Solved selected problems of Classical Electrodynamics - Hans Ohanian

Franco Zacco

Chapter 2 - Electrostatics

Problems

Solution. 1. Let us suppose we have a proton and an electron at a distance r then the magnitude of the gravitational force exerted on the proton by the electron is

$$F_{\text{grav}} = G \frac{m_e m_p}{r^2}$$

$$= 6.674 \times 10^{-8} \frac{dyne \cdot cm^2}{q^2} \cdot \frac{9.10938 \times 10^{-28} \ g \cdot 1.67262 \times 10^{-24} \ g}{r^2}$$

On the other hand, the magnitude of the electric force exerted on the proton by the electron is

$$F_{\text{electric}} = \frac{|q_e q_p|}{r^2}$$

$$= \frac{(4.803207 \times 10^{-10} \ esu)^2}{r^2}$$

So the ratio between the gravitational and the electrical force is

$$\frac{F_{\rm electric}}{F_{\rm grav}} = \frac{2.307079 \times 10^{-19}}{1.01688 \times 10^{-58}} = 2.26876 \times 10^{39}$$

Solution. 4. Let us consider a system that looks like the following

We know the rods carry a uniformly distributed charge Q so the charge per unit of length is Q/L then if we consider a small piece of rod dx' it will carry a charge of (Q/L)dx' so at a distance of x' + x + d this small charge contributes an electric field of magnitude

$$dE = \frac{Q}{L} \frac{dx}{(x'+x+d)^2}$$

So by integration, we have that

$$E = \int_0^L \frac{Q}{L} \frac{dx'}{(x'+x+d)^2}$$

$$= \frac{Q}{L} \left[-\frac{1}{x'+x+d} \right]_0^L$$

$$= \frac{Q}{L} \left[-\frac{1}{L+x+d} + \frac{1}{x+d} \right]$$

$$= \frac{Q}{L} \frac{L}{(x+d)(x+d+L)}$$

$$= \frac{Q}{(x+d)(x+d+L)}$$

Therefore the force on a small charge (Q/L)dx on the other rod is $(Q/L)E\ dx$ so again by integration we have that

$$F = \int_0^L \frac{Q}{L} E \, dx$$

$$= \int_0^L \frac{Q^2}{L(x+d)(x+d+L)} \, dx$$

$$= \frac{Q^2}{L} \int_0^L \frac{1}{(x+d)(x+d+L)} \, dx$$

$$= \frac{Q^2}{L} \left[\frac{\log(x+d) - \log(x+d+L)}{L} \right]_0^L$$

$$= \frac{Q^2}{L^2} \left[\log(L+d) - \log(d+2L) - \log(d) + \log(d+L) \right]$$

$$= \frac{Q^2}{L^2} \left[2\log(L+d) - \log(d+2L) - \log(d) \right]$$

Solution. 6. Let us consider a system that looks like the following

Let us consider a small piece of area in polar coordinates $r'dr'd\phi'$ then this small piece carries a charge $\sigma r'dr'd\phi'$ where $\sigma=0$ if $r'< R_1$. Then at a height z above the annulus this charge contributes an electric field of magnitude

$$dE = \frac{\sigma r' dr' d\phi'}{z^2 + r'^2}$$

This electric field has both a vertical and a horizontal component. In view of the symmetry of the charge distribution, the horizontal components cancel upon integration. Hence we need to consider only the vertical components

$$dE_z = \cos \theta \frac{\sigma r' dr' d\phi'}{z^2 + r'^2}$$

$$= \frac{z}{\sqrt{z^2 + r'^2}} \frac{\sigma r' dr' d\phi'}{z^2 + r'^2}$$

$$= \frac{\sigma z r' dr' d\phi'}{(z^2 + r'^2)^{3/2}}$$

Now by integration we have that

$$E = \sigma \int_{R_1}^{R_2} \int_0^{2\pi} \frac{zr'dr'd\phi'}{(z^2 + r'^2)^{3/2}}$$

$$E = 2\pi\sigma \int_{R_1}^{R_2} \frac{zr'dr'}{(z^2 + r'^2)^{3/2}}$$

$$E = 2\pi\sigma \left[-\frac{z}{\sqrt{z^2 + r'^2}} \right]_{R_1}^{R_2}$$

$$E = 2\pi\sigma z \left[\frac{1}{\sqrt{z^2 + R_1^2}} - \frac{1}{\sqrt{z^2 + R_2^2}} \right]$$

