Location-based messaging on phones

(via audio networking)

Part II Project by Mark William Hogan

Communication on phones:

- GSM, GPRS, EDGE, UMTS, HSPA, WiMAX, LTE, etc.
- Wi-Fi
- Bluetooth
- NFC (Near Field Communication)

But, by definition, phones have at least one:

- Speaker
- Microphone

Here's an idea:

- Conferences: get a timetable, links to related documents
- Sharing content: send long links
- Exchanging numbers: effortless
- (Restaurants: find out the waiting time, the special of the day)

In the future, resource sharing to save power could make good use of audio networking: low power consumption, security properties.

What has been done so far?

- DTMF-style acoustic modem:
 - Half duplex working reliably using built-in hardware at 20 bps over a few metres
 - Full duplex working less reliably using built-in hardware at 20 bps over a few metres
 - Approx. average CPU usage: < 30% on Qualcomm MSM 7201A and MSM7225, < 10% on Qualcomm Snapdragon QSD8250
- Location of phone: efficient collection of data
- Database: for storing information about discovered phones
- User Interface: including notification for easily instantly stopping communication
- Integration: incoming/outgoing phone call stops audio

Difficulties

- High audio latency on Android, unreliable APIs
- Real-time processing in resource constrained environment
- Audio hardware variation in power, response curves

Still in progress

- Integration of media access control and addressing and discovery of multiple devices
- Encoding and packet structure not finalised

CPU Usage during full duplex communication

Progress Presentation

Full duplex acoustic modem

Properties and potential

- Efficiency and optimisation considered at every stage:
 - Raw microphone data can be ignored (i.e. not processed at all)
 - Admission control performs light processing in order to determine if there is significant input
 - Past processing results used to skip some of the signal processing when possible
 - Designed to cope with random noise, loss of signal at any point
 - All non-address tones needed are generated on device start or application start
 - Implementations of signal processing in Java and C: native OpenSL ES API available in Android 2.3 (target is Android 2.2)
- Ultrasound: provides different properties but phone hardware limited to range of a few centimetres
- Security: data is sent unencrypted for performance, malicious equipment to listen in and overcome unreliability of medium will either be noticeable or in close proximity to user
- Works with, rather than against commercial forces: encourages sending of SMS messages