

Dual Matched Instrumentation Operational Amplifier

OP-10

FEATURES

•	Extremely Tight Matching
•	Excellent Individual Amplifler Parameters
	Offset Voltage Match 0.18mV Max
	Offset Voltage Match vs Temp 0.8 µV/° C Max
•	Common-Mode Rejection Match 114dB Min
	Power Supply Rejection Match 100dB Min
•	Bias Current Match 3.0nA Max
•	Low Noise 0.6μV _{p-p} Max
•	Low Blas Current 3.0nA Max
•	High Common-Mode input impedance 200G Ω Typ

Excellent Channel Separation 126dB Min

ORDERING INFORMATION†

T _A = 25° C V _{OS} MAX (mV)	HERMETIC DIP 14-PIN	OPERATING TEMPERATURE RANGE
0.5	OP10AY*	MIL
0.5	OP10EY	COM
0.5	OP10Y*	MIL
0.5	OP10CY	COM

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- † Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

GENERAL DESCRIPTION

The OP-10 series of dual-matched instrumentation operational amplifiers consists of two independent monolithic high-performance operational amplifiers in a single 14-pin dual-in-line package. Tight matching of critical parameters

is provided between channels of the dual operational amplifier.

The excellent specifications of the individual amplifiers and tight matching over temperature enable construction of high-performance instrumentation amplifiers. The designer can achieve the guaranteed specifications because the common package eliminates temperature differentials which occur in designs using separately housed amplifiers.

Matching between channels is provided on all critical parameters including offset voltage, tracking of offset voltage vs. temperature, noninverting bias currents, and common-mode and power-supply rejection ratios. The individual amplifiers feature extremely low offset voltage, offset voltage drift, low noise voltage, low bias current, internal compensation and input/output protection.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC (1/2 OP-10)

OP-10

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±22V
Differential Input Voltage	±30V
Input Voltage (Note 1)	±22V
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	65°C to +150°C
Operating Temperature Range	
OP-10A, OP-10	55°C to +125°C
OP-10E, OP-10C	0°C to +70°C

DICE Junction Tempera	ature (T,)	65°C	to +150°C
Lead Temperature Ran	nge (Soldering, 60	sec)	+300°C
PACKAGE TYPE	Θ _{JA} (NOTE 2)	Өјс	UNITS
14-Pin Hermetic DIP (Y)	108	16	°C/W

NOTES:

- For supply voltages less than +22V, the absolute maximum input voltage is equal to the supply voltage.
- 2. $\Theta_{|A}$ is specified for worst case mounting conditions, i.e., $\Theta_{|A}$ is specified for device in socket for CerDIP package.

INDIVIDUAL AMPLIFIER CHARACTERISTICS at $V_S=\pm\,15V$, $T_A=25\,^{\circ}\,C$, unless otherwise noted.

