305628125	יואב זילברשטיין	Advanced VLSI
311121073	לירן גולן	תרגיל 1
305384869	יואב אשד	23/04/20

שאלה 1

א

במעגל קיימים שני קטבים מרכזיים שנובעים:

- R_0 ונגד Cgate_cap מקיבול.1
- תם התנגדות (הערה הערה: בתרגול האינו שהתנגדות כניסה בתרגול אינו שהתנגדות מקיבול מוצא אינו שהתנגדות כניסה של טרנזיסטור M_2 קטנה משמעותית מהתנגדות הכניסה של טרנזיסטור M_2 ולכן אנחנו לוקחים רק את התנגדות הכניסה של M_2).

נביא את שני הקטבים לאותה נקודה:

.DC בעזרת בעזרת ($\frac{1}{g_m}$ בקירוב (בקירוב את התנגדות הכניסה לטרנזיסטור 1

 $21.71k\Omega$ קיבלנו שהתנגדות הכניסה היא

לכן התנגדות השקולה שקבל המוצא יירואהיי היא

$$R_{out} = 100k\Omega$$

 $R = R_{out} \mid\mid R_{in}^{m_1} \approx 17.837\Omega$

2. בחרנו קיבול מוצא [pF] 10, וקיבול והתנגדות שער זהים על מנת ששני הקטבים יהיו באותו התדר.

:מקרא

- גרף צהוב + גרף פאזה כחול, שני הקטבים נמצאים באותו התדר. ניתן להבחין בירידה של כ-180°.
 - גרף אדום + גרף פאזה ירוק, שני הקטבים לא נמצאים באותו התדר. קוטב 3dB (גרף 2 קטבים באותו התדר)

$$f_{3dR} \approx 860 \, [kHz]$$

. השיפוע של הגרף לאחר הקוטב 3dB הוא הוא ל $\frac{dB}{dec}$ הוא מסדר האוחר הקוטב אחר הקוטב קיבלנו למעשה פילטר מסדר שני.

ב. שולי מופע – Phase Margin

הערה: בסעיף זה קיבלנו שגיאות יחסית גדולות בין החישוב התיאורטי לסימולציה.

זגבר 10

<u>סימולציה</u>

Point	Test	Output	Nominal
Filter	Filter	Filter	Filter
Parameters:	arnp_gain=10, src_cap	=2.4p	
1	AdvancedVLSI:Ti	Rout M1	22.75K
1	AdvancedVLSI:Ti	/M0/D	<u>~</u>
1	AdvancedVLSI:Ti	/M2/D	<u>~</u>
1	AdvancedVLSI:Ti	Loop Gain Phase	~
1	AdvancedVLSI:Ti	Loop Gain dB20	<u>~</u>
1	AdvancedVLSI:Ti	Phase Margin_a	59.5
1	AdvancedVLSI:Ti	phasa_margin	60.01
1	AdvancedVLSI:Ti	Phase Margin Fr	4.064M
1	AdvancedVLSI:Ti	zero dB	4.112M
Parameters:	arnp_gain=10, src_cap	=10p	
2	AdvancedVLSI:Ti	Rout M1	22.75K
2	AdvancedVLSI:Ti	/M0/D	<u></u>
2	AdvancedVLSI:Ti	/M2/D	<u>~</u>
2	AdvancedVLSI:Ti	Loop Gain Phase	<u></u>
2	AdvancedVLSI:Ti	Loop Gain dB20	<u>~</u>
2	AdvancedVLSI:Ti	Phase Margin_a	46.23
2	AdvancedVLSI:Ti	phasa_margin	46.72
2	AdvancedVLSI:Ti	Phase Margin Fr	2.252M
2	AdvancedVLSI:Ti	zero dB	2.274M

