Lab 1: Data Pre-processing and Handling Missing Values

Problem Statement:

You are working with a dataset of customer details for a retail store, which includes information about their age, gender, income, and purchase history. However, some of the values in the dataset are missing or incorrect. The goal is to clean and pre-process the data to make it suitable for machine learning tasks.

Dataset:

The dataset contains the following columns:

- **CustomerID** (Categorical)
- **Age** (Numerical, with some missing values)
- **Gender** (Categorical)
- **AnnualIncome** (Numerical, with some extreme values)
- PurchaseAmount (Numerical, with some missing values)

Sample Data:

CustomerID	Age	Gender	AnnualIncome	PurchaseAmount
1	25	Male	50000	250
2	NaN	Female	75000	NaN
3	45	NaN	120000	500
4	22	Female	50000	100
5	NaN	Male	68000	NaN

- 1. Drop columns with more than **60% missing values** (if there is any).
- 2. Impute missing values in **numerical columns** using the **mean or median**.
- 3. Impute missing values in **categorical columns** using the **most frequent value** (mode).
- 4. Provide a **pre-processed dataset**.

Importing Necessary Libraries

Making DataFrame

	CustomerID	Age	Gender	AnnualIncome	PurchaseAmount
0	1	25.0	Male	50000	250.0
1	2	NaN	Female	75000	NaN
2	3	45.0	None	120000	500.0
3	4	22.0	Female	50000	100.0
4	5	NaN	Male	68000	NaN

Objective 1:

Objective 2:

	CustomerID	Age	Gender	AnnualIncome	PurchaseAmount
0	1	25.000000	Male	50000	250.000000
1	2	30.666667	Female	75000	283.333333
2	3	45.000000	None	120000	500.000000
3	4	22.000000	Female	50000	100.000000
4	5	30.666667	Male	68000	283.333333

Objective 3:

	CustomerID	Age	Gender	AnnualIncome	PurchaseAmount
0	1	25.000000	Male	50000	250.000000
1	2	30.666667	Female	75000	283.333333
2	3	45.000000	Female	120000	500.000000
3	4	22.000000	Female	50000	100.000000
4	5	30.666667	Male	68000	283.333333

Objective 4:

Label Encoding

Scaling

	CustomerID	Age	Gender	AnnualIncome	PurchaseAmount
0	0.00	0.130435	1	0.000000	0.375000
1	0.25	0.376812	0	0.357143	0.458333
2	0.50	1.000000	0	1.000000	1.000000
3	0.75	0.000000	0	0.000000	0.000000
4	1.00	0.376812	1	0.257143	0.458333

Lab 2: Feature Scaling and Normalization

Problem Statement:

You are working with a dataset related to house prices in different neighborhoods. The dataset contains a wide range of numerical variables such as the number of bedrooms, area in square feet, and the price of the house. You need to scale the data for machine learning purposes, as different features have different ranges.

Dataset:

The dataset contains the following columns: - **HouseID** (Categorical) - **Bedrooms** (Numerical) - **AreaSqFt** (Numerical) - **Price** (Numerical)

Sample Data:

HouseID	Bedrooms	AreaSqFt	Price
1	3	1500	300000
2	2	800	150000
3	4	2500	500000
4	3	1800	350000
5	1	600	120000

- 1. Apply Min-Max Scaling to normalize the values of AreaSqFt and Price.
- 2. Apply **Standardization (Z-score)** on the **Bedrooms** column.
- 3. Analyse the impact of scaling on the dataset (Using **Matplotlib**).

