IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Linda B. Buck and Richard Axel Applicants :

U.S. Serial No. Not Yet Known :

Herewith Filed :

ODORANT RECEPTORS AND USES THEREOF For .

> 1185 Avenue of the Americas New York, New York 10036

January 26, 2001

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

STATEMENT IN ACCORDANCE WITH 37 C.F.R. §1.821(f)

In accordance with 37 C.F.R. §1.821(f), I hereby certify that the computer readable form containing the nucleic acid and/or amino acid sequences required by 37 C.F.R. §1.821(e) and submitted with the above-identified application contains the same information as the written "Sequence Listing" (98 pages) that is submitted as part of the application.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these were made with the knowledge that wilful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.

Respectfully submitted,

Brian J.

Cooper & Dunham LLP 1185 Avenue of the Americas New York, New York 10036 (212) 278-0400

SEQUENCE LISTING

			OLGODING	1 DISTING			
<110> 1		Linda Richard					
<120>	ODO	RANT RECEPTO	DRS AND USES	STHEREOF			
<130>	0575	5/38586-B/J	PW/ADM				
<150> <151>		08/129,079 B-10-05					
<160>	80						
<170>	Pate	entIn versio	on 3.0				
<210> <211> <212> <213>	1 954 DNA Rati	tus sp. F12					
<400> atggaat	1 tcag	ggaacagcac	aagaagattt	tcaagttttt	ttcttcttgg	atttacagaa	60
aaccca	caac	ttcacttcct	catttttgca	ctattcctgt	ccatgtacct	ggtaacagtg	120
cttggg	aacc	tgcttatcat	tatggccatc	atcacacagt	ctcatttgca	tacacccatg	180
tacttt	ttcc	ttgctaacct	atcctttgtg	gacatctgtt	tcacctccac	caccatccca	240
aagatg	ttgg	taaatatata	cacccagage	aagagcatca	cctatgaaga	ctgtattagc	300
cagatg	tgtg	tettettggt	tttcgcagaa	ttgggcaact	tteteetgge	tgtgatggcc	360
tatgac	cgat	atgtggctaa	ctgtcaccca	ctgtgttaca	cagtcattgt	gaaccaccgg	420
ctctgta	atcc	tgctgcttct	getgteetgg	gttatcagca	ttttccatgc	cttcatacag	480
agctta	attg	tgctacagtt	gaccttctgt	ggagatgtga	aaatccctca	cttcttctgt	540
gaactt	aatc	agetgtecca	actcacctgt	tcagacaact	ttccaagtca	cctcataatg	600
aatctt	gtac	ctgttatgtt	ggcagccatt	tccttcagtg	gcatccttta	ctcttatttc	660
aagata	gtat	cctccataca	ttctatctcc	acagttcagg	ggaagtacaa	ggcattttct	720
acttgt	gcct	ctcacctttc	cattgtctcc	ttattttata	gtacaggcct	cggagtgtac	780
gtcagt	totg	ctgtggtcca	aagctcacat	tctgctgcaa	gtgcttcggt	catgtatact	840
gtggtc	accc	ccatgctgaa	ccccttcatt	tatagtctaa	ggaataaaga	tgtgaagaga	900
gctctg	gaaa	gactgttaga	aggaaactgt	aaagtgcatc	attggactgg	atga	954

<210> 2

<210> 2
<211> 1002
<212> DNA
<213> Rattus sp. F3

<400> 2						
	gcaacaggac	aagagtttca	gaatttette	ttcttggatt	tgtagaaaac	60
aaagacctac	aaccccttat	ttatggtett	ttteteteta	tgtacctggt	tactgtcatt	120
ggaaacatat	ccattattgt	ggctatcatt	tcagatccct	gtctgcacac	ccccatgtat	180
ttetteetet	ctaacctgtc	ctttgtggac	atctgtttca	tttcaaccac	tgttccaaag	240
atgitagiga	acatccagac	ccaaaacaat	gtcatcacct	atgcaggatg	cattacccag	300
atatactttt	tettgetett	tgtagaattg	gacaacttct	tgctgactat	catggcctat	360
gaccgttacg	tagccatctg	tcaccccatg	cactacacag	ttatcatgaa	ctacaagete	420
tgtggatttc	tggttctggt	atcttggatt	gtaagtgttc	tgeatgeett	gtttcaaagc	480
ttgatgatgt	tggcgctgcc	cttctgcaca	catctggaaa	teccacaeta	cttctgtgaa	540
cctaatcagg	tgattcaact	cacctgttct	gatgcatttc	ttaatgatet	tgtgatatat	600
tttacacttg	tgetgetgge	tactgttcct	cttgctggca	tettetatte	ttacttcaag	660
atagtgtect	ccatatgtgc	tatategtea	gttcatggga	agtacaaagc	attctccacc	720
tgtgcatctc	acctttcagt	cgtgtcttta	ttttactgca	caggactagg	agtgtacete	780
agttctgctg	caaacaacag	ctcacaggca	agtgccacag	cctcagtcat	gtacactgta	840
gttaccccta	tggtgaaccc	ttttatctat	agtcttagga	ataaagatgt	taagagtgtt	900
ctgaaaaaaa	ctctttgtga	ggaagttata	aggagtecae	cttccctact	tcatttcttc	960
ctagtgttat	gtcatctccc	ttgttttatt	ttttgttatt	aa		1002
<210> 3 <211> 942 <212> DNA <213> Ratt <400> 3	tus sp. F5					

atgageagea ceaaceagte cagtgteace gagtteetee teetggaet eteeaggeag 60
ceceageage ageageteet etteetgete tteeteatea tgtacetgge eactgteetg 120
ggaaacetge teateateet ggetattgge acagaeteec geetgeacae eeceatgtae 180
tteetteetea gtaacetgte etttgtggat gtetgettet eetetaceae tgteeetaaa 240
gttetggeea aceatataet tgggagteag geeattteet teetetgggtg teteaceeag 300
etgtatttee tegetgtgt tggtaacatg gacaatttee tgetggetgt gatgteetat 360
gacegatttg tggceatatg ceaecettta eactacacaa caaagatgae eegteagete 420
tggtgeetge ttgttgtggg gteatgggtt gtageeaaca tgaattgtet gttgcacata 480

ctgctcatgg ctcgactctc cttctgtgca gacaacatga toccccactt cttctgtgat ggaactcccc tectgaaact etectgetea gacacacate teaatgaget gatgattett 600 acagagggag ctgtggtcat ggtcacccca tttgtctgca tcctcatctc ctacatccac 660 atcacctgtg ctgtcctcag agtctcatcc cccaggggag gatggaaatc cttctccacc tqtqqctccc acctggctgt ggtctgcctc ttctatggca ccgtcatcgc tgtgtattte 780 aacccatcat ceteteactt agetgggagg gacatggcag etgcagtgat gtatgcagtg 840 gtqaccccaa tgctgaaccc tttcatctat agcctgagga acagcgacat gaaagcagct 900 ttaaggaaag tgctcgccat gagatttcca tctaagcagt aa 942 <210> <211> 936 <212> DNA <213> Rattus sp. F6 <400> 4 atggettgga gtactggcca gaacctgtcc acaccaggac catteatett gctgggette 60 ccagggccaa ggagcatgcg cattgggctc ttcctgcttt tcctggtcat gtatctgctt acggtagttg gaaacctagc catcatctcc ctggtaggtg cccacagatg cctacagaca 180 cocatgiact tettectetg caacetetee ticetggaga tetggiteae cacageetge 240 gtacccaaga coctggccac atttgcgcct cggggtggag teattteett ggctggctgt 300 gccacacaga tgtactttgt cttttctttg ggctgtaccg agtacttcct gctggctgtg 360 atggettatg acceptacet ggecatetge etgecactge getatggtgg catcatgact 420 cctgggctgg cgatgcggtt ggccctggga tcctggctgt gtgggttttc tgcaatcaca 480 gitcctgcta ccctcattgc ccgcctctct ttctgtggct cacgtgtcat caaccactte 540

ttstgtgasa tttogcoctg gatagtgett teetgcaseg acaegeaggt ggtggaactg

gtgtcctttg gcattgcctt ctgtgttatt ctgggctcgt gtggtatcac actaqtctcc

tatgettaca teateactae cateateaag attecetetg eccggggeeg geaccgegee ttetcaacet geteateeca tetcaetgtg gtgetgattt ggtatggete Laccatette

ttgcatgtga ggacctcggt agagagetec ttggacctca ccaaagetat cacagtgete

aacaccattg tcacacctgt gctgaaccct ttcatatata ctctgaggaa caaggatgtc

aaggaagete tgegeaggae ggtqaagggq aagtqa

600

660

780

840

900

<210> <211> 939

12157 NGC	cus sp. 114					
<400> 5	ataaccaaac	tttgatgttg	gagttcctcc	tectagatet	accestaces	60
	atctcctgtt				-	120
ggaaacctgc	taatcattgt	ccttgttcga	ctggactctc	atctccacat	gcccatgtac	180
ttgtttctca	gcaacttgtc	cttctctgac	ctctgctttt	cctctgtcac	aatgcccaaa	240
ttgcttcaga	acatgcagag	ccaagtacca	tctatatcct	atacaggetg	cctgacacag	300
ctgtacttct	ttatggtttt	tggagatatg	gagagettee	ttcttgtggt	catggcctat	360
gaccgctatg	tggccatttg	ctttcctttg	cgttacacca	ccatcatgag	caccaagttc	420
tgtgcttcac	tagtgctact	tctgtggatg	ctgacgatga	cccatgccct	getgeatace	480
ctactcattg	ctagattgtc	tttttgtgag	aagaatgtga	ttcttcactt	tttctgtgac	540
atttctgctc	ttctgaagtt	gteetgetea	gacatttatg	ttaatgaget	gatgatatat	600
atcttgggtg	gactcatcat	tattatccca	ttcctattaa	ttgttatgtc	ctatgttaga	660
attttettet	ccattttgaa	gtttccatct	attcaggaca	tctacaaggt	attctcaacc	720
tgtggttccc	atctgtctgt	ggtgaccttg	ttttatggga	caatttttgg	tatctactta	780
tgtccatcag	gtaataattc	tactgtgaag	gagattgcca	tggctatgat	gtacacagtg	840
gtgactecca	tgetgaatee	cttcatctac	agcctgagga	acagagacat	gaaaagggcc	900
ctaataagag	ttatctgcac	taagaaaatc	tctctgtaa			939
<210> 6 <211> 945 <212> DNA <213> Rati	tus sp. I15					
<400> 6 atgacagaag	agaaccaaac	tgtgatctcc	cagttccttc	teettteet	geccateece	60
teagageace	agcacgtgtt	ctacgccctg	tteetgteea	tgtacetcae	cactgtcctg	120
gggaacctca	tcatcatcat	cctcattcac	ctggactccc	atctccacac	acccatgtac	180
ttgtttctca	gcaacttgtc	cttctctgat	ctctgctttt	cctctgttac	gatgcccaag	240
ttgttgcaga	acatgcagag	ccaagttcca	tccatcccct	ttgcaggctg	cctgacacaa	300
ttatactttt	acctgtattt	tgcagacctt	gagagettee	tgcttgtggc	catggcctat	360
gaccgctatg	tggccatctg	cttccccctt	cattacatga	gcatcatgag	ecccaagete	420
tototoacto	taataataat	atcetagata	ctcaccacct	togatoggat	aataasasaa	400

