(11) EP 1 016 881 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 05.07.2000 Bulletin 2000/27 (51) Int. Ci.7: G01T 1/20

(21) Application number: 99125821.1

(22) Date of filing: 23.12.1999

(84) Designated Contracting States:
AT BE CH CY DE DK ES RIFR GB GR IE IT LI LU
MC NL PT SE

MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 28.12.1998 JP 37406098 12.03.1999 JP 6634899

(71) Applicant: KABUSHIKI KAISHA TOSHIBA Kawasaid-shi, Kanagawa-ken 210-8520 (JP)

(72) Inventors:

• Maekawa, Tatsuyuki
Tokyo (JP)

Sumita, Akio

Yokohama-shi, Kanagawa-ken (JP) • Watanabe, Kazumi

Tokyo (JP)

 Morimoto, Soichiro Yokohama-shi, Kanagawa-ken (JP)

Ohara, Yoshiald
 Fushy and Talana (IR)

Fuchu-shi, Tokyo (JP)

(74) Representative: Blumbach, Kramer & Partner GbR Radeckestrasse 43 81245 München (DE)

(54) Radiation detecting apparatus

(57) In a radiation detecting apparatus (11), and vary and a first are transmitted through a light shelding film (12) but an incident light is shielded. A first light is entire the through the light shielding film (12) but an incident light is shielded. A first light is entire the through the light shielding film (12). The first scintillator (14) has an emission center wavelength based on the c ray. As econd light is emitted in a second scintillator (15) by the β ray transmitted through the light shielding film (12). The second scintillator (15) has an emission center wavelength based on the β ray. The first and second lights are detected by two photo-detectors (17), respectively. The first emission center wavelength and the second em

FIG. 1

Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a radiation measurement technique used in a facility for handling radioactive material, such as a nuclear power plant or the like, and more particularly, to a radiation determing apparatus which is capable of simultaneously and independently measuring nadiations such as a and fix and a same prosition, and is suitable to a practical use as a radiation monitor.

Description of the Prior Art

[0002] FIG. 26 shows a phoswich detecting apparatus (phosphor sandwich detecting apparatus) as a conventional example of a radiation detecting apparatus for simultaneously detecting an α ray and a β ray.

[0003] This radiation detecting apparatus is provided with a light shielding film it through which the α and β rays are transmitted and for shielding light from the outside of the apparatus. The radiation detecting as apparatus is also provided with a first schillator 2 and a second scrilllator 3 which are piled up below the light shielding film 1 shown in FIA, 25 and

There are many cases where ZnS (Aq)

detecting an α ray is used as the first scintillator 2, and plastic detecting a and \$ rays is used as the second scintillator 3. The first and second scintillators 2 and 3 piled into two layers are directly mounted to a photo detector 5 so as to be received in a case 6. In general, a photo-multiplier tube having a high speed response 35 and a high sensitivity is used as the photo-detector 5. A decay time constant of emission of ZnS (Ag) constituting the first scintillator 2 is usec order, but that of emission of plastic constituting the second scintillator 3 is several tens of n sec order. Therefore, the decay time constant of emission of the plastic scintillator 3 is considerably shorter as compared with that emission of the ZnS (Ag) first scintillator 2. When an output current signal of the photo-detector 5 is converted into a voltage signal by means of an RC integrating circuit 45 having a sufficiently long time constant as compared with each decay time constant of emission of the scintillators 2 and 3, a pulse rise time is substantially equal to a decay time of emission, and shows an index decay waveform of a time constant determined by a resistor R 50 and a capacity C. This signal converting process can be carried out in a pre-amplifier unit connected to the photo-multiplier tube and included in the photo-detector

[0006] The converted voltage signal is amplified up 55 to a voltage level which is capable of being analyzed by means of a waveform discrimination processing unit 7, as the necessity arises. When the voltage signal is

inputted in the wevelorm discrimination processing unit 7, an analog-digital converter of the processing unit 7, in order to output a pulse signal having a pulse height proportional to the rise time of the inputted signal, converts the pulse height of the inputted signal into a digital value so that a general analyzer of the processing unit 7 measures a pulse height distribution (as spectrum data) on the basis of the converted digital value.

[0007] It is possible to distinguish an emission of the first scintillator 2 and that of the second scintillator 3 on the basis of the spectrum data showing the rise time and obtained from the waveform discrimination processing unit 7.

[0008] FIG. 27 shows, as another conventional example, an α-β rays detecting apparatus using a sensor 8 for measuring energy spectrum.

[0003] For example, an Si semiconductor sensor is used as the sensor 8 for measuring energy spectrum of the above apparatus. However, the sensor 8 has a sensitivity to a room light and the like other than a radiation of this reason, similarly to the above described radiation detecting apparatus, a light shielding film 1 is mounted on the sensor 8 so that the sensor 8 is housed in a case 6.

[0010] An output signed of the sensor 8 is analyzed by means of a pulse height analysis system 9, so as to be measured as an energy spectrum. In general, the analysis system 9 includes: a charge sensitive pre-amplifier for processing the sensor output signifier, an analyzing multiple pulse heights and the like. In the energy spectrum data obtained by the analysis system 9, the or-ray data and the Fray data show different distributions and peak shapes, respectively, and therefore, it is possible to distinguish the cray and the β ray by processing these spectrum data corresponding to the car and I rays.

[0011] However, the pulse height discrimination processing unit 7 necessary for the conventional phoswich detecting apparatus shown in FIG. 16 is a processing unit for analyzing a pulse rise, and is very expensive. Therefore, this conventional detecting apparatus is useful to a study in an experimental level.

[0012] However, as a detecting apparatus which is mounted in an edual nuclear facility or the like, there is a problem relating to a cost. Moreover, the waveform discrimination processing unit analyses a rise time itself, and is an over specification in the case of discriminating signals having different rise times, respectively.

[0013] Furthermore, in view of the principle, in order to obtain a rise time, for example, there is a need of carrying out a signal detection at a 10% level and a 90% level of an inputted pulse height value, so that there is a problem that it is impossible to analyze and measure a signal having a low pulse height value. This problem relates to a dynamic range of the pulse height value of the signal. For example, an emission of 27.6 (Ad) scinili-

lator generated by an α ray is considerably larger than that of the plastic scintillator generated by a β ray, and actually, the output signal of the photo-multiplier tube corresponding to the emission of $2\pi S(Ag)$ is larger 10 times or more as much as that of the photo-multiplier s tube corresponding to the emission of β ray of the plastic scintillator at the point of time of being converted into the voltage signals.

[0014] Therefore, since the ß ray signel has a low pulse height value and is continuously distributed on a low energy side, the measurement of the ß ray is disasturategous as compared with that of the car is, I periorular, a component of the ß ray having a low pulse height value is not narayed and measured so that there is a problem that an effective β-ray sensitivity gets to be low. Especially, in the case where a thickness of the plastic scintillator is made thin in order to suppress a y-ray sensitivity, the emission of the plastic cartillator is rated thin in order to suppress a y-ray sensitivity that the effective β-ray sensitivity is of the plastic cartillator is that of the size of the plastic cartillator is the effective β-ray sensitivity is thrive accollerated. [0015] in addition, in the case of the radiction.

[0015] In addition, in the case of the radiation detecting apparatus using the energy spectrum measuring sensor 8 as shown in FIG. 27, the pulse height analyzer which is substantially equal to the above waveform discrimination processing unit must be required; as a result, there is a problem that the cost of the radiation detecting apparatus gets to be high. Furthermore, since an effective atomic weight of a base material of the energy spectrum measuring sensor 8 is larger than the plastic scribilities, $\alpha_{\rm TMY}$ sensitivity is high so that there is a problem that a $\gamma_{\rm TMY}$ singlify is high so that there is a problem that a $\gamma_{\rm TMY}$ singlify in the plant of the single plant of the control of

[0016] Still furthermore, in the case where measurement is not carried out in a vacuum state, or in the case of measuring an α ray from an α -ray emission sometime or a fitter paper, an energy loss of the α -ray is high and a fluctuation of range is large. For this reason, a Gaussian peak as obtained in vacuum is not obtained so that there is the case where the energy spectrum of the α -ray overlaps with that of the β -ray, whereby, in spite of measuring the energy spectrum of the α -ray overlaps with that of the α -ray and the β -ray, it is hard to clearly distinguish the α -ray and the β -ray, it is hard to clearly distinguish the α -ray and the β -ray.

SUMMARY OF THE INVENTION

[0017] The present invention is directed to overcome the foregoing problems.

[0018] Accordingly, it is an object of the present invention to provide a radiation detecting apparatus which is capable of practically being used as a detector for radiation monitor, and being manufactured at a lovest, and further is able to independently and simultaneously detect an α ray and a β ray while maintaining sensitivities of these rays at the utmost limit and sufficiently preventing a γ ray sensitivities.

[0019] In addition, it is another object of the present invention to provide a radiation detecting apparatus

having a rationally arrangement of first and second photo-detectors so as to make high an efficiency of detecting emissions of the first and second scintillators. 100201 That is, in the radiation detecting apparatus.

Install, in the related in the first scintillator for a ray transmis through the second scintillator for a ray transmis through the second scintillator for a ray transmis through the second scintillator for a ray and then, is guided to at least one photo-detector by means of condensing means. In this case, conventionally, the everetorm discrimination processing unit for analyzing a rise of pulse has been applied in view of a pulse rise stime of a signal converted by an Ro! Integrating circuit, wherein the pulse rise time is substantially equal to a decay time of emission of seak scintillator.

[0021] In view of this point of using the weveform discrimination processing unit, the inventors have a concept that it is possible to dispense with the weveform discrimination processing unit for analyzing a pulse rise, which is required for the conventional radiation detecting apparatus, by adjusting and optimizing the used scinililators, emission wevelengths of the scintillators and quantities of emission thereof.

[0022] More specifically, it is preferable that a photo-multiplier tube is used as a photo-detector in view of a response speed and sensitivity.

of a response speed and sensitivity. [1023] in other words, since the emission wavelength of the first scintillator, it is possible to adjust and optimize the scintillators, entison wavelengths of these scintillators and quantities of emission thereof in accordance with those. Eurhermore, a detecting apparatus is constituted by intentionally varying the emission decay times of these scintillators and emission wavelengths thereof, whereby it is possible to provide means for optically discriminating between the emission wavelengths there see scintillators.

[0024] Moreover, as means for independently and simultaneously detecting an a ray and a \$ ray while securing the maximum sensitivity of them, the inventors have a concept that a light is easy to be confined in the first and second scintillators so as to improve each condensing density of each of the first and second scintillators by an arrangement thereof. More specifically, the first scintillator emitting a light by an α ray is formed very thin so as to restrict 8-ray and y-ray sensitivities, and for example, there are many cases where the first scintillator is composed of a powder, a sintering body and other similar materials. Therefore, in the first scintillator, a diffuse reflection is made therein so that a light is emitted thereto. The emitted light transmits through the second scintillator for a ß ray so as to be guided to the photodetector by the condensing means.

[0025] In this structure, in the case where an air is interposed between the first and second scrillilators, when the light emitted from the first scintillator is transmitted through the second scintillator, though a probability of an occurrence of Fresnel reflection increases, since the second scintillator is surrounded by the air having a refractive index value lower than that of the

second scintillator, it is easy to confirm the light emitted in the second scintillator. For this reason, as the condensing means for the second scintillator, it is easy to employ a method of using the emitted light condensed on the edge side of the second scintillator with a high ε

[0026] In accordance with the above described conception, in order to achieve such objects, according to one aspect of the present invention, there is provided a radiation detecting apparatus comprising: a light shield- 10 ing film for transmitting therethrough first and second radiations while shielding an incidence of light, a first scintillator for emitting a first light by the first radiation transmitted through the light shielding film, the first scintillator having an emission center wavelength based on 15 the first radiation; a second scintillator for emitting a second light by the second radiation transmitted through the light shielding film, the second scintillator having an emission center wavelength based on the second radiation; and detection means having at least 20 one photo-detector for detecting the first light emitted from the first scintillator and the second light emitted in the second scintillator, the first emission center wavelength and the second emission center wavelength being different from each other.

[0027] In preferred embodiment of this one aspect, the first emission center wavelength is a wavelength of the first light emitted in the first scintillator and having a peak emission intensity in an emission wavelength band of the first scintillator, and the second emission center awavelength is a wavelength of the second light emitted in the second scintillator and having a peak emission intensity in an emission wavelength band of the second scintillator.

[0028] In preferred embodiment of this one aspect, 35 the first scintillator and second scintillator are arranged in parallel to each other so that the second scintillator is located away from the first scintillator at a predeter-mined distance, further comprising means for condensing the first light emitted from the first scintillator and the second light emitted in the second scintillator and the detection means; and an air layer interposed between the first and second scintillators, the first amission center wavelength of the first scintillator being set shorter than the second scintillator.

[0029] According to the one aspect of the present invention described above, the air layer is interposed between the first and second scintillators, and thereby, the second scintillator is surrounded by the air layer having a reflective index value flower than itself, so that the second light is confined in the second scintillator. Therefore, it is easy to employ a method of using a light condensed on the edge side of the second scintillator with a high density. Furthermore, there is no need of sproviding an intermediate material required for bonding of these first and second scintillators and optically closely connecting them. In addition, the present inven-

tion is suitable for the case where there is an arxiety of alteration due to a chemical interaction of these intermediate materials and the first and second scintillators. Still furthermore, an independence of each scintillator is secured, making it possible to carry out maintenance, inspection and replacement with respect to only one of these scintillators.

