Topology

Robin Adams

May 30, 2021

# Contents

| 1 | $\mathbf{Set}$ | Theory                                         | 4         |
|---|----------------|------------------------------------------------|-----------|
|   | 1.1            | Sets and Functions                             | 4         |
|   |                | 1.1.1 Primitive Notions                        | 4         |
|   |                | 1.1.2 The Axiom of Associativity               | 4         |
|   |                | 1.1.3 Identity Functions                       | 4         |
|   |                | 1.1.4 Retractions and Sections                 | 5         |
|   | 1.2            | The Terminal Set                               | 5         |
|   | 1.3            | The Empty Set                                  | 5         |
|   | 1.4            | Products                                       | 5         |
|   | 1.5            | Function Sets                                  | 6         |
|   | 1.6            | Inverse Images                                 | 6         |
|   | 1.7            | The Subset Classifier                          | 6         |
|   | 1.8            | The Axiom of Extensionality                    | 6         |
|   | 1.9            | The Axiom of Non-degeneracy                    | 6         |
|   | 1.10           | The Natural Numbers                            | 7         |
|   | 1.11           | 1 HO 1 H HO HO C C C C C C C C C C C C C C C C | 7         |
|   | 1.12           | The Basics                                     | 7         |
|   | 1.13           | Refinements                                    | 8         |
|   | 1.14           | Order Theory                                   | 8         |
| 2 | Rea            | l Analysis                                     | <b>12</b> |
| 3 | Тор            |                                                | 13        |
|   | 3.1            | Topologies                                     | 13        |
|   | 3.2            |                                                | 14        |
|   | 3.3            | Open Refinements                               | 16        |
|   | 3.4            | Local Bases                                    | 16        |
|   | 3.5            | Bases                                          | 16        |
|   | 3.6            | Closed Sets                                    | 21        |
|   | 3.7            | Closed Refinements                             | 22        |
|   | 3.8            | Locally Finite Families                        | 22        |
|   | 3.9            | Countably Locally Finite Sets                  | 22        |
|   | 3.10           | Locally Discrete Sets                          | 23        |
|   | 3.11           |                                                | 23        |

|   | 3.12 | Closure of a Set                 | 23             |
|---|------|----------------------------------|----------------|
|   | 3.13 | Interior of a Set                | 26             |
|   | 3.14 | Boundary                         | 27             |
|   | 3.15 | Limit Points                     | 28             |
|   | 3.16 | Subbases                         | 28             |
|   | 3.17 | Convergence                      | 29             |
|   |      |                                  | 31             |
|   |      |                                  | 32             |
|   |      |                                  | 32             |
|   |      |                                  | 32             |
|   |      | •                                | 32             |
| 4 | Con  | structions of Topological Spaces | 33             |
| _ | 4.1  |                                  | 33             |
|   | 4.2  | 1 00                             | 37             |
|   | 4.3  |                                  | 39             |
|   | 4.4  | 1 1 00                           | 42             |
|   | 4.5  |                                  | 44             |
| 5 | Eun  |                                  | 18             |
| J | 5.1  |                                  | ±0             |
|   | 5.1  |                                  | 49             |
|   | 0.2  |                                  | 54             |
|   |      | 1                                | 5 <sub>3</sub> |
|   | 5.3  | 0.0                              | 55             |
|   | 5.4  |                                  | 56             |
|   | 5.5  |                                  | 56             |
| 6 | Son  |                                  | 57             |
| O | 6.1  |                                  | 57             |
|   | 6.2  | = 1                              | 58             |
|   | 6.3  | 1                                | 60             |
|   | 6.4  | 0 1                              | 63             |
|   | 6.5  |                                  | 66             |
|   | 6.6  |                                  | 78             |
|   | 6.7  |                                  | 10<br>81       |
|   | 0.7  | reflectly Normal Spaces          | 31             |
| 7 | Cou  | ntability Axioms 8               | 32             |
|   | 7.1  | The First Countability Axiom     | 82             |
|   | 7.2  | •                                | 85             |
|   | 7.3  | The Second Countability Axiom    | 87             |
| 8 | Con  | nectedness                       | 91             |
|   | 8.1  | Connected Spaces                 | 91             |
|   | 8.2  | •                                | 97             |
|   | 8 3  | •                                | as             |

|    | 8.4  | Connected Subspaces of Euclidean Space |
|----|------|----------------------------------------|
|    | 8.5  | Local Connectedness                    |
|    | 8.6  | Local Path Connectedness               |
|    | 8.7  | Weak Local Connectedness               |
| 9  | Con  | npact Spaces 110                       |
|    | 9.1  | Countable Compactness                  |
|    | 9.2  | Limit Point Compactness                |
|    | 9.3  | Lindelöf Spaces                        |
|    | 9.4  | Paracompactness                        |
|    | 9.5  | Compactness                            |
|    | 9.6  | Perfect Maps                           |
|    | 9.7  | Sequential Compactness                 |
|    | 9.8  | Local Compactness                      |
|    | 9.9  | Compactifications                      |
|    | 9.10 | Compactly Generated Spaces             |
| 10 | Met  | ric Spaces 146                         |
|    |      | Metrics                                |
|    | 10.1 | 10.1.1 Open Balls                      |
|    |      | 10.1.2 Bounded Sets                    |
|    |      | 10.1.3 Bounded Functions               |
|    |      | 10.1.4 Totally Bounded Metric Spaces   |
|    | 10.2 | The Metric Topology                    |
|    |      | Isometries                             |
|    |      | Lebesgue Numbers                       |
|    |      | Uniform Continuity                     |
|    | 10.6 | Locally Metrizable Spaces              |
|    |      | Completeness                           |
|    |      | 10.7.1 Completion of a Metric Space    |
|    | 10.8 | The Topology of Compact Convergence    |
| 11 | Mar  | nifolds 194                            |
|    |      | Manifolds                              |
|    |      |                                        |
| 12 |      | med Spaces 197                         |
|    | 12.1 | The Norm on $\mathbb{R}^n$             |
| 13 | Top  | ological Groups 201                    |
|    | 13.1 | Topological Groups                     |

## Chapter 1

## Set Theory

### 1.1 Sets and Functions

#### 1.1.1 Primitive Notions

Let there be sets.

Given sets A and B, let there be functions from A to B. We write  $f: A \to B$  iff f is a function from A to B, and we call A the domain of f and B the codomain of f.

Given sets A, B, C and functions  $f:A\to B$  and  $g:B\to C$ , let there be a function  $g\circ f:A\to C$ , the *composite* of f and g.

**Definition 1.1.1** (Injective). A function  $f: A \to B$  is *injective*,  $f: A \rightarrowtail B$ , iff, for every set X and functions  $x, y: X \to A$ , if  $f \circ x = f \circ y$  then x = y.

**Definition 1.1.2** (Surjective). A function  $f: A \to B$  is *surjective*,  $f: A \twoheadrightarrow B$ , iff, for every set X and functions  $x, y: B \to X$ , if  $x \circ f = y \circ f$  then x = y.

#### 1.1.2 The Axiom of Associativity

**Axiom 1.1.3** (Axiom of Associativity). Let A, B and C be sets. Let  $f: A \to B$ ,  $g: B \to C$  and  $h: C \to D$ . Then  $h \circ (g \circ f) = (h \circ g) \circ f: A \to D$ .

