DISCRETE MATHEMATICS MATH 381

Basic concepts and examples explaining the fundamentals of Discrete Mathematics.

By Mansi Sakarvadia

 $\begin{tabular}{ll} The \ University \ of \ North \ Carolina \\ Chapel \ Hill \end{tabular}$

Contents

1	February 17, 2020		1
	1.1	Restriction of Domain	1
	1.2	Restriction of Codomain	2
	1.3	Arithmetic of functions	2
	1 4	Injective Surjective Bijective	2

1 February 17, 2020

Recall:

- Functions f: $A \rightarrow B$
- Image Im(f) = f(a)

If f(a) = b, say "a is a preimage of b"

- $Gr(f) = \{(a,b)|f(a) = b\} \subseteq AxB$
- $Gr(f) = \{(a, f(a)) | a \in A\}$

Graph Gr(f) is a relation between A and B

Which binary relations (subsets of AxB) are graphs of functions?

- A subset $s \subseteq AxB$ is the graph of a function if for every element $a \in A$, there is a unique element $b \in B$ such that $(a, b) \in S$.
- key Can't have (a, b_1) and $(a, b_2) \in S$ where $b_1! = b_2$ and expect S to be a graph
- (abstraction of "straight line test" about graphs $f: \mathbb{R} \to \mathbb{R}$)

1.1 Restriction of Domain

suppose $f: A \to B$ Consider $A' \subseteq A$

DEFINITION: the restriction of f to A' is $f|_{A'}: A' \to B$ defined by $(f|_{A'}) = f(a), a \in A$

KEY POINT: What does it mean for 2 functions $f:A\to B$ and $g:C\to D$ to be equal?

• NEED: A=C, B=D, and $f(a) = g(a)a \in A$

Mansi Sakarvadia Page 1

1.2 Restriction of Codomain

If B' is a set with $Im(f)\subseteq B'\subseteq B$, then we consider: $f':A\to B'$ defined by $f'(a)=f(a)foralla\in A$

EX.
$$Im(f|_{A'}) = f(A')$$

- $Im(f|_{A'}) \leftarrow \text{image of the restriction of f to A'}$
- $f(A') \leftarrow \text{image of the subset } A' \subseteq A \text{ under } f \bullet$

1.3 Arithmetic of functions

- A function is called real-valued if its codomain is $\in \mathbb{R}$
- A function is called inter-valued if its codomain is $\in \mathbb{Z}$
- DEFINITION: Suppose that f_1 and f_2 are two real-valued function both w/ domain A. Then we have $f_1 + f_2$ and $f_1 f_2$ (the sum and product), two real-valued functions on A, defined by:

$$- f_1 + f_2(x) = f_1(x) + f_2(x)$$

$$- f_1 f_2(x) = f_1(x) * f_2(x)$$

$$-f_1, f_2 : \mathbb{R} \to \mathbb{R}$$
 given by $f_1(x) = x^2, f_2(x) = x - x^2$

- * Then $f_1 + f_2, f_1 * f_2 : \mathbb{R} \to \mathbb{R}$ are defined by: $f_1 + f_2(x) = f_1(x) + f_2(x) = x$ $f_1 f_2(x) = f_1(x) * f_2(x) = x^3 x^4$
- * Note: $f_1 + f_2(x) = \iota_{\mathbb{R}}$ (hard to read symbol is iota subscript real-number symbol)

1.4 Injective, Surjective, Bijective

These are properties that a function may or may not have. Consider $f:A\to B$

Injective

DEFN: Say that f is injective if for any $x, y \in A$, $f(x) = f(y) \rightarrow x = y$

- Equivalent Statements:
 - Whenever x!=y belong to A be must have f(x)!=f(y)
 - * contra-positive, "Distinct points of A map to distinct values of B"

Mansi Sakarvadia Page 2

- For every b in B, there is at most one a in A which f(a) = b.
 - * "every point of B has at most one preimage."
- Eg. $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2$
 - * not injective because f(-1) = f(1).
 - * $f|_{\mathbb{Z}^{>\nu}}$ is injective (function where domain is integer's greater than zero)
- How to prove?
 - * Criteria for injectivity

Suppose $f: A \to B$ where B, A are subsets of real numbers

- f is increasing if $x < y \rightarrow f(x) <= f(y)$
- f is strictly increasing if $x < y \rightarrow f(x) < f(y)$
- f is decreasing if $x < y \rightarrow f(x) >= f(y)$
- f is strictly decreasing if $x < y \rightarrow f(x) > f(y)$
- * Proposition: A function that is strictly increasing or decreasing is injective

Surjective

DEFN: A function $f: A \to B$ is surjective if Im(f) = B

"surjective" = "onto"

- Equivalent descriptions:
 - For every value of b in B there is at least one element a in A such that f(a) = b
 - "every point of B has at least on preimage"
 - $-f: \mathbb{Z} \to \mathbb{Z}$ not surjective because $Im(f) = \mathbb{Z}^{\text{greater than or } = 0} \nsubseteq \mathbb{Z}$
 - -f(n)n+1 is surjective because any value m is mapped to by m-1.

Mansi Sakarvadia Page 3