(CVL)

CIVIL ENGINEERING

INSTRUCTIONS TO CANDIDATES

Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.

Immediately on opening this Question Paper Booklet, check;

- Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
- In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.

Use of Calculators, Mathematical Tables and Log books is not permitted.

Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.

Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page 5... is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.

- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response 6. Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.

The OMR Response Sheet will not be valued if the candidate:

- Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
- Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.

Adopts any other malpractice.

- Rough work should be done only in the space provided in the Question Paper Booklet.
- No loose sheets or papers will be allowed in the examination hall.

Timings of Test: 10.00 A.M. to 1.00 P.M.

- Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet. 12. leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(CVL)

MATHEMATICS

- 1. If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $A^4 =$
 - (1) 3I (2) 9I

- If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512

- 4. If $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$, then |A| =
 - (1) 1 . (2) 2
- (3) 3

Set Code : T Booklet Code :

- The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 6. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A = _____, B = _____.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to
 - (1) A₂ (2) 2A₂
- (3) 4A, (4) 4A,
- 8. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π

- If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- (2) 0
- (3) 2

- 10. The value of sin 78° + cos 132° is
- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

- 11. If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$
 - (1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

Set Code: Booklet Code :

13	The value of	Tan-1 (2)	+ Tan-1	(3)	is
1 -7 -	THE VALUE OF			-	,

- (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{2}$
- (3) $\frac{\pi}{3}$

14. If the sides of a right angle triangle are in A.P., then the ratio of its sides is

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- (1) Δ^2
- (2) Δ⁻²
- (4) Δ⁴

16.
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- (3) $\frac{1}{R}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) cos⁻¹ (2/9) (2) cos⁻¹ (2/5) (3) cos⁻¹ (7/9) (4) cos⁻¹ (1/3)

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If 1,
$$\omega$$
, ω^2 be the cube roots of unity, then the value of $2^{\omega^3} \cdot 2^{\omega^5} \cdot 2^{\omega}$ is

- (1) ω
- (2) ω^2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

5-A

Set Code : Booklet Code :

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (4) c
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is (1) c = a/m (2) $c^2 = a^2m^2 - b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. Lt $\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1) 3 (2) 2

- (3) 4 (4) 1

- 27. $\log i =$
 - (1) $\pi/2$ (2) $\pi/4$
- (3) $i\pi/2$

- 28. $\frac{d}{dx}[\log_7 X] =$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_e^7$ (4) $\frac{1}{x} \log_7^e$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

Set Code : T Booklet Code:

- 30. $\frac{d}{dx} \left[\cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right] =$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$
- 31. If $x = at^2$, y = 2at, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{v}}$
- 32. The derivative of e^x with respect to \sqrt{x} is
 - (1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$

- 33. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is (1) x + 20y = 99 (2) x + 20y = 101 (3) x - 20y = 99 (4) x - 20y = 101

- 34. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is

 - (1) $\frac{\pi}{4}$ (2) $\tan^{-1}(2)$
- (3) tan-1(3)
- (4) tan⁻¹(4)

- 35. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$
 - (1) $6(x^3+y^3)$ (2) $6x^3y^3$

- 36. $\int \csc x \, dx =$
 - (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x.\cot x + C$

7-A

Set Code : T2

Booklet Code :

37. $\int_{0}^{\pi} \cos^{11} x \, dx =$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$

38. $\int f^{1}(x) \cdot [f(x)]^{n} dx =$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

(2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$

(3)
$$n[f(x)]^{n-1} + C$$
 (4)

$$(n+1)[f(x)]^{n+1}+C$$

39. $\int \frac{dx}{(x+7)\sqrt{x+6}} =$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40. $\int \tan^{-1} x \, dx =$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+x^2} + C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

41. $\int \frac{dx}{1+e^{-x}} =$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log (1+e^x) + C$$

(3)
$$e^{-x} + 0$$

42. $\int_{-\pi}^{\frac{\pi}{2}} \sin|x| \, dx =$

- (1) 0
- (2) 1

www.vidyavision.com

Set Code : T2 Booklet Code :

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 44. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 45. The degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = a\frac{d^2y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation (1) ydx + xdy = 0 (2) xdy - ydx = 0 (3) xdx + ydy = 0 (4) xdx - ydy = 0

- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hy + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- $(2) \quad C_1 \cos x + C_2 \sin x + C_3 e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- (2) $C_1 \cos x + C_2 \sin x + C_3 \cos x + C_4 \cos x + C_5 \sin x +$
- 50. Particular Integral of $(D-1)^4 y = e^x$ is
 - (1) $x^4 e^x$
- (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$

