Probabilidade

Distribuição discreta II

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Na aula passada

Distribuição:

- Não deve haver probabilidades negativas;
- Soma deve ser 1;

Distribuição de Bernoulli

- Média: p
- Variância: pq

Distribuição Binomial

- Média: np
- Variância: npq

Distribuição de Poisson

$$P_{\lambda}(k) = e^{-\lambda} rac{\lambda^k}{k!}$$

Definido pelo parâmetro $\lambda \geq 0$

 $k \in N$

Poisson é uma aproximação de $B_{p,n}$ para n muito grande e p muito pequeno

Quando n é muito grande e p muito pequeno...

$$B_{n,p}(k) = inom{n}{k} p^k q^{n-k} \qquad P_\lambda(k) = e^{-\lambda} rac{\lambda^k}{k!}$$

 $n.p = \lambda$ possui um valor moderado.

Situações que seguem uma distribuição de Poisson

 P_{λ} aproxima de $B_{p,n}$ para p pequeno, n grande;

- Números de clicks em uma ad;
- Resposta a um spam;
- Cliente em uma loja;
- Compra de uma pintura de arte de uma galeria;

Pequeno k

λ	Pλ(k)	0	1	2	3
Geral	$e^{-\lambda} rac{\lambda^k}{k!}$	$rac{1}{e^{\lambda}}$	$rac{\lambda}{e^{\lambda}}$	$rac{\lambda^2}{2e^{\lambda}}$	$rac{\lambda^3}{6e^\lambda}$
1	$rac{1}{ek!}$	$rac{1}{e}$	$\frac{1}{e}$	$rac{1}{2e}$	$\frac{1}{6e}$
2	$rac{2^k}{e^2 k!}$	$\frac{1}{e^2}$	$\frac{2}{e^2}$	$rac{2}{e^2}$	$rac{4}{3e^2}$
0	$rac{0^k}{k!}$	1	0	0	0

Aproximação Binomial

Poisson é uma aproximação de Bp,n para n muito grande e p muito pequeno.

Bequeno.
$$B_{n,p}(k)=\binom{n}{k}p^kq^{n-k}$$
 $np=\lambda$ $p=\frac{\lambda}{n}$ $=\binom{n}{k}(\frac{\lambda}{n})^k(1-\frac{\lambda}{n})^{n-k}$ $q=1-p$ $=\frac{n!}{k!(n-k)!}\frac{\lambda^k}{n^k}\frac{(1-\frac{\lambda}{n})^n}{(1-\frac{\lambda}{n})^k}$

$$=rac{\lambda^k}{k!}rac{n!}{(n-k)!n^k}rac{\left(1-rac{\lambda}{n}
ight)^n}{\left(1-rac{\lambda}{n}
ight)^k}$$

Limite binomial

$$B_{p,n}(k)=rac{\lambda^k}{k!}rac{n!}{(n-k)!n^k}rac{(1-rac{\lambda}{n})^n}{(1-rac{\lambda}{n})^k}$$

$$P_{\lambda}(k) = e^{-\lambda} rac{\lambda^{\kappa}}{k!}$$

k e
$$\lambda$$
 fixados e n \rightarrow ∞

$$\frac{n!}{(n-k)!n^k} = \frac{n}{n} \cdot \frac{n-1}{n} \dots \frac{n-k+1}{n} = 1$$

$$(1-rac{\lambda}{n})^k$$
 # fixado de termos (k) e cada termo o 1

$$(1-rac{\lambda}{n})^n = ((1-rac{\lambda}{n})^{rac{n}{\lambda}})^{\lambda} = ((1-rac{1}{m})^m)^{\lambda} = (e^{-1})^{\lambda} \ (1-rac{1}{m})^m = e^{-1} \ m = rac{n}{\lambda}$$

Distr. de Poisson é realmente uma distribuição?

Probabilidade negativa?

$$P_{\lambda}(k) = e^{-\lambda} rac{\lambda^k}{k!} \qquad k \geq 0 \quad \ \lambda = np$$

Probabilidades somam 1?

$$e^{\lambda} = \sum_{k=0}^{\infty} rac{\lambda^k}{k!}$$
 Expansão de Taylor

$$\sum_{k=0}^\infty P_\lambda(k) = \sum_{k=0}^\infty e^{-\lambda} rac{\lambda^k}{k!} \ = e^{-\lambda} \sum_{k=0}^\infty rac{\lambda^k}{k!} \ = e^{-\lambda} e^\lambda = 1$$

Média e variância

Poisson é uma aproximação de Bp,n para n muito grande e p muito pequeno.

	μ	V
$B_{p,n}$	np	npq
P _λ	λ	λ

Exemplos

Uma indústria produz 200 itens, onde cada um possui probabilidade de 1% de ser defeituoso. Calcule a probabilidade de três desses itens serem defeituosos.