ctgctcatgg ccagattgtc attctgtgcg gacaatatga tcccccactt tttctgtgat 540

atateteett	tattgaaact	gtcctgctct	gacacgcatg	ttaatgagtt	ggtgatattt	600
gtcatgggag	ggcttgttat	tgtcattcca	tttgtgctca	tcattgtatc	ttatgcacga	660
gttgtcgcct	ccattcttaa	agtecettet	gtccgaggca	tccacaagat	cttctccacc	720
tgeggeteee	atctgtctgt	ggtgtcactg	ttctatggga	caatcattgg	tototactta	780
tgtccgtcag	ctaataactc	tactgtgaag	gagactgtca	tggccatgat	gtacacagtg	840
gtgaccccca	tgctgaaccc	cttcatctac	agcctgagga	acagagacat	gaaagaggca	900
ctgataagag	tcctttgtaa	aaagaaaatt	accttctgtc	tatga		945
<210> 7 <211> 933 <212> DNA <213> Ratt	tus sp. I3					
<400> 7 atgaacaatc	aaactttcat	cacccaattc	cttctcctgg	gactgcccat	ccctgaagaa	60
catcagcacc	tgttctatgc	cttgttcctg	gtcatgtacc	tcaccaccat	cttgggaaac	120
ttgctaatca	ttgtacttgt	tcaactggac	teccagetee	acacacctat	gtatttgttt	180
ctcagcaatt	tgtctttctc	tgatctatgt	ttttcctctg	tcacaatgcc	caagetgetg	240
cagaacatga	ggagccagga	cacatccatt	ccctatggag	getgeetgge	acaaacatac	300
ttctttatgg	tttttggaga	tatggagagt	tteettettg	tggccatggc	ctatgaccgc	360
tatgtggcca	totgottoco	tetgeattae	accagcatca	tgagccccaa	gctctgtact	420
tgtctagtgc	tgttattgtg	gatgctgacg	acateceatg	ccatgatgca	Jacactgett	480
gcagcaagat	tgtctttttg	tgagaacaat	gtggtcctca	acttcttctg	tgacctattt	540
gtteteetaa	agetggeetg	ctcagacact	tatattaatg	agttgatgat	atttatcatg	600
agtacactcc	tcattattat	tecattette	ctcattgtta	tgtcctatgc	aaggatcata	660
tectetatte	ttaaggttcc	atctacccaa	ggcatctgca	aggtettete	tacctgtggt	720
tcccatctgt	ctgtagtatc	actgttctat	gggacaatta	ttggtctcta	cttatgtcca	780
gcaggtaata	attccactgt	aaaagagatg	gtcatggcca	tgatgtacac	tgtggtgacc	840

agagttatct gtagtatgaa aatcactctg taa

900

933

cccatgctga atcccttcat ctacagccta aggaatagag atatgaagag ggccctaata

<210> 8 <211> 984 <212> DNA <213> Rattus sp. I7

<400> 8 atggagcgaa ggaaccacag tgggagagtg agtgaatttg tgttgctggg tttcccagct 60 cotgococac tgcgagtact actatttttc ctttctcttc tggactatgt gttggtgttg 120 actgaaaaca tgctcatcat tatagcaatt aggaaccacc caacceteca caaacccatg tattttttct tggctaatat gtcatttctg gagatttggt atgtcactgt tacgattcct 240 aagatgotog otggottoat tggttocaag gagaaccatg gacagotgat otcotttgag gcatgcatga cacaactcta ctttttcctg ggcttgggtt gcacagagtg tgtccttctt 360 getgtgatgg cetatgaceg etatgtgget atetgteate cactecacta eccegteatt gtcagtagcc ggctatgtgt gcagatggca gctggatcct gggctggagg ttttggtatc 480 tocatqqtta aagttttcct tatttctcgc ctgtcttact gtggccccaa caccatcaac 540 caetttttct gtgatgtgtc tccattgctc aacetgtcat gcactgacat gtccacagca 600 gagettacag actitigteet ggeeattitt attetgetgg gaeegetete tgteaetggg 660 gcatectaca tggccatcac aggtgctgtg atgcgcatcc cctcagetgc tggccgccat asageetttt caacetgtge eteccacete actgttgtga teatetteta tgcagecagt 780 attttcatct atgccaggcc taaggcactc tcagcttttg acaccaacaa gctggtctct 840 gtactctacg ctgtcattgt accgttgttc aatcccatca tctactgctt gcgcaaccaa 900 gatgtcaaaa gagcgctacg tegeaegetg cacetggeee aggaeeagga ggeeaatace 960 aacaaaggca gcaaaattgg ttag 984 9 <211> 939 <212> DNA <213> Rattus sp. 18 <400> 9 atgaacaaca aaactgtcat cacccatttc ctcctcctgg gattgeecat ccccccagag 60 caccagcaac tgttctttgc cctgttcctg atcatgtacc tcaccacctt tctgggaaac etgetaattg ttgteettgt teaactggae teteatetee acacacecat gtacttgttt 180 ctcagcaact tgtccttctc tgatctctgc ttttcctctg ttacaatgct gaaattgctg 240

300

360

420

480

caaaatatac agagccaagt accatctata tootatgcag gatgcctgac acagatatto

ttetttttgt tgtttggeta cettgggaat tteettettg tagecatgge etatgacege

tatqtqqcca tctgcttccc tctgcattat accaacatca tgagccataa gctctgtact

tgtctcctgc tggtattttg gataatgaca tcatctcatg ccatgatgca caccctgctt

gcagcaagat tgtotttttg tgagaacaat gtactectca actttttctg tgacctgttt 540 gttctcctaa agttggcctg ctcagacact tatgttaatg agttgatgat acatatcatg 600 ggcgtgatca toattqttat tocattcqtq ctcattqtta tatcctatgc caagatcate 660 tectecatte ttaaggitee atetacteaa ageatteaca aggiettete caettqtqqt 720 teteatetet etgtggtgte tetgttetae gqqaeaatta ttqqteteta tttatqteea 780 toaggtgata attttagtot aaaggggtot gooatggota tgatgtacac agtggtaact 840 ccaatgotga accogttoat ctacagoota agaaacagag acatgaagca ggooctaata 900 agagttacct gtagcaagaa aatotototg ccatggtag 939 <210> 10 945 <212> DNA <213> Rattus sp. I9 <400> 10 atgactagaa gaaaccaaac tgccatctct cagttettee ttetgggeet gecatteece 60 ccagagtacc aacacctgtt ctatgccctq ttcctggcca tgtacctcac cactetcctg gggaacctca tcatcatcat cctcattcta ctggactccc atctccacac acccatgtac 180 ttqtttctca qcaatttatc ctttgccgac ctctgttttt cctctgtcac aatgcccaaq 240 ttqttqcaga acatgcagag ccaagttcca tccatccct atgcagggtg cctggcacag ataractict tictqttttt tgqagacctt ggaaacticc tgcttgtggc catggcctat 360 gaccgctatg tggccatctg cttccccctt cattacatga gcatcatgag ccccaagcte tgtgtgagte tggtggtget gteetgggtg etgaetacet tecatgeeat getgeacace 480 ctgctcatgg ccagattgtc attctgtgag gacagtgtga tccctcacta tttctgtgat 540 atqtstactc tqctqaaaqt qqcttqttct qacacccatq ataatqaatt aqcaatattt 600 atottagggg goodtatagt tgtactacet tteettetea teattgttte ttatgeaaga 660 attqtttcct ccatcttcaa qqtcccttct tctcaaaqca tccataaaqc cttctccacc tgtggctccc acctgtctgt ggtgtcactg ttctatggga cagtcattgg tctctactta 780 tgtccttcag ctaataactc cactgtgaag qaqactgtca tgtctttgat gtacacaatg 840

900

945

gtgacaccca tgctgaaccc cttcatctac agcctaagaa acagagacat aaaagatgca

ttagaaaaaa taatgtgcaa aaagcaaatt coctoottto tatga

<210> 11

<211> 645

<212> DNA

<213> Homo Sapiens H5												
<220> <221> misc_feature <222> ()() <223> n = unknown												
<400> 11 atotgtttt tgtctaccac tgtcccaaag cagctggtga acatccagac acaqaqca	ra 60											
gtcatcacct atgcagactg catcacccag atgtgctttt ttatactctt tgtagtgt												
gacagottac tootgactgt gatggootat gaccggtttg tggccatctg tcaccccc	-											
cactacacag tcattatgag ctcctggctc tgtggactgc tggttctggt gtcctgga												
gtgagcatco tatattotot gttacaaago ataatggcat tgcagcigto ottotgta												
gaactgaaaa toootoaatt tttotgtgaa ottaatcagg toatocacot tgootgtto												
gacactttta ttaatgacat gatgatgaat tttacaagtg tgctgctggg tgggggatg												
ctcgctggaa tattttactn ntactttaag atactttgtt gcatatgttc gatctcatc												
gctcagggga tgaataaagc actttccacc tgtgcatctc acctctcagt tgtctcctf												
ttttattgta caggegtagg tgtgtacctt agttctgctg caacccataa ctcactct	ea 600											
aatgctgcag cctcggtgat gtacactgtg gtcacctcca tgctg	645											
<210> 12 <211> 215 <212> PRT <213> Homo Sapiens H5 <220> <221> UNSURE <222> (147)(147) <223> x = unknown												
<400> 12												
Ile Cys Phe Val Ser Thr Thr Val Pro Lys Gln Leu Val Asn Ile Gln l $_{\rm 10}$												
Thr Gln Ser Arg Val Ile Thr Tyr Ala Asp Cys Ile Thr Gln Met Cys $20 \\ 25 \\ 30$												
Phe The The Leu Phe Val Val Leu Asp Ser Leu Leu Leu Thr Val Met $35 \ \ 40 \ \ 45$												
Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu His Tyr Thr Val 50 60												
Ile Met Ser Ser Trp Leu Cys Gly Leu Leu Val Leu Val Ser Trp Ile												

Val	Ser	Ile	Leu	Tyr 85	Ser	Leu	Leu	Gln	Ser 90	Ile	Met	Ala	Leu	Gln 95	Leu	
Ser	Phe	Cys	Thr 100	Glu	Leu	Lys	Ile	Pro 105	Gln	Phe	Phe	Cys	Glu 110	Leu	Asn	
Gln	Val	Ile 115	His	Leu	Ala	Cys	Ser 120	Asp	Thr	Phe	Ile	Asn 125	Asp	Met	Met	
Met	Asn 130	Phe	Thr	Ser	Val	Leu 135	Leu	Gly	Gly	Gly	Cys 140	Leu	Ala	Gly	Ile	
Phe 145	Tyr	Xaa	Тут	Phe	Lys 150	Ile	Leu	Cys	Cys	Ile 155	Cys	Ser	Ile	Ser	Ser 160	
Ala	Gln	Gly	Met	Asn 165	Lys	Ala	Leu	Ser	Thr 170	Cys	Ala	Ser	His	Leu 175	Ser	
Val	Val	Ser	Leu 180	Phe	Tyr	Cys	Thr	Gly 185	Val	Gly	Val	Tyr	Leu 190	Ser	Ser	
Ala	Ala	Thr 195	His	Asn	Ser	Leu	Ser 200	Asn	Ala	Ala	Ala	Ser 205	Val	Met	Tyr	
Thr	Val 210	Val	Thr	Ser	Met	Leu 215										
<210 <211 <212 <213	.> 6 !> E	l3 540 DNA Ratti	ıs sp). J												
<220 <221 <222 <223	.> m !> (()	_feat () inkno													
<400	15 1	.3														
			etto	etget	a go	ated	caaa	gat	gcta	gtg	aata	taca	ga c	gaag	aacaa	60
ggtg	atca	icc t	atga	aggo	et go	atct	ccca	agt	atac	ttt	tcat	acto	tt t	ggag	rttttg	120
gaca	actt	tc t	tete	gact	g to	gatgo	ccta	tga	.ccga	tat	gtgg	rccat	ct ç	rtcac	ccatc	180
tnac	taca	ca ç	ggtca	tcat	g aa	eenr	nnnn	nnn	nnnn	nnn	nnnr	ınnnr	nn r	nnnn	nnnnn	240
nnnn	nnnn	nn r	nnnn	nnnr	n nr	nnnn	nnnn	nnn	nnnn	nnn	nnnr	nnnn	nn r	nnnn	nnnnn	300
nnnn	nnnn	ınn r	nnnn	ınnnr	n nr	nnnn	nnnn	nnn	nnnn	nnn	nnnn	nnnn	nn r	nnnn	nnnnn	360
nnnn	nnnn	nn r	nnnn	nnnr	n nr	ınnnr	nnnn	nnn	nnnn	nnn	nnnn	nnnn	nn n	nnnn	nnnnn	420
nnnn	nnnn	tt t	atto	ttac	t ct	aaga	tagt	tte	ctcc	ata	cgag	aaat	ct c	atca	tcaca	480
ggga	aagt	ac a	agnn	atto	t co	acct	gtgc	ato	ccac	ctc	tcag	ttgt	tt c	atta	ttcta	540
ttct	acac	tt t	tggg	tgtg	rt ac	ctta	gttc	ttc	tttt	acc	caaa	acto	ac a	ctca	actgc	600