				OP-10	Α		OP-10			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Input Offset Voltage	V _{OS}			0.2	0.5	_	0.2	0.5	mV	
Long-Term Input Offset Voltage Stability	ΔV _{OS} /Time	(Notes 1, 2)	_	0.25	1.0	_	0.25	1.0	μV/Mo	
Input Offset Current	Ios		_	1.0	2.8		1.0	2.8	n A	
Input Bias Current	1 _B			±1	±3		± 1	±3	nA	
Input Noise Voltage	e _{np-p}	(Note 2) 0.1Hz to 10Hz	_	0.35	0.6		0.35	0.6	μV _{p-p}	
Input Noise Voltage	 -	f _O = 10Hz		10.3	18.0		10.3	18.0		
Density	e _n	(Note 2) $f_0 = 100Hz$	_	10.0	13.0	_	10.0	13.0	nV/√Hz	
		f _O = 1000Hz		9.6	11.0		9.6	11.0		
Input Noise Current	i _{np-p}	(Note 2) 0.1Hz to 10Hz		14	30		14	30	pA _{p-p}	
Input Noise Current		$f_0 = 10Hz$	_	0.32	0.80	_	0.32	0.80		
Density	in	(Note 2) $f_0 = 100Hz$	_	0.14	0.23	_	0.14	0.23	pA/√Hz	
		f _O = 1000Hz		0.12	0.17		0.12	0.17		
Input Resistance — Differential-Mode	R _{IN}	(Note 3)	20	60	_	20	60	_	MΩ	
Input Resistance — Common-Mode	R _{INCM}		_	200	_	_	200		GΩ	
Input Voltage Range	IVR		± 13	± 14			±14			
Common-Mode Rejection Ratio	CMRR	V _{CM} = ± 13 V	110	126	_	110	126		dB	
Power Supply Rejection Ratio	PSRR	$V_{S} = \pm 3V \text{ to } \pm 18V$	_	4	10		4	10	μV/V	
Large-Signal Voltage		$R_L \ge 2k\Omega$, $V_O = \pm 10V$	200	500		200	500			
Gain	A _{VO}	$R_L \ge 500\Omega$, $V_O = \pm 0.5V$, $V_S = \pm 3V$ (Note 3)	150	500	_	150	500	_	V/mV	
		$R_L \ge 10k\Omega$	± 12.5	± 13.0	_	± 12.5	± 13.0			
Output Voltage Swing	V_{O}	$R_L \ge 2k\Omega$	± 12.0	±12.8	_	\pm 12.0	± 12.8	_	٧	
	·	$R_L \ge 1k\Omega$	± 10.5	± 12.0		± 10.5	± 12.0			
Slew Rate	SR	$R_L \ge 2k\Omega$		0.17			0.17	_	V/μs	
Closed-Loop Bandwidth	BW	A _{VCL} = +1.0		0.6		_	0.6	_	MHz	
Open-Loop Output Resistance	R _O	$V_{O} = 0, l_{O} = 0$	_	60	_	_	60	_	Ω	
Power Consumption	P_d	Each Amplifier	_	90	120		90	120	mW	
Office A discount of T		V _S = ±3V		4	6		4	6		
Offset Adjustment Range		$R_P = 20k\Omega$		±4			± 4		mV	
Input Capacitance	C _{IN}	· · · · · · · · · · · · · · · · · · ·		8			8	_	pF	

NOTES:

- 1. Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5 μ V refer to typical performance curves.
- 2. Sample tested.
- 3. Guaranteed by design.

INDIVIDUAL AMPLIFIER CHARACTERISTICS at $V_S = \pm\,15V$, -55° C $\leq T_A \leq +\,125^{\circ}$ C, unless otherwise noted.

				OP-10A			OP-10			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	u nits	
Input Offset Voltage	v _{os}		_	0.3	0.7	_	0.3	0.7	m۷	
Average Input Offset Voltage Drift										
Without External Trim	TCVos	(Note 2)	-	0.7	2.0	_	0.7	2.0	μV/°C	
With External Trim	TCV _{OSn}	$R_P = 20k\Omega \text{ (Note 3)}$	_	0.3	1.0	_	0.3	1.0	μV/° C	
Input Offset Current	los		_	1.8	5.6	_	1.8	5.6	nA	
Average Input Offset Current Drift	TCIos	(Note 2)	_	8	50	_	8	50	pA/°C	
Input Bias Current	I _B		_	±2	±6		±2	±6	nA	
Average Input Bias Current Drift	TCIB	(Note 2)	_	13	50	_	13	50	pA/°C	
Input Voltage Range	IVR		± 13.0	±13.5	_	±13.0	±13.5	_	v	
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	106	123	_	106	123	_	dB	
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$	_	5	20	_	5	20	μV/V	
Large-Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	150	400	_	150	400	_	V/mV	
Output Voltage Swing	v _o	$R_L \ge 2k\Omega$	±12.0	±12.6	_	± 12.0	±12.6	_	v	

MATCHING CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

				OP-10A			OP-10		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	ΔV _{OS}		_	0.07	0.18	_	0.12	0.5	mV
Average Noninverting Bias Current	I _B +		_	±1.0	±3.0	_	±1.3	±4.5	nA
Noninverting Offset Current	I _{OS} +		_	0.8	2.8	_	1.1	4.5	nA
Inverting Offset Current	los-		_	0.8	2.8	_	1.1	4.5	nA
Common-Mode Rejection Ratio Match	ΔCMRR	$V_{CM} = \pm 13V$	114	123	_	106	120	_	dB
Power Supply Rejection Ratio Match	ΔPSRR	$V_S = \pm 3V$ to $\pm 18V$	_	3	10	_	4	20	μV/V
Channel Separation	cs	(Note 2)	126	140	_	126	140		dB

MATCHING CHARACTERISTICS at $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$, unless otherwise noted.

