Name: _		
Section:		

Math 455, Sample Final Exam December 6, 2021

	The	Honor	Code	is	in	effect	for	this	examination.	All	work	is to	be	your	own
--	-----	-------	------	----	----	--------	-----	------	--------------	-----	------	-------	----	------	-----

- No calculators.
- The exam lasts for 110 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 17 pages of the test.

Please do NOT	write in this box.
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
Total	

Name: _	
Section:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

1.(12 pts) Write out the hex machine number representation of 3.4.

Name: _	
Section:	

2.(13 pts)

Consider a function $f(x) = x^3 + x^2 + 1/4$.

(a) (3 pts) Prove that there exists at least one root of f(x) = 0 on [-2, -1].

(b) (5 pts) Consider a fixed point iteration

$$x_{n+1} = g_1(x_n),$$
 where $g_1(x) = f(x) + x,$

with the starting point $x_0 = -1$. We have the following sequence

$$x_1 = -0.75, \ x_2 = -0.3593, \ x_3 = -0.026, \ x_4 = 0.2240, \cdots$$

Does this scheme converge? Why?

Name: _______
Section: ______

(c) (5 pts) Consider a fixed point iteration

$$x_{n+1} = g_2(x_n)$$
, where $g_2(x) = -\frac{x^2 + 1/4}{x^2}$,

with the starting point $x_0 = -1$. We have the following sequence

$$x_1 = -1.25, \ x_2 = -1.16, \ x_3 = -1.185, \ x_4 = -1.177, \cdots$$

Does this scheme converge? Why?

$$g_{2}(x) = -\frac{x^{2}}{x^{2}} - \frac{1}{4x^{2}}$$

$$= -\frac{1}{4x^{2}} - 1$$

$$= -\frac{1}{4}x^{2}$$

$$= -\frac{1}{4}x^{3}$$

$$= -\frac{1}{2}x^{3}$$

$$= -\frac{1}{2}x^{3}$$

$$= -\frac{1}{2}x^{3}$$

$$= -\frac{1}{2}x^{3}$$

$$= -\frac{1}{2}|x|$$

Name:			
Section			

3.(7 pts.)

(a) Compute the condition number of the matrix

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & -2 \end{pmatrix} \qquad \text{Cond} = \left| \left| A \right| \right|_{2} \cdot \left| \left| A^{-1} \right| \right|_{2}$$

by using 2 norm. $\begin{array}{c|c} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ $\left(\lambda - 1\right)\left((\lambda - 4)(\lambda + 1) - (-1 - 1)\right)$ $= (\lambda^{-2})(\lambda^2 - 2\lambda - 8 - 1) = 0$ $\lambda = 1$ $\lambda = 1$ - b t ryac 2th bthac 1+ 10

Name:			
Section			

4.(10pts.)

Consider the following linear system

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

• Does the Gauss-Seidel method converge for solving this linear system? If so, prove $\rho(T_{GS}) < 1$.

$$A^{T}=4, \qquad Symmetric$$

$$det(A_{11})=1 > 0$$

$$det(A_{12})=|A_{13}|=$$

- () + L)·V

$$\begin{bmatrix}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 2 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
-1 & 3 & 0 \\
0 & 2 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
-1 & 3 & 0 \\
0 & 2 & 3
\end{bmatrix}$$

Name:			
Section:			

5.(5 pts.)

The polynomial $p(x) = x^4 - 2x^3 + 4x^2 - x + 5$ has the values shown.

Find a polynomial q(x) that takes these values (you don't need expand it):

P(x)= yob(x)+ x, l, (x) + y2l2(x) + y, l, (x) + y4le(x)

$$g(x) - p(x) = g(x)$$

$$\int_{4}^{2} \frac{(x+2)(x+1)(x)(x-1)}{(2+2)(2+1)(2)(2+1)} = \frac{(x^{2}-1)(x+1)}{24}$$

$$= \frac{(x^{2}-1)(x+1)}{24}$$

$$= \frac{(x^{2}-1)(x+1)}{24}$$

Name: _			
Section:			

6.(15 pts.)

