(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 23 November 2006 (23.11.2006)

(51) International Patent Classification:

A6IK 31/397 (2006.01)
(21) International Application Number:

PCT/US2006/018616

(22) International Filing Date: 15 May 2006 (15.05.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/681,232

60/681,232 13 May 2005 (13.05.2005) US 60/695,988 1 July 2005 (01.07.2005) US

(71) Applicants (for all designated States except US): MI-CROBIA, INC. [US/US]; 320 Bent Street, Cambridge, Massachusetts 02141 (US). MARTINEZ, Eduardo [US/US]; 618 W. 138 St., No. 1, New York, New York 10031 (US). SCHAIRER, Wayne C. [US/US]; 135 Milli Street, Westboro, Massachusetts 01581 (US). TALLEY, John J. [US/US]; 96 North Street, #3, Somerville, Massachusetts 021444 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ANTONELLI, Stephen [US/US]; 18 Lafayette Purk, Lynn, Massachusetts 01902 (US). BARDEN, Timothy C. [US/US]; 19 Intervale Road, Salem, Massachusetts 01970 (US). CALI, Brian [US/US]; 100 Hillside Avenue, Arlington, Massachusetts 02476 (US). CURRIE, Mark G. [US/US]; 18 Hall Avenue, Sterling, Massachusetts 01564 (US). LUNDRIGAN-SOUCY, Regina [US/US]; 18 Pearl Street #3, Charlestown, Massachusetts 02129 (US). YANG, Jing-Jing [US/US]; 14 Warnogls Road, Boxbrough, WO 2006/124713 A2

Massachusetts 01719 (US). YORGEY, Peter S. [US/US];
44 Blakeslee Street, Cambridge, Massachusetts 02138
(US). ZIMMER, Daniel P. [US/US]; Apt. 501, 391
Broadway, Somerville, Massachusetts 02145 (US)

- (74) Agent: TIMMER, Edward; Heslin Rothenberg Farley & Mesiti, P.C., 5 Columbia Circle, Albany, New York 12203 (US).
- (81) Designated States (unless otherwise indicated for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, IR, HU, ID, IL, II, NS, IP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, IR, LS, LT, LU, LY, LY, MA, MD, MG, MK, MN, WM, XM, AY, AN, AG, KI, NO, NZ, OM, PG, PH, PI, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated for every hind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasia (AM, ZZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, RIU, IE, IS, TI, TL, UL, U, WG, N. D., PI, PT, RO, SE, SI, SK, TR, OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, IRK, PE, SN, TD, TG)

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: 4-BIARYLYL-1-PHENYLAZETIDIN-2-ONES

(57) Abstract: 4-Biarylyl-1-phenylazetidin-2-ones useful for the treatment of hypercholesterolemia are disclosed.

4-BIARYLYL-1-PHENYLAZETIDIN-2-ONES

Field of the Invention

B--B !

[0001] The invention relates to a chemical genus of 4-biarylyl-1-phenylazetidin-2ones useful for the treatment of hypercholesterolemia and other disorders.

Background of the Invention

[0002] 1,4-Diphenylazetidin-2-ones and their utility for treating disorders of lipid metabolism are described in US patent 6,498,156, USRE37721 and PCT application WO02/50027, the disclosures of which are incorporated herein by reference as they relate to utility.

Summary of the Invention

[0003] In one aspect the invention relates to compounds of formula:

which comprises compounds of two closely related genera, Φ and Ψ :

$$R^{4}$$
 and R^{5h} Ar

wherein

 \bigvee represents an aryl or heteroaryl residue; Ar represents an aryl residue; \mathbb{R}^1

represents one, two, three, four or five residues chosen independently from H. halogen, -OH, loweralkyl, OCH3, OCF3H, OCF3, CH3 CF2H, CH2F, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF3, nitro, -SH, -Sloweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, -PO3H2, -SO3H, -B(OH)2, a sugar, a polyol, a glucuronide and a sugar carbamate; R2 represents one, two, three, four or five residues chosen independently from H, halogen, -OH, loweralkyl, OCH3, OCF2H, OCF3, CH3, CF2H, CH2F, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF3, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate; R⁴ represents one, two, three or four residues chosen independently from H, halogen, -OH, loweralkyl, -O-loweralkyl, hydroxyloweralkyl, -CN, CF3, nitro, -SH, -Sloweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO1H2, -SO1H, -B(OH)2, a sugar, a polvol, a glucuronide and a sugar carbamate; R4f is -OH, -SH or -B(OH)2; R^{5g} represents one, two, three, four or five residues on Ar chosen independently from halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy. ethylenedioxy, hydroxyloweralkyl, -CN, CF3, nitro, -SH, -S-loweralkyl, amino. alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido. alkylsulfoxide, acylamino, amidino, -PO3H2, -SO3H, -B(OH)2, a sugar, a polyol, a glucuronide and a sugar carbamate; R5h represents one, two, three, four or five residues on Ar chosen independently from hydrogen, halogen, -OH, loweralkyl, -Oloweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF3, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl,

earboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate; U is (C₂-C₆)-alkylene in which one or more -CH₂- may be replaced by a radical chosen from -S-, -S(O)-, -SO₂-, -O-, -C(=O)-, -CHOH-, -NH-, CHF, CF₂, -CH(O-loweralkyl)-, -CH(O-loweracyl)-, -CH(OSO₃H)-, -CH(OPO₃H₂)-, -CH(OB(OH)₂)-, or -NOH-, with the provisos that (1) adjacent -CH₂- residues are not replaced by -S-, -S(O)-, -SO₂- or -O-; and (2) -S-, -S(O)-, -SO₂-, -O- and -NH- residues are not separated only by a single carbon; U* is the same as U except that U* excludes -CH₂CH₂CH(OH)-. The genera Φ and Ψ exclude compounds in which R^{5g} is -CN; 2,5-dimethoxy; 2,6-dimethoxy or halogen when neither ring of the biphenyl residue is further substituted.

The genera Φ and Ψ also exclude compounds in which R^{5g} is 2-hydroxy when represents a 2.5-thienyl residue.

[0004] Subgenera include biphenyl compounds of general formulae I -VII:

$$R^{4a}$$
 R^{5a}
 R^{4a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}

[0005] In formula I, R¹ and R² represent one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCH₃, OCF₂H, OCF₃, CH₃, CF₂H, CH₃F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide and a sugar carbamate; R³ is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl; R⁴ represents one, two, three or four residues chosen independently from H, halogen, -OH, loweralkyl, -O-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylamino, alkylsulfoxyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide and a

ŗ.

sugar carbamate; R5f represents one, two, three, four or five residues chosen independently from halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF3, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide a sugar carbamate and -N+R6R7R8 X : R⁶ is C₁ to C₂₀ hydrocarbon or forms a five- to seven-membered ring with R⁷; R⁷ is alkyl or forms a five- to seven-membered ring with R6; R8 is alkyl or together with R⁶ or R⁷ forms a second five- to seven-membered ring; and X is an anion. [0006] In formula II one of R^{1a}, R^{4a} and R^{5a} is -O-A-N⁺ R⁹R¹⁰R¹¹ X and the other two of R1a, R4a and R5a are chosen independently from hydrogen, halogen, -OH, loweralkyl, OCH3, OCF2H, OCF3, CH3 CF2H, CH2F, -O-loweralkyl, methylenedioxy. hydroxyloweralkyl, -CN, CF3 nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, R2a represents one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCH3, OCF2H, OCF3, CH3 CF2H, CH2F, -Oloweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF2 nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy and benzyloxy. R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl. O is chosen from a direct bond, -O-, -S-, -NH-, -CH2O-, -CH2NH-, -C(=O)-, -CONH-, -NHCO-, -O(C=O)-, -(C=O)O-, -NHCONH-, -OCONH- and -NHCOO-. A is chosen from C2 to C20 hydrocarbon, substituted alkyl of 2 to 20 carbons, substituted anyl, substituted arylalkyl, and oxaalkyl of four to fifty carbons; and, when O is a direct bond, -C(=O) or -O(C=O)-, A may additionally be methylene. R9 is C1 to C20 hydrocarbon or forms a five- to seven-membered ring with A or R10; R10 is alkyl, forms a double bond with A or forms a five- to seven-membered ring with R9; R11 is alkyl or together with R10 or R9 forms a second five- to seven-membered ring; and X is an anion.

ŗ.

In formula III, R2b represents one or two residues chosen independently 100071 from H, halogen, -OH, loweralkyl, OCH3, OCF2H, OCF3, CH3, CF2H, CH2F, -Oloweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF3 nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy. carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy. R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl. One of R1b. R4b and R5b is R12 and the other two of R1b, R4b and R5b are chosen independently from hydrogen, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl. -CN, CF3 nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide, and a sugar carbamate; R12 is (C0 to C30) alkylene-Gn in which one or more -CH2- residues in said alkylene may be replaced by -S-, -SO-, SO₂-, -O-, -NH-, -N(alkyl)-, -N(phenyl)-, -N(alkylphenyl)-, $-N^{+}(alkyl)_{2^{-}}, -N^{+}(phenyl)_{2^{-}}, -N^{+}(alkylphenyl)_{2^{-}}, -C(=O)_{-}, -C(=S), CH=CH_{-}, -C=C_{-}, -C(=S)_{-}, -C(=S)_$ phenylene or -NI(C=O)alkyleneCOOH1-; G is chosen from -SO₂H. -PO₂H₂. -O-PO₃H₂, -COOH, -C(N=H)NH₂, a polyol, a sugar, a glucuronide, a sugar carbamate, -N+R^{6a}R^{7a}R^{8a} X, and a mono or bicyclic trialkylammoniumalkyl residue; R^{6a} is C₁ to C20 hydrocarbon: R7a is alkyl; R8a is alkyl; n is one, two, three, four or five and X is an anion.

[0008] In compounds of formula IV, R^{1e} and R^{2e} represent one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCH₃, OCF₂H, OCF₃, CH₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, hydroxyamidino, guanidino, dialkylguanidino, phenyl, benzyl, phenoxy, benzyloxy, a glucuronide, and a sugar carbamate. R³ is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl. R^{4c} represents one, two, three or four residues chosen independently from H, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -

S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a glucuronide and a sugar carbamate; and R^{5f} represents one, two, three, four or five residues chosen independently from halogen, -OH, loweralkyl, -Oloweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF3 nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide a sugar carbamate and - N+R6R7R8 X In compounds of formula V, R1a, R2a and R4a each represents one or two r00091 residues chosen independently from H, halogen, -OH, loweralkyl, OCH1, OCF2H, OCF3, CH3, CF2H, CH2F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF3. nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy. R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl. R5c is -O-A-N+R9R10R11 X : O is chosen from a direct bond, -O-, -S-, -NH-, -CH2O-, -CH2NH-, -C(=O)-, -CONH-, -NHCO-, -CH2NH(C=O)-, -O(C=O)-, -(C=O)O-, -NHCONH-, -OCONH- and -NHCOO-; and A is chosen from C2 to C20 hydrocarbon. substituted alkyl of 2 to 20 carbons, substituted aryl, substituted arylalkyl, and oxaalkyl of four to fifty carbons; and, when Q is a direct bond, -C(=O) or -O(C=O)-, A may additionally be methylene.

[0010] In compounds of formula VI, R^{2b} represents one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCH₃, OCF₂H, OCF₃, CH₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, arboxy, carboxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy. R³ is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl. One of R^{1d}, R^{4d} and R^{5d} is R^{12a} and the other two of R^{1d}, R^{4d} and R^{5d} are chosen independently

from hydrogen, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboxalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy and R^{12a}:

R^{12a} is —(CH₂)R¹³(CH₂)k. O R¹⁶, or, when R^{5d} is R^{12a}, R^{12a} may additionally be (C₀ to C₃₀) alkylene-G_n in which one or more -CH₂- residues in said alkylene may be replaced by -S-, -SO-, SO₂-, -O-, -NH-, -N(alkyl)-, -N(phenyl)-, -N(alkylphenyl)-, -N'(alkyl)-, -N(phenyl)-, -N'(alkylphenyl)-, -C(-C)-, C(-C)-, -C(-C)-, CH=CH-, -C=C-, phenylene or -N[(C=O)alkyleneCOOH]-; G is chosen from -SO₃H, -PO₃H₂, -O-PO₃H₂, -COOH, -C(N=H)NH₂, a polyol, a sugar, a glucuronide, a sugar carbamate, -N⁺R^{6a}R^{7a}R^{8a} X⁻, and a mono or bicyclic trialkylammoniumalkyl residue; R¹³ is chosen from a direct bond, -C=C-, -OCH₂, -C(-O)- and -CHOH-; R¹⁴ is chosen from -OH and -OC(-O)alkyl; R¹⁵ is chosen from -CH₂OH, -CH₂OC(-O)alkyl and -COOalkyl; j is 1-5; k is zero or 1-5; and n is 1-5.

[0011] In compounds of formula VII, R¹⁶, R^{2a} and R^{4e} each represents one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCH₃, OCF₂H, OCF₃, CH₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, arylsulfonyl, acyl, carboxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy. R³ is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl.

$$R^{14}$$
 R^{14} R^{14} R^{15} is chosen from $-(CH_2)R^{13}(CH_2)$ R^{15} and $(C_0$ to $C_{30})$ alkylene- G_n in

which one or more -CH₂- residues in said alkylene may be replaced by -S-, -SO-, SO₂-, -O-, -NH-, -N(alkyl)-, -N(phenyl)-, -N(alkylphenyl)-, -N † (alkylphenyl)₂-, -N † (phenyl)₂-, -C(=O)-, -C(=S), CH=CH-, -C=C-, phenylene or -N[(C=O)alkyleneCOOH]-.

- [0012] The invention also includes pharmaceutically acceptable salts thereof, in any stereoisomeric form, or a mixture of any such compounds in any ratio.
- [0013] The compounds described herein can be included in pharmaceutical formulations comprising a pharmaceutically acceptable carrier and one or more of: (1) a dyslipidemic agent, (2) an anti-diabetic agent, (3) an anti-hypertensive agent, (4) an anti-obesity agent, (5) an agent used to treat autoimmune disorders, (6) an agent used to treat demylenation and its associated disorders, (7) an agent used to treat Alzheimer's disease, (8) a blood modifier, (9) a hormone replacement agent/composition, (10) a chemotherapeutic agent, (11) a peptide which mitigates one or more symptoms of atherosclerosis, (12) an anti-cancer agent, (13) an agent used to treat bone loss and associated disorders, and (14) other agents.
- The compounds and pharmaceutical formulations described herein can be [0014] used in methods for treating a condition for which a cholesterol absorption inhibitor is indicated; preventing or treating a cholesterol related disease; inhibiting the absorption of or reducing plasma or tissue concentration of one or more sterols or stanols; preventing or treating sistoserolemia; preventing or treating vascular diseases/disorders and conditions, dyslipidemia, mixed dyslipidemia, hypo olipoproteinemia, LDL pattern B, LDL pattern A, primary dysbetalipoproteinemia (Frederickson Type III), hyperlipidemia (including but not limited to hypercholesterolemia, hypertriglyceridemia, sitosterolemia), hypertension, angina pectoris, cardiac arrhythmias, congestive heart failure, and stroke; reducing the incidence of cardiovascular disease-related events; preventing or treating vascular conditions and associated thrombotic events; preventing or treating vascular inflammation; reducing blood plasma or serum concentrations of C-reactive protein; preventing, treating, or ameliorating symptoms of Alzheimer's Disease (AD); regulating production or levels of at least one amyloid B (AB) peptide; regulating the amount of ApoE isoform 4 in the bloodstream and/or brain; preventing or treating

cognitive related disorders (including dementia); preventing or treating obesity; preventing or decreasing the incidence of xanthomas; preventing or minimizing muscular degeneration and related side effects associated with certain HMG-CoA reductase inhibitors (statins); preventing or treating diabetes and associated conditions; preventing or treating at least one autoimmune disorder; preventing or treating demyelination and associated disorders; preventing or treating cholesterol associated tumors; inhibiting the expression of at least one multiple ("multi")-drug resistance gene or protein in an animal cell; enhancing the effectiveness of a chemotherapeutic agent in a subject having cancer; reversing a multi-drug resistance phenotype exhibited by an animal cell; modulating lipid raft structure; and preventing or treating osteopenia disorders (bone loss disorders). The methods comprise administering a therapeutically effective amount of a compound or pharmaceutical formulation described herein.

The invention relates to an article of manufacture comprising a container, [0015] instructions, and a pharmaceutical formulation as described above. The instructions are for the administration of the pharmaceutical formulation for a purpose chosen from: treating a condition for which a cholesterol absorption inhibitor is indicated; preventing or treating a cholesterol related disease; inhibiting the absorption of or reducing plasma or tissue concentration of one or more sterols or stanols; preventing or treating sistoserolemia; preventing or treating vascular diseases/disorders and conditions, dyslipidemia, mixed dyslipidemia, hypo a-lipoproteinemia, LDL pattern B, LDL pattern A, primary dysbetalipoproteinemia (Frederickson Type III). hyperlipidemia (including but not limited to hypercholesterolemia, hypertriglyceridemia, sitosterolemia), hypertension, angina pectoris, cardiac arrhythmias, congestive heart failure, and stroke; reducing the incidence of cardiovascular disease-related events; preventing or treating vascular conditions and associated thrombotic events; preventing or treating vascular inflammation; reducing blood plasma or serum concentrations of C-reactive protein; preventing, treating, or ameliorating symptoms of Alzheimer's Disease (AD); regulating production or levels of at least one amyloid β (Aβ) peptide; regulating the amount of ApoE isoform 4 in the bloodstream and/or brain; preventing or treating cognitive related disorders

(including dementia); preventing or treating obesity, preventing or decreasing the incidence of xanthomas; preventing or minimizing muscular degeneration and related side effects associated with certain HMG-CoA reductase inhibitors (statins); preventing or treating diabetes and associated conditions; preventing or treating at least one autoimmune disorder; preventing or treating demyelination and associated disorders; preventing or treating cholesterol associated tumors; inhibiting the expression of at least one multiple ("multi")-drug resistance gene or protein in an animal cell; enhancing the effectiveness of a chemotherapeutic agent in a subject having cancer; reversing a multi-drug resistance phenotype exhibited by an animal cell; modulating lipid raft structure; treating or preventing a diseasee associated with lipid raft structure; and preventing or treating osteopenia disorders (bone loss disorders).

[0016] These and other embodiments of the present invention will become apparent in conjunction with the description and claims that follow.

Brief Description Of Drawings

[0017] FIG. 1 is a table providing bioavailability data for several compounds of the invention.

[0018] FIG. 2 is a table providing ACAT inhibition data for several compounds of the invention.

[0019] FIG. 3A and 3B are graphs depicting ³H-(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl}-D-glucitol binding to the small intestine of hamsters in the presence or absence of competitor compounds.

[0020] FIG. 3C is a table showing the calculated percentage binding relative to control, based on the results depicted in FIG. 3A and FIG. 3B.

[0021] FIG. 4A-D are tables showing the results of retinal, taurocholic acid, progeseterone, sitostanol and cholesterol absorption assays.

[0022] FIG. 5A-C are plots of the additivity assays using the rat cholesterol absorption model.

Detailed description of the Invention

[0023] Compounds of the genus represented by formulae Φ, Ψ, and I - VIII above are inhibitors of cholesterol absorption from the intestine. As such they have utility in treating and preventing lipid disorders, such as hypercholesterolemia and hyperlipidemia. Because of their effect in lowering serum lipids, the compounds are useful in the treatment and prevention of atherosclerosis. Subgenera according to the invention include compounds of formulae Φ and Ψ in which U is chosen from-CH₂CH₂CH(OH)-, -SCH₂CH₂-, -S(O)CH₂CH₂-, -SCH₂C(=O)-, -SCH₂CH(OH)-, -CH(OH)CH₂-CH₂- and -(CH₂)₄-, wherein the left end of the string is the point of attachment to the azetidinone ring and the right end of the string is the point of attachment to the phenyl ring. Other subgenera of compounds of formulae Φ and Ψ include ΦA and ΨA

[0024] Futher subgenera include compounds of formulae ΦA and ΨA in which the ring bearing R^5 is in the para position, e.g.:

In another subgenus R¹ may be H or 4-fluoro; R² may be 4-fluoro; and R⁴ may be H or

hydroxy. In another subgenus, R4 and R5 are both hydroxy.

[0025] Other subgenera according to the invention include compounds in which R^1, R^{1a}, R^2, R^{2a} , R^4 and R^{4a} are chosen independently from H, halogen, -OH, and methoxy; compounds in which R^1, R^2, R^4 and R^5 are chosen from H, a sugar, a glucuronide and a sugar carbamate; compounds in which R^3 is chosen from hydrogen and hydroxy; compounds in which R^4 or R^{4a} is hydrogen; compounds in which R^5 or R^{5a} is chosen from halogen, hydroxy, loweralkyl, -O-loweralkyl, CF3, alkylsulfonyl and arylsulfonyl. Examples of compounds of formula II include those in which one of R^{1a} , R^{4a} and R^{5a} is -Q-A-N⁺ $R^9R^{10}R^{11}$ X⁻ and -Q-A- is chosen from (C₂ to C₂₀ hydrocarbon), -O-(C₂ to C₂₀ hydrocarbon), -NHCO(C₂ to C₂₀ hydrocarbon) and oxaalkyl of four to twenty carbons. In this series of compounds, R^9, R^{10} and R^{11} taken together form a diazabicyclooctane quat:

$$\bigcup_{\mathbb{N}} \mathbb{N}$$

or (3) R9,R10 and R11 taken together form a quinuclidinium quat:

[0026] Some of the compounds of the invention are quaternary salts, i.e. cationic species. Therefore they will always be presented as salts. Other compounds of formula I may contain basic or acidic residues, allowing them to be presented as salts. In the claims, reference to the acid includes its salts. Thus, for example, a claim to 4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid is intended to encompass as well sodium 4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonate. The term "pharmaceutically acceptable salt" refers to salts whose counter ion derives from pharmaceutically acceptable non-toxic acids and bases. When the compounds contain a quat or a basic residue, suitable

pharmaceutically acceptable base addition salts for the compounds of the present invention include inorganic acids, organic acids and, in the case of quats, water (which formally furnishes the hydroxide anion). Examples include hydroxide, acetate, benzenesulfonate (besylate), benzoate, bicarbonate, bisulfate, carbonate, camphorsulfonate, citrate, ethanesulfonate, fumarate, gluconate, glutamate, glycolate, bromide, chloride, isethionate, lactate, maleate, malate, mandelate, methanesulfonate, mucate, nitrate, pamoate, pantothenate, phosphate, succinate, sulfate, tartrate, trifluoroacetate, p-toluenesulfonate, acetamidobenzoate, adipate, alginate, aminosalicylate, anhydromethylenecitrate, ascorbate, aspartate, calcium edetate, camphorate, camsylate, caprate, caproate, caprvlate, cinnamate, cyclamate, dichloroacetate, edetate (EDTA), edisylate, embonate, estolate, esylate, fluoride, formate, gentisate, gluceptate, glucuronate, glycerophosphate, glycolate, glycollylarsanilate, hexylresorcinate, hippurate, hydroxynaphthoate, iodide, lactobionate, malonate, mesylate, napadisylate, napsylate, nicotinate, oleate, orotate, oxalate, oxoglutarate, palmitate, pectinate, pectinate polymer, phenylethylbarbiturate, picrate, pidolate, propionate, rhodanide, salicylate, sebacate, stearate, tannate, theoclate, tosylate, and the like. When the compounds contain an acidic residue, suitable pharmaceutically acceptable base addition salts for the compounds of the present invention include ammonium, metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. Other base addition salts includes those made from: arecoline, arginine, barium, benethamine, benzathine, betaine, bismuth, clemizole, copper, deanol, diethylamine, diethylaminoethanol, epolamine, ethylenediamine, ferric, ferrous, glucamine, glucosamine, histidine, hydrabamine, imidazole, isopropylamine, manganic, manganous, methylglucamine, morpholine, morpholineethanol, n-ethylmorpholine, n-ethylpiperidine, piperazine, piperidine, polyamine resins, purines, theobromine, triethylamine, trimethylamine, tripropylamine, trolamine, and tromethamine.

[0027] In certain subgenera of compounds of formulae III, VI and VII, R^{1b} is R^{12} : R^{2b} and R^{4b} are chosen from H, halogen, -OH, and methoxy; R^{12} is (C₆ to

C₂₀)alkylene-G in which one or more -CH₂- residues in said alkylene may be replaced by -O-, -NH-, -N(alkyl)-, -C(=O)- or -CH=CH-; and G is chosen from -SO₃H, a polyol, and a sugar. In a further embodiment, R⁵ is R¹²; R¹, R² and R⁴ are chosen from H, halogen, -OH, and methoxy; R¹² is (C₆ to C₂₀)alkylene-G in which one or more -CH₂- residues in said alkylene may be replaced by -O-, -NH-, -N(alkyl)-, -C(=O)- or -CH=CH-; and G is chosen from -SO₃H, a polyol, and a sugar.

Therapeutic Indications

[0028] The present invention further provides methods for treating a condition for which a cholesterol absorption inhibitor is indicated; preventing or treating a cholesterol related disease; inhibiting the absorption of or reducing plasma or tissue concentration of one or more sterols or stanols; preventing or treating sistoserolemia; preventing or treating vascular diseases/disorders and conditions, dyslipidemia, mixed dyslipidemia, hypo α-lipoproteinemia, LDL pattern B, LDL pattern A, primary dysbetalipoproteinemia (Frederickson Type III), hyperlipidemia (including but not limited to hypercholesterolemia, hypertriglyceridemia, sitosterolemia), hypertension, angina pectoris, cardiac arrhythmias, congestive heart failure, and stroke; reducing the incidence of cardiovascular disease-related events; preventing or treating vascular conditions and associated thrombotic events; preventing or treating vascular inflammation; reducing blood plasma or serum concentrations of C-reactive protein; preventing, treating, or ameliorating symptoms of Alzheimer's Disease (AD); regulating production or levels of at least one amyloid β (A β) peptide; regulating the amount of ApoE isoform 4 in the bloodstream and/or brain: preventing or treating cognitive related disorders (including dementia); preventing or treating obesity; preventing or decreasing the incidence of xanthomas; preventing or minimizing muscular degeneration and related side effects associated with certain HMG-CoA reductase inhibitors (statins); preventing or treating diabetes and associated conditions; preventing or treating at least one autoimmune disorder; preventing or treating demyelination and associated disorders; preventing or treating cholesterol associated tumors; inhibiting the expression of at least one multiple ("multi")-drug resistance gene or protein in an animal cell; enhancing the effectiveness of a

chemotherapeutic agent in a subject having cancer; reversing a multi-drug resistance phenotype exhibited by an animal cell; modulating lipid raft structure; and preventing or treating osteopenia disorders (bone loss disorders). The methods comprise administering a therapeutically effective amount of a compound described herein. [0029] The compounds described herein may inhibit cholesterol absorption and thus reduce cholesterol levels in vivo. The compositions and therapeutic methods described herein are useful for treating any condition for which a cholesterol absorption inhibitor is indicated. When administered to a patient, the compositions and pharmaceutical formulations described herein can lead to one or more of: reduced blood plasma or serum concentrations of low-density lipoprotein cholesterol (LDL-C); reduced blood plasma or serum concentrations of very low-density lipoprotein cholesterol (VLDL-C); reduced blood plasma or serum concentrations of intermediate-density lipoprotein cholesterol (IDL-C); reduced concentrations of cholesterol and cholesterol ester in the blood plasma or serum; reduced blood plasma or serum concentrations of apolipoprotein B; reduced blood plasma or serum concentrations of triglycerides; increased clearance of triglycerides; increased blood plasma or serum concentrations of high density lipoprotein cholesterol (HDL-C); reduced blood plasma or serum concentrations of non high-density lipoprotein cholesterol (non HDL-C); reduced levels of lipoprotein(a) (Lp(a)); increased ratio of HDL-C to LDL-C; inhibition of saponified and/or non-saponified fatty acid synthesis; reduced blood plasma or serum concentrations apolipoprotein C-II; reduced blood plasma or serum concentrations apolipoprotein C-III; increased blood plasma or serum concentrations of HDL associated proteins (including but not limited to apo A-I, apo A-II, apo A-IV, and apo E), and increased fecal excretion of cholesterol. 100301 The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to prevent or treat a cholesterol related disease. Cholesterol related diseases include but are not limited to diseases involving elevated levels of LDL cholesterol, diseases involving regulation of

diseases involving elevated levels of non-esterified fatty acids, diseases involving reduced or deficient lipoprotein lipase levels or activity (including reductions or deficiencies resulting from lipoprotein lipase mutations), diseases involving elevated levels of ketone bodies (e.g., β-OH butyric acid), hyperlipidemia, elevated LDL Pattern B, elevated LDL Pattern A, primary dysbetalipoproteinemia (Frederickson Type III), hypercholesterolemia, hypo α.-lipoproteinemia (low HDL cholesterol syndrome), hyperlipoproteinemia, elevated Lp(a) levels, hypertriglyceridemia (including Frederickson typse IV and V), other aberrations of apolipoprotein B metabolism, homozygous familial hypercholesterolemia, heterozygous familial hypercholesterolemia, presumed familial combined and non-familial (non-FH) forms of primary hypercholesterolemia (including Frederickson Types IIa and IIb), cholesterol ester storage disease, and cholesterol ester transfer protein disease. The compounds and pharmaceutical formulations described herein can be [0031] used alone or in combination therapy with one or more additional agents (e.g., one or more dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to inhibit the absorption of or reduce plasma or tissue concentration of one or more sterols (referring to, for example: (from any source and in any form: α , β and γ) saturated or hydrogenated sterols including all natural or synthesized forms and derivatives thereof, and isomers including but not limited to cholesterol, sitosterol, campesterol, stigmasterol, brassicasterol (including dihydrobrassicasterol), desmosterol, chalinosterol, poriferasterol, clionasterol, ergosterol, coprosterol, codisterol, isofucosterol, fucosterol, clerosterol, nervisterol, lathosterol, stellasterol, spinasterol, chondrillasterol, peposterol, avenasterol, isoavenasterol, fecosterol, pollinastasterol) or stanols (referring to, for example: (from any source and in any form: α , β and γ) saturated or hydrogenated stanols including all natural or synthesized forms and derivatives thereof, and isomers, including but not limited to sitostanol, campestanol, stigmastanol, brassicastanol (including dihydrobrassicastanol), desmostanol, chalinostanol, poriferastanol, clionastanol, ergostanol, coprostanol, codistanol, isofucostanol, fucostanol, clerostanol, nervistanol, lathostanol, stellastanol, spinastanol, chondrillastanol, pepostanol, avenastanol, isoavenastanol, fecostanol, and

pollinastastanol and 5a-stanols (e.g., cholestanol, 5a-campestanol, 5a-sitostanol) or mixtures thereof in a subject in need of such treatment, for example, a sitosterolemic subject. Sterols and stanols also include free sterols and stanols, esterified sterols and stanols with aliphatic or aromatic acids (thereby forming aliphatic or aromatic esters, respectively), phenolic acid esters, cinnamate esters, ferulate esters, phytosterol and phytostanol glycosides and acylated glycosides or acylglycosides. Thus, terms the sterols and stanols encompasses all analogues, which may further have a double bond at the 5-position in the cyclic unit as in most natural sterols, or one or more double bonds at other positions in the rings (for example, 6,7, 8(9), 8(14), 14 5/7) or no double bonds in the cyclic unit as in stanols.

The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to prevent or treat sistoserolemia in patients who are either at risk of developing sistoserolemia or already exhibit sistoserolemia, for example, as described in US20020169134. Sitosterolemia is a genetic lipid storage disorder characterized by increased levels of sitosterol and other plant sterols in the plasma and other tissues due to increased nonselective intestinal absorption of sterols and decreased hepatic removal. Individuals having sitosterolemia can exhibit one or more of the following conditions: tendon and tuberous xanthomas, arthritis, hemolytic episodes, accelerated atherosclerosis and myocardial infarctions, and can die at an early age due to extensive coronary atherosclerosis (see Nguyen et al. 1991 Journal of Lipid Research, 32: 1941-1948). The compounds and pharmaceutical formulations described herein can be [0033] used alone or in combination therapy with one or more additional agents (e.g., one or more anti-hypertensive agents, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to prevent or treat vascular diseases/disorders and conditions (including but not limited to arteriosclerosis, atherosclerosis, acute vascular syndromes, peripheral arterial disease, cardiovascular disease, cerebrovascular disease (e.g., cerebral infarction or stroke (caused by vessel blockage or hemmorage), or transient ischemia attack (TIA),

syncope, atherosclerosis of the intracranial and/or extracranial arteries, and the like), renovascular disease, mesenteric vascular disease, pulmonary vascular disease, ocular vascular disease, microvascular disease (such as nephropathy, neuropathy, retinopathy), and peripheral vascular disease), hyperlipidemia (including but not limited to hypercholesterolemia, hypertriglyceridemia, sitosterolemia), hypertension, angina pectoris (including stable, chronic stable, vasospastic, and unstable angina), cardiac arrhythmias, congestive heart failure, and stroke in patients who are at risk for such a disease/condition or in need of such treatment for example, as described, in US2002147184 and US20030069221. Vascular disease is a term that broadly encompasses all disorders of blood vessels including small and large arteries and veins and blood flow. The most prevalent form of vascular disease is arteriosclerosis, a condition associated with the thickening and hardening of the arterial wall. Arteriosclerosis of the large vessels is referred to as atherosclerosis. Atherosclerosis is the predominant underlying factor in vascular disorders e.g., coronary artery disease, aortic aneurysm, arterial disease of the lower extremities and cerebrovascular disease. Other vascular conditions frequently coexist with cholesterol levels associated with atherosclerosis. These may include hypertension, angina and/or arrhythmia. Vascular conditions may be caused or aggravated by hypertension which is defined as persistently high blood pressure. Generally, adults are classified as being hypertensive when systolic blood pressure is persistently above 140 mmHg or when diastolic blood pressure is above 90 mmHG. Elevated blood pressure is a risk factor for atherosclerosis, cardiovascular and cerebrovascular disease.

[0034] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more anti-hypertensive agents, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to reduce the incidence of cardiovascular disease-related events, for example, as described in US20050080071. Thus the compounds and pharmaceutical formulations described herein can be used to prevent or reduce the risk of an occurrence of a fatal or non-fatal cardiovascular event in patients having no history of clinically evident coronary heart disease, as well as patients having a history of clinically evident

coronary heart disease (CHD). A total cholesterol level in excess of 225-250 mg/dl is associated with significant elevation of risk of CHD. The newly revised NCEP ATP III low density lipoprotein (LDL-C) goal for patients with CHD or CHD risk equivalent is <100 mg/dL (2.59 mmol/L), for individuals with two or more risk factors is <130 mg/dL (3.37 mmol/L) and for individuals with fewer than two risk factors is <160 mg/dL (4.14 mmol/L). The phrase "cardiovascular event" includes but is not limited to fatal and non-fatal acute major coronary events, coronary revascularization procedures, myocardial revascularization procedures, peripheral vascular disease, stable angina and cerebrovascular insufficiency e.g., stroke. The phrase "acute major coronary event" includes fatal myocardial infarction, witnessed and unwitnessed cardiac death and sudden death occurring from 1 hour up to 24 hours after collapse, non-fatal myocardial infarction including definite acute O-wave myocardial infarction, non-O-wave myocardial infarction, and silent subclinical (remote) myocardial infarction, and unstable angina pectoris. Myocardial infarction includes recurrent myocardial infarction, Q-wave myocardial infarction, non-Q-wave myocardial infarction and silent subclinical (remote) myocardial infarction. The compounds and formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more blood modifiers, antihypertensive agents, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to reduce the risk of mortality following a myocardial infarction or other cardiovascular or acute major coronary event. In certain embodiments, the compound or formulation (e.g., compound of the invention with a statin (e.g., atorvastatin, rosuvastatin, simvastatin, lovastatin)) is administered within 6, 12, 18, 24, 36, or 48 hours after hospital admission for a myocardial infarction or other cardiovascular or acute major coronary event (Fonarow GC 2005 Chest 128:3641-51). In some embodiments the compound or formulation is administered within 24 hours after hospital admission. In some embodiments the compound or formulation is administered at any time before hospital discharge. In some embodiments the formulation consists, consists essentially of, or comprises ezetimibe. In some embodiments the formulation consists, consists essentially of, or comprises Vytorin (ezetimibe and simvastatin). In some

embodiments the formulation consists, consists essentially of, or comprises ezetimibe and one or more blood modifiers, anti-hypertensive agents, dyslipidemic agents (e.g., a statin such as atorvastatin, rosuvastatin), peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof. The compounds and formulations described herein can used alone or in combination therapy with one or more additional agents (e.g., one or more blood modifiers, anti-hypertensive agents, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to reverse or partially reverse the build-up of plaque in coronary arteries and thus may be associated with reduced plaque volume. In some embodiments, administration of the compounds or formulations described herein stops the progression of heart diease, leads to regression of heart disease. In some embodiments the formulation consists, consists essentially of, or comprises ezetimibe. In some embodiments the formulation consists, consists essentially of, or comprises Vytorin (ezetimibe and simvastatin). In some embodiments the formulation consists, consists essentially of, or comprises ezetimibe and one or more blood modifiers, anti-hypertensive agents, dyslipidemic agents (e.g., a statin such as atorvastatin, rosuvastatin), peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof. The compounds and pharmaceutical formulations described herein can be [0036] used alone or in combination therapy with one or more additional agents (e.g., one or more blood modifiers, anti-hypertensive agents, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to prevent or treat vascular conditions and associated thrombotic events as described, for example, in US20020147184. Vascular diseases and conditions are often associated with thrombotic events sometimes resulting in myocardial infarction, stroke and ischemic attack. A thrombotic event is one associated with the formation or presence of a thrombus (e.g., blood clot). Thrombotic events include but are not limited to arterial thrombosis, coronary thrombosis, heart valve thrombosis, coronary stenosis, stent thrombosis and graft thrombosis. Blood clots associated with thrombic events result from an aggregation of blood factors, primarily platelets and fibrin with entrapment of cellular elements

and frequently cause vascular obstruction at the point of their formation. Blood coagulation is a process consisting of a complex interaction of various blood components, or factors, which eventually gives rise to a fibrin clot. It is often desirable to selectively block or inhibit the coagulation cascade in subjects at risk for or exhibiting a vascular disease or condition with blood modifiers e.g., heparin, coumarin, derivatives of coumarin, indandione derivatives, thrombin inhibitors, factor Xa inhibitors, or other agents. For example, in the case of atherosclerosis, proliferation of smooth muscle cells (SMCs) in the vessel wall is an important event in the formation of vascular lesions after vascular reconstruction or in response to other vascular injury. SMC proliferation typically occurs within the first few weeks and up to six months after injury. Thrombosis and or SMC proliferation are also involved in restenosis, which is the re-occlusion of the blood vessel or valve after surgical treatment e.g., angioplasty or bypass grafts. Thus, the compounds and pharmaceutical formulations described herein can be used to prevent or treat restenosis. The compounds and pharmaceutical formulations described herein can also be used to improve coagulation homeostasis (including reducing plasminogen activating inhibitor (PAI)-1 activity, reducing fibrinogen, managing high levels of fibrinogen, promoting fibrinolysis, and/or reducing platelet aggregation, and/or improving endothelial function). The compounds and pharmaceutical formulations described herein can used as coatings on surgical devices (e.g., catheters) and implants (e.g., stents) to reduce the risk of restenosis and thrombosis associated with invasive procedures used in the treatment of cardiovascular diseases.

[0037] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more anti-hypertensive agents, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to prevent or treat vascular (e.g., cardiovascular, cerebrovascular, peripheral vascular, renovascular disease, mesenteric vascular, pulmonary vascular disease, ocular vascular) inflammation in a subject in need of such treatment, for example, as described in US20030119757 and to reduce blood plasma or serum concentrations of C-reactive protein (CRP) in a subject in need of such treatment, for example, as

described in US20030119757. Vascular inflammation can lead to atherosclerosis or coronary heart disease. Atherosclerosis is often indicated by a thickening and build-up of plaque in the arteries and typically occurs when the innermost layer of an artery, the endothelium, becomes damaged by cholesterol, toxins, oxidants, infectious agents and the like. The damaged endothelial cells in the artery walls produce adhesion molecules that allow white blood cells to accumulate in the vessel wall. Fats and cholesterol also build-up with the white blood cells causing inflammation of the artery. Such build-up can thicken to a point where the artery becomes vulnerable to blockage from a clot resulting in heart attack or stroke. The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy to slow the progression or cause regression of atherosclerotic plaques or lesions in, for example, coronary arteries, carotid arteries, the peripheral arterial system. Vascular inflammation often precedes the development and the continual process of atherosclerotic coronary heart disease. Vascular inflammation, beginning with an injury or change in the endothelial wall of the artery, may cause an alteration in the intimal layer that increases platelet adhesion to the endothelium. Vascular stimuli to mammals, e.g., cellular injury or inflammation, may lead to the production of various proteins, commonly called acute response proteins, in the body. CRP (Creactive protein) is an acute response protein. Manufactured in the liver and deposited in damaged tissue, CRP is found in high levels in inflammatory fluids and in both the intimal layer of the atherosclerotic artery and within the lesions of atherosclerotic plaque. Studies have shown a positive association between CRP and coronary artery disease. For example, in a survey of 388 British men aged 50-69, the prevalence of coronary artery disease increased 1.5 fold for each doubling of CRP level (Mendall et al. (1996) BMJ. 312:1061-1065). Multiple prospective studies have also demonstrated that baseline CRP is a good marker of future cardiovascular events (Riker et al. 1998. J Investig Med. 46:391-395). Patients with CRP levels greater than about 0.4 mg/dL have been reported as having increased vascular inflammation and increased risk for vascular disease as compared to patients with levels less than 0.4 mg/dL. (L. Gruberb, "Inflammatory Markers in Acute Coronary Syndromes: C-reactive Protein (CRP) and Chlamydia", American Heart Assoc. Scientific Sessions 2000). Patients with levels

greater 3.4 mg/dL of c-reactive protein were reported to be in the highest quartile of risk. Patients in the second quartile (0.4 to 1.0 mg/dL of c-reactive protein) and third quartile (1.0 to 3.4 mg/dL of c-reactive protein) also have increased risk of vascular disease as compared to patients in the lowest quartile (<0.4 mg/dL c-reactive protein). CRP assays and methodologies for the same are available from Dade Behring Inc., Deerfield, Ill. Methods for analyzing CRPs are described, for example, in US5358852, US6040147, US6277584, and US20030119757.

[0038] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more agents used to treat Alzheimer's disease, other agents, including combinations thereof) to prevent, treat, or ameliorate symptoms of Alzheimer's Disease (AD), regulate production or levels of at least one amyloid β (Aβ) peptide and/or regulate the amount of ApoE isoform 4 in the bloodstream and/or brain of a subject, for example, as described in US2003013699 and US6080778. The compositions can be administered to a subject that exhibits no symptoms of AD, has AD, has a family history of AD or dementia illness, is a human, is a human and has trisomy 21 (Down's syndrome), is a human and carries one or more mutations in the genes that encode β amyloid precursor protein (presenilin-1 or presinilin-2), is a human and carries the Apolipoprotein E isoform 4 gene, is a human and is greater than about 40 years of age, is a human and is greater than about 60 years of age. The subject can have an elevated blood cholesterol level, a total serum cholesterol level that is at least about 200 mg/dl, a total low density lipoprotein (LDL) level that is greater than about 100 mg/dl. In some circumstances, the subject has an elevated level of at least one Aß peptide in the bloodstream and/or brain. In various circumstances, the subject has an elevated level of Aβ-42 in the bloodstream and/or brain, has a level of Aβ-42 peptide greater than about 30 pM in the bloodstream, has a level of Aβ-42 peptide greater than about 40 pM in the bloodstream, has a level of AB-42 peptide ranging from about 30 pM to about 80 pM in the bloodstream, has a level AB-42 peptide of greater than about 50 pmol/gram of wet brain tissue. In various circumstances, the subject has a level of Aβ-40 peptide greater than about 200 pM in the bloodstream, has a level of Aβ-40 peptide greater than about 400 pM in the bloodstream, has a level of Aβ-40 peptide

ranging from about 200 pM to about 800 pM in the bloodstream, has a level of A β -40 peptide greater than about 10 pmol/gram of wet brain tissue. In certain circumstances, the subject's level of A β peptide in the bloodstream is reduced from about 10 to about 100 percent from a level of A β peptides prior to administration of a composition of the present invention.

[0039] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more agents used to treat Alzheimer's disease, other agents, including combinations thereof) to enhance memory or to prevent, treat, or ameliorate symptoms of one or more of dementia, vascular dementia, Huntington's Disease, hydrocephalus, amnesia, AIDs-related dementia, Pick's Disease, Creutzfeldt-Jakob Syndrome, electroconvulsive therapy, Huntington's disease, amyotropic lateral sclerosis, Down syndrome, mental retardation, Parkinson's Disease, mild cognitive impairment, and memory loss.

[0040] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more anti-obesity agents, other agents, including combinations thereof) to prevent or treat obesity in a subject in need of such treatment, for examples as described in US20030119428. Obesity is a common medical problem in developed countries and is a risk factor for other illnesses, e.g., hypertension, diabetes, degenerative arthritis and myocardial infarction. Weight loss medications may be appropriate for use in selected patients who are obese or who are overweight with co-morbid conditions. One measure for defining obesity is known as a body mass index (BMI), which is weight in kilograms divided by height in meters squared. A BMI of 18.5 to 24.9 is generally classified as normal, a BMI of 25.0 to 29.9 is generally classified as overweight and a BMI of 30 or greater is generally classified as obese. Alternatively, obesity may be defined as the top percentile, e.g., 15 percent, of a population's weight for a given height. Such definitions of obesity, however, are not a measure of body composition and different people may have higher or lower levels of body fat or muscle mass for their height. Nevertheless, these definitions of obesity are useful characterizations for general populations of people.

[0041] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents to prevent or decrease the incidence of xanthomas in a subject in need of such treatment, for example, as described in US20030119809. Xanthomas are benign fatty tumors associated with the accumulation of fatty materials under the surface of the skin and are often associated with those who have high triglyceride and cholesterol levels. Xanthoma itself may be indicative of an underlying disease e.g., diabetes, primary billiary cirrhosis, some types of cancer, or hypercholesterolemia.

[0042] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more anti-hypertensive agents, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to prevent or minimize muscular degeneration and related side effects associated with certain HMG-CoA reductase inhibitors (statins), for example, as described in US20030119808. Muscle degeneration encompasses all side effects relating to muscle degradation, aches, and/or weakness that may be associated with the administration of certain statins, including rhabdomyolysis and/or myopathy. Rhabdomyolysis is the destruction or degeneration of skeletal muscle tissue that is accompanied by the release of muscle cell contents (as myoglobin and potassium) into the bloodstream resulting in hypovolemia, hyperkalemia, and sometimes acute renal failure. Certain statins, allegedly have caused severe muscle degeneration in patients; cerivastatin allegedly has been associated with deaths due to rhabdomyolysis. Myopathies which refer to disorders of muscle tissue or muscles include muscle aches and muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values over ten times the upper limit of normal. Risk of myopathy may be increased during use of high dose statins and/or when statins are administered with other drugs e.g., fibrates, niacin, azole, antifungals, erythromycin, and cyclosporin. The subjects to which the compound or pharmaceutical formulation is administered include those that have or are at risk for a vascular condition, a cardiovascular condition, hypercholesterolemia, atherosclerosis, arteriosclerosis. Suitable subjects include those

having no history of clinically evident heart disease as well as those having a history of clinically evident heart disease.

The compounds and pharmaceutical formulations described herein can be [0043] used alone or in combination therapy with one or more additional agents (e.g., one more anti-diabetic agents, anti-hypertensive agents, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, other agents, including combinations thereof) to prevent or treat diabetes and associated conditions in a subject in need of such treatment, for example, as described in US20040214811. Diabetes mellitus, commonly called diabetes, refers to a disease process derived from multiple causative factors and characterized by elevated levels of plasma glucose, referred to as hyperglycemia. There are two major forms of diabetes: Type 1 diabetes (also referred to as insulin-dependent diabetes or IDDM) and Type 2 diabetes (also referred to as noninsulin dependent diabetes or NIDDM). Type 1 diabetes is the result of an absolute deficiency of insulin, the hormone that regulates glucose utilization. Type 1 diabetes has two forms: Immune-Mediated Diabetes Mellitus, which results from a cellular mediated autoimmune destruction of the B cells of the pancreas; and Idiopathic Diabetes Mellitus, which refers to forms of the disease that have no known etiologies. Type 2 diabetes is a disease characterized by insulin resistance accompanied by relative, rather than absolute, insulin deficiency. Premature development of atherosclerosis and increased rate of cardiovascular and peripheral vascular diseases are characteristic features of patients with diabetes. Diabetes and associated conditions include but are not limited to Type 1 diabetes, Type 2 diabetes, gestational diabetes mellitus (GDM), maturity onset of diabetes of the young (MODY), pancreatitis, polycystic ovarian disease, impaired glucose tolerance, insulin resistance, hyperglycemia, hyperinsulinemia, elevated blood levels of fatty acids or glycerol, obesity, Syndrome X, dysmetabolic syndrome and related diseases, diabetic complications (including retinopathy, neuropathy, nerphropathy) and sexual dysfunction. The conditions, diseases, and maladies collectively referenced to as "Syndrome X" or Dysmetabolic Syndrome (as detailed in Johanson, J. Clin. Endocrinol. Metab., 1997, 82, 727-734, and other publications) include hyperglycemia and/or prediabetic insulin resistance syndrome, and is characterized by an initial

insulin resistant state generating hyperinsulinemia, dyslipidemia, and impaired glucose tolerance, which can progress to Type II diabetes, characterized by hyperglycemia, which can progress to diabetic complications.

[0044] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one more agents used to treat autoimmune disorders, other agents, including combinations thereof) to prevent or treat at least one autoimmune disorder in a subject in need of such treatment, for example, as described (including the rationale for the therapy) in US20040092499. Autoimmune disorders include, but are not limited to: Alopecia Areata, Ankylosing Spondylitis, Antiphospholipid Syndrome, aplastic anemia, myelodysplastic syndromes, paroxysmal nocturnal hemoglobulinemia, pure red cell aplasia, chronic neutropenias, amegakaryocytic thrombocytopenia, antiphospholipid syndromes, autoimmune thrombocytopenia, autoimmune hemolytic syndromes, antiphospholipid syndromes, autoimmune gastritis, achlorhydria, Autoimmune Addison's Disease, Autoimmune Diabetes, Autoimmune Hemolytic Anemia, Autoimmune Hepatitis, Autoimmune chronic Hepatitis, Autoimmune hypophysitis, Autoimmune orchiditis, autoimmune ovarian failure, Behcet's Disease, Bullous Pemphigoid, Cardiomyopathy, Celiac Sprue-Dermatitis, Cicatrical pemphigoid, Chronic Fatigue Immune Dysfunction Syndrome (CFIDS), Chronic Inflammatory Demyelinating Polyneuropathy, Interstitial cystitis, Churg-Strauss Syndrome, Cicatricial Pemphigoid, CREST Syndrome, Cold Agglutinin Disease, Crohn's Disease, Dermatitis herpetiformis, Discoid Lupus, Drug-induced autoimmune disorders, Endometriosis, Epidermolysis bullosa acquisita, Essential Mixed Cryoglobulinemia, Fibromyalgia-Fibromyositis, Glomerulonephritis, Good Pasture Syndrome, Graft Versus Host Disease, Graves' Disease, Guillain-Barr, Hashimoto's Thyroiditis, Idiopathic Inflammatory Myopathies, Idiopathic Pulmonary Fibrosis, Idiopathic Thrombocytopenia Purpura (ITP), IgA Nephropathy, Insulin Dependent Diabetes, Juvenile Arthritis, Lichen Planus, Systemic Lupus Erythmatosus, Mnire's Disease, Metal-induced autoimmunity disorders, Mixed Connective Tissue Disease, Multiple Sclerosis, Myasthenia Gravis, Myocarditis, Myositis, Optic neuritis, Painless/postpartum thyroiditis, Peripheral nerve vasculitis, Pemphigus Foliaceus,

Pemphigus Vulgaris, Pemicious Anemia, Polyarteritis Nodosa, Polychondritis,
Polyglandular Syndromes, Polymyalgia Rheumatica, Polymyositis and
Dermatomyositis, Postinfectious autoimmune disorders, Primary
Agammaglobulinemia, Primary Biliary Cirrhosis, Psoriasis, Psoriatic Arthritis,
Reactive Arthritis, Raynaud's Phenomenon, Reiter's Syndrome, Rheumatic Fever,
Rheumatoid Arthritis, Sarcoidosis, Scleritis, Scleroderma, Sjogren's Syndrome, StiffMan Syndrome, Takayasu Arteritis, Temporal Arteritis/Giant-cell Arteritis, Ulcerative
Colitis, Uveitis, Vasculitis, Vitiligo, Kawasaki Disease, and Wegener's
Granulomatosis.

[0045] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one more agents used to treat demylenation and its associated disorders, other agents, including combinations thereof) to prevent or treat demyelination and associated disorders in a subject in need of such treatment, for example, as described (including the rationale for the therapy) in US20040092500. Nerve fibers are wrapped with multiple layers of insulation known as myelin sheath. Demyelination can occur through disease and results in the destruction or removal of the myelin sheath. Primary demyelinating disorders include but are not limited to multiple sclerosis, acute disseminated encephalomyelitis, adrenoleukodystrophy. adrenomyeloneuropathy, Leber's hereditary optic atrophy and HTLV-associated myelopathy. Other disorders associated with demyelination include but are not limited to Tay-Sachs disease, Niemann-Pick disease, Gaucher's disease and Hurler's syndrome; or stroke, inflammation, immune diseases, metabolic disorders, poison or drugs.

[0046] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., one or more chemotherapeutic agents, anti-cancer agents, other agents, including combinations thereof) to prevent or treat cholesterol associated tumors in patients who are either at risk of developing a cholesterol-associated tumor or already exhibit a cholesterol associated tumor, for example, as described in US20040116358. The compounds of the invention may reduce both cholesterol levels in vivo and

epoxycholesterol formation and thereby inhibit initiation and progression of benign and malignant cholesterol-associated tumors or cholesterol-associated cell growth or cell-masses. The tumors may be benign cholesterol-associated tumors or cholesterol-associated cell growth or cell-masses including but not limited to benign tumors associated with prostate, colon, endometrial, or breast tissues or prostate, colon, breast, or endometrial cancer. Thus the compounds and pharmaceutical formulations described herein, for example, are useful to prevent or treat benign prostatic hypertrophy. The tumors may be malignant cholesterol-associated tumors or cholesterol-associated cell growth or cell-masses including but not limited to malignant tumors associated with prostate, colon, endometrial, or breast tissues or prostate, colon, breast, or endometrial cancer.

The compounds and pharmaceutical formulations described herein can be [0047] used alone or in combination therapy with one or more additional agents (e.g., one or more chemotherapeutic agents, anti-cancer agents, other agents, including combinations thereof) for one or more of: inhibiting the expression of at least one multiple ("multi")-drug resistance gene or protein in an animal cell, enhancing the effectiveness of a chemotherapeutic agent in an animal having cancer, and reversing a multi-drug resistance phenotype exhibited by an animal cell all of which are, for example, described in WO05/030225. Co-administration (though not necessarily concurrent or proximal consecutive) of cholesterol absorption inhibitors and chemotherapeutic agents can inhibit the expression of multi-drug resistance genes. Thus the compounds and pharmaceutical formulations described herein can be used alone or in combination therapy in one or more of: a) treating or alleviating a cancer; b) preventing, treating or alleviating tumour growth; c) inhibiting or reducing the expression of one or more multiple drug resistance genes; d) inhibiting or reducing the production of one or more proteins expressed by multiple drug resistance genes; e) enhancing the effectiveness of a chemotherapeutic agent in treating a cancer; and f) sensitizing a cell to one or more chemotherapeutic agents. Multiple drug resistance genes include but are not limited to ABCB1 (MDR-1), ABCA2 (ABC2), ABCB2 (TAP), ABCB3 (TAP), ABCC1 (MRP-1), and ABCC3 (MRP-3).

[0048] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents (e.g., dyslipidemic agents, anti-diabetic agents, anti-hypertensive agents, anti-obesity agents, agents used to treat autoimmune disorders, agents used to treat demylenation and its associated disorders, agents used to treat Alzheimer's disease, blood modifiers. hormone replacement agent/compositions, chemotherapeutic agents, peptides which mitigate one or more symptoms of atherosclerosis, anti-cancer agents, agents used to treat bone loss and associated disorders, other agents, including combinations therof) to modulate lipid raft structure (for example by reducing the level of cholesterol in the lipid raft), for example, as described (including the related rationale) in WO05023305. Lipid rafts are discrete microdomains in the plasma membrane which are rich in sphingolipids and contain ordered cholesterol (Field et al., J. Biol. Chem., 1997,272, 4276-4280). In a number of cells, it has become clear that certain membrane associated proteins preferentially partition into these lipid rafts (Foster, de Hoog and Mann, PNAS, 2003,100, 5813-8). These include various seven transmembrane domain receptors and their associated G proteins and various proteins that are attached to the inner membrane leaflet through lipid moieties such as prenylation, including small molecular weight G proteins, such as Ras, Rac, cdc42 and Rho. Disruption of lipid rafts results in an uncoupling of efficient signal transduction through receptors such as G protein coupled receptors, the T cell receptor and the high affinity IgE receptor. Compounds which modulate lipid raft structure may be useful in the treatment or prophylaxis of a wide variety of diseases and conditions. The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy to prevent or treat a disease or condition associated with lipid raft structure such as respiratory tract/obstructive airways diseases and disorders (including: acute-, allergic, hatrophic rhinitis or chronic rhinitis (such as rhinitis caseosa, hypertrophic rhinitis, rhinitis purulenta, rhinitis sicca), rhinitis medicamentosa, membranous rhinitis (including croupous, fibrinous and pseudomembranous rhinitis), scrofulous rhinitis, perennial allergic rhinitis, seasonal rhinitis (including rhinitis nervosa (hay fever) and vasomotor rhinitis), antitussive activity, asthma (such as bronchial, allergic, intrinsic, extrinsic and dust asthma particularly chronic or inveterate asthma (e.g., late

asthma and airways hyper-responsiveness)), bronchitis (including chronic and eosinophilic bronchitis), emphysema, chronic inflammatory diseases of the lung which result in interstitial fibrosis, such as interstitial lung diseases (ILD) (e.g., idiopathic pulmonary fibrosis, or ILD associated with rheumatoid arthritis, or other autoimmune conditions), chronic obstructive pulmonary disease (COPD)(such as irreversible COPD), chronic sinusitis, conjunctivitis (e.g., allergic conjunctivitis), cystic fibrosis, fanner's lung and related diseases, fibroid lung, hypersensitivity lung diseases, hypersensitivity pneumonitis, idiopathic interstitial pneumonia, nasal congestion, nasal polyposis, otitis media, and chronic cough associated with inflammation or iatrogenic induced); systemic anaphylaxis or hypersensitivity responses (such as drug allergies (e.g., to penicillin, cephalosporins), insect sting allergies, pet allergies, house dust mite allergies, pollen allergies, and food related allergies which may have effects remote from the gut (such as migraine, rhinitis and eczema)); gastro-intestinal diseases and disorders (such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), Crohn's disease, ulcerative colitis, gastric and duodenal ulceration), Fabry's disease; Kimura's disease; multiple sclerosis; wound healing; liver hepatitis and cirrhosis; rheumatoid arthritis; juvenile rheumatoid arthritis; systemic lupus erythematosus; degenerative joint disease; connective tissue diseases; ankylosing spondylitis; soft tissue rheumatism (e.g., tendonitis, bursitis); Sjogren's syndrome; psoriasis; psoriatic arthritis; neuralgia; synovitis; glomerulonephritis; vasculitis; sacoidosis; inflammations that occur as sequellae to influenza; the common cold and other viral infections; gout; pseudogout; contact dermatitis; low back and neck pain; dysmenorrhea; headache; dementias; toothache; sprains; strains; myositis; burns; injuries; pain and inflammation that follows surgical and dental procedures in a patient; Parkinsons disease; muscular dystrophy; neoplasia; hyperparathyroidism; sepsis and septic shock; infections by intracellular pathogens (including, for example, bacteria (such as Salmonella, Chlamydiae, listeria, Mycobacteria tuberculosis), viruses (such as HIV, Measles virus, Papilloma viruses. Epstein-Barr virus, Respiratory Syncytial Virus (RSV), Hepatitis, Herpes viruses, Influenza virus, Ebola and Marburg viruses), parasites (such as Plasmodium (malaria). leishmania, Trypanosoma (sleeping sickness), Toxoplasma gondii)); and bacterial

infections including Shigella, Escherichia Coli (including 0157), Campylobacter, Vibrio cholerae. Clostridium difficile and Clostridium tetani.

The compounds and pharmaceutical formulations described herein can be [0049] used alone or in combination therapy with one or more additional agents (e.g., one or more dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, hormone replacement agents/compositions, anti-cancer agents. chemotherapeutic agents, agents used to treat bone loss and associated disorders, other agents, including combinations thereof) to prevent or treat osteopenia disorders (bone loss disorders) in subjects in need of such treatment. There is a well documented comorbid development of bone loss disorders (e.g., osteoporosis) and cardiovascular disease. For example, Gas-6, osteocalcin, matrix gammacarboxy glutamate protein and protein S function in both bone formation and arterial calcification. Bone loss disorders and associated conditions include but are not limited to: osteoporosis, Paget's disease (osteitis deformans), bone loss, bone fractures, bone segmental defects, abnormally increased bone turnover, conditions associated with bone fracture or deficiency, rheumatoid arthritis (including bone loss attendant rheumatoid arthritis). osteoarthritis, osteolysis (including familial expansile osteolysis and periprostetic osteolysis), osteolytic metastases, osteolytic bone disease, metastatic bone disease, osteosarcoma, osteonecrosis, osteogenesis imperfecta, osteomyelitis (e.g., an infectious lesion in bone leading to bone loss), cleiodocranial dysplasia (CCD), prosthetic loosening, periodontal disease (e.g., periodontitis) and defects, and other tooth repair processes, tooth loss, primary or secondary hyparathyroidism, hypercalcemia (including hypercalcemia of malignancy, and multiple myeloma), cartilage defects or disorders (including cartilage degeneration), conditions associated with connective tissue repair (e.g., healing or regeneration of cartilage defects or injury), metabolic bone diseases, and transplant and drug-induced bone loss. Osteoporosis includes primary osteoporosis, secondary osteoporosis, medicationinduced osteoporosis (e.g., corticosteroid-induced osteoporosis, transplant-bone disease), age-related osteoporosis in females or males, post-menopausal osteoporosis, glucocorticoid-induced osteoporosis, idiopathic osteoporosis, disease-induced arthritis (e.g., rheumatoid arthritis induced), disuse osteoporosis and arthritis, diabetes-related

osteoporosis, endocrine osteoporosis (hyperthyroidism, hyperparathyroidism, Cushing's syndrome, and acromegaly), hereditary and congenital forms of osteoporosis (osteogenesis imperfecta, homocystinuria, Menkes' syndrome, and Rile-Day syndrome) and osteoporosis due to immobilization of extremities. The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy in one more of the following: enhancing/promoting bone formation; preventing bone loss; repair of bone defects and deficiencies, such as those occurring in closed, open and nonunion fractures; prophylactic use in closed and open fracture reduction; promotion of bone healing in plastic surgery; stimulation of bone ingrowth into non-cemented prosthetic joints and dental implants; elevation of peak bone mass in perimenopausal women; prevention or treatment of growth deficiencies; prevention or treatment of increased bone formation during distraction osteogenesis; prevention or treatment of any condition that benefits from stimulation of bone formation; repair of congenital, trauma-induced or surgical resection of bone (for instance, for cancer treatment), and in cosmetic surgery; treatment of wound healing or tissue repair; treatment of subjects undergoing facial reconstruction surgery; treatment of subjects undergoing orthopedic or oral surgery; alleviation of bone pain; prevention or treatment of localized bone loss associated with periprosthetic osteolysis and bone fractures, etc.; rapid inhibition of bone resorption in a subject while obtaining a rapid reduction of bone turnover and biomarkers; rapid increase of bone mineral density; and rapid reduction of fractures. The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy to stimulate bone regeneration. The bone regeneration may be following reconstruction of bone defects in cranio-maxillofacial surgery, or following an implant into bone, for example a dental implant, bone supporting implant, or prosthesis. The bone regeneration may also be following a bone fracture.

[0050] The compounds and pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents for preventing and treating malignant lesions (such as ductal carcinoma in situ of the breast and lobular carcinoma in situ of the breast), premalignant lesions (such as fibroadenoma of the breast and prostatic intraepithelial neoplasia (PIN),

gastrointestinal malignancies, liposarcomas and various other epithelial tumors (including breast, prostate, colon, ovarian, gastric and lung), cancer-induced asthenia (fatigue), irritable bowel syndrome. Crohn's disease, gastric ulceritis, and gallstones, and HIV infection, other infectious diseases, drug-induced lipodystrophy, and proliferative diseases such as psoriasis, for example, as described in US20050085497. As described, for example, in US20050101565, the compounds and [0051] pharmaceutical formulations described herein can be used alone or in combination therapy with one or more additional agents to prevent or treat: cancers (including but not limited to human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, and heavy chain disease (In certain embodiments, the cancers that are treated or prevented by administering the compounds described herein are insulin resistance or Syndrome X related cancers, including but not limited to breast, prostate and colon cancer); PPAR-associated disorders (including but not limited to rheumatoid arthritis; multiple sclerosis; psoriasis; inflammatory bowel diseases; breast; colon or prostate

cancer; low levels of blood HDL (HDL may be elevated in lymph and/or cerebral fluid); low levels of blood, lymph and/or cerebrospinal fluid apo E; low blood, lymph and/or cerebrospinal fluid levels of apo A-I; high levels of blood VLDL; high levels of blood LDL; high levels of blood triglyceride; high levels of blood apo B; high levels of blood apo C-III and reduced ratio of post-heparin hepatic lipase to lipoprotein lipase activity; renal diseases including but not limited to glomerular diseases (including but not limited to acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal proliferative glomerulonephritis. glomerular lesions associated with systemic disease, such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (including but not limited to acute tubular necrosis and acute renal failure, polycystic renal disease, medullary sponge kidney, medullary cystic disease, nephrogenic diabetes, and renal tubular acidosis), tubulointerstitial diseases (including but not limited to pyelonephritis, drug and toxin induced tubulointerstitial nephritis, hypercalcemic nephropathy, and hypokalemic nephropathy), acute and rapidly progressive renal failure, chronic renal failure, nephrolithiasis, or tumors (including but not limited to renal cell carcinoma and nephroblastoma) (In certain embodiments, renal diseases that are treated by the compounds described herein are vascular diseases, including but not limited to hypertension, nephrosclerosis, microangiopathic hemolytic anemia, atheroembolic renal disease, diffuse cortical necrosis, and renal infarcts); and septicemia and impotence (for example, which may result from cardiovascular disease).

[0052] In addition to the other subjects discussed herein, the compositions and pharmaceutical formulations described herein can be administered alone or in combination therapy with one or more additional agents (e.g., one or more hormone replacement agents/compositions, dyslipidemic agents, peptides which mitigates one or more symptoms of atherosclerosis, anti-hypertensive agents, anti-diabetic agents, anti-obesity agents, other agents, including combinations thereof) to post-menopausal women, for example, as described in US20030119796. In various embodiments, the compositions and pharmaceutical formulations described herein can be administered

alone or in combination therapy with one or more additional agents to, for example, (1) a subject in need of or who has undergone an organ transplant (e.g., a kidney transplant), (2) a subject who is either at risk of developing systemic lupus erythematosus or already exhibits systemic lupus erythematosus, (3) a subject who has undergone or is undergoing hemodialysis, (4) a subject who is either at risk of developing hyperhomocysteine levels or already exhibits hyperhomocysteine levels, (5) a subject who is either at risk of developing hypothyroidism or already exhibits hypothyroidism, (6) a subject who is either at risk of developing obstructive liver disease or already exhibits obstructive liver disease, (7) a subject who is either at risk of developing kidney disease or already exhibits kidney disease, (8) a subject who has undergone cardiac bypass surgery, and (9) a subject who has undergone percutaneous transluminal coronary angioplasty.

The compounds and pharmaceutical formulations described herein can be administered alone or in combination therapy with one or more additional agents to a non-human animal for a veterinary use for treating, preventing, or managing a disease or disorder disclosed herein. Non limiting examples of non-human examples include cows, horses, sheep, pigs, cats, dog, mice, rats, rabbits, guinea pigs, and fowl species (e.g., chicken, turkey, duck, goose, quail). In addition to veterinary uses, the compounds and pharmaceutical formulations described herein can be used to reduce the fat content of livestock to produce leaner meats and to reduce the cholesterol content of eggs by administering the compounds to a chicken, quail, or duck hen. For non-human animal uses, the compounds and pharmaceutical formulations described herein can be administered via the animals' feed or orally as a drench composition. Certain compounds of the invention may have the additional advantage that they suppress serum cholesterol and/or LDL levels while themselves not being appreciably absorbed into the mammalian circulation upon oral administration. As a

Definitions

[0055] Throughout this specification the terms and substituents retain their definitions.

[0056] Alkyl is intended to include linear, branched, or cyclic hydrocarbon structures and combinations thereof. When not otherwise restricted, the term refers to alkyl of 20 or fewer carbons. Lower alkyl refers to alkyl groups of 1, 2, 3, 4, 5 and 6 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s-and t-butyl and the like. Methyl is preferred. Preferred alkyl and alkylene groups are those of C₂₀ or below (e.g. C₁, C₂, C₃, C₄, C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₁, C₁₂, C₁₃, C₁₄, C₁₅, C₁₆, C₁₇, C₁₈, C₁₉, C₂₀). Cycloalkyl is a subset of alkyl and includes cyclic hydrocarbon groups of 3, 4, 5, 6, 7, and 8 carbon atoms. Examples of cycloalkyl groups include c-propyl, c-butyl, c-pentyl, norbornyl, adamantyl and the like.

[0057] C₁ to C₂₀ Hydrocarbon (e.g. C₁, C₂, C₃, C₄, C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₁, C₁₂, C₁₃, C₁₄, C₁₅, C₁₆, C₁₇, C₁₈, C₁₉, C₂₀) includes alkyl, cycloalkyl, alkenyl, alkynyl, aryl and combinations thereof. Examples include benzyl, phenethyl, cyclohexylmethyl, camphoryl and naphthylethyl. The term "phenylene" refers to ortho, meta or para residues of the formulae:

[0058] Alkoxy or alkoxyl refers to groups of 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like. Lower-alkoxy refers to groups containing one to four carbons. Methoxy is preferred.

[0059] Oxaalkyl refers to alkyl residues in which one or more carbons (and their associated hydrogens) have been replaced by oxygen. Examples include methoxypropoxy, 3,6,9-trioxadecyl and the like. The term oxaalkyl is intended as it is

understood in the art [see Naming and Indexing of Chemical Substances for Chemical Abstracts, published by the American Chemical Society, ¶196, but without the restriction of ¶127(a)], i.e. it refers to compounds in which the oxygen is bonded via a single bond to its adjacent atoms (forming ether bonds). Similarly, thiaalkyl and azaalkyl refer to alkyl residues in which one or more carbons have been replaced by sulfur or nitrogen, respectively. Examples include ethylaminoethyl and methylthiopropyl.

[0060] Polyol refers to a compound or residue having a plurality of -OH groups. Polyols may be thought of as alkyls in which a plurality of C-H bonds have been replaced by C-OH bonds. Common polyol compounds include for example glycerol, erythritol, sorbitol, xylitol, mannitol and inositol. Linear polyol residues will generally be of the empirical formula $-C_yH_{2y+1}O_y$, and cyclic polyol residues will generally be of the formula $-C_yH_{2y+1}O_y$. Those in which y is 3, 4, 5 and 6 are preferred. Cyclic polyols also include reduced sugars, such as glucitol.

[0061] Acyl refers to groups of 1, 2, 3, 4, 5, 6, 7 and 8 carbon atoms of a straight, branched, cyclic configuration, saturated, unsaturated and aromatic and combinations thereof, attached to the parent structure through a carbonyl functionality. One or more carbons in the acyl residue may be replaced by nitrogen, oxygen or sulfur as long as the point of attachment to the parent remains at the carbonyl. Examples include formyl, acetyl, propionyl, isobutyryl, t-butoxycarbonyl, benzoyl, benzyloxycarbonyl and the like. Lower-acyl refers to groups containing one to four carbons.

[0062] Aryl and heteroaryl refer to aromatic or heteroaromatic rings, respectively, as substituents. Heteroaryl contains one, two or three heteroatoms selected from O, N, or S. Both refer to monocyclic 5- or 6-membered aromatic or heteroaromatic rings, bicyclic 9- or 10-membered aromatic or heteroaromatic rings and tricyclic 13- or 14-membered aromatic or heteroaromatic rings. Aromatic 6, 7, 8, 9, 10, 11, 12, 13 and 14-membered carbocyclic rings include, e.g., benzene, naphthalene, indane, tetralin, and fluorene and the 5, 6, 7, 8, 9 and 10-membered aromatic heterocyclic rings include, e.g., imidazole, pyridine, indole, thiophene, benzopyranone, thiazole, furan, benzimidazole, quinoline, isoquinoline, quinoxaline, pyrimidine, pyrazine, tetrazole and pyrazole.

[0063] Arylalkyl means an alkyl residue attached to an aryl ring. Examples are benzyl, phenethyl and the like.

[0064] Substituted alkyl, aryl, cycloalkyl, heterocyclyl etc. refer to alkyl, aryl, cycloalkyl, or heterocyclyl wherein up to three H atoms in each residue are replaced with halogen, haloalkyl, hydroxy, loweralkoxy, carboxy, carboalkoxy (also referred to as alkoxycarbonyl), carboxamido (also referred to as alkylaminocarbonyl), cyano, carbonyl, nitro, amino, alkylamino, dialkylamino, mercapto, alkylthio, sulfoxide, sulfone, acylamino, amidino, phenyl, benzyl, heteroaryl, phenoxy, benzyloxy, or heteroaryloxy.

[0065] The term "halogen" means fluorine, chlorine, bromine or iodine.

[0066] The term "sugar" is used in its normal sense, as defined in Hawley's Condensed Chemical Dictionary, 12th Edition, Richard J. Lewis, Sr.; Van Nostrand Reinhold Co. New York. It encompasses any carbohydrate comprised of one or two saccharose groups. The monosaccharide sugars (often called simple sugars) are composed of chains of 2-7 carbon atoms. One of the carbons carries aldehydic or ketonic oxygen, which may be combined in acetal or ketal forms. The remaining carbons usually have hydrogen atoms and hydroxyl groups (or protecting groups for hydroxyl, such as acetate). Among monosaccharides which would be considered within the term "sugars" as intended in this application, are arabinose, ribose, xylose, ribulose, xylulose, deoxyribose, galactose, glucose, mannose, fructose, sorbose, tagatose, fucose, quinovose, rhamnose, manno-heptulose and sedoheptulose. Among the disaccharides are sucrose, lactose, maltose, and cellobiose. Unless specifically modified, the general term "sugar" refers to both D-sugars and L-sugars. The sugar may also be protected. The sugar may be attached through oxygen (as in US patent 5,756,470) or through carbon (as in PCT WO 2002066464), the disclosures of both of which are incorporated herein by reference.

[0067] Reduced C-attached sugars or C-glycosyl compounds are also encompassed by the invention. The reduced sugars (e.g. glucitol), which could be classed either as polyols or as sugars, are also known as alditols. Alditols are polyols having the general formula HOCH2[CH(OH)] nCH2OH (formally derivable from an aldose by reduction of the carbonyl group.

[0068] The term "glucuronide" is also used in its normal sense to refer to a glycoside of glucuronic acid.

[0069] The term "sugar carbamate" refers to mono-, di- and oligosaccharides in which one or more hydroxyls have been derivatized as carbamates, particularly as phenyl carbamates and substituted phenyl carbamates. [See Detmers et al. <u>Biochim Biophys. Acta 1486</u>, 243-252 (2000), which is incorporated herein by reference.] A preferred sugar carbamate is:

[0070] Examples of quats that fall within the definition of monocyclic and bicyclic trialkylammoniumalkyl residues include:

[0071] The term "prodrug" refers to a compound that is made more active in vivo. Commonly the conversion of prodrug to drug occurs by enzymatic processes in the liver or blood of the mammal. Many of the compounds of the invention may be chemically modified without absorption into the systemic circulation, and in those cases, activation in vivo may come about by chemical action (as in the acid-catalyzed cleavage in the stomach) or through the intermediacy of enzymes and microflora in the gastrointestinal GI tract.

[0072] In the characterization of the variables, it is recited that R⁹ may form a fiveto seven-membered ring with A or R¹⁰; that R¹⁰ may form a double bond with A or
may form a five- to seven-membered ring with R⁹; and that R¹¹ may form a second
five- to seven-membered ring. It is intended that these rings may exhibit various
degrees of unsaturation (from fully saturated to aromatic), may include heteroatoms
and may be substituted with lower alkyl or alkoxy.

[0073] In the characterization of the variables, it is recited that R-groups, such as \mathbb{R}^5 , represent one, two, three, four or five residues chosen independently from a list of variable definitions. The structure below illustrates the intent of that language. In this example, \mathbb{R}^5 represents three residues: -CH₃, -OH and -OCH₃.

The variables are defined when introduced and retain that definition [0074] throughout. Thus, for example, R3 is always chosen from H, -OH, fluoro, -Oloweralkyl and -O-acyl, although, according to standard patent practice, in dependent claims it may be restricted to a subset of these values. Superscripts are added to distinguish among residues that are attached similarly and that have overlapping Markush groups. For example, the substituent attached to the phenyl ring at the 1position (i.e. on the nitrogen) of the azetidinone is always labeled R1, but can be R1, R1a, R1b or R1c depending on the members of the Markush group defining it. For simplicity, the dependent claims, when multiply dependent, may refer to R1 etc. This is intended to modify the appropriate value of the corresponding variable R1, R1a, R1b, R1c etc. in each claim from which it depends. Thus a claim that recites "a compound according to any of claims 1 to 8 wherein R1 is chosen from H, halogen, -OH and methoxy" intends to further limit, for example, the corresponding R1a substituent in claim 6, the R1b substituent in claim 7 and the R1c substituent in claim 8. It will be recognized that the compounds of this invention can exist in forms in which one isotope of a particular atom may be replaced with a different isotope of that same atom. For example, "hydrogen" may be 1H, 2H or 3H; "carbon" may be 12C, 13C, or 14C; "nitrogen" may be 14N or 15N; "oxygen" may be 16O, 17O or ¹⁸O; and the like. It will be recognized that the compounds of this invention can exist in radiolabeled form, i.e., the compounds may contain one or more atoms containing an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Radioisotopes of hydrogen, carbon, phosphorous, fluorine, iodine and chlorine include ³H, ¹⁴C, ³⁵S, ¹⁸F, ³²P, ³³P, ¹²⁵I, and ³⁶Cl, respectively. Compounds that contain those radioisotopes and/or other radioisotopes of other atoms

are within the scope of this invention. Tritiated, i.e. ³H, and carbon-14, i.e., ¹⁴C, radioisotopes are particularly preferred for their ease in preparation and detectability. Radiolabeled compounds of Formulae I-V of this invention and prodrugs thereof can generally be prepared by methods well known to those skilled in the art.

Conveniently, such radiolabeled compounds can be prepared by carrying out the procedures disclosed in the Examples and Schemes by substituting a readily available radiolabeled reagent for a non-radiolabeled reagent.

The compounds of the invention can also exist in other labeled forms. [0076] US20020009714 discloses methods of labeling and uses of labeled cholesterol absorption inhibitors. The labels can be primary labels (where the label comprises an element which is detected directly) or secondary labels (where the detected label binds to a primary label, e.g., as is common in immunological labeling). An introduction to labels, labeling procedures and detection of labels is found in Introduction to Immunocytochemistry, (2d ed.) Polak and Van Noorden,, Springer Verlag, N.Y. (1997) and in Handbook of Fluorescent Probes and Research Chemicals, Haugland (1996), a combined handbook and catalogue published by Molecular Probes, Inc., Eugene, Oreg. Primary and secondary labels can include undetected elements as well as detected elements. Useful primary and secondary labels in the present invention can include spectral labels, which include fluorescent labels such as fluorescent dyes (e.g., fluorescein and derivatives such as fluorescein isothiocyanate (FITC) and Oregon GreenTM, rhodamine and derivatives (e.g., Texas red, tetramethylrhodamine isothiocyanate (TRITC), etc.), digoxigenin, biotin, phycoerythrin, AMCA, CyDyesTM and the like), radiolabels (including those described above), enzymes (e.g., horseradish peroxidase, alkaline phosphatase etc.) spectral colorimetric labels such as colloidal gold or colored glass or plastic (e.g. polystyrene, polypropylene, latex, etc.) beads. The label may be coupled directly or indirectly to the compound of the invention according to methods well known in the art. As indicated above, a wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions. In general, a detector which monitors a protein/inhibitory agent interaction is adapted to the particular label which is used.

Typical detectors include spectrophotometers, phototubes and photodiodes, microscopes, scintillation counters, cameras, film and the like, as well as combinations thereof. Examples of suitable detectors are widely available from a variety of commercial sources known to persons of skill.

[0077] Nonlimiting examples of labels include those which utilize 1) chemiluminescence (using horseradish peroxidase or alkaline phosphatase with substrates that produce photons as breakdown products) with kits being available, e.g., from Molecular Probes, Amersham, Boehringer-Mannheim, and Life Technologies/Gibco BRL; 2) color production (using both horseradish peroxidase or alkaline phosphatase with substrates that produce a colored precipitate) (kits available from Life Technologies/Gibco BRL, and Boehringer-Mannheim); 3) fluorescence (e.g., using Cy-5 (Amersham), fluorescein, and other fluorescent tags); 5) radioactivity. Other methods for labeling and detection will be readily apparent to one skilled in the art.

In one embodiment, the label is a fluorescent label. Fluorescent labels have [0078] the advantage of requiring fewer precautions in handling, and being amendable to high-throughput visualization techniques (optical analysis including digitization of the image for analysis in an integrated system comprising a computer). Preferred labels are typically characterized by one or more of the following: high sensitivity, high stability, low background, low environmental sensitivity and high specificity in labeling. Fluorescent moieties, which are incorporated into the labels of the invention, are generally are known, including Texas red, digoxigenin, biotin, 1- and 2aminonaphthalene, p,p'-diaminostilbenes, pyrenes, quaternary phenanthridine salts, 9aminoacridines, p,p'-diaminobenzophenone imines, anthracenes, oxacarbocyanine, merocyanine, 3-aminoequilenin, perylene, bis-benzoxazole, bis-p-oxazolyl benzene, 1.2-benzophenazin, retinol, bis-3-aminopyridinium salts, hellebrigenin, tetracycline, sterophenol, benzimidazolylphenylamine, 2-oxo-3-chromen, indole, xanthen, 7hydroxycoumarin, phenoxazine, calicylate, strophanthidin, porphyrins, triarylmethanes, flavin and many others. Many fluorescent tags are commercially available from the SIGMA chemical company (Saint Louis, Mo.), Molecular Probes, R&D systems (Minneapolis, Minn.), Pharmacia LKB Biotechnology (Piscataway,

N.J.), CLONTECH Laboratories, Inc. (Palo Alto, Calif.), Chem Genes Corp., Aldrich Chemical Company (Milwaukee, Wis.), Glen Research, Inc., GIBCO BRL Life Technologies, Inc. (Gaithersberg, Md.), Fluka ChemicaBiochemika Analytika (Fluka Chemie AG, Buchs, Switzerland), and Applied Biosystems (Foster City, Calif.), as well as many other commercial sources known to one of skill.

[0079] The labels may be covalently bound to the compounds of the invention by a tether group. The tether group can be any moiety capable of covalently linking to the inhibitors and to the labels. Preferred groups are substituted or unsusbstituted alkylene, alkenylene or alkynylene of 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms. Particularly preferred groups are unsusbstituted alkynylenes.

[0080] The terms "methods of treating or preventine" mean amelioration.

[0080] The terms "methods of treating or preventing" mean amelioration, prevention or relief from the symptoms and/or effects associated with lipid disorders. The term "preventing" as used herein refers to administering a medicament beforehand to forestall or obtund an acute episode or, in the case of a chronic condition to diminish the likelihood or seriousness of the condition. The person of ordinary skill in the medical art (to which the present method claims are directed) recognizes that the term "prevent" is not an absolute term. In the medical art it is understood to refer to the prophylactic administration of a drug to substantially diminish the likelihood or seriousness of a condition, and this is the sense intended in applicants' claims. As used herein, reference to "treatment" of a patient is intended to include prophylaxis.

[0081] Throughout this application, various references are referred to. Each of the patents, patent applications, patent publications, and references mentioned herein is hereby incorporated by reference in its entirety.

[0082] The term "mammal" is used in its dictionary sense. The term "mammal" includes, for example, mice, hamsters, rats, cows, sheep, pigs, goats, and horses, monkeys, dogs (e.g., Canis familiaris), cats, rabbits, guinea pigs, and primates, including humans.

[0083] The compounds described herein contain two or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms. Each chiral center may be defined, in terms of absolute stereochemistry, as ®- or (S)-.

The present invention is meant to include all such possible isomers, as well as, their racemic and optically pure forms. Optically active &- and (S)-, or (D)- and (L)- isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included.

[0084] The graphic representations of racemic, ambiscalemic and scalemic or enantiomerically pure compounds used herein are taken from Maehr J. Chem. Ed. 62, 114-120 (1985): solid and broken wedges are used to denote the absolute configuration of a chiral element; wavy lines and single thin lines indicate disavowal of any stereochemical implication which the bond it represents could generate; solid and broken bold lines are geometric descriptors indicating the relative configuration shown but denoting racemic character; and wedge outlines and dotted or broken lines denote enantiomerically pure compounds of indeterminate absolute configuration. Thus, the formula XI is intended to encompass both of the pure enantiomers of that pair:

$$R^1$$
 R^4
 R^2
 R^2

[0085] Means either pure R,S:

or pure S,R:

whereas

refers to a racemic mixture of R,S and S,R, i.e. having a trans relative configuration on the beta lactam ring.

[0086] The term "enantiomeric excess" is well known in the art and is defined for a resolution of ab into a + b as

$$ee_a = \begin{pmatrix} conc. & of & a & - & conc. & of & b \\ conc. & of & a & + & conc. & of & b \end{pmatrix} x 100$$

[0087] The term "enantiomeric excess" is related to the older term "optical purity" in that both are measures of the same phenomenon. The value of ee will be a number from 0 to 100, zero being racemic and 100 being pure, single enantiomer. A compound which in the past might have been called 98% optically pure is now more precisely described as 96% ee; in other words, a 90% ee reflects the presence of 95% of one enantiomer and 5% of the other in the material in question.

[0088] The configuration of any carbon-carbon double bond appearing herein is selected for convenience only and is not intended to designate a particular configuration; thus a carbon-carbon double bond depicted arbitrarily herein as E may be Z, E, or a mixture of the two in any proportion.

Terminology related to "protecting", "deprotecting" and "protected" functionalities occurs throughout this application. Such terminology is well understood by persons of skill in the art and is used in the context of processes which involve sequential treatment with a series of reagents. In that context, a protecting group refers to a group which is used to mask a functionality during a process step in which it would otherwise react, but in which reaction is undesirable. The protecting group prevents reaction at that step, but may be subsequently removed to expose the original functionality. The removal or "deprotection" occurs after the completion of the reaction or reactions in which the functionality would interfere. Thus, when a sequence of reagents is specified, as it is in the processes of the invention, the person of ordinary skill can readily envision those groups that would be suitable as "protecting groups". Suitable groups for that purpose are discussed in standard textbooks in the field of chemistry, such as Protective Groups in Organic Synthesis by T.W.Greene [John Wiley & Sons, New York, 1991], which is incorporated herein by reference. Particular attention is drawn to the chapters entitled "Protection for the Hydroxyl Group, Including 1,2- and 1,3-Diols" (pages 10-86).

[0090] The abbreviations Me, Et, Ph, Tf, Ts and Ms represent methyl, ethyl, phenyl, trifluoromethanesulfonyl, toluenesulfonyl and methanesulfonyl respectively. A comprehensive list of abbreviations utilized by organic chemists (i.e. persons of ordinary skill in the art) appears in the first issue of each volume of the Journal of

Organic Chemistry. The list, which is typically presented in a table entitled "Standard List of Abbreviations" is incorporated herein by reference.

While it may be possible for the compounds of formulae Φ , Ψ and I - VIII100911 to be administered as the raw chemical, it is preferable to present them as a pharmaceutical composition. According to a further aspect, the present invention provides a pharmaceutical composition comprising a compound of formula Φ, Ψ or I -VIII or a pharmaceutically acceptable salt or solvate thereof, together with one or more pharmaceutically carriers thereof and optionally one or more other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. The formulations include those suitable for oral, parenteral (including [0092] subcutaneous, intradermal, intramuscular, intravenous and intraarticular), rectal and topical (including dermal, buccal, sublingual and intraocular) administration. The most suitable route may depend upon the condition and disorder of the recipient. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing into association a compound of formula Φ , Ψ and I - VIII or a

pharmaceutically acceptable salt or solvate thereof ("active ingredient") with the carrier, which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.

[0093] Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.

[0094] A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or

granules, optionally mixed with a binder, lubricant, inert diluent, lubricating, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide sustained, delayed or controlled release of the active ingredient therein. The pharmaceutical compositions may include a "pharmaceutically acceptable inert carrier", and this expression is intended to include one or more inert excipients, which include starches, polyols, granulating agents, microcrystalline cellulose, diluents, lubricants, binders, disintegrating agents, and the like. If desired, tablet dosages of the disclosed compositions may be coated by standard aqueous or nonaqueous techniques, "Pharmaceutically acceptable carrier" also encompasses controlled release means. Compositions of the present invention may also optionally include other [0095] therapeutic ingredients, anti-caking agents, preservatives, sweetening agents, colorants, flavors (e.g. cinnamon), desiccants, plasticizers, dyes, and the like. Any such optional ingredient must be compatible with the compound of the invention to insure the stability of the formulation. The composition may contain other additives as needed, including for example lactose, glucose, fructose, galactose, trehalose, sucrose, maltose, raffinose, maltitol, melezitose, stachyose, lactitol, palatinite, starch, xylitol, mannitol, myoinositol, and the like, and hydrates thereof, and amino acids, for

[0096] Examples of excipients for use as the pharmaceutically acceptable carriers and the pharmaceutically acceptable inert carriers and the aforementioned additional ingredients include, but are not limited to binders, fillers, disintegrants, lubricants, anti-microbial agents, and coating agents such as:

example alanine, glycine and betaine, and peptides and proteins, for example

albumen.

[0097] BINDERS: polyethylene oxide, corn starch, citric acid monohydrate, potato starch, other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose, earboxymethyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, methyl cellulose, pre-gelatinized stareh (e.g.,

STARCH 1500® and STARCH 1500 LM®, sold by Colorcon, Ltd.), hydroxypropyl methyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, microcrystalline cellulose (e.g. AVICEL™, such as, AVICEL-PH-101™, -103™ and -105™, sold by FMC Corporation, Marcus Hook, PA, USA), or mixtures thereof; [0098] FILLERS: talc, sodium choloride, aluminum oxide, iron oxides (e.g. yellow, black, red), red ferric oxide, yellow ferric oxide, magnesium carbonate, magnesium hydroxide, magnesium aluminate, aluminum magnesium hydroxide, calcium carbonate (e.g., granules or powder), calcium dihydroxide, dibasic calcium phosphate, dibasic calcium phosphate, calcium sulfate (e.g., granules or powder), microcrystalline cellulose, silicified microcrystalline cellulose, soybean lecithin, xanthar gum, silicic anhyride, powdered cellulose, dextrates, kaolin, mannitol, silicic

[0099] DISINTEGRANTS: agar-agar, alginic acid, calcium carbonate, simethicone emulsion, lactose monohydrate, microcrystalline cellulose, croscarmellose sodium, crospovidone, povidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, clays, other algins, other celluloses, gums, or mixtures thereof:

[00100] SURFACTANTS: Tween 80 or polyoxyethylene-polyoxypropylene copolymer, polyoxyethylene sorbitan, or mixtures thereof;

acid, sorbitol, starch, pre-gelatinized starch, or mixtures thereof;

[00101] LUBRICANTS: calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, palmitic acid, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil), zinc stearate, ethyl oleate, ethyl laurate, agar, syloid silica gel (AEROSIL 200, W.R. Grace Co., Baltimore, MD USA), a coagulated aerosol of synthetic silica (Degussa Co., Plano, TX USA), a pyrogenic silicon dioxide (CAB-O-SIL, Cabot Co., Boston, MA USA), or mixtures thereof;

[00102] ANTI-CAKING AGENTS: calcium silicate, magnesium silicate, silicon dioxide, colloidal silicon dioxide, tale, or mixtures thereof;

[00103] ANTIMICROBIAL AGENTS: benzalkonium chloride, benzethonium chloride, benzoic acid, benzyl alcohol, butyl paraben, cetylpyridinium chloride, cresol, chlorobutanol, dehydroacetic acid, ethylparaben, methylparaben, phenol, phenylethyl alcohol, phenylmercuric acetate, phenylmercuric nitrate, potassium sorbate, propylparaben, sodium benzoate, sodium dehydroacetate, sodium propionate, polysorbate, sorbic acid, thimersol, thymo, or mixtures thereof;

[00104] COATING AGENTS: sodium carboxymethyl cellulose, cellulose acetate phthalate, ethylcellulose, gelatin, pharmaceutical glaze, hydroxypropyl cellulose, hydroxypropyl methylcellulose (hypromellose), hydroxypropyl methyl cellulose phthalate, methylcellulose, polyethylene glycol (e.g. polyethylene glycol 8000, polyethylene glycol 3000), polyethylene glycol 3000), polyvinyl acetate phthalate, shellac, sucrose, titanium dioxide, carnuba wax, candellilla wax, microcrystalline wax, or mixtures thereof; [00105] COLORANTS: FD&C blue no.1, D&C yellow #10 aluminum lake, FD&C yellow #6/sunset yellow FCF aluminum lake, FD&C carmine aluminum lake and FD&C blue #1, or mixtures thereof; and

[00106] ANTIOXIDANTS: butylated hydroxyanisole, sodium ascorbate, sodium metabisulfate, malic acid, citric acid, ascorbic acid, butylated hydroxytoluene, vitamin C, propyl gallate, or mixtures thereof.

[00107] Solid oral dosage forms may optionally be treated with coating systems
(e.g. Opadry® fx film coating system, for example Opadry® blue (OY-LS-20921),
Opadry® white (YS-2-7063), Opadry® white (YS-1-7040), and black ink (S-1-8106).
[00108] The dose range for adult humans is generally from 0.005 mg to 10 g/day
orally. Tablets or other forms of presentation provided in discrete units may
conveniently contain an amount of compound of the invention which is effective at
such dosage or as a multiple of the same, for instance, units containing 5 mg to 500
mg, usually around 10 mg to 200 mg. The precise amount of compound administered
to a patient will be the responsibility of the attendant physician. However, the dose
employed will depend on a number of factors, including the age and sex of the patient,
the precise disorder being treated, and its severity.

[00109] A dosage unit (e.g. an oral dosage unit) can include from, for example, 1 to 30 mg, 1 to 40 mg, 1 to 100 mg, 1 to 300 mg, 1 to 500 mg, 2 to 500 mg, 3 to 100 mg,

5 to 20 mg, 5 to 100 mg (e.g. 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg) of a compound described herein.

Combination Therapy

[00110] Combination therapy can be achieved by administering two or more agents. each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or 10 weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. Combination therapy can also include the administration of two or more agents via different routes or locations. For example, (a) one agents is administered orally and another agents is administered intravenously or (b) one agent is administered orally and another is administered locally into the site of injury (e.g., an artery). In each case, the agents can either simultaneously or sequentially. Approximated dosages for some of the combination therapy agents

described herein are found in the "BNF Recommended Dose" column of tables on pages 11-17 of WO01/76632 (the data in the tables being attributed to the March 2000 British National Formulary) and can also be found in other standard formularies and other drug prescribing directories. For some drugs, the customary prescribed dose for an indication will vary somewhat from country to country.

Dyslipidemic agents

[00111] The compounds described herein can be used in therapeutic combination with one or more dyslipidemic agents. Suitable dyslipidemic agents for use in therapeutic combination with a compound described herein include bile acid sequestrants such as cholestyramine (a styrene-divinylbenzene copolymer containing quaternary ammonium cationic groups capable of binding bile acids, such as Questran® or Questran Light® cholestyramine which are available from Bristol-Myers Squibb), colesevelam hydrochloride (such as WelChol® Tablets (polyallylamine hydrochloride) cross-linked with epichlorohydrin and alkylated with 1-bromodecane and (6-bromohexyl)-trimethylammonium bromide) which are available from Sankyo), colestipol (a copolymer of diethylenetriamine and 1-chloro-2,3-epoxypropane, such as Colestid® tablets which are available from Pharmacia), dialkylaminoalkyl derivatives of a cross-linked dextran, LoCholest®, DEAE-Sephadex (Secholex®, Polidexide®), water soluble derivatives such as 3,3-ioene, N-(cycloalkyl)alkylamines and poliglusam, insoluble quaternized polystyrenes, saponins and mixtures thereof and those bile acid sequestrants disclosed in WO97/11345, WO98/57652, US3692895, and US5703188. Suitable inorganic cholesterol sequestrants include bismuth salicylate plus montmorillonite clay, aluminum hydroxide and calcium carbonate antacids.

[00112] HMG-CoA reductase inhibitors are dyslipidemic agents that can be used in therapeutic combinations with compounds described herein. Suitable HMG-CoA reductase inhibitors for use in therapeutic combination with a compounds described herein include: atorvastatin (Lipitor®; disclosed in US4681893, US5385929 and US5686104), atorvastatin calcium (disclosed in US5273995), dihydrocompactin, (disclosed in US4450171), bervastatin (disclosed in US5082859), carvastatin.

cerivastatin (Baycol®; disclosed in US5006530, US5502199, and US5177080), crilvastatin, dalvastatin/ RG 12561 (disclosed in EP738510A2), fluvastatin (Lescol®; disclosed in US4739073 and US534772), glenvastatin, fluindostatin/ XU 62-320 (disclosed in EP363934A1), velostatin (visinolin; disclosed in US4448784 and US4450171), lovastatin (mevinolin; MK-803; Mevacor® (Merck and Co.) and related compounds disclosed in US4231938). Advicor/ Nicostatin (a lovastatin-niacin mixture), mevastatin (and related compound disclosed in US3983140), compactin/ ML 236B/ CS 500/ 6-demethylmevinolin (and related compounds disclosed in US4804770), pitavastatin (also known as NK-104, itavastatin, nisvastatin, nisbastatin disclosed in US5102888), pravastatin (Eptastatin; CS-514; Pravachol® (Bristol Myers Squibb) and related compounds disclosed in US4346227), rivastatin (sodium 7-(4fluorophenyl)-2,6-diisopropyl-5-methoxymethylpyridin-3-yl)-3,5-dihydroxy-6heptanoate), rosuvastatin/rosuvastatin calcium (Crestor®; also known as ZD-4522 or atavastatin or visastatin; disclosed in US5260440), simvastatin (MMK-733; Zocor® (Merck and Co.) and related compounds as disclosed in US4448784 and US4450171), sirrivastatin, CI-981, PD134967-15, PD 135022, BMY-22089, PD 135023-15, BMY21950, PD 134965, dihydroxy open statins as disclosed in US2005010561, compounds disclosed in WO03/033481, US20050085497, US4231938, US4444784, US4647576, US4686237, US4499289, US4346227, US5753675, US4613610, EP0221025, and EP491226, and optical or geometric isomers thereof; and nontoxic pharmaceutically acceptable salts, N-oxides, esters, quaternary ammonium salts, and prodrugs thereof. In HMG-CoA reductase inhibitors where an open-acid form can exist, salt and ester forms may preferably be formed from the open-acid, and all such forms are included within the meaning of the term "HMG-CoA reductase inhibitor" as used herein. Pharmaceutically acceptable salts with respect to the HMG-CoA reductase inhibitor includes non-toxic salts of the compounds which are generally prepared by reacting the free acid with a suitable organic or inorganic base, particularly those formed from cations such as sodium, potassium, aluminum, calcium, lithium, magnesium, zinc and tetramethylammonium, as well as those salts formed from amines such as ammonia, ethylenediamine, N-methylglucamine, lysine, arginine, ornithine, choline, N.N'-dibenzylethylenediamine, chloroprocaine,

diethanolamine, procaine, N-benzylphenethylamine, 1-p-chlorobenzyl-2-pyrrolidine1'-yl-methylbenzim- idazole, diethylamine, piperazine, and tris(hydroxymethyl)
aminomethane. Further examples of salt forms of HMG-CoA reductase inhibitors may
include, but are not limited to, acetate, benzenesulfonate, benzoate, bicarbonate,
bisulfate, bitartrate, borate, bromide, calcium edetate, camsylate, carbonate, chloride,
clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate,
gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine,
hydrobromide, hydrochloride, hydroxynapthoate, iodide, isothionate, lactate,
lactobionate, laurate, malate, maleate, mandelate, mesylate, methylsulfate, mucate,
napsylate, nitrate, oleate, oxalate, pamaote, palmitate, panthothenate,
phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate,
tannate, tartrate, teoclate, tosylate, triethiodide, and valerate.

[00113] Prodrugs of HMG CoA reductase inhibitors are also dyslipidemic agents. In certain embodiments, the prodrug is a lipophilic ester comprising an ester prodrug linkage to the HMG-like moiety of the statin drug and a lipophilic group described, for example, in WO05023305. Lipophilic alcohols available which may be used to form such statin prodrugs, include, but are not limited to, methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, pentan-1-ol, hexan-1-ol, heptan-1-ol, octan-1-ol, nonan-1-ol, decan-1-ol, 2-ethyl-hexan-1-ol, 3,3, 5-trimethyl-cyclohexanol, 2ethoxy- ethanol, and menthol. Examples of such lipophilic ester statin prodrugs include but are not limited to (3R, 5R)-3, 5- Dihydroxy-7- (2-isopropyl-4, 5-diphenyl-3-phenylcarbamoyl-pyrrol-1-yl)-heptanoic acid, (E)-(3R, 5S)-3, 5-Dihydroxy-7-(1isopropyl-3-phenyl-lH-indol-2-yl)-hept-6-enoic acid, (E)- (3R, 5S)-3, 5-Dihydroxy-7-[4-isopropyl-2- (methanesulfonyl-methyl-amino)-6-phenyl- pyrimidin-5-yl] -hept-6enoic acid, (E)- (3R, 5S)-7- (2-Cyclopropyl-4-phenyl-quinolin-3-yl)- 3,5-dihydroxyhept-6-enoic acid. (E)- (3R, 5S)-7- (2, 6-Diisopropyl-5-methoxymethyl-4-phenylpyridin-3-yl) -3, 5-dihydroxy-hept-6-enoic acid, including free acid and pharmaceutically acceptable salt forms thereof. Hydroxylated statin forms and ester prodrugs thereof as described, for example, in WO05023305 are also dyslipidemic agents. Hydroxylated statins include but are not limited to (3R, 5R)-3-, 5-Dihydroxy-7- [2- (4-hvdroxy-phenyl)-5-isopropyl-3-phenyl-4-phenylcarbamoyl-pyrrol-1- yl] -

hentanoic acid. (E)- (3R, 5S)-3, 5-Dihydroxy-7- [3- (4-hydroxy-phenyl)-l-isopropyl-IH- indol-2-yl] -hept-6-enoic acid, (E)- (3R, 5S)-3, 5-Dihydroxy-7- [4- (4-hydroxyphenyl)-6- isopropyl-2- (methanesulfonyl-methyl-amino)-pyrimidin-5-yl]-hept-6enoic acid, (E)- (3R, 5S)-7- [2-Cyclopropyl-4- (4-hydroxy-phenyl)-quinolin-3-yl]-3, 5dihydroxy-hept-6- enoic acid, (E)- (3R, 5S)-3, 5-Dihydroxy-7- [4- (4-hydroxyphenyl)-2, 6-diisopropyl-5- methoxymethyl-pyridin-3-yl]-hept-6-enoic acid, including free acid and pharmaceutically acceptable salt forms thereof. Ester prodrugs of hydroxylated statins are of the general formul X-Y, where is X is a hydroxylated statin (e.g., (3R, 5R)-3-, 5-Dihydroxy-7- [2- (4-hydroxy-phenyl)-5-isopropyl-3-phenyl-4phenylcarbamoyl-pyrrol-1-yl]-heptanoic acid, (E)- (3R, 5S)-3, 5-Dihydroxy-7- [3- (4hydroxy-phenyl)-l-isopropyl-lH-indol-2-yl]-hept-6-enoic acid, (E)- (3R, 5S)-3, 5-Dihydroxy-7- [4- (4-hydroxy-phenyl)-6-isopropyl-2- (methanesulfonyl-methylamino)- pyrimidin-5-yl] -hept-6-enoic acid, (E)- (3R, 5S)-7- [2-Cyclopropyl-4- (4hydroxy-phenyl)-quinolin-3-yl] -3,5-dihydroxy-hept-6-enoic acid and (E)- (3R, 5S)-3, 5-Dihydroxy-7- [4- (4- hydroxy-phenyl) -2.6-diisopropyl-5-methoxymethyl-pyridin-3vll-hept-6-enoic acid) and Y is chosen from formic acid, acetic acid, propan-1-oic acid, propan- 2-oic acid, butan-1-oic acid, butan-2-oic acid, pentan-1-oic acid, hexan-1-oic acid, heptan- 1-oic acid, octan-1-oic acid, nonan-1-oic acid, decan-1-oic acid, benzoic acid, cinnamic acid and 1-hydroxy-benzoic acid. Not limiting examples of ester prodrugs of hydroxylated statins are shown in WO05023305, figure 10. [00114] Lipid modulating agents are dyslipidemic agents which function as high density lipoprotein (HDL), including synthetic HDL which contains lipid such as phosphotidyl choline, phosphatidyl serine, phosphatidyl ethanolamine, and other phospholipids in combination with HDL associated proteins such as ApoA-I or variants thereof including ApoAI-Milano (R173C) and biologically active peptides derived therefrom, the ApoA-I Paris variant (R151C), the reverse lipid transport (RLT) peptides, enzymes associated with HDL such as paraoxonase, and apo E, alone or formulated in combination with liposomes or emulsions (an example of a liposomal formulation is found in WO95/23592), see, for example, US20030109442 and US20050096307. HDL associated proteins include sequences present in HDL associated proteins that associate with HDL and synthetic peptides having equivalent

binding or functional characteristics. HDL-associated proteins further include apolipoproteins such as Apo E. proApoA-I. ApoA-IParis. ApoA-II. proApoA-II. ApoA-IV, ApoC-I, ApoC-II, ApoC-III, including variants thereof which have been modified to include one or more sulfhydral groups, as described by Bielicki and Oda, Biochemistry 41:2089-2096 (2002). HDL-associated proteins further include paraoxonase, cholesteryl ester transfer protein, Lecithin Cholesterol Acyltransferase (LCAT), phospholipid transfer protein, including combinations thereof complexed with and without lipid, HDL-associated proteins can be used alone, in combination. complexed to one or more lipids alone or in combination complexed to one or more lipids. Non limiting examples include complexes comprising ApoA-I and lipid, complexes comprising paraoxanase and lipid, and complexes comprising ApoA-I, paraoxonase and lipid. HDL-associated proteins and lipids can be mixed in an aqueous solution in appropriate ratios complexed by methods known in the art and including freeze-drying, detergent solubilization followed by dialysis, microfluidization, sonication, and homogenization. Complex efficiency can be optimized, for example, by varying pressure, ultrasonic frequency, or detergent concentration. An example of a detergent commonly used to prepared HDL-associated protein-lipid complexes is sodium cholate. In some cases it is desirable to mix the lipid and the HDL-associated protein prior to administration. Lipids may be in solution or in the form of liposomes or emulsions formed using standard techniques such as sonication or extrusion. Sonication is generally performed with a tip sonifier, such as a Branson tip sonifier, in an ice bath. Typically, the suspension is subjected to several sonication cycles. Extrusion may be carried out by biomembrane extruders. such as the Lipex Biomembrane Extruder. Defined pore size in the extrusion filters may generate unilamellar liposomal vesicles of specific sizes. The liposomes may also be formed by extrusion through an asymmetric ceramic filter, such as a Ceraflow Microfilter, commercially available from the Norton Company, Worcester Mass. or through a polycarbonate filter or other types of polymerized materials (i.e. plastics) commonly known. In some cases, the dyslipidemic agent comprises an HDLassociated protein with little or no lipid. Non limiting examples of lipids include phospholipids (such as soy phosphatidylcholine, egg phosphatidylcholine, soy

phosphatidylglycerol, egg phosphatidylglycerol, palmitoyl-oleoyl-phosphatidylcholine distearovlphosphatidylcholine, distearovlphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, sphingomyelin, phosphatidylserine, phosphatidic acid, N-(2,3di(9-(Z)-octadecenyloxy))-prop-1-yl-N,N,N-trimethylammonium chloride, phosphatidylethanolamine, lysolecithin, lysophosphatidylethanolamine, phosphatidylinositol, cephalin, cardiolipin, cerebrosides, dicetylphosphate, dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, dioleoylphosphatidylglycerol, stearoyl- palmitoylphosphatidylcholine, di-palmitoyl-phosphatidylethanolamine, distearoylphosphatidylethanolamine, dimyrstoyl-phosphatidylserine, and dioleylphosphatidylcholine) and non-phosphorus containing lipids (such as stearylamine, docecylamine, acetyl palmitate, and fatty acid amides). Additional lipids suitable for use are well known to persons of skill in the art and are cited in a variety of well known sources, e.g., McCutcheon's Detergents and Emulsifiers and McCutcheon's Functional Materials, Allured Publishing Co., Ridgewood, N.J. Generally, it is desirable that the lipids are liquid-crystalline at 37°C, 35°C, or 32°C. The concentration of the lipid in the formulation may vary. Persons of skill may vary these concentrations to optimize treatment with different lipid components or of particular patients. ApoAl is combined with lipid in a ratio by weight of between 1:0.5 to 1:3. In certain embodiments, more lipid being preferred for clearance of cholesterol. The ratio may be around 1:1 is to produce the most homogenous population and for purposes of producing stable and reproducible batches. In certain embodiments, the lipid modulating agent is ETC-216, which is a synthetic HDL complex composed of 14 mg/mL of recombinant apolipoprotein A-I Milano and 13 mg/mL of 1-palmitoyl-2oleovl phosphatidyl choline (POPC) complex in sucrose-mannitol-phosphate buffer solution (sterile 6.4% sucrose, 0.8% mannitol in 6 mmol/L phosphate buffer, pH 7.4) (Esperion Therapeutics, Inc.), as a ready to inject solution or saline. [00115] Other dyslipidemic agents which can be used a therapeutic combination with a compound described herein include: cysteinyl leukotriene 2 receptor (CysLT2) antagonists some of which are also

(carboxyacetal) amino) phenyl) thio)-4-nonyl-oxobenzenehexanoic acid, methylbutanoic acid, and those described in WO05/082346; peptides and peptide analogues that mimic the structural and pharmacological properties of human ApoA-I including those disclosed, for example in US6004925; apolipoprotein B (apoB) and isoforms thereof including that produced by the methods disclosed in WO04/108922 and US5834596;

apolipoprotein A (apoA) and isoforms thereof including that produced by the methods disclosed in WO04/108922;

ApoA-I agonists including the peptides described in US6004925 and US6037323; HMG-CoA synthase inhibitors such as L-659,699 ((E,E)-11-[3'R-(hydroxy-methyl)-4'-oxo-2'R-oxetanyl]-3,5,7R-trimethyl-2,4-undecadienoic acid) and those disclosed in US5120729, US5064856, and US4847271:

cholesterol absorption inhibitors such as plant sterols, plant stanols and/or fatty acid estesrs of plant stanols such as sitostanol ester used in Benecol® margarine, stanol esters, beta-sitosterol, sterol glycosides such as tiqueside, pamaqueside, (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-

hydroxyphenyl)azetidin-2-one (Zetia®), and the compounds disclosed in USRE37721, WO9302048, WO05044256, WO05033100, WO05021495, WO05021497, WO05009955, WO05000353, WO04087655, WO04000804, WO04000803, WO02050068, WO02050060, WO02050027, WO04000805, WO02066464.

phytoestrogen compounds such as disclosed in WO00/30665 including isolated soy bean protein, soy protein concentrate or soy flour as well as an isoflavone such as genistein, daidzein, glycitein or equol, or phytosterols, phytostanol or tocotrienol as disclosed in WO00/015201:

WO03026672, WO05042692, WO05042692, and WO04005247;

an α -glucosidase inhibitor, an aldose reductase inhibitor and/or an LDL catabolism promoter such as disclosed in EP1022272;

a matrix metalloproteinase inhibitor including but not limited to (±)4-(4'-Chlorobiphenyl-4-yl)-4-hydroxy-butyric acid, (L)-2-(Dibenzofuran-2-sulfonylamino)-3mercapto-propionic acid, (L)-2-(Dibenzofuran-2-sulfonylamino)-3-methyl-butyric acid, (L)-2-(Dibenzofuran-2-sulfonylamino)-3-phenyl-propionic acid, (L)-2-

(Dibenzofuran-2-sulfonylamino)-3-tritylsulfanyl-propionic acid, (L)-2-(Dibenzofuran-2-sulfonylamino)-4-methyl-pentanoic acid, (S)-2-(4'-Amino-biphenyl-4sulfonylamino)-3-methyl-butyric acid, (S)-2-(4'-Bromo-biphenyl-4-sulfonylamino)-3methyl-butyric acid, (S)-2-(4'-Bromo-biphenyl-4-sulfonylamino)-3-phenyl-propionic acid, (S)-2-(Dibenzofuran-2-sulfonylamino)-4-phenyl-butyric acid, (S)-2-(dibenzofuran-3-sulfonylamino)-3-methyl-butyric acid, (S)-2-(dibenzofuran-3sulfonylamino)-succinic acid. (S)-2-[4-(4-Benzyl-piperidin-1-yl)-benzenesulfonylamino]-3-phenyl-propionic acid, (S)-2-{4-[-4-(4-Methoxy-phenyl)-piperazin-1-yl]benzenesulfonylamino}-phenyl-propionic acid, (S)-2-Acetylamino-4-dibenzofuran-2yl-4-oxo-butyric acid, (S)-2-Amino-4-dibenzofuran-2-yl--4-oxo-butyric acid, (S)-3-Methyl-2-(4'-nitro-biphenyl-4-sulfonylamino)-butyric acid, (S)-3-Phenyl-2-[4-(4phenyl-piperidin-1-vl)-benzene-sulfonylamino]-propionic acid, (S)-4-Dibenzofuran-2yl-4-oxo-2-(2,2,2-trifluoroacetylamino)-butyric acid, (S)-4-Dibenzofuran-2-yl-4-oxo-2-(3-phenyl-propionylamino)-butyric acid, (S)-4-Dibenzofuran-2-yl-4-oxo-2phenylacetylamino-butyricacid, [4-(4-Phenyl-piperidin-1-yl)--benzenesulfonylamino]acetic acid, 2-(4'-bromobiphenyl-4-sulfonylamino)-3-methylbutyric acid, 2-(4'-Bromobiphenyl-4-sulfonylamino)-3-methyl-butyric acid, 4-(4'-Bromo-biphenyl-4-yl)-4hydroxyimino-butyric acid, 4-(4'-Chloro-biphenyl-4-yl)-4-(dimethylhydrazono)butyric acid, 4-(4'-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, 4-Oxo-4-[4-(4phenyl-piperazin-1-yl)-phenyll-butyric acid, 4-Oxo-4-[4-(4-phenyl-piperidin-1-yl)phenyll-butyric acid, batimastat, CDP-845 (Celltech), CGS27023A (Ciba-Giegy), CI-1026, fenbufen and related compounds disclosed in US3784701 and by Child et al., J Pharm Sci 1977; 66:466-476, galardin, marimastat, N-Hydroxy-2-[4-(4-phenylpiperidin-1-vl)-benzene-sulfonylaminol-acetamide, N-Hydroxy-4-oxo-4-[4-(4-phenylpiperidi-n-1-vl)-phenyl]-butyramide, PD 166793, RO-31-9790 (Roche), U24522 (Merck), and the compounds and/or peptides disclosed in EP0236872, EP0274453, EP0489577, EP0489579, EP0497192, EP0574758, EP2321081, US4599361, US5183900, US5256657, US5270326, US5300501, US5304604, US5455258, US552419, US5525629, US5530128, US5530161, WO90/05716, WO90/05719, WO91/02716, WO92/09563, WO92/13831, WO92/17460, WO92/22523, WO93/09090, WO93/09097, WO93/20047, WO93/244, WO93/24449, WO94/02446,

WO94/02447, WO95/13289, WO96/11209, WO97/27174, and US20050020607 (including the compounds specifically disclosed by chemical formula and name); a sodium-proton exchange inhibitor such as disclosed in DE19622222; an LDL-receptor inducer or a steroidal glycoside such as disclosed in US5698527 and GB2304106;

LUV (large unilamellar vesicles) products including ETC-588 (Pfizer);

acyl coenzyme A-cholesterol acyl transferase (ACAT) inhibitors such as avasimibe (Current Opinion in Investigational Drugs, 3(9):291-297 (2003)), eflucimibe, HL-004. lecimibe, (DuP-1), KY505, SMP 797, TS-962 (Taisho Pharmaceutical Co. Ltd), F-1394, CS-505 (pactimibe), F-12511, K-10085 and YIC-C8-434, CL-277,082 (Clin Pharmacol Ther. 48(2):189-94 (1990)) and those disclosed in Drugs of the Future 24, 9-15 (1999); Nicolosi et al. Atherosclerosis (1998), 137(1), 77-85; Ghiselli and Giancarlo, Cardiovasc, Drug Rev. (1998), 16(1), 16-30; Smith, et al. Bioorg, Med. Chem. Lett. (1996), 6(1), 47-50; Krause et al, Inflammation; Mediators Pathways (1995), 173-98, Publisher: CRC, Boca Raton, Fla; Sliskovic et al, Curr. Med. Chem. (1994), 1(3), 204-25; Stout et al, Chemtracts: Org. Chem. (1995), 8(6), 359-62 and US5510379, WO96/26948 and WO96/10559; CETP inhibitors such as JTT-705 (JTT 705, identified in Nature 406, (6792):203-7 (2000), torcetrapib (CP-529,414 described in US20030186952 and WO00/017164), CP 532,632, BAY63-2149, CeTi-1, SC 591, SC 795 (Pharmacia), SC 744 (Pharmacia) and the like including those described in Current Opinion in Investigational Drugs. 4(3):291-297 (2003) and those disclosed in J. Antibiot., 49(8): 815-816 (1996), Bioorg, Med. Chem. Lett., 6:1951-1954 (1996), J. Medicinal Chemisty 49(1): 1-22, and patent publications US5512548, US6147090, WO99/20302, WO99/14204, WO99/41237, WO95/04755, WO96/15141, WO96/05227, WO038721, WO/0038722, EP796846, EP818197, EP818448. EP992496, DE19704244, DE19741051, DE19741399, DE197042437, DE19709125.

