Matemática atuarial

Introdução

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Notas de aula da disciplina Matemática Atuarial I, oferecida pelo curso de Bacharelado Interdisciplinar em Ciência e Economia/Ciências Atuariais da Universidade federal de Alfenas- Campus Varginha.

PIRES,M.D. COSTA, L,H. Revisão de probabilidade. [Notas de aula]. Universidade Federal de Alfenas, Curso de Bacharelado Interdisciplinar em Ciência e Economia, Alfenas, 2025. Disponível em: https://atuaria.github.io/portalhalley/notas_MatAtuarial1.html. Acessado em: 28 jun. 2025.

A matemática atuarial é um ramo da matemática voltado para a avaliação de riscos, prêmios e reservas associados a operações de seguros, especialmente no ramo de seguros de vida.*.

- > Fenômeno/ Experimento aleatório
- > Espaço amostral
- Variáveis aleatórias Discretas/Contínuas
- > Esperança/Variância de variáveis aleatórias

Revisão de Juros

- >Juros Simples e Composto
- >Diferentes taxas de juros
- >Valor presente/Valor futuro
- Depósitos em série
- Fluxo de caixa

>Seguros de vida

- ➤Tempo Discreto/ Contínuo
- ➤ Cobertura vitalícia/ temporária
- >Efeito imediato/ diferido
- >Seguro dotal puro/ misto
- ≻Relações entre seguros

>Anuidades (planos de renda)

- Cobertura vitalícia/ temporária
- >Fluxos de caixa antecipado/ postecipado
- >Efeito imediato/ diferido
- >Fracionadas / Contínuas

>Comutação

- >Funções de comutação
- ▶Prêmio puro único para planos de seguro de vida
- ≻Prêmio puro único para planos baseados na sobrevivência

>Prêmios e Benefícios

► Prêmio carregado

>Reservas

- >Método retrospectivo
- ➤Método prospectivo

Matemática atuarial ramo vida

- > Seguros de vida
 - > Garante ao beneficiário um capital ou renda determinada no caso de morte (invalidez permanente)
 - Refletem uma característica única nos seres humanos.

$$\triangleright A_{\chi^1:\overline{n|}}$$

$$\triangleright \bar{A}_{x:\overline{n|}}$$

$$>A_{x:\overline{n|}}$$

$$\triangleright A_{x}$$

$$\triangleright m|A_x$$

$$\triangleright \bar{A}_{x}$$

$$\rightarrow m|\bar{A}_x$$

$$> A_{x:\overline{n}|^1}$$

$$\triangleright m|A_{\chi^1:\overline{n|}}$$

$$\triangleright m|A_{x:\overline{n}|^1}$$

$$\triangleright \ddot{a}_{x}$$

$$\triangleright a_x$$

$$> \ddot{a}_{x:\overline{n|}}$$

$$> a_{x:\overline{n|}}$$

$$> m \ddot{a}_x$$

$$\rightarrow m | a_x$$

$$\rightarrow m \ddot{a}_{x:\overline{n|}}$$

$$\triangleright \quad m \mid a_{x:\overline{n} \mid}$$

$$\Rightarrow \ddot{a}_{x}^{(m)}$$

$$> a_x^{(m)}$$

$$\triangleright _{k|}\ddot{a}_{x}^{(m)}$$

$$\triangleright _{k|}a_{x}^{(m)}$$

$$\triangleright \ \overline{a}_x$$

Bibliografia

BOWERS, N. et al. Actuarial mathematics.

2. ed. Ilinois: The Society Of Actuaries, 1997.

D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, Cambridge, 2013.

CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.

Antonio Cordeiro Filho

CÁLCULO ATUARIAL APLICADO

Teoria e Aplicações Exercícios Resolvidos e Propostos

2ª Edição

atlas

PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MAR QUES,R. Fundamentos da matemática atuarial: vida e pensões.Curitiba:CRV,2022.

FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019.

Matemática Atuarial: Riscos de Pessoas.

Paulo Perelra Ferrelra

(3)

CINS

VILANOVA, Wilson. Matemática atuarial: destinado aos cursos de ciências econômicas, contábeis e atuariais. Liv. Pioneira, Ed. da Universidade, 1969.

JAMES,B. R.; Probabilidade: Um Curso em nível intermediário, IMPA, Rio de Janeiro 3 ed., 2004.

Magalhães, M. N. Lima, A. C. P. **Noções de Probabilidade e Estatística,** Editora USP: São Paulo, 2001.

Matemática atuarial

Aula 1-Revisão de Probabilidade

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

- A ciência busca coletar informações observáveis da natureza e formular modelos que expliquem ou permitam prever certos fenômenos.
- > Método científico,
 - Conjunto de regras para obtenção do conhecimento durante a investigação científica...
 - As hipóteses formuladas são verificadas posteriormente, com a coleta e interpretação de dados.
- > Modelo e realidade por vezes são erroneamente confundidos.

- > Por melhor que seja um modelo, ele sempre contará com incerteza.
- ➤ Modelos determinísticos
 - ➤ Condições bastante controladas,
 - Variações desprezadas
- > Modelos probabilísticos
 - Controle total e inviabilizado
 - Variações não podem ser ignoradas.

- Fenômeno aleatório é todo aquele que quando observado repetidamente sob as mesmas condições produz resultados diferentes.
 - ➤ Quando a repetição do fenômeno é controlada pelo experimentador, é dito ser um **experimento probabilístico**.

- \triangleright Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um fenômeno aleatório.
- \blacktriangleright Definição Seja Ω o espaço amostral do experimento. Todo subconjunto $A \subset \Omega$ será chamado evento.
 - $\triangleright \Omega$ é o evento certo,
 - > Ø o evento impossível.
 - \triangleright Se $\omega \subset \Omega$, o evento $\{\omega\}$ é dito elementar (ou simples).

EXEMPLO 1: Defina os seguintes espaços amostrais.

1) Jogar um dado

$$\Omega = \{ \}$$

2) Altura dos alunos da Unifal

$$\Omega = \{ \}$$

3) Tempo de vida restante de uma pessoa

$$\Omega = \{ \}$$

1) Jogar um dado

$$\Omega = \{1,2,3,4,5,6\}$$

2) Altura dos alunos da Unifal

$$\Omega = \{x \in \mathbb{R}: 1, 5 \le x \le 2\} *$$

3) Tempo de vida restante de uma pessoa

$$\Omega = \{ t \in \mathbb{R} : 0 \le t \}$$

1) Jogar um dado

$$\Omega = \{1,2,3,4,5,6\}$$

 $A = \{1,3,5\}$

2) Altura dos alunos da Unifal

$$\Omega = \{x \in \mathbb{R}: 1,5 \le x \le 2\}$$

 $A = \{1, 6 \le x \le 1, 7\}$

3) Tempo de vida restante de uma pessoa

$$\Omega = \{t \in \mathbb{R}: t \ge 0\}$$
$$A = \{\mathbf{0} \le t \le \mathbf{30}\}$$

Um evento ao qual atribuímos uma probabilidade é chamado evento aleatório.

> Teoria clássica

Dado o espaço de resultados Ω , constituído por um número finito de n elementos <u>igualmente prováveis</u>, ..., define-se a probabilidade de acontecimento de A, como sendo a razão de resultados favoráveis A e o número de resultados possíveis.

$$P(A) = \frac{n^{\circ} de \ resultados \ de \ A}{n^{\circ} \ de \ resultados \ possíveis}$$

...se conhece fatos decisivos sobre o mecanismo ou processo que produz os resultados

- > Teoria Frequentista
 - \triangleright Na observação de um certo fenômeno através de um experimento, a probabilidade de um certo evento A é definida como a sua frequência observada, à medida que o número de ensaios tende para o infinito.

