Отчет о выполнении лабораторной работы 3.2.5 Вынужденные колебания в электрическом контуре

Варламов Антоний, группа Б02-928 21 сентября 2020 г.

1 Введение

Цель работы: Исследование вынужденных колебаний в электрическом контуре и процессов их установления.

Оборудование: генератор звуковой частоты, осциллограф, вольтметр, частотометр, конденсатор, катушка индуктивности, магазин сопротивлений.

В работе исследуются вынужденные колебания, возникающие в электрическом контуре (рис 1) при подаче на него переменного ЭДС, гармонически изменяющегося со временем. При этом, параметры колебаний будут зависеть как от параметров самого контура — индуктивности катушки, емкости конденсатора, а также его сопротивления, так и от параметров источника ЭДС — частоты колебания ЭДС и амплитуды данных колебаний. Основное явление, которое можно наглядным образом наблюдать в подобной системе — явление резонанса. Резонанс — явление резкого увеличения амплитуды вынужденных колебаний при частотах источника ЭДС близких к собственной частоте контура.

Рис. 1: Схема исследуемого контура

Кривая, описывающая зависимость амплитуды вынужденных колебаний от частоты источника ЭДС называется резонансной кривой. Первая часть работы будет посвящена исследованию резонансных кривых для контура в двух конфигурациях — при наличии постоянного сопротивления контура и при его отсутствии.

Исследование резонансных кривых позволит определить *добротность* контура в различных конфигурациях.

Для этого можно воспользоваться формулой:

$$Q = \frac{\omega_0}{2\Delta\Omega} \tag{1}$$

где ω_0 – собственная частота контура, $\Delta\Omega=|\Omega-\omega_0|$.

Другим же методом, который позволит определить добротность контура является метод исследования процессов установления и затухания колебаний. Данный метод основан на исследовании зависимости амплитуды колебаний в процессе затухания или установления колебаний. График зависимости амплитуды от времени приведен на (рис. 2). В этом случае очень удобно можно получить логарифмический декремент затухания:

Рис. 2: График зависимости амплитуды от времени

$$\Theta = \frac{1}{n} \ln \left(\frac{U_0 - U_k}{U_0 - U_{k+n}} \right) \tag{2}$$

Зная логарифмический декремент затухания, нетрудно выразить добротность контура:

$$Q = \frac{\pi}{\Theta} \tag{3}$$

2 Схема установки

Рис. 3: Схема установки

3 Ход выполнения работы

3.1 Построение резонансных кривых

		R = 0	Ом					R = 1	100 Ом		
ν, Гц	U, B	ν, Гц	U, B	ν, Гц	U, B	ν, Гц	U, mB	ν, Гц	U, mB	ν, Гц	U, мВ
1569	30,0	1629	30,0	1621	23,0	1600	300	1598	300	1466	174
1563	29,5	1630	29,5	1623	22,5	1627	294	1580	294	1472	180
1562	29,0	1631	29,0	1624	22,0	1637	288	1569	288	1479	186
1562	28,5	1632	28,5	1625	21,5	1645	282	1562	282	1484	192
1560	28,0	1633	28,0	1626	21,0	1652	276	1555	276	1490	198
1559	27,5	1635	27,5	1628	20,5	1659	270	1550	270	1495	204
1558	27,0	1635	27,0	1630	20,0	1665	264	1545	264	1502	210
1557	26,5	1636	26,5	1633	19,5	1673	258	1540	258	1505	216
1556	26,0	1638	26,0	1634	19,0	1679	252	1534	252	1509	222
1555	25,5	1639	25,5	1637	18,5	1686	246	1531	246	1515	228
1554	25,0	1640	25,0	1638	18,0	1692	240	1526	240	1520	234
1553	24,5	1642	24,5	1638	17,5	1700	234	1519	234	1524	240
1551	24,0	1643	24,0	1640	17,0	1707	228	1515	228	1530	246
1550	23,5	1645	23,5	1556	17,5	1714	222	1510	222	1686	246
1549	23,0	1646	23,0	1558	18,0	1719	216	1503	216	1692	240
1548	22,5	1648	22,5	1559	18,5	1728	210	1500	210	1699	234
1546	22,0	1649	22,0	1561	19,0	1737	204	1497	204	1707	228
1545	21,5	1651	21,5	1562	19,5	1744	198	1489	198	1715	222
1543	21,0	1653	21,0	1563	20,0	1754	192	1484	192	1722	216
1542	20,5	1654	20,5	1565	20,5	1763	186	1479	186	1728	210
1540	20,0	1656	20,0	1566	21,0	1773	180	1473	180	1737	204
1538	19,5	1658	19,5	1568	21,5	1784	174	1467	174	1746	198
1537	19,0	1661	19,0	1569	22,0	1795	168	1459	168	1754	192
1535	18,5	1663	18,5	1569	22,5	1807	162	1455	162	1763	186
1534	18,0	1665	18,0	1571	23,0	1819	156	1447	156	1774	180
1532	17,5	1668	17,5		, ,	1833	150	1440	150	1785	174
1529	17,0	1670	17,0			1848	144	1432	144		
1528	16,5	1673	16,5			1856	138	1425	138		
1525	16,0	1677	16,0			1887	132	1416	132		
1523	15,5	1679	15,5			1907	126	1407	126		
1520	15,0	1683	15,0			1931	120	1397	120		
1517	14,5	1687	14,5			1958	114	1388	114		
1514	14,0	1691	14,0			1990	108	1376	108		
1511	13,5	1695	13,5			2029	102	1364	102		
1508	13,0	1699	13,0			2070	96	1352	96		
1505	12,5	1703	12,5								
1502	12,0	1708	12,0								
1497	11,5	1716	11,5								
1493	11,0	1723	11,0								
1488	10,5	1730	10,5								
1484	10,0	1737	10,0								
1477	9,5	1746	9,5								
1471	9,0	1756	9,0								
1465 1458	8,5	1766	8,5								
	8,0	1780	8,0								
1449 1441	7,5	1795 1815	7,5								
1441	7,0	1019	7,0	J							

