МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

Институт интегральной электроники (ИЭ) Кафедра проектирования и конструирования интегральных микросхем (ПКИМС)

Курсовая работа на тему:

«Разработка счётчика пути компьютерной мыши с протоколом PS/2»

Выполнил студент группы ЭН-45 Страхов Александр Сергеевич Проверил ст. препод. каф. ПКИМС, Мельник Александр Константинович

Техническое задание:

Разработать счётчик пути компьютерной мыши с протоколом PS/2. Реализовать приём данных с мыши в соответствии с протоколом PS/2. Для расчёта пути использовать теорему Пифагора с учётом вычисления входных значений в дополненной двоичной форме. Разработать счётчик нажатия на кнопки мыши (ЛКМ, СКМ, ПКМ). Реализовать сброс регистров данных пути и счётчиков нажатия на кнопки. Обеспечить перевод вычисленных данных из двоичной системы счисления в двоично-десятичную и вывод данных на экран монитора через видеоинтерфейс VGA, а также на четырехразрядную семисегментную матрицу и светодиоды.

Спецификация модуля mouse_top

Путь к файлу: RTL/mouse_top/mouse_top.v

Головной модуль mouse_top

Таблица 1. Интерфейсные сигналы головного модуля mouse_top.

Название	Направление	Разрядность	Описание
clk	вход	1	Системный синхросигнал частотой 50
			МГц
rst	вход	1	Общий сброс всей системы
reset_register	вход	1	Сброс регистров данных пути и счётчика
			нажатия на кнопки
ps2d	вход/выход	1	Информационная шина передачи данных
			с мышью
ps2c	вход/выход	1	Шина синхронизации данных с мышью
middle_led	выход	1	Вывод состояния нажатия на СКМ на
			светодиод
left_led	выход	1	Вывод состояния нажатия на ЛКМ на
			светодиод
right_led	выход	1	Вывод состояния нажатия на ПКМ на
			светодиод
done_tick_led	выход	1	Вывод сигнала передачи пакетов с мыши
			на светодиод
sseg	выход	7	Вывод схемы на катоды семисегментной
			матрицы
anode	выход	4	Вывод схемы на аноды семисегментной
			матрицы
hsync	выход	1	Вывод сигнала горизонтальной
			синхронизации на VGA-монитор
vsync	выход	1	Вывод сигнала вертикальной
			синхронизации на VGA-монитор
vga_rgb	выход	3	Вывод RGB-цвета на VGA-монитор

Рисунок 1. Схема модуля mouse_top.

Принцип работы

Имеется приёмопередатчик данных с мыши (головной субмодуль mouse), получающий координаты перемещения мыши длиной 9 бит и сигналы состояния кнопок мыши. Данные передаются вычислительный координат на модуль (головной субмодуль button_counter_bcd), который вычисляет текущий путь перемещения, складывает с предыдущим и переводит полученные данные из двоичной системы в двоично-десятичную. Сигналы состояния кнопок передаются как напрямую на светодиоды, так и на счётчик нажатий (головной субмодуль ariphmetic_register_bcd). Полученные значения пути мыши и счётчика нажатий на кнопки передаются контроллеру вывода изображения на VGAмонитор (головной субмодуль ps2_mouse_VGA_top). Также значения десятков тысяч, тысяч, сотен и десятков пути передаются на контроллер семисегментной матрицы (головной субмодуль led_controller).

Головной субмодуль mouse

Путь к файлу: RTL/interface/mouse.v

Таблица 2. Интерфейсные сигналы головного субмодуля mouse.

Название	Направление	Разрядность	Описание
clk	вход	1	Системный синхросигнал частотой
			50 МГц
rst	вход	1	Общий сброс головного субмодуля
ps2d	вход/выход	1	Информационная шина передачи
			данных с мышью
ps2c	вход/выход	1	Шина синхронизации данных с
			мышью
xm	выход	9	Шина данных координат по оси X
ym	выход	9	Шина данных координат по оси Ү
btnm_led	выход	3	Шина сигналов состояний нажатия
			на кнопки мыши
package_done_tick	выход	1	Сигнал состояния завершения
			приёма пакета данных

Рисунок 2. Схема головного субмодуля mouse.

Головной субмодуль **mouse** состоит из модуля приёмопередатчика **ps2_rxtx** и контроллера данных **stream_FSM**. Приёмопередатчик отвечает за приём пакетов данных координат и состояния кнопок, а также за передачу команды начала режима отправки пакета данных мышью. Контроллер данных отвечает за обработку входящих пакетов и управление режимами приёма передачи данных субмодулем **ps2_rxtx**.

