

Bobine à noyau de fer Introduction

Usage en continu

- •I impose H
- •Pertes uniquement dans les bobinages

Usage en alternatif

- •V impose B
- •Pertes dans le matériau

- •On fixe un sens de la tension.
- •Convention récepteur
- •Flux suit la règle d'ampère

Une f.e.m. est induite dans l'enroulement qui s'oppose à la variation de flux

Bobine à noyau de fer Conventions

- •On fixe un sens de la tension.
- •Convention récepteur
- •Flux suit la règle d'ampère

$$e = +\frac{d\Phi}{dt}$$

Flux Commun Total:

$$\Phi_c = N.\phi_c$$

Flux de Fuites moyen:

$$\phi_f = \frac{1}{N} \sum_{k} \phi_{f_k}$$
 Pour 1 spire k

Flux Commun Total:

$$\Phi_c = N.\phi_c$$

Flux de Fuites Total:

$$\phi_f = \frac{1}{N} \sum_{k} \phi_{f_k}$$

$$\Phi_f = N \phi_f$$

Pour 1 spire en moyenne

Flux Total:

$$\Phi = N.\phi_c + l_f i$$
Qques %

Equations générales

$$v = r.i + e$$
or
$$\begin{cases} e = \frac{d\Phi}{dt} \\ \Phi = N.\phi_c + l_f.i \end{cases}$$

Equations générales

$$v = ri + e$$
or
$$\begin{cases} e = \frac{d\Phi}{dt} \\ \Phi = N.\phi_c + l_f i \end{cases}$$

$$v = r.i + l_f.\frac{di}{dt} + N\frac{d\phi_c}{dt}$$

Equations générales

$$v = r.i + l_f.\frac{di}{dt} + N\frac{d\phi_c}{dt}$$

$$N.i = \Re_c.\phi_c$$

Chute ohmique négligeable devant la f.e.m induite

$$v = r.i + \sqrt{\frac{di}{dt}} + N \frac{d\phi_c}{dt}$$

Flux de fuite négligeable devant le flux commun

$$v = r.i + l_f.\frac{di}{dt} + N\frac{d\phi_c}{dt}$$

$$v = N\frac{d\phi_c}{dt}$$

Hypothèses de KAPP Expression du flux

$$v = N \frac{d\phi_c}{dt} \quad \text{devient} \quad \phi_c = \frac{1}{N} \int v.dt$$

$$\phi_c = \frac{1}{N} \int v.dt$$

Tension impose le flux

Expression du flux

$$\phi_c = \frac{1}{N} \int v \cdot dt = \frac{V\sqrt{2}}{N\omega} \sin(\omega \cdot t) + \phi_0$$

Flux rémanent. Négligé par la suite

Expression du flux

$$\phi_c = \frac{1}{N} \int v.dt = \frac{V\sqrt{2}}{N\omega} \sin(\omega.t) + \phi_0$$

$$\phi_c = \frac{V\sqrt{2}}{N\omega} \sin(\omega.t)$$
•Amplitude $\phi_M = \frac{V\sqrt{2}}{N\omega}$
•Pulsation ω
•Retard $\pi/2$ sur v

Tension impose le flux Machine à Flux Forcé

Expression du flux

$$\phi_{M} = \frac{V\sqrt{2}}{N\omega}$$

$$V = 4,44.N.f.S.B_{M}$$

Relation de Boucherot

Hypothèses de KAPP Courant appelé

Relation de Hopkinson

$$\Re_c = \frac{1}{\mu} \cdot \frac{l}{S}$$

Dépend du flux•

Courant appelé: expression

$$i(t) = \sum_{k=0}^{\infty} I_{2k+1} \sqrt{2} \cos[(2k+1)\omega \cdot t - \varphi_{2k+1}]$$

Puissance absorbée

Courant non sinusoïdal.

->Définition de la puissance.

$$p(t) = v(t)i(t)$$

$$v(t) = V\sqrt{2}\cos(\omega t)$$

$$i(t) = \sum_{k=0}^{\infty} I_{2k+1}\sqrt{2}\cos[(2k+1)\omega t - \varphi_{2k+1}]$$

Puissance absorbée

Courant non sinusoïdal.

->Définition de la puissance.

$$p(t) = v(t).i(t)$$

$$p(t) = V\sqrt{2}\cos(\omega t)\sum_{k=0}^{\infty} I_{2k+1}\sqrt{2}\cos[(2k+1)\omega t - \varphi_{2k+1}]$$

Puissance absorbée

Valeur efficace du courant:

$$I^2 = I_1^2 + I_2^2 + \dots + I_{2k+1}^2 + \dots$$

Puissance apparente:

$$S^{2} = V^{2}I^{2} = V^{2}I_{1}^{2} + V^{2}I_{2}^{2} + ... + V^{2}I_{2k+1}^{2} + ...$$

$$V^{2}I_{1}^{2}\cos(\varphi_{1}) + V^{2}I_{1}^{2}\sin(\varphi_{1}) \qquad \sum_{k=1}^{\infty} V^{2}I_{2k+1}^{2}$$

$$P^{2} \qquad Q^{2} \qquad D^{2}$$

Puissance absorbée

Valeur efficace du courant:

$$I^2 = I_1^2 + I_2^2 + \dots + I_{2k+1}^2 + \dots$$

Puissance apparente:

$$S^2 = P^2 + Q^2 + D^2$$

$$\begin{array}{c} \bullet \text{Bobinage} = \text{pertes Joules} \\ \bullet \text{Matériau} = \text{pertes Ferromagnétiques} \end{array}$$

