Chapter 0 - Introduction (Skipped)

Chapter 1 - Regular Languages

Theorem 1.39 Every NFA has an equivalent DF	FApg. 55		
Theorem 1.45 - 1.49 Regular languages closure	propertiespg. 59		
Theorem 1.54 A language is regular iff some regular expression describes itpg. 66			
Example 1.73 - 1.77 Non-regular languages exa	amplespg. 80-82		
$\bullet \ \{0^n 1^n \mid n \ge 0\}$	• $\left\{1^{n^2} \mid n \ge 0\right\}$ • $\left\{0^i 1^j \mid i > j\right\}$		
• $\{w \mid w \text{ has an equal number of 0s and 1s}\}$	• $\{0^{i}1^{j} i > i\}$		
• $\{ww \mid w \in \{0,1\}^*\}$	(* - 1 * - 3)		

NOTE More examples are given under EXERCISES and PROBLEMS, pg. 83 - 93 in the book.

Chapter 2 - Context-Free Languages

• $\{0^n 1^n \mid n \ge 0\}$ • $\{ww^r \mid w \in \{0, 1\}^*\}$

• $\{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$

Theorem 2.20 A language is context free iff some PDA recognizes itpg. 117 Example 2.36 - 2.38 Non-context-free languages examples (diagrams)pg. 128-129

• $\{a^n b^n c^n \mid n \ge 0\}$ • $\{a^i b^j c^k \mid 0 \le i \le j \le k\}$

NOTE More examples are given under EXERCISES and PROBLEMS, pg. 154 - 159.

Chapter 3 - The Church-Turing Thesis

• $\{0^{2^n} \mid n \ge 0\}$

• $\{w \# w \mid w \in \{0,1\}^*\}$

• $\{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \ge 1\}$

• $\{ \#x_1 \#x_2 \# \cdots \#x_l \mid \text{ each } x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}$

• $\{w \mid w \text{ contains an equal number of 0s and 1s}\}$ (proof on pg. 191)

• Multitape \equiv single-tape

• Nondeterministic ≡ deterministic

Example 3.23 {	$\langle G \rangle \mid G$ is a connected undirected	graph } is decidablepg. 185
EXERCISES U	seful theorems, unproved unless o	otherwise notedpg. 188-190
	with an A symbol instead of a • sy	
	nore powerful than 1-PDAs	moor nave a proof on page 191
	NOT more powerful than 2-PDAs	
	e-once Turing machine	
	ng machine with doubly infinite to	ape
	ng machine with left reset	•
• Variant: Turi	ng machine with stay put instead	of left
• A language	can be recognized by a determi	nistic queue automaton iff the language is
Turing-recog	nizable	
A Decidable la	nguages closure properties	
A Recognizable	e languages closure properties	
• NOTE Turi	ng-recognizable languages are N	OT closed under complement! Very useful.
Example Enum	erator of $\{0^k 1^k \mid k \ge 0\}$	refer to the study guide, not to the bookpg. 17pg. 19
Chapter 4 - De	cidability	
Theorem 4.1 - 4.2	3 Common languages & decida	bilitiespg. 194-210
• A _{DFA} is decide	dable	• <i>E</i> _{CFG} is decidable
• A _{NFA} is decide	dable	• Every context-free language is decidable
• A_{REX} is deci-	dable	• <i>EQ</i> _{CFG} is NOT decidable
• EQ_{DFA} is de	cidable	• A _{TM} is NOT decidable
 A_{CFG} is decident 	dable	• $\overline{A_{\rm TM}}$ is NOT Turing-recognizable
Figure 4.10 reg	ular \subset context-free \subset decidable	⊂ Turing-recognizable pg. 201
The diagonalization	on method	pg. 202
Theorem 4.22	A language is decidable iff it is rec	ognizable and co-recognizablepg. 209
EXERCISES A	ll of the languages below are deci	dable pg. 211-214
Note: items	with an A symbol instead of a • sy	mbol have a proof on page 214.
\bullet $ALL_{ m DFA}$		
	CFG that generates ε	
	$A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is } A = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) is$	2 2 1
	$A = \{\langle M \rangle \mid M \text{ is a PDA and } L(M)\}$	
		ing containing an odd numbers of 1s }
	nd S are regular expressions and I CFG over $\{0,1\}$ and $1^* \cap L(G)$	
A 3 ((+) (+ 10 9	LL PLTOVER RULLS AND L. () / (/+)	± (n) }