Med. Chem., 31:1869 (e.g., isoprenoid (phosphinyl-methyl)phosphonates), Biller et al

DE19627430, DE19832159, DE19741400, JP 11049743, and JP 09059155; squalene synthetase inhibitors such as squalestatin-1, and those disclosed in US4871721, US4924024, US5712396 (α-phosphono-sulfonates), Biller et al (1988) J.

(1996) Current Pharmaceutical Design, 2:1, P. Ortiz de Montellano et al (1977) J. Med. Chem, 20:243 (terpenoid pyrophosphates), Corey and Volante (1976) J. Am. Chem. Soc., 98:1291 (farnesyl diphosphate analog A and presqualene pyrophosphate (PSO-PP) analogs), McClard et al (1987) J.A.C.S., 109:5544 (phosphinylphosphonates), Capson, T. L., PhD dissertation, June, 1987, Dept. Med. Chem. U of Utah, Abstract, Table of Contents, pp 16, 17, 40-43, 48-51, Summary, (cyclopropanes), Curr. Op. Ther. Patents (1993) 861, and patent publications EP0567026A1, EP0645378A1, EP0645377A1, EP0611749A1, EP0705607A2, EP0701725Al, US20040072830, and WO96/09827; antioxidants such as probucol (and related compounds disclosed in US3674836), probucol derivatives such as AGI-1067 ([mono[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4hydroxyphenyllthiol-1-methylethyllthiol-2,6-bis(1,1-dimethylethyl)phenyll ester (butanedioc acid) and other derivatives disclosed in US6121319 and US6147250), tocopherol, ascorbic acid, retinol (as disclosed in WO94/15592), β-carotene, selenium, vitamin C and pharmaceutically acceptable salts and esters thereof; an antihomocysteine agent such as folic acid, folate, vitamin E, vitamin B6, vitamin B₁₂ and pharmaceutically acceptable salts and esters thereof; PPARα agonists such as those disclosed in US6028109 (fluorophenyl compounds). WO00/75103 (substituted phenylpropionic compounds), WO98/43081 and fibric acid derivatives (fibrates) such as beclofibrate, benzafibrate, bezafibrate (CAS RN 41859-67-0, see US3781328), binifibrate (CAS RN 69047-39-8, see BE884722), ciprofibrate (CAS RN 52214-84-3, see US3948973), clinofibrate (CAS RN 30299-08-2, see US3716583), clofibrate (such as ethyl 2-(p-chlorophenoxy)-2-methyl-propionate, e.g., Atromid-S® capsules (Wyeth-Ayerst), clofibric acid, etofibrate, pirifibrate, ronifibrate, simfibrate, theofibrate, fenofibrate (such as Tricor® micronized fenofibrate ((2-[4-(4-chlorobenzoyl)phenoxy]-2-methyl-propanoic acid, 1-methylethyl ester: Abbott Laboratories) or Lipanthyl® micronized fenofibrate (Labortoire Founier, France)), gemcabene, gemfibrozil (such as 5-(2,5-dimethylphenoxy)-2,2dimethylpentanoic acid, e.g., Lopid® tablets (Parke Davis)), lifibrol, GW 7647, BM 170744, LY518674 and those fibrate and fibrate acid derivatives disclosed in

WO03/033456, WO03/033481, WO03/043997, WO03/048116, WO03/053974, WO03/059864, and WO03/05875:

FXR receptor modulators such as GW 4064 (described in WO00/37077, Glaxo Group Limited), SR 103912, 3-deoxychenodeoxycholic acid, ORX-401 (OuatRx), (E)-and (Z)-guggulsterone, chenodeoxycholic acid (CDCA), 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), compounds disclosed in WO05056554 (including the compounds specifically named in claims 3, 7, 9, 11, 13, 17, 19, 21 23, 27, 29, 31, 33, 35, 37, 39, and 41), compounds disclosed in US6906057 (such as (Z)-5-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronapthalen-2-vl)-2-(trimethylsilyl)vinyl]thiophene-2-carboxylic acid. (Z)-5-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronapthalen-2-yl)-2-(trimethylsilyl)vinyl]thiophene-2-carboxylic acid and the compounds described in claims 26-28), farnesol (3.7.11.trimethyl-2.6.10-dodecatrienol), farnesal, farnesyl acetate, farnesoic acid, geranylgeraniol, and juvenile hormone III (7-methyl-9-(3,3dimethyloxiranyl)-3-methyl-2,6-nonadienoic acid methyl ester), methyl farnesyl ether, ethyl farnesyl ether, methyl turnesoztce, ethyl Carnesoate, 7-methyl-9-(3,3dimethyloxiranyl)-3-methyl-2,6-nonadienoic acid methyl ester, and 7-methyl-9-(3,3dimethyloxiranyl)-3-methyl-2,6-nonadienoic acid ethyl ester, compounds disclosed in WO04/048349 (such as 3-{[(4-{[3-(2,6-Dichlorophenyl)-5-isopropylisoxazol-4yl]methoxy}-2-methylphenyl)- (methyl) amino] methyl} benzoic acid; Methyl 4-0[(4-{[3-(2,6-dichlorophenyl)-5-isopropyl-4-isoxazolyl]methoxy}-2- dimethylanilino) methyl] benzoate; 3-{[(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4yl]methoxy}- phenyl) amino] methyl} benzoic acid : 5-[(4-{[3-(2,6-Dichlorophenyl)-5-isopropyl-4-isoxazolyl]methoxy}-2-dimethyl- anilin) methyl]-2-furoic acid; 4- [(4-1 [3- (2, 6-Dichlorophenyl)-5-isopropyl-4-isoxazolyllmethoxy}-2-dimethyl- anilino) methyl] benzoic acid; Methyl 2-[(4-{[3-(2,6-dichlorophenyl)-5-isopropyl-4isoxazolyl]methoxy}-2- dimethylanilino) methyl]-3-furoate; N-(2, 1, 3-Benzoxadiazol-5-ylmethyl)-4- { [3- (2, 6-dichlorophenyl)-5-isopropyl-4isoxazolyl]methoxy}-N,2-dimethylaniline; N-(4-{[3-(2,6-Dichlorophenyl)-5isopropyl-4-isoxazolyl]methoxy}-2-methylphenyl)- N-methyl-N-[4-(1, 2, 3-thiadiazol-4-yl) benzyl] amine; 4- [(4-1 [3- (2, 6-Dichlorophenyl)-5-isopropyl-4isoxazolyllmethoxy}-2-dimethyl- anilino)methyl]benzonitrile; 2-[(4-{[3-(2,6-

Dichlorophenyl)-5-isopropyl-4-isoxazolyl|methoxy}-2-dimethyl-anilin) methyl]-3furoic acid; {3- [(4- { [3-(2, 6-Dichlorophenyl)-5-isopropyl-4-isoxazolyl] methoxy} -2- dimethylanilino) methyl] phenyl} methanol; {4- [(4- { [3-(2,6-Dichlorophenyl)-5isopropyl-4-isoxazolyl]methoxy}-2- dimethylanilino)methyl]phenyl}methanol; 3- [(4- { [3- (2, 6-Dichlorobenzyl)-5-ethyl-4-isoxazolyl] methoxy}-2- dimethylanilino) methyl] benzoic acid; 3-{[(4-{[5-Isopropyl-3-(2, 4, 6-trichlorophenyl)isoxazol-4yl]methoxy}-2- methylphenyl)- (methyl) amino] methyl} benzoic acid; 3- [(4-1 [3-(2, 6-Dichlorobenzyl)-5-isopropyl-4-isoxazolyi] methoxy} -2- dimethylanilino) methyl] benzoic acid; 3-{[(4-{[3-(2-Chlorobenzyl)-5-isopropylisoxazol-4vllmethoxy\-2-methylphenyl)- (methyl)-aminol methyl\ benzoic acid; 3-[(4-{[5-Cyclopropyl-3-(2,6-dichlorobenzyl)-4-isoxazolyl]methoxy}-2- dimethylanilino) methyl] benzoic acid; 5-{[5-({5-Isopropyl-3-[2-(trifluoromethoxy)phenyl]-4isoxazolyl}methoxy)-2- dimethylanilino] methyl}-2-furoic acid; 4-{ [4-({5-isopropyl-3-[2-(trifluoromethoxy) phenyll-4-isoxazolyl} methoxy)-2- dimethytanitino] methyt} benzoicacid; 3-{[4-({5-Isopropyl-3-[2-(trifluoromethoxy)phenyl]-4isoxazolyl}methoxy)-2- dimethylanilino] methyl} benzoic acid; Methyl 5-{[4-({5isopropyl-3-[2-(trifluoromethoxy)phenyl]-4-isoxazolyl}methoxy)-2- dimethylanilino] methyl}-2-furoate; Methyl 4- { [4- ({5-isopropyl-3- [2- (trifl uoromethoxy) phenyl]-4-isoxazolyl} methoxy)-2- dimethylanilino] methyl} benzoate; 4-1 [(2-Chloro-4-1 [3- (2, 6-dichlorophenyl)-5-isopropylisoxazol-4-yllmethoxy} phenyl)- amino] carbonyl} benzoic acid: Methyl 3-[(2-chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropyl-4-isoxazolyl]methoxy}- anilino) carbonyl] benzoate; Methyl 4-[(2-chloro-4-{[3-(2,6dichlorophenyl)-5-isopropyl-4-isoxazolyl]methoxy}- anilino) carbonyl] benzoate; 3- [(4- { [3- (2, 6-Dichlorophenyl)-5-isopropyl-4-isoxazolyl] methoxy}-2-methylanilino)carbonyl] benzoic acid; 4-[(4-{[3-(2,6-Dichlorophenyl)-5-isopropyl-4isoxazolyl]methoxy}-2-methylanilino)- carbonyl] benzoic acid; 3- [(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropyl-4-isoxazolyl]methoxy}- anilin) carbonyl] benzoic acid; 3-[(4-{[3-(2, 6-Dichlorophenyl)-5-isopropyl-4-isoxazolyl] methoxy}-2dimethylanilino) carbonyl] benzoic acid; 3-[(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5isopropyl-4-isoxazolyl]methoxy}- methylanilino) carbonyl] benzoic acid; 4-[(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5-isorpopyl-4-isoxazolyl]methoxy}-

```
methylanilino) carbonyl] benzoic acid; 3- { [4-({5-isopropyl-3-[2-(trifluoromethoxy)
phenyl]-4-isoxazolyl} methoxy) -2- dimethylanilino] carbonyl} benzoic acid: 3- { [4-(
{5-lsopropyl-3-[2-(trifluoromethoxy) phenyl]-4-isoxazolyl} methoxy) -2-
methylanilino] carbonyl} benzoic acid; 3-{[2-Chloro-4-({5-isopropyl-3-[2-
(trifluoromethoxy) phenyl]-4-isoxazolyl}- methoxy) methylanilino] carbonyl} benzoic
acid; Methyl 3- { [(4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}-2-
methylphenyl) (methyl) aminol sulfonyl) benzoate: Methyl 3-{[(2-chloro-4- {[3-(2.6-
dichlorophenyl)-5-isopropylisoxazol-4-yllmethoxy\- phenyl) aminol sulfonyl\
benzoate; Methyl 3-{[(4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-
yl]methoxy}-2- methylphenyl)amino]sulfonyl} benzoate; Methyl 3-{[(4-{[3-(2,6-
dichlorophenyl)-5-isopropylisoxazol-4 yl]methoxy}phenyl)- amino]- sulfonyl}
benzoate: 3-{[(4-{[3-(2.6-Dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}-2-
methylphenyl)- amino] sulfonyl} benzoic acid; 3- { [(4-{ [3-(2, 6-Dichlorophenyl)-5-
isopropylisoxazol-4-yl] methoxy} phenyl) amino- sulfonyl} benzoic acid; Methyl 3-
{[(2-chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}-phenyl)
(methyl) amino] sulfonyl} benzoate; Methyl 3-{[(4-{[3-(2,6-dichlorophenyl)-5-
isopropylisoxazol-4-yl]methoxy}phenyl)- (methyl) amino] sulfonyl} benzoate; Methyl
3-{[(2-chloro-4-{[3-(2.6-dichlorophenyl)-5-isopropylisoxazol-4-yl] methoxy} -
phenyl) (ethyl) amino] sulfonyl} benzoate; Methyl 3- { [(4-{[3-(2.6-dichlorophenyl)-
5-isopropylisoxazol-4-yl]methoxy}-2-methyl- phenyl) (ethyl) amino]sulfonyl}
benzoate; Methyl 3- { [ (4- { [3-(2, 6-dichlorophenyl)-5-isopropylisoxazol-4-yl]
methoxy} phenyl)- (ethyl)-amino] sulfonyl} benzoate; 3- { [ (2-Chloro-4- { [3-(2,6-
dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy\phenyl)- aminol sulfonyl\ benzoic
acid; 3- { [(2-Chloro-4- { [3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-
yl]methoxy}phenyl)- (methyl) amino] sulfonyl} benzoic acid; 3- { [ (4- { [3- (2, 6-
Dichlorophenyl)-5-isopropyl isoxazol-4-yl] methoxyl-2-methylphenyl)- (methyl)
amino] sulfonyl} benzoic acid; 3- { [(4-{[3-(2,6-Dichlorophenyl)-5-
isopropylisoxazol-4-yl]methoxy{phenyl)(methyl)- aminol sulfonyl} benzoic acid; 3- {
[(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropylisoazol-4-vl]methoxy}phenyl)-
(ethyl) amino] benzoic acid; 3- { [ (4- { [3- (2, 6-Dichlorophenyl)-5-
isopropylisoxazol-4-yl] methoxy}-2-methylphenyl)- (ethyl) amino] sulfonyl} benzoic
```

acid; 3- { [(4- { [3-(2, 6-Dichlorophenyl)-5-isopropylisoxazol-4-yl] methoxy} phenyl) (ethyl)- amino] benzoic acid; Methyl 4-{[(2-chloro-4-{[3-(2,6dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}- phenyl)amino]sulfonyl}benzoate : Methyl 4-{[(4- {[3-(2, 6-dichlorophenyl)-5-isopropylisoxazol-4-yl] methoxy}-2methyl- phenyl) amino] sulfonyl} benzoate; Methyl 4- { [(4-{[3-(2,6dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}phenyl)- aminol benzoate ; 4-{[(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}phenyl)amino] sulfonyl} benzoic acid; 4-{[(4- { [3-(2, 6-Dichlorophenyl)-5-isopropyl isoxazol-4-yl] methoxy}-2-methylphenyl)- amino] suffonyl} benzoic acid; 4-{[(4-{[3-(2.6-Dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy{phenyl)amino]- sulfonyl} benzoic acid; Methyl 4-{ [(4- { [3-(2, 6-dichlorophenyl)-5-isopropylisoxazol-4-yl] methoxy}-2-methyl- phenyl) (methyl) amino] benzoate; Methyl 4- { [(4- { [3-(2,6dichlorophenyl)-5-isopropylisoxazol-4-yllmethoxy\phenyl)- (methyl) amino|sulfonvl}benzoate; Methyl 4- { [(4- { [3-(2, 6-dichlorophenyl)-5isopropylisoxazol-4-yl] methoxy} phenyl)- (ethyl) amino] sulfonyl} benzoate; 4-{[(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}phenyl)-(methyl) aminolsulfonyllbenzoic acid; 4- { [(4-1 [3- (2, 6-Dichlorophenyl)-5isopropylisoxazol-4-vl] methoxy}-2-methylphenyl)- (methyl) amino|sulfonyl}benzoic acid; 4-{[(4-{[3-(2,6-Dichlorophenyl)-5-isopropylisoxazol-4-yl] methoxy} phenyl) (methyl)- amino]sulfonyl}benzoic acid; 4-1 [(2-Chloro-4-1 [3- (2, 6-dichlorophenyl)-5-isopropylisoxazol-4-yi] methoxy} phenyl)- (ethyl) amino|sulfonyl}benzoic acid; 4-{ [(4-{ [3-(2, 6-Dichlorophenyl)-5-isopropylisoxazol-4-yl] methoxy}-2-methyl phenyl)- (ethyl) aminolsulfonyl} benzoic acid; 4- { [(4- { [3- (2, 6-Dichlorophenyl)-5-isopropylisoxazol-4- yllmethoxy\phenyl)(ethyl)amino]-sulfonyl\ benzoic acid; 3-({[2-Chloro-4-({5-isopropyl-3-[2-(trifluoromethoxy)phenyl]isoxazol-4-yl} methoxy)phenyl] amino} sulfonyl) benzoic acid; 3-({[4-({5-isopropyl-3-[2-(trifluoromethoxy)phenyl]isoxazol-4-yl} methoxy) -2- methylphenyl]amino}sulfonyl)benzoic acid; Methyl 3-{[[2-chloro-4-({5-isopropyl-3-[2-(trifluoromethoxy)phenyl]-isoxazol-4- yl} methoxy) phenyl (methyl) amino]sulfonyl} benzoate; Methyl 3- { [[4-({5-isopropyl-3-[2-(trifluoromethoxy)phenyl]isoxazol-4-yl} methoxy) - 2-methylphenyl](methyl)amino|sulfonyl} benzoate; 3- { [loro-4-({5-

isopropyl-3- [2-(trifluoromethoxy) phenyl] isoxazol-4- yl} methoxy)-phenyl] (methyl) amino | sulfonyl | benzoic acid ; 3-f [[4- ({5-Isopropyl-3- [2- (trifluoromethoxy) phenyl] isoxazol-4-yl} methoxy) -2- methyl-phenyl] (methyl) amino[sulfonyl] benzoic acid; 3-1 [(4- { [3- (2, 6-Dichlorobenzyl)-5-ethylisoxazol-4-yllmethoxy}-2methylphenyl)(methyl)-amino sulfonyl benzoic acid; Methyl 4-[(2-chloro-4-{[3-(2,6dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}- benzyl) oxyl benzoate : Methyl 3-[(2-chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-yl] methoxy} benzyl)-oxy|benzoate; 3-[(2-Chloro-4- { [3-(2, 6-dichlorophenyl)-5isopropylisoxazol-4-yl] methoxy} - benzyl) oxy]-benzoic acid; 3- [loro-4- { [3-(2, 6dichlorophenyl)-5-isopropylisoxazol-4-yl] methoxy}- benzyl) thiol-benzoic acid: 3-[(4-{[3-(2,6-Dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}-2-methylbenzyl)oxy]-benzoic acid; 3-[(4-{[3-(2,6-Dichlorophenyl)-5-isopropylisoxazol-4yl|methoxy}-2-methylbenzyl)- thio|-benzoic acid; 4- [(2-Chloro-4-1 [3- (2, 6dichlorophenyl)-5-isopropylisoxazo1-4-yllmethoxyl benzyl)- oxyl benzoic acid ; 4-[(2-Chloro-4- { [3-(2, 6-dichlorophenyl)-5-isopropyl isoxazol-4-yl] meth oxy} benzyl)- thio]-benzoic acid; Methyl 3-{[2-chloro-4-({5-isopropyl-3-[2-(trifluoromethoxy)-phenyl]isoxazol-4- yl methoxy) benzyl] oxy} benzoate; Methyl 3-{[4-({5-isopropyl-3-[2-(trifluoromethoxy)phenyl]isoxazol-4-yl}methoxy)-2methylbenzyl] oxy} benzoate; 3- { [2-Chloro-4- ({5-isopropyl-3- [2- (trifl uoromethoxy) phenyl] isoxazol-4-yl} methoxy)- benzyl] oxy} benzoic acid; 3-{[4-({5-Isopropyl-3-[2-(trifluoromethoxy)phenyl]isoxazol-4-yl}methoxy)-2-methylbenzyl] oxy} benzoic acid; 3- [(2-Chloro-4-{[3-(2,6-dichlorobenzyl)-5-ethylisoxazol-4-yl]methoxy}benzyl)oxy]- benzoic acid; Methyl 3-{ [2-ch loro-4-({5-isopropyl-3-[2-(trifl uoro-methoxy) phenyl] isoxazol-4- yl}methoxy)benzyl]thio} benzoate: Methyl 3-{ [4-({5-isopropyl-3-[2-(trifluoromethoxy) phenyl] isoxazol-4-yl} methoxy) -2methylbenzyl] thio} benzoate; 3- { [2-Chloro-4- ({5-isopropyl-3- [2-(trifluoromethoxy) phenyl] isoxazol-4-yl} methoxy)- benzyl] thio} benzoic acid; 3-{[4-({5-Isopropyl-3-[2-(trifluoromethoxy)-phenyl]isoxazol-4-yl} methoxy)-2methyl-benzyl] thio} benzoic acid; Methyl 3-[(2-chloro-4-{[3-(2,6-dichlorophenyl)-5isopropylisoxazol-4- yl]methoxy}benzyl)(methyl)amino]benzoate; 3-[(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}benzyl)- (methyl) amino]

benzoic acid; 3-[(2-Chloro-4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4yl]methoxy}benzyl)- amino] benzoic acid; Ethyl 3-{[2-chloro-4-({5-isopropyl-3-[2trifluoromethoxy)phenyl]-4-isoxazolyl}- methoxy) benzyl] amino} benzoate : 3- { [2-Chloro-4-({5-isopropyl-3-[2-(trifluoromethoxy)phenyl]-4-isoxazolyl}methoxy)benzyl] amino} benzoic acid; 3- [[2-Chloro-4-({5-isopropyl-3-[2-(trifluoromethoxy) phenyl]-4-isoxazolyl} methoxy)- benzyl] (methyl) amino] benzoic acid; Methyl 4-[(4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-yl]methoxy}-2methylphenoxy) methyl] benzoate; Methyl 3-[(2-chloro-4- { [3-(2, 6-dich lorophenyl)-5-isopropyl isoxazol-4-yl] methoxy} - phenoxy) methyl] benzoate: Methyl 3-[(4-{[3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4-vl]methoxy}-2-methylphenoxy) methyl] benzoate; 3-[(2-Ch loro-4- { [3-(2, 6-dichlorophenyl)-5isopropylisoxazol-4-yl] methoxy} phenoxy)- methyl] benzoic acid; 3- [(4- { [3-(2, 6-Dichlorophenyl)-5-isopropylisoxazol-4-yll methoxy}-2- methylphenoxy)-methyll benzoic acid; and Methyl 4- [(4- { [3-(2,6-dichlorophenyl)-5-isopropylisoxazol-4yl]methoxy}-2-methyl-phenoxy) methyl]benzoate) and the like; LXR receptor modulators such as a-hydroxycholesterol, 25-hydroxycholesterol, 27hydroxy-cholesterol, 4β-hydroxycholesterol, 24-hydroxycholesterol, 20(S)hydroxycholesterol, 22(R)-hydroxycholesterol, 20,22-dihydroxycholesterol, GW 3965, T9013137, and XTC0179628, and those disclosed in US20030125357. WO03/045382, WO03/053352, WO03/059874, and the like; HM74 and HM74A (human HM74A is Genbank Accession No. AY148884 and rat HM74A is EMM patAR098624) receptor agonists such as nicotinic acid (niacin) and derivatives thereof (e.g., compounds comprising a pyridine-3-carboxylate structure or a pyrazine-2-carboxylate structure, including acid forms, salts, esters, zwitterions and tautomers, where available) including but not limited to those disclosed in Wise et al (2003) J. Biol. Chem. 278: 9869 (e.g., 5-methylpyrazole-3-carboxylic acid and acifran (4,5-dihydro-5-methyl-4-oxo-5-phenyl-2-furan carboxylic acid pyradine-3-acetic acid)), as well as trans-metanicotine, epibatidine or one of its analogs, pyridol or derivatives thereof, piperidine alkaloids (such as lobeline and analogs thereof) and imidacloprid or one of its analogs, 5-methyl nicotinic acid, nicotinuric acid, aluminum nicotinate, nicoclonate, nicomol, niceritrol, oxiniacic acid, nicofuranose, acipimox (5-

methylpyrazine-2-carboxylic acid 4-oxide), Niaspan® (niacin extended-release tablets; Kos) and those which can be easily identified by one skilled in the art which bind to and agonize the HM74A or HM74 receptor (for example using the assays disclosed in Wise et al (2003) J. Biol. Chem 278:9869 (nicotine binding and [35S]-GTPγS binding assays), Soga et al (2003) Biochem. Biophys. Res. Comm. 303:364 (radiolabel binding assay using the HM74 receptor which could be adapted to the HM74A receptor), Tunaru et al (2003) Nature Medicine 9:352 (calcium mobilization assay using the HM74 receptor which could be adapted to the HM74A receptor) and US6420183 (FLIPR assays are described generally in and may be adapted to the HM74A or HM74 receptor);

renin angiotensin system inhibitors;

bile acid reabsorption inhibitors (bile acid reuptake inhibitors), such as BARI 1453, SC435, PHA384640, S8921, AZD7706, and the like;

PPARô agonists (including partial agonists) such as GW 501516, and GW 590735, and those disclosed in US5859051 (acetophenols), WO03/024395, W097/28149, W001/79197, W002/14291, W002/46154, W002/46176, W002/076957, W003/016291, W003/033493, W099/20275 (quinoline phenyl compounds), W099/38845 (aryl compounds), W000/63161 (1,4-disubstituted phenyl compounds), W001/00579 (aryl compounds), W001/12612, W005/028453, & W001/12187 (benzoic acid compounds), and W097/31907 (substituted 4-hydroxy-phenylalconic acid compound);

sterol biosynthesis inhibitors such as DMP-565;

a sterol regulating element binding protein-I (SREBP-1) as disclosed in WO00/050574, for example, a sphingolipid, such as ceramide, or neutral sphingomyelenase (N-SMase) or fragment thereof;

triglyceride synthesis inhibitors;

microsomal triglyceride transport (MTTP or MTP) inhibitors, such as inplitapide, LAB687, 9-[4-[4-[[2-(2,2,2-Trifluoroethoxy)benzoyl]amino]-1-piperidinyl]butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide, and CP346086, and those disclosed in US5595872; US5739135; US5712279; US5760246; US5827875; US5885983 and US5962440:

HMG-CoA reductase gene expression inhibitors (e.g., compounds that decrease HMG-CoA reductase expression by affecting (e.g., blocking) transcription or translation of HMG-CoA reductase into protein or compounds that may be biotransformed into compounds that have the aforementioned attributes by one or more enzymes in the cholesterol biosynthetic cascade or may lead to the accumulation of an isoprene metabolite that has the aforementioned activities (such regulation is readily determined by those skilled in the art according to standard assays (Methods of Enzymology, 110:9-19 1985))) such as those disclosed in US5041432 (certain 15substituted lanosterol derivatives) and E. I. Mercer (1993) Prog. Lip. Res. 32:357 (oxygenated sterols that suppress the biosynthesis of HMG-CoA reductase); squalene epoxidase inhibitors such as NB-598 ((E)-N-ethyl-N-(6,6-dimethyl-2-hepten-4-y- nyl)-3-[(3,3'-bithiophen-5-yl)methoxy]benzene-methanamine hydrochloride); low density lipoprotein (LDL) receptor inducers such as MD-700 (Taisho Pharmaceuticals, LY295427 (Eli Lilly), HOE-402 (an imidazolidinyl-pyrimidine derivative that directly stimulates LDL receptor activity, see Huettinger et al (1993) Arterioscler, Thromb. 13:1005); platelet aggregation inhibitors; 5-LO or FLAP inhibitors; PPAR-α activators such as 2.4-dichlorophenoxyacetic acid, 2,4,5trichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, 2-phenoxy-2methylpropanoic acid ethyl ester, 2-(4-bromophenoxy)-2-methylpropanoic acid ethyl ester. 2-(4-iodophenoxy)-2-methylpropanoic acid ethyl ester, 2-(2-chlorophenoxy)-2methylpropanoic acid ethyl ester, 2-(3-chlorophenoxy)-2-methylpropanoic acid ethyl

ester, 2-(4-chlorophenoxy)-2-methylpropanoic acid ethyl ester, 2-(4-(4-chlorophenyl)phenoxy)-2-methylpropanoic acid ethyl ester, 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoic acid isopropyl ester, 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoic acid, 2-(4-(4-chlorobenzoylaminoethyl)phenoxy)-2-methylpropanoic acid, 2-(4-(4-chlorobenzoylaminoethyl)phenoxy)-2-methylpropanoic acid, 2-(2, 3-dimethyl-4-(1,2,3,4-tetrahydronaphth-1-yl)phenoxy)acetic acid, 2-(2-methyl-3-ethyl-4-(4-chlorobenzyl)phenoxy)acetic acid, (4-chloro-6-(2,3-xylidino)-2-pyrimidinyl)thioacetic acid, 2-((4-chloro-6-(2,3-xylidino)-2-pyrimidinyl)thioacetamido)ethanol, perfluoro-n-

decanoic acid, di-(2-ethylhexyl)adipate, di-(2-ethylhexyl)phosphate, di-(2ethylhexyl)sebacate, bis-(carboxymethylthio)-1,10-decane, ethyl 4-(4chlorophenoxy)butanoate, 2-(2-nitro-5-(2-chloro-4trifluoromethylphenoxy)benzoyloxy)propanoic acid ethyl ester, 2-(4-(4chlorobenzoyl))phenoxy-2-(2-methylpropionamido)ethylsulfonic acid, tetradecyloxyacetic acid, tetradecyloxypropionic acid, perfluorobutanoic acid, perfluorooctanoic acid, tetradecylthioacetic acid, tetradecylthiopropionic acid, di-(2ethylhexyl)phthalate, mono-(2-ethylhexyl)phthalate, 2-ethylhexanoic acid, 2propylhexanoic acid, compounds described in WO04010992, WO04/010936 (such as 5- {3- [2-Chloro-4- (2, 2, 2-trifluoro-ethoxy)-phenoxy]-propoxy}-2-methyl- 2, 3dihydro-benzofuran-2-carboxylic acid, 5- {3- [4- (2, 2-Dimethyl-propyl)-2-propylphenoxyl-propoxyl-2-methyl- 2, 3-dihydro-benzofuran-2-carboxylic acid, 5- [3- (2-Chloro-4-trifluoromethoxy-phenoxy)-propoxy]-2-methyl-2, 3- dihydro-benzofuran-2carboxylic acid, 5- {3- [4- (2, 2-Dimethyl-propyl)-2-propyl-phenoxy]-propoxy}-2ethyl-2, 3- dihydro-benzofuran-2-carboxylic acid, 2-Ethyl-5- [3- (2-propyl-4trifluoromethylsulfanyl-phenoxy)-propoxy]-2, 3- dihydro-benzofuran-2-carboxylic acid, 65-[3-(2-Chloro-4-trifluoromethylsulfanyl-phenoxy)-propoxy]-2-ethyl-2, 3dihydro-benzofuran-2-carboxylic acid, 5- [3- (4-tert-Butyl-2-chloro-phenoxy)propoxy]-2-ethyl-2, 3-dihydro- benzofuran-2-carboxylic acid, 5- [3- (2-Chloro-4trifluoromethyl-phenoxy)-propoxyl-2-ethyl-2, 3-dihydro- benzofuran-2-carboxylic acid, 5- {3- [2-Chloro-4- (1, 1-dimethyl-propyl)-phenoxyl-propoxy}-2-ethyl-2, 3dihydro-benzofuran-2-carboxylic acid, (2S)-5- [3- (2-Chloro-4-trifluoromethoxyphenoxy)-propoxy]-2-ethyl-2, 3- dihydro-benzofuran-2-carboxylic acid, (2S)-5- {3-[2-Chloro-4-(2, 2-dimethyl-propyl)-phenoxyl-propoxy}-2- ethyl-2,3-dihydrobenzofuran-2-carboxylic acid, (2S)-5- {3- [2-Chloro-4- (2, 2, 2-trifluoro-ethoxy)phenoxy]-propoxy}-2- ethyl-2,3-dihydro-benzofuran-2-carboxylic acid, (2S)-5- {3-[2-Chloro-4-(3, 3, 3-trifluoro-propyl)-phenoxy]-propoxy}-2- ethyl-2,3-dihydrobenzofuran-2-carboxylic acid, (2S)-5- {3- [2-Chloro-4- (2, 2, 2-trifluoro-ethyl)phenoxy]-propoxy}-2- ethyl-2,3-dihydro-benzofuran-2-carboxylic acid, 6- [3- (2-Chloro-4-trifluoromethoxy-phenoxy)-propoxy]-2-ethyl-2, 3- dihydro-benzofuran-2carboxylic acid, (2S)-5- [4- (2-Chloro-4-trifluoromethoxy-phenyl)-butoxy]-2-ethyl-2,

3- dihydro-benzofuran-2-carboxylic acid, (2R)-5- {3- [2-Chloro-4- (2, 2-dimethyl-propyl)-phenoxy]-propoxy}-2- isopropyl-2,3-dihydro-benzofuran-2-carboxylic acid, (2R)-5- [3- (2-Chloro-4-trifluoromethoxy-phenoxy)-propoxy]-2- isopropyl-2,3-dihydro-benzofuran-2-carboxylic acid, (2R)-5- [3-[2-Chloro4-(2, 2, 2-trifluoro-ethyl)-phenoxy]-propoxy}-2- isopropyl-2,3-dihydro-benzofuran-2-carboxylic acid, (2R)-5- [4- (2-Chloro-4-trifluoromethoxy-phenoxy)-butyl]-2-isopropyl- 2,3-dihydro-benzofuran-2-carboxylic acid, (2R)-2-tert-Butyl-5- {3- [2-chloro-4- (2, 2, 2-trifluoro-ethyl)-phenoxy]-propoxy}-2, 3-dihydro-benzofuran-2-carboxylic acid, 5- {3- [2-Chloro-4- (2, 2, 2-trifluoro-ethyl)-phenoxy]-propoxy}-2-trifluoromethyl-2, 3-dihydro-benzofuran-2-carboxylic acid, and (2R)-2-tert-Butyl-5- [2- (2-chloro-4-trifluoromethoxy-phenoxy)-ethoxy]-2,3-dihydro-benzofuran-2-carboxylic acid, and (2R)-2-tert-Butyl-5- [2- (2-chloro-4-trifluoromethoxy-phenoxy]-2,3-dihydro-benzofuran-2-carboxylic acid, and (2R)-2-tert-Butyl-5- [2- (2-chloro-4-trifluoromethoxy-phenoxy]-2,3-dihydro-benzofuran-2-carboxylic acid, and (2R)-2-tert-

[00116] PPAR modulators (including compounds that may have multiple functionality for activating various combinations of PPARa, PPARy, and PPAR8) such as those disclosed in US6008237, US6248781, US6166049, WO00/12491, WO00/218355, WO00/23415, WO00/23416, WO00/23425, WO00/23442, WO00/23445, WO00/23451, WO00/236331, WO00/236332, WO00/238553, WO00/50392, WO00/53563, WO00/63153, WO00/63190, WO00/63196, WO00/63209, WO00/78312, WO00/78313, WO01/04351, WO01/14349, WO01/14350, WO01/16120, WO01/17994, WO01/21181, WO01/21578, WO01/25181, WO01/25225, WO01/25226, WO01/40192, WO01/79150, WO02/081428, WO02/100403, WO02/102780, WO02/79162, WO03/016265, WO03/033453, WO03/042194, WO03/043997, WO03/066581, WO97/25042, WO99/07357, WO99/11255, WO99/12534, WO99/15520, WO99/46232, and WO98/05331 (including GW2331 or (2-(4-[difluorophenyl]-1 heptylureido)ethyl]phenoxy)-2-methylbutyric));

lipoxygenase inhibitors including 15-lipoxygenase (15-LO) inhibitors such as those disclosed in WO97/12615 (benzimidazole derivatives), WO97/12613, WO96/38144 (isothiazolones), Sendobry et al. Brit. J. Pharmacology (1997) 120, 1199-1206, and Cornicelli et al. Current Pharmaceutical Design. 1999. 5, 11-20:

niacin-bound chromium, as disclosed in WO03/039535; substituted acid derivatives disclosed in WO03/040114; apolipoprotein B inhibitors such as those disclosed in WO02/090347, WO02/28835, WO03/045921, WO03/047575; Factor Xa modulators such as those disclosed in WO03/047517, WO03/047520, WO03/048081; ileal bile acid transport ("IBAT") inhibitors (or apical sodium co-dependent bile acid transport ("ASBT") inhibitors) such as benzothiepines (including 1,2benzothiazepines; 1,4- benzothiazepines; 1,5-benzothiazepines; 1,2,5benzothiadiazepines); IBAT inhibitors include but are not limited to compounds (e.g., those in claim 1 and the named examples) described in WO93/16055, WO94/18183, WO94/18184, WO96/05188, WO96/08484, WO96/16051, WO97/33882, WO98/38182, WO99/35135, WO98/40375, WO99/64409, WO99/64410, WO00/01687, WO00/47568, WO00/61568, DE 19825804, WO00/38725, WO00/38726, WO00/38727 (including those compounds with a 2,3,4,5-tetrahydro-1-benzothiepine 1.1-dioxide structure), WO00/38728, WO00/38729, WO01/66533, WO02/50051, EP0864582 (e.g., (3R, 5R)-3- butyl-3-ethyl-1,1-dioxido-5-phenyl-2, 3,4, 5-tetrahydro-1.4-benzothiazepin-8-vl (β-D- glucopyranosiduronic acid, WO94/24087, W098/07749, WO98/56757, WO99/32478, WO99/35135, WO00/20392, WO00/20393, WO00/20410, WO00/20437, WO01/34570, WO00/35889, WO01/68637, WO01/68096, WO02/08211, WO03/020710, WO03/022825, WO03/022830, WO03/022286, JP10072371, US5070103, EP251315, EP417725, EP489423, EP549967, EP573848, EP624593, EP624594, EP624595, EP869121 and EP1070703; S-8921 (disclosed in EP597107); 1,1-dioxo-3, 3-dibutyl-5-phenyl-7methylthio-8-(N-{(R)-1'-phenyl-1'-[N'-(carboxymethyl) carbamoyl] methyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5phenyl-7-methylthio-8-(N-{(R)-α-[N'-(carboxymethyl)carbamoyl]-4-

hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-1'-phenyl-1'-\N'-{(2-sulphoethyl)}

dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-(N-{(R)-1'-phenyl-1'-[N'-(2sulphoethyl) carbamoyl methyl carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-(2sulphoethyl) carbamoyll-4- hydroxybenzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-(2-sulphoethyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-(2-carboxyethyl)carbamoyl] benzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-(2-carboxyethyl)carbamoyl]-4- hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7methylthio-8-(N- $\{(R)-\alpha-[N'-(5-carboxypentyl)carbamoyl]\}$ benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3dibuty1-5-phenyl-7-methylthio-8-(N-{(R)-\alpha-[N'-(2-carboxyethyl)carbamoyl]benzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine: 1,1-dioxo-3,3-dibutyl-5phenyl-7-methylthio-8-(N-{a-[N'-(2-sulphoethyl)carbamoyl]-2-fluorobenzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3ethyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-(R)-(2-hydroxy-1carboxyethyl)carbamoyl] benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-(R)-(2-hydroxy-1-carboxyethyl) carbamoyl[benzyl]carbamoylmethoxy)-2,3,4,5tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-{N- $[(R)-\alpha-(N'-\{(R)-1-[N''-(R)-(2-hvdroxv-1-carboxvethvl)carbamovl]-2$ hydroxyethyl}carbamoyl)benzyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8- (N-{a-[N'-(carboxymethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-(N-{a-[N'-((ethoxy)(methyl)phosphoryl-methyl)carbamoyllbenzyl} carbamoylmethoxy)-2.3.4.5tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8- $\{N-[(R)-\alpha-(N'-\{2-[(hydroxy)(methyl)phosphoryl]ethyl\}\}$ carbamoyl)benzyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-

dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-\alpha-\inftyl-1}N'-(2-methylthio-1carboxyethyl)carbamovllbenzyl}carbamovlmethoxy)-2.3.4.5-tetrahydro-1.5benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-{N-[(R)-α-(N'-{2-[(methyl)(ethyl)phosphoryl]ethyl}carbamoyl)-4-hydroxybenzyl]carbamoylmethoxy}-2, 3,4,5-tetrahydro-1,5- benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7methylthio-8-{N-[(R)-α-(N'-{2-[(methyl)(hydroxy)phosphoryl]ethyl}carbamovl)-4hydroxybenzyl] carbamoylmethoxy}-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-\lceil (R)-N'-(2-methylsulphinyl-1$ carboxyethyl) carbamoyl] benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; and 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methoxy-8-[N-{(R)-α-[N'-(2sulphoethyl)carbamoyl]-4- hydroxybenzyl}carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine; compounds disclosed in claims 1-10 and examples 1-44 of WO03/020710; compounds disclosed in WO03/020710 (including 1,1-dioxo-3,3dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-\alpha-[N'-(2-(S)-3-(R)-4-(R)-5-(R)-2,3, 4,5, 6pentahydroxyhexyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1, 5benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3ethyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-[N'-((S)-1-carbamoyl-2-(S)-1-carbamoyl-2-(S)-1-carbamoyl-2-(S)-1-carbamoyl-2-(S)-1-carbamoyl-2-(S)-1-carbamoyl-2-(S)-1-carbamoyl-2-(S)-1-($ hydroxyethyl)carbamoyl] benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; 1.1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-(N-{(R)-α-ΓN'-(hydroxycarbamoyl-methyl)carbamoyl] benzyl}carbamoylmethoxy)-2.3.4.5tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8- $[N(R)-\alpha-N'-[2-(N'-pyrimidin-2-ylureido)ethyl]$ carbamoyl}benzyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8- [N-((R)-\alpha-{N}\cdot-[2- (N\cdot-pyridin-2ylureido)ethyl]carbamoyl}benzyl)carbamoylmethoxyl-2.3,4.5-tetrahydro-1.5benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-(N- {(R)-α-[N'-(1-t- butoxycarbonylpiperidin-4-ylmethyl)carbamovl]benzyl}carbamovlmethoxy)-2,3,4,5- tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7methylthio-8- (N- {(R)-α-ΓN'-(2.3-

dihydroxypropyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-[N-((R)-α-{N'-[2-(3,4-dihydroxyphenyl)-2-methoxyethyl]carbamoyl}benzyl) carbamoylmethoxy|-2,3,4,5-tetrahydro-1,5- benzothiazepine 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7methylthio-8-(N-{(R)-α-[N'-(2-aminoethyl)carbamoyl]benzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3-butyl-3-ethyl-5-phenyl-7methylthio-8-(N-{(R)-α-IN'-(piperidin-4-vlmethyl)carbamoyl]benzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; and 1,1-dioxo-3-butyl-3ethyl-5-phenyl-7-methylthio-8-(N{(R)-α-[N'-(2-N, N-dimethylaminosulphamoylethyl) carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine); compounds disclosed in claims 1-8 and examples 1-7 of WO03/022825; compounds disclosed in WO03/022825 (including 1-dioxo-3(R)-3-butyl-3-ethyl-5-(R)-5-phenyl-8-[N-((R)-α-carboxybenzyl) carbamovlmethoxy]-2,3,4,5-tetrahydro-1,4benzothiazepine; 1.1-dioxo-3(S)-3-butyl-3-ethyl-5-(S)-5-phenyl-8-[N-((R)-αcarboxybenzyl)carbamoylmethoxy] -2,3,4,5-tetrahydro-1,4-benzothiazepine; 1,1dioxo-3(R)-3-butyl-3-ethyl-5-(R)-5-phenyl-8- (N-{(R)-α-[N-(carboxymethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1, 4benzothiazepine; 1,1-dioxo-3(S)-3-butyl-3-ethyl-5-(S)-5-phenyl-8-(N-{(R)-α-[N-(carboxymethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4benzothiazepine; 3,5-trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-bromo-8-(N-{(R)-α-[N- (carboxymethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4benzothiazepine; 3,5-trans-1,1-dioxo-3-(S)-3-ethyl-3-butyl-4-hydroxy-5-(S)-5-phenyl-7-bromo-8-(N-{(R)-α-[N-(carboxymethyl)carbamoyl]benzyl}carbamoylmethoxy)-2.3.4.5-tetrahydro-1,4- benzothiazepine 3,5-trans-1,1-dioxo-3-(R)-3-ethyl-3-butyl-4 $hydroxy-5-(R)-5-phenyl-7-bromo-8-(N-{(R)-\alpha-[N-(carboxymethyl)carbamoyl]benzyl}$ carbamovlmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine; 3,5-trans-1,1-dioxo-3ethyl-3-butyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-(carboxymethyl)carbamoyl] benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4- benzothiazepine; 3,5-trans-1,1dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-\lceil N-(2-sulphoethyl)\}$ carbamoyl [-4-hydroxybenzyl] carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4benzothiazenine ammonia salt; 1,1-dioxo-3-(S)-3-ethyl-3-butyl-5-(S)-5-phenyl-7-

methylthio-8-(N-{(R)-α-[N- (carboxymethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4- benzothiazepine diethylamine salt; and 1,1-dioxo-3-(R)-3ethyl-3-butyl-5-(R)-5-phenyl-7-methylthio-8-(N- {(R)-α-[N-(carboxymethyl)carbamoyl]benzyl carbamoylmethoxy)-2, 3,4,5-tetrahydro-1,4benzothiazepine diethylamine salt); compounds disclosed in claims 1-8 and examples 1-4 of WO03/022830; compounds disclosed in WO03/022830 (including 1,1-dioxo-3-butvl-3-ethvl-4-hvdroxv-5-phenvl-7-(N-{(R)-α-[N-(carboxymethyl)carbamoyl]benzyl} carbamoylmethylthio)-2,3,4,5tetrahydrobenzothiepine 1,1-dioxo-3-butyl-3-ethyl-4-hydroxy-5-phenyl-7-(N-{(R)-α-[N-(2-sulphoethyl)carbamoyl]-4-hydroxybenzyl} carbamoylmethylthio)-2,3,4,5tetrahydrohenzothienine ammonia salt 1.1-dioxo-3-butyl-3-ethyl-4-hydroxy-5-phenyl-7-{N-[a-(carboxy)-2-fluorobenzyl]carbamoylmethylthio}-2, 3,4,5tetrahydrobenzothiepine; and 1,1-dioxo-3-butyl-3-ethyl-4-hydroxy-5-phenyl-7-{N-[1-(carboxy)-1-(thien-2-yl)methyl]carbamovlmethylthio}-2,3,4,5tetrahydrobenzothiepine); compounds disclosed in claims 1-10 and examples 1-30 WO03/0222861; compounds disclosed in WO03/0222861 (including 1,1-dioxo-3,3dibutyl-5-phenyl-7-methylthio-8- (N-{(R)-α-[N((R)-1-carboxy-2methylthioethyl)carbamoyl]-4-hydroxybenzyl)carbamoylmethoxy)-2,3,4,5-tetrahydro-1.2.5- benzothiadiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-((S)-1-carboxy-2-(R)- hydroxypropyl)carbamoyl]-4hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1, 2,5-benzothiadiazepine; 1,1dioxo-3.3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-((S)-1-carboxy-2methylpropyl)carbamovl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4, 5-tetrahydro-1.2.5-benzothiadiazepine; 1.1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-((S)-1-carboxybutyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,2,5- benzothiadiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-((S)-1-carboxypropyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,2,5-benzothiadiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-((S)-1-carboxyethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,2,5-benzothiadiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8- $(N-\{(R)-\alpha-\lceil N-((S)-1-carboxy-2-(R)-1-carboxy$

hydroxypropyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5benzothiadiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-(2sulphoethyl)carbamoyl]-4-hydroxybenzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8- (N-{(R)-α-[N-((S)-1-carboxyethyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,2,5-benzothiadiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-((R)-1-carboxy-2methylthioethyl)carbamovllbenzyl}carbamovlmethoxy)-2.3.4.5-tetrahydro-1.2.5benzothiadiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-{(S)-l-[N-((S)-2-hydroxy-1-carboxyethyl)carbamoyl]propyl}carbamoyl]benzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine; 1,1-dioxo-3,3dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-((S)-1-carboxy-2methylpropyl)carbamovl]benzyl} carbamovlmethoxy)-2,3,4,5-tetrahydro-1,2,5benzothiadiazepine; 1,1-dioxo-3, 3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-((S)-1-carboxypropyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,2,5-benzothiadiazepine; and 1,1-dioxo-3,3-dibutyl-5-phenyl-7methylthio-8-[N-((R)-α-carboxy-4-hydroxybenzyl) carbamoylmethoxy]-2,3,4,5tetrahydro-1,2,5-benzothiadiazepine); compounds having the structure of formula (EI) on page 58 of WO04/005247 (including 1.1-Dioxo-3.3-dibutyl-5-phenyl-7methylthio-8-(N- $\{(R)-\alpha-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-(R)-4-(R)-5-(R)-2,3,4,5,6-(R)-4-(R)-5-(R)-4-(R)-6-(R)-4-(R)-6-($ pentahydroxyhexyl)carbamoyl[benzyl] carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5benzothiadiazepine; 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3, 4,5, 6-pentahydroxyhexyl) carbamoyl]-4-hydroxybenzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine; 1,1-Dioxo-3,3dibutyl-5-phenyl-7-methylthio-8-[N-((R/S)-α-{N-[1-(R)-2-(S)-1-hydroxy-1-(3.4dihydroxyphenyl)prop-2-yl]carbamoyl} benzyl)carbamoylmethoxyl-2,3,4,5tetrahydro-1,2,5-benzothiadiazepine (both enantiomers); 1,1-Dioxo-3,3-dibutyl-5phenyl-7-methylthio-8- $\{N-[(R)-\alpha-(N-\{2-(S)-[N-$ (carbamoylmethyl)carbamoyl]pyrrolidin-1-ylcarbonylmethyl}carbamoyl)benzyl] carbamovlmethoxy-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine; 1,1-Dioxo-3,3bidutyl-5-phenyl-7-methylthio-8-[N-((R)-α-{N-[2-(3.4.5-

trihydroxyphenyl)ethyl]carbamoyl} benzyl)carbamoylmethoxy] -2,3,4,5-tetrahydro-1,2,5- benzothiadiazepine; and 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-[N-(2(R)-3-(S)-4-(S)-5-(R)-3,4,5,6-tetrahydroxytetrahydropyran-2-1]$ vimethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5benzothiadiazepine); compounds having the structure of formula (FI) on page 62 of WO04/005247 including (1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxyethyl) carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxypropyl) carbamoyl]benzyl}carbamoylemthoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-[N'-((S)-\alpha]\}\}$ 1-carboxybutyl) carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; 1,1-dioxo-3,3-dibutvl-5-phenyl-7-methylthio-8-(N-{(R)-α-ΓN'-((S)-1-carboxy-2- methylpropyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-\alpha-[N'-((S)-1-carboxy-2- methylbutyl)carbamoyl]benzyl}carbamoylemthoxy)-2,3,4,5tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-[N'-((S)-1-carboxy-3-methylbutyl)carbamoyl]benzyl\}$ carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxy-2hydroxypropyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1, 5benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxy-2-mesylethyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-a-[N'-((S)-1-carboxy-3-methylsulphonylpropyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5- benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxy-3mesylpropyl)carbamovl]benzyl}carbamovlmethoxy)-2,3,4,5-tetrahydro-1,5benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxyethyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxypropyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2.3.4.5-

tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-[N'-((S)-1-carboxybutyl)carbamoyl]-4-hydroxybenzyl\} carbamoylmethoxy)-4-hydroxybenzyl\} carbamoylmethoxy)-4-hydroxybenzyl arbamoylmethoxy)-4-hydroxybenzyl arbamoylmethoxybenzyl arbamoylmetho$ 2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxyl-2-methylpropyl)carbamoyl]-4-hydroxybenzyl carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5- benzothiazepine; 1,1-dioxo-3,3-dibutyl-5phenyl-7-methylthio-8-(N- $\{(R)-\alpha-[N'-((S)-1-carboxy-2-methylbutyl)carbamoyl]-4$ hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5- benzothiazepine; 1,1dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-a-[N'-((S)-1-carboxy-3methylbutyl) carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5- benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8- $(N-\{(R)-\alpha-[N'-R'])$ ((S)-1-carboxy-2-hydroxyethyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5- benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxy-2-hydroxypropyl)carbamoyl]-4hydroxybenzylcarbamoylemthoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-methylthioethyl) carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,5- benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-[N'-((S)-1-carboxy-2-methylsulphinylethyl)carbamoyl]-4$ hydroxybenzyl}carbamoylmethoxy)-2, 3,4,5-tetrahydro-1,5-benzothiazepine; 1,1dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- {(R)-a-[N'-((S)-1-carboxy-2mesylethyl)carbamoyl]-4-hydroxybenzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-1-carboxy-2-methoxyethyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3, 3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxy-3-methylthiopropyl) carbamoyl]-4hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxy-3methylsulphonylpropyl)carbamoyl]-4-hydroxybenzyl)carbamoylmethoxy)-2, 3,4,5tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- $\{(R)\text{-}\alpha\text{-}[N'\text{-}((S)\text{-}l\text{-}carboxy\text{-}3\text{-}mesylpropyl})\text{carbamoyl}]\text{-}4\text{-}hydroxybenzyl}\}$ carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; 1,1-dioxo-3,3-dibutyl-5-

phenyl-7-methylthio-8-(N-{(R)-α-[N'-((S)-1-carboxypropyl)carbamoyl]-4hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine; and 1,1 $dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-}\alpha-[N'-((S)-1-carboxyethyl)]}$ carbamoyl]benzyl}carbamoylemthoxy)-2,3,4,5-tetrahydro-1,5-benzothiazepine); compounds having the structure of formula (GI) on page 65 of WO04/005247 (including (+/-)-trans-l,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8-(N-{(R)-α-[N'-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6pentahydroxyhexyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4benzothiazepine; (+/-)-trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8-(N- $\{(R)-\alpha-[N'-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl) carbamovl]$ benzyl carbamovlmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine; 1,1-dioxo-3-ethyl-3butvl-4-hvdroxy-5-phenyl-7-(N-{a,-[N'-(2-(S)-3-(R)-4-(R)-5-(R)-2,3, 4,5,6pentahydroxyhexyl)carbamoyl]-2-fluorobenzyl}carbamoylmethylthio)-2,3,4,5tetrahydrobenzothiapine; and 1,1-dioxo-3-butyl-3-ethyl-4-hydroxy-5-phenyl-7-(N-{1-[N'- (2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-1-(cyclohexyl)methyl icarbamoylmethylthio)-2,3,4,5-tetrahydrobenzothiepine); compounds disclosed as having IBAT activity disclosed in WO04/005247; compounds disclosed as having IBAT activity in Drugs of the Future, 24, 425-430 (1999); or a pharmaceutically acceptable salt, solvate, solvate of such salt or prodrug thereof:

ATP citrate lyase inhibitors including those disclosed in US5447954; $PPAR\delta \ activators \ such \ as \ disclosed \ in WO01/00603 \ (thiazole \ and \ oxazole \ derivates \ (e.g., CAS\ RN\ 317318-32-4), WO97/28149 \ (fluoro, chloro \ and \ thio\ phenoxy \ phenylacetic), US5093365 \ (non-1-oxidizable \ fatty \ acid \ analogues), \ and \ WO99/04815; \ and$

other dyslipidemic agents such as benfluorex, β-Benzylbutyraimde, colmestrone, detaxtran, dextran sulphate sodium, eicosopentanoic acid, eritadenine, furazabol, meglutol, γ-Oryzanol, pantethine and derivatives thereof (as disclosed, for example, in US20050101565), pentaerythritol tetraacetate, α-phenylbutyramide, pirozadil, sultosilic acid, tiadenol, triparanol, and xenbucin, isoniazid (disclosed in WO97/48701),

cholestagel (Sankyo/Geltex), lipostabil (Rhone-Poulenc), Eisai E-5050 (an Nsubstituted ethanolamine derivative), imanixil (HOE-402), tetrahydrolipstatin (THL), istigmastanylphosphorylcholine (SPC, Roche), aminocyclodextrin (Tanabe Seiyoku), Aimomoto AJ-814 (azulene derivative), melinamide (Sumitomo), nitric oxide synthase isoforms (e.g., endothelial (eNOS), neuronal (nNOS) and inducible (iNOS), for example purified, recombinant or viraly/retrovirally expressed), the antisense oligonucleotides described in Kipshidze, et al., J. Am. Coll. Cardio. 39(10):1686-1691 (2002): the nuclear targeted lacZ- and TIMP-1-encoding adenoviruses coupled to peptide-motif (HWGF) described in Turunen, et al., Mol Ther 6(3):306 (2002), Sandoz 58-035, American Cyanamid CL-277,082 and CL-283,546 (disubstituted urea derivatives), compounds or combinations of compounds that result in the production or enhancement of nitric oxide (for example those disclosed in WO04091626, paragraphs 46-53), acipimox, acifran, neomycin, p-aminosalicylic acid, aspirin, poly(diallylmethylamine) derivatives such as disclosed in US4759923, quaternary amine poly(diallyldimethylammonium chloride), pancreatic cholesteryl hydrolase (pCEH) inhibitors (such as WAY-121898), fish oil (which contains Omega 3 fatty acids (3-PUFA)), combinations of one or more anti-microbial agents (e.g., tetracyclin, ofloxacin, clinafloxacin, ciprofloxacin, clindamycin, doxycycline and minocycline, erythromycin or azalides such as trythromycin, roxithromycin, zithromycin, clarithromycin and azithromycin) with one or more metal chelators (e.g., desferrioxamine mesylate, haem derivatives, penicillamine, tiopronin, trientine, dihydrochloride, diethyldithiocarbamate, acetylsalicylic acid, disodium/trisodium, edetate, edetic acid, unithiol, copper chelators (penicillamine, tiopronin, trientine, dihydrochloride, diethyldithiocarbamate, acetylsalicylic acid)) as described in WO05034962, antisense inhibitors of apolipoprotein B (such as those disclosed in WO03097662, WO04044181, WO06020676 including ISIS 301012 (CAS RN 629167-92-6)), and ionenes such as disclosed in US4027009. Tests showing the efficacy of the therapy and the rationale for the combination therapy with a dyslipidemic agent are presented in US20030069221 (wherein the dyslipidemic agents are called 'cardiovascular agents').

Anti-diabetic agents

[00117] The compounds described herein can be used in therapeutic combination with one or more anti-diabetic agents, including but not limited to: PPARy agonists such as glitazones (e.g., WAY-120,744, AD 5075, balaglitazone. ciglitazone, darglitazone (CP-86325, Pfizer), englitazone (CP-68722, Pfizer), isaglitazone (MIT/J&J), MCC-555 (Mitsibishi disclosed in US5594016), pioglitazone (such as such as Actos[™] pioglitazone; Takeda), rosiglitazone (Avandia[™]; Smith Kline Beecham), rosiglitazone maleate, troglitazone (Rezulin®, disclosed in US4572912). rivoglitazone (CS-011, Sankyo), GL-262570 (Glaxo Welcome), BRL49653 (disclosed in WO98/05331), CLX-0921, 5-BTZD, GW-0207, LG-100641, JJT-501 (JPNT/P&U), L-895645 (Merck), R-119702 (Sankvo/Pfizer), NN-2344 (Dr. Reddy/NN), YM-440 (Yamanouchi), LY-300512, LY-519818, R483 (Roche), T131 (Tularik), and the like and compounds disclosed in US4687777, US5002953. US5741803, US5965584, US6150383, US6150384, US6166042, US6166043, US6172090, US6211205, US6271243, US6288095, US6303640, US6329404. US5994554, W097/10813, WO97/27857, WO97/28115, WO97/28137, WO97/27847, WO00/76488, WO03/000685, WO03/027112, WO03/035602. WO03/048130, WO03/055867, and pharmaceutically acceptable salts thereof; biguanides such as metformin hydrochloride (N,N-dimethylimidodicarbonimidic diamide hydrochloride, such as Glucophage™, Bristol-Myers Squibb); metformin hydrochloride with glyburide, such as Glucovance™, Bristol-Myers Squibb); buformin (Imidodicarbonimidic diamide, N-butyl-); etoformine (1-Butyl-2ethylbiguanide, Schering A. G.); other metformin salt forms (including where the salt is chosen from the group of, acetate, benzoate, citrate, ftimarate, embonate, chlorophenoxyacetate, glycolate, palmoate, aspartate, methanesulphonate, maleate, parachlorophenoxyisobutyrate, formate, lactate, succinate, sulphate, tartrate, cyclohexanecarboxylate, hexanoate, octanoate, decanoate, hexadecanoate, octodecanoate, benzenesulphonate, trimethoxybenzoate, paratoluenesulphonate, adamantanecarboxylate, glycoxylate, glutarnate, pyrrolidonecarboxylate, naphthalenesulphonate, 1-glucosephosphate, nitrate, sulphite, dithionate and phosphate), and phenformin;

protein tyrosine phosphatase-1B (PTP-1B) inhibitors, such as A-401,674, KR 61639, OC-060062, OC-83839, OC-297962, MC52445, MC52453, ISIS 113715, and those disclosed in WO99/585521, WO99/58518, WO99/58522, WO99/61435, WO03/032916, WO03/032982, WO03/041729, WO03/055883, WO02/26707, WO02/26743, JP2002114768, and pharmaceutically acceptable salts and esters thereof:

sulfonylureas such as acetohexamide (e.g., Dymelor, Eli Lilly), carbutamide, chlorpropamide (e.g., Diabinese®, Pfizer), gliamilide (Pfizer), gliclazide (e.g., Diamcron, Servier Canada Inc), glimepiride (e.g., disclosed in US4379785, such as Amaryl™, Aventis), glipentide, glipizide (e.g., Glucotrol or Glucotrol XL Extended Release, Pfizer), gliquidone, glisolamide, glyburide/glibenclamide (e.g., Micronase or Glynase Prestab, Pharmacia & Upjohn and Diabeta, Aventis), tolazamide (e.g., Tolinase), and tolbutamide (e.g., Orinase), and pharmaceutically acceptable salts and esters thereof;

meglitinides such as repaglinide (e.g., Pranidin®, Novo Nordisk), KAD1229 (PF/Kissei), and nateglinide (e.g., Starlix®, Novartis), and pharmaceutically acceptable salts and esters thereof;

α glucoside hydrolase inhibitors (or glucoside inhibitors) such as acarbose (e.g., PrecoseTM, Bayer disclosed in US4904769), miglitol (such as GlysetTM, Pharmacia & Upjohn disclosed in US4639436), camiglibose (Methyl 6-deoxy-6-[(2R,3R,4R,5S)-3,4,5-trihydroxy-2-(hydroxymethyl)piperidino]-alpha-D-glucopyranoside, Marion Merrell Dow), voglibose (Takeda), adiposine, emiglitate, pradimicin-Q, salbostatin, CKD-711, MDL- 25,637, MDL-73,945, and MOR 14, and the compounds disclosed in US4062950, US4174439, US4254256, US4701559, US4639436, US5192772, US4634765, US5157116, US5504078, US5091418, US5217877, US51091 and WO01/47528 (polyamines):

α-amylase inhibitors such as tendamistat, trestatin, and A1-3688, and the compounds disclosed in US4451455, US4623714, and US4273765;

SGLT2 inhibitors including those disclosed in US6414126 and US6515117; an aP2 inhibitor such as disclosed in US6548529;

insulin secreatagogues such as linogliride, A-4166, forskilin, dibutyrl cAMP,

isobutylmethylxanthine (IBMX), and pharmaceutically acceptable salts and esters thereof:

fatty acid oxidation inhibitors, such as clomoxir, and etomoxir, and pharmaceutically acceptable salts and esters thereof;

A2 antagonists, such as midaglizole, isaglidole, deriglidole, idazoxan, earoxan, and fluparoxan, and pharmaceutically acceptable salts and esters thereof: insulin and related compounds (e.g., insulin mimetics) such as biota, LP-100, novarapid, insulin detemir, insulin lispro, insulin glargine, insulin zinc suspension (lente and ultralente), Lys-Pro insulin, GLP-1 (1-36) amide, GLP-1 (73-7) (insulintropin, disclosed in US5614492), LY-315902 (Lilly), GLP-1 (7-36)-NH2), AL-401 (AutoImmune), certain compositions as disclosed in US4579730. US4849405, US4963526, US5642868, US5763396, US5824638, US5843866, US6153632, US6191105, and WO 85/05029, and primate, rodent, or rabbit insulin including biologically active variants thereof including allelic variants, more preferably human insulin available in recombinant form (sources of human insulin include pharmaceutically acceptable and sterile formulations such as those available from Eli Lilly (Indianapolis, Ind. 46285) as Humulin[™] (human insulin rDNA origin), also see the the physician's desk reference, 55.sup.th Ed. (2001) Medical Economics, Thomson Healthcare (disclosing other suitable human insulins): non-thiazolidinediones such as JT-501 and farglitazar (GW-2570/GI- 262579), and pharmaceutically acceptable salts and esters thereof; PPARα/γ dual agonists such as AR-HO39242 (Aztrazeneca), GW-409544 (Glaxo-Wellcome), BVT-142, CLX-0940, GW-1536, GW-1929, GW-2433, KRP-297 (Kyorin Merck; 5-[(2,4-Dioxo thiazolidinyl)methyl] methoxy-N-[[4-(trifluoromethyl)phenyl] methyllbenzamide), L-796449, LR-90, MK-0767 (Merck/Kyorin/Banyu), SB 219994, muraglitazar (BMS), tesaglitzar (Astrazeneca), reglitazar (JTT-501) and those disclosed in WO99/16758, WO99/19313, WO99/20614, WO99/38850, WO00/23415, WO00/23417, WO00/23445, WO00/50414, WO01/00579, WO01/79150, WO02/062799, WO03/004458, WO03/016265, WO03/018010, WO03/033481, WO03/033450, WO03/033453. WO03/043985, WO 031053976, U.S. application Ser. No. 09/664,598, filed Sep. 18,

2000, Murakami et al. Diabetes 47, 1841-1847 (1998), and pharmaceutically acceptable salts and esters thereof;

other insulin sensitizing drugs;

VPAC2 receptor agonists;

GLK modulators, such as those disclosed in WO03/015774; retinoid modulators such as those disclosed in WO03/000249;

GSK 3β/GSK 3 inhibitors such as 4-[2-(2-bromophenyl)-4-(4-fluorophenyl-1H-imidazol-5-y|[byridine and those compounds disclosed in WO03/024447,

WO03/037869, WO03/037877, WO03/037891, WO03/068773, EP1295884, EP1295885. and the like:

glycogen phosphorylase (HGLPa) inhibitors such as CP-368,296, CP-316,819, BAYR3401, and compounds disclosed in WO01/94300, WO02/20530,

WO03/037864, and pharmaceutically acceptable salts or esters thereof;

ATP consumption promotors such as those disclosed in WO03/007990;

TRB3 inhibitors;

vanilloid receptor ligands such as those disclosed in WO03/049702; hypoglycemic agents such as those disclosed in WO03/015781 and WO03/040114; glycogen synthase kinase 3 inhibitors such as those disclosed in WO03/035663 agents such as those disclosed in WO99/51225, US20030134890, WO01/24786, and WO03/059870;

insulin-responsive DNA binding protein-1 (IRDBP-1) as disclosed in WO03/057827, and the like;

adenosine A2 antagonists such as those disclosed in WO03/035639, WO03/035640, and the like;

PPAR8 agonists such as GW 501516, GW 590735, and compounds disclosed in JP10237049 and WO02/14291;

dipeptidyl peptidase IV (DP-IV) inhibitors, such as isoleucine thiazolidide, NVP-DPP728A (1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S)-pyrrolidine, disclosed by Hughes et al, Biochemistry, 38(36), 11597-11603, 1999), P32/98, NVP-LAF-237, P3298, TSL225 (tryptophyl-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid, disclosed by Yamada et al, Bioorg, & Med. Chem. Lett. 8 (1998)

1537-1540), valine pyrrolidide, TMC-2A/2B/2C, CD-26 inhibitors, FE999011, P9310/K364, VIP 0177, DPP4, SDZ 274-444, 2-cyanopyrrolidides and 4cyanopyrrolidides as disclosed by Ashworth et al, Bioorg. & Med. Chem. Lett., Vol. 6, No. 22, pp 1163-1166 and 2745-2748 (1996) ,and the compounds disclosed in US6395767, US6573287, US6395767 (compounds disclosed include BMS-477118, BMS-471211 and BMS 538,305), WO99/38501, WO99/46272, WO99/67279, WO99/67278, WO99/61431WO03/004498, WO03/004496, EP1258476, WO02/083128, WO02/062764, WO03/000250, WO03/002530, WO03/002531, WO03/002553, WO03/002593, WO03/000180, and WO03/000181; GLP-1 agonists such as exendin-3 and exendin-4 (including the 39 aa peptide synthetic exendin-4 called Exenatide®), and compounds disclosed in US2003087821 and NZ 504256, and pharmaceutically acceptable salts and esters thereof; peptides including amlintide and Symlin® (pramlintide acetate); and glycokinase activators such as those disclosed in US2002103199 (fused heteroaromatic compounds) and WO02/48106 (isoindolin-1-one-substituted propionamide compounds).

[00118] Showing the efficacy of the therapy and the rationale for the combination therapy with an anti-diabetic agent are presented in US20040214811.

Anti-hypertensive agents

[00119] The compounds described herein can be used in therapeutic combination with one or more anti-hypertensive agents, including but not limited to: diuretics, such as thiazides (e.g., chlorthalidone, cyclothiazide (CAS RN 2259-96-3), chlorothiazide (CAS RN 72956-09-3, which may be prepared as disclosed in US2809194), dichlorophenamide, hydroflumethiazide, indapamide, polythiazide, bendroflumethazide, methyclothazide, polythiazide, trichlormethazide, chlorthalidone, indapamide, metolazone, quinethazone, althiazide (CAS RN 5588-16-9, which may be prepared as disclosed in British Patent No. 902,658), benzthiazide (CAS RN 91-33-8, which may be prepared as disclosed in British Patent Nos. 861,367), and hydrochlorothiazide), loop diuretics (e.g., bumetanide, ethacrynic acid, furosemide, and torasemide), potassium

sparing agents (e.g., amiloride, and triamterene (CAS Number 396-01-0)), and aldosterone antagonists (e.g., spironolactone (CAS Number 52-01-7), epirenone, and the like);

β-adrenergic blockers such as Amiodarone (Cordarone, Pacerone), bunolol hydrochloride (CAS RN 31969-05-8, Parke-Davis), acebutolol (±N-[3-Acetyl-4-[2hydroxy-3-[(1 methylethyl)amino|propoxy|phenyl]-butanamide, or (±)-3'-Acetyl-4'-[2-hydroxy -3-(isopropylamino) propoxy] butyranilide), acebutolol hydrochloride (e.g., Sectral®, Wyeth-Ayerst), alprenolol hydrochloride (CAS RN 13707-88-5 see Netherlands Patent Application No. 6,605,692), atenolol (e.g., Tenormin®, AstraZeneca), carteolol hydrochloride (e.g., Cartrol® Filmtab®, Abbott), Celiprolol hydrochloride (CAS RN 57470-78-7, also see in US4034009), cetamolol hydrochloride (CAS RN 77590-95-5, see also US4059622), labetalol hydrochloride (e.g., Normodyne®, Schering), esmolol hydrochloride (e.g., Brevibloc®, Baxter), levobetaxolol hydrochloride (e.g., Betaxon™ Ophthalmic Suspension, Alcon), levobunolol hydrochloride (e.g., Betagan® Liquifilm® with C CAP® Compliance Cap, Allergan), nadolol (e.g., Nadolol, Corgard, Mylan), practolol (CAS RN 6673-35-4. see also US3408387), propranolol hydrochloride (CAS RN 318-98-9), sotalol hydrochloride (e.g., Betapace AFTM, Berlex), timolol (2-Propanol, 1-[(1,1dimethylethyl)amino]-3-[[4-4(4-morpholinyl)-1,2,5-thiadiazol-3-yl]oxy]-, hemihydrate, (S)-, CAS RN 91524-16-2), timolol maleate (S)-1-[(1,1-dimethylethyl) aminol-3-[[4- (4-morpholinyl)-1,2,5-thiadiazol -3- yl] oxyl-2-propanol (Z)-2butenedioate (1:1) salt, CAS RN 26921-17-5), bisoprolol (2-Propanol, 1-[4-[[2-(1methylethoxy)ethoxy]-methyl]phenoxyl]-3-[(1-meth-ylethyl)amino]-, (±), CAS RN 66722-44-9), bisoprolol fumarate (such as (±)-1-[4-[[2-(1-Methylethoxy) ethoxy]methyl]phenoxy]-3-[(1-methylethyl)amino]-2-propanol (E) -2-butenedioate (2:1) (salt), e.g., Zebeta™, Lederle Consumer), nebivalol (2H-1-Benzopyran-2methanol, αα'-[iminobis(methylene)]bis[6-fluoro-3,4-dihydro-, CAS RN 99200-09-6 see also U.S. Pat. No. 4,654,362), cicloprolol hydrochloride, such 2-Propanol, 1-[4-[2-(cyclopropylmethoxy)ethoxy|phenoxy|-3-[1-methylethyl)amino|-, hydrochloride, A.A.S. RN 63686-79-3), dexpropranolol hydrochloride (2-Propanol,1-[1-methylethy)-

amino]-3-(1-naphthalenyloxy)-hydrochloride (CAS RN 13071-11-9), diacetolol hydrochloride (Acetamide, N-[3-acetyl-4-[2-hydroxy-3-[(1-methylethyl)amino]propoxyl[phenyl]-, monohydrochloride CAS RN 69796-04-9), dilevalol hydrochloride (Benzamide, 2-hydroxy-5-[1-hydroxy-2-[1-methyl-3phenylpropyl)aminolethyll-, monohydrochloride, CAS RN 75659-08-4), exaprolol hydrochloride (2-Propanol, 1-(2-cyclohexylphenoxy)-3-[(1-methylethyl)amino]-, hydrochloride CAS RN 59333-90-3), flestolol sulfate (Benzoic acid, 2-fluro-,3-[[2-[aminocarbonyl)amino]--dimethylethyl]amino]-2-hydroxypropyl ester, (±)- sulfate (1:1) (salt), CAS RN 88844-73-9; metalol hydrochloride (Methanesulfonamide, N-[4-[1-hydroxy-2-(methylamino)propyl]phenyl]-, monohydrochloride CAS RN 7701-65-7), metoprolol 2-Propanol, 1-[4-(2-methoxyethyl)phenoxy]-3-[1-methylethyl)amino]-; CAS RN 37350-58-6), metoprolol tartrate (such as 2-Propanol, 1-[4-(2methoxyethyl)phenoxy]-3-[(1-methylethyl)amino]-, e.g., Lopressor®, Novartis), pamatolol sulfate (Carbamic acid, [2-[4-[2-hydroxy-3-[(1methylethyl)amino]propoxyl]phenyl]-ethyl]-, methyl ester, (±) sulfate (salt) (2:1), CAS RN 59954-01-7), penbutolol sulfate (2-Propanol, 1-(2-cyclopentylphenoxy)-3-[1,1-dimethyle-thyl)amino]1, (S)-, sulfate (2:1) (salt), CAS RN 38363-32-5), practolol (Acetamide, N-[4-[2-hydroxy-3-[(1-methylethyl)amino]-propoxy]phenyl]-, CAS RN 6673-35-4;) tiprenolol hydrochloride (Propanol, 1-[(1-methylethyl)amino]-3-[2-(methylthio)-phenoxy]-, hydrochloride, (±), CAS RN 39832-43-4), tolamolol (Benzamide, 4-[2-[[2-hydroxy-3-(2-methylphenoxy)-propyl]amino]ethoxyl]-, CAS RN 38103-61-6), bopindolol, indenolol, pindolol (e.g., Visken), propanolol (e.g., Inderal, Inderal-LA), tertatolol, Coreg (carvedilol), and tilisolol, and the like; calcium channel blockers such as besylate salt of amlodipine (such as 3-ethyl-5methyl-2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)-1,4-dihydro-6-methyl-3,5pyridinedicarboxylate benzenesulphonate, e.g., Norvasc®, Pfizer), clentiazem maleate (1.5-Benzothiazepin-4(5H)-one, 3-(acetyloxy)-8-chloro-5-[2-(dimethylamino)ethyl]-2,3-dihydro-2-(4-methoxyphenyl)-(2S-cis)-, (Z)-2-butenedioate (1:1), see also US4567195), isradipine (3,5-Pyridinedicarboxylic acid, 4-(4-benzofurazanyl)-1,4dihydro-2,6-dimethyl-, methyl 1-methylethyl ester, (±)-4(4-benzofurazanyl)-1,4dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, see also US4466972); nimodipine

(such as is isopropyl (2- methoxyethyl) 1, 4- dihydro -2,6- dimethyl -4- (3nitrophenyl) -3.5- pyridine - dicarboxylate, e.g., Nimotop®, Bayer), felodipine (such as ethyl methyl 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5pyridinedicarboxylate-, e.g., Plendil® Extended-Release, AstraZeneca LP), nilvadipine (3,5-Pyridinedicarboxylic acid, 2-cyano-1,4-dihydro-6-methyl-4-(3nitrophenyl)-.3-methyl 5-(1-methylethyl) ester, also see US3799934), nifedipine (such as 3.5-pyridinedicarboxylic acid.1.4-dihydro-2.6-dimethyl-4-(2-nitrophenyl)-, dimethyl ester, e.g., Procardia XL® Extended Release Tablets, Pfizer), diltiazem hydrochloride (such as 1.5-Benzothiazepin-4(5H)-one,3-(acetyloxy)-5[2-(dimethylamino)ethyl]-2,-3-dihydro-2(4-methoxyphenyl)-, monohydrochloride, (+)cis., e.g., Tiazac®, Forest), verapamil hydrochloride (such as benzeneacetronitrile, (alpha)-[[3-[[2-(3.4-dimethoxyphenyl) ethyllmethylaminolpropyl]-3.4-dimethoxy-(alpha)-(1-methylethyl) hydrochloride, e.g., Isoptin® SR, Knoll Labs), teludipine hydrochloride (3.5-Pyridinedicarboxylic acid, 2-[(dimethylamino)methyl]4-[2-[(1E)-3-(1.1-dimethylethoxy)-3-oxo-1-propenyllphenyll-1.4-dihydro-6-methyl-, diethyl ester, monohydrochloride) CAS RN 108700-03-4), belfosdil (Phosphonic acid, [2-(2phenoxyethyl)-1,3-propane-diyl]bis-, tetrabutyl ester CAS RN 103486-79-9), fostedil (Phosphonic acid. [[4-(2-benzothiazolyl)phenyl]methyl]-, diethyl ester CAS RN 75889-62-2), aranidipine, azelnidipine, barnidipine, benidipine, bepridil, cinaldipine, clevidipine, efonidipine, gallopamil, lacidipine, lemildipine, lercanidipine, monatepil maleate (1-Piperazinebutanamide, N-(6,11-dihydrodibenzo(b,e)thiepin-11-yl)4-(4fluorophenyl)-, (±)-, (Z)-2-butenedioate (1:1) (±)-N-(6,11-Dihydrodibenzo(b,e)thiepin-11-vl)-4-(p-fluorophenyl)-1-piperazinebutyramide maleate (1:1) CAS RN 132046-06-1), nicardipine, nisoldipine, nitrendipine, manidipine, pranidipine, and the like; T-channel calcium antagonists such as mibefradil; angiotensin converting enzyme (ACE) inhibitors such as benazepril, benazepril hydrochloride (such as 3-[[1-(ethoxycarbonyl)-3-phenyl-(1S)-propyl]amino]-2,3,4,5tetrahydro-2-oxo-1H -1-(3S)-benzazepine-1-acetic acid monohydrochloride, e.g., Lotrel®, Novartis), captopril (such as 1-[(2S)-3-mercapto-2-methylpropionyl]-Lproline, e.g., Captopril, Mylan, CAS RN 62571-86-2 and others disclosed in US4046889), ceranapril (and others disclosed in US4452790), cetapril (alacepril,

Dainippon disclosed in Eur. Therap. Res. 39:671 (1986); 40:543 (1986)), cilazapril (Hoffman-LaRoche) disclosed in J. Cardiovasc. Pharmacol. 9:39 (1987), indalapril (delapril hydrochloride (2H-1,2,4-Benzothiadiazine-7-sulfonamide, 3bicyclo[2.2.1]hept-5-en-2-yl-6-chloro-3,4-dihydro-, 1,1-dioxide CAS RN 2259-96-3); disclosed in US4385051), enalapril (and others disclosed in US4374829), enalopril, enaloprilat, fosinopril, ((such as trans-L-proline, 4-cyclohexyl-1-[[[2-methyl-1-(1oxopropoxy) propoxy](4-phenylbutyl) phosphinyl]acetyl]-, sodium salt, e.g., Monopril, Bristol-Myers Squibb and others disclosed in US4168267), fosinopril sodium (L-Proline, 4-cyclohexyl-1-[[(R)-[(1S)-2-methyl-1-(1-ox-opropoxy)propox), imidapril, indolapril (Schering, disclosed in J. Cardiovasc. Pharmacol. 5:643, 655 (1983)), lisinopril (Merck), losinopril, moexipril, moexipril hydrochloride (3-Isoquinolinecarboxylic acid, 2-[(2S)-2-[[(1S)-1-(ethoxycarbonyl)-3phenylpropyl]amino]-1-oxopropyl]-1,- 2,3,4-tetrahydro-6,7-dimethoxy-, monohydrochloride, (3S)- CAS RN 82586-52-5), quinapril, quinaprilat, ramipril (Hoechsst) disclosed in EP 79022 and Curr. Ther. Res. 40:74 (1986), perindopril erbumine (such as 2S,3aS,7aS-1-[(S)-N-[(S)-1-Carboxybutyl]alanyl]hexahydro-2indolinecarboxylic acid, 1-ethyl ester, compound with tert-butylamine (1:1), e.g., Aceon®, Solvay), perindopril (Servier, disclosed in Eur. J. clin. Pharmacol. 31:519 (1987)), quanipril (disclosed in US4344949), spirapril (Schering, disclosed in Acta. Pharmacol. Toxicol. 59 (Supp. 5):173 (1986)), tenocapril, trandolapril, zofenopril (and others disclosed in US4316906), rentiapril (fentiapril, disclosed in Clin. Exp. Pharmacol, Physiol, 10:131 (1983)), pivopril, YS980, teprotide (Bradykinin potentiator BPP9a CAS RN 35115-60-7), BRL 36,378 (Smith Kline Beecham, see EP80822 and EP60668), MC-838 (Chugai, see C.A. 102:72588v and Jap. J. Pharmacol. 40:373 (1986), CGS 14824 (Ciba-Geigy, 3-([1-ethoxycarbonyl-3-phenyl-(1S)-propyllamino)-2,3,4,5-tetrahydro-2-ox- o-1-(3S)-benzazepine-1 acetic acid HCl, see U.K. Patent No. 2103614), CGS 16,617 (Ciba-Geigy, 3(S)-[[(1S)-5-amino-1carboxypentyl[amino]-2,3,4,- 5-tetrahydro-2-oxo-1H-1-benzazepine-1-ethanoic acid, see US4473575), Ru 44570 (Hoechst, see Arzneimittelforschung 34:1254 (1985)), R 31-2201 (Hoffman-LaRoche see FEBS Lett. 165:201 (1984)), CI925 (Pharmacologist 26:243, 266 (1984)), WY-44221 (Wyeth, see J. Med. Chem. 26:394 (1983)), and

those disclosed in US2003006922 (paragraph 28), US4337201, US4432971 (phosphonamidates):

neutral endopeptidase inhibitors such as omapatrilat (Vanlev®), CGS 30440, cadoxatril and ecadotril, fasidotril (also known as aladotril or alatriopril), sampatrilat, mixanpril, and gemopatrilat, AVE7688, ER4030, and those disclosed in US5362727, US5366973, US5225401, US4722810, US5223516, US4749688, US5552397. US5504080, US5612359, US5525723, EP0599444, EP0481522, EP0599444, EP0595610, EP0534363, EP534396, EP534492, EP0629627; endothelin antagonists such as tezosentan, A308165, and YM62899, and the like; vasodilators such as hydralazine (apresoline), clonidine (clonidine hydrochloride (1H-Imidazol-2-amine, N-(2,6-dichlorophenyl)4,5-dihydro-, monohydrochloride CAS RN 4205-91-8), catapres, minoxidil (loniten), nicotinyl alcohol (roniacol), diltiazem hydrochloride (such as 1,5-Benzothiazepin-4(5H)-one,3-(acetyloxy)-5[2-(dimethylamino)ethyl]-2,-3-dihydro-2(4-methoxyphenyl)-, monohydrochloride, (+)cis, e.g., Tiazac®, Forest), isosorbide dinitrate (such as 1,4:3,6-dianhydro-D-glucitol 2,5-dinitrate e.g., Isordil® Titradose®, Wyeth-Ayerst), sosorbide mononitrate (such as 1,4:3,6-dianhydro-D-glucito-1,5-nitrate, an organic nitrate, e.g., Ismo®, Wyeth-Averst), nitroglycerin (such as 2.3 propanetriol trinitrate, e.g., Nitrostat® Parke-Davis), veranamil hydrochloride (such as benzeneacetonitrile, (±)-(alpha)[3-[[2-(3,4 dimethoxyphenyl)ethyllmethylaminolpropyll-3,4-dimethoxy-(alpha)- (1-methylethyl) hydrochloride, e.g., Covera HS® Extended-Release, Searle), chromonar (which may be prepared as disclosed in US3282938), clonitate (Annalen 1870 155), droprenilamine (which may be prepared as disclosed in DE2521113), lidoflazine (which may be prepared as disclosed in US3267104); prenylamine (which may be prepared as disclosed in US3152173), propatyl nitrate (which may be prepared as disclosed in French Patent No. 1,103,113), mioflazine hydrochloride (1-Piperazineacetamide, 3-(aminocarbonyl)₄-[4,4-bis(4-fluorophenyl)butyl]-N-(2,6dichlorophenyl)-, dihydrochloride CAS RN 83898-67-3), mixidine (Benzeneethanamine, 3,4-dimethoxy-N-(1-methyl-2-pyrrolidinylidene)- Pyrrolidine, 2-[(3,4-dimethoxyphenethyl)imino]-1-methyl-1-Methyl-2-[(3,4dimethoxyphenethyl)imino|pyrrolidine CAS RN 27737-38-8), molsidomine (1,2,3-

Oxadiazolium, 5-[(ethoxycarbonyl)amino]-3-(4-morpholinyl)-, inner salt CAS RN 25717-80-0), isosorbide mononitrate (D-Glucitol, 1,4:3,6-dianhydro-, 5-nitrate CAS RN 16051-77-7), erythrityl tetranitrate (1,2,3,4-Butanetetrol, tetranitrate, (2R,3S)-rel-CAS RN 7297-25-8), clonitrate(1,2-Propanediol, 3-chloro-, dinitrate (7CI, 8CI, 9CI) CAS RN 2612-33-1), dipyridamole Ethanol, 2,2',2",2"'-[(4,8-di-1piperidinylpyrimido[5,4-d]pyrimidine-2,6-diyl)dinitrilo]tetrakis- CAS RN 58-32-2), nicorandil (CAS RN 65141-46-0 3-), pyridinecarboxamide (N-[2-(nitrooxy)ethyl]-Nisoldipine3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2nitrophenyl)-, methyl 2-methylpropyl ester CAS RN 63675-72-9), nifedipine3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-, dimethyl ester CAS RN 21829-25-4), perhexiline maleate (Piperidine, 2-(2,2-dicyclohexylethyl)-, (2Z)-2-butenedioate (1:1) CAS RN 6724-53-4), oxprenolol hydrochloride (2-Propanol, 1-[(1-methylethyl)amino]-3-[2-(2-propenyloxy)phenoxy]-, hydrochloride CAS RN 6452-73-9), pentrinitrol (1,3-Propanediol, 2,2-bis[(nitrooxy)methyl]-, mononitrate (ester) CAS RN 1607-17-6), verapamil (Benzeneacetonitrile, α-[3-[[2-(3.4-dimethoxyphenyl)ethyl]- methylamino[propyl]-3,4-dimethoxy- α -(1-methylethyl)-CAS RN 52-53-9) and the like; angiotensin II receptor antagonists such as, aprosartan, zolasartan, olmesartan, pratosartan, FI6828K, RNH6270, candesartan (1 H-Benzimidazole-7-carboxylic acid, 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]4-yl]methyl]- CAS RN 139481-59-7), candesartan cilexetil ((+/-)-l-(cyclohexylcarbonyloxy)ethyl-2-ethoxy-l-[[2'-(1Htetrazol-5-yl)biphenyl-4-yl]-lH-benzimidazole carboxylate, CAS RN 145040-37-5, US5703110 and US5196444), eprosartan (3-[1-4-carboxyphenylmethyl)-2-n-butylimidazol-5-yl]-(2-thienylmethyl) propenoic acid, US5185351 and US5650650), irbesartan (2-n-butyl-3- [[2'-(lh-tetrazol-5-yl)biphenyl-4-yl]methyl]1,3diazazspiro[4,4]non-l-en-4-one, US5270317 and US5352788), losartan (2-N-butyl-4chloro-5-hydroxymethyl-l-[(2'-(IH-tetrazol-5-yl)biphenyl-4-yl)-methyl]imidazole, potassium salt, US5138069, US5153197 and US5128355), tasosartan (5,8-dihydro-2,4-dimethyl-8-[(2'-(lH-tetrazol-5-yl)[1,1'-biphenyl]4-yl)methyl]-pyrido[2,3d]pvrimidin-7(6H)-one, US5149699), telmisartan (4'-[(1,4-dimethyl-2'-propyl-(2,6'-bi-

US5591762), milfasartan, abitesartan, valsartan (Diovan® (Novartis), (S)-N-valeryl-N-[[2'-(IH-tetrazol-5-yl)biphenyl-4-yl)methyl]valine, US5399578), EXP-3137 (2-Nbutyl-4-chloro-1-[(2'-(IH-tetrazol-5-yl)biphenyl-4-yl)-methyl]imidazole-5-carboxylic acid, US5138069, US5153197 and US5128355), 3-(2'-(tetrazol-5-yl)-1,1'-biphen-4yl)methyl-5,7-dimethyl-2-ethyl-3H-imidazo[4,5-b]pyridine, 4'[2-ethyl-4-methyl-6-(5.6.7.8-tetrahydroimidazo[1,2-a]pyridin-2-yl]-benzimidazol-1-yl]-methyl]-1,1'biphenyl]-2- carboxylic acid, 2-butyl-6-(1-methoxy-1-methylethyl)-2-[2'-)IH-tetrazol-5-vl)biphenyl-4-ylmethyl]guinazolin-4(3H)-one, 3-[2'-carboxybiphenyl-4-yl)methyl]-2-cyclopropyl-7-methyl- 3H-imidazo[4,5-b]pyridine, 2-butyl-4-chloro-1-[(2'-tetrazol-5-yl)biphenyl-4-yl)methyl]imidazole-carboxylic acid, 2-butyl-4-chloro-1-[[2'-(1Htetrazol-5-vl)[1,1'-biphenyl]-4-vl]methyl]-1H-imidazole-5-carboxylic acid-1-(ethoxycarbonyl-oxy)ethyl ester potassium salt, dipotassium 2-butyl-4-(methylthio)-1-[[2-[[[(propylamino)carbonyl]amino]-sulfonyl](1,1'-biphenyl)-4-yl]methyl]-1Himidazole-5-carboxylate, methyl-2-[[4-butyl-2-methyl-6-oxo-5-[[2'-(1H-tetrazol-5yl)-[1,1'-biphenyl]-4-yl]methyl]-1-(6H)-pyrimidinyl]methyl]-3-thiophencarboxylate, 5-[(3.5-dibutyl-1H-1,2,4-triazol-1-yl)methyl]-2-[2-(1H-tetrazol-5-ylphenyl)]pyridine, 6-butyl-2-(2-phenylethyl)-5[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-methyl]pyrimidin-4-(3H)-one D,L lysine salt, 5-methyl-7-n-propyl-8-[[2'-(1H-tetrazol-5-yl)biphenyl-4yl]methyl]-[1,2,4]-triazolo[1,5-c]pyrimidin-2(3H)-one, 2,7-diethyl-5-[[2'-(5tetrazoly)biphenyl-4-yl]methyl]-5H-pyrazolo[1,5-b][1,2,4]triazole potassium salt, 2-[2-butyl-4,5-dihydro-4-oxo-3-[2'-(1H-tetrazol-5-yl)-4-biphenylmethyl]-3Himidazol[4,5-c]pyridine-5-ylmethyl]benzoic acid, ethyl ester, potassium salt, 3methoxy-2,6-dimethyl-4-[[2'(1H-tetrazol-5-yl)-1,1'-biphenyl-4-yl]methoxy]pyridine, 2-ethoxy-1-[[2'-(5-oxo-2.5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl]-1Hbenzimidazole-7-carboxylic acid, 1-[N-(2'-(1H-tetrazol-5-yl)biphenyl-4-yl-methyl)-Nvalerolylaminomethyl)cyclopentane-1-carboxylic acid, 7-methyl-2n-propyl-3-[[2'1Htetrazol-5-yl)biphenyl-4-yl]methyl]-3H-imidazo[4,5-6]pyridine, 2-[5-[(2-ethyl-5,7dimethyl-3H-imidazo[4,5-b]pyridine-3-yl)methyl]-2-quinolinyl]sodium benzoate, 2butyl-6-chloro-4-hydroxymethyl-5-methyl-3-[[2'-(1H-tetrazol-5-yl)biphenyl-4vllmethyl]pyridine, 2-[[[2-butyl-1-[(4-carboxyphenyl)methyl]-1H-imidazol-5yl]methyl]amino]benzoic acid tetrazol-5-yl)biphenyl-4-yl]methyl]pyrimidin-6-one,

4(S)-[4-(carboxymethyl)phenoxyl-N-[2(R)-[4-(2-sulfobenzamido)imidazol-1yl]octanoyl]-L-proline, 1-(2,6-dimethylphenyl)-4-butyl-1,3-dihydro-3-[[6-[2-(1Htetrazol-5-yl)phenyl]-3-pyridinyl]methyl]-2H-imidazol-2-one, 5,8-ethano-5,8dimethyl-2-n-propyl-5,6,7,8-tetrahydro-1-[[2'(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-1H,4H-1,3,4a,8a-tetrazacyclopentanaphthalene-9-one, 4-[1-[2'-(1,2,3,4-tetrazol-5yl)biphen-4-yl)methylamino]-5,6,7,8-tetrahydro-2-trifylquinazoline, 2-(2chlorobenzoyl)imino-5-ethyl-3-[2'-(1H-tetrazole-5-yl)biphenyl-4-yl)methyl-1,3,4thiadiazoline, 2-[5-ethyl-3-[2-(1H-tetrazole-5-yl)biphenyl-4-yl]methyl-1,3,4thiazoline-2-ylidene]aminocarbonyl-1-cyclopentencarboxylic acid dipotassium salt, and 2-butyl-4-[N-methyl-N-(3-methylcrotonovl)amino]-1-[[2'-(1H-tetrazol-5yl)biphenyl-4-yl]methyl]-1H-imidzole-5-carboxylic acid 1-ethoxycarbonyloxyethyl ester, those disclosed in patent publications EP475206, EP497150, EP539086, EP539713, EP535463, EP535465, EP542059, EP497121, EP535420, EP407342, EP415886, EP424317, EP435827, EP433983, EP475898, EP490820, EP528762, EP324377, EP323841, EP420237, EP500297, EP426021, EP480204, EP429257. EP430709, EP434249, EP446062, EP505954, EP524217, EP514197, EP514198, EP514193, EP514192, EP450566, EP468372, EP485929, EP503162, EP533058, EP467207 EP399731, EP399732, EP412848, EP453210, EP456442, EP470794, EP470795, EP495626, EP495627, EP499414, EP499416, EP499415, EP511791, EP516392, EP520723, EP520724, EP539066, EP438869, EP505893, EP530702, EP400835, EP400974, EP401030, EP407102, EP411766, EP409332, EP412594, EP419048, EP480659, EP481614, EP490587, EP467715, EP479479, EP502725, EP503838, EP505098, EP505111 EP513,979 EP507594, EP510812, EP511767, EP512675, EP512676, EP512870, EP517357, EP537937, EP534706, EP527534, EP540356, EP461040, EP540039, EP465368, EP498723, EP498722, EP498721, EP515265, EP503785, EP501892, EP519831, EP532410, EP498361, EP432737, EP504888, EP508393, EP508445, EP403159, EP403158, EP425211, EP427463, EP437103, EP481448, EP488532, EP501269, EP500409, EP540400, EP005528. EP028834, EP028833, EP411507, EP425921, EP430300, EP434038, EP442473, EP443568, EP445811, EP459136, EP483683, EP518033, EP520423, EP531876, EP531874, EP392317, EP468470, EP470543, EP502314, EP529253, EP543263,

EP540209, EP449699, EP465323, EP521768, EP415594, WO92/14468. WO93/08171, WO93/08169, WO91/00277, WO91/00281, WO91/14367, WO92/00067, WO92/00977, WO92/20342, WO93/04045, WO93/04046, WO91/15206, WO92/14714, WO92/09600, WO92/16552, WO93/05025. WO93/03018, WO91/07404, WO92/02508, WO92/13853, WO91/19697. WO91/11909, WO91/12001, WO91/11999, WO91/15209, WO91/15479, WO92/20687, WO92/20662, WO92/20661, WO93/01177, WO91/14679. WO91/13063, WO92/13564, WO91/17148, WO91/18888, WO91/19715. WO92/02257, WO92/04335, WO92/05161, WO92/07852, WO92/15577, WO93/03033, WO91/16313, WO92/00068, WO92/02510, WO92/09278, WO9210179, WO92/10180, WO92/10186, WO92/10181, WO92/10097. WO92/10183, WO92/10182, WO92/10187, WO92/10184, WO92/10188. WO92/10180, WO92/10185, WO92/20651, WO93/03722, WO93/06828, WO93/03040, WO92/19211, WO92/22533, WO92/06081, WO92/05784, WO93/00341, WO92/04343, WO92/04059, US5104877, US5187168, US5149699, US5185340, US4880804, US5138069, US4916129, US5153197, US5173494, US5137906, US5155126, US5140037, US5137902, US5157026, US5053329, US5132216, US5057522, US5066586, US5089626, US5049565, US5087702, US5124335, US5102880, US5128327, US5151435, US5202322, US5187159, US5198438, US5182288, US5036048, US5140036, US5087634, US5196537, US5153347, US5191086, US5190942, US5177097, US5212177, US5208234, US5208235, US5212195, US5130439, US5045540, US5041152, and US5210204, and pharmaceutically acceptable salts and esters thereof; α/β adrenergic blockers such as nipradilol, arotinolol, amosulalol, bretylium tosylate (CAS RN: 61-75-6), dihydroergtamine mesylate (such as ergotaman-3', 6',18-trione,9,-10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)-, $(5'(\alpha))$ -, monomethanesulfonate, e.g., DHE 45® Injection, Novartis), carvedilol (such as (±)-1-(Carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol, e.g., Coreg®, SmithKline Beecham), labetalol (such as 5-[1-hydroxy-2-[(1-methyl-3-phenylpropyl) amino] ethyl]salicylamide monohydrochloride, e.g., Normodyne®, Schering), bretylium tosylate (Benzenemethanaminium, 2-bromo-N-ethyl-N,N-dimethyl-, salt with 4-

methylbenzenesulfonic acid (1:1) CAS RN 61-75-6), phentolamine mesylate (Phenol, 3-[[(4.5-dihydro-1H-imidazol-2-vl)methyl](4-methylphenyl)amino]-. monomethanesulfonate (salt) CAS RN 65-28-1), solypertine tartrate (5H-1,3-Dioxolo[4,5-f]indole, 7-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-, (2R,3R)-2,3dihydroxybutanedioate (1:1) CAS RN 5591-43-5), zolertine hydrochloride (Piperazine, 1-phenyl4-[2-(1H-tetrazol-5-yl)ethyl]-, monohydrochloride (8Cl, 9Cl) CAS RN 7241-94-3) and the like: α adrenergic receptor blockers, such as alfuzosin (CAS RN: 81403-68-1), terazosin, urapidil, prazosin (Minipress®), tamsulosin, bunazosin, trimazosin, doxazosin, naftopidil, indoramin, WHP 164, XEN010, fenspiride hydrochloride (which may be prepared as disclosed in US3399192), proroxan (CAS RN 33743-96-3), and labetalol hydrochloride and combinations thereof; α 2 agonists such as methyldopa, methyldopa HCL, lofexidine, tiamenidine, moxonidine, rilmenidine, guanobenz, and the like; aldosterone inhibitors, and the like: angiopoietin-2-binding agents such as those disclosed in WO03/030833; anti-angina agents such as ranolazine (hydrochloride1-Piperazineacetamide, N-(2,6dimethylphenyl)-4-[2-hydroxy-3-(2-methoxyphenoxy)propyl]-, dihydrochloride CAS RN 95635-56-6), betaxolol hydrochloride (2-Propanol, 1-[4-[2 (cyclopropylmethoxy)ethyl]phenoxy]-3-[(1-methylethyl)amino]-, hydrochloride CAS RN 63659-19-8), butoprozine hydrochloride (Methanone, [4-[3(dibutylamino)propoxylphenyl](2-ethyl-3-indolizinyl)-, monohydrochloride CAS RN 62134-34-3), cinepazet maleate1-Piperazineacetic acid, 4-f1-oxo-3-(3.4.5trimethoxyphenyl)-2-propenyl]-, ethyl ester, (2Z)-2-butenedioate (1:1) CAS RN 50679-07-7), tosifen (Benzenesulfonamide, 4-methyl-N-[[[(1S)-1-methyl-2phenylethyllaminolcarbonyll- CAS RN 32295-184), verapamilhydrochloride (Benzeneacetonitrile, α-[3-[[2-(3,4-dimethoxyphenyl)ethyl]methylamino]propyl]-3,4dimethoxy-a-(1-methylethyl)-, monohydrochloride CAS RN 152-114), molsidomine (1,2,3-Oxadiazolium, 5-[(ethoxycarbonyl)amino]-3-(4-morpholinyl)-, inner salt CAS RN 25717-80-0), and ranolazine hydrochloride (1-Piperazineacetamide, N-(2.6-

RN 95635-56-6); tosifen (Benzenesulfonamide, 4-methyl-N-[[[(1S)-1-methyl-2phenylethyl]amino]carbonyl]- CAS RN 32295-184); adrenergic stimulants such as guanfacine hydrochloride (such as N-amidino-2-(2,6dichlorophenyl) acetamide hydrochloride, e.g., Tenex® Tablets available from Robins); methyldopa-hydrochlorothiazide (such as levo-3-(3,4-dihydroxyphenyl)-2methylalanine) combined with Hydrochlorothiazide (such as 6-chloro-3.4-dihydro-2H -1,2,4-benzothiadiazine-7- sulfonamide 1,1-dioxide, e.g., the combination as, e.g., Aldoril® Tablets available from Merck), methyldopa-chlorothiazide (such as 6chloro-2H-1, 2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide and methyldopa as described above, e.g., Aldoclor®, Merck), clonidine hydrochloride (such as 2-(2.6dichlorophenylamino)-2-imidazoline hydrochloride and chlorthalidone (such as 2chloro-5-(1-hydroxy-3-oxo-1-isoindolinyl) benzenesulfonamide), e.g., Combines®. Boehringer Ingelheim), clonidine hydrochloride (such as 2-(2.6dichlorophenylamino)-2-imidazoline hydrochloride, e.g., Catapres®, Boehringer Ingelheim), clonidine (1H-Imidazol-2-amine, N-(2,6-dichlorophenyl)4,5-dihydro-CAS RN 4205-90-7); and

those agents disclosed in US20030069221. Tests showing the efficacy of the therapy and the rationale for the combination therapy with an anti-hypertensive agent are described, for example, in US20030069221.