								Set Code	: T2
								Booklet Code	: A
				P	HYSIC	cs			
51.	Tw	o quantities . ce. The dime	A and B are	related by the	relation	A/B = m where	m is lin	ear mass density	and A is
	(1)	same as th	nat of laten	t heat	(2)	same as that	of press	sure	1
	(3)	same as th	nat of work	:	(4)	same as that			
52.	The	dimension	al formula	of capacitance	in terms	of M. L. Tand	His		
				[ML-2T4]		[M ⁻¹ L ³ T ³ I]		$[M^{-1}L^{-2}T^4I^2]$	
53.	If <i>l</i> ,	m and n are	the direct	ion cosines of a	vector,	then			
	(1)	l+m+n	= 1 (2)	$l^2+m^2+n^2=$	1 (3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1	
54.	The	angle betwe	een i+i and	i+k is					
	(1)			90°	(3)	45°	(4)	60°	
55.	A pa	article is mo s-1 northwar	ving eastw ds. The av	vards with a vel erage accelerat	ocity of	5 ms ⁻¹ . In 10 s is time is	seconds	the velocity cha	nges to
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² to	owards nor	th-west	(2)	zero			
	(3)	$\frac{1}{2}$ ms ⁻² tov	vards norti	ı	(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towa	ards no	th-east	
6.	The		entum of a	particle varies	with tin	the t as $p = a + b$	t+ct² w	hich of the follow	wing is
	(1)	Force varie	es with tim	e in a quadratic	manner				
	(2)	Force is tir				20			
	(3)	The veloci	ty of the pa	article is propo	rtional t	o time.		15	
	(4)	The displa	cement of	the particle is p	roportio	onal to t.			
7.				vith a velocity v			to two p	ieces. One part o	fmass
	(1)	ν	(2)	2ν	(3)	3v/4	(4)	4v/3	
					10-A				

Set Code:	T2
Booklet Code:	A

					-	-	
20	The velocity	- C - Constant	Calling or 1	bander.	after	20	:
3X	The velocity	or a freely	rainne	DOGV :	ancr	45	15

- (1) 9.8 ms⁻¹
- (2) 10.2 ms⁻¹
- (3) 18.6 ms⁻¹ (4) 19.6 ms⁻¹

- (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

60. The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is µ, will be

- (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

61. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

(1) In the backward direction on the front wheel and in the forward direction on the rear wheel

(2) In the forward direction on the front wheel and in the backward direction on the rear wheel

(3) In the backward direction on both the front and the rear wheels

(4) In the forward direction on both the front and the rear wheels

62. In a perfectly inelastic collision, the two bodies

(1) strike and explode

- explode without striking
- (3) implode and explode
- (4) combine and move together

63. Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is

(1) zero

(2) positive

(3) negative

(4) increasing uniformly with time

Set Code : Booklet Code :	T2
Booklet Code :	A

	0	.1		
0.4	Consider	the tollo	wine two	o statements

A: Linear momentum of a system of particles is zero.

B: Kinetic energy of a system of particles is zero.

Then

1	1	A im	nlies	R&	Ri	mplies	۸
٦		/ / 11111	DITECT		\mathbf{p}_{i}	mpnes	т

(2) A does not imply B & B does not imply A

(3) A implies B but B does not imply A (4) A does not imply B but B implies A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)

66. If a spring has time period T, and is cut into n equal parts, then the time period will be

(1)
$$T\sqrt{n}$$

(2)
$$\frac{T}{\sqrt{n}}$$

67. When temperature increases, the frequency of a tuning fork

- (1) increases
- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is

(1)
$$2\pi\sqrt{\alpha}$$
 (2) $2\pi\alpha$

$$(3) \quad \frac{2\pi}{\sqrt{\alpha}} \qquad \qquad (4) \quad \frac{2\pi}{\alpha}$$

$$(4) \frac{2\pi}{\alpha}$$

69. A cinema hall has volume of 7500 m3. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be

- (1) 850 w-m²
- (2) 82.50 w-m²
- (3) 8.250 w-m² (4) 0.825 w-m²

								Se	t Code : T2
								Bookle	Code : A
70.	To	absorb the soun	d in a h	all whic	ch of the follow	ing are us	ed		
	(1)	Glasses, store	es		(2)	Carpets,	curtains		
	(3)	Polished surf	aces		(4)	Platforn	ns		
71.	IfN	represents avag	gadro's	numbe	r, then the num	ber of mol	ecules in 6 gr	m of hyd	rogen at NTP is
		2N		3N	(3)			N/6	
72.	The	mean translation	onal kir	netic en	ergy of a perfec	t gas mole	ecule at the t	emperati	ure T K is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT	
73.	The	amount of heat	givent	o a bod	ly which raises	its temper	ature by 1°C		
	(1)	water equivale	ent		(2)	thermal l	heat capacity		
	(3)	specific heat			(4)	temperat	ure gradient		
74.		ing an adiabatic olute temperatur				s is found	to be propor	tional to	the cube of its
	(1)	3	(2)	4	(2)			5	
	(1)	2	(2)	3	(3)	2	(4)	3	
75.	Clad	lding in the opti	cal fibe	er is ma	inly used to				
	(1)	to protect the	fiber fr	om me	chanical stress	es			
	(2)	to protect the	fiber fr	om cor	rosion				
	(3)	to protect the	fiber fr	om me	chanical strengt	th			
	(4)	to protect the	fiber fr	om elec	etromagnetic gu	iidance			