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

em que n_A é o número de ensaios em que o evento A foi observado, e n o número total de ensaios. À medida que o número de repetições da experiência aleatória aumenta, a frequência relativa com quer se realiza o evento A tende a estabilizar para um valor entre 0 e 1.

- > Probabilidade subjetiva e lógica
 - Define-se como uma medida do grau de confiança em relação a uma proposição.
 - Ela é função da quantidade de informação disponível ...
 - >Julgamento pessoal.
 - ▶ Pensamento Bayesiano.
 - ▶Possui a restrição de que deve obedecer a critérios de consistência, obedecendo aos axiomas de probabilidade.

- > Probabilidade clássica
- > Probabilidade Frequentista
- > Probabilidade subjetiva e lógica
- ➤ Probabilidade Geométrica
- ➤ Probabilidade de Shannon
- ➤ Probabilidades de Conjuntos Difusos
- > ..

> Definição formal de probabilidade

Seja o espaço amostral Ω um conjunto não vazio. Uma probabilidade em Ω é uma função de conjunto P() que associa a subconjuntos A de Ω um número real P(A) que satisfaz os axiomas a seguir.

- o Para todo $A \subseteq \Omega$, $0 \le P(A) \le 1$;
- $\circ P(\Omega) = 1;$
- o Se $A_1, A_2, ..., A_n$ forem, dois a dois, eventualmente excludentes (disjuntos), então:

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

- ➤ Na realização de um fenômeno aleatório, é comum termos interesse em uma ou mais quantidades.
 - > Essas quantidades são funções das ocorrências do fenômeno.
- ightharpoonup Variável aleatória: é uma função que associa a cada elemento de Ω um número real.

EXEMPLO 2: Sabe-se que em uma fábrica 25% dos itens produzidos apresentam algum problema de fabricação:

Itens defeituosos
$$\left(D \to P(D) = \frac{1}{4}\right)$$

Itens perfeitos $\left(Pe \to P(Pe) = \frac{3}{4}\right)$

Para uma amostra n=2 peças retiradas é possível construir uma tabela onde X é o número de peças defeituosas que pode ocorrer e P(X) será a probabilidade do resultado.

¥7		_	
X	0	1	2
	(Pe, Pe)	(D, Pe)(Pe, D)	(D,D)
P(X)	$\frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$	$\left(\frac{1}{4} \times \frac{3}{4}\right) + \left(\frac{3}{4} \times \frac{1}{4}\right) = \frac{6}{16}$	$\left(\frac{1}{4} \times \frac{1}{4}\right) = \frac{1}{16}$

Variáveis Aleatórias Discretas

• P(X = x) Função de probabilidade.

•
$$0 \le P(X = x_i) \le 1$$
 para todo i.

•
$$\sum_{i=1}^{\infty} P(X = x_i) = 1$$

Conjunto enumerável: Quando é finito ou quando existe uma bijeção com os números naturais.

Ex.: $f: \mathbb{Z} \to \mathbb{N}$, tal que:

$$f(x) = \begin{cases} 2x - 1, se \ x > 0 \\ -2x, se \ x \le 0 \end{cases}$$

Para $x \in \mathbb{Z}$

É um tipo de variável aleatória que pode assumir um número infinito de valores dentro de um intervalo contínuo Variáveis aleatórias contínuas

- f(x) Função de densidade (f.d.p)
- $f(x) \ge 0$ para qualquer valor de x

•
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

•
$$P(a \le X \le b) = \int_a^b f(x) dx$$

Variáveis Aleatórias Discretas

- P(X = x) Função de probabilidade.
- $0 \le P(X = x_i) \le 1$ para todo i.
- $\sum_{i=1}^{\infty} P(X = x_i) = 1$

Variáveis aleatórias contínuas

- f(x) Função de densidade (f.d.p)
- $f(x) \ge 0$ para qualquer valor de x
- $\int_{-\infty}^{\infty} f(x) dx = 1$
- $P(a \le X \le b) = \int_a^b f(x) dx$

Função de distribuição de probabilidade (função de distribuição).

