Module 7 project: Graph Isomorphism

Part II: Branching Algorithms

Ruben Hoeksma, slides partly by Paul Bonsma

Summary of the Previous Video

Recall the *Graph Isomorphism (GI) Problem*, and the *color refinement* algorithm to *efficiently* compute a *coarsest stable coloring* of a given graph.

Definition

A coloring α of G is stable if for all $u, v \in V(G)$ it holds that: if $\alpha(u) = \alpha(v)$, then u and v have identically colored neighborhoods.

Key fact:

Theorem

For every graph G, there is a unique coarsest stable partition of V(G), which is the partition given by color refinement.

Summary of the Previous Video

Recall the *Graph Isomorphism (GI) Problem*, and the *color refinement* algorithm to *efficiently* compute a *coarsest stable coloring* of a given graph.

Definition

A coloring α of G is stable if for all $u, v \in V(G)$ it holds that: if $\alpha(u) = \alpha(v)$, then u and v have identically colored neighborhoods.

Key fact:

Theorem

For every graph G and partition π_0 of V(G), there is a unique coarsest stable partition of V(G) that refines π_0 , which is the partition given by color refinement, when starting with π_0 .

Color Refinement Invariant

A useful invariant that follows from last lecture:

Proposition (Invariant)

Let α be a coloring of a graph $G \uplus H$, and let β be the stable coloring of $G \uplus H$ given by color refinement, when starting with α .

Then any isomorphism $f: V(G) \to V(H)$ that is color preserving for α is also color preserving for β .

Possible choices for the "start coloring" α are uniform coloring or coloring by vertex degree, but today we will also see alternatives.

Let α be the stable coloring of $G \uplus H$ that results from applying color refinement, starting with the *uniform coloring*.

Observation

If α defines a bijection $f:V(G)\to V(H)$, then f is the unique isomorphism from G to H.

Let α be the stable coloring of $G \uplus H$ that results from applying color refinement, starting with the *uniform coloring*.

Observation

If α is unbalanced, then there is no isomorphism from G to H.

Let α be the stable coloring of $G \uplus H$ that results from applying color refinement, starting with the *uniform coloring*.

 $\mathsf{Q} \colon \mathsf{But}$ what if the coarsest stable coloring α is balanced, but does not define a bijection?

Let α be the stable coloring of $G \uplus H$ that results from applying color refinement, starting with the *uniform coloring*.

 $\mathsf{Q} \colon \mathsf{But}$ what if the coarsest stable coloring α is balanced, but does not define a bijection?

Idea: Try all color preserving bijections f. Here: $2 \cdot 2 \cdot 2 = 8$ possibilities.

Better than Enumeration: Recursive Color Refinement

Better idea: Choose a vertex x of G for which f(x) is not yet clear.

"Fix" which vertex x of H it should be manned to Give x and x a r

"Fix" which vertex y of H it should be mapped to. Give x and y a new color, and apply color refinement, again.

(Every guess corresponds to a branch of a recursive algorithm.)

In the example: only two guesses necessary.

• α : balanced stable coloring of $G \uplus H$, does not define a bijection.

- α : balanced stable coloring of $G \uplus H$, does not define a bijection.
- Exists color class C with 2k vertices, $k \ge 2$ (k vertices of G and k vertices of H). Denote $C_G = C \cap V(G)$ and $C_H = C \cap V(H)$.

- α : balanced stable coloring of $G \uplus H$, does not define a bijection.
- Exists color class C with 2k vertices, $k \ge 2$ (k vertices of G and k vertices of H). Denote $C_G = C \cap V(G)$ and $C_H = C \cap V(H)$.
- Choose $x \in C_G$. Every color preserving isomorphism f has f(x) = y for some $y \in C_H$.

- α : balanced stable coloring of $G \uplus H$, does not define a bijection.
- Exists color class C with 2k vertices, $k \ge 2$ (k vertices of G and k vertices of H). Denote $C_G = C \cap V(G)$ and $C_H = C \cap V(H)$.
- Choose $x \in C_G$. Every color preserving isomorphism f has f(x) = y for some $y \in C_H$.
- Try out all such possibilities for f(x) (gives k branches of a recursive algorithm): There exists a color preserving isomorphism if and only if a color preserving isomorphism will be found in at least one branch.

- α : balanced stable coloring of $G \uplus H$, does not define a bijection.
- Exists color class C with 2k vertices, $k \ge 2$ (k vertices of G and k vertices of H). Denote $C_G = C \cap V(G)$ and $C_H = C \cap V(H)$.
- Choose $x \in C_G$. Every color preserving isomorphism f has f(x) = y for some $y \in C_H$.
- Try out all such possibilities for f(x) (gives k branches of a recursive algorithm): There exists a color preserving isomorphism if and only if a color preserving isomorphism will be found in at least one branch.
- In each branch, the *choice* f(x) = y is encoded by giving both vertices a *new*, unique color.

