Inferência Estatística com Abordagem Bayesiana

Rosangela Helena Loschi 1

¹Departamento de Estatística Universidade Federal de Minas Gerais

19 de janeiro de 2021

MÉTODOS DE CONSTRUÇÃO DA DISTRIBUIÇÃO *A PRIORI*

- Distribuições conjugadas naturais
- Distribuições de referências: Métodos Bayes-laplace e Jeffreys

Distribuições referência ou não-informativas

Muitas vezes as distribuições conjugadas

- podem não representar bem o conhecimento inicial do indivíduo sobre o parâmetro ou
- podem não existir.

Outra forma muito comumente utilizada para fazer uma análise Bayesiana é o uso de **distribuições** *a priori* **não-informativas ou de referência**. Algumas justificativas para usá-las

- (1) desconhecimento sobre o problema
- (2) ter informação mas não querer utilizá-la
- (3) querer ser objetivo.

Existem muitas classes de distribuições *a priori* não-informativas pois não há um consenso sobre o que é não-informação.

- Estão baseadas no Princípio da Razão Insuficiente: "se não há informação para diferenciar entre os valores de θ ∈ Θ devemos atribuir a todos estes valores a mesma probabilidade´´.
- Sob este princípio: a distribuição a priori de qualquer parâmetro é uma distribuição Uniforme no espaço paramétrico ⊖.

Exemplo:

- ► Se $\Theta = \{\theta_1, \dots, \theta_N\} \Rightarrow \pi(\theta_i) = P(\theta = \theta_i) = 1/N$
- lacksquare Se $\Theta=[a,b]\subset\mathbb{R}\Rightarrow\pi(heta)=(b-a)^{-1}$
- ► Se $\Theta = \{\theta_1, \theta_2, \dots\} \Rightarrow \pi(\theta_i) = P(\theta = \theta_i) \propto K$, constante. (Note que $\sum_{i=1}^{\infty} \pi(\theta) = \sum_{i=1}^{\infty} K = \infty$ (imprópria)
- ▶ Se $\Theta = \mathbb{R} \Rightarrow \pi(\theta) \propto K$, constante.

Criticas a este procedimento:

(1)sob este princípio não há invariância

- Se o espaço paramétrico é $\Theta = (0,1)$, usando este princípio, *a priori*, $\theta \sim \text{Uniforme}(0,1)$.
- Se a meta é espicificar a distribuição *a priori* para a reparametrização $\phi = -log(\theta)$ do modelo
 - * Se usássemos o Princípio da Razão Insuficiente, a distribuição a priori para ϕ que é não-informativa no sentido de Bayes-Laplace deveria ser uma uniforme no intervalo $(0,\infty)$.
 - * No entanto, como $\theta \sim Uniforme(0,1)$, usando técnicas de prob., provamos que $\phi = g(\theta) = \log(\theta) \sim Exponencial(1) \leftarrow$ nao seguimos o Princípio da Razão Insuficiente na especificação da distribuição de ϕ .

$$g^{-1}(\phi) = e^{-\phi}$$

$$\pi(\phi) = \pi(g^{-1}(\phi))|\frac{dg^{-1}(\phi)}{d\theta}| = 1 * |-e^{-\phi}|,$$
 se $g^{-1}(\phi) \in (0,1) \Rightarrow e^{-\phi} \in (0,1) \Rightarrow \phi \in (0,\infty).$

- (2) podemos construir distribuições a priori impróprias ← não são medidas de probabilidade.
 - Estamos violando o Príncipio da Coerência
 - ▶ Não é visto como um problema sério se a distribuição a posteriori é própria
 - Neste caso.
 - teríamos inferência a posteriori mas não teríamos inferência a priori.
 - usaremos uma regra geral de condicionamento para construírmos a distribuição a posteriori

Exemplo: SeJa X_1, \ldots, X_n , dado μ , são variáveis aleatórias i.i.d com distribuição Normal (μ, σ^2) , em que a variância σ^2 é conhecida. Para o parâmetro μ , temos que

- ∗ o espaço paramétrico é ℝ.
- * a distribuição a priori não-informativa no sentido de Bayes-Laplace é $\pi(\mu) \propto 1, \ \forall \mu \in \mathbb{R} \leftarrow$ é imprópria.