Таблица 1: Результаты измерения зависимости амплитуды напряжения колебаний в контуре при R=0 Ом и R=100 Ом

Как видно из (рис 4), измерения были проведены некорректно. Повторная серия измерений зависимости амплитуды напряжения от частоты (точки, лежащие "внутри" кривой) показывает, что изначально выбранная резонансная частота не совпадала с собственной частотой контура. Вернее, корректнее было

Рис. 4: Резонансная кривая, $R = 0 \, \text{Ом}$

Рис. 5: Резонансная кривая, $R = 100 \, \text{Ом}$

бы сказать, что измерения кривой проводились не с максимальной амплитуды, что не позволяет провести измерения добротности, так как довольно проблематично определить пик кривой. Для этого будем использовать кривую (часть кривой), полученную при повторном измерении и изображенную на (рис.)

Рис. 6: экстраполированная резонансная кривая для $R=0\,$ Ом

Обоснованность использования данной экстраполированной кривой заключается в том, что для определения добротности нам необходимо знать зависимость амплитуды напряжения от частоты только в интервале амплитуд $U \sim \frac{\sqrt{2}}{2} U_0$, а так как данная вторая серия измерений и была приведена для данного диапазона амплитуд, то ее использование вполне оправдано.

3.2 Исследование процессов установления и затухания колебаний

Для определения добротности с помощью исследования процессов установления и затухания вынужденных колебаний необходимо получить зависимость амплитуды вынужденных колебаний в режиме генератора "цуги".

Для получения зависимости используем осциллограф. С его помощью получаем следующие зависимости (рис. 7 и 8).

Рис. 7: зависимость амплитуды напряжения от времени при установлении колебаний

Рис. 8: зависимость амплитуды напряжения от времени при затухании колебаний

На основе полученных изображений получим зависимость амплитуд напряжений в процессе установления колебаний (Таблица 2) и затухания колебаний (Таблица 3)

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
U_n , дел	5	8	12	15	17	20	23	25	26	28	29	31	32	33	34	35	35	36	37	37

Таблица 2: Результаты измерения зависимости амплитуды вынужденных колебаний при их установлении

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
U_n , дел	36	31	28	26	23	20	18	16	14	13	11	10	10	9	8	7	6	6	5	4

Таблица 3: Результаты измерения зависимости амплитуды вынужденных колебаний при их установлении

4 Получение добротности контура и определение погрешностей

4.1 Метод резонансных кривых

Для получения добротности методом исследования резонансных кривых получим с использованием формулы (1) значения добротности вблизи искомого диапазона амплитуд, после чего вычислить погрешности косвенного измерения. Для этого построим графики зависимостей $\frac{U_{R=0}}{U_{R=0,0}} = f\left(\frac{\nu}{\nu_0}\right)$ и $\frac{U_{R=100}}{U_{R=100,0}} = f\left(\frac{\nu}{\nu_0}\right)$

Рис. 9: График зависимости $\frac{U}{U_0}=f\left(\frac{\nu}{\nu_0}\right)$ для двух конфигураций контура: R=0 Ом и R=100 Ом

Результаты вычисления добротности с использованием формулы (1) занесем в таблицу (4) для соответствующих значений R

R, Om	Q	σ_Q
0	50,1	10,4
100	14,7	3,7

Таблица 4: Результаты определения добротности методом исследования резонансных кривых

4.2 Метод исследования процессов установления и затухания колебаний

(Θ_1	0,090	0,112	0,112	0,105	0,112	0,120	0,121	0,115	0,119	0,116	0,123	0,123	0,124	0,126
	Θ_2	0,150	0,126	0,108	0,112	0,118	0,116	0,116	0,118	0,113	0,119	0,116	0,107	0,107	0,107