- α : balanced stable coloring of $G \uplus H$, does not define a bijection.
- Exists color class C with 2k vertices, $k \ge 2$ (k vertices of G and k vertices of H). Denote $C_G = C \cap V(G)$ and $C_H = C \cap V(H)$.
- Choose $x \in C_G$. Every color preserving isomorphism f has f(x) = y for some $y \in C_H$.
- Try out all such possibilities for f(x) (gives k branches of a recursive algorithm): There exists a color preserving isomorphism if and only if a color preserving isomorphism will be found in at least one branch.
- In each branch, the *choice* f(x) = y is encoded by giving both vertices a *new*, unique color.
- Given this start coloring, we can apply color refinement again, and continue recursively until either an isomorphism is found, or it is concluded that no isomorphism with f(x) = y exists.

Individualization Refinement - Implementation Details

- Let $D = (x_1, ..., x_d)$ and $I = (y_1, ..., y_d)$ be sequences of distinct vertices of G and H, respectively.
- A bijection $f: V(G) \to V(H)$ follows D, I if for all $i: f(x_i) = y_i$.
- Let $\alpha(D, I)$ be the coloring of $G \uplus H$ that assigns color i to x_i and y_i for $i \in \{1, \ldots, d\}$, and color 0 to all vertices not in $D \cup I$.

Individualization Refinement - Implementation Details

- Let $D = (x_1, ..., x_d)$ and $I = (y_1, ..., y_d)$ be sequences of distinct vertices of G and H, respectively.
- A bijection $f: V(G) \to V(H)$ follows D, I if for all $i: f(x_i) = y_i$.
- Let $\alpha(D, I)$ be the coloring of $G \uplus H$ that assigns color i to x_i and y_i for $i \in \{1, \ldots, d\}$, and color 0 to all vertices not in $D \cup I$.

Proposition

Let β be the coarsest stable coloring of $G \uplus H$ that refines $\alpha(D, I)$. Every isomorphism f from G to H that follows D, I is β -color preserving.

Individualization Refinement - Implementation Details

- Let $D = (x_1, ..., x_d)$ and $I = (y_1, ..., y_d)$ be sequences of distinct vertices of G and H, respectively.
- A bijection $f: V(G) \to V(H)$ follows D, I if for all $i: f(x_i) = y_i$.
- Let $\alpha(D, I)$ be the coloring of $G \uplus H$ that assigns color i to x_i and y_i for $i \in \{1, \ldots, d\}$, and color 0 to all vertices not in $D \cup I$.

Proposition

Let β be the coarsest stable coloring of $G \uplus H$ that refines $\alpha(D, I)$. Every isomorphism f from G to H that follows D, I is β -color preserving.

Corollary

If β unbalanced, \nexists isomorphism from G to H following D, I. If β defines bijection f, f is the unique isomorphism from G to H following D, I.

Algorithm 2: Individualization Refinement

```
Subroutine COUNTISOMORPHISM(D, I):
```

INPUT: D and I are equal length sequences of vertices of G resp. H.

OUTPUT: The number of isomorphisms from G to H that follow D, I.

```
Compute the coarsest stable coloring \beta of G \uplus H that refines \alpha(D,I) if \beta is unbalanced: return 0 if \beta defines a bijection: return 1
```

Choose a color class C with $|C| \ge 4$. Choose $x \in C \cap V(G)$.

 $\begin{aligned} &\mathsf{num} = 0 \\ &\mathsf{for all } y \in C \cap V(H): \\ &\mathsf{num} := \mathsf{num} + \mathsf{CountIsomorphism}(D + x, I + y) \end{aligned}$

Theorem

Algorithm 2 is correct; it returns the number of isomorphisms from G to H that follow D,I.

Theorem

Algorithm 2 is correct; it returns the number of isomorphisms from G to H that follow D,I.

Proof Sketch: By induction over the recursion tree:

Base: the unbalanced / bijection case (use the corollary).

Induction step: use the previous proposition.

Theorem

Algorithm 2 is correct; it returns the number of isomorphisms from G to H that follow D,I.

Proof Sketch: By induction over the recursion tree:

Base: the unbalanced / bijection case (use the corollary).

Induction step: use the previous proposition.

Theorem

Algorithm 2 terminates.

Theorem

Algorithm 2 is correct; it returns the number of isomorphisms from G to H that follow D,I.

Proof Sketch: By induction over the recursion tree:

Base: the unbalanced / bijection case (use the corollary).

Induction step: use the previous proposition.

Theorem

Algorithm 2 terminates.

Proof Sketch: In every recursive call D and I grow by one element.

If |D| = |I| = |V(G)| = |V(H)|, the algorithm is done. Thus, the recursion depth is at most |V(G)| and the algorithm terminates.

