2nda Propuesta de Examen - Teoría de Juegos

Andro Asatashvili

Junio 2022

1 1er problema

En el CIDE, Robinson Crusoe (\mathbf{RC}) y Winnie the Pooh (\mathbf{WP}) son estudiantes de la licenciatura en Economía. Un día, \mathbf{WP} escupe a \mathbf{RC} porque éste comió su miel sin permiso. Para vengarse del escupitajo, \mathbf{RC} entrena, pero \mathbf{WP} desconoce qué tanto entrena. \mathbf{RC} obtiene una fuerza (α) o se lastima entrenando (β), pero \mathbf{WP} desconoce el tipo (mientras que \mathbf{RC} lo sabe). De este modo, \mathbf{RC} quiere pelear contra \mathbf{WP} , pero además, quiere escupirle de vuelta. De este modo:

- 1. Encuentra (si hay) el equilibrio de Nash Bayesiano Perfecto (PBNE) tipo separador para la venganza de RC
- 2. Encuentra (si hay) el equilibrio de Nash Bayesiano Perfecto (PBNE) tipo pooling para la venganza de RC

TIP: Para estas preguntas, haz uso de la forma extendida para que no te confundas con la resolución del problema

1.1 Separador

1. $S_1^{\alpha} = \text{No escupir}, S_1^{\beta} = \text{Escupir}$

$$\therefore \gamma = 1 \text{ y } \mu = 0$$

- Br para **WP** (azul)
 - 1. Si **RC** es de tipo $\alpha \longrightarrow S_2 =$ Retirarse, debido a que 0 > -3
 - 2. Si ${\bf RC}$ es de tipo $\beta \longrightarrow S_2 = {\rm Golpear}$ debido a que 10 > 1
- Br para RC (rojo)
 - 1. Si **RC** es de tipo $\alpha \longrightarrow S_1$ =Escupir, debido a que 10 > 0
 - 2. Si ${f RC}$ es de tipo $\beta \longrightarrow S_1 =$ No escupir, debido a que 0 > -5

 \therefore NO hay un PBNE Separador de este tipo

dado que la Br de \mathbf{WP} no coincide con la Br de \mathbf{RC}

2. $S_1^{\alpha} = \text{Escupir}, S_1^{\beta} = \text{No Escupir}$

$$\therefore \gamma = 0 \text{ y } \mu = 1$$

- Br para **WP** (azul)
 - 1. Si **RC** es de tipo $\alpha \longrightarrow S_2 = \text{Retirarse}$, debido a que -1 > -5
 - 2. Si ${\bf RC}$ es de tipo $\beta \longrightarrow \! S_2 = Golpear debido a que <math display="inline">8>0$
- Br para RC (rojo)
 - 1. Si ${f RC}$ es de tipo $\alpha \longrightarrow S_1 =$ Escupir, debido a que 9>8
 - 2. Si ${\bf RC}$ es de tipo $\beta \longrightarrow S_1 =$ Escupir, debido a que 9 > -3

 \therefore **NO** hay un PBNE Separador de este tipo

dado que la Br de **WP** no coincide con la Br de **RC**

 \therefore **NO** hay un PBNE Separador

1.2 Pooling

1. $S_1^{\alpha} = \text{Escupir}, S_1^{\beta} = \text{Escupir}$

$$\therefore \gamma \in [0,1]$$

 \longrightarrow usando regla de Bayes:

$$\therefore \mu = 0.5$$

- Br para **WP** (azul)
 - 1. $UE_2 = (Escupir, Golpear; \mu=0.5) = (-5)(0.5) + (10)(0.5) = 2.5$
 - 2. $UE_2 = (\text{Escupir}, \text{Retirarse}; \mu = 0.5) = (-1)(0.5) + (1)(0.5) = 0$
 - \therefore Golpear \succ Retirarse $\longrightarrow S_2 =$ Golpear
- Br para RC (rojo)
 - 1. Si **RC** es tipo $\alpha \longrightarrow \text{Escupir}$ es Br
 - 2. Si ${\bf RC}$ es tipo β No Escupir domina estrictamente a Escupir

∴ NO hay un PBNE Pooling de este tipo

dado que la Br de **WP** no coincide con la Br de **RC** (cuando este es tipo β)

2. $S_1^\alpha=$ No Escupir, $S_1^\beta=$ No Escupir

$$\therefore \mu \in [0,1]$$

 \longrightarrow usando regla de Bayes:

$$\therefore \gamma = 0.5$$

- Br para **WP** (azul)
 - 1. $UE_2 = (Golpear; \gamma=0.5) = (-3)(0.5) + (8)(0.5) = 2.5$
 - 2. $UE_2 = (\text{Retirarse}; \gamma = 0.5) = (0)(0.5) + (0)(0.5) = 0$
 - \therefore Golpear \succ Retirarse $\longrightarrow S_2 =$ Golpear
- Br para RC (rojo)
 - 1. Si **RC** es tipo $\alpha \longrightarrow$ Escupir domina estrictamente a No Escupir
 - 2. Si **RC** es tipo $\beta \longrightarrow$ Escupir puede ser Br si **WP** decide retirarse (9 > -3)

