Data:- [3,16,20,4,2,5,10,9,13,7,14,8]

Ans

1) Equal - frequency binning

sorted dota: [2,3,4,5,7,8,9,10,13,14,16,20]

Output of equal frequency binning:

[2,3,4,5] \ divided into lqual [7,8,9,10] \ Sized bins.

It is a pre processing technique where the input data is divided into smaller sets which are called bins". This is used for smoothing, which can further lead to decrease overfitting.

2) Smoothing by bin boundaries

For performing binning ley boundaries we need to sort our data first.

Sorting in assending order.

[2,3,4,5,7,8,9,10,13,14,16,20]

Bins:-

Bin1:- [2, 3, 4, 5]

Bin 2:- [7, 8, 9, 10]

Bin 3:- [13,14,16,20]

Bins ofter performing smoothing ley boundaries

Bin 1:- [2,2,5,5] " loser the the left boundary"

Bin 2:- [7, 7, 10,10]

Bin 3:- [13, 13, 13, 20]

tune me're obtained the new birs after performing birning.

92

Data Normalization:

Data: [10, 5, 25, 50, 35]

i) Min- Max normalization (min=0, max=1) Here we will transform our duta into values ranging from min to max (0-1).

:. The minimum value of the data will take

the value D' and the max would take

'1'. The other values will be transformed

using value-min win from data

max-min

" max from data.

min grom data = 5 max from data = 50

:. The values 5,50 will be transformed to 0 and 1.
Transforming other values.

:. Value 10:-

$$\frac{-3}{50-5} = \frac{5}{45} = 0.11$$

Value 25:-

$$\frac{25-5}{50-5} = \frac{20}{45} = 0.44$$

Jalne 35:-

$$\frac{35-5}{50-5} = \frac{30}{45} = 0.66$$

: The transformed data is

[0,0.11,0.44,0.66,1]

2) Z- score normalization.

In z-score normalization we use the mean and the standard deviation of the data to transform our data.

$$M \Rightarrow mean = [5+10+25+35+50]$$

$$= 125 = [25]$$

$$\sigma \Rightarrow \text{std. dev.} = 2/(ni-m)^2$$

$$\frac{(5-25)^2+(10-25)^2+(25-25)^2+(35-25)^2+(50-25)^2}{5}$$

$$= \sqrt{\frac{400 + 225 + 0 + 100 + 625}{5}}$$

: Value
$$5 \rightarrow \frac{5-\mu}{5d} = \frac{5-25}{16.43} = -1.217$$

value
$$35 \rightarrow 35-25 = 0.609$$

Transformed z-sione normalised data

93 Perform Uni-square test.

Data:-	Mosting /University	Uni A	Uni B
	٥,		
	Satisfied	71	129
	V		
	Dissatirfred	37	73
	V		

To check if student satisfaction is correlated with a specific university.

level of significance = 0.001

Un square significance value = 10 828

Null hypothesis:-

Student satisfaction is independent from specific university.

Rating	A	В	Total.
Satisfied	FI	129	200
,			
Dissatisfied	37	73	110
Total	108	202	310

Calculating expected values using the given values from the table.

E = rew total x column total sample size.

:. Satisfied,
$$A = \frac{108 \times 200}{310} = 69.65$$

satisfied, $B = \frac{202 \times 200}{310} = 130.32$
Alosatisfied, $A = \frac{108 \times 110}{310} = 38.32$
dissatisfied, $B = \frac{202 \times 110}{310} = 71.68$.

Now calculating the this core which is

$$(71 - 69.68)^{2} + (31 - 38.32)^{2} + (73 - 71.68)^{2} + (129 - 130.32)^{2}$$

 69.68 38.32 71.68 130.32

$$= \frac{1.74}{64.68} + \frac{1.74}{33.32} + \frac{1.74}{71.69} + \frac{1.74}{130.32}$$

The value obtained 0 108 is for smaller than the significance value 10 828.

