LOAN DOCUMENT

	PHOTOGRAPH THIS	SHEET
N NUMBER	LEVEL.	INVENTORY
DTIC ACCESSION NUMBER	K Plan for a Treatal DOCUMENT IDENTIFICATION OCH 95	oility Study to
	DISTRIBUTION ST Approved for Pub Distribution U	olic Release Inlimited
	DISTRIBUTION	on statement I
NTIS GRAM DITC TRAC UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP		DATE ACCESSIONED A H
		DATE RETURNED
20001122	033	
DATE RECEIV	ED IN DTIC	REGISTERED OR CERTIFIED NUMBER
PHODTIC ROW 70A	PTOGRAPH THIS SHEET AND RETURN TO DTIC-FI	DAC PALVIOUS EDITIONS MAY BE USED UNITE. STOCK IS INCAUSTED.

LOAN DOCUMENT

DTIC QUALITY INGSECTED .

Work Plan for a Treatability Study to Evaluate Intrinsic Remediation of Groundwater at Site FT-1

Fairchild Air Force Base Spokane, Washington

Prepared For

Air Force Center for Environmental Excellence Technology Transfer Division Brooks Air Force Base San Antonio, Texas

and

92 CES/CEVR Fairchild Air Force Base Spokane, Washington

October 1995

DEFENSE TECHNICAL INFO REQUEST FOR SCIENTIFIC AN	DRMATION CENTE D TECHNICAL REP	R ORTS
Title AFCEE Collection	III (I) (I) (I) (II) (II) (III)	The state of the s
1. Report Availability (Please check one box) This report is available. Complete sections 2a - 2f. This report is not available. Complete section 3.	2a. Number of Copies Forwarded	2b. Forwarding Date
2c. Distribution Statement (Please check ONE Dox) DaD Directive 5230.24, "Distribution Statements on Technical Document described briefly below. Technical documents MUST be assigned a dist	nts." 18 Mar 87 contains se	ven distribution statements, as
☐ DISTRIBUTION STATEMENT A: Approved for public I		
DISTRIBUTION STATEMENT C: Distribution authorize contractors.		
 □ DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only. □ DISTRIBUTION STATEMENT E: Distribution authorized 		, ,
components only. DISTRIBUTION STATEMENT F: Further dissemination indicated below or by higher authority.		•
☐ DISTRIBUTION STATEMENT X: Distribution authorize individuals or enterprises eligible to obtain export-control Directive 5230.25, Withholding of Unclassified Technic	olled technical data in	accordance with DoD
2d. Reason For the Above Distribution Statement (in acc	cordance with DoD Directiv	e 5230.24)
2e. Controlling Office HQ AFCE	Determination	stribution Statement
3. This report is NOT forwarded for the following reason	ns. (Please check appro	priato box)
☐ It was previously forwarded to DTIC on		
☐ It will be published at a later date. Enter approximate of	· ·	
In accordance with the provisions of DoD Directive 320 because:	0.12, the requested d	ocument is not supplied
spinstellatitististististististististististististi	H. [] [] [] [] [] [] [] [] [] [] [] [] []	
Print or Type Name Sign	nature	
Laura Pena	Laura 1-	ena
Telephone 210 - 536 - 143/	AQ Numbe	MO1-01-0311

WORK PLAN FOR A TREATABILITY STUDY TO EVALUATE THE INTRINSIC REMEDIATION OF GROUNDWATER AT SITE FT-1 FAIRCHILD AIR FORCE BASE, WASHINGTON

Prepared for

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE TECHNOLOGY TRANSFER DIVISION BROOKS AIR FORCE BASE SAN ANTONIO, TEXAS

and

92 CES/CEVR FAIRCHILD AIR FORCE BASE SPOKANE, WASHINGTON

October 1995

Prepared by

Parsons Engineering Science, Inc. 1700 Broadway Suite 900 Denver, Colorado 80290

022/722425/FCWP/9.WW6

AGM01-01-0311

TABLE OF CONTENTS

			Page
SECT	ION 1 -	- INTRODUCTION	1-1
1.1 1.2	Scope Backg	of Current Work Planround.	1-2 1-3
SECT	ION 2 -	- DATA REVIEW AND CONCEPTUAL MODEL	
DECI	10112	DEVELOPMENT	2-1
2.1	Data F	Review	2-1
	2.1.1	Topography, Surface Hydrology, and Climate	2-2
	2 1 2	Overview of Geology and Hydrogeology	2-4
	2.1.2	2.1.2.1 Regional Geology and Hydrogeology	2-4
		2.1.2.2 PS-2 Geology and Hydrology	2-7
	213	Summary of Analytical Data for FT-1	2-18
	2.1.5	2.1.3.1 Soil Sampling and Analytical Results	2-18
		2.1.3.2 Groundwater Sampling and Analytical Results	2-23
2.2	Devel	opment of Conceptual Site Model	2-29
2.2	2 2 1	Intrinsic Remediation and Groundwater Flow and Solute	
	2.2.1	Transport Models	2-33
	222	Transport ModelsBiodegradation of Dissolved BTEX Contamination	2-34
	2.2.2	Initial Conceptual Site Model	2-35 2-35
	2.2.3	Potential Groundwater Pathways and Receptors	2-36
	2.2.	Totalian Groundwater Family and Recoprosis	
SECT	ION 3	- COLLECTION OF ADDITIONAL DATA	3-1
3.1	Soil S	ampling	3-3
	3.1.1	Soil Sample Locations and Required Analyses	3-3
	3.1.2	Sample Collection Using the Geoprobe® System	3-3
	3.1.3	Datum Survey	3-8
	3.1.4	Site Restoration	3-8
		Equipment Decontamination Procedures	
3.2	Monit	oring Point Installation	3-8
	3.2.1	Monitoring Point Locations and Completion Intervals	3-9
	3.2.2	Monitoring Point Installation Procedures	3-10
		3.2.2.1 Pre-Placement Activities	3-10
		3.2.2.2 Monitoring Point Materials Decontamination	
		3.2.2.3 Installation and Materials	3-10
		3.2.2.4 Monitoring Point Completion	3-12
	3.2.3	Monitoring Point Development and Records	3-12
	3.2.4	Monitoring Point Location and Datum Survey	3-13
		Water Level Measurements	3-13
3.3		idwater Sampling Procedures	
5.5	2 2 1	Preparation for Sampling	3 ₋ 15
	J.J.1		

TABLE OF CONTENTS (Continued)

			Page
		3.3.1.1 Equipment Cleaning	3-16
		3.3.1.2 Equipment Calibration	3-16
	3.3.2		3-16
		3.3.2.1 Preparation of Location	3-19
		3.3.2.2 Water Level and Total Depth Measurements	3-19
		3.3.2.3 Monitoring Point/Well Purging	3-19
		3.3.2.4 Sample Extraction	3-19
	3.3.3	Onsite Groundwater Parameter Measurement	
		3.3.3.1 Dissolved Oxygen Measurements	3-20
		3.3.3.2 pH, Temperature, and Specific Conductance	3-20
		3.3.3.3 Alkalinity Measurements	3-20
		3.3.3.4 Nitrate- and Nitrite-Nitrogen Measurements	3-21
		3.3.3.5 Carbon Dioxide Measurements	
		3.3.3.6 Sulfate Measurements	
		3.3.3.7 Total Iron, Ferrous Iron, and Ferric Iron Measurements	3-21
		3.3.3.8 Manganese Measurements	3-21
		3.3.3.9 Reduction/Oxidation Potential	
3.4	Sample	e Handling for Laboratory Analysis	3-22
	3.4.1		3-22
	3.4.2	Sample Containers and Labels	
	3.4.3	Sample Shipment	3-23
	3.4.4	Chain-of-Custody Control	3-23
	3.4.5	Sampling Records	3-23
	3.4.6	Laboratory Analyses	3-24
3.5	Aquife	er Testing	3-25
	3.5.1	Definitions	
	3.5.2	Equipment	3-25
	3.5.3	General Test Methods	
	3.5.4	Falling Head Test	3-26
	3.5.5	Rising Head Test	3-28
	3.5.6	Slug Test Data Analysis	3-28
SECT	ION 4 -	- TS REPORT	4-1
SECT	ION 5 -	QUALITY ASSURANCE/QUALITY CONTROL	5-1
SECT	ION 6 -	REFERENCES	6-1
APPE	ENDIX A	A Containers, Preservatives, Packaging and Shipping Requirements for Groundwater Samples	
APPE	ENDIX I	B Additional Site Data	

TABLE OF CONTENTS (Continued)

LIST OF TABLES

<u>No</u> .	<u>Title</u>	<u>Page</u>
2.1	Summary of Packer Test Results Performed During the Installation of	0.10
0.0	MW-159	2-12
2.2	Summary of Well Installation Details and Select Groundwater Elevation	2 14
2.2	Data	2 20
2.3	Summary of Soil Analytical Data	2 24
2.4 3.1	Summary of Groundwater Analytical Data Analytical Protocol for Groundwater, Soil, and Product Samples	3_2
3.1 4.1	Example TS Report Outline	Δ_2
5.1	QA/QC Sampling Program	5-2
J.1	QA/QC Sampling Flogram	
	LIST OF FIGURES	
No.	<u>Title</u>	<u>Page</u>
1.1	Base Location	
1.2	Site Location	
1.3	Site Layout	2.2
2.1	Regional Topographic Base Map	2-3
2.2	Surface Geologic Map and Location of Regional	2.5
2.3	Cross Section A-A'	2-6
2.4	Basewide Groundwater Surface Elevation Contour Map	28
2.5	Locations of Site-Specific Cross Sections C-C' and B-B'	2-9
2.6	FT-1 Site-Specific Cross Section B-B'	2-10
2.7	FT-1 Site-Specific Cross Section A-A'	2-11
2.8	Groundwater Surface Elevations (March 1992)	
2.9	Approximate Extent of Soil BTEX Contamination	2-19
2.10	Extent of Dissolved Benzene and Total BTEX Contamination	
	(April 1995)	2-30
2.11	Detected Concentration of Dissolved CAH Contamination (April 1995)	2-31
2.12	CAH Contamination Detected in Residential Wells	2-32
3.1	Proposed Soil Sampling and Monitoring Point Locations	3-4
3.2	Cross Section of Geoprobe	3-6
3.3	Geologic Boring Log	3-7
3.4	Monitoring Point Installation Record	3-11
3.5	Monitoring Point Development Record	3-14
3.6	Groundwater Sampling Record	3-17
3.7	Aquifer Test Data Form	3-27

SECTION 1

INTRODUCTION

This work plan was prepared by Parsons Engineering Science, Inc. (Parsons ES), formerly Engineering Science, Inc. (ES), and presents the scope of work required for the collection of data necessary to conduct a treatability study (TS) for the intrinsic remediation of groundwater contaminated with petroleum hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs) at the Priority-One Site Fire Training Area 01 (FT-1) located at Fairchild Air Force Base (AFB), 12 miles west of Spokane, Washington (the Base). The record-of-decision (ROD) for FT-1 specifies the use of air sparging to remediate volatile organic compounds (VOCs) in site groundwater. Therefore, this TS will assess naturally occurring contaminant attenuation processes for groundwater and evaluate how these processes will operate in conjunction with the future air sparging system. This work plan is oriented toward the collection of hydrogeologic data to be used as input into groundwater flow and solute transport models to evaluate intrinsic remediation for restoration of groundwater contaminated with benzene, toluene, ethylbenzene, xylenes (BTEX), and CAHs.

As used in this report, the term "intrinsic remediation" refers to a management strategy that relies on natural attenuation mechanisms to remediate contaminants dissolved in groundwater and to control the potential for receptor exposure to siterelated contaminants in the subsurface. "Natural attenuation" refers to the actual physical, chemical, and biological processes that facilitate intrinsic remediation. Mechanisms for natural attenuation of BTEX and CAHs include advection, dispersion, dilution from recharge, sorption, volatilization, and biodegradation. processes, biodegradation is the only mechanism working to transform contaminants Intrinsic bioremediation occurs when indigenous into innocuous byproducts. microorganisms work to bring about a reduction in the total mass of contamination in Patterns and rates of intrinsic the subsurface without the addition of nutrients. remediation can vary markedly from site to site depending on governing physical and chemical processes.

As part of the TS, the contaminant fate and transport modeling effort will have two primary objectives: 1) predict the future extent and concentration of dissolved contaminant plumes by modeling the effects of advection, dispersion, sorption, and biodegradation in conjunction with an air sparging system; and 2) assess the possible exposure of potential downgradient receptors to contaminant concentrations that exceed levels intended to be protective of human health and the environment. The modeling efforts for the FT-1 site at Fairchild AFB will involve completion of several tasks, which are described in the following sections.

This work plan was developed following discussions among representatives from the Air Force Center for Environmental Excellence (AFCEE), the 92nd Civil Engineering Squadron--Environmental (92 CES/CEVR), and Parsons ES at a meeting held at the Base on July 11, 1995, to discuss the statement of work (SOW) for this project, and on a review of existing site characterization data. All field work will follow the health and safety procedures presented in the program *Health and Safety Plan for Bioplume II Modeling Initiative* (ES, 1993), and the site-specific addendum to the program Health and Safety Plan. This work plan was prepared for AFCEE and 92 CES/CEVR.

1.1 SCOPE OF CURRENT WORK PLAN

The ultimate objective of the work described herein is to provide a TS for intrinsic remediation of groundwater contamination at FT-1 in conjunction with the RODspecified air sparging system. However, this project is part of a larger, broad-based initiative being conducted by AFCEE in conjunction with the US Environmental Protection Agency (USEPA) and Parsons ES to document the biodegradation and resulting attenuation of fuel hydrocarbons and solvents dissolved in groundwater, and to model this degradation using numerical and analytical groundwater model codes. For this reason, the work described in this work plan is directed toward the collection of data in support of this initiative. This work plan describes the site characterization activities to be performed by personnel from Parsons ES and the USEPA National Risk Management Research Laboratory (NRMRL) Subsurface Protection and Remediation Division, formerly the USEPA Robert S. Kerr Environmental Research Laboratory, in support of the TS and the groundwater modeling effort. Field activities will be performed to determine if mobile and residual light nonaqueous-phase liquid (LNAPL) exists at the site and to determine the extent of LNAPL and dissolved contamination. The data collected during the TS will be used along with data from previous investigations to supplement the characterization of contamination at the site, and as input for the groundwater flow and solute transport models to make predictions of the future concentrations and extent of contamination.

Site characterization activities in support of the TS will include: 1) determination of preferential contaminant migration and potential receptor exposure pathways; 2) soil sampling using the Geoprobe® direct-push technology; 3) groundwater monitoring point placement; 4) groundwater sampling; and 5) aquifer testing. The materials and methodologies to accomplish these activities are described herein. Previously reported site-specific data and data collected during the supplemental site characterization activities described in this work plan will be used as input for the groundwater flow and solute transport models. Where site-specific data are not available, conservative values for the types of aquifer materials present at the site will be obtained from widely accepted published literature and used for model input. Sensitivity analyses will be conducted for the parameters that are known to have the greatest influence on the model results, and where possible, the model will be calibrated using historical site data.

This work plan consists of six sections, including this introduction. Section 2 presents a review of available previously reported, site-specific data and a preliminary conceptual hydrogeologic model for the site. Section 3 describes the proposed sampling strategy and procedures to be used for the collection of additional site characterization data. Section 4 describes the TS report format. Section 5 describes

the quality assurance/quality control (QA/QC) measures to be used during this project. Section 6 contains the references used in preparing this document. There are two appendices to this work plan. Appendix A contains a listing of containers, preservatives, packaging, and shipping requirements for soil and groundwater samples. Appendix B contains summary site data, including available well logs and summaries of historical soil and groundwater analytical data from previous field investigation work.

1.2 BACKGROUND

Fairchild AFB occupies an area of approximately 4,300 acres 12 miles west of Spokane, Washington (Figure 1.1). The Base is divided roughly in half by the main northeast/southwest runway (Figure 1.2). Aircraft operational facilities, approximately 1,600 Base housing units, an elementary school, a hospital, and support facilities for the tenants housed on-Base lie north of the runway. The air traffic control tower, weapons storage area, and survival training school lie to the south of the runway [Halliburton NUS (HNUS), 1993a].

The Base was established in 1942 as an Army repair depot and transferred to the Strategic Air Command (SAC) in 1947. In 1992, Base control was transferred to the Air Combat Command (ACC). Currently, the Base is operated by the Air Mobility Command (AMC) and serves as host to the 92nd Air Refueling Wing. The Base also is the current home of the 141st Air Refueling Wing of the Washington Air National Guard (WANG), aircraft operational facilities, a weapons storage area, and a survival training school. Base operations employ approximately 5,000 civilian and military personnel (ES, 1994a).

Site FT-1 is a former fire training area located near the eastern property boundary of the Base between Taxiway 10 and Perimeter Road (Figure 1.3). Surface features at the site include a concrete fire training building (Building 1570), a subsurface confinedspace-entry training vault, and a concrete slab. A large gravel pad surrounds all of these surface features. A lined fire pit is located immediately south of Building 1570 (Figure 1.3). The pit was constructed in 1970 using bermed gravel, and a mock aircraft is located in the center of the pit. Prior to 1970, fire training exercises were performed in an unlined pit formerly located immediately north of the current lined fire training pit, near Building 1570. A 4,000-gallon underground storage tank (UST) located east of Building 1570 was used to store fuels used in fire training exercises. Pressure tests performed on this tank in 1989 did not indicated the presence of potential Additionally, an oil/water separator is located within the gravel pad approximately 150 feet east of the current training pit. It was used to separate unburned fuels from water that remained in the training pit after training exercises were conducted. A poorly defined manmade ditch receives effluent from the oil/water separator and discharges in a wide, flat, marshy area where outfall infiltrates the ground surface (HNUS, 1993a).

Fire training exercises were conducted on a regular basis at FT-1 until operations were ceased in August 1991. Recent exercises consisted of filling the training pit with 2 to 3 inches of water and spraying approximately 300 gallons of uncontaminated fuel hydrocarbons over the top of the water. The fuel was then ignited and aqueous film-forming foam (AFFF) was applied to extinguish the fire. In recent exercises only uncontaminated fuels were used. However, during historical exercises, waste fuels and

other types of hazardous waste substances were used. The nature of these other wastes was not described in previous reports reviewed during the development of this work plan (HNUS, 1993a).

Investigations were initiated at FT-1 as a result of Installation Restoration Program (IRP) Phase 1 Record Search conclusions (JRB Associates, 1985). The presence of groundwater contamination was confirmed in the IRP Phase II Confirmations/Quantification study performed by Battelle Denver Operations (1989). Since that time, a remedial investigation (RI) has been completed by HNUS (1993), an analytical informal technical information report (ITIR) for long-term groundwater monitoring has been submitted by EA Engineering, Science, and Technology and Montgomery Watson Americas, Inc. (ES&T and MWA, 1995), and a remediation pilot study is currently being performed (ES, 1994b).

To date, soil contamination has been detected near the current fire training pit and near the outfall of the oil/water separator. Dissolved BTEX contamination also has been detected in groundwater samples collected near the current fire training pit. Additionally, dissolved CAH contamination has been detected at low concentrations, typically less than 5 micrograms per liter (μ g/L), in samples collected from groundwater underlying the site and as far as 5,500 feet downgradient from the site. Dissolved BTEX concentrations, have been measured at concentrations significantly higher than dissolved CAH concentrations, with total dissolved BTEX concentrations as high as 1,320 μ g/L measured in groundwater samples collected during previous investigations. The presence of mobile LNAPL (i.e., free product) or dense nonaqueous-phase liquid (DNAPL) has not been detected during previous site investigations.

SECTION 2

DATA REVIEW AND CONCEPTUAL MODEL DEVELOPMENT

Previously reported site-specific data were reviewed and used to develop a conceptual site model (CSM) for the groundwater flow and contaminant transport conditions at FT-1. The CSM guides the development of sampling locations and analytical data requirements needed to support the modeling efforts and to evaluate remediation technologies, including intrinsic remediation. Section 2.1 presents a synopsis of available site characterization data. Section 2.2 presents the preliminary conceptual groundwater flow and contaminant transport model that was developed based on these data.

2.1 DATA REVIEW

The following sections are based upon review of data from the following sources:

- IRP Remedial Investigation Report (HNUS, 1993a);
- IRP Record of Decision On-Base Priority One Operable Units (Sites SW-1, IS-1, OU-1 (PS-2, PS-6, AND PS-8), FT-1 AND WW-1) (HNUS, 1993b);
- IRP Remedial Design Work Plan for Fire Training Area FT-1, Fairchild AFB, Washington (ES, 1994a)
- IRP Baseline Data Bioventing and Air Sparging Treatability Test Letter Report, Site FT-1, Fire Training Facility, Fairchild AFB, Washington (Parsons ES, 1994b);
- Addendum to the IRP Baseline Data Bioventing and Air Sparging Treatability Test Letter Report Site FT-1, Fire Training Facility, Fairchild AFB, Washington (Parsons ES, 1995);
- Analytical ITIR: Long-Term Monitoring, April 1995 Sampling Craig Road Landfill and Priority Sites SQ-1, PS-2, PS-8, and FT-01 (ES&T and MWA, 1995); and
- Long-Term Monitoring Report For Priority 1 Sites SW-1 (LF-01), PS-2 (SS-18), and PS-8 (SS-26) at Fairchild AFB, Washington (ICF Technology, Inc., 1995).

Several other reports contain site information that may be useful during the development of fate and transport models. These documents, which were unavailable during the development of this work plan, include:

- Remedial Investigation/Feasibility Study (RI/FS) Site Characterization Summary Report Priority 1 Sites Fairchild AFB [Science Applications International Corporation (SAIC), 1990];
- IRP Phase II, Stage 1 Confirmation/Qualification, Stage 1 Fairchild AFB (Battelle Laboratories, 1985); and
- IRP Phase I Records Search, 92nd Bombardment Wing, Fairchild AFB (JRB Associates, 1985).

2.1.1 Topography, Surface Hydrology, and Climate

Fairchild AFB is located within the Columbia Basin in the northeastern corner of the 55,000-square-mile Columbia Plateau Physiographic Province (ICF Technology Inc., 1995). The Columbia Plateau is bordered by mountains and highlands on all side. The northern edge of the Plateau gives way to the Okanogan Highlands roughly 75 miles north of Fairchild AFB, while the eastern end of the Plateau is bordered by the Rocky Mountains, approximately 75 miles east of Fairchild AFB. The Plateau extends approximately 250 miles to the south and west of the Base. The Blue Mountains border the Plateau on the south, and the Cascade Mountains border the Plateau on the west. There is a watershed divide in the center of the Plateau that causes streams north of this divide to flow in a northerly direction, and streams south of the divide to flow in a southerly direction. The topography of the region was shaped by glacial flood waters that eroded the surface of the Columbia Plateau during the Pleistocene Epoch (approximately 22,000 years ago) (HNUS, 1993a). The surface topography of the Base and surrounding region is generally flat to gently rolling grasslands sloping slightly to the east-northeast. Ground surface elevations on the Base range from 2,400 to 2,460 feet above mean sea level (ft msl) (Figure 2.1).

Fairchild AFB is located in the northern half of the Columbia Plateau, north of the watershed divide. All surface water drainage in this region of the Columbia Plateau generally flows to the north or northwest (Flint, 1936). The Base is approximately 7 miles west-southwest of the Spokane River, which flows through the city of Spokane [US Geological Survey (USGS), 1973a, 1973b, 1986a, and 1986b]. Two other drainages in the vicinity of the Base are Deep Creek and Marshall Creek, located approximately 2 miles northwest and 8 miles southeast of the Base, respectively. These creeks flow northwest and join the Spokane River, which drains this region of the Plateau. Surface water on the Base is generally limited to precipitation runoff and intermittent flow in No Name Ditch near the eastern boundary of the Base just north of FT-1. Precipitation runoff is controlled within a series of manmade ditches. Reportedly, water collected in the ditch system does not leave Base property, and surface water either infiltrates the subsurface or evaporates (HNUS, 1993a).

At FT-1, storm precipitation is reported to infiltrate into the ground. A manmade drainage ditch extends approximately 300 feet eastward from the oil/water separator on the eastern edge of the training pit and terminates in a broad flat marshy area. The oil/water separator treated discharge generated during fire training exercises. Fire training exercises ceased at the site in 1991, and the oil/water separator is currently

inactive. Snowmelt runoff was observed in the ditch during the RI activities (HNUS, 1993a).

Fairchild AFB is surrounded by semi-arid grasslands common to this area of the Columbia Basin. The Base receives approximately 16 inches of rainfall during the warm dry summers, and 40 inches of snowfall during the cool, damp winter months. The prevailing wind direction in the region is to the northeast at an average speed of 8 miles per hour (ICF Technology, Inc., 1995). The average evapotranspiration rate for the region is reported at 12.8 inches per year (JRB Associates, 1985). Maximum infiltration rates usually occur during the early spring when snow melt runoff combines with precipitation while temperatures are still cool and evapotranspiration is low (HNUS, 1993a).

2.1.2 Overview of Geology and Hydrogeology

2.1.2.1 Regional Geology and Hydrogeology

The shallow subsurface geology at Fairchild AFB is a mixture of Quaternary sediments consisting of eolian, glacial, fluvial, lacustrine deposits (Figure 2.2). Flood waters from the glacial-era Missoula Lake scoured the basalt bedrock of this region of the Columbia Plateau. Coarse sediments were deposited during the early recession of flood waters, followed by finer sediments during the later stages of floodwater recession. The alluvium in the vicinity of the Base generally consists of fine-grained sediments deposited by receding glacial flood waters. Clays and silts are intermixed with sandy silts, clays, and gravels (HNUS, 1993a). Additionally, loess (windblown silt) deposits are interbedded in portions of the unconsolidated deposits. Unconsolidated deposits generally follow the slope of the underlying basalt bedrock (ICF Technology, Inc., 1995).

Bedrock in the vicinity of the Base is mostly Tertiary basalts of the Columbia River Basalts below Fairchild AFB are of the Wanampum Formation (HNUS, 1993a). The basalt flows in the region are interbedded with sedimentary clay and silt units of the of the Latah Formation. These layers were deposited when stream beds were isolated by the volcanic basalt flows (Cline, 1969). The Wanampum Basalt flow below the Base appears to be divided into an upper and lower flow sequence by an interbed of the Latah Formation (Figure 2.3). The upper basalt flow is 166 feet to 193 feet thick across the Base. The surface of the upper basalt flow is vesiculated, deeply fractured, and highly weathered in places. Just east of the Base the upper basalt layer was completely eroded away by the Missoula Lake flood waters. The middle of this flow contains few vesicles and fractures; the formation becomes more massive and The underlying Latah Formation deposits consist of an competent with depth. extensive silty claystone that ranges in thickness from 8.5 to 10 feet (HNUS, 1993a). Information on the geologic characteristics of the lower basalt flow was not available in the previous reports reviewed as part of this work plan; however, information on the lower basalt flow is not considered to be vital to the formation of the CSM for data collection to evaluate intrinsic remediation at FT-1.

Groundwater in the vicinity of the Base is encountered from 8 to 12 feet below ground surface (bgs) and is found in both the unconsolidated material and the

Denver, Colorado

Source: ICF Technology Inc., 1995.

PARSONS ENGINEERING SCIENCE, INC.

1

Source: ICF Technology Inc., 1995.

Denver, Colorado

Intrinsic Remediation TS Fairchild AFB, Washington

underlying basalt bedrock. Groundwater flow in the unconsolidated deposits is through intergranular pore space, while flow in the basalt is through interconnecting fractures (HNUS, 1993a). Flow across the Base is generally to the east and east-northeast, but local variations may result from local changes in bedrock topography (Figure 2.4). Groundwater in the unconsolidated material and shallow bedrock is generally unconfined, with some local semiconfined areas. The unconsolidated material and the shallow basalt are hydraulically connected by fractures, vesicles, and weathered zones. The middle region of the shallow basalt flow is more competent with less fracturing, and acts as an aquitard. The interbedded claystone between the basalt flows also acts as a confining layer (HNUS, 1993a).

Recharge of the aquifer under the Base is expected to come from upgradient flow and surface runoff infiltration. Groundwater in the shallow aquifer in the vicinity of the Base is not known to be used as a drinking water supply. Neighborhoods to the east and northeast of the Base obtain domestic and agricultural water primarily from private wells which tap aquifers in the deeper basalt flows. The closest residential neighborhoods are roughly 1,800 feet east (downgradient) of the site. Base drinking water is primarily supplied from a Base-owned well field 10 miles northwest of the Base. Additionally, there is a water supply well located in the southern area of the Base. This well also produces water from the basalt aquifer and supplies roughly 10 percent of the Base's needs (HNUS, 1993a).

2.1.2.2 FT-1 Geology and Hydrology

Site geology and hydrogeology descriptions are summarized principally from descriptions provided in the RI (HNUS, 1993a). Surface soils at the site primarily consist of Cheney and Uhlig Series clayey silts, and the description of subsurface soils underlying FT-1 is relatively consistent with the regional geology described in Section 2.1.2.1. Unconsolidated material overlying the basalt bedrock ranges in thickness from 9 feet to 30 feet across the site. Shallow deposits at FT-1 are primarily silty clays and clayey silts with sands, while deeper unconsolidated material appears to be coarsergrained and consists of silty sands and gravels. Unconsolidated material overlies two distinct basalt flows that are separated by a Latah Formation sedimentary interbed. Geologic cross sections B-B' and C-C' depict the unconsolidated material and shallow regions of the upper basalt bedrock underlying the site. The locations of these cross sections are shown on Figure 2.5, with cross section A-A' presented on Figure 2.6 and cross section B-B' presented on Figure 2.7.

Geologic features of the shallow basalt flow, sedimentary interbed, and upper portion of the deeper basalt flow underlying FT-1 were investigated during the installation of a cored hole later completed as MW-159. Packer tests were performed at 10-foot intervals during the installation of this hole. Results of the packer testing performed at FT-1 are presented in Table 2.1. The shallow basalt flow is estimated to be 192 feet thick and to extend to a depth of 207 feet bgs. The upper 50 feet of the shallow basalt flow is described as being massive weathered basalt with small vesicles and slight to moderate fracturing. The middle portion of the upper basalt flow becomes more dense with fewer vesicles and hairline fractures existing from 65 to 180 feet bgs. From 180 feet to 205 feet bgs, the flow is described as relatively nonfractured and nonvesicular massive basalt. The bottom few feet of the upper basalt flow, near the

TABLE 2.1 SUMMARY OF PACKER TEST RESULTS PERFORMED DURING INSTALLATION OF MW-159 SITE FT-1 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

Dept Interval		Bulk Hydraulic
(feet bgs)	Formation	Conductivity (K)
		(ft/day)
20-30	Basalt A	2.66
25-35	Basalt A	2.56
35-45	Basalt A	0.02
45-55	Basalt A	0.01
<i>55-</i> 65	Basalt A	0.02
65-75	Basalt A	0.04
75-85	Basalt A	0.02
85-95	Basalt A	0.03
95-105	Basalt A	0.02
106-116	Basalt A	0.02
105-115	Basalt A	0.03
115-125	Basalt A	0.05
125-135	Basalt A	0.09
135-145	Basalt A	0.32
145-155	Basalt A	0.33
155-165	Basalt A	0.32
160-170	Basalt A	0.33
165-175	Basalt A	0.30
175-185	Basalt A	0.31
185-195	Basalt A	0.34
197-202	Basalt A	0.58
202-207	Basalt A	0.52
207-212	Interbed A	0.60
209-214 ^{/a}	Interbed A	0.60
216-221	Basalt B	0.82
222-227	Basalt B	0.52

^{a'} The 214- to 216-foot interval was not tested to avoid bridging the Interbed A and Basalt B interface.

Latah interbed, becomes more vesicular. The Latah Formation interbed separating the upper and lower basalt flows is approximately 8.5 feet thick and extends from 207 feet bgs to 215.5 feet bgs. This interbed consists of silty claystone with deposits of organic material. The upper portion of the deep basalt flow is described as highly vesicular with a moderate to high number of fractures and minor weathering. Deeper portions of the lower basalt flow had not been investigated in reports reviewed during the development of this work plan.

There are currently 39 groundwater monitoring wells associated with FT-1, including 18 wells screened in the unconsolidated deposits and 18 wells screened in the basalt bedrock. Construction details for three monitoring wells, MW-225, MW-226, and MW-227, were not available in reports reviewed during the development of this work plan. Groundwater at the site resides in the Quaternary glacial deposits and in the underlying upper basalt bedrock. Available monitoring well construction details and select well level data are presented in Table 2.2. Figure 2.8 shows the groundwater surface for FT-1 in March 1992.

In the immediate vicinity of the site, groundwater flows to the east-southeast, which is consistent with the regional flow direction. Groundwater elevations measured in March 1992 indicate the average hydraulic gradient across FT-1 is approximately 0.002 foot per foot (ft/ft); however, the hydraulic gradient in the source area and immediately east of Rambo Road is somewhat steeper, at 0.007 ft/ft (Figure 2.8) (HNUS, 1993a). Fluctuations of up to 9 feet were observed in monitoring well data collected from February 1991 to April 1992 (HNUS, 1993a). Typically, groundwater elevations at Fairchild AFB are lower during August through November, and higher during April through July (ICF Technology, Inc., 1995).

Six unconsolidated deposits/shallow bedrock groundwater monitoring wells pairs (MW-49 and MW-59; MW-149 and MW-150; MW-50 and MW-100; MW-153 and MW-154; MW-157 and MW-158; and MW-53 and MW-61) were installed to investigate vertical hydraulic gradients and the vertical extent of contamination in groundwater underlying FT-1. Groundwater elevation data collected in 1991 and 1992 suggest downward vertical gradients of 0.006, 0.01, 0.006, and 0.0006 ft/ft for monitoring well pairs MW-49 and MW-59, MW-149 and MW-150, MW-50 and MW-100, and MW-157 and MW-158, respectively. Water elevations measured within the groundwater monitoring wells MW-154 and MW-153 did not indicate the presence of a vertical gradient near this pair (HNUS, 1993a). In 1992, the maximum downward vertical gradient was measured at 0.58 ft/ft between wells MW-53 and MW-61. Basalt bedrock well MW-61 exists in a high-yielding fracture zone. Because of the large differences in hydraulic heads between well MW-61 and the nearby unconsolidated deposit well and other site wells screened between 60 and 70 feet bgs in the basalt bedrock, it is believed that the fracture zone at MW-61 is hydraulically isolated from other site wells of similar or shallower depth.

Large differences in groundwater elevations were observed between all well pairs screened in the shallow bedrock and in the deeper regions of the upper basalt flow. In 1992, groundwater elevations measured in deep bedrock monitoring wells MW-159, MW-98, and MW-163 were 172 feet, 80 feet, and 169 feet lower than measurements collected from MW-51 the nearest shallow well. These differences appear to indicate

TABLE 2.2
SUMMARY OF WELL INSTALLATION DETAILS AND SELECT GROUNDWATER ELEVATION DATA SITE FT-1 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

Well	Sampling Event or	Depth to Bottom of Well	Screened Interval	Elevation of Reference Point for Measurements	Depth to groundwater	Groundwater Elevation	
Identification	Date	(feet bgs) ^{a/}	(feet bgs)	(feet msl) ^{b/}	(feet)	(feet msl)	Source c
MW-1	2/91	15	4.5-10	2404.06	7.01	2397.05	1
	3/92	$NA^{d/}$		2404.06	7.21	2396.85	1
	4/95	13.55		NA	5.26	NA	2
MW-2	2/91	14	6.3-11.8	2406.95	7.94	2399.01	1
	3/92	NA		2406.95	7.95	2399	1
	4/95	13.55		NA	4.28	NA	2
MW-3	2/91	11	3.5-9	2403.61	6.54	2397.07	1
	3/92	NA		2403.61	6.84	2396.77	1
	4/95	13.5		NA	5.16	NA	2
MW-4	2/91	15	7.35-12.85	2404.93	7.37	2397.56	1
	3/92	NA		2404.93	7.59	2397.34	1
	4/95	14.4		NA	5.54	NA	2
MW-6	2/91	17.5	5.8-16.75	2406.45	9.87	2396.58	1
	3/92	NA		2406.45	10.02	2396.43	1
MW-13	2/91	15.5	8.05-15.55	2404.35	9.87	2394.48	1
	3/92	NA		2404.35	9.85	2394.5	1
MW-49	2/91	13	8-13	2400.95	5.84	2395.11	1
	3/92	NA		2400.95	6.11	2394.84	1
MW-50	2/91	20	6-16	2400.22	4.24	2395.98	1
	3/92	NA		2400.22	4.53	2395.69	1
	4/95	17.45		NA	3.7	NA	2
MW-51	2/91	10	5-10	2400.77	3.87	2396.9	1
	1/92	NA		2400.77	5.9	2394.87	1
	3/92	NA		2400.77	4.13	2396.64	1
MW-52	2/91	15.6	5.6-15.6	2409.31	9.41	2399.9	1
	3/92	NA		2409.31	8.94	2400.37	1
MW-53	2/91	21.6	11.5-21.5	2409.75	10.15	2399.6	1
	3/92	NA		2409.75	10.05	2399.7	1
MW-59	2/91	73.5	59.5-70	2401.2	6.45	2394.75	1
	3/92	NA		2401.2	6.73	2394.47	1
MW-61	2/91	72	59.5-70	2408.63	37.64	2370.99	1

TABLE 2.2 (Continued) SUMMARY OF WELL INSTALLATION DETAILS AND SELECT GROUNDWATER ELEVATION DATA SITE FT-1 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

		Depth to		Elevation of			
	Sampling	Bottom of	Screened	Reference Point	Depth to	Groundwater	
Well	Event or	Well	Interval	for Measurements	groundwater	Elevation	
Identification	Date	(feet bgs) ^{a/}	(feet bgs)	(feet msl) ^{b/}	(feet)	(feet msl)	Source
MW-61 (cont.)	3/92	NA		2408.63	37.07	2371.56	
MW-98	2/91	203.46	193.13-203.46	2400.14	86.88	2313.26	1
1111 70	1/92	NA	175.15-205.40	2400.14	85.3	2314.84	î
	3/92	NA		2400.14	84.18	2315.96	1
MW-100	5.72	1		2100.11	04.10	2010.70	•
100	2/91	53.43	43.1-53.43	2400.36	4.69	2395.67	1
	3/92	NA	.5.12 551.15	2400.36	4.94	2395.42	1
	5/95	NA		NA	4.14	NA	2
MW-104	2,,,,	• • • •		••••		• • • • • • • • • • • • • • • • • • • •	_
	2/91	9.24	3.99-9.24	2402.37	3.94	2398.43	1
	3/92	NA	5.55 5.2	2402.38	4.17	2398.21	1
MW-119	5,72			2102.50	,	20,0.21	-
227	6/91	204	191-201.74	NA	59.55	NA	1
MW-121	0/71	201	171 201.74	1411	37.33	1171	•
121	1/92	22	6-16.3	NA	NA	2380.1	1
	3/92	NA	0 10.5	2388.34	7.85	2380.49	1
MW-123	5172	1471		2300.54	7.05	2500.45	•
14144 125	1/92	17	7-17	NA	NA	2384.93	1
	3/92	NA	, .,	2394.13	8.07	2386.06	1
MW-124	3,72	1471		2374.15	0.07	2500.00	•
121	6/91	55.7	44.7-55.7	NA	7.12	NA	1
	3/92	NA		2397.89	6.69	2391.26	1
MW-125	0.72	• • • •		20,,	0.05	20, 1.20	-
	6/91	16	4.5-14.5	NA	5.55	NA	1
	3/92	NA		2397.78	7.87	2389.91	1
MW-148	0.72			20,,,,,	,,,,,	25 07 .7 1	-
	1/92	10	5-10	NA	NA	2396.56	1
	3/92	NA	- 10	2406.97	8.65	2398.32	1
MW-149	5.72			2100.51	0.05	2070.02	-
	1/92	14	9-14	NA	NA	2396.04	1
	3/92	NA	, ,	2406.87	9.51	2397.36	1
MW-150	5.72			2100.07	7.51	2077.00	-
	1/92	43	32-42	NA	NA	2395.77	1
	3/92	NA		2406.78	9.71	2397.07	1
MW-151	J. / M			2.00.70		2027.07	•
151	1/92	30.3	20-30	NA	NA	2395.03	1
	3/92	NA	20-30	2400.45	4.35	2396.1	1
	4/95	32.05		NA	3.1	2390.1 NA	2
MW-152	71/3	32.03		MA	J.1	1472	
11111 152	1/92	12	7-12	NA	NA	2395.11	1
	3/92	NA	1-12	2402.23	5.92	2395.11	1
	4/95	13.45		NA	4.28	2390.31 NA	2

TABLE 2.2 (Concluded)

SUMMARY OF WELL INSTALLATION DETAILS AND

SELECT GROUNDWATER ELEVATION DATA

SITE FT-1 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

		Depth to		Elevation of			
	Sampling	Bottom of	Screened	Reference Point	Depth to	Groundwater	
Well	Event or	Well	Interval	for Measurements	groundwater	Elevation	
Identification	Date	(feet bgs) ^{a/}	(feet bgs)	(feet msl) ^{b/}	(feet)	(feet msl)	Source
MW-153	1/92	9.2	4-9	NA	NA	2394.88	1
	3/92	NA		2402.21	6.18	2396.03	1
	4/95	11.3		NA	5.14	NA	2
MW-154	1/92	30.3	20-30	NA	NA	2394.88	1
	3/92	NA		2401.52	5.51	2396.01	1
	4/95	32.57		NA	4.62	NA	2
MW-155	1/92	9	4-9	NA	NA	2395.08	1
	3/92	NA		2402.37	5.98	2396.39	1
	4/95	11.35		NA	4.52	NA	2
MW-156	1/92	39.3	29-39	NA	NA	2395.38	1
	3/92	NA		2405.35	8.07	2397.28	1
	4/95	41.7		NA	5.85	NA	2
MW-157	1/92	36	26-36	NA	NA	2394.96	1
	3/92	NA		2401.71	5.24	2396.47	1
	4/92	NA		2401.71	5.24	2396.47	1
MW-158	4/92	89.5	78.2-88.2	· NA	NA	2396.44	1
	3/92	NA		2401.02	4.58	2396.44	1
MW-159	4/92	230	180-190	NA	NA	2223.2	1
	3/92	NA		2401.32	178.12	2223.2	1
MW-160	1/92	40	17-27	NA	NA	2395.04	1
	3/92	NA		2401.57	5.11	2396.46	1
MW-161	1/92	42	32-41.6	NA	NA	2394.02	1
	3/92	NA		2400.84	4.07	2396.77	1
MW-162	1/92	39	29-39	NA	NA	2394.35	1
	3/92	NA		2401.49	5.14	2396.35	1
MW-163	1/92	180.7	170.7-180.7	NA	NA	2225.62	1
	3/92	NA		2401.49	175.87	2225.62	1

Note: Additional groundwater elevation data can be found in Appendix M of RI report (HNUS, 1993a).

a/ Feet bgs = feet below ground surface.

b/ Feet msl = feet above mean sea level.

c/ Sources:

^{1.} HNUS, 1993a.

^{2.} ES&T and MWA, 1995.

 $^{^{\}rm d/}$ NA = Information not available.

that groundwater in the unconsolidated deposits and the shallow bedrock is not in communication with groundwater in deeper regions of the bedrock. Generally, however, groundwater in the unconsolidated deposits and the shallow bedrock appears to be in hydraulic communication, with indications of a small downward hydraulic gradient.

Pumping tests were performed in the unconsolidated material monitoring wells MW-1 and MW-155, both of which are screened across gravely sand deposits. Drawdown was not observed during either test in the nearest observation wells MW-3 and MW-153, located approximately 170 feet and 187 feet from their respective pumping wells (Figure 2.5). A semilog analysis was used to estimate the hydraulic conductivities and transmissivities for the pumping tests performed at MW-1 and MW-155 (Theis, 1935). The hydraulic conductivities calculated from the pump test data are 418 feet per day (ft/day) at MW-1 and 37 ft/day at MW-155. Transmissivities were calculated at 2,410 square feet per day (ft²/day) and 214 ft²/day at wells MW-1 and MW-155, respectively (HNUS, 1993a). An additional pumping test was performed in the shallow bedrock well, MW-157. Drawdown was observed in wells MW-160 and MW-161 approximately 40 and 48 feet away from MW-157 (see Figure 2.5). The average hydraulic conductivity and average transmissivity calculated from drawdown data collected from the observation wells are 0.8 ft/day and 21.8 ft²/day, respectively. Pumping tests could not be performed in the deeper regions of the upper basalt flow because sufficient pumping rates could not be sustained in installed pumping wells (HNUS, 1993a).

