white d).
$$2x^{2} + y^{2} \le 1$$
 $e y \ge 0$
 $0 \le y \le \sqrt{1 - 2x^{2}}$
 $f(x) = \sqrt{1 - 2x^{2}}$
Volume = $\pi \int_{0}^{b} f(x)^{2} dx = \pi \int_{-1/\sqrt{2}}^{1/\sqrt{2}} (1 - 2x^{2}) dx$
 $= \pi \left[x - \frac{2x^{3}}{3} \right]_{-1/\sqrt{2}}^{1/\sqrt{2}}$
 $= \frac{\sqrt{8}}{3} \pi$

Questão h)

(abaixo da neta e dento

$$V = \pi \int_0^1 x^2 dx + \pi \int_1^{\sqrt{2}} (2 - x^2) dx$$

$$=\frac{\pi}{3}+\pi\left(\frac{\sqrt{32}-5}{3}\right).$$

Lista 2.

$$V = 2\pi \int_a^b xy \, dx$$

$$0 \le y \le andg x$$

$$V = 2\pi \int_{0}^{1} x \operatorname{and} g x = 2\pi \left[\frac{x (x \operatorname{and} g x - 1) + \operatorname{and} g x}{2} \right]^{1}$$

$$= 2\pi \left[\frac{x (x \operatorname{and} g x - 1) + \operatorname{and} g x}{2} \right]^{1}$$

$$= 2\pi \left[\frac{x (x \operatorname{and} g x - 1) + \operatorname{and} g x}{2} \right]^{1}$$

$$= 2\pi \left[\frac{x (x \operatorname{and} g x - 1) + \operatorname{and} g x}{2} \right]^{1}$$

$$= 2\pi \left[\frac{x (x \operatorname{and} g x - 1) + \operatorname{and} g x}{2} \right]^{1}$$

$$(1h)$$
 $0 \le x \le 2$

$$V = 2\pi \int_{0}^{1} x^{2} \cdot x \, dx + 2\pi \int_{1}^{2} x^{2} \cdot x \, dx - 2\pi \int_{1}^{2} x \sqrt{x-1} \, dx$$

=
$$2\pi \int_{0}^{2} x^{3} dx - 2\pi \int_{1}^{2} x \sqrt{x-1} dx$$
 substituição

$$= 2\pi \cdot 4 + 2\pi \left(\frac{2(x-1)^{3/2}(3x+2)}{15}\right)_{1}^{2} = 8\pi + \frac{32\pi}{15}$$
$$= \frac{152\pi}{15}$$

$$y = \sqrt{x-2}$$

$$\frac{1}{2}$$

$$\frac{1}{6}$$

$$V = a \pi \int_{0}^{2} 2 \cdot x \, dx + 2 \pi \int_{2}^{6} 2 \cdot x \, dx - 2 \pi \int_{2}^{6} x \sqrt{x-2} \, dx$$

$$= 2 \pi \int_{0}^{6} 2 x \, dx - 2 \pi \int_{2}^{6} x \sqrt{x-2} \, dx \qquad \text{subst. } u = x-2$$

$$= 2 \pi \cdot 36 - 2 \pi \left[\frac{2(x-2)^{3/2} (3x+4)}{15} \right]_{2}^{6}$$

$$= 72 \pi - 2 \pi \cdot 352 = \frac{376 \pi}{15}$$

3c) O comprimento da curva y(+) é

comprime to da curia
$$\gamma(t)$$
 =
$$\begin{cases}
l(\gamma) = \int_0^T ||\gamma'(t)|| dt \\
= \int_0^T ||(\operatorname{sent}, 1 - \operatorname{cost})|| dt \\
= \int_0^T \sqrt{\operatorname{sen}^2 t} + (1 - \operatorname{cost})^2 dt \\
= \int_0^T \sqrt{\operatorname{sen}^2 t} + 1 - 2\operatorname{cost} + \operatorname{cos}^2 t dt
\end{cases}$$

$$= \int_0^T \sqrt{2 - 2\operatorname{cost}} dt \quad \text{use} \quad 1 - \operatorname{cosx} = 2\operatorname{sen}^2(\frac{x}{2})$$

$$= \left[-4\operatorname{cos}(\frac{t}{2}) \right]_0^T = 4 \quad \text{otherwise}$$

Lista 3

5h) As armos de nível de
$$f(x,y) = 3x^2 - 4xy + y^2$$
 são as hipérboles

$$3x^{2} - 4xy + y^{2} = c$$
 $c < 0$

Este é um exercício típico de G.A. e não cai na prova.

