1 Laboratorium 3. Estymacja dystybuanty i gęstości rozkładu.

- 1. Wygeneruj próbę rozmiaru n=100 z rozkładu normalnego N(0,1). Na jednym rysunku umieść wykresy dystrybuanty Φ tego rozkładu i dystrybuanty empirycznej \widehat{F}_n , odpowiadającej tej próbie. Powtórz tę analizę dla próby z rozkładu wykładniczego z parametrem $\lambda=1$.
- 2. Pasmo ufności dla dystrybuanty: Niech X_1, \ldots, X_n będzie próbą losową z populacji o dystrybuancie F. Dla ustalonego $\alpha \in (0,1)$ i ustalonego $n \ge 1$ zdefiniujmy $\varepsilon_n = \sqrt{\frac{\ln{(2/\alpha)}}{2n}}$ oraz

$$L(x) = \max\{\widehat{F}_n(x) - \varepsilon_n, 0\}, \ U(x) = \min\{\widehat{F}_n(x) + \varepsilon_n, 1\}, \ x \in \mathbb{R}.$$

Z nierówności Dvoretzky'ego-Kiefera-Wolfowitza, przytocznej na wykładzie, można wywnioskować, że dla każdego $n\in\mathbb{N}$ i każdej dystrybuanty F spełniony jest warunek

$$\Pr(L(x) \le F(x) \le U(x) \text{ dla każdego } x \in \mathbb{R}) \ge 1 - \alpha.$$

To oznacza, że [L(x), U(x)] jest tzw. pasmem ufności dla F na poziomie ufności $1-\alpha$.

Badania symulacyjne. Aby sprawdzić jak działa to pasmo wygeneruj M=1000 razy próbę losową rozmiaru n=100 z rozkładu o dystrybuancie F. Dla każdej z tych M prób skonstruuj pasmo ufności dla F na poziomie ufności $1-\alpha$. W ilu procentach przypadków wykres dystrybuanty F leży pomiędzy wykresami funkcji L i U? Przyjmij $\alpha=0.05$, $F=\Phi$ oraz F= dystrybuanta rozkładu wykładniczego z parametrem $\lambda=1$.

3. Wygeneruj próbę rozmiaru n = 500 z rozkładu normalnego N(0, 1).

Na jednym rysunku umieść wykres gęstości rozkładu N(0,1) oraz wykresy kilku estymatorów jądrowych, z jądrem gaussowskim, otrzymane dla różnych szerokości pasma h_n . Jak zmiana szerokości pasma wpływa na gładkość wykresu?

Dodaj do rysunku wykres kolejnego estymatora jądrowego z szerokością pasma wybraną za pomocą **reguły kciuka Silvermana** (ang. Silverman's rule of thumb)*:

$$h_n = 0.9 \cdot \min\left\{s, \frac{\text{IQR}}{1.34}\right\} n^{-1/5}.$$

Symbole s i IQR oznaczają odchylenie standardowe w próbie i rozstęp międzykwartylowy w próbie.

- * Ta metoda wyboru szerokości pasma działa dobrze, gdy estymowana gęstość nie różni się zbytnio od gęstości rozkładu normalnego.
- 4. Wygeneruj próbę* $x_1, x_2, \ldots, x_{500}$ z mieszanki rozkładów normalnych

$$0.4 \cdot N(0,1) + 0.4 \cdot N(2,1) + 0.2 \cdot N(4,2^2).$$

Na jednym rysunku umieść wykresy gęstość rozkładu tej mieszanki, histogramu i estymatora jądrowego z jądrem gaussowskim. Wybierz liczbę klas histogramu za pomocą reguły Freedmana-Diaconisa i szerokość pasma estymatora jądrowego za pomocą reguły kciuka Silvermana. Który z tych dwóch estymatorów wydaje się lepszy?

- *Aby otrzymać taką próbę, najpierw wygeneruj próbę losową u_1, \ldots, u_{500} z rozkładu jednostajnego na przedziale (0,1). Następnie, dla każdego $i=1,\ldots,500$,
- (a) wygeneruj y_i , takie że

$$y_i \stackrel{D}{=} \begin{cases} N(0, 1^2), & \text{gdy} \quad u_i \in [0, 4/10), \\ N(2, 1^2), & \text{gdy} \quad u_i \in [4/10, 8/10), \\ N(4, 2^2), & \text{gdy} \quad u_i \in [8/10, 1); \end{cases}$$

(b) przyjmij $x_i = y_i$.