Set Code : T

Booklet Code : A

				CH	EMIS	FRY			
76.	The	valency electro	nic co	nfiguration of	Phosph	orous atom (At.)	No. 15) is	
		3s ² 3p ³		$3s^1 3p^3 3d^1$		$3s^2 3p^2 3d^1$		3s1 3p2 3d2	
77.	An	element 'A' of A	t.No.1	2 combines wit	h an ele	ment 'B' of At.N	lo.17.	The compound formed i	
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB	
78.	The	number of neut	rons p	resent in the ato	om of se	Ba ¹³⁷ is			
	(1)	56	(2)	137	(3)	193	(4)	81	
79.	Hyd	rogen bonding i	in wate	er molecule is r	esponsi	ble for		4	
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization	
	(3)	increase in its	boiling	g point	(4)	decrease in its	boilin	g point	
80.	In th	e HCl molecule	, the be	onding between	n hydro	gen and chlorine	eis		
	(1)	purely covalen	t (2)	purely ionic	(3)	polar covalent	(4)	complex coordinate	
81.	Pota	ssium metal and	l potas	sium ions					
	(1)	both react with	water		(2)	have the same	numbe	er of protons	
	(3)	both react with	chlori	ne gas	(4)	have the same electronic configuration			
82.	stanc	dard flask. 10 ml	of this	solution were p	ipetted o		lask ar	made upto 100 ml in a ad made up with distilled solution now is	
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M	
83.	Conc	centration of a 1	.0 M s	olution of phos	sphoric	acid in water is			
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N	
1									
84.		ch of the followi	ng is a	Lewis acid?					
		Ammonia			(2)	•			
	(3)	Boron trifluori	de		(4)	Magnesium ox	ide		
					14-A				

								Set Code : Booklet Code :	
						2 0 000			
85.	Whi	ch of the follow					solution	1?	
	(1)			nd potassium hy	droxid	e			
	(2)	Sodium acetate							
	(3)	-	-	and sulphuric ac					
	(4)	Calcium chlor	ide and	calcium acetat	e				
86.	Whi	ch of the follow	ing is	an electrolyte?					
		Acetic acid		Glucose	(3)	Urea	(4)	Pyridine	
87.	Calc	culate the Stand $Cu/Cu^{+2} = (-) 0.3$	ard em	of of the cell, C	d/Cd+2/	//Cu+2/Cu give	n that E	$C^0 \text{ Cd/Cd}^{*2} = 0.44$	V and
		(-) 1.0 V		1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	
88.	(1)	nickel will be	deposi	ted on the anode	e (2)	Cl2 gas will b	e libera	es. After electroly ted at the cathode ted on the cathod	:
89.	Whi	ich of the follow	ing me	tals will under	o oxid	ation fastest?			
07.		Cu	(2)			Zinc	- (4)	Iron	
90.	Whi	ich of the follow	ine ca	nnot be used for	r the ste	rilization of dr	inking	water?	
70.		Ozone			(2)	_			
	(3)	Potassium Ch	loride		(4)				
91.		rater sample sho			mg/litro	e of magnesiun		ate. Then, its hard	ness in
	(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm	
92.	Sod	a used in the L-	S proce	ess for softening	g of wa	ter is, Chemica	dly.		
	(1)				(2)	sodium carbo	nate de	cahydrate	
		sodium carbon	nate		(4)	sodium hydro	oxide (4	0%)	
93.	The	process of ceme	entatio	n with zinc pow	der is l	cnown as			
		sherardizing		zincing	(3)	metal claddin	g (4)	electroplating	
				19	15-A				

								Booklet Code : A
94.	Car	rosion of a met	al is fas	test in				
	(1)	rain-water	(2)	acidulated w	ater (3)	distilled water	(4)	de-ionised water
95.	Wh	ich of the follow	ving is a	thermoset po	olymer?			
	(1)	Polystyrene			(2)	PVC		
	(3)	Polythene			(4)	Urea-formalde	hyde re	esin
96.	Che	emically, neopre	ne is					
	(1)	polyvinyl bena	zene		(2)	polyacetylene		
	(3)	polychloropre	ene		(4)	poly-1,3-butadi	ene	
97.	Vul	canization invol	ves heat	ing of raw rub	ber with	1		
	(1)	selenium elen	nent		(2)	elemental sulph	ur	
	(3)	a mixture of S	e and el	emental sulph	ur (4)	a mixture of sel	enium	and sulphur dioxide
98.	Petr	ol largely conta	ins.			~		
	(1)	a mixture of u	nsaturat	ed hydrocarbo	ons C,-	C _s		
	(2)	a mixture of be	enzene,	toluene and x	ylene	170		
	(3)	a mixture of sa	turated	hydrocarbons	C C	14		
	(4)	a mixture of sa						
99.	Whi	ch of the follow	ing gas	es is largely re	sponsil	ole for acid-rain?		
	(1)	SO, & NO,			(2)	CO, & water var	oour	
	(3)	CO ₂ & N ₂	70		(4)	N ₂ &CO ₂		
100.	BOL) stands for				e e		
	(1)	Biogenetic Ox	ygen De	mand	(2)	Biometric Oxyg	en Den	nand
	(3)	Biological Oxy	gen De	mand	(4)	Biospecific Ovy		