Ser Tyr Ser Lys Ile Val Ser Ser Ile Arg Glu Ile Ser Ser Ser Gln 145 150 155 160

Gly Lys Tyr Lys Xaa Phe Ser Thr Cys Ala Ser His Leu Ser Val Val 165 170 175

Ser Leu Phe Tyr Ser Thr Leu Leu Gly Val Tyr Leu Ser Ser Ser Phe 180 185 190

Thr Gln Asn Ser His Ser Thr Ala Arg Ala Ser Val Met Tyr Ser Val 195 200 205

Val Thr Pro Met Leu

<212>	15 636 DNA Ratt	us s	p. J	2												
<400> acctcca	15 cca	ccat	ccca	aa g	atgc	tggt	a aa	tata	caca	ccc	agag	caa	tact	atcaco	3	60
tatgaag	act	gtat	ttee	ca g	atgt	ttgt	a ct	cttg	gttt	ttg	gaga	act	ggac	aacttt	:	120
ctcctgg	ctg	tgat	ggcc	ta t	gato	gata	t gt	ggct	atct	gtc	accc	act	gtat	tacaca	ı	180
gtcattg	tga	acca	ccga	ct c	tgta	tect	g ct	gctt	ctgc	tgt	cctg	ggt	tgtc	agcatt		240
ttacatg	cct	tctt	acag	ag c	ttaa	ttgt	a ct	acag	ttga	cct	tetg	tgg	agat	gtgaaa	ı	300
atccctc	act	tett	ctgt	ga g	ctca	atca	g ct	gtcc	caac	tca	catg	ttc	agac	aacttt	:	360
ccaagtc	acc	tcac	aatg	ca t	cttg	tacc	t gt	tata	tttg	cag	ctat	ttc	cctc	agtggt	:	420
atccttt	act	ctta	tttc	aa g	atag	tgtc	t to	cata	egtt	cta	tgtc	ctc	agtt	caaggg	ı	480
aagtaca	agg	catt	ttct	ac a	tgtg	cctc	t ca	cctt	tcca	ttg	tete	ctt	attt	tatagt		540
acaggee	teg	gggt	gtac	gt c	agtt	ctgc	t gt	gatc	cgaa	gct	caca	ctc	ctct	gcaagt		600
gcttcgg	tca	tgtai	tact	gt g	gtca	cccc	c at	gttg								636
<211> <212> <213>	16 212 PRT Ratt 16	us sį). J	2												
Thr Ser 1	Thr	Thr	Ile 5	Pro	Lys	Met	Leu	Val	Asn	Ile	His	Thr	Gln 15	Ser		
Asn Thr	Ile	Thr 20	Тух	Glu	Asp	Cys	Ile 25	Ser	Gln	Met	Phe	Val 30	Leu	Leu		
Val Phe	Gly 35	Glu	Leu	Asp	Asn	Phe 40	Leu	Leu	Ala	Val	Met 45	Ala	Tyr	Asp		
Arg Tyr 50	Val	Ala	Ile	Cys	His 55	Pro	Leu	Tyr	Tyr	Thr 60	Val	Ile	Va1	Asn		
His Arg 65	Leu	Cys	Ile	Leu 70	Leu	Leu	Leu	Leu	Ser 75	Trp	Val	Val	Ser	Ile 80		
Leu His	Ala	Phe	Leu 85	Gln	Ser	Leu	Ile	Val 90	Leu	Gln	Leu	Thr	Phe 95	Cys		
Gly Asp	Val	Lys 100	Ile	Pro	His	Phe	Phe 105	Cys	G1u	Leu	Asn	Gln 110	Leu	Ser		
Gln Leu	Thr 115	Cys	Ser	Asp	Asn	Phe 120	Pro	Ser	His	Leu	Thr 125	Met	His	Leu		

```
Val Pro Val Ile Phe Ala Ala Ile Ser Leu Ser Gly Ile Leu Tyr Ser
Tyr Phe Lys Ile Val Ser Ser Ile Arg Ser Met Ser Ser Val Gln Gly
145
Lys Tyr Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Ile Val Ser
               165
Leu Phe Tyr Ser Thr Gly Leu Gly Val Tyr Val Ser Ser Ala Val Ile
            180
Arg Ser Ser His Ser Ser Ala Ser Ala Ser Val Met Tyr Thr Val Val
Thr Pro Met Leu
<210> 17
<211>
      646
      DNA
      Rattus sp. J4
<213>
<400> 17
cataggetat teatettetg teacacecaa tatgettgte aactteetta taaaqeaaaa
                                                                   60
taccaterca tacettggat gttetataca gtttggetca getgetttgt ttggaggtet
tgaatgcttc cttctggctg ccatggcgta tgatcgtttt gtagcaatct gcaacccact
                                                                  180
getttattca acgasaatgt ccacacaagt ctgtgtccag ttggttgtgg gatettatat
                                                                  240
300
accaaataga atcaatcact tttactgtga ttttgctccg ttagtagaac tttcttgctc
                                                                  360
tgatgtcagt gttcctgatg ctqttacctc attttctgct gcctcagtta ctatgctcac
                                                                  420
agtgtttatc atagccatct cctataccta tatcctcatc accatcctga agatgcgttc
                                                                  480
cactgagggt cgacagaaag cattetetac etgeacttee caceteactg cagteactet
                                                                  540
gtgctatgga accatcacat tcatctatgt gatgcccaag tccagctact ccacagacca
                                                                  600
gaacaaggtg gtgtctgtgt tttatatggt ggtgatcccc atgttg
                                                                  646
<210>
      1.8
<211>
      215
<212>
      PRT
<213> Rattus sp. J4
<400> 18
Ile Gly Tyr Ser Ser Ser Val Thr Pro Asn Met Leu Val Asn Phe Leu
                                  1.0
```

Ile Lys Gln Asn Thr Ile Ser Tyr Leu Gly Cys Ser Ile Gln Phe Gly

	20		25	30	
Ser Ala Ala 35	Leu Phe Gly	Gly Leu 40	Glu Cys Phe	Leu Leu Ala 2 45	Ala Met
Ala Tyr Asp 50	Arg Phe Val	Ala Ile 6	Cys Asn Pro	Leu Leu Tyr 8	Ser Thr
Lys Met Ser 65	Thr Gln Val	Cys Val	Gln Leu Val 75	Val Gly Ser	Tyr Ile 80
Gly Gly Phe	Leu Asn Ala 85	Ser Ser	Phe Thr Leu 90	Ser Phe Phe S	Ser Leu 95
Ser Phe Cys	Gly Pro Asn 100	Arg Ile A	Asn His Phe 105	Tyr Cys Asp I	Phe Ala
Pro Leu Val 115	Glu Leu Ser	Cys Ser A	Asp Val Ser	Val Pro Asp A	Ala Val
Thr Ser Phe 130	Ser Ala Ala	Ser Val 3	Thr Met Leu	Thr Val Phe I	le Ile
Ala Ile Ser 145	Tyr Thr Tyr 150	Ile Leu 1	Ile Thr Ile 155	Leu Lys Met #	arg Ser 160
Thr Glu Gly	Arg Gln Lys 165	Ala Phe S	Ser Thr Cys	Thr Ser His I	eu Thr .75
Ala Val Thr	Leu Cys Tyr 180		Ile Thr Phe 185	Ile Tyr Val M	let Pro
Lys Ser Ser 195	Tyr Ser Thr	Asp Gln A	Asn Lys Val	Val Ser Val E 205	he Tyr
Met Val Val 210	Ile Pro Met	Leu 215			
<210> 19 <211> 481 <212> DNA <213> Rattu	1s sp. J7				
<400> 19					
				cgagtgtgca ca	
ceteteetgt t	ggtttgctg gc	ctgttgat	catcctccca	cctcttggtc at	ggcctcca 120
gctggagttc t	gtgactcca at	gtgattga	tcattttggc	tgtgatgcct ct	ccaattct 180
gcagataace t	geteagaea eg	gtatttat	agagaaaatt	gtcttggctt tt	gccatact 240
gacactcate a	attactctgg ta	tgtgttgt	tctctcctac	acatacatca to	aagaccat 300
tttaaagttt o	ettetgete aa	caaagaaa	aaaggccttt	tctacatgtt ct	tcccacat 360

gattgtggtt tccatcacct atgggagctg tattttcatc tacatcaaac cttcagcgaa

<21 <21 <21 <21	1> 2>	20 160 PRT Ratt	us s	p. J	7											
< 400)>	20														
Ile 1	Cys	Lys	Pro	Leu 5	His	Tyr	Thr	Thr	Ile 10	Met	Asn	Asn	Arg	Val	Cys	
Thr	Val	Leu	Val 20	Leu	Ser	Cys	Trp	Phe 25	Ala	Gly	Leu	Leu	Ile 30	Ile	Leu	
Pro	Pro	Leu 35	Gly	His	Gly	Leu	Gln 40	Leu	Glu	Phe	Cys	Asp 45	Ser	Asn	Val	
Ile	Asp 50	His	Phe	Gly	Cys	Asp 55	Ala	Ser	Pro	Ile	Leu 60	Gln	Ile	Thr	Cys	
Ser 65	Asp	Thr	Val	Phe	Ile 70	Glu	Lys	Ile	Val	Leu 75	Ala	Phe	Ala	Ile	Leu 80	
Thr	Leu	Ile	Ile	Thr 85	Leu	Val	Cys	Va1	Val 90	Leu	Ser	Tyr	Thr	Tyr 95	Ile	
Ile	Lys	Thr	Ile 100	Leu	Lys	Phe	Pro	Ser 105	Ala	Gln	Gln	Arg	Lys 110	Lys	Ala	
Phe	Ser	Thr 115	Cys	Ser	Ser	His	Met 120	Ile	Val	Val	Ser	11e 125	Thr	Tyr	Gly	
Ser	Cys 130	Ile	Phe	Ile	Tyr	Ile 135	Lys	Pro	Ser	Ala	Lys 140	Glu	Gly	Val	Ala	
I1e 145	Asn	Lys	Val	Val	Ser 150	Val	Leu	Thr	Thr	Ser 155	Val	Ala	Pro	Leu	Leu 160	
<210 <211 <212 <213	> <. !> [21 181 DNA Rattı	ıs sp	o. J8	3											
<220 <221 <222 <223	> r	nisc_ ()	()													
<400 catc		21 cac c	eget	ccac	et ac	tete	ttet	: cat	gagt	cet	gaca	acto	rtg c	etget	ctggt	60
															tctaa	120
															ttaat	180

cca	gctg	tcc	tgct	ccag	cg t	cttt	gtga	c ag	aaat	ggcc	atc	tttg	tcc	tgtc	catego	2
tgt	gete	tgc	atct	gttt	cc t	ccta	acce	n nn	nnte	ctac	att	ttca	tag	tgtc	ctccat	=
tct	gaga	atc	cctt	ccac	ta c	agge	agga	t ga	agac	attt	tct	acat	gtg	gata	ccacct	
ggc	cgtg	gtc	acca	tcta	ct a	tggg	acca	t ga	tete	catg	tat	gtcg	gcc	caaa	tgegea	a
tct	gtcc	ccg	gagc	tcaa	ca a	ggtc	attt	c tg	tctt	ctac	act	gtga	tca	cccc	actact	
g																
<21 <21 <21 <21 <22 <22 <22 <22	1> 2> 3> 0> 1> 2>	UNSU (90)	us s RE (9	1)	8											
< 40		22														
			Pro	Leu 5	His	Tyr	Ser	Leu	Leu 10	Met	Ser	Pro	Asp	Asn 15	Cys	
Ala	Ala	Leu	Val 20	Thr	Val	Ser	Trp	Val 25	Thr	Gly	Val	Gly	Thr 30	Gly	Phe	
Leu	Pro	Ser 35	Leu	Leu	Ile	Ser	Lys 40	Leu	Asp	Phe	Cys	Gly 45	Pro	Asn	Arg	
Ile	Asn 50	His	Phe	Phe	Cys	Asp 55	Leu	Pro	Pro	Leu	Ile 60	Gln	Leu	Ser	Cys	
Ser 65	Ser	Val	Phe	Val	Thr 70	Glu	Met	Ala	Ile	Phe 75	Val	Leu	Ser	Ile	Ala 80	
Val	Leu	Cys	Ile	Cys 85	Phe	Leu	Leu	Thr	Xaa 90	Хаа	Ser	Tyr	Ile	Phe 95	Ile	
/al	Ser	Ser	Ile 100	Leu	Arg	Ile	Pro	Ser 105	Thr	Thr	Gly	Arg	Met 110	Lys	Thr	
Phe	Ser	Thr 115	Cys	Gly	Ser	His	Leu 120	Ala	Val	Val	Thr	Ile 125	Tyr	Tyr	Gly	
Phr	Met 130	Ile	Ser	Met	Tyr	Val 135	Gly	Pro	Asn	Ala	His 140	Leu	Ser	Pro	Glu	
Leu 145	Asn	Lys	Val	Ile	Ser 150	Val	Phe	Tyr	Thr	Val 155	Ile	Thr	Pro	Leu	Leu 160	

