Chinese Remainder Theorem

THE CHINESE REMAINDER THEOREM Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1},$$

$$x \equiv a_2 \pmod{m_2},$$

$$\vdots$$

$$x \equiv a_n \pmod{m_n}$$

$$x \equiv a_n \pmod{m_n}$$

$$x \neq a_n \pmod{m_n}$$

has a unique solution modulo $m = m_1 m_2 \cdots m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

Methodology

(i) Find
$$m = m_1 m_2 ... m_k$$

(ii) Find
$$M_k = \frac{m}{m_k}$$

(iii) Find inverse of
$$M_k \mod ulo \ m_k = y_k$$

(iv)
$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_k M_k y_k$$
 is a solution of $x = a_k \pmod{m_k}$

O22. Solve
$$(i) x \equiv 2 \pmod{3}$$
 $m_1 = 3$ $m_2 = 5$ $m_3 = 7$ $m_3 = 3 \pmod{5}$ $m_1 = 3 \pmod{5}$ $m_2 = 3 \pmod{5}$ $m_3 = 3 \pmod{5}$ $m_1 = 3 \pmod{5}$ $m_2 = 3 \pmod{5}$ $m_3 = 3 \pmod{5}$ $m_1 = 3 \pmod{5}$ $m_2 = 3 \pmod{5}$ $m_1 = 3 \pmod{5}$ $m_2 = 3 \pmod{5}$ $m_3 = 3 \pmod{5}$ $m_1 = 3 \pmod{5}$ $m_2 = 3 \pmod{5}$ $m_3 = 3 \pmod{5}$ $m_1 = 3 \pmod{5}$ $m_2 = 3 \pmod{5}$ $m_3 = 3 \pmod{5}$ $m_4 =$

$$y_{1} = 2$$

$$y_{2} = 1$$

$$y_{3} = 2$$

$$y_{3} = 3$$

$$y_{4} = 3$$

$$y_{5} = 60$$

$$y_{1} = 3$$

$$y_{2} = 3$$

$$y_{3} = 3$$

$$y_{1} = 3$$

$$y_{2} = 3$$

$$y_{3} = 3$$

$$y_{3} = 3$$

$$y_{1} = 3$$

$$y_{2} = 3$$

$$y_{3} = 3$$

$$y_{3} = 3$$

$$y_{2} = 3$$

$$y_{3} = 3$$

$$y_{4} = 3$$

$$y_{5} = 3$$

$$y_{5} = 3$$

$$y_{6} = 12$$

$$y_{7} = 3$$

$$y_$$

$$x \equiv 16 \pmod{21}$$

$$\chi \equiv 1 \mod 3$$

$$\chi \equiv 1 \mod 3$$

$$\chi = V \pmod{2}$$
, $\chi = 0 \pmod{3}$
 $\chi = V \pmod{3}$

Theorem 12:

FERMAT'S LITTLE THEOREM If p is prime and a is an integer not divisible by p, then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Furthermore, for every integer a we have

$$a^p \equiv a \pmod{p}$$
.

$$(7^{12})^{10} \equiv (1)^{10} \mod 13$$

$$7^{120} \equiv 1 \mod 13$$

$$7^{121} \equiv 7 \mod 13$$

- a) Use Fermat's little theorem to compute 5²⁰⁰³ mod 7, 5²⁰⁰³ mod 11, and 5²⁰⁰³ mod 13.
- b) Use your results from part (a) and the Chinese remainder theorem to find 5²⁰⁰³ mod 1001. (Note that $1001 = 7 \cdot 11 \cdot 13$.)

$$mod 7$$
, $5 \equiv 1 \mod 7$, $5^{1998} \equiv 1 \mod 7$

$$A_1 = 3$$
 $A_2 = 4$ $A_3 = 13$ $A_3 = 13$ $A_4 = 100$ $A_5 = 100$ $A_5 = 100$ $A_6 = 100$