UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN

Base de Datos II

Manual de cuenta GitHub

AUTOR Chuquiyauri

Lagunas Albert

Jeankarlo

DOCENTE

RAUL FERNANDEZ, Bejarano

CICLO

V

HUANCAYO – PERÚ – 2025

Cuaadro compárativo

• Cuadro Comparativo de Bases de Datos

Característica	PostgreSQL (Relacional/Objet o-Relacional)	MongoDB (NoSQL - Documentos)	ArangoDB (NoSQL - Multi-Modelo Nativo)
Modelo de Datos	Relacional (tablas con filas y columnas) y Objeto-Relacional. Soporta datos estructurados y semiestructurados (JSON/JSONB).	Documentos flexibles (BSON, similar a JSON), organizados en colecciones. Esquema dinámico.	Multi-Modelo nativo: Documentos, Grafos (Graphs) y Clave/Valor.
Lenguaje de Consulta	SQL (Structured Query Language) y su variante Postgres SQL.	MQL (MongoDB Query Language). Soporta consultas ad-hoc, agregación y geoespaciales.	AQL (ArangoDB Query Language). Un único lenguaje declarativo para los tres modelos.
Escalabilida d Principal	Principalmente Vertical (aumentar recursos del servidor). También soporta replicación y fragmentación (sharding) con configuración adicional.	Horizontal nativa mediante sharding (particionamiento automático de datos en múltiples servidores).	Horizontal en los tres modelos de datos. Fácilmente escalable mediante clústeres.
Transaccion es / Consistencia	Soporte ACID completo (Atomicidad, Consistencia, Aislamiento, Durabilidad) a nivel de fila. Consistencia Fuerte.	Transacciones multi- documento con soporte ACID (introducido en versiones recientes). Suele usar Consistencia Eventual para replicación.	Soporte ACID en instancia única y operaciones atómicas a nivel de documento en clúster. Consistencia Fuerte.

Característica	PostgreSQL (Relacional/Objet o-Relacional)	MongoDB (NoSQL - Documentos)	ArangoDB (NoSQL - Multi-Modelo Nativo)
Ventajas Clave	Robustez, madurez, integridad de datos, cumplimiento estricto de SQL, tipos de datos avanzados, extensibilidad (extensiones y lenguajes procedimentales).	Flexibilidad de esquema, desarrollo ágil, alto rendimiento en inserciones/actualizacion es masivas, escalabilidad horizontal sencilla.	Consolidación de múltiples modelos de datos, rendimiento al combinar modelos en una sola consulta, reduce la complejidad operativa (un solo sistema).
Limitaciones	Curva de aprendizaje más alta que MySQL. Puede ser más lento que NoSQL en operaciones de lectura/escritura simples de alta frecuencia. Escalabilidad horizontal más compleja.	Manejo menos eficiente de relaciones complejas (sin <i>JOINs</i> relacionales nativos). Mayor consumo de memoria (debido al modelo de documento autocontenido).	Curva de aprendizaje de AQL y la lógica multimodelo. Comunidad y herramientas más pequeñas en comparación con PostgreSQL y MongoDB.
Escenarios de Uso Típicos	Sistemas ERP/CRM, aplicaciones que requieren alta integridad de datos (banca, finanzas), análisis de datos complejos (BI), sistemas GIS (datos geoespaciales).	Catálogos de productos (e-commerce), Sistemas de Gestión de Contenidos (CMS), aplicaciones de IoT (Internet de las cosas), Big Data, prototipado rápido.	Sistemas de recomendació n (grafos), gestión de identidades y accesos, gestión de conocimiento (documentos y grafos), aplicaciones con requerimientos de datos muy diversos.