.. We don't reject the mull hypothesis.

Heme student satisfaction is independent from the university they study in

QUESTION NUMBER 4

```
In [ ]:
```

```
#importing pandas to create a dataframe
import pandas as pd

#importing the library numpy
import numpy as np

#reading the csv file into a dataframe
data = pd.read_csv('country-income.csv')
data
```

Out[]:

	Region	Age	Income	Online Shopper
0	India	49.0	86400.0	No
1	Brazil	32.0	57600.0	Yes
2	USA	35.0	64800.0	No
3	Brazil	43.0	73200.0	No
4	USA	45.0	NaN	Yes
5	India	40.0	69600.0	Yes
6	Brazil	NaN	62400.0	No
7	India	53.0	94800.0	Yes
8	USA	55.0	99600.0	No
9	India	42.0	80400.0	Yes

In []:

#replacing all the NaN values in the column 'Income' with its mean which is 76533.33
data['Income'] = data['Income'].replace(np.nan, data['Income'].mean())
data

Out[]:

	Region	Age	Income	Online Shopper
0	India	49.0	86400.000000	No
1	Brazil	32.0	57600.000000	Yes
2	USA	35.0	64800.000000	No
3	Brazil	43.0	73200.000000	No
4	USA	45.0	76533.333333	Yes
5	India	40.0	69600.000000	Yes
6	Brazil	NaN	62400.000000	No
7	India	53.0	94800.000000	Yes
8	USA	55.0	99600.000000	No
9	India	42.0	80400.000000	Yes

In []:

```
from sklearn.preprocessing import LabelEncoder
# creating instance of labelencoder
```

```
labelencoder = LabelEncoder()

# Using the labelencoder we transform the categorical values of the column Online Shopper
to Numerical
# values where "No" corresponds to a "0" and "Yes" corresponds to "1".
data['Online Shopper Numerical'] = labelencoder.fit_transform(data['Online Shopper'])

# Using the labelencoder we transform the categorical values of the column Region to Nume
rical
# values where "India" corresponds to a "1", "Brazil" corresponds to "0" and "USA" corres
ponds to "2".
data['Region Numerical'] = labelencoder.fit_transform(data['Region'])
data
```

Out[]:

	Region	Age	Income	Online Shopper	Online Shopper Numerical	Region Numerical
0	India	49.0	86400.000000	No	0	1
1	Brazil	32.0	57600.000000	Yes	1	0
2	USA	35.0	64800.000000	No	0	2
3	Brazil	43.0	73200.000000	No	0	0
4	USA	45.0	76533.333333	Yes	1	2
5	India	40.0	69600.000000	Yes	1	1
6	Brazil	NaN	62400.000000	No	0	0
7	India	53.0	94800.000000	Yes	1	1
8	USA	55.0	99600.000000	No	0	2
9	India	42.0	80400.000000	Yes	1	1

QUESTION NUMBER 5

```
In [ ]:
```

```
#importing pandas to create a dataframe
import pandas as pd

#importing the library numpy
import numpy as np

#reading the csv file into a dataframe
data = pd.read_csv('shoesize.csv')
data
```

Out[]:

	Index	Gender	Size	Height
0	1	F	5.5	60.0
1	2	F	6.0	60.0
2	3	F	7.0	60.0
3	4	F	8.0	60.0
4	5	F	8.0	60.0
403	404	М	13.0	78.0
404	405	М	13.0	78.0
405	406	М	14.0	78.0
406	407	М	15.0	80.0
407	400		45.0	24.2

40/ 408 M 15.0 81.0 Index Gender Size Height

408 rows × 4 columns

```
In [ ]:
```

```
#importing the matplotlb library for generating plots
import matplotlib.pyplot as plt

#Defining the plot variables for size and height for each gender
plot_xf = data[data['Gender'] == 'F']['Size']
plot_xm = data[data['Gender'] == 'M']['Size']
plot_yf = data[data['Gender'] == 'F']['Height']
plot_ym = data[data['Gender'] == 'M']['Height']
```