• $\{\langle G \rangle \mid G \text{ i}$	s a CFG over $\{0, 1\}$ and 1^*	$G \subseteq L(G)$
• $\{\langle M \rangle \mid M$	is a DFA that accepts w^R w	whenever it accepts w
A Say that a	n NFA is <i>ambiguous</i> if it a	accepts some string along two different computation
branches.	$AMBIG_{NFA} = \{\langle N \rangle \mid N \text{ is a}\}$	n ambiguous NFA} is decidable
A $BAL_{\mathrm{DFA}} =$	$\{\langle M \rangle \mid M \text{ is a DFA that ac}\}$	cepts strings with an equal number of 0s and 1s}
• $PAL_{DFA} =$	$\{\langle M \rangle \mid M \text{ is a DFA that ac}\}$	cepts palindromes}
• $\{\langle M \rangle \mid M$	is a DFA that accepts string	gs with more 1s than 0s}
• $\{\langle G, x \rangle \mid G \}$	G is a CFG and x is a substr	ing of some $y \in L(G)$ }
• $\{\langle G, k \rangle \mid G \}$	G is a CFG and L(G) contain	ns exactly k strings where $k \ge 0$ or $k = \infty$ }
		on pg. 213)pg. 211
		ng-recognizable iff a decidable language D exists such
		pg. 212
		guages is NOT closed under homomorphism pg. 212
STUDY GUID	E's theorems. <i>Note: page n</i>	umbers refer to the study guide, not to the book.
Exercise 2.6 I	f G is a CFG in Chomsky's	normal form , and $w \in L(G)$ is a word of length $n > 0$
then every deriv	vation of w has exactly $2n -$	1 stepspg. 28
Claim L and	\overline{L} are both Turing-recogniz	able iff L is decidablepg. 32
Chapter 5 - R	educibility	
Theorem 5.1 - 5	.14 Common languages	& decidabilitiespg. 216-226
	is undecidable	• $A_{ m LBA}$ is decidable
• E_{TM} is unc		• E _{LBA} is undecidable
	R _{TM} is undecidable	• <i>ALL</i> _{CFG} is undecidable
• <i>EQ</i> _{TM} is u		ALLCEG is undecidable
~ 1111		221
Definition 5.5		pg. 221
		n (LBA) pg. 221
		nct configurations of an LBA with q states, g symbols
		pg. 221
·	neorems are not in the sylla	
Theorem 5.15		pg. 228
Definition 5.17	_	pg. 234
Definition 5.20		pg. 235
Theorem 5.22		able, then A is decidablepg. 236
Corollary 5.23		cidable, then <i>B</i> is undecidablepg. 236
Example 5.24		<i>ALT</i> _{TM} pg. 236
Example 5.25		<i>CP</i> pg. 237
Example 5.28		nizable, then A is recognizable pg. 237
Corollary 5.29	If $A \leq_m B$ and A is unrec	ognizable, then B is unrecognizable pg. 238

