PROTOTYPING AND SYSTEMS ENGINEERING PRESENTATION

TEAM MEMBERS:

- Ø PISULA GURUGE
- Ø MEHEDI HASAN
- Ø MASRUR JAMIL PROCHCHHOD
- Ø JIBAN-UL AZAM CHOWDHURY SHAFIN

OVERVIEW

 Develop an autonomous vehicle that can drive autonomously on a given track.

[1]

SYSML DIAGRAMS AND UPPAAL MODEL

BLOCK DIAGRAM

REQUIRMENT DIAGRAM

Bdd of Autonomous Vehicle

SYSML DIAGRAMS AND UPPAAL MODEL

ACTIVITY DIAGRAM

SEQUENCE DIAGRAM

SYSML DIAGRAMS AND UPPAAL MODEL

STATE MACHINE DIAGRAM

UPPAAL MODEL

HARDWARE COMPONENTS

• Microcontroller - Arduino Uno

• Ultrasonic Sensor (HC-SR04)

• Line sensor (IR Sensor,ST1140)

HARDWARE COMPONENETS

• Colour Sensor (TCS3200)

• 2 DC Motors

Motor Driver

DESIGN & SCHEMATICS

DESIGN & SCHEMATICS TECHNOLOGIES USED

• TINKERCAD

Rhinoceros

Laser Cutting of Plywood

TINKERCAD & RHINOCEROS

DESIGN & SCHEMATICS

FINAL PROTOTYPE

1.Track Following

- ❖ 2 IR Sensor
- IrSensor1 (left ir Sensor)
- IrSensor2(right ir Sensor)

Signal – HIGH When on White Path

- LOW When on Black Path

Vehicle Out of the track:- keeps moving forward using forward function until it finds the line again.

```
void forward() { // Moving Forward
  digitalWrite(in1Pin, LOW);
 digitalWrite(in2Pin, HIGH);
 digitalWrite(in3Pin, LOW);
 digitalWrite(in4Pin, HIGH);
void right() { // Moving right side of the track
  analogWrite(enA, 130);
 analogWrite(enB,160 );
 digitalWrite(in1Pin, LOW);
 digitalWrite(in2Pin, HIGH);
 digitalWrite(in3Pin, HIGH);
  digitalWrite(in4Pin, LOW);
  // Initialize IR sensor pin
 pinMode(irPin1, INPUT);
 pinMode(irPin2, INPUT);
void loop() {
 // Read IR sensor input
 int irSensorValue1 = digitalRead(irPin1);
 int irSensorValue2 = digitalRead(irPin2);
analogWrite(enA, 200);
 analogWrite(enB,200 );
  if (irSensorValue1 == 0 && irSensorValue2 == 0)
   forward();
  } else if (irSensorValue1 == 1 &&
irSensorValue2 == 0) {
   left();
 } else if (irSensorValue1 == 0 &&
irSensorValue2 == 1) {
    right();
                                                14
```

CODE

2. Obstacle detection

Ultrasonic sensor detects obstacles by sending sound waves.

- Trigger Pin Sends high frequency signal
- Echo Pin Receive the Signal

```
// Ultrasonic sensor code
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(7);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = duration/34.2;
if(distance==0){
 distance=100;
```

2. Obstacle avoiding

movement sequence:

- left() turning left to avoid the obstacle
- forward() moving forward to pass the obstacle
- right() turning right to align with the original track
- forwardU() continuing forward after avoiding the obstacle

```
if(distance<10)
   left();
   delay(1000);
   forward();
   delay(1700);
   right();
   delay(1400);
   forwardU();
 irSensorValue1 = digitalRead(irPin1);
 irSensorValue2 = digitalRead(irPin2);
while(irSensorValue1 == 0 && irSensorValue2 == 0){
 irSensorValue1 = digitalRead(irPin1);
irSensorValue2 = digitalRead(irPin2);
 stop();
 delay(2000);
 forwardU();
 delay(100);
 irSensorValue2 = digitalRead(irPin2);
 turn();
 while(irSensorValue2 == 0){
 irSensorValue2 = digitalRead(irPin2);
```

REFERENCES

- [2] https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Logo-tinkercad-wordmark.svg.png
- [3] https://www.einscan.com/wp-content/uploads/2018/11/pressrel1.jpg
- [4] https://i.ytimg.com/vi/PrhFy8tD2t4/maxresdefault.jpg

RESULTS AND CONCLUSION

• Develop an autonomous vehicle that can drive autonomously on a given track.

• Being able to detect obstacles, avoid the obstacle and return back to the track.

• Optimize and maintain a constant speed.