MthStat 568/768 – Multivariate Statistical Analysis – Spring 2024

Homework 2

Due Wednesday, February 21

- 1. (a) Prove that if a random vector $\mathbf{X} \in \mathbb{R}^p$ has mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, and \mathbf{A} is a $p \times p$ constant matrix, then $E(\mathbf{X}^T \mathbf{A} \mathbf{X}) = \operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma}) + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu}$, where $\operatorname{tr}()$ denotes the trace of a matrix. (*Hint*: note that $\operatorname{tr}(\mathbf{A} \mathbf{v} \mathbf{v}^T) = \mathbf{v}^T \mathbf{A} \mathbf{v}$ for any vector \mathbf{v} .)
 - (b) Apply the previous result to the specific case of $X_1, ..., X_p$ being uncorrelated random variables with mean μ and variance σ^2 , and $\mathbf{A} = \mathbf{I} \frac{1}{p}\mathbf{J}$, where \mathbf{J} denotes the $p \times p$ matrix of ones. What does $\mathbf{X}^T \mathbf{A} \mathbf{X}$ come down to in this case?
 - (c) Repeat part (b) but now assuming that the X_j s have constant correlations, that is, $\operatorname{cov}(X_i, X_j) = \rho \sigma^2$ for some $\rho \in (-1, 1)$ when $i \neq j$.
- 2. (a) Prove that if $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $\mathbf{Z} = \boldsymbol{\Sigma}^{-1/2}(\mathbf{X} \boldsymbol{\mu}) \sim N(\mathbf{0}, \mathbf{I})$ (where $\boldsymbol{\Sigma}^{-1/2}$ denotes $(\boldsymbol{\Sigma}^{1/2})^{-1}$ and $\boldsymbol{\Sigma}^{1/2}$ is the matrix square root of $\boldsymbol{\Sigma}$).
 - (b) Find **Z** explicitly when $\mu = 0$ and

$$\mathbf{\Sigma} = \left(egin{array}{ccc} 1 & -2 & 0 \ -2 & 5 & 0 \ 0 & 0 & 2 \end{array}
ight).$$

3. Prove that if $\mathbf{X} = (X_1, X_2)$ has joint density

$$f(x_1, x_2) = \begin{cases} 2\varphi(x_1)\varphi(x_2), & \text{if } x_1 \text{ and } x_2 \text{ are both negative or both positive,} \\ 0, & \text{otherwise,} \end{cases}$$

where $\varphi(x)$ is the N(0,1) density, then the marginal densities of X_1 and X_2 are N(0,1). But is **X** multivariate Normal?