Разбор домашнего задания N°2 Тренировки по ML

Arkadii Lysiakov

Outline

Decision tree

O2 Bootstrap and Bagging

03 Random Forest

04 Boosting

Decision tree for Iris data set

How to split data properly?

Information criteria

H(R) is measure of "heterogeneity" of our data.

Consider multiclass classification problem:

Obvious way:

Misclassification criteria:

$$H(\mathbb{T}) = 1 - \max_{k} (\{p_k\})$$

1. Entropy criteria:

$$H(\mathbb{T}) = -\sum_{k} p_k \log p_k$$

2. Gini impurity:

$$H(\mathbb{T}) = 1 - \sum_{k} p_k^2$$

Information criteria

H(R) is measure of "heterogeneity" of our data.

Consider regression problem:

1. Mean squared error

$$H(\mathbb{T}) = \min_{c} \frac{1}{|\mathbb{T}|} \sum_{k} (y^{(k)} - c)^2$$

Bootstrap

Consider dataset X containing m objects.

Pick m objects with return from X and repeat in N times to get N datasets.

Error of model trained on Xj:

$$\varepsilon_j(\boldsymbol{x}) = b_j(\boldsymbol{x}) - y(\boldsymbol{x}), \quad j = 1, \dots, N,$$

Then

$$\mathbb{E}_{\boldsymbol{x}} \left[b_j(\boldsymbol{x}) - y(\boldsymbol{x}) \right]^2 = \mathbb{E}_{\boldsymbol{x}} \varepsilon_j^2(\boldsymbol{x}).$$

The mean error of N models:

$$E_1 = \frac{1}{N} \sum_{j=1}^{N} \mathbb{E}_{\boldsymbol{x}} \varepsilon_j^2(\boldsymbol{x}).$$

Bootstrap

This is a lie

Consider the errors unbiased and uncorrelated:

$$\mathbb{E}_{\boldsymbol{x}}[\varepsilon_j(\boldsymbol{x})] = 0;$$

$$\mathbb{E}_{\boldsymbol{x}}[\varepsilon_i(\boldsymbol{x})\varepsilon_j(\boldsymbol{x})] = 0, \quad i \neq j.$$

The final model averages all predictions:

$$a(\boldsymbol{x}) = \frac{1}{N} \sum_{j=1}^{N} b_j(\boldsymbol{x}).$$

$$E_N = \mathbb{E}_{m{x}} \left(rac{1}{N} \sum_{j=1}^N b_j(m{x}) - y(m{x})
ight)^2$$

$$= \mathbb{E}_{m{x}} \left(rac{1}{N} \sum_{j=1}^N arepsilon_j(m{x})
ight)^2$$

$$= rac{1}{N^2} \mathbb{E}_{m{x}} \left(\sum_{j=1}^N arepsilon_j^2(m{x}) + \sum_{i
eq j} arepsilon_i(m{x}) arepsilon_j(m{x})
ight)$$

$$= rac{1}{N} E_1. \qquad \text{Error decreased by N times!}$$

Bagging = Bootstrap aggregating

Decreases the variance if the basic algorithms are not correlated

Bootstrap

Consider the errors unbiased and uncorrelated:

$$\mathbb{E}_{\boldsymbol{x}}[\varepsilon_{j}(\boldsymbol{x})] = 0;$$

$$\mathbb{E}_{\boldsymbol{x}}[\varepsilon_{i}(\boldsymbol{x})\varepsilon_{j}(\boldsymbol{x})] = 0, \quad i \neq j.$$

The final model averages all predictions:

$$a(\boldsymbol{x}) = \frac{1}{N} \sum_{j=1}^{N} b_j(\boldsymbol{x}).$$

$$\begin{split} E_N &= \mathbb{E}_{\boldsymbol{x}} \left(\frac{1}{N} \sum_{j=1}^N b_j(\boldsymbol{x}) - y(\boldsymbol{x}) \right) \\ &= \mathbb{E}_{\boldsymbol{x}} \left(\frac{1}{N} \sum_{j=1}^N \varepsilon_j(\boldsymbol{x}) \right)^2 \\ &= \frac{1}{N^2} \mathbb{E}_{\boldsymbol{x}} \left(\sum_{j=1}^N \varepsilon_j^2(\boldsymbol{x}) + \sum_{i \neq j} \varepsilon_i(\boldsymbol{x}) \varepsilon_j(\boldsymbol{x}) \right) \\ &= \frac{1}{N} E_1. \end{split}$$
 Error decreased by N times!

Random Forest

Bagging + RSM = Random Forest

Random Forest

- One of the greatest "universal" models
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

OOB =
$$\sum_{i=1}^{\ell} L\left(y^{(i)}, \frac{1}{\sum_{n=1}^{N} [\boldsymbol{x}^{(i)} \notin \boldsymbol{X}_n]} \sum_{n=1}^{N} [\boldsymbol{x}^{(i)} \notin \boldsymbol{X}_n] b_n(\boldsymbol{x}^{(i)})\right)$$

Boosting: AdaBoost

$$\hat{f}_T(oldsymbol{x}) = \sum_{t=1}^{T}
ho_t h_t(oldsymbol{x})$$

$$L(y^{(i)}, \hat{f}_T(\boldsymbol{x}^{(i)})) = \exp\left(-y^{(i)}\hat{f}_T(\boldsymbol{x}^{(i)})\right) = \exp\left(-y^{(i)}\sum_{t=1}^T \rho_t h_t(\boldsymbol{x}^{(i)})\right)$$

$$= \exp\left(-y^{(i)} \sum_{t=1}^{T-1} \rho_t h_t(\boldsymbol{x}^{(i)})\right) \cdot \exp\left(-y^{(i)} \rho_T h_T(\boldsymbol{x}^{(i)})\right)$$
$$= w^{(i)} \cdot \exp\left(-y^{(i)} \rho_T h_T(\boldsymbol{x}^{(i)})\right)$$

Gradient boosting: theory

$$\hat{f}_{T-1}(\boldsymbol{x}) = \sum_{t=0}^{T-1} g_t(\boldsymbol{x}),$$

$$r_t^{(i)} = -\left[\frac{\partial L(y^{(i)}, f(\boldsymbol{x}^{(i)}))}{\partial f(\boldsymbol{x}^{(i)})}\right]_{f(\boldsymbol{x}) = \hat{f}_T(\boldsymbol{x})}, \quad \text{for } i = 1, \dots, n,$$

$$\boldsymbol{\theta}_T = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^n \left(r_t^{(i)} - h(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}) \right)^2,$$

$$\rho_t = \arg\min_{\rho} \sum_{i=1}^{n} L\left(y^{(i)}, \hat{f}_{t-1}(\mathbf{x}^{(i)}) + \rho \cdot h(\mathbf{x}^{(i)}, \boldsymbol{\theta}_T)\right)$$

Thanks for attention! Questions?

