Part-II Physics/Astrophysics, Michaelmas Term 2021 Anastasia Fialkov

Relativity: Example Sheet 3

1. A particle of rest mass m with speed u collides elastically with a stationary particle of equal mass. If, after the collision, the two particles travel in directions making angles θ and ϕ , respectively, with the incident particle's original direction, show that

$$\tan\theta\,\tan\phi = \frac{2}{\gamma_u + 1}\,.$$

Show that this result tends to the correct Newtonian limit as $u \to 0$. (Hint: you may find it useful to transform to and from the zero-momentum frame, but take care in determining the relative velocity of this frame.)

- 2. A mirror moves in the x-direction perpendicular to its plane with speed -v. A photon travelling in the (x,y)-plane hits the mirror with incident angle θ relative to the normal of the mirror plane. By considering the 4-momentum of the photon before and after the impact, find the angle relative to the normal at which the photon is reflected and the change in the photon's frequency.
- 3. Show that it is impossible for an isolated free electron to absorb or emit a single photon. Show also that it is impossible for an isolated free massive particle moving with any speed u to decay into a single photon.
- 4. Two protons of mass m_p are collided to produce a π -meson of mass m_{π} via the reaction $p + p \to p + p + \pi^0$. Derive an expression for the minimum required total kinetic energy of the incident protons if (a) the protons are travelling in opposite directions with equal speeds; and (b) one of the protons is stationary.
- 5. In a Cartesian inertial coordinate system in Minkowski spacetime the field equations of electromagnetism can be written

$$\partial_{\mu}F^{\mu\nu} = \mu_0 j^{\nu} ,$$

$$\partial_{\sigma}F_{\mu\nu} + \partial_{\nu}F_{\sigma\mu} + \partial_{\mu}F_{\nu\sigma} = 0 .$$

(a) Show that the second field equation can be written as $\partial_{[\sigma} F_{\mu\nu]} = 0$. (b) Show that the above equations are equivalent to the standard form of Maxwell's equations. (c) Two Cartesian inertial frames S and S' are in standard configuration. Using $F^{\mu\nu}$, calculate how the components of the electric and magnetic fields in the two frames are related. (d) Show that $c^2 |\vec{B}|^2 - |\vec{E}|^2$ is Lorentz-invariant. How is this invariant related to $F_{\mu\nu}$?

6. A satellite is in circular polar orbit of radius r around the Earth (radius R, mass M). A standard clock C on the satellite records the proper time taken to perform each orbit, $\Delta \tau_C$. An identical clock C_0 at rest at the North Pole on Earth records the time, $\Delta \tau_{C_0}$, between successive observations of the satellite being overhead. Show that, in the Newtonian limit of a weak gravitational field and slow-moving objects, the ratio of times is approximately

$$\frac{\Delta \tau_C}{\Delta \tau_{C_0}} \approx 1 - \frac{3GM}{2rc^2} + \frac{GM}{Rc^2} \,.$$

- 7. Show that the line element $ds^2 = y^2 dx^2 + x^2 dy^2$ represents the Euclidean plane, but the line element $ds^2 = y dx^2 + x dy^2$ represents a curved 2D manifold.
- 8. (a) Show that the only independent component of the curvature tensor on the unit 2-sphere is $R_{\theta\phi\theta\phi}=\sin^2\theta$, where θ and ϕ are spherical polar coordinates. (*Hint: use the connection coefficients that you derived in Question 5 on Example Sheet 2.*) (b) Consider the two affinely-parameterised geodesics $\theta(u)=\pi u$, $\phi(u)=0$ and $\bar{\theta}(u)=\pi u$, $\bar{\phi}(u)=\delta$, where δ is infinitesimal and $0 \le u \le 1$. Verify directly that the connecting vector $\xi^a(u)=\bar{x}^a(u)-x^a(u)$, which has components $\xi^\theta(u)=0$ and $\xi^\phi(u)=\delta$, satisfies the equation of geodesic deviation

$$\frac{D}{Du} \left(\frac{D\xi^a}{Du} \right) = R_{dbc}{}^a \frac{dx^b}{du} \frac{dx^c}{du} \xi^d \,. \tag{*}$$

9. (a) In Newtonian gravity, consider two nearby particles with trajectories $x^i(t)$ and $\bar{x}^i(t)$ (i=1,2,3), respectively, in Cartesian coordinates. Show that the components of the separation vector $\zeta^i(t) = \bar{x}^i(t) - x^i(t)$ evolve as

$$\frac{d^2\zeta^i}{dt^2} = -\left(\frac{\partial^2\Phi}{\partial x^i\partial x^j}\right)\zeta^j,$$

where Φ is the Newtonian gravitational potential.

