Scilab Textbook Companion for Fundamentals Of Physical Chemistry by H. D. Crockford, J. W. Nowell, H. W. Baird And F. W. Getzen¹

Created by
Kvp Pradeep
chemistry
Chemical Engineering
IIT bombay
College Teacher
Patwari
Cross-Checked by
Ganesh R

May 25, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals Of Physical Chemistry

Author: H. D. Crockford, J. W. Nowell, H. W. Baird And F. W. Getzen

Publisher: John Wiley And Sons Inc.

Edition: 1

Year: 1950

ISBN: 978-0471188445

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
2	Gases	5
3	Liquids	11
4	Solutions Nonelectrolytes	14
5	Solutions Osmotic Pressure	19
6	Solutions Solutions of Electrolytes	21
7	Conductivity	23
8	Chemical Equlibrium	27
9	Ionic Equilibria and Buffer Action	30
10	Electmotive Force	39
11	Thermodynamics Some Basic Concepts	44
12	Thermodynamics Thermodynamic chemistry	47
13	Thermodynamics Entropy and Free Energy	50
14	Determination of hydronium ion Concentrations	57
16	Oxidation Reduction potentials	60

17 Speed of Reaction Catalysis	62
20 Radiochemistry	64

List of Scilab Codes

Exa 2.1	chapter 2 example $1 \dots \dots \dots \dots \dots$	5
Exa 2.2	chapter 2 example $2 \ldots \ldots \ldots \ldots$	5
Exa 2.3	chapter 2 example $3 \ldots \ldots \ldots \ldots$	6
Exa 2.4	chapter 2 example $4 \ldots \ldots \ldots \ldots$	6
Exa 2.5	chapter 2 example $5 \dots \dots \dots \dots \dots$	7
Exa 2.6	chapter 2 example 6	7
Exa 2.7	chapter 2 example 7	8
Exa 2.8	chapter 2 example 8	8
Exa 2.9	chapter 2 example 9	9
Exa 2.10	chapter 2 example 10	9
Exa 3.1	chapter 3 example $1 \dots \dots \dots \dots$	11
Exa 3.2	chapter 3 example $2 \ldots \ldots \ldots \ldots$	11
Exa 3.3	chapter 3 example 3 \dots	12
Exa 3.4	chapter 3 example $4 \ldots \ldots \ldots \ldots$	12
Exa 4.1	chapter 4 example $1 \dots \dots \dots \dots \dots$	14
Exa 4.2	chapter 4 example $2 \dots \dots \dots \dots \dots$	15
Exa 4.3	chapter 4 example 3	15
Exa 4.4	Chapter 4 example 4	16
Exa 4.5	chapter 4 example $5 \ldots \ldots \ldots \ldots$	17
Exa 4.6	chapter 4 example 6	17
Exa 5.1	chapter 5 example $1 \dots \dots \dots \dots \dots$	19
Exa 5.2	chapter 5 example $2 \dots \dots \dots \dots \dots$	19
Exa 6.1	chapter 6 example 1	21
Exa 6.2	chapter 6 example $2 \ldots \ldots \ldots \ldots$	21
Exa 7.1	chapter 7 example 1	23
Exa 7.2	chapter 7 example $2 \ldots \ldots \ldots \ldots$	23
Exa 7.3	chapter 7 example 3	24
Exa 7.4	chapter 7 example 4	25

Exa 7.5	chapter 7 example 5	25
Exa 8.1	chapter 8 example 1	27
Exa 8.2	chapter 8 example 2	27
Exa 8.3	chapter 8 example 3	28
Exa 8.4	chapter 8 example 4	28
Exa 8.5	chapter 8 example 5	29
Exa 9.1	chapter 9 example 1	30
Exa 9.2	chapter 9 example 2	30
Exa 9.3	chapter 9 example 3	31
Exa 9.4	chapter 9 example 4	31
Exa 9.5	chapter 9 example 5	32
Exa 9.6	chapter 9 example 6	32
Exa 9.7	chapter 9 example 7	33
Exa 9.8	chapter 9 example 8	33
Exa 9.9	chapter 9 example 9	34
Exa 9.10	chapter 9 example 10	34
Exa 9.11	chapter 9 example 11	35
Exa 9.12	chapter 9 example 12	35
Exa 9.13	chapter 9 example 13	35
Exa 9.14	chapter 9 example 14	36
Exa 9.15	chapter 9 example 15	36
Exa 9.16	chapter 9 example 16	36
Exa 9.17	chapter 9 example 17	37
Exa 9.18	chapter 9 example 18	37
Exa 9.19	chapter 9 example 19	38
Exa 10.1	chapter 10 example 1	39
Exa 10.2	chapter 10 example 2	39
Exa 10.3	chapter 10 example 3	40
Exa 10.4	chapter 10 example 4	40
Exa 10.5	chapter 10 example 5	41
Exa 10.6	chapter 10 example 6	41
Exa 10.7	chapter 10 example 7	42
Exa 10.8	chapter 10 example 8	42
Exa 11.1	chapter 11 example 1	44
Exa 11.2	chapter 11 example 2	45
Exa 11.3	chapter 11 example 3	45
Exa 11.4	chapter 11 example 4	46
Exa 12.1	chapter 12 example 1	47

Exa 12.2	chapter 12 example 2	47
	•	48
Exa 12.3	chapter 12 example 3	48 48
Exa 12.4	chapter 12 example 4	
Exa 12.5	chapter 12 example 5	49
Exa 12.6	chapter 12 example 6	49
Exa 13.1	chapter 13 example 1	50
Exa 13.2	chapter 13 example 2	50
Exa 13.3	chapter 13 example 3	51
Exa 13.4	chapter 13 example 4	51
Exa 13.5	chapter 13 example 5	52
Exa 13.6	chapter 13 example 6	52
Exa 13.7	chapter 13 example 7	52
Exa 13.8	chapter 13 example 8	53
Exa 13.9	chapter 13 example 9	53
Exa 13.10	chapter 13 example 10	54
Exa 13.11	chapter 13 example 11	54
Exa 13.12	chapter 13 example 12	54
Exa 13.13	chapter 13 example 13	55
Exa 13.14	chapter 13 example 14	55
Exa 13.15	chapter 13 example 15	56
Exa 14.1	chapter 14 example 1	57
Exa 14.2	chapter 14 example 2	57
Exa 14.3	chapter 14 example 3	58
Exa 14.4	chapter 14 example 4	58
Exa 14.5	chapter 14 example 5	59
Exa 16.1	chapter 16 example 1	60
Exa 16.2	chapter 16 example 2	61
Exa 16.3	chapter 16 example 3	61
Exa 17.1	chapter 17 example 1	62
Exa 17.3	chapter 17 example 3	62
Exa 20.1	chapter 20 example 1	64