[0030] Moreover, the emission center wevelength of the first scintillator is set shorter than the emission center wavelength of the second scintillator, making it possible to also use means for optically identifying wavelengths of the first and second lights so as to dispense a waveform discrimination processing unit for analyzing outles rise times.

[0031] This one aspect of the present invention further has means for condensing the first light emitted from the first scirtillator and the second light emitted in the second scintillator on the detection means, wherein the first scirtillator and second scirtillator are closely optically adhered with each other, the first emission center wavelength of the first scirtillator being set shorter than the second emission center wavelength of the second scritillator.

[0032] According to the one aspect of the present invention, the first and second scritillators are arranged so as to optically closely be adhered with seath other, making it possible to reduce an internal capture by a Freener leflection based on a difference in reflective indexes due to the air layer and by a total internal reflection in the second scritillator, and thus improving a transmission probability of the first light of the first scintillator through the second scritillator. Therefore, it is easy to employ of using the second light from the second scritillator which is not adhered with the first scritillator which is not adhered with the first scritillator.

[0033] This one aspect of the present invention further has means for condensing the first light entitled from the first scintillator and the second light entitled in the second scintillator and the detection means, wherein the first scintillator and second scintillator are closely optically adhered with each other, the first emission center wavelength of the first scintillator being set longer than the second emission center wavelength of the second scintillator.

[0034] According to the one aspect of the present invention, the first and second scinillations are arranged so as to optically and obsely be adhered with each other, making it possible to improve a transmission probability of the first sight of the first scinillator through the second scinillator. Therefore, it is easy to employ a method of condensing the first light of the first scinillator from the back surface of the second scinillator, as the condensing means.

[0035] One aspect of the present invention further has a condensing box for condensing the first and second lights on the detection means, the condensing box having an inner surface for diffusely reflecting the first and second lights and a side surface, the light shielding film being mounted on the side surface on which the first and second reliations incident, the first and second scintillators being arranged inside the light shiekling film, and wherein the detection means comprises first and second photo-detectors each having a sensitive surface of the first and second lights; a first litter mounted on the sensitive surface of the first photo-detector, and a second filter mounted on the sensitive surface of the second photo-detector, the first filter being adapted to transmit therethrough only the first loight antitled from the first scintillator, the second filter being adapted to transmit therethrough only the second follows in the first scintillator, the second filter being adapted to transmit therethrough only the second intention that the second scintillator.

100361 In the case of the one aspect of the present invention, the first and second lights having different 15 emission wavelength bands are mixed to be filled in the condensing box while diffusely being reflected. The first filter is mounted on the sensitive surface of the first photo-detector, and the second filter is mounted on the sensitive surface of the second photo-detector. 20 Because the first filter is adapted to transmit therethrough only the first light emitted from the first scintillator, and the second filter is adapted to transmit therethrough only the second light emitted in the second scintillator, it is possible to independently detect the first 25 and second lights corresponding to the first and second radiations without using a specific electronic equipment for discrimination and identification. Furthermore, the condensing box is used so that it is easy to apply a large-area scintillator to the radiation detecting apparatus.

100371 In preferred embodiment of this one aspect, the second scintillator has an incident surface on which the first and second radiations are incident and a back surface opposite to the incident surface, the detection means comprises first and second photo-detectors each having a sensitive surface sensitive to each of the first and second lights; a first filter mounted on the sensitive surface of the first photo-detector; and a second filter mounted on the sensitive surface of the second photo-detector, the first filter being adapted to transmit therethrough only the first light emitted from the first scintillator, the second filter being adapted to transmit therethrough only the second light emitted in the second scintillator, and wherein the first filter and the second filter are closely optically adhered on the back surface of the second scintillator.

[0038] In preferred embodiment of this one aspect, the second scintillator has a substantially rectangular shape, and wherein the first photo detector and the second photo-detector are adjacently arranged so that a line is crossed to a longitudinal direction of the second scintillator, the line connecting a center point of the sensitive surface of the first photo-detector and that of the sensitive surface of the second photo-detector.

[0039] According to the one aspect of the present invention, it is possible to extremely decrease a probability that, when the second light emitted in the second

scintillator away from the second filter is propagated therein, the second light passes on the first filter so as to be absorbed therein.

[0040] In preferred embodiment of this one aspect, the second scirtillator has a substantially rectangular shape, and wherein the first photo-detector and the second photo-detector are arranged on both lateral sides of the second scirtillator so that the first photo-detector is the most distant from the second photo-detector is

[0041] According to the one aspect of the present invention, it is possible to extremely decrease a probability that, when the second light emitted in the second scintillator away from the second filter is propagated therein, the second light passes on the first fifter so as to be absorbed therein.

[0042] This one aspect of the present invention has an arrangement that the second scintillator has an incident surface on which the first and second radiations are incident and a back surface opposite to the incident surface, the detection means comprises first and second photo-detectors each having a sensitive surface sensitive to each of the first and second lights: a first filter mounted on the sensitive surface of the first photodetector; and a second filter mounted on the sensitive surface of the second photo-detector, the first filter being adapted to transmit therethrough only the first light emitted from the first scintillator, the second filter being adapted to transmit therethrough only the second light emitted in the second scintillator, and wherein the first filter is arranged to be away from the back surface of the second scintillator at a predetermined interval so that an air layer is interposed between the back surface of the second scintillator and the first filter, and the second filter is closely optically adhered on the back surface of the second scintillator.

[0043] According to the one aspect of the present invention, it is possible to, when the second light emitted in the second scintillator away from the second filter is propagated therein, prevent the second light from passing on the first filter so as to get rid of the absorbing function of the second light by the first filter.

[0044] In preferred embodiment of this one aspect, the second scintillator has an incident surface on which the first and second radiations are incident and a back surface opposite to the incident surface, the detection means comprises first and second photo-detectors each having a sensitive surface sensitive to each of the first and second lights; a first filter mounted on the sensitive surface of the first photo-detector; and a second filter mounted on the sensitive surface of the second photo-detector, the first filter being adapted to transmit therethrough only the first light emitted from the first scintillator, the second filter being adapted to transmit therethrough only the second light emitted in the second scintillator, and wherein the first filter is arranged to be away from the back surface of the second scintillator at a predetermined interval, and the second filter is closely optically adhered on the back surface of the second scintillator, further comprising a surrounding box having an inner surface portion for surrounding a back surface side of the second scintillator so as to form a closed space therein, the back surface of the second scintillator and the first fitter forming parts of the inner surface portion of the surrounding box the inner surface portion of the surrounding box except for the back surface of the second scintillator and the first fifter being processed to totally internally reflect diffusely the first light emitted from the first scintillator.

[0045] According to the one aspect of the present invention, it is possible to get rid of a bad influence of the first filter with respect to the second light incident through the second filter into the second proto-detector and to increase a probability that the first light emitted from the first scintillator and transmitted through the second scintillator is diffusely reflected to be detected through the first they the first photo-detector.

[0046] In preferred embodiment of this one aspect, the inner surface portion comprises a plurality of inner 20 surfaces, each of the inner surfaces is inclined so that the diffusely reflecting directions on average of the first light on the inner surfaces of the surrounding box are substantially directed to a position of the second circlilicator at which a center axis of the sensitive surface of 25 the first photo-detector is crossed.

[0047] According to the one aspect of the present invention, it is possible to get rid of a bad influence of the first filter with respect to the second light incident through the second filter into the second photo-detector, and to reflect on average the first light emitted from the first scinilitator and transmitted through the second scinilitator and ransmitted through the second scinilitator are position of the second scinilitator are and position of the second scinilitator are within the second scinilitator and the probability that the first light is detected by the first photo-detector as compared with the first light which is uniformly distributed in the closed space.

(00481 This one aspect of the present invention further has a light guide in which the first light emitted from 40 the first scintillator and the second light emitted in the second scintillator are incident, the light guide being adapted to condense the first and second lights on the detection means, and wherein the detection means comprises first and second photo-detectors each having a sensitive surface sensitive to each of the first and second lights; a first filter mounted on the sensitive surface of the first photo-detector; and a second filter mounted on the sensitive surface of the second photodetector, the first filter being adapted to transmit there- 50 through only the first light emitted from the first scintillator, the second filter being adapted to transmit therethrough only the second light emitted in the second scintillator.

[0049] According to the one aspect of the present invention, the first and second lights having different wavelength bands are filled to be diffused in the light guide in a state of being mixed, and then, is propagated

to the first and second photo-detectors. The first fitter is mounted on the sensitive surface of the first photo-detector and the second filter is mounted on the sensitive surface of the second filter is mounted on the sensitive surface of the second photo-detector. Because the first filter is adapted to transmit therethrough only the first filter is adapted to the first and second sight existed the mitted in the second sight existed to the second sight existed to the second secon

[D030] In preferred embodiment of this one aspect, the first filter is arranged to be away from the back sur-face of the second scinilation at a predetermined interval, and the second filter is closely optically adhread on the back surface of the second scinilation, and wherein the light guide has an opening surface opposite to the back surface of the second scinilation, the light guide being arranged so that the opening surface becond scinilation at a predetermined interval so as to interpose an air layer between the opening surface of the light guide and the back surface of the second scinilation, the opening surface should be surface of the second scinilation.

[0051] According to the one aspect of the present invention, it is possible to get ind of abla influence of the first filter with respect to the second light incident through the second filter into the second photo-detector. Moreover, since the first light emitted from the first scin-sillator and transmitted through the second scintillator is incident in the light guide so as to be guided through the first filter into the first photo-detector, it is possible to increase a probability that the first light is detected by the first photo-detector.

[0052] This one aspect of the present invention further has a light guide connecting the at least one photodetector to an edge portion of the second scintillator, the light guide being adapted to convert the second light to a fluorescent light.

[0053] In the case of the one aspect of the present invention, an air is interposed between the first and second scimilators. Since the first scinilator is composed of, for example, a powder and a sintering substance or he like, a diffuser reflection is made in the first scinilator so that the diffusely reflected first light is emitted outside, thereby being once transmitted through the second scinilator, and thereafter, is filled in the condensing box. The first light filled in the condensing box according to the condensing box are detected by means of, for example, a first photo-detector arranged in the condensing box. A component of the second light from the second scirillator is inclient upon the condensing box; however, the second light is eliminated by a fifter provided on the first photo-detector.

[0054] The second scintillator is surrounded by an air; for this reason, the second light is confined in the second scintillator by a total internal reflection effect. As

a result, a scintillation light is condensed on the edge portion of the second scintillator with a high density. The second scintillator is provided at the edge portion side of the second scintillator with the light guide containing a fluorescent substance of absorbing a scintillation photon and emitting a fluorescent light having a longer wavelength as compared with the second light, and thereby, a re-emission light occurs by a fluorescence conversion in the second scintillator. Since the re-emitted light is propagated while being totally internally reflected in the light guide, it is possible to detect a fluorescence light induced by re-emitted scintillation light by means of the photo-detector arranged on the end side of the light guide. Incidentally, the light guide may includes an optical fiber having a clad (referred to a fluorescence fiber, a wavelength shift fiber or the like).

[0055] In the condensing system on the edge side of the second scintillator, it is possible to condense the second light without depending upon an area of the second scintillator; and therefore, it is easy to apply the primertion to a large-area scintillator together with the condensing box.

[0056] In preferred embodiment of this one aspect, the second scimilator has an indicent surface on which the first and second radiations are incident and a back surface opposite to the incident surface, further comprising a fluorescent screen arranged on a back surface side of the second scinillator and opposite through an air layer to the back surface hereoft, the fluorescent screen being adapted to convert the first light emitted arom the first scinillator to afluorescent light; and a light guide adapted to condense the converted fluorescent light on the at least one photo-detector, the converted fluorescent screen, the all least one photo-detector detections to repeat the science of the fluorescent screen, the all least one photo-detector detection into the converted fluorescent light.

[0057] According to the one aspect of the present invention, the first light from the first scintillator is transmitted through the second scintillator so as to be absorbed in the fluorescent screen, so that a re-emission of the fluorescence having a longer wavelength as compared with the second light is generated in the fluorescent screen. The re-emitted light is guided to the photo-detector via the light guide. Whereby it is possible to detect the fluorescence light induced by the first light. In preferred embodiment of this one aspect. the second scintillator has an incident surface on which the first and second radiations are incident and a back surface opposite to the incident surface, further comprising a fluorescent screen arranged on a back surface side of the second scintillator and opposite through an air layer to the back surface thereof, the fluorescent screen being adapted to convert the first light emitted from the first scintillator to a fluorescent light; and a second light guide having a fluorescent substance adapted to absorb the converted fluorescent light so as to emit a fluorescent light, the converted fluorescent light by the fluorescent screen being emitted from an edge portion

of the fluorescent screen, the fluorescent light emitted from the light guide having a wavelength which is longer than that of the converted fluorescent light by the fluorescent screen, the at least one photo-detector detecting the fluorescent light emitted from the second light quide.

