Trabalho prático N.º 4

Objetivos

- Configurar e usar os portos de I/O do PIC32 em linguagem C.
- Implementar um sistema de visualização com dois displays de 7 segmentos.

Introdução

A configuração e utilização dos portos de I/O do PIC32, em linguagem C, fica bastante facilitada se se utilizarem estruturas de dados para a definição de cada um dos bits dos registos a que se pode aceder. Por exemplo, para o registo TRIS associado ao porto RE, pode ser declarada uma estrutura com 8 campos (o número de bits real do porto RE no PIC32MX795F512H), cada um deles com a dimensão de 1 bit¹:

A partir desta declaração pode ser criada uma instância da estrutura, por exemplo, TRISEbits:

```
__TRISEbits_t TRISEbits; // TRISEbits é uma instância de __TRISEbits_t
```

O acesso a um bit específico da estrutura pode então ser feito através do nome da instância seguido do nome do membro, separados pelo caracter "." (e.g. TRISEDILS.TRISE7). Por exemplo, a configuração dos bits 2 e 5 do porto RE (RE2 e RE5) como entrada e saída, respetivamente, pode ser feita com as duas seguintes instruções em linguagem C:

```
TRISEbits.TRISE2 = 1;  // RE2 configured as input
TRISEbits.TRISE5 = 0;  // RE5 configured as output
```

Seguindo esta metodologia, podem ser declaradas estruturas que representem todos os registos necessários para a leitura, a escrita e a configuração de um porto. Tomando ainda como exemplo o porto RE, para além do registo TRIS, temos ainda os registos LAT (constituído pelos bits LATE7 a LATE0) e PORT (constituído pelos bits RE7 a RE0):

```
typedef struct {
                                       typedef struct {
 unsigned int REO: 1;
                                         unsigned int LATE0 : 1;
 unsigned int RE1: 1;
                                         unsigned int LATE1: 1;
 unsigned int RE2: 1;
                                         unsigned int LATE2: 1;
 unsigned int RE3 : 1;
                                         unsigned int LATE3 : 1;
 unsigned int RE4: 1;
                                         unsigned int LATE4: 1;
 unsigned int RE5 : 1;
                                        unsigned int LATE5 : 1;
 unsigned int RE6 : 1;
                                        unsigned int LATE6 : 1;
 unsigned int RE7 : 1;
                                        unsigned int LATE7 : 1;
                                       } __LATEbits_t;
} ___PORTEbits_t;
```

Sendo a instanciação destas estruturas:

```
__PORTEbits_t PORTEbits;
__LATEbits_t LATEbits;
```

¹ A forma como as estruturas de dados que definem campos do tipo bit são declaradas depende do compilador usado. A que se apresenta é a adequada para o compilador (gcc) usado nas aulas práticas.

Do mesmo modo que se fez anteriormente para o registo TRISE, pode referenciar-se, de forma isolada, um porto de 1 bit, usando a instância PORTEBILS para os bits configurados como entrada ou LATEBILS para os bits configurados como saída. Por exemplo, para atribuir à variável "abc" o valor do porto RE2 pode fazer-se:

```
abc = PORTEbits.RE2; // atribui a "abc" o valor lido do porto configurado // como entrada: abc=0x00000001 ou abc=0x00000000
```

A Figura 1 apresenta o diagrama de blocos de um porto de I/O de 1 bit no PIC32. Nesse esquema, para além dos registos TRIS e LAT, destacam-se ainda os dois flip-flops S1 e S2 presentes no caminho do porto para efeitos de leitura. Esses flip-flops, em conjunto, formam um circuito sincronizador que visa resolver os possíveis problemas causados por meta-estabilidade decorrentes do facto de o sinal externo ser assíncrono relativamente ao clock do CPU. Estes dois flip-flops impõem um atraso de, até, dois ciclos de relógio na propagação do sinal externo até ao barramento de dados do CPU ("data line").

Figura 1. Diagrama de blocos simplificado de um porto de I/O no PIC32.

