

X3-Class HiPerFET™ **Power MOSFET**

IXFP60N25X3M

(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 150°C	250	V	
V _{DGR}	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$ to $150^{\circ}\mathrm{C}$, $R_{_{\mathrm{GS}}} = 1\mathrm{M}\Omega$	250	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	$T_{\rm C} = 25$ °C, Limited by $T_{\rm JM}$	60	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	210	Α	
I _A	T _C = 25°C	30	A	
E _{as}	$T_c = 25$ °C	700	mJ	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	20	V/ns	
P_{D}	T _C = 25°C	36	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
V _{ISOL}	50/60 Hz, 1 Minute	2500	V~	
M _d	Mounting Torque	1.13 / 10	Nm/lb.in	
Weight		2.5	g	

		teristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	250			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1.5 \text{mA}$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 500	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		19	23	mΩ

= 250V60A $23m\Omega$

G = Gate D = DrainS = Source

Features

- International Standard Package
- Plastic Overmolded Tab
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- 2500V~ Electrical Isolation
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

OVERMOLDED TO-220

0

(IXFP...M)

0 -

ØР

Q

.121

.126

.129

.134

3.08

3.28

3.40

Symbol	Test Conditions		Characteristic Values			
$(T_J = 25^{\circ}C, U)$	nless Otherwise Specified)	Min.	Тур.	Max		
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	30	50	S		
R_{Gi}	Gate Input Resistance		1.9	Ω		
C _{iss}			3610	pF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		645	pF		
C _{rss}			2	pF		
	Effective Output Capacitance					
$C_{o(er)}$	Energy related $\bigvee_{GS} = 0V$		260	pF		
$C_{o(tr)}$	Time related $\int_{DS} V_{DS} = 0.8 \cdot V_{DSS}$		955	pF		
t _{d(on)}	Resistive Switching Times		18	ns		
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		10	ns		
t _{d(off)}	20 20 2		62	ns		
t _f	$R_{\rm G} = 5\Omega$ (External)		7	ns		
$Q_{g(on)}$			50	nC		
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		15	nC		
Q _{gd}			17	nC		
R _{thJC}				3.5 °C/W		
R _{thCS}			0.50	°C/W		

1 - Gate Terminals: 2 - Drain 3 - Source INCHES MILLIMETERS SYM MIN MAX MIN MAX .177 4.50 4.90 .193 Α .092 .108 2.34 2.74 A1 2.96 Α2 .101 .117 2.56 .028 .035 0.70 0.90 b .050 .058 1.27 1.47 b1 .018 .024 0.45 0.60 .633 16.07 D .617 15.67 Ε .392 .408 9.96 10.36 2.54 BSC е .100 BSC 6.48 Н 6.88 .499 12.68 13.28 .119 .135 3.03 3.43 | 1

Source-Drain Diode

		Chara Min.	cteristic Typ.	C Values Max		
I _s	$V_{GS} = 0V$			60	Α	
SM	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			240	Α	
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V	
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 30A$, -di/dt = 100A/ μ s $V_R = 100V$		95 380 8		ns nC A	

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

I_D - Amperes

© 2019 IXYS CORPORATION, All Rights Reserved

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Forward-Bias Safe Operating Area

Fig. 14. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.