			OP-10A						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage Match	ΔV _{OS}		_	0.1	0.3	_	0.2	0.9	mV
Input Offset Voltage		- · · · · · ·							
Tracking									
Without External Trim	TCΔV _{os}	(Note 2)	_	0.45	1.3	_	0.9	2.5	μV/° C
With External Trim	TCΔV _{OSn}	$R_P = 20k\Omega$ (Note 3) Channel A only	_	0.3	0.8	_	0.4	1.2	μV/°C

NOTES:

- Long-Term Input Offset Voltage Stability refers to the averaged trend line
 of V_{OS} vs. Time over extended periods after the first 30 days of operation.
 Excluding the initial hour of operation, changes in V_{OS} during the first 30
 operating days are typically 2.5 µV refer to typical performance curves.
- 2. Sample tested.
- 3. Guaranteed by design.

				OP-10/	<u> </u>		OP-10		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Average Noninverting Bias Current	I _B +			±2.0	±6.0		±2.4	±8.0	nA
Average Drift of Noninverting Bias Current	TCI _B +	(Note 2)	_	10	40	_	15	_	pA/°C
Noninverting Offset Current	Ios+			2.0	6.5	_	2.4	9.0	nA
Average Drift of Noninverting Offset Current	TCI _{OS} +	(Note 2)	_	12	50	_	18	_	pA/°C
Inverting Offset Current	los-			2.0	6.5	_	2.4	9.0	nA
Common-Mode Rejection Ratio Match	ΔCMRR	$V_{CM} = \pm 13V$	108	120	_	103	117	_	dB
Power Supply Rejection Ratio Match	ΔPSRR	$V_S = \pm 3V \text{ to } \pm 18V$	_	6	20		7	32	μV/V

INDIVIDUAL AMPLIFIER CHARACTERISTICS at $V_S=\pm\,15V,\,T_A=25^{\circ}\,C,$ unless otherwise noted.

	<u> </u>		OP-10E						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MiN	TYP	MAX	UNITS
Input Offset Voltage	V _{os}			0.2	0.5	_	0.2	0.5	mV
Long-Term Input Offset Voltage Stability	ΔV _{OS} /Time	(Notes 1, 2)	_	0.3	1.5	_	0.5	_	μV/Mo
Input Offset Current	Ios			1.2	3.8	_	1.8	6.0	nA
Input Bias Current	I _B			±1.2	±4.0	_	±1.8	±7.0	nA
Input Noise Voltage	e _{np-p}	(Note 2) 0.1Hz to 10Hz		0.35	0.6		0.38	0.65	μV _{p-p}
Input Noise Voltage Density	en	$f_{O} = 10Hz$ (Note 2) $f_{O} = 100Hz$ $f_{O} = 1000Hz$		10.3 10.0 9.6	18.0 13.0 11.0	_ _ _	10.5 10.2 9.8	20.0 13.5 11.5	nV/√ Hz
Input Noise Current	i _{np-p}	(Note 2) 0.1Hz to 10Hz		14	30	_	15	35	pA _{p-p}
Input Noise Current Density	in	$f_{O} = 10Hz$ (Note 2) $f_{O} = 100Hz$ $f_{O} = 1000Hz$	- -	0.32 0.14 0.12	0.80 0.23 0.17	_ 	0.35 0.15 0.13	0.90 0.27 0.18	pA/√Hz
Input Resistance — Differential-Mode	R _{IN}	(Note 3)	15	50		8	33	_	MΩ
Input Resistance — Common-Mode	R _{INCM}			160	_		120	_	GΩ
Input Voltage Range	IVR		± 13	± 14		± 13	± 14		v
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13V$	106	123	_	100	120	<u>-</u>	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V \text{ to } \pm 18V$		4	20		10	32	μV/V
Large-Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega, V_O = \pm 10V$ $R_L \ge 500\Omega, V_O = \pm 0.5V,$ $V_S = \pm 3V \text{ (Note 3)}$	200 150	500 500	-	120 100	400 400	_ 	V/mV
Output Voltage Swing	v _o	$R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$ $R_L \ge 1k\Omega$	± 12.5 ± 12.0 ± 10.5	±13.0 ±12.8 ±12.0	_ _ _	± 12.0 ± 11.5	± 13.0 ± 12.8 ± 12.0	- - -	V

NOTES

- 2. Sample tested.
- 3. Guaranteed by design.

