Graph-based embeddings in mOWL

Fernando Zhapa-Camacho

<2023-02-13 Mon>

Learning objectives

- Learn about different graph representation of ontologies
- Learn how to use graphs from ontologies in machine learning

Introduction

Ontologies axioms are divided into: ABox assertions of the world

- Father(John)
- hasChild(John, Mary)

Introduction

Ontologies axioms are divided into: TBox

- Terminologies definition
 - Mother subClassOf Person

- ABox can be easily transformed into a Knowledge Graph
 - Father(John): (John, instanceof, Father)
 - hasChild(John, Mary): (John, hasChild, Mary)

- ABox can be easily transformed into a Knowledge Graph
 - Father(John): (John, instanceof, Father)
 - hasChild(John, Mary): (John, hasChild, Mary)
- What about the TBox?

- ABox can be easily transformed into a Knowledge Graph
 - Father(John): (John, instanceof, Father)
 - hasChild(John, Mary): (John, hasChild, Mary)
- What about the TBox?
- Multiple methods to project an ontology into a graph

- ABox can be easily transformed into a Knowledge Graph
 - Father(John): (John, instanceof, Father)
 - hasChild(John, Mary): (John, hasChild, Mary)
- What about the TBox?
- Multiple methods to project an ontology into a graph
- Some methods could undergo loss of information

Methods implemented in mOWL

Taxonomy

- Only parses axioms of the form $C \sqsubseteq D$
- C, D are classes
- Graphs represent the hierarchy of classes

Figure: Family ontology representation

Methods implemented in mOWL

DL2Vec

Condition 1	Condition 2	Triple(s)	
$A \sqsubseteq QR_0 \dots QR_mD$ $D := B_1 \sqcup \dots \sqcup B_n B_1 \sqcap \dots \sqcap B_n$		$\langle A, (R_0 \dots R_m), B_i \rangle$ for $i \in 1 \dots n$	
$A \equiv QR_0 \dots QR_m D$			
$A \sqsubseteq B$		$\langle A, SubClassOf, B \rangle$	

Figure: DL2Vec projection rules

Methods implemented in mOWL

OWL2Vec*

Axiom of condition 1	Axiom or triple(s) of condition 2	Projected triple(s)	
$A \sqsubseteq \Box r. D$	$D \equiv B \mid B_1 \sqcup \ldots \sqcup B_n \mid B_1 \sqcap \ldots \sqcap B_n$	$\langle A, r, B \rangle$ or	
or			
$\Box r. D \sqsubseteq A$			
$\exists r. \top \sqsubseteq A \text{ (domain)}$	$\top \sqsubseteq \forall r. \ B \ (range)$	$\langle A, r, B_i \rangle$ for $i \in 1, \dots, n$	
$A \sqsubseteq \exists r. \{b\}$	B(b)		
$r \sqsubseteq r'$	$\langle A, r', B \rangle$ has been projected		
$r' \equiv r^-$	$\langle B, r', A angle$ has been projected		
$s_1 \circ \ldots \circ s_n \sqsubseteq r$	$\langle A, s_1, C_1 \rangle \langle C_n, s_n, B \rangle$ have been projected		
$B \sqsubseteq A$	-	$\langle B, rdfs: subClassOf, A \rangle$	
		$\langle A, rdfs:subClassOf^-, B \rangle$	
A(a)	-	$\langle a, rdf: type, A \rangle$	
		$\langle A, rdf:type^-, a \rangle$	
r(a, b)	=	$\langle a, r, b \rangle$	

 \square is one of: \geq , \leq , =, \exists , \forall . A, B, B_i and C_i are atomic concepts (classes), s_i , r and r' are roles (object properties), r^- is the inverse of a relation r, a and b are individuals (instances), T is the top concept (defined by owl:Thing)

Figure: OWL2Vec* projection rules

Limitations of projection methods

- Some are not complete (Taxonomical projection):
 - $(C \sqcap D) \sqsubseteq E \rightarrow undefined$

Limitations of projection methods

- Some are not complete (Taxonomical projection):
 - $(C \sqcap D) \sqsubseteq E \rightarrow undefined$
- Some are not one-to-one (OWL2Vec*):
 - $(C \sqsubseteq \exists R.D) \rightarrow (C, R, D)$
 - $(C \sqsubseteq \forall R.D) \rightarrow (C, R, D)$
 - Inverse of $(C, R, D) \rightarrow ??$

We have graphs. Next step?

