76 7K

Date: 10 July 2024

Bangladesh Army University of Engineering & Technology (BAUET)

Department of Computer Science and Engineering Second Year Fourth Semester (16th Batch), Summer-2024

Course Code: MATH - 2247

Course Title: Complex Variable and Laplace Transformation

Class Test-01

Full Marks: 15

Time: 35 Minutes

N.B: Answer all the questions and the figures shown in the right margin indicate full marks.

15.		Marks	CO	PO	BL	KP
Q. (a)	How do you indicate of absolute value of a complex number? Give	56	1	1	C1	W
	one specific example of complex numbers in the engineering field.			1	,C	k1
	Evaluate the absolute value of a complex number defined by				2,	
	$5 + 5i^{3.(last one digit of your ID)}$ 20				C5	
	$\frac{5+5i^{3.(\text{lastone digit of your ID})}}{3-4i^5} + \frac{20}{4+3i} \text{ if possible.}$			•		
(b)	By employing De-Moivre's theorem, evaluate the indicated roots of	45	1	1	C3	W
					,C	k1
	$(-4\sqrt{3}-4i)^3$ and locate them graphically.				5	
(c)	Categorize and recommend graphically as the region in the z-plane	34	1	1	C4	W
	represented by the following relation $\operatorname{Re}\left(\frac{1}{-}\right) \leq \frac{1}{2}$.				,C	k1
	represented by the following relation $ Re - \leq \frac{1}{2}$.				5	

(z)

Bangladesh Army University of Engineering & Technology (BAUET)

Department of Computer Science and Engineering Second Year Fourth Semester (16th Batch), Summer-2024

Course Code: MATH - 2247

Course Title: Complex Variable and Laplace Transformation

Class Test-02

Full Marks: 15

N.B.: 1. Figures shown in the right margin indicate full marks. 2. Answer any Three questions including Q.1 & Q.3.

What do you understand by analytic function?

Q.2 Analyze the nature of the function $v = 3xy^2 + 4y^2 - x^3$ as it is harmonic or not. If at all possible, determine its harmonic conjugate u such that f(z) = u + iv is analytic and hence find the corresponding analytic function f(z) in terms of z.

Q.3) If possible, verify that the function f(z) = u + iv, where $f(z) = \begin{cases} \frac{x^3 y^4 (x + iy)}{x^6 + y^8}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is 2+3+2

continuous and that Cauchy-Riemann equations are satisfied at the origin, yet f'(z) does not exist there.

Q.4 If possible, prove that, $u = x^2 - xy^2$ and $v = x^2y - y^2$ both u and v satisfy Laplace's equation but 2+2+2 u+iv is not analytic function of z.

Date: 29 October 2024

Bangladesh Army University of Engineering & Technology (BAUET)

Department of Computer Science and Engineering Second Year Fourth Semester (16th Batch), Summer-2024

Course Code: MATH – 2247

Course Title: Complex Variable and Laplace Transformation

Class Test-03

Full Marks: 15

Time: 25 Minutes

N.B.: Answer Two questions including Q.1 and figures shown in the right margin indicate full marks.

- What do you mean by Laplace transform for a function G(t). Assess the Laplace transform of 2+6 $9t^2 + 19e^{-t} + 7\cos 5t$.
- $9t^{2} + 19e^{-t} + 7\cos 5t.$ **Q.2** If $L\{F(t)\} = f(s)$ and $G(t) = \begin{cases} F(t-b) \text{ when } t > b \\ 0 \text{ when } t < b \end{cases}$, then show that $L\{G(t)\} = e^{-bs} f(s)$.
- Q.3 Applying the Laplace transform, evaluate the Laplace transform of $F(t) = 7e^{5t} \sin^2 2t$.

Bangladesh Army University of Engineering & Technology (BAUET)

Department of Computer Science and Engineering Second Year Fourth Semester (16th Batch), Summer-2024

Course Code: MATH – 2247

Course Title: Complex Variable and Laplace Transformation

Class Test-04

Full Marks: 15

Time: 20 Minutes

N.B.: Figures shown in the right margin indicate full marks.

- Q.1 If $L\{F(t)\}=f(s)$ then applying the Laplace transform of second derivative, verify that $L\{\sin 3t\} = \frac{3}{s^2 + 9}, \ s > 0.$
- Relating the Laplace transform, evaluate (any one)

$$L\left\{t^2\cos 4t\right\}$$

ii.
$$\int_{0}^{\infty} te^{-4t} \cos t \, dt$$
iii.
$$\int_{0}^{\infty} \frac{e^{-2t} - e^{-5t}}{t} \, dt$$

iii.
$$\int_{0}^{\infty} \frac{e^{-2t} - e^{-5t}}{t} dt$$