

Universidade do Vale do Itajaí Escola do Mar, Ciência e Tecnologia - EMCT Ciência da Computação

Lógica

Operações Lógicas sobre Proposições

- As operações sobre proposição são também conhecidas como operações lógicas
- Lógica proposicional é a lógica que lida com declarações (proposições) e declarações compostas construídas a partir de declarações mais simples usando os chamados conectivos booleanos
- As operações lógicas obedecem regras de cálculo, denominado cálculo proposicional

- Pesquisa continua sendo aplicada em áreas como
 - inteligência artificial
 - projeto de circuito lógico
 - teoria de autômatos e computabilidade
 - teoria de bancos de dados relacionais
 - teoria de linguagens
 - teoria de sistemas distribuídos

- Forma de um argumento: conceito central da lógica dedutiva
- Argumento: sequência de afirmações para demonstrar a validade de uma asserção.
- Como saber que a conclusão obtida de um argumento é válida?
 - As afirmações que compõem o argumento
 - são aceitas como válidas, ou
 - podem ser deduzidas de afirmações anteriores

- Em lógica, forma de um argumento ≠ seu conteúdo
- "Análise lógica" não determina a validade do conteúdo de um argumento
- "Análise lógica" determina se a verdade de uma conclusão pode ser obtida da verdade de argumentos propostos
- Lógica: Ciência do Raciocínio

- Exemplo 1
 - <u>se</u> a sintaxe de um programa está errada <u>ou</u>
 - <u>se</u> a execução do programa resulta em divisão por zero
 - então o computador irá gerar uma mensagem de erro
 - Computador não gera mensagem de erroU

Sintaxe do programa está correta e

Execução do programa não resulta em divisão por zero

- Exemplo 2

 - \Box então $x^2 > 4$
 - $x^2 \le 4$

 $\downarrow \downarrow$

$$x \ge -2 e x \le 2$$

- Nos exemplos, temos que o conteúdo dos argumentos é diferente
 - No entanto, a "forma lógica" é a mesma

```
<u>se</u> p <u>ou</u> q

<u>então</u> r

<u>não</u> r

↓

<u>não</u> p <u>e</u> <u>não</u> q
```

- Argumentos na forma lógica são normalmente representados por letras minúsculas do alfabeto
 - Exemplo: p, q, r
- Em geral, as definições da lógica formal estão de acordo com a lógica natural ou intuitiva das pessoas de bom senso
 - O formalismo é introduzido para evitar ambiguidade e garantir consistência

- Em toda teoria matemática, usam-se termos já definidos na concepção de novas definições
- Mas como fazer com os termos mais "primitivos"?
 - Termos "primitivos" ou iniciais não são definidos
 - Em lógica, os termos sentença, verdadeiro, e falso são os termos iniciais não definidos
- Definição: uma afirmação ou proposição é uma sentença que é verdadeira (V) ou falsa (F) mas não ambas

Exemplo 3:

- 2 + 2 = 4
- 2 + 2 = 5
 - São proposições, onde a primeira é V e a segunda é F
- Exemplo 4:
 - Ele é um estudante universitário.
 - Não é uma proposição já que depende da referência ao pronome "ele"

- Exemplo 5:
 - x + y > 0.
 - também não é uma proposição já que depende dos valores de x e y
- O que se segue NÃO são proposições
 - Quem está aí? (interrogativo, pergunta)
 - Apenas faça! (imperativo, comando)
 - □ La la la la la. (interjeição sem sentido)
 - □ Sim, eu meio que não sei, tanto faz ... (vago)
 - □ 1 + 2 (expressão com valor não verdadeiro / falso)
 - x + 2 = 5 (declaração sobre tokens semânticos
 - de valor não constante)

Proposições dividas em simples e compostas

Simples:

- R(p) = Felipe é professor
- R(q) = Felipe é engenheiro

Composta:

R(p,q) = Felipe é professor e Felipe é engenheiro

- Utilização de conectivos
 - p: Felipe é professor Felipe é engenheiro
 - q: Augusto é alto ou Carlos é rico
 - r: Se Carlos é rico, então é feliz
- Utilização para definir condições de, por exemplo, existência, acontecimento, etc...