Long-Term Input Offset Voltage Stability refers to the averaged trend line
of V_{OS} vs. Time over extended periods after the first 30 days of operation.
Excluding the initial hour of operation, changes in V_{OS} during the first 30
operating days are typically 2.5 µV — refer to typical performance curves.

INDIVIDUAL AMPLIFIER CHARACTERISTICS at $V_S = \pm 15V$, 0° C $\leq T_A \leq +70^{\circ}$ C, unless otherwise noted. (Continued)

<u> </u>				OP-10E					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Slewing Rate	SR	$R_L \ge 2k\Omega$	 _	0.17	-		0.17		V/μs
Closed-Loop Bandwidth	BW	A _{VCL} = +1.0		0.6		_	0.6	_	MHz
Open-Loop Output Resistance	Ro	$V_0 = 0, I_0 = 0$	_	60	_	-	60	_	Ω
Power Consumption	P _d	Each Amplifier V _S = ±3V		90 4	120 6	<u>-</u>	95 4	150 8	mW
Offset Adjustment Range		$R_P = 20k\Omega$		±4			±4		mV
Input Capacitance	C _{IN}			8			8		pF

INDIVIDUAL AMPLIFIER CHARACTERISTICS at $V_S=\pm\,15V$, $0^{\circ}\,C \le T_A \le +\,70^{\circ}\,C$, unless otherwise noted.

					OP-10	=		OP-10C		
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos				0.25	0.6	_	0.35	1.6	mV
Average Input Offset Voltage Drift										
Without External Trim	TCVos		(Note 2)	_	0.7	2.0	_	1.2	4.5	μV/°C
With External Trim	TCV _{OSn}	$R_P = 20k\Omega$	(Note 3)		0.3	1.0		0.4	1.5	μV/° C
Input Offset Current	los				1.4	5.3		2.0	8.0	nA
Average Input Offset Current Drift	TCIos		(Note 2)	_	8	50	_	12	50	pA/°C
Input Bias Current	I _B				±1.5	±5.5		±2.2	±9.0	nA
Average Input Bias Current Drift	TCIB		(Note 2)	_	13	50	_	18	50	pA/°C
Input Voltage Range	IVR			±13.0	±13.5		± 13.0	±13.5		v
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V		103	123	_	97	120	_	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to ± 18	•v		7	32	-	10	51	μV/V
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$, $V_O = 1$	± 10V	100	400	_	100	400	_	V/mV
Output Voltage Swing	v _o	$R_L \ge 2k\Omega$	· · · · · · · · · · · · · · · · · · ·	±12.0	± 12.6		±11.0	±12.6		V

NOTES:

^{1.} Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically $2.5\mu V$ — refer to typical performance curves.

^{2.} Sample tested.

^{3.} Guaranteed by design.

0P-10 MATCHING CHARACTERISTICS at $V_S=\pm\,15V,\,T_A=\,25^{\circ}\,C,\,\text{unless otherwise noted}.$

PARAMETER	SYMBOL (CONDITIONS	OP-10E			OP-10C			
			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage Match	ΔV_{OS}		_	0.12	0.5	_	0.3	_	mV
Average Noninverting Bias Current	I _B +		_	±1.3	±4.5	_	±2.0	_	nA
Noninverting Offset Current	los+		_	1.1	4.5	_	1.8	_	nA
Inverting Offset Current	I _{OS} -		_	1.1	4.5		1.8	_	nA
Common-Mode Rejection Ratio Match	ΔCMRR	$V_{CM} = \pm 13V$	106	120	_	_	117	_	dB
Power Supply Rejection Ratio Match	ΔPSRR	$V_S = \pm 3V$ to $\pm 18V$	-	4	20	_	5	_	μV/V
Channel Separation	cs	(Note 1)	126	140	_	120	137	_	dB