► a função de verossimilhança é

$$f(\mathbf{x} \mid \mu) = \prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} \exp\left\{\frac{-1}{2\sigma^{2}} (x_{i} - \mu)^{2}\right\}$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left\{\frac{-1}{2\sigma^{2}} \left(\sum_{i=1}^{n} x_{i}^{2} - 2\mu \sum_{i=1}^{n} x_{i} + n\mu^{2}\right)\right\}$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left\{\frac{-1}{2\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}\right\}$$

$$\times \exp\left\{\frac{-1}{2\sigma^{2}} \left(-2\mu \sum_{i=1}^{n} x_{i} + n\mu^{2}\right)\right\}$$

$$\propto \exp\left\{-\frac{n}{2\sigma^{2}} (\mu^{2} - 2\mu \bar{x})\right\}$$

ightharpoonup Segue que o núcleo da distribuição *a posteriori* para μ é

$$\pi(\mu \mid \mathbf{x}) \propto \exp\left\{-\frac{n}{2\sigma^2}(\mu^2 - 2\mu\bar{\mathbf{x}})\right\}.$$

lacktriangle Assim, a distribuição *a posteriori* para μ é

$$\mu \mid \mathsf{x} \sim \mathrm{Normal}(\bar{\mathsf{x}}, \sigma^2/n)$$

a qual é uma distribuição própria.

Neste caso, não há inferência a priori mas sempre há inferência a posteriori.

Atenção:

- Quando utilizamos uma distribuição a priori própria, a distribuição a posteriori é sempre própria.
- Se consideramos uma distribuição a priori imprópria, não temos garantia de que a distribuição a posteriori será própria. Neste caso,
 - devemos provar que a distribuição a posteriori é própria antes iniciarnos nossa análise.

Dist. não-informativas: problema com dist. impróprias

Exemplo: Suponha que $X_i \mid \theta \stackrel{iid}{\sim} Binomial(1, \theta)$ e que a distribuição a priori para θ seja

$$\pi(\theta) \propto \theta^{-1}(1-\theta)^{-1} \leftarrow Beta(0,0)(impropria)$$

Se observamos $\sum_{i=1}^n x_i = n$ temos que a distribuição *a posteriori* para θ é

$$\pi(\theta \mid \mathbf{x}) \propto \theta^{-1}(1-\theta)^{-1}\theta^{n}(1-\theta)^{0} \propto \theta^{n-1}(1-\theta)^{-1}$$

Isto implica que a distribuição a posteriori para θ é uma distribução Beta(n,0) que também é imprópria. Não há inferência a posteriori.

A condição para termos uma distribuição *a posteriori* própria é termos pelo menos um zero na amostra.

Dist. não-informativas versus distribuições conjugadas

No caso em que X_1,\ldots,X_n , dado μ , são variáveis aleatórias i.i.d com distribuição Normal (μ,σ^2) , em que a variância σ^2 é conhecida, obtemos que

A distribuição a priori conjugada da família normal com variância conhecida é $\mu \sim Normal(M, V)$ cujo núcleo é

$$\pi_C(\mu) \propto \exp\left\{-rac{1}{2V}(\mu-M)^2
ight\}$$

- Se assumirmos que $V \to \infty$ tinhamos uma distribuição vaga, que era dominada pelos dados quaquer que fosse n.
- ► Note que

$$\lim_{V o \infty} \exp \left\{ -rac{1}{2V} (\mu - M)^2
ight\} = 1$$

Isto implica que se $V \to \infty$ o grau de informação trazido pela distribuição *a priori* conjugada $\pi_C(\mu)$ se aproxima daquele fornecido pela distribuições de Jeffreys (ver a seguir) e Bayes-Laplace.

A distribuição a priori de Jeffreys é definida considerando-se a Informação de Fisher sobre θ .

