

Corrigé de l'Examen blanc 2 d'Algèbre 3

Exercice 1

Soit E un espace vectoriel réel de dimension finie.

- 1. Donner la définition d'une famille finie libre de vecteurs de E.
- 2. Donner la définition du rang d'une famille finie de vecteurs de E.
- 3. Montrer qu'une famille finie de vecteurs de E contenant le vecteur nul n'est pas libre.

Solution 1

1. Une famille $F = \{u_1, \dots, u_n\}$ de E est dite libre, lorsque

$$\forall \lambda_1, \dots, \lambda_p \in \mathbb{R}(\text{car } E \text{ est r\'eel }), \lambda_1 u_1 + \dots + \lambda_p u_p = 0_E \implies \lambda_1 = \dots = \lambda_p = 0.$$

- 2. Soit $F = \{u_1, \dots, u_p\}$ une famille de p vecteurs de E. Le rang de F est la dimension de $\text{vect}(\{u_1, \dots, u_p\})$.
- 3. Soit $F = \{u_1, \dots, u_p, 0_E\}$ une famille de E contenant un vecteur nul. On a $0u_1 + \dots + 0u_p + 2 \times 0_E = 0_E$ et $2 \neq 0$ alors la famille $F = \{u_1, \dots, u_p, 0_E\}$ n'est pas libre c-à-d liée.

Exercice 2

On se place dans l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes réels de degré inférieur ou égal à 2. On considère les polynômes :

$$P_0 = X^2 - 2, P_1 = (X - 1)(X + 1), P_2 = (X - 2)(X + 1), P_3 = (X - 1)(X + 2).$$

- 1. Rappeler la définition de la base canonique de $\mathbb{R}_2[X]$. Quelle est la dimension de cet espace ?
- 2. Montrer que P_0 est combinaison linéaire de P_2 et P_3 .
- 3. Montrer que la famille (P_1, P_2, P_3) est libre. Est-ce une base de $\mathbb{R}_2[X]$?

Solution 2

- 1. La base canonique de $\mathbb{R}_2[X]$ est $(1, X, X^2)$. La dimension de $\mathbb{R}_2[X]$ est 3.
- 2. On a

$$\begin{cases} P_0 = X^2 - 2 \\ P_2 = (X - 2)(X + 1) = X^2 - X - 2 \\ P_3 = (X - 1)(X + 2) = X^2 + X - 2 \end{cases} \implies P_2 + P_3 = 2P_0$$

On alors $P_0 = \frac{1}{2}P_2 + \frac{1}{2}P_3$.

3. Soit $(a, b, c) \in \mathbb{R}^3$ tel que

$$aP_1 + bP_2 + cP_3 = 0_{\mathbb{R}_2[X]} \implies a(X - 1)(X + 1) + b(X - 2)(X + 1) + c(X - 1)(X + 2) = 0$$

$$\implies \begin{cases} -2b = 0 \text{ pour } X = 1\\ 3a = 0 \text{ pour } X = -2\\ -2c = 0 \text{ pour } X = -1 \end{cases}, \implies \begin{cases} a = 0\\ b = 0\\ c = 0 \end{cases}$$

Par suite, la famille (P_1, P_2, P_3) est libre.

Autrement

Soit $(a, b, c) \in \mathbb{R}^3$ tel que

$$aP_1 + bP_2 + cP_3 = 0_{\mathbb{R}_2[X]} \implies a(X - 1)(X + 1) + b(X - 2)(X + 1) + c(X - 1)(X + 2) = 0$$

$$\implies (a + b + c)X^2 + (c - b)X - a - 2b - 2c = 0 \implies \begin{cases} a + b + c = 0 \\ c - b = 0 \\ -a - 2b - 2c = 0 \end{cases}$$

$$\implies \begin{cases} a = -b - c \\ b = c \\ -2c = 0 \end{cases} \implies \begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}$$

Par suite, la famille (P_1, P_2, P_3) est libre.

Comme $\operatorname{card}(P_1, P_2, P_3) = \dim(\mathbb{R}_2[X]) = 3$, alors la famille (P_1, P_2, P_3) est une base $\mathbb{R}_2[X]$

4.

Exercice 3

On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (x+y, -x-y, 0).

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau et l'image de f (bases et dimensions).
- 3. L'application f est-elle injective? surjective?
- 4. Soit

$$E = \{(x, y) \in \mathbb{R}^2, x - y = 0\}.$$

Montrer que E est un sous-espace de \mathbb{R}^2 et que $\mathbb{R}^2 = \operatorname{Ker}(f) \oplus E$.

Solution 3

1. Soient $u = (x, y), v = (x', y') \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$.

$$\begin{split} f(\lambda u + v) &= f((\lambda x + x^{'}, \lambda y + y^{'})) \\ &= (\lambda x + x^{'} + \lambda y + y^{'}, -(\lambda x + x^{'}) - (\lambda y + y^{'}), 0) \\ &= (\lambda (x + y) + (x^{'} + y^{'}), -\lambda (x + y) - (x^{'} + y^{'}), 0) \\ &= \lambda (x + y, -x - y, 0) + (x^{'} + y^{'}, -x^{'} - y^{'}, 0) \\ &= \lambda f(u) + f(v). \end{split}$$

Donc, $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$.