Gases

Scilab code Exa 2.1 chapter 2 example 1

```
1 clc
2 //initialisation of variables
3 P= 730 //mm
4 V= 20 //litres
5 T= -20 //C
6 P1= 760 //mm
7 T1= 0 //C
8 //CALCULATIONS
9 V1= P*V*(273+T1)/((273+T)*760)
10 //RESULTS
11 printf (' volume at STP = %.1 f litres', V1)
```

Scilab code Exa 2.2 chapter 2 example 2

```
1 clc
2 //initialisation of variables
3 N= 6*10^23 //molcules
4 R= 0.0821 //lit atm mole^-1
```

```
5  V= 20  //lit
6  P= 730  //mm of Hg
7  T= -20  //C
8  //CALCULATIONS
9  M= N*P*V/(760*R*(273+T))
10  //RESULTS
11  printf (' Molecules = %.2e molecules', M)
```

Scilab code Exa 2.3 chapter 2 example 3

```
1 clc
2 //initialisation of variables
3 P= 100 //cm
4 m= 2*10^20 //molecules
5 N= 6*10^23
6 R= 0.0821 //lit atm mole^-1
7 T= 27 //C
8 //CALCULATIONS
9 V= m*R*(T+273)*760*100/(N*P)
10 //RESULTS
11 printf (' Volume = %.2 f cm^3', V)
```

Scilab code Exa 2.4 chapter 2 example 4

```
1 clc
2 //initialisation of variables
3 P= 752 //mm
4 V= 0.2 //lit
5 T= 21 //C
6 R= 0.0821 //lit atm mole^-1
7 m= 0.980 //gms
8 //CALCULATIONS
9 M= m*R*(T+273)*760/(V*P)
```

Scilab code Exa 2.5 chapter 2 example 5

```
1 clc
2 //initialisation of variables
3 \text{ m} = 7 //\text{gms}
4 \text{ m1} = 16 \text{ //gms}
5 \text{ m2} = 3.03 //\text{gms}
6 \text{ M} = 32 //\text{gms}
7 \text{ M1} = 28 \text{ //gms}
8 M2 = 2.02 //gms
9 T = 50 //C
10 V = 80 // lit
11 R= 0.0821 //atm lit mole^-1
12 //CALCULATIONS
13 Pn= m*R*(T+273)/(M1*V)
14 Po= m1*R*(T+273)/(M*V)
15 Ph= m2*R*(T+273)/(M2*V)
16 P = Pn + Po + Ph
17 //RESULTS
18 printf ('Partial pressure of nitrogen = \%.3 f atm',
19 printf ('\n Partial pressure of oxygen = \%.3 f atm',
20 printf (' \n Partial pressure of hydrogen = \%.3\,\mathrm{f} atm
       ', Ph)
21 printf (' \n total pressure = \%.3 \,\mathrm{f} atm',P)
```

Scilab code Exa 2.6 chapter 2 example 6

```
1 clc
2 //initialisation of variables
3 P= 23.8 //mm
4 V= 0.5 //lit
5 R= 0.0821 //lit atm mole^-1
6 T= 25 //C
7 //CALCULATIONS
8 P1= 760-P
9 n= P1*V/(760*R*(273+T))
10 V1= V*1000*P1*273/(760*(T+273))
11 //RESULTS
12 printf (' Volume of oxygen = %. f ml', V1)
```

Scilab code Exa 2.7 chapter 2 example 7

```
1 clc
2 //initialisation of variables
3 t= 20 //min
4 t1= 19.4 //min
5 M= 32 //gms
6 //CALCULATIONS
7 x= M*t1^2/t^2
8 //RESULTS
9 printf (' molecular weight of ethane = %.1 f gms',x)
```

Scilab code Exa 2.8 chapter 2 example 8

```
1 clc
2 //initialisation of variables
3 R= 8.31*10^7 //ergs mole^-1
4 T= 27 //C
5 M= 28 //gram per mole
6 //CALCULATIONS
```

```
7 c= sqrt(3*R*(273+T)/M)
8 //RESULTS
9 printf (' root-mean-square velocity = %.2e cm per sec',c)
```

Scilab code Exa 2.9 chapter 2 example 9

```
1 clc
2 //initialisation of variables
3 V= 5.16*10^14 //cm per sec
4 M2= 28 //gms
5 M1= 2.02 //gms
6 //CALCULATIONS
7 c1= V*sqrt(M2/M1)
8 //RESULTS
9 printf (' Velocity of hydrogen molecule = %.1e cm per sec',c1)
```

Scilab code Exa 2.10 chapter 2 example 10

```
1 clc
2 //initialisation of variables
3 V= 0.5 //lit
4 T= 50 //C
5 n= 1//mole
6 R= 0.0821 //lit atm mole^-1
7 a= 4.28*10^-2 //litres mole^-1
8 b= 3.6 //arm mole^-2 lit^2
9 //CALCULATIONS
10 P= n*R*(273+T)/V
11 P1= (n*R*(T+273)/(V-n*a))-(b/V^2)
12 //RESULTS
13 printf (' Pressure = %.f atm',P)
```

14 printf ('\n Pressure using vanderwals equation= %.1 f atm',P1)

Liquids

Scilab code Exa 3.1 chapter 3 example 1

```
1 clc
2 //initialisation of variables
3 p= 388.6 //mm
4 p1=26.5 //mm
5 T= 60 //C
6 R= 1.99 //cal mole^-1 A^-1
7 //CALCULATIONS
8 Lv= log10(p/p1)*2.303*R*273*(273+T)/(T)
9 //RESULTS
10 printf (' heat of vapourisation of benzene= %.f cal per mole', Lv+2)
```

Scilab code Exa 3.2 chapter 3 example 2

```
1 clc
2 //initialisation of variables
3 d= 0.789 //gram per cc
4 r= 0.010 //cm
```

```
5 h= 5.76 //cm
6 g= 980.7 // cm /sec^2
7 //CALCULATIONS
8 R= d*h*r*g/2
9 //RESULTS
10 printf (' Surface tension= %.1 f dynes per cm', R)
```

Scilab code Exa 3.3 chapter 3 example 3

```
1 clc
2 //initialisation of variables
3 W= 0.220 //gms
4 g= 980.7 //cm per sec62
5 f= 0.98
6 l= 4 //cm
7 //CALCULATIONS
8 T= W*g/(2*1)
9 Tc= T*f
10 //RESULTS
11 printf ('apparent surface tension= %.1 f dynes per cm',T)
12 printf ('\n exact surface tension= %.1 f dynes per cm',Tc)
```

Scilab code Exa 3.4 chapter 3 example 4

```
1 clc
2 //initialisation of variables
3 n2= 10.05*10^-3 //poise
4 d1= 0.879 //gms cm^-3
5 t= 88 //sec
6 d2= 1 //gms cm^-3
7 t1= 120 //sec
```

```
8 //CALCULATIONS
9 n1= d1*t/(d2*t1)
10 //RESULTS
11 printf (' relative viscosity= %.3 f ',n1)
```

