影数据转化得到的	e2_CesiumScene\1.ObliModelMap\Readme.pdf	个 人
	全球大场景构建	OSGB 模型,在 CesiumLab 中转换为		集合
		RflySim3D 能识别的 3D Tiles 格式, 并		版
		导入 RflySim3D 的流程		
37	Twinmotion 演示	通过该实验,旨在熟悉并掌握将	e3_TwinmotionContent\Readme.pdf	个 人

场景导入实验	Twinmotion 自带演示场景导入	集	合
	RflySim 平台的流程。具体包括将场景	版	
	通过 Datasmith 插件从 Twinmotion		
	导入到 Unreal Engine 4 (UE4), 在		
	UE4 中进行处理和烘焙,最终将场景		
	导入 RflySim3D 和 CopterSim 的步		
	骤。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。