Discrete Structures

Modeling Computation

Languages

Σ: The set of alphabets

 Σ^* : The set of all words on Σ

1: The word with length zero.

Language: Any $L \subset \Sigma^*$

Example: English Language (any sentence can be seen as a word), C++ (any code can be seen as a word, although it can be very large), $L = \{a^n b^n : n \ge 0\}$ over $\Sigma = \{a, b\}$, and $L = \{0,00,00000\}$ over $\Sigma = \{0\}$

The set of all languages is uncountable as it is the power set of Σ^* .

Languages

The main questions:

- How to represent a language L? For instance, C++ is a complicated language. It is impossible to show the set C++ by its elements (codes).
- How to detect a give word $w \in L$? Assume you are give a code in C++ and you are asked to check whether the code satisfies all syntaxes of C++ or not?

Problems as Languages

Problem: Given a graph G. Is it possible to color the vertices with 3 colors s.t. every two adjacent vertices have different colors.

Language: Let $L = \{$ all 3-colorable graphs $\}$. Now for the given graph G, we have to detect whether $G \in L$.

Problem: Given a positive integer number p. detect whether p is a prime number or not.

Language: Let $L = \{2,3,5,7,11,...\}$. For a given p, detect whether $p \in L$.

Representing Languages

Several tools (machines) have been defined to help us to represent our desired languages like

- Automata
- Regular expressions
- Grammars
- Turning machines

The power of these machines are different

- A language may be possible to be represented by one machine while not possible to be defined with another machine.
- Detecting $w \in L$ is easier in one machine than another machine.

Automata

A finite-state automaton is a 5-tuple $M = (S \Sigma, f, s_0, F)$

- S: states
- Σ: alphabets
- s_0 : the initial or start state
- F: final states or accepting states
- $f: S \times \Sigma \to S$: a transition function

	f	
	Input	
State	0	1
<i>s</i> ₀	s_0	s_1
s_1	s_0	s_2
s_2	s_0	s_0
\$3	s_2	s_1

Language of an Automaton

Definition:

- $f(s,\lambda) = s$
- $f(s,xa) = f(f(s,x),a), a \in \Sigma, x \in \Sigma^*$

Definition:

- A string x is said to be recognized or accepted by M iff $f(s_0, x) \in F$.
- L(M) is the set of strings recognized by M.
- Two finite-state automata are equivalent if they recognize the same language.

Language of an Automaton

Examples:

- $L(M_1) = \{1^n : n \ge 0\}$
- $L(M_2) = \{1,01\}$
- $L(M_3) = \{0^n, 0^n 10x : n \ge 0, x \in \Sigma^*\}$

 M_3

 M_2

Constructing Automata

Problems:

- (a) The set of bit strings that begin with two Os
- (b) The set of bit strings that contain two consecutive Os
- (c) The set of bit strings that do not contain two consecutive Os

Constructing Automata

Problems:

- (a) The set of bit strings that begin with two Os
- (b) The set of bit strings that contain two consecutive Os
- (c) The set of bit strings that do not contain two consecutive Os

Pumping Lemma

Problem: Show that there is not any automaton whose language is $\{0^n1^n\}$

- Assume there is such an automaton M.
- Let N be a number greater than #states
- When we feed 0^N into M, we get into a cycle
- This shows $0^i 0^{k(j-i)} 0^{N-j} 1^N$ will be accepted for any k while $i + k(j-i) + N j \neq N$ for k > 1

Pumping Lemma

Theorem: Let L be the language of a finite-state automaton. There exists a number N such that any string w in L with length at least N can be written as w = xyz satisfying the following condition:

- $|y| \ge 1$
- $|xy| \leq N$
- $\forall n \ge 0 : xy^n z \in L$

Nondeterministic Automata

The definition of a nondeterministic automaton is similar to that of a deterministic automaton except in the definition of its transition function which is

• $f: S \times \Sigma \to P(S)$

	f	
	Input	
State	0	1
<i>s</i> ₀	s_0, s_1	<i>S</i> ₃
s_1	s_0	s_1, s_3
s_2		s_0, s_2
\$3	s_0, s_1, s_2	s_1

Nondeterministic Automata

Definition: The nondeterministic automaton M accept or recognize a string x if there is a final state in the set of all states that can be obtained from s_0 using x.