In []:

```
# importing the library pearsonr from the scipy.stats module
from scipy.stats import pearsonr

# creating a function to calculate the pearson's correlation coefficient
def pcc(data1, data2):
    coef = pearsonr(data1, data2)
    return coef
```

In []:

```
#scatter plot for Size vs Height Female

plt.xlabel('Size (Female)')

plt.ylabel('Height (Female)')

#plotting both the variables and setting the dot color to red

plt.scatter(plot_xf,plot_yf, c='r')

# using the function "pcc" we created, we calculate the correlation coefficient

pcc_female = pcc(plot_xf,plot_yf)

print(pcc_female)

#the first value obtained is the correlation coefficient, hence we take the first value f

rom the varibale pcc_female

print(f'The pearsons correlation coefficient for shoe size vs height for female is {pcc_female[0]}')
```

(0.7078119417143971, 9.773450790332586e-30)

The pearsons correlation coefficient for shoe size vs height for female is 0.7078119417143971

In []:

```
#scatter plot for Size vs Height Male

plt.xlabel('Size (Male)')
plt.ylabel('Height (Female)')
```

```
#plotting both the variables and setting the dot color to yellow
plt.scatter(plot_xm,plot_ym, c='y')

# using the function "pcc" we created, we calculate the correlation coefficient
pcc_male = pcc(plot_xm,plot_ym)
print(pcc_male)

#the first value obtained is the correlation coefficient, hence we take the first value f
rom the varibale pcc_male
print(f'The pearsons correlation coefficient for shoe size vs height for male is {pcc_male}
e[0]}')
```

(0.7677093547300977, 3.2857111133112256e-44) The pearsons correlation coefficient for shoe size vs height for male is 0.76770935473009

By looking at the scatterplots for both the genders, it can be inferred that the attribute "shoe size" and "height" are **correlated** with each other. The value of correlation (Pearson's Correlation Coefficient) in case if Female is "0.707" and in case if Males is "0.7677". The value is slightly higher in case of Males so it means that shoe size depends on height or vice versa **more** in case if Males as compared to Females.

QUESTION NUMBER 6

```
In [ ]:
```

```
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
import seaborn as sns
from sklearn.preprocessing import StandardScaler
data = pd.read csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-canc
er-wisconsin/breast-cancer-wisconsin.data', header=None)
data.columns = ['Sample code', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity
of Cell Shape',
                'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Blan
d Chromatin',
                'Normal Nucleoli', 'Mitoses', 'Class']
from sklearn import preprocessing
from scipy import stats
data color = data.copy()
data = data.drop(['Sample code'],axis=1)
data = data.drop(['Class'],axis=1)
data = data.replace('?', np.NaN)
data['Bare Nuclei'] = data['Bare Nuclei'].fillna(data['Bare Nuclei'].median())
```

```
#normalizing the data using z-score normalization
# data norm = (data-mean) / data.std()
scalar = StandardScaler()
data norm = scalar.fit transform(data)
pca = PCA(n components=2)
finaldata = pca.fit transform(data norm)
# variance ratio for the two components
print(" variance ratio ", pca.explained variance ratio )
pca df = pd.DataFrame(finaldata,columns=['PC1','PC2'])
pca df['Class'] = data color['Class']
print(pca df)
x = pca_df['PC1']
y = pca_df['PC2']
colors = {'2':'red', '4':'green'}
# Get Unique Classes from our dataframe
color_labels = pca_df['Class'].unique()
# List of colors in the color palettes
rgb values = sns.color palette("muted")
# Map Class to the colors
color map = dict(zip(color labels, rgb values))
# Finally use the mapped values to plot the scatterplot
plt.scatter(x, y, s=10, alpha=0.3,
            c= pca df['Class'].map(color map))
plt.show()
variance ratio [0.65445704 0.0860859]
         PC1
                   PC2 Class
   -1.456220 -0.110210
0
                             2
1
    1.466279 -0.544894
2
   -1.579311 -0.074854
                             2
3
    1.505247 -0.558853
                             2
   -1.330551 -0.089657
                             2
         . . .
                    . . .
694 -1.711249 0.188019
                             2
695 -2.063036 0.234224
                             2
696 3.825359 -0.180466
                             4
697 2.269482 -1.113435
698 2.664453 -1.197242
[699 rows x 3 columns]
 5
```