100591 According to the one aspect of the present invention, the first light from the first scintillator is transmitted through the second scintillator so as to be absorbed in the fluorescent screen so that a re-emission of the fluorescence having a longer wavelength is generated in the fluorescent screen. In this case, since the fluorescent screen is surrounded by an air, the first light is captured by the total internal reflection similarly to the second scintillator, and then, a fluorescence light is collected on the edge portion side of the fluorescent screen with a high density. Furthermore, since the fluorescent screen is provided with the second light guide for absorbing the fluorescent light generated in the fluorescent screen so as to emit a fluorescence light having a longer wavelength as compared with the fluorescent light generated in the florescence screen, it is possible to condense the emitted fluorescent light by a fluorescence conversion from the edge portion side of the fluorescent screen similarly to the second scintillator. Since the second light guide is provided at the edge portion of the second light guide with the photo-detector, it is possible to detect the first light of the first scintillator as a light which is double converted into a fluorescent light. The one aspect of the present invention further has means for capturing a signal outputted from the detection means so as to recognize a signal having a

predetermined putse height value and over as an optical signal thereby eliminating a signal less than the predetermined putse height value as a noise, the optical signal corresponding to at least one of the first and second lights emitted from the first and second sights emitted from the first and second scinfillators. [0061] According to the one aspect of the present invention, a signal outputted from the detection means is captured so that a signal having a predetermined

pulse height value and over is recognized as an optical

signal. On the other hand, a signal less than the predetermined pulse height value is eliminated as a noise. In preferred embodiment of this one aspect. the detection means comprises a plurality of photodetectors, a first group of the photo-detectors being adapted to detect the first light emitted from the first scintillator, a second group thereof being adapted to detect the second light emitted from the second scintillators, further comprising means for capturing signals outputted each of the first and second groups of the photo-detectors and, in a case of detecting signals outputted from at least one of the first and second groups of the photo-detectors, for recognizing detected signals corresponding to at least one of the first and second lights emitted from the first and second scintillators and. in a case where only one signal is outputted from at

least one of the first and second groups of the photo-

10

detectors, for eliminating the only one signal as a noise. According to the one aspect of the present invention, the first lights are detected by the first group of the photo-detectors and the second lights are detected by the second group thereof. Each signal of 5 each of the first and second groups of the photo-detectors is captured by the capturing means so that, in the case where signals outputted from at least one of the first and second groups of the photo-detectors are detected, it is recognized that the detected signals correspond to the first and second lights emitted from the first and second scintillators and, in a case where only one signal is outputted from at least one of the first and second groups of the photo-detectors, the signal is eliminated as a noise.

[0064] This one aspect of the present invention further has an optical attenuation filter for transmitting therethrough the first and second radiations and attenuating an intensity of the first light emitted from the first scintillator, the optical attenuation filter being interposed 20 between the first and second scintillators; a condensing box for condensing the first and second lights on the detection means, the condensing box having an inner surface for diffusely reflecting the first and second lights: and means for inputting signals detected by the detec- 25 tion means so as to discriminate, according to a difference of waveforms of the inputted signals, between an optical signal corresponding to the first light emitted from the first scintillator and an optical signal corresponding to the second light emitted from the second 30 scintillator.

[0065] The one aspect of the present invention further has an optical attenuation filter for transmitting therethrough the first and second radiations and attenuating an intensity of the first light emitted from the first 35 scintillator, the optical attenuation filter being interposed between the first and second scintillators; a light guide in which the first light emitted from the first scintillator and the second light emitted in the second scintillator are incident, the light guide being adapted to condense 40 the first and second lights on the detection means; and means for inputting signals outputted from the detection means so as to discriminate, according to a difference of waveforms of the inputted signals, between an optical signal corresponding to the first light emitted from the first scintillator and an optical signal corresponding to the second light emitted from the second scintillator. [0066] In accordance with the one aspect of the

present invention, the first and second radiations are transmitted through the optical attenuation so that the 50 intensity of the first light is attenuated. The signals detected by the detection means are inputted to the discriminating means so that the detected signals are discriminated, according to a difference of waveforms of the inputted signals, between the optical signal corresponding to the first light emitted from the first scintillator and the optical signal corresponding to the second light emitted from the second scintillator.

BRIEF DESCRIPTION OF THE DRAWINGS

100671 Other objects and aspects of the present invention will become apparent from the following description of embodiments with reference to the accompanying drawings in which:

- Fig. 1 is an elevational view partially in section showing a radiation detecting apparatus according to a first embodiment of the present invention: FIG. 2 is an elevational view partially in section
- showing a radiation detecting apparatus according to a second embodiment of the present invention: FIG. 3 is an elevational view partially in section showing a radiation detecting apparatus according to a third embodiment of the present invention;
- FIG. 4A is an elevational view partially in section showing a radiation detecting apparatus according to a fourth embodiment of the present invention;
- FIG. 4B is a plan view of the radiation detecting apparatus shown in FIG. 4A in the case of viewing the radiation detecting apparatus from an incident side of radiations:
- FIG. 5A is an elevational view partially in section showing a radiation detecting apparatus according to a fifth embodiment of the present invention;
- FIG. 5B is a plan view of the radiation detecting apparatus shown in FIG. 5A in the case of viewing the radiation detecting apparatus from an incident side of radiations.
- FIG. 6A is an elevational view partially in section showing a radiation detecting apparatus according to a sixth embodiment of the present invention:
- FIG. 6B is a plan view of the radiation detecting apparatus shown in FIG. 6A in the case of viewing the radiation detecting apparatus from an incident side of radiations:
- FIG. 6C is a plan view of the radiation detecting apparatus shown in FIG. 6A in the case of viewing the radiation detecting apparatus from an incident side of radiations according to a modification of the sixth embodiment:
- FIG. 7 is an elevational view partially in section showing a radiation detecting apparatus according to a seventh embodiment of the present invention: FIG. 8A is an elevational view partially in section showing a radiation detecting apparatus according to an eighth embodiment of the present invention: FIG. 8B is a cross sectional view taken on line VIIIB-VIIIB in FIG. 8A:
- FIG. 9A is an elevational view partially in section showing a radiation detecting apparatus in the case of viewing the radiation detecting apparatus from a tateral side of first and second scintillators thereof according to a ninth embodiment of the present invention:
- FIG. 9B is an elevational view partially in section showing a radiation detecting apparatus in the case

of viewing the radiation detecting apparatus from a longitudinal side of the first and second scintillators thereof according to the ninth embodiment:

FIG. 10A is an elevational view partially in section showing a radiation detecting apparatus according 5 to a tenth embodiment of the present invention; FIG. 10B is a plan view of the radiation detecting apparatus shown in FIG. 10A in the case of viewing the radiation detecting apparatus from an incident side of radiations.

FIG. 11 is an elevational view partially in section showing a radiation detecting apparatus according to an eleventh embodiment of the present invention:

FIG. 12 is an elevational view partially in section showing a radiation detecting apparatus according to a twelfth embodiment of the present invention; FIG. 13 is a plan view showing a second scintillator

in FIG. 12;
FIG. 14 is an elevational view partially in section 20 showing a radiation detecting apparatus according to a thirteenth embodiment of the present invention;
FIG. 15 is an elevational view partially in section showing a radiation detecting apparatus according

to a fourteenth embodiment of the present invention; FIG. 16 is a view schematically showing a radiation detecting system according to a fifteenth embodiment of the present invention:

FIG. 17 s a view schematically showing a radiation 30 detecting system according to a sixteenth embodiment of the present invention:

FIG. 18 is a view showing a radiation detecting system according to a seventeenth embodiment of the present invention:

FIG. 19 is a view showing a radiation detecting system according to an eighteenth embodiment of the present invention:

FIG. 20 is a view showing a phoswich detecting apparatus as a conventional example of a radiation detecting apparatus; and

FIG. 21 is a view showing, as another conventional example, an α - β rays detecting apparatus.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0068] Embodiments of the present invention will be described hereinather according to Figs. 1 to 19. It is noted that same or equivalent elements are denoted by so the same or similar reference numerals throughout the drawings and that repetition descriptions of the elements are omitted or simplified.

First embodiment (FIG. 1)

[0069] This first embodiment relates to a radiation detecting apparatus, and FIG. 1 is an elevational view

partially in section showing a structure of the radiation detecting apparatus.

[0070] As shown in FIG. 1, a radiation detecting apparatus 11 according to this first embodiment comprises a case 13 having, for example, a substantially box-like shape. The case 13 is provided with an incident surface (upper surface in FIG. 1) on which radiations having different wavelengths, such as α and β rays are incident. The incident surface of the case 13 is formed with a light shielding film 12 capable of transmitting the α and β rays are thereforeuph and shielding an incidence of light. The radiation detecting apparatus 11 also comprises a first scintillator 14 which is sensitive to an α ray and has, for example, a substantially lotlet-like and rec-

i tangular shape. [0071] The first scintillator 14 has an incident surface on which the α ray and a β ray are incident (an upper surface in FiG. 1) and a back surface (lower surface in FiG. 1) opposite to the incident surface thereof. The first scintillator 14 is arranged on the inner side of the light shelding film 12 o that the incident surface of the first scintillator 14 is in parallel with a back surface (lower surface, inner surface in FiG. 1) of the light shelding film 12 opposite to the incident surface thereof. As described above, the first scintillator 14 and the second scintillator 15 are arranged in parallel with each other so that the first scintillator 14 and the second scintillator 15 are surface.

[0072] Furthermore, the radiation detecting apparatus 11 comprises a second scintillator 15 which is sensitive to a ß ray and has, for example, a substantially plate-like and rectangular shape.

10073] The second scintillator 15 has an incident surface (an upone surface in FiG. 1) on which the 5 ray is incident and a back surface (lower surface in FiG. 1). The second scintillator 15 is arranged inwardly in the case 13 so that the incident surface of the second scintillator 15 is in parallel with the back surface of the first scintillator 14 whereby the second scintillator 15 is located away from the first scintillator 14 at a predetermined distance (interval).

[0074] The radiation detecting apparatus 11 also comprises an air which exists in the case 13 so that an air layer 16 is formed between the first and second scin5 tillators 14 and 15.

[0075] In addition, the radiation detecting apparatus 11 comprises one or more photo-detector 17 arranged in the case 13 at a lower position opposite to the light shelding film 12 side (inner bottom surface side of the case 13 in Flo.1). The radiation detecting apparatus 11 is also provided with a condensing unit 18 interposed between the second scinilitator 15 and the photo-detector 17 so that lights emitted from the first and second scinilitators 14 and 15 are condensed by means of the condensing unit 18 on as to be guided onto a sensitive surface of the photo-detector 17 which is sensitive to the lights.

[0076] As the first scintillator 14 for a ray, ZnS (Ag),

ZnGS (Ag) or Gd₂O₂S and Y₂O₂S powder to which Tb. Et. Pr are added, are used. As the second scinlilator 15 for β ray, a thin plaetic scintillator or a thin scinlilator rade of other similar materials, which is capable of detecting the a and β rays while suppressing a γ -ray β -sensitivity and of transmitting therethrough the light entitled from the first scinlilator 14 is permitted to be used. For example, the plastic scinlilator has a thickness of approximately 1 mm. In this case, the thickness of the second scinlilator is determined by taking account of a quantity of emission required for a photo-detector system including the photo-detector 17, a target F-ray energy a γ -ray sensitivity or the like, so that the thickness of the second scinlilator is differently set depending upon the usage.

[0077] In addition, all peripheral surfaces of the second scintillator 15 are optically polished.

[0078] This first embodiment includes the following two characteristic structures; more specifically,

- (1) an emission center wavelength (first emission center wevelength 1) of the first scintillator 14 is set shorter than an emission center wavelength (second emission center wavelength \(\mu\)2) of the second scintillator 15 (first characteristic structure); \(\pi\)3
- (2) conversely, the first emission center wavelength $\lambda 1$ of the first scintillator 14 is set longer than the second emission center wavelength $\lambda 2$ of the second scintillator 15 (second characteristic structure).

Then, the expression "emission center wavelength of a scintillator" used herein is employed to mean "wavelength of the emission (light) which is emitted in the scintillator and has the peak emission inten- 35 sity in the emission wavelength band of the scintillator". That is, the first emission center wavelength λ1 of the first scintillator 14 means "wavelength of the emission (light) which is emitted in the first scintillator 14 and has the peak emission intensity in the emission wavelength band of the first scintillator 14", and the second emission center wavelength 12 of the second scintillator means "wavelength of the emission (light) which is emitted in the second scintillator 15 and has the neak emission intensity in the emission wavelength band of the second scintillator 15". In these first and second characteristic structures, that is, in mutual relationships between the long and short wavelengths \(\lambda 1 \) and \(\lambda 2 \) of the first and second scintillators 14 and 15, there are individual features. Either of the first and second characteristics is able to be selectively used in relation to a balance of the accompanying condensing unit, a light transmission characteristic of each scintillator, the maximum sensitivity wavelength of the photo-detector, a quantum efficiency or the like.

[0081] According to the aforesaid structure, because the air (air layer 16) is interposed between the first and second scintillators 14 and 15, the surrounding

of the second scintillator 15 is surrounded by the air making a refactive index lower than that of the second scintillator 15 itself so that it is easy to cordine in the second scintillator 15 the light emitted therein. As a result, it is easy to employ, as the condensing unit with respect to the second scintillator 15, a method of using the light highly densely condensed on an edge side in the second scintillator 15. Incidentally, this method will be described in the later embodiment.

(0082) According to the above structure of this first embodiment, unlike the conventional structure, it is possible to dispense with an intermediate substance for bonding and optically closely coupling the first and second scintillators so that the above structure is suitable for the case where there is a feer of a deteriorable requesting the intermediate substance listed or another deterioration in quantity of a chemical interaction between the intermediate substance and the scintillators or the like. Furthermore, each independence of the scintillators of the like. Furthermore, large proposition of the scintillators of the like. Furthermore, each proposition of the scintillators of the like. Furthermore, each proposition of the scintillators is excerted, making it possible to carry out maintenance, inspection and replacement of only one of the scintillators.

[0083] In the aforesald first characteristic structure, because the first enriession center wavelength \(\) \(1 \) of the first scirrillator \(14 \) is set shorter than the second emission center wavelength \(\) 2 of the second scirrillator \(15 \) he emission wavelength band of the first scirrillator \(15 \) and the second scirrillator \(15 \) and to the second scirrillator \(15 \) are substantially separated so that it is possible to use together means for optically identifying the emission wavelengths of the lights emitted in the first and second scirrillators \(14 \) and \(15 \) thereby dispensing the waveform discrimination processing unifor analyzing pulse rises.

