Lecture#5 Data Structures

Dr. Abu Nowshed Chy

Department of Computer Science and Engineering
University of Chittagong

January 22, 2025

Faculty Profile

Divide and Conquer: Merge Sort

Divide and Conquer: Merge Sort

- Divide: Partition 'n' elements array into two sub lists with n/2 elements each
- Conquer: Sort sub list1 and sub list2
- Combine: Merge sub list1 and sub list2

arrayA

1	13	24	26
indexA			

arrayB

2	15	27	38
indexB			

We compare arrayA[indexA] with arrayB[indexB].
Whichever value is smaller is placed into arrayC[indexC].

1 < 2 so we insert arrayA[indexA] into arrayC[indexC]

arrayA

1	13	24	26
	indexA		

arrayB

2	15	27	38
indexB			

2 < 13 so we insert arrayB[indexB] into arrayC[indexC]

1				
	indexC			

arrayA

1	13	24	26
	indexA		

arrayB

2	15	27	38
	indexB		

13 < 15 so we insert arrayA[indexA] into arrayC[indexC]

1	2				
		indexC			

*40

arrayA

1	13	24	26
		indexA	

arrayB

2	15	27	38
	indexB		

15 < 24 so we insert arrayB[indexB] into arrayC[indexC]

1	2	13			
			indexC		

arrayA

1	13	24	26
		indexA	

arrayB

2	15	27	38
		indexB	

24 < 27 so we insert arrayA[indexA] into arrayC[indexC]

1	2	13	15			
				indexC		

1	13	24	26
			indexA

arrayB

2	15	27	38
		indexB	

26 < 27 so we insert arrayA[indexA] into arrayC[indexC]

1	2	13	15	24		
					indexC	

arrayA

1	13	24	26

arrayB

2	15	27	38
		indexB	

Since we have exhausted one of the arrays, arrayA, we simply copy the remaining items from the other array, arrayB, into arrayC

1	2	13	15	24	26		
						indexC	

arrayA

1	13	24	26

arrayB

2	15	27	38

1	2	13	15	24	26	27	38

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15

58 | 35 | 86 | 4 | 0

99 6 86 15 58 35 86 4 0

99 6 86 15

58 | 35 | 86 | 4 | 0

99 | 6

86 | 15

58 | 35

86 | 4 | 0

99 6 86 15 58 35 86 0 4

Merge

0 4 6 15 35 58 86 86 99


```
MergeSort(low, high)
{
    if (low<high) then
    {
        mid:=floor((low+high)/2);
        MergeSort(low, mid);
        MergeSort(mid+1, high);
        Merge(low, mid, high);
    }
}</pre>
```

```
Merge(low, mid, high)
   h:=low; i:=low; j:=mid+1;
   while ((h<=mid) and (j<=high)) do
     if (a[h] < = a[j]) then
        b[i]:=a[h]; h:=h+1;
     else
     { b[i]:=a[j]; j:=j+1; }
     i:=i+1;
   if (h>mid) then
      for k:=j to high do
          b[i]:=a[k]; i:=i+1;
   else
      for k:=h to mid do
         b[i]:=a[k]; i:=i+1;
   for k:= low to high do a[k]:= b[k];
```


Insertion Sort

Suppose an array A contains 8 elements as follows: 77, 33, 44, 11, 88, 22, 66, 55

Pass	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]
K = 1:		77)	33	44	11	88	22	66	55
K = 2:	-∞ .	77	(33)	44	11	88	22	66	55
K = 3:		33	77	(44)	11	88	22	66	55
K = 4:		33	44	77	\11	88	22	66	55
K = 5:	-∞	11	33	44	77	(88)	22	66	55
K = 6:		11 ←	33	44	77	88	-(22)	66	55
K = 7:		11	22	33	44 🗻	77	88	66	55
K = 8:		11	22	33	44 4	66	77	88	<u></u>
Sorted:		11	22	33	44	55	66	77	88

Insertion Sort

Sort the following sequence using Insertion Sort:

77	42	35	12	101	5
----	----	----	----	-----	---

Insertion Sort

Selection Sort

Suppose an array A contains 8 elements as follows: 77, 33, 44, 11, 88, 22, 66, 55

Pass	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]
K = 1, LOC = 4	77)	33	44	(11)	88	22	66	55
K = 2, LOC = 6	11	(33)	44	77	88	(22)	66	55
K = 3, LOC = 6	11	22	(44)	77	88	(33)	66	55
K = 4, LOC = 6	11	22	33	77)	88	44	66	55
K = 5, LOC = 8	11	22	33	44	88	77	66	(55)
K = 6, LOC = 7	11	22	33	44	55	77	66	88
K = 7, LOC = 7	11	22	33	44	55	66	77)	88
Sorted:	11	22	33	44	55	66	77	88

