Графы, основные понятия

Владимир Подольский

Факультет компьютерных наук, Высшая Школа Экономики

Графы, основные понятия

О курсе

Понятие графа

Применение графов

Степени вершин и число ребер

Пути и достижимость

Число компонент связности

Преподаватели

- Владимир Подольский, преподаватель
- Антон Гнатенко, ассистент
- Павел Соколов, ассистент

Цели курса

- Обсудить основные разделы теории графов, связанные с анализом данных
- Потренироваться рассуждать о графах
- Потренироваться работать с графами на практике (Python)

План курса

- 1. Неориентированные графы, основные понятия
- 2. Деревья
- 3. Поиск в глубину
- 4. Ориентированные графы
- 5. Случайные блуждания
- 6. Поиск в ширину
- 7. Двудольные графы
- 8. Эйлеровы и гамильтоновы циклы

Оценивание

Оцениваемые задания и их вклад в оценку:

- Теоретические домашние задания 3 штуки по 10 баллов каждое выдаются на неделях 1,2 и 3
- Практические домашние задания 2 штуки по 10 баллов каждое выдаются на неделях 1 и 2
- Проект, 30 баллов, выдается на неделе 3
- Итоговый тест, 20 баллов, пишем на неделе 4

Для прохождения курса достаточно набрать 70 баллов

• Домашние задания выдаются частями во вторник и в четверг

- Домашние задания выдаются частями во вторник и в четверг
- Дедлайн по всем заданиям четверг следующей недели перед парой (до 19:00)

- Домашние задания выдаются частями во вторник и в четверг
- Дедлайн по всем заданиям четверг следующей недели перед парой (до 19:00)
- Проверим до 19:00 в пятницу

- Домашние задания выдаются частями во вторник и в четверг
- Дедлайн по всем заданиям четверг следующей недели перед парой (до 19:00)
- Проверим до 19:00 в пятницу
- Ранний дедлайн вторник следующей неделе до 19:00

- Домашние задания выдаются частями во вторник и в четверг
- Дедлайн по всем заданиям четверг следующей недели перед парой (до 19:00)
- Проверим до 19:00 в пятницу
- Ранний дедлайн вторник следующей неделе до 19:00
- Проверим до 19:00 в среду, дадим фидбек

- Домашние задания выдаются частями во вторник и в четверг
- Дедлайн по всем заданиям четверг следующей недели перед парой (до 19:00)
- Проверим до 19:00 в пятницу
- Ранний дедлайн вторник следующей неделе до 19:00
- Проверим до 19:00 в среду, дадим фидбек
- Можно успеть что-то поправить до основного дедлайна

Графы, основные понятия

Окурсе

Понятие графа

Применение графов

Степени вершин и число ребер

Пути и достижимость

Число компонент связности

Что такое граф?

 Частая ситуация: у нас есть объекты, между которыми задано какое-то отношение

Что такое граф?

- Частая ситуация: у нас есть объекты, между которыми задано какое-то отношение
- Такая ситуация описывается с помощью графов

Что такое граф?

- Частая ситуация: у нас есть объекты, между которыми задано какое-то отношение
- Такая ситуация описывается с помощью графов
- Встречается повсюду, так что графы оказываются очень полезными

У нас есть 5 человек: A, B, C, D, E.

В

(c

(A)

D

 $\left(\mathsf{E}\right)$

У нас есть 5 человек: A, B, C, D, E.

Некоторые из них друзья:

A и B, A и C, A и E, B и C, C и D, D и E.

У нас есть 5 человек: A, B, C, D, E.

Некоторые из них друзья:

A и B, A и C, A и E, B и C, C и D, D и E. Есть ли общие друзья у C и E?

У нас есть 5 человек: A, B, C, D, E.

Некоторые из них друзья:

A и B, A и C, A и E, B и C, C и D, D и E. Есть ли общие друзья у C и E?