3h) O domínio de
$$f(x,y) = \frac{x-y}{\sin x - \sin y}$$
 e

R2- conjunto de netas.

Conjunto de retas =
$$\{(x,y): sen x = sen y\}$$

= $\{(x,y): sen x = sen y\}$
= $\{(x,y): y = x + 2\pi \cdot x \text{ on } y = (\frac{\pi}{2} - x) + 2\kappa \pi$

10 g) Considere a curva $\gamma: y-x^3=x^5$, que passa por (0,0).

f calaulada em y vale:

$$f(x,y) = \frac{\chi(\chi^5 + \chi^3)}{\chi^5} = \frac{\chi^1(\chi^2 + 1)}{\chi^5}$$

$$= \frac{\chi^2 + 1}{\chi} \longrightarrow \pm \infty \text{ quando } \chi \longrightarrow 0 \pm .$$

Conclusão: o limite não existe!

4m) Curvas de nível: $\frac{1}{\sqrt{1-x^2-y^2}} = c \implies \frac{1}{c^2} = 1-x^2-y^2$ $x^2+y^2=1-\frac{1}{c^2}$ círculos

$$z=\frac{1}{\sqrt{1-y^2}}$$

Gnafico

Domino: 1-1x1-1y1-12/≥0 1x1+1y1+12/≤1

Logo 1×1+1y1+1≥1≤1 é o odaecho

(1a)
$$f(\gamma(t)) = f(at, bt)$$

 $= \frac{aat \cdot b^2 t^2}{a^2 t^2 + b^4 t^4}$
 $= \frac{aab^2 t^3}{t^2(a^2 + b^2 t^2)} = \frac{1}{a^2 + b^2 t^2}$
 $\Rightarrow \lim_{t \to 0} f(\gamma(t)) = 0$

129)

- $f(x,y) = e^{-\frac{1}{x^2+y^2-1}} e^{-\frac{1}{x^2+y^2-$
- · f(x,y) = 0 e continua em D.
- Seja $(x_0, y_0) \in S$. Se $(x,y) \in D$ e $(x,y) \rightarrow (x_0, y_0)$ então $r = \sqrt{x_0^2 + y^2} \rightarrow 1 - .$

Analogamente, $(x,y) \in A \in (x,y) \rightarrow (x_0,y_0)$ $\implies r = \sqrt{x^2 + y^2} \rightarrow 1 + .$

Nos dois casos $Y^2-1 \rightarrow 0+$ ou $Y^2-1 \rightarrow 0-$. $\Rightarrow \frac{1}{Y^2-1} \rightarrow \pm \infty$

Oque nos interessa é $f(x,y) = \frac{1}{e^{-v^2-1}} \rightarrow e^{-\infty} = 0$ quando $(x,y) \in D$ e $(x,y) \rightarrow (x_0,y_0)$.

aproxime (xo, yo) aproxime de ZERO de ZERO

Conclusão: $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = 0 = f(x_0,y_0)$

. f é continua em todo R2

Lista 4.

$$7)$$
 $z=f(\rho\cos\theta,\rho\sin\theta)=e^{\rho^2}$

$$\frac{\partial z}{\partial p} = 2p e^{p^2} = 2p e^{x^2 + y^2}$$

$$x = \rho \cos \theta$$
 $y = \rho \sin \theta$

Como
$$x \cos \theta + y \sin \theta = \rho \cos^2 \theta + \rho \sin^2 \theta$$

= ρ

$$2\rho = 2x \cos\theta + 2y \sin\theta$$

$$\frac{\partial z}{\partial \rho} = e^{x^2 + y^2} (2x \cos \theta + 2y \sin \theta).$$

Sabemos que
$$\frac{\partial z}{\partial x} = e^{x^2 + y^2}$$
. $2x e \frac{\partial z}{\partial y} = e^{x^2 + y^2}$. $2y$.

$$\frac{\partial z}{\partial \rho} = \cos \theta \frac{\partial z}{\partial x} + \sin \theta \frac{\partial z}{\partial y}.$$