Druga domaća zadaća iz Kvantnih računala (19. siječnja 2018.)

Ime, prezime i JMBAG:

Rok za predaju zadaće: na predavanju 26. siječnja.

Uputa: Gledate li u elektronički dokument, otisnite ga. Odgovore označite (zaokružite) *na ovom papiru*, a u praznom prostoru pored ponuđenih odgovora ili na dodatnim praznim papirima, za svaki zadatak napišite *kratko obrazloženje ili računski postupak*. Točno riješeni zadaci donose po jedan bod (nema "negativnih bodova").

Notacija i terminologija: Vektori $|0\rangle=\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right)$ i $|1\rangle=\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$. Pri realizaciji qubita stanjima polarizacije fotona, vektori $|0\rangle=|x\rangle$ i $|1\rangle=|y\rangle$ odgovaraju stanjima linearne polarizacije u x-smjeru i u y-smjeru, bazu $\{|x\rangle,|y\rangle\}$ obilježavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle\pm|y\rangle)\}$ obilježavamo simbolom \bigotimes . Pri realizaciji qubita projekcijom spina čestice spinskog kvantnog broja s=1/2 na z-os uzimamo da $|0\rangle$ i $|1\rangle$ odgovarju projekcijama $\hbar/2$ i $-\hbar/2$. Računalnu bazu u prostoru stanja dvaju qubitova obilježavamo s $\{|ij\rangle=|i\rangle\otimes|j\rangle$; $i,j=0,1\}$. Pojam entanglement prevodimo sa entanglement prevodimo s

Zadaci:

1 Kolika je vjerojatnost da u kvantnom krugu

$$|0\rangle$$
 — H — Z — H — \angle

mjerenjem dobijemo vrijednost 0?

- (a) 0 točno
- (b) $\frac{1}{4}$
- (c) $\frac{1}{2}$
- (d) $\frac{1}{\sqrt{2}}$
- (e) 1
- 2 Na izlazu iz logičkog kruga

$$|0\rangle$$
 X H S H

stanje gubita je

- (a) $|0\rangle$
- (b) $|+\rangle$
- (c) $\frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle)$ točno
- (d) $|-\rangle$
- (e) $|1\rangle$

(Uputa: Ovdje i drugdje, pokušajte izbjeći matrično računanje. Djelovanje operatora promatrajte kao rotacije stanja na Blochovoj sferi.)

3 Ako na izlazu iz logičkog kruga

$$|0\rangle$$
 — H — $?$ —

dobivamo stanje $\frac{1}{\sqrt{2}}\big(\left.|0\rangle + e^{i\pi/4}\left.|1\rangle \right.\big)$, operator označen upitnikom je

- (a) X
- (b) Y
- (c) Z
- (d) S
- (e) T točno

4 Stanje sustava na izlaznoj (desnoj) strani kvantnog logičkog kruga

je

- (a) $|01\rangle$
- (b) $|10\rangle$
- (c) $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
- (d) $\frac{1}{\sqrt{2}} (|01\rangle |10\rangle)$
- (e) $|11\rangle$ točno

5 Kolika je vjerojatnost da mjerenjem prvog (gornjeg) qubita u kvantnom logičkom krugu

dobijemo vrijednost 0.

- (a) 0
- (b) $\frac{1}{4}$
- (c) $\frac{1}{2}$ točno
- (d) $\frac{1}{\sqrt{2}}$
- (e) 1

6 Na izlazu iz logičkog kruga

$$|0\rangle$$
 H $|0\rangle$ H

dobivamo stanje

(a)
$$\frac{1}{\sqrt{2}}\ket{00}+\frac{1}{2}\ket{10}+\frac{1}{2}\ket{11}$$
 točno

(b)
$$\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{2} |10\rangle - \frac{1}{2} |11\rangle$$

(c)
$$\frac{1}{\sqrt{2}} |00\rangle - \frac{1}{2} |10\rangle - \frac{1}{2} |11\rangle$$

(d)
$$\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

(e)
$$\frac{1}{2}(|00\rangle + |01\rangle - |10\rangle - |11\rangle)$$

7 Ako vrata U_f predstavljaju implementaciju funkcije f sa svojstvom f(0)=1, f(1)=0, te ako na izlaznoj (desnoj) strani kvantnog logičkog kruga

imamo stanje $|10\rangle$, možemo zaključiti da na ulazu u krug imamo stanje

- (a) $|00\rangle$
- (b) $|01\rangle$
- (c) $|10\rangle$ točno
- (d) $|11\rangle$
- (e) nije moguće odrediti stanje na ulazu
- 8 U kvantnom logičkom krugu na slici vrata U_f su implementacija funkcije f za koju vrijedi f(0)=f(1)=0.

Stanje sustava na izlaznoj (desnoj) strani kruga je

- (a) $|00\rangle$
- (b) $|01\rangle$
- (c) $|10\rangle$ točno
- (d) $|11\rangle$
- (e) $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$

9 Na izlazu iz logičkog kruga

stanje ciljnog bita je

- (a) $|0\rangle$
- (b) $|1\rangle$
- (c) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ točno
- (d) $\frac{1}{\sqrt{2}} (|0\rangle |1\rangle)$
- (e) nije moguće prikazati vektorom stanja
- 10 Matrični prikaz operatora

je

(a)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

točno

(b)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

(d)
$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(e)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$