Binomial (preciso)
$$B_{0,01,200}(3) = {200 \choose 3} (0,01)^3 (0,99)^{197} pprox 0,181$$

Poisson (aproximado)
$$\lambda=np=200.0,01=2$$
 $P_2(3)=e^{-2}rac{2^3}{3!}pprox 0,18$

Exemplos

Uma indústria produz 200 itens, onde cada um possui probabilidade de 1% de ser defeituoso. Calcule a probabilidade de algum desses itens ser defeituoso.

$P(algum\ ser\ defeituoso)?$

Binomial (preciso)
$$B_{0,01,200}(0)={200\choose 0}(0,01)^0(0,99)^{200}pprox 0,134 \ B_{0,01,200}(\geq 1)=1-0,134pprox 0,866$$

Poisson (aproximado)
$$\lambda=np=200.0,01=2$$
 $P_2(0)=e^{-2rac{2^0}{0!}}pprox 0,135$

$$P_2(\geq 1) = 1-0, 135 pprox 0, 865$$

Distribuição geométrica

Jogadas de moedas independentes (B_p) , p(1) = p, p(0) = 1 - p = q

Binomial	$B_{p,n}$	n jogadas, # 1s
Geométrica	G _p	# de jogadas até o primeiro 1

Jogadas	X
10101	1
01011	2
00011	4

n	X ₁ ,, X _n	p(n)
1	X ₁ = 1	р
2	$X_1 = 0, X_2 = 1$	qp
3	$X_1 = X_2 = 0, X_3 = 1$	q ² p
n	$X_1 = X_2 = \dots = X_{n-1} = 0, X_n = 1$	q ⁿ⁻¹ p

Distribuição geométrica

$$G_p, 0$$

$$P(n)=q^{n-1}p=G_p(n), n\geq 1$$

Observações:

$$p \neq 0$$

n pode assumir um valor muito alto

Situações onde a distribuição é geométrica

- Ladrão tentando encontrar a chave certa em um molho de chave;
- Tentativas até acertar o alvo;
- Tentativas até sucesso;
- Tentativas até falha;

Distribuição geométrica é distribuição?

$$P(n)=pq^{n-1} \qquad n\geq 1$$

Soma das probabilidades é igual a 1?

$$(1+q+q^2+\dots)(1-q)=1+q+q^2+\dots \ -q-q^2-\dots$$

$$\sum_{i=0}^{\infty}q^i=rac{1}{1-q}$$

$$\sum_{n=1}^{\infty} p(1-p)^{n-1} = p \sum_{i=0}^{\infty} (1-p)^i = p rac{1}{1-(1-p)} = rac{p}{p} = 1$$

Esperança de uma distribuição geométrica

$$egin{aligned} P(X > n) &= P(X_1 = \ldots = X_n = 0) = q^n \ E(X) &= \sum_{k=0}^{\infty} k P_k \ &= P_1 + 2 P_2 + 3 P_3 \ldots \ &= P(X \geq 1) + P(X \geq 2) + P(X \geq 3) + \ldots \end{aligned}$$

$$E(X) = \sum\limits_{k=1}^{\infty} P(X \geq k) = \sum\limits_{i=0}^{\infty} P(X > i) = \sum\limits_{i=0}^{\infty} q^i = rac{1}{1-q} = rac{1}{p}$$

Variância de uma distribuição geométrica

$$egin{align} V(X) &= E(X^2) - (E(X))^2 \ &= rac{1+q}{p^2} - rac{1}{p^2} \ &= rac{q}{p^2} \ \end{cases}$$

Exemplo: Moeda justa

$$X \sim G_{0,5}$$

$$P(X = k) = G_{0.5}(k) = 0.5^{k}.0.5 = 1/(2^{k})$$

$$E(X) = 1/p = 2$$

$$V(X) = q/p^2 = 2$$

Exemplo

Suponha que um jogador de baseball possui 0,357 de chance de acertar a bola. Suponha também que as chances não mudam entre as batidas. Qual a probabilidade dele acertar a primeira bola na quarta jogada?

Suponha que o mesmo jogador de baseball possua apenas cinco chances de rebatida. Qual a probabilidade dele não acertar nenhuma jogada?

Exemplo

Suponha que um jogador de baseball possui 0,357 de chance de acertar a bola. Suponha também que as chances não mudam entre as batidas. Qual a probabilidade dele acertar a primeira bola na quarta jogada?

$$G_{0,357}(4) = 0,357.(1-0,357)^3 = 0.0949$$

Suponha que o mesmo jogador de baseball possua apenas cinco chances de rebatida. Qual a probabilidade dele não acertar nenhuma jogada?

$$P(n$$
ão $acertar) = q^5 = (1-0,357)^5 = 0.1099$