Social Networks and Image Recognition

By: Daniel Kraft and Steven Stuglia

Practical Uses of Community Detection

Our Data

```
First line: n Second line: W(1,1) W(1,2) W(1,3) ... W(1,n) Third line: W(2,1) W(2,2) W(2,3) ... W(2,n) ... Line n+1: W(n,1) W(n,2) W(n,3) ... W(n,n)
```

where the entries W(i,j) were computed based on the reference Phantom image. Specifically $W(i,j) = \exp(-|I(i) - I(j)|/20 - ||i-j||^2/10)$ where I(i), I(j) are noisy intensities of pixels i and j of image Phantom*.bmp.

Erdos-Renyi Random Graph Model Testing

$$p_{MLE} = \frac{m}{\binom{n}{2}} = \frac{2m}{n(n-1)}.$$

Estimated p Value

0.2768

$$\mathbb{E}[X_q|X_2=m]\approx \binom{n}{q}\left(\frac{2m}{n(n-1)}\right)^{q(q-1)/2}$$

Estimated 3-Cliques	Actual 3-Cliques
3,786,100	9,552,971

$$X_3 = \frac{1}{6} trace\{A(A^2 - D)\} = \frac{1}{6} trace(A^3).$$

Erdos Renyi Random Graph 4-Clique Prediction

$$log(X_4) = a_{ER}log(m) + b_{ER}$$

Log-Log Plot (With All Edges)

$$a_{ER} = 6.0$$
 $b_{ER} = -54.471$

Log-Log Plot (With Edges : $X_4 \ge 1$)

$$a_{ER} = 6.0$$
 $b_{ER} = -54.471$

Stochastic Block Graph Model Testing

Expected $X_4 = 2.5325 \times 10^8$

$$a_{MM} = \frac{1}{2} \left(c_1 + \sqrt[3]{2c_2 - c_1^3} \right)$$
, $b_{MM} = \frac{1}{2} \left(c_1 - \sqrt[3]{2c_2 - c_1^3} \right)$
 $c_1 = \frac{4m}{n(n-1)}$ $c_2 = \frac{24t}{n(n-1)(n-2)}$.
 $m = \# \text{ edges}$ $n = \# \text{ nodes}$ $t = \# 3 \text{ cliques} = (1/6)\text{trace}(A^3)$
 $a = 0.5954$ $b = 0.0417$

Actual $X_4 = 4.1795 \times 10^8$.

Stochastic Block Model Graph 4-Clique Prediction

$$log(X_4) = a_{SSBM}log(m) + b_{SSBM}$$

Log-Log Plot of Estimated 4-Cliques

 $a_{SSBM} = 4.7631$

 $b_{SSBM} = -37.1215$

Log-Log Plot of 4-Cliques

 $a_0 = 2.130547$

 $b_0 = -5.2078$

Spectral and SDP Partitions

$$\Delta = D - A \ , \ \Delta_{ij} = \begin{cases} d_i & \text{if} \quad i = j \\ -1 & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases}$$

$$L = D^{-1}\Delta \ , \ L_{i,j} = \begin{cases} 1 & \text{if} \quad i = j \text{ and } d_i > 0 \\ -\frac{1}{d(i)} & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases}$$

$$\tilde{\Delta} = D^{-1/2}\Delta D^{-1/2} \ , \ \tilde{\Delta}_{i,j} = \begin{cases} 1 & \text{if} \quad i = j \text{ and } d_i > 0 \\ -\frac{1}{\sqrt{d(i)d(j)}} & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases}$$

High Resolution Noisy Phantom

Spectral Algorithm using the Weight Matrix

Spectral Algorithm using the Graph Laplacian

Spectral Algorithm using the Symmetric Normalized Weighted Graph Laplacian

Weight Matrix SDP

The Graph Laplacian SDP

Weighted Graph Laplacian SDP