Solution. 7. Let us take a point (x, y) on the x-y plane. First, we evaluate the contribution of the rod on the x-axis as shown below

then a dx' element on the x-axis rod will contribute an electric field of magnitude

$$dE = \frac{\lambda dx'}{(x - x')^2 + y^2}$$

This electric field has both a vertical and a horizontal component. In view of the symmetry of the charge distribution, the horizontal components between 0 and 2x cancel out upon integration. Hence we need to consider only the vertical components in the segment $0 \le x' \le 2x$ where dE_y is given by

$$dE_y = \cos \theta \frac{\lambda dx'}{(x - x')^2 + y^2}$$

$$= \frac{y}{\sqrt{(x - x')^2 + y^2}} \frac{\lambda dx'}{(x - x')^2 + y^2}$$

$$= \frac{\lambda y dx'}{((x - x')^2 + y^2)^{3/2}}$$

For the rest of the x-axis we do have an horizontal component which is given by

$$dE_x = \sin \theta \frac{\lambda dx'}{(x - x')^2 + y^2}$$

$$= \frac{(x - x')}{\sqrt{(x - x')^2 + y^2}} \frac{\lambda dx'}{(x - x')^2 + y^2}$$

$$= \frac{\lambda (x - x') dx'}{((x - x')^2 + y^2)^{3/2}}$$

Now, by integration we compute E^x where the superscript implies that the electric field correspond to the x-axis rod.

$$\begin{split} E^{x} &= \int_{2x}^{\infty} \frac{\lambda(x - x')dx'}{((x - x')^{2} + y^{2})^{3/2}} \boldsymbol{i} + \int_{0}^{\infty} \frac{\lambda y dx'}{((x - x')^{2} + y^{2})^{3/2}} \boldsymbol{j} \\ &= \lambda \left[\left[\frac{1}{\sqrt{(x - x')^{2} + y^{2}}} \right]_{2x}^{\infty} \boldsymbol{i} + y \left[\frac{(x' - x)}{y^{2} \sqrt{(x - x')^{2} + y^{2}}} \right]_{0}^{\infty} \boldsymbol{j} \right] \\ &= \lambda \left[\frac{1}{\sqrt{x^{2} + y^{2}}} \boldsymbol{i} + y \left[\frac{1}{y^{2}} + \frac{x}{y^{2} \sqrt{x^{2} + y^{2}}} \right] \boldsymbol{j} \right] \\ &= \lambda \left[\frac{1}{\sqrt{x^{2} + y^{2}}} \boldsymbol{i} + \frac{\sqrt{x^{2} + y^{2}} + x}{y \sqrt{x^{2} + y^{2}}} \boldsymbol{j} \right] \end{split}$$

Analogously, we can do the same thing for the rod on the y-axis where we get that

$$\begin{split} E^{y} &= \int_{0}^{\infty} \frac{\lambda x dy'}{(x^{2} + (y - y')^{2})^{3/2}} \boldsymbol{i} + \int_{2y}^{\infty} \frac{\lambda (y - y') dx'}{(x^{2} + (y - y')^{2})^{3/2}} \boldsymbol{j} \\ &= \lambda \left[\frac{\sqrt{x^{2} + y^{2}} + y}{x \sqrt{x^{2} + y^{2}}} \boldsymbol{i} + \frac{1}{\sqrt{x^{2} + y^{2}}} \boldsymbol{j} \right] \end{split}$$

