

Workbook: Depth-first search (graph search)

Albert Sanchis
Jorge Civera

Departament de Sistemes Informàtics i Computació

Learning objectives

- ▶ To describe depth-first search (graph search).
- To draw the tree of depth-first search.
- To apply depth-first search (graph search) to a well-known problem
- ► To analyze the quality of depth-first search (graph search).

Problem: Shortest path between two points

Shortest path from Arad to Bucarest [1]:

Actions(Arad) = {Move(Sibiu), Move(Timisoara), Move(Zerind)}.

Depth-first search (graph search) [1, 2]

Graph search: keeps track of explored nodes in a set C.

```
\mathsf{DFS}(G,s')
                   // Depth-first search; G graph and s initial node
 O = IniStack(s')
                                     // Open: search frontier-stack
 C = \emptyset
                                    // Closed: set of explored nodes
 while not EmptyStack(O):
                                 // selection LIFO (Last in, first out)
   s = Pop(O)
                                                     // solucion found!
   if Goal(s) return n
   C = C \cup \{s\}
                                                 // s already explored
   forall (s,n) \in Adjacents(G,s):
                                            // generacion: n child of s
                                               /\!/ n not found unit now
    if n \notin C \cup O:
      Push(O, n)
                                             // n is added to the stack
 return NULL
                                                   // no solution found
```


▶ Question 1: Write a trace of the DFS algorithm (graph search) applied to the problem of finding the shortest path from Arad to Bucarest.

O	C	s
{Arad}		_
{Sibiu, Timisoara, Zerind}	{Arad}	Arad
{Fagaras, Oradea, Rimnicu, Timisoara,	{Arad, Sibiu}	Sibiu
Zerind}		
{Bucharest, Oradea, Rimnicu, Timisoara,	{Arad, Sibiu, Fagaras}	Fagaras
Zerind}		
{Oradea, Rimnicu, Timisoara, Zerind}	{Arad, Sibiu, Fagaras}	Bucharest

► Question 2: Draw the search tree as a result of applying the DFS algorithm (graph search) to the problem of finding the shortest path from Arad to Bucarest.

- Question 3: Does the DFS algorithm (graph search) find a solution?
 Yes
- ► Question 4: If the answer is "Yes":
 - ▶ What is the solution found? The solution path is: Arad, Sibiu, Fagaras, Bucharest
 - ▶ What is the cost of this solution? 450
 - ▶ Is this the solution of minimum cost? No, because there is an alternative solution with lower cost of 418: Arad, Sibiu, Rimnicu, Pitesti, Bucharest
 - What type of solution is found by the DFS algorithm (graph search)?
 Search for solutions exploring first the deepest paths avoiding repeated nodes

References

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] Bernhard Korte and Jens Vygen. *Combinatorial Optimization: Theory and Algorithms*. Springer, 2018.

