STAT 610: Discussion 13

1 Summary

- Asymptotic tests:
 - **LRT statistic**: Let X_1, \ldots, X_n from $f_{\theta}(x)$. Under regularity conditions in §10.6.2, if $\theta \in \Theta_0$, then the distribution of the statistic $-2 \log \lambda(\mathbf{X}) \sim \chi_r^2$ as $n \to \infty$, where r is the difference between the dimension of θ and number of free parameters in Θ_0 .
 - Based on the above asymptotic result above, we can construct an asymptotic α-level test as $R = {\mathbf{X} : -2 \log \lambda(\mathbf{X}) \ge \chi_{r,\alpha}^2}$.
 - Wald test: Suppose H_0 is equivalent to a set of equations $R(\theta) = 0$ where R is a continuous function from $\mathbb{R}^k \to \mathbb{R}^l$. Wald (1943) introduces the following statistic:

$$W_n = R(\hat{\theta})^\mathsf{T} \{ c(\hat{\theta})^\mathsf{T} I_n(\hat{\theta})^{-1} c(\hat{\theta}) \}^{-1} R(\hat{\theta}),$$

where $C(\theta) = \partial R(\theta)/\partial \theta$, $I_n(\hat{\theta})$ is the fisher information matrix based on X_1, \ldots, X_n and $\hat{\theta}$ is the MLE of θ . Then, under regularity conditions, $W_n \xrightarrow{d} \chi_r^2$, where r equals the difference of number of all free parameters and free parameters in Θ_0 .

- For testing $H_0: \theta = \theta_0$ with θ_0 known, $R(\theta) = \theta - \theta_0$ and W_n simplifies to

$$W_n = (\hat{\theta} - \theta_0)^{\mathsf{T}} I_n(\hat{\theta}) (\hat{\theta} - \theta_0).$$

- Score test: Rao (1947) proposed the following statistic:

$$R_n = s_n(\hat{\theta}_0)^{\mathsf{T}} I_n(\hat{\theta}_0)^{-1} s_n(\hat{\theta}_0),$$

where $\hat{\theta}_0$ is the MLE under H_0 and $s_n(\theta) = \partial \log f_{\theta}(x)/\partial \theta$ is called the score function. Under regularity conditions, $W_n \xrightarrow{d} \chi_r^2$.

- LRT, Wald test and score test are asymptotic equivalent.
- Asymptotic confidence sets:
 - **Asymptotic pivots**: A known function $q_n(\mathbf{X}, \theta)$ is a *Asymptotic pivot* if the asymptotic distribution of $q_n(\mathbf{X}, \theta)$ is free of the unknown parameter θ .
 - We can also obtain asymptotic confidence sets by inverting asymptotic tests.

2 Questions

1. Let X_1, \ldots, X_n be i.i.d. samples from $\mathcal{N}(\mu, \sigma^2)$. Derive a score test statistic for testing $H_0: \sigma = \sigma_0$ if μ is known.

2. Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(\mu, \varphi)$ with unknown $\theta = (\mu, \varphi)$. Obtain $1 - \alpha$ asymptotically correct confidence sets for μ by inverting acceptance regions of LR tests, Wald's tests and score test.

- 3. Let X_1, \ldots, X_n be i.i.d. negative binomial(r, p). Consider $Y = \sum_{i=1}^n X_i \sim \text{nb}(nr, p)$.
 - (a) Prove that $2pY \xrightarrow{d} \chi^2_{2nr}$ as $p \to 0$.
 - (b) Show that for small p, the interval

$$\left\{ p : \frac{\chi_{2nr,1-\alpha/2}^2}{2Y} \le p \le \frac{\chi_{2nr,\alpha/2}^2}{2Y} \right\}$$

is an approximate $1-\alpha$ confidence interval.

(c) Obtain a minimum length $1 - \alpha$ CI based on the asymptotic pivot 2pY.

 $\textit{Hint: mgf of χ^2_r is $(1-2t)^{-k/2}$ for $t<\frac{1}{2}$, and mgf of $nb(r,p)$ is $[\frac{p}{1-(1-p)e^t}]^r$ for $t<\log(1-p)$.}$