Para a manipulação dos valores a enviar para os portos configurados como saída devem sempre usar-se os registos **LATx** (ver explicação fornecida em anexo). Exemplos:

a) Atribuição do valor '1' ao bit 3 do porto B:

```
LATBbits.LATB3 = 1;
```

b) Leitura do porto RE2 (bit 2 do porto E) e a sua escrita no bit 5 do porto B:

```
LATBbits.LATB5 = PORTEbits.RE2;
```

c) Inversão do valor de um porto de saída (por exemplo bit 0 do porto D):

```
LATDbits.LATD0 = !LATDbits.LATD0;
```

A forma como as estruturas de dados estão organizadas permite também o acesso a um dado registo (para ler ou escrever) tratando-o como uma variável de tipo inteiro, i.e., 32 bits (a descrição da estrutura feita acima não contempla esta possibilidade). Por exemplo, a

configuração dos portos **RE3** a **RE1** como saída, e do porto **RE0** como entrada pode fazer-se do seguinte modo:

```
TRISE = (TRISE & 0xFFF0) | 0x0001; // RE3 a RE1 configurados como saídas // RE0 configurado como entrada
```

Do mesmo modo, se se pretender alterar os portos **RE3** e **RE2**, colocando-os a 1 e 0, respetivamente, sem alterar o valor de **RE1** (nem qualquer outro dos restantes), pode fazer-se²:

```
LATE = (LATE & 0xFFF3) | 0x0008; // RE3=1; RE2=0; RE1 mantém o valor
```

Ficheiro detpic32.h

As declarações de todas as estruturas, bem como as respetivas instanciações, estão já feitas no ficheiro "p32mx795f512h.h" que é automaticamente incluído pelo ficheiro "detpic32.h". Logo, este último ficheiro deve ser incluído em todos os programas a escrever em linguagem C para a placa DETPIC32. Nesse ficheiro estão declaradas estruturas de dados para todos os registos de todos os portos do PIC32, bem como para todos os registos de todos os outros periféricos. Estão também feitas as necessárias associações entre os nomes das estruturas de dados que representam esses registos e os respetivos endereços de acesso.

Está igualmente definida no ficheiro "detpic32.h" a frequência de funcionamento do *core* MIPS da placa DETPIC32 (previamente configurada para 40MHz):

```
#define FREQ 40000000 // 40 MHz
```

É boa prática de programação usar o símbolo FREQ em vez de usar a constante 4000000 (ou usar FREQ/2 em vez de 2000000) diretamente no código C. Deste modo bastará recompilar o código se algum dia a frequência do *core* for alterada (a frequência máxima possível, na versão usada na placa DETPIC32, é 80MHz). O símbolo PBCLK (que é igual a FREQ/2), também está definido:

```
#define PBCLK (FREQ / 2)
```

Exemplo de programa para configuração e manipulação dos portos

O objetivo do programa seguinte é fazer o *toggle* do bit 0 do porto D (porto ao qual está ligado um LED na placa DETPIC32) a uma frequência de 1 Hz (usando a função delay() já apresentada na aula anterior):

² O compilador gcc permite especificar constantes em binário, usando o prefixo 0b. Por exemplo, 0x13 é o mesmo que 0b10011. Em alguns casos, especificar as contantes em binário (desde que não tenham muitos bits!) pode tornar o programa mais fácil de entender.

Notas importantes:

- A escrita num porto configurado como entrada não tem qualquer consequência. O valor é escrito no flip-flop LAT associado ao porto mas não fica disponível no exterior uma vez que é barrado pela porta tri-state que se encontra na saída e que está em alta impedância (ver Figura 1).
- A configuração como saída de um porto que deveria estar configurado como entrada (e que tem um dispositivo de entrada associado) pode, em algumas circunstâncias, destruir esse porto. É, assim, muito importante que a configuração dos portos seja feita com grande cuidado.
- Após um reset (ou após power-up) os portos do PIC32 ficam todos configurados como entradas.

Trabalho a realizar

Parte I

- 1. Edite, compile e teste o exemplo de geração de um sinal periódico com frequência de 1Hz apresentado acima. Note:
 - o nome do ficheiro não pode ter espaços ou carateres especiais
 - o nome do ficheiro tem que ter a extensão ".c" (exemplo: prog.c)
 - a compilação é feita através do comando: pcompile nome_ficheiro.c
- Implemente, em linguagem C, um contador crescente, atualizado a uma frequência de 4Hz.
 O resultado deverá ser observando nos 4 LEDs já montados na sua placa e ligados aos portos RE0 a RE3.

Figura 2. Ligação de 4 LEDs a portos do PIC32.

3. Pretende-se agora interagir com o sistema de visualização já montado anteriormente na sua placa (Figura 3).

Figura 3. Ligação de dois displays de 7 segmentos ao porto B do PIC32.

