

Online Semi-Supervised Learning in Contextual Bandits with Episodic Reward

Baihan Lin
Columbia University

baihan.lin@columbia.edu

Online Learning in Real World

Rewards usually come in episodes...

In scenarios like

- Inactivity in Rec Sys
- Personalized medicine
- Intelligent systems
- Ads in on/off seasons

Contextual Bandits with Episodic Reward

Algorithm 1 Online Learning with Episodic Reward

```
1: for t = 1, 2, 3, \dots, T do
```

- 2: $(\mathbf{x}(t), \mathbf{r}(t))$ is drawn according to $\mathbb{P}_{x,r}$
- 3: Context $\mathbf{x}(t)$ is revealed to the player
- 4: Player chooses an action $a_t = \pi_t(\mathbf{x}(t))$
- 5: Feedback $r_{a_t,t}(t)$ for only chosen arms are episodically revealed
- 6: Player updates its policy π_t
- 7: end for

given by a probability p_r∈ [0, 1]

Semi-Supervised Solution

We proposed Background Episodically Rewarded LinUCB (*BerlinUCB*)

In episodes where there is no feedbacks, we use two strategies

- Only update covariance matrices
- Create pseudo-rewards with self-supervision

Self-supervision modules via clustering

- Gaussian mixture model (GMM)
- K-means
- K nearest neighbors (KNN)

Algorithm 2 BerlinUCB

```
1: Initialize c_t \in \mathbb{R}_+, \mathbf{A}_a \leftarrow \mathbf{I}_d, \mathbf{b}_a \leftarrow \mathbf{0}_{d \times 1} \forall a \in \mathcal{A}_t
  2: for t = 1, 2, 3, \dots, T do
            Observe features \mathbf{x}_t \in \mathbb{R}^d
            for all a \in \mathcal{A}_t do
                 \hat{\theta}_a \leftarrow \mathbf{A}_a^{-1} \mathbf{b}_a
               p_{t,a} \leftarrow \hat{	heta}_a^{	op} \mathbf{x}_t + c_t \sqrt{\mathbf{x}_t^{	op} \mathbf{A}_a^{-1} \mathbf{x}_t}
            end for
            Choose arm a_t = \arg \max_{a \in \mathcal{A}_t} p_{t,a}
            if the background revealed the feedbacks then
                 Observe feedback r_{a_{t},t}
10:
                 \mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_t \mathbf{x}_t^{\top}
11:
12:
                 \mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_{a_t,t} \mathbf{x}_t
            elif the background revealed NO feedbacks then
13:
                 if use self-supervision feedback
14:
                      r' = [a_t == \operatorname{predict}(\mathbf{x}_t)]
15:
                     \mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r' \mathbf{x}_t
16:
17:
                      \mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_t \mathbf{x}_t^{\top}
18:
                 end if
19:
            end if
21: end for
```

Empirical Evaluations

Evaluate performance in online classification task with bandit feedback

Datasets

- MNIST
- Warfarin

Nonstationary Environments

- Nonstationary Context: varying cluster distribution
- Nonstationary Context: negative images
- Nonstationary Reward: shuffled class labels
- Nonstationary Reward: Multi-Task Environment
- Nonstationary Oracle: Fixed vs. Extendable Arms
- Nonstationary Oracle: Varying Episodic Rewards

Results

Table 1: Accuracy: Stationary contexts with different probabilities of reward revealing

	MNIST (varying p_r)		MNIST	$(p_r = 0.5)$	MNIST	$(p_r = 0.1)$	MNIST (p_r =0.01)		
	fixed arms	extendable	fixed arms	extendable	fixed arms	extendable	fixed arms	extendable	
LinUCB	0.1134	0.094	0.1080	0.0962	0.0842	0.0762	0.0252	0.0902	
BerlinUCB	0.1138	0.0990	0.1102	0.0990	0.1016	0.0926	0.0788	0.0896	
B-Kmeans	0.2594	0.2130	0.2674	0.2678	0.3132	0.2760	0.1400	0.0828	
B-KNN	0.2642	0.2398	0.2722	0.2642	0.2954	0.2622	0.1384	0.0938	
B-GMM	0.0958	0.0768	0.1060	0.0728	0.0958	0.0320	0.1034	0.0120	

Table 2: Accuracy: Nonstationary cases with different probabilities of reward revealing