Pertes fer Hystérésis du matériau

Pertes fer Hystérésis du matériau

Pertes fer Hystérésis du matériau

Pertes fer Hystérésis du matériau Compensation des aires

Pertes fer Hystérésis du matériau

Pertes fer Hystérésis du matériau Energie perdue en 1 parcours Perte lors d'un parcours à fréquence f

 $P_H = f \times Aire$

Pertes fer Hystérésis du matériau On admet une forme empirique De l'aire $P_H = k_H . f . B_M^2$

Courants de Foucault

Courants de Foucault

Induction magnétique

$$B = B_M \sin(\omega . t)$$

Ligne de courants de Foucault

•f.e.m. induite par B:

$$e_F = \frac{d\phi}{dt} = S_F B_M .\omega. \cos(\omega .t)$$

•Soit en pertes joules

$$p_F(t) = \frac{e_F^2}{r_F}$$

Courants de Foucault

Induction magnétique

$$B = B_M \sin(\omega.t)$$

Ligne de courants de Foucault

•f.e.m. induite par B:

$$e_F = \frac{d\phi}{dt} = S_F B_M .\omega. \cos(\omega .t)$$

•Soit en pertes joules

$$p_F(t) = \frac{e_F^2}{r_F} = \frac{S_F^2}{r_F} B_M^2 . \omega^2 \cos^2(\omega . t)$$

Courants de Foucault

$$p_F(t) = \frac{e_F^2}{r_F} = \frac{S_F^2}{r_F} B_M^2 \omega^2 \cos^2(\omega t)$$

Courants de Foucault

$$p_F(t) = \frac{e_F^2}{r_F} = \frac{S_F^2}{r_F} B_M^2 . \omega^2 \cos^2(\omega . t)$$

$$P_F = k_F . B_M^2 . f^2$$

Pertes fer Pertes totales

$$P_{Fer} = k_H.f.B_M^2 + k_F.f^2.B_M^2$$

Besoin d'un modèle linéaire

Besoin d'un modèle linéaire

Courant absorbé sinusoïdal

$$i'(t) = I'\sqrt{2}\cos(\omega t - \varphi)$$
Valeur efficace $I' = I = \sqrt{I_1^2 + I_2^2 + \dots + I_n^2}$

Besoin d'un modèle linéaire

Courant absorbé sinusoïdal

$$i'(t) = I'\sqrt{2}\cos(\omega t - \varphi)$$
Valeur efficace $I' = I = \sqrt{I_1^2 + I_2^2 + \dots + I_n^2}$

Puissance active conservée

Bobine réelle Bobine fictive $P = V.I_1 \cos(\varphi_1)$ $P = V.I \cos(\varphi)$

Schéma équivalent

Schéma équivalent

Absorbe la puissance réactive

$$L_{\mu}.\omega = \frac{V^{2}}{Q} = \frac{V^{2}}{\sqrt{S^{2} - P^{2}}} = \frac{V^{2}}{\sqrt{(VI')^{2} - P^{2}}}$$

Bobine fictive équivalente Représentation de Fresnel

Grandeurs magnétiques

Flux et induction

$$\phi_c = \frac{1}{N} \int v.dt$$
 avec $v(t) = V\sqrt{2}\cos(\omega.t)$

$$B'(t) = B(t) = B_M \sin(\omega . t)$$

Inchangé

Grandeurs magnétiques

Champ magnétique

$$H'l = N.i'$$
 avec $i'(t) = V\sqrt{2}\cos(\omega . t - \varphi)$

$$\longrightarrow H'(t) = \frac{NI'\sqrt{2}}{l}\sin\left(\omega t + \frac{\pi}{2} - \varphi\right)$$

Grandeurs magnétiques

Champ magnétique

$$H'l = N.i'$$
 avec $i'(t) = V\sqrt{2}\cos(\omega .t - \varphi)$

$$H'(t) = \frac{NI'\sqrt{2}}{l}\sin\left(\omega.t + \frac{\pi}{2} - \varphi\right) = H'_{M}\sin(\omega.t + \varphi)$$

Sinusoïdal

Angle d'écart hystérétique

Cycle d'hystérésis

$$B'(t) = B(t) = B_M \sin(\omega t)$$

$$B'(t) = B(t) = B_M \sin(\omega t)$$

- $H'(t) = H'_{M} \sin(\omega . t + \alpha)$
- •Aire = Energie volumique totale perdue par cycle.
- •Perméabilité magnétique devient alors complexe:

$$\underline{\mu} = \frac{\underline{B}}{\underline{H'}} = \frac{B_M}{H'_M} e^{-j\alpha}$$

Bobine fictive équivalente Limites du modèle

- •Eléments du schéma valable à (V,f) donné
- •Puissances actives non conservées.

Bobine réelle

$$Q = V J_1 \sin(\varphi_1)$$

Bobine fictive

$$\neq$$
 $Q = V.I\sin(\varphi)$

Bobine fictive équivalente Modèle fictif complet

Mesure des pertes Mesure directe

On mesure $P = r.I^2 + P_{Fer}$

Mesure des pertes

Méthode d'Epstein

Nécessité de 2 enroulements

On mesure
$$P = \langle v_2 . i_1 \rangle$$

et $v_2 = N_2 \frac{d\phi}{dt} = \frac{N_2}{N_1} (v_1 - r_1 . i_1)$

$$P = \left\langle \frac{N_2}{N_1} . v_1 i_1 - \frac{N_2}{N_1} . r_1 i_1^2 \right\rangle$$

$$P = \frac{N_2}{N_1} P_{tot} - \frac{N_2}{N_1} P_{joule}$$