

Universidad Nacional Autónoma de México Facultad de Ciencias

Cálculo I

Tarea III

Elías López Rivera elias.lopezr@ciencias.unam.mx

Problemas sobre la convergencia de sucesiones

Ejercicio 1

Demuestre directo de la definición que:

i)

$$\lim_{n\to\infty}\,\sqrt{\frac{1}{n-1}}=0$$

ii)

$$\lim_{n\to\infty}\,\frac{2n+5}{3n-7}=\frac{2}{3}$$

iii)

$$\lim_{n\to\infty}\frac{2n+5}{3n^2-7}=0$$

Demostración.

i) Sea $\epsilon_0 > 0$, definimos:

$$\lambda := \frac{1}{\epsilon_0^2} + 1 > 0$$

Por propiedad arquimediana $\exists K_0 \in \mathbb{N}$ tal que $K_0 > \lambda$, como $\lambda > 1$ se sigue que $K_0 > 1$

Tomemos $n \in \mathbb{N}$, tal que $n \geq K_0$, de ahi obtenemos:

$$n-1 > \frac{1}{\epsilon_0^2}$$

Como $n-1 \ge K_0-1 > 0$, se sigue que :

$$\frac{1}{n-1} < \epsilon_0^2 \implies \sqrt{\frac{1}{n-1}} < \epsilon$$

Sea $\epsilon > 0$ y $n \geq K_0$, obtenemos que:

$$\left| \sqrt{\frac{1}{n-1}} - 0 \right| = \sqrt{\frac{1}{n-1}} < \epsilon_0$$

Por tanto hemos demostrado que:

$$\lim_{n \to \infty} \sqrt{\frac{1}{n-1}} = 0$$

ii) Sea $\epsilon_0 > 0$ definimos:

$$\lambda := \frac{1}{3} \left(\frac{10}{\epsilon_0} + 7 \right) > 0$$

Por propiedad arquimediana se tiene que $\exists K_0 \in \mathbb{N}$ tal que $K_0 > \lambda$

Tomemos $n \in \mathbb{N}$ tal que $n \geq K_0$ tenemos que:

$$n \ge K_0 > \frac{1}{3} \left(\frac{10}{\epsilon_0} + 7 \right) > \frac{7}{3} > 2$$

De esta desigualdad se sigue que $n \ge K_0 > 2$, como estos son naturales se tiene que necesariamente $n \ge K_0 \ge 3$, por tanto $3n-7 \ge 3K_0-7 \ge 2 > 0$ de donde $|3n-7| = 3n-7 \cdots$ a)

Por otro lado se sigue que:

$$3n - 7 \ge 3K_0 - 7 > \frac{10}{\epsilon_0} \implies \frac{10}{3n - 7} \le \frac{10}{3K_0 - 7} < \epsilon_0$$
 (1)

Ahora tomemos $\epsilon_0 > 0$ y $n \ge K_0$ se tiene que:

$$\left| \frac{2n+5}{3n-7} - \frac{2}{3} \right| = \left| \frac{29}{3(3n-7)} \right| < \frac{10}{|3n-7|} \tag{2}$$

Por a) y (1) aplicadas sobre (2) se tiene que:

$$\left| \frac{2n+5}{3n-7} - \frac{2}{3} \right| = \left| \frac{29}{3(3n-7)} \right| < \frac{10}{|3n-7|} = \frac{10}{3n-7} \le \frac{10}{3K_0 - 7} < \epsilon_0 \tag{3}$$

Del hecho de que $\epsilon_0 > 0$ es arbitraria y por lo anterior se tiene que:

$$\lim_{n \to \infty} \frac{2n+5}{3n-7} = \frac{2}{3}$$

iii) Sea $\epsilon_0 > 0$ definimos:

$$\lambda := \sqrt{\frac{2(5)}{\epsilon_0}} > 0 \quad \alpha := \frac{2(2)}{\epsilon_0} > 0$$

Por propiedad arquimediana se tiene que $\exists K_0, K_1 \in \mathbb{N}$ tal que $K_0 > \lambda$ y $K_1 > \alpha$

Tomemos $l = max\{2, K_0, K_1\}$, sea $n \ge l$, se sigue que:

$$n > 2 \implies n^2 > 4 \implies \frac{7}{n^2} < \frac{7}{4} \implies 3 - \frac{7}{n^2} > 3 - \frac{7}{4} = \frac{5}{4} > 1 > 0$$

