COMPITO DI METÀ SEMESTRE Analisi due (Primo modulo) - Corso di Laurea in FISICA Sabato 21 Novembre, 1998

LEGGERE ATTENTAMENTE:

- Il presente esame consiste di 10 esercizi. Ogni esercizio vale 10 punti su 100.
- Il compito non sarà sufficiente se non si risolve almeno un esercizio del gruppo 1. 2. 3., almeno uno del gruppo 4. 5. 6. e almeno uno del gruppo 7. 8. 9. 10.
- Non sono ammessi appunti, calcolatrici, libri, tavole di integrali e telefoni cellulari.
- Il tempo concesso per svolgere il compito è di 3 ore.
- Per la brutta copia è consentito utilizzare esclusivamente fogli consegnati dal docente.
- Tutti gli effetti personali, compresi borse e cappotti, devono essere lasciati accanto agli attaccapanni (ad eccezione della penna!).
- Non è consentito consegnare altri fogli oltre agli 11 (undici) del presente fascicolo.
- Scrivere a penna e tenere il libretto (o un altro documento) sul banco per il riconoscimento.
- Non è consentito parlare o comunicare in nessun modo, pena il ritiro immediato del compito.

ESERCIZIO	PUNTEGGIO
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
TOTALE	/100
VOTO	/30

1. Si trovi la soluzione generale della seguente equazione:

$$y''' - 5y'' + 7y' - 3y = 0$$

2. Si risolva il seguente problema di Cauchy:

$$\begin{cases} y' = \frac{y}{x} + \frac{x}{y} \\ y(1) = 1 \end{cases}$$

3. Si determini la soluzione generale del seguente sistema di equazioni differenziali e si classifichi il flusso associato allo spazio delle soluzioni:

$$\begin{cases} y_1' = y_1 + 3y_2 \\ y_2' = -y_1 - y_2 \end{cases}$$

4. Sia $\mathbf{Dom}(f)$ il dominio della funzione $f(x,y) = \sqrt{e^{-xy}(y+2+x^2)}$. Dopo aver tracciato la figura di $\mathbf{Dom}(f)$, se ne determini l'interno, la chiusura, la frontiera e il derivato.

5. Dopo averne tracciato la figura, si dimostri che il seguente sottoinsieme di ${\bf R}^2$ non è compatto costruendo un ricoprimento di aperti che non ammette un sottoricoprimento finito.

$$S = \{(x, y) \in \mathbf{R}^2 \text{ t.c. } y \in [0, 2] \text{ e } y > x^2 \}$$

6. Si discuta la continuità della seguente funzione $f: \mathbf{R}^2 \longrightarrow \mathbf{R}$:

$$f(x,y) = \begin{cases} \frac{xy \arctan x}{y^2 + (\arctan x)^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

7. Si calcoli il differenziale e il piano tangente nel punto $(1,1,e\ln 2)$ della superficie di equazione $z=e^x\ln(y+1)$.

8. Si calcoli il polinomio di Taylor di grado tre intorno al punto (0,0) della funzione $f(x,y)=\ln(x+y+1)$.

9. Sia $f(x,y) = y^3 - 3y + x^3 - 12x$. Determinare i punti critici di f e classificarli con il metodo della matrice Hessiania.

10. Si risolva la seguente equazione differenziale:

$$(\cos(x+y) + \cos x)dx + (\cos y + \cos(x+y))dy = 0$$