Miles D. Grant, Esq. (SBN 89766) GRANT & ZEKO, APC FILED 1331 India Street San Diego, CA 92101 Telephone: 619-233-7078 Facsimile: 619-233-7036 2 2007 MAY 17 PM 12: 42 3 CLERK US DISTRICT COURT SOUTHERN DISTRICT OF CALIFORNIA E-Mail: mgrant@grantandzeko.com Attorneys for Plaintiff PRESIDIO COMPONENTS, INC. 6 UNITED STATES DISTRICT COURT 8 SOUTHERN DISTRICT OF CALIFORNIA 9 CASTOT CV 0893 PRESIDIO COMPONENTS, INC. Plaintiff, 11 COMPLAINT AND JURY DEMAND 12 AMERICAN TECHNICAL CERAMICS 13 CORPORATION, 14 Defendant. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 **EXHIBIT A**

Page 1

1 2

3

Plaintiff, Presidio Components, Inc. ("PRESIDIO") complains against the Defendant, American Technical Ceramics Corporation ("ATC"), as follows:

JURISDICTION AND VENUE

5

6

1. This is an action for patent infringement that arises under the Patent Laws of the United States, Title 35, United States Code. This Court has jurisdiction over this action under 28 U.S.C. §§ 1331 and 1338(a).

٥

2. Venue in this Court is based upon 28 U.S.C. §§ 1391(b)-(c) and 1400(b).

8

THE PARTIES

Upon information and belief, ATC is a Delaware corporation having a place of

10

PRESIDIO is a California corporation having its principal place of business at
 7169 Construction Court, San Diego, CA 92121.

11

4.

business at 1 Norden Lane, Huntington Station, New York 11746. Upon further information and belief, ATC is, among other activities, engaged in the importation, manufacture, offer for sale and/or sale of ceramic capacitors referred to as "545L." Upon further information and belief, ATC sells and offers for sale ceramic capacitors, including the 545L, either directly or

15

14

through a distribution network, and has substantial and continuous contacts with this judicial district, and conducts systematic business in this judicial district.

·17 18

PRELIMINARY ALLEGATIONS

19

5. PRESIDIO is a leading manufacturer of ceramic capacitors. PRESIDIO's innovative products are offered for sale, and are sold, to customers throughout the United States.

21

22

23

6. The technology used by PRESIDIO in certain of its ceramic capacitors, among other things, is disclosed and claimed in United States Letters Patent No. 6,816,356, entitled "Integrated Broadband Ceramic Capacitor Array" (hereinafter "the '356 patent"), which was duly and legally issued on November 9, 2004. A copy of the '356 patent is attached hereto as Exhibit 1.

24 25

7. PRESIDIO is the owner by assignment of the '356 patent.

26 27

8. On information and belief, ATC has manufactured and sold, and is currently manufacturing and offering for sale, ceramic capacitors referred to as 545L.

28

-1-

EXHIBIT A

1	

FIRST CLAIM FOR RELIEF

2

(Infringement of U.S. Letters Patent No. 6,816,356)

3

9. The allegations of paragraphs 1-8 are incorporated herein by reference as though fully set forth herein.

5 6

10. On information and belief, ATC has infringed and continues to infringe, and/or induce and/or contribute to the infringement of (collectively, "acts of infringement"), one or more claims of the '356 patent by its manufacture, use, offer for sale, sale and/or importation into the United States, of ceramic capacitors referred to as 545L.

9

On information and belief, the acts of infringement complained of herein are 11. being carried out willfully and with full knowledge by ATC of the '356 patent.

11

12

12. As a result of ATC's actions, PRESIDIO has suffered and continues to suffer substantial injury, including irreparable injury, and will result in damages to PRESIDIO, including loss of sales and profits, which PRESIDIO would have made but for the acts infringement by ATC, unless ATC is enjoined by this Court.

PRAYER FOR RELIEF

15 16

WHEREFORE, PRESIDIO prays for relief against ATC as follows:

17

A. That a judgment be entered that ATC has infringed, induced the infringement of, and/or contributed to the infringement of, United States Letters Patent No. 6,816,356;

19

20

B. That ATC, its agents, sales representatives, servants and employees, associates, attorneys, parents, successors and assigns, and any and all persons or entities acting at, through, under or in active concert or participation with any or all of them, be enjoined and restrained preliminarily during the pendency of this action and thereafter permanently, from infringing

21 22

23

United States Letters Patent No. 6,816,356; C. That a judgment be entered that ATC be required to pay over to PRESIDIO all

damages sustained by PRESIDIO due to such acts of infringement and that such damages be trebled pursuant to 35 U.S.C. § 284 for the willful acts of infringement complained of herein;

26

D. That this case be adjudged and decreed exceptional under 35 U.S.C. § 285 entitling PRESIDIO to an award of its reasonable attorney fees and that such reasonable

27

-2-

EXHIBIT A

Presidio Components, Inc. v. American Technical Ceramics Corporation Complaint and Jury Demand

Page 3

24 25

attorney fees be awarded; That PRESIDIO be awarded its costs and prejudgment interest on all damages; 2 E. 3 and 4 F. That PRESIDIO be awarded such other and further relief as the Court deems just and proper. 6 **JURY DEMAND** PRESIDIO hereby demands and requests trial by jury of all issues raised that are triable 7 by jury. 8 DATED: May 1, 2007 **GRANT & ZEKO, APC** 9 10 11 12 Attorneys for Plainting 13 PRESIDIO COMPONENTS, INC. 14 OF COUNSEL: Gregory F. Ahrens, Esq. 16 Brett A. Schatz, Esq. WOOD, HERRON & EVANS, L.L.P. 17 441 Vine Street, 2700 Carew Tower Cincinnati, Ohio 45202-2917 18 (513) 241-2324 (Telephone) (513) 241-6234 (Facsimile) 19 20 21 J:\DOCS\16-162\A-Master\Pleadings\Complaint-01.wpd .22 23 24 25 26 27 28

3-

Presidio Components, Inc. v. American Technical Ceramics Corporation Complaint and Jury Demand

EXHIBIT A Page 4

P	A	TEN	IT	ASS	SIGN	٩N	MEN	IT
---	---	-----	----	-----	------	----	-----	----

Electronic Version v1.1 Stylesheet Version v1.1

										
SUBMISSION TYPE:		NEW ASSIGNMENT	NEW ASSIGNMENT							
NATURE OF CONVE	YANCE:	NUNC PRO TUNC ASSIGNMEN	NUNC PRO TUNC ASSIGNMENT							
EFFECTIVE DATE:		04/14/2003	04/14/2003							
CONVEYING PARTY DATA										
		Name	Execution Date							
Daniel Devoe			02/05/2008							
Alan Devoe			02/05/2008							
Lambert Devoe			02/05/2008							
			02/03/2008							
RECEIVING PARTY I	DATA									
Name:	Presidio Cor	mponents, Inc.		,						
Street Address:		uction Court								
City:	San Diego			٠.						
State/Country:	CALIFORNI	A								
Postal Code:	92121									
PROPERTY NUMBER	RS Total: 1									
Property T	уре	Number	Number							
Patent Number:		6816356								
		10010000								
CORRESPONDENCE	DATA									
Fax Number:	(513)42	1-7269		· ·						
Correspondence will b		Mail when the fax attempt is unsuccessful	•	l						
Phone:	513-241									
Email:		@whepatent.com								
Correspondent Name:	- •	r F. Ahrens								
Address Line 1:	441 Vin									
Address Line 2: 2700 Carew Tower										
Address Line 4:	Address Line 4: Cincinnati, OHIO 45202									
ATTORNEY DOCKET	NUMBER:	DEVOE-45LT-117	DEVOE-45LT-117							
NAME OF SUBMITTE	R:	Gregory F. Ahrens	Gregory F. Ahrens							
500457360			PATENT							

500457360

REEL: 020468 FRAME: 0304

Total Attachments: 3 source=DEVOE_AssignmentPg1#page1.tif source=DEVOE_AssignmentPg2#page1.tif source=DEVOE_AssignmentPg3#page1.tif