• Объекты изображаем точками — вершинами

- Объекты изображаем точками вершинами
- Связанные отношением соединяем линиями ребрами

- Объекты изображаем точками вершинами
- Связанные отношением соединяем линиями ребрами
- Не связанные не соединяем

- Объекты изображаем точками вершинами
- Связанные отношением соединяем линиями ребрами
- Не связанные не соединяем
- При изображении ребра могут пересекаться, это не страшно

Граф — это множество вершин, некоторые из которых соединены ребрами

- Граф это множество вершин, некоторые из которых соединены ребрами
- Важно, какие вершины соединены, а какие нет

- Граф это множество вершин, некоторые из которых соединены ребрами
- Важно, какие вершины соединены, а какие нет
- Конкретное изображение может быть разным

• Множество вершин графа обычно обозначают буквой ${\cal V}$

- Множество вершин графа обычно обозначают буквой ${\cal V}$
- Отдельные вершины часто обозначают буквами v и u

- Множество вершин графа обычно обозначают буквой ${\cal V}$
- Отдельные вершины часто обозначают буквами v и u
- Множество ребер графа обозначают буквой E

- Множество вершин графа обычно обозначают буквой ${\cal V}$
- Отдельные вершины часто обозначают буквами v и u
- Множество ребер графа обозначают буквой E
- Отдельные ребра часто обозначают буквой \emph{e}

• Карты и маршруты

- Карты и маршруты
- Социальные сети

- Карты и маршруты
- Социальные сети
- Структуры данных

- Карты и маршруты
- Социальные сети
- Структуры данных
- Расстояния между объектами в пространстве признаков

- Карты и маршруты
- Социальные сети
- Структуры данных
- Расстояния между объектами в пространстве признаков
- Нейросети, решающие деревья

• Допускаются ли петли?

- Допускаются ли петли?
- Допускаются ли кратные ребра?

- Допускаются ли петли?
- Допускаются ли кратные ребра?
- Можно допускать, можно нет

- Допускаются ли петли?
- Допускаются ли кратные ребра?
- Можно допускать, можно нет
- По умолчанию не допускаем

- Допускаются ли петли?
- Допускаются ли кратные ребра?
- Можно допускать, можно нет
- По умолчанию не допускаем
- Но большинство рассуждений переносится и на эти случай

 Бывают ситуации, когда связи между объектами односторонние

- Бывают ситуации, когда связи между объектами односторонние
- Ссылки между сайтами

- Бывают ситуации, когда связи между объектами односторонние
- Ссылки между сайтами
- Пользователи, следящие за постами других

- Бывают ситуации, когда связи между объектами односторонние
- Ссылки между сайтами
- Пользователи, следящие за постами других
- Односторонние дороги

- Бывают ситуации, когда связи между объектами односторонние
- Ссылки между сайтами
- Пользователи, следящие за постами других
- Односторонние дороги
- Эта ситуация тоже описывается графами

- Бывают ситуации, когда связи между объектами односторонние
- Ссылки между сайтами
- Пользователи, следящие за постами других
- Односторонние дороги
- Эта ситуация тоже описывается графами
- Но мы обсудим это позже

Графы, основные понятия

Окурсе

Понятие графа

Применение графов

Степени вершин и число ребер

Пути и достижимость

Число компонент связности

• Графы являются очень универсальной моделью

- Графы являются очень универсальной моделью
- Позволяют в общем виде изучать ситуации, возникающие в самых разных задачах

- Графы являются очень универсальной моделью
- Позволяют в общем виде изучать ситуации, возникающие в самых разных задачах
- Мы подробно обсудим разные универсальные факты о графах

- Графы являются очень универсальной моделью
- Позволяют в общем виде изучать ситуации, возникающие в самых разных задачах
- Мы подробно обсудим разные универсальные факты о графах
- Но иногда бывает полезно даже просто изобразить задачу в виде графа

Задача о конях

Можно ли переставить коней на поле 3x3 на картинке так, чтобы белые и черные кони поменялись местами?

