Hands-on Deep Learning - Aula 4 Redes Neurais Recorrentes

Camila Laranjeira¹, Hugo Oliveira¹², Keiller Nogueira¹²

¹Programa de Pós-Graduação em Ciência da Computação (PPGCC) Universidade Federal de Minas Gerais

²Interest Group in Pattern Recognition and Earth Observation (PATREO)
Universidade Federal de Minas Gerais

18 de Agosto, 2018

DCC

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Agenda

- 1 Introdução
 - Motivação
 - Taxonomia dos Problemas
- 2 Fundamentação Teórica
 - Feed Forward
 - Backpropagation Through Time
- 3 Unidades Avançadas
 - GRU
 - LSTM

Agenda

- 1 Introdução
 - Motivação
 - Taxonomia dos Problemas
- 2 Fundamentação Teórica
 - Feed Forward
 - Backpropagation Through Time
- 3 Unidades Avançadas
 - GRU
 - LSTM

Sequências

└ Motivação

- Eventos relacionados entre si.
- Ordem dos eventos é um fator relevante.

Memória de sequências

- Experimente listar esse conjunto de eventos fora da ordem (de trás pra frente por exemplo):
 - Alfabeto
 - Letras de música
 - Consegue pensar em outro exemplo?

Memória de sequências

- Experimente listar esse conjunto de eventos fora da ordem (de trás pra frente por exemplo):
 - Alfabeto
 - Letras de música
 - Número de telefone
 - CPF
 - Senhas
 - etc...
- A memória de sequência é condicional. Elementos não são memorizados individualmente, registramos a organização entre eles.

- Vamos tentar modelar um problema de sequência com uma MLP
- Sequence tagging / Sequence labeling
 - Dado uma sequência de palavras, rotule cada uma das palavras de acordo com a sua categoria gramatical

```
Exemplo 1: X = { Nós, fizemos, um, acordo }, Y = { Pronome, verbo, artigo indefinido, substantivo }
Exemplo 2: X = { Eu, acordo, cedo }, Y = { Pronome, verbo, advérbio }
```

∟ Motivação

MLP para sequência

Modelando a entrada

└ Motivação

MLP para sequência

Modelando a saída

└ Motivação

MLP para sequência

 Modelando o MLP que categoriza palavras gramaticalmente (para uma palavra)

└─ Motivação

MLP para sequência

 Modelando o MLP que categoriza palavras gramaticalmente (para uma sequência de palavras)

- Limitações dessa modelagem:
 - O modelo n\u00e3o incorpora a rela\u00e7\u00e3o entre palavras, j\u00e1 que recebe uma entrada de cada vez e atualiza seus pesos de acordo com a informa\u00e7\u00e3o individual de cada palavra.

Vamos tentar mais uma abordagem...

- Tratamos a sequência de entrada como um único dado
- A sequência de saída também é um único vetor

- Limitações dessa modelagem:
 - Input e output precisam ter tamanho fixo. Problemas do mundo real envolvem sequências de tamanho variável.
 - Saídas complexas como essa caem no problema intitulado "Predição estruturada" ¹.
 - Trata-se de um problema muito difícil de otimizar.

¹ Linquistic Structure Prediction by Noah A. Smith http://www.cs.cmu.edu/ nasmith/LSP/

Última tentativa!

- Define-se uma janela de tamanho w
- Saídas são geradas individualmente em função de uma parte da sequência.

└─ Motivação

- Define-se uma janela de tamanho w
- Saídas são geradas individualmente em função de uma parte da sequência.

- Essa modelagem é utilizado para modelos de linguagem n-gram
- n-gram Sequência contínua de n items dado um texto (Palavras, sílabas, letras, etc.)

- Limitações dessa modelagem:
 - Uma janela fixa pode n\u00e3o atender bem todos os casos (algumas palavras podem exigir um contexto maior)
 - Dependências de longo prazo podem ser perdidas

Limitações de Feed-Forward Networks

- Em resumo, as redes "feed-forward" apresentam limitações para lidar com sequências
- Em grande parte essas limitações estão associadas com a incapacidade de guardar memória das instâncias anteriores

Redes Neurais Recorrentes

 Diferente de unidades da Feed-Forward Network, unidades recorrentes guardam seu próprio estado, compondo uma memória interna.