2.1.3 Summary of Analytical Data for FT-1

2.1.3.1 Soil Sampling and Analytical Results

Historical soil sampling data are available for sampling events that took place in 1986, 1988, 1990, and 1994. In 1986, six soil samples were collected from boreholes B-1 through B-3 installed at FT-1. Two years later, 20 additional soil samples were collected during the installation of monitoring wells MW-49 through MW-53 and boreholes BH-1 through BH-5. In 1990, 33 additional soil samples were collected from 20 additional soil boreholes, 001 through 020. In 1994, ES (1994b) collected seven soil samples during the installation of four vapor monitoring point (VMPs) at FT-1 (Figure 2.9). At a minimum, soil samples collected during these sampling events were analyzed for BTEX, trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), vinyl chloride (VC), and total petroleum hydrocarbon (TPH) data. The ROD specifies that benzene is the primary contaminant of concern at the site (HNUS, 1993b); however, BTEX, TPH, and TCE-related contaminants are all of interest for the intrinsic remediation demonstration for shallow groundwater underlying FT-1. Soil samples collected during previous investigations were analyzed for additional contaminants; however, results reported for additional contaminants are not of primary importance for completion of this TS and are not summarized in this work plan. Table 2.3 summarizes BTEX and TPH results for all soil samples collected during these sampling efforts. CAH contamination has not been detected in site soils (ES, 1994b); therefore, results are not reported in Table 2.3. The approximate extent of soil BTEX and TPH contamination and the locations of all soil samples collected at FT-1 are shown in Figure 2.9. Isoconcentration lines have not been added

SUMMARY OF SOIL ANALYTICAL DATA SITE FT-1 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

		Sample				Total	Total		
Soil Borehole	Sampling	Depth	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	$^{\mathrm{a}}$ HdL	
Identification	Date	(feet bgs) ^{b/}	(mg/kg) ^{c/}	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source ^{d/}
B-1	1986	0.0-0.5	ND 6	ND ND	QN N	S S	Q.	730	1
B-1	1986	2.0-3.5	N QN	R	QN QN	QN Q	Ð	S	1
B-2	1986	0.0-0.5	NO	R	N QN	Q.	R	927	-
B-2	1986	0.5-2.0	ND	5.3	3.2	36.2	44.7	1660	-
B-3	1986	5.0-6.5	35.7	109.7	52.3	329.1	526.8	8350	1
B-3	1986	10.0-11.5	1	2.8	4.2	21.7	29.7	1160	-
BH-1	1988	4	NO ON	N Q	QN ON	8	8	2000	-
BH-2	1988	4.5	QN QN	N Q	ND	R	R	S	-
BH-3	1988	4.5	QN QN	QN	N ON	R	N N	S	-
BH-4	1988	4.8	QN ON	Q.	NO	S	R	R	-
BH-5	1988	5	ND	N N	N Q	S	R	S	_
MW-49	1988	8.5-9.0	ND	S N	ND	N	R	S	-
MW-50	1988	3.5-4.0	ΩN	QN Q	NO	N N	R	2	
MW-50	1988	8.0-8.5	N Q N	QN Q	NO	N N	R	R	-
MW-50	1988	13.0-13.5	ND	QN Q	N	N N	R	QN Q	-
MW-51	1988	3.0-3.5	QN QN	QN Q	ND	S	QN ON	Q.	-
MW-51	1988	3.5-4.0	ΩN	Q.	S	S	R	21	-
MW-51	1988	8.0-8.5	QN QN	R	S	R	£	R	-
MW-52	1988	0.0-0.5	QN ON	QN	N ON	N N	R	QN	-
MW-52	1988	3.0-3.5	QN ON	2	N ON	N N	R	B	-
MW-52	1988	8.0-8.5	QN ON	R	QN ON	N N	N N	R	-
MW-52	1988	13.0-13.5	QN ON	R	N Q	N ON	R	R	-
MW-53	1988	3.0-3.5	N QN	QN Q	ON	QN	N N	R	-
MW-53	1988	8.0-8.5	NO	QN Q	QN	ND	N N	R	-
MW-53	1988	8.5-9.0	QN ON	QN Q	N ON	R	Q.	R	_
WW-53	1988	13.0-13.5	Ę	Ę	Š	2	C Z	5	•

TABLE 2.3 (Continued)
SUMMARY OF SOIL ANALYTICAL DATA
SITE FT-1 INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

Soil Borehole Sampling Identification Date 001 1991 002 1991 003 1991 004 1991 005 1991 005 1991 006 1991 007 1991 007 1991 008 1991 007 1991 008 1991 009 1991	D 0	Depth (feet bgs) b/ 4-6 6-8 2-4 2-4 2-6	Benzene (mg/kg) ^{c/}	Toluene	Ethylbenzene	Xylenes	BTEX	TPH "	
		,a	(mg/kg) ^{c/}	(maller)					
001 199 002 199 003 199 004 199 005 199 006 199 007 199 007 199			CIN	(IIIg/Kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source d/
			J	ND	ND	QN	QN Q	Q	-
			ND	N	SP	QN	QN ON	R	-
			QN N	QN	QN	ND	N N	180	1
			N QN	ND	18 J ^{f/}	130 J	148 J	9069	_
			QN N	Q.	QN	ND	Q.	N N	_
			ND	ND	QN	N Q	QN	4300	-
			N QN	N N	QN ON	S	Q.	R	_
			QN N	QN N	QN ON	ND	QN	R	-
			ND	0.008 J	ND	S	0.008 J	Q.	_
			QN N	N N	N ON	N N	QN Q	R	_
			QX QX	20 J	14 J	100 J	134 J	R	-
			QN QN	S	N QN	N N	QN	62	1
			QN QN	Ð	NO	2.8	2.8	QN Q	_
			14	170	61	110	355	7500	-
			N N	45	18	140	203	2200	1
			ND ND	N N	ND	N N	Q.	R	-
			ND ND	Q.	ND	ND	Q	450	-
			N Q	N	QN Q	QN SI	R	R	1
			N N	QN	N Q	QN	R	25	-
			ND	R	ND	ND	QN Q	37	1
			N Q	R	23	14	37	2900	-
			ND	QN	0.027 J	0.18 J	0.207J	1600	-
			N N	R	N Q	3.9 J	3.9 J	890 J	_
			ND	R	2.6 J	15 J	17.6 J	4500	_
			N	R	ND	N N	ND ND	Q Q	-
			N	ND	ON ON	ND ND	ND	ND	1

TABLE 2.3 (Concluded)
SUMMARY OF SOIL ANALYTICAL DATA
SITE FT-1 INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

ole n		Sample				lotal	lotai		
Identification	Sampling	Depth	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	TPH ^{a/}	
0.00	Date	(feet bgs) ^{b/}	(mg/kg) ^{c/}	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Source ^d
OI8	1991	2-4	QX	N N	QN ON	ND ND	S.	QN	1
018	1991	4-6	QN QN	N ON	11	69	80	3200	_
019	1991	0-7	QN	48	29 J	200 J	277 J	3500	-
020	1991	0-10	QN	8	QN	N Q	N N	48	_
VMPA	1994	7	ΩN	0.015	S	QN	0.015	110	2
VMPA	1994	4	ND	Q.	NO	N N	Q.	2000	2
VMPB	1994	7	N QN	0.086	QN N	N Q	0.086	25	2
VMPB	1994	4	QN QN	0.5	N QN	0.023	0.523	1800	2
VMPC	1994	2	ΩN	0.068	Q.	1.9	1.968	30	7
VMPC	1994	4	0.096	0.15	0.087	0.61	0.943	4900	2

Notes:

^{a/} TPH = total petroleum hydrocarbons.

 $^{b'}$ feet bgs = feet below ground surface.

c' mg/kg = milligrams per kilogram.

d Sources:

1. HNUS, 1993

2. ES, 1994b.

e' ND = Not detected.

f' J = estimated value.

to Figure 2.9 because active *in situ* remedial efforts are currently treating these soils, and current soil data are not available.

The greatest BTEX and TPH contamination was detected in soil samples collected from the burn pit and the area south of the burn pit (Table 2.3). At FT-1, the highest soil concentrations of BTEX and TPH were detected in 1986 in borehole B-3 installed in the southern portion of the burn pit (Figure 2.9). The highest BTEX concentrations in the 1990 soil sampling effort were detected in the 4- to 6-foot bgs sample collected from borehole 010, south of the burn pit (HNUS, 1993a). BTEX and TPH also were detected in soil samples collected from the VMPs installed during the bioventing pilot test and located approximately 15 feet south of the burn pit (ES, 1994b).

A secondary region of soil contamination has been identified east of the burn pit. Samples collected in 1986 from soil boreholes B-1 and B-2, located approximately 200 and 250 feet east of the burn pit, respectively, had elevated BTEX concentrations (Table 2.3). A soil sample collected in 1988 from soil borehole BH-1, located approximately 400 feet east of the burn pit, also had elevated concentrations of soil contamination. Each of these boreholes is located immediately downstream and downgradient from the effluent outfall from the oil/water separator (Figure 2.9). Additionally, BTEX and TPH were detected in one composite sample collected from 019 along the eastern edge of the burn pit upgradient from the oil/water separator and in samples from 101 southwest of the pit, and 014 and 015 to the east along the ditch. In summary soil contamination at FT-1 has been identified along the southern and eastern edges of the burn pit and east of the oil/water separator.

2.1.3.2 Groundwater Sampling and Analytical Results

A total of 40 monitoring wells have been installed in the vicinity of FT-1. In 1988, five monitoring wells (MW-49, MW-50, MW-51, MW-52, and MW-53) were installed at FT-1. In 1991, 16 additional monitoring wells (MW-148 through MW-163) were installed at FT-1 (HNUS, 1993a). Although numerical well numbers suggest the sequence of installation of monitoring wells at FT-1, exact dates of installation and other construction details for the remaining 17 wells were not presented in previous reports reviewed during the development of this work plan.

Groundwater quality data reviewed during development of this work plan were collected during sampling events performed at FT-1 in 1986, 1987, 1989 (two sampling events), 1990, 1991 (three sampling events), 1993, and 1995. Concentrations of VOCs and TPH were measured in groundwater samples collected during all sampling events. Other analytical data collected during previous sampling events including total dissolved solids, total suspended solids, chemical oxygen demand, biological oxygen demand, total organic carbon (TOC), ammonia, common anions, and nitrate/nitrite data, will be useful for evaluating intrinsic remediation at FT-1, and efforts will be made to obtain this data (HNUS, 1993a). However, only analytical data for BTEX, TPH, TCE, and TCE breakdown products were available for inclusion in this work plan. Concentrations of dissolved BTEX, TPH, TCE, and TCE breakdown products measured in groundwater samples collected during previous investigations are summarized in Table 2.4. Benzene and total BTEX concentrations detected in

TABLE 2.4
SUMMARY OF GROUNDWATER ANALYTICAL DATA
SITE FT-1 INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

	GI								;			
	Date	Benzene	Benzene Toluene	Ethylbenzene	Xylenes	BTEX*	TPH ^{b/}	TCE°	cis-1,2-DCE ^{d/}	cis-1,2-DCE ^d trans-1,2-DCE Vinyl Chloride	Vinyl Chloride	
Location	(month/year)	(μg/L) e/	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(mg/L) ^h	(μg/L)	(μg/L)	(μg/L)	(µg/L)	Source 8/
MW-1		ND ^M		ND	0.6 J	0.6 J ^{i/}	ND	ND	ND	2.9 J	ND	1
	11/87	Q	Ω	ND	QN N	N	Ω	2.3 J	QN	6.5	ND	-
	4/89	43	ΩN	75	87	205	0.3 J	2.1 J	ND	17	ΩN	1
	48/	Q.	QN Q	ND	Ω	ΩN	ΩN	1.0J	ΩN	1.0 J	ND	1
	4/91	6	QN Q	NO	Ω	N Q	QN	Q	ΩN	ΩN	ΩN	-1
	11/91	ND	NΩ	N	ΩN	ND	ND	ΝΩ	ND	ND	ND	1
	4/95	1.5	1.6	ND	QN	3.1	NA j'	Ω̈́	3.6	ND	NO	7
MW-2	11/86	ND	S	N Q	Ŋ	QN	N	NO	ND	73.1	ND	1
	11/87	Q.	ΩN	QN	Ω	ΩN	QN Q	16	Ω	46	ND	
	4/89	ΩN	ΩN	ND	ΩN	Q	Ω	53	ND	360	ND	-
	68/L	ND	N ON	N	ΩN	QN	ΩN	12	ND QN	38	QN	-
	4/91	ΩN	ΩN	QX	Ω	N	ND	12	ΩN	76	ΝΩ	1
	11/91	Ω	N	QN	Ω	Q.	ND	ო	ND	6	Ω	1
	4/95	N	1.4	2.7	7.7	11.8	NA	6.1	89	34	QN	7
MW-3	11/86	1.5 J	0.4 J	1.4	8.1	11.4 J	NO	N Q	ND	ND	35.9	1
	11/87	QN	3 J	Q.	27	30 J	Q N	Ω	Q.	ΩN	Q Q	-
	4/89	79	ΩN	89	180	327	ND	ND	Q.	QN	16	-
	4/89	170	Q N	100	250	520	ND	Ω	ND	Ω	QN QN	-
	4/91	99	N	45	110	221	ΩN	Ω	Ν Ω	ΩN	ΩN	-
	11/91	320	N N	220	780	1320	ND	ND	ND	QN	Ω	-
	4/95	220	9.2	150	539.2	918.4	Υ Υ	S	2.1	1.5	43	7
MW-4	11/86	ΩN	Q Q	ND	QN	N	ND	0.54 J	N	ND	QN	-
	11/87	QN	Q.	NO	ΩN	Q	R	N	N Q	QN	Q	-
	4/89	QN.	ND	ΩN	ΩN	N Q	0.3 J	N N	ND	QN	NO	1
	48/	QX	ΩN	ND	ND	N Q	N	QN	ND	QN Q	NO	1
	4/91	QN.	QN	N QN	N N	S	N N	Q.	ΩN	QN	ND	
	11/91	N N	Ω	ΩN	N	Q.	N Q	ND	ND	ND	ND	1

022/722450/FCWP/19.XLS

TABLE 2.4 (Continued)
SUMMARY OF GROUNDWATER ANALYTICAL DATA
SITE FT-1 INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

	Sampinig				Loral	LOGI						
	Date	Benzene Toluene	Toluene	Ethylbenzene	Xylenes	BTEX*	TPH ^{b/}	TCE°'	cis-1,2-DCE ^{d/}	cis-1,2-DCE ^{dl} trans-1,2-DCE Vinyl Chloride	Vinyl Chloride	
Location	(month/year) (µg/L) e/	(μg/L) ^{c/}	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L) h	$(\mu g/L)$	(µg/L)	(μg/L)	(μg/L)	Source g/
MW-4 (cont.)	4/95	ND	Ą	QN	ND	ND	NA	ND	QN	QN	ND	7
9-MM	11/91	NO	ND	ND	N Q	N Q	S S	ND	ND	QN	QN QN	
MW-13	11/91	Ω	QZ Q	NO	ND	Ω	N Q	ND	ND	ΩN	ND	1
MW-50	4/89	ΩN	ND	ΩN	ND	Z	QX	4.2 J	QN	4.0 J	Q.	1
	4/8	Q.	N N	ND	ΩN	ΩN	QN Q	2	ND	8.0	ΩN	
	06/9	ΩN	N	ND	ND	Q.	Q.	QN	QN	ΩN	ΩN	
	8/90	Ω	ND	S	N Q	Q.	QN	2.3	ΩN	4.0 J	QN	-
	11/91	S	ND	Q Q	ND	Q.	QN O	7	Ω	ΩN	ND	-
	4/95	NO	ND	ND	ΩN	Q	N A	1.8	Q	ΩN	ΩN	7
MW-51	4/89	ND	QN Q	ΩN	Š	N Q	ND	5.7	ND	N Q	Q.	1
	68/L	ND	N N	ΩN	S	Q	Q.	9	QN ON	QN QN	Q	1
	06/9	S	N	QN QN	N	Q	N Q	Ω	ND	ΩN	QN	-
	8/90	S	N	QZ QZ	Q.	S	QN	2	4.0 J	ΩN	ΩN	-
	11/91	S Q	ND	N Q N	QN Q	Q.	NO	2	QN	QN	ND	+-1
MW-52	11/91	2 2	ND	ND	N Q	Q	QN Q	ND	ND	ND	QN	
MW-53	11/91	ND	ND	ΩN	ND	N	ND	Q	ND	ND	ND	-
MW-61	11/91	QN	N	QN QN	ND	N	QN	ND	ND	ND	ND	1
MW-98	2/91	N	Q	ΩN	N	N	N Q	Q.	QN	ND	NO	-
	4/91	QN Q	N Q	ΩN	ΩN	ΩN	QN	ND	ND	Z	ND	
	11/91	ND	ND	ΩN	ΩN	ΩN	ΩN	Q.	ΩN	ND	ND	1

TABLE 2.4 (Continued)
SUMMARY OF GROUNDWATER ANALYTICAL DATA
SITE FT-1 INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

Sampling	ling		,	1 '	Total	Total	/q	/5	Puro L. O. F.			
Benzene '	•	Tolue	e :	띮	Xylenes	BTEX	TPH	TCE	cis-1,2-DCE	cis-1,2-DCE trans-1,2-DCE Vmyl Chloride	Vinyl Chloride	/8
(month/year) (µg/L) (µg/L) (µg/L) 2/91 ND ND	(J/gr/)			(J/g/L) ND	(Hg/L)	(Hg/L)	(mg/L) ND	(µg/L)	(AB/L)	(Hg/L) ND	(Hg/L)	Source 1
QN		N		ND	Q.	ΩN	ND	ΩN	ND	NO	6	
ND		Ω		ND	2	Q.	N Q	0.7	ND	ND	N	П
ND		N		ND	S	QN Q	N A	QN Q	NO	N O	4	7
2/91 ND ND		Ω		ND	ND	S	ND	Q.	ND	N	S	1
ND		ΩN		ND	ΩN	ΩN	N N	Q.	QN	NO	ΩN	-
		Z		ND	N	Š	ND	ν.	ND	QN Q	ND	~
4/91 ND ND		ND		N Q	ND	Q	ND	Ą	ND	N Q	N	1
N Q		ND		Ω	Q Q	Q.	N Q	Q	NO	NO	ND	-
		N Q N		ND	N	S	ND	N	Q	N Q	S S	1
		ΩN		N Q	QN QN	Š	NO	Q.	QN	ΩN	N Q	-
4/91 ND ND		ND		ND	ΝΩ	ΩŽ	ND	Q.	N Q	N Q	ND	
UN ON 16/11		N Q		N Q	Ω	Q.	8	Q	Q	ND	N Q	-
4/91 ND ND		ND		N QN	ΩN	NO	N Q	N Q	QX	N Q	ND	1
11/91 ND ND		Q Q		ND	Q	Ω	N	9.0	Q	QN QN	Q.	1
11/91 ND ND		NO OX		ND	N Q	N Q	N	N N	ND	QN	QN	1
11/91 ND ND		N Q		N Q	N Q	N Q	N Q	N	ND	QN	QN	~
11/91 ND ND		N Q		ND	N Q	N Q	QN QN	N	N	QN Q	QN	1
11/91 ND ND 4/95 2.1 1.6		ND 1.6		ON ON	2 2	ND 3.7	N A A	S S	S S	S S	ND 1	1 2

TABLE 2.4 (Continued)
SUMMARY OF GROUNDWATER ANALYTICAL DATA
SITE FT-1 INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

,	Sampling Date	Benzene Toluene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	TPH ^{b/}	TCE	cis-1,2-DCE ^{d/}	trans-1,2-DCE Vinyl Chloride	Vinyl Chloride	20
Location	(month/year)		(µg/L)	(μg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Source
MW-152	11/91	26	10	45	120	231	S	S	Q N	Q	Q	_
	4/95	150	7	170	585	912	Y Y	Q Q	Q	Ω	11	7
631 1151	17,01	2	ď		2	2	Ž	Ş	Z	Z	2	-
MW-133	11/31	Z Z	ב	QV.	Ž	Ž	2			Q.	2	4
	4/95	ΩN	QN	S S	Ω	Z	N A	Ω	S	N Q	Q	7
131 1111	• • • • • • • • • • • • • • • • • • • •	Ş	į	Ž	Ç	2	2	•	ď	Č	C.N	-
MW-134	16/11	Z K	Š	2 5) ·	5 5	2 5	+ 5	5 5	2 5	2 5	٠, د
	4/95	a Z	54	ND	0.1	49. I	A A	N N	ON O	Ş	Ş	4
MW-155	11/91	QX	QN	QN QN	N Q	ND	Ą	QN	N	ND	N	1
	4/95	1.5	2.4	1.8	9.9	12.3	NA	Ω	ND	ΩN	ND	7
751 /M/	11/01	2	2	Š	Ş	ב	Š	Š	Z	CN	2	-
0CI-WIW	11/91	2 2	2 5	2 5	3 5	2 2	2 2	2 2	Š	9 5	2 2	٠,
	4/93	Š	Q Q	Q N	Q.	Š	Š	Ž.))	Š	2	1
MW-157	11/91	N Q	N	Q	N Q	N Q	ND	ND	ND	QN QN	QN	***
					ļ			!	!	;	;	•
MW-158	11/91	Q Q	Š	Q	Q Z	Ž	2	Q Z	Q	QN	Q Z	-
MW-159	11/91	Q	N	QN	Q	ND	N	S	ND	QN	N	-
300 MM	70,03	Ž	V IV	Ž	2	2	2	2	\ V	۷	Ž	"
C77-MIW	10/93	Š	¥.	Y.	Ç.	Š	2	Š	¢,	T.	Q.	י
MW-226	10/93	ND	NA A	NA	NA V	N A	ND	N N	NA	NA	NA	ю
MW-227	10/93	QN QN	Ϋ́Α	NA	Ϋ́	Z	N	ND	Ä	NA	NA	ю
									;	!	!	,
RW-12	1/92	Q Q	Q	Q N	£	Q Q	Q Z	0.7	Q	QN	Q Z	1
RW-15	1/92	ND	Q.	QN QN	QN QN	QN	ND	0.2	ND	ND	N	1
RW-16	1/92	QN QN	ΩX	QN	Z	Ŋ	ΩN	0.3	N	ND	ND	1

TABLE 2.4 (Concluded)
SUMMARY OF GROUNDWATER ANALYTICAL DATA
SITE FT-1 INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

	Sampling Date	Benzene	Benzene Toluene	Ethylbenzene	Total Xylenes	Total Total Xylenes BTEX	TPH ^{b/}	TCE ^{c/}	cis-1,2-DCE ^{d/}	trans-1,2-DCE	Vinyl Chloride	
Location	(month/year) (μg/L) e/ (μg/L)	(µg/L) e/	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$ $(\mu g/L)$ $(\mu g/L)$ $^{\hbar}$ $(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(μg/L) Source ^g	Source 8/
RW-20	1/92	QN	QN	QN	ΩN	ND	ND	0.5	QN	ND	QN	1
RW-21	1/92	N	QN	N	QN	N	N Q	0.4	ΩN	ND	N Q	1
RW-23	1/92	ND	NO	NO	Ω	N Q	ND	-	ΩN	QN	ΩN	1
RW-24	1/92	QX	N	QN QN	ΔN	N Q	ND	~	ΩŽ	ND	NO	1
RW-45	1/92	ND	ND	ND	ND	ND	ND	0.3	ND	ND	ND	1

²/ BTEX = benzene, toluene, ethylbenzene, xylenes.

b/ TPH = total petroleum hydrocarbons.

c/ TCE = trichloroethene.

^d DCE = dichloroethene.

°/ μg/L = micrograms per liter.

f' mg/L = milligrams per liter.

s' Sources:

1. HNUS, 1993.

2. ES&T AND MWA, 1995.

3. ES, 1994a

^h ND = not detected.

 $^{i'}$ NA = not analyzed.

J' J = estimated value.

groundwater samples collected during the most recent 1995 sampling effort are presented in Figure 2.10. TCE and TCE-breakdown product detected during the 1995 sampling effort are presented in Figure 2.11.

Dissolved BTEX have repeatedly been identified in groundwater samples from shallow wells in the unconsolidated deposits southeast of the burn pit. Dissolved BTEX concentrations also have been detected at low concentrations in some bedrock wells southeast of the burn pit. Dissolved BTEX have not been detected in other regions of the site. Neither shallow nor bedrock wells are located within 100 feet of the burn pit. Comparison of BTEX groundwater data collected at FT-1 suggests that BTEX concentrations downgradient of the burn pit have increased with time. This trend is observed in groundwater results from monitoring wells MW-3 and MW-152. In 1995, a slight decline in the BTEX concentrations was observed at MW-3, the well closer to the burn pit. This decline may be the direct result of on-going bioventing and air sparging pilot tests, which were initiated in 1994, or it may be a statistical anomaly. Additional dissolved BTEX data are needed to fully characterize the areal extent of dissolved BTEX contamination and in order to more thoroughly understand the dynamics of the dissolved BTEX plume downgradient from the burn pit.

Low concentrations of TCE and related breakdown products have been detected consistently in three areas at the site: near the burn pit, along the eastern boundary of the Base near MW-50 and MW-100, and near the southern boundary of the Base near MW-51 (Figure 2.11 and Table 2.4). Concentrations of TCE and breakdown products measured throughout the site are relatively constant and low, equal to or less than 5 μ g/L. In the other regions of the site, the concentrations of TCE and breakdown products appear to be decreasing over time. TCE contamination also has been detected up to 1 mile downgradient from the site in surrounding residential wells, but all detected concentrations of TCE in groundwater samples collected from residential wells located immediately east-southeast of the site are below 1 μ g/L, as shown on Figure 2.12. (HNUS, 1993a).

2.2 DEVELOPMENT OF CONCEPTUAL SITE MODEL

A CSM is a three-dimensional representation of a site's hydrogeologic system based on available geological, hydrological, climatological, and geochemical data. A CSM is developed to provide an understanding of the mechanisms controlling contaminant fate and transport and to identify additional data requirements. The model describes known and suspected sources of contamination, types of contamination, affected media, and contaminant migration pathways. The model also provides a foundation for formulating decisions regarding additional data collection activities and potential remedial actions. The CSM for FT-1 will be used to aid in selecting additional data collection points and to identify appropriate data needs for modeling and hydrocarbon degradation using groundwater flow and solute transport models.

Successful conceptual model development involves:

• Defining the problem to be solved;

- Integrating available data, including
 - Local geologic and topographic data,
 - Hydraulic data,
 - Site stratigraphic data,
 - Contaminant concentration and distribution data;
- Evaluating contaminant fate and transport characteristics;
- Identifying contaminant migration pathways;
- Identifying potential receptors and receptor exposure points; and
- Determining additional data requirements.

2.2.1 Intrinsic Remediation and Groundwater Flow and Solute Transport Models

After a site has been adequately characterized, fate and transport analyses can be performed to determine the potential for contaminant migration and whether any pathway for exposure of human or ecological receptors to site contaminants is complete or may be completed in the future. Groundwater flow and solute transport models have proven useful for predicting BTEX plume migration and contaminant attenuation by natural biodegradation. Analytical solute transport models and the Bioplume II numerical model (Rifai et al., 1988) can be used to evaluate critical groundwater fate and transport processes that may be involved in some of the migration pathways to human and ecological receptors. Quantitative fate and transport analyses can be used to determine what level and extent of remediation is required. Where remedial systems are in place or are in development (such as at FT-1), assumptions on the effectiveness of these systems at reducing source and mass, reducing dissolved contaminant concentrations in the groundwater, or increasing the availability of electron acceptors can also be included in the models.

An accurate estimate of the potential for natural biodegradation of BTEX and CAH compounds in groundwater is important to consider when determining whether fuel hydrocarbon or chlorinated solvent contamination presents a substantial threat to human health or the environment, and when designing a cost-effective remedial system capable of eliminating or abating these threats. Over the past two decades, numerous laboratory and field studies have demonstrated that subsurface microorganisms can degrade a variety of hydrocarbons (Lee, 1988). This process occurs naturally when sufficient oxygen (or other electron acceptors) and nutrients are available in the groundwater. The rate of natural biodegradation is generally limited by the lack of oxygen (or other electron acceptors) rather than by the lack of nutrients such as The supply of oxygen to unsaturated soil is constantly nitrogen or phosphorus. renewed by the vertical diffusion from the atmosphere. The natural biodegradation of CAHs occurs through the process of cometabolism in which enzymes or cofactors produced during the degradation of organic materials in the aquifer serve as catalysts in the degradation of CAHs. Norris et al. (1994) documents theory and research related to the cometabolism of CAH compounds.

2.2.2 Biodegradation of Dissolved BTEX Contamination

The positive effect of natural attenuation processes (e.g., advection, dispersion, sorption, and biodegradation) on reducing the actual mass of contamination dissolved in groundwater has been termed intrinsic remediation. Intrinsic remediation is advantageous for the following reasons:

- Contaminants are transformed to innocuous byproducts (e.g., carbon dioxide and water), not just transferred to another phase or location within the environment;
- Current pump-and-treat technologies are energy-intensive and generally not as effective in reducing residual contamination;
- The process is nonintrusive and allows continuing use of infrastructure during remediation;
- Current engineered remedial technologies may pose a greater risk to potential receptors than intrinsic remediation because contaminants may be transferred into the atmosphere during remediation activities; and
- Intrinsic remediation is far less costly than conventional, engineered remedial technologies.

To estimate the impact of natural attenuation on the fate and transport of BTEX compounds dissolved in groundwater at a site, two important lines of evidence must be demonstrated (Wiedemeier et al., 1995). The first is a documented loss of contaminants at the field scale. To supplement evidence provided by historical site data, dissolved concentrations of biologically recalcitrant tracers found in most fuel contamination are used in conjunction with aquifer hydrogeologic parameters, such as groundwater seepage velocity and dilution, to demonstrate that a reduction in contaminant mass is occurring at the site. The second line of evidence involves the use of chemical analytical data in mass balance calculations to show that areas with BTEX contamination can be correlated to areas with depleted electron acceptor (e.g., oxygen, nitrate, and sulfate) concentrations and increases in metabolic fuel degradation byproduct concentrations (e.g., methane and ferrous iron). With this site-specific information, groundwater flow and solute transport models can be used to simulate the fate and transport of dissolved BTEX compounds under the influence of natural attenuation.

To estimate the impact of cometabolism on the fate and transport of CAH compounds dissolved in groundwater at a site, two lines of evidence analogous to the BTEX evidence will be investigated. Once again, the first is documented loss of contaminants at the field scale and involves interpretations of historical data and the use of conservative tracers. The second line of evidence involves the use of chemical analytical data to demonstrate the transformation of the source solvent to daughter products and subsequent degradation to innocuous end products.

Analytical and numerical models are available for modeling the fate and transport of fuel hydrocarbons under the influence of advection, dispersion, sorption, and natural aerobic and anaerobic biodegradation. Analytical models may be used in conjunction with the Bioplume II numerical model, as appropriate or to simulate fate and transport of CAH compounds. The Bioplume II numerical model is based upon the USGS two-dimensional (2-D) solute transport model, which has been modified to include a biodegradation component that is activated by a superimposed plume of dissolved oxygen. Bioplume II solves the USGS 2-D solute equation twice, once for hydrocarbon concentrations in the groundwater and once for a dissolved oxygen plume. The two plumes are then combined using superimposition at every particle move to simulate biological reactions between fuel products and oxygen. As appropriate, biodegradation of contaminants by anaerobic processes is simulated using a first-order anaerobic decay rate.

The analytical solute transport models are derived from advection-dispersion equations given by Wexler (1992) and van Genuchten and Alves (1982). These models provide exact, closed-form solutions and are appropriately used for relatively simple hydrogeologic systems that are homogeneous and isotropic. Each model is capable of simulating advection, dispersion, sorption, and biodegradation (or any first-order decay process). These models can simulate continuous or decaying sources. A continuous-source model is useful for determination of the worst-case distribution of the dissolved contaminant plume. A decaying-source model is useful for simulating source removal scenarios, including natural weathering processes and engineered solutions.

2.2.3 Initial Conceptual Site Model

Site FT-1 geologic data were previously integrated to produce two geologic cross-sections of the site. Cross sections A - A' and B - B' (Figures 2.6 and 2.7) show the dominant hydrostratigraphic units present at the site and the elevation of the water table. Figure 2.8 is a groundwater surface map prepared using October 1992 groundwater elevation data (HNUS, 1993a).

The surface of the groundwater table is present at approximately 4 to 6 feet bgs in unconsolidated deposits which are primarily sand and gravel glacial deposits in the vicinity of the site. Groundwater also occurs in shallow bedrock, which is present at 9 to 30 feet bgs. Groundwater flow in the unconsolidated material is east-southeast, with an average gradient of 0.002 ft/ft that steepens near the source area and just beyond the Base boundary to approximately 0.007 ft/ft. On the basis of the available data, Parsons ES will model the site as an unconfined, fine- to coarse-grained sand and gravel aquifer. This CSM will be modified as necessary as additional site hydrogeologic data become available.

Mobile LNAPL has not been identified at FT-1. However, if it is encountered, it may be necessary to use the fuel/water partitioning models of Bruce et al. (1991) or Cline et al. (1991) to provide a conservative source term to model the partitioning of BTEX compounds from the free-product phase into the groundwater. In order to use one of these models, samples of product will be collected and analyzed for mass fraction of BTEX compounds. If LNAPL is present, Parsons ES will attempt to collect groundwater samples from immediately below the LNAPL layer, if possible.

The site-specific remedial goal for FT-1, as specified in the ROD is to remediate groundwater until benzene concentrations below 5 μ g/L are attained across the site (HNUS, 1993b). However, the synergistic effects of all of the BTEX compounds on attenuation rates make site data on all of the BTEX compounds important. Additionally, TCE and the associated breakdown products have been indicated to be chemicals of potential concern at the site (HNUS, 1993b). All of the BTEX compounds, TCE, and the daughter products of TCE (CDCE, tDCE, and VC) will be the focus of this intrinsic remediation study because of their regulatory importance. Analytical groundwater flow and solute transport models will be used to simulate the migration and degradation of the chemicals of concern at FT-1 and will be used to predict the concentration and extent of the groundwater contaminant plume over time.

The BTEX compounds at the site are expected to leach from contaminated soil, which is known to contain fuel residuals (Table 2.3), into the groundwater and migrate with the dissolved CAH compounds downgradient as a dissolved contaminant plume. It is suspected that CAH compounds may be present in the groundwater as the result of an upgradient source because they have been detected in groundwater samples from upgradient wells and have not been detected in site soil samples. In addition to the effects of mass transport mechanisms (volatilization, dispersion, diffusion, and adsorption), these dissolved contaminants will likely be removed from the groundwater system by naturally occurring destructive attenuation mechanisms, such as biodegradation or biologically induced cometabolism. The effects of these transport and fate processes on the dissolved groundwater plume will be investigated using the quantitative groundwater analytical data and groundwater flow and solute transport models. Data collection and analysis requirements are discussed in Section 3 of this work plan.

2.2.4 Potential Groundwater Pathways and Receptors

Potential preferential contaminant migration pathways such as groundwater discharge points and subsurface utility corridors (artificial conduits) will be identified during the field work phase of this project. The primary potential migration path for BTEX contamination at FT-1 results from the leaching of residual fuels from contaminated site soils into the groundwater. Dissolved concentrations of BTEX and CAHs can be transported with migrating groundwater to potential receptors, who could be exposed via ingestion or incidental contact. There are residential water wells located within one-half mile downgradient from the site. Base drinking water does not come from wells located near or downgradient from FT-1.

SECTION 3

COLLECTION OF ADDITIONAL DATA

To complete the TS and to demonstrate that intrinsic remediation of fuel-related contaminants and chlorinated solvents is occurring, additional site-specific hydrogeologic data will be collected. The physical and chemical hydrogeologic parameters listed below will be determined during the field work phase of the TS.

Physical hydrogeologic characteristics to be determined include:

- Depth from measurement datum to the groundwater surface in site monitoring wells;
- Locations of potential groundwater preferential flow pathways and recharge and discharge areas;
- · Locations of downgradient wells and their uses;
- · Hydraulic conductivity through slug tests, as required;
- Estimate of dispersivity, where possible;
- Stratigraphic analysis of subsurface media;
- Groundwater temperature; and
- Determination of extent and thickness of mobile and residual LNAPL (if present).

Chemical hydrogeologic characteristics to be determined include:

- Dissolved oxygen concentrations;
- Specific conductance;
- pH;
- Chemical analysis of any mobile LNAPL (if present) to determine mass fraction of BTEX; and
- Additional chemical analysis of groundwater and soil for the parameters listed in Table 3.1.

TABLE 3.1 ANALYTICAL PROTOCOL FOR GROUNDWATER, SOIL, AND PRODUCT SAMPLES

FT-1 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

MATRIX Analyte	METHOD	FIELD (F) OR FIXED-BASE LABORATORY (L
WATER		
Total Iron	Colorimetric, HACH Method 8008	F
Ferrous Iron (Fe ²⁺)	Colorimetric, HACH Method 8146	F
Ferric Iron (Fe ³⁺)	Difference between total and ferrous iron	F
Manganese	Colorimetric, HACH Method 8034	F
Sulfate	Colorimetric, HACH Method 8051	F
Nitrate	Titrimetric, HACH Method 8039	F
Nitrite	Titrimetric, HACH Method 8507	${f F}$
Redox Potential	A2580B, direct reading meter	F
Oxygen	Direct reading meter	F
pH	E150.1/SW9040, direct reading meter	F
Conductivity	E120.1/SW9050, direct reading meter	F
Temperature	E170.1, direct reading meter	F
Carbon Dioxide	Titrimetric, HACH Method 1436-01	F
Alkalinity (Carbonate [CO ₃ ² -]	Titrimetric, HACH Method 8221	F
and Bicarbonate [HCO3-])	EPA method 310.1	L
Nitrate + Nitrite	EPA Method 353.1	L
Chloride	Waters Capillary Electrophoresis Method N-601	L
Sulfate	Waters Capillary Electrophoresis Method N-601	L
Methane, Ethane, Ethene	RSKSOP-147	L
Dissolved Organic Carbon	RSKSOP-102	L
Aromatic Hydrocarbons	RSKSOP-133	L
Fuel Carbon	RSKSOP-133	L
Chlorinated Solvents	RSKSOP-146	
SOIL		
Total Organic Carbon	RSKSOP-102 & RSKSOP-120	L
Moisture	ASTM D-2216	L
Aromatic Hydrocarbons	RSKSOP-124, modified	L
Total Hydrocarbons	RSKSOP-174	L
Chlorinated Solvents	RSKSOP-146	
FREE PRODUCT		
BTEX Mass Fraction	GC/MS, Direct Injection	L

In order to obtain these data, soil, groundwater, and, if present, free product samples will be collected and analyzed. The following sections describe the procedures that will be followed when collecting additional site-specific data. Soil sampling and monitoring point installation will be accomplished using the Geoprobe® system as described in Sections 3.1 and 3.2. Soil core sample collection procedures are described in Section 3.1. Monitoring point installation procedures are described in Section 3.2. Groundwater sampling procedures for monitoring wells and newly installed groundwater monitoring points are described in Section 3.3. Measurement procedures for aquifer parameters (e.g., hydraulic conductivity) are described in Section 3.4.

3.1 SOIL SAMPLING

The following sections describe sampling locations, sample collection techniques, equipment decontamination procedures, site restoration, and management of investigation-derived waste materials.

3.1.1 Soil Sample Locations and Required Analyses

Soil samples will be collected at all Geoprobe® and monitoring point installation locations. Figure 3.1 identifies four proposed locations for soil sample collection at FT-1. Table 3.1 presents an analytical protocol for soil samples, and Appendix A contains detailed information on the analyses and methods to be used during this sampling effort.

A minimum of two samples will be collected from each Geoprobe[®] hole location. One sample will be taken at the water table, and one will be taken at the depth of maximum BTEX contamination as determined by soil headspace screening. Sampling locations include the suspected source areas on the northern and southern edges of the burn pit, upgradient from the burn pit mid way between the burn pit and the concrete slab, and 150 feet downgradient from the burn pit just west of the oil/water separator. Additional samples will be collected at the discretion of the Parsons ES field scientist.

A portion of each sample will be used to measure soil headspace, and another portion of selected samples will be delivered to the USEPA mobile laboratory for analytical analysis. Each laboratory soil sample will be placed in an analyte-appropriate sample container and hand-delivered to USEPA field personnel for analysis of total hydrocarbons, aromatic hydrocarbons, and moisture content using the procedures presented in Table 3.1. In addition, at least two samples will be analyzed for TOC from locations upgradient, crossgradient, or far downgradient from the contaminant source. Each headspace screening sample will be placed in a sealed plastic bag or mason jar and allowed to sit for at least 5 minutes. VOCs in soil headspace will then be determined using an organic vapor meter (OVM), and the results will be recorded in the field records by the Parsons ES field scientist.

3.1.2 Sample Collection Using the Geoprobe® System

Soil samples will be collected using a Geoprobe® system, a hydraulically powered percussion/probing machine capable of advancing sampling tools through

unconsolidated soils. This system allows the rapid collection of soil, soil gas, and groundwater samples at shallow depths while minimizing the generation of investigation-derived waste materials. Figure 3.2 is a diagram of the Geoprobe® system.

Soil samples will be collected using a probe-drive sampler. The probe-drive sampler serves as both the driving point and the sample collection device and is attached to the leading end of the probe rods. To collect a soil sample, the sampler is pushed or driven to the desired sampling depth, the drive point is retracted to open the sampling barrel, and the sampler is subsequently pushed into the undisturbed soils. The soil cores are retained within brass, stainless steel, or clear acetate liners inside the sampling barrel. The probe rods are then retracted, bringing the sampling device to the surface. The soil sample can then be extruded from the liners for lithologic logging, or the liners can be capped, and undisturbed samples can be submitted to the analytical laboratory for testing.

If the probe-drive sampling techniques described above are inappropriate, inadequate, or unable to efficiently provide sufficient soil samples for the characterization of the site, continuous soil samples will be obtained from conventional soil boreholes using a hand auger or similar method judged acceptable by the Parsons ES field scientist. Procedures will be modified, if necessary, to ensure good sample recovery.

The Parsons ES field scientist will be responsible for observing all field investigation activities, maintaining a detailed descriptive log of all subsurface materials recovered during soil coring, photographing representative samples, and properly labeling and storing samples. An example of the proposed geologic log form is presented in Figure 3.3. The descriptive log will contain:

- Sample interval (top and bottom depth);
- Sample recovery;
- Presence or absence of contamination;
- Lithologic description, including relative density, color, major textural constituents, minor constituents, porosity, relative moisture content, plasticity of fines, cohesiveness, grain size, structure or stratification, relative permeability, and any other significant observations; and
- Depths of lithologic contacts and/or significant textural changes measured and recorded to the nearest 0.1 foot.

Base personnel will be responsible for identifying the location of all utility lines, USTs, fuel lines, or any other underground infrastructure prior to any sampling activities. All necessary digging permits will be obtained by Base personnel prior to mobilizing to the field. Base personnel will also be responsible for acquiring drilling and monitoring point installation permits for the proposed locations. Parsons ES will be responsible for providing trained operators for the Geoprobe[®].

GEOLOGIC BORING LOG

BORING NO	CONTRACTOR:		ATE COUR.	
2011110 110.	CONTRACTOR:		DATE SPUU:	
CLIENT:	RIG TYPE:	D	ATE CMPL:	
IOR NO.	DDI O METHOD			
00B NO	DRLG METHOD:	<u> </u>	LEVATION:	
LOCATION:	BORING DIA.:	T	EMP:	
GEOLOGIST:	DRLG FLUID:			
			ACA IUCK:	
COMENTS:				

COME												
Elev	Depth	Pro-	US		S	ample	Sample	Penet		Ι	TOTAL	TPH
(ft)	(ft)	file	CS	Geologic Description	No.	Depth (ft)	Туре	Res	PiD(ppm)	TLV(ppm)	BTEX(ppm)	(pom)
	- 1 -					<u> </u>	-		, , , ,	12.07,	J.D.(pp)	(17711)
1	[' -						li					
									<u> </u>			
1									<u> </u>			
1												
	-5-											
İ			1									
1												
!	 		.					- 1				
-	-10-	- 1										
							ŀ					
			j					l				
			ŀ				1	L				
			- 1				i					
<u> </u>	-15-	İ						ſ				
		- 1	İ			- 1		ſ				
1 1			- 1			i	ľ	Ī	1			
1 1			- 1			Į.	- 1	ſ				
		ı		·	l			ľ				
	-20-	- 1	j									
	-207		1		- 1		ļ	t				
ÌΓ		I	- 1		j			ŀ				
		İ				1	1					
		- 1	- 1				1	-				
1 1		-			- 1	ĺ	- 1	-		-+		
	-25-				- 1	- 1		-				
				1		ı		├				
			j					⊢				
-			- 1					⊢				
						Ì		<u> </u>				
 	-30-	ŀ		1		- 1		L				
				·		- 1	.	-				
-		.			- 1			L				
-	——					į	- 1	_				
-						- 1		L				
	-35						- 1	1				

NOTES

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.3

GEOLOGIC BORING LOG

Site FT-1 Intrinsic Remediation TS Fairchild AFB, Washington

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

3.1.3 Datum Survey

The horizontal location of all soil sampling locations relative to established Base coordinates will be measured by a surveyor. Horizontal coordinates will be measured to the nearest 0.1 foot. The elevation of the ground surface also will be measured to the nearest 0.1 foot relative to USGS msl data.

3.1.4 Site Restoration

After sampling is complete, each sampling location that is not converted to use as a groundwater monitoring point will be restored as closely to its original condition as possible. Holes created by the Geoprobe® in sandy soils similar to those found at the Base tend to cave in soon after extraction of the drive sampler. However, any test holes remaining open after extraction of the probe-drive will be sealed with hydrated bentonite chips, pellets, or grout to eliminate any creation or enhancement of contaminant migration pathways to the groundwater. Soil sampling using the Geoprobe® creates low volumes of soil waste. Soil not used for sampling will be placed in 55-gallon drums, labeled, and transported to a Base-designated holding location while disposal is being arranged.

3.1.5 Equipment Decontamination Procedures

Prior to arriving at the site, and between each sampling location, probe rods, tips, sleeves, pushrods, samplers, tools, and other downhole equipment will be decontaminated using a high-pressure, steam/hot water wash or Alconox® wash with a potable water rinse. Between each soil sample, the sampling barrel will be disassembled and decontaminated with Alconox® and potable water. The barrel then will be rinsed with deionized water and reassembled with new liners. Between uses, the sampling barrel will be wrapped in clean plastic or foil to prevent contamination. Only potable water will be used for decontamination.

All rinseate will be collected in 55-gallon drums. Filled 55-gallon drums will be labeled and transported to a Base-designated holding location while disposal is being arranged. The Base will be responsible for signing required waste shipping and disposal manifests.