<210> 23 <211> 646 <212> DNA

<213> Rattus sp. J11		
<220> <221> misc_feature <222> ()() <223> n = unknown		
<400> 23 ngtetgette teeteeacea	otgtocccaa ggtactggct aacca	catac teagtagtea 60
ggccatttcc ttctctgggt	gtotaactca gotgtatttt ototo	tgtgt ctgtgaatat 120
ggacaatttc ctgctggctg	gatggeeta tgacagattt gtgge	catat gecaccettt 180
gtactacaca acaaagatga	eccaccaget etgtgtettg etggt	gtctg gatcannnnn 240
ההההההההה ההההההההה ו	תתחת תתחתתחתת תתחתתחת	nnnnn nnnnnnnnn 300
תחתתתתתתת תחתתתתתתת ו	תמתת תתתתתתתתת תתתתתתתתת	nnnnn nnnnnnnnn 360
nnnnnnnnn nnnnnnnnn i	nnnnnnnnn nnnnnnnnnn nntgt	gatca tggtcacccc 420
atttgtctgc atcctcatct (cttacatcta catcaccaat gcagt	cctca gagtctcatc 480
ctttagggga ggatggaaag (cettetecae etgtggetea eacet	ggctg tggtctgcct 540
cttctatggc accatcattg (stgtgtattt caatootgta totto	ccatt catctgagaa 600
ggacactgca gcaactgtgc t	atacacagt ggtgactccc atgtt	g 646
<210> 24 <211> 215 <212> PRT <213> Rattus sp. J11 <220> <221> UNSURE		
<221> UNSURE <222> (79)(134) <223> x = unknown		
<400> 24		
Val Cys Phe Ser Ser Thr 1 5	Thr Val Pro Lys Val Leu A 10	la Asn His Ile 15
Leu Ser Ser Gln Ala Ile 20	Ser Phe Ser Gly Cys Leu T 25	hr Gln Leu Tyr 30
Phe Leu Cys Val Ser Val 35	Asn Met Asp Asn Phe Leu L 40 4	
Ala Tyr Asp Arg Phe Val	Ala Ile Cys His Pro Leu T 55 60	yr Tyr Thr Thr
Lys Met Thr His Gln Leu 65 70	. Cys Val Leu Leu Val Ser G 75	ly Ser Xaa Xaa 80

Xaa	Xaa	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Xaa	Xaa	Xaa	Хаа 95	Xaa	
Xaa	Xaa	Xaa	Xaa 100	Xaa	Xaa	Xaa	Хаа	Xaa 105	Xaa	Xaa	Xaa	Xaa	Xaa 110	Xaa	Xaa	
Xaa	Xaa	Xaa 115	Xaa	Xaa	Xaa	Xaa	Xaa 120	Xaa	Xaa	Xaa	Xaa	Xaa 125	Xaa	Xaa	Xaa	
Xaa	Xaa 130	Xaa	Xaa	Xaa	Xaa	Val 135	Ile	Met	Val	Thr	Pro 140	Phe	Val	Cys	Ile	
Leu 145	Ile	Ser	Tyr	Ile	Tyr 150	Ile	Thr	Asn	Ala	Val 155	Leu	Arg	Val	Ser	Ser 160	
Phe	Arg	Gly	Gly	Trp 165	Lys	Ala	Phe	Ser	Thr 170	Cys	Gly	Ser	His	Leu 175	Ala	
Val	Val	Cys	Leu 180	Phe	Tyr	Gly	Thr	Ile 185	Ile	Ala	Val	Tyr	Phe 190	Asn	Pro	
Val	Ser	Ser 195	His	Ser	Ser	Glu	Lys 200	Asp	Thr	Ala	Ala	Thr 205	Va1	Leu	Tyr	
Thr	Val 210	Val	Thr	Pro	Met	Leu 215										
<210 <211 <212 <213	.> 6 ?> [25 546 DNA Ratti	ıs sp	o. J]	L 4											
<220 <221 <222 <223	> n)	_feat () inkno													
<400 tgtc		tc t	cete	caco	a ct	gtco	ccaa	. ggt	acto	rget	aacc	acat	ac t	cagt	agtca	6(
ggcc	attt	cc t	tctc	tggg	ıt gt	ctaa	ctca	get	gtat	ttt	ctct	gtgt	gt o	tgtç	gaatat	120
ggac	aatt	te	etget	gget	gto	atgo	recta	. tga	caga	ttt	gtgg	rccat	at ç	jecac	ccttt	180
gtac	taca	.ca a	acacc	gato	ra cc	cacc	agct	ctg	tgto	ttg	ctgg	rtgto	tg g	gatea	nnnnn	240
nnnn	nnnn	nn r	nnnn	nnnn	n nr	nnnn	ınnnn	nnn	nnnn	nnn	nnnn	nnnr	nn r	nnnn	nnnnn	300
nnnn	nnnn	nn r	nnnn	nnnn	n nn	nnnn	ınnnn	nnn	nnnn	nnn	nnnn	nnnr	ınn n	ınnnn	nnnnn	360
nnnn	nnnn	nn r	nnnn	nnnn	n nn	nnnn	nnnn	nnn	nnnn	nnn	nntg	tgat	ca t	ggtc	acccc	420
attt	gtet	gc a	atcct	cato	t ct	taca	tcta	cat	cacc	aat	gcag	tect	ca g	agto	tcatc	480
cttt	aggg	ga g	gatg	gaaa	g cc	ttct	ccac	ctg	tggc	tca	cacc	tggc	tg t	ggtc	tgcct	540
cttc	tatg	gc a	ccat	catt	g ct	gtgt	attt	caa	tect	gta	tctt	ccca	tt c	atct	gagaa	600

```
<210> 26
```

<400> 26

Val Cys Phe Ser Ser Thr Thr Val Pro Lys Val Leu Ala Asn His Ile 1 $$ 5 $$ 10 $$ 15

Leu Ser Ser Gln Ala Ile Ser Phe Ser Gly Cys Leu Thr Gln Leu Tyr 20 25 30

Phe Leu Cys Val Ser Val Asn Met Asp Asn Phe Leu Leu Ala Val Met 35 40 45

Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu Tyr Tyr Thr Thr 50 60

Xaa Xaa Xaa Xaa Xaa Xaa Val Ile Met Val Thr Pro Phe Val Cys Ile 130 135 140

Leu Ile Ser Tyr Ile Tyr Ile Thr Asn Ala Val Leu Arg Val Ser Ser 145 150 155

Phe Arg Gly Gly Trp Lys Ala Phe Ser Thr Cys Gly Ser His Leu Ala 165 \$170

Val Ser Ser His Ser Ser Glu Lys Asp Thr Ala Ala Thr Val Leu Tyr 195 200 205

Thr Val Val Thr Pro Met Leu 210 215

<211> 215 <212> PRT

<213> Rattus sp. J14

<220>

<221> UNSURE

<222> (79)..(134)

 $[\]langle 223 \rangle \times = unknown$

<210> 27 <211> 481 <212> DNA <213> Rattus sp. J15												
<220> <221> misc_feature <222> ()() <223> x = unknown												
<400> 27												
tatotgcaac octotgcgot acccagtgot catgagoggo ogggtgtgoo tgotcatggt												
ogtggootec tggttgggag gatocotoaa ogootecatt cagacttoto tgaccottoa												
gttcccctac tgtggatcac ggaagatete ccaettette tgtgaggtge eetegetget												
gannntggcc tgtgcagaca ctgaagccta tgagcaggta ctatttgtga caggcgtggt												
ggtcctcctg gtgcccatta cattcattac tgcctcttat gccctcatcc tggctgctgt												
geteegaatg caetetgegg aggggagtea gaaggeesta gecacatget ceteteacet												
gacagtegte aatetettet atgggeeeet tgtetacace tacatgttae etgetteeta												
tcactcacca ggccaagacg acatagtate egrettttac acegttetca cacecatget												
t												
<210> 28 <211> 160 <212> PRT <213> Rattus sp. J15 <220> <221> UNSURE												
<222> (61)(62) <223> x = unknown												
<400> 28												
Ile Cys Asn Pro Leu Arg Tyr Pro Val Leu Met Ser Gly Arg Val Cys $1 \\ 0 \\ 15$												
Leu Leu Met Val Val Ala Ser Trp Leu Gly Gly Ser Leu As n Ala Ser $25 \hspace{1.5cm} 30 \hspace{1.5cm}$												
Ile Gln Thr Ser Leu Thr Leu Gln Phe Pro Tyr Cys Gly Ser Arg Lys $$35$$												
Ile Ser Hıs Phe Phe Cys Glu Val Pro Ser Leu Leu Xaa Xaa Ala Cys 50 60												
Ala Asp Thr Glu Ala Tyr Glu Gln Val Leu Phe Val Thr Gly Val Val 65 70 75 80												

Val Leu Seu Val Pro Ile Thr Phe Ile Thr Ala Ser Tyr Ala Leu Ile $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$	
Leu Ala Ala Val Leu Arg Met His Ser Ala Glu Gly Ser Gln Lys Ala 100 105 110	
Leu Ala Thr Cys Ser Ser His Leu Thr Val Val Asn Leu Phe Tyr Gly 115 120 125	
Pro Leu Val Tyr Thr Tyr Met Leu Pro Ala Ser Tyr His Ser Pro Gly 130 140	
Gln Asp Asp Ile Val Ser Val Phe Tyr Thr Val Leu Thr Pro Met Leu 145 $$150$$	
<210> 29 <211> 481 <212> DNA <213> Rattus sp. J16	
$<\!400\!\!>~29$ catctgtagg cotetteact atoctaccet catgacccag acactgtgtg ccaagattge	60
cactggttgc tggttgggag gcttggctgg gccagtggta gaaatttcct tggtgtctcg	120
totoctitti tgtggcccca atcacattca acacatctit tgtgatttcc cacctgtgct	180
gagottggot tgtactgata catcagtgaa tgtcctggta gatttatta taaacctctg	240
caagatcotg gocacettoc tgctgatcot gagctectac ttgcagataa tccqcacaqt	300
gctcaagatt ccttcagctg caggcaagaa gaaagcattc tcgacttgtg cctcccatct	360
cactgtggtt ctcatcttct atgggagcat cettttcatg tatgtgegge tgaagaagae	420
ttactccctt gactacgaca gagcettggc agtagtctac teegtggtta ceeettteet	480
g	48
<210> 30 <211> 160 <212> PRT <213> Rattus sp. J16	
<400> 30	
Ile Cys Arg Pro Leu His Tyr Pro Thr Leu Met Thr Gln Thr Leu Cys $1 \\ 5 \\ 10 \\ 15$	
Ala Lys Ile Ala Thr Gly Cys Trp Leu Gly Gly Leu Ala Gly Pro Val $$20$$	
Wal Clu Tle Con Ing Wal Con Non Ing Ing Con Con Ing	

Val Glu Ile Ser Leu Val Ser Arg Leu Leu Phe Cys Gly Pro Asn His 35 40 45

Ile Gln His Ile Phe Cys Asp Phe Pro Pro Val Leu Ser Leu Ala Cys 50

Thr Asp Thr Ser Val Asn Val Leu Val Asp Phe Ile Ile Asn Leu Cys 65 70 80										
Lys Ile Leu Ala Thr Phe Leu Leu Ile Leu Ser Ser Tyr Leu Gln Ile 85 90 95										
Ile Arg Thr Val Leu Lys Ile Pro Ser Ala Ala Gly Lys Lys Lys Ala 100 105 110										
Phe Ser Thr Cys Ala Ser His Leu Thr Val Val Leu Ile Phe Tyr Gly 115 120 125										
Ser Ile Leu Phe Met Tyr Val Arg Leu Lys Lys Thr Tyr Ser Leu Asp 130 140										
Tyr Asp Arg Ala Leu Ala Val Val Tyr Ser Val Val Thr Pro Phe Leu $145 \\ 00000000000000000000000000000000000$										
<210> 31 <211> 481 <212> DNA <213> Rattus sp. J17										
<220> <221> misc_feature <222> ()() <223> n = unknown										
<400> 31 aatotgoaac coactgottt attocaccaa aatgtocaca caagtotgta tocagttggt	60									
tgcaggatct tatatagggg gttttcttaa tacttgcctc atcatgtttt actttttctc 12	20									
ttttctcttc tgtgggccaa atatagttga tcattttttc tgtgattttg ctccttnnt 18	30									
ggaactttcg tgctctgatg tgagtgtctc tgtagttgtt atgtcatttt ctgctggctc 24	40									
agttactatg atcacagtgt ttatcatage catetectat tettacatee teatcaceat 30	0.0									
cetgaagatg teeteaactg agggeegtea caaggettte teeacatgta ceteceacet 36	50									
cactgoagtc actetetact atggoaccat tacetteatt tatgtgatge ecaagtecae 42	20									
atactetaca gaccagaaca aggtggtgte tgtgttttac atggtggtga teccaatgtt 48	30									
9 48	31									
<210> 32 <211> 160 <212> PRT <213> Rattus sp. J17										
<221> UNSURE <222> (59)(60) <223> x = unknown										

