(19) 世界知的所有権機関 国際事務局

(43) 国際公開日

2006年2月16日(16.02.2006)

. I Jodie Britain II diene inen bohk bohk bill i in heber hole bill bill behk bill bill bill bill bill bill bil

PCT

(10) 国際公開番号

C22C 9/00 (2006.01) **B22D 1/00** (2006.01)

B22D 21/00 (2006.01) **B22D 27/20** (2006.01)

(21) 国際出願番号:

PCT/JP2005/014691

(22) 国際出願日:

2005 年8 月10 日 (10.08.2005)

(25) 国際出願の言語:

日本語日本語

(26) 国際公開の言語:

(30) 優先権データ: 特願2004-233952 2004年8月10日(10.08.2004) J

- (71) 出願人 (米国を除く全ての指定国について): 三 宝伸銅工業株式会社 (SANBO SHINDO KOGYO KABUSHIKI KAISHA) [JP/JP]; 〒5900906 大阪府堺 市三宝町8丁374番地 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 大石 恵一郎

(OISHI, Keiichiro) [JP/JP]; 〒5810032 大阪府八尾市弓 削町 1 丁目 1 O 8番地 Osaka (JP).

WO 2006/016624 A1

- (74) 代理人: 三木 久巳 (MIKI, Hisami); 〒5410056 大阪府 大阪市中央区久太郎町2丁目3番8号 ハイム船場 303号 Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD,

[続葉有]

(54) Title: COPPER ALLOY

(54) 発明の名称: 銅合金

(A)

(B)

(57) Abstract: A copper alloy, which has a chemical composition, in mass %, that Cu: 69 to 88 %, Si: 2 to 5 %, Zr: 0.0005 to 0.04 %, P: 0.01 to 0.25 %, and the balance: Zn, wherein with respect to [a] mass % representing the content of the element a, the relationships: f0 = [Cu] - 3.5[Si] - 3[P] = 61 to 71, f1 = [P]/[Zr] = 0.7 to 200, f2 = [Si]/[Zr] = 75 to 5000 and f3 = [Si]/[P] = 12 to 240 are satisfied, which has a metal structure wherein α phase and κ phase and/or γ phase are present and, with respect to [b] % representing the content of the phase b, the relationships: $f4 = [\alpha] + [\gamma] + [\kappa] \ge 85$ and $f5 = [\gamma] + [\kappa] + 0.3[\mu] - [\beta] = 5$ to 95 are satisfied, and which has an average crystal grain diameter of 200 μ m or less in a macroscopic structure immediately after the solidification of a melt of the alloy.

(57) 要約: $Cu:69\sim88$ mass%と、 $Si:2\sim5$ mass%と、 $Zr:0.0005\sim0.04$ mass% と、 $P:0.01\sim0.25$ mass%と、Zn: 残部とからなり、元素aの含有量 [a] mass%について、 $f0=[Cu]-3.5[Si]-3[P]=61\sim71、<math>f1=[P]\diagup[Zr]=0.7\sim200$ 、 $f2=[Si]\diagup[Zr]=75\sim5000$ 及び $f3=[Si]\diagup[P]=12\sim240$ の関係を有し、 α 相と κ 相及び \surd 又は γ 相とを含有し且つ面積率における相もの含有量 [b]%について $f4=[\alpha]+[\gamma]+[\kappa]\geq85$ 及び $f5=[\gamma]+[\kappa]+0.3[\mu]-[\beta]=5\sim95$ の関係を有する金属組織をなし、溶融固化時のマクロ組織での平均結晶粒径が 200μ m以下である銅合金。

O 2006/016624 A1 |||

SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。 WO 2006/016624 1 PCT/JP2005/014691

明細書

銅合金

技術分野

- [0001] 本発明は、鋳造性,機械的特性(強度,延性等),耐蝕性,耐摩耗性,被削性等の 諸特性に優れたCu-Zn-Si系の銅合金に関するものである。 背景技術
- [0002] 銅合金は、一般の金属材料と同様、結晶粒の微細化によって耐力が向上すること は知られており、その強度は、ホールペッチの法則に基づくと、結晶粒径の逆数の1 /2乗に比例して向上すると言われている。
- [0003] 而して、銅合金の結晶粒径が微細化する基本形態としては、一般に、(A)銅合金の溶融固化時に結晶粒が微細化する場合と、(B)溶融固化後の銅合金(インゴット、スラブ等の鋳塊、ダイキャスト等の鋳造品、溶融鋳造品等)に圧延等の変形加工又は加熱処理を施すことにより、歪エネルギ等の蓄積エネルギが駆動力となって結晶粒が微細化する場合とがあり、(A)(B)何れの場合にも、Zrが結晶粒の微細化に有効に作用する元素として知られている。
- [0004] しかし、(A)の場合、溶融固化段階におけるZrの結晶粒微細化作用は、他の元素 及びそれらの含有量による影響を大きく受けるため、所望レベルの結晶粒微細化が 達成されていないのが実情である。このため、一般的には、(B)の手法が広く用いられており、溶融固化後の鋳塊、鋳造品等に熱処理を施し、さらに歪を与えることにより 、結晶粒の微細化を図ることが行われている。
- [0005] 特公昭38-20467号公報は、Zr、P、Niを含む銅合金に溶体化処理を行ない、 次に75%の加工率で冷間加工を施した後の平均結晶粒径を調べたもので、Zrを含 有しないときの280 μ mから、170 μ m(Zr:0. 05mass%含有)、50 μ m(Zr:0. 13 mass%含有)、29 μ m(Zr:0. 22mass%含有)、6 μ m(Zr:0. 89mass%含有)の 如く、Zrの含有量の増加に比例して微細化されることを教示する。なお、この公報に おいては、Zrの含有過多による悪影響を回避するために、Zrを0. 05~0. 3mass% 含有させることが提案されている。

[0006] また、特開2004-233952公報を参照すると、0.15~0.5 mass%のZrが添加された銅合金を、鋳造後、溶体化処理及び歪付加のための変形加工を施すと、平均結晶粒径は、約20μm以下のレベルにまで微細化されることが開示されている。

特許文献1:特公昭38-20467号公報

特許文献2:特開2004-233952公報

発明の開示

発明が解決しようとする課題

- [0007] しかし、前記(B)の手法のように、結晶粒径を微細化させるために、鋳造後にこれら 処理及び加工を行うことは、コスト高を招く。また、鋳物製品の形状によっては、歪付 加のための変形加工を施すことができないものもある。このため、結晶粒は、前記(A)の手法により、銅合金が溶融固化した時点で微細化されていることが好ましい。ところが、(A)の手法の場合、前述したように、溶融固化段階でのZrは、他の元素及び それらの含有量による影響を大きく受けるため、Zrの含有量を増やしたとしても、その 増量に対応した結晶粒微細化効果を得られるとは限らない。また、Zrは、酸素との親 和力が非常に強いため、Zrを大気溶解で添加すると、酸化物となり易く、歩留まりが 非常に悪い。このため、鋳造後の製品に含まれる量はたとえ僅かな量であっても、鋳込み段階では、相当量の原料を投入する必要がある。一方、溶解中での酸化物の生成量があまり多くなると、鋳込み時に酸化物が巻き込まれ易くなり、鋳造欠陥を生じる 虞れがある。酸化物の生成を回避するために、真空中又は不活性ガス雰囲気中で 溶解、鋳造を行なうことは可能であるが、コスト高を招く。また、Zrは高価な元素であるから、経済的観点より、添加量はできるだけ少なく抑えることが好ましい。
- [0008] このため、Zrの含有量をできるだけ少なくすると共に、鋳造工程の溶融固化後の段階で、平均結晶粒径が微細化された銅合金が要請されている。
- [0009] また、Cu-Zn-Si系の銅合金の場合、Siは機械的特性等の向上に寄与するが、 一方では、溶融固化時に割れやざく巣が発生し易くなり、引け巣が大きく、ブローホ ール等の鋳物欠陥が発生し易くなる問題があった。この主な原因は、Siの含有量が 多くなるにつれて、凝固温度範囲(液相線温度と固相線温度との差)が広くなり、また 熱伝導性が悪くなることによる。また、従来のCu-Zn-Si系の銅合金の凝固組織を

観察すると、デンドライトが樹枝状に生成されており、このデンドライトのアームが、発生する気泡を大気中に開放され難くし、ブローホールの残留の原因、局部的な大きな引け巣の発生の原因になっている。

[0010] 本発明は、上記した点に鑑みてなされたもので、結晶粒の微細化により鋳造性,機械的諸特性、耐蝕性、被削性、加工性等の銅合金特性を大幅に向上させ得るCu-Zn-Si系の銅合金を提供すると共に、当該銅合金を良好に製造することができる方法を提供することを目的とするものである。

課題を解決するための手段

- [0011] 本発明は、上記の目的を達成すべく、次のような銅合金及びその製造方法を提案する。
- [0012] すなわち、本発明は、第1に、Cu:69~88mass%(好ましくは70~84mass%、より好ましくは71.5~79.5mass%、最適には73~79mass%)と、Si:2~5mass%(好ましくは2.2~4.8mass%、より好ましくは2.5~4.5mass%、最適には2.7~3.7mass%)と、Zr:0.0005~0.04mass%(好ましくは0.0008~0.029mass%、より好ましくは0.001~0.019mass%、更に好ましくは0.0025~0.014mass%、最適には0.004~0.0095mass%)と、P:0.01~0.25mass%(好ましくは0.02~0.2mass%、より好ましくは0.03~0.16mass%、最適には0.04~0.12mass%)と、Zn:残部とからなり、下記の(1)~(7)の条件を満足する銅合金(以下「第1銅合金」という)を提案する。この第1銅合金にあっては、上記条件に加えて、更に、下記の(10)~(15)の条件を満足することが好ましい。第1銅合金が切削加工を必要とするものである場合には、これらの条件に加えて、更に(17)の条件を満足することが好ましい。
- [0013] 本発明は、第2に、第1銅合金の構成元素にSn、As及びSbから選択した1種以上の元素を更に含有させた組成をなすものであって、Cu:69~88mass%(好ましくは70~84mass%、より好ましくは71.5~79.5mass%、最適には73~79mass%)と、Si:2~5mass%(好ましくは2.2~4.8mass%、より好ましくは2.5~4.5mass%、最適には2.7~3.7mass%)と、Zr:0.0005~0.04mass%(好ましくは0.008~0.029mass%、より好ましくは0.001~0.019mass%、更に好ましくは0.

0025~0. 014mass%、最適には0. 004~0. 0095mass%)と、P:0. 01~0. 25 mass%(好ましくは0. 02~0. 2mass%、より好ましくは0. 03~0. 16mass%、最適には0. 04~0. 12mass%)と、Sn:0. 05~1. 5mass%(好ましくは0. 1~0. 9 mass%、より好ましくは0. 2~0. 7mass%、最適には0. 25~0. 6mass%)、As:0. 02~0. 25mass%(好ましくは0. 03~0. 15mass%)及びSb:0. 02~0. 25mass%(好ましくは0. 03~0. 15mass%)から選択された1種以上の元素と、Zn:残部とからなり、下記の(1)~(7)の条件を満足する銅合金(以下「第2銅合金」という)を提案する。この第2銅合金にあっては、上記条件に加えて、更に、下記の(10)~(15)の条件を満足することが好ましい。また、第2銅合金が切削加工を必要とするものである場合には、これらの条件に加えて、更に(17)の条件を満足することが好ましい。

- [0014] 本発明は、第3に、第1銅合金の構成元素にAl、Mn及びMgから選択した1種以 上の元素を更に含有させた組成をなすものであって、Cu:69~88mass%(好ましく は70~84mass%、より好ましくは71.5~79.5mass%、最適には73~79mass%)と、Si:2~5mass%(好ましくは2.2~4.8mass%、より好ましくは2.5~4.5mas s%、最適には2.7~3.7mass%)と、Zr:0.0005~0.04mass%(好ましくは0.0 008~0.029mass%、より好ましくは0.001~0.019mass%、更に好ましくは0. 0025~0.014mass%、最適には0.004~0.0095mass%)と、P:0.01~0.25 mass%(好ましくは0.02~0.2mass%、より好ましくは0.03~0.16mass%、最 適には0.04 \sim 0.12mass%)と、 Λ 1:0.02 \sim 1.5mass%(好ましくは0.1 \sim 1.2m ass%)、Mn:0. 2~4mass%(好ましくは0. 5~3. 5mass%)及びMg:0. 001~0 . 2mass%から選択された1種以上の元素と、Zn:残部とからなり、下記の(1)~(7) の条件を満足する銅合金(以下「第3銅合金」という)を提案する。この第3銅合金にあ っては、上記条件に加えて、更に、下記の(10)~(15)の条件を満足することが好ま しい。また、第3銅合金が切削加工を必要とするものである場合には、これらの条件 に加えて、更に(17)の条件を満足することが好ましい。
- [0015] 本発明は、第4に、第1銅合金の構成元素にSn、As及びSbから選択した1種以上の元素とAl、Mn及びMgから選択した1種以上の元素とを更に含有させた組成をなすものであって、Cu:69~88mass%(好ましくは70~84mass%、より好ましくは71

. 5~79. 5mass%、最適には73~79mass%)と、Si:2~5mass%(好ましくは2. 2~4. 8mass%、より好ましくは2. 5~4. 5mass%、最適には2. 7~3. 7mass%) と、Zr:0.0005~0.04mass%(好ましくは0.0008~0.029mass%、より好ましく は0.001~0.019mass%、更に好ましくは0.0025~0.014mass%、最適には0 . 004~0. 0095mass%)と、P:0. 01~0. 25mass%(好ましくは0. 02~0. 2ma ss%、より好ましくは0.03~0.16mass%、最適には0.04~0.12mass%)と、Sn :0. 05~1. 5mass%(好ましくは0. 1~0. 9mass%、より好ましくは0. 2~0. 7ma ss%、最適には0.25~0.6mass%)、As:0.02~0.25mass%(好ましくは0.03 ~0. 15mass%)及びSb:0. 02~0. 25mass%(好ましくは0. 03~0. 15mass%)から選択された1種以上の元素と、Al:0.02~1.5mass%(好ましくは0.1~1.2 mass%)、Mn:0. 2~4mass%(好ましくは0. 5~3. 5mass%)及びMg:0. 001 ~0. 2mass%から選択された1種以上の元素と、Zn:残部とからなり、下記の(1)~ (7)の条件を満足する銅合金(以下「第4銅合金」という)を提案する。この第4銅合金 にあっては、上記条件に加えて、更に、下記の(10)~(15)の条件を満足することが 好ましい。また、第4銅合金が切削加工を必要とするものである場合には、これらの条 件に加えて、更に(17)の条件を満足することが好ましい。

[0016] 本発明は、第5に、第1銅合金の構成元素にPb、Bi、Se及びTeから選択した1種以上の元素を更に含有させた組成をなすものであって、Cu:69~88mass%(好ましくは70~84mass%、より好ましくは71.5~79.5mass%、最適には73~79mass%)と、Si:2~5mass%(好ましくは2.2~4.8mass%、より好ましくは2.5~4.5mass%、最適には2.7~3.7mass%)と、Zr:0.0005~0.04mass%(好ましくは0.0008~0.029mass%、より好ましくは0.001~0.019mass%、更に好ましくは0.0025~0.014mass%、最適には0.004~0.0095mass%)と、P:0.01~0.25mass%(好ましくは0.02~0.2mass%、より好ましくは0.03~0.16mass%、最適には0.04~0.12mass%)と、Pb:0.005~0.45mass%(好ましくは0.005~0.2mass%、より好ましくは0.005~0.45mass%(好ましくは0.005~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.005~0.2mass%、より好ましくは0.005~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ましくは0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ま0.05~0.2mass%、より好ましくは0.05~0.1mass%)、Se:0.03~0.45mass%(好ま0.05~0.2mass%、より好ま0.05~0.1mass%)、Se:0.03~0.05~0.2mass%、より好ま0.05~0.2mass%、より0.05~0.2mass%、より0.05~0.2mass%、より0.05~0.2mass%、より0.05~0.2mass%、より0.05~0.

s%)及びTe:0.01~0.45mass%(好ましくは0.03~0.2mass%、より好ましくは0.05~0.1mass%)から選択された1種以上の元素と、Zn:残部とからなり、下記の(1)~(8)の条件を満足する銅合金(以下「第5銅合金」という)を提案する。この第5 銅合金にあっては、上記条件に加えて、更に、下記の(9)~(16)の条件を満足することが好ましい。また、第5銅合金が切削加工を必要とするものである場合には、これらの条件に加えて、更に(17)の条件を満足することが好ましい。

[0017] 本発明は、第6に、第5銅合金の構成元素にSn、As及びSbから選択した1種以上 の元素を更に含有させた組成をなすものであって、Cu:69~88mass%(好ましくは 70~84mass%、より好ましくは71.5~79.5mass%、最適には73~79mass%) と、Si:2~5mass%(好ましくは2.2~4.8mass%、より好ましくは2.5~4.5mass %、最適には2. 7~3. 7mass%)と、Zr:0. 0005~0. 04mass%(好ましくは0. 0 008~0.029mass%、より好ましくは0.001~0.019mass%、更に好ましくは0. 0025~0.014mass%、最適には0.004~0.0095mass%)と、P:0.01~0.25 mass%(好ましくは0.02~0.2mass%、より好ましくは0.03~0.16mass%、最 ·適には0.04~0.12mass%)と、Pb:0.005~0.45mass%(好ましくは0.005~ 0. 2mass%、より好ましくは0. 005~0. 1mass%)、Bi:0. 005~0. 45mass%(好ましくは0.005~0.2mass%、より好ましくは0.005~0.1mass%)、Se:0.03 ~0. 45mass%(好ましくは0. 05~0. 2mass%、より好ましくは0. 05~0. 1mass %)及びTe:0.01~0.45mass%(好ましくは0.03~0.2mass%、より好ましくは 0.05~0.1mass%)から選択された1種以上の元素と、Sn:0.05~1.5mass%(好ましくは $0.1\sim0.9$ mass%、より好ましくは $0.2\sim0.7$ mass%、最適には $0.25\sim$ 0. 6mass%)、As:0. 02~0. 25mass%(好ましくは0. 03~0. 15mass%)及びS b:0.02~0.25mass%(好ましくは0.03~0.15mass%)から選択された1種以 上の元素と、Zn:残部とからなり、下記の(1)~(8)の条件を満足する銅合金(以下「 第6銅合金」という)を提案する。この第6銅合金にあっては、上記条件に加えて、更 に、下記の(9)~(16)の条件を満足することが好ましい。また、第6銅合金が切削加 工を必要とするものである場合には、これらの条件に加えて、更に(17)の条件を満 足することが好ましい。

