Probability and Measure

1 Boolean Algebras and Finitely Additive Measures

- Boolean algebra ${\mathcal B}$
 - $\bullet \ \varnothing \in \mathcal{B}$
 - stable under finite union
 - stable under complementation

Example.

- (i) trivial Boolean algebra
- (ii) discrete Boolean algebra
- (iii) family of constructable sets
 - constructable sets —— finite union of locally closed sets from topological space
 - locally closed sets —— $O \cap C$ where O open, C closed
 - finitely additive measure, m
 - $m(\varnothing) = 0$
 - $m(E \sqcup F) = m(E) + m(F)$
 - sub-additive $m(E \cup F) \le m(E) + m(F)$
 - monotone $E \subset F \Rightarrow m(E) \leq m(F)$

Fact. finitely additive measure is sub-additive and monotone

- counting measure

2 Jordan Measure on \mathbb{R}^d

- $box B = I_1 \times \cdots \times I_d$
- elementary subset —— finite union of boxes
- volume of box, |B|
- $-\mathcal{E}(B)$ family of elementary subsets of box B

Proposition 2.1. Fixed B, then

- (i) $\mathcal{E}(B)$ Boolean algebra
- (ii) every $E \in \mathcal{E}(B)$ finite union of disjoint boxes
- (iii) volume well defined

$$-m(E) = \sum |B_i| \text{ for } E = \bigsqcup B_i$$

Fact. m finitely additively measure on $(B, \mathcal{E}(B))$

– Jordan measurable — For all $\epsilon > 0$, \exists elementary $E \subset A \subset F$ st $m(F \setminus E) < \epsilon$

Fact. Jordan measurable subsets bounded

-m(A) for Jordan measurable A ——

$$m(A) = \inf\{m(F) : A \subset F, F \text{ elementary}\} = \sup\{m(F) : A \supset E, E \text{ elementary}\}\$$

– $\mathcal{J}(B)$ — family of Jordan measurable subsets of box B

Proposition 2.2. Fixed B, then

- (i) $\mathcal{J}(B)$ Boolean algebra
- (ii) m finitely additive measure on $(B, \mathcal{J}(B))$

Fact. $E \subset finite interval [a, b] \subset \mathbb{R}$, then E Jordan measurable iff $\mathbb{1}_E(x)$ Riemann integrable

3 Lebesgue measurable setds

– Lebesgue outer-measure —— $E \subset \mathbb{R}^d$,

$$m^*(E) = \inf\{\sum |B_n| : E \subset \bigcup B_n \text{ boxes}\}$$

Fact. m^* translation invariant

– Lebesgue measurable – For $\epsilon > 0, \exists C = \bigcup B_n, E \subset C$ st

$$m^*(C \backslash E) < \epsilon$$

 $-\mathcal{L}$ — family of Lebesgue measurable sets

Fact. \mathcal{L} translation invariant, scales naturally

Fact. Jordan measurable \Rightarrow Lebesgue measurable

Proposition 3.1.

- (i) m^* extends m
- (ii) L Boolean algebra, stable under countable unions
- (iii) m^* countably additive on $(\mathbb{R}^d, \mathcal{L})$

Lemma 3.2. m^*

$$(i) \ monotone \ ---- \ A \subset B \Rightarrow m^*(A) \leq m^*(B)$$

(ii) countably sub-additive ——
$$m^*(\bigcup A_n) \leq \sum m^*(A_n)$$

Fact. Jordan measure countably additive on Jordan measurable set

- continuity property —
$$E_n$$
 non-increasing, empty intersection $\Rightarrow \lim m(E_n) = 0$