Potable water to be used during equipment cleaning, decontamination, or grouting will be obtained from one of the Base water supplies. Water use approval will be verified by contacting the appropriate facility personnel. The field scientist will make the final determination as to the suitability of site water for these activities. Precautions will be taken to minimize any impact to the surrounding area that might result from decontamination operations.

3.2 MONITORING POINT INSTALLATION

To further characterize site hydrogeologic conditions, approximately 16 groundwater monitoring points will be installed at FT-1 to supplement the site monitoring wells. The following sections describe the proposed monitoring point locations and completion intervals, monitoring point installation, monitoring point development, and equipment decontamination procedures.

3.2.1 Monitoring Point Locations and Completion Intervals

The locations of 16 proposed groundwater monitoring points at FT-1 are identified on Figure 3.1. The proposed locations for the new monitoring points were determined from a review of data gathered during previous site activities. Monitoring point locations were selected to provide hydrogeologic data necessary for successful implementation of the Bioplume II model and to monitor potential fuel hydrocarbon migration from the site. Monitoring point locations were selected to define four aspects of the site: 1) the magnitude of the dissolved BTEX concentrations within suspected source areas, 2) the extent of contamination, 3) the horizontal distribution of dissolved BTEX, and 4) the hydrogeology and groundwater flow direction at the site. The proposed locations shown on Figure 3.1 may be modified in the field as a result of encountered field conditions and acquired field data.

Eight monitoring points will be installed within the extent of the gravel pad surrounding the suspected source area. One monitoring point cluster will be installed in the southeastern corner of the burn pit. Another monitoring point cluster will be installed approximately 100 feet downgradient of the burn pit. A third monitoring point cluster will be installed roughly 100 feet upgradient of the burn pit to verify the upgradient limit of contamination. Shallow monitoring points also will be installed approximately 100 feet north and 100 feet south of the burn pit to investigate the lateral extent of contamination to the north and south. The sampling locations are necessary because groundwater in the unconsolidated deposits underlying the gravel pad has not been characterized in previous investigations and is suspected to have elevated concentrations of dissolved BTEX and possibly solvents.

Two deep monitoring points will be installed in the unconsolidated deposits just beyond the downgradient edge of the gravel pad. These deep points will be placed near shallow monitoring wells MW-3 and MW-152 and will aid in determining the vertical extent of contamination in the unconsolidated material immediately downgradient from the suspected source area. Additionally, six shallow monitoring points will be installed downgradient from the gravel pad and at the top of the saturated zone to fully delineate the downgradient extent of contamination and to more accurately characterize the plume downgradient from the gravel pad. Shallow monitoring points will be installed near MW-151, MW-227, MW-226, 150 feet southwest of MW-155, 150 feet north of MW-151, and 250 feet southeast of MW-154. These shallow points will be used to complement existing monitoring well locations for the purpose of full plume delineation. Additional monitoring points and/or the exact placement of monitoring points may be modified by the field scientist as additional site information becomes available.

Each shallow monitoring point will have a screened interval of approximately 3 feet placed near the top of the saturated zone in the unconsolidated deposits. Deep monitoring points will be placed in these deposits immediately above the bedrock basalt. The exact depth and location of monitoring points will be determined by the Parsons ES field scientist on the basis of site conditions. The proposed screened intervals of approximately 3 feet or less will help mitigate the dilution of water samples from potential vertical mixing of contaminated and uncontaminated groundwater in the monitoring point casing. Adjustments of the depth and length of the screened interval

of the monitoring points may be necessary in response to actual aquifer conditions and contaminant distribution identified during Geoprobe® testing.

3.2.2 Monitoring Point Installation Procedures

3.2.2.1 Pre-Placement Activities

All necessary digging, coring, and drilling permits will be obtained prior to mobilizing to the field. In addition, all utility lines will be located, and proposed Geoprobe[®] locations will be cleared prior to any intrusive activities. Responsibilities for these permits and clearances are discussed in Section 3.1.1.

Water to be used in monitoring point installation and equipment cleaning will be obtained from one of the Base water supplies. Water use approval will be verified by contacting the appropriate facility personnel. The field scientist will make the final determination as to the suitability of site water for these activities.

3.2.2.2 Monitoring Point Materials Decontamination

Monitoring point installation and completion materials will be inspected by the field scientist and determined to be clean and acceptable prior to use. If not factory sealed, the well points and tubing will be cleaned prior to use with a high-pressure, steam/hot-water cleaner using approved water. Materials that cannot be cleaned to the satisfaction of the field scientist will not be used.

3.2.2.3 Installation and Materials

This section describes the procedures to be used for installation of monitoring points. Monitoring points will be installed using either 0.375-inch Teflon® tubing connected to a 0.5-inch-diameter stainless steel screen or a 0.5-inch inside-diameter (ID)/0.75-inch outside-diameter (OD) polyvinyl chloride (PVC) screen and casing.

If subsurface conditions permit, shallow monitoring points will be constructed of 0.75-inch OD-/0.5-inch-ID PVC casing and well screen to provide additional water level information. Approximately 3 feet of factory-slotted screen will be installed for each shallow monitoring point. Effective installation of the shallow monitoring points requires that the boreholes remain open upon completion of drilling. Shallow 0.5-inch-ID PVC monitoring points will be installed by punching and sampling a borehole with the Geoprobe[®]. Upon removing the rods, the borehole depth will be measured to determine if the hole remains open. If the borehole remains open, the 0.5-inch-ID PVC casing and screen will be placed at the appropriate depths. The annular space around the screen will be filled with sand filter pack, and the annulus around the casing will be filled with grout or bentonite. Monitoring point construction details will be noted on a Monitoring Point Installation Record form (Figure 3.4). This information will become part of the permanent field record for the site.

Monitoring point screens will be constructed of flush-threaded, Schedule 40 PVC with an ID of 0.5 inch. The screens will be factory slotted with 0.01-inch openings. Shallow monitoring point screens will be placed to sample and provide water level information at or near the water table. Blank monitoring point casing will be

•	MONITORING PO	JINT INST.	ALLATION REC	<u>ORD</u>
JOB NAME			MONITORING POINT N	IUMBER
				ATION
DATUM ELEVATION			GROUND SURFACE E	LEVATION
DATUM FOR WATER	LEVEL MEASUREMENT			
SCREEN DIAMETER	& MATERIAL		S	LOT SIZE
RISER DIAMETER &	MATERIAL		BOREHOLE DIAM	ETER
CONE PENETROMET	ER CONTRACTOR		ES REPRESENTA	TIVE
	GROUND SURFACE 7 CONCRETE THREADED COUPLING —	VEN CON	ITED CAP /ER	
			LENGTH OF SOLID	
	SOLID RISER			TOTAL DEPTH OF MONITORING POINT:
			LENGTH OF SCREEN:	
*		│	SCREEN SLOT SIZE: 0.01"	
	SCREEN —	_	1 SIZE: 0.01	
	CAP		LENGTH OF BACKFILI BOREHOLE:	
			BACKFILLED WITH: _	
	(N	OT TO SCALE)		
			F	IGURE 3.4
			MONUT	ORING POINT
				ATION RECORD
OTADII IZED U	VATED LEVEL	CCCT		Site FT-1
BELOW DATU	VATER LEVEL M.	_		Remediation TS
TOTAL MONIT	ORING POINT DEPTH	_ FEET		AFB, Washington
BELOW DATU	М.		PARSON	S RING SCIENCE, INC.
GROUND SUR	FACE	_ FEET	Denv	ver, Colorado

constructed of Schedule 40 PVC with an ID of 0.5 inch. All monitoring point casing sections will be flush-threaded; joints will not be glued. The casing at each monitoring point will be fitted with a bottom cap and a top cap constructed of PVC.

If subsurface conditions do not permit the boreholes to remain open (i.e. the formation collapses in the hole), monitoring points will be constructed of a sacrificial drive point attached to a length of 0.5-inch-diameter stainless steel mesh that functions as the well screen, which in turn is connected to 0.375-inch Teflon® tubing. Holes are less likely to remain open for the installation of the deeper top-of-bedrock wells than the shallower top-of-water-table wells. To install tubing-cased monitoring points, the borehole is punched and sampled to several feet above the target depth for the monitoring point. The probe rods are withdrawn from the borehole, and the soil sampler is replaced with the well point assembly. An appropriate length of Teflon® tubing is threaded through the probe rods and attached to the well point. The assembly is lowered into the borehole and then driven down to the target depth and sampling zone. The probe rods are removed, leaving the sacrificial tip, screen assembly, and tubing behind. The soil is likely to cave in around the screen and tube assembly; where this does not occur, silica sand will be emplaced to create a sand pack around the well point, and the borehole annular space around the tubing above the sand pack will be filled with granular bentonite or grout to seal it. Monitoring point construction details will be noted on a Monitoring Point Installation Record form (Figure 3.4).

Should 0.5-inch-ID PVC shallow monitoring points not be installed, the only resulting data gap would be the lack of water level information for that particular location. The decision to install 0.5-inch-ID PVC monitoring points will be made in the field once the open-hole stability of subsurface soils and Geoprobe® equipment can be evaluated.

The field scientist will verify and record the total depth of the monitoring point, the lengths of all casing sections, and the depth to the top of all monitoring point completion materials. All lengths and depths will be measured to the nearest 0.1 foot.

3.2.2.4 Monitoring Point Completion

Monitoring points will be completed at grade with a protective cover cemented in place. The protective cover will be raised slightly above the ground surface, with a 2-foot-square concrete pad that will slope gently away from the cover to facilitate runoff during precipitation events. After monitoring point completion, each site will be restored as closely as possible to its original condition.

3.2.3 Monitoring Point Development and Records

The new monitoring points will be developed prior to sampling to remove fine sediments from the portion of a formation adjacent to the screen. Development will be accomplished by lowering high-density polyethylene (HDPE) tubing into the well or attaching Teflon® tubing to the pump lines and removing water with a peristaltic pump until pH, temperature, specific conductivity, and water clarity (turbidity) stabilize. At a minimum, 10 casing volumes of water will be developed from each monitoring point. In the event that 10 casing volumes of water cannot be recovered as a result of low water production, the water volume recovered and the deficiency will be noted in the

development records. Monitoring point development will occur a minimum of 24 hours prior to sampling.

A development record will be maintained for each new monitoring point. The development record will be completed in the field by the field scientist. Figure 3.5 is an example of a development record used for similar well installations. Development records will include:

- Monitoring point number;
- Date and time of development;
- Development method;
- Monitoring point depth;
- Volume of water produced;
- · Description of water produced;
- Post-development water level and monitoring point depth (0.5-inch ID PVC monitoring points only); and

Field analytical measurements, including pH and specific conductivity.

Development waters will be collected in 55-gallon drums. Filled 55-gallon drums will be labeled and transported to a Base-designated holding location while disposal is being arranged. The Base will be responsible for signing required shipping and disposal manifests.

3.2.4 Monitoring Point Location and Datum Survey

The location and elevation of the monitoring points will be surveyed by a registered surveyor soon after completion. Horizontal coordinates will be measured to the nearest 0.1 foot relative to established Base coordinates. The elevation of the flush-mount casing and measurement datum (top of interior casing) will be measured to the nearest 0.01 foot relative to USGS msl data.

3.2.5 Water Level Measurements

Water levels at all site monitoring points and wells will be measured within a short time period so that the water level data are comparable. The depth to water below the measurement datum will be measured to the nearest 0.01 foot using an electric water level probe or, if mobile LNAPL is present, an oil-water interface probe.

3.3 GROUNDWATER SAMPLING PROCEDURES

This section describes the scope of work required for collection of groundwater quality samples. Samples will be collected from previously installed monitoring wells and newly installed monitoring points. A peristaltic pump with dedicated HDPE tubing will be used to collect groundwater samples at monitoring points and wells. Samples

MONITORING PO	INT DEVELOPMENT RECORD	Page of
Job Number: 722450.18 Location:	Job Name: Fairchild AFB, Washington By Measurement Datum	
Well Number	Measurement Datum	
Pre-Development Information	Time (Start):	
Water Level:	Total Depth of Well:	
Water Characteristics		
Any Films or Immiscible Mate	Clear Cloudy k Moderate Strong rial perature(oF oC))	
Interim Water Characteristics Gallons Removed		
pH		
Temperature (oF oC)		
Specific Conductance(μS/cm)		
Post-Development Information	Time (Finish):	
Water Level:	Total Depth of Well:	
Approximate Volume Removed:		
Water Characteristics		
	3	
Comments:	FIGL	JRE 3.5
		RING POINT ENT RECORD
	Site	FT-1

3-14

Intrinsic Remediation TS Fairchild AFB, Washington

PARSONS ENGINEERING SCIENCE, INC. are planned to be collected at monitoring wells MW-1, MW-2, MW-3, MW-4, MW-49, MW-50, MW-52, MW-53, MW-59, MW-61, MW-100, MW-151, MW-152, MW-153, MW-154, MW-155, MW-156, MW-225, MW-226, MW-227, and all 16 new monitoring points (Figures 1.3 and 3.1). In order to maintain a high degree of QC during this sampling event, the procedures described in the following sections will be followed.

Sampling will be conducted by qualified scientists and technicians from Parson ES and the USEPA NRMRL who are trained in the conduct of groundwater sampling, records documentation, and chain-of-custody procedures. In addition, sampling personnel will have thoroughly reviewed this work plan prior to sample acquisition and will have a copy of the work plan available onsite for reference. Groundwater sampling includes the following activities:

- · Assembly and preparation of equipment and supplies;
- Inspection of the monitoring well/point integrity including:
 - Protective cover, cap, and lock,
 - External surface seal and pad,
 - Monitoring well/point stick-up, cap, and datum reference, and
 - Internal surface seal;
- Groundwater sampling, including:
 - Water level and product thickness measurements,
 - Visual inspection of sample water,
 - Monitoring well/point casing evacuation, and
 - Sample collection;
- Sample preservation and shipment, including:
 - Sample preparation,
 - Onsite measurement of physical parameters, and
 - Sample labeling;
- · Completion of sampling records; and
- Sample disposition.

Detailed groundwater sampling and sample handling procedures are presented in following sections.

3.3.1 Preparation for Sampling

All equipment to be used for sampling will be assembled and properly cleaned and calibrated (if required) prior to arriving in the field. In addition, all record-keeping materials will be gathered prior to leaving the office.

3.3.1.1 Equipment Cleaning

All portions of sampling and test equipment that will contact the sample matrix will be thoroughly cleaned before each use. This includes the split-spoon soil samplers, sampling pumps, water level probe and cable, test equipment for onsite use, and other equipment or portions thereof that will contact the samples. Given the types of sample analyses to be conducted, the following cleaning protocol will be used:

Wash with potable water and phosphate-free laboratory detergent (HP-II detergent solutions, as appropriate);

- Rinse with potable water;
- Rinse with isopropyl alcohol;
- · Rinse with distilled or deionized water; and
- Air dry.

Any deviations from these procedures will be documented in the field scientist's field notebook and on the groundwater sampling record (Figure 3.6).

If precleaned disposable sampling equipment is used, the cleaning protocol specified above will not be required. Laboratory-supplied sample containers will be cleaned and sealed by the laboratory. The type of container provided and the method of container decontamination will be documented in the USEPA mobile laboratory's permanent record of the sampling event.

3.3.1.2 Equipment Calibration

As required, field analytical equipment will be calibrated according to the manufacturers' specifications prior to field use. This applies to equipment used for onsite measurements of dissolved oxygen (DO), pH, electrical conductivity, temperature, reduction/oxidation (redox) potential, sulfate, nitrate, ferrous iron (Fe²⁺), and other field parameters listed on Table 3.1.

3.3.2 Sampling Procedures

Special care will be taken to prevent contamination of the groundwater and extracted samples. The primary ways in which sample contamination can occur is through contact with improperly cleaned sampling equipment. To prevent such contamination, the water level probe and cable used to determine static water levels and total well/point depths will be thoroughly cleaned before and after field use and between uses at different sampling locations according to the procedures presented in Section 3.3.1.1. Dedicated tubing will be used at each well/point developed, purged, and/or sampled with the peristaltic pump. In addition to the use of properly cleaned equipment, a clean pair of new, disposable nitrile or latex gloves will be worn each time a different monitoring point or well is sampled. The following paragraphs present the procedures to be followed for groundwater sample collection from groundwater monitoring points and wells. These activities will be performed in the order presented

GROUNDWATER SAMPLING RECORD

			N
		SAMPLING DATE(S)_	
		MONITORING WELL	
DATE AND SAMPLE C WEATHER	TIME OF SAMPLING: DLLECTED BY:	ampling; [] Special Sampling; 19 a.m./p.m of	(number)
DATOMIC	R WATER DEFIN MEASURE	IVIENT (Describe):	
\ (0) FMOD			
MONITORI	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NO STEEL CASING CONDITIO	N IS:	
	[] DEFICIENCIES CORRE	DITION IS:	
Check-off 1 []	EQUIPMENT CLEANED BE Items Cleaned (I	FORE USE WITH_ .ist):	
2[]	PRODUCT DEPTH		FT. BELOW DATUM
	WATER DEPTH Measured with:_		FT. BELOW DATUM
3[]	Appearance:Odor:	RE WELL EVACUATION (Describe):	
4[]	WELL EVACUATION: Method: Volume Remove Observations:	d:	

FIGURE 3.6

GROUNDWATER SAMPLING RECORD

Site FT-1 Intrinsic Remediation TS Fairchild AFB, Washington

	GRO	UND WATER SAMP	LING RECORD (Continued) MONITORING WELL	
5[]	SAMPLE EXTRA	ACTION METHOD:		
	[]	Bailer made of:		
		Pump, type:_		
	Li	Other, describe.		
	Sam	ple obtained is [] GRAE	; [] COMPOSITE SAMPLE	
[]	ON-SITE MEAS			
	Tem	ıp:°	Measured with:	
	pH:	ductivity:	Measured with:	
	Con	ductivity:	Measured with:	
	Diss	olved Oxygen:	Measured with:	
	Red	ox Potential:	Measured with:	
	Sali	nity:	Measured with:	
	Nitr	ate:	Measured with:	
	Sulf	ate:	Measured with:	
	Ferr	ous Iron:	Measured with:	
	Othe	er:		
3[]	ON-SITE SAMPI	LE TREATMENT:		
0[]				
	[] Filtr	ation: Method	Containers:	
		Method	Containers:	
		Method	Containers:	
	[] Pres	ervatives added:		
		Method	Containers:	
P[]	CONTAINER HA	ANDLING:		
	r n	Container Cides I ab-1-4		
		Container Sides Labeled		
	[]	Container Lids Taped Containers Placed in Ice	Chect	
10[]	OTHER COMME	ENTS:		

FIGURE 3.6 (Continued)

GROUNDWATER SAMPLING RECORD

Site FT-1 Intrinsic Remediation TS Fairchild AFB, Washington

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

below. Exceptions to this procedure will be noted in the field scientist's field notebook or on the groundwater sampling record.

3.3.2.1 Preparation of Location

Prior to starting the sampling procedure, the area around the monitoring points/wells will be cleared of foreign materials, such as brush, rocks, and debris. These procedures will prevent sampling equipment from inadvertently contacting debris around the monitoring point/well.

3.3.2.2 Water Level and Total Depth Measurements

Prior to removing water from the monitoring point/well, the static water level will be measured. An electric water level probe or oil/water interface probe will be used to measure the depth to groundwater below the datum to the nearest 0.01 foot. After measuring the static water level, the water level probe will be slowly lowered to the bottom of the monitoring point/well and the depth will be measured to the nearest 0.01 foot. If free-phase product (mobile LNAPL) is present, the total depth of the well from installation records will be used to avoid excessive contamination of the water level probe and cord. Based on these measurements, the volume of water to be purged from the monitoring point/well will be calculated. If mobile LNAPL is encountered, the thickness of the product will be measured with an oil/water interface probe.

3.3.2.3 Monitoring Point/Well Purging

The volume of water contained within the monitoring point/well casing at the time of sampling will be calculated, and at least three times the calculated volume will be removed from the well. A peristaltic pump will be used for monitoring point/well purging. All purge waters will be collected in 55-gallon drums. Filled 55-gallon drums will be labeled and transported to a Base-designated holding location while disposal is being arranged. The Base will be responsible for signing required shipping and disposal manifests.

If a monitoring point or well is evacuated to a dry state during purging, the point/well will be allowed to recharge, and the sample will be collected as soon as sufficient water is present in the monitoring point/well to obtain the necessary sample quantity. Sample compositing or sampling over a lengthy period by accumulating small volumes of water at different times to obtain a sample of sufficient volume will not be allowed.

3.3.2.4 Sample Extraction

Dedicated HDPE tubing and a peristaltic pump will be used to extract groundwater samples from monitoring points and wells. The tubing will be lowered through the casing into the water gently to prevent splashing. This step is omitted if the monitoring point is constructed of Teflon® tubing. The sample will be transferred directly into the appropriate sample container. The water will be carefully poured down the inner walls of the sample bottle to minimize aeration of the sample.

Unless other instructions are given by the USEPA mobile laboratory, sample containers will be completely filled so that no air space remains in the container. Excess water collected during sampling will be disposed of in the same manner as purge water.

3.3.3 Onsite Groundwater Parameter Measurement

As indicated on Table 3.1, many of the groundwater chemical parameters will be measured onsite by USEPA staff. Some of the measurements will be made with direct-reading meters, while others will be made using a HACH® portable colorimeter in accordance with specific HACH® analytical procedures. These procedures are described in the following subsections.

All glassware or plasticware used in the analyses will have been cleaned prior to sample collection by thoroughly washing with a solution of laboratory-grade, phosphate-free detergent (e.g., Alconox®) and water, and rinsing with isopropyl alcohol and deionized water to prevent interference or cross-contamination between measurements. If concentrations of an analyte are above the range detectable by the titrimetric or colorimetric methods, the analysis will be repeated by diluting the groundwater sample with distilled water until the analyte concentration falls to a level within the range of the method. All rinseate and sample reagents accumulated during groundwater analysis will be collected in glass containers fitted with screw caps and properly disposed.

3.3.3.1 Dissolved Oxygen Measurements

DO measurements will be made using a meter with a downhole oxygen sensor or a sensor in a flow-through cell before and immediately following groundwater sample acquisition. When DO measurements are taken in monitoring points/wells that have not yet been sampled, the monitoring points/wells will be purged until DO levels stabilize.

3.3.3.2 pH, Temperature, and Specific Conductance

Because the pH, temperature, and specific conductance of a groundwater sample can change significantly within a short time following sample acquisition, these parameters will be measured in the field in unfiltered, unpreserved, "fresh" water collected by the same technique as the samples taken for laboratory analyses. The measurements will be made in a flow-through cell or a clean glass container separate from those intended for laboratory analysis, and the measured values will be recorded in the groundwater sampling record (Figure 3.6).

3.3.3.3 Alkalinity Measurements

Alkalinity in groundwater helps buffer the groundwater system against acids generated through both aerobic and anaerobic biodegradation processes. Alkalinity of the groundwater sample will be measured in the field by experienced USEPA NRMRL scientists via titrimetric analysis using USEPA-approved HACH® Method 8221 (0 to 5,000 mg/L as calcium carbonate) or a similar method. Alkalinity of the groundwater

sample also will be measured at the fixed-based laboratory using USEPA method 310.1.

3.3.3.4 Nitrate- and Nitrite-Nitrogen Measurements

Nitrate-nitrogen concentrations are of interest because nitrate can act as an electron acceptor during hydrocarbon biodegradation under anaerobic soil or groundwater conditions. Nitrate-nitrogen is also a potential nitrogen source for biomass formation for hydrocarbon-degrading bacteria. Nitrite-nitrogen is an intermediate byproduct in both ammonia nitrification and in nitrate reduction in anaerobic environments.

Nitrate- and nitrite-nitrogen concentrations in groundwater will be measured in the field by experienced USEPA NRMRL scientists via colorimetric analysis using a HACH® DR/700 Portable Colorimeter. Nitrate concentrations in groundwater samples will be analyzed after preparation with HACH® Method 8039 (0 to 30.0 mg/L NO₃). Nitrite concentrations in groundwater samples will be analyzed after preparation with EPA-approved HACH® Method 8507 (0 to 0.35 mg/L NO₂) or a similar method.

3.3.3.5 Carbon Dioxide Measurements

Carbon dioxide concentrations in groundwater will be measured in the field by USEPA NRMRL scientists via titrimetric analysis using HACH® Method 1436-01 (0 to 250 mg/L as CO₂). Sample preparation and disposal procedures are the same as outlined at the beginning of Section 3.3.3.

3.3.3.6 Sulfate Measurements

Sulfate in groundwater is a potential electron acceptor for fuel-hydrocarbon biodegradation in anaerobic environments. A USEPA NRMRL scientist will measure sulfate concentrations via colorimetric analysis with a HACH® DR/700 Portable Colorimeter. After appropriate sample preparation. EPA-approved HACH® Method 8051 (0 to 70.0 mg/L SO₄) or similar will be used to prepare samples and analyze sulfate concentrations.

3.3.3.7 Total Iron, Ferrous Iron, and Ferric Iron Measurements

Iron is an important trace nutrient for bacterial growth, and different states of iron can affect the redox potential of the groundwater and act as an electron acceptor for biological metabolism under anaerobic conditions. Iron concentrations will be measured in the field via colorimetric analysis with a HACH® DR/700 Portable Colorimeter after appropriate sample preparation. HACH® Method 8008 (or similar) for total soluble iron (0 to 3.0 mg/L Fe³⁺ + Fe²⁺) and HACH® Method 8146 (or similar) for ferrous iron (0 to 3.0 mg/L Fe²⁺) will be used to prepare and quantitate the samples. Ferric iron will be quantitated by subtracting ferrous iron levels from total iron levels.

3.3.3.8 Manganese Measurements

Manganese is a potential electron acceptor under anaerobic environments. Manganese concentrations will be quantitated in the field using colorimetric analysis

with a HACH® DR/700 Portable Colorimeter. USEPA-approved HACH® Method 8034 (0 to 20.0 mg/L) or similar will be used for quantitation of manganese concentrations. Sample preparation and disposal procedures are outlined earlier in Section 3.3.3.

3.3.3.9 Reduction/Oxidation Potential

The redox potential of groundwater is an indication of the relative tendency of a solution to accept or transfer electrons. Redox reactions in groundwater are usually biologically mediated; therefore, the redox potential of a groundwater system depends upon and influences rates of biodegradation. Redox potential can be used to provide real-time data on the location of the contaminant plume, especially in areas undergoing anaerobic biodegradation. The redox potential of a groundwater sample taken inside the contaminant plume should be somewhat less than that taken in an upgradient location.

The redox potential of a groundwater sample can change significantly within a short time following sample acquisition and exposure to atmospheric oxygen. As a result, this parameter will be measured in the field in unfiltered, unpreserved, "fresh" water collected by the same technique as the samples taken for laboratory analyses. The measurements will be made as quickly as possible in a clean glass container separate from those intended for laboratory analysis or in a flow through cell.

3.4 SAMPLE HANDLING FOR LABORATORY ANALYSIS

This section describes the handling of samples from the time of sampling until the samples are delivered to USEPA field laboratory.

3.4.1 Sample Preservation

The USEPA mobile laboratory support personnel will add any necessary chemical preservatives prior to filling the sample containers. Samples will be prepared for transportation to the analytical laboratory by placing the samples in a cooler containing ice to maintain a shipping temperature of as close to 4 degrees centigrade (°C) as possible. Samples will be delivered promptly to USEPA field laboratory personnel, who will be responsible for shipment of appropriate samples to the NRMRL in Ada, Oklahoma for analysis.

3.4.2 Sample Containers and Labels

Sample containers and appropriate container lids will be provided by the USEPA field laboratory (see Appendix A). The sample containers will be filled as described in Section 3.3.2.4, and the container lids will be tightly closed. The sample label will be firmly attached to the container side, and the following information will be legibly and indelibly written on the label:

- · Facility name;
- Sample identification;
- Sample type (e.g., groundwater, soil);

- Sampling date;
- · Sampling time;
- Preservatives added;
- Sample collector's initials; and
- Requested analyses.

3.4.3 Sample Shipment

After the samples are sealed and labeled, they will be packaged for transport to the onsite USEPA field laboratory. The following packaging and labeling procedures will be followed:

- Package sample so that it will not leak, spill, or vaporize from its container;
- · Cushion samples to avoid breakage; and
- Add ice to container to keep samples cool.

The packaged samples will be delivered by hand to the USEPA field laboratory. Delivery will occur as soon as possible after sample acquisition.

3.4.4 Chain-of-Custody Control

Chain-of-custody documentation for the shipment of samples from the USEPA field laboratory to the NRMRL analytical laboratory in Ada, Oklahoma, will be the responsibility of the USEPA field personnel.

3.4.5 Sampling Records

In order to provide complete documentation of the sampling event, detailed records will be maintained by the field scientist. At a minimum, these records will include the following information:

- Sample location (facility name);
- Sample identification;
- Sample location map or detailed sketch;
- Date and time of sampling;
- Sampling method;
- Field observations of
 - Sample appearance, and

- Sample odor;
- Weather conditions;
- Water level prior to purging (groundwater samples only);
- Total monitoring well/point depth (groundwater samples only);
- Sample depth (soil samples only);
- Purge volume (groundwater samples only);
- Water level after purging (groundwater samples only);
- Monitoring well/point condition (groundwater samples only);
- Sampler's identification;
- Field measurements of pH, temperature, DO, and specific conductivity (groundwater samples only); and
- Any other relevant information.

Groundwater sampling information will be recorded on a groundwater sampling form. Figure 3.6 shows an example of the groundwater sampling record. Soil sampling information will be recorded in the field log book.

3.4.6 Laboratory Analyses

Laboratory analyses will be performed on all groundwater and soil samples as well as the QA/QC samples described in Section 5. The analytical methods for this sampling event are listed in Table 3.1. Prior to sampling, USEPA NRMRL personnel will provide a sufficient number of analyte-appropriate sample containers for the samples to be collected. All containers, preservatives, and shipping requirements will be consistent with USEPA protocol or those reported in Appendix A of this plan.

USEPA laboratory support personnel will specify the necessary QC samples and prepare appropriate QC sample bottles. For samples requiring chemical preservation, preservatives will be added to containers by the laboratory. Containers, ice chests with adequate padding, and cooling media will be provided by USEPA NRMRL laboratory personnel. Sampling personnel will fill the sample containers and return the samples to the field laboratory.

3.5 AQUIFER TESTING

Slug tests will be conducted in selected monitoring wells to estimate the hydraulic conductivity of unconsolidated deposits at the site. This information is required to accurately estimate the velocity of groundwater and contaminants in the shallow saturated zone. A slug test is a single-well hydraulic test used to determine the hydraulic conductivity of an aquifer in the immediate vicinity of the tested well. Slug tests can be used for both confined and unconfined aquifers that have a transmissivity

of less than 7,000 ft²/day. Slug testing can be performed using either a rising head or a falling head test; at this site, both methods will be used in sequence.

3.5.1 Definitions

- Hydraulic Conductivity (K). A quantitative measure of the ability of porous material to transmit water; defined as the volume of water that will flow through a unit cross-sectional area of porous or fractured material per unit time under a unit hydraulic gradient.
- Transmissivity (T). A quantitative measure of the ability of an aquifer to transmit water. It is the product of the hydraulic conductivity and the saturated thickness.
- Slug Test. Two types of testing are possible: rising head and falling head tests. A slug test consists of adding a slug of water or a solid cylinder of known volume to the well to be tested or removing a known volume of water or cylinder and measuring the rate of recovery of water level inside the well. The slug of a known volume acts to raise or lower the water level in the well.
- Rising Head Test. A test used in an individual well within the saturated zone to estimate the hydraulic conductivity of the surrounding formation by lowering the water level in the well and measuring the rate of recovery of the water level. The water level may be lowered by pumping, bailing, or removing a submerged slug from the well.
- Falling Head Test. A test used in an individual well to estimate the hydraulic conductivity of the surrounding formation by raising the water level in the well by insertion of a slug or quantity of water, and then measuring the rate of drop in the water level.

3.5.2 Equipment

The following equipment will be used to conduct a slug test:

- Teflon®, PVC, or metal slugs;
- Nylon or polypropylene rope;
- Electric water level indicator;
- Pressure transducer/sensor;
- Field logbook/forms; and
- Automatic data recording instrument (such as the Hermit Environmental DataLogger®, In-Situ, Inc. Model SE1000B, or equivalent).

3.5.3 General Test Methods

Aquifer hydraulic conductivity tests (slug tests) are accomplished by either removal of a slug or quantity of water (rising head) or introduction of a slug (falling head), and

then allowing the water level to stabilize while taking water level measurements at closely spaced time intervals.

Slug testing will proceed only after multiple water level measurements over time show that static water levels are in equilibrium. During the slug test, the water level change should be influenced only by the introduction (or removal) of the slug volume. Other factors, such as inadequate well development or extended pumping may lead to inaccurate results; in addition, slug tests will not be performed on wells with free product. The field scientist will determine when static equilibrium has been reached in the well. The pressure transducer, slugs, and any other downhole equipment will be decontaminated prior to and immediately after the performance of each slug test using the procedures described in Section 3.3.1.1.

3.5.4 Falling Head Test

The falling head test is the first step in the two-step slug testing procedure. The following steps describe procedures to be followed during performance of the falling head test.

- 1. Decontaminate all downhole equipment prior to initiating the test.
- 2. Open the well. Where wells are equipped with watertight caps, the well should be unsealed at least 24 hours prior to testing to allow the water level to stabilize. The protective casing should remain locked during this time to prevent vandalism.
- 3. Prepare the aquifer slug test data form (Figure 3.7) with entries for:
- · Borehole/well number,
- · Project number,
- · Project name,
- Aquifer testing team,
- · Climatic data,
- Ground surface elevation,
- Top of well casing elevation,
- Identification of measuring equipment being used,
- Page number,
- Static water level, and
- Date.
- 4. Measure the static water level in the well to the nearest 0.01 foot.

AQUIFER SLUG TEST DATA SHEET

Field Scientist____

Location:

Job No.: 722450.18

Client: AFCEE

Water Level				ell Depth		
Measuring D	atum		_ Elevation	n of Datum		
Weather			Temp			
Comments						
						,
		Initial	Ending			6
Beginning	Ending	Head	Head	Test Type	File Name	Comments
Time	Time	Reading	Reading	(Rise/Fall)		
					· · · · · · · · · · · · · · · · · · ·	
						
-						
				l	<u> </u>	
			-			
					 	

FIGURE 3.7

Well No.____

Date

AQUIFER TEST DATA FORM

Site FT-1 Intrinsic Remediation TS Fairchild AFB, Washington

- 5. Lower the decontaminated pressure transducer into the well and allow the displaced water to return to its static level. This can be determined by periodic water level measurements until the static water level in the well is within 0.01 foot of the original static water level.
- 6. Lower the decontaminated slug into the well to just above the water level in the well.
- 7. Turn on the data logger and quickly lower the slug below the water table, being careful not to disturb the pressure transducer. Follow the owner's manual for proper operation of the data logger.
- 8. Terminate data recording when the water level stabilizes in the well. The well will be considered stabilized for termination purposes when it has recovered 80 to 90 percent from the initial displacement.

3.5.5 Rising Head Test

After completion of the falling head test, the rising head test will be performed. The following steps describe the rising head slug test procedure.

- 1. Measure the water level in the well to the nearest 0.01 foot to ensure that it has returned to the static water level.
- 2. Initiate data recording and quickly withdraw the slug from the well. Follow the owner's manual for proper operation of the data logger.
- 3. Terminate data recording when the water level stabilizes in the well, and remove the pressure transducer from the well and decontaminate. The well will be considered stabilized for termination purposes when it has recovered 80 to 90 percent from the initial displacement.

3.5.6 Slug Test Data Analysis

Data obtained during slug testing will be analyzed using AQTESOLVTM and the method of Bouwer and Rice (1976) and Bouwer (1989) for unconfined aquifer conditions.

SECTION 4

TS REPORT

Upon completion of field work and modeling, a TS report detailing the results of the investigation and subsequent modeling will be prepared. This report will follow the outline presented in Table 4.1. It will contain an introduction, a summary of physical characteristics, a discussion of the nature and extent of contamination (including geochemistry), a description of selected remedial alternatives, a groundwater model, and a proposed long-term monitoring plan.

TABLE 4.1 EXAMPLE TS REPORT OUTLINE FT-1 INTRINSIC REMEDIATION TS FAIRCHILD AFB, WASHINGTON

INTRODUCTION

Scope and Objectives Site Background

SITE CHARACTERIZATION ACTIVITIES

Sampling and Aquifer Testing Procedures

PHYSICAL CHARACTERISTICS OF THE STUDY AREA

Surface Features
Regional Geology and Hydrogeology
Site Geology and Hydrogeology
Climatological Characteristics

NATURE AND EXTENT OF CONTAMINATION

Source Characterization

Soil Chemistry

Residual Contamination

Total Organic Carbon

Groundwater Chemistry

LNAPL Contamination

Dissolved Contamination

Groundwater Geochemistry

Expressed Assimilative Capacity

DESCRIPTION OF SELECTED REMEDIAL ALTERNATIVES

Bioventing

Air Sparging

GROUNDWATER MODEL

Model Description

Conceptual Model Design and Assumptions

Initial Model Setup

Model Calibration

Sensitivity Analysis

Model Results

Conclusions

LONG-TERM MONITORING PLAN

Overview

Monitoring Networks

Groundwater Sampling

CONCLUSIONS AND RECOMMENDATIONS

APPENDICES: Supporting Data and Documentation

Site-Specific Bioplume II Model Input and Results

SECTION 5

QUALITY ASSURANCE/QUALITY CONTROL

Field QA/QC procedures will include collection of field replicates/duplicates and rinseate, field and trip blanks; decontamination of all equipment that contacts the sample medium before and after each use; use of analyte-appropriate containers; and chain-of-custody procedures for sample handling and tracking. All samples to be transferred to the analytical laboratory for analysis will be clearly labeled to indicate sample number, location, matrix (e.g., groundwater), and analyses requested. Samples will be preserved in accordance with the analytical methods to be used, and water sample containers will be packaged in coolers with ice to maintain a temperature of as close to 4°C as possible.

All field sampling activities will be recorded in a bound, sequentially paginated field notebook in permanent ink. All sample collection entries will include the date, time, sample locations and numbers, notations of field observations, and the sampler's name and signature. Field QC samples will be collected in accordance with the program described below, and as summarized in Table 5.1.

QA/QC sampling will include collection and analysis of duplicate groundwater and soil samples, rinseate blanks, field/trip blanks, and matrix spike samples. Internal laboratory QC analyses will involve the analysis of laboratory control samples (LCSs) and laboratory method blanks (LMBs). QA/QC objectives for each of these samples, blanks, and spikes are described below.

Soil and groundwater samples collected with the Geoprobe sampler should provide sufficient volume for some replicate and duplicate analyses. Refer to Table 3.1 and Appendix A for further details on sample volume requirements.

One rinseate sample will be collected for every 10 or fewer groundwater samples collected from existing wells. Rinseate samples will consist of a sample of distilled water poured into or pulled through decontaminated or new sampling equipment and subsequently transferred into a sample container provided by the laboratory. Rinseate samples will be analyzed for VOCs only.

A field blank will be collected for every 20 or fewer groundwater samples (both from groundwater monitoring point and groundwater monitoring well sampling events) to assess the effects of ambient conditions in the field. The field blank will consist of a sample of distilled water poured into a laboratory-supplied sample container while sampling activities are underway. The field blank will be analyzed for VOCs.

TABLE 5.1
QA/QC SAMPLING PROGRAM
FT-1 INTRINSIC REMEDIATION TS
FAIRCHILD AFB, WASHINGTON

QA/QC Sample Types	Frequency to be Collected and/or Analyzed	Analytical Methods
Duplicates/Replicates	4 Groundwater and 2 Soil Samples (10%)	VOCs, TPH
Rinseate Blanks	2 Samples (5% of Groundwater Samples)	VOCs
Field Blanks	2 Samples (5% of Groundwater Samples)	VOCs
Trip Blanks	One per shipping cooler containing VOC samples	VOCs
Matrix Spike Samples	Once per sampling event	VOCs
Laboratory Control Sample	Once per method per medium	Laboratory Control Charts (Method Specific)
Laboratory Method Blanks	Once per method per medium	Laboratory Control Charts (Method Specific)

A trip blank will be analyzed to assess the effects of ambient conditions on sampling results during the transportation of samples. The trip blank will be prepared by the laboratory. A trip blank will be transported inside each cooler which contains samples for VOC analysis. Trip blanks will be analyzed for VOCs.

Matrix spikes will be prepared in the laboratory and used to establish matrix effects for samples analyzed for VOCs.

LCSs and LMBs will be prepared internally by the laboratory and will be analyzed each day samples from the site are analyzed. Samples will be reanalyzed in cases where the LCS or LMB are out of the control limits. Control charts for LCSs and LMBs will be developed by the laboratory and monitored for the analytical methods used.

SECTION 6

REFERENCES

- Battelle Laboratories, 1985, National Perspective on Sediment Quality. Prepared for USEPA, Criteria and Standards Division, EPA Contract No 68-01-6986.
- Battelle Denver Operations, 1989, Installation Restoration Program, IRP Phase II, Stage I Confirmation/Quantification, Fairchild AFB, Washington. Prepared for the USAF, Occupational and Environmental Health Laboratory, Brooks AFB, Texas.
- Borden, R.C., and Bedient, P.B. 1986. Transport of dissolved hydrocarbons influenced by oxygen limited biodegradation theoretical development. *Water Resources Research*, vol. 22, no. 13. p. 1973-82.
- Bouwer, H., 1989, The Bouwer and Rice slug test an update: Ground Water, 27(3), p. 304-309.
- Bouwer, H., and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: *Water Resources Research*, 12(3), p. 423-428.
- Bruce, L., Miller, T., and Hockman, B., 1991, Solubility versus equilibrium saturation of gasoline compounds a method to estimate fuel/water partition coefficient using solubility or K_{OC...} In, A. Stanley (editor), NWWAI/API Conference on Petroleum Hydrocarbons in Ground Water: NWT/API, p. 571-582.
- Cline, D.R., 1969, Groundwater Resources and Related Geology North-central Spokane and Southeastern Stevens Counties of Washington. State of Washington Department of Water Resource Water Supply Bulletin, No. 27.
- Cline, P.V., Delfino, J.J., and Rao, P.S.C., 1991, Partitioning of aromatic constituents into water from gasoline and other complex solvent mixtures: *Environmental Science and Technology*: v. 17, no. 4, p. 227-231.
- Cooper et. al., 1967.
- EA Engineering, Science, and Technology and Montgomery Watson Americas, Inc. (ES&T and MWA), 1995, Analytical Data Informal Technical Information Report: Long Term Monitoring -- April 1995 Sampling Craig Road Landfill and Priority 1 Sites SW-1, PS-2, PS-8, WW-1, FT-01, Fairchild AFB, Washington. May.

- Engineering-Science, Inc., 1993, Health and Safety Plan for the Bioplume Modeling Initiative. Prepared for Air Force Center for Environmental Excellence, Environmental Restoration Division, USAF Contract F41624-92-D-8036.
- ES, 1994a, Remedial Design Work Plan for Site FT-1, (FT-04), Fire Training Area. Fairchild Air Force Base, Washington. January.
- ES, 1994b, Baseline Data Bioventing and Air Sparging Treatability Test Letter Report Site FT-1, Fire Training Facility. Fairchild Air Force Base, Washington. December.
- ES, 1994, Part I: Bioventing Pilot Test Work Plan for PS-2, PS-1A, PS-1B, Building 2034, Building 2035 and Part II: Draft Bioventing Pilot Test Interim Results Report for PS-2, PS-1A, PS-1B, Building 2034, Building 2035. June.
- Flint, R. I., 1936, Stratified Drift and Deglaciation of Eastern Washington. USGS Bulletin Vol. 47.
- Halliburton NUS (HNUS), 1993a, Installation Restoration Program (IRP) Remedial Investigation Report Priority One Operable Units: LF-01 (SW-1); SD-05 (IS-1); SS-18 (PS-2); SS-28 (PS-6); SS-27 (PS-8); WP-03 (WW-1); FT-04 (FT-1), Fairchild AFB, Washington. February.
- HNUS, 1993b. Final Record of Decision On-Base Priority One Operable Units. Fairchild Air Force Base, Washington. July.
- Hvorslev, M. J., 1951, *Time Lag and Soil Permeability in Ground-Water Observations:*United States Corps of Engineers Waterways Experiment Station Bulletin 36, Vicksburg, Mississippi. 50p.
- ICF Technology, Inc., 1995. Long Term Monitoring Report for Priority One Sites SW-1 (LF-1), PS-2 (SS-18), and PS-8 (SS-26) at Fairchild Air Force Base, Washington. July.
- Konikow, L. F., and Bredehoeft, J. D., 1978, Computer model of two-dimensional solute transport and dispersion in ground water: United States Geological Survey, Techniques of Water Resources Investigations of the United States Geological Survey, Book 7, Chapter C2.
- Lee, M.D. 1988. Biorestoration of aquifers contaminated with organic compounds. CRC Critical Reviews in Environmental Control, v. 18. p. 29-89.
- Norris et al., 1993. In-Situ Bioremediation of Groundwater and Geological Material: A Review of Technologies. Prepared for Robert S. Kerr Environmental Research Laboratory Office of Research and Development USEPA, Oklahoma. July.
- Parsons ES, 1995. Addendum to the Baseline Data Bioventing and Air Sparging Treatability Test Letter Report Site FT-1, Fire Training Facility. March.
- Rifai, H.S., Bedient, P.B., Wilson, J.T., Miller, K.M., and Armstrong, J.M. 1988. Biodegradation modeling at aviation fuel spill site," *Journal of Environmental Engineering*, v. 114, no. 5, p. 1007-1029.