- [0018]本発明は、第7に、第5銅合金の構成元素にAl、Mn及びMgから選択した1種以 上の元素を更に含有させた組成をなすものであって、Cu:69~88mass%(好ましく は70~84mass%、より好ましくは71.5~79.5mass%、最適には73~79mass%)と、Si: $2\sim5$ mass% (好ましくは2. $2\sim4$. 8 mass%、より好ましくは2. $5\sim4$. 5 mas s%、最適には2.7~3.7mass%)と、Zr:0.0005~0.04mass%(好ましくは0.0 008~0.029mass%、より好ましくは0.001~0.019mass%、更に好ましくは0. 0025~0.014mass%、最適には0.004~0.0095mass%)と、P:0.01~0.25 mass%(好ましくは0.02~0.2mass%、より好ましくは0.03~0.16mass%、最 ·適には0.04~0.12mass%)と、Pb:0.005~0.45mass%(好ましくは0.005~ 0. 2mass%、より好ましくは0. 005~0. 1mass%)、Bi:0. 005~0. 45mass%(好ましくは0.005 \sim 0.2mass%、より好ましくは0.005 \sim 0.1mass%)、Se:0.03 ~0. 45mass%(好ましくは0. 05~0. 2mass%、より好ましくは0. 05~0. 1mass %)及びTe:0.01~0.45mass%(好ましくは0.03~0.2mass%、より好ましくは 0.05~0.1mass%)から選択された1種以上の元素と、Al:0.02~1.5mass%(好ましくは $0.1\sim1.2$ mass%)、 $Mn:0.2\sim4$ mass%(好ましくは $0.5\sim3.5$ mass %)及びMg:0.001~0.2mass%から選択された1種以上の元素と、Zn:残部とか らなり、下記の(1)~(8)の条件を満足する銅合金(以下「第7銅合金」という)を提案 する。この第7銅合金にあっては、上記条件に加えて、更に、下記の(9)~(16)の条 件を満足することが好ましい。また、第7銅合金が切削加工を必要とするものである場 合には、これらの条件に加えて、更に(17)の条件を満足することが好ましい。
- [0019] 本発明は、第8に、第5銅合金の構成元素にSn、As及びSbから選択した1種以上の元素とAl、Mn及びMgから選択した1種以上の元素とを更に含有させた組成をなすものであって、Cu:69~88mass%(好ましくは70~84mass%、より好ましくは71.5~79.5mass%、最適には73~79mass%)と、Si:2~5mass%(好ましくは2.2~4.8mass%、より好ましくは2.5~4.5mass%、最適には2.7~3.7mass%)と、Zr:0.0005~0.04mass%(好ましくは0.0008~0.029mass%、より好ましくは0.001~0.019mass%、更に好ましくは0.0025~0.014mass%、最適には0.004~0.0095mass%)と、P:0.01~0.25mass%(好ましくは0.02~0.2mass%)

ss%、より好ましくは0.03~0.16mass%、最適には0.04~0.12mass%)と、Pb :0.005~0.45mass%(好ましくは0.005~0.2mass%、より好ましくは0.005 ~0. 1mass%)、Bi:0. 005~0. 45mass%(好ましくは0. 005~0. 2mass%、よ 9好ましくは0.005 \sim 0.1mass%)、 $Se:0.03\sim$ 0.45mass%(好ましくは0.05 \sim 0. 2mass%、より好ましくは0. 05~0. 1mass%)及びTc:0. 01~0. 45mass%(好ましくは0.03~0.2mass%、より好ましくは0.05~0.1mass%)から選択された 1種以上の元素と、Sn:0.05~1.5mass%(好ましくは0.1~0.9mass%、より好 ましくは0.2~0.7mass%、最適には0.25~0.6mass%)、As:0.02~0.25m ass%(好ましくは0.03~0.15mass%)及びSb:0.02~0.25mass%(好ましくは 0.03~0.15mass%)から選択された1種以上の元素と、Al:0.02~1.5mass% (好ましくは0.1 \sim 1.2mass%)、Mn:0.2 \sim 4mass%(好ましくは0.5 \sim 3.5mass %)及びMg:0.001~0.2mass%から選択された1種以上の元素と、Zn:残部とか らなり、下記の(1)~(8)の条件を満足する銅合金(以下「第8銅合金」という)を提案 する。この第8銅合金にあっては、上記条件に加えて、更に、下記の(9)~(16)の条 件を満足することが好ましい。第8銅合金が切削加工を必要とするものである場合に は、これらの条件に加えて、更に(17)の条件を満足することが好ましい。

[0020] なお、以下の説明において、[a]は元素aの含有量値を示すものであり、元素aの含有量は[a]mass%で表現される。例えば、Cuの含有量は[Cu]mass%とされる。また、[b]は相bの面積率による含有量値を示すものであり、相bの含有量(面積率)は[b]%で表現される。例えば、a相の含有量(面積率)は[a]%で表現される。また、各相bの含有量たる面積率は、画像解析により測定されるものであり、具体的には、200倍の光学顕微鏡組織を画像処理ソフト「WinROOF」(株式会社テックジャム)で2値化することにより求められるもので、3視野で測定された面積率の平均値である。(1)f0=[Cu]-3.5[Si]-3[P]+0.5([Pb]+0.8([Bi]+[Se])+0.6[Te])-0.5([Sn]+[As]+[Sb])-1.8[Al]+2[Mn]+[Mg]=61~71(好ましくはf0=62~69.5、より好ましくはf0=62.5~68.5、最適にはf0=64~67)であること。なお、f0において、含有しない元素aについては[a]=0とする。(2)f1=[P]/[Zr]=0.7~200(好ましくはf1=1.2~100、より好ましくはf1=2

- . 3~50、最適にはf1=3.5~30)であること。
- (3)f2=[Si]/[Zr]=75~5000(好ましくはf2=120~3000、より好ましくはf2=180~1500、最適にはf2=300~900)であること。
- (4)f3=[Si]/[P]=12~240(好ましくはf3=16~160、より好ましくはf3=20~120、最適にはf3=25~80)であること。
- (5) α 相と κ 相及び/又は γ 相とを含有し且つf4=[α]+[γ]+[κ] \geq 85(好ましくはf4 \geq 95)であること。なお、f4において、含有しない相bについては[b]=0とする。
- (6)f5=[γ]+[κ]+0.3[μ]-[β]=5~95(好ましくはf5=10~70、より好ましくはf5=15~60、最適にはf5=20~45)であること。なお、f5において、含有しない相bについては[b]=0とする。
- (7)溶融固化時のマクロ組織での平均結晶粒径が200μm以下(好ましくは150μ m以下、より好ましくは 100μ m以下、最適には 50μ m以下)であること。ここに、溶 融固化時のマクロ組織(又はミクロ組織)での平均結晶粒径とは、鋳造(金型鋳造,砂 型鋳造、横型連続鋳造、アップワード(アップキャスト)、半溶融鋳造、半溶融鍛造、 溶融鍛造等の従来公知の各種鋳造法による鋳造を含む)又は溶接, 溶断により溶融 固化させた後であって変形加工(押出及び圧延等)や加熱処理が一切施されていな い状態におけるマクロ組織(又はミクロ組織)の結晶粒径の平均値をいう。なお、この 明細書の中で使用される「鋳物」ないし「鋳造物」という語は、完全に、又は一部が溶 解して凝固した物を意味し、圧延や押出用のインゴット、スラブ、ビレットを始め、例え ば、砂型鋳物、金型鋳物、低圧鋳造鋳物、ダイキャスト、ロストワックス、セミンリッド鋳 造(例えば、チクソーキャスティング、レオキャスティング)、半溶融成形物、スクイズ、 遠心鋳造、連続鋳造鋳物(例えば、横型連続鋳造、アップワード、アップキャストで作 られた棒材、中空棒材、異形棒材、異形中空棒材、コイル材、線材等)、溶融鍛造(直接鍛造)、溶射、肉盛、ライニング、オーバレイによる鋳物を挙げることができる。さ らに、溶接についても、母材の一部を溶かし、凝固させて、繋ぎ合わせるものである から、広義において、鋳物に含まれるものと理解されるべきである。
- $(8) f6 = [Cu] 3.5[Si] 3[P] + 3([Pb] + 0.8([Bi] + [Se]) + 0.6[Te])^{1/2}$

≥62(好ましくはf6≥63. 5)であり且つf7=[Cu]-3. 5[Si]-3[P]-3([Pb]+0. 8([Bi]+[Se])+0. 6[Te]) 1/2≤68. 5(好ましくはf7≤67)であること。なお、f6, f7において、含有しない元素aについては[a]=0とする。

- (9) f8=[γ]+[κ]+0. 3[μ]-[β]+25([Pb]+0. 8([Bi]+[Se])+0. 6[Te]) $^{1/2}$ \geq 10(好ましくはf8 \geq 20) であり且つf9=[γ]+[κ]+0. 3[μ]-[β]-2 5([Pb]+0. 8([Bi]+[Se])+0. 6[Te]) $^{1/2}$ \leq 70(好ましくはf9 \leq 50) であること。 なお、f7, f8において、含有しない元素a又は相bについては[a]=0又は[b]=0と する。
- (10)溶融固化時における初晶が α 相であること。
- (11)溶融固化時において包晶反応が生じるものであること。
- (12)溶融固化時においては、デンドライト・ネットワークが分断された結晶構造をなしており且つ結晶粒の二次元形態が円形状、円形に近い非円形状、楕円形状、十字形状、針形状又は多角形状をなしていること。
- (13)マトリックスの α 相が微細に分断されており且つ κ 相及び/又は γ 相がマトリックスに均一に分散していること。
- (14)固相率30~80%の半溶融状態において、少なくともデンドライト・ネットワーク が分断された結晶組織をなし且つ固相の2次元形態が円形状、円形に近い非円形 状、楕円形状、十字形状又は多角形状をなすこと。
- (15) 固相率60%の半溶融状態において、固相の平均結晶粒径が150 μ m以下(好ましくは100 μ m以下、より好ましくは50 μ m以下、最適には40 μ m以下)であること及び/又は当該固相の平均最大長が200 μ m以下(好ましくは150 μ m以下、より好ましくは100 μ m以下、最適には80 μ m以下)であること。
- (16) Pb又はBiが含有されている場合にあっては、微細で大きさの揃ったPb粒子又はBi粒子がマトリックスに均一に分散していること。具体的には、Pb粒子又はBi粒子の平均粒径が $1\,\mu$ m以下(但し、最大粒径が $3\,\mu$ m(好ましくは $2\,\mu$ m)を超えない)であることが好ましい。
- (17) すくい角: -6° 及びノーズ半径: 0.4mmのバイトを使用した旋盤により、乾式で、切削速度: 80~160m/min、切込み深さ: 1.5mm及び送り速度: 0.11mm/

rev. の条件で切削した場合において生成する切屑が台形若しくは三角形をなす小 片形状(図5(A))、長さ25mm以下のテープ形状(同図5(B))又は針形状(同図(C))をなすこと。

- [0021] 而して、第1~第8銅合金にあって、Cuは当該銅合金の主元素であり、工業用材料 としての耐食性(耐脱亜鉛腐食性、耐応力腐食割れ性)及び機械的特性を確保する ためには69mass%以上含有させる必要がある。しかし、Cu含有量が88mass%を 超えると、強度,耐摩耗性が低下し、後述するZr及びPの共添による結晶粒の微細 化効果を妨げる虞れがある。これらの点を考慮すれば、Cu含有量は69~88mass %であることが必要であり、 $70\sim84$ mass%としておくことが好ましく、 $71.5\sim79.5$ mass%としておくことがより好ましく、最適には73~79mass%としておくのがよい。さ らに、結晶粒の微細化を図るためには、他の含有元素との関係を重視する必要があ り、(1)の条件を満足することが必要である。すなわち、Cu及びその他の構成元素の 含有量相互に、f0=[Cu]-3.5[Si]-3[P]+0.5([Pb]+0.8([Bi]+[Se]) +0.6[Te] -0.5([Sn]+[As]+[Sb])-1.8[Al]+2[Mn]+[Mg]=61~71の関係が成立することが必要であり、 $f0=62\sim69$. 5であることが好ましく、f0=62. 5~68. 5であることがより好ましく、f0=64~67であることが最適である。なお、f 0の下限値は初晶が α 相であるか否かに関る値でもあり、f0の上限値は、包晶反応 に関る値でもある。
- [0022] 第1~第8銅合金にあって、Znは、Cu, Siと共に、当該銅合金の主元素であり、合金の積層欠陥エネルギーを下げ、包晶反応を生じさせ、溶融固化物の結晶粒の微細化作用、溶湯の流動性向上並びに融点低下作用、Zrの酸化損失の防止作用、耐食性向上作用及び被削性向上作用を有する他、引張強さ、耐力、衝撃強さ及び疲労強等の機械的強度を向上させる働きがある。かかる点を考慮して、Znの含有量は、各構成元素の含有量を差し引いた残部とする。
- [0023] 第1~第8銅合金にあって、Siは、Zr、P、Cu及びZnと共添させると、合金の積層 欠陥エネルギーを下げ、包晶反応に与る組成範囲を広げ、顕著な結晶粒微細化効 果を発揮する元素である。その添加量は2%以上で効果を発揮する。しかし、Siを5 %を超えて添加しても、Cu、Znとの共添による結晶粒微細化作用は飽和するか、逆

に低下する傾向にあり、更には延性の低下をきたす。また、Si含有量が5%を超えると、熱伝導性が低下し、凝固温度範囲が広くなって、鋳造性が悪くなる虞れがある。また、Siには溶湯の流動性を向上させ、溶湯の酸化を防ぎ、融点を下げる作用がある。また、耐食性、特に耐脱亜鉛腐食性及び耐応力腐食割れ性を向上させる作用がある。更には、被削性の向上と、引張り強さ、耐力、衝撃強さ、疲労強度などの機械的強度の向上に寄与する。これらの作用が、鋳物の結晶粒の微細化について相乗効果を生み出す。これらのSi添加機能が効果的に発揮されるには、Siの含有量は、(1)を満足することを条件として、2~5mass%としておく必要があり、2.2~4.8mass%としておくことが好ましく、2.5%~4.5%としておくことが好ましく、2.7~3.7 mass%としておくのが最適する。

- [0024] 第1~第8銅合金にあって、Zr及びPは、銅合金結晶粒の微細化、特に溶融固化 時の結晶粒の微細化を図ることを目的として共添されるものである。すなわち、Zr及 びPは、単独では、他の一般的な添加元素と同様、銅合金結晶粒の微細化を僅かに 図ることができるにすぎないが、共存状態で極めて有効な結晶粒の微細化機能を発 揮するものである。
- [0025] このような結晶粒の微細化機能は、Zrについては0.0005mass%以上で発揮され、0.0008mass%以上で効果的に発揮され、0.001mass%以上で顕著に発揮され、0.004mass%以上で極めて顕著に発揮され、0.004mass%以上で極めて顕著に発揮されることになり、Pについては0.01mass%以上で発揮され、0.02mass%以上で顕著に発揮され、0.03mass%以上でより顕著に発揮され、0.04mass%以上で極めて顕著に発揮されることになる。
- [0026] 一方、Zr添加量が0.04mass%に達し、またP添加量が0.25mass%に達すると、他の構成元素の種類,含有量に拘わらず、Zr及びPの共添による結晶粒の微細化機能は完全に飽和することになる。したがって、かかる機能を効果的に発揮させるに必要なZr及びPの添加量は、Zrについては0.04mass%以下であり、Pについては0.25mass%以下であることが必要である。なお、Zr及びPは、それらの添加量が上記した範囲で設定される微量であれば、他の構成元素によって発揮される合金特性を阻害することがなく、例えば、Snを含有する場合にも、結晶粒の微細化により、γ

相に優先配分される高Sn濃度部分を連続したものでなくマトリックス内に均一に分布させることができ、その結果、鋳造割れを防止でき、ざく巣、引け巣、ブローホール、ミクロポロシティの少ない健全な鋳造物を得ることができ、更に鋳造後に行う冷間抽伸や冷間伸線の加工性能を向上させることができ、当該合金の特性を更に向上させることができる。なお、工業的に極く微量のZrを添加する観点からは、Zrを0.019mass%を超えて添加しても、結晶粒の微細化効果がより一層発揮されるものではなく、0.029mass%を超えると、むしろ、結晶粒の微細化効果が損なわれる虞れがあり、0.04mass%を超えると、明らかに結晶粒の微細化効果が喪失する。

- [0027] なお、Zrは非常に酸素との親和力が強いものであるため、大気中で溶融させる場合やスクラップ材を原料として使用する場合には、Zrの酸化物、硫化物となり易く、Zrを過剰に添加すると、溶湯の粘性が高められて、鋳造中に酸化物、硫化物の巻き込み等による鋳造欠陥を生じ、ブローホールやミクロポロシティが発生し易くなる。これを避けるために真空や完全な不活性ガス雰囲気で溶解、鋳造させることも考えられるが、このようにすると、汎用性がなくなり、Zrを専ら微細化元素として添加する銅合金において大幅なコストアップとなる。かかる点を考慮すると、酸化物、硫化物としての形態をなさないZrの添加量を0.029mass%以下としておくことが好ましく、0.019mass%以下としておくことがより好ましく、0.014mass%以下としておくことが最も好ましく、0.0095mass%としておくのが最適である。また、Zr量をこのような範囲としておくと、当該銅合金をバージン材を新たに添加することなく再利用材として大気中で溶解した場合(当該再利用材のみからなる原料を使用して鋳造した場合)にも、Zrの酸化物や硫化物の生成が減少し、再び微細結晶粒で構成された健全な第1~第8 銅合金を得ることが可能となる。
- [0028] これらの点から、Zr添加量は、0.0005~0.04mass%としておくことが必要であり、0.0008~0.029mass%としておくことが好ましく、0.001~0.019mass%としておくことがより好ましく、0.0025~0.014mass%としておくことが最も好ましく、0.004~0.0095mass%としておくのが最適である。
- [0029] また、Pは、上述した如くZrとの共添により結晶粒の微細化機能を発揮させるために 含有されるものであるが、耐蝕性、鋳造性等にも影響を与えるものである。したがって

、Zrとの共添による結晶粒の微細化機能に加えて、耐蝕性, 鋳造性等に与える影響を考慮すると、P添加量は0.01~0.25mass%としておくことが必要であり、0.02~0.2mass%としておくことが好ましく、0.03~0.16mass%としておくことがより好ましく、0.04~0.12mass%としておくのが最適である。なお、PはZrとの関係が重要であるが、0.25mass%を超えて添加しても、微細化効果は少なく、却って延性を損なうので望ましくはない。

- [0030] 而して、Zr, Pの共添による結晶粒の微細化効果は、Zr, Pの含有量を上記した範 囲で個々に決定するのみでは発揮されず、これらの含有量相互において(2)の条件 を満足することが必要である。結晶粒の微細化は、融液から晶出する初晶のα相の 核生成速度が、デンドライト結晶の成長速度を遥かに上回ることによって達成される が、かかる現象を発生させるには、Zr, Pの添加量を個々に決定するのみでは不十 分であり、その共添割合(f1=[P]/[Zr])を考慮する必要がある。Zr, Pの含有量を 適正な範囲において適正な添加割合となるように決定しておくことにより、Zr, Pの共 添機能ないし相互作用によって初晶α相の結晶生成を著しく促進させることができ、 その結果、当該α相の核生成がデンドライト結晶の成長を遥かに上回ることになるの である。Zr, Pの含有量が適正範囲にあり且つそれらの配合比率([P]/[Zr])が量 論的である場合、数十ppm程度の微量なZr添加により、 α 相の結晶中に、Zr, Po金属間化合物(例えばZrP, ZrP_{1-x})を生成することがあり、当該 α 相の核生成速度 は、[P]/[Zr]の値f1が0.7~200となることによって高められ、その程度はf1=1. $2\sim100$ となることによって更に高められ、f1=2. $3\sim50$ となることにより著しく高めら れ、f1=3.5~30となることにより飛躍的に高められることになる。すなわち、ZrとPと の共添割合f1は結晶粒の微細化を図る上で重要な要素であり、f1が上記した範囲 にあれば、溶融固化時の結晶核生成が結晶成長を大きく上回ることになる。さらに、 結晶粒が微細化されるためには、Zr, PとSiとの共添量割合(f2=[Si]/[Zr]及びf 3=[Si]/[P])も十分当然重要であり、考慮する必要がある。
- [0031] そして、溶融固化が進行し、固相の割合が増してくると、結晶成長が頻繁に行われ 始め、一部で結晶粒の合体も生じ始め、通例、α相結晶粒は大きくなっていく。ここ で、溶融物が固化する過程において包晶反応が生じると、固化されずに残っている

融液と固相 α 相とが固液反応し、固相の α 相を食いながら β 相が生成する。その結 果として、 α 相が β 相に包み込まれて、 α 相の結晶粒自体の大きさもより小さくなっ ていき且つその形状も角の取れた楕円形状になっていく。固相がこのような微細で楕 円形状になれば、ガスも抜け易くなり、固化するときの凝固収縮に伴う割れに対する 耐性を持ち、引けも滑らかに生じて、常温での強度、耐食性等の諸特性にも好影響 をもたらす。当然、固相が微細な楕円形状であれば、流動性がよく半溶融凝固法に 最適であり、凝固の最終段階で微細な楕円形状の固相と融液とが残っておれば、複 雑な形状のモールドであっても、隅々まで固相と融液とが十分に供給され、形状の優 れた鋳物ができる。すなわち、ニアネットシェイプまで成形される。なお、包晶反応に 与るかどうかは、実用上平衡状態とは異なり一般的には平衡状態より広い組成で生 じる。ここで関係式f0が重要な役割を果たし、f0の上限値が、主として、溶融固化後 の結晶粒の大きさと包晶反応とに与れる尺度に関わる。fOの下限値は、主として、溶 融固化後の結晶の大きさと初晶が α 相であるかどうかの境界値とに関わるものである 。fOが前述した好ましい範囲(f0=62~69.5)、より好ましい範囲(f0=62.5~68 . 5) 、最適な範囲(f0=64~67)となるに従って、初晶 α 相の量が増え、非平衡反 応で生じる包晶反応がより活発に生じ、結果として常温で得られる結晶粒はより小さく なっていく。

