

Код Рида-Маллера

Введение

Кодировани

Свойства і параметрь кола

Конструкция Плоткина Минимальное

Декодиров

Алгоритм Рида

Домашнее задание

Код Рида-Маллера

Илья Коннов

Факультет компьютерных наук

Высшая Школа Экономики

13 февраля 2022 г.

Введение

Код Рида-Маллера

Введение

Кодирова

Свойства параметры кода

Конструкция Плоткина Минимальное расстояние

Декодирова ние Алгоритм Рида

Домашнее задание Описан Дэвидом Маллером (автор идеи) и Ирвингом Ридом (автор метода декодирования) в сентябре 1954 года. Обозначаются как $\mathrm{RM}(r,m)$, где r — ранг, а 2^m — длина кода. Кодирует сообщения длиной $k=\sum_{i=0}^r C_m^i$ при помощи 2^m бит.

Традиционно, считается что коды бинарные и работают над битами, т.е. \mathbb{Z}_2 .

Соглашение: сложение векторов $u,v\in\mathbb{Z}_2^n$ будем обозначать как $u\oplus v=(u_1+v_1,u_2+v_2,...,u_n+v_n).$

Булевы функции и многочлен Жегалкина

Код Рида-Маллера

Всякую булеву функцию можно записать при помощи

\boldsymbol{x}	y	f(x,y)
0	0	1
0	1	0
1	0	0
1	1	0

таблицы истинности

И при помощи многочлена Жегалкина:

$$f(x,y) = xy + x + y + 1$$

Введение

Многочлены Жегалкина

Код Рида-Маллера

Введение

В общем случае, многочлены будут иметь следующий вид:

$$f(x_1,x_2,...,x_m) = \sum_{S\subseteq \{1,\ldots,m\}} c_S \prod_{i\in S} x_i$$

параметры кода

Конструкция Плоткина Минимальное расстояние

Декодиров ниеАлгоритм Рида

Домашнее задание Например, для m=2: $f(x_1,x_2)=c_1\cdot x_1x_2+c_2\cdot x_1+c_3\cdot x_2+c_4\cdot 1$

Всего $n=2^m$ коэффициентов для описания каждой функции.

Функции небольшой степени

Код Рида-Маллера

Рассмотрим функции, степень многочленов которых не больше r:

$$\{f(x_1,x_2,...,x_m)\mid \deg f\leq r\}$$

Каждую можно записать следующим образом:

$$f(x_1,x_2,...,x_m) = \sum_{\substack{S \subseteq \{1,...,m\}\\|S| \leq r}} c_S \prod_{i \in S} x_i$$

В каждом произведении используется не больше rпеременных.

Сколько тогда всего коэффициентов используется?

$$k = C_m^0 + C_m^2 + \dots + C_m^r = \sum_{i=0}^r C_m^i$$

Введение

Идея кодирования

Код Рида-Маллера

Бведение

Кодирование

Свойства параметры кода

Плоткина Минимально расстояние

ние
Алгоритм Рида

Домашнее задание Пусть каждое сообщение (длины k) — коэффициенты многочлена от m переменных степени не больше r. Тогда мы можем его представить при помощи 2^m бит, подставив все возможные комбинации переменных.

Таким образом получим таблицу истинности, из которой позднее сможем восстановить исходный многочлен, а вместе с ним и сообщение.

Зафиксировав в таблице порядок строк, можно выделить вектор значений, который и будет кодом.

Пример

Код Рида-Маллера

Введение

Кодирование

Свойства і параметрь кода

Конструкция Плоткина Минимальное расстояние

ние Алгоритм Рида

Домашнее задание $oldsymbol{r}=1$ (степень многочлена), m=2 (переменных). Это $\mathrm{RM}(1,2).$

lacktriangle Тогда наш многочлен: $f(x,y) = c_1 x + c_2 y + c_3$.

lacktriangle Сообщение: 101, тогда f(x,y) = x + 0 + 1.

■ Подставим всевозможные комбинации:

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

■ Получили код: $\mathrm{Eval}(f) = 1100$.

Декодирование когда потерь нет

Код Рида-Маллера

Введе

Кодирование

Свойства и параметры кода

Конструкция Плоткина Минимально

ние Алгоритм Рида

Домашнее задание ■ Мы получили код: 1100

 Представим таблицу истинности.

