Relations binaires

Exercice 1 Soit \mathcal{R} la relation binaire dans $E = \{0, 1, 2, 3, 4\}$ définie par $x\mathcal{R}y$ si et seulement si x + y est divisible par 3.

- 1. Donner le graphe de \mathcal{R} .
- 2. \mathcal{R} est-elle réflexive?
- 3. \mathcal{R} est-elle symétrique? antisymétrique?
- 4. Montrer que \mathcal{R} n'est pas transitive.

Exercice 2 Dire si chacune des relations suivantes est réflexive, symétrique, antisymétrique, transitive :

- 1. $E = \mathbb{Z}$ et $x\mathcal{R}y \Leftrightarrow x = -y$.
- 2. $E = \mathbb{R} \text{ et } x\mathcal{R}y \Leftrightarrow \cos^2 x + \sin^2 y = 1.$
- 3. $E = \mathbb{N}$ et $x\mathcal{R}y \Leftrightarrow \exists p, q \geqslant 1, y = px^q \ (p \text{ et } q \text{ sont des entiers}).$

Quelles sont parmi les exemples précédents les relations d'ordre et les relations d'équivalence?

Exercice 3 Soit \mathcal{R} la relation binaire définie sur \mathbb{R} par $x\mathcal{R}y$ si et seulement si $x^3 - y^3 = x - y$.

- 1. Monter que \mathcal{R} est une relation d'équivalence.
- 2. Soit $x \in \mathbb{R}$. Déterminer \overline{x} , la classe de x, selon les valeurs de x. En déduire \mathbb{R}/\mathcal{R} .
- 3. Déterminer $\overline{\pi}$.

Exercice 4 On munit l'ensemble $E = \mathbb{R}^2$ de la relation \mathcal{R} définie par :

$$(x, y)\mathcal{R}(x', y') \Leftrightarrow \exists a > 0, \exists b > 0 : x' = ax \text{ et } y' = bx.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Donner la classe d'équivalence de A = (1,0), B = (0,-1), C = (1,1).
- 3. Déterminer les classes d'équivalence de \mathcal{R} .

Exercice 5 On munit \mathbb{N}^* par la relation \mathcal{R} définie par

$$p\mathcal{R}q \Leftrightarrow \exists n \in \mathbb{N}^* : p^n = q.$$

Montrer que \mathcal{R} est une relation d'ordre. L'ordre est-il total?

Exercice 6 Soit E un ensemble. On définit sur $\mathcal{P}(E)$, l'ensemble des parties de E, la relation suivante :

$$A\mathcal{R}B \Leftrightarrow A = B \text{ ou } A = \bar{B}.$$

où \bar{B} est le complémentaire de B.

Démontrer que \mathcal{R} est une relation d'équivalence.

EXERCICES SUPPLEMENTAIRES

Exercice 7 Soient (E, \leq) un ensemble ordonné et \mathcal{R} la relation définie dans $\mathcal{P}(E) \setminus \emptyset$ par :

$$X\mathcal{R}Y \Leftrightarrow \begin{cases} \forall (x,y) \in X \times Y, \ x \leqslant y \\ \text{ou} \\ X = Y \end{cases}$$

Vérifier que \mathcal{R} est une relation d'ordre.

Exercice 8 Soient E un ensemble fini non vide et x un élément fixé de E. Vérifier, pour chacune des relations définies ci-dessous, s'il s'agit d'une relation d'équivalence sur $\mathcal{P}(E)$.

- 1. $ARB \Leftrightarrow A = B$.
- 2. $ARB \Leftrightarrow A \subset B$.
- 3. $ARB \Leftrightarrow A \cap B = \emptyset$.
- 4. $ARB \Leftrightarrow (A \cap B = \emptyset \text{ ou } A \cup B = \emptyset)$.
- 5. $ARB \Leftrightarrow x \in A \cup B$.
- 6. $ARB \Leftrightarrow (x \in A \cap B \text{ ou } x \in A \cap B)$.