Para isso, faça um programa que configure os portos RB8 a RB15, RD5 e RD6 como saídas, que selecione apenas o "display low" (RD5=1, i.e. "CNTL_DISP_L"=1, e RD6=0) e, em ciclo infinito, execute as seguintes tarefas:

- Ler um caracter do teclado e esperar que seja digitada uma letra entre 'a' e 'g' (ou 'A' e 'G') ou o caracter '.' . Use o system call getChar().
- Escrever no porto B a combinação binária que ative apenas o segmento do display correspondente ao caracter lido; note que a Figura 3 contém a informação de qual o porto que corresponde a cada segmento: por exemplo, o segmento A está ligado ao porto RB8.

Teste o programa para todos os segmentos e repita o procedimento para o "display high" (RD6=1 e RD5=0).

4. Selecionando em sequência o "display low" e o "display high" envie para os portos RB8 a RB14, em ciclo infinito e com uma frequência de 2 Hz, a sequência binária que ativa os segmentos do *display* pela ordem a, b, c, d, e, f, g, a, ...; o período de 0.5s deve ser obtido através da função delay().

```
void main(void)
   unsigned char segment;
   LATDbits.LATD6 = 1; // display high active
   LATDbits.LATD5 = 0; // display low inactive
   // configure RB8-RB14 as outputs
   // configure RD5-RD6 as outputs
   while(1)
      LATDbits.LATD6 = !LATDbits.LATD6; //
      LATDbits.LATD5 = !LATDbits.LATD5; // toggle display selection
      segment = 1;
      for(i=0; i < 7; i++)
         // send "segment" value to display
         // wait 0.5 second
         segment = segment << 1;</pre>
      }
   }
}
```

5. A inicialização dos portos RD6 e RD5 (a '1' e a '0', respetivamente) e a inversão da seleção do *display* também podem ser feitas do modo que a seguir se indica. Analise as duas linhas de código e tire conclusões.

```
LATD = (LATD & 0xFF9F) | 0x0040; // display high active, low inactive LATD = LATD ^{\circ} 0x0060; // toggle display selection
```

- 6. Aumente a frequência para 10 Hz, 50 Hz e 100 Hz e observe, para cada uma destas frequências, o comportamento do sistema.
- 7. Construa a tabela que relaciona as combinações binárias de 4 bits (dígitos 0 a F) com o respetivo código de 7 segmentos, de acordo com o circuito montado no ponto anterior e com a definição gráfica dos dígitos apresentada na Figura 4.

```
display7Scodes[] = \{0x3F, 0x06, 0x5B, ...\};
```


Figura 4. Representação dos dígitos de 0 a F no display de 7 segmentos.

8. Escreva um programa que leia o valor do *dip-switch* de 4 bits (Figura 5), faça a conversão para o código de 7 segmentos respetivo e escreva o resultado no *display* menos significativo (não se esqueça de configurar previamente os portos RBO a RB3 como entradas).

Figura 5. Dip-switch de 4 posições ligado a 4 bits do porto B.

```
void main(void)
{
   static const char display7Scodes[] = {0x3F, 0x06, 0x5B,...};
   // configure RB0 to RB3 as inputs
   // configure RB8 to RB14 and RD5 to RD6 as outputs
   // Select display low
   while(1)
   {
        // read dip-switch
        // convert to 7 segments code
        // send to display
   }
}
```

9. Altere o programa anterior de modo a mostrar o valor lido do *dip-switch* no *display* mais significativo.

Parte II

1. O programa desenvolvido nos pontos anteriores permite enviar 4 bits – um caracter hexadecimal – para um dos *displays*. Escreva agora uma função que envie um byte (8 bits) ou seja dois algarismos hexadecimais para os dois *displays*, fazendo corresponder os 4 bits menos significativos ao *display low* e os 4 bits mais significativos ao *display high*.

```
void send2displays(unsigned char value)
{
   static const char display7Scodes[] = {0x3F, 0x06,0x5b,...};
   // send digit_high (dh) to display_high: dh = value >> 4
   // send digit_low (dl) to display_low: dl = value & 0x0F
}
```

