Decision Trees

Recap and Decision Trees for Regression

Decision Trees

► Input features:

- \triangleright N features: $X_1, X_2, ... X_N$
- \triangleright Each X_j has domain D_j
 - Categorical:
 D_j = {red, blue}
 - Numerical: $D_i = (0, 10)$
- \triangleright Y is output variable with domain D_Y :
 - ► Categorical: Classification
 - ► Numerical: Regression
- ► Task:
 - Given input data vector x_i predict y_i

Decision Trees (I)

▶ Decision trees:

- Split the data at each internal node
- Each leaf node makes a prediction

► Setting:

- ► Binary splits: X_i<v
- ► Numerical attrs.
- Regression

How to make predictions?

- ▶ Input: Example x_i
- **► Output:** Predicted *y*_i'
- "Drop" x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits

► Training dataset D*, |D*|=100 examples

- ► Imagine we are currently at some node *G*
 - \triangleright Let D_G be the data reaches G
- There is a decision we have to make:
 - If so, which variable and which value do we use for a split?
 - ▶ If not, how do we make a prediction?
 - ▶ We need to build a "predictor node"

 X_1

Algorithm 1 InMemoryBuildNode

```
Require: Node n, Data D \subseteq D^*
 1: (n \to \text{split}, D_L, D_R) = \text{FindBestSplit}(D)
 2: if StoppingCriteria(D_L) then
3: n \rightarrow \text{left\_prediction} = \text{FindPrediction}(D_L)
 4: else
       InMemoryBuildNode(n \rightarrow left, D_L)
 6: if StoppingCriteria(D_R) then
    n \rightarrow \text{right\_prediction} = \text{FindPrediction}(D_R)
 8: else
 9: InMemoryBuildNode(n \rightarrow \text{right}, D_R)
```

- ► How to split? Pick attribute & value that optimizes some criterion
- ► Classification: Information Gain
 - IG(Y|X) = H(Y) H(Y|X)
 - $Entropy: H(Z) = -\sum_{j=1}^{m} p_j \log p_j$
 - ► Conditional entropy: $H(W|Z) = -\sum_{j=1}^{m} P(Z = v_j) H(W|Z = v_j)$
 - ► Suppose Z takes m values $(v_1 ... v_m)$
 - ► H(W|Z=v) ... Entropy of W among the records in which Z has value v

► How to split? Pick attribute & value that optimizes some criterion

▶ Regression:

- Find split (X_i, v) that creates D, D_L, D_R: parent, left, right child datasets and maximizes: $|D| \cdot Var(D)$
 - $-(|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))$
 - ► For ordered domains sort X_i and consider a split between each pair of adjacent values
 - For categorical X_i find best split based on subsets (Breiman's algorithm)

- ▶ When to stop?
 - ► I) When the leaf is "pure"
 - ▶ E.g., $Var(y_i) < \varepsilon$
 - ➤ 2) When # of examples in the leaf is too small
 - ► E.g., $|D| \le 10$
- ► How to predict?
 - **Predictor:**
 - **Regression:** Avg. y_i of the examples in the leaf
 - \triangleright Classification: Most common y_i in the leaf

End of Recap

Estimating Generalization Errors

- ▶ Re-substitution errors: error on training (Σ e(t))
- ▶ Generalization errors: error on testing $(\Sigma e'(t))$
- ► Methods for estimating generalization errors:
 - ightharpoonup Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
 Training error = 10/1000 = 1%
 Generalization error = (10 + 30×0.5)/1000 = 2.5%
 - ► Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

Example of Post-Pruning

Class = Yes	20	
Class = No	10	
Error = 10/30		

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

PRUNE!

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

A1

Class = Yes	4
Class = No	1

A?

Class = Yes	6
Class = No	0

Examples of Post-pruning

Don't prune for both cases

► Pessimistic error?

Don't prune case 1, prune case 2

► Reduced error pruning?