A Informação de Fisher sobre θ denotada por $I(\theta)$

- (1) mede a curvatura média da função de verossimilhança
- (2) maior a curvatura da verossimilhança
 - ightharpoonup \Rightarrow maior informação sumarizada pela verossimilhança (ou por $m{X}$) sobre heta
 - ightharpoonup \Rightarrow maior é o valor da Informação de Fisher $I(\theta)$ no ponto θ .

Definição (Informação de Fisher): Se X é um vetor/variável aleatória com função densidade (ou de probabilidade) $f(X \mid \theta)$,

ightharpoonup se $heta\in\Theta\subset\mathbb{R}$, a Informação de Fisher esperada é um número I(heta) dado por

$$I(\theta) = E_{\boldsymbol{X}\mid\theta} \left[-\frac{d^2}{d\theta^2} \ln f(\boldsymbol{X}\mid\theta) \right]$$

 $lackbox{f se}$ se $m{ heta} \in \Theta \subset \mathbb{R}^p$, a Informação de Fisher esperada é uma matriz $I(m{ heta})$ dado por

$$I(\boldsymbol{\theta}) = E_{\boldsymbol{X}|\boldsymbol{\theta}} \left[-\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \ln f(\boldsymbol{X} \mid \boldsymbol{\theta}) \right]$$

onde cada entrada ij da matriz $I(\theta)$ é dada por:

$$I_{ij}(\boldsymbol{\theta}) = E_{\boldsymbol{X}\mid\boldsymbol{\theta}} \left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ln f(\boldsymbol{X}\mid\boldsymbol{\theta}) \right]$$

Definição: A distribuição a priori de Jeffreys é assim definida

 \blacktriangleright se $\theta \in \Theta \subset \mathbb{R}$,

$$\pi(\theta) \propto [I(\theta)]^{1/2}, \forall \theta \in \Theta.$$

ightharpoonup se $oldsymbol{ heta} \in \Theta \subset \mathbb{R}^p$,

$$\pi(\boldsymbol{\theta}) \propto [\det I(\boldsymbol{\theta})]^{1/2}, \forall \boldsymbol{\theta} \in \Theta.$$

Dist. de Jeffreys: Modelo Bernoulli

Seja X_1, \ldots, X_n , dado θ , são i.i.d com distribuição Bernoulli (θ) .

- * Como $\Theta = (0,1)$ a distribuição de Bayes-Laplace é a distribuição Uniforme(0,1) que pertence a família Beta.
- * Cálculo da informação de Fisher para o modelo Bernoulli

$$\ln f(\mathbf{x} \mid \theta) = \sum_{i=1}^{n} x_i \ln \theta + (n - \sum_{i=1}^{n} x_i) \ln(1 - \theta)$$

$$\frac{d}{d\theta} \ln f(\mathbf{x} \mid \theta) = \frac{\sum_{i=1}^{n} x_i}{\theta} - \frac{(n - \sum_{i=1}^{n} x_i)}{(1 - \theta)}$$

$$\frac{d^2}{d\theta^2} \ln f(\mathbf{x} \mid \theta) = -\frac{\sum_{i=1}^{n} x_i}{\theta^2} - \frac{(n - \sum_{i=1}^{n} x_i)}{(1 - \theta)^2}$$

Dist. de Jeffreys: Modelo Bernoulli

A informação de Fisher para o modelo Bernoulli é

$$I(\theta) \propto \theta^{-1} (1-\theta)^{-1}$$
.

Informação de Fisher: caso bernoulli, n=2

Dist. de Jeffreys: Modelo Bernoulli

* Consequentemente, a distribuição de Jeffreys é

$$\pi(\theta) \propto \theta^{-1/2} (1-\theta)^{-1/2} \Rightarrow \theta \sim \text{Beta}(1/2, 1/2).$$

* As distribuições de Jeffreys e Bayes-Laplace são próprias e ambas pertencem a família Beta.

