Imperial College London

Estimation of summary statistics

Matteo Fumagalli

Imperial College London

Intended Learning Outcomes

By the end of this session you will be able to

- understand the theory underlying commonly used summary statistics
- appreciate how to extended such theory to low-coverage data
- acknowledge the process of inferring selection from sequencing data
- implement a pipeline in ANGSD to perform the aforementioned analyses

Sample allele frequency probabilities

$$\boxed{ p(S_m=0) \quad p(S_m=1) \quad p(S_m=2) \quad p(S_m=3) \quad \dots \quad p(S_m=2k) }$$

Estimating allele frequency

$$\hat{f}$$
 =

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Estimating allele frequency

$$\hat{f} = \sum_{k=0}^{2k} \left(\frac{i}{2k}\right) p(S=i)$$

With 6 chromosomes (3 diploids)

$p_0 = 0.10$ $p_1 = 0.15$ $p_2 = 0.50$ $p_3 = 0.15$ $p_4 = 0.05$ $p_4 = 0.05$	p _c =0.05 p _c =0.00	

SNP calling

$$p_{\text{var}} = ?$$
 $p_{\text{var}} > t$

with t being 0.95, 0.99, 0.999 and so on.

$$p_0$$
=0.10 p_1 =0.15 p_2 =0.50 p_3 =0.15 p_4 =0.05 p_5 =0.05 p_6 =0.00

SNP calling

$$p_{\text{var}} = 1 - p(S = 0) - p(S = 2k) = 0.90$$

 $p_{\text{var}} > t$

with *t* being 0.95, 0.99, 0.999 and so on.

Nr of segregating sites

Site 1	p(S _m =0)	p(S _m =1)	p(S _m =2)	p(S _m =3)		$p(S_m=2k)$
Site 2	$p(S_m=0)$	p(S _m =1)	p(S _m =2)	p(S _m =3)	ļ	$p(S_m=2k)$
Site 3		, , , , ,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$p(S_m=0)$	$p(S_m=1)$	$p(S_m=2)$	p(S _m =3)		$p(S_m=2k)$
•••						
Site M	$p(S_m=0)$	p(S _m =1)	p(S _m =2)	p(S _m =3)		$p(S_m=2k)$

Nr of segregating sites

Site 1	$p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$
Site 2	$p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$
Site 3	$p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$
Site M	$p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$

Nr of segregating sites

$$E[S] = \sum_{m=1}^{M} p_{\text{var}}^{(m)} = \sum_{m=1}^{M} (1 - p(S_m = 0) - p(S_m = 2k))$$

Nucleotide diversity

Site 1	$p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$
Site 2	$p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$
Site 3	$p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$
Site M	$p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$

$$D = 2f(1-f)$$
$$E[D] =$$

Nucleotide diversity

$$E[D] = \sum_{m=1}^{M} \sum_{j=0}^{2k} 2\left(\frac{i}{2k}\right) \left(\frac{2k-i}{2k}\right) p(S_m = i)$$

Positive selection

- Reduction of polymorphisms levels (Theta)
- Excess of low-frequency variants (Pi)

Under neutrality, Theta and Pi are expected to be the same. Tajima's D measures their difference.

$$D = \frac{\pi - \theta_W}{\sqrt{\hat{V}(\pi - \theta_W)}}$$

D<0 is suggestive of an excess of low-frequency variants

Allele frequency differentiation

F_{st}

Common measure for quantifying population subdivision.

$$F_{ST} = H_B / (H_W + H_B)$$

H_B: between populations

H_w: average within populations

- \rightarrow if H_w << H_B0 then F_{ST}~1
- \rightarrow if H_B=0 then F_{ST}=0

The estimate of F_{ST} for a single site is then

$$F_{\mathrm{ST}} = \frac{a_{\mathrm{s}}}{a_{\mathrm{s}} + b_{\mathrm{s}}}$$

while for a *locus* of m sites it is

$$F_{\text{ST}}^{(\text{locus})} = \frac{\sum_{s=1}^{m} a_s}{\sum_{s=1}^{m} (a_s + b_s)}.$$

The genetic variance between and within populations at site s is, respectively,

$$a_{s} = \frac{4n_{i} \left(\hat{p}_{(i,s)} - \hat{p}_{s}\right)^{2} + 4n_{j} \left(\hat{p}_{(j,s)} - \hat{p}_{s}\right)^{2} - b_{s}}{2\left(2n_{i}n_{j}/(n_{i} + n_{j})\right)}$$
(1)

and

$$b_s = \frac{n_i \alpha_{(i,s)} + n_j \alpha_{(j,s)}}{n_i + n_j - 1},\tag{2}$$

where n_i and n_j are the number of sampled individuals per population, $\alpha_{(i,s)} = 2\hat{p}_{(i,s)}(1-\hat{p}_{(i,s)})$, and $\alpha_{(j,s)} = 2\hat{p}_{(j,s)}(1-\hat{p}_{(j,s)})$. Table 1 describes nomenclature used throughout this manuscript.

Fumagalli et al. Genetics 2013

Method-of-moments estimation: Let $\pi_i^{(k)} = P(\widehat{p_i} = k/(2n_i)|Y_{(i,s)})$ be the posterior probability that a site in population i has derived sample allele frequency $\widehat{p_i} = k/(2n_i)$, in a sample of n_i diploid individuals, given the read data $Y_{(i,s)}$.

From these quantities, we compute the posterior expectation of the genetic variance between and within populations (see Equations 1 and 2) at site *s* as

$$E[a_s|Y_s] = \sum_{k=0}^{2n_i} \sum_{z=0}^{2n_j} a_{(i,j)}^{(k,z)} \pi_{(i,j,s)}^{(k,z)}$$
(10)

and

$$E[b_s|Y_s] = \sum_{k=0}^{2n_i} \sum_{z=0}^{2n_j} b_{(i,j)}^{(k,z)} \pi_{(i,j,s)}^{(k,z)}, \tag{11}$$

Population genetic differentiation

 $F_{ST}(T-C)\sim T(T-A-C)$

Population genetic differentiation

 $F_{ST}(T-C)\sim T(T-A-C)$

Population branch statistic (PBS)

Population branch statistic (PBS)

Population genetic differentiation

How can we estimate it from low-cov data?

Imperial College London

Intended Learning Outcomes

At the end of this session you are now be able to

- understand the theory underlying commonly used summary statistics
- appreciate how to extended such theory to low-coverage data
- acknowledge the process of inferring selection from sequencing data
- implement a pipeline in ANGSD to perform the aforementioned analyses