- - EQ_{CFG} is undecidable
 - *EQ*_{CFG} is co-Turing-recognizable
 - A A_{TM} is NOT mapping reducible to E_{TM}
 - A \leq_m is a transitive relation
 - A If A is recognizable and $A \leq_m \overline{A}$, then A is decidable
 - $\{\langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w\}$ is undecidable
 - The following three languages are undecidable:
 - $\{\langle M, w \rangle \mid M \text{ is a two-tape TM that writes a nonblank symbol on its second tape when it is run on } w\}$
 - $\{\langle M \rangle \mid M \text{ is a two-tape TM that writes a nonblank symbol on its second tape when it is run on some input}\}$
 - $\{\langle M \rangle \mid M \text{ is a single-tape TM that writes a blank symbol over a nonblank symbol when it is run on some input}\}$
 - $\{\langle M \rangle \mid M \text{ has a useless state} \}$ is undecidable
 - $\{\langle M, w \rangle \mid M \text{ attempts to move its head left when it's on the left-most tape cell} \}$ is undecidable
 - $\{\langle M, w \rangle \mid M \text{ attempts to move its head left at any point when run on } w\}$ is decidable
 - BB (busy beaver function) is not a computable function
 - PCP is decidable over the unary alphabet $\Sigma = \{1\}$
 - PCP is undecidable over the binary alphabet $\Sigma = \{0, 1\}$
 - SPCP (silly PCP) is decidable
 - *AMBIG*_{CFG} is undecidable (hint: reduction from *PCP*)
 - There exists an undecidable subset of {1}*
 - A is Turing-recognizable iff $A \leq_m A_{TM}$
 - A is decidable iff $A \leq_m 0^*1^*$
 - Let $J = \{w \mid \text{ either } w = 0x \text{ for some } x \in A_{TM}, \text{ or } w = 1y \text{ for some } y \in \overline{A_{TM}}\}$. Neither J nor \overline{J} is Turing-recognizable
 - There exists an undecidable language B where $B \leq_m \overline{B}$
 - A_{2DFA} (two-headed finite automaton) is decidable
 - E_{2DFA} is undecidable
 - A_{2DIM-DFA} (two-dimensional finite automaton) is undecidable
 - The following three languages are undecidable (prove using Rice's theorem):
 - A $INFINITE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is an infinite language} \}$
 - $\{\langle M \rangle \mid M \text{ is a TM and } 1011 \in L(M)\}$
 - $ALL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \} \}$
 - $OVERLAP_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs where } L(G) \cap L(H) \neq \emptyset \}$
 - $PREFIX FREE_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG where } L(G) \text{ is a prefix-free} \}$
 - $NECESSARY_{CFG} = \{ \langle G, A \rangle \mid A \text{ is a necessary variable in } G \}$ is recognizable and undecidable
 - $MIN_{CFG} = \{\langle G \rangle \mid G \text{ is a minimal CFG} \}$ is recognizable and undecidable

STUDY GUII	DE 's theorems. <i>Note: page numbers refer to the study guide, not to the book.</i>
Exercise 3.1	Proof of Rice's theorempg. 41
Exercise 3.2	Each of the two conditions in Rice's theorem is mandatorypg. 41
Exercise 3.5	In the proof of Theorem 5.9, $(q-2) \cdot n \cdot g^n + 1$ steps would sufficepg. 42
Exercise 3.8	Describe a 2DFA that recognizes $\{a^nb^nc^n \mid n \ge 0\}$ pg. 45
Exercise 3.15	Natural number's multiplication is a computable functionpg. 48
Chapter 6 - A	Advanced Topics in Computability Theory (Skipped)
Chapter 7 - 7	Γime Complexity
Definition 7.1	Time complexity
Theorem 7.8	Every $t(n)$ time multitape Turing-machine has an equivalent $O(t^2(n))$ time
single-tape Tur	ring-machine, where $t(n) \ge n$ pg. 282
Definition 7.9	Nondeteministic running timepg. 273
Theorem 7.11	Every $t(n)$ time nondeterministic single-tape Turing-machine has an equivalent
$2^{O\left(t(n)\right)}$ time de	eterministic single-tape Turing-machine, where $t(n) \ge n \dots pg. 284$
Definition 7.12	
Definition 7.18	Polynomial time verifierpg. 293
Definition 7.19	NP class pg. 294
Theorem 7.14	- 7.25 Common problems and their classes pg. 288-297
• $PATH \in \mathbb{R}$	• $CLIQUE \in NP$
• RELPRIN	$ME \in P$ • $SUBSET$ - $SUM \in NP$
• Every con	ntext-free language is in P
Theorem 7.27	$SAT \in P \text{ iff } P = NP \dots pg. 300$
Definition 7.28	Polynomial time computable functionpg. 300
Definition 7.29	Polynomial time reductionpg. 300
Theorem 7.31	If $A \leq_P B$ and $B \in P$, then $A \in P$
Theorem 7.32	3SAT is polynomial time reducible to CLIQUE
Definition 7.34	NP-complete
Exercise 7.34	NP-hard definitionpg. 326
Theorem 7.35	If <i>B</i> is NP-complete and $B \in P$, then $P = NP \dots pg. 304$
Theorem 7.36	If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete pg. 304
Theorem 7.37	<i>SAT</i> is NP-completepg. 304
Theorem 7.43	- 7.56 Common NP-complete problems
• CLIQUE	• UHAMPATH
• VERTEX	-COVER • SUBSET-SUM
 HAMPAT 	TH .
EXERCISES	Useful theorems, unproved unless otherwise notedpg. 322-330

Note: items with an A symbol instead of a • symbol have a proof on page 329.

