GATE-2007-PH

EE24BTECH11017-D.KARTHIK

- 31) The Lagrangian of a particle of mass m is $L = \frac{m}{2} \left[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dx}{dt} \right)^2 \right] \frac{V}{2} \left(x^2 + y^2 \right) + W \sin \omega t$, where V, W and ω are constants. The conserved quantities are [GATE 2007]
 - a) energy and z-component of linear momentum only.
 - b) energy and z-component of angular momentum only.
 - c) z-components of both linear and angular momenta only.
 - d) energy and z-component of both linear and angular momenta.
- 32) Three particles of mass m each situated at $x_1(t)$, $x_2(t)$, and $x_3(t)$ respectively are connected by two springs of spring constant k and un-stretched length l. The system is free to oscillate only in one direction along straight line joining all the three particles. The Lagrangian of the system is [GATE 2007]

a)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_1}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 - l)^2 + \frac{k}{2} (x_3 - x_2 - l)^2$$

b)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_1}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_3 - l)^2 + \frac{k}{2} (x_3 - x_2 - l)^2$$

c)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_1}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 + l)^2 - \frac{k}{2} (x_3 - x_2 + l)^2$$

d)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_1}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 - l)^2 - \frac{k}{2} (x_3 - x_2 - l)^2$$

33) The Hamiltonian of a particle is $H = \frac{p^2}{2m} + pq$, where q is the generalized coordinate and p is the corresponding canonical momentum. The Lagrangian is [GATE 2007]

a)
$$\frac{m}{2} \left(\frac{dq}{dt} + q \right)^2$$

c)
$$\frac{m}{2} \left[\left(\frac{dq}{dt} \right)^2 + q \frac{dq}{dt} - q^2 \right]^2$$

b)
$$\frac{m}{2} \left(\frac{dq}{dt} - q \right)^2$$

d)
$$\frac{m}{2} \left[\left(\frac{dq}{dt} \right)^2 - q \frac{dq}{dt} + q^2 \right]^2$$

34) A toroidal coil has N closely-wound turns. Assume the current through the coil to be I and the toroid is filled with a magnetic material of relative permittivity μ_r . The magnitude of magnetic induction \overrightarrow{B} inside the toriod, at a radial distance r from the axis, is given by [GATE 2007]

a)
$$\mu_r \mu_0 NIr$$

b)
$$\frac{\mu_r \mu_0 NI}{r}$$

c)
$$\frac{\mu_r \mu_0 NI}{2\pi r}$$

- d) $2\pi\mu_r\mu_0NIr$
- 35) An electromagnetic wave with $\overrightarrow{E}(z,t) = E_o cos(\omega t kz)\hat{i}$ is traveling in free space and crosses a disc of radius 2m placed perpendicular to the z-axis. If $E_o = 60Vm^-1$, the average power, in Watt, crossing the disc along z-direction is [GATE 2007]

a) 30

b) 60

- c) 120
- d) 270
- 36) Can the following scalar and vector potentials describe an electromagnetic field? $\phi(\vec{x},t) = 3xyz - 4t$

$$\overrightarrow{A}(\overrightarrow{x},t) = (2x = \omega t)\hat{i} + (y - 2z)\hat{j} + (z - 2xe^{i\omega t})\hat{k}$$

where ω is a constant.

[GATE 2007]

- a) Yes, in the Coulomb gauge.
- c) Yes, provided $\omega = 0$.
- b) Yes, in the Lorentz gauge.
- d) No.
- 37) For a particle of mass m in a one-dimensional harmonic oscillator potential of the form $V(x) = \frac{1}{2}m\omega^2 x^2$, the first excited energy eigenstate is $\psi(x) = xe^{-ax^2}$. The value if a is [GATE 2007]

- c) $\frac{m\omega}{2\hbar}$
- d) $\frac{2m\omega}{3\hbar}$

38) If $[x, p] = i\hbar$, the value of $[x^3, p]$ is

[GATE 2007]

- a) $2i\hbar x^2$
- b) $-2i\hbar x^2$ c) $3i\hbar x^2$
- d) $-3i\hbar x^2$
- 39) There are only three bound states for a particle of mass m in one-dimensional potential well of the form shown in the figure. The depth V_o of the potential satisfies

[GATE 2007]

a) $\frac{2\pi^2\hbar^2}{ma^2} < V_o < \frac{9\pi^2\hbar^2}{2ma^2}$ b) $\frac{\pi^2\hbar^2}{ma^2} < V_o < \frac{2\pi^2\hbar^2}{ma^2}$

c) $\frac{2\pi^2\hbar^2}{ma^2} < V_o < \frac{8\pi^2\hbar^2}{2ma^2}$ d) $\frac{2\pi^2\hbar^2}{2} < V_o < \frac{50\pi^2\hbar^2}{2}$