. 1 /				
Given the data set	x_i	1	2	3
Given the data set	y_i	3	2	4

(a) Write down the linear system in matrix form for solving the coefficients a_i ($i = 0, \dots, n$) of the polynomial $p_n(x)$ (Do NOT solve).

$$1 \ 1 \ 1 \ d_2 \ 3$$
 $4 \ 2 \ 1 \ d_3 \ 4$

(b) Find a polynomial p(x) that interpolate the data by using Lagrange polynomial interpolation. Please simplify the polynomial.

Name: _	
Section:	

7.(10 pts.)

Find a, b and c such that s(x) is a cubic spline, where

$$S(x) = \begin{cases} s_0(x) = 3(x-1) + 2(x-1)^2 - (x-1)^3 & 1 \le x \le 2\\ s_1(x) = a + b(x-2) + c(x-2)^2 + (x-2)^3 & 2 \le x \le 3 \end{cases}$$

Name: _	
Section:	

8.(13pts.)

(a) Find the best line to fit the data points (0,0),(1,3),(2,3),(5,6);

Name: _			
Section:			

(b) Fit the data to the periodic model $y = F_3(t) = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t + c_4 \cos 4\pi t$.

t	0	1/6	1/3	1/2	2/3	5/6
y	4	2	0	-5	-1	3

Name: _	_
Section:	

 $9.(10 \mathrm{\ pts.})$ Use Householder reflectors to find the QR factorization of

$$A = \left(\begin{array}{cc} 1 & -4\\ 2 & 3\\ 2 & 2 \end{array}\right)$$

Name: _		
Section:	 	

10.(10 pts.) Use the two-point forward-difference formula to approximate f'(1) and find the approximation error, where $f(x) = \ln x$, for h = 0.01.

Name: _	
Section:	

 $\mathbf{11.}(10 \text{ pts.})$ The error estimate for the Trapezoidal rule with n+1 uniform grid points yields

$$E_T(f;h) = \frac{b-a}{12}h^2 \max_x |f''(x)|, \quad h = \frac{b-a}{n}.$$

Consider $\int_0^1 (\cos(x) + x^6) dx$ by using the Trapezoidal rule. If we wish the absolute value of the error to be smaller or equal than 10^{-6} , how many points would be needed for trapezoidal rule?

Name: _	
Section:	

12.(20 pts.)

(a). Determine constants a, b, c and d that will produce a quadrature formula

$$\int_{-1}^{1} f(x)dx = af(-1) + bf(1) + cf'(-1) + df'(1)$$

that has degree of precision 3.

Name: _	
Section:	

(b) If the following quadrature formula is given

$$\int_{-1}^{1} f(x)dx = \frac{1}{3}f(-1) + \frac{1}{3}f(1) + \frac{4}{3}f(0),$$

what's the degree of precision?

Name: _		
Section:		

13.(15 pts.)

Write a Matlab function for solving linear systems by the Jacobi method. Your function should be used by the following command in Matlab command window:

```
>> v=Jacobi(A,b,x0)
```

where A is a matrix, b is a vector, and x0 is the initial guess.

Answer:

```
function x=Jacobi(A,b,x0)
%A-- a nXn matrix
%b-- a nX1 vector
%x-- a solution of Ax=b
D=diag(A);
L=tril(A)-diag(D);
U=triu(A)-diag(D);
CurIter=0;
MaxIter=100;
Tol=1e-5;
while 1
    x=-(L+U)*x0./D+b./D;
    CurIter=CurIter+1;
    if CurIter>MaxIter
        break
    end
    if norm(x-x0) < Tol
         break
    end
    if norm(A*x-b)<Tol
        break
    end
    x0=x;
end
```