VENKAT NARAYANAN BALACHANDRAN

venkatnarayanan
107@gmail.com | 864-624-6068 | Clemson, SC, 29631 | linkedin.com/in/venkat-balachandran | github.com/VenkatNarayanan
11

SUMMARY

A self-motivated graduate student specializing in control systems design and an AV enthusiast. Worked on projects including but not limited to Model Predictive Control (MPC), Controller design, Image/Point cloud processing, Object detection, and Systems engineering. Knowledge in Motion planning, Kalman filter, Signal processing, ROS, Python, C++

EXPERIENCE

Mechanical Engineer, Maruti Suzuki, India

Jan 2017 - Jan 2018

- Performed root cause analysis and helped to resolve 90% of the technical faults in the vehicle.
- Led a team of ten technicians, educated them with management principles, and reduced time-quality trade-offs by 50%.
- Handled ten vehicles per day with 98% On Time Delivery (OTD) without compromising the quality.
- Achieved monthly goals with customer focus and increased the revenue by 20%.
- Collaborated with engineers, technicians, and final inspectors to assure 100% customer satisfaction.

Graduate Engineer Trainee, Tractors and Farm Equipment Limited, India

Sep 2016 - Dec 2016

- Improved workplace efficiency by implementing Six Sigma, lean principles, JIT approach, and 5S principles.
- Performed time studies on the shop floor, reduced idle-time, and improved production efficiency by 30%.
- $\bullet \ \ \ Collaborated \ with \ executives \ and \ engineers \ in \ problem-solving, \ critical \ thinking, \ data \ analysis, \ verification \ \& \ validation.$

PROJECTS

LiDAR Point cloud processing and Image processing (Spring 2021)

- Processed and visualized the LiDAR Point cloud from the 3D Velodyne HDL-64E LiDAR using MATLAB. [Link]
- Performed image processing techniques using OpenCV and Python to detect the parking lot in an image. [Link]

Autonomous Lane-keeping using Model Predictive Control (Fall 2020)

- Implemented an MPC control algorithm for a simulated autonomous vehicle using MATLAB 2019b and Simulink.
- Predicted and controlled the acceleration and the steering angle of the simulated vehicle using MPC. [Link]

Lateral and Longitudinal control design for self-driving vehicles (Fall 2020)

- Leveraged a Kinematic bicycle model to model the lateral and longitudinal dynamics of the self-driving vehicle.
- Designed the controller using Python, PID, and Stanley controller and simulated using the Carla simulator.

Object Detection System for Autonomous vehicles (Fall 2020)

- Implemented an object detection system for a self-driving car using OpenCV, Python, and darknet framework.
- Pre-trained the YOLOv3 neural network to detect vehicles, traffic signals, and pedestrians in a recorded video. [Link]

Road Signs recognition using Deep Learning (Spring 2020)

- Implemented a region-based convolutional neural network to detect the stop signs and school zone signs.
- Pre-trained the Cifar10Net model to train the neural network and tested it on a recorded video. [Link]

Lane Detection on Greenville-Atlanta Highway (Spring 2020)

- Implemented a computer vision algorithm using OpenCV and Python to detect the lanes on a recorded highway video.
- Leveraged image processing, canny edge detection, region-masking, and Hough transform for the algorithm. [Link]

Systems Engineering: Subsystem design (Fall 2019)

- Worked on the material extraction subsystem design using RTM, PFMEA, V&V, WBS, and TRIZ matrix.
- $\bullet \ \ Developed \ technology \ assessment \ and \ maturation \ strategies, \ feasibility \ study, \ MOEP, \ and \ budget \ analysis.$

Design and Optimization: Frisbee (Fall 2019)

- Designed and optimized the shape of the frisbee to minimize the drag forces by 10% to maximize its flying range.
- Modeled the frisbee using SolidWorks and CFD analysis is done using ANSYS Fluent.
- Identified the optimum shape that has minimum drag force and maximum lift force using an optimizer.

EDUCATION

Master of Science, Mechanical engineering

Clemson University

Bachelor of Engineering, Mechanical engineering

KCG College of Technology, Anna University, India

Aug 2019 - May 2021 GPA: 3.5

Jun 2012 - May 2016

GPA: 8.2/10

SKILLS

Programming language: Python, C++, MATLAB/Simulink

Development environments: VSCode, Linux, Robot operating system (ROS), Jupyter notebook

Control algorithm: PID, observed-based feedback, MPC, LQR Motion/path planning algorithm: A*, D*, RRT, RRT*

Other: AutoCAD, SolidWorks, ANSYS, Microsoft office suite, Minitab, Tableau, TensorFlow, PyTorch