Importing Necessary Libraries

Making DataFrame

	HouseID	Bedrooms	AreaSqFt	Price
0	1	3	1500	300000
1	2	2	800	150000
2	3	4	2500	500000
3	4	3	1800	350000
4	5	1	600	120000

	HouseID	Bedrooms	AreaSqFt	Price
0	1	3	0.473684	0.473684
1	2	2	0.105263	0.078947
2	3	4	1.000000	1.000000
3	4	3	0.631579	0.605263
4	5	1	0.000000	0.000000

	HouselD	Bedrooms	AreaSqFt	Price
0	1	0.392232	0.473684	0.473684
1	2	-0.588348	0.105263	0.078947
2	3	1.372813	1.000000	1.000000
3	4	0.392232	0.631579	0.605263
4	5	-1.568929	0.000000	0.000000

Lab 3: Confusion Matrix for Classification Problem

Problem Statement:

You are given a dataset of student exam results, where students have been classified as either "Pass" or "Fail" based on certain criteria. You have built a classification model to predict whether a student will pass or fail, and now you need to evaluate the model's performance using a confusion matrix and other metrics.

Dataset:

The dataset contains the following columns: - **StudentID** (Categorical) - **ActualResult** (Categorical - Pass/Fail) - **PredictedResult** (Categorical - Pass/Fail)

StudentID	ActualResult	PredictedResult
1	Pass	Pass
2	Fail	Pass
3	Pass	Pass
4	Fail	Fail
5	Pass	Fail

- 1. Construct a confusion matrix based on the ActualResult and PredictedResult columns.
- 2. Calculate the following evaluation metrics:
 - Accuracy
 - Precision
 - Recall
 - F1-Score
- 3. Analyze the performance of the model using the **ROC-AUC curve**.

Importing Necessary Libraries

Making DataFrame

	StudentID	ActualResult	PredictedResult
0	1	Pass	Pass
1	2	Fail	Pass
2	3	Pass	Pass
3	4	Fail	Fail
4	5	Pass	Fail

	StudentID	ActualResult	PredictedResult
0	1	1	1
1	2	0	1
2	3	1	1
3	4	0	0
4	5	1	0

Evaluation Metrics:

Accuracy: 0.60 Precision: 0.67

Recall: 0.67 F1-Score: 0.67

Lab 4: Converting Categorical Data to Numerical Using One-Hot Encoding and Label Encoding

Problem Statement:

A retail company is analyzing the purchasing behavior of their customers using a dataset. Some features are categorical and need to be converted into numerical values to facilitate further analysis. In this task, you will convert the categorical features into numerical values using different encoding techniques.

Dataset:

The dataset contains the following columns: - **CustomerID**: Unique identifier for each customer. - **Gender**: Gender of the customer (Male, Female). - **Age**: Age of the customer. - **City**: The city where the customer lives (New York, Los Angeles, Chicago). - **Product**: The product purchased by the customer (A, B, C). - **PurchaseAmount**: The amount of money spent by the customer.

CustomerID	Gender	Age	City	Product	PurchaseAmount
1	Male	25	New York	Α	100
2	Female	30	Los Angeles	В	200
3	Male	35	Chicago	С	150
4	Female	28	New York	Α	120
5	Male	40	Los Angeles	В	250

Objectives:

- 1. **Identify categorical variables** in the dataset.
- 2. Apply **One-Hot Encoding** to the columns **City** and **Product** to convert them into numerical form.
- 3. Apply **Label Encoding** to the column **Gender** to convert it into numerical form.

Importing Necessary Libraries

Making DataFrame

	CustomerID	Gender	Age	City	Product	PurchaseAmount
0	1	Male	25	New York	А	100
1	2	Female	30	Los Angeles	В	200
2	3	Male	35	Chicago	С	150
3	4	Female	28	New York	А	120
4	5	Male	40	Los Angeles	В	250

	CustomerID	Gender	Age	PurchaseAmount	City_Chicago	City_Los Angeles	City_New York	Product_A	Product_B	Product_C
0	1	Male	25	100	0	0	1	1	0	0
1	2	Female	30	200	0	1	0	0	1	0
2	3	Male	35	150	1	0	0	0	0	1
3	4	Female	28	120	0	0	1	1	0	0
4	5	Male	40	250	0	1	0	0	1	0

