

Coordination Chemistry Reviews 150 (1996) 293-296

SUBJECT INDEX

	SUBJECT	INDEA	
Actinides	2.8	in coupled systems	5.1, 8.4.1
ADC	7.3, 9.1	in dimers	5.3.1, 5.3.2
Alkyl groups	2.3	in heteronuclei	2.5
Amines	2.3	in lanthanides	2.8.3
Aminotroponeiminates	2.3	in tetranuclear systems	5.4.2
Ammonia	2.3	Copper(II)	
Aniline	2.3	- ammonia	2.3
Aqua complexes	2.3, 3.4.1	- agua	2.3, 3.4.1
		cobalt(II) dimer	5.3.3
Benzylamide	2.2	- imidazole	2.3
Benzylamine	2.3	nickel(II) dimer	5.3.3
		Correlation function	3.2
Bipyridyl	2.3	- time	3.2
Bloembergen equation	3.5	, electronic	3.2
Boltzmann population	1.5, 5.1	, exchange	3.2, 4.2
		for contact coupling	3.2
13C	2.3, 2.5, 8.4.1	for dipolar coupling	3.2
- in amines	2.3	for electron relaxation	3.3.1
- in cyanide	2.5		
- in nickel(II) pyridine	2.3	COSY	7.1, 7.5, 9.4.2
- in nickel(II) pyridine N-oxide	2.3	- DQ	7.5
- in sp ² fragments	2.5	- ISECR	7.1, 7.5
Chemical exchange	4.1	- magnitude	7.5, 9.4.2
- between two sites	4.2, 4.3	- phase sensitive	7.5, 9.4.2
- , temperature dependence	4.3.3	- ZQ	7.1, 7.5
Chemical shift	1.7.3	Cross correlation	7.8
Chloroform	1.7.3	- polarization	8.4.1
Chromium(III)	2110	- relaxation	6.2
- aqua	2.3	Curie relaxation	3.6, 3.8, 7.8,
- pyridine	2.3		9.1.4
- pyridine N-oxide	2.3	Cyano Met-myoglobin	2.3, 7.9
Cobalt(II)	212	Cytochrome c Met80Ala mutant	9.1.3
- ammonia	2.3	- c'	2.3
- aqua	2.3, 3.4.1	- c ₃	7.2, 7.4
copper(II) dimer	5.3.3		
- dimer	5.3.1	ō	1.7.3
- imidazole	2.3	DANTE	9.1.1
- metallothioneins	5.4.2. 7.3	Density matrix	AV.3
- metanotmonems nickel(II) dimer			
mckei(II) dimer zinc(II) dimer	5.3.3	Diffusion	4.5.2
Contact relaxation	5.3.1	Dipolar coupling	2.2.2
- shift	3.5, 3.8	- energy	1.1, 2.2.2, 6.2
- SHUL	2.2.1, AII		AII

- relaxation in dimers	3.4, 3.8 5.2	- , tetranuclear	5.4.3-5.4.5,
in lanthanides	3.4		6.2.3, 7.2, 7.3, 7.6
- in lanthamoes	3.4	Iron sulfur proteins, high	7.0
274	2.2	potential, oxidized	5.4.4, 6.2.3, 9.3
Electron relaxation	3.3	reduced	5.4.3
- mechanisms	3.3.1	Iron, trinuclear	8.3
Enhancement factor Evans method	4.4.2 4.5.3		
EXSY EXST		Jahn-Teller effect	3.3.1
	7.1, 7.2 4.3.3	J-coupling, electronic	5.1, 8.4.1
Eyring equation	4.3.3	- , nuclear	7.1, 7.5-7.7,
		6 20000000	AV
19F	2.5, 8.2, 8.2.2		
Ferredoxins		Karplus relationship	2.4
- [Fe ₂ S ₂] ²⁺	5.3.2	starpius reintionimp	4.4
- [Fe ₂ S ₂] ⁺	5.3.4	Lanthanides	2.8
- [Fe ₃ S ₄]*	5.4.1	- acetate	8.4.1
- [Fe ₄ S ₄] ²⁺	5.4.3, 7.2		2.3
- [Fe ₄ S ₄] ³⁺	5.4.4, 6.2.3	 aqua contact relaxation 	3.5
- [Fe ₄ S ₄]*	5.4.5, 7.2	- Curie relaxation	3.6
- [Fe ₃ NiS ₄]*	5.4.6		3.4
FID	1.7.2, 6.1, 9.1	- dipolar relaxation	
Fourier transform	1.7.2, 3.2	- contact shift	2.8.3
		- pseudocontact shift	2.8.3
g factor	1.2	Lattice	1.7.1
g tensor	1.4	Linewidth	1.7.4
g-anisotropy	2.2, 3.3.1, 3.7		
		Magic angle sample spinning	8.1, 8.4
2H	2.3, 5.3.2	Magnetic coupling	5.1
- relaxation	3.9	- field	1.1
- solid state	8.3, 8.4	, effective	1.7.3
Heisenberg Hamiltonian	5.1	- moments	1.1
Hetcor	7.7, 9.5	, induced	1.6, 5.1
Heteronuclei	2.5, 7.7	of electrons	1.2, 1.4
HMOC	7.7	of nuclei	1.2, 1.3
Hyperfine contact coupling	2.1, 2.2.1	, orbital	1.4
- angular dependence	2.4	 susceptibility 	1.6
- in coupled systems	5.1	- tensor	2.2.2
- in polymetallic systems	5.4	Magnetization	1.6
- in water nuclei	2.3	Magnetogyric ratio	1.2
Hyperfine shift	2.1	Manganese(II)	2.2
Trypotitue suite	do-1	- ammonia	2.3
		- aqua	2.3, 3.4.1
Inversion recovery	1.7.4, 9.2	Metallothioneins	5.4.2, 7.3
Iron(II)		Met myoglobin	0.0
- aqua	2.3	- aqua	9.3
- imidazole	2.3	- cyanide	2.3, 7.9
- intermediate spin	2.3	MLEV17	7.1, 7.6
Iron(III)		Moment, second	8.2
- aqua	2.3, 3.4.1	***	
- imidazole	2.3	14N	2.3
- porphyrin	2.3, 2.6	- in amine	2.3
Iron in ferredoxins, dinuclear	5.3.2, 5.3.4	- in picoline	2.3
- , trinuclear	5.4.1	 in pyridine 	2.3