<40	U> .	32														
Ile 1	Cys	Asn	Pro	Leu 5	Leu	Tyr	Ser	Thr	Lys 10	Met	Ser	Thr	Gln	Val 15	Cys	
Ile	Gln	Leu	Val 20	Ala	Gly	Ser	Tyr	Ile 25	Gly	Gly	Phe	Leu	Asn 30	Thr	Cys	
Leu	Ile	Met 35	Phe	Tyr	Phe	Phe	Ser 40	Phe	Leu	Phe	Cys	Gly 45	Pro	Asn	Ile	
Val	Asp 50	His	Phe	Phe	Cys	Asp 55	Phe	Ala	Pro	Xaa	Xaa 60	Glu	Leu	Ser	Cys	
Ser 65	Asp	Val	Ser	Val	Ser 70	Val	Val	Val	Met	Ser 75	Phe	Ser	Ala	Gly	Ser 80	
Val	Thr	Met	Ile	Thr 85	Val	Phe	Ile	Ile	Ala 90	Ile	Ser	Tyr	Ser	Tyr 95	Ile	
Leu	Ile	Thr	Ile 100	Leu	Lys	Met	Ser	Ser 105	Thr	Glu	Gly	Arg	His 110	Lys	Ala	
Phe	Ser	Tar 115	Cys	Thr	Ser	His	Leu 120	Thr	Ala	Val	Thr	Leu 125	Tyr	Tyr	Gly	
Thr	lle 130	Thr	Phe	Ile	Tyr	Val 135	Met	Pro	Lys	Ser	Thr 140	Tyr	Ser	Thr	Asp	
Gln 145	Asn	Lys	Va1	Val	Ser 150	Val	Phe	Tyr	Met	Val 155	Val	Ile	Pro	Met	Leu 160	
<210 <211 <212 <213	> 4 > E	3 79 NA attu	ıs sp	o. J1	. 9											
<400	> 3	3														
tato	tgcc	ac c	ctct	gaaq	rt ac	acag	rttat	cat	gaat	cac	tatt	tttg	rtg t	gato	rctgct	60
gctc	ttct	ct g	tgtt	cgtt	a go	attg	caca	tgo	gttg	ttc	caca	tttt	aa t	ggtg	ttgat	120
actg	actt	tc a	gcac	aaaa	a ct	gaaa	teec	tca	cttt	ttc	tgtg	agct	gg c	tcat	atcat	180
caaa	ctta	cc t	gttc	cgat	a at	ttta	tcaa	cta	tctg	ctg	atat	acac	ag a	gtct	gtett	240
attt	tttg	gt g	rttca	tatt	g ta	ggga	tcat	ttt	gtct	tat	attt	acac	tg t	atco	tcagt	300
ttta	agaa	tg t	catt	attg	g ga	ggaa	tgta	taa	agcc	ttt	tcaa	catg	tg g	atct	cattt	360
gtcg	gttg	tc t	ctgt	ttta	t gg	caca	ggtt	ttg	gggt	aca	cata	agct	ct c	cact	tactg	420
actc	tcca	ag g	aaga	ctgt	a gt	gget	tcag	tga	tgta	cac	tgtg	gtta	ct c	agat	gctg	479
<210	> 3	4														

<211> 139 <212> PRT

<213> Rattus sp. J19	
<400> 34	
Ile Cys His Pro Leu Lys Tyr Tnr Val Ile Met Asn His Tyr Phe Cys $1 \\ 0 \\ 1 \\ 15$	
Val Met Leu Leu Leu Phe Ser Val Phe Val Ser Ile Ala His Ala Leu 20 25 30	
Phe His Ile Leu Met Val Leu Ile Leu Thr Phe Ser Thr Lys Thr Glu 35 40 45	
Ile Pro His Phe Phe Cys Glu Leu Ala His Ile Ile Lys Leu Thr Cys 50 60	
Ser Asp Asn Phe Ile Asn Tyr Leu Leu Ile Tyr Thr Glu Ser Val Leu 65 70 70 80	
Phe Phe Gly Val His Ile Val Gly Ile Ile Leu Ser Tyr Ile Tyr Thr $95 \hspace{1.5cm} 90 \hspace{1.5cm} 95$	
Val Ser Ser Val Leu Arg Met Ser Leu Leu Gly Gly Met Tyr Lys Ala $100 \hspace{1cm} 105 \hspace{1cm} 105$	
Phe Ser Thr Cys Gly Ser His Leu Ser Val Val Ser Val Leu Trp His 115 120 125	
Arg Phe Trp Gly Thr His Lys Leu Ser Thr Tyr 130 135	
<210> 35 <211> 480 <212> DNA <213> Rattus sp. J20	
<220> <221> misc_feature <222> ()() <223> n = unknown	
<400> 35 aatotgotae ceactgaggt acetteteat catgagetgg gtggtgtgca cagcactgte	60
cgtggcaatc tgggtcatag gcttttgtgc ctccgttata cctctctgct tcacgatcct	120
cccactctgt ggtccttacg togttgatta tottttctgc gagctgccca tocttctgca	180
cctgttctgc acagatacat ctctgctgga gnnnnnnnn nnnnnnnnn nnnnnnnnn	240
nnnnnnnnn nnecetteet eetgatigti eteteetaee tiegeateet ggtggetigt	300
ataagaatag actcagctga gggcagaaaa aaggcctttt caacttgtgc ttcacacttg	360
gctgtggtga ccatctacta tggaacaggg ctgatcaggt acttgaggcc caagtccctt	420

tattccgctg agggagacag actgatctct gtgttctatg cagtcattgg ccctgcactg

```
<210> 36
 <211> 160
 <212> PRT
 <213> Rattus sp. J20
<221> UNSURE
<222> (71)..(84)
\langle 223 \rangle x = unknown
<400> 36
Ile Cys Tyr Pro Leu Arg Tyr Leu Leu Ile Met Ser Trp Val Val Cys
Thr Ala Leu Ser Val Ala Ile Trp Val Ile Gly Phe Cys Ala Ser Val
Ile Pro Leu Cys Phe Thr Ile Leu Pro Leu Cys Gly Pro Tyr Val Val
Asp Tyr Leu Phe Cys Glu Leu Pro Ile Leu Leu His Leu Phe Cys Thr
Xaa Xaa Xaa Pro Phe Leu Leu Ile Val Leu Ser Tyr Leu Arg Ile
Leu Val Ala Val Ile Arg Ile Asp Ser Ala Glu Gly Arg Lys Lys Ala
           100
Phe Ser Thr Cys Ala Ser His Leu Ala Val Val Thr Ile Tyr Tyr Gly
       115
Thr Gly Leu Ile Arg Tyr Leu Arg Pro Lys Ser Leu Tyr Ser Ala Glu
                       135
Gly Asp Arg Leu Ile Ser Val Phe Tyr Ala Val Ile Gly Pro Ala Leu
145
<210> 37
<211> 35
<212> DNA
<213> artificial - primer Al
<220>
<221> modified base
<222> (9)..(9)
<223> i
<221> misc_feature
<222> (3)..(3)
<223> t or c
```

```
<221> modified base
<222> (12)..(12)
<223> i
     <220>
     <221> misc_feature
<222> (5)..(5)
<223> g or a
     <220>
    <221> misc_feature
<222> (6)..(6)
<223> g or c
    <221> misc_feature
<222> (10)..(10)
<223> a or c
<220>
 <221> misc_feature
<222> (13)..(13)
<223> g or c
<220>
<221> modified base
<222> (15)..(15)
<223> i
    <220>
    <221> modified base
<222> (21)..(21)
<223> i
   <221> misc_feature
<222> (18)..(18)
<223> t or c
   <220>
   <221> misc_feature
<222> (19)..(19)
<223> c or t
   <221> modified base
<222> (24)..(24)
```

```
<223> i
        <220>
        <221> modified base
<222> (27)..(27)
<223> i
        <220>
       <221> modified_base
<222> (30)..(30)
<223> i
       <221> modified base
<222> (33)..(33)
<223> i
       <400> 37
       aantnnatnn tnntnaannt ngengtngen genga
                                                                                                                       35
     <210> 38
       <210     30
<211     32
<212     DNA
<213     artificial - primer A2</pre>
<220>
<221> misc_feature
<222> (3)..(3)
<223> n = c or t
       <220>
       <221> misc_feature
<222> (6)..(6)
<223> n = c or t
       <220>
       <221> misc_feature
<222> (9)..(9)
<223> n = c or t
       <220>
       <221> misc_feature
       <222> (10)..(10)
       <223> n = c or a
       <220>
       <221> modified base
       <222> (12)..(12)
<223> i
```

```
<220>
      <221> misc feature
      <223> n = g or a
      <220>
      <221> modified base
     <222> (15)..(15)
<223> i
     <221> misc_feature
<222> (18)..(18)
<223> n = t or c
     <221> modified base
     <222> (21)..(21)
<223> i
     <220>
     <221> modified_base
     <222> (24)..(24)
<223> i
<220>
    <221> misc feature
<222> (25)..(25)
<223> n = c or t
     <221> modified_base
<222> (27)..(27)
<223> i
     <220>
     <221> modified base
     <222> (30)..(30)
<223> i
     <400> 38
     aantanttnn tnntnaanet ngenntngen ga
                                                                                              32
     <210> 39
     <211> 32
     <212> DNA
     <213> artificial - primer A3
```

```
<221> misc feature
     <222> (3)..(4)
     <223> n = c or t
     <220>
     <221> misc_feature
     <222> (5)..(5)
<223> n = a or t
     <221> modified_base
<222> (6)..(6)
<223> i
     <221> misc_feature
<222> (9)..(9)
<223> n = c or t
    <220>
    <221> misc_feature
<222> (10)..(10)
<223> n = c or a
<220>
   <221> modified_base
<222> (12)..(12)
<223> i
    <221> modified_base
<222> (15)..(15)
<223> i
     <221> misc_feature
    <222> (16)..(16)
<223> n = a or t
    <221> modified base
    <222> (18)..(18)
<223> i
    <220>
    <221> modified base
    <222> (21)..(21)
<223> i
```

```
<221> modified base
<222> (24)..(24)
<223> i
   <220>
   <221> misc feature
   <222> (26)..(26)
<223> n = c or q
   <221> modified_base
<222> (27)..(27)
<223> i
   <220>
  <221> modified base
<222> (30)..(30)
<223> i
 <400> 39
  aannnnttnn tnatnnenet ngentnngen ga
<210> 40
<211> -
  <210  40
<211  32
<212> DNA
<213> artificial - primer A4
<220>
<221> misc_feature
<222> (1)..(1)
<223> n = c or a
  <220>
  <221> modified_base
<222> (3)..(3)
<223> i
  <220>
  <221> modified base
  <222> (6)..(6)
<223> i
  <220>
  <221> misc feature
  \langle 223 \rangle n = t or c
  <221> modified base
```

```
<222> (9)..(9)
    <223> i
    <220>
   <221> misc_feature
   <222> (15)..(15)
<223> n = c or t
   <221> misc_feature
<222> (18)..(18)
<223> n = c or t
  <221> modified_base
<222> (21)..(21)
<223> i
  <220>
  <221> misc_feature
<222> (22)..(22)
<223> n = a or t
<220>
<221> misc_feature
<222> (23)..(23)
  <222> (23)..(23)
<223> n = c or g
<220>
<220>
<221> misc_feature
<222> (24)..(24)
<223> n = c or t
  <221> misc_feature
<222> (27)..(27)
<223> n = c or t
  <220>
  <221> modified base
  <222> (30)..(30)
  <400> 40
  ngnttnntna tgtgnaanct nnnnttngen ga
                                                                                                                  32
  <210> 41
  <211> 32
  <212> DNA
```

```
<213> artificial - primer A5
         <220>
         <221> modified base
         <222> (3)..(3)
<223> i
         <220>
        <221> modified base
<222> (6)..(6)
<223> i
        <220>
        <220>
<221> misc_feature
<222> (9)..(9)
<223> n = t or c
        <220>
     <221> modified base
<222> (12)..(12)
<223> i
<220>
<221> modified_base
<222> (15)..(15)
<223> i
<220>
<221> misc_feature
<222> (18)..(19)
<223> n = t or c
       <220>
        <221> modified base
        <222> (21)..(21)
<223> i
        <220>
        <221> misc feature
        <222> (22)..(22)
<223> n = a or t
        <220>
       <221> misc_feature
<222> (23)..(23)
<223> n = c or g
       <220>
        <221> modified base
        <222> (24)..(24)
```

```
<223> i
   <221> modified_base
<222> (27)..(27)
<223> i
   <221> modified_base
<222> (30)..(30)
<223> i
   <400> 41
   acngthtana thachcannt nnnnathgen ga
                                                                                                                       32
   <210> 42
   <211> 33
<212> DNA
   <213> artificial - primer B1
   <220>
  <221> modified_base
<222> (4)..(4)
<223> i
 <220>
<220>
<221> misc_feature
<222> (5)..(5)
<223> n = c or t
  <221> misc_feature
<222> (6)..(6)
<223> n = g or t
   <220>
   <221> misc_feature
<222> (7)..(7)
<223> n = g or a
   <220>
   <221> modified base
   <222> (13)..(13)
<223> i
  <220>
   <221> misc_feature
   \langle 222 \rangle (15)...(15)
\langle 223 \rangle n = a or t
```

```
<220>
  <221> modified_base
  <222> (16)..(16)
  <223> 1
  <221> misc_feature
  <222> (17)..(18)
  <223> n = a or c
  <220>
  <221> mīsc feature
  <222> (19)..(19)
  <223> n = a or g
  <221> modified base
  <222> (22)..(22)
<223> i
<221> misc_feature
<222> (24)..(24)
<223> n = t or c
<220>
<221> modified base
<222> (25)..(25)
<223> i
 <220>
  <221> misc_feature
  <222> (27)..(27)
  <223> n = t or c
  <220>
  <221> modified base
  <222> (28)..(28)
  <223> i
 <220>
  <221> misc feature
  <222> (31)..(31)
  <223> n = q or a
 <400> 42
  ctgnnnnttc atnannnnnt anannanngg ntt
```

```
<210> 43
    <211> 31
    <212> DNA
    <213> artificial - primer B2
   <221> misc_feature
   <222> (1)..(1)
<223> n = g or t
   <221> misc_feature
   <222> (2)..(2)
<223> n = g or a
   <221> misc_feature
   <222> (4)..(4)
<223> n = g or c
   <221> misc_feature
   <222> (5)..(5)
<223> n = g or a
<220>
 <221> modified_base
<222> (8)..(8)
<223> i
 <220>
  <221> misc_feature
<222> (11)..(11)
<223> n = g or a
   <220>
   <221> misc_feature
   <222> (14)..(14)
<223> n = q or a
  <220>
  <220>
<221> misc_feature
<222> (17)..(17)
<223> n = g or a
  <221> modified base
  <222> (20)..(20)
<223> i
```

```
<220>
          <220>
<221> modified_base
<222> (23)..(23)
<223> i
         <221> modified_base
<222> (26)..(26)
<223> i
          <220>
         <221> misc_feature
<222> (29)..(29)
<223> n = g or a
         <400> 43
         nntnnttnag ncancantan atnatnggnt t
         <210> 44
        <210     49
<211     32
<212     DNA
<213     artificial - primer B3</pre>
<220>
<221> modified_base
<222> (3)..(3)
<223> i
        <220>
    <220>
<221> misc_feature
<222> (6)..(6)
<223> n = g or a
        <220>
<221> misc_feature
<222> (9)..(9)
<223> n = g or a
        <221> modified_base
<222> (12)..(12)
<223> i
        <220>
        <221> modified_base
<222> (15)..(15)
<223> i
        <220>
        <221> misc_feature
```

```
<222> (18)..(18)
    <223> n = g or a
    <220>
    <221> modified base
    <222> (21)..(21)
<223> i
    <220>
    <221> modified base
    <222> (24)..(24)
<223> ±
    <220>
   <221> modified_base
<222> (27)..(27)
<223> 1
  <220>
  <221> misc_feature
<222> (30)..(30)
<223> n = g or a
<400> 44
tenatnttna angtngtnta natnatnggn tt
 <210> 45
<211> 32
<212> DNA
   <213> artificial - primer B4
  <220>
   <221> misc_feature
   <222> (3)..(3)
<223> n = c or t
   <220>
   <221> modified base
   <222> (6)..(6)
   <223> i
   <220>
   <221> misc_feature
   <222> (9)..(9)
   <223> n = g or a
   <220>
   <221> modified base
   <222> (12)..(12)
   <223> i
```

```
<220>
  <221> modified base
  <222> (15)..(15)
<223> i
  <220>
  <221> misc feature
  <222> (18)..(18)
  <223> n = g or a
 <221> modified base
 <222> (21)..(21)
<223> i
 <220>
 <221> misc_feature
<222> (24)..(24)
 <223> n = g or a
<220>
<221> modified base
<222> (27)..(27)
<223> i
<221> misc_feature
<222> (30)..(30)
 <223> n = g or a
 <400> 45
 genttngtna anatngenta nagnaanggn tt
 <210> 46
 <211> 32
 <212> DNA
 <213> artificial - primer B5
 <220>
 <221> misc_feature
 <222> (3)..(3)
 <223> n = a or g
 <220>
 <221> modified base
 <222> (6)..(6)
 <223> i
```

```
<220>
           <221> misc_feature
<222> (9)..(9)
<223> n = a or g
          <221> misc_feature
<222> (10)..(10)
<223> n = c or g
          <221> misc_feature
<222> (11)..(11)
<223> n = a or t
          <221> modified_base
<222> (12)..(12)
<223> i
        <220>
        <220>
<221> modified base
<222> (15)..(15)
<223> i
<22C>
<221> misc_feature
<222> (16)..(16)
<223> n = g or c
        <220>
          <221> misc_feature
          <222> (18)..(18)
<223> n = g or a
          <220>
          <221> modified base
          <222> (21)..(21)
<223> i
          <220>
         <221> misc_feature
<222> (24)..(24)
<223> n = g or c
         <221> modified base
         <222> (26)..(27)
<223> i
```