Solutions Nonelectrolytes

Scilab code Exa 4.1 chapter 4 example 1

```
1 clc
 2 //initialisation of variables
 3 \text{ m} = 164.2 //\text{gms}
 4 \text{ M= } 60 \text{ //gms}
 5 \text{ V} = 0.8 // \text{lit}
 6 d = 1.026 //g/cc
 7 \text{ mw} = 18.02 //\text{gms}
 8 //CALCULATIONS
 9 M1 = m/M
10 n = M1/V
11 G = V * 1000 * d
12 G1 = G - m
13 \text{ m1} = \text{M1} * 1000/\text{G1}
14 \text{ n1} = \text{G1/mw}
15 x = M1/(M1+n1)
16 y = 1 - x
17 p = x * 100
18 p1 = y * 100
19 P = m * 100/G
20 //RESULTS
21 printf (' molarity= \%.3 \, f \, M',n)
```

Scilab code Exa 4.2 chapter 4 example 2

```
1 clc
2 //initialisation of variables
3 \text{ m} = 0.0346 //\text{gms}
4 V = 800 //ml
5 P = 742 / mm
6 \text{ M} = 32 //\text{gms}
7 p = 400 / mm
8 //CALCULATIONS
9 c = m * 1000 / V
10 g = c*760/(P*M)
11 K = g * 22.4
12 k = c/P
13 c1 = k*p
14 //RESULTS
15 printf ('concentration of oxygen= %.4 f gram per
      litre',c)
16 printf (' \n moles dissolved = \%.5 \,\mathrm{f} moles',g)
17 printf (' \n Bunsen absorption = \%.4 \,\mathrm{f} litre', K)
18 printf ('\n grams of oxygen dissolved = \%.4 f gram
      per litre',c1)
```

Scilab code Exa 4.3 chapter 4 example 3

```
1 clc
2 //initialisation of variables
3 \text{ mn} = 0.0134 //gms
4 mo = 0.0261 / gms
5 \text{ mh} = 0.0081 //gms
6 T = 30 //C
7 P = 3 //atm
8 r = 4/5
9 //CALCULATIONS
10 V = mn*(273+T)*1000/273
11 V1 = V * r
12 V2= V1*P
13 V3 = mo*(273+T)*(1-r)*P*1000/273
14 \text{ V4= mh*}(273+T)*r*1000/273
15 V5= V4*P
16 \ V6 = V2 - V1
17 V7 = V5 - V4
18 //RESULTS
19 printf ('volume of oxygen= %.1 f ml', V)
20 printf (' \n volume of nitrogen= \%.1 \,\mathrm{f} ml', V3)
21 printf (' \n volume of helium = \%.1 \,\text{f} ml', V5)
22 printf ('\n volume of nitrogen and helium would be
      expelled = \%.1 f ml', V7)
```

Scilab code Exa 4.4 Chapter 4 example 4

```
1 clc
2 //initialisation of variables
3 p= 214 //mm
4 M= 112.5 //gms
5 m= 18 //gms
6 m1= 10 //gms
7 //CALCULATIONS
8 P= 760-p
9 M1= m1*P*m/(p*M)
```

```
10 //RESULTS
11 printf ('quantity of water= %.2 f gms',M1)
```

Scilab code Exa 4.5 chapter 4 example 5

```
1 clc
2 //initialisation of variables
3 p = 17.4 //mm
4 m= 1000 //gms
5 M= 18 //gms
6 n= 2 //moles
7 //CALCULATIONS
8 P= p*((m/M)/((m/M)+n))
9 P1= p*(n/((m/M)+n))
10 dp= p-P1
11 //RESULTS
12 printf (' vapour pressure of solution= %.2 f mm', P1)
```

Scilab code Exa 4.6 chapter 4 example 6

```
1 clc
2 //initialisation of variables
3 m= 92.13 //gms
4 M= 78.11 //gms
5 n= 1 //moles
6 p= 119.6 //mm
7 p1= 36.7 //mm
8 //CALCULATIONS
9 n1= m/M
10 x= n/(n+n1)
11 y= 1-x
12 P= y*p
13 P1= x*p1
```

```
14  P2= P+P1
15  m1= P/P2
16  m2= 1-m1
17    //RESULTS
18  printf (' mole fraction of benzene= %.3 f ',m1)
19  printf (' \n mole fraction of toulene= %.3 f ',m2)
```

Solutions Osmotic Pressure

Scilab code Exa 5.1 chapter 5 example 1

```
1 clc
2 //initialisation of variables
3 T= 20 //C
4 R= 0.082 //li-atm per mole per degree
5 V= 2 //lit
6 m= 6 //gms
7 M= 60 //gms
8 //CALCULATIONS
9 P= m*R*(273+T)/(M*V)
10 //RESULTS
11 printf (' osmotic pressure= %.1 f atm', P)
```

Scilab code Exa 5.2 chapter 5 example 2

```
1 clc
2 //initialisation of variables
3 T= -0.2 //C
4 T1= 25 //C
```

```
5 T2= 1.86 //C

6 R= 0.082 //li-atm per mole per degree

7 //CALCULATIONS

8 P= -T*R*(T1+273)/T2

9 //RESULTS

10 printf ('osmotic pressure= %.2 f atm',P)
```

Solutions Solutions of Electrolytes

Scilab code Exa 6.1 chapter 6 example 1

```
1 clc
2 //initialisation of variables
3 T= 25 //C
4 R= 0.0821 //li-atm per mole per degree
5 M= 0.5 //m
6 n= 2
7 m= 0.680
8 V= 1 //lit
9 //CALCULATIONS
10 P= R*(273+T)*M*n*m/V
11 //RESULTS
12 printf (' osmotic pressure= %.2 f atm',P)
```

Scilab code Exa 6.2 chapter 6 example 2

```
//initialisation of variables
M= 0.001 //molar
M1= 0.002 //molar
M2= 0.004 //molar
n= 1 //moles
n1= 2 //moles
v= 0.509
//CALCULATIONS
Is= 0.5*(M*n^2+M1*n^2+M1*n1^2+M2*n^2)
r= 10^(-v*n^2*sqrt(Is))*M
r1= 10^(-v*n1^2*sqrt(Is))*M
//RESULTS
printf (' ionic strength= %.3 f ',Is)
printf (' \n activity of sodium = %.4 f molar',r)
printf (' \n activity of barium = %.4 f molar',r1)
```

Conductivity

Scilab code Exa 7.1 chapter 7 example 1

```
1 clc
2 //initialisation of variables
3 R= 10 //ohms
4 V= 5 //v
5 t= 20 //min
6 //CALCULATIONS
7 I= V/R
8 Q= I*t*60
9 E= Q*V
10 //RESULTS
11 printf (' current= %.1 f amp',I)
12 printf (' \n coloumbs of electricity will pass= %.f coloumbs',Q)
13 printf (' \n energy expended= %.f joules',E)
```

