Resumos de TC

Gonçalo Rua

2023

1 Conceitos Básicos

1.1 Definições

- \bullet Alfabeto (Σ) conjunto finito não-vazio (de símbolos)
- $\bullet\,$ Palavra sequência finita de elementos de Σ
- Σ^* conjunto de todas as palavras com símbolos de Σ
- Palavra vazia (ϵ) pertence a Σ^* para todo o alfabeto Σ
- Linguagem (L) qualquer conjunto $L \subset \Sigma^*$

1.1.1 Nota

Num alfabeto Σ com n elementos, o número de palavras de tamanho k é n^k .

1.2 Operações sobre palavras

Sendo ω a palavra 1101 e σ a palavra 010:

- Reversão (ω^R) 1011
- Concatenação $(\omega.\sigma)$ 1101010 $(\omega.\epsilon = \epsilon.\omega = \omega)$

•
$$\omega^n = \begin{cases} \epsilon, & \text{se } n = 0 \\ \omega.\omega^n - 1, & \text{c.c.} \end{cases}$$

- Comprimento da palavra ω ($|\omega|$) 4
- n-ésimo símbolo da palavra ω (ω_n)

1.3 Operações sobre linguagens

- Linguagem complementar de L (\bar{L}) $\Sigma^* \backslash L$
- Conjunto de toas as linguages sobre Σ (\mathcal{L}^{Σ})
- \bullet Concatenação $(L_1.L_2)$ $\{uv:u\in L_1,v\in L_2\},$ assumindo que $L_1,L_2\in\mathcal{L}^\Sigma$
- Fecho de Kleene da linguagem L (L^*) { $u_1.u_2....u_n: n \in \mathbb{N}_0, u_1, u_2, ..., u_n \in L$ }

2 Autómatos

2.1 Autómatos Finitos Determinísticos (AFD)

Um AFD é um conjunto $(\Sigma, \mathbf{Q}, q_{in}, F, \delta)$:

- Σ alfabeto
- $\bullet\,$ ${\bf Q}$ conjunto finito não vazio de estados
- $q_{in} \in \mathbf{Q}$ estado inicial
- $F \subset \mathbf{Q}$ conjunto de estados finais
- $\bullet \ \delta: \mathbf{Q} \times \Sigma \to \mathbf{Q}$ função de transição

Cada AFD define uma linguagem sobre o seu alfabeto Σ .

2.1.1 Autómatos totais

Um autómato é *total* se a função de transição em cada estado estiver definida para todas as letras. Caso não seja total podemos convertê-lo em total:

- 1. adicionar um estado não final q'
- 2. estender a função de transição tal que $\delta(q,a)=q'$ para todo o par $(q,a)\in \mathbf{Q}\times \Sigma$ que a função de transição não fosse definida
- 3. definir $\delta(q', a) = q'$, para todo o $a \in \Sigma$

2.1.2 Função de transição estendida

$$\delta^*(q, w) = \begin{cases} q, & \text{se } w = \epsilon \\ \delta^*(\delta(q, a), w'), & \text{se } w = a.w' \end{cases}$$

2.1.3 Linguagem reconhecida e linguagem regular

Uma palavra $w \in \Sigma^*$ é aceite por um autómato se $\delta^*(q_{in}, w) \in F$.

O conjunto de palavras aceites por um autómato chama-se linguagem reconhecida por esse autómato:

$$L(D) = \{ w \in \Sigma^* : \delta^*(q_{in}, w) \in F \}$$

Uma linguagem L diz-se regular se existe um AFD D tal que L(D) = L. Denota-se por \mathcal{REG}^{Σ} o conjunto de todas as linguagens regulares com alfabeto Σ .

2.2 Autómatos Finitos Não Determinísticos (AFND)

Um AFND é um conjunto $(\Sigma, \mathbf{Q}, q_{in}, F, \delta)$:

- Σ alfabeto
- Q conjunto finito de estados
- $q_{in} \in \mathbf{Q}$ estado inicial
- $F \subset \mathbf{Q}$ conjunto de estados finais
- $\delta: Q \times \Sigma \to \wp(Q)$ função de transição

2.2.1 Conjunto das partes (de S)

 $\wp(S)$ representa o conjunto dos subconjuntos do conjunto S.

(ex)
$$\wp(\{0,1\}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}\$$

O tamanho do conjunto $\wp(S)$ é 2^n , sendo n o tamanho do conjunto S.

2.2.2 AFND com trasições- ϵ

Um AFND^{ϵ} é um AFND em que a sua função de transição tem domínio $Q \times (\Sigma \cup {\epsilon})$.