Шахматный конь

Шахматный конь ходит буквой Г в любом направлении. Он может сместиться либо на 2 поля по горизонтали и на одно поле по вертикали, либо на 2 поля по вертикали и на одно поле по горизонтали

Шахматный конь

Шахматный конь ходит буквой Г в любом направлении. Он может сместиться либо на 2 поля по горизонтали и на одно поле по вертикали, либо на 2 поля по вертикали и на одно поле по горизонтали

Шахматный конь

Шахматный конь ходит буквой Г в любом направлении. Он может сместиться либо на 2 поля по горизонтали и на одно поле по вертикали, либо на 2 поля по вертикали и на одно поле по горизонтали

Задача о конях

Можно ли переставить коней на поле 3x3 так, как показано на картинке?

Посмотрим на граф

Посмотрим на граф

Это невозможно, кони не могут поменяться местами

Графы, основные понятия

Окурсе

Понятие графа

Применение графов

Степени вершин и число ребер

Пути и достижимость

Число компонент связности

• Как только мы свели задачу к графам, мы можем забыть детали постановки и изучать только графы

- Как только мы свели задачу к графам, мы можем забыть детали постановки и изучать только графы
- У графов есть важные параметры, анализ которых может помочь в решении наших задач

- Как только мы свели задачу к графам, мы можем забыть детали постановки и изучать только графы
- У графов есть важные параметры, анализ которых может помочь в решении наших задач
- Мы начнем с самых базовых

- Как только мы свели задачу к графам, мы можем забыть детали постановки и изучать только графы
- У графов есть важные параметры, анализ которых может помочь в решении наших задач
- Мы начнем с самых базовых
- Есть совсем простые параметры: число вершин |V| и число ребер |E|

- Как только мы свели задачу к графам, мы можем забыть детали постановки и изучать только графы
- У графов есть важные параметры, анализ которых может помочь в решении наших задач
- Мы начнем с самых базовых
- Есть совсем простые параметры: число вершин |V| и число ребер |E|
- Они характеризуют размер графа, а соотношение между ними — его плотность

• Пусть v вершина графа

- Пусть v вершина графа
- Степенью v называется число ребер, входящих в v

- Пусть v вершина графа
- Степенью v называется число ребер, входящих в v
- Обозначение: d(v)

- Пусть v вершина графа
- Степенью v называется число ребер, входящих в v
- Обозначение: d(v)
- На картинке d(A)=2, d(C)=4, d(F)=0

• Степень вершины важный параметр

- Степень вершины важный параметр
- В социальных сетях он характеризует активность пользователя

- Степень вершины важный параметр
- В социальных сетях он характеризует активность пользователя
- В транспортных сетях загруженность узла

- Степень вершины важный параметр
- В социальных сетях он характеризует активность пользователя
- В транспортных сетях загруженность узла
- Есть ли связь степеней вершин с другими параметрами графов?

Лемма

Сумма степеней всех вершин в графе равна удвоенному числу ребер

Или в виде формулы

$$\sum_{v \in V} d(v) = 2|E|$$

Лемма

Сумма степеней всех вершин в графе равна удвоенному числу ребер

Или в виде формулы

$$\sum_{v \in V} d(v) = 2|E|$$

Давайте докажем эту лемму

 Давайте посчитаем двумя способами число концов ребер

- Давайте посчитаем двумя способами число концов ребер
- С одной стороны, у каждого ребра два конца, то есть концов ребер 2|E|

• С другой стороны, каждый конец ребра входит в какую-то вершину

- С другой стороны, каждый конец ребра входит в какую-то вершину
- В вершину v входит d(v) концов, так что всего концов $\sum_{v \in V} d(v)$

• Мы посчитали одну и ту же величину два раза

- Мы посчитали одну и ту же величину два раза
- Результаты должны быть равны

- Мы посчитали одну и ту же величину два раза
- Результаты должны быть равны
- Получаем $\sum_{v \in V} d(v) = 2|E|$

Задача

Задача

Бывает ли граф на 5 вершинах, степени вершин которого равны 1, 2, 2, 3, 3?