100841 Moreover, in the aforesaid second charactersited structure, the first emission center wevelength x1 of the first scintillator 14 is set longer than the second emission center wavelength x2 of the second scintillator 15, and thereby, in general, a light having a long wavelength and emitted from the first scintillator 14 having a high transmission efficiency in the scintillator is hard to be absorbed in the second scintillator 15. Therefore, it is possible to make small a probability of receiving absorption and emission by a fluorescent substance contained in the second scintillator 15. Thus to prevent an influence of the light emitted from the first scintillator 14 with respect to the second scintillator 15.

[0085] As described above, according to the first embodiment, since the first and second scirillators having first and second different emission center were lengths 1.1 and 3.2 are formed to have the two-layer structure, there is no need of measuring pulse height distributions based on the emissions from the first and accord scinillators, making it possible to simultaneously and independently measure the \(\alpha \) ray and the \(\begin{array}{c} \) and independently measure the \(\alpha \) ray and the \(\begin{array}{c} \) yet with the use of the difference in their wevelengths.

[0086] Moreover, in this first embodiment, powder is used as the first scintillator 14, and for example, the powder may be applied to be fixed to the back surface of

the light shielding film 12, that is, an inner surface of the light shielding film 12 facing the second scintillator 15 side. Whereby the a ray transmitted through the light shielding film 12 is incident upon the first scintillator 14 without being incident upon an extra air layer so as to be emitted in the first scintillator 14. In addition, because the first scintillator 14 is fixed on the back surface of the light shielding film 12, the air layer 16 is interposed between the first and second scintillators 14 and 15.

19

As a result, because there is a difference between the refractive index of the second scintillator 15 and that of air so that the difference causes a light capture effect by the total internal reflection of the emitted light in the second scintillator 15. Thus, the emitted light in the second scintillator 15 is confined in the second scintillator 15 itself so as to be propagated therein, making it possible to condense on the side of the second scintillator 15 the light propagated therein with a high density.

Second embodiment (FIG. 2)

structures: more specifically.

FIG. 2 is an elevational view partially in section showing a radiation detecting apparatus according to a second embodiment of the present invention. 100891 In this second embodiment, similar to the first embodiment, a radiation detecting apparatus 11A includes the case 13 whose one surface (incident surface) is covered with the light shielding film 12 capable of transmitting an a ray and a B ray therethrough and shielding an incidence of light. In the case 13, the first scintillator 14 emitting a light by an a ray and the second scintillator 15 emitting a light by a ß ray are arranged in a state of being closely optically coupled (adhered) without interposing an air layer between these scintillators 14 and 15.

100901 That is, the back surface of the first scintillator 14 and the incident surface of the second scintillator 15 are closely and optically adhered with each other. Furthermore, in the case 13, a condensing 40 unit 18 is provided in combination with these first and second scintillator 14 and 15 so as to effectively condense the lights emitted from each of the first and second scintillators 14 and 15 to a photo-detector 17. Similar to the first embodiment, this second 45 embodiment includes the following two characteristic

(1) the first emission center wavelength \(\lambda 1 \) of the first scintillator 14 is set shorter than the second 50 emission center wavelength \(\lambda \) of the second scintillator 15 (first characteristic structure); and

(2) conversely, the first emission center wavelength λ1 of the first scintillator 14 is set longer than the second emission center wavelength \(\lambda \) of the second scintillator 15 (second characteristic structure).

[0093] In accordance with their individual features of mutual relationships between the long and short wavelengths λ1 and λ2 of the first and second scintillators 14 and 15, either of the first and second characteristics is able to be selectively employed in relation to a balance of the accompanying condensing unit, a light transmission characteristic of each scintillator, the maximum sensitivity wavelength of the photo-detector, a quantum efficiency or the like.

20

[0094] According to this second embodiment, the first and second scintillators 14 and 15 are optically closely adhered with each other, thereby making it possible to reduce an internal capture by a Fresnel reflection based on a difference in refractive indexes of the second scintillator 15 and an interposed air layer and by a total internal reflection in the second scintillator 15, so as to improve a transmission probability of the light emitted from the first scintillator 14 through the second scintillator 15. Therefore, it is easy to employ a condense unit having a condensing method of using a light from the back surface of the second scintillator 15 which is not adhered to the first scintillator 14.

magai As described above, since the first and second scintillators having first and second different emission center wavelengths \(\lambda 1 \) and \(\lambda 2 \) are formed to have a two-layer structure, there is no need of measuring pulse height distributions based on the emissions from the first and second scintillators, thereby making it possible to simultaneously and independently measure the α ray and the β ray with the use of the difference in their wavelengths.

Incidentally, this second embodiment is suitable for the case of applying the condensing unit based on a concept such that the emission lights from the respective first and second scintillators 14 and 15 are once mixed, and thereafter, optically or electrically separated. Conversely, the first embodiment is suitable for the case of applying the condensing unit based on a concept such that the emission lights from respective first and second scintillators 14 and 15 are not made into a state of being mixed as much as possible.

Third embodiment (FIG. 3)

FIG. 3 is an elevational view partially in section showing a radiation detecting apparatus according to a third embodiment of the present invention.

100981 In the radiation detecting apparatus 11B of this third embodiment, a condensing unit 18 is formed as a condensing box 19 which is served as a case 13, and an inner surface 19a of the condensing box 19 is a diffuse reflection surface onto which a diffuse reflection material is applied. One surface of the condensing box 19 is opened so as to be used as an incident port. To the incident port, a light shielding film 12 is mounted for transmitting therethrough an a ray and a B ray while shielding light from the outside

[00991 The condensing box 19 is provided with a scintillator layer 20 which has a two-layer structure comprising the same first and second scintillators 14 and 15 as the abresaid first or second embodiment, on the back side of the light shielding film 12. Lights emitted from the first and second scintillators 14 and 15 as the scintillator layer 20 are diffusely reflected by the inner surface 19a of the condensing box 19 so as to be mixed, thereby being filled therein.

[0100] Incide of the condensing box 19, two photodetectors 17 (first and second photo-detectors 17a, 17b) are arranged in a line on the backside of the scintillator layer 20. A photo-multiplier tube is permitted to be used as each photo-detector 17. The first photodetector 17a is provided with a sensitive surface to which a first filter 21a is mounted. The first filter 21a is adapted to transmit three-through only light having the first sensission weekength band including the first emission center wavelength band including the first emission center wavelength band including the first emission center wavelength and the first scintillator 14 from the mixed and filted light.

[0101] On the other hand, the second photo-detector 17b is provided with a sensitive surface to which a ao second filter 21b is mounted. The second filter 21b is adapted to transmit therethrough only light having a second emission everlength such including the second emission center wavelength 12 of the second scintillator 15 from the mixed and filled little.

[0102] That is, because the light emitted from the first schrillator 14 is not transmitted through the second filter 21b of the photo-detector 17b, the light emitted from the first schrillator 14 and filled in the condensing box 19 is transmitted only through the first filter 21a of 30 the photo-detector 17a so as to be detected thereby, so that a slignal based on the emitted light from the first schrillator 14 is outputted only from the photo-detector 17a.

[0103] Similarly, because the light entitled from the as second scinlilator 15 is not transmitted through the first titler 21 and the first photo-detector 17a, the light emitted from the second scintillator 15 and filled in the condensing box 19 is transmitted only through the second filter 21b of the second photo-detector 17b so as to be detected thereby, so that a signal based on the emitted light from the second scintillator 15 is outputted only from the photo-detector 17b.

[0104] Namely, in this third embodiment, the optical wavelength discrimination is carried out so that independent signals are outputted from the individual photodetectors 17a and 17b without using a special separating circuit.

[0105] According to the above structure, two lights having the first and second wavelength bands which are so substantially separated from each other are diffusely reflected to the inner surface 19a of the condensing box 19 so as to be mixed and filled therein, differently from the aforesaid first and second embodiments in which each light emitted from each of the first and second as scinilators 14 and 15 is transmitted on the back surface side of the second scinilators 15 which does not face to the first scinilator 14 side.

[0106] Therefore, since the first filter 21a for transmitting therethrough only light emitted from the first scintillator 14 is mounted to the first individual photo-detector 17a arranged in the condensing box 19 and the second filter 21b for transmitting therethrough only light emitted from the second scintillator 15 is mounted to the second individual photo-detector 17b arranged in the condensing box 19, it is possible to individually detect each of the emitted lights based on each of the a rat fill gray without using a specific electronic device for discrimination and identification of the emitted lights. In addition, since the condensing box usued, it is easy to

be applicable to scinfillators each having a large area. (1017) Thus, in this third embodiment, as described above, the first and second scinfillators are made into a two-layer structure so that there is no need of measuring pulse height distributions and carrying out a vertice of the structure of the control of the co

Fourth embodiment (FIGs. 4A.4B)

[0108] FiG. 4A is an elevational view partially in section showing a radiation detecting apparatus according to a fourth embodiment of the present invention. FiG. 4B is a plan view of the radiation detecting apparatus shown in FiG. 4A in the case of viewing the radiation detecting apparatus from an incident side of radiations. [0109] In the radiation detecting apparatus 11C of this tourth embodiment, since the structures of the case 13, the light shielding film 12, the first scintillator 14 and the second scintillator 15 are the same with those of the radiation detecting apparatus of the first embodiment, descriptions of the structures of the asset 31, the light shielding film 12, the first scintillator 14 and the second scintillator 15 are omitted or simplified.

[0110] The radiation detecting apparatus 11C of the fourth embodiment comprises two photo-detectors 25 (first and second photo-detectors 25, 25) mounted in the case 13 on the backside of the second scintillator 15. A photo-multiplier tube is permitted to be used as each photo-detector 25.

[0111] The first and second photo-detectors 25a and 25b are arranged in parallel with a longitudinal direction of the second scintillator 15 and located away from each other at a predetermined interval.

[0112] The first photo-detector 25a of the photodetectors 25 is provided with a sensitive surface to which a first filter 25a having a predetermined color (for example, red) is integrally mounted. The sensitive surtace of the first photo-detector 25a and the first filter 25a have, for example, a substantially circular shape so that the first photo detector 25a and the first filter 25a are

coaxially arranged.
[0113] The first filter 26a of the first photo-detector

25a is optically closely adhered to the back surface of the second scintillator 15. [0114] The first filter 26a is adapted to transmit

[0114] The first filter 26a is adapted to transmit therethrough only light emitted from the first scintillator 14 and to absorb therein light emitted from the second 5 scirtillator 15.

[0115] Similarly, the second photo-detector 25b of the photo-detectors 25 is provided with a sensitive surface to which a second filter 26b having a predetermined color (for example, blue) is integrally mounted. The sensitive surface of the second photo-detector 25b and the second filter 26b have, for example, a substantially circular shape so that the second photo detector 25b and the second filter 26b are coaxially arranged.

[0116] The second filter 26b of the second photodetector 25b is optically closely adhered to the back surface of the second scintillator 15.

[0117] The second filter 26b is adapted to transmit therethrough only light emitted in the second scintillator 15 and to absorb therein light emitted from the first scintillator 14.

[0118] The radiation detecting apparatus 11C also comprises an air which exists in the case 13 so that an air layer 27 is formed thereby surrounding the second filter 15.

[0119] According to the above structure, because the light enritled from the first califilator 14 is not transmitted through the second filter 26b of the photo-detector 28b to be absorbed therein, the light enritled from the first scintillator 14 is transmitted only through the first filter 28b of the photo-detector 25s so as to be detected by the photo-detector 25s, so that a signal based on the emitted light from the first scintillator 14 is outputted only from the photo-detector 25s.

[0120] Similarly, because the light entitled from the as second scinillator 15 is not transmitted through the first filter 25a of the photo-detector 26a to be absorbed the photo-detector 26a to be absorbed that the photo-detector 35b of the photo-detector 25b so as to be detected by the photodetector 25b, so that a signal based on the emitted light from the second scinillator 15 is outputted only from the photo-detector 35b.

[0121] Particularly, because the second scintillator 15 is surrounded by the air layer 27 having the refractive 45 index which is lower than that of the second scintillator 15 itself, as shown in FIGs. 4A and 48, the light 12 emitted in the second scintillator 15 is totally internally reflected on the surrounding air layer 27 so as to be diffused in the second scintillator 15 while being captured 50 therein.

[0122] Because the light L2 enritted in the second scriftlator 15 is diffused while being captured therein, the light L2a emitted at a portion in the second scrittlate for 15 close to the second filter 26b is directly incident as into the second filter 26b and, in the case where the light L2b is emitted at a position in the second scrittlator 15 away from the second filter 26b and, in the entitled fault L2b is

efficiently propagated to be incident into the second filter 26b.

[0123] Therefore, it is possible to efficiently detect the light L2 emitted in the second scintillator 15 by the second photo-detector 25b.

Fifth embodiment (FIGs. 5A to 5C)

[0124] FIG. 5A is an elevational view partially in section showing a radiation detecting apparatus according to a tith embodiment of the present invention. FIG. 5B is a plan view of the radiation detecting apparatus shown in FIG. 5A in the case of viewing the radiation detecting apparatus from an incident side of radiations. [0125] in the structure of the radiation detecting apparatus 11C according to the fourth embodiment, the first and second photo-detectors 25a and 25b are arranged in parallel with the longitudinal direction of the second scintillator 15 and located away from each other of at a predetermined interval.