Anti-Obesity Agents

[00120] The compounds described herein can be used in therapeutic combination with one or more anti-obesity agents, including but not limited to: 11\(\text{I}\) HSD-1 (11-beta hydroxy steroid dehydrogenase type 1) inhibitors, such as BVT 3498, BVT 2733, 3-(1-adamanty1)-4-ethyl-5-(ethyl1thio)-4H-1,2,4-triazole, 3-(1-adamanty1)-5-(3,4,5-trimethoxypheny1)-4-methyl-4H-1,2,4-triazole, 3- adamantanyl-4,5,6,7,8,9,10,11,12,3a-decahydro-1,2,4-triazole[4,3-a][11]annulene, and those compounds disclosed in WO01/90091, WO01/90090, WO01/90092 and WO02/072084:

5HT antagonists such as those in WO03/037871, WO03/037887, and the like; 5HT1a modulators such as carbidopa, benserazide and those disclosed in US6207699,

WO03/031439, and the like:

5HT2c (serotonin receptor 2c) agonists, such as BVT933, DPCA37215, IK264, PNU 22394, WAY161503, R-1065, SB 243213 (Glaxo Smith Kline) and YM 348 and those disclosed in US3914250, WO00/77010, WO02/36596, WO02/48124, WO02/10169, WO01/66548, WO02/44152, WO02/51844, WO02/40456, and WO02/40457:

5HT6 receptor modulators, such as those in WO03/030901, WO03/035061, WO03/039547, and the like;

acyl-estrogens, such as oleoyl-estrone, disclosed in del Mar-Grasa, M. et al., Obesity Research, 9:202-9 (2001) and Japanese Patent Application No. JP 2000256190; anorectic bicyclic compounds such as 1426 (Aventis) and 1954 (Aventis), and the compounds disclosed in WO00/18749, WO01/32638, WO01/62746, WO01/62747, and WO03/015769:

CB 1 (cannabinoid-1 receptor) antagonist/inverse agonists such as rimonabant (Acomplia; Sanofi), SR-147778 (Sanofi), SR-141716 (Sanofi), BAY 65-2520 (Bayer), and SLV 319 (Solvay), and those disclosed in patent publications US4973587, US5013837, US5081122, US5112820, US5292736, US5532237, US5624941, US6028084, US6509367, US6509367, US20060069080 (specifically including those referenced or disclosed by formulae in paragraphs 28-168), WO96/33159, WO97/29079, WO98/31227, WO98/33765, WO98/37061, WO98/41519, WO98/43635, WO98/43636, WO99/02499, WO00/10967, WO00/10968, WO01/09120, WO01/58869, WO01/64632, WO01/64633, WO01/64634, WO01/70700, WO01/96330, WO02/076949, WO03/006007, WO03/007887, WO03/020217, WO03/026647, WO03/026648, WO03/027069, WO03/027076, WO03/027114, WO03/037332, WO03/040107, WO03/086940, WO03/084943 and EP658846:

CCK-A (cholecystokinin-A) agonists, such as AR-R 15849, GI 181771 (GSK), JMV-180, A-71378, A-71623 and SR146131 (Sanofi), and those described in US5739106; CNTF (Ciliary neurotrophic factors), such as GI-181771 (Glaxo-SmithKline), SR146131 (Sanofi Synthelabo), butabindide, PD170,292, and PD 149164 (Pfizer); CNTF derivatives, such as Axokine® (Regeneron), and those disclosed in

WO94/09134, WO98/22128, and WO99/43813;

dipentidyl pentidase IV (DP-IV) inhibitors, such as isoleucine thiazolidide, valine pyrrolidide, NVP-DPP728, LAF237, P93/01, P 3298, TSL 225 (tryptophyl-1,2,3,4tetrahydroisoquinoline-3-carboxylic acid; disclosed by Yamada et al, Bioorg. & Med. Chem. Lett. 8 (1998) 1537-1540), TMC-2A/2B/2C, CD26 inhibitors, FE 999011. P9310/K364, VIP 0177, SDZ 274-444, 2-cvanopyrrolidides and 4-cvanopyrrolidides as disclosed by Ashworth et al. Bioorg. & Med. Chem. Lett., Vol. 6, No. 22, pp 1163-1166 and 2745-2748 (1996) and the compounds disclosed patent publications. WO99/38501, WO99/46272, WO99/67279 (Probiodrug), WO99/67278 (Probiodrug), WO99/61431 (Probiodrug), WO02/083128, WO02/062764, WO03/000180. WO03/000181, WO03/000250, WO03/002530, WO03/002531, WO03/002553, WO03/002593, WO03/004498, WO03/004496, WO03/017936, WO03/024942, WO03/024965, WO03/033524, WO03/037327 and EP1258476; growth hormone secretagogue receptor agonists/antagonists, such as NN703, hexarelin, MK-0677 (Merck), SM-130686, CP-424391 (Pfizer), LY 444,711 (Eli Lilly), L-692,429 and L-163,255, and such as those disclosed in USSN 09/662448, US provisional application 60/203335, US6358951, US2002049196, US2002/022637, WO01/56592 and WO02/32888: H3 (histamine H3) antagonist/inverse agonists, such as thioperamide, 3-(1H-imidazol-4-vl)propyl N-(4-pentenyl)carbamate), clobenpropit, iodophenpropit, imoproxifan, GT2394 (Gliatech), and A331440, O-[3-(1H-imidazol-4-yl)propanol]carbamates (Kiec-Kononowicz, K. et al., Pharmazie, 55:349-55 (2000)), piperidine-containing histamine H3-recentor antagonists (Lazewska, D. et al., Pharmazie, 56:927-32 (2001). benzophenone derivatives and related compounds (Sasse, A. et al., Arch. Pharm. (Weinheim) 334:45-52 (2001)), substituted N-phenylcarbamates (Reidemeister, S. et al., Pharmazie, 55:83-6 (2000)), and proxifan derivatives (Sasse, A. et al., J. Med. Chem., 43:3335-43 (2000)) and histamine H3 receptor modulators such as those disclosed in WO02/15905, WO03/024928 and WO03/024929; leptin derivatives, such as those disclosed in US5552524, US5552523, US5552522, US5521283, WO96/23513, WO96/23514, WO96/23515, WO96/23516,

WO96/23517, WO96/23518, WO96/23519, and WO96/23520:

leptin, including recombinant human leptin (PEG-OB, Hoffman La Roche) and recombinant methionyl human leptin (Amgen):

lipase inhibitors, such as tetrahydrolipstatin (orlistat/Xenical®), Triton WR1339, RHC80267, lipstatin, teasaponin, diethylumbelliferyl phosphate, FL-386, WAY-121898, Bay-N-3176, valilactone, esteracin, ebelactone A, ebelactone B, and RHC 80267, and those disclosed in patent publications WO01/77094, US4598089, US4452813, USUS5512565, US5391571, US5602151, US4405644, US4189438, and US4242453;

lipid metabolism modulators such as maslinic acid, erythrodiol, ursolic acid uvaol, betulinic acid, betulin, and the like and compounds disclosed in WO03/011267; Mc4r (melanocortin 4 receptor) agonists, such as CHIR86036 (Chiron), ME-10142, ME-10145, and HS-131 (Melacure), and those disclosed in PCT publication Nos. WO99/64002, WO00/74679, WO01/991752, WO01/25192, WO01/52880, WO01/74844, WO01/70708, WO01/70337, WO01/91752, WO02/059095, WO02/059107, WO02/059108, WO02/059117, WO02/06276, WO02/12166, WO02/11715, WO02/12178, WO02/15909, WO02/38544, WO02/068387, WO02/068388, WO02/067869, WO02/081430, WO03/06604, WO03/007949, WO03/009847, WO03/009850, WO03/013509, and WO03/031410; Mc5r (melanocortin 5 receptor) modulators, such as those disclosed in WO97/19952, WO00/15826, WO00/15790, US20030092041;

melanin-concentrating hormone 1 receptor (MCHR) antagonists, such as T-226296 (Takeda), SB 568849, SNP-7941 (Synaptic), and those disclosed in patent publications WO01/21169, WO01/82925, WO01/87834, WO02/051809, WO02/06245, WO02/076929, WO02/076947, WO02/04433, WO02/51809, WO02/083134, WO02/094799, WO03/04027, WO03/13574, WO03/15769, WO03/028641, WO03/035624, WO03/033476, WO03/033480, JP13226269, and JP1437059:

mGluR5 modulators such as those disclosed in WO03/029210, WO03/047581, WO03/048137, WO03/051315, WO03/051833, WO03/053922, WO03/059904, and the like:

serotoninergic agents, such as fenfluramine (such as Pondimin® (Benzeneethanamine,

N-ethyl-alpha-methyl-3-(trifluoromethyl)-, hydrochloride), Robbins), dexfenfluramine (such as Redux® (Benzeneethanamine, N-ethyl-alpha-methyl-3-(trifluoromethyl)-, hydrochloride), Interneuron) and sibutramine ((Meridia®, Knoll/Reductil®) including racemic mixtures, as optically pure isomers (+) and (-), and pharmaceutically acceptable salts, solvents, hydrates, clathrates and prodrugs thereof including sibutramine hydrochloride monohydrate salts thereof, and those compounds disclosed in US4746680, US4806570, and US5436272, US20020006964, WO01/27068, and WO01/62341;

NE (norepinephrine) transport inhibitors, such as GW 320659, despiramine, talsupram, and nomifensine:

NPY 1 antagonists, such as BIBP3226, J-115814, BIBO 3304, LY-357897, CP-671906, GI-264879A, and those disclosed in US6001836, WO96/14307, WO01/23387, WO99/51600, WO01/85690, WO01/85098, WO01/85173, and WO01/89528:

NPY5 (neuropeptide Y Y5) antagonists, such as 152,804, GW-569180A, GW-594884A, GW-587081X, GW-548118X, FR235208, FR226928, FR240662, FR252384, 1229U91, GI-264879A, CGP71683A, LY-377897, LY-366377, PD-160170, SR-120562A, SR-120819A, JCF-104, and H409/22 and those compounds disclosed in patent publications US6140354, US6191160, US6218408, US6258837, US6313298, US6326375, US6329395, US6335345, US6337332, US6329395, US6340683, EP01010691, EP-01044970, WO97/19682, WO97/20820, WO97/20821, WO97/20822, WO97/20823, WO98/27063, WO00/107409, WO00/185714, WO00/185730, WO00/64880, WO00/68197, WO00/69849, WO/0113917, WO01/09120, WO01/14376, WO01/85714, WO01/85730, WO01/07409, WO01/02379, WO01/23388, WO01/23389, WO01/44201, WO01/62737, WO01/62738, WO01/09120, WO02/20488, WO02/25592, WO02/48152, WO02/49648, WO02/051806, WO02/094789, WO03/009845, WO03/014083, WO03/022849, WO03/028726 and Norman et al., J. Med. Chem. 43:4288-4312 (2000):

opioid antagonists, such as nalmefene (Revex®), 3-methoxynaltrexone, naloxone, and naltrexone and those disclosed in WO00/21509:

orexin antagonists, such as SB-334867-A and those disclosed in patent publications WO01/96302, WO01/68609, WO02/44172, WO02/51232, WO02/51838. WO02/089800, WO02/090355, WO03/023561, WO03/032991, and WO03/037847: PDE inhibitors (e.g., compounds which slow the degradation of cyclic AMP (cAMP) and/or cyclic GMP (cGMP) by inhibition of the phosphodiesterases, which can lead to a relative increase in the intracellular concentration of cAMP and cGMP; possible PDE inhibitors are primarily those substances which are to be numbered among the class consisting of the PDE3 inhibitors, the class consisting of the PDE4 inhibitors and/or the class consisting of the PDE5 inhibitors, in particular those substances which can be designated as mixed types of PDE3/4 inhibitors or as mixed types of PDE3/4/5 inhibitors) such as those disclosed in patent publications DE1470341, DE2108438, DE2123328, DE2305339, DE2305575, DE2315801, DE2402908. DE2413935, DE2451417, DE2459090, DE2646469, DE2727481, DE2825048, DE2837161, DE2845220, DE2847621, DE2934747, DE3021792, DE3038166, DE3044568, EP000718, EP0008408, EP0010759, EP0059948, EP0075436. EP0096517, EP0112987, EP0116948, EP0150937, EP0158380, EP0161632. EP0161918, EP0167121, EP0199127, EP0220044, EP0247725, EP0258191. EP0272910, EP0272914, EP0294647, EP0300726, EP0335386, EP0357788. EP0389282, EP0406958, EP0426180, EP0428302, EP0435811, EP0470805, EP0482208, EP0490823, EP0506194, EP0511865, EP0527117, EP0626939. EP0664289, EP0671389, EP0685474, EP0685475, EP0685479, JP92234389, JP94329652, JP95010875, US4963561, US5141931, WO9117991, WO9200968. WO9212961, WO9307146, WO9315044, WO9315045, WO9318024, WO9319068, WO9319720, WO9319747, WO9319749, WO9319751, WO9325517, WO9402465. WO9406423, WO9412461, WO9420455, WO9422852, WO9425437, WO9427947, WO9500516, WO9501980, WO9503794, WO9504045, WO9504046, WO9505386, WO9508534, WO9509623, WO9509624, WO9509627, WO9509836, WO9514667. WO9514680, WO9514681, WO9517392, WO9517399, WO9519362, WO9522520, WO9524381, WO9527692, WO9528926, WO9535281, WO9535282, WO9600218. WO9601825, WO9602541, WO9611917, DE3142982, DE1116676, DE2162096, EP0293063, EP0463756, EP0482208, EP0579496, EP0667345 US6331543,

US20050004222 (including those disclosed in formulas I-XIII and paragraphs 37-39. 85-0545 and 557-577), WO9307124, EP0163965, EP0393500, EP0510562, EP0553174, WO9501338 and WO9603399, as well as PDE5 inhibitors (such as RX-RA-69, SCH-51866, KT-734, vesnarinone, zaprinast, SKF-96231, ER-21355, BF/GP-385, NM-702 and sildenafil (Viagra®)), PDE4 inhibitors (such as RO-20-1724, MEM 1414 (R1533/R1500; Pharmacia Roche), denbufylline, rolipram, oxagrelate, nitraquazone, Y-590, DH-6471, SKF-94120, motapizone, lixazinone, indolidan. olprinone, atizoram, KS-506-G, dipamfylline, BMY-43351, atizoram, arofylline, filaminast, PDB-093, UCB-29646, CDP-840, SKF-107806, piclamilast, RS-17597, RS-25344-000, SB-207499, TIBENELAST, SB-210667, SB-211572, SB-211600, SB-212066, SB-212179, GW-3600, CDP-840, mopidamol, anagrelide, ibudilast. amrinone, pimobendan, cilostazol, quazinone and N-(3,5-dichloropyrid-4-vl)-3cyclopropylmethoxy4-difluoromethoxybenzamide, PDE3 inhibitors (such as sulmazole, ampizone, cilostamide, carbazeran, piroximone, imazodan, CI-930. siguazodan, adibendan, saterinone, SKF-95654, SDZ-MKS-492, 349-U-85, emoradan, EMD-53998, EMD-57033, NSP-306, NSP-307, revizinone, NM-702, WIN-62582 and WIN-63291, enoximone and milrinone, PDE3/4 inhibitors (such as benafentrine, trequinsin, ORG-30029, zardaverine, L-686398, SDZ-ISQ-844, ORG-20241, EMD-54622, and tolafentrine) and other PDE inhibitors (such as cilomilast, fenoximone, pentoxifylline, roflumilast, tadalafil(Cialis®), theophylline, and vardenafil(Levitra®); Neuropeptide Y2 (NPY2) agonists include but are not limited to: peptide YY and fragments and variants thereof (e.g., YY3-36 (PYY3-36) (N. Engl. J. Med. 349:941. 2003; CAS RN. 870491-48-8) and PYY agonists such as those disclosed in WO03/026591, WO03/057235, and WO03/027637; serotonin reuptake inhibitors, such as, paroxetine, fluoxetine (Prozac®), fluvoxamine, sertraline, citalogram, and imigramine, and those disclosed in US6162805, US6365633, WO03/00663, WO01/27060, and WO01/162341; thyroid hormone β agonists, such as QRX-431 (QuatRx), GC-24 (described in US 20040110154), KB-2611 (KaroBioBMS), and those disclosed in WO02/15845, WO97/21993, WO99/00353, GB98/284425, U.S. Provisional Application No. 60/183,223, and Japanese Patent Application No. JP 2000256190;

UCP-1 (uncoupling protein-1), 2, or 3 activators, such as phytanic acid, 4-f(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1-propenyl]benzoic acid (TTNPB), retinoic acid, and those disclosed in WO99/00123; β3 (beta adrenergic receptor 3) agonists, such as AJ9677/TAK677 (Dainippon/Takeda), L750355 (Merck), CP331648 (Pfizer), CL-316,243, SB 418790, BRL-37344, L-796568, BMS-196085, BRL-35135A, CGP12177A, BTA-243, GW 427353, Trecadrine, Zeneca D7114, N-5984 (Nisshin Kyorin), LY-377604 (Lilly), SR 59119A, and those disclosed in US5541204, US5770615, US5491134, US5776983, US488064, US5705515, US5451677, WO94/18161, WO95/29159, WO97/46556, WO98/04526 and WO98/32753, WO01/74782, WO02/32897, WO03/014113, WO03/016276, WO03/016307, WO03/024948, WO03/024953 and WO03/037881; noradrenergic agents including, but not limited to, diethylpropion (such as Tenuate® (1-propanone, 2-(diethylamino)-1-phenyl-, hydrochloride), Merrell), dextroamphetamine (also known as dextroamphetamine sulfate, dexamphetamine, dexedrine, Dexampex, Ferndex, Oxydess II, Robese, Spancap #1), mazindol ((or 5-(pchlorophenyl)-2.5-dihydro-3H-imidazo[2,1-alisoindol-5-ol) such as Sanorex®, Novartis or Mazanor®, Wyeth Ayerst), phenylpropanolamine (or Benzenemethanol, alpha-(1-aminoethyl)-, hydrochloride), phentermine ((or Phenol, 3-[[4,5-duhydro-1Himidazol-2-vl)ethyll(4-methylpheny-l)aminol, monohydrochloride) such as Adipex-P. Lemmon, FASTIN®, Smith-Kline Beecham and Ionamin®, Medeva), phendimetrazine ((or (2S,3S)-3,4-Dimethyl-2phenylmorpholine L-(+)-tartrate (1:1)) such as Metra® (Forest), Plegine® (Wyeth-Ayerst), Prelu-2® (Boehringer Ingelheim), and Statobex® (Lemmon), phendamine tartrate (such as Thephorin® (2,3,4,9-Tetrahydro-2-methyl-9-phenyl-1H-indenol[2,1-c]pyridine L-(+)-tartrate (1:1)), Hoffmann-LaRoche), methamphetamine (such as Desoxyn®, Abbot ((S)--N, (alpha)-dimethylbenzeneethanamine hydrochloride)), and phendimetrazine tartrate (such as Bontril® Slow-Release Capsules, Amarin (-3,4-Dimethyl-2phenylmorpholine Tartrate); fatty acid oxidation upregulator/inducers such as Famoxin® (Genset);

sercloremine, bazinaprine, lazabemide, milacemide, caroxazone and other certain compounds as disclosed by WO01/12176; and other anti-obesity agents such as 5HT-2 agonists, ACC (acetyl-CoA carboxylase) inhibitors such as those described in WO03/072197, alpha-lipoic acid (alpha-LA), AOD9604, appetite suppressants such as those in WO03/40107, ATL-962 (Alizyme PLC), benzocaine, benzphetamine hydrochloride (Didrex), bladderwrack (focus vesiculosus), BRS3 (bombesin receptor subtype 3) agonists, bupropion, caffeine, CCK agonists, chitosan, chromium, conjugated linoleic acid, corticotropin-releasing hormone agonists, dehydroepiandrosterone, DGAT1 (diacylglycerol acyltransferase 1) inhibitors, DGAT2 (diacylglycerol acyltransferase 2) inhibitors, dicarboxylate transporter inhibitors, ephedra, exendin-4 (an inhibitor of glp-1) FAS (fatty acid synthase) inhibitors (such as Cerulenin and C75), fat resorption inhibitors (such as those in WO03/053451, and the like), fatty acid transporter inhibitors, natural water soluble fibers (such as psyllium, plantago, guar, oat, pectin), galanin antagonists, galega (Goat's Rue, French Lilac), garcinia cambogia, germander (teucrium chamaedrys), ghrelin antibodies and ghrelin antagonists (such as those disclosed in WO01/87335, and WO02/08250), GLP-1 (glucagon-like peptide 1) agonists (e.g., exendin-4), glp-1 (glucagon-like peptide-1), glucocorticoid antagonists, glucose transporter inhibitors, growth hormone secretagogues (such as those disclosed and specifically described in US5536716), interleukin-6 (IL-6) and modulators thereof (as in WO03/057237, and the like), L-carnitine, Mc3r (melanocortin 3 receptor) agonists, MCH2R (melanin concentrating hormone 2R) agonist/antagonists, melanin concentrating hormone antagonists, melanocortin agonists (such as Melanotan II or those described in WO 99/64002 and WO 00/74679), nomame herba, phosphate transporter inhibitors, phytopharm compound 57 (CP 644.673), pyruvate, SCD-1 (stearoyl-CoA desaturase-1) inhibitors, T71 (Tularik, Inc., Boulder CO), Topiramate (Topimax®, indicated as an anti-convulsant which has been shown to increase weight loss), transcription factor modulators (such as those disclosed in WO03/026576), βhydroxy steroid dehydrogenase-1 inhibitors (β -HSD-1), β-hydroxy-β-methylbutyrate, p57 (Pfizer), Zonisamide (Zonegran®, indicated as an anti-epileptic which has been shown to lead to weight loss), and the agents disclosed in US20030119428 paragraphs

20-26. Tests showing the efficacy of the therapy and the rationale for the combination therapy with an anti-obesity agent are presented in US20030119428.

Agents used to treat autoimmune disorders

[00121] The compounds described herein can be used in therapeutic combination with one or more agents used to treat autoimmune disorders including, but not limited to: (a) disease modifying antirheumatic drugs, including methotrexate, gold salts, Dpenicillamine, hydroxychloroquine, auranofin, sulfsalazine; (b) nonsteroidal anitinflammatory drugs, including indomethacin, naproxen, diclofenac, ibuprofen, aspirin and aspirin analogs, acetaminophen; (c) COX-2 selective inhibitors, including celecoxib, rofecoxib, etoricoxib, valdecoxib, lumiracoxib; (d) COX-1 inhibitors; (e) immunosuppressives, including calcineurin inhibitors such as cyclosporine and FK506; p70^{S6} kinase inhibitors such as sirolimus and rapamycin; inosine monophosphate dehydrogenase inhibitors such as mycophenolate (including mycophenolate mofetil); leflunomide, cyclophosphamide, azathioprine; (f) steroids, including prednisone, betamethasone, budesonide and dexamethasone; (g) biological response modifiers, including TNFα antagonists such as infliximab, adalimmab and etanercept; IL-1 receptor antagonists such as anakinra; humanized or chimeric antibodies or fusion proteins such as alefacept, efalizumab, daclizumab; antichemokine antibodies or interleukins; and (h) other agents useful for the treatment of autoimmune disorders, including chemokine receptor antagonists or modulators, cannabinoid receptor antagonists or modulators, inhibitors of matrix metalloproteinases including those described herein, TNFα-converting enzymes, nitric oxide synthetases or phosphodiesterase IV, such as roflumilast or cilomilast: inhibitors of p38 MAP-kinase, the NF-kappa,beta, pathway or IL-1 receptor associated kinase or inhibitors of interactions involving adhesion molecules such as LFA-1, VLA-4, ICAM-1, VCAM-1, α₄β₇, MAdCAM-1, and α_νβ₃. Tests showing the efficacy of the therapy and the rationale for the combination therapy with agents used to treat autoimmune disorders are presented in US20040092499.

Agents used to treat demylenation and associated conditions

[00122] The compounds described herein can be used in therapeutic combination with one or more agents used to treat demylenation and its associated conditions including, but not limited to: beta-interferon (such as Avonex®, Biogen, Inc. and Betaseron®, Berlex Laboratories), which can decrease the frequency and occurrence of flare-ups and slow the progression to disability, glatiramer acetate (such as Copaxone®, Teva Neuroscience, Inc.), which can reduce the frequency of relapses, and/or administration of corticosteroids, such as prednisone (available from Roxane), to relieve acute symptoms. The amount of respective antidemyelination agent to be administered to the subject readily can be determined by one skilled in the art from the Physician's Desk Reference (56.sup.th Ed. 2002) at pages 1013-1016, 988995, 3306-3310 and 3064-3066, incorporated herein by reference. Tests showing the efficacy of the therapy and the rationale for the combination therapy with agents used to treat demylenation and its associated conditions are described, for example, in US20040092500.

Agents used to treat Alzheimer's disease

[00123] The compounds described herein can be used in therapeutic combination with one or more agents used to treat Alzheimer's disease including, but not limited to: cholinesterase inhibitors (such as donepezil hydrochloride (such as Aricept® (Pfizer)), rivastigmine tartrate (such as Exelon (Novartis)), tacrine (such as Cognex® (Parke-Davis)), galanthamine and derivatives thereof (Janssen), metrifonate (Bayer Corp.), epigalanthamine, norgalanthamine, fasciculin, metrifonate, heptyl-physostigmine, norpyridostigmine, nomeostigmine, ipidacrine (Nikken Chemicals Co. Ltd.), TAK-147 & T-82 (SS Pharmaceutical Co. Ltd.), methanesulfonyl fluoride, CHF-2819, phenserine, physostigmine (Forest Laboratories, Inc.), huperzine, cymserine (Anonyx Inc.), tolserine (National Institutes of Health), ER-127528 (Eisai Co. Ltd.), and combinations thereof), muscarinic receptor agonists (such as accelide, pilocarpine, oxotremorine, arecaidine, 5-methylfurmethiodide, cevimeline, PD-151832 (Pfizer Inc.), YM-796 (Yamanouchi Pharmaceutical Inc.), P-58 (Phytopharm

plc) and combinations thereof), M2 muscarinic receptor antagonists, acetylcholine release stimulators (such as minaprine, montirelin (Grunenthal GmbH), T-588 (Toyama Chemical Co. Ltd.), XE-991 and combinations thereof, choline uptake stimulators (such as MKC-231 (Mitsubishi-Tokyo Pharmaceuticals Inc)), nicotinic cholinergic receptor agonists (such as altinicline, (SIBIA Neurosciences Inc.), SIB-1553A, ABT-089 (disclosed in US5278176, Abbot), nicotine patch, GRS-21, TC-2403 and combinations thereof), anti-Aβ vaccines (such as AN-1792), γ-secretase inhibitors or β-secretase inhibitors (such as Asn⁶⁷⁰, Sta⁶⁷¹, Val⁶⁷²-Amyloid β/A4 Protein Precursor-770 (662-675) (catalog no. H-4948; Bachem), presenilin-1, presenilin-2 and derivatives thereof comprising one or more conservative substitutions), amyloid aggregation inhibitors (such as reumacon (Conpharm AB), NC-531 (Neurochem Inc.), PPI-1019 (Praecis Pharmaceuticals Inc.) and combinations thereof), amyloid precursor protein antisense oligonucleotides, monoamine reuptake inhibitors (such as NS-2330), human stem cells, gene therapy, nootropic agents (such as oxiracetam (ISF Societa Per Azioni), pramiracetam (Warner Lambert), idebenone (Takeda Chemical Inds. Ltd.), anapsos (ASAC Pharmaceuticals Intl.), nebracetam (Boehringer Ingelheim), JTP-2942 (Japan Tobacco Inc.), fasoracetam (Nippon Shinyaku Co. Ltd.), bacosides (Central Drug Research Institute), alzene (Bar-IIan University), KA-672 (Dr. Willmar Schwabe GmbH & Co.), alaptid (VUFB), IQ-200, ALE-26015 (Allelix Pharm-Eco LP) and combinations thereof), AMPA receptor ligands (such as CX-516 & CX-691 (Cortex Pharmaceuticals Inc.) and combinations thereof), growth factors or growth factor receptor agonists (such as leteprinim), anti-inflammatory agents (such as COX2 inhibitors (such as Vioxx rofecoxib (Merck) and Celebrex celecoxib (Pfizer), cytokine inhibitors (such as thalidomide disclosed in WO95/04533 and dexanabinol), complement inhibitors, leukotriene receptor antagonists and combinations thereof, free radical scavengers (such as EGb-761 (Yuyu Industrial Co.), CPI-22, dexanabinol and combinations thereof), antioxidants, superoxide dismutase stimulators, calcium channel blockers (such as tamolarizine (Nippon Chemiphar Co., Ltd.), nimodipine (Bayer AG), PD-1 76078 (Elan Pharmaceuticals, Inc.), and combinations thereof), apoptosis inhibitors (such as acetyl-L-carnitine, CEP-1347 (Cephalon, Inc.), TCH-346 (Novartis AG) and combinations thereof), caspase inhibitors (such as pralnacasan),

monoamine oxidase inhibitors (such as moclobemide (Roche Holding AG), selegiline, rasagiline (Teva Pharmaceutical Inds. Ltd.), SL-25.1188, Ro-41-1049 (Roche Holding AG), and combinations thereof), estrogens and estrogen receptor ligands, NMDA receptor antagonists (such as ketamine, phencyclidine, dizocilpine, tiletamine, dextromethorphan, amantadine, methadone, dextropropoxyphene, ketobemidone, memantine, ipenoxazone (Nippon Chemiphar Co. Ltd. and combinations thereof), Jun N-terminal kinase (JNK) inhibitors, copper/zinc chelators (such as clioquinol (PN Gerolymatos SA)), 5-HT1a receptor agonists (such as AP-159 (Asahi Kasei Corp)), NGF stimulators (such as xaliprodene (Sanofi-Synthelabo)), neuroprotective agents (such as citicholine, GS-1590 (Leo Pharmaceutical Products Ltd.) A/S, CPI-1189 (Centaur Pharmaceuticals Inc.), SR-57667 (Sanofi-Synthelabo) and combinations thereof), H3 histamine receptor antagonists (such as GT-2016 and GT-2331 (both available from Gliatech, Inc.) and combinations thereof), calpain inhibitors, poly ADP ribose polymerase inhibitors, prolylendopeptidase inhibitors (such as ONO-1603 (Ono Pharmaceutical Co. Ltd.), Z-321 (Zeria Pharmaceutical Co. Ltd.) and combinations thereof), calcium modulators (such as neurocale (Apollo Biopharmaceuticals Inc)), corticortropin releasing factor receptor antagonists (such as NBI-113 (Neurocrine Biosciences, Inc)), corticortropin releasing factor binding protein inhibitors, GABA modulators (such as NGD 97-1 (Neurogen Corp)), GABA-A receptor antagonists, GABA-B receptor antagonists, neuroimmunophilin ligands, sigma receptor ligands (such as igmesine (Pfizer)), galanin receptor ligands, imidazoline/alpha adrenergic receptor antagonists (such as efaroxan (Reckitt & Colman PLC)), vasoactive intestinal peptide receptor agonists (such as stearyl-NIe-VIP), benzodiazepine receptor inverse agonists (such as S-8510 (Shionogi & Co. Ltd)), cannabinoid receptor agonists (such as dronabinol (Unimed Pharmaceuticals Inc)), thyrotropin releasing hormone receptor agonists (such as taltireline (Tanabe Seiyaku Co. Ltd) and protirelin (Takeda Chemical Inds., Inc.)), protein kinase C inhibitors, 5-HT3 receptor antagonists (such as GYKI-46903), prostaglandin receptor antagonists, topoisomerase II inhibitors (such as iododoxorubicin (Pharmacia & Upjohn AB)), steroid receptor ligand (such as GL-701 (Prestara)), nitric oxide modulators, RAGE inhibitors (such as ALT-711 (Alteon Inc)), dopamine receptor agonists (such as speramine), statine compounds disclosed in

US20050090449, corticosteroid receptor antagonist (such as anticort) and combinations thereof. Tests showing the efficacy of the therapy and the rationale for the combination therapy with agents used to treat Alzheimer's disease and other memory associated therapies are described, for example, in US2003013699 and US 20040044023.

Blood Modifiers

[00124] The compounds described herein can be used in therapeutic combination with one or more blood modifiers, i.e., agents capable of altering the number of platelets per a given volume of blood, inhibiting platelet function, including but not limited to platelet adhesion, aggregation or factor release, or reducing platelet count in patients with abnormally high levels in certain hematological malignancies to levels approximating normal levels capable of impacting negatively upon the formation of blood clots, and decreasing blood viscosity. Blood modifiers useful in the present invention include but are not limited to anti-coagulants, antithrombotic agents, fibrinogen receptor antagonists, platelet inhibitors, platelet aggregation inhibitors, lipoprotein-associated coagulation inhibitor, hemorrheologic agents, Factor VIIa inhibitors, Factor Xa inhibitors, and combinations thereof. Tests showing the efficacy of the therapy and the rationale for the combination therapy with blood modifiers are described, for example, in US20020147184.

[00125] Anti-coagulant agents are agents which inhibit the coagulation pathway by impacting negatively upon the production, deposition, cleavage and/or activation of factors essential in the formation of a blood clot. Useful anti-coagulant agents include but are not limited to argatroban (2-Piperidinecarboxylic acid, 1-[(2S)-5-[(aminoiminomethyl)amino]-1-oxo-2-[[(1,2,3,4-tetrahydro-3-methyl-8-quinolinyl)sulfonyl]amino]pentyl]4-methyl-, CAS RN 74863-84-6), bivalirudin (CAS RN 128270-60-0), dalteparin sodium (heparin) e.g., Fragmin® Injection (Pharmacia & Upjohn), desirudin (Hirudin (Hirudo medicinalis isoform HV1), 63-desulfo CAS RN 120993-53-5), dicumarol (2H-1-Benzopyran-2-one, 3,3'-methylenebis[4-hydroxy-CAS RN 66-76-2 e.g., Mebaral® (Sanofi-Synthelabo)), lyapolate sodium (Ethenesulfonic acid, homopolymer, sodium salt CAS RN 25053-274), nafamostate

mesylate (Benzoic acid, 4-[(aminoiminomethyl)amino]-, 6-(aminoiminomethyl)-2naphthalenyl ester, dimethanesulfonate CAS RN 82956-11-4):phenprocoumon (2H-1-Benzopyran-2-one, 4-hydroxy-8-methoxy-3-(- 1-phenylpropyl)-CAS RN 132605-68-6), tinzaparin sodium (Heparin, sodium salt, CAS RN 9041-08-1, e.g., Innohep® Injection® (DuPont)), and warfarin sodium (3-((alpha)-acetonylbenzyl)-4hydroxycoumarin, CAS RN 129-06-6, e.g., Coumadin for Injection (DuPont)). [00126] Anti-thrombotic agents are agents which prevent the formation of a blood thrombus. A thrombus is an aggregation of blood factors, primarily platelets and fibrin with entrapment of cellular elements, frequently causing vascular obstruction at the point of its formation. Suitable examples of anti-thrombotic agents include, but are not limited to: melagatran; ximelagatran (Exanta®); anagrelide hydrochloride (6.7dichloro-1,5-dihydroimidazo[2,1-b]quinazolin-2(3H)-one monohydrochloride monohydrate) e.g., Agrylin® (Shire US)); Tinzaparin sodium as described above; cilostazol (6-[4-(1-cvclohexvl-1H -tetrazol-5-vl)butoxvl-3,4-dihvdro-2(1 H)quinolinone, CAS-73963-72-1, e.g., Pletal® (Pharmacia & Upjohn); Dalteparin sodium (as described above); danaparoid sodium, e.g., Orgaran® Injection (Organon); compounds disclosed in WO99/45913; Abciximab is the (Fab fragment of the chimeric human-murine monoclonal antibody 7E3, binds to the glycoprotein (GP) IIb/IIIa ((α)_{III}, (β)₃) receptor of human platelets and inhibits platelet aggregation. Abciximab also binds to the vitronectin $((\alpha)_V(\beta)_3)$ receptor found on platelets and vessel wall endothelial and smooth muscle cells, e.g., Abciximab, Reopro® (Lilv)); ifetroban (Benzenepropanoic acid, 2-[[(1S.2R.3S.4R)-3-[4-[(pentylamino)carbonyl]-2-oxazolyl]-7 oxabicyclo[2.2.1]hept-2-yl]methyl]-CAS RN 143443-90-7, disclosed in US5100889); Bivalirudin as described above; Cilostazol as described above; efegatran sulfate (L-Prolinamide, N-methyl-D-phenylalanyl-N-[(1S)- 4-[(aminoiminomethyl)aminol-1-formylbutyl]-, sulfate (1:1) CAS RN 126721-07-1): dazoxiben hydrochloride (Benzoic acid, 4-[2-(1H-imidazol-1-vI)ethoxyl-, monohydrochloride CAS RN 74226-22-5); danaparoid sodium (a low molecular weight heparinoid, a mixture of the sodium salts of heparan sulfate (approximately 84%), dermatan sulfate (approximately 12%), and chondroitin sulfate (approximately 4%). It is derived from hog intestinal mucosa): lotrafiban hydrochloride (1H-1.4-

Benzodiazepine-2-acetic acid, 7-([4,4'-bipiperidin]-1-ylcarbonyl)-2,3,4,5-tetrahydro4methyl-3-oxo-, monohydrochloride, (2S)-)CAS RN 179599-82-7); ifetroban sodium(Benzenepropanoic acid, 2-[[(1S,2R,3S,4R)-3-[4-[(pentylamino)carbonyl]-2oxazolyl]-7-oxabicyclo[2.2.1]hept-2-yl]methyl]-, monosodium salt, CAS RN 156715-37-6); lamifiban(Acetic acid, [[1-[(2S)-2-[[4-(aminoiminomethyl)benzoyl]amino]-3-(4-hydroxyphenyl)-1-oxopropyl]-4-piperidinyl]oxy]-, CAS RN 144412-49-7); fluretofen (1,1'-Biphenyl, 4'-ethynyl-2-fluoro-CAS RN 56917-294); enoxaparin sodium (Heparin, sodium salt, CAS RN 9041-08-1); orbofiban acetate hydrate (beta,-Alanine, N-[[[(3S)-1-[4-(aminoiminomethyl)phenyl]-2-oxo-3pyrrolidinyl]amino]carbonyl]-, ethyl ester, acetate, hydrate (4:4:1), CAS RN 165800-05-5));napsagatran (Glycine, N-[[(3S)-1-(aminoiminomethyl)-3-piperidinyl]methyl]-N2-(2-naphthalenylsul- fonyl)-L-asparaginyl-N-cyclopropyl-, CAS RN 154397-77-0); roxifiban acetate(L-Alanine, 3-[[[(5R)-3-[4-(aminoiminomethyl)phenyl]-4,5-dihydro-5-isoxazolyl]acetyl]amino]-N-(butoxycarbonyl)-, methyl ester, monoacetate, CAS RN 176022-59-6); sibrafiban(Acetic acid, [[1-[(2S)-2-[[4-[(Z)amino(hydroxyimino)methyl]benzoyl]amino]-1-oxopropyl]4-piperidinyl]oxy]-, ethyl ester, CAS RN 172927-65-0); zolimomab aritox, (Immunoglobulin G1, anti-(human CD5 (antigen) heavy chain) (mouse monoclonal H65-RTA .gamma.1-chain), disulfide with mouse monoclonal H65-RTA light chain, dimer, disulfide with ricin (castor bean A-chain), CAS RN 141483-72-9); trifenagrel (Ethanamine, 2-[2-(4,5-diphenyl-1Himidazol-2-yl)phenoxyl-N,N--dimethyl-, CAS RN 84203-09-8). [00127] Fibrinogen receptor antagonists are those agents which inhibit the common pathway of platelet aggregation. Suitable fibrinogen receptor antagonists include but are not limited toroxifiban acetate as described above; lotrafiban hydrochloride as described above, sibrafiban as described above, monoclonal antibody 7E3 (Fab fragment of the chimeric human-murine monoclonal antibody 7E3, binds to the glycoprotein (GP) IIb/IIIa ((α)_{lb} (β)₃) receptor of human platelets and inhibits platelet aggregation); orbofiban, (beta.-Alanine, N-[[[(3S)-1-[4-(aminoiminomethyl)phenyl]-2-oxo-3-pyrrolidinyl]amino]carbonyl]-, ethyl ester, CAS RN 163250-90-6); xemilofiban (4-Pentynoic acid, 3-[[4-[[4-(aminoiminomethyl)phenyl]amino]-1,4dioxobutyl]amino]-, ethyl ester, (3S)-,CAS RN 149820-74-6); fradafiban, (3-

Pyrrolidineacetic acid, 5-[[[4'-(aminoiminomethyl)[1,1'-biphenyl]-4-yl]oxy]methyl]-2-oxo-, (3S,5S)-,CAS RN 148396-36-5); tirofiban (L-Tyrosine, N-(butylsulfonyl)-O-[4-(4-piperidinyl)butyl]-, CAS RN 144494-65-5, e.g., Aggrastat® Injection Premixed (Merck).

[00128] Platelet inhibitors are those agents that impair the ability of mature platelets to perform their normal physiological roles (i.e., their normal function). Platelets are normally involved in a number of physiological processes such as adhesion, for example, to cellular and non-cellular entities, aggregation, for example, for the purpose of forming a blood clot, and release of factors such as growth factors (e.g., platelet-derived growth factor (PDGF)) and platelet granular components. Suitable platelet inhibitors include, but are not limited to CS-747 (Eli Lilly); eptifibatide (Integrilin®); clopidogrel bisulfate, (Thieno[3,2-c]pyridine-5(4H)-acetic acid, α-(2chlorophenyl)-6,7-dihydro-, methyl ester, (αS)-, sulfate (1:1), e.g., Plavix® (Sanofi-Synthelabo)); indomethacin, such as Indocin® I.V. (Indomethacin Sodium Trihydrate, Merck);mefenamate, (e.g., Ponstel® Kapseals (mefenamic acid) 2-{(2,3dimethylphenyl)amino-N-2,3--xylylanthranilic acid (First Horizan)); Ticlopidine hydrochloride, (Thieno[3,2-c]pyridine, 5-[(2-chlorophenyl)methyl]-4,5,6,7-tetrahydro-, hydrochloride, e.g., Ticlid® (Roche Laboratories)); epoprostenol sodium, (Prosta-5,13-dien-1-oic acid, 6,9-epoxy-11,15-dihydroxy-, monosodium salt, (5Z.9α.11α,13E,15S)-CAS RN 61849-14-7, e.g., Flolan® (Glaxo Wellcome)); aspirin, Benzoic acid, 2-(acetyloxy)-CAS RN 50-78-2); epoprostenol, (Prosta-5,13-dien-1-oic acid, 6,9-epoxy-11,15-dihydroxy-, (5Z,9\alpha,11\alpha,13E,15S)-, CAS RN 35121-78-9); naproxen (2-Naphthaleneacetic acid, 6-methoxy-α-methyl-, (αS)-CAS RN 22204-53-1, e.g., EC-Naprosyn® Delayed-Release Tablets available from Roche Laboratories); buprofen, (Benzeneacetic acid, α-methyl-4-(2-methylpropyl)-, CAS RN 15687-27-1); droxicam, (2H,5H-1,3-Oxazino[5,6-c][1,2]benzothiazine-2,4(3H)-dione, 5-methyl-3-(2-pyridinyl)-, 6,6-dioxide, CAS RN 90101-16-9); diclofenac, (Benzeneacetic acid, 2-[(2,6-dichlorophenyl)amino]-CAS RN 15307-86-5 e.g., Arthroteo® (Searle)); sulfinpyrazone, (3,5-Pyrazolidinedione, 1,2-diphenyl-4-[2-(phenylsulfinyl)ethyl]-CAS RN 57-96-5, e.g., Sectral® (Wyeth-Ayerst)); piroxicam, (2H-1,2-Benzothiazine-3carboxamide, 4-hydroxy-2-methyl-N-2-pyridinyl-, 1,1-dioxide, CAS RN 36322-90-4,

e.g., Feldene® (Pfizer)); dipyridamole, (Ethanol, 2,2',2",2"'-[(4,8-di-1-

piperidinylpyrimido[5,4-d]- pyrimidine-2,6-diyl)dinitrilo]tetrakis-CAS RN 58-32-2, e.g., Aggrenox® Capsules available from Boehringer Ingelheim); lexipafant,(L-Leucine, N-methyl-N-[[4-[(2-methyl-1H-imidazo[4,5-c]pyridin-1vl)methyl]phenyl]sulfonyl]-, ethyl ester, CAS RN 139133-26-9); apafant Morpholine, 4-[3-[4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepin-2-yl]-1-oxopropyl]-, CAS RN 105219-56-5). [00129] Platelet aggregation inhibitors as used herein refer to those compounds which reduce or halt the ability of platelets to associate physically with themselves or with other cellular and non-cellular components, thereby precluding the ability of a platelet to form a thrombus. Suitable platelet aggregation inhibitors include but are not limited to beraprost, (1H-Cyclopenta[b]benzofuran-5-butanoic acid, 2.3.3a.8btetrahydro-2-hydroxy-1-(3-hydroxy-4-methyl-1-octen-6-ynyl)-, CAS RN 88430-50-6); acadesine. (1H-Imidazole-4-carboxamide, 5-amino-1B-D-ribofuranosyl-, CAS RN 2627-69-2):beraprost sodium. (1H-Cyclopenta[b]benzofuran-5-butanoic acid, 2,3,3a,8b-tetrahydro-2-hydroxy-1-(3-hydroxy4-methyl-1-octen-6-ynyl)-, monosodium salt, CAS RN 88475-69-8); ciprostene calcium, (Pentanoic acid, 5-[(3aS,5R,6R,6aR)hexahydro-5-hydroxy-6-[(1E,3S)-3-hydroxy-1-octenyl]-3a-methyl-2(1H)pentalenylidenel-, calcium salt (2:1), (5Z)-CAS RN 81703-55-1), Itazigrel, (Thiazole, 4.5-bis(4-methoxyphenyl)-2-(trifluoromethyl)-CAS RN 70529-35-0); lifarizine(Piperazine, 1-(diphenylmethyl)-4-[[5-methyl-2-(4-methylphenyl)-1Himidazol-4-yl]methy-1]-),CAS RN 119514-66-8);oxagrelate, (6-Phthalazinecarboxylic acid. 3.4-dihydro-1-(hydroxymethyl)-5.7-dimethyl-4-oxo-, ethyl ester, CAS RN 56611-65-5).

[00130] Hemorrheologic agent as used herein describes those compounds which improve the flow properties of blood by decreasing its viscosity. A suitable hemorrheologic agent of the present invention is pentoxifylline (1H-Purine-2,6-dione, 3,7-dihydro-3,7-dimethyl-1-(5-oxohexyl)-(9Cl) (CA INDEX NAME) Theobromine, 1-(5-oxohexyl)-,CAS RN 6493-05-6 e.g., Trentali@ (Aventis)).

[00131] Pentoxifylline and its metabolites (which can be useful in the present invention) improve the flow properties of blood by decreasing its viscosity. In patients

with chronic peripheral arterial disease, this increases blood flow to the affected microcirculation and enhances tissue oxygenation. The precise mode of action of pentoxifylline and the sequence of events leading to clinical improvement are still to be defined. Pentoxifylline administration has been shown to produce dose-related hemorrheologic effects, lowering blood viscosity, and improving erythrocyte flexibility. Leukocyte properties of hemorrheologic importance have been modified in animal and in vitro human studies. Pentoxifylline has been shown to increase leukocyte deformability and to inhibit neutrophil adhesion and activation. Tissue oxygen levels have been shown to be significantly increased by therapeutic doses of pentoxifylline in patients with peripheral arterial disease. [00132] Lipoprotein-associated coagulation inhibitor (LACI) is a serum glycoprotein with a molecular weight of 38,000 Kd useful as a blood modifier of the present invention It is also known as tissue factor inhibitor because it is a natural inhibitor of thromboplastin (tissue factor) induced coagulation (US5110730 and US5106833 described tissue factor and are hereby incorporated by reference their entireties). LACI is a protease inhibitor and has 3 Kunitz domains, two of which are known to interact with factors VII and Xa respectively, while the function of the third domain is unknown. Many of the structural features of LACI can be deduced because of its homology with other well studies proteases. LACI is not an enzyme, so it probably inhibits its protease target in a stoichiometric manner; namely, one of the domains of LACI inhibits one protease molecule (see US606374). [00133] Factor VIIa Inhibitors as used herein are those agents which inhibit activated Factor VIIa from acting to contribute to the formation of a fibrin clot. Suitable Factor VIIa Inhibitors include but are not limited to, 4H-31-benzoxazin-4ones, 4H-3,1-benzoxazin-4-thiones, quinazolin-4-thiones, benzothiazin-4-ones described in US6180625, imidazolyl-boronic acid-derived peptide analogues as described in US5639739, TFPI-derived peptides described in US6180625. [00134] Additional suitable Factor VIIa Inhibitors include but are not limited to Naphthalene-2-sulfonic acid {1-[3-(aminoiminomethyl)-benzyl]-2-oxo-pyrrolidin-3-(S)-yl} amide trifluoroacetate, dibenzofuran-2-sulfoic acid {1-[3-(aminomethyl)-

benzyl]-5-oxo-pyrrolidin-3-yl}-amide, tolulene-4-sulfonic acid {1-[3-

(aminoiminomethyl)-benzyl]-2-oxo-pyrrolidin-3-(S)-yl}-amide tribluoroacetate, 3,4-dihydro-1H-isoquinoline-2-sulfonic acid {1-[3-(aminoiminomethyl)-benzyl]-2-oxo-pyrrolin-3-(S)-yl}-amide tribluoroacetate or combinations thereof.

[00135] Factor Xa inhibitors as used herein are those agents which inhibit activated Factor X from acting to contribute to the formation of a fibrin clot. Suitable agents for use in the present invention as Factor Xa inhibitors include but are not limited to disubstituted pyrazolines, disubstituted triazolines as described in US6191159, lipoprotein-associated coagulation inhibitor (LACI) (as described above), low molecular weight heparins described as below, heparinoids described as below, benzimidazolines, benzoxazolinones, bensopiperazinones, indanones, as described in U.S. Pat. No. 6,207,697, dibasic (amidinoaryl)propanoic acid derivatives as described in J. Med. Chem. 37:1200-1207 (1994), bis-arlysulfonylaminobenzamide derivatives as described in US5612378, amidinophenyl-pyrrolidines, amidinophenyl-isoxazolidines as described in US6057342, amidinoindoles, amidinoazoles as described in US6043257, peptidic Factor Xa inhibitors as described below, substituted n-[(aminoiminomethyl)phenyl]propylamides, substituted n-[(aminoimethyl)phenyl]propylamides, substituted n-[(aminoimethyl)phenyl]propylamides as described in US6080767 or combinations thereof.

[00136] Peptidic factor Xa inhibitors such as the leech-derived, 119-amino acid protein antistasin and the soft tick derived protein TAP (tick anticoagulant peptide) accelerate clot lysis and prevented reocclusion when given as adjuncts to thrombolysis (Melloff et al., Circulation Research 70:1152-1160 (1992); Sitko et al., Circulation 85:805-815 (1992)). U.S. Pat. No. 5,385,885 issued Jan. 31, 1995 discloses smooth muscle cell proliferation inhibitory activity of both tick anticoagulant peptide and antistasin. The peptide ecotin is another selective, reversible, tight-binding inhibitor of factor Xa that exhibits protein anticoagulant activity (Seymour et al., Biochemistry 33:3949-3959 (1994); WO94/20535, Sep. 14, 1994). Ixodidae, argasin and ancylostomatin are other representative peptidic factor Xa inhibitors isolated from animals that feed on blood (Markwardt, Thrombosis and Hemostasis 72: 477-479 (1994).

[00137] These non-limiting examples of peptidic Factor Xa inhibitors which may be used in the present invention are listed below with their CAS RN (Chemical abstract services registry number). These include Proteinase inhibitor, antistasin, CAS RN 110119-38-5; tick anticoagulant peptide, (Proteinase inhibitor, TAP) CAS RN 129737-17-3; ecotin, (Proteinase inhibitor, ecotin) CAS RN 87928-05; argasin, CAS RN 53092-89-0 ;ancylostomatin, CAS RN 11011-09-9; Ixodidae (as described in Markwardt, 1994).

[00138] Low molecular weight heparins refer to agents derived from heparins which reduces the incidence of bleeding when compared with standard heparin. Heparins are glycosaminoglycans. MW range from 2000-10000. They may be produced from porcine intestinal mucosa and except for nadroparan, are all sodium salts. A suitable heparinoid of the present invention includes but is not limited to enoxaparin, nardroparin, dalteparin, certroparin, parnaparin, reviparin, tinzaparin and combinations thereof.

[00139] Heparinoid is a modified form of heparin which reduces the incidence of bleeding when compared with standard heparin. A suitable heparinoid of the present invention includes but is not limited to Danaparoid CAS RN 308068-55-5, (e.g., Orgaran Injection Organon).

Hormone replacement agents/compositions

[00140] The compounds described herein can be used in therapeutic combination with one or more hormone replacement agents/compositions including, but not limited to androgens, estrogens, progestins, their pharmaceutically acceptable salts and derivatives thereof. Examples of androgen and estrogen combinations include but are not limited to the combination of esterified estrogens (sodium estrone sulfate and sodium equilin sulfate) and methyltestosterone (17-hydroxy-17-methyl-, (17B)-androst-4-en-3-one) available from Solvay Pharmaceuticals, Inc., Marietta, Ga., under the tradename Estratest. Examples of estrogens and estrogen combinations include but are not limited to: (a) the blend of nine (9) synthetic estrogenic substances including sodium estrone sulfate, sodium equilin sulfate, sodium 17α-dihydroequilin sulfate, sodium 17α-dihydroequilin sulfate, sodium 17α-estradiol sulfate, sodium 17β-dihydroequilin sulfate, sodium 17β-dihydroequilin

-dihydroequilenin sulfate, sodium 17β-dihydroequilenin sulfate, sodium equilenin sulfate and sodium 17ß- estradiol sulfate; available from Duramed Pharmaceuticals, Inc., Cincinnati, Ohio, under the tradename Cenestin; (b) ethinyl estradiol (19-nor-17α-pregna-1,3,5(10)-trien-20-vne-3,17-diol; available by Schering Plough Corporation, Kenilworth, N.J., under the tradename Estinyl; (c) esterified estrogen combinations such as sodium estrone sulfate and sodium equilin sulfate; available from Solvay under the tradename Estratab and from Monarch Pharmaceuticals, Bristol, Tenn., under the tradename Menest; (d) estropipate (piperazine estra-1,3,5(10)-trien-17-one, 3-(sulfooxy)-estrone sulfate); available from Pharmacia & Upjohn, Peaack, N.J., under the tradename Ogen and from Women First Health Care, Inc., San Diego, Calif., under the tradename Ortho-Est; and (e) conjugated estrogens (17α-dihydroequilin, 17α-estradiol, and 17β.-dihydroequilin); available from Wyeth-Averst Pharmaceuticals, Philadelphia, Pa., under the tradename Premarin. Examples of progestin and estrogen combinations include but are not limited to: (a) the combination of estradiol (estra-1,3,5 (10)-triene-3,17β-diol hemihydrate) and norethindrone (17β- acetoxy-19-nor-17α-pregn-4-en-20-yn-3-one); which is available from Pharmacia & Upjohn, Peapack, N.J., under the tradename Activella; (b) the combination of levonorgestrel (d(-)-13β-ethyl-17α-ethinyl-17β-hydroxygon-4-en-3one) and ethinyl estradial; available from Wyeth-Averst under the tradename Alesse. from Watson Laboratories, Inc., Corona, Calif., under the tradenames Levora and Trivora, Monarch Pharmaceuticals, under the tradename Nordette, and from Wyeth-Ayerst under the tradename Triphasil; (c) the combination of ethynodiol diacetate (19-nor-17α-pregn-4-en-20-yne-3β,17-diol diacetate) and ethinyl estradiol; available from G.D. Searle & Co., Chicago, Ill., under the tradename Demulen and from Watson under the tradename Zovia; (d) the combination of desogestrel (13-ethyl-11methylene-18,19-dinor-17 α-pregn-4-en-20-yn-17-ol) and ethinyl estradiol; available from Organon under the tradenames Desogen and Mircette, and from Ortho-McNeil Pharmaceutical, Raritan, N.J., under the tradename Ortho-Cept; (e) the combination of norethindrone and ethinyl estradiol; available from Parke-Davis, Morris Plains, N.J., under the tradenames Estrostep and femhrt, from Watson under the tradenames Microgestin, Necon, and Tri-Norinyl, from Ortho-McNeil under the tradenames

Modicon and Ortho-Novum, and from Warner Chilcott Laboratories, Rockaway, N.J., under the tradename Ovcon; (f) the combination of norgestrel ((±)-13-ethyl-17hydroxy-18,19-dinor-17a- preg-4-en-20-yn-3-one) and ethinyl estradiol; available from Wyeth-Ayerst under the tradenames Ovral and Lo/Ovral, and from Watson under the tradenames Ogestrel and Low-Ogestrel; (g) the combination of norethindrone, ethinyl estradiol, and mestranol (3-methoxy-19-nor-17α-pregna-1,3,5(110)-trien-20-yn-17-ol); available from Watson under the tradenames Brevicon and Norinyl; (h) the combination of 17β-estradiol (estra-1,3,5(10)-triene-3-,17β-diol) and micronized norgestimate (17α-17-(Acetyloxyl)-13- ethyl-18,19-dinorpregn-4-en-20-yn-3-one3-oxime); available from Ortho-McNeil under the tradename Ortho-Prefest; (i) the combination of norgestimate (18,19-dinor-17-pregn-4-en-20-y- n-3one, 17-(acetyloxy)-1 3-ethyl-,oxime, (17(a)-(+)-) and ethinyl estradiol; available from Ortho-McNeil under the tradenames Ortho Cyclen and Ortho Tri-Cyclen; and (j) the combination of conjugated estrogens (sodium estrone sulfate and sodium equilin sulfate) and medroxyprogesterone acetate (20-dione, 17-(acetyloxy)-6-methyl-, (6(α))pregn-4-ene-3); available from Wyeth-Ayerst under the tradenames Premphase and Prempro. Examples of progestins include norethindrone; available from ESI Lederle, Inc., Philadelphia, Pa., under the tradename Aygestin, from Ortho-McNeil under the tradename Micronor, and from Watson under the tradename Nor-OD; norgestrel: available from Wyeth-Ayerst under the tradename Ovrette; micronized progesterone (pregn-4-ene-3, 20-dione); available from Solvay under the tradename Prometrium; and medroxyprogesterone acetate; available from Pharmacia & Upjohn under the tradename Provera. Tests showing the efficacy of the therapy and the rationale for the combination therapy with hormone replacement agents/compositions are presented in US20030119796.

Chemotherapeutic agents

[00141] The compounds described herein can be used in therapeutic combination with one or more chemotherapeutic agents including but not limited to hydrophobic, and heterocyclic cancer chemotherapeutic agents such as adriamycin (doxorubicin), phosphates, colcemid, etoposide, paclitaxel, bisantene, vincristine, and vinblastine.

Tests showing the efficacy of the therapy and the rationale for the combination therapy with chemotherapeutic agents are described, for example, in WO05/030225.

Peptide which mitigate one or more symptoms of atherosclerosis

[00142] The compounds described herein can be used in therapeutic combination with a the peptide which mitigates one or more symptoms of atherosclerosis as described, for example, in US20040266671, US6664230, US20030045460, US20030171277, US20030229015, US20040254120, US20050164950, WO/04034977, WO/02015923, and WO/05016280. This includes the peptide described as SEQ ID NO. 5 in US6664230 (CAS registry No. 631959-47-2) wherein at least one residue comprises a D-amino acid.

Anti-cancer agents

[00143] The compounds described herein can be used in therapeutic combination with an anti-cancer agent, including but not limited to: steroidal or non steroidal antiandrogens (such as finasteride (Proscar®), cyproterone acetate (CPA), flutamide (4'-nitro-3'-trifluorormethyl isobutyranilide), bicalutamide (Casodex®), and nilutamide), estrogens, diethylstilbestrol (DES), conjugated estrogens (such as Premarin®), Taxanes (such as paclitaxel (Taxol®), docetaxel (Taxotere®), 7-Omethylthio-methylpaclitaxel (disclosed in US5646176), 3'-tert-butyl-3'-N-tertbutyloxycarbonyl-4-deacetyl-3'-dephenyl-3'-N-debenzoyl-4-O-methoxycarbonylpaclitaxel (disclosed in U.S. Ser. No. 60/179,965, and example 17 therein), C-4 methyl carbonate paclitaxel (disclosed in WO 94/14787), and formulations containing taxanes, for examples those disclosed in US6395770, US6380405, and US6239167), epothilones (such as epothilone A, epothilone B, epothilone C, epothilone D, desoxyepothilone A, desoxyepothilone B, [1S-[1R*,3R*(E),7R*,10S*, 11R*,12R*,16S*]]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-4-thiazolyl)ethenyl]-4-aza-17-oxabicyclo[14.1.0]hepta-decane-5,9-dione (disclosed in WO 99/02514), [1S-[1R*,3R*(E),7R*,10S*,11R*12R *,16S *]]-3-[2-[2-(aminomethyl)-4-thiazolyl]-1-methylethenyl]-7,11-dihydroxy-8-,8,10,12,16pentamethyl-4,17-dioxabicyclo[14.1.0]-heptadecane-5,9-dione (disclosed in U.S. Ser.

No. 09/506,481 filed on Feb. 17, 2000, and examples 7 and 8 therein), and derivatives thereof), microtuble-disruptor agents, alkylating agents, anti-metabolites, epidophyllotoxin, an antineoplastic enzyme, a topoisomerase inhibitor, procarbazine, mitoxantrone, platinum coordination complexes, biological response modifiers, growth inhibitors, hormonal/antihormonal therapeutic agents, haematopoietic growth factors, the anthracycline family of drugs, vinca drugs, mitomycins, bleomycins, cytotoxic nucleosides, discodermolide, the pteridine family of drugs, diynenes, aromatase inhibitors, podophyllotoxins, doxorubicin, carminomycin, daunorubicin, idarubicin, dactinomycin, plicamycin, vinorelbine, aminopterin, methotrexate, methopterin, dichloro-methotrexate, thioguanine, hydroxyrurea, campathecins, nitrosureas, mitomycin C, porfiromycin, 5-fluorouracil, 6-mercaptopurine, gemcitabine, cytosine arabinoside, podophyllotoxin or podophyllotoxin derivatives such as etoposide, etoposide phosphate or teniposide, melphalan, vinblastine, vincristine, leurosidine, vindesine, leurosine, estramustine, cisplatin, carboplatin, cyclophosphamide, bleomycin, tamoxifen, ifosfamide, melphalan, hexamethyl melamine, thiotepa, cytarabin, idatrexate, trimetrexate, dacarbazine, L-asparaginase, camptothecin, CPT-11, topotecan, ara-C, bicalutamide, flutamide, leuprolide, pyridobenzoindole derivatives, interferons, interleukins, LHRH analogs (such as goserelin acetate (Zoladex®) and leuprolide acetate (Lupron®)), and selective estrogen receptor modulator (SERM) compounds. The term selective estrogen receptor modulator includes both estrogen agonist and estrogen antagonists and refers to compounds that bind with the estrogen receptor, inhibit bone turnover and prevent bone loss. In particular, estrogen agonists are compounds capable of binding to the estrogen receptor sites in mammalian tissue, and mimicking the actions of estrogen in one or more tissue. Estrogen antagonists are compounds capable of binding to the estrogen recentor sites in mammalian tissue, and blocking the actions of estrogen in one or more tissues.

[00144] SERMs include but are not limited to tamoxifen (and associated compounds disclosed in US4536516); 4-hydroxytamoxifen (and associated compounds disclosed in US4623660); raloxifene (and associated compounds disclosed in US4418068, US5393763, US5457117, US5478847, and US5641790);

droloxifene; idoxifene (and associated compounds disclosed in US4839155); lasofoxifene: TSE-424 (and other compounds disclosed in US5998402, US5985910, US5780497, US5880137, EP0802183A1); LY353381; LY117081; toremifene (and other compounds disclosed in US4696949 and US4996225); centchroman (and other compounds disclosed in US3822287); fulvestrant; 4-[7-(2,2-dimethyl-1-oxopropoxy-4-methyl-2-[4-[2-(1-piperidinyl)ethoxy]phenyl]-2H-1-benzopyran-3-yl]-phenyl-2,2dimethylpropanoate; 4.4'-dihydroxybenzophenone-2,4-dinitrophenylhydrazone; SH646; 6-(4-hydroxy-phenyl)-5-[4-(2-piperidin-1-yl-etho-xy)-benzyl]-naphthalen-2ol (and other compounds as disclosed in US5484795); {4-[2-(2-azabicyclo[2.2.1]hept-2-yl)-ethoxy]-phenyl}-[6-hydroxy-2-(4-hydroxy-phenyl)benzo[b]thiophen-3-vl]-methanone; GW 5638; GW 7604; EM-652 and EM-800 (synthesis and activity described in Gauthier et al., (1997) J. Med. Chem. 40:2117-2122); those compounds disclosed in US552412 (including cis-6-(4-fluoro-phenyl)-5-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-5,6,-7,8-tetrahydro-naphthalene-2-ol; (-)-cis-6phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyll-5,6,7,8-te-trahydro-naphthalene-2-ol; cis-6-phenyl-5-[4-(2-pyrrolidin-1-vl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalene-2-ol; cis-1-[6'-pyrrolidinoethoxy-3'-pyridyl]-2-phenyl-6-hydroxy-1,2,3,4tetrahydronaphthalene; 1-(4'-pyrrolidinoethoxyphenyl)-2-(4"-fluorophenyl)-6hydroxy-1,2,3,- 4-tetrahydroisoquinoline; cis-6-(4-hydroxyphenyl)-5-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-5,6,-7,8-tetrahydro-naphthalene-2-ol; 1-(4'pyrrolidinoethoxyphenyl)-2-phenyl-6-hydroxy-1,2,3,4-tetrahydroisoguinoline and the tartrate salt thereof (-)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl-]-5,6,7,8tetrahydro-naphthalene-2-ol), US20040259886, US20040162304, and WO95/10513; and pharmaceutically acceptable salts and esters thereof. Tests showing the efficacy of the therapy and the rationaled for the combination therapy with an anticancer agent are presented in US20040116358 and WO04/010948.

Agents used to treat bone loss and associated disorders

[00145] The compounds described herein can be used in the apeutic combination with an agent used to treat bone loss and associated disorders including but not limited to: (1) SERMs (including those described above); (2) bisphosphonates including but

not limited to alendronic acid and alendronate/MK-217/(Fosamax®)/alendronate sodium/alendronate monosodium trihydrate including sodium, potassium, calcium, magnesium or ammonium salts thereof (alendronic acid and alendronate are disclosed in US4922007, US5019651, US5510517, and US564849)1; also); Yamanouchi compound YM 175/incadronate/cimadronate (cycloheptylaminomethylene-1,1bisphosphonic acid, US4970335); 1,1-dichloromethylene-1,1-diphosphonic acid (clodronic acid), and the disodium salt (clodronate, Procter and Gamble), as described in Belgium Patent 672,205 (1966) and J. Org. Chem 32, 4111 (1967)); EB-1053(1hydroxy-3-(1-pyrrolidinyl)-propylidene-1.1-bisphosphonic acid); etidronic acid (1hydroxyethane-1,1-diphosphonic acid (etidronic acid); Boehringer-Mannheim compound ibandronate/BM-210955 (1-hydroxy-3-(N-methyl-Npentylamino)propylidene-1,1-bisphosphonic acid; disclosed in US4927814); minodronate (1-hydroxy-2-imidazo-(1,2-a)pyridin-3-yethylidene); neridronate (6amino-1-hydroxyhexylidene-1,1-bisphosphonic acid); olpadronate (3-(dimethylamino)-1-hydroxypropylidene-1,1-bisphosphonic acid); pamidronate (3amino-1-hydroxypropylidene-1,1-bisphosphonic acid); piridronate (2-(2pyridinyl)ethylidene]-1,1-bisphosphonic acid; described in US4761406); risedronate (1-hydroxy-2-(3-pyridinyl)-ethylidene-1,1-bisphosphonic acid); tiludronate (4chlorophenyl)thiomethane-1,1-disphosphonic acid; described in US4876248); zoledronate (1-hydroxy-2-(1H-imidazol-1-yl)ethylidene-1,1-bisphosphonic acid); etidronate; and pharmaceutically acceptable salts and esters thereof; and also including mixtures thereof; (3) estrogens and estrogen combinations (including those described above); (4) cathepsin K inhibitors (e.g., compounds which interfere with the activity of the cysteine protease cathepsin K) including those disclosed in WO00/55126 and WO01/49288; (5) androgen receptor modulators including but not limited to finasteride and other 50-reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, and abiraterone acetate; (6) inhibitors of osteoclast proton ATPase including those described in Farina et al. (1999) DDT, 4:163-172; (7) HMG-CoA reductase inhibitors (including those described above); (8) integrin receptor antagonists (including those described in US20040162304); (9) osteoblast anabolic agents (e.g., agents that build bone such as parathyroid horomone (PTH) or its amino

terminal fragments (PTHrP-(1-36); Syed et al. (2001) JCEM 86:1525-1531) and analogues); (10) calcitonin; (11) vitamin D which includes, but is not limited to, vitamin D₃ (cholecalciferol), vitamin D₂ (ergocalciferol); 1α-hydroxy vitamin D;25-hydroxy vitamin D;1α,25-dihydroxy vitamin D; and dihydroxy vitamin D; (12) synthetic vitamin D analogues (non-naturally occurring compounds that act like vitamin D); (13) compounds disclosed in US5280040; and (14) serotonin reuptake inhibitors (including those described above).

[00146] The compounds described herein can be used in therapeutic combination with other agents including but not limited to: a thromboxane A2 (TxA2) antagonist; a CRTH2 receptor modulator (such as Ramatroban/Baynas/BAY u3405 which exhibits both TxA2 and CRTH2 antagonistic activity); ranitine; bosentan; a tyrosine kinase inhibitor such as disclosed in WO00/053605; a selective androgen recentor modulator (SARM) inleuding LGD-2226 (Ligand) or those compounds disclosed in WO03/011824; coenzyme Q10 such as disclosed in US5316765, US4933165, and US4929437; an agent that upregulates type III endothelial cell nitric acid syntase such as disclosed in WO00/003746; a chondroprotective compound such as a polysulfated glycosaminoglycan (PSGAG), glucosamine, chondroitin sulfate (CS), hyaluronic acid (HA), pentosan polysulfate (PPS), doxycycline or minocycline, such as disclosed in EP970694; monocyte and macrophage inhibitors such as polyunsaturated fatty acids (PUFA); thyroid hormones including throxine analogues (such as CGS-26214 (a thyroxine compound with a fluorinated ring), dextrothyroxine, eitroxate, and thyropropic acid; a 5-HT reuptake inhibitor such as disclosed in WO99/44609; and anti-infective agents such as quinolones, for example, ciprofloxacin, ofloxacin, and Tequin™ (Bristol-Myers Squibb), macrolides such as erythromycin and clarithromycin (Biaxin™ (Abbott)), and azithromycin (Zithromax (Pfizer)). The compounds described herein can be used in therapeutic combination with interleukin-6 modulators including those described in US20060078533 such as interleukin-6 inhibitors/antibodies, interleukin-6 receptor inhibitors/antibodies, interleukin-6 antisense oligonucleotide (ASON), gp130 protein inhibitors/antibodies, tyrosine kinases inhibitors/antibodies, serine/threonine kinases inhibitors/antibodies, mitogenactivated protein (MAP) kinase inhibitors/antibodies, phosphatidylinositol 3-kinase

(PI3K) inhibitors/antibodies, Nuclear factor κB (NF-κB) inhibitors/antibodies. IκB kinase (IKK) inhibitors/antibodies, activator protein-1 (AP-1) inhibitors/antibodies. STAT transcription factors inhibitors/antibodies, altered IL-6, partial pentides of IL-6 or IL-6 receptor, and SOCS (suppressors of cytokine signaling) protein. The compounds described herein can be used in therapeutic combination with at least one ubiquinone (e.g. Coenzyme O, Coenzyme O10). In certain embodiments, a compound described herein is coadministered with a statin (e.g. atorvastatin, atorvastatin calcium, rosuvastatin, rosuvastatin calcium) and a ubiquinone (e.g. e.g. Coenzyme Q, Coenzyme O10). The compounds described herein can be used in therapeutic combination with a PGD2 receptor 1 (DP1, also called DP-1, DP) antagonist such as MK-0524 (Merck) and those described in patent publications, WO06026273. In certain embodiments, a compound described herein is coadministered with nicotinic acid or niacin (including derivatives and extended release formulations (e.g., Niaspan®) thereof) and a DP1 antagonist (e.g. MK-0524). [00147] It can be useful to administer a compound described herein together with 1, 2, 3, or more of an HMG-CoA reductase inhibitor (e.g., a statin such as atorvastatin, atorvastatin calcium, rosuvastatin, rosuvastatin calcium, simvastatin), a fibrate (e.g., fenofibrate(Tricor®)), niacin (including derivatives and extended release formulations (e.g., Niaspan®) thereof), a glitazone (e.g., rosiglitazone maleate (Avandia®), piogilitazone hydrochloride(Actos®)), a calcium channel blocker (e.g., amlodipine besylate (Norvasc®)), an angiotensin II receptor antagonist (e.g., valsartan (Diovan®, Diovan HCT® (valsartan and hydrochlorothiazide))), a biguanide (e.g., metformin (Glucophage®)), a sulfonylurea (e.g., glipizide (Glucotrol®, Glucotrol XL®), glyburide (Micronase®, Glynase Prestab®, Diabeta®), and Glucovance® (glyburide and metformin). It can be particularly useful to combine a compound described herein together with one or more of an HMG-CoA reductase inhibitor (e.g., a statin), a fibrate, a glitazone, niacin or a derivative thereof, a calcium channel blocker, an angiotensin II receptor antagonist, a biguanide, a sulfonylurea in a single pharmaceutical composition. The precise amount of each of the two or more active ingredients in a dosage unit will depend on the desired dosage of each component. Thus, it can be useful to create a dosage unit that will, when administered according to

a particular dosage schedule (e.g., a dosage schedule specifying a certain number of units and a particular timing for administration), deliver the same dosage of each component as would be administered if the patient was being treated with only a single component. In other circumstances, it might be desirable to create a dosage unit that will deliver a dosage of one or more components that is less than that which would be administered if the patient was being treated only with a single component. Finally, it might be desirable to create a dosage unit that will deliver a dosage of one or more components that is greater than that which would be administered if the patient was being treated only with a single component. The pharmaceutical composition can include additional ingredients including but not limited to the excipients described herein. In certain embodiments, one or more therapeutic agents of the dosage unit may exist in an extended or control release formulation and additional therapeutic agents may not exist in extended release formulation. For example, a compound described herein may exist in the same dosage unit with fenofibrate (an extended release fibrate agent). For example, a compound described herein may exist in the same dosage unit with one or more additional agents including a controlled release formulation of torcetrapib.

[00148] A pharmaceutical composition can include 1% to 20% by weight of a compound described herein; from 1% to 80% by weight of an HMG-CoA reductase inhibitor such as atorvastatin, atorvastatin calcium, dihydrocompactin, bervastatin, carvastatin, cerivastatin, crilvastatin, dalvastatin, fluvastatin, glenvastatin, fluindostatin, velostatin, lovastatin, mevastatin, compactin, pitavastatin, pravastatin, rivastatin, rosuvastatin, rosuvastatin calcium, simvastatin, sirrivastatin, and CI-981; and from 0.01% to 2% by weight of a stabilizing agent such as butylated hydroxyanisole (BHA). It further can include from 1% to 80% by weight of microcrystalline cellulose; from 0.5% to 10% by weight of hydroxypropyl methylcellulose; from 0.1% to 4% by weight of magnesium stearate; and from 25% to 70% by weight of lactose. The composition may optionally include one or more of croscarmellose sodium, citric acid, ascorbic acid and propyl gallate. The composition can include or exclude one or more of citric acid, ascorbic acid and pre-gelatinized

starch. As a practical matter, a single dosage unit such as a tablet or capsule should weigh from 50 mg to 1000 mg (for example, including from 100 mg to 800 mg). [00149] A dosage unit (e.g., an oral dosage unit) can include from, for example, 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein; from 5 mg to 80 mg (e.g., 5 mg, 10 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 60 mg, 70 mg and 80 mg) of a statin (e.g., atorvastatin, atorvastatin calcium, rosuvastatin, rosuvastatin calcium, simvastatin, etc.); and from 0.002 mg to 0.004 mg of BHA per mg of statin. In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg

of a statin. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80 mg of a statin. A daily dose can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 5, 10, 20, 30, 40, 50, 60, 70 or 80 mg of a statin. In certain embodiments the statin is selected from the group consisting of atorvastatin, atorvastatin calcium, rosuvastatin, rosuvastatin calcium and simvastatin. In certain embodiments the statin is atorvastatin. In certain embodiments thereof the daily dosage unit can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 10 mg, 20 mg, 40 mg, or 80 mg of atorvastatin. In certain embodiments the statin is rosuvastatin (e.g. rosuvastatin calcium). In certain embodiments thereof the daily dosage unit can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 5 mg, 10 mg, 20 mg, or 40 mg of

rosuvastatin (e.g. rosuvasatin calcium). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can include from 0.0005 mg to 0.001 mg of propyl gallate per mg of statin. For example, the dosage unit can include from 0.01 mg to 16 mg, and particularly from 0.02 mg to 0.16 mg of BHA, and additionally may be include from 0.001 mg to 0.05 mg, and particularly from 0.005 mg to 0.04 mg of propyl gallate. The dosage unit can additionally include from 1 mg to 640 mg, and particularly from 15 mg to 120 mg of microcrystalline cellulose; from 0.5 mg to 80 mg, and particularly from 2 mg to 16 mg of HPMC; from 0.1 mg to 32 mg, and particularly from 1.5 to 12 mg of magnesium stearate; and lactose, Croscarmellose sodium may optionally be included as a component in the composition. For example, an oral dosage unit may contain from 0 mg to 80 mg of croscarmellose sodium, and particularly from 3 mg to 24 mg of croscarmellose sodium. Citric acid may optionally be included as a component in the composition. For example, an oral dosage unit may contain from 0 mg to 80 mg, and particularly from 0.25 mg to 2 mg of citric acid. In addition, one or more of lactic acid, malic acid, succinic acid, tartaric acid and EDTA may optionally be included in the dosage unit. An inert component such as lactose can be added to bring the unit dosage form to a desired total weight. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of a fibrate, niacin (including derivatives thereof), a glitazone, a calcium channel blocker, an angiotensin II receptor antagonist, a biguanide, a CETP inhibitor, a probucol derivative, and a sulfonylurea. [00150] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 10 mg to 150 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 48 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90

mg, 100 mg, 120 mg, 130 mg, 140 mg, 145 mg, 150 mg) of a fibrate (e.g., fenofibrate (Tricor®). In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of

a fibrate. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. A daily dose can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100, 120, 130, 140, 145, or 150 mg of a fibrate. In certain embodiments, the fibrate is fenofibrate (Tricor®). In certain embodiments the dosage unit includes 5-100 mg (e.g., 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg) of a compound described herein and 48 mg, 96 mg or 145 mg of fenofibrate (e.g. Tricor®). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments. the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of an HMG CoA reductase inhibitor (e.g.a statin), niacin (including derivatives thereof). a glitazone, a calcium channel blocker, an angiotensin II receptor antagonist, a biguanide, a CETP inhibitor, a probucol derivative and a sulfonylurea. [00151] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg,

11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 1 mg to 60 mg (e.g., 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 60 mg) of a glitazone (e.g., rosiglitazone, pioglitazone). In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 60

mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. A daily dose can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, or 60 mg of a glitazone. In certain embodiments the glitazone is rosiglitazone maleate (Avandia®). In certain embodiments the glitazone is pioglitazone (Actos®). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of an HMG CoA reductase inhibitor (e.g.a statin), a fibrate, niacin (including derivatives thereof), a

calcium channel blocker, an angiotensin II receptor antagonist, a biguanide, a CETP inhibitor, a probucol derivative and a sulfonylurea.

[00152] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 100 mg to 2000 mg (e.g., 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, 1800 mg, 1900 mg, 2000 mg) of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500. 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500,

550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and

100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. A daily dose can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 mg of niacin or a derivative thereof. In certain embodiments the niacin derivative is Niaspan® (niacin extended release tablets). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of an HMG CoA

reductase inhibitor (e.g.a statin), a fibrate, a glitazone, a calcium channel blocker, an angiotensin II receptor antagonist, a biguanide, a CETP inhibitor, a probucol derivative and a sulfonylurea.

[00153] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 1 mg to 15 mg (e.g., 1 mg, 2 mg, 2.5 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 7.5 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 12.5 mg, 13 mg, 14 mg, 15 mg) of a calcium channel blocker (e.g., amlodipine). In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg

of a calcium channel blocker. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 1, 2, 2, 5, 3, 4, 5, 6, 7, 7, 5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 1, 2, 2, 5, 3, 4, 5, 6, 7, 7, 5, 8, 9, 10, 11, 12, 12, 5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6. 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7,5, 8, 9, 10, 11, 12, 12,5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 1, 2, 2.5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. A daily dose can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 1, 2, 2, 5, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 11, 12, 12.5, 13, 14, or 15 mg of a calcium channel blocker. In certain embodiments the calcium channel blocker is amlodipine (Norvasc®; amlodipine beslylate). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day,

without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of an HMG CoA reductase inhibitor (e.g.a statin), a fibrate, niacin (including derivatives thereof), a glitazone, an angiotensin II receptor antagonist, a biguanide, a CETP inhibitor, a probucol derivative and a sulfonyturea.

[00154] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 20 mg to 400 mg (e.g., 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 220 mg, 240 mg, 260 mg, 280 mg, 320 mg, 340 mg, 360 mg, 380 mg, 400 mg) of an angiotensin II receptor antagonist (e.g., valsartan). In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 20, 30, 40, 50, 60,

70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor

antagonist. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160. 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. A daily dose can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 320, 340, 360, 380, or 400 mg of an angiotensin II receptor antagonist. In certain embodiments the angiotensin II receptor antagonist is valsartan (Diovan®). In certain embodiments the dosage unit further comprises a diuretic (e.g., hydrocholorothiazide). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents

such as 1, 2, 3, or more of an HMG CoA reductase inhibitor (e.g.a statin), a fibrate, niacin (including derivatives thereof), a glitazone, a calcium channel blocker, a biguanide, a CETP inhibitor, a probucol derivative and a sulfonylurea.

[00155] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 100 mg to 3000 mg (e.g., 100 mg, 200 mg, 250 mg, 300 mg, 400 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1250 mg, 1500 mg, 1750 mg, 2000 mg, 2250 mg, 2500 mg, 2750 mg, 3000 mg) of a biguanide (e.g., metformin). In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700. 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700. 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 35 mg of a

compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700. 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700,

750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700. 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700. 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. A daily dose can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 100, 200, 250, 300, 400, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, or 3000 mg of a biguanide. In certain embodiments the biguanide is metformin (metformin hydrochloride, (Glucophage®, Glucophage® XR)). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of an HMG CoA reductase inhibitor (e.g.a statin), a fibrate, niacin (including derivatives thereof), a glitazone, a calcium channel blocker, an angiotensin II receptor antagonist, a CETP inhibitor, a probucol derivative and a sulfonylurea.

[00156] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 1 to 40 mg (e.g., 1 mg, 1.25 mg, 1.5 mg, 1.75 mg, 2 mg, 2.5 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg,

7.5 mg, 8 mg, 9 mg, 10 mg, 12.5 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 g) of a sulfonylurea (e.g., glipizide, glyburide). In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 1, 1,25, 1,5, 1,75, 2, 2,5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 1, 1,25, 1,5, 1,75, 2, 2,5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments,

the dosage unit comprises 70 mg of a compound described herein and 1, 1.25, 1.5. 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. A daily dose can include 5-100 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg) of a compound described herein and 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 mg of a sulfonylurea. In certain embodiments the sulfonylurea is glipizide (Glucotrol® Glucotrol XL®). In certain embodiments the sulfonylurea is glyburide (Micronase®, Glynase Prestab®, Diabeta®). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of an HMG CoA reductase inhibitor (e.g.a statin), a fibrate, niacin (including derivatives thereof), a glitazone, a calcium channel blocker, an angiotensin II receptor antagonist, a CETP inhibitor, a probucol derivative and a biguanide.

[00157] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to

40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 10 to 1800 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, 1800 mg) of a CETP inhibitor. In certain embodiments, the dosage unit comprises 5 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain

embodiments, the dosage unit comprises 25 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg. 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor t. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450

mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg. 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit

comprises 80 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. A daily dose can include 5-100 mg (e.g., 5, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg) of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 200 mg, 250 mg,

300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, or 1800 mg of a CETP inhibitor. In certain embodiments the CETP inhibitor is torcetrapib. In certain embodiments the dosage unit includes 5-100 mg (e.g., 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg) of a compound described herein and 30 mg, 60 mg, 90mg, 100 mg, or 120 mg of torcetrapib. In certain embodiments the CETP inhibitor is JTT-705. In certain embodiments the dosage unit includes 5-100 mg (e.g., 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg) of a compound described herein and 100 mg, 300 mg, 600 mg, 900 mg, or 1800 mg of JTT-705. In certain embodiments the dosage unit further comprises a diuretic (e.g., hydrocholorothiazide). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of an HMG CoA reductase inhibitor (e.g.a statin), a fibrate, niacin (including derivatives thereof), a glitazone, a calcium channel blocker, a biguanide, an angiotensin II receptor antagonist and a sulfonylurea.

[00158] A dosage unit (e.g., an oral dosage unit) can include, for example, from 1 to 500 mg, 2 mg to 500 mg, 1 to 300 mg, 1 to 100 mg, 5 mg to 100 mg, 1 to 30 mg, 1 to 40 mg, 5 mg to 20 mg, 1 mg, 2 mg, 3 mg, 4mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, and 100 mg of a compound described herein and from 10 to 1000 mg (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 900 mg, 950 mg, 1000 mg) of a Probucol derivative. In certain

embodiments, the dosage unit comprises 5 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 10 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 15 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 20 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 25 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 30 mg of a compound described herein and

10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 35 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 40 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 45 mg of a compound described herein and $10~\mathrm{mg},\,20~\mathrm{mg},\,30~\mathrm{mg},\,40~\mathrm{mg},\,50~\mathrm{mg},\,60~\mathrm{mg},\,70~\mathrm{mg},\,80~\mathrm{mg},\,90~\mathrm{mg},\,100~\mathrm{mg},\,110~\mathrm{mg},$ 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 50 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 55 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg,

120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 60 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 65 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 70 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 75 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 80 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210

mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 85 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 90 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 95 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments, the dosage unit comprises 100 mg of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg, 250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. A daily dose can include 5-100 mg (e.g., 5, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg) of a compound described herein and 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 210 mg, 220 mg, 230 mg, 240 mg,

250 mg, 260 mg, 270 mg, 280 mg, 290 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 mg, or 1000 mg of a Probucol derivative. In certain embodiments the Probucol derivative is AGI-1067. In certain embodiments the dosage unit includes 5-100 mg (e.g., 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg) of a compound described herein and 70 mg, 140 mg, 280 mg, or 300 mg of AGI-1067. In certain embodiments the dosage unit further comprises a diuretic (e.g., hydrocholorothiazide). In certain embodiments the dosage unit and daily dose are equivalent. In various embodiments, the dosage unit is administered with food at anytime of the day, without food at anytime of the day, with food after an overnight fast (e.g., with breakfast), at bedtime after a low fat snack. In various embodiments, the dosage unit is administered once a day, twice a day, three times a day, four times a day. The dosage unit can optionally comprise other agents such as 1, 2, 3, or more of an HMG CoA reductase inhibitor (e.g.a statin), a fibrate, niacin (including derivatives thereof), a glitazone, a calcium channel blocker, a biguanide, an angiotensin II receptor antagonist and a sulfonvlurea.

[00159] It can be useful to administer a compound described herein together with a sterol or stanol composition. Sterols and stanols include but are not limited to those described herein. Plant sterols and stanols (e.g., beta-sitosterol) have been used as dietary supplements to reduce serum cholesterol levels. Plant sterol can be esterified to create stanol esters (also referred to as stanols), which are also used as food additives. Sterols are typically derived from agricultural sources, such as com, soybased, and pine tree mixtures. Stanols can be created through the reaction of the sterol with the suitable acid. Suitable acids include saturated, unsaturated, and polyunsaturated acids. Suitable acids include but are not limited to, stearic, butyric, lauric, palmitic, oleic, linoleic, linoleinc, docohexanoic acid, and the like. Suitable methods for preparing these esters are well known in the art, see, e.g., US5502045 and US5723747. Sterols and sterol esters can be formulated a self-dispersing particles that are small enough to be effective when administered by ingestion (see, e.g., US6387411, US6376481 and US20040033202). Sterols and/or sterol esters in particle form can be combined with a compound described herein to create useful

pharameutical compositons which can also include other agents such as 1, 2, 3, or more of an HMG-CoA reductase inhibitor (e.g., a statin such as atorvastatin, atorvastatin calcium, rosuvastatin, rosuvastatin calcium, simvastatin), a fibrate (e.g., fenofibrate(Tricor®)), niacin (including derivatives and extended release formulations (e.g., Niaspan®) thereof), a glitazone (e.g., rosiglitazone maleate (Avandia®), piogilitazone hydrochloride(Actos®)), a calcium channel blocker (e.g., amlodipine besylate (Norvasc®)), an angiotensin II receptor antagonist (e.g., valsartan (Diovan®, Diovan HCT® (valsartan and hydrochlorothiazide))), a biguanide (e.g., metformin (Glucophage®)), a sulfonylurea (e.g., glipizide (Glucotrol®, Glucotrol XL®), glyburide (Micronase®, Glynase Prestab®, Diabeta®), and Glucovance® (glyburide and metformin). The pharmaceutical composition can include additional ingredients such as stabilizers or bulking agents. The sterol particles in the composition can have any suitable size, e.g., 10-150 microns in diameter. However, to improve absorption in the body it can be desirable to use much smaller particles, e.g., less than 2000 nm in diameter as explained in US20040033202. Thus, pharmaceutical compositions that include a compound described herein can include sterol nanoparticles, such as sitosterol and/or phytosterol nanoparticles, which have an effective average particle size of less than about 2000 nm, less than about 1900 nm, less than about 1800 nm, less than about 1700 nm, less than about 1600 nm, less than about 1500 nm, less than about 1400 nm, less than about 1300 nm, less than about 1200 nm, less than about 1100 nm, less than about 1000 nm, less than about 900 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 200 nm, less than about 150 nm, less than about 100 nm, less than about 75 nm, or less than about 50 nm, as measured by light-scattering methods, microscopy, or other appropriate methods. The particles can be created by methods which include: milling, precipitation and homogenization. For example, homogenization methods are described in US5510118. The method includes dispersing sterol particles in a liquid dispersion medium in which the sterol is poorly soluble, followed by subjecting the dispersion to homogenization to reduce the particle size of the sterol to the desired effective average particle size. The sterol particles are preferably reduced in size in the

presence of at least one surface stabilizer. Alternatively, the sterol particles can be contacted with one or more surface stabilizers either before or after attrition. Other compounds, such as a diluent, can be added to the sterol/surface stabilizer composition before, during, or after the size reduction process. Dispersions can be manufactured continuously or in a batch mode. Surface stabilizers can be used in the formulations. Suitable surface stabilizers include: cetyl pyridinium chloride, gelatin, casein, phosphatides, dextran, glycerol, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, polyethylene glycols, dodecyl trimethyl ammonium bromide, polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, hydroxypropyl celluloses, hypromellose, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hypromellose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, polyvinylpyrrolidone, 4-(1,1,3,3-tetramethylbutyl)phenol polymer with ethylene oxide and formaldehyde, poloxamers; poloxamines, a charged phospholipid, dioctylsulfosuccinate, dialkylesters of sodium sulfosuccinic acid, sodium lauryl sulfate, alkyl aryl polyether sulfonates, mixtures of sucrose stearate and sucrose distearate, p-isononylphenoxypoly-(glycidol), decanoyl-Nmethylglucamide; n-decyl β-D-glucopyranoside; n-decyl β-D-maltopyranoside; ndodecyl β-D-glucopyranoside; n-dodecyl β-D-maltoside; heptanoyl-Nmethylglucamide: n-heptyl-β-D-glucop- vranoside; n-heptyl β-D-thioglucoside; nhexyl β-D-glucopyranoside; nonanoyl-N-methylglucamide; n-noyl β-Dglucopyranoside; octanovl-N-methylglucamide; n-octyl- \(\beta \) -D-glucopyranoside; octyl B-D-thioglucopyranoside: lysozyme, PEG-phospholipid, PEG-cholesterol, PEGcholesterol derivative, PEG-vitamin A, PEG-vitamin E, and random copolymers of vinyl acetate and vinyl pyrrolidone.

[00160] It can be useful to administer a compound described herein together with a polycosanol composition. Polycosanol compositions are complex mixtures of concentrated n-alkyl alcohols derived from, e.g., sugar cane and the wax of honey

bees. Polycosanol compositions are reported to produce cholesterol lowering effects within the first 6-8 weeks of use. According to US20030232796, at a daily polycosanol dosage of 10 mg taken at night, LDL cholesterol levels typically drop by 20-25% within the first six months of use. At a dosage of 20 mg, LDL levels typically drop by 25-30%. HDL levels typically increase by 15-25% only after two months of use. The combined LDL reduction and HDL increase will produce a significant and dramatic improvement in the LDL to HDL ratio. Polycosanol can include fatty acid components including: 1-Octacosanol, 1-Triacontanol, 1-Tetracosanol, 1-Heptacosanol, and 1-Hexacosanol. Typical usage levels range from 500-10,000 micrograms per serving/dose. Typical commercially available commercial compositions are 90% minimum fatty alcohols of (a) 1-Tetracosanol: 0-10%; (b) 1-Hexacosanol: 2-15%; (c) 1-Heptacosanol: 0-0.5%; (d) 1-Octacosanol: 55-70%; (e) 1-Nonacosanol: 0-10%; (f) 1-Triacontanol: 5-20%; (g) 1-Dotriacontanol: 0.1-10%; and (h) 1-Tetratriacontanol: 0.1-10%. Polycosanol compositions can be formulated as described above for stanols both with respect to particle size and overall formulation. They can also be formulated according to the disclosures provided in WO05067903. In addition to the compounds described herein, the formulation can include other agents such as 1, 2, 3, or more of an HMG-CoA reductase inhibitor (e.g., a statin such as atorvastatin, atorvastatin calcium, rosuvastatin, rosuvastatin calcium, simvastatin), a fibrate (e.g., fenofibrate(Tricor®)), niacin (including derivatives and extended release formulations (e.g., Niaspan®) thereof), a glitazone (e.g., rosiglitazone maleate (Avandia®), piogilitazone hydrochloride(Actos®)), a calcium channel blocker (e.g., amlodipine besylate (Norvasc®)), an angiotensin II receptor antagonist (e.g., valsartan (Diovan®, Diovan HCT® (valsartan and hydrochlorothiazide))), a biguanide (e.g., metformin (Glucophage®)), a sulfonylurea (e.g., glipizide (Glucotrol®, Glucotrol XL®), glyburide (Micronase®, Glynase Prestab®, Diabeta®), and Glucovance® (glyburide and metformin).

[00161] Combining two or more active ingredients in single dosage form results in the possibility of chemical interactions between the active drug substances. For example, acidic and basic active ingredients can react with each other and acidic active ingredients can facilitate the degradation of acid labile substances. Thus, in

certain dosage forms, acidic and basic substances can be physically separated as two distinct or isolated layers in a compressed tablet, or in the core and shell of a press-coated tablet. Additional agents that are compatible with acidic as well as basic substances, have the flexibility of being placed in either layer. In certain multiple layer compositions at least one active ingredient can be enteric-coated. In certain embodiments thereof at least one active ingredient can be presented in a controlled release form. In certain embodiments where a combination of three or more active substances are used, they can be presented as physically isolated segments of a compressed multilayer tablet, which can be optionally film coated.

[00162] The therapeutic combinations described herein can be formulated as a tablet or capsule comprising a plurality of beads, granules, or pellets. All active ingredients including the vitamins of the combination are formulated into granules or beads or pellets that are further coated with a protective coat, an enteric coat, or a film coat to avoid the possible chemical interactions. Granulation and coating of granules or beads is done using techniques well known to a person skilled in the art. At least one active ingredient can present in a controlled release form. Finally these coated granules or beads are filled into hard gelatin capsules or compressed to form tablets.

[00163] The therapeutic combinations described herein can be formulated as a capsule comprising microtablets or minitablets of all active ingredients. Microtablets of the individual agents can be prepared using well known pharmaceutical procedures of tablet making like direct compression, dry granulation or wet granulation.

Individual microtablets can be filled into hard gelatin capsules. A final dosage form may comprise one or more microtablets of each individual component. The microtablets may be film coated or enteric coated.

[00164] The therapeutic combinations described herein can be formulated as a capsule comprising one or more microtablets and powder, or one or more microtablets and granules or beads. In order to avoid interactions between drugs, some active ingredients of a said combination can be formulated as microtablets and the others filled into capsules as a powder, granules, or beads. The microtablets may be film coated or enteric coated. At least one active ingredient can be presented in controlled release form

[00165] The therapeutic combinations described herein can be formulated wherein the active ingredients are distributed in the inner and outer phase of tablets. In an attempt to divide chemically incompatible components of proposed combination, few interacting components are converted in granules or beads using well known pharmaceutical procedures in prior art. The prepared granules or beads (inner phase) are then mixed with outer phase comprising the remaining active ingredients and at least one pharmaceutically acceptable excipient. The mixture thus comprising inner and outer phase is compressed into tablets or molded into tablets. The granules or beads can be controlled release or immediate release beads or granules, and can further be coated using an enteric polymer in an aqueous or non-aqueous system, using methods and materials that are known in the art.

[00166] The therapeutic combinations described herein can be formulated as single dosage unit comprising suitable buffering agent. All powdered ingredients of said combination are mixed and a suitable quantity of one or more buffering agents is added to the blend to minimize possible interactions.

[00167] The agents described herein, alone or in combination, can be combined with any pharmaceutically acceptable carrier or medium. Thus, they can be combined with materials that do not produce an adverse, allergic or otherwise unwanted reaction when administered to a patient. The carriers or mediums used can include solvents, dispersants, coatings, absorption promoting agents, controlled release agents, and one or more inert excipients (which include starches, polyols, granulating agents, microcrystalline cellulose, diluents, lubricants, binders, disintegrating agents, and the like), etc. If desired, tablet dosages of the disclosed compositions may be coated by standard aqueous or nonaqueous techniques. The agents described herein, alone or in combination, can be formulated using Nanocrystal® technology (Elan Corporation, Dublin, Ireland).

[00168] The agents can be a free acid or base, or a pharmacologically acceptable salt thereof. Solids can be dissolved or dispersed immediately prior to administration or earlier. In some circumstances the preparations include a preservative to prevent the growth of microorganisms. The pharmaceutical forms suitable for injection can include sterile aqueous or organic solutions or dispersions which include, e.g., water,

an alcohol, an organic solvent, an oil or other solvent or dispersant (e.g., glycerol, propylene glycol, polyethylene glycol, and vegetable oils). The formulations may contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. Pharmaceutical agents can be sterilized by filter sterilization or by other suitable means

[00169] Suitable pharmaceutical compositions in accordance with the invention will generally include an amount of the active compound(s) with an acceptable pharmaceutical diluent or excipient, such as a sterile aqueous solution, to give a range of final concentrations, depending on the intended use. The techniques of preparation are generally well known in the art, as exemplified by Remington's Pharmaceutical Sciences, 18th Ed., Mack Publishing Company, 1995.

[00170] The agent can be in the form of a pharmaceutically acceptable salt. Such salts are prepared from pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases. Examples of salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. In some embodiments, the salt can be an ammonium, calcium, magnesium, potassium, or sodium salt. Examples of salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, benethamine, N,N'-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2dimethylaminoethanol, diethanolamine, ethanolamine, ethylenediamine, Nethylmorpholine, N-ethylpiperidine, epolamine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, meglumine, morpholine. piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, and trolamine, tromethamine. Examples of other salts include tris, arecoline, arginine, barium, betaine, bismuth, chloroprocaine, choline, clemizole, deanol, imidazole, and morpholineethanol. [00171] The agents of the invention can be administered orally, e.g., as a tablet or cachet containing a predetermined amount of the active ingredient, pellet, gel, paste,

syrup, bolus, electuary, slurry, capsule; powder; granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion, via a liposomal formulation (see, e.g., EP736299) or in some other form. Orally administered compositions can include binders, lubricants, inert diluents, lubricating, surface active or dispersing agents, flavoring agents, and humectants. Orally administered formulations such as tablets may optionally be coated or scored and may be formulated so as to provide sustained, delayed or controlled release of the active ingredient therein. The agents of the invention can also be administered by captisol delivery technology, rectal suppository or parenterally.

[00172] The agents described herein can be either in their free form or as a salt can be combined with a polymer such as polylactic-glycoloic acid (PLGA), poly-(I)-lacticglycolic-tartaric acid (P(I)LGT) (WO01/12233), polyglycolic acid (US3773919), polylactic acid (US4767628), poly(M-caprolactone) and poly(alkylene oxide) (US20030068384) to create a sustained release formulation. Such formulations can be used within implants that release a compound of the invention and/or another agent over a period of a few days, a few weeks or several months depending on the polymer. the particle size of the polymer, and the size of the implant (see, e.g., US6620422 and WO05/011769). Other sustained release formulations are described in EP0467389. WO93/241150, US5612052, WO97/40085, WO03/075887, WO01/01964, US5922356, WO94/155587, WO02/074247, WO98/25642, US5968895, US6180608, US20030171296, US20020176841, US5672659, US5893985, US5134122, US5192741, US5192741, US4668506, US4713244, US5445832 US4931279, US5980945, WO02/058672, WO9726015, WO97/04744, and US20020019446. In such sustained release formulations microparticles of compound are combined with microparticles of polymer. US6011011 and WO94/06452 described a sustained release formulation providing either polyethylene glycols (e.g., PEG 300 and PEG 400) or triacetin. WO03/053401 describes a formulation which may both enhance bioavailability and provide controlled release of the agent within the GI tract. Additional controlled release formulations are described in WO02/38129, EP326151, US5236704, WO02/30398, WO98/13029, US20030064105, US20030138488,

US20030216307, US6667060, WO01/49249, WO01/49311, WO01/49249, WO01/49311, US5877224, WO05/030179, WO05/027878, WO05/012488 and WO05/007074

Controlled release formulations

[00173] In general, one can provide for controlled release of the agents described herein through the use of a wide variety of polymeric carriers and controlled release systems including erodible and non-erodible matrices, osmotic control devices, various reservoir devices, enteric coatings and multiparticulate control devices. [00174] Matrix devices are a common device for controlling the release of various agents. In such devices, the agents described herein are generally present as a dispersion within the polymer matrix, and are typically formed by the compression of a polymer/drug mixture or by dissolution or melting. The dosage release properties of these devices may be dependent upon the solubility of the agent in the polymer matrix or, in the case of porous matrices, the solubility in the sink solution within the pore network, and the tortuosity of the network. In one instance, when utilizing an erodible polymeric matrix, the matrix imbibes water and forms an aqueous-swollen gel that entraps the agent. The matrix then gradually erodes, swells, disintegrates or dissolves in the GI tract, thereby controlling release of one or more of the agents described herein. In non-erodible devices, the agent is released by diffusion through an inert matrix.

[00175] Agents described herein can be incorporated into an erodible or nonerodible polymeric matrix controlled release device. By an erodible matrix is meant
aqueous-erodible or water-swellable or aqueous-soluble in the sense of being either
erodible or swellable or dissolvable in pure water or requiring the presence of an acid
or base to ionize the polymeric matrix sufficiently to cause erosion or dissolution.
When contacted with the aqueous environment of use, the erodible polymeric matrix
imbibes water and forms an aqueous-swollen gel or matrix that entraps the agent
described herein. The aqueous-swollen matrix gradually erodes, swells, disintegrates
or dissolves in the environment of use, thereby controlling the release of a compound

described herein to the environment of use. Nonlimiting examples of such devices are disclosed in U. S. Patent Application Serial No. 09/495,059 filed January 31, 2000. [00176] The erodible polymeric matrix into which an agent described herein can be incorporated may generally be described as a set of excipients that are mixed with the agent following its formation that, when contacted with the aqueous environment of use imbibes water and forms a water-swollen gel or matrix that entraps the drug form. Drug release may occur by a variety of mechanisms, for example, the matrix may disintegrate or dissolve from around particles or granules of the agent or the agent may dissolve in the imbibed aqueous solution and diffuse from the tablet, beads or granules of the device. One ingredient of this water-swollen matrix is the waterswellable, erodible, or soluble polymer, which may generally be described as an osmopolymer, hydrogel or water-swellable polymer. Such polymers may be linear, branched, or crosslinked. The polymers may be homopolymers or copolymers. In certain embodiments, they may be synthetic polymers derived from vinyl, acrylate. methacrylate, urethane, ester and oxide monomers. In other embodiments, they can be derivatives of naturally occurring polymers such as polysaccharides (e.g., chitin, chitosan, dextran and pullulan; gum agar, gum arabic, gum karaya, locust bean gum, gum tragacanth, carrageenans, gum ghatti, guar gum, xanthan gum and scleroglucan). starches (e.g., dextrin and maltodextrin), hydrophilic colloids (e.g., pectin), phosphatides (e.g., lecithin), alginates (e.g., ammonium alginate, sodium, potassium or calcium alginate, propylene glycol alginate), gelatin, collagen, and cellulosics. Cellulosics are cellulose polymer that has been modified by reaction of at least a portion of the hydroxyl groups on the saccharide repeat units with a compound to form an ester-linked or an ether-linked substituent. For example, the cellulosic ethyl cellulose has an ether linked ethyl substituent attached to the saccharide repeat unit, while the cellulosic cellulose acetate has an ester linked acetate substituent. In certain embodiments, the cellulosics for the erodible matrix comprises aqueous-soluble and aqueous-erodible cellulosics can include, for example, ethyl cellulose (EC), methylethyl cellulose (MEC), carboxymethyl cellulose (CMC), CMEC, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), cellulose acetate (CA), cellulose propionate (CP), cellulose butyrate (CB), cellulose acetate butyrate (CAB), CAP,

CAT, hydroxypropyl methyl cellulose (HPMC), HPMCP, HPMCAS, hydroxypropyl methyl cellulose acetate trimellitate (HPMCAT), and ethylhydroxy ethylcellulose (EHEC). In certain embodiments, the cellulosics comprises various grades of low viscosity (MW less than or equal to 50,000 daltons, for example, the Dow MethocelTM series E5, E15LV, E50LV and K100LY) and high viscosity (MW greater than 50,000 daltons, for example, E4MCR, E10MCR, K4M, K15M and K100M and the MethocelTM K series) HPMC. Other commercially available types of HPMC include the Shin Etsu Metolose 90SH series.

[00177] The choice of matrix material can have a large effect on the maximum drug concentration attained by the device as well as the maintenance of a high drug concentration. The matrix material can be a concentration-enhancing polymer, for example, as described in WO05/011634.

[00178] Other materials useful as the erodible matrix material include, but are not limited to, pullulan, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl acetate, glycerol fatty acid esters, polyacrylamide, polyacrylic acid, copolymers of ethacrylic acid or methacrylic acid (EUDRAGITO, Rohm America, Inc., Piscataway, New Jersey) and other acrylic acid derivatives such as homopolymers and copolymers of butylmethacrylate, methylmethacrylate, ethylmethacrylate, ethylacrylate, (2-dimethylaminoethyl) methacrylate, and (trimethylaminoethyl) methacrylate chloride. [00179] The erodible matrix polymer may contain a wide variety of the same types of additives and excipients known in the pharmaceutical arts, including osmopolymers, osmagens, solubility-enhancing or-retarding agents and excipients that promote stability or processing of the device.

[00180] Alternatively, the agents of the present invention may be administered by or incorporated into a non-erodible matrix device. In such devices, an agent described herein is distributed in an inert matrix. The agent is released by diffusion through the inert matrix. Examples of materials suitable for the inert matrix include insoluble plastics (e.g methyl acrylate-methyl methacrylate copolymers, polyvinyl chloride, polyethylene), hydrophilic polymers (e.g., ethyl cellulose, cellulose acetate, crosslinked polyvinylpyrrolidone (also known as crospovidone)), and fatty compounds (e.g., carnauba wax, microcrystalline wax, and triglycerides). Such devices are

described further in Remington: The Science and Practice of Pharmacy, 20th edition (2000).

[00181] Matrix controlled release devices may be prepared by blending an agent described herein and other excipients together, and then forming the blend into a tablet, caplet, pill, or other device formed by compressive forces. Such compressed devices may be formed using any of a wide variety of presses used in the fabrication of pharmaceutical devices. Examples include single-punch presses, rotary tablet presses, and multilayer rotary tablet presses, all well known in the art. See for example, Remington: The Science and Practice of Pharmacy, 20th Edition, 2000. The compressed device may be of any shape, including round, oval, oblong, cylindrical, or triangular. The upper and lower surfaces of the compressed device may be flat, round, concave, or convex.

[00182] In certain embodiments, when formed by compression, the device has a strength of at least 5 Kiloponds (Kp)/cm² (for example, at least 7 Kp/cm²). Strength is the fracture force, also known as the tablet hardness required to fracture a tablet formed from the materials, divided by the maximum cross-sectional area of the tablet normal to that force. The fracture force may be measured using a Schleuniger Tablet Hardness Tester, Model 6D. The compression force required to achieve this strength will depend on the size of the tablet, but generally will be greater than about 5 kP/cm². Friability is a well-know measure of a device's resistance to surface abrasion that measures weight loss in percentage after subjecting the device to a standardized agitation procedure. Friability values of from 0.8 to 1.0% are regarded as constituting the upper limit of acceptability. Devices having a strength of greater than 5 kP/cm² generally are very robust, having a friability of less than 0.5%. Other methods for forming matrix controlled-release devices are well known in the pharmaceutical arts. See for example, Remington: The Science and Practice of Pharmacy, 20th Edition, 2000.

[00183] As noted above, the agents described herein may also be incorporated into an osmotic control device. Such devices generally include a core containing one or more agents as described herein and a water permeable, non-dissolving and non-eroding coating surrounding the core which controls the influx of water into the core

from an aqueous environment of use so as to cause drug release by extrusion of some or all of the core to the environment of use. In certain embodiments, the coating is polymeric, aqueous-permeable, and has at least one delivery port. The core of the osmotic device optionally includes an osmotic agent which acts to imbibe water from the surrounding environment via such a semi-permeable membrane. The osmotic agent contained in the core of this device may be an aqueous-swellable hydrophilic polymer or it may be an osmogen, also known as an osmagent. Pressure is generated within the device which forces the agent(s) out of the device via an orifice (of a size designed to minimize solute diffusion while preventing the build-up of a hydrostatic pressure head). Nonlimiting examples of osmotic control devices are disclosed in U. S. Patent Application Serial No. 09/495,061.

[00184] Osmotic agents create a driving force for transport of water from the environment of use into the core of the device. Osmotic agents include but are not limited to water- swellable hydrophilic polymers, and osmogens (or osmagens). Thus, the core may include water-swellable hydrophilic polymers, both ionic and nonionic, often referred to as osmopolymers and hydrogels. The amount of water-swellable hydrophilic polymers present in the core may range from about 5 to about 80 wt% (including for example, 10 to 50 wt%). Nonlimiting examples of core materials include hydrophilic vinyl and acrylic polymers, polysaccharides such as calcium alginate, polyethylene oxide (PEO), polyethylene glycol (PEG), polypropylene glycol (PPG), poly (2-hydroxyethyl methacrylate), poly (acrylic) acid, poly (methacrylic) acid, polyvinylpyrrolidone (PVP) and crosslinked PVP, polyvinyl alcohol (PVA), PVA/PVP copolymers and PVA/PVP copolymers with hydrophobic monomers such as methyl methacrylate, vinyl acetate, and the like, hydrophilic polyurethanes containing large PEO blocks, sodium croscarmellose, carrageenan, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), carboxymethyl cellulose (CMC) and carboxyethyl cellulose (CEC), sodium alginate, polycarbophil, gelatin, xanthan gum, and sodium starch glycolat. Other materials include hydrogels comprising interpenetrating networks of polymers that may be formed by addition or by condensation polymerization, the components of which may comprise hydrophilic and hydrophobic monomers such as those just

mentioned. Water-swellable hydrophilic polymers include but are not limited to PEO, PEG, PVP, sodium croscarmellose, HPMC, sodium starch glycolate, polyacrylic acid and crosslinked versions or mixtures thereof.

[00185] The core may also include an osmogen (or osmagent). The amount of osmogen present in the core may range from about 2 to about 70 wt% (including, for example, from 10 to 50 wt%). Typical classes of suitable osmogens are water-soluble organic acids, salts and sugars that are capable of imbibing water to thereby effect an osmotic pressure gradient across the barrier of the surrounding coating. Typical useful osmogens include but are not limited to magnesium sulfate, magnesium chloride, calcium chloride, sodium chloride, lithium chloride, potassium sulfate, sodium carbonate, sodium sulfate, lithium sulfate, potassium chloride, sodium sulfate, mannitol, xylitol, urea, sorbitol, inositol, raffinose, sucrose, glucose, fructose, lactose, citric acid, succinic acid, tartaric acid, and mixtures thereof. In certain embodiments, the osmogen is glucose, lactose, sucrose, mannitol, xylitol, sodium chloride, including combinations thereof.

[00186] The core may include a wide variety of additives and excipients that enhance the performance of the dosage form or that promote stability, tableting or processing. Such additives and excipients include tableting aids, surfactants, watersoluble polymers, pH modifiers, fillers, binders, pigments, disintegrants, antioxidants, lubricants and flavorants. Nonlimiting examples of additives and excipients include but are not limited to those described elsewhere herein as well as microcrystalline cellulose, metallic salts of acids (e.g., aluminum stearate, calcium stearate, magnesium stearate, sodium stearate, zinc stearate), pH control agents (e.g., buffers, organic acids, organic acid salts, organic and inorganic bases), fatty acids, hydrocarbons and fatty alcohols (e.g., stearic acid, palmitic acid, liquid paraffin, stearyl alcohol, and palmitol), fatty acid esters (e.g., glyceryl (mono-and di-) stearates, triglycerides, glyceryl (palmiticstearic) ester, sorbitan esters (e.g., sorbitan monostearate, saccharose monostearate, saccharose monopalmitate, sodium stearyl fumarate), polyoxyethylene sorbitan esters), surfactants (e.g., alkyl sulfates (e.g., sodium lauryl sulfate, magnesium lauryl sulfate), polymers (e.g., polyethylene glycols, polyoxyethylene glycols, polyoxyethylene, polyoxypropylene ethers, including copolymers thereof),

polytetrafluoroethylene), and inorganic materials (e.g., talc, calcium phosphate), eyelodextrins, sugars (e.g., lactose, xylitol), sodium starch glycolate). Nonlimiting examples of disintegrants are sodium starch glycolate (e. g., Explotab™ CLV, (microcrystalline cellulose (e. g., Avicel™), microcrystalline silicified cellulose (e.g., ProSolv™), croscarmellose sodium (e. g., Ac-Di-Sol™). When the agent described herein is a solid amorphous dispersion formed by a solvent process, such additives may be added directly to the spray-drying solution when forming an agent described herein/concentration-enhancing polymer dispersion such that the additive is dissolved or suspended in the solution as a slurry, Alternatively, such additives may be added following the spray-drying process to aid in forming the final controlled release device.

[00187] A nonlimiting example of an osmotic device consists of one or more drug layers containing an agent described herein, such as a solid amorphous drug/polymer dispersion, and a sweller layer that comprises a water-swellable polymer, with a coating surrounding the drug layer and sweller layer. Each layer may contain other excipients such as tableting aids, osmagents, surfactants, water-soluble polymers and water-swellable polymers.

[00188] Such osmotic delivery devices may be fabricated in various geometries including bilayer (wherein the core comprises a drug layer and a sweller layer adjacent to each other), trilayer (wherein the core comprises a sweller layer sandwiched between two drug layers) and concentric (wherein the core comprises a central sweller agent surrounded by the drug layer). The coating of such a tablet comprises a membrane permeable to water but substantially impermeable to drug and excipients contained within. The coating contains one or more exit passageways or ports in communication with the drug-containing layer(s) for delivering the drug agent. The drug-containing layer(s) of the core contains the drug agent (including optional osmagents and hydrophilic water-soluble polymers), while the sweller layer consists of an expandable hydrogel, with or without additional osmotic agents.

[00189] When placed in an aqueous medium, the tablet imbibes water through the membrane, causing the agent to form a dispensable aqueous agent, and causing the hydrogel layer to expand and push against the drug-containing agent, forcing the agent

out of the exit passageway. The agent can swell, aiding in forcing the drug out of the passageway. Drug can be delivered from this type of delivery system either dissolved or dispersed in the agent that is expelled from the exit passageway.

[00190] The rate of drug delivery is controlled by such factors as the permeability and thickness of the coating, the osmotic pressure of the drug-containing layer, the degree of hydrophilicity of the hydrogel layer, and the surface area of the device. Those skilled in the art will appreciate that increasing the thickness of the coating will reduce the release rate, while any of the following will increase the release rate: increasing the permeability of the coating; increasing the hydrophilicity of the hydrogel layer; increasing the osmotic pressure of the drug-containing layer; or increasing the device's surface area.

[00191] Other materials useful in forming the drug-containing agent, in addition to the agent described herein itself, include HPMC, PEO and PVP and other pharmaceutically acceptable carriers. In addition, osmagents such as sugars or salts, including but not limited to sucrose, lactose, xylitol, mannitol, or sodium chloride, may be added. Materials which are useful for forming the hydrogel layer include sodium CMC, PEO (e.g., polymers having an average molecular weight from about 5,000,000 to about 7,500,000 daltons), poly (acrylic acid), sodium (polyacrylate), sodium croscarmellose, sodium starch glycolat, PVP, crosslinked PVP, and other high molecular weight hydrophilic materials.

[00192] In the case of a bilayer geometry, the delivery port(s) or exit passageway(s) may be located on the side of the tablet containing the drug agent or may be on both sides of the tablet or even on the edge of the tablet so as to connect both the drug layer and the sweller layer with the exterior of the device. The exit passageway(s) may be produced by mechanical means or by laser drilling, or by creating a difficult-to-coat region on the tablet by use of special tooling during tablet compression or by other means.