ASSIGNMENT 1 PART 2 ANSWERS

Question 1

The correlation value 0.885884 between 'ACT composite score' and 'SAT total score' shows that both the variables are highly correlated. As the value of 'ACT composite score' increases the value of 'SAT total score' increases as well. This relationship can be best visualized using the "Scatter Plot"

Question 2

The box plot shows a correlation between 'the parental level of education' and 'parental income'. The parental income increases as their level of education gets higher.

In [24]:

```
#import the library pandas
import pandas as pd

#read the csv data as a pandas dataframe
df = pd.read_csv('graduation_rate.csv')

#selecting all the data where the parental level of education is master's degree
df1 = df.loc[df['parental level of education'] == "master's degree"]

#sorting the data into ascending order in order to look for outliers
df1_sorted = df1.sort_values(by='parental income', ascending=True)
df1
```

Out[24]:

	ACT composite score	SAT total score	parental level of education	parental income	high school gpa	college gpa	years to graduate
0	30	2206	master's degree	94873	4.0	3.8	3
27	28	2058	master's degree	96573	3.9	3.6	4
37	34	2363	master's degree	90775	4.0	3.6	4
65	32	2161	master's degree	75974	4.0	3.8	3
99	30	2223	master's degree	85135	4.0	3.8	3
•••							
912	31	2078	master's degree	83814	3.9	3.5	4
927	33	2330	master's degree	92185	4.0	3.8	4
929	35	2338	master's degree	79398	4.0	3.7	4
964	27	1999	master's degree	93314	3.7	3.3	5
968	32	2259	master's degree	85534	4.0	3.6	5

68 rows × 7 columns

From looking at the table visualization we can come to a conclusion that there are two outliers in the data set. One is the maximum value and the other is the minimum value. Both the outliers have a difference of atlesat 9000.

In [25]:

```
df1_sorted.head(1)
```

Out[25]:

	ACT composite score	SAT total score	parental level of education	parental income	high school gpa	college gpa	years to graduate
420	28	2097	master's degree	59724	3.9	3.2	4

In [26]:

```
#printing the last value of the dataframe which is the second outlier
dfl_sorted.tail(1)
```

Out[26]:

	ACT composite score	SAT total score	parental level of education	parental income	high school gpa	college gpa	years to graduate
411	31	2108	master's degree	120391	4.0	3.6	4

Question 3

Feature scaling is an important part of data visualisation. Using the **StandardScaler** we standardize all our data into a comparable magnitude. This is done to overcome false values when the distance is calculated. If feature scaling would not have been performed to this data frame the disatnce matrix would have shown abnormally large values resulting in a heatmap of diverse values. For example:- When calculating a Body Mass Index the values for height and weight needs to be in meters and kilograms respectively. For a data with height in centimeres and weight in kilograms, the Body Mass Index values would br far different from the true values. Hence there is the need to standardize the data.

Question 4

It can be inferred by looking at the heat map that the top right and the bottom left parts are darker than the other regions of the heatmap. The data before plotting the heatmap was sorted according to the attribute parental level education which increases from left to right and top to bottom. The minimum being just some high school education and the maximum being a master's degree. Hence it can be inferred that the average distance between students whose parents only have some high school education and students whose parents have a master's degree (darker part of the map/bottom left and top right parts of the heatmap) is larger than the average distance between students whose parents only have some high school education(top left part of the heatmap).