De lo anterior se sigue que $|3 - \frac{7}{n^2}| = 3 - \frac{7}{n^2}$, luego:

$$\frac{1}{\left|3 - \frac{7}{n^2}\right|} < \frac{4}{5} < 1\tag{4}$$

También $n \geq K_0$, de donde se obtiene que:

$$n \ge K_0 > \sqrt{\frac{2(5)}{\epsilon_0}} \implies \frac{n^2}{5} > \frac{2}{\epsilon_0} \implies \left| \frac{5}{n^2} \right| = \frac{5}{n^2} < \frac{\epsilon_0}{2}$$
 (5)

Luego $n \geq K_1$, de donde se sigue que:

$$n \ge K_1 > \frac{2(2)}{\epsilon_0} \implies \frac{n}{2} > \frac{2}{\epsilon_0} \implies \left| \frac{2}{n} \right| = \frac{2}{n} < \frac{\epsilon_0}{2}$$
 (6)

Tomemos $\epsilon_0 > 0$ y $n \ge l$, se sigue:

$$\left| \frac{2n+5}{3n^2-7} \right| = \left| \frac{2n+5}{3n^2-7} \frac{\frac{1}{n^2}}{\frac{1}{n^2}} \right| = \left| \frac{1}{3-\frac{7}{n^2}} \right| \left| \frac{2}{n} + \frac{5}{n^2} \right| \le \left| \frac{1}{3-\frac{7}{n^2}} \right| \left(\left| \frac{2}{n} \right| + \left| \frac{5}{n^2} \right| \right)$$
 (7)

Aplicando (4) (5) y (6) sobre (7), se obtiene que:

$$\left|\frac{2n+5}{3n^2-7}\right| \le \left|\frac{1}{3-\frac{7}{n^2}}\right| \left(\left|\frac{2}{n}\right| + \left|\frac{5}{n^2}\right|\right) < \left|\frac{2}{n}\right| + \left|\frac{5}{n^2}\right| < \frac{\epsilon_0}{2} + \frac{\epsilon_0}{2} = \epsilon_0$$

Por tanto hemos demostrado que:

$$\lim_{n \to \infty} \frac{2n+5}{3n^2-7} = 0$$

Ejercicio 2

Muestre que sea $(a_n)_{n=1}^{\infty}$ una sucesión de números reales positivos, si esta converge a $g \in \mathbb{R}$, entonces la sucesión definida como $(\sqrt{a_n})_{n=1}^{\infty}$ converge a \sqrt{g}

Demostración.

Como $a_n > 0 \ \forall n \in \mathbb{N}$, se sigue que $\lim_{n \to \infty} a_n = g \ge 0$ por tanto \sqrt{g} esta bien definido tomemos dos casos:

i) g = 0

Basta con tomar $\epsilon_0^2 > 0$, como $(a_n)_{n=1}^{\infty}$ converge a 0, entonces existe $K_0 \in \mathbb{N}$ tal que si $n \geq K_0$ entonces:

$$a_n = |a_n - 0| < \epsilon_0^2 \implies \sqrt{a_n} = |\sqrt{a_n} - 0| < \epsilon_0$$

Como $\epsilon_0 > 0$ es arbitraria se sigue que:

$$\lim_{n \to \infty} \sqrt{a_n} = 0$$

ii) g > 0

Tomemos:

$$|\sqrt{a_n} - \sqrt{g}| = \frac{|\sqrt{a_n} - \sqrt{g}| |\sqrt{a_n} + \sqrt{g}|}{|\sqrt{a_n} + \sqrt{g}|} = \frac{|a_n - g|}{\sqrt{a_n} + \sqrt{g}}$$

Como tanto $\sqrt{a_n}>0$ y $\sqrt{g}>0$, se sigue que necesariamente $\sqrt{a_n}+\sqrt{g}>\sqrt{g}$ por tanto:

$$|\sqrt{a_n} - \sqrt{g}| = \frac{|a_n - g|}{\sqrt{a_n} + \sqrt{g}} < \frac{|a_n - g|}{\sqrt{g}}$$

