q-Metric	Data	Stat	Formula (Eq. $\#$)
standard (Eq. 1)	$\mathcal{N}(0,1)$	mean	$\left(\frac{2^q \Gamma\left(\frac{q+1}{2}\right) p}{\sqrt{\pi}}\right)^{1/q} \tag{30}$
	$\mathcal{N}(0,1)$	variance	$\frac{4^q p}{q^2 \left(\frac{2^q \Gamma\left(\frac{1}{2}q + \frac{1}{2}\right)}{\sqrt{\pi}}p\right)^{2\left(1 - \frac{1}{q}\right)}} \left[\frac{\Gamma\left(q + \frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^2\left(\frac{1}{2}q + \frac{1}{2}\right)}{\pi}\right] (30)$
	$\mathcal{U}(0,1)$	mean	$\left(\frac{2p}{(q+2)(q+1)}\right)^{1/q} \tag{40}$
	$\mathcal{U}(0,1)$	variance	$\frac{p}{q^2 \left(\frac{2p}{(q+2)(q+1)}\right)^{2\left(1-\frac{1}{q}\right)}} \left[\frac{1}{(q+1)(2q+1)} - \left(\frac{2}{(q+2)(q+1)}\right)^2 \right] $ (40)
max-min normalized (Eq. 58)	$\mathcal{N}(0,1)$	mean	$\frac{\mu_{D^{(q)}_{ij}}}{2\mu_{\max}^{(1)}(m)} \textbf{(92)}$ where $\mu_{D^{(q)}_{ij}}$ and $\mu_{\max}^{(1)}(m)$ are given by Eqs. 30 and 86, respectively.
	$\mathcal{N}(0,1)$	variance	$\frac{6 \text{log}(m) \sigma_{D_{ij}^{(q)}}^2}{\pi^2 + 24 \big[\mu_{\text{max}}^{(1)}(m)\big]^2 \text{log}(m)} \textbf{(92)}$ where $\sigma_{D_{ij}^{(q)}}^2$ and $\mu_{\text{max}}^{(1)}(m)$ are given by Eqs. 30 and 86, respectively.
	$\mathcal{U}(0,1)$	mean	$\frac{(m+1)\mu_{D_{ij}^{(q)}}}{m-1} \textbf{(100)}$ where $\mu_{D_{ij}^{(q)}}$ is given by Eq. 40
	$\mathcal{U}(0,1)$	variance	$\frac{(m+2)(m+1)^2\sigma_{D_{ij}^{(q)}}^2}{m^3-m+2} \textbf{(100)}$ where $\sigma_{D_{ij}^{(q)}}^2$ is given by Eq. 40