18. Carefully observe the IR spectra depicted below and indicate if the following statements are true or false?

	True	(T) or l	False	(F)?
(i) Is likely to be a symmetrical alkyne	(T)	N
(ii) Has sp C-H bond	(T)	-
(iii) Is devoid of any carbonyl group	(Т)	1
(iv) Has several sp ³ C-H bonds	(T)	-
(v) May have a nitrile (-C≡N group) as wel	1 (F)	×
(vi) Has sp ² C-H bonds	(F)	1

19. Calculate the magnetic field (in tesla) require to flip an ¹H nucleus in an NMR spectrometer that operate at 600 MHz. (Given; $\gamma = 2.675 \times 10^8 \text{ T}^{-1} \text{ s}^{-1}$ and $\pi = 3.14$)

Bo= 14.08598 T

20. If two signals differ by 90 Hz in a 400 MHz spectrometer, by how much do they differ in a 600 MHz spectrometer?

0.5 Mark

135 HZ

21. Show the structure of the compound corresponding to the following ¹H NMR for molecular formula: C₆H₁₂O₂. IR (KBr cm-1): 3500 (broad), 1715 (strong)

22. Give the structure of the compound corresponding to the following ¹H NMR for molecular formula: C₁₀H₁₄O. **1 Mark**

23. Indicate the structure of the compound corresponding to the following ¹H NMR for molecular formula: C₂H₆O and IR (KBr cm⁻¹): 3300 (medium), 2234 (medium) 1715 (strong)

Indian Institute of Technology, Guwahati Guwahati, INDIA 781 039

Date: 21 September 2017; 2:00-4.00 p.m.

CH-101

Roll No.: 170108024

Department of Chemistry

Name: MUKUL RANJAN

Mid Semester Exam Division: 2

Tutorial Group: T7

Maximum Marks = 30

Answer only in this sheet. Only fully correct answers will be accepted. All questions are compulsory. Rough work is mandatory.

1. Given the Planck's radiation law, $\rho(\upsilon) = \frac{8\pi h \upsilon^3}{c^3} \frac{1}{h\upsilon}$, the expression for $\rho(\lambda)$ would be, 2.0 Marks

2. If, $E_{\mathcal{V}} = (v + \frac{1}{2})\hbar\omega$ is the energy of a harmonic oscillator in the quantum state v, then the expression for $\langle x^2 \rangle$ is:

2.0 Marks

3. If the wave function for an electron circulating on a ring could be written as $\Psi(\varphi)=Ae^{im\varphi}$, then the value of A would be, 2.0 Marks

 $\sqrt{2\pi}$ (R)

(Q) $1/\sqrt{\pi}$

(P) $1/\sqrt{2\pi}$

(0) $\sqrt{2/\pi}$

4. A proton (1.67×10⁻²⁷ kg) is confined in an infinite square well of width 10 fm (1 fm = 10^{-15} m). h = 6.62×10^{-34} Js; c = 3.0×10^8 ms⁻¹. The wavelength of the photon (in fm) emitted when the proton undergoes a transition from the first excited state (n = 2) to the ground state (n = 1) is: 2.0 Marks

(M) 302

(L) 101

5. With the length of the box, L, the probability of finding an electron with, $\Psi(x) =$ between x = 0.25 L and x= 0.75 L is,2.0 Marks

6. Draw the Lewis structure of XeO₂F₂ with appropriate molecular geometry.

1 Mark

7. Using the VSEPR theory draw the most probable molecular geometry for CIF₃

1 Mark

DCZ = CITE

Pentagonal Bi-Byramidal geometry with 2 Fluorine at axial position and 1 at equitorial and 2 lone paired equitorial position.