- 2. Escreva um programa que implemente um contador binário de 8 bits. O contador deve ser incrementado com uma frequência de 5 Hz e o seu valor deve ser enviado, ao mesmo ritmo, para os displays através da função send2displays() escrita no ponto anterior. Utilize a função delay() para gerar um atraso de 200 ms e dessa forma determinar a frequência de incremento/visualização.
- 3. Como pode observar, o sistema de visualização apresenta um comportamento bastante deficiente, aparecendo um dos displays com um brilho muito reduzido (quase apagado). Com a configuração usada, é necessário enviar de forma alternada os valores para os dois displays. Se o tempo durante o qual cada um dos dois displays está ativo não for o mesmo, o brilho exibido por cada um deles será também diferente.

a. Reescreva a função send2displays() de modo a que, sempre que for invocada, envie, de forma alternada, apenas um dos dois dígitos para o sistema de visualização. Isto é, em chamadas sucessivas à função, o comportamento deverá ser: enviar "dígit_low", enviar "dígit_low", enviar "dígit_low", enviar "dígit_low", ...

b. Será ainda necessário aumentar a frequência de trabalho do processo de visualização de modo a que o olho humano não detete a alternância na seleção dos displays. Assim, de modo a melhorar o desempenho do sistema de visualização, teremos que i) garantir que o tempo de ativação dos dois displays é o mesmo e ii) aumentar a frequência de refrescamento do sistema de visualização.

Reescreva o programa principal, tal como se esquematiza abaixo, de modo a invocar a função send2displays() com uma frequência de 20 Hz (i.e., a cada 50 ms), continuando a usar a função delay() para determinar as frequências de refrescamento (20 Hz) e de contagem (5 Hz).

```
void main(void)
{
    // declare variables
    // initialize ports
    counter = 0;
    while(1)
    {
        i = 0;
        do
        {
            // wait 50 ms
            send2displays( counter );
        } while(++i < 4);
        // increment counter (module 256)
    }
}</pre>
```

4. Com as alterações introduzidas no ponto anterior, o brilho de cada um dos dois displays ficou equilibrado. Continua, contudo, a notar-se a comutação entre os dois displays, efeito que é comum designar-se por flicker. De modo a diminuir, ou mesmo eliminar, o flicker, a frequência de refrescamento (refresh rate) tem que ser aumentada (no programa anterior era efetuada uma atualização dos displays a cada 50 ms, ou seja, o mesmo display é atualizado de 100 em 100 ms).

Assim, mantendo a frequência de atualização do contador em 5Hz, altere o programa anterior de forma a aumentar a frequência de refrescamento para 50 Hz (20 ms) e depois para 100 Hz (10 ms). Observe os resultados num e noutro caso.

Parte III

- 1. Utilize o osciloscópio para visualizar os dois sinais de seleção dos *displays* ("CNTL_DISP_H" e "CNTL_DISP_L"). Meça o tempo de ativação desses sinais para as frequências de refrescamento de 50 e 100 Hz.
- 2. Mantendo a frequência de refrescamento em 100 Hz, altere o programa anterior de modo a incrementar o contador em módulo 60. A frequência de incremento deverá ser 1 Hz e os valores devem ser mostrados em **decimal**. A conversão para decimal pode ser feita, de forma simplificada e desde que o valor de entrada seja representável em decimal com dois dígitos (00-99), pela seguinte função:

```
unsigned char toBcd(unsigned char value)
{
   return ((value / 10) << 4) + (value % 10);
}</pre>
```

- 3. Acrescente ao programa anterior o controlo do ponto decimal dos *displays*, de modo a que quando o valor do contador for par fique ativo o ponto das unidades e quando for ímpar fique ativo o das dezenas.
- 4. Altere o programa anterior de modo a que quando a contagem dá a volta (isto é, quando o valor do contador volta a zero), o valor 00 fique a piscar (meio segundo *ON*, meio segundo *OFF*) durante 5 segundos, antes da contagem ser retomada.