Scilab code Exa 7.2 chapter 7 example 2

```
2 //initialisation of variables
3 I = 50 //amp
4 t = 1 //hr
5 F = 96500 //amp - sec
6 \text{ mh} = 1.01 //gms
7 mc= 35.46 //gms
8 \text{ ms} = 107.88 //\text{gms}
9 mb = 79.9 / \text{gms}
10 mf = 55.85 / gms
11 V = 11.2 // lit
12 e = 8 / v
13 //CALCULATIONS
14 N = I*t*60*60/F
15 Mh = mh * N
16 \text{ Mc} = \text{mc} * \text{N}
17 \text{ Ms} = \text{ms} * \text{N}
18 \text{ Mb} = \text{mb} * \text{N}
19 Mf = mf * N
20 \quad v = N * V
21 E = e * I * 60 * 60
22 //RESULTS
23 printf ('quantity of hydrogen produced= %.2 f gms',
      Mh)
24 printf ('\n quantity of chlorine produced= \%.2f gms
       ',Mc)
25 printf ('\n quantity of silver produced= \%.2 f gms',
26 printf ('\n quantity of bromine produced= \%.2 f gms'
       , Mb)
27 printf ('\n quantity of ferrous ion produced= %.2 f
        gms', Mf)
28 printf ('\n Volume occupied by gases= \%.1f lit',v)
29 printf ('\n energy expenditure= \%.f joules', E)
```

Scilab code Exa 7.3 chapter 7 example 3

```
1 clc
 2 //initialisation of variables
3 i = 20 //amp
4 t = 50 //min
5 F = 96500 //coloumb
 6 \text{ we= } 8 \text{ } //\text{gms}
7 Mo= 32 //gms
8 M = 27 //gms
9 \quad n = 3
10 //CALCULATIONS
11 nf = i*t*60/F
12 \ V = \ we * 22.4 / Mo * nf
13 G = M/n
14 q= G*nf
15 //RESULTS
16 printf ('volume of oxygen produced= %.2 f lit', V)
17 printf (' \n quantity of aluminium produced= \%.2 \, \mathrm{f}
      grams',q)
```

Scilab code Exa 7.4 chapter 7 example 4

```
1 clc
2 //initialisation of variables
3 L= 0.025 //ohms
4 k= 0.0112 //ohms
5 //CALCULATIONS
6 C= k/L
7 //RESULTS
8 printf (' cell constant= %.3 f ',C)
```

Scilab code Exa 7.5 chapter 7 example 5

```
2 //initialisation of variables
3 m= 0.01 //M
4 CB= 235 //mm
5 R= 426.3 //ohms
6 M= 265
7 C= 0.448
8 //CALCULATIONS
9 k= M*C/(R*CB)
10 A= k*1000/m
11 //RESULTS
12 printf (' equivalent conductance= %.1f ohms', A)
```

Chemical Equlibrium

Scilab code Exa 8.1 chapter 8 example 1

```
1 clc
2 //initialisation of variables
3 x= 3.33
4 n= 5 //moles
5 //CALCULATIONS
6 N= x^2/(n-x)^2
7 //RESULTS
8 printf (' moles of water and ester formed= %.f', N)
```

Scilab code Exa 8.2 chapter 8 example 2

```
1 clc
2 //initialisation of variables
3 n= 1 //mole
4 x= 3
5 y= 4
6 //CALCULATIONS
7 r= x^2/n^2
```

Scilab code Exa 8.3 chapter 8 example 3

```
1 clc
2 //initialisation of variables
3 k= 1.1*10^-5
4 V= 600 //ml
5 n= 0.4 //mole
6 //CALCULATIONS
7 m= n*1000/V
8 x= (-k+sqrt(k^2+4*4*0.67*k))/(2*4)
9 M= 2*x
10 P= x*100/m
11 //RESULTS
12 printf (' molar concentration of NO2= %.1e mol per litre',M)
13 printf (' \n per cent dissociation= %.2 f per cent',P
)
```

Scilab code Exa 8.4 chapter 8 example 4

```
1 clc
2 //initialisation of variables
3 pno2= 0.31 //atm
4 pn2o2= 0.69 //atm
5 p= 10 //atm
```

```
6 //CALCULATIONS
7 Kp= pno2^2/pn2o2
8 x= (-Kp+sqrt(Kp^2+4*4*p*Kp))/(2*4)
9 p1= p-x
10 p2= 2*x
11 //RESULTS
12 printf (' Kp= %.2 f ', Kp)
13 printf (' \n N2O4= %.2 f ', p1)
14 printf (' \n NO2= %.2 f ', p2)
```

Scilab code Exa 8.5 chapter 8 example 5

```
1 clc
2 //initialisation of variables
3 T= 65 //C
4 R= 1.98 //cal/mol K
5 kp= 2.8
6 kp1= 0.141
7 T1= 25 //C
8 //CALCULATIONS
9 H= log10(kp/kp1)*2.303*R*(273+T1)*(273+T)/(T-T1)
10 //RESULTS
11 printf (' average heat of reaction= %. f cal', H+62)
```

Ionic Equilibria and Buffer Action

Scilab code Exa 9.1 chapter 9 example 1

```
1 clc
2 //initialisation of variables
3 c= 0.1 //M
4 p= 1.34 //per cent
5 T= 25 //C
6 //CALCULATIONS
7 C1= c*p/100
8 C2= c*p/100
9 C3= c-C1
10 Ka= C1*C2/C3
11 //RESULTS
12 printf ('ionization constant = %.2e', Ka)
```

Scilab code Exa 9.2 chapter 9 example 2

```
2 //initialisation of variables
3 k= 1.8*10^-5
4 C= 0.2 //M
5 T= 25 //C
6 //CALCULATIONS
7 x= sqrt(C*k)
8 a= x/C
9 C1= a*C
10 //RESULTS
11 printf (' hydronium-ion concentration = %.1e mole per litre',C1)
```

Scilab code Exa 9.3 chapter 9 example 3

```
1 clc
2 //initialisation of variables
3 K= 1.8*10^-5
4 V= 500 //ml
5 c1= 0.3 //M
6 c2= 0.2 //M
7 //CALCULATIONS
8 x= V*c1/1000
9 y= V*c2/1000
10 C= K*y/x
11 //RESULTS
12 printf (' hydronium-ion concentration = %.1e mole per litre',C)
```