[00193] The osmotic device can also be made with a homogeneous core surrounded by a semipermeable membrane coating, as in US3845770. The agent described herein can be incorporated into a tablet core and a semipermeable membrane coating can be applied via conventional tablet-coating techniques such as using a pan coater. A drug

delivery passageway can then be formed in this coating by drilling a hole in the coating, either by use of a laser or mechanical means. Alternatively, the passageway may be formed by rupturing a portion of the coating or by creating a region on the tablet that is difficult to coat, as described above. In one embodiment, an osmotic device comprises; (a) a single-layer compressed core comprising; (i) an agent described herein, (ii) a hydroxyethylcellulose, and (iii) an osmagent, wherein the hydroxyethylcellulose is present in the core from about 2.0% to about 35% by weight and the osmagent is present from about 15% to about 70% by weight; (b) a waterpermeable layer surrounding the core; and (c) at least one passageway within the water-permeable layer (b) for delivering the drug to a fluid environment surrounding the tablet. In certain embodiments, the device is shaped such that the surface area to volume ratio (of a water-swollen tablet) is greater than 0.6 mm⁻¹ (including, for example, greater than 1.0 mm⁻¹). The passageway connecting the core with the fluid environment can be situated along the tablet band area. In certain embodiments, the shape is an oblong shape where the ratio of the tablet tooling axes, i.e., the major and minor axes which define the shape of the tablet, are between 1.3 and 3 (including, for example, between 1.5 and 2.5). In one embodiment, the combination of the agent described herein and the osmagent have an average ductility from about 100 to about 200 Mpa, an average tensile strength from about 0.8 to about 2.0 Mpa, and an average brittle fracture index less than about 0.2. The single-layer core may optionally include a disintegrant, a bioavailability enhancing additive, and/or a pharmaceutically acceptable excipient, carrier or diluent. Nonlimiting examples of such devices are disclosed, for example, in U. S. provisional Patent Application Serial No. 60/353,151. [00194] In certain embodiments, entrainment of particles of agents described herein in the extruding fluid during operation of such osmotic device is desirable. For the particles to be well entrained, the agent drug form is dispersed in the fluid before the particles have an opportunity to settle in the tablet core. One means of accomplishing this is by adding a disintegrant that serves to break up the compressed core into its particulate components. Nonlimiting examples of standard disintegrants include materials such as sodium starch glycolate (e. g., Explotab™ CLV), microcrystalline cellulose (e. g., Avicel™), microcrystalline silicified cellulose (e. g., ProSoIv™) and

croscarmellose sodium (e. g., Ac-Di-SolTM), and other disintegrants known to those skilled in the art. Depending upon the particular formulation, some disintegrants work better than others. Several disintegrants tend to form gels as they swell with water, thus hindering drug delivery from the device. Non-gelling, non-swelling disintegrants provide a more rapid dispersion of the drug particles within the core as water enters the core. In certain embodiments, non-gelling, non-swelling disintegrants are resins, for example, ion-exchange resins. In one embodiment, the resin is AmberliteTM IRP 88 (available from Rohm and Haas, Philadelphia, PA). When used, the disintegrant is present in amounts ranging from about 1-25% of the core agent.

[00195] Water-soluble polymers are added to keep particles of the agent suspended inside the device before they can be delivered through the passageway(s) (e.g., an orifice). High viscosity polymers are useful in preventing settling. However, the polymer in combination with the agent is extruded through the passageway(s) under relatively low pressures. At a given extrusion pressure, the extrusion rate typically slows with increased viscosity. Certain polymers in combination with particles of the agent described herein form high viscosity solutions with water but are still capable of being extruded from the tablets with a relatively low force. In contrast, polymers having a low weight-average, molecular weight (< about 300,000) do not form sufficiently viscous solutions inside the tablet core to allow complete delivery due to particle settling. Settling of the particles is a problem when such devices are prepared with no polymer added, which leads to poor drug delivery unless the tablet is constantly agitated to keep the particles from settling inside the core. Settling is also problematic when the particles are large and/or of high density such that the rate of settling increases.

[00196] In certain embodiments, the water-soluble polymers for such osmotic devices do not interact with the drug. In certain embodiments the water-soluble polymer is a non-ionic polymer. A nonlimiting example of a non-ionic polymer forming solutions having a high viscosity yet still extrudable at low pressures is NatrosolTM 250H (high molecular weight hydroxyethylcellulose, available from Hercules Incorporated, Aqualon Division, Wilmington, DE; MW equal to about 1 million daltons and a degree of polymerization equal to about 3,700). Natrosol

250H[™] provides effective drug delivery at concentrations as low as about 3% by weight of the core when combined with an osmagent. Natrosol 250H[™] NF is a high-viscosity grade nonionic cellulose ether that is soluble in hot or cold water. The viscosity of a 1% solution of Natrosol 250H using a Brookfield LVT (30 rpm) at 25°C is between about 1, 500 and about 2,500 cps.

[00197] In certain embodiments, hydroxyethylcellulose polymers for use in these monolayer osmotic tablets have a weight-average, molecular weight from about 300,000 to about 1.5 million. The hydroxyethylcellulose polymer is typically present in the core in an amount from about 2.0% to about 35% by weight.

[00198] Another example of an osmotic device is an osmotic capsule. The capsule shell or portion of the capsule shell can be semipermeable. The capsule can be filled either by a powder or liquid consisting of an agent described herein, excipients that imbibe water to provide osmotic potential, and/or a water-swellable polymer, or optionally solubilizing excipients. The capsule core can also be made such that it has a bilayer or multilayer agent analogous to the bilayer, trilayer or concentric geometries described above.

[00199] Another class of osmotic device useful in this invention comprises coated swellable tablets, for example, as described in EP378404. Coated swellable tablets comprise a tablet core comprising an agent described herein and a swelling material, preferably a hydrophilic polymer, coated with a membrane, which contains holes, or pores through which, in the aqueous use environment, the hydrophilic polymer can extrude and carry out the agent. Alternatively, the membrane may contain polymeric or low molecular weight water-soluble porosigens. Porosigens dissolve in the aqueous use environment, providing pores through which the hydrophilic polymer and agent may extrude. Examples of porosigens are water-soluble polymers such as HPMC, PEG, and low molecular weight compounds such as glycerol, sucrose, glucose, and sodium chloride. In addition, pores may be formed in the coating by drilling holes in the coating using a laser or other mechanical means. In this class of osmotic devices, the membrane material may comprise any film-forming polymer, including polymers which are water permeable or impermeable, providing that the membrane deposited on the tablet core is porous or contains water-soluble porosigens

or possesses a macroscopic hole for water ingress and drug release. Embodiments of this class of sustained release devices may also be multilayered, as described, for example, in EP378404.

[00200] When an agent described herein is a liquid or oil, such as a lipid vehicle formulation, for example as described in WO05/011634, the osmotic controlled-release device may comprise a soft-gel or gelatin capsule formed with a composite wall and comprising the liquid formulation where the wall comprises a barrier layer formed over the external surface of the capsule, an expandable layer formed over the barrier layer, and a semipermeable layer formed over the expandable layer. A delivery port connects the liquid formulation with the aqueous use environment. Such devices are described, for example, in US6419952, US6342249, US5324280, US4672850, US4627850, US4203440, and US3995631.

[00201] The osmotic controlled release devices of the present invention can also comprise a coating. In certain embodiments, the osmotic controlled release device coating exhibits one or more of the following features: is water-permeable, has at least one port for the delivery of drug, and is non-dissolving and non-eroding during release of the drug formulation, such that drug is substantially entirely delivered through the delivery port(s) or pores as opposed to delivery primarily via permeation through the coating material itself. Delivery ports include any passageway, opening or pore whether made mechanically, by laser drilling, by pore formation either during the coating process or in situ during use or by rupture during use. In certain embodiments, the coating is present in an amount ranging from about 5 to 30 wt% (including, for example, 10 to 20 wt%) relative to the core weight.

[00202] One form of coating is a semipermeable polymeric membrane that has the port(s) formed therein either prior to or during use. Thickness of such a polymeric membrane may vary between about 20 and 800 µm (including, for example, between about 100 to 500 µm). The diameter of the delivery port (s) may generally range in size from 0.1 to 3000 µm or greater (including, for example, from about 50 to 3000 µm in diameter). Such port(s) may be formed post-coating by mechanical or laser drilling or may be formed in situ by rupture of the coatings; such rupture may be controlled by intentionally incorporating a relatively small weak portion into the

coating. Delivery ports may also be formed in situ by erosion of a plug of watersoluble material or by rupture of a thinner portion of the coating over an indentation in
the core. In addition, delivery ports may be formed during coating, as in the case of
asymmetric membrane coatings of the type disclosed in US5612059 and US5698220.
The delivery port may be formed in situ by rupture of the coating, for example, when a
collection of beads that may be of essentially identical or of a variable agent are used.
Drug is primarily released from such beads following rupture of the coating and,
following rupture, such release may be gradual or relatively sudden. When the
collection of beads has a variable agent, the agent may be chosen such that the beads
rupture at various times following administration, resulting in the overall release of
drug being sustained for a desired duration.

[00203] Coatings may be dense, microporous or asymmetric, having a dense region supported by a thick porous region such as those disclosed in US5612059 and US5698220. When the coating is dense the coating can be composed of a water-permeable material. When the coating is porous, it may be composed of either a water-permeable or a water-impermeable material. When the coating is composed of a porous water-impermeable material, water permeates through the pores of the coating as either a liquid or a vapor. Nonlimiting examples of osmotic devices that utilize dense coatings include US3995631 and US3845770. Such dense coatings are permeable to the external fluid such as water and may be composed of any of the materials mentioned in these patents as well as other water-permeable polymers known in the art.

[00204] The membranes may also be porous as disclosed, for example, in US5654005 and US5458887 or even be formed from water-resistant polymers. US5120548 describes another suitable process for forming coatings from a mixture of a water-insoluble polymer and a leachable water-soluble additive. The porous membranes may also be formed by the addition of pore-formers as disclosed in US4612008. In addition, vapor-permeable coatings may even be formed from extremely hydrophobic materials such as polyethylene or polyvinylidene difluorid that, when dense, are essentially water-impermeable, as long as such coatings are porous. Materials useful in forming the coating include but are not limited to various

grades of acrylic, vinyls, ethers, polyamides, polyesters and cellulosic derivatives that are water-permeable and water-insoluble at physiologically relevant pHs, or are susceptible to being rendered water-insoluble by chemical alteration such as by crosslinking. Nonlimiting examples of suitable polymers (or crosslinked versions) useful in forming the coating include plasticized, unplasticized and reinforced cellulose acetate (CA), cellulose diacetate, cellulose triacetate, CA propionate, cellulose nitrate, cellulose acetate butyrate (CAB), CA ethyl carbamate, CAP, CA methyl carbamate, CA succinate, cellulose acetate trimellitate (CAT), CA dimethylaminoacetate, CA ethyl carbonate, CA chloroacetate, CA ethyl oxalate, CA methyl sulfonate, CA butyl sulfonate, CA p-toluene sulfonate, agar acetate, amylose triacetate, beta glucan acetate, beta glucan triacetate, acetaldehyde dimethyl acetate, triacetate of locust bean gum, hydroxiated ethylene-vinylacetate, EC, PEG, PPG, PEG/PPG copolymers, PVP, HEC, HPC, CMC, CMEC, HPMC, HPMCP, HPMCAS, HPMCAT, poly (acrylic) acids and esters and poly- (methacrylic) acids and esters and copolymers thereof, starch, dextran, dextrin, chitosan, collagen, gelatin, polyalkenes, polyethers, polysulfones, polyethersulfones, polystyrenes, polyvinyl halides, polyvinyl esters and ethers, natural waxes and synthetic waxes. In various embodiments, the coating agent comprises a cellulosic polymer, in particular cellulose ethers, cellulose esters and cellulose ester-ethers, i.e., cellulosic derivatives having a mixture of ester and ether substituents, the coating materials are made or derived from poly (acrylic) acids and esters, poly (methacrylic) acids and esters, and copolymers thereof, the coating agent comprises cellulose acetate, the coating comprises a cellulosic polymer and PEG, the coating comprises cellulose acetate and PEG.

[00205] Coating is conducted in conventional fashion, typically by dissolving or suspending the coating material in a solvent and then coating by dipping, spray coating or by pan-coating. In certain embodiments, the coating solution contains 5 to 15 wt% polymer. Typical solvents useful with the cellulosic polymers mentioned above include but are not limited to acetone, methyl acetate, ethyl acetate, isopropyl acetate, n-butyl acetate, methyl isobutyl ketone, methyl propyl ketone, ethylene glycol monoethyl ether, ethylene glycol monoethyl acetate, methylene dichloride, ethylene dichloride, nronylene dichloride, nitroethane, nitropropane, tetrachloroethane, 1.4-

dioxane, tetrahydrofuran, diglyme, water, and mixtures thereof. Pore-formers and nonsolvents (such as water, glycerol and ethanol) or plasticizers (such as diethyl phthalate) may also be added in any amount as long as the polymer remains soluble at the spray temperature. Pore-formers and their use in fabricating coatings are described, for example, in US5612059. Coatings may also be hydrophobic microporous layers wherein the pores are substantially filled with a gas and are not wetted by the aqueous medium but are permeable to water vapor, as disclosed, for example, in US5798119. Such hydrophobic but water-vapor permeable coatings are typically composed of hydrophobic polymers such as polyalkenes, polyacrylic acid derivatives, polyethers, polysulfones, polyethersulfones, polystyrenes, polyvinyl halides, polyvinyl esters and ethers, natural waxes and synthetic waxes. Hydrophobic microporous coating materials include but are not limited to polystyrene. polysulfones, polyethersulfones, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene fluoride and polytetrafluoroethylene. Such hydrophobic coatings can be made by known phase inversion methods using any of vapor-quench, liquid quench, thermal processes, leaching soluble material from the coating or by sintering coating particles. In thermal processes, a solution of polymer in a latent solvent is brought to liquid-liquid phase separation in a cooling step. When evaporation of the solvent is not prevented, the resulting membrane will typically be porous. Such coating processes may be conducted by the processes disclosed, for example, in US4247498, US4490431 and US4744906. Osmotic controlled-release devices may be prepared using procedures known in the pharmaceutical arts. See for example, Remington: The Science and Practice of Pharmacy, 20th Edition, 2000. [00206] As further noted above, the agents described herein may be provided in the form of microparticulates, generally ranging in size from about 10um to about 2mm (including, for example, from about 100um to 1mm in diameter). Such multiparticulates may be packaged, for example, in a capsule such as a gelatin capsule or a capsule formed from an aqueous-soluble polymer such as HPMCAS, HPMC or starch; dosed as a suspension or slurry in a liquid; or they may be formed into a tablet, caplet, or pill by compression or other processes known in the art. Such multiparticulates may be made by any known process, such as wet- and dry-

granulation processes, extrusion/spheronization, roller-compaction, melt-congealing, or by spray-coating seed cores. For example, in wet-and dry-granulation processes, the agent described herein and optional excipients may be granulated to form multiparticulates of the desired size. Other excipients, such as a binder (e. g., microcrystalline cellulose), may be blended with the agent to aid in processing and forming the multiparticulates. In the case of wet granulation, a binder such as microcrystalline cellulose may be included in the granulation fluid to aid in forming a suitable multiparticulate. See, for example, Remington: The Science and Practice of Pharmacy, 20"Edition, 2000. In any case, the resulting particles may themselves constitute the therapeutic composition or they may be coated by various film-forming materials such as enteric polymers or water-swellable or water-soluble polymers, or they may be combined with other excipients or vehicles to aid in dosing to patients. [00207] In certain embodiments, it may be desirable to provide for the immediate release of one or more of the agents described herein, and the controlled release of one or more other agents. For example, in one embodiment, a compound described herein can be provided in an immediate release formulation together with a fibrate (e.g., Tricor) or a CETP inhibitor (e.g., torcetrapib) in a controlled release format. In another embodiment, a compound described herein can be provided together with an HMG CoA reductase inhibitor in an immediate release formulation. For example, a compound described herein can be coformulated with an HMG CoA reductase inhibitor in the immediate release formulation described in WO05/011634 (page 29, line 31 to page 33 (entire page). In other embodiments, a compound described herein is provided in a controlled release format together with another agent (e.g., an HMG CoA reductase inhibitor) in an immediate release formulation. In other embodiments, one or more agents described herein (for example, a compound described herein and an HMG CoA reductase inhibitor) can be provided in an immediate release formulation together with one or more other agents (for example, a fibrate and/or torcetrapib) in a controlled release format.

[00208] The agents can be administered, e.g., by intravenous injection, intramuscular injection, subcutaneous injection, intraperitoneal injection, topical, sublineual, intraarticular (in the joints), intradermal, buccal, ophthalmic (including

intraocular), intranasaly (including using a cannula), or by other routes. The agents can be administered orally, e.g., as a tablet or cachet containing a predetermined amount of the active ingredient, gel, pellet, paste, syrup, bolus, electuary, slurry, capsule, powder, granules, as a solution or a suspension in an aqueous liquid or a nonaqueous liquid, as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion, via a micellar formulation (see, e.g., WO 97/11682) via a liposomal formulation (see, e.g., EP 736299, WO 99/59550 and WO 97/13500), via formulations described in WO 03/094886 or in some other form. Orally administered compositions can include binders, lubricants, inert diluents, lubricating, surface active or dispersing agents, flavoring agents, and humectants. Orally administered formulations such as tablets may optionally be coated or scored and may be formulated so as to provide sustained, delayed or controlled release of the active ingredient therein. The agents can also be administered transdermally (i.e. via reservoir-type or matrix-type patches, microneedles, thermal poration, hypodermic needles, iontophoresis, electroporation, ultrasound or other forms of sonophoresis, jet injection, or a combination of any of the preceding methods (Prausnitz et al. 2004, Nature Reviews Drug Discovery 3:115)). The agents can be administered locally, for example, at the site of injury to an injured blood vessel. The agents can be coated on a stent. The agents can be administered using high-velocity transdermal particle injection techniques using the hydrogel particle formulation described in U.S. 20020061336. Additional particle formulations are described in WO 00/45792, WO 00/53160, and WO 02/19989. An example of a transdermal formulation containing plaster and the absorption promoter dimethylisosorbide can be found in WO 89/04179. WO 96/11705 provides formulations suitable for transdermal administration. The agents can be administered in the form a suppository or by other vaginal or rectal means. The agents can be administered in a transmembrane formulation as described in WO 90/07923. The agents can be administered non-invasively via the dehydrated particles described in U.S. 6,485,706. The agent can be administered in an enteric-coated drug formulation as described in WO 02/49621. The agents can be administered intranasaly using the formulation described in U.S. 5.179.079. Formulations suitable for parenteral injection are described in WO 00/62759. The agents can be administered using the

casein formulation described in U. S. 20030206939 and WO 00/06108. The agents can be administered using the particulate formulations described in U.S. 20020034536

[00209] The agents, alone or in combination with other suitable components, can be administered by pulmonary route utilizing several techniques including but not limited to intratracheal instillation (delivery of solution into the lungs by syringe), intratracheal delivery of liposomes, insufflation (administration of powder formulation by syringe or any other similar device into the lungs) and aerosol inhalation. Aerosols (e.g., jet or ultrasonic nebulizers, metered-dose inhalers (MDIs), and dry-powder inhalers (DPIs)) can also be used in intranasal applications. Aerosol formulations are stable dispersions or suspensions of solid material and liquid droplets in a gaseous medium and can be placed into pressurized acceptable propellants, such as hydrofluroalkanes (HFAs, i.e. HFA-134a and HFA-227, or a mixture thereof), dichlorodifluoromethane (or other chlorofluocarbon propellants such as a mixture of Propellants 11, 12, and/or 114), propane, nitrogen, and the like. Pulmonary formulations may include permeation enhancers such as fatty acids, and saccharides, chelating agents, enzyme inhibitors (e.g., protease inhibitors), adjuvants (e.g., glycocholate, surfactin, span 85, and nafamostat), preservatives (e.g., benzalkonium chloride or chlorobutanol), and ethanol (normally up to 5% but possibly up to 20%, by weight). Ethanol is commonly included in aerosol compositions as it can improve the function of the metering valve and in some cases also improve the stability of the dispersion. Pulmonary formulations may also include surfactants which include but are not limited to bile salts and those described in U.S. 6,524,557 and references therein. The surfactants described in U.S. 6,524,557, e.g., a C8-C16 fatty acid salt, a bile salt, a phospholipid, or alkyl saccharide are advantageous in that some of them also reportedly enhance absorption of the compound in the formulation. Also suitable in the invention are dry powder formulations comprising a therapeutically effective amount of active compound blended with an appropriate carrier and adapted for use in connection with a dry-powder inhaler. Absorption enhancers which can be added to dry powder formulations of the present invention include those described in U.S. 6.632,456. WO 02/080884 describes new methods for the surface modification of

powders. Aerosol formulations may include U.S. 5,230,884, U.S. 5,292,499, WO 017/8694, WO 017/8696, U.S. 2003019437, U. S. 20030165436, and WO 96/40089 (which includes vegetable oil). Sustained release formulations suitable for inhalation are described in U.S. 20010036481A1, 20030232019A1, and U.S. 20040018243A1 as well as in WO 01/13891, WO 02/067902, WO 03/072080, and WO 03/079885. Pulmonary formulations containing microparticles are described in WO 03/015750, U.S. 20030008013, and WO 00/00176. Pulmonary formulations containing stable glassy state powder are described in U.S. 20020141945 and U.S. 6,309,671. Other aerosol formulations are described in EP 1338272A1 WO 90/09781, U. S. 5,348,730, U.S. 6,436,367, WO 91/04011, and U.S. 6,294,153 and U.S. 6,290,987 describes a liposomal based formulation that can be administered via aerosol or other means. Powder formulations for inhalation are described in U.S. 20030053960 and WO 01/60341. The agents can be administered intranasally as described in U.S. 20010033824.

[00210] Solutions of medicament in buffered saline and similar vehicles are

commonly employed to generate an aerosol in a nebulizer. Simple nebulizers operate on Bernoulli's principle and employ a stream of air or oxygen to generate the spray particles. More complex nebulizers employ ultrasound to create the spray particles. Both types are well known in the art and are described in standard textbooks of pharmacy such as Sprowls' American Pharmacy and Remington's The Science and Practice of Pharmacy. Other devices for generating aerosols employ compressed gases, usually hydrofluorocarbons and chlorofluorocarbons, which are mixed with the medicament and any necessary excipients in a pressurized container, these devices are likewise described in standard textbooks such as Sprowls and Remington.

[00211] The agent can be incorporated into a liposome to improve half-life. The agent can also be conjugated to polyethylene glycol (PEG) chains. Methods for pegylation and additional formulations containing PEG-conjugates (i.e. PEG-based hydrogels, PEG modified liposomes) can be found in Harris and Chess, Nature Reviews Drug Discovery 2: 214-221 and the references therein. The agent can be administered via a nanocochleate or cochleate delivery vehicle (BioDelivery Sciences

surface such as the vagina, eye or nose) using formulations such as that described in U.S. 5,204,108. The agents can be formulated in microcapsules as described in WO 88/01165. The agent can be administered intra-orally using the formulations described in U.S. 20020055496, WO 00/47203, and U.S. 6,495,120. The agent can be delivered using nanoemulsion formulations described in WO 01/91728A2.

Administration and formulation of combitherapy protein/peptide agents

[00212] Some of the agents used in combitherapy with compounds described herein are proteins (e.g., nitric oxide synthase isoforms, HDL associated proteins such as ApoA-I or Apo A-I Milano) or peptides (e.g., peptides which mitigates one or more symptoms of atherosclerosis, peptides and peptide analogues that mimic the structural and pharmacological properties of human ApoA-I, Exenatide®). In some embodiments, the recombinant or purified protein is administered together with a compound described herein. In alternative embodiments, genes encoding the protein or peptide to be delivered may be administered, rather than the protein. Gene transfer can be obtained using direct transfer of genetic material, in a plasmid or viral vector, or via transfer of genetic material in cells or carriers such as cationic liposomes. Such methods are well known in the art and readily adaptable for use in the therapies described herein. For example, studies by Wolff et al., Biotechniques 11:474-85 (1991), demonstrate injection of naked DNA into muscle allows long term and low expression levels of proteins coded for within the DNA sequence. Administration of naked DNA to smooth muscle layers can be achieved by use of an intramural device, such as an INFILTRATOR™ and allow expression of the proteins or their alpha helical domains to treat the injured vessel. Transfer vectors can be any nucleotide construction used to deliver genes into cells (e.g., a plasmid), or as part of a general strategy to deliver genes, e.g., as part of recombinant retrovirus or adenovirus (Ram et al, Cancer Res. 53:83-88, (1993)). Appropriate means for transfection, including viral vectors, chemical transfectants, or physico-mechanical methods such as electroporation and direct diffusion of DNA, are described by, for example, Wolff, J. A., et al., Science, 247, 1465-1468, (1990); and Wolff, J. A. Nature, 352, 815-818, (1991). Plasmid or viral vectors are agents that transport the gene into a cell without

degradation and may include a promoter yielding expression of the gene in the cell into which it is delivered. In certain embodiments vectors are derived from either a virus or a retrovirus. Viral vectors include but are not limited to those derived from Adenovirus, Adeno-associated virus, Herpes virus, Vaccinia virus, Polio virus, AIDS virus, neuronal trophic virus, Sindbis and other RNA viruses, including these viruses with the HIV backbone. Vectors from other viral families which share the properties of these viruses may make them suitable for use as vectors. Retroviral vectors include but are not limited to those derived from include Murine Maloney Leukemia virus, MMLV, and retroviruses that express the desirable properties of MMLV as a vector. In certain emobodiments where non-proliferating cells are involved, retroviral vectors are not used. Retroviral vectors, in general, are described by Verma, I. M., Retroviral vectors for gene transfer. In MICROBIOLOGY-1985, American Society for Microbiology, pp. 229-232, Washington, (1985). Examples of methods for using retroviral vectors for gene therapy are described in US4868116, US4980286, WO90/02806, WO 89/07136 and Mulligan, (Science 260:926-932 (1993)). [00213] Adenovirus vectors are relatively stable and easy to work with, have high titers, and can be delivered in aerosol formulation, and can transfect non-dividing cells. The construction of replication-defective adenoviruses has been described (Berkner et al., J. Virology 61:1213-1220 (1987); Massie et al., Mol. Cell. Biol. 6:2872-2883 (1986); Haj-Ahmad et al., J. Virology 57:267-274 (1986); Davidson et al., J. Virology 61:1226-1239 (1987); Zhang "Generation and identification of recombinant adenovirus by liposome-mediated transfection and PCR analysis" BioTechniques 15:868-872 (1993)). Adenoviral derived vectors are limited in the extent to which they can spread to other cell types, since they can replicate within an initial infected cell, but are unable to form new infectious viral particles. Recombinant adenoviruses have been shown to achieve high efficiency gene transfer after direct, in vivo delivery to airway epithelium, hepatocytes, vascular endothelium, CNS parenchyma and a number of other tissue sites (Morsy, J. Clin. Invest. 92:1580-1586 (1993); Kirshenbaum, J. Clin. Invest. 92:381-387 (1993); Roessler, J. Clin. Invest. 92:1085-1092 (1993); Moullier, Nature Genetics 4:154-159 (1993); La Salle, Science 259:988-990 (1993); Gomez-Foix, J. Biol. Chem. 267:25129-25134 (1992); Rich,

Human Gene Therapy 4:461-476 (1993); Zabner, Nature Genetics 6:75-83 (1994); Guzman, Circulation Research 73:1201-1207 (1993); Bout, Human Gene Therapy 5:3-10 (1994); Zabner, Cell 75:207-216 (1993); Caillaud, Eur. J. Neuroscience 5:1287-1291 (1993); and Ragot, J. Gen. Virology 74:501-507 (1993)). Pox viral vectors can be used in the gene transfer techniques described herein. In certain embodiment the viral/retroviral vector used in the gene transfer techniques described herein have been engineered so as to suppress the immune response of the host organism, elicited by the viral antigens. In certain embodiments, these vectors carry coding regions for Interleukin 8 or 10. In certain embodiments, the viral/retroviral vectors described herein have one or more of the early genes removed and a gene or gene/promotor cassette inserted into the viral genome in place of the removed viral DNA.

[00214] The inserted genes in viral/retroviral vectors usually contain promoters, and/or enhancers to help control the expression of the desired gene product. A promoter is generally a sequence or sequences of DNA that function when in a relatively fixed location in regard to the transcription start site. A promoter contains core elements required for basic interaction of RNA polymerase and transcription factors, and may contain upstream elements and response elements. Promoters controlling transcription from vectors in mammalian host cells may be obtained from various sources, for example, the genomes of viruses such as: polyoma, Simian Virus 40 (SV40), adenovirus, retroviruses, hepatitis-B virus and most preferably cytomegalovirus, or from heterologous mammalian promoters, e.g., beta actin promoter. The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment which also contains the SV40 viral origin of replication (Fiers et al., Nature, 273:113 (1978)). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment (Greenway, P. J. et al., Gene 18:355-360 (1982)). Promoters from the host cell (to which the viral vector is being transferred) or related species also are useful herein. [00215] Enhancer generally refers to a sequence of DNA that functions at no fixed distance from the transcription start site and can be either 5' (Laimins, L. et al., Proc. Natl. Acad. Sci. 78:993 (1981)) or 3' (Lusky, M. L., et al., Mol. Cell Bio. 3:1108

(1983)) to the transcription unit. Furthermore, enhancers can be within an intron (Banerji, J. L. et al., Cell 33:729 (1983)) as well as within the coding sequence itself (Osborne, T. F., et al., Mol. Cell Bio. 4:1293 (1984)). They are usually between 10 and 300 bp in length, and they function in cis. Enhancers function to increase transcription from nearby promoters. Enhancers also often contain response elements that mediate the regulation of transcription. Promoters can also contain response elements that mediate the regulation of transcription. Enhancers often determine the regulation of expression of a gene. While many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein and insulin), typically one will use an enhancer from a eukaryotic cell virus. Enhancers include but are not limited to the SV 40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

[00216] The promotor and/or enhancer may be specifically activated either by light or specific chemical events which trigger their function. Systems can be regulated by reagents such as tetracycline and dexamethasone. There are also ways to enhance viral vector gene expression by exposure to irradiation, such as gamma irradiation, or alkylating chemotherapy drugs.

[00217] In certain embodiments, the promoter and/or enhancer region act as a constitutive promoter and/or enhancer to maximize expression of the region of the transcription unit to be transcribed. In certain embodiments the promoter and/or enhancer region is active in all eukaryotic cell types. Promoters include but are not limited to the CMV promoter (650 bases), SV40 promoters, cytomegalovirus (full length promoter), and retroviral vector LTF.

[00218] Expression vectors used in eukaryotic host cells may also contain sequences necessary for the termination of transcription which may affect mRNA expression. These regions are transcribed as polyadenylated segments in the untranslated portion of the mRNA encoding tissue factor protein. The 3' untranslated regions also include transcription termination sites. In certain embodiments, the transcription unit also contains a polyadenylation region (e.g., that derived from the SV40 early polyadenylation signal consisting of about 400 bases). One benefit of this region is

that it increases the likelihood that the transcribed unit will be processed and transported like mRNA. The identification and use of polyadenylation signals in expression constructs is well established. In certain embodiments, homologous polyadenylation signals are used in the transgene constructs. In certain embodiments, the transcribed units contain other standard sequences alone or in combination with the above sequences improve expression from, or stability of, the construct.

[00219] The viral/retroviral vectors can include nucleic acid sequence encoding a marker product. This marker product is used to determine if the gene has been delivered to the cell and once delivered is being expressed. Examples of suitable selectable markers for mammalian cells are dihydrofolate reductase (DHFR), thymidine kinase, neomycin, neomycin analog G418, hydromycin, and puromycin. When such selectable markers are successfully transferred into a mammalian host cell, the transformed mammalian host cell can survive if placed under selective pressure. Kits

[00220] The compounds and pharmaceutical formulations described herein may be contained in a kit. The kit may include single or multiple doses of two or more agents, each packaged or formulated individually, or single or multiple doses of two or more agents packaged or formulated in combination. Thus, one or more agents can be present in first container, and the kit can optionally include one or more agents in a second container. The container or containers are placed within a package, and the package can optionally include administration or dosage instructions. A kit can include additional components such as syringes or other means for administering the agents as well as diluents or other means for formulation. Thus, the kits can comprise: a) a pharmaceutical composition comprising a compound described herein and a pharmaceutically acceptable carrier, vehicle or diluent; and b) a container or packaging. The kits may optionally comprise instructions describing a method of using the pharmaceutical compositions in one or more of the methods described herein (e.g., preventing or treating vascular diseases/disorders and conditions (including but not limited to arteriosclerosis, atherosclerosis, cardiovascular disease, cerebrovascular disease, renovascular disease, mesenteric vascular disease, pulmonary vascular disease, ocular vascular disease and peripheral vascular disease),

hyperlipidemia (including but not limited to hypercholesterolemia, hypertriglyceridemia, sitosterolemia), hypertension, angina, cardiac arrhythmias, congestive heart failure, and stroke). The kit may optionally comprise a second pharmaceutical composition comprising one or more additional agents chosen from (1) a dyslipidemic agent, (2) an anti-diabetic agent, (3) an anti-hypertensive agent, (4) an anti-obesity agent, (5) an agent used to treat autoimmune disorders, (6) an agent used to treat demylenation and its associated disorders, (7) an agent used to treat Alzheimer's disease, (8) a blood modifier, (9) a hormone replacement agent/composition, (10) a chemotherapeutic agent, (11) a peptide which mitigates one or more symptoms of atherosclerosis, (12) an anti-cancer agent, and (13) an agent used to treat bone loss and associated disorders and a pharmaceutically acceptable carrier, vehicle or diluent. The pharmaceutical composition comprising the compound described herein and the second pharmaceutical composition contained in the kit may be optionally combined in the same pharmaceutical composition. [00221] A kit includes a container or packaging for containing the pharmaceutical compositions and may also include divided containers such as a divided bottle or a

compositions and may also include divided containers such as a divided bottle or a divided foil packet. The container can be, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a "refill" of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule. It is feasible that more than one container can be used together in a single package to market a single dosage form. For example, tablets may be contained in a bottle which is in turn contained within a box.

[00222] An example of a kit is a so-called blister pack. Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process, recesses are formed in the plastic foil. The recesses have the size and shape of individual tablets or capsules to be packed or may have the size and shape to accommodate multiple tablets and/or capsules to be packed. Next, the tablets or capsules are placed in the recesses

accordingly and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are individually sealed or collectively sealed, as desired, in the recesses between the plastic foil and the sheet. Preferably the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.

[00223] It maybe desirable to provide a written memory aid containing information and/or instructions for the physician, pharmacist or subject regarding when the medication is to be taken. A "daily dose" can be a single tablet or capsule or several tablets or capsules to be taken on a given day. When the kit contains separate compositions, a daily dose of one or more compositions of the kit can consist of one tablet or capsule while a daily dose of another one or more compositions of the kit can consist of several tablets or capsules. A kit can take the form of a dispenser designed to dispense the daily doses one at a time in the order of their intended use. The dispenser can be equipped with a memory-aid, so as to further facilitate compliance with the regimen. An example of such a memory-aid is a mechanical counter which indicates the number of daily doses that have been dispensed. Another example of such a memory-aid is a battery-powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds one when the next dose is to be taken.

In Vivo Animal Models

[00224] In Vivo Assay of Hypolipidemic Agents using the Rat Cholesterol
Absorption Model. This model is based on models described by Burnett et al (2002),
Bioorg. Med. Chem. Lett. 2002 Feb 11;12(3):315-8 and J. Lipid Res. 1999
Oct;40(10):1747-57. Female Sprague-Dawley rats weighing 150-250g were separated into groups of 3 and fasted overnight. The animals (4-6/group) were dosed perorally with 300µL test compounds in olive oil or suitable vehicle. Thirty minutes later, 3-5 microCuries ³H-cholesterol per rat were delivered perorally in 300 µL olive oil. After

three hours, 200 μ L serum was collected, vortexed with scintillation fluid, and measured for radioactivity in a scintillation counter. Percent inhibition is defined as $100^*(1-C_{test}/C_{ctrl})$, where C_{test} and C_{ctrl} refer to 3H levels in serum for the test compound and for the vehicle only control, respectively. Percent inhibition values are reported for a fixed dose. The ED₅₀ is the dose at which the half-maximal effect on serum 3H levels is observed for a given test compound.

[00225] In Vivo Assay of Hypolipidemic Agents using the Mouse Cholesterol Absorption Model. Female CD-1 mice weighing 20-30g were separated into groups of 3-8 and fasted overnight. The animals (3-8/group) were dosed perorally with 200 μ L test compound in olive oil or suitable vehicle. Thirty minutes later, 3-5 microCuries 3 H-cholesterol per mouse were delivered perorally in 200 μ L olive oil. After three hours, 100 μ L serum was collected, vortexed with scintillation fluid, and measured for radioactivity in a scintillation counter. Percent inhibition and ED₃₀ are defined as in the Rat Cholesterol Absorption Model above.

[00226] In Vivo Assay of Hypolipidemic Agents Using the Hyperlipidemic Hamster: Hamsters were separated into groups of six and given a controlled cholesterol diet (Purina Chow #5001 containing 0.5% cholesterol) for seven days. Diet consumption was monitored to determine dietary cholesterol exposure in the face of test compounds. The animals were dosed with the test compound once daily beginning with the initiation of diet. Dosing was by oral gavage of 0.2 mL of corn oil alone (control group) or solution (or suspension) of test compound in corn oil. All animals moribund or in poor physical condition were euthanized. After seven days, the animals were anesthetized by intramuscular (IM) injection of ketamine and sacrificed by decapitation. Blood was collected into vacutainer tubes containing EDTA for plasma lipid analysis and the liver excised for tissue lipid analysis. Lipid analysis was conducted as per published procedures [Schnitzer-Polokoff, R., et al, Comp. Biochem. Physiol., 99A, 4, 665-670 (1991)] and data are reported as percent reduction of lipid versus control.

[00227] In Vivo Assay of Hypolipidemic Agents using the Hamster Acute Cholesterol Absorption Model. Male Syrian Hamsters weighing approximately 120g were separated into groups of 3-6 and fasted overnight. The animals (3-6/group) were

dosed perorally with 200 μ L test compound in olive oil or suitable vehicle. Thirty minutes later, 3-5 microCuries 3 H-cholesterol per hamster were delivered perorally in 200 μ L olive oil. After three hours, 100-200 μ L serum was collected, vortexed with scintillation fluid, and measured for radioactivity in a scintillation counter. Percent inhibition and ED₅₀ are defined as in the Rat Cholesterol Absorption Model above. [00228] The bioabsorption of the compounds herein described may be examined using the Caco-2 cell monolayer model of Hilgers et al. [Pharm. Res. 7, 902 (1990)].

Pharmacokinetics

[00229] To study the pharmacokinetics of compounds, bioavailability studies were carried out in various test animals. Compounds were prepared in suitable formulations for oral and intravenous administration. Compounds were administered via intravenous injection (tail vein (rat), femoral vain (hamster), peripheral vain (monkey), cephalic vein (dog)) and orally (via a capsule (dogs) or gavage (all others)) to independent groups of test animals which were either fasted overnight or nonfasted. Serum or plasma was collected at various time points and assayed for the presence of compounds using an LC/MS/MS detection method. Experiment samples were either diluted 15-fold in 30% acetonitrile in water, injected onto an in-line sample extraction cartridge (Waters Oasis HLB Direct Connect) and loaded onto a reverse phase HPLC column fitted with a appropriate guard column or prepared using a protein crash, dried under nitrogen, resuspended in 30% acetonitrile in water and loaded onto a reverse phase HPLC column fitted with a appropriate guard column. Samples were eluted from the reverse phase HPLC column with a gradient. A Micromass Quattro Micro (Waters Corporation, Milford, MA) triple quadrupole mass spectrometer operated in MRM mode was used for detection. Concentrations were calculated based on a standard concentration curve of compound or standard curves generated using peak area ratio of compound to internal standard vs. concentration. MassLynx software (Waters, Corporation, Milford, MA) was used to calculate the absolute concentration of test compound in each serum or plasma sample. A concentration versus time plot was generated from the data in Microsoft Excel, Summit Software PK Solutions 2.0, GraphPad Prism (GraphPad Software, Inc., San Diego, CA) or WinNonlin Professional Version 4.1 (Pharsight Corporation, Mountain

View, CA) to generate pharmacokinetic curves. An area under the curve $(AUC_n, n = length \ of experiment in minutes or hours) was calculated from the concentration vs. time data by software using the linear trapezoid method for both the orally and intravenously dosed animals. Oral Bioavailability (F) over the length of the experiment is calculated using the equation:$

$$F = (AUC_{oral} * Dose_{i.v.}) / (AUC_{i.v.} * Dose_{oral}).$$

The bioavailability of several compounds of the invention tested one or more times in various animals is shown in Figure 1.

<u>Determination of Acyl Coenzyme A: Cholesterol Acyltransferase (ACAT) Inhibition</u> Activity

[00230] The ability of representative compounds of the invention to inhibit acylcoenzyme A: cholesterol acyltransferase (ACAT) activity was assayed by measuring cholesterol esterification in human HepG2 and Caco2 cells. ACAT activity was measured by following the conversion of 14C-oleic acid to 14C-cholesteryl oleate in an assay based on Junquero, et al. 2001 Biochem Pharmacol 61:97-108 and Sugivama, et al. Atherosclerosis 118:145-53. Cells were propagated in Eagle's Minimum Essential Medium (EMEM) supplemented with fetal bovine serum (10% for HepG2 cells; 20% for Caco2 cells) and 2 mM L-glutamine. All incubations were performed at 37 °C in air with 5% CO₂. In preparation for each experiment, cells were seeded in 6-well plates and allowed to grow to 90-95% confluency. All treatments were performed in duplicate. Inhibitors were pre-incubated with cells for 4 h. The assay was initiated by adding 14C-oleate/bovine serum albumin solution to each assay well and incubating an additional 2 h at 37 °C. Cell monolayers were extracted with 2 mL 3:2 hexane:isopropanol at room temperature for 30 min. Extracts were dried down under nitrogen and dissolved in 75 (L chloroform. Formation of 14C-cholesteryl oleate was determined by separation of the ACAT assay reaction products by thin-layer chromatography (TLC) and visualization by phosphorimaging. Percent inhibition was calculated for each compound dose, and IC50 values were determined using GraphPad Prism by regression analysis of percent inhibition plotted as a function of the

logarithmic value of the sample concentration. Figure 2 is a table of the ACAT activity of several compounds of the invention assayed one or more times. The known ACAT inhibitor, N-[4-(2-chlorophenyl)-6,7-dimethyl-3-quinolyl]-N'-(2, 4-difluorophenyl) urea (TMP-153) was also determined. For comparison, Figure 2 also shows the IC₅₀ value for the known cholesterol absorption inhibitor molecule, (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one, in this assay.

Competitive binding assays

[00231] The ability of several compounds of the invention to bind and compete for specific binding to a receptor in the hamster small intestine was tested. Competition binding to hamster small intestine was determined by using an in vivo assay based on Hernandez et al. 2000 (Biochim Biophys Acta 1486:232-242) in which radiolabeled compound is administered to hamsters in the presence and absence of unlabeled, test, competitor compounds. In this experiment, a compound of the invention, 3H-(1S)-1.5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol was used as the radioligand. Unlabeled (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol in 1200-fold excess was used to demonstrate that the observed binding was specific. Several compounds of the invention and a known cholesterol absorption inhibitor, (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4hydroxyphenyl)azetidin-2-one, were evaluated for their ability to compete for binding of 3H-(1S)-1.5-anhvdro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol when administered in 1200-fold excess. Golden Syrian hamsters were fasted overnight prior to dosing. Animals were dosed by oral gavage with 0.5 ml of either vehicle or vehicle containing 0.35 mg/kg test compound. One hour later, animals were dosed by oral gavage with 5 [Ci 3H-(1S)-1.5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol

with vehicle or vehicle containing 0.35 mg/kg test compound as above. Three hours after administration of the 3H-(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4yl)-D-glucitol, animals were euthanized by CO2 overdose, the small intestine dissected, flushed with cold saline, and placed into an empty tube on ice. The small intestine was cut into ~6 cm segments. The intestinal epithelial mucosa was extruded from each segment, homogenized in PBS, and the radioactivity in the homogenate was counted by liquid scintillation counting. Results were normalized for protein content of the homogenates. 3H-(1S)-1.5-anhydro-1-(4'-{(2S.3R)-3-[(3S)-3-(4-fluorophenyl)-3-hvdroxypropyll-4-oxo-1-phenylazetidin-2-vl}-3'-hvdroxybiphenyl-4-yl)-D-glucitol binding to the hamster small intestine in the presence and absence of test compound was determined by calculating the average bound radioactivity per mg of protein (DPM/mg) for each treatment group. Percent 3H-(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'hydroxybiphenyl-4-yl)-D-glucitol binding was calculated for each compound using the formulas:

Bound Radioactivity (DPM/mg) = Radioactivity (DPM)/Total Protein (mg)
Percent ³H Binding vs Vehicle Control =

100% * ((Bound Radioactivity)_{competitor} (Bound Radioactivity)_{vehicle})
Statistical analysis was performed using an unpaired, two-tailed, Student's t-test
(GraphPad Prism). ³H-(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol
binding to the small intestine of hamsters in the presence or absence of competitor
compounds is shown in Figure 3A and Figure 3B and the calculated percentage
binding relative to control is displayed in Figure 3C.

[00232] A particularly desirable medicament would inhibit cholesterol absorption without affecting the acute absorption of other important molecules of dietary origin. Such a cholesterol absorption inhibitor would not interfere with the absorption of triglyceride, progesterone, ethinyl estradiol, vitamin A, vitamin D, or taurocholic acid. For example, cholestyramine, which is in clinical use to lower serum cholesterol, sequesters bile acids in the intestine, ultimately leading to a decrease in plasma

cholesterol by upregulating the synthesis of bile acids from cholesterol in the liver. Two side effects of cholestyramine are gastrointestinal discomfort and the sequestration of fat-soluble vitamins. On the other hand, ezetimibe, a known cholesterol absorption inhibitor, does not appear to affect fat-soluble vitamin absorption in humans. In addition, ezetimibe does not inhibit the absorption of taurocholic acid, suggesting that certain cholesterol absorption inhibitors can lower serum cholesterol without inhibiting the ileal Na+/bile acid cotransporter.

Retinol, taurocholic acid, progesterone, sitostanol, and cholesterol absorption assays

[00233] The effects of acute oral administration of several compounds of the invention on retinol, taurocholic acid, and progesterone absorption were studied in female Sprague Dawley rats. Groups of 5 rats received 10 mg/kg of test compound or vehicle (olive oil) via oral gavage. Test compounds were administered 30 minutes prior to oral administration of ¹⁴C-cholesterol (5 [Ci) in addition to either ³H-retinol (3 [Ci), ³H-taurocholic acid (3 [Ci), ³H-progesterone (3 [Ci), or ³H-sitostanol (3 [Ci) constituted in olive oil (300 [L). Blood was sampled from all animals via the retroorbital sinus under isoflurane anesthesia three hours after the administration of the radiolabeled cocktail and again at 24 hours. Serum radioactivity (DPM) was measured and the percent absorption (% absorption) was calculated as:

average dpm treated group/average dpm control group x 100.

[00234] Figures 4A, B, C, and D are tables showing the effects of several compounds of the invention on retinol (24 hr timepoint), taurocholic acid (24 hr timepoint), and progesterone (3 hr timepoint), sitostanol (24 hr timepoint) and cholesterol absorption. For each of figures 4A, 4B, 4C and 4D, results using the known cholesterol absorption inhibitor molecule, (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one is provided for comparison.

Behavioral Assav

[00235] The compounds of the invention can be tested to determine their effects on general activity (e.g. behavioural, autonomic and motor capabilities), for example, using Irwin's method (Psychopharmacologia - 1968 13:222-57). Briefly, groups of rodents receive a single administration of vehicle or different doses of test compound by oral gavage. Irwin observations are performed at 30, 60, 90, 180 and 300 minutes post dosing. Animals are generally observed 7 days post dosing.

Electrophysiological Assays

[00236] hERG channels are expressed in a human embryonic kidney (HEK293) cell line that lacks endogenous Irr. HEK293 cells are stably transfected with hERG cDNA. Stable transfectants are selected by coexpression with the G418-resistance gene incorporated into the expression plasmid. Selection pressure is maintained by including G418 in the culture medium. Cells are cultured in Dulbecco's Modified Eagle Medium / Nutrient Mixture F-12 (D-MEM/F-12) supplemented with 10% fetal bovine serum, 100 U/mL penicillin G sodium, 100 μg/mL streptomycin sulfate and 500 μg/mL G418. Cells are maintained in tissue culture incubators at 37°C in a humidified 95% air, 5% CO2 atmosphere, with stocks maintained in cryogenic storage. Cells used for electrophysiology are plated in plastic culture dishes. [00237] Test solution, reference substance (E-4031, 500 nm) and positive control (terfenadine, 60 nm) are prepared fresh daily in HEPES-buffered physiological saline (HB-PS) solution (composition in mM): NaCl, 137; KCl, 4.0; CaCl₂, 1.8; MgCl₂, 1; HEPES, 10; Glucose, 10; pH adjusted to 7.4 with NaOH. All test and control solutions also contain 0.3% dimethylsulfoxide (DMSO). Thus the vehicle control solution is HB-PS + DMSO \geq 0.3%.

[00238] Cells are transferred to the recording chamber and superfused with vehicle control solution. Micropipette solution for whole cell patch clamp recordings is composed of (mM): potassium aspartate, 130; MgCl₂, 5; EGTA, 5; ATP, 4; HEPES, 10; pH adjusted to 7.2 with KOH. The recording is performed at a temperature of 35 ± 2 °C. Micropipettes for patch clamp recording are made from glass capillary tubing

using a P-97 micropipette puller (Sutter Instruments, Novato, CA). A commercial patch clamp amplifier is used for whole cell recordings. Before digitization, current records are low-pass filtered at one-fifth of the sampling frequency.

[00239] Cells stably expressing hERG are held at -80 mV. Onset and steady state activation of hERG current due to test compound is measured using a pulse pattern with fixed amplitudes (conditioning prepulse: +20 mV for 1 sec; repolarizing test ramp to -80 mV (-0.5 V/s)) repeated at 5 s intervals. Each recording ends with a final application of a supramaximal concentration of the reference substance (E-4031, 500 nM), to assess the contribution of endogenous currents. The remaining unblocked current is subtracted off-line digitally from the data to determine the potency of the test substance for hERG activation.

[00240] Steady state is defined by the limiting constant rate of change with time (linear time dependence). The steady state before and after test article application is used to calculate the percentage of current inhibited at each concentration. Percent activation at each concentration in the test group is compared with the vehicle control group using one-way ANOVA followed by Dunnett's multiple comparison test (JMP Version 5.0.1, SAS Institute, Cary, NC).

[00241] Test compound at different concentrations is applied to cells to deterimine effect on hERG current amplitude. The average value of 3 cells for each group \pm standard error of the mean (SEM) is determined and compared to the positive control terfenadine, a known hERG channel inhibitor.

[00242] Increases in QT duration and action potential duration in isolated guinea pig hearts can be used to indicate an arrhythmogenic effect. Hearts are perfused with an oxygenated Tyrode's solution, containing 0.0; 1.0; 5.0 or 10.0 µM of test compound. QT duration and action potential duration (APD) are measured from cardiac electrodes. In separate experiments, the hearts are divided into 2 subgroups receiving either the test compound or control to determine the respective effects on QT duration and APD.

[00243] To observe the effects *in vivo*, mongrel dogs of either sex weighing 5-20 kg are anesthetized and instrumented by standard techniques for blood pressure and EKG. A solid state transducer for dP/dT is placed in the left cardiac ventricle, and an

epicardial electrode is put into place. The test compound is infused followed by terfenadine at progressively higher doses, beginning at $1 \mu g/kg/min$ for 15 minutes and increased incrementally until a cardiovascular collapse ensues. Parameters measured are: blood pressure, heart rate, dP/dT, and the QT-interval. From the QT interval and the heart rate, a QTc interval may be calculated. Measurements of hemodynamics and electrical activity are made in response to the test compound and to control.

[00244] Electrophysiological effects of test compounds as a function of extracellular potassium and cycle length can be assessed using standard microelectrode techniques in canine Purkinje fibers (Gintant et al. 2001 J.Cardiovasc.Pharmacol. 37:607-618) and in rabbit Purkinje fibers (Lu et al. 2002 Europ.J.Pharmacol. 452:183-192).
[00245] Representative compounds of the invention were tested in the Rat Cholesterol Absorption model above. The compounds of the invention exhibited inhibition as shown below in Tables 1a and 1b. The compounds of the invention exhibited ED50 values in the rat cholesterol absorption model as shown in Table 2a. Compounds of the invention exhibited ED50 values in the mouse and hamster (3 hour and 7 day) cholesterol absorption models (described above) in Table 2b. In some cases, the ED50 was calculated in one or more separate experiments. For comparison, Tables 2a and b also show the ED50 value for the known cholesterol absorption inhibitor molecule, (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-

hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one, in these assays.

						%
Example	R ⁵¹	R ⁵²	R ⁵³	R ⁵⁴	R ⁵⁵	inhibition
#						at 1 mg/kg
2			ОН			54 ¹
3						151
4		OH				72
5			OMe			26 ¹
7	OH					30
8			SO ₂ Me			53
9		OMe	OMe	OMe		40
10	\vdash	SO ₂ Me				542
11	OMe	OMe				28
12	1	OMe				70
13		СНО				70
14		CN				323
15	+-1		SO ₂ NMe ₂			8
16	-	CH ₂ OH				72
17	-		NMe ₂			43
18			CH ₂ OH			48
19	 	OH			Br	66
20		O-glucuronide				59
21	+	CO ₂ H				68
22	+		CO ₂ H			52
23	+	NO ₂		T		541
26	+	NHAc		1		76¹
28	-		NH ₂	1		56
56	+-	P=O(OH) ₂		+		59
76	+-	O-C6-		+	1	56

¹% inhibition at 10 mg/kg ²% inhibition at 3 mg/kg ³% inhibition at 5 mg/kg

						%
Example	R ⁵¹	R ⁵²	R ⁵³	R ⁵⁴	R ⁵⁵	inhibition
#						at 1 mg/kg
		glucopyranose				
77		O-C6-methyl				70
′′		glucopyranoside				
78		O-C6-glucitol				51
81		OMe	OMe			17
82		SMe				28
83		NMe2				38
84			CH=CH ₂	-		51
85		OMe			CHO	15
86	-	NH ₂				35
		O-CH ₂ -C	'Ho-O	-		59
87		0-6112-6	CH ₂ CO ₂ H		+	30
88			CO ₂ Me		-	45
89	ļ	Me	COZMIC	Me	 	27
90	<u> </u>	β-napl	othyl	+	+	56
91		l	lillyi	+		17
92		CF ₃		-	┼	28
93			F	-	+	30
94		Me		+		57
95		O-glucopyranose			-	69
96	OMe	OMe	OMe	-	+	40
97	OMe		OMe		-	7
98	Me					38
99			СНО			54
100		OEt				
101			OEt			41
102		OMe	OH			56
103	1	O-nPr				21

				Γ		%
Example	R ⁵¹	R ⁵²	R ⁵³	R ⁵⁴	R ⁵⁵	inhibition
#						at 1 mg/kg
104		OH			CHO	52
105		O-iPr				15
106		CO₂H	OH			66
107		OMe		OMe		49
108	OH		OH			69
109		O-nBu				52
110		OH	CO ₂ H			72
111		OMe		F		72
112		OH		F		75
113		C1-glucitol				67
114		OH		OH		72
115		B(OH) ₂				70
116			C1-gluco			81
			pyranose			
117		C1-CH ₂ -				26
		glucopyranose				
118		SO₃H				61
119		SH				56
120		NMe ₃ ⁺				23
129			F			0
130	F			F		0

Table 1b

					R ⁴	%
Exampl	R ⁵¹	R ⁵²	R ⁵³	R ¹		inhibition
e					/	at 1
#						mg/kg
42		OH		H	ОН	87
44		ОН		F		24
46			OH	F		30
49		ОН		H	N.	30
50		OH		н		27
51			ОН	Н		39

⁴ The asterix indicates the point of attachment to the azetidine ring. 206

						%
Exampl	R ⁵¹	R ⁵²	R ⁵³	R^1	R ⁴	inhibition
e					,	at 1
#		1				mg/kg
53		SO ₃ H		H	ОН	78
33		50,11			-	
57		OH		Н	~ <u></u>	73
59		B(OH) ₂		H	─	70
61	-	P=O(OH) ₂		Н	OH	58 ³
1	1					
64		C1-glucitol		Н		67
65		C1-glucitol		Н	OH *	60 ⁵
			C1-	H	OH	71 ⁶
66			glucitol			
71	+-	C6-S-	-	H		65
/1		glucopyranos				
		e				
72	+	C6-R-	-	H		276
/2		glucopyranos				-
		е				
L						

 $^{^5}$ % inhibition at 0.1 mg/kg 6 % inhibition at 0.3 mg/kg

			1		R ⁴	%
Exampl	R ⁵¹	R ⁵²	R ⁵³	R ¹		inhibition
e	l		1		1	at 1
#			}			mg/kg
73		C6-S-		H	ОН	59
		glucopyranos		1		
		е	}			
74		C6-R-		Н	ОН	67
		glucopyranos	į.			
		е				
75		C6-S-		H	ОН	68
		glucitol	}			
				1		
121		OH		F	ОН	72
į į					7	
122		P=O(OH) ₂		Н	/=\	67
, ,						
123		SO ₂ Me		Н	он	72
124		OH		Ph		48
	1					
125			ОН	Н		64
	1					0.1
127			P=O(OH)	H	ОН	58
12/				а		38
	-		2		-	

 $^{^{7}}$ the asterisk indicates the point of attachment to the azetidine ring $208\,$

Exampl e #	R ⁵¹	R ⁵²	R ⁵³	R ¹	R ⁴	% inhibition at l mg/kg
128			SO ₃ Na ⁺		*	60

Table 2A

Row	Name	Rat Acute ED ₅₀
		(mg/kg)
	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	0.002
_	hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one	
2	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	0.04
_	hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)azetidin-2-one	
3	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-[4'-(methylsulfonyl)biphenyl-4-yl]azetidin-2-one	0.9
-	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	1
4	hydroxypropyl]-4-(3'-methoxybiphenyl-4-yl)azetidin-2-one	0.2
-	(3R,4S)-4-(2-bromo-5'-hydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-	
5	3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.15
_	4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	
6	hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-ylβ-L-	0.85
"	glucopyranosiduronic acid	
\vdash	4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	0.25
7	hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-carbaldehyde	0.23
	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	0.25
8	hydroxypropyl]-4-[3'-(hydroxymethyl)biphenyl-4-yl]azetidin-2-one	0.23
9	4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	0.2
9	hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-carboxylic acid	0.2
10	4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	0.3
10	hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-carboxylic acid	
11	(3R,4S)-4-(2',3'-difluorobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-	0.2
11	3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	
12	(3R,4S)-4-(4'-aminobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-	1
12	(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	
13	(3R,4S)-4-[4'-(dimethylamino)biphenyl-4-yl]-1-(4-fluorophenyl)-	>1
1	3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	-
14	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-	1
-	hydroxypropyl]-4-(4'-vinylbiphenyl-4-yl)azetidin-2-one	
15	(3R,4S)-4-(2',4'-difluorobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	1
	5-(4-morophenyr)-5-nydroxypropyrjazendin-2-one	

16	(3R,4S)-4-[4-(2,3-dihydro-1,4-benzodioxin-6-yl)phenyl]-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.3
17	(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-yl)acetic acid	>1
18	methyl 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-carboxylate	1
19	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-[4-(2-naphthyl)phenyl]azetidin-2-one	0.6
20	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-(2',3',4'-trimethoxybiphenyl-4-yl)azetidin-2-one	0.6
21	(3R,4S)-4-(3'-ethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3- (4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.3
22	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-(4'-hydroxy-3'-methoxybiphenyl-4-yl)azetidin-2- one	0.4
23	4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-oxoazetidin-2-yl}-5-hydroxybiphenyl-2- carbaldehyde	1
24	4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-oxoazetidin-2-yl}-4-hydroxybiphenyl-3- carboxylic acid	0.3
25	(3R,4S)-4-(3',5'-dimethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3- [(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.3
26	(3R,4S)-4-(2',4'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3- [(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.03
27	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3- [(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.01
28	(3R,4S)-4-(3'-fluoro-5'-methoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.03
29	(3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'- hydroxybiphenyl-4-yl)-1-phenylazetidin-2-one	0.01
30	(3R,4S)-4-(3'-fluoro-5'-hydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.2
31	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)-L-glucitol	0.3
32	(3R,4S)-4-(3',5'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3- [(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	0.03
33	(4-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)phosphonic acid	0.5
34	methyl 6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4- fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3- yl)-α-D-glucopyranoside	0.3
35	(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)boronic acid	0.1

36	(1R)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-yl)-L-glucitol	0.1
37	6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)-D- glucopyranose	0.5
38	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo- l-phenylazetidin-2-yl}biphenyl-3-yl)phosphonic acid	0.5
39	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo- 1-phenylazetidin-2-yl}biphenyl-3-yl)boronic acid	0.3
40	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one	0.002
41	4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-sulfonic acid	0.3
	(IS)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-Delucitol	0.1
43	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol	0.003, 0.01
44	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl}-D-glucitol	0.008
45	4-{(2S,3R)-3-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1- phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonic acid	0.1
46	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo- l-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid	0.01
47	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one	0.03
48	(GR)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucopyranose	0.03
49	(6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucopyranose	0.1
50	(6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol	0.03
51	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo- 1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid	0.03, 0.001
52	4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid	0.003, 0.007

Table 2B

Row	<i>in vivo</i> model	compound	ED50 (mg/kg)
1	mouse	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)- 3-(4-fluorophenyl)-3- hydroxypropyl]-4-(4- hydroxyphenyl)azetidin-2-one	0.3
2	mouse	(IS)-1,5-anhydro-1-(4'-{(2S,3R)-3- [(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-oxo-1- phenylazetidin-2-yl}-3'- hydroxybiphenyl-4-yl)-D-glucitol	0.3
3	mouse	(d*-{(2S,3R)-3-{(3S)-3-(4- fluorophenyl)-3-hydroxypropyl]-4- oxo-1-phenylazetidin-2-yl}-3'- hydroxybiphenyl-4-yl)phosphonic acid	0.2
4	mouse	(3R,4S)-4-(3,3'-dihydroxybiphenyl- 4-yl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-1-phenylazetidin-2- one	0.4
5	mouse	4'-{(2S,3R)-3-[(3S)-3-(4- fluorophenyl)-3-hydroxypropyl]-4- oxo-1-phenylazetidin-2-yl}-3'- hydroxybiphenyl-4-sulfonic acid	0.3
6	hamster (3 hou	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)- 3-(4-fluorophenyl)-3- hydroxypropyl]-4-(4- bydroxyphenyl)azetidin-2-one	0.003
7	hamster (3 ho	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3- [(3S)-3-(4-fluorophenyl)-3- ur) hydroxypropyl]-4-oxo-1- phenylazetidin-2-yl}-3'- hydroxybiphenyl-4-yl)-D-glucitol	0.005
8	hamster (3 ho	(4'-{(2S,3R)-3-[(3S)-3-(4 fluorophenyl)-3-hydroxypropyl]-4- ur) oxo-1-phenylazetidin-2-yl}-3'- hydroxybiphenyl-4-yl)phosphonic acid	0.001
9	hamster (3 he	(3R,4S)-4-(3,3'-dihydroxybiphenyl- 4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-	0.003

10	hamster (7 day)	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)- 3-(4-fluorophenyl)-3- hydroxypropyl]-4-(4- hydroxyphenyl)azetidin-2-one	0.04 (+/- 0.01), 0.03 (+/- 0.01), 0.03 (+/- 0.01)
11	hamster (7 day)	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3- [(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-4-oxo-1- phenylazetidin-2-yl}-3'- hydroxybiphenyl-4-yl)-D-glucitol	0.02 (+/- 0.01), 0.03 (+/- 0.01)
12	hamster (7 day)	(3R,4S)-4-(3,3'-dihydroxybiphenyl- 4-yl)-3-[(3S)-3-(4-fluorophenyl)-3- hydroxypropyl]-1-phenylazetidin-2- one	0.02 (+/- 0.01)
13		(4'-{(2S,3R)-3-[(3S)-3-(4- fluorophenyl)-3-hydroxypropyl]-4- oxo-1-phenylazetidin-2-yl}-3'- hydroxybiphenyl-4-yl)phosphonic acid	0.02
14	hamster (7 day)	4'-{(2S,3R)-3-[(3S)-3-(4- fluorophenyl)-3-hydroxypropyl]-4- oxo-1-phenylazetidin-2-yl}-3'- lhydroxybiphenyl-4-sulfonic acid	0.03

Additivity Assay

[00246] The effects of three compounds of the invention ((1) (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol, (2) (3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one, and (3) (4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid) either alone and in combination with the known cholesterol absorption inhibitor, (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one were studied in the rat cholesterol absorption model above. Groups of five rats received each of the three compounds alone (1 mg/kg) or in combination with (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one (each at 1mg/kg) or vehicle (olive oil) via oral gavage. Serum radioactivity (DPM) was measured and the average values are plotted in figures 5A, B, and C.

*In general, the compounds of the present invention may be prepared by the methods illustrated in the general reaction schemes as, for example, described below, or by modifications thereof, using readily available starting materials, reagents and conventional synthesis procedures. In these reactions, it is also possible to make use of variants that are in themselves known, but are not mentioned here.

[00247] The starting materials, in the case of suitably substituted azetidinones, may be obtained by the methods described in WO 02/50027, WO 97/16424, WO 95/26334, WO 95/08532 and WO 93/02048, the disclosures of which are incorporated herein by reference.

[00248] Processes for obtaining the compounds of the invention are presented below. Although detailed syntheses are not presented for every example in Tables 1 and 2, the procedures below illustrate the methods. The other compounds were made in analogous fashion to those whose synthesis is exemplified.

[00249] Example 1. Preparation of the intermediate 4-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}phenyl trifluoromethanesulfonate

[00250] (3R,4S)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one (150.4 mg, 0.367 mmol) and 4-dimethylaminopyridine (9.4 mg, 0.077 mmol) were dissolved in methylene chloride (10.0 mL). Triethylamine (100 μ L, 72.6 mg, 0.717 mmol) was added via syringe followed by N-phenyltrifluoromethanesulfonimide (143.6 mg, 0.402 mmol) added as a solid. The reaction was stirred for 3.5 h at room temperature and then poured into water (40 mL) and extracted with 1:1 ethyl acetate-hexane (75 mL). The organic layer was washed with water (40 mL) and brine (40 mL), then dried over sodium sulfate,

filtered, concentrated and purified by chromatography (12 g silica gel, 10% to 90% ethyl acetate-hexane) to afford 4-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}phenyl trifluoromethanesulfonate (190.8 mg, 96% yield) as a clear film (eventually becomes a while solid); mp 121.6 °C; R_f 0.38 (2:3 ethyl acetate-hexane); $^1\mathrm{H}$ NMR (300 MHz, CDCl₃) δ 7.41 (d, J = 8.7 Hz, 2H), 7.31-7.26 (m, 4H), 7.19 (dd, J = 9.0, 4.6 Hz, 2H), 7.01 (t, J = 8.7 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 4.71 (t, J = 6.0 Hz, 1H), 4.67 (d, J = 2.3 Hz, 1H), 3.10-3.04 (m, 1H), 2.08-1.86 (m, 4H) ppm; MS [M-OH] 524.5.

[00251] Example 2. Preparation of (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'-hydroxybiphenyl-4yl)azetidin-2-one

4-{(2S,3R)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4oxoazetidin-2-yl}phenyl trifluoromethanesulfonate (162.5 mg, 0.30 mmol) and
tetrakis(triphenylphosphine)palladium(0) (17.3 mg, 0.015 mmol) were dissolved in
toluene (2.5 mL). 2.0 M aqueous potassium carbonate (0.3 mL) and a solution of 4hydroxyphenylboronic acid (57.9 mg, 0.42 mmol) in ethanol (1.0 mL) were added.
The reaction was stirred vigorously for 5 h at refluxing temperature under a nitrogen
atmosphere and then diluted with water (2.5 mL), extracted with ethyl acetate (3 x 10
mL), washed with brine (10 mL), dried over sodium sulfate, filtered, concentrated and
purified by chromatography (12 g silica gel, 10% to 100% ethyl acetate-hexane) to
afford (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'hydroxybiphenyl-4-yl)azetidin-2-one (112 mg, 77% yield) as a clear film; mp 110 °C;
R_f 0.5 (1:1 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.5 (d, J = 9.0 Hz,
2H) 7.4 (d, J = 9.0 Hz, 2H) 7.3 (m, 6H), 6.9 (m, 6H), 4.7 (m, 1H), 4.6 (s, 1H), 3.15
(m. 1H), 2.1-1.9 (m, 4H) ppm; MS [M+H] 486.5.

In the same manner was obtained:

[00252] Example 3. (3R,4S)-4-Biphenyl-4-yl-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one

(3R,4S)-4-Biphenyl-4-yl-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl] azetidin-2-one (11.8 mg, 54% yield) as a clear film; purification by chromatography (4 g silica gel, 10% to 100% ethyl acetate-hexane) and then by reverse-phase HPLC (21mm column, 50% to 100% acetonitrile-0.1% trifluoroacetic acid in water); R_f 0.47 (3:2 ethyl acetate-hexane); 1 H NMR (300 MHz, CD_3OD) δ 7.63 (d, J=8.3 Hz, 2H), 7.61-7.58 (m, 2H), 7.45-7.39 (m, 4H), 7.35-7.28 (m, 5H), 7.02 (t, J=8.8 Hz, 2H), 7.00 (t, J=8.8 Hz, 2H), 4.63 (t, J=5.7 Hz, 1H), 3.15-3.00 (m, 1H), 2.05-1.84 (m, 5H) ppm; MS [M-OH] 452.5

[00253] Example 4. (3R,4S)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)azetidin-2-one

(3R,4S)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)azetidin-2-one (110 mg, 76% yield using a reaction time of 4 h) as an off white solid; purification by chromatography (12 g silica gel, 10% to 100%

ethyl acetate-hexane); np 107 °C; R_f 0.50 (1:1 ethyl acetate-hexane); 1H NMR (300 MHz, CDCl₃) δ 7.6 (d, J = 8.9 Hz, 2H), 7.3 (d, J = 8.9 Hz, 2H), 7.2 (m, 6H), 6.9 (m, 6H), 4.7(m, 1H), 4.6(s, 1H), 3.15 (m, 1H), 2.1-1.9 (m, 4H) ppm; MS [M+H] 486.5 [00254] Example 5. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'-methoxybiphenyl-4-yl)azetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'-methoxybiphenyl-4-yl)azetidin-2-one (86 mg, 67% yield using a reaction time of 16 h) as a white solid; purification by chromatography (12 g silica gel, 10% to 100% ethyl acetate-hexane); mp 103 °C; R_f 0.75 (1:1 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.4 (m, 4H), 7.3 (m, 6H), 6.9 (m, 6H), 4.75 (m, 1H), 4.65 (s, 1H), 3.85 (s, 3H), 3.2 (m, 1H), 2.1-1.9 (m, 4H) ppm; MS [M-OH] 482.5 [00255] Example 6. (3R,4S)-1-(4-fluorophenyl)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(6-hydroxybiphenyl-3-yl)azetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(6-hydroxybiphenyl-3-yl)azetidin-2-one (36 mg, 40% yield using a reaction time of 16 h) as a white solid; purification by chromatography (12 g silica gel, 10% to 100% ethyl acetate-hexane); mp 113 °C; R_f 0.70 (1:1 ethyl acetate-hexane); ¹H NMR (300 MHz,

CDCl₃) δ 7.5-6.9 (m, 16H), 4.75 (m, 1H), 4.65 (s, 1H), 3.2 (m, 1H), 2.1-1.9 (m, 4H) pdm; MS [M+H] 486.5

[00256] Example 7. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(2'-hydroxybiphenyl-4-yl)azetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(2'-hydroxybiphenyl-4-yl)azetidin-2-one (74 mg, 51% yield using a reaction time of 2 h) as a white solid; purification by chromatography (12 g silica gel, 10% to 100% ethyl acetate-hexane); mp 101 °C; R_f 0.50 (1:1 ethyl acetate-hexane); R_f 1 NMR (300 MHz, CDCl₃) R_f 7.6 (d, R_f 9.0 Hz, 2H), 7.4 (d, R_f 9.0 Hz, 2H), 7.25 (m, 6H), 6.9 (m, 6H), 6.3 (s, 1H), 4.65 (m, 2H), 3.1 (m, 1H), 2.1-1.9 (m, 4H) ppm; MS [M+H] 486.5 [00257] Example 8. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4'-(methylsulfonyl)biphenyl-4-yl]azetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4'- (methylsulfonyl)biphenyl-4-yl]azetidin-2-one (80 mg, 79% yield using a reaction time of 4 h) as a white solid; purification by chromatography (12 g silica gel, 10% to 100% ethyl acetate-hexane); mp 111°C; R_f 0.40 (1:1 ethyl acetate-hexane); R_f 1 NMR (300 MHz, CDCl₃) 8.1 (d, R_f 3 Hz, 2H), 7.8 (d, R_f 9.3 Hz, 2H), 7.6 (d, R_f 9.3 Hz, 2H), 7.8 (d, R_f 9.

2H), 7.5 (d, J = 8.1 Hz, 2H), 7.3 (m, 5H), 6.9 (m, 3H), 6.3 (s, 1H), 4.7 (m, 1H), 4.6 (s, 1H), 3.1 (s, 4H), 2.1-1.9 (m, 4H) ppm; MS [M-OH] 530.6

[00258] Example 9. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3',4',5'-trimethoxybiphenyl-4-yl)azetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3',4',5'-trimethoxybiphenyl-4-yl)azetidin-2-one (93 mg, 90% yield using a reaction time of 2 h) as a white solid; purification by chromatography (12 g silica gel, 10% to 100% ethyl acetate-hexane); mp 103 °C; R₁0.4 (1:1 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.6 (d, J = 9.0 Hz, 2H), 7.5 (d, J = 9.0 Hz, 2H), 7.3 (m, 4H), 7.0 (m, 4H), 6.8 (s, 2H), 4.7 (m, 1H), 4.6 (s, 1H), 3.9 (s, 9H), 3.1 (s, 1H), 2.1-1.9 (m, 4H) ppm; MS [M-OH] 542.6

[00259] Example 10. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[3'-(methylsulfonyl)biphenyl-4-vllazetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[3'-(methylsulfonyl)biphenyl-4-yl]azetidin-2-one (92 mg, 90% yield using a reaction time of 2 h) as a white solid; purification by chromatography (12 g silica gel, 10% to 100%

ethyl acetate-hexane); mp 104 °C; R_f 0.45 (1:1 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 8.2-6.8 (m, 15H), 4.7 (m, 1H), 4.65 (s, 1H), 3.2 (m, 1H), 3.1 (s, 3H), 2.1-1.9 (m, 4H) ppm; MS [M-OH] 530.6

[00260] Example 11. (3R,4S)-4-(2',3'-dimethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one

 $(3R,4S)-4-(2',3'-dimethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one (132.0 mg, 90% yield using a reaction time of 2 h) as a white solid; purification by chromatography (12 g silica gel, 10% to 100% ethyl acetate-hexane); mp 101 °C; R_f 0.70 (1:1 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 7.6 (d, J = 8.5 Hz, 2H), 7.4 (d, J = 8.5 Hz, 2H), 7.3 (m, 5H), 7.0 (m, 6H), 4.7 (m, 1H), 4.6 (s, 1H), 3.9 (s, 3H), 3.7 (s, 3H), 3.3 (m, 1H), 2.1-1.9 (m, 4H) ppm; MS [M-OH] 512.6

[00261] Example 12. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-methoxybiphenyl-4-yl)azetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-methoxybiphenyl-4-yl)azetidin-2-one (36.1 mg, 77% yield) as a clear foam;

purification by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane); R_f 0.52 (40% ethyl acetate-hexane); 1 H NMR (300 MHz, CDCl₃) δ 7.58 (d, J=8.7 Hz, 2H), 7.30 (m, 7H), 7.15 (dt, J=13.5, 1.5 Hz, 1H), 7.09 (t, J=2.4 Hz, 1H), 7.00 (t, J=10.4 Hz, 2H), 6.92 (m, 3H), 4.73 (t, J=6.2 Hz, 1H), 4.67 (d, J=2.1 Hz, 1H), 3.86 (s, 3H), 1.95 (m, 4H); MS [M-OH] 482.5

[00262] Example 13. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hvdroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-carbaldehyde

4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} biphenyl-3-carbaldehyde (32.7 mg, 67% yield) as a clear foam; purification by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane); R_f 0.72 (50% ethyl acetate-hexane); R_f 0.72 (50% ethyl acetate-hexane); R_f 1.8 MR (300 MHz, CDCl₃) δ 10.09 (s, 1H), 8.09 (d, J = 1.8 Hz, 1H), 7.85 (m, 2H), 7.62 (m, 3H), 7.44 (d, J = 7.8 Hz, 2H), 7.27 (m, 4H), 7.03 (t, J = 8.6 Hz, 2H), 6.95 (t, J = 8.8 Hz, 2H), 4.74 (m, 1H), 4.70 (d, J = 2.4 Hz, 1H), 3.14 (m, 1H), 1.97 (m, 4H) ppm; MS [M-OH] 480.5 [00263] Example 14. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} biphenyl-3-carbonitrile

4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} biphenyl-3-carbonitrile (32.5 mg, 57% yield) as a clear foam; purification by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane); R_{ℓ} 0.69 (50% ethyl acetate-hexane); 1 H NMR (300 MHz, CDCl₃) δ 7.84 (m, 1H), 7.79 (m, 1H), 7.64 (m, 1H), 7.55 (m, 3H), 7.44 (d, J = 6.6 Hz, 2H), 7.28 (m, 4H), 7.02 (t, J = 8.9 Hz, 2H), 6.95 (t, J = 8.9 Hz, 2H), 4.75 (t, J = 6.2 Hz, 1H), 4.68 (d, J = 2.1 Hz, 1H), 3.13 (m, 1H), 2.01 (m, 4H) ppm; MS [M-OH] 477.5

[00264] Example 15. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-N,N-dimethylbiphenyl-4-sulfonamide

4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl)-4-oxoazetidin-2-yl} biphenyl-N,N-dimethylbiphenyl-4-sulfonamide (39.6 mg, 73% yield) as a faint yellow foam; purification by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane); R_1 0.50 (50% ethyl acetate-hexane); R_1 NMR (300 MHz, CDCl₃) δ 7.83 (d, J = 5.4 Hz, 2H), 7.72 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.25 (m, 4H), 7.02 (t, J = 8.4, 9.0 Hz, 2H), 6.95 (t, J = 8.7)

Hz, 2H), 4.74 (t, J = 5.5 Hz, 1H), 4.69 (d, J = 1.8 Hz, 1H), 3.13 (m, 1H), 2.75 (s, 6H), 2.01 (m, 4H) ppm; MS [M-OH] 559.7

[00265] Example 16. (3R,4S)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hvdroxypropyl]-4-(3'-(hydroxymethyl)biphenyl-4-yl)azetidin-2-one

 $(3R,4S)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-(hydroxymethyl)biphenyl-4-yl)azetidin-2-one (37.3 mg, 80% yield) as a clear foam; purification by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane); <math>R_f$ 0.43 (50% ethyl acetate-hexane); R_f 1.4 NMR (300 MHz, CDCl3) R_f 57.59 (m, 3H), 7.49 (m, 2H), 7.37 (m, 3H), 7.27 (m, 4H), 7.02 (t, J = 8.7 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 4.74 (m, 1H), 4.67 (d, J = 2.4 Hz, 1H), 3.14 (m, 1H), 1.99 (m, 4H) ppm; MS [M-OH] 482.5

[00266] Example 17. (3R,4S)-4-[4'(dimethylamino)biphenyl-4-yl]-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one

(3R,4S)-4-[4'(dimethylamino)biphenyl-4-yl]-1-(4-fluorophenyl)-3-[(3S)-3-(4fluorophenyl)-3-hydroxypropyl]azetidin-2-one (35.4 mg, 79% yield) as a white foam; purification by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane); R_f

0.78 (50% ethyl acetate-hexane); 1 H NMR (300 MHz, CDCl₃) δ 7.53 (m, 4H), 7.31 (m, 8H), 7.02 (t, J = 8.7 Hz, 2H), 6.94 (t, J = 8.7 Hz, 2H), 4.73 (m, 1H), 4.64 (d, J = 2.1 Hz, 1H), 3.14 (m, 1H), 3.10 (s, 6H) 1.97 (m, 4H) ppm; MS [M+H] 513.6 [00267] Example 18. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4-(hydroxymethyl)phenyl]azetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4-(hydroxymethyl)phenyl]azetidin-2-one (37.2 mg, 75% yield with a 7% impurity) as a clear film; purification by chromatography (12 g silica gel, 5% to 95% ethyl acetatehexane); R_f 0.43 (50% ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.57 (m, 4H), 7.44 (d, J = 8.4, 2H), 7.38 (d, J = 8.4, 2H), 7.27 (m, 4H), 7.02 (t, J = 8.9 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 4.73 (m, 3H), 4.66 (d, J = 2.4 Hz, 1H), 3.12 (m, 1H), 1.97 (m, 4H) ppm; MS [M-OH] 482.5

[00268] Example 19. Preparation of (3R,4S)-4-(2'-bromo-5'-hydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one

(3R,4S)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)azetidin-2-one (19.2 mg, 0.04 mmol) was dissolved in

chloroform (0.4 mL) and tetrabutylammonium tribromide (18.8 mg, 0.04 mmol) was added at room temperature. After 10 minutes, saturated aqueous sodium thiosulfate (2 mL) was added to quench the reaction. The mixture was poured into a seperatory funnel, extracted with dichloromethane (4 x 10 mL), dried over sodium sulfate, filtered and concentrated. (3R,4S)-4-(2'-bromo-5'-hydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one was purified by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane) and then by reverse-phase HPLC (21mm column, 50% to 100% acetonitrile-0.1% trifluoroacetic acid in water) to afford (3R,4S)-4-(2'-bromo-5'-hydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one (8.0 mg, 34% yield) as a clear foam; R_f 0.51 (50% ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) & 7.49 (d, J = 8.7 Hz, 1H), 7.40 (m, 4H), 7.29 (m, 4H), 7.02 (t, J = 8.7 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 6.80 (d, J = 3.3, 1H), 6.73 (dd, J = 3.0, 3.0 Hz, 1H), 4.74 (t, J = 6.2 Hz, 2H), 4.67 (d, J = 2.1 Hz, 1H), 3.14 (m, 1H) 1.99 (m, 4H) ppm; MS [M-OH] 547.4

 $\label{eq:condition} \begin{tabular}{ll} \begin{tabular}{ll} \hline Example 20. & Preparation of 4'-\{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} & biphenyl-3-yl $\beta-L-glucopyranosiduronic acid \\ \hline \end{tabular}$

[00271] 4-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}phenyl trifluoromethanesulfonate (0.16 g, 0.35 mmol) was dissolved in dichloromethane (2 mL). To this was added acetic anhydride (0.04 mL, 0.45 mmol), triethylamine (0.08 mL, 0.60 mmol) and 4-dimethylaminopyridine (18.3 mg, 0.15 mmol). The reaction was stirred at room temperature for 18 h after which time it was diluted with water (5 mL) and extracted with dichloromethane (10 mL). The aqueous layer was re-extracted with dichloromethane (3 x 10 mL) and the organic fractions were combined, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane) to afford (1S)-1-(4-fluorophenyl)-3-[(3R,4S)-1-(4-fluorophenyl)-2-oxo-4-(4-[(trifluoromethyl)sulfonyl]oxy}-phenyl)azetidin-3-yl]propyl acetate (0.20 g, 0.35

turninoromenyi, suironyi, joxy; -pnenyi, jazenim-3-yi, propyi acetate (0.20 g, 0.3 mmol, 100%) as a clear film.

1002721 Step 2: Preparation of (1S)-1-(4-fluorophenyl)-3-[(2S,3R)-1-(4-

fluorophenyl)-2-(3'-hydroxybiphenyl-4-yl)-4-oxoazetidin-3-yl]propyl acetate. [00273] The product of step 1 (0.20 g, 0.35 mmol) and tetrakis(triphenylphosphine)palladium(0) (20.3 mg, 0.018 mmol) were dissolved in toluene (10 mL). 2.0 M aqueous potassium carbonate (0.35 mL) and a solution of 4-hydroxyphenylboronic acid (67.8 mg, 0.49 mmol) in ethanol (2.5 mL) was added. The reaction was stirred vigorously for 4 h at refluxing temperature under a nitrogen atmosphere and then diluted with water (2.5 mL), extracted with ethyl acetate (3 x 10 mL), washed with brine (10 mL), dried over sodium sulfate, filtered, concentrated and purified by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane) to afford (1S)-1-(4-fluorophenyl)-3-[(2S,3R)-1-(4-fluorophenyl)-2-(3'-hydroxybiphenyl-4-yl)-4-oxoazetidin-3-yl]propyl acetate (157 mg, 85% yield) as a clear film.

[00274] Step 3: Preparation of (1S)-1-(4-fluorophenyl)-3-((3R,4S)-1-(4-fluorophenyl)-2-oxo-4-{3'-[(2,3,4-tri-O-acetyl-6-hydroperoxy-β-L-gluco-hexodialdo-1.5-pyranosyl)oxyl)biphenyl-4-yl} azetidin-3-yl)propyl acetate.

[00275] The product of step 2 (69.4 mg, 0.132 mmol) and methyl 2,3,4-tri-O-acetyl-1-O-(2,2,2-trifluoroethanimidoyl)-D-glucopyranuronate (49.0 mg, 0.110 mmol) were azeotroped with toluene (3 x 15 mL) and dried in vacuo for 18 h. The dried syrup was suspended in dichloromethane (1.1 mL) and the reaction was cooled to -25 °C. Freshly distilled (over calcium hydride) boron trifluoride diethyl etherate was added and the reaction was maintained at -25° C for 2 h and warmed to 10 °C over about 3.5 h. The mixture was diluted with saturated aqueous ammonium chloride (2 mL), extracted with ethyl acetate (3 x 10 mL), washed with brine (10 mL), dried over sodium sulfate, filtered, concentrated and purified by chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane) to afford (18)-1-(4-fluorophenyl)-2-oxo-4-{3¹-[(2,3,4-tri-O-acetyl-6-hydroperoxy-β-L-gluco-hexodialdo-1,5-pyranosyl)oxy]biphenyl-4-yl} azetidin-3-yl)propyl acetate (57.2 mg, 87% based on recovered starting material) as a white foam.

 $\label{eq:condition} \begin{tabular}{ll} \be$

[00277] The product of step 3 (57.2 mg, 0.068 mmol) was dissolved in 1:1 methanol-triethylamine (2.8 mL). To this solution was added water (4.25 mL). The reaction progress was monitored by TLC (5% acetic acid and 15% methanol in dichloromethane) and was complete after 19 hours. The methanol and triethylamine were evaporated in vacuo, the residue was acidified with 1 N aqueous hydrochloric acid (1.4 mL), extracted with ethyl acetate (20 mL), washed with brine (5 mL), dried over sodium sulfate, filtered, concentrated and purified by chromatography (10 g silica gel, 5% acetic acid and 15% methanol in dichloromethane) to afford 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} biphenyl-3-yl β-L-glucopyranosiduronic acid (32.6 mg, 73%) as an off-white foam; R_ℓ 0.37 (5% acetic acid and 15% methanol in dichloromethane); ¹H NMR (300 MHz, CD₃OD) δ 7.63 (d, J = 7.8 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.33 (m, 7H), 7.06 (m, 5H), 5.03 (m, 1H), 4.63 (t, J = 5.1, 5.1 Hz, 2H), 3.94 (m, 3H), 3.13 (m, 1H) 1.91 (m, 4H) ppm; MS [M-H] 660.6

[00278] Example 21. Preparation of 4'-{(2S,3R)-1-(4-fluorophenyl)3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl]biphenyl-3-carboxylic acid

[00279] 4-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3hydroxypropyll-4-oxoazetidin-2-yl}phenyl trifluoromethanesulfonate (51.1 mg, 0.094 mmol) and 3-carboxyphenylboronic acid (21.9 mg, 0.132 mmol) were dissolved in 1:1 toluene:ethanol (2 mL). 2.0 M aqueous potassium carbonate (0.14 mL) was added and the solution degassed. Tetrakis(triphenylphosphine)palladium(0) (5.1 mg, 0.005 mmol) was added and the reaction stirred vigorously for 2 h at refluxing temperature under a nitrogen atmosphere. The cooled reaction was diluted into dichloromethane (15 mL), water (3 mL) was added and the pH was adjusted to 3 with 5% aqueous sodium bisulfate. The layers were separated and the aqueous layer extracted with dichloromethane (2 x 5 mL). The combined organic extracts were dried over sodium sulfate, filtered, concentrated and purified by chromatography (12 g silica gel, 5% methanol in dichloromethane) to afford 4'-{(2S,3R)-1-(4-fluorophenyl)3-[(3S)-3-(4fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl]biphenyl-3-carboxylic acid (41.9 mg, 86% yield) as a colorless foam; R_f 0.15 (5% methanol in dichloromethane); ¹H NMR (300 MHz, CDCl₃) δ 8.31 (m, 1H), 8.09 (dt, J = 7.8, 1.5 Hz, 1H), 7.79-7.39 (m, 6H), 7.23-7.32 (m, 4H), 6.90-7.02 (m, 4H), 4.75 (t, J = 5.7 Hz, 1H), 4.69 (d, J = 2.1 Hz), 3.12 (m, 1H), 2.10-1.90 (m, 4H) ppm; MS [M-H] 512.5

[00280] In the same manner was obtained:

[00281] Example 22. 4'-{(2S,3R)-1-(4-fluorophenyl)3-[(3S)-3-(4-fluorophenyl)-3hydroxypropyl]-4-oxoazetidin-2-yl]biphenyl-4-carboxylic acid

4'-{(2S,3R)-1-(4-fluorophenyl)3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl]biphenyl-4-carboxylic acid (21.0 mg, 67% yield) as a white foam; purification by chromatography (12 g silica gel, 5% methanol in dichloromethane); R_f 0.14 (5% methanol in dichloromethane); 1 H NMR (300 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 2H), 7.65 (t, J = 8.1 Hz, 4H), 7.43 (d, J = 8.4 Hz, 2H), 7.33-7.24 (m, 4H), 7.04-6.92 (m, 4H), 4.77 (t, J = 5.7 Hz, 1H), 4.70 (d, J = 2.1 Hz, 1H), 3.15 (m, 1H), 1.92-2.09 (m, 4H) ppm; MS [M-H] 512.5

[00282] Example 23. Preparation of (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-nitrobiphenyl-4-yl)azetidin-2-one

4-{(28,3R)-1-(4-fluorophenyl)-3-[(38)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}phenyl trifluoromethanesulfonate (50.0 mg, 0.092 mmol) and 3-nitrophenylboronic acid (21.6 mg, 0.129 mmol) were dissolved in 1:1 toluene:ethanol (2 mL). 2.0 M aqueous potassium carbonate (0.092 mL) was added and the solution degassed. Tetrakis(triphenylphosphine)palladium(0) (5.7 mg, 0.005 mmol) was added and the reaction stirred vigorously for 2 h at refluxing temperature under a nitrogen

atmosphere. The cooled reaction was diluted into dichloromethane (15 mL). The layers were separated and the aqueous layer further extracted with dichloromethane (2 x 5 mL). The combined extracts were dried over sodium sulfate, filtered, concentrated and purified by chromatography (12 g silica gel, 5% to 50% ethyl acetate-hexane) to afford (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-nitrobiphenyl-4-yl)azetidin-2-one (45.0 mg, 95% yield) as a clear film; R_f 0.33 (50% ethyl acetate-hexane); 1H NMR (300 MHz, CDCl₃) δ 8.42 (m, 1H), 8.21 (ddd, J = 8.1, 2.4, 1.2 Hz, 1H), 7.89 (ddd, J = 7.9, 1.5, 1.2 Hz, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.1 Hz, 2H), 7.33-7.22 (m, 4H), 7.04-6.92 (m, 4H), 4.76 (t, J = 6.0 Hz, 1H), 4.71 (d, J = 2.1 Hz, 1H), 3.14 (m, 1H), 1.91-2.11 (m, 4H) ppm; MS [M-OH] 497.5

[00283] In the same manner was obtained:

[00284] Example 26. N-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)acetamide

N-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)acetamide (18.8 mg, 44% yield) as a white foam; purification by chromatography (12 g silica gel, 50% ethyl acetate-hexane); R_f 0.07 (50% ethyl acetate-hexane); R_f 0.07 (50% ethyl acetate-hexane); R_f 0.07 (50% ethyl acetate-hexane); R_f 0.07 (12H), 6.99 (t, J = 8.7 Hz, 2H), 6.93 (t, J = 9.0 Hz, 2H), 4.72 (t, J = 5.7 Hz, 1H), 4.65 (d, J = 2.1 Hz, 1H), 3.13 (m, 1H), 2.17 (s, 3H), 2.04-1.88 (m, 4H) ppm; MS [M-OH] 509.6

[00285] Example 28. (3R,4S)-4-(4'-aminobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl] azetidin-2-one

(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'-aminobiphenyl-4-yl)azetidin-2-one (42.0 mg, 95% yield) as a brown film; purification by chromatography (12 g silica gel, 50% ethyl acetate-hexane); R_f 0.32 (50% ethyl acetate-hexane); R_f 0.32 (60% ethyl acetate-hexane); R_f 0.33 (60% ethyl acetate-hexane); R_f 0.34 (60% ethyl acetate-hexane); R_f 0.35 (60% ethyl acetate-hexane); R_f 0.34 (60% ethyl acetate-hexane); R_f 0.34 (60% ethyl ac

[00286] Example 29. (3R,4S)-1-(2',3'-difluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3',4'-difluorobiphenyl-4-yl)azetidin-2-one

 $(3R,4S)-1-(2',3'-difluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3',4'-difluorobiphenyl-4-yl)azetidin-2-one (36.9 mg, 86% yield) as a clear film; purification by chromatography (12 g silica gel, 5% to 50% ethyl acetate-hexane); <math>R_f$ 0.51 (50% ethyl acetate-hexane); R_f 1.5 (30% ethyl acetate-hexane); R_f 1.5 Hz, 2H), 7.41 (d, J = 6.9 Hz, 2H), 7.32-7.22 (m, 4H), 7.19-7.12 (m, 3H), 7.01 (t, J = 8.7 Hz, 2H), 6.95 (t, J = 9.0 Hz, 2H), 4.74 (t, J = 6.0 Hz, 1H), 4.68 (d, J = 2.7 Hz, 1H), 3.14 (m, 1H), 2.07-1.90 (m, 4H) ppm; MS [M-OH] 488.5

[00287] Example 31. 1-[4-(4-{(2S,3R)-2-(3'-hydroxybiphenyl-4-yl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxoazetidin-1-yl}phenyl)butyl]-1-azoniabicyclo[2.2.2]octane chloride.

[00288] A quaternary salt is made in the following manner. (3-{[tertbutyl(dimethyl)silyl]oxy}phenyl)boronic acid and 4-bromostyrene are coupled under Suzuki conditions with tetrakis(triphenylphosphine)palladium(0) and 2.0 M aqueous potassium carbonate in toluene-ethanol solvent. The product is reacted with chlorosulfonyl isocyanate in ethereal solvent followed by alkali aqueous work-up to generate a β-lactam. The amide proton is exchanged for an aryl group by reaction with 4-iodophenylcarbonylallyl (generated from the commercially available acid by borane reduction and protected with allyl chloroformate) using trans-1,2cyclohexanediamine and copper (I) iodide in decane-dioxane as solvent. Deprotonation of the 3-position of the β-lactam with a suitable base, such as lithium diisopropylamide, and subsequent quenching with tert-butyl {[(1S)-4-iodo-1phenylbutyl oxy dimethylsilane (generated from the commercially available (S)-(-)-3chloro-1-phenyl-1-propanol by protection with tert-butyldimethylchlorosilane and Finkelstein reaction with sodium iodide) provide the 3-substituted intermediate. The allyloxycarbonate protecting group is removed with ammonium formate and tetrakis(triphenylphosphine)palladium(0) in tetrahydrofuran and the resulting alcohol converted into the bromide using carbon tetrabromide and triphenylphosphine in dichloromethane. The silvl protecting groups are removed from the benzyl alcohol

and the phenol using 48% hydrofluoric acid in acetonitrile. The resulting compound is reacted with a tertiary amine, such as quinuclidine, purified by HPLC and passed through a chloride ion-exchange column to afford 1-[4-(4-{(2S,3R)-2-(3'hydroxybiphenyl-4-yl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxoazetidin-1yl}phenyl)butyl]-1-azoniabicyclo[2.2.2]octane chloride. [00289] Example 32. Illustrated in Scheme I below is the general method for the preparation of cholesterol absorption inhibitors of general formula 32. Imines 2 are made by refluxing 4-cyanoaniline with the appropriate aldehyde in isopropanol. Condensation of imine 2 with the benzyloxazolidinone compound 3 using titanium tetrachloride, and subsequent cyclization using N,O-bistrimethylacetamide and catalytic tetra-n-butylammonium fluoride, affords the azetidinone 4. Reduction of the cyano group in 4 to the amine 5 is accomplished under hydrogen atmosphere over excess Raney-Nickel in ethanol and ammonium hydroxide. Acylation with the appropriate acid chloride [Br(CH2)nCOCI], followed by reaction with hydrofluoric acid in acetonitrile to remove the silyl protecting groups, and subsequent reaction with taurine provides the finally product 32. It is noted that in this scheme the taurine is for illustration and that a large variety of functional groups can be substituted in its place.

[00290] Example 33. Illustrated in Scheme II below is the general method for the preparation of cholesterol absorption inhibitors of general formula 33. The aldehyde 7 is made by Suzuki coupling of 4-bromobenzaldehyde with 3-cyanophenylboronic acid. Refluxing 4-fluoroanilline with the aldehyde 7 in isopropanol makes the imine 8. Condensation of imine 8 with benzyloxazolidinone compound 3 using titanium tetrachloride and subsequent cyclization, using N,O-bistrimethylacetamide and catalytic tetra-n-butylammonium fluoride, affords the azetidinone 9. Reduction of the cyano group in 9 to the amine 10 is accomplished under hydrogen atmosphere over excess Raney-Nickel in ethanol and ammonium hydroxide. Acylation with the appropriate acid chloride [Br(CH2)nCOCl], followed by reaction with hydrofluoric acid in acctonitrile to remove the silyl protecting groups, and reaction with taurine provides the final product 11. It is noted that in this scheme the taurine is for illustration and that a large variety of functional groups can be substituted in its place.

[00291] Example 34. Illustrated in Scheme III below is the general method for the preparation of cholesterol absorption inhibitors of general formula 34. An imine is made by condensing 4-bromobenzaldehyde with 4-cyanoaniline, followed by condensation with the benzyloxazolidinone compound 3 using titanium tetrachloride, and subsequent cyclization, using N,O-bistrimethylacetamide and catalytic tetra-n-butylammonium fluoride, to afford the azetidinone 12. Hydrofluoric acid in acetonitrile is used to remove the silyl protecting group, and coupling to bis(pinacolato)diboron using catalytic palladium affords compound 13. Suzuki coupling with intermediate 20 affords compound 14. Reduction of the cyano group is accomplished under hydrogen atmosphere over excess Raney-Nickel in ethanol and ammonium hydroxide, and acetate groups are removed with triethylamine-methanol-water to provide 15. Acylation with the appropriate acid chloride [Br(CH2)nCOCI] followed by reaction with taurine provides the final product 16. It is noted that in this scheme the taurine is for illustration and that a large variety of functional groups can be substituted in its place.

[00292] Synthesis of Intermediate 20: 3-Allyloxyphenyl lithium is reacted with glucopyranolactone 17, followed by reductive cleavage of the hemiketal with triethylsilane and boron trifluoride diethyl etherate to provide benzyl-protected glycoside 18. Removal of the allyl group with palladium catalyst and tri-n-butyltin hydride followed by hydrogenation using palladium on carbon under a hydrogen atmosphere provides phenyl glycoside 19. Reaction with N-phenyltrifluoromethanesulfonimide provides the triflate and peracetylation using acetic anhyride in pyridine afford intermediate 20.

[00293] Example 35. (4S)-4-Benzyl-3-[5-(4-fluorophenyl)-5-oxopentanoyl]-1,3-oxazolidin-2-one

5-(4-Fluorophenyl)-5-oxopentanoic acid (10.08 g, 47.9 mmol) and triethylamine (6.8 mL, 4.94 g, 48.8 mmol) were dissolved in tetrahydrofuran (50 mL). The reaction was cooled to -5 °C (ice/brine bath), trimethylacetyl chloride (6.0 mL, 5.87 g, 48.7 mmol) was added quickly drop-wise and the mixture was warmed to room temperature and stirred for 1.5 h. The reaction was cooled to -5 °C (ice/brine bath) again for 30 min, filtered through Celite®, washed with cold 1:1 hexane-tetrahydrofuran (60 mL) and hexane (120 mL). The filtrate was concentrated, dissolved in N.Ndimethylformamide (16 mL) and to this mixture was added (S)-benzyl-2oxazolidinone (8.47 g, 47.8 mmol) and 4-dimethylaminopyridine (8.57 g, 70.2 mmol) as solids. The reaction was stirred at room temperature for 20 h. poured into 1.0 N hydrochloric acid (400 mL) and extracted with ethyl acetate (2 x 300 mL). The organic layer was washed with water (400 mL), quarter saturated sodium bicarbonate solution (400 mL), brine (200 mL), dried over sodium sulfate, filtered, and concentrated. The residue was purified by crystallization from hot isopropyl alcohol (75 mL) with slow cooling to room temperature over 16 h. The crystals were filtered cold and washed with cold isopropyl alcohol (50 mL) to afford (4S)-4-benzyl-3-[5-(4fluorophenyl)-5-oxopentanovl]-1.3-oxazolidin-2-one (13.87 g, 78% yield) as a white crystalline solid; mp 114.5 °C; Rf 0.29 (1:2 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 8.03-7.98 (m, 2H), 7.37-7.19 (m, 5H), 7.14 (t, J = 8.7 Hz, 2H), 4.72-4.64 (m. 1H), 4.25-4.15 (m. 2H), 3.32 (dd. J = 13.3, 3.4 Hz, 1H), 3.12-3.01 (m. 4H), 2.78 (dd. J = 13.3, 9.6 Hz. 1H), 2.15 (quint., J = 7.2 Hz. 2H) ppm 1002941 Example 36. (4S)-4-Benzyl-3-[(5S)-5-(4-fluorophenyl)-5hydroxypentanovl]-1,3-oxazolidin-2-one

(4S)-4-Benzyl-3-[5-(4-fluorophenyl)-5-oxopentanoyl]-1,3-oxazolidin-2-one (13.87 g, 37.54 mmol) was dissolved in dichloromethane (40 mL). Into a separate flask were added borane-methyl sulfide complex (3.6 mL, ~38 mmol), 1.0 M @-1-methyl-3,3diphenyltetrahydro-3H-pyrrolo[1,2-c][1,3,2]oxazaborole in toluene (1.9 mL, 1.9 mmol) and dichloromethane (20 mL). This mixture was cooled to -5 °C (ice/methanol bath) and the ketone solution was added drop-wise via cannula over 5 min. The reaction was stirred at -5 °C for 5.5 h and then quenched by slow addition of methanol (9 mL), 5% hydrogen peroxide solution (30 mL) and 1 M aqueous sulfuric acid (20 mL) respectively. The reaction was poured into water (500 mL) and extracted with ethyl acetate (500 mL). The organic layer was washed with water (500 mL), 0.1 N hydrochloric acid (300 mL) and brine (300 mL), dried over sodium sulfate, filtered, and concentrated to afford (4S)-4-benzyl-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-1,3-oxazolidin-2-one, which was used in subsequent reactions without further purification; Rf 0.14 (1:2 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.24 (m, 5H), 7.19 (d, J = 7.3 Hz, 2H), 7.02 (t, J = 8.9 Hz, 2H), 4.72-4.61 (m, 2H), 4.21-4.13 (m, 2H), 3.27 (dd, J = 13.2, 3.0 Hz, 1H), 2.99-2.94 (m. 2H). 2.74 (dd, J = 13.2, 9.6 Hz, 1H), 2.27 (br s, 1H), 1.88-1.66 (m, 4H) ppm; MS [M-OH] 354.0

[00295] Example 37. (4S)-4-Benzyl-3-[(5S)-5-{[tert-butyl(dimethyl)silyl]oxy}-5-(4-fluorophenyl)pentanoyl]-1,3-oxazolidin-2-one

(4S)-4-Benzyl-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-1,3-oxazolidin-2-one (37.54 mmol) was dissolved in N.N-dimethylformamide (40 mL) and then imidazole

(2.97 g, 43.6 mmol) and tert-butyldimethylsilyl chloride (6.12 g, 40.6 mmol) were added. The reaction was stirred at room temperature for 19 h, poured into 0.1 N hydrochloric acid (500 mL) and extracted with 1:1 ethyl acetate-hexane (500 mL). The organic layer was washed with water (2 x 500 mL), brine (300 mL), dried over sodium sulfate, filtered, and concentrated. The residue was purified by crystallization from methanol (55 mL) by heating to a light boil and cooling slowly to room temperature over 18 h. The crystals were filtered cold and washed with cold methanol (45 mL) to afford (4S)-4-benzyl-3-[(5S)-5-[{[rert-butyl(dimethyl)silyl]oxy}-5-(4-fluorophenyl)pentanoyl]-1,3-oxazolidin-2-one (16.04 g, 88% yield) as a white crystalline solid; mp 87.6 °C; R_f 0.66 (1:2 ethyl acetate-hexane); $^{\rm t}$ H NMR (300 MHz, CDCl₃) $^{\rm t}$ 7.36-7.18 (m, 7H), 6.99 (t, J = 8.7 Hz, 2H), 4.69-4.61 (m, 2H), 4.18-4.13 (m, 2H), 3.27 (dd, J = 13.5, 3.2 Hz, 1H), 2.96-2.89 (m, 2H), 2.73 (dd, J = 13.5, 9.7 Hz, 1H), 1.82-1.63 (m, 4H), 0.88 (s, 9H), 0.04 (s, 3H), -0.15 (s, 3H) ppm; MS [M-OSi(CH₃)₂] $^{\rm t}$ 354.0

[00296] Example 38. N-{(1E)-[2-(Allyloxy)-4-bromophenyl]methylene}aniline

4-Bromosalicylaldehyde (4.02 g, 20.0 mmol) [prepared from 3-bromophenol analogous to the procedure of Casiraghi, et. al. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1978), 318-21] was dissolved in anhydrous N,N-dimethylformamide (13 mL). Potassium carbonate (3.9 g, 28.0 mmol) was added as a solid to give a yellow suspension. Allyl bromide (2.6 mL, 3.63 g, 30.0 mmol) was added via syringe. The reaction stirred for 17 h at room temperature and was then diluted with water and extracted three times with 1:1 ethyl aceitate-hexane. The combined organic layers were washed with water (5x), brine, dried over sodium sulfate, filtered and concentrated to afford 2-(allyloxy)-4-bromobenzaldehyde (4.83 g, 100% yield) as a yellow solid which was used without

further purification in the next step; R_f 0.38 (1:9 ethyl acetate-hexane); MS [M+H]^{*} 241.0

[00297] 2-(Allyloxy)-4-bromobenzaldehyde (5.05 g, 20.9 mmol) was dissolved with warming in isopropanol (18 mL). Freshly distilled aniline (1.99 g, 21.3 mmol) was added with isopropanol (4 mL) and the reaction was heated to 50 °C. A yellow precipitate formed within 30 min and isopropanol (5 mL) was added to aid stirring. The reaction was stirred at 50 °C for 16 h, by which time proton NMR showed no aldehyde present. The reaction was cooled with stirring. The mixture was diluted with hexane (20 mL), the solid was filtered and washed with the mother liquor, washed with hexane and air dried to afford N-{(1E)-[2-(allyloxy)-4-bromophenyl]methylene} aniline (5.69 g, 86% yield) as a light yellow powder; ¹H NMR (300 MHz, CDCl₃) δ 8.87 (s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.43-7.36 (m, 2H), 7.27-7.17 (m, 4H), 7.099 (d, J = 1.8 Hz, 1H), 6.06 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H), 5.43 (AB q, J = 17.3, 3.0 Hz, 1H), 5.33 (AB q, J = 10.5, 2.8 Hz, 1H), 4.62 (ddd, J = 5.2, 1.5, 1.5 Hz, 2H) ppm

[00298] Example 39. (3R,4S)-4-(4-Bromo-2-hydroxyphenyl)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one

2-(Allyloxy)-4-bromobenzaldehyde (2.79 g, 8.83 mmol) and (4S)-4-Benzyl-3-[(SS)-5-{[tert-butyl(dimethyl)silyl]oxy}-5-(4-fluorophenyl)pentanoyl]-1,3-oxazolidin-2-one (3.3 g, 6.8 mmol) were combined in a 100-mL 3-neck round bottom flask fitted with a thermometer and nitrogen inlet. Anhydrous dichloromethane (60 mL) was added to give a light yellow solution which was cooled to -30 °C. Diisopropylethylamine (2.3 mL, 1.71 g, 13.2 mmol) was added via syringe. Titanium tetrachloride (0.86 mL, 1.48 g, 7.82 mmol) was added dropwise over 6 min at an internal temperature between -

28° to -26 °C to give a reddish brown solution. The reaction stirred under nitrogen for 3 h between -30 to -25 °C and was then cooled to -35 °C and quenched slowly with glacial acetic acid (6 mL) over 6 min. The reaction was poured into a cold (0 °C) 7% tartaric acid solution (125 mL). Ethyl acetate (200mL) was added and the mixture was warmed to room temperature with stirring. A 5% sodium sulfite solution (60mL) was added and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 x 200mL). The combined organic layers were washed with a saturated sodium bicarbonate solution, water and brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography (120 g silica gel, 1% to 90% ethyl acetate-hexane) to afford (4S)-3-[(2R,5S)-2-[(S)-[2-(allyloxy)-4bromophenyll(anilino)methyll-5-{ftert-butyl(dimethyl)silylloxy}-5-(4fluorophenyl)pentanovl]-4-benzyl-1,3-oxazolidin-2-one (4.54 g, 83% yield); Rf 0.38 (1:4 ethyl acetate-hexane); MS [M+H]+ 801.0 [00299] (4S)-3-[(2R,5S)-2-[(S)-[2-(Allyloxy)-4-bromophenyl](anilino)methyl]-5-{[tert-butyl(dimethyl)silylloxy}-5-(4-fluorophenyl)pentanoyl]-4-benzyl-1,3oxazolidin-2-one (1.2 g, 1.5 mmol) was dissolved in anhydrous methyl tert-butyl ether (10 mL) and stirred at room temperature under nitrogen. N,Obistrimethylsilylacetamide (1.1 mL, 4.5 mmol) was added followed by a catalytic amount (~5 mg) of tetrabutylammonium fluoride trihydrate. The reaction was stirred at room temperature for 19 h, quenched at room temperature with glacial acetic acid (160 uL) and partitioned between ethyl acetate and water and separated. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with a saturated sodium bicarbonate solution, water, brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography (120 g silica gel, 1% to 85% ethyl acetate-hexane) to afford (3R,4S)-4-[2-(allyloxy)-4bromophenyl]-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1phenylazetidin-2-one (816 mg, 87% yield); Rf 0.56 (1:4 ethyl acetate-hexane) [00300] (3R,4S)-4-[2-(Allyloxy)-4-bromophenyl]-3-[(3S)-3-{[tertbutyl(dimethyl)silylloxy}-3-(4-fluorophenyl)propyll-1-phenylazetidin-2-one (1.34 g. 2.15 mmol) was dissolved in deoxygenated tetrahydrofuran (20 mL). Morpholine (1.8 mL, 1.8 g, 20.6 mmol) was added with additional deoxygenated tetrahydrofuran (5

mL). The reaction was purged with nitrogen and tetrakis(triphenylphosphine)palladium(0) (220 mg, 0.19 mmol) was added. The reaction was purged with nitrogen again. After 1.5 h at room temperature the reaction was diluted with ethyl acetate, washed twice with 1 N hydrochloric acid, saturated sodium bicarbonate solution, water and brine, dried over sodium sulfate and filtered. The solution was treated with activated charcoal, filtered, concentrated and purified by chromatography (40 g silica gel, 6% to 80% ethyl acetate-hexane) to afford (3R,4S)-4-(4-bromo-2-hydroxyphenyl)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one (1.04 g, 83% yield); R_f 0.38 (1:4 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) & 7.28-7.18 (m, 6H), 7.09-6.92 (m, 6H), 5.91 (s, 1H), 4.93 (d, J = 2.3 Hz, 1H), 4.65 (t, J = 5.4 Hz, 1H), 3.06 (ddd, J = 4.8, 2.3, 2.3 Hz, 1H), 1.98-1.77 (m, 4H), 0.86 (s, 9H), 0.006 (s, 3H), -0.16 (s, 3H) ppm; MS [M-H]⁺ 581.7.