Set Code :	T2
Booklet Code :	A

CIVIL ENGINEERING

101.	Stre	ss strain curve is always a straight lin	ne for	
	(1)	Elastic materials	(2)	materials obeying Hook's law
	(3)	Elasto-plastic materials	(4)	plastic materials
102.	The	maximum value of Poisson's for an	elastic n	naterial is
	(1)	0.25	(2)	0.5
	(3)	0.75	(4)	1.0
103.		stress at which extension of a materia	al takes p	place more quickly as compared to the increase
	(1)	Elastic point	(2)	Plastic point
	(3)	Breaking point	(4)	Yielding point
104.	For	ductile materials, the most appropria	ate failu	re theory is
	(1)	maximum shear stress theory		
	(2)	maximum principal stress theory		
	(3)	maximum principal strain theory		
	(4)	shear strain energy theory		
105.	The	materials which have the same elast	ic prope	rties is in all directions are
	(1)	Brittle material	(2)	Homogeneous material
	(3)	Isotropic material	(4)	Hard material
106.	weig	elastic bar of length 'l', cross section ght W is having vertically, it is subject agation of the bar is given by	onal area	A, Young's modulus of elasticity E and self and applied axially at the bottom end. The total
	(1)	WI/AE + PI/AE	. (2)	WI/2AE+PI/AE
	(3)	WI/2AE + PI/2AE	(4)	WI/AE+PL/2AE
			17-A	(CVL)

								Set Cod	e: T2
								Booklet Cod	e: A
107.	The	bending momer	nt diag	ram is a cubic	parabola	for a cantile	ver		
	(1)	subjected to tr	iangul	ar load varying	g from ze	ero at free en	d to maxii	num at fixed e	end
	(2)	with free end s							
	(3)	subjected to un							
	(4)	subjected to co		-		nd			
100	Con	a simply suppor	tad had	on with contro	Lload th	a Danding V	Iomant w	illhe	
100.		Least at the ce		ini with centra	(2)	least at the		iii oc	
16	(1)			anto		72			
	(3)	maximum at th	ie supp	orts	(4)	maximum	at the cent	ie	
109.	The	B.M on a sectio	n is ma	ximum when	shearing	force			
	(1)	is maximum	(2)	is minimum	(3)	is equal	(4)	changes sign	
									24
110.	The	deflection due t	o coup	le M at the fre					
	(1)	ML/EI	(2)	2ML/EI	(3)	ML ² /2EI	(4)	M ² L/2EI	4.
111.	The	shear force on a	simpl	v supported be	eam is pr	roportional to	o		
	(1)	displacement of	300		(2)				
		algebraic sum						al forces	
112.	The	shape of the ben sys	iding n	noment diagra	m over t	he length of a	a beam, ha	ving no extern	nal load is
	(1)	parabolic	(2)	cubical	(3)	linear	(4)	circular	
113	The	ratio of maximu	ım to a	verage shear s	stress in	a solid circul	lar section	is	
		1.0		1.33	(3)			1.7	
	(1)		(2)	1.55	(3)		(.,)	654	
114.	The	Poison's ratio f	or corl	cis					
	(1)	zero	(2)	0.1	(3)	0.2	(4)	0.3	
					18-A				(CVL)

								Set Code : T2
								Booklet Code : A
115.	The	sum of the mor	nent of	inertias abou	at any two	orthogonal axe	s is	
	(1)	always consta	nt		(2)	always zero		
	(3)	always one			(4)	always linear		8 U
116.		in energy in tor					nsideri	ing 'q' as shear stress, E
			(2)	-		q/4G	(4)	q/4E
117.	The	maximum shea	r stress	in a thin tub	e is			
	(1)	equal to avera	ge shea	ar stress	(2)	twice the aver	age sh	ear stress
	(3)	half the avera	ge shea	r stress	(4)	one third of av	/crage	shear stress
118.	Mad	caulay's method	is used	for calculati	ion of whi	ch quantity		
	(1)	bending mom	ent		(2)	shear force		
	(3)	slope and def	ection		(4)	stresses		
119.	Alo	ng the neutral a	xis of si	mply suppor	ted beam		10	
	(1)	fibers do not			(2)	fibers undergo	minin	num strain
	(3)	fibers undergo	maxin	num strain	(4)	fibers undergo	minir	num stress
120.	The	area under stre	ss strair	curve repre	esents			
	(1)	work done	(2)	ductility	(3)	strain energy	(4)	residual stress
121.	The	maximum defl	ection o	f a cantileve	r beam du	e to pure bendin	g mon	nent (M) at its free end is
		Ml ² /3EI		MI ² /4EI		MI ² /6EI		MI ² /2EI
122.	The	shape of kern a	rea of a	rectangular	section is	Fig. 1		
		rectangle		square	(3)		(4)	parallelogram
123	Pol	er modulus of a	section	is a measur	e of strens	gth of section in	1	
. 20.	(1)			shear		torsion	(4)	axial compression
					19-A			(CVL)

