Agentes Inteligentes 🔐

Prof. Me. Alexandre Henrick

Sistemas de Informação - 8º P

IA como um campo multidisciplinar

- Filosofia: Conexão entre o conhecimento e a ação.
 Questão vital para a IA, porque inteligência exige ação, bem como raciocínio.
- Matemática: Lógica, computação e probabilidade;
- Psicologia: Como os seres humanos pensam e agem?
- Neurociência: Como o cérebro processa informações?
- Linguística: Processamento de linguagem natural
- Biologia: Inspiração na natureza para construção de algoritmos.

Agentes inteligentes em IA

Um agente é tudo que pode ser considerado capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por intermédio atuadores.

Agentes inteligentes em IA

- Mais uma definição para IA: É o estudo de agentes inteligentes que recebem percepções do ambiente e executam ações.
- Ideia dos agentes inteligentes: sistemas que podem decidir o que fazer e quando fazer de forma autônoma.

Agentes racionais

- Se um agente é autônomo e executa suas tarefas com perfeição, seria ele racional? No contexto deste tema, dizemos que um sistema é racional se "faz tudo certo", com os dados que tem.
- Agente racional: É aquele que age para alcançar o melhor resultado ou, quando há incerteza, o melhor resultado esperado.

Um agente é tudo que pode ser considerado capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por intermédio atuadores.

Exemplos de agentes

- Agente humano:
 - Sensores: Olhos, ouvidos, nariz...
 - Atuadores: Mãos, pernas, bocas

- Agente robótico:
 - Sensores: Câmeras e outros sensores
 - Atuadores: Motores

Elementos funcionais de um agente

- **Percepção**: fazer referência às entradas perceptivas do agente em qualquer momento dado.
- Seqüência de Percepções do Agente: é a história completa de tudo que o agente percebeu. Em Geral: a escolha de ação de um agente em qualquer instante dado pode depender da seqüência inteira de percepções observadas até o momento.

- Função de Agente: descreve o comportamento do agente através do mapeamento para qualquer seqüência de percepções específica para uma ação.
- **Programa do Agente**: é uma implementação concreta da função de agente, relacionada à arquitetura do agente.

 Desenho que representa um agente reativo simples e seus componentes.

Mapeando percepções em ações

 Chamamos de função do agente o mapeamento de uma sequência de percepções para uma ação.

$$f: \mathcal{P}^* o \mathcal{A}$$
 ações histórico de percepções (percepts)

- Considere que estamos construindo um agente Aspirador de Pó:
 - Percepções do agente: Local e conteúdo:
 - Exemplo: [A, limpo], [B, sujo]
 - Ações: Esquerda, Direita, Aspirar, Desligar

Sequência de percepts	Ação
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Righ
[A, Clean], [A, Dirty]	Suck
:	:
[A, Clean], [A, Clean], [A, Clean]	Righ
[A, Clean], [A, Clean], [A, Dirty]	Such
:	:

Voltando aos agentes racionais...

- Para cada sequência perceptiva, um agente racional deve selecionar a ação que maximize seu resultado (aquele que se comporta da melhor maneira possível em um ambiente).
- Como saber se esse agente está performando bem?

Medidas de desempenho

- Critério que define o grau de sucesso de um agente na realização de uma dada tarefa;
- Para o exemplo do aspirador, podemos definir algumas medidas de desempenho, como:
 - Maximiza a quantidade de locais limpos em 12 horas;
 - Minimiza a quantidade de sujeira no chão

Agente racional ideal

Para cada sequência de percepções o agente escolhe a ação que maximiza seu desempenho baseado nas informações de percepções e de seu conhecimento sobre o mundo.

Onde está a IA nesse contexto:

- Em um projeto de agente inteligente, a IA se preocupa em desenvolver o programa do agente: a função que implementa o mapeamento entre percepção e ação.
- O programa roda em uma arquitetura: dispositivo de computação que inclui sensores e atuadores.

agente = arquitetura + programa

PEAS

- Para projetar um agente, precisamos definir os seguintes componentes:
 - Performace = Medida de desempenho
 - Environment = Ambiente
 - Actuators = Atuadores
 - Sensors = Sensores

PEAS - Sistema de diagnóstico médico

- Medida de desempenho: paciente saudável
- Ambiente: paciente, hospital, equipe
- Atuadores: exibir na tela as perguntas, testes, diagnósticos, tratamentos
- Sensores: entrada pelo teclado para sintomas, descobertas, respostas do paciente

PEAS - Robô de seleção de peças

- Medida de desempenho: porcentagem de peças em bandejas corretas
- Ambiente: correia transportadora com peças, bandejas
- Atuadores: braço e mão articulados
- Sensores: câmera, sensores angulares articulados

Tipos de ambientes em IA

Saber qual tipo de ambiente o agente irá atuar nos ajuda a determinar quais tipos de agentes devemos construir.

Totalmente observável VS Parcialmente observável

- Se o sensor consegue detectar o estado completo do ambiente a cada ponto, é um ambiente totalmente observável
- Xadrez: o tabuleiro é totalmente observável a cada movimento
- **Dirigindo**: parcialmente observável, a cada curva o ambiente muda

Determinístico VS Estocástico

- Determinístico: o próximo estado é completamente determinado pelo estado atual e pela ação executada pelo agente. Ex Xadrez
- Estocástico: quando existe uma certa aleatoriedade envolvida. Ex: O clima

Episódico VS Sequencial

- Episódico: o agente recebe uma percepção e executa uma ação (episódio atômico). Ex: robô aspirador
- Sequencial: a decisão atual afeta as decisões futuras. Jogo com diferentes finais

Estático VS Dinâmico

- Estático: se o ambiente não muda enquanto o agente atua, então é o estático
- Dinâmico: ao contrário do estático

Contínuo VS Discreto

- Discreto: se o ambiente tiver um número finito de estados. Ex: jogo da velha. Sabemos o número de jogadas possíveis.
- Contínuo: quando o agente deve lidar com grandezas contínuas. Ex: Temperatura de um ambiente.