• Если такой граф есть, то сумма степеней его вершин равна 1+2+2+3+3=11

Задача

- Если такой граф есть, то сумма степеней его вершин равна 1+2+2+3+3=11
- Это равно удвоенному числу ребер

Задача

- Если такой граф есть, то сумма степеней его вершин равна 1+2+2+3+3=11
- Это равно удвоенному числу ребер
- Но удвоенное число ребер четно!

Задача

- Если такой граф есть, то сумма степеней его вершин равна 1+2+2+3+3=11
- Это равно удвоенному числу ребер
- Но удвоенное число ребер четно!
- Противоречие

В целом, из равенства $\sum_{v \in V} d(v) = 2|E|$ следует, что левая часть четна

В целом, из равенства $\sum_{v \in V} d(v) = 2|E|$ следует, что левая часть четна

Следствие

В любом графе число вершин нечетной степени четно

Графы, основные понятия

Окурсе

Понятие графа

Применение графов

Степени вершин и число ребер

Пути и достижимость

Число компонент связности

• Бывает полезно рассматривать пути в графах

- Бывает полезно рассматривать пути в графах
- Начинаем с какой-то вершины

- Бывает полезно рассматривать пути в графах
- Начинаем с какой-то вершины
- На каждом шаге можем перейти по ребру в следующую вершину

- Бывает полезно рассматривать пути в графах
- Начинаем с какой-то вершины
- На каждом шаге можем перейти по ребру в следующую вершину

- Бывает полезно рассматривать пути в графах
- Начинаем с какой-то вершины
- На каждом шаге можем перейти по ребру в следующую вершину

- Бывает полезно рассматривать пути в графах
- Начинаем с какой-то вершины
- На каждом шаге можем перейти по ребру в следующую вершину

- Бывает полезно рассматривать пути в графах
- Начинаем с какой-то вершины
- На каждом шаге можем перейти по ребру в следующую вершину

- Бывает полезно рассматривать пути в графах
- Начинаем с какой-то вершины
- На каждом шаге можем перейти по ребру в следующую вершину

• Бывает, что пути естественно возникают в изначальной задаче

- Бывает, что пути естественно возникают в изначальной задаче
- Например, в транспортных графах

- Бывает, что пути естественно возникают в изначальной задаче
- Например, в транспортных графах
- Бывает, что пути полезны для анализа графа

- Бывает, что пути естественно возникают в изначальной задаче
- Например, в транспортных графах
- Бывает, что пути полезны для анализа графа
- Например, в графах социальных сетей для анализа окружения пользователя

• Формально путь это последовательность вершин:

```
v_0, v_1, \dots, v_k
```

- Формально путь это последовательность вершин: v_0, v_1, \dots, v_k
- Из каждой вершины есть ребро в следующую

- Формально путь это последовательность вершин: v_0, v_1, \dots, v_k
- Из каждой вершины есть ребро в следующую
- Длина пути число шагов в нем

- Формально путь это последовательность вершин: v_0, v_1, \dots, v_k
- Из каждой вершины есть ребро в следующую
- Длина пути число шагов в нем
- В наших обозначениях длина пути k

- Формально путь это последовательность вершин: v_0, v_1, \dots, v_k
- Из каждой вершины есть ребро в следующую
- Длина пути число шагов в нем
- В наших обозначениях длина пути k
- Вершины могут повторяться

- Формально путь это последовательность вершин: v_0, v_1, \dots, v_k
- Из каждой вершины есть ребро в следующую
- Длина пути число шагов в нем
- В наших обозначениях длина пути k
- Вершины могут повторяться
- Если вершины не повторяются, то это простой путь

• Если начальная вершина пути совпадает с конечной, то это цикл: $v_0, v_1, \dots, v_k = v_0$

- Если начальная вершина пути совпадает с конечной, то это цикл: $v_0, v_1, \dots, v_k = v_0$
- Длина цикла число шагов в нем (у нас k)

- Если начальная вершина пути совпадает с конечной, то это цикл: $v_0, v_1, \dots, v_k = v_0$
- Длина цикла число шагов в нем (у нас k)
- Простой цикл нет повторов вершин, длина не меньше 3