- Science Applications International Corporation (SAIC), 1990, Site Characterization Summary Priority One Sites. December.
- Theis, C. V., 1935, The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage. Trans. Amer. Geophys. Union, Vol. 16.
- US Geological Survey (USGS), 1973a, 7.5 Minute Quadrangle Map of the Four Lakes Quadrangle, Washington.
- USGS, 1973b, 7.5 Minute Quadrangle Map of the Medical Lake Quadrangle, Washington.
- USGS, 1986a, 7.5 Minute Quadrangle Map of the Airway Heights Quadrangle, Washington.
- USGS, 1986b, 7.5 Minute Quadrangle Map of the Deep Creek Quadrangle, Washington.
- van Genuchten, M. T., and Alves, W. J., 1982, Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation: US Department of Agriculture, Technical Bulletin Number 1661, 151p.
- Wexler, 1992, Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow: United States Geological Survey, Techniques of Water-Resources Investigations of the United States Geological Survey, Book 3, Chapter B7, 190p.
- Wiedemeier, Todd H., Downey, Douglas C., Wilson, John T., Kampbell, Donald H., Miller, Ross N., and Hansen, Jerry E., 1995, Draft Technical Protocol for Implementing the Intrinsic Remediation (Natural Attenuation) with Long-term Monitoring Option for Dissolved-phase Fuel Contamination in Ground Water. Prepared by the Air Force Center for Environmental Excellence.

APPENDIX A

CONTAINERS, PRESERVATIVES, PACKAGING, AND SHIPPING REQUIREMENTS FOR GROUNDWATER SAMPLES

				Recommended Frequency of	Sample Volume,	Field or
ethod/	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
Gas chromatograp mass spectrometry method SW8240.	Gas chromatography/ mass spectrometry method SW8240.	Handbook method	Data is used to determine the extent of chlorinated solvent and aromatic	Each sampling round	Collect 100 g of soil in a glass container with Teflon®-lined cap; cool	Fixed-base
			hydrocarbon contamination, contaminant mass present, and the need for source removal		to 4 °C	
Colorimetric RSKSOP-100		Reduction of added triphenyltetrazolium chloride by soil microbes is	An indicator of the presence of soil microbes, which are necessary for bioremediation to occur	At the beginning of the project	Collect 100 g of soil in a glass container	Field
		measured colorimetrically, analyze immediately				
Purge and trap gas	gas v (GC)	Handbook method	Data is used to determine the extent of soil	Each sampling round	Collect 100 g of soil in a glass container with	Fixed-base
method SW8020		extraction of soil using methanol	contamination, the contaminant mass present,		Teflon-lined cap; cool to 4°C	
			and the need for source removal			
GC method SW8015 [modified]	8015	Handbook method; reference is the	Data are used to determine the extent of soil	Each sampling round	Collect 100 g of soil in a glass container with Teffon lined care cool	Fixed-base
		Camotina LOF 1 manual	contamination, use contaminant mass present, and the need for source removal		to 4°C	

Field or Fixed-Base n Laboratory		Fixed-base		Field
Sample Volume, Sample Container, Sample Preservation	Collect 100 g of soil in a glass container with Teflon-lined cap; cool to 4°C	Use a portion of soil sample collected for another analysis	Collect 250 g of soil in a glass or plastic container, preservation is unnecessary	N/A
Recommended Frequency of Analysis	At initial sampling	Each soil sampling round	One time during life of project	Each sampling round
Data Use	Relatively high amounts of TOC may be indicative of a reducing environment and may indicate the need for analysis of electron acceptors associated with that environment; the rate of migration of petroleum contaminants in groundwater is dependent upon the amount of TOC in the saturated zone soil; the rate of release of petroleum contaminants from the acontaminants from the amount of TOC in the source into groundwater is dependent (in part) on the amount of TOC in the wadose zone soil	Data are used to correct soil sample analytical results for moisture content (e.g., report results on a dry weight basis)	Data are used to infer hydraulic conductivity of aquifer, and are used in calculating sorption of contaminants	Data used to understand the carbon dioxide concentration gradient with depth and to infer the biological degradation of
Comments	Procedure must be accurate over the range of 0.5– 15 percent TOC	Handbook method	Procedure provides a distribution of grain size by sieving	Soil gas carbon dioxide may be produced by the degradation of petroleum
Method/Reference	Sw9060 modified for soil samples	ASTM D-2216	ASTM D422	Nondispersive infrared instrument operating over the range of approximately 0.1—15 percent
Analysis	Total organic carbon (TOC)	Moisture	Grain size distribution	Carbon dioxide content of soil gas
Matrix	Soil	Soil	Soil	Soil gas

				Recommended	Sample Volume,	Field or
				Frequency of	Sample Container,	Fixed-Base
Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
Oxygen content	Electrochemical oxygen	The concentration	Data are used to	Each sampling	N/A	Field
of soil gas	meter operating over	of soil gas oxygen is	understand the oxygen	round		
	the range of 0-	often related to the	concentration gradient with			
	25 percent of oxygen in	amount of	depth and to determine the			
	the soil gas sample	biological activity,	presence or absence of			
		such as the	aerobic degradation			
		degradation of	processes			
		petroleum				
		hydrocarbons; soil				
		gas oxvøen				
		concentrations may				
		J. C. 41				
		decrease to the				
		point where				
		anaerobic pathways				
		dominate				
Mathana content	Total combustible	Methane is a	Soil gas methane can be	Fach samuling	N/A	Field
Mediane content	Tridenostica	arodnot of the	used to locate conteminated	Garage Parish	* * * * * * * * * * * * * * * * * * *	1
of soil gas	nydrocarbon meter	product of the	used to rocate confamiliated	Tomic		
	using a platinum	anaerobic	soil and to determine the			
	catalyst with a carbon	degradation of	presence of anaerobic			
	tran and onerating in	petroleum	processes: see discussion of			
	the low parts ner	hydrocarbons	data use for methane in			
	The low pales per	II) WOOD III)	raid use for menidie in			
	million volume (ppmv)		water			
	Tange	انی	Date wood to understood	Dock compline	NIA	T:eld
r uei nyarocaroon	Total compusitore	Soli gas	Data used to midel starting	Lacii sampinig	TANK T	Ticin
vapor content of	hydrocarbon meter	nydrocarbons	the petroleum nydrocarbon	round		
soil gas	operating over a wide	indicate the	concentration gradient with			
	ppmv range	presence of these	depth and to locate the			
)	contaminants in the	most heavily contaminated			
		soil column	soils			
Ferrous (Fe ⁺²)	Colorimetric	Field only	May indicate an anaerobic	Each sampling	Collect 100 ml of water	Field
	A3500 Fe D		degradation process due to	round	in a olass container	
	T > T-pocce		design of extraga	T T T T T T T T T T T T T T T T T T T	m a grass comment.	
			depiction of oxygen,		aviany with	
			nitrate, and manganese		hydrochloric acid per	
	**************************************				method	

					Recommended	Sample Volume,	Field or
Matrix	Analysis	Method/Reference	Comments	Data Use	Frequency of Analysis	Sample Container, Sample Preservation	Fixed-Base Laboratory
Water	Ferrous (Fe ⁺²)	Colorimetric	Alternate method;	Same as above	Each sampling	Collect 100 ml of water	Field
	,	HACH Method # 8146	field only		round	in a glass container	
Water	Total Iron	Colorimetric	Field only		Each sampling	Collect 100mL of water	Field
		HACH Method # 8008			round	in a glass container	
Water	Manganese	Colorimetric	Field only		Each sampling	Collect 100 mL of	Field
		HACH Method # 8034			round	water in a glass	
						container	
Water	Chloride	Mercuric nitrate	Ion chromatography	General water quality	Each sampling	Collect 250 mL of	Field
		titration A4500-Cl ⁻ C	(IC) method E300	parameter used as a marker	round	water in a glass	
			or method SW9050	to verify that site samples		container	
			may also be used	are obtained from the same			
				groundwater system			
Water	Chloride	HACH Chloride test kit	Silver nitrate	Same as above	Each sampling	Collect 100mL of water	Field
		model 8-P	titration		round	in a glass container	
Water	Oxygen	Dissolved oxygen meter	Refer to	The oxygen concentration	Each sampling	Collect 300 mL of	Field
			method A4500	is a data input to the	round	water in biochemical	
			for a comparable	Bioplume model;	10-	oxygen demand bottles;	
			laboratory	concentrations less than		analyze immediately;	
			procedure	1 mg/L generally indicate		alternately, measure	
				an anaerobic pathway		dissolved oxygen in situ	
Water	Conductivity	E120.1/SW9050, direct	Protocols/Handbook	General water quality	Each sampling	Collect 100-250 mL of	Field
		reading meter	methods	parameter used as a marker	round	water in a glass or	
				to verify that site samples		plastic container	
				are obtained from the same			
				groundwater system			
Water	Alkalinity	HACH Alkalimity test	Phenolphthalein	General water quality	Each sampling	Collect 100mL of water	Field
:		kit model AL AP MG-L	method	parameter used (1) as a	round	in glass container	
				marker to verify that all			
3				site samples are obtained			
				from the same groundwater			
				system and (2) to measure			
) 			the buffering capacity of			
				groundwater			

Field or Fixed-Base	Laboratory	Field	Fixed-base	Field	Field	Fixed-base	Field	Field
	Sample Preservation I		analyze within o nous Collect up to 40 mL of F water in a glass or plastic container, cool to 4°C; analyze within 48 hours	OmL of water container	Collect 100mL of water in a glass container	Collect up to 40 mL of F water in a glass or plastic container; cool to 4°C	Collect up to 40 mL of water in a glass or plastic container, cool to 4%C	00 mL of a glass
Recommended Frequency of	Analysis	Each sampling round	Each sampling round	Each sampling round	Each sampling round	Each sampling round	Each sampling round	Each sampling round
:	Data Use	Same as above	Substrate for microbial respiration if oxygen is depleted	Same as above	Substrate for microbial respiration if oxygen is depleted	Substrate for anaerobic microbial respiration	Same as above	Product of sulfate-based anaerobic microbial respiration; analyze in
	Comments	Handbook method	Method E300 is a Handbook method, method SW9056 is an equivalent	Colorimetric	Colorimetric	Method E300 is a Handbook method; method SW9056 is an equivalent	procedure Colorimetric	Colorimetric
	Method/Reference	A2320, titrimetric, E310.2, colorimetric	IC method E300 or method SW9056; colorimetric, method E353.2	HACH method # 8039 for high range method # 8192 for low	HACH method #8040	IC method E300 or method SW9056	HACH method # 8051	HACH method # 8131
	Analysis	Alkalinity	Nitrate (NO ₃ -¹)	Nitrate (NO ₃ -¹)	Nitrite (NO	Sulfate (SO ₄ -²)	Sulfate (SO ₄ -²)	Dissolved sulfide (S-2)
	Matrix	Water	Water	Water	Water	Water	Water	Water

Field or Fixed-Base Laboratory	Fixed-base
Sample Volume, Sample Container, Sample Preservation	Collect water samples in 40 mL volatile organic analysis (VOA) vials with butyl gray/Teflon-lined caps; cool to 4°C
Recommended Frequency of Analysis	Each sampling round
Data Use	The presence of methane suggests BTEX degradation via an anaerobic pathway utilizing carbon dioxide (carbonate) as the electron acceptor (methanogenesis); a redox potential measurement of less than -200 mV could be indicative of methanogenesis and should be followed by the analysis referenced here; the presence of free carbon dioxide dissolved in groundwater is unlikely because of the carbonate buffering system of water, but if detected, the carbon dioxide concentrations should be compared with background to determine whether they are elevated; elevated concentrations of carbon dioxide concentrations of carbon dioxide concentrations of carbon dioxide concentrations of carbon dioxide could midicate an aerobic mechanism for bacterial degradation of petroleum
Comments	Method published and used by the U.S. Environmental Protection Agency (EPA) Robert S. Kerr Laboratory
Method/Reference	RSKSOP-114 modified to analyze water samples for methane and carbon dioxide by headspace sampling with dual thermal conductivity and flame ionization detection (also, see reference in note 10)
Analysis	Methane, carbon dioxide.
Matrix	Water

					Recommended	Sample Volume,	Field or
					Frequency of	Sample Container,	Fixed-Base
Matrix	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
Water	Ethane, ethene	RSKSOP-114 (cont'd)	Ethane and ethene	Ethane and ethene are			
			are analyzed in	products of the bio-			
			addition to the other	transformation of			
			analytes only if	chlorinated hydrocarbons			
			chlorinated	under anaerobic conditions.			
			hydrocarbons are	The presence of these			
			contaminants	chemicals may indicate that			
			suspected of	anaerobic degradation is			
			undergoing	occurring			
			biological				
			transformation				
Water	Carbon dioxide	HACH test kit model	Titrimetric,	The presence of free carbon	Each sampling	Collect 100 mL of	Field
(2) (4) (4)		CA-23 or CHEMetrics	alternate method	dioxide dissolved in	round	water in a glass	
		Method 4500		groundwater is unlikely		container	
				because of the carbonate			
				buffering system of water,			
				but if detected, the carbon			
1000				dioxide concentrations			
	Section Section 1997			should be compared with			
				background to determine	200		
				whether they are elevated;	200		
				elevated concentrations of			
				carbon dioxide could			
				indicate an aerobic			
				mechanism for bacterial			
				degradation of petroleum			

me, Field or ainer, Fixed-Base ervation Laboratory	samples Fixed-base OA vial; dd dd to	ocarbons- Fixed-base samples OA vial; dd acid to -collect n a glass ol to 4°C; vric acid to	water in Fixed-base ner; cool
Sample Volume, Sample Container, Sample Preservation	Collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2	Volatile hydrocarbons-collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2 Extractable hydrocarbons-collect 1 L of water in a glass container; cool to 4°C; add hydrochloric acid to pH 2	Collect 1 L of water in a glass container, cool to 4°C
Recommended Frequency of Analysis	Each sampling round	One time per year or as required by regulations	At mitial sampling and at site closure or as required by regulations
Data Use	Method of analysis for BTEX, which is the primary target analyte for monitoring natural attenuation; BTEX concentrations must also be measured for regulatory compliance, method can be extended to higher molecular weight alkyl benzenes; trimethylbenzenes are used to monitor plume dilution if degradation is primarily anaerobic	Data used to monitor the reduction in concentrations of total fuel hydrocarbons (in addition to BTEX) due to natural attenuation; data also used to infer presence of an emulsion or surface layer of petroleum in water sample, as a result of sampling	PAHs are components of fuel and are typically analyzed for regulatory compliance, data on their concentrations are not used currently in the evaluation
Comments	Handbook method; analysis may be extended to higher molecular weight alkyl benzenes	Handbook method; reference is the California LUFT manual	Analysis needed only for several samples per site
Method/Reference	Purge and trap GC method SW8020	GC method SW8015 [modified]	GC/mass spectroscopy method SW8270; high-performance liquid chromatography method SW8310
Analysis	Aromatic hydrocarbons (BTEX, trimethylbenzene isomers)	Total hydrocarbons, volatile and extractable	Polycyclic aromatic hydrocarbons (PAHs) (optional)
Matrix	Water	Water	Water

Field or Fixed-Base Laboratory	Fixed-base	Fixed-base	Fixed-base
Sample Volume, Sample Container, Sample Preservation	Collect 40 mL of water in glass vials with Teflon-lined caps; add sulfuric acid to pH 2; cool to 4°C	Collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH 2	Collect 100 mL of water in an amber glass container with Teflon-lined cap, preserve with sulfuric acid to pH less than 2, cool to 4°C. Collect 100–250 mL of water in a glass or plastic container,
Recommended Frequency of Analysis	At initial sampling and at site closure	Each sampling round	Each sampling round Each sampling round
Data Use	Data used to monitor the reduction in concentrations of total fuel hydrocarbons (in addition to BTEX) due to natural attenuation	Method of analysis for chlorinated solvents and aromatic hydrocarbons for evaluation of cometabolic degradation; measured for regulatory compliance when chlorinated solvents are known site	An indirect index of microbial activity Aerobic and anaerobic processes are pH-sensitive
Comments	A substitute method for measuring total volatile hydrocarbons; reports amount of fuel as carbon present in the sample; method available from the U.S. EPA Robert S. Kert Laboratory	Handbook method	An oxidation procedure whereby carbon dioxide formed from DOC is measured by an infrared spectrometer. The minimum detectable amount of DOC is 0.05 mg/L Protocols/Handbook methods
Method/Reference	Purge and trap GC method SW8020 modified to measure all volatile aromatic hydrocarbons present in the sample	GS/MS method SW8240	A5310 C E150.1/SW9040, direct reading meter
Analysis	Total fuel carbon (optional)	Volatile Organics	Dissolved organic carbon (DOC) (optional)
Matrix	Water	Water	Water

					Recommended Sample Volume, Frequency of Sample Containe	Sample Volume, Sample Container,	Field or Fixed-Base
Matrix	Analysis	Method/Reference	Comments	Data Use	Analysis	Sample Preservation	Laboratory
100 s 300	Temperature	E170.1	Field only	Well development	Each sampling round	N/A	Field
Water	Redox potential	A2580 B	Measurements	The redox potential of	Each sampling	Collect 100-250 mL of	Field
	•		are made with	groundwater influences and	round	water in a glass	
			electrodes; results	is influenced by the nature		container, filling	
			are displayed on a	of the biologically		container from bottom;	
			meter; samples	mediated degradation of		analyze immediately	
			should be protected	contaminants; it may range			
			from exposure to	from more than 200 mV to			
			atmospheric oxygen	less than 400 mV			

NOTES:

- . "HACH" refers to the HACH Company catalog, 1990.
- A" refers to Standard Methods for the Examination of Water and Wastewater, 18th edition, 1992.
- "E" refers to Methods for Chemical Analysis of Water and Wastes, U.S. Environmental Protection Agency, March 1979.
- "Protocols" refers to the AFCEE Environmental Chemistry Function Installation Restoration Program Analytical Protocols, 11 June 1992.
- "Handbook" refers to the AFCEE Handbook to Support the Installation Restoration Program (IRP) Remedial Investigations and Feasibility Studies (RI/FS), September 1993.
- "SW" refers to the Test Methods for Evaluating Solid Waste, Physical, and Chemical Methods, SW-846, U.S. Environmental Protection Agency, 3rd edition, 1986. 6.
- "ASTIM" refers to the American Society for Testing and Materials, current edition.
- "RSKSOP" refers to Robert S. Kerr (Environmental Protection Agency Laboratory) Standard Operating Procedure. ∞
- "LUFT" refers to the state of California Leaking Underground Fuel Tank Field Manual, 1988 edition. 9.
- International Journal of Environmental Analytical Chemistry, Volume 36, pp. 249-257, "Dissolved Oxygen and Methane in Water by a Gas Chromatography Headspace Equilibration Technique," by D. H. Kampbell, J. T. Wilson, and S. A. Vandegrift.

Log of Borehole

	- page o:
Project Fairchild AFB (TVA) Total Depth 14.0 ft	START FINISH
Location F.1 I - LOC 14 - MW-149 Boreholo Dia	Date 11 11 01 11 11 11
Geologic Log by Catherine Olsen Depth to Fluid	Date 11-11-9
Driller Dan / Env. West Rig Mobile Drill R-6	Time
Bit(s) Hall- 1- El-	110100.140
Weather 40°F, prt clay Fluid None	
Pene. Circu-	surrey markers.
Depth Riow O Living College and Hy	drologic Description
Cis (apm) # Inter- Lith.	% Core
- O - Symbol	Recovery
0-2.0ft; 511tu	snds, v.fineto
med grn	shds, accas 8-nd
DSIT CLST	S. Oracunic soil. I
-2 0.6', dr.	4. 1005e, loye 43
med. and	s, bsH pebbles
4-50 mm.	subang to submid
-4 100sc, de	4, 10/R 5/3
4.0-6.0ft: 511th	snds w/tracel
- Coultine	to med sude
bst all	s), occ. 20-30 mm
-6 motified in	10483/2, 51. morst
6.0-8.0ft: Clay	e. : sute 12/
3nd5, 51. m	1915+ 7.0-7.25/
v. ers arn so	and lens, claud
8 1.25-8.	o', plate, sl. most
8.0-10.0 ft: 5114 fine toward	4 Sunds, V. wet
roots observ	snds, 104 R3/1,1
in the tomed	snds to silty snd
31.71	1
10.0-12.0ft: Cla	yeu silt (10-10.5')
moist, love	3/2,10.5-12.01
SIHY Snds, n	acd to V. crs snds
2 WC+, 10YR 5	0/3
12.0-14.0ft; 5.11	11 50 pdg 12 1
14.0 ft, Clc	4 2000 to 1
Total Depth 2 14.01'	
Total Depth a 1	4.0 51.

Borehole FT- Loc 17 Log of Borehole page ____ of ____ START FINISH Total Depth __43 Project FAIRCHILD AFB Location FIRE TRAINING MWISO Borehole Dia ________ 8 " Date 9/18/11 1/20/21 Geologic Log by Chuck Howk SAIC Depth to Fluid 16 Ft growtherel Time 1350 1400 Driller Louis - PONDEROSA Rig CP - 780 How Left 2.5 A65 Geophysics by _____ W/ steel security Bit(s) Tri cone - Rock Hammen Weather Sunnywarm, & breeze Fluid AIR/40 box in place Pene. | Circu-Sample Geologic and Hydrologic Description Rate/ lation OVA/ Depth Blow Q HNU Inter-Lith. % Core (gpm) val Symbol Recovery ٠5-No Collection to 14' has - ream pilot holo 24pm & Clay, with firm son, dkyellowish Cl 2500 0 Coranular Sand, V-carre, as Holes < 10mg Sω tr chyfrag, black, angular b subfounded >90% baselt to fell +quests -25-250m 0 SP/SW Sand, 1- v course, some granule, trace peller < 8 mm to Franch black 2.5/02841 goody ported, angular to out rounded. 30-2 4 L 305 BR Brant - Fractured - votet gray 3/0 7.54 soft spot sandy wilt - 2' thick

1415

1445

1520

1214

& dyller comments

Borehole FT-1 W 12

Log of Borehole

page 2 of 3

	Projec	t FAIR	CHILD	AFB			Total Depth 43' START FINISH				
			-1 Loc				Borehole Dia 8" Date 9/18/11 9				
				out.	- 5416			uid ~ 15 first encountered			
	Driller	Louis-	- PONISA	2005A		1	Rig CP 708 How Left 2.5 A&S				
	Geoph	ysics b	у			1		DNE-ROUE HAMMYEX	w/steel sur		
	Weath	er <u>841</u>	m wa	<u>~~</u>			Fluid Have	un ober			
		Pene. Rate/	Circu- lation	OVA/	Sar	nple		Geologic and Hydrologic	Description		
14 LZ	Depth	Blow Cts	Q (gpm)	HNU	#	Inter-	- Lith. Symbol			% Core Recovery	
1462		1.2	2	0	5	36	Rn	Hard again C 34-			
						ļ		Hard again C 34 - Frantined Basalt dk gran felsic sand, angula, rd	7,50~		
						-		felsic sand, angula, rd/	bown		
	- /						-	•		· · · · · ·	
1427	10-	1.0	2.	۵	4	40		Baddlt- whitemplace	£ 2.559	fractuel	
63Z-							BR	Barelt- some fine parl	blacir 25	54	
		0.6	2	Ø	7	43	$\supset \subset$	less frontines - Harder dr.	lling	4	
	45						-	TD-43'	σ		
						<u> </u>					
l					ı		-				
							1				
]				
					·		4				
	<u> </u>					 	-				
							1				
Ì						· · · · · · · · · · · · · · · · · · ·	1				
] [•			
										•	
}				•			-				
ł							-				
	- +						1 }				
ľ							1 1				
] [
	- +						↓				
}							-				
ł							┨				
ŀ							1 }				

Borehole F7-1 Loc Z Log of Borehole page _____ of ____ START FINISH Total Depth 315 Project FAIRCHICO AFB MWIST Location FT-1 Loc 2 Date 9/21/91 9/2/91 Geologic Log by CHUCK HOW & SUC Depth to Fluid _____ Time 0500 1400 Driller PONDORORA - Louise Rig CP 780 How Left pre cusing Bit(s) & fricone Geophysics by _____ no sunty box aid Fluid Air/Water Weather 1/2/12 Pene. | Circu-Sample Geologic and Hydrologic Description Rate/ lation | OVA/ Depth (DNH) Blow Inter-Lith. Q % Core (gpm) val Symbol Recovery 3.0 ०४३० Sandy Gravel with pelolles 415 mm posly sistel - sub angular to bona It some feld & que 3.5 15 B43 -15configural, and ailt petales 410 m sum sitt, and angular to substant 2907 baselt - hed work 15.5" feet -20-0855 13 3 മാ some line sando, to silt - evan dille ° 135 -2 2.5 25 massive basalt plack 2/1 104R-hard 132 11 30 besalt as abuse -20-1016 31.5 baselt as obone TO 315(1022h

& miared depter - designed

Borehole Loc # 13

Log of Borehole page ______ 3' _____ Project FAFB START FINISH Total Depth ______/2' Location FT-1 / MW-152 Borehoie Dia ____ \$ 8" Date 11-12-51 11-12-51 Geologic Log by & Di Greening Time 7220 1220 Depth to Fluid ____ 4, &' Driller Dan Claasses/ Fryim West Rig Mobile Dail E. L. How Left _____ Geophysics by NA Bit(s) B" Augus by locking well Weather Aucast 40 F many Penje. | Circu- | Sample Geologic and Hydrologic Description Raye/ lation DVA Depth (gpm) Survey BIbw Inter-Lith. % Core Symbol Recovery silty chay dry non-plastic 10-2 12.4 So% ∇ 14-6 フらり Consider ining good 1 20% Sand Course Goali well sortal and miner grand < 30mm 18-10 Puilled Seun 3 6 40 mm Ancy refuse D HUn Bockgond

Log of Borehole

Location FT-1 /MW-153

Geologic Log by G. D; Gregorio

Geophysics by ___________

Driller Dan Claassen/ Environ West

Project FAFB

Total Depth 9.2'

Borehole Dia 8"

Depth to Fluid 4.8' RGS

Rig Mobile Drill 36/

Bit(s) 8" Auger

START FIN:

Date ||-13-91 ||-13-91

Time 0726 0800

How Left w/ locking

Well Veult in

Weath		Heer C	1/1 32	F		Fluid	VA .	- place		
Pene. Circu- Samp				Sar	mple		Geologic and Hydrolog	ic Description		
Depth - 0	Blów Éts	(gpm)	HNU	#	Inte val			,	% Core	
- 0 -							silty cky w/ organ	ns dark	!	
<u> </u>		<u>i</u> I		<u> </u>	<u> </u>	_	brown grading to	very sitty	:	
		i			<u> </u>	7	dy non-plastic u	at 1.41	<u> </u>	
_ Z			00	U	3		sand.		i 75%	
		i			<u> </u> 	_	silty clay if sa	of day non	<u> </u>	
İ		!					plactic grading to Co		i	
		<u> </u>	00		12-4	_	3.01 BGs Refusel (spoon) at 2.5	: 100	
-4-		i .					coarse sand w/ min	orarel 46 mm	675%	
		<u> </u>			<u> </u>	_	ang, wellsorted. Wet	0 4.6'		
		!				_	Beealt, gtz and felds Felox stains	mm		
-4 -			00		4-6		PEUT STRING		60%	
<u> </u>	-				<u> </u> 	_	Sand Cares well sea	ed up	!	
ĺ		,			!		Bluscott gravel spo	en refusal	!	
					6-6	<u> </u>			i	
8 —		•			i	<u> </u>	sand cearse, well	Challed	160%	
			!		<u> </u>		argular of basalt gra		:	
1			!		<u> </u>		TD Q 9' 365		<u> </u>	
<u> </u>	i		İ							
						_				
	İ									
	:									
			1						!	
	<u>!</u>	ļ	<u> </u>	<u> </u>		_				
	İ					-		· · · · · · · · · · · · · · · · · · ·	1 ,	
	i					7	· · · · · · · · · · · · · · · · · · ·		 	

HNu Background 0.0 ppm

Borehole = 7-1 Lac 11 page _ _ of _ _

Log of Borehole

Project FAIRCHILLS AFA

Location FT- 1 Loc 11

START FINISH Total Depth_ Borehole Dia ________ MWI54 Date 9/21/91 9/22/9, Time 1600 Geologic Log by CHUCK HONCK (SAIC) Depth to Fluid

	Driller	Louis H	P.	miles	<u> </u>	F	Rig <u>CP 783</u> How Left survi						
	Geoph	ysics b	/		•	E	Bit(s) <u>& " -</u>	Tricone	5 per 2.5 AGS W/				
	Weath	er <u>ಒ</u> ್ಲ	سريا سي	du		F	luid _A_0	1 WATER	Kis cap - m				
	Pene. Circu- Sample						Geologic and Hydrologic Description						
	Depth Blow Q HNU # Int				#	Inter-	Lith. Symbol		•	% Core Recovery			
	-0-		÷										
1600	-S-		æ	8	1	5		f-vcourse sand, some an					
								pelobles < 10mm, dry, poor	in the state of th				
1624	-10 -	•											
			<u>a</u>	16.2	2_	10		med-course said to vo					
							אייני	angular to susranded	Da 210 in				
1627	-12-		2	18.8	3	15	-	sitty soul of yellows	hleron, 3/4	1042			
								pundy antil vivetabana C 15.5 - handened up ~	19° on hi	li-			
0211	-20-		722	7.7	4	פיב		1	2 5/1 5/4	0//			
				7.2	4	النار		trablus grang silt al					
~ 410	OF												
0177	- 25	·	2	19.8	5	25		busalt-hard blak ;	2.5/154 Alt Lucan	<i>t</i> :			
									V 3".				
०१२८ ४५४	_3∪_ 3		۵.	3.8	G	30		basett - hand - black of	.5/15g ·-	·			
								TD 31' bys					
							-						

Log of Borehole

START FIF

Location FT-1 / MW-155 Borehole Dia 6" Date 1/12-9 Illication Geologic Log by G. Discreption Depth to Fluid 5 Time 13th 1467 How Left in Earth 2007 Pengl Circle 14 "F Fluid 18 Phase 18 Ph	Projec	n FA	93				To	tal Dept	91	START	FIF
Geologic Log by G. D. Geogram Driller Das Classes of Emison West Geophysics by MA Weather Duckest '40 'E Depth Blyw A Hyp Interport Vall Vall Symbol Sy								rehote D	Date //-/2-5		
Driller Dao Chasseul Ention West Geophysics by Weather Deepth Rest Latin Out: Bitts) B" Mager Fluid No. Pend Circk Inchest Latin Out: Blow A How Left we inching Place. Pend Circk Inchest Latin Out: Blow A How Left we inching Place. Pend Rest Latin Out: Blow A How Left we inching Place. Sample Geologic and Hydrologic Description Stiffy Clay dry ran-glastic Score Recovery Stiffy Clay dry ran-glastic Score			-3			_					
Geophysics by Ma Bitts & A bugger Fluid Na place. Pend Circle 1975 Sample Geologic and Hydrologic Description	1										
Weather services 46 1/2 Fluid No. Place Pend Circy: Sample Geologic and Hydrologic Description Rath Iasion Day Hilly Inter- Lith. Symbol O Styling Styl	1	· · · · · · · · · · · · · · · · · · ·									
Pend Circle Rate lation Depth Rate Circle	1				 						<u> </u>
Depth Blow D Holl " Inter- Lith. Yal Symbol Sitty Chy dry ran-glastic Mecovery Sitty Chy dry ran-glastic metal factor fa	vveati				1 _						
Depin Poly (gam) with a linter val Symbol Silty Chy dry man-glastice organis with miner said dark train dark train and party to care said which where the strain and the said of the said		Rate/	lation	بيثبن	Sa	mple		· •	Geologic and Hydrologic	Description	
Silty Cky, dry rem-plastice organics with miner said deck tomm lead to goding to come of the said said & 31 Back got go goding to come of the said said & 31 Back got go goding to come of the said of the sa	Depth	Blow	/h	HNU	#	j			•		
deck brown 2 10 0-2 927-	⊢ ∘−	9ts	(gpm)	Jan Je		va	1 1	Symbol			Recovery
deck brown 2 10 0-2 927-		<u> </u>	<u> </u>		<u> </u>	<u> </u>	_		silty Chy dry n	en-plastie	
2 400 0-2 Sandy cla, gading the conce sand & 3' East of for for the sand & 3' East of for for the sand for for the sand f		<u> </u>	 			<u> </u>	¦		organics wi mine 5	and .	
Sandy clas goding to cores Sand & 31 Best glo i Felds of Felds strong And the season will sent to said According to season will sorted Sand of mine class to grading According to season will sorted Complete to the fields Poselly grand on the fields Poselly grand on the fields Felds grand on the fields Comme sind will sorted and in better to the strong to the season of	}			i		!	\dashv		dark horum		
Sandy clas goding to come said & 31 Cockl glo i Goding to come strong posting to construent variable toxall goding to construe	 -	<u>!</u> 	<u> </u>	4.0		0-2	\dashv	,			G
filds of Food Strong Arthur to continued resistate baself Arthur to continued resistate baself Acrost ise to 30 mm Sould of mine clay to 5' grading to coarse isends angular well Socied whether 85' Sand, Coarse grain well sorted Coarder, Insect of the fields Coarder, Insect of the fields Friendly gravel of the 15 mm String & 3' angular & 15 mm Coarder sould will sold another in beself gravel & 30 mm afect B. 10 Deitled to 10.5' 9'50 Recent referred & 155' 9'1 The sell 93'		İ	· ·			1			sicular ala contra do	~~~~	1010
filds of Food Strong Arthur to excitate travely Arthur to excitate travely Arthur to excitate travely Archive to 30 mm Archive to 5' grading Archive to 5' grading Archive to 5' Sand of mine clay to 5' grading Archive to 5' Sand, Course grain well sorted Cognition travely to the life Cognition travely to the life Friendly gravel at the 0; string Striving to 3' angular & 15 mm Cognition to 18 string Cognition to 18 strin									sand & 31 Reself	sto i	
April to the training to secretary to secret		1	<u>i</u>					٠			
Sind up mine class 5° grading Land up mine class 5° grading Land up mine class 5° grading Land whether 8 5° Sind, coarse grain well sorted Congular, tracel 4 50 is feldy Poselt gravel ut 50 statem Sticking 8 8° congular 5 5° grading Sticking 8 8° congular 5 5° grading Sticking 8 8° congular 5 5° grading Consus sind well sorted Land grade 50 grade 50 grade Land grade 50 grade 50 grade Delle 50 grade Delle 50 grade 50 grade Delle		!	<u> </u>	. 9 -		:	_		proton to acadeud vocate	cabo baself	
Socied. Webs @ 5" Socied. Webs @ 5" Sind, coarse grain well sorted cogular tracit give itelds Possit grand up to 20 string string & 3" singular & 15 mm String & 3" singular & 15 mm Conse sind well sorted and for farming from afred Bill for possible for string. Some afred Dilled to 10.2 9'50 Recent sands of the 5'9' The sell for	-4-	1	!	2		2-4	1		andice + 4 30 mm		757
Societé . Weles @ 5" -6	<u> </u>	! i .	! i	1		<u>i</u>	\dashv				1
19 19-10		1	<u> </u>	<u> </u>		1	\dashv			a well	
19-6 Sand, Crare grain well sorted				į		1		V	Socied Welse (2 5		
Sand, Crarce grain well sorted Cogular Incest gle is felde Poset gravel in FOI string String & 8' counter & 15 mm String & Sind well sorted and in 15% Connex sond well s	4	!	ı	4 8		14-6	T.				75%
Cognice tracet gle ifelds Poselt gravel up is 0; stating Staining & 3' signific \(\) 15 arm To let beself gravel \(\) 3 mm Cognic \(\) sind \(\) gravel \(\) sind \(\) and Cognic \(\) sind \(\) sind \(\) sind \(\) and Cognic \(\) sind \(\) sind \(\) sind \(\) sind \(\) and Cognic \(\) sind \(\) sind \(\) sind \(\) sind \(\) sind \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind \(\) \(\) sind	_ σ		!			1			Sand Corre coun in	11 5,000	7378
Beicht gravel mi F.Os states Stationing to B' signific = 15 mm Total Connect soul well sinked sixula in/ beself gravel & 3 mm consult gravel from & 3 mm consult gravel from & 3 mm consult gravel gravel & 3 mm consult from & 5 mm consult gravel & 3 mm consult gravel gravel & 3 mm consult from & 5 mm consult from from & 5 mm consult from from & 5 mm consult from from from from & 5 mm consult from from from from from from from from			•	!		!					
5 6-8 String & 3' signt = 15 mm 75% -8 Conse sind well sinked sixular in/ breadt grant & 3 mm Greater falls sixing, Som referred 25% -10 19-10 25%		<u>i</u>		1		!	_		Poselt gravel up Fe Dr	Shile.	
Consice sind well sinked and in bruth game & 30 pm affect and a 30 pm affect a 30	<u></u>	1 -	:			1 .	_				
in/ backt gam! & 3 nm crych Fedx sting. Som refice! 25% Dilled to 10.5 9'60 There refiere @ 10.5 9' The sell 90	- 5 -	.	<u>. </u>	13/1		10-9	-				
Dilled to 10.5 9'60 Ruge refuse Q 10.5 9' TD rell TO 10.5 9' TO 10.5 9' TO 10.5 9'		<u>:</u>				-	\dashv	i	Connic sind well si-	led andie	
Dilled to 10.5 9'60 Ruge refuse Q 10.5 9' TD rell TO 10.5 9' TO 10.5 9' TO 10.5 9'		<u> </u>				i	\dashv		in bount grant & so	. 0 1	
Dilled to 10.5 9'60 Ruge refuse Q 10.5 9' TD rell TO 10.5 9' TO 10.5 9' TO 10.5 9'			<u> </u>			Ī	\dashv	!	A A.	mon referred	
Diviled to 10.5 9'60 They refused @ 40.5 9' TD sell 43	_/ ₃ _	l	!	10/10		18-1	0	İ			25%
To sell 673									Dilled to 10.5 9	ńο	
			<u> </u>		<u> </u>	<u> </u>			freger refrest Q	10-5491	
	-		l 			<u> </u>	_		TD well 6	<u> </u>	<u> </u>
		<u> </u>	i			!	_!	:			
	-		<u>:</u> !			í Í					<u> </u>
				<u>:</u>		 	_				<u> </u>
						:	-			· · · · · · · · · · · · · · · · · · ·	<u>!</u>
			<u></u>	!		 	\dashv				
				l					1		<u> </u>

Borehole FT-16c1

Log of Borehole

	Projec	1 FAIR	CHILD	REB			Total Depth 43,5					
				1 1			Borehole D	*	Date 9/22/9/ 9/23/5/			
	5			lonch '		1		uid	Time 14/5 1030			
••	Driller	Powre	MOSA -	Louis	HANNE	4	Rig CP 7	80	How Left and	out to		
•••	Geoph	ysics b	y				Bit(s) 8" 7	ricone/hamoner	surface - or	i i		
	Weath	er					Fluid AIR	/WATER	no security	1		
		Pene.	Circu-		Sa	mple		Geologic and Hydrologic	Description			
	Depth	Depth Rate/ lation OVA/				Inte				% Core		
:	_ 0 _	Cts	(gpm)		#	va				Recovery		
					-	-	-					
			8	¥	1	5	-	sleven sand, I-m, direc	howm 3/	1540		
1450	->-							Sandy clay, Soft		378		
				<u> </u>		-	_					
			8	8	٦.	10		f-magnd, to silt, black	2.5/1548			
1453	<u> - い -</u>							mod sorded basalt que	At feller			
						ļ		Subungulen- rounded				
					-		┥.					
			*	.	3	15		f coarse sand, to acho	1 5-111			
1459	-12-		_					dk brown, med sorter, se	ubanender t a	who will		
								Smalt, quarty \$17/7.54	IR			
							_	T '1 . // / / W	i≈ ,	4 - 4		
							-	Thirty health clay lone - 5	in sadd	4/4		
1612	-20-		2		4	ورح		grandly smal, f-warse,	ane debles.	pool frest		
								conted, angular to sule non	roled haralt	, great		
						ļ		feld, plags But rock e 23.5' per hill				
							-	But rock e 23.5 per sull	/	5		
1647			2	3.5	5	23	7	Sand fin med, vell sorte	O selano. A			
								and Fracture boselt - b	lack			
							_					
٠.	_					-	-					
1737	-3 -		2	5	Ŀ	30		baselt-maseir hard- bla	ct 2/0 2.9	9		
							_					
i	·					-						
	<u>'</u>	<u> </u>				·						

Borehole FT-1 Wol

								•	Joi en loie			
	Log	of B	oreh	ole					page 2	_ 01 _ 2		
	Projec	FAIR	CH160	AFB			otal Depth	8 43.5	START FINISH			
	•			M		1		ia <u></u> 8"	Date <u>9/22</u>	h, <u>9/23/9</u> ,		
	1			ed SAI		1		uid	Time <u>1415</u>	1030		
				c-Poup			ig <u>ح</u> ې 7		How Left 1	. 1		
	ł							Tricone/ hamorer	4/PUL 25 AGS- no			
		er				1			security bo	ı		
			Circu-		Sar	nple	1	Geologic and Hydrologic	·····	<u> </u>		
	Depth	Rate/	lation	OVA/		T	1 Jah			% Core		
		Blow Cts	Q (gpm)	HNU	#	Inter- val	Lith. Symbol			Recovery		
AIZ	-3દ−		2	ð	87	35		Busset as where				
				Ψ_		<u> </u>		in a special				
									·····	·		
1722	<u>-५</u> ०		ح .	। ১হ	8	40		0 11				
				ι α	- 0 -	70	-	Breekt as above	·			
							1	TD 43.5- Ratalt - m	zochone			
1728 —												
	<u> </u>		· · ·									
						<u> </u>	1	•				
							}					
										·		
						<u>.</u>		•				
,												
					·		-					
						 	-					
							1					
							1					
]					
							1					
	 -				<u> </u>		-	·				
	 					-	1					
							1					
			ſ		1	1	7					

Log of Borehole

Project _ FAIRCHILD AFB

START FINIS Total Depth _____39.51 Location FT-1 Stat Damp #Z HW-157 Borehole Dia 8" Date 10/1/4/ 10:00 Depth to Fluid Time <u>08/5</u> (.... Rig _ CP 7000 How Left _ C- C-

	1	Geologic Log by A. C. Wazos SATC							epth to Flu	ıid	Time <u>28/5</u> (
		Geolog	ic rod i	DY - 17. C.2	HACE	3414	-	1	ig <u>cp 7</u>		How Left
	1			. Henres		73 C	-	ŧ		name roller, 8° hammerbit	•
				<u></u>		<u> </u>	-	ı			· · · · · · · · · · · · · · · · · · ·
•	. [Weather 50° Donth Sunay							luid <u>au</u>		and grated
	ſ			Circu-		Sar	nple			Geologic and Hydrologic	Description
• ·		Depth Rate lation HNu		#	Inter						
		ft		(gpm)	PPM	*	Va	al	Symbol		
		_ 0 _].]		
]]		
							<u> </u>		1 1		
									4 }		
	0830	-5-				1.	3	_	000	Sandy Grand; Hory coarse San	I and arould and
					J.D		۲		1-0-16	reporter (L25mm) moderate	& Sorted. JK 11454 OCK
									50.0	to gelsh bra subrad to se	ang true questro
									0 0 0		
	0 848	_/0_							1		
٠	000				0.2	2	//	0	0 000	Soundy Gravel . very course so	ad granules and
·			1		<u> </u>		 		ا ت ہ و ا	Typics (430mm), acaryst	1 Dry to up/54 am
					<u> </u>		-			mad setted; cubra to an	7
-							\vdash		0 - 0 0		
	0 852	-15-			104	3	14	7	"	Sundy Grand; fiel to coase s	and grands and
] `』、		
				}					ي ٠٠٠	mid sorted : subjust to S	chang
			<u> </u>		<u> </u>		<u> </u>		. 0 .		
	0900	-2v-	<u> </u>		1 22	1		_	٥ ٨	2 . 15:	Source to the
			<u> </u>	<u>:</u> !	10.2	4	12	<u> </u>	^ ^ ^	Bositt : 40551/K : pluck :	u sanse docuverse
			 	<u> </u>	<u> </u>		i		^ ^	travoluent while coatre or	system of some pas-
] ^ ^	fres	
		2ö]^	V	
	•				0.0	5	2	5	1 1 1	Baselt Coarse grained	of minor 10/8/91
		<u> </u>	 	<u> </u>		<u> </u>	├		1 1	discolation light gory	
		-		-	<u> </u> 		+-		┤^		
•		-	-	<u> </u>			+-		1 ^ ^	Bacil Come Galad	tractures
		-30-	i	<u> </u>	00	16	3	c] ^	ct = 32' - 35' wellow	esh Cratus
-] ^		
									_ ^ ^		
			<u> </u>	ļ	<u> </u>		+-		1 1 1		·
									1'	<u> </u>	

page _ Z _ of _ Z

Projec	r Ear	July 1	LER		.	Total Denth	39.5 ′	START	FII:
		المحاكمة					ia	Data 1. <i>isto</i>	u salawa
								Date 10/7/9	
		by <u>D</u> Ω	-		. 1		uid	Time ¿ŝis	
		Harnel	•			Hig CP	1000	How Left 1/	reking
Geopt	rysics b	yUA_			-	Bit(s) 8	income raller, 8° hammebit	WELL VOUL	Lin place
Weath	ier <u>par</u>	thy chud	y 450F		[Fluid	ler.	and gooded	<u>′</u>
		Circu-		Sar	nple		Geologic and Hydrologic	Description	
Depth	Rate/ Blow	lation	OVA/		Inter	- Lith.			% Ccre
一第_		(gpm)		#	val				Recovery
-p-	i	<u> </u>	1	<u> </u>	35	1 1 1	Baselt conce grained	ſ.,	
		İ	İ	i			with yellowish - green c		
		1	İ	i	İ	1 1	guissy dark gray	man,	
		i	1		-	1/2/2	TD ~ 38'		
				1	1	\\\^\\^\\\			
				1] i			
	<u> </u>			Ì	1			•	_
	<u> </u>				i	.	•	·	
	1	<u> </u>	İ	<u>i </u>	i	_	·		
L _	<u>i</u>	!	1	<u>i </u>	!		•		
<u></u>	<u> </u>	<u>!</u>		!	!	ا		· · · · · · · · · · · · · · · · · · ·	:(
		<u> </u>	<u> </u>	<u>!</u>	<u> </u>		•		<u> </u>
	1	<u> </u>	<u> </u>	!	<u> </u>	_			
ļ	<u> </u>	<u> </u>	<u> </u>	!	<u> </u>	_!			
<u> </u>	<u>!</u>	<u> </u>	<u> </u>	!	:	_		· · · · · · · · · · · · · · · · · · ·	!
<u> </u>	!	!	!	<u> </u>	<u>!</u>	_	·		<u> </u>
	!	!	!	i	1	_		H	<u> </u>
	<u> </u>	<u>: </u>	<u>i</u>	<u>:</u>	i	_			•
	<u>; </u>	<u>:</u>	1	!	<u>:</u>				•
<u> </u> -	1	· i	<u> </u>		· i				<u>. </u>
<u> </u>	:	! !	<u>: </u>	:	:	-			:
	i	<u> </u>	i	:	<u> </u>	┪			<u>: </u>
	i	!	<u> </u>	<u>:</u>	<u>.</u> I	-		•	
	Ī	1	 	<u>:</u>	<u></u>	<u> </u>			
— —	l	i	i	i		-			<u></u>
		1	j	i		1			
	Ī		İ	:	<u> </u>		<u> </u>		<u>.</u> -
	1	!		!	!	7			
	1	!		i	i ·	_	i		i -
		1	!	:	i	7	!		
	1	i ·	- '	1	i ·	-			i :
		İ	1	1					1
					i				
		i		i		i			1

