

Acta Crystallographica Section E

#### **Structure Reports**

#### **Online**

ISSN 1600-5368

# 1,4-Bis(3-methylphenyl)piperazine-2,5-dione

#### Yongjun Liu,\* Xuefeng Sun and Yonghong Wen

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: pubsliu@163.com

Received 20 May 2012; accepted 11 June 2012

Key indicators: single-crystal X-ray study; T = 153 K; mean  $\sigma(C-C) = 0.003$  Å; R factor = 0.052; wR factor = 0.137; data-to-parameter ratio = 14.3.

The asymmetric unit of the title compound,  $C_{18}H_{18}N_2O_2$ , consists of two independent molecules, each of which is located about a center of inversion. The molecules are not planar, showing dihedral angles of 55.84 (9) and 54.10 (8)° between the piperazinedione and the aromatic rings. The piperazine N atoms exhibit a planar configuration. The crystal packing is stabilized by intermolecular  $C-H\cdots O$  hydrogen bonds.

#### **Related literature**

For background to the applications of piperazinedione and its derivatives, see: Acharya *et al.* (2001); Fischer (2003); Krchnak *et al.* (1996); Paradisi *et al.* (2002). For the syntheses and structures of piperazinediones, see: Wen *et al.* (2006); Zhang *et al.* (2007).

#### **Experimental**

Crystal data

 $\begin{array}{lll} C_{18}H_{18}N_{2}O_{2} & a=12.6608 \ (15) \ \text{Å} \\ M_{r}=294.34 & b=6.1508 \ (7) \ \text{Å} \\ \text{Monoclinic, } P2_{1}/n & c=19.223 \ (2) \ \text{Å} \\ \end{array}$ 

 $β = 95.142 (2)^{\circ}$   $μ = 0.09 \text{ mm}^{-1}$   $V = 1490.9 (3) \text{ Å}^{3}$  T = 153 K Z = 4  $0.38 \times 0.12 \times 0.10 \text{ mm}$  Mo Kα radiation

Data collection

 $\begin{array}{ll} \mbox{Bruker SMART CCD area-detector} \\ \mbox{diffractometer} \\ \mbox{Absorption correction: multi-scan} \\ \mbox{($SADABS$; Sheldrick, 1996)} \\ \mbox{$T_{\rm min} = 0.968$, $T_{\rm max} = 0.991$} \end{array} \begin{array}{ll} 7835 \mbox{ measured reflections} \\ 2078 \mbox{ reflections with } I > 2\sigma(I) \\ R_{\rm int} = 0.029 \end{array}$ 

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.052 & 199 \ {\rm parameters} \\ WR(F^2) = 0.137 & {\rm H-atom\ parameters\ constrained} \\ S = 1.02 & \Delta\rho_{\rm max} = 0.19\ {\rm e\ \mathring{A}^{-3}} \\ 2836\ {\rm reflections} & \Delta\rho_{\rm min} = -0.22\ {\rm e\ \mathring{A}^{-3}} \end{array}$ 

**Table 1** Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$                     | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-H\cdots A$ |
|-----------------------------------|------|-------------------------|-------------------------|---------------|
| C8-H8 <i>B</i> ···O1 <sup>i</sup> | 0.97 | 2.53                    | 3.494 (2)               | 173           |
| C14—H14A···O2i                    | 0.93 | 2.45                    | 3.325 (3)               | 158           |

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The project was supported by the Promotive Research Fund for Excellent Young and Middle-Aged Scientists of Shandong Province (BS2011CL019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2169).

#### References

Acharya, A. N., Ostresh, J. M. & Houghten, R. A. (2001). *J. Comb. Chem.* 3, 612–623.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Fischer, P. M. (2003). J. Pept. Sci. 9, 9–35.

Krchnak, V., Weichsel, A. S., Cabel, D., Flegelova, Z. & Lebl, M. (1996). Mol. Div. 1, 149–164.

Paradisi, F., Piccinelli, F., Porzi, G. & Sandri, S. (2002). Tetrahedron Asymmetry, 13, 497–502.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2006). *Asian J. Chem.* **18**, 1032–1038.

Zhang, S.-S., Wen, Y.-H., Tang, X.-F. & Li, X.-M. (2007). Chin. J. Chem. 25, 714–717.