Redes Neurais Recorrentes

- Cada entrada x_t gera um estado que é retroalimentado para a unidade recorrente, permitindo que a informação do passado persista.
- Essa arquitetura permite lidar com sequências de tamanhos variáveis.

└─ Motivação

Redes Neurais Recorrentes

 Cada entrada x_t gera um estado que é retroalimentado para a unidade recorrente, permitindo que a informação do passado persista.

$$= h_t = f(h_{t-1}, x_t)$$

Redes Neurais Recorrentes

- Essa arquitetura permite lidar com sequências de tamanhos variáveis.
 - Ponto para o Pytorch! Outros frameworks (de grafos estáticos) exigem que você fixe o tamanho da sequência quando instancia a rede.

Redes Neurais Recorrentes

- A memória da rede recorrente persiste ao longo do tempo, ou seja, o estado h_t acumula conhecimento dos seus predecessores $\{t-1,t-2,...,1,0\}$.
- Certamente há um limite de persistência da memória. Discutiremos isso mais a frente.

Figura: Exemplo de problema Um para Muitos: Image Captioning.

Figura: Exemplo de problema Muitos para Um: Análise de Sentimentos

Figura: Exemplo de problema Muitos para Muitos: Voz para Texto

Figura: Exemplo de problema Muitos para Muitos sincronizado: Reconhecimento de entidade nomeada

Outros problemas

- Reconhecimento de ações em vídeo
- Detecção de anomalias em séries temporais
- Análise de sequências de DNA
- Composição de música
- Geração de texto
- etc...

E imagens?

Será que é possível aplicar redes recorrentes a uma única imagem?

E imagens?

Agenda

- 1 Introdução
 - Motivação
 - Taxonomia dos Problemas
- 2 Fundamentação Teórica
 - Feed Forward
 - Backpropagation Through Time
- 3 Unidades Avançadas
 - **■** GRU
 - LSTM

Feed Forward

Unidade Recorrente (Vanilla)

$$egin{cases} h_t = g(W_{hh}h_{t-1} + W_{xh}x_t + b_h) & ext{self.h =} \ y_t = g(W_{hy}h_t + b_y) & ext{y = sigm} \end{cases}$$

Unidade Recorrente (Vanilla)

- Parâmetros Otimizáveis
 - Pesos
 - W_{hh} hidden to hidden
 - W_{xh} input to hidden
 - W_{hy} hidden to output
 - Bias
 - b_h bias hidden
 - b_y bias output

$$\begin{cases} h_t = g(W_{hh}h_{t-1} + W_{xh}x_t + b_h) \\ y_t = g(W_{hy}h_t + b_y) \end{cases}$$

```
self.h = np.tanh(np.dot(self.W_hh, self.h) +
np.dot(self.W_xh, x) + b_h)
y = sigm(np.dot(self.W_hy, self.h) + b_y)
```


 Como fica a solução para o nosso problema de sequence tagging usando uma RNN?

 Os pesos e os bias são os mesmos para todos os timesteps (iterações) ao longo da entrada

 Os pesos e os bias são os mesmos para todos os timesteps (iterações) ao longo da entrada

• O hidden state precisa ser inicializado a cada novo batch de sequências.

• O hidden state precisa ser inicializado a cada novo batch de sequências.

 A função de perda é dada pelo acúmulo das perdas ao longo dos timesteps

Feed Forward: Many-to-One

- Função de perda é dada apenas pelo último timestep
- Função de output apenas no último hidden state

Feed Forward: One-to-Many

- A função de perda é dada pelo acúmulo das perdas ao longo dos timesteps
- Apenas uma operação em função do input

- A backpropagation nesse caso consiste em:
 - Desenrolar a rede para calcular o gradiente
 - Enrolar novamente para propagar
- Vamos considerar novamente o nosso problema de sequence tagging

 Na etapa de feed-forward computamos a perda em função do acúmulo das perdas intermediárias

$$\mathcal{L} = \sum_{t=0}^{T} \mathcal{L}_t(y_t', y_t)$$

 Mas como fica o gradiente nessa confusão?