- 40) An atomic state of hydrogen is represented by the following wavefunction: $\psi(r,\theta,\phi) = \frac{1}{\sqrt{2}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \left(1 - \frac{r}{2a_o}\right) e^{-\frac{r}{2a_o}} \cos \theta.$ where a_o is a constant. The quantum numbers of the state are [GATE 2007]

[GATE 2007]

d) 417

c) l = 1, m = 0, n = 2

d) l = 2, m = 0, n = 3

c) $\left\{0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2, \pm \frac{5}{2}, \dots\right\}$ d) $\left\{-\frac{1}{2}, +\frac{1}{2}\right\}$

41) Three operators X, Y and Z satisfy the commutation relations

taken, in kjs^{-1} , from the outside air is approximately

b) 470

The set of all possible eigenvalues of the operator Z, in units of \hbar , is [GATE 2007]

42) A heat pump working on the Carnot cycle maintains the inside temperature of a house at $22^{\circ}C$ by supplying $450kJs^{-1}$. If the outside temperature is $0^{\circ}C$, the heat

c) 467

a) l = 0, m = 0, n = 1

b) l = 1, m = 1, n = 2

a) $\{0, \pm 1, \pm 2, \pm 3, \dots\}$ b) $\{\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \dots\}$

a) 487

 $i\hbar Z$, $[Y, Z = i\hbar X]$ and $[Z, X] = i\hbar Y$.

$ \ln p = 23 - 38 $			terature T , is expressed by $= 19 - 3063/T$. The triple [GATE 2007]	
a) 185	b) 190	c) 195	d) 200	
44) The free energy for a photon gas is given by $F = -\left(\frac{a}{3}\right)VT^4$, where a is a constant. The entropy S and the pressure P of the photon gas are [GATE 2007]				
a) $S = \frac{4}{3}aVT^3$ b) $S = \frac{1}{3}aVT^4$	$P = \frac{a}{3}T^4$ $P = \frac{4a}{3}T^3$	c) $S = \frac{4}{3}aVT^4$ d) $S = \frac{1}{3}aVT^3$	$P = \frac{a}{3}T^3$ $P = \frac{4a}{3}T^4$	
45) A system has energy levels $E_o, 2E_o, 3E_o$, where the excited states are triply degenerate. Four non- interacting bosons are placed in the system. If the total energy of the bosons is $5E_o$, the number of microstates is [GATE 2007]				
a) 2	b) 3	c) 4	d) 5	
46) In the accordance with the selection rules for the electric dipole transitions, the 4^3P_1 state of helium can decay by photon emission to the states [GATE 2007]				
a) $2^{1}S_{o}, 2^{1}P_{1}$		c) $3^3P_2, 3^3D_3$		
b) $3^1P_1, 3^1D_2$	and $3^{1}S_{o}$	d) $2^3S_1, 3^3D_2$	and 3^3D_1	
47) If an atom is in the 3D_3 state, the angle between its orbital and spin angular momentum				
vectors $(\overrightarrow{L}ana)$	lS) is		[GATE 2007]	

[GATE 2007]

a) $\cos^{-1} \frac{1}{\sqrt{3}}$	b) $\cos^{-1} \frac{2}{\sqrt{3}}$	c) $\cos^{-1} \frac{1}{\sqrt{2}}$	d) $\cos^{-1}\frac{\sqrt{3}}{2}$	
48) The hyperfine structure of $Na\left(3^{2}P_{\frac{3}{2}}\right)$ with nuclear spin $i=\frac{3}{2}$ has [GATE 2007]				
a) 1 state	b) 2 state	c) 3 state	d) 4 state	
 49) The allowed rotational energy levels of a rigid hetero-nuclear diatomic molecules are expressed as ε_J = BJ(J + 1), where B is the rotational constant and J is a rotational quantum number. In a system of such diatomic molecules of reduced mass μ, some of the atoms of one element are replaced by a heavier isotope, such that the reduced mass is changed to 1.05μ. In the rotational spectrum of the system, the shift in the spectral line, corresponding to a transition J = 4 → J = 5, is [GATE 2007] 				
a) 0.475 <i>B</i>	b) 0.50 <i>B</i>	c) 0.95 <i>B</i>	d) 1.0 <i>B</i>	
 50) The number of fundamental vibrational modes of CO₂ molecules is [GATE 2007] a) four: 2 are Raman active 2 are infrared active. b) four: 1 are Raman active 3 are infrared active. c) four: 1 are Raman active 2 are infrared active. d) four: 2 are Raman active 1 are infrared active. 				
hydrogen nucl	ei of mass m_p . which	interact only with ex	H_o . The sample contains ternal magnetic field. An sonance absorptions takes	

b) $\frac{3g_1eH_o}{4\pi m_p}$ c) $\frac{g_1eH_o}{2\pi m_p}$ d) $\frac{g_1eH_o}{4\pi m_p}$

place, is given by

a) $\frac{3g_1eH_o}{2\pi m_p}$