Acta Cryst. (2012). E68, o2115 [doi:10.1107/S1600536812026372]

### 1,4-Bis(3-methylphenyl)piperazine-2,5-dione

### Yongjun Liu, Xuefeng Sun and Yonghong Wen

#### Comment

Piperazinediones form an important class of biologically active natural products (Fischer *et al.*, 2003), and represent important precursors for the synthesis of peptides and non-natural amino acids (Paradisi *et al.*, 2002). Recently, piperazinediones have gained importance in drug discovery (Krchnak *et al.*, 1996), and opioid receptor agonists and antagonists (Acharya *et al.*, 2001). Here, we report the crystal structure of the title compound.

The title compound consists of two crystallographically independent  $C_{18}H_{18}N_2O_2$  molecules in the asymmetric unit of the centrosymmetric space group  $P2_1/n$  (Fig. 1). Each molecule is located on a center of inversion. All bond lengths and angles of two independent molecules are comparable with those in the related compounds (Wen *et al.*, 2006; Zhang *et al.*, 2007). The molecules are not planar showing dihedral angles of 55.84 (9)° and 54.10 (8)° between the piperazinedione and the aromatic rings, which is different from the *ortho*-substituted isomer 1,4-bis(2-methylphenyl)piperazine-2,5-dione (Wen *et al.*, 2006). The sum of the bond angles around N1 (360.00°) and N2 (359.98°) indicates the piperazine N atoms have also a planar configuration, different from the normal pyramidal configuration of the N atom. This difference is mainly due to the  $\pi$ -conjugation effects arising from the presence of the two C=O double bonds. In addition, the crystal packing exhibit intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2).

#### **Experimental**

The title compound was prepared according to the literature method (Wen *et al.*, 2006). Colourless single crystals of the title compound suitable for X-ray diffraction study were obtained by slow evaporation of an ethanol solution over a period of 20 d.

#### Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å and  $U_{iso}(H)$  =  $1.2U_{eq}(C)$  for aromatic H atoms, with C—H = 0.97 Å and  $U_{iso}(H)$  =  $1.2U_{eq}(C)$  for methylene H atoms, and with C—H = 0.96 and  $U_{iso}(H)$  =  $1.5U_{eq}(C)$  for methyl H atoms.

#### **Computing details**

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).



Figure 1

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids.



Figure 2

The packing diagram of the title compound, viewed down the c axis, showing the intermolecular hydrogen bonds (dashed

### 1,4-Bis(3-methylphenyl)piperazine-2,5-dione

| $V = 1490.9 (3) \text{ Å}^3$                          |
|-------------------------------------------------------|
| Z = 4                                                 |
| F(000) = 624                                          |
| $D_{\rm x} = 1.311 {\rm Mg m}^{-3}$                   |
| Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ |
| Cell parameters from 1825 reflections                 |
| $\theta = 3.2-23.9^{\circ}$                           |
| $\mu = 0.09 \text{ mm}^{-1}$                          |
|                                                       |

T = 153 KBlock, colourless

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and  $\omega$  scans Absorption correction: multi-scan

(SADABS; Sheldrick, 1996)  $T_{\text{min}} = 0.968, T_{\text{max}} = 0.991$ 

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.052$   $wR(F^2) = 0.137$  S = 1.022836 reflections 199 parameters 0 restraints Primary atom site location: structure-invariant

Primary atom site location: structure-invariant direct methods

 $0.38 \times 0.12 \times 0.10 \text{ mm}$ 

7835 measured reflections 2836 independent reflections 2078 reflections with  $I > 2\sigma(I)$   $R_{\rm int} = 0.029$   $\theta_{\rm max} = 25.7^{\circ}, \, \theta_{\rm min} = 1.9^{\circ}$ 