Субмодуль ps2_rxtx

Таблица 3. Интерфейсные сигналы субмодуля ps2_rxtx

Название	Направление	Разрядность	Описание
clk	вход	1	Системный синхросигнал частотой 50
			МГц
rst	вход	1	Общий сброс головного субмодуля
ps2d	вход/выход	1	Информационная шина передачи данных
			с мышью
ps2c	вход/выход	1	Шина синхронизации данных с мышью
wr_ps2	вход	1	Сигнал переключения режима
			приёма/передачи
din	вход	8	Шина приёма команды на мышь
dout	выход	8	Шина передачи данных мыши
rx_done_tick	выход	1	Сигнал завершения приёма байта данных
tx_done_tick	выход	1	Сигнал завершения отправки байта
			данных на мышь

Субмодуль stream_FSM

Таблица 4. Интерфейсные сигналы субмодуля stream_FSM

Название	Направление	Разрядность	Описание
clk	вход	1	Системный синхросигнал частотой 50
			МГц
rst	вход	1	Общий сброс головного субмодуля
rx_done_tick	вход	1	Сигнал завершения приёма байта данных
tx_done_tick	вход	1	Сигнал завершения отправки байта
			данных на мышь

rx_data	вход	8	Шина приёма данных с мыши
tx_data	выход	8	Шина передачи данных на мышь
x_axis	выход	9	Шина данных координат по оси X
y_axis	выход	9	Шина данных координат по оси Ү
btnm	выход	3	Шина сигналов состояния кнопок мыши

Рисунок 3. Схема субмодуля stream_FSM.

Блок-схема состояний конечного автомата stream_reg

Рисунок 4. Диаграмма состояний конечного автомата stream_reg.

Рисунок 5. Блок-схема работы конечного автомата stream_reg.

Согласно протоколу PS/2, перед тем, как мышь начнёт отправлять данные, управляющее устройство должно отправить команду 0xF4, после чего мышь ответит командой 0xFA, что означает успешную инициализацию команды передачи данных управляющему устройству, и далее следует пакет длиной в три байта.

Таблица 5. Структура пакета приёма данных по протоколу PS/2

Байт	7	6	5	4	3	2	1	0
0	y0	x0	ys	XS	1	bm	br	bl
1		xm						
2	ym							

Описание значений битов пакета:

- у0 бит переполнения координаты Y;
- х0 бит переполнения координаты X;
- ys знак данных по координате Y;
- xs 3нак данных по координате X;
- bm состояние средней кнопки мыши;
- br состояние правой кнопки мыши;
- bl состояние левой кнопки мыши;
- хт координаты по оси X;
- ут координаты по оси Y;

Данные по координатам принимаются в двоичной дополненной системе счисления. По умолчанию, разрешение выходных данных составляет 4 ед/мм.

Головной субмодуль ariphmetic_register_bcd

Путь к модулю: RTL/ariphmetic/ariphmetic_register_bcd.v

Таблица 6. Интерфейсные сигналы субмодуля ariphmetic_register_bcd

Название	Направление	Разрядность	Описание
clk	вход	1	Системный синхросигнал частотой 50
			МГц
rst	вход	1	Общий сброс головного субмодуля
reset_button	вход	1	Сброс суммирующего регистра
x_axis	вход	9	Шина данных по координате X
y_axis	вход	9	Шина данных по координате Ү
ariphmetic_bcd	выход	20	Шина данных суммирующего регистра
			в двоично-десятичной системе
			счисления

Рисунок 6. Схема головного субмодуля ariphmetic_register_bcd

Данный субмодуль производит вычисление пути мыши по теореме Пифагора, накопление данных в суммирующем регистре и преобразование в двоично-десятичную систему счисления. Порядок вычисления пути мыши:

- 1. Перевод входящих данных по координатам из дополнительного вида в прямой с учётом знака (установка по модулю);
- 2. Деление входящих координат на 4;
- 3. Нахождение квадратов координат;
- 4. Извлечение квадратного корня с суммы квадратов координат;
- 5. Суммирование нового значения пути с предыдущим по сигналу разрешения package_done;
- 6. Преобразование данных в регистре накопления в двоично-десятичную систему.