2. • Soit $(x, y) \in \mathbb{R}^2$.

$$(x,y) \in \operatorname{Ker}(f) \iff f((x,y)) = (0,0,0) \iff \begin{cases} x+y=0 \\ -x-y=0 \end{cases}$$

$$\begin{cases} x = -y \\ x = -y \end{cases} \iff (x,y) = (-y,y) = y(-1,1).$$

Donc, $\operatorname{Ker}(f) = \operatorname{vect}(u)$, avec u = (-1,1). On en déduit $\{u\}$ est génératrice de $\operatorname{Ker}(f)$. Par suite, la famille $\{u\}$ est libre $(\operatorname{car} u \neq (0,0))$ et finalement la famille $\{u\}$ est une base de $\operatorname{Ker}(f)$, et $\operatorname{dim}(\operatorname{Ker}(f)) = 1$.

• Notons $(e_1 = (1,0,), e_2 = (0,1))$ la base canonique de \mathbb{R}^2 . Donc, $\operatorname{Im}(f) = \operatorname{vect}(f(e_1), f(e_2))$. On a

$$\begin{cases} u_1 = f(e_1) = (1, -1, 0) \\ u_2 = f(e_2) = (1, -1, 0), \end{cases} \text{ alors } \operatorname{Im}(f) = \operatorname{vect}(u_1, u_2).$$

On a $u_2 = u_1 \implies \operatorname{Im}(f) = \operatorname{vect}(u_1)$. Comme $u_1 \neq 0$ alors $\{u_1\}$ est une base de $\operatorname{Im}(f)$, et $\dim(\operatorname{Im}(f)) = 1$.

- On a $\{u\}$ est une base de $\operatorname{Ker}(f)$, alors $\dim(\operatorname{Ker}(f)) = 1$. D'après le théorème du rang $\dim(\operatorname{ker}(f) + \dim(\operatorname{Im}(f)) = \dim(\mathbb{R}^3) \iff 1 + \dim(\operatorname{Im}(f)) = 3 \iff \operatorname{rg}(f) = \dim(\operatorname{Im}(f)) = 2.$
- On a $Ker(f) = Vect(u) \neq \{(0,0)\}\ donc\ f$ n'est pas injective.
- On a dim(Im(f)) = $1 \neq 3$ donc Im(f)) $\neq \mathbb{R}^3$, ainsi f n'est pas surjective.

3. • Soit $(x, y) \in \mathbb{R}^2$.

$$(x,y) \in E \iff x-y=0$$

$$\iff y=x \iff (x,y)=(x,x)=x(1,1).$$

Soit a=(1,1), donc, $E=\mathrm{vect}(a)$ ce qui montre que E est un sous-espace vectoriel de \mathbb{R}^2 . Autre méthode : Montrons que $(0,0) \in E$.

On a $0-0=0 \implies (0,0) \in E$ Soient $X_1=(x_1,y_1), X_2=(x_2,y_2) \in E$, et $\lambda \in \mathbb{R}$ on a

$$\begin{cases} x_1 - y_1 = 0 \\ x_2 - y_2 = 0 = 0 \end{cases} \text{ et } \lambda X_1 + X_2 = (\lambda x_1 + x_2, \lambda y_1 + y_2).$$

On a

$$\lambda(x_1 - y_1) + x_2 - y_2 = 0 \implies (\lambda x_1 + x_2) - (\lambda y_1 + y_2) = 0$$

Cela implique que $\lambda X_1 + X_2 \in E$. Et finalement E est un sous-espace vectoriel de \mathbb{R}^2 .

• On a E = vect(a) et $a \neq 0$ alors $\{a\}$ est une base de E. On a $\dim(\mathbb{R}^2) = 2 < +\infty$, $\{u\}$ est une base de Ker(f) et $\{a\}$ est une base de E. Pour montrer que $E \oplus \text{Ker}(f) = \mathbb{R}^2$, il suffit de voir que la famille (a, u) est une base de \mathbb{R}^2 . Soit $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\alpha a + \beta u = (0,0) \implies \left\{ \alpha - \beta = 0\alpha + \beta = 0 \right\} \implies \left\{ \begin{aligned} \alpha &= \beta \\ 2\alpha &= 0 \end{aligned} \right\}, \implies \left\{ \begin{aligned} \beta &= 0 \\ \alpha &= 0 \end{aligned} \right\}$$

Par suite, la famille (a, u) est libre. Comme $\operatorname{card}\{(a, u)\} = \dim(\mathbb{R}^2) = 2$, alors la famille (a, u) est une base \mathbb{R}^2 . Finalement $E \oplus \operatorname{Ker}(f) = \mathbb{R}^2$.

Exercice 4

On considère la matrice

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$

Vérifier que $A^2 = A + 2I_2$, où I_2 dénote la matrice identité d'ordre 2.

Solution 4

On
$$aA^2 = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix},$$

puis $A + 2I_2, = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} + 2\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}.$

On en déduit que $A^2 = A + 2I_2$.