 $h = -15 \rightarrow 15$   $k = -7 \rightarrow 7$   $l = -23 \rightarrow 12$ 

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\hat{\sigma^2}(F_0^2) + (0.0664P)^2 + 0.2932P]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\rm max} < 0.001$   $\Delta\rho_{\rm max} = 0.19 \text{ e Å}^{-3}$  $\Delta\rho_{\rm min} = -0.22 \text{ e Å}^{-3}$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|      | x            | y          | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|------------|--------------|-----------------------------|--|
| O2   | 0.14816 (10) | 0.1901(2)  | 0.50117 (7)  | 0.0517 (4)                  |  |
| N2   | 0.09833 (10) | 0.5171(2)  | 0.54147 (8)  | 0.0372 (4)                  |  |
| O1   | 0.53271 (11) | 1.1732 (2) | 0.59161 (8)  | 0.0571 (4)                  |  |
| N1   | 0.58560 (11) | 1.5000(2)  | 0.55280 (8)  | 0.0423 (4)                  |  |
| C15  | 0.19661 (13) | 0.5530(3)  | 0.58423 (9)  | 0.0369 (4)                  |  |
| C16  | 0.08291 (13) | 0.3358 (3) | 0.50265 (9)  | 0.0383 (4)                  |  |
| C14  | 0.25272 (14) | 0.7430(3)  | 0.57627 (10) | 0.0432 (5)                  |  |
| H14A | 0.2275       | 0.8470     | 0.5438       | 0.052*                      |  |
| C6   | 0.67677 (14) | 1.5123 (3) | 0.60368 (10) | 0.0434 (5)                  |  |
| C7   | 0.52080 (14) | 1.3255 (3) | 0.55088 (11) | 0.0431 (5)                  |  |
| C1   | 0.75220 (14) | 1.3485 (3) | 0.60645 (10) | 0.0442 (5)                  |  |
| H1A  | 0.7416       | 1.2280     | 0.5774       | 0.053*                      |  |
| C10  | 0.23305 (13) | 0.4011 (3) | 0.63376 (9)  | 0.0410 (5)                  |  |
| H10A | 0.1942       | 0.2748     | 0.6391       | 0.049*                      |  |
| C13  | 0.34654 (15) | 0.7763 (3) | 0.61707 (11) | 0.0499 (5)                  |  |