- P and NP closure properties (NP star proof on pg. 329)
- $CONNECTED = \{ \langle G \rangle \mid G \text{ is a connected undirected graph} \}$ is in P
- $TRIANGLE = \{ \langle G \rangle \mid G \text{ contains a 3-clique} \} \text{ is in P}$
- $ALL_{DFA} \in P, EQ_{DFA} \in P$
- $ISO = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are isomorphic graphs} \}$ is in NP
- $MODEXP = \{ \langle a, b, c, p \rangle \mid a, b, c, p \in \mathbb{N}^+ \text{ such that } a^b \equiv c \pmod{p} \} \text{ is in P}$
- $PERM-POWER = \{\langle p, q, t \rangle \mid p = q^t \text{ where } p \text{ and } q \text{ are permutations on } \{1, \dots, k\} \}$ is in P
- UNARY- $SSUM \in P$ (definition on pg. 323 ex. 7.17)
- If P = NP, then every language $A \in P$, except $A = \phi$ and $A = \Sigma^*$, is NP-complete
- $PRIMES = \{m \mid m \text{ is a prime number in binary} \}$ is in NP
- Proving that PATH is not NP-complete would prove $P \neq NP$
- SPATH \in P, and LPATH is NP-complete (definitions on pg. 324 ex. 7.21)
- DOUBLE-SAT = $\{\langle \phi \rangle \mid \phi \text{ has at least two satisfying assignments} \}$ is NP-complete
- A HALF- $CLIQUE = \{\langle G \rangle \mid G \text{ has a half clique} \}$ is NP-complete
- $CNF_2 \in P$
- *CNF*₃ is NP-complete
- $MAX-CUT = \{ \langle G, k \rangle \mid G \text{ has a cut of size } k \text{ or more} \} \text{ is NP-complete}$
- $3COLOR = \{\langle G \rangle \mid G \text{ is colorable with 3 colors} \}$ is NP-complete
- A SOLITAIRE = $\{\langle G \rangle \mid G \text{ is a winnable game configuration} \}$ is NP-complete
- $\{\langle p \rangle \mid p \text{ is a polynomial in several variables having an integral root}\}$ is **NP-hard**
- If P = NP, then these problems can be solved in polynomial time:
 - Satisfying a boolean formula
 - Factoring integers

A Finding a largest clique in an undirected graph (proof on pg. 330)

- Minimizing DFAs can be done in polynomial time (Details on pg. 327 ex. 7.42)
- $P \neq NP$ implies that NFAs cannot be minimized in polynomial time
- $2SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 2cnf-formula} \} \in P$
- TIME(f(n)) contains only the regular languages when $f(n) = o(n \log n)$
- P is closed under homomorphism iff P = NP

STUDY GUIDE's theorems. *Note: page numbers refer to the study guide, not to the book.*

