

Kelime (Text) İşleme Algoritmaları

Prof. Dr. Banu Diri

- >Trie Ağacı
- > Sonek Ağacı (Suffix Tree)
- ➤ Longest Common String (LCS)
- > Minimum Edit Distance

Ağaçların Bağlı Yapısı

* Düğüm (node), çeşitli bilgiler ile ifade edilen bir nesnedir.

❖Her bir bağlantı (edge) için, birer

bağlantı bilgisi tutulur.

·Nesne/Değer (Element)

- Ana düğüm (Parent node)
- · Cocuk düğümlerin listesi

Metin ağaçları (TRIE)

Trie ağacının ismi re**trie**val kelimesininin [3..6] arasındaki harflerinden oluşmaktadır.

Bir ağacın üzerinde bir metin (string, sözlük, ...) kodlanmak isteniyorsa TRIE ağaçları tercih edilir.

- İgili metni veren ağacın üzerinde izlenebilir tek bir yol vardır.
- Kök düğüm her zaman boş bir metni (string) ifade eder.
- Her düğüm kendisinden sonra gelen harfi işaret eder.
- Boş metin hangi harf ile devam ederse, o harfe ait dal takip edilir ve gelinen düğüm o ana kadar geçilmiş olan dallardaki harflerin birleştirilmiş halidir.
- Bir düğümden bir harf taşıyan sadece bir dal çıkabilir.
- Metin ağaçlarının en önemli avantajı, bir metni ararken metinin boyutu kadar işlem gerektirmesidir.
- Ağaçta ne kadar bilgi bulunduğunun önemi yoktur.
- Hafızayı verimli kullanırlar. Trie ağacının en derin noktası, ağaç üzerindeki en uzun metin kadardır.

String kümesinin TRIE üzerinde gösterilimi

{
aeef
ad
bbfe
bbfg
c

Sikiştirilmiş TRIE

Örnek: A, E, I, P, R harflerinden oluşan bir trie

Örnek: A, E, I, P, R harflerinden oluşan bir trie'ın binary tree olarak gösterimi P --- , 1 E / $A \rightarrow P /$ E I R E I P A $A \rightarrow E \rightarrow R/$ A EERIE E R A R A E R E PEER AREA

Suffix Tree

- > Suffix Tree (Sonek Ağacı) kelime işleme algoritmalarındandır
- > DNA dosyaları gigabyte seviyesinde yer kapladıklarından DNA analizinin elle yapılması mümkün değildir. Hatta, DNA dosyalarının bilgisayar yardımıyla işlenmesi de çok uzun sürmektedir.
- > Biyolojik veriler, arama motorları, derleyici tasarımı, işletim sistemi, veri tabanı, vs... kullanılır.

Suffix Trees

Substring bulma problemidir...

- Verilen text m uzunluğunda bir string (S)
- S için harcanan zaman O(m)
- Bulunması istenen string Q olup, n uzunluğunda olsun
- Q'nun S içerisinde aranması için harcanan zaman O(n)

Suffix Tree ler kullanılarak bu problemi çözebiliriz.

Suffix Tree'nin Tanımı

m uzunluğundaki bir 5 string için T suffix tree aşağıdaki özelliklere sahiptir:

- Köklü bir ağaçtır ve yönlüdür
- •1 ile m arasında etiketlenmiş m yaprağı vardır
- Ağaçtaki her bir dal S string nin bir alt stringini oluşturur
- Kökten, i. yaprağa kadar etiketlenmiş bir yol üzerindeki kenarlar birleştirilebilir
- Kök olmayan her ara düğümün en az 2 yaprağı vardır
- Bir düğümden çıkan kenarlar farklı karakterler ile başlar

S=abab

5 string'inin suffix tree'si, 5'nin bütün suffix'lerini sıkıştırılmış bir trie de tutsun. \$ sembolü ilgili suffix'in sonunu göstersin.

```
{
    $
    b$
    ab$
    bab$
    abab$
}
```


Suffix Tree'nin oluşturulması

En geniş suffix

bab\$ suffix'inin eklenmesi

ab\$ suffix'inin eklenmesi

b\$ suffix'inin eklenmesi

\$ suffix'in eklenmesi

Herbir yaprağı etiketleyerek nerden erişeceğimizi biliriz.

Longest Common Subsequence

A subsequence of a string S, is a set of characters that appear in left -to-right order, but not necessarily consecutively.

Example

ACTTGCG

- · ACT, ATTC, T, ACTTGC are all subsequences.
- TTA is not a subequence

A common subequence of two strings is a subsequence that appears in both strings. A longest common subequence is a common subsequence of maximal length.