[0032] これら一連の溶融固化現象は、当然、冷却速度に依存する。すなわち、冷却速度が10⁵ ℃/秒以上のオーダーの急冷では、結晶の核生成を行うには、その時間がないので結晶粒が微細化されない虞れがあり、逆に、10⁻³ ℃/秒以下のオーダーのゆっくりした冷却速度では、結晶成長或いは結晶粒の合体が促進されるため、結晶粒は微細化されない虞れがある。また、平衡状態に近づくので、包晶反応に与る組成範囲も小さくなる。より好ましくは、溶融固化段階での冷却速度が10⁻² ~10⁴ ℃/秒の範囲となることであり、最も望ましくは10⁻¹ ~10³ ℃/秒の範囲となることである。このような冷却速度の範囲のなかでも、より上限に近い冷却速度となる程、結晶粒が微細化される組成領域が広がり、結晶粒はより微細化されることになる。包晶反応で生成するβ相には、結晶粒成長抑制作用があるが、さらに、高温でβ相が消滅することなく固相内反応によって、κ相および/又はγ相が析出、生成し、それら

相の占める割合が多くなると、結晶成長を抑制するばかりか、さらにα結晶粒をより微 細にする。そのための条件式が $f4=[\alpha]+[\gamma]+[\kappa]$ および $f5=[\gamma]+[\kappa]+0$ $3[\mu]-[\beta]$ であり、f5が前述した好ましい範囲($f5=10\sim70$)、より好ましい範囲 (f5=15~60)、最適な範囲(f5=20~45)となるに従って、結晶粒はより微細化さ れることになる。条件(8)におけるf6, f7はf0と類似の計算式であり、(9)におけるf8 はf5と類似の計算式であるので、(8)(9)の条件を満足することは、f0についての(1)の条件及びf5についての(6)の条件を満足することに繋がる。なお、本発明で特定 する組成範囲のCu-Zn-Si合金で形成される、 κ 相, γ 相は、Siリッチな硬質相で あるが、これらの κ 相, γ 相は切削加工時の応力集中源となり、厚みの薄いせん断 型の切屑を生成し、分断された切屑が得られる。また同時に結果的に低い切削抵抗 値を示す。したがって、被削性改善元素である軟質のPb粒子やBi粒子の存在が無く ても(Pb, Bi等の被削性改善元素を含有していなくても)、κ 相、γ 相が均一に分布 しておれば、工業的に満足しうる被削性が得られる。このようなPb等の被削性改善元 素によらない被削性の改善効果を発揮させるための条件が(1)の条件であり、f5に ついての(6)の条件である。ところで、近年、高速切削が要求されているが、硬質の κ相、γ相と軟質のPb粒子やBi粒子とがマトリックスに均一に分散して共存すること により、特に高速切削条件下で飛躍的に相乗効果を発揮する。このような共添効果 を発揮するためには、(8)の条件を満足することが必要とされ、更に(9)の条件を満 足することが好ましい。

[0033] 以上の点から理解されるように、第1~第8銅合金にあっては、少なくとも(1)~(6) の条件を満足することによって、溶融固化物であっても熱間加工材或いは再結晶材 と同等の結晶粒微細化を図ることができるのであり、(10)の条件を満足することによって、結晶粒の更なる微細化を図ることができるのである。さらに、第5~第8銅合金 にあっては、(8)の条件(好ましくは、更に(9)の条件)を満足することにより、Pb等の 微量添加による被削性向上を図りつつ結晶粒の微細化を図ることができる。なお、κ相,γ相はα相よりSi濃度が高い相であり、これら3相で100%に達しないときは、残部は、一般的には、β相、μ相及びδ相のうちの少なくとも1つの相が含まれる。

[0034] 第5~第8銅合金にあって、Pb, Bi, Sc, Tcは、周知のように、被削性を向上させる

と共に、軸受等の摩擦係合部材にあっては相手部材との馴染み性及び摺動性を向 上させて優れた耐摩耗性を発揮させる。かかる機能が発揮されるには、Pb等の大量 添加を要するものであるが、結晶粒の微細化と相俟って(8)の条件が満足されること によって、Pb等を大量添加させずとも、上記した微量な範囲で添加させることにより、 工業的に満足しうる被削性を確保することができる。このようなPb等の微量添加によ る被削性の更なる向上を図るためには、(8)の条件に加えて(9)(16)の条件を満足 させることが好ましい。このような条件が満足されることにより、結晶粒の微細化と相俟 って、Pb等の粒子がより微細且つ均一な大きさでマトリックスに分散配置されることに より、Pb等の大量添加を必要とせずとも、被削性を向上させることができる。その効果 は、被削性に有効な本組成範囲で形成される硬質の κ 相, γ 相及び未固溶軟質の Pb, Biの存在と相俟って、特に高速切削条件下において顕著に発揮される。一般に は、Pb, Bi, Se, Teを単独で添加させるか、Pb及びTe、Bi及びSe又はBi及びTeの 何れかの組み合わせで共添される。このような点から、(8)等を満足することを条件と して、Pbの添加量は0.005~0.45mass%としておく必要があり、0.005~0.2m ass%としておくことが好ましく、0.005 \sim 0.1mass%としておくことがより好ましい。 また、Biの添加量は0.005~0.45mass%としておく必要があり、0.005~0.2ma ss%としておくことが好ましく、0.005~0.1mass%としておくことがより好ましい。ま た、Seの添加量は0.03~0.45mass%としておく必要があり、0.05~0.2mass %としておくことが好ましく、0.05~0.1mass%としておくことがより好ましい。また、 Teの添加量は0.01~0.45%mass%としておく必要があり、0.03~0.2mass% としておくことが好ましく、0.05~0.1mass%としておくことがより好ましい。

[0035] ところで、Pb, Biは常温で固溶せず、Pb粒子又はBi粒子として存在するばかりでなく、溶融固化段階においても溶融状態で粒状に分布し且つ固相間に存在することになり、これらのPb, Biの粒子が多い程、溶融固化段階での割れが生じ易くなる(凝固による収縮に伴って引張応力が発生することによる)。さらに、Pb, Biは、固化後においても、主として粒界に溶融状態で存在するため、これらの粒子が多いと、高温割れが生じ易い。かかる問題を解決するためには、結晶粒を微細化して応力を緩和し(及び粒界面積を大きくし)、更にこれらPb, Biの粒子を小さくし且つ均一に分布させるこ

とが極めて有効である。また、Pb, Biは被削性を除いて、上記した如く銅合金特性に 悪影響を及ぼすものであり、常温の延性についても、Pb, Bi粒子に応力が集中する ことによって延性も損なわれる(結晶粒が大きい場合、相乗的に延性が損なわれるこ とはいうまでもない)。このような問題についても、結晶粒の微細化によって解決する ことができることに注目すべきである。

[0036]第2、第4、第6及び第8銅合金にあって、Sn, As, Sbは、主として、耐潰蝕性, 耐 蝕性(特に、耐脱亜鉛腐蝕性)を向上させるために添加される。このような機能は、Sn については0.05mass%以上、Sb, Asについては、0.02mass%以上添加するこ とによって発揮される。しかし、Sn, As, Sbを一定量を超えて添加させても、その添 加量に見合う効果が得られず、却って延性が低下することになる。また、Snは、単独 では微細化効果に与える影響は少ないが、Zr及びPの存在下では結晶粒の微細化 機能を発揮しうる。Snは機械的性質(強度等),耐蝕性,耐摩耗性を向上させるもの であり、更に、デンドライトアームを分断させ、包晶反応を生じさせるCu又はZnの組 成領域を広げてより効果的な包晶反応を遂行させる機能を有し、合金の積層欠陥エ ネルギーを減少させ、その結果、結晶粒の粒状化及び微細化をより効果的に実現さ せるものでもある。Snは低融点金属で、少量の添加でもSnの濃化相あるいは濃化部 分を形成し、鋳造性を阻害させる。ところがZr、Pの添加の下で、Snを添加するとSn による結晶粒微細化効果も相俟って結晶粒が微細化されることにより、Snの濃化部 分が形成されるにもかかわらず、その濃化相が均一に分散され、鋳造性や延性を大 きく損なわずに、優れた耐潰食性を示す。その耐潰食性効果を発揮するためにはSn 添加量が0.05%以上必要であり、好ましくは0.1%以上、より好ましくは0.25%以 上必要である。一方、Sn添加量が1.5%を超えると、如何に結晶粒が微細化されて も、鋳造性や常温での延性に問題が生じ、好ましくは0.9%以下、より好ましくは0. 7%以下であり、最適には0.6%以下である。Snの添加量は0.05~1.5mass%と しておく必要があり、0.1~0.9mass%としておくことが好ましく、0.2~0.7mass %としておくことがより好ましく、0.25~0.6mass%としておくことが最適である。ま た、As, Sbの添加量は、人体に悪影響を及ぼす有毒性をも効力して、0. 02~0. 2 5mass%としておく必要があり、 $0.03\sim0.15$ mass%としておくことが好ましい。

[0037] 第3、第4、第7及び第8銅合金にあって、Al, Mn, Mgは、主として、強度向上、湯 流れ性向上、脱酸, 脱硫効果、高速流速下での耐潰蝕性の向上及び耐摩耗性の向 上を図るために添加される。さらに、AIは鋳物表面に強固なAI-Snの耐蝕性皮膜を 形成して、耐摩耗性を向上させる。また、MnもSnとの間で耐蝕性皮膜を生成する効 果がある。またMnは合金中のSiと結合してMn-Siの金属間化合物(原子比で1:1 又は2:1)を形成し、合金の耐磨耗性を向上させる効果を持つ。ところで、銅合金原 料の一部としてスクラップ材(廃棄伝熱管等)が使用されることが多く、かかるスクラッ プ材にはS成分(硫黄成分)が含まれていることが多いが、溶湯にS成分が含まれて いると、結晶粒微細化元素であるZrが硫化物を形成して、Zrによる有効な結晶粒微 細化機能が喪失される虞れがあり、更に、湯流れ性を低下させて、ブローホールや割 れ等の鋳造欠陥が生じ易くなる。Mgは、耐蝕性向上機能に加えて、このようなS成分 を含有するスクラップ材を合金原料として使用する場合にも鋳造時における湯流れ 性を向上させる機能を有する。また、Mgは、S成分をより無害なMgSの形態で除去 することができ、このMgSはそれが仮に合金に残留したとしても耐蝕性に有害な形態 でなく、原料にS成分が含まれていることに起因する耐蝕性低下を効果的に防止でき る。また、原料にS成分が含まれていると、Sが結晶粒界に存在し易く粒界腐蝕を生じ る虞れがあるが、Mg添加により粒界腐蝕を効果的に防止することができる。また、Al ,Mnも、Mgに比しては劣るものの、溶湯に含まれるS成分を除去する作用がある。ま た、溶湯中の酸素量が多いと、Zrが酸化物を形成して結晶粒の微細化機能が喪失 される虞れがあるが、Mg, Al, Mnは、このようなZrの酸化物形成をも防止する効果 も発揮する。このような点を考慮して、Al, Mn, Mgの含有量は前述した範囲とされる 。なお、溶湯のS濃度が高くなって、ZrがSによって消費される虞れがあるが、Zr装入 前に、溶湯に0.001mass%以上のMgを含有させておくと、溶湯中のS成分がMgS の形で除去され或いは固定されることから、かかる問題を生じない。ただし、Mgを0. 2mass%を超えて過剰に添加すると、Zrと同様に酸化して、溶湯の粘性が高められ 、酸化物の巻き込み等による鋳造欠陥を生じる虞れがある。これらの点と強度、耐費 蝕性, 耐摩耗性の向上とを合わせて考えると、Alの添加量は0.02~1.5mass%と しておく必要があり、0.1~1.2mass%としておくことが好ましい。また、Mnの添加

量は、合金中のSiとMnSiの金属間化合物(原子比で1:1又は2:1)の形成による耐摩耗性の向上効果を合わせて考えると、0.2~4mass%としておく必要があり、0.5~3.5mass%としておくことが好ましい。Mgは0.001~0.2mass%添加させておく必要がある。

- [0038]第1~第8銅合金にあっては、Zr及びPを添加させることにより結晶粒の微細化を実 現し、(7)の条件が満足されることにより、つまり溶融固化時のマクロ組織での平均結 晶粒径が200 μ m以下(好ましくは150 μ m以下、より好ましくは100 μ m以下、最適 にはミクロ組織において50μm以下)としておくことにより、高品質の鋳物を得ること ができ、横型連続鋳造やアップワード(アップキャスト)等の連続鋳造による鋳物の提 供及びその実用も可能となる。結晶粒が微細化していない場合、鋳物特有のデンド ライト組織の解消や κ 相, γ 相の分断, 細分化等を図るために複数回の熱処理が必 要となり、また結晶粒が粗大化しているために表面状態が悪くなるが、結晶粒が上記 した如く微細化されている場合には、偏析もミクロ的なものにすぎないから、このような 熱処理を行なう必要がなく、表面状態も良好となる。さらに、κ 相, γ 相は、主として、 α 相との相境界に存在するため、結晶粒が微小で且つ均一に分散されている程、そ れらの相長さは短くなるから、κ相, γ相を分断するための格別の処理工程は必要と しないか或いは必要とするとしてもその処理工程を最小限とすることができる。このよ うに、製造に必要な工程数を大幅に削減して、製造コストを可及的に低減させること ができる。なお、(7)の条件が満足されることにより、次のような問題が生じず、優れた 銅合金特性が発揮される。 すなわち、κ 相,γ 相の分布が不均一である場合には、 マトリックスの α 相との強度差により割れが生じ易く、常温での延性も損なわれる。ま た、PbやBiの粒子は本来的にα相との境界や粒界に存在するものであるから、相が 大きい場合には凝固割れが生じ易く、常温での延性も損なわれる。
- [0039] また、(13)の条件(第5~第8銅合金にあっては、更に(16)の条件)を満足して、 κ相, γ相やPb, Bi粒子が大きさの揃った微細形状でマトリックスに均一に分布して おれば、当然に冷間加工性が向上することになるから、第1~第8銅合金鋳物は、カシメ加工を必要とする用途(例えば、ホースニップルにあっては、設置工事時にカシメ 加工を施されることがある)にも好適に使用することができる。

- [0040] また、第1~第8銅合金鋳物にあっては、原料にスクラップ材を使用することがあるが、かかるスクラップ材を使用する場合、不可避的に不純物が含有されることがあり、実用上、許容される。しかし、スクラップ材がニッケル鍍金材等である場合において、不可避不純物としてFe及び/又はNiが含有されるときには、それらの含有量を制限する必要がある。すなわち、これらの不純物の含有量が多いと、結晶粒の微細化に有用なZr及びPが、Fe及び/又はNiによって消費され、たとえZr, Pが過剰添加されていたとしても、結晶粒の微細化作用を阻害する不都合があるからである。したがって、Fe及びNiの何れかが含有される場合には、その含有量を0.3mass%以下(好ましくは0.2mass%以下、より好ましくは0.1mass%以下、最適には0.05mass%以下)に制限しておくことが好ましい。また、Fe及びNiが共に含有される場合には、それらの合計含有量が0.35mass%以下(好ましくは0.25mass%以下、より好ましくは0.15mass%以下、最適には0.07mass%以下)に制限しておくことが好ましい。
- [0041] 好ましい実施の形態にあって、第1~第8銅合金は、例えば、鋳造工程で得られる 鋳造物又はこれに更に一回以上の塑性加工を施した塑性加工物として提供される。
- [0042] 鋳造物は、例えば、横型連続鋳造法、アップワード法又はアップキャスト法により鋳造された線材、棒材又はホローバーとして提供され、またニアネットシェイプに鋳造されたものとして提供される。さらに、鋳物、半溶融鋳物、半溶融成形物、溶湯鍛造物又はダイキャスト成形物としても提供される。この場合、(14)(15)の条件を満足することが好ましい。半溶融状態において固相が粒状化しておれば、当然に、半溶融鋳造性に優れることになり、良好な半溶融鋳造を行うことができる。また、最終疑固段階での固相を含んだ融液の流動性は、主として、半溶融状態での固相の形状と液相の粘性ないし液相の組成とに依存するが、鋳造による成形性の良否(高精度や複雑な形状が要求される場合にも健全な鋳物を鋳造できるか否か)については、前者(固相の形状)による影響度が大きい。すなわち、半溶融状態において固相がデンドライトのネットワークを形成し始めておれば、その固相を含んだ融液は隅々に行き渡り難いことから、鋳造による成形性は劣ることなり、高精度鋳物や複雑形状鋳物を得ることは困難である。一方、半溶融状態における固相が粒状化しており、それが球状化(二次

元形態においては円形)に近いものである程、更に粒径が小さいものである程、半溶融鋳造性を含む鋳造性に優れることになり、健全な高精度鋳物や複雑形状鋳物を得ることができる(高品質の半溶融鋳造物を当然に得ることができる)。したがって、半溶融状態における固相の形状を知ることによって半溶融鋳造性を評価することができ、半溶融鋳造性の良否によって、これ以外の鋳造性(複雑形状鋳造性、精密鋳造性及び溶融鍛造性)の良否を確認することができる。一般的には、固相率30~80%の半溶融状態において、少なくともデンドライト・ネットワークが分断された結晶組織をなし且つ固相の2次元形態が円形状、円形に近い非円形状、楕円形状、十字形状又は多角形状をなす場合には、半溶融鋳造性が良好であるということができ、更に、特に固相率60%の半溶融状態において、当該固相の平均結晶粒径が150μm以下(好ましくは100μm以下、より好ましくは50μm以下、最適には40μm以下)であること及び固相の平均最大長が300μm以下(好ましくは150μm以下、より好ましくは100μm以下、最適には80μm以下)であることの少なくとも何れかである場合(特に楕円形状にあっては平均的な長辺と短辺との比が3:1以下(好ましくは2:1以下)となる場合)には、半溶融鋳造性に優れるということができる。

- [0043] また、塑性加工物は、例えば、熱間押出加工物、熱間鍛造加工物又は熱間圧延加工物として提供される。また、上記した鋳造物を抽伸加工又は伸線加工してなる線材、棒材又はホローバーとして提供される。さらに、切削加工により得られる塑性加工物つまり切削加工物として提供される場合にあっては、(17)の条件を満足すること、つまり、すくい角: -6°及びノーズ半径: 0.4mmのバイトを使用した旋盤により、乾式で、切削速度: 80~160m/min、切込み深さ: 1.5mm及び送り速度: 0.11mm/rev.の条件で切削した場合において、台形若しくは三角形をなす小片形状、長さ25mm以下のテープ形状又は針形状をなす切屑が生成することが好ましい。切屑の処理(切屑の回収や再利用等)が容易となり、切屑がバイトに絡み付いたり切削表面を損傷させる等のトラブルを発生することなく、良好な切削加工を行なうことができるからである。
- [0044] 第1~第8銅合金は、具体的には、水と常時又は一時的に接触する状態で使用される接水金具として提供される。例えば、ニップル、ホースニップル、ソケット、エルボ

、チーズ、プラグ、ブッシング、ユニオン、ジョイント、フランジ、ストップバルブ、ストレ ーナー、スリースバルブ、ゲートバルブ、チェッキバルブ、グローブバルブ、ダイヤフラ ムバルブ、ピンチバルブ、ボールバルブ、ニードルバルブ、ミニチュアバルブ、レリー フバルブ、メンコック、ハンドルコック、グランドコック、2方コック、3方コック、4方コック 、ガスコック、ボール弁、安全弁、レリーフ弁、減圧弁、電磁弁、スチームトラップ、水 道メータ、流量計、給水栓、散水栓、止水栓、白在栓、混合栓、分水栓、カラン、分枝 栓、逆止弁、分枝バルブ、フラッシュバルブ、切り替えコック、シャワー、シャワーフック 、プラグ、ザルボ、散水ノズル、スプリンクラー、給湯器用伝熱管、熱交換器用伝熱管 、ボイラ用伝熱管、トラップ、消化栓弁、送水口、インペラ、インペラ軸若しくはポンプ ケース又はこれらの構成材として提供される。また、相手部材と常時又は一時的に接 触する状態で相対運動する摩擦係合部材としても提供される。例えば、歯車、摺動 ブッシュ、シリンダ、ピストンシュー、支承、ベアリング部品、軸受部材、シャフト、ロー ラ、ロータリジョイント部品、ボルト、ナット若しくはスクリュー軸又はこれらの構成部材と して提供される。さらには、圧力センサ、温度センサ、コネクター、コンプレッサー部品 、キャブレター部品、ケーブル止め金具、携帯電話アンテナ部品又は端子としても提 供される。