• INDEPENDENT-SET

• k-COLORING

• SET-COVER

• k-SET-PACKING

Chapter 8 - Space Complexity

_	- · · · · · · · · · · · · · · · · · · ·	
Definition 8.1	Space complexity	pg. 331
Savitch's theor	em $f(n) \ge \log n$ implies NSPACE $(f(n)) \subseteq SPACE(f^2(n))$	(a))pg. 334
Definition 8.8	PSPACE-complete (hard)	pg. 337
Theorem 8.9 - 8	3.14 Common PSPACE-complete problems	pg. 339-348
• <i>TQBF</i>	• <i>GG</i> (ez wp)	
• FORMUL	A-GAME	
Definition 8.17	Classes L and NL	pg. 349
Example 8.18	$\left\{0^k 1^k \mid k \ge 0\right\} \in \mathcal{L} \dots \dots$	pg. 349
Example 8.19	<i>PATH</i> ∈ NL	
Definition 8.20	Configuration of <i>M</i> on <i>w</i>	pg. 350
Definition 8.21	Log space transducer	pg. 352
Definition 8.22	NL-complete	pg. 352
Theorem 8.23	If $A \leq_L B$ and $B \in L$, then $A \in L$	pg. 352
Corollary 8.24	If any NL-complete language is in L, then $L = NL \dots$	pg. 353
Theorem 8.25	<i>PATH</i> is NL-complete	pg. 353
Corollary 8.26	$NL \in P$	pg. 354
Theorem 8.27	NL = coNL	pg. 355
EXERCISES	Useful theorems, unproved unless otherwise noted $\hdots\dots$	pg. 357-361
Note: item	as with an A symbol instead of a • symbol have a proof on page	ge 361.
• SPACE (f)	(n)) is the same whether we define this class using a single-tape	e TM or double-tape
read-only	TM when $f(n) \ge n$	
 PSPACE c 	losure properties	
A $A_{\mathrm{DFA}} \in \mathbf{L}$		
 Any PSPA 	CE-hard language is also NP-hard	

- A NL closure properties
- $EQ_{REX} \in PSPACE$
- If every NP-hard language is also PSPACE-hard, then PSPACE = NP
- A_{LBA} is PSPACE-complete
- The following languages are in L:
 - The language of properly nested parentheses and brackets
 - $MULT = \{a\#b\#c \mid a, b, c \in \mathbb{N} \text{ and } a \times b = c\}$
 - $ADD = \{\langle x, y, z \rangle \mid x, y, z > 0 \text{ and } x + y = z\}$
 - $PAL-ADD = \{\langle x, y \rangle \mid x, y > 0 \text{ and } x + y \text{ is a palindrome} \}$
 - $\{\langle G \rangle \mid G \text{ is an undirected graph that contains a simple cycle}\}$
- BIPARTITE = $\{\langle G \rangle \mid G \text{ is a bipartite graph}\}$ is in NL
- The following languages are NL-complete:
 - STRONGLY- $CONNECTED = \{ \langle G \rangle \mid G \text{ is a strongly connected graph} \}$
 - $BOTH_{NFA} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are NFAs and } L(M_1) \cap L(M_2) \neq \phi \}$

- A_{NFA} E_{NFA} 2SAT

A $\{\langle G \rangle \mid G \text{ is a directed graph that contains a directed cycle}\}$

• There exists an NL-complete context-free language

STUDY GUIDE's theorems. Note: page numbers refer to the study guide, not to the book.
Question Space complexity of a problem can't be greater than its time complexity pg. 97
Question Every PSPACE-hard language is also NP-hardpg. 100
Exercise 5.4 TM with space complexity $f(n) = o(n)$ and time complexity $2^{O(f(n))}$ pg. 104
Exercise 5.8 If $NL \in P$, and $A, B \in NL$, and $B \notin \{\phi, \Sigma^*\}$, then $A \leq_P B \dots pg.$ 105
Exercise 5.9 If $A \leq_L B$ using a log space computable function f , then the length of $f(w)$ is at
most polynomial in <i>w</i> pg. 106
Exercise 5.10 \leq_L is transitive
Section 9.1 - Hierarchy Theorems
Definition 9.1 Space constructible functions
Example 9.2 $\log_2 n$, $n \log_2 n$, n^2 are space constructible (at least $O(\log n)$)pg. 364
Space hierarchy theorem For any space constructible function $f : \mathbb{N} \to \mathbb{N}$, a language A exists
that is decidable in $O(f(n))$ space but not in $o(f(n))$ space
Corollary 9.4 For any two functions $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ where $f_1(n) = o(f_2(n))$ and f_2 is space
constructible, SPACE $(f_1(n)) \subseteq SPACE(f_2(n))$ pg. 367
Definition 9.8 Time constructible functions
Example 9.9 $n \log n, n\sqrt{n}, n^2$ and 2^n are time constructible (at least $n \log n$)pg. 368
Time hierarchy theorem For any time constructible function $t : \mathbb{N} \to \mathbb{N}$, a language A exists
that is decidable in $O(t(n))$ space but not decidable in $o(t(n)/\log t(n))$ pg. 369
Corollary 9.11 For any two functions $t_1, t_2 : \mathbb{N} \to \mathbb{N}$ where $t_1(n) = o(t_2(n)/\log t_2(n))$ and t_2 is
time constructible, TIME $(t_1(n)) \subseteq \text{TIME}(t_2(n))$ pg. 371
Corollary 9.12 For any $1 \le \epsilon_1 < \epsilon_2 \in \mathbb{R}$, we have $TIME(n^{\epsilon_1}) \subsetneq TIME(n^{\epsilon_2}) \dots pg. 371$
Corollary 9.13 $P \subsetneq EXPTIME \dots pg. 371$
Definition 9.14 EXPSPACE-complete
Theorem 9.15 $EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete
EXERCISES Useful theorems, unproved unless otherwise notedpg. 389-391
Note: items with an A symbol instead of a ● symbol have a proof on page 391.
$A TIME(2^n) = TIME(2^{n+1})$
$A TIME(2^n) \subsetneq TIME(2^{2n})$
A $NTIME(n) \subsetneq PSPACE$
• If NEXPTIME \neq EXPTIME, then P \neq NP (proof in the study guide)
A The pad function
• $E_{\text{REX}\uparrow}$ is in P