Scilab code Exa 9.4 chapter 9 example 4

```
1 clc
2 //initialisation of variables
3 K= 1.4*10^-5
```

```
4 T= 25 //C
5 V= 200 //ml
6 m= 3.7 //gms
7 m1= 4.8 //gms
8 M= 74 //gms
9 M1= 96 //gms
10 //CALCULATIONS
11 x= m*1000/(V*M)
12 y= m1*1000/(V*M1)
13 X= K*x/y
14 //RESULTS
15 printf (' hydronium-ion concentration = %.1e mole per litre', X)
```

Scilab code Exa 9.5 chapter 9 example 5

```
1 clc
2 //initialisation of variables
3 c= 0.050 //M
4 Ksp= 4.3*10^-7
5 //CALCULATIONS
6 C= sqrt(Ksp*c)
7 //RESULTS
8 printf (' concentration of hydronium-ion = %.1e mole per litre',C)
```

Scilab code Exa 9.6 chapter 9 example 6

```
1 clc
2 //initialisation of variables
3 C= 0.050 //M
4 K= 2.4*10^-17
5 c= 0.1 //M
```

```
6 //CALCULATIONS
7 c1= K*C/c^2
8 //RESULTS
9 printf (' concentration of carbonate-ion = %.1e mole per litre',c1)
```

Scilab code Exa 9.7 chapter 9 example 7

```
1 clc
2 //initialisation of variables
3 n= 1.31*10^-4 //mole
4 T= 25 //C
5 //CALCULATIONS
6 N= 2*n
7 Ksp= N^2*n
8 //RESULTS
9 printf (' Ksp = %.e', Ksp)
```

Scilab code Exa 9.8 chapter 9 example 8

```
1 clc
2 //initialisation of variables
3 Ksp= 1.4*10^-11
4 V= 200 //ml
5 M= 24.3 //gms
6 //CALCULATIONS
7 x= (Ksp/4)^(1/3)
8 m= x*M*V/1000
9 //RESULTS
10 printf (' grams of Mg+2 present = %.1e gms per mol', m)
```

Scilab code Exa 9.9 chapter 9 example 9

```
1 clc
2 //initialisation of variables
3 c= 0.010 //M
4 Ksp= 1.56*10^-10
5 M= 108 //gms
6 C= 10^-3 //M
7 //CALCULATIONS
8 K= Ksp/C
9 m= M*K
10 m1= M*c
11 //RESULTS
12 printf (' quantity = %.2 e gms',m)
13 printf (' \n quantity = %.2 f gms',m1)
```

Scilab code Exa 9.10 chapter 9 example 10

```
1 clc
2 //initialisation of variables
3 c= 0.1 //M
4 Kb= 1.8*10^-5
5 Kw= 10^-14
6 //CALCULATIONS
7 C= sqrt(c*Kw/Kb)
8 //RESULTS
9 printf (' concentration of hydronium ion = %.1e mol per litre',C)
```

Scilab code Exa 9.11 chapter 9 example 11

```
1 clc
2 //initialisation of variables
3 c= 0.050 //M
4 Kb= 1.8*10^-5
5 T= 25 //C
6 Kw= 10^-14
7 //CALCULATIONS
8 C= sqrt(Kw*c/Kb)
9 //RESULTS
10 printf (' concentration of hydronium ion = %.1e mol per litre',C)
```

Scilab code Exa 9.12 chapter 9 example 12

```
1 clc
2 //initialisation of variables
3 kw= 10^-14
4 Ka= 1.8*10^-5
5 //CALCULATIONS
6 Kb= Ka
7 B= sqrt(kw/(Ka*Kb))
8 //RESULTS
9 printf (' degree of hydrolysis = %.1e ',B)
```

Scilab code Exa 9.13 chapter 9 example 13

```
1 clc
2 //initialisation of variables
3 k1= 3.5*10^-7
4 k2= 4.4*10^-11
5 //CALCULATIONS
```

```
6 c= sqrt(k1*k2)
7 //RESULTS
8 printf (' concentration of solution = %.1e mol per litre',c)
```

Scilab code Exa 9.14 chapter 9 example 14

```
1 clc
2 //initialisation of variables
3 c= 1.92*10^-5 //mole per litre
4 //CALCULATIONS
5 pH= -log10(c)
6 //RESULTS
7 printf (' pH of solution = %.2 f ',pH)
```

Scilab code Exa 9.15 chapter 9 example 15

```
1 clc
2 //initialisation of variables
3 pH= 7.36
4 //CALCULATIONS
5 C= 10^-pH
6 //RESULTS
7 printf (' concentration of solution = %.2e mol per litre',C)
```

Scilab code Exa 9.16 chapter 9 example 16

```
1 clc
2 //initialisation of variables
```

```
3 c= 1 //M
4 Kb= 5.3*10^-5
5 pKw= 14
6 //CALCULATIONS
7 pH= pKw+0.5*log10(Kb)+0.5*log10(c)
8 //RESULTS
9 printf (' pH of solution = %.2 f ',pH)
```

Scilab code Exa 9.17 chapter 9 example 17

```
1 clc
2 //initialisation of variables
3 c= 0.1 //M
4 Ka= 6.3*10^-5
5 pKw= 14
6 //CALCULATIONS
7 pH= -0.5*log10(Ka)+0.5*pKw+0.5*log10(c)
8 //RESULTS
9 printf (' pH of a buffer solution = %.2 f ',pH)
```

Scilab code Exa 9.18 chapter 9 example 18

```
1 clc
2 //initialisation of variables
3 Ka= 1.8*10^-5
4 a= 0.1 //molar
5 //CALCULATIONS
6 pH= -log10(Ka)
7 //RESULTS
8 printf (' pH of a buffer solution = %.2 f ',pH)
```

Scilab code Exa $9.19\,$ chapter 9 example 19

```
1 clc
2 //initialisation of variables
3 pH= 7.10
4 pH1= 7.21
5 //CALCULATIONS
6 r= 10^(pH-pH1)
7 //RESULTS
8 printf (' ratio of salt to acid = %.3f',r)
```

Electmotive Force

Scilab code Exa 10.1 chapter 10 example 1

```
1 clc
2 //initialisation of variables
3 T= 25 //C
4 M= 0.08 //m
5 P= 1 //atm
6 F= 96500 //coloumbs
7 R= 8.31 //J/mol K
8 //CALCULATIONS
9 E= -R*(273+T)*2.3*log10(M)/F
10 //RESULTS
11 printf (' oxidation potential of hydrogen electrode = %.4 f v',E)
```

Scilab code Exa 10.2 chapter 10 example 2

```
1 clc
2 //initialisation of variables
3 E= -0.337 //v
```

```
4 R= 8.31 //J/mol K
5 T= 25 //C
6 F= 96500 //coloums
7 M= 0.12 //m
8 //CALCULATIONS
9 E1= E-(R*(273+T)*2.3*log10(M)/(2*F))
10 //RESULTS
11 printf (' oxidation potential of copper electrode = % .3 f v', E1)
```