From now on we write  $h \circ g \circ f$  for the composite of f, g and h, and similarly for more than three functions.

### 1.1.3 Identity Functions

**Definition 1.1.4** (Identity Function). Let A be a set. An *identity function* on A is a function  $i: A \to A$  such that:

**Left Unit Law** For every set X and function  $f: X \to A$ , we have  $i \circ f = f: X \to A$ .

**Right Unit Law** For every set X and function  $f: A \to X$ , we have  $f \circ i = f: A \to X$ .

Proposition 1.1.5. Any two identity functions on a set are equal.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } A \text{ be a set.} \\ \langle 1 \rangle 2. \text{ Let: } i,j:A \to A \text{ be identity functions on } A. \\ \langle 1 \rangle 3. \ i=j:A \to A \\ \text{PROOF:} \\ i=i\circ j \qquad \qquad \text{(Right Unit Law for } j,\,\langle 1 \rangle 2) \\ =j \qquad \qquad \text{(Left Unit Law for } i,\,\langle 1 \rangle 2) \\ \square
```

Axiom 1.1.6 (Identity Functions). Every set has an identity function.

Given a set A, we write  $id_A$  for the identity function on A.

#### 1.1.4 Retractions and Sections

**Definition 1.1.7** (Retraction, Section). Let  $r: A \to B$  and  $s: B \to A$ . Then r is a retraction of s and s is a section of r iff  $r \circ s = \mathrm{id}_B$ .

## 1.2 The Terminal Set

**Axiom 1.2.1** (Terminal Set). There exists a terminal set 1 such that, for every set X, there exists a unique function  $!: X \to 1$ .

**Definition 1.2.2** (Element). An *element* of a set A is a function  $1 \to A$ . We write  $a \in A$  for  $a: 1 \to A$ .

Given a function  $f:A\to B$  and an element  $a\in A,$  we write f(a) for  $f\circ a.$  Thus  $f(a)\in B.$ 

## 1.3 The Empty Set

**Axiom 1.3.1** (Empty Set). There exists an empty set  $\emptyset$  such that, for every set X, there exists a unique function  $\emptyset \to X$ .

## 1.4 Products

**Axiom 1.4.1** (Products). For any sets A and B there exists a set  $A \times B$ , the (Cartesian) product of A and B, and functions  $\pi_1 : A \times B \to A$ ,  $\pi_2 : A \times B \to B$ , the projections, such that, for every set X and functions  $f : X \to A$ ,  $g : X \to B$ , there exists a unique function  $\langle f, g \rangle : X \to A \times B$  such that  $\pi_1 \circ \langle f, g \rangle = f$  and  $\pi_2 \circ \langle f, g \rangle = g$ .

**Definition 1.4.2.** Given functions  $f: A \to B$  and  $g: C \to D$ , let

$$f \times g = \langle f \circ \pi_1, g \circ \pi_2 \rangle : A \times C \to B \times D$$
.

#### 1.5 Function Sets

**Axiom 1.5.1** (Function Sets). For any sets A and B there exists a set  $A^B$ , the function set from B to A, and a function  $\epsilon: A^B \times B \to A$ , the evaluation map, such that, for every set X and function  $f: X \times B \to A$ , there exists a unique function  $\lambda f: X \to A^B$  such that

$$f = \epsilon \circ (\lambda f \times id_B) : X \times B \to A$$

## 1.6 Inverse Images

**Definition 1.6.1** (Inverse Image). Let  $f: X \to Y$  be a function and  $y \in Y$  an element. Then an *inverse image* of y under f consists of a set  $f^{-1}(y)$  and a function  $j: f^{-1}(y) \to X$  such that:

- $f \circ j = y \circ ! : f^{-1}(y) \to Y$
- for every set I and function  $q: I \to X$  such that  $f \circ q = y \circ !$  for all  $t \in I$ , there exists a unique  $\overline{q}: I \to A$  such that  $q = j \circ \overline{q}$

**Axiom 1.6.2** (Inverse Images). Given any function  $f: X \to Y$  and element  $y \in Y$ , there exists an inverse image of y under f.

### 1.7 The Subset Classifier

**Axiom 1.7.1** (Subset Classifier). There exists a set  $\mathbf{2}$ , the subset classifier, and an element  $\top \in \mathbf{2}$  such that, for any sets A, X and any injective function  $j: A \to X$ , there exists a unique function  $\chi: X \to \mathbf{2}$  such that j is the inverse image of  $\top$  under  $\chi$ .

## 1.8 The Axiom of Extensionality

**Axiom 1.8.1** (Extensionality). Let  $f, g: A \to B$ . If  $f(x) = g(x) \in B$  for every  $x \in A$  then f = g.

## 1.9 The Axiom of Non-degeneracy

**Axiom 1.9.1.** The empty set has no emelements; i.e. there is no function  $1 \to \emptyset$ .

## 1.10 The Natural Numbers

**Axiom 1.10.1** (Natural Numbers). There exists a set  $\mathbb{N}$ , an element  $0 \in \mathbb{N}$  and a function  $s : \mathbb{N} \to \mathbb{N}$  such that, for every set X, element  $a \in X$  and function  $r : X \to X$ , there exists a unique function  $x : \mathbb{N} \to X$  such that x(0) = a and  $x \circ s = r \circ x$ .

## 1.11 The Axiom of Choice

**Axiom 1.11.1** (Choice). Every surjective function has a section.

**Axiom 1.11.2** (Equalizers). For any sets A and B and functions  $f, g : A \to B$ , there exists a set E and function  $e : E \to A$ , the equalizer of f and g, such that:

- $f \circ e = g \circ e$
- for every set X and function  $x: X \to A$  such that  $f \circ x = g \circ x$ , there exists a unique function  $\overline{x}: X \to E$  such that  $x = e \circ \overline{x}$ .

## 1.12 The Basics

**Lemma 1.12.1.** Let X be a set,  $\mathcal{B} \subseteq \mathcal{P}X$  and  $U \subseteq X$ . Then the following are equivalent:

- 1. For all  $x \in U$  there exists  $B \in \mathcal{B}$  such that  $x \in B \subseteq U$ .
- 2. There exists  $\mathcal{B}_0 \subseteq \mathcal{B}$  such that  $U = \bigcup \mathcal{B}_0$ .