- Если начальная вершина пути совпадает с конечной, то это цикл: $v_0, v_1, \dots, v_k = v_0$
- Длина цикла число шагов в нем (у нас k)
- Простой цикл нет повторов вершин, длина не меньше 3
- Естественно возникают в транспортных графах

- Если начальная вершина пути совпадает с конечной, то это цикл: $v_0, v_1, \dots, v_k = v_0$
- Длина цикла число шагов в нем (у нас k)
- Простой цикл нет повторов вершин, длина не меньше 3
- Естественно возникают в транспортных графах
- Важны при обходах графов

- Если начальная вершина пути совпадает с конечной, то это цикл: $v_0, v_1, \dots, v_k = v_0$
- Длина цикла число шагов в нем (у нас k)
- Простой цикл нет повторов вершин, длина не меньше 3
- Естественно возникают в транспортных графах
- Важны при обходах графов
- Про циклы полезно помнить при работе с графами

- Если начальная вершина пути совпадает с конечной, то это цикл: $v_0, v_1, \dots, v_k = v_0$
- Длина цикла число шагов в нем (у нас k)
- Простой цикл нет повторов вершин, длина не меньше 3
- Естественно возникают в транспортных графах
- Важны при обходах графов
- Про циклы полезно помнить при работе с графами
- Они могут создавать проблемы для алгоритмов на графах

• Вершина v достижима из вершины u, если есть путь из u в v

- Вершина v достижима из вершины u, если есть путь из u в v
- Это симметрично, если v достижима из u, то и u достижима из v

• Также говорим, что вершины u и v связаны

- Также говорим, что вершины u и v связаны
- Это транзитивно: если v достижима из u, а w достижима из v, то w достижима из u

- Также говорим, что вершины u и v связаны
- Это транзитивно: если v достижима из u, а w достижима из v, то w достижима из u

• Важное свойство графа: можно ли из всякой вершины дойти в любую другую?

- Важное свойство графа: можно ли из всякой вершины дойти в любую другую?
- Для транспортной задачи говорит о ее разрешимости

- Важное свойство графа: можно ли из всякой вершины дойти в любую другую?
- Для транспортной задачи говорит о ее разрешимости
- В целом говорит о наличии связи между частями графа

• Граф называется связным, если любая вершина достижима из любой другой

- Граф называется связным, если любая вершина достижима из любой другой
- Другими словами, есть путь между любыми двумя ее вершинами

- Граф называется связным, если любая вершина достижима из любой другой
- Другими словами, есть путь между любыми двумя ее вершинами
- В противном случае граф не связен

- Граф называется связным, если любая вершина достижима из любой другой
- Другими словами, есть путь между любыми двумя ее вершинами
- В противном случае граф не связен

Если граф не связен, все его вершины распадаются на компоненты связности:

Если граф не связен, все его вершины распадаются на компоненты связности:

• Каждая вершина лежит ровно в одной компоненте

Если граф не связен, все его вершины распадаются на компоненты связности:

- Каждая вершина лежит ровно в одной компоненте
- Любые вершины в одной компоненте связаны

Если граф не связен, все его вершины распадаются на компоненты связности:

- Каждая вершина лежит ровно в одной компоненте
- Любые вершины в одной компоненте связаны
- Вершины из разных компонент не связаны

Как искать компоненты связности?

• Берем любую вершину

• Берем любую вершину

- Берем любую вершину
- Выделяем все вершины, достижимые из нее

- Берем любую вершину
- Выделяем все вершины, достижимые из нее

- Берем любую вершину
- Выделяем все вершины, достижимые из нее
- Повторяем с оставшимися вершинами

- Берем любую вершину
- Выделяем все вершины, достижимые из нее
- Повторяем с оставшимися вершинами

- Берем любую вершину
- Выделяем все вершины, достижимые из нее
- Повторяем с оставшимися вершинами