- [0045] また、本発明は、上記した第1~第8銅合金を製造する場合にあって、鋳造工程においては、Zr(より一層の結晶粒の微細化及び安定した結晶粒の微細化を図る目的で含有されるもの)を、これを含有する銅合金物の形態で、鋳込み直前或いは原料溶解の最終段階で添加させることにより、鋳造に際して酸化物及び/又は硫化物の形態でZrが添加されないようにすることを特徴とする被削性、強度、耐摩耗性及び耐蝕性に優れた銅合金鋳物の鋳造方法を提案する。Zrを含有する前記銅合金物としては、Cu-Zr合金若しくはCu-Zn-Zr合金又はこれらの合金をベースとしてP、Mg、Al、Sn、Mn及びBから選択する1種以上の元素を更に含有させたものが好適する。
- [0046] すなわち、第1~第8銅合金を鋳造又はその構成素材(被塑性加工材)を鋳造する 鋳造工程においては、Zrを粒状物、薄板状物、棒状物又は線状物の形状とした中 間合金物(銅合金物)の形態で鋳込み直前に添加させることにより、Zrの添加時にお

けるロスを可及的に少なくして、鋳造に際して酸化物及び/又は硫化物の形態をな してZrが添加されることにより結晶粒の微細化効果を発揮するに必要且つ十分なZr 量が確保できないといった事態が発生しないようにするのである。そして、このようにZ rを鋳込み直前に添加する場合、Zrの融点は当該銅合金の融点より800~1000℃ 高いため、粒状物(粒径:2~50mm程度)、薄板状物(厚み:1~10mm程度)、棒 状物(直径:2~50mm程度)又は線状物とした中間合金物であって当該銅合金の 融点に近く日つ必要成分を多く含んだ低融点合金物(例えば、0.5~65mass%の Zrを含有するCu-Zr合金若しくはCu-Zn-Zr合金又はこれらの合金をベースとし て更にP、Mg、Al、Sn、Mn及びBから選択した1種以上の元素(各元素の含有量: 0. 1~5mass%)を含有させた合金)の形態で使用することが好ましい。特に、融点 を下げて溶解を容易ならしめると共にZrの酸化によるロスを防止するためには、0.5 ~35mass%のZrと15~50mass%のZnを含有するCu-Zn-Zr合金(より好ましく は1~15mass%のZrと25~45mass%のZnを含有するCu-Zn-Zr合金)をベー スとした合金物の形態で使用することが好ましい。Zrは、これと共添させるPとの配合 割合にもよるが、銅合金の本質的特性である電気・熱伝導性を阻害する元素である が、酸化物、硫化物としての形態をなさないZr量が0.04mass%以下、特に0.019 mass%以下であると、Zrの添加による電気・熱伝導性の低下を殆ど招くことがなく、 仮に電気・熱伝導性が低下したとしても、その低下率はZrを添加しない場合に比して 極く僅かで済む。

[0047] また、(7)の条件を満足する第1~第8銅合金を得るためには、鋳造条件、特に鋳込み温度及び冷却速度を適正としておくことが望ましい。すなわち、鋳込み温度については、当該銅合金の液相線温度に対して20~250℃高温(より好ましくは25~150℃高温)となるように決定しておくことが好ましい。すなわち、鋳込み温度は、(液相線温度+20℃)≤鋳込み温度≤(液相線温度+250℃)の範囲で決定しておくことが好ましく、(液相線温度+25℃)≤鋳込み温度≤(液相線温度+150℃)の範囲で決定しておくことがより好ましい。一般的には、合金成分にもよるが、鋳込み温度は1150℃以下であり、好ましくは1100℃以下であり、より好ましくは1050℃以下である。鋳込み温度の下限側は、溶湯がモールドの隅々に充填される限り、特に制限はな

いが、より低い温度で鋳込む程、結晶粒が微細化される傾向となる。なお、これらの温度条件は、合金の配合量によって異なることは理解されるべきである。 発明の効果

- [0048] 本発明の銅合金は、溶融固化段階で結晶粒が微細化されるため、凝固の際の収縮に耐えることができ、鋳造割れの発生を少なくすることができる。また、凝固の過程で発生するホールやポロシティーについても、外部へ抜け易いため、鋳造欠陥等のない(ざく巣等の鋳造欠陥がなく、デンドライト・ネットワークが形成されていないため表面が滑らかで且つ引け巣が可及的に浅いものとなる)健全な鋳物が得られる。したがって、本発明によれば、極めて実用性に富む鋳造物又はこれを塑性加工した塑性加工物を提供することができる。
- [0049] また、凝固の過程で晶出する結晶は、鋳造組織特有の典型的な樹枝状の形態ではなく、アームが分断された形態、好ましくは、円形、楕円形、多角形、十字形の如き形態である。このため、溶湯の流動性が向上し、薄肉で複雑な形状なモールドの場合でも、その隅々にまで溶湯を行き渡らせることができる。
- [0050] 本発明の銅合金は、結晶粒の微細化、α相以外の相(Siによって生じるκ相,γ相)やPb粒子等の均一分散化により、構成元素によって発揮される被削性、強度、耐摩耗性(摺動性)及び耐蝕性の大幅な向上を図ることができるものであり、水道水等と常時又は一時的に接触する状態で使用される接水金具(例えば、上水道用配管の水栓金具,バルブ・コック類,継手・フランジ類,水栓金具、住設機器・排水器具類,接続金具,給湯器部品等)、相手部材(回転軸等)と常時又は一時的に接触する状態で相対運動する摩擦係合部材(例えば、軸受,歯車,シリンダ,ベアリングリテーナ,インペラ,バルブ,開閉弁,ポンプ類部品,支承等)や圧力センサ、温度センサ、コネクター、コンプレッサー部品、スクロールコンプレッサー部品、高圧バルブ、空調用バルブ・開閉弁、キャブレター部品、ケーブル止め金具、携帯電話アンテナ部品、端子等又はこれらの構成材として好適に実用することができる。
- [0051] また、本発明の方法によれば、Zrが酸化物及び硫化物の形態で添加されることによる不都合を生じることなく、Zr及びPの共添効果による結晶粒の微細化を実現して、上記した銅合金鋳物を効率よく良好に鋳造することができる。

図面の簡単な説明

[0052] [図1]実施例の銅合金No. 79のエッチング面(切断面)写真であって、(A)はマクロ 組織を示すものであり、(B)はミクロ組織を示すものである。

[図2]比較例の銅合金No. 228のエッチング面(切断面)写真であって、(A)はマクロ組織を示すものであり、(B)はミクロ組織を示すものである。

[図3]実施例の銅合金No. 4についての半溶融鋳造性試験における半溶融固化状態の顕微鏡写真である。

[図4]比較例の銅合金No. 202についての半溶融鋳造性試験における半溶融固化 状態の顕微鏡写真である。

[図5]切削試験で生成した切屑の形態を示す斜視図である。

[図6]鋳造物C、D、C1又はD1(水道メータ本体)を示す斜視図である。

[図7]図7に示す鋳造物C、D、C1又はD1(水道メータ本体)の底部を切り取って示す平面図である。

[図8]実施例の銅合金No. 72である鋳造物Cの内面要部(図7のM部に相当するひけ部)の拡大平面図である。

[図9]実施例の銅合金No. 72である鋳造物Cの要部断面図(図7のN-N線断面図に相当)である。

[図10]実施例の銅合金No. 73である鋳造物Cの内面要部(図7のM部に相当する ひけ部)の拡大平面図である。

[図11]実施例の銅合金No. 73である鋳造物Cの要部断面図(図7のN-N線断面図に相当)である。

[図12]比較例の銅合金No. 224である鋳造物C1の内面要部(図7のM部に相当するひけ部)の拡大平面図である。

[図13]比較例の銅合金No. 224である鋳造物C1の要部断面図(図7のN-N線断面図に相当)である。

実施例

[0053] 実施例として、表1~表8に示す組成の銅合金No. 1~No. 92を、鋳造物A, B, C, D, E, F及び塑性加工物Gとして得た。また、比較例として、表9~表12に示す

組成の銅合金No. 201~No. 236を、鋳造物A1, B1, C1, D1, E1, F1, G1及び塑性加工物G2として得た。

- [0054] 鋳造物A(銅合金No. 1~No. 46)及びA1(銅合金No. 201~214)は、溶解炉(溶製能力:60kg)に横型連続鋳造機を付設してなる鋳造装置を使用して低速(0.3 m/分)で連続鋳造された40mm径の棒材である。また、鋳造物B(銅合金No. 47~No. 52)及びB1(銅合金No. 217, No. 218)は、上記した鋳造物A, A1と同様に、溶解炉(溶製能力:60kg)に横型連続鋳造機を付設してなる鋳造装置を使用して低速(1m/分)で連続鋳造されたもので、8mm径の棒材である。なお、何れの場合にも、鋳造は黒鉛製モールドを用いて、随時、所定の成分になるように添加元素を調整添加しながら連続で行った。また、上記した鋳造物A, B, A1, B1の鋳造工程にあっては、鋳込み時にZrをCu-Zn-Zr合金(Zrを3mass%含む)の形態で添加させると共に、鋳込み温度を当該鋳造物の構成材料の液相線温度より100℃高く設定した。また、鋳造物A1(銅合金No. 215, No. 216)は市販の40mm径の横型連続棒(No. 215はCAC406Cに相当する)である。
- [0055] 鋳造物C(銅合金No. 53~No. 73)、D(銅合金No. 74~No. 78)、C1(銅合金No. 219~No. 224)及びD1(銅合金No. 225, No. 226)は、何れも、実操業の低圧鋳造(溶湯温度:1005℃±5℃, 圧力:390mbar, 加圧時間:4. 5秒, 保持時間:8秒)によって得たものであり、図6に示す如く、一対の水道メータ本体を有する実鋳物である。なお、鋳造物C, C1は金型を使用して鋳造されたものであり、鋳造物D, D1は砂型を使用して鋳造されたものである。
- [0056] 鋳造物E(銅合金No. 79~No. 90)及びE1(銅合金No. 228~No. 233)は、原料を電気炉で溶解した上、その溶湯を200℃に予熱した鉄製鋳型に鋳込むことによって得られた円柱形状(直径:40mm, 長さ:280mm)の鋳塊である。
- [0057] 鋳造物F(No. 91)及びF1(No. 234)は、実操業の低圧鋳造によって得た大型鋳物(厚み:190mm, 幅900mm, 長さ:3500mmのインゴット)である。
- [0058] 塑性加工物G(銅合金No. 92)は、鋳塊(240mm径のビレット)を熱間押出して得られた径100mmの棒材である。また、塑性加工物G1(銅合金No. 235, No. 236)は、何れも市販の押出ー抽伸棒(40mm径)である。なお、No. 235はIIS C3604

に相当し、No. 236はJIS C3771に相当する。なお、以下の説明においては、鋳造物A, B, C, D, E, F及び塑性加工物Gを「実施例物」といい、鋳造物A1, B1, C1, D1, E1, F1, G1及び塑性加工物G2を「比較例物」ということがある。

- [0059] 而して、実施例物A, B, C, D, E, G及び比較例物A1, B1, C1, D1, E1, G1, G2からJIS Z 2201に規定する10号試験片を採取し、この試験片についてアムスラー型万能試験機による引張試験を行い、引張強さ(N/mm²)、0.2%耐力(N/mm²)、伸び(%)及び疲労強度(N/mm²)を測定した。その結果は、表13~表18に示す通りであり、実施例物は引張強さ等の機械的性質に優れることが確認された。なお、鋳造物C, D, C1, D1については、試験片を図6に示す湯道部Kから採取した。
- [0060] また、実施例物及び比較例物の被削性を比較確認するために、次のような切削試験を行って切削主分力(N)を測定した。
- [0061] すなわち、実施例物A, B, E, G及び比較例物A1, B1, E1, G1から採取した試料の外周面を、真剣バイト(すくい角: -6°、ノーズR: 0.4mm)を取り付けた旋盤により、切削速度: 80m/分、切込み深さ: 1.5mm、送り: 0.11mm/rev.の条件及び切削速度: 160m/分、切込み深さ: 1.5mm、送り: 0.11mm/rev.の条件で、夫々、乾式で切削し、バイトに取り付けた3分力動力計で測定し、切削主分力に換算した。その結果は、表13~表18に示す通りであった。
- [0062] また、上記の切削試験において生成した切屑の状態を観察し、その形状によって、(a) 台形若しくは三角形をなす小片形状(図5(A))、(b) 長さ25mm以下のテープ形状(同図(B))、(c) 針形状(同図(C))、(d) 長さ75mm以下のテープ形状((b) を除く)(同図(D)、(e) 3巻き以下の螺旋形状(同図(E))、(f) 長さが75mmを超えるテープ形状(同図(F) 及び(g) 3巻きを超える螺旋形状(同図(G))の7つに分類して被削性を判定し、表13~表18に示した。これらの表においては、切屑形態が(a)であるものを「◎」で、(b) であるものを「○」で、(c) であるものを「●」で、(d) であるものを「□」で、(e) であるものを「△」で、(f) であるものを「×」で、また(g) であるものを「×」で、夫々示した。而して、切屑が、(f) (g) の形態をなしている場合には、切屑の処理(切屑の回収や再利用等) が困難となる上、切屑がバイトに絡み付いたり、切削表面を

損傷させる等のトラブルが発生して、良好な切削加工を行なうことができない。また、 切屑が (d) (e) の形態をなしている場合には、(f) (g) のような大きなトラブルは生じないものの、やはり切屑の処理が容易ではなく、連続切削加工を行う場合等にあってはバイトへの絡み付きや切削表面の損傷等を生じる虞れがある。しかし、切屑が (a) ~(c) の形態をなしている場合には、上記のようなトラブルが生じることがなく、(f) (g) のように嵩張らないことから、切屑の処理も容易である。但し、(c) については、切削条件によっては、旋盤等の工作機械の摺動面に潜り込んで機械的障害を発生したり、作業者の手指,目に刺さる等の危険を伴うことがある。したがって、被削性を判断する上では、(a) が最良であり、(b) がこれに続き、(c) が良好であり、(d) がやや良好であり、(e) が許容できる限度であり、(f) は不適当であり、(g) は最も不適当なものということができる。これらの切削主分力及び切屑形態から、実施例物は被削性に優れるものであることが確認された。

- [0063] また、実施例物及び耐摩耗性を比較確認すべく、次のような摩耗試験を行った。
- [0064] まず、実施例物A, E及び比較例物A1, E1, G1から、これに切削加工及び穴明け加工等を施すことにより、外径32mm, 厚さ(軸線方向長さ)10mmのリング状試験片を得た。次に、この試験片を回転軸に嵌合固定すると共に、リング状試験片の外周面にSUS304製ロール(外径48mm)を50kgの荷重をかけた状態で転接させた上、試験片の外周面にマルチオイルを滴下しつつ、回転軸を209r. p. m. で回転させた。そして、試験片の回転数が10万回に達した時点で、試験片の回転を停止して、試験片の回転前後における重量差つまり摩耗減量(mg)を測定した。かかる摩耗減量が少ない程、耐摩耗性に優れた銅合金ということができるが、その結果は、表19、表20及び表22~24に示す通りであり、実施例物が耐摩耗性ないし摺動性に優れることが確認された。
- [0065] また、実施例物及び比較例物の耐蝕性を比較確認するために、次のようなエロージョン・コロージョン試験I~III並びに「ISO 6509」に規定される脱亜鉛腐蝕試験及び「JIS H3250」に規定される応力腐蝕割れ試験を行なった。
- [0066] すなわち、エロージョン・コロージョン試験I~IIIにおいては、実施例物A, C, D, E 及び比較例物A1, E1, G1鋳物から採取した試料に、その軸線に直交する方向に

おいて、口径1.9mmのノズルから試験液 $(30^{\circ}C)$ を11m/秒の流速で衝突させて、エロージョン・コロージョン試験を行ない、所定時間Tが経過した後の腐蝕減量 (mg/cm^2) を測定した。試験液としては、試験Iでは3%食塩水を、試験IIでは3%食塩水にCuCl $_2$ ・2H $_2$ O(0.13g/L)を混合させた混合食塩水を、試験IIIでは次亜塩素酸ナトリウム溶液(NaClO)に微量の塩酸(HCl)を添加した混合液を、夫々使用した。腐蝕減量は、試験開始前における試料重量から試験液をT時間衝突させた後の試料重量との $1cm^2$ 当たりの差量 (mg/cm^2) であり、衝突時間は、試験I~IIIの何れにおいてもT=96時間とした。エロージョン・コロージョン試験I~IIIの結果は、表19~表24に示す通りであった。

- [0067] また、「ISO 6509」の脱亜鉛腐蝕試験においては、実施例物A, C, D, E及び比較例物A1, E1, G1鋳物から採取した試料を、暴露試料表面が伸縮方向に対して直角となるようにしてフェノール樹脂に座込み、試料表面をエメリー紙により1200番まで研磨した後、これを純水中で超音波洗浄して乾燥した。かくして得られた被腐蝕試験試料を、1.0%の塩化第2銅2水和物(CuCl₂・2H₂O)の水溶液中に浸潰し、75℃の温度条件下で24時間保持した後、水溶液中から取出して、その脱亜鉛腐蝕深さの最大値つまり最大脱亜鉛腐蝕深さ(μm)を測定した。その結果は、表19~表24に示す通りであった。
- [0068] また、「JIS H3250」の応力腐蝕割れ試験については、鋳造物B, B1から採取した板状の試料(幅:10mm, 長さ:60mm, 厚さ:5mm)を、45°をなすV字状(屈曲部アール:5mm)に折曲する(引張残留応力を付加する)と共に脱脂,乾燥処理を施した上で、12.5%のアンモニア水(アンモニアを等量の純水で薄めたもの)を入れたデシケータ内のアンモニア雰囲気(25℃)中に保持させた。そして、所定の保持時間(暴露時間)が経過した時点で、試料をデシケータから取り出して、10%の硫酸で洗浄した上、当該試料の割れの有無を拡大鏡(10倍)で観察し、判定した。その結果は、表21及び表23に示す通りであった。当該表においては、アンモニア雰囲気中での保持時間が8時間経過時においては割れが認められなかったが、24時間経過時においては明瞭な割れが認められたものについては「△」で、24時間経過時においても割れが全く認められなかったものについては「○」で示した。これらの耐食性試験の

結果から、実施例物は耐食性に優れるものであることが確認された。

- [0069] また、実施例物及び比較例物の冷間加工性を比較して評価するために、次のような冷間圧縮試験を行なった。
- [0070] すなわち、鋳造物A, B, A1から径:5mm, 長さ:7.5mmの円柱状試料を旋盤により切削, 採取して、これをアムスラー型万能試験機により圧縮して、圧縮率(加工率)との関係による割れの有無によって冷間圧縮加工性を評価した。その結果は、表19~表21及び表23に示した通りであり、これらの表においては、圧縮率30%で割れを生じたものを冷間圧縮加工性に劣るとして「×」で示し、圧縮率40%で割れが生じなかったものを冷間圧縮加工性に優れるものとして「○」で示し、圧縮率30%では割れが生じなかったが加工率40%では割れが生じたものを良好な冷間加工性を有するものとして「△」で示した。この冷間圧縮加工性の良否は、カシメ加工性の良否として評価できるものであり、評価が「○」のものでは容易且つ高精度のカシメ加工を行うことができ、「△」のものでは一般的なカシメ加工が可能であり、「×」のものでは適正なカシメ加工を行うことが不可能である。実施例物は、一部が「△」であるものの殆どが「○」であり、冷間圧縮加工性つまりカシメ加工性に優れることが確認された。
- [0071] また、実施例物及び比較例物の熱間鍛造性を比較評価すべく、つぎのような高温 圧縮試験を行った。すなわち、鋳造物A, E, E1及び塑性加工物G1から、旋盤を使 用して、径:15mm, 高さ25mmの円柱状試料を採取し、この試料を700℃で30分 間保持した後、加工率を変えて熱間圧縮加工を行ない、加工率と割れとの関係から 熱間鍛造性を評価した。その結果は表20、表22及び表24に示す通りであり、実施 例物は熱間鍛造性に優れるものであることが確認された。これらの表においては、80 %の加工率で割れが発生しなかったものを、熱間鍛造性に優れるとして「○」で示し、 80%の加工率では僅かな割れが発生したものの65%の加工率では割れが生じなか ったものを、良好な熱間鍛造性を有するものとして「△」で示し、また65%の加工率で 顕著な割れが生じたものを、熱間鍛造性に劣るものとして「×」で示した。
- [0072] また、実施例物及び比較例物について伸線性を比較確認すべく、次のような基準で伸線性を判定した。すなわち、棒状鋳造物B, B1(径:8mm)に伸線加工を施して、径:6.4mmまで一回の伸線加工(加工率:36%)で割れを生じることなく伸線でき

