Digital Image Processing

Imaging

[Albrecht Dürer, 1525]

Imaging

[Albrecht Dürer, 1525]

- **Image**: a visual representation in form of a function f(x,y) where f is related to the brightness (or color) at point (x,y)
- Most images are defined over a rectangl
- Continuous in amplitude and space

Imaging

Dark chamber with lenses [Kircher 1646]

- **Image**: a visual representation in form of a function f(x,y) where f is related to the brightness (or color) at point (x,y)
- Most images are defined over a rectangl
- Continuous in amplitude and space

Camera Obscura in San Francisco

Digital Images and Pixels

- **Digital image**: discrete samples f[x,y] representing continuous image f(x,y)
- Each element of the 2-d array f[x,y] is called a **pixel** or **pel** (from "picture element")

Color Components

Monochrome image

R[x,y] = G[x,y] = B[x,y]

Why do we process images?

Ps

- Acquire an image
 - Correct aperture and color balance
 - Reconstruct image from projections
- Prepare for display or printing
 - Adjust image size
 - Color mapping, gamma-correction, halftoning
- Facilitate picture storage and transmission
 - Efficiently store an image in a digital camera
 - Send an image from space
- Enhance and restore images
 - Touch up personal photos
 - Color enhancement for security screening
- Extract information from images
 - Read 2-d bar codes
 - Character recognition
 - Depth estimation
- Many more ... image processing is ubiquitous

light.co

source: M. Borgmann, L. Meunier, EE368 class project, spring 2000.

Face morphing

Face Detection

source: Henry Chang, Ulises Robles, EE368 class project, spring 2000.

source: Michael Bax, Chunlei Liu, and Ping Li, EE368 class project, spring 2003.

http://cs.stanford.edu/group/roadrunner/stanley.html

Image Processing Examples Visual Code Marker Recognition

EE368 Spring 2006 Project

Image Processing Examples Painting Recognition

EE368 Spring 2007 Project

Image Processing Examples Painting Recognition

Painting Recognition for Augmented Reality

Left-eye LCD

Image Processing Examples CD Cover Recognition

CD Cover Recognition on Cameraphone

Video See-through Augmented Reality on the Phone

Image Processing Examples: Style Transfer

Original photos

Style examples

Elias Wang, Nicholas Tan, EE368, 2016/17

Topics

- Image sensing and acquisition, sampling, quantization
- Spatial transformations, filtering in space domain and frequency domain.
- Restoration, enhancement, reconstruction; computed tomography
- Wavelets and multi-resolution processing
- Image and video compression and communication; watermarking
- Morphological Image processing
- Color processing
- Edge detection; feature extraction; SIFT, MSER
- Image segmentation
- Neural networks and deep learning
- 3D image processing
- Applications to augmented reality and virtual reality

Image Processing and Related Fields

Reading

Popular text books

- William K. Pratt, "Introduction to Digital Image Processing," CRC Press, 2013.
- R. C. Gonzalez, R. E. Woods, "Digital Image Processing," 4th edition, Pearson, 2018.
- A. K. Jain, "Fundamentals of Digital Image Processing," Addison-Wesley, 1989. (older, more mathematical)

Software-centric books

- R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing using Matlab," 2nd edition, Gatesmark Publishing, 2009.
- G. Bradski, A. Kaehler, "Learning OpenCV," O'Reilly Media, 2008.
- Comprehensive state-of-the-art compendium
 - Al Bovik (ed.), "The Essential Guide to Image Processing," Academic Press, 2009.
- Journals/Conference Proceedings
 - IEEE Transactions on Image Processing
 - IEEE International Conference on Image Processing (ICIP)
 - IEEE Computer Vision and Pattern Recognition (CVPR)
 -