- O gradiente final também é dado pelo acúmulo dos gradientes.
 - Em relação a W_{hy}

$$\sum_{t=0}^{T} \frac{\partial \mathcal{L}_t}{\partial W_{hy}}$$

Denny Britz. Recurrent Neural Network Tutorial, Part 4. 2018. http://www.wildml.com/2015/10/

- Depois é só atualizar W_{hy} propagando o gradiente acumulado!
- Mas como calcular $\frac{\partial \mathcal{L}}{\partial W_{hh}}$ e $\frac{\partial \mathcal{L}}{\partial W_{wh}}$?

- Como calcular $\frac{\partial \mathcal{L}_t}{\partial W_{bh}}$ para um timestep? ¹
- ullet Precisamos aplicar a regra da cadeia desde o *timestep* atual até t=0

Denny Britz. Recurrent Neural Network Tutorial, Part 4. 2018. http://www.wildml.com/2015/10/

PATREO

Backpropagation Through Time

- Como calcular $\frac{\partial \mathcal{L}_t}{\partial W_{bb}}$? 1
- ullet Precisamos aplicar a regra da cadeia desde o *timestep* atual até t=0

$$\frac{\partial \mathcal{L}_t}{\partial \mathbf{W}_{hh}} = \sum_{k=0}^t \frac{\partial \mathcal{L}_t}{\partial y_t'} \frac{\partial y_t'}{\partial h_t} \left(\prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}} \right) \frac{\partial h_k}{\partial \mathbf{W}_{hh}}$$

 Repetimos o mesmo processo para todos os timesteps, acumulando os resultados

$$\sum_{t=0}^{T} \frac{\partial \mathcal{L}_t}{\partial W_{hh}}$$

Denny Britz. Recurrent Neural Network Tutorial, Part 4. 2018. http://www.wildml.com/2015/10/

- O mesmo vale para W_{xh} ¹
- ullet Precisamos aplicar a regra da cadeia desde o *timestep* atual até t=0

$$\frac{\partial \mathcal{L}_t}{\partial \mathbf{W}_{xh}} = \sum_{k=0}^t \frac{\partial \mathcal{L}_t}{\partial y_t'} \frac{\partial y_t'}{\partial h_t} \left(\prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}} \right) \frac{\partial h_k}{\partial \mathbf{W}_{xh}}$$

 Repetimos o mesmo processo para todos os timesteps, acumulando os resultados

$$\sum_{t=0}^{T} \frac{\partial \mathcal{L}_t}{\partial W_{xh}}$$

Denny Britz. Recurrent Neural Network Tutorial, Part 4. 2018. http://www.wildml.com/2015/10/

 Depois é só atualizar os pesos propagando os gradientes acumulados!

Vanishing / Exploding Gradient

- Relembrando:
 - vanishing gradient: gradiente tende a 0
 - exploding gradient: gradiente tende a infinito
- É um problema que se intensifica nas redes recorrentes
- Cada iteração da célula recorrente impacta a propagação como adicionar profundidade em uma MLP
- Dependências de longo prazo exigem longas sequências
 - Como consequência, o estado das iterações mais antigas não contribuem para o aprendizado (em caso de vanishing)

RNNCell no Pytorch

- RNNCell (torch.nn.RNNCell)
 - input_size: Número de features da entrada
 - hidden_size: Número de features no hidden state

```
In []: class RNN():
    def init(self, input_size, hidden_size):
        self.rmn = torch.nm.RNNCell(input_size, hidden_size)

def forward(input_data):
    # Set initial hidden and cell states
    self.hidden = Variable(torch.zeros(batch_size, hidden_size))

for x in input_data:
    self.hidden = self.rnn(x, self.hidden)
```

RNNCell no Pytorch

- Detalhes de implementação (atividade prática)
 - RNNCell (torch.nn.RNNCell)
 - input_size: Número de features da entrada
 - hidden_size: Número de features no hidden state
 - Linear (torch.nn.Linear)
 - in features: Tamanho da entrada
 - out features: Tamanho da saída
 - bias: [True, False]
 - Ativação LogSoftmax (torch.nn.LogSoftmax)
 - escolha arbitrária para o problema da atividade

Procedimento de Treinamento de RNNs

Atividade Prática

- Arquitetura
 - Camada RNNCell (input_size, hidden_size)
 - Camada Fully Connected (hidden_size, output_size)
 - Camada LogSoftmax
- Forward (Many-to-One)
 - # Inicialize o estado interno da RNN
 - # Loop ao longo da sequência para alimentar a RNNCell
 - # Alimente as camadas Fully Connected e LogSoftmax