	CustomerID	Gender	Age	PurchaseAmount	City_Chicago	City_Los Angeles	City_New York	Product_A	Product_B	Product_C
0	1	1	25	100	0	0	1	1	0	0
1	2	0	30	200	0	1	0	0	1	0
2	3	1	35	150	1	0	0	0	0	1
3	4	0	28	120	0	0	1	1	0	0
4	5	1	40	250	0	1	0	0	1	0

Lab 5: Predicting Diabetes Using Classification Models

Problem Statement:

You are tasked with predicting whether a patient is likely to be diagnosed with diabetes based on certain diagnostic features like pregnancies, BMI, insulin levels, age, etc. The goal is to preprocess the data, handle missing values, and train classification models to compare their performance.

Objectives:

1. Data Preprocessing:

- Handle missing values in the dataset.
- Scale the numerical features (e.g., BMI, age, insulin levels).
- Perform a train-test split (70% training, 30% testing).

2. Modeling:

- Train and evaluate the following classification models:
 - Decision Tree Classifier
 - Random Forest Classifier

3. **Evaluation**:

- Use the following metrics to evaluate model performance:
 - Accuracy
 - Precision
 - Recall
 - F1-score
 - Confusion Matrix
- Compare the performance of each model.
- Provide insights into which model performs better and explain why.

Dataset:

- **Dataset Name**: Pima Indians Diabetes Database
- Link: Kaggle Pima Indians Diabetes Database

Importing Necessary Libraries and Reading CSV File

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\bf Diabetes Pedigree Function}$	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Objective 1

Handling Missing Values

Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0
Outcome	0
dtype: int64	

Scaling

	Pregnancies	Glucose	${\sf BloodPressure}$	SkinThickness	Insulin	BMI	${\bf Diabetes Pedigree Function}$	Age	Outcome
0	0.639947	0.848324	0.149641	0.907270	-0.692891	0.204013	0.468492	1.425995	1
1	-0.844885	-1.123396	-0.160546	0.530902	-0.692891	-0.684422	-0.365061	-0.190672	0
2	1.233880	1.943724	-0.263941	-1.288212	-0.692891	-1.103255	0.604397	-0.105584	1
3	-0.844885	-0.998208	-0.160546	0.154533	0.123302	-0.494043	-0.920763	-1.041549	0
4	-1.141852	0.504055	-1.504687	0.907270	0.765836	1.409746	5.484909	-0.020496	1

Train-Test Split

Decision Tree Classifier

Random Forest Classifier

Evaluation of Decision Tree
Accuracy Score is: 0.7619047619047619
Precision Score is: 0.703125
Recall Score is: 0.5555555555556
F1 Score is: 0.6206896551724138
Confusion Matrix:
[[131 19]
[36 45]]

Evaluation of Random Forest

Accuracy Score is: 0.7532467532467533

Precision Score is: 0.6875

Recall Score is: 0.5432098765432098 F1 Score is: 0.6068965517241379

Confusion Matrix:

[[130 20] [37 44]]

Lab Question 7: Predicting Customer Churn Using Classification Models

Problem Statement:

A telecommunications company wants to predict customer churn (whether a customer will leave the company). The dataset contains various customer information, including contract type, monthly charges, tenure, etc. Your task is to pre-process the data and train multiple classification models to predict customer churn.

Objectives:

1. Data Preprocessing:

- Handle missing values.
- Convert categorical features (e.g., contract type) into numeric using encoding techniques.
- Normalize or scale the numerical features.
- Perform train-test split (75% training, 25% testing).

2. **Modeling:**

- Train and evaluate the following models:
 - Naive Bayes
 - Support Vector Machine (SVM)

3. **Evaluation**:

- Use accuracy, precision, recall, F1-score, ROC-AUC, and confusion matrix for model evaluation.
- Compare model performance and justify which model performs best for predicting churn.