- Берем любую вершину
- Выделяем все вершины, достижимые из нее
- Повторяем с оставшимися вершинами

- Берем любую вершину
- Выделяем все вершины, достижимые из нее
- Повторяем с оставшимися вершинами

- Берем любую вершину
- Выделяем все вершины, достижимые из нее
- Повторяем с оставшимися вершинами
- Позже обсудим как это делать эффективно

Графы, основные понятия

Окурсе

Понятие графа

Применение графов

Степени вершин и число ребер

Пути и достижимость

• Число компонент связности может быть от 1 до $\left|V\right|$

• Число компонент связности может быть от 1 до $\left|V\right|$

- Число компонент связности может быть от 1 до $\left|V\right|$
- Можно ли сказать что-то более точное, если знать число вершин и число ребер в графе?

Оценка числа компонент связности

Оценка числа компонент связности

Число компонент связности в графе не меньше $\left|V\right|-\left|E\right|$

• Если $|E| \leq |V| - 2$, то граф не связен

Оценка числа компонент связности

- Если $|E| \leq |V| 2$, то граф не связен
- Если граф связен, то $|E| \geq |V| 1$

Оценка числа компонент связности

- Если $|E| \leq |V| 2$, то граф не связен
- Если граф связен, то $|E| \geq |V|-1$
- Оценка ничего не говорит, если ребер много ($|E| \geq |V| 1$)

Оценка числа компонент связности

- Если $|E| \leq |V| 2$, то граф не связен
- Если граф связен, то $|E| \geq |V|-1$
- Оценка ничего не говорит, если ребер много $(|E| \ge |V| 1)$
- Но при малом числе ребер она полезна

• Докажем оценку

- Докажем оценку
- Выкинем из графа все ребра и будем возвращать их по одному

- Докажем оценку
- Выкинем из графа все ребра и будем возвращать их по одному
- В начале в графе $\left|V\right|$ вершин и нет ребер

- Докажем оценку
- Выкинем из графа все ребра и будем возвращать их по одному
- В начале в графе |V| вершин и нет ребер
- Число компонент связности равно |V| и оценка верна: $|V| \geq |V| 0$

- Докажем оценку
- Выкинем из графа все ребра и будем возвращать их по одному
- В начале в графе |V| вершин и нет ребер
- Число компонент связности равно |V| и оценка верна: $|V| \geq |V| 0$
- При возвращении одного ребра величина |V| |E| уменьшается на 1

- Докажем оценку
- Выкинем из графа все ребра и будем возвращать их по одному
- В начале в графе |V| вершин и нет ребер
- Число компонент связности равно |V| и оценка верна: $|V| \geq |V| 0$
- При возвращении одного ребра величина |V| |E| уменьшается на 1
- Посмотрим, что происходит с числом компонент связности

• Выделим текущие компоненты связности

- Выделим текущие компоненты связности
- Случай 1: ребро соединяет вершины в одной компоненте

- Выделим текущие компоненты связности
- Случай 1: ребро соединяет вершины в одной компоненте
- Тогда компоненты остаются те же

- Выделим текущие компоненты связности
- Случай 2: ребро соединяет вершины в разных компонентах

- Выделим текущие компоненты связности
- Случай 2: ребро соединяет вершины в разных компонентах
- Тогда две компоненты сливаются в одну

 При возвращении одного ребра число компонент связности либо не меняется, либо уменьшается на 1

• Итак, в начале число компонент связности не меньше |V| - |E|

- Итак, в начале число компонент связности не меньше |V| |E|
- При возвращении ребра число компонент связности может не измениться, а может уменьшиться на 1

- Итак, в начале число компонент связности не меньше |V| |E|
- При возвращении ребра число компонент связности может не измениться, а может уменьшиться на 1
- Величина |V| |E| точно уменьшается на один при возвращении ребра

- Итак, в начале число компонент связности не меньше |V| |E|
- При возвращении ребра число компонент связности может не измениться, а может уменьшиться на 1
- Величина |V| |E| точно уменьшается на один при возвращении ребра
- Значит после возвращения ребра неравенство остается верным!