[0126] Therefore, there is the probability that, while the light L2 emitted at one side portion (a left side portion as one faces in FIG. 4A) in the second scintillator 15 second scintillator 15 toward the second scintillator 15 to which the first fifter 25a is contracted so as to be absorbed in the first fifter 25a. Therefore, there is possibility that the efficiency of detecting the light emitted at the one side portion in the second scintillator away from the second fifter 25b is deteriorated whereby decreasing the uniformity of the sensitivity of the radiation detecting apparatus.

[0127] However, in this fifth embodiment, by devising the arrangement of the two photo-detectors including the filters it is possible to improve the efficiency of detecting the light emitted at the one side portion in the second scaliblation away from the second filter and to improve the uniformity of the sensitivity of the radiation detecting apparatus.

In view of the aforesaid circumstances with respect to the structure of the radiation detecting apparatus according to the fourth embodiment, the radiation detecting apparatus 11D of this fifth embodiment has a characteristic structure in that, in the case where a first center point of the first filter 26a (the sensitive surface of the first photo-detector 25a) of the radiation detecting apparatus 11D is referred as O1 and a second center point of the second filter 26b (the sensitive surface of the second photo-detector 25b) thereof is referred as O2, the first photo-detector 25a integrally including the first filter 26a and the second photo-detector 25b integrally including the second filter 26b are adjacently arranged so that a line M1 connecting the first center point O1 and the second center point O2 is orthogonal to the longitudinal direction of the second scintillator 15. Incidentally, other structures of the radiation detecting apparatus 11D of this fifth embodiment is substantially the same as the structures of the radiation detecting apparatus 11C of the fourth embodiment, and therefore, the descriptions about the other structures of the radiation detecting apparatus 11D are omitted.

[0130] In this fifth embodiment, the light L2b emitted at one side portion (a left side portion as one faces in FIGs. 5A and 55) in the second scitillator 15 away from the second filter 26b is propagated in the second scintillator 15 toward the second filter 26b is propagated in the second scintillator 15 toward the second filter 26b while being totally internally reflected on the air layer 27.

[0131] Then, because the first photo-detector 25a including the first filter 26a and the second photo-detector 25b including the second filter 26b are arranged so that the line M1 connecting the first center point O1 and the second center point O2 is orthogonal to the longitudinal direction of the second scintillator 15, the probability that the light L2b passes on the first filter 26b is decreased as compared with the fourth embodiment so that it is possible to improve the efficiency of detecting the light L2 emitted in the second scintillator 15.

[0132] Therefore, it is possible to efficiently detect the light L2 emitted in the second scintillator 15 by the second photo-detector 25b.

[0133] Incidentally, in this fifth embodiment, the first photo-detector 25a including the first filter 26a and the 25 second photo-detector 25b including the second filter 26b are arranged so that the line M1 connecting the first center point O1 and the second center point O2 is orthogonal to the longitudinal direction of the second scintillator 15. However, the present invention is not limited to the structure. That is, as shown in FIG. 5C, the first photo-detector 25a including the first filter 26a and the second photo-detector 25b including the second filter 26b are arranged so that the line M2 connecting the first center point O1 and the second center point O2 35 may be crossed to the longitudinal direction of the second scintillator 15 at a given angle. It is preferable that the given angle is set close to a right angle.

Sixth embodiment (FIGs. 6A to 6C)

[0134] FIG. A6 is an elevational view partially in section showing a radiation detecting apparatus according to a sixth embodiment of the present invention. FIG. 68 is a plan view of the radiation detecting apparatus shown in FIG. 68 in the case of viewing the radiation detecting apparatus from an incident side of radiations. Moreover, FIG. 68 in plan view of the radiation detecting apparatus shown in FIG. 68 in the case of viewing the radiation detecting apparatus shown in FIG. 68 in the case of viewing the radiation detecting apparatus from an incident side of radiations according to a modification of the sixth enthodriment

[0135] In view of the aforesaid circumstances with respect to the structure of the radiation detecting apparatus according to the fourth embodiment, the radiation detecting apparatus 11E of this sixth embodiment has a characteristic structure in that the first photo-detector 25a integrally including the first filter 25a and the second photo-detector 25b integrally including the second filter 25b are arranged on both lateral end sides of the second scintillator 15 at a predetermined interval so that the first photo-detector 25a is the most distant from the second photo-detector 25b in the case 13.

[0136] That is, in the case where each lateral width of each of the first and second scintillators 14, 15 is substantially similar to each diameter of each filter 26a, 26b, as shown in FIG. 68, the first filter 26a integrated with the first phot-detector 25a is optically closely achered to one side edge portion (a left side portion as one faces in FIGs. 6A and 6B) of the second scintillator 15, and the second filter 26b integrated with the second photo-detector 25b is optically closely achered to other side edge portion of the second scintillator 1.

[0137] In the case where each lateral width of each of the first and second similations 14, 15 is longer than each diameter of each filter 25a, 25b, as shown in FLG. 6C, the first filter 25a integrated with the first photodetector 25a is optically closely adhered to one of corre portions of the second similator 15a and the second filter 25b integrated with the second photo-detector 25b is optically closely adhered to another one of the corner portions of the second scrillistor 15 is optically closely adhered to another one of the corner portions of the second scrillistor 15 is diagonally arranged to one of the corner portions the

[0138] Incidentally, other structures of the radiation detecting apparatus 11E of this sixth embodiment is substantially the same as the structures of the radiation detecting apparatus 11C of the fourth embodiment, and therefore, the descriptions about the other structures of the radiation detecting apparatus 11E are omitted.

[0139] In this sixth embodiment, the light L2b1 emitted at a portion except for the one side portion to which the first filter 25a is adhered is propagated in the second scintillator 15 toward the second filter 25b while being totally internally reflected on the air layer 27.

(0140) Then, because the first photo-detector 25a integrally including the first fifter 25a and the second photo-detector 25b integrally including the second fifter 25b are arranged on both lateral sides of the second scintillator 15 at a predetermined interval so that the first photo-detector 25a is the most distant from the second photo-detector 25b in the case 13, the probability that the emitted light L2b1 passes on the first fitter 25a is extremely decreased as compared with the fifth embod-

[0141] Furthermore, in this structure, when the emitted light L2bt is propagated to a portion to which the second filter 26b is achieved, even if the emitted light L2bt does not pass on the second filter 26b, it is possible to prevent the emitted light L2bt from being propagated to the portion to which the first filter 26a is achieved. That is, by this arrangement of the first photodetector 25a including the first filter 26a and the second photo-detector 25b including the first filter 26b and the second photo-detector 25b including the first filter 26b. The propagating route of the light emitted from the first scin-

tillator 14 and that of the light emitted in the second scintillator 15 are not interrupted with each other.

Seventh embodiment (FIG. 7)

[0142] FIG. 7 is an elevational view partially in section showing a radiation detecting apparatus according to a seventh embodiment of the present invention.

[0143] In view of the abresaid circumstances with respect to the structure of the radiation detecting apparatus according to the fourth embodiment, the radiation detecting apparatus 1F of this several methodiment has a characteristic structure in that the first littler 25a of the first photo-detector 25a is not optically archived to the back surface of the second scinillator 5. That is, the first filter 25a is arranged so as to be away from the back surface of the second scinillator 15 at a predetermined interval so that an air which exists in the case 1s whereby an air layer 30 is formed between the back surface of the second scinillator 15 and the first filter 25a of the first office-detector 25a.

[0144] Incidentally, other structures of the madiation detecting apparatus 11F of this seventh embodiment is substantially the same as the structures of the radiation detecting apparatus 11C of the fourth embodiment, and 25 therefore, the descriptions about the other structures of the radiation detecting apparatus 11F are omitted.

[0145] In this structure, because the second scrittlitelor 15 is surrounded by the air layers 27 and 30 each having the refractive index which is lower than that of the second scintillator 15 itself. he light 12 emitted in the second scintillator 15 its totally internally reflected on the surrounding air layers 27 and 30 os as to be diffused in the second scintillator 15 while being captured threein.

[0146] Therefore, in the case where the light L2b is emitted at a position in the second scintillator 15 away from the second filler 26b, the emitted light L2b does not pass on the first filter 26a of the first photo-detector 25a so that the emitted light L2b is efficiently propagated to be ideally incident into the second filter 26b without any influence of the first filter 26a.

[0147] Therefore, it is possible to efficiently detect the light L2 emitted in the second scintillator 15 by the second photo-detector 25b.

Eighth embodiment (FIGs. 8A.8B)

[0148] FIG. 8A is an elevational view partially in section showing a radiation detecting apparatus according to an eighth embodiment of the present invention. FIG. 8B is a cross sectional view taken on line VIIIB-VIIIB in FIG. 8A.

[0149] In view of the aforesaid circumstances with respect to the structure of the radiation detecting apparatus according to the fourth embodiment, the radiation detecting apparatus 11G of this eighth embodiment further comprises a reflecting box 31 attached to the sec-

ond scintillator 15 for totally internally reflecting diffusely the emitted light from the first scintillator 14.

[0150] Incidentally, in this embodiment, the light shiekfing file 12 and the case all are omitted in Pica. 7. [0151] The reflecting box 31 is provided with an opening upper surface and a bottom well 31 in having a substantially rectangular shape which is substantially the same with the back surface of the second schilliator 15 and arranged in parallel with the back surface thereof. The bottom wall 31a is formed with two partners 31b1, 31b2. The two appertures 31b1 and 31b2 are arranged in parallel with the longitudinal direction of the second schillator 15 at a predetermined interval. One 31b1 of the apertures is formed on a center portion of the bottom wall 31a and the other 31b2 thereof is

[0152] The first filter 28a of the first photo-detector 25a is buried in the aperture 31b1 so that the first filter 26a is arranged so as to be away from the back surface of the second scintillator 15 at the distance between the back surface thereof and the bottom wall 31a.

formed on one end portion thereof.

[0153] The second photo-detector 25b including the second filter 26b is penetrated through the aperture 31b2 so that the second filter 26b is optically closely achieved to the back surface of the second scintillator

[0154] The reflecting box 31 is also provided with four side walls 31 c attached to the bottom wall 31 as oas to extend four side edge portions thereof to the back sourtace of the second scintillator 15 thereby being closely connected thereto, and therefore, a closed space 32 is formed among the back surface of the second scintillator 15, the side walls 31 c of the reflecting box 31 and the bottom wall 31a thereof. That is, the closed space 32 is surrounded by the back surface of the second scintillator 15, the side walls 31c and the bottom wall 31a so that an air exists in the closed space 32 whereby an air layer 32s is formed therein.

[0155] In addition, inner surfaces (reflection surrolaces) 31d of the bottom and side walls 31 and 31c are processed so as to totally internally reflect diffusely the light entitled from the first scintillator 14. For example, a material capable of effectively diffusely reflecting the light than a material of which the reflecting box 31 is made, such as a titanium oxide or other similar materials is applied on the inner surfaces 31d of the bottom and side walls 31a and 315.

[0155] incidentally, other structures of the radiation detecting apparatus 11G of this eighth embodiment is substantially the same as the structures of the radiation detecting apparatus 11C of the fourth embodiment, and therefore, the descriptions about the other structures of the radiation detecting apparatus 11G are omitted.

[0157] In this structure, because the second scinililator 15 is surrounded by the air layer 32a existing in the closed space 32 having the refractive index which is lower than that of the second scintillator 15 is itself, the light L2 entitled in the second scintillator 15 is totally internally reflected on the air layer 32a so as to be diffused in the second scintillator 15 while being captured therein.

[0158] Therefore, in the case where the light L2b is emitted at a position in the second scintillator 15 away of from the second filter 26b, the emitted light L2b does not pass on the first filter 26a of the first photo-detector 25a so that the emitted light L2b is efficiently propagated to be ideally incident into the second filter 26b without any influence of the first filter 26a.

[0159] Therefore, it is possible to efficiently detect the light L2 emitted in the second scintillator 15 by the second photo-detector 25b.

[0160] In addition, the emitted light from the first scintillator 14 is transmitted through the second scintillator 15 to be filled in the closed space 32 while being totally internally relateded diffusely on the reflection surfaces 31d. Therefore, it is possible to improve the probability that the emitted light from the first scintillator 14 is reached to the first filler 26a to be incident thereinto. [0161] in openeral, assurring that photons are unji-

formly distributed by the diffused reflection, the longer is the percentage of the sensitive area of the first filter 26a sensitive to the percentage of the sensitive area of the first filter 26a sensitive to the emitted fight in all inner surface areas of the reflection surfaces 31d, the more it is possible to assimprove the probability that the emitted light from the first schillator 14 is condensed on the first filter 26a.

Ninth embodiment (FIGs. 9A,9B)

[0162] FIG. 9A is an elevational view partially in section showing a radiation detecting apparatus in the case of viewing the radiation detecting apparatus from a lateral side of first and second scinfillators thereof according to a ninth embodiment of the present invension. FIG. 9B is an elevational view partially in section showing a radiation detecting apparatus from a longitudinal side of the first and second scinfillators thereof according to the ninth embodiment.

[0163] In view of the aforesaid circumstances with respect to the structure of the radiation detecting apparatus according to the fourth embodiment, the radiation detecting apparatus 114 of this ninth embodiment further comprises, in order to improve an incident probability of the light emitted from the first scirtilitator 14 into the first filter 26s, a reflecting pate (reflecting box) 40 having four reflecting walls 40a1 to 40a4 for diffusely and totally internally reflecting on the four inclined reflecting walls 40a1 to 40a4 for mitted light from the first scirilistor 14 so that reflecting directions on average of the diffusely reflected lights on the four reflecting walls 40a1 to 40a4 have diffusely reflecting directions on average of the diffusely reflected lights on the four reflecting walls 40a1 to 40a4 have directed to a first scintillator side of the first fifter 26a.

