Even Reflection Case:

a0 =
$$\frac{2}{\pi}$$
 Integrate [x^2, {x, 0, π }]
$$\frac{2\pi^2}{3}$$
 an = $\frac{2}{\pi}$ Refine [$\frac{2}{\pi}$ Integrate [x^2 * Cos[n * x], {x, 0, π }], Element[n, Integers]]
$$\frac{8(-1)^n}{n^2\pi}$$

Odd Reflection Case:

bn = Refine
$$\left[\frac{2}{\pi} \operatorname{Integrate}\left[x^2 * \operatorname{Sin}[n * x], \{x, 0, \pi\}\right], \operatorname{Element}[n, \operatorname{Integers}]\right]$$

$$\frac{2\left(-2 + (-1)^n \left(2 - n^2 \pi^2\right)\right)}{n^3 \pi}$$

Identity Shift Case:

```
a0 = \frac{1}{\pi} Integrate [x^2, {x, 0, \pi}] + \frac{1}{\pi} Integrate [(x+\pi)^2, {x, -\pi, 0}] 

\frac{2\pi^2}{3}

an = Simplify [\frac{1}{\pi} Refine [Integrate [x^2 * Cos[n * x], {x, 0, \pi}] + Integrate [(x+\pi)^2 * Cos[n * x], {x, -\pi, 0}], Element [n, Integers]]] 

\frac{2(1+(-1)^n)}{n^2}

bn = Simplify [\frac{1}{\pi} Refine [Integrate [x^2 * Sin[n * x], {x, 0, \pi}] + Integrate [(x+\pi)^2 * Sin[n * x], {x, -\pi, 0}], Element [n, Integers]]] 

-\frac{(1+(-1)^n)\pi}{n}
```