Adding both contributions we get that

$$\begin{split} E &= E^x + E^y \\ &= \lambda \left[\left(\frac{1}{\sqrt{x^2 + y^2}} + \frac{\sqrt{x^2 + y^2} + y}{x\sqrt{x^2 + y^2}} \right) \boldsymbol{i} + \left(\frac{1}{\sqrt{x^2 + y^2}} + \frac{\sqrt{x^2 + y^2} + x}{y\sqrt{x^2 + y^2}} \right) \boldsymbol{j} \right] \\ &= \lambda \left[\frac{\sqrt{x^2 + y^2} + x + y}{x\sqrt{x^2 + y^2}} \boldsymbol{i} + \frac{\sqrt{x^2 + y^2} + x + y}{y\sqrt{x^2 + y^2}} \boldsymbol{j} \right] \end{split}$$

Therefore E is the electric field at any point in the x-y plane.

Solution. 8. We know because of Excercise 2 that the electric field inside a sphere is

$$\boldsymbol{E}(r) = \frac{Qr}{R^3}\boldsymbol{\hat{r}}$$

In this case, the uniformly distributed charge Q is equal to the positive charge e. If we consider the electron to be at the center of the sphere then the force on the electron is

$$\mathbf{F} = -e\mathbf{E} = -\frac{e^2}{R^3}r\hat{\mathbf{r}}$$

But from the Newton's second law we have that

$$m\frac{\partial^2 r}{\partial t^2} = -\frac{e^2}{R^3}r$$

Defining $k = \frac{e^2}{R^3}$ we see that this is the equation of a simple harmonic motion which has an angular frequency of

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{e^2}{mR^3}}$$

Therefore by replacing the value of $R=0.5 \mbox{\normalfont\AA}$ and the values of e and m for the electron we have that

$$\omega = \sqrt{\frac{(4.803 \times 10^{-10})^2}{(9.109 \times 10^{-28})(5 \times 10^{-9})^3}} = 4.501 \times 10^{16} \text{ rad/s}$$

And hence the oscillation frequency is given by

$$f = \frac{\omega}{2\pi} = 7.164 \times 10^{15} \text{ Hz}$$

Solution. 10. The system described implies that

Then the charge q' produces an electric field

$$oldsymbol{E} = rac{q'}{r^2} \hat{oldsymbol{r}} = rac{q'}{(b^2 + x^2)} \hat{oldsymbol{r}}$$

but we are only interested in the y component of the electric field hence

$$E_y = E \cos \theta = \frac{q'}{(b^2 + x^2)} \cos \theta = \frac{q'}{(b^2 + x^2)} \frac{b}{\sqrt{b^2 + x^2}}$$

Where we used that $\cos \theta = b/r$ then the integral $\int E_y dx$ becomes

$$\int_{-\infty}^{\infty} E_y dx = \int_{-\infty}^{\infty} \frac{q'}{(b^2 + x^2)} \frac{b}{\sqrt{b^2 + x^2}} dx$$

$$= bq' \int_{-\infty}^{\infty} \frac{\sqrt{b^2 + x^2}}{(b^2 + x^2)^2} dx$$

$$= bq' \left[\frac{x}{b^2 \sqrt{b^2 + x^2}} \right]_{-\infty}^{\infty}$$

$$= bq' \left[\frac{1}{b^2} + \frac{1}{b^2} \right]$$

$$= \frac{2q'}{b}$$

Therefore the transverse impulse is

$$\int_{-\infty}^{\infty} F_y dt = \frac{q}{v} \int_{-\infty}^{\infty} E_y dx = \frac{2qq'}{vb}$$

From Newton's second law it must be that $ma_y = F_y$ then

$$\int_{-\infty}^{\infty} m \frac{\mathrm{d}v_y}{\mathrm{d}t} dt = \frac{2qq'}{vb}$$

$$m \int_{-\infty}^{\infty} dv_y = \frac{2qq'}{vb}$$

$$v_y(\infty) - v_y(-\infty) = \frac{2qq'}{mvb}$$

$$v_y(\infty) = \frac{2qq'}{mvb}$$

The transverse deflection angle is the same angle the velocity is deflected so must be that

$$\sin \alpha = \frac{v_y}{v} = \frac{2qq'}{mv^2b}$$

but when α is small we have that $\alpha \approx \sin \alpha = 2qq'/mv^2b$ which is the transverse deflection angle we wanted.

