	Exercise 1:								
1	A_4^3	2	A_6^3			3	impossible		
4	Same color: 3 green or 3 blue: $A_4^3 + A_6^3$								
5	Different=total-same: $A_{12}^3 - (A_4^3 + A_6^3)$								
6	Different=total-same: $A_{12}^3 - (A_4^3 + A_6^3)$								
7	Total-(same+3different colors) = $A_{12}^3 - (A_4^3 + A_6^3 + A_4^1 \times A_6^1 \times A_2^1 \times 3!)$								
8	(2G and $1\bar{G}$): $A_4^2 \times A_8^1 \times \frac{3!}{2!}$ 9 (1R and $2\bar{R}$) $A_2^1 \times A_{10}^2 \times \frac{3!}{2!}$ 10 (3 \bar{G}): A_8^3								
11	At least one green: (1G and $2\bar{G}$) or (2G and $1\bar{G}$) or (2G)								
	2^{nd} method: Total – no green = $A_{12}^3 - A_8^3$								
12	At least two blue: (2B and $1\bar{B}$) or (3B): $A_6^2 \times A_6^1 \times \frac{3!}{2!} + A_6^3$								
13	At most two green: (2G and $1\bar{G}$) or (1G and $2\bar{G}$) or($3\bar{G}$)								
	2^{nd} method : Total $-3G = A_{12}^3 - A_4^3$								
14	At most three red: (2R and $1\overline{R}$) or (1R and $2\overline{R}$) or (no red) = total = A_{12}^3								
15	(first red; second blue; third green) : $A_2^1 \times A_6^1 \times A_4^1$								
16	(Red; blue; green): $A_2^1 \times A_6^1 \times A_4^1 \times 3!$								
17	(First green; second green; third blue): $A_4^2 \times A_6^1 \times \frac{3!}{2!}$								
18	(third red; 2 others) : $A_2^1 \times A_{11}^2$			19 (Third red; $2\bar{R}$): $A_2^1 \times A_{10}^2$					
20	$(2^{\text{nd}} \text{ not blue}, 2 \text{ others}) A_6^1 \times A_{11}^2$			21 (first B;2 others) $A_6^1 \times A_{11}^2$					
22				23	(First 2 G; $1\bar{G}$): $A_4^2 \times A_8^1$				
24	(first G; third R): $A_4^1 \times A_2^1 \times A_{10}^1$								
26	(First 3; second 2; third 6): $A_2^1 \times A_3^1 \times A_1^1$								
27	(Two odd numbers; one even) : $A_6^2 \times A_6^1$ (6 balls odd and 6 balls even)								
28	(two numbered 1; one not 1) A	(two numbered 1; one not 1) $A_3^2 \times A_9^1 \times \frac{3!}{2!}$			29	(G ₀ ; 2 others) $A_1^1 \times A_{11}^2 \times \frac{3!}{2!}$		$\frac{1}{1} \times A_{11}^2 \times \frac{3!}{2!}$	
30	$(G_0; 1;2) \text{ or } (1;1;1) : A_1^1 \times A_3^1 \times$	$A_1^1 \times A_2^1 \times A_3^1 \times A_3^$			31	(B ₄ ;	B ₅ ; B ₆)	$: A_3^3$	
32	Sum greater than 15 : impossible								
33	Blue and even: $(B_4; B_2; B_6): A_1^1 \times A_1^1 \times A_1^1 \times 3!$								
34		Blue only or even only: $A_6^3 + A_6^3$							
35	Neither even and blue: A_3^3 from R_1 , G_1 or G_3								
36	Even or odd: even only + odd only - (even and odd) : $A_6^3 + A_6^3 - 0$								

	Exercise 3:							
1	C_6^4 2 C_4^4 3 impossible							
4	Same color: 4 red or 4 white or 3 blue: $C_6^4 + C_5^4 + C_4^4$							
5	Total – (same color) = $C_{18}^4 - (C_6^4 + C_5^4 + C_4^4)$							
6	Total – (same color) = $C_{18}^4 - (C_6^4 + C_5^4 + C_4^4)$							
7	(2R;1W;1B) or (2R;1W;1Y) or (2R;1W;1Y) or (2W;1R;1B) or (2W;1R;1Y) or (2W;1B;1Y)							
	or (2B;1R;1W) or (2B;1R;1Y) or (2B;1W;1Y) or (2Y;1R;1B) or (2Y;1R;1Y) or (2Y;1B;1Y)							
8	$(2Y; 2\bar{Y}); C_3^2 \times C_{15}^2 \qquad \qquad \boxed{9} (1R; 3\bar{R}) : C_6^1 \times C_{12}^3 \qquad \boxed{10} (4\bar{Y}) : C_{15}^4$							
11	At least one yellow : $(1Y \text{ and } 3\overline{Y}) \text{ or } (2Y; 2\overline{Y}) \text{ or } (3Y) : \dots$							
	2^{nd} method : Total-no yellow : $C_{18}^4 - C_{15}^4$							
12	At least two blue : $(2B \text{ and } 2\overline{B}) \text{ or } (3B \text{ and } 1\overline{B}) \text{ or } (4B) :$							
13	At most two white: (2W and $2\overline{W}$) or(1W and $3\overline{W}$) or(no white= $4\overline{W}$):							
14	At most four red: (4R) or (3R and $1\overline{R}$) or (2R and $2\overline{R}$) or (1R and $3\overline{R}$) or ($4\overline{R}$) = total							
15	Four red : C_6^4							

	Exercise 4:							
	Part A							
1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
4	Golden necklace; platinum watch; golden bracelet: $C_3^1 \times C_2^1 \times C_8^1$							
5	At least one golden: $(1G; 2\bar{G})$ or $(2G; 1\bar{G})$ or $(3G)$							
	or total – (no golden) = $C_{30}^3 - C_{13}^3$							
6	At most two platinum: total – (3 platinum) = $C_{30}^3 - C_{13}^3$							
7	(Golden necklace only : 2 others) $C_3^1 \times C_{27}^2$							
Part B								
1	(2 Bracelet and one necklace): $A_{14}^2 \times A_8^1$							
2	(Golden necklace and 2 platinum bracelet): $A_3^1 \times A_6^2 \times \frac{3!}{2!}$							
3	(Golden necklace and platinum watch and golden bracelet): $A_3^1 \times A_2^1 \times A_8^1 \times 3!$							
4	(no golden) = $(3 \text{ platinum}) = A_{13}^3$							
5	At least one golden = total – (no golden) = $A_{30}^3 - A_{13}^3$							
6	At most three golden = $(0G;3\bar{G})$ or $(1G;2\bar{G})$ or $(2G;1\bar{G})$ or $(3G;0\bar{G})$ = Total							
7	(Golden necklace only : 2 others) : $A_3^1 \times A_{27}^2 \times \frac{3!}{2!}$							