Selection Sort

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in descending order

- 1. for $i \leftarrow 1$ to n 1
- 2. min $\leftarrow i$
- 3. for $j \leftarrow i + 1$ to n {Find the *i* th smallest element.}
- 4. if A[j] < A[min] then
- 5. $\min \leftarrow j$
- 6. end for
- 7. if min $\neq i$ then interchange A[i] and A[min]
- 8. end for

RadiX Sort

Suppose 9 cards are punched as follows:

348, 143, 361, 423, 538, 128, 321, 543, 366

Given to a card sorter, the numbers would be sorted in three phases

RadiX Sort

Input	0		3	5		7	8	
348							348	
348 143 361 423 538 128 321 543 366			143					
361		361						
423			423					
538			1,000,000				538	
128		20/100					128	
321		321						
543			543					
366					366			

(a) First pass

Input	0	1	2	3	4	5	6	7	8	9
361							361			
321			321							
143					143					
423			423							
143 423 543					543					
366					543					
366					(Acceptable)		366			
366 366 348					348		1200000			
538				538	1000-00					
128			128							

(b) Second pass

Input	0	1	2	3	4	5	6	7	8	9
321 423 128				321						
423					423					
128		128			STATE OF THE PARTY					
538		1000				538				
143		143								
543						543				
348				348						
361				361						
143 543 348 361 366				348 361 366						

(c) Third pass

Radix Sort

```
Algorithm: RADIXSORT (R)
   1. If N=1, then: Return. [there is only one value and no need to sort. ]
   Set D=int(R/10), Flag=0 and P=-1.
      [Following loop will initialize every element of C-array with -1]
   Repeat for I=0,1,2...(N-1)
             Repeat for J=0,1,2 . . . 9
                    Set C [I] [J] = -1
             [ End of Inner loop ]
       [ End of Outer loop ]

 Repeat for I=0,1,2...(N-1)

 Set X=A [I] % R.

                 ii. Set M=int(X/D).

 If M>0 then Set Flag=1. [Flag used as sentinel for next pass ]

                iv. Set C [I] [M] = A [I].
       [ End of loop ]
   Repeat for J=0,1,2...9

 Repeat for I=0,1,2...(N-1)

    If C [I] [J] ≠ -1,then:

    a. Set P=P+1.

                              b. Set A [P]=C [I] [J].
                    [ End of Inner loop ]
       [ End of Outer loop ]
   6. If Flag = 1, then
             RADIXSORT (R x 10).
   7. Return.
```


Bucket Sort

- Assumption:
 - the input is generated by a random process that distributes elements uniformly over [0, 1)
- Idea:
 - Divide [0, 1) into k equal-sized buckets $(k=\Theta(n))$
 - Distribute the n input values into the buckets
 - Sort each bucket (e.g., using quicksort)
 - Go through the buckets in order, listing elements in each one
- Input: A[1..n], where 0 ≤ A[i] < 1 for all i
- Output: elements A[i] sorted

Bucket Sort

Bucket Sort

Bucket Sort

Bucket Sort

- Bucket-Sort(A)
- Let B[0...n-1] be a new array
- n = length[A]
- 3. for i = 0 to n-1
- make B[i] an empty list
- for i = 1 to n
- do insert A[i] into list B[L n A[i]]
- for i = 0 to n-1
- do sort list B[i] with Insertion-Sort
- Concatenate lists B[0], B[1],...,B[n-1] together in order

inputArray

countArray

countArray

countArray

inputArray

countArray

outputArray

No.#2. Consider an array, $A[8] = \{2, 4, 1, 6, 3, 8, 5, 7\}$

Now, write a program to sort this array using the CountingSort algorithm as given below where k means the largest element of the array and n means the number of elements of the array. It is to be noted that you need to just replicate the below algorithm to convert it to a runnable program that means all the variable names should be kept same as shown below.

```
CountingSort(A, k, n)
 //A[]-- Initial Array to Sort
                                        //Build Output array from C[i]
  for i = 0 to k do
                                          for j = n-1 down to 0 do
      c[i] = 0
                                              B[c[A[j]]-1] = A[j]
                                              c[A[i]] = c[A[i]] - 1
//Storing Count of each element
  for j = 0 to n do
                                          Print array B
      c[A[i]] = c[A[i]] + 1
                                        end
// Change C[i] such that it contains
actual position of these elements in
output array
  for i = 1 to k do
      c[i] = c[i] + c[i-1]
```