- Ontology has been transformed into a graph
- Graphs as input for a machine learning model
- mOWL supports two ways to embed a graph:

We have graphs. Next step?

- Ontology has been transformed into a graph
- Graphs as input for a machine learning model
- mOWL supports two ways to embed a graph:
 - Random-walk based embeddings
 - Enable similarity computation between entities

We have graphs. Next step?

- Ontology has been transformed into a graph
- Graphs as input for a machine learning model
- mOWL supports two ways to embed a graph:
 - Random-walk based embeddings
 - Enable similarity computation between entities
 - Knowledge Graph Embedding (KGE) models
 - Allows to match entities based on a relation

Figure: Random walks

Figure: Sequences generated

- Generated sentences become input in a language processing model:
 - Word2Vec
 - Transformers

- Word2Vec embeddings preserve co-occurrence
- Generated embeddings can be used to compute similarity between entities E_1 and E_2
- Similarity can be computed using cosine similarity.

$$sim(v(E_1) \cdot v(E_2)) = 1 \rightarrow similar$$
 $sim(v(E_1) \cdot v(E_2)) = 0 \rightarrow dissimilar$

- Word2Vec embeddings preserve co-occurrence
- Generated embeddings can be used to compute similarity between entities E_1 and E_2
- Similarity can be computed using cosine similarity.

$$sim(v(E_1)\cdot v(E_2))=1 o similar$$
 $sim(v(E_1)\cdot v(E_2))=0 o dissimilar$

- Protein-protein interactions
- Gene-disease associations

- Graphs are composed by triples head, relation, tail
- TransE is an example of a translational KGE model.
- Translational models consider relation to be a translation operation between head and tail

$$||h+r-t|| \approx 0$$

h

r

t

Figure: TransE

- The *score* of a triple is given by d(h, r, t) = ||h + r t||, where the lower d is, the more plausible the triple to hold true.
- TransE is the most representative model.

$$\mathcal{L} = \left[\gamma + d(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t}) - d(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t}')\right]_{+}$$

- d(h, r, t) is the score of a *positive* triple
- d(h, r, t') is the score of a *negative* triple
- ullet γ is a margin parameter

Other models have appeared by changing

$$h + r \approx t$$

into

$$f(h) + f(r) \approx f(t)$$

- Some variations of TransE are:
 - TransH
 - TransR
 - TransD

Method	Ent. embedding	Rel. embedding	Scoring function $f_r(h,t)$
TransE [14]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-\ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _{1/2}$
TransH [15]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^d$	$-\ (\mathbf{h} - \mathbf{w}_r^{\top} \mathbf{h} \mathbf{w}_r) + \mathbf{r} - (\mathbf{t} - \mathbf{w}_r^{\top} \mathbf{t} \mathbf{w}_r)\ _2^2$
TransR [16]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r \in \mathbb{R}^{k imes d}$	$-\ \mathbf{M}_r\mathbf{h}+\mathbf{r}-\mathbf{M}_r\mathbf{t}\ _2^2$
TransD [50]	$\mathbf{h}, \mathbf{w}_h \in \mathbb{R}^d$ $\mathbf{t}, \mathbf{w}_t \in \mathbb{R}^d$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^k$	$-\ (\mathbf{w}_r\mathbf{w}_h^\top + \mathbf{I})\mathbf{h} + \mathbf{r} - (\mathbf{w}_r\mathbf{w}_t^\top + \mathbf{I})\mathbf{t}\ _2^2$
TranSparse [51]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\begin{aligned} \mathbf{r} &\in \mathbb{R}^k, \mathbf{M}_r(\theta_r) \in \mathbb{R}^{k \times d} \\ \mathbf{M}_r^1(\theta_r^1), \mathbf{M}_r^2(\theta_r^2) &\in \mathbb{R}^{k \times d} \end{aligned}$	$\begin{aligned} &-\ \mathbf{M}_r(\theta_r)\mathbf{h}+\mathbf{r}-\mathbf{M}_r(\theta_r)\mathbf{t}\ _{1/2}^2\\ &-\ \mathbf{M}_r^1(\theta_r^1)\mathbf{h}+\mathbf{r}-\mathbf{M}_r^2(\theta_r^2)\mathbf{t}\ _{1/2}^2 \end{aligned}$
TransM [52]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$- heta_r \ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _{1/2}$
ManifoldE [53]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-(\ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _2^2 - \theta_r^2)^2$
TransF [54]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$(\mathbf{h} + \mathbf{r})^{\top} \mathbf{t} + (\mathbf{t} - \mathbf{r})^{\top} \mathbf{h}$
TransA [55]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d, \mathbf{M}_r \in \mathbb{R}^{d \times d}$	$-(\mathbf{h}+\mathbf{r}-\mathbf{t})^{\top}\mathbf{M}_r(\mathbf{h}+\mathbf{r}-\mathbf{t})$