[0164] The four reflecting walls 40a1 to 40a4 of the seffecting plate 40 are attached to four edge portions of the back surface of the second scirtillator 15 and to the first filter 26a of the first photo-detector 25a which is

arranged so as to be away from the back surface of the second scintillator 15 at a predetermined interval.

[0165] On back side of the second scrittllator 15, a closed space 41 is formed among the back surface of the second scrittllator 15 and the four reflecting walls 40a1 to 40a4. That is, the closed space 41 is surrounded by the back surface of the second scrittllator 15 and the four reflecting walls 40a1 to 40a4 so that an air exists in the closed space 41 whereby an air layer 41a is formed therein.

[0166] In addition, inner surfaces (reflection surfaces) 42 of the reflecting walls 40a1 to 40a4 are processed so as to totally internally reflect diffusely the light emitted from the first scintillator 14, similar to the fourth embodiment.

[0167] In this embodiment, each of the reflecting walls 40a1 to 40a4 is inclined at a predetermined angle with respect to a direction of a center axis (a line vertically extending from a center of the first filter 26a) of the

first filter 26a so that the reflecting directions on average of the diffusely reflected lights on the four reflecting walls 40a1 to 40a4 are directed to a position of the second scintillator 15 at which the center axis of the first filter 26a is crossed.

[0168] Actually, it is possible to easily realize the structure of the radiation detecting apparatus 11H according to the rinth embodiment by providing the reflecting walls 40a1 to 40a4 of the reflecting plate 40 in the case 13 with the angles of the reflecting plate 40 in to 40a4 with respect to the center axial direction of the first scinilitary 25a being adjusted, respectively.

[0169] incidentally, other structures of the radiation detecting apparatus 11H of this ninth embodiment is substantially the same as the structures of the radiation detecting apparatus 11C of the fourth embodiment, and therefore, the descriptions about the other structures of the radiation or detecting apparatus 11H are omitted.

(0170) In this structure, similar to the eighth embodiment, in the case where the light L2 is entitled at a o position in the second scintillator 15 away from the second filler 25b, the emitted light L2 boxes not pass on the first filler 25e of the first photo-detector 25e so that the emitted light L2 bis efficiently propagated to be ideally incident into the second filter 25b without any influence of the first filter 25a.

[0171] Therefore, it is possible to efficiently detect the light L2 emitted in the second scintillator 15 by the second photo-detector 25b.

[0172] In addition, it is noted that a reflection angle on the diffusion reflection surfaces is distributed like a cosine distribution by the Lambert's law.

[0173] For this reason, because each of the reflecting walls 40a1 to 40a4 is inclined so that the reflecting directions on average of the diffusely reflected lights on the tour reflecting walls 40a1 to 40a4 are directed toward the second scintillation 14 side, the emitted light from the first scintillator 14 transmitted through the second scintillator 15 and filled in the closed space 41 is diff-

fusely reflected to each reflection surface 42 of each of the reflecting walls 40a1 to 40a4 so as to be transmitted toward the second scintillator 15 and the first scintillator

[0174] Then, the transmitted light emitted from the first scintillator 14 is diffusely reflected on the second scintillator 15 or the first scintillator 14 so as to be directed to the first filter 26a.

[0175] Therefore, it is possible to increase a quantity of the emitted light from the first scintillator 14 which is condensed on the first filter 26a.

[0176] Incidentally, in this structure, the reflecting plate has four reflecting walls, but the present invention is not limited to the structure. That is, the reflecting plate may have a peripheral wall whose normal lines are 15 directed to the position of the second scintillator at which the center axis of the first filter is crossed.

Tenth embodiment (FIGs. 10A.10B)

[0177] FIG. 10A is an elevational view partially in section showing a radiation detecting apparatus according to a tenth embodiment of the present invention. FIG. 10B is a plan view of the radiation detecting apparatus shown in FIG. 10A in the case of viewing the radiation detecting apparatus from an incident side of radiations. [0178] In this tenth embodiment, since the structures of the case 13, the light shielding film 12 and the second scintillator 194 or 20 (the first scintillator 14 and the second scintillator 194 paratus of the third embodiment, descriptions of the structures of the case 13, the light shielding film 12 and the scintillator 194 and the scintillator layer 20 (the first scintillator 194 and the scintillator 194 are of the first scintillator 14 and the second scintillator 15) are omitted or simplified.

[0179] The radiation detecting apparatus 11I of the tenth embodiment comprises two photo-detectors 416, 45b) mounted on the inner bottom surface of the case 13 so that the first photo-detector 45a and the second photo-detector 45b are distant from the second scrillilator 15.

[0180] Similar to some of the above embodiments, as shown in FIG. 10B, the first and second photo-detectors 45a and 45b are arranged in parallel with a longitudinal direction of the second scintillator 15 and located adiacent to each other.

[0181] The first photo-detector 45a is provided with a sensitive surface to which a first filter 46a is integrally mounted.

[0182] The first filter 46a is adapted to transmit so therethrough only light emitted from the first scintillator 14 and to absorb therein light emitted from the second scintillator 15.

[0183] Similarly, the second photo-detector 45b is provided with a sensitive surface to which a second filter 46b is integrally mounted. The second filter 46b is adapted to transmit therethrough only light emitted in the second scintillator 15 and to absorb therein light.

emitted from the first scintillator 14.

[0184] In addition, the radiation detecting appearable 111 further comprises a light guide 50 interposed between the second scintillator 15, and the first and second filters 46a and 46b for guiding the light entitled from the first scintillator 14 and the light entitled from the second scintillator onto the first and second filters 46a and 46b.

[0185] The light guide 50 is made of a material 10 which is transparent to each of the emission wavelength bands of each of the first and second scintillators 14 and 15.

[0186] The light guide 50 has a substantially a truncated cone shape having an opening top surface, a bottom surface forming therewith two apertures and a side peripheral wall.

[0187] The opening top surface of the light guide 50 has a substantially rectangular shape which is substantially the same with the back surface of the second scintillator 15 so that the light guide 50 is closely adhered at its opening top surface to the back surface of the second scintillator 15.

[0188] The peripheral surface of the light guide 50 is tapered toward the bottom inner surface of the case 13 so that an area of each of the apertures is sufficiently small corresponding to an area of each of the first and seconf lifters 46a. 46b.

[0189] That is, the apertures are arranged in paralel with the longitudinal direction of the second actrillator 15 at a predetermined interval corresponding to the arrangement of the first and second photo-detectors 45a and 45b so that the first and second photo-detetors 45a and 45b are inserted in the apertures, respectively.

[0190] In the third embodiment, the lights emitted from the first and second scintillators 14 and 15 are filled in the condensing box 19 having the diffusion reflection surface as the inner surface 19a.

[0191] On the contrary, in this tenth embodiment, of the lights emitted from the first and second scintillators 14 and 15 are filled in the light quide 50 so that the light emitted from the first scintillator 14 and filled in the light guide 50 is guided so as to be transmitted only through the first filter 46a of the photo-detector 45a thereby being detected by the photo-detector 45a.

[0192] Similarly, the light emitted from the second scintillator 15 and filled in the condensing box 19 is guided so as to be transmitted only through the second filter 46b of the photo-detector 45b thereby being go detected by the photo-detector 45b.

[0193] Therefore, it is possible to obtain the above effect according to the third embodiment.

[0194] In addition, in the structure of this tenth embodiment, because the lights emitted from the first 5 and second scintillators 14 and 15 are filled in the light guide 50, it is possible to arbitrarily set a shape and size of the light guide 50, thereby applying a photo-detector having a small size as sect of the public-detectors 45 are and 45b

(0195) Moreover, similar to the above embodiments, it may be effective to process an outer surface of the side peripheral well of the light guide 50 so that the outer surface is polished so as to totally internally reflect of the light emitted from the first scintillator 14. Furthermore, it may be also effective to process the outer surface of the side peripheral wall of the light guide 50 so as to mirror or diffusely reflect the light emitted from the first scintillator.

[0196] Incidentally, in this structure, the photodetectors 45a, 45b are arranged so as to closely be coupled with the outer side of the light guide 50. However, the present invention is not limited to the above structure. That is, similar to the above embodiments, the side peripheral wall of the light guide 50 may be formed with two concave portions in which the photo-detectors 45a, 45b are closely embod, as the case may be.

[0197] According to this tenth embodiment, as described above, the first and second scinililators are 20 made into a two-layer structure so that there is no need of measuring pulse height distributions and carrying out a waveform discrimination, making it possible to simultaneously and independently measure the a ray and the pray with the use of the difference in their wavelengths, 25 and to apply a photo-detector having a small size as each of the photo-detectors, thereby making the radiation detecting apparatus compact.

Eleventh embodiment (FIG. 11)

[0198] FIG. 11 is an elevational view partially in section showing a radiation detecting apparatus according to an elevant members of the present invention. [0199] In view of the aloresaid circumstances with respect to the structure of the radiation detecting apparatus according to the fourth embodiment, in the radiation detecting apparatus 113 of this embodiment, the arrangement of the first and second photo-detectors including the first and second filters, the shape of the fight guide 50a and the arrangement thereof are modified as compared with those of the radiation detecting apparatus of the tenth embodiment.

10200) That is, in this structure, the light quicle 50a is arranged so as to be away from the back surface of 45 the second scrittlator 15 at a predetermined interval and an air exists in the case 13 so that an air layer 51 is formed between the back surface of the second scintillator 15 and the top opening surface of the light guide 50a.

[0201] The bottom surface of the light guide 50a is formed with one aperture 52a at and other aperture 52a2 is formed on one edge portion of the peripheral wall on the longitudinal edge side of the second scintillator 15. [0202] The first filter 46a1 of the first photo-detector states in buried in the aperture 52a1 so that the first filter 46a is arranged so as to be away from the back surface of the second scrillator 15 at the distance between the

back surface thereof and the bottom surface of the light quide 50a.

[0203] The second photo-detector 45b including the second filter 46b is penetrated through the aperture 52a2 so that the second filter 46b is optically closely adhered to the back surface of the second scintillator

[0204] Incidentally, other structures of the radiation detecting apparatus 11J of this eleventh is substantially the same as the structures of the radiation detecting apparatus 11C of the fourth embodiment, and therefore, the descriptions about the other structures of the radiation detecting apoparatus 11J are omitted.

[0205] In this structure, similarly to the above embodiments, because the second scintillator 15 is surnounded by the air layer 51, the light 12 emitted in the second scintillator 15 is totally internally reflected on the surrounding air layers 27 and 30 so as to be diffused in the second scintillator 15 with being captured therein.

[0206] Therefore, the emitted light L2 does not pass on the first filter 46a of the first photo-detector 45a so that the emitted light L2 is efficiently propagated to be ideally incident into the second filter 46b without any influence of the first filter 46a.

(0207) In addition, because the opening top surface of the light guide 50s has wide area and the aperture 52at of the bottom surface of the light guide 50s is narrowed sufficiently to fit the first filter 46at to the aperture 52at. the lights emitted from the first and second scimillators 14 and 15 are effectively guided and condensed to the first filter 46a of the first photo-detector 45a so that the only light emitted from the first scintillator 14 is selected by the first filter 46a to be transmitted therethrough so that the light emitted from the first scintillator 14 is detected by the other detector 45a.

[0208] As described above, in this embodiment, it is possible to ideally condense the light emitted in the second scritillator 15 by the total internal reflection, and to increase a quantity of the emitted light from the first scintillator 14 which is condensed on the first filter 46a.

Twelfth embodiment (FIG. 12)

[0209] FIG. 12 is an elevational view partially in 5 section showing a radiation detecting apparatus according to a twelfth embodiment of the present invention. FIG. 13 is a plan view showing a second scintillator in FIG. 12.

[0210] In this twelfth embodiment, similar to the birtid embodiment, the radiation detecting apparatus 11K includes the condensing box 19 used as the case 13, and one incident side of the condensing box 19 mounted with the light shielding film 12 capable of transmitting therethrough an α ray and a β ray while shielding light from the outside. The first and second scimillators 14 and 15 are arranged on an inside of the light shielding film 12 to that the ail alvert 16 is interconset therebe-

tween.

[0211] In the condensing box 19, two photo-detectors 17 (first photo-detectors 17a) are arranged on the backside of the second scintillator 15.

[0212] Each of the photo-detectors 17(17a) is provided with the filter 21(21a) adapted to selectively transmit therethrough only light emitted from the first scintillator 14 without sensing the light emitted in the second scintillator 15.

[0213] On the other hand, the second scintillator 15 is provided at both lateral side edges with fluorescence converting light guides 60 so that the light emitted in the second scintillator 15 is condensed by using a fluorescence converting effect of the fluorescence converting effect of the fluorescence converting light guide 60 of the second scintillator 15.

That is, as shown in FIG. 12 and FIG. 13, to 15 the lateral side edge portions of the second scintillator 15 the fluorescence converting light guides 60 are attached, and each one lateral end of each of the fluorescence converting light guides 60 is provided with a photo-detector 61. The fluorescence converting light 20 guide 60 is formed by adding a fluorescent substance to a resin or the like, and has an effect of absorbing a scintillation light emitted in the second scintillator 15 and reemitting a light (fluorescence) having a longer wavelength. Moreover, the fluorescence converting light 25 guide 60 may be formed of a fiber made by adding the fluorescent substance to a core, (that is, a fluorescent fiber, a wavelength shift fiber, etc.), and is able to be used in accordance with its diameter and a joining method or the like

[0215] Incidentally, other structures of the radiation detecting apparatus 11K of this twelfth embodiment is substantially the same as the structures of the radiation detecting apparatus 11B of the third embodiment, and therefore, the descriptions about the other structures of as the radiation detecting apparatus 11K are omitted.

