25

30

5

CLAIMS

- 1. A method for treating a subject for skin disorder comprising administering to said subject an effective amount of creatine, creatine phosphate, creatine compound or a salt thereof, such that said skin disorder is treated.
 - 2. The method of claim 1, wherein said subject is a mammal.
- 10 3. The method of claim 1, wherein said subject is a human.
 - 4. The method of claim 1, further comprising coadministration of a pharmaceutically acceptable carrier.
- 15 5. The method of claim 4, wherein said pharmaceutically acceptable carrier is suitable for topical administration.
 - 6. The method of claim 1 wherein said skin disorder is associated with free-radicals.
 - 7. The method of claim 1, wherein said skin disorder is associated with aging.
 - 8. The method of claim 1 wherein said skin disorder is associated with sun radiation.
 - 9. The method of claim 1 wherein said skin disorder is associated with stress or fatigue.
 - 10. The method of claim 1, wherein said subject is afflicted with skin wrinkles.
 - 11. The method of claim 1, wherein said subject is at risk for a skin disorder.
- 12. A method for treatment of a skin disorder comprising administering an effective amount of a creatine compound to a subject such that the subject is treated, wherein the creatine compound is of the general formula:

30

5

10

and pharmaceutically acceptable salts thereof, wherein:

- a) Y is selected from the group consisting of: $-CO_2H$, -NHOH, $-NO_2$, $-SO_3H$, $-C(=O)NHSO_2J$ and -P(=O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C_1 - C_6 straight chain alkyl, C_3 - C_6 branched alkeyl, C_2 - C_6 alkenyl, C_3 - C_6 branched alkeyl, and aryl;
- b) A is selected from the group consisting of: C, CH, C₁-C₅alkyl, C₂-C₅alkenyl, C₂-C₅alkynyl, and C₁-C₅ alkoyl chain, each having 0-2 substituents which are selected independently from the group consisting of:
- 1) K, where K is selected from the group consisting of: C_1 - C_6 straight alkyl, C_2 - C_6 straight alkenyl, C_1 - C_6 straight alkoyl, C_3 - C_6 branched alkyl, C_3 - C_6 branched alkenyl, and C_4 - C_6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- 2) an aryl group selected from the group consisting of: a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: -CH₂L and -COCH₂L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy; and
- 3) -NH-M, wherein M is selected from the group consisting of: hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_1 - C_4 alkoyl, C_3 - C_4 branched alkyl, C_3 - C_4 branched alkenyl, and C_4 branched alkoyl;
- c) X is selected from the group consisting of NR_1 , CHR_1 , CR_1 , O and S, wherein R_1 is selected from the group consisting of:
 - 1) hydrogen;
- 2) K where K is selected from the group consisting of: C₁-C₆ straight alkyl, C₂-C₆ straight alkenyl, C₁-C₆ straight alkoyl, C₃-C₆ branched alkyl, C₃-C₆ branched alkenyl, and C₄-C₆ branched alkoyl, K having O-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;

- an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: -CH₂L and -COCH₂L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- 4) a C₅-C₉ a-amino-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
- 10 5) a C₅-C₉ a-amino-w-aza-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon; and
 - 6) a C₅-C₉ a-amino-w-thia-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
 - d) Z_1 and Z_2 are chosen independently from the group consisting of: =O, -NHR₂, -CH₂R₂, -NR₂OH; wherein Z_1 and Z_2 may not both be =O and wherein R₂ is selected from the group consisting of:
 - 1) hydrogen;
 - 2) K, where K is selected from the group consisting of: C_1 - C_6 straight alkyl; C_2 - C_6 straight alkenyl, C_1 - C_6 straight alkoyl, C_3 - C_6 branched alkenyl, and C_4 - C_6 branched alkoyl, K having O-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
 - an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: -CH₂L and -COCH₂L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
 - 4) a C₄-C₈ a-amino-carboxylic acid attached via the w-carbon;
- 5) B, wherein B is selected from the group consisting of: -CO₂H, -NHOH, -SO₃H, -NO₂, OP(=O)(OH)(OJ) and -P(=O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C₁-C₆ straight alkyl, C₃-C₆ branched alkyl, C₂-C₆ alkenyl, C₃-C₆ branched alkenyl, and aryl, wherein B is optionally connected to the nitrogen via a linker selected from the group consisting of: C₁-C₂ alkyl, C₂ alkenyl, and C₁-C₂ alkoyl;