```
Proof:
```

```
\begin{array}{l} \langle 1 \rangle 1. \ 1 \Rightarrow 2 \\ \text{PROOF: If 1 is true then } U = \bigcup \{B \in \mathcal{B} : B \subseteq U\}. \\ \langle 1 \rangle 2. \ 2 \Rightarrow 1 \\ \text{PROOF: Trivial.} \\ \square \end{array}
```

**Definition 1.12.2** (Fixed Point). Let X be a set,  $f: X \to X$ , and  $x \in X$ . Then x is a fixed point of f iff f(x) = x.

**Definition 1.12.3** (Saturated). Let X, Y be sets and  $p: X \to Y$  be a surjective function. Let  $C \subseteq X$ . Then C is *saturated* with respect to p iff, for all  $x, x' \in X$ , if  $x \in C$  and p(x) = p(x') then  $x' \in C$ .

**Definition 1.12.4** (Cover). Let A be a set and  $C \subseteq \mathcal{P}A$ . Then C covers A iff  $\bigcup C = A$ .

**Definition 1.12.5** (Finite Intersection Property). Let X be a set and  $C \subseteq \mathcal{P}X$ . Then C has the *finite intersection property* if and only if every finite nonempty subset of C has nonempty intersection.

**Lemma 1.12.6** (AC). Let X be a set and  $A \subseteq \mathcal{P}X$  have the finite intersection property. Then there exists a maximal  $\mathcal{D} \subseteq \mathcal{P}X$  that has the finite intersection property and includes A.

Proof: A straightforward application of Zorn's lemma, since the union of a chain of sets that has the finite intersection property has the finite intersection property.  $\Box$ 

**Lemma 1.12.7.** Let X be a set and  $\mathcal{D} \subseteq \mathcal{P}X$  be maximal with respect to the finite intersection property. Then any finite intersection of elements of  $\mathcal{D}$  is an element of  $\mathcal{D}$ .

#### Proof:

- $\langle 1 \rangle 1$ . Let: A be a finite intersection of elements of  $\mathcal{D}$
- $\langle 1 \rangle 2$ .  $\mathcal{D} \cup \{A\}$  has the finite intersection property.
- $\langle 1 \rangle 3. \ \mathcal{D} \cup \{A\} = \mathcal{D}$

**Lemma 1.12.8.** Let X be a set and  $\mathcal{D} \subseteq \mathcal{P}X$  be maximal with respect to the finite intersection property. If  $A \subseteq X$  intersects every element of  $\mathcal{D}$  then  $A \in \mathcal{D}$ .

PROOF: This holds because  $\mathcal{D} \cup \{A\}$  satisfies the finite intersection property.  $\square$ 

**Definition 1.12.9** (Graph). Let  $f:A\to B$ . The graph of f is the set  $\{(x,f(x)):x\in A\}\subseteq A\times B$ .

**Definition 1.12.10** (Point-Finite). Let X be a set and  $\{A_{\alpha}\}_{{\alpha}\in J}$  be a family of subsets of X. Then  $\{A_{\alpha}\}_{{\alpha}\in J}$  is *point-finite* iff, for all  $x\in X$ , there are only finitely many  ${\alpha}\in J$  such that  $x\in A_{\alpha}$ .

**Definition 1.12.11** (Countable Intersection Property). A family of parts of a set X has the *countable intersection property* iff every countable subfamily has nonempty intersection.

## 1.13 Refinements

**Definition 1.13.1** (Refinement). Let X be a set and  $A, B \subseteq PX$ . Then B is a refinement of A iff, for all  $B \in B$ , there exists  $A \in A$  such that  $B \subseteq A$ .

## 1.14 Order Theory

**Definition 1.14.1** (Cofinal). Let J be a poset and  $K \subseteq J$ . Then K is *cofinal* iff, for all  $x \in J$ , there exists  $y \in K$  such that  $x \leq y$ .

**Definition 1.14.2** (Directed Set). A *directed set* is a poset J such that, for all  $x, y \in J$ , there exists  $z \in J$  such that  $x \leq z$  and  $y \leq z$ .

**Definition 1.14.3** (Linear Order). Let X be a set. A *linear order* on X is a relation  $\leq \subseteq X^2$  such that:

- For all  $x \in X$ ,  $x \le x$
- For all  $x, y, z \in X$ , if  $x \le y$  and  $y \le z$  then  $x \le z$
- For all  $x, y \in X$ , if  $x \le y$  and  $y \le x$  then x = y
- For all  $x, y \in X$ , we have  $x \leq y$  or  $y \leq x$

We write x < y iff  $x \le y$  and  $x \ne y$ .

A linearly ordered set consists of a set and a linear order on the set.

**Definition 1.14.4** (Convex). Let L be a linearly ordered set and  $A \subseteq L$ . Then A is *convex* iff, for all  $x, y \in A$  and  $z \in L$ , if x < z < y then  $z \in A$ .

**Definition 1.14.5** (Least Upper Bound Property). A linearly ordered set L has the *least upper bound property* iff every subset of L bounded above has a least upper bound.

**Definition 1.14.6** (Linear Continuum). A *linear continuum* is a linearly ordered set L such that:

- L has the least upper bound property.
- For all  $x, y \in L$  with x < y, there exists  $z \in L$  such that x < z < y.

**Proposition 1.14.7.** If L is a linear continuum then every convex subset of L is a linear continuum.