Finally, we want to compute the angular deflection for an alpha particle of $mv^2/2=6.0~MeV$ passing by a lead nucleus with and impact parameter of $b=10^{-10}~cm$ then

$$\alpha = \frac{qq'}{\frac{mv^2}{2}b} = \frac{(2 \cdot 4.8032 \times 10^{-10} \ esu) \cdot (82 \cdot 4.8032 \times 10^{-10} \ esu)}{(9.6131 \times 10^{-6} \ erg) \cdot (10^{-10} \ cm)}$$
$$= 0.03935 \ radian$$

Solution. 12. Let us consider the following system

(a) We want to compute first the electric field when -D < x < D. Let us consider a differential volume $dV = l^2 dx$ between -D and D then the electric field on the volume must be in the x direction by symmetry. The charge inside this differential volume is

$$dQ = \rho l^2 dx$$

Hence by integration we get that

$$Q = \int_0^x \rho l^2 dx = \rho l^2 x$$

Now to solve $\int E\cdot dS$ we see that only the front and back faces of the volume contribute to the integral so $\int E\cdot dS=2E_x l^2$ therefore by Gauss' law we have that

$$2E_x l^2 = 4\pi (2\rho l^2 x)$$
$$E_x = 4\pi \rho x$$

Where we also used that to account for the charge on the section from 0 to -D we need to muliply Q by 2.

To compute the electric field at $x \ge D$ we consider another differential volume placed at x = D as shown in the figure. Then the charge inside this differential volume is

$$dQ = \rho l^2 dx$$

And hence by integration we get that

$$Q = \int_0^D \rho l^2 dx = \rho l^2 D$$

Again the front and back faces are the only ones that contribute to the electrical field so by Gauss' law we have that

$$2E_x l^2 = 4\pi (2\rho l^2 D)$$
$$E_x = 4\pi \rho D$$

Finally, for a differential volume placed at x=-D what changes is the integration of dQ where we integrate from 0 to -D to obtain the following

$$Q = \int_0^{-D} \rho l^2 dx = -\rho l^2 D$$

Theferore in this case, we get that

$$E_x = -4\pi\rho D$$

(b) We know that the electrostatic potential is given by

$$\phi(x) = -\int_{x_0}^x E(x') \cdot dx'$$

where x_0 is some reference point. So taking $x_0 = -D$ and x = D to get the potential difference between these points we can write that

$$\phi(x) = -\int_{-D}^{D} 4\pi \rho x \, dx$$
$$= -4\pi \rho \left[\frac{D^2}{2} - \frac{(-D)^2}{2} \right]$$
$$= 0$$

Solution. 14. Let us consider the following section of the cylinder described

Assuming the cylindrical cavity doesn't exists. Let us consider a point at a distance r from the center of the big cylinder of radius R then the electric field at this point will be in the direction of r and we can determine the magnitude of it by considering a cylindrical Gaussian surface of radius r, hence by Gauss' law we get that

$$\int \mathbf{E} \cdot d\mathbf{S} = 4\pi Q$$

$$E_{cyl} \cdot 2\pi r L = 4\pi \frac{\lambda L r^2}{R^2}$$

$$E_{cyl} = \frac{2\lambda r}{R^2}$$

Where we used that the charge enclosed by the Gaussian surface is $\lambda Lr^2/R^2$. In vector form we get that

$$oldsymbol{E}_{cyl} = rac{2\lambda r}{R^2} oldsymbol{\hat{r}} = rac{2\lambda}{R^2} oldsymbol{r}$$