Question 5

```
In [27]:
```

```
import numpy as np

# changing the number of spaces between the values -1 and 1 to 100 from 10
x_range = np.linspace(-1, 1, 100)
y_range = np.linspace(-1, 1, 100)

# meshgrid: X[i, j] == x_range[j] and Y[i, j] == y_range[i]
X, Y = np.meshgrid(x_range, y_range)

# Z[i, j] == f(x_range[j], y_range[i])
Z = X**2 + Y**2

# Dataset representation
# The newly generated data with 100x100 values
df = pd.DataFrame({'x': X.reshape(-1), 'y': Y.reshape(-1), 'z = f(x,y)': Z.reshape(-1)})
```

```
In [28]:
```

```
# Interpolation: point (x, y) is colored according to the value z of the nearest point in
the dataset
plt.imshow(Z, cmap='Blues', aspect='equal', interpolation='nearest')
plt.colorbar()

# xticks and yticks would show Z matrix indices
plt.xticks([])
plt.yticks([])
plt.show()
```


On changing the number of evenly spaced values from 10 to 100 for both the variables, it can be seen that the resulting heatmap is smoother than the one obtained when lesser values were used. This gives used a basic relation that states that, more the number of data points, smoother the heatmap. Furthermore, on increasing the number of data points, it becomes difficult to visually calculate the magnitude of distance between data points as now the size of each pixel becomes significantly smaller.

Question 6

6.1

In [29]:

```
#importing the wine dataset from sklean.dataset
from sklearn.datasets import load_wine
data = load_wine()

#loading the dataset into a dataframe
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = pd.Series(data.target)
df
```

Out[29]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82
					***	•••			
173	13.71	5.65	2.45	20.5	95.0	1.68	0.61	0.52	1.06
174	13.40	3.91	2.48	23.0	102.0	1.80	0.75	0.43	1.41
175	13.27	4.28	2.26	20.0	120.0	1.59	0.69	0.43	1.35
470	40.47	2 52	^ ^-	22.2	400.0	4.05	^ ^^	^	

 1/6
 13.17
 2.59
 2.37
 20.0
 120.0
 1.05
 0.08
 0.08
 0.53
 1.46

 alcohol
 malic_acid
 ash
 alcalinity_of_ash
 magnesium
 total_phenols
 flavanoids
 nonflavanoid_phenols
 proanthocyanins

 177
 14.13
 4.10
 2.74
 24.5
 96.0
 2.05
 0.76
 0.56
 1.35

178 rows × 14 columns

17010W3 × 14 Column

In [30]:

#displaying the freruency of each value of the attribute target from the dataframe
df['target'].value_counts()

Out[30]:

1 71 0 59 2 48

Name: target, dtype: int64

6.2

In [31]:

#the method describe gives a univariate analysis of the dataset with all the metrics like
the mean, counts, min, max
df_new = df.drop(['target'], axis=1)
df_new.describe()

Out[31]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	pro
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	
4					1				Þ

In [32]:

#the multivariate summary is the correlation between the attributes
print("\nCorrelation coefficients:")
display(df_new.corr())

Correlation coefficients:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflav
alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	
malic_acid	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	
ash	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	
alcalinity_of_ash	0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	
magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	
total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	
flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	

	-laskal					total mhamala		
	alcohol -	· · · -	ash	alcalinity_of_ash	•			nonflav
nonflavanoid_phenols	0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	
proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	
color_intensity	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	
hue	0.071747	-0.561296	0.074667	-0.273955	0.055398	0.433681	0.543479	
od280/od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	
proline	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	
1								▶

In [33]:

```
#grouping the dataset by the attribute "target" and calculating median
group_df = df.groupby('target').median()
group_df
```

Out[33]:

alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanil target

0	13.750	1.770 2.44	16.8	104.0	2.800	2.980	0.29	1.8
1	12.290	1.610 2.24	20.0	88.0	2.200	2.030	0.37	1.6
2	13.165	3.265 2.38	21.0	97.0	1.635	0.685	0.47	1.1
4								Þ

