Indice delle domande degli esami orali: Ingegneria Informatica LM

Questo file contiene le testimonianze degli esami orali di vari studenti del corso di laurea in **Ingegneria Informatica Laurea Magistrale** all' **Unical** (*Università della Calabria*) e fa parte del progetto Indice Argomenti Orali gestito dall'organizzazione **UnicalLoveTelegram**

Leggi il nostro README per conoscere tutti i dettagli del progetto, sapere come partecipare e come sfogliare tutto il nostro materiale!

- Indice delle domande degli esami orali: Ingegneria Informatica LM
- Data Mining
 - Sergio Greco
- Sistemi Informativi Ambientali
 - Davide Luciano De Luca
- Ethical Hacking
 - Francesco Lupia
 - Angelo Furfaro
- Metodi Informatici per l'analisi dei Processi
 - Antonella Guzzo
- Metodi e Strumenti per la Sicurezza Informatica
 - Michele Ianni
- Business Intelligence
 - Filippo Furfaro
- Strategie e Politiche Aziendali
 - Patrizia Pastore
- Modelli e Tecniche per i Big Data
 - Paolo Trunfio
- Architetture e programmazione dei sistemi di elaborazione
 - Fabrizio Angiulli
- Crittografia e analisi reti sociali
 - Molinaro Cristian
- Linguaggi Formali
 - Domenico Saccà
 - o Rullo
- Informatica teorica
 - Scarcello Francesco
- Ottimizzazione
 - o Maria Flavia Monaco
- Valutazione delle prestazioni
 - Pasquale Legato
- Intelligenza Artificiale (6 CFU)
 - Palopoli Luigi
- Intelligenza Artificiale e rappresentazione della conoscenza (12 CFU)
 - Palopoli Luigi
- Sistemi Informativi
 - Cassavia
- ISSTRA Ingegneria del software per sistemi real-time ed agenti
 - Libero Nigro

- Sistemi Distribuiti e Cloud Computing (6 CFU e 9 CFU)
 - o Talia Domenico
 - Loris Belcastro
- Basi di Dati evolute
 - Molinaro Cristian
- Calcolo Numerico
 - Yaroslav Sergeyev
 - Marat Mukhametzhanov
- Algoritmi di Crittografia
 - o Cristian Molinaro

Data Mining

Sergio Greco

2021 2022

- Alessio
 - o clustering gerarchico
 - o entropia
 - o reti neurali

Sistemi Informativi Ambientali]

Davide Luciano De Luca

2021 2022

- giovixo97
 - o cosa è un DEM?
 - o differenza file shape vettoriale e file raster
 - tecniche di geoprocessing
 - o tutti i tipi di interpolatori (esatto,non esatto,locale,globale...)
 - o cosa vuol dire la media o la varianza in un certo punto?
 - o cosa rappresenta Z0? Ponendo Zi come i punti che hanno misura esatta con i>0
 - o cosa è una misura?
 - lo strumento misura sicuramente bene
 - o cosa è un GCP?
 - o come è fatto un file di tipo geografico?
 - numero delle righe,colonne,risoluzione,xcornern,ycornern...

Ethical Hacking

Francesco Lupia

- Anonimi
 - Reverse Shell e Bind Shell

- o sql injection con script php (cosa è e cosa fa)
- challenge web con loose comparison
- o differenze attacchi x32 bit e x64 bit
 - rop chain e bruteforce sul indirizzo di ritorno
- Metasploit cosa è
- tool simili a metasploit per windows
- o challenge web che presentava degli endpoint e bisognava loggarsi come admin
- o challenge web con form di login e registrazione
- format string
- o privilege escalation windows: cosa faresti?

- Anonimi
 - Spiegazione csrf
 - o Differenze tra csrf e xss
 - Cos'è kerberos
 - challenge SSRF presente sul sito di burp suite https://portswigger.net/burp (in teoria vi registrate, andate in accademy e poi nei vulnerabilty lab e cercate ssrf)
 - o pass the hash: descrizione
 - o challenge presente su natas numero 8 https://overthewire.org/wargames/natas/
 - o Hash md5: come si riconosce?
 - o siamo con una Macchina Windows e si devono rispondere alle seguenti domande poste dal prof:
 - psexec
 - pass the ticket
 - comandi vari del prompt o powershell
 - rogue potato (e in generale da tenere sott'occhio qualsiasi cosa che sia potato, quindi juicy potato, hot potato...)
 - si hanno degli output di eseguibili di Windows (permessi di un eseguibile e le info di un eseguibile) e fra i permessi di questo eseguibile c'era gitconfig e si poteva cambiare la configurazione per cambiare il /bin/path con una reverse shell
 - query su un registro per vedere se era attivo il permesso su un utente (alwaysinstalledprivileged) e si poteva sfruttare per installare qualsiasi eseguibile come utente privilegiato
 - pass the hash
 - bind e reverse shell
 - nishang

Angelo Furfaro

- Anonimi
 - Kerberos: cosa è ed attacchi
 - o Docker:cosa è, configurazioni e comandi, attacchi (soprattutto privilege escalation)
 - Parte di privilege escalation disponibile su tryhackme (privesc)
 - Metasploit: come usare i servizi e gli exploit
 - o nc: cosa è e come funziona
 - o XXE: cosa è, scenari d'uso, esempi
 - o XXS: cosa è, quali tipi ci sono, esempi
 - Laboratorio di attacco
 - Sudo con opzione -l
 - o Utente con Alcuni privilegi di root
 - LDAP nel particolare
 - o come creare una sottorete con virtualbox e come collegare due macchine alla sottorete

Metodi Informatici per l'analisi dei Processi

Antonella Guzzo

2020/2021

- Anonimi
 - C-Net vs Heuristic net
 - Petri net Vs heuristic net
 - o come viene fatta la classificazione delle attività iniziali e finali su ProM
 - workflow net (definizione)
 - o cos'è la threshold
 - betweeness Nella resource analysis
 - o differenze fra pattern merge e discriminator (bpmn)
 - o perché scegliere un modello (o un plugin) rispetto ad un altro
 - o boundness
 - o quando il marking è dead?
 - o esercizi su boundness e deadlock
 - o alpha miner (con i vari punti specifici)
 - o qualità del modello
 - o in cosa consiste la classificazione di un dato
 - o perché è costoso l'alpha miner?
 - o domande sul progetto in generale e nello specifico
 - liveness
 - o come ottenere un buon modello?
 - o conformance e tipologie