Now if we consider the same point but from the cavity's centre, assuming the cavity has a charge $-\lambda L r'^2/R^2$ the electric field is given by

$$E_{hole} \cdot 2\pi r' L = -4\pi \frac{\lambda L r'^2}{R^2}$$
$$E_{hole} = -\frac{2\lambda r'}{R^2}$$

Or in vector form

$$oldsymbol{E}_{hole} = -rac{2\lambda r'}{R^2} oldsymbol{\hat{r}}' = -rac{2\lambda}{R^2} oldsymbol{r}'$$

Therefore the total electric field is the sum of both electric fields i.e.

$$egin{aligned} m{E} &= m{E}_{cyl} + m{E}_{hole} \ m{E} &= rac{2\lambda}{R^2} m{r} - rac{2\lambda}{R^2} m{r'} \ m{E} &= rac{2\lambda}{R^2} m{a} \end{aligned}$$

Where a is the distance from the big cylinder centre to the cavity's centre.

 \Box

Solution. 15. Lets first compute the electric field inside the cylinder using Gauss' law

$$\int \mathbf{E} \cdot d\mathbf{S} = 4\pi Q$$

$$E_{inside} \cdot 2\pi r L = 4\pi \frac{\lambda L r^2}{R_1^2}$$

$$E_{inside} = \frac{2\lambda r}{R_1^2}$$

Also, the electric field in the space between the cylinder and the shell is

$$\int \mathbf{E} \cdot d\mathbf{S} = 4\pi Q$$

$$E_{outside} \cdot 2\pi r L = 4\pi \lambda L$$

$$E_{outside} = \frac{2\lambda}{r}$$

Since the enclosed charge is the charge of the cylinder. Now we determine the electrostatic potential using

$$\Phi(oldsymbol{x}) = -\int_{x_0}^x E(oldsymbol{x}') \cdot doldsymbol{x}'$$

Hence

$$\Phi(r) = -\left[\int_0^{R_1} \frac{2\lambda r}{R_1^2} dr + \int_{R_1}^{R_2} \frac{2\lambda}{r} dr\right]$$

$$= -\left[\frac{2\lambda}{R_1^2} \frac{R_1^2}{2} + 2\lambda \log\left(\frac{R_2}{R_1}\right)\right]$$

$$= -\lambda + 2\lambda \log\left(\frac{R_1}{R_2}\right)$$

$$= \lambda \left(2\log\left(\frac{R_1}{R_2}\right) - 1\right)$$

Solution. 19. Let us consider a point at a distance d from the center of the cylinder as shown below

Lets consider a small piece in cylindrical coordinates $r'dr'd\phi'dx'$. Since the charge per unit of volume is $Q/\pi R^2L$ then the electric field because of this small piece at a distance d from the center is

$$dE = \frac{Qr'dr'd\phi'dx'}{\pi R^2L} \frac{1}{(d-x')^2 + r'^2}$$

But because of the symmetry the only component we care about is the horizontal component in the x direction hence

$$dE_x = \frac{Qr'dr'd\phi'dx'}{\pi R^2 L} \frac{1}{(d-x')^2 + r'^2} \cos \theta$$

$$= \frac{Qr'dr'd\phi'dx'}{\pi R^2 L} \frac{1}{(d-x')^2 + r'^2} \frac{d-x'}{\sqrt{(d-x')^2 + r'^2}}$$

$$= \frac{Qr'dr'd\phi'dx'}{\pi R^2 L} \frac{d-x'}{((d-x')^2 + r'^2)^{3/2}}$$

Then by integration we have that

$$E_{x} = \frac{Q}{\pi R^{2}L} \int_{-L/2}^{L/2} \int_{0}^{2\pi} \int_{0}^{R} \frac{(d-x')r'}{((d-x')^{2} + r'^{2})^{3/2}} dr' d\phi' dx'$$