	MNIST - varying clusters					MNIST - negative images					ges	MNIST - shuffled rewards						
Fixed Arms	$p_r = 0.5$ $p_r = 0.1$		=0.1	$p_r = 0.01$ $p_r = 0.5$		=0.5	$p_r=0.1$		p_r	p_r =0.01		$p_r = 0.5$		$\rho_r = 0.1$	p_r =0.	.01		
LinUCB	0.1	086	0.0984		0.0	0690 0.1044		1044	0.0920		0.	0.0732		0.1172		0.0832	0.051	2
BerlinUCB	0.10	1024 0.1002		002	0.0	0.1016		1016	0.0970		0.	1016	0.	1120	0	0.0966	0.083	2
B-Kmeans	0.09	0.0952 0.1096		0.1	.1074 0.1082		0.1036 0.0		0768	0.	2776	0	0.2878	0.161	8			
B-KNN	0.09	984	0.1002		0.	1050	0.1762		0.1732		0.	1016	0.	2600	0	0.3162	0.155	6
B-GMM	0.10	0.1072 0.0974		974	0.1034 0.0954		0954	0.1074 0.1 0		1018	0.	1158	0	0.1172	0.106	2		
,	MNIST - varying clusters			usters	MNIST - negative images					MNIST - shuffled rewards								
Extendable A	rms	$p_r = 0.5$		$p_r = 0.1$		$p_r = 0.01$	Ì	p_r =0.5	$\mid p_i$	r = 0.1		p_r =0.01		$p_r = 0.5$		$p_r = 0.1$	$p_r=0$.01
LinUCB		0.0994		0.0930		0.0866		0.0888	0.	.0918		0.1014		0.1010	7	0.0872	0.101	4
BerlinUCB		0.0930		0.0946		0.0938		0.0924	0.	.0930		0.0910		0.0994		0.0926	0.091	8
B-Kmeans		0.1010		0.0990		0.0380		0.0910	0.	.0712		0.0308		0.2478	1	0.2336	0.065	54
B-KNN		0.0958		0.0970		0.0570		0.1780	0.	1228		0.0460		0.2606	1	0.2818	0.101	16
B-GMM		0.0756		0.0296		0.0108		0.0680	0.	.0338		0.0118		0.0720	1	0.0258	0.018	30

Results

Table 3: Accuracy: Nonstationary contexts with varying episodic rewards

		varying clus	ter distribution	ı		average			
	MNIST-F	MNIST-E	Warfarin-F	Warfarin-E	MNIST-F	MNIST-E	Warfarin-F	Warfarin-E	
LinUCB	0.1016	0.0946	0.4580	0.4646	0.0956	0.0912	0.4440	0.4374	0.2734
BerlinUCB	0.0986	0.0948	0.4814	0.4480	0.0988	0.0926	0.3980	0.3898	0.2628
B-Kmeans	0.1012	0.0944	0.3964	0.2898	0.1048	0.0854	0.3200	0.1758	0.1960
B-KNN	0.1012	0.0946	0.4638	0.4134	0.1626	0.1576	0.4188	0.3998	0.2765
B-GMM	0.1010	0.0684	0.5494	0.2208	0.0926	0.0694	0.3992	0.2002	0.2126

Table 4: Accuracy: Nonstationary rewards with varying episodic rewards

		shuffled	class labels		multi-tas	average	
	MNIST-F	ST-F MNIST-E Warfarin-F Warfarin-E		MNIST/Warfarin-F			
LinUCB	0.1080	0.0974	0.6464	0.6348	0.3496	0.3442	0.3634
BerlinUCB	0.1126	0.1036	0.6116	0.6080	0.3136	0.3071	0.3428
B-Kmeans	0.2376	0.2566	0.5262	0.5152	0.3801	0.3690	0.3808
B-KNN	0.2574	0.2582	0.6278	0.6026	0.3833	0.4041	0.4222
B-GMM	0.0958	0.0664	0.5488	0.4038	0.2052	0.2375	0.2596

Application: Online Speaker Recognition

An interactive speaker recognition system learns through the user's feedback on whether the system is correct or not. However, this reward is very sporadic as user don't monitor 24/7.

Evaluation on MiniVox benchmark:

Figure 2: Cumulative rewards in MiniVox. (a) p_r =0.1; (b) p_r =0.01; (c) p_r =0.001.

An extended version of this application can be found at:

- Lin & Zhang, "VoiceID on the fly: A Speaker Recognition System that Learns from Scratch" INTERSPEECH 2020 (demo)
- Lin & Zhang, "Speaker Diarization as a Fully Online Learning Problem in MiniVox" under review in ICASSP 2021 (arXiv:2006.04376)

Conclusion

A novel problem setting from practical online learning applications

Contextual Bandits with Episodic Reward

A novel solution introducing self-supervision for semi-supervision

Background Episodically Rewarded LinUCB (BerlinUCB)

A novel nonstationary benchmark

• Six synthetic nonstationary settings on context, reward and oracle.

Ongoing Directions

- Improve self-supervision with graph-based methods
- Incorporate online clustering together with the online learning problem
- Theoretical work
- More applications

Several empirical observations

- Updating the representation structure when no reward is revealed improves performance of contextual bandits.
- Adaptive learning with context-dependent clustering modules is much better than learning without self-supervision.

Thank you!

Feel free to contact me if you have any questions.

- Lin et al., "Contextual Bandit with Adaptive Feature Extraction" ICDMW 2018
- Lin & Zhang, "VoiceID on the fly: A Speaker Recognition System that Learns from Scratch" INTERSPEECH 2020
- Lin & Zhang, "Speaker Diarization as a Fully Online Learning Problem in MiniVox" under review in ICASSP 2021 (arXiv)

Full paper: https://arxiv.org/abs/2009.08457

Full codes: https://github.com/doerlbh/BerlinUCB