Como $(a_n)_{n=1}^{\infty}$ converge a g tomemos $\lambda:=\sqrt{g}\ \epsilon_0>0,$ con $\epsilon_0>0,$ se sigue que existe $K_0\in\mathbb{N}$ tal que si $n\geq K_0$ entonces:

$$|a_n - g| < \lambda = \sqrt{g} \,\epsilon_0$$

Por tanto:

$$|\sqrt{a_n} - \sqrt{g}| = \frac{|a_n - g|}{\sqrt{a_n} + \sqrt{g}} < \frac{|a_n - g|}{\sqrt{g}} < \frac{\sqrt{g}}{\sqrt{g}} \epsilon_0 = \epsilon_0$$

Como $\epsilon_0 > 0$ es arbitraria se concluye que:

$$\lim_{n \to \infty} \sqrt{a_n} = \sqrt{g}$$

Ejercicio 3

Encuentre:

$$\lim_{n \to \infty} \sqrt{n^2 + 2n + 5} - n$$

Demostración.

Veamos que:

$$\lim_{n \to \infty} \sqrt{n^2 + 2n + 5} - n = \lim_{n \to \infty} \frac{(\sqrt{n^2 + 2n + 5} - n)(\sqrt{n^2 + 2n + 5} + n)}{\sqrt{n^2 + 2n + 5} + n} = \lim_{n \to \infty} \frac{2n + 5}{n^2 + 2n + 5}$$

$$\lim_{n \to \infty} \frac{2n+5}{n^2+2n+5} = \lim_{n \to \infty} \frac{2n+5}{\sqrt{n^2+2n+5}+n} \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{2+\frac{5}{n}}{\sqrt{1+\frac{2}{n}+\frac{5}{n^2}+1}}$$

Definimos $b_n = 1 + \frac{2}{n} + \frac{5}{n^2}$, ahora veamos que sea $l_n = \frac{1}{n^2}$, tenemos que $0 \le l_n \le \frac{1}{n}$, usando teorma de la compresión junto con que la sucesión $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ converge a 0, tenemos que l_n converge a 0, luego aplicando el teorema de álgebra de límites (este se puede aplicar debido a que la sucesión b_n es suma y producto de sucesiones convergentes), tenemos que:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} 1 + \frac{2}{n} + \frac{5}{n^2} = \lim_{n \to \infty} 1 + 2 \lim_{n \to \infty} \frac{1}{n} + 5 \lim_{n \to \infty} \frac{1}{n^2} = 1 + 0 + 0 = 1$$

Como $b_n > 0 \ \forall \ n \in \mathbb{N}$, por el ejercicio anterior se tiene que:

$$\lim_{n \to \infty} \sqrt{b_n} = \sqrt{\lim_{n \to \infty} b_n} = \sqrt{\lim_{n \to \infty} 1 + \frac{2}{n} + \frac{5}{n^2}} = \sqrt{1 + 0 + 0} = 1$$

Por tanto aplicando nuevamente el teorema de algebra de límites:

$$\lim_{n \to \infty} \sqrt{1 + \frac{2}{n} + \frac{5}{n^2}} + 1 = \lim_{n \to \infty} \sqrt{b_n} + 1 = \lim_{n \to \infty} \sqrt{b_n} + \lim_{n \to \infty} 1 = 1 + 1 = 2$$

Ahora definimos $a_n = 2 + \frac{5}{n}$, aplicando de nuevo el teorema de álgebra de límites:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 2 + 5 \lim_{n \to \infty} \frac{1}{n} = 2 + 0 = 2$$

Tenemos que:

$$\lim_{n \to \infty} \sqrt{n^2 + 2n + 5} - n = \lim_{n \to \infty} \frac{2 + \frac{5}{n}}{\sqrt{1 + \frac{2}{n} + \frac{5}{n^2}} + 1} = \lim_{n \to \infty} \frac{a_n}{b_n + 1}$$

Como $\lim_{n\to\infty} b_n+1\neq 0$ y $(a_n)_{n=1}^\infty$ converge, podemos aplicar el teorema de álgebra de límites nuevamente:

$$\lim_{n\to\infty} \sqrt{n^2+2n+5}-n=\frac{\lim\limits_{n\to\infty} a_n}{\lim\limits_{n\to\infty} b_n+1}=\frac{2}{2}=1$$

Ejercicio 4

Demuestre que $a_n = \frac{n^3 + (-1)^n n^3}{n^2 + 1}$ es divergente pero que no diverge $a + \infty$

Demostración.