(0216) According to the aforesaid structure, the air layer 16 is interposed between the first and second scintillators 14 and 15, and the first scintillator 14 is, for example, composed of a powder or sintered body. Thus, 40 a diffuse reflection is made in the second scintillator 15 itself so that the light is emitted ourside. Therefore, the gight emitted from the first scintillator 14 is once transmitted through the second scintillator 15, and thereather, is filled in the condensing box 19, and thus, is detected 40 pmeans of the photo-detector 17 arranged in the condensing box 19. A component of the light from the second scintillator 15 is incident in the condensing box 19 is eliminated by means of the filter 21 provided on the solution-detector 17.

[02:17] The surrounding of the second scintillator 15 is surrounded with an air so that a confinement effect of the light emitted in the second scintillator 15 is caused by the total internal reflection therein. As a result, half components or more of the emitted light in the second scintillator 15 are condensed on the lateral edge portion side of the second scintillator 15 with a high density.

Since the fluorescence converting light guide 60 is arranged on the lateral edge portion side of the second scintillator 15, and in the fluorescence converting light guide 60, the light emitted in the second scintillator 15 is totally internally reflected in the light guide 60 while being guided therein so as to be converted (re-emitted) into the fluorescence light.

[0218] As a result, it is possible to detect the reemitted fluorescence light by means of the photo-detecor of 1 provided on the lateral end surface of the light quide 60.

[0219] In the aforesaid condensing system on the lateral edge side of the second scritillator 15, the light emitted in the second scritillator 15 is condensed without greatly depending upon an area of the scirillator so that it is possible to apply this condensing system to a large-area scirillator together with the condensing box 19.

[0220] In this twelfth embodiment, as described above, the first and second scintillators are made into a two-layer structure so that there is no need of measuring pulse height distributions and carrying out a waveform discrimination, making it possible to simultaneously and independently measure the a ray and the B ray with the use of the difference in their wavelengths, and to provide a radiation detecting apparatus including scintillators each having still more large area. f02211 Although not illustrated, the entire peripheral edges of the second scintillator 15 may be provided with the fluorescence converting light guide 60, in addition to parallel two lateral side edges of the second scintillator 15. Machining may be carried out with respect to no-use end of the fluorescence converting guide 60 and two longitudinal side edges which are provided with no light guide 60 of the second scintillator 15 so as to a mirror reflection and a diffuse reflection. By the aforesaid structures of the modifications, it is possible to improve an efficiency of using the light.

Thirteenth embodiment (FIG. 14)

[02221 FIG. 14 is an elevational view partially in section showing a radiation detecting apparatus according to a thirteenth embodiment of the present invention. In this thirteenth embodiment, the first and second scintillators 14 and 15 of the radiation detecting apparatus 11L are arranged on one side of a non-reflection type case 13 so that the air layer 16 is interposed therebetween. In the case 13, a fluorescent screen 65 is located on a position where the light emitted from the first scintillator 14 transmitting through the second scintillator 15 is capable of being incident. The fluorescent screen 65 is provided with the photo-detector 17 (17a) which closely couples therewith. The photo-detector 17 is provided with the filter 21 (21a) for shielding a component of light emitted from the second scintillator 15. which is incident upon the light guide 50.

[0224] Incidentally, an air layer is interposed

between the second scimilator 15 and the fluorescent second 55. Moreover, like the twelfth embodiment, at lateral edge portions, the second scimilator 15 is provided with fluorescence converting light guides 60 and the photo-detectors 61, respectively, and thus, the condensing structure by the fluorescence conversion according to the twelfth embodiment is employed on the lateral edge portion sides of the second scimilator 15. (0225) Incidentally, other structures of the radiation detecting apparatus 111. of this thirdenth embodiment is substantially the same as the structures of the radiation detecting apparatus 111 of the tenth embodiment and therefore, the descriptions about the other structures of the radiation detecting apparatus 111. or the tenth embodiment, and therefore, the descriptions about the other structures of the radiation detecting apparatus 111. are omit-

[0226] In this structure, the light emitted from the linst scintillator 14 transmits through the second scintillator 15, and then, is incident upon the fluorescent screen 55, and thus, converted into a fluorescence light so that the converted fluorescence light that are emitted theorescence light is incident upon the light upide 50 provided so as to be closely coupled with the fluorescent screen 65, and then, reaches the photo-detector 17 so as to be defected herefu. Moreover, the light emitted in the second scintillator 15 is detected by as means of the fluorescence converting light guide 60 provided on each lateral edge side portion of the second scintillator 15 and the photo-detector 61 attached to each lateral edge side portion of the second scintillator 15 and the photo-detector 61 attached to each lateral edge tag fluid guide 61.

[0227] According to this thirteenth embodiment, as a described above, the first and second scintillators are made into a two-layer structure so that there is no need of measuring pulse height distributions and carrying out a waveform discrimination, making it possible to simultaneously and independently measure the a ray and the 35 hay with the use of the difference in their wavelengths, and to make compact the size of the photo-detector 17 to be used, thereby making the size of the radiation detecting apparatus compact.

[0228] Incidentally, the fluorescent screen 65 may be formed into the same shape as the light guide 50 so as to dispense the light guide 50.

Fourteenth embodiment (FIG. 15)

10229] FIG. 15 is an elevational view partially in section showing a radiation detecting apparatus according to a fourteenth embodiment of the present invention. (0230) In this fourteenth embodiment, similar to the above thirteenth embodiment, ferits and second scinibilities 14 and 15 of the radiation detecting apparatus 11 Kare arranged on one side of a non-reflection type case 13 so that the air layer 16 is interposed therebetween. The second scinibilities is provided at each lateral edge portion with the fluorescence converting light squide 60 and the photo-detector 61, and thus, the condensing structure by the fluorescence conversion is employed on each lateral edge portion side of the sec-

and scintillator 15

[0231] Moreover, the fluorescent screen 65 is located on a position where the light emitted from the first scintillator 14 transmitting through the second scintillator 15 is capable of being incident.

[0232] The fluorescent screen 65 is provided at such lateral edge portion side with a second light guide 70 and a photo-detector 71, similar to each lateral edge portion side of the second scrinilator 15, and thus, the or condensing situature by the fluorescence conversion is employed on each lateral edge portion side of the second light guide 70. That is, the light emitted from the first scintillator 14 is converted into the a first fluorescence light in the fluorescent 55, and further, the first fluorescence light is doubly converted into a second fluorescence light is doubly converted into a second fluorescence light is fluorescence.

fluorescence light is doubly converted into a second fluorescence light having a longer wavelength as compared with the first fluorescence light on each lateral edge side of the fluorescent screen 65.

In this case, a fluorescent substance contained in the second fluorescence converting light guide. 70 for the fluorescent screen 65 is different from that used for the second scintillator 15. Namely, a fluorescent substance is selectively applied to the second scintillator 15 and the fluorescent screen 65. That is, the second scintillator 15 and the fluorescent screen 65. That is, the second scintillator 15 and the fluorescent screen 65. That is, the second scintillator 15 includes a fluorescent scrient fluorescent screen 65 includes a fluorescence light, and the fluorescent screen 65 includes a fluorescence light cannot me thuorescent screen 65 and converting it into a fluorescence light thaving a longer wavelength as compared with the fluorescence light converted by the second scintillator 15.

[0234] Incidentally, other structures of the radiation detecting apparatus 11M of this fourteenth embodiment is substantially the same as the structures of the radiation detecting apparatus 11L of the thirteenth embodiment, and therefore, the descriptions about the other structures of the radiation detecting apparatus 11M are omitted.

[0235] With the above structure, the light radiated into an air from the first scintillator 14 and incident upon the second scintillator 15 is not substantially captured in the second scintillator 15. In addition, in the case where the light emitted from the first scintillator 14 is directly incident upon the fluorescence converting light guide 50 provided on the second scintillator 15, because an absorbed wavelength band of the light guide 50 is different from the incident light remitted from the first scintillator to 14. Therefore, no fluorescence signal is generated as an error signal by the photo-detector 17.

[0236] According to this fourteenth embodiment, as described above, the first and second scintillators are made into a two-layer structure so that there is no need of measuring pulse height distributions and carrying out a waveform discrimination, making it possible to simultaneously and independently measure the c. ray and the p ray with the use of the difference in their wavelenaths. [0237] In addition, because the light emitted from the first scirtillator is condensed on each lateral edge port of the fluorescent screen 65, it is possible to make the width of the radiation detecting apparatus thin and to increase the area thereof.

Fifteenth embodiment (FIG. 16)

(0238) This fifteenth embodiment relates to a radiation detacting system having one of the radiation detecting apparatuses described in the above first to fourteenth embodiments, and FIG. 16 is a view schematically showing a structure of the radiation detecting system. Incidentally, in this embodiment, for example, the radiation detecting apparatus 11 described in the first embodiment. Incidentally, other radiation detecting apparatuses 11A – 11M are able to be used in the radiation detecting system according to the rifferenth embodiment, as in the case of using the radiation detecting apparatus 11.

(0239) As shown in FIG. 16, in this fifteenth embodiment, a signal outputted from the photo-detector 17 of the radiation detecting appearatus 11 is processed by means of a pulse height discrimination unit 75 as a signal processing unit. More specifically, in the case where at least one of the photo-detector 17 corresponding to each of the attreast scintillators contituting a two-layer structure, the signal output ofform the photo-detector 17 is inputted in the pulse height discrimination on unit 75.

(0240) The pulse height decrimination unit 75 recorganizes a pulse signal having a predetermined pulse height value or more as the signal corresponding to the signation the first or second scintillator according to the simputed signal so as to carry out a process of eliminating a signal less than the predetermined pulse height value as a noise.

[0241] According to this fifteenth embodiment, only when a signal more than a dark current noise of the photo-detector 1 is transmitted to the pulse height discrimination unit 75, it is possible to recognize the signal corresponding to the light from the first or second scintilator by the pulse height discrimination unit 75.

Sixteenth embodiment (FIG. 17)

(0242) This sixteenth embodiment relates to a radistation detecting system having one of the radiation detecting apparatuses described in the above trist to fourteenth embodiments, and Fill. 37 is a view schematically showing a structure of the radiation detecting system. Incidentally, in this embodiment, for example, the radiation detecting system includes the radiation detecting apparatus 11 described in the first embodisment. Incidentally, other radiation detecting apparatuses 11A ~ 11M are able to be used in the radiation detecting system according to the sixteenth embodidetecting system according to the sixteenth embodiment, as in the case of using the radiation detecting apparatus 11.

[0243] In this sixteenth embodiment, signals outputted from the plurality of photo-detectors 17 are processed by means of a signal processing unit 77. More specifically, in the case where the plurality of the photodetectors 17 corresponding to each of the scintillator having a two-layer structure are used, or in the case of adding each signal from each photo-detector, an analog adder having a band capable of amplifying a signal is required. However, by using the signal processing unit 77 for detecting an establishment of a logic product by using logic signals corresponding to the detected signals of the photo-detectors 17, it is possible to easily discriminate the signals corresponding to the lights from each of the first and second scintillators except for the noises

[0244] As shown in FIG. 17, for example, in the case where three signals A, B and C outputted from the photo-detectors 17 corresponding to each scintillator are inputted in the signal processing unit 77, the signal processing unit 77 executes the logic product by using any two inputted signals of them, and, when the logic product is established, the signal processing unit 77 discontinuates the signals A, B and C as the signals corresponding to the lights from the first and second

scintillators. [0245] According to this sixteenth embodiment, employing the aforesaid system, it is possible to eliminate mutually non-correlative dark current noises generated in the photo-detectors 15 os as to extract only the signals corresponding to the lights from the first and second scintillators.

55 Seventeenth embodiment (FIG. 18)

[0246] FIG. 18 is a view showing a radiation detecting system according to a seventeenth embodiment of the present invention.

- 60 [0247] In this seventeenth embodiment, the raciation detecting system comprises a radiation detecting apparatus 11N having a substantially the same structure of the radiation detecting apparatus 11 without having the condensing unit 18.
- IS (0248) That is, the radiation detecting apparatus 11N is provided with the two kinds of scinlishters 14 and 15 having the different emission center weavelengths with each other, and with the condensing box 19 having a reflecting inner surface. On a radiation incident side of the condensing box 19, the light shieding film 12 is provided. The light shieding film 12 is capable of transmitting therethrough an a ray and a β ray and shieding light from the outside. The first and second scinlishlators 14 and 15 are arranged on the inside of the light shieding film 12 in the condensing box 19.

[0249] The lights emitted from the first and second scintillators 14 and 15 are mixed to be filled in the condensing box 19. In the example shown in FIG. 18, two

photo-detectors 17 are arranged in the condensing box 19, and the photo-multiplier tube is used as each photo-detector 17.

[0250] In this embodiment, the radiation detacting apparatus 11 N also comprises on optical attenuation 16 - for 80 interposed between the first and second scintillators 14 and 15. The same material as the light shielding first 12 may be used as a material capable of attenuating light and transmitting therethrough a § ray, Forexample, a thickness of the aluminum focused on a thin 10 polyester tim is adjusted to apply to the material of the optical attenuation filter 80. An air layer may be interposed between the first scintillator 14 and the optical attenuation filter 80 and between the second scintillator 15 and the same, and these components may be optically dosely adhered with seach other.

[0251] Signals outputted from the photo-detectors 17 are adapted to be inputted to a signal processing unit 81

[0252] With the above structure, by the optical α attenuation filter 80, the light emitted from the first scinilitator 14 based on the α ray is attenuated to be filted in the condensing box 19. In this case, the light emitted from the second scintillator 15 is not attenuated and weakened.

