

Machine Learning in Science Colloquium, 27th May 2020

Artificial Neural Network For Preliminary Multiple NEA Rendezvous Mission Using Low Thrust

Giulia Viavattene

- 1. Introduction
- 2. Neural Network Design
- 3. Sequence Search
- 4. Sequence Optimisation
- 5. Optimised NEA Sequences
- 6. Conclusions



# **Artificial Neural Network For**

Multiple NEA Rendezvous Mission Using Low Thrust

#### Near-Earth asteroids

- Science
- Earth protection
- Resource exploitation
- Reduced cost per transfer
- Increased range of possibilities to visit NEAs of interest
- High energy interplanetary missions
- Less propellant required



# Artificial Neural Network For Multiple NEA Rendezvous Mission Using Low Thrust



# Introduction

Space Exploration and Technology Group



Identify
the best sequences
of asteroids

Solution to the optimisation problem

#### Multiple NEA rendezvous mission

#### Large combinatorial part Selection of the asteroid sequences

#### Continuous part

Solution of optimal control problem (OCP)





Quick estimation of the cost  $\Delta V$  and time of flight (TOF) of a transfer between NEAs



**Artificial Neural Network** 





 $\rightarrow$  Define  $w_{jk}^l$  and  $b_j^l$  so that MSE is minimised

**TRAINING** 

$$MSE = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{y}_i - \mathbf{t}_i||$$

# Earth Orbit NEA Database NEA Database 1 0 x [AU] 2 3 4 y [AU]

#### TRAINING DATABASE

 $\rightarrow$  Collection of  $(\mathbf{x}, \mathbf{t})_i$  with  $i \in [1, N]$ 

→ Shape-based method

MSE: Mean-Squared Error SEP: Solar Electric Propulsion

departure and arrival orbits

# **Architecture & Parameter Tuning**

1) NETWORK INPUT:

Classical Orbital Elements
Equinoctial Elements
Modified Equinoctial Elements
Cartesian Coordinates
Delaunay Elements
Eccentricity and angular momentum vector

|           | Correlation          | Validation-Set Error |  |  |
|-----------|----------------------|----------------------|--|--|
| COE       | 0.855 0.530          |                      |  |  |
| EE        | 0.856                | 0.487                |  |  |
| MEE       | 0.925                | 0.236                |  |  |
| Cartesian | 0.551 0.761          |                      |  |  |
| Delaunay  | Delaunay 0.694 0.862 |                      |  |  |
| eH        | 0.908                | 0.221                |  |  |

Best Performance:

R = 0.9732

MSE = 0.1211

#### 2) STRUCTURE:

- Learning algorithm
- Activation function
- Gradient constant
- Decrease factor
- Dataset division



### Tree-search method





- → Obtain the optimal flight trajectory and control history
- State vector:  $\mathbf{x} = (p, f, g, h, k, L, m)$
- Control vector:  $\boldsymbol{u} = \boldsymbol{N} = (N_r, N_\theta, N_h)$



Solar Electric Propulsion (SEP)

$$a = \frac{T_{max}}{m} N$$



- Electric power by onboard solar arrays
- Use 10 times less propellant





- Radiation pressure
- No propellant

- → Obtain the optimal flight trajectory and control history
- State vector:  $\mathbf{x} = (p, f, g, h, k, L, m)$
- Control vector:  $\mathbf{u} = \mathbf{N} = (N_r, N_\theta, N_h)$

Dynamics: 
$$\dot{x}(t) = A(x)a + b(x)$$

Solar Electric Propulsion (SEP)

$$a = \frac{T_{max}}{m}N$$

Solar Sailing (SS)

$$\boldsymbol{a} = a_c \left(\frac{r_{\oplus}}{r}\right)^2 \cos^2 \alpha \; \widehat{\boldsymbol{N}}$$

→ Optimal Control Problem:

determine  $oldsymbol{u}$  so that propellant mass expenditure (or TOF for SS) is minimized.

- 1. Dynamic constraint
- 2. Path constraint:  $0 \le ||N|| \le 1$  for SEP

$$\|\widehat{N}\| = 1$$
 for SS



James Watt School of Engineering

Space Exploration and Technology Group

**SEP**:  $I_{sp}$  = 3000 s,  $a_{max}$  = 0.2 mm/ $s^2$ 

Total TOF = 4292 days (11.7 years)

Total  $\Delta V = 51.95 \text{ km/s}$ 

**SS**:  $a_c$  = 0.3 mm/ $s^2$ 

Total TOF = 4406 days (12.1 years)



142 days more than SEP, but zero propellant

| Transfer                | Stay Time [days] | Departure    | Arrival      | TOF [days]   | $\Delta V$ [km/s] |
|-------------------------|------------------|--------------|--------------|--------------|-------------------|
| Earth                   | ===              |              |              | 500 C 1000   | WARN 0.000        |
| $\downarrow$            |                  | 2035/01/01   | 2036/11/15   | 684<br>(553) | 7.8<br>(7.04)     |
| V                       |                  | • 2035/01/01 | • 2037/03/12 | • 801        | • -               |
| 2011 AM24*              | 196<br>• 158     |              |              |              |                   |
| $\Downarrow$            |                  | 2037/05/30   | 2039/07/30   | 791<br>(675) | 8.05<br>(6.9)     |
|                         |                  | • 2037/08/17 | • 2039/11/10 | • 815        | • -               |
| 2003 MM                 | 83<br>• 114      |              |              |              |                   |
| $\downarrow$            |                  | 2039/10/21   | 2040/12/25   | 431<br>(414) | 6.11<br>(6.25)    |
|                         |                  | • 2040/03/03 | • 2041/04/27 | • 420        | • -               |
| 2006 SF6                | 134<br>• 184     |              |              |              |                   |
| $\downarrow$            |                  | 2041/05/08   | 2043/04/15   | 707<br>(524) | 9.04<br>(8.28)    |
| V                       |                  | • 2041/10/28 | • 2044/04/28 | • 913        | • -               |
| 2008 YT30               | 271<br>• 110     |              |              |              |                   |
| $\downarrow$            |                  | 2044/01/11   | 2045/05/11   | 486<br>(503) | 6.92<br>(5.24)    |
|                         |                  | • 2044/08/16 | • 2045/11/21 | • 462        | • -               |
| 1999 FA                 | 68<br>• 45       |              |              |              |                   |
| $\downarrow \downarrow$ |                  | 2045/07/18   | 2046/10/02   | 441<br>(502) | 6.21<br>(4.67)    |
| •                       |                  | • 2046/01/05 | • 2047/01/24 | • 384        | • -               |
| 2019 FU2**              | <del></del> 0    |              |              |              |                   |

Results using solar sailing

<sup>(.)</sup> ANN results

- ✓ ANN can provide a quick estimation of the cost of a transfer
- ✓ ANN architecture and parameters can be optimised for this application

# ANN vs. Optimisation

- Sequence search algorithm using ANN results
   to be 25 times faster compared to others methods\*
- Difference in TOF and ΔV generally limited
- Average percentage error for ΔV and TOF < 10 %</li>



27/05/2020 Giulia Viavattene 14

<sup>\*</sup>A. Peloni, M. Ceriotti, and B. Dachwald. Solar-Sail Trajectory Design for a Multiple Near-Earth-Asteroid Rendezvous Mission. Journal of Guidance, Control, and Dynamics, 39(12):2712–2724, Sep 2016

# Any questions?



James Watt School of Engineering

SET Presentation, 13<sup>th</sup> May 2020

# Thank you!

Giulia Viavattene g.viavattene.1@research.gla.ac.uk