

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

INF480

REDES COMPLEJAS

Tarea 2

Florencia Ramírez, ROL: 202073522-0 Sofía Riquelme, ROL: 202073615-4 1. La matriz laplaciana del grafo es la siguiente:

$$\begin{bmatrix} 2 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

El valor de Fiedler para esta matriz es 0,34032095848177074 y el vector propio asociado es el siguiente:

$$\begin{bmatrix} -0,46724728 \\ -0,46724728 \\ -0,30823323 \\ 0,11469308 \\ 0,27370712 \\ 0,33957289 \\ 0,5147547 \end{bmatrix}$$

Luego, el gráfico de la red con sus comunidades es el siguiente:

Red con partición en dos comunidades basada en el vector propio de Fiedler

Figura 1: Gráfico de red

 a) Para que P sea una distribución de probabilidad, debe ocurrir lo siguiente:

$$\sum_{k=0}^{\infty} P(k) = 1$$

Luego, dado que $P(k) = C \times \alpha^k$, se tiene que

$$\sum_{k=0}^{\infty} C\alpha^k = 1$$

Esto es una serie geométrica. La serie geométrica infinita $(\sum_{k=0}^\infty \alpha^k)$ converge a $(\frac{1}{1-\alpha})$ siempre que $(|\alpha|<1)$. Por lo tanto,

$$\sum_{k=0}^{\infty} C\alpha^k = C\left(\frac{1}{1-\alpha}\right) = 1$$

Despejando C:

$$C = 1 - \alpha$$

b) La función generadora de un grafo, es $G_p(x) = \sum p_k x^k$. Como se vio en el ítem anterior, tenemos que $P(k) = C\alpha^k$ y $C = 1 - \alpha$. Si sustituimos, se tiene que:

$$G(x) = \sum_{k=0}^{\infty} (1 - \alpha)\alpha^k x^k$$

$$G(x) = (1 - \alpha) \sum_{k=0}^{\infty} (\alpha x)^k$$

Utilizando la misma convergencia de series geométricas, se tiene que la expresión generadora para la distribución de grados es:

$$G(x) = (1 - \alpha) \left(\frac{1}{1 - \alpha x}\right)$$

c) no sé lol

3. Al hacer las eliminaciones se obtuvieron los siguientes resultados:

Red	Nodos Iniciales	Aleatorio	Por Grado	Por Betweenness
Piratas	795	$33,\!33\%$	$3,\!02\%$	$3{,}14\%$
Delfines	62	$41{,}94\%$	$24{,}19\%$	12,90%
ER Piratas	795	24,40%	8,18 %	$5{,}16\%$
ER Delfines	62	43,55%	$30{,}65\%$	$29{,}03\%$

Cuadro 1: Resumen de Eliminaciones en Diferentes Redes

4.

5.

6. a) El gráfico de la red es el siguiente:

Figura 2: Gráfico de red chica

Los valores del grado de entrada, betweenness y PageRank de cada nodo son:

Nodo	Grado de entrada	Betweenness	PageRank
V1	1	0,238095	0,077725
V2	1	0,047619	0,064579
V3	2	0,428571	0,162980
V4	2	0,309524	0, 180098
V5	3	0,357143	0,209159
ν6	1	0, 214286	0, 120440
V7	1	0,000000	0, 120440
v8	1	0,071429	0,064579

Cuadro 2: Valores de grado de entrada, betweenness y PageRank

- b) El ranking de los nodos según su grado de entrada sería:
 - 1) v5
 - 2) v3 y v4
 - 3) v1, v2, v6, v7 y v8

Luego, el ranking de los nodos según su betweenness sería:

- 1) v3
- 2) V4
- 3) v5
- 4) V1
- 5) v6
- 6) v2
- 7) v8
- 8) v7

Finalmente, el ranking de los nodos según su valor de Page-Rank sería:

- 1) v5
- 2) V4
- 3) v3
- 4) v6 y v7
- 5) V1
- 6) v2 y v8

c) Se puede observar una relación entre grado de entrada, betweenness y valor de PageRank, los nodos con mayor grado de entrada también tienden a tener mayor valores de betweenness y PageRank, que se puede observar en los nodos v3, v4 y v5.

más chamullo :>