```
Proof:
```

- $\langle 1 \rangle 1$ . Let: L be a linear continuum and  $C \subseteq L$  be convex
- $\langle 1 \rangle 2$ . C satisfies the least upper bound property.
  - $\langle 2 \rangle 1$ . Let:  $S \subseteq C$  be nonempty and bounded above by u in C.
  - $\langle 2 \rangle 2$ . Let: s be the supremum of S in L
  - $\langle 2 \rangle 3$ . Pick  $x \in S$
  - $\langle 2 \rangle 4. \ x \leq s \leq u$
  - $\langle 2 \rangle 5. \ s \in C$

Proof: C is convex.

- $\langle 2 \rangle 6$ . s is the supremum of S in C
- $\langle 1 \rangle 3$ . C is dense.

PROOF:

- $\langle 2 \rangle 1$ . Let:  $x, y \in C$  satisfy x < y
- $\langle 2 \rangle 2$ . Pick  $z \in L$  such that x < z < y
- $\langle 2 \rangle 3. \ z \in C$

Proof: C is convex.

**Lemma 1.14.8.** For any real numbers a, b with a < b we have  $[a, b) \cong [0, 1)$ .

PROOF: The map  $\phi:[a,b)\cong[0,1)$  where  $\phi(x)=(x-a)/(b-a)$  is an order isomorphism.  $\square$ 

**Proposition 1.14.9.** Let X be a linearly ordered set. Let  $a, b, c \in X$  with a < c < b. Then  $[a, b) \cong [0, 1)$  if and only if  $[a, c) \cong [c, b) \cong [0, 1)$ .

#### Proof:

- $\langle 1 \rangle 1$ . If  $[a, b) \cong [0, 1)$  then  $[a, c) \cong [c, b) \cong [0, 1)$ .
  - $\langle 2 \rangle 1$ . Assume:  $\phi : [a,b) \cong [0,1)$  is an order isomorphism.
  - $\langle 2 \rangle 2$ .  $[a,c) \cong [0,1)$

Proof:

$$[a,c) \cong [0,\phi(c))$$
 (under  $\phi$ )  
 $\cong [0,1)$  (Lemma 1.14.8)

 $\langle 2 \rangle 3. \ [c,b) \cong [0,1)$ 

PROOF: Similar.

- $\langle 1 \rangle 2$ . If  $[a, c) \cong [c, b) \cong [0, 1)$  then  $[a, b) \cong [0, 1)$ .
  - $\langle 2 \rangle 1$ . Assume:  $[a,c) \cong [c,b) \cong [0,1)$
  - $\langle 2 \rangle 2$ . Let:  $\phi : [a, c) \cong [0, 1/2)$  and  $\psi : [c, b) \cong [1/2, 1)$

$$\langle 2 \rangle 3. \text{ Let: } \chi: [a,b) \to [0,1) \text{ be given by } \chi(x) = \begin{cases} \phi(x) & \text{if } x < c \\ \psi(x) & \text{if } x \geq c \end{cases}$$

 $\langle 2 \rangle 4$ .  $\chi : [a,b) \cong [0,1)$ 

PROOF: Easy to check.

**Proposition 1.14.10** (CC). Let X be a linearly ordered set. Let  $\{x_n\}_{n\geq 0}$  be an increasing sequence of points of X. Suppose b is the supremum of  $\{x_n : n \geq 0\}$ . Then  $[x_0, b) \cong [0, 1)$  if and only if  $[x_i, x_{i+1}) \cong [0, 1)$  for all i.

#### PROOF

 $\langle 1 \rangle 1$ . If  $[x_0, b) \cong [0, 1)$  then for all  $i [x_i, x_{i+1}) \cong [0, 1)$ .

PROOF: If  $\phi : [x_0, b) \cong [0, 1)$  then  $[x_i, x_{i+1}) \cong [\phi(x_i), \phi(x_{i+1})) \cong [0, 1)$  by Lemma 1.14.8.

 $\langle 1 \rangle 2$ . If for all  $i [x_i, x_{i+1}) \cong [0, 1)$  then  $[x_0, b) \cong [0, 1)$ .

PROOF:

- $\langle 2 \rangle 1$ . Let:  $\phi_i : [x_i, x_{i+1}) \cong [0, 1)$  for all i
- $\langle 2 \rangle$ 2. Define  $\phi: [x_0, b) \cong [0, 1)$  by:  $\phi(y) = \phi_i(y)$   $(x_0 \leq y < b)$  where i is least such that  $y < i_{i+1}$

PROOF: There exists such an i because y is not an upper bound for  $\{x_n : n \ge 0\}$ .

 $\langle 2 \rangle 3$ .  $\phi$  is an order isomorphism.

PROOF: Easy to check.

П

**Proposition 1.14.11** (CC). For all  $0 < \alpha < \Omega$ , the interval  $[(0,0),(\alpha,0))$  in  $S_{\Omega} \times [0,1)$  is order isomorphic to [0,1) in  $\mathbb{R}$ .

#### **PROOF**

- $\langle 1 \rangle 1$ . If  $[(0,0),(\alpha,0)) \cong [0,1)$  then  $[(0,0),(\alpha+1,0)) \cong [0,1)$  PROOF: By Proposition 1.14.9.
- $\langle 1 \rangle$ 2. Let  $\lambda$  be a limit ordinal,  $0 < \lambda < \Omega$ . If, for all  $\alpha$  with  $0 < \alpha < \lambda$ , we have  $[(0,0),(\alpha,0)) \cong [0,1)$ , then  $[(0,0),(\lambda,0)) \cong [0,1)$ .

Proof: By Propositoin 1.14.10.  $\langle 1 \rangle$ 3. Q.E.D. Proof: By transfinite induction.

## Chapter 2

# Real Analysis

**Lemma 2.0.1.** Let  $f, g: X \to \mathbb{R}$ . If f(X) and g(X) are bounded above then  $\{f(x) + g(x) : x \in X\}$  is bounded above and

$$\sup_{x \in X} (f(x) + g(x)) \le \sup_{x \in X} f(x) + \sup_{x \in X} g(x)$$

PROOF: For  $x \in X$  we have  $f(x) + g(x) \le \sup_{x \in X} f(x) + \sup_{x \in X} g(x)$ .  $\square$ 

**Definition 2.0.2** (Cantor Set). Define a sequence of sets  $A_n \subseteq [0,1]$  by:

$$A_0 = [0, 1]$$

$$A_{n+1} = A_n \setminus \bigcup_{k=0}^{3^{n-1}-1} \left(\frac{3k+1}{3^n}, \frac{3k+2}{3^n}\right)$$

The Cantor set is  $\bigcap_{n=0}^{\infty} A_n$ .

## Chapter 3

# **Topological Spaces**

## 3.1 Topologies

**Definition 3.1.1** (Topology). A topology on a set X is a set  $\mathcal{T} \subseteq \mathcal{P}X$  such that:

- 1.  $X \in \mathcal{T}$ ;
- 2. for all  $U, V \in \mathcal{T}$ , we have  $U \cap V \in \mathcal{T}$ ;
- 3. For all  $A \subseteq \mathcal{T}$ , we have  $\bigcup A \in \mathcal{T}$ .

A topological space X consists of a set X and a topology on X. The elements of X are called *points* and the elements of  $\mathcal{T}$  are called *open sets*.

**Proposition 3.1.2.** In any topological space, the empty set is open.

PROOF: Immediate from axiom 3.  $\square$ 

**Definition 3.1.3** (Discrete Topology). The *discrete* topology on a set X is  $\mathcal{P}X$ .

**Definition 3.1.4** (Indiscrete Topology). The *indiscrete* topology on a set X is  $\{\emptyset, X\}$ .

**Definition 3.1.5** (Open Cover). Let X be a topological space. A cover  $\mathcal{C} \subseteq \mathcal{P}X$  of X is an *open cover* iff every member of  $\mathcal{C}$  is open.

**Definition 3.1.6** (Finer, Coarser). Let  $\mathcal{T}$ ,  $\mathcal{T}'$  be topologies on a set X. Then  $\mathcal{T}$  is finer than  $\mathcal{T}'$ , and  $\mathcal{T}'$  is coarser than  $\mathcal{T}$ , iff  $\mathcal{T}' \subseteq \mathcal{T}$ .

The topology  $\mathcal{T}$  is *strictly* finer than  $\mathcal{T}'$ , and  $\mathcal{T}'$  is *strictly* coarser than  $\mathcal{T}$ , iff  $\mathcal{T} \subset \mathcal{T}'$ 

The topologies  $\mathcal{T}$  and  $\mathcal{T}'$  are *comparable* iff  $\mathcal{T} \subseteq \mathcal{T}'$  or  $\mathcal{T}' \subseteq \mathcal{T}$ .

**Definition 3.1.7** (Finite Complement Topology). The *finite complement topology* on a set X is  $\{U : X \setminus U \text{ is finite}\} \cup \{X\}$ .

**Definition 3.1.8** (Isolated Point). Let X be a topological space and  $a \in X$ . Then a is an *isolated point* iff  $\{a\}$  is open.

## 3.2 Neighbourhoods

**Definition 3.2.1** (Neighbourhood). Let X be a topological space and  $A \subseteq X$ . A *neighbourhood* of A is an set that includes an open set that includes A. A *neighbourhood* of a point a is a neighbourhood of  $\{a\}$ .

**Proposition 3.2.2.** If N is a neighbourhood of A and  $B \subseteq A$  then N is a neighbourhood of B.

PROOF: Immediate from definitions.