 \therefore **NO** hay un PBNE *Pooling* de este tipo dado que la Br de **WP** no coincide con la Br de **RC** (cuando este es tipo α)

 \therefore **NO** hay un PBNE *Pooling*

2 2ndo problema

Resuelve el siguiente juego con los Jugadores 1 y Jugadores 2:

2.1 Resolución

Creamos una matriz de pagos en donde las estrategias del Jugador 1 están en las filas y las del Jugador 2 están en las columnas:

U		D
L	(4,2)	(0,0)
Μ	(0,4)	(0, 2)
R	(2,6)	(2,6)

De este modo, podemos ver que hay 2 NE: (L,U) y (R,D). Esto implica que una de los PBNE será uno de estos NE. De tal forma, comenzamos a solucionar el juego al buscar un PBNE.

Procedemos a calcular las UE del Jugador 2:

$$UE_2(U) = (2)(\mu) + (4)(1 - \mu) = 4 - 2\mu \longrightarrow 2 - \mu$$

 $UE_2(D) = (0)(\mu) + (2)(1 - \mu) = 2 + 2\mu \longrightarrow 1 - \mu$

De esta forma:

$$UE_2(U) > UE_2(D)$$
 para cualquier $\mu \in [0, 1]$
 \therefore $S_2 = U$

Ahora calculamos las UE del Jugador 1:

$$UE_1(L, U) = 4$$

$$UE_1(M, U) = 0$$

$$UE_1(R, U) = 2$$

$$\therefore S_1 = L$$

Esto implica que:

Por tanto:

PBNE Único en estrategias puras: $[S_1,S_2,\mu]=[L,U,\mu=1]$

3 3er problema

Tomando en cuenta el siguiente juego:

	α	β	γ
α	6,6	3,8	-4,10
β	8,3	5,5	2,2
γ	10,-4	2,2	0,0

En donde las estrategias del Jugador 1 están en las filas y las estrategias del Jugador 2 están en las columnas:

1. Propón 2 acuerdos diferentes en los cuales ambos jugadores reaccionan a un desvío de dichos acuerdos

3.1 Resolución

1era propuesta:

- en $t = 0 \longrightarrow \alpha \alpha$
- Si no hay desvío $\longrightarrow \alpha\alpha \quad \forall \ t=1,2,3...\infty$
- $\bullet\,$ Si hay desvío $\longrightarrow \beta\beta$ para el resto de los periodos

2nda propuesta:

- en $t = 0 \longrightarrow \alpha \alpha$
- Si no hay desvío $\longrightarrow \beta\beta \quad \forall \ t=1,2,3...\infty$
- Si hay desvío $\longrightarrow \gamma \gamma$ para el resto de los periodos

Solución a la primera propuesta:

- Pagos descontados al seguir estrategia de no desvío $\longrightarrow \frac{6}{1-\delta}$
- Pagos descontados al seguir estrategia de desvío (tomando en cuenta que el pago más alto posible se encuentra en $\gamma\alpha$ para el Jugador 1 y $\alpha\gamma$ para el Jugador 2) \longrightarrow $10 + \frac{5\delta}{1-\delta}$

$$\bullet \ \frac{6}{1-\delta} \ge 10 + \frac{5\delta}{1-\delta}$$

$$6 \ge 10(1 - \delta) + 5\delta$$

$$6 \ge 10 - 10\delta + 5\delta$$

$$6 \ge 10 - 5\delta$$

$$5\delta > 4$$

$$\delta \geq \frac{4}{5}$$

- Los jugadores seguirán jugando $\alpha\alpha$ si $\delta \geq \frac{4}{5} \ \forall t=0,1,2...\infty$

Solución a la segunda propuesta:

- Pagos descontados al seguir estrategia de no desvío —> 6 + $\frac{5}{1-\delta}$
- Pagos descontados al seguir estrategia de desvío (tomando en cuenta que el pago más alto posible se encuentra en $\gamma\alpha$ para el Jugador 1 y $\alpha\gamma$ para el Jugador 2) \longrightarrow $10 + \frac{2\delta}{1-\delta}$

8

•
$$6 + \frac{5}{1-\delta} \ge 10 + \frac{2\delta}{1-\delta}$$

$$\frac{3\delta}{1-\delta} \ge 4$$

$$3\delta \ge 4(1-\delta)$$

$$3\delta \geq 4 - 4\delta$$

$$7\delta > 4$$

$$\delta \geq \frac{4}{7}$$

- Los jugadores seguirán jugando $\beta\beta$ si $\delta \geq \frac{4}{7} \ \forall t=1,2,3...\infty$