SentiLens

Uncover review's hidden sentiment

Understand thousands reviews at a glance Know what reviews are about More informative than simple star ratings

Impact

Quickly find the preferred products Fewer unexpected surprises More satisfied consumers

Reduce wastage Reduction in returns More effective sales Fewer out-dated stocks

Understand competitor's advantage Identify strength & weaknesses in demand & supply

Better informed providers

Higher profitability

Higher conversion rate Larger basket size

Dataset

Single sentence review

- Aspect term
- From & to char index
- Polarity

TEXT COLUMN:

I charge it at night and skip taking the cord with me because of the good battery life.

ASPECTS COLUMN:

```
[{'term': 'cord', 'polarity': 'neutral', 'from': '41', 'to': '45'},

{'term': 'battery life', 'polarity': 'positive', 'from': '74', 'to': '86'}]
```


Preprocessing

Unified-BIO tagging

Define target label using unified-BIO technique: aspect word boundaries and sentiment.

E.g. "Laptop <B-POS> screen <I-POS> is <O> amazing <O> . <O>"

Build word features

Incorporate information about word's and its context words' properties:

- Word index & reverse index in the sentence
- Part-of-speech
- Sentiment lexicon, ...

Word distribution

EDA

Part-ofspeech

Sentiment
Lexicon

Very few "conflict" aspect terms & is dominated by "non-aspect" terms

Word distribution

EDA

Part-of-speech
Sentiment Lexicon

> 80% aspect terms are nouns Non-aspect terms have "uniform" distribution of POS

^{*} POS starts with N are nouns

- A lot of aspect terms do not have pos/neg context words
- >35% "conflict" terms have context switching context words
- Whichever term polarity, they may contains both "positive" & "negative" context words, just the ratio between different sentiment lexicons are slightly different.

Random forest

Macro avg f1-score: 0.22

A lot of words were misclassified as "O" (non-aspect term)

There seems to be mix-ups in polarity, while not much in "B" & "I"

Conditional Random Field

Macro avg f1-score: 0.37

A lot of words were misclassified as "O" (non-aspect term)

The model could not predict any "conflict" aspects, and is less likely to predict aspect as non-aspect.

Baseline model

Macro average f1-score

Random forest: 0.22

Conditional Random Field: 0.37

Feature improvement:

Add more features: head words, Google Word2Vec word embeddings

Unsupervised training

Re-train model using rule-based aspect term extraction on larger dataset

Productionize:

An app to allow users to look for specific product reviews & filter review by aspects + summarize aspect sentiments

Next step