Metodi e Strumenti per la Sicurezza Informatica

Michele Ianni

- Giovanni Giordano
 - http://basicrce.challs.cyberchallenge.it/ risolvi la challenge edit: è andato down, la challenge consisteva in un form html che faceva una post all'indirizzo /ping dello stesso sito e ritornava semplicemente il codice di ritorno della shell linux collegata e il comando eseguito, altrimenti dava errore. Non c'era nient'altro, bisognava trovare la flag.txt da qualche parte nel sito.
 - o GOT e PLT
- Anonimi
 - Canary
 - o gdb
 - o sito che ritorna un immagine, come capisci le tabelle?
 - nmap port scanning
 - fin scan
 - udp scan
 - syn scan
 - null scan
 - xmas scan
 - arp poisoning
 - o reflected, DOM Based e stored XSS

- ASLR
- o CSRF
 - chi genera il token
- o ROP
 - come mai i tool automatizzati trovano tanti gadget mentre una scansione manuale ne trova pochi?
 - i gadget sono una serie di istruzioni. Perché ropper va a guardare l'esadecimale, parte da una ret e va all'indietro se una sotto sequenza è un'istruzione valida viene restituito il gadget. Ad esempio in esadecimale a3 aa bb cc 90 c3 è mov eax, 0x90aabbcc; ret, ma la sottosequenza 90 c3 è nop; ret. Sono entrambi gadget.
- buffer overflow
 - mitigazioni
 - generarlo senza utilizzare le funzioni vulnerabili
- o code reuse
- Mitigazioni SQL injection

- Anonimi
 - format string
 - o xss
 - le differenze tra i vari tipi di xss
 - ARP poisoning
 - port scanning
 - FIN SCAN
 - XMAS SCAN
 - SYN SCAN
 - o ret2libc
 - perché è meno conveniente rispetto alla code reuse?
 - o Plt e got
 - Xss
 - Canary
 - perché si usa il carattere 0
 - o Ropper
 - Blind sql injection

Business Intelligence

Filippo Furfaro

<u>2020 2021</u>

- Anonimi
 - o gestione delle dimensioni degeneri
 - o gerarchie dinamiche
 - o a cosa serve attributo master nello scenario di verità storica
 - o a cosa servono le chiavi surrogate
 - o perchè non si usano i btree
 - star index
 - o join index
 - o quando conviene fare snow flake
 - o gerarchie incomplete e soluzioni

- o indici bitmap a confronto con btree
- o molap e rolap
- o Tutti i pro e tutti i contro dell'usare Chiavi surrogate
- Star index
 - quando non è efficiente usare lo star index
- aggregatori olistici
- o indici di bit-sliced
- o gerarchie ricorsive (pro e contro delle 2 soluzioni)

Strategie e Politiche Aziendali

Patrizia Pastore

2020 2021

- Anonimi
 - o cosa faresti da imprenditore della tua azienda (cyber security), ovvero quali strategie sceglieresti tra quelle viste nel corso
 - o classificazione outsourcing
 - o scelta di un settore in cui competere e forze di porter
 - esempi a lezione
 - o la valutazione comprende i punteggi dati al test online di fine corso (crocette) e i lavori in ppt di gruppo
 - o Stakeholder amichevoli
 - Outsourcing
 - o Finalitá dell azienda

Modelli e Tecniche per i Big Data

Paolo Trunfio

<u>2020 2021</u>

- Anonimi
 - o parametri mpi speedrun tempo esecuzione parallelo e sequenziale
 - o lambda expression
 - o benefici java stream
 - differenze spark hadoop
 - o RDD
 - o hama
 - o costo del calcolo bsp
 - o zookeper
 - trajectory discovery
 - o java stream lazy
 - legge amdhal
 - wordcount
 - o mapper e reducer
 - o spark e hadoop convenienza
 - bsp in generale
 - o send receive non blocanti e bloccanti
 - spark lazy execution
 - wordcount reverse (chiave lunghezza parole)
 - o logica di hive
 - o legge di amdhal

- o comunicazione in MPI sincrona e asincrona e meccanismi
- o caratteristiche di un programma in parallelo
- o combiner in mapreduce
- o numero di reducer e mapper
- o watermark
- wordlenghtcount

- Anonimi
 - codice word count
 - o che tipologia di programmi esegue storm
 - o possono esserci piu spout?
 - o quali metodi deve implementare spout e quali bolt
 - o combiner di map reduce
 - codice word count reverse
 - Superlinear speedup:
 - o architettura hdfs e file di configurazione delle risorse

Architetture e programmazione dei sistemi di elaborazione

Fabrizio Angiulli

- Roberto
 - cache completamente associativa
 - o open MP
 - schema monociclo e segnali di controllo +1
 - o cache a k vie
 - multithreading
 - o grana fine
 - o grana grossa
 - o vantaggi multithreading simultaneo (ogni thread a i suoi registri e PC)
 - o differenza multithreading sw e multithread hw
 - o dimensionamento clock multicolore
 - conflitti sul controllo
 - o statistica a 2 bit automa
 - o nano programmazione
 - emissione fuori ordine
 - o tabella segnali alpha monociclo
 - o conflitti sui dati pipeline
 - conflitti superscalari
 - o ottimizzazione unità di controllo (control store)
 - o completamente fuori ordine e ritiro in ordine
 - o CPU vs GPU
 - o una numa
 - o macchina multiciclo
 - o macchina monociclo
 - o dimensionamento del clock della multi ciclo
 - o ottimizzazione della parte di controllo microprogrammata
 - o legge di moore e barriera dell'energia
 - speculazione nell'hardware
 - speculazione hw (epr)
 - o buffer di ordinamento macchina super scalare
 - o completamento fuori ordine

- o emissione fuori ordine
- o numero di posizioni
- o ottimizzazione del controllo microprogrammato
- o predizione dei salti schema
- politiche sostituzione della cache
- o disegno
- o speculazione hardware macchina super scalare
- o differenza uma e numa
- o macchina hasswell
- o differenze cics e risc
- o principi di progettazione risc
- o riduzione parallela
- o rsr

