Zadania projektowe

Zadanie 1 – wiązania chemiczne (6p)

W plikach *zad1_wch_n.txt*, gdzie *n* to numer Twojego zestawu, znajdują się dane numeryczne. Pierwsza kolumna zawiera odległość wyrażoną w Å, druga – wartość potencjału pewnego wiązania chemicznego przy tej odległości (w eV).

Wykreśl estetyczną zależność potencjału od odległości. Określ:

- równowagową długość wiązania (w Å),
- wartość energii wiązania (w eV),
- stałą siłową wiązania (w N/m),
- współczynnik anharmoniczności (w N/m²) oraz współczynnik rozszerzalności cieplnej materiału (w 1/K).

Aby określić stałą siłową i współczynnik anharmoniczności, dokonaj dopasowania odpowiedniego wielomianu (i w odpowiednim zakresie danych) do danych numerycznych. Zapisz, wraz ze współczynnikami, postać wielomianu, który otrzymałaś/otrzymałeś. Na wykresie potencjału od odległości umieść także krzywą dla dopasowanego wielomianu.

Zadanie 2 – testy ogniwa litowego (7p)

Przedstaw na estetycznym wykresie krzywą rozładowania baterii litowej z katodą z krystalizowanego szkła $90\text{V}_2\text{O}_5 \cdot 10\text{B}_2\text{O}_3$. Dane znajdują się w pliku $zad2_bat_n.txt$, gdzie n – numer Twojego zestawu. Pierwsza kolumna zawiera czas (w s), druga – napięcie (w V). Natężenia prądu oraz masy materiału aktywnego zostały podane w poniższej tabeli. Określ teoretyczną i doświadczalną pojemność grawimetryczną badanej katody. Jaką część pojemności teoretycznej pojemności grawimetrycznej stanowi doświadczalna? Ile wynosi nominalne napięcie ogniwa? Wykreśl krzywą różniczkową i ustal wartości napięć, dla których zachodzi interkalacja kolejnych moli litu.

Zakładamy, że procesie rozładowania ogniwa interkalowane są 3 mole jonów litu na jeden mol V_2O_5 (B_2O_3 nie bierze udziału w interkalacji, poprawia jedynie przewodnictwo jonowe materiału i umożliwia otrzymanie szkła).

Zestaw	1	2	3	4	5
Prąd [μA]	8.89	16.59	38.71	92.04	162.74
Masa [mg]	2.25	2.10	1.96	2.33	2.06

Zadanie 3 – dyfraktometria rentgenowska (7p)

Dla struktury krystalicznej wskazanego materiału (patrz tabela) oblicz położenia maksimów dyfrakcyjnych w zakresie kątów $20^{\circ} \leq 2\Theta \leq 90^{\circ}$ dla źródła o długości fali $\lambda = 1.4767$ Å. Uwzględnij wpływ czynnika struktury na występowanie maksimum dyfrakcyjnego. Wyniki (dla rodzin płaszczyzn) przedstaw w tabeli o kolumnach: h, k, l, d_{hkl} , 2Θ , F (uwzględnij także te maksima, które są wygaszane). Spośród dyfraktogramów zawartych w plikach $zad3_xrd_n.txt$ wskaż ten, który jest dyfraktogramem "Twojego" kryształu. Odpowiedź uzasadnij (np. rysunkiem z zaznaczonymi pasującymi maksimami dyfrakcyjnymi). W plikach $zad3_xrd_n.txt$ pierwsza kolumna zawiera kąty 2Θ , druga – intensywność sygnału.

Zestaw	Pierwiastek	Struktura	Stała sieciowa [Å]
1	Platyna (Pt)	fcc	3.92
2	Wanad (V)	bcc	3.02
3	Pallad (Pd)	fcc	3.89
4	Molibden (Mo)	bcc	3.15
5	Nikiel (Ni)	fcc	3.52

Zadanie 4 – przewodnictwo elektryczne (7p)

Metodą spektroskopii impedancyjnej zmierzono przewodność elektryczną materiału katodowego typu NASICON. W plikach $zad4_is_n.txt$ znajdziesz otrzymane dane pomiarowe. Pierwsza kolumna danych zawiera temperaturę (w skali Celsjusza), druga – zmierzony opór elektryczny (w omach). Wyznacz wartości przewodności właściwej materiału w funkcji temperatury, tj. $\sigma(T)$ oraz wykreśl ją w odpowiednim układzie współrzędnych, celem sprawdzenia, czy spełnia ona zależność Arrheniusa. Rozmiary próbki podane zostały w poniższej tabeli. Wyznacz wartość energii aktywacji oraz podaj wartości przewodności właściwej w temperaturze 25 °C (z interpolacji lub ekstrapolacji dopasowanej prostej).

Uwaga! W wyższej temperaturze dane w niektórych zestawach mogą odbiegać od liniowości w skali Arrheniusa – oznacza to zmianę mechanizmu przewodnictwa. Należy wówczas dopasować możliwie długi odcinek od strony niskiej temperatury.