<220>

```
<220>
   <221> misc_feature
<222> (30)..(30)
    \langle 223 \rangle n = a or g
   <400> 46
   aantenggen neggenanta natnanegge tt
   <210> 47
   <211> 32
<212> DNA
   <213> artificial - primer B6
   <221> misc_feature
<222> (1)..(1)
<223> n = g or c
  <221> misc_feature
<222> (2)..(2)
<223> n = a or t
<220>
<221> modified_base
<222> (3)..(3)
<223> i
  <221> misc_feature
  <222> (4)..(4)
<223> n = g or c
   <221> misc_feature
<222> (5)..(5)
<223> n = a or t
   <221> modified base
   <222> (6)..(6)
<223> i
   <220>
   <221> modified base
            (9)..(9)
   <223> i
```

39

32

```
<221> misc_feature
        <222> (12)..(12)
<223> n = a or g
        <221> misc_feature
<222> (15)..(15)
<223> n = a or g
        <220>
        <221> misc_feature
<222> (18)..(18)
<223> n = a or g
        <220>
       <221> modified_base
<222> (21)..(21)
<223> i
       <221> misc_feature
<222> (24)..(24)
<223> n = a or g
<220>
<221> modified base
<222> (27)..(27)
<223> i
       <221> misc_feature
<222> (30)..(30)
       <223> n = g or a
       <400> 47
       nnnnnnccna chaanaanta nathaanggn tt
                                                                                                                     32
       <210> 48
       <211> 23
<212> DNA
       <213> artificial - primer Pl
       <220>
       <221> modified base
       <222> (6)..(6)
<223> i
       <220>
       <221> misc_feature
<222> (9)..(9)
```

```
<223> n = t or c
   <221> misc_feature
<222> (12)..(12)
<223> n = t or c
   <220>
   <221> misc_feature
   <222> (13)..(13)
<223> n = a or c
   <220>
   <221> modified base
<222> (15)..(15)
<223> i
   <220>
   <221> misc_feature
<222> (18)..(18)
<223> n = t or c
<220>
  <221> modified_base
<222> (21)..(21)
<223> i
<400> 48
   atggentang anngntangt nge
   <210> 49
   <210> 45
<211> 29
<212> DNA
<213> artificial - primer P4
   <220>
   <220>
<221> modified base
<222> (3)..(3)
<223> i
   <221> misc_feature
<222> (5)..(5)
<223> n = g or a
   <220>
   <221> modified base
   <222> (6)..(6)
<223> i
```

```
<220>
   <221> misc feature
   <223> n = g or c
   <220>
   <221> misc feature
   <222> (8)..(8)
   <223> n = a or t
   <221> modified_base
   <222> (9)..(9)
<223> i
   <220>
   <221> modified base
 <222> (12)..(12)
<223> 1
<220>
<221> misc_feature
<222> (14)..(14)
<223> n = t or c
<220>
<221> modified base
<222> (15)..(15)
<223> i
 <220>
  <221> misc_feature
  <222> (16)..(16)
   \langle 223 \rangle n = g or c
   <220>
   <221> misc_feature
   <222> (17)..(17)
   \langle 223 \rangle n = a or t
   <220>
   <221> modified_base
  <222> (18)..(18)
<223> i
  <220>
  <221> misc feature
  <222> (20)..(20)
   <223> n = q or a
```

```
<221> misc_feature
   <222> (21)..(21)
<223> n = g or a
   <220>
   <221> modified base
<222> (24)..(24)
<223> i
   <221> misc_feature
   <222> (25)..(25)
<223> n = g or c
   <221> misc_feature
   <222>
   <222> (26)..(26)
<223> n = a or t
 <220>
<221> modified_base
<222> (27)..(27)
<223> i
<220>
<221> misc_feature
<222> (28)..(28)
<223> n = g or c
  <400> 49
   aanannnnna channnnnan ntghnnnnc
                                                                                                         29
   <210> 50
   <210> 50
<211> 6
<212> PRT
<213> artificial - motif
   <400> 50
   Lys Ile Val Ser Ser Ile
   <210> 51
   <211> 6
   <212> PRT
<213> artificial - motif
   <400> 51
```

```
Arg Ile Val Ser Ser Ile
 <210> 52
 <211> 6
 <212> PRT
<213> artificial - motif
 <400> 52
 His Ile Thr Cys Ala Val
 <210> 53
 <210> 6
<211> 6
<212> PRT
<213> artificial - motif
 <400> 53
 His Ile Thr Trp Ala Val
<210> 54
 <211> 19
<212> PRT
 <213> Rattus sp.
<400> 54
Leu Ser Lys Glu Asp Cys Ser Gly Phe Ser Asp Val His Cys Gly Tyr
Ser Asp Ala
 <210> 55
<211> 9
<212> PRT
 <213> Artificial - motif
 <220>
 <221> UNSURE
 <222> (2)..(7)
<223> x = unknown
 <400> 55
 Leu Xaa Xaa Pro Met Tvr Xaa Phe Leu
 <210> 56
 <211> 9
<212> PRT
<213> Artificial - motif
 <221> VARIANT
```

```
<222> (2)..(2)
  <223> X = H or Q
 <221> VARIANT
 <222> (3)..(3)
<223> X = K or M or T
 <220>
 <221> VARIANT
 <222> (7)..(7)
<223> X = F or L
 <400> 56
 Leu Xaa Xaa Pro Met Tyr Xaa Phe Leu
<210> 57
<211> 10
<212> PRT
 <213> Artificial - motif
<221> UNSURE
<222> (2)..(7)
<223> X = UNKNOWN
<400> 57
Met Xaa Tyr Asp Arg Xaa Xaa Ala Ile Cys
<210> 58
 <211> 10
<212> PRT
 <213> Artificial - motif
 <221> VARIANT
 <222> (2)..(2)
<223> X = A OR S
<221> VARIANT
<222> (6)..(6)
<223> X = F OR Y
<221> VARIANT
<222> (7)..(7)
<223> X = L or V
```

```
<400> 58
 Met Xaa Tyr Asp Arg Xaa Xaa Ala Ile Cys
 <210> 59
 <211>
 <212> PRT
 <213> Artificial - motif
 <221> UNSURE
 <222>
        (3)..(4)
 <223> X = Unknown
 <400> 59
 Asp Arg Xaa Xaa Ala Ile Cys
 <210> 60
 <211> 7
<212> PRT
 <213> Artificial - motif
<220>
<221> VARIANT
<222> (3)..(3)
<223> X = F or Y
<220>
<221> VARIANT
<222> (4)..(4)
<223> X = L or V
<400> 60
 Asp Arg Xaa Xaa Ala Ile Cys
 <210> 61
 <211> 9
<212> PRT
<213> Artificial - motif
<221> UNSURE
<222> (2)..(7)
<223> X = Unknown
<220>
<221> VARIANT
<222> (1)..(1)
<223> X = K or R
```

```
<400> 61
      Xaa Xaa Phe Ser Thr Cys Xaa Ser His
      <210> 62
      <211> 9
      <212> PRT
<213> Artificial - motif
     <221> VARIANT
<222> (1)..(1)
<223> X = K or R
     <220>
     <221> VARIANT
<222> (2)..(2)
<223> X = A or I or S or V
   <220>
<221> VARIANT
<222> (7)..(7)
<223> X = A or G or S
    <400> 62
Xaa Xaa Phe Ser Thr Cys Xaa Ser His
    <210> 63
    <211> 7
<212> PRT
     <213> Artificial - motif
     <220>
     <221> UNSURE
     <222> (5)..(5)
<223> X = Unknown
     <400> 63
     Phe Ser Thr Cys Xaa Ser His
     <210> 64
     <211> 7
<212> PRT
     <213> Artificial - motif
     <220>
     <221> VARIANT
     <222> (5)..(5)
```

```
TOPE DEC TABLE
```

```
\langle 223 \rangle X = A or G or S
  <400> 64
   Phe Ser Tnr Cys Xaa Ser His
   <210> 65
  <211> 12
<212> PRT
  <213> Artificial - motif
  <220>
  <221> UNSURE
  <222> (2)..(9)
<223> X = Unknown
  <400> 65
 Pro Xaa Xaa Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
  <210> 66
  <210> 66
<211> 12
<212> PRT
<213> Artificial - motif
<220>
 <221> VARIANT
<222> (2)..(2)
<223> X = M or L or V
  <221> VARIANT
<222> (3)..(3)
<223> X = F or L or V
  <221> VARIANT
  <222> (6)..(6)
<223> X = F or I
  <221> VARIANT
  <222> (9)..(9)
<223> X = C or S or T
  <400> 66
  Pro Xaa Xaa Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
  <210> 67
```

```
<211> 8
<212> PRT
<213> Artificial - motif
   <221> UNSURE
   <222> (2)..(6)
<223> X = Unknown
   <400> 67
   Pro Xaa Xaa Asn Pro Xaa Ile Tyr
   <210> 68
  <211> 8
<212> PRT
<213> Artificial - motif
  <220>
  <221> VARIANT
<222> (2)..(2)
<223> X = M or L or V
<220>
<221> VARIANT
<222> (3)..(3)
<223> X = F or L or V
<220>
 <221> VARIANT
  <222> (6)..(6)
<223> X = F or I
  <400> 68
  Pro Xaa Xaa Asn Pro Xaa Ile Tyr
  <210> 69
<211> 9
<212> PRT
  <213> Artificial - motif
  <220>
  <221> UNSURE
  <222> (3)..(6)
<223> X = Unknown
  <400> 69
  Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
```

```
<211> 9
 <212> PRT
 <213> Artificial - motif
 <221> VARIANT
<222> (3)..(3)
<223> X = F or I
<221> VARIANT
<222> (6)..(6)
<223> X = C or S or T
<400> 70
Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
<210> 71
<211> 333
<212> PRT
<213> Rattus sp. F3
<400> 71
Met Asp Ser Ser Asn Arg Thr Arg Val Ser Glu Phe Leu Leu Gly
Phe Val Glu Asn Lys Asp Leu Gln Pro Leu Ile Tyr Gly Leu Phe Leu
Ser Met Tyr Leu Val Thr Val Ile Gly Asn Ile Ser Ile Ile Val Ala
 Ile Ile Ser Asp Pro Cys Leu His Thr Pro Met Tyr Phe Phe Leu Ser
Asn Leu Ser Phe Val Asp Ile Cys Phe Ile Ser Thr Thr Val Pro Lys
Met Leu Val Asn Ile Gln Thr Gln Asn Asn Val Ile Thr Tyr Ala Gly
Cys Ile Thr Gln Ile Tyr Phe Phe Leu Leu Phe Val Glu Leu Asp Asn
Phe Leu Leu Thr Ile Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys His
Pro Met His Tyr Thr Val Ile Met Asn Tyr Lys Leu Cys Gly Phe Leu
    130
Val Leu Val Ser Trp Ile Val Ser Val Leu His Ala Leu Phe Gln Ser
145
                                         155
```