**Proposition 3.2.3.** A set U is open if and only if it is a neighbourhood of each of its points.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a topological space and  $A \subseteq X$
- $\langle 1 \rangle 2$ . If U is a neighbourhood of each of its points then A is open.
  - $\langle 2 \rangle$ 1. Assume: U includes a neighbourhood of each of its points Prove:  $U = \bigcup \{V \subseteq U : V \text{ is open}\}$
  - $\langle 2 \rangle 2$ .  $\bigcup \{ V \subseteq U : V \text{ is open} \} \subseteq U$

PROOF: Set theory.

 $\langle 2 \rangle 3. \ U \subseteq \bigcup \{V \subseteq U : V \text{ is open}\}\$ 

PROOF: Immediate from  $\langle 2 \rangle 1$ .

 $\langle 1 \rangle 3$ . If U is open then U is a neighbourhood of each of its points.

PROOF: Immediate from definitions.

**Proposition 3.2.4.** If M is a neighbourhood of A and  $M \subseteq N$  then N is a neighbourhood of A.

PROOF: Immediate from definitions.  $\Box$ 

**Proposition 3.2.5.** If M and N are neighbourhoods of A then  $M \cap N$  is a neighbourhood of A.

PROOF: Pick open sets U and V such that  $A \subseteq U \subseteq M$  and  $A \subseteq N \subseteq V$ . Then  $A \subseteq U \cap V \subseteq M \cap N$ .

**Proposition 3.2.6.** If N is a neighbourhood of x then  $x \in N$ .

PROOF: Immediate from definitions.

**Proposition 3.2.7.** If N is a neighbourhood of x then there exists a neighbourhood U of x such that, for all  $y \in U$ , M is a neighbourhood of y.

PROOF: Pick an open set U such that  $x \in U \subseteq N$ .  $\square$ 

**Theorem 3.2.8.** Let X be a set and  $\triangleright \subseteq \mathcal{P}X \times X$  a relation such that:

- 1. If  $M \triangleright x$  and  $M \subseteq N$  then  $N \triangleright x$
- 2.  $X \triangleright x$  for all  $x \in X$

- 3. If  $M \triangleright x$  and  $N \triangleright x$  then  $M \cap N \triangleright x$
- 4. If  $N \triangleright x$  then  $x \in N$
- 5. If  $M \triangleright x$  then there exists  $N \triangleright x$  such that, for all  $y \in N$ ,  $M \triangleright y$ .

Then there exists a unique topology  $\mathcal{T}$  such that  $N \triangleright x$  iff N is a neighbourhood of x.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\triangleright$  be a relation satisfying 1–3
- $\langle 1 \rangle 2$ . Let:  $\mathcal{T} = \{ U \in \mathcal{P}X : \forall x \in U.U \rhd x \}$
- $\langle 1 \rangle 3$ .  $\mathcal{T}$  is a topology.
  - $\langle 2 \rangle 1. \ X \in \mathcal{T}$

PROOF: By axiom 2

 $\langle 2 \rangle 2$ . For all  $U, V \in \mathcal{T}$  we have  $U \cap V \in \mathcal{T}$ 

PROOF: By axiom 3

- $\langle 2 \rangle 3$ . For all  $\mathcal{A} \subseteq \mathcal{T}$  we have  $\bigcup \mathcal{A} \in \mathcal{T}$ 
  - $\langle 3 \rangle 1$ . Let:  $x \in \bigcup \mathcal{A}$
  - $\langle 3 \rangle 2$ . PICK  $U \in \mathcal{A}$  such that  $x \in U$
  - $\langle 3 \rangle 3$ .  $U \rhd x$
  - $\langle 3 \rangle 4$ .  $\bigcup \mathcal{A} \rhd x$

PROOF: By axiom 1

- $\langle 1 \rangle 4$ . In  $\mathcal{T}$ ,  $N \triangleright x$  iff N is a neighbourhood of x.
  - $\langle 2 \rangle 1$ . If  $N \rhd x$  then N is a neighbourhood of x
    - $\langle 3 \rangle 1$ . Assume:  $N \rhd x$
    - $\langle 3 \rangle 2. \ x \in N$

PROOF: By axiom 4

- $\langle 3 \rangle 3$ . Let:  $U = \{ y \in N : N \rhd y \}$
- $\langle 3 \rangle 4$ . *U* is open
  - $\langle 4 \rangle 1$ . Let:  $y \in U$

Prove:  $U \triangleright y$ 

- $\langle 4 \rangle 2$ .  $N \rhd y$
- $\langle 4 \rangle 3$ . PICK  $W \rhd y$  such that, for all  $z \in W$ ,  $N \rhd z$  PROOF: By axiom 5
- $\langle 4 \rangle 4. \ W \subseteq U$
- $\langle 4 \rangle 5$ .  $U \rhd y$

PROOF: By axiom 1

- $\langle 3 \rangle 5. \ x \in U \subseteq N$
- $\langle 2 \rangle 2$ . If N is a neighbourhood of x then  $N \triangleright x$ 
  - $\langle 3 \rangle 1$ . Let: N be a neighbourhood of x
  - $\langle 3 \rangle 2$ . PICK U open such that  $x \in U \subseteq N$
  - $\langle 3 \rangle 3$ .  $U \rhd x$

Proof: By  $\langle 1 \rangle 2$ 

 $\langle 3 \rangle 4. \ N \rhd x$ 

Proof: By axiom 1

 $\langle 1 \rangle 5$ .  $\mathcal{T}$  is unique.

PROOF: By Proposition 3.2.3.

**Definition 3.2.9** (Sufficiently Close). Let X be a topological space,  $a \in X$ , and P be a property of points of X. We write "For all x sufficiently close to a, P(x)" to mean "There exists a neighbourhood N of a such that, for all  $x \in N$ , P(x)."

## 3.3 Open Refinements

**Definition 3.3.1** (Open Refinement). Let X be a space and  $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}X$ . Then  $\mathcal{B}$  is an *open refinement* of  $\mathcal{A}$  iff  $\mathcal{B}$  is a refinement of  $\mathcal{A}$  and every member of  $\mathcal{B}$  is open.

#### 3.4 Local Bases

**Definition 3.4.1** (Local Basis). Let X be a topological space and  $x \in X$ . A *local basis* at x is a set  $\mathcal{B}$  of open neighbourhoods of x such that every neighbourhood of x includes a member of  $\mathcal{B}$ . We call the elements of  $\mathcal{B}$  basic open neighbourhoods.

**Proposition 3.4.2.** Let  $\mathcal{B}$  be a local basis at x and  $M, N \in \mathcal{B}$ . Then there exists  $P \in \mathcal{B}$  such that  $P \subseteq M \cap N$ .

PROOF: This holds because  $M \cap N$  is a neighbourhood of x (Proposition 3.2.5).  $\sqcap$ 

**Proposition 3.4.3.** Let X be a topological space,  $x \in X$  and  $\mathcal{B} \subseteq \mathcal{P}X$ . Then  $\mathcal{B}$  is a local basis at x iff  $\mathcal{B}$  is a set of open neighbourhoods of x such that every open neighbourhood of x includes a member of  $\mathcal{B}$ .

#### Proof:

П

- $\langle 1 \rangle 1$ . If  $\mathcal{B}$  is a local basis at x then  $\mathcal{B}$  is a set of open neighbourhoods of x such that every open neighbourhood of x includes a member of  $\mathcal{B}$  Proof: Trivial.
- $\langle 1 \rangle 2$ . If  $\mathcal{B}$  is a set of open neighbourhoods of x such that every open neighbourhood of x includes a member of  $\mathcal{B}$  then  $\mathcal{B}$  is a local basis at x.

PROOF: Every neighbourhood of x includes an open neighbourhood of x, which therefore includes an element of  $\mathcal{B}$ .