6.3

In [44]:

```
#grouping the dataframe according to the attribute target
new_df = df.groupby(["target"])

# storing categories of the attribute target to separate variables in order to make box p
lots
var1 = new_df.get_group(0)
var2 = new_df.get_group(1)
var3 = new_df.get_group(2)

plt.boxplot(var1['alcohol'])
plt.show()

plt.boxplot(var2['alcohol'])
plt.show()

plt.boxplot(var3['alcohol'])
plt.show()
```


6.4

In [35]:

```
# displaying correlation between different pairs and sorting them from lowest to highest
# from looking at the values, the pair with highest correlation is flavanoids and total p
henols
# hence plotting a scatter plot between the two

df.corr().unstack().sort_values().drop_duplicates()
```

Out[35]:

flavanoids	target	-0.847498
od280/od315 of diluted wines	target	-0.788230
target	total phenols	-0.719163
proline	target	-0.633717
hue	target	-0.617369
flavanoids	proanthocyanins	0.652692
od280/od315 of diluted wines	total phenols	0.699949
	flavanoids	0.787194
flavanoids	total phenols	0.864564
alcohol	alcohol	1.000000
Length: 92, dtype: float64		

In [36]:

```
# scatter plot between the two highest correlated pairs
sns.scatterplot(x = 'flavanoids', y= 'total_phenols', data=df)
```

Out[36]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0e1df30890>

6.5

In [40]:

```
# from sklearn importing the Standard Scalar library for performing standardization
from sklearn.preprocessing import StandardScaler
df2 = df.drop(columns=['target'])
df_sorted = df.sort_values(by='target', ascending=True)
sort t = df sorted['target']
var = df sorted.drop(columns='target').to numpy()
print(var)
#z-score standardization
scale = StandardScaler()
var = scale.fit transform(var)
print(var)
[[1.423e+01 1.710e+00 2.430e+00 ... 1.040e+00 3.920e+00 1.065e+03]
 [1.368e+01 1.830e+00 2.360e+00 ... 1.230e+00 2.870e+00 9.900e+02]
 [1.376e+01 1.530e+00 2.700e+00 ... 1.250e+00 3.000e+00 1.235e+03]
 [1.350e+01 3.120e+00 2.620e+00 ... 5.900e-01 1.300e+00 5.000e+02]
 [1.311e+01 1.900e+00 2.750e+00 ... 6.100e-01 1.330e+00 4.250e+02]
 [1.413e+01 4.100e+00 2.740e+00 ... 6.100e-01 1.600e+00 5.600e+02]]
[[ 1.51861254 -0.5622498
                          0.23205254 ... 0.36217728 1.84791957
  1.013008931
 [ \ 0.83921681 \ -0.45453022 \ -0.02382132 \ \dots \ 1.19577163 \ \ 0.36485461
  0.7741719 ]
 [0.93803801 - 0.72382916 \ 1.21899459 \dots \ 1.28351841 \ 0.54847218
  1.55437286]
 [ 0.61686912  0.70345524
                           0.92656731 ... -1.61212515 -1.85268061
 -0.78623004]
 [ 0.13511578 -0.3916938
                           1.40176163 ... -1.52437837 -1.81030733
 -1.02506707]
 [1.39508604 \ 1.58316512 \ 1.36520822 \ \dots \ -1.52437837 \ -1.42894777
 -0.59516041]]
In [43]:
```

```
# importing the library MDS from sklearn
from sklearn.manifold import MDS
# defining the number of components for multi dimensional scaling (i.e 2)
e = MDS(n_components=2)
x = embedding.fit_transform(var)
projected_data = pd.DataFrame({'x': x[:, 0], 'y': x[:, 1], 'target': sort_t})
# plotting the scatterplot/ projection
sns.scatterplot(x='x', y='y', hue='target', data = projected_data)
plt.legend (bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt. show()
```


In []: