Arquitetura de Software

Aula 1

AGENDA

- 1 Gêneros de arquitetura
- **2** Estilos de arquitetura
- 3 Padrões de arquitetura

O que é Gênero de Arquitetura?

- **Gênero arquitetural** define a **abordagem arquitetural específica** para a estrutura que deve ser construída.
- Gênero implica uma categoria específica no domínio de software geral.
 Para cada categoria pode-se ter uma série de subcategorias.

Analogamente na construção de um edifício...

Edifícios (gênero) pode ter os seguintes estilos gerais: casas, condomínios, prédios de apartamentos, conjuntos comerciais, prédios industriais, armazéns e assim por diante.

Gêneros de arquitetura para sistemas (Booch, 2008)

- Inteligência artificial,
- Comunicação,
- Dispositivos,
- Finanças,
- Games,
- Industrial,
- Jurídico,
- Médico,
- Militar,
- · Sistemas operacionais,
- Transportes e utilitários, dentre muitos outros.

Estilos de arquitetura

- Estilo arquitetural é um modelo para construção do software.
- Há uma série de estilos de arquitetura diferentes que poderiam ser aplicados a um gênero específico (também denominado domínio de aplicação).

Estilos de arquitetura

Por exemplo: um cliente solicita a um arquitero
A construção de uma casa "estilo colonial americano
com hall central"

Este estilo arquitetural foi usado como um mecanismo descritivo para diferenciar a casa de outros estilos.

Mesmo sendo preciso definir mais detalhes da casa como dimensões finais, características personalizadas, materiais de construção,

o estilo **uma casa "colonial americano com hall central"** orienta o arquiteto em seu trabalho.

Estilos de arquitetura de sistemas

- Um estilo descreve uma categoria de sistema que engloba:
- (1) um conjunto de **componentes** (por exemplo, um banco de dados, módulos computacionais) **que realiza uma função** exigida por um sistema
- (2) um conjunto de **conectores** que habilitam a "**comunicação**, **coordenação e cooperação**" entre os **componentes**
- (3) **restrições** que definem como os componentes podem ser integrados para formar o sistema
- (4) modelos semânticos que permitem a um projetista compreender as propriedades gerais de um sistema por meio da análise das propriedades conhecidas de suas partes constituintes

Estilos de arquitetura de sistemas

Um estilo arquitetural é uma transformação imposta ao projeto de um sistema inteiro.

O objetivo é estabelecer uma estrutura para todos os componentes do sistema.

A maioria dos sistemas podem ser agrupados nos estilos de arquitetura (Pressman, 2016):

- Centrada em dados (Blackboard)
- Fluxo de dados (Pipes and Filters)
- Chamadas e retornos
- Orientada a objetos
- Camadas

Arquitetura centralizada em dados

Um repositório de dados acessado e atualizado pelos componentes (Sofwares Clientes independentes uns dos outros)

Componentes existentes podem ser alterados e novos componentes clientes acrescentados à arquitetura sem se preocupar com outros clientes

Arquitetura de fluxo de dados (Piper and Filters)

- Usada quando dados de entrada devem ser transformados por meio de uma série de componentes ou de manipulação em dados de saída.
- O padrão Tubos-e-filtros tem um conjunto de componentes, denominado filtros, conectados por tubos que transmitem dados de um componente outro.
- Um Filtro trabalha de modo independente dos outros e não precisa ter conhecimento do funcionamentos dos filtros vizinhos. É projetado para esperar a entrada de dados de determinada forma e produz saída de dados (para o filtro seguinte) da forma especificada.

Arquitetura de Chamadas e retornos

Um programa principal que chama subprogramas e assim sucessivamente.
 Exemplo clássico Programa Principal/Subrogramas

Arquitetura Orientada a Objetos

- Os componentes de um sistema encapsulam dados e as operações que devem ser aplicadas para manipular os dados.
- A comunicação e a coordenação entre componentes são realizadas por meio da passagem de mensagens.