たものは伸線性に優れると判定し、径:7.0mmまで一回の伸線加工(加工率:23.4%)で割れを生じることなく伸線できたものは一般的な伸線性を有すると判定し、また一回の伸線加工で径:7.0mmまで伸線させた場合に割れを生じたものについては伸線性に劣ると判定した。その結果は、表21及び表23に示す通りであり、伸線性に優れると判定されたものを「○」で、一般的な伸線性を有すると判定されたものを「△」で、また伸線性に劣ると判定されたものを「×」で示した。表21及び表23から理解されるように、実施例物は、比較例物に比して、伸線性に優れていることが確認された

- [0073] また、実施例物及び比較例物について、鋳造性を判定した。
- [0074] 第1に、鋳造物B, B1について、次のような鋳造性判定試験を行うことにより、鋳造性の優劣を判定した。すなわち、鋳造性判定試験においては、鋳造速度を2m/分及び1m/分の高低2段階に亘って変化させつつ、実施例で鋳造物Bを得た場合(又は比較例で鋳造物B1を得た場合)と同一装置を使用して同一条件により径:8mmの線材(棒材)を連続鋳造し、欠陥のない線材が得られる鋳造速度の高低により鋳造性の優劣を判定した。その結果は表21及び表23に示す通りであり、欠陥のない線材が2m/分の高速鋳造で得られたものを優れた鋳造性を有するものとして「○」で示し、欠陥のない線材を高速鋳造によっては得ることができなかったが1m/分の低速鋳造で得ることができたものを一般的な鋳造性を有するものとして「△」で示し、低速鋳造(1m/分)によっても欠陥のない鋳造素線B−1を得ることができなかったものを鋳造性に劣るものとして「×」で示した。
- [0075] 第2に、鋳造物C, C1の底部L(図6参照)を切離して、その切離部分の内面におけるひけ部M(図7参照)を観察して、欠陥の有無及びひけの深さによって鋳造を評価した。その結果は、表21~表23に示す通りであった。これらの表においては、ひけ部Mに欠陥がなく且つひけも浅いものについては、鋳造性に優れるとして「○」で示した。また、ひけ部Mに明瞭な欠陥がなく且つひけもさほど深くないものについては、鋳造性が良好であるとして「△」で示し、更に、ひけ部Mに明瞭な欠陥が存在するか又はひけが深いものものについては、鋳造性に劣るものとして「×」で示した。ひけ部Mの一例を図8~図13に示す。すなわち、図8は実施例の銅合金No. 72における

ひけ部Mの断面図であり、図9は当該ひけ部Mの拡大平面図である。また、図10は実施例の銅合金No. 73におけるひけ部Mの断面図であり、図11は当該ひけ部Mの拡大平面図である。図12は比較例の銅合金No. 224におけるひけ部Mの断面図であり、図13は当該ひけ部Mの拡大平面図である。図8~図13から明らかなように、銅合金No. 72及びNo. 73では、ひけ部Mの表面は極めて滑らかであり且つ欠陥もないが、銅合金No. 224では、ひけ部Mに明瞭な欠陥が存在しており且つひけの深さも深い。なお、銅合金No. 224は、Zrを含有しない点を除いて、銅合金No. 72及びNo. 73とほぼ同一の組成をなすものであることから、図8~図13からも、Zr及びPの共添により結晶粒の微細化が図られ、その結果として鋳造性が向上することが理解される。

- [0076] 第3に、実施例物及び比較例物の半溶融鋳造性についても、比較評価すべく、次のような半溶融試験を行なった。
- [0077] - すなわち、鋳造物A, A1, E1を鋳造する際に使用した原料を坩堝に入れ、半溶融 状態(周相率:約60%)にまで昇温させ、その温度に5分間保持した後、急冷(水冷) した。そして、半溶融状態での固相の形状を調査し、半溶融鋳造性を評価した。その 結果は、表19、表23及び表24に示す通りであり、実施例物は(14)(15)の条件を 満足し、半溶融鋳造性に優れるものであることが確認された。これらの表においては 、当該固相の平均結晶粒径が150μm以下であるか又は結晶粒の最大長の平均が 300 μ m以下であったものを、半溶融鋳造性に優れると評価して「○」で示し、当該 固相の結晶粒がこのような条件を満足しないものの、顕著なデンドライト・ネットワーク が形成されていなかったものを、工業的に満足できる程度の良好な半溶融鋳造性を 有すると評価して「△」で示し、デンドライト・ネットワークが形成されていたものを、半 溶融鋳造性に劣ると評価して「×」で示した。実施例物が(14)(15)の条件を満足す る場合の一例を示す。 すなわち、図3は実施例物No. 4についての半溶融鋳造性試 験における半溶融固化状態の顕微鏡写真であり、明らかに(14)(15)の条件を満足 している。また、図4は比較例物No. 202についての半溶融鋳造性試験における半 溶融固化状態の顕微鏡写真であり、(14)(15)の条件を満足していない。

[0078] また、実施例物A~G及び比較例物A1~G1について、その溶解固化時における

平均結晶粒径 (μ m)を測定した。すなわち、実施例物及び比較例物を切断して、その切断面を硝酸でエッチングした上、そのエッチング面に出現するマクロ組織における結晶粒の平均径 (平均結晶粒径)を測定した。なお、鋳造物C, D, C1, D1については、水道メータ本体の流入出口部J (図6参照)を切断して、その切断面を硝酸でエッチングした上、そのエッチング面における結晶粒の平均径を前記同様にして測定した。この測定は、JIS H0501の伸銅品結晶粒度試験の比較法に基づいて行なったもので、切断面を硝酸でエッチングした後、結晶粒径が0.5mmを超えるものは肉眼で観察し、0.5mm以下のものについては7.5倍に拡大して観察し、約0.1mmよりも小さなものについては、過酸化水素とアンモニア水の混合液でエッチングした上、光学顕微鏡で75倍に拡大して観察した。その結果は表13~表18に示す通りであり、実施例物は何れも(7)の条件を満足するものであった。なお、実施例物については、その何れも溶融固化時における初晶が α 相であることも確認された。

- [0079] さらに、実施例物については(12)(13)の条件を満足するものであることも確認された。図1及び図2にその一例を挙げる。図1は実施例物No. 79についてのマクロ組織写真(同図(A))及びミクロ組織写真(同図(B))であり、図2は比較例物No. 228についてのマクロ組織写真である。図1及び図2から明らかなように、比較例物No. 228は(12)(13)の条件を満足していないが、実施例物No. 79は(12)(13)の条件を満たしていることが理解される。
- [0080] 以上のことから、実施例物は、各構成元素が前述した範囲で含有されており、(1) ~(7)の条件(第5~第8銅合金については更に(8)の条件)を満足することにより、これらの条件の少なくとも一部を満足しない比較例物に比して、被削性、機械的性質(強度、伸び等)、耐摩耗性、鋳造性、半溶融鋳造性、冷間圧縮加工性、熱間鍛造性及び耐蝕性が大幅に向上するものであることが確認された。また、これらの特性向上は、上記条件に加えて、(10)~(15)の条件(第5~第8銅合金については更に(9)(16)の条件)を満足することにより、より効果的に図りうることが確認された。これらのことは大形鋳物F(No. 91)についても同様であり、Zr, Pの共添による結晶粒の微細化効果及びこれに伴う特性向上効果は、そのまま担保されることが確認された。なお、Zrを含有しない点を除いて銅合金No. 91とほぼ同一組成をなす大形鋳物(No

. 234)については、これらの効果はなく、小形鋳物との差は明らかである。

[0081] また、Pbを含有する鋳造物C, C1, D1について、「JIS S3200-7:2004 水道 用器具―浸出性能試験方法」に基づいて、Pbの溶出試験を行った。すなわち、この 試験では、次亜塩素酸ナトリウム溶液、炭酸水素ナトリウム溶液及び塩化カルシウム 溶液を適量添加した水に水酸化ナトリウム溶液でpHを調整した水(水質:pH7.0±0.1, 硬度:45±5mg/L, アルカリ度:35±5mg/L, 残留塩素:0.3±0.1mg/L)を浸出液として使用し、鋳造物C, C1, D1に所定の洗浄処理及びコンディショニングを施した後、当該鋳造物C, C1, D1の中空部つまり水道メータ本体(図6参照)の部分に23℃の浸出液を満たして密封し、この液温を維持して16時間静置した上で、水道メータからの浸出液を採取し、これに含有されるPb量つまりPb溶出量(mg/L)を測定するものである。その結果は、表21、表23及び表24に示す通りであり、実施例物ではPb溶出量が極く微量であり、水道メータ等の接水金具として問題なく使用できることが確認された。

[0082] また、銅合金No. 54の鋳造物Cから湯道部K(図6参照)を採取して、これを原料(Zr:0.0063mass%)として銅合金を鋳造した。すなわち、当該湯道部Kを、木炭被覆下で、970℃で再溶解し、5分間保持後、溶解時のZrの酸化ロス分を0.001mass%と見込んで、そのZr量に見合う分、Zrを3mass%含有するCu-Zn-Zr合金を追加添加して、金型に鋳込んだ。その結果、得られた鋳造物にあっては、Zr含有量が原料である銅合金No. 54とほぼ同一(0.0061mass%)であり、平均結晶粒径を測定したところ、当該元銅合金No. 54とほぼ同一の25μmであった。このことから、本発明の銅合金は、その鋳造物に生じる湯道部K等の余剰部分ないし不要部分を、結晶粒の微細化効果を全く損なうことなく、再生原料として有効に利用することができることが確認された。したがって、湯道部K等の余剰部分ないし不要部分を、連続操業下で投入される補充原料として使用することができ、連続操業を極めて効率良く且つ経済的に行うことができる。

[0083] [表1]

	銅台	金			1	合金組成(mass9	6)		
	Ni -	種別	Cu	Zn	Si	Zr	Р	Pb	不維	吨物
	No.	作里力引	Ou .	211	31	21	Г	FD	Fe	Ni
	1	A	76. 2	20. 68	3. 05	0.0007	0. 07			·
	2	A	7 5. 8	21. 10	3. 03	0. 0018	0. 07			
	3	A	76. 1	20. 80	3. 03	0.0058	0.06			
	4	A	7 5. 8	21.09	3. 03	0.0094	0.07			
	5	A	76.4	20. 49	3. 04	0.014	0.06			
	6	A	76. 6	20. 20	3. 1	0. 018	0.08			
	7	Α	76	20. 84	3. 04	0. 028	0. 09			
	8	Α	76	20. 83	3. 04	0. 037	0. 09			
	9	Α	76. 1	20. 79	3. 02	0.003	0.09			
	10	Α	74. 5	22.60	2. 8	0. 01	0. 09			
寠	11	Α	77. 2	19. 42	3. 3	0.009	0. 07			
実施	12	A	81.6	14. 47	3. 85	0. 017	0.06			
例	13	A	79. 2	18. 00	2. 7	0. 021	0.08			
	14	A	78	18.88	3. 04	0. 009	0. 07			
	15	A	75. 8	21. 01	3. 03	0. 017	0.08			0.06
	16	A	75. 7	21.06	3. 05	0. 016	0.09		0. 04	0. 04
	17	Α	75.8	21. 02	3. 06	0. 017	0.08		0.018	0.009
	18	A	76	20. 87	3. 05	0.009	0. 07	0. 002		
	19	Α	76	20. 89	3. 03	0.009	0. 07	0.006		
	20	Α	76. 1	20. 76	3. 05	0.009	0. 07	0. 012		
	21	Α	76. 3	20. 55	3. 05	0. 01	0. 07	0. 018		
	22	Α	76. 3	20. 55	3. 03	0.009	0. 07	0. 04		
	23	Α	76. 2	20. 59	3. 05	0.009	0. 07	0. 08		

[0084] [表2]

	Cu Zn	76. 2 20. 50	76. 1 20. 49	78. 2 18. 66	78 18.85	78. 1 18. 65	78 18.59	73. 2 23. 90	73. 2 23. 85	78.8 17.39	77. 2 19. 30	76.8 19.75	77. 2 19. 08	76.8 19.98	78.1 17.59	72. 5 20. 39	76 18.20	77. 5 17. 95	76.8 19.91	76. 5 20. 26	77. 2 19. 10	76. 5 20. 08	77.8 18.30	74. 5 18. 05
	.s	3.04	3.02	3.05	3.05	3.04	3.04	2.75	2.76	3.7	3.4	3.07	3.14	3.04	3. 12	3.95	3.68	3. 13	3.2	3. 12	3.06	3.03	3. 22	3.98
-	Zr	0.009	900.0	0.00	0.00	900 '0	900.0	0.008	0.00	0.009	0.009	0.009	0.008	0.000	0.014	0.012	0.016	0.022	0.0007	0.0017	0.005	0,011	0.011	0.0055
合金組成	Δ.	0.07	0.07	0.07	0.07	0.08	0.08	0.07	0.08	0.08	0.07	0.07	0.07	90 .0	0.08	0.15	0.1	0.1	0.08	0.08	0.12	0.09	0.08	0.09
(mas	P	0. 18	0.31	0.01	0.018	0.12	0. 28	0.07	0.1	0.018	0.019										0.015	0.09		
(% s	S											0.3	0.5	0.11	1.1						0.5	0.2		0.4
	S																						0.09	
	=															0.3	1.1	1.3					0.5	0.04
	S															2.7	0.9							2 9
	3																		0.008	0.035	_			0 032

[0085] [表3]

	Sn						0.5		1																0.3
											<u> </u>					7									
	Se															0.17									
	. <u>.</u>														90.0	0.19									
3 \$ %)	Pb					0.018											900 0	0.013	0.018	0.08	0. 18	0.31	0.003	0.018	
联 (mas	<u>~</u>	0.07	90.0	90.0	0.08	90.0	90 .0	0.07	90.0	90 '0	0.07	0.08	0.035	0.07	0.07	0.05	0.07	0.07	90 .0	0.08	0.07	90.0	90.0	0.08	0.09
合金組成	Zr	0.009	0.009	0.038	0.01	0.009	0.009	0.0019	0.0063	0.0092	0.013	0.039	0.019	0.009	0.008	0.016	0.008	0.009	0.01	0.009	0.008	0.008	0.009	0.01	0.008
	S	3.04	3.18	3.01	2.96	3.05	3, 05	3.05	ဗ	3. 03	3	3.06	3.94	3.01	3.02	3, 01	3.1	3.03	3.05	3.1	3.08	3.04	3.08	2.81	3.04
	Zn	20.88	18.95	20.89	18.85	20.86	19.38	20.88	20.93	20.70	20.72	20. 52	13, 51	21.01	20.84	20.76	20.82	20.98	20.44	20.33	20.56	20.58	20. 65	18. 28	19.66
	ਡ	9/	77.8	9/	78. 1	76	17	9/	9/	76. 2	76.2	76.3	82. 5	75.9	76	75.8	76	75.9	76.4	76.4	76.1	9/	76.2	78.8	76.9
4	種別	B	В	В	В	В	В	0	0	0	0	0	0	0	0	0	0	O O	ŋ	0	0	0	J	ပ	0
備合金	0 Z	47	48	49	20	51	52	53	54	22	99	25	89	69	09	19	79	63	99	9 9	99	<i>L</i> 9	68	69	0/
													账 \$	官室											

[0086] [表4]

				Γ	Γ	Γ				Γ	Ι		Γ										
	둝															0	3.6		1.9	-	1.2		
	¥																	1.2		0.2	0.1		
	As														0. 13								
	જ													0.03									
	S	0.5						0.3	0.5				0.15										
	<u>1</u>																			0.04			
368 B	Se				_							0. 18											
合金組成(ma	. <u></u>										90 '0	0.19						0.25			0. 18		
金金	æ																		0.19	0.14			
	d.	0.08	0.08	0.08	0.07	0.07	0.035	0.07	0.08	0.07	0.07	0.05	0.11	0.13	0.03	0.00	0.13	0.04	0.12	0.08	0.08	0.08	90 '0
	Zr	0.008	0.008	0.004	0.0064	0.0093	0.02	0.000	0.000	0.0061	0.0075	0.018	0.0035	0.0035	0.0015	0.0035	0.0085	0.014	0.0095	0.018	0.018	0.019	900 0
	: <u>s</u>	2.85	3.06	3.07	3.02	3	4.05	3.08	3.14	3.05	3.08	2.99	2.89	3.76	3.11	3.12	4.48	3.8	3.82	3.5	3.5	3.1	3.02
	Zn	18. 76	20. 15	20. 25	20. 50	20. 92	14. 50	19.64	18.87	20.77	20.58	20.97	21.95	17. 28	20. 23	21. 19	20.88	12. 60	20. 76	20.16	19.92	21.00	21. 11
	3	77.8	76.7	9.9/	76.4	9/	81.4	6 '9/	77.4	76.1	76.2	75.6	74.9	8.87	76.5	75.2	6 '0/	82.1	73.2	74.8	75	75.8	75.8
49	種別	O	0	0	٥	Q	a	Q	0	3	3	3	Э	3	3	3	3	3	Ε	3	Е	Ŧ	9
朝合金	0 Z	71	72	73	74	7.5	9/	и	78	6/	80	81	82	84	84	85	98	87	88	68	96	91	92
												1000年	色										

[0087] [表5]

ш.	動合金	4#						合金条	合金組成及び金属組織	1 1	(相組織)					
	0 Z	棒別	f0	-	f2	f3	£6	47	48	f9	f4	[\alpha]	[8]	[\chi]+[\k]	[#]	f5
\vdash	-	A	65.3	100.0	4357	44	65.3	65.3	27.0	27.0	100	73	0	27		27
	2	4	65.0	38.9	1683	43	65.0	65.0	25.0	25.0	100	75	0	22		25
	3	A	65.3	10.3	522	51	65.3	65.3	25.0	25.0	100	75	0	25		25
Ll	4	A	65.0	7.4	322	43	65.0	65.0	25.0	25.0	001	75	0	25		25
	2	A	65.6	4.3	217	51	9 . 29	9.29	26.0	26.0	9	74	0	26		26
l	9	¥	65.5	4.4	172	39	65. 5	65. 5	27.0	27.0	92	73	0	27		27
	7	A	65.1	3.2	109	34	65.1	65.1	25.0	25.0	92	75	0	25		25
	∞	∀	65.1	2. 4	82	34	65.1	65.1	26.0	26.0	100	74	0	26		26
	6	4	65.3	30.0	1001	34	65.3	65.3	25.0	25.0	100	75	0	25		25
	10	Α .	64. 4	9.0	280	31	64.4	64. 4	21.0	21.0	901	79	0	21		21
	11	Y.	65.4	7.8	367	47	65.4	65.4	40.0	40.0	901	09	0	40		40
相	12	A	67.9	3.5	226	64	67.9	67.9	70.0	70.0	9	30	0	70		70
l ₹	55	¥	69.5	3.8	129	34	69. 5	69. 5	10.5	10.5	98	98	0	6	5	10.5
	14	∀	67.2	7.8	338	43	67.2	67.2	18.3	18.3	66	81	0	18	-	18.3
	15	V	65.0	4.7	178	38	65.0	65.0	25.0	25.0	100	75	0	25		25
	91	A	64.8	5.6	191	34	64.8	64.8	26.0	26.0	100	74	0	56		56
1	1	4	64.9	4.7	180	38	64.9	64.9	25.0	25.0	100	75	0	25		25
J	<u>∞</u>	V	65. 1	7.8	339	44	65.3	65.0	27.1	24.9	100	7.4	0	56	0	26
	13	A	65.2	7.8	337	43	65.4	65.0	27.9	24. 1	100	74	0	56	0	26
	2	V	65.2	7.8	339	44	65.5	64.9	28. 7	23.3	100	74	0	56	0	26
	71	V	65.4	7.0	305	44	65.8	65.0	29. 4	22.6	100	74	0	56	0	56
1	72	V	65.5	7.8	337	43	1 99	64.9	31.0	21.0	100	74	0	56	0	56
	23	٧	65. 4	7.8	339	44	66.2	64.5	33.1	18.9	100	74	0	26	0	26
£0	;-[no]=	3.5[S	i]-3[P]+C), 5 ([Pb]+(f0=[Cu]-3.5[Si]-3[P]+0.5([Pb]+0.8([Bi]+[Se])+0.	[Se])+0.6	[Te])-0.5	([Sn]+[As]+[Sb])-1	6[Te])-0.5([Sn]+[As]+[Sb])-1.8[AI]+2[Mn]+[Mg	Wn]+[Wg]		f1=[P]/[Zr		f2=[Si]/[Zr]	[Zr]
5	f3=[Si]/[P]	<u>-</u>		f4=[α]+[$+[\gamma]+[\kappa]$		f5=[γ]+[$f5=[\gamma]+[\kappa]+0.3[\mu]-[\beta]$	μ]-[β]							
£6	;=[0n]=;	3.5[S	i]-3[P]+3	([Pb]+0. {	f6=[0u]-3.5[Si]-3[P]+3([Pb]+0.8([Bi]+[Se])+0.6[Te]) i/2	9])+0.6[T	e]) ^{1/2}	6/1	f7=[Cu]-	f7=[Cu]-3.5[Si]-3[P]-3([Pb]+0.8([Bi]+[Se])+0.6[Te]) ^{1/2}	[P]-3([Pb]	+0.8([Bi]]+[Se])+0	6[Te]) ^{1/2}	67	
2	+[7]+	k]+	$18=[Y]+[K]+0.3[\mu]-[B]+25$	11) cz+[ø	([Pb]+0.8([B1]+[Se])+0.6[le])"	31]+[Se])	+0. 6[le])		†9=[7]+	[K]+0.3[,	$u - \lfloor \beta \rfloor - \frac{1}{2}$	25 ([Pb] +0.	8([Bi]+[$t9 = [7] + [K] + 0.3[\mu] - [B] - 25([Pb] + 0.8([Bi] + [Se]) + 0.6[Te])^{1/2}$]) ",′2	