חישוב תיאורטי

Phase margin = 45 deg

$$PM - 90 = \tan^{-1}\left(-\frac{A \cdot p_1}{p_2}\right)$$

$$PM = 45, R_2 = 21.71[K\Omega], A = 10, p_1 = 860[KHz]$$

$$-45 = \tan^{-1}\left(-\frac{A \cdot p_1}{p_2}\right)$$

$$-1 = -\frac{Ap_1}{p_2}$$

$$p_2 = Ap_1$$

$$\frac{1}{2\pi R_2 C_2} = Ap_1$$

$$C_2 = \frac{1}{2\pi R_2 Ap_1} \approx 8.5 \cdot 10^{-13}[F]$$

Phase margin = 60 deg

$$PM - 90 = \tan^{-1}\left(-\frac{A \cdot p_1}{p_2}\right)$$

 $PM = 60, R_2 = 21.71[K\Omega], A = 10, p_1 = 860[KHz]$

$$-60 = \tan^{-1}\left(-\frac{A \cdot p_1}{p_2}\right)$$

$$-\frac{\sqrt{3}}{3} = -\frac{Ap_1}{p_2}$$

$$p_2 = \sqrt{3}Ap_1$$

$$\frac{1}{2\pi R_2 C_2} = \sqrt{3}Ap_1$$

$$C_2 = \frac{1}{\sqrt{3} \cdot 2\pi R_2 Ap_1} \approx 4.92 \cdot 10^{-13} [F]$$

הגבר 1000

Phase margin = 47 deg

$$C_{gate} = 10^{-10} [F]$$

 $C_{src} = 25 \cdot 10^{-14} F$ חישוב ידני בוירטואוזו

חישוב תיאורטי

$$PM - 90 = \tan^{-1}\left(-\frac{A \cdot p_1}{p_2}\right)$$

$$PM = 45, R_2 = 21.71[K\Omega], A = 1000, p_1 = 85.92[KHz]$$

$$-45 = \tan^{-1}\left(-\frac{A \cdot p_1}{p_2}\right)$$

$$-1 = -\frac{Ap_1}{p_2}$$

$$p_2 = Ap_1$$

$$\frac{1}{2\pi R_2 C_2} = Ap_1$$

$$C_2 = \frac{1}{2\pi R_2 Ap_1} = 85[fF]$$

Phase margin 60 65 deg בפועל

$$C_{gate} = 10^{-10} \; [F]$$

 $\mathcal{C}_{src} = 10^{-13} \; [F]$ חישוב ידני בוירטואוזו

<u>שרטוט</u>

<u>חישוב תיאורטי</u>

$$PM - 90 = \tan^{-1}\left(-\frac{A \cdot p_1}{p_2}\right)$$

 $PM = 65, R_2 = 21.71[K\Omega], A = 1000, p_1 = 85.92[KHz]$

$$-25 = \tan^{-1}\left(-\frac{A \cdot p_1}{p_2}\right)$$

$$-0.466 = -\frac{1000 \cdot p_1}{p_2}$$

$$p_2 = \frac{1000}{0.466} \cdot p_1 \approx 1.84 \cdot 10^9 [Hz]$$

$$c_2 = \frac{1}{2\pi R_2 \cdot 1.84 \cdot 10^9} \approx 39 [fF]$$

ג. המרחק הנדרש מנקודת הגבר היחידה (odB) לקוטב הגבוה עבור שולי המופע שבסעיף בי עבור הגבר 10, שולי מופע 45° :

$$f_{0dB} = 2.27[MHz]$$

 $f_{p2} - f_{0dB} = 27.61 - 2.27 = 25.34 [MHz]$

<u>עבור הגבר 10, שולי מופע 60°:</u>

$$f_{0dB} = 4.11 [MHz]$$

 $f_{p2} - f_{0dB} = 110.4 - 4.11 = 106.26 [MHz]$

עבור הגבר 1000, שולי מופע 45°:

$$f_{0dB} = 41.8 \ [MHz]$$

 $f_{p2} - f_{0dB} = 1.15 \ [GHz] - 41.8 \ [MHz] \approx 1.1 \ [GHz]$

 $.60^{\circ}$ עבור הגבר 1000, שולי מופע

$$f_{0dB} = 52.36 \ [MHz]$$

 $f_{p2} - f_{0dB} = 1.15 \ [GHz] - 52.36 \ [MHz] \approx 1.09 \ [GHz]$

ניתן לראות את שולי המופע גם בטבלאות ובסימולציות שנמצאות בסעיף בי.

נספח – שרטוט המעגל

שאלה 2 – תוצאות של תגובת מדרגה

בשאלה זו בחרנו להשתמש בסימולציית transient, על מנת לבחון את תגובת התדר לכניסת מדרגה, בהגבר אידאלי 1000 בשלושה מקרים :

- (1) שני קטבים באותו התדר.
- (2) יישולי מופעיי של 45 מעלות.
- (3) יישולי מופעיי של 65 מעלות.

תוצאות הסימולציה:

עבור הגבר פי 1000.

מהגרפים ניתן ללמוד ככול שהPM גדול יותר המתח במוצא עולה מהר יותר.