Inexact SARAH for Solving Stochastic Optimization Problems

Lam M. Nguyen 1,2 · Katya Scheinberg 1 · Martin Takáč 1

 1 Lehigh University \cdot 2 IBM Thomas J. Watson Research Center

The Problem and Assumptions

The Problem:

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \mathbb{E}[f(w; \xi)] \right\}$$

 $-\xi$ is a random variable obeying some distribution

Assumptions:

- $f(w;\xi)$ is L-smooth for every realization of $\xi \exists L > 0$ such that: $\|\nabla f(w;\xi) - \nabla f(w';\xi)\| \le L\|w - w'\|, \ \forall w, w' \in \mathbb{R}^d$
- $F: \mathbb{R}^d \to \mathbb{R}$ is a μ -strongly convex, i.e., $\exists \mu > 0$ such that: $F(w) \ge F(w') + \langle \nabla F(w'), (w - w') \rangle + \frac{\mu}{2} ||w - w'||^2, \ \forall w, w' \in \mathbb{R}^d$
- $f(w; \xi)$ is convex for every realization of ξ
- We can compute unbiased gradient $\mathbb{E}[\nabla f(w_t; \xi_t)] = \nabla F(w_t)$

Finite-sum Problem:

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w) \right\}$$

Existing Complexity Results for Finite-sum

Complexity (Strongly convex) for finite-sum $(\kappa = L/\mu)$

•	•		, ,
Method	Complexity	Fixed LR	Low Storage
GD	$\mathcal{O}\left(n\kappa\log\left(1/\epsilon\right)\right)$		
SGD [6, 1]	$\mathcal{O}\left(\kappa/\epsilon ight)$	X	
SVRG [3]	$\mathcal{O}\left((n+\kappa)\log\left(1/\epsilon\right)\right)$		
SAG/SAGA [8, 2]	$] \mathcal{O}((n+\kappa)\log(1/\epsilon))$		X
SARAH [7]	$\mathcal{O}\left((n+\kappa)\log\left(1/\epsilon\right)\right)$		

SARAH vs. SVRG

- Both methods require **restarting**. Computing a full gradient for every outer loop $v_0 = \nabla F(w_0)$
- The difference is the stochastic gradient update
- SVRG: $v_t = \nabla f_{i_t}(w_t) \nabla f_{i_t}(w_0) + v_0$
- SARAH: $v_t = \nabla f_{i_t}(w_t) \nabla f_{i_t}(w_{t-1}) + v_{t-1}$

One outer loop behavior of SVRG and SARAH:

Inexact SARAH Algorithm (iSARAH)

Inexact SARAH (iSARAH):

Parameters: the learning rate $\eta > 0$ and the inner loop size m, the sample set size b.

Initialize: \tilde{w}_0 .

Iterate:

for s = 1, 2, ..., T, do

 $\tilde{w}_s = iSARAH-IN(\tilde{w}_{s-1}, \eta, m, b).$

end for Output: $\tilde{w}_{\mathcal{T}}$.

iSARAH-IN (w_0, η, m, b) :

Input: $w_0 = \tilde{w}_{s-1}$ the learning rate $\eta > 0$, the inner loop size m, the sample set size b.

Generate random variables $\{\zeta_i\}_{i=1}^b$ i.i.d.

Compute $v_0 = \frac{1}{b} \sum_{i=1}^b \nabla f(w_0; \zeta_i)$.

 $w_1 = w_0 - \eta v_0$.

