Assignment 3: Q-Learning and Actor-Critic Algorithms

Yulun Rayn Wu, 3034358565

October 20, 2020

1 Part 1: Q-Learning

• Question 1

Figure 1: Settings: env_name: MsPacman-v0; ep_len: 200; batch_size: 32; eval_batch_size: 1000; num_agent_train_steps_per_iter: 1; num_critic_updates_per_agent_update: 1; seed: 0.

Configurations: Changed num_timesteps to 2e6 and stopped training at 1e6. It affected the performance because schedulers are scaled accordingly.

Figure 2: Action Selection: Target vs. Online. Settings: env_name: LunarLander-v3; ep_len: 200; batch_size: 32; eval_batch_size: 1000; num_agent_train_steps_per_iter: 1; num_critic_updates_per_agent_update: 1; seed: 0.

In the experiments, double DQN yields better rewards and stability than DQN with vanilla target network.

Figure 3: Target Update Frequency: once per 1e3, 3e3, 5e3, 7e3, 9e3 steps. Settings: env_name: LunarLander-v3; ep_len: 200; batch_size: 32; eval_batch_size: 1000; num_agent_train_steps_per_iter: 1; num_critic_updates_per_agent_update: 1; seed: 0.

Smaller update frequency for the targets results in better stability, but also makes training slower.

2 Part 2: Actor-Critic

Figure 4: Search: num_target_updates, num_grad_steps_per_target_update. Settings: env_name: CartPole-v0; ep_len: 200; n_iter: 100; batch_size: 1000; eval_batch_size: 400; train_batch_size: 1000; discount: 1.0; learning_rate: 5e-3; n_layers: 2; size(hidden layer): 64; seed: 1.

It is hard to draw conclusions based on these 4 experiments alone. Ideally, one might want to use a fairly small frequency for target update for the sake of stability but not so small that it would affect training speed too much, while also having a larger number of gradient steps per update to match the low frequency.

Figure 5: Environment: InvertedPendulum-v2, HalfCheetah-v2. Settings: train_batch_size: 1000; n_layers: 2; seed: 1.