15N		Radicals	3.11, 3.12
- in cyanide	2.5	Raman relaxation mechanism	3.3.1
- relaxation	3.9	R_1	1.7.1
Neodymium(III)	8.3	Rie	1.7.4
Nickel(II)		Rich	3.4
- amine	2.3	R_{1e}	3.3.1
- aminotroponeiminate	2.3	RIM	3.4-3.6, 4.3.1,
- ammonia	2.3		5.2.1
- aniline	2.3	R ₁₀	4.3.2, 4.3.3
- aqua	2.3, 3.4.1	R_3	1.7.1
- bis(alkylxantate)	2.3	R _{2n}	3.3.1
- bis(salicylaldiminate	2.3, 7.2, 7.3	R _{2M}	3.4-3.6, 4.3.1,
- phenolate	2.3		5.2.1, 9.1.4
- phosphate	2.3	R_{2p}	4.3.2, 4.3.3
- pyridine	2.3	Relaxation and magnetic couplin	
- pyridine N-oxide	2.3	- and non selective experiments	3.13, 6.2.2, 9.2
- tri-iron	5.4.6	- and selective experiments	3.13, 6.2.2, 9.2
NOE	6.1, 9.3, AIV	- and temperature	3.10
- in the rotating frame	6.5	- Curie	3.6, 9.1.4
- measurements	9.3	- , electronic	3.3
- steady state	6.2	- in heterodimers	5.2.2
- transient	6.4, 9.4.1	- , ligand centered	3.4.1
- truncated	6.3	- , nuclear	3.1, 3.4, 6.2
NOE-NOESY	7.9, 9.4.1	- , nuclear	4.5.2
NOESY	7.1, 7.3, 9.4.1		4.3.2
	AI	- , paramagnetic ROE	6.5
Nuclear properties - relaxation and rotation	3.1	ROESY	
- and chemical exchange	3.1		7.1, 7.4
- and chemical exchange	3.1	Rotating frame	1.7.1
	3.4.1	119Sn	0.42
, dipolar coupling	3.4.1		8.4.2
17O	22 244	$\langle S_z \rangle$	1.6, 2.1, 2.2.1,
	2.3, 3.4.1	0 1 1 1 1 1 1 1 1 1	5.1
Orbach relaxation mechanism	3.3.1	Salicylaldiminates	2.3
Orbital magnetic moment	1.4	Saturation transfer	4.3.4, 7.2
Outer sphere relaxation	4.5.2	Shielding constant Shift	1.7.3
Phenanthroline	2.3	- bulk susceptibility	4.5.3
Phenylisonitrile	2.3	- , contact	2.2.1, 2.5, 5.1,
Phosphine	2.3	,	AII
Phosphine N-oxide	2.3	- , pseudocontact	2.2.2, AIII
Picoline	2.3	- reagents	2.8.5
Porphyrines	2.3	Simulation of spectra	AV
- , tetraphenyl	2.3	SOD	
ppm	1.7.3	- , CoCo	5.3.3
Precession	1.2	- , CuCo	5.3.3, 6.2.3
Presaturation	9.1.1	- , CuCu	5.2.2
Product operators	AV.2	- , CuNi	5.3.3
Protoporphyrin IX	2.3	- CuZn	5.2.1
Pseudocontact shifts	222	- , ECo	5.3.3, 9.3
- , factorization	2.7, 2.8.4	Solomon equation	3.4
- in high spin iron(III)	2.6	Spectral density	3.2
- in lanthanides	2.8.2	Spin density	2.1
	2.8.2	- diffusion	6.2.3
- in low spin iron(III)			
- in metalloproteins	2.9	- eigenvalues	1.2

- Hamiltonian	1.4	Uranium trinuclear	8.4.1
- lattice relaxation	1.7.1		
- moments	1.2		
- orbit	1.4	Vanadium(III) aqua	2.3
- polarization	2.1	Vanadyl(IV) aqua	2.3
- rotation	3.3.1	Van Vleck equation	1.6
spin relaxation	1.7.1	Viscosity	3.2, 3.6
- wavefunctions	1.2		
Superweft	9.1.3	Water complexes	2.3
T _o	3.2	Watergate	9.1.2
τ _M	3.2, 4.2, 4.3.3	Weft	9.1.3
T,	3.2		
τ,	3.2, 5.2.2	89V	8.4.2
$\tau_{\rm v}$	3.3.1	Ytterbium porphinate	7.5
T_1	1.7.1, 6.2.2, 9.2	a tier ordin porprinsite	1.0
- , non-selective	3.13, 6.2.2, 9.2		
- , selective	3.13, 6.2.2, 9.2	Zeeman operator	
Tempol	8.4	- , electronic	1.4
Titanium(III) aqua	2.3	- , nuclear	1.3
TMS	1.7.3	ZFS	1.4, 2.3
TOCSY	7.1, 7.6	- and electron relaxation	3.3.1
- , clean	9.4.2	- and nuclear relaxation	3.7

