RESEARCH

Relationships between food groups, eating time slots and diabetes status in adults from the UK National Diet and Nutrition Survey (2008–2017)

Chaochen Wang¹, Suzana Almoosawi² and Luigi Palla^{3,4,5*}

*Correspondence:
Luigi.Palla@uniroma1.it

3 Department of Public Health and
Infectious Diseases, University of
Rome La Sapienza, Piazzale Aldo
Moro 5, Rome, 00185 Italy
Full list of author information is
available at the end of the article

Abstract

First part title: Text for this section. **Second part title:** Text for this section.

Keywords: sample; article; author

Content

Text and results for this section, as per the individual journal's instructions for authors.

Section title

Text for this section...

Sub-heading for section

Text for this sub-heading...

Sub-sub heading for section

Text for this sub-sub-heading...

Sub-sub-sub heading for section Text for this sub-sub-heading...

In this section we examine the growth rate of the mean of Z_0 , Z_1 and Z_2 . In addition, we examine a common modeling assumption and note the importance of considering the tails of the extinction time T_x in studies of escape dynamics. We will first consider the expected resistant population at vT_x for some v > 0, (and temporarily assume $\alpha = 0$)

$$E[Z_1(vT_x)] = \int_0^{v \wedge 1} Z_0(uT_x) \exp(\lambda_1) du.$$

If we assume that sensitive cells follow a deterministic decay $Z_0(t) = xe^{\lambda_0 t}$ and approximate their extinction time as $T_x \approx -\frac{1}{\lambda_0} \log x$, then we can heuristically estimate the expected value as

$$E[Z_1(vT_x)] = \frac{\mu}{r} \log x \int_0^{v \wedge 1} x^{1-u} x^{(\lambda_1/r)(v-u)} du.$$
 (1)

Wang et al. Page 2 of 3

Thus we observe that this expected value is finite for all v > 0 (also see [1, 2, 3, 4, 5, 6]).

Appendix

Text for this section...

Acknowledgements

Text for this section...

Funding

Text for this section...

Abbreviations

Text for this section...

Availability of data and materials

Text for this section...

Ethics approval and consent to participate

Text for this section...

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Text for this section...

Authors' contributions

Text for this section ..

Authors' information

Text for this section...

Author details

¹Department of Public Health, Aichi Medical University, Nagakute, Aichi, Japan. ²Faculty of Medicine, School of Public Health, Imperial College London, London, UK. ³Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Piazzale Aldo Moro 5, Rome, 00185 Italy. ⁴Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK. ⁵Department of Global Health, School of Tropical Medicine and Global Health, University of Nagasaki, Nagasaki, Japan.

References

- 1. Koonin, E.V., Altschul, S.F., Bork, P.: Brca1 protein products: functional motifs. Nat. Genet. 13, 266–267 (1996)
- 2. Jones, X.: Zeolites and synthetic mechanisms. In: Smith, Y. (ed.) Proceedings of the First National Conference on Porous Sieves: 27-30 June 1996; Baltimore, pp. 16–27 (1996)
- 3. Margulis, L.: Origin of Eukaryotic Cells. Yale University Press, New Haven (1970)
- Schnepf, E.: From prey via endosymbiont to plastids: comparative studies in dinoflagellates. In: Lewin, R.A. (ed.)
 Origins of Plastids, 2nd edn., pp. 53–76. Chapman and Hall, New York (1993)
- Kohavi, R.: Wrappers for performance enhancement and obvious decision graphs. PhD thesis, Stanford University, Computer Science Department (1995)
- 6. ISSN International Centre: The ISSN register (2006). http://www.issn.org Accessed Accessed 20 Feb 2007

Figures

Figure 1 Sample figure title

Figure 2 Sample figure title

Tables

Additional Files

Additional file 1 — Sample additional file title

Additional file descriptions text (including details of how to view the file, if it is in a non-standard format or the file extension). This might refer to a multi-page table or a figure.

Wang et al. Page 3 of 3

 $\textbf{Table 1} \ \, \textbf{Sample table title. This is where the description of the table should go}$

	B1	B2	B3
A1	0.1	0.2	0.3
A2			
A3			