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

■ Подстановками в $f(x,y) = c_1 x + c_2 y + c_3$ получим СЛАУ.

$$\begin{cases} & & & c_3 = 1 \\ & c_2 + c_3 = 1 \\ c_1 + & c_3 = 0 \\ c_1 + c_2 + c_3 = 0 \end{cases}$$

 $c_1 = 1, c_2 = 0, c_3 = 1,$ исходное сообщение: 101.

Коды 0-го порядка

Код Рида-Маллера

Введение

Кодирование

Свойства і параметрь кода

Конструкция Плоткина Минимальное расстояние

Алгоритм Рида

Домашнее задание Для случая $\mathrm{RM}(0,m)$ нужна функция от m аргументов, степени не выше 0.

- $f(x_1, x_2, ..., x_m) = 0$
- $g(x_1, x_2, ..., x_m) = 1$

Таблица истинности:

Вывод: это 2^m -кратное повторение символа

- Сообщение 0 даст код 00...0
- Сообщение 1 даст код 11...1

Доказательство линейности

Код Рида-Маллера

Бведение

Кодировани

Свойства и параметры кода

Конструкция Плоткина Минимальное расстояние

ние Алгоритм Рид

Домашне задание Пусть C(x) кодирует сообщение $x \in \mathbb{Z}_2^k$ в код $C(x) \in \mathbb{Z}_2^m$.

$$C(x) = (p_x(a_i) \mid a_i \in \mathbb{Z}_2^m)$$

где $p_x(a_i)$ — соответствующий сообщению x многочлен. Причём p_x берёт в качестве своих коэффициентов биты из x. Поскольку многочлены степени не выше r образуют линейное пространство, то $p_{(x\oplus y)}=p_x+p_y$. Тогда:

$$C(x\oplus y)_i=p_{(x\oplus y)}(a_i)=p_x(a_i)+p_y(a_i)=C(x)_i+C(y)_i$$

т.е.
$$\forall x,y \quad C(x\oplus y)=C(x)+C(y)$$
, ч.т.д.

Последствия линейности

Код Рида-Маллера

Введение

Кодировані

Свойства и параметры кода

Конструкция Плоткина Минимальное расстояние

ние Алгоритм Рида

Домашнее задание 1 Существует порождающая матрица G.

$$C(x) = x_{1\times k}G_{k\times n} = c_{1\times n}$$

Минимальное растояние будет равно минимальному весу Хемминга среди всех кодов.

$$d = \min_{\substack{c \in C \\ c \neq 0}} w(c)$$

Корректирующая способность:

$$t = \left| \frac{d-1}{2} \right|$$

Конструкция Плоткина: многочлены

Код Рида-Маллера

Введение

Свойства і параметрь

Конструкция Плоткина Минимально расстояние

ние Алгоритм Рид

Домашнее задание Хотим понять как выглядят кодовые слова.

- Код таблица истинности функции $f(x_1,...,x_m) \in \mathrm{RM}(r,m) \text{, причём } \deg f \leq r.$
- \blacksquare Разделим функцию по x_1 : $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m).$
- $lacksymbol{\blacksquare}$ Заметим, что $\deg f \leq r$, а значит $\deg g \leq r$ и $\deg h \leq r-1$.

Конструкция Плоткина: таблица истинности

Код Рида-Маллера

Введение

Кодировани

Свойства і параметрь кода

Конструкция Плоткина Минимально расстояние

ние Алгоритм Рида

Домашнее задание Ранее: $f(x_1,...,x_m)=g(x_2,...,x_m)+x_1h(x_2,...,x_m).$

■ Заметим, что таблица истинности f состоит из двух частей: при $x_1 = 0$ и при $x_1 = 1$.

$$\operatorname{Eval}(f) = \left(\frac{\operatorname{Eval}^{[x_1=0]}(f)}{\operatorname{Eval}^{[x_1=1]}(f)}\right)$$

- Причём $\operatorname{Eval}^{[x_1=0]}(f) = \operatorname{Eval}(g)$, а $\operatorname{Eval}^{[x_1=0]}(f) \oplus \operatorname{Eval}^{[x_1=1]}(f) = \operatorname{Eval}(h)$.
- Таким образом, $\operatorname{Eval}(f) = (\operatorname{Eval}(q) \mid \operatorname{Eval}(q) \oplus \operatorname{Eval}(h)).$