PATENT REEL: 020468 FRAME: 0305

> EXHIBIT B Page 6

ASSIGNMENT OF INVENTION AND PATENTS THEREON

For valuable consideration, we, <u>Daniel Devoe</u>, Alan Devoe and <u>Lambert Devoe</u>, hereby assign nunc pro tune, as of the date of filing of the below-named invention, to Presidio Components, Inc., a Corporation of California and having a place of business at 7169 Construction Court, San Diego, CA 92121, and its successors and assigns (collectively hereinafter called "the Assignee"), our entire right, title and interest throughout the world in the inventions and improvements which are subject of our application for United States Patent filed April 14, 2003 as application Serial No. 10/412,992, entitled INTEGRATED BROADBAND CERAMIC CAPACITOR ARRAY, which issued as U.S. Patent No. 6.816,356, this assignment including said application, and United States patent, and the right to claim priority based on the filing date of said application under the International Convention for the Protection of Industrial Property, the Patent Cooperation Treaty, the European Patent Convention, and all other treaties of like purposes; and further including all rights and interests to remedies for infringement both past and future; and authorize the Assignee to apply in all countries in our name or in its own name for patents, utility models, and cesign registrations and like rights of exclusion and for inventors' certificates for said inventions and improvements; and agree for ourselves and our respective heirs, legal representatives and assigns, without further compensation to perform such lawful acts and to sign such further applications, assignments, Preliminary Statements and other lawful documents as the Assignee may reasonably request to effectuate fully this assignment.

> PATENT REEL: 020468 FRAME: 0306

	1 0' - 01
IN WITNESS WHEREOF, I hereto se	
this 5th day of Telrang	.2008
•	
	(hours (Wood LS.
a Paris	Daniel Devoe
STATE OF Calefornia	······································
COUNTY OF Son Deepo	:ss.
V	manus las an
Before me this	5th day of July any 2008 personally appeared Daniel
Devoe, a citizen of <u>U.S.A.</u> residing in	San Diego, California and particularly at 1106 Barcelona, San Diego.
CA 92107, known to me to be the p	erson whose name is subscribed to the foregoing Assignment and
	the same as his free act and deed for the purposes therein contained
MARGY J. FRENCH COMM. #1681141 E COMM. #1681141	Main (Menal)
SAN DEGO COUNTY	Notary Public (1)
	1 1 1/2010
[Natarida Cas] YYa-a7	My Commission Expires: July 14, 2010
[Notary's Seal Here]	
IN WITNESS WHEREOF, I hereto se	t my hand and seal at Am Res CA
this 5th day of Telegray,	2008
0	(06)000
	L.S.
STATE OF Celifornia	Alan Devoe
	<u>.</u>
COUNTY OF San Keen	
Before me this	day of Jelines, 20 of, personally appeared Alan
Inlla CA 92037 known to me to be	n <u>La Jolla. California</u> and particularly at <u>5715 Waverly Avenue. La</u> the person whose name is subscribed to the foregoing Assignment
and acknowledged that s/he executed	the same as his free act and deed for the purposes therein contained.
MARGY J. FRENCH	A service and the purposes are enrecontament.
NOTARY PUBLIC • CALIFORNIA &	- Cargy (Menell
Commission Epines July 14, 2010	Notary Public
	My Commission Expires July 14 2010
[Notary's Seal Here]	The Commission Expires free 14, 2010
· · ·	// <i>U</i>

REEL: 020468 FRAME: 0307

IN WITNESS WHEREOF, I hereto set my hand and scal at Man Regio, A this 5th day of Library, 20th

Lambort Devoe

Lambort Devoe

County of Jan Regio:

Before me this 5th day of Library, 20th personally appeared Lambort

MARGY J. FRENCH
COMMA \$1661141
NOTARY PUBLIC • CALIFORNIA B
SAN DESIGN COUNTY
Currentsion Emires July 14, 2010

Notary Public ()

[Notary's Scal Here]

RECORDED: 02/06/2008

My Commission Expires:

PATENT

REEL: 020468 FRAME: 0308

EXHIBIT B Page 9

SUPPLEMENTAL DISCLOSURE OF ASSERTED CLAIMS AND PRELIMINARY INFRINGEMENT CONTENTIONS RE: U.S. PATENT NO. 6,816,356

EISCPatentik (ö. 6.816356) 7.41 149 FA (Asserted Glams 1414) 14 (4.5.41) 14 (4.5.41)	ASIC SASI Coramic Capacitor Williams (Capacitor Capacitor Capacito
1. 1. A capacitor comprising:	The ATC545L capacitor is a ceramic capacitor. (See Exhibit A1).
a substantially monolithic dielectric body;	The ATC545L capacitor has a monolithic dielectric body. (See Exhibit A1).
a conductive first plate disposed within the dielectric body;	The ATC 5454L capacitor has a conductive first plate disposed within the dielectric body. (See Exhibit A2).
a conductive second plate disposed within the dielectric body and forming a capacitor with the first plate;	The ATC 545L capacitor has a conductive second plate disposed within the dielectric body and forming a capacitor with the first plate. (See Exhibit A2).
a conductive first contact disposed externally on the dielectric body and electrically connected to the first plate; and	The ATC 545L capacitor has a conductive first contact disposed externally on the dielectric body and electrically connected to the first plate. (See Exhibit A2).
a conductive second contact disposed externally on the dielectric body and electrically connected to the second plate, and the second contact being located sufficiently close to the first contact to form a first fringe-effect capacitance with the first contact.	The ATC 545L capacitor has a conductive second contact disposed externally on the dielectric body and electrically connected to the second plate (See Exhibit A2), and the second contact being located sufficiently close to the first contact to form a first fringe-effect capacitance with the first contact. (See Exhibit A3).
2. The capacitor of claim 1 further comprising an insulating layer disposed between the first contact and the second contact on the dielectric body and inhibiting electrical conduction between the first and second contacts.	The ATC545L capacitor includes an insulating layer disposed between the first contact and the second contact on the dielectric body that inhibits electrical conduction between the first and second contacts. (See Exhibit A3).
3. The capacitor of claim 1 wherein the first fringe-effect capacitance is disposed on a first side of the dielectric body and the first contact and the second contact are further disposed on a second side of the dielectric body, and the second contact being located sufficiently close to the first contact on the second side of the dielectric body to form a second fringe-effect	The ATC545L capacitor has a first fringe- effect capacitance that is disposed on a first side of the dielectric body (See Exhibit A3), and the first contact and the second contact are further disposed on a second side of the dielectric body (See Exhibit A2), and the second contact is located sufficiently close to the first contact on the second side of the

(Asserted Olams	PAGE ATC454515 Coramic Capacitors 2
capacitance with the first contact.	dielectric body to form a second fringe-effect capacitance with the first contact (See Exhibit A4).
4. The capacitor of claim 3 further comprising:	The ATC545L capacitor. (See Exhibit A1).
a first insulating layer disposed between the	The ATC545L capacitor has a first insulating
first contact and the second contact on the first	layer disposed between the first contact and the
side of the dielectric body and inhibiting	second contact on the first side of the dielectric
electrical conduction between the first and	body, and this inhibits electrical conduction
second contacts; and	between the first and second contacts. (See
	Exhibit A3).
a second insulating layer disposed between the	The ATC545L capacitor has a second
first contact and the second contact on the	insulating layer disposed between the first
second side of the dielectric body and	contact and the second contact on the second
inhibiting electrical conduction between the first contact and second contact.	side of the dielectric body, and this inhibits
first contact and second contact.	electrical conduction between the first contact and second contact. (See Exhibit A4).
	and second contact. (See Exhibit A4).
5 The canacitor of claim 3 wherein the first	The ATC5451, capacitor has a first side of the
5. The capacitor of claim 3 wherein the first side of the dielectric body and the second side	The ATC545L capacitor has a first side of the dielectric body and the second side of the
side of the dielectric body and the second side	dielectric body and the second side of the
1	dielectric body and the second side of the dielectric body that are substantially parallel.
side of the dielectric body and the second side	dielectric body and the second side of the
side of the dielectric body and the second side	dielectric body and the second side of the dielectric body that are substantially parallel.
side of the dielectric body and the second side of the dielectric body are substantially parallel.	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2).
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic tape layers laminated together in a green	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape layers laminated together in a green ceramic
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic tape layers laminated together in a green	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape layers laminated together in a green ceramic
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure.	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure.
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure.	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure. The ATC545L capacitor includes a dielectric
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure. 19. The capacitor of claim 1 wherein the dielectric body has a hexahedron shape, the	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure. The ATC545L capacitor includes a dielectric body with a hexahedron shape, the first and
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure. 19. The capacitor of claim 1 wherein the dielectric body has a hexahedron shape, the first and second external conductive contacts	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure. The ATC545L capacitor includes a dielectric body with a hexahedron shape, the first and second external conductive contacts being
side of the dielectric body and the second side of the dielectric body are substantially parallel. 16. The capacitor of claim 1 wherein the dielectric body is ceramic. 18. The capacitor of claim 1 wherein the ceramic body comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure. 19. The capacitor of claim 1 wherein the dielectric body has a hexahedron shape, the	dielectric body and the second side of the dielectric body that are substantially parallel. (See Exhibit A2). The ATC545L capacitor has a ceramic dielectric body. (See Exhibit A1). The ATC545L capacitor has a ceramic body that comprises a plurality of ceramic tape layers laminated together in a green ceramic state and fired to form a cured monolithic ceramic structure. The ATC545L capacitor includes a dielectric body with a hexahedron shape, the first and