Set Code : T2

Booklet Code : A

124	Th	ick cylind	arc ara	analyz	ed on the b	agia of				
124	(1)				ss theory		I amalasi	h		
					ss meory	(2)				
	(3)	Poisson	s thec	ory		(4)	Rankine'	s theory		
125	. Wh	en one en	dofaf	ixed b	eam deflec	ts by 'δ' the	n the bend	ing momen	t at deflec	ted end is
	(1)	$\frac{2EI\delta}{L^2}$		(2)	$\frac{3EI\delta}{L}$	(3)	$\frac{3EI\delta}{L^2}$	(4)	$\frac{6EI\delta}{L^2}$	
126.	The	flexural r	igidity	ofah	inged end i	is				
	(1)	infinity		(2)	zero	(3)	two	(4)	one	
127.	Buc	kling load	l can be	e great	er than cru	shing load it	f			
	(1)	column	is a sh	ort col	umn	(2)	column h	as both ends	fixed	
	(3)	column	is a lor	ng one		(4)	column b	oth ends hin	ged	
128.	For	a column	of leng	th 'L'	having one	end fixed a	nd other en	d free, the e	quivalent	length is
	(1)	2L		(2)	L	(3)	L/2	(4)	$L/\sqrt{2}$	
129.	The the c	ratio of cr	rippling	g loads	of a colur	nn having b	oth the end	s fixed and	the colum	in whose both
	(1)	1.0		(2)	2.0	(3)	3.0	(4)	4.0	
130.		maximum ity 's' is	height	ofam	asonry dan	n of a triangu	lar section	whose base	width is 't	o' and specific
	(1)	$b\sqrt{s}$		(2)	b.s	(3)	$\sqrt{b}.\sqrt{s}$	(4)	$s\sqrt{b}$	
131.	The	failure we	dge de	velons	when a ret	aining wall				,
		moves av		-		annig man				
	(2)	moves to								
	(3)	sink dow								
					deal and t					
	(4)	stresses (equality	by ve	rtical and f	norizontal fo	orces			
						20-A				(CVL)

								Set Code	
								Booklet Code	: A
32.	The	lateral earth pro	essure o	n a retaining wa	all				
	(1)			e soil retained					
	(2)			epth of the soil					
	(3)			uare of the dep	th of th	ne soil			
	(4)	proportional t	o the in	ternal friction	of the s	oil			
133.	Mod	lulus of rapture	of con	crete is a measu	are of				
	(1)				(2)	direct tensile s	trengtl	n	
	(3)				(4)	both flexural &	tensi	le strength	
134.	The	fineness modu	lus of fi	ne aggregate is	in the	range of			
		2.0 to 3.5		3.5 to 5.0		5.0 to 7.0	(4)	7.0 to 10.0	
135.	For	making a good	concret	e, aggregate sh	ould be	in		1	
	(1)	saturated con-			(2)	70 (201)	ndition	L S	
	(3)	bone dry cond	lition		(4)	semi saturated	condi	tion	
136.	For	reinforced cem	ent con	crete the slump	shoule	d be			
		0 to 5 cm		2.5 to 7.5 cm			(4)	5 to 12.5 cm	
137.	The	ratio of tensile	to com	pressive streng	th of c	oncrete is			
		0.025		0.04	(3)		(4)	0.4	
138.	Des	ign mix concre	te is pro	eferred over no	minal n	nix concrete bec	ause		
		strength of fo			(2)	cement conter	nt of la	ter is more	141
		it is easy to p			(4)	strength of lat	er is le	ess	
139.	Whi	ich of the follo	wing do	es not cause un	soundr	ness in cement			
	(1)	free lime			(2)	magnesia			
	(3)	calcium sulph	nate		(4)	silica			
					21-A				(CVL)