Iterate:

for t = 1, ..., m - 1, do

Generate a random variable ξ_t

 $v_t = \nabla f(w_t; \xi_t) - \nabla f(w_{t-1}; \xi_t) + v_{t-1}.$

 $w_{t+1} = w_t - \eta v_t.$

end for

Set $\tilde{w} = w_t$ with t chosen uniformly at random from $\{0, 1, \ldots, m\}$

Output: \tilde{w}

Theoretical Results (Strongly Convex)

Theorem: Suppose that F is μ -strongly convex and $f(w; \xi)$ is Lsmooth and convex for every realization of ξ . Consider iSARAH with the choice of η , m, and b such that

$$\alpha = \frac{1}{\mu \eta (m+1)} + \frac{\eta L}{2 - \eta L} + \frac{4\kappa - 2}{b(2 - \eta L)} < 1.$$

(Note that $\kappa = L/\mu$.) Then, we have

$$\mathbb{E}[\|\nabla F(\tilde{w}_s)\|^2] - \Delta \le \alpha^s(\|\nabla F(\tilde{w}_0)\|^2 - \Delta),\tag{1}$$

where

$$\Delta = \frac{\delta}{1 - \alpha} \text{ and } \delta = \frac{4}{b(2 - \eta L)} \mathbb{E} \left[\|\nabla f(w_*; \xi)\|^2 \right].$$

Corollary: Let $\eta = \mathcal{O}\left(\frac{1}{L}\right)$, $m = \mathcal{O}(\kappa)$, $b = \mathcal{O}\left(\max\left\{\frac{1}{\epsilon},\kappa\right\}\right)$ and $s = \mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right)\right)$ in Theorem above. Then, the total work complexity to achieve $\mathbb{E}[\|\nabla F(\tilde{w}_s)\|^2] \leq \epsilon$ is $\mathcal{O}((\max\{\frac{1}{\epsilon},\kappa\} + \kappa)\log(\frac{1}{\epsilon}))$.

Complexity Comparisons

Strongly convex: $(\kappa = L/\mu)$

Method	Bound	Problem type
SARAH	$\mathcal{O}\left((n+\kappa)\log\left(\frac{1}{\epsilon}\right)\right)$	Finite-sum
SVRG	$\mathcal{O}\left((n+\kappa)\log\left(\frac{1}{\epsilon}\right)\right)$	Finite-sum
SCSG	$\mathcal{O}\left(\left(\min\left\{\frac{\kappa}{\epsilon},n\right\}+\kappa\right)\log\left(\frac{1}{\epsilon}\right)\right)$	Finite-sum
SCSG	$\mathcal{O}\left(\left(\frac{\kappa}{\epsilon} + \kappa\right)\log\left(\frac{1}{\epsilon}\right)\right)$	Expectation
SGD	$\mathcal{O}\left(\frac{\kappa}{\epsilon}\right)$	Expectation
iSARAH	$\mathcal{O}\left(\left(\max\left\{\frac{1}{\epsilon},\kappa\right\}+\kappa\right)\log\left(\frac{1}{\epsilon}\right)\right)$	Expectation

General convex:

Method	Bound	Problem type
SCSG	$\mathcal{O}\left(rac{1}{\epsilon^2} ight)$	Expectation
SGD	$\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$	Expectation
iSARAH (one loop)	$\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$	Expectation
iSARAH (multiple loop)	$\mathcal{O}\left(\frac{1}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$	Expectation

Nonconvex:

Method	Bound	Problem type
SCSG	$\mathcal{O}\left(\frac{1}{\epsilon^{5/3}}\right)$	Expectation
SGD	$\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$	Expectation
iSARAH (one loop)	$\mathcal{O}\left(rac{1}{\epsilon^2} ight)$	Expectation

References

- [1] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-scale Machine Learning. SIAM Review, 2018
- [2] A. Defazio, F. Bach, S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. NIPS 2014
- [3] R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. NIPS 2013.
- [4] L. Lei and M. Jordan. Less than a Single Pass: Stochastically Controlled Stochastic Gradient. AISTATS 2017
- [5] L. Lei, C. Ju, J. Chen, and M. I. Jordan. Non-convex finite-sum optimization via scsg methods. NIPS 2017
- [6] H. Robbins and S. Monro. A Stochastic Approximation Method. 1951
- [7] L. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. ICML 2017
- [8] M. Schmidt, N. Le Roux, and F. Bach. Minimizing Finite Sums with the Stochastic Average Gradient. Mathematical Programming 2017