MW158

Project _ FAIRCHILD AFB	Total Depth 91'	START FIN
Location FT-1 Than Darip LOC #3	Borehole Dia 5"	Date 18/3/9/ 10/
Geologic Log by A. Cavatas SAIC	Depth to Fluid 's'	Time 0740 152
Driller 1 Hanner Aricherosa	Rig <u>CP 7000</u>	How Left Monted
Geophysics by	Bit(s) &" Dir retury 5' Lemme: but	security box, no l
Weather 76° Sinay	Fluid KAR , WILLER	
		· · ·

•		ΥΥ		<u> </u>			AM retery 5 Cuinci bit suchty box, no
Weath	1er	ie Sin	100			Fluid	ir water
	Pene.	Circu-	T	Sai	mple	•	Geologic and Hydrologic Description
Depth	Rate ft/ min	lation Q (gpm)	HNu PPM	#	Inter val	1 1	,
] . '	
•	<u></u> '	ļ			<u> </u>	_ '	
			 		 	⊣ · !	
	-	 		· ·	-	- 1	
5			9.0	1	5]. 1	Sandy gravel : DEDSES (< 30 mm): Sour
] '	Sande gravel; perbles (<30 mm); some granules and coarse sind. Verical grys Air yellora, men sarte; peruces; ten sand summer; suhance o and submus; little an entering
!	<u> </u>	<u> </u>	<u> </u>	 	 	- 1	11 yel ben men saile; Kender to ban.
	 		 	-	-	- !	" Sommits; Subancto and schous; little and 1-
- _{(j}			6.4	-2	10	1 1	Silty some + court DEDERS (LISSIN) :: 1/2
] '	and con the sound; the grow-bing in out-
!	<u> </u>		<u> </u>		<u> </u>	4 . !	submared to original
			97	-	1	- !	when the same the Parace will be discontinued to
-12-1		<u> </u>	9.2	7	1 /5	1	Weathered Desatt frags; the, by olivebru + de dove gray + bueron frags (perdather - nit near hat 12')
							burdaller - nit redikat 12')
] !	
			-	<u> </u>	 	- 1	
20	 		11.2	4	120	-	Recast mossive + ble . Muigh , office
						1	at surface of some trans, some only fac
]	
				<u> </u>	 	- 1	
25		3	1.2	5	23	- 1	Basalt . work : HK, some ak olive gru
			1.6	_ 	1	7 1	de yel brun trags
				<u> </u>	<u> </u>	_	ļ
20'		3	0.5	6	30	+ 1	Basatt; massive plk ; trace quarter
			0.3	_ <u></u>		7	Daport, massive pine, at the state of
				J		<u> </u>	
1	()		()	, ,	1	· 1	!

ded pe

		. EAT	DCUTID	A C D		1	otal Depth	91'	START FINE
MW 158	Projec	TAI	RCHILD 124	AFD O	100			is	Date 10/3/9/
7 (74 108								uid <u></u> 5'	Time <u>6940</u> 152
			by <u>A- (</u>				ig Cr		How Left Moutes
·			i Hage	•				sir : vtary 6" henny Dit	
			Y					_	security box is
·	Weath		70° S:	muy			luid <u>ac</u>	1, Walss	
		Pene.	Circu-		Sar	nple		Geologic and Hydrologic	Description
	Depth	Rate ft/	lation Q	HNu	#	Inter-	Lith.		
	ft -0-	min	(gpm)	PPM	#	val	Symbol		
550)	35	243	3	04	7	35] .	Basatt, mosive Black	trace de clives
7032]	Frags	
							1	O .	
						ļ			
			-			160		2 - 11 le Shorte	to a lie and a cal
1045		0.42	3	0.2	B	40	1	Basalt massive, Black, frags	-Trace and allocation
drill proc			<u> </u>				1		
عربه الم							1		
0.			İ] .		
1105	45		3	0.4	9	145	_	Basalt : massive : black	· trace dital.
			<u> </u>			<u> </u>	1	frags .	
,							┨ .		
	<u> </u>		<u> </u>	1	<u> </u>	<u> </u>	-		-
•		0.34	3	0.3	10	50	1	Baselt : massive : black ;	tonia de aliverna
[11-]	30	1		1	70	1 3 5	1	coating on some baselt +	
		İ	•		İ]	quade grouns	4 7
		<u> </u>	!	ļ·			. ↓		
1134	55	0.33	3	0.2	//	155	-	Buselt : Massive : block : Frags - trave plive ; coating	Trace dicolorizary
		<u> </u>			<u> </u>		-		de surface of basan
		-	<u>! </u>		<u> </u>	1	1	trass.	
	—		i	 	چ		1.		
1147	40	038	3	0.3		100	1	Baselt massive blk . +	ruce vive contra ou
,]	Baselt massive blk . +	trace quest z grains
added in							4		
May 34		<u> </u>			<u> </u>		4		
المام في المام	} =	<u> </u>	-		-	165	-{	Back	المالية المالية المالية
1207	105		1 3	0.2	13	163	1	gracestry or surface of	some bas frais:
		 	<u> </u>	-	-		1	did result to suffer	
					<u> </u>] .		
							1		

page 3 d 3

									START FINIS			
	Projec	.FAI	RCHILD	AFB		_	Total Depth	91'	Sizeti iiiie			
MW158	Locati	on_F	r-1 Mi	d Punt		_	Borehole D	ia <i>8"</i>	Date 10/5/1 10/5			
	Geolo	gic Log	by <u>A.</u>	Cavaza	5 5A	1	Depth to Fi	uid <u>5'</u>	Time <u>040</u> 152			
·			ie Han				Rig	P 7000	How Left Manted			
	Geoph	ysics b	y			_	Bit(s) B" air rotory, B" have bit securtor box -n					
•••	Weath	er	70° Su	nny		_	Fluid	ir notes				
"		Pone	Circus		Sar	nple		Geologic and Hydrologic	Description			
	Depth	Rate ft/	lation	HNu	#	Inter	- Lith.					
	_ft _o_		(gpm)	PPM	#	val	Symbol					
1218	70	0.45	3	0.6	14	70		Basalt; massive, olk: +				
							-	and coating no so salt fre	es.			
	ļ	-					-					
							-					
1233	75	0.33	3	0.6	15	75		Bagatt , messive , bil ; to	ce dive wante u			
_			٠			<u> </u>		sum basalifrags.				
							-					
							1 .					
. 1246	80	0.38	3	0.2	16	80]	Basit . massive . blk . to	ue de diverty to			
Stopped Ar HEA							_	translucered what frags + coats	my on bosallfracs			
Addres doill atmy		ļ		·		-						
1344												
1350	85	0.33	3	0.0	17	85		Basalt' massive; bk; TT	sie oliveare tresh			
							_	white contrict on some bast.	+ frags			
	<u> </u>						-	•				
1400	90	0.50	3	0.2	18	90]	Basalt: MASSING; Olk; +				
							_	Translaunt what is othery or	c some baselt frags.			
			•			<u> </u>	-					
							-					
							-					
							_					
•							7					
							-					
	 						-					
							1					
									•			

Projec	FAR	By	MW-	159	- 1	Total Depth	195	START	FINIS
		-1 CC				Borehole D	4-	Date iowsi	102241
1		by G I				Depth to Fi		Time <u>(33)</u>	
					_	Rig		How Left _ผ	
4		Hanec	•	<u> </u>	i			,	•
	•	y				Fluid Wate	me Roiters porcussion humaner		<u> </u>
vveatr	1	on 110	-/ 3	<u>_</u>		Tidid _ No.76		PKCL	
0	Pene. Rate/	Circu- lation	OVA/	Sar	nple		Geologic and Hydrologic	Description	
Depth	SIOW	0	HNU	#	Inter	1	,		% Core Recovery
- 0-	Cts	(gpm)		 	Vai	+ = =			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	_	2	-				sand cky coore a		
						- :-	gtz felds and baselt	DI HOY	
						~:~?	striff plastic	7-7	
-5-]			
		2					sand and gover , co	cise an -	
					-				
						- ° · .	and healt of Fell stain	7 1 11	
					-		becoming more gosesly a	t depen	
- <i>></i> -		7	-			· · ·	sand and savel, coarse	Cos - subm	
							< 15mm, qt2; fale + be	self u	
				,		. 0 .	min Frox staining Re	L	
				ļ		-Bed-ck-	14'		
_15° _						-			
ļ ——		2				-	Breatt desse fine go	in up	
						1	minor Fox string our	in procesus	
						^	green and blue green in	realization	
ಒ	3 c						Course bix No		
		2				_ ^	Exselt derse med -	line goin	
						-	w/ mom beself rubbis	- 420ma	
<u> </u>						- , ^	graysh blk No	5	
-	27.2					┥	grayish bir No		
-25-	2	Z	_			7 ,	Basit desse med-	Dre grain	
							fretzus a 27 Rad 2	9' W	
						_] ^^ _	Caco, cochas grayis	h HX Uz	
	12.					1 1	- / /		
ر ا – و –	_33. 3	2				_		C 1	
		4	`		-	۸ ۸	Baselt die med Cecra	touchuse Co	
						1 /	hochers @ 32 and 35'	conside Lib	
							Na Se tial 33	Audin bir	
	21.4					7 ~			

30

START FINISH Project FAFR Total Depth _______195 Location FT-1 (Coremie) MW-159 Borehole Dia 10" Date 102051 102191 Geologic Log by G. DiGegian Time 1331 -547 69 Depth to Fluid Driller Louis Hamer Portuges How Left with beken Bit(s) Towns with i porcusion hamor-Geophysics by ____ Well monument in Weather Pathychin 55.F Pene. Circu-Sample Geologic and Hydrologic Description Rate/ lation OVA/ Depth Blow Q HNU Lith. Inter-% Core Cto- (gpm) Symbol Recovery Baself dence and fine given 1 1 WK costing w/ greening blue fint gryish blk No 25. .40_ Broult - Course grain frochusmion up blk caching minal ization in break yellarish green Goyish WK No 14.6 Baselt coness gain w/ minestials yellowith green fractures miner ul Cace filling to grayish *2*7. 2 Bisilt, care goin informalisation exellenish gree, former 6 53.55° if lik and book biveish Cosning cryich blk No 25 Bass H, corre gam uf moralist yellowish goes tower fresher & 27.2 ·60 – Besilt, course geria, vessicular uf mimoslikkin yelknich gree Gayish Wk No 21.4 ·15-Bisit, come soin weight ul mondizator yellowich gover

5 czyie bik Mz

page __3__ of __(2____

Projec	t FAR	8	<u> </u>	W-15°	1	То	tal Depth	1	START	FINIS'
1			rehole re					ia <u>/</u> /	Date 102591	102291
1			D; Grego	•				uid	Time ///	
L			Portero		_		g <u>CP71</u>		How Left	
		NA NA			_			•		
1					-		uid	e reiler & forcussium hanner.		eat la
vveatr		·	ر <i>لهوزين</i> ري ا	,		_			place	
	1	Circu- lation	OVA/	Sar	nple	_	•	Geologic and Hydrologic	Description	
Depth	D.011		HNU	#	Inte	. 1	Lith.			% Core
18-	Cis	(gpm)			va	<u>' </u>	Symbol			Recovery
ļ		٠ 2					Λ	Brilt Corregion wis	icute to	
 						\dashv	1	The becoming more derse	uf trocker	
						ᅦ	^	Mortiske Wh	1/2	
75	30	<u>-</u>		<u> </u>				1947119, - 1949119 DE	<i></i>	
		2	_				^ ^	Boself dere moding	- fore going	
						_		highly fresher of Co.	Co. filling	
					ļ				veen carry	
—	7.5					-	^	Grayish bix No.		
<u>_90</u> _	25	2				ᅱ		Baselt dese med-fin		
					<u> </u>	ヿ	^	freshers to 93' w/		
							^	and both to blue green	cashin	•
								grayah bik No	<u> </u>	
_55	25					_	۸ ۸			
		2	-					Bosset med-fine g	zen_ 14/	
						\dashv	1	mineral solm yellowich		
					<u> </u>	\dashv	1	fraction of Calles filling	,	
20	230					\dashv		Gayich belk No	•	
		2	1				•)	Brest done met-for	goin w/	
<u> </u>						_	,	mineralization yellowish of	ice	-
							Λ	mine trachiers at 41.	- 43 of	
-,-	31.11 m					\dashv		Co. felling	•	
_ 7 5	-1:	Z	-		<u> </u>	\dashv	Λ	Gravish BIK NZ	(
			- 4			\dashv	4	Bosalt, danse medes	time thank	1
							-	Muchal Some long w	of CaCar	
						\supseteq	1	Cooper and ball are	en contre	
100	21.4						1	gray in ble gre gray in blk 1/2 Besalt dias fine;	0	
		2				_		Beselt dear fine	ionin of	
					-	\dashv		mixt mire religioning yell	withgreen	<u></u>
						\dashv	^	more freeters uform	Ø 105	
	18.8							gazieh blk 11:		

page ______of ____

Projec	1 EA	F.G.	M	W-150	1	To	tal Depth	195	START	FINISH
		1 (Con						ia	Date 10219	1 102251
		by <u>G. D</u>	_		- 1			uid	Time <u> </u>	
		Hace						700=	س How Left	
		y			_			- relle & parcercies become		
2		rast, s		selv	_			tec .	place	
	,	Circu-			nple			Geologic and Hydrologic		
Depth	1	1			<u> </u>	-	Lith.			% Core
105	ets	Q (gpm)	HNU	#	Inte va		Symbol			Recovery
H-9-		. 2				\dashv		Baselle de Line dies cu	in and	
	 					\dashv	11	more minelisation y	Monish	
								green, miner fischines	et 105'	
						\perp	Λ Λ	of Celor filling grayish bik Nr		
110	25	•				\dashv				
		2			<u> </u>	\dashv	Λ ·	Bosset, dance fine good fuctures greenish ble	ek 1	
							1 1	to Colde tilling		
							^	grayish but at		
115	17.12			<u> </u>		4	1	•		
		2				\dashv		Bossit dense fine goin	W/ major	
				,		\dashv	^	HK cashing and Cally fills		
								Blue ish freen filling and		
120_	17.6					_	^	grayish NK N2	~	
		2	3	<u> </u>		-	1	Parett de ce midie	/	
						-	^	green, faiture mon	nuich.	
							^	ble i bhiesch blk con	in and	
17.5	15. 8			-				minding grouped both N		
	· -	2	1			_	^	Bosalt, dere inco	- time grain	••
						┥′	^	W/ more enine litelian		
						\dashv	^	Great Alk Contractor	L. C.C.	
130_	25						^	Hurich ik Cochy an filling graces blk lease time qu	1/2-	
		2						Basalt dere time qu	cash	
						_	١ 1		-l 2-1 1 (b)	
						\dashv		conting and to Call	A filling	
	: ~					\dashv	1 N	grayish blk No		
	<u> </u>	7_						Boselt dea medie	in Conin	
								ed yellowich green miner	1 tatia	
<u></u>						_	^ ^	ent yellowish green mineral monor fractions of Cally fill Hurish bik - bilk conting hilk Ma	ling and	
	14.6					\dashv		Heriot bik HK criting.	gayiss	
L	110.0	<u> </u>	<u> </u>	<u> </u>				LDIL ///?	•	!

page <u>5</u> of <u>6</u>

Projec	. FAF	R	MV	J-159	-	Total Depth	195	SIARI	FINIST			
1			(E (138m))				ia	Date <u>1020</u> 41	102241			
l .			Di Gorgo		- 1		uid	Time <u>/337</u>	12:4			
			- Pardo		_	Rig		How Left _ u	4			
	ysics by		•									
			וען די	nly		Bit(s) Traver les percussions well monument. Fluid wifer						
	Pene.		T T	-/	nple	T	Geologic and Hydrologic					
Depth	Rase/	lation	OVA/			- Lith.		•	% Core			
149 - Ø -	Gts	(gpm)	HNU	# ,	Inter val	Symbol			Recovery			
$\vdash^{\not g} -$		2	-			1	Baselt dense m	rdina				
						^ ^	com al wilkwich con	in mineraliz	-lin			
						_	minor perhases if Cal	O. filler				
			ļ		ļ	_ ^	and bit - blueigh HK	cashre				
145	15	2				1^	Goyish HL Nz Broult desse he	1 6.				
						'	grain w/ more min					
] ^	mino fecturo					
· ·						_ ^	gray de blk N2					
<u>_</u> 190	18.7				<u> </u>	۱ ۸		/				
		2_	-			1	est mineralization and					
						1 1	Cal'm filling yellow-to					
							a gover to great blue					
_ <i>155_</i> _	1,9. 7			ļ	<u> </u>		grayich blk N2					
		2		<u> </u>	-	-	Derse mosser boralt	/ :				
				<u> </u>		-	fractioner, fine gran					
				<u>. </u>		1	blick Costing land the					
160_	11.5] .	Graigh HK No.					
			<u> </u>			1 1	Kasalt, dense mose	in fine.				
				-	 	-{	med grain, miner		-			
						^ ^	traction miner of a	ak - blusts				
165_	12					7	Signish LIK No					
		Z				^	Basit, dene missue	he-1				
						_ ^	delling, own fasting	at 167.				
 				ļ		1	Ry Cacas filling and y	edowish-green				
	12			<u> </u>			GRAIGH BIK No	<u> </u>				
<i>170</i>	16	2	-			1	fault der much	line - med				
]	gain if more morest	· 1				
]^ 1	min heiling bucher	uj Cita	<u> </u>			
				ļ	ļ	_ ^	Liling Grayish Blic No					
	8.4	<u> </u>	<u> </u>	l			1 '9/24 15116 No					

page <u>G</u> of <u>ia</u>

									STAR	T CINICS:
	-		1		- 1	To	tal Depti	n <u>195</u>	SIAR	T FINISH
			re rechie			Во	rehole C)ia <u>/o''</u>	Date / <u>סציקו</u>	102751
			كالمتحاص			De	pth to F	luid	Time (34/	Exis- (1)
Driller	- Larie	Hanner	- / Porch	11055	_	Rig	-CP	7000	How Left 🔟	the lake
Geopt	nysics b	y	N'A		_	Bit	(s) Trip	or for i fection wood	well mound	at is
Weath	ner <u>O</u> v	encut i	windy	45JF	_	Flu	iid <u>این</u>	Tr-	- jlace	
		Circu-	0.44	Sar	nple			Geologic and Hydrologic	Description	
Depth	Rate/	lation - Q	OVA/ HNU		Inte	r-	Lith.			% Core
175	Cts	(gpm)		#	va		Symbol			Recovery
		2	_				Λ ^Λ	Paselt drass, mass	11211	
						IJ′	7	mine fraction Care	Cillia 1	
			ļ				^ ^	Costing	, , ,,	
<u> </u>						_	^ *	grayist blk No		
<u> </u>	10.7	-				\dashv	^	0. 11		
		2.				┥'	^ x	Bealt demi man		
						\dashv	^ ^	contractions of	1k 1/2	
					, , , , , , ,		2 2 2	costing gayish b	110 702	
185	11.5					ľ	^ ^			
		2	_				^ ^	Proxelt derse mason	yi.	
				,		_ `	^ ^	grayion bill No		
				·		\dashv			•	
	136	760				\dashv	^			
_ <i>i5</i> o_	754	2				\dashv	^ ^	Brush dence, maser		
						\exists	\sim	more fractives and uses	cla 2	
							۱ ۱	193' C. Co; filling;		
							\sim	Grayish blk N2		
195	11.5						^			
						\dashv				
								-		
						\dashv				
						\dashv				
		· i								
						_				·
						_	}			
├ ┤						-				
						\dashv	}			
						\dashv				
						\dashv	Ì			
						\Box	<u> </u>			

Log of Borehole . .

pagé _/__c/_4__

Projec	r Fai	rchild	AF	ß		Total Dept	h <u>230</u>	STAR	T FIN(
1		-1/1			- 1		Dia	Date 09279	1 100191
1		by Di			1		iuid	Time 0.400	
		Fisher	_		- 1		ile Drill 161	How Left _	
		y <u>NA</u>	•		- 1		·	THOW CELL	
		Sumu			1	Fluid W			
VVeali		Circu-		7		1			
00-05	Rata/	lation	OVAZ		mple		Geologic and Hydrologic	Description	
Depth	Flow		HNU	Run		Lith.	•		% Core
15g-	Cis	(gpm)	<u> </u>	<u> </u>	val	Symbol	1		Recovery
	<u> </u>	! !	<u> </u>	<u>: </u>	15	-	Dosse massive basalt	_	
]	<u>!</u>	<u> </u>	<u>; </u>	<u> </u>	-	Vissicles 2-lean and		
<u></u>					 	7	et 15.5-15.7 grays	sh DK NZ	
20	1			İ	1935				83 ay
				2	1		Dense massive basalt	with	i
	<u> </u>			<u> </u>	1		minor vessicles < 4 mm		
	<u> </u>		<u> </u>	<u>!</u>	<u>i </u>	_	fracture (filled, wary		
	<u>!</u>	·	<u> </u>	i ~65	!	_]	extends from 23-24.2		<u>!</u>
25	<u> </u>			Z60		<u> </u>			1 100%
	<u> </u>			_3_	<u></u> -		Dense massive basalt	_	
	i			i İ	`	-	at 27.2' (tilled war 32.7 (calcium carbon		
						- i	white/yellow	arc yawa	
35_					35.	3			100%
				4			Dease baselt with frac	tree @	
	<u> </u>			<u> </u>	<u> </u>	_	36.4', 38.55 (max mine		
	<u> </u>			<u>:</u> 		_!	39.7 (mimalization) 40.2		<u>i</u>
	<u> </u> 			;	146.4		41.7 Vescioular contact + coa	rar grain 15	thick ?
-45	!			5	170.7		occasand coorsegmin strucks, " Ussusular baselt, Fracture	14.7 freduce (=	10 451 -> 4
	<u>:</u>	i	!	_ <u></u> _			Mary + mineralization) 525,	52 (missult	1.4.
		1		!	İ	 أ بداروساء وما	53 10 cd 54.15. Lage ve	المحمد المدين عوامده	1
				!	į		erisblitation from 48.8-49	1 and 52.7	- 53.7
-55 <u>-</u>					54.7		gowish WK Ne		100%
				6	<u>i </u>	_ <u>:</u>	Vesicula-baselt 41	mm	
	1			<u> </u>	<u> </u>	_			
	<u> </u>			<u> </u> 	<u>!</u> i	<u>-</u> ;			
1.0				<u> </u>	1 164.7				1 10.4
65	1			. 7	. 	_	Dere baselt. Fractures &	1.55-	<u>'100 /6 ;</u>
				<u> </u>	İ	Ť	67.4 of mineralization		
						7	ble confine. Horizale Lad	and DY	(
							contry @ 71,71,8, 72.5; 743 gragish NK No.	2.85 73.9 ÷	
حجا	<u> </u>					1	743 yourgest WK No		100%

page Z c! 4

Log of Borehole

		y <u>NA</u>			— [Bit			
Weath	er <u>S</u>	ussy -	70°F	·		Flu	نبر id	atec.	
	Pene. Rate/	Circu- lation	OVA/	Sar	nple			Geologic and Hydrologic Description	
Depth 7 <i>5</i> – 8 –	Blow Cts	Q (gpm)	HNU	#	Inte va		Lith. Symbol		% Core
				8				Dense baself w/ numerous	i
		<u> </u>		<u> </u>	<u> </u>			harding hactures thoughout.	<u> </u>
	<u> </u>	<u> </u>		<u> </u>	<u> </u>	\dashv		haidine fractives throughout. grayish blk Ne	<u> </u>
B5_		! 	<u> </u>		 				100 %
			<u> </u>	9	i			Dense basalt tractures @	
		İ	i .		i .			Dense basalt, fractures @ 86.5, 88.25, 89.8, 90.3-50	ļ
		<u> </u>	<u> </u>	1	<u> </u>	_		gayish blk No	:
95_		<u>! </u>	<u> </u>	<u> </u>	<u>:</u> !	\dashv			100%
_/		!		10	!			Dense baselt with fractures.	1
34.31			!	!				Multiple horizontal hairline - low	ande
		1	<u> </u>	<u> </u>	!			fractives open and tight.	
		<u> </u>	<u> </u>	!	<u> </u>			grayish blk NE	<u> </u>
105_	<u> </u>	!	<u>:</u>	<u> </u>	<u>!</u>	_		·	100%
		<u> </u>	<u> </u>		<u> </u>	_		Dense beself up numerous bairline	
	<u> </u>	!	1	<u> </u>	i	_		low and tractures light. Large	1
	<u>!</u> 	<u> </u>	<u>!</u>	!	<u>i</u>			fracture @ 111.75 (near workscally)	:
	<u> </u>	<u> </u> 	İ	<u> </u> 	!	\dashv		mineralization) grayis blk N2	1/00/
		İ	1	12	!			Donce baself w/ highly forchined	
	İ		<u> </u>	!	İ			7 me new vertical 115.7-117	!
	<u> </u>	<u> </u>	İ	!	<u>i </u>			119.6, 120-122 filling 2-3 mm	i
	!	<u> </u>	<u> </u>	<u>i </u>	!	_		thick some way, grayish blk	
_125	<u> </u>	<u> </u>	<u> </u>	<u>!</u>	<u> </u>			Ne	100 70
	<u> </u>	<u> </u>	!	13	1			Jense Lexalt Curved frechures	<u>İ</u>
	<u> </u>	1	!	1	1			128-129 Vertical fracture, 132 -	<u> </u>
		<u> </u>	<u>!</u>	<u> </u>	<u> </u>			134 new vertical fraction of 2-3 mm	1
	<u>. </u>	1	1	1 .	!			filling	i
35_	<u>.</u> i	<u></u>	<u> </u>	<u> </u> 14	'			Dense baselt, some curved.	100%
	<u> </u>	i 	i	<u>- 13 -</u>	 			fracture 2005, 140.7 - 141 near	
			İ	T		\neg		revised u/ filling 143.2-143.5	1
	1		i					men vertical of filling groyish blk	<u> </u>
145	1	<u> </u>	<u> </u>					Ne	1,00%

Log of Borehole . . .

					$\overline{}$				START	CINI
Projec	1 <u>SA</u>	<u>C</u>				Total Depth				FIN
Location	on_EI	-1/M	W-159	٦	_	В	orehole D	ia	Date	
Geolog	gic Log	by Dic	regorio		_	D	epth to Fl	uid	Time	
		Fisher	•		_	Ri	g <u>Mobil</u>	e Daill 61	How Left	
Gecph	ysics b	Y				Ві	t(s)	•		
Weath	er Clea	c 95°F	· .		_	Fi	uidwa			
	Pene.	Circu-		Sar	nple		•	Geologic and Hydrologic	Description	
Depth	Rate/ Blow	lation Q	OVA/ HNU		Inte	21-	Lith.			% Core
150	Cts	(gpm)	dole/Lic	#	va	. i	Symbol			Recovery
152.46		•	0/0					Dease, massive baset	CAVISh BK NZ	20%
		!			<u> </u>			Dona massive Bosa A		
		1	<u> </u>		<u>i </u>			Nz. Lage fracture at		
		!	<u> </u>	<u> </u>	!			extending to 154.36" was		44.9
		# 18	4 11		!	-		mineralization growish yell	1	100%
	<u> </u>		1000	1	1 4	<u>=</u> 2		Nonse massive insett	165.36	
			00					to 167.11. Fractures 1	V man	100 %-73
		!	ľ	i				miren litaria and wary		100%
-60 -10-6	69 16.2	!!	<u> </u>	1	!			,		
<u> </u>	<u>i</u>	!	100	1	<u>:</u>			MUSSIN dens basaff		
	1,,, 20	<u> </u> 	1/20	laca.	<u> </u> -			frame. 63' nevery	gray sh BIK	100%
17.5.3	4/6 20		105g	z'con				NZ Fractore @ 1725 =	172.7'	
_190		! Tecases		i	<u>-</u>			·		
-180-		i	1		Ī			massive basalt, danse wit	4 hachers	
183.4		! Fnd	1 Km ?	20				at 175.3.177.3, 177.		
	!				<u> </u>		!	178.9' Grayish NK N		100%
14.6	<u> </u>	END.	1 Rm #	21	!			Diese massile baself	ne fordures	<u> </u>
195	<u>:</u>	<u>. </u>	176	1	<u>:</u>		- XXXXX	grayish blk 1/2 1.		100%
 	<u> </u>	End i	ru # 2	<u>:</u> 27	. T		3884	pragive dense besch		100%
1	i	i	90	!	1			1 1 1 1 1 1 1		!
		!			I					į
1300	<u> </u>			1	1		!			
<u> </u>	 	1		<u>i </u>	!			Dense mousive base		<u> </u>
	1	duat		 	<u> </u>			large inimalized from	tace at	<u>i</u> .
	<u> </u>	1	0/0	<u>i</u>	!		<u>.</u> 1	190' not proken q	rayish DIK	<u>.</u>
195		;	<u>.</u> I	<u> </u>	!		!	Nr		100%
	i	· Run	* 24		Ī]	massive dense bose!	t gravish	!
	l		i]	NK Nz . 199.64		100%
		<u>i</u>	1%		1		1			1
	 	<u>i</u>	<u> </u>	-	1		1	<u></u>		<u> </u>
200	!	I	<u> </u>	<u> </u>	1		1			<u> </u>

rage 4 of 4

Project SATC / Faircheld AFB	Total Depth	START FINISH
Location FT-1/MW-159	Borehole Dia	Date
Geologic Log by Di Gazaria		
Driller Tom Fisher Bayks Bas.		How Left
Geophysics by	Bit(s)	
Weather Overcast In F	Fluid water .	
Bate/ lation OVA/	Geologic and Hyd	rologic Description
	iter- Lith. val Symbol	% Core
200 Ets (gpm) the		Recovery
2 7426 1 1/1 1/1		att to 202.5' 100%
Con 4.58'		No. From 203.5-
7.73		costing mineralization
205	grafish blk No	,
	• • • • • • • • • • • • • • • • • • • •	2019.45, 2-4 mm
	Man How A content	elegit wood chips
End Run # 26-4.6'		w/ fractures from LDG 45 -
710 (Zo3.lb)	207.85 GE SYL 4/2	Goding to block NI
710 (20\$-00)	tractice w/ willed 3	then benette (so beed) 1019.
		boom Winism
		and organic material
Run # 27 2.86'	throughout many	175%
26 1 24. 7 28 151		
	Clindra blk N.	
6)	fam 215-215.4 g	redes to grow the cle
Run 1428-29	PRINCES TO EKS.	Flow B Contract at SB 7/ 1.
220		- 220 (high fred) 100%
Kun # 30	vessicular basel	1.155
	mineralization /54	e cetia :
	fractures @ 221.5	223.41
	4ighly fractured	of mine wettering
225	1-100 222.3 - 223	1: 44 blue cky 58/2/00% -
	vessicular basiely	
	of mineralization	sager Cooping
		·
236		100%
		1

PROJE PROJE	CT:	F.	AFB 3286		DA	TE:	9-91 OGIST: <u>ST COUTI</u>	BORING NO.:	mw 154 xies Bros
265V/ 14/ATS	AHUN: DIEVE	LDATA	١.						•
(Date	. Time &	& Condi	itions)						
SAMPLE NO. & TYPE	DEPTH (FL) OK RUN NO.	BLOWS 6" OR ROD (%)	SAMPLE RECOVERY SAMPLE LENGTH	LITHOLOGY CHANGE (D epth .ft.)	SOIL DENSITY/ CONSISTENCY OR ROCK HARDNESS	, COLOR	RIAL DESCRIPTION* MATERIAL CLASSIFICATION	S.C. ox.	,
	0.0		·						70H-021-0
					•				LOGGED BY NU
			<u> </u>				•		SEE SLIC LOG
	5.0						•	·	FOR DETAILS.
	5.0			1.					
				-	ļ				
	10.0			4				·	:
	-			-			-	•	
	-		}	1					
			-	1					
	15.0		+	1					67147 70 6085
	1					·			START TO CORE
	0			4			·		
	 		1	- I		-			
	20.0		-	4					
	-		}	4	-				
_	-		_	1			·		·
		-	1	7					
·	25.0								
REM	ARKS_		X SI	E C	ORE HI	OLE (3" O HOLE)		BORING Mu'

ВС	RING	LOG							^	NUS CORPORATION
PROI	ECT: _ ECT NO	· 3	2 <i>8</i> 6		D#	ATE:	9-91	DRILLER:	<u> Br</u>	oyles bros
ELEV.	ATION: ER LEVE	L DATA	A :		FIE	LD GEO	LOGIST:			
	, time	a Cona	·				ERIAL DESCRIPTION*	FOX		
SAMPLE NO. & TYPE	つEFTH (社) の代 RVN NO:	BLOWS 6" OR ROO (%)	SAMPLE RECOVERY -SAMPLE LENGTH	LITHOLOGY CHANGE (O opth .ft.)	SOIL DENSITY: CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATION		ock ISCS	REMARKS
	25.0									
			<u></u>						_	
			· .							
			•	1						<u> </u>
·									_	
	·]					-	
									_	
									_	•
			ļ	ł				•		
				-						
				-						
				1			·			
_				1						
	-			1						
	 			1		-				
	-		 	1			·			
	1		 	1						
	1.		+	1						
	 		1	1		 	·			·
	1		1.	1			•			·
	1		1	1			·	·		
	50.0		1	1						
REM	ARKS_								-	BORING MW 15

* See Legend on Back

OJE	CT: CT NO.	F :3	286 286		DA	TE:	9-91 [ORILLER: BO	YLES BIGUS
EVA	TION:				FIE	בט קבטנ	.00131.		· · · · · · · · · · · · · · · · · · ·
ATE	RLEVE	L DATA L Condi	rions)						
Jate.									
MPLE NO. TYPE,	OEPTH (IL) OR RUN	BLOWS 6" OR " RQO (%)	SAMPLE RECOVERY SAMPLE LENGTH	UTHOLOGY CHANGE (Depth.ft.)			RIAL DESCRIPTION* MATERIAL CLASSIFICATION	· ok "	
	50.0								
	50.0		 	1					
				1					•
			<u> </u>						
			1	4					
٠.				4	<u></u>				
			1]		 			
		—	•		·				
	1			7	{				
	-		1	7			•		
	┼	+		-					
	-		}	-	 	-			(
			1	4		-			·
				_					
				_					
			-						
			-						
	+								
			_	-		1			
							·		· .
<u> </u>			7-	_{-} ·	-				
			二	_					
		-							
	1	-		- 1	<u> </u>				
一	7		二						
-	-	一上		7				· '	
-		-F			<u> </u>		1.		
L	75	اه							
RF	MARK	5							BORING MY
, 140									2

* See Legend on Back

BORIN	VG LO	G								US CORPORATION
ROJECT:		FAF	В	•				BORING N	۱O.: <u> </u>	4w 159
COICCE	NO .	- 32	86		DA	TE:	7-91	DRILLER:		· · · · · · · · · · · · · · · · · · ·
FVATIC	ON:				FIE	LD GEOL	.OGIST:			
ATERI	FVFL DA	: ATA								-
oate, Tin	ne & Co	nditio	ons) _						ROCK	
	BLO/		LAMPLE .			MATE	RIAL DESCRIPTION*		BR	
MPLE DEP	PTH 6-0 % RQ R (%	R RE	ECOVERY SAMPLE LENGTH	LITHOLOGY CHANGE (Death.FL)	SOIL DENSITY! CONSISTENCY OR ROCK HARDNESS	. COLOR	MATERIAL CLASSIFICATIO	N	uscs	REMARKS
10	00	\dashv							\vdash	:
		丰					: .		1	
\dashv		士					•			
				• •				***	1.1	
		\exists					· .		1	•
		-						1 11.		• •
		7							1 1	
		ユ					· : ·		1-1	
		二							+	
	-	士.]					┼╌┤	
									-	
		一						· ————		
		二		1			•			•
	一上	二		1					• •	
				1						•
		\dashv		1		1		•		٠.
		\Box		4		+	·			. •
_		\Box		-{		+		:		
					·	 			-	•
	<u>_</u>						ļ	•	+	· ·
T	F								+-	
<u> </u>	F	\dashv		1				·	+-	
			_	7						
				7			·			
	-			1			·			
				-			·	100	•	
				4						
	125.0		<u> </u>							
REMAR	RKS		•				<u>.</u>			BORING MW
										PAGE_5_OF

ROJE	ст: _		EAFB				9-91	BORING N	10.:	AW 159
PROJE	CT NO	.:	3286		DA	TE:	9-91	DRILLER:	691	<u> </u>
ELEVA	ATION:				FIE	LD GEO	LOGIST:			
WATE	RLEVE	LDATA	٠: ــــــ							
(Date	, Time a	& Cond	itions) _	 						
						MATE	RIAL DESCRIPTION*		ROCK BR	
SAMPLE NO. A TYPE	OEPTH (K.) OK RUN RUN NO.	BLOWS 6T OR RQO (%)	SAMPLE RECOVERY SAMPLE LENGTH	LITHOLOGY CHANGE (Depth.ft.)	SOR. DENSITY/ CONSISTENCY OR ROCK HARDNESS	, COLOR	MATERIAL CLASSIFICATIO	N	ork USCS	REMARKS
	125									
				1			•			
				1			•			
			<u> </u>							
				1	<u> </u>					
	Ŷ			1					-	
		┝┷	1						\vdash	•
	(
				1				•		•
			 	1						
			 	1			•			
			 	4					+	•
	<u> </u>		<u> </u>	1					\vdash	
			·]			• .		1	
		-	-						1	
]		1				
			-	1					1	
	 		 	1		-				•
	<u> </u>]	-		-			1-1	
			1	<u> </u>		<u> </u>			╂─┼	
		<u> </u>							1	
			-		1		· .	•		<u> </u>
				7				•		
	 		-	1				•	 	
	 	-	+	4	-	+				
	 		1	-{	ļ	-	 		+	
	<u> </u>		1	-		1-		•	1 1	
			<u>L</u>			1			1	<u> </u>
	150.0	<u></u>	_							•
	1.50.						•			•
REM.	ARKS_									BORING _M' PAGE _ ف

			<u>-a</u>					BORING N	0.:	MW 159
ROJE	CT:	<u> </u>	3791	<u>.</u>	. DA	TE·	0-20-91	DRILLER:	- F 20.	rues acus.
PROJE	CT NO.	.:	ين عرب		DA	I D GEO!	OGIST: S CONTI	· · ·	:	1
- I > V 4	Z I I CJN :								<u> </u>	····
WAIL	KLEVE	e Condi	itions) _							•
Date	, 111116					10077	RIAL DESCRIPTION*		ROCK	•
		BLOWS	SAMPLE			MAI			BR.	i de la casa.
AMPLE NO. LTYPE	OEPTH (FL) OK RUH NO.	6" OR ROD (%)	RECOVERY .SAMPLE LENGTH	LITHOLOGY CHANGE (Depth.ft.)	SOR DENSITY! CONSISTENCY OR ROCK HARDNESS	, COLOR	MATERIAL CLASSIFICATIO	N	uscs	REMARKS
					MUNON	GOAY	BASALT			SIC BEGING TO
	 			1		GAN			1	LOGHOVE AVANGU
					HARD					SAIC OH 9-30-
] .						THIS WAS A
]					<u></u>	GENERALIZED LO
<u> </u>				1 ·			•	•	.	This was a Generalized LC For Detail See Saic LCG.
	155.0			1						73:
				-		<u> </u>				. •••
				-					 	
				1					┼─	
				1		ļ			-	
	160.0	<u></u>							BL	
Y			TY	1	M HAU	Y433 K	BASAUT		To	162.0-162.6
-				1	HARD		·	•	M	FRACTURES (HIS
	+			1					Ш	
	1	73%	100%	-		1 1				l. "
	(B)	70	7,007	4		+-+-			11	-
	 	_	1	4		+			BR	166.3-167.1 VER
_ _			1	-		+			VBF	
\rightarrow	167	山二	1-4	4					17	
			1	_					++	
.				↓ ·					15	
-			-			1		· · ·	BL	170.5. LO4 FRACE
	·		+1				<u> </u>		++	
	(19)	100	1009						11	П2.6 →173.0 H
+	1		III	1					$\perp \downarrow \downarrow$	FRACTURE
\vdash							·		·	
	-		1	-		1	. 4			
	175.	3								
REN	ARKS									BORING MW
										PAGEOF

* See Legend on Back

NUS CORPORATION

BC	RING	LOG								US CORPORATION
PROJ	ECT NO	FA : _ 3	3286		04	ATE:	10-1-91	BORING NO.: DRILLER:	30,	NW 159 KLES BROS
WAT	ER LEVE	LDATA	٠:		FIL	LD GEO	LOGIST: S) CONTI			-
(Date	, Time	& Cona	itions) _			MAT	ERIAL DESCRIPTION*	Pox		
SAMPLE NO. A TYPE	DEPTH (ft.) OK RUN NO.	BLOWS 6" OR ROO (%)	SAMPLE RECOVERY -SAMPLE LENGTH	LITHOLOGY CHANGE (Depticit.)	SOIL DENSITY/ CONSISTENCY OR ROCK HARDNESS		MATERIAL CLASSIFICATIO	of	١,	REMARKS
Y	200.0		Y.			GRAY	BASALT	M	4	
		100/4	10.00		HAPO					There are series as
1050	25	100/9	100%	1 2 × 1				BL	\neg	203 - 3 MORE NESICULAR 203.9 → 204.4 HI 4
	205,0									FRACTURE VUG
1	3.5		Ŷ				-	··· 8	L	Fracture some. Mose 2061 - 2069 vesiculae 2019 contact between
	·			206.9	1	CRAY			4	ZOVE A BISAUT AND
1130	2	15.0	4.4	208.3	MSOFT	BEN	CLAYSTONE - SIL		<u>~ </u>	2013, 201.4, 207.6, 207.1
				-		BLK BEN	CARRY ORG CLAYS	(SLTY)		208.3 BELOW DARK GRAY- BL BEN COSANIC APPEADANCE
-	210.0		 	211.0		J			П	FROM 208-3
1150	1	2.3/ 3.0	2.9/3.0			GRAY	CLAYSTONE- SILT	·	\prod	ZIO B HORIE FRACE
丁	213.0		1	Museomer		4	·			212.0 FRACTURE COLE WOOD FRACS FEW NUC ZONES THRU -
1205	(3)	13/	15/2.0	3	<u> </u>	BEN	·		H	#213.9- SECONES DARKE
	215.0		-	215.4					土	TE WOOD FRAG
-				F	M HARD	BUSE	BASALT	P		TOP OF B FLOW HIGHLY VIENCUL AR L
1240	29	4.0/	4.75.0	·	HARA	GRAY			Ī	NUMBEOUS VUGS TO
H				1 .					1	216.53 HORIZ FRACTURE 217.53 CGREENISH CO.
	220.0]			·		32	219 2: BECOMES BOOK 220-2 HORTE FRANCES STILL NUMEROUS VUGS-
Y			F Y			1		15	٤	TO 225.0
1300	3	4.9/ 5.0	4.8/5.0	4					\$R	222.5-222.9 FRACUE
-	-	=	1	-{	-				<u>* </u>	223.0 BR (GREENISH) 223.4 HORIZ FRACTURE
1	075 6			-					1	
REM	275.c		EXBED	z 8.	2 THICK	. 2	cc.9 → 215.4		•	BORING MW I=Q
•	 	d on Bac					,		-	PAGE 9 OF 10

PROJ	ECT:		AFB								BORING 1	 - 1.01	MW 159 YELS BROS
PROJ	ECT NO	·:	3280	<u> </u>		D/	ATE:	لــــــــــــــــــــــــــــــــــــ	0-1-91		DRILLER.		
LLEV/	AHUN:	L DAT				FIL	בנט (350	LOGIST: <u>CQN</u>	911			
			itions) _										
	1			1					RIAL DESCRIPT	ION*		ROCK	•
•••		BLOWS SAMPL			_		T		RIAL DESCRIPT	1014		BR	
ng. A Type	OEPTH (fL) OR RUN NO.	6" OR RQO (%)	AECOVERY SAMPLE LENGTH	CHANGE (Depth.ft.)	SO DENS CONSIST OR RO HARDI	UTY! TENCY OCK	. c ou	OR		ERIAL FICATION		uscs	REMARKS
	225,0				MH		BY	Œ	BASALT			BR	•
	22.5,0				HAR		Ge		1				•
			<u> </u>	}		-							
1320	<u> </u>		<u>·</u>	· .			_			•		╂┼┤	
<u>. </u>												 	
	230.0			230		<u> </u>	<u> </u>		<u> </u>				
									Bonne ?	250.0'	··.		
									·				
								•					•
				1						•			
				1	 	• •	1		•				
<u> </u>					 		-			,			•
				-	 		-				•		
				-	<u> </u>		-				<u> </u>		
			ļ	4	<u> </u>					<u> </u>		-	
							_					-	
•		<u> </u>			<u></u>		1_						
			-		L			•					•
				1									
				1					•				
	-		 	1	 		1		•		•		
		-	-	┨ .	\vdash		+					1	
	 		_	4	-		╁					1	
	ļ		 	4	-		+-					+-	
·	<u> </u>	二	1	4			+					-	
		上二		4	<u> </u>		1_					-	<u> </u>
			1	<u>}</u>		,			<u> </u>			1	
•			-					٠.	·			1	
REMA	ARKS_										-		BORING HW
													PAGE 10 OF

START FINIS !! Total Depth 40' Project Farchild AFB Location FT-1 Shall chs #2 Loc4/ Date 10/16/9/ 10/17/91 MW160 Borehole Dia ______ Depth to Fluid Time 1400 1700 Geologic Log by A. Carato 5 SAIC. How Left Saurity Driller Alia Carria, Ponderoso Rig <u>CP 650</u> Bit(s) 3° triumi , B" Ramer by t installed of lock Geophysics by Weather 50' windy, Gusta Fluid ____ air water Pene. | Circu-Geologic and Hydrologic Description Sample Rate/ lation OVA/ Lith. % Core Inter-HNU Blow Q Recovery Symbol val Cts (gpm) - 0 -Tat 4's Sand; medicus sund; yelch brus to vely sorted. supreded . OT 5 3-selt. seaturel. DECLIFATED LTR 2/2) (Fordviller - his ordere of 513; hit gotte befren hand the capita out 91) sof yell brown weeking a last gran ours 10-Besalt: some weathered summerular presett for sme draw ash degre (N3) call Haders h a (5R 3/2). Basati: suggested trasati-frage of iron oxide contin and dear breakt sme sitt Blackink and (512/2) to dark gray (N3) I produiter facture zone 17-17/2 20-Baselt: Newthered and dear Orall fragments gound to sand Size Do Att: little self Realtry and (54 te/2) cleggy (W3) (pordiller - soft some at 24'-251/2') 25-Basult: mostly weathered and some clean; blacker red (5 y 4/2) to dk gry (N3); Larger fracs 40 TO 30 Trongride staining and meneralization of surface of silicens filling; basely country on fraig 30-Basalt: massile -one realturing; greenish black (562 to graying Drum (5 VR 3/2) and HKING red (5 4 2/2):

Borehole FT-1 Loc \$

Log of Borehole

START FINISH Total Depth ___40 ' Project Fairchild AFB MW160 Location ET-1 Loc \$ (Shellow = 2) Borehole Dia ________ Date 10/16/9/ 10/17/7/ Time 1400 1700 Depth to Fluid _____ Geologic Log by A. Causes SAIC How Left Surfact Driller Alvin Carris Ponderow Rig CP 650 Bit(s) B. Triene willer, 8" hanner bit monument installed w/ Geophysics by _____ Fluid air sater Weather _ Pene. Circu-Sample Geologic and Hydrologic Description Rate/ lation OVA/ Depth Lith. Blow UNH Inter-% Core Q Cts Recovery val Symbol (gpm) Boot ; maisive growth olk (5 6 2/1) + rue dive you (59 4/1) cooting an some frags. Breat: massive greensh ((5 76 2/1); true alive gry (54 4/1) coating ox frags.

