

Group 36 Francisco Uva – 106340 Pedro Pais - 107482

I) Bayesian Classifier

a)

$$\begin{split} &\mu_{A1} = (0.6 + 1 + 1.6 + 1.8)/4 = 1.25 \\ &\mu_{A2} = (0.4 + 1.1 + 1.5 + 1.8)/4 = 1.2 \\ &\sigma_{A1} = (((0.6 - 1.25)^2 + (1 - 1.25)^2 + (1.6 - 1.25)^2 + (1.8 - 1.25)^2)/3)^{1/2} = 0.550757 \\ &\sigma_{A2} = (((0.4 - 1.2)^2 + (1.1 - 1.2)^2 + (1.5 - 1.2)^2 + (1.8 - 1.2)^2)/3)^{1/2} = 0.60553 \end{split}$$

$$\mu_{B1} = (2 + 2 + 3 + 4)/4 = 2.75$$

$$\mu_{B2} = (0 + 1 + 0 + 1.2)/4 = 0.55$$

$$\sigma_{B1} = (((2-2.75)^2 + (2-2.75)^2 + (3-2.75)^2 + (4-2.75)^2)/3)^{1/2} = 0.957427$$

$$\sigma_{B1} = (((0-0.55)^2 + (1-0.55)^2 + (0-0.55)^2 + (1.2-0.55)^2)/3)^{1/2} = 0.640312$$

$$p(A)=0.5, p(B)=0.5$$

$$p(A, xquery) = p(xquery, 1|A1) \cdot p(xquery, 2|A2) \cdot p(A) = 0.653444 * 0.275267 * 0.5 = 0.089936$$

$$p(B, xquery) = p(xquery, 1|B1) \cdot p(xquery, 2|B2) \cdot p(B) = 0.078403 * 0.047971 * 0.5 = 0.001881$$

$$p(A|xquery) = p(A, xquery) / (p(A,xquery) + p(B,xquery)) = 0.979519$$

$$p(B|xquery) = p(A, xquery) / (p(A,xquery) + p(B,xquery)) = 0.020481$$

Python Program that we use:

import numpy as np

def gaussian_prob(x, mu, sigma):

print(p_A_xquery)

LEIC-T 2024/2025 Aprendizagem - Machine Learning Homework I

Group 36 Francisco Uva – 106340 Pedro Pais - 107482

 mu_A1 , $sigma_A1 = 1.25$, 0.550757 mu_A2 , $sigma_A2 = 1.2$, 0.60553 mu_B1 , $sigma_B1 = 2.75$, 0.957427 mu_B2 , $sigma_B2 = 0.55$, 0.640312 $x1_query$, $x2_query = 1$, 2 $p_A = 0.5$ $p_B = 0.5$ $p_x1_A = gaussian_prob(x1_query, mu_A1, sigma_A1)$ $p_x2_A = gaussian_prob(x2_query, mu_A2, sigma_A2)$ $p_A_xquery = p_x1_A p_x2_A * p_A$

 $p_x1_B = gaussian_prob(x1_query, mu_B1, sigma_B1)$ $p_x2_B = gaussian_prob(x2_query, mu_B2, sigma_B2)$ $p_B_xquery = p_x1_B * p_x2_B * p_B$ $print(p_B_xquery)$

p_A_given_xquery = p_A_xquery / (p_A_xquery + p_B_xquery)
p_B_given_xquery = p_B_xquery / (p_A_xquery + p_B_xquery)
print(p_A_given_xquery, p_B_given_xquery)

Group 36 Francisco Uva – 106340 Pedro Pais - 107482

b)

$$\begin{split} & \mu_A = (1.25, 1.2)^T \\ & \text{ca} 11 = (((0.6 - 1.25)^2 + (1 - 1.25)^2 + (1.6 - 1.25)^2 + (1.8 - 1.25)^2))/3 = 0.303333 \\ & \text{ca} 22 = (((0.4 - 1.2)^2 + (1.1 - 1.2)^2 + (1.5 - 1.2)^2 + (1.8 - 1.2)^2))/3 = 0.366667 \\ & \text{ca} 12 = ((0.6 - 1.25) * (0.4 - 1.2) + (1 - 1.25) * (1.1 - 1.2) + (1.6 - 1.25) * (1.5 - 1.2) + (1.8 - 1.25) * (1.8 - 1.2))/3 = 0.326667 \end{split}$$

$$\Sigma A = \begin{pmatrix} 0.303333 & 0.326667 \\ 0.326667 & 0.366667 \end{pmatrix}$$

$$\Sigma^{-1}A = \begin{pmatrix} 81.285167 & -72.417702 \\ -72.417702 & 67.244866 \end{pmatrix}$$

