

Zichuan Liu^{1,2}, Zefan Wang³, Linjie Xu^{2,4}, Jinyu Wang², Lei Song², Tianchun Wang⁵, Chunlin Chen¹, Wei Cheng⁶, Jiang Bian²

¹Nanjing University, ²Microsoft Research Asia, ³Tsinghua University, ⁴Queen Mary University of London, ⁵Pennsylvania State University, ⁶NEC Laboratories America

1. Background and Challenge

How do you defend against jailbreaking prompts?

Perturbation! $\widetilde{X} = M \odot X + (1-M) \odot \mu$

2. Motivation of Information Bottleneck

Objective: $X_{\text{sub}}^* \coloneqq \underset{\mathbb{P}(X_{\text{sub}}|X)}{\operatorname{arg\,min}} \alpha \underbrace{I(X; X_{\text{sub}})}_{Compression} - \underbrace{I(Y; X_{\text{sub}})}_{Prediction},$

where, $X_{\mathrm{sub}} = X \odot M$

- Defending against adversarial prompts
- Without losing much of its information
- Responding to normal prompts

> Comparison between ours and baselines

Method	Finetuning	Filter	Support Ensemble	Information Extraction	Transferability	Support Black-box	Inference Cost
Fine-tuning	/	X	No	X	✓	No	Low
Unlearning LLM	✓	×	No	×	✓	No	Low
Self Defense	×	_	No	✓	×	Yes	High
Smooth LLM	×	✓	Yes	×	_	Yes	Medium
RA-LLM	×	✓	Yes	×	_	Yes	Medium
Semantic Smooth	×	✓	Yes	✓	_	Yes	High
IBProtector	/	✓	Yes	✓	✓	Yes	Low

3. Methodology

Learning Objective:

$$\mathcal{L} = \mathcal{L}_{info} + \alpha(\mathcal{L}_M + \lambda \mathcal{L}_{con})$$
 informative, compressed, connective

 \triangleright Modify the Compression Quantifier $I(X; X_{\text{sub}})$

Given
$$p_{\phi} \sim \mathbb{P}_{\phi}$$
: $p_{\phi}(X_{\leq t}) = \pi_t | t \in [T]$

 $I(X; X_{\mathrm{sub}}) \leq \mathbb{E}_X \left[D_{\mathrm{KL}} [\mathbb{P}_{\phi}(X_{\mathrm{sub}}|X) \| \mathbb{Q}(X_{\mathrm{sub}})] \right],$ Reformulated as:

$$\mathcal{L}_{M} = \sum_{t=1}^{T} \left[\pi_{t} \log(\frac{\pi_{t}}{r}) + (1 - \pi_{t}) \log(\frac{1 - \pi_{t}}{1 - r}) \right]$$

 \triangleright Enhance the coherence in X_{sub}

$$\mathcal{L}_{\text{con}} = \frac{1}{T} \cdot \sum_{t=1}^{T-1} \sqrt{(\pi_{t+1} - \pi_t)^2}$$

 \triangleright The Informativeness Quantifier $H(Y|X_{\text{sub}})$

$$H(Y|X_{\mathrm{sub}}) = -\sum_{X,Y} p(X\odot M,Y) \log p(Y|X\odot M)$$

Reformulated as:

$$\mathcal{L}_{ ext{info}} = \underbrace{-\sum_{t=1}^{|Y|} \log p(Y_t | \widetilde{X}, Y_{< t})}_{ ext{Cross Entropy}} + \underbrace{\sum_{t=1}^{|Y|} D_{ ext{KL}} \Big[f_{ ext{tar}}(\widetilde{X}, Y_{< t}) || f_{ ext{tar}}(X, Y_{< t}) \Big]}_{ ext{In-distribution}}$$

4. Experiments

> Defence Experiments

Lower Attack Success Rate, Higher Benign Answering Rate!