Chapter 10 - Advanced Topics in Complexity Theory

Theorem 10.1	MIN-VERTEX-COVER approximation algorithmpg. 394
Theorem 10.2	MAX-CUT 2-optimal approximation algorithm)pg. 395
Definition 10.3	Probabilistic Turing machinepg. 396
Definition 10.4	BPP class pg. 397
Lemma 10.5	The error probability ϵ is valid as long as $\epsilon \in [0, \frac{1}{2})$ pg. 397
Theorem 10.6	If p is prime and $a \in \mathbb{Z}_p^+$, then $a^{p-1} \equiv 1 \pmod{p}$ pg. 399
	If p is an odd prime number, $Pr[PRIME \text{ accepts } p] = 1 \dots pg. 401$
Lemma 10.8 I	If p is an odd composite number, $Pr[PRIME \text{ accepts } p] \le 2^{-k} \dots pg. 402$
Theorem 10.9	<i>PRIMES</i> ∈ <i>BPP</i> pg. 403
Theorem 10.10	RP class pg. 403
Exercise 10.7	$BPP \subseteq PSPACE$ pg. 441
STUDY CHIDE	E's theorems. <i>Note: page numbers refer to the study guide, not to the book.</i>
	eling Salesman Problem (TSP)
	mal Steiner Treepg. 124
	P has no approximation algorithm unless $P = NP \dots pg. 126$
	Bin Packing
	All of the theorems below
• COMPOSI	$TES \in RP$ • $coRP \subseteq BPP$
• $PRIMES \in$	-
• RP ⊂ BPP	=- x = x · x

Appendix A - Closure Properties

	$A \cup B$	$A \cap B$	$A \cdot B$	A^*	\overline{A}	homomorphism
Regular	✓	✓	✓	✓	✓	✓
Context-free	1	×	✓	✓	X	✓
Decidable	1	✓	✓	✓	✓	X
Recognizable	1	✓	✓	✓	X	✓
P	1	✓	✓	✓	✓	iff P=NP
NP	1	✓	✓	✓	iff NP=coNP	
PSPACE	1	1	✓	✓	✓	
L	1	✓	✓	iff L=NL		
NL	✓	✓	✓	✓	✓	
BPP	✓	✓			✓	

Appendix B - Classes Hierarchies

 $Regular \subset Context\text{-}free \subset Decidable \subset Turing\text{-}recognizable$

$$\begin{array}{ccc} L \subseteq & NL & \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq EXPSPACE \\ & & || & & || \\ & conl & & NPSPACE & NEXPSPACE \end{array}$$

Note: $NL \subsetneq PSPACE$, $P \subsetneq EXPTIME$, $PSPACE \subsetneq EXPSPACE$