- Anonimi
 - o Legge di Moore e barriera energia
 - Macchina multiciclo
 - o ottimizzazione unità di controllo (control store programmato)
 - Nano programmazione
 - o dimensionamento del clock nella multi ciclo microprogrammata
 - o differenze macchine cisc e risc
 - o principi di progettazione macchina risc
 - o schema monociclo e tabella segnali alpha
 - conflitti sui dati pipeline
 - o emissione fuori ordine
 - o Rsr
 - o completamente ofuori ordine
 - o ritiro in ordine
 - o confliti sul controllo
 - o predizione dei salti a schema branch prediction unità
 - o statistica a due bit con automa
 - o conflitti sulle super scalari
 - o buffer di ordinamento macchina super scalare
 - speculazione hardware (epr)
 - o completamento fuori ordine macchina super scalare
 - Macchina di Haswell
 - o cache completamente associativa
 - o cache a k vie
 - o politiche di sostituzione nella cache disegno
 - o differenza uma e numa
 - o multithreading hw: grana fine e grana grossa
 - vantaggi multithreading simultaneo
 - o differenza multi threading hw e sw
 - o cpu vs gpu
 - o riduzione parallela
 - o open mp
- Giovanni giordano
 - o cache a k vie
 - o cache a mappatura diretta
 - o tipi di threading
 - o conflitti pipeline

- Erma_TV
 - o conflitti sulla pipeline quali sono e come si risolvono
 - o CISC RISC
 - o principi dei modelli di calcolatori di oggi

- o UMA e NUMA con disegno della NUMA
- o speculazione hardware come avviene e dove avviene
- o attacco spectr
- o c'é speculaizone hardware nella pipeline? No, come vengono gestiti i salti?
- Anonimi
 - Cache
 - o Politiche di sostituzione
 - o Unità di controllo monociclo
 - o Segnali beta mono e multi
 - o Ottimizzazione controllo micro programmato
 - o Circuito di selezione degli indirizzi
 - Disegno stack lru
 - o E disegno circuito di selezione degli indirizzi
 - o Ottimizzazione controllo microprogrammato
 - Macchine parallele
 - Nanoprogrammazione
 - o circuito propagazione nella superscalare
 - circuito di bypass
 - NUMA e UMA
 - o conflitti sul controllo
 - o conflitti nella pipeline: inserimento circuito di uguaglianza
 - Confronto prestazionale fra tutte le macchine viste nel corso
 - Clock fine
 - Speculazione hw e cosa cambia rispetto alle predizioni della pipeline
 - o Cache multilivello e come cambia il calcolo del tempo medio di accesso alla memoria

Crittografia e analisi reti sociali

Molinaro Cristian

- Tassone
 - Cifrario a flusso
 - OTP
 - o PRG
 - Shannon
 - Cifrari a blocchi
 - Sicurezza semantica
 - o PRP
 - o ECP
 - o CBC
 - o CBC+nonce
 - o CTR
 - CTR+nonce
 - MAC (funzionamento sicurezza e challange)
 - o NMac
 - o PMAC
 - o HMAC
 - ECBC MAC
 - PAYLOAD

- o HASH (funzionamento sicurezza e challange)
- PAradosso compleanno + attacco hash (collissioni)
- Merkle damgard
- o Autenticazione cifrata (funzionamento sicurezza e challange)
- o tre tipologie costruzione autenticazione cifrata (e than m, e and m, m then e) più differenze e sicurezza
- o differenza chiave simmetrica e asimmetrica
- o principi chiave asimmetrica
- RSA
- o Complessità attacco RSA per scoprire chaive segreta
- o complessita attacco RSA per un messaggio cifrato (differenza con sopra)
- Merkle puzzle
- o autorità di certificazione e firma digitale (molto in generale più schema)
- Riccardo
 - o generazione rsa per calcolo chiavi
 - come si cifra
 - come si decifra
 - o rabin come si generano le chiavi
 - collegarsi alla fattorizzazione
 - output di 4 messaggi
 - cattiva proprietà del sistema
 - o ElGamal su cosa è basato
 - come si calcolano le chiavi
 - o tutti i possibili attacchi di chiave che si muovono contro RSA
 - brute force
 - euclide
 - vari problemi
 - o puzzle di merkle
 - o introduzione key managment e scneari utilizzo rsa

Linguaggi Formali

Domenico Saccà

2016 2017

- PsykeDady
 - o Compilazione della tipizzazione dinamica dei linguaggi
 - o tipizzazione dinamica che tipo di linguaggio è (risp: 2)
 - o cos'è un automa a pila
- Marco Domenicano
 - Tautologia
 - conraddizione
 - o memorizzazione di un json in calculista
 - o esercizio del minimo locale in calculist e prolog
- Anonimi
 - o come vengono memorizzati i json in memoria nella calculist

- Alfredo
 - o json
 - o linguaggi di primo, secondo e terzo tipo
 - java di che tipo è
 - html di che tipo è
 - xml di che tipo è

- Giovanni Giordano
 - calculist esercizio Unione(L1,L2,L3)
 - costruire L3 unendo L1 e L2
- Angelo
 - Scrivere automa a stati finiti deterministico che riconosce il linguaggio (a+b+)+b*c
 - fare esempio di una stringa che non appartiene al linguaggio
 - fare esempio di stringa che appartiene al linguaggio
- Anonimi
 - Calculist esercizio Intersezione(L1,L2,L3)
 - costruire L3 come intersezione di L1 e L2
 - o cos'è un modello logico
 - o quando un modello è minimo
 - Calculist lista ordinata L
 - Calculist High Order Function espressione con lambda function
 - o complessità del problema di stabilire se un programma logico ammette un unico modello (sol. PSPACE)
 - o Verificare se due Liste L1 e L2 hanno gli stessi elementi

- Anonimi
 - high order function
 - solito esempio con u(X),p(X),r(X),rc(X)
 - o universo di Herbrand, Base di Herbrand, modelli minimali
 - o verificare che 2 liste abbiano gli stessi elementi con lo stesso numero di occorrenze
 - espressioni regolari
 - o unificatore generale
 - o Palindroma in Calculist

Rullo

<u>2016 2017</u>

- Marco Domenicano
 - o scrivere un programma in prolog che riceve una lista L, T, T1 e restituisce una lista di copia in output L1 così composta: se elemento di L corrisponde a T inserisci T1 altrimenti L