								Set (Code: T2
								Booklet (Code : A
140.	The	partial safety fa	etor fo	or steel as pe	er IS 456-2	2000 is taken as	,		
		1.15	(2)	1.25		1.50	(4)	1.75	
			62 050	ST 82 SS 1935					
141.		vorking stress de		he factor of	safety is a				
	(1)	ultimate stress			(2)	-			
	(3)	stress at elasti	c limit		(4)	breaking stres	SS		
142.	In a	RCC column if	ties are	e not provid	ed, the col	umn is likely to	,		
	(1)	fail by buckling	g		(2)	fail by crushir	ng		
	(3)	behave like a b	eam		(4)	fail by torsion	1		134
143.	To d	lesign a column,	one sh	ould norma	lly start by	assuming the	area of	steel as	
		1%	(2)			0.5%	(4)		
						10.75-0.70			
144.	Whi	ich of the follow	ing is g	generally no	t designed	for shear			
	(1)	a slab			(2)	a cantilever be	eam	•	
	(3)	a footing			(4)	a beam			
145.	The	maximum shear	stress	in a beam o	f rectangui	lar section is gi	ven by	12	
	(1)	1.25 times the			(2)	1.5 times the a			
	(3)	1.75 times the	_		(4)	2.0 times the a	_		
146	The	radius of a bar b	end to	form a book	ehould n	ot he less than			
140.	(1)	twice the diam		IOIIII a HOOF	(2)	thrice the diar	neter		
	(3)	four times the		er	(4)	five times the		er	
ą.	(5)	rour times the	diamice	CI.	(4)	nve times are	diamet	CI	
147.	Incre	ease in fineness	moduli	is of aggreg	ate indicat	tes			
	(1)	fine grading			(2)	coarser gradin	g		
	(3)	gap grading			(4)	mixed grading			
					22-A				(CVL)

								Set Cod	
							J	Booklet Cod	le : A
148	In sla	ab, the minimum	reinfo	orcement provid	led is (for Fe 250 Grad	de)		
140.		0.10% of its gr			(2)	0.12% of its g	ross sec	ctional area	
		0.15% of its gr			(4)	0.18% of its g	ross sec	ctional area	
	(-)								
149.	The	diameter of long	gitudina	al bars of a colu	mn sho	ould never be le	ss than		
		6 mm		8 mm	(3)		(4)	12 mm	
	107 . 34								Jimanaian
150.	A co	olumn is regarde	ed as lo	ong column if th	ne ratio	of its effective			aimension
	(1)	10	(2)	12	(3)	20	(4)	25	
					4				
151.	The	shear reinforce	ment in	RCC is provid	ed to re	esist			
	(1)	vertical shear			(2)	horizontal she			
	(3)	diagonal comp	ression	n	(4)	diagonal tensi	on		20
			20	11 0 001 0	10 20 20			ning in two	lirection is
152	. The	maximum ratio			lab sim	ple supported a	na span (4)	aning in two t	inection, is
	(1)	25	(2)	30	(3)	35	(4)	40	
152	16-	oncrete grade is	M-201	hen what would	d be the	e modular ratio			
155				9.08		12	(4)	13.33	
	(1)	7.08	(2)	9.00	(5)		. ,		
154	For	stairs spanning	horizo	ntally the minin	num wa	ist provided is			
154		4 cm		6 cm	(3)		(4)	12 cm	
	(1)	+ CIII	(=)						
155	IfT	and R are tread	and ris	se respectively	of a sta	ir, then			
	(1)	2R + T = 60	(2)	R + 2T = 60	(3)	2R + T = 30	(4)	R + 2T = 3	0
	(.)								
156	. Inv	ar tape is made	of an a	lloy of	_ and	steel.			
		Copper		Zinc	(3)	Nickel	(4)	Bronze	
	/				23-A				(CVL)

								Set Code	: T2		
								Booklet Code	: A		
157.	Wal	king over the area	and o	bserving its ma	in featu	res and bounda	ries, is k	nown as	_survey.		
	(1)	Topographical	(2)	Cadastral	(3)	City	(4)	Reconnaissan	ice		
158.		sum of the exter e number of its s		gles of a closed	l traver	se is equal to _		_ Right angles.	where n		
	(1)	(2n - 4)	(2)	(2n + 4)	(3)	(4n - 2)	(4)	(4n + 2)			
159.	Ifth	e whole circle be	earing	of a line is 270	°, then	its bearing in q	uadran	tal system is	5		
	(1)	90°W	(2)	90°E	(3)	180°W	(4)	180°E			
160.		ne which passes the cross hair, is o			ntre of	the objective a	nd also	through the inte	ersection		
	(1)	Line of collima	ntion		(2)	Axis of teleso	cope				
	(3)	Horizontal axis	;		(4)	Trunion axis					
161.		If R.L. of a B.M. is 200.00 m, back sight is 1.525 m and foresight is 3.285 m, R.L. of the forward station, is									
		198.460m		201.760m	(3)	198.240m	(4)	201.525m			
162.	In tr	apezoidal formu	la of a	reas, the line jo	ining t	he ends of the	ordinate	es is assumed_			
		semi circular				parabolic		circular			
163.	1 Ac	ere is equal to									
	(1)	43560 sq.ft	(2)	34560 sq.ft	(3)	54360 sq.ft	(4)	64350 sq.ft			
164.	Ifa	tacheometer is fi	tted w	ith anallatic ler	ns						
	(1)	Additive consta	ant is	100, multiplyin	g const	ant is 0					
	(2)	Additive consta	ant is	0, multiplying c	onstan	t is 100					
	(3)	Both additive c	onsta	nt and multiplyi	ng cons	stant are 100					
	(4)	Both additive c	onsta	nt and multiplyi	ng cons	stant are 50					
					24-A				(CVL)		