Arquitetura em Camadas

- Camada mais externa, os componentes atendem às operações da interface do usuário.
- Camada mais interna interface com o sistema operacional.
- Camadas intermediárias fornecem serviços utilitários e funções de software de aplicação

Considerações sobre os estilos de arquitetura

- A medida que a etapa de Requisitos evolua, características do produto a ser desenvolvido são detalhadas.
- Um estilo de arquitetura deve ser escolhido para o sistema em questão.
- Mais de um estilo pode ser apropriado e as possibilidades devem ser analisadas e avaliadas
- Exemplo: Solução usando arquitetura em camadas pode ser substituída por uma arquitetura centrada em dados

Requisitos impactam na arquitetura

 Sistemas com característica comuns (exemplo comercio eletrônico), possuem um contexto próprio em que estão inseridos.

Exemplo: Um sistema de venda de equipamentos esportivos online vai operar num contexto diferentes de sistema de venda online de equipamentos industriais (produtos com preços elevados e empresas de médio e grande porte).

- Cada sistema possui suas limitações e restrições e isto precisa ser considerado ao se escolher um padrão de arquitetura
- Padrões de arquitetura lidam com problema específico dentro de contexto específico.
- Este padrão servirá como base para o Projeto de Arquitetura

Questões a serem avaliadas para escolha do estilo da arquitetura (Pressman, 2016)

1. Controle:

- Como o controle é gerenciado na arquitetura?
- Existe uma hierarquia de controle distinta e, em caso positivo, qual o papel dos componentes nessa hierarquia de controle?
- Como os componentes transferem controle no sistema?
- Como o controle é compartilhado entre os componentes?
- Qual a topologia de controle (ou seja, a forma geométrica que o controle assume)?
- O controle é sincronizado ou os componentes operam de maneira assíncrona?

Questões a serem avaliadas para escolha do estilo da arquitetura (Pressman, 2016)

2. Dados:

- Como os dados são transmitidos entre os componentes?
- O fluxo de dados é contínuo ou os objetos de dados são passados esporadicamente para o sistema?
- Qual o modo de transferência de dados (ou seja, os dados são passados de um componente para outro ou os dados estão disponíveis globalmente para serem compartilhados entre os componentes do sistema)?
- Existem componentes de dados (por exemplo, um quadro-negro ou repositório) e, em caso positivo, qual o seu papel?
- Como os componentes funcionais interagem com os componentes de dados?
- Os componentes de dados são passivos ou ativos (isto é, o componente de dados interage ativamente com outros componentes do sistema)?
- Como os dados e controle interagem no sistema?

Decisões de arquitetura (Pressan, 2016)

 Economia: Muitas arquiteturas de software padecem de complexidade desnecessária, motivada pela inclusão de recursos ou requisitos não funcionais desnecessários (por exemplo, capacidade de reutilização sem nenhum propósito).

O melhor software é organizado e depende de abstração para reduzir os detalhes desnecessários.

- Visibilidade: As decisões sobre a arquitetura e as razões pelas quais foram tomadas devem ser óbvias para os engenheiros de software que examinarem o modelo posteriormente.
 - Uma baixa visibilidade surge quando importantes conceitos de projeto e domínio são comunicados de forma deficiente àqueles que devem concluir o projeto e implementar o sistema.

Decisões de arquitetura (Pressan, 2016)

• **Espaçamento**: A separação de preocupações em um projeto, sem a introdução de dependências ocultas, é um conceito de projeto desejável, às vezes referido como espaçamento.

Espaçamento suficiente leva a projetos modulares, mas espaçamento demasiado leva à fragmentação e à perda de visibilidade. Métodos como o projeto orientado a domínios podem ajudar a identificar o que deve ser separado em um projeto e o que deve ser tratado como uma unidade coerente.

https://www.ibm.com/support/knowledgecenter/pt-br/SS5JSH 9.1.2/com.ibm.xtools.modeler.doc/topics/t_createmoddiags.html

Atividade

Escolha um aplicativo que você conheça e avalie-o usando as considerações de controle e dados

REFERENCIA BIBLIOGRÁFICA

SOMMERVILLE, I. Engenharia de Software. [Recurso eletrônico, Biblioteca Virtual Universitária 3.0]. 9ª ed. SARAIVA, 2011.

PRESSMAN, R. Engenharia de Software. [Recurso eletrônico, Minha Biblioteca]. 8ª ed. BOOKMAN, 2016.

Escola de Ciências Exatas e Arquitetura

