線形代数学 I: 第2回講義 ベクトル - 定義と基本操作 中村知繁

講義情報

- 講義回: 第2回
- **テーマ**: ベクトルの定義と基本操作①
- 関連項目: ベクトル空間、ベクトル演算、幾何学的解釈
- 予習内容: 高校数学の座標平面と空間座標の基礎知識を復習しておくこと

学習目標

- 1. 実ベクトルの定義と表記方法を理解する
- 2. ベクトルの加法とスカラー倍の演算規則を習得する
- 3. ベクトル演算の幾何学的意味を理解する
- 4. Pythonを用いてベクトル演算を実装できるようになる

基本概念:実ベクトルの定義

"**定義**:n次元実ベクトルとは、n個の実数を縦に並べたもので、以下のように表記される:

$$\mathbf{v} = egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix}$$

ここで v_1,v_2,\ldots,v_n は実数である。また、ベクトルの1つ1つの要素を**成分**という。

99

ベクトル空間

n次元実ベクトルの集合を \mathbb{R}^n と表し、n次元実ベクトル空間と呼びます。

重要な例:

- \mathbb{R}^2 : 2次元実ベクトル空間(平面上のベクトル)
- \mathbb{R}^3 : 3次元実ベクトル空間(空間上のベクトル)

データサイエンスでは、データの各サンプルを1つのベクトルとして扱うことが一般的です。

ベクトルの表し方

ベクトルは以下のような様々な方法で表記されます:

1. 成分表示:

$$\mathbf{v} = egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix}$$

2. 太字記号:

 $\mathbf{v} \ \stackrel{
ightarrow}{v} \ \vec{v}$

3. 列ベクトル:

$$\mathbf{v} = (v_1, v_2, \dots, v_n)^T$$

ここでTは転置という操作で、縦と横を入れ替える操作です。

零ベクトル

"**定義**: 零ベクトル **0** とは、すべての成分が0であるベクトル

$$\mathbf{0} = egin{pmatrix} 0 \ 0 \ dots \ 0 \end{pmatrix}$$

零ベクトルは加法演算の単位元としての役割を持ちます。

9

ベクトルの和

"**定義**: 2つの同じ次元のベクトル $\mathbf{v}=(v_1,v_2,\ldots,v_n)^T$ と $\mathbf{w}=(w_1,w_2,\ldots,w_n)^T$ に対して、その和 $\mathbf{v}+\mathbf{w}$ は次のように定義する:

$$\mathbf{v}+\mathbf{w}=egin{pmatrix} v_1+w_1\ v_2+w_2\ dots\ v_n+w_n \end{pmatrix}$$

ベクトルの加法は「対応する成分同士を足す」操作です。

99

ベクトル加法の例

$$\mathbf{v} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$
 と $\mathbf{w} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$ のとき:

$$\mathbf{v} + \mathbf{w} = egin{pmatrix} 1+2 \ 3+(-1) \ 5+4 \end{pmatrix} = egin{pmatrix} 3 \ 2 \ 9 \end{pmatrix}$$

ベクトル加法の性質

ベクトルの加法は、以下の性質があります:

- 1. 結合法則: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 2. 交換法則: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$
- 3. **単位元**: 任意のベクトル \mathbf{v} に対して $\mathbf{v} + \mathbf{0} = \mathbf{v}$
- 4. **逆元**: 任意のベクトル \mathbf{v} に対して $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ となる $-\mathbf{v}$ が存在する

ベクトルのスカラー倍

" **定義**: ベクトル $\mathbf{v}=(v_1,v_2,\ldots,v_n)^T$ と実数 α に対して、 \mathbf{v} のスカラー倍 $\alpha \mathbf{v}$ は次のように定義される:

$$lpha \mathbf{v} = egin{pmatrix} lpha v_1 \ lpha v_2 \ dots \ lpha v_n \end{pmatrix}$$

ベクトルのスカラー倍は「すべての成分に同じ実数をかける」操作です。

9

スカラー倍の例

$$\mathbf{v} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$
 のとき、 $3\mathbf{v}$ は:

$$3\mathbf{v} = egin{pmatrix} 3 \cdot 2 \\ 3 \cdot 3 \\ 3 \cdot (-1) \end{pmatrix} = egin{pmatrix} 6 \\ 9 \\ -3 \end{pmatrix}$$

スカラー倍の性質

スカラー倍は、次の性質があります:

- 1. 1v = v
- 2. $\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$
- 3. $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$
- 4. $\alpha(\mathbf{v} + \mathbf{w}) = \alpha \mathbf{v} + \alpha \mathbf{w}$

ベクトルの幾何学的解釈

- ullet \mathbb{R}^2 のベクトル $\mathbf{v}=(v_1,v_2)^T$ は、原点 (0,0) から点 (v_1,v_2) へ向かう矢印として解釈できる
- \mathbb{R}^3 や高次元でも同様(ただし高次元は視覚化が難しい)

