A

Apr 18, 2022

• Purification of cytosolic fraction and quantification of mtDNA by qPCR

Will Hancock-Cerutti^{1,2,3}, Zheng Wu^{4,5}, Gerald S. Shadel⁵, Pietro De Camilli^{1,3}

¹Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Ce Ilular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

²Interdisciplinary Neuroscience Program and MD-PhD Program, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

³Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20 815:

⁴Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

⁵Salk Institute for Biological Studies, La Jolla, CA, USA

dx.doi.org/10.17504/protocols.io.14egnz12yg5d/v1

William Hancock-Cerutti

This protocol describes the purification of a cytosolic fraction depleted of membrane from cultured cells, and the quantification of mitochondrial DNA (mtDNA) in this fraction by qPCR.

dxwwbkjz7.pdf

DOI

dx.doi.org/10.17504/protocols.io.14egnz12yg5d/v1

Will Hancock-Cerutti, Zheng Wu, Gerald S. Shadel, Pietro De Camilli 2022. Purification of cytosolic fraction and quantification of mtDNA by qPCR. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.14egnz12yg5d/v1

Mitochondria DNA (mtDNA), Cytosol fractionation, qPCR, ASAPCRN

_____ protocol,

Jul 08, 2021

Apr 18, 2022

1

Citation: Will Hancock-Cerutti, Zheng Wu, Gerald S. Shadel, Pietro De Camilli Purification of cytosolic fraction and quantification of mtDNA by qPCR https://dx.doi.org/10.17504/protocols.io.14egnz12yq5d/v1

Jul 08, 2021 Urmilas

Jul 14, 2021 William Hancock-Cerutti

51399

Solutions to prepare:

DMEM solution:

Α	В
FBS	10%
Penicillin	100 U/ml
Streptomycin	100 mg/ml
L-glutamine	2 mM

Cytoplasmic buffer:

Α	В
NaCl	150 mM
HEPES	50 mM
Digitonin, pH 7.4	1 mg/mL

Lysis buffer:

Α	В
NaCl	150 mM
HEPES	50 mM
Digitonin, pH 7.4	1 mg/mL
SDS supplemented with Protease Inhibitor Cocktail (Roche)	1%

Cell culture and purification of cytosolic fraction

- 1 Plate HeLa cells in DMEM 15 cm plates (3.5 x 10⁶ cells per plate).
- 2 The following day, prepare cytosolic buffer with fresh digitonin.
- 3 Prepare lysis buffer.

5m

Trypsinize cells and centrifuge at **31500 rpm** for **400:05:00** at **22 °C**.

5 Resuspend cells in PBS and count cells.

6

5m

Collect the same number of cells from each genotype (5 x 10^6) and centrifuge at \$1500 rpm for \$00:05:00 at \$22 °C.

7 Resuspend cells in $\blacksquare 1$ mL PBS and transfer $\blacksquare 50$ μ L to a prechilled Eppendorf another (WCE). Keep & 0n ice .

8

- 9 Remove supernatant and resuspend pellet in **300 μL** cytosolic buffer.
- 10 Rotate for **© 00:10:00** at **§ 4 °C**.

10m

11 [6

3m

Centrifuge extract at $\$980 \times g$ for \$00:03:00 at \$4°C. Transfer supernatant to new Eppendorf tube and save pellet for analysis (Pel).

10m

12

Centrifuge supernatant at **317000 x g** for **00:10:00** at **4 °C**.

- 13 Collect supernatant (Cyt).
- 14 Purify DNA from WCE and Cyt fractions using DNeasy Kit (Qiagen).
- 15 Measure DNA concentration and dilute samples 1:10.

qPCR

- 16 Combine **□10 μL** SYBR Green Master Mix (BioRad) with **□6.78 μL** Sterile Water (American Bio) per sample.
- 17

Combine $\Box 16.78~\mu L$ diluted SYBR Green Master Mix with $\Box 0.61~\mu L$ each of [M]10 Micromolar (μM) forward and reverse primers per sample. Pipette this mixture into wells of 96-well qPCR plate. Perform at least two technical replicates for each sample.

18

Pipette 2 µL of diluted DNA from step 15 in well with SYBR Green Master Mix.

- 19 Cover plate with Optical Adhesive Covers (Applied Biosystems).
- 20

Spin down plate in table top centrifuge.

21

Run qPCR in CFX96 Real-Time System (BioRad) using the following protocol:

Α	В	С
95 °C	3 min	
95 °C	10 sec	Repeat 39x
55 °C	10 sec	
72°C	30 sec	
95 °C	10 sec	
65 °C	5 sec	
95 °C	5 sec	

Data analysis

- 22 Subtract the nuclear gene (hB2M) mean threshhold cycle (Ct) values from WCE samples from mtDNA amplicon of interest mean Ct values from Cyt samples to calculate Δ Ct.
- 23 Subtract the ΔCt of the control sample from each sample ΔCt to calculate the $\Delta \Delta Ct$ value.
- 24 Calculate relative expression using the $2^{-\Delta\Delta Ct}$ method.
- 25 WT mtDNA abundance was given a value of 1.