- Notação:
 - E(p) = F = 0
 - Ex: (p) A Terra é maior que o Sol
 - \bullet E(a) = V = 1
 - Ex: (a) A Terra é um planeta

- Tipos de Operações
 - Negação (') ou (~) ou (¬) UNÁRIO
 - Conjunção () ou (^) BINÁRIO
 - Disjunção (+) ou (v) BINÁRIO
 - □ Disjunção Exclusiva (⊕) ou (v) BINÁRIO
 - □ Condicional (→) BINÁRIO
 - Bicondicional (↔) BINÁRIO

Obs: Utilizada abordagem apresentada por *Daghlian

Negação

Trocamos a proposição NÃO por p'

- Lê-se: "não p"
 - \blacksquare E(p') = 0 (falsidade ou F) se E(p) = 1 (verdade ou V)
 - \blacksquare E(p') = 1 (verdade ou V) se E(p) = 0 (falsidade ou F)
- Exemplos:

p: 1 + 4 é igual a 5 (

q: Eu tenho cabelo castanho (0)

¬ q: Não é o caso que tenho cabelo castanho (1)

$$E(\neg p) = 0$$

¬ q: Não tenho cabelo castanho (1)

$$E(\neg q) = ?$$

р	p'
0	1
1	0

p	$\neg p$
V	F
F	\mathbf{V}

Negação - Exercícios

- Dê a negação das seguintes proposições e coloque na notação formal:
 - A Lua é satélite
 - – A aula é a noite
 - Não é verdade que Vitória pertence ao Espírito Santo

Conjunção

- A conjunção de duas proposições só é verdadeira se as duas proposições são verdadeiras
 - \Box E(p) = E(q) = 1
 - Notação E(p q) = 1
 - Ex: p = 0 (falsidade) e q = 1 (verdade) = $E(p \cdot q) = 0$
 - Lê-se: "p e q" = p q
 - p: O carro é vermelho (1)
 - q: O carro tem 85 HP (1)

$$p \wedge q = 1 \wedge 1 = 1$$

p/	\overline{q}	p	p • q	q	р
1	V	V	0	0	0
F	F	\mathbf{V}	0	1	0
F	\mathbf{V}	F	0	0	1
F	F	F	1	1	1

Notação: $E(p \land q) = E(p) \land E(q) = V \land V = V$

O carro <u>não</u> é vermelho <u>mas</u> tem 85 HP: ¬p ∧ q

O carro <u>não</u> é vermelho <u>nem</u> tem 85 HP: $\neg p \land \neg q$

Conjunção - Exercícios

- Dê a conjunção das seguintes proposições e coloque na notação formal:
 - Ciência da Computação é uma graduação
 - A Univali é uma universidade

- O ser humano é mamífero
 - O cavalo é um inseto

Disjunção

- A disjunção de duas proposições só é falsa se as duas proposições são falsas
 - \Box E(p) = E(q) = 0
 - □ Notação E(p + q) = 0
 - \Box Ex: p = 0 (falsidade) e q = 0 (falsidade) = E(p + q) = 0
 - □ Lê-se: "p ou q" = p + q
 - p: O carro é vermelho (1)

q: O carro tem 85 HP (1)

$$p + q = 1 + 1 = 1$$

р	q	p + q
0	0	0
0	1	1
1	0	1
1	1	1

p	\overline{q}	$p \lor q$
V	V	V
$ \mathbf{V} $	F	$oldsymbol{ m V}$
F	\mathbf{V}	\mathbf{V}
F	F	F

Notação: $E(p \lor q) = E(p) \lor E(q) = V \lor V = V$

Disjunção - Exercícios

- Dê a disjunção das seguintes proposições e coloque na notação formal:
 - Ciência da Computação não é uma graduação
 - A Univali é uma universidade

- O ser humano é mamífero
 - O cavalo é um animal

Disjunção Exclusiva

- A disjunção exclusiva de duas proposições só é verdadeira quando as proposições forem diferentes
 - \Box E(p) \neq E(q) : 1 e E(p) = E(q) : 0
 - □ Notação: $E(p \oplus q) = 0$
 - \Box Ex: p = 0 (falsidade) e q = 0 (falsidade) = E(p \oplus q) = 0
 - Lê-se: "p ou q, mas não ambas" = p⊕q
 - p: Eu vou ganhar um 10 na avaliação (1)

q: Eu não vou estudar para avaliação (0)

$$p \oplus q = 1 \oplus 0 = 1$$

Notação: $E(p \underline{v} q) = E(p) \underline{v} E(q) = V \underline{v} V = 1$