<u>2019 2020</u>

- Alfredo
 - o 2 esercizi prolog
- Giovanni Giordano
 - esercizio prolog su traccia P(L1,L2,L3,L4), soddisfare:
 - 1. L3 come L1 intersecato L2
 - 2. L4 come L1 L2
 - esercizio prolog su traccia su traccia P(T,T1,L,L1), soddisfare
 - se L[i]≠T verificare L[i]==L1[i] altrimenti L1[i]==T1
- Angelo
 - scrivere un metodo int(L1,L2,L3) che restituisce vero se:
 - 1. L1 sotto insieme improprio di L3
 - 2. L2 sotto insieme improprio di L3
 - 3. L3 non contiene duplicati
 - 4. L1,L2,L3 sono ordinati in modo crescente
- Anonimi
 - o scrivere un programma prolog che: dati due termini T e T1 e una lista L

- produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione
 subst(T,T1,L,L1) dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con T1 lasciando gli altri elementi invariati
- p(L1,L2) che restituisce true se L1 ed L2 contengono gli stessi elementi
- o lanciare la computazione in calculist
 - descrivere stato memoria
 - dare risultato
- Teorema di Rice (accenno)
- o quanti sono i modelli di un programma positivo
- o cos'è l'unificazione di due termini?
- o data:

```
- g(x/2)/1: lambda z: x(y,z+y);
- eseguire: g(molt,3)(4); risultato?
```

o Quanti modelli minimali ci sono in questo programma logico?

```
u(1).
u(2).
u(3).
p(1).
p(2).
r(X):
u(X), not(p(X)).
rc(X):- u(X), not(r(X)).
g(x/2,y)/1: lambda z: x(y,z+y);
pp(x,y): x+2*y;
^g(pp,3)(4);
```

- ∘ risultato=17
 - o quanti sono i modelli minimali (stesso modello)?
 - **u**(1).
 - u(2).
 - **p(1)**.
 - r(X):- u(X), not(p(X)).
 - rc(X):- u(X), not(r(X)).
 - o cos'è un universo
 - tutti i termini ground, nel caso di prima i primi due
 - funziona calculist che dato x calcola fibonacci(x)
 - o dato:

```
u(1).
u(2).
p(1).
r(X):- u(X), not(p(X)).
rc(X):- u(X), not(r(X)).
```

- o quanti sono i modelli minimali
 - **Legenda**: u sono gli umani, p sono i poveri, r è una persona ricca, rc è il reddito di cittadinanza (i significati hanno poca rilevanza).
 - **Risposta**: quando si ha la negazione di solito si hanno piu modelli minimali
 - modello migliore: rc(X)=true solo in un caso (reddito di cittadinanza solo ad un elemento)
 - o scrivere un metodo che riceve in ingresso 4 liste q(L1, L2, L3, L4) che restituisce true se L3 è l'itersezione di L1+L2 ed L4=L1-L2 (sottrazione insieimistica), le liste vanno intese come insiemi.
 - o scrivere un metodo q(A,B,L1,L2) che restituisce true L1=L2 con i caratteri A sostituiti con B in L2
 - o scrivere un q(X,L,Y) che restituisce vero se Y è l'elemento successivo a X nella L
 - \circ scrivere un q(X,L,Y) che restituisce vero solo se Y è nella posizione X di L

Anonimi

- o riceve 2 liste: true se le due liste contengono gli stessi elementi, anche con numero di occorrenze diverso
- o ricerca binaria in prolog
- Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione: subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi p(1,2,[1,1,2,2], [2,2,2,2])
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2. Si supponga disponibile il predicato member p([a,r,t],[t,s,m,n,a],L3,L4) p([a,r,t],[t,s,m,n,a], [a,t],[r])
- Scrivere un programma PROLOG per la seguente relazione: d(X,Y) se e solo se Y è la lista che si ottiene dalla lista X rimuovendo gli elementi di posizione pari
- Define a predicate add_up_list(L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position. add_up_list([1,2,3,4], [1,3,6,10])
- Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione: subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi
- o Definire il predicato Prolog fib(N,F) che sia vero se F rappresenta l'N-esimo numero della sequenza di fibonacci. Ricordiamo che la sequenza di Fibonacci è definita dalle seguenti: f(0) = 1, f(1) = 1, f(N) = f(N 1) + f(N 2)
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2. r([1,2,3],[3,4,5,6,1],L3,L4)
- o Define a predicate reverse(L,K) which holds if and only if the list K is the reverse of the list L
- o Define a predicate occurs(L,N,X) which holds iff X is the element occurring in position N of the list L
- Define a predicate add_up_list(L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position. Example: ?- add_up_list([1,2,3,4],K). K = [1,3,6,10]
- o Define a predicateoccurs(L,N,X)which holds iffXis the element occurring in positionNof the listL
- o palindroma
- Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione: subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2. Si supponga disponibile il predicato member.
- o Define a predicate occurrences(X,L,N) which holds iff the element X occurs N times in the list L
- Definire il predicato Prolog fib(N,F) che sia vero se F rappresenta l'N-esimo numero della sequenza di fibonacci. Ricordiamo che la sequenza di Fibonacci è definita dalle seguenti: f(0) = 1, f(1) = 1, f(N) = f(N 1) + f(N 2)
- Scrivere un programma PROLOG per la seguente relazione: d(X,Y) se e solo se Y è la lista che si ottiene dalla lista X rimuovendo gli elementi di posizione pari.
- Define a predicate add_up_list(L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position
- Define a predicate merge(L,K,M) which, given two ordered lists of integers L and K, returns an ordered list M
 containing all the elements of L and K
- o dd(f/2,x)/1: lambda y: f(y)+2x: s2(x): 2 x; d(s,3)(4); funzione lambda proposta

2021 2022

Anonimi

- Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione: subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2
- o stessiElem(L1,L2), which holds if L1 and L2 have same elements
- o Define a predicate occurrences(X,L,N) which holds iff the element X occurs N times in the list L

- Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione: subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2.
- o Define a predicate occurs(L,N,X) which holds iff X is the element occurring in position N of the list L.
- Define a predicate add_up_list(L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position