Dataset:

- Dataset Name: Telco Customer Churn
- Kaggle Link: https://www.kaggle.com/datasets/blastchar/telco-customerchurn

Importing Necessary Libraries and Reading CSV File

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSupport
0	Female	0	Yes	No	1	No	No phone service	DSL	No	Yes	No	No
1	Male	0	No	No	34	Yes	No	DSL	Yes	No	Yes	No
2	Male	0	No	No	2	Yes	No	DSL	Yes	Yes	No	No
3	Male	0	No	No	45	No	No phone service	DSL	Yes	No	Yes	Yes
4	Female	0	No	No	2	Yes	No	Fiber optic	No	No	No	No

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 20 columns):

Data	Cotamins (cotat 20	cocamins).	
#	Column	Non-Null Count	Dtype
0	gender	7043 non-null	object
1	SeniorCitizen	7043 non-null	int64
2	Partner	7043 non-null	object
3	Dependents	7043 non-null	object
4	tenure	7043 non-null	int64
5	PhoneService	7043 non-null	object
6	MultipleLines	7043 non-null	object
7	InternetService	7043 non-null	object
8	OnlineSecurity	7043 non-null	object
9	OnlineBackup	7043 non-null	object
10	DeviceProtection	7043 non-null	object
11	TechSupport	7043 non-null	object
12	StreamingTV	7043 non-null	object
13	StreamingMovies	7043 non-null	object
14	Contract	7043 non-null	object
15	PaperlessBilling	7043 non-null	object
16	PaymentMethod	7043 non-null	object
17	MonthlyCharges	7043 non-null	float64
18	TotalCharges	7043 non-null	object
19	Churn	7043 non-null	object
مان بطام	Cl+CU(1)	+CU(2) - + + - + (1)	7)

dtypes: float64(1), int64(2), object(17)

memory usage: 1.1+ MB

Objective 1

Handling Missing Values

gender	Θ
SeniorCitizen	Θ
Partner	Θ
Dependents	Θ
tenure	Θ
PhoneService	Θ
MultipleLines	Θ
InternetService	Θ
OnlineSecurity	Θ
OnlineBackup	Θ
DeviceProtection	Θ
TechSupport	Θ
StreamingTV	Θ
StreamingMovies	Θ
Contract	Θ
PaperlessBilling	Θ
PaymentMethod	Θ
MonthlyCharges	Θ
TotalCharges	11
Churn	Θ
dtype: int64	

gender 0
SeniorCitizen 0
Partner 0
Dependents 0
tenure 0
PhoneService 0
MultipleLines 0
InternetService 0
OnlineSecurity 0
OnlineBackup 0
DeviceProtection 0
TechSupport 0
StreamingTV 0
StreamingTV 0
StreamingMovies 0
Contract 0
PaperlessBilling 0
PaymentMethod 0
MonthlyCharges 0
TotalCharges 0
Churn 0
dtype: int64

Encoding

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSupport
0	0	0	1	0	1	0	No phone service	DSL	No	Yes	No	No
1	1	0	0	0	34	1	No	DSL	Yes	No	Yes	No
2	1	0	0	0	2	1	No	DSL	Yes	Yes	No	No
3	1	0	0	0	45	0	No phone service	DSL	Yes	No	Yes	Yes
4	0	0	0	0	2	1	No	Fiber optic	No	No	No	No

One-Hot Encoding

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	PaperlessBilling	MonthlyCharges	TotalCharges	Churn	 StreamingMovies_No
0	0	0	1	0	1	0	1	29	29	0	 1
1	1	0	0	0	34	1	0	56	1889	0	 1
2	1	0	0	0	2	1	1	53	108	1	 1
3	1	0	0	0	45	0	0	42	1840	0	 1
4	0	0	0	0	2	1	1	70	151	1	 1

