Séries temporais

Índice

1	Cor	nceitos-chave	1			
2	Introdução					
3 Processos estocásticos						
	3.1	Procesos estocásticos estacionários	2			
	3.2 Processos estocásticos não estacionários		2			
		3.2.1 Passeio aleatório sem deslocamento	3			
		3.2.2 Passeio aleatório com deslocamento	4			
	3.3	3.3 Processos estocásticos de raiz unitária				
	3.4	Processos estocásticos de tendencia estacionária (TE) e diferença estacionária (DE)	5			
	3.5	Processos estocásticos integrados:	7			
		3.5.1 Propriedade das séries integradas	7			
	3.6	O fenômeno da regressão espúria	7			

Conceitos-chave 1

- 1. Processos estocásticos
- 2. Processos estacionários
- 3. Processos puramente aleatórios
- 4. Processos não estacionários
- 5. Variáveis integradas
- 6. Modelos de passeios aleatórios
- 7. Cointegração
- 8. Tendência determinísticas e estocásticas
- 9. Testes de raiz unitária

Introdução

- Um processo aleatório ou estocástico é uma coleção de variáveis aleatórias ordenadas no tempo.
- Notação:
 - Y(t) para variáveis aleatórias **contínuas**; Y_t para variáveis aleatórias **discretas**.

- Do mesmo modo que utilizamos as amostras de dados para extrair inferências sobre a população, em séries temporais nós utilizamos a **realização** para extrair inferências sobre o processo estocástico subjacente.
- Uma série temporal <u>não</u> estacionária terá uma média que varia com o tempo, ou uma variância que varia com o tempo, ou, ainda, ambas.
- Uma série temporal estacionária permite generalizações com base no recorte de tempo escolhido para análise.
- Um processo é **puramente aleatório** se ele tem média zero, variância constante (σ^2) e é serialmente não correlacionado.

3 Processos estocásticos

3.1 Procesos estocásticos estacionários

A.K.A: processo estocástico fracamente estacionário, covariância-estacionário, estacionário de segunda orderm, sentido amplo.

Um processo estocástico será chamado de estacionário se sua média e variância forem constantes ao longo do tempo e o valor da covariância entre os dois períodos de tempo depender apenas da distância, do intervalo ou da defasagem entre os dois períodods e não o tempo real ao qual a covariância é computada.

Média:
$$E(Y_t) = \mu$$
 (3.1)

Variância:
$$var(Y_t) = E(Y_t - \mu)^2 = \sigma^2$$
 (3.2)

Covariância:
$$\gamma_k = E[(Y_t - \mu)(Y_{t+k} - \mu)] \tag{3.3}$$

- Com k=0 obtemos γ_0 que é a variância de $Y(=\sigma^2)$.
- Com k=1 obtemos γ_1 que é a covariância de dois valores adjacentes (vizinhos) de Y.
- Com k=m obtemos γ_m que é a covariância de dois valores adjacentes (vizinhos) de Y.

As condições acima descrevem um **processo estocástico fracamente estacionário** (a.k.a covariância-estacionário, estacionário de segunda ordem, estacionário no sentido amplo).

Uma série temporal é **estritamente estacionária** se *todos* os momentos de sua distribuição de probabilidade, e não apenas a média e a variância, são invariantes ao longo do tempo. Se um processo estacionário form normal mas fracamente estacionário, ele também é considerado um processo estritamente estacionário por ser completamente especificado pelos seus dois momentos, a mádia e a variância.

Em resumo, se uma série temporal for estacionária, a média, a variância e autocovariância (em variadas defasagens) permanecerão as mesmas não importa em que ponto a mensuremos; isto é, elas serão invariantes no tempo. Tal série temporal tenderá a retornar para sua média (reversão à média), e flutuações em torno dessa média (variância) tem, em geral, uma amplitude constante.

3.2 Processos estocásticos não estacionários

Um processo estocástico não é estacionário se sua média, variância (ou ambos) variam com o tempo.