Informatica teorica

Scarcello Francesco

2016 2017

- PsykeDady
 - o Teorema di Cook
 - o Definizione di NP complete
- Riccardo
 - o Partendo dal fatto che un problema è np-hard se qualsiasi problema np si riduce ad esso in tempo polinomiale
 - domanda: come cambia la classe np-complete se cambiamo la definizione di hardness considerando trasformazioni esponenziali invece che polinomiali?
 - risposta: Poiché np-complete è l'intersezione di np-hard ed np, i problemi di tale classe rappresentano il sottoinsieme dei problemi più difficili tra quelli appartenenti ad np (risolvibili in p-time da una NTM). Se si cambia la definizione di hardness considerando trasformazioni esponenziali però si estende la classe a problemi exp-time, in quanto si altera il rapporto di complessità durante la riduzione che supporta la hardness: intuitivamente, una trasformazione esponenziale trasferirebbe parte della complessità nella riduzione, permettendo poi di risolvere il problema risultante in tempo polinomiale, dunque tali problemi ricadrebbero in questa versione modificata di np-complete.
- Anonimi
 - o Teorema di Cook
 - Definizioni di problema Np, Np-hard, Np-complete
 - o Dimostrazione di appartenenza di Hamiltonian Cycle a Np-Complete
 - o Dimostrazione di non appartenenza di Ld a RE
 - o Dimostrazione di appartenenza di Lu a RE
 - o Definizione di riduzione
 - o Teorema di Rice

2017 2018

- Marco
 - Linguaggio Empty
 - dimostrazione NP complete
 - o dimostrazione indipendent Set

(continuare da 2016 2017 linguaggi formali sacca psykeS)

- Matteo Grollino
 - o Teorema Rice
 - Teorema Cook
 - Knapsack Intero e Frazionario
 - subset sum
 - o approssimabilità knapsack

- Algoritmo pseudo-polinomiale
- FPTAS
- Definizione NP
- Definizione NP Hard
- Definizione NP Complete
- o Dimostrazioen indecidibilità Lu e non appartenenza a RE di Ld
- o Importanza riduzione polinomiale tra problemi decisionali
- Perché NP è incluso in PSpace con dimostrazione
- o complessità parametrizzata con definizione di XP e FP
- Algoritmo FPT del vertex Cover
- Gianpaolo

- Angelo
 - o definizione di problema np-completo
 - o cos' é una trasformazione polinomiale?
 - o dimostrazione del teorema di Rice
 - o fixed parameter trattability
 - o cos' é uno schema di approssimazione polinomiale?
 - o dimostrare che nap-sack é np-hard
 - o perché usiamo trasformazioni polinomiali e non esponenziali?
 - o dimostrare che ld é ricorsivamente enumerabile
 - o definizione di np-hard
 - o dimostrare che Hamiltonian cycle é np-hard
- Giovanni Giordano
 - Dimostrazione linguaggio NTM==DTM
 - o caratterizzazione NP dimostrato
 - Indipendent Set dimostrato
- Anonimi
 - o cook
 - NP dentro PSpace (dimostrazione)
 - **Risposta**: Perchè la definizione di NP dice che NP appartiene a Ptime, poichè Ptime è un sottoinsieme di Pspace allora anche NP è un sottoinsieme di Pspace
 - o teorema di Rice
 - o np completo (definizione) e vantaggi nellúso
 - o Teorema di Cook
 - o Definizione di problema NP-complete
 - o Domanda: come cambia la clas shortcut multicursorsse np complete se cambiamo la definizione di hardness considerando trasformazioni esponenziali
 - Risposta: poiché np-complete é l'intersezione di np-hard ed np, i problemi di tale classe rappresentano il sottoinsieme dei problemi più difficili tra quelli appartenenti ad np (risolvibili in p-time da una NTM). Se si cambia la definizione di hardness considerando trasformazioni esponenziali però si estende la classe a problemi exp-time, in quanto si altera il rapporto di complessità durante la riduzione che supporta la hardness: intuitivamente una trasformazione esponenziale trasferirebbe parte della complessità nella riduzione, permettendo poi di risolvere il problema risultante in tempo polinomiale, dunque tali problemi ricadrebbero in questa versione modificata di np-complete.
 - o Dimostrazione di appartenenza di Hamiltonian Cycle a np-complete
 - o dimostrazione di non appartenenza di Ld a RE
 - o Dimostrazione di appartenenza di Lu a RE
 - o definizione di riduzione

- o Linguaggio Empty dimostrazione NP complete
- o mostrazione Indipendent SET
- o Knapsack intero e frazionario
- o subset sum
- Approssimabilità knpasack (algoritmo pseudo polinomiale e FPTAS)
- o importanza della riduzione polinomiale tra problemi decisionali
- o complessità parametrizzata con definizione di xp e di ffpt
- problema np ha come definizione NP = {L| E R polinomialmente decidibile e bilanciata che caratterizza
 L} con PI1 R=L (dimostrazione)
- o FPTAS con costi
- FPT con VC e con knapsack
- o knapsack con programmazione dinamica

- Erma_TV
 - Dimostrazione NP incluso in PSPACE
 - o Dimostrazione che Knapsack ammette un FPTAS
 - o Che sono le classi di approssimabilitá
- Anonimi
 - Rice con dimostrazione
 - o FPT
 - o FPT con vertex cover (con le due soluzioni)
 - o Dimostrare che Subset Sum è NP-Hard
 - Rice con dimostrazione
 - o NL con dimostrazione che è NP-Hard
 - vertex cover
 - indipendet set
 - hamiltonian cycle
 - NTM = DTM
 - def di NP-complete (NP-HARD, NP)
 - L appartiene ad NP se e solo se esiste una relazione caratteristica RL di L (parte <=) e (parte =>)
 - Bisaccia FPTAS

Ottimizzazione

Maria Flavia Monaco

- PsykeDady
 - o Argomento a piacere : Rilassato LaGrangiano
 - o Definizione di problema Rilassato
 - o Duale LaGrangiano (perché farlo? obiettivi)
 - o Vehicle Routing Problem formulazione
- Anonimi
 - o che ho a disposizione se voglio risolvere un problema piccolo con un algoritmo esatto ? (B&Bound)
 - o Cosa si intende per "cut" e quindi un algoritmo di branch and cut
 - o Gomory, tutto il procedimento
 - o Perché posso usare la funzione obiettivo in gomory per indurre un taglio?
 - o come si valuta un euristica? Lagrangiano
 - o Definire duale di Lagrangiano

- Commesso viaggiatore
 - come calcolo un lowerbound?
 - perché non si usa Lagrangiano?
 - perché ha un numero esponenziale di cicli e molto probabilmente avrà sempre sottocicli
- o Problema del commesso viaggiatore non orientato
 - taglio con Branch and Cut
 - oracolo di Separazione
- o Formulazioni commesso viaggiatore sia orientato che non
- Quando una formulazione è ottimale? (matrice TUM)
- o Per quale problema ho una formulazione ottimale anche se non è TUM? problema del matching
- Set covering definizione
- Commesso viaggiatore
 - perché è intrinsecamente combinatorio
 - complessità
- come risolvo il set-covering (max saving)
- o chvatal
- Vehicle routing
- o Algoritmo clarke wright (massimo risparmio)
- Epsilon approssimativo
 - definizione
 - TSP
 - algoritmo dell'albero
- o Differenza Hamilton eulero, con confronto tra i due
- o Teorema di minkowsky

