Compositional Performance Analysis

CPEN 432 Real-Time System Design

Arpan Gujarati
University of British Columbia

So far ...

- Arrival model
 - Aperiodic
 - Periodic (with and without offsets)
 - Sporadic
- Response time analyses

Uniprocessor:
$$R_k = C_k + \sum_{\tau_i \in hp(k)} \left(\left\lceil \frac{R_k}{T_i} \right\rceil \cdot C_i \right)$$

- Symmetric multiprocessors: $R_k = C_k + \frac{1}{m} \sum_{\tau_i \in hp(k)} \left(\left\lceil \frac{R_k}{T_i} \right\rceil \cdot C_i + C_i \right)$
- In a distributed systems, complex embedded applications, MPSoCs, etc.
 - Periodic task model too rigid, as it does not account for variations

"Periodic with Jitter" Event Model

- ullet Two parameters: period T and jitter J
 - Each event generally occurs periodically with period T
 - lacktriangle But it **can vary a bit** around its exact position within a jitter interval J
- Example event stream satisfying (T, J) = (4, 1)

Event Functions

Definition 1 (Upper event function): The upper event function $\eta^u(\Delta t)$ specifies the maximum number of events that can occur during any time interval of length Δt .

Definition 2 (Lower event function): The lower event function $\eta^l(\Delta t)$ specifies the minimum number of events that have to occur during any time interval of length Δt .

$$\eta_{T+J}^{u}(\Delta t) = \left\lceil \frac{\Delta t + J}{T} \right\rceil$$

$$\eta_{T+J}^{l}(\Delta t) = \max\left(0, \left\lceil \frac{\Delta t - J}{T} \right\rceil\right)$$

Distance Functions

Definition 3 (Minimum distance function): The minimum distance function $\delta^{min}(N \ge 2)$ specifies the minimum distance between $N \ge 2$ consecutive events in an event stream.

Definition 4 (Maximum distance function): The maximum distance function $\delta^{max}(N \ge 2)$ specifies the maximum distance between $N \ge 2$ consecutive events in an event stream.

$$\delta^{min}(N \ge 2) = \max\{0, (N-1) * T - J\}$$

$$\delta^{max}(N \ge 2) = (N-1) * T + J$$

Questions

► How can you define $\eta^u(\Delta t)$ and $\eta^l(\Delta t)$ in terms of $\delta^{min}(N)$ and $\delta^{max}(N)$?

$$\underline{\quad} \eta^l(\Delta t) = \min_{n \ge 1, n \in \mathbb{N}} \left\{ n \mid \delta^{max}(n+2) > \Delta t \right\}$$

Questions

- ullet For sporadic events with a minimum inter-arrival time T
 - lacktriangleright Is the jitter parameter J meaningful?
 - How is the lower event function $n^l(\Delta t)$ defined?
 - ► How is the maximum distance function $\delta^{max}(N \ge 2)$ defined?

Questions

- What happens if J > T in a "periodic with jitter" event model?
 - Two or more events can occur at the same time, leading to bursts
 - ullet New parameter d_{min} that captures the minimum distance between events in a burst
 - Can you draw event and distance functions for (T, P) = (30,60)?

Response-Time Analysis (Local)

- Compute the maximum q-event busy window $B_i^+(q)$
 - An upper bound on the time a resource requires to service q activations of task au_i
 - Assumption: all q activations arrive "sufficiently early"
 - i.e., q^{th} event arrives prior to the completion of its preceding event (the (q-1)-event busy window)
- For fixed-priority preemptive scheduling,
 - Starting with $B_k^u(q) = q \cdot C_k$, solve for $B_k^u(q) = q \cdot C_k + \sum_{i \in hp(k)} \eta_i^u(B_k^u(q)) \cdot C_i$
 - Stopping condition
 - Consider only the first q_k^u activations, where $q_k^u = \min\{q \in \mathbb{N}^+ \mid \delta_k^{min}(q+1) \leq B_k^u(q)\}$

$$R_k^u = \max_{q \in \mathbb{N}^+ | q \le q_k^u} \left(B_k^u(q) - \delta_i^{min}(q) \right)$$

Output Event Function of a Task

- R_k^u from response-time analysis, $R_k^l = C_k$
 - Thus, the scheduling policy adds an additional jitter of $R_k^u-R_k^l$
 - That is, the output jitter is $J_{k,out} = J_k + \left(R_k^u R_k^l\right)$
 - Often, J_k is denoted as $J_{k,in}$ or $J_{k,act}$
- The output event model period obviously equals the activation period
 - That is, $P_{k,out} = P_{k,in}$

Example 1

What is the end-to-end path latency of $E_1 \rightarrow O_1$? What is the end-to-end path latency of $E_2 \rightarrow O_2$?

Example 2

What is the end-to-end path latency of $E_1 \to O_1$? What is the end-to-end path latency of $E_2 \to O_2$?

Compositional Performance Analysis

Complex Embedded Applications

AND-activation

- FIFO channels?
 - Input data buffering: Data may have to wait at some inputs until all other inputs have the necessary data
- Tokens?
 - Amount of data required per input event
- AND-activation period?
 - "To ensure bounded AND-buffer sizes the period of all input event models must be the same."
 - Example: $T_{AND} = T_1 = T_2 = T_3$
- AND-activation jitter?
 - Example: $J_{AND} = \max\{J_1, J_2, J_3\}$

OR-activation

- No FIFO channels. Why?
 - Data at one input never has to wait for data to arrive at a different input for activation
- OR-activation period?
 - Example input event models
 - Event stream $1: T_1 = 4, J_1 = 2$
 - Event stream $2: T_2 = 3, J_2 = 2$

OR-activation

- No FIFO channels. Why?
 - Data at one input never has to wait for data to arrive at a different input for activation
- OR-activation period?
 - Example input event models
 - Event stream $1: T_1 = 4, J_1 = 2$
 - Event stream $2: T_2 = 3, J_2 = 2$
 - ► Consider the *macro* period the least common multiple of all input event model periods
 - $T_{macro} = LCM(T_i)$
 - Consider the total events across all input streams arriving in the macro period (assuming zero jitter)

$$N_{total} = \sum_{i=1}^{n} \frac{LCM(T_i)}{T_i}$$

The OR-activation period is thus the average period, given by

$$T_{OR} = \frac{T_{macro}}{N_{total}} = \frac{1}{\sum_{i=1}^{n} \frac{1}{T_i}}$$

Cyclic Task Dependencies

Idea

- Recall that AND-activation jitter is the maximum of input jitters
- Start with zero jitter for the cyclic input
- Update, if there are changes
- This approach may not work. Why?

Problem

- Timing of cycle-external and cycle-internal inputs is correlated
 - But the AND-activation jitter (maximum of input jitter) ignores this

Solution

Consider possible phases between inputs arriving at cycle-external and cycle-internal inputs

Open-Source Tool

https://github.com/IDA-TUBS/pycpa https://pycpa.readthedocs.io/

Welcome

pyCPA is a pragmatic Python implementation of Compositional Performance Analysis (aka the SymTA/S approach provided by Symtavision (now: Luxoft)) used for research in worst-case timing analysis. Unlike the commercial SymTA/S tool, pyCPA is not intended for commercial-grade use and does not guarantee correctness of the implementation.

Thank You!