(b) In curved spacetime, two particles travel on neighbouring timelike geodesics $x^{\mu}(\tau)$ and $\bar{x}^{\mu}(\tau)$, where τ is proper time, with separation vector $\boldsymbol{\xi}^{\mu}(\tau) = \bar{x}^{\mu}(\tau) - x^{\mu}(\tau)$. Let the particle with worldline $x^{\mu}(\tau)$ parallel transport four orthonormal vectors $\{\hat{\boldsymbol{e}}_{\alpha}(\tau)\}$ ($\alpha = 0, 1, 2, 3$), with $c\hat{\boldsymbol{e}}_{0}(\tau)$ equal to the 4-velocity of the particle. By writing the connecting vector as $\boldsymbol{\xi} = \boldsymbol{\xi}^{\hat{\alpha}}\hat{\boldsymbol{e}}_{\alpha}$, show that the equation of geodesic deviation can be written as

$$(\hat{e}_{\alpha})^{\mu} \frac{d^{2} \xi^{\hat{\alpha}}}{d\tau^{2}} = c^{2} R_{\nu \alpha \beta}{}^{\mu} (\hat{e}_{0})^{\alpha} (\hat{e}_{0})^{\beta} \xi^{\hat{\rho}} (\hat{e}_{\rho})^{\nu} , \qquad (\dagger)$$

where $(\hat{e}_{\alpha})^{\mu}$ are the coordinate components of \hat{e}_{α} .

(c) In the weak-field Newtonian limit of general relativity, we may choose coordinates such that $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, where $|h_{\mu\nu}| \ll 1$, and we assume that all particle speeds are small compared with c. If the $h_{\mu\nu}$ are time independent, show that the spatial components of (†), i.e., $\mu = 1, 2, 3$, reduce to the Newtonian result in (a). (Hint: you only require the components of the \hat{e}_{α} to zero order in $h_{\mu\nu}$ and the particle speed; you may assume that at this order, the components $(\hat{e}_{\alpha})^{\mu} = \delta^{\mu}_{\alpha}$.)

- 10. (Optional: for enthusiasts.) The construction of Fermi-normal coordinates is discussed in Handout VII. A free-falling observer parallel-transports orthogonal vectors $\{\hat{e}_{\alpha}(\tau)\}$ along their wordline \mathcal{C} , where τ is proper time. The vector $\hat{e}_{0}(\tau)$ is chosen to be along the observer's 4-velocity. At each τ , a family of spacelike geodesics are constructed with initial tangent vectors on \mathcal{C} of the form $\mathbf{t} = \sum_{i} \hat{n}^{i} \hat{e}_{i}(\tau)$, where $\sum_{i} (\hat{n}^{i})^{2} = 1$. Coordinates $x^{\mu} = (c\tau, s\hat{n}^{i})$ are assigned to events that lie on this family of geodesics, where s is distance along the geodesics from \mathcal{C} . (a) Explain why, along \mathcal{C} , the coordinate components of the $\{\hat{e}_{\alpha}\}$ are $(\hat{e}_{\alpha})^{\mu} = \delta^{\mu}_{\alpha}$, and hence that the metric takes the Minkowski form along \mathcal{C} .
- (b) Noting that the $\hat{e}_{\alpha}(\tau)$ are parallel transported along \mathcal{C} , show that $\Gamma^{\mu}_{0\nu} = 0$ along \mathcal{C} .
- (c) By applying the geodesic equation to the spacelike geodesic $x^{\mu}=(c\tau,s\hat{n}^i)$ with constant τ and \hat{n}^i , show that $\Gamma^{\mu}_{ij}=0$ on \mathcal{C} . Hence conclude that $\Gamma^{\mu}_{\nu\rho}=0$ all along \mathcal{C} .