[0088] [表6]

銅合金 o 種別 f0 f1		=	I I	f2	f3	f6	合金額 77	合金組成及び金属組織 F7 f8 f9	1 1	(相組織)	[\alpha]	[8]	[\(\gamma \) + [\(\kappa \)]	["]	f5
65.4 7.8 338 4	4 7.8 338 4	338	+	43		2 99	64.2	36.6	15.4	100	74	[a]	76 J. L.	[מ]	26
65. 5 8. 8	5 8.8 378	378	-	43		67.1	63.8	38.9		100	75	0	25	0	25
A 67.3 7.8 339 44	7.8 339	339		44		67.6	0.79	20.8	15.8	66	81	0	18	-	18.3
1 7.8	1 7.8 339	339		44	\neg	67.5	66.7	21.7	14.9	66	81	0	18	-	18.3
A 67.3 10.0 380 38	3 10.0 380	0 380		38		68.3	66. 2	27.0	9.6	66	18	0	18	1	18.3
3 10.0 380	10.0 380	0 380		38		68.8	65. 7	31.5	5.1	66	81	0	18	1	18.3
A 63.4 8.8 344 39	4 8.8 344	344		39		64.2	62. 6	20.6	7.4	98	82	2	16	0	14
A 63.4 8.9 307 35	4 8.9 307	307		35	-	64.3	62. 4	21.9	6.1	86	82	2	16	0	14
A 65.6 8.9 411 46	6 8.9 411	9 411		46		0.99	65. 2	58.4	51.6	100	45	0	55	0	22
A 65.1 7.8 378 49	7.8 378	378		49		65.5	64.7	42.4	35.6	100	61	0	39	0	39
A 65.7 7.8 341 44	7.8 341	341		44	- 1	65.7	65.7	26.0	26.0	100	74	0	56	0	26
A 65.8 8.8 393 45	8.8 393	393		45		65.8	65.8	34.0	34.0	100	99	0	34	0	34
A 65.9 6.7 338 51	6.7 338	7 338		51		62.9	62. 9	25.0	25.0	100	9/	0	25	0	25
A 66.4 5.7 223 39	4 5.7 223	7 223		39	- 1	66.4	66. 4	35.0	35.0	100	9 9	0	32	0	35
A 63.1 12.5 329 26	12.5 329	5 329		56		63. 1	63.1	29.0	29.0	100	11	0	53		29
A 62.6 6.3 230 37	6.3 230	230		37		62.6	62. 6	34.0	34.0	100	99	0	34		34
A 63.9 4.5 142 31	4.5 142	142		31		63.9	63.9	44.0	44.0	100	99	0	44		44
A 65.4 114.3 4571 40	114.3 4571	.3 4571		40		65.4	65. 4	26.3	26.3	66	73	0	26	-	26.3
A 65.4 47.1 1835 39	47.1 1835	1 1835		39		65.4	65.4	30.0	30.0	100	0/	0	30		30
A 65.9 24.0 612 26	24.0 612	0 612		56	[66.3	65. 5	37.1	30.9	100	99	0	34		34
A 65.6 8.2 275 34	8.2 2.75	275		34		66.5	64.7	36.5	21.5	100	71	0	29		29
A 65.3 7.3 293 40	7.3 293	293		40		65.3	65.3	42.0	42.0	100	58	0	42		42
A 65.9 16.4 724 44	16.4 724	4 724		44		65.9	62.9	29.0	29.0	100	71	0	29		29
[Si]-3[P]+0.5([Pb]+0.8([Bi]+[Se])+0.	b]+0.8([Bi]+[Se])+0.	b]+0.8([Bi]+[Se])+0.			Ь.	e])-0.5([Sn]+[As]]+[Sb])-1	6[Te])-0.5([Sn]+[As]+[Sb])-1.8[Al]+2[Mn]+[Mg	Mn]+[Mg]		f1=[P]/[Zr]	[r]	f2=[Si]/[Zr]	Zr]
:]+[r]+[κ]	:]+[r]+[κ]	:]+[r]+[κ]				f5=[γ]+[$f5=[\gamma]+[\kappa]+0.3[\mu]-[\beta]$	<i>y</i>]-[β]							
f6=[Cu]-3.5[Si]-3[P]+3([Pb]+0.8([Bi]+[Se])+0.6[Te]) ^{1/2}	3i]-3[P]+3([Pb]+0.8([Bi]+[Se])+0.6[Te	3([Pb]+0.8([Bi]+[Se])+0.6[Te	8([Bi]+[Se])+0.6[Te	,]) +0. 6[Te]) ^{1/2}		f7=[0u]-(3. 5[Si]-3[$f7 = [\text{Cu}] - 3.5 [\text{Si}] - 3 [\text{P}] - 3 ([\text{Pb}] + 0.8 ([\text{Bi}] + [\text{Se}]) + 0.6 [\text{Te}])^{1/2}$	+0.8 ([Bi.	+[Se]) +0.	6[Te]) ^{1/2}	;	
$f8=[r]+[\kappa]+0.3[\mu]-[\beta]+25([Pb]+0.8([Bi]+[Se])+0.6[Te])^{1/2}$	+0.3[\mu]-[\beta]+25([Pb]+0.8([Bi]+[Se])+([\beta]+25([Pb]+0.8([Bi]+[Se])+(Pb]+0.8([Bi]+[Se])+(i]+[Se])+(١ب	. 6[Te]) '		f9=[r]+[[k]+0.3[,	μ]-[β]-2	5 ([Pb] +0.	8([Bi]+[8	$f9=[r]+[\kappa]+0.3[\mu]-[\beta]-25([Pb]+0.8([Bi]+[Se])+0.6[Te])^{1/2}$	1) 1/2	

[0089] [表7]

	-	4.0	54	35	44	金組成及び金属組織		(相組織)					L
=		1.5	13	9	7-	æ + -	6+	14	[α]	[8]	[[μ]	† 5
7.8	П	300	43	65. 2	65. 2	26.0	26.0	100	74	0	26		26
6.7		303	53	66.5	66. 5	29.0	29.0	100	7.1	0	29		29
1.6		79	20	65.3	65.3	25.0	25. 0	100	75	0	25		25
8.0		305	37	67.5	67.5	18.6	18.6	86	08	0	18	2	18.6
6.7		304	51	65.6	64.8	29. 4	22. 7	100	14	0	97		56
6.7		339	19	6.39	62.9	28.0	28.0	100	72	0	28		28
36.8	8	1605	77	65.1	65. 1	26.0	26.0	100	74	0	56		26
9.5		476	09	65.3	65.3	25.0	25.0	100	75	0	25		25
6.5		329	19	65.4	65.4	26.0	26.0	100	74	0	26		26
5.4		231	43	65.5	65. 5	25.0	25.0	100	75	0	25		25
2.		78	38	65.4	65. 4	27.0	27.0	100	73	0	27		27
-		207	113	9.89	68.6	81.5	81.5	95	15	0	80	5	81.5
7.8		300	43	65.2	65.2	26.0	26.0	100	74	0	26		26
8.8	3	378	43	62.9	64. 6	31.5	20.5	100	74	0	97	0	26
_.	_	188	09	6.99	63.7	38. 4	11.6	100	75	0	25	0	25
89	8	388	77	65. 2	64.7	28.9	25. 1	100	73	0	27		27
- -	. 8	337	43	65.4	64.7	28.9	23. 1	100	74	0	56		26
∞.	0	305	38	62. 9	65. 1	28. 4	21.6	100	91	0	25		25
8.	6	344	68	66.2	64. 5	34.1	19.9	100	73	0	27		27
8.	8	385	44	66. 5	63.9	37.6	16.4	100	73	0	27		27
7.5	5	380	19	0.79	63. 7	39.9	12.1	100	74	0	56		26
9	7	342	51	65.4	65. 1	28. 4	25. 6	100	13	0	27		27
89	0	281	35	69. 1	68.3	16.4	9.6	100	<i>L</i> 8	0	13		13
=	က	380	34	8 '59	65.8	28.0	28.0	100	7.5	0	28		78
f0=[Cu]-3.5[Si]-3[P]+0.5([F	7b]+(0b]+0.8([Bi]+[Se])+0.6[Te])-0.5([Sn]+[As]+[Sb])-1.8[Al]+2[Mn]+[Mg]	[Se]) +0. 6	[Te])-0.5	([Sn]+[As]+[Sb])-1	.8[AI]+2[N	Mn]+[Mg]		f1=[P]/[Zr]	[1Z	f2=[Si]/[Zr]	Zr.]
f4=[o]+[$f4=[\alpha]+[\gamma]+[\kappa]$		f5=[γ]+[f5=[γ]+[κ]+0.3[μ]-[β	μ]-[β]							
f6=[Cu]-3.5[Si]-3[P]+3([Pb]	÷	+0.8([Bi]+[Se])+0.6[Te]) ^{1/2}	3])+0.6[T€	e]) ^{1/2}		£7=[Cu]-3	3. 5[Si]-3[$f7=[Cu]-3.5[Si]-3[P]-3([Pb]+0.8([Bi]+[Se])+0.6[Te])^{1/2}$	+0.8([Bi]]+[Se])+0	.6[Te]) ^{1/2}		-
f8=[γ]+[κ]+0.3[μ]-[β]+25	티	5([Pb]+0.8([Bi]+[Se])+0.6[Te]) ^{1/2}	3i]+[Se])+	+0. 6[Te])	1/2	f9=[\(\gamma\) =[[K]+0.3[I	μ]-[β]-2	5([Pb]+0.	8([Bi]+[f9=[γ]+[κ]+0.3[μ]-[β]-25([Pb]+0.8([Bi]+[Se])+0.6[Te]) ^{1/2}]) 1/2	

[0090] [表8]

	f 5	20			25	25	89. 5	26	34	26	27	25	22	54	30	26	30	84	34	31	30		25				
	<u>+</u>	2			2	2	88	2	<u>۳</u>	2	2	2	2	2	<u>۳</u>	2	3	8	3	3	3		2	[Zr]			
	[#]						5	0	0		0	0	0											f2=[Si]/[Zr]			1 1 1 1 2
	[]+[]	20			25	25	88	56	34	56	27	25	22	54	30	56	30	84	34	31	30		25	<u>.</u>		6[Te]) ^{1/2}	$f9=[x]+[x]+0.3[u]-[8]-25([Ph]+0.8([Bi]+[Sa])+0.6[Ta])^{1/2}$
	[8]	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	f1=[P]/[Zr]		+[Se])+0	8/FR:]+F
	[\alpha]	80			75	7.5	7	74	99	74	73	75	78	46	20	74	70	91	99	69	70		75			+0.8([Bi]	5([Ph]+0
(相組織)	£4	100			100	100	95	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	In]+[Mg]		P]-3([Pb]	7-[8]-[
異組織 (相	£6	20.0			25.0	25.0	89.5	26.0	34.0	26.0	21.5	11.4	22.0	54.0	30.0	26.0	30.0	72.8	23.1	20.9	20.5	0.0	25.0	8[A1]+2[N		$f7=[Cu]-3.5[Si]-3[P]-3([Pb]+0.8([Bi]+[Se])+0.6[Te])^{1/2}$, JE 0+L×
合金組成及び金属組織	f8	20.0			25.0	25.0	89.5	26.0	34.0	26.0	32.5	38.6	22.0	54.0	30.0	26.0	30.0	95. 2	44.9	41.1	39. 5	0.0	25.0	+[Sb])-1.	1]-[8]	f7=[Cu]-3	f9=[r]+[
合金統	£7	67.3			65.6	65.3	67.1	65.8	62.9	65.2	64.6	63. 5	64. 4	65. 2	65.5	64.8	62.0	65.3	62.1	63.0	63. 7	0.0	65.1	[Sn]+[As]	κ]+0.3[<i>μ</i>		
	f6	67.3			65. 6	65.3	67.1	65.8	62.9	65.2	62.9	8.99	64. 4	65.2	65. 5	64.8	62.0	0.89	64.7	65. 5	0.99	0.0	65.1	Te])-0.5	$f5=[\gamma]+[\kappa]+0.3[\mu]-[\beta]$	i]) ^{1/2}	0.6[Tel]
	f3	36	38	38	43	43	116	44	39	44	44	09	56	29	104	35	34	95	32	44	44		20	Se])+0.6[+0.8([Bi]+[Se])+0.6[Te]) ^{1/2}	i]+[Se])+
	f2	356	383	768	472	323	203	342	349	200	411	166	826	1074	2073	891	527	271	402	194	194		503	. 8([Bi]+[γ]+[κ]	:([Bi]+[Se	b]+0, 8 (FB
		10.0	10.0	20.0	10.9	7.5	1.8	7.8	8.9	11.5	9.3	2.8	31.4	37.1	20.0	25.7	15.3	2.9	12.6	4.4	4.4		10.0	f0=[0u]-3.5[Si]-3[P]+0.5([Pb]+0.8([Bi]+[Se])+0.6[Te])-0.5([Sn]+[As]+[Sb])-1.8[Al]+2[Mn]+[Mg]	f4=[α]+[γ]+[κ]	([Pb]+0.8	f8=[γ]+[κ]+0.3[μ]-[β]+25([Pb]+0.8([Bi]+[Se])+0.6[Te]) ^{1/2}
	f0	67.3			9 . 29	65.3	67.1	65.8	62. 9	65.2	65.2	65.2	64.4	65.2	65.5	64.8	62.0	9.99	63.4	64. 2	64.8		65.1	[]-3[P]+0		f6=[Cu]-3.5[Si]-3[P]+3([Pb]	0.3[4]-[
4#	種別	O	ပ	0	a	Q	Q	D	D	E	Э	Е	Е	Ē	Е	Е	Е	ш	ш	Е	Е	F	9	-3.5[S	/[P]	-3. 5[S	+ 2/
鍋合金	0 Z	71	72	73	74	75	9/	17	78	79	08	81	/ 82	84	84	85	98	87	88	68	06	91	65	f0=[Cu]-	f3=[Si],	F6=[Cu]-	F8=[γ]+

[0091] [表9]

		T	I	I		l	T	I	· · · ·	l					T	l	Ī	· · · · ·				Γ	T	
	۳	:														4.6	4.6		0.5					0.5
	<u></u>																2.7							
(3)	Q							0.01								5.2						0.55	0.018	
(mass%)	۵.		0.07	80 '0	0.005	0.07	0.008	0.07	0.1	90 .0	0.08		90.0	0.05	0.08	0.03		0.08	0.07	0.00		0.07	0.08	0.07
合金組成(Zr		0.0002	0.05	0, 005	0.028	0.009	0.0002	0.017	0.003	0.013		0.15	0.008	0.018			0	0.0003	900 0		0.01	0.0002	0.0003
Qu.	<u>:-</u>	3.03	3.04	3	3.1	2.2	3.05	2. 76	2. 65	2.1	2.1	4.04	2. 53	1.9	2.77			2. 96	3.06	2. 25	4. 02	3.1	3.05	2.86
	Zn	20. 47	50.99	21.87	21. 29	18.90	18.83	24. 16	27.83	18. 24	29. 31	16.06	23. 44	28. 74	27. 03	2.57	6. 40	18.96	19. 27	15. 15	15.68	20.02	20. 45	18. 77
	3	76.5	75.9	75	75.6	78.8	78.1	73	69. 4	79.6	68. 5	79.9	73.8	69.3	70.1	84.6	86.3	78	77.1	82. 5	80.3	76.2	76.4	77.8
俳	種別	A1	¥1	A1	A1	A1	A1	A1	A1	A1	A1	¥1	14	A1	A1	A1	A1	B1	B1	C1	C1	C1	C1	Cl
御合命	, O Z	201	202	203	204	202	506	207	208	500	210	211	212	213	214	215	216	217	218	219	220	221	222	223
												丑	数:	Æ										

[0092] [表10]

Γ	Γ		Γ	T^-	Т	T	Т	Т	T	T	1	Г	Τ	Γ.	T
	小館	Z									0.31	0. 28			
	*	Fe								0.35		0. 13	į		
	č	<u></u>			4.9									0.2	0.3
(% s	5	2			4.8									3.1	2
than <td< th=""><td>a</td><td>L</td><td>0.08</td><td></td><td></td><td>0.1</td><td></td><td>0.1</td><td>0.1</td><td>0.09</td><td>0.08</td><td>0.08</td><td>0.08</td><td></td><td></td></td<>	a	L	0.08			0.1		0.1	0.1	0.09	0.08	0.08	0.08		
合金組成	7,7	7				0.012		0.015	0.011	0.018	0.018	0.018			
	د!	5	3.05	3.01		2.5	3.04	3.98	5.5	3.11	3.05	3.05	3.1		
	7,0	5	20. 27	20. 79	5. 50	27.09	20.96	22.91	8. 59	19.83	20.74	20.64	21.02	35.80	38.90
	ō	5	9'92	76.2	84.8	70.3	9/	73	82.8	76.6	75.8	75.8	75.8	6 .09	58.8
俳	地數		C1	10	10	Е	ы	ы	Ш	13	13	13	F1	19	19
銅合金	2		224	225	526	227	228	229	230	231	232	233	234	235	236
									式 数	女宝					

[0093] [表11]

[0094] [表12]

合金組成及び金属組織(相組織)	f7 f8 f9 f4 $[\alpha]$ $[\beta]$ $[\gamma]+[\kappa]$ $[\mu]$ f5		65.7 25.0 25.0 100 75 0 25 25		61.3 4.0 4.0 90 78 9 13 4	65.4 26.0 26.0 100 74 0 26 26	58.8 -24.0 -24.0 65 54 35 11 -24	66.3 89.0 89.0 90 4 0 86 10 89	65.4 29.0 29.0 100 71 0 29 29	64.9 26.0 26.0 100 74 0 26 26	64.9 26.0 26.0 100 74 0 26		57.1 44.0 -44.0 -	55.4 35.4 -35.4 -	f0=[0u]-3.5[Si]-3[P]+0.5([Pb]+0.8([Bi]+[Se])+0.6[Te])-0.5([Sn]+[As]+[Sb])-1.8[Ai]+2[Mn]+[Mg] $f1=[P]/[2r]$ $f2=[Si]/[2r]$		f7=[Cu]-3.5[Si]-3[P]-3([Pb]+0.8([Bi]+[Se])+0.6[Te])	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
合金組成及び金属組織	£8		7 25.0	2 54.8	4.0	26.0	-24.0	89.0	4 29.0	9 26.0	26.0		44.0	35.4])-0. 5([Sn]+[As]+[Sb])-1. 8[Al]+	$f5=[r]+[\kappa]+0.3[\mu]-[\beta]$		
	f2 f3 f	38	9	91	208 25 61	92	265 40 58	500 55 66	173 35 65	169 38 64	169 38 64			63	8([Bi]+[Se])+0.6[Te])	α]+[γ]+[κ] f5=[]+0.8([Bi]+[Se])+0.6[Te]) ^{1/2}	
	f0 f1		65.7	84.8	61.3 8.3	65.4	58.8 6.7	66.3 9.1	65.4 5.0	64.9 4.4	64.9 4.4		62. 4	59. 7]-3[P]+0.5([Pb]+0.	f4=[α]+[γ]-3[P]+3([Pb]+0.8(
銅合金	N 種別	224 C1	225 01	226 D1	227 E1	228 E1	229 E1	式 230 E1	231 E1	232 E1	233 E1	234 F1	235 61	236 61	f0=[Cu]-3.5[Si]	f3=[Si]/[P]	f6=[Cu]-3.5[Si]-3[P]+3([Pb	