None of Claims 1-5, 16, or 18-19 is embodied in Presidio Components, Inc.'s products.

Claims 1, 16, and 18-19 are supported by, and claim priority to, Application No. 10/150,202. Accordingly, Claims 1, 16, and 18-19 are entitled to priority to at least May 17, 2002. Presidio reserves the right to amend this claim of entitlement to priority as warranted by discovery or otherwise.

It is Presidio's contention that all of the above listed claims are literally infringed by ATC's 545L product. Presidio also reserves the right to assert infringement under the doctrine of equivalents, including with respect to the following claim terms: Claim 1: "a conductive first contact disposed externally on the dielectric body" and "a conductive second contact disposed externally on the dielectric body"; Claim 2: "an insulating layer disposed between the first contact and the second contact on the dielectric body"; Claim 4: "a first insulating layer disposed between the first contact and the second contact on the first side of the dielectric body" and "a second insulating layer disposed between the first contact and the second contact on the second side of the dielectric body."

NEWS RELEASE

Presidio Components, Inc. Sues American Technical Ceramics

Presidio Components, Inc. filed suit on May 17, 2007 against American Technical Ceramics in San Diego, CA, alleging infringement of its U.S. Patent No. 6,816,356. The case relates to ATC's introduction and sale of its Ultra Broadband Capacitor product line 545L series. Presidio Components, Inc. has alleged willful infringement and seeks damages related to capacitors already sold by ATC and an end to all future sales of the 545L series products.

With 4 U.S. patents granted and additional patents pending in broadband capacitor technology, and 26 additional patents in its portfolio, Presidio Components, Inc. is widely recognized as the industry leader in innovative broadband capacitor technology with working frequency from 16kHz to 100GHz.

New services such as video, mobile internet and broadband access will continue to fuel dramatic growth in broadband fiber optic and network infrastructure, and will also result in increasing demand for Presidio's unique broadband capacitor technology; a technology it plans to vigorously defend.

The recent June 18, 2007 announcement that AVX intends to acquire American Technical Ceramics will in no way deter Presidio Components, Inc. from enforcing its intellectual property rights.

June 26, 2007

7169 Construction Court • San Diego, CA 92121 • (858) 578-9390 • Fax (800) 538-3880 or (858) 578-6225 www.presidiocomponents.com

EXHIBIT A

PAGE 1 OF 1

Test Capabilities

Test Data

About Presidio

Welcome

What's New

Products

Products from Presidio Components,

Buried Single Layer, Microwave, Radio Frequency & Fiber Optic Capacitors Download Catalog for RF, Microwave & F/O Applications

Buried Single Layer Capacitors

Sales Repaishows

Catalogs/Info Publications

Part No. Definition Certifications

US Patent Numbers: 6,366,443 , 6,542,352 , 6,751,082 , 6,753,218 & 6,917,509

Application Ratings

Capacitor Arrays

Surface Mounts

Available Testing

Additional Information

How to Order

Download Kent Simulator for Single Layer Capacitor Modeling Consult factory for legacy products and part numbers.

Buried Broadband Capacitors (10kHz-50GHz) US Patent Numbers: 6,687,327, 6,816,366, 6,970,341 & 7,076,778 Other Patents Pending.

Features and Applications

Performance Characteristics **Mounting Methods**

Hot Topics

Selected Performance Data

Low Frequency Modeled Loss

Insertion Loss Performance Data S-PARAMETER Data for BB0502X7R104M16VP820 Capacitor L6kHz to 40GHz on fused silica

S-PARAMETER Data for BB0302X7R123M16VP820 Capacitor 130kHz to 40GHz on fused silica

S-PARAMETER Data for BB0805X7R154M16VP221 Capacitor

10kHz to 20GHz on Rogers 4003
S-PARAMETER Data for BB0603X7R154M16VP221 Capacitor

LOKHz to 20GHz on Rogers 4003

S-PARAMETER Data for BB0502X7R104M16V820 Capacitor

S-PARAMETER Data for BB0502NPO821M16VP1R0 Capacitor 16kHz to 15GHz on ICM fixture

10MHz to 40GHz on fused silica S-PARAMETER Data for BB0502X7R123M16VP820 Capacitor

130kHz to 40GHz on fused silica S-PARAMETER Data for BB0502Y5V224M16VP8205 Capacitor 7kHz to 40GHz on fused silica

Eve Diagram Comparison 10GBits/Sec: MBB0502X104MGP DC Block versus 0402X7R100pF DC Block How to Order

(provided by Modelithics) **Equivalent Circuit Models**

cts/index.htm (1 of 2)5/23/2008 8:02:18 PM

Products from Presidio Components, ceramic capacitor manufacturer

ESR and ESL Measurements of MVL3030Y 100nF "VL" Series - Vertical Layer Capacitors

"VB" Series - Integrated Broadband Bypass Capacitors
US Patent Numbers: 6,587,327, 6,816,356, 6,970,341 & 7,075,776
Other Patents Pending.
S-PARAMETER Data Available for Download

Available Testing Part Number Definitions

Catalogs/Quotes/Info Full Product Line

All our products feature wide capacitance ranges available in many popular sizes. See individual product pages for detailed capacitance specifications, or call one of our <u>sales representatives</u> for additional sizes.

Home | Sitemap | Products | Sales | Request Info | Contact

Copyright 1998-2008 Presidio Components, Inc.

ducts/index.htm (2 of 2)5/23/2008 8:02:18 PM http://www.presidiocon

EXHIBIT F Page 16

PRESIDIO COMPONENTS, INC. HIGH PERFORMANCE, HIGH RELIABILITY CERAMIC CAPACITORS

BURIED SINGLE LAYER™ CAPACITORS, WIRE BONDABLE AND SURFACE MOUNT

About Presidio

Presidio Components has been an industry leader in the manufacture of ceramic capacitors since 1980. We are dedicated to excellence in manufacturing, process control and customer service. All products are manufactured and tested in our state-of-the-art, 40,000 square foot facility in San Diego, California, allowing for immediate response to your business needs. We have numerous patents, and hundreds of years of combined engineering experience, and we can formulate the right product for your application.

"V" SERIES — INTEGRATED BROADBAND **BYPASS AND VERTICAL LAYER CAPACITORS**

Testing & Reliability

Presidio Components was initially qualified to Mil-PRF-55681 in 1984. Since then we have upgraded our processing line to obtain the highest established reliability of 'S' level. We are also qualified on two additional space level applications, Mil-PRF-123 and Mil-PRF-49470 'T' level. Presidio Components is also proud to be the first OPL supplier to Mil-PRF-49467, the high voltage ceramic capacitor specification. All QPL testing per Mil-STD-202 is done on site at our DSCC approved test lab. For a list of environmental test capabilities, consult the factory.

BURIED BROADBAND™ CAPACITORS

Quality & Customer Service

At Presidio Components we work hard to build positive, long-term relationships with our customers and we will go the extra distance to ensure customer satisfaction. If you cannot find a part anywhere else, call Presidio Components. With more than 70

million parts in inventory, we have many commercial and military parts in stock. Our patented ceramic capacitors are typically used in low noise, filter, tuning, broadband DC blocking, and RF bypass applications.