## 3.5 Bases

**Definition 3.5.1** (Basis for a Topology). Let  $(X, \mathcal{T})$  be a topological space. A basis for the topology on X is a set of open sets  $\mathcal{B}$  such that every open set is a union of members of  $\mathcal{B}$ . The members of  $\mathcal{B}$  are called basic open sets, and  $\mathcal{T}$  is called the topology generated by  $\mathcal{B}$ .

**Proposition 3.5.2.** Let  $(X, \mathcal{T})$  be a topological space and  $\mathcal{B} \subseteq \mathcal{P}X$ . Then the following are equivalent:

- 1.  $\mathcal{B}$  is a basis for  $\mathcal{T}$ .
- 2. A set U is open if and only if, for all  $x \in U$ , there exists  $B \in \mathcal{B}$  such that  $x \in B \subset U$ .
- 3.  $\mathcal{T}$  is the set of all unions of subsets of  $\mathcal{B}$ .
- 4. Every member of  $\mathcal{B}$  is open and, for all  $x \in X$  and every open neighbourhood U of x, there exists  $B \in \mathcal{B}$  such that  $x \in B \subseteq U$ .
- 5. For all  $x \in X$ , the set  $\{B \in \mathcal{B} : x \in B\}$  is a local basis at x.

#### Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$ 
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{B}$  is a basis for the topology  $\mathcal{T}$ .
  - $\langle 2 \rangle 2$ . For all  $U \in \mathcal{T}$  and  $x \in U$ , there exists  $B \in \mathcal{B}$  such that  $x \in B$  PROOF: Immediate from the definition of basis ( $\langle 2 \rangle 1$ ).
  - $\langle 2 \rangle 3$ . For all  $U \subseteq X$ , if  $\forall x \in U. \exists B \in \mathcal{B}. x \in B \subseteq U$  then  $U \in \mathcal{T}$  PROOF: By Proposition 3.2.3.
- $\langle 1 \rangle 2$ .  $2 \Leftrightarrow 3$

PROOF: From Lemma 1.12.1.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$ 

PROOF: Trivial.

 $\langle 1 \rangle 4. \ 2 \Rightarrow 4$ 

PROOF: Trivial.

 $\langle 1 \rangle 5. \ 4 \Rightarrow 2$ 

Proof:

- $\langle 2 \rangle 1$ . Assume: 4
- $\langle 2 \rangle 2$ . If U is open then, for all  $x \in U$ , there exists  $B \in \mathcal{B}$  such that  $x \in B \subseteq U$  PROOF: Immediate from  $\langle 2 \rangle 1$ .
- $\langle 2 \rangle 3$ . If, for all  $x \in U$ , there exists  $B \in \mathcal{B}$  such that  $x \in B \subseteq U$ , then U is open.

PROOF: By Proposition 3.2.3 using the fact that every member of  $\mathcal{B}$  is open  $(\langle 2 \rangle 1)$ .

 $\langle 1 \rangle 6. \ 4 \Leftrightarrow 5$ 

PROOF: From Proposition 3.4.3.

П

**Corollary 3.5.2.1.** If  $\mathcal{B}$  is a basis for the topology  $\mathcal{T}$ , then  $\mathcal{T}$  is the coarsest topology in which every element of  $\mathcal{B}$  is open.

**Lemma 3.5.3.** Let X be a set and  $\mathcal{B} \subseteq \mathcal{P}X$ . Then  $\mathcal{B}$  is a basis for a topology  $\mathcal{T}$  on X if and only if:

1.  $\bigcup \mathcal{B} = X$ 

2. for all  $B_1, B_2 \in \mathcal{B}$  and  $x \in B_1 \cap B_2$ , there exists  $B_3 \in \mathcal{B}$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ .

In this case,  $\mathcal{T}$  is unique.

#### **PROOF**

- $\langle 1 \rangle 1$ . If  $\mathcal{B}$  is a basis for a topology then  $\bigcup \mathcal{B} = X$ 
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{B}$  is a basis for the topology  $\mathcal{T}$
  - $\langle 2 \rangle 2$ . Let:  $x \in X$
  - $\langle 2 \rangle 3$ . There exists  $B \in \mathcal{B}$  such that  $x \in B$

PROOF: From the definition of basis, since  $X \in \mathcal{T}$ .  $(\langle 2 \rangle 1, \langle 2 \rangle 2)$ .

- $\langle 1 \rangle 2$ . If  $\mathcal{B}$  is a basis for a topology then it satisfies condition 2
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{B}$  is a basis for the topology  $\mathcal{T}$
  - $\langle 2 \rangle 2$ . Let:  $B_1, B_2 \in \mathcal{B}$
  - $\langle 2 \rangle 3. \ B_1, B_2 \in \mathcal{T}$

PROOF: From the definition of basis ( $\langle 2 \rangle 1, \langle 2 \rangle 2$ ).

 $\langle 2 \rangle 4$ .  $B_1 \cap B_2 \in \mathcal{T}$ 

PROOF: By the definition of topology, the open sets in  $\mathcal{T}$  are closed under binary intersection ( $\langle 2 \rangle 1$ ,  $\langle 2 \rangle 3$ )

- $\langle 2 \rangle$ 5. For all  $x \in B_1 \cap B_2$ , there exists  $B_3 \in \mathcal{B}$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ PROOF: From the definition of basis  $(\langle 2 \rangle 1, \langle 2 \rangle 4)$
- $\langle 1 \rangle 3$ . If  $\mathcal{B}$  satisfies conditions 1 and 2 then  $\mathcal{T} = \{ U \subseteq X : \forall x \in U : \exists B \in \mathcal{B}.x \in B \subseteq U \}$  is a topology and  $\mathcal{B}$  is a basis for  $\mathcal{T}$ .
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{B}$  satisfies conditions 1 and 2
  - $\langle 2 \rangle 2. \ X \in \mathcal{T}$

PROOF: For all  $x \in X$ , there exists  $B \in \mathcal{B}$  such that  $x \in B \subseteq X$  by condition 1 ( $\langle 2 \rangle 1$ ).

- $\langle 2 \rangle 3$ . For all  $\mathcal{A} \subseteq \mathcal{T}$ , we have  $\bigcup \mathcal{A} \in \mathcal{T}$ 
  - $\langle 3 \rangle 1$ . Let:  $\mathcal{A} \subseteq \mathcal{T}$
  - $\langle 3 \rangle 2$ . Let:  $x \in \bigcup A$
  - $\langle 3 \rangle 3$ . Pick  $U \in \mathcal{A}$  such that  $x \in U$

PROOF: From  $\langle 3 \rangle 2$ .

 $\langle 3 \rangle 4$ . Pick  $B \in \mathcal{B}$  such that  $x \in B \subseteq U$ 

PROOF: Since  $U \in \mathcal{T}$ , using the definition of  $\mathcal{T}$  ( $\langle 3 \rangle 1$ ,  $\langle 3 \rangle 3$ )

 $\langle 3 \rangle 5. \ x \in B \subseteq \bigcup A$ 

PROOF: From  $\langle 3 \rangle 3$  and  $\langle 3 \rangle 4$ .

- $\langle 2 \rangle 4$ . For all  $U, V \in \mathcal{T}$ , we have  $U \cap V \in \mathcal{T}$ 
  - $\langle 3 \rangle 1$ . Let:  $U, V \in \mathcal{T}$
  - $\langle 3 \rangle 2$ . Let:  $x \in U \cap V$
  - $\langle 3 \rangle 3$ . PICK  $B_1, B_2 \in \mathcal{B}$  such that  $x \in B_1 \subseteq U$  and  $x \in B_2 \subseteq V$  PROOF: From  $\langle 3 \rangle 1$ ,  $\langle 3 \rangle 2$  and the definition of  $\mathcal{T}$ .
  - $\langle 3 \rangle 4$ . Pick  $B_3 \in \mathcal{B}$  such that  $x \in B_3 \subseteq B_1 \cap B_2$

PROOF: Using condition 2 ( $\langle 2 \rangle 1, \langle 3 \rangle 3$ ).

 $\langle 3 \rangle 5. \ x \in B_3 \subseteq U \cap V$ 

PROOF: From  $\langle 3 \rangle 3$  and  $\langle 3 \rangle 4$ .

 $\langle 2 \rangle 5. \bigcup \mathcal{B} = X$ 

PROOF: This is condition  $1 (\langle 2 \rangle 1)$ .