Modelo de passeio aleatório: Um bêbado move-se numa distância aleatória u_t no tempo t e, continuando a caminhar indefinidamente, eventualmente se desviará cada vez mais do bar. Um exemplo é o preço das ações. O preço da ação de hoje é igual ao de ontem mais um choque aleatório. Eles não são estacionários.

Dois tipos de passeio aleatório:

- 1. Passeio aleatório <u>sem</u> deslocamento: termo constante ou intercepto.
- 2. Passeio aleatório com deslocamento: termo constante está presente.

3.2.1 Passeio aleatório sem deslocamento

Segundo a hipótese da eficiência marginal do capital o preço das ações são essenciamente aleatórios e por conseguinte, não há margem para especulação lucrativa no mercado de ações. Se fosse possível alguma previsibilidade, então todos nós seríamos milionários! kkkk

Se u_t é um termo de puramente aleatório com média zero e variância σ^2 . O valor de Y no tempo t é igual ao seu valor no tempo anterior (t-1) mais um choque aleatório u_t :

$$Y_t = Y_{t-1} + u_t (3.4)$$

A equação anterior é um modelo **auto regressivo** (AR), onde Y é regredido no tempo t sobre seu valor defasado em um período. Com base no modelo autorregressivo, podemos desenvolver:

$$Y_1 = Y_0 + u_1 \tag{3.5}$$

$$Y_2 = Y_1 + u_2 = Y_0 + u_1 + u_2 (3.6)$$

$$Y_3 = Y_2 + u_3 = Y_0 + u_1 + u_2 + u_3 (3.7)$$

Em geral, temos a persistência de choques aleatórios, onde Y_t é a soma do Y_0 inicial mais a soma dos choques aleatórios. Um choque ocorrido em, digamos u_2 não se extingue. É por isso que se diz que o passeio aleatório tem memória infinita.

$$Y_t = Y_0 + \sum u_t \tag{3.8}$$

A média de Y é, portanto, o seu valor inicial ou de partida. A soma $\sum u_t$ também é conhecida como tendência estocástica.

$$E(Y_t) = E(Y_t + Y_0 + \sum u_t) = Y_0 \tag{3.9}$$

Mas, como t aumenta, sua variância aumenta indefinidamente, violando uma condição de estacionariedade. O Modelo de Passeio Aleatório sem deslocamento é um processo estocástico não estacionário.

$$var(Y_t) = t\sigma^2 \tag{3.10}$$

A primeira diferênça de um passeio aleatório é estacionário. Reescrevendo a equação (1) temos Δ como o primeiro operador de diferenças. As primeiras diferenças de séries temporais são estacionárias:

$$(Y_t - Y_{t-1}) = \Delta Y_t = u_t \tag{3.11}$$

3.2.2 Passeio aleatório com deslocamento

O passeio aleatório é uma generalização do caso sem deslocamento. Alterando a equação (1) com um parâmetro de deslocamento δ temos:

$$Y_t = \delta + Y_{t-1} + u_t \tag{3.12}$$

Onde este parâmetro de deslocamento desloca Y_t para cima $(\delta > 0)$ ou para baixo $(\delta < 0)$. Isso é demonstrado reescrevendo a equação anterior:

$$Y_t - Y_{t-1} = \Delta Y_t = \delta + u_t \tag{3.13}$$

Note que o passeio aleatorio sem deslocamento é apenas um caso particular dessa demonstração, onde o parâmetro de deslocamento é igual a zero. Para o modelo de passeio aleatório com deslocamento demonstramos também a violação de condições de estacionariedade (fraca).