								Set Code Booklet Code	
165.	One	S.I. unit of vis	cosity is	equal to					
		10 poises		981 poises	(3)	9.81 Ns/m ²	(4)	10 kg.sec/m ²	
166.	8 m	of oil (sp.Gr. =	0.8) he	ad is equal to t	he follo	wing water hea	ıd		
	(1)	10 m	(2)	8 m	(3)	6.4 m	(4)	1 m	
167.		nward. The de	pth of it		ssure is	ide in the free s		of a liquid. Its v	vertex is
168	The	equation of co	ntinuity						
100.	(1)	is valid for in		ssible fluids					
	(2)		•		s and ar	ea of cross-sec	tion		
	(3)			riations along					
	(4)		•	of flow along a				6 9	
169.	Flov	v of a fluid fro	m low p	ressure to high	pressu	re is			
	(1)	possible in up	ward fl	ow through a u	niform	vertical line			
	(2)	possible in flo	ow throu	igh a convergi	ng pipe	with horizontal	axis	92	
	(3)	possible in flo	ow throu	igh a diverging	pipe w	ith a horizontal	axis		
	(4)	impossible if	the pass	sage has a cons	stant cre	oss-section			
170.	Diff	erential manor	neters a	re used for mea	asuring				
	(1)	velocity of fl							
	(2)	pressure of fl	uid at a	point					
	(3)	discharge of	fluid						
	(4)			e between two	points				
	POS.					70		31	
					25-A				(CVL)

									Se	t Code : T2
								1	Bookle	Code : A
171.	The	pressure at vena-	contr	acta of an exter	nal mou	thpiece i	s			
	(1)	always less than	satur	ation vapor pre	ssure o	fliquid				
	(2)	inversely propo	rtiona	al to square of o	oeffici	ent of cor	ntractio	n		
	(3)	always greater t								
	(4)	a function of th	e head	over the mout	hpiece					
172.	AV-	notch is conside	red to	be a better note	ch beca	use				
	(1)	its C _d is practic	ally u	niform over a w	ide ran	ge of hea	ds			
	(2)	it produces neg								
	(3)	It keeps the hea	d with	nin a reasonable	limit e	ven for la	rge dis	charge	s	
	(4)	Its C _d is smalle	r							
	53,000	•					4	88		
173.		error of 1 mm is c 3m the percent e			sureme	nt of head	over a	rectan	gular n	otch. If the head
	(1)	0.5	(2)	0.6	(3)	1.0		(4)	1.5	
174.	The	Hagen-Poiseuill	e equa	tion gives						
	(1)	head loss in lan	ninar f	low						
	(2)	boundary shear	stress	s in laminar flov	V					
	(3)	shear stress dis	tributi	ion in any pipe	flow					
	(4)	velocity distrib	ution	in any pipe flow	v					
175.	The	loss of head due	to frie	ction in turbule	nt flow	through a	a circul	ar pipe		
	(1)	varies as cube o			(2)					average velocity
	(3)	varies as square			(4)	is direct	ly prop	ortion	al to av	erage velocity
176	Lan	ninar flow throug	h a ni	ne, the velocity	distrib	ition curv	e is			
170.	(1)	logarithmic	P	,		paraboli				
	(3)	elliptical			(4)	hyperbo				
	(-)	cinpulati			26-A					(CVL)

				Booklet Code :	A
177	Fort	the most economical trapezoidal section	on of a	n open channel	
	(1)	depth of flow = twice base width	(2)	depth of flow = hydraulic radius	
	(3)	sloping side = half the top width	(4)	sloping side = base width	
178.	Frou	ide's number is defined as the ratio of			
	(1)	Inertia force to viscous force	(2)		
	(3)	Inertia force to pressure force	(4)	Inertia force to gravity force	
179.	The	critical velocity for a flow of q m3 wid	th of a	wide rectangular channel is given by	
	(1)	$\left(\frac{q^2}{g}\right)^{\frac{1}{3}}$		$(q^2g)^{\frac{1}{3}}$	
	(3)	$\left(\frac{g}{q^2}\right)^{\frac{1}{2}}$	(4)	$(q g)^{\frac{1}{2}}$	
180	. The	function of scroll case of a reaction to	urbine	is to	
	(1)	Guide the water to the runner at appro	opriate	angle	
	(2)	Guide the water smoothly to the tails	race		
	(3)	Distribute the water evenly around the	e whe	el	
	(4)	Reduce the eddy and shock losses			
				0.834	
181	. The	runner blades of a Kaplan turbine are		8	
	(1)	More curved than propeller blades	(2)	More curved than pelton blades	
	(3)	More curved than Francis blades	(4)	Less curved than Francis blades	
182	. Wh	en the speed of a centrifugal pump is c		t .	
	(1)	Shaft power decreases with increase	of Q		
	(2)	H _m decreases with increase of Q			
	(3)	Q increases with increase of H _m			
	(4)	Q is independent of H _m			(CVL)
			27-A		()

