Segmentation as Clustering

Means Shift Clustering

The concept of Mean Shift

- Each hill represents a cluster.
- Peak (mode) of the hill represents "centre" of the cluster.
- Each pixel climbs the steepest hill within its neighborhood.
- Pixel is assigned to the hill (cluster) it climbs.

The concept of Mean Shift

Compute Centroid within a window of size W. Use simple Mean of Weighted Mean.

- Declare mode and assign it a cluster label
- Repeat for all pixels!
- Features that converge to same mode belong to the same cluster.

Mean Shift algorithm

Given: Distribution of *N* pixels in feature space.

Task: Find modes (clusters) of distribution.

Clustering:

1: Set $\mathbf{m}_i = \mathbf{f}_i$ as initial mean for each pixel i.

2: Repeat the following for each mean \mathbf{m}_i :

a: Place window of size W around \mathbf{m}_i .

b: Compute centroid **m** within the window. Set $\mathbf{m}_i = \mathbf{m}$.

c: Stop if shift in mean \mathbf{m}_i is less than a threshold ε . \mathbf{m}_i is the mode.

Label all pixels that have same mode as belonging to same cluster.

K-means v/s Mean Shift

Mean Shift: Remarks

- Simple but computationally expensive
- Finds arbitrary number of clusters
- No initialization required
- Robust to outliers
- Clustering depends on Window size W