Scilab code Exa 10.3 chapter 10 example 3

```
1 clc
2 //initialisation of variables
3 E= -0.771 //v
4 R= 8.31 //J/mol K
5 T= 25 //C
6 F= 96500 //coloums
7 M= 0.02 //m
8 M1= 0.1 //m
9 //CALCULATIONS
10 E1= E-(R*(273+T)*2.3*log10(M/M1)/F)
11 //RESULTS
12 printf (' oxidation potential of copper electrode = % .3 f v', E1)
```

Scilab code Exa 10.4 chapter 10 example 4

```
1 clc

2 //initialisation of variables

3 E= 0.763 //v

4 R= 8.31 //J/mol K

5 T= 25 //C
```

Scilab code Exa 10.5 chapter 10 example 5

```
1 clc
2 //initialisation of variables
3 E1= 0.126 //v
4 E2= -1.360 //v
5 M= 0.02 //m
6 M1= 1/0.1 //m
7 R= 8.31 //J/mol K
8 T= 25 //C
9 F= 96500 //coloums
10 //CALCULATIONS
11 E= (E1-R*(273+T)*2.3*log10(M)/(2*F))-(E2-R*(273+T)*2.3*log10(M)/(5))
12 //RESULTS
13 printf (' oxidation potential of copper electrode = % .3 f v',E)
```

Scilab code Exa 10.6 chapter 10 example 6

```
1 clc
2 //initialisation of variables
3 E1= 0.763 //v
```

```
4 c= 0.1 //mol/lit
5 c1= 0.01 //mol/lit
6 R= 8.31 //J/mol K
7 T= 25 //C
8 F= 96500 //coloums
9 c2= 1 //molar
10 c3= 1 //molar
11 //CALCULATIONS
12 E= E1-(log10(c*c2/(c1^2*c3))*R*(273+T)*2.3/(2*F))
13 //RESULTS
14 printf (' potential of the cell = %.3 f v',E)
```

Scilab code Exa 10.7 chapter 10 example 7

```
1 clc
2 //initialisation of variables
3 R= 8.31 //J/mol K
4 T= 25 //C
5 F= 96500 //coloums
6 c= 0.02 //molar
7 c1= 0.1 //molar
8 c2= 1 //molar
9 c3= 1 //molar
10 E1= 1.486 //v
11 //CALCULATIONS
12 E= E1-R*(273+T)*2.3*log10(c*c1^2/(c2*c3))/(2*F)
13 //RESULTS
14 printf (' potential of the cell = %.3 f v', E)
```

Scilab code Exa 10.8 chapter 10 example 8

```
1 clc
2 //initialisation of variables
```

```
3 R= 8.31 //J/mol K
4 T= 25 //C
5 F= 96500 //coloums
6 c= 0.08 //molar
7 c1= 0.04 //molar
8 //CALCULATIONS
9 E= R*(T+273)*log(c/c1)/(2*F)
10 E1= 2*E
11 //RESULTS
12 printf (' potential of the cell = %.4f v',E)
13 printf (' \n potential of the cell = %.4f v',E1)
```

Thermodynamics Some Basic Concepts

Scilab code Exa 11.1 chapter 11 example 1

```
1 clc
2 //initialisation of variables
3 T = 25 //C
4 \text{ T1} = 75 //C
5 k= 6.45 //cal per mole per degree
6 k1=1.41*10^{-3} //cal per mole per degree k^{-1}
7 k2 = -8.1*10^-8 //cal per mole per degree k^-2
8 m = 14 //gms
9 \text{ M} = 28 //\text{gms}
10 //CALCULATIONS
11 Cp= k+k1*(273+T)+k2*(273+T)^2
12 Cp1= k+k1*(273+T1)+k2*(273+T1)^2
13 cp= (Cp+Cp1)/2
14 H = (m/M) * cp * (T1-T)
15 H1= (m/M)*(k*(T1-T)+(k1/2)*((273+T1)^2-(273+T)^2)+(
      k2/3) * ((273+T1) ^3 - (273+T) ^3))
16 //RESULTS
17 printf (' Heat required= %.1 f cal', H)
18 printf (' \n value of dH= \%.1 f cal', H1)
```

Scilab code Exa 11.2 chapter 11 example 2

```
1 clc
2 //initialisation of variables
3 m = 64 //gms
4 M = 32 //gms
5 T = 100 //C
6 T1 = 0 //C
7 cp = 7.05 //cal per mole per degree
8 cp1 = 5.06 //cal per mole per degree
9 //CALCULATIONS
10 H = cp*(m/M)*(T-T1)
11 E = cp1*(m/M)*(T-T1)
12 //RESULTS
13 printf (' value of dH= %. f cal', H)
14 printf (' \n value of dE= %. f cal', E)
```

Scilab code Exa 11.3 chapter 11 example 3

```
1 clc
2 //initialisation of variables
3 n= 2 //moles
4 R= 1.99 //cal er mole per degree
5 T= 80 //C
6 H1= 94.3 //cal per gram
7 M= 78 //gms per mole
8 //CALCULATIONS
9 w= n*R*(273+T)
10 H= n*M*H1
11 E= H-w
12 //RESULTS
```

```
13 printf (' value of dH= %.f cal',H)
14 printf (' \n value of dE= %.f cal',E)
```

Scilab code Exa 11.4 chapter 11 example 4

```
1 clc
 2 //initialisation of variables
3 m = 9 //gms
4 T = -10 //C
5 \text{ T1= 0 } //\text{C}
6 R= 0.5 //cal per gram per degree
7 H= 79.7 // \text{cal per gram}
8 R1= 1 //cal per gram per degree
9 T2= 100 //C
10 H1= 539.7 // cal per gm
11 R2= 8.11 //cal per gram per degree
12 M= 18 //gms
13 T3= 40 //C
14 //CALCULATIONS
15 dH = m*R*(T1-T)
16 \text{ dH1} = \text{m} * \text{H}
17 	ext{ dH2} = m*R1*(T2-T1)
18 \text{ dH3} = m*H1
19 dH4 = (m/M) *R2 * (T3 - T1)
20 	 dH5 = dH + dH1 + dH2 + dH3 + dH4
21 //RESULTS
22 printf (' value of dH= \%.1\,\mathrm{f} cal', dH5)
```

Thermodynamics Thermodynamic chemistry

Scilab code Exa 12.1 chapter 12 example 1

```
1 clc
2 //initialisation of variables
3 H= -771400 //cal
4 n= 7 //moles
5 n1= 7.5 //moles
6 T= 25 //C
7 R= 2 //cal mole per degree
8 //CALCULATIONS
9 E= H-(n-n1)*R*(273+T)
10 //RESULTS
11 printf (' difference between the heat of combustion = %. f cal', E)
```