								. 50
					-			Set Code : T2
								Booklet Code : A
183.	The	optical square i	s based	on the princip	ole of op	tical		
	(1)	reflection		200 Records	(2)	refraction		
	(3)	double reflect	ion		(4)	double refrac	tion	
184.	Λre	servoir provide	d at the	intake head w	orks fro	m which water	enters	the penstocks is
	(1)	power canal	(2)	tail rack	(3)	fore bay	(4)	trash rack
185.	Con	sumptive use is	:					
	(1)	water used up	in plan	t metabolism				
	(2)	sum of evapo-	transpi	ration and amo	unt use	d up in plant me	etabolis	m
	(3)	sum of evapo-	transpi	ration and infi	ltration	losses		
	(4)	combined use	of surf	ace and ground	dwater	resources		
186.	The	head under which	ch a ce	ntrifugal pump	works i	s called		(*)
	(1)	piezometric he	ead		(2)	pressure head		
	(3)	suction head			(4)	manometric h	ead	
187.		volume of waterial is known as		can be extract	ed by fo	orce of gravity	from a	unit volume of aquifer
	(1)	specific capac	ity	9	(2)	specific yield		
	(3)	specific retent	ion		(4)	specific stora	ge	
188.	One	cumec day is ed	qual to					
	(1)	8.64 hectare n	netres		(2)	86.4 hectare	metres	
	(3)	864 hectare m	etres		(4)	0.864 hectare	metre	s .
189.	Lac	ey considered cl	nannel	section				
	(1)	Rectangular	(2)	Trapezoidal	(3)	Semi elliptica	al (4)	Elliptical
					28-A			(CVL)

				Set Code : T2		
				Booklet Code : A		
190.	Land	d is said to be water logged when				
		Gravity drainage is ceased	(2)	Permanent wilting point is reached		
	(3)	Salinity of soil increases	(4)	Capillary fringe reaches root zone of plants		
191.	Hydraulic jump occurs when the flow changes from					
	(1)	super critical to sub critical	(2)	sub critical to super critical		
	(3)	critical to turbulent	(4)	laminar to turbulent		
192.	. Streams that contribute to the ground water are called					
	(1)	Effluent streams	(2)	Ground water stream		
	(3)	Influent streams	(4)	Perennial stream		
193.	Rati	ional method correlates				
	(1)	Run off coefficient with intensity	of rainfal	11		
	(2)	Run off co efficient with drainage area				
	(3)	Drainage area with intensity of rainfall				
	(4)	Intensity of rainfall with run off				
194	. The	example of multiple Arch type Butt	tress dam	in India is		
	(1)	Mir-Alam dam	(2)	Khadakwasla Dam		
	(3)	Idikki dam	(4)	Koyna dam		
195	. Sur	charge storage of reservoir is the vo	lume of v	water stored between		
	(1)	Normal pool level and maximum	pool leve	1		
	(2)	Maximum pool level and minimum	m pool le	vel		
	(3)	Minimum pool level and normal p	oool level			
	(4)	Normal pool level and revert bed	level			
			29-A	, (CVL)		

				Set Code : T2				
				Booklet Code : A				
196.	Seepage endangers the stability of an earth dam built on pervious foundation because of piping which depends on							
	(1)	height of dam	(2)	quantity of seepage flow				
	(3)	value of exit gradient	(4)	total reservoir storage capacity				
197.	Inverted filter for providing foundation drainage has							
	(1)	multi layers of soil particles of same permeability						
	(2)							
	(3)							
	(4)	only one layer of soil		\$100000 to the control of the contro				
198.	Gravity dams transfer load to foundation by							
	(1)	Arch action	(2)	Cantilever action				
	(3)	Both arch and cantilever action	(4)	Cohesion .				
199.	A ch	nute spill way is generally provided w	ith	€				
	(1)	Aweir	(2)	Abarrage				
	(3)	Concrete gravity dam	(4)	An earth dam				
200.	The function of surge tank is to							
	(1)	avoid flow in reverse direction						
	(2)	smoothen the flow						
	(3)							
	(4)							
			30-A	(CVL)				