Assignment 3

1. The irreversible isomerisation reaction (A → B) was carried out in a batch reactor and the following conc.-time data were obtained.

t(min.)	0	1	2	3	4	5	6	7	8	9	10	15	20
C _A (mol/m ³)	0.041	0.034	0.027	0.023	0.021	0.018	0.016	0.015	0.0136	0.012	0.0114	0.009	0.0067

Determine reaction order and reaction rate constant by using-

- a) Integral method.
- b) Differential method.
- c) Compare the result and comment on the methods.
- 2. The rate of reaction of A and B (A+B → AB), from the rate data given in table. Suggest a mechanism and rate equation for this reaction and determine the rate constant also.

Conc. of A	Conc. of B	Rate of reaction
(mole/liter)	(mole/liter)	(mole/liter)(min ⁻¹)
1.0	0.02	4.6×10 ⁻⁴
1.0	0.04	9.2×10 ⁻⁴
0.02	1.0	9.2×10 ⁻⁶
0.04	1.0	3.68×10 ⁻⁵

- 3. Find the first order rate constant for the disappearance of A for the gas phase reaction (2A → B) occurring in a batch reactor under constant pressure condition. The volume of reaction mixture initially consists of 80% A, and decreased by 40% in 3 min.
- 4. Find the order of irreversible reaction from the following half-life data.

C _{A0} (mole\lit.)	5	10	15	20
t _{1/2} (sec)	40	20	13.5	10

Also find the value of reaction rate constant.

5. Experimental studies for specific decomposition of A in a batch reactor using pressure units, shows exactly the same rate at two different temperatures.

At 300K
$$(-r_A) = 6.7 \times P_A^2$$

400K $(-r_A) = 6.7 \times P_A^2$

Where, $(-r_A) = \text{mole/}(\text{m3.sec})$ and $P_A = \text{atm.}$

- a) Evaluate the activation energy using these units.
- b) transform the rate expression into concentration units and then evaluate the activation energy.

The pressure is not excessive, so the ideal gas law can be used.

(Note: Please plot graphs on excel sheet, where required.)