「杂题记录」「NOI 2018」屠龙勇士

Jiayi Su (ShuYuMo)

2021-02-02 15:35:06

小 D 最近在网上发现了一款小游戏。游戏的规则如下:

- 游戏的目标是按照编号 $1 \to n$ 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 a_i 。同时每条巨龙拥有恢复能力,当其使用恢复能力时,它的生命值就会每次增加 p_i ,直至生命值非负。只有在攻击结束后且当生命值 恰好为 0 时它才会死去。
- 游戏开始时玩家拥有 m 把攻击力已知的剑,每次面对巨龙时,玩家只能选择一把剑,当杀死巨龙后这把剑就会消失,但作为奖励,玩家会获得全新的一把剑。

小 D 觉得这款游戏十分无聊,但最快通关的玩家可以获得 ION2018 的参赛资格,于是小 D 决定写一个笨笨的机器人帮她通关这款游戏,她写的机器人遵循以下规则:

- 每次面对巨龙时,机器人会选择当前拥有的,攻击力不高于巨龙初始生命值中攻击力最大的一把剑作为武器。如果 没有这样的剑,则选择攻击力最低的一把剑作为武器。
- 机器人面对每条巨龙,它都会使用上一步中选择的剑攻击巨龙固定的 x 次,使巨龙的生命值减少 $x \times ATK$ 。
- 之后,巨龙会不断使用恢复能力,每次恢复 p_i 生命值。若在使用恢复能力前或某一次恢复后其生命值为 0 ,则巨龙死亡,玩家通过本关。

那么显然机器人的攻击次数是决定能否最快通关这款游戏的关键。小 D 现在得知了每条巨龙的所有属性,她想考考你,你知道应该将机器人的攻击次数 x 设置为多少,才能用最少的攻击次数通关游戏吗?

当然如果无论设置成多少都无法通关游戏,输出 -1.

测试点编号	n	m	p_{i}	a_i	攻击力	其他限制
1	$\leq 10^{5}$	= 1	= 1	$\leq 10^{5}$	= 1	 无
2	$\leq 10^5$	=1	=1	$\leq 10^{5}$	=1	无
3	$\leq 10^5$	=1	=1	$\leq 10^{5}$	$\leq 10^5$	无
4	$\leq 10^5$	=1	=1	$\leq 10^5$	$\leq 10^5$	无
5	$\leq 10^3$	$\leq 10^3$	$\leq 10^{5}$	$\leq 10^{5}$	$\leq 10^5$	特性 1、特性 2
6	$\leq 10^3$	$\leq 10^3$	$\leq 10^{5}$	$\leq 10^5$	$\leq 10^5$	特性 1、特性 2
7	$\leq 10^3$	$\leq 10^3$	$\leq 10^{5}$	$\leq 10^5$	$\leq 10^5$	特性 1、特性 2
8	=1	=1	$\leq 10^{8}$	$\leq 10^{8}$	$\leq 10^6$	特性 1
9	=1	=1	$\leq 10^{8}$	$\leq 10^{8}$	$\leq 10^6$	特性 1
10	=1	=1	$\leq 10^{8}$	$\leq 10^{8}$	$\leq 10^6$	特性 1
11	=1	=1	$\leq 10^{8}$	$\leq 10^{8}$	$\leq 10^6$	特性 1
12	=1	=1	$\leq 10^{8}$	$\leq 10^{8}$	$\leq 10^6$	特性 1
13	=1	=1	$\leq 10^{8}$	$\leq 10^{8}$	$\leq 10^6$	特性 1
14	$=10^{5}$	$=10^{5}$	=1	$\leq 10^{8}$	$\leq 10^6$	无特殊限制
15	$=10^{5}$	$=10^{5}$	=1	$\leq 10^{8}$	$\leq 10^6$	无特殊限制
16	$\leq 10^5$	$\leq 10^5$	所有 p_i 是质数	$\leq 10^{12}$	$\leq 10^6$	特性 1
17	$\leq 10^5$	$\leq 10^5$	所有 p_i 是质数	$\leq 10^{12}$	$\leq 10^6$	特性 1
18	$\leq 10^5$	$\leq 10^5$	无特殊限制	$\leq 10^{12}$	$\leq 10^{6}$	特性 1

测试点编号	n	m	p_i	a_i	攻击力	其他限制
19	$\leq 10^5$	$\leq 10^5$	无特殊限制	$\leq 10^{12}$	$\leq 10^6$	特性 1
20	$\leq 10^5$	$\leq 10^5$	无特殊限制	$\leq 10^{12}$	$\leq 10^6$	特性 1

特性 1 是指:对于任意的 i , $a_i \leq p_i$ 。

特性 2 是指: $\mathrm{lcm}(p_i) \leq 10^6$,即所有 p_i 的 最小公倍数 不大于 10^6 。

对于所有的测试点, $T \leq 5$,所有武器的攻击力 $\leq 10^6$,所有 p_i 的最小公倍数 $\leq 10^{12}$ 。

保证 \$ T, n, m \$ 均为正整数。

分析

易知这可以直接转化为 exCRT 问题。

主要记录一下不定方程的获取所有解问题。

不定方程形如:

$$ax + by = c$$

其中x,y为未知数,a,b为常数。

裴蜀定理 指出:以上方程有整数解的充要条件为 (a,b)|c ∘

扩展欧几里得 可以解出形如:

$$ax+by=(a,b)$$

不定方程的一组整数解。

考虑构造以下式子:

$$a\left(x+\frac{b}{(a,b)}\right)+b\left(y-\frac{a}{(a,b)}\right)=(a,b)$$

不难发现如果令: $x'=x+\frac{b}{(a,b)},y'=y-\frac{a}{(a,b)}$,这样构造出来的所有解 x',y' 都能成为不定方程的一组解,可以证明这样的构造方式的调整系数是最小的,能够取到所有解。(个人喜欢把 $\frac{*}{(a,b)}$ 称为调整系数)

考虑到上面的 扩展欧几里得 解出的方程常数项等于 (a,b),而不是 c ,考虑将解和 (a,b) 一同乘 $\frac{c}{(a,b)}$ 即可。

需要注意,乘完 $\frac{c}{(a,b)}$ 后,调整系数 不变。

关于题目,也没有题解里面说的那么卡 \cdots 注意一下数据范围里面 $P_i=1$ 的情况即可。

关于代码,换了一种 exCRT 的写法,应该会好背很多,。