MATCHING CHARACTERISTICS at $V_S = \pm\,15V$, $0^{\circ}\,C \le T_A \le +\,70^{\circ}\,C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-10E						
			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage Match	ΔV _{OS}		_	0.18	0.7	_	0.4	_	mV
Input Offset Voltage Tracking	TO.	A		0.0	0.0		4.0		V/8.0
Without External Trim	TC _Δ V _{OS}	(Note 1)		0.9	2.3		1.3		μV/° C
With External Trim	TC∆V _{OSn}	R _L = 20kΩ Channel A Only (Note 2)		0.3	0.9	_	0.6	_	μV/°C
Average Noninverting Bias Current	I _B +		_	±2.0	±6.0	_	±2.8	_	nA
Average Drift of Noninverting Bias Current	TCI _B +	(Note 1)	-	12	40	_	18		pA∕°C
Noninverting Offset Current	I _B +		_	2.0	6.0		2.8	_	nA
Average Drift of Noninverting Offset Current	TCI _{OS} +	(Note 1)	_	15	50	_	20	_	pA/°C
Input Offset Current	los-		_	2.0	6.0	_	2.8	_	nA
Common-Mode Rejection Ratio Match	ΔCMRR	V _{CM} = ± 13V	103	117	_	_	114	_	dB
Power Supply Rejection Ratio Match	ΔPSRR	$V_S = \pm 3V$ to $\pm 18V$	_	6	32	_	8	_	μV/V

NOTES:

1. Sample tested.

^{2.} Guaranteed by design.

BURN-IN CIRCUIT

OFFSET NULLING CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

MATCHING CHARACTERISTICS TRIMMED OFFSET VOLTAGE MATCH vs TEMPERATURE

MATCHING CHARACTERISTICS TRIMMED MATCHED OFFSET VOLTAGE DRIFT AS A FUNCTION OF TRIMMING POT (Rp) SIZE AND ΔV_{OS}

MATCHING CHARACTERISTICS CHANNEL SEPARATION vs FREQUENCY

OP-10

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL LOW-FREQUENCY NOISE TEST CIRCUIT

MATCHING CHARACTERISTIC MAXIMUM INPUT ERROR vs SOURCE RESISTANCE

MATCHING CHARACTERISTIC MAXIMUM INPUT ERROR vs SOURCE RESISTANCE

OP-10 LOW FREQUENCY NOISE

VOLTAGE NOISE DENSITY vs FREQUENCY

INPUT WIDEBAND NOISE vs BANDWIDTH (0.1Hz TO FREQUENCY INDICATED)

TYPICAL OFFSET VOLTAGE

OFFSET VOLTAGE DRIFT WITH TIME

TRIMMED OFFSET VOLTAGE vs TEMPERATURE

TYPICAL PERFORMANCE CHARACTERISTICS

OP-10

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

TIME (SEC)

ADVANTAGES OF DUAL MATCHED OPERATIONAL AMPLIFIERS

Dual matched operational amplifiers provide a powerful tool for the solution of some difficult circuit design problems. Circuits include true instrumentation amplifiers, extremely low drift, high common-mode rejection DC amplifiers, low DC drift active filters, dual tracking voltage references and many other demanding applications. These designs all require good matching between two operational amplifiers.

The adjacent circuit, a differential-in, differential-out amplifier, shows how errors can be reduced. Assuming the resistors used are matched, the gain of each side will be identical; if the offset voltage of each amplifier is matched, then the net differential voltage at the amplifiers output will be zero. Note that the output offset error of this amplifier is not a function of the offset voltage of the individual amplifiers, but only a function of the difference between the amplifiers' offset voltages. This error-cancellation principle holds for a number of input-referred error parameters — offset voltage, offset voltage drift, inverting and noninverting bias currents, common-mode and power supply rejection ratios. Note also that the impedances of each input, both common-mode and differential-mode, are extremely high, an important feature not possible with single operational amplifier circuits. Common-mode rejection can be made very high; this is especially important in instrumentation amplifiers where errors due to large common-mode voltages can be far greater than errors due to noise or drift with temperature.

For example, consider the case of two op amps, each with 80dB ($100\mu V/V$) CMRR. If the CMRR of one device is $+100\mu V/V$ while CMRR of the other is $-100\mu V/V$, then the net

CMRR will be $200\mu V/V$, a 6dB degradation. The matching of CMRR increases the effective CMRR when used as an instrumentation input stage.