Observação Importante sobre a Informação de Fisher:

Se $\boldsymbol{X}=(X_1,\ldots,X_n)$ são variáveis aleatórias independentes com $X_i\mid\theta\sim f_i(x_i\mid\theta)$, se $I_i(\theta)$ denota a Informação de Fisher calculada com base apenas na distribuição de X_i e $I(\theta)$ é a informação de Fisher calculada com base na amostra \boldsymbol{X} então

$$I(\theta) = \sum_{i=1}^{n} I_i(\theta);$$

Se $X = (X_1, \ldots, X_n)$ são variáveis aleatórias independentes e identicamente distribuidas se $I(\theta)$ denota a Informação de Fisher calculada com base apenas na distribuição de cada X_i e $I_n(\theta)$ é a informação de Fisher calculada com base na amostra X então

$$I_n(\theta) = nI(\theta)$$

Exemplo: Se X_1,\ldots,X_n , dado λ , são variáveis aleatórias i.i.d com distribuição exponencial com parametro λ cuja f.d.p. é

$$f(x_i \mid \lambda) = \lambda \exp\{-\lambda x_i\}, \quad x_i > 0.$$
 (1)

(a) Encontre a distribuição a priori de Jeffreys para λ e (b) determine se a distribuição a posteriori é própria.

Solução: (a) Como a amostra é i.i.d. basta encontrarmos a informação de Fisher para X_i . Tomando o log da função de verossimilhança para X_i dada em (7) temos

$$Inf(x_i \mid \lambda) = In\lambda - \lambda x_i$$

Derivando com respeito a λ temos

$$\frac{d}{d\lambda} Inf(x_i \mid \lambda) = 1/\lambda - x_i$$

$$\frac{d^2}{d^2\lambda} Inf(x_i \mid \lambda) = -1/\lambda^2.$$

Dai, a Informação de Fisher sobre λ é

$$I(\lambda) = E_{X_i|\lambda} \left(-\frac{d^2}{d^2 \lambda} Inf(x_i \mid \lambda) \right) = E_{X_i|\lambda}(\lambda^{-2}) = \lambda^{-2}$$

Por definição, a distribuição a priori de Jeffreys para λ é

$$\pi(\lambda) \propto I(\lambda)^{1/2} = (\lambda^{-2})^{1/2} = 1/\lambda, \quad \lambda > 0.$$
 (2)

 $\Rightarrow \lambda \sim \textit{Gama}(0,0) \leftarrow \acute{\mathsf{E}} \mathsf{imprópria!}$

Exemplo (cont): (b) A função de verossimilhança é

$$f(\mathbf{x} \mid \lambda) = \prod_{i=1}^{n} \lambda \exp\{-\lambda x_i\}$$
$$= \lambda^n \exp\{-\lambda \sum_{i=1}^{n} x_i\}$$
(3)

Considerando a distribuição a priori encontrada no item (a), temos que a distribuição a posteriori para λ é:

$$\pi(\lambda \mid \mathbf{x}) \propto \lambda^{n} \exp\{-\lambda \sum_{i=1}^{n} x_{i}\} * 1/\lambda$$

$$\propto \lambda^{n-1} \exp\{-\lambda \sum_{i=1}^{n} x_{i}\}$$
(4)

Note de (4) que a distribuição *a posteriori* para λ é uma distribuição $Gama(n, \sum_{i=1}^{n} x_i)$. É própria se n > 0 e $\sum_{i=1}^{n} x_i > 0$.

Observação: Considere o log da função de verossimilhança em (3)

$$Inf(\mathbf{x} \mid \lambda) = nIn\lambda - \lambda \sum_{i=1}^{n} x_{i}$$
 (5)

Derivando com respeito a λ temos

$$\frac{d}{d\lambda}Inf(x_i \mid \lambda) = n/\lambda - \sum_{i=1}^n x_i$$

$$\frac{d^2}{d^2\lambda}Inf(x_i\mid\lambda)=-n/\lambda^2.$$

Ou seja, como a amostra é iid, temos que

$$I_n(\lambda) = n(1/\lambda^2) = nI(\lambda),$$

como afirmado na teoria.