Det(A) = 0.004511

$$\mu_B = (2.75, 0.55)^T$$

cb11 =
$$(((2-2.75)^2 + (2-2.75)^2 + (3-2.75)^2 + (4-2.75)^2))/3 = 0.916667$$

$$cb22 = (((0 - 0.55)^2 + (1 - 0.55)^2 + (0 - 0.55)^2 + (1.2 - 0.55)^2))/3 = 0.41$$

$$cb12 = ((2 - 2.75) * (0 - 0.55) + (2 - 2.75) * (1 - 0.55) + (3 - 2.75) * (0 - 0.55) + (4 - 2.75) * (1.2 - 0.55))/3 = 0.25$$

$$\Sigma B = \begin{pmatrix} 0.916667 & 0.25 \\ 0.25 & 0.41 \end{pmatrix}$$

$$\Sigma^{-1}B = \begin{pmatrix} 1.308510 & -0.797872 \\ -0.797872 & 2.925532 \end{pmatrix}$$

Det(B) = 0.313333

 $p(A, xquery) = p(xquery, 1|A) \cdot p(A) = 4.32594*10^{-17}*0.5 = 2.162968*10^{-17}$

 $p(B,xquery)=p(xquery,1|B)\cdot p(B) = 0.000233 * 0.5 = 0.000117$

 $p(A|xquery) = p(A, xquery) / (p(A,xquery) + p(B,xquery)) = 1.84869*10^{-13}$

Group 36 Francisco Uva – 106340 Pedro Pais - 107482

R: No, they are not the same. Using 1-dimensional Gaussians assumes feature independence and may ignore correlations, while 2-dimensional Gaussians captures feature correlations.

Pyhon code that we use:

```
import numpy as np
```

```
def multivariate_normal_pdf(x, mu, Sigma):
  D = len(mu)
  Sigma_det = np.linalg.det(Sigma)
  Sigma_inv = np.linalg.inv(Sigma)
  norm_factor = 1 / (np.power(2 * np.pi, D / 2) * np.sqrt(Sigma_det))
  diff = x - mu
  exponent = -0.5 * np.dot(np.dot(diff.T, Sigma_inv), diff)
  return norm_factor * np.exp(exponent)
muA = np.array([1.25, 1.2])
muB = np.array([2.75, 0.55])
SigmaA = np.array([[0.303333, 0.326667],
            [0.326667, 0.366667]])
SigmaB = np.array([[0.916667, 0.25],
            [0.25, 0.41]])
x = np.array([1, 2])
print(multivariate_normal_pdf(x, muA, SigmaA))
print(multivariate_normal_pdf(x, muB, SigmaB))
```


Group 36 Francisco Uva – 106340 Pedro Pais - 107482

c)

X_3	CLASS
0	Α
1	Α
1	Α
0	Α
1	В
1	В
0	В
1	В

And the query vector $X_3 = \text{True} = 1$

$$p(A|1) = Card(A.1) / Card(1) = \frac{2}{5}$$

$$P(B|1) = Card(B.1) / Card(1) = \frac{3}{5}$$

Most probable class is B.

d)

$$p(A, xquery) = p((1,2)|A) \cdot P(1|A) \cdot p(A) = 4.32594*10^{-17} * \frac{2}{4} * 0.5 = 1.081485 \times 10^{-17}$$

$$p(B, xquery) = p((1,2)|B) \cdot P(1|B) \cdot p(B) = 0.000233 * \frac{3}{4} * 0.5 = 8.737 \times 10^{-5}$$

$$p(A|xquery) = p(A, x_{query}) / (p(A,x_{query}) + p(B,x_{query})) = \frac{1.081485 \times 10^{-17}}{1.081485 \times 10^{-17} + 8.737 \times 10^{-5}} = 1.23782 \times 10^{-13}$$

$$p(B|xquery) = 1 - p(A|xquery) = 0.99999999999998762$$

Group 36 Francisco Uva – 106340 Pedro Pais - 107482

III) Software Experiments

For the Digits dataset, kNN with k=3 achieves the highest accuracy (0.97), slightly better than kNN with k=30 (0.94) and Gaussian Naive Bayes (0.84). For the Wine dataset, Gaussian Naive Bayes clearly performs better (0.97), while kNN accuracy is lower with k=30 (0.72) and k=3 (0.64).

The Digits dataset likely benefits from the localized decision-making of kNN, as it involves images, where pixel values correlate strongly with neighbors. In contrast, the Wine dataset has features that better match the assumptions of Gaussian distributions, which explains why GaussNB outperforms kNN in this case.