8. Arrange the elements (Mg, Al, P and S) in the increasing order of their first ionization potential.

1 Mark

9. The correct order of electronegativity of the following elements is.

1 Mark

10. Arrange the following in the decreasing order of crystal field splitting energy Δ_0 .

(1+1) Marks

(i) $[Cr(NH_3)_6]^{3+}$, $[CrCl_6]^{3-}$, $[Cr(CN)_6]^{3-}$

(ii) $[Co(H_2O)_6]^{2+}$, $[Rh(H_2O)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$

11. Use valence bond theory and complete the following table

(0.5+0.5+0.5+0.5) Marks

	-Gomplex-	Hybrid-orbitals-involved	-Geometry	_Magnetism	-
5	[Co(Cl) ₄] ²⁻	SP3	Tetra hedral	Paramag netic	V
	[Ni(CN) ₄] ²⁻	dSP2	Savare	Dia mag netic	_
))	[CoF ₆] ³⁻	SP3d2	Savare eingra-	Para magnetic	
0	[Co(CN) ₆] ³⁻	$d^2 S P^3$	savare Bi-Pyrani	Dia magnetic	

12. Which of the following is true when one compares the bond angles in CH2F2 and CH2Br2

1 Mark

13. I_2 has a lower boiling point than Br_2

1 Mark

2

	(X)	True	(W) False	
Y			•	

14. Which of the following statements are true (T) and which are false (F). (Suppose the answer for the statements (i), (ii), (iii) and (iv) follows the order; True, True, False and True respectively, then the option is "TTFT")

1+1 Marks

14a

(i) The pollution prevention hierarchy is: Dispose, Treat, Recycle, Prevent.

(ii) Turnover number tells about the productivity of a catalyst.

- (iii) In a cascade reaction, several components react together to give a single product.
- (iv) E-factor of pharmaceuticals are worse than bulk chemicals.

0 1
(V) FTFT
(U) FTTF
(A) TTFT
(S) TFTT

Tick the right option /

Tick the righ	nt option
(R) FTFT	
(Q) FTTF	
(P) TTFT	
(O) TETE	

(i) Diels-Alder reaction goes with 100% atom economy.

(ii) Reaction having higher yields has always higher atom economy.

(iii) Biorefinary converts biomass in to useful products.

(iv) Solvent CCl4 is preferable over diethylether.

Shown below are two quartz cuvettes of 1 cm path length. The first one is having capacity of 1 mL and the second 5 mL. If a compound of same concentration is filled and UV-Vis spectra is measured in both the cuvettes separately, what will be the effect of λ_{max}, absorbance (A) and extinction coefficient (ε).
 1 Mark

Statements

- (i) λ_{max} shall remain unchanged in both.
- (ii) λ_{max} shall remain same but ϵ for 2^{nd} will be more than 1^{st} cuvette.
- (iii) Absorbance (A) for 2nd shall be 5 times more than the first.
- (iv) λ_{max} , and ϵ shall remain same but (A) for 2^{nd} shall be more than the 1^{st} .
- (v) λ_{max} Absorbance (A) and ε all three shall remain unchanged.

 1	
	1 1

The correct statements are

(N) i, ii and v only	(L) i and v only	
(M) i, ii, iii and v only	(K) ii, iii, iv only	

16. Observe the given UV-Vis spectra carefully and answer the following:

1 Mark

Statements

- (i) SA-BP on gold spectra is most RED shifted. >
- (ii) All the compounds are likely to be coloured.
- (iii) Electronic transition of Gold np requires lowest energy. *
- (iv) SA-BP on gold spectra is most blue shifted. w
- (v) All the three species have nearly equal extinction coefficient.
- (vi) PB on gold have $\lambda_{\text{max}} \approx 545 \text{ nm}$.

The correct statements are

(J) ii, iv and v only	(H) i, ii, iii, vi only		
(I) i, iii, iv and v only	(G) 1, ii, v, vi only	./	

0.8

17. From the context of IR spectroscopy, indicate if the following statements are true or false?

True (T) or False (F)?

1 Mark

110	ue (1) 0.	raise (r):
(T) (
(T) /
(T) /
(F) /
(Т) 🛪
	(((T (T (F (T

3