A distribuição a priori de Jeffreys

- * atribui mais peso aos valores de θ que são mais diferenciados pelo modelo estatístico.
- * "Não é subjetiva´´ desde que não resume a informação inicial sobre θ .
- * A única subjetividade envolvida em sua construção vem da subjetividade inherente à construção do modelo.
- Viola alguns principios Bayesianos (Princípio da Verosimilhança) pois considera o princípio da repetibilidade amostral.
- * Também pode ser imprópria.
- * Qual é o ganho deste método se comparado ao método de Bayes-Laplace?

* É invariante sob transformações um-a-um.

Proposição: Se a distribuição a priori de θ é não informativa no sentido de Jeffreys e se $\phi = g(\theta)$, onde g é uma tranformação bijetiva de θ , então, a priori

$$\pi(\phi) \propto [I(\phi)]^{1/2}$$
.

A prova segue utilizando-se o método do jacobiano e a seguinte propiedade da informação de Fisher

$$I(\phi) = I(\theta) \left(\frac{d\theta}{d\phi}\right)^2.$$

Exemplo (cont.): Se X_1, \ldots, X_n , dado λ , são variáveis aleatórias i.i.d com distribuição exponencial com parametro λ cuja f.d.p. é

$$f(x_i \mid \lambda) = \lambda \exp\{-\lambda x_i\}, \ x_i > 0.$$
 (6)

Considere a seguinte reparametrização do modelo $\theta=1/\lambda$ e encontre a distribuição *a priori* de Jeffreys para θ .

Solução 1-Reparametrizando a fdp: Sob a re-parametrização dada temos que a fdp torna-se

$$f(x_i \mid \theta) = 1/\theta \exp\{-x_i/\theta\}, \ x_i > 0.$$

Daí, $\ln f(x_i \mid \theta) = -\ln \theta - x_i/\theta \Rightarrow \frac{d}{d\theta} \ln f(x_i \mid \theta) = -1/\theta + x_i/\theta^2$ $\Rightarrow \frac{d^2}{d\theta^2} \ln f(x_i \mid \theta) = 1/\theta^2 - 2x_i/\theta^3$.

Com isto, temos que a Informação de Fisher sobre heta é

$$I(\theta) = -1/\theta^2 + 2E(X_i)/\theta^3 = -1/\theta^2 + 2\theta/\theta^3 = 1/\theta^2$$

Portanto, distribuição *a priori* de Jeffreys para heta é

$$\pi(\theta) \propto \theta^{-1}, \ \theta > 0.$$

Solução 2- usando a propriedade da Informação de Fisher:

A Informação de Fisher para λ é

$$I(\lambda) = 1/\lambda^2, \ \lambda > 0.$$

Usando a propriedade da Informação de Fisher temos que

$$I(\theta) = I(\lambda) \left(\frac{d\lambda}{d\theta}\right)^2$$
.

Agora $\theta = 1/\lambda \Rightarrow \lambda = 1/\theta$.

Substituindo na expressao anterior temos

$$I(\theta) = \left(\frac{1}{1/\theta}\right)^2 \left(\frac{d}{d\theta}(1/\theta)\right)^2 = (\theta)^2 (-1/\theta^2)^2 = 1/\theta^2$$

Chegamos ao mesmo resultado mostrado na Solução 1 para a Informação de Fisher.

Solução 3-Partindo da distribuição de Jeffreys para λ : Da equação (2) obtemos que a distribuição *a priori* de Jeffreys para λ é

$$\pi_L(\lambda) \propto 1/\lambda, \ \lambda > 0.$$

Assim, utilizando resultados de calculo de probabilidade para encontramos a distribuição de θ temos que $\forall \theta: \theta = g(\lambda)$ para algum $\lambda > 0$, então $\pi_T(\theta) \propto \pi_L(g^{-1}(\theta)|\frac{d}{d\theta}g^{-1}(\theta)|$. Daí, temos que

$$\theta = 1/\lambda = g(\lambda) \Rightarrow \lambda = g^{-1}(\theta) = 1/\theta \Rightarrow \frac{d}{d\theta}g^{-1}(\theta) = -1/\theta^2$$

$$\pi_T(\theta) \propto \pi_I(1/\theta)|-1/\theta^2|=\theta/\theta^2$$

Portanto, distribuição a priori de Jeffreys para heta é

$$\pi(\theta) \propto \theta^{-1}, \ \theta > 0.$$

⇒ o principio de "não" informação é preservado!