For more information about Presidio's products visit our website at: www.presidiocomponents.com

Presidio's Website Home Page

🗐 PRESIDIO COMPONENTS, INC.

5.0

BURIED SINGLE LAYER™ CAPACITORS

PRESIDIO ADVANTAGE

Presidio's patented thick film technology buries electrodes into the ceramic body (Fig. 1) allowing a 10:1 advantage over a conventional construction (Fig. 2). It offers the designer: (a) more bandwidth through increased device capacitance, (b) more stable capacitance over temperature and (c) more capacitance in smaller case sizes for increased board density.

Filled vias connect the buried electrodes with the outside top and bottom metallization pads; 99.99% pure Au is standard for all metal connections allowing proven wire bond techniques with AuSn or conductive epoxy die attach techniques.

Fig. 1. Construction of buried electrodes

Fig. 2. Standard Single Layer Capacitor

- Excellent low loss performance for high Q applications as demonstrated with a 10 pF NPO capacitor shown in Fig. 6 below.
- Ease of dielectric material selection: Presidio offers 3 ceramic materials while most other suppliers offer more than 15.
- ♣ RoHS compliant.

KENT SIMULATOR

Using the KENT SIMULATOR (Fig. 3), a designer can obtain commonly needed RF capacitor parameters in graphical format for popular Presidio Components RF capacitors. In addition, S-parameters for selected capacitors can be saved in S2P format. All device parameters are derived from a series transmission line model developed by Dr. Gordon Kent and available at www.presidiocomponents.com. A technical discussion of the simulation used in the Kent Simulator is presented by Gordon Kent in the "Summary of the Capacitor Simulator."

Fig. 3. Kent Simulator Version 2.0: LSA1010B101MGH5R-

TYPICAL APPLICATIONS

FILTER CAPACITOR

A filter design requires a specific capacitance value, C_F and at the upper end of the filter response, f_F , the effective capacity must not exceed C_F by more than a specified amount of ΔC . Once C_F is determined, case size, voltage rating and temperature characteristics can be selected. Typically, lower loss Class I materials like NPQ and NPO are first choice. See Fig. 4.

RESONANCE-FREE BROADBAND COUPLING/DECOUPLING CAPACITOR

Class II "BX" dielectric is typical for DC block or RF bypass applications to operate resonance free over a specified broad frequency range. Low impedance is typically more important than the capacitance value which should be large enough to cover the 3 dB low edge of the bandwidth. See Fig. 5.

MINIMUM LOSS, FINITE BAND COUPLING CAPACITOR

When minimum loss is required, e.g. a low noise circuit, a high Q capacitor with Class I dielectric (NPQ or NPO) is recommended. Any parallel resonance frequency of the capacitor should be outside of the use frequency band. The best capacitor choice puts the series resonance at the band center (approximately f₀ / 2). See Fig. 6.

Fig. 4. Modeled ESR/50 and Ceff of part NSA2525N6R8K2H5R-

Fig. 5. Modeled S21 and Z/50 of part LSA1010B101MGH5R-, Class II dielectric

Fig. 6. Modeled S21 and Ceff of part NSA3030N100J2H5R-, Class 1 dielectric

INDUSTRIAL RATING; FIT CALCULATION USING 65°C CONTINUOUS OPERATING TEMPERATURE*

Dielectric Material	Q	Temperature Coefficient	D.W. VDC	Working VDC	Value (pF)	SIZE 1010 1020	SIZE 1212 1224	siz€ 1515 1530	SIZE 1717 1734	SIZE 2020 2040	SIZE 2222 2244	SIZE 2525 2550	SIZE 2727 2754	SIZE 3030 3060	SIZE 3535
		0 ± 25 ppm/C	250	100	Min. Max.	=	=	0.1 1.5	0.2 1.8	0.2 2.7	0.2 3.0	0.3 3.6	0.3 3.9	0.6 6.8	0.8 9.1
NPQ	Highest 0 ±		125	50	Min. Max.	0.5 0.7	0.8 1.0	1.8 2.2	2.0 2.7	3.0 3.9	3.3 4.3	3.9 5.1	4.3 5.6	7.5 9.1	10 12
		O T LO PPINIO	62.5	25	Max.	0.8	1.2	2.4	3.0	4.3	4.7	5.6	6.2	10	15
		ĺ	40	16	Max.	0.9	1.5	2.7	3.6	4.7	5.1	6.2	6.8	12	18
			25	10	Max.	1.3	2.0	3.9	5.1	6.8	7.5	9.1	10	18	24
	High	0 ± 30 ppm/C	250	100	Min. Max.		-	0.6 4.7	0.7 5.6	1.0 8.2	1.2 9.1	1.5 10	1.5 12	2.4 20	3.3 30
NPO			125	50	Min. Max.	1.5 2.2	2.4 3.3	5.1 6.8	6.2 8.2	9.1 10	10 12	12 15	15 18	22 30	33 43
			62.5	25	Max.	2.4	3.9	7.5	10	12	15	18	20	33	47
	ļ		40	16	Max.	2.7	4.3	8.2	12	15	18	20	22	39	56
			25	10	Max.	3.9	6.2	12	15	22	24	30	33	56	75
			250	100	Min. Max.		_	15 150	18 180	22 240	24 270	30 330	33 360	51 620	75 910
вх	Broadband DC Block	± 15%	125	50	Min. Max.	6.2 68	10 100	180 200	200 270	270 360	300 390	360 470	390 560	680 910	1000 1200
	or RF Bypass		62.5	25	Max.	82	120	240	300	390	430	620	750	1000	1500
	-Jp000		40	16	Max.	100	150	270	360	510	620	820	1000	1200	1800
			25	10	Max.	120	180	330	430	560	. 750	1000	1200	1500	2200

MILITARY RATING; FIT CALCULATION USING 85°C CONTINUOUS OPERATING TEMPERATURE*

Dielectric Material	Q	Temperature Coefficient	D.W. VDC	Working VDC	Value (pF)	SIZE 1010 1020	SIZE 1212 1224	SIZ≣ 1515 1530	SIZE 1717 1734	SIZE 2020 2040	SIZE 2222 2244	SIZE 2525 2550	SIZE 2727 2754	SIZE 3030 3060	SIZE 3535
			250	100	Min. Max.	_	_	0.1 1.0	0.2 1.2	0.2 1.8	0.2 2.0	0.3 2.4	0.3 2.4	0.6 4.3	0.8 6.2
NPQ ·	Highest	0 ± 25 ppm/C	125	50	Min. Max.	0.3 0.5	0.5 0.8	1.2 1.5	1.5 1.8	2.0 2.7	2.2 3.0	2.7 3.6	2.7 3.9	4.6 6.8	6.8 9.1
			62.5	25	Max.	0.6	0.9	1.8	2.2	3.3	3.6	4.3	4.7	7.5	10
			40	16	Max.	0.7	1.0	2.2	2.7	3.9	4.3	5.1	5.6	9.1	12
		,	25	10	Max.	0.8	1.2	2.4	3.0	4.3	4.7	5.6	6.2	10	15
		0 ± 30 ppm/C	250	100	Min. Max.	=	_	0.6 3.0	0.7 3.9	1.0 5.6	1.2 5.6	1.5 6.8	1.5 7.5	2.4 12	3.3 20
NPO	High		125	50	Min. Max.	1.0 1.5	1.5 2.4	3.3 4.7	4.3 5.6	6.2 8.2	6.2 9.1	7.5 10	8.2 12	15 20	22 30
			62.5	25	Max.	1.8	2.7	5.6	6.8	9.1	10	12	15	24	36
			40	16	Max.	2.2	3.3	6.8	8.2	10	12	15	18	30	43
			25	10	Max.	2.4	3.9	7.5	10	12	15	18	20	33	47
			250	100	Min. Max.	_	=	15 82	18 100	22 150	24 200	30 270	33 330	51 390	75 560
вх	Broadband DC Block	± 15%	125	50	Min. Max.	6.2 47	10 75	91 100	120 150	180 220	220 270	300 360	360 430	430 560	620 820
	or RF Bypass	5.5	62.5	25	Max.	56	91	120	180	240	330	430	510	680	1000
	5,000		40	16	Max.	68	100	150	220	300	390	510	620	820	1200
	L	<u> </u>	25	10	Max.	82	120	180	240	330	470	560	680	910	1500