```
\langle 2 \rangle6. For all U \in \mathcal{T} and x \in U, there exists B \in \mathcal{B} such that x \in B \subseteq U PROOF: Immediate from the definition of \mathcal{T}.
```

 $\langle 1 \rangle 4$ .  $\mathcal{T}$  is unique.

PROOF: From Proposition 3.5.2.

П

**Corollary 3.5.3.1.** Let X be a set and  $\mathcal{B} \subseteq \mathcal{P}X$  be such that  $\bigcup \mathcal{B} = X$  and  $\mathcal{B}$  is closed under binary intersection. Then  $\mathcal{B}$  is a basis for a unique topology on X

**Lemma 3.5.4.** Let  $\mathcal{B}$  and  $\mathcal{B}'$  be bases for the topologies  $\mathcal{T}$  and  $\mathcal{T}'$  on X respectively. Then  $\mathcal{T} \subseteq \mathcal{T}'$  if and only if, for all  $B \in \mathcal{B}$  and  $x \in B$ , there exists  $B' \in \mathcal{B}'$  such that  $x \in B' \subseteq B$ .

#### Proof:

- $\langle 1 \rangle 1$ . If  $\mathcal{T} \subseteq \mathcal{T}'$  then, for all  $B \in \mathcal{B}$  and  $x \in B$ , there exists  $B' \in \mathcal{B}'$  such that  $x \in B' \subset B$ .
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{T} \subseteq \mathcal{T}'$
  - $\langle 2 \rangle 2$ . Let:  $B \in \mathcal{B}$  and  $x \in B$
  - $\langle 2 \rangle 3. \ B \in \mathcal{T}$

PROOF: This holds because  $\mathcal{B} \subseteq \mathcal{T}$  by the definition of basis.  $(\langle 2 \rangle 2)$ 

 $\langle 2 \rangle 4. \ B \in \mathcal{T}'$ 

PROOF: From  $\langle 2 \rangle 1$  and  $\langle 2 \rangle 3$ .

- $\langle 2 \rangle$ 5. There exists  $B' \in \mathcal{B}'$  such that  $x \in B' \subseteq B$ .
- $\langle 1 \rangle 2$ . If, for all  $B \in \mathcal{B}$  and  $x \in B$ , there exists  $B' \in \mathcal{B}'$  such that  $x \in B' \subseteq B$ , then  $\mathcal{T} \subseteq \mathcal{T}'$ .
  - $\langle 2 \rangle$ 1. Assume: For all  $B \in \mathcal{B}$  and  $x \in B$ , there exists  $B' \in \mathcal{B}'$  such that  $x \in B' \subseteq B$
  - $\langle 2 \rangle 2$ . Let:  $U \in \mathcal{T}$

Prove:  $U \in \mathcal{T}'$ 

- $\langle 2 \rangle 3$ . Let:  $x \in U$
- $\langle 2 \rangle 4$ . Pick  $B \in \mathcal{B}$  such that  $x \in B \subseteq U$

PROOF: Since  $\mathcal{B}$  is a basis for  $\mathcal{T}$  ( $\langle 2 \rangle 2, \langle 2 \rangle 3$ ).

 $\langle 2 \rangle$ 5. Pick  $B' \in \mathcal{B}'$  such that  $x \in B' \subseteq B$ 

PROOF: From  $\langle 2 \rangle 1$  and  $\langle 2 \rangle 4$ .

 $\langle 2 \rangle 6. \ x \in B' \subseteq U$ 

PROOF: From  $\langle 2 \rangle 4$  and  $\langle 2 \rangle 5$ .

 $\langle 2 \rangle$ 7. Q.E.D.

Proof: By Proposition 3.5.2.

**Definition 3.5.5** (Lower Limit Topology). The *lower limit topology* on  $\mathbb{R}$  is the one generated by the set of all half-open intervals of the form [a, b). We write  $\mathbb{R}_l$  for the topological space consisting of  $\mathbb{R}$  under this topology.

We prove this is a topology.

#### Proof:

 $\langle 1 \rangle 1$ . Let:  $\mathcal{B}$  be the set of all half-open intervals of the form [a,b).

