Nevezetes határértékek

Tartalom

az e-szám n-edik gyök

az e-szám

Tartalom-e

Alap

Tartalom

Alap

$$\exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Alap-Mo Tartalom-e

Alap-Mo

A számtani-mértani közép miatt:

$$1\left(1+\frac{1}{n}\right)^n < \left(\frac{1+1+\frac{1}{n}+\dots+1+\frac{1}{n}}{n+1}\right)^{n+1} = \left(1+\frac{1}{n+1}\right)^{n+1}$$

az $a_n = \left(1 + \frac{1}{n}\right)^n$ szigorúan monoton nő.

A mértani-harmonikus közép miatt:

$$1\left(1+\frac{1}{n}\right)^{n+1} > \left(\frac{n+2}{1+1-\frac{1}{n+1}+\dots+1-\frac{1}{n+1}}\right)^{n+2} = \left(1+\frac{1}{n+1}\right)^{n+2}$$

az $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ szigorúan monoton csökken. Könnyen látható, hogy:

$$a_n < b_m \qquad \forall m, n$$
$$b_n - a_n = \frac{a_n}{n}$$

Mindezek miatt a sorozatok konvergensek és a határértékeik egybeesnek. Ezt a számot e-vel szokták jelölni.

Alap

n-edik gyök

Tartalom-nthroot

Konstans

n

Tartalom

Konstans

$$a^{\frac{1}{n}} \to 1$$
 $a \in \mathbb{R}$

Konstans-Mo Tartalom-nthroot

Konstans-Mo

Legyen a > 1, ekkor valamely $a_n > 0$ sorozattal $a^{\frac{1}{n}} = 1 + a_n$. A következő megállapításokat tehetjük:

$$a = (1 + a_n)^n \ge 1 + na_n$$
 (Bernoulli)
$$\frac{a-1}{n} \ge a_n$$

$$1 \le a^{\frac{1}{n}} \le 1 + \frac{a-1}{n}$$

$$a^{\frac{1}{n}} \to 1$$
 (rendőr-elv)

a < 1 esetén alkalmazzuk $\frac{1}{a}$ -ra a fentieket.

Konstans

n

$$n^{\frac{1}{n}} \to 1$$

n-Mo Tartalom-nthroot

n-Mo

A következő megállapításokat tehetjük:

$$n = (1 + a_n)^n \ge 1 + \frac{n(n-1)}{2} a_n^2 \qquad \text{(Binomiális)}$$

$$\sqrt{\frac{2}{n}} \ge a_n$$

$$1 \le n^{\frac{1}{n}} \le 1 + \sqrt{\frac{2}{n}}$$

$$n^{\frac{1}{n}} \to 1 \qquad \text{(rendőr-elv)}$$

n