| H13A | 0.3853       | 0.9026     | 0.6116       | 0.060*     |
|------|--------------|------------|--------------|------------|
| C8   | 0.56977 (15) | 1.6836 (3) | 0.50490 (11) | 0.0487 (5) |
| H8A  | 0.6345       | 1.7026     | 0.4821       | 0.058*     |
| H8B  | 0.5608       | 1.8130     | 0.5326       | 0.058*     |
| C17  | 0.02008 (14) | 0.6913 (3) | 0.54148 (11) | 0.0480 (5) |
| H17A | 0.0532       | 0.8236     | 0.5267       | 0.058*     |
| H17B | 0.0038       | 0.7134     | 0.5893       | 0.058*     |
| C12  | 0.38306 (15) | 0.6248 (3) | 0.66558 (11) | 0.0505 (5) |
| H12A | 0.4468       | 0.6493     | 0.6924       | 0.061*     |
| C11  | 0.32667 (14) | 0.4345 (3) | 0.67562 (10) | 0.0443 (5) |
| C5   | 0.69087 (17) | 1.6911 (3) | 0.64691 (11) | 0.0563 (6) |
| H5A  | 0.6405       | 1.8015     | 0.6450       | 0.068*     |
| C9   | 0.92602 (17) | 1.1862 (4) | 0.65370 (13) | 0.0715 (7) |
| H9A  | 0.9037       | 1.0751     | 0.6205       | 0.107*     |
| Н9В  | 0.9353       | 1.1243     | 0.6997       | 0.107*     |
| Н9С  | 0.9920       | 1.2472     | 0.6420       | 0.107*     |
| C4   | 0.78057 (19) | 1.7042 (4) | 0.69301 (12) | 0.0656 (7) |
| H4A  | 0.7901       | 1.8230     | 0.7229       | 0.079*     |
| C2   | 0.84310 (15) | 1.3621 (4) | 0.65189 (10) | 0.0507 (5) |
| C18  | 0.36529 (18) | 0.2729 (4) | 0.73046 (12) | 0.0676 (7) |
| H18A | 0.3167       | 0.1528     | 0.7298       | 0.101*     |
| H18B | 0.3697       | 0.3412     | 0.7755       | 0.101*     |
| H18C | 0.4341       | 0.2210     | 0.7211       | 0.101*     |
| C3   | 0.85602 (18) | 1.5430 (4) | 0.69520 (12) | 0.0637 (6) |
| Н3А  | 0.9166       | 1.5552     | 0.7261       | 0.076*     |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| O2  | 0.0451 (8)  | 0.0387 (7)  | 0.0687 (9)  | 0.0118 (6)   | -0.0098 (7)  | -0.0062 (7)  |
| N2  | 0.0339 (8)  | 0.0303 (8)  | 0.0456 (9)  | 0.0019 (6)   | -0.0069(7)   | 0.0003 (7)   |
| O1  | 0.0545 (8)  | 0.0430(8)   | 0.0724 (10) | -0.0054(6)   | -0.0018 (7)  | 0.0148 (7)   |
| N1  | 0.0392(8)   | 0.0338 (8)  | 0.0535 (10) | -0.0026(6)   | 0.0027 (7)   | 0.0021 (7)   |
| C15 | 0.0342 (9)  | 0.0362 (9)  | 0.0392 (10) | 0.0025 (7)   | -0.0029(8)   | -0.0016(8)   |
| C16 | 0.0383 (9)  | 0.0311 (9)  | 0.0445 (11) | 0.0019(7)    | -0.0019(8)   | 0.0034(8)    |
| C14 | 0.0472 (11) | 0.0374 (10) | 0.0439 (10) | -0.0030(8)   | -0.0015 (9)  | 0.0029 (9)   |
| C6  | 0.0432 (10) | 0.0423 (10) | 0.0455 (11) | -0.0072(8)   | 0.0087 (9)   | 0.0010 (9)   |
| C7  | 0.0400 (10) | 0.0313 (9)  | 0.0592 (12) | 0.0005 (8)   | 0.0102 (9)   | 0.0007 (9)   |
| C1  | 0.0455 (11) | 0.0457 (11) | 0.0413 (11) | -0.0040(9)   | 0.0031 (9)   | -0.0003(9)   |
| C10 | 0.0378 (10) | 0.0401 (10) | 0.0441 (10) | -0.0011 (8)  | -0.0018(9)   | 0.0047 (9)   |
| C13 | 0.0447 (11) | 0.0495 (11) | 0.0544 (12) | -0.0134(9)   | -0.0009(10)  | -0.0011 (10) |
| C8  | 0.0428 (10) | 0.0357 (10) | 0.0672 (14) | -0.0047(8)   | 0.0027 (10)  | 0.0067 (10)  |
| C17 | 0.0431 (10) | 0.0355 (10) | 0.0621 (13) | 0.0075 (8)   | -0.0134 (10) | -0.0099(9)   |
| C12 | 0.0364 (10) | 0.0625 (13) | 0.0506 (12) | -0.0052(9)   | -0.0078(9)   | -0.0038 (10) |
| C11 | 0.0387 (10) | 0.0530 (12) | 0.0401 (10) | 0.0060 (9)   | -0.0025(8)   | 0.0015 (9)   |
| C5  | 0.0569 (13) | 0.0472 (12) | 0.0662 (14) | -0.0086 (10) | 0.0129 (11)  | -0.0103 (11) |
| C9  | 0.0516 (13) | 0.0829 (17) | 0.0775 (17) | 0.0030 (12)  | -0.0078 (12) | 0.0164 (14)  |
| C4  | 0.0691 (15) | 0.0647 (15) | 0.0635 (15) | -0.0252 (12) | 0.0093 (13)  | -0.0206 (12) |
| C2  | 0.0451 (11) | 0.0616 (13) | 0.0454 (11) | -0.0088 (10) | 0.0037 (9)   | 0.0078 (10)  |
| C18 | 0.0633 (14) | 0.0744 (15) | 0.0606 (14) | 0.0066 (12)  | -0.0191(12)  | 0.0146 (13)  |