Таблица 5: Результаты измерения логарифмического декремента затухания для $R=0~{
m Om}$

Определив среднее значение величин Θ_1 и Θ_2 , а также воспользовавшись соотношениями:

$$f = \ln\left(\frac{U_1}{U_2}\right), \Rightarrow \sigma_f = \sqrt{\left(\frac{\partial f}{\partial U_1}\sigma_U\right)^2 + \left(\frac{\partial f}{\partial U_2}\sigma_U\right)^2} = \frac{\sigma_U\sqrt{U_1^2 + U_2^2}}{U_1U_2}$$
 (4)

$$f = \ln\left(\frac{U_0 - U_1}{U_0 - U_2}\right), \Rightarrow \sigma_f = \sqrt{\left(\frac{\partial f}{\partial U_1}\sigma_U\right)^2 + \left(\frac{\partial f}{\partial U_2}\sigma_U\right)^2} = \frac{\sigma_U\sqrt{(U_0 - U_1)^2 + (U_0 - U_2)^2}}{(U_0 - U_1)(U_0 - U_2)}$$
(5)

Получаем:

$$\begin{array}{|c|c|c|c|c|c|}\hline Q_1 & Q_2 & \sigma_{Q_1} & \sigma_{Q_2} \\ \hline 52,8 & 54,7 & 5,2 & 5,9 \\ \hline \end{array}$$

Таблица 6: Результаты определения добротности контура при $R=0~{
m Om}$

Так как исследование процессов установления и затухания колебаний проводились только для конфигурации контура с R=0 Ом, то определить таким методом добротность при R=100 Ом не представляется возможным ввиду отсутствия данных.

4.3 Теоретическое определение добротности контура

Для теоретического определения добротности контура используем следующее соотношение:

$$Q = \frac{\sqrt{L}}{R\sqrt{C}} \tag{6}$$

А также соотношение:

$$\sigma_Q = \sqrt{\left(\frac{\partial Q}{\partial R}\sigma_R\right)^2 + \left(\frac{\partial Q}{\partial L}\sigma_L\right)^2 + \left(\frac{\partial Q}{\partial C}\sigma_C\right)^2} \tag{7}$$

$$\sigma_Q = \sqrt{\frac{\sigma_R^2 L}{2R^4 C} + \frac{\sigma_L^2}{2R^2 L C} + \frac{\sigma_C^2 L}{2R^2 C^3}}$$
 (8)

Получаем итоговую таблицу:

R, Om	$Q_{ m peзoh.}$ кривая	<i>Q</i> установление кол.	<i>Q</i> затухание кол.	$Q_{ m reop}$
0	$50, 1 \pm 10, 4$	$52,8 \pm 5,2$	$54,7 \pm 5,9$	$50, 3 \pm 1, 1$
100	$14,7 \pm 3,7$	_	_	$10,0 \pm 0,7$

Таблица 7: Итоговая таблица с результатами измерения добротности

5 Исследование картины биений вблизи собственной частоты контура

Для получения картины биений вблизи собственной частоты контура установим на генераторе частоту такую, что графиком сигнала на осциллографе будет синусоида с максимальной амплитудой. Затем, немного отклонив частоту генератора на экране осциллографа получим картину биений, представленную на рисунке

Рис. 10: Картина биений вблизи собственной частоты контура

6 Итоги

- 1. В данной работе проведены измерения добротности колебательной системы, представляющей собой электрический колебательный контур, состоящий из последовательно соединенных катушки, резистора переменной емкости (магазин сопротивлений) и конденсатора. Получены значения добротности контура в различных конфигурациях: при R=0 Ом и R=100 Ом.
- 2. Проведены измерения погрешностей определения добротности колебательной системы. Установлено, что значения, полученные всеми способами определения добротности колебательной системы, предложенными для проверки, согласуются с теоретическими значениями добротности в различных конфигурациях.
- 3. Наибольшая погрешность возникла при определении добротности с помощью метода анализа резонансной кривой, так как для хорошей статистической обеспеченности полученного результата пришлось брать довольно широкий диапазон частот, для которых проводилось измерение, что привело к увеличению погрешности. кроме того, отдельно отметим тот факт, что при измерении резонансной кривой для конфигурации с нулевым сопротивлением была совершена неточность, которая привела к искусственному расширению кривой (подробно данная ошибка описана в п. 3.1)
- 4. Относительная точность всех измерений не превосходит $\varepsilon_{max} \approx 20\%$
- 5. Наибольший вклад в определение погрешности полученных величин внесли статистические (случайные) ошибки, а так же ошибки, связанные с определением величин амплитуд сигнала на экране осциллографа.
- 6. Установлено, что при R=0 Ом предпочтительнее проводить измерения добротности методом исследования процессов установления и затухания колебаний, нежели исследованием резонансной кривой. Для R=100 Ом недостаточно данных для установления приоритета.
- 7. Полученная картина биений соответствует теоретически предсказанной картине.