Métodos Cuantitativos

Conceptos de Probabilidad

Vladimiro González-Zelaya Semestre 2023-2

Universidad Panamericana — Campus México Facultad de Ciencias Económicas y Empresariales Academia de Matemáticas

¿Qué es la Probabilidad?

- ► Medida numérica del grado de incertidumbre asociado a un evento.
- ► La probabilidad de que ocurra X se denota P(X).
- ▶ $P(X) \in [0, 1]$.
- ► $P(X) \approx 0$ indica que es poco probable que ocurra X.
- ▶ $P(X) \approx .5$ indica que es igualmente probable que ocurra o que no ocurra X.
- ► $P(X) \approx 1$ indica que es casi seguro que ocurra X.

Experimentos

- ► Un experimento se define como un proceso que genera resultados bien definidos.
- ► En cada repetición ocurre uno y sólo uno de los resultados posibles.
- ► Algunos ejemplos de experimentos y sus resultados posibles son:

Experimento	Resultados
Lanzar una moneda	Águila, Sol
Inspeccionar una pieza	Defectuosa, Sin Defectos
Hacer una llamada de ventas	Vender, No Vender
Arrojar un dado	1, 2, 3, 4, 5, 6
Jugar un partido de futbol	Ganar, Empatar, Perder

Espacio Muestral

Conjunto de todos los resultados posibles de un experimento.

Regla de Conteo para Experimentos de Pasos Múltiples

Si un experimento consiste en k pasos con n_i resultados para el paso i, el total de resultados del experimento estará dado por $n = n_1 \times n_2 \times \cdots \times n_k$.

Combinaciones

En número de combinaciones de *n* objetos tomados *k* a la vez es:

$$C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Ejemplo

De un grupo de cinco alumnos, ¿cuántas parejas pueden seleccionarse?

$$C_2^5 = {5 \choose 2} = \frac{5!}{2!(5-2)!} = \frac{120}{2 \times 6} = \frac{120}{12} = 10$$

Permutaciones

- ► Las permutaciones son combinaciones en las que el orden es importante.
- ► Los mismos *k* objetos seleccionados en un orden distinto se consideran un resultado diferente.
- ► El número de permutaciones se obtiene mediante:

$$P_k^n = k! \binom{n}{k} = \frac{n!}{(n-k)!}$$

Ejemplo

De un grupo de 5 personas, se debe seleccionar un presidente, un secretario y un tesorero. ¿Cuántas permutaciones hay?

$$P_3^5 = 3! {5 \choose 3} = {5! \over (5-3)!} = {120 \over 2} = 60$$

Reglas Básicas de Probabilidad

Si un experimento tiene n posibles resultados E_1, E_2, \ldots, E_n , entonces:

- 1. $0 \leqslant P(E_i) \leqslant 1$ para toda *i*.
- 2. $P(E_1) + P(E_2) + \cdots + P(E_n) = 1$

Asignación de Probabilidades

Existen tres métodos para asignar probabilidades a los resultados:

Clásico Todos los resultados son igualmente probables: si hay n posibles resultados, entonces $P(E_i) = \frac{1}{n}$ para toda i.

Frecuencia Relativa El experimento se repite muchas veces, y se utilizan las frecuencias relativas de cada resultado.

Subjetivo Se utiliza la experiencia o la intuición.

Eventos y sus Probabilidades

- ► Un evento es conjunto de posibles resultados.
- ► La probabilidad de un evento es igual a la suma de las probabilidades de sus posibles resultados.

Ejemplo

Al lanzar un dado, la probabilidad de obtener un número par es:

$$P(par) = P(2) + P(4) + P(6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2} = .5$$

Complemento de un Evento

El complemento de un evento A son los resultados que no están en A:

$$P(A^c) = 1 - P(A)$$

Unión de Dos Eventos

La unión de A y B son los resultados que pertencen a A, B o ambos.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Eventos Mutuamente Excluyentes

Dos eventos son mutuamente excluyentes si no tienen resultados en común.