- Anonimi
 - Set covering
 - Formulazione valida
 - o ottima
 - o Problema di localizzazione
 - o Rilassamento lagrangiano
 - Se x è punto estremo => x appartiene ad S

Valutazione delle prestazioni

Pasquale Legato

2016 2017

- PsykeDady
 - o problema del professore in ritardo (su excel)
 - produttore consumatore (excel)
 - o modello di markov (slide)

Intelligenza Artificiale (6 CFU)

Palopoli Luigi

- PsykeDady
 - o Estensione di Reiter
 - o Anomalia di Sussman
 - o breadth first (vantaggi rispetto a depth first)
 - strips
 - frame problem
 - quantification problem
 - representation problem
 - deep learning
 - definizione
 - reti neurali
 - struttura neurone
 - altri approcci
 - deep learning
 - features extracton
 - hill climbing + simulated annealing
 - pac learning
 - Anonime
 - IDA* perchè c'è min nella funzione
 - Frame assension
 - strips
 - risoluzioni
 - problemi del non essere linguaggio logico
 - estensione di reithers
 - come calcolarla
 - che succede se togliamo TH da IN(pigreco)
 - nucleolo

Intelligenza Artificiale e rappresentazione della conoscenza (12 CFU)

Palopoli Luigi

<u>2019 2020</u>

- Anonimi
 - o Iterative Broadening (ordine di visita degli alberi)
 - Iterative Dipening
 - o processi closed e successful
 - o shapley value
 - o wsat e gsat
 - o estensioni di reiter
 - o frame problem e perché strips non soffre del problema del frame
 - o approssimazione lower bound-upperbound con calcolo greatest lower bound

- Anonimi
 - primo interrogato
 - hill climb simulated annealing
 - planning
 - nucleolo stable set
 - regole inferenza

- entailment in logica di default perché è Pi P2-C?
- gsat wsat con random walking
- secondo interrogato
 - breadth first
 - Iterative broadening e come si fa con A*
 - Nucleolo di nuovo
 - Compilazione di conoscenza
 - datalog or not
- terzo interrogato
 - metodi di ricerca blind e metodi di ricerca informata: differenze
 - iterative deepening con vantaggi
 - IDA*
 - semantica alla reiter default logic
 - semantica brave default logic
 - verifica coerenza teoria di default (NP Hard)
 - processo
 - nucleolo
- quarto interrogato
 - iterative broadening
 - perché non usiamo A* per i giochi al posto di min max?
 - hill climb simulated annealing
 - modello stabile con negazione e disgiunzione
 - computer vision e algoritmo di waltz
 - planning
 - quale sequenza di azioni va considerata?
 - perché la delete list deve essere vuota?
 - stable set teoria giochi
 - N=1,2,3 v1=v2=v3=0 e la coalizione di taglia due hanno valore 2, la coalizione di tagla tre vale 5: c'è stable set?
- o quinto interrogato
 - metodi olistici di riconoscimento ambiente
 - pianificazione: Strips
 - Strips Assumption
 - A1:precondizione vuota, add list è P, delete list vuota,A2:precondizione vuota, add list not P, delete list vuota e stato iniziale vuoto. Risultato?
 - concetti soluzione che danno equità, Shapley Value
 - effetto orizzonte
 - singolar extension
 - nodo quieto e nodo tattico
 - A*
 - modello stabile per datalog not
 - intersezione tra modelli che provoca?
 - semantica modelli perfetti o modell stabili
- sesto interrogato
 - test turing
 - regole di inferenza correttezza e completezza
 - Modus Ponens e completezza del modus ponens
 - esempio sound e non complete
 - quanto costa capire se f può essere generato da modus ponens con F?
 - versione arricchita del modus ponens Tp

- di nuovo la cosa della add list di prima con riflessione su strips
- waking sat
- il numero dei GLB in una teoria CNF
- bargening set
- algoritmo della famiglia minmax a cui si applica alfa-beta con valori +0.001 e -0.001 in questo caso si taglia l'albero?
- algoritmo waltz
- settimo interrogato
 - numero GLB teoria di horn di dimensione n
 - come scende la complessità del caution reasoning?
 - pure theory
 - se una teoria ha un estensione non calcolabile attraverso i processi cosa succede?
 - A* con differenza best-first
 - la funzione euristica non esegue mai il backtracking?
 - Core
 - algoritmo waltz
- o ottavo interrogato
 - numero dei GLB? la congiunzione degli UB è 1 (unico LUB congiunto), anche la congiunzione dei GLB è pure
 1 solo se la teoria è di horn (esponenziale se teoria default)
 - kernel
 - teoria di default che abbia un estensione che non possa essere calcolata dall'albero de processi?
 - IDA*
 - a cosa serve il min?
 - programma datalog stratificato
- o altri
 - Verie testimonianze 04/02/2021
 - Descrizione algoritmo Iterative deepening
 - Precisare come si può uscire dal ciclo quando non ci sono goal
 - **Risposta**: la soluzione proposta dal prof è quella di utilizzare una variabile booleana (non sappiamo nel dettaglio come), un'altra soluzione è quella di uscire quando il cutting level sia pari all'altezza dell'albero ma costa troppo in termini temporali
 - Complessità di verificare la coerenza di una teoria in logica di default (ossia se ammette un'estensione),
 dimostrare almeno intuitivamente perché tale problema è almeno NP-hard
 - Risposta: intuitivamente se la complessità dell'entailment è CONP-c in logica proposizionale, poiché la logica di default ha sia una teoria proposizionale W che un'insieme di default D è facile capire che sarà almeno difficile quanto l'entailment è quindi ha almeno una sorgente di esponenzialità
 - Strips genera stati inconsistenti?
 - **Risposta**:un esempio è {f, not(f)} in cui abbiamo uno stato con due fluenti con valore logico opposto, ma strips NON è un linguaggio logico, f e not f potrebbero essere chiamati pluto e paperino quindi no, non genera stati inconsistenti in quanto il concetto di incosistenza è associato a linguaggi logici)
 - Esempio di teoria di default in cui non ci sia alcuna estensione che sia calcolabile con la semantica operazionale
 - Risposta: basta usare una teoria incoerente, {TRUE:A/¬A} è l'esempio tipico
- Giovanni
 - GSAT
 - o espressività vs complessità
 - hill climb con simulated annealing
 - modello perfetto