Lemma 3.3. Jordan measure has continuity property on elementary sets

Lemma 3.4. Elementary sets E_n decreasing, $A = \bigcap E_n$, then

- (i) A Lebesgue measurable
- (ii) $m(E_n) \to m^*(A)$

Fact. countable intersection of elementary sets Lebesgue measurable

Corollary 3.5. open and closed subsets Lebesque measurable

- null set
$$---m^*(E) = 0$$

Lemma 3.6. null set Lebesque measurable

Proposition 3.7. E Lebesgue measurable, then \exists closed C, open O st

- (i) $C \subset E \subset O$
- (ii) $m^*(O \backslash C) < \epsilon$

Fact. E can be written as $(\bigcup C_n) \sqcup N$ or $(\bigcap O_n) \setminus N$

Example. Vitali's counter example —— E set of representatives $E = \{x + \mathbb{Q}\} \subset [0,1]$

- (i) m^* not additive on all subsets of \mathbb{R}^d
- (ii) E not Lebesgue measurable

4 Abstract Measure Theory

- $-\sigma$ -algebra Boolean algebra, stable under countable unions
- measurable space, (X, A)
- measure μ
 - (i) $\mu(\varnothing) = 0$
 - (ii) countably additive
- measure space, (X, \mathcal{A}, μ)

Example.

(i)
$$(\mathbb{R}^d, \mathcal{L}, m)$$

(ii) $m_0(E) = m(A_0 \cap E)$ for fixed $A_0 \in \mathcal{L}$

(iii) $(X, 2^X, \#)$, # counting measure

(iv) $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ where $\mu(I) = \sum_{i \in I} a_i$ for fixed $(a_n)_{n \geq 1}$

Proposition 4.1. (X, \mathcal{A}, μ) measure space

(i) μ monotone

(ii) μ countably sub-additive

(iii) upward monotone convergence — E_n increasing, then $\mu(\bigcup E_n) = \lim \mu(E_n) = \sup \mu(E_n)$

(iv) downward monotone convergence — $\mu(E_1) < \infty$, E_n decreasing, then $\mu(\bigcap E_n) = \lim \mu(E_n) = \inf \mu(E_n)$

- finite —— $\mu(X) < \infty$

– σ -finite — $X = \bigcup E_n, \, \mu(E_n) < \infty$

- probability space

- probability measure

– σ -algebra generated by \mathcal{F} , $\sigma(\mathcal{F})$ —— \mathcal{F} family of subsets

Example.

(i) $X = \sqcup X_i$

(ii) X countable, \mathcal{F} singletons

– Borel σ -algebra, $\mathcal{B}(X)$ —— X topological space, generated by all open subsets

- Borel sets

Fact. $\mathcal{B}(\mathbb{R}^d)\subset\mathcal{L}$

Fact. $\mathcal{B}(\mathbb{R}^d)$ strictly smaller than \mathcal{L} —— every subset of null sets is null

Fact. $\mathcal{B}(X)$ (σ -algebra) usually larger than family of constructable sets (Boolean algebra)

– Boolean algebra generated by \mathcal{F} , $\beta(\mathcal{F})$

– explicitly described —— elements of $\beta(\mathcal{F})$ are finite unions of $F_1 \cap \cdots \cap F_n$, F_i or \bar{F}_i in \mathcal{F}

Myth. Borel hierarchy

– Borel measure — measure on $\mathcal{B}(X)$

Setting 1. X set, \mathcal{B} Boolean algebra, μ finitely additive measure

- continuity property — under setting 1, non-increasing (E_n) , $\mu(E_1) < \infty$, empty intersection

$$\lim \mu(E_n) = 0$$

Theorem 4.2 (Caratheodory extension theorem). Under setting 1, \mathcal{B} continuity property, μ σ -finite, then μ uniquely extends to μ^* on $\sigma(B)$

- outer-measure μ^* $\mu^*(E) = \inf \{ \sum \mu(B_i) : E \subset \bigcup B_i, B_i \in \mathcal{B} \}$
- μ^* measurable $\exists \bigcup B_n := C \text{ st } \mu^*(C \backslash E) < \epsilon$
- completion of $\mathcal{B}, \mathcal{B}^*$ —— family of μ^* measurable subsets

