EJERCICIO 106

Crea una matriz 3D de tamaño $4\times3\times24$ \times 3 \times $24\times3\times2$ con números aleatorios y realiza las siguientes operaciones:

- 1. Encuentra la media de todos los elementos.
- 2. Encuentra la media a lo largo de cada dimensión.
- 3. Resta la media global de cada elemento de la matriz.
- 4. Encuentra la norma de Frobenius de la matriz resultante.

EJERCICIO 107

Genera una matriz aleatoria 5×55 \times 55×5 y realiza la descomposición en valores singulares (SVD). Luego, reconstruye la matriz a partir de su SVD y verifica que la matriz original y la reconstruida sean aproximadamente iguales.

EJERCICIO 108

Resuelve el siguiente sistema de ecuaciones lineales usando NumPy:

$$\begin{cases} 3x + 4y - z = 1 \\ 2x - y + 3z = 4 \\ 5x + 2y + 2z = -1 \end{cases}$$

EJERCICIO 109

Dado un conjunto de datos de 100×3100 \times 3100×3 dimensiones generado aleatoriamente, realiza un Análisis de Componentes Principales (PCA) para reducir los datos a 2 dimensiones. Visualiza los datos originales y los transformados.

EJERCICIO 110

Simula un conjunto de datos con 3 variables independientes (features) y 1 variable dependiente (target). Ajusta un modelo de regresión lineal múltiple utilizando NumPy y verifica la exactitud del modelo con un conjunto de prueba

EJERCICIO 111

Utiliza un método de Montecarlo para estimar el valor de $\pi \pi$. Genera 1,000,000 de puntos aleatorios en el intervalo [-1,1][-1, 1][-1,1] para ambos ejes y calcula la proporción de puntos que caen dentro de un círculo unitario centrado en el origen

EJERCICIO 112

Genera una señal sinusoidal compuesta por dos frecuencias diferentes. Aplica la transformada de Fourier a la señal y visualiza su espectro de frecuencias

EJERCICIO 113

Implementa el algoritmo de K-means desde cero usando NumPy. Genera un conjunto de datos bidimensionales con tres clusters bien definidos y aplica el algoritmo de K-means para encontrar los centros de los clusters.

EJERCICIO 114

Genera una serie temporal de 500 puntos con una tendencia lineal, una componente estacional y ruido aleatorio. Descompone la serie en sus componentes usando NumPy y visualiza cada componente por separado.

EJERCICIO 115

Genera una imagen sintética de 256x256 píxeles con un patrón de ajedrez utilizando únicamente NumPy. Cada celda del patrón de ajedrez debe tener un tamaño de 32x32 píxeles.

EJERCICIO 116

Crear un vector con valores dentro del rango 10 a 49, e inviertelo

EJERCICIO 117

Crear una matriz 3x3 con valores de 0 a 8

EJERCICIO 118

Encontrar los índices que no son ceros del array [1,2,4,2,4,0,1,0,0,0,12,4,5,6,7,0].

EJERCICIO 119

Crear una matriz identidad de 6x6.

EJERCICIO 120

Crear una matriz con valores al azar con forma 3x3x3. Después encontrar los índices de los valores mínimos y máximos de la anterior matriz. Poner la semilla 777

EJERCICIO 121

Crear una matriz de 10x10 con 1's en los bordes y 0 en el interior (con rangos de índices).

EJERCICIO 122

Crear una matriz de 5x5 con valores en los renglones que vayan de 0 a 4.

EJERCICIO 123

Crear dos arreglos al azar A y B, verificar si son iguales.