Sistemi Informativi

Cassavia

2017 2018

- Gianpaolo
 - Parte PENTAHO:
 - o OLAP
 - o modellazione concettuale data warehouse
 - o realizzare in saiku roll up e roll down
 - document datastore
 - o column family
- Luca
 - o Creare in saiku l'operazione slice e selezione
 - o modellazione logica dei data ware house
 - 4 fasi della modellazione
 - imputation mismatching
 - o schema di HBase
 - disegnare
 - nome delle componenti
 - modi per interfacciarlo con il client
 - o teorema CAP

2019 2020

- PsykeDady
 - presentazione progetto
 - eseguire su pentaho:
 - drill up
 - roll down
 - selection slice
 - o fasi di progettazione Data Warehouse
 - o Schemi di fatto a stella e snowflake
 - Proprietà sistemi nosql
 - o utilizzo di hbase

ISSTRA Ingegneria del software per sistemi real-time ed agenti

Libero Nigro

- Anonimi
 - o tempo di blocco FPS
 - o conversione processo sporadico/periodico
 - Ping Pong in Jade
 - o Grafo degli stati UPPAAL
 - Query In Uppaal
 - o Scrivere un parcheggio in reti di petri
 - template tTransaction pTransaction delle ptpn

- o clock di uppaall
- o come si rappresenta uno stato nel model state graph di uppaal
- JSemaphore
- o Parametro Lambda delle simulazioni ad attori

Sistemi Distribuiti e Cloud Computing (6 CFU e 9 CFU)

Talia Domenico

2018 2019

- Aloeasy
 - o Java Card
 - o Replicazione
 - NFS
 - o COnsistenza

2019 2020

- Giovanni Giordano
 - Weak Consistency
 - release consistency
 - o differenze EC2, S3 e DNS
- Anonimi
 - eukaliptus
 - Naming in generale
 - o HT Condor

2020 2021

- Anonimi
 - o componenti del Cloud Amazon
 - o tecniche di scalabilità dei sistemi distribuiti
 - grid computing
 - Consistenza debole (synchronize)
 - Naming in generale e p2p
 - Kerberos
 - o grid
 - o algoritmo elezioni
- Erma_TV
 - HTCondor
 - Client Side Consistency (Eventual Consistency)
 - RPC (in prticolare RPC one-way)
 - Eucalyptus

- Anonimi
- prima sessione di interrogazione:
- ClassAds di HTCondor
 - cos'è e come viene usato il KDC
 - algoritmi di elezione
 - Eucalyptus
 - Match macker (ht condor)
 - Locking nfs
 - Naming sistemi distribuiti
 - o seconda sessione di interrogazione:

- MPI
- Modello di autenticazione challenge-response a 5 messaggi a 3 e reflection Attack
- File locking in NFS
- sistemi distribuiti in generale e proprietà
- Coda
- Needham Shroeder
- Kdc
- RPC
- Globus Gram Home based
- mutua esclusione
- NFS
- lamport
- sincronizzazione
- Htcondor
- consistenza sequenziale
- read your writes
- o terza sessione di interrogazione:
 - Naming
 - Consistenza
- o quarta sessione di interrogazione:
 - Sistemi grid
 - HT condor
 - KDC
 - NFS lock
 - Strong mobility

Loris Belcastro

2018 2019

- Aloeasy
 - o Distribuited garbage collector
 - o Storage di Azure
 - o Fabric Controller di Azure
 - o come si passano i parametri in JAva RMI

2019 2020

- Giovanni Giordano
 - o distribuited garbage collector
 - o riferimenti Java RMI
 - tabelle Azure
 - Combiner

- Anonimi
 - o equals in RMI
 - o distributed garbage collector
 - o tables di azure
 - o json web token
 - o Dynamic class download
 - Oggetti attivabili
 - Modulo combiner in map reduce
 - combiner
 - o jwt
 - o gerarchia row timestamp
- Erma_TV
 - MapReduce

- o Distributed Garbage Collector
- Tables Di Azure

- Anonimi
 - prima sessione di interrogazione:
 - Map Reduce
 - La table di azure
 - dynamic class download
 - problema dell'equals in RMI e Remote Object
 - CDN
 - Combiner di MapReduce
- seconda sessione di interrogazione:

DGB

- garbage collector
- storage di Azure
- Docker in generale
- come aggiungere un altro layer ad un'immagine
- il vantaggio dei volumi sui bind mount
- se esistono container con kernel Windows
- differenze tra storage per oggetti e blocchi in aws
- o terza sessione di interrogazione:
 - Map reduce con Disegno e spiegazione del Partitioner e Combiner
 - Garbage collector
 - Table di azure
 - CND azure

Basi di Dati evolute

Molinaro Cristian

2019 2020

- Rak
 - o calcolo relazionale e definizione di linguaggio indipendente dal dominio di valutazione
 - o lock su database distribuiti
 - tecniche di assegnazione
 - deadlock
 - risposta: che se due transazioni richiedono il lock in scrittura sulla stessa risorsa e ci sono dei ritardi nella rete, nessuna delle due transazioni ottiene il lock e quindi si va in deadlock

2020 2021

- Anonimi
 - o protocollo zero knowledge
 - algoritmo fiat shamir
 - o proprietà funzioen hash firma digitale
 - o paradosso compleanno

Calcolo Numerico

Yaroslav Sergeyev

• Anonimi

- o equazioni differenziali metodi conosciuti impliciti ed esplici
- o esistenza polinomio di interpolazione e tecniche con vantaggi e svantaggi (LaGrange e Newton)
- metodo rombera
- metodi Runge Kutta
- o metodi di interpolazione conosciuti (LaGrange ecc)
- o punto fisso condizioni convergenza
- o grafici di convergenza
- o metodi di derivazione numerica

2020 2021

Anonimi

- le tecniche di preprocessamento dei sistemi lineari (pivoting parziale, totale e bilanciamento)
- o indice di condizionamento