Si A y B son mutuamente excluyentes, entonces $P(A \cup B) = P(A) + P(B)$

Probabilidad Condicional

► La probabilidad de un evento puede ser afectada por otro evento.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Eventos Independientes

Dos eventos A y B son independientes cuando la ocurrencia de uno no afecta a la probabilidad de que ocurra el otro. Esto es:

$$P(A \mid B) = P(A)$$

Regla de Multiplicación

La probabilidad de que ocurran dos eventos A y B se obtiene mediante la regla de multiplicación:

$$P(A \cap B) = P(A \mid B) \times P(B)$$

Para eventos independientes la regla de multiplicación se reduce a:

$$P(A \cap B) = P(A) \times P(B)$$

Regla de Multiplicación

La probabilidad de que ocurran dos eventos A y B se obtiene mediante la regla de multiplicación:

$$P(A \cap B) = P(A \mid B) \times P(B)$$

Para eventos independientes la regla de multiplicación se reduce a:

$$P(A \cap B) = P(A) \times P(B)$$

Teorema de Bayes

- ► La revisión de probabilidades ante *nueva evidencia* es sumamente importante.
- ► El Teorema de Bayes nos permite obtener probabilidades posteriores a la nueva evidencia.
- ▶ Mediante este teorema podemos obtener $P(A \mid B)$ si conocemos $P(B \mid A)$:

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

- ▶ 4% de cierta población usa drogas: P(D) = .04
- ▶ 5% de falsos positivos: $P(+ | \neg D) = .05$
- ▶ 10 % de falsos negativos: $P(- \mid D) = .1$
- ► ¿Probabilidad de no consumir drogas dado un resultado positivo?

$$P(\neg D \mid +) = \frac{P(+ \mid \neg D) \times P(\neg D)}{P(+)} = \frac{.05 \times .96}{(.05 \times .96) + (.9 \times .04)} = \frac{.048}{.084} = .5714$$

- ▶ 4% de cierta población usa drogas: P(D) = .04
- ▶ 5% de falsos positivos: $P(+ | \neg D) = .05$
- ▶ 10 % de falsos negativos: $P(- \mid D) = .1$
- ► ¿Probabilidad de no consumir drogas dado un resultado positivo?

$$P(\neg D \mid +) = \frac{P(+ \mid \neg D) \times P(\neg D)}{P(+)} = \frac{.05 \times .96}{(.05 \times .96) + (.9 \times .04)} = \frac{.048}{.084} = .5714$$

- ▶ 4% de cierta población usa drogas: P(D) = .04
- ▶ 5% de falsos positivos: $P(+ | \neg D) = .05$
- ▶ 10 % de falsos negativos: $P(- \mid D) = .1$
- ¿Probabilidad de no consumir drogas dado un resultado positivo?

$$P(\neg D \mid +) = \frac{P(+ \mid \neg D) \times P(\neg D)}{P(+)} = \frac{.05 \times .96}{(.05 \times .96) + (.9 \times .04)} = \frac{.048}{.084} = .5714$$

- ▶ 4% de cierta población usa drogas: P(D) = .04
- ▶ 5% de falsos positivos: $P(+ | \neg D) = .05$
- ▶ 10 % de falsos negativos: $P(- \mid D) = .1$
- ¿Probabilidad de no consumir drogas dado un resultado positivo?

$$P(\neg D \mid +) = \frac{P(+ \mid \neg D) \times P(\neg D)}{P(+)} = \frac{.05 \times .96}{(.05 \times .96) + (.9 \times .04)} = \frac{.048}{.084} = .5714$$

- ▶ 4% de cierta población usa drogas: P(D) = .04
- ▶ 5% de falsos positivos: $P(+ | \neg D) = .05$
- ▶ 10 % de falsos negativos: $P(- \mid D) = .1$
- ► ¿Probabilidad de no consumir drogas dado un resultado positivo?

$$P(\neg D \mid +) = \frac{P(+ \mid \neg D) \times P(\neg D)}{P(+)} = \frac{.05 \times .96}{(.05 \times .96) + (.9 \times .04)} = \frac{.048}{.084} = .5714$$

- ▶ 4% de cierta población usa drogas: P(D) = .04
- ▶ 5 % de falsos positivos: $P(+ | \neg D) = .05$
- ▶ 10 % de falsos negativos: $P(- \mid D) = .1$
- ¿Probabilidad de no consumir drogas dado un resultado positivo?

$$P(\neg D \mid +) = \frac{P(+ \mid \neg D) \times P(\neg D)}{P(+)} = \frac{.05 \times .96}{(.05 \times .96) + (.9 \times .04)} = \frac{.048}{.084} = .5714$$

¿Preguntas?

cvgonzalez@up.edu.mx

@vladoxNCL

@v1ad0x