10

6) -D-E, wherein D is selected from the group consisting of: C₁-C₃ straight alkyl, C₃ branched alkyl, C₂-C₃ straight alkenyl, C₃ branched alkenyl, C₁-C₃ straight alkoyl, aryl and aroyl; and E is selected from the group consisting of: -(PO₃)_nNMP, where n is 0-2 and NMP is ribonucleotide monophosphate connected via the 5'-phosphate, 3'-phosphate or the aromatic ring of the base; -[P(=O)(OCH₃)(O)]_m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; -[P(=O)(OH)(CH₂)]_m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chosen independently from the group consisting of: Cl, Br, epoxy, acetoxy, -OG, -C(=O)G, and -CO₂G, where G is independently selected from the group consisting of: C₁-C₆ straight alkyl, C₂-C₆ straight alkenyl, C₁-C₆ straight alkoyl, C₃-C₆ branched alkyl, C₃-C₆ branched

alkenyl, C₄-C₆ branched alkoyl, wherein E may be attached to any point to D, and if D is

alkyl or alkenyl, D may be connected at either or both ends by an amide linkage; and

- 7) -E, wherein E is selected from the group consisting of (PO₃)_nNMP, where n is 0-2 and NMP is a ribonucleotide monophosphate connected via the 5'-phosphate, 3'-phosphate or the aromatic ring of the base; -[P(=O)(OCH₃)(O)]_m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; -[P(=O)(OH)(CH₂)]_m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chose independently from the group consisting of: Cl, Br, epoxy, acetoxy, -OG, -C(=O)G, and -CO₂G, where G is independently selected from the group consisting of: C₁-C₆ straight alkyl, C₂-C₆ straight alkenyl, C₁-C₆ straight alkoyl, C₃-C₆ branched alkoyl; and if E is aryl, E may be connected by an amide linkage;
- e) if R₁ and at least one R₂ group are present, R₁ may be connected by a single or double bond to an R₂ group to form a cycle of 5 to 7 members;
- 30 f) if two R₂ groups are present, they may be connected by a single or a double bond to form a cycle of 4 to 7 members; and
- g) if R₁ is present and Z₁ or Z₂ is selected from the group consisting of NHR₂, -CH₂R₂ and -NR₂OH, then R₁ may be connected by a single or double bond to the carbon or nitrogen of either Z₁ or Z₂ to form a cycle of 4 to 7 members.
 - 13. The method of claim 12, wherein said treatment of said skin disorder reduces or eliminates at least one preexisting symptom of skin disorder.

- 14. The method of claim 13, wherein said symptom is skin wrinkles or a loss of skin elasticity.
- 5 15. The method of claim 12, wherein said treatment of said skin disorder comprises prevention said skin disorder.
 - 16. The method of claim 12, wherein said creatine compound is creatine.
- 10 17. The method of claim 12, wherein said creatine compound is creatine phosphate.
 - 18. The method of claim 12, wherein said creatine compound is cyclocreatine.
- 15 19. The method of claim 12, wherein said creatine compound is cyclocreatine phosphate.
 - 20. The method of claim 12, wherein said creatine compound is creatine-pyruvate.
- 20 21. The method of claim 12, wherein said creatine compound is creatine-ascorbate.
 - 22. The method of claim 12, wherein said creatine compound is homocyclocreatine.
 - 23. The method of claim 12, wherein said creatine compound is 3-guanidinopropionic acid.
 - 24. The method of claim 12, wherein said creatine compound is guanidinoacetate.
 - 25. The method of claim 12, wherein said creatine compound is a guanidino benzoic acid.
- 26. The method of claim 12, further comprising co-administering to said subject an effective amount of a skin preserving agent.
 - 27. The method of claim 26, wherein said skin preserving agent is an antioxidant.