[0253] The signals outputted from the photo-detectors 17 are inputted in the signal processing unit 81. The signals inputted in the signal processing unit 81 are individually processed, or added, or gated by the simultaneous counting information so as to extract the signals as corresponding to the lights from the first and second schillators 14 and 15 except for noises.

[0254] Then, according to the extracted signals, the signal processing unit 81 discriminates between the signal corresponding to the emitted light from the first scintillator 14 on the basis of the α ray, and the signal corresponding to the emitted light from the second scintillator 15 on the basis of the δ ray.

[0255] That is, conventionally, because a signal level based on the α ray is high, in the waveform dis-σorimination process for optimizing the signal level, a sensitivity relating to the β ray has not sufficiently been obtained. However, according to this seventeenth embodiment, a quantity of light emitted from the first schillator 14 corresponding to the α ray is adjusted 45 through the optical attenuation filter 81 so that it is possible to optimize and use an input voltage range in the signal processing unit 82 for discriminating a waveform.

Eighteenth embodiment (FIG. 19)

[0256] FIG. 19 is a view showing a radiation detecting system according to an eighteenth ambodiment. [0257] In this eighteenth embodiment, the radiation detecting system comprises a radiation detecting system comprises a radiation detecting sparants 110 having a substantially the same structure of the radiation detecting apparatus 111. except that the photo-detector 17 is single.

[0258] In this eighteenth embodiment, the optical attenuation filter 80 is interposed between the first ascond schrillators 14 and 15, and the light guide 50 is arranged so as to closely be coupled with the second schrillator 15. Furthermore, the light guide 50 is closely be coupled by the choto-detector 17.

[0259] With the above construction, by the optical attenuation filter 80, the light emitted from the first scin-liber 14 based on the c. ray is attenuated to be filled in the light guide 50. Therefore, in this eighteenth embodiment, similar to the seventeenth embodiment, and in the seventeenth embodiment, a quantity of light emitted from the first scintillator 14 corresponding to the c. ray is adjusted through the optical attenuation filter 81 so that it is possible to optimize and use an input voltage range in the signal processing unit 81 for discrimination a waveform.

[0260] While there has been described what is at present considered to be the preferred embodiments and modifications of the present invention. It will be understood that various modifications which are not described yet may be made therein, and it is intended to cover in the appended claims all such modifications as all within the true spirit and scope of the invention.

25 Claims

1. A radiation detecting apparatus comprising:

- a light shielding film for transmitting therethrough first and second radiations while shielding an incidence of light;
 - a first scintillator for emitting a first light by the first radiation transmitted through the light shielding film, said first scintillator having an emission center wavelength based on the first radiation:
 - a second scintillator for emitting a second light by the second radiation transmitted through the light shielding film, said second scintillator having an emission center wavelength based on the second radiation; and
- detection means having at least one photodetector for detecting the first light emitted from the first scintillator and the second light emitted in the second scintillator,
 - said first emission center wavelength and said second emission center wavelength being different from each other.
- 2. A radiation detecting apparatus eccording to claim
 1, wherein said first emission center weelength is
 a wavelength of the first light emitted in the first
 scrittlator and having a peak emission intensity in
 an emission wavelength band of the first scintillator,
 and said second emission center wavelength is a
 avavelength of the second light emitted in the sec ond scintillator and having a peak emission inten isin a mission invested english and of the second

30

scintillator.

3. A radiation detecting apparatus according to claim 2, wherein said first scintillator and second scintillator are arranged in parallel to each other so that the second scintillator is located away from the first scintillator at a predetermiend distance, further comprising means for condensing the first light emitted from the first scintillator and the second light emitted in the second scintillator on the detection means; and an air layer interposed between the first and second scintillators.

said first emission center wavelength of the first scintillator being set shorter than the second 15 emission center wavelength of the second scin-

4. A radiation detecting apparatus according to claim 2, further comprising means for condensing the first 20 light emitted from the first scintillator and the second light emitted in the second scintillator on the detection means, wherein said first scintillator and second scintillator are closely optically adhered with each other.

said first emission center wavelength of the first scintillator being set shorter than the second emission center wavelength of the second scintillator.

5. A radiation detecting apparatus according to claim 2, further comprising means for condensing the first light entitled from the first scintillator and the second light entitled in the second scintillator on the selection means, wherein said first scintillator and second scintillator are closely optically adhered with each other.

said first emission center wavelength of the first scintillator being set longer than the second emission center wavelength of the second scintillator.

6. A radiation detecting apparatus according to claim 42 further comprising a condensing box for condensing the first and second lights on the detection means, said condensing box having an inner surface for diffusely reflecting the first and second lights and a side surface, said light shielding film 50 being mounted on the side surface on which the first and second radiations incident, said first and second scrittlators being arranged inside the light shielding film, and wherein said detection means comprises first and second photo-detectors each shaving a sensitive surface sensitive to such of the first and second lights; a first filter mounted on the sensitive surface or the first photo-detector; and a

second filter mounted on the sensitive surface of the second photo-detector,

said first filter being adapted to transmit therethrough only the first light emitted from the first scintillator,

said second filter being adapted to transmit therethrough only the second light emitted in the second scintillator.

7. A radiation detecting apparatus according to claim 2, wherein said accord scinilator has an incident surface on which the first and second radiations are incident and a back surface opposite to the incident surface, said detection means comprises first and second photo-detectors each having a sensitive surface sensitive to each of the first and second lights; a first fifter mounted on the sensitive surface of the first photo-detector; and a second filter mounted on the sensitive surface of the second obtot-detector.

> said first filter being adapted to transmit therethrough only the first light emitted from the first scintillator,

> said second filter being adapted to transmit therethrough only the second light emitted in the second scintillator, and

> wherein said first filter and the second filter are closely optically adhered on the back surface of the second scintillator.

- 8. A radiation detecting apparatus according to claim 2, wherein said second scinilator has a substantially rectangular shape, and wherein said first photo-detector and the second photo-detector and adjacently arranged so that a line is crossed to a longitudinal direction of the second scintillator, said line connecting a center point of the sensitive surface of the first photo-detector and that of the sensitive surface of the second photo-detector.
- 9. A radiation detecting apparatus according to claim 2, wherein said second scritillator has a substansially rectangular shape, and wherein said first photo-detector and the second photo-detector are arranged on both lateral sides of the second scritillator so that the first photo-detector is the most distant from the second photo-detector.
- 10. A radiation detecting apparatus according to claim 2, wherein said second scintillator has an incident surface on which the first and second radiations are incident and a back surface opposite to the incident surface, said detection means comprises first and second photo-detectors each having a sensitive surface sensitive to each of the first and second lights; a first filter mounted on the sensitive surface.

of the first photo-detector; and a second filter mounted on the sensitive surface of the second photo-detector.

said first filter being adapted to transmit therethrough only the first light emitted from the first scintillator,

scrimitator,
said second filter being adapted to transmit
therethrough only the second light emitted in
the second scintillator, and

wherein said first filter is arranged to be away from the back surface of the second scintillator at a predetermined interval so that an air layer is interposed between the back surface of the second scintillator and the first filter, and said 15 second filter is closely optically adhered on the back surface of the second scintillator.

11. A radiation detecting apparatus according to claim 2, wherein said second scinilitator has an incident 20 surface on which the first and second radiations are incident and a back surface opposite to the incident auface, said detection means comprises first and second photo-detectors each having a sensitive surface sensitive to each of the first and second 26 lights; a first filter mounted on the sensitive surface of the first photo-detector; and a second filter mounted on the sensitive surface of the second photo-detector.

said first filter being adapted to transmit therethrough only the first light emitted from the first scintillator

said second filter being adapted to transmit therethrough only the second light emitted in 35 the second scintillator, and

wherein said first filter is arranged to be away from the back surface of the second scintillator at a predetermined interval, and said second filter is closely optically adhered on the back 40 surface of the second scintillator, further comprising a surrounding box having an inner surface portion for surrounding a back surface side of the second scintillator so as to form a closed space therein, said back surface of the 45 second scintillator and said first filter toning parts of the inner surface portion of the surrounding box, said inner surface portion of the surrounding box except for the back surface of the second scintillator and the first filter being 50 processed to totally internally reflect diffusely the first light emitted from the first scintillator.

12. A radiation detecting apparatus according to claim 11, wherein said inner surface portion comprises a ss plurality of inner surfaces, each of said inner surfaces is inclined so that the diffusely reflecting directions on average of the first light on the inner surfaces of the surrounding box are substantially directed to a position of the second scintillator at which a center axis of the sensitive surface of the first photo-detector is crossed.

13. A malation detecting apparetus eccording to claim 2, further comprising a light guide in which the first light enritted from the first scintillator and the second light emitted in the second scintillator are incident, said light guide being adapted to condense the lifest and second lights on the detection means, and wherein said detection means comprises first and second photo-detectors each having a sensitive surface sensitive to send of the first and second lights, a first filter mounted on the sensitive surface of the first photo-detector; and a second first mounted on the sensitive surface of the second photo-detector,

> said first filter being adapted to transmit therethrough only the first light emitted from the first scintillator.

said second filter being adapted to transmit therethrough only the second light emitted in the second scintillator.

- 14. A radiation detecting apparatus according to claim 13, wherein said first filter is arranged to be every from the back surface of the second scirtillator at a predetermined interval, and said second filter is closely optically achiered on the back surface of the second scirtillator, and wherein said light guide hein surface profits of the second scirtillator, said light guide being arranged so that the opening surface thereof being away from the back surface of the second scirtillator at a predetermined interval so as to interpose an air layer between the opening surface of the light guide and the back surface of the second scirtillator, said opening surface thereof having an area, which is larger than that of the first filter.
- 15. A radiation detecting apparatus according to claim 2, further comprising a light guide connecting the at least one photo-detector to an edge portion of the second scintillator, said light guide being adapted to convert the second light to a fluorescent light.
- 16. A radiation detecting apparatus according to claim 2, wherein said accord scinilitator has an incident surface on which the first and second radiations are incident and a back surface appose to the incident surface, further comprising a fluorescent screen arranged on a back surface side of the second scintillator and opposite through an air layer to the back surface thereof, said fluorescent screen being adapted to convert the first light emitted from the first scinilitator to a fluorescent light; and a light

guide adapted to condense the converted fluorescent light on the at least one photo-detector, said converted fluorescent light being emitted from a surface of the fluorescent screen, said at least one photo-detector detecting the condensed fluorescent light.

47

- 17. A radiation detecting apparatus according to claim 2. wherein said second scintillator has an incident surface on which the first and second radiations are incident and a back surface opposite to the incident surface, further comprising a fluorescent screen arranged on a back surface side of the second scintillator and opposite through an air layer to the back surface thereof, said fluorescent screen being 15 adapted to convert the first light emitted from the first scintillator to a fluorescent light; and a second light guide having a fluorescent substance adapted to absorb the converted fluorescent light so as to emit a fluorescent light, said converted fluorescent 20 light by the fluorescent screen being emitted from an edge portion of the fluorescent screen, said fluorescent light emitted from the light guide having a wavelength which is longer than that of the converted fluorescent light by the fluorescent screen, 25 said at least one photo-detector detecting the fluorescent light emitted from the second light guide.
- 18. A radiation detecting apparatus according to claim 2, further comprising means for capturing a signal 30 outputted from the detection means so as to recognize a signal having a predetermined putee height value and over as an optical signal thereby eliminating a signal less than the predetermined putse height value as a noise, said optical signal corresponding to at lesst one of the first and second lights emitted from the first and second scinilitators.
- 19. A radiation detecting apparatus according to claim 2, wherein said detection means comprises a plu- 40 rality of photo-detectors, a first group of the photodetectors being adapted to detect the first light emitted from the first scintillator, a second group thereof being adapted to detect the second light emitted from the second scintillators, further comprising means for capturing signals outputted each of the first and second groups of the photo-detectors and, in a case of detecting signals outputted from at least one of the first and second groups of the photo-detectors, for recognizing detected sig- 50 nals corresponding to at least one of the first and second lights emitted from the first and second scintillators and, in a case where only one signal is outputted from at least one of the first and second groups of the photo-detectors, for eliminating the 55 only one signal as a noise.
- 20. A radiation detecting apparatus according to claim

- 2, further comprising an optical attenuation filter for transmitting therethrough the first and second radiations and attenuating an intensity of the first light emitted from the first scintillator, said optical attenuation filter being interposed between the first and second scintillators; a condensing box for condensing the first and second lights on the detection means, said condensing box having an inner surface for diffusely reflecting the first and second lights; and means for inputting signals detected by the detection means so as to discriminate, according to a difference of waveforms of the inputted signals, between an optical signal corresponding to the first light emitted from the first scintillator and an optical signal corresponding to the second light emitted from the second scintillator.
- 21. A radiation detecting apparatus according to claim 2, further comprising an optical attenuation filter for transmitting therethrough the first and second radiations and attenuating an intensity of the first light emitted from the first scintillator, said optical attenuation filter being interposed between the first and second scintillators; a light guide in which the first light emitted from the first scintillator and the second light emitted in the second scintillator are incident, said light guide being adapted to condense the first and second lights on the detection means; and means for inputting signals outputted from the detection means so as to discriminate, according to a difference of waveforms of the inputted signals. between an optical signal corresponding to the first light emitted from the first scintillator and an optical signal corresponding to the second light emitted from the second scintillator.

FIG. 1

FIG. 2

FIG. 3

FIG. 4A

FIG. 4B

LONGITUDINAL DIRECTION

FIG. 5B

FIG. 5C

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 7

FIG. 8A

FIG. 8B

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 11

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20 PRIOR ART

FIG. 21 PRIOR ART