SPACE/MILITARY RATING; FIT CALCULATION USING 100°C CONTINUOUS OPERATING TEMPERATURE*

			<u>-</u>														
Dielectric Material	Q	Temperature Coefficient	D.W. VDC	Working VDC	Value (pF)	SIZE 1010 1020	SIZE 1212 1224	512E 1515 1530	size 1717 1734	SIZE 2020 2040	SIZE 2222 2244	SIZE 2525 2550	SIZE 2727 2754	3030 3060	SIZE 3535		
	,	0 ± 25 ppm/C	250	100	Min. Max.	=		0.1 0.5	0.2 0.6	0.2 0.9	0.2 1.0	0.3 1.2	0.3 1,2	0.6 2.2	0.8 3.0		
NPQ	Highest		125	50	Min. Max.	_	0.1 0.5	0.6 1.0	0.7 1.2	1.0 1.8	1.2 2.0	1.5 2.4	1.5 2.4	2.4 4.3	3.3 6.2		
	1				62.5	25	Max.	-	0.8	1.5	1.8	2.7	3.0	3.6	3.9	6.8	9.1
			40	16	Мах.	_	0.9	1.8	2.2	3.3	3.6	4.3	4.7	7.5	10		
	High	0 ± 30 ppm/C	250	100	Min. Max.		_	0.6 1.5	0.7 2.0	1.0 2.7	1.2 3.0	1.5 3.6	1.5 3.9	2.4 6.8	3.3 10		
NPO			125	50	Min. Max.		0.6 1.5	1.8 3.0	2.2 3.9	3.0 5.6	3.3 5.6	3.9 6.8	4.3 7.5	7.5 12	12 20		
			62.5	25	Max.	-	2.4	4.7	5.6	8.2	9.1	10	12	20	30		
		_	40	16	Max.	_	2.7	5.6	6.8	9.1	10	12	15	24	36		
	Broadband		250	100	Min. Max.		=	15 47	18 62	22 82	24 91	30 100	33 120	51 200	75 300		
вх	DC Block	OC Block 1594	125	50	Min. Max.	-	6.2 56	51 82	68 100	91 150	100 180	120 270	150 330	220 430	330 620		
			62.5	25	Max.	-	75	100	120	180	270	330	390	470	680		
Ĺ			40	16	Max.		82	120	150	270	330	390	430	750	1000		

^{*} Rated temperature range from -55°C to 125°C applies to NPQ, NPO and BX materials

www.presidiocomponents.com • info@presidiocomponents.com

GLOBAL PART NUMBER EXAMPLE (How to Order)

Constantion of ទៀតស្រែស្រែសារ 200100

Testing Codes

Presidio Components' quality system is ISO 9001 compliant and approved to Mil-I-45208 and Mil-Std-790

Industrial Rating, 65°C Continuous Operating Temperature Electrical: 100% capacitance and dissipation factor (DF), AQL Level II 1% per ANSI/ASQ Z1.4 for insulation resistance (IR) and dielectric withstanding

Visual: 100%, as per Mil-Std-883, Method 2032 Can be upgraded to test code H as per Mil-PRF-38534

- M Military Rating, 85°C Continuous Operating Temperature Electrical and visual testing same as L code Can be upgraded to test codes H and K as per Mil-PRF-38534, and as per Mil-PRF-49464/B, Group A and B testing @ 125°C
- Space/Military Rating, 100°C Continuous Operating Temperature Electrical and visual testing same as L code except 100% insulation resistance and dielectric withstanding voltage. Can be upgraded to test codes H and K as per Mil-PRF-38534, and as per Mil-PRF-49464/B, Group A and B testing

MIL-PRF-38534E

Recommended:

- Class H element evaluation (electrical, visual, wire bond)
- Class K element evaluation (electrical*, visual, temperature cycling, voltage conditioning, constant acceleration, wire bond)

High Reliability Testing as per Mil-PRF-49464/B Modified-Moisture Resistance Test not included

- Group A, subgroups 1,2,3,4 (100% thermal shock and voltage conditioning, visual mechanical, bond & die shear, temperature coefficient)
- Group B, subgroups 1,2,3,4 (temperature coefficient and immersion, resistance to soldering heat, humidity, steady state, low voltage, and 2000 hours life test)
- Special Instructions or as per Customer Source Control Drawing
- Note: Includes 100% testing: Capacitance, Dissipation Factor, Insulation Resistance and Dielectric Withstanding Voltage

Standard

Product Code

S = Buried Single Layer" Ceramic Capacitor

Termination Configuration Codes

Code Description

- Borders top and bottom
- В Borders top, full metalization at bottom
- C Fully metalized top and bottom

Α

В

C

High Reliability AuSn

Millimeterwave

10.0001110111011	The second state of the se										
Dielectric	Dielectric Material Codes and Electrical Specifications										
Dielectric Material	Code	Relative Er at 1 MHz	Temperature Coefficient -55°C to +125°C	Maximum Dissipation <u>Factor</u>	Insulation Resistance at 25°C	Dielectric Withstanding Voltage (DWV)					
NPQ	Q	27	0 ± 25 ppm	0.1%	> 10° MΩ	2.5 times					
NPO	N	85	0 ± 30 ppm	0.15%	> 10 ⁵ MΩ	working voltage					
BX	В	2600	± 15%	2.5%, 3.5%, 5.0%*	> 10 ^s MΩ	ĎC					
Notes: Agin	a Rate: BX	material only	= 2.5% max per decad	ie hour							

Capacitance Codes First two digits = Sign Significant figures of capacitance in picofarads Third digit = Additional number of zeros 0R1 = 0.1 pFExample: 1B0 = 1.0 pF100 = 10 pF

101 = 100 pF

Capacitance Tolerance Codes										
Code	Tolerance	Cap Range	Dielectrics							
Α	± .05 pF	< 2.2 pF	NPQ, NPO							
В	±.1 pF	< 10 pF	NPQ, NPO							
C	± .25 pF	< 10 pF	NPQ, NPO							
D	± .5 pF	< 10 pF	NPQ, NPO							
G	± 2%	> 9.1 pF	NPQ, NPO							
J	± 5%	> 9.1 pF	NPQ, NPO							
K	± 10%	> 0.45 pF	all							
M	± 20%	> 0.45 pF	all							
P*	+100, -0%	> 0.45 pF	ali							
* Does n	* Does not apply for the highest cap value per case size									
and volta	ge rating.									

L		
Working Voltage		
Code	WVDC	
3	100	
2	50	
] 1	25	
G	16	
į E	10	
l		

See standard available capacitance values and voltage ratings on page 4. Contact Presidio Components for higher and lower voltage ratings.

www.presidiocomponents.com • info@presidiocomponents.com

GLOBAL PART NUMBER EXAMPLE (How to Order, continued)

Termination C	·υυ	es
---------------	-----	----

Code	<u>Material</u>	Thickness	Wire	Attachment
Н	99.99% Au	100 min.	Au	Conductive Epoxy
j	99% Au Alloy	microinches	Al or Au	or AuSn

Packaging Codes

- Code Description Waffle Pack, 400 max/waffle
- Grip Ring (blue tape)
- Tape and Reel (minimum size 2020)

Mechanical Parameters

Bond Strength	Mil-Std-883, Method 2011, Condition D
Shear Strength	Mii-Std-883, Method 2019
Metalization Thickness	100 microinches (2.5 µm)

Environmental Parameters	Per Mil-PRF-49464 (when specified)					
	Mil-Std-202	Conditions				
Immersion	104	В				
Resistance to Solder Heat	210	С				
Thermal Shock	107	Α				
100 Hour Voltage Conditioning	. 108	Α				
2000 Hour Life Test	108	F				
Low Voltage Humidity	103	Α				

100% Visual Screening as per Mil-Std-883 Method 2032

When inspected under 7X - 30X magnification, capacitors will be uniform in quality and free from pits, cracks, adhered foreign material and other defects which will affect life or serviceability. There will be no demetalization (lift-off, blisters or roll back), voids or scratches on the electrodes which expose the dielectric over more

Capacitance and Dissipation Factor Measurements Applicable to measurements under 20,000 pF

- (1) Equipment: LCR Meters HP4278A In-house designed test fixtures
- (2) Procedures: BX: 1 KHz, 1 Volt AC RMS, 25°C NPO, NPQ: 1 MHz, 1 Volt AC RMS, 25°C
- Frequency (beyond 1 MHz): High Frequency measurements up to 50 GHz conducted by Modelithics, Inc.