Zestaw	Grubość próbki [mm]	Powierzchnia próbki [mm²]
1	0.5	23.6
2	0.8	10.1
3	1.04	18.9
4	0.56	9.8
5	1.01	25.6

Zadanie 5 – nanostruktury półprzewodnikowe (7p)

Zaprojektuj nanostrukturę półprzewodnikową opartą na studni kwantowej, która, dzięki zjawisku elektroluminescencji, emituje światło o długości fali λ . Dobierając materiały uwzględnij dopasowanie stałych sieci poszczególnych warstw. W obliczeniach użyj wartości stanów energetycznych dla prostokątnej studni kwantowej o nieskończonym potencjale. Pożądaną długość fali świecenia oblicz według wzoru: $\lambda = [i \pmod 6 + 2] \cdot 100 + i \pmod 100$ [nm], gdzie i – numer albumu. Na jaki kolor świeci zaprojektowana struktura?

Aby dokonać wyboru materiałów, posłuż się dołączonymi wykresami prezentującymi stałe sieci i przerwy energetyczne różnych półprzewodników.

Zadanie 6 – analiza termiczna (6p)

Przedstaw na estetycznym wykresie krzywą DSC materiału szklistego. Dane zawarte są w pliku $zad6_dsc_n.txt$, gdzie n- wybrany numer zestawu. Pierwsza kolumna zawiera temperaturę (w °C), druga – sygnał mierzony w metodzie DSC. Zidentyfikuj i oznacz na wykresie występujące w materiale przemiany. W tabeli zestaw charakterystyczne dla zaobserwowanych przemian temperatury. Pokrótce opisz sposób ich oszacowania/wyznaczenia. Wyznacz ciepła przemian.

	Wiązania chemiczne (6p)		
1	Wykreślenie (na jednym wykresie) krzywej $U(r)$ oraz dopasowania. Oznaczenie wykresu (le-	1	
Ì	genda, poprawne jednostki i opisy osi)		
2	Określenie równowagowej długości wiązania i energii wiązania		
3	Opisanie sposobu wyznaczenia powyższych wielkości		
4	Określenie stałej siłowej wiązania oraz współczynnika anharmoniczności		
5	Opisanie sposobu wyznaczenia powyższych wielkości	1	
6	Wyznaczenie współczynnika rozszerzalności cieplnej	0.5	
7	Podanie postaci wielomianu, który został użyty do dopasowania zależności $U(r)$	0.5	
-	Ogniwa elektrochemiczne (7p)		
1	Przeliczenie danych na pojemność grawimetryczną baterii (podanie odpowiedniego wzoru	1	
Ì	z wyjaśnieniem)		
2	Wykreślenie krzywej rozładowania i oznaczenie wykresu (poprawne jednostki i opisy osi)	1	
3	Obliczenie teoretycznej i doświadczalnej pojemności grawimetrycznej katody	1	
4	Określenie, jaką część pojemności teoretycznej stanowi doświadczalna	0.5	
5	Wyznaczenie nominalnego napięcia ogniwa	1	
6	Wykreślenie krzywej różniczkowej i oznaczenie wykresu (poprawne jednostki i opisy osi)	1	
7	Wskazanie napięć interkalacji na krzywej i podanie ich wartości	1.5	
_	Dyfraktometria rentgenowska (7p)	1.0	
1	Wskazanie (wraz ze zwięzłym opisem) używanych wzorów	2	
2	Określenie ogólnego wzoru na czynnik struktury dla danej struktury	1	
3	Obliczenie i zestawienie w tabeli położenia maksimów interferencyjnych	1.5	
4	Obliczenie, dla danych z tabeli, czynnika struktury i wyróżnienie niewygaszonych maksimów	1.5	
5	Wykreślenie (na jednym wykresie) teoretycznego i doświadczalnego dyfraktogramu i ozna-	1	
Ü	czenie wykresu (poprawne jednostki i opisy osi)	1	
	Przewodnictwo elektryczne (7p)		
1	Wyznaczenie współczynnika kształtu próbki ($k = l/S$)	0.5	
2	Wykreślenie danych w odpowiednich współrzędnych, oznaczenie wykresu (jednostki i opisy	2	
	osi)		
3	Dopasowanie prostej i wyznaczenie parametrów dopasowania	1	
4	Opis linearyzacji funkcji wykładniczej, powiązanie wielkości fizycznych z funkcji wykładniczej		
Ì	z parametrami funkcji liniowej		
5	Obliczenie energii aktywacji	1	
6	Obliczenie wartości przewodności w 25 °C	1.5	
	Nanostruktury półprzewodnikowe (7p)	l	
1	Wybór materiałów na studnię z uwzględnieniem ich przerw energetycznych i stałych siecio-	4	
Ì	wych, odpowiedni komentarz uzasadniający wybór		
2	Określenie grubości studni	2	
3	Rysunek – schemat struktury	0.5	
4	Wskazanie koloru emitowanego światła	0.5	
	Analiza termiczna (6p)	1	
1	Wykreślenie krzywej, oznaczenie wykresu (jednostki i opisy osi)	1	
2	Zidentyfikowanie przemian termicznych na wykresie	1	
4	Wyznaczenie temperatur charakterystycznych i zwięzły opis sposobu wyznaczenia		
3	Wyznaczenie temperatur charakterystycznych i zwięzły opis sposobu wyznaczenia	2	
	Wyznaczenie temperatur charakterystycznych i zwięzły opis sposobu wyznaczenia Zaznaczenie temperatur charakterystycznych na wykresie	1	