	Palavras Cruzadas	Xadrez com tempo	Diagnótico médico	Direção de Táxi
Observável	SIM	SIM	NÃO	NÃO
Determinístico	SIM	NÃO	NÃO	NÃO
Episódico	NÃO	NÃO	NÃO	NÃO
Estático	SIM	SEMI	NÃO	NÃO
Discreto	SIM	SIM	NÃO	NÃO

Tipos básicos de agentes

- Agente Reativo Simples;
- Agente Reativo Baseado em Modelos;
- Agente Baseado em Objetivos;
- Agente Baseado em Utilidade

Agente Reativo Simples

 Age com base em estimulos imediatos.
 Não considera o histórico ou futuro

Agente Reativo Simples

 Fazemos um "mapeamento" das percepções para as regras de condição-ação pré-estabelecidas.

```
function AGENTE-REFLEXO-SIMPLES(percepção): ação
    static: regras (um conjunto regra condição-ação)

    estado ← INTERPRETA-ENTRADA(percepção)
    regra ← CASAMENTO-REGRA(estado, regras)
    ação ← AÇÃO-REGRA[regra]

    return ação
```

Agente Baseado em Modelos

Armazena estado
 interno do ambiente.
 Consegue interpretar
 como ambiente
 evolui.

Agente Baseado em Modelos

- O estado interno precisa ser atualizado para a tomar a melhor decisão. Para isso, são necessários dois conhecimentos:
 - Como o ambiente evoluí
 - Como as ações do agente afetam o ambiente

Agente Baseado em Modelos

Função do agente

```
function AGENTE_REFLEXO_COM_ESTADO(percepção):ação
    static: estado (uma descrição do estado atual do mundo)
        regras (um conjunto regra condição-ação)
    estado ← ATUALIZA-ESTADO(estado, percepção) # Cria nova descrição do estado interno
    regra ← CASAMENTO-REGRA(estado, regras)
    ação ← AÇÃO-REGRA[regra]
    return ação
```

Agente Baseado em Objetivos

 As ações são guiadas por um objetivo definido. Verifica se o objetivo foi atingido (medida de desempenho); Repete o processo até que o mesmo seja atingido. Objetivo != regra de condição-ação

Agente Baseado em Objetivos

- O agente irá escolher ações que o aproxime dos objetivos
- Agentes reativos: reação -> frear qdo carro da frente frear
- Agentes baseado em objetivo: raciocínio -> carro da frente freia -> carro da frente diminui velocidade -> objetivo: não atingir outros carros -> ação para atingir objetivo: frear

Exemplo de Agente Baseado em Objetivos

- Agente que aprende a digitar seu nome:
 - Objetivo: Nome completo da pessoa;
 - Medida de desempenho: Quantidade de letras na posição correta

Agente Baseado em Objetivos

- O agente que funciona orientado a objetivos é mais flexível
 - Agente reativo simples -> ações pré-compiladas (condição-ação)
 - Agente p/ objetivo -> pode alterar somente o objetivo sem necessidade de se reescrever as regras de comportamento

Agente Baseado em Utilidade

Ações baseadas em maximizar o valor de utilidade. Medida numérica do sucesso. Ex: Sistemas de recomendação

Agente Baseado em Utilidade

 Utilidade é uma função que mapeia um estado para um número real que representa o grau de satisfação com este estado

Agente Baseado em Aprendizagem

Utilizam a **experiência**para melhorar seu

desempenho ao longo

do tempo.

Agente Baseado em Aprendizagem

- Em agentes sem aprendizagem tudo o que o agente sabe foi colocado nele pelo projetista
- Turing propõe construir máquinas com aprendizagem e depois ensina-las
- Aprendizagem também permite ao agente atuar em ambientes totalmente desconhecidos e se tornar mais competente do que o seu conhecimento inicial poderia permitir

Agente Baseado em Aprendizagem

- Sistema de recomendação de música:
 - Coleta dados sobre a interação do cliente com a plataforma
 - Faz sugestões
 - Melhora com feedbacks

Quatro componentes conceituais de um Agente com Aprendizagem

- Elemento de aprendizado:
 - Utiliza realimentação do crítico sobre como o agente performa
 - Determina as mudanças necessárias para o elemento de desempenho
- Crítico:
 - Informa ao elemento de aprendizado como o agente está se comportando
 - O agente não deverá modificá-lo

- Elemento de desempenho:
 - Responsável pela seleção das ações externas
 - Recebe percepções e decide sobre ações
- Gerador de problemas:
 - Responsável por sugerir ações que levarão a experiências novas e informativas
 - Ações não ótimas a curto prazo para descobrir ações ótimas a longo prazo

Agente Motorista com Aprendizagem

- Elemento de desempenho: conhecimento e procedimentos para dirigir
- Crítico: observa o mundo e repassa para o elemento de aprendizagem a reação dos outros motoristas a uma ação do agente

- Elemento de aprendizagem:
 - É capaz de formular uma regra afirmando que a ação foi boa/ruim
 - Modifica o elemento de desempenho pela instalação da nova regra
 - Aprendizado por experiência acontece aqui!
- Gerador de problemas:
 - o Identifica áreas que precisam de melhorias
 - Sugere experimentos: testar freios em diferentes superfícies

Referência

 Russell, S. J. 1., & Norvig, P. (1995). Artificial intelligence: a modern approach. Englewood Cliffs, N.J., Prentice Hall.