

INTRODUCCIÓN A LA TEORÍA DE GRAFOS SESION 5

Antonio Hervás Jorge 2017

OBJETIVOS

• Vamos a ver más grafos con propiedades especiales que les caracterizan.

2

*Aparecen nuevos problemas, nuevas maneras de resolverlos.

3

 Veremos el concepto análogo para Grafos DIRIGIDOS

ÁRBOLES

ARBOLES

Definición 59 Sea G=(V,E) un grafo no dirigido. Diremos que G es un árbol si es conexo y acíclico.

ARBOLES

Teorema 12 Sea G=(V,E) un grafo no dirigido. Las siguientes afirmaciones son equivalentes:

- (a).- G es un árbol.
- (b).- G no tiene bucles y para cualquier par de vértices distintos en V, existe un único camino simple en G que los une.
- (c).- G es acíclico y |E| = |V| 1.
- (d).- G es conexo y |E| = |V| 1.

ARBOLES

Corolario 3 Sea A=(V,E) un grafo no dirigido. Si A=(V,E) es un árbol no trivial, entonces contiene al menos dos vértices de grado uno.

Corolario 4 Sea A=(V,E) un grafo no dirigido. A=(V,E) es un árbol si y sólo si toda arista es de corte.

Definición 60 Sea G=(V,E) un grafo no dirigido. Llamaremos árbol generador de un grafo G, a un subgrafo generador que sea árbol.

ARBOLES DIRIGIDOS

Definición 61 Un árbol dirigido es un grafo dirigido débilmente conexo que no contiene semiciclos.

Definición 62 Una arborescencia es un grafo dirigido acíclico en el que sólo uno de sus vértices tiene grado de entrada cero y los vértices restantes tienen grado de entrada uno. Al vértice cuyo grado de entrada es cero se le llama raíz del árbol.

ARBOLES DIRIGIDOS

ARBOL GENERADOR DE MINIMO PESO

Algoritmo 4 (Kruskal)

```
/* G es un grafo no dirigido ponderado de n vértices y un conjunto E de
aristas. T es el conjunto de aristas a incluir en el árbol generador. */
   line procedure KRUSKAL(G,T,n)
    T \leftarrow \theta; i \leftarrow \theta; E \leftarrow E(G); /* |T| = i */
   while ((E \neq 0) \text{ and } (i \neq n - 1)) \text{ do}
      sea (u, w) la arista de menor peso de E
      E \leftarrow E - \{(u, w)\}
      if (u, w) no forma un ciclo en T
         then
          T \leftarrow T \cup \{(u, w)\}
          i \leftarrow i + 1
      end if
   end while
   if (i \neq n - 1) then print("G no es conexo")
   end if
   end KRUSKAL
```


ARBOL GENERADOR DE MINIMO PESO

ARBOL GENERADOR DE MINIMO PESO

Figure 33: Arboles generadores de mínimo y máximo peso respectivamente.