CAPACITANCE VALUE DECADE TABLES

For Design Kits (20 Capacitors Each Value) Visit our website www.presidiocomponents.com

CAPACITOR ARRAYS

Multiple RF Bypass Capacitors for GaAs IC's

Specifications

Termination Configuration: Termination Code: mperature Coefficient: Temperature Range: Standard Capacitance: Capacitance Tolerance: Capacitance Value: Working Voltages: Dielectric Withstanding Voltage: A (Top and Bottom)

H (Conductive Epoxy or AuSn) BX (± 15%)

- 55°C to +125°C

130 pF per pad @ 25°C

± 25%

Calculated only, not measured 25 and 50 VDC

62.5 and 125 VDC

GLOBAL PART NUMBERS

Working VDC	Size	pF	# of Pads	W ± .003 (inches)	L (inches)	T ± .002 (inches)	P Norm. Pad W/L (inches)	B Min. Border (inches)	S Norm. Spacing (inches)	Part Number
96		170						6,000		i az vide kolanten ir.
	(4) (4) (4)							1000		Liga (de gla de de granda)
3	užtyki			VAR(4)	Transfer of the	286.9%		1000	ALC: X	143400000000000000000000000000000000000
	25,800			4.400		0.00	jas Kija tako kut	30400	Missiki I	skewa kieski mediki s
	202	464		17.00		(1,000	2025, 204030	30436		
	238	ice		10,146		or W		19811	1090	

* Insert Design-In Code from Page 16.

SURFACE MOUNT BURIED SINGLE LAYERTM CAPACITORS

PRESIDIO ADVANTAGE

- Alternative to wirebondable capacitors for coupling on a microstrip (Fig. 1 & 2) or as bypass capacitor on coplanar waveguides (Fig. 3)
- Elimination of additional impedance caused by wire bonding
- Minimum discontinuity in circuit elements
- Select capacitance values and voltage ratings from charts on page 4
- Use Kent Simulator for modeling

Dimensions

RoHS compliant (except with 'N' termination)

GLOBAL PART NUMBER EXAMPLE (How to Order)

•	Terminati <u>Code</u> D E	on Configuration Description Bottom side only Termed and Plated	Attachment Conductive Epoxy or AuSn Solder Attach	D Coultry West	E
	_		Termination Code Description	RoHS Configuration Code Compilant	

Recommended Mounting Pads

Coplanar Waveguide

Size	Width W	Length L	Thickness T	Nominal P	Min. B	Nominal S	Not Specified Tol.
	10/04/07	Tariya, marki			0.00.00		9.44
	10,000	(C. 12.)	0.000			T. C. Company	24 CH 4 CH
ojs.	0.417		Barra da	0/4/	0.2446		
		100000 000000	(A) (A) (A)		19900		
26800	93329					e show	
	10,072	(#16201 to 6000)	0.00				
4 10	TIKEN T	ite it in the second		50.000	(4.0%) N	1,000	
12754	(1)522	figural source				7.AY	

INCHES

100	10038 (0.000)	16,10,016,000		10 (VALUE)		
011000			17404	6,400	e jihar	
10,002	[74] 20 (10 M)	9.4				
Tacker.	(10.050) (20.051)		10.00		17.694	
(1,000)	60:	373-938	0.44		7/k/W,	
16 par	Hawa ba iki	3/4:4	16416	: Kings		23/100
	MILL	METERS (re	ference only	/)		
		W/98	, Nive	40000		
15 (218)		00000	384	130 (4)		
	(0.75) (0.78)	18 Harris		0.00		
167.67	Auto a some	1920	3.45%		9.4	
10 Miles		1000	41.	1.096		
ionis :	Coor copyi		- Nater	mpsed.	(1,000)	11.04/1
0,000				0.07		
18,180	Laza najagaj ji	25,000			30.44	
(6)77,72	Jares Mills	2.00		(July)		
		tion in the state of the state	MILLIMETERS (re	MILLIMETERS (reference only	MILLIMETERS (reference only)	MILLIMETERS (reference only) SECTION OF THE PROPERTY OF THE P

INCHES									
Size	Min. A	Min. C							
	6/100 Mari								
jing.		10 10 10 10 10 10 10 10 10 10 10 10 10 1							
9419	i de la companya de La companya de la co								
MILLIMET	ERS (referer	nce only)							
		100 (40) (40) 301 (40)							
	10 sus								
	1960								

PRESIDIO COMPONENTS, INC.

"VB" SERIES INTEGRATED BROADBAND BYPASS CAPACITORS

10 nF or 100 nF DC Filter with Buried RF Capacitors Inside

Patent Numbers US 6,587,327 B1 & US 6,816,356 B2 Other Patents Pending

POPULAR CAPACITANCE VALUES, CASE SIZES AND PART NUMBERS

Cap. + Tol.	Size	Temp. Coefficient	WVDC	Global Part Numbers
i factorio di secondi d Secondi di secondi di s	330010 160210			Greensermerzeigen Greensermerzeigen

For Dimensions See Page 10

*Insert Design-In Code (See Page 16)

PERFORMANCE:

MVB3030X103ZGH5N1* (Bond Wires De-Embedded)

Insertion Loss Data in Shunt

PERFORMANCE: MVB4080X104ZGH5R3_* (Bond Wires Included)

PRESIDIO COMPONENTS, INC.

9

"VL" SERIES **VERTICAL LAYER CAPACITORS**

Wire Bondable DC Decoupling Capacitors

POPULAR CAPACITANCE VALUES, CASE SIZES AND PART NUMBERS

INDUSTRIAL RATING

SPACE/MILITARY CLASS K RATING

		,			
RoHS Compliant	Cap. + Tol.	Size	Temp. Coeff.	WVDC	Part Number

For Dimensions See Page 10

*Insert Design-In Code (See Page 16)

PERFORMANCE:

MVL3030X103MGH5N-* (Bond Wires Included)

Insertion Loss Data in Shunt

PERFORMANCE: MVL4080X104MGH5N-* (Bond Wires Included)

PRESIDIO COMPONENTS, INC.

GLOBAL PART NUMBER EXAMPLE (How to Order)

Testing Codes

Presidio Components' quality system is ISO 9001 compliant and approved to Mil-I-45208 and Mil-Std-790

Code Description

Industrial Rating; FIT Calculation Using 85°C Continuous Operating Temperature

Electrical: 100% capacitance, AQL Level II 1% per ANSI/ASQ Z1.4 for insulation resistance (IR) and dielectric withstanding voltage (DWV) 100%, as per Mil-Std-883, Method 2032. Can be upgraded to Test Code H as per Mil-PRF-38534

Class H Element evaluation as per Mil-PRF-38534, Appendix C, Table C-III

High Reliability Testing (Industrial part numbers cannot be upgraded)

Class K Element evaluation as per Mil-PRF-38534, Appendix C, Table C-III

Capacitance (Industrial Rating)

Dielectric Material	Temperature Coefficient	D.W. VDC	Working VDC	Cap. Value (pF)	Size 2020	Size 3030	Size 4040	Size 3080	Size 4080
				26945 26945 281		6246 6246 60460	5040;		
		i Glati				08.14000			

Dimensions

INCHES

Size	Ĺ	W	T max	MB max
2.0	e Germania			
.y		78,838(0,528)(V,078)	(1) (2)	6000
ivalvis;	11.30	9/30/5/9/951		0.00
4(4140)		HOUSEN SOURS	0.00020	
200.0	0.025.000.000		0.040	11.01(6)
erzooki.		, Poj. Valej El jongaviji		16005
densi in	06038-01400861	n, Okto Odliki		11100
2.050	0.0460.0.U.UV	OURAL SUCCE	0.00	10000
	MILLIMETER	RS (for referen	ce only)	

