Tema 5: Aplicaciones lineales

1. Aplicaciones lineales entre espacios vectoriales

Definición 5.1. Sean V y W dos espacios vectoriales sobre un mismo cuerpo \mathbb{K} . Una aplicación $f:V\to W$ se dice lineal si verifica:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in V$$

 $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}) \quad \forall \mathbf{x}, \in V, \quad \forall \alpha \in \mathbb{K}$

Proposición 5.1. Si $f: V \longrightarrow W$ es lineal, entonces,

- (I) f(0) = 0.
- (II) $f(-\mathbf{u}) = -f(\mathbf{u}).$
- (III) Si L es un subespacio vectorial, $f(L) = \{f(\mathbf{v}) : \mathbf{v} \in L\}$ también es un subespacio vectorial.

Proposición 5.2. Sea L un subespacio de dimensión k y f una aplicación lineal, entonces f(L) es un subespacio de dimensión menor o igual que k.

Teorema 5.1. Sea $\mathcal{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ una base de V. Sean $\mathbf{w}_1, \dots, \mathbf{w}_n$ n vectores cualesquiera de W. Entonces existe una única aplicación lineal $f: V \longrightarrow W$ tal que $f(\mathbf{e}_i) = \mathbf{w}_i$, $1 \le i \le n$.

2. Matriz de una aplicación lineal.

3. Operaciones entre aplicaciones lineales

Proposición 5.3. Si A y B son las matrices de las aplicaciones f y g en las bases B y B', respectivamente, entonces

- (I) A + B es la matriz de la aplicación f + g en las citadas bases.
- (II) αA es la matriz de la aplicación $\alpha \cdot f$ en las mismas bases.

Proposición 5.4. Si $f \in \mathcal{L}(V, W), g \in \mathcal{L}(W, X), A = M_{\mathcal{B}_V}^{\mathcal{B}_W}(f)$ y $B = M_{\mathcal{B}_W}^{\mathcal{B}_X}(g)$ entonces

$$BA = M_{\mathcal{B}_V}^{\mathcal{B}_X}(g \circ f).$$

Teorema 5.2. Sea f una aplicación lineal de V en W. Entonces,

- (I) La inversa de una aplicación lineal es lineal $y(f^{-1})^{-1} = f$.
- (II) f es invertible si y solo si es biyectiva.
- (III) Si $f: V \to W$ es biyectiva y tiene a $A \in \mathcal{M}_n(\mathbb{K})$ como matriz asociada respecto de ciertas bases, entonces f^{-1} tiene como matriz asociada respecto de las mismas bases a A^{-1} .

4. Cambio de base en una aplicación lineal

$$C = M_{\mathcal{B}_V'}^{\mathcal{B}_V}$$
 $D = M_{\mathcal{B}_W'}^{\mathcal{B}_W'}$ $A = M_{\mathcal{B}_V}^{\mathcal{B}_W}(f)$ $A' = M_{\mathcal{B}_V'}^{\mathcal{B}_W'}(f)$

5. Núcleo y rango de una aplicación lineal

Definición 5.2. Sea $f: V \to W$ una aplicación. Se define el *núcleo* de f como el conjunto

$$\ker(f) = \{ \mathbf{v} \in V : f(\mathbf{v}) = \mathbf{0} \}$$

Se define la imagen de f como

$$Im(f) = \{ \mathbf{w} \in W : \exists \mathbf{v} \in V \text{ tal que } f(\mathbf{v}) = \mathbf{w} \}$$
$$= \{ f(\mathbf{v}) : \mathbf{v} \in V \} = f(V)$$

Proposición 5.5. Sea $f: V \to W$ una aplicación lineal, entonces $\ker(f)$ y $\operatorname{Im}(f)$ son subespacios vectoriales de V y W, respectivamente.

Proposición 5.6. Sea $f: V \to W$ una aplicación lineal. Entonces, f es inyectiva si y sólo si $\ker(f) = \{0\}$.

Proposición 5.7. Sea $\mathcal{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ una base de V. Entonces el conjunto

$$\{f(\mathbf{e}_1),\ldots,f(\mathbf{e}_n)\}$$

es un sistema generador de Im(f).

Teorema 5.3. Sea $f: V \to W$ lineal. Entonces

$$\dim(V) = \dim(\ker(f)) + \dim(\operatorname{Im}(f))$$

Corolario 5.4. Sea $f: V \to W$ lineal con matriz asociada A respecto de ciertas bases. Entonces,

- (I) f es inyectiva si y sólo si $\operatorname{rango}(A) = \dim(V)$.
- (II) f es sobreyectiva si y sólo si $\operatorname{rango}(A) = \dim(W)$.

Teorema 5.5. Sea $f: V \to W$ lineal. Si $\dim(V) = \dim(W)$, son equivalentes:

- (I) f es biyectiva.
- (II) f es inyectiva.
- (III) f es sobreyectiva.
- (IV) $\ker(f) = \{0\}.$
- (v) rango $(f) = \dim(V)$.