Borehole	MW161
----------	-------

Projec	1 FAF	В			_ ¬	Total Depth	1 44.5 at 48	SIARI	FINISH
B .		(Lec)	MW	161	1	Borehole D	ia <u> </u>	Date <u>1500.1</u>	۱۱
1		by <u>N</u> .					uid	Time cacc	
Driller	Paides	ر ن معدد	16669000 141000	Carris		Rig <i>C</i>	P -65C	How Left	
I		y					ciccise / 7 1/8" Hammer		
		lear				Fluid			
Weath		Circu-	<u> </u>		nple	T	Description		
Depth	Rate/		OVA/	Sai			Geologic and Tryalologic		9/ Cara
Берш	Blow Cts	Q (apm)	HNU	#	Inter-	- Lith. Symbol			% Core Recovery
-0-	Cis	(gpm)			101				-
	 	<u> </u>				-			
		! 	 						
		<u> </u>				0.00-			
-5-						j			
						.,	(gin) sand-angular	C-m+	
							si It and som	e Fgivi	
·				ļ			5 y R 3/2		
					ļ	_ :	(sa) sand-poorly of	noeded geekong	
<u> </u>					<u> </u>	-	6 nounded 1:	denes	
<u> </u>			<u> </u>			100	Pronit dense.	hard	(
							1		
		<u> </u>				- 1 1 1	mine factures with p	·	
-15-						1. 1			
] (Rosalt, medium gais,	ress.cbs	
						1/1	at 11: + 3 mm Free		
		<u> </u>		<u> </u>		-	16-20° w. 64 black we		
		i i .		<u> </u>		_ ^ _	and mineral com (light		
- 20-				<u> </u>		-	cacos conceabors) Nz	dark gruyish	MK
			-	<u> </u>	<u> </u>	- ^	Breit, medium to con-		
				ļ	 	^	becomes dens produces as		-
							gresish-yeller Callog. N	z Gransh	
-:-						7/	Hick		
<u> </u>			i				Baselt desse conse	gain	
]^' ^	more factive at 29	/ .	
						\dashv_{\land}	Cally felling	·	
<u></u>						1 1			<u> </u>
-30-		<u> </u>		ļ	 	1 1	2 11 1		-
 			-		 	-11	Break dere coarse		
			 .		1	-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		/ Caras	-
					-	1/ 1	filling grayes blt N.	•	
-						7 ^			

page 2 or 2

Log of Borehole

Location FT-1 (Loc 7) MW161

Geologic Log by N. Ganisher
G. DiGregorio
Driller Alvin Carrie | Produces

Project FAFB

Bit(s) & + tricare / 7 1/2 B-cussion bromer Weather Clear 70 Fluid Water Pene. | Circu-Sample Geologic and Hydrologic Description Rate/ lation OVA/ Depth. Blow Q HNU Inter-Lith. % Core Cts (gpm) Symbol va! Recovery Fresh desse course grain ^ A more frecher at 40° up CaCo. filling and black vigy felling drilling of 40' Bralt done corne grand; Freshere at 40' . - 42' w/ black wayy surfers and black ribes Coston dolling 46-47' Slight Fracking Zone Francisco -d. xnowtion 4-8 Chsirved. TD at 48'

Projec	: Faice	full At	3		T	otal Depth		SIANI	#161			
Project Fairchild AFS Location G AW FT-1 ORF #2 (HW-162)								Date 101491	101891			
			Gazzio		1	epth to Flu		Time //302				
		_	,		R	ig <u> </u>	000	How Left _سِ				
Geophysics by <u>NA</u> Weather <u>Guny</u> 70°F							co Relle & Brinsian Genne					
						luid water						
		Circu-		Sar	nple	Geologic and Hydrologic Description						
Depth	Bate/	lation Q	ا کیمبدو		Inter-	Lith.		!	% Core			
	Cts	(gpm)	PPM	#	val	Symbol		İ	Recovery			
<u> </u>	1		0				sand and gravel . 6 Z	0 mm				
							coarse send subcool back					
	<u> </u>		! !		<u> </u>	0°.0	feld Water at 3"					
	<u> </u>					80.	clay minor d GC					
_ 5_	<u> </u>	2			5	D-						
	 		0		<u> </u>		basalt prevel and sand,	= 12 mm				
	1	<u> </u>	!		<u> </u>		Coarse Subang - Subcac		:			
	<u>i</u>	<u> </u>	! ! !		<u>:</u>	00	and feldepus Busalt	at 10'				
	 	2	0	-	1 10.	Belock		-				
—/o —	i İ				1	1	Buselt dene medium	مديمه	. ,			
	!	Į				1 / 1	Fractures ct . 145-15"		ha			
	1	ļ] '	gaesish - Yellow					
		!	i			1 1						
15	<u>!</u>	2	. 0		15	_			<u>!</u>			
		<u>i</u>	1		<u> </u>	^ ^	Buse It, Course goin	4/ minor	: 			
	<u> </u>				!	- - - - -	mucal the Pall brech	ct 19-				
	1		1		<u>:</u>		26 Greenist yellen		:			
	:	· Z	6		20	- ^ ^		· · · · · · · · · · · · · · · · · · ·	•			
_ 20_	;	<u> </u>	;		<u>. 20 </u>		Bosalt Coarse grain, fraces	e cal	:			
	i	1	i		i	7 1/1	ressiente to 72.5° vesces	6 = 7 5m	;			
		i	!		1		Krie cittings 40 mm. Cocade		:			
	1	<u> </u>	<u>į</u>	<u> </u>	<u> • </u>		to Cocces grin Barelt		i			
<u> </u>	21.7	1 7		<u>i </u>	<u> </u>	111	•		<u>i </u>			
	<u>i</u>	1	<u> </u>	<u> </u>	!	- ^	Beselt Clarge grained	, mihre	1			
	<u> </u>	<u> </u>	<u> </u>	<u>i</u>	<u> </u>	1 1 1 1	fractures and Fe Dx 5	tribing	1 .			
	1	<u> </u>	1	<u> </u>	1	1 //	som moralization.		1			
	1380	1 2	1 ,	<u>1</u> !	!	- ~ ~			:			
- 30-	138.5	<u>: </u>	<u>'</u> ' ' ' ' ' '	<u>. </u>	: 	- A	Baselt come arend	forctures	<u>:</u>			
	i	i	i	1	† 	Fractures			i 			
		İ	T		İ	7 1	filling miner Felx	ALL IN ST.	i l			
				1		7 ^	THE PART OF THE PA		1			
	131,3	1 2	10			<u> </u>	•		1			

Borencle FT-1 cas Now -

Log of Borehole

START FINISH

Project Fairchild AFA 190 Total Depth ____ Location FT-1 Date 101491 10/491 Geologic Log by G. DiGazina Depth to Fluid 3' Time 1602 1406 Driller Louis Hannel | Ponteres How Left 11/ lichia Bit(s) Tricene Roller & Hommer Stell minunes Weather Class 45% Fluid water Pene. | Circu-Sample Geologic and Hydrologic Description Depth Figte/ lation | OVA HNU Inter-Lith. % Core 35 Ø-Cis PPIN (gpm) val Symbol Recovery Beself corres grained Feichurs with Caldy filling through 5' introck Soft dally 37 -401 33.3 **A**-Boult medium granel minor freetures. Graylch blk No Λ 17.9 ٨ Basel nelium govel with mineralization in the light green no subjestable grayish blk No 31.25 | 2 Basalt, mediun grang desce grayich bik No 1 1 1 A 55 18.5 I Parelt coa gas Herel y Fed. į MA 1 41.6 11 technel, coarse grain mine For String, Calor Colling black wary coting Soft dalling of 122.7 | conse arcia miner facturer ct 69-701 my Caldy contra 131.251

2370 _ 3_ 01 _ [_

Project FAFE	Total Depth 190	- SIANI FI				
Location FT-1	Borehole Dia	Date 101491 10199.				
Geologic Log by G. Dibregrie	Depth to Fluid Time 1/302 1					
Driller Louis Homes / Parterosa	Rig CP 7000 How Left w/ licker					
Geophysics by <u>NA</u>	Bis(s) 10" frame rate i procession home	er sicil minument				
Weather Clar 70%	Fluid water .					
Pene. Circu- Sample	Geologic and Hydrologic Description					
Depth Sate/ lation OVA/ Int	er- Lith.	% Core				
10 Gts (gpm) F.m " vi	I Symbol	Recovery				
	- Craselt mating	mo forcteril				
	throughout interval	Cacoz				
	1 1 filling	1				
75 22.7 2 0	A A grayich blk N2					
	Boselt medium co	in Miner				
	1 Boselt medium ga	become !				
·	- muce cleuse	<u> </u>				
3 31.25 2 0	grayish Rik Nz					
	Basalt medium	ami i				
	filling grayish b	JK N.				
(22 4 2	1 1 1	<u> </u>				
85 23.8 2 6		1000				
	A Rusalt medium gra	on by Cally				
: ! ! !	filled forictions the	blk No !				
	\[\lambda \lambda \]	<u> </u>				
90 385 2 0						
	Baselt medium	GH COCO				
	filling Minn Inche					
	grayis blk No					
95 21.7 2 6	_ ^ ^ _	•				
	Possit, medium - fine	grain w				
	Caco: filling, grayis	h hit M.				
	The state of the s	1				
jos ! 31.3 z. o						
	^ ~ Rassit, demo time	grain				
1 1 1	- Machine at 132 col	Ca CO Filling				
	1 Gayist UK No.	4-105				
138.5 2 0	- Gayler WA					

Borenole FT-1:85

Log of Borehole

- page 4 of 4

Project FAFR						Total Depth 190			START FINIS-		
Loca	tion <u>F7</u>	<u>د ر</u>)ia	Date 10,49	l laine	
Geol	ogic Log	by <u>G.</u>	D:Greg	05.2			epth to F				
	Driller Louis Hannel Portons							7:00	Time /602		
	hysics b							one later + foression Hammer	How Laft		
Weat	Weather overcast 60 F. Viry windy							water.	well monum	1/2 [
	Pene.	Circu-	1	Sa	mple	T		Geologic and Hydrologic (Description		
Depth	Pare	lation	HNU OAY		Inte		Lith.	Totogic and mycrologic i	Jeachpi:on		
105	1	(gpm)		. #	va		Symbol			% Core Recovery	
		·		i ·		1	Λ .	Rocall of C.	• 11		
ļ	<u> </u>	!		İ	1		^	Basalt, dease fine grown	Luth 11		
	1	<u> </u>	!	<u> </u>	<u> </u>	4		interval Cacos folling	houist !		
<u> </u>	33-3	2	10	<u> </u>	<u> </u>	\dashv	1 1	bik Nz	3 / .		
-// * -	•		i	<u>:</u> 	<u>!</u>	┪.	1 -	2			
				1	ļ	\dashv	n	Execut dears fine quite miner fractures	min !		
<u></u>	<u> </u>						,	112' . Grayib bi	k N= 1		
<u> </u>	1	2	1 -	<u> </u>	<u>i</u>	_	ハカ		:		
-115-	45.5 	<u> </u>	O		!	-{	A -		<u>.</u>		
·	1 i				<u> </u>	\dashv	1 1	Biself clear line	Carety 1		
	!				[`	Mine small freet	as st		
			i i			_	n [bik iv:	1		
-123-	15.5	. 2	O			_	1		į		
 -	<u>'</u>		<u>'</u>	i		<u> </u>	. [Baselt Jense tight	hae!		
	:	i			<u> </u>	-	1	grain Friction @ 12	y' wi		
							7	No.	±6 5/K		
	18.5	<u> </u>	0 .				1		:		
	· · · · · · · · · · · · · · · · · · ·	<u>'</u>		!		_	` <u>!</u>	Busalf leave tight	an		
		1	:			- <u>;</u>	^	grain up mine truck			
	:			ı		╗	1 1 i	129' grayuch lilk	N:		
i30	21.7	2!	0!				Ī		i	······································	
	<u>!</u>		<u>.</u>	<u> </u>		4	1 1	Basult, dense very h	acd		
<u> </u>	<u>i</u>		<u>!</u>			┤ ′	1	time gover, breature it	Bical		
	!	i	<u>:</u>	i		-	1 n t	135' Gely it blk 1	/.		
135	14.3	2	o	i			`^				
	1			i		<u>]</u> .	į	Busalt dince very hard	Line 1		
		<u>i</u>	:			_j ′	^ ^	from dolling break st			
		<u>-</u> -	1	<u> </u>		-	1	inedius grain, brachines			
i	17.4	2 1	.0			╣	11	granish blk N2		-	
	•										

. . sage 5 or 6

Log of Borehole

Geologic Log by G. D. Gregoria

Project FAFE

Location FT- 1

Geolo	gic Log	OY _15_1	J. Caron	ric	— I	Depth to Fi	uio	Time //-62	- 1400-	
Driller	Louie	Honei	1 Ponde	Kese.		Rig <u>Cr</u>	Cf 7000 How Left W/ /ock 7			
1		y			_	Bit(s) 10" fricane ville à parcussion himme step/ minument				
1		erist,		3500		Fluid wat				
	Pene.		ميد	Sar	npie		Geologic and Hydrologic	Description		
Depth	 	lation Q (gpm)	HNU HNU	#	Inte	. 1			% Core Recovery	
—`ø—	<u> </u>		<u>' '' '</u>	<u>'</u>	<u> </u>	i	D	ľ	1	
			<u> </u>	<u> </u>	i	11	Deac besett, medica	• •	!	
	İ	l	 -	i	i	7 1	Grain fractions @ 14	f_kod	1 .	
			!			1	144' gray sin hit A	/ <u>}</u>	<u> </u>	
-145	11.1	2	0		l			_	i	
. 73	, ,				i		Baselt diese medium	- for	i	
				!		^	geein, owner hairle	e factor		
	<u> </u>			<u> </u>	· · ·	- 4	w/ caco; gorach bit	1/-		
		<u> </u>		<u> </u>	<u>:</u>				:	
152	1 H,3	2	! ပ	<u> </u>	<u>i </u>	_ ''			<u>:</u>	
	!	<u>i</u> I	<u> </u>	<u>!</u>	<u>:</u>	_	Brischt dince medic		(
	!	<u> </u> 	: •	<u>: </u>	1	_ ^ ^	grin mor frether	, .	i i	
	i	<u> </u>	<u> </u>	1	<u> </u>	_ ^	tilling. more for the al		<u> </u>	
	. , , .		<u>!</u>	<u> </u>	-	_ ^	uf is co. filling i Fel	& stronery.	1	
15 <u>7</u>	: <i>11.1</i> 5	2	: 0	<u>:</u>	<u>: </u>		yosy sh bik Az		!	
<u> </u>	i	! !	!	1	1	- / /	Basilt, duse melina		!	
<u> </u>	<u>'</u> i	<u> </u>	!	<u>i</u> :	:	_	ican forther if C		:	
	<u>'</u> I	<u>!</u>	<u> </u>	i		- 1	and free sich both distre	lereties!	:	
	8.9	2		<u>:</u> i	<u>:</u> :.		gray 54 bolk M:		! •	
<u></u> 145 	. 0. 1	<u></u> ا	. <u> </u>	:	· ·		0.11		<u> </u>	
	;	<u>. </u>	 -	<u> </u>	<u> </u>		Enselt diace fine gir	(19 4)	i	
		<u> </u>		1	i		for trues throughour; f	eller com	<u> </u>	
	i			i i	i I	ا م	at some sorts geeris	ala	i	
65	11.1	7	. 0		!	- ' ' '	Columny . Gory who blk	(4 :	<u>.</u>	
				i	i I		death to	. / ./	!	
					1		laselt line gran to	4	<u>.</u>	
				!	i	<u> </u>		and garriss	1	
				Ī	i	^ 1	blue cacting some	No.	<u> </u>	
n	18.5	2	C	:	!		THINNY GRAISH BIK	ii.	i	
- 0, -				!	i	─ ; ''	Bassle, med-fine grain	L-1 1	·	
				1	i	7 1	W des lies of the	1 4. 1 -	.	
			!	İ	1	71	billing, cly metted	- Later - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	 (
				1			blk 1/2	- Grayus	i	
	11 /2	7_	1 0		i	<u> </u>			i	

Borenole Fr-1 0.45 11:+= -

Log of Borehole

==== <u>6</u> o! <u>6</u>

Project FAFB	Total Depth	START FINISH
Location FT-1	Borehole Dia 10"	Date Music Music
Geologic Log by G. Di Greynio	Depth to Fluid	Date 101491 10181 Time 11302 445
Driller Louis Heanel Pandensa.	Rig <i>CP</i> 7000	
Geophysics by NA		How Left w/ licka
Weather putly cloudy 50 F	Bit(s) 10" freme rather personsum incommence	Jan menument
Pene. Circu- Sample		0
Denth Bate/ lation OVA/		
175 Gts (gpm) Pan # Int	.	% Core Recovery
		<u> </u>
	A Basalt dense med-	the gain
	- me fracture of de	
	1 1 filling, goerish ble cost	
180 10.4 2 0	- dest HK eactive: granish	JK N2 i
	1 Boselt deaux fine	gain !
	A had Minor facture	4 CaCo 3
	A filling 184 B	٠
185 11.9 2 0.1 1		:
	1 1 Boself dease fore	iceh
	1 A Boself dease for g	1 u/ Coca,
	~ gruy's blk NZ	
150 2 0	11 70 51	
150 2 0	TDE FO'	<u> </u>
		:
		i
		·
		:
		:
		. :
		<u> </u>
		<u> </u>
		i
		<u> </u>

page 1 of /

•									START FINISH	1			
	Project	FAIRC	MID A	FB_				20'					
	Location	on <u>5</u> W	-1 Loc	14 M	المالاط	B	orehole D	ia <u></u>	Date 9/23/1/ 9/23/4/				
	Geolog	jic Log	by <u>choc</u>	& Houch	Str	_ □	epth to Fi	uid	Time 1330 1500				
				Lone H		R	ig <u><p78< u=""></p78<></u>		How Left Pre tament	Ψ.			
	Geoph	ysics by	/			_ B	it(s) 8" t	vine - 8 hammer bit	~ 2.5 AGS - growt				
	Weath	er <u>65°</u>	· Sum	<u>ط ، پسہ</u>	un.	F	luid <u>A</u>	2 / WOTEL	& surface . Security 1	1			
		Pene.	Circu-			nple	Geologic and Hydrologic Description						
	Depth	Rate/ Blow	lation Q	OVA/ HNU		Inter-	Lith.		% Core				
		Cts	(gpm)	""	#	val	Symbol		Recovery]			
	-0-									1			
]			-			
				ļ	<u> </u>					1			
			8	8	2	4.0	f		·	1			
1347	<u>-5</u> -		<u> </u>		~	- CA-	1 X	Silt some fix soul H	due beam 5/J 2.54]~			
			·				1 (
								Baselt-forcethered	fractural-dy C4.5	-			
						 	4		•	1			
MA	-10-			6	3	10		Bandt-marrie-han	7 Wall 2/2 2.54	(
			2_	6	3	10_	1	Daratt massur- has	2 , 61227	1			
	 						1	"Softer"-dr. 1ke- weather) hag.]			
] .		<i>V</i> 4	4			
1424	-15-				<u> </u>		4		(1) 0 0 0 1 0 50	-			
F107			2	5_	4	15	4	Baselt - massur . han	1 black 210 2.59	1			
	 			<u> </u>	 	-	1			1			
				 		1	1						
	20-]			4			
1431			2_	\$3 k	5	120	4	Signalt- see fractured - of shilling an way hard " wee	was weathand from	\dashv			
	<u> </u>			·			-	TD - 70'	thouse is probably stough	4			
		 		-	-	+-	-	113 - 76		1			
	<u> </u>	 	-	 		 	1 .						
	-									4			
						1	_			4			
	<u></u>	ļ			-	-	-			\dashv			
				-	-	-	-			ᅥ			
			-			-	-			コ			
							_			<u> </u>			
										4			
					ļ	-	4			ᅱ			
		1	<u> </u>	1	1			V Driller museed de		1			

-09	V. <u> </u>	v. v						page	_ 0,
Projec	t_FAI	RCHIC	b AF	B, W,	4 7	otal Depth	, 22'	START	FINISH
		- MWI				Borehole D	ia 8"	Date 1/26/91 1/26/	
		by <u></u> J. Л				enth to El	uid 7.8' hyp	Time 1040	
		A Core			_ -	Rig C136	50		
		, NA			- [ing	ine / Percussion human	How Left	
Geoph	Azicz Di	1. 1. 1.		7016				*1	
Weath		4 cleud		20.5		الامنة biuld	~		
		Circu- lation		Sar	nple		Geologic and Hydrologic	Description	
Depth	Blow	Q	END	#	Inter-	Lith.			% Core
— o —	Ċts	(gpm)		- "	val	Symbol			Recovery
_			B: 0.2	my			0-2: Toposoil v. fine y	1- 5 and /si H	
			H: 0.2]	organic 104R3/3 dk	brown (oc)	
]	organic 104R3/3 dk 2-5: sand sift gra	rel mix	
	,			ļ			104R 5/3 brown (G	m)	
/c						-	5-10- Same as 2-		
						-	w/ boulder size be		1.
				<u> </u>		4	10-15 dark gray biself	מן אפניא	Trowns
						1	String fine or mind	solid wild /bus	It contine
						-	15-20 hard dense an		
						1	besaff fragments	w/ violinus	FRUX
] .	besatt tragments 20-22 some as 15-20	7	
]	Hro present in word k	pre in the	
						1	am 427 ~ 10'by.	•	
_\$						4	TD & 22.6'		
				ļ		-			
					<u>. </u>	-			
						1			
							444, 44		
]			
						4	•	-	
						-			
						4			
	-								
						1			
					·				
				<u> </u>	<u> </u>			•	

		Well Construction Sumn	nary			
25-	T I		ation: Ground Leve			
3.5-		Personnel: J. Moore	Top of Casin	g 		
		DRILLING SUMMARY:	CONSTRUCTION	TIME LOG:		ļ
		Total Depth <u>22.0</u> Borehole Diameter <u>8"</u>	Task	Start Date Time	Fini Date	•
		Dellar Alvin Carcis	Drilling:	Y26/41 1040	1/24/91	1543
4.0 =		W/ Porderosa Drilling Rig CP 650 Bit(s) Tricone/Percussion haumer	Geophys. Log-			
5.0 -		Drilling Fluid Water (minor)	ging: Casing: <u>Prc.</u> Screen	1/27/4/ 1019	1/27/91	1021
6,0 -		Surface Casing No				
		WELL DESIGN: Basis: Geologic Log Geophysical Log	Filter Placement: Cementing: Bentonite Seal:	27/9 27 1/27/9 214 727/9 141	1/27/91	1170
		Casing String(s): C=Casing S=Screen al _ +25 + 6.0	Other:		1	
			Comments: HzO leve	1 @ 7.8	_	
		Casing: (D) PVC Sch 80 (4" dia) C2			*	
		C4				
		Screen: (S) Stainless Steel Ordis				
		\$3 \$4				
16.3		Centralizers No	Key:			
		01 1 51 51	Bentonit	e 🗓	Sar	nd
		Filter Material Colorado Jilica Sand 10-20 (3 bags) Coment Portland Type I/II	Cement		Silt	
		Other 3/8" bentonite pellets	Sand Pa	_	Cla	y reen
		/y bag Quick Gel	Drill Cut	tings E		CEII
22.0	****		18 87.18 C. 18 A. 91			

								В	oreholeww	1-NW13
Project Phile (III D AFB WA Location FT - MW 123 Borehole Dia 3/1 Date 121/91 Utility Geologic Log by J Mccre Driller 4 win Carris Geophysics by NA Weather Clear Cold ~ 20°F Fluid water Pene. Circu- Rate/ lation Blow Q Cts (gpm) Depth W: 0.2 pen N: 0.2 pen N: 0.2 pen N: 0.2 pen N: 0.2 pen N: 0.3 pen N: 0.4 pen N: 0.5 sample Geologic and Hydrologic Description Geologic and Hydrologic Description Recoving the pene of the	og of	Boreh	of E	ehole						
Pene. Circu- Rate/ lation Blow Q Cts (gpm) B:0.2 ppm	Location Geologic L Driller4 Geophysic	es by NA	ion <u>F</u> ogic Log r <u>Alv</u> hysics I	- MW123 J Mcore Corris NA	e	- Bi	orehole D epth to Fli igP it(s)Tri	ia 19 uid GSC cene / fin lussen hu:	Date /2 1/91 Time 2915	1/27/91 11/85
Blow Cts (gpm) # Interval Symbol Recover Recov	Per	ne. Circu-	Pene	ircu-		ple		Geologic and Hydrologic	Description	
6-Z': Tapsoil V. fine gr sitt k: 0.2 ppm O'samic Tich 107R 3/3 Jaik brown (0L) 2-5.5 Sand-Silt gravel mix 10	Deptir Bk	D wc	' Blow	O (HNM)	#		1 (% Core Recovery
10-15 durk gray hard DYR 5/3 brown (CAN) S.5-10! dark gray hard Sasalt frags < 2 mm dimeter Minor Fell x Mixed on SAND (Minor) 10-15 durk gray, hard angular Susult frag 2-8 mm) w/ minor sand frag 15-17' dark gray hard sangular				8:0.2	ppn ppn			0-2: Tapsoil V. fin organic Fich 1041 Jack brown (OL)	e gr sitt R 3/3	
10-15 dark gray, hard angular busult from 2-8 mm) w/ minus sund from 15-17 dark gray hard sungular	- 10							10 yr 5/3 brown (6 5.5-10! dark gray	in) hard	
basalt frage TD	20-							10-15 dirk grun, har	angulor	er)
						•		basalt frage TD		
							- - -	·		

		Well Construction Sum	mary		
	A	Location: FTI = MW/23 Ele Personnel: J. Meore	vation: Ground Leve Top of Casin		
		DRILLING SUMMARY:	CONSTRUCTION	TIME LOG:	
		Total Depth 17.0 5. Borehole Diameter 5.0" Driller Alvin Coms Ponder and Pollowy Rin CP 650.	Task Drilling:		Finish Date Time i/se/4/ //co
5.0	*KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Bit(s) Tricen e Percussion Drilling Fluid Water former	Geophys. Log- ging: Casing:		7 /28/11 /3/9
7.0	Mary and the second	WELL DESIGN: Basis: Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen C1 - +3.0 - 7.0 S1 - 7.0 - 17.0	Filter Placement: Cementing: Bentonite Seal: Other:		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Casing: 69 PYC Sch 80 (4"dia) C2 C3	Comments:	8.5'	
		Screen: <u>S1 Stainless Steel 0.01"</u> 52 53 54			
17.0	77	Centralizers yes i above the Screen	Кеу:		
e a		Filter Material Colorado Silica	Bentonit		Sand Silt
		Cement Portland Type I/II	Sand Pa		Clay
		Other 3/6" Bontsnife Pellets	Drill Cut		Screen

12.5	Well Construction Sum	mary Mw-148
	Location: Fi-1 Les #15 Alleviel Ele Personnel: G. D. German	
	DRILLING SUMMARY:	CONSTRUCTION TIME LOG:
2	Total Depth	Start Finish Task Date Time Date Time Dilling:
2 x x x x x x x x x x x x x x x x x x x	Driller Din Cleason Eng. c mountal west Rig. Mh. le Dall 13/11 Bit(s) 5" 2-2:	Geophys. Log-
5 . E	Drilling Fluid 1,4	ging:
	Surface Casing 12	
	WELL DESIGN: Basis: Geologic Log Geophysical Log	Filter Placement
8	Casing String(s): C=Casing S=Screen +7.6 - 5	Other:
	Casing: C1 <u>Set weight 40 2 2 2 2 C</u> C2	Comments: - had to be into 15 and of salety: - To belled chave sucher in him. will required
	Centralizers	Key: Bentonite Sand
12.0	Filter Material CST 1912, Sold	Cement/Grout Silt
	Cement Concill	Sand Pack
	Other Wall some to selfeth	Drill Cuttings Screen
		Gravel

T 2.5 -	Ţ,	Well Construction Sumr	nary Mw-I	49	
0		Personnel: 13 Di Gragers		9	
		DRILLING SUMMARY:	CONSTRUCTION	TIME LOG:	
٤		Total Depth	Task Drilling:	Start Date Time	Finish Date Time
4		Free composed West Rig Mobils Dell Pill Bit(s) Si Agen Drilling Fluid NA	Geophys. Log- ging: Casing:	11-17-51 158 22	:1-12.01 2022
,		Surface Casing A/A			
, ú		WELL DESIGN: Basis: Geologic Log Geophysical Log	Filter Placement Cementing: Bentonite Seat		
ນ ລ		Casing String(s): C=Casing S=Screen	Other:		
ς.					
lo !2		Casing: C1 27 Servet (1 21, 12VC) C2 C3 C4	Comments: - in the left is the control of the cont	ان کا مرکب	
		Screen: S1 <u>2" Shahale tay PyC yo.o. ybb</u> S2 S3 S4			
		Centralizers1_0	Key:		
		Cement CST 2001 Coment Consiste Other with to beat a wifets Souther toll plus	Bentonite Cement/ Sand Pac Drill Cutti	Grout 🚉	Sand Silt Clay Screen
			Gravel		

		Well Construction Sum	mary
		Location: <u>FT-1 Loc 12</u> Ele	evation: Ground Level
		Personnel: CITUCIC Houck (SAIC)	Top of Casing
		PONDERUSA DRILLING	
Solike	7 1	DRILLING SUMMARY:	CONSTRUCTION TIME LOG:
	$N \sim 1$	Total Depth 43' bas	. Start Finish
		Borehole Diameter <u>K"</u>	<u>Task</u> <u>Date Time</u> <u>Date Time</u>
• `		D	Drilling:
		Driller PONDEROSA - lovus	AIR ROTARY 8" 9/18/11 1400 9/18/91 1450
		Rig <i>CP</i> 7%2	
	$ \mathcal{M} $	Bit(s) B" FRU - care	Geophys. Log-
• .		8" ROCK HAMMER	ging:
		Drilling Fluid <u>Arr/water</u>	Casing: <u>9/2/91</u> 070 9/2691
•		Surface Casing 8" Steel	
	N EN		
		WELL DESIGN:	Filter Placement: 9/20/2 0370 7/20/21 0340
•	H NI	Basis: Geologic Log Geophysical Log	Cementing: 9/20/21 1400 9/20/21 1430
		Casing String(s): C=Casing S=Screen	Development:
		42.3 - 42.0 C	Other: remark 9/20/11 0740 9/20/11 1400
	H NI	42 - 32 5	1 casing (steel)
		92 - ±25 C	
		 	
			Comments:
		Casing: C1 43.3 - 42 Put Shh 40 1	
		C2 32 - 25 AGS PVC Shl 40	5th landown 9/10/11 1700-1457 weiting
27 2		C3(4")	For deliner of well material
	₹ 3 ₩ 3	C4	standing 1430-1700 wanting for territory on type of well casing Iscreen
ZA		Screen: S1 42-32 WC sbh 40.020	4/20/11 - Steeldriver onen strek
		S2 <u>(4")</u>	DIGU - 1470 -finally Lielodged
32-	[. S3	
		S4	4" and plug (threaded
	111111111111111111111111111111111111111	Centralizers 🔖	Key:
	HILLIAN		Bentonite Sand
•		Filter Material. 10 - 20 (Cement/Grout
		Cement BOTHNO TYPE II	Sand Pack
•		Other Bentinite pellets 29-27 by	लाक्ष्य Sand Fack Clay
42.0 - 42.3 -	됨		Drill Cuttings Screen
			Gravel
1045	<u> </u>		

; ·

.

.

		Well Construction Sum	mary	
!" gure		Location: FT-1 Loc 12 MW182 15	l evation: Ground Level	
به دسه		Personnel: <u>Chuck Houck</u> (SAX)	Top of Casing	
-		DRILLING SUMMARY:	CONSTRUCTION TIME LOG:	- 1
		Total Depth 31.5	Start Finish	
• 0	7 7	Borehole Diameter <u>§"</u>	Task Date Time Date Time	re
	// //	- · · · · · · · · · · · · · · · · · · ·	Drilling:	_
	7 /	Driller Pondersa	WE ED TARY 9/21/91 0800 9/21/91 #CO	<u>'</u> -
		Rig <u> </u>		_
		Bit(s) &" tricare	Geophys. Log-	_
_		Drilling Fluid AIR/NATEL	ging: <u> </u>	_
	1 //			_
	1 /,	Surface Casing Nove		_
		WELL DESIGN:	Filter Placement: 9/01/11 11 10 9/01/11	_
_		Basis: Geophysical Log	Cementing: 2/21/9, 270 3/21/91 113	
		Casing String(s): C=Casing S=Screen	Development:	-
-	7	30.3 - 30	Other:	_
	7	30 - 20 5		-
	1			
	1 - 1	\ —-— — —- <u> </u>		
		` <u>-</u>		1
15.5-	$\stackrel{>}{\otimes}$		Comments:	
175		Casing: C1 4"Puc Tuksace ENDPLUE	started pulling stedlessing 1140	
_	·	C2 4*sch40	erry slow Pulling Finished pulling curry	
v -	`. :	C3	1400. Dailles did not have sumity	.
	` = :-		available.	
		Screen: S1 4": thrailed Pvc slots 43-020		
		S3		•
	$ \cdot \equiv \cdot $	·		
		Centralizers Nove	Кеу:	
	1 = 34		Bentonite Sand	
_ \		Filter Material 10- 22 5.1, ca good		
	1 1 1 1	Cement Partland TIPE II	Cement/Grout Silt	
-			Sand Pack Clay	İ
30-		Other Bell sh" Bentonit Pollot	Drill Cuttings Screen	
30.3 -				•
31.5	<u> \ </u>		Gravel	1
3 3				

.: بالاستار ال

4º long 4" Frameter threshed.

- 2.4		Well Construction Sum	mary MM-16	52	•
و. <i>ي</i>		Location: FT-1 Loc 12 Alliquid Ele	vation: Ground Leve Top of Casin	el	
		DRILLING SUMMARY:	CONSTRUCTION	TIME LOG:	
2		Total Depth	Task	Start Date Time	Finish Date Time
		Driller Dan Marken Engann II wat	Drilling:	1.12.21. 145	<u>r . a. 122c</u>
۲,		Rig in bile Dell Riel Bit(s) 2 Days:	Geophys. Log-		
		Drilling Fluid	ging: Casing:	-0.01 1228	-17,20
		Surface Casing 1/A		·	
4	· .	Basis:	Filter Placement Cementing: :		11.12-7, 1240 5 <u>3</u>
٦.		Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen	Bentonite Seal: Other:		
9 7		7-12 2			
					<u> </u>
ie					1
		Casing: C1	Comments:	ve lockine w	ell ininuavat
		C2	- he dorted be		interior
٠.		C4			
		Screen: S1 <u>3 schoolds 45 PM: 4 5.52 51-5</u> S2		•	
	-	S3			
		Centralizers <u>V4</u>	Кеу:		
			Bentonite		Sand
		Filter Material CST Zind Co/2c	Cement/0	Grout 🖃	Silt
		Other Wicky bearing a like 45"	Sand Pac	k E	E Clay
	_	Pinka, k bok ilu	Drill Cutti	ngs	Screen
			Gravel		

+ 2.4 -		Well Construction Sum	mary MW-19	53		
		Location: FT-1 Loc #17 Allwell Ele				-
		DRILLING SUMMARY:	CONSTRUCTION	TIME LOG:		7
,		Total Depth 9.2.	1.5	Start	Finish	
		Borehole Diameter	<u>Task</u> Drilling:		Date Time	-
		Briller Den Chassen Environmental West Rig Milila Dell Blil		<u>[[-12.4]</u> <u>[-124]</u>	11-12-61 6500	-
4		Bit(s) Br. Augus	Geophys. Log- ging:	054		-
•		Drilling Fluid 44	Casing:	11-13 51	11-12-41	=
6		Surface Casing NA		· -		-
		WELL DESIGN: Basis:	Filter Placement Cementing:	11-19 61 0313	11-13-41 38:16	-
		Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen	Bentonite Seat	11-14-61 25274	11-17-41 10-22	-
ģ		÷ 2.5 - 4 C	Other:			-
•						- -(
9.1	<u> </u>					-
	-				1	-
		Casing: C1 2" schooled 40 1200	Comments:	a count lick	न <i>१९८६</i> ह	
		C2	m nument			
	-	C3 C4	induted be a	7 - 1 5 j	<u> </u>	
		Screen: S1 23 serial 40 2x 400 145				
		S2 S3				
	-	· S4				-
		Centralizers	Key:			
		Filter Material CST 10/10 Sind	Bentonite		<u>∵</u> Sand	
		Cement	Cement/0	Grout 🚍	至 Silt	
			Sand Pac	k 🔄	Clay	
		Other Wich, it hat nite willets	Drill Cutti	ngs 📕	Screen .	
			Gravel			

			Well Construction Sum	ımary				1-100
	•		Location: F7-1 Loc 11 MW 154	evation: Graved Law	1			
· ·			Personnel: 541c/PONDANOSA	evation: Ground Lev Top of Casi	. •			
			DRILLING SUMMARY:	CONSTRUCTION				
			Total Depth 311		Starr		Fini	sh
			Borehole Diameter 8"	Task	Date T			
		- T	Driller Louis Hannel - Ponospross Moce Kelly - Kelper	Drilling:	9/2/11 K	שעי	9/22/2)	033 <u>></u>
			Rig <u>CP 780</u>			-		
		25	Bit(s) 8" truone - 8" hamme but	Geophys. Log- ging:				
	<i>v</i> =		Drilling Fluid <u>Air /waTCR</u>	Casing:	9/zulm o	1940	9/22/91	<u>050</u>
			Surface Casing NONA					
			WELL DESIGN: Basis:	Filter Placement:	9/22/21/10	1		
			Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen	Development:				
			30.3 - 30 ()	Other:				
			30 - 70 S					· · · · · · · · · · · · · · · · · · ·
		7						
		7) [
	14	\geqslant		·				
		\bowtie	Casing: C1 4×4"PVc and cap	Comments:	a. H. · ·	c l		
	18 -	\boxtimes	C2 42 Sch 40 YVC	Did not use	m - car	-1 m	t relat	may 1
		" F:	C3	· · · · · · · · · · · · · · · · · · ·				'
	ا د		Screen: S1 4"50440 PVC W/0225 of					
		$\mathbf{H} = \mathbf{H} \cdot \mathbf{H}$	S2					
		=	S3 S4					
			Centralizers Nout	Kevi				
	ľ	= : ·:		Bentonite		<u> </u>	Sand	
		\equiv	Filter Material 15/20 Sulva Sul				_	
		1 = *	Cement 18-2 Portland Type II	Cement/0			Silt	
		: = ::	Other 3/4" Volden hand on the	Sand Pack			Clay	
	30- 30-3		pellito-18-16	Drill Cuttin	ngs		Scree	en
	31			Gravei	-	•		
'				I				

:

- ځه ۲			Well Construction Sum	mary MW-155	
0		13.2.13	Personnel: Gr.D. Gregoria		
'		<u> </u>	DRILLING SUMMARY:	CONSTRUCTION TIME LOG:	7
2		~;	Total Depth	Start Finish	
۔		11.11	Borehole Diameter 6" Driller 20, 01665560	Task Drilling: Date Time Date Time	-
		6.	Rig Mahle Dell Clel	<u> </u>	-
4			Bit(s) Pr Jugars	Geophys. Log-	-
		Ł	Drilling Fluid 11A	Casing: <u> </u>	-
6			Surface Casing NA		-
		- :	WELL DESIGN: Basis:	Filter Placement 11-12-91 1417 11-11-61 142	2
j			Geologic Log Geophysical Log	Cementing: 11-12-41-41-41-41-41-41-41-41-41-41-41-41-41-	-
			Casing String(s): C=Casing S=Screen		
ŝ	- 🗏		÷25 - 4 C	Other:	
					_/
9					-1
	-				\dashv
				Comments: Tribelled there comed such oraning of	
			Casing: C1 <u>2* Scheduli 40 , 200</u>	- budgetin with the for and of southly note	-
			C3		l
			C4		
			Screen: S1 2' Scheinle 40 Proceeds 60 Met		
		ı	S2 S3		
	-		· S4		_
			Centralizers	Кеу:	
				Bentonite Sand	
	_		Filter Material CST 10/co Stord	Cement/Grout Silt	
			Cement <u>Omit</u>	Sand Pack Clay	
			Other whether to himma stillists	Drill Cuttings Screen	(
•				Gravel	

			Well Construction Sum	mary				
			Location: FT-1 loc 1 MW156 Ele	vation: Ground Lev	o.l			
		•	Personnel: CWIR Houck (SAK)	Top of Casi				
		}						
			DRILLING SUMMARY:	CONSTRUCTION	TIME	-OG:		
	.	2.5	Total Depth 43.5 Borehole Diameter 8"	Ta al.	1	art	Fin	_
6		_	Borenole Diameter X	<u>Task</u> Drilling:	Date	lime	Date	Time
]		Driller Laure Home - PONDEROSA	SIR ROT.	9(22/9)	1400	9/22/91	035
			Rig <i>CP 780</i>					
			Bit(s) 8" truone + 8" hammer but	Geophys. Log- ging:				
			Drilling Fluid Are/ WATER	Casing:	9(23/7)	09,00	9/28/2	0970
			Surface Casing <u>Nงพ</u> ะ					
}	4 1/		WELL DESIGN:	Filter Placement	7/28/21	0920	9/23/91	0925
			Basis: Geologic Log Geophysical Log	Cementing:			9/23/91	
 			Casing String(s): C=Casing S=Screen	Development:			<u> </u>	
ľ			5	Other:				
	$N \vdash$		<u> </u>					
<u> </u>	1. 1/	/	39 - 19 S	-				
2.5	7 7			 .				
72		\bowtie						
				•	1			
27		\sim		Comments:				
			Casing: C1 4" 14" Threndal Puc and plus	NUS wanted to	dill.	Twenty	teet int	7
29 -	١.١		C2 4" PUL SCHUO	bedrock to see	· ib m	markers	tueln	
7,	1 = 1	🐪	C3 C4	feet of hedron			ed- has	
	-	<i>i</i> }		filled 2.5 feet				
•	=	i.	Screen: S1 4"Scaru Pur Quzo sist			P4-1	shallon	<u>ے</u>
	· _ :	·/-	S2 S3	bedrock well	o		<u></u>	
ŀ			S4	*			•	
		, ,-	Centralizers None	Key:				
				Bentonite			Sand	d
	-	, ś`	Filter Material 10/20 Silian Sand	BAA SCIIIOIIIC		نن.	<u>:::</u>] 36111	_
	1=1		41 · 27	Cement/0	Grout		Silt	
39 -	' <u> - </u>	[-,	Cement 5 5 boq + 573	व्यक्तकर्य =			==	
37.5	N/X	11	Other 318 Vocies gelleto	Sand Pac			Clay	
41	VXX		43.5- 41 / 27-25	Drill Cutti	ngs		Scre	en
}	XXX			Gravel				
70 42 < L	$-1\sqrt{\Lambda}\sqrt{\Lambda}$	X 1	·					

:

.11.