Atividade Prática

Classificando nomes próprios

rnn_classification.py

Agenda

- 1 Introdução
 - Motivação
 - Taxonomia dos Problemas
- 2 Fundamentação Teórica
 - Feed Forward
 - Backpropagation Through Time
- 3 Unidades Avançadas
 - GRU
 - LSTM

Unidades Avançadas

- Existem duas variações de redes recorrentes que se tornaram muito populares na literatura:
 - GRU Gated Recurrent Unit
 - LSTM Long Short-Term Memory
- São capazes de aprender dependências de longo prazo
- Evitam o problema de vanishing / exploding gradient
- Seu estado interno é reguladado por um conjunto de "gates"

 Literalmente um portão que decide quanto da informação pode passar.

GRU - Gated Recurrent Unit

- É composta por dois gates
 - Update Gate z_t
 - Reset Gate r_t
- ullet Possui uma memória interna h_t' além da já existente h_t

GRU

GRU - Gated Recurrent Unit ²

 $^{^{2} {\}it https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be}$

└─ GRU

GRU Gates

Update Gate (z_t)

- Combina o novo input x_t e o estado anterior h_{t-1}
- Gate resultante define quanto da informação do passado deve ser lembrada

$$z_t = \sigma(W^{(z)} x_t + U^{(z)} h_{t-1})$$

GRU Gates

Reset Gate (r_t)

- Combina o novo input x_t e o estado anterior h_{t-1}
- Gate resultante define quanto da informação do passado deve ser esquecida

$$r_t = \sigma(W^{(r)}x_t + U^{(r)}h_{t-1})$$

GRU Gates

└─ GRU

Memória interna (h'_t)

- Aplica o reset gate sobre a informação do passado
- Operação element-wise

$$h_t' = \tanh(Wx_t + r_t \odot Uh_{t-1})$$

GRU Gates

Hidden state (h_t)

- Aplica o update gate sobre a informação do passado e a memória interna
- Operação element-wise

$$h_t = z_t \odot h_{t-1} + (1-z_t) \odot h_t^{'}$$

GRUCell no Pytorch

- GRUCell (torch.nn.RNNCell)
 - input_size
 - hidden_size
 - bias
- A utilização é essencialmente a mesma que a RNNCell

```
In [ ]: class GRU():
    def init(self, input_size, hidden_size):
        self.rnn = torch.nn.GRUCell(input_size, hidden_size)

def forward(input data):
    # Set initial hidden and cell states
    self.hidden = Variable(torch.zeros(batch_size, hidden_size))

for x in input_data:
    self.hidden = self.rnn(x, self.hidden)
```

Com a diferença que o resultado costuma ser melhor!

LSTM - Long Short-Term Memory

- É composta por três gates
 - Forget Gate f_t
 - Input Gate it
 - Output Gate ot
- Possui um estado interno (cell state C_t) atualizado de maneira mais estável
- Rede recorrente mais popular atualmente na literatura

LSTM - Long Short-Term Memory $^{\rm 3}$

 $^{{\}it 3}_{http:/\!/colah.github.io/posts/2015-08-Understanding-LSTMs/}$

LSTM Gates

Forget Gate (f_t)

 Decide quanto da informação anterior será esquecida

$$f_t = \sigma\left(W_f \!\cdot\! [h_{t-1}, x_t] \ + \ b_f\right)$$

LSTM Gates

Input Gate

- (i_t): Decide quanto da informação nova vai ser incorporada no estado da célula
- (C'_t) : Valores candidatos a estado da célula (Cell State)

$$\begin{split} i_t &= \sigma\left(W_i \cdot [h_{t-1}, x_t] \ + \ b_i\right) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] \ + \ b_C) \end{split}$$

LSTM

LSTM Gates

Cell State (C_t)

- Aplica o input gate no vetor de valores candidatos
- Aplica o forget gate no estado da célula do passado
- Essa combinação atualiza o cell state através de uma soma.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM

LSTM Gates

Output Gate (o_t)

- Decide quanto do estado da célula será passado para a próxima iteração.
- Output gate é aplicado no estado da célula para gerar o estado interno (h_t)