[00301] Example 40. (3R,4S)-4-(4-Bromo-2-{[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one

(3R,4S)-4-(4-Bromo-2-hydroxyphenyl)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one (1.04 g, 1.79 mmol) was dissolved in anhydrous dichloromethane (5 mL), anhydrous N,N-dimethylformamide (5 mL) and stirred under nitrogen at room temperature. 2,6-Lutidine (1.0 mL, 920 mg, 8.6 mmol) was added followed by drop-wise addition of tert-butyldimethylsilyl trifluromethane sulfonate (1.2 mL, 1.38 g, 5.22 mmol). The reaction was stirred under nitrogen at room temperature for 2.25 h. 2,6-Lutidine (0.25 mL, 230 mg, 2.15 mmol) was added followed by addition of tert-butyldimethylsilyl trifluromethane sulfonate

(0.4 mL, 460 mg, 1.74 mmol) and after a total of 4.5 h at room temperature the reaction was diluted with ethyl acetate and water and the layers were separated. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with 0.5 N hydrochloric acid, saturated sodium bicarbonate solution, water (4 times) and brine, dried over sodium sulfate, filtered, concentrated and purified by chromatography (40 g silica gel, 1% to 85% ethyl acetate-hexane) to afford (3R,4S)-4-(4-bromo-2-{[tert-butyl(dimethyl)silylloxy}phenyl)-3-[(3S)-3-{[tertbutyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one (1.23 g, 99% vield); R_f 0.57 (1:4 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.14 (m. 6H), 7.09-6.91 (m. 6H), 4.99 (d. J = 2.3 Hz, 1H), 4.62 (t. J = 5.6 Hz, 1H), 3.06 (ddd, J = 4.9, 2.5, 2.3 Hz, 1H), 1.97-1.69 (m, 4H), 1.03 (s, 9H), 0.84 (s, 9H), 0.33 (s, 3H), 0.29 (s, 3H), -0.01 (s, 3H), -0.20 (s, 3H) ppm. [00302] Example 41. 5-Bromo-2-{(2S,3R)-3-[(3S)-3-{[tertbutyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-

vl}phenvl acetate

(3R,4S)-4-(4-Bromo-2-hydroxyphenyl)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyll-1-phenylazetidin-2-one (293 mg, 0.50 mmol) was dissolved in anhydrous dichloromethane (3 mL). 4-Dimethylaminopyridine (183 mg, 1.5 mmol) was added followed by acetic anhydride (280 µL, 302 mg, 3.0 mmol). After 1 h the reaction was filtered through a plug of silica gel and eluted with dichloromethane. The solvent was concentrated, azeotroped with toluene and purified by chromatography (40 g silica gel, 1% to 85% ethyl acetate-hexane) to afford 5-bromo-2-{(2S.3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silvl]oxy}-3-(4-fluorophenyl)propyl]-4oxo-1-phenylazetidin-2-yl}phenyl acetate (245 mg, 78% yield); Rf 0.47 (1:4 ethyl

acetate-hexane); ¹H NMR (300 MHz, CDCl₃) & 7.38-7.16 (m, 9H), 7.14-6.94 (m, 3H), 4.69 (t, J = 5.4 Hz, 1H), 4.64 (d, J = 2.3 Hz, 1H), 3.06 (ddd, J = 4.7, 2.3, 2.2 Hz, 1H), 2.30 (s, 3H), 1.97-1.78 (m, 4H), 0.89 (s, 9H), 0.032 (s, 3H), -0.14 (s, 3H) ppm; MS [M-OSi(CH₃)₂C(CH₃)₃J⁺ 493.8

[00303] Example 42. (3R,4S)-4-(3,3'-Dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one

[00304] Using Suzuki coupling methodology, 5-Bromo-2-{(2S,3R)-3-[(3S)-3-{[tertbutyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2vl}phenyl acetate (100 mg, 0.16 mmol) was combined with 3-hydroxyphenyl boronic acid (29 mg, 0.21 mmol) with deoxygenated toluene (3 mL) and deoxygenated ethanol (1 mL). 2.0 M aqueous potassium carbonate (0.31 mL, 0.31 mmol) was added and the vessel was purged with nitrogen. Tetrakis(triphenylphosphine)palladium(0) (9 mg, 0.008 mmol) was added and the vessel purged again. The reaction was heated to 70 °C for 1.5 h, cooled, diluted with water and extracted with ethyl acetate (2 x). The combined organic layers were washed with water, brine, dried over sodium sulfate, filtered, concentrated and purified by chromatography (40 g silica gel, 20% to 90% ethyl acetate-hexane) to afford 4-{(2S.3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silvl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl acetate (70 mg, 69% yield)); Rf 0.34 (1:2 ethyl acetate-hexane); ¹H NMR (300 MHz. CDCl₃) δ 7.34-7.17 (m, 10H), 7.06-6.90 (m, 5H), 6.79 (ddd, J = 8.1, 2.5, 0.8 Hz, 1H), 6.03 (br s, 1H), 4.67 (d, J = 2.3 Hz, 1H), 4.64 (t, J = 5.6 Hz, 1H), 3.26 (ddd, J = 4.8. 2.5, 2.4 Hz, 1H), 2.27 (s, 3H), 1.94-1.73 (m, 4H), 0.84 (s, 9H), -0.02 (s, 3H), -0.19 (s, 3H) ppm; MS [M-OSi(CH₃)₂C(CH₃)₃]⁺ 508.0

[00305] 4-{(2S,3R)-3-[(3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-3-(4fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl acetate (70 mg, 0.11 mmol) was dissolved in methanol (2.45 mL). Water (0.73 mL) was added dropwise followed by triethylamine (2.2 mL) and the reaction stirred at room temperature for 1 h. Toluene (3 mL) and methanol (5 mL) were added and the reaction was concentrated to give 69 mg of crude (3R,4S)-3-[(3S)-3-{[tertbutyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-(3,3'-dihydroxybiphenyl-4-yl)-1-phenylazetidin-2-one which was used without further purification. [00306] (3R,4S)-3-[(3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-3-(4fluorophenyl)propyl]-4-(3,3'-dihvdroxybiphenyl-4-yl)-1-phenylazetidin-2-one (73 mg. 0.122 mmol) was dissolved in acetonitrile (5 mL) and transferred to a polypropylene conical vial. 48% Hydrofluoric acid (1 mL) was added dropwise and the reaction stirred at room temperature for 1 h. The reaction was quenched with 1 N sodium hydroxide (24 mL) and transferred to a flask containing pH 7.4 phosphate buffer (24 mL). The pH of the solution was adjusted to 7.5-8.0 with saturated sodium bicarbonate solution then extracted with ethyl acetate (3x). The combined organic layers were washed with saturated sodium bicarbonate solution (2x), water, brine, dried over sodium sulfate, filtered, concentrated and purified by chromatography (12 g silica gel, 40% to 100% ethyl acetate-hexane) to afford (3R,4S)-4-(3,3'dihydroxybinhenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1phenylazetidin-2-one (53 mg, 69% yield)); ¹H NMR (300 MHz, CDCl₃)δ 7.30-7.13 (m. 7H), 7.08-6.85 (m. 8H), 6.78 (ddd, J = 8.1, 2.3, 0.9 Hz, 1H), 5.04 (d, J = 2.3 Hz, 1H), 4.61 (t, J = 5.9 Hz, 1H), 3.07 (ddd, J = 5.7, 1.8, 1.5 Hz, 1H), 2.08-1.80 (m, 4H) ppm; MS [M+H]+ 584.0 [M-H] 582.0

 $[00307] \quad \text{Example 43. (3R,4S)-4-(3-bromophenyl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]} azetidin-2-one$

[00308] Synthesized using a similar procedure as Example 39 starting from 4-fluoroaniline and 3-bromobenzaldehyde. The benzylic TBDMS protecting group was removed using 48% hydrofluoric acid as described in Example 42. Purified by chromatography (silica gel, 10% to 60% ethyl acetate-hexane) to afford (3R,4S)-4-(3-bromophenyl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one (86 mg); ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.45 (m, 2H), 7.33-7.18 (m, 6H), 7.07-6.91 (m, 4H), 4.72 (t, J = 5.8 Hz, 1H), 4.57 (d, J = 2.4 Hz, 1H), 3.10 (ddd, J = 4.8, 2.4, 2.4 Hz, 1H), 2.12 (br s, 1H), 2.06-1.86 (m, 4H) ppm; MS [M+HCO₂T] 516.0

[00309] Example 44. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-3-yl)azetidin-2-one

(3R,4S)-4-(3-Bromophenyl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one (43 mg, 0.091 mmol) was coupled with 3-hydroxyphenyl boronic acid (18 mg, 0.13 mmol) under standard Suzuki conditions illustrated by Example 42. Purified by chromatography (silica gel, 10% to 90% ethyl acetate-hexane) to afford (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-3-yl)azetidin-2-one (19.7 mg, 45% yield); R_f 0.30 (1:1 ethyl acetate-hexane); 1 H NMR (300 MHz, CDCl₃) δ 7.57-7.40 (m, 3H), 7.34-7.22 (m, 6H), 7.10 (ddd, 7.7, 1.6, 0.9 Hz 1H), 7.04-6.90 (m, 5H), 6.84 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 5.10 (br s, 1H), 4.72 (t, J = 5.9 Hz, 1H), 4.67 (d, J = 2.4 Hz, 1H), 3.16 (ddd, J = 5.0, 2.6, 2.4 Hz, 1H), 2.26 (br s, 1H), 2.08-1.88 (m, 4H) ppm [00310] Example 45. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'-hydroxybiphenyl-3-yl)azetidin-2-one

(3R,4S)-4-(3-Bromophenyl)-1-(4-fluorophenyl)-3-((3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one (42 mg, 0.089 mmol) was coupled with 4-hydroxyphenyl boronic acid (18 mg, 0.13 mmol) under standard Suzuki conditions illustrated by Example 42. Purified by chromatography (silica gel, 10% to 90% ethyl acetate-hexane) to afford (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'-hydroxybiphenyl-3-yl)azetidin-2-one (27 mg, 63% yield); R_ℓ 0.31 (1:1 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.37 (m, 6H), 7.32-7.22 (m, 4H), 7.04-6.87 (m, 6H), 5.24 (br s, 1H), 4.72 (t, J = 6.0 Hz, 1H), 4.67 (d, J = 2.4 Hz, 1H), 3.17 (ddd, J = 5.3, 2.5, 2.4 Hz, 1H), 2.26 (br s, 1H), 2.09-1.88 (m, 4H) ppm

[00311] Example 46. (3R,4S)-4-(4-Bromophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hvdroxvpropyl]-1-phenylazetidin-2-one

[00312] Synthesized using a similar procedure as Example 39 starting from aniline and 4-bromobenzaldehyde. The benzylic TBDMS protecting group was removed using 48% hydrofluoric acid as described in Example 42. Purification by chromatography (40 g silica gel, 10% to 90% ethyl acetate-hexane) afforded (3R,4S)-4-(4-bromophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one (982.6 mg, 75% overall yield) as a clear film; R_f 0.45 (2:3 ethyl acetate-hexane);

¹H NMR (300 MHz, CDCl₃) 6 7.49 (d, J = 8.3 Hz, 2H), 7.31-7.19 (m, 8H), 7.07-6.98

(m, 3H), 4.70 (t, J = 6.1 Hz, 1H), 4.61 (d, J = 2.5 Hz, 1H), 3.04 (dt, J = 7.4, 2.3 Hz, 1H), 2.24 (br s, 1H), 2.03-1.86 (m, 4H) ppm

[00313] Example 47. (3R,4S)-4-(5-Bromopyridin-2-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyll-1-phenylazetidin-2-one

[00314] Synthesized using the same procedure as Example 39 starting from aniline and 5-bromo-2-pyridinecarboxaldehyde (prepared using a procedure described by Wang et. al., Tetrahedron Letters 41 (2000), 4335-4338). The benzylic TBDMS protecting group was removed using 48% hydrofluoric acid as described in Example 42. Purification by chromatography (12 g silica gel, 15% to 90% ethyl acetate-hexane) afforded (3R,4S)-4-(5-bromopyridin-2-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one (23.3 mg, 3% overall yield) as a clear film; R_f 0.07 (1:4 ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 8.66 (d, J = 2.3 Hz, 1H), 7.80 (dd, J = 8.3, 2.3 Hz, 1H), 7.34-7.29 (m, 3H), 7.24-7.17 (m, 4H), 7.09-6.99 (m, 3H), 4.82 (d, J = 2.5 Hz, 1H), 4.75-4.71 (m, 1H), 3.21 (dt, J = 7.0, 2.3 Hz, 1H), 2.31-1.89 (m, 5H) ppm

[00315] Example 48. (3R,4S)-4-(5-Bromo-2-thienyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one

[00316] Synthesized using the same procedure as Example 39 starting from aniline and 5-bromo-2-thiophenecarboxaldehyde. The benzylic TBDMS protecting group

was removed using 48% hydrofluoric acid as described in Example 42. Purification by chromatography (40 g silica gel, 15% to 90% ethyl acetate-hexane) afforded (3R,4S)-4-(5-bromo-2-thienyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one (212.4 mg, 23% overall yield) as a white solid; R_f 0.13 (1:4 ethyl acetate-hexane); 1 H NMR (300 MHz, CDCl₃) δ 7.36-7.21 (m, 6H), 7.10-7.06 (m, 1H), 7.02 (t, J = 8.7 Hz, 2H), 6.89 (dd, J = 19.7, 3.8 Hz, 2H), 4.83 (d, J = 2.4 Hz, 1H), 4.71 (t, J = 5.7 Hz, 1H), 3.25-3.19 (m, 1H), 2.20 (br s, 1H), 2.01-1.83 (m, 4H) ppm

[00317] Example 49. (3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-[5-(3-hydroxyphenyl)pyridin-2-yl]-1-phenylazetidin-2-one

[00318] (3R,4S)-4-(5-Bromopyridin-2-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one (23 mg, 0.051 mmol) was coupled with 3-hydroxyphenyl boronic acid (9.2 mg, 0.067mmol) under standard Suzuki conditions illustrated by Example 42. Purification by chromatography (4 g silica gel, 15% to 100% ethyl acetate-hexane) afforded (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[5-(3-hydroxyphenyl)pyridin-2-yl]-1-phenylazetidin-2-one (20.7 mg, 87% yield) as a clear film; R_f 0.14 (1:1 ethyl acetate-hexane); HNMR (300 MHz, CDCl₃) δ 8.88 (d, J = 2.2 Hz, 1H), 7.88 (dd, J = 8.2, 2.3 Hz, 1H), 7.86-7.80 (m, 1H), 7.39-7.22 (m, 7H), 7.12-7.02 (m, 3H), 6.96 (t, J = 8.7 Hz, 2H), 6.96-6.91 (m, 1H), 4.97 (d, J = 2.3 Hz, 1H), 4.76-4.72 (m, 1H), 3.28-3.22 (m, 1H), 3.20 (br s, 1H), 2.17-1.90 (m, 4H), 1.80 (br s, 1H) ppm; MS [M+H] $^+$ 469.0 [00319] Example 50. (3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-[5-(3-hydroxyphenyl)-2-thienyl]-1-phenylazetidin-2-one

(3R,4S)-4-(5-Bromo-2-thienyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one (90.2 mg, 0.196 mmol) was coupled with 3-hydroxyphenyl boronic acid (32.2 mg, 0.233 mmol) under standard Suzuki conditions illustrated by Example 42. Purification by chromatography (12 g silica gel, 15% to 100% ethyl acetate-hexane) afforded (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[5-(3-hydroxyphenyl)-2-thienyl]-1-phenylazetidin-2-one (77.6 mg, 84% yield) as a clear foam; R_f 0.36 (1:1 ethyl acetate-hexane); ¹H NMR (300 MHz, CD₃OD) & 7.31-6.93 (m, 14H), 6.70 (ddd, J = 8.0, 2.3, 1.0 Hz, 1H), 4.89-4.88 (m, 1H), 4.64-4.59 (m, 1H), 3.77 (br s, 2H), 3.25-3.21 (m, 1H), 1.97-1.83 (m, 4H) ppm; MS [M-OH]⁺ 456.0 [00320] Example 51. (3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-[5-(4-hydroxyphenyl)-2-thienyl]-1-phenylazetidin-2-one

(3R,4S)-4-(5-Bromo-2-thienyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one (69.8 mg, 0.152 mmol) was coupled with 4-hydroxyphenyl boronic acid (25.2 mg, 0.183 mmol) under standard Suzuki conditions illustrated by Example 42. Purification by chromatography (12 g silica gel, 15% to 100% ethyl acetate-hexane) afforded (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[5-(4-hydroxyphenyl)-2-thienyl]-1-phenylazetidin-2-one (40.7 mg, 56% yield) as a clear

foam; R_f 0.39 (1:1 ethyl acetate-hexane); 1 H NMR (300 MHz, CDCl₃) δ 7.64-7.60 (m, 4H), 7.56-7.48 (m, 5H), 7.33-7.27 (m, 2H), 7.25-7.20 (m, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.81 (br s, 1H), 5.14 (d, J = 2.3 Hz, 1H), 5.00-4.95 (m, 1H), 3.57-3.50 (m, 1H), 2.29-2.11 (m, 4H) ppm; MS [M+H]* 474.0

[00321] Example 53. Sodium 4'-{(2S,3R)-3-[(3S/R)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonate

5-Bromo-2-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}phenyl acetate (140.0 mg, 0.223 mmol) was dissolved in acetonitrile (8.0 mL) and 48% hydrofluoric acid (0.8 mL) into a polypropylene Falcon® tube. The reaction was stirred for 4 h at room temperature and then poured into 0.5 M potassium phosphate (50 mL), extracted with 1:1 ethyl acetate-hexane (50 mL), washed with saturated sodium bicarbonate solution (50 mL) and brine (50 mL), dried over sodium sulfate, filtered, concentrated and purified by chromatography (12 g silica gel, 15% to 90% ethyl acetate-hexane) to afford 5-bromo-2-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}phenyl acetate (114.5 mg, 100% yield) as a clear foam; R_f 0.11 (1:4 ethyl acetate-hexane).

[00322] 5-Bromo-2-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}phenyl acetate (114.5 mg, 0.223 mmol) and 3-thioanisoleboronic acid (48.3 mg, 0.287 mol) were dissolved in toluene (3.0 mL) and ethanol (1.5 mL). A solution of 2.0 M aqueous sodium carbonate (0.215 mL, 0.43 mmol) and solid tetrakis(triphenylphosphine)palladium(0) (14.4 mg, 0.0125 mmol) were added and the vessel was vacuum/nitrogen purged (3x). The reaction was stirred

vigorously for 4 h at 60 °C under a nitrogen atmosphere and then poured into 0.2 N hydrochloric acid (50 mL), extracted with 1:1 ethyl acetate-hexane (75 mL), washed with brine (50 mL), dried over sodium sulfate, filtered and concentrated to afford a mixture of products which was used directly in the next step; Rf 0.79 (2:1 ethyl acetate-hexane) for (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[3hydroxy-3'-(methylthio)biphenyl-4-yl]-1-phenylazetidin-2-one and 0.84 (2:1 ethyl acetate-hexane) for 4-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1phenylazetidin-2-yl}-3'-(methylthio)biphenyl-3-yl acetate. [00323] A 1:1 mixture of (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[3-hydroxy-3'-(methylthio)biphenyl-4-yl]-1-phenylazetidin-2-one and 4-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-(methylthio)biphenyl-3-yl acetate (0.223 mmol) was dissolved in dichloromethane (10 mL) and cooled to 0 °C. 3- Chloroperoxybenzoic acid (64.3 mg, 0.373 mmol) was added in portions while monitoring by LCMS to make the arylsulfoxide. Once addition was complete the reaction was poured into quarter saturated sodium bicarbonate solution (50 mL), extracted with 1:1 ethyl acetate-hexane (75 mL), washed brine (50 mL), dried over sodium sulfate, filtered and concentrated. The residue was dissolved in dichloromethane (10 mL) and the Pummerer rearrangement was effected by the addition of trifluoroacetic anhydride (100 μL, 148.7 mg, 0.708 mmol). The reaction was stirred at room temperature for 4 h and then 3chloroperoxybenzoic acid (121.7 mg, 0.705 mmol) was added to convert to the sulfone. The mixture was stirred for 15 min at room temperature, concentrated and dissolved in 3:3:1 methanol-triethylamine-water (7 mL) to hydrolyze the acetate and trifluoroacetate groups. The reaction was stirred for 2 h at room temperature, concentrated and dissolved in dichloromethane (10 mL). 3- Chloroperoxybenzoic acid (49.2 mg, 0.285 mmol) was added to oxidize the compound to the sulfonic acid. The reaction was stirred for 10 min at room temperature, diluted with 1:1 ethyl acetate-hexane (50 mL) and extracted with 1% saturated sodium bicarbonate solution (3 x 50 mL). The aqueous layer was acidified with 1.0 N hydrochloric acid (~10 mL), extracted with ethyl acetate (2 x 75 mL), diluted with triethylamine (1.0 mL). concentrated, purified by reverse-phase HPLC (Polaris C18-A 10μ 250 x 21.2 mm

column, 25% to 100% acetonitrile-0.1% trifluoroacetic acid in water) and passed through Dowex® sodium ion exchange resin to afford sodium 4'-{(2S,3R)-3-[(3S/R)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonate (45.3 mg, 36% yield) as an off-white solid; $^{\rm l}$ H NMR (300 MHz, CD₃OD) δ 8.04-6.98 (m, 16H), 5.17 (d, J = 2.2 Hz, 0.66H), 5.14 (d, J = 2.2 Hz, 0.33H), 4.70-4.60 (m, 1H), 3.21-3.14 (m, 1H), 2.09-1.89 (m, 4H) ppm; MS [M-Nal $^{\rm T}$ 546.0

[00324] Example 54. (3R,4S)-3-[(3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-(3'-hydroxybiphenyl-4-yl)-1-phenylazetidin-2-one

(3R,4S)-4-(3'-{[tert-Butyl(dimethyl)silyl]oxy} biphenyl-4-yl)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one (0.60 g, 0.86 mmol) was stirred at room temperature in dry methanol (20 mL) under a nitrogen atmosphere. Potassium fluoride (0.10 g, 1.72 mmol) was added and the reaction mixture was stirred 1.5 h at room temperature. The solution was poured into ethyl acetate and washed successively with water (2x), 10% aqueous sodium bicarbonate, water and brine. The organic solution was dried over sodium sulfate, filtered, concentrated and purified by chromatography over silica gel using ethyl acetate-hexane (gradient: 5% ethyl acetate to 50%) to afford (3R,4S)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-(3'-hydroxybiphenyl-4-yl)-1-phenylazetidin-2-one (0.46 g, 92%) as a white foam; ¹H NMR (300 MHz, CDCl₃) 87.57 (d, J = 8.2, Hz, 2H,) 7.37 (d, J = 8.2 Hz, 2H), 6.9-7.4 (m, 12H), 6.8 (m, 1H), 4.9 (br s, 1H), 4.67 (t, J = 6.0 Hz, 1H), 4.63 (d, J = 2.5 Hz, 1H), 3.0-3.1 (m, 1H), 1.8-2.0 (m, 4H), 0.87 (s, 9H), 0.02 (s, 3H), -0.16 (s, 3H)

[00325] Example 55. 4'-{(2S,3R)-3-[(3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl trifluoromethanesulfonate

(3R,4S)-3-[(3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-(3'hydroxybiphenyl-4-yl)-1-phenylazetidin-2-one (0.46 g, 0.79 mmol) was stirred at room temperature in dry dichloromethane (15 mL) under a nitrogen atmosphere. N-Phenyltrifluoromethanesulfonimide (0.39 g, 1.09 mmol), triethylamine (0.23 mL, 1.65 mmol) and 4-(dimethylamino)pyridine (0.02 g, 0.2 mmol) were added in succession and the reaction mixture was stirred 2 h at room temperature. The solution was poured into 0.5N aqueous hydrochloric acid (20 mL) and extracted with ethyl acetate. The organic phase was washed successively with water, 10% aqueous sodium bicarbonate, water and brine. The organic solution was dried over sodium sulfate, filtered and the solvent was removed in vacuo to afford 4'-{(2S,3R)-3-f(3S)-3-{[tertbutyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2vl}biphenvl-3-vl trifluoromethanesulfonate as a white foam (0.56 g, 100%) by chromatography over silica gel using ethyl acetate-hexane (gradient: 5% ethyl acetate to 50%) ¹H NMR (300 MHz, CDCl₃) δ6.9-7.3 (m, 17H), 4.68 (t, J = 5.7 Hz, 1H), 4.65 (d, J = 2.5 Hz, 1H), 3.0-3.1 (m, 1H), 1.8-2.0 (m, 6H), 0.88 (s, 9H), 0.02 (s, 3H), -0.16 (s, 3H).

[00326] Example 56. (4-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)phosphonic acid

instrument set at normal absorbance, fixed hold time and 30 sec pre-stirring. A 10mL reaction vial was charged with 4'-{(2S,3R)-3-[(3S)-3-{[tertbutyl(dimethyl)silylloxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2yl}biphenyl-3-yl trifluoromethanesulfonate (0.27 g, 0.38 mmol), dimethyl phosphite (0.070 mL, 0.76 mmol) and triethylamine (0.15 mL, 1.08 mmol) in toluene (4 mL). Nitrogen was bubbled through the stirred solution for 5 min, tetrakis(triphenylphosphine)palladium(0) (0.1 g) was added, and the solution was covered with a blanket of nitrogen and sealed. The reaction mixture was heated for 11 min at 160 °C, then cooled to room temperature and diluted with ethyl acetate. The yellow solution was washed successively with 0.5 M hydrochloric acid (20 mL) water (3x) and brine. The organic solution was dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. Pure dimethyl (4'-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propvl]-4oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)phosphonate was obtained as a white foam (0.26 g, 65%) by chromatography over silica gel using ethyl acetate-hexane (gradient: 5% ethyl acetate to 100%). ¹H NMR (300 MHz, CDCl₃) δ 8.00 (dt, J = 14.2, 1.5 Hz, 1H), 7.60 (d, J = 8.5 Hz, 2H), 7.40(d, J = 8.5 Hz, 2H), 6.9-7.8 (m, 12H), 4.68 (t, J = 5.7 Hz, 1H), 4.64 (d, J = 2.4 Hz, 1H), 3.81 (d, J = 0.9 Hz, 1H), 3.77 (d, J = 0.9 Hz, 1H), 3.0-3.1 (m, 1H), 1.8-2.2 (m, 4H), 0.88 (s, 9H), 0.02 (s, 3H), -0.16 (s, 3H) ppm [00328] A solution of dimethyl (4'-{(2S,3R)-3-[(3S)-3-{[tertbutyl(dimethyl)silylloxy}-3-(4-fluorophenyl)propyll-4-oxo-1-phenylazetidin-2-

1003271 This reaction was performed using a PersonalChemistryTM microwave

yl}biphenyl-3-yl)phosphonate (0.32 g, 0.47 mmol) in dry dichloromethane (15 mL) under nitrogen was cooled in an ice bath and bromotrimethylsilane (0.30 mL, 2.27 mmol) was dripped in over 5 min. The reaction mixture was stirred at room temperature for 3 h, then poured into ice water (20 mL) and extracted with ethyl acetate. The organic solution was washed successively with water (2x) and brine. The organic solution was dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. The residue was purified by reverse-phase HPLC (Polaris C18-A 10u 250 x 21.2 mm column, 20% to 70% acetonitrile-0.1% trifluoroacetic acid in water) to afford (4'-{(2S,3R)-3-[(3S)-3-(4fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3yl)phosphonic acid (0.25 g, 99%) as a white powder; ¹H NMR (300 MHz, CD₃OD) $\delta 8.04$ (br d. J = 14.2 Hz. 1H) 7.68 (d. J = 8.5 Hz. 2H), 7.50(d. J = 8.5 Hz. 2H), 7.0-7.8 (m, 12H), 4.93 (d, J = 2.2 Hz, 1H), 4.63 (t, J = 5.2 Hz, 1H), 3.1-3.2 (m, 1H), 1.8-2.1 (m, 4H) ppm; MS [M-H] 531, [2M-H] 1061 [00329] Example 57. (3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-(3'-

hydroxybiphenyl-4-yl)-1-phenylazetidin-2-one

(3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)-1phenylazetidin-2-one was synthesized in a manner similar to that described in Example 42. (3R,4S)-4-(3'-{[tert-Butyl(dimethyl)silyl]oxy}biphenyl-4-yl)-3-[(3S)-3-{[tert-butvl(dimethyl)silvlloxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one (0.60 g, 0.86 mmol) was stirred at room temperature in acetonitrile (18 mL) in a 40 ml polypropylene vial fitted with a screw cap. Hydrogen fluoride (48% aqueous, 2.0 mL, 48 mmol) was dripped in and stirring was continued at room temperature overnight. The reaction mixture was poured into an aqueous solution of 1 N sodium hydroxide

(45 mL) buffered with 1 M sodium phosphate (45 mL, pH 7.4), then the pH of the solution was brought to pH 8 with the addition of aqueous 10% sodium bicarbonate solution. The mixture was extracted with ethyl acetate and the organic solution was washed successively with 10% sodium bicarbonate solution (2x), water (2x) and brine. The organic solution was dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. Pure (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)-1-phenylazetidin-2-one was obtained as a white foam (0.35 g, 87%) by chromatography over silica gel using ethyl acetate-hexane (gradient: 10% ethyl acetate to 60%) ¹H NMR (300 MHz, CDCl₃) \$7.56 (d, J = 8.2, Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.0-7.3 (m, 12H), 6.80-6.86 (m, 1H), 5.00 (br s, 1H), 4.74 (t, J = 6.2 Hz, 1H), 4.69 (d, J = 2.2 Hz, 1H), 3.1-3.2 (m, 1H), 2.20 (br s, 1H), 1.8-2.1 (m, 4H) ppm; MS [M+HCO₂] 512 [00330] Example 58. 4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl} biphenyl-3-yl trifluoromethanesulfonate

(3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)-1phenylazetidin-2-one (0.353 g, 0.77 mmol) was stirred at room temperature in dry dichloromethane (15 mL) under a nitrogen atmosphere.

Phenyltrifluoromethanesulfonimide (0.38 g, 1.69 mmol), triethylamine (0.23 mL, 1.65 mmol) and 4-dimethylaminopyridine (0.02 g, 0.2 mmol) were added in succession and the reaction mixture was stirred 1 h at room temperature. The solution was poured into 0.5 N hydrochloric acid (20 mL) and extracted with ethyl acetate. The organic phase was washed successively with water, 10% aqueous sodium bicarbonate, water and brine. The organic solution was dried over sodium sulfate, filtered and the

solvent was removed by rotary evaporation under reduced pressure. Pure 4'-{(2S,3R)-3-{(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl] biphenyl-3-yl trifluoromethanesulfonate was obtained as a white foam (0.35 g, 76%) by chromatography over silica gel using ethyl acetate-hexane (gradient: 5% ethyl acetate to 50%); ¹H NMR (300 MHz, CDCl₃) §7.0-7.6 (m, 17H), 4.74 (t, J = 6.4 Hz, 1H), 4.72 (d, J = 2.2 Hz, 1H), 3.1-3.2 (m, 1H), 2.16 (br s, 1H), 1.9-2.1 (m, 4H) ppm; MS [M+HCO₂] 644

[00331] Example 59. (4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)boronic acid

4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl} biphenyl-3-yl trifluoromethanesulfonate (0.15 g, 0.25 mmol), bis(pinacolato)diboron (0.70 g, 0.27 mmol), potassium acetate (0.80 g, 0.81 mmol) and dichloro[1,1'-bis(diphenylphosphino) ferrocene]palladium(II) (0.020 g, 0.03 mmol) were combined in dimethylsulfoxide (7 mL) in a 40-mL screw-cap vial at room temperature. The mixture was covered with a nitrogen atmosphere, the vial was sealed and the reaction was heated overnight at 80 °C. The reaction mixture was cooled to room temperature, poured into water and extracted with ethyl acetate. The organic phase was washed successively with water (2x) and brine, dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. Pure (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenyl-4-[3'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl-4-yl]azetidin-2-one was obtained as a white foam (0.097 g, 67%) by chromatography over silica gel using ethyl acetate-hexane (gradient: 5% ethyl acetate to 70%) ¹H NMR (300 MHz, CDCl₈)

\$8.01(br s, 1H), 7.75-7.85 (m, 1H), 7.0-7.7 (m, 15H), 4.74 (t, J = 6.2 Hz, 1H), 4.69 (d, J = 2.2 Hz, 1H), 3.0-3.2 (m, 1H), 1.50 (br s, 1H), 1.8-2.1 (m, 4H), 1.35 (s, 6H), 1.24 (s, 6H) ppm; MS [M+HCO₂] 577

[00332] (3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-1-phenyl-4-[3'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl-4-yl]azetidin-2-one (0.020 g, 0.034 mmol) was dissolved in ethanol (3 mL) and water (1 mL) at room temperature. Solid sodium carbonate (0.10 g, 1.2 mmol) was added and the mixture was rapidly stirred 2 h at room temperature. The solution was poured into 0.5 N hydrochloric acid (4 mL) and extracted with ethyl acetate. The organic phase was washed successively with water (2x) and brine, then dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. The residue was purified by reverse-phase HPLC (Polaris C18-A 10µ 250 x 21.2 mm column, 40% to 75% acetonitrile-0.1% trifluoroacetic acid in water) to afford (4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)boronic acid as a white powder (0.012 g, 70%); ¹H NMR (300 MHz, CD₃OD) §7.83 (br s, 1H), 7.0-7.7 (m, 16H), 4.92 (d, J = 2.7 Hz, 1H), 4.63 (t, J = 6.2 Hz, 1H), 3.1-3.2 (m, 1H), 1.8-2.1 (m, 4H) ppm; MS [M+HCO₂] 540

[00333] Example 60. Dimethyl [3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]phosphonate

3-Chlorophenol (0.50 g, 3.89 mmol) was stirred at room temperature in dry dichloromethane (20 mL) under a nitrogen atmosphere.

Phenyltrifluoromethanesulfonimide (1.80 g, 5.0 mmol), triethylamine (0.90 mL, 6.4 mmol) and 4-dimethylaminopyridine (0.10 g, 0.8 mmol) were added in succession and the reaction mixture was stirred 2 h at room temperature. The solution was poured into 0.5 N hydrochloric acid (20 mL) and extracted with ethyl acetate. The organic phase was washed successively with water, 10% aqueous sodium bicarbonate and

brine. The organic solution was dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. Pure 3-chlorophenyl trifluoromethanesulfonate was obtained as a colorless oil (0.92 g, 91%) by chromatography over silica gel using ethyl acetate-hexane (gradient: 5% to 50% ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ7.16-7.50 (m) ppm [00334] This reaction was performed using a PersonalChemistryTM microwave instrument set at normal absorbance, fixed hold time and 30 sec pre-stirring. A 10mL reaction vial was charged with 3-chlorophenyl trifluoromethanesulfonate (0.60 g, 2.30 mmol), dimethyl phosphite (0.42 mL, 4.58 mmol) and triethylamine (0.64 mL, 4.59 mmol) in toluene (4 mL). Nitrogen was bubbled through the stirred solution for 5 min, the tetrakis(triphenylphosphine)palladium(0) (0.1 g) was added, the solution was covered with a blanket of nitrogen and sealed. The reaction mixture was heated 11 min at 160 °C, then cooled to room temperature and diluted with ethyl acetate. The yellow solution washed successively with water (3x) and brine. The organic solution was dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. Pure dimethyl (3-chlorophenyl)phosphonate was obtained as a colorless oil (0.27 g, 57%) by chromatography over silica gel using ethyl acetate-hexane (gradient: 5% ethyl acetate to 100%). H NMR (300 MHz, CDCl3) δ7.77 (br d, J = 13.7 Hz, 1H), 7.68 (ddt, J = 13.0,7.5, 1.4 Hz, 1H), 7.53 (dquint., J = 8.0, 1.1 Hz, 1H), 7.38-7.45 (m, 1H), 3.79 (s, 3H), 3.75 (s, 3H) ppm; MS [M+H]⁺ 221. [2M+H]+ 441 [00335] Bis(dibenzylidineacetone)palladium(0) (0.10 g, 0.17 mmol and

[00335] Bis(dibenzylidineacetone)palladium(0) (0.10 g, 0.17 mmol and tricyclohexylphosphine (0.12 g, 0.43 mmol) were stirred 30 min in dry dioxane (1.0 mL) under an atmosphere of nitrogen at room temperature. Dimethyl (3-chlorophenyl)phosphonate (0.50 g, 2.26 mmol), bis(pinacolato)diboron (0.70 g, 0.27 mmol) and potassium acetate (0.30 g, 0.30 mmol) were mixed in dry dioxane (3.0 mL) at room temperature under a nitrogen atmosphere in a separate flask. A portion of the palladium catalyst solution (0.20 mL) was syringed into the flask containing the chlorophosphonate and this mixture was heated at 80 °C. Additional 0.2 mL portions of the catalyst solution were syringed into the reaction mixture after 4 h and 8 h of heating at 80 °C, then heating was continued overnight at 80 °C. The reaction mixture

was filtered through Celite® and the solvent was removed by rotary evaporation under reduced pressure. Chromatography over silica gel using ethyl acetate-hexane (gradient: 0% ethyl acetate to 80%) dimethyl [3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]phosphonate as a colorless oil (0.41 g). ¹H NMR showed a 60:40 mixture of product plus recovered starting material. This mixture was used as is in the next reaction without further purification. ¹H NMR (300 MHz, CDCl₃) §8.22 (d, J = 13.2 Hz, 1H), 7.95-8.00 (m, 1H), 7.88 (ddt, J = 13.0,7.5, 1.4 Hz, 1H), 7.43-7.50 (m, 1H), 3.76 (s, 3H), 3.73 (s, 3H) ppm; MS [M+H]* 312, [2M+H]* 625 [00336] Example 61. (4¹-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid

(3R,4S)-4-(4-Bromo-2-{[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one (0.080 g, 0.11 mmol), crude dimethyl [3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]phosphonate (0.054 g total, 0.030 g calculated, 0.096 mmol) and aqueous 2 M potassium carbonate (0.12 mL, 0.24 mmol) were mixed in ethanol (1.0 mL) and toluene (3.0 mL). The solution was deoxygenated by bubbling nitrogen through the mixture for 5 min while stirring. Tetrakis(triphenylphosphine)palladium(0) (0.05 g) was added and the reaction was heated for 3 h at 70 °C under an atmosphere of nitrogen. The reaction was cooled to room temperature, diluted with ethyl acetate, washed with water and brine, dried over sodium sulfate and concentrated by rotary evaporation under reduced pressure. The product was purified by chromatography over silica gel using ethyl acetate-bexane (gradient: 10% ethyl acetate to 80%) to afford dimethyl (3'-{{tert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{(3S)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3-{ftert-butyl(dimethyl)silylloxy}-4'-{(2S.3R)-3

butvl(dimethyl)silvlloxv}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2vl}biphenyl-3-yl)phosphonate as a colorless syrup (0.065 g, 84%). H NMR (300 MHz, CDCl₃) δ 6.9-8.0 (m, 16H), 5.09 (d, J = 2.2 Hz, 1H), 4.64 (d, J = 6.1 Hz, 1H), 3.79 (d, J = 2.4 Hz, 3H), 3.76 (d, J = 2.4 Hz, 3H), 3.05-3.15 (m, 1H), 1.8-2.0 (m, 4H). 1.06 (s, 9H), 0.85 (s, 9H), 0.36 (s, 3H), 0.33 (s, 3H), 0.00 (s, 3H), -0.20 (s, 3H) ppm [00337] Dimethyl (3'-{[tert-butyl(dimethyl)silyl]oxy}-4'-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-4'butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2yl}biphenyl-3-yl)phosphonate (0.047 g, 0.058 mmol) was stirred at room temperature in dry methanol (2 mL) under a nitrogen atmosphere. Potassium fluoride (0.02 g. 0.34 mmol) was added and the reaction mixture was stirred for 30 min at room temperature. The solution was poured into ethyl acetate and washed successively with water (2x), and brine. The organic solution was dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. Dimethyl (4'-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonate was obtained as a colorless glass (0.041 g, 100%) was used directly in the next reaction without further purification; MS [M-H]+ 688 [00338] A solution of dimethyl (4'-{(2S,3R)-3-[(3S)-3-{[tertbutyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}-3'hydroxybiphenyl-3-yl)phosphonate (0.041 g, 0.059 mmol) in dry dichloromethane (5 mL) under nitrogen was cooled in ice and bromotrimethylsilane (0.030 mL, 0.30 mmol) was dripped in over 5 min. The reaction mixture was stirred at room temperature for 3 h, then methanol (1 mL) was added and the reaction was partitioned between water and ethyl acetate. The organic solution was washed successively with water (2x) and brine. The organic solution was dried over sodium sulfate, filtered and the solvent was removed by rotary evaporation under reduced pressure. The residue was purified by reverse-phase HPLC (Polaris C18-A 10μ 250 x 21.2 mm column, 30% to 59% acetonitrile-0.1% trifluoroacetic acid in water) to afford (4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'hydroxybiphenyl-3-yl)phosphonic acid as a white powder (0.014 g. 44%): ¹H NMR (300 MHz, CD₃OD) δ 8.0 (d, J = 13.6 Hz, 1H), 6.9-7.8 (m, 15H), 5.17 (d, J = 2.1 Hz,

1H), 4.63 (d, J = 5.2 Hz, 1H), 3.15-3.25 (m, 1H), 1.8-2.1 (m, 4H) ppm; MS [M-H]⁺ 546, [2M-H]⁺ 1093.

[00339] Example 62. (1S)-2,3,4,6-Tetra-O-acetyl-1,5-anhydro-1-(3-bromophenyl)-D-glucitol

D-Glucopyranose (1.0 g, 5.55 mmol) was dissolved in 5 mL of acetic anhydride and 7 mL of pyridine at 0 °C. To this mixture was added 4-dimethylaminopyridine (200 mg, 1.63 mmol), and the reaction was stirred while warming to room temperature. TLC (40% ethyl acetate-hexane) after 18 h showed complete consumption of the starting material and formation of a higher running spot. The reaction was poured into 50 mL of water and extracted into dichloromethane (3 x 50 mL). The organic layers were combine, washed with 1 N hydrochloric acid (3 x 20 mL), dried over sodium sulfate, filtered, concentrated and purified by column chromatography (50 g silica gel, 40% ethyl acetate-hexane) to afford 1,2,3,4,6-penta-O-acetyl-α-D-glucopyranose (2.10 g, 5.37 mmol).

[00340] 1,2,3,4,6-penta-O-acetyl-α-D-glucopyranose (1.0 g, 2.60 mmol) was dissolved in 20 mL of dichloromethane and 1.90 mL of hydrobromic acid (33% in acetic acid) at 0 °C, and the reaction was stirred while warming to room temperature. TLC (40% ethyl acetate-hexane) after 18 h showed complete consumption of the starting material and formation of a higher running spot. The reaction was slowly diluted with saturated sodium bicarbonate (25 mL), extracted into dichloromethane (2 x 100 mL), dried over sodium sulfate, filtered and concentrated to afford 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide which was used without purification.

[00341] Magnesium (0) (400 mg) was suspended in 17 mL of anhydrous diethyl ether, and to the suspension was added 100 μL of 1,2-dibromoethane. 1,3-

dibromobenzene (3.8 g. 16.08 mmol) was added at a rate to keep a moderate reflux. After Grignard formation was complete (magnesium consumed and the reaction cooled), 2.3.4.6-tetra-O-acetyl- α-D-glucopyranosyl bromide (0.34 g. 0.80 mmol in 8mL of anhydrous diethyl ether) was added drop-wise. The reaction was refluxed for 5 h, cooled to room temperature and poured into a separatory funnel with 20 mL of water. The flask was rinsed with 50 mL of diethyl ether and 3 mL of acetic acid (to dissolve the magnesium salts) and added to the seperatory funnel. The layers were separated and the aqueous layer was collected and concentrated in vacuo. The white pasty solid was dissolved in 15 mL of pyridine and 10 mL of acetic anhydride. After 20 h at room temperate the reaction was poured into 150 mL of water and extracted into dichloromethane (3 x 150 mL). The organic layers were combine, washed with 1 N hydrochloric acid (3 x 50 mL), dried over sodium sulfate, filtered, concentrated and purified by column chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane) to afford (1S)-2.3.4.6-tetra-O-acetyl-1.5-anhydro-1-(3-bromophenyl)-D-glucitol (0.178 g, 0.36 mmol, 45% yield) as a white foam; Rf 0.4 (40% ethyl acetate-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.44 (m, 2H) 7.25 (m, 2H), 5.27-5.35 (m, 1H), 5.21 (t, J = 9.6 Hz, 1H), 5.03 (t, J = 9.7 Hz, 1H), 4.36 (d, J = 9.9 Hz, 1H), 4.23-4.32 (m, J = 9.6 Hz, 1Hz), 4.23-4.32 (m, J = 9.6 Hz), 4.23-4.1H) 4.08-4.18 (m, 1H) 3.80-3.85 (m, 1H) 2.09 (s, 3H), 2.06 (s, 3H), 1.99 (s, 3H), 1.84 (s, 3H) ppm; MS [M+H]+ 488.4

[00342] Example 63. Synthesized in the same manner as Example 62, but replacing 1.3 dibromobenzene with 1.4 dibromobenzene

(1S)-2,3,4,6-Tetra-O-acetyl-1,5-anhydro-1-(4-bromophenyl)-D-glucitol was obtained (45% yield, white wax). R_f 0.3 (40% ethyl acetate-hexane); ${}^{1}H$ NMR (300 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.7, 2H), 5.31 (d, J = 9.3 Hz, 1H), 5.21 (t, J = 9.9 Hz, 1H), 5.09 (t, J = 9.6 Hz, 1H), 4.37 (d, J = 9.9 Hz, 1H), 4.12-4.33 (m,

2H), 3.83 (m, 1H), 2.09 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.83 (s, 3H) ppm; MS [M+H]⁺ 488.4

[00343] Example 64. (1S)-1,5-Anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-D-glucitol

(3R.4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-1-phenyl-4-[4-(4.4.5.5tetramethyl-1,3,2-dioxaborolan-2-yl)phenyllazetidin-2-one (51,3 mg, 0,102 mmol) and (1S)-2,3,4,6-tetra-O-acetyl-1,5-anhydro-1-(3-bromophenyl)-D-glucitol (35.5 mg, 0.073 mmol) were dissolved in 2.0 mL of toluene and 0.25 mL of ethanol, 0.075 mL of 4 N potassium carbonate was added to the mixture followed by 5.0 mg of tetrakis(triphenylphosphine)palladium(0). The entire reaction was degassed three times with argon then heated to reflux for 4 h. The reaction was cooled to room temperature, diluted with 5 mL of water, and extracted with ethyl acetate (3 x 25 mL). The organic layers were combine, dried over sodium sulfate, filtered, concentrated and purified by column chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane) to afford 10.5 mg (13%) of (1S)-2.3.4.6-tetra-O-acetyl-1.5anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1phenylazetidin-2-yl}biphenyl-3-yl)-D-glucitol as a clear oil. [00344] (1S)-2,3,4,6-Tetra-O-acetyl-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl} hiphenyl-3-yl)-Dglucitol (10.5 mg, 0.013 mmol) was dissolved in 0.30 mL of methanol and 0.30 mL

mixture stirred at room temperature overnight. LCMS of the solution confirmed complete consumption of the starting material and formation of the fully deprotected material. The mixture was concentrated in vacuo, and purified by reverse-phase HPLC (Polaris C18-A 10u 250 x 21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) to afford 2.8 mg (35%) of the desired (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-vI}biphenyl-3-vI)-D-glucitol as a white powder; ¹H NMR (300 MHz, CD₃OD) δ 7.65 (d, J = 11.1 Hz, 2H), 7.54-7.23 (m, 10H), 7.05-6.89 (m, 3H), 4.61 (t, J = 6.3 Hz, 1H), 4.19 (d, J = 9.0 Hz, 1H), 3.87 (d, J = 10.7 Hz, 1H), 3.73 - 3.63 (m, 1H), 3.49 - 3.36(m, 3H) 3.22-3.18 (m, 2H), 1.89 (m, 4H) ppm; MS [M-OH]+ 596.5 [00345] Example 65. (1S)-1,5-Anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-

3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol

(3R,4S)-4-(4-Bromo-2-{[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[(3S)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl(dimethyl)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl(dimethyl)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl(dimethyl)-3-[tert-butyl(dimethyl)silyl]oxy}phenyl(dimethyl)-3-[tert-butyl(dimethyl)s butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-1-phenylazetidin-2-one (0.42 g, 0.60 mmol) was dissolved in 15mL of dioxane in a scaled tube.

Bis(pinacolato)diboron (0.17 g, 0.66 mmol), potassium acetate (0.18g, 1.83 mmol), and dichloro[1,1'-bis(diphenylphosphino)ferrocene] palladium(II) dichloromethane adduct (14.6 mg, 0.018 mmol) were added and the reaction was degassed with argon and heated to 85 °C for 24 h. The mixture was cooled to room temperature diluted with 50 mL of 1:1 ethyl acetate-hexane, washed with 100 mL of 0.1 N hydrochloric acid and 2 x 100 mL of brine. The organic layers were collected, partially

concentrated to half the volume, filtered through 10 g of silica gel, washed with 50 mL of ethyl acetate and concentrated in vacuo.

[00346] The resulting brown oil which is (3R,4S)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-[2-{[tert-butyl(dimethyl)silyl]oxy}-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-phenylazetidin-2-one was dissolved with (1S)-2,3,4,6-tetra-O-acetyl-1,5-anhydro-1-(3-bromophenyl)-D-glucitol in 4.0 mL of toluene and 0.5 mL of ethanol. 0.150 mL of 4 N potassium carbonate was added followed by 7 mg of tetrakis(triphenylphosphine)palladium(0). The entire reaction was degassed three times with argon then heated to reflux for 1.5 h. After this time the reaction was cooled to room temperature and diluted with 25 mL of water and extracted with 1:1 hexane-ethyl acetate (3 x 75 mL). The organic layers were combine, dried over sodium sulfate, filtered, concentrated and purified by column chromatography (12 g silica gel, 5% to 95% ethyl acetate-hexane) to afford 41.6 mg (27%) of (1S)-2,3,4,6-tetra-O-acetyl-1,5-anhydro-1-(3'-{[tert butyl(dimethyl)silyl]oxy}-4'-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl}D-glucitol as a clear oil.

[00347] This material was immediately dissolved in 0.80 mL of methanol and 0.80 mL of triethylamine followed by dropwise addition of water (2.3 mL). The yellow mixture was stirred at room temperature for 24 h, extracted with 1:1 ethyl acetate-hexane (3 x 100 mL), dried with sodium sulfate, and concentrated in vacuo to afford (1S)-1,5-anhydro-1-(3'-{[tert-butyl(dimethyl)silyl]oxy}-4'-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-D-glucitol.

[00348] The final deprotection was accomplished by dissolving (1S)-1,5-anhydro-1-(3'-{[tert-butyl(dimethyl)silyl]oxy}-4'-{(2S,3R)-3-{(aS)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-4-yl)-D-glucitol in 5 mL of acetonitrile, and adding 2.5 mL of 48% hydrofluoric acid. The mixture stirred at room temperature of 1.5 h, neutralized with 70 mL of 1 N sodium hydroxide and 50 mL of 1 M sodium phosphate buffer pH 7.4, extracted into ethyl acetate (2 x 100 mL), washed with saturated sodium bicarbonate

(2 x 25 mL), dried with sodium sulfate, filtered and concentrated in vacuo. The crude sample was purified by reverse-phase HPLC (Polaris C18-A 10μ 250 x 21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) to afford 7.9 mg (74%) of the desired (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol as a white solid; ¹H NMR (300 MHz, CD₃OD) β 7.49 (dd, J = 6.6 Hz, 4H), 7.34-7.21 (m, 7H), 7.15 (d, J = 7.8 Hz, 1H), 7.07-6.97 (m, 5H), 5.13 (d, J = 2.1 Hz, 1H), 4.61 (m, 1H), 4.15 (d, J = 9.3 Hz, 1H) 3.90 (d, J = 12 Hz, 1H), 3.70 (m, 1H) 3.41 (m, 4H), 3.16 (m, 1H), 1.99-1.93 (m, 4H) ppm; MS [M-OH]⁺ 612.6

[00349] Example 66. (1S)-1,5-Anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-vl}-3'-hydroxypropyl]-4-oxo-1-phenylazetidin-2-vl}-3'-hydroxypropyl

[00350] Obtained in a manner similar to Example 65, but using (1S)-2,3,4,6-tetra-O-acetyl-1,5-anhydro-1-(4-bromophenyl)-D-glucitol in place of (1S)-2,3,4,6-tetra-O-acetyl-1,5-anhydro-1-(3-bromophenyl)-D-glucitol. (1S)-1,5-Anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxypiphenyl-4-yl)-D-glucitol (20 % yield, white solid). 1 H NMR (300 MHz, CD₃OD) 8 7.54 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.35-7.09 (m, 8H), 7.05-6.97 (m, 4H), 5.14 (d, J = 2.3 Hz, 1H), 4.63-4.59 (m, 1H), 4.17 (d, J = 9.5 Hz, 1H), 3.90 (dd, J = 11.8, 1.6 Hz, 1H), 3.71 (dd, J = 11.8, 4.9 Hz, 1H), 3.53-3.36 (m, 4H), 3.19-3.13 (m, 1H), 2.05-1.88 (m, 4H) ppm; $[\alpha]_0^{-23}$ +1.7° (c 8.7, methanol).

[00351] Example 67. (2S/2R,3S,4S,6R,7R,8S)-3-O-tert-Butyldimethylsilyl-2,3,6,7-tetrahydroxy-6,7-O-isopropylidene-1,5-dioxa-2-(3-bromophenyl)-bicyclo[3,3,0]octane

n-Butyllithium (31.5 mL, 41.0 mmol, 1.3 M hexane) was added via addition funnel to 1,3-dibromobenzene (9.64 g, 41.0 mmol, 4.94 mL) dissolved in anhydrous tetrahydrofuran (30 mL) at -78 °C over 30 min. The addition funnel was rinsed with anhydrous tetrahydrofuran (15 mL) and the reaction was allowed to stir for 30 min at -78 °C. To this solution was added 5-O-tert-butyldimethylsilyl-1,2-O-isopropylideneα-D-glucuronolactone (4.5 g, 13.6 mmol) [prepared according to Tetrahedron Asymmetry 7:9, 2761, (1996)] dissolved in 30 mL of anhydrous tetrahydrofuran at -78 °C and the reaction stirred for 2 h. The reaction was quenched by the addition of saturated ammonium chloride (20 mL) followed by warming to room temperature. The reaction was poured into ethyl acetate (30 mL) and water (10 mL) and the layers separated. The aqueous layer was extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated and purified by chromatography (1:1 diethyl ether-hexane) to afford a diastereomeric mixture of (2S/2R,3S,4S,6R,7R,8S)-3-O-tert-butyldimethylsilyl-2,3,6,7-tetrahydroxy-6,7-O-isopropylidene-1,5-dioxa-2-(3-bromophenyl)bicyclo[3.3.0]octane (4.77 g, 72% yield) as a colorless viscous oil. Rf 0.51 (3:1 hexane-ethyl acetate)

[00352] Example 68. (6S)-6-C-(3-Bromophenyl)-6-O-[tert-butyl(dimethyl)silyl]-1,2-O-(1-methylethylidene)- α -D-glucofuranose

[00353] Sodium borohydride (11.1 mg, 0.29 mmol) was added to (2S/2R,3S,4S,6R,7R,8S)-3-O-tert-butyldimethylsilyl-2,3,6,7-tetrahydroxy-6,7-Oisopropylidene-1,5-dioxa-2-(3-bromophenyl)-bicyclo[3.3.0]octane dissolved in absolute ethanol (4 mL) at room temperature. The reaction was stirred at room temperature for 1 h. TLC analysis (3:1 hexane-ethyl acetate) indicated that all the starting lactol had been consumed. 1 mL of saturated ammonium chloride solution was added and the reaction was stirred until the effervescence ceased. The reaction was poured into ethyl acetate (30 mL) and water (10 mL) and the layers separated. The aqueous layer was extracted 2 x 20 mL with ethyl acetate. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated and purified by chromatography (3:1 hexane:ethyl acetate) to afford (6S)-6-C-(3bromophenyl)-6-O-[tert-butyl(dimethyl)silyl]-1,2-O-(1-methylethylidene)- α-Dglucofuranose (125 mg, 88% yield) as a white waxy solid. mp 76-77 °C; Rf 0.24 (3:1 hexane:ethyl acetate); ¹H NMR (300 MHz, CDCl₃) & 7.51-7.17 (m, 4H), 5.95 (d, J = 3.6 Hz, 1H), 4.90 (s, 1H), 4.53 (d, J = 3.9 Hz, 1H), 4.32 (d, J = 2.7 Hz, 1H), 4.09 (dd, J = 2.7 Hz, 2H), 4.09J = 2.7 Hz, J = 8.4 Hz, 1H), 3.75 (d, J = 7.2 Hz, 1H), 2.76-2.68 (br s, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 0.92 (s, 9H), 0.11 (s, 3H), -0.10 (s, 3H) ppm [00354] Example 69. (6R)-6-C-(3-Bromophenyl)-1,2-O-(1-methylethylidene)-α-Dglucofuranose

[00355] Tetrabutylammonium fluoride (1 M in tetrahydrofuran, 3.14 mL) was added dropwise to (2S/2R,3S,4S,6R,7R,8S)-3-O-tert-butyldimethylsilyl-2,3,6,7tetrahydroxy-6,7-O-isopropylidene-1,5-dioxa-2-(3-bromophenyl)-bicyclo[3.3.0]octane (1.53 g, 3.14 mmol) and glacial acetic acid (188.4 mg, 3.14 mmol, 180 μL) in anhydrous tetrahydrofuran (30 mL) at 0 °C. The reaction was stirred for 30 min at 0 °C then warmed to room temperature and stirred an additional 30 min. TLC analysis (3:1 hexane-ethyl acetate) indicated that the starting material had been completely consumed. The reaction was poured into ethyl acetate (30 mL), washed with saturated sodium bicarbonate (10 mL) and brine (2 x 10 mL). The aqueous layer was back extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated and purified by chromatography (35 g, 40% ethyl acetate-hexane isocratic) to afford (2S/2R.3S.4S.6R.7R.8S)-2.3.6.7tetrahydroxy-6,7-O-isopropylidene-1,5-oxa-2-(3-bromophenyl)-bicyclo[3.3.0]octane (1.146 g, 98% yield) as a white solid; Rf 0.18 (3:1 hexane-ethyl acetate) [00356] Sodium borohydride (116 mg, 3.1 mmol) was added to (2S/2R,3S,4S,6R,7R,8S)-2,3,6,7-tetrahydroxy-6,7-O-isopropylidene-1,5-oxa-2-(3bromophenyl)-bicyclo[3.3.0]octane (1.15 g, 3.1 mmol) dissolved in absolute ethanol (5 mL) at room temperature. The reaction was stirred at room temperature for 1 h. TLC analysis (2:1 ethyl acetate-hexane) indicated that all the starting lactol had been consumed. 1 mL of saturated ammonium chloride solution was added and the reaction stirred until the effervescence ceased. The reaction was poured into ethyl acetate (30 mL) and water (10 mL) and the layers separated. The aqueous layer was extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated and purified by chromatography (2:1 ethyl acetate-hexane to elute the first diastereomer then 100% ethyl acetate) to afford (6R)-6-C-(3-bromophenyl)-1,2-O-(1-methylethylidene)- α-D-glucofuranose (511 mg, 89% yield) as a white solid; mp 172-173 °C; Rf 0.19 (2:1 ethyl acetatehexane); ¹H NMR (300 MHz, CDCl₃/CD₃OD) δ 7.62-7.61 (m, 1H), 7.42-7.38 (m, 1H), 7.21 (t, J = 7.5 Hz, 1H), 5.94 (d, J = 3.9 Hz, 1H), 4.86 (d, J = 4.5 Hz, 1H), 4.48 (d, J = 3.3 Hz, 1H), 4.24 (d, J = 2.4 Hz, 1H), 4.14-4.10 (m, 1H), 3.79-3.74 (m, 1H),1.38 (s, 3H), 1.30 (s, 3H) ppm

[00357] Example 70. (3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-1-phenyl-4-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]azetidin-2-one

[00358] (3R,4S)-4-(4-Bromophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one (45.1 mg, 0.10 mmol), bis(pinacolato)diboron (27.7 mg, 0.11 mmol), dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct (2.4 mg, 0.003 mmol), and potassium acetate (29.7 mg, 0.30 mmol) were dissolved in anhydrous dimethyl sulfoxide (600 µL). The vessel was evacuated and flushed with argon three times then sealed and heated at 80 °C for 16 h. LCMS analysis indicated that some starting material remained so an additional aliquot of catalyst and bis(pinacolato)diboron were added, the solution degassed and heating continued for 2 h. The reaction was diluted into dichloromethane (30 mL) and filtered through a plug of Celite. The filtrate was washed 2 x 10 mL with water. The combined aqueous washed were back extracted with 3 x 10 mL dichloromethane. The combined organic phase was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The product was purified by chromatography (12 g silica gel, 20-50% ethyl acetate-hexane) to afford (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3hydroxypropyl]-1-phenyl-4-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2vl)phenyllazetidin-2-one (41.9 mg, 85% yield) as a tan foam; Rf (1:1 hexane-ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 8.1 Hz, 1H), 7.35-7.18 (m, 9 H), 7.04-6.97 (m, 3H), 4.70 (t, J = 5.7 Hz, 1H), 4.65 (d, J = 2.1 Hz, 1H), 3.08 (dt, J = 7.7, 2.5, 1H), 2.02-1.87 (m, 4H), 1.33 (s, 12H) ppm

[00359] Example 71. (6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-D-glucopyranose

[00360] (3R,4S)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-1-phenyl-4-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-vl)phenyl]azetidin-2-one (26.8 mg, 0.05 mmol), (6S)-6-C-(3-bromophenyl)-6-O-[tert-butyl(dimethyl)silyl]-1,2-O-(1methylethylidene)- α-D-glucofuranose (18.1 mg, 0.04 mmol), and potassium carbonate (40 µL, 4 N aqueous) were dissolved in 1:1 toluene:ethanol (1 mL total volume). The solution was degassed by evacuating the vessel and flushing with argon three times. Tetrakis(triphenylphosphine)palladium(0) (2.2 mg, 0.002 mmol) was added and the solution was degassed twice. The reaction was heated at 85 °C for 1 h. LCMS and TLC (1:1 hexane-ethyl acetate) analysis indicated consumption of the starting glycoside. The reaction was diluted into ethyl acetate (30 mL) and washed with water (2 x 10 mL). The combined aqueous washes were back extracted with ethyl acetate (2 x 10 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by chromatography (12 g silica gel, 20-50% ethyl acetate-hexane) to afford (6S)-6-O-[tert-butyl(dimethyl)silyl]-6-C-(4'-{(2S.3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1phenylazetidin-2-yl}biphenyl-3-yl)-1,2-O-(1-methylethylidene)- α-D-glucofuranose (13.5 mg, 45% yield) as a white foam; R_f 0.23 (1:1 hexane-ethyl acetate): ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.58-7.22 \text{ (m, 13H)}, 7.07-6.98 \text{ (m, 4H)}, 5.97 \text{ (d, J} = 3.9 \text{ Hz, 1H)},$

4.98 (d, J = 2.4 Hz, 1H), 4.73 (t, J = 6.3 Hz, 1H), 4.69 (d, J = 2.1 Hz, 1H), 4.54 (d, J = 2.1 Hz, 1H), 1.54 (d, 1.54 (d, 1.54) 3.9 Hz, 1H), 4.37 (d, J = 2.4 Hz, 1H), 3.87-3.86 (m, 1H), 3.13-3.09 (m, 1H), 2.04-1.86 (m, 4H), 1.43 (s, 3H), 1.31 (s, 3H), 0.94 (s, 9H), 0.12 (s, 3H), -0.09 (s, 3H) ppm [00361] (6S)-6-O-[tert-Butyl(dimethyl)silyl]-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-1,2-O-(1-methylethylidene)- α-D-glucofuranose (13.5 mg, 0.017 mmol) was dissolved in acetonitrile (5 mL) in a polypropylene centrifuge tube. 48% Hydrofluoric acid (500 μL) was added at room temperature and the reaction was stirred for 16 h monitoring by LCMS. Upon completion, 1 equivalent of solid sodium carbonate (1.27 g, 12 mmol) was added and just enough water to dissolve the solid. The reaction was diluted into ethyl acetate (20 mL) and the layers separated. The aqueous solution was extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were washed with saturated sodium carbonate (2 x 10 mL), dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by reverse-phase HPLC (Polaris C18-A 10μ 250 x 21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) to afford (6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-D-glucopyranose (5.5 mg, 51%); ¹H NMR (300 MHz, CDCl₃/CD₃OD) δ 7.64-7.58 (m, 2H), 7.48-7.21 (m, 12H), 7.08-6.98 (m, 3H), 5.12-5.07 (m, 1.4H), 4.73 (d, J = 2.4 Hz, 1H), 4.66 (t, J = 5.7 Hz, 1H), 4.39(d, J = 7.5 Hz, 0.6H), 4.00 (dd, J = 1.5 Hz, J = 9.6 Hz, 0.6H), 3.76-3.56 (m), 3.23-3.10 (m, 1.5H), 2.01-1.90 (m, 4H) ppm; MS [M+H]+ 630.0 [00362] Example 72. (6R)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-

hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-D-glucopyranose

[00363] Obtained in a manner similar to Example 71 but using as starting materials the products from Examples 68 and 70. (6R)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl} biphenyl-3-yl)-D-glucopyranose (2.4 mg, 53% yield); 1 H NMR (300 MHz, CDCl₃/ 0.1% CD₃OD) 8 7.64-7.58 (m, 2H), 7.49-7.23 (m, 12H), 7.08-6.98 (m, 3H), 5.06 (d, J = 3.6 Hz, 0.6H), 4.91 (d, J = 6.0 Hz, 1H), 4.72 (d, J = 4.8 Hz, 1H), 4.66 (t, J = 5.4 Hz, 1H), 4.42 (d, J = 7.8 Hz, 0.4H), 4.07-4.02 (m, 1H), 3.69-3.66 (m, 1H), 3.16-3.11 (m, 1H), 1.96-1.91 (m, 4H) ppm; MS [M+H] $^+$ 630.0

 $\label{eq:condition} \begin{tabular}{ll} [00364] Example 73. (6S)-6-C-(4'-\{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl\}-3'-hydroxybiphenyl-3-yl)-D-glucopyranose \end{tabular}$

[00365] (3R.4S)-3-[(3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-3-(4fluorophenyl)propyl]-4-[2-{[tert-butyl(dimethyl)silylloxy}-4-(4.4.5.5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1-phenylazetidin-2-one (53.0 mg, 0.07 mmol), (6S)-6-C-(3-bromophenyl)-6-O-[tert-butyl(dimethyl)silyl]-1,2-O-(1-methylethylidene)- α-D-glucofuranose (24.1 mg, 0.05 mmol), and potassium carbonate (50 µL, 4 N aqueous solution) were dissolved in 1:1 toluene:ethanol (1 mL total volume). The solution was degassed by evacuating the vessel and flushing with argon three times. Tetrakis(triphenylphosphine)palladium (4.0 mg, 0.003 mmol) was added and the solution degassed twice. The reaction was heated at 85 °C for 1 h. LCMS and TLC (1:1 hexane-ethyl acetate) analysis indicated consumption of the starting glycoside. The reaction was diluted into ethyl acetate (30 mL) and washed with water (2 x 10 mL). The combined aqueous washes were back extracted with ethyl acetate (2 x 10 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated in vacuo, and purified by chromatography (12 g silica gel, 5-50% ethyl acetate-hexane) to afford (6S)-6-O-[tert-butyl(dimethyl)silvl]-6-C-(4'-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-1.2-O-(1-methylethylidene)- α-Dglucofuranose (10.5 mg, 20% yield) as a white foam: ¹H NMR (300 MHz, CDCl₂) & 7.44-7.18 (m, 13H), 7.05-6.93 (m, 3H), 5.97 (d, J = 3.9 Hz, 1H), 5.03 (d, J = 2.1 Hz, 1H), 4.95 (d, J = 2.4 Hz, 1H), 4.67 (m, 1H), 4.56 (t, J = 4.8 Hz, 1H), 4.38 (m, 1H), 4.10 (dd, J = 7.6, 3.0Hz, 1H), 3.87 (m, 1H), 3.12 (m, 1H), 1.94-1.89 (m, 4H), 1.44 (s, 3H), 1.31 (s, 3H), 0.93 (s, 9H), 0.86 (s, 9H), 0.11 (s, 3H), 0.01 (s, 3H), -0.11 (s, 3H), -0.16 (s. 3H) ppm [00366] (6S)-6-O-[tert-Butyl(dimethyl)silyl]-6-C-(4'-{(2S,3R)-3-[(3S)-3-{[tertbutyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-vl}-3'hydroxybiphenyl-3-yl)-1,2-O-(1-methylethylidene)- α-D-glucofuranose was dissolved in acetonitrile (5 mL) in a polypropylene centrifuge tube. 48% Hydrofluoric acid (750) μL) was added at room temperature and the reaction stirred for 16 h monitoring progress by LCMS. Upon completion, 1 equivalent of solid sodium carbonate (1.91 g, 18 mmol) was added and just enough water to dissolve the solid. The reaction was diluted into ethyl acetate (20 mL) and the layers separated. The aqueous solution was

extracted with ethyl acctate (3 x 10 mL). The combined organic extracts were washed with saturated sodium carbonate (2 x 10 mL), dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by reverse-phase HPLC (Polaris C18-A 10µ 250 x 21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) to afford (68)-6-C-(4'-{(2S,3R)-3-{(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl]-3'-hydroxybiphenyl-3-yl)-D-glucopyranose (17.8 mg);

¹H NMR (300 MHz, CDCl₃/CD₃OD) δ 7.52-6.83 (m, 16H), 5.05-5.00 (m, 2H), 4.50 (m, 1H), 4.34 (m, 1H), 3.94 (m, 1H), 3.72-3.59 (m, 2H), 2.91 (m, 1H), 1.95-1.77 (m, 4H) ppm; MS [M-OH]* 627.8

[00367] Example 74. (6R)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucopyranose

[00368] Obtained in a manner similar to Example 73. Purified by reverse-phase HPLC (Polaris C18-A 10μ 250 x 21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) to afford (6R)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxypinpenyl-3-yl)-D-glucopyranose (4.1 mg, 70% yield); 1 H NMR (300 MHz, CDCl₃/CD₂OD) δ 7.55-6.90 (m, 16H), 5.08-2.06 (m, 1H), 5.01-5.00 (m, 1H), 4.86 (d, J = 4.5 Hz, 1H), 4.60 (t, J = 5.1 Hz, 1H), 4.39 (d, J = 8.1 Hz, 1H), 4.02-3.97 (m, 1H), 3.70-3.64 (m, 1H), 3.52-3.49 (m, 1H), 1.96-1.85 (m, 4H) ppm; MS [M-OH]* 627.8

[00369] Example 75. (6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol

[00370] (6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucopyranose (7.1 mg, 0.01 mmol) was dissolved in 80:20 acetonitrile-water (1 mL). Sodium borohydride (0.4 mg, 0.01 mmol) was added at room temperature and the reaction was stirred for 30 min monitoring by LCMS. Upon completion, the reaction was diluted with 80:20 acetonitrile:water (3 mL) then filtered through a Whatman 0.45 μM glass microfiber filter and purified by reverse-phase HPLC (Polaris C18-A 10μ 250 x 21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) to afford (6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol (1.4 mg, 22% yield). ¹H NMR (300 MHz, CDCl₃/CD₃OD) δ 7.37-6.89 (m, 16H), 5.08 (d, J = 2.4 Hz, 1H), 4.97-4.95 (m, 1H), 4.60 (t, J = 6.0 Hz, 1H), 3.92 (m, 1H), 3.76-3.56 (m, 6H), 2.01-1.82 (m, 4H) ppm; MS fM-OH† 629.8

[00371] Example 76. 6-O-(4'-{(2S,3R)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}-biphenyl-3-yl)-D-glucopyranose

[00372] Diethylazodicarboxylate (192.4 mg, 1.11 mmol, 172 µL) was added dropwise at 0 °C to 1,2,3,4-tetra-O-acetyl-□-D-glucopyranose (350.0 mg, 1.01 mmol), 3-bromophenol (174.0 mg, 1.11 mmol), and triphenylphosphine (115.0 mg, 0.44 mmol) dissolved in dry tetrahydrofuran (2 mL). The reaction was stirred for 16 h warming to room temperature. The reaction was diluted into diethyl ether (30 mL) and washed with 5% sodium bisulfate (2 x 10 mL). The separated organic solution was dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by chromatography (20% ethyl acetate-dichloromethane) to afford 1,2,3,4-tetra-O-acetyl-6-O-(3-bromophenyl)-□-D-glucopyranose (357 mg, 71% yield)

[00373] Triethylamine (1 mL) was added at room temperature to 1,2,3,4-tetra-O-acetyl-6-O-(3-bromophenyl)-\(\sigma\)-D-glucopyranose (200 mg, 0.40 mmol) dissolved in 5:1methanol-water (6 mL). The reaction progress was monitored by LCMS and TLC (20% ethyl acetate-dichloromethane). Upon completion, the solvents were removed in vacuo to afford 6-O-(3-bromophenyl)-\(\sigma\)-D-glucopyranose which was carried on without further purification.

[00374] tert-Butyldimethylsilyl trifluoromethanesulfonate (442 mg, 1.67 mmol, 383 μ L) was added dropwise at 0 °C to 6-O-(3-bromophenyl)- β -D-glucopyranose and 4-dimethylaminopyridine (219 mg, 1.79 mmol) dissolved in dichloromethane (3 mL). The reaction was stirred for 16 h warming to room temperature. The reaction was diluted into dichloromethane (30 mL) and washed with 5% sodium bisulfate (2 x 10

mL). The separated organic solution was dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by chromatography (50% ethyl acetate:hexane) to afford a 6-O-(3-bromophenyl)-β-D-glucopyranose bis-O-[tertbutyl(dimethyl)silyl] ether (98.9 mg, 44% yield); R_f = 0.14 (50% ethyl acetate-hexane) [00375] (3R,4S)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]azetidin-2-one (141.5 mg, 0.27 mmol), 6-O-(3-bromophenyl)-β-D-glucopyranose bis-O-[tertbutyl(dimethyl)silyl] ether (98.9 mg, 0.18 mmol), and potassium carbonate (175 μL, 2 M aqueous solution) were dissolved in 1:1 toluene-ethanol (1 mL total volume). The solution was degassed by evacuating the vessel and flushing with argon three times. Tetrakis(triphenylphosphine)palladium (10.0 mg, 0.009 mmol) was added and the solution degassed twice. The reaction was heated at 85 °C for 1 h. LCMS and TLC (1:1 hexane-ethyl acetate) analysis indicated consumption of the starting glycoside. The reaction was diluted into ethyl acetate (30 mL) and washed with water (2 x 10 mL). The combined aqueous washes were back extracted with ethyl acetate (2 x 10 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by chromatography (12 g silica gel, 50% ethyl acetate-hexane) to afford 6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4fluorophenyl)-3-hydroxypropyll-4-oxoazetidin-2-yl}biphenyl-3-yl)-β-Dglucopyranose bis-O-[tert-butyl(dimethyl)silyl] ether (113 mg, 74% yield). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.56 \text{ (d, J} = 7.8 \text{ Hz}, 2\text{H}), 7.36-7.10 \text{ (m, 8H)}, 7.01-6.80 \text{ (m, 6H)},$ 4.70 (t, J = 5.4 Hz, 1H), 4.64 (d, J = 1.8 Hz, 1H), 4.56 (d, J = 6.9 Hz, 1H), 4.35-4.32(m, 1H), 4.16-4.07 (m, 1H), 3.68-3.58 (m, 2H), 3.51-3.46 (m, 1H), 3.38-3.32 (m, 1H), 3.11-3.09 (m, 1H), 1.98-1.88 (m, 4H), 0.91 (s, 9H), 0.91 (s, 9H), 0.14 (s, 6H), 0.13 (s, 6H) ppm

[00376] 6-O-(4'-{(2S,3R)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} biphenyl-3-yl)- α-D-glucopyranose bis-O-[tert-butyl(dimethyl)silyl] ether (82.3 mg, 0.09 mmol) was dissolved in acetonitrile (10 mL) in a polypropylene centrifuge tube. 48% Hydrofluoric acid (1 mL) was added at room temperature and the reaction monitored by LCMS. Upon completion, 1 equivalent of solid sodium carbonate (2.54 g, 24 mmol) was added and just enough

water to dissolve the solid. The reaction was diluted into ethyl acetate (20 mL) and the layers separated. The aqueous solution was extracted with ethyl acetate (3 x10 mL). The combined organic extracts were washed with saturated sodium carbonate (2 x 10 mL), dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by reverse phase preparative HPLC (Polaris C18-A 10μ 250 x 21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) to afford 6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)- α -D-glucopyranose (54.3 mg, 89% yield). 1 H NMR (300 MHz, CDCl₃/1% CD₃OD) δ 7.58 (d, J = 7.8 Hz, 2H), 7.39-7.24 (m, 7H), 7.17-7.14 (m, 2H), 7.04-6.92 (m, 5H), 5.23 (d, J = 3.9 Hz, 0.6H), 4.71 (d, J = 1.8 Hz, 1H), 4.66 (t, J = 5.7 Hz, 1H), 4.58 (d, J = 8.1 Hz, 0.4H), 4.40-4.30 (m, 1H), 4.25-4.14 (m, 1H), 3.57-3.48 (m, 2H), 3.16-3.11 (m, 1H), 2.04-1.85 (m, 4H) ppm; MS [M-OH] $^+$ 630.0

[00377] Example 77. Methyl 6-O-(4-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)- α -D-glucopyranoside

[00378] Diethylazodicarboxylate (76.2 mg, 0.44 mmol, 68 μL) was added drop-wise to methyl 2,3,4-tri-O-benzyl- α-D-glucopyranoside (184.8 mg, 0.40 mmol), 3-bromophenol (72.3 mg, 0.42 mmol), and triphenylphosphine (115.0 mg, 0.44 mmol)

dissolved in dry tetrahydrofuran (2 mL) at 0 °C. The reaction was stirred for 16 h warming to room temperature. The reaction was diluted into dichloromethane (30 mL) and washed with 5% sodium bisulfate (2 x 10 mL). The separated organic solution was dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by chromatography (20% ethyl acetate-dichloromethane) to afford methyl 2.3.4-tri-O-benzyl-6-O-(3-bromophenyl)- α-D-glucopyranoside (216 mg, 87% yield) [00379] (3R,4S)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]azetidin-2-one (64.1 mg, 0.12 mmol), methyl 2,3,4-tri-O-benzyl-6-O-(3-bromophenyl)-D-glucopyranoside (54.6 mg, 0.09 mmol), and potassium carbonate (88 μL, 2 M aqueous solution) were dissolved in 1:1 toluen-ethanol (1 mL total volume). The solution was degassed by evacuating the vessel and flushing with argon three times. Tetrakis(triphenylphosphine)palladium (5.1 mg, 0.004 mmol) was added and the solution degassed twice. The reaction was heated at 85 °C for 1 h. LCMS and TLC (1:1 hexane-ethyl acetate) analysis indicated consumption of the starting glycoside. The reaction was diluted into ethyl acetate (30 mL) and washed with water (2 x 10 mL). The combined aqueous washes were back extracted with ethyl acetate (2 x 10 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated in vacuo and purified by chromatography (12 g silica gel, 20% to 50% ethyl acetate-hexane) to afford methyl 2,3,4-tri-O-benzyl-6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2yl}biphenyl-3-yl)- α-D-glucopyranoside (70.0 mg, 85% yield). ¹H NMR (300 MHz, CDCl₃) 8 7.55 (d, J = 8.1 Hz, 2H), 7.39-6.84 (m, 29H), 5.01 (d, J = 10.8 Hz, 1H), 4.89-4.80 (m, 3H), 4.73-4.64 (m, 4H), 4.52 (d, J = 11.1 Hz, 1H), 4.15-4.12 (m, 2H), 4.08-4.-1 (m, 1H), 3.94-3.90 (m, 1H), 3.77-3.71 (m, 1H), 3.62 (dd, J = 3.6 Hz, J = 9.6 Hz, 1H), 3.39 (s, 3H), 3.13-3.10 (m, 1H), 2.03-1.89 (m, 4H) ppm. [00380] Methyl 2,3,4-tri-O-benzyl-6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)- α-Dglucopyranoside (70 mg, 0.08 mmol) was dissolved in absolute ethanol (3 mL). 10% Pd/C (wet, 14% w/w) was added and the vessel sealed. The solution was degassed by evacuation and flushing with hydrogen gas at balloon pressure. The reaction was

monitored by TLC (1:1 hexane-ethyl acetate). Upon completion, the catalyst was filtered by passing through a plug of Celite® and washing with additional ethanol. The filtrate was concentrated in vacuo and purified by preparative HPLC (Polaris C18-A 10μ 250×21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) affording methyl 6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)- α -D-glucopyranoside (18.1 mg, 36% yield); 1 H NMR (300 MHz, CDCl₃/1% CD₃OD) δ 7.58 (d, J = 8.4 Hz, 2H), 7.38-7.23 (m, 7H), 7.17-7.14 (m, 2H), 7.04-6.92 (m, 5H), 4.80 (d, J = 3.9 Hz, 1H), 4.70 (d, J = 2.4 Hz, 1H), 4.67 (t, J = 5.7 Hz, 1H), 4.37-4.33 (m, 1H), 4.26-4.21 (m, 1H), 3.92-3.87 (m, 1H), 3.74-3.45 (m, 3H), 3.42 (s, 3H), 3.18-3.10 (m, 1H), 2.01-1.88 (m, 4H) ppm; MS [M-OH] $^+$ 644.0 [00381] Example 78. 6-O-(4'-{(2S,3R)-1-(4-Fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl}-D-glucitol

[00382] Sodium borohydride (1.6 mg, 0.04 mmol) was added to 6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} biphenyl-3-yl)-D-glucopyranose (26.3 mg, 0.04 mmol) dissolved in 80:20 acetonitrile-water (1 mL) at room temperature. The reaction was stirred for 10 min at room temperature monitoring by LCMS. Upon completion, the reaction was diluted with 50:50 acetonitrile:water (3 mL) and filtered through a Whatman 0.45 µM glass

microfiber filter then purified by preparative HPLC (Polaris C18-A 10μ 250 x 21.2 mm column, 30% to 95% acetonitrile-0.1% trifluoroacetic acid in water) affording 6-O-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}-biphenyl-3-yl}-D-glucitol (21.2 mg, 80% yield). ¹H NMR (300 MHz, CDCl₃/1% CD₃OD) δ 7.58 (d, J = 8.1 Hz, 2H), 7.39-7.24 (m, 7H), 7.17-7.15 (m, 2H), 7.04-6.92 (m, 5H), 4.71 (d, J = 2.1 Hz, 1H), 4.68 (t, J = 6.3 Hz, 1H), 4.31-4.27 (m, 1H), 1.9-4.14 (m, 1H), 4.08-4.02 (m, 1H), 3.97-3.95 (m, 1H), 3.86-3.65 (m, 4H), 3.14-3.12 (m, 1H), 2.01-1.88 (m, 4H) ppm; MS [M+HCO-T 694.0

Scheme IV

[00383] Illustrated in Scheme IV is the general method for the preparation of cholesterol absorption inhibitors of general formula IV-3. Imines IV-2 are made by refluxing anilines with the appropriate aldehydes in isopropanol. Condensation of imine IV-2 with the ester enolate of compound IV-1 affords the azetidinone IV-3. In the case where X is sulfur, one equivalent of an appropriate oxidizing agent such as MCPBA can be used to convert to the sulfoxide, two equivalents can be used to synthesize the sulfone. Where X is nitrogen, one equivalent of an appropriate oxidizing agent can be used to convert the secondary amine to a hydroxylamine (following deprotection).

The following examples were also prepared according to the methods

[00384]

described above: [00385] Example 81. (3R,4S)-4-(3',4'-dimethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one [00386] Example 82, (3R.4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3hydroxypropyl]-4-[3'-(methylthio)biphenyl-4-yl]azetidin-2-one [00387] Example 83. (3R,4S)-4-[3'-(dimethylamino)biphenyl-4-yl]-1-(4fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one [00388] Example 84. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3hydroxypropyl]-4-(4'-vinylbiphenyl-4-yl)azetidin-2-one [00389] Example 85, 4'-{(2S.3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3hvdroxvpropyl]-4-oxoazetidin-2-vl}-5-methoxybiphenyl-2-carbaldehyde [00390] Example 86. (3R,4S)-4-(3'-aminobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one [00391] Example 87. (3R,4S)-4-[4-(2,3-dihydro-1,4-benzodioxin-6-yl)phenyl]-1-(4fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one [00392] Example 88. (4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3hydroxypropyll-4-oxoazetidin-2-yl}biphenyl-4-yl)acetic acid [00393] Example 89, methyl 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-carboxylate [00394] Example 90, (3R,4S)-4-(3',5'-dimethylbiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one

```
[00395] Example 91. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-[4-(2-naphthyl)phenyl]azetidin-2-one
[00396] Example 92. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-[3'-(trifluoromethyl)biphenyl-4-yl]azetidin-2-one
[00397] Example 93. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-(3'-methylbiphenyl-4-yl)azetidin-2-one
[00398] Example 94. (3R,4S)-4-(4'-fluoro-3'-methylbiphenyl-4-yl)-1-(4-
fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyllazetidin-2-one
[00399] Example 95, 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-oxoazetidin-2-vl}biphenyl-3-vl B-L-glucopyranoside
[00400] Example 96. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-(2',3',4'-trimethoxybiphenyl-4-yl)azetidin-2-one
[00401] Example 97. (3R,4S)-4-(2',4'-dimethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-
3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one
[00402] Example 98. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-(2'-methylbiphenyl-4-yl)azetidin-2-one
[00403] Example 99. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-carbaldehyde
[00404] Example 100. (3R,4S)-4-(3'-ethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-
[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one
[00405] Example 101. (3R,4S)-4-(4'-ethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-
[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one
[00406] Example 102, (3R.4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-(4'-hydroxy-3'-methoxybiphenyl-4-yl)azetidin-2-one
[00407] Example 103. (3R.4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-(3'-propoxybiphenyl-4-yl)azetidin-2-one
[00408] Example 104. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-oxoazetidin-2-yl}-5-hydroxybiphenyl-2-carbaldehyde
[00409] Example 105. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
```

hydroxypropyl]-4-(3'-isopropoxybiphenyl-4-yl)azetidin-2-one

```
[00410] Example 106. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-oxoazetidin-2-yl}-4-hydroxybiphenyl-3-carboxylic acid
[00411] Example 107. (3R,4S)-4-(3',5'-dimethoxybiphenyl-4-yl)-1-(4-
fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one
[00412] Example 108. (3R,4S)-4-(2',4'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-
3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one
[00413] Example 109. (3R,4S)-4-(3'-butoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-
[(3S)-3-(4-fluorophenyi)-3-hydroxypropyl]azetidin-2-one
[00414] Example 110. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-oxoazetidin-2-yl}-3-hydroxybiphenyl-4-carboxylic acid
[00415] Example 111. (3R,4S)-4-(3'-fluoro-5'-methoxybiphenyl-4-yl)-1-(4-
fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one
[00416] Example 112. (3R,4S)-4-(3'-fluoro-5'-hydroxybiphenyl-4-yl)-1-(4-
fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one
[00417] Example 113. (1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-
3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)-L-glucitol
[00418] Example 114. (3R,4S)-4-(3',5'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-
3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one
[00419] Example 115. (4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-
3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)boronic acid
[00420] Example 116. (1R)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-
3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-yl)-L-glucitol
[00421] Example 117. 2,6-anhydro-1-deoxy-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-
[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)-D-
glycero-D-gulo-heptitol
[00422] Example 118. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-sulfonic acid
[00423] Example 119. (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
 hydroxypropyl]-4-(3'-mercaptobiphenyl-4-yl)azetidin-2-one
 [00424] Example 120. 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-
 hydroxypropyl]-4-oxoazetidin-2-yl}-N,N,N-trimethylbiphenyl-3-aminium
```

 $[00425] \quad \text{Example 121. (3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one}$

[00426] Example 122. (4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)phosphonic acid

 $[00427] \quad \text{Example 123. (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[3-hydroxy-3'-(methylsulfonyl)biphenyl-4-yl]-1-phenylazetidin-2-one$

[00428] Example 124. (3R,4S)-1-biphenyl-4-yl-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)azetidin-2-one

[00429] Example 125. (3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one.

 $[00430] \quad \text{Example 126. Dimethyl } [4-(4,4,5,5-\text{tetramethyl-1},3,2-\text{dioxaborolan-2-yl}) \\ \text{phenyl}] \\ \text{phosphonate}$

prepared in analogous manner to dimethyl [3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]phosphonate (Example 60) starting with 4-chlorophenol instead of 3-chlorophenol. Dimethyl [4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]phosphonate product was obtained as a light yellow oil (90%); ¹H NMR (300 MHz, CDCl₃) & 7.86-7.95 (m, 2H), 7.84-7.82 (m, 2H), 7.43-7.50 (m, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 1.34 (s, 12 H) ppm; MS [M+H] 312, [2M+H] 625. [00431] Example 127. (4'-{(2S,3R)-3-{(4S)-3-(4Fluorophenyl)-3-hydroxypropyl]-

4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid

prepared in analogous manner to Example 61 using dimethyl [4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]phosphonate (Example 126) in the reaction scheme instead of dimethyl [3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]phosphonate (Example 60). Final purification by reverse-phase HPLC (Polaris C18-A 10 μ 250 x 21.2 mm column, 30% to 59% acetonitrile-0.1% trifluoroacetic acid in water) afforded (4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid as a white powder (62%); 1 H NMR (300 MHz, CD₃OD) §7.8 (dd, J = 8.0, 13.0 Hz, 1H), 7.68 (dd, J = 3.2, 8.0 Hz, 1H), 6.9-7.4 (m, 14H), 5.17 (d, J = 2.1 Hz, 1H), 4.60-4.66 (m, 1H), 3.13-3.22 (m, 1H), 1.8-2.1 (m, 4H) ppm; MS [M-H] 546, [2M-H] 1093.

 $[00432] \quad \text{Example 128. Sodium 4'-} \{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl]-3'-hydroxybiphenyl-4-sulfonate$

5-Bromo-2-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}phenyl acetate (850 mg, 1.36

mmol) and 4-thioanisoleboronic acid (252 mg, 1.50 mmol) were dissolved in dioxane (13.6 mL). Cesium carbonate (882 mg, 2.71 mmol) and solid bis(1adamantylamine)palladjum(0) (113 mg, 0.21 mmol) were added and the vessel was vacuum/nitrogen purged (3x). The reaction was stirred vigorously for 4 h at 80 °C under a nitrogen atmosphere and then cooled and reacted with acetic anhydride (0.70) mL, 7.3 mmol) and 4-dimethylamino-pyridine (185.6 mg, 1.52 mmol). After 15 min. the mixture was poured into 1.0 N hydrochloric acid (60 mL), extracted with 1:1 ethyl acetate-hexane (60 mL), washed with brine (60 mL), dried over sodium sulfate, filtered, concentrated and purified by chromatography (40 g silica gel, 5% to 50% ethyl acetate-hexane) to afford 4-{(2S.3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silylloxy}-3-(4-fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}-4'-(methylthio)biphenyl-3-yl acetate (478 mg, 52% yield) as a white foam; Rf 0.41 (1:4 ethyl acetate-hexane). [00433] 4-{(2S,3R)-3-[(3S)-3-{[tert-butyl(dimethyl)silyl]oxy}-3-(4fluorophenyl)propyl]-4-oxo-1-phenylazetidin-2-yl}-4'-(methylthio)biphenyl-3-yl acetate (478 mg, 0.713 mmol) was dissolved in dichloromethane (20 mL) and cooled to 0°C. 3-Chlorobenzenecarbo-peroxoic acid (134.5 mg, 0.779 mmol) was added in portions while monitoring by TLC and LCMS to make the arylsulfoxide. Once addition was complete the reaction was poured into quarter saturated sodium bicarbonate solution (60 mL), extracted with dichloromethane (60 mL) and ethyl acetate (60 mL), the combined organic layers were dried over sodium sulfate, filtered and concentrated with toluene. The residue was dissolved in dichloromethane (10 mL) and the Pummerer rearrangement was effected by the addition of trifluoroacetic anhydride (250 µL, 372 mg, 1.77 mmol). The reaction was stirred at room temperature for 8.5 h and then concentrated with toluene and diluted with a solution of degassed methanol (3.0 mL), triethylamine (3.0 mL) and water (1.0 mL). After 2.75 h the golden vellow solution was concentrated, transferred into a polypropylene Falcon® tube with acetonitrile (10.0 mL) and diluted with 48% hydrofluoric acid (1.0 mL). The reaction was stirred for 4 h at room temperature and then poured into 0.5 M potassium phosphate (50 mL), extracted with ethyl acetate (60 mL), washed with water (60 mL) and brine (60 mL), dried over sodium sulfate, filtered, concentrated and purified by chromatography (40 g silica gel, 10% to 100% ethyl acetate-hexane) to

afford a mixture of compounds (some impurities and oxidized desired material). The residue was used as is in the next step.

[00434] The residue was dissolved in dichloromethane (10 mL) and added dropwise to a solution of 3-chlorobenzenecarboperoxoic acid (489 mg, 2.83 mmol) in dichloromethane (10 mL). Dichloromethane (5 mL) was used to help transfer the material and the mixture was stirred at room temperature for 15 min. The reaction was quenched by addition of triethylamine (4 mL), concentrated, dissolved in methanol, filtered through a 0.45 μ Whatman® filter, concentrated again, purified by reverse-phase HPLC (Polaris C18-A 10μ 250 x 21.2 mm column, 5% to 100% acetonitrile-0.1% triethylamine in water) and treated with Dowex® sodium ion exchange resin to afford sodium 4"-{(28,3R)-3-[(38)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonate (249.0 mg, 57% yield) as a light pale purple solid; ¹H NMR (300 MHz, CD₃OD) δ 7.88 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.6 Hz, 2H), 7.35-7.19 (m, 7H), 7.14-7.11 (m, 2H), 7.03-6.97 (m, 3H), 5.14 (d, J = 2.2 Hz, 1H), 4.63-4.59 (m, 1H), 3.17-3.08 (m, 1H), 2.04-1.87 (m, 4H) ppm; MS [M-Na] 546.0.

[00435] The following examples 129 and 130 were also prepared according to methods decribed above:

[00436] Example 129. (3R,4S)-4-(4'-fluorobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one

[00437] Example 130. -(3R,4S)-4-(2',5'-difluorobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one

[00438] Example 131. (4R,5R)-5-((S)-3-(4-fluorophenyl)-3-hydroxypropyl)-4-(4-hydroxyphenyl)-3-phenyloxazolidine-2-thione (10)

[00439] The preparation of analogue 10 starts by the condensation of commercially available 4-hydroxybenzaldehyde (1) with aniline (2) to produce the corresponding imine. Protection of the hydroxyl moiety of the imine was accomplished by treatment with triisopropylsilyl chloride in the presence of imidazole in DMF to provide 3.

Treatment of 4 (prepared according to the method of B. A. Shinkre, V. G. Puranik, B, M. Bhawal, A. Deshmukh, *Tetrahedron Asymmetry* 2003, 14, 453) with triphosgene [(Cl₃CO)₂CO] and triethylamine in the presence of 3 provides the beta-lactam 5. A

solution of ketal 5 is dissolved in tetrahydrofuran and water with a catalytic amount of para-toluenesulfonic acid to promote hydrolysis to alcohol 6. Alcohol 6 is then treated with sodium methoxide in methanol to effect conversion to the methyl ester via beta-lactam ring opening. Reaction of the resulting alcohol with thiophosgene in the presence of diisopropylethylamine and N,N-dimethylaminopyridine (DMAP) gives the 1,3-oxazolidine-2-thione 7. The ester moiety of 7 is then converted into the corresponding hydroxymethyl substituent upon treatment with sodium cyanoborohydride. Swern oxidation converts the hydroxymethyl substituent into the corresponding aldehyde which is then reacted with the Wittig reagent 1-(4-fluorophenyl)-2-triphenyl-\lambda^5-phosphanylidene)-ethanone to give the ketone 8.

Catalytic hydrogenation of 8 over palladium on carbon reduces the double bond to give ketone 9 which is reduced with borane dimethylsulfide complex in the presence of a catalytic amount of tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrolo[1,2-c][1,3,2]oxazaborole, (R-CBS), followed by treatment with pyridine HF complex to give the desired compound 10.

[00440] Also within the invention are compounds described by Table 3, together with Table 4 and Formula VIII which is shown below.

Cl, CH₃, OCH₃, OCF₂h, CF₂h, CF₃, CF₂h, and CH₂F; \mathbb{R}^4 is chosen from H, Cl, F, CH₃, OCH₃, OH, B(OH)₂, and SH; \mathbb{R}^5 is chosen from OH, SO₃H, PO₃H₂, CH₂OH, COOH, CHO, D-glucitol, a C-glysosyl compound and a sugar and only one R substitution is allowed on any aromatic ring. For example, where \mathbb{R}^5 is -OH, all of the other substituents on the corresponding aromatic ring are H. Of course, where a given R group is H (e.g., \mathbb{R}^4) all of the substituents on the corresponding aromatic ring

[00441] In these embodiments, R1 and R2 are independently chosen from H. F. CN.

are also H. In Table 4 when the R4 substituent position is defined as 3-, the

R⁴ substituent position is defined as 2-, the substitution occurs at the position meta to the azetidinone ring.

[00442] Each row in Table 3 defines a unique subset of R group substituents which can be systematically substituted in an iterative fashion into Formula VIII at the positions specified by each row of Table 4 to generate specific compounds within Formula VIII. For example, in Table 3, row 1, \mathbb{R}^1 is \mathbb{H} , \mathbb{R}^2 is \mathbb{H} , \mathbb{R}^4 is \mathbb{H} , \mathbb{H} is \mathbb{H} .

(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one.

[00443] Similarly, (3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one is disclosed by the using values in Table 3, row 1 to substitute Formula VIII according to Table 4, row 2.

[00444] Tables 5-20 comprise the compounds disclosed by substituting the substituents listed in Table 3 rows 1-16 into Formula VIII according to the placement defined by each row in Table 4. It should be understood that the compounds listed in Tables 5-20 are only a small subset of the compounds described by the systematic iterative substitution of the substituents in each row of Table 3 into generic Formula

Table 3

L	Row	R1	R2	R4	R5
	1	H	F	OH	OH
	2	H	F	ОН	D-glucitol
	3	H	F	ОН	SO₃H

VIII according to the placement defined by each row of Table 4.