Leu Met Met Leu Ala Leu Pro Phe Cys Thr His Leu Glu Ile Pro His 165 170 175

Phe Leu Asn Asp Leu Val Ile Tyr Phe Thr Leu Val Leu Leu Ala Thr 195 200 205

Val Pro Leu Ala Gly Ile Phe Tyr Ser Tyr Phe Lys Ile Val Ser Ser 210 220

Ile Cys Ala Ile Ser Ser Val His Gly Lys Tyr Lys Ala Phe Ser Thr 225 230 235 240

Cys Ala Ser His Leu Ser Val Val Ser Leu Phe Tyr Cys Thr Gly Leu $245 \hspace{1.5cm} 255 \hspace{1.5cm}$

Gly Val Tyr Leu Ser Ser Ala Ala Asn Asn Ser Ser Gln Ala Ser Ala $260 \\ 265 \\ 270$

Thr Ala Ser Val Met Tyr Thr Val Val Thr Pro Met Val Asn Pro Phe 275 280 285

Leu Cys Glu Glu Val Ile Arg Ser Pro Pro Ser Leu Leu His Phe Phe 305 \$310\$ \$315 \$320

Leu Val Leu Cys His Leu Pro Cys Phe Ile Phe Cys Tyr

<210> 72

<211> 313 <212> PRT

<213> Rattus sp. F5

<400> 72

Met Ser Ser Thr Asn Gln Ser Ser Val Thr Glu Phe Leu Leu Gly 1 $$ 5 $$ 10 $$ 15

Leu Ser Arg Gln Pro Gln Gln Gln Gln Leu Leu Phe Leu Leu Phe Leu 20 25 30

Ile Met Tyr Leu Ala Thr Val Leu Gly Asn Leu Leu Ile Ile Leu Ala 35 40 45

Ile Gly Thr Asp Ser Arg Leu His Thr Pro Met Tyr Phe Phe Leu Ser 50 55 60

Asn Leu Ser Phe Val Asp Val Cys Phe Ser Ser Thr Thr Val Pro Lys 65 70 75 80

Val Leu Ala Asn His Ile Leu Gly Ser Gln Ala Ile Ser Phe Ser Gly 85 90 95

Cys Leu Thr Gln Leu Tyr Phe Leu Ala Val Phe Gly Asn Met Asp Asn

100 105 110

Phe Leu Leu Ala Val Met Ser Tyr Asp Arg Phe Val Ala Ile Cys His 115 120 125

Pro Leu His Tyr Thr Thr Lys Met Thr Arg Gln Leu Cys Val Leu Leu 130 $$135\$

Val Val Giy Ser Trp Val Val Ala Asn Met Asn Cys Leu Leu His Ile 145 150 150 160

Leu Leu Met Ala Arg Leu Ser Phe Cys Ala Asp Asn Met Ile Pro His 165 170 175

Phe Phe Cys Asp Gly Thr Pro Leu Leu Lys Leu Ser Cys Ser Asp Thr 180 185

His Leu Asn Glu Leu Met Ile Leu Thr Glu Gly Ala Val Val Met Val

Thr Pro Phe Val Cys Ile Leu Ile Ser Tyr Ile His Ile Thr Cys Ala 210 215 220

Val Leu Arg Val Ser Ser Pro Arg Gly Gly Trp Lys Ser Phe Ser Thr 225 230 235

Cys Gly Ser His Leu Ala Val Val Cys Leu Phe Tyr Gly Thr Val Ile 245 250 255

Ala Val Tyr Phe Asn Pro Ser Ser Ser His Leu Ala Gly Arg Asp Met 260 265 270

Ile Tyr Ser Leu Arg Asn Ser Asp Met Lys Ala Ala Leu Arg Lys Val 290 295 300

Leu Ala Met Arg Phe Pro Ser Lys Gln 305 310

<210> 73

<211> 311

<212> PRT <213> Rattus sp. F6

<400> 73

Met Ala Trp Ser Thr Gly Gln Asn Leu Ser Thr Pro Gly Pro Phe Ile 1 $$

Leu Leu Gly Phe Pro Gly Pro Arg Ser Met Arg Ile Gly Leu Phe Leu $20 \\ 25 \\ 30$

Ile Ser Leu Val Gly Ala His Arg Cys Leu Gln Thr Pro Met Tyr Phe $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$

- Phe Leu Cys Asn Leu Ser Phe Leu Glu Ile Trp Phe Thr Thr Ala Cys 65 70 75 80
- Val Pro Lys Thr Leu Ala Thr Phe Ala Pro Arg Gly Gly Val Ile Ser
- Leu Ala Gly Cys Ala Thr Gln Met Tyr Phe Val Phe Ser Leu Gly Cys $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$
- Thr Glu Tyr Phe Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr Leu Ala 115 120 125
- Ile Cys Leu Pro Leu Arg Tyr Gly Gly Ile Met Thr Pro Gly Leu Ala 130 135
- Val Pro Ala Thr Leu Ile Ala Arg Leu Ser Phe Cys Gly Ser Arg Val 165 170 175
- Ile Asn His Phe Phe Cys Asp Ile Ser Pro Trp Ile Val Leu Ser Cys
 180 185 190
- Thr Asp Thr Gln Val Val Glu Leu Val Ser Phe Gly Ile Ala Phe Cys 195 200 205
- Val Ile Lea Gly Ser Cys Gly Ile Thr Lea Val Ser Tyr Ala Tyr Ile 210 \$215\$
- Ile Thr Thr Ile Ile Lys Ile Pro Ser Ala Arg Gly Arg His Arg Ala 225 230 235 240
- Ser Thr Ile Phe Leu His Val Arg Thr Ser Val Glu Ser Ser Leu Asp 260 265 270
- Leu Thr Lys Ala Ile Thr Val Leu Asn Thr Ile Val Thr Pro Val Leu 275 280 285
- Asn Pro Phe Ile Tyr Thr Leu Arg Asn Lys Asp Val Lys Glu Ala Leu 290 295 300
- Arg Arg Thr Val Lys Gly Lys
- <210> 74
- <211> 317 <212> PRT
- <213> Rattus sp. F12
- <400> 74
- Met Glu Ser Gly Asn Ser Thr Arg Arg Phe Ser Ser Phe Phe Leu Leu $1 \ 5 \ 10 \ 15$

- Gly Phe Thr Glu Asn Pro Gln Leu His Phe Leu Ile Phe Ala Leu Phe Leu Ser Met Tyr Leu Val Thr Val Leu Gly Asn Leu Leu Ile Ile Met Ala Ile Ile Thr Gln Ser His Leu His Thr Pro Met Tyr Phe Phe Leu Ala Asn Leu Ser Phe Val Asp Ile Cys Phe Thr Ser Thr Thr Ile Pro Lys Met Leu Val Asn Ile Tyr Thr Gln Ser Lys Ser Ile Thr Tyr Glu Asp Cys Ile Ser Gln Met Cys Val Phe Leu Val Phe Ala Glu Leu Gly
- Asn Phe Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr Val Ala Asn Cys
- His Pro Leu Cys Tyr Thr Val Ile Val Asn His Arg Leu Cys Ile Leu
- Leu Leu Leu Ser Trp Val Ile Ser Ile Phe His Ala Phe Ile Gln
- Ser Leu Ile Val Leu Gln Leu Thr Phe Cys Gly Asp Val Lys Ile Pro $_{165}^{\rm Pro}$
- His Phe Phe Cys Glu Leu Asn Gln Leu Ser Gln Leu Thr Cys Ser Asp
- Asn Phe Pro Ser His Leu Ile Met Asn Leu Val Pro Val Met Leu Ala
- Ala Ile Ser Phe Ser Gly Ile Leu Tyr Ser Tyr Phe Lys Ile Val Ser
- Ser Ile His Ser Ile Ser Thr Val Gln Gly Lys Tyr Lys Ala Phe Ser
- Thr Cys Ala Ser His Leu Ser Ile Val Ser Leu Phe Tyr Ser Thr Gly
- Leu Gly Val Tyr Val Ser Ser Ala Val Val Gln Ser Ser His Ser Ala 265
- Ala Ser Ala Ser Val Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro
- Phe Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Arg Ala Leu Glu Arg
- Leu Leu Glu Gly Asn Cys Lys Val His His Trp Thr Gly

<210> 75 <211> 310 <212> PRT <213> Rattus sp. I3

<400> 75

Ile Pro Glu Glu His Gln His Leu Phe Tyr Ala Leu Phe Leu Val Met

Tyr Leu Thr Thr Ile Leu Gly Asn Leu Leu Ile Ile Val Leu Val Gln 35 40 45

Leu Asp Ser Gln Leu His Thr Pro Met Tyr Leu Phe Leu Ser Asn Leu 50 55 60

Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys Leu Leu 65 70 75 80

Gln Asn Met Arg Ser Gln Asp Thr Ser Ile Pro Tyr Gly Gly Cys Leu 85 90 95

Ala Gln Thr Tyr Phe Phe Met Val Phe Gly Asp Met Glu Ser Phe Leu 100 105 110

Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe Pro Leu 115 120 125

His Tyr Thr Ser Ile Met Ser Pro Lys Leu Cys Thr Cys Leu Val Leu $130\,$ $\,$ $\,$ $140\,$