- Итак, в начале число компонент связности не меньше |V| |E|
- При возвращении ребра число компонент связности может не измениться, а может уменьшиться на 1
- Величина |V| |E| точно уменьшается на один при возвращении ребра
- Значит после возвращения ребра неравенство остается верным!
- Значит оно останется верным после возвращения всех ребер!

Самый тяжелый камень

Самый тяжелый камень

У нас есть n камней и чашечные весы. За одно взвешивание мы можем сравнить по весу два камня. Сколько нужно взвешиваний, чтобы гарантировано найти самый тяжелый камень?

Самый тяжелый камень

У нас есть n камней и чашечные весы. За одно взвешивание мы можем сравнить по весу два камня. Сколько нужно взвешиваний, чтобы гарантировано найти самый тяжелый камень?

 Сначала не вполне ясно, причем тут графы и компоненты связности

Самый тяжелый камень

У нас есть n камней и чашечные весы. За одно взвешивание мы можем сравнить по весу два камня. Сколько нужно взвешиваний, чтобы гарантировано найти самый тяжелый камень?

- Сначала не вполне ясно, причем тут графы и компоненты связности
- Но давайте разбираться

• Легко понять, что n-1 взвешивания хватит

- Легко понять, что n-1 взвешивания хватит
- После каждого взвешивания мы можем отбрасывать более легкий камень

- Легко понять, что n-1 взвешивания хватит
- После каждого взвешивания мы можем отбрасывать более легкий камень
- После n-1 взвешивания у нас останется один камень, он будет самым тяжелым

- Легко понять, что n-1 взвешивания хватит
- После каждого взвешивания мы можем отбрасывать более легкий камень
- После n-1 взвешивания у нас останется один камень, он будет самым тяжелым
- Но можно ли обойтись меньшем числом взвешиваний?

- Легко понять, что n-1 взвешивания хватит
- После каждого взвешивания мы можем отбрасывать более легкий камень
- После n-1 взвешивания у нас останется один камень, он будет самым тяжелым
- Но можно ли обойтись меньшем числом взвешиваний?
- Оказывается, нет!

 Давайте рассмотрим такой граф: вершинами являются камни, а ребрами мы соединяем те камни, которые мы сравнивали на весах

- Давайте рассмотрим такой граф: вершинами являются камни, а ребрами мы соединяем те камни, которые мы сравнивали на весах
- Заметим, что мы даже не интересуемся результатом взвешиваний

• Если мы сделали меньше n-1 взвешивания, то в нашем графе не меньше двух компонент связности!

• Если мы сделали меньше n-1 взвешивания, то в нашем графе не меньше двух компонент связности!

- Если мы сделали меньше n-1 взвешивания, то в нашем графе не меньше двух компонент связности!
- Значит мы не сравнивали камни двух этих компонент друг с другом

• Все камни в одной компоненте могут быть сильно тяжелее всех камней в другой компоненте, или наоборот

- Все камни в одной компоненте могут быть сильно тяжелее всех камней в другой компоненте, или наоборот
- Значит, мы не знаем какой камень самый тяжелый

• Графы полезны в тех ситуациях, когда у нас есть объекты, связанные отношениями

- Графы полезны в тех ситуациях, когда у нас есть объекты, связанные отношениями
- Даже нарисовать граф бывает полезно

- Графы полезны в тех ситуациях, когда у нас есть объекты, связанные отношениями
- Даже нарисовать граф бывает полезно
- Уже очень простые наблюдения могут помочь

- Графы полезны в тех ситуациях, когда у нас есть объекты, связанные отношениями
- Даже нарисовать граф бывает полезно
- Уже очень простые наблюдения могут помочь
- Важные понятия: пути и связность

- Графы полезны в тех ситуациях, когда у нас есть объекты, связанные отношениями
- Даже нарисовать граф бывает полезно
- Уже очень простые наблюдения могут помочь
- Важные понятия: пути и связность
- Даже простые наблюдения про компоненты связности могут быть полезны