$$E(Y_t) = Y_0 + t\delta \tag{3.14}$$

$$var(Y_t) = t\sigma^2 (3.15)$$

3.3 Processos estocásticos de raiz unitária

Escrevemos o modelo autorregressivo como:

$$Y_{t} = \rho Y_{t-1} + u_{t} \qquad -1 \le \rho \le 1 \tag{3.16}$$

- Sabemos que esse é um modelo é
 $\underline{\text{n}\tilde{\text{a}}\text{o}}$ estacionário, com variância de Y_t n
ão estacionária.
- Se $\rho=1$ então o modelo é simplesmente um modelo de passeio aleatório sem deslocamento como descrito anteriormente. $\rho=1$ é o que é conhecido como **problema de raiz unitária**.
- Se $|\rho| < 1,$ é possível demonstrar que a série temporal Y_t é estacionária.
- Se o valor inicial de $Y(=Y_0)$ é zero, $|\rho|<1$, e $X\sim\mathcal{N}(0,\,\sigma^2)$. Segue-se que $E(Y_t)=0$ e $var(Y_t)=\frac{1}{1-\rho^2}$. Como ambos os termos são constante, então, pela definição de estacionariedade fraca, Y_t é estacionária.

3.4 Processos estocásticos de tendencia estacionária (TE) e diferença estacionária (DE)

Tendência: lenta evolução de longo prazo da série temporal em consideração. A estacionáriedade é relevante para explicar a tendência da série temporal.

Uma série temporal é uma função determinística de tempo, como o tempo, tempo ao quadrado, etc. Caso contrário, se uma série de tempo é previsível, então temos uma tendência chamada de estocástica. Considere a série temporal:

$$Y_t = \beta_1 + \beta_2 t + \beta_3 Y_{t-1} + u_t \tag{3.17}$$

em que u_t é o termo de ruído puramente aleatório e t é o tempo. A diferênça entre tendências **estocásticas** e **determinísticas** pode ser vista na figura acima. A série estocástica é gerada por um modelo de passeio aleatório com deslocamento: $Y_t = 0, 5 + Y_{t-1} + u_t$, em que 500 valores de u_t foram gerados de uma distribuição padrão normal e o valor inicial de Y foi estabelecido como 1. A série chamada determinística é gerada da seguinte maneira: $Y_t = 0, 5t + u_t$ em que u_t foi gerado como o acima e t refere-se ao tempo medido cronológicamente.

Tendência deterministica versus tendência estocástica

- No caso da tendência determinística, os desvios a partir da linha de tendência são puramente aleatórios e terminam rapidamente; eles não contribuem para o desnvolvimento a longo prazo da série temporal, que é determinada pelo componente tendencial 0,5t.
- Já no caso da **tendência estocástica**, por outro lado, o componente aleatório u_t afeta o curso de longo prazo da série Y_t .

Com o modelo apresentado em (3.17), temos as possibilidades:

	Variações no modelo: $Y_t = \beta_1 + \beta_2 t + \beta_3 Y_{t-1} + u_t$										
	Classificação	Descrição	Modelo	β_1	β_2	β_3					
1	Passeio aleatório puro	Processo estacionário, sem deslocamento, em diferença (PED) com $(Y_t-Y_{t-1})=\Delta Y_t=u_t.$	$Y_t = Y_{t-1} + u_t$	= 0	= 0	= 1					
2	Passeio aleatório com deslocamento	Tendência estocástica com $\Delta Y_t=\beta_1+u_t.$ Y_t exibirá uma tendência positiva, se $\beta_1>0$ ou negativa, se $\beta_1<0.$	$Y_t = \beta_1 + Y_{t-1} + u_t$	<i>≠</i> 0	= 0	= 0					
3	Tendencia determinística	Processo de tendência estacionária (PTE) após remoção de tendência $(E(Y_t)-Y_t).$ $E(Y_t)=\beta_1+\beta_2 t$ não é constânte, mas a variância é $(=\sigma^2).$ Com β_1 e β_2 conhecidos, a média pode ser prevista.	$Y_t = \beta_1 + \beta_2 t + u_t$	<i>≠</i> 0	≠ 0	= 0					
4	Passeio aleatório com deslocamento e tendência determinística	Reescrevendo a equação fica demonstrado tanto o deslocamento (em β_1) e a tendência determinística (em $\beta_2 t$): $\Delta Y_t = \beta_1 + \beta_2 t + u_t$	$Y_t = \beta_1 + \beta_2 t + Y_{t-1} + u_t$	<i>≠</i> 0	≠ 0	= 1					
5	Tendência determinística ${ m com\ componente}$ autorregressivo ${ m AR}(1)$ estacionário	Estacionário em torno de uma tendência determinística	$Y_t = \beta_1 + \beta_2 t + \beta_3 Y_{t-1} + u_t$	≠ 0	≠ 0	< 0					