Example: The language of the following NDA is $\{0^n, 0^n01, 0^n11: n \ge 0\}$

	f	
	Input	
State	0	1
s_0	s_0, s_2	s_1
s_1	S ₃	S ₄
s_2		<i>S</i> ₄
<i>s</i> ₃	S ₃	
<i>S</i> ₄	<i>s</i> ₃	<i>S</i> ₃

NDA to DA

Theorem: If a language L is recognized by a NDA M_0 , then L is recognized by a DA M_1 .

- Each state in M_1 will be made up of a set of states in M_0 .
- The input set of M_1 is the same as the input set of M_0
- The start state of M_1 is $\{s_0\}$
- Given a state $\{s_{i_1}, ..., s_{i_k}\}$ of M_1 , the input symbol x takes this state to the union of the sets $f(s_{i_1}, x), ..., f(s_{i_k}, x)$.
- The final states of M_1 are those sets that contain a final state of M_0 .
- There are as many as 2^n states in the DA, where n is #states in NDA.

NDA to DA

Definition: Regular expressions over alphabet Σ are defined recursively by:

- The symbol Ø is a regular expression
- The symbol λ is a regular expression
- The symbol x is a regular expression whenever $x \in \Sigma$
- The symbols (AB), $(A \cup B)$ and A^* are regular expressions whenever A and B are regular expressions

Each regular expression represent a set specified by these rules:

- Ø represents the empty set.
- λ represents the set $\{\lambda\}$
- *x* represents the set {*x*}
- (AB) represents the concatenation of the sets represented by A and by B
- $(A \cup B)$ represents the union of the sets represented by A and by B
- A^* represents the closure of the set represented by A, that is, $A^* = \{xa: x \in A^*, a \in A\}$

Definition: Sets represented by regular expressions are called regular sets.

Problem: What are the strings in the regular sets specified by the regular expressions $10^*, (10)^*, 0 \cup 01, 0(0 \cup 1)^*$ and $(0^*1)^*$

Expression	Strings
10*	a 1 followed by any number of 0s (including no zeros)
(10)*	any number of copies of 10 (including the null string)
0 ∪ 01	the string 0 or the string 01
0(0 ∪ 1)*	any string beginning with 0
(0*1)*	any string not ending with 0

- Problem: Find a regular expression that specifies each of these sets:
- (a) The set of bit strings with even length
- (b) The set of bit strings ending with a 0 and not containing 11
- (c) The set of bit strings containing and odd number of Os

Solution:

- (a) $(00 \cup 01 \cup 10 \cup 11)^*$
- (b) $(0 \cup 10)^*(0 \cup 10)$
- (c) 1*01*(01*01*)*

Kleene Theorem

Theorem: A set is regular iff it is recognized by a finitestate automaton

Problem: Find the regular expression corresponding to the following automaton.

Solution:

- Remove s_1
- $(1 \cup 01)^*00(0 \cup 1)^*$

Definition: A grammar G = (V, T, S, P) consists of

- A vocabulary V
- A subset T of V (called terminal elements or alphabets, and usually denoted by lower case letters)
- A start symbol S
- A finite set of productions P of form $x \to y$ where x and y are strings on V

V-T is called non-terminal symbols (usually denoted by capital letters). Each production must contain a non-terminal on its left side.

Example:

- $V = \{a, b, A, B, S\}$
- $T = \{a, b\}$ and Start symbol: S
- $P = \{S \rightarrow ABa, A \rightarrow BB, B \rightarrow ab, AB \rightarrow b\}$

Definition: Consider a grammar G = (V, T, S, P).

- Let $w_0 = lz_0r$ and $w_1 = lz_1r$ be string over V.
- If $z_0 \rightarrow z_1$ is a production in P, we say w_1 is directly derivable from w_0 , and we write $w_0 \Rightarrow w_1$
- If $w_0, w_1, ..., w_n$ are strings over V such that $w_0 \Rightarrow w_1, w_1 \Rightarrow w_2, ..., w_{n-1} \Rightarrow w_n$, we say that w_n is derivable from w_0 and we write $w_0 \stackrel{*}{\Rightarrow} w_n$.
- The sequence of steps used to obtain w_n from w_0 is called a derivation.