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh (C_t)$$

LSTMCell no Pytorch

- Detalhes de implementação (atividade prática)
 - LSTMCell (torch.nn.LSTMCell)
 - input_size
 - hidden_size
 - bias
 - Um parâmetro a mais para controlar: Cell State

```
In [ ]: class LSTM():
    def init(input_size, hidden_size):
        self.rnn = torch.nn.LSTMCell(input_size, hidden_size)

def forward(input data):
    # Set initial hidden and cell states
    self.hidden = Variable(torch.zeros(batch_size, hidden_size))
    self.cell_state = Variable(torch.zeros(batch_size, hidden_size))

for x in input_data:
    self.hidden, self.cell_state = self.lstm(x, (self.hidden, self.cell_state))
    output = self.linear(self.hidden)
```

Procedimento de Treinamento de RNNs

Atividade Prática

- Arquitetura
 - Camada LSTMCell (input_size, hidden_size)
 - Camada LSTMCell (hidden_size, hidden_size)
 - Camada Fully Connected (hidden_size, output_size)
- Forward (Many-to-Many)
 - # Inicialize o estado interno da LSTM (h_t e C_t)
 - # Loop ao longo da sequência para alimentar as camadas LSTMCell e Fully Connected
 - # Em tempo de teste, loop para prever instâncias futuras

Procedimento de Treinamento de RNNs

Em tempo de teste, loop para prever instâncias futuras

Atividade Prática

Prevendo instâncias futuras

forecast.py

- Diferente das unidades *Cell, o Pytorch oferece outro tipo de camada
 - RNN (torch.nn.RNN)
 - GRU (torch.nn.GRU)
 - LSTM (torch.nn.LSTM)

- O laço de repetição que implementamos até então é realizado internamente na camada
- É mais rápido que iterar nas unidades tipo *Cell
- Retorna o estado interno para t = seq_len (hn, cn)

```
In [ ]: def init(self, input_size, hidden_size):
    self.rnn = torch.nn.LSTMCell(input_size, hidden_size)

def forward(self, input_data):
    h, c = init.hidden()
    output = []
    for x in input_data:
    h, c = self.rnn(x, (h,c))
    output.append(h)

In [ ]: def init(self, input_size, hidden_size):
    self.rnn = torch.nn.LSTM(input_size, hidden_size)
    def forward(self, input_data):
    h0; c0 = init.hidden()
    output, (hn, cn) = self.rnn(input_data, (h0,c0))
```


- RNN (torch.nn.RNN)
- GRU (torch.nn.GRU)
- LSTM (torch.nn.LSTM)

Parâmetros

- Input Size
- Hidden Size
- Bias
- Num Layers
- Batch First
- Dropout
- Bidirectional

- Num Layers: Número de camadas recorrentes
 - A segunda camada recebe inputs da primeira, a terceira recebe da segunda, e assim por diante.
- Batch First: marcador booleano
 - batch_first = False: input.size() = (seq_len, batch_size, input_size)
 - batch_first = True: input.size() = (batch_size, seq_len, input_size)

- Dropout: float
 - Introduz uma camada de Dropout depois de todas as camadas recorrentes, exceto a última
- Bidirectional: marcador booleano
 - Bidirectional = True

- Detalhes de implementação (atividade prática)
 - Embedding (torch.nn.Embedding)
 - input_size
 - embbeding_size
 - GRU (torch.nn.GRU)
 - input_size
 - hidden_size
 - num_layers
 - batch first
 - dropout
 - Linear (torch.nn.Linear)
 - in_features: Tamanho da entrada
 - out_features: Tamanho da saída

Embedding Layer

- Transforma valores inteiros em vetores densos
 - Por que?

Embedding Layer

• Lembram da representação one-hot?

Embedding Layer

Que tal aprender um vetor latente de tamanho controlável?

Procedimento de Treinamento de RNNs

Atividade Prática

- Arquitetura
 - Embedding (input_size, embedding_size)
 - Camada RNN (input_size, hidden_size, batch_first=True)
 - num_layers e dropout a seu critério
 - Camada Fully Connected (hidden_size, output_size)
- Forward (Many-to-Many)
 - # Dessa vez n\u00e3o inicializar os pesos (Por que?)
 - Dica: eles estão sendo atualizados em outras partes do código
 - Embedding input: (batch_size, seq_len)
 - GRU input: (batch_size, seq_len, *)
 - Linear: (seg len. *)
 - * tamanho da saída da camada anterior

Gerando letras de Música

Music.py