

1814ict/2814ict/7003ict/1011ICT:

Data Management/

Database Design/

**Applied Computing** 

Topic 3.1: Normalisation

(Chapter 6)

Convenor: AProf. Henry Nguyen - School of ICT

School of Information and Communication Technology

\*Course developed by: Dr Mohammad Awrangjeb; AProf John Wang and Dr Zhe Wang



# Course bigger picture



• Chapter references are to textbook Database Systems: Design, Implementation, & Management - By Carlos Coronel and Steven Morris





# Learning Outcomes

At the end of this lecture students will be able to know:

- Normalisation
- How to convert an un-normalised form (UNF) to 3<sup>rd</sup> normal form (3NF)



## Content

Importance of normalisation

**Outcome 1** 

- Pros & cons of normalisation
- Revisit problems with the spreadsheet
- Functional dependency

**Outcome 2** 

- Steps to convert UNF to 3NF
- Examples



# Recap from Topic 2.3

## Unary, Ternary or higher order relationship



#### **Example:** Course – Instructor – Student

- Unary relationship happens when an entity has relationship with itself!
- **Ternary** or higher order relationship may happen because of M:N relationships among three or more entities.
- For example, consider the following business rules:
  - A course may be a pre-requisite of many other courses, but a course may have only one pre-requisite.
  - A course may attract many students and a student may enrol in many courses.

An instructor may teach many courses and a course may be taught by different instructors in different years

Course

and semesters.

- Now ask yourself
  - Where do you put year and semester of a course offer?
  - Where do you put student grade?

School of Information and Communication Technology

## Ternary or higher order relationship





#### Find out:

- Strong and weak entities
- Associative entities
- Unary, binary and ternary relationships
- Strong and weak relationships



# Revisit problems with Spreadsheet & Normalisation

# Why Normalisation is required



• Find problems in the following table:

FIGURE 6.1

Tabular representation of the report format

| Table name: RPT_FORMAT |              |         |                        | Database name: Ch06_ConstructCo |           |       |
|------------------------|--------------|---------|------------------------|---------------------------------|-----------|-------|
| PROJ_NUM               | PROJ_NAME    | EMP_NUM | EMP_NAME               | _JOB_CLASS                      | LCHG_HOUR | HOURS |
| 15                     | Evergreen    | 103     | June E. Arbough        | Elect. Engineer                 | 84.50     | 23.8  |
|                        |              | 101     | John G. News           | Database Designer               | 105.00    | 19.4  |
|                        |              | 105     | Alice K. Johnson *     | Database Designer               | 105.00    | 35.7  |
|                        |              | 106     | William Smithfield     | Programmer                      | 35.75     | 12.6  |
|                        |              | 102     | David H. Senior        | Systems Analyst                 | 96.75     | 23.8  |
| 18                     | Amber Wave   | 114     | Annelise Jones         | Applications Designer           | 48.10     | 24.6  |
|                        |              | 118     | James J. Frommer       | General Support                 | 18.36     | 45.3  |
|                        |              | 104     | Anne K. Ramoras *      | Systems Analyst                 | 96.75     | 32.4  |
|                        |              | 112     | Darlene M. Smithson    | DSS Analyst                     | 45.95     | 44.0  |
| 22                     | Rolling Tide | 105     | Alice K. Johnson       | Database Designer               | 105.00    | 64.7  |
|                        |              | 104     | Anne K. Ramoras        | Systems Analyst                 | 96.75     | 48.4  |
|                        |              | 113     | Delbert K. Joenbrood * | Applications Designer           | 48.10     | 23.6  |
|                        |              | 111     | Geoff B. Wabash        | Clerical Support                | 26.87     | 22.0  |
|                        |              | 106     | William Smithfield     | Programmer                      | 35.75     | 12.8  |
| 25                     | Starflight   | 107     | Maria D. Alonzo        | Programmer                      | 35.75     | 24.6  |
|                        |              | 115     | Travis B. Bawangi      | Systems Analyst                 | 96.75     | 45.8  |
|                        |              | 101     | John G. News *         | Database Designer               | 105.00    | 56.3  |
|                        |              | 114     | Annelise Jones         | Applications Designer           | 48.10     | 33.1  |
|                        |              | 108     | Ralph B. Washington    | Systems Analyst                 | 96.75     | 23.6  |
|                        |              | 118     | James J. Frommer       | General Support                 | 18.36     | 30.5  |
|                        |              | 112     | Darlene M. Smithson    | DSS Analyst                     | 45.95     | 41.4  |
|                        |              |         |                        |                                 |           |       |

## Why Normalisation is required



#### Problems:

- PROJ\_NUM intended to be primary key, but it contains nulls!
- JOB\_CLASS invites entry errors e.g., Elec. Eng. vs Elect. Engineer
- Redundant data
  - Charge per hour (e.g., \$105/hour for Database designer)
  - Employee name (John G. News works in 2 projects, so repeated)
- Redundancies cause anomalies
  - Insertion anomaly
  - Deletion anomaly
  - Update (or modification) anomaly

## Normalisation



- NORMALISATION SIMPLY 'COMMON SENSE'
- Converts a relation into relations of progressively smaller number of attributes and tuples until an optimum level of decomposition is reached - little or no data redundancy exists
- Normalisation is a Relational Database Implementation Model focused approach (it makes extensive use of FK's to connect relations)

#### Goals:

- Each table represents a single subject
- No data item will be unnecessarily stored in more than one table, i.e., No data redundancy
- All non-key attributes in a table are dependent on the primary key
- Each table is void of insertion, update, deletion anomalies
- Objective of normalisation is to ensure that all tables are in at least 3NF

## Pros & Cons of Normalisation



#### **Advantages:**

- Remove redundant data
- Prevent update/deletion/insertion anomalies
- Prevent data inconsistencies

#### **Disadvantages:**

- Retrieval of data may be penalised
- Need to retrieve data from a number of tables => reduce system speed
- May need to decide how far to normalise when performance is an issue
  - Example:
    - City and State together determine Postcode



# Thank you