Theorem

Algorithm 2 is correct; it returns the number of isomorphisms from G to H that follow D,I.

Proof Sketch: By induction over the recursion tree:

Base: the unbalanced / bijection case (use the corollary).

Induction step: use the previous proposition.

Theorem

Algorithm 2 terminates.

Proof Sketch: In every recursive call *D* and *I* grow by one element.

If |D| = |I| = |V(G)| = |V(H)|, the algorithm is done. Thus, the recursion depth is at most |V(G)| and the algorithm terminates.

Quiz: How many recursive calls on C?

Theorem

Algorithm 2 is correct; it returns the number of isomorphisms from G to H that follow D, I.

Proof Sketch: By induction over the recursion tree:

Base: the unbalanced / bijection case (use the corollary).

Induction step: use the previous proposition.

Theorem

Algorithm 2 terminates.

Proof Sketch: In every recursive call *D* and *I* grow by one element.

If |D| = |I| = |V(G)| = |V(H)|, the algorithm is done. Thus, the recursion depth is at most |V(G)| and the algorithm terminates.

Quiz: How many recursive calls on C? It is |C|/2 many !

Summary of Individualization Refinement

- Algorithm 2 computes the number of isomorphisms between two graphs G and H.
 (When called with D and I both empty.)
- The number of recursive calls is at least the number of isomorphisms between *G* and *H*, which can be exponential. (worst case: *n*!)
- Implementation for GI (decision problem): terminate as soon as one isomorphism is found!
- By choosing H := G, we can solve the #Aut problem (counting the number of automorphisms of G).

Improvement 1: Branching Rules

Improvements are possible by choosing the color class ${\it C}$ and vertex ${\it x}$ for branching cleverly.

Implementation idea: Try out and compare different branching rules.

Find at least one rule that performs better than straightforward rules, and support this with computational experiments.

Improvement 2: Preprocessing

Examples of problematic structures:

Definition

Two vertices $u, v \in V(G)$ are twins if $uv \in E(G)$ and $N(u) \setminus \{v\} = N(v) \setminus \{u\}$. They are false twins if N(u) = N(v).

Improvement 2: Preprocessing

Examples of problematic structures:

Definition

Two vertices $u, v \in V(G)$ are twins if $uv \in E(G)$ and $N(u) \setminus \{v\} = N(v) \setminus \{u\}$. They are false twins if N(u) = N(v).

Observation

Let α be a coloring that assigns the same color to two (false) twins u, v. The coarsest stable coloring that refines α also assigns same color to u and v.

Improvement 2: Preprocessing

Examples of problematic structures:

Definition

Two vertices $u, v \in V(G)$ are twins if $uv \in E(G)$ and $N(u) \setminus \{v\} = N(v) \setminus \{u\}$. They are false twins if N(u) = N(v).

Observation

Let α be a coloring that assigns the same color to two (false) twins u, v. The coarsest stable coloring that refines α also assigns same color to u and v.

If G has a set of k (false) twins, then this can add a factor k! to the number of recursive calls made by Algorithm 2! Implementation Idea: use preprocessing algorithm that detects (false) twins before applying individualization refinement.

Improvement 3: Trees or Forests

If G and H are trees or forests, our branching algorithm works very well for the GI problem, but not so well for the #Aut problem, when there are many automorphisms.

Improvement 3: Trees or Forests

If G and H are trees or forests, our branching algorithm works very well for the GI problem, but not so well for the #Aut problem, when there are many automorphisms.

Implementation Idea: It can be shown that branching algorithm solves the GI problem for trees in *polynomial time*. However there is also a polynomial time algorithm for the #Aut problem on trees....

Project: This Week

- Implement in Python an individualization refinement algorithm, that can correctly solve the GI and the #Aut Problem.
- This requires the *color refinement* algorithm to work if you have not completed this, you need to do that ASAP. If you need help, ask during the project session.
- On canvas, there are additional instances of the GI and #Aut problems for testing, which require individualization refinement.
- Use small instances (for verifying correctness), and large instances (for tuning the performance).
- Think about which additional tricks you want to implement (twins, trees/forests, etc.). Test how they influence performance.

Project: This Week

- Implement in Python an individualization refinement algorithm, that can correctly solve the GI and the #Aut Problem.
- This requires the *color refinement* algorithm to work if you have not completed this, you need to do that ASAP. If you need help, ask during the project session.
- On canvas, there are additional *instances* of the GI and #Aut problems for testing, which require individualization refinement.
- Use small instances (for verifying correctness), and large instances (for tuning the performance).
- Think about which additional tricks you want to implement (twins, trees/forests, etc.). Test how they influence performance.

Milestone:

- End of this week, Python program that can correctly solve the GI problem and #Aut problem for small instances.
- Along the way: *improving the computational complexity* is useful (for getting *bonus points* at the end).