POWER SUPPLIES

The V+ supply terminals are completely independent and may be powered by separate supplies if desired (this approach, however, would sacrifice the advantages of the power supply rejection ratio matching). The V- supply terminals are both connected to the common substrate and must be tied to the same voltage.

OFFSET TRIMMING

Offset trimming terminals are provided for each amplifier of the OP-10. Guaranteed performance over temperature is obtained by trimming only one side (side A) to match the offset of the other; a net differential offset of zero results. This procedure is used during factory testing of the devices; however, essentially the same results may be obtained by trimming side B to match side A, or by nulling each side individually.

The OP-10 provides lowest drift when trimmed with a $20k\Omega$ potentiometer; this value provides about $\pm 4mV$ of adjustment range which should be more than adequate for most applications. Where finer trimming resolution is desired, or where unwanted changes in potentiometer position with time and temperature could create unacceptable offsets, the adjustment sensitivity may be reduced by using the circuit shown below.

INSTRUMENTATION AMPLIFIERS USING OP-10

Instrumentation amplifiers with excellent performance can be easily built using the OP-10. Typical performance for a two and three-amplifier design are given in the table. The three-amplifier design, while more complex, has the advantages of simple gain adjustment by trimming a single resistor (R_3) and

wide common-mode voltage capability at any gain, plus improved gain linearity. Slew rate, small-signal bandwidth, and full power bandwidth are also superior. Speed will be improved by using an OP-01 for the output stage.

TYPICAL PERFORMANCE OF INSTRUMENTATION AMPLIFIERS GAIN = 100

PARAMETER	2 OP AMP DESIGN	3 OP AMP DESIGN			
Gain Nonlinearity	0.004%	0.001% (OP-05)			
Cam Nonniearity		0.002% (OP-01)			
Initial Input Offset Voltage	70µV	75µV			
vs. Temperature (amplifier A nulled with 20k pot)	0.3μ V /° C	0.3μV/° C			
vs. Time	3.5μV/month	3.5μV/month			
Input Bias Current	±1nA	±1nA			
vs. Temperature	10pA/°C	10pA/°C			
Input Offset Current	0.8nA	0.8nA			
vs. Temperature	12pA/° C	12pA/°C			
Input Impedance Differential	80GΩ	100GΩ			
Common-Mode	100GΩ	100GΩ			
Input Noise Voltage (0.1 to 10Hz)	0.5μV _{p-p}	0.5µV _{p−p}			
Input Noise Current (0.1 to 10Hz)	14pA _{p-p}	14pA _{p-p}			
Common-Mode Rejection	120dB	120dB			
Power Supply Rejection	112dB	112dB			
Frequency Response					
Small-Signal (-3dB)	6.0Hz	26kHz (OP-05) 85kHz (OP-01)			
Full Power	2.5Hz	4.3kHz (OP-05) 43kHz (OP-01)			
Slew Rate	0.17V/μs	0.17V/μs (OP-05) 4.0V/μs (OP-01)			

TRIPLE OP-AMP INSTRUMENTATION AMPLIFIER

0P-10

CMRR vs FREQUENCY INSTRUMENTATION AMPLIFIER (3 OP-AMP DESIGN)

PRECISION DUAL TRACKING VOLTAGE REFERENCES USING OP-10

PRECISION DUAL TRACKING VOLTAGE REFERENCES USING OP-10

Precision dual tracking voltage references using a single reference source are easily constructed using OP-10. These references exhibit low noise, excellent stability vs. temperature and time, and have excellent power supply rejection.

In the circuit shown, R_3 should be adjusted to set I_{REF} to operate V_{REF} at its minimum temperature coefficient current. Proper circuit start-up is assured by R_Z , Z_1 , and D_1 .

$$\begin{split} V_{Z1} &\leq V_{REF} + 2V & V1 &= V_{REF} \, (1 + \frac{R2}{R1}) \\ I_{REF} &= (V1 - V_{REF})/R3 & V2 &= V1 \, (\frac{-R5}{R4}) \end{split}$$

Output Impedance (ΔI_L :1.0mA-5.0mA) $0.25 \times 10^{-3}\Omega$

INSTRUMENTATION AMPLIFIER (2 OP-AMP DESIGN)