- 28. The method of claim 27, wherein said antioxidant is CoQ10 or vitamin E.
- 29. The method of claim 26, wherein the skin preserving agent is an energy-enhancing agent.
- 30. The method of claim 29, wherein said energy enhancing agent is selected from the group consisting of ATP, nicotinamide and pyruvate.
- The method of claim 26, wherein said skin preserving agent is a vitamin or a vitamin precursor.
 - 32. The method of claim 31, wherein said vitamin is selected from the group consisting of E, C, B5,B6, and B9.
- 15 33. The method of claim 12, further comprising the coadministration of a pharmaceutical carrier suitable for topical administration.
 - 34. The method of claim 33, wherein said creatine compound is administered in a a lotion, cream, or ointment, gel or solid.
 - 35. The method of claim 12, further comprising the coadministration of a sunscreen or sunblock.
 - 36. The method of claim 35, wherein said sunscreen or sunblock is zinc oxide or titanium dioxide.
 - 37. A composition for the treatment of the skin of a subject, comprising an effective amount of creatine, creatine phosphate, a creatine compound or a salt thereof, and a pharmaceutically acceptable carrier.
 - 38. The composition of claim 37, wherein said composition is suitable for topical administration.
- 39. The composition of claim 38, wherein said composition is a lotion, cream, or ointment, gel or solid.
 - 40. The composition of claim 37, wherein said composition further comprises a sunblock or sunscreen.

- 41. The composition of claim 40, wherein said sunscreen or sunblock is zinc oxide or titanium dioxide.
- 5 42. The composition of claim 37, wherein said composition is formulated as a cosmetic foundation.
 - 43. The composition of claim 37, further comprising a penetration agent.
- 10 44. The composition of claim 37, wherein said composition is formulated as a skin cleansing agent.
 - 45. The composition of claim 37, wherein said composition further comprises hydroxyacids, retinols, Aloe, Chamomile, or mixtures thereof.
 - 46. The composition of claim 37, wherein said effective amount is effective to treat skin disorder.
- 47. The composition of claim 46, wherein said skin disorder is associated with 20 free-radicals.
 - 48. The composition of claim 37, wherein said skin disorder is associated with aging, sun radiation, stress or fatigue.
- 25 49. The composition of claim 37, wherein said effective amount is effective to prevent a skin disorder.
 - 50. The composition of claim 37, wherein said creatine compound is creatine.
- The composition of claim 37, wherein said creatine compound is creatine phosphate.
 - 52. The composition of claim 37, wherein said creatine compound is cyclocreatine.
 - 53. The composition of claim 37, wherein said creatine compound is cyclocreatine phosphate.

15

- 54. The composition of claim 37, wherein said creatine compound is creatine-pyruvate.
- 55. The composition of claim 37, wherein said creatine compound is creatine-ascorbate.
 - 56. The composition of claim 37, wherein said creatine compound is homocyclocreatine.
- The composition of claim 37, wherein said creatine compound is 3-guanidinopropionic acid.
 - 58. The composition of claim 37, wherein said creatine compound is guanidinoacetate.
 - 59. The composition of claim 37, wherein said creatine compound is a guanidino benzoic acid.
 - 60. The composition of claim 37, further comprising co-administering to said subject an effective amount of a skin preserving agent.
 - 61. The composition of claim 60, wherein said skin preserving agent is an antioxidant.
 - 62. The composition of claim 61, wherein said antioxidant is CoQ10 or vitamin E.
 - 63. The composition of claim 60, wherein the skin preserving agent is an energy-enhancing agent.
- The method of claim 63, wherein said energy enhancing agent is selected from the group consisting of ATP, nicotinamide and pyruvate.
 - 65. The method of claim 64, wherein said skin preserving agent is a vitamin or a vitamin precursor.
 - 66. The method of claim 65, wherein said vitamin is selected from the group consisting of E, C, B5,B6, and B9.

10

67. A composition for treatment of a skin disorder comprising an effective amount of a creatine compound and a pharmaceutical carrier suitable for topical administration, wherein said creatine compound is of the general formula:

- 5 and pharmaceutically acceptable salts thereof, wherein:
 - a) Y is selected from the group consisting of: $-CO_2H$, -NHOH, $-NO_2$, $-SO_3H$, $-C(=O)NHSO_2J$ and -P(=O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C_1 - C_6 straight chain alkyl, C_3 - C_6 branched alkyl, C_2 - C_6 alkenyl, C_3 - C_6 branched alkenyl, and aryl;
 - b) A is selected from the group consisting of: C, CH, C₁-C₅alkyl, C₂-C₅alkenyl, C₂-C₅alkynyl, and C₁-C₅ alkoyl chain, each having 0-2 substituents which are selected independently from the group consisting of:
 - 1) K, where K is selected from the group consisting of: C₁-C₆ straight alkyl, C₂-C₆ straight alkenyl, C₁-C₆ straight alkoyl, C₃-C₆ branched alkyl, C₃-C₆ branched alkenyl, and C₄-C₆ branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
 - 2) an aryl group selected from the group consisting of: a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: -CH₂L and -COCH₂L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy; and
 - 3) -NH-M, wherein M is selected from the group consisting of: hydrogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₁-C₄ alkoyl, C₃-C₄ branched alkyl, C₃-C₄ branched alkyl, C₃-C₄ branched alkoyl;
- 30 c) X is selected from the group consisting of NR_1 , CHR_1 , CR_1 , O and S, wherein R_1 is selected from the group consisting of:
 - 1) hydrogen;