Alguns casos particulares de distribuição a priori de Jeffreys.

* Família exponencial uni-paramétrica: Se $f(x \mid \theta) = h(x) \exp\{\theta T(x) - \psi(\theta)\}\ \theta \in \mathbb{R}$, então a distribuição *a priori* de Jeffreys é

$$\pi(\theta) \propto \left[\frac{d^2\psi(\theta)}{d\theta}\right]^{1/2} = \left[\psi''(\theta)\right]^{1/2}$$

Note que
$$\ln f(x \mid \theta) = \ln h(x) + \theta T(x) - \psi(\theta)$$
. Daí
$$\frac{d}{d\theta} \ln f(x \mid \theta) = T(x) - \psi'(\theta)$$

$$\frac{d^2}{d\theta^2} \ln f(x \mid \theta) = -\psi''(\theta)$$

$$\Rightarrow I(\theta) = -E_{X|\theta}(-\psi''(\theta)) = -\psi''(\theta) \Rightarrow \pi(\theta) \propto [\psi''(\theta)]^{1/2}$$

Exemplo: Se X, dado λ , tem distribuição exponencial com parâmetro λ então

$$f(x \mid \lambda) = \lambda \exp\{-\lambda x\} = \exp\{-\lambda x + \ln \lambda\}$$
 (7)

Neste caso, $\psi(\lambda)=-\ln\lambda\Rightarrow\psi'(\lambda)=-1/\lambda\Rightarrow\psi''(\lambda)=1/\lambda^2.$ Usando o resultado anterior segue que a distribuição *a priori* de Jeffreys para λ é

$$\pi(\lambda) \propto \lambda^{-1}, \ \lambda > 0.$$

* Família Localização: Se $f(x \mid \theta) = f(x - \theta)$ e, portanto, θ é um parâmetro de localização então $\pi(\theta) \propto 1$.

Exemplo: Suponha que $X \mid \mu \sim N(\mu, \sigma^2)$, com σ^2 conhecido. Então, a função de verossimilhança é

$$f(x|\mu) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp\left\{\frac{-1}{2\sigma^2}(X-\mu)^2\right\} \leftarrow f(x-\mu)$$

O logaritmo da função de verossimilhança é

$$\ln f(x|\mu) = \frac{1}{2} \ln \left(\frac{1}{2\pi\sigma^2} \right) - \frac{1}{2\sigma^2} (X - \mu)^2$$

Daí

$$\frac{d}{d\mu}f(x|\mu) = \frac{(X-\mu)}{\sigma^2} \Rightarrow \frac{d^2}{d\mu^2}f(x|\mu) = -\frac{1}{\sigma^2}$$

A informação de Fisher com respeito a μ é

$$I(\mu) = -E_{X|\mu} \left(-\frac{1}{\sigma^2} \right) = \frac{1}{\sigma^2} \leftarrow \text{constante}$$

Por definição, a distribuição a priori de Jeffreys para μ é

$$\pi(\mu) \propto \left[rac{1}{\sigma^2}
ight]^{1/2} \propto 1$$

- É imprópria e coincide com a distribuição não-informativa no sentido de Bayes-Laplace.
- ightharpoonup Como vimos, a distribuição *a posteriori* para μ é

$$\mu \mid \mathsf{x} \sim \mathrm{Normal}(\bar{\mathsf{x}}, \sigma^2/n)$$

a qual é uma distribuição própria.

* Família Escala :Se $f(x \mid \theta) = \frac{1}{\theta} f(\frac{x}{\theta})$ e, portanto, θ é um parâmetro de escala então $\pi(\theta) \propto 1/\theta$.