+2.75	- B	Well Construction Sum	mary				
0		A. Čavažes	Top of Casing				
		DRILLING SUMMARY:	CONSTRUCTION TIME LOG:				
5		Total Depth 39.5' Borehole Diameter 8"	Task Date Time Date Time Drilling:				
16		Driller Louis Hanner / Panderosa. Rig CP 7000 Bit(s) E" tricage roller and E' Percussion hammer Drilling Fluid water	Geophys. Log- ging: Casing: 10-7-41 09:15 15-14-91 1006 10-7-41 09:15 15-14-91 1006				
15		Surface Casing NA WELL DESIGN:					
20		Basis: Geologic Log Casing String(s): C=Casing S=Screen +2.75 - 2 4.4 Ci 24.4 - 36.5 5	Filter Placement: Cementing: Bentonite Seal: Other:				
25							
30		Casing: C1 4" 3 hedula 40 ivc	Comments: Well completed with Steel locking monument in place.				
25	: :	Screen: S1 <u>4 " Scholuk 40; it it w/ 0.02 sleit</u> S2 S3 S4					
	A . A	Centralizers <u>NA</u> Filter Material <u>CSS 10 - 20</u>	Key: Bentonite Sand				
	-	Cement Lufarge Type I-II	Cement/Grout Silt Sand Pack Clay				
		Other Aqua get gold scal Dentroite and Valalay bentroite	Drill Cuttings Screen				
	-	pellets	Gravel 11 1 Basalt				

0	174		7/2						
	N			Well Construction Sum	mary				
			//	MW158					
	И			Location: FT-1 Mid Pump Ele					
	И			Personnel: A.Carazos, SAIC	Top of Casin	g			
				DRILLING SUMMARY:	CONSTRUCTION	TIME L	.OG:		
				Total Depth 7/ (cascain overnaged) 875		Sta	art	Fin	ish
	И			Borehole Diameter 8	Task		Time		
	M		M		Drilling:				
				Driller Louis Hayner, Ponderosa	Ar rotary	N/3/91	0940	10/4/11	1405
	N			Rig_ CD 7000					
				Bit(s) 8" tower roller 9" hammer bit	Geophys. Log-				
	M		И	-	ging:				
				Drilling Fluid <u>acr, water</u>	Casing: Su406	10/5/A1		10/5/AI	1130
				0 (0 :	716 and su 496"				
			N	Surface Casing	6°29" PVL and they				
	N			WELL DESIGN:	Filter Placement:		1130	11	B30
	M			Basis:	Cementing:	le	шо	ч	510
	N		N	Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen	Development:				
	M			87.6 - 88.2 C/	Other: Install	16	1510	ıć	1520
				88.2 - 78.2 5	sectionty buy				
			/	78.2 - Z.5AGL CZ					
			N		Bergange Sma	<u>. u</u>	1330		1400
	M								
	M								
					Comments:				
-0			N	Casing: C1 6" ×9" FVC+Nreaded end pluc	Cave in occurre	lovern	cut 6	10/4/9/	J.
58	綴	R.L.		C2 6" SUN 40 PVC	on 10/5/31 TD	was B	i.s. w	ken rus	tolling
60-	-:	Marsan		C3	filter and				
			:	C4	add+1 filter me	47 47 A	11.		
	-:			Screen: S1 6" GU HO DVC 030 SLOT			•		
	:			. S2				•	
	۱۰۰.		::	S3 S4	•				
	 :.			54					
	: <u> </u>		:	Centralizers	Key:				
	<i>:</i> :[Bentonite			San	d
			::	Filter Material N/20 5 lica soul			<u> </u>	<u></u> 0an	
		_		87.5'-60'	Cement/0	Grout	==	Silt	
			$ \cdot $	Cement Portland Tupe I-I 58'-0	Descriptions:	,			
				Orter Walder Alan L. F. 166	Sand Pack	•		三 Clay	′
		\equiv		Other Volclan 3/8" bentruite, sellets 60:-58'	Drill Cutti	nas		Scr	een
<i>88</i> -2.	 :.	=			<u>(s. 4. 2.)</u>	. 30			
±7.5-	اخ.	P-000	<u>:</u>		o o o Gravei				
91	5	000	محر						

	; Z		Well Construction Summary					
0		0.0	Location: FT-1 Core hok MWIS9 Ele Personnel: G. D. Gregorio	Top of Casing				
УÃ		7	DRILLING SUMMARY:	CONSTRUCTION	TIME L	OG:		
.30		2	Total Depth	<u>Task</u> Drilling:	Sta Date	Time	Fin Date	
40		د ۲،۰۲, ۲	Rig CP 7000 Bit(s) 10" Tricene cites and viscussion hammer	Geophys. Log- ging:			<i>1972.91</i> 	
90		7 7	Drilling Fluid	Casing:			<u></u>	<u>/5/3</u>
		1	WELL DESIGN: Basis: Geologic Log Geophysical Log Cosing String(s): C=Cosing S=Second	Filter Placement Cementing: Bentonite Seal:	1)229	0901	102391	0950
120		~ ~ ~ ~	Casing String(s): C=Casing S=Screen + 2.0 _ IRI	Other:	<u>11-5-61</u>			
.52 s 15 v		< < <						
155,5		7 1	Casing: C1 6" Schedule 40 fVC C2 721 5121 20 for 1030 60	Comments: Well Comple menument	ted w	<u>.4 1:</u>	ecking s	kul.
i&c		^	C4					_
.91 195		^ ^	Screen: S1 <u>6" Stadule 40 W 0.02 5</u> 115		•			
2065 210	: 🛭	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S3					
215.1		^ 1	Centralizers	Key: Bentonite		ESTE	∭ San	d
230	_		Filter Material <u>C35 10-20</u>	Cement/C	Grout		Silt	_
			Other Agua gel gold seal benknite	Sand Pack	•		至 Clay	
	-		Yulcky bestom to pellets	Drill Cuttin	ngs		Scre	- 1
				o con Gravel		1 1	N Bas	(17

0 -		ertu	Well Construction Summary						
		131	Location: FT-1 Loc \$1 4/6 Elevation: Ground Level						
	1/2		5 Personnel: Anne Cavazos, SAIC	Top of Casing					
		1	DRILLING SUMMARY:	CONSTRUCTION TII	ME LOG:				
			Total Depth <u>40</u>		Start	Finisn			
			Borehole Diameter _ & "		ate Time	Date Time			
13 -		1	Driller Alvin Carris, Ponderosa	Drilling:	2/16/71 1430	<u> الم/11/11</u>			
15.			•						
17 -		126	Rig CD 650 Bit(s) B" tricono roller,	Geophys. Log-					
		1	B" hanner but	ging:					
	:: = °;	Sac	Drilling Fluid <u>ar, water</u>	Casing: Endead, 10	<u>,/17/91_1420</u>	1435			
	[: = :	Basult	Surface Casing						
		3	WELL DESIGN:						
	11=14	3	Basis:	Filter Placement: 194					
26.6 = 27 =		ran	Geologic Log Geophysical Log	Cementing: 14/ Development:	/// 1730	10/17/91 1025			
		3	Casing String(s): C=Casing S=Screen						
			286 - 17 5 -	Other:	17AI 1445	10/17/11 1750			
			17 - 2.7K5 (Z	Tellots					
30'-	XXX			Bentoure Hole Duc : 101	117/91 1332	2141 11/19			
		2.							
. ;	XXX	Ser.							
		12.5		Comments:					
		2 4	Casing: C1 <u>PVC Endplug</u> Z" + 5" (Mnoflus) C2 <u>Sch 40 2" PVC</u> (Mushus)	· · · · · · · · · · · · · · · · · · ·					
		4 3	C3						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< <u>~8"</u> →		C4						
			Screen: Si Sch HO 2° PVC W/ UZOSLots						
			52						
			S3	•					
			Centralizers www.	Key:					
					د. د.				
			Filter Material 10/20 Colorado Silrea	Bentonite		∴ Sand			
			- send (30'-15') 70055	Cement/Gro	out 🚍	Silt			
			Cement Latery Portland Comment Type I-TI w/ 5-2, Asyand wild see Bustinity	Sand Pack	<u></u>	冠 Clay			
			T-II w/ 52 Aquage Gild Seel Bontmite Other (13'-0') 10 mp - 1/m						
			4018) 3/8 Jentrick Holopud (40-30,	Drill Cuttings	5	Screen			
			(15-13, 1 pull)	o Gravel					
	· .		•						

]]	vveil Construction Sum	mary		
		MN 161.			
. •		Location: FT-1 Loc # 7/9 Ele Arm Di Gregorio (SAIC) (sur mu) Personnel: A: Cararos (SAIC) (sur mu)	vation: Ground Lev	el	
		Personnel: A. Caratos LSAIC) (set well)	Top of Casir	ng	
2.5	h				
		DRILLING SUMMARY:	CONSTRUCTION	TIME LOG:	
0		Total Depth 48" 845		Start	Finish
		Borehole Diameter 8"	Task	Date Time	
	7 1		Drilling:		
	1 1 1	Driller Alvin Carris, Ponderosa			10/14/9/ 0820
· /	1 11 1	Rig CP 650			
	1 11	Bir(s) B'trion rotter, B' hammer out	Geophys. Log-		
			ging:		
	1 H I	Drilling Fluid ar, weter	Casing: 44/20-	10/14/71 0900	10/14/5/ 09 22
	1 1/1		Silve	The same of	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
		Surface Casing	Endow, secone,		
	1 1/1 1		Casing		
		WELL DESIGN:	Filter Placement:	10/16/91 0830	10/16/1/ 0935
		Basis: Geologic Log Geophysical Log		10/16/41 0745	
			Development:		
	7 7 1	Casing String(s): C=Casing S=Screen	0.5 3/0" - 13	1, 5, 5,	
Ł		41.9 - 32 51	Other: 3/6" Beatal	FD/16/4 0935	10/16/AI 0945
		32 - 25AGS CZ	<u> </u>	·	
			•		
E	1 1 1				
					
			Comments:		
		Casing: C1 2" dia endgap - busan			
		C2 <u>2" &h 40 7// - "</u>		·	
		C4			
26					
25	8 88	Screen: S1 2" Sch 40 PVC ow dats John		•	
		S2			
		S3	•		
		S4			
32-		Centralizers	, Key:		
··;			Rey.		
			Bentonite	<u> </u>	Sand
- 1		Filter Material 10/20 Colorador Solvia		<u> </u>	
		Sand (48'-28')	Cement/G	Grout =	Silt
	1=1:1	Cement Portland Type I-II (Laturge) w/5%			
42		Aguangel Gold Seal Benefite day (26'-0')	Sand Pack		豆 Clay
72		Other Volclay 3/8" benefouts sellets (28-26)	_		_
	10 m		Drill Cuttin	ngs	Screen
			10 ² 10 1	 _	(
TD=48			Gravel		· · · · · · · · · · · · · · · · · · ·
10-70 L	-3'1	·			
• '	•				

MW-162/MW-163 MW-162 SHACCON MW-163 - 2862

		Well Construction Sum	mary Mw	-103 -2862 D
-0		Location: FT-1 Nest # Z Ele	vation: Ground Level	
lo -		Personnel: G D Greatin	Top of Casing	
دخة		DRILLING SUMMARY:	CONSTRUCTION TIME LO)G:
324 324		Total Depth 190'	Star	rt Finish
		Borehole Diameter		Time Date Time
39 40		Driller Lowe House / Panderosa	Drilling:	1802 151461 141.
52		Rig <u>CP7000</u>		7.0
ьc	7 ///:	Bit(s) 10" Tricone collection decrusion	Geophys. Log-	
	1 ///	Drilling Fluid	ging:	C751 (2)661 (2)2
4.		Drining Field	^ Z 102241	1 1
61		Surface Casing 12" Steet	<u>C3</u> 101691	0842 101691 3535
90		WELL DESIGN:	(Filter Placement :01491	C 15 101661 257
		Basis:	Comment ing:	5974 102091 0P21
	4 ///:	Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen	Bentonite Seal: 10 1991 0	13.37 101951 Carr
120			Other:	
120		$\frac{12}{2} - \frac{24}{24} + \frac{62}{24} - \frac{34}{36} + \frac{52}{52}$	Fillow Across of 10 27 51	
		<u>c - 14' C3</u>	(102391 102391 (102391	1621 102291 1422
	7 1///-		Paralog 102191	,
150	A ///\^\			
156 156				
160		Contract of the latest of the	Comments:	21.61 10.11. 12
۲. ۵۰ ،	-11	Casing: C1 2 Scholute 40 PVC.	liether shall minumes	•
180		C3 12" 5+ee1		
	٠۵ - ١٠ ١	C4		
iåc		Screen: S1 2" School ale 40 (18025)		
		\$2 2" Schooling 40 of 0.00 slot		
	-	· S4		·
		Centralizers	Кеу:	
			Bentonite	Sand
	- ·	Filter Material CSS 10-20	Cement/Grout	Silt
		Cement Liliage Tuple I-IT	Sand Pack	Clay
		Volety brotonite prillets	Drill Cuttings	Screen
			Gravel	1 1 Pascit

		Well Construction Sum	mary
		Location: SW1 Loc. 5 MW86 Ele	vation: Ground Level
		Personnel: N. Gonista	Top of Casing
		DRILLING SUMMARY:	CONSTRUCTION TIME LOG:
		Total Depth	Start Finish Task Date Time Date Time Drilling: 8" Rean Drill 040x41 1335 050x41 0345
•		Rig C? 7000 Bit(s) 9" hammer Drilling Fluid Water	Geophys. Log- ging: Casing: 2' PVC OSDC41 DALS 0935
		Surface Casing WELL DESIGN: Basis: Geologic Log Geophysical Log Casing String(s): C=Casing S=Screen 47.5 - 97.3	Filter Placement: OSDc. 91 0935 0940 Cementing: OSDc. 91 0943 1035 Bentonite Seal: OSDc. 91 0940 0943 Other:
76·5 87 .3 _	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Casing: C12" PVC end Cap C2 _2" sch 40 Blank C3 C4 Screen: S12" PVC ,020 Slot S2 S3 S4	Comments:Ex-knded Sond Pack
47.5		Filter Material 10/20 Colorado Slica Sand Cement Portland Type II 5% bentonite Other 3/8" Volclay bentonite pellets	Key: Bentonite Sand Cement/Grout Silt Sand Pack Clay Drill Cuttings Screen

APPENDIX G2:

MONITORING WELL COMPLETION INFORMATION SELECTED WELLS MW-1 THROUGH MW-134

Appendix G-2 Table 1

Monitoring Well Screen Intervals and Corresponding Hydrogeologic Units (1) Fairchild AFB, Washington

Well No. (a)	Site	Total Depth (ft. BGL)(b)	Bottom of Screen Depth (ft. BGL)	Screened Interval (ft. BGL)	Hydrogeologic Unit (c)
W-61+	FT-1	15.0	15.5	4.58-18.66	Qal
MW-82+	FT-1	14.B	11.8	6.38-11.88	Qal
W-83+	FT-1	11.6	9.5	3.59- 9.08	Qal
MW-84.	FT-1	15.6	12.85	7.35-12.85	Qal
MW-85+	WY-1	17.5	15.0	9.56-15.66	Qa!
M-66.	AA-1	17.5	16.75	5.88-16.75	Qal 0-1
MW-87+	WV-1	13.5	12.5	7.58-12.58	Qal Qal
W-88+	WY-1	13.5	12.5 18.8	7.88-12.58 4.58-18.88	Qal
W-89+	WY-1	11. 0 18.5	17.5	5.75-17.88	Qai
MW-10*	¥¥-1	26.6	16.5	5.65-16.56	Qal
WW-11*	WW-1	15.0	13.6	7.58-13.68	· Qal
MY-13.	W-1	15.5	13.55	8.85-15.55	Qal
MW-14	PS-1	16.5	8.0	2.28- 8.66	Qal
MW-15	PS-1	8.5	8.2	2.63- 8.28	Qal
MW-16	PS-1	13.5	11.5	5.75-11.58	Qal
MY-17:	ST-8	23.5	21.86	5.56-21.86	Qal
MW-18+	SW-8	19.0	18.5	7.54-18.50	Qal
WW-19+	SY-8	33.5	32.8	1.68-32.66	Qal
MW-20-	S Y -8	42.0	41.3	25.30-41.30	Qai
MW-21*	SW-8	50. 0	49.25	33.25-49.25	Qal
MW-22+	SY-8	15.5	14.75	9.25-14.75	Qa I
₩-23•	SW-8	14.5	13.75	8.15-13.75	Qai On!
WW-24+	SW-8	16.5	16.3	16.80-16.36	Qal Qal
MW-25+	IS-1	8.5	7.5 7.76	2.88- 7.58 2.25- 7.75	Qal
MW-26.	SY-1	8.5 7.5	6.72	1.22- 6.72	Qzi
MW-27•	S¥-1 S¥-1	7.5 18.6	17.65	12.15-17.65	Qai
MW-28*	SY-1	8.5	8.6	2.50- 8.68	Qai
MW-30+	PS-8	28.5	13.6	7.50-13.88	Qal
MW-31+	PS-8	13.5	. 12.6	7.18-12.68	Qal
MW-32+	PS-8	12.0	11.18	5.68-11.18	Qal
MW-33	PS-6	13.5	18.5	5.00-10.50	Qal
WW-34	PS-6	17.5	17.5	11.50-17.50	Qal
WW-35	PS-6	18.0	12.93	7.43-12.93	Qal
MW-36	BW-1	26.5	23.25	18.66-23.25	Qai
MW-37	IS-4	9.0	8.7	3.45-8.70	Qal
MW-38	BW - 1	26.6	28.6	15.66-29.66	A (top)
MW-39	BW-1	46.0	43.15	32.90-43.15 7.50-17.50	A (top) Qal
WW-48	PS-5	17.5	17.5 12.8	7.88-17.88	Qal
₩-41	PS-5 PS-5	12.8 17.5	17.5	7.58-17.58	Qai
MW-42 MW-43	PS-9	38.5	15.6	18.86-15.86	Qai
WY-44	PS-9	11.5	19.5	5.88-19.88	Qal
W-45	PS-9	11.5	18.8	5.68-18.68	Qal
MV-46	PS-5	57.8	57.6	47.36-57.36	A (top-mid
W-47	BW-1	22.5	26.5	18.58-28.58	Qa1
W-48.	WW-1	15.6	15.€	18.88-15.88	Qal
ME-49.	YY - 1	13.0	13.6	8.66-13.66	Qal
W-58.	FT-1	28.6	16.6	6.60-16.60	Qal
MW-51.	FT-1	18.6	10.6	5.00.10.00	Qal O-l
W-52+	FT-1	15.6	15.6	5.60-15.60	Qal
W-53•	FT-1	21.6	21.5	11.58-21.58	Qal Oal
MY-54+	WY-1	13.0	13.6	8.66-13.66 6.35-16.66	Qal Qal
MY-55+	PS-2 PS-2	16.6	. 15.6 13.6	7.75-13.88	Qal
MY-56+	PS-2 BY-1	13.0 6.5	6.5	1.25-6.58	Qal
MW-57 MW-58	BW-1		15.6	5.66-18.66	นิ้วไ
MA-20	AA-7		75.6	59.58-78.88	A (mid)
MA-244	17-1		68. s	57.75-68.60	A (mid)

Appendix G-2 Table 1

Monitoring Well Screen Intervals and Corresponding Hydrogeologic Units (1) Fairchild AFB, Washington (continued)

Name						
MN-61			Depth	Screen Depth	Interval	Hydrogeologic
MY-62 BY-1 43.8 42.8 31.54-42.86 A (top) MY-63* SY-8 185.8 184.8 93.58-184.88 A (top-mid MY-64 BY-1 14.5 14.5 9.58-14.58 Qal MY-65 BY-1 24.5 24.5 14.58-24.56 Qal MY-66* PS-8 37.5 18.8 8.88-18.88 Qal MY-68* PS-8 18.8 17.6 7.88-17.88 Qal MY-69* SY-8 45.6 45.8 35.88-45.88 A (top) MY-70* SY-8 27.7 27.7 17.78-27.78 A (top) MY-71* PS-7 21.8 28.5 18.58-28.56 A (top) MY-72* PS-7 32.8 32.8 32.8 22.88-32.88 A (top) MY-73* PS-7 18.6 17.5 7.58-17.58 A (top) MY-74* SY-8 87.5 87.5 87.5 75.88-7.58 A (top) MY-76* SY-8 86.8 95.8 83.58-95.86 A (top) MY-779* SY-8 386.8 385.5 374.88-36.38 A (top) MY-78* SY-8 181.3 99.8 87.5 99.86 A (top-mid MY-78* SY-8 386.8 385.5 374.88-38.56 MY-88* SY-8 128.5 128.5 189.88-128.56 A (top) MY-78* SY-8 83.4 82.2 76.77-82.28 A (top-mid MY-88* SY-8 128.1 125.5 189.88-128.56 A (top-mid MY-88* SY-8 128.1 125.5 189.88-128.56 A (top-mid MY-88* SY-8 128.1 125.5 189.88-128.6 A (top-mid MY-88* SY-1 15.7 15.7 5.47-15.78 A (top-mid MY-88* SY-1 15.7 15.7 5.47-15.78 A (top-mid MY-91* SY-8 188.6 187.6 96.18-187.86 A (top-mid MY-92* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-94* SY-8 153.8 158.11 139.78-158.11 A (base) MY-98* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.4 26.4 18.18-25.16 A (top-mid MY-99* SY-1 45.4 26.4 18.18-25.16 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.4 26.4 18.18-25.16 A (top-mid MY-99* SY-1 45.2 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.4 26.4 18.88 138.67-147.88 A (top-mid MY-99* SY-1 45.4 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.4 44.8 33.77-14.88 A (top-mid MY-99* SY-1 45.4 44.8 33.77-14.88 A (top-mid MY-99* SY-1 55.4 44.8 33.77-14.88 A (top-mid MY-99* SY-1 55.4 44.8 33.77-14.88 A (top-mid MY-99*	(a)	Site	(ft. BGL)(b)	(ft. BGL)	(ft. BGL)	Unit (c)
MT-63	W-61*	FT-1	72.0	76.6	59.58-78.66	A (mid)
MY-63	W-62	BW-1	43.6	42.6	31.54-42.88	A (top)
MY-65 PY-1 24.5 24.5 14.58-24.58 Qal MY-66* PS-8 37.5 18.8 8.89-18.88 Qal MY-68* PS-8 18.9 17.6 7.89-17.88 Qal MY-68* PS-8 18.9 17.6 7.89-17.89 Qal MY-69* SY-8 45.6 45.8 35.89-45.86 A (top) MY-71 PS-7 21.6 28.5 18.58-28.56 A (top) MY-72 PS-7 32.6 32.6 22.88-32.86 A (top) MY-72 PS-7 18.6 17.5 7.56-17.58 A (top) MY-75* SY-8 87.5 87.5 76.98-87.56 A (top) MY-75* SY-8 87.5 87.5 76.89-87.56 A (top) MY-77* SY-8 96.8 95.8 83.58-95.86 A (top) MY-77* SY-8 96.8 95.8 83.58-95.86 A (top) MY-78* SY-8 181.3 99.8 87.58-99.85 A (top) MY-78* SY-8 181.3 99.8 87.58-99.85 A (top) MY-78* SY-8 181.3 99.8 87.58-99.85 A (top) MY-80* SY-8 128.5 128.5 189.88-128.56 Interbed B MY-80* SY-8 128.5 128.5 189.88-128.56 Interbed MY-80* SY-8 128.1 1125.9 115.48-126.90 A (top) MY-81* SY-8 128.1 1125.9 115.48-126.90 A (top) MY-88* SY-8 128.1 1125.9 115.48-126.90 A (top) MY-88* SY-1 15.7 15.7 5.47-15.78 A (top) MY-88* SY-1 15.7 15.7 5.47-15.78 A (top) MY-90* SY-1 28.4 28.1 1125.9 115.48-126.90 A (top) MY-90* SY-1 28.3 189.8 29.78-48.88 A (top) MY-90* SY-1 25.16 25.16 14.93-25.16 A (top) MY-90* SY-1 25.16 25.16 14.93-25.16 A (top) MY-90* SY-1 25.16 25.16 14.93-25.16 A (top) MY-90* SY-1 25.16 25.16 14.93-25.16 A (top) MY-90* SY-1 25.16 25.16 14.93-25.16 A (top) MY-90* SY-1 25.16 25.16 14.93-25.16 A (top) MY-90* SY-1 48.8 149.3 147.8 136.97-147.86 A (top) MY-90* SY-1 48.8 149.3 147.8 136.97-147.86 A (top) MY-90* SY-8 148.88 158.11 139.78-158.11 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 148.88 139.55-148.88 A (base) MY-90* SY-8 148.88 281.64 281.64 281.64 281.64 281.64 281.64 281.64 281.64 281.64 281.64 281.64 281.66 281.66 281.66 281.66 281.66 281.66 281.66 281.66 281.66 281.66 28	MY-63+	SV-8	165.6	184.6	93.56-164.66	A (top-mid)
MY-66* PS-8 37.5 18.8 8.89-18.89 Qal MY-67* PS-8 28.5 28.8 18.69-28.86 Qal MY-68* PS-8 18.8 17.6 7.89-17.88 Qal MY-68* PS-8 45.8 45.8 35.68-45.88 A (top) MY-78* SY-8 27.7 27.7 17.78-27.78 A (top) MY-71 PS-7 32.8 32.8 22.86-32.88 A (top) MY-72 PS-7 32.8 18.6 17.5 7.56-17.58 A (top) MY-73 PS-7 18.6 17.5 7.56-17.58 A (top) MY-74* SY-8 185.66 184.66 173.18-184.66 B (top) MY-75* SY-8 87.5 87.5 75.89-87.58 A (top) MY-77* SY-8 185.66 38 65.3 54.88-66.38 A (top) MY-77* SY-8 181.3 99.8 87.58-99.85 A (top) MY-78* SY-8 181.3 99.8 87.58-99.85 A (top) MY-78* SY-8 181.3 99.8 87.58-99.85 A (top) MY-79* SY-8 386.8 385.5 374.88-385.56 Interbed B MY-88* SY-8 128.5 128.5 189.89-128.56 A (top) MY-83* SY-8 128.5 181.5 78.88-15.66 A (top) MY-83* SY-8 128.5 181.5 78.88-15.66 A (top) MY-83* SY-8 128.5 181.5 78.88-15.66 A (top) MY-88* SY-8 128.5 1125.9 115.46-126.90 A (top-mid MY-88* SY-1 28.67 17.6 96.18-187.58 A (top) MY-88* SY-1 28.67 17.6 96.18-187.58 A (top) MY-89* SY-1 45.2 44.8 33.77-44.88 A (top) MY-89* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.88 A (top) MY-99* SY-1 45.2 44.8 33.77-44.8 A (top) MY-99* SY-1 45.2 44.8 33.77-44.8 A (top) MY-99* SY-1 45.2 44.8 33.77-44.8 A (top) MY-99* SY-1 45.2 44.8 33.67-14.8 A (top) MY-99* SY-1 45.2 44.8 33.67-14.8 A (top) MY-99* SY-1 45.2 44.8 33.67-14.8 A (top) MY-99* SY-1 45.2 44.8 33.67-14.8 A (top) MY-99* SY-1 45.2 44.8 33.67-14.8 A (top) MY-99* SY-1 45.2 44.8 33.67-14.8 A (top) MY-99* SY-1 45.2 44.8 33.67-14.8 A (top) MY-99* SY-1 45.2 49.2 4.8 33.97-924 Qal MY-99* SY-1 46.6 4 48.8 48.8 138.55-148.8 A (base) MY-99* SY-1 46.6 4 48.8 48.8 138.55-148.8 A (base) MY-99* SY-1 46.6 4 48.8 49.9 49.9 44.9 4 48.8 49.9 49.9	MY-64	BW-1	14.5	14.5	9.56-14.58	
MY-68* PS-8 18.8 17.8 7.88-17.88 Qal MY-68* PS-8 18.8 17.8 7.88-17.88 Qal MY-78* SY-8 45.8 45.8 35.88-45.86 A (top) MY-78* SY-8 27.7 27.7 17.78-27.78 A (top) MY-71 PS-7 21.6 28.5 16.58-28.56 A (top) MY-73 PS-7 18.8 17.5 7.58-17.58 A (top) MY-74* SY-8 185.66 184.65 173.18-184.66 B (top) MY-75* SY-8 65.3 65.3 54.88-65.38 A (top) MY-76* SY-8 65.3 65.3 54.88-65.38 A (top) MY-77* SY-8 96.8 95.8 83.58-95.85 A (top) MY-78* SY-8 386.6 385.5 374.88-35.59 Interbed MY-79* SY-8 386.6 385.5 374.88-35.50 Interbed MY-79* SY-8 386.6 385.5 374.88-385.50 Interbed MY-79* SY-8 386.6 385.5 374.88-385.50 Interbed MY-79* SY-8 185.5 128.5 189.88-128.5 A (top) MY-88* SY-8 128.1 1126.9 115.48-126.90 A (top-mid MY-88* SY-8 128.1 1126.9 115.48-126.90 A (top-mid MY-88* SY-8 128.1 1126.9 115.48-126.90 A (top-mid MY-88* SY-8 128.1 1126.9 115.48-126.90 A (top-mid MY-88* SY-8 128.1 1126.9 115.48-126.90 A (top-mid MY-88* SY-8 128.1 1126.9 115.48-126.90 A (top-mid MY-88* SY-1 26.4 26.4 16.17-28.48 A (top-mid MY-99* SY-1 26.4 25.4 16.17-28.48 A (top-mid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-mid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-mid MY-99* SY-1 45.5 44.8 33.77-44.88 A (top-mid MY-99* SY-1 48.8 148.8 138.55-148.8 A (top-mid MY-99* SY-8 148.8 148.8 138.55-148.8 A (top-mid MY-99* SY-8 148.8 148.8 138.55-148.8 A (top-mid MY-99* SY-8 148.8 148.8 138.55-148.88 A (base) MY-99* WY-1 75.76 75.76 65.43-75.76 A (mid) MY-100* FT-1 283.46 283.46 193.13-293.46 A (base) MY-100* FT-1 283.46 283.46 193.13-293.46 A (base) MY-100* FT-1 283.45 293.46 193.13-293.46 A (base) MY-100* FT-1 53.43 14.6 4.21-14.68 Qal MY-100* FT-1 53.43 14.6 4.21-14.68 Qal MY-100* FT-1 53.45 293.46 193.13-293.46 A (base) MY-100* FT-1 53.45 593.45 193.13-293.46 A (base) MY-100* FT-1 53.45 593.45 193.13-293.46 A (base	MY-65	BW-1	24.5	24.5		
MY-68* PS-8 18.8 17.8 7.86-17.88 Qsi MY-69* SY-8 45.6 45.8 35.68-45.86 A (top) MY-70* SY-8 27.7 27.7 17.78-27.78 A (top) MY-71 PS-7 21.8 28.5 18.58-28.58 A (top) MY-72 PS-7 32.6 32.8 22.88-32.88 A (top) MY-74* SY-8 185.66 184.86 17.5 7.56-17.58 A (top) MY-74* SY-8 185.66 184.86 173.18-184.66 B (top) MY-75* SY-8 87.5 87.5 76.88-87.55 A (top) MY-76* SY-8 96.8 95.8 83.58-95.85 A (top) MY-77* SY-8 96.8 95.8 83.58-95.85 A (top) MY-78* SY-8 181.3 99.8 87.58-99.88 A (top-aid MY-79* SY-8 386.6 385.5 374.88-385.50 Interbed B MY-80* SY-8 83.4 82.2 78.78-82.28 A (top-aid MY-81* SY-8 83.4 82.2 78.78-82.28 A (top-aid MY-82* SY-8 82.5 81.5 76.88-87.55 A (top) MY-83* SY-8 148.7 144.5 133.88-144.56 A (aid) MY-85* SY-8 128.1 1126.9 115.48-126.99 A (top-aid MY-86* SY-1 15.7 15.7 5.47-15.78 A (top) MY-88* SY-1 15.7 15.7 5.47-15.78 A (top) MY-88* SY-1 15.7 15.7 5.47-15.78 A (top) MY-90* SY-1 45.2 44.8 33.77-44.86 A (top-aid MY-91* IS-1 17.2 17.2 6.97-17.28 A (top) MY-92* IS-1 48.8 148.8 138.77-14.86 A (top-aid MY-95* SY-8 148.8 148.8 138.77-14.86 A (top-aid MY-96* SY-8 148.8 148.8 138.57-148.8 A (base) MY-96* SY-1 28.46 263.46 193.13-283.46 A (base) MY-96* SY-1 283.46 263.46 193.13-283.46 A (base) MY-98* FT-1 283.46 263.46 193.13-283.46 A (base) MY-98* FT-1 283.46 263.46 193.13-283.46 A (base) MY-99* WY-1 55.76 75.76 65.43-75.76 A (aid) MY-91* SY-8 148.88 148.88 138.55-148.88 A (base) MY-98* FT-1 283.46 263.46 193.13-283.46 A (base) MY-99* WY-1 55.76 75.76 65.43-75.76 A (aid) MY-101* SY-8 201.64 201.64 191.39-201.64 B (top) MY-101* SY-8 201.64 201.64 191.39-201.64 B (top) MY-101* SY-8 201.64 201.64 191.39-201.64 B (top) MY-108* FT-1 283.46 263.46 193.13-283.46 A (base) MY-108* FT-1 283.46 263.46 193.13-283.46 A (base) MY-108* FT-1 283.46 263.46 193.13-283.46 A (base) MY-108* FT-1 53.43 53.43 43.16-53.43 A (aid) MY-108* FT-1 53.43 53.43 43.16-53.43 A (aid) MY-109* FT-1 53.65 59 59 59.99-15.99 MY-108* FT-1 9.24 9.24 3.99-9.24 Qai MY-108* FT-1 9.24 9.24 3.99-9.24 Qai MY-108* FT-1 9.24 9.24 3.99-9.24 Qai MY-108* FT-1 9.24 9.24 3.99-9.	M-66+	PS-8	37.5	18.5		
NY - 69	MY-67+					
NY - 78						· ·
MY-71 PS-7 21.6 28.5 16.58-28.56 A (top) MY-72 PS-7 32.6 32.6 22.66-32.68 A (top) MY-73 PS-7 18.6 17.5 7.56-17.58 A (top) MY-74 SY-8 185.66 184.66 173.18-184.66 B (top) MY-75 SY-8 65.3 65.3 54.86-66.38 A (top) MY-76 SY-8 95.6 95.8 83.58-95.66 A (top) MY-77 SY-8 96.6 95.8 83.58-95.66 A (top) MY-78 SY-8 181.3 99.8 87.58-99.86 A (top-wid) MY-79 SY-8 386.6 385.5 374.66-385.56 Interbed B MY-80 SY-8 128.5 128.5 189.86-128.56 A (top) MY-81 SY-8 83.4 82.2 78.78-82.26 A (top-wid) MY-82 SY-8 82.5 81.5 78.86-81.56 A (top) MY-83 SY-8 148.7 144.5 133.68-144.56 A (wid) MY-84 SY-8 128.1 1126.9 115.48-126.99 A (top-wid) MY-86 SY-1 20.07 17.8 6.77-17.80 A (top) MY-88 SY-1 15.7 15.7 5.47-15.76 A (top) MY-89 SY-1 26.4 26.4 15.17-25.46 A (top-wid) MY-99 SY-1 45.2 44.6 33.77-44.86 A (top-wid) MY-91 IS-1 17.2 17.2 6.97-17.28 A (top) MY-93 IS-1 25.16 25.16 14.93-25.16 A (top) MY-94 SY-8 153.8 159.11 139.78-158.11 A (base) MY-98 SY-8 148.88 148.88 138.57-144.86 A (top-wid) MY-99 SY-8 148.88 148.88 138.57-144.86 A (base) MY-99 SY-8 148.88 148.88 133.67-144.86 A (base) MY-99 SY-8 148.88 148.88 133.67-144.86 A (base) MY-99 SY-1 53.43 53.43 43.18-53.43 A (wid) MY-100 FT-1 53.43 53.43 43.18-53.43 A (wid) MY-101 SY-8 261.64 261.64 191.39-281.64 B (top) MY-102 YY-1 16.64 16.64 6.39-15.64 MY-103 YY-1 16.13 14.6 4.21-14.66 Q al MY-104 SY-8 133.6 16.66 5.41-18.66 Q al MY-105 PS-2 17.72 17.72 7.47-17.72 Q al MY-107 PS-8 13.6 16.65 5.41-18.66 Q al MY-108 PS-2 16.27 16.27 6.27-16.27 Q al MY-108 PS-2 15.99 15.99 5.99-15.99 Q al MY-108 PS-2 16.27 16.27 6.27-16.27 Q al MY-108 PS-2 16.27 16.27 6.27-16.27 Q al MY-108 PS-2 16.27 16.27 6.27-16.27 Q al MY-110 PS-6 11.37 11.37 6.37-11.37		-				
MY-72 PS-7 32.8 32.8 22.88-32.88 A (top) MY-73 PS-7 18.8 17.5 7.58-17.58 A (top) MY-74-8 SY-8 185.66 184.66 173.18-184.66 B (top) MY-75-5 SY-8 66.3 66.3 54.88-66.38 A (top) MY-77-8 SY-8 66.3 66.3 54.88-66.38 A (top) MY-78-5 SY-8 96.8 95.8 83.58-95.86 A (aid) MY-78-5 SY-8 181.3 99.8 87.58-99.86 A (top-aid) MY-79-5 SY-8 386.8 385.5 374.88-385.58 Interbed B MY-88-5 SY-8 83.4 82.2 78.78-82.26 A (top-aid) MY-81-5 SY-8 83.4 82.2 78.78-82.26 A (top-aid) MY-81-5 SY-8 82.5 81.5 76.88-81.56 A (top) MY-83-5 SY-8 128.1 1125.9 115.48-126.99 A (top-aid) MY-86-5 SY-1 28.07 17.8 6.77-17.80 A (top-aid) MY-88-5 SY-1 28.07 17.8 6.77-17.80 A (top-aid) MY-88-5 SY-1 26.4 26.4 15.17-26.46 A (top-aid) MY-99-5 SY-1 45.2 44.8 33.77-44.88 A (top-aid) MY-99-5 SY-1 45.2 44.8 33.77-44.88 A (top-aid) MY-99-5 SY-8 143.8 158.11 139.78-158.11 A (base) MY-99-5 SY-8 143.8 158.11 139.78-158.11 A (base) MY-99-5 SY-8 148.88 148.88 138.55-148.88 A (base) MY-99-5 SY-8 148.88 148.88 138.55-148.88 A (base) MY-99-5 SY-8 148.88 148.88 138.55-148.88 A (base) MY-99-5 SY-8 148.88 148.88 138.55-148.88 A (base) MY-99-5 SY-8 148.88 148.88 138.55-148.88 A (base) MY-101-5 SY-8 291.64 261.64 191.39-281.64 Qal MY-102-5 SY-8 13.8 156.11 139.78-158.11 A (base) MY-104-5 SY-8 13.8 156.65 5.43-75.76 A (aid) MY-104-5 SY-8 13.8 156.65 5.43-75.76 A (aid) MY-104-6 SY-8 291.64 261.64 261.64 291.44-12.69 Qal MY-104-6 PS-2 12.69 12.69 2.44-12.69 Qal MY-104-6 PS-2 12.69 12.69 2.44-12.69 Qal MY-104-6 PS-2 12.69 12.69 2.44-12.69 Qal MY-104-6 PS-2 12.69 12.69 2.44-12.69 Qal MY-104-6 PS-2 12.69 12.69 2.44-12.69 Qal MY-104-6 PS-2 12.69 12.69 2.44-12.69 Qal MY-104-6						
NY-73 PS-7 18.8 17.5 7.58-17.58 A (top) NY-74 SY-8 87.5 87.5 75.88-87.58 A (top) NY-75 SY-8 87.5 87.5 75.88-87.58 A (top) NY-76 SY-8 66.3 66.3 54.88-65.38 A (top) NY-77 SY-8 96.8 95.8 83.58-95.86 A (aid) NY-79 SY-8 181.3 99.8 87.55-99.86 A (aid) NY-79 SY-8 386.6 385.5 374.88-38.56 Interbed NY-80 SY-8 128.5 128.5 189.88-128.56 Interbed NY-81 SY-8 83.4 82.2 78.78-82.28 A (top-sid NY-81 SY-8 83.4 82.2 78.78-82.28 A (top-sid NY-83 SY-8 148.7 144.5 133.88-144.56 A (top) NY-84 SY-8 128.1 1125.9 115.48-126.99 A (top-sid NY-85 SY-8 188.6 187.6 96.18-187.66 A (top) NY-86 SY-1 28.67 17.8 6.77-17.80 A (top) NY-87 SY-1 28.67 17.8 6.77-17.80 A (top) NY-88 SY-1 15.7 15.7 5.47-15.76 A (top) NY-89 SY-1 45.2 44.8 33.77-44.88 A (top-sid NY-99 SY-1 45.2 44.8 33.77-44.88 A (top-sid NY-99 SY-8 153.8 156.11 139.78-158.11 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-99 SY-8 149.3 147.8 136.97-147.88 A (base) NY-104 FT-1 283.46 283.46 193.33-283.46 A (base) NY-108 FT-1 53.43 53.43 43.18-53.43 A (sid) NY-109 SY-8 15.18 15.99 15.99 15.99 15.99 1						
NW-74* SW-8 185.66 184.66 173.18-184.66 B (top) NW-75* SW-8 87.5 87.5 75.88-87.56 A (top) NW-76* SW-8 66.3 65.3 54.88-65.36 A (top) NW-77* SW-8 96.8 95.8 83.56-95.86 A (aid) NW-78* SW-8 181.3 99.8 87.58-99.85 A (top-aid NW-79* SW-8 386.5 385.5 374.88-35.55 Interbed NW-88* SW-8 128.5 128.5 189.88-129.56 A (top) NW-81* SW-8 83.4 82.2 78.78-82.26 A (top) NW-83* SW-8 148.7 144.5 133.88-144.56 A (aid) NW-84* SW-8 128.1 1126.9 115.48-126.99 A (top-aid NW-85* SW-8 128.1 1126.9 115.48-126.99 A (top-aid NW-86* SW-1 20.87 17.8 6.77-17.80 A (top) NW-88* SW-1 20.87 17.8 6.77-17.80 A (top) NW-98* SW-1 26.4 26.4 18.17-26.46 A (top) NW-99* SW-1 45.2 44.8 33.77-44.86 A (top) NW-99* SW-1 45.2 44.8 33.77-44.86 A (top) NW-99* SW-1 45.2 44.8 33.77-44.86 A (top) NW-99* SW-8 153.8 155.11 139.78-158.11 A (base) NW-99* SW-8 148.88 148.88 138.55-148.88 A (base) NW-99* SW-8 148.88 148.88 138.55-148.88 A (base) NW-99* SW-1 26.4 261.64 193.13-263.46 A (base) NW-99* FT-1 233.46 263.46 193.13-263.46 A (base) NW-99* FT-1 233.46 263.46 193.13-263.46 A (base) NW-99* FT-1 233.46 263.46 193.13-263.46 A (base) NW-100* FT-1 53.43 53.43 43.16-53.43 A (aid) NW-104* FT-1 92.4 92.4 3.99-92.4 Qai NW-106* FT-1 53.43 53.43 43.16-53.43 A (aid) NW-106* FT-1 53.43 53.43 43.16-53.43 A (aid) NW-106* FT-1 53.43 53.43 43.16-53.43 A (aid) NW-106* FT-1 53.43 53.43 43.16-53.43 A (aid) NW-106* FT-1 53.43 53.43 43.16-53.43 A (aid) NW-106* FT-1 53.43 53.43 43.16-53.43 A (aid) NW-106* FT-1 53.43 53.43 53.543 53.16-53.43 A (aid) NW-106* FT-1 53.43 53.65 53.45 53.45 53.45 53.45 53.45 53.45 53.	-					
MW-75						• • •
NW - 76		-				7 2 11
NW - 77						
MY-78* SY-8 181.3 99.8 87.58-99.88 A (top-sid MY-79* SY-8 386.8 385.5 374.88-385.50 Interbed B MY-80* SY-8 128.5 128.5 128.5 169.88-128.58 A (top) MY-81* SY-8 83.4 82.2 78.78-82.28 A (top-sid MY-82* SY-8 82.5 81.5 78.88-81.50 A (top-sid MY-83* SY-8 128.1 1125.9 115.48-126.98 A (top-sid MY-85* SY-8 128.1 1125.9 115.48-126.98 A (top-sid MY-86* SY-1 MY-86* SY-1 20.87 17.8 6.77-17.88 A (top) MY-88* SY-1 15.7 15.7 5.47-15.76 A (top) MY-88* SY-1 15.7 15.7 5.47-15.76 A (top) MY-89* SY-1 45.2 44.8 33.77-44.88 A (top-sid MY-99* SY-1 45.2 44.8 33.77-44.88 A (top-sid MY-91* IS-1 17.2 17.2 6.97-17.28 A (top) MY-92* IS-1 40.8 48.8 29.78-48.88 A (top-sid MY-93* IS-1 25.16 25.16 14.93-25.16 A (top) MY-95* SY-8 149.3 147.8 136.97-147.88 A (top) MY-96* SY-8 149.3 147.8 136.97-147.88 A (base) MY-96* SY-8 145.54 144.8 133.67-144.88 A (base) MY-96* SY-8 145.54 144.8 133.67-144.88 A (base) MY-96* SY-8 145.54 144.8 133.67-144.88 A (base) MY-97* SY-8 148.88 148.88 138.55-148.88 A (base) MY-99* WY-1 75.76 75.76 65.43-75.76 A (sid) MY-101* SY-8 281.64 281.64 191.39-201.64 B (top) MY-102* WY-1 16.64 16.64 6.39-16.64 Qa! MY-103* WY-1 16.13 14.6 4.21-14.68 Qa! MY-104* FT-1 9.24 9.24 3.99-9.24 Qa! MY-105* PS-2 17.72 17.72 7.47-17.72 Qa! MY-106* PS-2 12.69 12.69 2.44-12.69 Qa! MY-106* PS-2 12.69 12.69 2.44-12.69 Qa! MY-106* PS-2 15.99 15.99 S.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 5.99-15.99 Qa! MY-106* PS-2 15.99 15.99 15.99 S.99-15.99 Qa! MY-106* PS-2 15.99 15.99 15.99 S.99-15.99 Qa! MY-106* PS-2 15.99 15.99 15.99 S.99-15.99 Qa! MY-106* PS-2 15.99 15.99 15.99						
MW-80* SW-8 128.5 128.5 169.88-128.58 Interbed B MW-80* SW-8 128.5 128.5 169.88-120.58 A (top) MW-81* SW-8 83.4 82.2 78.78-82.28 A (top-sid MW-83* SW-8 148.7 144.5 133.88-144.58 A (sid) MM-83* SW-8 148.7 144.5 133.88-144.58 A (sid) MM-85* SW-8 128.1 1125.9 115.48-126.99 A (top-sid MW-85* SW-8 108.6 107.6 96.18-187.68 A (top-sid MW-86* SW-1						
MW-80* SW-8 83.4 82.2 76.78-82.26 A (top) MW-81* SW-8 83.4 82.2 76.78-82.26 A (top-sid MW-82* SW-8 148.7 144.5 133.88-144.56 A (sid) MW-84* SW-8 128.1 1126.9 115.48-126.96 A (top-sid MW-85* SW-8 108.6 107.6 96.18-187.66 A (top-sid MW-86* SW-1						
MW-81	_					
MW-82* SW-8 82.5 81.5 78.88-81.59 Å (top) MW-83* SW-8 148.7 144.5 133.88-144.56 Å (mid) MW-84* SW-8 128.1 1126.9 115.48-126.90 Å (top-mid MW-85* SW-8 198.6 187.6 96.18-187.68 Å (top-mid MW-86* SW-1						
MW-83* SW-8 148.7 144.5 133.88-144.56 A (mid) MW-84* SW-8 128.1 1125.9 115.48-126.96 A (top-mid MW-85* SW-8 108.6 107.6 96.18-167.66 A (top-mid MW-86* SW-1						
MW-84* SW-8 128.1 1125.9 115.48-126.96 A (top-mid MW-85* SW-8 108.6 107.6 96.18-107.68 A (top-mid MW-86* SW-1						
MW-85* SW-8 108.6 107.6 96.10-107.60 A (top-mid MW-86* SW-1				-		A (top-mid)
MW-86* SW-1 MW-87* SW-1 MW-88* SW-1 SW-1 SW-1 SW-1 SW-1 SW-1 SW-1 SW-1						A (top-mid)
MW-88* SW-1 15.7 15.7 5.47-15.76 A (top) MW-89* SW-1 26.4 26.4 16.17-26.46 A (top) MW-90* SW-1 45.2 44.8 33.77-44.60 A (top) MW-91* IS-1 17.2 17.2 6.97-17.20 A (top) MW-92* IS-1 40.0 45.8 29.78-40.60 A (top-mid MW-93* IS-1 25.16 25.16 14.93-25.16 A (top) MW-94* SW-8 153.8 158.11 139.78-158.11 A (base) MW-95* SW-8 149.3 147.6 136.97-147.60 A (base) MW-96* SW-8 145.54 144.6 133.67-144.80 A (base) MW-97* SW-8 148.88 148.88 138.55-148.88 A (base) MW-98* FT-1 203.46 263.46 193.13-203.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-100* FT-1 53.43 53.43 43.16-53.43 A (mid) MW-101* SW-8 201.64 201.64 191.39-201.64 B (top) MW-102* WW-1 16.64 16.64 6.39-16.64 Qal MW-103* WW-1 16.13 14.6 4.21-14.60 Qal MW-104* FT-1 9.24 9.24 3.99-9.24 Qal MW-105* PS-2 17.72 17.72 7.47-17.72 Qal MW-106* PS-2 12.69 12.69 2.44-12.69 Qal MW-107* PS-8 13.6 16.65 5.41-16.66 Qal MW-108* PS-8 11.16 11.16 5.91-11.16 Qal MW-109* PS-2 15.99 15.99 5.99-15.99 Qal MW-110* PS-2 16.27 16.27 6.27-18.27 Qal	MW-86+	SW-1	-			••
MW-89* SW-1 26.4 26.4 15.17-26.48 A (top) MW-90* SW-1 45.2 44.8 33.77-44.88 A (top-mid MW-91* IS-1 17.2 17.2 6.97-17.28 A (top) MW-92* IS-1 48.8 48.8 29.78-48.88 A (top-mid MW-93* IS-1 25.16 25.16 14.93-25.16 A (top) MW-94* SW-8 153.8 158.11 139.78-158.11 A (base) MW-95* SW-8 153.8 158.11 139.78-158.11 A (base) MW-96* SW-8 149.3 147.8 136.97-147.88 A (base) MW-96* SW-8 148.88 148.88 138.55-148.88 A (base) MW-97* SW-8 148.88 148.88 138.55-148.88 A (base) MW-98* FT-1 283.46 263.46 193.13-263.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-100* FT-1 53.43 53.43 43.18-53.43 A (mid) MW-100* FT-1 53.43 53.43 43.18-53.43 A (mid) MW-101* SW-8 281.64 281.64 191.39-281.64 B (top) MW-102* WW-1 16.64 16.64 6.39-16.64 Qa! MW-103* WW-1 16.13 14.6 4.21-14.68 Qa! MW-104* FT-1 9.24 9.24 3.99-9.24 Qa! MW-105* PS-2 17.72 17.72 7.47-17.72 Qa! MW-106* PS-2 12.69 12.69 2.44-12.69 Qa! MW-107* PS-8 13.8 16.65 5.41-18.65 Qa! MW-108* PS-8 13.16 11.16 5.91-11.16 Qai MW-108* PS-8 11.16 11.16 5.91-11.16 Qai MW-109* PS-2 15.99 15.99 5.99-15.99 Qa! MW-110* PS-2 16.27 16.27 6.27-16.27 Qa! MW-110* PS-8 11.37 11.37 6.37-11.37 Qa!	MW-87*	SW-1	20.07	17.8	6.77-17.60	A (top)
MW-90* SW-1 45.2 44.8 33.77-44.88 A (top-mid MW-91* IS-1 17.2 17.2 6.97-17.28 A (top) MW-92* IS-1 40.0 46.8 29.78-40.88 A (top-mid MW-93* IS-1 25.16 25.16 14.93-25.16 A (top) MW-94* SW-8 153.8 155.11 139.78-158.11 A (base) MW-95* SW-8 149.3 147.8 136.97-147.88 A (base) MW-96* SW-8 145.54 144.8 133.67-144.80 A (base) MW-97* SW-8 148.88 148.88 138.55-148.88 A (base) MW-98* FT-1 283.46 263.46 193.13-263.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-101* SW-8 281.64 261.64 191.39-261.64 B (top) MW-102* WW-1 16.64 16.64 6.39-16.64 Qal MW-103* WW-1 16.13 14.6 4.21-14.66 Qal MW-103* WW-1 16.13 14.6 4.21-14.66 Qal MW-104* FT-1 9.24 9.24 3.99-9.24 Qal MW-105* PS-2 17.72 17.72 7.47-17.72 Qal MW-106* PS-2 12.69 12.69 2.44-12.69 Qal MW-107* PS-8 13.8 16.65 5.41-16.65 Qal MW-108* PS-8 11.16 11.16 5.91-11.16 Qal MW-109* PS-2 15.99 15.99 5.99-15.99 Qal MW-109* PS-2 16.27 16.27 6.27-16.27 Qal MW-110* PS-8 11.37 11.37 6.37-11.37	MW-88+	SW-1	15.7	15.7		A (top)
MW-91						
MW-92* IS-1 40.0 48.8 29.78-40.88 A (top-sid MW-93* IS-1 25.16 25.16 14.93-25.16 A (top) MW-94* SW-8 153.8 158.11 139.78-158.11 A (base) MW-95* SW-8 149.3 147.8 136.97-147.88 A (base) MW-96* SW-8 145.54 144.8 133.67-144.88 A (base) MW-97* SW-8 148.88 148.88 138.55-148.88 A (base) MW-98* FT-1 203.46 203.46 193.13-203.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (sid) MW-100* FT-1 53.43 53.43 43.18-53.43 A (sid) MW-101* SW-8 201.64 201.64 191.39-201.64 B (top) MW-102* WW-1 16.64 16.64 6.39-16.64 Qal MW-103* WW-1 16.13 14.6 4.21-14.60 Qal MW-103* WW-1 16.13 14.6 4.21-14.60 Qal MW-105* PS-2 17.72 17.72 7.47-17.72 Qal MW-106* PS-2 12.69 12.69 2.44-12.69 Qal MW-106* PS-2 12.69 12.69 2.44-12.69 Qal MW-108* PS-8 13.0 10.60 5.41-10.60 Qal MW-108* PS-8 13.0 10.60 5.41-10.60 Qal MW-108* PS-8 11.16 11.16 5.91-11.16 Qal MW-109* PS-2 15.99 15.99 5.99-15.99 Qal MW-110* PS-2 16.27 6.27-18.27 Qal MW-110* PS-8 11.37 11.37 6.37-11.37 Qal						
MW-93* IS-1 25.16 25.16 14.93-25.16 A (top) MW-94* SW-8 153.8 158.11 139.78-158.11 A (base) MW-95* SW-8 149.3 147.8 136.97-147.88 A (base) MW-96* SW-8 145.54 144.8 133.67-144.88 A (base) MW-97* SW-8 148.88 148.88 138.55-148.88 A (base) MW-98* FT-1 283.46 283.46 193.13-283.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-180* FT-1 53.43 53.43 43.18-53.43 A (mid) MW-181* SW-8 281.64 281.64 191.39-281.64 B (top) MW-182* WW-1 16.64 16.64 6.39-16.64 Qal MW-183* WW-1 16.13 14.6 4.21-14.68 Qal MW-184* FT-1 9.24 9.24 3.99-9.24 Qal MW-185* PS-2 17.72 17.72 7.47-17.72 Qal MW-186* PS-2 12.69 12.69 2.44-12.69 Qal MW-187* PS-8 13.6 18.66 5.41-18.66 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-118* PS-2 16.27 6.27-18.27 Qal						
MW-94* SW-8 153.8 158.11 139.78-158.11 A (base) MW-95* SW-8 149.3 147.8 136.97-147.88 A (base) MW-96* SW-8 145.54 144.8 133.67-144.88 A (base) MW-97* SW-8 148.88 148.88 138.55-148.88 A (base) MW-98* FT-1 283.46 263.46 193.13-263.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-180* FT-1 53.43 53.43 43.18-53.43 A (mid) MW-181* SW-8 281.64 281.64 191.39-201.64 B (top) MW-182* WW-1 16.13 14.6 4.21-14.68 Qa! MW-183* WW-1 16.13 14.6 4.21-14.68 Qa! MW-184* FT-1 9.24 9.24 3.99-9.24 Qa! MW-185* PS-2 17.72 17.72 7.47-17.72 Qa! MW-186* PS-2 12.69 12.69 2.44-12.69 Qa! MW-187* PS-8 13.6 16.66 5.41-18.66 Qa! MW-188* PS-8 11.16 11.16 5.91-11.18 Qai MW-189* PS-2 15.99 15.99 5.99-15.99 Qa! MW-118* PS-2 16.27 16.27 6.27-16.27 Qa! MW-118* PS-2 16.27 16.27 6.27-16.27 Qa!						
MW-95* SW-8 149.3 147.8 135.97-147.88 A (base) MW-96* SW-8 145.54 144.8 133.67-144.88 A (base) MW-97* SW-8 148.88 148.88 138.55-148.88 A (base) MW-98* FT-1 283.46 283.46 193.13-283.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-100* FT-1 53.43 53.43 43.16-53.43 A (mid) MW-101* SW-8 281.64 281.64 191.39-281.64 B (top) MW-182* WW-1 16.64 16.64 6.39-16.64 Qal MW-183* WW-1 16.13 14.6 4.21-14.68 Qal MW-184* FT-1 9.24 9.24 3.99-9.24 Qal MW-185* PS-2 17.72 17.72 7.47-17.72 Qal MW-186* PS-2 12.69 12.69 2.44-12.69 Qal MW-187* PS-8 13.6 16.66 5.41-16.65 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-180* PS-2 16.27 16.27 6.27-16.27 Qal MW-118* PS-2 16.27 16.27 6.27-16.27 Qal		-				
MW-96* SW-8 145.54 144.8 133.67-144.88 A (base) MW-97* SW-8 148.88 148.88 133.55-148.88 A (base) MW-98* FT-1 203.46 203.46 193.13-203.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-100* FT-1 53.43 53.43 43.16-53.43 A (mid) MW-101* SW-8 201.64 201.64 191.39-201.64 B (top) MW-102* WW-1 16.64 16.64 6.39-16.64 Qal MW-103* WW-1 16.13 14.6 4.21-14.68 Qal MW-104* FT-1 9.24 9.24 3.99-9.24 Qal MW-105* PS-2 17.72 17.72 7.47-17.72 Qal MW-106* PS-2 12.69 12.69 2.44-12.69 Qal MW-107* PS-8 13.6 16.66 5.41-16.65 Qal MW-108* PS-8 13.16 11.16 5.91-11.16 Qal MW-109* PS-2 15.99 15.99 5.99-15.99 Qal MW-110* PS-2 16.27 16.27 6.27-16.27 Qal MW-110* PS-8 11.37 11.37 6.37-11.37			-			
MW-97* SW-8 148.88 148.88 138.55-148.88 A (base) MW-98* FT-1 283.46 263.46 193.13-263.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-180* FT-1 53.43 53.43 43.16-53.43 A (mid) MW-181* SW-8 281.64 281.64 191.39-281.64 B (top) MW-182* WW-1 16.64 16.64 6.39-16.64 Qal MW-183* WW-1 16.13 14.6 4.21-14.68 Qal MW-184* FT-1 9.24 9.24 3.99-9.24 Qal MW-185* PS-2 17.72 17.72 7.47-17.72 Qal MW-186* PS-2 12.69 12.69 2.44-12.69 Qal MW-187* PS-8 13.6 16.65 5.41-18.66 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-118* PS-2 16.27 16.27 6.27-16.27 Qal MW-111* PS-8 11.37 11.37 6.37-11.37			-			7.
MW-98* FT-1 283.46 283.46 193.13-283.46 A (base) MW-99* WW-1 75.76 75.76 65.43-75.76 A (mid) MW-188* FT-1 53.43 53.43 43.18-53.43 A (mid) MW-181* SW-8 281.64 281.64 191.39-281.64 B (top) MW-182* WW-1 16.64 16.64 6.39-16.64 Qa! MW-183* WW-1 16.13 14.6 4.21-14.68 Qa! MW-184* FT-1 9.24 9.24 3.99-9.24 Qa! MW-185* PS-2 17.72 17.72 7.47-17.72 Qa! MW-186* PS-2 12.69 12.69 2.44-12.69 Qa! MW-187* PS-8 13.8 18.68 5.41-18.66 Qa! MW-188* PS-8 11.16 11.16 5.91-11.16 Qa! MW-189* PS-2 15.99 15.99 5.99-15.99 Qa! MW-189* PS-2 16.27 16.27 6.27-18.27 Qa! MW-111* PS-8 11.37 11.37 6.37-11.37						7. 7
MY-99* WY-1 75.76 75.76 65.43-75.76 A (mid) MY-180* FT-1 53.43 53.43 43.16-53.43 A (mid) MY-181* SY*8 281.64 281.64 191.39-201.64 B (top) MY-182* WY-1 16.64 16.64 6.39-16.64 Qal MY-183* WY-1 16.13 14.6 4.21-14.68 Qal MY-184* FT-1 9.24 9.24 3.99-9.24 Qal MY-185* PS-2 17.72 17.72 7.47-17.72 Qal MY-186* PS-2 12.69 12.69 2.44-12.69 Qal MY-187* PS-8 13.6 18.68 5.41-18.66 Qal MY-188* PS-8 11.16 11.16 5.91-11.16 Qal MY-189* PS-2 15.99 15.99 5.99-15.99 Qal MY-118* PS-2 16.27 6.27-18.27 Qal						
MW-100* FT-1 53.43 53.43 43.18-53.43 A (aid) MW-101* SW-8 201.64 201.64 191.39-201.64 B (top) MW-102* WW-1 16.64 16.64 6.39-16.64 Qa! MW-103* WW-1 16.13 14.6 4.21-14.60 Qa! MW-104* FT-1 9.24 9.24 3.99-9.24 Qa! MW-105* PS-2 17.72 17.72 7.47-17.72 Qa! MW-106* PS-2 12.69 12.69 2.44-12.69 Qa! MW-107* PS-8 13.6 16.66 5.41-16.65 Qa! MW-108* PS-8 11.16 11.16 5.91-11.16 Qai MW-109* PS-2 15.99 15.99 5.99-15.99 Qa! MW-109* PS-2 16.27 16.27 6.27-16.27 Qa! MW-110* PS-8 11.37 11.37 6.37-11.37 Qa!		-				
MW-101* SW-8 201.64 201.64 191.39-201.64 B (top) MW-102* WW-1 16.64 16.64 6.39-16.64 Qal MW-103* WW-1 16.13 14.6 4.21-14.60 Qal MW-104* FT-1 9.24 9.24 3.99-9.24 Qal MW-105* PS-2 17.72 17.72 7.47-17.72 Qal MW-106* PS-2 12.69 12.69 2.44-12.69 Qal MW-107* PS-8 13.6 16.66 5.41-16.65 Qal MW-108* PS-8 11.16 11.16 5.91-11.16 Qal MW-109* PS-2 15.99 15.99 5.99-15.99 Qal MW-109* PS-2 16.27 16.27 6.27-16.27 Qal MW-110* PS-8 11.37 11.37 6.37-11.37 Qal		_				
MW-182* WW-1 15.64 16.64 6.39-16.64 Qal MW-183* WW-1 16.13 14.6 4.21-14.68 Qal MW-184* FT-1 9.24 9.24 3.99-9.24 Qal MW-185* PS-2 17.72 17.72 7.47-17.72 Qal MW-186* PS-2 12.69 12.69 2.44-12.69 Qal MW-187* PS-8 13.6 16.66 5.41-16.65 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-118* PS-2 16.27 16.27 6.27-16.27 Qal MW-118* PS-8 11.37 11.37 6.37-11.37 Qal						
MW-183* WW-1 16.13 14.6 4.21-14.68 Qal MW-184* FT-1 9.24 9.24 3.99-9.24 Qal MW-195* PS-2 17.72 17.72 7.47-17.72 Qal MW-186* PS-2 12.69 12.69 2.44-12.69 Qal MW-187* PS-8 13.6 16.66 5.41-18.66 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-118* PS-2 16.27 16.27 6.27-15.27 Qal MW-118* PS-2 16.27 16.27 6.37-11.37 Qal						
MW-184* FT-1 9.24 9.24 3.99-9.24 Qal MW-185* PS-2 17.72 17.72 7.47-17.72 Qal MW-186* PS-2 12.69 12.69 2.44-12.69 Qal MW-187* PS-8 13.6 16.66 5.41-18.66 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-118* PS-2 16.27 16.27 6.27-18.27 Qal MW-111* PS-8 11.37 11.37 6.37-11.37 Qal		_				
MW-185* PS-2 17.72 17.72 7.47-17.72 Qal MW-186* PS-2 12.69 12.69 2.44-12.69 Qal MW-187* PS-8 13.6 16.65 5.41-16.66 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-118* PS-2 16.27 6.27-16.27 Qal MW-111* PS-8 11.37 11.37 6.37-11.37 Qal		_				
MW-186* PS-2 12.69 12.69 2.44-12.69 Qal MW-187* PS-8 13.6 16.66 5.41-16.66 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-118* PS-2 16.27 16.27 6.27-16.27 Qal MW-111* PS-8 11.37 11.37 6.37-11.37 Qal						
MW-187* PS-8 13.6 16.66 5.41-16.66 Qal MW-188* PS-8 11.16 11.16 5.91-11.16 Qal MW-189* PS-2 15.99 15.99 5.99-15.99 Qal MW-110* PS-2 16.27 16.27 6.27-16.27 Qal MW-111* PS-8 11.37 11.37 6.37-11.37 Qal						
MW-188* PS-8 11.16 11.16 5.91-11.16 Qai MW-189* PS-2 15.99 15.99 5.99-15.99 Qai MW-118* PS-2 16.27 16.27 6.27-16.27 Qai MW-111* PS-8 11.37 11.37 6.37-11.37 Qai						
MW-189• PS-2 15.99 15.99 5.99-15.99 Qal MW-118• PS-2 16.27 16.27 6.27-16.27 Qal MW-111• PS-8 11.37 11.37 6.37-11.37 Qal						
MW-118+ PS-2 16.27 16.27 6.27-16.27 Qal MW-111+ PS-8 11.37 11.37 6.37-11.37 Qal						
WW-111* PS-8 11.37 11.37 6.37-11.37 Qal		-				•
MW-112: P3-8 15.5 15.6 5.58-15.58 12:	MW-112*	PS-8	15.5	15.8	5.58-15.58	Qal
MY-113+ PS-8 10.94 18.94 5.98-18.94 Qal					5.98-18.94	