Figure: KGE methods

Method	Ent. embedding	Rel. embedding	Scoring function $f_r(h,t)$
RESCAL [13]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{M}_r \in \mathbb{R}^{d \times d}$	$\mathbf{h}^{T}\mathbf{M}_{r}\mathbf{t}$
TATEC [64]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d, \mathbf{M}_r \in \mathbb{R}^{d imes d}$	$\mathbf{h}^{\top}\mathbf{M}_{r}\mathbf{t} + \mathbf{h}^{\top}\mathbf{r} + \mathbf{t}^{\top}\mathbf{r} + \mathbf{h}^{\top}\mathbf{D}\mathbf{t}$
DistMult [65]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$h^\top \mathrm{diag}(r) t$
HolE [62]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\mathbf{r}^{\top}(\mathbf{h}\star\mathbf{t})$
ComplEx [66]	$\mathbf{h},\mathbf{t}\in\mathbb{C}^d$	$\mathbf{r} \in \mathbb{C}^d$	$\operatorname{Re}(\mathbf{h}^{\top}\operatorname{diag}(\mathbf{r})\overline{\mathbf{t}})$
ANALOGY [68]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{M}_r \in \mathbb{R}^{d imes d}$	$\boldsymbol{h}^{\top}\boldsymbol{M}_{r}\boldsymbol{t}$
SME [18]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\begin{aligned} & \left(\mathbf{M}_{u}^{1}\mathbf{h} + \mathbf{M}_{u}^{2}\mathbf{r} + \mathbf{b}_{u}\right)^{\top} \left(\mathbf{M}_{v}^{1}\mathbf{t} + \mathbf{M}_{v}^{2}\mathbf{r} + \mathbf{b}_{v}\right) \\ & \left(\left(\mathbf{M}_{u}^{1}\mathbf{h}\right) \circ \left(\mathbf{M}_{u}^{2}\mathbf{r}\right) + \mathbf{b}_{v}\right)^{\top} \left(\left(\mathbf{M}_{v}^{1}\mathbf{t}\right) \circ \left(\mathbf{M}_{v}^{2}\mathbf{r}\right) + \mathbf{b}_{v}\right) \end{aligned}$
NTN [19]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\begin{aligned} \mathbf{r}, \mathbf{b}_r \! \in \! \mathbb{R}^k \!, & \underline{\mathbf{M}}_r \! \in \! \mathbb{R}^{d \times d \times k} \\ & \mathbf{M}_r^1, & \mathbf{M}_r^2 \in \mathbb{R}^{k \times d} \end{aligned}$	$r^\top \mathrm{tanh}(h^\top \underline{M}_r t + M_r^! h + M_r^2 t + b_r)$
SLM [19]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r^1, \mathbf{M}_r^2 \in \mathbb{R}^{k \times d}$	$\mathbf{r}^{\top}\mathrm{tanh}(\mathbf{M}_{r}^{1}\mathbf{h}+\mathbf{M}_{r}^{2}\mathbf{t})$
MLP [69]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$\boldsymbol{w}^{\top}\mathrm{tanh}(\boldsymbol{M}^{1}\boldsymbol{h}+\boldsymbol{M}^{2}\boldsymbol{r}+\boldsymbol{M}^{3}\boldsymbol{t})$

Use of KGE embeddings:

We can use KGE models to predict new triples. For example:

- Training
 - Input and ontology
 - Transform into a graph
 - Embed the graph using a KGE model (TransE)
- Testing/Inference
 - **1** Axiom to query: $a = C \sqsubseteq \exists R.D$
 - 2 Graph representation: (C, R, D)
 - 3 TransE score: s = ||h + r t||
 - Score s gives us the plausability of the axiom a to hold true.