Master degree in Physics of Data - Academic Year 2024/2025

Final Project for the course of:

Laboratory of Computational Physics - mod A

Teacher: Marco Zanetti

Data Analysis of Mice Gut Microbiota

Group ID: 08

samir.suweis@unipd.it

Students name | Student ID | Student email

Bortolato, Angela | 2156562 | angela.bortolato.2@studenti.unipd.it Fasiolo, Giorgia | 2159992 | giorgia.fasiolo@studenti.unipd.it Volpi, Luca | 2157843 | luca.volpi@studenti.unipd.it Zara, Miriam | 2163328 | miriam.zara@studenti.unipd.it

Supervisor: Samir Simon Suweis |

Familiarize with the Data

 8 mice, born from the same parents and raised in the same cage

- A fecal sample taken from each of them every few days (~ 4-7)
- Bacteria in it are identified with
 16s rRNA sequencing
 technique

Learning Ecological Interactions

Treating Clostridium difficile Infection With Fecal Microbiota Transplantation

Bakken, Johan S. et al.

Clinical Gastroenterology and Hepatology, Volume 9, Issue 12,

1044 - 104, 2011 DOI: 10.1016/j.cgh.2011.08.0149

Parasitism or predation

Learning Ecological Interactions

- can ecological interactions really be inferred from the data?
- do the time series exhibit significant serial cross-correlation?
- are inter species interactions a justified assumption or does a "single species model" suffice to explain the observations?

Criticalities

finite sequencing depth:

a species that is rare could still have a big influence on the others. By imposing a threshold (exiplicitly or implicity) we exclude possibly vital information.

the sample is fixed in size: measures are frequencies, not counts - > correlations may arise as statistical artifacts but have no correspondent physical reality

16s rRNA sequences
was found to be
efficient at identifying
the high-order
taxonomy, but less
efficient at low-level
taxonomy

Criticalities

- 16s rRNA sequences was found to be efficient at identifying the high-order taxonomy, but less efficient at low-level taxonomy

query	Phylum	Class	Order	Family	Genus	Species
OTU00001	Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	Prevotella sp. Smarlab 121567 (79.62%)
OTU00002	Firmicutes,	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	Lactobacillus taiwanensis (100%)
OTU00003	Bacteroidetes	Bacteroidia	Bacteroidales	Porphyromonada ceae	Parabacteroide s	Parabacteroides distasonis

Data Preliminary Analysis

Familiarize with the Data

Preprocessing step: aggregate the reads for OTUs assigned to the same species

OTU queries: 21.768

Species: 1.260

Genus: 412

Family: 141

Order: 66

Class: 37

Data is time series of the populations evolution - from birth to death of the host.

Threshold?

Sample Composition - 1

OTU queries: 21.768

Species: 1.260

Genus: 412

Family: 141

Order: 66

Class: 37

Composition is homogeneous across the subjects, at different levels of taxonomic classification

Sample Composition - 1

Family Abundances (Top 10 + Others)

Genus Abundances (Top 15 + Others)

Sample composition - 2

RAD: Rank-Abundance Distribution

Power law:

$$frequency = c \cdot rank^{\alpha}$$

Data Analysis - Measure uncertainties

How reliable is *Species* assignation?

OTU queries: 21.768

Species: 1.260

Genus: 412

Data Aggregation by "Genus"

Time Series Analysis

Autocorrelation Function (ACF)

Data Analysis - RAD

Data Preprocessing

Logistic Model

$$\frac{dN}{dt} = rN(1 - \frac{N}{K})$$

N = Population sizer = Growth rateK= Carrying capacity

(Stochastic) Logistic Model

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) + Noise$$

N = Population size

r = Growth rate

K= Carrying capacity

Stationarity tests

$$\Phi_{i}(t, T) = \left(\frac{\lambda_{i}(t) - \lambda_{i}(t + T)}{\lambda_{i}(t) + \lambda_{i}(t + T)}\right)^{2}$$

2 THRESHOLD

95th percentile of dissimilarity slopes

GAMMA DISTRIBUTION

For stationary Genus

$$E[\Phi_{\infty}] = \frac{\sigma}{4-\sigma}$$

$$<\lambda>=K(rac{2-\sigma}{2})$$
 $Var(\lambda)=(rac{\sigma}{2-\sigma})<\lambda>^2$

$$Var(\lambda) = (\frac{\sigma}{2-\sigma}) < \lambda >^2$$

$$P(\lambda;K,\sigma) = rac{1}{\Gamma\left(rac{2}{\sigma}-1
ight)} \cdot \left(rac{2-\sigma}{K}
ight)^{rac{2}{\sigma}-1} \cdot \lambda^{rac{2}{\sigma}-2} \cdot \exp\left(-rac{2}{\sigma K} \cdot \lambda
ight)$$

Species

$$E[\Phi_{\infty}] = \frac{\sigma}{4-\sigma}$$

$$<\lambda>=K(rac{2-\sigma}{2})$$
 $Var(\lambda)=(rac{\sigma}{2-\sigma})<\lambda>^2$

$$Var(\lambda) = (\frac{\sigma}{2-\sigma}) < \lambda >^2$$

$$P(\lambda;K,\sigma) = rac{1}{\Gamma\left(rac{2}{\sigma}-1
ight)} \cdot \left(rac{2-\sigma}{K}
ight)^{rac{2}{\sigma}-1} \cdot \lambda^{rac{2}{\sigma}-2} \cdot \exp\left(-rac{2}{\sigma K} \cdot \lambda
ight)$$