Example

S1 = AAACCGTGAGTTATTCGTTCTAGAA S2 = CACCCCTAAGGTACCTTTGGTTC

S1 = AAACCGTGAGTTATTCGTTCTAGAA S2 = CACCCCTAAGGTACCTTTGGTTC

LCS is ACCTAGTACTTTG

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \text{ ,} \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \text{ ,} \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \text{ .} \end{cases}$$

```
LCS-Length(X,Y)
 1 m \leftarrow length[X]
 2 n \leftarrow length[Y]
 3 for i \leftarrow 1 to m
              do c[i,0] \leftarrow 0
     for j \leftarrow 0 to n
              do c[0,j] \leftarrow 0
      for i \leftarrow 1 to m
 8
              do for j \leftarrow 1 to n
 9
                          do if x_i = y_i
                                  then c[i, j] \leftarrow c[i - 1, j - 1] + 1
10
                                          b[i,j] \leftarrow "\"
11
                                  else if c[i-1, j] \ge c[i, j-1]
12
13
                                              then c[i,j] \leftarrow c[i-1,j]
                                                      b[i,j] \leftarrow "\uparrow"
14
                                              else c[i,j] \leftarrow c[i,j-1]
15
                                                      b[i,j] \leftarrow "\leftarrow"
16
17
      return c and b
```

 $X_{m=7} \rightarrow ACTTGCG$ $Y_{n=6} \rightarrow ATTCGG$

LCS→ ATTGG

			Α	Т	Т	С	G	G
		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
Α	1	0	1	1 🕳	1_	1_	1_	1_
С	2	0	1 🛊	1 🕇	1 1	2	2-	2 —
Т	3	0	1 1	2	2	2 1	2 🕇	2 1
Т	4	0	1 🛊	2	3	3←	3_	3_
G	5	0	1 🕇	2 🛊	3 🕇	3 🕇	4	4
С	6	0	1 🕇	2 🕇	3 🕇	4	41	4 🕇
G	7	0	1 1	2 🕇	3 1	4 1	5	5

Longest Common Substring (of two strings)

S₁ aab#

S₂ abab\$

Longest Common Suffix

$$LCSuff(S_{1..p}, T_{1..q}) = \begin{cases} LCSuff(S_{1..p-1}, T_{1..q-1}) + 1 & \text{if } S[p] = T[q] \\ 0 & \text{otherwise} \end{cases}$$

Örnek: "ABAB" ve "BABA"

		А	В	Α	В
	0	0	0	0	0
В	0	0	1	0	1
Α	0	1	0	2	0
В	0	0	2	0	3
Α	0	1	0	3	0

```
function LCSubstr(S[1..m], T[1..n])
L := array(1..m, 1..n)
z := 0
ret := { }
for i := 1..m
  for i := 1..n
     \mathbf{if} S[i] = T[i]
       if i = 1 or j = 1
          L[i,j] := 1
          else
            L[i,j] := L[i-1,j-1] + 1
          if L[i,j] > z
            z := L[i,j]
            ret := { }
         if L[i,j] = z
            ret := ret \cup \{S[i-z+1..z]\}
```

return ret

Dinamik Programlama kodu

Minimum Edit Distance

- Is the minimum number of editing operations needed to transform one into the other
 - Insertion
 - Deletion
 - Substitution
- Many applications in string comparison/alignment, e.g., spell checking, machine translation, bioinformatics, etc.

Minimum Edit Distance

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8

Minimum Edit Distance

One possible path

```
intention
— delete i
n tention
— substitute n by e
e tention
— substitute t by x
e x e n t i o n
— insert u
e x e n u t i o n
— substitute n by c
e x e c u t i o n
```

Defining Min Edit Distance

- For two strings S₁ of len n, S₂ of len m
 - distance(i,j) or D(i,j)
 - means the edit distance of S₁[1..i] and S₂[1..j]
 - i.e., the minimum number of edit operations need to transform the first i characters of S₁ into the first j characters of S₂
 - The edit distance of S₁, S₂ is D(n,m)
- We compute D(n,m) by computing D(i,j) for all i
 (0 ≤ i ≤ n) and j (0 ≤ j ≤ m)
- Note the index associated with the source/target string: first is source and second is the target

Defining Min Edit Distance

Base conditions:

$$- D(i,0) = i$$
 /* deletion cost*/
 $- D(0,j) = j$ /* insertion cost*/

Recurrence Relation:

$$-D(i,j) = \min \begin{cases} D(i-1,j) + 1 & /* \text{ cost for deletion*/} \\ D(i,j-1) + 1 & /* \text{ cost for insertion*/} \\ D(i-1,j-1) + \begin{bmatrix} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$
/* cost for substitution */

