Algorithmen und Wahrscheinlichkeit

Woche 8

Minitest

Randomisierte Algorithmen

Randomisierter Algorithmus : Eingabe $I \to Algorithmus A$ mit Zufallszahlen $R \to Ausgabe A(I,R)$

- deterministisch: selbe Eingabe, selber Output
- nicht-deterministisch: selbe Eingabe, nicht unbedingt selber Output

Monte Carlo Algorithmus: Primzahltest, Target-shooting

→ Korrektheit ist die Zufallsvariable

Las Vegas Algorithmus: Quicksort, Duplikate finden

- → Laufzeit ist die Zufallsvariable
- \rightarrow Geometrisch verteilt mit $p = \Pr[A(I) \neq "???"]$

- immer gleiche Laufzeit
- manchmal falsches Ergebnis
- immer korrekte Antwort
- manchmal dauert zu lange / gibt nach einer bestimmter Zeit "???" aus

Quicksort/Quickselect

Quicksort: sortiert den Array erwartete Laufzeit: $O(n \log n)$

Quickselect: gibt das k-kleinste Element aus erwartete Laufzeit: $\mathcal{O}(n)$

QuickSort(A, ℓ , r) 1: if $\ell < r$ then 2: $p \leftarrow \text{Uniform}(\{\ell, \ell+1, \dots, r\})$ \Rightarrow wähle Pivotelement zufällig 3: $t \leftarrow \text{Partition}(A, \ell, r, p)$ 4: QuickSort(A, ℓ , t - 1) 5: QuickSort(A, t + 1, r)

```
QuickSelect(A, \ell, r, k)

1: p \leftarrow \text{Uniform}(\{\ell, \ell+1, \dots, r\})  \triangleright wähle Pivotelement zufällig

2: t \leftarrow \text{Partition}(A, \ell, r, p)

3: if t = \ell + k - 1 then

4: return A[t]  \triangleright gesuchtes Element ist gefunden

5: else if t > \ell + k - 1 then

6: return QuickSelect(A, \ell, t - 1, k) \triangleright gesuchtes Element ist links

7: else

8: return QuickSelect(A, t + 1, r, k - t) \triangleright gesuchtes Element ist rechts
```

Fehlerreduktion

Las-Vegas:

Sei A ein Las-Vegas-Algorithmus mit $\Pr[A(I) \text{ ist korrekt}] \geq \epsilon$

Sei A_{δ} für $\delta > 0$ ein Algorithmus, der entweder die erste Ausgabe verschieden von ??? ausgibt oder der nach $N = \lceil e^{-1} \cdot \ln(\delta^{-1}) \rceil$ Versuchen ??? ausgibt

dann gilt $\Pr[A_{\delta}(I) \text{ ist falsch}] \leq \delta$

ϵ	δ	N
0.1	0.01	47
0.5	0.01	10
0.5	10 ⁻⁸⁰	369
0.9	10 ⁻³⁰	77

Fehlerreduktion

Monte-Carlo - Einseitiger Fehler:

$$\Pr[A(I) = \text{Ja}] = 1$$
 für alle Ja-Instanzen $I \Longrightarrow \text{Wenn } A(I) = \text{Ja}$, dann könnte die Ausgabe falsch sein $\Pr[A(I) = \text{Nein}] \ge \epsilon$ für alle Nein-Instanzen $I \Longrightarrow \text{Wenn } A(I) = \text{Nein}$, dann ist die Ausgabe immer korrekt

Sei A_{δ} für $\delta>0$ ein Algorithmus, der entweder Nein ausgibt, sobald das erste Mal Nein vorkommt, oder der nach $N=\lceil \epsilon^{-1} \cdot \ln(\delta^{-1}) \rceil$ Versuchen Ja ausgibt

dann gilt:

$$\Pr[A_{\delta}(I) = \text{Ja}] = 1 \text{ für alle Ja-Instanzen } I$$

$$\Pr[A_{\delta}(I) = \text{Nein}] \geq 1 - \delta \text{ für alle Nein-Instanzen } I$$

Monte-Carlo - Zweiseitiger Fehler:

$$\Pr[A(I) \text{ ist korrekt}] \geq 0.5 + \varepsilon \text{ für alle Instanzen } I \\ A_{\delta} \text{ gibt die meiste Antwort aus nach } N \text{ Wiederholungen} \qquad \Longrightarrow \qquad \Pr[A(I) \text{ ist falsch}] \leq \delta \text{ für alle Instanzen } I$$

Aufgaben