MILLIMETERS (for reference only)						
Size	L	W	T max	MB max		
N/2/2/0	13.47(b): 16,700()			NAME:		
4V-960\\ (X)	4.760 : 0.0000	35.66%; S.U/\$	Ewine :	10.89		
udankiri:	(CARRATE OF PARE	0.256200	0.400	mi		
4 40 70	iliting disensati	110 430 (2010)	(Srt 6)			
viceus:	it: mes salianime	90,000	10.50	36.71877		
35000	190400000	(4) (6) (6) (6)	0.439	05 (D)		
MELTE DE	100000000000000000000000000000000000000	24-116 - (C.102)	(97:877	(7)(1)		
visiko).	1100/10.0110/10/10	20000000000	(10,286:	(4,,,),		

Dielectric Material Codes and Electrical Specifications

Material	VZD	Y5V
Material	_X7R_	<u> 15v</u>
Code:	X .	Y
Dissipation Factor:	4.0% max.	12.5% max.
Insulation Resistance at 25°C:	> 10 ⁵ MΩ	> 10 ⁵ MΩ
Dielectric Withstanding Voltage:	2.5 times WVDC	2.5 times WVDC
Working Voltage:	See Capacitance Table	16 VDC
Temperature Coefficient over Operatin	g Temp.: ± 15%	+22%, -82%
Operating Temperature:	-55°C to +125°C	-30°C to +85°C
Aging Rate:	2.5% max per decade/hour	5% per decade/hour
RoHS Compliant		YES

Capacitance Codes

First Two Digits = Significant figures of capacitance in picofarads

Third Digit Example:

= Additional number of zeros 100 = 10 pF

102 = 1,000 pF

104 = 100,000 pF

Termination Code Description

99.99% Au For conductive epoxy

die attach only

Packaging

5 = Waffle Pack (standard)

Environmental Parameters	Per Mil-PRF-49464	55681 (when specified)
	Mil-Std-202	Conditions
Immersion	104	В
Moisture Resistance	106	-
Resistance to Solder Heat	210	С
Thermal Shock	107	A
100 Hour Voltage Conditioning	108	Α
2000 Hour Life Test	108	A
Low Voltage Humidity	103	Α

Capacitance Tolerance

Code	<u>Tol.</u>	
M	± 20%	
7	-20%, +80%	

Worki	ng Voltage	•	
Code	WYDC	Code	WVDC
3	100	1	25
2	50	G	16

Mechanical Parameters

Bond Strength	Mil-Std-883, Method 2011
Shear Strength	Mil-Std-883, Method 2019
Metalization Thickness	100 microinches (2.5 micrometers)

RoHS Compliant No Code N R Yes

🔳 PRESIDIO COMPONENTS, INC.

11

BURIED BROADBAND™ CAPACITORS

For DC Blocking up to 100 GHz

PRESIDIO ADVANTAGE

KEY FEATURES

- → -0.2 dB insertion loss at 10 GHz (OC192)
- Resonant free at critical 1.6 to 1.8 GHz
- ± 15% capacitance change over temperature
- Patented integration of high and low frequency capacitors
- + Free equivalent circuit capacitor model for easy design
- Sizes 0805, 0603, 0502, and 0302
- Rugged monolithic body for easy pick and place

KEY APPLICATIONS

- Broadband DC Blocking Up to 100 GHz
- OC192, OC768 Transponders and Transceivers
- **Broadband Microwave**
- **Broadband Test Equipment**

EYE DIAGRAM COMPARISON Generic MLC Presidio Components, Inc. MBB0502X104MGP DC Block 0402 X7R100nF DC Block DC Block **Test Setup** Differential Load DC Block Courtesy of Phyworks

PRESIDIO COMPONENTS, INC.

QUICK SELECT BY APPLICATION AND RESONANT FREE BANDWIDTH

Size	Resonant Free Bandwidth**	Typical Insertion Loss (S21)***	2 Cap. Values in parallel (pF)	Temp. Coeff.	Working VDC	FIT Calc. using cont. op. temp. @	Global Part Numbers	
Fiber Optic						,		
0502	signisty to allights	-0.2 dB at 10 GHz	100,000 & 82	± 15%	16 VDC	85°C	MBB0502X104MG	N8*
0502	98,0882 No. 40 @HF	-0.2 dB at 10 GHz	100,000 & 82	± 15%	20 VDC	65°C	LBB0502X104MH	N8'
0603	80 (35) 60 (60) (614)	-0.45 dB at 10 GHz	150,000 & 220	± 15%	16 VDC	85°C	MBB0603X154MG	N2'
0805	District 2006pts	-0.5 dB at 10 GHz	150,000 & 220	± 15%	16 VDC	85°C	MBB0805X154MG	N2
0805	300,100 to 200, 200,12	-0.6 dB at 10 GHz	56,000 & 220	± 15%	75 VDC	85°C	MBB0805X563ML	N2'
Microwave								
0502	1880 846 16 (38 51Hz	-0.3 dB at 10 GHz	10,000 & 82	± 15%	75 VDC	85°C	MBB0502X103ML	N8¹
0603	680 (8412 Ve (8416)71)	-0.5 dB at 10 GHz	4,000 & 220	± 15%	50 VDC	85°C	MBB0603X402M2	
0805	/980,97% to 200 cit).	-0.5 dB at 10 GHz	4,000 & 220	± 15%	50 VDC	85°C	MBB0805X402M2	N2
Test Instrume	ents							
0302	: 1009 Mar. 1000 gg Shak	-1.2 dB at 100 GHz	12,000 & 82	± 15%	16 VDC	85°C	MBB0302X123MG	N8*
High Reliabil	ity Space							 ,
0502	of ser in election	-0.35 dB at 10 GHz	10,000 & 82	± 15%	12 VDC	100°C	SBB0502X103MF	N8*
RoHS Compl	iant							
0502	(-0.2 dB at 10 GHz	100,000 & 82	± 15%	16 VDC	85°C	MBB0502X104MG	R8*
0502	Statistic (Contraction	-0.2 dB at 10 GHz	100,000 & 82	± 15%	. 20 VDC	65°C	LBB0502X104MH	
0502	A stable to succeptive	-0.2 dB at 10 GHz	68,000 & 82	± 15%	16 VDC	85°C	MBB0502B683MG	
0502	56 5572 A) (16 614)	-0.2 dB at 10 GHz	68,000 & 82	± 15%	20 VDC	65°C	LBB0502B683MH	

- Insert codes for Termination, Packaging, and Design-In Code (see pages 13 and 16)
- -3.0 dB low frequency point

Average de-embedded data

Consult Factory for Higher Voltage Ratings

RECOMMENDED MOUNTING METHODS

PC Board Observations

- (a) Soft or hard substrates (alumina) are typically used at microwave frequencies. For lowest reflection loss fused silica substrates are recommended at millimeterwave frequencies.
- Microstrip line width should match or come close to capacitor width to optimize capacitor performance. Fanning out the microstrip line to match the capacitor width may degrade capacitor loss at millimeterwave frequencies.

Microstrip Line Gap

Option 1: 0.015" to 0.010" (.381 mm to .254 mm) microstrip line gap for broadband performance at microwave frequencies (example 16 kHz to 10 GHz).

Option 2: 0.005" to 0.002" (0.127 mm to 0.051 mm) microstrip line gap for very broadband performance at millimeterwave frequencies (example 16 kHz to 40 GHz +).

Mounting Pad Dimensions (general recommendation*)

INCHES			MI	LLIMETE	RS	
Case Size	A min	B <u>min</u>	C min*	A <u>min</u>	B <u>min</u>	C min*
0302	0.020	0.015	0.003	0.508	0.381	0.076
0502	0.020	0.025	0.010	0.508	0.635	0.254
0803	0.030	0.030	0.015	0.762	0.762	0.381
0805	0.060	0.040	0.020	1.524	1.016	0.508

Centerline of the capacitor should be located in the center of the gap in the microstrip line.

*Disclaimer: Gap dimension, substrate material and microstrip line width impact circuit performance. Consult factory for application specific recommendations.

Recommended Attachment to Substrate

- Solder Attach (wave reflow, vapor phase or convection tunnel oven). See termination codes for guidelines.
- Conductive Epoxy

It is recommended that both mounting pads be bonded simultaneously and that the pre-heat, soldering or curing, and post-heat temperatures be controlled.