Scilab code Exa 12.2 chapter 12 example 2

1 clc

```
2 //initialisation of variables
3 H= -94.052 //kcal
4 H1= -68.317 //kcal
5 H2= -780.98 //kcal
6 //CALCULATIONS
7 H3= 6*H+3*H1-H2
8 //RESULTS
9 printf (' Heat of formation = %.3 f kcal', H3)
```

Scilab code Exa 12.3 chapter 12 example 3

```
1 clc
2 //initialisation of variables
3 H= -94.052 //kcal
4 H1= -68.32 //kcal
5 H2= 11.718 //kcal
6 //CALCULATIONS
7 H3= 6*H+3*H1-H2
8 //RESULTS
9 printf (' heat of combustion of benzene = %.f cal', H3)
```

Scilab code Exa 12.4 chapter 12 example 4

```
1 clc
2 //initialisation of variables
3 H= -66.36 //kcal
4 H1= 12.5 //k cal
5 H2= -68.317 //kcal
6 //CALCULATIONS
7 H3= H-H1-H2
8 //RESULTS
9 printf (' heat of reaction= %.2 f cal', H3)
```

Scilab code Exa 12.5 chapter 12 example 5

```
1 clc
2 //initialisation of variables
3 T= 90 //C
4 T1= 25 //C
5 Cp= 6.9 //cal per mole per degree
6 CP1= 7.05 //cal per mole per degree
7 Cp2= 18 //cal per mole per degree
8 H= -68.37 //kcal
9 //CALCULATIONS
10 H1= H+(Cp2-Cp-0.5*Cp1)*((T-T1)/1000)
11 //RESULTS
12 printf (' heat of formation= %.2 f cal', H1)
```

Scilab code Exa 12.6 chapter 12 example 6

```
1 clc
2 //initialisation of variables
3 Cp= 2.7 //cal per mole per degree
4 CP1= 6.9 //cal per mole per degree
5 Cp2= 15.4 //cal per mole per degree
6 H= -20.24 //kcal
7 T= 200 //C
8 T1= 25 //C
9 //CALCULATIONS
10 H1= H+(Cp2-2*Cp-3*Cp1)*((T-T1)/1000)
11 //RESULTS
12 printf (' heat of formation= %.2 f cal', H1)
```

Thermodynamics Entropy and Free Energy

Scilab code Exa 13.1 chapter 13 example 1

```
1 clc
2 //initialisation of variables
3 H= 540 //cal per gram
4 m= 9 //gms
5 T= 100 //C
6 //CALCULATIONS
7 S= H*m/(273+T)
8 //RESULTS
9 printf ('Entropy change = %.2 f E.U',S)
```

Scilab code Exa 13.2 chapter 13 example 2

```
1 clc
2 //initialisation of variables
3 m= 9 //gms
4 H= 79.7 //cal per gram
```

```
5 T= 0 //C
6 //CALCULATIONS
7 S= m*H/(273+T)
8 //RESULTS
9 printf ('Entropy change = %.2 f E.U',S)
```

Scilab code Exa 13.3 chapter 13 example 3

```
1 clc
2 //initialisation of variables
3 m= 14 //gms
4 M= 28 //gms
5 R= 1.99 // cal per mole per degree
6 V= 30 //lit
7 v1= 10 //lit
8 //CALCULATIONS
9 S1= (m/M)*R*2.303*log10(V/V1)
10 //RESULTS
11 printf ('Entropy change = %.2 f E.U',S1)
```

Scilab code Exa 13.4 chapter 13 example 4

```
1 clc
2 //initialisation of variables
3 m= 14 //gms
4 M= 28 //gms
5 S= 6.94 //cal per mole
6 T= 127 //C
7 T1= 27 //C
8 S1= 4.94 //cal per mole
9 //CALCULATIONS
10 dS= (m/M)*S*log((273+T)/(273+T1))
11 dS1= (m/M)*S1*log((273+T)/(273+T1))
```

```
//RESULTS
printf ('Entropy change = %.2 f E.U', dS-0.01)
printf ('\n Entropy change = %.2 f E.U', dS1)
```

Scilab code Exa 13.5 chapter 13 example 5

```
1 clc
2 //initialisation of variables
3 Scl= 53.29 //E.U
4 Sag= 10.21 //E.U
5 Sagcl= 22.97 //E.U
6 //CALCULATIONS
7 dS= Sagcl-Sag-0.5*Scl
8 //RESULTS
9 //RESULTS
10 printf ('Entropy change = %.2f E.U',dS)
```

Scilab code Exa 13.6 chapter 13 example 6

```
1 clc
2 //initialisation of variables
3 Scl= 13.17 //E.U
4 Sag= 17.67 //E.U
5 Sagcl= 22.97 //E.U
6 //CALCULATIONS
7 dS= Scl+Sag-Sagcl
8 //RESULTS
9 printf ('Entropy change = %.2f E.U',dS)
```

Scilab code Exa 13.7 chapter 13 example 7

```
1 clc
2 //initialisation of variables
3 F1= -94260 //cal
4 F2= -56690 //cal
5 F3= -7860 //cal
6 //CALCULATIONS
7 F= 2*F1+3*F2-F3
8 //RESULTS
9 printf (' value of dF = %.f ',F)
```

Scilab code Exa 13.8 chapter 13 example 8

```
1 clc
2 //initialisation of variables
3 T= 25 //C
4 F1= -35180 //cal
5 //CALCULATIONS
6 F= F1
7 //RESULTS
8 printf (' value of dF = %.f ',F)
```

Scilab code Exa 13.9 chapter 13 example 9

```
1 clc
2 //initialisation of variables
3 F= -51180 //cal
4 T= 25 //C
5 R= 1.99 //cal/mole K
6 //CALCULATIONS
7 K= 10^(-F/(R*(273+T)*2.303))
8 //RESULTS
9 printf (' equilibrium constant = %.e',K)
```

Scilab code Exa 13.10 chapter 13 example 10

```
1 clc
2 //initialisation of variables
3 F= 18430 //cal
4 F1= -31350 //cal
5 F2= 26224 //cal
6 R= 1.99 //cal/mole K
7 T= 25 //C
8 //CALCULATIONS
9 F3= F+F1+F2
10 Ksp= 10^(-F3/(R*(273+T)*2.303))
11 //RESULTS
12 printf (' solubility product = %.1e ',Ksp)
```

Scilab code Exa 13.11 chapter 13 example 11

```
1 clc
2 //initialisation of variables
3 F= -51108 //cal
4 f= 96500 //coloumbs
5 n= 2 //moles
6 //CALCULATIONS
7 E= -F*4.184/(n*f)
8 //RESULTS
9 printf (' value of E = %.3 f v',E)
```

Scilab code Exa 13.12 chapter 13 example 12

```
1 clc
2 //initialisation of variables
3 F1= 31350 //cal
4 F2= 26224 //cal
5 F= 96500 //coloumbs
6 //CALCULATIONS
7 F3= -F1+F2
8 E= F3*4.184/F
9 //RESULTS
10 printf (' value of E = %.4f cal',E)
```

