|--|

α				$\frac{k}{2}$	$\frac{7k}{2}$		$\frac{2}{12t_1}$
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} \dag^{\alpha}$	$\sigma_{1}^{\#2}\dagger^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

$f_{1^-}^{\#2} \alpha$	0	0	0	<i>ikt</i> 1 3	$i \sqrt{2} kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	$0 \frac{1}{3}$	0	0
$\omega_{1^-}^{\#2}{}_{lpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	1 1 3	0	$-\frac{1}{3}$ i $\sqrt{2}$ kt_1
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	1 1 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$-\alpha\beta$	\pm^{α}	$^{\dagger_{\alpha}}$	†	$^{\dagger}^{\alpha}$

	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

Source constraints					
SO(3) irreps					
$\tau_{0^{+}}^{\#2} == 0$	1				
$\tau_{0}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#1\alpha} == 0$	3				
$\tau_1^{\#1\alpha} == 0$	3				
$\sigma_{1}^{\#1\alpha} = \sigma_{1}^{\#2\alpha}$	3				
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{l}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total #:	19				

$\omega_{0}^{\#1}$	0	0	0	<i>-t</i> ₁	$\alphaeta\chi$			- t1
$f_{0}^{\#2}$	0	0	0	0	$\omega_{2^{-}}^{\#1}$	0	0	$k^2 r_1 +$
$f_{0}^{\#1}$	0	0	0	0	$^{L}_{}}$	$\frac{ikt_1}{\sqrt{2}}$	t_1	0
	F 13)				f#1	- <u>i k</u>	k^2	
$\omega_{0}^{\#1}$	² (-r ₁ +	0	0	0	$\omega_{2}^{\#1}{}_{\alpha\beta}$	<u>41</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0
	- 6 k ²				-	$\dagger^{lphaeta}$	$\dagger^{\alpha \beta}$.αβχ
	$\omega_{0}^{\#1}$ †	$f_0^{\#1}$ †	$f_0^{#2}$ †	$\omega_{0}^{\#1}$ †		$\omega_2^{\#1}$	$f_2^{\#1}$	$\omega_{2}^{\#1}$ †

? $J^{P} = 2^{-}$?	
/	

Massive particle				
esidue: $\left -\frac{1}{r_1} > \right $	0			
ations: 5				
e mass: $-\frac{t_1}{2r_1} >$	>			
2				
Odd				
	esidue: $-\frac{1}{r_1} >$ ations: 5 e mass: $-\frac{t_1}{2r_1} >$			

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$

(No massless particles)