Exemplo: Suponha que $X \mid \sigma^2 \sim N(\mu, \sigma^2)$, com μ conhecido. Então, a função de verossimilhança é

$$f(x|\sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp\left\{\frac{-1}{2\sigma^2}(X-\mu)^2\right\} \leftarrow 1/\sigma^2 f(x/\sigma^2)$$

O logaritmo da função de verossimilhança é

$$\ln f(x|\sigma^2) = -\frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}(X - \mu)^2$$

Daí, a primeira e segunda derivadas com respeito a σ^2 são:

$$\frac{d}{d\sigma^2}f(x|\sigma^2) = \frac{-1}{2\sigma^2} + \frac{(X-\mu)^2}{2(\sigma^2)^2}$$

e

$$\frac{d^2}{d(\sigma^2)^2}f(x|\sigma^2) = \frac{1}{2(\sigma^2)^2} - \frac{(X-\mu)^2}{(\sigma^2)^3}$$

A informação de Fisher com respeito a σ^2 é

$$I(\sigma^{2}) = -E_{X|\sigma^{2}} \left(\frac{1}{2(\sigma^{2})^{2}} - \frac{(X - \mu)^{2}}{(\sigma^{2})^{3}} \right) =$$

$$= -\frac{1}{2(\sigma^{2})^{2}} + \frac{E_{X|\sigma^{2}}(X - \mu)^{2}}{(\sigma^{2})^{3}} = \frac{1}{2(\sigma^{2})^{2}}$$
(8)

Por definição, a distribuição *a priori* de Jeffreys para σ^2 é

$$\pi(\sigma^2) \propto \left[rac{1}{2(\sigma^2)^2}
ight]^{1/2} \propto rac{1}{\sigma^2}$$

()

- * Dados: 34 individuos com Síndrome de Down (6, 22 e 6, respectivamente, com 1, 2 e 3 alelos distintos no loco de interesse).
- * frequências alélicas: 0.12, 0.45, 0.09, 0.31, 0.01 e 0.02.

Para $\phi \in (0,1)$, a verossimilhança

$$P(\mathbf{Y} = \mathbf{y} \mid \phi) = \frac{n!}{y_1! y_2! y_3!} [\theta_1(\phi)]^{y_1} [\theta_2(\phi)]^{y_2} [\theta_3(\phi)]^{y_3}, \quad (9)$$

* Como o espaço paramétrico para ϕ é o intervalo (0,1), a distribuição *a priori* para ϕ , não-informativa no sentido de Bayes-Laplace é

$$\phi \sim Uniforme(0,1)$$

A informação de Fisher para ϕ associada ao modelo em (9) é

$$I(\phi) = n\left(\frac{a^2}{\theta_1(\phi)} + \frac{b^2}{\theta_2(\phi)} + \frac{c^2}{\theta_3(\phi)}\right),$$

onde $a=\sum_{i=1}^m p_i^3-\sum_{i=1}^m p_i^2$ e, $b=\sum_{i,j=1}^m p_i^2 p_j-\sum_{i,j=1}^m p_i p_j$ e $c=\sum_{i,j,k=1}^m p_i p_j p_k$, para $i\neq j\neq k$. Consequentemente, a distribuição de Jeffreys para ϕ é

$$\pi(\phi) \propto \left(\frac{a^2}{\theta_1(\phi)} + \frac{b^2}{\theta_2(\phi)} + \frac{c}{\phi}\right)^{1/2}.$$
 (10)

Esta distribuição é própria.

Distribuições a priori de referência e a posteriori para ϕ .

mi Apesar das distribuições *a priori* serem diferentes, as informações que trazem sobre ϕ é fraca, gerando distribuições *a posteriori* muito similares.

Table: Estimativas a posteriori para ϕ

Dist a prior	Resumos <i>a posteriori</i>		
	Media	variância	Moda
Jeffreys	0.6417	0.0322	0.6374
Uniforme	0.6549	0.0305	0.6552

* Estimador de máxima verossimilhança e variância assintótica são 0.6552 e 0.0481, respectivamente.