$$= \frac{Q}{\pi R^{2}L} \int_{-L/2}^{L/2} \int_{0}^{2\pi} \left[\frac{1}{(d-x')} - \frac{1}{\sqrt{(d-x')^{2} + R^{2}}} \right] (d-x') d\phi' dx'$$

$$= \frac{2Q}{R^{2}L} \int_{-L/2}^{L/2} \left[1 - \frac{(d-x')}{\sqrt{(d-x')^{2} + R^{2}}} \right] dx'$$

$$= \frac{2Q}{R^{2}L} \left[L + \sqrt{(d-L/2)^{2} + R^{2}} - \sqrt{(d+L/2)^{2} + R^{2}} \right]$$

Now we compute the electrostatic potential as follows

$$\begin{split} \Phi &= \frac{2Q}{R^2L} \int_0^d L + \sqrt{(x'-L/2)^2 + R^2} - \sqrt{(x'+L/2)^2 + R^2} \ dx' \\ &= \frac{2Q}{R^2L} \left[\frac{1}{2} \left[2Lx' + (x'-L)\sqrt{(x'-L/2)^2 + R^2} - (x'+L)\sqrt{(x'+L/2)^2 + R^2} \right. \right. \\ &- R^2 \mathrm{arctanh} \left(\frac{L-x'}{\sqrt{(x'-L/2)^2 + R^2}} \right) - R^2 \mathrm{arctanh} \left(\frac{L+x'}{\sqrt{(x'+L/2)^2 + R^2}} \right) \right] \right]_0^d \\ &= \frac{2Q}{R^2L} \left[\frac{1}{2} \left[2Ld + (d-L)\sqrt{(d-L/2)^2 + R^2} - (d+L)\sqrt{(d+L/2)^2 + R^2} \right. \right. \\ &- R^2 \mathrm{arctanh} \left(\frac{L-d}{\sqrt{(d-L/2)^2 + R^2}} \right) - R^2 \mathrm{arctanh} \left(\frac{L+d}{\sqrt{(d+L/2)^2 + R^2}} \right) \right] \\ &- \frac{1}{2} \left[- L\sqrt{L^2/4 + R^2} - L\sqrt{L^2/4 + R^2} - 2R^2 \mathrm{arctanh} \left(\frac{L}{\sqrt{L^2/4 + R^2}} \right) \right] \right] \end{split}$$

Solution. 20.

(a) Let us consider a spherical Gaussian surface enclosing the spherically symmetric charge, then $\mathbf{E}=E\hat{\mathbf{r}}$ and hence by Gauss' law we have that

$$\int_0^{2\pi} \int_0^{\pi} E \ r^2 \sin\theta d\theta d\phi = 4\pi \int_0^{2\pi} \int_0^{\pi} \int_0^r \rho \ r^2 \sin\theta d\theta d\phi dr$$
$$4\pi E r^2 = 4\pi k \int_0^{2\pi} \int_0^{\pi} \int_0^r r^n \ r^2 \sin\theta d\theta d\phi dr$$
$$E r^2 = 4\pi k \int_0^r r^{n+2} dr$$

We know that n > -3 then $n + 2 \ge 0$ so knowing this we can solve the integral as follows

$$Er^{2} = 4\pi k \frac{r^{n+3}}{n+3}$$
$$E = 4\pi k \frac{r^{n+1}}{n+3}$$

(b) To find the potential difference between the points r=a and r=b we solve the following integral

$$\Phi(r) = -\int_{a}^{b} E(r)dr$$

Since E only depends on r hence

$$\Phi(r) = -4\pi k \int_{a}^{b} \frac{r^{n+1}}{n+3} dr$$
$$= -\frac{4\pi k}{n+3} \int_{a}^{b} r^{n+1} dr$$