5 rows × 41 columns

Scaling

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	PaperlessBilling	MonthlyCharges	TotalCharges	Churn	StreamingMovies_No
0	0	0.0	1	0	0.000000	0	1	0.11	0.001269	0	1
1	1	0.0	0	0	0.464789	1	0	0.38	0.215901	0	1
2	1	0.0	0	0	0.014085	1	1	0.35	0.010385	1	1
3	1	0.0	0	0	0.619718	0	0	0.24	0.210247	0	1
4	0	0.0	0	0	0.014085	1	1	0.52	0.015347	1	1

5 rows × 41 columns

Train-Test Split

Objective 2

Naïve Baye's

Evaluation of Naive Bayes

Accuracy Score is: 0.6814562002275313 Precision Score is: 0.44733861834654587

Recall Score is: 0.8458244111349036

F1 Score is: 0.5851851851851

Confusion Matrix:

[[803 488] [72 395]]

Evaluation of SVM

Accuracy Score is: 0.7986348122866894 Precision Score is: 0.6388206388206388

Recall Score is: 0.556745182012848 F1 Score is: 0.5949656750572082

Confusion Matrix:

[[1144 147] [207 260]]

Lab Question 8: Predicting Wine Quality Using Regression and Classification Models

Problem Statement:

You are working with a wine company that wants to predict the quality of wine based on various chemical properties such as acidity, alcohol content, sugar level, etc. The dataset contains numerical data on different types of wine and their associated quality rating (ranging from 0 to 10). Your task is to apply both regression and classification techniques to model the wine quality.

Objectives:

1. Data Preprocessing:

- Handle missing values and outliers.
- Scale or normalize the numerical features.
- Split the dataset into training and testing sets (80% training, 20% testing).

2. Modeling:

- Apply the following models for classification (quality as a categorical label):
 - Decision Tree Classifier
 - Random Forest Classifier
- Apply the following models for regression (quality as a continuous label):
 - Decision Tree Regressor
 - Random Forest Regressor

3. **Evaluation**:

- For classification models, use accuracy, precision, recall, F1-score, and confusion matrix.
- For regression models, use Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared.
- Compare the performance of both types of models and explain which approach (classification or regression) better suits this problem.

Dataset:

- **Dataset Name:** Wine Quality Dataset
- **Kaggle Link:** https://www.kaggle.com/datasets/yasserh/wine-quality-dataset

Importing Necessary Libraries and Reading CSV File

Objective 1

Handling Null Values

fixed acidity	0				
volatile acidity					
citric acid	0				
residual sugar	0				
chlorides	0				
free sulfur dioxide	0				
total sulfur dioxide	0				
density	0				
рН	0				
sulphates	0				
alcohol	0				
quality	0				
dtype: int64					

Normalizing the Data

Train-Test Split

Classifier
Decision Tree Classifier
Random Forest Classifier
Nandom Forest classifici
_
Regressor
Decision Tree Regressor
Random Forest Regressor

Classifier

Decision Tree Classifier

Accuracy Score is: 0.5414847161572053
Precision Score is: 0.2942964872088583
Recall Score is: 0.31363312613312616

F1 Score is: 0.3022829060289604

Confusion Matrix is:

[[0 0 0 0 0 0]

[0 1 2 2 1 0]

[1 4 60 30 1 0]

[1 3 35 47 13 0]

[0 0 0 10 16 0]

[000110]]

Random Forest Classifier

Accuracy Score is: 0.5545851528384279
Precision Score is: 0.3556998016143444
Recall Score is: 0.40028085340585345

F1 Score is: 0.3721111440710279

Confusion Matrix is:

[[0 0 0 0 0 0]]

[1 1 2 1 1 0]

[2 7 59 26 2 0]

[1 2 31 50 13 2]

[0 0 0 10 16 0]

[0 0 0 0 1 1]]

Regressor

Decision Tree Regressor

Mean Squared Error is: 0.5982532751091703

Root Mean Squared Error is: 0.7734683413748557

R2 Score is: -0.07508052909327612

Random Forest Regressor

Mean Squared Error is: 0.30738558951965067

Root Mean Squared Error is: 0.5544236552670265

R2 Score is: 0.4476181310396823