[0095] [表13]

		_			<u> </u>	<u> </u>			1						T										
# 45 # #	被为强反 (N/mm²				253	258	254																		254
4171	世 会 会	2			44	45	44		42		30						39								43
 					245	268	256		219		236						206								266
+ 45 Hz					532	535	523		492		498						485								530
	力 (N)	80m/min 160m/min														133				127	118	118	117	116	114
被削性	切削主応力(N)	80m/min														122				115	111	110	110	109	108
椎削	切削形態	/min 160m/min			0	0	0	0				0				٥				0	0	0	0	0	0
	切削	80m/min			0	0	0	0				0				0				0	0	0	0	0	0
平均結晶	粒径	(w #)	98	40	25	15	25	30	22	06	40	52	20	99	08	45	99	20	30	50	20	20	20	70	20
徘	13 mm	単の	٧	٧	V	٧	٧	٧	٧	٧	٧	٧	A	٧	٧	٧	٧	٧	٧	A	A	٧	¥	A	A
金	2	o	1	2	က	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23
													BK	摇	\$										

[0096] [表14]

	_	`												<u> </u>											
# 177	被光强度 (N/mm ²												262				304					252			
4171	# う(3)	\ /2/		38									40	34		13	30		33			34			32
1	(N/mm ²)			251									272	260		256	302		256			261			288
+ 40 80 10	51波湖で 787 27 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, mm /m /		522									528	520		443	642		554			525			612
	(N) Ç	160m/min	112	109	124	123	119	115	124	118	122	119		127	129							123	116		
性	切削主応力(N)	80m/min	106	104	115	114	111	109	114	110	113	111		116	117							114	111		
被削性	形態	/min 160m/min	0	0	0	0	0	0	0	0	0	0		0	0		٧		٥			0	0		
	切削形態	80m/min	0	•	0	0	0	0	0	0	0	0		0	0		0		0			0	0		
習等的本	粒径	(w#)	20	20	42	45	45	45	40	40	35	52	12	50	20	07	52	45	30	09	50	70	70	15	15
金	10 mg	年加	V	٧	٧	٧	٧	٧	A	V	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	V
鋼合		. O N	24	25	56	27	28	59	တ္တ	8	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
									I				ÐH	摇	<u>\$</u>							·			

[0097] [表15]

(N/mm^2) (N/mm^2) (96) (N/mm^2)	720 640 17 336	655 15	599 14	613 19	632 16	651 15		32	34	33	28	72	32	40		33		32			31			
(N/mm ²)	640							32	34	33	28	27	32	40		33		32			31			
		959	599	613	632	351																		
/mm²)	50						234	262	278	250	203	245	257	252		250		255			250			
) N	7.	735	869	705	715	730	501	524	534	515	468	546	526	522		521		525			521			
160m/min	128	128		134	117	129														!				
切開!主心 80m/min	115	116		119	110	117																		
形成 160m/min	0	0		0	0	0																		
80m/	0	0		0	0	0																		
ππ) (μμ)	15	15	150	25	15	15	32	20	15	25	80	80	15	22	52	15	15	20	15	50	15	20	0/	ç
種別	В	В	В	В	8	8	C	С	С	С	C	C	C	C	C	C	C	၁	C	C	C	C	С	٥
No.	47	48	49	50	51	52	53	54	55	26	57	28	59	09	61	62	63	64	65	99	67	68	69	טנ
1	o. 種別 (μm) 80m/min 160m/min	o. 種別 (μm) 80m/min 160m/min 47 B 15 © O	O. 種別 (μm) 80m/min 80m/min 160m/min 47 B 15 © O 48 B 15 © O	O. 種別 (μ rn) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 150 O	O. 種別 (μ rm) 80m/min 160m/min 47 B 15 ⑥ O 48 B 15 ⑥ O 49 B 150 O 50 B 25 O O	O. 種別 (μm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 150 O 50 B 25 O O 51 B 15 © O	O. 種別 (μ m) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 150 O 50 B 25 O O 51 B 15 © O 52 B 15 © O 52 B 15 © O	O. 種別 (μ rm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 150 O O 50 B 25 O O 51 B 15 © © 52 B 15 © O 53 C 35 O O	O. 種別 (μ m) (μ m) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 15 © O 50 B 25 O O 51 B 15 © © 52 B 15 © O 53 C 35 O 54 C 20	O. 種別 (μm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 150 O O 50 B 25 O O 51 B 15 © O 52 B 15 © O 53 C 20 O 54 C 20 O 55 C 15 O	O. 種別 (μ rm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 15 © O 50 B 25 O O 51 B 15 © © 52 B 15 © O 53 C 35 O O 54 C 20 C S 55 C 15 C S 56 C 25 C S	No. 種別 (μ m) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 150 O O 50 B 25 O O 51 B 15 © O 52 B 15 © O 53 C 35 O O 54 C 20 O 56 C 15 O 56 C 25 O 57 C 80	No. 種別 (μ rm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 150 O O 50 B 25 O O 51 B 15 © O 52 B 15 © O 53 C 35 C O 54 C 20 C S 55 C 15 C S 56 C 25 C S 57 C 80 S S 58 C 80 S S	No. 種別 (μ m) 80m/min 160m/min 47 B 15 Θ O 48 B 15 Θ O 49 B 150 O O 50 B 25 O O 51 B 15 Θ O 53 C 35 O O 54 C 20 O O 55 C 15 O O 56 C 25 O O 57 C 80 O O 59 C 15 O O	O. A Na 47 B 15 Θ O 48 B 15 Θ O 49 B 15 Θ O 50 B 25 O O 51 B 15 Θ Θ 52 B 15 Θ O 53 C 20 O 54 C 20 O 55 C 15 O 56 C 25 C 59 C 15 O 59 C 15 O 60 C 25 O	O. A Na	O. 種別 (μm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 15 © O 50 B 25 O O 51 B 15 © © 52 B 15 © O 53 C 20 O 54 C 20 O 56 C 25 O 57 C 80 O 59 C 15 O 60 C 25 O 61 C 25 O 62 C 15 O	ο. 45 blanch 80m/min 160m/min 160m/	ο. 45 μ (μ rm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 15 © O 50 B 25 O O 51 B 15 © O 52 B 15 © O 53 C 20 O O 54 C 20 O O 55 C 15 O O 56 C 25 O O 59 C 15 O O 60 C 25 O O 61 C 25 O O 62 C 15 O O 63 C 15 O O 64 C 20 O O	No. 種別 (μ m) 80m/min 160m/min 47 B 15 Θ O 48 B 15 Θ O 49 B 150 O O 50 B 25 O O 51 B 15 Θ O 53 C 20 O 54 C 20 O 56 C 25 O 59 C 15 O 60 C 25 O 61 C 25 O 62 C 15 O 63 C 15 O 64 C 20 O 64 C 20 O 65 C 15 O	No. 種別 (μ m) 80m/min 160m/min 47 B 15 Θ O 48 B 15 Θ O 49 B 150 O O 50 B 15 Θ O 51 B 15 Θ O 53 C 20 O O 54 C 20 O O 55 C 15 O O 56 C 25 O O 57 C 80 O O 59 C 15 O O 60 C 25 O O 61 C 25 O O 62 C 15 O O 63 C 15 O O 64 C 20 O O 65 C 15 O O 66 C 20 O O 67 C 15 O O 68 C 15 O O 69 C 15 O O	No. 種別 (μ гм) 80m/min 160m/min 47 B 15 Θ O 48 B 15 Θ O 49 B 150 O O 50 B 25 O O 50 B 15 Θ O 51 B 15 Θ O 54 C 20 O O 54 C 20 O O 56 C 25 O O 56 C 25 O O 60 C 25 O O 60 C 25 O O 61 C 25 O O 63 C 15 O O 64 C 20 O O 65 C 15 O O 66 C 20 O O 66 C 15 O O <th>No. 種別 (μ m) 80m/min 160m/min 47 B 15 Θ O 48 B 15 Θ O 49 B 150 O O 50 B 25 O O 51 B 15 Θ O 53 C 25 O O 54 C 20 O O 55 C 15 O O 56 C 25 O O 59 C 15 O O 60 C 25 O O 61 C 25 O O 62 C 15 O O 63 C 15 O O 64 C 20 O O 65 C 15 O O 66 C 20 O O 66 C 20 O O</th> <th>ο. ΦΜ (μm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 15 © O 50 B 25 O O 50 B 15 © O 51 B 15 © O 52 C 20 O 54 C 20 O 55 C 15 O 56 C 25 O 60 C 25 O 61 C 25 O 64 C 20 O 64 C 20 O 65 C 15 O 66 C 20 O 67 C 15 O 68 C 20 O 69 C 20 O</th>	No. 種別 (μ m) 80m/min 160m/min 47 B 15 Θ O 48 B 15 Θ O 49 B 150 O O 50 B 25 O O 51 B 15 Θ O 53 C 25 O O 54 C 20 O O 55 C 15 O O 56 C 25 O O 59 C 15 O O 60 C 25 O O 61 C 25 O O 62 C 15 O O 63 C 15 O O 64 C 20 O O 65 C 15 O O 66 C 20 O O 66 C 20 O O	ο. ΦΜ (μm) 80m/min 160m/min 47 B 15 © O 48 B 15 © O 49 B 15 © O 50 B 25 O O 50 B 15 © O 51 B 15 © O 52 C 20 O 54 C 20 O 55 C 15 O 56 C 25 O 60 C 25 O 61 C 25 O 64 C 20 O 64 C 20 O 65 C 15 O 66 C 20 O 67 C 15 O 68 C 20 O 69 C 20 O

[0098] [表16]

	1 (N) 51張通氏	<i></i>	488	528	523	514	516	522			520	116 518	113								124 598	126	477	536
型	切削丰応力(N)	80m/min 160m/min										109	107								116	117		
被削性	削形態	160m/min										0	0		⊲		0			0	0	0		
	切削	80m/min										0	0		0		0			0	0	0		
平均結晶	粒径	(m m)	30	20	22	30	20	80	15	20	25	25	25	25	30	20	30	65	55	20	30	30	20	15
銅合金	##		1 0	2 C	3 C	4 D	2 D	Q 9	7 D	0 8	6 E)	1 E	2 E	4 E	4 E	55 E	9 9	7 E	8 E	9 E	0 E	1 F	2 6
織	2	2	71	72	73	74	75	9/	11	78	79	8	账 格	列 82	84	84	85	98	87	88	89	90	91	92

[0099] [表17]

4 %	版另强度	- E E	156	254	176																				
	う (学 (学)		36	34	32			:									25	21	15	9				23	25
			170	174	188												95	94	558	572				184	178
4 35 30 0	515を強さ / N / 20 2)	\\	435	433	440												296	282	650	684				418	394
	力 (N)	160m/min					203	152	142	201	212			178	226		110	121	147	142					
型型	切削主応力(N)	80m/min					175	130	122	173	179			135	205		66	110	128	126					
被削性	形態	80m/min 160m/min		Δ		◁	×	×	×	×	×			×	×		0	0	٥	V					
	切削形態	80m/min		0		0	×			×	×			٥	×		•	0	Δ	0					
平均結晶	粒径	(m m)	1500	009	220	350	100	400	009	009	300	400	1200	200	250	200	1000	1200	450	320	300	1000	20	009	200
供	#	1年7月	A1	A1	A1	A1	A1	A1	A1	A1	A1	A1	A1	A1	A1	A1	A1	A1	B1	B1	0.1	C1	C1	10	15
鍋合金	7	0	201	202	203	204	205	206	207	208	508	210	211	212	213	214	215	216	217	218	219	220	221	222	223
			'										丑	松	<u>\$</u>										

[0100] [表18]

Machine Application Ap																	
50 4	# 45 %	版为强度															
納合金 平均結晶	2 4 1	か (学)		30	22	22		24			25	26		25	39	36	
動合金 中均結晶 中均結晶 中均結晶 中均制形態 切削形態 切削形態 切削形能 切削形能 切削形能 切削形能 切削形能 切削形能 切削形能 の 人 公 <th rowspan<="" td=""><td> </td><td></td><td></td><td>194</td><td>166</td><td>80</td><td></td><td>170</td><td></td><td></td><td>174</td><td>188</td><td></td><td>162</td><td>165</td><td>175</td></th>	<td> </td> <td></td> <td></td> <td>194</td> <td>166</td> <td>80</td> <td></td> <td>170</td> <td></td> <td></td> <td>174</td> <td>188</td> <td></td> <td>162</td> <td>165</td> <td>175</td>	 			194	166	80		170			174	188		162	165	175
動合金 平均結晶 切削形態 検問 N o. 種別 (μ m) 80m/min 160m/min 224 C1 400 × × 225 D1 2000 × × 226 D1 1200 × × 229 E1 800 × × 230 E1 400 × × 231 E1 400 △ □ 232 E1 350 □ □ 233 E1 350 □ □ 234 F1 2500 □ □ 235 G1 25 ● □ 236 G1 35 ● □	+ %: 3: C	515を5単で / N / 20 2)		441	412	232		426			430	438		408	387	398	
動合金 平均結晶 切削形態 検問 N o. 種別 (μ m) 80m/min 160m/min 224 C1 400 × × 225 D1 2000 × × 226 D1 1200 × × 229 E1 800 × × 230 E1 400 × × 231 E1 400 △ □ 232 E1 350 □ □ 233 E1 350 □ □ 234 F1 2500 □ □ 235 G1 25 ● □ 236 G1 35 ● □		(N) 兄	160m/min												101	109	
動合金 平均結晶 切削形態 検問 N o. 種別 (μ m) 80m/min 160m/min 224 C1 400 × × 225 D1 2000 × × 226 D1 1200 × × 229 E1 800 × × 230 E1 400 × × 231 E1 400 △ □ 232 E1 350 □ □ 233 E1 350 □ □ 234 F1 2500 □ □ 235 G1 25 ● □ 236 G1 35 ● □	唯	切削主応	80m/min												96	102	
 	被肖	形態	160m/min				×			×					•	0	
編合金 No. 種別 224 C1 225 D1 226 D1 227 E1 229 E1 230 E1 231 E1 232 E1 234 F1 235 G1 236 G1 237 E1 233 E1 234 F1 235 G1 236 G1		切削	n				×			×	۵				•	•	
高 - 225 - 225 - 226 - 226 - 226 - 228 - 230 - 230 - 230 - 233 - 234 - 234 - 234 - 234 - 235 - 236 - 237 - 238 - 23	平均結晶	を存る	(m m)	400	7000	1200	06	1500	800	200	400	320	320	7200	52	32	
	争	经品品	運河	C1	D1	D1	EI	ᇤ	핍	ㅁ	E1	E1	E1	H	G 1	61	
开	劉	2	0 2	224	225	226	227	228	229	230	231	232	233	234	235	236	
										式は	対例						

[0101] [表19]

題の制		爾伊斯	\neg	cm ²)	数陽魯	耐摩耗性	沙 盟 土 黎	计
報	(三四)	エロージョ	?	コロージョン試験	術本	摩耗減量		十 在 存 存 存 存
5			Ħ		1	(m g)	+1 ++	1
A							٧	
V								۵
~	10以下	28	42	148	0		0	0
٧	10以下	27	4 3	149	0		0	0
A							0	0
٧		2				27		
~								
V	10以下	28	43	152			٧	
~								
V				!				۵
A		0			0			0
A	10以下	22	14	149	٥			⊲
~	10以下							۵
A								
A								
4								
A								
A								
¥								
٧								
٧								
A								
~		0			0		0	

[0102] [表20]

	Т	最大腐蝕深さ	単漢型 に	<u>ا</u> ا	cm ²)	数冒缀	耐摩耗性	冷間圧縮
記録して2		(W #)	Hローショ	ン・コローン	ション試験	*************************************	摩耗減量	加工体
			_	=	=	<u> </u>	(mg)	1
24 A		10以下	56	44	152	0	28	0
25 A	-		◁			٥		
26 A	_							
27 A	_							
28 A	=		◁			۵		
29 A	_							
30 A	_							
31 A	-							
32 A	-							
33 A	_							
34 A	_	10以下	20	35	126	0		
35 A		;	119	34	124	0		
36 A		10以下	27	41	139			
37 A	-	10以下	16	33	121			
38 A	-						1.4	
39 A	-						2.5	
40 A			-				1	
41 A		10以下						
42 A	_							
43 A		10以下	19	35	124	0		
44 A	_	10以下	21	27	134			
45 A			1				16	:
46 A		30	23	37	141		1.8	

[0103] [表21]

00400	004000
004000	00000
00000	00000
	147
	42
	28 27
	10以下 10以下
++-	
	53 C 55 C 55 C 65 C 65 C 65 C 65 C 65 C

[0104] [表22]

	鋳造物	ပ	0																}					
鋳造性	穰	.—							ļ															_
28	鋳造物	Ω																						
耐摩耗性	摩耗減量	(mg)															18	1.5	12	2.3	2.2	2.4		
**	影画製布车	1										0					0							
/cm²)	ジョン試験	=	125			150	149	153	126	126	:	150		132										
(mg/	・コロ・ハ	=	34	•		43	45	43	37	34		43		38										
腐蚀減量	Hロージョ		611			28	28	24	22	220		26		5 24			0		-					
15元4	大運買派の (ミロ)					10以下	10以下	10以下	10以下			10以下			10以下	10以下								
御	紫	1年757	ວ	0	ပ	۵	۵	۵	۵	0	ш	ш	u	ш	ш	ш	ш	E	ш	ш	ш	ш	ட	9
鋼合金	Z		71	72	73	74	75	9/	11	78	79	80	81	82	84	84	85	98	87	88	89	06	91	92
					•								账	官室										

[0105] [表23]

52 178 施力性 動力性 動力性 (TI) (TI) (TI) 動力性 動力性 動力性 (TI) (TI) 動力性 動力性 (TI) (TI) (TI) 動力性 動力性 (TI) (TI) (TI) 動力性 (TI) <br< th=""><th>##</th><th>舞合金</th><th>1</th><th></th><th>腐蝕減量</th><th>)</th><th>mg/cm²)</th><th>1</th><th></th><th>耐摩耗性</th><th></th><th></th><th>蘇造性</th><th></th><th>i</th></br<>	##	舞合金	1		腐蝕減量)	mg/cm ²)	1		耐摩耗性			蘇造性		i
No.		2	HI No E	機入蔵関派の	H	;	ション質製	あと確留	感远腰 补车	を 発送 を		となって、	舞活物	舞造物	非法
201 41 41 41 41 42 42 42 43 42 43 42 43 44 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144		. 作》	7 7 8 1111		_	=	Ξ	H 3 5 60	Ħ H	(mg)		H H H	<u>B</u>	5	は、
202 A1 A2	201	_													×
202 A1 A2 A2 A3	202								٥		٥	⊲			×
204 A1 180 36 52 178 0	203	_										٥			×
A1 A2 A4 143 A 280 A 280 A	204			180	36	25	178								
A1 A1 A1 A1 A250 A2 A2 A3	205			10以下	56	44	143		۵	280					
A1 250 C <td>206</td> <td> </td> <td></td>	206														
A1 250 A2 C A2 C A2 A3 A3<	207														
A1 A1 A2 A2 A3	208	-		250											
A1 300 45 63 256 9	508	-							۵						
A1 A1 A1 A1 A2 57 215 A2 A3 A1 A2 A2 A1 A303 A2 A2 A3 A1 A303 A2 A2 A3 A1 A3 <	210			300	45	ಜ	526								
A1 A250 42 57 215 B30 B <t< td=""><td>211</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	211														
A1 250 42 57 215 320 320 30 A1 400 48 71 303 9 9 9 A1 10⊔下 18 33 118 9 9 9 9 B1 A1 10 ∪ A 120 A	212														
A1 400 48 71 303 6 7 7 A1 10μΤ 18 33 118 7 7 7 B1 34 120 0 0 0 0 0 0 C1 61 0	213			250	42	22	215			320					×
A1 10以下 18 33 118 6 6 7 7 B1 10以下 18 34 120 0	214			400	48	11	303								
A1 10以下 18 34 120 0 0 0 0 0 次 <th< td=""><td>215</td><td></td><td></td><td>10以下</td><td>18</td><td>33</td><td>118</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	215			10以下	18	33	118								
81 Φ X	216			10以下	18	34	120								
61 Δ ×	217										0	۵	×		
C1 C1 C1 C1 C1 C2 C3 C4 C5 C6 C7	218	-						۷		×	×	×	∢		
C1 0.031 61 0.003 C1 0.003 61 61	218													×	×
C1 0.031 C1 0.003	220	\dashv												×	
C1 0.003 C1	221		0.031											0	
10	222		0.003											٥	
	223													×	