Конструкция Плоткина: вывод

Код Рида-Маллера

Кодировані

Свойства и параметры кода

Конструкция Плоткина Минимальное расстояние

Декодирова ние _{Алгоритм} Рида

Домашн задание Если дана $f(x_1,...,x_m)$, причём $\deg f \leq r$, то можно её разделить:

$$f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m)$$

Также известно, что

 $\operatorname{Eval}(f) = (\operatorname{Eval}(g) \mid \operatorname{Eval}(g) \oplus \operatorname{Eval}(h)).$

Заметим, что $\operatorname{Eval}(f)$ – кодовое слово (как и для g,h). Тогда:

$$c = \operatorname{Eval}(f) \in \operatorname{RM}(r,m)$$
 (т.к. $\deg f \le r$) $u = \operatorname{Eval}(g) \in \operatorname{RM}(r,m-1)$ (т.к. $\deg g \le r$) $v = \operatorname{Eval}(h) \in \operatorname{RM}(r-1,m-1)$ (т.к. $\deg h < r-1$)

Утверждение: Для всякого кодового слова $c\in\mathrm{RM}(r,m)$ можно найти $u\in\mathrm{RM}(r,m-1)$ и $v\in\mathrm{RM}(r-1,m-1)$, такие что $c=(u\mid u+v).$

Минимальное расстояние

Код Рида-Маллера

Хотим найти минимальное расстояние для кода $\mathrm{RM}(r,m)$

$$d = \min_{c \in C, c \neq 0} w(c)$$

Кодировані

Свойства и параметры

Конструкция Плоткина Минимальное расстояние

ние

Домашнее задание Предположим, что $d=2^{m-r}$ и докажем по индукции.

База: $\mathrm{RM}(0,m)$ — единственный бит потворён 2^m раз.

Очевидно, $w(\underbrace{\mathtt{11...1}}_{2m}) = 2^m = 2^{m-0} \ge 2^{m-r}.$

Гипотеза: Если $v\in \mathrm{RM}(r-1,m-1)$, то $w(v)\geq 2^{m-r}.$

Шаг: Хотим доказать для $c \in \mathrm{RM}(r,m)$.

$$\begin{split} w(c) &= w((u \mid u \oplus v)) \overset{(1)}{=} w(u) + w(u \oplus v) \geq \\ &\overset{(2)}{\geq} w(u) + (w(v) - w(u)) = w(v) \overset{IH}{\geq} 2^{m-r} \blacksquare \end{split}$$

Свойства и параметры

Код Рида-Маллера

Бведение

Кодировані

Свойства і параметрь кода

Конструкция Плоткина Минимально

Декодирова ние

Алгоритм Рид

Домашнее задание

Для бинарного кода RM(r, m):

- r < m
- Длина кода: 2^m
- lacksquare Длина сообщения: $k = \sum_{i=0}^r C_m^i$
- Минимальное расстояние: $d = 2^{m-r}$
- Корректирующая способность: $t = 2^{m-r-1} 1$
- lacktriangle Существует порождающая матрица G для кодирования
- Проверочная матрица H совпадает с порождающей для $\mathrm{RM}(m-r-1,m)$

Как линейный код

Код Рида-Маллера

Бведение

Кодировани

Свойства параметры кода

Конструкция Плоткина Минимально расстояние

Декодирование

Домашнее задание Этот код является линейным кодом, к нему применимы все обычные (и неэффективные методы):

- Перебор по всему пространству кодовых слов в поисках ближайшего.
- С использованием синдромов: $s = rH^T$.

Пример

Код Рида-Маллера

Кодировани

Свойства і параметрь кода

Конструкция Плоткина Минимальное расстояние

_{расстояние} Декодиро

Алгоритм Рид

Домашнее задание Ранее: 101 кодируется как 1100 при помощи ${
m RM}(1,2)$

- t=1
- t = 0

Код Рида-Маллера

Введени

Кодировани

Свойства і параметрь кода

Плоткина Минимальное

расстояние Декодиро

Алгоритм Рил

Домашнее задание TODO