Therefore

$$\Phi(r) = \begin{cases} -\frac{4\pi k}{n+3} \log\left(\frac{b}{a}\right) & \text{if } n = -2\\ -\frac{4\pi k}{(n+3)(n+2)} [b^{n+2} - a^{n+2}] & \text{if } n \ge -1 \end{cases}$$

Solution. 21. Let the potential in some region be

$$\Phi(x, y, z) = ax^2 + by^3$$

By the Poisson's equation we know that

$$\nabla^2 \Phi(\boldsymbol{x}) = -4\pi \rho(\boldsymbol{x})$$

Then the charge density is given by

$$-4\pi\rho(x,y,z) = \frac{\partial^2\Phi}{\partial x^2} + \frac{\partial^2\Phi}{\partial y^2} + \frac{\partial^2\Phi}{\partial z^2}$$
$$\rho(x,y,z) = -\frac{1}{4\pi} (2a + 6by)$$

Solution. 23. From the hint we have we can compute the following

$$\frac{dr}{d\theta} = \frac{E_r}{E_{\theta}}$$

$$= \frac{2pr^3 \cos \theta}{pr^3 \sin \theta}$$

$$= \frac{2\cos \theta}{\sin \theta}$$

$$= 2\cot \theta$$

Hence by integration

$$\int dr = 2 \int \cot \theta \ d\theta$$
$$r = 2 \log(\sin \theta) + C$$

Which is the polar equation for the electric field lines.

Solution. 25.

(a) According to equation (61) the force that a point charge q' exerts on a dipole of moment p is

$$F = (p \cdot \nabla) E(x)$$

A point charge q' produces an electric field $\boldsymbol{E}(r) = q' \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3}$ then

$$\begin{aligned} \boldsymbol{F} &= p(\hat{\boldsymbol{z}} \cdot \nabla) q' \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3} \\ &= p \frac{\partial}{\partial z} \left(q' \frac{\rho \hat{\boldsymbol{\rho}} + z \hat{\boldsymbol{z}}}{(\rho^2 + z^2)^{3/2}} \right) \\ &= p q' \left[-\frac{3z\rho}{(\rho^2 + z^2)^{5/2}} \hat{\boldsymbol{\rho}} + \frac{\rho^2 - 2z^2}{(\rho^2 + z^2)^{5/2}} \hat{\boldsymbol{z}} \right] \end{aligned}$$

But given that the charge is in the x-y plane we can set z = 0 hence

$$oldsymbol{F}=rac{pq'}{
ho^3}\hat{oldsymbol{z}}$$

(b) According to Coulomb's law the force a dipole exerts on a point charge q' is

$$F = q'E$$

Where E is the electric field produced by the dipole, hence

$$F = q' \left(2p \frac{\cos \theta}{\rho^3} \hat{\boldsymbol{\rho}} + p \frac{\sin \theta}{\rho^3} \hat{\boldsymbol{\theta}} \right)$$

But cosidering that the charge is in the x-y plane we have that $\theta=\pi/2$ hence

$$oldsymbol{F} = rac{pq'}{
ho^3} oldsymbol{\hat{ heta}}$$

Also, in this position the spherical unit vector $\hat{\pmb{\theta}}$ matches with the rectangular unit vector $-\hat{\pmb{z}}$ therefore

$$oldsymbol{F} = -rac{pq'}{
ho^3}oldsymbol{\hat{z}}$$

Which is in agreement with Newton's Third Law.

Solution. 26. According to the equation (65) the torque that a point charge q' exerts on a dipole of moment p is

$$au = oldsymbol{p} imes oldsymbol{E}$$

Where E is the electric field generated by q'. Hence in cylindrical coordinates we have that

$$oldsymbol{ au} = p\hat{oldsymbol{z}} imes q' rac{
ho\hat{oldsymbol{
ho}} + z\hat{oldsymbol{z}}}{(
ho^2 + z^2)^{3/2}} = rac{pq'
ho}{(
ho^2 + z^2)^{3/2}}\hat{oldsymbol{ heta}}$$

But if we change to spherical coordinates we get that

$$oldsymbol{ au} = rac{pq'\sin heta}{r^2} \hat{oldsymbol{\phi}}$$

Where we used that $r^2 = (\rho^2 + z^2)$ and that $\hat{\theta} = \hat{\phi}$.