| СЗ      | 0.0527 (13)         | 0.0801 (17) | 0.0565 (13) | -0.0237 (12)               | -0.0040 (11) | -0.0001 (13) |
|---------|---------------------|-------------|-------------|----------------------------|--------------|--------------|
| Geometi | ric parameters (Å   | î, °)       |             |                            |              |              |
| O2—C1   | .6                  | 1.221 (2    | 2)          | C8—C7 <sup>ii</sup>        | 1            | .499 (3)     |
| N2—C1   |                     | 1.346 (2    | <i>'</i>    | C8—H8A                     |              | 0.9700       |
| N2—C1   |                     | 1.445 (2    |             | C8—H8B                     | (            | 0.9700       |
| N2—C1   | .7                  | 1.459 (2    |             | C17—C16i                   | 1            | .500 (2)     |
| O1—C7   |                     | 1.221 (2    | *           | C17—H17A                   |              | 0.9700       |
| N1—C7   |                     | 1.349 (2    | 1           | C17—H17B                   |              | 0.9700       |
| N1—C6   |                     | 1.446 (2    | *           | C12—C11                    |              | .393 (3)     |
| N1—C8   |                     | 1.460 (2    | ,           | C12—H12A                   |              | 0.9300       |
| C15—C   |                     | 1.383 (2    |             | C11—C18                    |              | .499 (3)     |
| C15—C   |                     | 1.383 (2    |             | C5—C4                      |              | .379 (3)     |
| С16—С   |                     | 1.500 (2    |             | C5—H5A                     |              | 0.9300       |
| C14—C   |                     | 1.379 (     | *           | C9—C2                      |              | .505 (3)     |
| C14—H   |                     | 0.9300      | ,           | C9—H9A                     |              | 0.9600       |
| C6—C5   |                     | 1.380 (3    | 3)          | C9—H9B                     |              | 0.9600       |
| C6—C1   |                     | 1.386 (     | ,           | C9—H9C                     |              | 0.9600       |
| C7—C8   |                     | 1.499 (3    | 1           | C4—C3                      |              | 1.375 (3)    |
| C1—C2   |                     | 1.384 (3    | <i>'</i>    | C4—H4A                     |              | 0.9300       |
| C1—H1   |                     | 0.9300      | -)          | C2—C3                      |              | 1.391 (3)    |
| C10—C   |                     | 1.387 (2    | 2)          | C18—H18A                   |              | 0.9600       |
| C10—H   |                     | 0.9300      | -)          | C18—H18B                   |              | 0.9600       |
| C13—C   |                     | 1.369 (     | 3)          | C18—H18C                   |              | 0.9600       |
| C13—H   |                     | 0.9300      | <i>,</i>    | C3—H3A                     |              | 0.9300       |
| C13 11  | 11371               | 0.7300      |             | C5 115/1                   |              | 7.7500       |
| C16—N   | I2—C15              | 121.08      | (14)        | N2—C17—C16 <sup>i</sup>    | 1            | 18.32 (15)   |
| C16—N   | I2—C17              | 122.92      | (14)        | N2—C17—H17A                | 1            | 07.7         |
| C15—N   | I2—C17              | 115.97      | (14)        | C16 <sup>i</sup> —C17—H17A | 1            | 07.7         |
| C7—N1   | .—С6                | 120.45      | (16)        | N2—C17—H17B                | 1            | 07.7         |
| C7—N1   | .—С8                | 123.32      | (15)        | C16 <sup>i</sup> —C17—H17B | 1            | 07.7         |
| C6—N1   | .—С8                | 116.22      | (14)        | H17A—C17—H17               | B 1          | 07.1         |
| С10—С   | C15—C14             | 120.26      | (16)        | C13—C12—C11                | 1            | 21.34 (17)   |
| C10—C   | 215—N2              | 120.36      | (15)        | C13—C12—H12A               |              | 19.3         |
| C14—C   | C15—N2              | 119.37      |             | C11—C12—H12A               |              | 19.3         |
| O2—C1   |                     | 123.79      |             | C10—C11—C12                |              | 17.77 (17)   |
|         | .6—C17 <sup>i</sup> | 117.46      | ` '         | C10—C11—C18                |              | 21.18 (18)   |
|         | .6—C17 <sup>i</sup> | 118.75      |             | C12—C11—C18                |              | 21.04 (17)   |
|         | C14—C15             | 119.16      | ` /         | C4—C5—C6                   |              | 19.2 (2)     |
|         | C14—H14A            | 120.4       |             | C4—C5—H5A                  |              | 20.4         |
|         | C14—H14A            | 120.4       |             | C6—C5—H5A                  |              | 20.4         |
| C5—C6   |                     | 120.31      | (18)        | C2—C9—H9A                  |              | 09.5         |
| C5—C6   |                     | 120.09      |             | C2—C9—H9B                  |              | 09.5         |
| C1—C6   |                     | 119.54      | ` '         | H9A—C9—H9B                 |              | 09.5         |
| 01—C7   |                     | 123.53      |             | C2—C9—H9C                  |              | .09.5        |
| O1—C7   |                     | 118.20      |             | H9A—C9—H9C                 |              | 09.5         |
| N1—C7   |                     | 118.26      |             | H9B—C9—H9C                 |              | 09.5         |
|         | —С6                 | 120.76      |             | C3—C4—C5                   |              | 20.5 (2)     |
| C2 C I  |                     | -=          | \ /         |                            |              | < /          |