4	\mathbf{H}	F	ОН	PO_3H_2
5	H	H	OH	OH
6	H	H	OH	D-glucitol
7	H	H	OH	SO₃H
8	H	н	OH	PO_3H_2
9	H	C1	OH	OH
10	H	C1	OH	D-glucitol
11	H	C1	OH	SO₃H
12	H	Cl	OH	PO_3H_2
13	F	H	OH	OH
14	F	H	OH	D-glucitol
15	F	H	OH	SO₃H
16	F	H	OH	PO₃H₂
17	F	F	OH	OH
18	F	F	OH	D-glucito1
19	F	F	OH	SO ₃ H
20	F	F	OH	PO_3H_2
21	F	C1	OH	OH
22	F	Cl	OH	D-glucitol
23	F	C1	OH	SO₃H
24	F	Cl	OH	PO_3H_2
25	C1	H	OH	OH
26	C1	H	OH	D-glucitol
27	C1	H	OH	SO₃H
28	C1	H	OH	PO_3H_2
29	C1	F	OH	OH
30	Cl	F	OH	D-glucitol
31	Cl	F	OH	SO₃H
32	C1	F	OH	PO ₃ H ₂
33	Cl	Cl	OH	OH
34	Cl	C1	OH	D-glucitol
35	Cl	C1	OH	SO ₃ H
36	C1	Cl	OH	PO ₃ H ₂
37	H	H	н	OH
38	H	H	Н	D-glucitol
39	H	н	H	SO₃H
40	H	Н	н	PO_3H_2
41	H	н	н	СНО

43 H H H CH ₂ CH ₂ OH 444 H H H H H Sugar 45 H H H H C-glycosyl compound 46 H H OH CHO 47 H H OH CH ₂ OH 48 H H OH CH ₂ OH 49 H H OH CH ₃ CH ₂ OH 50 H H OH CH ₃ OH 51 H H CH ₃ OH 52 H H CH ₃ D-glucitol 53 H H CH ₃ SO ₃ H 54 H H CH ₃ CHO 55 H H CH ₃ CHO 56 H H CH ₃ CHO 57 H H CH ₃ CHO 58 H CH ₃ CHO 60 H H CH ₃ SO ₃ H 59 H H CH ₃ SO ₃ H 60 H CH ₃ CH ₃ OH 61 H CH ₃ CH ₃ CHO 62 H H CH ₃ CH ₃ CH ₃ CH 63 H H CH CH ₃ CH ₃ CH 64 H H CI D-glucitol 65 H H CI CHO 66 H H CI CHO 67 H H CI CHO 68 H H CI CHO 69 H H B(OH) ₂ CH 70 H H B(OH) ₂ CHO 71 H H B(OH) ₂ CHO 72 H H B(OH) ₂ CHO 75 H H B(OH) ₂ CHO 76 H H B(OH) ₂ CHO 77 H H B(OH) ₂ CH ₂ OH 78 CH ₂ ON 79 CH ₂ ON 70 CH ₂ ON 70 CH ₂ ON 71 H H B(OH) ₂ CHO 72 CH ₂ ON 74 H H B(OH) ₂ CHO 75 H H B(OH) ₂ CHO 76 H H COH 77 H H B(OH) ₂ CH ₂ ON 77 H H B(OH) ₂ CH ₂ ON 78 CH ₂ ON 79 CH ₂ ON 70 CH ₂ ON 70 CH ₂ ON 71 CH ₂ ON 72 CH ₂ ON 73 H H B(OH) ₂ CH ₂ OH 74 CH ₂ ON 75 H H B(OH) ₂ CH ₂ ON 76 CH ₂ ON 77 CH 77 CH 78 CH ₂ ON 78 CH ₂ ON 79 CH ₂ ON 70 CH ₂ ON 70 CH ₂ ON 70 CH ₂ ON 71 CH ₂ ON 72 CH ₂ ON 74 CH ₂ ON 75 CH ₂ ON 76 CH ₂ ON 77 CH 77 CH 78 CH ₂ ON 78 CH ₂ ON 79 CH ₂ ON 70 CH ₂ ON 70 CH ₂ ON 70 CH ₂ ON 70 CH ₂ ON 71 CH 71 CH 72 CH ₂ ON 73 CH 74 CH 75 CH 76 CH 77 CH 77 CH 78 CH 78 CH 78 CH 79 CH 70 CH 70 CH 70 CH 71 CH 71 CH 72 CH 73 CH 74 CH 75 CH 76 CH 77 CH 77 CH 77 CH 78 CH 79 CH 70 CH 70 CH 70 CH 70 CH 70 CH 71 CH 71 CH 72 CH 73 CH 74 CH 75 CH 76 CH 77 CH 77 CH 78 CH 79 CH 79 CH 70 CH 70 CH 70 CH 70 CH 70 CH 70 CH 71 CH 71 CH 72 CH 73 CH 74 CH 75 CH 76 CH 77 CH 77 CH 77 CH 78 CH 79 CH	42	н	н	H	СООН
H			H	H	CH ₂ OH
H	44	H	H	H	
47 H H OH COOH 48 H H OH CH2OH 49 H H OH CH3OH 50 H H OH CH3 OH 51 H CH3 OH 52 H H CH3 SO3H 53 H H CH3 SO3H 54 H H CH3 CHO 55 H H CH3 CHO 56 H H CH3 CHO 57 H H CH3 CHO 58 H H CH3 SO3H 59 H H CH3 CHO 60 H H CH3 SO3H 60 H H CH3 CHO 61 H H CH CH3 SO3H 62 H H CH3 CHO 63 H H CH3 CH3 64 H H CL CH3 SO3H 65 H H CL CH3 CHO 66 H H CL CH3 SO3H 67 H H CL CH3 CHO 68 H H CL CH3 CHO 69 H H CL CHO 60 H H CL CHO 61 H CL CHO 65 H H CL CHO 66 H H CL CHO 67 H H CL CHO 68 H H CL CH3 69 H H B(OH)2 OH 70 H H B(OH)2 CH0 71 H H B(OH)2 CH0 75 H H B(OH)2 CH2OH 76 H H B(OH)2 CH2OH 77 CH3CH 77 CH3CH 77 CH3CH 77 CH3CH 77 CH3CH 77 CH3CH 78 CH3CH 79 CH2OH 70 CH3CH 70 CH3CH 70 CH3CH 70 CH3CH 71 CH3CH 72 CH3CH 73 H H B(OH)2 CH2OH 74 H H B(OH)2 CH2OH 75 H H B(OH)2 CH2OH 76 H H B(OH)2 CH3CH 77 CH3CH 78 CH3CH CH3CH CH3CH CH3CH CH3CH CH3CH CH3CH	45	H	H	H	
48 H H OH CH2OH 49 H H OH Sugar 50 H H OH OH C-glycosyl compound 51 H H CH3 OH 52 H H CH3 D-glucitol 53 H H CH3 SO3H 54 H H CH3 CH0OH 55 H H CH3 CH0OH 56 H H CH3 CH0OH 57 H H CH3 CH0OH 58 H H CH3 Sugar 59 H H CH3 Sugar 59 H H CH3 Sugar 60 H H CI OH 61 H H CI OH 62 H H CI OH 63 H H CI CH0OH 64 H H CI CHO 65 H H CI CHOOH 66 H H CI CHOOH 67 H H CI CHOOH 68 H H CI CHOOH 69 H H CI CHOOH 60 H H CI CHOOH 67 H H CI CHOOH 68 H H CI CHOOH 69 H H CI CHOOH 70 H H B(OH)2 OH 71 H H B(OH)2 CHOOH 73 H H B(OH)2 CHOOH 74 H H B(OH)2 CHOOH 75 H H B(OH)2 CH2OH 76 H H B(OH)2 CH2OH 77 CH2 CH2VOSVI compound 60 CH2OH 60 CH2OOH 60 CH2OH 60 CH2OCH 6	46	H			
1	47	H	H		
H	48	H	H	OH	CH ₂ OH
Si	49	H			
52 H H CH ₃ D-glucitol 53 H H CH ₃ SO ₃ H 54 H H CH ₃ SO ₃ H 55 H H CH ₃ CHO 56 H H CH ₃ COOH 57 H H CH ₃ COOH 58 H H CH ₃ Sugar 59 H H CH ₃ CH ₃ C-glycosyl compound 60 H H CI D-glucitol 62 H H CI SO ₃ H 63 H H CI CHO 65 H H CI CHO 66 H H CI CHO 67 H H CI CHO 68 H H CI CHO 69 H H CI CHO 67 H H CI CHO 68 H H CI CHO 69 H H B(OH) ₂ OH 70 H H B(OH) ₂ D-glucitol 71 H H B(OH) ₂ CHO 73 H H B(OH) ₂ CHO 74 H H B(OH) ₂ CHO 75 H H B(OH) ₂ CHO 76 H H B(OH) ₂ CHO 77 H H B(OH) ₂ CHO 76 H H B(OH) ₂ CHO 77 H H B(OH) ₂ Sugar 78 H B(OH) ₂ CHO 79 H H B(OH) ₂ CHO 70 H H B(OH) ₂ CHO 71 H B(OH) ₂ CHO 72 H H B(OH) ₂ CHO 74 H H B(OH) ₂ CHO 75 H H B(OH) ₂ Sugar 76 H H B(OH) ₂ Sugar 77 H H B(OH) ₂ Sugar	50	H			
53 H H CH ₃ SO ₃ H 54 H H CH ₃ PO ₃ H ₂ 55 H H CH ₃ CHO 56 H H CH ₃ COOH 57 H H CH ₃ CU ₂ OH 58 H H CH ₃ Sugar 59 H H CH ₃ C-glycosyl compound 60 H H CI OH 61 H H CI OH 61 H H CI OH 61 H H CI CHO 62 H H CI CHO 63 H H CI CHO 64 H H CI CHO 65 H H CI CHO 66 H H CI CH ₂ OH 67 H H B(OH) ₂ <	51	H	H	CH ₃	
S4	52	H	H	CH ₃	
S	53	H	H	CH ₃	
Solution	54	H	H	CH ₃	PO₃H ₂
Solution	55	H	H	CH ₃	СНО
Section	56	H	H	CH ₃	СООН
59 H H CH ₃ C-glycosyl compound 60 H H Cl OH 61 H H Cl D-glucitol 62 H H Cl SO ₃ H 63 H H Cl PO ₃ H ₂ 64 H H Cl CHO 65 H H Cl CHO 66 H H Cl CH ₂ OH 67 H H Cl SO ₃ H 68 H H Cl C-glycosyl compound 69 H H B(OH) ₂ OH 70 H H B(OH) ₂ D-glucitol 71 H H B(OH) ₂ CHO 73 H H B(OH) ₂ CHO 74 H H B(OH) ₂ CHO 75 H H B(OH) ₂ COOH 76 H H B(OH) ₂ Sugar 77 H H B(OH) ₂ Sugar	57	Н	H	CH ₃	CH ₂ OH
Solution	58	H	H	CH ₃	
61 H H Cl D-glucitol 62 H H Cl SO ₃ H 63 H H Cl SO ₃ H 64 H H Cl PO ₃ H ₂ 65 H H Cl CHO 65 H H Cl CHO 66 H H Cl CH ₂ OH 67 H H Cl sugar 68 H H Cl C-glycosyl compound 69 H H B(OH) ₂ OH 70 H H B(OH) ₂ D-glucitol 71 H H B(OH) ₂ SO ₃ H 72 H H B(OH) ₂ CH ₂ OH 73 H H B(OH) ₂ CHO 74 H H B(OH) ₂ CHO 75 H H B(OH) ₂ CHO 76 H H B(OH) ₂ Sugar 77 H H B(OH) ₂ Sugar	59	H	H	CH_3	C-glycosyl compound
62 H H CI SO ₃ H 63 H H CI PO ₃ H ₂ 64 H H CI CHO 65 H H CI CH ₂ OH 66 H H CI CH ₂ OH 67 H H CI Sugar 68 H H CI C-glycosyl compound 69 H H B(OH) ₂ D-glucitol 70 H H B(OH) ₂ D-glucitol 71 H H B(OH) ₂ SO ₃ H 72 H H B(OH) ₂ CHO 74 H H B(OH) ₂ CHO 75 H H B(OH) ₂ COOH 76 H H B(OH) ₂ COOH 77 H H B(OH) ₂ Sugar	60	H	H		
63 H H Cl PO3H2 64 H H Cl CHO 65 H H Cl CHO 66 H H Cl CH20H 67 H H Cl Sugar 68 H H Cl C-9lycosyl compound 69 H H B(OH)2 D-glucitol 70 H H B(OH)2 SO3H 72 H H B(OH)2 CH0 73 H H B(OH)2 CH0 74 H H B(OH)2 CH0 75 H H B(OH)2 CH0 76 H H B(OH)2 CH2OH 77 H H B(OH)2 CH2OH 78 H H B(OH)2 CH2OH 79 H H B(OH)2 CH2OH 71 H H B(OH)2 CH2OH 75 H H B(OH)2 CH2OH 76 H H B(OH)2 CH2OH 77 H H B(OH)2 CH2OH 78 CH2OH 79 CH2OH 79 CH2OH 70 CH2OH 71 CHO 72 CH2OH 75 CH2OH 76 CH2OH 77 CH2OH 78 CH2OH 79 CH2OH 79 CH2OH 70 CH2OH 71 CH2OH 71 CH2OH 72 CH2OH 73 CH2OH 74 CH2OH 75 CH2OH 76 CH2OH 77 CH2OH 77 CH2OH 78 CH2OH 79 CH2OH 79 CH2OH 70 CH2OH 70 CH2OH 71 CH2OH 71 CH2OH 72 CH2OH 73 CH2OH 74 CH2OH 75 CH2OH 76 CH2OH 77 CH2OH 77 CH2OH 78 CH2OH 78 CH2OH 79 CH2OH 70 CH2OH 70 CH2OH 71 CH2OH 71 CH2OH 72 CH2OH 73 CH2OH 74 CH2OH 75 CH2OH 76 CH2OH 77 CH2OH 7	61	H	H	C1	
Columbia	62	H	H	C1	SO ₃ H
Coordinate	63	H	H	Cl	PO_3H_2
C	64	H	H	C1	
1	65	H	Н	C1	
Columbia	66	H	H	C1	CH ₂ OH
H	67	H	Н	Cl	
To	68	H	H		
71	69	H	H	B(OH) ₂	
72 H H B(OH) ₂ PO ₃ H ₂ 73 H H B(OH) ₂ CHO 74 H H B(OH) ₂ COOH 75 H H B(OH) ₂ CH ₂ OH 76 H H B(OH) ₂ sugar 77 H H B(OH) ₂ Ceglycosyl compound	70	H	H	B(OH) ₂	D-glucitol
73	71	H	H	B(OH) ₂	SO ₃ H
74	72	H	H	B(OH) ₂	
75 H H B(OH)2 CH2OH 76 H H B(OH)2 sugar 77 H H B(OH)2 C-glycosyl compound	73	H	H	B(OH) ₂	
76 H H B(OH) ₂ sugar 77 H H B(OH) ₂ C-glycosyl compound	74	Н	H	B(OH) ₂	
77 H H B(OH) ₂ C-glycosyl compound	75	Н	H	B(OH) ₂	CH ₂ OH
The state of the s	76	Н	H	B(OH) ₂	
78 H H SH OH	77	H	Н	B(OH) ₂	
/0 11 11 11	78	H	Н	SH	OH

79	H	н	SH	D-glucitol
80	H	H	SH	SO ₃ H
81	H	H	SH	PO ₃ H ₂
82	H	H	SH	СНО
83	H	H	SH	СООН
84	H	H	SH	CH ₂ OH
85	H	H	SH	sugar
86	Н	H	SH	C-glycosyl compound
87	H	H	OCH_3	OH
88	H	H	OCH ₃	D-glucitol
89	H	H	OCH ₃	SO₃H
90	Н	H	OCH ₃	PO ₃ H ₂
91	H	H	OCH ₃	СНО
92	Н	Н	OCH ₃	COOH
93	Н	H	OCH ₃	CH ₂ OH
94	Н	Н	OCH ₃	sugar
95	Н	H	OCH ₃	C-glycosyl compound
96	H	F	H	OH
97	H	F	H	D-glucitol
98	H	F	H	SO₃H
99	H	F	H	PO ₃ H ₂
100	H	F	H	CHO
101	H	F	H	СООН
102	H	F	H	CH ₂ OH
103	H	F	H	sugar
104	Н	F	H	C-glycosyl compound
105	H	F	OH	СНО
106	H	F	OH	СООН
107	H	F	OH	CH ₂ OH
108	H	F	OH	sugar
109	H	F	OH	C-glycosyl compound
110	Н	F	CH ₃	OH
111	Н	F	CH ₃	D-glucitol
112	Н	F	CH ₃	SO₃H
113	Н	F	CH ₃	PO ₃ H ₂
114	Н	F	CH ₃	СНО
115	Н	F	CH ₃	СООН

		F	CH ₃	CH ₂ OH
117	H	F	CH ₃	sugar
118	H	F	CH ₃	C-glycosyl compound
119	H	F	C1	ОН
120	H	F	C1	D-glucitol
121	H	F	C1	SO ₃ H
122	H	F	Cl	PO_3H_2
123	H	F	C1	СНО
124	H	F	Cl	СООН
125	H	F	C1	CH ₂ OH
126	H	F	C1	sugar
127	Н	F	Cl	C-glycosyl compound
128	H	F	B(OH) ₂	OH
129	H	F	B(OH) ₂	D-glucitol
130	H	F	B(OH) ₂	SO₃H
131	H	F	B(OH) ₂	PO ₃ H ₂
132	Н	F	B(OH) ₂	СНО
133	Н	F	B(OH) ₂	COOH
134	Н	F	B(OH) ₂	CH ₂ OH
135	Н	F	B(OH) ₂	sugar
136	H	F	B(OH) ₂	C-glycosyl compound
137	H	F	SH	OH
138	H	F	SH	D-glucitol
139	H	F	SH	SO₃H
140	Н	F	SH	PO ₃ H ₂
141	н	F	SH	СНО
142	H	F	SH	СООН
143	Н	F	SH	CH ₂ OH
144	H	F	SH	sugar
145	H	F	SH	C-glycosyl compound
146	н	F	OCH_3	ОН
147	H	F	OCH ₃	D-glucitol
148	H	F	OCH ₃	SO₃H
149	Н	F	OCH ₃	PO ₃ H ₂
150	Н	F	OCH ₃	CHO
151	Н	F	OCH ₃	СООН
152	Н	F	OCH ₃	CH ₂ OH

153 H F	OCH ₃	sugar
154 H F	OCH ₃	C-glycosyl compound
155 H Cl	Н	ОН
156 H Cl	Н	D-glucitol
157 H C1	H	SO₃H
158 H Cl	Н	PO₃H ₂
159 H C1	H	СНО
160 H C1	H	СООН
161 H Cl	H	CH ₂ OH
162 H Cl	H	sugar
163 H C1	H	C-glycosyl compound
164 H Cl	OH	СНО
165 H Cl	OH	СООН
166 H C1	ОН	CH ₂ OH
167 H Cl	OH	sugar
168 H Cl	OH	C-glycosyl compound
169 H C1	CH ₃	OH
170 H Cl	CH ₃	D-glucitol
171 H Cl	CH ₃	SO₃H
172 H Cl	CH ₃	PO ₃ H ₂
173 H Cl	CH ₃	СНО
174 H Cl	CH ₃	СООН
175 H Cl	CH ₃	CH ₂ OH
176 H Cl	CH ₃	sugar
177 H Cl	CH ₃	C-glycosyl compound
178 H Cl	C1	OH
179 H Cl	C1	D-glucitol
180 H C1	C1	SO₃H
181 H Cl	Cl	PO ₃ H ₂
182 H Cl	C1	СНО
183 H C1	C1	COOH
184 H Cl	Cl	CH₂OH
185 H Cl	C1	sugar
186 H C1	Cl	C-glycosyl compound
187 H Cl	$B(OH)_2$	OH
188 H C1	B(OH) ₂	D-glucitol
189 H Cl	B(OH) ₂	SO₃H
190 H Cl	B(OH) ₂	PO ₃ H ₂

191	н	Cl	B(OH) ₂	СНО
192	H	Cl	B(OH) ₂	COOH
193	Н	Cl	B(OH) ₂	CH ₂ OH
194	H	Cl	B(OH) ₂	sugar
195	Н	Cl	B(OH) ₂	C-glycosyl compound
196	H	CI	SH	OH
197	Н	Cl	SH	D-glucitol
198	Н	Cl	SH	SO ₃ H
199	H	Cl	SH	PO ₃ H ₂
200	H	Cl	SH	CHO
201	H	Cl	SH	COOH
202	H	Cl	SH	CH ₂ OH
203	H	Cl	SH	sugar
204	H	Cl	SH	C-glycosyl compound
205	H	Cl	OCH ₃	OH
206	H	Cl	OCH ₃	D-glucitol
207	Н	Cl	OCH ₃	SO₃H
208	н	Cl	OCH ₃	PO ₃ H ₂
209	Н	C1	OCH ₃	СНО
210	Н	Cl	OCH ₃	СООН
211	н	Cl	OCH ₃	CH ₂ OH
212	H	Cl	OCH ₃	sugar
213	Н	C1	OCH ₃	C-glycosyl compound
214	H	CN	H	OH
215	H	CN	H	D-glucitol
216	H	CN	H	SO ₃ H
217	H	CN	H	PO ₃ H ₂
218	H	CN	H	СНО
219	H	CN	Н	COOH
220	Н	CN	H	CH ₂ OH
221	H	CN	H	sugar
222	H	CN	H	C-glycosyl compound
223	Н	CN	OH	OH
224	H	CN	OH	D-glucitol
225	H	CN	ОН	SO₃H
226	H	CN	OH	PO ₃ H ₂
227	H	CN	OH	СНО
228	H	CN	OH	COOH
				303

229	Н	CN	ОН	CH ₂ OH
230	H	CN	OH	sugar
231	H	CN	OH	C-glycosyl compound
232	H	CN	CH_3	OH
233	H	CN	CH ₃	D-glucitol
234	H	CN	CH ₃	SO₃H
235	H	CN	CH ₃	PO_3H_2
236	Н	CN	CH ₃	СНО
237	H	CN	CH ₃	СООН
238	H	CN	CH ₃	CH ₂ OH
239	H	CN	CH ₃	sugar
240	H	CN	CH ₃	C-glycosyl compound
241	H	CN	CI	OH
242	H	CN	Cl	D-glucitol
243	H	CN	Cl	SO₃H
244	H	CN	CI	PO ₃ H ₂
245	H	CN	Cl	СНО
246	H	CN	Cl	СООН
247	H	CN	CI	CH ₂ OH
248	H	CN	C1	sugar
249	H	CN	Cl	C-glycosyl compound
250	H	CN	B(OH) ₂	OH
251	H	CN	B(OH) ₂	D-glucitol
252	H	CN	B(OH) ₂	SO₃H
253	H	CN	B(OH) ₂	PO ₃ H ₂
254	H	CN	B(OH) ₂	СНО
255	H	CN	B(OH) ₂	COOH
256	H	CN	B(OH) ₂	CH ₂ OH
257	H	CN	B(OH) ₂	sugar
258	H	CN	B(OH) ₂	C-glycosyl compound
259	H	CN	SH	OH
260	Н	CN	SH	D-glucitol
261	Н	CN	SH	SO ₃ H
262	Н	CN	SH	PO ₃ H ₂
263	Н	CN	SH	СНО
264	H	CN	SH	COOH
265	H	CN	SH	CH ₂ OH

266	H	CN	SH	sugar
267	H	CN	SH	C-glycosyl compound
268	H	CN	OCH ₃	OH
269	Н	CN	OCH ₃	D-glucitol
270	Н	CN	OCH ₃	SO ₃ H
271	H	CN	OCH ₃	PO ₃ H ₂
272	Н	CN	OCH ₃	СНО
273	Н	CN	OCH ₃	СООН
274	Н	CN	OCH ₃	CH ₂ OH
275	H	CN	OCH ₃	sugar
276	H	CN	OCH ₃	C-glycosyl compound
277	H	CH ₃ ^a	H	OH
278	H	CH ₃ ^a	Н	D-glucitol
279	H	CH ₃ ^a	Н	SO ₃ H
280	H	CH ₃ ^a	Н	PO ₃ H ₂
281	Н	CH ₃ ^a	Н	СНО
282	H	CH ₃ ^a	Н	СООН
283	H	CH ₃ ^a	H	CH ₂ OH
284	Н	CH ₃ ^a	H	sugar
285	Н	CH ₃ ^a	H	C-glycosyl compound
286	H	CH ₃ ^a	OH	OH
287	H	CH ₃ ^a	OH	D-glucitol
288	H	CH ₃ ^a	OH	SO ₃ H
289	H	CH ₃ ^a	OH	PO ₃ H ₂
290	H	CH ₃ ^a	ОН	СНО
291	H	CH ₃ ^a	OH	COOH
292	H	CH ₃ ^a	OH	CH ₂ OH
293	H	CH ₃ ^a	OH	sugar
294	H	CH ₃ ^a	OH	C-glycosyl compound
295	Н	CH ₃ ^a	CH ₃	OH
296	Н	CH ₃ ^a	CH ₃	D-glucitol
297	Н	CH ₃ ^a	CH ₃	SO ₃ H
298	Н	CH ₃ ^a	CH ₃	PO ₃ H ₂
299	H	CH ₃ ^a	CH ₃	СНО

300	н	CH ₃ ^a	CH ₃	СООН
301	H	CH ₃ ^a	CH ₃	CH ₂ OH
302	H	CH ₃ ^a	CH ₃	sugar
303	H	CH ₃ ^a	CH ₃	C-glycosyl compound
304	H	CH ₃ ^a	Cl	ОН
305	Н	CH ₃ ^a	Cl	D-glucitol
306	H	CH ₃ ^a	CI	SO₃H
307	Н	CH ₃ ^a	Cl	PO₃H ₂
308	H	CH ₃ ^a	C1	СНО
309	H	CH ₃ ^a	Cl	COOH
310	H	CH ₃ ^a	C1	CH ₂ OH
311	H	CH ₃ ^a	C1	sugar
312	Н	CH ₃ ^a	Cl	C-glycosyl compound
313	H	CH ₃ ^a	B(OH) ₂	OH
314	Н	CH ₃ ^a	B(OH) ₂	D-glucitol
315	H	CH ₃ ^a	B(OH) ₂	SO ₃ H
316	H	CH ₃ ^a	B(OH) ₂	PO ₃ H ₂
317	H	CH ₃ ^a	B(OH) ₂	СНО
318	Н	CH ₃ ^a	B(OH) ₂	COOH
319	H	CH ₃ ^a	B(OH) ₂	CH ₂ OH
320	Н	CH ₃ ^a	B(OH) ₂	sugar
321	H	CH₃ª	B(OH) ₂	C-glycosyl compound
322	H	CH ₃ ^a	SH	OH
323	H	CH ₃ ^a	SH	D-glucitol
324	H	CH ₃ ^a	SH	SO ₃ H
325	H	CH ₃ ^a	SH	PO ₃ H ₂
326	н	CH ₃ ^a	SH	СНО
327	Н	CH ₃ ^a	SH	COOH
328	H	CH ₃ ^a	SH	CH ₂ OH
329	H	CH ₃ ^a	SH	sugar
330	H	CH ₃ ^a	SH	C-glycosyl compound
331	H	CH ₃ ^a	OCH ₃	ОН
332	H	CH ₃ ^a	OCH ₃	D-glucitol
				306

333	H	CH ₃ ^a	OCH ₃	SO ₃ H
334	H	CH ₃ ^a	OCH ₃	PO ₃ H ₂
335	Н	CH ₃ ^a	OCH ₃	СНО
336	Н	CH ₃ ^a	OCH ₃	COOH
337	Н	CH ₃ ^a	OCH ₃	CH ₂ OH
338	Н	CH ₃ ^a	OCH ₃	sugar
339	Н	CH ₃ ^a	OCH ₃	C-glycosyl compound
340	Н	OCH ₃ ^b	Н	ОН
341	H	OCH ₃ ^b	H	D-glucitol
342	H	OCH₃ ^b	H	SO₃H
343	H	OCH ₃ ^b	H	PO ₃ H ₂
344	H	OCH ₃ ^b	Н	СНО
345	H	OCH ₃ ^b	H	СООН
346	H	OCH ₃ ^b	H	CH ₂ OH
347	H	OCH ₃ ^b	H	sugar
348	H	OCH ₃ ^b	H	C-glycosyl compound
349	H	OCH ₃ ^b	OH	OH
350	H	OCH ₃ ^b	OH	D-glucitol
351	H	OCH₃ ^b	OH	SO ₃ H
352	Н	OCH₃ ^b	OH	PO ₃ H ₂
353	Н	OCH ₃ ^b	OH	СНО
354	H	OCH ₃ ^b	OH	СООН
355	H	OCH ₃ ^b	OH	CH ₂ OH
356	H	OCH ₃ ^b	OH	sugar
357	H	OCH ₃ ^b	OH	C-glycosyl compound
358	H	OCH ₃ ^b	CH ₃	OH
359	Н	OCH ₃ ^b	CH ₃	D-glucitol
360	Н	OCH ₃ ^b	CH ₃	SO ₃ H
361	Н	OCH ₃ ^b	CH ₃	PO ₃ H ₂
362	Н	OCH ₃ ^b	CH ₃	СНО
363	Н	OCH₃b	CH ₃	СООН
364	Н	OCH ₃ ^b	CH ₃	CH ₂ OH
365	Н	OCH ₃ ^b	CH ₃	sugar

366	н	OCH ₃ ^b	CH ₃	C-glycosyl compound
367	H	OCH ₃ ^b	C1	OH
368	H	OCH ₃ ^b	Cl	D-glucitol
369	H	OCH ₃ ^b	Cl	SO₃H
370	H	OCH ₃ ^b	Cl	PO_3H_2
371	H	OCH ₃ ^b	CI	СНО
372	Н	OCH ₃ ^b	Cl	СООН
373	H	OCH ₃ ^b	Cl	CH ₂ OH
374	H	OCH ₃ ^b	Cl	sugar
375	Н	OCH₃ ^b	Cl	C-glycosyl compound
376	H	OCH ₃ ^b	B(OH) ₂	OH
377	H	OCH ₃ ^b	B(OH) ₂	D-glucitol
378	H	OCH ₃ ^b	B(OH) ₂	SO₃H
379	H	OCH ₃ ^b	B(OH) ₂	PO ₃ H ₂
380	H	OCH ₃ ^b	B(OH) ₂	СНО
381	Н	OCH ₃ ^b	B(OH) ₂	COOH
382	Н	OCH ₃ ^b	B(OH) ₂	CH ₂ OH
383	Н	OCH ₃ ^b	B(OH) ₂	sugar
384	Н	OCH₃ ^b	B(OH) ₂	C-glycosyl compound
385	H	OCH₃ ^b	SH	OH
386	Н	OCH ₃ ^b	SH	D-glucitol
387	H	OCH ₃ ^b	SH	SO₃H
388	H	OCH ₃ ^b	SH	PO ₃ H ₂
389	H	OCH ₃ ^b	SH	СНО
390	H	OCH ₃ ^b	SH	СООН
391	H	OCH ₃ ^b	SH	CH ₂ OH
392	H	OCH ₃ ^b	SH	sugar
393	H	OCH ₃ ^b	SH	C-glycosyl compound
394	H	OCH ₃ ^b	OCH ₃	OH
395	H	OCH ₃ ^b	OCH ₃	D-glucitol
396	н	OCH ₃ ^b	OCH ₃	SO₃H
397	H	OCH ₃ ^b	OCH ₃	PO ₃ H ₂
398	H	OCH ₃ ^b	OCH ₃	СНО

399	H	OCH ₃ ^b	OCH ₃	СООН
400	H	OCH ₃ ^b	OCH ₃	CH ₂ OH
401	Н	OCH₃ ^b	OCH ₃	sugar
402	H	OCH ₃ ^b	OCH ₃	C-glycosyl compound
403	F	H	H	OH
404	F	H	H	D-glucitol
405	F	H	H	SO₃H
406	F	H	H	PO ₃ H ₂
407	F	H	H	СНО
408	F	H	H	COOH
409	F	H	H	CH ₂ OH
410	F	H	H	sugar
411	F	H	H	C-glycosyl compound
412	F	Н	OH	СНО
413	F	H	OH	СООН
414	F	H	OH	CH ₂ OH
415	F	H	OH	sugar
416	F	H	OH	C-glycosyl compound
417	F	H	CH ₃	ОН
418	F	H	CH ₃	D-glucitol
419	F	H	CH ₃	SO₃H
420	F	H	CH ₃	PO ₃ H ₂
421	F	H	CH ₃	СНО
422	F	H	CH ₃	СООН
423	F	H	CH ₃	CH ₂ OH
424	F	H	CH ₃	sugar
425	F	H	CH ₃	C-glycosyl compound
426	F	H	C1	OH
427	F	H	C1	D-glucitol
428	F	H	Cl	SO₃H
429	F	H	C1	PO ₃ H ₂
430	F	Н	CI	СНО
431	F	H	Cl	СООН
432	F	H	Cl	CH ₂ OH
433	F	H	C1	sugar
434	F	H	C1	C-glycosyl compound
435	F	H	B(OH) ₂	OH

436	F	H	B(OH) ₂	D-glucitol
437	F	H	B(OH) ₂	SO₃H
438	F	H	B(OH) ₂	PO ₃ H ₂
439	F	H	B(OH) ₂	СНО
440	F	H	B(OH) ₂	COOH
441	F	H	B(OH) ₂	CH ₂ OH
442	F	H	B(OH) ₂	sugar
443	F	H	B(OH) ₂	C-glycosyl compound
444	F	H	SH	OH
445	F	H	SH	D-glucitol
446	F	H	SH	SO₃H
447	F	Н	SH	PO ₃ H ₂
448	F	H	SH	СНО
449	F	Н	SH	COOH
450	F	H	SH	CH ₂ OH
451	F	H	SH	sugar
452	F	H	SH	C-glycosyl compound
453	F	H	OCH ₃	OH
454	F	H	OCH ₃	D-glucitol
455	F	Н	OCH ₃	SO₃H
456	F	Н	OCH ₃	PO ₃ H ₂
457	F	H	OCH ₃	CHO
458	F	H	OCH ₃	СООН
459	F	H	OCH ₃	CH ₂ OH
460	F	Н	OCH ₃	sugar
461	F	H	OCH ₃	C-glycosyl compound
462	F	F	H	OH
463	F	F	H	D-glucitol
464	F	F	H	SO₃H
465	F	F	H	PO₃H₂
466	F	F	H	СНО
467	F	F	H	COOH
468	F	F	H	CH ₂ OH
469	F	F	H	sugar
470	F	F	H	C-glycosyl compound
471	F	F	OH	СНО
472	F	F	OH	COOH

473	F	F	ОН	CH₂OH
474	F	F	OH	sugar
475	F	F	OH	C-glycosyl compound
476	F	F	CH ₃	OH
477	F	F	CH ₃	D-glucitol
478	F	F	CH_3	SO₃H
479	F	F	CH ₃	PO ₃ H ₂
480	F	F	CH ₃	СНО
481	F	F	CH ₃	СООН
482	F	F	CH ₃	CH ₂ OH
483	F	F	CH_3	sugar
484	F	F	CH ₃	C-glycosyl compound
485	F	F	CI	OH
486	F	F	Cl	D-glucitol
487	F	F	Cl	SO ₃ H
488	F	F	Cl	PO_3H_2
489	F	F	Cl	CHO
490	F	F	Cl	СООН
491	F	F	CI	CH ₂ OH
492	F	F	CI	sugar
493	F	F	CI	C-glycosyl compound
494	F	F	B(OH) ₂	OH
495	F	F	B(OH) ₂	D-glucitol
496	F	F	B(OH) ₂	SO ₃ H
497	F	F	B(OH) ₂	PO ₃ H ₂
498	F	F	B(OH) ₂	СНО
499	F	F	B(OH) ₂	СООН
500	F	F	B(OH) ₂	CH ₂ OH
501	F	F	B(OH) ₂	sugar
502	F	F	B(OH) ₂	C-glycosyl compound
503	F	F	SH	OH
504	F	F	SH	D-glucitol
505	F	F	SH	SO ₃ H
506	F	F	SH	PO ₃ H ₂
507	F	F	SH	СНО
508	F	F	SH	СООН
509	F	F	SH	CH ₂ OH

510	F	F	SH	sugar
511	F	F	SH	C-glycosyl compound
512	F	F	OCH_3	OH
513	F	F	OCH ₃	D-glucitol
514	F	F	OCH ₃	SO₃H
515	F	F	OCH ₃	PO ₃ H ₂
516	F	F	OCH ₃	СНО
517	F	F	OCH ₃	СООН
518	F	F	OCH ₃	CH ₂ OH
519	F	F	OCH₃	sugar
520	F	F	OCH ₃	C-glycosyl compound
521	F	Cl	H	OH
522	F	C1	H	D-glucitol
523	F	Cl	H	SO ₃ H
524	F	C1	H	PO ₃ H ₂
525	F	C1	H	СНО
526	F	Cl	H	СООН
527	F	Cl	H	CH ₂ OH
528	F	Cl	H	sugar
529	F	Cl	H	C-glycosyl compound
530	F	C1	OH	СНО
531	F	Cl	OH	COOH
532	F	CI	OH	CH₂OH
533	F	C1	OH	sugar
534	F	C1	OH	C-glycosyl compound
535	F	Cl	CH ₃	OH
536	F	Cl	CH ₃	D-glucitol
537	F	Cl	CH ₃	SO ₃ H
538	F	Cl	CH ₃	PO ₃ H ₂
539	F	Cl	CH ₃	СНО
540	F	C1	CH ₃	СООН
541	F	Cl	CH ₃	CH ₂ OH
542	F	Cl	CH ₃	sugar
543	F	C1	CH ₃	C-glycosyl compound
544	F	Cl	Cl	OH
545	F	Cl	Cl	D-glucitol
546	F	Cl	Cl	SO ₃ H

548 F CI CI CHO 549 F CI CI COOH 550 F CI CI CHOH 551 F CI CI Sugar 552 F CI CI C-glycosyl compound 553 F CI B(OH)2 OH 554 F CI B(OH)2 D-glucitol 555 F CI B(OH)2 SO ₃ H 556 F CI B(OH)2 CHO 557 F CI B(OH)2 CHO 558 F CI B(OH)2 COH 559 F CI B(OH)2 COH 560 F CI B(OH)2 Culvo 561 F CI B(OH)2 Sugar 561 F CI SH OH 562 F CI SH O-glycosyl compound 564 <t< th=""><th>547</th><th>F</th><th>Cl</th><th>Cl</th><th>PO₃H₂</th></t<>	547	F	Cl	Cl	PO ₃ H ₂
S50 F Cl Cl CH ₂ OH	548	F	C1	Cl	
S51	549	F	Cl	Cl	
552 F Cl Cl C-glycosyl compound 553 F Cl B(OH)2 OH 554 F Cl B(OH)2 D-glucitol 555 F Cl B(OH)2 SO3H 556 F Cl B(OH)2 CHO 557 F Cl B(OH)2 CHO 558 F Cl B(OH)2 COOH 559 F Cl B(OH)2 CH2OH 560 F Cl B(OH)2 CH2OH 561 F Cl B(OH)2 CH2OH 561 F Cl B(OH)2 CH2OH 561 F Cl SH OH 563 F Cl SH OH 563 F Cl SH D-glucitol 564 F Cl SH PO3H2 565 F Cl SH CHO 566 F </td <td>550</td> <td>F</td> <td>Cl</td> <td>C1</td> <td>CH₂OH</td>	550	F	Cl	C1	CH ₂ OH
553 F Cl B(OH) ₂ OH 554 F Cl B(OH) ₂ D-glucitol 555 F Cl B(OH) ₂ D-glucitol 555 F Cl B(OH) ₂ PO ₃ H ₂ 557 F Cl B(OH) ₂ CHO 558 F Cl B(OH) ₂ COOH 559 F Cl B(OH) ₂ CH ₂ OH 560 F Cl B(OH) ₂ C-glycosyl compound 561 F Cl SH OH 563 F Cl SH OH 563 F Cl SH D-glucitol 564 F Cl SH SO ₃ H 565 F Cl SH CPO 566 F Cl SH CHO 567 F Cl SH COOH 568 F Cl SH SUP 569 <td>551</td> <td>F</td> <td>Cl</td> <td></td> <td></td>	551	F	Cl		
554 F Cl B(OH) ₂ D-glucitol 555 F Cl B(OH) ₂ SO ₃ H 556 F Cl B(OH) ₂ PO ₂ H ₂ 557 F Cl B(OH) ₂ CHO 558 F Cl B(OH) ₂ COOH 559 F Cl B(OH) ₂ CH ₂ OH 560 F Cl B(OH) ₂ C-glycosyl compound 561 F Cl SH OH 563 F Cl SH OH 564 F Cl SH SO ₃ H 565 F Cl SH SO ₃ H 566 F Cl SH COOH 567 F Cl SH COOH 568 F Cl SH COOH 569 F Cl SH sugar 570 F Cl SH sugar 571	552	F			C-glycosyl compound
555 F Cl B(OH)2 SO3H 556 F Cl B(OH)2 PO3H2 557 F Cl B(OH)2 CHO 558 F Cl B(OH)2 CHO 558 F Cl B(OH)2 CHO 558 F Cl B(OH)2 CH2OH 560 F Cl B(OH)2 C-glycosyl compound 561 F Cl SH OH OH 562 F Cl SH OH	553	F	CI	$B(OH)_2$	
556 F Cl B(OH) ₂ PO ₃ H ₂ 557 F Cl B(OH) ₂ CHO 558 F Cl B(OH) ₂ COOH 559 F Cl B(OH) ₂ CH ₂ OH 560 F Cl B(OH) ₂ C-glycosyl compound 561 F Cl SH O-glycosyl compound 562 F Cl SH O-glycosyl compound 563 F Cl SH OO ₃ H 564 F Cl SH SO ₃ H 565 F Cl SH COO 566 F Cl SH COO 567 F Cl SH COO 568 F Cl SH COO 569 F Cl SH sugar 570 F Cl SH cglycosyl compound 571 F Cl OCH ₃ D-glucitol	554	F	Cl	B(OH) ₂	D-glucitol
557 F Cl B(OH)2 CHO 558 F Cl B(OH)2 COOH 559 F Cl B(OH)2 CH2OH 560 F Cl B(OH)2 sugar 561 F Cl B(OH)2 C-glycosyl compound 562 F Cl SH OH 563 F Cl SH O-glucitol 564 F Cl SH SO ₂ H 565 F Cl SH COOH 566 F Cl SH COOH 568 F Cl SH COOH 569 F Cl SH SUgar 570 F Cl SH sugar 570 F Cl SH Sugar 571 F Cl OCH3 OH 572 F Cl OCH3 D-glucitol 573 F	555	F	Cl	B(OH) ₂	SO₃H
Solution	556	F	Cl	B(OH) ₂	PO ₃ H ₂
559 F Cl B(OH)₂ CH₂OH 560 F Cl B(OH)₂ sugar 561 F Cl B(OH)₂ C-glycosyl compound 562 F Cl SH OH 563 F Cl SH D-glucitol 564 F Cl SH SO₃H 565 F Cl SH PO₃H₂ 566 F Cl SH CHO 567 F Cl SH COOH 568 F Cl SH COOH 569 F Cl SH sugar 570 F Cl SH sugar 571 F Cl OCH₃ OH 572 F Cl OCH₃ D-glucitol 573 F Cl OCH₃ D-glucitol 574 F Cl OCH₃ PO₃H₂ 575 F	557	F	Cl	B(OH) ₂	СНО
Section	558	F	Cl	B(OH) ₂	COOH
561 F CI B(OH)2 C-glycosyl compound 562 F CI SH OH 563 F CI SH D-glucitol 564 F CI SH SO ₃ H 565 F CI SH PO ₃ H2 566 F CI SH CHO 567 F CI SH COOH 568 F CI SH CUpOH 569 F CI SH sugar 570 F CI SH OCH 571 F CI OCH ₃ OH 572 F CI OCH ₃ O-glucitol 573 F CI OCH ₃ SO ₂ H 574 F CI OCH ₃ PO ₃ H2 575 F CI OCH ₃ CHO 577 F CI OCH ₃ COOH 577 F	559	F	Cl	B(OH) ₂	CH ₂ OH
562 F Cl SH OH 563 F Cl SH D-glucitol 564 F Cl SH SO ₂ H 565 F Cl SH PO ₃ H ₂ 566 F Cl SH CHO 567 F Cl SH COOH 568 F Cl SH COOH 569 F Cl SH sugar 570 F Cl SH sugar 571 F Cl OCH ₃ OH 572 F Cl OCH ₃ D-glucitol 573 F Cl OCH ₃ SO ₃ H 574 F Cl OCH ₃ SO ₃ H 575 F Cl OCH ₃ CHO 576 F Cl OCH ₃ COOH 577 F Cl OCH ₃ COOH 578 F	560	F	Cl	B(OH) ₂	sugar
Signature Sig	561	F	Cl	B(OH) ₂	C-glycosyl compound
563 F Cl SH D-glucitol 564 F Cl SH SO ₂ H 565 F Cl SH PO ₃ H₂ 566 F Cl SH CHO 567 F Cl SH COOH 568 F Cl SH CH2OH 569 F Cl SH sugar 570 F Cl SH SUgycosyl compound 571 F Cl OCH ₃ OH 572 F Cl OCH ₃ D-glucitol 573 F Cl OCH ₃ SO ₃ H 574 F Cl OCH ₃ SO ₃ H 575 F Cl OCH ₃ CHO 576 F Cl OCH ₃ COOH 577 F Cl OCH ₃ COOH 578 F Cl OCH ₃ Sugar 579 <td< td=""><td>562</td><td>F</td><td>Cl</td><td>SH</td><td></td></td<>	562	F	Cl	SH	
564 F Cl SH SO₃H 565 F Cl SH PO₃H₂ 566 F Cl SH CHO 567 F Cl SH COOH 568 F Cl SH CH₂OH 569 F Cl SH sugar 570 F Cl SH Ceglycosyl compound 571 F Cl OCH₃ Deglucitol 572 F Cl OCH₃ Deglucitol 573 F Cl OCH₃ PO₃H 574 F Cl OCH₃ CHO 575 F Cl OCH₃ CHO 576 F Cl OCH₃ COOH 577 F Cl OCH₃ Sugar 579 F Cl OCH₃ Sugar 579 F Cl OCH₃ Ceglycosyl compound 580 F </td <td></td> <td>F</td> <td>Cl</td> <td>SH</td> <td>D-glucitol</td>		F	Cl	SH	D-glucitol
566 F CI SH CHO 567 F CI SH COOH 568 F CI SH CH ₂ OH 569 F CI SH sugar 570 F CI SH SUgar 571 F CI OCH ₃ OH 572 F CI OCH ₃ D-glucitol 573 F CI OCH ₃ SO ₃ H 574 F CI OCH ₃ PO ₃ H ₂ 575 F CI OCH ₃ CHO 576 F CI OCH ₃ COOH 577 F CI OCH ₃ CH ₂ OH 579 F CI OCH ₃ Sugar 579 F CI OCH ₃ C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582		F	Cl	SH	
Solution Solution	565	F	Cl	SH	PO ₃ H ₂
Signature Sign	566	F	CI	SH	СНО
569 F Cl SH sugar 570 F Cl SH C-glycosyl compound 571 F Cl OCH ₃ OH 572 F Cl OCH ₃ D-glucitol 573 F Cl OCH ₃ SO ₃ H 574 F Cl OCH ₃ PO ₃ H ₂ 575 F Cl OCH ₃ CHO 576 F Cl OCH ₃ COOH 577 F Cl OCH ₃ CH ₂ OH 578 F Cl OCH ₃ sugar 579 F Cl OCH ₃ C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	567	F	Cl	SH	COOH
570 F Cl SH C-glycosyl compound 571 F Cl OCH ₃ OH 572 F Cl OCH ₃ D-glucitol 573 F Cl OCH ₃ SO ₃ H 574 F Cl OCH ₃ PO ₃ H ₂ 575 F Cl OCH ₃ CHO 576 F Cl OCH ₃ COOH 577 F Cl OCH ₃ CH ₂ OH 578 F Cl OCH ₃ Sugar 579 F Cl OCH ₃ C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	568	F	Cl	SH	CH ₂ OH
571 F Cl OCH ₃ OH 572 F Cl OCH ₃ D-glucitol 573 F Cl OCH ₃ SO ₃ H 574 F Cl OCH ₃ PO ₃ H ₂ 575 F Cl OCH ₃ CHO 576 F Cl OCH ₃ COOH 577 F Cl OCH ₃ CH ₂ OH 578 F Cl OCH ₃ Sugar 579 F Cl OCH ₃ C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	569	F	Cl	SH	
572 F Cl OCH ₃ D-glucitol 573 F Cl OCH ₃ SO ₃ H 574 F Cl OCH ₃ PO ₃ H ₂ 575 F Cl OCH ₃ CHO 576 F Cl OCH ₃ COOH 577 F Cl OCH ₃ CH ₂ OH 578 F Cl OCH ₃ sugar 579 F Cl OCH ₃ C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	570	F	Cl	SH	C-glycosyl compound
573 F Cl OCH ₃ SO ₃ H 574 F Cl OCH ₃ PO ₃ H ₂ 575 F Cl OCH ₃ CHO 576 F Cl OCH ₃ COOH 577 F Cl OCH ₃ CH ₂ OH 578 F Cl OCH ₃ sugar 579 F Cl OCH ₃ C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	571	F	Cl	OCH ₃	OH
574 F Cl OCH3 PO3H2 575 F Cl OCH3 CHO 576 F Cl OCH3 COOH 577 F Cl OCH3 CH2OH 578 F Cl OCH3 sugar 579 F Cl OCH3 C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO3H	572	F	Cl	OCH ₃	D-glucitol
575 F Cl OCH ₃ CHO 576 F Cl OCH ₃ COOH 577 F Cl OCH ₃ CH ₂ OH 578 F Cl OCH ₃ sugar 579 F Cl OCH ₃ C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	573	F	Cl	OCH ₃	SO₃H
S76 F Cl OCH ₃ COOH	574	F	Cl	OCH ₃	PO ₃ H ₂
577 F Cl OCH3 CH2OH 578 F Cl OCH3 sugar 579 F Cl OCH3 C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	575	F	Cl	OCH ₃	СНО
578 F Cl OCH3 sugar 579 F Cl OCH3 C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	576	F	Cl	OCH ₃	COOH
579 F Cl OCH ₃ C-glycosyl compound 580 F CN H OH 581 F CN H D-glucitol 582 F CN H SO ₃ H	577	F	Cl	OCH ₃	CH ₂ OH
S80 F CN H OH	578	F	Cl	OCH ₃	_
581 F CN H D-glucitol 582 F CN H SO ₃ H	579	F	Cl	OCH ₃	C-glycosyl compound
582 F CN H SO ₃ H	580	F	CN		
302 1		F	CN		
583 F CN H PO ₃ H ₂	582	F	CN	Н	
	583	F	CN	Н	PO ₃ H ₂

585 F CN H COOH 586 F CN H CH ₂ OH 587 F CN H sugar 588 F CN H C-glycosyl compound 589 F CN OH OH OH 590 F CN OH D-glucitol OH SO ₃ H 590 F CN OH OH PO ₃ H ₂ OH CHO OH OH CHO OH CO OH OH OH OH OH OH OH OH <th>584</th> <th>F</th> <th>CN</th> <th>н</th> <th>СНО</th>	584	F	CN	н	СНО
587 F CN H sugar 588 F CN H C-glycosyl compound 589 F CN OH OH 590 F CN OH D-glucitol 590 F CN OH PO ₃ H 591 F CN OH CHO 593 F CN OH CHO 594 F CN OH CHO 594 F CN OH CHO 595 F CN OH CH2OH 596 F CN OH CH2OH 599 F CN OH C-glycosyl compound 600 F CN CH3 D-glucitol 601 F CN CH3 COH 602 F CN CH3 COH 603 F CN CH3 COH 604 F CN	585	F	CN	Н	СООН
588 F CN H C-glycosyl compound 589 F CN OH OH OH 590 F CN OH OH OH D-glucitol 590 F CN OH OH OH D-glucitol 600 F CN OH CN OH CN OH CN OH CN OH CN CN OH CN CN OH CN	586	F	CN	H	CH₂OH
588 F CN H C-glycosyl compound 589 F CN OH OH OH 590 F CN OH OH D-glucitol 590 F CN OH SO ₃ H 592 F CN OH CHO 593 F CN OH CHO 594 F CN OH CH2OH 595 F CN OH CH2OH 596 F CN OH CH2OH 597 F CN OH CH2OH 598 F CN CH3 OH 599 F CN CH3 D-glucitol 600 F CN CH3 SO ₃ H 601 F CN CH3 CP3 602 F CN CH3 CHO 603 F CN CH3 CH2OH 604	587	F	CN	н	sugar
590 F CN OH D-glucitol 591 F CN OH SO ₃ H 592 F CN OH SO ₃ H 593 F CN OH PO ₃ H ₂ 593 F CN OH CHO 594 F CN OH CHO 595 F CN OH Sugar 596 F CN OH Sugar 597 F CN OH D-glucitol 600 F CN CH ₃ OH 600 F CN CH ₃ SO ₃ H 601 F CN CH ₃ CHO 603 F CN CH ₃ CHO 604 F CN CH ₃ Sugar 605 F CN CH ₃ Sugar 606 F CN CH SO ₃ H 607 F CN <td>588</td> <td>F</td> <td>CN</td> <td>H</td> <td>C-glycosyl compound</td>	588	F	CN	H	C-glycosyl compound
591 F CN OH SO ₃ H 592 F CN OH PO ₃ H ₂ 593 F CN OH CHO 594 F CN OH CHO 595 F CN OH CH ₂ OH 596 F CN OH Sugar 597 F CN OH C-glycosyl compound 598 F CN CH ₃ OH 599 F CN CH ₃ OH 600 F CN CH ₃ O-glucitol 600 F CN CH ₃ SO ₃ H 601 F CN CH ₃ CHO 603 F CN CH ₃ CHO 604 F CN CH ₃ CH ₂ OH 605 F CN CH ₃ C-glycosyl compound 607 F CN CI D-glucitol 608	589	F	CN	OH	OH
592 F CN OH PO ₃ H ₂ 593 F CN OH CHO 594 F CN OH CHO 595 F CN OH CH ₂ OH 595 F CN OH CH ₂ OH 597 F CN OH C-glycosyl compound 598 F CN CH ₃ OH 599 F CN CH ₃ D-glucitol 600 F CN CH ₃ SO ₃ H 601 F CN CH ₃ CP ₃ U ₂ 602 F CN CH ₃ CHO 603 F CN CH ₃ CH ₂ OH 604 F CN CH ₃ C-glycosyl compound 605 F CN CH ₃ C-glycosyl compound 607 F CN CI OH 608 F CN CI D-glucitol	590	F	CN	OH	D-glucitol
593 F CN OH CHO 594 F CN OH COOH 595 F CN OH CH ₂ OH 595 F CN OH CH ₂ OH 597 F CN OH C-glycosyl compound 598 F CN CH ₃ OH 599 F CN CH ₃ D-glucitol 600 F CN CH ₃ SO ₃ H 601 F CN CH ₃ CHO 602 F CN CH ₃ CHO 603 F CN CH ₃ COOH 604 F CN CH ₃ COOH 605 F CN CH ₃ C-glycosyl compound 606 F CN CH SO ₃ H 607 F CN CI OH 608 F CN CI OH 609 F <td>591</td> <td>F</td> <td>CN</td> <td>OH</td> <td>SO₃H</td>	591	F	CN	OH	SO₃H
594 F CN OH COOH 595 F CN OH CH ₂ OH 596 F CN OH sugar 597 F CN OH sugar 597 F CN CH ₃ OH 598 F CN CH ₃ OH 600 F CN CH ₃ D-glucitol 600 F CN CH ₃ PO ₃ H ₂ 601 F CN CH ₃ CHO 602 F CN CH ₃ CHO 603 F CN CH ₃ CHO 604 F CN CH ₃ COOH 605 F CN CH ₃ CH ₂ OH 606 F CN CH ₃ Sugar 606 F CN CI OH 608 F CN CI OH 609 F CN	592	F	CN	OH	PO ₃ H ₂
S95	593	F	CN	OH	СНО
596 F CN OH sugar 597 F CN OH C-glycosyl compound 598 F CN CH3 OH 599 F CN CH3 D-glucitol 600 F CN CH3 SO3H 601 F CN CH3 CH0 602 F CN CH3 CH0 603 F CN CH3 COOH 604 F CN CH3 CUDOH 605 F CN CH3 Sugar 606 F CN CH3 Sugar 607 F CN CI OH 608 F CN CI OH 609 F CN CI D-glucitol 609 F CN CI SO3H 610 F CN CI SO3H 610 F CN	594		CN	OH	COOH
597 F CN OH C-glycosyl compound 598 F CN CH ₃ OH 599 F CN CH ₃ D-glucitol 600 F CN CH ₃ SO ₃ H 601 F CN CH ₃ PO ₃ H ₂ 602 F CN CH ₃ CHO 603 F CN CH ₃ CH ₂ OH 604 F CN CH ₃ Sugar 606 F CN CH ₃ C-glycosyl compound 607 F CN Cl OH OH 608 F CN Cl OH	595	F	CN	OH	CH ₂ OH
598 F CN CH ₃ OH 599 F CN CH ₃ D-glucitol 600 F CN CH ₃ SO ₃ H 601 F CN CH ₃ PO ₃ H ₂ 602 F CN CH ₃ CHO 603 F CN CH ₃ COOH 604 F CN CH ₃ CH ₂ OH 605 F CN CH ₃ Sugar 606 F CN CI OH 608 F CN CI OH 608 F CN CI D-glucitol 609 F CN CI SO ₃ H 610 F CN CI SO ₃ H 611 F CN CI COOH 612 F CN CI COOH 613 F CN CI COOH 614 F CN<			CN	OH	sugar
599 F CN CH3 D-glucitol 600 F CN CH3 SO ₃ H 601 F CN CH3 PO ₃ H ₂ 602 F CN CH3 CHO 603 F CN CH3 CH2OH 604 F CN CH3 CH2OH 605 F CN CH3 Sugar 606 F CN CH3 Sugar 606 F CN CH3 CUgloosyl compound 607 F CN CI OH 608 F CN CI OH 609 F CN CI OH 610 F CN CI SO ₃ H 611 F CN CI CHO 612 F CN CI COOH 613 F CN CI CHO 614 F CN		_	CN	OH	C-glycosyl compound
600 F CN CH ₃ SO ₃ H 601 F CN CH ₃ SO ₃ H 602 F CN CH ₃ PO ₃ H ₂ 602 F CN CH ₃ CHO 603 F CN CH ₃ CHO 604 F CN CH ₃ CH ₂ OH 605 F CN CH ₃ sugar 606 F CN CH ₃ Sugar 606 F CN CH CH ₃ C-glycosyl compound 607 F CN CI OH 608 F CN CI D-glucitol 609 F CN CI SO ₃ H 610 F CN CI PO ₃ H ₂ 611 F CN CI CHO 612 F CN CI COOH 613 F CN CI CHO 614 F CN CI CHO 615 F CN CI CH ₃ 616 F CN CI CH ₃ 617 F CN CI CH ₄ 618 F CN CI CH ₂ OH 619 F CN B(OH) ₂ CHO 619 F CN B(OH) ₂ CHO		F		CH ₃	OH
601 F CN CH ₃ PO ₃ H ₂ 602 F CN CH ₃ CHO 603 F CN CH ₃ CHO 604 F CN CH ₃ COOH 605 F CN CH ₃ sugar 606 F CN CH ₃ sugar 606 F CN CH ₃ C-glycosyl compound 607 F CN CI D-glucitol 608 F CN CI D-glucitol 609 F CN CI CHO 610 F CN CI CHO 611 F CN CI CHO 612 F CN CI CHO 615 F CN CI CHO 616 F CN CI CHO 617 F CN CI CHO 618 F CN CI CHO 619 F CN CI CHO 610 F CN CI CHO 611 F CN CI CHO 612 F CN CI CHO 614 F CN CI CH ₂ OH 615 F CN CI CH ₂ OH 616 F CN CI CH ₂ OH 617 F CN B(OH) ₂ O-glucitol 618 F CN B(OH) ₂ O-glucitol 619 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ CHO	599	F	CN	CH ₃	D-glucitol
602 F CN CH ₃ CHO 603 F CN CH ₃ COOH 604 F CN CH ₃ COOH 605 F CN CH ₃ sugar 606 F CN CH ₃ Sugar 607 F CN CH CH ₃ C-glycosyl compound 607 F CN CI OH 608 F CN CI D-glucitol 609 F CN CI CHO 610 F CN CI CHO 611 F CN CI CHO 612 F CN CI CHO 613 F CN CI CHO 614 F CN CI CHO 615 F CN CI CHO 616 F CN CI CHO 617 F CN CI CH2OH 618 F CN CI CH2OH 619 F CN B(OH) ₂ CHO 619 F CN B(OH) ₂ COH	600	F	CN	CH ₃	SO₃H
603 F CN CH ₃ COOH 604 F CN CH ₃ CH ₂ OH 605 F CN CH ₃ sugar 606 F CN CH ₃ C-glycosyl compound 607 F CN Cl OH 608 F CN Cl D-glucitol 609 F CN Cl SO ₃ H 610 F CN Cl PO ₃ H ₂ 611 F CN Cl CHO 612 F CN Cl COOH 613 F CN Cl CH ₂ OH 614 F CN Cl sugar 615 F CN Cl cylycosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619<		F	CN	CH ₃	PO ₃ H ₂
604 F CN CH ₃ CH ₂ OH 605 F CN CH ₃ sugar 606 F CN CH ₃ sugar 607 F CN CH CH ₃ C-glycosyl compound 607 F CN CI OH 608 F CN CI D-glucitol 609 F CN CI SO ₃ H 610 F CN CI CHO 611 F CN CI CHO 612 F CN CI COOH 613 F CN CI COOH 614 F CN CI CH ₂ OH 615 F CN CI CH ₂ OH 616 F CN B(OH) ₂ D-glucitol 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H	602	F	CN	CH ₃	СНО
605 F CN CH3 sugar 606 F CN CH3 C-glycosyl compound 607 F CN Cl OH 608 F CN Cl D-glucitol 609 F CN Cl SO ₃ H 610 F CN Cl PO ₃ H ₂ 611 F CN Cl CHO 612 F CN Cl COOH 613 F CN Cl CH ₂ OH 614 F CN Cl Sugar 615 F CN Cl C-glycosyl compound 616 F CN B(OH) ₂ D-glucitol 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ CHO	603	F	CN	CH ₃	СООН
606 F CN CH3 C-glycosyl compound 607 F CN Cl OH 608 F CN Cl D-glucitol 609 F CN Cl D-glucitol 609 F CN Cl SO ₃ H 610 F CN Cl PO ₃ H ₂ 611 F CN Cl COOH 612 F CN Cl COOH 613 F CN Cl CH ₂ OH 614 F CN Cl C-glycosyl compound 615 F CN Cl C-glycosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ CHO	604	F	CN	CH ₃	CH₂OH
607 F CN Cl OH 608 F CN Cl D-glucitol 609 F CN Cl SO ₃ H 610 F CN Cl PO ₃ H ₂ 611 F CN Cl CHO 612 F CN Cl COOH 613 F CN Cl CH ₂ OH 614 F CN Cl CH ₂ OH 615 F CN Cl C-glycosyl compound 616 F CN B(OH) ₂ 617 F CN B(OH) ₂ 618 F CN B(OH) ₂ 619 F CN B(OH) ₂ 620 F CN B(OH) ₂ CHO	605	F	CN	CH ₃	sugar
608 F CN Cl D-glucitol 609 F CN Cl SO ₃ H 610 F CN Cl PO ₃ H ₂ 611 F CN Cl CHO 612 F CN Cl COOH 613 F CN Cl CH ₂ OH 614 F CN Cl Sugar 615 F CN Cl C-glycosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO		F	CN	CH ₃	C-glycosyl compound
609 F CN Cl SO ₃ H 610 F CN Cl PO ₃ H ₂ 611 F CN Cl CHO 612 F CN Cl COOH 613 F CN Cl CH ₂ OH 614 F CN Cl sugar 615 F CN Cl C-glycosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ CHO	607	F	CN	Cl	OH
610 F CN Cl PO ₃ H ₂ 611 F CN Cl CHO 612 F CN Cl CHO 613 F CN Cl CH ₂ OH 614 F CN Cl Sugar 615 F CN Cl Sugar 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO		F	CN	Cl	D-glucitol
611 F CN Cl CHO 612 F CN Cl COOH 613 F CN Cl CH ₂ OH 614 F CN Cl sugar 615 F CN Cl Suyeosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO	609	F	CN	C1	SO ₃ H
612 F CN CI COOH 613 F CN CI CH ₂ OH 614 F CN CI sugar 615 F CN CI c-glycosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₂ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO	610	F	CN	Cl	PO ₃ H ₂
613 F CN Cl CH ₂ OH 614 F CN Cl sugar 615 F CN Cl C-glycosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO	611	F	CN	C1	СНО
614 F CN C1 sugar 615 F CN C1 C-glycosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO	612	F	CN	C1	СООН
615 F CN Cl C-glycosyl compound 616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO	613	F	CN	C1	CH ₂ OH
616 F CN B(OH) ₂ OH 617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO			CN	Cl	sugar
617 F CN B(OH) ₂ D-glucitol 618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO	615	-	CN	C1	C-glycosyl compound
618 F CN B(OH) ₂ SO ₃ H 619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO	616	F	CN	B(OH) ₂	ОН
619 F CN B(OH) ₂ PO ₃ H ₂ 620 F CN B(OH) ₂ CHO	617	F	CN	B(OH) ₂	D-glucitol
620 F CN B(OH) ₂ CHO	618	F	CN		SO₃H
[[[[[[[[[[[[[[[[[[[[PO ₃ H ₂
621 F CN B(OH) ₂ COOH	620	F	CN	1 '	СНО
	621	F	CN	B(OH) ₂	СООН

622	F	CN	B(OH) ₂	CH ₂ OH
623	F	CN	B(OH) ₂	sugar
624	F	CN	B(OH) ₂	C-glycosyl compound
625	F	CN	SH	ОН
626	F	CN	SH	D-glucitol
627	F	CN	SH	SO₃H
628	F	CN	SH	PO ₃ H ₂
629	F	CN	SH	СНО
630	F	CN	SH	СООН
631	F	CN	SH	CH ₂ OH
632	F	CN	SH	sugar
633	F	CN	SH	C-glycosyl compound
634	F	CN	OCH ₃	OH
635	F	CN	OCH ₃	D-glucitol
636	F	CN	OCH ₃	SO ₃ H
637	F	CN	OCH ₃	PO ₃ H ₂
638	F	CN	OCH ₃	СНО
639	F	CN	OCH ₃	СООН
640	F	CN	OCH ₃	CH ₂ OH
641	F	CN	OCH ₃	sugar
642	F	CN	OCH ₃	C-glycosyl compound
643	F	CH ₃ ^a	Н	ОН
644	F	CH ₃ ^a	н	D-glucitol
645	F	CH ₃ ^a	H	SO ₃ H
646	F	CH ₃ ^a	H	PO ₃ H ₂
647	F	CH ₃ ^a	н	СНО
648	F	CH ₃ ^a	Н	СООН
649	F	CH ₃ ^a	H	CH ₂ OH
650	F	CH ₃ ^a	Н	sugar
651	F	CH ₃ ^a	Н	C-glycosyl compound
652	F	CH ₃ ^a	ОН	ОН
653	F	CH ₃ ^a	ОН	D-glucitol
654	F	CH ₃ ^a	ОН	SO₃H
655	F	CH ₃ ^a	ОН	PO ₃ H ₂
656	F	CH ₃ ^a	ОН	СНО

657	F	CH ₃ ^a	ОН	СООН
658	F	CH ₃ ^a	ОН	CH ₂ OH
659	F	CH ₃ ^a	ОН	sugar
660	F	CH ₃ ^a	ОН	C-glycosyl compound
661	F	CH ₃ ^a	CH ₃	OH
662	F	CH ₃ ^a	CH ₃	D-glucitol
663	F	CH ₃ ^a	CH ₃	SO₃H
664	F	CH ₃ ^a	CH ₃	PO ₃ H ₂
665	F	CH ₃ ^a	CH ₃	СНО
666	F	CH ₃ ^a	CH ₃	СООН
667	F	CH ₃ ^a	CH ₃	CH ₂ OH
668	F	CH ₃ ^a	CH ₃	sugar
669	F	CH ₃ ^a	CH ₃	C-glycosyl compound
670	F	CH ₃ ^a	Cl	ОН
671	F	CH ₃ ^a	Cl	D-glucitol
672	F	CH ₃ ^a	CI	SO₃H
673	F	CH ₃ ^a	Cl	PO ₃ H ₂
674	F	CH ₃ ^a	Cl	СНО
675	F	CH ₃ ^a	Cl	СООН
676	F	CH ₃ ^a	Cl	CH ₂ OH
677	F	CH ₃ ^a	Cl	sugar
678	F	CH ₃ ^a	Cl	C-glycosyl compound
679	F	CH ₃ ^a	B(OH) ₂	ОН
680	F	CH ₃ ^a	B(OH) ₂	D-glucitol
681	F	CH ₃ ^a	B(OH) ₂	SO ₃ H
682	F	CH ₃ ^a	B(OH) ₂	PO ₃ H ₂
683	F	CH ₃ ^a	B(OH) ₂	СНО
684	F	CH ₃ ^a	B(OH) ₂	СООН
685	F	CH ₃ ^a	B(OH) ₂	CH₂OH
686	F	CH ₃ ^a	B(OH) ₂	sugar
687	F	CH ₃ ^a	B(OH) ₂	C-glycosyl compound
688	F	CH ₃ ^a	SH	ОН
689	F	CH ₃ ^a	SH	D-glucitol

690	F	CH ₃ ^a	SH	SO₃H
691	F	CH ₃ ^a	SH	PO ₃ H ₂
692	F	CH ₃ ^a	SH	СНО
693	F	CH ₃ ^a	SH	СООН
694	F	CH ₃ ^a	SH	CH₂OH
695	F	CH ₃ ^a	SH	sugar
696	F	CH ₃ ^a	SH	C-glycosyl compound
697	F	CH ₃ ^a	OCH ₃	OH
698	F	CH ₃ ^a	OCH ₃	D-glucitol
699	F	CH ₃ ^a	OCH ₃	SO ₃ H
700	F	CH ₃ ^a	OCH ₃	PO ₃ H ₂
701	F	CH ₃ ^a	OCH ₃	СНО
702	F	CH ₃ ^a	OCH ₃	СООН
703	F	CH ₃ ^a	OCH ₃	CH ₂ OH
704	F	CH ₃ ^a	OCH ₃	sugar
705	F	CH ₃ ^a	OCH ₃	C-glycosyl compound
706	F	OCH ₃ ^b	Н	OH
707	F	OCH ₃ ^b	H	D-glucitol
708	F	OCH₃ ^b	H	SO ₃ H
709	F	OCH ₃ ^b	H	PO ₃ H ₂
710	F	OCH ₃ ^b	H	СНО
711	F	OCH₃ ^b	H	СООН
712	F	OCH ₃ ^b	H	CH ₂ OH
713	F	OCH ₃ ^b	H	sugar
714	F	OCH ₃ ^b	H	C-glycosyl compound
715	F	OCH ₃ ^b	ОН	ОН
716	F	OCH₃ ^b	OH	D-glucitol
717	F	OCH ₃ ^b	ОН	SO₃H
718	F	OCH ₃ ^b	OH	PO ₃ H ₂
719	F	OCH ₃ ^b	ОН	СНО
720	F	OCH ₃ ^b	OH	СООН
721	F	OCH ₃ ^b	OH	CH ₂ OH
722	F	OCH ₃ ^b	ОН	sugar

723	F	OCH ₃ ^b	OH	C-glycosyl compound
724	F	OCH ₃ ^b	CH ₃	OH
725	F	OCH ₃ ^b	CH ₃	D-glucitol
726	F	OCH ₃ ^b	CH ₃	SO ₃ H
727	F	OCH₃ ^b	CH ₃	PO ₃ H ₂
728	F	OCH ₃ ^b	CH ₃	СНО
729	F	OCH ₃ ^b	CH ₃	СООН
730	F	OCH₃ ^b	CH ₃	CH ₂ OH
731	F	OCH ₃ ^b	CH ₃	sugar
732	F	OCH ₃ ^b	CH ₃	C-glycosyl compound
733	F	OCH₃ ^b	Cl	ОН
734	F	OCH ₃ ^b	Cl	D-glucitol
735	F	OCH₃ ^b	C1	SO₃H
736	F	OCH ₃ ^b	Cl	PO ₃ H ₂
737	F	OCH ₃ ^b	Cl	СНО
738	F	OCH₃ ^b	Cl	СООН
739	F	OCH₃ ^b	Cl	CH ₂ OH
740	F	OCH ₃ ^b	Cl	sugar
741	F	OCH ₃ ^b	C1	C-glycosyl compound
742	F	OCH ₃ ^b	B(OH) ₂	OH
743	F	OCH ₃ ^b	B(OH) ₂	D-glucitol
744	F	OCH ₃ ^b	B(OH) ₂	SO₃H
745	F	OCH ₃ ^b	B(OH) ₂	PO ₃ H ₂
746	F	OCH ₃ ^b	B(OH) ₂	СНО
747	F	OCH ₃ ^b	B(OH) ₂	СООН
748	F	OCH₃ ^b	B(OH) ₂	CH ₂ OH
749	F	OCH ₃ ^b	B(OH) ₂	sugar
750	F	OCH ₃ ⁶	B(OH) ₂	C-glycosyl compound
751	F	OCH₃ ^b	SH	ОН
752	F	OCH ₃ ^b	SH	D-glucitol
753	F	OCH₃ ^b	SH	SO₃H
754	F	OCH ₃ ^b	SH	PO ₃ H ₂
755	F	OCH ₃ ^b	SH	СНО

756	F	OCH ₃ ^b	SH	СООН
757	F	OCH₃b	SH	CH ₂ OH
758	F	OCH ₃ ^b	SH	sugar
759	F	OCH ₃ ^b	SH	C-glycosyl compound
760	F	OCH₃ ^b	OCH ₃	OH
761	F	OCH ₃ ^b	OCH ₃	D-glucitol
762	F	OCH ₃ ^b	OCH ₃	SO ₃ H
763	F	OCH ₃ ^b	OCH ₃	PO ₃ H ₂
764	F	OCH ₃ ^b	OCH ₃	СНО
765	F	OCH ₃ ^b	OCH ₃	СООН
766	F	OCH₃ ^b	OCH ₃	CH ₂ OH
767	F	OCH ₃ ^b	OCH ₃	sugar
768	F	OCH₃ ^b	OCH ₃	C-glycosyl compound
769	C1	Н	H	OH
770	CI	H	H	D-glucitol
771	C1	H	H	SO ₃ H
772	Cl	Н	Н	PO ₃ H ₂
773	C1	H	H	СНО
774	Cl	H	H	COOH
775	C1	H	H	CH ₂ OH
776	C1	H	Н	sugar
777	Cl	H	H	C-glycosyl compound
778	Cl	H	OH	СНО
779	Cl	Н	OH	COOH
780	C1	H	OH	CH ₂ OH
781	Cl	H	OH	sugar
782	Cl	H	OH	C-glycosyl compound
783	C1	H	CH ₃	OH
784	Cl	H	CH ₃	D-glucitol
785	Cl	Н	CH ₃	SO ₃ H
786	C1	H	CH ₃	PO ₃ H ₂
787	C1	Н	CH ₃	СНО
788	Cl	H	CH ₃	СООН
789	Cl	H	CH ₃	CH ₂ OH
790	C1	Н	CH ₃	sugar
791	Cl	H	CH ₃	C-glycosyl compound

792	lC1	н		ОН
793	C1	H	Cl	D-glucitol
794	CI	Н	CI	SO₃H
795	Cl	H	Cl	PO ₃ H ₂
796	Cl	H	Cl	СНО
797	Cl	H	Cl	СООН
798	Cl	Н	C1 .	CH ₂ OH
799	C1	H	C1	sugar
800	Cl	H	C1	C-glycosyl compound
801	Cl	H	B(OH) ₂	OH
802	Cl	H	B(OH) ₂	D-glucitol
803	C1	H	B(OH) ₂	SO ₃ H
804	Cl	H	B(OH) ₂	PO ₃ H ₂
805	Cl	H	B(OH) ₂	СНО
806	C1	H	B(OH) ₂	СООН
807	Cl	H	B(OH) ₂	CH ₂ OH
808	C1	H	B(OH) ₂	sugar
809	Cl	Н	B(OH) ₂	C-glycosyl compound
810	Cl	Н	SH	OH
811	Cl	Н	SH	D-glucitol
812	C1	H	SH	SO₃H
813	Cl	H	SH	PO ₃ H ₂
814	Cl	H	SH	CHO
815	C1	H	SH	СООН
816	Cl	Н	SH	CH ₂ OH
817	C1	H	SH	sugar
818	Cl	H	SH	C-glycosyl compound
819	C1	H	OCH ₃	ОН
820	Cl	H	OCH ₃	D-glucitol
821	C1	H	OCH ₃	SO ₃ H
822	Cl	Н	OCH ₃	PO_3H_2
823	C1	H	OCH ₃	СНО
824	Cl	H	OCH ₃	СООН
825	C1	H	OCH ₃	CH ₂ OH
826	i CI	Н	OCH ₃	sugar
827	7 Cl	Н	OCH ₃	C-glycosyl compound
828	3 C1	F	H	OH

830 Cl F H SO ₃ H 831 Cl F H PO ₃ H ₂ 832 Cl F H CHO 833 Cl F H CHO 834 Cl F H CH ₂ OH 835 Cl F H C-glycosyl compound 837 Cl F OH CHO 838 Cl F OH CHO 840 Cl F OH CH ₂ OH 840 Cl F OH C-glycosyl compound 841 Cl F OH C-glycosyl compound 842 Cl F CH ₃ OH 843 Cl F CH ₃ SO ₃ H 844 Cl F CH ₃ CO ₃ H 845 Cl F CH ₃ CHO 847 Cl F CH ₃ CHO 848 Cl<	829	Cl	F	\mathbf{H}	D-glucitol
S32	830	Cl	F	Н	SO ₃ H
833 Cl F H COOH 834 Cl F H CH ₂ OH 835 Cl F H Sugar 836 Cl F OH CHO 837 Cl F OH CHO 838 Cl F OH COOH 839 Cl F OH COOH 840 Cl F OH Sugar 841 Cl F OH C-Gylcosyl compound 842 Cl F CH ₃ OH C-Gylcosyl compound 843 Cl F CH ₃ D-glucitol 844 Cl F CH ₃ DOyH2 845 Cl F CH ₃ CHO 847 Cl F CH ₃ COOH 848 Cl F CH ₃ CH ₂ OH 849 Cl F CH ₃ C-glycosyl compound	831	C1	F	H	PO ₃ H ₂
834 Cl F H CH ₂ OH 835 Cl F H sugar 836 Cl F H C-glycosyl compound 837 Cl F OH CHO 838 Cl F OH COOH 839 Cl F OH CH ₂ OH 840 Cl F OH sugar 841 Cl F OH C-glycosyl compound 842 Cl F CH ₃ D-glucitol 844 Cl F CH ₃ D-glucitol 844 Cl F CH ₃ CHO 845 Cl F CH ₃ CHO 846 Cl F CH ₃ CHO 848 Cl F CH ₃ CH ₂ OH 849 Cl F CH ₃ CH ₂ OH 849 Cl F CH ₃ CH ₂ OH 850	832	Cl	F	Н	СНО
835 Cl F H sugar 836 Cl F H C-glycosyl compound 837 Cl F OH CHO 838 Cl F OH CHOOH 839 Cl F OH CH2OH 840 Cl F OH Sugar 841 Cl F OH C-glycosyl compound 842 Cl F CH3 OH 843 Cl F CH3 OH 844 Cl F CH3 SOgH 844 Cl F CH3 POyH2 845 Cl F CH3 CHO 847 Cl F CH3 CHO 848 Cl F CH3 Sugar 850 Cl F CH3 Sugar 850 Cl F CH3 C-glycosyl compound 851 Cl	833		F	H	СООН
836 Cl F H C-glycosyl compound 837 Cl F OH CHO 838 Cl F OH COOH 839 Cl F OH CH2OH 840 Cl F OH Sugar 841 Cl F OH C-glycosyl compound 842 Cl F CH3 OH 843 Cl F CH3 D-glucitol 844 Cl F CH3 SOH 845 Cl F CH3 CHO 847 Cl F CH3 CHO 847 Cl F CH3 COOH 848 Cl F CH3 COOH 848 Cl F CH3 COOH 849 Cl F CH3 C-glycosyl compound 851 Cl F CH D-glucitol 852 Cl <td>834</td> <td>Cl</td> <td>F</td> <td>H</td> <td>CH₂OH</td>	834	Cl	F	H	CH ₂ OH
837 Cl F OH CHO 838 Cl F OH COOH 839 Cl F OH CDOH 840 Cl F OH Sugar 840 Cl F OH C-glycosyl compound 842 Cl F CH3 OH C-glycosyl compound 843 Cl F CH3 D-glucitol 844 Cl F CH3 POyH2 845 Cl F CH3 CHO 847 Cl F CH3 CHO 848 Cl F CH3 CH2OH 848 Cl F CH3 CH2OH 848 Cl F CH3 Sugar 850 Cl F CH3 Sugar 850 Cl F Cl D-glucitol 851 Cl F Cl D-glucitol 853 <td></td> <td></td> <td></td> <td></td> <td>sugar</td>					sugar
838 Cl F OH COOH 839 Cl F OH CH ₂ OH 840 Cl F OH sugar 841 Cl F OH sugar 841 Cl F CH ₃ OH 843 Cl F CH ₃ D-glucitol 844 Cl F CH ₃ DO ₃ H 845 Cl F CH ₃ PO ₃ H ₂ 846 Cl F CH ₃ CHO 847 Cl F CH ₃ COOH 848 Cl F CH ₃ CH ₂ OH 849 Cl F CH ₃ CH ₂ OH 850 Cl F CH ₃ C-glycosyl compound 851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO ₃ H 854 <					
839 Cl F OH CH ₂ OH 840 Cl F OH sugar 841 Cl F OH C-glycosyl compound 842 Cl F CH ₃ OH 842 Cl F CH ₃ D-glucitol 844 Cl F CH ₃ SO ₃ H 845 Cl F CH ₃ CHO 847 Cl F CH ₃ CHO 848 Cl F CH ₃ CH ₂ OH 849 Cl F CH ₃ Sugar 850 Cl F CH ₃ C-glycosyl compound 851 Cl F Cl OH 852 Cl F Cl OH 852 Cl F Cl SO ₃ H 854 Cl F Cl PO ₃ H ₂ 855 Cl F Cl CHO 855 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
840 Cl F OH sugar 841 Cl F OH C-glycosyl compound 842 Cl F CH3 OH 843 Cl F CH3 D-glucitol 844 Cl F CH3 D-glucitol 845 Cl F CH3 PO3H2 846 Cl F CH3 CHO 847 Cl F CH3 COOH 848 Cl F CH3 COOH 849 Cl F CH3 Sugar 850 Cl F CH3 C-glycosyl compound 851 Cl F Cl O-glucitol 851 Cl F Cl D-glucitol 851 Cl F Cl D-GM2 853 Cl F Cl D-GM2 854 Cl F Cl <t>COOH 855 Cl</t>				OH	COOH
841 Cl F OH C-glycosyl compound 842 Cl F CH3 OH 843 Cl F CH3 D-glucitol 844 Cl F CH3 SO3H 845 Cl F CH3 PO3H2 846 Cl F CH3 CHO 847 Cl F CH3 COOH 848 Cl F CH3 COOH 849 Cl F CH3 Sugar 850 Cl F CH3 C-glycosyl compound 851 Cl F Cl OH SO3H 851 Cl F Cl D-glucitol 853 Cl F Cl SO3H 854 Cl F Cl COOH 855 Cl F Cl CHO 855 Cl F Cl CHO 855 <t< td=""><td></td><td></td><td>F</td><td>OH</td><td>CH₂OH</td></t<>			F	OH	CH ₂ OH
842 Cl F CH ₃ OH 843 Cl F CH ₃ D-glucitol 844 Cl F CH ₃ SO ₃ H 845 Cl F CH ₃ PO ₃ H ₂ 846 Cl F CH ₃ CHO 847 Cl F CH ₃ CH ₂ OH 848 Cl F CH ₃ CH ₂ OH 849 Cl F CH ₃ Sugar 850 Cl F CH ₃ C-glycosyl compound 851 Cl F Cl OH SO ₃ H 852 Cl F Cl D-glucitol SO ₃ H SO ₃ H 853 Cl F Cl SO ₃ H SO ₃ H Cl F Cl PO ₃ H ₂ 855 Cl F Cl COOH CHO SO ₃ H SO ₃ H <td></td> <td></td> <td></td> <td>OH</td> <td>sugar</td>				OH	sugar
843 Cl F CH ₃ D-glucitol 844 Cl F CH ₃ SO ₃ H 845 Cl F CH ₃ PO ₃ H ₂ 846 Cl F CH ₃ CHO 847 Cl F CH ₃ CH ₂ OH 849 Cl F CH ₃ CH ₂ OH 849 Cl F CH ₃ Sugar 850 Cl F CH ₃ Sugar 850 Cl F CH ₃ Sugar 850 Cl F CH ₃ CH ₂ OH 851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO ₃ H 854 Cl F Cl PO ₃ H ₂ 855 Cl F Cl CHO 855 Cl F Cl CHO 857 Cl<			-	OH	C-glycosyl compound
844 Cl F CH3 SO3H 845 Cl F CH3 PO3H2 846 Cl F CH3 CHO 847 Cl F CH3 CH2OH 848 Cl F CH3 CH2OH 849 Cl F CH3 sugar 850 Cl F CH3 sugar 850 Cl F CH3 Ceglycosyl compound 851 Cl F Cl OH 852 Cl F Cl OH 853 Cl F Cl SO3H 854 Cl F Cl PO3H2 855 Cl F Cl CHO 855 Cl F Cl CHO 855 Cl F Cl COOH 857 Cl F Cl CHOH 858 Cl F Cl <td></td> <td></td> <td>F</td> <td>CH₃</td> <td>OH</td>			F	CH ₃	OH
845 Cl F CH3 PO3H2 846 Cl F CH3 CHO 847 Cl F CH3 COOH 848 Cl F CH3 CH2OH 849 Cl F CH3 sugar 850 Cl F CH3 C-glycosyl compound 851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO3H 854 Cl F Cl PO3H2 855 Cl F Cl CHO 855 Cl F Cl CHO 857 Cl F Cl CH2OH 858 Cl F Cl CH2OH 859 Cl F Cl Cglycosyl compound 860 Cl F B(OH)2 OH 861 Cl F<	843		F	CH ₃	D-glucitol
846 Cl F CH3 CHO 847 Cl F CH3 COOH 848 Cl F CH3 CH2OH 849 Cl F CH3 sugar 850 Cl F CH3 C-glycosyl compound 851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO3H 854 Cl F Cl CHO 855 Cl F Cl CHO 856 Cl F Cl COOH 857 Cl F Cl CH2OH 858 Cl F Cl sugar 859 Cl F Cl sugar 850 Cl F B(OH)2 OH 861 Cl F B(OH)2 D-glucitol 862 Cl F		1	F	CH ₃	SO₃H
847 Cl F CH3 COOH 848 Cl F CH3 CH2OH 849 Cl F CH3 sugar 850 Cl F CH3 C-glycosyl compound 851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO3H 854 Cl F Cl CHO 855 Cl F Cl CHO 856 Cl F Cl COOH 857 Cl F Cl CH2OH 858 Cl F Cl sugar 859 Cl F Cl sugar 850 Cl F B(OH)2 OH 861 Cl F B(OH)2 D-glucitol 862 Cl F B(OH)2 CHO	845	C1	F	1 -	PO ₃ H ₂
848 Cl F CH3 CH2OH 849 Cl F CH3 sugar 850 Cl F CH3 C-glycosyl compound 851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO3H 854 Cl F Cl PO3H2 855 Cl F Cl COOH 856 Cl F Cl COOH 857 Cl F Cl C-glycosyl compound 858 Cl F Cl sugar 859 Cl F Cl c-glycosyl compound 860 Cl F B(OH)2 OH 861 Cl F B(OH)2 SO3H 863 Cl F B(OH)2 CHO	846	Cl	F	CH ₃	СНО
849 Cl F CH3 sugar 850 Cl F CH3 C-glycosyl compound 851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO3H 854 Cl F Cl CN3H2 855 Cl F Cl CHO 855 Cl F Cl COOH 857 Cl F Cl CH2OH 858 Cl F Cl Sugar 859 Cl F Cl C-glycosyl compound 860 Cl F B(OH)2 O-glucitol 861 Cl F B(OH)2 D-glucitol 862 Cl F B(OH)2 SO3H 863 Cl F B(OH)2 CHO	847	C1	F	CH ₃	СООН
850 Cl F CH3 C-glycosyl compound 851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO ₃ H 854 Cl F Cl PO ₃ H ₂ 855 Cl F Cl CHO 856 Cl F Cl COOH 857 Cl F Cl CH ₂ OH 858 Cl F Cl Sugar 859 Cl F Cl C-glycosyl compound 860 Cl F B(OH) ₂ D-glucitol 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ CHO	848		F	CH ₃	CH₂OH
851 Cl F Cl OH 852 Cl F Cl D-glucitol 853 Cl F Cl SO ₃ H 854 Cl F Cl PO ₃ H ₂ 855 Cl F Cl CHO 856 Cl F Cl COOH 857 Cl F Cl CH ₂ OH 858 Cl F Cl Sugar 859 Cl F Cl C-glycosyl compound 860 Cl F B(OH) ₂ D-glucitol 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ CHO	849	C1	F	CH ₃	sugar
852 Cl F Cl Deglucitol 853 Cl F Cl SO ₃ H 854 Cl F Cl PO ₃ H ₂ 855 Cl F Cl CHO 856 Cl F Cl COOH 857 Cl F Cl CH ₂ OH 858 Cl F Cl sugar 859 Cl F Cl C-glycosyl compound 860 Cl F B(OH) ₂ D-glucitol 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO	850		1		C-glycosyl compound
853 Cl F Cl SO ₃ H 854 Cl F Cl PO ₃ H ₂ 855 Cl F Cl CHO 856 Cl F Cl COOH 857 Cl F Cl CH ₂ OH 858 Cl F Cl Sugar 859 Cl F Cl C-glycosyl compound 860 Cl F B(OH) ₂ OH 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ CHO			-		
854 Cl F Cl PO ₃ H ₂ 855 Cl F Cl CHO 856 Cl F Cl COOH 857 Cl F Cl CH ₂ OH 858 Cl F Cl sugar 859 Cl F Cl cylpocsyl compound 860 Cl F B(OH) ₂ OH 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO		Cl	F	C1	D-glucitol
855 Cl F Cl CHO 856 Cl F Cl COOH 857 Cl F Cl CH ₂ OH 858 Cl F Cl sugar 859 Cl F Cl sugar 860 Cl F B(OH) ₂ OH 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO		C1	F	Cl	SO ₃ H
856 Cl F Cl COOH 857 Cl F Cl CH ₂ OH 858 Cl F Cl sugar 859 Cl F Cl Celycosyl compound 860 Cl F B(OH) ₂ OH 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO	854	Cl	F	C1	PO ₃ H ₂
857 Cl F Cl CH ₂ OH 858 Cl F Cl sugar 859 Cl F Cl C-glycosyl compound 860 Cl F B(OH) ₂ D-glucitol 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₂ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO	855	C1	F	C1	СНО
858 Cl F Cl sugar 859 Cl F Cl C-glycosyl compound 860 Cl F B(OH) ₂ OH 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO	856	Cl	F	C1	COOH
859 Cl F Cl C-glycosyl compound 860 Cl F B(OH) ₂ OH 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO	857	C1	F	C1	CH ₂ OH
860 Cl F B(OH) ₂ OH 861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO					
861 Cl F B(OH) ₂ D-glucitol 862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO			F	C1	C-glycosyl compound
862 Cl F B(OH) ₂ SO ₃ H 863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO	860			, ,	ОН
863 Cl F B(OH) ₂ PO ₃ H ₂ 864 Cl F B(OH) ₂ CHO		1			_
864 Cl F B(OH) ₂ CHO		C1	F	$B(OH)_2$	SO ₃ H
(===)2			F	. ,-	PO_3H_2
865 C1 F B(OH) ₂ COOH	864	C1	F	B(OH) ₂	СНО
	865	C1	F	B(OH) ₂	СООН

867 Cl F B(OH)2 sugar 868 Cl F B(OH)2 C-glycosyl compound 869 Cl F SH OH 870 Cl F SH D-glucitol 871 Cl F SH SO ₃ H 871 Cl F SH PO ₉ H2 873 Cl F SH CHO 874 Cl F SH COOH 875 Cl F SH COOH 876 Cl F SH COOH 877 Cl F SH Sugar 877 Cl F SH Sugar 879 Cl F OCH3 D-glucitol 880 Cl F OCH3 D-glucitol 881 Cl F OCH3 CHO 883 Cl F OCH3 C-glycosyl compound 884 <t< th=""><th>1</th><th>866</th><th>C1</th><th>F</th><th>B(OH)₂</th><th>СН₂ОН</th></t<>	1	866	C1	F	B(OH) ₂	СН₂ОН
868 Cl F B(OH) ₂ C-glycosyl compound 869 Cl F SH OH 870 Cl F SH D-glucitol 871 Cl F SH PO ₃ H ₂ 873 Cl F SH CHO 874 Cl F SH CHO 875 Cl F SH COOH 876 Cl F SH Sugar 877 Cl F SH C-glycosyl compound 878 Cl F OCH ₃ OH 879 Cl F OCH ₃ D-glucitol 880 Cl F OCH ₃ D-glucitol 881 Cl F OCH ₃ CHO 883 Cl F OCH ₃ CHO 884 Cl F OCH ₃ CHO 885 Cl F OCH ₃ Sugar 886 <td>ľ</td> <td>867</td> <td>C1</td> <td>F</td> <td>B(OH)₂</td> <td>sugar</td>	ľ	867	C1	F	B(OH) ₂	sugar
869 Cl F SH OH 870 Cl F SH D-glucitol 871 Cl F SH D-glucitol 871 Cl F SH SO ₂ H 872 Cl F SH CHO 874 Cl F SH COOH 875 Cl F SH COOH 876 Cl F SH sugar 877 Cl F SH Sugar 878 Cl F OCH ₃ O-glucitol 879 Cl F OCH ₃ D-glucitol 880 Cl F OCH ₃ SO ₃ H 881 Cl F OCH ₃ CHO 883 Cl F OCH ₃ CHO 884 Cl F OCH ₃ CHO 885 Cl F OCH ₃ Sugar 886 Cl	T	868	C1	F	B(OH) ₂	C-glycosyl compound
870 C1 F SH D-glucitol 871 C1 F SH SO ₃ H 872 C1 F SH PO ₃ H ₂ 873 C1 F SH CHO 874 C1 F SH CH ₂ OH 875 C1 F SH CH ₂ OH 876 C1 F SH sugar 877 C1 F SH C-glycosyl compound 878 C1 F OCH ₃ OH 879 C1 F OCH ₃ OH 879 C1 F OCH ₃ O-glucitol 880 C1 F OCH ₃ CHO 881 C1 F OCH ₃ CHO 883 C1 F OCH ₃ CH ₂ OH 884 C1 F OCH ₃ C-glycosyl compound 887 C1 C1 H OH 888	t	869	Cl	F		
871 Cl F SH SO ₃ H 872 Cl F SH PO ₃ H ₂ 873 Cl F SH CHO 874 Cl F SH COOH 876 Cl F SH sugar 877 Cl F SH sugar 877 Cl F SH C-glycosyl compound 878 Cl F OCH ₃ D-glucitol 880 Cl F OCH ₃ D-glucitol 880 Cl F OCH ₃ SO ₃ H 881 Cl F OCH ₃ COOH 884 Cl F OCH ₃ COOH 885 Cl F OCH ₃ CoOH 887 Cl F OCH ₃ Sugar 888 Cl Cl H OP-glucitol 889 Cl Cl H D-glucitol 899		870	C1	F	SH	D-glucitol
873 Cl F SH CHO 874 Cl F SH COOH 875 Cl F SH COOH 876 Cl F SH Sugar 877 Cl F SH Sugar 877 Cl F SH C-glycosyl compound 878 Cl F OCH3 OH 880 Cl F OCH3 D-glucitol 881 Cl F OCH3 CHO 883 Cl F OCH3 CHO 883 Cl F OCH3 CHO 884 Cl F OCH3 CH2OH 885 Cl F OCH3 Sugar 886 Cl F OCH3 C-glycosyl compound 887 Cl Cl H OH OH 889 Cl Cl H SOJH SOJH SOJH	Γ	871	C1	F	SH	
874 CI F SH COOH 875 CI F SH CH ₂ OH 876 CI F SH sugar 877 CI F SH sugar 877 CI F SH C-glycosyl compound 878 CI F OCH ₃ OD-glucitol 880 CI F OCH ₃ D-glucitol 881 CI F OCH ₃ COOH 882 CI F OCH ₃ COOH 884 CI F OCH ₃ COOH 884 CI F OCH ₃ C-glycosyl compound 887 CI F OCH ₃ Sugar 888 CI CI H OH Sugar 889 CI CI H SO ₃ H 888 CI CI H SO ₃ H 890 CI CI H SO ₃ H		872	C1	F	SH	PO ₃ H ₂
875 CI F SH CH ₂ OH 876 CI F SH sugar 877 CI F SH C-glycosyl compound 877 CI F SH C-glycosyl compound 879 CI F OCH ₃ D-glucitol 880 CI F OCH ₃ D-glucitol 881 CI F OCH ₃ CHO 883 CI F OCH ₃ COOH 884 CI F OCH ₃ CH ₂ OH 885 CI F OCH ₃ Sugar 886 CI F OCH ₃ C-glycosyl compound 887 CI CI H OH 888 CI CI H OH OH 889 CI CI H SO ₃ H <t< td=""><td>Γ</td><td>873</td><td>Cl</td><td>F</td><td>SH</td><td>СНО</td></t<>	Γ	873	Cl	F	SH	СНО
S76 Cl F SH sugar		874	Cl	F	SH	СООН
877 CI F SH C-glycosyl compound 878 CI F OCH ₃ OH 879 CI F OCH ₃ D-glucitol 880 CI F OCH ₃ SO ₃ H 881 CI F OCH ₃ CHO 882 CI F OCH ₃ CHO 883 CI F OCH ₃ CH ₉ OH 885 CI F OCH ₃ Sugar 886 CI F OCH ₃ C-glycosyl compound 887 CI CI H OH 888 CI CI H D-glucitol 889 CI CI H D-glucitol 889 CI CI H PO ₃ H ₂ 891 CI CI H CHO 892 CI CI H CHO 893 CI CI H Sugar 894	Γ	875	C1	F	SH	
878 Cl F OCH ₃ OH 879 Cl F OCH ₃ D-glucitol 880 Cl F OCH ₃ SO ₃ H 881 Cl F OCH ₃ PO ₃ H ₂ 882 Cl F OCH ₃ CHO 883 Cl F OCH ₃ COOH 884 Cl F OCH ₃ Culouth 885 Cl F OCH ₃ Culouth 887 Cl Cl H OH 888 Cl Cl H OH 889 Cl Cl H SO ₃ H 890 Cl Cl H SO ₃ H 890 Cl Cl H D-glucitol 891 Cl Cl H SO ₃ H 892 Cl Cl H CHO 893 Cl Cl H COOH 893 Cl		876	Cl	F	SH	sugar
878 Cl F OCH ₃ OH 879 Cl F OCH ₃ D-glucitol 880 Cl F OCH ₃ SO ₃ H 881 Cl F OCH ₃ PO ₃ H ₂ 882 Cl F OCH ₃ CHOOH 883 Cl F OCH ₃ CH ₂ OH 885 Cl F OCH ₃ C-glycosyl compound 887 Cl Cl H OH 888 Cl Cl H D-glucitol 889 Cl Cl H D-glucitol 889 Cl Cl H PO ₃ H ₂ 891 Cl Cl H PO ₃ H ₂ 892 Cl Cl H COOH 893 Cl Cl H CHO 894 Cl Cl H Sugar 895 Cl Cl H Sugar 896		877	Cl	F	SH	
Section	L	878	Cl	F	OCH ₃	
S81 Cl F OCH ₃ PO ₃ H ₂		879	Cl	F	OCH₃	D-glucitol
SEZ CI F OCH ₃ CHO	Γ	880	Cl	F	OCH ₃	SO₃H
S83	Γ	881	Cl	F	OCH ₃	PO ₃ H ₂
SS4	Γ	882	Cl	F	OCH ₃	СНО
S85 Cl F OCH ₃ Sugar	Г	883	Cl	F	OCH ₃	СООН
S86	Γ	884	CI	F	OCH ₃	CH ₂ OH
S87 Cl Cl H OH	Γ	885	Cl	F	OCH ₃	sugar
887 Cl Cl H OH 888 Cl Cl H D-glucitol 889 Cl Cl H S0JH 890 Cl Cl H PO3H2 891 Cl Cl H CHO 892 Cl Cl H COOH 893 Cl Cl H CH2OH 894 Cl Cl H Sugar 895 Cl Cl OH CHO 897 Cl Cl OH COOH 899 Cl Cl OH COOH 899 Cl Cl OH Cyglycosyl compound 900 Cl Cl OH C-glycosyl compound 901 Cl Cl CH3 OH 902 Cl Cl Cl CH3 D-glucitol	Г	886	Cl	F	OCH ₃	C-glycosyl compound
889 Cl Cl H SO ₃ H 890 Cl Cl H PO ₃ H ₂ 891 Cl Cl H CHO 892 Cl Cl H COOH 893 Cl Cl H CH ₂ OH 894 Cl Cl H sugar 895 Cl Cl H C-glycosyl compound 896 Cl Cl OH CHO 897 Cl Cl OH COOH 898 Cl Cl OH CH ₂ OH 899 Cl Cl OH sugar 900 Cl Cl OH C-glycosyl compound 901 Cl Cl OH C-glycosyl compound 902 Cl Cl CH ₃ OH		887	Cl	Cl	H	OH
889 Cl Cl H SO ₃ H 890 Cl Cl H PO ₃ H ₂ 891 Cl Cl H CHO 892 Cl Cl H COOH 893 Cl Cl H sugar 894 Cl Cl H C-glycosyl compound 895 Cl Cl H C-glycosyl compound 896 Cl Cl OH CHO 897 Cl Cl OH CHO 898 Cl Cl OH CH ₂ OH 899 Cl Cl OH sugar 900 Cl Cl OH C-glycosyl compound 901 Cl Cl CH ₃ OH 902 Cl Cl Cl CH ₃ D-glucitol	Е	888	C1	Cl	H	D-glucitol
S91 Cl Cl H CHO	Г	889	C1	Cl	H	
892 Cl Cl H COOH 893 Cl Cl H CH ₂ OH 894 Cl Cl H Sugar 895 Cl Cl H C-glycosyl compound 896 Cl Cl OH CHO 897 Cl Cl OH COOH 898 Cl Cl OH CHOH 899 Cl Cl OH Sugar 990 Cl Cl OH Sugar 900 Cl Cl OH OH 901 Cl Cl CH OH 902 Cl Cl Cl CH D-glucitol	Γ	890	Cl	Cl	H	PO ₃ H ₂
892 Cl Cl H COOH 893 Cl Cl H CH ₂ OH 894 Cl Cl H sugar 895 Cl Cl H C-glycosyl compound 896 Cl Cl OH CHO 897 Cl Cl OH COOH 898 Cl Cl OH COH 899 Cl Cl OH sugar 990 Cl Cl OH C-glycosyl compound 901 Cl Cl CH ₃ OH 902 Cl Cl Cl CH ₃ D-glucitol	Г	891	Cl	Cl	H	СНО
893 Cl Cl H CH ₂ OH 894 Cl Cl H sugar 895 Cl Cl H C-glycosyl compound 896 Cl Cl OH CHO 897 Cl Cl OH COOH 898 Cl Cl OH CH ₂ OH 899 Cl Cl OH sugar 900 Cl Cl OH C-glycosyl compound 901 Cl Cl CH ₃ OH 902 Cl Cl Cl CH ₃ D-glucitol	Г	892	Cl	C1	H	
895 Cl Cl H C-glycosyl compound 896 Cl Cl OH CHO 897 Cl Cl OH COOH 898 Cl Cl OH CH ₂ OH 899 Cl Cl OH sugar 900 Cl Cl OH C-glycosyl compound 901 Cl Cl CH ₃ OH 902 Cl Cl Cl CH ₃ D-glucitol	Г	893	C1	C1	н	
895 Cl Cl H C-glycosyl compound 896 Cl Cl OH CHO 897 Cl Cl OH COOH 898 Cl Cl OH CH ₂ OH 899 Cl Cl OH sugar 900 Cl Cl OH C-glycosyl compound 901 Cl Cl CH ₃ OH 902 Cl Cl Cl CH ₃ D-glucitol	Г	894	C1	Cl	H	sugar
896 Cl Cl OH CHO 897 Cl Cl OH COOH 898 Cl Cl OH CH ₂ OH 899 Cl Cl OH sugar 900 Cl Cl OH C-glycosyl compound 901 Cl Cl CH ₃ OH 902 Cl Cl CH ₃ D-glucitol	Г	895	Cl	Cl	H	
898 Cl Cl OH CH ₂ OH 899 Cl Cl OH sugar 900 Cl Cl OH C-glycosyl compound 901 Cl Cl CH ₃ OH 902 Cl Cl CH ₃ D-glucitol		896	C1	Cl	ОН	
899 Cl Cl OH Sugar	Г	897	Cl	C1	OH	СООН
900 Cl Cl OH C-glycosyl compound 901 Cl Cl CH OH 902 Cl Cl CH CH ₃ OH 902 Cl Cl CH OH ₅ D-glucitol	Г	898	Cl	C1	OH	CH ₂ OH
901 Cl Cl CH ₃ OH 902 Cl Cl CH ₃ D-glucitol			Cl	Cl	ОН	sugar
901 Cl Cl CH ₃ OH 902 Cl Cl CH ₃ D-glucitol				Cl	OH	C-glycosyl compound
or cris D glacitor	L	901	C1	Cl	CH ₃	
903 C1 Cl CH ₃ SO ₃ H		902	C1	Cl	CH ₃	D-glucitol
		903	C1	Cl	CH ₃	SO₃H

904	C1	Cı	CH ₃	PO_3H_2
905	Cl	Cl	CH ₃	СНО
906	Cl	Cl	CH ₃	СООН
907	Cl	C1	CH ₃	CH ₂ OH
908	Cl	Cl	CH ₃	sugar
909	C1	C1	CH ₃	C-glycosyl compound
910	Cl	Cl	CI	ОН
911	Cl	Cl	Cl	D-glucitol
912	Cl	C1	Cl	SO₃H
913	Cl	C1	Cl	PO ₃ H ₂
914	CI	Cl	Cl	СНО
915	Cl	C1	Cl	СООН
916	Cl	Cl	Cl	CH₂OH
917	C1	Cl	Cl	sugar
918	C1	C1	Cl	C-glycosyl compound
919	Cl	C1	B(OH) ₂	OH
920	C1	C1	B(OH) ₂	D-glucitol
921	C1	Cl	B(OH) ₂	SO ₃ H
922	C1	C1	B(OH) ₂	PO ₃ H ₂
923	Cl	Cl	B(OH) ₂	СНО
924	C1	Cl	B(OH) ₂	СООН
925	C1	C1	B(OH) ₂	CH ₂ OH
926	CI	C1	B(OH) ₂	sugar
927	C1	C1	B(OH) ₂	C-glycosyl compound
928	C1	CI	SH	OH
929	CI	Cl	SH	D-glucitol
930	Cl	C1	SH	SO₃H
931	Cl	Cl	SH	PO ₃ H ₂
932	C1	C1	SH	СНО
933	CI	C1	SH	СООН
934	C1	Cl	SH	CH ₂ OH
935	Cl	C1_	SH	sugar
936	C1	Cl	SH	C-glycosyl compound
937	Cl	C1	OCH ₃	ОН
938	Cl	Cl	OCH ₃	D-glucitol
939	Cl	C1	OCH₃	SO₃H
940	Cl	CI	OCH₃	PO ₃ H ₂

1	941	Cl	Cı	OCH ₃	СНО
	942	Cl	C1	OCH ₃	СООН
Γ	943	C1	Cl	OCH ₃	CH ₂ OH
1	944	Cl	Cl	OCH ₃	sugar
Γ	945	C1	Cl	OCH ₃	C-glycosyl compound
	946	Cl	CN	Н	OH
	947	Cl	CN	H	D-glucito1
Γ	948	Cl	CN	H	SO ₃ H
	949	Cl	CN	H	PO ₃ H ₂
	950	Cl	CN	H	СНО
Γ	951	Cl	CN	H	СООН
Γ	952	C1	CN	H	CH ₂ OH
Γ	953	C1	CN	Н	sugar
Г	954	C1	CN	H	C-glycosyl compound
Γ	955	C1	CN	OH	ОН
Г	956	C1	CN	OH	D-glucito1
Г	957	Cl	CN	ОН	SO ₃ H
Γ	958	Cl	CN	OH	PO ₃ H ₂
	959	Cl	CN	ОН	СНО
	960	CI	CN	ОН	СООН
	961	C1	CN	ОН	CH ₂ OH
Е	962	Cl	CN	OH	sugar
L	963	Cl	CN	OH	C-glycosyl compound
	964	C1	CN	CH ₃	OH
	965	Cl	CN	CH ₃	D-glucitol
	966	Cl	CN	CH ₃	SO₃H
	967	Cl	CN	CH ₃	PO ₃ H ₂
	968	C1	CN	CH ₃	СНО
	969	C1	CN	CH ₃	СООН
	970	Cl	CN	CH ₃	CH ₂ OH
	971	C1	CN	CH ₃	sugar
	972	Cl	CN	CH ₃	C-glycosyl compound
	973	C1	CN	Cl	ОН
П	974	Cl	CN	Cl	D-glucitol
	975	C1	CN	Cl	SO ₃ H
	976	CI	CN	Cl	PO ₃ H ₂
	977	C1	CN	Cl	СНО
	978	C1	CN	Cl	СООН

980 C1 981 C1 982 C1 983 C1	CN CN CN	CI CI	sugar C-glycosyl compound
982 C1	CN		C glycogyl compound
			C-grycosyr compound
093 C1		B(OH) ₂	OH
203 CI	CN	B(OH) ₂	D-glucitol
984 C1	CN	B(OH) ₂	SO ₃ H
985 C1	CN	B(OH) ₂	PO ₃ H ₂
986 Cl	CN	B(OH) ₂	СНО
987 C1	CN	B(OH) ₂	СООН
988 C1	CN	B(OH) ₂	CH ₂ OH
989 C1	CN	B(OH) ₂	sugar
990 C1	CN	B(OH) ₂	C-glycosyl compound
991 C1	CN	SH	OH
992 C1	CN	SH	D-glucitol
993 C1	CN	SH	SO₃H
994 C1	CN	SH	PO ₃ H ₂
995 C1	CN	SH	СНО
996 C1	CN	SH	СООН
997 C1	CN	SH	CH ₂ OH
998 C1	CN	SH	sugar
999 C1	CN	SH	C-glycosyl compound
1000 C1	CN	OCH ₃	ОН
1001 Cl	CN	OCH ₃	D-glucitol
1002 Cl	CN	OCH ₃	SO₃H
1003 C1	CN	OCH ₃	PO ₃ H ₂
1004 C1	CN	OCH ₃	СНО
1005 Cl	CN	OCH ₃	СООН
1006 C1	CN	OCH ₃	CH ₂ OH
1007 Cl	CN	OCH ₃	sugar
1008 C1	CN	OCH ₃	C-glycosyl compound
1009 C1	CH ₃ ^a	H	OH
1010 C1	CH ₃ ^a	H	D-glucitol
1011 C1	CH ₃ ^a	H	SO ₃ H
1012 C1	CH ₃ ^a	H	PO ₃ H ₂
1013 CI	CH ₃ ^a	H	СНО
1014 CI	CH ₃ ^a	Н	СООН

1016	1015	Cl	CH ₃ ^a	н	СН2ОН
1018 Cl CH ₃ * OH OH OH	1016	C1	CH ₃ ^a	Н	sugar
1019	1017	C1	CH ₃ ^a	H	C-glycosyl compound
1020 Cl CH ₃ OH SO ₃ H 1021 Cl CH ₃ OH PO ₃ H ₂ 1022 Cl CH ₃ OH CHO 1023 Cl CH ₃ OH CHO 1024 Cl CH ₃ OH CH ₂ OH 1025 Cl CH ₃ OH CH ₂ OH 1026 Cl CH ₃ OH C-glycosyl compound 1027 Cl CH ₃ CH ₃ OH C-glycosyl compound 1028 Cl CH ₃ CH ₃ OH D-glucitol 1029 Cl CH ₃ CH ₃ CH ₃ SO ₃ H 1030 Cl CH ₃ CH ₃ CH ₃ CHO 1031 Cl CH ₃ CH ₃ CHO 1032 Cl CH ₃ CH ₃ CHO 1033 Cl CH ₃ CH ₃ CH ₃ CHO 1034 Cl CH ₃ CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ CH ₃ CH ₂ OH 1037 Cl CH ₃ CH ₃ C-glycosyl compound 1038 Cl CH ₃ Cl OH 1039 Cl CH ₃ Cl OH 1039 Cl CH ₃ Cl CH ₂ OH 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl CHO 1042 Cl CH ₃ Cl CHO 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ Cl C-glycosyl compound 1046 Cl CH ₃ Cl C-glycosyl compound 1047 Cl CH ₃ Cl C-glycosyl compound 1048 Cl CH ₃ Cl C-glycosyl compound 1049 Cl CH ₃ Cl C-glycosyl compound 1040 Cl CH ₃ Cl C-glycosyl compound 1041 Cl CH ₃ Cl C-glycosyl compound 1043 Cl CH ₃ Cl C-glycosyl compound 1044 Cl CH ₃ B(OH) ₂ OH	1018	Cl	CH ₃ ^a	OH	ОН
1021 Cl CH ₃ OH PO ₃ H ₂ 1022 Cl CH ₃ OH CHO 1023 Cl CH ₃ OH CHO 1024 Cl CH ₃ OH CH ₂ OH 1025 Cl CH ₃ OH CH ₂ OH 1026 Cl CH ₃ OH C-glycosyl compound 1027 Cl CH ₃ CH ₃ OH C-glycosyl compound 1028 Cl CH ₃ CH ₃ OH D-glucitol 1029 Cl CH ₃ CH ₃ CH ₃ SO ₃ H 1030 Cl CH ₃ CH ₃ CH ₉ CHO 1031 Cl CH ₃ CH ₃ CHO 1032 Cl CH ₃ CH ₃ CHO 1033 Cl CH ₃ CH ₃ CH ₂ OH 1034 Cl CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ CH ₃ CH ₂ OH 1037 Cl CH ₃ CH ₃ CH ₂ OH 1038 Cl CH ₃ CH ₃ CH ₂ OH 1039 Cl CH ₃ Cl OH 1039 Cl CH ₃ Cl OH 1040 Cl CH ₃ Cl PO ₃ H ₂ 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl CHO 1042 Cl CH ₃ Cl CH ₂ OH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ Cl C-glycosyl compound 1046 Cl CH ₃ Cl C-glycosyl compound 1047 Cl CH ₃ Cl C-glycosyl compound 1048 Cl CH ₃ Cl C-glycosyl compound 1049 Cl CH ₃ Cl C-glycosyl compound 1040 Cl CH ₃ Cl C-glycosyl compound 1041 Cl CH ₃ Cl C-glycosyl compound 1042 Cl CH ₃ Cl C-glycosyl compound 1043 Cl CH ₃ Cl C-glycosyl compound 1044 Cl CH ₃ B(OH) ₂ OH	1019	Cl	CH ₃ ^a	ОН	D-glucitol
1022 Cl CH ₃ OH CHO 1023 Cl CH ₃ OH COOH 1024 Cl CH ₃ OH CH ₂ OH 1025 Cl CH ₃ OH Sugar 1026 Cl CH ₃ OH C-glycosyl compound 1027 Cl CH ₃ CH ₃ OH 1028 Cl CH ₃ CH ₃ OH 1029 Cl CH ₃ CH ₃ OH 1030 Cl CH ₃ CH ₃ CH ₃ OH 1031 Cl CH ₃ CH ₃ CH ₃ CHO 1032 Cl CH ₃ CH ₃ CHO 1033 Cl CH ₃ CH ₃ CH ₃ CHO 1034 Cl CH ₃ CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ CH ₃ CH ₃ C-glycosyl compound 1037 Cl CH ₃ CH ₃ CH ₃ C-glycosyl compound 1038 Cl CH ₃ Cl OH 1039 Cl CH ₃ Cl OH 1039 Cl CH ₃ CH ₃ Cl CH ₂ OH 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl CHO 1042 Cl CH ₃ Cl CHO 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ Cl C-glycosyl compound 1046 Cl CH ₃ Cl C-glycosyl compound 1047 Cl CH ₃ Cl C-glycosyl compound 1048 Cl CH ₃ Cl C-glycosyl compound 1049 Cl CH ₃ Cl C-glycosyl compound 1040 Cl CH ₃ Cl C-glycosyl compound 1041 Cl CH ₃ Cl C-glycosyl compound 1042 Cl CH ₃ Cl C-glycosyl compound 1043 Cl CH ₃ Cl C-glycosyl compound 1044 Cl CH ₃ Cl C-glycosyl compound	1020	Cl	CH ₃ ^a	ОН	SO ₃ H
1023 C CH ₃ OH COOH 1024 C CH ₃ OH CH ₂ OH 1025 C CH ₃ OH Sugar 1026 C CH ₃ OH CH ₃ OH C-glycosyl compound 1027 C CH ₃ CH ₃ OH C-glycosyl compound 1028 C CH ₃ CH ₃ OH C-glycosyl compound 1029 C CH ₃ CH ₃ CH ₃ D-glucitol 1030 C CH ₃ CH ₃ CH ₃ CH ₀ CHO 1031 C CH ₃ CH ₃ CH ₃ CHO 1032 C CH ₃ CH ₃ CH ₃ COOH 1033 C CH ₃ CH ₃ CH ₃ COOH 1034 C CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CHO 1035 C CH ₃ CH ₃ CH ₃ CH ₃ Sugar 1036 C CH ₃ CH ₃ CH CH ₃ C-glycosyl compound 1037 C CH ₃ CH ₃ C OH 1038 C CH ₃ CH ₃ C OH 1039 C CH ₃ CH ₃ C CH ₂ CHO 1040 C CH ₃ CH ₃ C CHO 1041 C CH ₃ CH ₃ C CHO 1042 C CH ₃ CH ₃ C CHO 1043 C CH ₃ CH ₃ C CHO 1044 C CH ₃ CH ₃ C CH ₂ CHO 1045 C CH ₃ CH 1046 C CH ₃ CH ₃ C CH ₂ CHO 1047 C CH ₃ CH ₃ C CH ₂ CHO 1048 C CH ₃ CH ₃ C CH ₂ CHO 1049 C CH ₃ CH ₃ C CH ₂ CHO 1040 C CH ₃ CH ₃ C CH ₂ CHO 1041 C CH ₃ CH ₃ C CH ₂ CHO 1042 C CH ₃ CH ₃ C CH ₂ CHO 1043 C CH ₃ CH ₃ C CH ₂	1021	Cl	CH ₃ ^a	ОН	PO ₃ H ₂
1024 Cl CH ₃ OH CH ₂ OH 1025 Cl CH ₃ OH sugar 1026 Cl CH ₃ OH C-glycosyl compound 1027 Cl CH ₃ CH ₃ OH C-glycosyl compound 1028 Cl CH ₃ CH ₃ OH D-glucitol 1029 Cl CH ₃ CH ₃ CH ₃ SO ₃ H 1030 Cl CH ₃ CH ₃ CH ₀ CH ₀ 1031 Cl CH ₃ CH ₃ CH ₀ CH ₀ 1032 Cl CH ₃ CH ₃ CH ₀ COOH 1033 Cl CH ₃ CH ₃ CH ₃ COOH 1034 Cl CH ₃ CH ₃ CH ₃ Sugar 1035 Cl CH ₃ CH ₃ C-glycosyl compound 1036 Cl CH ₃ CH ₃ C-glycosyl compound 1037 Cl CH ₃ Cl OH 1038 Cl CH ₃ Cl D-glucitol 1038 Cl CH ₃ Cl PO ₃ H ₂ 1040 Cl CH ₃ Cl CH ₀ 1041 Cl CH ₃ Cl CH ₀ 1042 Cl CH ₃ Cl CH ₀ 1043 Cl CH ₃ Cl COOH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ Cl C-glycosyl compound 1046 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ OP-glucitol	1022	C1	CH ₃ ^a	ОН	CHO
1025 Cl	1023	C1	CH ₃ ^a	OH	COOH
1026 Cl CH ₃ OH C-glycosyl compound 1027 Cl CH ₃ CH ₃ OH 1028 Cl CH ₃ CH ₃ D-glucitol 1029 Cl CH ₃ CH ₃ CH ₃ SO ₃ H 1030 Cl CH ₃ CH ₃ CH ₀ CH ₀ 1031 Cl CH ₃ CH ₃ CH ₀ CH ₀ 1032 Cl CH ₃ CH ₃ CH ₀ CH ₀ 1033 Cl CH ₃ CH ₃ CH ₂ OH 1034 Cl CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ CH ₃ CH ₂ OH 1037 Cl CH ₃ Cl OH 1038 Cl CH ₃ Cl D-glucitol 1038 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl SO ₃ H 1040 Cl CH ₃ Cl CH ₀ OH 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl COOH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ Cl C-glycosyl compound 1046 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ OP-glucitol	1024	Cl	CH ₃ ^a	OH	CH ₂ OH
1027 Cl CH ₃ CH ₃ OH 1028 Cl CH ₃ CH ₃ D-glucitol 1029 Cl CH ₃ CH ₃ CH ₃ SO ₃ H 1030 Cl CH ₃ CH ₃ CH ₀ PO ₃ H ₂ 1031 Cl CH ₃ CH ₃ CH ₀ CH ₀ 1032 Cl CH ₃ CH ₃ CH ₀ CH ₀ 1033 Cl CH ₃ CH ₃ CH ₂ OH 1034 Cl CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ CH ₃ CH ₂ CH ₂ OH 1037 Cl CH ₃ Cl OH 1038 Cl CH ₃ Cl D-glucitol 1039 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl CH ₀ OH 1040 Cl CH ₃ Cl CH ₀ OH 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl COOH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ OP-glucitol	1025	Cl	CH ₃ ^a	OH	sugar
1028 Cl CH ₃ CH ₃ D-glucitol 1029 Cl CH ₃ CH ₃ CH ₃ SO ₃ H 1030 Cl CH ₃ CH ₃ CH ₃ PO ₃ H ₂ 1031 Cl CH ₃ CH ₃ CHO 1032 Cl CH ₃ CH ₃ CHO 1033 Cl CH ₃ CH ₃ CH ₂ OH 1034 Cl CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ CH ₃ CH ₂ OH 1037 Cl CH ₃ Cl OH 1038 Cl CH ₃ Cl D-glucitol 1039 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl CHO 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl COOH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ OP-glucitol	1026	C1	CH ₃ ^a	OH	C-glycosyl compound
1029 Cl CH ₃ CH ₃ SO ₃ H 1030 Cl CH ₃ CH ₃ CH ₃ PO ₃ H ₂ 1031 Cl CH ₃ CH ₃ CHO 1032 Cl CH ₃ CH ₃ CHO 1033 Cl CH ₃ CH ₃ CH ₂ OH 1034 Cl CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ CH ₃ CH ₂ OH 1037 Cl CH ₃ Cl OH 1038 Cl CH ₃ Cl D-glucitol 1039 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl CHO 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl CH ₂ OH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ OP-glucitol	1027	Cl	CH ₃ ^a	CH ₃	OH
1030	1028	Cl	CH ₃ ^a	CH ₃	D-glucitol
1031 Cl CH ₃ CH ₃ CHO 1032 Cl CH ₃ CH ₃ CH ₂ CHO 1033 Cl CH ₃ CH ₃ CH ₂ OH 1034 Cl CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ Cl OH 1037 Cl CH ₃ Cl D-glucitol 1038 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl PO ₃ H ₂ 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl COOH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ O-glucitol	1029	C1	CH ₃ ^a	CH ₃	SO ₃ H
1032 Cl CH ₃ CH ₃ COOH 1033 Cl CH ₃ CH ₃ CH ₂ OH 1034 Cl CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ Cl OH 1037 Cl CH ₃ Cl D-glucitol 1038 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl PO ₃ H ₂ 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl COOH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl CH ₂ OH 1045 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ D-glucitol	1030	Cl	CH ₃ ^a	CH ₃	PO ₃ H ₂
1033 Cl CH ₃ CH ₃ CH ₂ OH 1034 Cl CH ₃ CH ₃ CH ₂ OH 1035 Cl CH ₃ CH ₃ CH ₂ OH 1036 Cl CH ₃ Cl OH 1037 Cl CH ₃ Cl D-glucitol 1038 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl PO ₃ H ₂ 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl COOH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl CH ₂ OH 1045 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ D-glucitol	1031	Cl	CH ₃ ^a	CH ₃	СНО
1034 Cl CH ₃ CH ₃ sugar 1035 Cl CH ₃ CH ₃ C-glycosyl compound 1036 Cl CH ₃ Cl OH 1037 Cl CH ₃ Cl D-glucitol 1038 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl PO ₃ H ₂ 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl CH ₂ OH 1043 Cl CH ₃ Cl CH ₂ OH 1044 Cl CH ₃ Cl Sugar 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ D-glucitol	1032	Cl	CH ₃ ^a	CH ₃	СООН
1035 Cl CH ₃ ^a CH ₃ C-glycosyl compound 1036 Cl CH ₃ ^a Cl OH 1037 Cl CH ₃ ^a Cl D-glucitol 1038 Cl CH ₃ ^a Cl SO ₃ H 1039 Cl CH ₃ ^a Cl PO ₃ H ₂ 1040 Cl CH ₃ ^a Cl CHO 1041 Cl CH ₃ ^a Cl COOH 1042 Cl CH ₃ ^a Cl CH ₂ OH 1043 Cl CH ₃ ^a Cl CH ₂ OH 1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1033	Cl	CH ₃ ^a	CH ₃	CH ₂ OH
1036 Cl CH ₃ Cl OH 1037 Cl CH ₃ Cl D-glucitol 1038 Cl CH ₃ Cl SO ₃ H 1039 Cl CH ₃ Cl PO ₃ H ₂ 1040 Cl CH ₃ Cl CHO 1041 Cl CH ₃ Cl COOH 1042 Cl CH ₃ Cl CH ₂ OH 1043 Cl CH ₃ Cl Sugar 1044 Cl CH ₃ Cl C-glycosyl compound 1045 Cl CH ₃ B(OH) ₂ OH 1046 Cl CH ₃ B(OH) ₂ D-glucitol	1034	Cl	CH ₃ ^a	CH ₃	sugar
1037 Cl CH ₃ ^a Cl D-glucitol 1038 Cl CH ₃ ^a Cl SO ₃ H 1039 Cl CH ₃ ^a Cl PO ₃ H ₂ 1040 Cl CH ₃ ^a Cl CHO 1041 Cl CH ₃ ^a Cl COOH 1042 Cl CH ₃ ^a Cl CH ₂ OH 1043 Cl CH ₃ ^a Cl sugar 1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1035	Cl	CH ₃ ^a	CH ₃	C-glycosyl compound
1038 Cl CH ₃ ^a Cl SO ₃ H 1039 Cl CH ₃ ^a Cl PO ₃ H ₂ 1040 Cl CH ₃ ^a Cl CHO 1041 Cl CH ₃ ^a Cl COOH 1042 Cl CH ₃ ^a Cl CH ₂ OH 1043 Cl CH ₃ ^a Cl sugar 1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1036	C1	CH ₃ ^a	C1	OH
1039 Cl CH ₃ ^a Cl PO ₃ H ₂ 1040 Cl CH ₃ ^a Cl CHO 1041 Cl CH ₃ ^a Cl COOH 1042 Cl CH ₃ ^a Cl CH ₂ OH 1043 Cl CH ₃ ^a Cl sugar 1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1037	C1	CH ₃ ^a	C1	D-glucitol
1040 Cl CH ₃ ^a Cl CHO 1041 Cl CH ₃ ^a Cl COOH 1042 Cl CH ₃ ^a Cl CH ₂ OH 1043 Cl CH ₃ ^a Cl sugar 1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1038	C1	CH ₃ ^a	C1	SO₃H
1041 Cl CH ₃ ^a Cl COOH 1042 Cl CH ₃ ^a Cl CH ₂ OH 1043 Cl CH ₃ ^a Cl sugar 1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1039	C1	CH ₃ ^a	C1	PO ₃ H ₂
1042 Cl CH ₃ ^a Cl CH ₂ OH 1043 Cl CH ₃ ^a Cl sugar 1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1040	C1	CH ₃ ^a	C1	СНО
1043 Cl CH ₃ ^a Cl sugar 1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1041	Cl	CH ₃ ^a	Cl	COOH
1044 Cl CH ₃ ^a Cl C-glycosyl compound 1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1042	C1	CH ₃ ^a	C1	CH₂OH
1045 Cl CH ₃ ^a B(OH) ₂ OH 1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1043	C1	CH ₃ ^a	Cl	sugar
1046 Cl CH ₃ ^a B(OH) ₂ D-glucitol	1044	C1	CH ₃ ^a	Cl	C-glycosyl compound
. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1045	C1	CH ₃ ^a	B(OH) ₂	ОН
	1046	Cl	CH ₃ ^a	B(OH) ₂	D-glucitol
1047 Cl CH ₃ " B(OH) ₂ SO ₃ H	1047	Cl	CH ₃ ^a	B(OH) ₂	SO₃H