3.5 Processos estocásticos integrados:

Anteriormente vimos casos em que a estacionáriedade da série temporal é obtida já na primeira diferença. Quando isso ocorre, dizemos que trata-se de um processo **integrado de ordem 1**, ou $\mathcal{I}(1)$. Mas nem sempre é assim, para algumas séries temporais, a estacionariedade é obtida na segunda, terceita ou d-ésima ordem.

Por exemplo, se Y_t é um processo integrado de ordem 2, $\mathcal{I}(2)$, então ela será estácionária na segunda diferenca:

$$\Delta \Delta Y_t = \Delta Y_t - \Delta Y_{t-1} \tag{3.18}$$

$$=Y_t - 2Y_{t-1} + Y_{t-2} \tag{3.19}$$

Em geral, se uma série temporal (não estacionária) precisa ser diferenciada d vezes para se tornar estacionária, denominamos essa série temporal **integrada de ordem** d. Uma série temporal Y_t integrada de orfem d denota-se como $Y_{(d)} \sim \mathcal{I}_{(d)}$.

Se uma série temporal Y_t é estacionária dede o início (não requer diferenciação), então ela é integrada de ordem zero, denotada por $Y_t \sim \mathcal{I}(0)$.

3.5.1 Propriedade das séries integradas

Seja X_t , Y_t e Z_t três séries temporais:

- 1. Se $X_t \sim \mathcal{I}(0)$ e $Y_t \sim \mathcal{I}(1),$ então $Z_t = (X_t + Y_t) = \mathcal{I}(1);$
- 2. Se $X_t \sim \mathcal{I}(d)$, então $Z_t = (a + bX_t) = \mathcal{I}(d)$, em que a e b são constantes;
- 3. Se $X_t \sim \mathcal{I}(d_1)$ e $Y_t \sim \mathcal{I}(d_2)$, então $Z_t = (aX_t + bY_t) \sim \mathcal{I}(d_2)$, em que $d_1 < d_2$;
- 4. Se $X_t \sim \mathcal{I}(d)$ e $Y_t \sim \mathcal{I}(d)$, então $Z_t = (aX_t + bY_t) \sim \mathcal{I}(d_*)$, onde d_* normalmente é igual a d, mas em alguns casos, $d_* < d$.

3.6 O fenômeno da regressão espúria

Considere os dois modelos de passeio aleatório a seguir:

$$Y_t = Y_{t-1} + u_t (3.20)$$

$$X_t = X_{t-1} + v_t (3.21)$$

Onde $u \sim \mathcal{N}(0,1)$ e $v \sim \mathcal{N}(0,1)$ e os valores iniciais de X e Y são zero, u e v são serialmente não correlacionados, bem como mutuamente não correlacionados. Uma vez que Y_t e X_t são não correlacionados e estacionários de ordem ' $(\mathcal{I}(1))$, o R^2 de uma regressão de Y_t em relação a X_t deveria tender a zero, o que não ocorre:

Variable	Estimate	Std. Error	t value
$\begin{matrix} \text{Intercept} \\ X \end{matrix}$	$18.534 \\ 0.218$	$0.486 \\ 0.022$	$38.127 \\ 9.871$
$R^2 = 0.164$		d = 0.02	26

O resultado é um X com significância estatística e R^2 diferente d zero. Essa é a característica principal do **fenômeno de regressão espúria ou sem sentido**. Podemos adotar a regra de bolso: $uma R^2$ é uma boa regra de bolso para suspeitar que a regressão estimada seja espúria.