[0106] [表24]

	鋼合金	邻		4	東海湖	I (mg/cm ²	cm²)		耐摩耗性	i
	2	# G	脚 田 関 田 E N の E N e N e N e N e N e N e N e N e n e n e	職人種質派した(ミヨ)		エローション・コローション試験	ジョン試験	繁電鍛布革	摩耗減量	がまる。
	o Z	種列	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) : :			Ξ	Ħ	(mg)	
	224	01								
	225	01								
-	226	D1	0.34							
	227	E1								×
	228	E1								
	229	E1								×
刀 ‡	230	E1								×
文字	231	E1		09	31	47	162	۵		
	232	E1								
	233	E1								
	234	F1								
	235	G1		008	64	118	423	×	909	
	236	61		0001	<i>L</i> 9	116	445	0	520	

産業上の利用可能性

[0107] 本発明の銅合金は、具体的には、次のような用途に好適に使用することができる。

1. 鋳造性、導電性、熱伝導性、高機械的性質が要求される一般的機械部品。

- 2. 高度の導電性, 熱伝導性が要求される電気用ターミナル, コネクタ、ロウ付け、溶接を容易に行い得ることが要求される電気部品。
- 3. 鋳造が容易であることが要求される計器部品。
- 4. 機械的性質に優れることが要求される給排水金具, 建築用金具, 日用品・雑貨品
- 5. 強度, 硬度が高いこと及び耐食性, じん性に優れることが要求される船用プロペラ , シャフト、軸受, 弁座, 弁棒, 締付金具, クランプ、接続金具、ドアノブ、パイプ留具 、カム。
- 6. 高度の強度, 硬度, 耐摩耗性が要求されるバルブ, ステム, ブッシュ, ウォームギヤ、アーム、シリンダ部品、バルブシート、ステンレス用軸受、ポンプインペラ。
- 7. 耐圧性, 耐摩耗性, 被削性, 鋳造性が要求されるバルブ, ポンプ胴体, 羽根車, 給水栓, 混合水栓、水道用弁, 継手, スプリンクラー, コック, 水道メータ, 止水栓, センサー部品、スクロール型コンプレッサー部品、高圧バルブ、スリーブ圧力容器。
- 8. 硬度及び耐摩耗性に優れることが要求される摺動部品,油圧シリンダ,シリンダ, 歯車, 釣り用リール、航空機の留め具。
- 9. 強度, 耐食性, 耐摩耗性に優れることが要求されるボルト, ナット、配管用コネクター。
- 10. 単純形状の大型鋳物に適し日つ高い強度と耐食性, 耐摩耗性に優れることが要求される化学用機械部品、工業用バルブ。
- 11. 接合強度、肉盛、ライニング、オーバーレイ、耐食性、鋳造性が要求される淡水 化装置等の溶接管、給水管、熱交換器用管、熱交換器管板、ガス配管用管、エルボ 、海洋構造材、溶接部材、溶接用材。
- 12. 接水金具(継手・フランジ類)

ニップル、ホースニップル、ソケット、エルボ、チーズ、プラグ、ブッシング、ユニオン 、ジョイント、フランジ

13. 接水金具(バルブ・コック類)

ストップバルブ、ストレーナー、スリースバルブ、ゲートバルブ、チェッキバルブ、グローブバルブ、ダイヤフラムバルブ、ピンチバルブ、ボールバルブ、ニードルバルブ、ミ

ニチュアバルブ、レリーフバルブ、メンコック、ハンドルコック、グランドコック、2方コック、3方コック、4方コック、ガスコック、ボール弁、安全弁、レリーフ弁、減圧弁、電磁弁、スチームトラップ、量水器(水道メータ、流量計。

14. 接水金具(水栓金具)

水栓(給水栓、散水栓、止水栓、自在栓、混合栓、分水栓)、カラン、分枝栓、逆止 弁、分枝バルブ、フラッシュバルブ、切り替えコック、シャワー、シャワーフック、プラグ 、ザルボ、散水ノズル、スプリンクラー。

15. 接水金具(住設機器・排水器具類)トラップ、消化栓弁、送水口。

16. ポンプ類

インペラ、ケース、接続金具、摺動部ブッシュ。

17. 自動車関係機器

バルブ、継手類、圧力スイッチ・センサー、温度センサー(感温体)、コネクター類、軸受・ベアリング部品、コンプレッサー部品、キャブレター部品、ケーブル止め金具。 18. 家電部品

携帯電話アンテナ部品、端子・コネクター、リードスクリュー、モーター軸受(流体軸受)、コピー機シャフト・ローラー、エアコン用バルブ・継手・ナット、センサー部品。

19. 摩擦係合部材

油圧・空圧シリンダのピストンシュー、ブッシュ・摺動部品、電線止め金具、高圧バルブ・継手、歯車・ギア・シャフト、ベアリング部品、ポンプ・軸受、バルブシュー、袋ナット、ヘッダー給水栓部品。

請求の範囲

[1] Cu:69~88mass%と、Si:2~5mass%と、Zr:0.0005~0.04mass%と、P:0 .01~0.25mass%と、Zn:残部とからなり、

元素aの含有量[a]mass%について、f0=[Cu]-3. $5[Si]-3[P]=61\sim71$ 、f1=[P]/[Zr]=0. $7\sim200$ 、 $f2=[Si]/[Zr]=75\sim5000$ 及び $f3=[Si]/[P]=12\sim240$ の関係を有し、

 α 相と κ 相及び/又は γ 相とを含有し且つ面積率における相bの含有量[b]%についてf4=[α]+[γ]+[κ] \geq 85及びf5=[γ]+[κ]+0. 3[μ]-[β]=5~95の関係を有する金属組織をなし、

溶融固化時のマクロ組織での平均結晶粒径が200 μ m以下であることを特徴とする銅合金。

[2] Pb:0. 005~0. 45mass%、Bi:0. 005~0. 45mass%、Se:0. 03~0. 45mass s%及びTe:0. 01~0. 45mass%から選択された1種以上の元素を更に含有し、元素aの含有量[a]mass%について、f0=[Cu]-3. 5[Si]-3[P]+0. 5([Pb]+0. 8([Bi]+[Se])+0. 6[Te])=61~71、f1=[P]/[Zr]=0. 7~200、f2 = [Si]/[Zr]=75~5000、f3=[Si]/[P]=12~240及びf6=[Cu]-3. 5[Si]-3[P]+3([Pb]+0. 8([Bi]+[Se])+0. 6[Te])^{1/2}≥62及びf7=[Cu]-3. 5[Si]-3[P]-3([Pb]+0. 8([Bi]+[Se])+0. 6[Te])^{1/2}≥68. 5(含有しない元素aについては[a]=0とする)の関係を有し、

 α 相と κ 相及び/又は γ 相とを含有し且つ面積率における相bの含有量[b]%についてf4=[α]+[γ]+[κ] \geq 85及びf5=[γ]+[κ]+0.3[μ]-[β]=5~95の関係(含有しない相bについては[b]=0とする)を有する金属組織をなし、

溶融固化時のマクロ組織での平均結晶粒径が200 μ m以下であることを特徴とする、請求項1に記載する銅合金。

[3] Sn:0.05~1.5mass%、As:0.02~0.25mass%及びSb:0.02~0.25mas s%から選択された1種以上の元素を更に含有し、

元素aの含有量[a]mass%について、 $f0=[Cu]-3.5[Si]-3[P]-0.5([Sn]+[As]+[Sb])=61\sim71$ 、 $f1=[P]/[Zr]=0.7\sim200$ 、f2=[Si]/[Zr]=75

~5000及びf3=[Si]/[P]=12~240(含有しない元素aについては[a]=0とする)の関係を有し、

 α 相と κ 相及び/又は γ 相とを含有し且つ面積率における相bの含有量[b]%についてf4=[α]+[γ]+[κ] \geq 85及びf5=[γ]+[κ]+0. 3[μ]-[β]=5~95の関係(含有しない相bについては[b]=0とする)を有する金属組織をなし、

溶融固化時のマクロ組織での平均結晶粒径が200 μ m以下であることを特徴とする、請求項1に記載する銅合金。

[4] Sn:0.05~1.5mass%、As:0.02~0.25mass%及びSb:0.02~0.25mas s%から選択された1種以上の元素を更に含有し、

元素aの含有量[a]mass%について、 $f0=[Cu]-3.5[Si]-3[P]+0.5([Pb]+0.8([Bi]+[Se])+0.6[Te])-0.5([Sn]+[As]+[Sb])=61~71、<math>f1=[P]/[Zr]=0.7\sim200$ 、 $f2=[Si]/[Zr]=75\sim5000$ 、 $f3=[Si]/[P]=12\sim240$ 、 $f6=[Cu]-3.5[Si]-3[P]+3([Pb]+0.8([Bi]+[Se])+0.6[Te])^1/2 \ge 62$ 及び $f7=[Cu]-3.5[Si]-3[P]-3([Pb]+0.8([Bi]+[Se])+0.6[Te])^1/2 \le 68.5(含有しない元素aについては[a]=0とする)の関係を有し、$

 α 相と κ 相及び/又は γ 相とを含有し且つ面積率における相bの含有量[b]%についてf4=[α]+[γ]+[κ] \geq 85及びf5=[γ]+[κ]+0.3[μ]-[β]=5~95の関係(含有しない相bについては[b]=0とする)を有する金属組織をなし、

溶融固化時のマクロ組織での平均結晶粒径が200 μ m以下であることを特徴とする、請求項2に記載する銅合金。

[5] Al:0.02~1.5mass%、Mn:0.2~4mass%及びMg:0.001~0.2mass% から選択された1種以上の元素を更に含有し、

元素aの含有量[a]mass%について、f0=[Cu]-3. 5[Si]-3[P]+0. 5([Pb]+0. 8([Bi]+[Se])+0. 6[Te])-0. 5([Sn]+[As]+[Sb])-1. $8[Al]+2[Mn]+[Mg]=61\sim71$ 、f1=[P]/[Zr]=0. $7\sim200$ 、 $f2=[Si]/[Zr]=75\sim5$ 000及び $f3=[Si]/[P]=12\sim240$ (含有しない元素aについては[a]=0とする)の関係を有し、

 α 相と κ 相及び/又は γ 相とを含有し且つ面積率における相bの含有量 $\lceil b \rceil$ %に

ついてf4=[α]+[γ]+[κ]≥85及びf5=[γ]+[κ]+0.3[μ]-[β]=5~ 95の関係(含有しない相bについては[b]=0とする)を有する金属組織をなし、

溶融固化時のマクロ組織での平均結晶粒径が200 µ m以下であることを特徴とする、請求項1~請求項4の何れかに記載する銅合金。

- 元素aの含有量[a]mass%と面積率における相bの含有量[b]%との間に、f8=[
 γ]+[κ]+0.3[μ]-[β]+25([Pb]+0.8([Bi]+[Se])+0.6[Te])^{1/2}≥
 10及びf9=[γ]+[κ]+0.3[μ]-[β]-25([Pb]+0.8([Bi]+[Se])+0.6[Te])^{1/2}≤70(含有しない元素a及び相bについては[a]=[b]=0とする)の関係を有することを特徴とする、請求項2、請求項4及び請求項5の何れかに記載する銅合金。
- [7] Fe及び/又はNiが不可避不純物として含有される場合にあって、その何れかが含有される場合にはFe又はNiの含有量が0.3mass%以下であり、またFe及びNiが含有される場合にはそれらの合計含有量が0.35mass%以下であることを特徴とする、請求項1~請求項6の何れかに記載する銅合金。
- [8] 溶融固化時における初晶が α 相であることを特徴とする、請求項1~請求項7の何れかに記載する銅合金。
- [9] 溶融固化時において包晶反応が生じるものであることを特徴とする、請求項1~請求項7の何れかに記載する銅合金。
- [10] 溶融固化時においては、デンドライト・ネットワークが分断された結晶構造をなして おり且つ結晶粒の二次元形態が円形状、円形に近い非円形状、楕円形状、十字形 状、針形状又は多角形状をなしていることを特徴とする、請求項1~請求項7の何れ かに記載する銅合金。
- [11] マトリックスのα相が微細に分断されており且つκ相及び/又はγ相がマトリックス に均一に分散していることを特徴とする、請求項1~請求項7の何れかに記載する銅 合金。
- [12] Pb又はBiが含有されている場合にあっては、微細で大きさの揃ったPb粒子又はBi 粒子がマトリックスに均一に分散していることを特徴とする、請求項2、請求項4、請求 項5及び請求項7の何れかに記載する銅合金。

- [13] 鋳造工程で得られる鋳造物又はこれに更に一回以上の塑性加工を施した塑性加工物であることを特徴とする、請求項1~請求項12の何れかに記載する銅合金。
- [14] 請求項13に記載する塑性加工物であって、すくい角: -6°及びノーズ半径: 0.4 mmのバイトを使用した旋盤により、乾式で、切削速度: 80~160m/min、切込み深さ: 1.5mm及び送り速度: 0.11mm/rev.の条件で切削した場合において生成する切屑が台形若しくは三角形をなす小片形状、長さ25mm以下のテープ形状又は針形状をなす切削加工物であることを特徴とする銅合金。
- [15] 請求項13に記載する鋳造物であって、横型連続鋳造法、アップワード法又はアップキャスト法により鋳造された線材、棒材又はホローバーであることを特徴とする銅合金。
- [16] 請求項13に記載する塑性加工物であって、熱間押出加工物、熱間鍛造加工物又は熱間圧延加工物であることを特徴とする銅合金。
- [17] 請求項13に記載する塑性加工物であって、請求項15に記載する鋳造物を抽伸加工又は伸線加工してなる線材、棒材又はホローバーであることを特徴とする銅合金。
- [18] 請求項13に記載する鋳造物であって、固相率30~80%の半溶融状態において、 少なくともデンドライト・ネットワークが分断された結晶組織をなし且つ固相の2次元形態が円形状、円形に近い非円形状、楕円形状、十字形状又は多角形状をなす鋳物、半溶融鋳物、半溶融成形物、溶湯鍛造物又はダイキャスト成形物であることを特徴とする銅合金。
- [19] 固相率60%における固相の平均結晶粒径が150 μ m以下であること及び/又は 当該固相の平均最大長が200 μ m以下であることを特徴とする、請求項18に記載す る銅合金。
- [20] ニアネットシェイプに鋳造されたものであることを特徴とする、請求項18又は請求項 19に記載する銅合金。
- [21] 水と常時又は一時的に接触する状態で使用される接水金具であることを特徴とする、請求項13~請求項20の何れかに記載する銅合金。
- [22] ニップル、ホースニップル、ソケット、エルボ、チーズ、プラグ、ブッシング、ユニオン 、ジョイント、フランジ、ストップバルブ、ストレーナー、スリースバルブ、ゲートバルブ、

チェッキバルブ、グローブバルブ、ダイヤフラムバルブ、ピンチバルブ、ボールバルブ、ニードルバルブ、ミニチュアバルブ、レリーフバルブ、メンコック、ハンドルコック、グランドコック、2方コック、3方コック、4方コック、ガスコック、ボール弁、安全弁、レリーフ弁、減圧弁、電磁弁、スチームトラップ、水道メータ、流量計、給水栓、散水栓、止水栓、自在栓、混合栓、分水栓、カラン、分枝栓、逆止弁、分枝バルブ、フラッシュバルブ、切り替えコック、シャワー、シャワーフック、プラグ、ザルボ、散水ノズル、スプリンクラー、給湯器用伝熱管、熱交換器用伝熱管、ボイラ用伝熱管、トラップ、消化栓弁、送水口、インペラ、インペラ軸若しくはポンプケース又はこれらの構成材であることを特徴とする、請求項21に記載する銅合金。

- [23] 相手部材と常時又は一時的に接触する状態で相対運動する摩擦係合部材であることを特徴とする、請求項13~請求項20の何れかに記載する銅合金。
- [24] 歯車、摺動ブッシュ、シリンダ、ピストンシュー、支承、ベアリング部品、バルブ、開閉 弁、軸受部材、シャフト、ローラ、ロータリジョイント部品、ボルト、ナット若しくはスクリュー軸又はこれらの構成部材であることを特徴とする、請求項23に記載する銅合金。
- [25] 圧力センサ、温度センサ、コネクター、コンプレッサー部品、スクロールコンプレッサー部品、高圧バルブ、空調用バルブ・開閉弁、キャブレター部品、ケーブル止め金具、携帯電話アンテナ部品又は端子であることを特徴とする、請求項13~請求項20の何れかに記載する銅合金。
- [26] 請求項1~請求項25の何れかに記載する銅合金を製造する場合にあって、その鋳造工程においては、Zrを、これを含有する銅合金物の形態で添加させることにより、 鋳造に際して酸化物及び/又は硫化物の形態でZrが添加されないようにすることを 特徴とする銅合金の製造方法。
- [27] Zrを含有する前記銅合金物が、Cu-Zr合金若しくはCu-Zn-Zr合金又はこれらの合金をベースとしてP、Mg、Al、Sn、Mn及びBから選択する1種以上の元素を更に含有させた銅合金であることを特徴とする、請求項26に記載する銅合金の製造方法。

[図1]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

1mm

[図10]

[図11]

1mm

[図12]

[図13]

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/014691

		PC1/UP2	003/014631
C22C9/00	CATION OF SUBJECT MATTER (2006.01), B22D1/00 (2006.01), (2006.01)	B22D21/00 (2006.01),	
According to Int	ernational Patent Classification (IPC) or to both national	al classification and IPC	
B. FIELDS SE			
Minimum docum	mentation searched (classification system followed by classification syste	assification symbols)	
	(2006.01), B22D1/00 (2006.01), (2006.01)	B22D21/00 (2006.01),	
D	(2000.01)		
Documentation	searched other than minimum documentation to the exte	ant that such documents are included in the	- Galda saarahad
		at mar such documents are inclined in the tsuyo Shinan Toroku Koho.	1996-2005
		proku Jitsuyo Shinan Koho	1994-2005
Electronic data b	ase consulted during the international search (name of	data base and, where practicable, search ter	rms used)
	,	•	•
C. DOCUMEN	VTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
A	JP 59-136439 A (Sambo Copper	Alloy Co., Ltd.),	1-27
	06 August, 1984 (06.08.84),	-	
	(Family: none)		
A	JP 58-37143 A (The Furuk awa	Electric Co.,	1-27
	Ltd.),		-
	04 March, 1983 (04.03.83),		
	(Family: none)		
ĺ			
Further do	cuments are listed in the continuation of Box C.	See patent family annex.	
* Special cates	gories of cited documents:	"T" later document published after the inter	mational filing date or priority
"A" document de	efining the general state of the art which is not considered icular relevance	date and not in conflict with the applica the principle or theory underlying the in	tion but cited to understand
•	cation or patent but published on or after the international	"X" document of particular relevance; the cl	
filing date		considered novel or cannot be considered step when the document is taken alone	
cited to esta	hich may throw doubts on priority claim(s) or which is blish the publication date of another citation or other	"Y" document of particular relevance; the cl	aimed invention cannot be
	on (as specified) ferring to an oral disclosure, use, exhibition or other means	considered to involve an inventive s combined with one or more other such of	step when the document is
"P" document pu	ablished prior to the international filing date but later than	being obvious to a person skilled in the	art
the priority d	late claimed	"&" document member of the same patent fa	amily
Date of the actual	l completion of the international search	Date of mailing of the international search	h report
	ober, 2005 (28.10.05)	15 November, 2005 (
Name and mailing address of the ISA/		Authorized officer	
Japanese Patent Office			
Family No.		Talanhana Na	1

Facsimile No.
Form PCT/ISA/210 (second sheet) (April 2005)

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl.⁷ C22C3/00 (2006.01), E22D1/00 (2006.01), E22D21/00 (2006.01), E22D27/20 (2006.01)

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl. 7 C22C9/00 (2006.01), B22D1/00 (2006.01), B22D21/00 (2006.01), B22D27/20 (2006.01)

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
A	JP 59-136439 A (三宝伸銅工業株式会社) 1984.08.06 (ファミリーなし)	1-27		
A	JP 58-37143 A (古河電気工業株式会社) 1983.03.04 (ファミリーなし)	1-27		

□ C欄の続きにも文献が列挙されている。

「 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

C (続き). 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び 一部の箇 所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
A	JP 2-170954 A (日本鉱業株式会社) 1990.07.02, 特許請求の範囲、 【0019】 (ファミリーなし)	1-10		
A	JP 4-224645 A (日本鉱業株式会社) 1992.08.13, 特許請求の範囲、 【0023】 (ファミリーなし)	1-10		
	·			
		,		