Tomemos la subsucesión $(a_{2n})_{n=1}^{\infty}$ de $(a_n)_{n=1}^{\infty}$, notemos que:

$$a_{2n} = \frac{n^3 + (-1)^{2n} n^3}{n^2 + 1} = \frac{2n^3}{n^2 + 1} = \frac{2n^3}{n^2 + 1} \frac{\frac{1}{n^3}}{\frac{1}{n^3}} = \frac{2}{\frac{1}{n} + \frac{1}{n^3}}$$

Definimos $b_n = \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n^3} \right)$ y $l_n = \frac{1}{n^3}$, tenemos que $0 \le l_n \le \frac{1}{n}$, de la convergencia de $\left(\frac{1}{n} \right)_{n=1}^{\infty}$ a 0 y por el teorema de la compresión tenemos que $\lim_{n \to \infty} l_n = 0$

Debido a que b_n puede expresarse como suma y producto de sucesiones convergentes podemos aplicar el teorema de álgebra de límites tenemos que:

$$\lim_{n \to \infty} b_n = \frac{1}{2} \left(\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n^3} \right) = \frac{1}{2} (0) = 0$$

Por tanto como $a_{2n} = \frac{1}{b_n}$ y $b_n > 0 \ \forall n \in \mathbb{N}$, se tiene que necesariamente:

$$\lim_{n\to\infty} a_{2n} = +\infty$$

Pues $(b_n)_{n=1}^{\infty}$ converge a 0, como $(a_{2n})_{n=1}^{\infty}$ diverge a $+\infty$, se tiene que $(a_{2n})_{n=1}^{\infty}$ es no acotada y por tanto $(a_n)_{n=1}^{\infty}$ también es no acotada, de esto se sigue que $(a_n)_{n=1}^{\infty}$ no converge.

Si $(a_n)_{n=1}^{\infty}$ diverge a $+\infty$ tenemos que cualquier subsucesión de esta cuenta con una subsucesión que diverge a $+\infty$, sin embargo tomemos la siguiente subsuseción:

$$a_{2n+1} = \frac{n^3 + (-1)^{2n+1} n^3}{n^2 + 1} = \frac{n^3 - n^3}{n^2 + 1} = 0$$

Tenemos que la subsucesión $(a_{2n+1})_{n=1}^{\infty}$ es igual a la sucesión constante $(0)_{n=1}^{\infty}$, por tanto cualquier subsucesión de esta también sera igual a la sucesión constante $(0)_{n=1}^{\infty}$, es decir no existe ninguna subsucesión de $(a_{2n+1})_{n=1}^{\infty}$ que diverga a $+\infty$, por tanto $(a_n)_{n=1}^{\infty}$ diverge pero no diverge a $+\infty$

Problemas sobre sucesiones de Cauchy

Ejercicio 5

Determine si las siguientes sucesiones son de Cauchy y muestre que lo son, o en caso contrario que no lo son:

i)

$$a_n = \frac{n+1}{n}$$

ii)

$$a_n = n + \frac{(-1)^n}{n}$$

iii)

$$a_n = 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$$

Demostración.

i) Sea $\frac{\epsilon_0}{2} > 0$, por propiedad arquimediana tenemos que $\exists K_0 \in \mathbb{N}$ tal que si $n \geq K_0$, entonces $\frac{1}{n} < \frac{\epsilon_0}{2}$, Tomemos $n, m \in \mathbb{N}$ tal que $n, m > K_0$, se tiene que:

$$|a_n - a_m| = \left| 1 + \frac{1}{n} - 1 - \frac{1}{m} \right| = \left| \frac{1}{n} - \frac{1}{m} \right| \le \left| \frac{1}{n} \right| + \left| \frac{1}{m} \right| = \frac{1}{n} + \frac{1}{m} < \frac{\epsilon_0}{2} + \frac{\epsilon_0}{2} = \epsilon_0$$

Como $\epsilon_0 > 0$ es arbitraria hemos exhibido que $(a_n)_{n=1}^{\infty}$ es una sucesión de cauchy.