р	q	p⊕q
0	0	0
0	1	1
1	0	1
1	1	0

<u>_p</u>	q	$p \oplus q$
\mathbf{V}	V	F
V	F	\mathbf{V}
F	V	\mathbf{V}
F	F	F

Disjunção Exclusiva - Exercícios

- Dê a disjunção exclusiva das seguintes proposições e coloque na notação formal:
 - Ciência da Computação não é uma graduação
 - A Univali é uma universidade

- O ser humano é mamífero
 - O cavalo é um animal

- O condicional de duas proposições só é falsa quando E(p) = 1 e E(q) = 0
 - □ Lê-se: "se p então q"
 - □ Notação: $E(p \rightarrow q) = 0 (\rightarrow e chamado de símbolo da$ **implicação**)
 - Ex: p = 0 (falsidade) e q = 0 (falsidade) = $E(p \rightarrow q) = 1$
 - p é antecedente (hipótese ou premissa) e q de consequente (consequência ou conclusão)
 - p é condição suficiente para q
 q é condição necessária de p
 q é consequência de p

р	q	p→q
0	0	1
0	1	1
1	0	0
1	1	1

- Exemplo da aplicação do condicional
 - Luz é uma condição necessária para enxergar
 - Se há luz, então eu enxergo
 - Antecedente: há luz
 - Consequente: enxergo
- Notação:
 - p: O aluno tem média final 6
 - q: ele está aprovado na disciplina
 - $p \rightarrow q$: se o aluno tem média final 6, então ele está aprovado na disciplina

$$E(p \to q) = E(p) \to E(q) = 1 \to 1 = 1$$

- Exemplo da aplicação do condicional
 - O nascimento de João em solo brasileiro é uma condição suficiente para ele ser cidadão brasileiro
 - Se João nasceu em solo brasileiro então ele é um cidadão brasileiro
 - Antecedente: João nasceu em solo brasileiro
 - Consequente: é um cidadão brasileiro

- Neste exemplo, suponha que seu amigo falasse:
 - Se eu me formar na primavera, então vou tirar férias na Flórida
- Condições:
 - Se ele realmente se formar na primavera (V) e tirar suas férias na Flórida (V), a sentença foi VERDADEIRA
 - Porém, se ele se formar na primavera (V) e não tirar suas férias na Flórida (F), seu comentário foi uma sentença FALSA
 - ☐ Agora, supondo que ele não se formou (F)
 - Independentemente de ele tirar ou não as férias na Flórida, a sentença não tornou-se falsa, pois demos-lhe o benefício da dúvida

Condicional - Exercícios

- Crie duas proposições compostas utilizando condicionais
- Indique o antecedente e o consequente
- Coloque na notação formal

Bicondicional

- O bicondicional de duas proposições é verdadeira quando E(p) = E(q) e falsa quando E(p) ≠ E(q)
 - Lê-se: "p se e somente se q"
 - □ Notação: $E(p \leftrightarrow q) = 0$
 - Ex: p = 0 (falsidade) e q = 0 (falsidade) = $E(p \leftrightarrow q) = 1$
- Ressalta-se que o bicondicional não é uma operação original, mas sim uma dupla aplicação do conectivo →
 - p é condição necessária e suficiente para q
 q é condição necessária e suficiente para p

р	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Bicondicional

Notação:

p: O aluno tem média final 6

q: ele está aprovado na disciplina

p⇔q : o aluno tem média final 6 se e somente se ele está aprovado na disciplina

$$E(p\leftrightarrow q) = E(p)\leftrightarrow E(q) = 1\leftrightarrow 1 = 1$$

Bicondicional

Considerando uma bi-implicação

р	q	p→q	q→p	(q→p) • (p→q)
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

O bicondicional é equivalente a: $(p \rightarrow q) \cdot (q \rightarrow p)$

Bicondicional - Exercícios

- Crie duas proposições compostas utilizando bicondicionais
- Apresente a tabela verdade com a bi-implicação
- Utilize a notação adequada