Proposition 4.3. Under setting 1,

- (i) \mathcal{B}^* σ -algebra containing \mathcal{B}
- (ii) μ^* countably additive on \mathcal{B}^*
- (iii) μ^* extends μ

Myth. X compact metric space, μ probability measure on Borel σ -algebra \mathcal{B} , no atom, then \exists measure preserving measurable isomorphism between (X, \mathcal{B}^*, μ) and $([0, 1], \mathcal{L}, m)$

5 Uniqueness of Measures

- $-\pi$ -system family \mathcal{F}
 - (i) contains Ø
 - (ii) stable under finite intersection

Proposition 5.1 (measure uniqueness). (X, A) measurable space, μ_1, μ_2 finite measures st

- (i) $\mu_1 = \mu_2 \text{ on } \mathcal{F} \bigcup \{X\}$
- (ii) \mathcal{F} π -system st $\sigma(\mathcal{F}) = \mathcal{A}$

then $\mu_1 = \mu_2$ on \mathcal{A}

Fact. For general measures, if $\exists F_n \subset \mathcal{F}$ st μ_1, μ_2 finite on $F_n, X = \bigcup F_n$, then uniqueness also holds

Lemma 5.2 (Dynkin's lemma).

- (i) $\mathcal{F} \pi$ -system
- (ii) $\mathcal{F} \subset \mathcal{C}$
- (iii) C stable under complementation, disjoint countable union

then $\sigma(\mathcal{F}) \subset \mathcal{C}$

- translation invariant — m(A + x) = m(A) for all A, x

Proposition 5.3. Lebesgue measure unique measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ st

- (i) translation invariant
- (ii) $m([0,1]^d) = 1$

6 Measurable Functions

Setting 2. $(X, \mathcal{A}), (Y, \mathcal{B})$ measurable space

- $f: X \to \mathbb{R}$ measurable function
- $-\ f:X\to Y$ measurable map

Fact. can extend to $\{\infty\}$ or $\{-\infty\}$

Fact. continuous function measurable

Fact. $E \in \mathcal{A}$ iff $\mathbb{1}_E$ measurable

- \mathbb{R} -algebra

Proposition 6.1. $(f_n)_{n\geq 1}$ measurable functions

- (i) f, g measurable $\Rightarrow g \circ f$ measurable
- (ii) Family of measurable functions form \mathbb{R} -algebra
- (iii) $\limsup f_n$, $\liminf f_n$, $\sup f_n$, $\inf f_n$ measurable functions

Proposition 6.2. $f = (f_1, f_2, \dots, f_d)^T$, then f measurable iff f_i measurable

- Borel measurable (or simply Borel)

Fact. f measurable

- (i) $f^{-1}(L)$ need not measurable for $L \in \mathcal{L}$
- (ii) f(X) need not measurable even for f continuous

Example. (i) f sends to trivial σ -algebra

7 Integration

– simple function — $\sum^{N} a_i \mathbb{1}_{A_i}$ with $a_i \geq 0$

Lemma 7.1. f simple, $f = \sum a_i \mathbb{1}_{A_i} = \sum b_j \mathbb{1}B_j$, then $\sum a_i \mu(A_i) = \sum b_j \mu(B_j)$

- integral $\mu(f)$ for simple f —— $\mu(f) = \sum a_i \mu(A_i) = \int f d\mu$
- integral $\mu(f)$ for non-negative f —— $\mu(f) = \sup{\{\mu(g) : g \leq f, g \text{ simple}\}}$

Proposition 7.2 (positivity). f, g non-negative measurable, then

- $-f \geq g \Rightarrow \mu(f) \geq \mu(g)$
- $-f \ge g, \ \mu(f) = \mu(g) \Rightarrow f = g \ a.e.$
- f = g almost everywhere

Lemma 7.3. $f \ge 0$, then \exists increasing simple functions g_n st $g_n \to f$ pointwise *Proof.* $g_n = 2^{-n} \lfloor 23 \rfloor$