a) • indicates Priority 1 site monitoring well.
 b) BCL = Below Ground Level.
 c) See Figure XX for X-section of hydrogeologic units.

⁽¹⁾ Source: SAIC RI/FS Study, FAFB, 1990.

Appendix G-2
Table 2
Monitoring Well Screen Intervals and
Corresponding Hydrogeologic Units
Fairchild AFB, Washington

Well	Site	Total	Screened	Hydrogeologic
Number		Depth (1)	Interval (1)	Unit (2)
MW-120	WW-1	27	16-27	OVB
MW-121	FT-1	22	6-16.3	OVB
MW-122	WW-1	70	54.3-66.3	SBR
MW-123	FT-1	17	7-17	OVB
MW-124	WW-1	55.7	44.7-55.7	SBR
MW-125	WW-1	16	4.5-14.5	OVB
MW-128	SW-1	23	12-22	SBR
MW-129	SW-1 ·	20	10-20	SBR
MW-130	SW-1	23.6	13.6-23.6	SBR
MW-131	SW-1	20	10-20	SBR
MW-132	SW-1	21.8	11.8-21.8	SBR
MW-133	IS-1	25.3	14.5-24.5	SBR
MW-134	SW-1	25.4	15-25	SBR
MW-119	FT-1	204	191-201.75	DBR

MW-118
Note: MW-114 to MW-126, MW-127, MW135 to MW-141 located at SW-8
and are not included on this table.

- (1) Measured in ft bgs.
- (2) OVB indicates well screened in overburden. SBR indicates well screened in shallow bedrock (<100 ft bgs) DBR indicates well screened in deep bedrock (>100 ft bgs)

APPENDIX Q:

SURVEY DATA

NOTE: Brass cap elevations represent ground surface Top of steel casing elevations on flush mounts represent ground surface

DATE DEC I MAG

Civil Engineers / Land Surveyors / Land Planners / Landscape Architects

LAUVU LIU UULU

DANIEL B. CLARK, P.L.S. LESLIE D. KILLINGSWORTH, P.E. STUART A. DEYSENROTH, A.S.L.A.

			TOP OF	-	
			STEEL		
SCHE HOLE			PROTECTIVE		
OR			CASING	JANO: TICOA	
MONITOR WELL			ELEVATION	ELEVATION	DESCRIPTION
NUMBER	COORDIN		FEEVALION		
	NORTHING	DHITZAS			
21.0 A.1.2	350 717	2.790.575	2,406.29		
521-6H1	250.717	2.791.282	2.387.32		
841-6HZ	236.392	2.776.214	2,442.69		
8w1-6H3	235.314	2.762.125	2,440.68		
841-5H4	239.369	2.780.564	2.454.53		
9W1-5H5 5W1-5H6	240,501 239,934	2,750,153	2.451.73		
259-3H1	243,461	2.783.908	2.430.77		
PS2-3H1	241,521	2,762,314	2,441.17		
PS2-8H2	241.774	2.782.414	2.440.54		
757-8H1	236.737	2.785.717	2.432.27		
P57-8H2	236.728	2,785,605	2,431.61		
154-8H1	242.168	2.789.279	2,410.43		
248-8H1 -	248,209	2,793,600	2,397.07		
#w->6	235.330	2.776.215	2,445.05	2442.7	Ground
mw-37	242,282	7.769.266	2,413.86	2411.0	Ground
HW-38	241.844	2,786,222	2,417.53	2415.8	Ground
MW-39	250.725	2.790.570	2.402.90	2406.7	Ground
1:W-40	244.519	2.782.102	2,433.90	2438.44	Top PVC
HW-41	244,573	2.763.056	2.438.46	2438.25	Top FVC
mu-42	244.574	2.762.206	2.438.57	2438.10	Top PVC
HW-43	243,458	2.764.051	2,431.01	2430.46	Top PVS
MW-44	243.588	2.784.036	2,430.83	2430.43	Top PVC
KW-45	243.492	2.784.124	2,430.54	243C.77	Top PVC
MW-46	244.561	2.782.056	2,438.63	2438.28	Tap PVC
MW-47	247.538	2.781,206	2,445.47	2444.37	Grawna
MH-48	242.892	2,791,093	2.405.73	2405.6	Grauna
	241.442	2.791.144	2,400.55	2398.6	Ground
- NY-50-	245.958	2.791.166	2,400.22	2398.0	Ground
	240.512	2.790.663	2,400.77	2357.8	Ground
52	2-1.5-2	2,759.608	2,409.31	2406.4	Graund
	242.006	2.790.023	2,409.75	2405.4	Ground
nw-54 V	242.841	2,790.180	2,409.95	2409.77	Top PVC
:4W-55 =	241.656	2.762.583	2.459.74	2439.55	Top PVS
HW-56 ◆	241.622	2.782.093	2.442.54	2442.15	Top FVC
::4-57	231.235	- 2.758.235	2.362.37	2355.3	Ground Top PVS
mw-5 8	245.E50	2.791.500	2,416.88	2416.69	
- 259 ーレ	241.458	2.791.143	2,401.20	2398.9	Ground
44-60 V	242.911	2.791.092	2,408.24	2405.5	Ground
ーッルーニュ レー	242.025	2.790.023	2,405.63	2-06.6	Ground
Mw-52	247.546	2.751.217	2,446.47	2444.47	Craund
ru-63	248.519	2.755.198	2,401.04	2355.9	Ground
17-54	245.020	2.779.713	2,456.89	2454.4	Graund Graund
M2-65	244.933	2.793.313	2,442.05	2439.25	Top PVC
mw-56 D	243.219	2.785.925	2.425.62	2423.46	Top PVC
MW-67	243,515	2.785.862	2,428.62	2428.51	Ground
HY-43 □	243.302	2,786.014	2,428.77	2478.47	Ground
MW-69	246.378	2.796.267	2,367.29	2365.8 2356.9	Ground
HH-76	248.211	2.793.598	2,400.03	2430.82	Top PVC
#W-71	236.744	2,785.596	2,431,39 2,432,30	2430.62	Top FVC
K4-72 +∵-73	236.744	2.785.713 2.785.602	2.451.25	2430.72	Top PVC
m=-73	135.663	2,743,302	4.731.45	, - , - , -	

36-73

CHITORING WELL LOCATIONS - FAIRCHILD A.F.B. SPOKANE WASHINGTON

VELL #	HORTHINGS	EASTINGS	TOP OF CASING ELEV	TOP OF PVC ELEV	BRASS CAP ELEV	. REMARKS
L. EZZZZEZZZE]						CASING ELEV & NORTH TOP 10" SQUARE PLATE:
75 l	247757.22 I	2796230.44	2391.53		2389.15	######################################

						14 生工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工
						H 222373000000000000000000000000000000000
						H 1
						H I
						# ####################################
53 t	247945.57	2797103.72	2393.88		2392.52	N 2267284442822000000000000000000000000000000
						# # # # # # # # # # # # # # # # # # #
		. 4742878 77 1	7/8/47 1		/4U/.13 1	HERETERS AND THE CONTRACT OF T
0.77		. ************************************	, 3/67 70 I	•	7652.26	CASING ELEV & OPEN LID OPPOSITE HINGE
	444777 40		7/// 45 1		7462.54	
		. 2777777 00 10 1	: 9/74 67 1		7449.18	
	3/6/37 47	. 1770047 /0 1	1 7/70 55 1		7468.44	8 1
	7/4664 /4	· 9704778 47 1	7 7//3 NO 1	· ·	(CASING ELEV & NORTH TOP LID
	3/4406 /6	. 3704 77 8 74 '	. 7//7 00 1	 		
~~ .	7/174/ 07	1 7781544 74	t 9 447 71 '	1	1 2445.70	CASING ELEV 2 OPEN LID OPPOSITE HINGE
	3///00 03	. 370/050 07	7 2750 /4	7	1 2397.23	
C E	-/0/50 E7	1 3705747 74	* 7308 A1	•	1 2396./2	
G.4	9/7707 10	1 2705340 00	1 2322 01	1	7 2389.86	
e7	1 2/5797 /3	1 2705570 SR	1 2407 65	ī	1 2405.61	
~~ ~~		• 9704460 00	1 2/00 14	7	1 2398.07	
~ /			1 7/24 05	[<u> ==========</u>	1 2404,72	
100 —	: 240939.42	1 2791166.23	1 2400.36	 	 	CASING ELEV & NCRIN (CP LID .
101	1 248703.10	2797023.05	1 2401.57	1 2401.55	: 2399.59	CASING FUEL & OPEN TID OPPOSITE NINGE :
102	1 242591.67	1 2790844.42	1 2407.35	 	[~********	CASING ELEV & NORTH TOP LID
103	1 242635.56	1 2790897.59	: 2407.17] 	 1255 256 225 225	i
104 -	1 240259.31	: 2789947.09	! 2492.37 :[==========	1 2402.38	1 Z40C.Z8	I CASING ELEV & OPEN LID OPPOSITE HINGE :
105 .	1 241685.21	1 2753178.18	: 2435.37	 	t	1 CASING ELEV D NORTH TOP LID . :
136	1 3/1077 07	1 3793070 71	1 2175 71	1	7	
107	: 243323.29 :!=========	1 2785591.61	! 2428.60	[:]==============	[[
O 108	: 243431.23 ::=========	: 2785544.90 -:	1 2427.63 =1=========		[:] ====================================	

ORING. WELL LOCATIONS - FAIRCHILD A.F.B. SPOKANE WASHINGTON

*	- PORTHINGS	EASTINGS	TOP OF CASING ELEV	TOP OF PVC ELEV	BRASS CAP ELEV	REMARKS
109	1 241565 30	7 2782374 07	2440.86	i	I	
110	1 241375.51	2782464.69	2440.83	l	1 -	
- 111 A	243590.27	2785657.51	7427.44	1	1	
112 🖙	1 243493.30 1	2786234.65	2427, 10	Ī	I '	
113 🕰	1 243768.47 1	2785969.80	2427.38	1	1	######################################
114	1 245884.75 1	2796238.45	2386.71	2386.73	1 2385.16	CASING ELEV 2 CPEN LID OPPOSITE HINGE 1
115	248966.78	2798824.94	2395.08	2395.04	1 2392.81	
116	248992.09 1	2798521.85	2396.16	2376.06	1 2393.95	
T 117	1 246124.21 1	2798345.48	2370.91	2370.94	1 2368.80	
118	247313.45	2798295.91	2380.21	2380,15	1	
■ 119 <i>→</i> 1	240332.63	2793355.43	2388.70	2388.80	I	"
120	242346.47 1	2791865.32	2399.14	2399.16	1~ 2347	ASSUME C STOTED !!
121 -	239257.81	2791994.52	2388.34	2388.45	1 .	
122 /	242361.21 1	2791865.94	2399.28	2399.25	1~2397	Assume Z' Stick ap
123 -	239854.85	2791969.26	2394.13	2394.24	İ	1
124 /	240962.41 1	2791916.32 1	2397.77	2397.89	t :	***************************************
ا 🖊 د	240979.68 I	2791914.18 I	2397.71	2397.78	1 ~ 2315.74	ASSERTE TOUR
126	249798.27 1	2798754.65	2402.31	2402.33	Į į	() [[] [] [] [] [] [] [] [] [] [
127	246544.88 1	2800343.09	2370.96	2370.94	1 2368.86	######################################
■128 + 1	240655.70 1	2779642.92	2471.25	2471.23	!	CASING ELEV D OPEN LID OPPOSITE HINGE I
-: 29 →	240121.59 1	2779344.39	2470.36	2470.37		" ;
■ 130 ÷ 1	239821.25	2779676.38	2460.40	2459.96	1	
131 1	240362.33 1	2780296.10	2462.32	2462.29		
132	240620.56	2779985.88	2470.99	2471.03	•	11 11 12 12 12 12 12 12 12 12 12 12 12 1
133 - 1	241643.09 :	2781081.71	2438.79	2438.69	:	u
134	240958.87 1	2780614.09	2462.23	2462.24	i :	
135	247956.41 1	2797102.52 1	2394.48	2394.43	1	
136	245861.71	2796090.23	2385.43	2385.31	1 2383.43	BRASS DISC MARKED SUB MW74 1
137	248747.02	2798659.28	* 2395.16		# 2372.57	1 *AT PLUG AT TGP #P.K. AT N SIDE CONC PAD 1
*38	244687.38 1	2800602.36	2371.52	2371.40	1 2369.31	RRASS DISC MARKED 541 MU86 [
139	247563.59	2800297.63	237C.10	2369.94	1 2368,00	•
140	246743.06	2795554,44	2390.03	2389.81	i	CASING ELEV & OPEN LID CPPOSITE HINGE :
141	: 250882.23	2797493.15	2403.11	. 2402.94	1 2455.54	CTUM BUZ CENTAM DZIG ZZARB
	•				•	

MONITORING WELL LOCATIONS - FAIRCHILD A.F.B. SPOKANE WASHINGTON

WELL #	MORTHINGS	EASTINGS	TOP OF CASING ELEV	BM ELEV	THE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU
RU-7	1 246098.46	2796594.38	2384.57	1 2380.5	GROUND INSIDE 4" DIA C.R.P.
2U-9	1 248893.53	2796402.53	1 2398.15	1 2404.35	NORTH CENTER 4/X4' OPENING IN CONC APPROX 6" ABOVE SLAB!
#U-10	1 749115 56	7796359.03	1 2398.68	1 2404.86	TOP MORTH CENTER OF CONC SLAS & WELL OPENING !
Dt / 11	1 240127 00 1	7705000 77	1 7404 56	1 2404.57	TOP WORTH CENTER 12" SQUARE CONC RISER I
 BU- 47	1 247110 01 1	RD RAADORC T	1 + 2371 39	1 # 2368.72	*ELEV AT PLUG #ELEV AT + AT NORTH SIDE CONC PAD I
STATION	HZO ELEV	B.M. ELEV	************************************	,	
S POND	1 2375.36	2376.91		.E. CORNER 4/	2X 5' ROCK AT WEST SIDE POND SPRAYED CRANGE ELEV 8-14-911
W POND	2379.58	2380.70	TOP Z" PIPE AT	EAST SIDE PO	NO NEAR INLET ELEV8-14-91

odo

15

HOLE LOCATIONS - FAIRCHILD A.F.B. SPOKANE WASHINGTON

Thousand the second	4+ Craig	Read Land	f. 11	TOP Of
JRE HOLE #	NORTHINGS	EASTINGS	GROUND ELEV	PVC ELEV
SW8-8H17	1 246525.0 1	5/42111.5		
18	1 246303.0 1	5142437.9	٠٠٠٠ حــــــ	
19	1 247366.5 1	(4/63410.0	2270.2	
20	1 246812.3	2/93363.7	2,73.4	
21	1 240/31-7	2/73240.0		
	1 248230.3	2/733/3.0		
	1 248215.3	[2/93319.0		1 =======1 4===1 4=====================
24	1 24/929.5	2/93/90.1		
25	1 248381.7	2/93340.0		[
· 25	1 248501.4	[2/93043.1		
27	1 248424.0	1 2/900/3.0		
2.5	1 248257.5	1 2/7007/.2	;	
29	1 24/968.0	2/70/14.0	1	
30	248155.5	1 5/43/41.1		
- 31	1 2481CZ./	[2/93/49.3	2370.0 =========	_====================================
32	1 246829.0	[2/93094.0		-1
33	1 246847.2	1 2/95032.0	1	
_ 34	1 247339.5	[2/933/3.0		0 25=22222422 252=2522222=22222222222222222222222
35	1 24/150.9	1 2/93041.0		
36	1 247178.8	[;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	# [##################################
37	1 248448.1		:[=====================================	= 25 25 = 42 25 = = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
34	1 248308.7	2795695.3	1 2394.7	: 2395.5 = ==================================

sws BH179

Thouse

· Mulap a-to. MONITORING WELL LOCATIONS - FAIRCHILD A.F.B. SPOKANE WASHINGTON - Q-barant A- MONITORING WELL LOCATIONS - FAIRCHILD A.F.B. SPOKANE WASHINGTON A TOPON

		•					A 100 111
,				TOP OF	TOP OF	BRASS CAP	REMARKS
	WELL #	NORTHINGS	EASTINGS	PVC ELEV	CASING ELEV	ELEV	
, (,	—		• 7/50 4/.	1 7450 FL	1_ 243/.37	ITOP OF CASING ELEVATIONS ARE ON HORTH SIDE:
/		. 0/7/0/ 07	• 2701070 52	1 7412 20	ı 2412.33 l	2410.34	I OPEN ON ALL OTHER WELLS : If ALL P.V.C. ELEVATIONS ARE ON TOP OF PIPE :
$\left(\right)$	143	1 243288.24	1 2790994.79	1 2411.02	[2411.10 .	2409.02	I PACING POINT WHERE CASING ELEVATIONS ARE :
	7 144	1 242394.98	1 2791094.48	2405.43	2405.50	2403.35 .	
<i>)</i> N	145	I 242212.32	I 2791097.03	2405.68	2405.88	2402.96	[
	=======	=======================================	. 27047/0.01	2/03/2/	r 2403.27	2400.97	[
į,	1		. 2701507 10	1 2405 98	r 7406.14	[2403.85	[======================================
۱			. 3700//4 70	1 2/04/48	1 2406.97	1 2404.31	[======================================
1	1	. 3/45// 83	. 27004// 17	r 2404.77	1 7406.57	2404.44	1
_		. 2/4570 70	. 2700488 A/	1 2404 54	! 7406.78	2404.51	[:
1		. 2/1407 50	. 3700007 73	* 2400 17 ·	: 2400.45	2398.20	
_		. 2/4477 21	1 220720 02	1 2401 66	t 2402.23	2399.53	
١.		. 2/2020 :4	* 3700049 00	1 7/01 87	1 2402.21	1 2399.63	t :
	1	. 3/3000 //	· 2720801 A7	: 2401 TA	1 2401.52	1 2399.16	[
	~ 1			1 7/01 86	1 2402.37	יד. 2399 ו	[
,	<u> </u>	. 7/1107 71	1 2790444 31	: 2405.13	! 2405.35	1 2402.83	
		. 710444 77	· 2720AAG 33	* 2401.44	1 2401.71	[2398.88	t :
; L	150	1 710471 71	. 2700494 44	: 7400.50	! 2461.02	1 2398.73	t :
	10-	: 7/0400 47	: 7700484 39	: 2400.85	1 2401.32	1 2398.89	
L	=======	=== ==================================	: 2706452 37	: 2401.55	{ ========= { 2401.57	! ========= ! 2399.21	[=====================================
		===;==================================	;=====================================	1 2400.74	!======== 1 2400.84	1=== ====== 1	[=====================================
Ī	========	[: ====================================	[=====================================	i 2401.49	! 2399.08	[====================================
⊕	=======	=== ===================================	; ====================================	(=====================================	[=====================================	[=====================================	:
	上 163 ====================================	=== ===================================	!=========	[======================================	[=====================================	========	:[====================================
1	=======	. 7: 241060.58	[======================================	:============	! 2451.33	[========	
1		# ! 240725.17	:======================================	:======================================	;=========	: =========	I FLUSH MOUNT
(========	∳ {: 239961.82 ===!=========			: 2446.69 ====================================	=========	
	157	• : 240519.31 -	1 2780007.14	: 2471.07			
ļ	SW-1	P52	:			ZON'	Zabase Zawit ont
	1.WZ.	PS2 PS2 250			7	こいよ: し こ. <i></i>	Don't
ı	ととこ	25 0			ت	مران الما	

oyertime 2K48.0403

MONITORING WELL LOCATIONS - FAIRCHILD A.F.B. SPOKANE WASHINGTON

	₩ELL		HORTHINGS	EASTINGS	TOP OF PVC ELEV	TOP OF CASING ELEV	BRASS CAP ELEV	REMARKS
2	168		1 240345.22	1 2780277.28	1 2462.50	1 2463.25	1 2460.53	ITOP OF CASING ELEVATIONS ARE ON HORTH SIDE
}	169		1 240639.32	1 2780583.34	1 2459.67	1 2459.89	1 2457.84	FIOF FLUSH WELLS, OR OPPOSITE HINGE WITH LID I OPEN ON ALL OTHER WELLS
•	170	_	1 240618.32	1 2780587.70	I 2459.43	1 2459.79	1 2457.53	I ALL P.V.C. ELEVATIONS ARE ON TOP OF PIPE I FACING POINT WHERE CASING ELEVATIONS ARE
(171		1 240625.29	1 2780641.23	1 2457.76	1 2457.77	1 2455.80	[
== }	172		1 240621.01	I 2780713.04	1 2454.71	1 2455.27	1 2452.90	I AND 172 & 173 ARE IN SAME CASING WELLS NOT
250	173	۵	1 240621.01	1 2780713.04	I 2454.81	1 2455.27	1 2452.90	IMARKED AT TIME OF SURVEY AND PVC ELEVATION IMAY NOT FIT WELL
]	174	•	1 240690.25	1 2780585,32	1 2461.46	1 2461.68	1 2459.16	I My 174 & 175 ARE IN SAME CASING
==	175		1 240690.25	1 2780585.32	1 2461.46	1 2461.68	1 2459.16	[=====================================
-== -	176		1 241736.03	1 2782795.27	1 2439.09	1 2439.28	I NA	I FLUSH MOUNTS
	177	~	1 241340.47	1 2782232.73	t 2440.70	1 2440.89	I AA I	[
25				t 2782233.45		!======= ! 2440.88		1 ====================================
==	179		•	l ====================================	•	[======== [2440.77		(=====================================
•	- 180			[======== [======== 2439.47		-
_	_			[=====================================		[=====================================		[
==				[=====================================		(=====================================		[
==		•		[=====================================		[=====================================		[=====================================
SB	:::::::			(=====================================		======== 2427.47		====================================
7				:				22222222 2222222222222222222222222222
===	186			: 2785594.66 I		======================================		[=====================================
===		====;			=======================================		======================================	
		===;	============			=======================================		======== . -====== .
===	180	:	==============		========!		=======================================	 ===================================
- 1		===!	=======================================		==================		=======================================	n==============================
-	-							· · · · · · · · · · · · · · · · · · ·
===		i ===:	: }==========:	! !===================================	! !==========!	;]====================================	====================================	
===	=====	! !===:	; ====================================		_	! ====================================	;]====================================	;]
		:	I	I	:	i	ı	1

-5UR	UCY DATA	
<u>北</u> #	TPUC 3L	TOC 24.
01	2401.55	2401-57
.04	2402.38	2462.37
128	2471 - 23	2471-25
29	2470.37	2470.36
30 _. .	2459.76	246C·40
3/	. 2462.29	2462.32
32	2471.03	2476.99
33	2438.69	2438.79
34	2462.24	2462.23

· - -- -- --

.

-- ...
