

Homework exercises set #2

Problem 1. For each of the following sequences of complex numbers $(z_n)_{n\in\mathbb{N}}$, determine whether the sequence is converging, and when it is, find its limit. Prove your answers.

- (1) $z_n = e^{i/n}$
- (2) $z_n = e^{ni\theta}$, where θ is some real number.
- (3) $z_n = \frac{1}{n} e^{ni\theta}$, where θ is some real number.
- $(4) z_n = \frac{1+ni}{n}.$
- (5) $z_n = z_0^n$, where z_0 is some complex number.
- (6) $z_n = n(1 e^{i\theta/n})$, where θ is some real number.

Problem 2. For each one of the sets $A_k \subseteq \mathbb{C}$ $(1 \le k \le 12)$ defined below, answer the following questions:

- Draw a sketch of the set A_k in the complex plane.
- Is A_k open?
- Is A_k closed?
- Is A_k compact?
- Is A_k connected?
- Is A_k simply connected? [Note: Ignore this question for now.]

Briefly explain your answers.

21:640:403 Complex variables

(1)
$$A_1 = \mathbb{C}$$

(2)
$$A_1 = \left\{ z \in \mathbb{C}^* : \frac{\pi}{6} < Arg(z) < \frac{\pi}{3} \right\}.$$

(3)
$$A_2 = \{ z \in \mathbb{C} : Im(z) > 0 \}$$

(4)
$$A_3 = \{ z \in \mathbb{C} : Im(z) \ge 0 \}$$

(5)
$$A_4 = D(i, 1)$$

(6)
$$A_5 = \overline{D(-1+i,1)}$$

(7)
$$A_6 = \{ z \in \mathbb{C} : 1 \le Re(z) \le 3, \ 0 \le Im(z) \le 2 \}$$

(8)
$$A_7 = \{ z \in \mathbb{C} : -1 \le Re(z) \le 2, Im(z) = 1 \}$$

(9)
$$A_8 = A_5 \cup A_6$$

(10)
$$A_9 = A_4 \cup A_6$$

(11)
$$A_{10} = A_5 \cup A_6 \cup A_7$$

(12)
$$A_{10} = D(0,5) - A_8$$

Problem 3. Let z_0 and z_1 be any two complex numbers. Define a map

$$\gamma: [0,1] \to \mathbb{C}$$

$$t \mapsto (1-t)z_0 + t z_1.$$

- (1) Show that γ is a continuous path from z_0 to z_1 .
- (2) Show that the image of γ is the line segment $[z_0, z_1]$.
- (3) A set $C \subseteq \mathbb{C}$ is called *convex* if it has the property that for any two points $z_0 \in \mathbb{C}$ and $z_1 \in \mathbb{C}$, the line segment $[z_0, z_1]$ is a subset of C. Prove that any convex set is connected.
- (4) Draw an example of a set which is connected but not convex.
- (5) A set $C \subseteq \mathbb{C}$ is called *star-shaped* if it has the property that there exists a point $z_0 \in \mathbb{C}$ such that for any point $z_1 \in \mathbb{C}$, the line segment $[z_0, z_1]$ is a subset of C. Prove that any star-shaped set is connected.
- (6) Draw an example of a set which is star-shaped but not convex.