Leu Leu Trp Met Leu Thr Thr Ser His Ala Met Met His Thi Leu Leu 145 150 155 160

Ala Ala Arg Leu Ser Phe Cys Glu Asn Asn Val Val Leu Asn Phe Phe 165 \$170\$

Cys Asp Leu Phe Val Leu Leu Lys Leu Ala Cys Ser Asp Thr Tyr Ile 180 185 190

Asn Glu Leu Met Ile Phe Ile Met Ser Thr Leu Leu Ile Ile Pro 195 200 205

Phe Pne Leu Ile Val Met Ser Tyr Ala Arg Ile Ile Ser Ser Ile Leu 210 215 220

Lys Val Pro Ser Thr Gln Gly Ile Cys Lys Val Phe Ser Thr Cys Gly 225 230 235 240

Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Ile Ile Gly Leu $245 \hspace{1.5cm} 250 \hspace{1.5cm} 250 \hspace{1.5cm} 255 \hspace{1.5cm}$

Tyr Leu Cys Pro Ala Gly Asn Asn Ser Thr Val Lys Glu Met Val Met 260 265 270

Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Tyr 275 280 285

Ser Leu Arg Asn Arg Asp Met Lys Arg Ala Leu Ile Arg Val Ile Cys 290 295 Ser Met Lys Ile Thr Leu <210> 76 <211> 327 <212> PRT <213> Rattus sp. I7 <400> 76 Met Glu Arg Arg Asn His Ser Gly Arg Val Ser Glu Phe Val Leu Leu Gly Phe Pro Ala Pro Ala Pro Leu Arg Val Leu Leu Phe Phe Leu Ser Leu Leu Asp Tyr Val Leu Val Leu Thr Glu Asn Met Leu Ile Ile Ile Ala Ile Arg Asn His Pro Thr Leu His Lys Pro Met Tyr Phe Phe Leu Ala Asn Met Ser Phe Leu Glu Iie Trp Tyr Val Thr Val Thr Ile Pro Lys Met Leu Ala Gly Phe Ile Gly Ser Lys Glu Asn His Gly Gln Leu Ile Ser Phe Glu Ala Cys Met Thr Gln Leu Tyr Phe Phe Leu Gly Leu Gly Cys Thr Glu Cys Val Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr 115 Val Ala Ile Cys His Pro Leu His Tyr Pro Val Ile Val Ser Ser Arq Leu Cys Val Gln Met Ala Ala Gly Ser Trp Ala Gly Gly Phe Gly Ile 145 Ser Met Val Lys Val Phe Leu Ile Ser Arg Leu Ser Tyr Cys Gly Pro Asn Thr Ile Asn His Phe Phe Cys Asp Val Ser Pro Leu Leu Asn Leu 185 Ser Cys Thr Asp Met Ser Thr Ala Glu Leu Thr Asp Phe Val Leu Ala 195 Ile Phe Ile Leu Leu Gly Pro Leu Ser Val Thr Gly Ala Ser Tyr Met Ala Ile Thr Gly Ala Val Met Arg Ile Pro Ser Ala Ala Gly Arg His 230

Lys Ala Phe Ser Thr Cys Ala Ser His Leu Thr Val Val Ile Ile Phe

245 250 255

Tyr Ala Ala Ser Ile Phe Ile Tyr Ala Arg Pro Lys Ala Leu Ser Ala 260 265 270

Phe Asp Thr Asn Lys Leu Val Ser Val Leu Tyr Ala Val Ile Val Pro 275 280 285

Leu Phe Asn Pro Ile Ile Tyr Cys Leu Arg Asn Gln Asp Val Lys Arg 290 295 300

Ala Leu Arg Arg Thr Leu His Leu Ala Gln Asp Gln Glu Ala Asn Thr 305 310 315 320

Asn Lys Gly Ser Lys Ile Gly

<210> 77 <211> 312

<211> 312 <212> PRT

<213> Rattus sp. I8

<400> 77

Met Asn Asn Lys Thr Val Ile Thr His Phe Leu Leu Leu Gly Leu Pro $1 \ \ \, 5 \ \,$ 15

Tyr Leu Thr Thr Phe Leu Gly Asn Leu Leu Ile Val Val Leu Val Gln $35 \ \ 40 \ \ 45$

Leu Asp Ser His Leu His Thr Pro Met Tyr Leu Phe Leu Ser Asn Leu 50 60

Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Leu Lys Leu Leu 65 70 70 80

Gln Asn Ile Gln Ser Gln Val Pro Ser Ile Ser Tyr Ala Gly Cys Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Thr Gln Ile Phe Phe Phe Leu Leu Phe Gly Tyr Leu Gly Asn Phe Leu 100 105 110

Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe Pro Leu

His Tyr Thr Asn Ile Met Ser His Lys Leu Cys Thr Cys Leu Leu Leu 130 $$135\$

Val Phe Trp Ile Met Thr Ser Ser His Ala Met Met His Thr Leu Leu 145 150 160

Ala Ala Arg Leu Ser Phe Cys Glu Asn Asn Val Leu Leu Asn Phe Phe 165 170 175

Cys Asp Leu Phe Val Leu Leu Lys Leu Ala Cys Ser Asp Thr Tyr Val

- Asn Glu Leu Met Ile His Ile Met Gly Val Ile Ile Ile Val Ile Pro 195 200 205
- Phe Val Leu Ile Val Ile Ser Tyr Ala Lys Ile Ile Ser Ser Ile Leu 210 215 220
- Lys Val Pro Ser Thr Gln Ser Ile His Lys Val Phe Ser Thr Cys Gly 225 230 230
- Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Ile Ile Gly Leu 245 250 255
- Tyr Leu Cys Pro Ser Gly Asp Asn Phe Ser Leu Lys Gly Ser Ala Met
- Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Tyr 275 280 285
- Ser Leu Arg Asn Arg Asp Met Lys Gln Ala Leu Ile Arg Val Thr Cys 290 295 300
- Ser Lys Lys Ile Ser Leu Pro Trp 305 310
- <210> 78
- <211> 314 <212> PRT
- <213> Rattus sp. I9
- <400> 78
- Met Thr Arg Arg Asn Gln Thr Ala Ile Ser Gln Phe Phe Leu Leu Gly $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$
- Leu Pro Phe Pro Pro Glu Tyr Gln His Leu Phe Tyr Ala Leu Phe Leu 20 25 30
- Ala Met Tyr Leu Thr Thr Leu Leu Gly Asn Leu Ile Ile Ile Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$
- Asn Leu Ser Phe Ala Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys 65 707575 80
- Leu Leu Gln Asn Met Gln Ser Gln Val Pro Ser Ile Pro Tyr Ala Gly 85 9095
- Phe Leu Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe 115 120 125
- Pro Leu His Tyr Met Ser Ile Met Ser Pro Lys Leu Cys Val Ser Leu 130 $$135\$

- Val Val Leu Ser Trp Val Leu Thr Thr Phe His Ala Met Leu His Thr 155
- Leu Leu Met Ala Arg Leu Ser Phe Cys Glu Asp Ser Val Ile Pro His 165
- Tyr Phe Cys Asp Met Ser Thr Leu Leu Lys Val Ala Cys Ser Asp Thr 180 185
- His Asp Asn Glu Leu Ala Ile Pne Ile Leu Gly Gly Pro Ile Val Val 195
- Leu Pro Fhe Leu Leu Ile Ile Val Ser Tyr Ala Arg Ile Val Ser Ser
- Ile Phe Lys Val Pro Ser Ser Gln Ser Ile His Lys Ala Phe Ser Thr
- Cys Gly Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Val Ile 245
- Gly Leu Tyr Leu Cys Pro Ser Ala Asn Asn Ser Thr Val Lys Glu Thr 260 265
- Val Met Ser Leu Met Tyr Thr Met Val Thr Pro Met Leu Asn Pro Phe
- Ile Tyr Ser Leu Arg Asn Arg Asp Ile Lys Asp Ala Leu Glu Lys Ile 295
- Met Cys Lys Gln Ile Pro Ser Phe Leu 310
- <210> 79
- 312 <211> <212> PRT
- <213> Rattus sp. I14
- <400> 79
- Met Thr Gly Asn Asn Gln Thr Leu Ile Leu Glu Phe Leu Leu Gly
- Leu Pro Ile Pro Ser Glu Tyr His Leu Leu Phe Tyr Ala Leu Phe Leu
- Ala Met Tyr Leu Thr Ile Ile Leu Gly Asn Leu Leu Ile Ile Val Leu
- Val Arg Leu Asp Ser His Leu His Met Pro Met Tyr Leu Phe Leu Ser
- Asn Leu Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys
- Leu Leu Gln Asn Met Gln Ser Gln Val Pro Ser Ile Ser Tyr Thr Gly 8.5 90
- Cys Leu Thr Gln Leu Tyr Phe Phe Met Val Phe Gly Asp Met Glu Ser

4

100 105 110

Phe Leu Leu Val Val Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe 115 120 125

Pro Leu Arg Tyr Thr Thr Ile Met Ser Thr Lys Phe Cys Ala Ser Leu 130 $$140\mathcharpoons$

Val Leu Leu Eur Trp Met Leu Thr Met Thr His Ala Leu Leu His Thr 145 150 155 160

Leu Leu Ile Ala Arg Leu Ser Phe Cys Glu Lys Asn Val Ile Leu His 165 170 175

Phe Pne Cys Asp Ile Ser Ala Leu Leu Lys Leu Ser Cys Ser Asp Ile 180 185 190

Tyr Val Asn Glu Leu Met Ile Tyr Ile Leu Gly Gly Leu Ile Ile Ile 195 200 205

Ile Pro Pne Leu Leu Ile Val Met Ser Tyr Val Arg Ile Phe Phe Ser 210 215 220

Ile Leu Lys Phe Pro Ser Ile Gln Asp Ile Tyr Lys Val Phe Ser Thr 225 230 235 240

Cys Gly Ser His Leu Ser Val Val Thr Leu Phe Tyr Gly Thr Ile Phe 245 255

Gly Ile Tyr Leu Cys Pro Ser Gly Asn Asn Ser Thr Val Lys Glu Ile $260 \hspace{1.5cm} 265 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Ala Met Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe 275 280 285

Ile Tyr Ser Leu Arg Asn Arg Asp Met Lys Arg Ala Leu Ile Arg Val 290 295 300

Ile Cys Thr Lys Lys Ile Ser Leu 305 310

<210> 80

<211> 314

<212> PRT

<213> Rattus sp. I15

<400> 80

Leu Pro Ile Pro Ser Glu His Gln His Val Phe Tyr Ala Leu Phe Leu 20 25 30

Ser Met Tyr Leu Thr Thr Val Leu Gly Asn Leu Ile Ile Ile Leu 35 40 45

Ile His Leu Asp Ser His Leu His Thr Pro Met Tyr Leu Phe Leu Ser 50 55 60

- Asn Leu Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys 65 70 75 80
- Leu Leu Gln Asn Met Gln Ser Gln Val Pro Ser Ile Pro Phe Ala Gly
- Phe Leu Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe 115 120 125
- Pro Leu His Tyr Met Ser Ile Met Ser Pro Lys Leu Cys Val Ser Leu 130 135 140
- Val Val Leu Ser Trp Val Leu Thr Thr Phe His Ala Met Leu His Thr 145 \$150\$ \$155\$
- Leu Leu Met Ala Arg Leu Ser Phe Cys Ala Asp Asn Met Ile Pro His $165 \\ 170 \\ 175$
- Phe Phe Cys Asp Ile Ser Pro Leu Leu Lys Leu Ser Cys Ser Asp Thr 180
- His Val Asn Glu Leu Val Ile Phe Val Met Gly Gly Leu Val Ile Val 195 200
- Ile Pro Pne Val Leu Ile Ile Val Ser Tyr Ala Arg Val Val Ala Ser 210 215 220
- Ile Leu Lys Val Pro Ser Val Arg Gly Ile His Lys Ile Phe Ser Thr 225 230 235 240
- Cys Gly Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Ile Ile 245 \$250\$
- Gly Leu Tyr Leu Cys Pro Ser Ala Asn Asn Ser Thr Val Lys Glu Thr 260 265 270
- Val Met Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe
- Leu Cys Lys Lys Ile Thr Phe Cys Leu 305