

Migrating to XtraDB Cluster

Jay Janssen Senior MySQL Consultant June 6th, 2012

Overview of Xtradb Cluster

Percona Server 5.5 + Galera Codership sync repl addon

"Cluster of MySQL nodes"

Have all the data, all the time

Readable and writeable

- Established cluster:
 - ▶Synchronizes new nodes
 - Handles node failures
 - Handles Node resync
 - ▶ Split brain protection (quorum)

XtraDB Cluster FAQ

- Standard MySQL replication
 - ▶into or out of the cluster
- Write scalable to a point
 - ▶all writes still hit all nodes
- LAN/WAN architectures
 - ▶write latency ~1 RTT
- MyISAM experimental
 - big list of caveats
 - designed and built for Innodb

What you really want to know

- ▶ Is it production worthy?
 - Several production users of Galera
 - Looking for more early adopters to gain experience
 - ▶The architecture is sound, code is good
 - Galera is several years old and at version 2.0
- ▶ What are the limitations of using Galera?
 - http://www.codership.com/wiki/doku.php? id=limitations

Configuring Xtradb Cluster

Cluster Replication Config

- Configured via wsrep_provider_options
- Can be a separate network from mysqld
- ▶ Default cluster replication port is 4567 (tcp)
- Supports multicast
- ▶Supports SSL
- Starting node needs to know a single node's ip that is up and running

Essential Galera settings

- [mysqld_safe]
 - wsrep urls possible urls to existing cluster nodes
- ▶[mysqld]
 - wsrep_provider = /usr/lib64/libgalera_smm.so
 - wsrep_cluster_name Identify the cluster
 - wsrep_node_name Identify this node
 - wsrep_sst_method How to synchronize nodes
 - binlog_format = ROW
 - ▶innodb autoinc lock mode=2
 - ▶innodb locks unsafe for binlog=1 performance

Other Galera Settings

▶[mysqld]

- wsrep_provider_options cluster comm opts
 - wsrep_provider_options="gcache.size=<gcache size>"
 - http://www.codership.com/wiki/doku.php?id=galera_parameters
- wsrep_node_address=<this node IP>
- wsrep_slave_threads apply writesets in parallel
- wsrep_cluster_address redundant with wsrep_urls
- wsrep_notify_cmd run on cluster state changes
- wsrep_on equivalent to SQL_LOG_BIN
- http://www.codership.com/wiki/doku.php?id=mysql_options_0.8

Possible Performance Tuning

- Single node durability can be disabled (?)
 - innodb_flush_log_at_trx_commit=2|0
 - safe as long as all cluster nodes don't go offline at once
- Other possibilities
 - ▶log-bin, sync_binlog, innodb_support_xa = OFF
 - ▶innodb doublewrite = OFF?

Example configuration

```
[mysqld safe]
1.
   wsrep urls=gcomm://192.168.70.2:4567, \
2.
3.
       gcomm://192.168.70.3:4567, \
       gcomm://192.168.70.4:4567, \
       gcomm:// # Only use this before the cluster is formed
5.
   [mysqld]
7.
8. datadir=/var/lib/mysql
   binlog format=ROW
11. wsrep cluster name=trimethylxanthine
12. wsrep node name=perconal
13. wsrep_node_address=192.168.70.2
14. wsrep provider=/usr/lib64/libgalera smm.so
16. wsrep sst method=xtrabackup
18. wsrep slave threads=2
20. innodb locks unsafe for binlog=1
21. innodb autoinc lock mode=2
22. innodb buffer pool size=128M
23. innodb log file size=64M
```


Converting Standalone MySQL to Xtradb Cluster

First a word about SST

- ▶State Snapshot Transfer
 - If the full data copy to a needy node
 - methods supported:
 - rsync / rsync_wan, mysqldump, xtrabackup, skip. (pluggable)
- ▶Donor is chosen as SST source
 - ▶SST donation may block donor
 - Dedicated donor possible
- New cluster nodes get SST
- Node inconsistencies trigger SST
- Brief outages need not SST (IST)

Method 1 - Single Node

- Migrating a single server:
 - stop MySQL
 - replace the packages
 - add essential Galera settings
 - ▶ start MySQL
- A stateless, peerless node will form its own cluster
 - ▶iff an empty cluster address is given (gcomm://)
- That node is the baseline data for the cluster
- ▶ Easiest from Percona Server 5.5

Method 2 - Blanket changeover

- All at once (with downtime):
 - Stop all writes, stop all nodes after replication is synchronized
 - skip-slave-start / RESET SLAVE
 - ▶ Start first node initial cluster
 - Start the others with wsrep_sst_mode=skip
- The slaves will join the cluster, skipping SST
- Change wsrep sst mode != skip

Method 3 - Slave cluster

No downtime

Form new cluster from one slave

Node replicates from old master

▶log-slave-updates on this node

- ▶ Test like any other slave
- Move more slave nodes to cluster
- ▶ Cut writes over to the cluster
- Absorb master into cluster.
- ▶Non-skip SST

Operational Considerations

Monitoring

- ▶SHOW GLOBAL STATUS like 'wsrep%';
- Cluster integrity same across all nodes
 - wsrep_cluster_conf_id configuration version
 - wsrep cluster size number of active nodes
 - wsrep_cluster_status should be Primary
- Node Status
 - wsrep_ready indicator that the node is healthy
 - wsrep_local_state_comment status message
 - wsrep_flow_control_paused replication lag
 - wsrep_local_send_q_avg possible network bottleneck
- http://www.codership.com/wiki/doku.php?id=monitoring

Realtime Wsrep status

```
./myq status -t 1 -h 192.168.70.4 -u test2 -p test2 wsrep
1.
     Wsrep (Galera/Xtradb Cluster)
                                                                                Replicated
3.
                                                                                                Received
                    state conf
                                  rdy
                                        ctd
                                              cnt paus dist sent rcvq sndq wops wsize rops rsize
4.
          time
5.
     12:40:24
                                                          1.0
                              36
                                                 3
                                          ON
                                                       0
                                                                  0
                                                                        0
                    Donor
                                    ON
                                                                                               1.0 191.0
                                                          1.0
6.
     12:40:25
                    Donor
                              36
                                    ON
                                          ON
                                                       0
                                                                                           0
                                                                                               1.0 191.0
                                                 3
                                                                                    0
7.
     12:40:26
                    Donor
                              36
                                    ON
                                          ON
                                                          1.0
                                                                                               2.0 382.0
                                                                                               0.5 95.50
     12:40:28
                                                                                           0
8.
                              36
                                                          1.0
                    Donor
                                    ON
                                          ON
9.
                                                          1.0
     12:40:29
                              36
                                    ON
                                          ON
                                                                                    0
                                                                                           0
                                                                                                 0
                                                                                                        0
                    Donor
10.
     12:40:30
                              36
                                          ON
                                                 3
                                                          1.0
                                                                                    0
                                                                                           0
                                                                                                 0
                                                                                                        0
                    Donor
                                    ON
                                                          1.0
                                                                                           0
                                                                                                 0
                                                                                                        0
11.
     12:40:31
                    Donor
                              36
                                    ON
                                          ON
     12:40:32
                                                                                                        0
12.
                              36
                                                          1.0
                    Donor
                                    ON
                                          ON
13.
                                                          1.0
                                                                                    0
                                                                                           0
                                                                                                 0
                                                                                                        0
     12:40:33
                    Donor
                              36
                                    ON
                                          ON
                                                                                                        0
14.
                              36
                                                          1.0
                                                                                    0
                                                                                           0
     12:40:34
                    Donor
                                    ON
                                          ON
     12:40:35
15.
                                                          1.0
                                                                                    0
                                                                                           0
                              36
                                    ON
                                          ON
                    Donor
                                                          1.0
                                                                                    0
                                                                                                 0
16.
     12:40:36
                              36
                                          ON
                                                                                           0
                    Donor
                                    ON
                                                          1.0
     12:40:37
                                                                                               9.0 1.68K
17.
                    Donor
                              36
                                    ON
                                          ON
18.
     12:40:38
                              36
                                                          1.0
                                                                                    0
                    Donor
                                    ON
                                          ON
                                                                                               1.0 191.0
                   Synced
19.
     12:40:39
                              36
                                    ON
                                          ON
                                                          1.0
                                                                                    0
                                                                                               3.0 207.0
20.
                              36
                                                          1.0
     12:40:40
                   Synced
                                          ON
                                                                                    0
                                                                                               1.0 191.0
                                    ON
21.
     12:40:41
                                                 3
                   Synced
                              36
                                                                                               1.0 191.0
                                    ON
                                          ON
                                                          1.0
22.
                   Synced
                              36
                                                          1.0
                                                                                    0
     12:40:42
                                    ON
                                          ON
                                                                                               1.0 191.0
23.
     12:40:43
                   Synced
                              36
                                                          1.0
                                                                                    0
                                    ON
                                          ON
                                                                                               1.0 191.0
24.
                              36
                                                 3
                                                          1.0
                                                                                               1.0 191.0
     12:40:44
                   Synced
                                    ON
                                          ON
```