• Erma_Tv

- o integrale di riferimento
- metodi di integrazione in più dimensione e perché non si può sempre suddividere in somma di integrali come in 1 dimensione
- o condizione convergenza metodi iterativi (sistemi)
- o ordine dell'errore (sia locale che globale) in tutti i metodi sulla risoluzione delle equazioni differenziali
- o può succedere che Jacobi converga e Gaus-Siedel diverga o viceversa?
- FARE BENE il metodo di Cavalieri-Simpson (con enfasi sul motivo per cui si fa l'ipotesi sull' uguaglianza tra la derivata in psi e psi con tilde
- o come scegliere i nodi per evitare fenomeno Runge
- o modo migliore per calcolare la somma di tanti numeri in virgola mobile (slide Marat)
- o come si migliora l'indice di condizionamento? -> PREPROCESSING

Anonimi

- o Quando parliamo di integrazione, cos'è l'intervallo di riferimento?
- o Qual'è il significato del condizionamento di un sistema lineare?
- o Cos'è la fattorizzazione di Cholesky?
- o Qual'è la differenza tra errore locale e errore globale
- o Qual'è il grado più elevato che permette di usare un polinomio di interpolazione?
 - (Risposta: settimo, oltre avviene il fenomeno di Runge)
- o Qual'è la migliore predisposizione dei nodi?
 - (Risposta: la peggiore sono i nodi equidistanti, la migliore sono i nodi di Chebyshev)
- o Vantaggi e svantaggi di metodi iterativi rispetto ai metodi diretti
 - (Risposta: sono più semplici ma non è detto che convergano)
- o Da cosa dipende il condizionamento di un sistema lineare?
- o Cancellazione numerica e come si può evitare
- Prendendo un metodo iterativo qual'è la condizione della convergenza?
 - (Raggio spettrale (ovvero massimo degli autovalori della matrice d'iterazione) < 1)
- o Cos'è uno spazio lineare?
- o Data una grande sequenza di numeri positivi, qual'è il migliore modo di sommarli?
 - (Risposta: ordine crescente, minor perdita d'informazioni)
- Quale dei metodi (Gauss e Gauss-Jordan) è il più efficente?
 - Risposta: Il migliore è il metodo di Gauss perché ha una complessità minore
- Svantaggi della formula del polinomio interpolante di LaGrange?
 Risposta: la complessità e non si possono aggiungere nodi senza dover ricalcolare il polinomio da capo
- o Significato di errore assoluto e relativo nell'approssimazione di un numero floating point
- Formula adattiva di Cavalieri-Simpson e qual'è il presupposto fatto?
 Risposta: la derivata quarta di f(xi) è supposta uguale all'aumentare del passo
- Quali sono i metodi per la risoluzione di equazioni differenziali ordinarie? Cosa vuol dire implicito ed esplicito?

- o Residuo dei sistemi lineare? Se il residuo è piccolo cosa possiamo dire sulla soluzione?
 - Risposta: $r^(k) = b Ax^(k)$
- o Se il sistema è mal condizionato il fatto che il residuo è piccolo non ci dice nulla
- o Metodi per la risoluzione di equazioni differenziali e ordine degli errori
- o Come funzionano i metodi di integrazione numerica in più dimensioni? Perchè non si può usare la formula che trasforma un
- o integrale a più dimensioni in una successione di integrali in una dimensione?
- o Metodi per la derivazione numerica
- o Estrapolazione di Richardson
- o Migliorare il condizionamento di un sistema lineare?
 - Risposta: tecniche di pre-processing
- o Metodi iterativi per la risoluzione dei sistemi lineari? Differenza in implementazione?
 - Risposta: Jacobi può essere parallelizzato
- o Cos'è una matrice di permutazione e quali sono le proprietà?
- o Formula di Cavaglieri-Simpson adattiva e come si valuta l'errore
- Fenomeno Runge e come si risolve?
 - Risposta: nodi di Chebyshev o uso di Spline
- o Può capitare che uno dei metodi di risoluzione dei sistemi lineari (iterativi) converge e l'altro diverge?
 - Risposta: si perché avendo la matrice di iterazione due formule diverse il raggio spettrale potrebbe essere diverso
- o Teorema dell'esistenza di un unico polinomio d'interpolazione
- Vantaggi e svantaggi dei metodi diretti rispetto ai metodi iterativi per la soluzione di sistemi lineari.
- Quando i metodi diretti non sono applicabili?
 - Risposta: Quando le matrici sono di grandi dimensioni è preferibile usare il metodo di Jacobi che è parallelizzabile
- Metodo dei coefficenti indeterminati?
- Metodo del punto fisso
- Condizione di Lipshiz e dove si applica
- o Tipi di problemi computazionali (problema diretto, inverso e di indentificazione) ed esempi
- o Pre-processing sistemi lineari
- o polinomi osculatori
- o spazi lineari
- o metodo dei coefficienti indeterminati
- o classificazione problemi computazionali
- o integrazione in multi dimensioni
- CONDIZIONE DI LIPSCHITZ
- o gauss e gauss jordan
- o come trovare la matrice inversa
- o matrice di permutazione
- o qual è il trucco dea formula di integrazione di cavalieri Simpson?
- o metodi di derivazione,i tipi e qual è il margine di errore, come si migliora, che grado di errore c'è
- clark nicolson
- o calcolo delle matrici LU (con studio dell'errore)

- Giovanni Giordano
 - o errore assoluto e relativo
 - estrapolazione di Richardson
- Anonimi
 - o fenomeno Runge
 - o cancellazione numerica
 - o decomposizione triangolare con Teoremi

2020 2021

- Anonimi
 - o estrapolazione di richardson
 - o Problema di Cauchy
 - o Equazione differenziale
 - Stima indice K(A)
 - o Differenze divise e proprietà
 - o idea di fondo degli algoritmi
 - jacobi
 - o Spline lineari e quadratiche

Algoritmi di Crittografia

Cristian Molinaro

2019 2020

- Giovanni Giordano
 - CBC
 - funzioni hash
- Anonimi
 - o merkel puzzle
 - obiettivo
 - problemi
 - algoritmo
 - One Time Pad
 - decifatura e cifratura deterministica
 - decifatura e cifratura randomizzata
 - sicurezza per mandare messaggi
 - problemi
 - sicurezza Semantica
 - o probab adv dice 1 quando EXP1
 - o modi operativi many time Key
 - o PRG e definizioni sicurezza
 - o firma digitale e CA

- Anonimi
 - o Modi operativi many time key
 - o Sicurezza modi operativi many time key
 - o zero knowledge
 - o Algoritmo che è capace di attaccare qualsiasi funzione hash e paradosso del compleanno