Scilab code Exa 13.13 chapter 13 example 13

```
1 clc
2 //initialisation of variables
3 T= 25 //C
4 a= 0.2 //molar
5 P= 1 //atm
6 F1= -5126 //cal
7 R= 2 //cal/mole K
8 //CALCULATIONS
9 F= F1+R*(273+T)*2.303*log10(a^2)
10 //RESULTS
11 printf (' value of F = %.f cal',F)
```

Scilab code Exa 13.14 chapter 13 example 14

```
1 clc
2 //initialisation of variables
3 T= 25 //C
4 F= 1160 //cal
5 P= 0.1 //atm
6 P1= 1 //atm
```

```
7 R= 2 //cal/mole K
8 //CALCULATIONS
9 F1= F+R*(273+T)*log(P/P1^2)
10 F2= F+R*(273+T)*log(P1/P^2)
11 //RESULTS
12 printf (' value of F = %. f cal',F1)
13 printf (' \n value of F = %. f cal',F2)
```

Scilab code Exa 13.15 chapter 13 example 15

```
1 clc
2 //initialisation of variables
3 T= 25 //C
4 H= -94.05 //kcal
5 H1= -26.42 //kcal
6 S= 51.06 //cal per degree
7 S1= -47.3 //cal per degree
8 S2= -24.5 //cal per degree
9 //CALCULATIONS
10 dH= (H-H1)*1000
11 dS= S+S1+S2
12 F= dH-(273+T)*dS
13 //RESULTS
14 printf (' value of F = %.f cal',F)
```

Determination of hydronium ion Concentrations

Scilab code Exa 14.1 chapter 14 example 1

```
1 clc
2 //initialisation of variables
3 E= 0.232 //v
4 R= 0.0592
5 p= 1 //atm
6 R1= 0.0296
7 P= 740 //atm
8 //CALCULATIONS
9 pH= E/R
10 pH1= (E-R1*log10(P/760))/R
11 e= pH1-pH
12 //RESULTS
13 printf (' error in pH of solution= %.3f ',e-0.002)
```

Scilab code Exa 14.2 chapter 14 example 2

```
1 clc
2 //initialisation of variables
3 e= 0.266 //v
4 R= 0.0592
5 //CALCULATIONS
6 pH= e/R
7 //RESULTS
8 printf (' pH of the unkown solution= %.2 f ',pH)
```

Scilab code Exa 14.3 chapter 14 example 3

```
1 clc
2 //initialisation of variables
3 e= 0.323 //v
4 R= 0.0592
5 c= 0.001 //molar
6 //CALCULATIONS
7 pH= (e-R*log10(c))/R
8 //RESULTS
9 printf ('pH of the unkown solution= %.2 f ',pH)
```

Scilab code Exa 14.4 chapter 14 example 4

```
1 clc
2 //initialisation of variables
3 E= 0.527 //v
4 T= 25 //C
5 R= 0.0592
6 e= -0.246 //v
7 //CALCULATIONS
8 pH= -(-E-e)/R
9 //RESULTS
10 printf (' pH of the unkown solution= %.2 f ',pH)
```

Scilab code Exa 14.5 chapter 14 example 5

```
1 clc
2 //initialisation of variables
3 E= 0.034 //v
4 E1= -0.280 //v
5 E2= -0.699 //v
6 E3= 0.0592
7 //CALCULATIONS
8 pH= (E1-E-E2)/E3
9 pH1= (E-E2+E1)/E3
10 //RESULTS
11 printf (' pH of the unkown solution= %.2 f ',pH)
12 printf (' \n pH of the unkown solution= %.2 f ',pH1)
```

Oxidation Reduction potentials

Scilab code Exa 16.1 chapter 16 example 1

```
1 clc
2 //initialisation of variables
3 x = 0.02 / m
4 y = 0.4 / m
5 R = 0.0592
6 e = -0.771 / V
7 \text{ e1} = -1.520 //v
8 n = 5 // electrons
9 z = 0.80 / m
10 z1= 0.5 //m
11 //CALCULATIONS
12 E = e - R * log 10 (x/y)
13 E1= e1-(R/n)*log10(z1*z^8/x)
14 E2= E-E1
15 //RESULTS
16 printf ('Redox potential of sample= %.3 f v',E)
17 printf (' \n Redox potential of sample= \%.3 \, \text{f} \, \text{v}',E1)
18 printf (' \n Redox potential of sample= \%.3 \, \text{f v',E2})
```

Scilab code Exa 16.2 chapter 16 example 2

```
1 clc
2 //initialisation of variables
3 E= 0.3500 //v
4 E1= -0.2788 //v
5 //CALCULATIONS
6 e= E+E1
7 //RESULTS
8 printf (' Redox potential of sample= %.4 f v',e)
```

Scilab code Exa 16.3 chapter 16 example 3

```
1 clc
2 //initialisation of variables
3 p= 60 //percent
4 x= 0.030 //v
5 E= -0.039 //v
6 //CALCULATIONS
7 V= E-x*log10((1-(p/100))/(p/100))
8 //RESULTS
9 printf (' Redox potential of sample= %.3 f v', V)
```

Speed of Reaction Catalysis

Scilab code Exa 17.1 chapter 17 example 1

```
1 clc
2 //initialisation of variables
3 t= 40 //min
4 r= 0.274
5 t1= 50 //min
6 //CALCULATIONS
7 k= 2.3*log10(1/(1-r))/t
8 R=10^( -k*t1/2.3)
9 R1= 1-R
10 //RESULTS
11 printf (' velocity constant= %.4 f min^-1',k)
12 printf (' \n fraction decomposed= %.3 f ',R1)
```

Scilab code Exa 17.3 chapter 17 example 3

```
1 clc
2 //initialisation of variables
3 t= 10 //min
```

```
4 c= 0.01 //molar
5 c1= 0.00464 //molar
6 //CALCULATIONS
7 k= (c-c1)/(c*c1*t)
8 T= 1/(k*0.01)
9 //RESULTS
10 printf (' velocity constant= %.1 f min^-1',k)
11 printf (' \n half-time period= %.1 f min',T)
```

Radiochemistry

Scilab code Exa 20.1 chapter 20 example 1

```
1 clc
2 //initialisation of variables
3 t= 4.5*10^9 //years
4 t1= 1590 //years
5 //CALCULATIONS
6 l= log10(2)/(t*0.4343)
7 l1= log10(2)/(t1*0.4343)
8 r= l1/1
9 r1= t/t1
10 //RESULTS
11 printf (' disintegration constant= %.2e yr^-1',1)
12 printf (' \n disintegration constant= %.2e yr^-1',11
    )
13 printf (' \n relative proportion= %.2e ',r)
14 printf (' \n relative proportion= %.2e ',r1)
```