Depends on validation set

Handling Missing Attribute Values

- ▶ Missing values affect decision tree construction in three different ways:
 - Affects how impurity measures are computed
 - Affects how to distribute instance with missing value to child nodes
 - Affects how a test instance with missing value is classified

Computing Impurity Measure

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	?	Single	90K	Yes

Missing value

Before Splitting:

Entropy(Parent)

$$= -0.3 \log(0.3) - (0.7) \log(0.7) = 0.8813$$

	Class = Yes	
Refund=Yes	0	3
Refund=No	2	4
Refund=?	1	0

Split on Refund:

$$Entropy(Refund=Yes) = 0$$

$$= -(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$$

$$= 0.3 (0) + 0.6 (0.9183) = 0.551$$

Gain =
$$0.9 \times (0.8813 - 0.551) = 0.3303$$

Distribute Instances

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Class=Yes	0
Class=No	3

Cheat=Yes	2
Cheat=No	4

Tid	Refund	Marital Status	Taxable Income	Class
10	?	Single	90K	Yes

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

Classify Instances

New record:

	Married	Single	Divorced	Total
Class=No	3	1	0	4
Class=Yes	6/9	1	1	2.67
Total	3.67	2	1	6.67

Probability that Marital Status = Married is 3.67/6.67

Probability that Marital Status ={Single,Divorced} is 3/6.67

Other Issues

- ► Data Fragmentation
- ► Search Strategy
- ► Expressiveness
- ► Tree Replication

Data Fragmentation

- ▶ Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision

Search Strategy

- Finding an optimal decision tree is NP-hard
- ► The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- ▶ Other strategies?
 - ► Bottom-up
 - ► Bi-directional

Expressiveness

- ▶ Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - ► Class = 1 if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree
- ► Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

Decision Boundary

- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Oblique Decision Trees

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

Tree Replication

Same subtree appears in multiple branches

Model Evaluation

- ► Metrics for Performance Evaluation
 - ► How to evaluate the performance of a model?
- ► Methods for Performance Evaluation
 - ► How to obtain reliable estimates?
- ► Methods for Model Comparison
 - ► How to compare the relative performance among competing models?

Model Evaluation

- ▶ Metrics for Performance Evaluation
 - ► How to evaluate the performance of a model?
- ► Methods for Performance Evaluation
 - ► How to obtain reliable estimates?
- ► Methods for Model Comparison
 - ► How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- ► Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- ► Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	а	b	
	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

► Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- ► Consider a 2-class problem
 - ► Number of Class 0 examples = 9990
 - Number of Class I examples = 10
- ► If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class I example

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	-	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

Accuracy is	s pro	portional	to	cost if
-------------	-------	-----------	----	---------

- 1. C(Yes|No)=C(No|Yes) = q
- 2. C(Yes|Yes)=C(No|No) = p

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

- ► Metrics for Performance Evaluation
 - ► How to evaluate the performance of a model?
- ► Methods for Performance Evaluation
 - ► How to obtain reliable estimates?
- ► Methods for Model Comparison
 - ► How to compare the relative performance among competing models?

Methods for Performance Evaluation

- ► How to obtain a reliable estimate of performance?
- ► Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - ► Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:
 - Arithmetic sampling (Langley, et al)
 - Geometric sampling (Provost et al)

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

Methods of Estimation

- ► Holdout
 - ► Reserve 2/3 for training and 1/3 for testing
- ► Random subsampling
 - ► Repeated holdout
- ▶ Cross validation
 - ► Partition data into k disjoint subsets
 - k-fold: train on k-I partitions, test on the remaining one
 - Leave-one-out: k=n
- ▶ Bootstrap
 - Sampling with replacement

Model Evaluation

- ► Metrics for Performance Evaluation
 - ► How to evaluate the performance of a model?
- ► Methods for Performance Evaluation
 - ► How to obtain reliable estimates?
- ▶ Methods for Model Comparison
 - ► How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- ▶ Developed in 1950s for signal detection theory to analyze noisy signals
 - ► Characterize the trade-off between positive hits and false alarms
- ► ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- ▶ Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

- ► (0,0): declare everything to be negative class
- ►(I,I): declare everything to be positive class
- ► (1,0): ideal
- ► Diagonal line:
 - Random guessing
 - ► Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	P(+ A)	True Class			
1	0.95	+			
2	0.93	+			
3	0.87	-			
4	0.85	-			
5	0.85	-			
6	0.85	+			
7	0.76	-			
8	0.53	+			
9	0.43	-			
10	0.25	+			

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct a ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Test of Significance

- ► Given two models:
 - ► Model MI: accuracy = 85%, tested on 30 instances
 - ► Model M2: accuracy = 75%, tested on 5000 instances
- ► Can we say MI is better than M2?
 - ► How much confidence can we place on accuracy of M1 and M2?
 - ➤ Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Literature

► Chapter 4 (except 4.6) from the Tan et. al. Textbook.