Таблица 7. Структура шины ariphmetic_bcd

дес	сятки	тысяч тысячи				сот	НИ		десятки				един	ицы	[
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Головной субмодуль button_counter_bcd

Путь к файлу: RTL/mouse_button_counter/mouse_counter_top.v

Таблица 8. Интерфейсные сигналы головного субмодуля button_counter_bcd

Название	Направление	Разрядность	Описание
clk	вход	1	Системный синхросигнал частотой 50
			МГц
rst	вход	1	Общий сброс головного субмодуля
reset_button	вход	1	Сброс суммирующих регистров
left_button	вход	1	Сигнал состояния левой кнопки мыши
middle_button	вход	1	Сигнал состояния средней кнопки мыши
right_button	вход	1	Сигнал состояния правой кнопки мыши
left_bcd	выход	10	Шина счётчика левой кнопки мыши в
			двоично-десятичной системе
middle_bcd	выход	10	Шина счётчика средней кнопки мыши в
			двоично-десятичной системе
right_bcd	выход	10	Шина счётчика правой кнопки мыши в
			двочино-десятичной системе

Рисунок 7. Схема головного субмодуля button_counter_bcd

Данный головной субмодуль суммирует нажатия на ЛКМ, СКМ, ПКМ в отдельные регистры для каждой кнопки. Разрядность каждого регистра – 8 бит.

Таблица 9. Структура шины middle_bcd

сот	ТНИ	Į	₁ ecs	тки	1	единицы					
9	8	7	6	5	4	3	2	1	0		

Головной субмодуль ps2_mouse_VGA_top

Таблица 10. Интерфейсные сигналы субмодуля ps2_mouse_VGA_top

Название	Направление	Разрядность	Описание
clk	вход	1	Системный синхросигнал частотой 50
			МГц
rst	вход	1	Общий сброс головного субмодуля
ariphmetic_bcd	вход	20	Шина данных суммирующего регистра
			в двоично-десятичной системе
			счисления
left_bcd	вход	10	Шина счётчика левой кнопки мыши в
			двоично-десятичной системе
middle_bcd	вход	10	Шина счётчика средней кнопки мыши в
			двоично-десятичной системе
right_bcd	вход	10	Шина счётчика правой кнопки мыши в
			двочино-десятичной системе
hsync	выход	1	Вывод сигнала горизонтальной
			синхронизации на VGA-монитор
vsync	выход	1	Вывод сигнала вертикальной
			синхронизации на VGA-монитор
vga_rgb	выход	3	Вывод RGB-цвета на VGA-монитор

Головной субмодуль **ps2_mouse_VGA_top** формирует видеосигнал VGA разрешением 640х480 с частотой смены пикселей в 25 МГц и состоит из двух субмодулей. Субмодуль vga_sync формирует сигналы вертикальной и горизонтальной синхронизации. Субмодуль ps2_mouse_text формирует текст на экране:

TRACKING COUNT: DDDDD

RIGHT: DDD

Головной субмодуль led_controller

Таблица 11. Интерфейсные сигналы субмодуля led_controller

Название	Направление	Разрядность	Описание
clk	вход	1	Системный синхросигнал частотой 50
			МΓц
rst	вход	1	Общий сброс головного субмодуля
x_axis	вход	8	Вход данных для вывода по 4-3
			разрядам
y_axis	вход	8	Вход данных для вывода по 2-1
			разрядам
sseg	выход	7	Вывод схемы на катоды
			семисегментной матрицы
anode	выход	4	Вывод схемы на аноды семисегментной
			матрицы

Головной субмодуль **led_controller** выполняет преобразование входных данных для их показа на семисегментной матрице в режиме динамической индикации.

Компиляция всего проекта.

Township 20010 In Contract	
Flow Status	Successful - Sat Apr 18 02:24:59 2020
Quartus Prime Version	18.1.0 Build 625 09/12/2018 SJ Lite Edition
Revision Name	ps2_mouse
Top-level Entity Name	mouse_top
Family	Cyclone IV E
Device	EP4CE6E22C8
Timing Models	Final
Total logic elements	1,109 / 6,272 (18 %)
Total registers	276
Total pins	25 / 92 (27 %)
Total virtual pins	0
Total memory bits	0 / 276,480 (0 %)
Embedded Multiplier 9-bit elements	1 / 30 (3 %)
Total PLLs	0 / 2 (0 %)

Рисунок 8. Отчёт о проведении компиляции проекта.

Рисунок 9. Схема трассировки проекта на кристалле FPGA.

Аппаратная верификация

Тестовый план:

- 1. Проверка приёма координат мыши;
- 2. Расчёт пути;
- 3. Нажатие на кнопки мыши и проверка суммирующих регистров
- 4. Вывод изображения на монитор;