

Popular classification techniques (classifiers)

- · Logistic regression
- · Tree-based Methods
 - · Decision Tree
 - · Random Forest
 - · Bayesian methods
 - Naïve Bayesian
 - Linear Discriminant Analysis
 - · Quadratic Discriminant Analysis
 - K-Nearest Neighbours
- Support Vector Machines
- Neural networks

Can we use linear regression?

- Suppose for the Default classification task that we code
 - Y = 0 if No
 - Y = 1 if Yes
- Can we simply perform a linear regression of Y on X and classify as Yes if predY > 0.5?
- In this case of a binary outcome, linear regression does a good job as a classifier
- However, linear regression might produce probabilities less than zero or bigger than one.
- Logistic regression is more appropriate

The orange marks indicate the response Y, either 0 or 1. Linear regression does not estimate $\Pr(Y=1|X)$ well. Logistic regression seems well suited to the task.

7

Logistic regression - Model

• Let's write p(X) = Pr(Y = 1 | X) for short. Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}.$$

(e ≈ 2.71828 is a mathematical constant [Euler's number.])

- It is easy to see that no matter what values $\beta 0$, $\beta 1$ or X take, p(X) will have values between 0 and 1
- Rearrange the function, we have

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- This monotone transformation is called the *log odds* or *logit* transformation of p(X)
- Logit has a linear relationship with X

versus the alternative hypothesis

 H_A : There is some relationship between X and Y.

• Mathematically, this corresponds to testing

$$H_0: \beta_1 = 0$$

versus

$$H_A: \beta_1 \neq 0,$$

since if $\beta_1 = 0$ then the model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

- The outcome of the test exhibits in p-values: if p-value is less than 5%, we are confident to reject the null hypothesis.
- That means, the alternative hypothesis is correct.

Given H₀

Calculate: statistic P-value: whether to reject H₀ There is / isn't a relationship between X and Y

11

Q2. How does each factor affect Y?

- If it is positive, it suggests that as X increases, the probability of Y = 1 also increases, and vice versa.
- There is no straightforward interpretation of the impact on the probability Y. Instead, we interpret β_1 as the average effect on the odds rather than the probability Y.
- The odds is defined as the ratio of the probability of Y = 1 to the probability of Y = 0

the
$$odds = \frac{p}{1-p} = e^{\beta_0 + \beta_1 X + \varepsilon}$$
 , where p is the probability of Y = 1

Examples: For probability of 0.5, the odds is 1.

• When X increases by 1, how will the odds change? We look at the change via odds ratio.

Q2 Continued – For categorical variables

Lets do it again, using student as the predictor.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\begin{split} \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

 $F1(\text{default}=\text{res}|\text{student}=\text{NO}) = \frac{1}{1+e^{-3.5041+0.4049\times 0}} = 0.0292.$

• The odds of defaulting increases by $e^{0.4}=1.51$ times when the borrower is a student, comparing to a non-student borrower.

Multiple Logistic regression

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

- Why is coefficient for student negative, while it was positive in the one-variable model?
 - o If we do not consider any other factors, students tend to default more.
 - If we take into consideration other factors, e.g., balance, further examination will find that these two are correlated: students have more balance than non-students
 - o For the same level of balance, students are less likely to default
 - The positive effect in the single variable model captures the confounding effect of balance together with being a student
 - If we tease out the effect of balance by including it as a variable, we can find the effect of being a student by itself

The confounding effect of balance and student

- Students tend to have higher balances than non-students, so their marginal default rate is higher than for non-students.
- But for each level of balance, students default less than non-students.
- Multiple logistic regression can tease this out.

15

Q3. How to classify?

- It is straightforward to predict probability of Y = 1 using the estimated coefficients and the model
- The classification is based on probability values
 - Establishing cutoff level; If estimated prob. > cutoff, classify as "1", e.g., if p>0.5, the prediction is classified as 1;
 - $\circ\quad$ If the estimated probability is 0.67, the person is predicted to default the payment