Experiment		Prompt-level Jailbreak (PAIR)			Token-level Jailbreak (GCG)			TriviaQA
Model	Method	ASR ↓	Harm ↓	GPT-4↓	ASR↓	Harm↓	GPT-4↓	BAR↑
	Original Attack	87.5%	4.034	3.008	82.5%	0.244	4.300	97.8%
Vicuna (13b-v1.5)	Fine-tuning	62.5%	2.854	2.457	32.5%	0.089	2.114	94.8%
	Unlearning LLM	66.7%	2.928	2.496	40.8%	0.123	2.537	92.2%
	Self Defense	44.2%	2.585	1.692	12.5%	-1.170	1.400	79.6%
	Smooth LLM	68.3%	3.115	2.642	24.2%	<u>-1.252</u>	1.767	90.9%
	RA-LLM	34.2%	2.446	1.832	8.3%	-1.133	1.411	95.2%
	Semantic Smooth	20.0%	<u>2.170</u>	<u>1.525</u>	1.7%	-0.842	<u>1.058</u>	<u>95.7%</u>
	IBProtector	19.2%	1.971	1.483	1.7%	-1.763	1.042	96.5%
	Original Attack	67.5%	3.852	1.617	27.5%	0.325	2.517	98.7%
	Fine-tuning	47.5%	2.551	1.392	12.5%	-0.024	1.233	97.0%
	Unlearning LLM	49.2%	2.507	1.383	12.5%	-0.084	1.258	97.4%
LLaMA-2	Self Defense	45.0%	2.682	1.525	11.7%	0.208	1.492	92.6%
(7b-chat-hf)	Smooth LLM	43.3%	2.394	1.342	4.2%	0.189	1.100	95.2%
	RA-LLM	40.0%	2.493	1.362	4.2%	-0.070	1.116	97.0%
	Semantic Smooth	40.8%	2.250	<u>1.333</u>	10.0%	<u>-0.141</u>	1.417	96.5%
	IBProtector	16.7%	1.315	1.125	0.8%	-1.024	1.000	97.0%

> Defend against other attack methods

	Vicuna (13b-v1.5)			LLaMA-2 (7b-chat-hf)			
Method	ASR↓	Harm ↓	GPT-4↓	ASR↓	Harm ↓	GPT-4↓	
Original Attack	88.6%	2.337	4.225	29.0%	2.167	1.883	
Fine-tuning	26.8%	1.124	1.772	5.1%	1.597	1.192	
Unlearning LLM	28.3%	1.127	1.815	5.1%	1.534	1.233	
Self Defense	28.7%	1.291	1.725	8.7%	1.439	1.792	
Smooth LLM	81.1%	1.673	2.168	35.5%	1.720	1.992	
RA-LLM	54.1%	1.027	1.892	2.2%	1.484	1.253	
Semantic Smooth	49.2%	<u>0.417</u>	2.022	5.1%	<u>1.116</u>	<u>1.101</u>	
IBProtector	18.9%	0.031	1.854	0.7%	0.608	1.036	

Protect other target models

Low Inference Cost

Method	Theoretical Cost	Simplify
Original Attack	$C_{\text{ori}} = T \times c_X + \hat{Y} \times c_Y$	$C_{ m ori}$
Fine-tuning	$C_{\mathrm{sft}} = T \times c_X + \hat{Y} \times c_Y$	$pprox C_{ m ori}$
Unlearning LLM	$C_{\text{unlearning}} = T \times c_X + \hat{Y} \times c_Y$	$pprox C_{ m ori}$
Self Defense	$C_{\text{self def}} = C_{\text{ori}} + (\hat{Y} \times c_X + \hat{Y}' \times c_Y)$	$\approx 2 \times C_{ m ori}$
Smooth LLM	$C_{\text{smooth}} = n \times [(1-k)T \times c_X + kT \times c_\mu + \hat{Y} \times c_Y]$	$\approx n \times C_{ m ori}$
RA-LLM	$C_{\mathrm{ra}} = n \times [(1-k)T \times c_X + \hat{Y} \times c_Y]$	$\approx n \times C_{ m ori}$
Semantic Smooth	$C_{\text{semantic}} = 2n \times [T \times c_X + T' \times c_Y + T' \times c_X + \hat{Y} \times c_Y]$	$\approx 2n \times C_{\rm ori}$
IBProtector	$T \times c_p + (1-k)T \times c_X + kT \times c_\mu + \hat{Y} \times c_Y$	$\approx C_{ m ori}$