Study Case Submission Template

Please use this template to document your solution. Submit it as a **PDF file** along with your project repository.

1. Title: LLM Integration For CV and Project Report Analyzer With RAG Implementation

2. Candidate Information

· Full Name: M. Fadil Martias

· Email Address: fadilmartias26@gmail.com

3. Repository Link

https://github.com/fadilmartias/cv-analyzer

4. Approach & Design (Main Section)

Tell the story of how you approached this challenge. We want to understand your thinking process, not just the code. Please include:

Initial Plan

After reviewing the requirements, I started by thinking about the tech stack that would let me move fast while keeping things robust. I decided to go with **Go** and the **Fiber framework**. Fiber is built on **fasthttp**, which is super fast, and its goroutines are perfect for handling queues and long-running tasks without blocking. Plus, being a compiled language, Go helps catch bugs early during development, so I can minimize headaches in production. For the database, I went with **PostgreSQL**, mainly because I'm familiar with it and it also has the **pgvector extension**, which lets me store embeddings directly in the database.

For PDF reading, I initially tried **UniPDF**, but the free version couldn't extract text from scanned PDFs. After hitting some roadblocks, I switched to **Tesseract OCR** on my Windows machine, which worked much better for scanned documents

For AI/LLM, I started with **OpenRouter** because it's free and has lots of model options. But midway through, I realized OpenRouter doesn't provide embedding endpoints, so I pivoted to **Gemini by Google**, which supports embeddings and fits perfectly for RAG (Retrieval-Augmented Generation) workflows.

The goal of this mini-project was to allow a user to **upload a CV and project report**, have an AI evaluate them asynchronously, and return detailed scores and feedback, while also leveraging vector databases for intelligent retrieval.

System & Database Design

I kept the system simple but scalable:

• Endpoints:

POST /evaluate \rightarrow for uploading CV and project report GET /result/{id} \rightarrow to fetch AI evaluation results

Database:

evaluation_tasks: stores tasks with fields like cv, report, status, detailed scoring (cv_match_rate, cv_feedback, project_score, project_feedback, overall_summary, breakdown).

jobs: stores job descriptions along with embeddings (title, content, embedding vector) for RAG retrieval.

Long-running tasks:

I leveraged Go's goroutines. Every call to the LLM runs asynchronously, so /evaluate doesn't block.

Project structure:

I followed **clean architecture**:

usecase → business logic repository → database interaction

```
service → external services (like Gemini)

handler → HTTP endpoints

config → environment variables using godotenv

dto → consistent API responses

utils → helper functions like PDF extraction and format json response for all API Response
```

LLM Integration

- I used Gemini because it's free and supports embeddings.
- The Al acts as a technical recruiter, evaluating both the CV and project report against job requirements.
- I implemented RAG to fetch relevant job context for scoring, improving the relevance of AI feedback.
- I created a small set of dummy jobs to populate embeddings and test the pipeline.
- **Prompting Strategy** (examples of your actual prompts)

You are an experienced technical recruiter. Analyze the following CV and Project Report against these job requirements: (here is the context from RAG)

```
Return your answer STRICTLY in JSON format with this schema:
  "cv_match_rate": <float with 2 decimal places, range 0-1 based on cv breakdown score>,
  "cv_feedback": "<feedback about CV>",
  "project_score": <float with 2 decimal places, range 0-10 based on project breakdown score>,
  "project_feedback": "<feedback about Project Report>",
  "overall_summary": "<summary of overall impression, strengths, and areas to improve>",
 "breakdown": {
  "cv": {
  "technical_skills_match": <number 1-5, criteria: backend, databases, APIs, cloud, and AI/LLM exposure>,
  "experience_level": <number 1-5, criteria: years, project complexity>,
  "relevant achievements": <number 1-5, criteria: impact, scale>,
  "cultural_fit": <number 1-5, criteria: communication, learning attitude>,
  },
  "project_report": {
   "correctness": <number 1-5, criteria: prompt design, chaining, RAG, handling errors>,
   "code_quality": <number 1-5, criteria: clean, modular, testable>,
   "resilience": <number 1-5, criteria: handles failures, retries>,
   "documentation": <number 1-5, criteria: clear README, explanation of trade-offs>,
   "creativity_or_bonus": <number 1-5, criteria: optional improvements like authentication, deployment, dashboards, etc.>
  }
 },
}
CV:
(extracted cv)
```

Report:

(extracted project_report)

Resilience & Error Handling

I wanted to make sure the system could handle all the usual hiccups:

- Retry logic with exponential backoff for Gemini API calls
- Timeout configurations for LLM requests

- Circuit breaker to prevent cascading failures
- Temperature set to **0.1** for consistent, low-hallucination results
- Strict JSON validation before storing results

• Edge Cases Considered

- Large, encrypted, or password-protected PDFs
- $^{\circ}$ Empty or minimal content \rightarrow validation on CV length
- $^{\circ}$ Memory leaks in long-running goroutines \rightarrow monitor goroutine counts
- $^{\circ}$ Invalid file types \rightarrow add validation for check file types
- Rate limiting: /evaluate calls limited to 1 per 4 seconds to stay under Gemini free-tier limits
- Integration and load testing to ensure stability
- ₫ This is your chance to be a storyteller. Imagine you're presenting to a CTO, clarity and reasoning matter more than buzzwords.

5. Results & Reflection

Outcome

 Everything worked as expected. Users can upload CVs and project reports, get async AI evaluations, and store results in Postgres with embeddings for retrieval.

Evaluation of Results

Al outputs are consistent thanks to low temperature settings. JSON schema validation ensures structure is reliable.

Future Improvements

- Handle more error cases for maximum robustness
- Possibly move to paid-tier LLMs or local embeddings for higher throughput
- Improve PDF OCR accuracy for tricky scans

6. Screenshots of Real Responses

• GET /evaluate

POST /result/{id}

7. (Optional) Bonus Work

I added extra feature that can show breakdown of scoring metrics for cv and project_report