ii) Tomemos la subsucesión $(a_{2n})_{n=1}^{\infty}$ de $(a_n)_{n=1}^{\infty}$, veamos que:

$$a_{2n} = n + \frac{(-1)^{2n}}{n} = n + \frac{1}{n} = \frac{n^2 + 1}{n}$$

Definimos $b_n = \frac{n}{n^2+1}$, como $n^2+1 \ge n^2 \implies \frac{1}{n^2+1} \le \frac{1}{n^2} \implies 0 < b_n = \frac{n}{n^2+1} \le \frac{1}{n}$, de la convergencia de $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ y por el teorema de compresión se tiene que $(b_n)_{n=1}^{\infty}$ converge a 0 ademas de que , como $a_{2n} = \frac{1}{b_n}$, se concluye que necesariamente:

$$\lim_{n\to\infty} a_{2n} = +\infty$$

Por tanto $(a_{2n})_{n=1}^{\infty}$ diverge a $+\infty$ de donde se sigue que $(a_{2n})_{n=1}^{\infty}$ es no acotada y por tanto $(a_n)_{n=1}^{\infty}$ tampoco es acotada, como toda sucesión de Cauchy es acotada, se concluye que $(a_n)_{n=1}^{\infty}$ no es una sucesión de cauchy.

iii) Como $\frac{1}{2} > 0$, tenemos que $\lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0$, por tanto sea $\frac{\epsilon_0}{2} > 0$, tenemos que existe $K_0 \in \mathbb{N}$ tal que si $n \geq K_0$, entonces:

$$\frac{1}{2^n} = \left| \frac{1}{2^n} \right| < \frac{\epsilon_0}{2} \implies \frac{1}{2^{n-1}} < \epsilon_0$$

Definimos $l = max\{4, K_0\}$ y tomamos $n, m \ge l$, con $n \ne m$, supongamos sin perdida de generalidad m > n, tenemos que:

$$|a_m - a_n| = \left| \sum_{i=1}^m \frac{1}{i!} - \sum_{i=1}^n \frac{1}{i!} \right| = \left| \sum_{i=n+1}^m \frac{1}{i!} + \sum_{i=1}^n \frac{1}{i!} - \sum_{i=1}^n \frac{1}{i!} \right| = \left| \sum_{i=n+1}^m \frac{1}{i!} \right|$$

Como $n, m \ge l$ tenemos que $n+1, n+2, ..., m \ge 4$, aplicando el hecho de que $n! > 2^n \implies \frac{1}{n!} < \frac{1}{2^n} \forall n \ge 4, n \in \mathbb{N}$, se sigue que:

$$|a_m - a_n| = \left| \sum_{i=n+1}^m \frac{1}{i!} \right| \le \sum_{i=n+1}^m \left| \frac{1}{i!} \right| < \sum_{i=n+1}^m \left| \frac{1}{2^i} \right| = \left| \frac{1}{2^n} \right| \sum_{i=1}^{m-n} \left| \frac{1}{2^i} \right| < \left| \frac{1}{2^n} \right| \sum_{i=0}^{m-n} \left| \frac{1}{2^i} \right|$$

Aplicando la suma parcial de una serie geométrica y del hecho de que $2^n > n \implies \frac{1}{2^n} < \frac{1}{n} < 1$ $\forall n \in \mathbb{N}$, ademas de que $\frac{1}{2^n} > 0 \ \forall n \in \mathbb{N}$, se sigue que:

$$|a_m - a_n| < \frac{1}{2^n} \sum_{i=0}^{m-n} \frac{1}{2^i} = \frac{1}{2^n} \frac{1 - \left(\frac{1}{2^{n-m+1}}\right)}{1 - \frac{1}{2}} = \frac{1}{2^{n-1}} \left(1 - \frac{1}{2^{n-m+1}}\right) < \frac{1}{2^{n-1}} < \epsilon_0$$

m-n+1, es un número natural pues por hipótesis $m-n>0 \implies n-m+1>1$, luego como n se tomo mayor o igual que l esto asegura nuestra última desigualdad, es decir, la distancia entre a_m y a_n esta acotada por ϵ_0 , finalmente del hecho de que $\epsilon_0>0$ es arbitraria se conlcuye que $(a_n)_{n=1}^{\infty}$ es una sucesión de Cauchy.

Nota: El caso
$$n=m$$
 es trivial pues $|a_n-a_m|=0<\epsilon_0\ \forall\ \epsilon_0>0$