On the other hand, from problem 25 we know that the force a dipole exerts on a point charge in spherical coordinates is

$$F = q' \left(2p \frac{\cos \theta}{r^3} \hat{r} + p \frac{\sin \theta}{r^3} \hat{\theta} \right)$$

Then the torque exerted by the dipole on the point charge is

$$\begin{split} \boldsymbol{\tau} &= \boldsymbol{r} \times \boldsymbol{F} \\ &= r \hat{\boldsymbol{r}} \times q' \left(2p \frac{\cos \theta}{r^3} \hat{\boldsymbol{r}} + p \frac{\sin \theta}{r^3} \hat{\boldsymbol{\theta}} \right) \\ &= \frac{pq' \sin \theta}{r^2} \hat{\boldsymbol{\phi}} \end{split}$$

Solution. 28. We know by definition that

$$E_x = -\frac{\partial \Phi}{\partial x}$$
 $E_y = -\frac{\partial \Phi}{\partial y}$ $E_z = -\frac{\partial \Phi}{\partial z}$

Then

$$\nabla^{2}E_{x} = \nabla^{2}\left(-\frac{\partial\Phi}{\partial x}\right)$$

$$= -\left[\frac{\partial^{2}}{\partial x^{2}}\frac{\partial\Phi}{\partial x} + \frac{\partial^{2}}{\partial y^{2}}\frac{\partial\Phi}{\partial x} + \frac{\partial^{2}}{\partial z^{2}}\frac{\partial\Phi}{\partial x}\right]$$

$$= -\left[\frac{\partial}{\partial x}\frac{\partial^{2}\Phi}{\partial x^{2}} + \frac{\partial}{\partial x}\frac{\partial^{2}\Phi}{\partial y^{2}} + \frac{\partial}{\partial x}\frac{\partial^{2}\Phi}{\partial z^{2}}\right]$$

$$= -\frac{\partial}{\partial x}\left[\frac{\partial^{2}\Phi}{\partial x^{2}} + \frac{\partial^{2}\Phi}{\partial y^{2}} + \frac{\partial^{2}\Phi}{\partial z^{2}}\right]$$

$$= -\frac{\partial}{\partial x}\nabla^{2}\Phi$$

$$= 0$$

Where we used that $\nabla^2 \Phi = 0$ in a charge-free region. The same can be shown for E_y and E_z . Hence the Mean-Value Theorem can be applied to E_x , E_y and E_z . The net force a spherical charge distribution experiences because of the electric field is

$$F = \int_{S} \rho \left(iE_x + jE_y + kE_z \right) dS$$

But for the center applying the Mean-Value Theorem we have that

$$F = 4\pi r^2 \rho \left(\frac{i}{4\pi r^2} \int_S E_x dS + \frac{j}{4\pi r^2} \int_S E_y dS + \frac{k}{4\pi r^2} \int_S E_z dS \right)$$

$$= \rho \int_S (iE_x + jE_y + kE_z) dS$$

$$= \int_S \rho (iE_x + jE_y + kE_z) dS$$

Therefore the net force experienced by the spherical distribution is as though all of the charge were concentrated at the center of the distribution. \Box

Solution. 29. The electric field lines look like the following

The code used to generate it is at ch2-29.py

Solution. 31. The Equipotential lines look like the following

And the Electric field lines plus the Equipotential lines all together give us

The code used to generate it is at ch2-31.py

Solution. 32. Equipotential lines with the original grid look like the following

And with the finer grid look like the following

The code used to generate these plots is at ch2-32.py

Solution. 33. The Equipotential lines look like the following ins this case

The code used to generate this plot is at ch2-33.py