M16600 Lecture Notes

Section 10.1: Curves Defined by Parametric Equations

■ Section 10.1 textbook exercises, page 685: #5, 7, 8.

Equations such as

$$y(x) = 3e^x + x^3$$
 or $x(y) = y^2 - 1$

describe some curves in the xy-plane.

In this section, we have ANOTHER way to describe curves in the xy-plane, called parametric equations:

$$x = x(t)$$
 and $y = y(t)$

$$y = y(t)$$

Here, t is the parameter.

Example 1: (a) Sketch the given parametric curves (i.e. curves given by parametric equations). Indicate with an arrow the direction in which the curve is traced as t increases. (b) Eliminate the parameter to find a $Cartesian \ equation$ (equation with only x and y) of the curve

(1) $x = t^2$ and y = t + 1

t	x	y	I M.
-3			
-2			
-1			
0			
1			
2			
3			

(2) $x = \cos t$ and $y = \sin t$, where $0 \le t \le 2\pi$.

t	x	y
0	1	0
$\pi/4$	115	152
$\pi/2$	0	
π	-1	0
$3\pi/2$	0	ائے
2π	(0

Example 2: Let C be the parametric curve given by $x = t^2$ and $y = t^3 - 3t$.

(a) Find the point on the curve C when t = 3.

$$2 = 3^2 = 9$$

 $3 = 3^2 - 3(3) = 27 - 9 = 18$

(b) Find t at the point (1,2).

$$t^{3}-3t=2$$
 $t^{3}-3t=2$
 $t^{2}-3t=2$
 $t^{3}-3(1)=-2+2$
 $t^{3}-3(-1)=-1+3=2$

$$1^3 - 3(1) = -2 \neq 2$$

$$t=-1$$
 $(-1)^3-3(-1)=-1+3=$