ANEXO: Porquê usar LAT para escrever no porto e não PORT

Os dois *flip-flops* do porto de entrada impõem um atraso de, até, dois ciclos de relógio na propagação do sinal externo até ao barramento de dados do CPU ("data line"). O mesmo atraso de 2 ciclos de relógio acontece na leitura do registo LAT de um porto configurado como saída, usando para acesso o endereço PORT. Assim, na situação em que o porto está configurado como saída, a leitura do registo LAT usando o endereço PORT é possível, mas o atraso de 2 ciclos de relógio impõe alguns cuidados na forma como se escreve o código. Vejamos o seguinte exemplo (que pressupõe que o porto REO já está devidamente configurado como saída):

```
lw $t0,PORTE($a0) # RD PORT
ori $t0,0x0001
sw $t0,PORTE($a0) # RE0 = 1
... # duas ou mais instruções
lw $t0,PORTE($a0) # RD PORT
andi $t0,0xFFFE
sw $t0,PORTE($a0) # RE0 = 0
lw $t1,PORTE($a0) # RD PORT: lê o valor 1, mas devia ler 0
```

Esta sequência de código escreve o valor 1 no porto REO, a seguir escreve o valor 0 e, finalmente, lê o valor do porto REO para o registo \$£1. O valor lido para o registo \$£1 deveria ser 0 (i.e., o último valor escrito em REO), mas será 1, ou seja, o valor que o porto apresentava antes da última operação de escrita.

Para que a última leitura do porto produza o resultado esperado, é necessário compensar o atraso, de dois ciclos de relógio, introduzido pelo *shift-register* (constituído pelos *flip-flops* S1 e S2), na leitura do valor à saída do registo **LAT** (não esquecer que o MIPS inicia a execução de uma nova instrução a cada ciclo de relógio). Ou seja, é necessário separar operações consecutivas de escrita e de leitura do porto de dois ciclos de relógio, o que pode ser feito através da introdução de duas instruções **nop**, tal como se apresenta de seguida:

```
lw
      $t0,PORTE($a0) # RD PORT
ori
      $t0,0x0001
sw
      $t0,PORTE($a0) # RE0 = 1
                     # duas ou mais instruções
lw
      $t0,PORTE($a0) # RD PORT
andi
      $t0,0xFFFE
sw
      $t0,PORTE($a0) # RE0 = 0
nop
                     # compensa o atraso de 2 ciclos
nop
                     # de relógio introduzido pelo shift register
lw
      $t1,PORTE($a0) # RD PORT
```

A alternativa à introdução das duas instruções **nop** é usar o registo **LAT** para a manipulação dos portos configurados como saída. Nesse caso o código ficaria:

```
lw $t0,LATE($a0) # RD LAT
ori $t0,0x0001
sw $t0,LATE($a0) # RE0 = 1
... # zero ou mais instruções
lw $t0,LATE($a0) # RD LAT
andi $t0,0xFFFE
sw $t0,LATE($a0) # RE0 = 0
lw $t1,LATE($a0) # RD LAT (o bit 0 de $t1 é 0)
```

Esta solução funciona porque o valor escrito em **LATE** num ciclo de relógio fica disponível para ser lido, através do endereço **LAT**, no ciclo de relógio seguinte, como se pode facilmente verificar no esquema da Figura 1.

Quando a programação é feita em linguagem C, e uma vez que o programador não controla a forma como o código é gerado, devem sempre usar-se os registos **LAT**x para a manipulação dos valores em portos de saída.

Exemplo 1:

A sequência da esquerda usa o **PORT** para manipular um porto de saída, mas o resultado final não é o esperado. A sequência da direita corrige o problema, ao acrescentar 2 **nop** entre a escrita do porto e a sua leitura.

```
#include <detpic32.h>
                                       #include <detpic32.h>
int main(void)
                                       int main(void)
  PORTDbits.RD0 = 1;
                                          PORTDbits.RD0 = 1;
                                          TRISDbits.TRISD0=0; // output
  TRISDbits.TRISD0=0; // output
  PORTDbits.RD0 = 0;
                                         PORTDbits.RD0 = 0;
  PORTDbits.RD0 = !PORTDbits.RD0;
                                         asm volatile("nop"); // inline
                                          asm volatile("nop"); // assembly
  return 0;
}
                                         PORTDbits.RD0 = !PORTDbits.RD0;
                                          return 0;
                                       }
```

Verifique experimentalmente as duas sequências de código (o LED da placa está ligado ao porto RDO e pode ser usado para verificar o valor de saída do porto).

Exemplo 2:

A sequência de código seguinte usa **LAT**x para manipular o porto de saída. O resultado é o esperado.

```
#include <detpic32.h>
int main(void)
{
   LATDbits.LATD0 = 1;
   TRISDbits.TRISD0 = 0;  // output

   LATDbits.LATD0 = 0;
   LATDbits.LATD0 = !LATDbits.LATD0;
   return 0;
}
```

Verifique experimentalmente o funcionamento desta sequência de código.