| C6—C1—H1A                   | 119.6        | C5—C4—H4A                   | 119.7        |
|-----------------------------|--------------|-----------------------------|--------------|
| C15—C10—C11                 | 120.95 (17)  | C1—C2—C3                    | 118.2 (2)    |
| C15—C10—H10A                | 119.5        | C1—C2—C9                    | 120.7 (2)    |
| C11—C10—H10A                | 119.5        | C3—C2—C9                    | 121.12 (19)  |
| C12—C13—C14                 | 120.50 (18)  | C11—C18—H18A                | 109.5        |
| C12—C13—H13A                | 119.8        | C11—C18—H18B                | 109.5        |
| C14—C13—H13A                | 119.8        | H18A—C18—H18B               | 109.5        |
| N1—C8—C7 <sup>ii</sup>      | 118.38 (15)  | C11—C18—H18C                | 109.5        |
| N1—C8—H8A                   | 107.7        | H18A—C18—H18C               | 109.5        |
| C7 <sup>ii</sup> —C8—H8A    | 107.7        | H18B—C18—H18C               | 109.5        |
| N1—C8—H8B                   | 107.7        | C4—C3—C2                    | 121.0 (2)    |
| C7 <sup>ii</sup> —C8—H8B    | 107.7        | C4—C3—H3A                   | 119.5        |
| H8A—C8—H8B                  | 107.1        | C2—C3—H3A                   | 119.5        |
|                             |              |                             |              |
| C16—N2—C15—C10              | -55.7 (2)    | C14—C15—C10—C11             | -0.8(3)      |
| C17—N2—C15—C10              | 126.27 (19)  | N2—C15—C10—C11              | -179.35 (17) |
| C16—N2—C15—C14              | 125.74 (19)  | C15—C14—C13—C12             | -0.9(3)      |
| C17—N2—C15—C14              | -52.3 (2)    | C7—N1—C8—C7 <sup>ii</sup>   | -2.2(3)      |
| C15—N2—C16—O2               | 1.0(3)       | C6—N1—C8—C7 <sup>ii</sup>   | 177.36 (16)  |
| C17—N2—C16—O2               | 178.81 (19)  | C16—N2—C17—C16 <sup>i</sup> | 1.3 (3)      |
| C15—N2—C16—C17 <sup>i</sup> | -179.17 (17) | C15—N2—C17—C16 <sup>i</sup> | 179.26 (16)  |
| C17—N2—C16—C17 <sup>i</sup> | -1.3(3)      | C14—C13—C12—C11             | -0.5(3)      |
| C10—C15—C14—C13             | 1.6 (3)      | C15—C10—C11—C12             | -0.6(3)      |
| N2—C15—C14—C13              | -179.86 (17) | C15—C10—C11—C18             | 178.63 (19)  |
| C7—N1—C6—C5                 | -126.3 (2)   | C13—C12—C11—C10             | 1.3 (3)      |
| C8—N1—C6—C5                 | 54.1 (2)     | C13—C12—C11—C18             | -177.93 (19) |
| C7—N1—C6—C1                 | 56.7 (2)     | C1—C6—C5—C4                 | -0.3(3)      |
| C8—N1—C6—C1                 | -122.93 (19) | N1—C6—C5—C4                 | -177.27 (19) |
| C6—N1—C7—O1                 | 1.7 (3)      | C6—C5—C4—C3                 | 1.1 (3)      |
| C8—N1—C7—O1                 | -178.69 (18) | C6—C1—C2—C3                 | 0.8 (3)      |
| C6—N1—C7—C8 <sup>ii</sup>   | -177.35 (17) | C6—C1—C2—C9                 | -178.7(2)    |
| C8—N1—C7—C8 <sup>ii</sup>   | 2.2 (3)      | C5—C4—C3—C2                 | -0.9(4)      |
| C5—C6—C1—C2                 | -0.7(3)      | C1—C2—C3—C4                 | 0.0(3)       |
| N1—C6—C1—C2                 | 176.35 (17)  | C9—C2—C3—C4                 | 179.4 (2)    |
| -                           |              |                             |              |

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+3, -z+1.

### Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>               | <i>D</i> —Н | HA   | D···A     | <i>D</i> —H··· <i>A</i> |
|---------------------------------------|-------------|------|-----------|-------------------------|
| C8—H8 <i>B</i> ····O1 <sup>iii</sup>  | 0.97        | 2.53 | 3.494(2)  | 173                     |
| C14—H14 <i>A</i> ···O2 <sup>iii</sup> | 0.93        | 2.45 | 3.325 (3) | 158                     |

Symmetry code: (iii) x, y+1, z.