1048	CI	CH ₃ ^a	B(OH) ₂	PO_3H_2
1049	Cl	CH ₃ ^a	B(OH) ₂	СНО
1050	C1	CH ₃ ^a	B(OH) ₂	СООН
1051	Cl	CH ₃ ^a	B(OH) ₂	CH ₂ OH
1052	Cl	CH ₃ ^a	B(OH) ₂	sugar
1053	C1	CH ₃ ^a	B(OH) ₂	C-glycosyl compound
1054	C1	CH ₃ ^a	SH	ОН
1055	C1	CH ₃ ^a	SH	D-glucitol
1056	C1	CH ₃ ^a	SH	SO ₃ H
1057	C1	CH ₃ ^a	SH	PO ₃ H ₂
1058	C1	CH ₃ ^a	SH	СНО
1059	Cl	CH ₃ ^a	SH	СООН
1060	Cl	CH ₃ ^a	SH	CH ₂ OH
1061	Cl	CH ₃ ^a	SH	sugar
1062	Cl	CH ₃ ^a	SH	C-glycosyl compound
1063	C1	CH ₃ ^a	OCH ₃	ОН
1064	C1	CH ₃ ^a	OCH ₃	D-glucitol
1065	C1	CH ₃ ^a	OCH ₃	SO ₃ H
1066	C1	CH ₃ ^a	OCH ₃	PO ₃ H ₂
1067	Cl	CH ₃ ^a	OCH ₃	СНО
1068	C1	CH ₃ ^a	OCH ₃	СООН
1069	C1	CH ₃ ^a	OCH ₃	CH ₂ OH
1070	Cl	CH ₃ ^a	OCH ₃	sugar
1071	Cl	CH ₃ ^a	OCH ₃	C-glycosyl compound
1072	C1	OCH ₃ ^b	Н	ОН
1073	Cl	OCH ₃ ^b	H	D-glucitol
1074	C1	OCH ₃ ^b	Н	SO₃H
1075	C1	OCH ₃ ^b	Н	PO ₃ H ₂
1076	Cl	OCH ₃ ^b	H	СНО
1077	Cl	OCH ₃ ^b	Н	СООН
1078	Cl	OCH ₃ ^b	Н	CH ₂ OH
1079	C1	OCH ₃ ^b	Н	sugar
1080	C1	OCH ₃ ^b	H	C-glycosyl compound

1081	C1	OCH ₃ ^b	ОН	ОН
1082	Cl	OCH ₃ ^b	OH	D-glucitol
1083	Cl	OCH3 ^b	OH	SO₃H
1084	C1	OCH₃ ^b	OH	PO ₃ H ₂
1085	Cl	OCH ₃ ^b	OH	СНО
1086	C1	OCH ₃ ^b	OH	СООН
1087	C1	OCH ₃ ^b	OH	CH ₂ OH
1088	Cl	OCH ₃ ^b	ОН	sugar
1089	C1	OCH ₃ ^b	OH	C-glycosyl compound
1090	Cl	OCH₃ ^b	CH ₃	OH
1091	Cl	OCH ₃ ^b	CH ₃	D-glucitol
1092	Cl	OCH ₃ ^b	CH ₃	SO ₃ H
1093	Cl	OCH ₃ ^b	CH ₃	PO ₃ H ₂
1094	Cl	OCH ₃ ^b	CH ₃	СНО
1095	Cl	OCH ₃ ^b	CH ₃	COOH
1096	C1	OCH ₃ ^b	CH ₃	CH ₂ OH
1097	Cl	OCH ₃ ^b	CH ₃	sugar
1098	Cl	OCH ₃ ^b	CH ₃	C-glycosyl compound
1099	C1	OCH ₃ ^b	Cl	OH
1100	C1	OCH ₃ ^b	Cl	D-glucitol
1101	C1	OCH ₃ ^b	C1	SO₃H
1102	Cl	OCH ₃ ^b	Cl	PO ₃ H ₂
1103	Cl	OCH ₃ ^b	Cl	СНО
1104	Cl	OCH ₃ ^b	Cl	СООН
1105	Cl	OCH ₃ ^b	C1	CH ₂ OH
1106	C1	OCH ₃ ^b	C1	sugar
1107	Cl	OCH ₃ ^b	Cl	C-glycosyl compound
1108	Cl	OCH ₃ ^b	B(OH) ₂	OH
1109	Cl	OCH ₃ ^b	B(OH) ₂	D-glucitol
1110	C1	OCH ₃ ^b	B(OH) ₂	SO ₃ H
1111	Cl	OCH ₃ ^b	B(OH) ₂	PO_3H_2
1112	Cl	OCH ₃ ^b	B(OH) ₂	CHO
1113	Cl	OCH₃ ^b	B(OH) ₂	СООН

1114	C1	OCH ₃ ^b	B(OH) ₂	CH ₂ OH
1115	C1	OCH₃ ^b	B(OH) ₂	sugar
1116	Cl	OCH₃ ^b	B(OH) ₂	C-glycosyl compound
1117	C1	OCH ₃ ^b	SH	ОН
1118	C1	OCH ₃ ^b	SH	D-glucitol
1119	Cl	OCH ₃ ^b	SH	SO₃H
1120	C1	OCH ₃ ^b	SH	PO ₃ H ₂
1121	C1	OCH ₃ ^b	SH	СНО
1122	C1	OCH ₃ ^b	SH	СООН
1123	Cl	OCH ₃ ^b	SH	CH ₂ OH
1124	C1	OCH ₃ ^b	SH	sugar
1125	C1	OCH ₃ ^b	SH	C-glycosyl compound
1126	Cl	OCH ₃ ^b	OCH ₃	ОН
1127	Cl	OCH ₃ ^b	OCH₃	D-glucitol
1128	Cl	OCH ₃ ^b	OCH ₃	SO ₃ H
1129	Cl	OCH ₃ ^b	OCH ₃	PO ₃ H ₂
1130	C1	OCH ₃ ^b	OCH ₃	СНО
1131	C1	OCH₃ ^b	OCH ₃	СООН
1132	C1	OCH₃ ^b	OCH ₃	CH ₂ OH
1133	C1	OCH ₃ ^b	OCH ₃	sugar
1134	C1	OCH ₃ ^b	OCH ₃	C-glycosyl compound
1135	CN	H	Н	ОН
1136	CN	H	H	D-glucitol
1137	CN	H	H	SO₃H
1138	CN	Н	H	PO ₃ H ₂
1139	CN	H	H	СНО
1140	CN	H	H	СООН
1141	CN	н	H	CH ₂ OH
1142	CN	н	H	sugar
1143	CN	H	Н	C-glycosyl compound
1144	CN	H	OH	ОН
1145	CN	H	OH	D-glucitol
1146	CN	H	OH	SO₃H
1147	CN	H	ОН	PO ₃ H ₂
1148	CN	H	ОН	СНО

1149	CN	н	OH	СООН
1150	CN	H	OH	CH ₂ OH
1151	CN	H	OH	sugar
1152	CN	H	OH	C-glycosyl compound
1153	CN	H	CH_3	OH
1154	CN	H	CH ₃	D-glucitol
1155	CN	H	CH ₃	SO₃H
1156	CN	H	CH ₃	PO ₃ H ₂
1157	CN	H	CH ₃	CHO
1158	CN	H	CH ₃	COOH
1159	CN	н	CH ₃	CH ₂ OH
1160	CN	н	CH ₃	sugar
1161	CN	Н	CH ₃	C-glycosyl compound
1162	CN	H	Cl	OH
1163	CN	Н	Cl	D-glucitol
1164	CN	H	Cl	SO₃H
1165	CN	H	Cl	PO_3H_2
1166	CN	H	Cl	СНО
1167	CN	H	Cl	COOH
1168	CN	H	Cl	CH₂OH
1169	CN	H	C1	sugar
1170	CN	H	Cl	C-glycosyl compound
1171	CN	H	$B(OH)_2$	OH
1172	CN	H	B(OH) ₂	D-glucitol
1173	CN	H	B(OH) ₂	SO₃H
1174	CN	H	B(OH) ₂	PO ₃ H ₂
1175	CN	H	B(OH) ₂	СНО
1176	CN	H	B(OH) ₂	СООН
1177	CN	H	B(OH) ₂	CH ₂ OH
1178	CN	H	B(OH) ₂	sugar
1179	CN	H	B(OH) ₂	C-glycosyl compound
1180	CN	H	SH	ОН
1181	CN	H	SH	D-glucitol
1182	CN	н	SH	SO₃H
1183	CN	H	SH	PO ₃ H ₂
1184	CN	H	SH	СНО
1185	CN	H	SH	COOH

1188 CN H SH 1189 CN H OCH ₃ 1190 CN H OCH ₃ 1191 CN H OCH ₃	sugar C-glycosyl compound OH D-glucitol SO ₃ H PO ₃ H ₂
1189 CN H OCH ₃ 1190 CN H OCH ₃ 1191 CN H OCH ₃	OH D-glucitol SO ₃ H
1190 CN H OCH ₃ 1191 CN H OCH ₃	D-glucitol SO ₃ H
1191 CN H OCH3	SO₃H
	PO ₃ H ₂
1192 CN H OCH ₃	_
1193 CN H OCH ₃	СНО
1194 CN H OCH ₃	СООН
1195 CN H OCH ₃	CH₂OH
1196 CN H OCH ₃	sugar
1197 CN H OCH3	C-glycosyl compound
1198 CN F H	OH
1199 CN F H	D-glucitol
1200 CN F H	SO₃H
1201 CN F H	PO ₃ H ₂
1202 CN F H	СНО
1203 CN F H	COOH
1204 CN F H	CH ₂ OH
1205 CN F H	sugar
1206 CN F H	C-glycosyl compound
1207 CN F OH	OH
1208 CN F OH	D-glucitol
1209 CN F OH	SO₃H
1210 CN F OH	PO ₃ H ₂
1211 CN F OH	CHO
1212 CN F OH	СООН
1213 CN F OH	CH ₂ OH
1214 CN F OH	sugar
1215 CN F OH	C-glycosyl compound
1216 CN F CH ₃	ОН
1217 CN F CH ₃	D-glucitol
1218 CN F CH ₃	SO₃H
1219 CN F CH ₃	PO ₃ H ₂
1220 CN F CH ₃	СНО
1221 CN F CH ₃	СООН
1222 CN F CH ₃	CH₂OH

1223	CN	F	CH ₃	sugar
1224	CN	F	CH ₃	C-glycosyl compound
1225	CN	F	C1	OH
1226	CN	F	Cl	D-glucitol
1227	CN	F	Cl	SO₃H
1228	CN	F	CI	PO₃H₂
1229	CN	F	Cl	СНО
1230	CN	F	C1	СООН
1231	CN	F	C1	CH ₂ OH
1232	CN	F	C1	sugar
1233	CN	F	Cl	C-glycosyl compound
1234	CN	F	$B(OH)_2$	OH
1235	CN	F	B(OH) ₂	D-glucitol
1236	CN	F	B(OH) ₂	SO ₃ H
1237	CN	F	B(OH) ₂	PO ₃ H ₂
1238	CN	F	B(OH) ₂	СНО
1239	CN	F	B(OH) ₂	СООН
1240	CN	F	B(OH) ₂	CH ₂ OH
1241	CN	F	B(OH) ₂	sugar
1242	CN	F	B(OH) ₂	C-glycosyl compound
1243	CN	F	SH	OH
1244	CN	F	SH	D-glucitol
1245	CN	F	SH	SO₃H
1246	CN	F	SH	PO ₃ H ₂
1247	CN	F	SH	СНО
1248	CN	F	SH	COOH
1249	CN	F	SH	CH ₂ OH
1250	CN	F	SH	sugar
1251	CN	F	SH	C-glycosyl compound
1252	CN	F	OCH ₃	ОН
1253	CN	F	OCH ₃	D-glucitol
1254	CN	F	OCH ₃	SO ₃ H
1255	CN	F	OCH ₃	PO ₃ H ₂
1256	CN	F	OCH ₃	СНО
1257	CN	F	OCH ₃	СООН
1258	CN	F	OCH ₃	CH ₂ OH
1259	CN	F	OCH ₃	sugar

ģ

120	en la	CN	h	F		00	CH_3	k	C-gl	ycosyl compound	
12	-	CN		CI		H			HC		
12		CN		CI		H		1	D-g	lucitol	
		CN		Cl		H			SO ₂	H	
1		CN		Cl		H			PO	₃ H ₂	
		CN		CI		H			CH		
	,00	CN		Cl		H				OH	
	267	CN		CI		H			CH	I ₂ OH	
	268	CN		CI		E	[sug	gar	
_	269	CN		CI		I	[glycosyl compound	
	270	CN		CI			H	_	OI		
	271	CN		CI			H			glucitol	
	272	CN		C	l	(OH		_	D ₃ H	
	273	CN	1	c	ī	-	OH		PC	O_3H_2	
L_1	1274	CI		tc	ı	1	HC			HO	
	1275	Cì		C		1	OH			OOH	
	1276	C		C	1		OH		C	H ₂ OH	
	1277	C		-	71		OH		SI	ugar	
1	1278	C		_	71		OH	_		glycosyl compound	
-	1279	C		_	71		CH_3		- 1 -)H	
-	1280		N	10	21		CH ₃		I	O-glucitol	
-	1281	- 1 -	N.	_	CI		CH ₃	_	5	SO ₃ H	
-	1282	-	N	-	CI		CH ₃	_	ī	PO ₃ H ₂	
-		_	N.		CI	_	CH ₃		-10	CHO	
1	1283	-	IN IN	- 1	CI	_	CH ₃	_	7	COOH	
_		-	CN	-	CI		CH ₂	_	7	CH ₂ OH	
-	1285	-	CN	_	CI		CH		-	sugar	
1	1286	-			Cl		CH		_	C-glycosyl compound	١
	128		CN				CI			OH	1
1	128	_	CN		Cl Cl		CI			D-glucitol	1
1	128		CN		CI		CI			SO ₃ H	1
1	129	_	CN		CI		CI			PO ₃ H ₂	1
1	129	1	CN		1		CI	_		СНО	_
1	129		CN		Cl		CI			COOH	_
	129		CN		Cl	_	CI			CH ₂ OH	_
	129		CN		CI	_				sugar	_
	129		CN		Cl		CI			C-glycosyl compound	_
	12		CN		Cl				T)2	OH OH	_
	12	97	CN		Cl		Ы	U	-1/2	Ton	-

1298	CN	CI	B(OH) ₂	D-glucito1
1299	CN	Cl	B(OH) ₂	SO₃H
1300	CN	CI	B(OH) ₂	PO ₃ H ₂
1301	CN	Cl	B(OH) ₂	СНО
1302	CN	CI	B(OH) ₂	СООН
1303	CN	Cl	B(OH) ₂	CH ₂ OH
1304	CN	Cl	B(OH) ₂	sugar
1305	CN	Cl	B(OH) ₂	C-glycosyl compound
1306	CN	Cl	SH	OH
1307	CN	Cl	SH	D-glucitol
1308	CN	Cl	SH	SO₃H
1309	CN	Cl	SH	PO ₃ H ₂
1310	CN	C1	SH	CHO
1311	CN	C1	SH	СООН
1312	CN	Cl	SH	CH ₂ OH
1313	CN	C1	SH	sugar
1314	CN	C1	SH	C-glycosyl compound
1315	CN	Cl	OCH ₃	ОН
1316	CN	Cl	OCH ₃	D-glucito1
1317	CN	C1	OCH ₃	SO ₃ H
1318	CN	Cl	OCH ₃	PO ₃ H ₂
1319	CN	C1	OCH ₃	СНО
1320	CN	C1	OCH ₃	СООН
1321	CN	Cl	OCH ₃	CH ₂ OH
1322	CN	C1	OCH ₃	sugar
1323	CN	C1	OCH ₃	C-glycosyl compound
1324	CN	CN	H	OH
1325	CN	CN	H	D-glucitol
1326	CN	CN	H	SO₃H
1327	CN	CN	H	PO ₃ H ₂
1328	CN	CN	H	СНО
1329	CN	CN	H	СООН
1330	CN	CN	H	CH ₂ OH
1331	CN	CN	H	sugar
1332	CN	CN	H	C-glycosyl compound
1333	CN	CN	ОН	ОН
1334	CN	CN	OH	D-glucitol

1335	CN	CN	ОН	SO₃H
1336	CN	CN	OH	PO ₃ H ₂
1337	CN	CN	ОН	СНО
1338	CN	CN	OH	СООН
1339	CN	CN	OH	CH₂OH
1340	CN	CN	OH	sugar
1341	CN	CN	OH	C-glycosyl compound
1342	CN	CN	CH_3	ОН
1343	CN	CN	CH ₃	D-glucitol
1344	CN	CN	CH ₃	SO ₃ H
1345	CN	CN	CH ₃	PO ₃ H ₂
1346	CN	CN	CH ₃	СНО
1347	CN	CN	CH ₃	СООН
1348	CN	CN	CH ₃	CH ₂ OH
1349	CN	CN	CH ₃	sugar
1350	CN	CN	CH ₃	C-glycosyl compound
1351	CN	CN	C1	ОН
1352	CN	CN	CI	D-glucitol
1353	CN	CN	Cl	SO₃H
1354	CN	CN	C1	PO ₃ H ₂
1355	CN	CN	C1	СНО
1356	CN	CN	C1	СООН
1357	CN	CN	C1	CH ₂ OH
1358	CN	CN	C1	sugar
1359	CN	CN	Cl	C-glycosyl compound
1360	CN	CN	B(OH) ₂	OH
1361	CN	CN	B(OH) ₂	D-glucitol
1362	CN	CN	B(OH) ₂	SO₃H
1363	CN	CN	B(OH) ₂	PO ₃ H ₂
1364	CN	CN	B(OH) ₂	СНО
1365	CN	CN	B(OH) ₂	СООН
1366	CN	CN	B(OH) ₂	CH ₂ OH
1367	CN	CN	B(OH) ₂	sugar
1368	CN	CN	B(OH) ₂	C-glycosyl compound
1369	CN	CN	SH	OH
1370	CN	CN	SH	D-glucito1
1371	CN	CN	SH	SO ₃ H

1372	CN	CN	SH	PO_3H_2
1373	CN	CN	SH	СНО
1374	CN	CN	SH	СООН
1375	CN	CN	SH	CH ₂ OH
1376	CN	CN	SH	sugar
1377	CN	CN	SH	C-glycosyl compound
1378	CN	CN	OCH₃	OH
1379	CN	CN	OCH₃	D-glucitol
1380	CN	CN	OCH_3	SO₃H
1381	CN	CN	OCH_3	PO ₃ H ₂
1382	CN	CN	OCH ₃	СНО
1383	CN	CN	OCH ₃	СООН
1384	CN	CN	OCH ₃	CH ₂ OH
1385	CN	CN	OCH ₃	sugar
1386	CN	CN	OCH ₃	C-glycosyl compound
1387	CN	CH ₃ ^a	Н	ОН
1388	CN	CH ₃ ^a	Н	D-glucitol
1389	CN	CH ₃ ^a	Н	SO₃H
1390	CN	CH ₃ ^a	н	PO ₃ H ₂
1391	CN	CH ₃ ^a	Н	СНО
1392	CN	CH ₃ ^a	H	СООН
1393	CN	CH ₃ ^a	Н	CH ₂ OH
1394	CN	CH ₃ ^a	Н	sugar
1395	CN	CH ₃ ^a	H	C-glycosyl compound
1396	CN	CH ₃ ^a	OH	OH
1397	CN	CH ₃ ^a	ОН	D-glucitol
1398	CN	CH ₃ ^a	OH	SO ₃ H
1399	CN	CH ₃ ^a	OH	PO ₃ H ₂
1400	CN	CH ₃ ^a	ОН	СНО
1401	CN	CH ₃ ^a	OH	СООН
1402	CN	CH ₃ ^a	OH	CH ₂ OH
1403	CN	CH ₃ ^a	OH	sugar
1404	CN	CH ₃ ^a	OH	C-glycosyl compound
1405	CN	CH ₃ ^a	CH ₃	ОН

1406	CN	CH ₃ ^a	CH ₃	D-glucitol
1407	CN	CH ₃ ^a	CH ₃	SO₃H
1408	CN	CH ₃ ^a	CH ₃	PO₃H ₂
1409	CN	CH ₃ ^a	CH ₃	СНО
1410	CN	CH ₃ ^a	CH ₃	СООН
1411	CN	CH ₃ ^a	CH ₃	CH ₂ OH
1412	CN	CH ₃ ^a	CH ₃	sugar
1413	CN	CH ₃ ^a	CH ₃	C-glycosyl compound
1414	CN	CH ₃ ^a	Cl	ОН
1415	CN	CH ₃ ^a	Cl	D-glucitol
1416	CN	CH ₃ ^a	Cl	SO₃H
1417	CN	CH ₃ ^a	Cl	PO ₃ H ₂
1418	CN	CH ₃ ^a	Cl	CHO
1419	CN	CH ₃ ^a	CI	СООН
1420	CN	CH ₃ ^a	Cl	CH ₂ OH
1421	CN	CH ₃ ^a	CI	sugar
1422	CN	CH ₃ ^a	Cl	C-glycosyl compound
1423	CN	CH ₃ ^a	B(OH) ₂	OH
1424	CN	CH ₃ ^a	B(OH) ₂	D-glucitol
1425	CN	CH ₃ ^a	B(OH) ₂	SO₃H
1426	CN	CH ₃ ^a	B(OH) ₂	PO ₃ H ₂
1427	CN	CH ₃ ^a	B(OH) ₂	СНО
1428	CN	CH ₃ ^a	B(OH) ₂	СООН
1429	CN	CH ₃ ^a	B(OH) ₂	CH ₂ OH
1430	CN	CH ₃ ^a	B(OH) ₂	sugar
1431	CN	CH ₃ ^a	B(OH) ₂	C-glycosyl compound
1432	CN	CH ₃ ^a	SH	OH
1433	CN	CH ₃ ^a	SH	D-glucitol
1434	CN	CH ₃ ^a	SH	SO ₃ H
1435	CN	CH ₃ ^a	SH	PO ₃ H ₂
1436	CN	CH ₃ ^a	SH	СНО
1437	CN	CH ₃ ^a	SH	СООН
1438	CN	CH ₃ ^a	SH	CH₂OH

1439	CN	CH ₃ ^a	SH	sugar
1440	CN	CH ₃ ^a	SH	C-glycosyl compound
1441	CN	CH ₃ ^a	OCH ₃	ОН
1442	CN	CH ₃ ^a	OCH ₃	D-glucitol
1443	CN	CH ₃ ^a	OCH ₃	SO ₃ H
1444	CN	CH ₃ ^a	OCH ₃	PO ₃ H ₂
1445	CN	CH ₃ ^a	OCH ₃	СНО
1446	CN	CH ₃ ^a	OCH ₃	СООН
1447	CN	CH₃ ^a	OCH ₃	CH ₂ OH
1448	CN	CH ₃ ^a	OCH ₃	sugar
1449	CN	CH ₃ ^a	OCH ₃	C-glycosyl compound
1450	CN	OCH ₃ ^b	H	OH
1451	CN	OCH ₃ ^b	H	D-glucito1
1452	CN	OCH₃ ^b	H	SO ₃ H
1453	CN	OCH ₃ ^b	H	PO ₃ H ₂
1454	CN	OCH ₃ ^b	H	CHO
1455	CN	OCH ₃ ^b	H	СООН
1456	CN	OCH ₃ ^b	Н	CH₂OH
1457	CN	OCH₃ ^b	Н	sugar
1458	CN	OCH ₃ ^b	Н	C-glycosyl compound
1459	CN	OCH ₃ ^b	ОН	ОН
1460	CN	OCH ₃ ^b	OH	D-glucitol
1461	CN	OCH ₃ ^b	OH	SO₃H
1462	CN	OCH ₃ ^b	OH	PO ₃ H ₂
1463	CN	OCH ₃ ^b	ОН	СНО
1464	CN	OCH ₃ ^b	OH	СООН
1465	CN	OCH ₃ ^b	OH	CH ₂ OH
1466	CN	OCH ₃ ^b	OH	sugar
1467	CN	OCH ₃ ^b	OH	C-glycosyl compound
1468	CN	OCH ₃ ^b	CH ₃	ОН
1469	CN	OCH₃ ^b	CH ₃	D-glucitol
1470	CN	OCH ₃ ^b	CH ₃	SO₃H
1471	CN	OCH ₃ ^b	CH ₃	PO ₃ H ₂

1472	CN	OCH ₃ ^b	CH ₃	СНО
1473	CN	OCH ₃ ^b	CH ₃	СООН
1474	CN	OCH ₃ ^b	CH ₃	CH ₂ OH
1475	CN	OCH ₃ ^b	CH ₃	sugar
1476	CN	OCH ₃ ^b	CH ₃	C-glycosyl compound
1477	CN	OCH ₃ ^b	Cl	OH
1478	CN	OCH ₃ ^b	Cl	D-glucitol
1479	CN	OCH ₃ ^b	Cl	SO₃H
1480	CN	OCH₃ ^b	C1	PO ₃ H ₂
1481	CN	OCH₃ ^b	Cl	СНО
1482	CN	OCH ₃ ^b	C1	СООН
1483	CN	OCH ₃ ^b	C1	CH ₂ OH
1484	CN	OCH ₃ ^b	C1	sugar
1485	CN	OCH₃ ^b	C1	C-glycosyl compound
1486	CN	OCH ₃ ^b	B(OH) ₂	OH
1487	CN	OCH ₃ ^b	B(OH) ₂	D-glucitol
1488	CN	OCH ₃ ^b	B(OH) ₂	SO₃H
1489	CN	OCH ₃ ^b	B(OH) ₂	PO ₃ H ₂
1490	CN	OCH ₃ ^b	B(OH) ₂	СНО
1491	CN	OCH ₃ ^b	B(OH) ₂	СООН
1492	CN	OCH ₃ ^b	B(OH) ₂	CH₂OH
1493	CN	OCH ₃ ^b	B(OH) ₂	sugar
1494	CN	OCH ₃ ^b	B(OH) ₂	C-glycosyl compound
1495	CN	OCH₃ ^b	SH	OH
1496	CN	OCH ₃ ^b	SH	D-glucitol
1497	CN	OCH₃ ^b	SH	SO ₃ H
1498	CN	OCH ₃ ^b	SH	PO ₃ H ₂
1499	CN	OCH ₃ ^b	SH	СНО
1500	CN	OCH ₃ ^b	SH	СООН
1501	CN	OCH ₃ ^b	SH	CH ₂ OH
1502	CN	OCH ₃ ^b	SH	sugar
1503	CN	OCH ₃ ^b	SH	C-glycosyl compound
1504	CN	OCH ₃ ^b	OCH₃	OH

1 1505	lonr	l b	1	1
1505		OCH ₃ ^b	OCH ₃	D-glucitol
1506	CN	OCH₃ ^b	OCH ₃	SO₃H
1507	CN	OCH ₃ ^b	OCH ₃	PO_3H_2
1508	CN	OCH ₃ ^b	OCH ₃	СНО
1509	CN	OCH₃ ^b	OCH ₃	СООН
1510	CN	OCH₃ ^b	OCH₃	CH ₂ OH
1511	CN	OCH ₃ ^b	OCH ₃	sugar
1512	CN	OCH ₃ ^b	OCH ₃	C-glycosyl compound
1513	CH ₃ ^a	H	H	OH
1514	CH ₃ ^a	H	H	D-glucitol
1515	CH ₃ ^a	H	H	SO ₃ H
1516	CH ₃ ^a	H	н	PO ₃ H ₂
1517	CH ₃ ^a	H	Н	СНО
1518	CH ₃ ^a	Н	н	СООН
1519	CH ₃ ^a	H	H	CH₂OH
1520	CH ₃ ^a	H	H	sugar
1521	CH ₃ ^a	H	H	C-glycosyl compound
1522	CH ₃ ^a	H	ОН	OH
1523	CH ₃ ^a	H	OH	D-glucitol
1524	CH ₃ ^a	H	ОН	SO₃H
1525	CH ₃ ^a	H	OH	PO ₃ H ₂
1526	CH ₃ ^a	Н	ОН	СНО
1527	CH ₃ ^a	H	OH	СООН
1528	CH ₃ ^a	H	ОН	CH ₂ OH
1529	CH ₃ ^a	H	ОН	sugar
1530	CH ₃ ^a	H	OH	C-glycosyl compound
1531	CH ₃ ^a	Н	CH ₃	ОН
1532	CH ₃ ^a	Н	CH ₃	D-glucito1
1533	CH ₃ ^a	H	CH ₃	SO ₃ H
1534	CH ₃ ^a	H	CH ₃	PO ₃ H ₂
1535	CH ₃ ^a	H	CH ₃	СНО
1536	CH ₃ ^a	H	CH ₃	СООН
1537	CH ₃ ^a	H	CH ₃	CH ₂ OH

1538	CH ₃ ^a	н	CH ₃	sugar
1539	CH ₃ ^a	H	CH ₃	C-glycosyl compound
1540	CH ₃ ^a	H	Cl	ОН
1541	CH ₃ ^a	H	Cl	D-glucitol
1542	CH ₃ ^a	H	Cl	SO₃H
1543	CH ₃ ^a	H	Cl	PO₃H₂
1544	CH ₃ ^a	H	Cl	СНО
1545	CH ₃ ^a	Н	Cl	COOH
1546	CH ₃ ^a	H	C1	CH ₂ OH
1547	CH ₃ ^a	H	Cl	sugar
1548	CH ₃ ^a	H	Cl	C-glycosyl compound
1549	CH ₃ ^a	н	B(OH) ₂	OH
1550	CH ₃ ^a	H	B(OH) ₂	D-glucitol
1551	CH ₃ ^a	Н	B(OH) ₂	SO₃H
1552	CH ₃ ^a	Н	B(OH) ₂	PO ₃ H ₂
1553	CH ₃ ^a	H	B(OH) ₂	СНО
1554	CH ₃ ^a	H	B(OH) ₂	СООН
1555	CH ₃ ^a	Н	B(OH) ₂	CH ₂ OH
1556	CH ₃ ^a	H	B(OH) ₂	sugar
1557	CH ₃ ^a	H	B(OH) ₂	C-glycosyl compound
1558	CH ₃ ^a	H	SH	OH
1559	CH ₃ ^a	Н	SH	D-glucitol
1560	CH ₃ ^a	H	SH	SO₃H
1561	CH ₃ ^a	Н	SH	PO ₃ H ₂
1562	CH ₃ ^a	Н	SH	СНО
1563	CH ₃ ^a	Н	SH	COOH
1564	CH ₃ ^a	H	SH	CH ₂ OH
1565	CH ₃ ^a	H	SH	sugar
1566	CH ₃ ^a	H	SH	C-glycosyl compound
1567	CH ₃ ^a	н	OCH ₃	OH
1568	CH ₃ ^a	Н	OCH ₃	D-glucitol
1569	CH ₃ ^a	H	OCH ₃	SO ₃ H
1570	CH ₃ ^a	Н	OCH ₃	PO ₃ H ₂

341

1571	CH ₃ ^a	н	OCH ₃	СНО
1572	CH ₃ ^a	H	OCH ₃	СООН
1573	CH ₃ ^a	Н	OCH ₃	CH ₂ OH
1574	CH ₃ ^a	Н	OCH ₃	sugar
1575	CH ₃ ^a	Н	OCH ₃	C-glycosyl compound
1576	CH ₃ ^a	F	H	OH
1577	CH ₃ ^a	F	H	D-glucitol
1578	CH ₃ ^a	F	H	SO₃H
1579	CH ₃ ^a	F	Н	PO ₃ H ₂
1580	CH ₃ ^a	F	H	СНО
1581	CH ₃ ^a	F	H	СООН
1582	CH ₃ ^a	F	H	CH ₂ OH
1583	CH ₃ ^a	F	H	sugar
1584	CH ₃ ^a	F	Н	C-glycosyl compound
1585	CH ₃ ^a	F	OH	OH
1586	CH ₃ ^a	F	ОН	D-glucitol
1587	CH ₃ ^a	F	ОН	SO₃H
1588	CH ₃ ^a	F	OH	PO ₃ H ₂
1589	CH ₃ ^a	F	OH	СНО
1590	CH ₃ ^a	F	OH	СООН
1591	CH₃ ^a	F	OH	CH ₂ OH
1592	CH ₃ ^a	F	OH	sugar
1593	CH ₃ ^a	F	ОН	C-glycosyl compound
1594	CH ₃ ^a	F	CH ₃	OH
1595	CH ₃ ^a	F	CH ₃	D-glucitol
1596	CH ₃ ^a	F	CH ₃	SO ₃ H
1597	CH ₃ ^a	F	CH ₃	PO ₃ H ₂
1598	CH ₃ ^a	F	CH ₃	СНО
1599	CH ₃ ^a	F	CH ₃	СООН
1600	CH ₃ ^a	F	CH ₃	CH ₂ OH
1601	CH ₃ ^a	F	CH ₃	sugar
1602	CH ₃ ^a	F	CH ₃	C-glycosyl compound
1603	CH ₃ ^a	F	Cl	ОН

1604	CH ₃ ^a	F	Cl	D-glucitol
1605	CH ₃ ^a	F	Cl	SO ₃ H
1606	CH ₃ ^a	F	C1	PO ₃ H ₂
1607	CH ₃ ^a	F	Cl	СНО
1608	CH ₃ ^a	F	C1	СООН
1609	CH ₃ ^a	F	C1	CH ₂ OH
1610	CH ₃ ^a	F	Cl	sugar
1611	CH ₃ ^a	F	Cl	C-glycosyl compound
1612	CH ₃ ^a	F	B(OH) ₂	OH
1613	CH ₃ ^a	F	B(OH) ₂	D-glucitol
1614	CH ₃ ^a	F	B(OH) ₂	SO₃H
1615	CH ₃ ^a	F	B(OH) ₂	PO_3H_2
1616	CH ₃ ^a	F	B(OH) ₂	СНО
1617	CH ₃ ^a	F	B(OH) ₂	СООН
1618	CH ₃ ^a	F	B(OH) ₂	CH ₂ OH
1619	CH ₃ ^a	F	B(OH) ₂	sugar
1620	CH ₃ ^a	F	B(OH) ₂	C-glycosyl compound
1621	CH ₃ ^a	F	SH	OH
1622	CH ₃ ^a	F	SH	D-glucitol
1623	CH ₃ ^a	F	SH	SO₃H
1624	CH ₃ ^a	F	SH	PO ₃ H ₂
1625	CH ₃ ^a	F	SH	СНО
1626	CH ₃ ^a	F	SH	СООН
1627	CH ₃ ^a	F	SH	CH ₂ OH
1628	CH ₃ ^a	F	SH	sugar
1629	CH ₃ ^a	F	SH	C-glycosyl compound
1630	CH ₃ ^a	F	OCH ₃	ОН
1631	CH ₃ ^a	F	OCH ₃	D-glucitol
1632	CH ₃ ^a	F	OCH ₃	SO₃H
1633	CH ₃ ^a	F	OCH ₃	PO ₃ H ₂
1634	CH ₃ ^a	F	OCH ₃	СНО
1635	CH ₃ ^a	F	OCH ₃	СООН
1636	CH ₃ ^a	F	OCH ₃	CH ₂ OH

1637	CH ₃ ^a	F	OCH ₃	sugar
1638	CH ₃ ^a	F	OCH ₃	C-glycosyl compound
1639	CH ₃ ^a	Cl	H	OH
1640	CH ₃ ^a	Cl	H	D-glucitol
1641	CH ₃ ^a	Cl	Н	SO ₃ H
1642	CH ₃ ^a	Cl	Н	PO ₃ H ₂
1643	CH ₃ ^a	C1	H	СНО
1644	CH ₃ ^a	C1	Н	СООН
1645	CH ₃ ^a	Cl	Н	CH ₂ OH
1646	CH ₃ ^a	Cl	H	sugar
1647	CH ₃ ^a	Cl	Н	C-glycosyl compound
1648	CH ₃ ^a	Cl	OH	OH
1649	CH ₃ ^a	C1	OH	D-glucitol
1650	CH ₃ ^a	C1	OH	SO ₃ H
1651	CH ₃ ^a	C1	OH	PO ₃ H ₂
1652	CH ₃ ^a	C1	ОН	СНО
1653	CH ₃ ^a	C1	ОН	СООН
1654	CH ₃ ^a	C1	OH	CH ₂ OH
1655	CH ₃ ^a	C1	OH	sugar
1656	CH ₃ ^a	C1	ОН	C-glycosyl compound
1657	CH ₃ ^a	Cl	CH ₃	OH
1658	CH ₃ ^a	Cl	CH ₃	D-glucitol
1659	CH ₃ ^a	C1	CH ₃	SO₃H
1660	CH ₃ ^a	Cl	CH ₃	PO ₃ H ₂
1661	CH ₃ ^a	Cl	CH ₃	СНО
1662	CH ₃ ^a	Cl	CH ₃	СООН
1663	CH ₃ ^a	Cl	CH ₃	CH ₂ OH
1664	CH ₃ ^a	Cl	CH ₃	sugar
1665	CH ₃ ^a	Cl	CH ₃	C-glycosyl compound
1666	CH ₃ ^a	Cl	Cl	ОН
1667	CH ₃ ^a	Cl	Cl	D-glucitol
1668	CH ₃ ^a	Cl	C1	SO₃H
1669	CH ₃ ^a	Cl	Cl	PO ₃ H ₂

1670	CH ₃ ^a	Cl	CI	СНО
1671	CH ₃ ^a	Cl	CI	СООН
1672	CH ₃ ^a	CI	CI	CH ₂ OH
1673	CH ₃ ^a	CI	CI	sugar
1674	CH ₃ ^a	Cl	Cl	C-glycosyl compound
1675	CH ₃ ^a	CI	B(OH) ₂	ОН
1676	CH ₃ ^a	Cl	B(OH) ₂	D-glucito1
1677	CH ₃ ^a	Cl	B(OH) ₂	SO₃H
1678	CH ₃ ^a	CI	B(OH) ₂	PO ₃ H ₂
1679	CH ₃ ^a	Cl	B(OH) ₂	СНО
1680	CH ₃ ^a	CI	B(OH) ₂	СООН
1681	CH ₃ ^a	CI	B(OH) ₂	CH₂OH
1682	CH ₃ ^a	Cl	B(OH) ₂	sugar
1683	CH ₃ ^a	Cl	B(OH) ₂	C-glycosyl compound
1684	CH ₃ ^a	Cl	SH	OH
1685	CH ₃ ^a	C1	SH	D-glucito1
1686	CH ₃ ^a	Cl	SH	SO ₃ H
1687	CH ₃ ^a	CI	SH	PO ₃ H ₂
1688	CH ₃ ^a	CI	SH	СНО
1689	CH ₃ ^a	Cl	SH	СООН
1690	CH ₃ ^a	C1	SH	CH ₂ OH
1691	CH ₃ ^a	CI	SH	sugar
1692	CH ₃ ^a	CI	SH	C-glycosyl compound
1693	CH ₃ ^a	CI	OCH ₃	OH
1694	CH ₃ ^a	CI	OCH ₃	D-glucitol
1695	CH ₃ ^a	CI	OCH ₃	SO₃H
1696	CH ₃ ^a	Cl	OCH ₃	PO ₃ H ₂
1697	CH ₃ ^a	C1	OCH ₃	СНО
1698	CH ₃ ^a	C1	OCH ₃	СООН
1699	CH ₃ ^a	CI	OCH ₃	CH ₂ OH
1700	CH ₃ ^a	CI	OCH ₃	sugar
1701	CH ₃ ^a	CI	OCH ₃	C-glycosyl compound
1702	CH ₃ ^a	CN	H	ОН

1703	CH ₃ ^a	CN	н	D-glucitol
1704	CH ₃ ^a	CN	H	SO ₃ H
1705	CH ₃ ^a	CN	H	PO ₃ H ₂
1706	CH ₃ ^a	CN	H	СНО
1707	CH ₃ ^a	CN	H	СООН
1708	CH ₃ ^a	CN	H	CH₂OH
1709	CH ₃ ^a	CN	Н	sugar
1710	CH ₃ ^a	CN	Н	C-glycosyl compound
1711	CH ₃ ^a	CN	OH	ОН
1712	CH ₃ ^a	CN	ОН	D-glucitol
1713	CH ₃ ^a	CN	OH	SO₃H
1714	CH ₃ ^a	CN	OH	PO ₃ H ₂
1715	CH ₃ ^a	CN	OH	СНО
1716	CH ₃ ^a	CN	OH	СООН
1717	CH ₃ ^a	CN	OH	CH ₂ OH
1718	CH ₃ ^a	CN	OH	sugar
1719	CH ₃ ^a	CN	OH	C-glycosyl compound
1720	CH ₃ ^a	CN	CH ₃	OH
1721	CH ₃ ^a	CN	CH ₃	D-glucitol
1722	CH ₃ ^a	CN	CH ₃	SO ₃ H
1723	CH ₃ ^a	CN	CH ₃	PO ₃ H ₂
1724	CH ₃ ^a	CN	CH ₃	СНО
1725	CH ₃ ^a	CN	CH ₃	СООН
1726	CH ₃ ^a	CN	CH ₃	CH ₂ OH
1727	CH ₃ ^a	CN	CH ₃	sugar
1728	CH ₃ ^a	CN	CH ₃	C-glycosyl compound
1729	CH ₃ ^a	CN	Cl	ОН
1730	CH ₃ ^a	CN	Cl	D-glucitol
1731	CH ₃ ^a	CN	C1	SO₃H
1732	CH ₃ ^a	CN	C1	PO ₃ H ₂
1733	CH ₃ ^a	CN	C1	СНО
1734	CH ₃ ^a	CN	Cl	СООН
1735	CH ₃ ^a	CN	Cl	CH₂OH

1736	CH ₃ ^a	CN	C1	sugar
1737	CH ₃ ^a	CN	Cl	C-glycosyl compound
1738	CH ₃ ^a	CN	B(OH) ₂	OH
1739	CH ₃ ^a	CN	B(OH) ₂	D-glucitol
1740	CH ₃ ^a	CN	B(OH) ₂	SO ₃ H
1741	CH ₃ ^a	CN	B(OH) ₂	PO ₃ H ₂
1742	CH ₃ ^a	CN	B(OH) ₂	СНО
1743	CH ₃ ^a	CN	B(OH) ₂	СООН
1744	CH ₃ ^a	CN	B(OH) ₂	CH ₂ OH
1745	CH ₃ ^a	CN	B(OH) ₂	sugar
1746	CH ₃ ^a	CN	B(OH) ₂	C-glycosyl compound
1747	CH ₃ ^a	CN	SH	OH
1748	CH ₃ ^a	CN	SH	D-glucitol
1749	CH ₃ ^a	CN	SH	SO ₃ H
1750	CH ₃ ^a	CN	SH	PO ₃ H ₂
1751	CH ₃ ^a	CN	SH	СНО
1752	CH ₃ ^a	CN	SH	СООН
1753	CH ₃ ^a	CN	SH	CH ₂ OH
1754	CH ₃ ^a	CN	SH	sugar
1755	CH ₃ ^a	CN	SH	C-glycosyl compound
1756	CH ₃ ^a	CN	OCH ₃	OH
1757	CH ₃ ^a	CN	OCH ₃	D-glucitol
1758	CH ₃ ^a	CN	OCH ₃	SO₃H
1759	CH ₃ ^a	CN	OCH ₃	PO_3H_2
1760	CH ₃ ^a	CN	OCH ₃	СНО
1761	CH ₃ ^a	CN	OCH ₃	СООН
1762	CH ₃ ^a	CN	OCH ₃	CH ₂ OH
1763	CH ₃ ^a	CN	OCH ₃	sugar
1764	CH ₃ ^a	CN	OCH ₃	C-glycosyl compound
1765	CH ₃ ^a	CH ₃ ^a	Н	ОН
1766	CH ₃ ^a	CH ₃ ^a	Н	D-glucitol
1767	CH ₃ ^a	CH ₃ ^a	Н	SO ₃ H
1768	CH ₃ ^a	CH ₃ ^a	Н	PO ₃ H ₂

1769	CH ₃ ^a	CH ₃ ^a	н	СНО
1770	CH ₃ ^a	CH ₃ ^a	H	COOH
1771	CH ₃ ^a	CH ₃ ^a	H	CH ₂ OH
1772	CH ₃ ^a	CH ₃ ^a	H	sugar
1773	CH ₃ ^a	CH ₃ ^a	H	C-glycosyl compound
1774	CH ₃ ^a	CH ₃ ^a	ОН	OH
1775	CH ₃ ^a	CH ₃ ^a	ОН	D-glucitol
1776	CH ₃ ^a	CH ₃ ^a	OH	SO ₃ H
1777	CH ₃ ^a	CH ₃ ^a	ОН	PO ₃ H ₂
1778	CH ₃ ^a	CH ₃ ^a	ОН	СНО
1779	CH ₃ ^a	CH ₃ ^a	OH	СООН
1780	CH ₃ ^a	CH ₃ ^a	ОН	CH ₂ OH
1781	CH ₃ ^a	CH ₃ ^a	OH	sugar
1782	CH ₃ ^a	CH ₃ ^a	OH	C-glycosyl compound
1783	CH ₃ ^a	CH ₃ ^a	CH ₃	ОН
1784	CH ₃ ^a	CH ₃ ^a	CH ₃	D-glucitol
1785	CH ₃ ^a	CH ₃ ^a	CH ₃	SO₃H
1786	CH ₃ ^a	CH ₃ ^a	CH ₃	PO ₃ H ₂
1787	CH ₃ ^a	CH ₃ ^a	CH ₃	СНО
1788	CH ₃ ^a	CH ₃ ^a	CH ₃	СООН
1789	CH ₃ ^a	CH ₃ ^a	CH ₃	CH ₂ OH
1790	CH ₃ ^a	CH ₃ ^a	CH ₃	sugar
1791	CH ₃ ^a	CH ₃ ^a	CH ₃	C-glycosyl compound
1792	CH ₃ ^a	CH ₃ ^a	CI	OH
1793	CH ₃ ^a	CH ₃ ^a	C1	D-glucitol
1794	CH ₃ ^a	CH ₃ ^a	Cl	SO₃H
1795	CH ₃ ^a	CH ₃ ^a	CI	PO ₃ H ₂
1796	CH ₃ ^a	CH ₃ ^a	C1	СНО
1797	CH ₃ ^a	CH ₃ ^a	Cl	СООН
1798	CH ₃ ^a	CH ₃ ^a	C1	CH₂OH
1799	CH ₃ ^a	CH ₃ ^a	Cl	sugar
1800	CH ₃ ^a	CH ₃ ^a	Cl	C-glycosyl compound
1801	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	ОН

1802	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	D-glucitol
1803	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	SO ₃ H
1804	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	PO ₃ H ₂
1805	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	СНО
1806	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	СООН
1807	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	CH ₂ OH
1808	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	sugar
1809	CH ₃ ^a	CH ₃ ^a	B(OH) ₂	C-glycosyl compound
1810	CH ₃ ^a	CH ₃ ^a	SH	OH
1811	CH ₃ ^a	CH ₃ ^a	SH	D-glucitol
1812	CH ₃ ^a	CH ₃ ^a	SH	SO ₃ H
1813	CH ₃ ^a	CH ₃ ^a	SH	PO ₃ H ₂
1814	CH ₃ ^a	CH ₃ ^a	SH	СНО
1815	CH ₃ ^a	CH ₃ ^a	SH	СООН
1816	CH ₃ ^a	CH ₃ ^a	SH	CH ₂ OH
1817	CH ₃ ^a	CH ₃ ^a	SH	sugar
1818	CH ₃ ^a	CH ₃ ^a	SH	C-glycosyl compound
1819	CH ₃ ^a	CH ₃ ^a	OCH ₃	OH
1820	CH ₃ ^a	CH ₃ ^a	OCH ₃	D-glucitol
1821	CH ₃ ^a	CH ₃ ^a	OCH ₃	SO ₃ H
1822	CH ₃ ^a	CH ₃ ^a	OCH ₃	PO ₃ H ₂
1823	CH ₃ ^a	CH ₃ ^a	OCH ₃	СНО
1824	CH ₃ ^a	CH ₃ ^a	OCH ₃	СООН
1825	CH ₃ ^a	CH ₃ ^a	OCH ₃	CH ₂ OH
1826	CH ₃ ^a	CH ₃ ^a	OCH ₃	sugar
1827	CH ₃ ^a	CH ₃ ^a	OCH ₃	C-glycosyl compound
1828	CH ₃ ^a	OCH ₃ ^b	H	OH
1829	CH ₃ ^a	OCH ₃ ^b	Н	D-glucitol
1830	CH ₃ ^a	OCH ₃ ^b	Н	SO ₃ H
1831	CH ₃ ^a	OCH ₃ ^b	H	PO ₃ H ₂
1832	CH ₃ ^a	OCH ₃ ^b	H	СНО
1833	CH ₃ ^a	OCH ₃ ^b	Н	СООН
1834	CH ₃ ^a	OCH ₃ ^b	Н	CH₂OH
				240

18		CH ₃ ^a	OCH₃ ^b	H	sugar
1	36	CH ₃ ^a	OCH ₃ ^b	H	C-glycosyl compound
18	37	CH ₃ ^a	OCH ₃ ^b	ОН	OH
18	38	CH ₃ ^a	OCH ₃ ^b	ОН	D-glucito1
18	39	CH ₃ ^a	OCH ₃ ^b	ОН	SO ₃ H
18	40	CH ₃ ^a	OCH ₃ ^b	ОН	PO ₃ H ₂
18	41	CH ₃ ^a	OCH ₃ ^b	ОН	СНО
18	42	CH ₃ ^a	OCH ₃ ^b	OH	СООН
184	43	CH ₃ ^a	OCH ₃ ^b	OH	CH ₂ OH
184	14	CH ₃ ^a	OCH₃ ^b	ОН	sugar
184	15	CH ₃ ^a	OCH ₃ ^b	OH	C-glycosyl compound
184	16	CH ₃ ^a	OCH ₃ ^b	CH ₃	ОН
184		CH ₃ ^a	OCH ₃ ^b	CH ₃	D-glucitol
184	18	CH ₃ ^a	OCH ₃ ^b	CH ₃	SO ₃ H
184	19	CH ₃ ^a	OCH ₃ ^b	CH ₃	PO ₃ H ₂
185	0	CH ₃ ^a	OCH ₃ ^b	CH ₃	СНО
185		CH ₃ ^a	OCH ₃ ^b	CH ₃	СООН
185	/	CH₃ª	OCH ₃ ^b	CH ₃	CH ₂ OH
185	- 1	CH ₃ ^a	OCH ₃ ^b	CH ₃	sugar
185		CH ₃ ^a	OCH ₃ ^b	CH ₃	C-glycosyl compound
185	5	CH ₃ ^a	OCH ₃ ^b	C1	OH
185		CH ₃ ^a	OCH ₃ ^b	C1	D-glucitol
185		CH ₃ ^a	OCH ₃ ^b	C1	SO₃H
185		CH ₃ ^a	OCH ₃ ^b	Cl	PO ₃ H ₂
185		CH₃ª	OCH ₃ ^b	Cl	СНО
186	0	CH ₃ ^a	OCH ₃ ^b	CI	СООН
186	1	CH ₃ ^a	OCH ₃ ^b	Cl	CH ₂ OH
1862		CH ₃ ^a	OCH ₃ ^b	C1	sugar
1863		CH ₃ ^a	OCH ₃ ^b	Cl	C-glycosyl compound
1864		CH ₃ ^a	OCH ₃ ^b	B(OH) ₂	OH
1865		CH ₃ ª	OCH ₃ ^b	B(OH) ₂	D-glucito1
1866		CH ₃ ^a	OCH ₃ ^b	B(OH) ₂	SO ₃ H
1867	7 0	CH ₃ ^a	OCH ₃ ^b	B(OH) ₂	PO ₃ H ₂

1868	CH ₃ ^a	OCH ₃ ^b	B(OH) ₂	СНО
1869	CH ₃ ^a	OCH ₃ ^b	B(OH) ₂	СООН
1870	CH ₃ ^a	OCH ₃ ^b	B(OH) ₂	CH ₂ OH
1871	CH ₃ ^a	OCH ₃ ^b	B(OH) ₂	sugar
1872	CH ₃ ^a	OCH ₃ ^b	B(OH) ₂	C-glycosyl compound
1873	CH ₃ ^a	OCH ₃ ^b	SH	ОН
1874	CH ₃ ^a	OCH ₃ ^b	SH	D-glucitol
1875	CH ₃ ^a	OCH ₃ ^b	SH	SO₃H
1876	CH ₃ ^a	OCH ₃ ^b	SH	PO ₃ H ₂
1877	CH ₃ ^a	OCH₃ ^b	SH	СНО
1878	CH ₃ ^a	OCH ₃ ^b	SH	СООН
1879	CH ₃ ^a	OCH ₃ ^b	SH	CH ₂ OH
1880	CH ₃ ^a	OCH ₃ ^b	SH	sugar
1881	CH ₃ ^a	OCH₃ ^b	SH	C-glycosyl compound
1882	CH ₃ ^a	OCH ₃ ^b	OCH ₃	OH
1883	CH ₃ ^a	OCH₃b	OCH ₃	D-glucitol
1884	CH ₃ ^a	OCH₃ ^b	OCH ₃	SO₃H
1885	CH ₃ ^a	OCH ₃ ^b	OCH ₃	PO_3H_2
1886	CH ₃ ^a	OCH₃ ^b	OCH ₃	СНО
1887	CH ₃ ^a	OCH ₃ ^b	OCH₃	СООН
1888	CH ₃ ^a	OCH ₃ ^b	OCH ₃	CH₂OH
1889	CH ₃ ^a	OCH₃ ^b	OCH ₃	sugar
1890	CH ₃ ^a	OCH ₃ ^b	OCH ₃	C-glycosyl compound
1891	OCH ₃ ^b	Н	H	OH
1892	OCH₃ ^b	H	H	D-glucitol
1893	OCH ₃ ^b	Н	H	SO₃H
1894	OCH₃ ^b	Н	H	PO ₃ H ₂
1895	OCH ₃ ^b	Н	H	СНО
1896	OCH ₃ ^b	Н	H	СООН
1897	OCH₃ ^b	Н	H	CH₂OH
1898	OCH ₃ ^b	H	H	sugar
1899	OCH ₃ ^b	H	H	C-glycosyl compound
1900	OCH ₃ ^b	Н	ОН	OH

1901	OCH ₃ ^b	н	ОН	D-glucitol
1902	OCH ₃ ^b	H	OH	SO₃H
1903	OCH ₃ ^b	H	OH	PO ₃ H ₂
1904	OCH ₃ ^b	H	OH	CHO
1905	OCH ₃ ^b	Н	OH	COOH
1906	OCH ₃ ^b	H	OH	CH ₂ OH
1907	OCH ₃ ^b	Н	OH	sugar
1908	OCH ₃ ^b	H	OH	C-glycosyl compound
1909	OCH ₃ ^b	H	CH ₃	OH
1910	OCH ₃ ^b	H	CH ₃	D-glucitol
1911	OCH ₃ ^b	H	CH ₃	SO₃H
1912	OCH ₃ ^b	Н	CH ₃	PO₃H₂
1913	OCH ₃ ^b	H	CH ₃	СНО
1914	OCH ₃ ^b	H	CH ₃	СООН
1915	OCH ₃ ^b	H	CH ₃	CH ₂ OH
1916	OCH ₃ ^b	н	CH ₃	sugar
1917	OCH ₃ ^b	H	CH ₃	C-glycosyl compound
1918	OCH ₃ ^b	H	C1	OH
1919	OCH ₃ ^b	H	Cl	D-glucitol
1920	OCH ₃ ^b	H	C1	SO₃H
1921	OCH ₃ ^b	н	Cl	PO ₃ H ₂
1922	OCH ₃ ^b	H	C1	СНО
1923	OCH ₃ ^b	H	Cl	СООН
1924	OCH ₃ ^b	H	C1	CH ₂ OH
1925	OCH ₃ ^b	Н	Cl	sugar
1926	OCH ₃ ^b	н	C1	C-glycosyl compound
1927	OCH ₃ ^b	H	B(OH) ₂	OH
1928	OCH ₃ ^b	H	B(OH) ₂	D-glucitol
1929	OCH ₃ ^b	H	B(OH) ₂	SO₃H
1930	OCH₃ ^b	Н	B(OH) ₂	PO_3H_2
1931	OCH ₃ ^b	H	B(OH) ₂	СНО
1932	OCH ₃ ^b	H	B(OH) ₂	СООН
1933	OCH ₃ ^b	H	B(OH) ₂	CH ₂ OH
1934	OCH ₃ ^b	Н	B(OH) ₂	sugar

1935	OCH ₃ ^b	н	B(OH) ₂	C-glycosyl compound
1936	OCH ₃ ^b	Н	SH	OH
1937	OCH ₃ ^b	Н	SH	D-glucitol
1938	OCH ₃ ^b	Н	SH	SO₃H
1939	OCH ₃ ^b	Н	SH	PO ₃ H ₂
1940	OCH ₃ ^b	H	SH	СНО
1941	OCH ₃ ^b	Н	SH	СООН
1942	OCH ₃ ^b	Н	SH	СН₂ОН
1943	OCH ₃ ^b	H	SH	sugar
1944	OCH ₃ ^b	H	SH	C-glycosyl compound
1945	OCH ₃ ^b	Н	OCH ₃	OH
1946	OCH ₃ ^b	H	OCH ₃	D-glucitol
1947	OCH ₃ ^b	H	OCH ₃	SO₃H
1948	OCH ₃ ^b	H	OCH ₃	PO ₃ H ₂
1949	OCH ₃ ^b	H	OCH ₃	СНО
1950	OCH ₃ ^b	H	OCH ₃	СООН
1951	OCH ₃ ^b	H	OCH ₃	CH ₂ OH
1952	OCH ₃ ^b	H	OCH ₃	sugar
1953	OCH ₃ ^b	H	OCH ₃	C-glycosyl compound
1954	OCH ₃ ^b	F	H	ОН
1955	OCH ₃ ^b	F	H	D-glucitol
1956	OCH ₃ ^b	F	Н	SO₃H
1957	OCH ₃ ^b	F	Н	PO ₃ H ₂
1958	OCH ₃ ^b	F	Н	СНО
1959	OCH ₃ ^b	F	H	COOH
1960	OCH₃ ^b	F	Н	CH ₂ OH
1961	OCH ₃ ^b	F	H	sugar
1962	OCH ₃ ^b	F	Н	C-glycosyl compound
1963	OCH ₃ ^b	F	OH	ОН
1964	OCH ₃ ^b	F	OH	D-glucitol
1965	OCH ₃ ^b	F	OH	SO ₃ H
1966	OCH ₃ ^b	F	ОН	PO ₃ H ₂
1967	OCH ₃ ^b	F	OH	СНО
1968	OCH ₃ ^b	F	OH	СООН

Auy LOCKOL 110. 2222.00. - .. -

1969	OCH₃ ^b	F	ŀ	OF:	1	CH	₂ OH
1970	OCH ₃ ^b	F		OF		sug	
1971	OCH ₃ ^b	F		OH		C-;	glycosyl compound
1972	OCH ₃ ^b	F		CF	-3 [OI	
	OCH ₃ ^b	F		CI	I_3	D-	glucitol
1974	OCH ₃ ^b	F		CI	\mathbb{I}_3	SC)3H
1975	OCH ₃ ^b	F		CI	I_3	PC) ₃ H ₂
1976	OCH ₃ ^b	F		C	H ₃	l	Ю
1977	OCH ₃ ^b	F		C.	H ₃	1_	OOH
1978	OCH ₃ ^b	F		C.	H ₃	C	H ₂ OH
	OCH ₃ ^b	F		C	H ₃		gar
1980	OCH3 ^b	F		C	H ₃	C	glycosyl compound
1981	OCH ₃ ^b	F		C	1	0	H
1982	OCH ₃ ^b	F		C	1	D	-glucitol
1983	OCH ₃ ^b	F		C	1	S	O ₃ H
1984	OCH ₃ ^b	F		C	CI .	P	O ₃ H ₂
1985	OCH ₃ ^b	F		1	Cl	C	HO
1986	OCH ₃ ^b	F	,	(21	(COOH
1987	OCH ₃ ^b	F	7	1	21	(CH ₂ OH
1988	OCH ₃ ^b	F	7	1	Cl	s	ugar
1989	OCH ₃ ^b	I	7	1	Cl	1	C-glycosyl compound
1990	OCH ₃ ^b	I	?	1	B(OH) ₂	1	OH
1991	OCH ₃ ^b	1	F		B(OH) ₂	1	D-glucitol
1992	OCH ₃ b	1	F	1	B(OH) ₂	7	SO ₃ H
1993	OCH ₃ b	-	F	1	B(OH) ₂	7	PO ₃ H ₂
1994	OCH ₃ ^b		F	1	B(OH) ₂	1	СНО
1995	OCH ₃ ^b		F	-	B(OH) ₂		COOH
1996	OCH ₃		F	-	B(OH) ₂	:	CH₂OH
1997	OCH ₃		F	_	B(OH) ₂	2	sugar
1998	OCH ₃	,	F	_	B(OH)	2	C-glycosyl compound
1999	OCH ₃	,	F	_	SH		OH
2000	OCH ₃	0	F		SH		D-glucitol
2001	OCH ₃	6	F		SH		SO ₃ H
2002	_		F		SH		PO₃H ₂

2003	OCH ₃ ^b	F	SH	СНО
2004	OCH ₃ ^b	F	SH	СООН
2005	OCH ₃ ^b	F	SH	CH ₂ OH
2006	OCH ₃ ^b	F	SH	sugar
2007	OCH ₃ ^b	F	SH	C-glycosyl compound
2008	OCH₃ ^b	F	OCH ₃	OH
2009	OCH ₃ ^b	F	OCH ₃	D-glucitol
2010	OCH ₃ ^b	F	OCH ₃	SO ₃ H
2011	OCH ₃ ^b	F	OCH ₃	PO ₃ H ₂
2012	OCH ₃ ^b	F	OCH ₃	СНО
2013	OCH ₃ ^b	F	OCH ₃	СООН
2014	OCH ₃ ^b	F	OCH ₃	CH ₂ OH
2015	OCH ₃ ^b	F	OCH ₃	sugar
2016	OCH ₃ ^b	F	OCH ₃	C-glycosyl compound
2017	OCH ₃ ^b	C1	H	OH
2018	OCH ₃ ^b	Cl	Н	D-glucitol
2019	OCH ₃ ^b	CI	H	SO₃H
2020	OCH ₃ ^b	C1	H	PO ₃ H ₂
2021	OCH₃ ^b	C1	H	СНО
2022	OCH ₃ ^b	C1	H	СООН
2023	OCH ₃ ^b	C1	Н	CH ₂ OH
2024	OCH₃ ^b	C1	H	sugar
2025	OCH ₃ ^b	Cl	H	C-glycosyl compound
2026	OCH ₃ ^b	CI	OH	OH
2027	OCH₃ ^b	C1	OH	D-glucitol
2028	OCH ₃ ^b	CI	OH	SO ₃ H
2029	OCH ₃ ^b	CI	ОН	PO ₃ H ₂
2030	OCH₃ ^b	CI	OH	СНО
2031	OCH₃ ^b	CI	OH	СООН
2032	OCH₃ ^b	C1	OH	CH ₂ OH
2033	OCH₃ ^b	CI	ОН	sugar
2034	OCH₃ ^b	CI	ОН	C-glycosyl compound
2035	OCH₃ ^b	C1	CH ₃	OH
2036	OCH₃ ^b	CI	CH ₃	D-glucitol

2037	OCH ₃ ^b	Cl	CH₃	SO ₃ H
2038	OCH₃ ^b	Cl	CH ₃	PO ₃ H ₂
2039	OCH ₃ ^b	Cl	CH ₃	СНО
2040	OCH ₃ ^b	CI	CH ₃	СООН
2041	OCH ₃ ^b	Cl	CH ₃	CH ₂ OH
2042	OCH ₃ ^b	Cl	CH ₃	sugar
2043	OCH ₃ ^b	Cl	CH ₃	C-glycosyl compound
2044	OCH₃ ^b	Cl	Cl	OH
2045	OCH ₃ ^b	Cl	C1	D-glucitol
2046	OCH ₃ ^b	Cl	Cl	SO₃H
2047	OCH ₃ ^b	Cl	Cl	PO ₃ H ₂
2048	OCH ₃ ^b	C1	C1	СНО
2049	OCH ₃ ^b	Cl	C1	СООН
2050	OCH ₃ ^b	Cl	C1	CH ₂ OH
2051	OCH ₃ ^b	Cl	Cl	sugar
2052	OCH ₃ ^b	CI	Cl	C-glycosyl compound
2053	OCH ₃ ^b	C1	B(OH) ₂	OH
2054	OCH ₃ ^b	Cl	B(OH) ₂	D-glucitol
2055	OCH ₃ ^b	Cl	B(OH) ₂	SO ₃ H
2056	OCH ₃ ^b	Cl	B(OH) ₂	PO₃H₂
2057	OCH ₃ ^b	C1	B(OH) ₂	СНО
2058	OCH ₃ ^b	Cl	B(OH) ₂	COOH
2059	OCH₃ ^b	Cl	B(OH) ₂	CH ₂ OH
2060	OCH ₃ ^b	Cl	B(OH) ₂	sugar
2061	OCH ₃ ^b	Cl	B(OH) ₂	C-glycosyl compound
2062	OCH₃ ^b	Cl	SH	ОН
2063	OCH ₃ ^b	C1	SH	D-glucitol
2064	OCH₃ ^b	Cl	SH	SO ₃ H
2065	OCH ₃ ^b	C1	SH	PO ₃ H ₂
2066	OCH ₃ ^b	Cl	SH	СНО
2067	OCH₃ ^b	Cl	SH	СООН
2068	OCH ₃ ^b	Cl	SH	CH ₂ OH
2069	OCH ₃ ^b	Cl	SH	sugar
2070	OCH ₃ ^b	Cl	SH	C-glycosyl compound

2072 OCH₃ b Cl OCH₃ b D-glucitol 2073 OCH₃ b Cl OCH₃ b SO₃H 2074 OCH₃ b Cl OCH₃ b PO₃H₂ 2075 OCH₃ b Cl OCH₃ b CHO 2076 OCH₃ b Cl OCH₃ b CHO 2077 OCH₃ b Cl OCH₃ b CH₂OH 2078 OCH₃ b Cl OCH₃ b Sugaar 2079 OCH₃ b Cl OCH₃ b C-glycosyl compound 2080 OCH₃ b CN H OH 2081 OCH₃ b CN H D-glucitol 2082 OCH₃ b CN H SO₃H 2084 OCH₃ b CN H CHO 2085 OCH₃ b CN H CHO 2086 OCH₃ b CN H CH₂OH 2087 OCH₃ b CN H C-glycosyl compound 2086 OCH₃ b CN </th <th>2071</th> <th>OCH₃^b</th> <th>Cl</th> <th>OCH₃</th> <th>OH</th>	2071	OCH ₃ ^b	Cl	OCH ₃	OH
2074 OCH ₃ ^b Cl OCH ₃ PO ₃ H ₂ 2075 OCH ₃ ^b Cl OCH ₃ CHO 2076 OCH ₃ ^b Cl OCH ₃ CHO 2077 OCH ₃ ^b Cl OCH ₃ CH ₂ OH 2078 OCH ₃ ^b Cl OCH ₃ CH ₂ OH 2078 OCH ₃ ^b Cl OCH ₃ Sugar 2079 OCH ₃ ^b Cl OCH ₃ Sugar 2079 OCH ₃ ^b Cl OCH ₃ Sugar 2080 OCH ₃ ^b CN H OH 2081 OCH ₃ ^b CN H D-glucitol 2082 OCH ₃ ^b CN H SO ₃ H 2083 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H CHO 2086 OCH ₃ ^b CN H CHO 2087 OCH ₃ ^b CN H CHO 2088 OCH ₃ ^b CN H CHO 2089 OCH ₃ ^b CN H CHO 2090 OCH ₃ ^b CN H C-glycosyl compound 2090 OCH ₃ ^b CN H C-glycosyl compound 2091 OCH ₃ ^b CN OH OH 2092 OCH ₃ ^b CN OH OH 2093 OCH ₃ ^b CN OH C-glycosyl compound 2094 OCH ₃ ^b CN OH C-glycosyl compound 2095 OCH ₃ ^b CN OH C-glycosyl compound 2097 OCH ₃ ^b CN OH C-glycosyl compound 2099 OCH ₃ ^b CN OH C-glycosyl compound 2090 OCH ₃ ^b CN OH C-glycosyl compound 2091 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH C-glycosyl compound 2098 OCH ₃ ^b CN OH C-glycosyl compound 2099 OCH ₃ ^b CN OH C-glycosyl compound 2090 OCH ₃ ^b CN OH CH ₂ OH 2090 OCH ₃ ^b CN OH CH ₂ OH 2090 OCH ₃ ^b CN OH C-glycosyl compound 2091 OCH ₃ ^b CN OH C-glycosyl compound 2092 OCH ₃ ^b CN OH C-glycosyl compound 2093 OCH ₃ ^b CN OH C-glycosyl compound 2094 OCH ₃ ^b CN OH C-glycosyl compound 2095 OCH ₃ ^b CN OH C-glycosyl compound 2096 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ OH 2010 OCH ₃ ^b CN CH ₃ OH 2010 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2100 OCH ₃ ^b CN CH ₃ COOH	2072	OCH ₃ ^b	Cl	OCH ₃	D-glucitol
2075 OCH ₃ ^b Cl OCH ₃ CHO 2076 OCH ₅ ^b Cl OCH ₃ COOH 2077 OCH ₃ ^b Cl OCH ₃ CH ₂ OH 2078 OCH ₃ ^b Cl OCH ₃ CH ₂ OH 2079 OCH ₃ ^b Cl OCH ₃ sugar 2079 OCH ₃ ^b Cl OCH ₃ Sugar 2080 OCH ₃ ^b CN H OH 2081 OCH ₃ ^b CN H D-glucitol 2082 OCH ₃ ^b CN H SO ₃ H 2083 OCH ₅ ^b CN H CHO 2084 OCH ₅ ^b CN H CHO 2085 OCH ₃ ^b CN H CHO 2086 OCH ₃ ^b CN H CHO 2087 OCH ₃ ^b CN H CHO 2088 OCH ₃ ^b CN H CHO 2089 OCH ₃ ^b CN H CHO 2080 OCH ₃ ^b CN H CHO 2081 OCH ₃ ^b CN H CHO 2082 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H CHO 2086 OCH ₃ ^b CN H CHO 2087 OCH ₃ ^b CN OH OH 2090 OCH ₃ ^b CN OH OH 2090 OCH ₃ ^b CN OH OH 2091 OCH ₃ ^b CN OH SO ₃ H 2092 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CHO 2099 OCH ₃ ^b CN OH CHO 2090 OCH ₃ ^b CN OH CHO 2091 OCH ₃ ^b CN OH CHO 2092 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CH ₂ OH 2098 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH C-glycosyl compound 2009 OCH ₃ ^b CN OH CH ₂ OH 2009 OCH ₃ ^b CN OH CH ₂ OH 2009 OCH ₃ ^b CN OH CH ₂ OH 2009 OCH ₃ ^b CN OH CH ₂ OH 2009 OCH ₃ ^b CN OH CH ₂ OH 2009 OCH ₃ ^b CN CH ₃ OH	2073	OCH ₃ ^b	Cl	OCH ₃	SO₃H
2076 OCH ₃ ^b Cl OCH ₃ CH ₂ OH 2077 OCH ₃ ^b Cl OCH ₃ CH ₂ OH 2078 OCH ₃ ^b Cl OCH ₃ Sugar 2079 OCH ₃ ^b Cl OCH ₃ Sugar 2080 OCH ₃ ^b CN H OH 2081 OCH ₃ ^b CN H D-glucitol 2082 OCH ₃ ^b CN H SO ₃ H 2083 OCH ₃ ^b CN H CHO 2084 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H CHO 2086 OCH ₃ ^b CN H CHO 2087 OCH ₃ ^b CN H CHO 2088 OCH ₃ ^b CN H CHO 2089 OCH ₃ ^b CN H CHO 2090 OCH ₃ ^b CN H C-glycosyl compound 2090 OCH ₃ ^b CN H CHO 2091 OCH ₃ ^b CN OH OH 2092 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CHO 2099 OCH ₃ ^b CN OH CHO 2090 OCH ₃ ^b CN OH CHO 2091 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CHO 2098 OCH ₃ ^b CN OH CHO 2099 OCH ₃ ^b CN OH CHO 2090 OCH ₃ ^b CN OH CHO 2091 OCH ₃ ^b CN OH CHO 2092 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CH ₂ OH 2094 OCH ₃ ^b CN OH CH ₂ OH 2095 OCH ₃ ^b CN OH CH ₂ OH 2096 OCH ₃ ^b CN OH CH ₂ OH 2097 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ OH 2009 OCH ₃ ^b CN CH ₃ OH 2009 OCH ₃ ^b CN CH ₃ OH 2010 OCH ₃ ^b CN CH ₃ OH 2010 OCH ₃ ^b CN CH ₃ OH 2010 OCH ₃ ^b CN CH ₃ OH 2100 OCH ₃ ^b CN CH ₃ COOH	2074	OCH ₃ ^b	C1	OCH ₃	PO ₃ H ₂
2077 OCH ₃ ^b Cl OCH ₃ CH ₂ OH 2078 OCH ₃ ^b Cl OCH ₃ sugar 2079 OCH ₃ ^b Cl OCH ₃ sugar 2080 OCH ₃ ^b CN H OH 2081 OCH ₃ ^b CN H D-glucitol 2082 OCH ₃ ^b CN H SO ₃ H 2083 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H CHO 2086 OCH ₃ ^b CN H COOH 2087 OCH ₃ ^b CN H CHO 2088 OCH ₃ ^b CN H CHO 2089 OCH ₃ ^b CN H CHO 2080 OCH ₃ ^b CN H CHO 2080 OCH ₃ ^b CN H CHO 2081 OCH ₃ ^b CN H CHO 2082 OCH ₃ ^b CN H CHO 2083 OCH ₃ ^b CN H CHO 2084 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H CH ₂ OH 2087 OCH ₃ ^b CN H Cglycosyl compound 2089 OCH ₃ ^b CN OH OH 2090 OCH ₃ ^b CN OH D-glucitol 2091 OCH ₃ ^b CN OH SO ₃ H 2092 OCH ₃ ^b CN OH SO ₃ H 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CHO 2098 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₃ OH 2099 OCH ₃ ^b CN CN OH CH ₃ OH 2010 OCH ₃ ^b CN CH ₃ OH 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2075	OCH ₃ ^b	Cl	OCH ₃	СНО
2078 OCH ₃ ^b Cl OCH ₃ sugar 2079 OCH ₅ ^b Cl OCH ₃ C-glycosyl compound 2080 OCH ₅ ^b CN H OH 2081 OCH ₃ ^b CN H SO ₂ H 2082 OCH ₃ ^b CN H SO ₂ H 2083 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H CHO 2086 OCH ₃ ^b CN H CHO 2087 OCH ₃ ^b CN H CHO 2088 OCH ₃ ^b CN H CHO 2088 OCH ₃ ^b CN H CHO 2088 OCH ₃ ^b CN H COH 2080 OCH ₃ ^b CN H CHO 2080 OCH ₃ ^b CN H CHO 2081 OCH ₃ ^b CN H CHO 2082 OCH ₃ ^b CN H CHO 2083 OCH ₃ ^b CN H CH ₂ OH 2084 OCH ₃ ^b CN H C-glycosyl compound 2089 OCH ₃ ^b CN OH OH 2090 OCH ₃ ^b CN OH D-glucitol 2091 OCH ₃ ^b CN OH SO ₃ H 2092 OCH ₃ ^b CN OH SO ₃ H 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CHO 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₃ OH 2099 OCH ₃ ^b CN OH CH ₃ OH 2099 OCH ₃ ^b CN OH CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ OH 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2110 OCH ₃ ^b CN CH ₃ SO ₃ H 2110 OCH ₃ ^b CN CH ₃ COOH	2076	OCH ₃ ^b	Cl	OCH ₃	COOH
2079 OCH₃ b CI OCH₃ b C-glycosyl compound 2080 OCH₃ b CN H OH 2081 OCH₃ b CN H D-glucitol 2082 OCH₃ b CN H SO₃H 2083 OCH₃ b CN H CHO 2084 OCH₃ b CN H CHO 2085 OCH₃ b CN H CHO 2086 OCH₃ b CN H COOH 2087 OCH₃ b CN H CH₂OH 2087 OCH₃ b CN H CH₂OH 2088 OCH₃ b CN H C-glycosyl compound 2089 OCH₃ b CN OH OH 2090 OCH₃ b CN OH D-glucitol 2091 OCH₃ b CN OH SO₃H 2092 OCH₃ b CN OH CHO 2093 OCH₃ b CN OH C	2077	OCH ₃ ^b	Cl	OCH ₃	CH ₂ OH
2079 OCH₃ b CI OCH₃ b C-glycosyl compound 2080 OCH₃ b CN H OH 2081 OCH₃ b CN H D-glucitol 2082 OCH₃ b CN H SO₃H 2083 OCH₃ b CN H CHO 2084 OCH₃ b CN H CHO 2085 OCH₃ b CN H CHO 2086 OCH₃ b CN H COOH 2087 OCH₃ b CN H CH₂OH 2087 OCH₃ b CN H CH₂OH 2088 OCH₃ b CN H C-glycosyl compound 2089 OCH₃ b CN OH OH 2090 OCH₃ b CN OH D-glucitol 2091 OCH₃ b CN OH SO₃H 2092 OCH₃ b CN OH CHO 2093 OCH₃ b CN OH C	2078	OCH ₃ ^b	Cl	OCH ₃	
2081 OCH ₃ ^b CN H D-glucitol 2082 OCH ₅ ^b CN H SO ₃ H 2083 OCH ₅ ^b CN H PO ₃ H ₂ 2084 OCH ₅ ^b CN H CHO 2085 OCH ₅ ^b CN H CHO 2085 OCH ₅ ^b CN H CHO 2086 OCH ₅ ^b CN H CH ₂ OH 2087 OCH ₅ ^b CN H CH ₂ OH 2088 OCH ₃ ^b CN H CH ₂ OH 2089 OCH ₃ ^b CN H C-glycosyl compound 2089 OCH ₅ ^b CN OH D-glucitol 2090 OCH ₅ ^b CN OH SO ₃ H 2091 OCH ₅ ^b CN OH SO ₃ H 2092 OCH ₅ ^b CN OH SO ₃ H 2093 OCH ₅ ^b CN OH CHO 2094 OCH ₅ ^b CN OH CHO 2095 OCH ₅ ^b CN OH CHO 2096 OCH ₅ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CHO 2098 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH C-glycosyl compound 2099 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₃ OH 2010 OCH ₃ ^b CN CH ₃ D-glucitol 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ SO ₃ H	2079		Cl	OCH ₃	C-glycosyl compound
2082 OCH ₃ ^b CN H PO ₃ H ₂ 2083 OCH ₃ ^b CN H PO ₃ H ₂ 2084 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H CHO 2086 OCH ₃ ^b CN H CHO 2087 OCH ₃ ^b CN H CH ₂ OH 2088 OCH ₃ ^b CN H C-glycosyl compound 2089 OCH ₃ ^b CN OH D-glucitol 2090 OCH ₃ ^b CN OH SO ₃ H 2091 OCH ₃ ^b CN OH CHO 2092 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CH ₂ OH 2098 OCH ₃ ^b CN OH CH ₂ OH 2099 OCH ₃ ^b CN OH CH ₂ OH 2090 OCH ₃ ^b CN OH CH ₂ OH 2090 OCH ₃ ^b CN OH C-glycosyl compound 2090 OCH ₃ ^b CN CH Sugar 2097 OCH ₃ ^b CN CH Sugar 2098 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ OH 2010 OCH ₃ ^b CN CH ₃ OH 2100 OCH ₃ ^b CN CH ₃ D-glucitol 2100 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2101 OCH ₃ ^b CN CH ₃ COOH	2080	OCH ₃ ^b	CN	H	
2083 OCH ₃ ^b CN H CHO 2084 OCH ₃ ^b CN H CHO 2085 OCH ₃ ^b CN H COOH 2086 OCH ₃ ^b CN H CH ₂ OH 2087 OCH ₃ ^b CN H CH ₂ OH 2088 OCH ₃ ^b CN H C-glycosyl compound 2089 OCH ₃ ^b CN OH D-glucitol 2091 OCH ₃ ^b CN OH SO ₃ H 2092 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH CHO 2097 OCH ₃ ^b CN OH CHO 2098 OCH ₃ ^b CN OH CHO 2099 OCH ₃ ^b CN OH CHO 2090 OCH ₃ ^b CN OH CHO 2090 OCH ₃ ^b CN OH CHO 2090 OCH ₃ ^b CN OH CH ₂ OH 2090 OCH ₃ ^b CN OH C-glycosyl compound 2090 OCH ₃ ^b CN CH ₃ OH 2091 OCH ₃ ^b CN CH ₃ OH 2092 OCH ₃ ^b CN CH ₃ OH 2093 OCH ₃ ^b CN CH ₃ OH 2094 OCH ₃ ^b CN CH ₃ OH 2095 OCH ₃ ^b CN CH ₃ OH 2096 OCH ₃ ^b CN CH ₃ OH 2097 OCH ₃ ^b CN CH ₃ OH 2098 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ OH 2100 OCH ₃ ^b CN CH ₃ COOH	2081	OCH ₃ ^b	CN.	H	D-glucitol
2084 OCH3 ^b CN H CHO 2085 OCH3 ^b CN H COOH 2085 OCH3 ^b CN H CH2OH 2087 OCH3 ^b CN H Sugar 2088 OCH3 ^b CN H C-glycosyl compound 2089 OCH3 ^b CN OH OH 2090 OCH3 ^b CN OH D-glucitol 2091 OCH3 ^b CN OH SO3H 2092 OCH3 ^b CN OH CHO 2093 OCH3 ^b CN OH CHO 2094 OCH3 ^b CN OH COOH 2095 OCH3 ^b CN OH Sugar 2096 OCH3 ^b CN OH Sugar 2097 OCH3 ^b CN CH3 OH C-glycosyl compound 2098 OCH3 ^b CN CH3 OH D-glucitol 2100 OC	2082	OCH ₃ ^b	CN	H	SO ₃ H
2085 OCH ₃ ^b CN H CH ₂ OH 2086 OCH ₃ ^b CN H CH ₂ OH 2087 OCH ₃ ^b CN H CH ₂ OH 2087 OCH ₃ ^b CN H Sugar 2088 OCH ₃ ^b CN H C-glycosyl compound 2089 OCH ₃ ^b CN OH OH 2090 OCH ₃ ^b CN OH SO ₃ H 2091 OCH ₃ ^b CN OH CHO 2091 OCH ₃ ^b CN OH CHO 2092 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH CHO 2096 OCH ₃ ^b CN OH Sugar 2097 OCH ₃ ^b CN OH C-glycosyl compound 2098 OCH ₃ ^b CN CH OH Sugar 2099 OCH ₃ ^b CN CH ₃ OH 2090 OCH ₃ ^b CN CH ₃ OH 2091 OCH ₃ ^b CN CH ₃ OH 2092 OCH ₃ ^b CN CH ₃ OH 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ CHO	2083	OCH ₃ ^b	CN	Н	PO ₃ H ₂
2086 OCH ₃ ^b CN H CH ₂ OH 2087 OCH ₃ ^b CN H sugar 2088 OCH ₃ ^b CN H C-glycosyl compound 2089 OCH ₃ ^b CN OH OH 2090 OCH ₃ ^b CN OH D-glucitol 2091 OCH ₃ ^b CN OH SO ₃ H 2092 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH COOH 2095 OCH ₃ ^b CN OH COOH 2096 OCH ₃ ^b CN OH sugar 2097 OCH ₃ ^b CN OH O-glucitol 2098 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ O-glucitol 2100 OCH ₃ ^b CN CH ₃ D-glucitol 2100 OCH	2084	OCH ₃ ^b	CN	H	CHO
2008 OCH ₃ ^b CN H sugar 2087 OCH ₃ ^b CN H C-glycosyl compound 2089 OCH ₃ ^b CN OH OH 2090 OCH ₃ ^b CN OH D-glucitol 2091 OCH ₃ ^b CN OH SO ₃ H 2092 OCH ₃ ^b CN OH CHO 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH COOH 2095 OCH ₃ ^b CN OH CH ₂ OH 2096 OCH ₃ ^b CN OH Sugar 2097 OCH ₃ ^b CN OH C-glycosyl compound 2098 OCH ₃ ^b CN CH ₃ OH C-glycosyl compound 2100 OCH ₃ ^b CN CH ₃ OH D-glucitol 2100 OCH ₃ ^b CN CH ₃ DO ₃ H ₂ 2101 OCH ₃ ^b CN CH ₃ <t< td=""><td>2085</td><td>OCH₃^b</td><td>CN</td><td>H</td><td>СООН</td></t<>	2085	OCH ₃ ^b	CN	H	СООН
2088 OCH₃ b CN H C-glycosyl compound 2089 OCH₃ b CN OH OH 2090 OCH₃ b CN OH D-glucitol 2091 OCH₃ b CN OH SO₃H 2092 OCH₃ b CN OH PO₃H₂ 2093 OCH₃ b CN OH CHO 2094 OCH₃ b CN OH COOH 2095 OCH₃ b CN OH COOH 2096 OCH₃ b CN OH sugar 2097 OCH₃ b CN OH O-glycosyl compound 2098 OCH₃ b CN CH₃ OH D-glucitol 2099 OCH₃ b CN CH₃ OH D-glucitol 2100 OCH₃ b CN CH₃ SO₃H 2101 OCH₃ b CN CH₃ PO₃H₂ 2102 OCH₃ b CN CH₃ CHO 2103 OCH₃	2086	OCH ₃ ^b	CN	H	CH ₂ OH
2089 OCH ₃ ^b CN OH OH 2090 OCH ₃ ^b CN OH D-glucitol 2091 OCH ₃ ^b CN OH SO ₃ H 2092 OCH ₃ ^b CN OH PO ₃ H ₂ 2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH CHO 2095 OCH ₃ ^b CN OH COOH 2096 OCH ₃ ^b CN OH CH ₂ OH 2097 OCH ₃ ^b CN OH Sugar 2097 OCH ₃ ^b CN OH C-glycosyl compound 2098 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ OH 2090 OCH ₃ ^b CN CH ₃ OH 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ CHO	2087	OCH ₃ ^b	CN	H	sugar
2090 OCH ₃ ^b CN OH D-glucitol	2088	OCH ₃ ^b	CN	H	C-glycosyl compound
2091 OCH ₃ ^b CN OH SO ₃ H	2089	OCH ₃ ^b	CN	OH	OH
2092 OCH ₃ ^b CN OH PO ₃ H ₂	2090	OCH ₃ ^b	CN	ОН	D-glucitol
2093 OCH ₃ ^b CN OH CHO 2094 OCH ₃ ^b CN OH COOH 2095 OCH ₃ ^b CN OH CH ₂ OH 2096 OCH ₃ ^b CN OH sugar 2097 OCH ₃ ^b CN OH C-glycosyl compound 2098 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ D-glucitol 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2091	OCH ₃ b	CN	OH	SO ₃ H
2094 OCH ₃ ^b CN OH COOH	2092	OCH ₃ ^b	CN	OH	PO ₃ H ₂
2095 OCH ₃ ^b CN OH CH ₂ OH 2096 OCH ₃ ^b CN OH sugar 2097 OCH ₃ ^b CN OH C-glycosyl compound 2098 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ D-glucitol 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2093	OCH ₃ ^b	CN	OH	CHO
2096 OCH ₃ ^b CN OH sugar 2097 OCH ₃ ^b CN OH C-glycosyl compound 2098 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ D-glucitol 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2094	OCH ₃ ^b	CN	OH	COOH
2097 OCH3 b CN OH C-glycosyl compound 2098 OCH3 b CN CH3 OH 2099 OCH3 b CN CH3 D-glucitol 2100 OCH3 b CN CH3 SO3H 2101 OCH3 b CN CH3 PO3H2 2102 OCH3 b CN CH3 CHO 2103 OCH3 b CN CH3 COOH	2095	OCH ₃ ^b	CN	OH	CH₂OH
2098 OCH ₃ ^b CN CH ₃ OH 2099 OCH ₃ ^b CN CH ₃ D-glucitol 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2096	OCH ₃ ^b	CN	OH	
2099 OCH ₃ ^b CN CH ₃ D-glucitol 2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2097	OCH ₃ ^b	CN	OH	C-glycosyl compound
2100 OCH ₃ ^b CN CH ₃ SO ₃ H 2101 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2098	OCH ₃ ^b	CN	CH ₃	ОН
2101 OCH ₃ ^b CN CH ₃ PO ₃ H ₂ 2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2099		CN	CH ₃	D-glucitol
2102 OCH ₃ ^b CN CH ₃ CHO 2103 OCH ₃ ^b CN CH ₃ COOH	2100	OCH ₃ ^b	CN	CH ₃	SO₃H
2102 OCH ₃ CN CH ₃ COOH	2101	OCH ₃ ^b	CN	CH ₃	PO_3H_2
2103 OCH3 CH S23	2102	OCH ₃ ^b	CN	CH ₃	СНО
2104 OCH ₃ ^b CN CH ₃ CH ₂ OH	2103	OCH ₃ ^b	CN	CH ₃	
	2104	OCH ₃ ^b	CN	CH ₃	CH ₂ OH

2105	lo	CH ₃	b C	N	1	CH	3	1	su	gar	
2106		CH:		N		CH	[3		С	-gly	cosyl compound
2107		CH		N		C1			OH		
2107		OCH		CN		CI			١.		citol
2109	_	OCH		ĆŃ		CI	_		S	O ₃ H	
2110	- 1	OCH		ĆŃ		C	Ī		Ī	O ₃ F	I_2
		OCF		CN		tc	1		1	CHC	
2111		OCI		CN		C	1		- 1	COC	
2112		OCI	126	CN		to	1		1	CH ₂	OH
		OCI	J. b	C		10	71		7	suga	ur
211	_	OC.		C		10	7		_	C-g	lycosyl compound
211		OC		C		1	3(0)H)2	_	OH	
211	_	1 -	H ₃ ^b	C		٦,	B(0	ΟH) ₂	_	D-g	lucitol
211			H ₃ ^b	1	N	- 1		OH)2	_	so	₃ H
21					N	- 1		OH)2	_	PO	$_3\mathrm{H}_2$
21			CH ₃ b	- 1	N.	-	_	OH)	_	CF	Ю
21			CH ₃ ^b	- 12	N		_	OH)	_	co	OOH
21	21		CH ₃ b				Ľ_	(OH)	_	1 -	H ₂ OH
21	22		CH₃ ^b		CN		1_	(OH)	_	-	ıgar
2	123		CH ₃ ^b	\perp	CN		ı	`	_		-glycosyl compound
2	124		CH ₃ b		CN		_	(OH)2		H
2	125		CH ₃ b		CN	_	ᅩ	H	_	- 1 -)-glucitol
2	126		CH ₃		CN		1	H	_		O ₃ H
2	12		OCH ₃		CN		1	SH	_		PO ₃ H ₂
1	212	8	OCH ₃	5	CN			SH	_	- 1	
1	212	9	OCH ₃	Ь	CN		_	SH		1.	CHO
	213	0	OCH:	ь	CN			SH	_	- 1	COOH
-	213	1	OCH:	3	CN			SH			CH₂OH
-	213		OCH	3	CN			SH	_		sugar
-	213		OCH		CN			SH	_		C-glycosyl compound
-	21:	34	OCH	36	CN			OC	_		OH
-	21		OCI	[3 ^b	CN			OC.	_		D-glucitol
-	21	36	OCF	I_3^b	CN			OC	_		SO ₃ H
+	21	37	OCI		CN	[OC		_	PO ₃ H ₂
+		138	OCI		CI	1		OC	ī	I ₃	СНО
Ł											358

2139	OCH ₃ ^b	CN	OCH ₃	СООН
2140	OCH ₃ ^b	CN	OCH₃	CH ₂ OH
2141	OCH ₃ ^b	CN	OCH ₃	sugar
2142	OCH ₃ ^b	CN	OCH₃	C-glycosyl compound
2143	OCH ₃ ^b	CH ₃ ^a	H	OH
2144	OCH ₃ ^b	CH ₃ ^a	H	D-glucitol
2145	OCH ₃ ^b	CH₃ª	H	SO ₃ H
2146	OCH ₃ ^b	CH ₃ ^a	Н	PO ₃ H ₂
2147	OCH ₃ ^b	CH ₃ ^a	H	СНО
2148	OCH ₃ ^b	CH ₃ ^a	H	COOH
2149	OCH ₃ ^b	CH ₃ ^a	H	CH ₂ OH
2150	OCH ₃ ^b	CH ₃ ^a	H	sugar
2151	OCH ₃ ^b	CH ₃ ^a	H	C-glycosyl compound
2152	OCH ₃ ^b	CH ₃ ^a	OH	OH
2153	OCH ₃ ^b	CH ₃ ^a	ОН	D-glucitol
2154	OCH ₃ ^b	CH ₃ ^a	OH	SO ₃ H
2155	OCH ₃ ^b	CH ₃ ^a	OH	PO ₃ H ₂
2156	OCH ₃ ^b	CH ₃ ^a	OH	СНО
2157	OCH ₃ ^b	CH ₃ ^a	OH	СООН
2158	OCH ₃ ^b	CH ₃ ^a	OH	CH ₂ OH
2159	OCH ₃ ^b	CH ₃ ^a	OH	sugar
2160	OCH ₃ ^b	CH ₃ ^a	OH	C-glycosyl compound
2161	OCH ₃ ^b	CH ₃ ^a	CH ₃	ОН
2162	OCH ₃ ^b	CH ₃ ^a	CH ₃	D-glucitol
2163	OCH ₃ ^b	CH ₃ ^a	CH ₃	SO₃H
2164	OCH ₃ ^b	CH ₃ ^a	CH ₃	PO ₃ H ₂
2165	OCH ₃ ^b	CH ₃ ^a	CH ₃	СНО
2166	OCH ₃ ^b	CH ₃ ^a	CH ₃	СООН
2167	OCH ₃ ^b	CH ₃ ^a	CH ₃	CH ₂ OH
2168	OCH ₃ ^b	CH ₃ ^a	CH ₃	sugar
2169	OCH ₃ ^b	CH ₃ ^a	CH ₃	C-glycosyl compound
2170	OCH ₃ ^b	CH ₃ ^a	C1	ОН
2171	OCH₃ ^b	CH ₃ ^a	C1	D-glucitol

2173 OCH₃ b CH₃ a CI PO₃H₂ 2174 OCH₃ b CH₃ a CI CHO 2175 OCH₃ b CH₃ a CI COOH 2176 OCH₃ b CH₃ a CI CH₂OH 2177 OCH₃ b CH₃ a CI CH₂OH 2177 OCH₃ b CH₃ a CI C-glycosyl compound 2178 OCH₃ b CH₃ a B(OH)₂ OH 2179 OCH₃ b CH₃ a B(OH)₂ OH 2180 OCH₃ b CH₃ a B(OH)₂ D-glucitol 2181 OCH₃ b CH₃ a B(OH)₂ SO₃H 2182 OCH₃ b CH₃ a B(OH)₂ CHO 2183 OCH₃ b CH₃ a B(OH)₂ CHO 2184 OCH₃ b CH₃ a B(OH)₂ CHO 2185 OCH₃ b CH₃ a B(OH)₂ CH2OH 2186 OCH₃ b CH₃ a B(OH)₂ C-glycosyl compound 2188	2172	OCH3 ^b	CH ₃ ^a	Cl	SO₃H
2175 OCH₃ b CH₃ a CI COOH 2176 OCH₃ b CH₃ a CI CH₂OH 2176 OCH₃ b CH₃ a CI CH₂OH 2177 OCH₃ b CH₃ a CI C-glycosyl compound 2178 OCH₃ b CH₃ a CI C-glycosyl compound 2179 OCH₃ b CH₃ a B(OH)₂ D-glucitol 2180 OCH₃ b CH₃ a B(OH)₂ D-glucitol 2181 OCH₃ b CH₃ a B(OH)₂ SO₃H 2182 OCH₃ b CH₃ a B(OH)₂ CHO 2183 OCH₃ b CH₃ a B(OH)₂ CHO 2184 OCH₃ b CH₃ a B(OH)₂ COOH 2185 OCH₃ b CH₃ a B(OH)₂ COOH 2186 OCH₃ b CH₃ a B(OH)₂ Cugoth 2187 OCH₃ b CH₃ a B(OH)₂ C-glycosyl compound 2188 OCH₃ b CH₃ a SH OS₃H <td>2173</td> <td>OCH₃^b</td> <td>CH₃^a</td> <td>C1</td> <td>PO₃H₂</td>	2173	OCH ₃ ^b	CH ₃ ^a	C1	PO ₃ H ₂
2176 OCH₃ b CH₃ a CI CH₂OH 2177 OCH₃ b CH₃ a CI sugar 2178 OCH₃ b CH₃ a CI C-glycosyl compound 2179 OCH₃ b CH₃ a B(OH)₂ OH 2180 OCH₃ b CH₃ a B(OH)₂ D-glucitol 2181 OCH₃ b CH₃ a B(OH)₂ SO₃H 2182 OCH₃ b CH₃ a B(OH)₂ PO₃H₂ 2183 OCH₃ b CH₃ a B(OH)₂ CHO 2184 OCH₃ b CH₃ a B(OH)₂ COOH 2185 OCH₃ b CH₃ a B(OH)₂ COOH 2186 OCH₃ b CH₃ a B(OH)₂ COOH 2185 OCH₃ b CH₃ a B(OH)₂ COOH 2186 OCH₃ b CH₃ a B(OH)₂ CPslycosyl compound 2187 OCH₃ b CH₃ a SH OH 2189 OCH₃ b CH₃ a SH OP₃H₂ <	2174	OCH ₃ ^b	CH ₃ ^a	Cl	СНО
2177 OCH ₃ ^b CH ₃ ^a CI sugar 2178 OCH ₃ ^b CH ₃ ^a CI C-glycosyl compound 2179 OCH ₃ ^b CH ₃ ^a B(OH) ₂ OH 2180 OCH ₃ ^b CH ₃ ^a B(OH) ₂ D-glucitol 2181 OCH ₃ ^b CH ₃ ^a B(OH) ₂ SO ₃ H 2182 OCH ₃ ^b CH ₃ ^a B(OH) ₂ PO ₃ H ₂ 2183 OCH ₅ ^b CH ₃ ^a B(OH) ₂ CHO 2184 OCH ₅ ^b CH ₃ ^a B(OH) ₂ COOH 2185 OCH ₅ ^b CH ₃ ^a B(OH) ₂ COOH 2186 OCH ₃ ^b CH ₃ ^a B(OH) ₂ COJH 2187 OCH ₃ ^b CH ₃ ^a B(OH) ₂ C-glycosyl compound 2188 OCH ₃ ^b CH ₃ ^a SH OH 2189 OCH ₃ ^b CH ₃ ^a SH OP ₃ lucitol 2199 OCH ₃ ^b CH ₃ ^a SH DO ₃ luc 2199	2175	OCH ₃ ^b	CH ₃ ^a	C1	СООН
2178 OCH ₃ ^b CH ₃ ^a Cl C-glycosyl compound 2179 OCH ₃ ^b CH ₃ ^a B(OH) ₂ OH 2180 OCH ₃ ^b CH ₃ ^a B(OH) ₂ D-glucitol 2181 OCH ₃ ^b CH ₃ ^a B(OH) ₂ SO ₃ H 2182 OCH ₃ ^b CH ₃ ^a B(OH) ₂ PO ₃ H ₂ 2183 OCH ₃ ^b CH ₃ ^a B(OH) ₂ CHO 2184 OCH ₃ ^b CH ₃ ^a B(OH) ₂ COOH 2185 OCH ₃ ^b CH ₃ ^a B(OH) ₂ COOH 2186 OCH ₃ ^b CH ₃ ^a B(OH) ₂ Cupoth 2186 OCH ₃ ^b CH ₃ ^a B(OH) ₂ Cupoth 2187 OCH ₃ ^b CH ₃ ^a B(OH) ₂ C-glycosyl compound 2188 OCH ₃ ^b CH ₃ ^a SH OH 2189 OCH ₃ ^b CH ₃ ^a SH D-glucitol 2199 OCH ₃ ^b CH ₃ ^a SH DO ₃ H ₂ 2190<	2176		CH ₃ ^a	Cl	CH ₂ OH
2179	2177	OCH ₃ ^b	CH ₃ ^a	Cl	sugar
2180 OCH ₃ ^b CH ₃ ^a B(OH) ₂ D-glucitol 2181 OCH ₃ ^b CH ₃ ^a B(OH) ₂ SO ₃ H 2182 OCH ₃ ^b CH ₃ ^a B(OH) ₂ PO ₃ H ₂ 2183 OCH ₃ ^b CH ₃ ^a B(OH) ₂ CHO 2184 OCH ₃ ^b CH ₃ ^a B(OH) ₂ COOH 2185 OCH ₃ ^b CH ₃ ^a B(OH) ₂ COOH 2186 OCH ₃ ^b CH ₃ ^a B(OH) ₂ Sugar 2187 OCH ₃ ^b CH ₃ ^a B(OH) ₂ C-glycosyl compound 2188 OCH ₃ ^b CH ₃ ^a SH OH 2189 OCH ₃ ^b CH ₃ ^a SH D-glucitol 2190 OCH ₃ ^b CH ₃ ^a SH PO ₃ H ₂ 2191 OCH ₃ ^b CH ₃ ^a SH CHO 2193 OCH ₃ ^b CH ₃ ^a SH CHO 2194 OCH ₃ ^b CH ₃ ^a SH CHO 2195 OCH ₃ ^b CH ₃ ^a SH CH ₂ OH 2196 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2198 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2199 OCH ₃ ^b CH ₃ ^a OCH ₃ OH 2198 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ OCH ₃ 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ OCH ₃ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₉ COOH 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ CH ₉ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ COOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ COOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ COOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ COOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ COOH 2206 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ COOH 2207 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ COOH 2208 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ COOH	2178	OCH ₃ ^b	CH ₃ ^a	Cl	C-glycosyl compound
2181 OCH3 ^b CH3 ^a B(OH) ₂ SO ₃ H 2182 OCH3 ^b CH3 ^a B(OH) ₂ PO ₃ H ₂ 2183 OCH3 ^b CH3 ^a B(OH) ₂ CHO 2184 OCH3 ^b CH3 ^a B(OH) ₂ COOH 2185 OCH3 ^b CH3 ^a B(OH) ₂ CH2OH 2186 OCH3 ^b CH3 ^a B(OH) ₂ CH2OH 2187 OCH3 ^b CH3 ^a B(OH) ₂ C-glycosyl compound 2188 OCH3 ^b CH3 ^a SH OH 2189 OCH3 ^b CH3 ^a SH O-glucitol 2190 OCH3 ^b CH3 ^a SH SO ₃ H 2191 OCH3 ^b CH3 ^a SH PO ₃ H ₂ 2192 OCH3 ^b CH3 ^a SH CHO 2193 OCH3 ^b CH3 ^a SH COOH 2194 OCH3 ^b CH3 ^a SH CH2OH 2195 OCH3 ^b CH3 ^a SH CH2OH <td>2179</td> <td>OCH₃^b</td> <td>CH₃^a</td> <td>B(OH)₂</td> <td>ОН</td>	2179	OCH ₃ ^b	CH ₃ ^a	B(OH) ₂	ОН
2182 OCH3 ^b CH3 ^a B(OH) ₂ PO ₃ H ₂ 2183 OCH3 ^b CH3 ^a B(OH) ₂ CHO 2184 OCH3 ^b CH3 ^a B(OH) ₂ COOH 2185 OCH3 ^b CH3 ^a B(OH) ₂ CH2OH 2186 OCH3 ^b CH3 ^a B(OH) ₂ sugar 2187 OCH3 ^b CH3 ^a B(OH) ₂ C-glycosyl compound 2188 OCH3 ^b CH3 ^a SH OH 2189 OCH3 ^b CH3 ^a SH O-glucitol 2190 OCH3 ^b CH3 ^a SH SO ₃ H 2191 OCH3 ^b CH3 ^a SH CHO 2193 OCH3 ^b CH3 ^a SH CHO 2194 OCH3 ^b CH3 ^a SH CH2OH 2195 OCH3 ^b CH3 ^a SH CH2OH 2195 OCH3 ^b CH3 ^a SH CH2OH 2196 OCH3 ^b CH3 ^a SH CH2OH	2180	OCH ₃ ^b	CH ₃ ^a	B(OH) ₂	D-glucitol
2183 OCH3 ^b CH3 ^a B(OH)2 CHO 2184 OCH3 ^b CH3 ^a B(OH)2 COOH 2185 OCH3 ^b CH3 ^a B(OH)2 CH2OH 2186 OCH3 ^b CH3 ^a B(OH)2 sugar 2187 OCH3 ^b CH3 ^a B(OH)2 C-glycosyl compound 2188 OCH3 ^b CH3 ^a SH OH 2189 OCH3 ^b CH3 ^a SH D-glucitol 2190 OCH3 ^b CH3 ^a SH SO3H 2191 OCH3 ^b CH3 ^a SH CHO 2193 OCH3 ^b CH3 ^a SH CHO 2193 OCH3 ^b CH3 ^a SH CHO 2194 OCH3 ^b CH3 ^a SH CH2OH 2195 OCH3 ^b CH3 ^a SH CH2OH 2195 OCH3 ^b CH3 ^a SH C-glycosyl compound 2197 OCH3 ^b CH3 ^a SH C-glycosyl compound <	2181		CH ₃ ^a	B(OH) ₂	SO₃H
CH3	2182	OCH ₃ ^b	CH ₃ ^a	B(OH) ₂	PO ₃ H ₂
2185 OCH ₃ ^b CH ₃ ^a B(OH) ₂ CH ₂ OH 2186 OCH ₃ ^b CH ₃ ^a B(OH) ₂ sugar 2187 OCH ₃ ^b CH ₃ ^a B(OH) ₂ sugar 2188 OCH ₃ ^b CH ₃ ^a B(OH) ₂ C-glycosyl compound 2189 OCH ₃ ^b CH ₃ ^a SH OH 2190 OCH ₃ ^b CH ₃ ^a SH SO ₃ H 2191 OCH ₃ ^b CH ₃ ^a SH CHO 2192 OCH ₃ ^b CH ₃ ^a SH CHO 2193 OCH ₃ ^b CH ₃ ^a SH COOH 2194 OCH ₃ ^b CH ₃ ^a SH COOH 2195 OCH ₃ ^b CH ₃ ^a SH CH ₂ OH 2196 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2198 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ OCH ₃ 2199 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ OCH ₃ 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ CCH ₃ CCOOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CCH ₃ CCH ₃ 2004 OCH ₃ ^b CH ₃ ^a OCH ₃ CCOOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CCH ₃ CCOOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2044 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2046 CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2046 CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2046 CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃	2183	1 -	CH ₃ ^a	B(OH) ₂	СНО
2186 OCH ₃ ^b CH ₃ ^c B(OH) ₂ sugar 2187 OCH ₃ ^b CH ₃ ^c B(OH) ₂ C-glycosyl compound 2188 OCH ₃ ^b CH ₃ ^c SH OH 2189 OCH ₃ ^b CH ₃ ^c SH D-glucitol 2190 OCH ₃ ^b CH ₃ ^c SH SO ₃ H 2191 OCH ₃ ^b CH ₃ ^c SH CHO 2192 OCH ₃ ^b CH ₃ ^c SH CHO 2193 OCH ₃ ^b CH ₃ ^c SH COOH 2194 OCH ₃ ^b CH ₃ ^c SH CH ₂ OH 2195 OCH ₃ ^b CH ₃ ^c SH CH ₂ OH 2196 OCH ₃ ^b CH ₃ ^c SH Sugar 2196 OCH ₃ ^b CH ₃ ^c SH C-glycosyl compound 2197 OCH ₃ ^b CH ₃ ^c OCH ₃ OCH ₃ OCH ₃ 2198 OCH ₃ ^b CH ₃ ^c OCH ₃ OCH ₃ D-glucitol 2199 OCH ₃ ^b CH ₃ ^c OCH ₃ SO ₃ H 2200 OCH ₃ ^b CH ₃ ^c OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^c OCH ₃ CCOOH 2203 OCH ₃ ^b CH ₃ ^c OCH ₃ CCOOH 2204 OCH ₃ ^b CH ₃ ^c OCH ₃ CCOOH 2205 OCH ₃ ^b CH ₃ ^c OCH ₃ CCOOH 2206 OCH ₃ ^b CH ₃ ^c OCH ₃ CCOOH 2207 OCH ₃ ^c CH ₃ ^c OCH ₃ OCH ₃ CCOOH 2208 OCH ₃ ^c CH ₃ ^c OCH ₃ OCH ₃ CCOOH 2209 OCH ₃ ^c CH ₃ ^c CCH ₃ OCH ₃ CCOOH 2200 OCH ₃ ^c CCH ₃ CCH ₃ OCH ₃ CCOOH 2201 OCH ₃ ^c CCH ₃ CCH ₃ OCH ₃ CCH ₃ CCOOH 2202 OCH ₃ ^c CCH ₃ CCH ₃ OCH ₃ CCH ₃ CCOOH 2203 OCH ₃ ^c CCH ₃	2184	1	CH ₃ ^a	B(OH) ₂	СООН
2187 OCH ₃ ^b CH ₃ ^a B(OH) ₂ C-glycosyl compound 2188 OCH ₃ ^b CH ₃ ^a SH OH 2189 OCH ₃ ^b CH ₃ ^a SH D-glucitol 2190 OCH ₃ ^b CH ₃ ^a SH SO ₃ H 2191 OCH ₃ ^b CH ₃ ^a SH PO ₃ H ₂ 2192 OCH ₃ ^b CH ₃ ^a SH CHO 2193 OCH ₃ ^b CH ₃ ^a SH COOH 2194 OCH ₃ ^b CH ₃ ^a SH CH ₂ OH 2195 OCH ₃ ^b CH ₃ ^a SH CH ₂ OH 2196 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ OCH ₃ 2198 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ D-glucitol 2199 OCH ₃ ^b CH ₃ ^a OCH ₃ SO ₃ H 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₃ CCH ₃ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CCOOH 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ CCOOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CCH ₃ CCOOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ CCH ₃ CCH ₃ 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ CCH ₃ CCOOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ CCH ₃ CCH ₃ 2204 OCH ₃ ^b CCH ₃ OCH ₃ CCH ₃ CCH ₃ 2204 OCH ₃ ^b CCH ₃ OCH ₃ CCH ₃ CCH ₃ 2204 OCH ₃ ^b CCH ₃ OCH ₃ CCH ₃ CCH ₃ 2204 OCH ₃ ^b CCH ₃ OCH ₃ CCH ₃ 2204 OCH ₃ ^b CCH ₃ OCH ₃ CCH ₃ 2204 OCH ₃ ^b CCH ₃ OCH ₃ CCH ₃ 2204 OCH ₃ ^b CCH ₃ OCH ₃ CCH ₃ 2204 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2204 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2204 OCH ₃ CCH ₃ CCH ₃ CCH ₃ 2204 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2205 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2206 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2207 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2208 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2209 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2200 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2201 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2202 CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2203 CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ 2204 CCH ₃ CCH ₃ CCH ₃			I -	B(OH) ₂	CH ₂ OH
2188	2186		CH ₃ ^a	B(OH) ₂	sugar
2189 OCH ₃ ^b CH ₃ ^a SH D-glucitol 2190 OCH ₃ ^b CH ₃ ^a SH SO ₃ H 2191 OCH ₃ ^b CH ₃ ^a SH PO ₃ H ₂ 2192 OCH ₃ ^b CH ₃ ^a SH CHO 2193 OCH ₃ ^b CH ₃ ^a SH COOH 2194 OCH ₅ ^b CH ₃ ^a SH CH ₂ OH 2195 OCH ₅ ^b CH ₃ ^a SH Sugar 2196 OCH ₅ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₃ ^b CH ₃ ^a OCH ₃ OH 2198 OCH ₃ ^b CH ₅ ^a OCH ₃ OCH ₃ OCH ₃ 2199 OCH ₅ ^b CH ₃ ^a OCH ₃ SO ₃ H 2200 OCH ₅ ^b CH ₃ ^a OCH ₃ CH ₃ CHO 2202 OCH ₅ ^b CH ₃ ^a OCH ₃ CCOOH 2203 OCH ₅ ^b CH ₃ ^a OCH ₃ CCOOH 2204 OCH ₅ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2014 OCH ₅ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2014 OCH ₅ ^b CH ₅ ^a OCH ₃ CCOOH 2016 OCH ₅ ^b CH ₅ ^a OCH ₃ CCH ₂ OH 2016 OCH ₅ ^b CH ₅ ^a OCH ₃ CCH ₂ OH 2016 OCH ₅ ^b CH ₅ ^a OCH ₅ CCH ₅ CCOOH 2016 OCH ₅ ^b CH ₅ ^a OCH ₅ CCH ₅ CCH ₅ 2016 OCH ₅ ^b CCH ₅ ^a OCH ₅ CCH ₅ CCH ₅ 2016 OCH ₅ ^b CCH ₅ ^a OCH ₅ CCH ₅ CCH ₅ CCH ₅ 2016 OCH ₅ ^b CCH ₅ ^a OCH ₅ CCH ₅ CCH ₅ 2016 OCH ₅ ^b CCH ₅ ^a OCH ₅ CCH ₅ CCH ₅ 2016 OCH ₅ ^b CCH ₅ ^a OCH ₅ CCH ₅ CCH ₅ 2016 OCH ₅ ^b CCH ₅ CCH ₅ CCH ₅ CCH ₅ 2017 OCH ₅ ^b CCH ₅ CCH ₅ CCH ₅ CCH ₅ 2018 OCH ₅ CCH ₅ CC	2187	OCH ₃ ^b	CH ₃ ^a	B(OH) ₂	C-glycosyl compound
2190 OCH ₃ ^b CH ₃ ^a SH SO ₃ H 2191 OCH ₃ ^b CH ₃ ^a SH PO ₃ H ₂ 2192 OCH ₃ ^b CH ₃ ^a SH CHO 2193 OCH ₃ ^b CH ₃ ^a SH COOH 2194 OCH ₃ ^b CH ₃ ^a SH CH ₂ OH 2195 OCH ₃ ^b CH ₃ ^a SH Sugar 2196 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₃ ^b CH ₃ ^a OCH ₃ OH 2198 OCH ₃ ^b CH ₃ ^a OCH ₃ OCH ₃ OCH ₃ 2199 OCH ₃ ^b CH ₃ ^a OCH ₃ SO ₃ H 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ CCOOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2014 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2014 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2016 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2016 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2016 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2016 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2017 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH			CH ₃ ^a	SH	OH
DCH ₃ ^b CH ₃ ^a SH	2189	i i	CH ₃ ^a	SH	D-glucitol
2192 OCH ₃ ^b CH ₃ ^a SH CHO	2190		CH ₃ ^a	SH	SO ₃ H
2193 OCH ₃ ^b CH ₃ ^a SH COOH 2194 OCH ₅ ^b CH ₃ ^a SH CH ₂ OH 2195 OCH ₃ ^b CH ₃ ^a SH Sugar 2196 OCH ₅ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₃ ^b CH ₃ ^a OCH ₃ OH 2198 OCH ₃ ^b CH ₃ ^a OCH ₃ D-glucitol 2199 OCH ₃ ^b CH ₃ ^a OCH ₃ SO ₃ H 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₃ CH ₃ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₃ 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2191	OCH ₃ ^b	CH ₃ ^a	SH	PO ₃ H ₂
2194 OCH ₅ ^b CH ₃ ^a SH CH ₂ OH 2195 OCH ₅ ^b CH ₃ ^a SH sugar 2196 OCH ₅ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₅ ^b CH ₃ ^a OCH ₃ OH 2198 OCH ₅ ^b CH ₅ ^a OCH ₃ D-glucitol 2199 OCH ₅ ^b CH ₅ ^a OCH ₃ SO ₃ H 2200 OCH ₅ ^b CH ₅ ^a OCH ₃ CH ₅ CH ₅ 2201 OCH ₅ ^b CH ₅ ^a OCH ₃ CHO 2202 OCH ₅ ^b CH ₅ ^a OCH ₃ COOH 2203 OCH ₅ ^b CH ₅ ^a OCH ₃ CH ₂ OH 2204 OCH ₅ ^b CH ₅ ^a OCH ₃ CH ₂ OH 2204 OCH ₅ ^b CH ₅ ^a OCH ₃ CH ₂ OH 2204 OCH ₅ ^b CH ₅ ^a OCH ₃ CH ₂ OH 2204 OCH ₅ ^b CH ₅ ^a OCH ₅ OCH ₅ 2204 OCH ₅ ^b CH ₅ ^a OCH ₅ OCH ₅ CH ₂ OH 2204 OCH ₅ ^b CH ₅ ^a OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ ^b CH ₅ ^a OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ ^b CH ₅ ^a OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ ^b CH ₅ ^a OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ ^b OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ ^b OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ OCH ₅ OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ OCH ₅ OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ OCH ₅ OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ OCH ₅ OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ OCH ₅ OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ OCH ₅ OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ OCH ₅ OCH ₅ OCH ₅ OCH ₅ 2204 OCH ₅ OCH ₅ OCH ₅ OCH ₅ OCH ₅ 2205 OCH ₅ 2206 OCH ₅ OC	2192	OCH ₃ ^b	CH ₃ ^a	SH	СНО
2195 OCH ₃ ^b CH ₃ ^a SH sugar 2196 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₃ ^b CH ₃ ^a OCH ₃ OH 2198 OCH ₃ ^b CH ₃ ^a OCH ₃ D-glucitol 2199 OCH ₃ ^b CH ₃ ^a OCH ₃ SO ₃ H 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ PO ₃ H ₂ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2193		CH ₃ ^a	SH	СООН
2196 OCH ₃ ^b CH ₃ ^a SH C-glycosyl compound 2197 OCH ₃ ^b OH ₃ OCH ₃ OH 2198 OCH ₃ ^b OCH ₃ D-glucitol 2199 OCH ₃ ^b OCH ₃ D-glucitol 2200 OCH ₃ ^b OCH ₃ OCH ₃ PO ₃ H ₂ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2194	OCH ₃ ^b	CH ₃ ^a	SH	CH₂OH
2197 OCH ₃ ^b CH ₃ ^a OCH ₃ OH 2198 OCH ₃ ^b CH ₃ ^a OCH ₃ D-glucitol 2199 OCH ₃ ^b CH ₃ ^a OCH ₃ SO ₃ H 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ PO ₃ H ₂ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH 2204 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2195		CH ₃ ^a	SH	sugar
2198 OCH ₃ ^b CH ₃ ^a OCH ₃ D-glucitol 2199 OCH ₃ ^b CH ₃ ^a OCH ₃ SO ₃ H 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ PO ₃ H ₂ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OCH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OCH	2196	OCH ₃ ^b	CH ₃ ^a	SH	C-glycosyl compound
2199 OCH ₃ ^b CH ₃ ^a OCH ₃ SO ₃ H 2200 OCH ₃ ^b CH ₃ ^a OCH ₃ PO ₃ H ₂ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OCH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2197	OCH ₃ ^b	CH ₃ ^a	OCH ₃	ОН
2200 OCH ₃ ^b CH ₃ ^a OCH ₃ PO ₃ H ₂ 2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2198	OCH ₃ ^b	CH ₃ ^a	OCH ₃	D-glucitol
2201 OCH ₃ ^b CH ₃ ^a OCH ₃ CHO 2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2199		CH ₃ ^a	OCH ₃	SO₃H
2202 OCH ₃ ^b CH ₃ ^a OCH ₃ COOH 2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2200	1	CH ₃ ^a	OCH ₃	PO ₃ H ₂
2203 OCH ₃ ^b CH ₃ ^a OCH ₃ CH ₂ OH	2201	OCH ₃ ^b	CH ₃ ^a	OCH ₃	СНО
2204 0011 011 011	2202	OCH ₃ ^b	CH₃ª	OCH ₃	СООН
2204 OCH ₃ ^b CH ₃ ^a OCH ₃ sugar			CH ₃ ^a	OCH₃	CH ₂ OH
	2204	OCH ₃ ^b	CH₃ª	OCH ₃	sugar

