MATH 3001 Midterm: Winter 2023 March 4, 2023

Question 1 (22 points total). Let $X \subset \mathbb{C}$, $x \in X$, $f : \mathbb{C} \to \mathbb{C}$, $(x_n)_n$ be a sequence of complex numbers on X and $(f_n)_n$ be a sequence of complex-valued functions defined on X.

- (a) (3 pts.) Define what it means for f to be continuous at x.
- (b) (4 pts.) Define what it means for $(x_n)_n$ to converge to x.
- (c) (4 pts.) Define what it means for $(f_n)_n$ to converge uniformly to f on X.
- (d) (11 pts.) Assume that each f_n is continuous on X, $(f_n)_n$ converges uniformly on to f on X and $(x_n)_n$ converges to x. Prove that $(f_n(x_n))_n$ converges to f(x).

Question 2 (20 points total). Let $(x_n)_n$ and $(y_n)_n$ be sequences of real numbers. Determine whether the following mathematical statements are true or false. Prove your answers.

- (a) (9 pts.) If $x_n \leq y_n$ for all $n \in \mathbb{N}$ and $(y_n)_n$ is a convergent sequence, then $(x_n)_n$ is a convergent sequence.
- (b) (11 pts.) If $(x_n)_n$ is increasing, $x_n \leq y_n$ for all $n \in \mathbb{N}$ and $(y_n)_n$ is a convergent sequence, then $(x_n)_n$ is a convergent sequence.

Question 3 (25 points total). Let $X \subset \mathbb{C}$, $(f_n)_n$ and $(g_n)_n$ be sequences of real-valued functions defined on X and $(s_n)_n$ the sequence of partial sums of the sequence $(f_n)_n$, that is, $s_n = f_1 + f_2 + \cdots + f_n$. Assume that

- (i) $\sup_{x \in X} |s_n(x)| \le M$ for all $n \in \mathbb{N}$.
- (ii) $g_{n+1}(x) \leq g_n(x)$ for all $n \in \mathbb{N}$ and $x \in X$.
- (iii) $(g_n)_n$ converges uniformly to the constant function g(x) = 0 on X.

Prove that the series $\sum_{i=1}^{\infty} f_i g_i$ converges uniformly on X.

Question 4 (33 points total). Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series such that $(\sqrt[n]{|a_n|})_n$ is bounded, R be the radius of convergence and $f:(-R,R)\to\mathbb{R}$ be defined by $f(x)=\sum_{n=0}^{\infty} a_n x^n$ for $x\in(-R,R)$. Suppose that there exists $x_n\in(-R,R)$ such that $(x_n)\to 0$, $x_n\neq 0$ and $f(x_n)=0$ for $n\in\mathbb{N}$.

- (a) (10 pts.) Show that f(0) = 0.
- (b) (13 pts.) Show that f is differentiable on (-R, R) and estimate f'(0). (Hint: Use the Mean Value Theorem)
- (c) (10 pts.) Show that f(x) = 0 for $x \in (-R, R)$.

Question 5 (BONUS, 10 points total). Determine whether the following mathematical statements are true or false. Prove your answers.

- (a) (6 pts.) If $\sum_{i=1}^{\infty} x_i$ is an absolutely convergent series, then $\sum_{i=1}^{\infty} x_i^2$ converges.
- (b) (4 pts.) If $\sum_{i=1}^{\infty} x_i$ and $\sum_{i=1}^{\infty} y_i$ are convergent series of real numbers, then $\sum_{i=1}^{\infty} x_i y_i$ converges.