PRACTICA N° 2 – MOVIMIENTO (MRU Y MUA)

1. OBJETIVO

- Determinar experimentalmente la velocidad de un cuerpo animado de movimiento rectilíneo uniforme.
- Determinar experimentalmente la aceleración de un cuerpo animado de movimiento rectilíneo uniformemente variado.

2. MATERIALES Y REACTIVOS

Carril de aluminio con base ajustable (2) y bloqueos de imán (2).

Carrito de aluminio (1).

Juego de Pesas (10 g). (1).

Smart Time.

Compuertas foto diodo (2).

Cables terminales monofásico (2).

Una polea ajustable (1).

3. PREALISTAMIENTO

Esta práctica no requiere alistamiento previo; los estudiantes deberán solicitar los materiales a la persona encargada del laboratorio, al inicio de la misma. Sin embargo, los alumnos adquieren el compromiso de leer y analizar la presente guía antes de ir al laboratorio; con el fin de aclarar dudas y establecer la forma en la que realizarán el trabajo en equipo.

4. CONOCIMIENTOS PREVIOS

En el movimiento rectilíneo, la trayectoria que describe el móvil es una línea recta. Algunos tipos notables de movimiento rectilíneo son:

Movimiento rectilíneo uniforme: cuando la velocidad es constante.

Movimiento rectilíneo uniformemente acelerado: cuando la aceleración es constante.

En mecánica el movimiento rectilíneo es uno de los ejemplos más sencillos de movimiento, en el que la velocidad tiene dirección constante y cuando además hay fuerza y aceleración, estas son siempre paralelas a la velocidad. Esto permite tratar el movimiento rectilíneo mediante ecuaciones escalares, sin necesidad, de usar el formalismo de vectores.

$$x = x_0 + \bar{v}t$$

$$v = v_0 + \bar{a}t$$
(2)

$$x = x + v_0 + \frac{1}{2}at^2 \tag{3}$$

5. TEST DE CONOCIMIENTOS PREVIOS

En esta sección, los estudiantes deben presentar un quiz de forma escrita, e individual del punto anterior. Las preguntas correspondientes a la evaluación de conocimientos previos; será de completa autonomía el docente y ser aplicada antes de iniciar la práctica

6. PROCEDIMIENTO 1.

Movimiento Rectilíneo Uniforme.

6.1 Realice el montaje correspondiente a la figura 1.

Figura 1. Carril de aluminio en equilibrio.

6.2 Conecte las salidas de los cables monofásicos en este orden, conecte la primera compuerta en la entrada 1 del (Smart Timer) y la segunda compuerta en la entrada 2 del (Smart Time) como lo muestra la figura 2.

Figura 2. Entradas del Smart Timer

- 6.3 Conecte el Smart Timer a la corriente al igual que el Control Box.
- 6.4 Encienda el Smart Timer y seleccione para la medición correspondiente.
- 6.5 Para este laboratorio mediremos el tiempo
- 6.6 Oprima el botón rojo una vez y aparecerá Time
- 6.7 Luego oprima el botón azul tres veces y aparecerá (Two Gates)
- 6.8 Luego oprima el botón negro para dar inicio a la medición.

- 6.9 Tome el registro de tiempo ubíquelo en la tabla 1,
- 6.10 Repita este procedimiento 4 veces y saque el promedio del tiempo
- 6.11 Mida la distancia que recorre el carro entre las compuertas y regístrela en la tabla 1

Tabla 1

t(s)		x(m)
t ₁ t ₂ t ₃ t ₄	Promedio $\bar{t} = \frac{(t_1 + t_2 + t_3 + t_4)}{4}$ $\bar{t} =$	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	

7. PROCEDIMIENTO 2.

Movimiento uniforme acelerado.

7.1 Realice el montaje correspondiente a la figura 2.

Figura 2. Carril de aluminio en equilibrio, con polea en el fina y un portamuestra con una masa de 10 g.

- 7.2 Luego oprima el botón negro del Smart time y oprima el **start** para dar inicio a la medición.
- 7.3 Tome el registro de tiempo ubíquelo en la tabla 2.
- 7.4 Repita este procedimiento 4 veces y saque el promedio del tiempo.
- 7.5 Mida la distancia que recorre el carro entre las compuertas y regístrela en la tabla 2.

Tabla 2

t(s)		x(m)
$\begin{array}{ c c }\hline t_1\\\hline t_2\\\hline t_3\\\hline t_4\\\hline \end{array}$	Promedio $ \bar{t} = \frac{(t_1 + t_2 + t_3 + t_4)}{4} $ $ \bar{t} =$	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	
t ₁ t ₂ t ₃ t ₄	Promedio \bar{t} =	
t ₁ t ₂	Promedio \bar{t} =	

t ₃ t ₄		
	Promedio \bar{t} =	
$egin{array}{c} t_1 \\ t_2 \\ t_3 \\ t_4 \\ \end{array}$	Promedio \bar{t} =	

8. PREGUNTAS E INFORME

Elabore un informe de laboratorio donde responda las siguientes preguntas:

- 8.1 Calcule la velocidad promedio, con los datos obtenido en la tabla 1.
- 8.2 Grafique los datos obtenidos en la tabla 1 y determine la velocidad por medio de la regresión lineal (grafique **x vs t**).
- 8.3 Calcule la aceleración promedio con los datos obtenido en la tabla 2.
- 8.4 Grafique los datos obtenidos en la tabla 2 y determine la aceleración por medio de la regresión lineal (grafique x vs t^2).

9. BIBLIOGRAFIA RECOMENDADA

- 9.1 Guías de experimentación física I, Universidad del valle (Diego Peña L, Orlando Zúñiga E)
- 9.2 Guías Pasco, Discover freefall system manual ME 9889
- 9.3 Smart timer manual ME 9830.