2205	OCH ₃ ^b	CH ₃ ^a	OCH ₃	C-glycosyl compound
2206	OCH ₃ ^b	OCH₃ ^b	Н	ОН
2207	OCH ₃ ^b	OCH ₃ ^b	Н	D-glucitol
2208	OCH ₃ ^b	OCH₃ ^b	Н	SO₃H
2209	OCH ₃ ^b	OCH₃ ^b	Н	PO ₃ H ₂
2210	OCH ₃ ^b	OCH₃ ^b	Н	СНО
2211	OCH ₃ ^b	OCH ₃ ^b	н	СООН
2212	OCH ₃ ^b	OCH ₃ ^b	Н	CH ₂ OH
2213	OCH ₃ ^b	OCH ₃ ^b	Н	sugar
2214	OCH ₃ ^b	OCH ₃ ^b	Н	C-glycosyl compound
2215	OCH ₃ ^b	OCH ₃ ^b	ОН	OH
2216	OCH ₃ ^b	OCH₃ ^b	OH	D-glucitol
2217	OCH ₃ ^b	OCH₃ ^b	ОН	SO₃H
2218	OCH ₃ ^b	OCH ₃ ^b	ОН	PO ₃ H ₂
2219	OCH ₃ ^b	OCH ₃ ^b	ОН	СНО
2220	OCH ₃ ^b	OCH₃ ^b	ОН	СООН
2221	OCH ₃ ^b	OCH₃ ^b	ОН	CH ₂ OH
2222	OCH ₃ ^b	OCH₃ ^b	ОН	sugar
2223	OCH ₃ ^b	OCH₃ ^b	ОН	C-glycosyl compound
2224	OCH ₃ ^b	OCH₃ ^b	CH ₃	ОН
2225	OCH ₃ ^b	OCH ₃ ^b	CH ₃	D-glucitol
2226	OCH ₃ ^b	OCH₃ ^b	CH ₃	SO₃H
2227	OCH ₃ ^b	OCH₃ ^b	CH ₃	PO ₃ H ₂
2228	OCH ₃ ^b	OCH ₃ ^b	CH ₃	СНО
2229	OCH ₃ ^b	OCH ₃ ^b	CH ₃	СООН
2230	OCH ₃ ^b	OCH₃ ^b	CH ₃	CH ₂ OH
2231	OCH ₃ b	OCH ₃ ^b	CH ₃	sugar
2232	OCH ₃ ^b	OCH ₃ ^b	CH ₃	C-glycosyl compound
2233	OCH ₃ ^b	OCH ₃ ^b	Cl	ОН
2234	OCH ₃ ^b	OCH ₃ ^b	Cl	D-glucitol
2235	OCH ₃ ^b	OCH ₃ ^b	Cl	SO₃H
2236	OCH ₃ ^b	OCH ₃ ^b	Cl	PO ₃ H ₂
2237	OCH ₃ ^b	OCH ₃ ^b	Cl	СНО
2238	OCH ₃ ^b	OCH ₃ ^b	Cl	СООН

2239	OCH ₃ ^b	OCH ₃ ^b	CI	СН₂ОН
2240	OCH ₃ ^b	OCH ₃ ^b	Cl	sugar
2241	OCH ₃ ^b	OCH ₃ ^b	Cl	C-glycosyl compound
2242	OCH ₃ ^b	OCH ₃ ^b	B(OH) ₂	OH
2243	OCH ₃ ^b	OCH ₃ ^b	B(OH) ₂	D-glucitol
2244	OCH ₃ ^b	OCH ₃ ^b	B(OH) ₂	SO ₃ H
2245	OCH ₃ ^b	OCH₃b	B(OH) ₂	PO ₃ H ₂
2246	OCH ₃ ^b	OCH ₃ ^b	B(OH) ₂	CHO
2247	OCH ₃ ^b	OCH ₃ ^b	B(OH) ₂	СООН
2248	OCH ₃ ^b	OCH ₃ ^b	B(OH) ₂	CH ₂ OH
2249	OCH ₃ ^b	OCH ₃ ^b	B(OH) ₂	sugar
2250	OCH ₃ ^b	OCH ₃ ^b	B(OH) ₂	C-glycosyl compound
2251	OCH ₃ ^b	OCH₃ ^b	SH	OH
2252	OCH ₃ ^b	OCH ₃ ^b	SH	D-glucitol
2253	OCH ₃ ^b	OCH₃ ^b	SH	SO₃H
2254	OCH ₃ ^b	OCH ₃ ^b	SH	PO ₃ H ₂
2255	OCH ₃ ^b	OCH ₃ ^b	SH	СНО
2256	OCH₃ ^b	OCH ₃ ^b	SH	СООН
2257	OCH ₃ ^b	OCH ₃ ^b	SH	CH ₂ OH
2258	OCH ₃ ^b	OCH ₃ ^b	SH	sugar
2259	OCH ₃ ^b	OCH ₃ ^b	SH	C-glycosyl compound
2260	OCH ₃ ^b	OCH ₃ ^b	OCH ₃	OH
2261	OCH ₃ ^b	OCH ₃ ^b	OCH ₃	D-glucitol
2262	OCH ₃ ^b	OCH ₃ ^b	OCH ₃	SO ₃ H
2263	OCH ₃ ^b	OCH ₃ ^b	OCH ₃	PO ₃ H ₂
2264	OCH₃ ^b	OCH ₃ ^b	OCH ₃	СНО
2265	OCH ₃ ^b	OCH ₃ ^b	OCH ₃	COOH
2266	OCH₃ ^b	OCH ₃ ^b	OCH ₃	CH ₂ OH
2267	OCH₃ ^b	OCH₃ ^b	OCH ₃	sugar
2268	OCH₃ ^b	OCH ₃ ^b	OCH ₃	C-glycosyl compound
2269	H	Н	F	OH
2270	Н	H	F	D-glucitol
2271	H	H	F	SO₃H
2272	H	Н	F	PO ₃ H ₂

2273	н	н	F	СНО
2274	H	H	F	СООН
2275	H	H	F	CH ₂ OH
2276	Н	H	F	sugar
2277	H	H	F	C-glycosyl compound
2278	H	F	F	ОН
2279	H	F	F	D-glucitol
2280	H	F	F	SO₃H
2281	H	F	F	PO_3H_2
2282	H	F	F	СНО
2283	H	F	F	СООН
2284	H	F	F	CH ₂ OH
2285	H	F	F	sugar
2286	H	F	F	C-glycosyl compound
2287	H	CI	F	OH
2288	H	C1	F	D-glucitol
2289	H	Cl	F	SO ₃ H
2290	H	Cl	F	PO ₃ H ₂
2291	H	CI	F	СНО
2292	H	C1	F	СООН
2293	H	C1	F	CH ₂ OH
2294	H	CI	F	sugar
2295	H	C1	F	C-glycosyl compound
2296	H	CN	F	OH
2297	H	CN	F	D-glucitol
2298	H	CN	F	SO₃H
2299	H	CN	F	PO ₃ H ₂
2300	H	CN	F	СНО
2301	H	CN	F	СООН
2302	H	CN	F	CH ₂ OH
2303	H	CN	F	sugar
2304	Н	CN	F	C-glycosyl compound
2305	Н	CH ₃ ^a	F	OH
2306	H	CH ₃ ^a	F	D-glucitol
2307	H	CH ₃ ^a	F	SO₃H
2308	Н	CH ₃ ^a	F	PO ₃ H ₂
2309	Н	CH ₃ ^a	F	СНО
2310	H	CH₃ ^a	F	СООН

2311	H	CH ₃ ^a	F	СН₂ОН
2312	H	CH ₃ ^a	F	sugar
2313	H	CH ₃ ^a	F	C-glycosyl compound
2314	Н	OCH ₃ ^b	F	OH
2315	Н	OCH ₃ ^b	F	D-glucitol
2316	H	OCH ₃ ^b	F	SO ₃ H
2317	Н	OCH ₃ ^b	F	PO ₃ H ₂
2318	Н	OCH ₃ ^b	F	СНО
2319	H	OCH₃ ^b	F	COOH
2320	H	OCH ₃ ^b	F	CH ₂ OH
2321	H	OCH ₃ ^b	F	sugar
2322	Н	OCH ₃ ^b	F	C-glycosyl compound
2323	F	H	F	ОН
2324	F	H	F	D-glucitol
2325	F	Н	F	SO ₃ H
2326	F	H	F	PO_3H_2
2327	F	Н	F	СНО
2328	F	H	F	СООН
2329	F	H	F	CH ₂ OH
2330	F	H	F	sugar
2331	F	H	F	C-glycosyl compound
2332	F	F	F	OH
2333	F	F	F	D-glucitol
2334	F	F	F	SO₃H
2335	F	F	F	PO ₃ H ₂
2336	F	F	F	CHO
2337	F	F	F	СООН
2338	F	F	F	CH₂OH
2339	F	F	F	sugar
2340	F	F	F	C-glycosyl compound
2341	F	Cl	F	OH
2342	F	Cl	F	D-glucitol
2343	F	Cl	F	SO ₃ H
2344	F	Cl	F	PO ₃ H ₂
2345	F	Cl	F	СНО
2346	F	Cl	F	СООН
2347	F	Cl	F	CH ₂ OH

2349 F	2348	F	Cl	F	sugar
2351 F CN F D-glucitol 2352 F CN F SO ₃ H 2353 F CN F SO ₃ H 2353 F CN F COOH 2355 F CN F CHO 2355 F CN F CHO 2355 F CN F CHO 2355 F CN F CH ₂ OH 2357 F CN F CH ₂ OH 2358 F CN F C-glycosyl compound 2359 F CH ₃ * F OH 2360 F CH ₃ * F D-glucitol 2361 F CH ₃ * F CHO 2362 F CH ₃ * F CHO 2363 F CH ₃ * F CHO 2364 F CH ₃ * F CHO 2365 F CH ₃ * F CHO 2366 F CH ₃ * F CHO 2366 F CH ₃ * F CHO 2367 F CH ₃ * F CH ₂ OH 2368 F CH ₃ * F CH ₂ OH 2369 F CH ₃ * F CH ₂ OH 2369 F CH ₃ * F CH ₂ OH 2370 F OCH ₃ * F C-glycosyl compound 2368 F OCH ₃ * F CH ₂ OH 2370 F CH ₃ * F CH ₂ OH 2371 F OCH ₃ * F C-glycosyl compound 2371 F OCH ₃ * F C-glycosyl compound 2371 F OCH ₃ * F C-glycosyl compound 2372 F OCH ₃ * F CHO 2373 F OCH ₃ * F CHO 2374 F OCH ₃ * F COOH 2375 F OCH ₃ * F CHO 2377 CI H F CH ₂ OH 2378 CI H F D-glucitol 2380 CI H F CHO 2381 CI H F CHO 2382 CI H F CHO 2375 CHO 2381 CI H F CHO 2382 CI H F CHO 2382 CI CH				F	
2352 F CN F PO ₃ H ₂ 2353 F CN F PO ₃ H ₂ 2354 F CN F PO ₃ H ₂ 2355 F CN F CHO 2355 F CN F COOH 2355 F CN F COOH 2357 F CN F COH 2357 F CN F C-COH 2358 F CN F C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	2350	F	CN	F	
2353 F CN F CHO 2354 F CN F CHO 2355 F CN F CHO 2355 F CN F CHO 2356 F CN F CHO 2357 F CN F CHOH 2357 F CN F CHOH 2358 F CN F C-Glycosyl compound 2359 F CH ₃ F OH 2360 F CH ₃ F OH 2361 F CH ₃ F O-glucitol 2361 F CH ₃ F CHO 2362 F CH ₃ F CHO 2363 F CH ₃ F CHO 2364 F CH ₃ F CHO 2365 F CH ₃ F CHO 2366 F CH ₃ F CHO 2366 F CH ₃ F CHO 2367 F CH ₃ F CHO 2368 F CH ₃ F CHO 2368 F CH ₃ F C-Glycosyl compound 2369 F OCH ₃ F C-Glycosyl compound 2370 F OCH ₃ F C-Glycosyl compound 2371 F OCH ₃ F C-Glycosyl compound 2372 F OCH ₃ F COOH 2374 F OCH ₃ F COOH 2375 F OCH ₃ F C-Glycosyl compound 2377 CI H F C-Glycosyl compound 2377 CI H F OH 2380 CI H F COOH 2381 CI H F COOH	2351	F			
2354 F CN F CHO 2355 F CN F COOH 2356 F CN F CHOH 2357 F CN F CHOH 2357 F CN F CHOH 2358 F CN F CHOH 2358 F CN F CHOH 2359 F CH3 F OH 2360 F CH3 F OH 2361 F CH3 F OH 2361 F CH3 F OH 2362 F CH3 F CHOH 2363 F CH3 F CHOH 2364 F CH3 F CHOH 2365 F CH3 F CHOH 2366 F CH3 F CHOH 2366 F CH3 F CHOH 2367 F CH3 F CHOH 2368 F CH3 F CH3 F CHOH 2369 F CH3 F CH3 F CHOH 2369 F OCH3 F CH3 F CHOH 2370 F OCH3 F OH 2371 F OCH3 F CHOH 2372 F OCH3 F CHOH 2373 F OCH3 F CHOH 2374 F CH3 F CHOH 2375 F OCH3 F CHOH 2376 F CH3 F CHOH 2377 CI H F CH3 CHHOH 2378 CI H F OH 2380 CI H F CHOH 2381 CI H F CHOH 2381 CI H F CHOH 2381 CI H F CHOH 2370 CH CHOH 2381 CI H F CHOH 2381 CI H F CHOH 2381 CI H F COOH 2371 CHOH 2381 CI H F COOH 2371 CHOH 2381 CI H F CHOH 2381 CI H F CHOH 2381 CI H F CHOH 2381 CI CHA	2352	F	CN	F	SO₃H
2355 F CN F CH ₂ OH 2356 F CN F CH ₂ OH 2357 F CN F CH ₂ OH 2357 F CN F CH ₂ OH 2358 F CN F C-glycosyl compound 2359 F CH ₃ F OH 2360 F CH ₃ F O-glucitol 2361 F CH ₃ F CH ₂ F SO ₃ H 2362 F CH ₃ F CHO 2364 F CH ₃ F CHO 2365 F CH ₃ F CHO 2366 F CH ₃ F CHO 2366 F CH ₃ F CHO 2366 F CH ₃ F CH ₂ OH 2367 F CH ₃ F CHO 2368 F CH ₃ F C-glycosyl compound 2368 F CH ₃ F C-glycosyl compound 2368 F CH ₃ F C-glycosyl compound 2369 F CH ₃ F C-glycosyl compound 2370 F CH ₃ F C-glycosyl compound 2371 F CH ₃ F C-glycosyl compound 2372 F CH ₃ F C-glycosyl compound 2373 F CCH ₃ F C-glycosyl compound 2374 F CCH ₃ F C-GOOH 2375 F CCH ₃ F C-GOOH 2376 F CCH ₃ F C-GOOH 2377 CI H F C-Glycosyl compound 2377 CI H F C-glycosyl compound 2377 CI H F C-glycosyl compound 2378 CI H F C-glycosyl compound 2380 CI H F C-GOOH 2381 CI H F C-GOOH 2381 CI H F C-GOOH 2381 CI H F C-GOOH 2382 CI H F C-GOOH	2353	F	CN	F	PO₃H ₂
2356 F CN F CH ₂ OH 2357 F CN F Sugar 2358 F CN F C-glycosyl compound 2359 F CH ₃ * F OH 2360 F CH ₃ * F D-glucitol 2361 F CH ₃ * F CHO 2362 F CH ₃ * F CHO 2363 F CH ₃ * F CHO 2364 F CH ₃ * F CHO 2365 F CH ₃ * F CHO 2366 F CH ₃ * F CH ₂ OH 2366 F CH ₃ * F CH ₂ OH 2367 F CH ₃ * F CH ₂ OH 2368 F OCH ₃ * F C-glycosyl compound 2368 F OCH ₃ * F C-glycosyl compound 2368 F OCH ₃ * F C-glycosyl compound 2369 F OCH ₃ * F C-glycosyl compound 2370 F OCH ₃ * F C-glycosyl compound 2371 F OCH ₃ * F COOH 2372 F OCH ₃ * F COOH 2373 F OCH ₃ * F COOH 2374 F OCH ₃ * F COOH 2375 F OCH ₃ * F COOH 2376 F OCH ₃ * F COOH 2377 CI H F OH 2378 CI H F D-glucitol 2381 CI H F COOH	2354	F	CN	F	
2357 F CN F Sugar 2358 F CN F C-glycosyl compound 2359 F CH ₃ * F OH 2360 F CH ₃ * F D-glucitol 2361 F CH ₃ * F D-glucitol 2361 F CH ₃ * F CHO 2362 F CH ₃ * F CHO 2363 F CH ₃ * F CHO 2364 F CH ₃ * F CHO 2365 F CH ₃ * F CHO 2366 F CH ₃ * F CH ₂ OH 2367 F CH ₃ * F CH ₂ OH 2368 F OCH ₃ * F CH ₂ OH 2369 F OCH ₃ * F C-glycosyl compound 2369 F OCH ₃ * F D-glucitol 2370 F OCH ₃ * F D-glucitol 2371 F OCH ₃ * F CHO 2371 F OCH ₃ * F COOH 2372 F OCH ₃ * F CHO 2373 F OCH ₃ * F CHO 2374 F OCH ₃ * F CHO 2375 F OCH ₃ * F CHO 2376 F OCH ₃ * F CHO 2377 CI H F OH 2378 CI H F OH 2380 CI H F SO ₃ H 2381 CI H F CHO 2381 CI H F CHO 2370 CH ₃ * CHO 2382 CI H F CHO 2382 CI CH	2355	F	CN	F	
2358 F CN F C-glycosyl compound	2356	F	CN	F	CH ₂ OH
2359 F CH ₃ F OH	2357	F	CN		
2360 F	2358	F		F	
2361 F	2359	F	CH ₃ ^a	F	OH
2362 F CH ₃ F PO ₃ H ₂ 2363 F CH ₃ F CHO 2364 F CH ₃ F COOH 2365 F CH ₃ F CH ₂ OH 2366 F CH ₃ F Sugar 2367 F CH ₃ F OH 2368 F OCH ₃ F OH 2369 F OCH ₃ F D-glucitol 2370 F OCH ₃ F O-glucitol 2371 F OCH ₃ F O-glucitol 2372 F OCH ₃ F CHO 2373 F OCH ₃ F CHO 2374 F OCH ₃ F CHO 2375 F OCH ₃ F CH ₂ OH 2376 F OCH ₃ F CH ₂ OH 2377 Cl H F OH 2378 Cl H F D-glucitol 2379 Cl H F D-glucitol 2379 Cl H F D-glucitol 2370 Cl H F D-glucitol 2371 Cl H F D-glucitol 2372 Cl H F CHO 2380 Cl H F CHO 2381 Cl H F CHO 2381 Cl H F CHO 2382 Cl H F COOH 2364 CHO CHO 2365 CHO CHO 2376 CHO CHO 2381 Cl H F CHO 2382 Cl H F CHO 2382 CHO CHO 2384 CHO CHO 2385 CHO CHO 2386 CHO CHO 2386 CHO CHO 2387 CHO CHO 2388 CHO CHO 2388 CHO CHO 2389 CHO CHO 2380 CHO CHO	2360	F	CH ₃ ^a	F	D-glucitol
2363 F CH ₃ F CHO 2364 F CH ₃ F COOH 2365 F CH ₃ F CH ₂ OH 2366 F CH ₃ F Sugar 2367 F CH ₃ F C-glycosyl compound 2368 F OCH ₃ F OH 2369 F OCH ₃ F D-glucitol 2370 F OCH ₃ F O-glycosyl compound 2371 F OCH ₃ F O-glycosyl compound 2372 F OCH ₃ F O-glycosyl compound 2373 F OCH ₃ F CHO 2374 F OCH ₃ F CHO 2375 F OCH ₃ F CH ₂ OH 2376 F OCH ₃ F C-glycosyl compound 2377 Cl H F OH 2378 Cl H F D-glucitol 2379 Cl H F D-glucitol 2379 Cl H F D-glucitol 2370 Cl H F D-glucitol 2380 Cl H F CHO 2381 Cl H F CHO 2382 Cl H F COOH 2381 Cl H F CHO 2381 Cl H F CHO 2382 Cl COOH 2365 COOH 2366 CHO CH ₃ CHO 2377 CHO CH ₃ CHO 2381 CHO CHO CHO 2381 CHO CHO CHO 2382 CHO CH ₃ CHO 2383 CHO CHO CHO 2384 CHO CHO CHO 2385 CHO CHO CHO 2385 CHO CHO CHO 2365 CHO CHO CHO 2366 CHO CHO CHO 2367 CHO CHO CHO 2368 CHO CHO CHO 2368 CHO CHO CHO 2368 CHO CHO CHO 2368 CHO CHO CHO 2369 CHO CHO CHO 2360 CHO CHO	2361	F	CH ₃ ^a	F	SO₃H
2364 F	2362	F	CH ₃ ^a	F	PO ₃ H ₂
2365 F CH ₃ F CH ₂ OH	2363	F	CH ₃ ^a	F	СНО
2366 F CH ₃ ^a F Sugar	2364	F	CH ₃ ^a	F	COOH
2367 F CH ₃ ¹ F C-glycosyl compound	2365	F	CH ₃ ^a	F	CH ₂ OH
2368 F OCH ₃ F OH	2366	F	CH ₃ ^a	F	sugar
2369 F OCH ₃ F D-glucitol	2367	F	CH ₃ ^a	F	C-glycosyl compound
2370 F OCH ₃ F SO ₃ H	2368	F	OCH ₃ ^b	F	OH
2371 F OCH ₃ ^b F PO ₃ H ₂ 2372 F OCH ₃ ^b F CHO 2373 F OCH ₃ ^b F COOH 2374 F OCH ₃ ^b F CH ₂ OH 2375 F OCH ₃ ^b F Sugar 2376 F OCH ₃ ^b F C-glycosyl compound 2377 Cl H F OH 2378 Cl H F D-glucitol 2379 Cl H F D-glucitol 2379 Cl H F SO ₃ H 2380 Cl H F CHO 2381 Cl H F CHO 2382 Cl H F COOH 2383 Cl COOH 2384 Cl COOH 2385 COOH 2386 COOH COOH 2387 COOH 2388 COOH COOH 2388 COOH COOH 2388 COOH COOH 2380 COOH COOH COOH 2380 COOH COOH COOH 2380 COOH COOH COOH 2380 COOH COOH COOH COOH 2380 COOH COOH COOH COOH COOH 2380 COOH	2369	F		F	D-glucitol
2372 F OCH ₃ F CHO 2373 F OCH ₃ F COOH 2374 F OCH ₃ F CH ₂ OH 2375 F OCH ₃ F Sugar 2376 F OCH ₃ F C-glycosyl compound 2377 Cl H F OH 2378 Cl H F D-glucitol 2379 Cl H F SO ₃ H 2380 Cl H F PO ₃ H ₂ 2381 Cl H F CHO	2370	F	OCH ₃ ^b	F	SO₃H
2373 F OCH ₃ F COOH 2374 F OCH ₃ F CH ₂ OH 2375 F OCH ₃ F Sugar 2376 F OCH ₃ F C-glycosyl compound 2377 Cl H F OH 2378 Cl H F D-glucitol 2379 Cl H F SO ₃ H 2380 Cl H F PO ₃ H ₂ 2381 Cl H F CHO 2382 Cl H F COOH	2371	F	OCH ₃ ^b	F	PO₃H ₂
2374 F OCH ₃ ^b F CH ₂ OH	2372	F	OCH ₃ ^b	F	CHO
2375 F OCH ₃ F sugar	2373	F	OCH ₃ ^b	F	COOH
2376 F OCH ₃ ^b F C-glycosyl compound 2377 Cl H F OH 2378 Cl H F D-glucitol 2379 Cl H F SO ₃ H 2380 Cl H F PO ₃ H ₂ 2381 Cl H F CHO 2382 Cl H F COOH	2374	F	OCH ₃ ^b	F	CH ₂ OH
2377 Cl H F OH 2378 Cl H F D-glucitol 2379 Cl H F SO ₃ H 2380 Cl H F PO ₃ H ₂ 2381 Cl H F CHO 2382 Cl H F COOH	2375	F	OCH ₃ ^b	F	
2378 Cl H F D-glucitol 2379 Cl H F SO ₃ H 2380 Cl H F PO ₃ H ₂ 2381 Cl H F CHO 2382 Cl H F COOH	2376	F	OCH₃ ^b	F	C-glycosyl compound
2379 Cl H F SO ₃ H 2380 Cl H F PO ₃ H ₂ 2381 Cl H F CHO 2382 Cl H F COOH	2377	C1	H	F	
2380 Cl H F PO ₃ H ₂ 2381 Cl H F CHO 2382 Cl H F COOH	2378	C1	H	F	D-glucitol
2381 Cl H F CHO 2382 Cl H F COOH	2379	C1	H	F	
2382 Cl H F COOH	2380	C1	Н		
2302 (1 11 27 27)	2381				
2383 Cl H F CH ₂ OH	2382		H		
	2383	Cl	H	F	CH₂OH

2384	Cl	H	F	sugar
2385	Cl	H	F	C-glycosyl compound
2386	Cl	F	F	OH
2387	Cl	F	F	D-glucitol
2388	C1	F	F	SO₃H
2389	Cl	F	F	PO ₃ H ₂
2390	Cl	F	F	СНО
2391	Cl	F	F	СООН
2392	Cl	F	F	CH ₂ OH
2393	Cl	F	F	sugar
2394	C1	F	F	C-glycosyl compound
2395	C1	Cl	F	OH
2396	C1	Cl	F	D-glucitol
2397	Cl	C1	F	SO₃H
2398	C1	Cl	F	PO ₃ H ₂
2399	Cl	C1	F	CHO
2400	C1	Cl	F	СООН
2401	Cl	Cl	F	CH ₂ OH
2402	Cl	C1	F	sugar
2403	C1	Cl	F	C-glycosyl compound
2404	C1	CN	F	OH
2405	Cl	CN	F	D-glucitol
2406	C1	CN	F	SO₃H
2407	Cl	CN	F	PO_3H_2
2408	C1	CN	F	CHO
2409	C1	CN	F	COOH
2410	C1	CN	F	CH ₂ OH
2411	Cl	CN	F	sugar
2412	C1	CN	F	C-glycosyl compound
2413	Cl	CH ₃ ^a	F	OH
2414	Cl	CH ₃ ^a	F	D-glucitol
2415	Cl	CH ₃ ^a	F	SO ₃ H
2416	Cl	CH ₃ ^a	F	PO ₃ H ₂
2417	Cl	CH ₃ ^a	F	СНО
2418	Cl	CH ₃ ^a	F	СООН
2419	Cl	CH ₃ ^a	F	CH ₂ OH
2420	C1	CH ₃ ^a	F	sugar

2421	C1	CH ₃ ^a	F	C-glycosyl compound
2422	C1	OCH ₃ ^b	F	OH
2423	Cl	OCH ₃ ^b	F	D-glucitol
2424	Cl	OCH ₃ ^b	F	SO ₃ H
2425	C1	OCH ₃ ^b	F	PO ₃ H ₂
2426	Cl	OCH ₃ ^b	F	СНО
2427	C1	OCH₃ ^b	F	COOH
2428	Cl	OCH ₃ ^b	F	CH ₂ OH
2429	Cl	OCH ₃ ^b	F	sugar
2430	Cl	OCH ₃ ^b	F	C-glycosyl compound
2431	CN	H	F	OH
2432	CN	H	F	D-glucitol
2433	CN	H	F	SO ₃ H
2434	CN	H	F	PO_3H_2
2435	CN	H	F	СНО
2436	CN	H	F	СООН
2437	CN	H	F	CH ₂ OH
2438	CN	Н	F	sugar
2439	CN	H	F	C-glycosyl compound
2440	CN	F	F	OH
2441	CN	F	F	D-glucitol
2442	CN	F	F	SO₃H
2443	CN	F	F	PO ₃ H ₂
2444	CN	F	F	СНО
2445	CN	F	F	COOH
2446	CN	F	F	CH ₂ OH
2447	CN	F	F	sugar
2448	CN	F	F	C-glycosyl compound
2449	CN	Cl	F	OH
2450	CN	Cl	F	D-glucitol
2451	CN	Cl	F	SO ₃ H
2452	CN	C1	F	PO ₃ H ₂
2453	CN	Cl	F	СНО
2454	CN	Cl	F	СООН
2455	CN	C1	F	CH ₂ OH
2456	CN	CI	F	sugar
2457	CN	Cl	F	C-glycosyl compound
2458	CN	CN	F	OH

2459	CN	CN	F	D-glucitol
2460	CN	CN	F	SO₃H
2461	CN	CN	F	PO ₃ H ₂
2462	CN	CN	F	СНО
2463	CN	CN	F	СООН
2464	CN	CN	F	CH ₂ OH
2465	CN	CN	F	sugar
2466	CN	CN	F	C-glycosyl compound
2467	CN	CH ₃ ^a	F	OH
2468	CN	CH ₃ ^a	F	D-glucitol
2469	CN	CH ₃ ^a	F	SO₃H
2470	CN	CH ₃ ^a	F	PO_3H_2
2471	CN	CH ₃ ^a	F	СНО
2472	CN	CH ₃ ^a	F	СООН
2473	CN	CH ₃ ^a	F	CH₂OH
2474	CN	CH ₃ ^a	F	sugar
2475	CN	CH ₃ ^a	F	C-glycosyl compound
2476	CN	OCH ₃ ^b	F	OH
2477	CN	OCH ₃ ^b	F	D-glucitol
2478	CN	OCH ₃ ^b	F	SO₃H
2479	CN	OCH₃ ^b	F	PO₃H₂
2480	CN	OCH ₃ ^b	F	CHO
2481	CN	OCH ₃ ^b	F	COOH
2482	CN	OCH₃ ^b	F	CH ₂ OH
2483	CN	OCH ₃ ^b	F	sugar
2484	CN	OCH ₃ ^b	F	C-glycosyl compound
2485	CH ₃ ^a	Н	F	OH
2486	CH ₃ ^a	Н	F	D-glucitol
2487	CH ₃ ^a	н	F	SO ₃ H
2488	CH ₃ ^a	Н	F	PO ₃ H ₂
2489	CH ₃ ^a	н	F	СНО
2490	CH ₃ ^a	Н	F	СООН
2491	CH ₃ ^a	Н	F	CH₂OH
2492	CH ₃ ^a	H	F	sugar

2493	CH ₃ ^a	H	F	C-glycosyl compound
2494	CH ₃ ^a	F	F	OH
2495	CH ₃ ^a	F	F	D-glucitol
2496	CH ₃ ^a	F	F	SO ₃ H
2497	CH ₃ ^a	F	F	PO ₃ H ₂
2498	CH ₃ ^a	F	F	СНО
2499	CH ₃ ^a	F	F	СООН
2500	CH ₃ ^a	F	F	CH ₂ OH
2501	CH ₃ ^a	F	F	sugar
2502	CH ₃ ^a	F	F	C-glycosyl compound
2503	CH ₃ ^a	Cl	F	OH
2504	CH ₃ ^a	Cl	F	D-glucitol
2505	CH ₃ ^a	Cl	F	SO₃H
2506	CH ₃ ^a	C1	F	PO ₃ H ₂
2507	CH ₃ ^a	Cl	F	СНО
2508	CH ₃ ^a	Cl	F	СООН
2509	CH ₃ ^a	Cl	F	CH ₂ OH
2510	CH ₃ ^a	Cl	F	sugar
2511	CH ₃ ^a	Cl	F	C-glycosyl compound
2512	CH ₃ ^a	CN	F	OH
2513	CH ₃ ^a	CN	F	D-glucitol
2514	CH ₃ ^a	CN	F	SO₃H
2515	CH ₃ ^a	CN	F	PO ₃ H ₂
2516	CH ₃ ^a	CN	F	СНО
2517	CH ₃ ^a	CN	F	СООН
2518	CH ₃ ^a	CN	F	CH ₂ OH
2519	CH ₃ ^a	CN	F	sugar
2520	CH ₃ ^a	CN	F	C-glycosyl compound
2521	CH ₃ ^a	CH ₃ ^a	F	ОН
2522	CH ₃ ^a	CH ₃ ^a	F	D-glucitol
2523	CH ₃ ^a	CH ₃ ^a	F	SO ₃ H
2524	CH ₃ ^a	CH ₃ ^a	F	PO₃H₂
2525	CH ₃ ^a	CH ₃ ^a	F	СНО

2526	CH ₃ ^a	CH ₃ ^a	F	СООН
2527	CH ₃ ^a	CH ₃ ^a	F	CH ₂ OH
2528	CH ₃ ^a	CH ₃ ^a	F	sugar
2529	CH ₃ ^a	CH ₃ ^a	F	C-glycosyl compound
2530	CH ₃ ^a	OCH₃ ^b	F	OH
2531	CH ₃ ^a	OCH ₃ ^b	F	D-glucitol
2532	CH ₃ ^a	OCH ₃ ^b	F	SO₃H
2533	CH ₃ ^a	OCH ₃ ^b	F	PO ₃ H ₂
2534	CH ₃ ^a	OCH ₃ ^b	F	CHO
2535	CH ₃ ^a	OCH₃ ^b	F	COOH
2536	CH ₃ ^a	OCH ₃ ^b	F	CH ₂ OH
2537	CH ₃ ^a	OCH₃ ^b	F	sugar
2538	CH ₃ ^a	OCH ₃ ^b	F	C-glycosyl compound
2539	OCH₃ ^b	H	F	OH
2540	OCH₃ ^b	H	F	D-glucitol
2541	OCH ₃ ^b	Н	F	SO₃H
2542	OCH ₃ ^b	H	F	PO ₃ H ₂
2543	OCH ₃ ^b	H	F	CHO
2544	OCH₃ ^b	H	F	COOH
2545	OCH₃ ^b	Н	F	CH ₂ OH
2546	OCH ₃ ^b	H	F	sugar
2547	OCH ₃ ^b	H	F	C-glycosyl compound
2548	OCH ₃ b	F	F	OH
2549	OCH ₃ b	F	F	D-glucitol
2550	OCH ₃ ^b	F	F	SO ₃ H
2551	OCH ₃ ^b	F	F	PO ₃ H ₂
2552	OCH ₃ ^b	F	F	CHO
2553	OCH ₃ ^b	F	F	СООН
2554	OCH ₃ ^b	F	F	CH ₂ OH
2555	OCH ₃ ^b	F	F	sugar
2556	OCH ₃ ^b	F	F	C-glycosyl compound
2557	OCH ₃ ^b	C1	F	OH
2558	OCH ₃ ^b	CI	F	D-glucitol
2559	OCH ₃ ^b	CI	F	SO ₃ H

2560	OCH ₃ ^b	CI	F	PO_3H_2
2561	OCH₃ ^b	Cl	F	СНО
2562	OCH₃ ^b	C1	F	СООН
2563	OCH ₃ ^b	Cl	F	CH ₂ OH
2564	OCH ₃ ^b	Cl	F	sugar
2565	OCH ₃ ^b	Cl	F	C-glycosyl compound
2566	OCH ₃ ^b	CN	F	OH
2567	OCH ₃ ^b	CN	F	D-glucitol
2568	OCH ₃ ^b	CN	F	SO₃H
2569	OCH ₃ ^b	CN	F	PO₃H₂
2570	OCH ₃ ^b	CN	F	СНО
2571	OCH ₃ ^b	CN	F	СООН
2572	OCH ₃ ^b	CN	F	CH ₂ OH
2573	OCH ₃ ^b	CN	F	sugar
2574	OCH ₃ ^b	CN	F	C-glycosyl compound
2575	OCH ₃ ^b	CH ₃ ^a	F	ОН
2576	OCH ₃ ^b	CH ₃ ^a	F	D-glucitol
2577	OCH ₃ ^b	CH ₃ ^a	F	SO₃H
2578	OCH ₃ ^b	CH ₃ ^a	F	PO_3H_2
2579	OCH ₃ ^b	CH ₃ ^a	F	СНО
2580	OCH ₃ ^b	CH ₃ ^a	F	СООН
2581	OCH ₃ ^b	CH ₃ ^a	F	CH ₂ OH
2582	OCH ₃ ^b	CH ₃ ^a	F	sugar
2583	OCH ₃ ^b	CH ₃ ^a	F	C-glycosyl compound
2584	OCH ₃ ^b	OCH ₃ ^b	F	OH
2585	OCH ₃ ^b	OCH ₃ ^b	F	D-glucito1
2586	OCH ₃ ^b	OCH ₃ ^b	F	SO₃H
2587	OCH ₃ ^b	OCH ₃ ^b	F	PO_3H_2
2588	OCH ₃ ^b	OCH ₃ ^b	F	СНО
2589	OCH ₃ ^b	OCH₃ ^b	F	СООН
2590	OCH ₃ ^b	OCH ₃ ^b	F	CH ₂ OH
2591	OCH ₃ ^b	OCH₃ ^b	F	sugar
2592	OCH ₃ ^b	OCH ₃ ^b	F	C-glycosyl compound

a optionally substituted with one, two or three F

^b optionally substituted with two or three F

Table 4

row number	R1	R2	R4	R5
1	ortho	ortho	3-	ortho
2	ortho	ortho	3-	meta
3	ortho	ortho	3-	para
4	ortho	ortho	2-	ortho
5	ortho	ortho	2-	meta
6	ortho	ortho	2-	para
7	ortho	meta	3-	ortho
8	ortho	meta	3-	meta
9	ortho	meta	3-	para
10	ortho	meta	2-	ortho
11	ortho	meta	2-	meta
12	ortho	meta	2-	para
13	ortho	para	3-	ortho
14	ortho	para	3-	meta
15	ortho	para	3-	para
16	ortho	para	2-	ortho
17	ortho	para	2-	meta
18	ortho	para	2-	para
19	meta	ortho	3-	ortho
20	meta	ortho	3-	meta
21	meta	ortho	3-	para
22	meta	ortho	2-	ortho
23	meta	ortho	2-	meta
24	meta	ortho	2-	para
25	meta	meta	3-	ortho
26	meta	meta	3-	meta

27	meta	meta	3-	para
28	meta	meta	2-	ortho
29	meta	meta	2-	meta
30	meta	meta	2-	para
31	meta	para	3-	ortho
32	meta	para	3-	meta
33	meta	para	3-	para
34	meta	para	2-	ortho
35	meta	para	2-	meta
36	meta	para	2-	para
37	para	ortho	3-	ortho
38	para	ortho	3-	meta
39	para	ortho	3-	para
40	para	ortho	2-	ortho
41	para	ortho	2-	meta
42	para	ortho	2-	para
43	para	meta	3-	ortho
44	para	meta	3-	meta
45	para	meta	3-	para
46	para	meta	2-	ortho
47	para	meta	2-	meta
48	para	meta	2-	para
49	para	para	3-	ortho
50	para	para	3-	meta
51	para	para	3-	para
52	para	para	2-	ortho
53	para	para	2-	meta
54	para	para	2-	para

[00445] Table 5 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is H, \mathbb{R}^2 is F, \mathbb{R}^4 is OH and \mathbb{R}^5 is OH (i.e. Table 3, row 1) according to the positions defined by all rows of Table 4.

	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-fluorophenyl)-3-
1	hydroxypropyl]-1-phenylazetidin-2-one
İ	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-fluorophenyl)-3-
2	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-fluorophenyl)-3-
3	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-fluorophenyl)-3-
4	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-fluorophenyl)-3-
5	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-fluorophenyl)-3-
6	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-fluorophenyl)-3-
7	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-fluorophenyl)-3-
8	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-fluorophenyl)-3-
9	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-fluorophenyl)-3-
10	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-fluorophenyl)-3-
11	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-fluorophenyl)-3-
12	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-
13	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-
14	hydroxypropyl]-1-phenylazetidin-2-one

	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-
15	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-
16	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-
17	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-
18	hydroxypropyl]-1-phenylazetidin-2-one

[00446] Table 6 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is \mathbb{H} , \mathbb{R}^2 is \mathbb{F} , \mathbb{R}^4 is OH and \mathbb{R}^5 is D-glucitol (i.e. Table 3, row 2) according to the positions defined by all rows of Table 4.

(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol	
(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol	hydroxypropyl]-4-
2 xxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyd-2-yl}-3'-hydroxybiphenyl-4-yl})-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyd-2-yl}-2'-hydroxybiphenyl-2-yl})-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyd-2-yl}-2-hydroxybiphenyl-3-yl})-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyd-2-yl}-2-hydroxybiphenyl-3-yl})-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyd-2-yl}-3'-hydroxybiphenyl-2-yl})-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyd-2-yl}-3-hydroxybiphenyl-2-yl})-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-(3S)-3-(3-fluorophenyl)-3-hyd-2-yl}-3-hydroxybiphenyl-3-yl})-D-glucitol	01
(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl}-D-glucitol	hydroxypropyl]-4-
3 oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyd-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyd-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyd-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyd-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyd-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol	ol .
(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol	hydroxypropyl]-4-
4 0xo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyc} 5 0xo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyc} 6 0xo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyc} 7 0xo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyc} 8 0xo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol	o1
(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyc 5 oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hyc 6 oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyc 7 oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyc oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol	hydroxypropyl]-4-
5 oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol	ol
(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol	hydroxypropyl]-4-
6 oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxybiphenyl-3-yl)-D-glucitol	ol
(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl}-D-glucitol	hydroxypropyl]-4-
7 oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl}-D-glucitol (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxybiphenyl-3-yl}-D-glucitol	ol .
(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[3S)-3-(3-fluorophenyl)-3-hydoxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol	hydroxypropyl]-4-
8 oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol	ol .
3,1 3 3, 8	hydroxypropyl]-4-
(1S)-1.5-anhvdro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hyd	ol
[, -,,,	hydroxypropyl]-4-
9 oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol	ol

_	
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-
10	oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol
ĺ	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-
11	oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-
12	oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-
13	oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-
14	oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-
15	oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-
16	oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-
	oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-
18	oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol

[00447] Table 7 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is H, \mathbb{R}^2 is F, \mathbb{R}^4 is OH and \mathbb{R}^5 is SO_3H (i.e. Table 3, row 3) according to the positions defined by all rows of Table 4.

	$ 4! - \{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-1-2-(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-1-2-(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-1-2-(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-1-2-(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-1-2-(2S,3R)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-1-2-(2S,3R)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-1-2-(2S,3R)-3-$
1	2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
2	2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
3	2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
4	2-yl}-2'-hydroxybiphenyl-2-sulfonic acid

	4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
5	2-yl}-2'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
6	2-yl}-2'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
7	2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
8	2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
9	2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
10	2-yl}-2'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
11	2-yl}-2'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
12	2-yl}-2'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
13	2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
14	2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
15	2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
16	2-yl}-2'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
17	2-yl}-2'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
18	2-yl}-2'-hydroxybiphenyl-4-sulfonic acid

[00448] Table 8 lists the compounds disclosed by substitution of Formula VIII wherein R^1 is H, R^2 is F, R^4 is OH and R^5 is PO_3H_2 (i.e. Table 3, row 4) according to the positions defined by all rows of Table 4.

	(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
1	2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
2	2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
3	2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
4	2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
5	2-yl}-2'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
6	2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
7	2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
8	2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
9	2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
10	2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
11	2-yl}-2'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
12	2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
13	2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
14	2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid

	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
15	2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
	2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
17	2-yl}-2'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-
18	2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid

[00449] Table 9 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is \mathbb{H} , \mathbb{R}^2 is \mathbb{H} , \mathbb{R}^4 is OH and \mathbb{R}^5 is OH (i.e. Table 3, row 5) according to the positions defined by all rows of Table 4.

	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-1-
1	phenylazetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-1-
2	phenylazetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-1-
3	phenylazetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-1-
4	phenylazetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-1-
5	phenylazetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-1-
6	phenylazetidin-2-one

[00450] Table 10 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is \mathbb{H} , \mathbb{R}^2 is \mathbb{H} , \mathbb{R}^4 is OH and \mathbb{R}^5 is D-glucitol (i.e. Table 3, row 6) according to the positions defined by all rows of Table 4.

	(1S)-1,5-anhydro-1-(3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-
1	phenylpropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-2-yl)-D-glucitol

	(1S)-1,5-anhydro-1-(3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-
2	phenylpropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-
3	phenylpropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-
4	phenylpropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-
5	phenylpropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-
6	phenylpropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-4-yl)-D-glucitol

[00451] Table 11 lists the compounds disclosed by substitution of Formula VIII wherein R^1 is H, R^2 is H, R^4 is OH and R^5 is SO_2H (i.e. Table 3, row 7) according to the positions defined by all rows of Table 4.

	3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
1	phenylazetidin-2-yl}biphenyl-2-sulfonic acid
	3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
2	phenylazetidin-2-yl}biphenyl-3-sulfonic acid
	3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
3	phenylazetidin-2-yl}biphenyl-4-sulfonic acid
	2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
4	phenylazetidin-2-yl}biphenyl-2-sulfonic acid
	2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropy1]-4-oxo-1-
5	phenylazetidin-2-yl}biphenyl-3-sulfonic acid
	2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
6	phenylazetidin-2-yl}biphenyl-4-sulfonic acid

[00452] Table 12 lists the compounds disclosed by substitution of Formula VIII wherein R^1 is H, R^2 is H, R^4 is OH and R^5 is PO_3H_2 (i.e. Table 3, row 8) according to the positions defined by all rows of Table 4.

	(3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
1	phenylazetidin-2-yl}biphenyl-2-yl)phosphonic acid
	(3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
2	phenylazetidin-2-yl}biphenyl-3-yl)phosphonic acid
	(3'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
3	phenylazetidin-2-yl}biphenyl-4-yl)phosphonic acid
	(2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
4	phenylazetidin-2-yl}biphenyl-2-yl)phosphonic acid
	(2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
5	phenylazetidin-2-yl}biphenyl-3-yl)phosphonic acid
	(2'-hydroxy-4'-{(2S,3R)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-oxo-1-
6	phenylazetidin-2-yl}biphenyl-4-yl)phosphonic acid

[00453] Table 13 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is H, \mathbb{R}^2 is Cl, \mathbb{R}^4 is OH and \mathbb{R}^5 is OH (i.e. Table 3, row 9) according to the positions defined by all rows of Table 4.

	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-chlorophenyl)-3-
1	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-chlorophenyl)-3-
2	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-chlorophenyl)-3-
3	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-chlorophenyl)-3-
4	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-chlorophenyl)-3-
5	hydroxypropyl]-1-phenylazetidin-2-one

	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(2-chlorophenyl)-3-
6	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-chlorophenyl)-3-
7	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-chlorophenyl)-3-
8	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-chlorophenyl)-3-
9	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-chlorophenyl)-3-
10	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-cjlorophenyl)-3-
11	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(3-chlorophenyl)-3-
12	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-chlorophenyl)-3-
13	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-chlorophenyl)-3-
14	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-chlorophenyl)-3-
15	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-chlorophenyl)-3-
16	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-chlorophenyl)-3-
17	hydroxypropyl]-1-phenylazetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4chlorophenyl)-3-
18	hydroxypropyl]-1-phenylazetidin-2-one

[00454] Table 14 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is \mathbb{H} , \mathbb{R}^2 is \mathbb{C} , \mathbb{R}^4 is OH and \mathbb{R}^5 is D-glucitol (i.e. Table 3, row 10) according to the positions defined by all rows of Table 4.

	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-
1	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-
2	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-
3	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-
4	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-
5	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-
6	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-
7	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-
8	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-
9	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-
10	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-
11	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-
12	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-
13	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-
14	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-
15	4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol

		(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-
	16	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol
r		(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-
	17	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol
r		(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-
İ	18	4-oxo-1-phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol

[00455] Table 15 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is H, \mathbb{R}^2 is Cl, \mathbb{R}^4 is OH and \mathbb{R}^5 is SO_3H (i.e. Table 3, row 11) according to the positions defined by all rows of Table 4.

	4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
1	phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
2	phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
3	phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
4	phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
5	phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
6	phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
7	phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
8	phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
9	phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
10	phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-sulfonic acid

ĺ	4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
11	phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
12	phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
13	phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
14	phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
15	phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
16	phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
17	phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
18	phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-sulfonic acid

[00456] Table 16 lists the compounds disclosed by substitution of Formula VIII wherein R^1 is H, R^2 is C, R^4 is CH and R^5 is PO_3H_2 (i.e. Table 3, row 12) according to the positions defined by all rows of Table 4.

	(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
1	phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
2	phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
3	phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
4	phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
5	phenylazetidin-2-y1}-2'-hydroxybiphenyl-3-y1)phosphonic acid

	(4'-{(2S,3R)-3-[(3S)-3-(2-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
6	phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
7	phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
8	phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
9	phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
10	phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
11	phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(3-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
12	phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
13	phenylazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
14	phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
15	phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
16	phenylazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
17	phenylazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-3-[(3S)-3-(4-chlorophenyl)-3-hydroxypropyl]-4-oxo-1-
	phenylazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid

[00457] Table 17 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is F, \mathbb{R}^2 is H, \mathbb{R}^4 is OH and \mathbb{R}^5 is OH (i.e. Table 3, row 13) according to the positions defined by all rows of Table 4.

	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-1-(2-fluorophenyl)-3-[(3S)-3-
1	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-1-(2-fluorophenyl)-3-[(3S)-3-
2	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-1-(2-fluorophenyl)-3-[(3S)-3-
3	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-1-(2-fluorophenyl)-3-[(3S)-3-
4	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-1-(2-fluorophenyl)-3-[(3S)-3-
5	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-1-(2-fluorophenyl)-3-[(3S)-3-
6	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-1-(3-fluorophenyl)-3-[(3S)-3-
7	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-1-(3-fluorophenyl)-3-[(3S)-3-
8	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-1-(3-fluorophenyl)-3-[(3S)-3-
9	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-1-(3-fluorophenyl)-3-[(3S)-3-
10	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-1-(3-fluorophenyl)-3-[(3S)-3-
11	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-1-(3-fluorophenyl)-3-[(3S)-3-
12	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2',3-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-
13	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-
14	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-
15	hydroxy-3-phenylpropyl]azetidin-2-one

	(3R,4S)-4-(2,2'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-
16	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2,3'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-
17	hydroxy-3-phenylpropyl]azetidin-2-one
	(3R,4S)-4-(2,4'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-
18	hydroxy-3-phenylpropyl]azetidin-2-one

[00458] Table 18 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is F, \mathbb{R}^2 is H, \mathbb{R}^4 is OH and \mathbb{R}^5 is D-glucitol (i.e. Table 3, row 14) according to the positions defined by all rows of Table 4.

	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-
1	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-
2	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-
3	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-
4	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-
5	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-
6	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-
7	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-
8	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-
9	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-
10	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol

	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-
11	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-
12	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-
13	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-
14	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-
15	phenylpropyl]-4-oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-
16	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-
17	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)-D-glucitol
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-
18	phenylpropyl]-4-oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)-D-glucitol

[00459] Table 19 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is F, \mathbb{R}^2 is H, \mathbb{R}^4 is OH and \mathbb{R}^5 is SO₃H (i.e. Table 3, row 15) according to the positions defined by all rows of Table 4.

	4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
1	oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
2	oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
	4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
3	oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
	4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
4	oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-sulfonic acid
	4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
5	oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-sulfonic acid

1 (25 2D) 1 (2 fluoronbonvil) 2 F(2G) 2 Ladanas 2 -1 - 1
4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-sulfonic acid
4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-sulfonic acid
4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-sulfonic acid
4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-sulfonic acid
4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-sulfonic acid
4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-sulfonic acid
4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid
4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-sulfonic acid
4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-sulfonic acid
4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-sulfonic acid

[00460] Table 20 lists the compounds disclosed by substitution of Formula VIII wherein \mathbb{R}^1 is F, \mathbb{R}^2 is F, \mathbb{R}^4 is OH and \mathbb{R}^5 is F03 \mathbb{R}^4 (i.e. Table 3, row 16) according to the positions defined by all rows of Table 4.

	(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
1	oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
2	oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
3	oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
4	oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
5	oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-1-(2-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
6	oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
7	oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
8	oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
9	oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
10	oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid
	(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
11	oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)phosphonic acid
	(4'-{(2S,3R)-1-(3-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
12	oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid
	(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-
13	oxoazetidin-2-yl}-3'-hydroxybiphenyl-2-yl)phosphonic acid

	(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-	
14	oxoazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid	
	(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-	
15	oxoazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid	
	(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-	
16	oxoazetidin-2-yl}-2'-hydroxybiphenyl-2-yl)phosphonic acid	
	(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-	
17	oxoazetidin-2-yl}-2'-hydroxybiphenyl-3-yl)phosphonic acid	!
	(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-hydroxy-3-phenylpropyl]-4-	
18	oxoazetidin-2-yl}-2'-hydroxybiphenyl-4-yl)phosphonic acid	

CLAIMS

We claim:

1. A compound of formula:

wherein

represents an aryl or heteroaryl residue:

Ar represents an arvl residue:

R¹ represents one, two, three, four or five residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate:

R² represents one, two, three, four or five residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate;

R⁴ represents one, two, three or four residues chosen independently from H, halogen, -OH, loweralkyl, -O-loweralkyl, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-

loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate; R^{5g} represents one, two, three, four or five residues on Ar chosen independently from halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate;

U is (C₂-C₆)-alkylene in which one or more -CH₂- may be replaced by a radical chosen from -S-, -S(O)-, -SO₂-, -O-, -C(=O)-, -CHOH-, -NH-, CHF, CF₂, -CH(O-loweralkyl)-, -CH(O-loweracyl)-, -CH(OSO₃H)-, -CH(OPO₃H₂)-, -CH(OB(OH)₂)-, or -NOH-;

with the provisos that

- R^{5g} cannot be -CN; 2,5-dimethoxy; 2,6-dimethoxy or halogen when neither R⁴ nor R^{5g} is -OH, amino, loweralkyl, O-loweralkyl, alkoxycarbonyl, -B(OH)₂, -PO₃H₂ or -SO₃H group;
- (2) R^{5g} cannot be 2-hydroxy when represents a 2.5-thienyl residue;
- (3) adjacent -CH2- residues in U cannot be replaced by -S-, -S(O)-, -SO2- or -O-; and
- (4) -S-, -S(O)-, -SO₂-, -O- and -NH- residues in U cannot be separated only by a single carbon.

2. A compound of formula:

wherein

represents an aryl or heteroaryl residue;

Ar represents an aryl residue;

R¹ represents one, two, three, four or five residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate:

R² represents one, two, three, four or five residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate;

R⁴ represents one, two, three or four residues chosen independently from H, halogen, -OH, loweralkyl, -O-loweralkyl, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxmido, alkylsulfoxide, acylamino, amidino, -PO₃H₂, -SO₃H. -

B(OH)2, a sugar, a polyol, a glucuronide and a sugar carbamate;

R^{5g} represents from one to five residues on Ar chosen independently from halogen, OH, loweralkyl, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl,
alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy,
alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino,
-PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate;
U^a is (C₂-C₆)-alkylene in which one or more -CH₂- may be replaced by a radical
chosen from -S-, -S(O)-, -SO₂-, -O-, -C(=O)-, -CHOH-, -NH-, CHF, CF₂, -CH(Oloweralkyl)-, -CH(O-loweracyl)-, -CH(OSO₃H)-, -CH(OPO₃H₂)-, -CH(OB(OH)₂)-, or
-NOH-;

with the provisos that

- R^{5g} cannot be -CN; 2,5-dimethoxy; 2,6-dimethoxy or halogen when neither of R⁴ and R^{5g} includes an -OH, amino, loweralkyl, O-loweralkyl, alkoxycarbonyl, -B(OH)₂, -PO₃H₂ or -SO₃H group;
- (2) R^{5g} cannot be 2-hydroxy when represents a 2,5-thienyl residue;
- (3) adjacent -CH2- residues in U^a cannot be replaced by -S-, -S(O)-, -SO2- or -O-;
- (4) -S-, -S(O)-, -SO₂-, -O- and -NH- residues in U^a cannot be separated only by a single carbon: and
- (5) U^a cannot be -CH₂CH₂CH(OH)-, wherein the left end of the string is the point of attachment to the azetidinone ring and the right end of the string is the point of attachment to the phenyl ring.

3. A compound of formula:

wherein

represents an aryl or heteroaryl residue;

Ar represents an aryl residue;

R¹ represents one, two, three, four or five residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate;

R² represents one, two, three, four or five residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO₃H₂, -SO₃H, -B(OH)₂, a sugar, a polyol, a glucuronide and a sugar carbamate;

R⁴: is -OH. -SH or -B(OH)₃:

R^{5h} represents one, two, three, four or five residues on Ar chosen independently from hydrogen, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, ethylenedioxy, hydroxyloweralkyl, -CN, -CF₃, nitro, -SH, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, alkoxycarbonyl, carboxyalkyl, carboxamido, alkylsulfoxide, acylamino, amidino, -PO₃H₂₉ -SO₃H, -B(OH)₂₉, a sugar, a polyol, a glucuronide and a sugar carbamate;

U is (C_2-C_6) -alkylene in which one or more $-CH_2$ - may be replaced by a radical chosen from $-S_7$, $-S(O)_7$, $-SO_2$ -, $-O_7$, $-C(=O)_7$, $-CHOH_7$, $-NH_7$, -CHF,
with the provisos that:

(1) adjacent -CH₂- residues in U cannot be replaced by -S-, -S(O)-, -SO₂- or -O-; and

- (2) -S-, -S(O)-, -SO₂-, -O- and -NH- residues in U cannot be separated only by a single carbon.
- 4. A compound according to claim 2 wherein Uⁿ is chosen from -SCH₂CH₂-, -S(O)CH₂CH₂-, -S(O)CH₂CH(OH)-, -SCH₂C(=O)-, -SCH₂CH(OH)-, -CH(OH)CH₂CH₂-, -CH(OH)CH₂CH(OH)-, -(CH₂)₃CH(OH)- and -(CH₂)₄-, wherein the left end of the string is the point of attachment to the azetidinone ring and the right end of the string is the point of attachment to the phenyl rine.
- 5. A compound according to claim 1 or 3 wherein U is chosen from -CH₂CH₂CH(OH)-, -SCH₂CH₂-, -S(O)CH₂CH₂-, -S(O)CH₂CH(OH)-, -SCH₂C(=O)-, -SCH₂CH(OH)-, -CH(OH)CH₂CH₂-, -CH(OH)CH₂CH(OH)-, -(CH₂)₃CH(OH)- and -(CH₂)₄-, wherein the left end of the string is the point of attachment to the azetidinone ring and the right end of the string is the point of attachment to the phenyl ring.
- 6. A compound according to claim 5 wherein U is -CH2CH2CH(OH)-.
- 7. A compound according to any of claims 1-4 wherein
- R1 represents one or two residues;
- R² represents one or two residues;
- R4 represents one or two residues; and
- R^{5g} or R^{5h} represents one or two residues.
- 8. A compound according to claim 7 wherein
- R1 represents one residue:
- R2 represents one residue:
- R4 represents one residue; and

R5 represents one residue.

9. A compound of formula:

wherein

R¹ and R² represent one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboxky, carboxamido, alkylsulfoxide, acylamino, amidino, hydroxyamidino, guanidino, dialkylguanidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide, and a sugar carbamate:

R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl;

R⁴ represents one, two, three or four residues chosen independently from H, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide and a sugar carbamate;

R^{sf} represents from one to five residues chosen independently from halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide a sugar carbamate and - N⁺R⁶R⁷R⁸ X -;

 R^6 is C_1 to C_{20} hydrocarbon or forms a five- to seven-membered ring with R^7 ; R^7 is alkyl or forms a five- to seven-membered ring with R^6 ; R^8 is alkyl or together with R^6 or R^7 forms a second five- to seven-membered ring; and

X is an anion.

10. A compound of formula:

wherein

R^{2a} represents one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy;

R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl;

one of
$$R^{1a}$$
, R^{4a} and R^{5a} is -Q-A-N⁺ $R^9 R^{10} R^{11}\,$ X $^-$

and the other two of \mathbb{R}^{1a} , \mathbb{R}^{4a} and \mathbb{R}^{3a} are chosen independently from hydrogen, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF3, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl,

phenoxy, benzyloxy;

Q is chosen from a direct bond, -O-, -S-, -NH-, -CH₂O-, -CH₂NH-, -C(=O)-, -CONH-, -NHCO-, -CH₂NH(C=O)-, -O(C=O)-, -(C=O)O-, -NHCONH-, -OCONH- and -NHCOO-;

A is chosen from C_2 to C_{20} hydrocarbon, substituted alkyl of 2 to 20 carbons, substituted aryl, substituted arylalkyl, and oxaalkyl of four to fifty carbons; and, when Q is a direct bond, -C(=0) or -O(C=0)-, A may additionally be methylene;

 R^9 is C_1 to C_{20} hydrocarbon or forms a five- to seven-membered ring with A or R^{10} ; R^{10} is alkyl, forms a double bond with A or forms a five- to seven-membered ring with R^9 ;

 \mathbb{R}^{11} is alkyl or together with \mathbb{R}^{10} or \mathbb{R}^9 forms a second five- to seven-membered ring;

X is an anion.

11. A compound of formula:

wherein

R^{2b} represents one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylaminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, arylsulfonyl,

acyl, carboxy, carboxalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy;

R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl;

one of R^{1b} , R^{4b} and R^{5b} is R^{12} and the other two of R^{1b} , R^{4b} and R^{5b} are chosen independently from hydrogen, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide, and a sugar carbamate;

 R^{12} is $(C_0$ to C_{30} lakylene- G_n in which one or more -CH $_2$ - residues in said alkylene may be replaced by -S-, -SO-, SO $_2$ -, -O-, -NH-, -N(alkyl)-, -N(phenyl)-, - N(alkylphenyl)-, -N'(alkyl)-, -N'(phenyl)-, -N'(phenyl)-, -N'(alkylphenyl)-, -C(=O)-, -C(=S), CH=CH-, -C=C-, phenylene or -N[(C=O)alkyleneCOOH]-; G is chosen from -SO $_3$ H, -PO $_3$ H $_2$, -O-PO $_3$ H $_2$, -COOH, -C(N=H)NH $_2$, a polyol, a sugar, a glucuronide, a sugar carbamate, -N' 8 R 8 R 8 R 8 , and a mono or bicyclic trialkylammoniumalkyl residue; R^{6a} is C_1 to C_{20} hydrocarbon; R^{7a} is alkyl; R^{8a} is alkyl; n is 1, 2, 3, 4 or 5; and

X is an anion.

12. A compound of formula:

wherein

R^{1c} and R^{2c} represent one or two residues chosen independently from H, halogen, OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy,
hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino,
aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, akylsulfonyl, arylsulfonyl,
acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino,
hydroxyamidino, guanidino, dialkylguanidino, phenyl, benzyl, phenoxy, benzyloxy, a
glucuronide, and a sugar carbamate;

R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl;

R^{4c} represents one, two, three or four residues chosen independently from H, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, alkylaminosulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a glucuronide and a sugar carbamate;

R^{5f} represents one, two, three, four or five residues chosen independently from halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy, a sugar, a glucuronide a sugar carbamate and - N⁺R⁶R⁷R⁸ X⁻:

R⁶ is C₁ to C₂₀ hydrocarbon or forms a five- to seven-membered ring with R⁷;

 R^7 is alkyl or forms a five- to seven-membered ring with R^6 ; R^8 is alkyl or together with R^6 or R^7 forms a second five- to seven-membered ring; and

13. A compound of formula:

X is an anion.

wherein

R^{1a}, R^{2a} and R^{4a} each represents one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy;

R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl;

$$R^{5c}$$
 is -Q-A-N⁺ $R^{9}R^{10}R^{11}$ X ;

Q is chosen from a direct bond, -O-, -S-, -NH-, -CH₂O-, -CH₂NH-, -C(=O)-, -CONH-, -NHCO-, -CH₂NH(C=O)-, -O(C=O)-, -(C=O)O-, -NHCONH-, -OCONH-and -NHCOO-;

A is chosen from C_2 to C_{20} hydrocarbon, substituted alkyl of 2 to 20 carbons, substituted aryl, substituted arylakyl, and oxaalkyl of four to fifty carbons; and, when

Q is a direct bond, -C(=O) or -O(C=O)-, A may additionally be methylene;

 R^9 is C_1 to C_{20} hydrocarbon or forms a five- to seven-membered ring with A or R^{10} ; R^{10} is alkyl, forms a double bond with A or forms a five- to seven-membered ring with R^9 .

 \mathbb{R}^{11} is alkyl or together with \mathbb{R}^{10} or \mathbb{R}^9 forms a second five- to seven-membered ring; and

X is an anion.

14. A compound of formula:

wherein

R^{2b} represents one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, acylouselfonyl, acylouselfonyl, acylouselfonyl, acylouselfonyl, acylouselfonyl, acylouselfonyl, phenoxy, and benzyloxy;

R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl;

one of R^{1d}, R^{4d} and R^{5d} is R^{12a} and the other two of R^{1d}, R^{4d} and R^{5d} are chosen independently from hydrogen, halogen, -OH, loweralkyl, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino,

alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboxalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy and R^{12a};

$$R^{12a} \text{ is } -(CH_2)R^{13}(CH_2)x \qquad \qquad \\ R^{15}, \text{ or, when } R^{5d} \text{ is } R^{12a}, R^{12a} \text{ may additionally be}$$

 $(C_0 \text{ to } C_{30})$ alkylene- G_n in which one or more -CH₂- residues in said alkylene may be replaced by -S-, -SO-, SO₂-, -O-, -NH-, -N(alkyl)-, -N(phenyl)-, -N(alkylphenyl)-, -N'(alkyl)-, -N'(alkylphenyl)-, -C(=S), CH=CH-, -C=C-, phenylene or -N[(C=O)alkyleneCOOH]-;

G is chosen from -SO₃H, -PO₃H₂, -O-PO₃H₂, -COOH, -C(N=H)NH₂, a polyol, a sugar, a glucuronide, a sugar carbamate, -N⁺ $R^{6a}R^{7a}R^{8a}$ X^{-} , and a mono or bicyclic trialkylammoniumalkyl residue;

R^{6a} is C₁ to C₂₀ hydrocarbon;

R^{7a} is alkyl;

R^{8a} is alkyl;

R13 is chosen from a direct bond, -C=C-, -OCH2, -C(=O)- and -CHOH-;

R¹⁴ is chosen from -OH and -OC(=O)alkyl;

R15 is chosen from -CH2OH, -CH2OC(=O)alkyl and -COOalkyl;

j is 1, 2, 3, 4 or 5;

k is zero, 1, 2, 3, 4 or 5;

n is 1, 2, 3, 4 or 5; and

X is an anion.

15. A compound of formula:

wherein

 R^{1e} , R^{2a} and R^{4e} each represents one or two residues chosen independently from H, halogen, -OH, loweralkyl, OCF₂H, OCF₃, CF₂H, CH₂F, -O-loweralkyl, methylenedioxy, hydroxyloweralkyl, -CN, CF₃, nitro, -S-loweralkyl, amino, alkylamino, dialkylamino, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, alkylsulfonyl, arylsulfonyl, acyl, carboxy, carboalkoxy, carboxamido, alkylsulfoxide, acylamino, amidino, phenyl, benzyl, phenoxy, benzyloxy;

R3 is chosen from H, -OH, fluoro, -O-loweralkyl and -O-acyl;

G is chosen from $-SO_3H$, $-P(O)OH_2$, $-OP(O)OH_2$, -COOH, $-C(N=H)NH_2$, a polyol, a sugar, a glucuronide, a sugar carbamate, $-N^{\dagger}R^{6a}R^{7a}R^{8a}$ X^{-} , and a mono or bicyclic trialkylammoniumalkyl residue;

R^{6a} is C₁ to C₂₀ hydrocarbon:

R7a is alkyl;

R8a is alkyl;

R¹³ is chosen from a direct bond, -C=C-, -OCH₂, -C(=O)- and -CHOH-;

R14 is chosen from -OH and -OC(=O)alkyl:

R15 is chosen from -CH2OH, -CH2OC(=O)alkyl and -COOalkyl:

i is 1, 2, 3, 4 or 5;

k is zero, 1, 2, 3, 4 or 5; and

X is an anion.

- 16. A compound according to any of claims 1, 2, 4 or 9-15 wherein \mathbb{R}^1 , \mathbb{R}^2 and \mathbb{R}^4 are chosen from H, halogen, -OH, and methoxy.
- 17. A compound according to any of claims 1-4, 9, 11 or 15 wherein at least one of \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^4 and \mathbb{R}^5 is chosen from a sugar, a glucuronide and a sugar carbamate.
- 18. A compound according to any of claims 1-4, 9, 11 or 15 wherein at least one of R^1 , R^2 , R^4 and R^5 is chosen from SO₃H and PO₃H₂.
- 19. A compound according to any of claims 9-15 wherein R³ is chosen from hydrogen and hydroxy.
- 20. A compound according to any of claims 1, 2, 4 or 9-15 wherein R4 is hydrogen.
- 21. A compound according to any of claims 1, 2, 4 or 9-15 wherein R4 is OH.
- 22. A compound according to any of claims 1-4 or 9-15 wherein R⁵ is chosen from halogen, hydroxy, loweralkyl, -O-loweralkyl, CF₃, alkylsulfonyl, arylsulfonyl, hydroxymethyl, formyl, cyano, N,N-dimethylsulfonamido, carboxy, nitro, acetamido, dialkylamino, methylthio, vinyl, methylenedioxy, ethylenedioxy, carboxymethyl,

- PO_3H_2 , mercapto, - SO_3H , - $B(OH)_2$, a trialkylammonium cation, a sugar and a glucuronide.

23. A compound according to any of claims 1, 2 or 3 of formula

24. A compound according to claim 23 of formula

25. A compound according to claim 24 of formula

26. A compound according to claim 24 of formula

27. A compound according to claim 26 of formula

- 28. A compound according to claim 27 wherein R1 is H.
- 29. A compound of formula

wherein

 R^{1i} and R^{2i} are independently chosen from H, $\,$ F, Cl, CH3, CN, OCH3, OCF3, OCF2H,

CF3, CF2H, and CH2F;

 R^{4i} is chosen from H, F, Cl, CH₃, OCH₃, OH, B(OH)₂, and SH; and R^{5i} is chosen from OH, SO₃H, PO₃H₂, CH₂OH, COOH, CHO and a sugar.

30. A compound according to claim 29 wherein R5i is -OH of formula

31. A compound according to claim 29 wherein R51 is -SO3H of formula

32. A compound according to claim 29 wherein R^{5i} is -PO₃H₂ of formula

33. A compound according to claim 29 wherein R51 is D-glucitol of formula

34. A compound according to claim 30 wherein \mathbb{R}^{5i} is -OH of formula

35. A compound according to claim 31 wherein R5i is -SO3H of formula

36. A compound according to claim 32 wherein R^{5i} is -PO₃H₂ of formula

37. A compound according to claim 33 wherein R^{5i} is D-glucitol of formula

38. A compound according to claim 34 wherein R^{5i} is -OH of formula

39. A compound according to claim 34 wherein \mathbb{R}^{5i} is -OH of formula

40. A compound according to claim 35 wherein R^{5i} is -SO₃H of formula

41. A compound according to claim 35 wherein R5i is -SO3H of formula

42. A compound according to claim 36 wherein R5i is -PO3H2 of formula

43. A compound according to claim 36 wherein R5i is -PO3H2 of formula

44. A compound according to claim 37 wherein R⁵¹ is D-glucitol of formula

45. A compound according to claim 37 wherein R5i is D-glucitol of formula

- 46. A compound according to any of claims 29-45 wherein R4i is OH.
- 47. A compound according to claim 46 wherein R4i is ortho to the azetidine ring.
- 48. A compound according to any of claims 29-45 wherein R5i is an ortho substituent.
- 49. A compound according to any of claims 29-45 wherein R5i is a meta substituent.

50. A compound according to any of claims 29-45 wherein R⁵ⁱ is a para substituent.

- 51. A compound according to any of claims 29-45 wherein \mathbb{R}^{1i} and \mathbb{R}^{2i} are chosen from H. Cl and F.
- 52. A compound according to claim 51 wherein R1i is H.
- 53. A compound according to claim 29 wherein said sugar is D-glucitol
- 54. A compound according to any of claims 1-4 of formula

55. A compound according to any of claims 1, 2, 3, or 29 wherein

R1 is H or 4-fluoro:

R2 is 4-fluoro; and

R4 is H or hydroxy.

56. A compound according to claim 10 or 13 wherein one of R^1 , R^4 and R^5 is -Q-A-N⁺ $R^9R^{10}R^{11}$ X $^-$ -Q-A- is chosen from (C_2 to C_{20} hydrocarbon), -O-(C_2 to C_{20} hydrocarbon), -NH(C_2 to C_{20} hydrocarbon), -NHCO(C_2 to C_{20} hydrocarbon) and oxaalkyl of four to twenty carbons; R^9 is loweralkyl or benzyl and R^{10} and R^{11} are loweralkyl, or

R9, R10 and R11 taken together form a diazabicyclooctane quat:

$$\bigoplus_{\mathbb{N}} \mathbb{N}$$

or R⁹,R¹⁰ and R¹¹ taken together form a quinuclidinium quat:

$$\bigoplus$$
N

57. A compound according to any of claims 1, 2, 9 or 12 of formula

wherein

R1 and R2 are chosen from H, halogen, -OH, and methoxy;

R3 is chosen from hydrogen and hydroxy; and

 \mathbb{R}^5 is chosen from halogen, hydroxy, loweralkyl, -O-loweralkyl, CF3, alkylsulfonyl and arylsulfonyl.

58. A compound according to any of claims 1, 2, 9 or 12 of formula

wherein

R1 and R2 are chosen from H, halogen, -OH, and methoxy;

R3 is chosen from hydrogen and hydroxy; and

 \mathbb{R}^5 is chosen from halogen, hydroxy, loweralkyl, -O-loweralkyl, CF_3 , alkylsulfonyl and arylsulfonyl.

59. A compound according to claim 58 of formula

60. A compound according to claim 59 of formula

61. A compound according to claim 11 wherein

R1b is R12;

R2b and R4b are chosen from H, halogen, -OH, and methoxy;

 R^{12} is (C₆ to C₂₀)alkylene-G in which one or more -CH₂- residues in said alkylene may be replaced by -O-, -NH-, -N(alkyl)-, -C(=O)- or -CH=CH-; and

G is chosen from -SO₃H, -PO₃H₂, a polyol, and a sugar.

62. A compound according to any of claims 11, 14 or 15 wherein \mathbb{R}^5 is \mathbb{R}^{12} ;

 R^1 , R^2 and R^4 are chosen from H, halogen, -OH, and methoxy;

 \mathbb{R}^{12} is (C₆ to C₂₀)alkylene-G in which one or more -CH₂- residues in said alkylene may be replaced by -O-, -NH-, -N(alkyl)-, -C(=O)- or -CH=CH-; and

G is chosen from -SO₃H, -PO₃H₂, a polyol, and a sugar.

63. A compound according to any of claims 1-4, 8-15 and 29-45 wherein the substituents at positions 3 and 4 of the azetidin-2-one are in a cis relative configuration.

64. A compound according to any of claims 1-4, 8-15 and 29-45 wherein the substituents at positions 3 and 4 of the azetidin-2-one are in a trans relative configuration.

- 65. A compound according to claim 64 wherein the substituent at position 3 of the azetidin-2-one is of the R absolute configuration and the substituent at position 4 of the azetidin-2-one is of the S absolute configuration.
- 66. A compound according to any of claims 1-3 wherein U is (C₂-C₆)-alkylene in which at least one -CH₂- is replaced by -CHOH-.
- 67. A compound chosen from the group consisting of:
- (1) (1R)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-yl)-L-glucitol,
- (2) (1S)-1,5-anhydro-1-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)-L-glucitol,
- (3) (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol,
- $\label{eq:condition} $$(4) (1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol,$
- (5) (18)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)-D-glucitol,
- (6) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-
- (2',3',4'-trimethoxybiphenyl-4-yl)azetidin-2-one,
- (7) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)azetidin-2-one,
- (8) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-mercaptobiphenyl-4-yl)azetidin-2-one,
- (9) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-methoxybiphenyl-4-yl)azetidin-2-one,

 $\label{eq:condition} $$(10) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3-nitrobiphenyl-4-yl)azetidin-2-one,$

- (11) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'-hydroxy-3'-methoxybiphenyl-4-yl)azetidin-2-one,
- (12) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4'-vinylbiphenyl-4-yl)azetidin-2-one,
- (13) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[3'-(hydroxymethyl)biphenyl-4-yl]azetidin-2-one.
- (14) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[3'-(methylsulfonyl)biphenyl-4-yl]azetidin-2-one,
- (15) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4-(2-naphthyl)phenyllazetidin-2-one.
- (16) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4'-(hydroxymethyl)biphenyl-4-yl]azetidin-2-one.
- (17) (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-[4'-(methylsulfonyl)biphenyl-4-yl]azetidin-2-one,
- (18) (3R,4S)-1-biphenyl-4-yl-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)azetidin-2-one,
- (19) (3R,4S)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(3'-hydroxybiphenyl-4-yl)-1-phenylazetidin-2-one,
- (20) (3R,4S)-3-[(3S)-3-(4-fluorophenyi)-3-hydroxypropyl]-4-[3-hydroxy-3'-(methylsulfonyl)biphenyl-4-yl]-1-phenylazetidin-2-one,
- $\label{eq:condition} \begin{tabular}{ll} (21) (3R,4S)-4-(2',3'-diffuorobinenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl] azetidin-2-one, \end{tabular}$
- $\label{eq:condition} \begin{tabular}{ll} (22) (3R,4S)-4-(2',4'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl] azetidin-2-one, \end{tabular}$
- (23) (3R,4S)-4-(2'-bromo-5'-hydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one,
- $\label{eq:condition} \begin{tabular}{ll} (24) (3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl] azetidin-2-one, \end{tabular}$
- (25) (3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-

hydroxypropyl]-1-phenylazetidin-2-one,

- (26) (3R,4S)-4-(3,4'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-
- hydroxypropyl]-1-phenylazetidin-2-one,
- $(27) \ (3R,4S)-4-(3',5'-dihydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-[(3S$
- fluorophenyl)-3-hydroxypropyl]azetidin-2-one,
- (28) (3R,4S)-4-(3',5'-dimethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl|azetidin-2-one,
- (29) (3R,4S)-4-(3'-butoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hvdroxybropyllazetidin-2-one.
- (30) (3R,4S)-4-(3'-ethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyllazetidin-2-one,
- (31) (3R,4S)-4-(3'-fluoro-5'-hydroxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyllazetidin-2-one,
- (32) (3R,4S)-4-(3'-fluoro-5'-methoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyllazetidin-2-one,
- (33) (3R,4S)-4-(4'-aminobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one,
- (34) (3R,4S)-4-(4'-ethoxybiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one,
- (35) (3R,4S)-4-[4-(2,3-dihydro-1,4-benzodioxin-6-yl)phenyl]-1-(4-fluorophenyl)-3-
- $[(3S)\hbox{-}3\hbox{-}(4\hbox{-}fluorophenyl)\hbox{-}3\hbox{-}hydroxypropyl] azetidin-2\hbox{-}one,$
- (36) (3R,4S)-4-[4'-(dimethylamino)biphenyl-4-yl]-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one,
- (37) (4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)boronic acid,
- (38) (4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)phosphonic acid,
- (39) (4"-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)phosphonic acid,
- (40) (4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)boronic acid,

- (41) (4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}biphenyl-3-yl)phosphonic acid,
- (42) (6R)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucopyranose,
- (43) (6R)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-biphenyl-3-yl)-D-glucopyranose,
- (44) (6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucitol,
- (45) (6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-3-yl)-D-glucopyranose,
- (46) (6S)-6-C-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-biphenyl-3-yl)-D-glucopyranose,
- (47) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}-3-hydroxybiphenyl-4-carboxylic acid,
- (48) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}-4-hydroxybiphenyl-3-carboxylic acid,
- (49) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}-5-hydroxybiphenyl-2-carbaldehyde,
- (50) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-vl}biphenyl-3-carbaldehyde.
- (51) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} biphenyl-3-carboxylic acid,
- (52) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-sulfonic acid,
- (53) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-yl} biphenyl-3-yl β -L-glucopyranoside,
- (54) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4oxoazetidin-2-yl} biphenyl-3-yl β-L-glucopyranosiduronic acid,
- (55) 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxoazetidin-2-vl}biphenyl-4-carboxylic acid.
- (56) 4'-{(2S,3R)-3-[3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-

- yl}-3'-hydroxybiphenyl-3-sulfonic acid,
- $(57) \ 6-O-(4'-\{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-(4-fluoropheny$

hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)-D-glucitol,

 $(58) \ 6-O-(4'-\{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-$

hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)-D-glucopyranose,

(59) methyl 4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-

hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-4-carboxylate,

 $(60)\ methyl\ 6-O-(4'-\{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophen$

hydroxypropyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)-a-D-glucopyranoside,

- (61) N-(4'-{(2S,3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypxopyl]-4-oxoazetidin-2-yl}biphenyl-3-yl)acetamide,
- $\label{eq:condition} \end{cases} $$ (62) (4'-\{(2S,3R)-3-[(3S)-3-(4-Fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl\}-3'-hydroxybiphenyl-4-yl)phosphonic acid,$
- (63) 4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonic acid; and
- (64) sodium 4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-sulfonate.
- 68. A compound according to any of claims 9-15 wherein X is a pharmaceutically acceptable anion.
- A compound of formula

wherein

U is (C₂-C₆)-alkylene in which one or more -CH₂- may be replaced by a radical chosen from -S-, -S(O)-, -SO₂-, -O-, -C(=O)-, -CHOH-, -NH-, CHF, CF₂, -CH(O-loweralkyl)-, -CH(O-loweracyl)-, -CH(OSO₃H)-, -CH(OPO₃H₂)-, -CH(OB(OH)₂)-, or -NOH-;

- R^{1j} and R^{2j} are independently chosen from H, F and Cl; and R^{5j} is chosen from SO₂H, PO₂H₂, a sugar and a gluconuride.
- 70. A compound according to claim 69 wherein R1j is H.
- 71. A compound according to claim 69 wherein R2j is F.
- 72. A pharmaceutical formulation comprising a compound according to any of claims 1-71 and a pharmaceutically acceptable carrier.
- 73. A pharmaceutical formulation according to claim 72 additionally comprising a dyslipidemic agent.
- 74. A pharmaceutical formulation according to claim 73 wherein said dyslipidemic agent is an HMG-CoA reductase inhibitor.
- 75. A pharmaceutical formulation according to claim 74 wherein said HMG-CoA reductase inhibitor is chosen from the group consisting of atorvastatin, atorvastatin calcium, dihydrocompactin, bervastatin, carvastatin, cerivastatin, crilvastatin, dalvastatin, fluvastatin, glenvastatin, fluindostatin, velostatin, lovastatin, mevastatin, compactin, pitavastatin, pravastatin, rivastatin, rosuvastatin, rosuvastatin calcium, simvastatin, sirrivastatin, and CI-981.

76. A pharmaceutical formulation according to claim 74 wherein said HMG-CoA reductase inhibitor is chosen from the group consisting of atorvastatin and atorvastatin calcium.

- 77. A pharmaceutical formulation according to claim 74 wherein said HMG-CoA reductase inhibitor is chosen from the group consisting of rosuvastatin and rosuvastatin calcium.
- 78. A pharmaceutical formulation according to claim 72 additionally comprising at least one bile acid sequestrant.
- 79. A pharmaceutical formulation according to claim 78 wherein the at least one bile acid sequestrant is selected from the group consisting of cholestyramine, colestipol, colesevelam hydrochloride and mixtures thereof.
- 80. A pharmaceutical formulation according to claim 72 additionally comprising at least one nicotinic acid or derivative thereof selected from the group consisting of nicotinic acid, niceritrol, nicofuranose, acipimox and mixtures thereof.
- 81. A pharmaceutical formulation according to claim 72 additionally comprising at least one PPAR α agonist.
- 82. A pharmaceutical formulation according to claim 81 wherein said PPARα agonist is a fibric acid derivative.

83. A pharmaceutical formulation according to claim 82 wherein said fibric acid derivative is selected from the group consisting of fenofibrate, clofibrate, gemfibrozil, ciprofibrate, bezafibrate, clinofibrate, binifibrate, lifibrol and mixtures thereof.

- 84. A pharmaceutical formulation according to claim 82 wherein said fibric acid derivative is fenofibrate.
- 85. A pharmaceutical formulation according to claim 82 wherein said fibric acid derivative is Tricor®.
- 86. A pharmaceutical formulation according to claim 72 additionally comprising at least one cholesterol ester transfer protein (CETP) inhibitor.
- 87. A pharmaceutical formulation according to claim 86 wherein the least one cholesterol ester transfer protein (CETP) inhibitor is torcetrapib.
- 88. A pharmaceutical formulation according to claim 86 wherein the least one cholesterol ester transfer protein (CETP) inhibitor is JTT-705.
- 89. A pharmaceutical formulation according to claim 72 additionally comprising at least one anti-obesity agent.
- A pharmaceutical formulation according to claim 72 additionally comprising at least one acylcoenzyme A:cholesterol acyltransferase (ACAT) inhibitor.

91. A pharmaceutical formulation according to claim 72 additionally comprising at least one anti-diabetic agent.

- 92. A pharmaceutical formulation according to claim 91 wherein the at least one antidiabetic agent is a PPAR γ agonist.
- 94. A pharmaceutical formulation according to claim 91 wherein the at least one antidiabetic agent agent is an agent that decreases endogenous hepatic glucose production.
- 95. A pharmaceutical formulation according to claim 94 wherein the agent is metformin or phenformin.
- 96. A pharmaceutical formulation according to claim 91 wherein the at least one antidiabetic agent agent is an agent that increases insulin release from the pancreas.
- 97. A pharmaceutical formulation according to claim 96 wherein the agent is selected from carbutamide, tolbutamide, acetohexamide, tolazamide, chlorpropamide, glyburide [glibenclamide], glipizide and gliclazide.
- 98. A pharmaceutical formulation according to claim 72 additionally comprising at least one antioxidant.

99. A pharmaceutical formulation according to claim 98 wherein the antioxidant is probucol or AGI-1067.

 A pharmaceutical formulation according to claim 99 wherein the antioxidant is AGI-1067.

An article of manufacture comprising a container, instructions, and a pharmaceutical formulation according to claim 72, wherein the instructions are for the administration of the pharmaceutical formulation for a purpose chosen from: treating a condition for which a cholesterol absorption inhibitor is indicated; preventing or treating a cholesterol related disease; inhibiting the absorption of or reducing plasma or tissue concentration of one or more sterols or stanols; preventing or treating sistoserolemia; preventing or treating vascular diseases/disorders and conditions. dyslipidemia, mixed dyslipidemia, hypo α-lipoproteinemia, LDL pattern B, LDL pattern A, primary dysbetalipoproteinemia (Frederickson Type III), hyperlipidemia (including but not limited to hypercholesterolemia, hypertriglyceridemia, sitosterolemia), hypertension, angina pectoris, cardiac arrhythmias, congestive heart failure, and stroke; reducing the incidence of cardiovascular disease-related events; preventing or treating vascular conditions and associated thrombotic events; preventing or treating vascular inflammation; reducing blood plasma or serum concentrations of C-reactive protein; preventing, treating, or ameliorating symptoms of Alzheimer's Disease (AD); regulating production or levels of at least one amyloid β (Aβ) peptide; regulating the amount of ApoE isoform 4 in the bloodstream and/or brain; preventing or treating cognitive related disorders (including dementia); preventing or treating obesity; preventing or decreasing the incidence of xanthomas; preventing or minimizing muscular degeneration and related side effects associated with certain HMG-CoA reductase inhibitors (statins); preventing or treating diabetes and associated conditions; preventing or treating at least one autoimmune disorder; preventing or treating demyelination and associated disorders; preventing or treating cholesterol associated tumors; inhibiting the expression of at least one multiple

("multi")-drug resistance gene or protein in an animal cell; enhancing the effectiveness of a chemotherapeutic agent in a subject having cancer; reversing a multi-drug resistance phenotype exhibited by an animal cell; modulating lipid raft structure; treating or preventing a diseasee associated with lipid raft structure; and preventing or treating osteopenia disorders (bone loss disorders).

- 102. A pharmaceutical formulation according to claim 72 for the prevention or treatment of a cholesterol-associated tumor additionally comprising at least one other anti-cancer agent.
- 103. A pharmaceutical formulation according to claim 102 wherein at least one other anti-cancer agent is selected from the group consisting of a steroidal antiandrogen, a non-steroidal antiandrogen, an estrogen, diethylstilbestrol, a conjugated estrogen, a selective estrogen receptor modulator (SERM), a taxane, and a LHRH analog.
- 104. A pharmaceutical formulation according to claim 103 wherein the nonsteroidal antiandrogen is selected from the group consisting of finasteride, flutamide, bicalutamide and nilutamide.
- 105. A pharmaceutical formulation according to claim 103 wherein the SERM is selected from the group consisting of tamoxifen, raloxifene, droloxifene and idoxifene
- 106. A pharmaceutical formulation according to claim 103 wherein the taxane is selected from the group consisting of paclitaxel and docetaxel.

107. A pharmaceutical formulation according to claim 103 wherein the LHRH analog is selected from the group consisting of goserelin acetate and leuprolide acetate.

- 108. A pharmaceutical formulation according to claim 72 additionally comprising at least one anti-hypertensive compound.
- 109. A pharmaceutical formulation according to claim 108 wherein said antihypertensive compound is a thiazide derivative.
- 110. A pharmaceutical formulation according to claim 109 wherein said thiazide derivative is selected from the group consisting of hydrochlorothiazide, chlorothiazide and polythiazide.
- A pharmaceutical formulation according to claim 108 wherein said antihypertensive compound is a B-adrenergic blocker.
- 112. A pharmaceutical formulation according to claim 111 wherein said β-adrenergic blocker is selected from the group consisting of atenolol, metoprolol, propranolol, timolol, carvedilol, nadolol and bisoprolol.
- 113. A pharmaceutical formulation according to claim 108 wherein said antihypertensive compound is a calcium-channel blocker.
- 114. A pharmaceutical formulation according to claim 113 wherein said calciumchannel blocker is selected from the group consisting of isradipine, verapamil,

nitrendipine, amlodipine, nifedipine, nicardipine, isradipine, felodipine, nisoldipine and diltiazem.

- 115. A pharmaceutical formulation according to claim 108 wherein said antihypertensive compound is an angiotensin-converting-enzyme (ACE) inhibitor.
- 116. A pharmaceutical formulation according to claim 115 wherein said angiotensin-converting-enzyme (ACE) inhibitor is selected from the group consisting of delapril, captopril, enalopril, lisinopril, quinapril, perindopril, benazepril, trandolapril, fosinopril, ramipril and ceranapril.
- 117. A pharmaceutical formulation according to claim 108 wherein said antihypertensive compound is an angiotensin II receptor antagonist.
- 118. A pharmaceutical formulation according to claim 117 wherein said angiotensin II receptor antagonist is selected from the group consisting of candesartan, irbesartan, olmesartan, telmisartan and aprosartan.
- 119. A method for treating a vascular disease and associated condition comprising administering to a mammal a therapeutically effective amount of a compound according to any of claims 1-71.
- 120. A method according to claim 119, wherein said vascular disease and associated condition is hyperlipidemia.
- 121. A method according to claim 119, wherein said vascular disease and associated condition is arteriosclerosis.

122. A method according to claim 119, wherein said vascular disease and associated condition is sitosterolemia.

- 123. A method for inhibiting the absorption of cholesterol from the intestine of a mammal, which comprises administering an effective cholesterol-absorptioninhibiting amount of a compound according to any of claims 1-71 to the mammal.
- 124. A method of reducing plasma or tissue concentration of at least one noncholesterol sterol or 5α-stanol comprising administering to a mammal in need of such treatment an effective amount of a compound according to any of claims 1-71.
- 125. A method for reducing the blood plasma or serum concentrations of LDL cholesterol in a mammal, which comprises administering an effective cholesterol reducing amount of a compound according to any of claims 1-71 to the mammal.
- 126. A method for reducing the concentrations of cholesterol and cholesterol ester in the blood plasma or serum of a mammal, which comprises administering an effective cholesterol and cholesterol ester reducing amount of a compound according to any of claims 1-71 to the mammal.
- 127. A method for increasing the fecal excretion of cholesterol in a mammal, which comprises administering an effective cholesterol fecal excretion increasing amount of a compound according to any of claims 1-71 to the mammal.
- 128. A method for the prophylaxis or treatment of a clinical condition in a mammal, for which a cholesterol absorption inhibitor is indicated, which comprises

administering a therapeutically effective amount of a compound according to any of claims 1-71 to the mammal.

- 129. A method for reducing the incidence of cardiovascular disease-related events in a mammal, which comprises administering an effective cardiovascular diseaserelated events reducing amount of a compound according to any of claims 1-71 to the mammal
- 130. A method for reducing blood plasma or serum concentrations of C-reactive protein (CRP) in a mammal, which comprises administering a therapeutically effective amount of a compound according to any of claims 1-71 to the mammal.
- 131. A method for treating or preventing vascular inflammation in a subject comprising administering a compound according to any of claims 1-71 to a subject having a level of C-reactive protein that indicates the presence of vascular inflammation or the potential for vascular inflammation.
- 132. A method for reducing blood plasma or serum concentrations of triglycerides in a mammal, which comprises administering a therapeutically effective amount of a compound according to any of claims 1-71 to the mammal.
- 133. A method for increasing blood plasma or serum concentrations of HDL cholesterol of a mammal, which comprises administering a therapeutically effective amount of a compound according to any of claims 1-71 to the mammal.

134. A method for reducing blood plasma or serum concentrations of apolipoprotein B in a mammal, which comprises administering a therapeutically effective amount of a compound according to any of claims 1-71 to the mammal.

- 135. A method of treating at least one vascular condition while preventing or minimizing muscular degenerative side effects associated with HMG-CoA reductase inhibitors, said method comprising administering to a subject in need thereof a compound according to any of claims 1-71 in combination with at least one HMG-CoA reductase inhibitor.
- 136. A method of regulating the amount of ApoE isoform 4 in the bloodstream and/or brain of the subject comprising the step of administering to a subject in need of such treatment an effective amount of a composition comprising at least one compound represented by any of claims 1-71.
- 137. A method of preventing, treating, or ameliorating symptoms of Alzheimer's Disease comprising the step of administering to a subject in need of such treatment an effective amount of a composition comprising at least one compound according to any of claims 1-71.
- 138. A method of regulating the production of at least one amyloid β peptide in a subject or regulating a level of at least one amyloid β peptide in bloodstream and/or brain of a subject, comprising the step of administering to a subject in need of such treatment an effective amount of a composition comprising at least one compound represented by any of claims 1-71.
- 139. A method of prevention or treatment of a cholesterol-associated tumor comprising administering a therapeutically effective amount of a compound according

to any of claims 1-71 to a patient at risk of developing a cholesterol-associated tumor or already exhibiting a cholesterol-associated tumor.

- 140. A method of prevention or treatment of a cholesterol-associated tumor according to claim 139 wherein the cholesterol-associated tumor is selected from the group consisting of benign prostatic hypertrophy, benign breast tumor, benign endometrial tumor, and benign colon tumor.
- 141. A method of prevention or treatment of a cholesterol-associated tumor according to claim 139 wherein the cholesterol-associated tumor is selected from the group consisting of malignant prostate tumor, breast cancer tumor, endometrial cancer tumor, and colon cancer tumor.
- 142. A method of prevention or treatment of a cholesterol-associated tumor comprising coadministering a therapeutically effective amount of a compound according to any of claims 1-71 and at least one other anticancer agent to a patient at risk of developing a cholesterol-associated tumor or already exhibiting a cholesterol-associated tumor.
- 143. A method of prevention or treatment of a cholesterol-associated tumor comprising administering a pharmaceutical formulation according to claim 72 to a patient in need of such prevention or treatment.
- 144. A method of preventing or decreasing the incidence of xanthomas in a subject comprising administering to a subject in need of such treatment an effective amount of a compound according to any of claims 1-71.

145. A method of preventing or decreasing the incidence of metastases in a subject comprising administering to a subject in need of such treatment an effective amount of a compound according to any of claims 1-71.

Bioavailability of compounds of the invention

Down	Compound	Animal	fasted/non-fasted	F VALUE (%)
INO	(1S)-1 5-anhvdro-1-(4'-{(2S.3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4			
-	2.0 1. Then yearer idin-2-vl3-3-hvdroxybiphenyl-4-vl)-D-glucitol	monkey	fasted	0.1
	(1S)-1 5-anhydro-1-(4'-((2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4			
,	oxo.1.nhenylazetidin-2-vl}-3'-hydroxybiphenyl-4-yl}-D-glucitol	dog	non-fasted	0.12
	(4-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-			
"	phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)phosphonic acid	rat	fasted	0.7
	(1S)-1.5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4			
4	oxo-1-nhenylazetidin-2-vl}-3'-hydroxybiphenyl-4-yl)-D-glucitol	dog	fasted	0.35
	(4:{(2S.3R)-3-((3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-			,
٧	phenylazeridin-2-v13-3'-hydroxybiphenyl-3-yl)phosphonic acid	rat	fasted	0.5
·	14. (75.3R)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4			
٧	oxogetidin-2-vi3hinhenvl-3-vl)nhosphonic acid	rat	fasted	1.05
9	4(7.5 3R)-4-[7.3S-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-			
,	"henvigatefidin-2-v)}-3'-hvdroxybinhenyl-4-sulfonic acid	rat	fasted	4
	(18)-1 5-anhydro-1-(4'-{(2S.3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4			
•	oxo-1-nhenylazetidin-2-vi}-3'-hydroxybiphenyl-4-yl}-D-glucitol	rat	non-fasted	<0.15
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4			
•	oxo-1-phenylazetidin-2-vl}-3'-hydroxybiphenyl-4-yl}-D-glucitol	rat	fasted	<0.3, <0.2
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4			4
10	_	hamster	fasted	<0.4, <0.05
	-			ć
=	3-hvdroxypropy[]-4-oxoazetidin-2-yl}biphenyl-3-yl)-L-glucitol	rat	fasted	<0.9
	(1S)-1,5-anhydro-1-(4'-{(2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4			
2		rat	fasted	3.2
	-			
13		rat	fasted	43.7
				``
14	hydroxypropyl]-1-phenylazetidin-2-one	rat	fasted	25

ACAT inhibition activity of compounds of the invention

Row	Compound	HepG2 cells IC ₅₀ (μΜ)	Caco2 cells ICs0 (µM)
-	N-[4-(2-chlorophenyl)-6,7-dimethyl-3-quinolyl] N-(2, 4-difluorophenyl) urea	0.18	not determined
2	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-tydroxypropyl]-4-(4-fluorophenyl)-3-tydroxypropyl]-4-(4-fluorophenyl)-3-efidin-2-one	6.3	6.5, 5.1
m	(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3- [(3S)-3-(4-filorophenyl)-3-hydroxypropyl]-1- phenylazetidin-2-one	79:0	0.47, 0.36
4	(18)-1,5-anhydro-1-(4{(28,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl}-D-glucitol	52	>50,>50
'n	(4-{(2S,3R)-3-{(3S)-3-{(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3-hydroxybiphenyl-4-yl)phosphonie acid	168	. >50,>50

FIG.

3-(4-{(2S,3R)-3-{(3S)-3-{4-fluorophenyl}-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydrozybiphenyl-4-yl)phosphonic acid

2-(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxypropyl)azetidin-2-one

SUBSTITUTE SHEET (RULE 26)

-(1S)-1,5-anhydro-1-(4'-((2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydrozybiphenyl-4-yl}-D-glucicitol 3-138,43/4-(4-fluorobipheny/4-yi)-1-(4-fluorophenyl)-3-f(38)-3(4-flourophenyl)-3-flydroxypropyljazetidin-2-one 4-(38,48)-4-(2),5-difluorobipheny/4-yi)-1-(4-fluorophenyl)-3-f(38)-3(4-flourophenyl)-3-flydroxypropyljazetidin-2-one 2-(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one Competitor Compound

Binding of compounds to hamster small intestine

Row	Row Compound	% Pf-(1S)-1,5-anhydro-1-(4'-((2S,3R)-3-(3S)-3-(4-fluoropheny)]-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3'-hydroxybiphenyl-4-yl)-D-glucitol binding*
-	(1S)-1,5-anhydro-1-(4'-{(2S,3R})-3-{(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4- oxo-1-phenylazetidin-2-yl}-3'-tlydroxybiphenyl-4-yl)-D-glucitol	1.5 +/- 0.4 (4), 3.9 +/- 1.3 (3)
7	(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-fluorophenyl)-3-hydroxypropyll	3.5 +/- 0.4 (4)
m	1940.05/presspread/2000.000.000.000.000.000.000.000.000.00	3.9 +/- 1.8 (3)
4	(4-{(2S,3R,)-1(3S)-3-(4-fluorophenyl)-3-hydroxypropyl}-4-oxo-1-phenylazetdin- 2-yi)-3-hydroxybiphenyl-4-ylphosphonic soid	1.8 +/- 0.2 (4)
3	(3R,4S)-4-(4-fluorobiphenyl-4-yl)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-5-3-(4-fluorophenyl)-5-3-(4-fluorophenyl)-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	85.5 +1- 2.9 (3)
9	(3R,4S)-4-(2,5-4ifiluorobiphenyl-4-yl)-1-(4-fluorophenyl)-3-(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]azetidin-2-one	82.3 +/- 10.2 (3)

*Calculated as percentage of binding observed in the absence of competitor within an exportment. Values are indicated ++ standard error of the mean with the number of animals/group in percentheses.

FIG. 30

53±18%

101±16%

16±1%

"H-cholesterol absorption "H-cholesterol absorption "H-retinol absorption III ± 2% III ± 1% Retinol		2	
11 ± 2% 17 ± 3% 1642% 1249%	Compound (10mg/kg)	¹⁴ C-cholesterol absorption (mean±SEM)	³ H-retinol absorption (mean ± SEM)
17±3% 16±2% 12±0%	S)-1.(4-fluorophemyl)-3-[(3S)-3-(4-fluorophemyl)-3-taydroxypropyr]-4-(4- xxyphemyl)zzetidin-2-one	11 ± 2%	112±7%
16±2%	.5-anhydro-1-(4'-(2S.3R)-3-(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-phenylazotidin-2-yl)-3'-hydroxyliphenyl-4-yl)-D-gluciol	17±3%	141 ± 19%
12±0%	2S,3R)-3-[(3S)-3-(4-fluorophenyl)-3-thydroxypropyl]-4-oxo-1-phenylazetidin- -3-Lydroxybiphenyl-4-yl)phosphonic scid	16±2%	83±6%
	(3R,4S).4(3,3-ditydroxybiphenyl-4-yl)-3-((3S)-3-(4-fluorophenyl)-3- prdroxynopyl]-1-pienylzzedidin-2-one	12±0%	%±%

FIG. 4B

Taurocholic acid

291	C at alegans observation	147 chalacter of absorption TH.faurocholic acid absorption
Compound (10mg/kg)	(mean ± SEM)	(mean ± SEM)
(R.4S)-1(4-filosophenyl)-3-[(3S)-3-(4-filosophenyl)-3-hydroxypropyl]-4-(4-hydroxynenyllazetidin-2-one	14±1%	79 ± 19%
Journal of the Control 22 ± 4%	102 ± 9%	

22±4% (4-{(7.8,3R,)--(3.8)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazætidin-2-yl}-3-hydroxybiphenyl-4-yl)phosphonic acid

(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-yl)-3-[(3S)-3-(4-fluorophenyl)-3-

hydroxypropyl]-1-phenylazetidin-2-one

SUBSTITUTE SHEET (RULE 26)

Be	
tero	
Ses	
Ħ	

,		
Compound (10mg/kg)	¹⁴ C-cholesterol absorption (mean ± SEM)	³ H-progesterone absorption (mean ± SEM)
(3R,4S)-1(4-filmotophenyl)-3-(4-filmotophenyl)-3-hydroxypropyl]-4-(4-fydroxyphenyl)-2-one hydroxyphenyl)-2-one	25 ± 5%	102±3%
(1S)-1,5-anlydro-1-(4'-(2S,3R)-3-((SS)-3 (4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl)-3'-hydroxybiphenyl-4-yl)-D'-glucitol	19±3%	108 ± 7%
(4-{(25,3R)-3-{(13S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2- yl;-3-hydroxybiphenyl-4-yl)phosphonic acid	9±4%	82±10%
(3R.48).4-(3.3'-dillydroxybiphenyl.4-yl).3-[(3S).3-(4-fluorophenyl).3-hydroxypropyl]- 1-phenylazetidin.2-one	22±4%	107±11%
Sitostanol		FIG. 4D
Compound (10mg/kg)	¹⁴ C-cholesterol absorption (mean ± SEM)	¹⁴ C-cholesterol absorption ³ H-sitostanol absorption (mean (mean ± SEM)
(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4- hydroxyphenyl)azetidin-2-one	81±4%	%5 ∓ 8%
(18)-1,5-anhydro-1.(4'-((28,3R)-3-(38)-3-(4-fluorophenyl)-3-hydroxypropyl] 4-0x0-1-phenylazetidin-2-yl)-3'-hydroxybiphenyl-4-yl)-D'eglucitol	72 ± 4%	71 ± 4%
(4-{(25,3R)-3-{(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-l-phenylazetidin-2- yl)-3-hydroxybiphenyl-4-yl)phosphonic acid	17±4%	61±4%
(3R,48).4-(3.3'-dihydroxybiphenyf-4-yf).3-[(3S).3-(4-fluorophenyf).3-hydroxypropyl]- 1-phorytazetidin.2-one	14±1%	52±4%

1-(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one 2-(3R,4S)-4-(3,3'-dihydroxybiphenyl-4-y)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-1-phenylazetidin-2-one Compounds used in assay

FIG. 5A

2- (4'-{(2S,3R)-3-{(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yil-3'-hydroxybiphenyl-4-yl)phosphonic acid 1- (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one

Compounds used in assay

FIG. 5B

PCT/US2006/018616

2-(1S)-1,5-anhydro-1-(4'-{(12S,3R}-3-1(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-oxo-1-phenylazetidin-2-yl}-3-hydroxybiphenyl-4-yl}-0-gludiol

1-(3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one

E