26. https://github.com/jayjanssen/myg_gadgets

Maintenance

- Rolling package updates
- Schema changes
 - potential for blocking the whole cluster
 - Galera supports a rolling schema upgrade feature
 - http://www.codership.com/wiki/doku.php? id=rolling_schema_upgrade
 - Isolates DDL to individual cluster nodes
 - Won't work if replication events become incompatible
 - pt-online-schema-change

Architecture

- ▶ How many nodes should I have?
 - >= 3 nodes for quorum purposes
 - ▶50% is not a quorum
 - garbd Galera Arbitrator Daemon
 - Contributes as a voting node for quorum
 - ▶ Does not store data, but does replicate
- What gear should I get?
 - Writes as fast as your slowest node
 - Standard MySQL + Innodb choices
 - garbd could be on a cloud server

Application / Cluster Interactions

How Synchronous Writes Work

- Source node pessimistic locking
 - Innodb transaction locking
- Cluster repl optimistic locking
 - ▶Before source returns commit:
 - certify trx on all other nodes
 - Nodes reject on locking conflicts
 - via locally running transactions
 - client gets rollback deadlock error
 - Commit succeeds if no conflicts on any node

Why does the Application care?

- Workload dependent!
- Write to all nodes simultaneously and evenly:
 - Increase of deadlock errors on data hot spots
- Can be avoided by
 - Writing to only one node at a time
 - ▶all pessimistic locking happens on one node
 - Data subsets written only on a single node
 - ▶e.g., different databases, tables, rows, etc.
 - different nodes can handle writes for different datasets
 - pessimistic locking for that subset only on one node

Application to Cluster Connects

- For writes:
 - ▶Best practice: (any) single node
- ▶ For Reads:
 - All nodes load-balanced
 - Can be hashed to hit hot caches
 - ▶ Geo-affinity for WAN setups
 - Never worry about replication delay again!
- Be sure to monitor that nodes are functioning members of the cluster!

Load balancing and Node status

- Health check:
 - ▶TCP 3306
 - SHOW GLOBAL STATUS
 - wsrep_ready = ON
 - wsrep_local_state_comment !~ m/ Donor/?
- Maintain a separate rotations:
 - ▶ Reads
 - RR or Least Connected all available
 - ▶ Writes
 - Single node with backups on failure

Load Balancing Technologies

- •glbd Galera Load Balancer
 - similar to Pen, can utilize multiple cores
 - No advanced health checking (tcp-only)
 - http://www.codership.com/products/galera-loadbalancer
- ▶HAProxy
 - httpchk to monitor node status
 - http://www.percona.com/doc/percona-xtradb-cluster/ haproxy.html

HAProxy Sample config

```
listen cluster-writes 0.0.0.0:4306
2.
     mode tcp
3. balance leastconn
4. option httpchk
6.
     server perconal 192.168.70.2:3306 check port 9200
7.
     server percona2 192.168.70.3:3306 check port 9200 backup
     server percona3 192.168.70.4:3306 check port 9200 backup
10. listen cluster-reads 0.0.0.0:5306
11. mode tcp
12. balance leastconn
13. option httpchk
15.
     server perconal 192.168.70.2:3306 check port 9200
16. server percona2 192.168.70.3:3306 check port 9200
17.
     server percona3 192.168.70.4:3306 check port 9200
```

Resources

- XtraDB Cluster homepage and documentation:
 - http://www.percona.com/software/percona-xtradbcluster/
- Galera Documentation:
 - http://www.codership.com/wiki/doku.php
- Virtualbox 3 node test cluster:
 - https://github.com/jayjanssen/percona-cluster
 - http://www.mysqlperformanceblog.com/2012/04/12/ testing-percona-xtradb-cluster-with-vagrant/
- http://www.mysqlperformanceblog.com/2012/01/12/ create-3-nodes-xtradb-cluster-in-3-minutes/

Jay Janssen @jayjanssen

Join us at Percona Live NYC - Oct 1-2 2012 http://www.percona.com/live/nyc-2012/