The Edit Distance Table

N	9									
О	8									
Ι	7									
T	6									
N	5									
E	4									
T	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	X	E	С	U	T	Ι	0	N

source

target

T N I #	3 2 1 0	1	2	3	4	5	6	7	8	9
N	2	1								
-	0000	1					di di			
T	3		-							
	2/901		I .							
E	4					U]	1	0, "	21(1) -	= S ₂ (j)
N	5				(D	(i-1,j-1) +	2; if	S ₁ (i)	≠ S ₂ (j)
T	6		D(<i>l,j</i>)	= mir	D	(i,j-1)	+ 1	72 U		8273W
I	7				(D	 (i-1,j)	+ 1			
O	8									

N	9									
О	8									
I	7									
T	6									
N	5									
E	4									
T	3									
inser	tion									
I	۲	2								
#	0	1 d	leleti	on	4	5	6	7	8	9
substit	ution	Е	X	E	C	U	T	I	0	N

N	9						j			
0	8									
I	7			į.	/Di	7-1-1	4.1	31	N.	3
T	6	35 - 3 30 - 3	D(<i>l,j</i>)	= mi	n D	(i-1,j) (i,j-1)	+ 1			85 2000 (2000
N	5				D	(i-1,j-1	.) +	2; if	S ₁ (i)	≠ S₂(j)¯
E	4			î		XX II	Î	10; 11	S ₁ (i) =	= S₂(j)-
Т	3	98 38								
N	2	48								
Ι	*	21	3							
#	0	1	2	3	4	5	6	7	8	9
	#	E	X	Е	С	U	T	I	0	N

N	9									
О	8									
Ι	7									
T	6									
N	5									
E	4									
T	3									
N	2									
Ι	Ł	7	7							
#		1	2	3	4	5	6	7	8	9
	#	E	X	E	C	U	T	Ι	0	N

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	00	9	10	9	8	9	10
T	6	5	6	7	8	9	8	9	10	11
N	5	4	5	б	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
T	3	4	5	б	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	б	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	X	E	C	U	T	Ι	0	N

MinEdit with Backtrace

n	9	↓ 8	1-19	/- <u> </u> 10	/-↓11	√ 12	111	110	19	/8
0	8	17	Z-18	1-19	/-↓10	Z-111	↓10	19	/8	-9
i	7	16	1-17	/ ←18	/-19	∠ -↓ 10	19	/8	9	- 10
t	6	15	1-16	1-17	/-↓8	1-19	/8	9	10	-111
n	5	14	1-15	1-16	1-17	1-18	1-19	/ 110	/← <u> </u> 11	/110
e	4	/3	-4	1-5	6	← 7	← ↓ 8	/-19	/⊷ 10	19
t	3	/ -↓4	1-15	1-16	√- <u>1</u> 7	/-18	17	-↓8	/-19	18
n	2	1-13	Z+14	1-15	1-16	1-17	1-18	17	1-18	17
i	1	/ -↓2	Z-13	1-14	/ −↓5	1-16	/←l7	16	←7	← 8
#	0	1	2	3	4	5	6	7	8	9
	#	e	x	e	c	u	t	i	0	n

MinEdit with Backtrace

n	9	+8	1-19	/ -↓10	/ ← 11	/- 12	111	10	19	/8	
0	8	17	1-18	1-19	/-↓10	/-↓11	↓ 10	19	18	⊢ 9	
i	7	16	1-17	1-18	/-19	/ ←1 10	19	/8	- 9	- 10	
t	6	1.5	1-16	1-17	/ \ 8	/-19	/8	- 9	+ 10	- 111	
n	5	14	1-15	1-16	1-17	1-18	/-19	/ 110	/- 11	/110	
e	4	/3	-4	/-5	- 6	sub - 7	-↓8	1-19	/ =↓10	19	
t	3	/-14	1-15	1-16	ins	/-18	17	-↓8	/ ←19	⊥8	
n	2	1-13	sub	1-15	1-10	Z-17	/-↓8	⊥7	1-18	17	
1	1	sub	1 10	Z+14	/-↓5	7-16	V-17	16		← 8	
# del	0	1	- 7	3	4	5	6	7	8	9	
	#	e	x	e	c	u	t	i	0	n	

Performance

- Time: O(nm)
- Space: O(nm)
- Backtrace: O(n+m)