Em geral ela é representada por $F_X(x)$.

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(z) dz$$

$$F_X(x_k) = P(X \le x_k) = \sum_{i=0}^k P(X = x_i)$$

EXEMPLO 3:

a)

X	1	2	3	4
P(X)	0,1	0,2	0,3	0,4

b)

$$P(X = x) = \begin{cases} 0.6 & se \ x = 0 \\ 0.4 & se \ x = 1 \\ 0. & c.c. \end{cases}$$

 $|c\rangle$

$$P(X = x) = \begin{cases} 0.7 & se \ x = 0 \\ 0.5 & se \ x = 1 \\ 0, & c. \ c. \end{cases}$$

d)

$$f(x) = \begin{cases} \frac{6}{5}(x^2 + x) & \text{se } 0 \le x \le 1\\ 0 & \text{c. c.} \end{cases}$$

e

$$f(x) = 2e^{-2x}, \qquad se \ x \ge 0$$

f

$$f(x) = \begin{cases} \frac{1}{10}x + \frac{1}{10}, se \ 0 \le x \le 2\\ -\frac{3}{40}x + \frac{9}{20}, se \ 2 < x \le 6\\ 0, c. c. \end{cases}$$

d)

$$f(x) = \begin{cases} \frac{6}{5}(x^2 + x) \text{ se } 0 \le x \le 1\\ 0 & c. c. \end{cases}$$

$$\int_0^1 \frac{6}{5} (x^2 + x) dx = \frac{6}{5} \left(\frac{x^3}{3} + \frac{x^2}{2} \right) \Big|_0^1$$

$$\int_0^1 \frac{6}{5} (x^2 + x) dx = \frac{6}{5} \left(\frac{1}{3} + \frac{1}{2} \right) - \frac{6}{5} \left(\frac{0}{3} + \frac{0}{2} \right) = \frac{6}{5} \left(\frac{5}{6} \right) = 1$$

e)

$$f(x) = 2e^{-2x}, \qquad se \ x \ge 0$$

$$\int_0^\infty 2e^{-2x} dx = -e^{-2x} \Big|_{x=0}^{x \to \infty}$$

$$\int_{0}^{\infty} 2e^{-2x} dx = \lim_{x \to \infty} -\frac{1}{e^{2x}} - \left(-\frac{1}{e^{2\times 0}} \right) = 1$$

f)

$$f(x) = \begin{cases} \frac{1}{10}x + \frac{1}{10}, se \ 0 \le x \le 2\\ -\frac{3}{40}x + \frac{9}{20}, se \ 2 < x \le 6\\ 0, c.c. \end{cases}$$

$$\int_0^2 \frac{1}{10}x + \frac{1}{10}dx + \int_2^6 -\frac{3}{40}x + \frac{9}{20}dx$$

$$\left. \frac{x^2}{20} + \frac{x}{10} \right|_{x=0}^{x=2} + \left(-\frac{3x^2}{80} + \frac{9x}{20} \right) \right|_{x=2}^{x=6}$$

$$\frac{2}{5} + \frac{3}{5} = 1$$

>...forma de avaliar ganhos em jogos com apostas a dinheiro.

> Representa o ponto de equilíbrio da distribuição de seus valores.

> ...parâmetro para vários modelos probabilísticos.