2.2.3 Fecho- ϵ

O fecho- ϵ do estado $q \in \mathbf{Q}$ é o conjunto $q^{\epsilon} \subset \mathbf{Q}$ tal que:

- $q \in q^{\epsilon}$
- $q' \in q^{\epsilon} \implies \delta(q', \epsilon) \subset q^{\epsilon}$

2.2.4 Função de transição estendida

$$\delta^*(q, w) = \begin{cases} q^{\epsilon} & \text{se } w = \epsilon \\ \bigcup_{q' \in q^{\epsilon}} (\bigcup_{q'' \in \delta(q', a)} \delta^*(q'', w')) & \text{se } w = a.w' \end{cases}$$

2.3 Conversão de AFNDs em AFDs

Todas as linguagens reconhecidas por AFNDs são regulares (existe um AFD que as reconhece).

2.3.1 Remoção de transições- ϵ

Dado um AFND $A = (\Sigma, \mathbf{Q}, q_i n, F, \delta)$, temos que o AFND $A' = (\Sigma, (Q), q_i n, F', \delta')$ é-lhe equivalente se:

1. Se podermos alcançar um estado final através de um movimento- ϵ , podemos considerar esse estado como sendo final:

$$F' = \{ q \in Q : q^{\epsilon} \cap F \neq \emptyset \}$$

2. Para cada estado $q \in \mathbf{Q}$ vamos ver que estados conseguimos alcançar usando apenas a letra $a \in \Sigma$. O conjunto de estados que conseguimos alcançar só com a corresponde ao resultado de aplicar a a todos os estados em q^{ϵ} e depois tirar o fecho- ϵ do resultado:

$$\delta':\mathbf{Q}\times\Sigma\to\wp(\mathbf{Q})\text{ \'e tal que }\delta'(q,a)=\bigcup_{q'\in q^\epsilon}(\bigcup_{q''\in\delta(q',a)}q''^\epsilon)\text{ para cada }q\in\mathbf{Q}\text{ e }a\in Sigma$$

2.3.2 Passar de AFND para AFD

Depois de removermos as transições- ϵ podemos passar o AFND para AFD. Dado um AFND $A = (\Sigma, \mathbf{Q}, q_i n, F, \delta)$, temos que o AFD $D = (\Sigma, \wp(\mathbf{Q}), q_i n, F', \delta')$ é-lhe equivalente se:

- 1. $F' = {\mathbf{C} \subset \mathbf{Q} : \mathbf{C} \cap F \neq \emptyset}$
- 2. $\delta':\wp(\mathbf{Q})\times\Sigma\to\wp(\mathbf{Q})$ é tal que $\delta'(\mathbf{C},a)=\bigcup_{q\in\mathbf{C}}\delta(q,a)$ para cada $\mathbf{C}\subset\mathbf{Q}$ e $a\in\Sigma$

2.4 Lema de Pumping (ou da bombagem)

Se $L \subset \Sigma^*$ é uma linguagem regular, então existe $k \in \mathbb{N}$ tal que, se $w \in L$ é uma palavra com $|w| \ge k$ então $w = w_1 w_2 w_3$ em que $w_1, w_2, w_3 \in \Sigma^*$ são tais que:

- $w_2 \neq \epsilon$
- $|w_1.w_2| \le k$
- $w_1.w_2^t.w_3 \in L$ para cada $t \in \mathbb{N}_0$

2.5 Autómatos de Pilha (AP)

Um AP é um tuplo $P = (\Sigma, \Gamma, \mathbf{Q}, q_i n, F, \delta)$:

- Σ alfabeto
- $\bullet~\Gamma$ alfabeto auxiliar
- $\bullet~{\bf Q}$ conjunto finito não vazio de estados
- $q_i n \in \mathbf{Q}$ estado inicial
- $F \subset \mathbf{Q}$ conjunto de estados finais
- $\delta : \mathbf{Q} \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to \wp(\mathbf{Q} \times (\Gamma \cup \{\epsilon\}))$

Simplificando, um AP é um AFND ao qual se adiciona uma stack, em que cada transição podemos adicionar e remover um símbolo do alfabeto auxiliar Γ (incluindo símbolos vazios). Linguagens reconhecidas por APs denominam-se linguagens independentes do contexto (\mathcal{IND}^{Σ}) .

2.5.1 Lema de Pumping para Linguagens Independentes do Contexto

Se $L \subset \Sigma^*$ é uma linguagem independente do contexto, então existe $k \in \mathbb{N}$ tal que, se $w \in L$ é uma palavra com $|w| \geq k$ então $w = w_1 w_2 w_3 w_4 w_5$ em que $w_1, w_2, w_3 \in \Sigma^*$ são tais que:

- $w_2w_4 \neq \epsilon$, ou seja $w_2 \neq \epsilon \lor w_4 \neq \epsilon$
- $|w_2.w_3.w_4| \le k$
- $w_1w_2^iw_3w_4^iw_5 \in L$ para qualquer $i \in \mathbb{N}_0$