PRESIDIO COMPONENTS, INC.

GLOBAL PART NUMBER EXAMPLE (How to Order)

Testing Codes Presidio Components' quality system is ISO 9001 compilant and approved to Mil-I-45208 and Mil-Std-790

Description

Industrial Rating; FIT Calculation Using 65°C Continuous Operating Temperature
Electrical: 100% capacitance, AQL Level II 1% per ANSI/ASQ Z1.4 for insulation resistance (IR) & dielectric withstanding voltage (DWV)
Visual: 100%, as per Mil-Std-883, Method 2032

Industrial Rating; FIT Calculation Using 85°C Continuous Operating Temperature
Electrical: 100% capacitance, AQL Level II 1% per ANSI/ASQ Z1.4 for insulation resistance (IR) & dielectric withstanding voltage (DWV)
Visual: 100%, as per Mil-Std-883, Method 2032

High Reliability "SR" Capacitors
Please check "SR" test designation on Presidio's website under "Test Capability"

Size	Ceramic Body Length L	Ceramic Body Width W 1	Ceramic Body Height T max.	Band Y max.	1/2 Gap Between Surface Pads CL	Surface Pad Width W2
0258	0.083 (11.00%)	4000 - 900		0.800	10000 p. 0000 ft	(Nc.)) (0.1 [68/3)(6
101314	1,400 - 1,000	's (Spine 1: 2504)	Carri	Cons	(2) CU/C = 16600(C)	180
(Cecs)	3000 - 1900	alokkup götti.	10.456	19,001	3.000 0.000	0.12(0) + 0.00(0)
(0305)	Tolers a tric	0.550 :: .0815		10700	0.01.00.00	(C.:440 (2.003)
(4.40;°	(MOTE 4, 000)	Tagata a an	1050	18 (3)220	14174 - 31500	dagsy is saids
		MILLI	METERS (reference	e only)		
X(5())	470 - 470	G/505 :: 055	10 m	0.80%	0.000 0.000	0.241 + 0.04
(3) . (3)(1276 : 6762	1,5530.3 \$ 792.		6.00	0.157.5693	3 8000 - 3605
(c) 2 (5,4)	1.037 (-2.152)	98.68 _{9.0} 69.88	10/2/05	0.0037	0.652 : . 6,452	9.000 p. (5.076)
600	\$ 100 a 0204	1 / Ave Ocea	1000	\$ 5(0 %)	(c.15)\$(c.115)\$	C16.4 9.676
(4)(4)	1 21,092.2.1322	10%, 10%%	i ing	0.500	0.1802 - 0.193e	0.016 4.0.027

Dielectric Material Code & Electrical Specification

<u>Material</u> Code: Dissipation Factor: Insulation Resistance at 25°C: Dielectric Withstanding Voltage: Working Voltage (WVDC)

Temperature Coefficient over Operating Temp.: Operating Temperature:

Aging Rate:

2.5% max per decade/hour

X7R В 4.0% max. 4.0% max. $> 10^6 \, \mathrm{M}\Omega$ $> 10^5 \, \text{M}\Omega$ 2.5 x WVDC 2.5 x WVDC See Part Numbers See Part Numbers ± 15% ± 15% -55°C to +125°C -55°C to +125°C 2.5% max per decade/hour

Termination Codes

Capacitance Codes for Multilayer Capacitor

First Two Digits = Significant figures of capacitance in picofarads

Third Digit = Additional number of zeros

Example:

5 = Waffle Pack

100 = 10 pF 102 = 1,000 pF 104 = 100,000 pF

Standard Capacita	Workin	g Voltage		
	ance		Code	WYDC
] M ±2	.0%	1	-	12
1			G	16
L			Н	20
Packaging Codes	RoHS		1	25
1 ' '	Code	Compliant	2	50
1 = Tape and Reel	7006	Ves	L	75

N

Environmental Parameters		td-202
Per Mil-PRF-49464/55681 (when specified)	Method	Condition
Thermal Shock and Immersion	107	Α
Resistance to Soldering Heat	210	С
Low Voltage Humidity	103	Α

No

Code T	RoHS Comp. Yes	Typical Application Solder Reflow	Termination Build up Palladium-Silver Nickel Barrier Plated 100% Tin	Recommended Reflow Temp. 220°C to 260°C typical*
N	No	Solder Reflow by IR, vapor phase, wave, convection tunnel oven	Palladium-Silver Nickel Barrier Plated 90/10 Tin Lead	220°C to 260°C typical*
P	Yes	Conductive Epoxy Non-Magnetic	Palladium-Silver	Cure Epoxy as per manufacturer's spec.
G	Yes	Conductive Epoxy, Wire Bondable	Palladium-Silver Nickel Barrier 100 μ* thick Gold typical	Cure Epoxy as per manufacturer's spec.

Typical temperature guidelines for solder attachment: Reflow: Preheating — 2°C/second up to 100 seconds
Soldering — 220°C to 260°C for 20 to 60 seconds Gradual Cooling: Exit less than 100°C

Special Capaci		Mechanical Parameters
Code 8	2 lbs typical	Terminal Strength
		_

Special Capaci	pecial Codes for Second Capacitor Value		
Code	Nominal Capacitance		
8	82 pF		
2	220 pF		

🗐 PRESIDIO COMPONENTS, INC.

^{*} This dimension applies only to MBB0805X402M2___

SELECTED PERFORMANCE DATA

Disclaimer: The results are only valid as per described test set up. Other configurations will lead to different results.

Global Part Number: MBB0502X104MGP5N8_*

Evaluated on .010" thick fused silica substrate. Line width .023", gap width .005", transmission line effects and capacitance to ground removed.

Global Part Number: MBB0302X123MGP5N8_* Tested up to 100 GHz (courtesy of Agilent Technologies) Evaluated on .010" thick fused silica substrate (11 mm long) in a 1 mm coaxial fixture. Line width .020", gap width .002".

Global Part Number: MBB0603X402M2P5N_*

Evaluated on a .004" thick Rogers 4003 substrate (Er=3.38), transmission line effects and capacitance to ground removed.

*Insert Design-in Code (See page 16)

SELECTED PERFORMANCE DATA

Disclaimer: The results are only valid as per described test set up. Other configurations will lead to different results.

Global Part Number: MBB0603X154MGP5N2_*

Evaluated on .008" thick Rogers 4003 (Er = 3.38) substrate. Line width .017", pad width .038", gap width .022", transmission line effects and capacitance to ground removed.

Global Part Number: MBB0805X154MGP5N2_*

Evaluated on .008" thick Rogers 4003 (Er = 3.38) substrate. Line width .017", pad width .038", gap width .022", transmission line effects and capacitance to ground removed.

LOW FREQUENCY MODELED LOSS (S21)

*insert Design-In Code (See page 16)

🗐 PRESIDIO COMPONENTS, INC.

PRESIDIO COMPONENTS' NEW GLOBAL PART NUMBERS

GLOBAL PART NUMBERS:

Thank you for considering Presidio Components. This brochure includes Presidio's new Global (shortened) part numbers. The Global part numbers are used by customers whose computer systems cannot handle our Manufacturing (longer) part numbers.

If you ordered parts from us in the past with a Manufacturing number, that number is still valid. However, if you would like to convert to our new Global part numbers, simply go to our website. A tool has been added to the site to assist in the conversion between Manufacturing and Global part numbers.

A WORD TO THE DESIGN ENGINEER:

After the design work is done, outsourcing manufacturing on a global basis is a management option. At Presidio Components, we are striving for complete customer satisfaction which includes "after" service.

We created our new Global part numbers with a "Design In" locator code for quick traceability, if needed. Please select your location from the table below and add the appropriate code at the end of the part number. If you need assistance give us a call at (858) 578-9390 or email us at info@presidiocomponents.com.

UNITED STATES

OUTSIDE THE UNITED STATES

Catalog 6000

Rev. E

Patent Numbers

6,366,443 6,751,082 6,917,509 6,542,352 6,753,218 6,587,327 6,816,356 7,075,776 OTHER PATENTS PENDING **CHECK PRESIDIO'S WEBSITE** FOR THE LATEST **CATALOG REVISION**

