

# **Computer System Organization**

**Dr Rahul Nagpal**Computer Science



# **Computer System Organization**

**Dr. Rahul Nagpal**Computer Science

## **Computer System Organization**



- Computer-system Organization
  - One or more CPUs, device controllers connect through common bus providing access to shared memory
  - Concurrent execution of CPUs and devices competing for memory cycles



# **OPERATING SYSTEMS Computer System Operation**

PES UNIVERSITY ONLINE

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller interrupts CPU on completion

# OPERATING SYSTEMS Computer Startup



- bootstrap program is loaded at power-up or reboot
  - Typically stored in ROM or EPROM, known as firmware
  - Initializes all aspects of system
  - Loads operating system kernel and starts execution

### **Common Functions of Interrupts**

- An operating system is interrupt driven
- Interrupt transfers control to the interrupt service routine
- interrupt vector contains the addresses of all the service routines for transfer
- Interrupt architecture must save the address of the interrupted instruction
- A trap or exception is a software-generated interrupt caused either by an error or a user request



## **Interrupt Handling**

- The operating system preserves the state of the CPU by storing registers and the program counter
- Determines which type of interrupt has occurred:
  - polling
  - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt



# **Interrupt Timeline**





### **Storage Structure**

- Main memory only large storage media directly access by CPU
  - Random access and typically volatile
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
- Hard disks rigid metal or glass platters covered with magnetic recording material
  - Disk surface is logically divided into tracks, which are subdivided into sectors
  - The disk controller determines the logical interaction between the device and the computer
- Solid-state disks faster than hard disks, nonvolatile
  - Various technologies
  - Becoming more popular



# **Storage Hierarchy**

- Storage systems organized in hierarchy
  - Speed
  - Cost
  - Volatility
- Caching copying information into faster storage system; main memory can be viewed as a cache for secondary storage
- Device Driver for each device controller to manage I/O
  - Provides uniform interface between controller and kernel



# **Storage-Device Hierarchy**





- Caching
  - Important principle, performed at many levels in a computer (in hardware, operating system, software)
  - Information in use copied from slower to faster storage temporarily
  - Faster storage (cache) checked first to determine if information is there
    - If it is, information used directly from the cache (fast)
    - If not, data copied to cache and used there
  - Cache smaller than storage being cached
    - Cache management important design problem
    - Cache size and replacement policy



# **OPERATING SYSTEMS I/O Structure**

- ☐ After I/O starts, control returns to user program only upon I/O completion
  - Wait instruction idles the CPU until the next interrupt
  - Wait loop (contention for memory access)
  - □ At most one I/O request is outstanding at a time, no simultaneous I/O processing
- ☐ After I/O starts, control returns to user program without waiting for I/O completion
  - System call request to the OS to allow user to wait for I/O completion
  - Device-status table contains entry for each I/O device indicating its type, address, and state
- OS indexes into I/O device table to determine device status and to modify table entry to include interrupt



## **Direct Memory Access Structure**

 Used for high-speed I/O devices able to transmit information at close to memory speeds



 Only one interrupt is generated per block, rather than the one interrupt per byte



# **How a Modern Computer Works**





A von Neumann architecture



# **THANK YOU**

**Dr Rahul Nagpal** 

**Computer Science** 

rahulnagpal@pes.edu