Problem

AB is the diameter of the semicircle as shown in the figure. $CD \perp AB$, with the foot at D. Two circles O_1 ($r_1 = 12$) and O_2 ($r_2 = 8$) inscribed in the semicircle and are tangent to CD. The tangent points to AB are E_1 and E_2 , respectively. Find the length of AB.

Solution

$$\begin{array}{c} \text{Connect } O_1E_1 \text{ and } O_2E_2. \\ E_1D=O_1E_1=12.DE_2=O_2E_2=8. \\ \text{Let } AD=x, DB=y. \end{array}$$
 Then $AE_1=x-12, E_1B=y+12, AE_2=x+8, E_2B=y-8.$

Then we have $\frac{1}{AE_1} + \frac{1}{E_1B} = \frac{1}{O_1E_1}$

$$\frac{1}{AE_2} + \frac{1}{E_2B} = \frac{1}{O_2E_2}$$

Or
$$\frac{1}{x-12} + \frac{1}{y+12} = \frac{1}{12}$$

$$\frac{1}{x+8} + \frac{1}{y-8} = \frac{1}{8}$$

Solving we get x = 32, y = 18. AB = x + y = 50.