ベクトルの和の幾何学的意味

2つのベクトル $\mathbf{v} + \mathbf{w}$ の和は幾何学的に以下のように解釈できます:

- 1. v と w で形成される平行四辺形の対角線
- 2. 原点から ${\bf v}$ を通り、そこから ${\bf w}$ を辿った先の点へ向かうベクトル これは「平行四辺形の法則」とも呼ばれます。

スカラー倍の幾何学的意味

ベクトル \mathbf{v} とスカラー α について:

- $\alpha>0$ のとき: $\alpha \mathbf{v}$ は \mathbf{v} と同じ方向で、長さが $|\alpha|$ 倍
- $\alpha < 0$ のとき: $\alpha \mathbf{v}$ は \mathbf{v} と反対方向で、長さが $|\alpha|$ 倍
- $\alpha = 0$ のとき: $\alpha \mathbf{v}$ は零ベクトル

Python実装:ベクトル演算

```
import numpy as np
import matplotlib.pyplot as plt
# ベクトルの定義
v = np.array([3, 2])
w = np.array([1, 4])
# ベクトルの和
v_plus_w = v + w
print(f"v + w = \{v_plus_w\}")
# スカラー倍
alpha = 2.5
alpha_v = alpha * v
print(f"{alpha} * v = {alpha_v}")
# マイナスのスカラー倍
beta = -1.5
beta_w = beta * w
print(f"{beta} * w = {beta_w}")
```

Python実装:ベクトルの可視化

例:健康データのベクトル表現

```
# 健康データ(年齢、身長、体重、血圧、コレステロール値)
patient1 = np.array([35, 170, 70, 120, 200])
patient2 = np.array([42, 165, 80, 135, 220])

# 平均値
average = (patient1 + patient2) / 2
print("平均値:", average)

# 年齢による重み付け
weight1 = patient1[0] / (patient1[0] + patient2[0]) # 35/(35+42) ≈ 0.45
weight2 = patient2[0] / (patient1[0] + patient2[0]) # 42/(35+42) ≈ 0.55

weighted_avg = weight1 * patient1 + weight2 * patient2
print("年齢による重み付け平均:", weighted_avg)
```

演習問題:基本

1. 次のベクトルの計算を行いなさい。

(a)
$$\begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} + \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}$$

(b)
$$2 \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$

2. $\mathbf{a}=\begin{pmatrix}2\\1\end{pmatrix}$, $\mathbf{b}=\begin{pmatrix}-1\\3\end{pmatrix}$ とするとき、 $2\mathbf{a}-\mathbf{b}$ を求め、幾何学的に解釈しなさい。

3. ベクトル
$$\mathbf{a}=\begin{pmatrix}1\\2\\3\end{pmatrix}$$
 と $\mathbf{b}=\begin{pmatrix}4\\5\\6\end{pmatrix}$ に対して、 $\mathbf{x}=2\mathbf{a}+\mathbf{b}$ と $\mathbf{y}=\mathbf{a}-3\mathbf{b}$ を求めなさい。

演習問題:応用

4.2つの地域の5日間の気温(°C)データ:

$$\mathbf{t}_1 = egin{pmatrix} 25 \ 27 \ 24 \ 26 \ 28 \end{pmatrix} \succeq \mathbf{t}_2 = egin{pmatrix} 22 \ 23 \ 21 \ 24 \ 25 \end{pmatrix}$$

- (a) 気温差 $\mathbf{t}_1 \mathbf{t}_2$ を求めなさい
- (b) 平均気温 $\frac{1}{2}(\mathbf{t}_1+\mathbf{t}_2)$ を求めなさい
- (c) 天気予報 (明日:+2°C、明後日:-1°C) をベクトル演算で表現しなさい

演習問題:応用

5.3人の患者の健康データ(年齢、収縮期血圧、拡張期血圧、血糖値)が以下のベクトルで表されるとします:

$$\mathbf{p}_1 = egin{pmatrix} 45 \ 130 \ 85 \ 95 \end{pmatrix}, \quad \mathbf{p}_2 = egin{pmatrix} 62 \ 145 \ 90 \ 110 \end{pmatrix}, \quad \mathbf{p}_3 = egin{pmatrix} 38 \ 120 \ 80 \ 90 \end{pmatrix}$$

(a) 3人の平均値 $\frac{1}{3}(\mathbf{p}_1+\mathbf{p}_2+\mathbf{p}_3)$ を求めなさい。

(b) 標準的な健康値を $\mathbf{s}=\begin{pmatrix} -120\\80\\100 \end{pmatrix}$ とします(年齢は基準としません)。各患者のデータと標準値との差 $\mathbf{p}_i-\mathbf{s}$ を

計算し、どの患者が最も標準から離れていると考えられますか?