Exercise 0.1 (1). *Proof.* (i) We claim that $(x^2 + 1)$ is a radical, prime and maximal ideal in $\mathbb{R}[x]$. This can be seen by noting that $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$ which is a field. Hence (x^2+1) is maximal. Suppose $f^n \in (x^2+1)$. Since x^2+1 is irreducible and $x^2 + 1 \mid f^n$, we must have $x^2 + 1 \mid f$, hence $f \in (x^2 + 1)$, so $\sqrt{(x^2+1)} = (x^2+1)$. Over $\mathbb{C}[x]$, we claim that (x^2+1) is neither prime nor maximal, but still radical. It is not prime as $x^2 + 1 = (x + i)(x - i)$ and hence also not maximal since $(x^2+1) \subset (x+i) \neq \mathbb{C}[x]$, where inequality follows from (x+i)only having polynomials of degree ≥ 1 .

Now suppose $f^n \in (x^2 + 1)$. Then $x + i, x - i \mid f^n$, hence both must divide f as they are irreducible, so $x^2 + 1 \mid f$. Thus $f \in (x^2 + 1)$, so $\sqrt{(x^2 + 1)} = (x^2 + 1)$ over $\mathbb{C}[x]$ as well.

- (ii) Since (x^2+1) is a prime ideal in $\mathbb{R}[x]$ by the previous exercise, we find by Eisenstein's criterion that $y^2 + x^2 + 1$ is irreducible in $\mathbb{R}[x][y] =: \mathbb{R}[x, y]$.
- (iii) Let $C = \{ f \in C(\mathbb{R}^2, \mathbb{R}) \mid \forall x \in \mathbb{R} : f(x, 0) = 0 \} \subset C(\mathbb{R}^2, \mathbb{R})$. We claim that C is radical, but neither prime nor maximal. To see that it is radical, suppose $g^n \in C$, so $g(x,0) \cdot \ldots \cdot g(x,0) = g^n(x,0) = 0$. Since \mathbb{R} is an integral domain, this forces g(x,0)=0, so $g\in C$. Thus $\sqrt{C}=C$. Now let $h(x) = \mathbb{1}_{>0}(x)x$ and $k(x) = \mathbb{1}_{<0}(x)x$. Then $h, k \notin C$, but $hk \in C$. Therefore, C is not prime. Since $C(\mathbb{R}^2,\mathbb{R})$ is a commutative ring and maximal ideals are prime over a commutative ring, we thus also conclude that C is not maximal.
- (iv) The ideal (5) in $\mathbb{Z}[i]$ is not prime, hence not maximal as $\mathbb{Z}[i]$ is commutative. It is not prime because 5 = (2+i)(2-i). For the radical part, if $a + bi \in \sqrt{(5)}$, then $(2+i)(2-i) \mid (a+bi)^n$, so $2+i \mid a+bi$ and $2-i \mid a+bi$ since each is irreducible, hence $5 \mid a+bi$, so $\sqrt{(5)}=(5)$.
- (v) We claim that $(n) \subset \mathbb{Z}$ is prime and maximal whenever n is a prime and not otherwise. If n is not prime, then writing n = ab for a, b > 1, we have (n) = (a)(b), so (n) is not prime, hence not maximal as \mathbb{Z} is commutative so all maximal ideals are prime ideals. If instead n is a prime, n = p, then (p) is both maximal and prime since \mathbb{Z}/p is a field.

Suppose now $m \in \sqrt{(n)}$. Then $m^k \in (n)$, so $m^k = nq$ for some $q \in \mathbb{Z}$. Suppose n is squarefree. Let $p \mid n$. Then $p \mid m^k$ and thus $p \mid m$, so $n \mid m$, hence $m \in (n)$. Conversely, if n is not squarefree, then letting $n = p^k q$ for some k > 1, we have $p^{k-1}q \in \sqrt{(n)}$ while $p^{k-1}q \notin (n)$, so (n) is not radical.

Exercise 0.2 (3). Suppose $ab \in (\mathfrak{p} + \mathfrak{q}) = \mathfrak{p} \cup \mathfrak{q}$. Write $a = \sum \alpha_i x_i$ and $b = \sum \beta_i x_i$. Then $ab = \sum_{i,j} \alpha_i \beta_j x_i x_j$ We have

$$K[x_1,\ldots,x_{n+m}]/(\mathfrak{p}+\mathfrak{q})\cong K[x_1,\ldots,x_n]/(\mathfrak{p})\oplus K[x_{n+1},\ldots,x_{n+m}]/(\mathfrak{q})$$

as can be seen by defining the map

$$\varphi \colon K\left[x_{1},\ldots,x_{n+m}\right] \to K\left[x_{1},\ldots,x_{n}\right]/\left(\mathfrak{p}\right) \oplus K\left[x_{n+1},\ldots,x_{n+m}\right]/\left(\mathfrak{q}\right)$$

by

$$\sum \alpha_i x_i \mapsto \left(\sum_{i=1}^n \alpha_i \overline{x}_i, \sum_{i=n+1}^{n+m} \alpha_i \overline{x}_i\right).$$

This is clearly a homomorphism with kernel precisely $(\mathfrak{p}+\mathfrak{q})$ since this ideal consists precisely of the sums which have a factor that consists of a part in (\mathfrak{p}) and another part in (\mathfrak{q}) . As (\mathfrak{p}) and (\mathfrak{q}) are prime, the right hand side of the isomorphism is a direct sum of integral domains which is again an integral domain.