Variáveis aleatórias discretas

$$E(X) = \sum_{i} x_i P(X = x_i) = \mu_X$$

> Variáveis aleatórias Contínuas

$$E(X) = \int x f(x) dx = \mu_X$$

 \triangleright Seja X uma variável aleatória e g é uma função, ambos com domínio e contradomínio real. O valor esperado do valor da função g(X) denotado por E[g(X)] é definido por:

$$E[g(X)] = \int g(x)f_X(x)dx$$

$$E[g(X)] = \sum_{i} g(x_i)P(X = x_i)$$

Exemplo 4 Segundo determinada tábua de vida, o tempo de vida adicional de uma pessoa de 106 é modelado por:

\overline{T}	0	1	2	3
P(T)	0,67514	0,195183	0,1219955	0,0076815

- a) A expectativa de vida para uma pessoa dessa idade é?
- b) Seja $g(T) = v^{T+1}$ calcule E[g(T)], em que $v = \left(\frac{1}{1.03}\right)$.

Exemplo 4: Segundo determinada tábua de vida o tempo de vida adicional de uma pessoa de 106 é modelado por:

\overline{T}	0	1	2	3
P(T)	0,67514	0,195183	0,1219955	0,0076815

Solução

a) A expectativa de vida para uma pessoa dessa idade é?

$$E(T) = \sum tP(T = t) = 0,4622$$

b) Seja $g(T) = v^{T+1}$ calcule E[g(T)], em que $v = \left(\frac{1}{1,03}\right)$.

$$E[g(T)] = E(v^{T+1}) = \sum_{t=0}^{T+1} v^{t+1} P(T=t) = 0,9866602$$

Seja L um valor limite dentro do domínio de X, e seja Y uma variável aleatória "Valor de X sujeito ao limite L". Então:

$$Y = \begin{cases} X, & X < L \\ L, & X \ge L \end{cases}$$

Logo, para o caso de X se contínuo tem-se que:

$$E(Y) = E(X; L) = \int_{-\infty}^{L} x f_X(x) dx + \int_{L}^{\infty} L f_X(x) dx = \int_{-\infty}^{L} x f_X(x) dx + L S_X(L)$$

E no caso de X se discreto, tem-se:

$$E(Y) = E(X; L) = \sum_{i=0}^{x_i < L} x_i P_X(x_i) + \sum_{x_i = L}^{\infty} L P_X(x_i) = \sum_{i=0}^{x_i = L} x_i P_X(x_i) + L P(X \ge L)$$

Exemplo 5 Segundo determinada tábua de vida o tempo de vida adicional de uma pessoa de 106 é modelado da seguinte forma:

T	0	1	2	3
P(T)	0,6751	0,195183	0,1219955	0,0076815

a) Determinado produto oferecido por uma seguradora tem um prêmio calculado a partir do valor esperado da variável aleatória $g(T) = v \frac{1-v^T}{1-v}$, em que $v = \frac{1}{1,03}$. A seguradora determina que irá cobrar dos seus segurados um prêmio baseado no valor esperado de g(T), sujeito a um limite técnico g(2). Calcule o prêmio sujeito a esse limite.

\overline{T}	0	1	2	3
$\overline{P(T)}$	0,67514	0,195183	0,1219955	0,0076815

Solução:

Seja Y, tal que:

$$Y = \begin{cases} g(T), & g(T) < g(2) \\ g(2), & g(T) \ge g(2) \end{cases}$$

Equivalente a

$$Y = \begin{cases} g(T), & T < 2\\ g(2), & T \ge 2 \end{cases}$$

$$\Pi_Y = E(Y) = E[g(T); g(2)]$$

$$\Pi_Y = \sum_{t=0}^{1} g(t) P(T=t) + g(2) \sum_{t=2}^{3} P(T=t)$$

T	0	1	2	3
P(T)	0,67514	0,195183	0,1219955	0,0076815

Solução:

$$\Pi_Y = \sum_{t=0}^{1} g(t) P(T=t) + g(2) \sum_{t=2}^{3} P(T=t)$$

$$\Pi_Y = \sum_{t=0}^{1} v \frac{1 - v^t}{1 - v} P(T = t) + v \frac{1 - v^2}{1 - v} \sum_{t=2}^{3} P(T = t) \approx 0,4376311$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2^a edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUE S,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

