Ch-04 概率极限定理

4.1 随机序列的收敛性

定理 1.1 称 ξ_1, ξ_2, \cdots 依概率收敛于 η , 若对任何 $\epsilon > 0$, 成立

$$\lim_{n \to \infty} P(|\xi_n - \eta| \ge \epsilon) = 0$$

记做 $\xi_n \stackrel{P}{\to} \eta$.

定义 1.2 称 ξ_1, ξ_2, \cdots 几乎必然收敛于 η ,若

$$P(\lim_{n \to \infty} \xi_n = \eta) = 1$$

记做 $\xi_n \stackrel{a.s.}{\to} \eta$.

定义 1.3 称 ξ_1, ξ_2, \cdots 依分布收敛于 η , 若对 η 的分布函数 F(x) 的任何连续点 x,皆成立

$$\lim_{n\to\infty}P(\xi_n\leq x)=P(\eta\leq x)$$

记做 $\xi_n \stackrel{d}{\to} \eta$.

定理 **1.1** 设 $\xi_n \stackrel{a.s.}{\to} \eta$,则 $\xi_n \stackrel{P}{\to} \eta$.

定理 **1.2** 设 $\xi_n \stackrel{P}{\rightarrow} \eta$,则 $\xi_n \stackrel{w}{\rightarrow} \eta$.

定义 1.4 设 X_1, X_2, \cdots 是随机变量序列, $E(X_n)$ 均存在 $(n \ge 1)$,若

$$\xi_n riangleq rac{1}{n} \sum_{k=1} (X_k - E(X_k)) \stackrel{P}{ o} 0 \quad (n o \infty)$$

则称 X_1, X_2, \cdots 服从弱大数律。

定义 1.5 设 X_1, X_2, \cdots 是随机变量序列, $E(X_n)$ 均存在 $(n \ge 1)$,若 $n \to \infty$ 时,

$$\xi_n riangleq rac{1}{n} \sum_{k=1}^n (X_k - E(X_k)) \stackrel{a.s.}{ o} 0$$

则称 X_1, X_2, \cdots 服从强大数律。

定义 1.6 设 X_1, X_2, \cdots 是随机变量列, $E(X_n)$ 和 $var(X_n)$ 都存在 $(n \ge 1)$,若 $n \to \infty$ 时,

$$egin{aligned} \xi_n & riangleq rac{\displaystyle\sum_{k=1}^n (X_k - E(X_k))}{\sqrt{var(\displaystyle\sum_{k=1}^n X_k)}} & riangleq \xi \sim N(0,1) \end{aligned}$$

则称 X_1, X_2, \cdots 服从中心极限定理。

定义 **1.7** 称 X_1, X_2, \cdots 是相互独立的随机变量序列,若对任何 $n \geq 2$, X_1, \cdots, X_n 是相互独立的。

4.2 大数律和强大数律

定理 2.1 弱大数律 WLLN 设 X_1, X_2, \cdots 是相互独立的随机变量序列, $E(X_i) = \mu_i$, $var(X_i) = \sigma_i^2 \ (i \geq 1)$ 且 $\{\sigma_i^2, i \geq 1\}$ 有界,设 $S_n = \sum_{i=1}^n X_i \ (n \geq 1)$,则

$$rac{S_n - E(S_n)}{n} \stackrel{P}{ o} 0 \quad (n o \infty)$$

定理 2.2 强大数律 SLLN 设 X_1, X_2, \cdots 是相互独立的随机变量序列, $E(X_i) = \mu$, $E(X_i - \mu_i)^4 \leq M \text{ (对一切 } i \geq 1; \ M \text{ 是一个常数)} \text{ , } S_n = \sum_{i=1}^n X_i \text{ } (n \geq 1), \text{ 则当 } n \to \infty$ 时,

$$\frac{S_n - E(S_n)}{n} \stackrel{a.s.}{\to} 0$$

4.3 中心极限定理

定理 **3.1** 林德伯格-列维 CLT 设 X_1, X_2, \cdots 是相互独立同分布的随机变量序列, $\mu = E(X_1)$ 和 $\sigma^2 = var(X_1)$ 都存在且 $\sigma > 0$, $S_n = \sum_{i=1}^n X_i \ (n \geq 1)$,则对一切 x 成立:

$$\lim_{n o\infty} P(rac{S_n-n\mu}{\sqrt{n}\sigma}\leq x) = \int_{-\infty}^x rac{1}{\sqrt{2\pi}} e^{-rac{u^2}{2}} \,\mathrm{d}u$$

中心极限定理 CLT 设 X_1,X_2,\cdots 满足 \forall n, $0< var(X_n)<\infty$, $S_n=\sum_{i=1}^n X_i$ $(n\geq 1)$, 若

$$S_n^* = rac{S_n - E(S_n)}{\sqrt{var(S_n)}} \stackrel{d}{
ightarrow} Z \sim N(0,1)$$

则称 X_1, X_2, \cdots 满足中心极限定理。