Example:

- $ABa \Rightarrow Aaba$
- $ABa \Rightarrow abababa \ (ABa \Rightarrow Aaba \Rightarrow BBaba \Rightarrow Bababa \Rightarrow abababa)$

Definition: The language of a grammar G = (V, T, S, P) is $L(G) = \{ w \in T^* : S \stackrel{*}{\Rightarrow} w \}.$

Example: For $G = \{\{S, 0, 1\}, \{0, 1\}, S, \{S \rightarrow 11S, S \rightarrow 0\}, \text{ we have } L(G) = \{0, 110, 11110, 1111110, ...\}$

Example: For $G = \{\{S, A, a, b\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow b, A \rightarrow aa\}$, we have $L(G) = \{b, aaa\}$

Example: For $G = \{\{S, 0, 1\}, \{0, 1\}, S, \{S \to 1S0, S \to \lambda\}$, we have $L(G) = \{0^n 1^n : n \ge 0\}$

Problem: Find a grammar G whose language is $\{0^n 1^m : n, m > 0\}$

- ≥ 0
- $S \rightarrow 0S$
- $S \rightarrow 1A$
- $S \rightarrow 1$
- $A \rightarrow 1A$
- $A \rightarrow 1$
- $S \rightarrow \lambda$

Problem: Find a grammar G whose language is $\{0^n 1^n 2^n : n > 0\}$

- ≥ 0
- $S \rightarrow C$
- $C \rightarrow 0CAB$
- $S \rightarrow \lambda$
- $BA \rightarrow AB$
- $0A \rightarrow 01$
- 1*A* → 11
- $1B \rightarrow 12$
- $2B \rightarrow 22$

Problem: Find a grammar G whose language is fully parenthesized math expressions only including + and \times

Consider G with the following properties

- $V = \{E, N, D, +, \times, (,), 0, 1, ..., 9\}$
- $T = \{(,), +, \times, 0, 1, ..., 9\}$
- Start symbol: E
- Productions:

$$E \to (E)|(E + E)|(E \times E)|N$$

$$N \to DN|D$$

$$D \to 0|1|...|9$$

Types of Grammars

- Type 0: Has no restriction on its productions
- Type 1 (context-sensitive grammar): Has productions of forms $w_1 \rightarrow w_2$ where $w_1 = lAr$ and $w_2 = lwr$, where A is a non-terminal l and r are strings over V and w is a non-empty string over V.
- Type 2 (context-free grammar): Has productions of forms $w_1 \rightarrow w_2$ where w_1 is a single non-terminal
- Type 3 (regular grammar): Has productions of forms $w_1 \rightarrow w_2$ with $w_1 = A$ and either $w_2 = a$ or $w_2 = aB$ where A and B are non-terminals.

Parsing

Problem: Determine whether the word *cbab* belongs to the language of the following grammar.

- $S \rightarrow AB$
- $A \rightarrow Ca$
- $B \rightarrow Ba|Cb|b$
- $C \rightarrow cb|c$

Top-down parsing: beging with the start symbol and proceed by successively applying the productions

$$S \Rightarrow AB \Rightarrow CaB \Rightarrow cbaB \Rightarrow cbab$$

There is a bottom-up parsing trying to work backward.

Programing Languages

- Programing languages usually are modeled by contextfree grammars.
- The compiler first parses your code to see whether your codes belongs to the programming language.
 Otherwise, it gives you "the syntax error".

Pumping Lemma

Theorem: Let G be a context free grammar and let L(G) be its language. There is a number N such that if z is a word in L(G) with $|z| \ge N$, then z can be written as uvwxy where $|vwx| \le N$, $|vx| \ge 1$ and $uv^iwx^iy \in L(G)$ for all nonnegative integer i,

Problem: Prove that there is no context-free grammar G with $L(G) = \{0^n 1^n 2^n : n \ge 0\}$

Turing Machine

Definition: A turing machine is a 7-tuple $M = (S, \Gamma, b, \Sigma, \delta, s_0, F)$

- S: states
- Γ: is a finite set of tape alphabet symbols
- $b \in \Gamma$: the blank symbol
- $\Sigma \subset \Gamma$: The input symbol
- $s_0 \in S$: the initial state
- $F \subset S$: the final states
- $\delta: S \times \Gamma \to S \times \Gamma \times \{L, R\}$: A partial function where L is left shift and R is right shift. If δ is not defined on the current state and the current tape symbol, then the machine halt.

Turing Machine

Definition: M accepts a string x over Σ if and only if M, starting in the initial position when x is written on the tape, halts in a final state.

Tape is infinite in both directions.

Only finitely many nonblank cells at any time.