3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: -CH₂L and -COCH₂L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;

10

4) a C5-C9 a-amino-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;

15

5) a C5-C9 a-amino-w-aza-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon; and

a C5-C9 a-amino-w-thia-w-methyl-w-adenosylcarboxylic acid 6) attached via the w-methyl carbon;

20

 Z_1 and Z_2 are chosen independently from the group consisting of: =0, -NHR₂, -CH₂R₂, -NR₂OH; wherein Z_1 and Z_2 may not both be =O and wherein R_2 is selected from the group consisting of:

25

1) hydrogen;

30

K, where K is selected from the group consisting of: C_1 - C_6 2) straight alkyl; C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having O-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;

3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: -CH₂L and -COCH₂L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;

35

4) a C₄-C₈ a-amino-carboxylic acid attached via the w-carbon;

5

- 5) B, wherein B is selected from the group consisting of: $-CO_2H$, -NHOH, $-SO_3H$, $-NO_2$, OP(=O)(OH)(OJ) and -P(=O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C_1 - C_6 straight alkyl, C_3 - C_6 branched alkyl, C_2 - C_6 alkenyl, C_3 - C_6 branched alkenyl, and aryl, wherein B is optionally connected to the nitrogen via a linker selected from the group consisting of: C_1 - C_2 alkyl, C_2 alkenyl, and C_1 - C_2 alkoyl;
- 6) -D-E, wherein D is selected from the group consisting of: C₁-C₃ straight alkyl, C₃ branched alkyl, C₂-C₃ straight alkenyl, C₃ branched alkenyl, C₁-C₃ straight alkoyl, aryl and aroyl; and E is selected from the group consisting of: -(PO₃)_nNMP, where n is 0-2 and NMP is ribonucleotide monophosphate connected via the 5'-phosphate, 3'-phosphate or the aromatic ring of the base; -[P(=O)(OCH₃)(O)]_m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; -[P(=O)(OH)(CH₂)]_m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chosen independently from the group consisting of: Cl, Br, epoxy, acetoxy, -OG, -C(=O)G, and -CO₂G, where G is independently selected from the group consisting of: C₁-C₆ straight alkyl, C₂-C₆ straight alkenyl, C₁-C₆ straight alkoyl, C₃-C₆ branched alkyl, C₃-C₆ branched alkoyl, wherein E may be attached to any point to D, and if D is alkyl or alkenyl, D may be connected at either or both ends by an amide linkage; and
- 7) -E, wherein E is selected from the group consisting of (PO₃)_nNMP, where n is 0-2 and NMP is a ribonucleotide monophosphate connected via the 5'-phosphate, 3'-phosphate or the aromatic ring of the base; -[P(=O)(OCH₃)(O)]_m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; -[P(=O)(OH)(CH₂)]_m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chose independently from the group consisting of: Cl, Br, epoxy, acetoxy, -OG, -C(=O)G, and -CO₂G, where G is independently selected from the group consisting of: C₁-C₆ straight alkyl, C₂-C₆ straight alkenyl, C₁-C₆ straight alkoyl, C₃-C₆ branched alkyl, C₃-C₆ branched alkoyl; and if E is aryl, E may be connected by an amide linkage;
- e) if R₁ and at least one R₂ group are present, R₁ may be connected by a single or double bond to an R₂ group to form a cycle of 5 to 7 members;
- f) if two R₂ groups are present, they may be connected by a single or a double bond to form a cycle of 4 to 7 members; and

g) if R_1 is present and Z_1 or Z_2 is selected from the group consisting of NHR₂, -CH₂R₂ and -NR₂OH, then R_1 may be connected by a single or double bond to the carbon or nitrogen of either Z_1 or Z_2 to form a cycle of 4 to 7 members.