```
\langle 1 \rangle 2. | \mathcal{B} = \mathbb{R}
```

PROOF: For all  $x \in \mathbb{R}$ , we have  $x \in [x, x+1) \in \mathcal{B}$ .

 $\langle 1 \rangle 3$ . For all  $B_1, B_2 \in \mathcal{B}$  and  $x \in B_1 \cap B_2$ , there exists  $B_3 \in \mathcal{B}$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ .

PROOF: If  $x \in [a,b) \cap [c,d)$  then  $x \in [\max(a,c),\min(b,d)) \subseteq [a,b) \cap [c,d)$ .  $\langle 1 \rangle 4$ . Q.E.D.

PROOF: By Lemma 3.5.3.

П

**Definition 3.5.6** (K-topology). The K-topology on  $\mathbb{R}$  is the one generated by the set of all open intervals (a,b) and all sets of the form  $(a,b) \setminus K$ , where  $K = \{1/n : n \in \mathbb{Z}^+\}$ . We write  $\mathbb{R}_K$  for the topological space consisting of  $\mathbb{R}$  under this topology.

We prove this is a topology.

#### Proof:

$$\langle 1 \rangle 1$$
. Let:  $\mathcal{B} = \{(a,b) : a,b \in \mathbb{R}, a < b\} \cup \{(a,b) \setminus K : a,b \in \mathbb{R}, a < b\}$ 

$$\langle 1 \rangle 2$$
.  $\bigcup \mathcal{B} = \mathbb{R}$ 

PROOF: For all  $x \in \mathbb{R}$ , we have  $x \in (x - 1, x + 1) \in \mathcal{B}$ .

 $\langle 1 \rangle 3$ . For all  $B_1, B_2 \in \mathcal{B}$  and  $x \in B_1 \cap B_2$ , there exists  $B_3 \in \mathcal{B}$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ .

 $\langle 2 \rangle$ 1. Let:  $B_1, B_2 \in \mathcal{B}$  and  $x \in B_1 \cap B_2$ Prove: There exists  $B_3 \in \mathcal{B}$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ 

 $\langle 2 \rangle 2$ . Case:  $B_1 = (a, b), B_2 = (c, d)$ 

PROOF: Take  $B_3 = (\max(a, c), \min(b, d))$ 

 $\langle 2 \rangle 3$ . Case:  $B_1 = (a, b), B_2 = (c, d) \setminus K$ 

PROOF: Take  $B_3 = (\max(a, c), \min(b, d)) \setminus K$ 

 $\langle 2 \rangle 4$ . Case:  $B_1 = (a,b) \setminus K$ ,  $B_2 = (c,d)$ 

PROOF: Take  $B_3 = (\max(a, c), \min(b, d)) \setminus K$ 

 $\langle 2 \rangle$ 5. Case:  $B_1 = (a,b) \setminus K$ ,  $B_2 = (c,d) \setminus K$ 

PROOF: Take  $B_3 = (\max(a, c), \min(b, d)) \setminus K$ 

 $\langle 1 \rangle 4$ . Q.E.D.

Proof: By Lemma 3.5.3.

٦

**Lemma 3.5.7.** The lower limit topology and the K-topology are incomparable.

PROOF: [0,1) is not open in the K-topology.  $(-1,1)\setminus K$  is not open in the lower limit topology, because there is no half-open interval [a,b) such that  $0\in [a,b)\subseteq (-1,1)\setminus K$ .  $\square$ 

**Proposition 3.5.8.** The set of all singletons is a basis for any discrete space.

Proof: Easy.

**Definition 3.5.9** (Line with Two Origins). The *line with two origins* is the set  $\mathbb{R} \setminus \{0\} \cup \{p,q\}$  under the topology generated by the basis consisting of:

• all open intervals in  $\mathbb{R}$  that do not contain 0;

- all sets of the form  $(-a,0) \cup \{p\} \cup (0,a)$  where a > 0;
- all sets of the form  $(-a,0) \cup \{q\} \cup (0,a)$  where a>0

#### 3.6 Closed Sets

**Definition 3.6.1** (Closed). Let X be a topological space and  $A \subseteq X$ . Then A is *closed* iff  $X \setminus A$  is open.

**Proposition 3.6.2.** In any topological space X, the empty set  $\emptyset$  is closed.

PROOF: This holds because  $X \setminus \emptyset = X$  is open.  $\square$ 

**Proposition 3.6.3.** In any topological space X, the set X is closed.

PROOF: This holds because  $X \setminus X = \emptyset$  is open.  $\square$ 

Proposition 3.6.4. The union of two closed sets is closed.

PROOF: If C and D are closed then  $X \setminus (C \cup D) = (X \setminus C) \cup (X \setminus D)$  is open.  $\square$ 

**Proposition 3.6.5.** In any topological space, the intersection of a nonempty set of closed sets is closed.

PROOF: Let  $\mathcal{C}$  be a nonempty set of closed sets. Then  $X \setminus \bigcap \mathcal{C} = \bigcup \{X \setminus C : C \in \mathcal{C}\}$  is open.  $\square$ 

**Proposition 3.6.6.** Let X be a topological space and  $U \subseteq X$ . Then U is open if and only if  $X \setminus U$  is closed.

PROOF: Immediate from definitions.

**Theorem 3.6.7.** Let X be a set and  $C \subseteq PX$ . Suppose:

- 1.  $\emptyset, X \in \mathcal{C}$ ;
- 2. for all nonempty  $A \subseteq C$ , we have  $\bigcap A \in C$ ;
- 3. for all  $C, D \in \mathcal{C}$ , we have  $C \cup D \in \mathcal{C}$ .

Then there exists a unique topology on X under which  $\mathcal C$  is the set of all closed sets, namely

$$\mathcal{T} = \{ U \subseteq X : X \setminus U \in \mathcal{C} \}$$

Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{C}$  be a set satisfying 1–3
- $\langle 1 \rangle 2$ . Let:  $\mathcal{T} = \{ X \setminus C : C \in \mathcal{C} \}$
- $\langle 1 \rangle 3$ .  $\mathcal{T}$  is a topology
  - $\langle 2 \rangle 1. \ X \in \mathcal{T}$

PROOF:  $X \setminus X = \emptyset \in \mathcal{C}$  by condition 1.

 $\langle 2 \rangle 2$ . For all  $\mathcal{A} \subseteq \mathcal{T}$  we have  $\bigcup \mathcal{A} \in \mathcal{T}$ .

- $\langle 3 \rangle 1$ . Let:  $\mathcal{A} \subseteq \mathcal{T}$
- $\langle 3 \rangle 2$ . Case:  $\mathcal{A} = \emptyset$

PROOF: In this case,  $X \setminus \bigcup A = X \in C$  by condition 1.

 $\langle 3 \rangle 3$ . Case:  $\mathcal{A}$  is nonempty

PROOF: In this case, we have  $X \setminus \bigcup A = \bigcap \{X \setminus U : U \in A\} \in C$  by condition 2.

 $\langle 2 \rangle 3$ . For all  $U, V \in \mathcal{T}$  we have  $U \cap V \in \mathcal{T}$ 

PROOF:  $X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V) \in \mathcal{C}$  by condition 3.

 $\langle 1 \rangle 4$ . C is the set of closed sets.

Proof:

$$C \text{ is closed} \Leftrightarrow X \setminus C \in \mathcal{T}$$
 
$$\Leftrightarrow X \setminus (X \setminus C) \in \mathcal{C}$$
 
$$\Leftrightarrow C \in \mathcal{C}$$

 $\langle 1 \rangle 5$ .  $\mathcal{T}$  is unique.

PROOF: By Proposition 3.6.6.

П

**Definition 3.6.8** (Closed Covering). A *closed covering* of a topological space is a covering in which every member is a closed set.

## 3.7 Closed Refinements

**Definition 3.7.1** (Closed Refinement). Let X be a space and  $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}X$ . Then  $\mathcal{B}$  is an *closed refinement* of  $\mathcal{A}$  iff  $\mathcal{B}$  is a refinement of  $\mathcal{A}$  and every member of  $\mathcal{B}$  is closed.

## 3.8 Locally Finite Families

**Definition 3.8.1** (Locally Finite). Let X be a topological space and  $\{A_i\}_{i\in I}$  a family of subsets of X. Then  $\{A_i\}_{i\in I}$  is *locally finite* iff, for all  $x\in X$ , there exists a neighbourhood N of x such that there are only finitely many  $i\in I$  such that N intersects  $A_i$ .

**Proposition 3.8.2.** If  $\{A_i\}_{i\in I}$  is locally finite and  $B_i\subseteq A_i$  for all i then  $\{B_i\}_{i\in I}$  is locally finite.

PROOF: Immediate from definitions.  $\square$ 

**Proposition 3.8.3.** Every finite family of open sets is locally finite.

Proof: Trivial.

## 3.9 Countably Locally Finite Sets

**Definition 3.9.1** (Countably Locally Finite). Let X be a space. A subset of  $\mathcal{P}X$  is *countably locally finite* iff it is the union of countably many locally finite sets.

## 3.10 Locally Discrete Sets

**Definition 3.10.1** (Locally Discrete). Let X be a topological space and  $\{A_i\}_{i\in I}$  a family of subsets of X. Then  $\{A_i\}_{i\in I}$  is *locally discrete* iff, for all  $x\in X$ , there exists a neighbourhood U of x such that there is at most one  $i\in I$  such that U intersects  $A_i$ .

## 3.11 Countably Locally Discrete

**Definition 3.11.1** (Countably Locally Discrete). Let X be a topological space and  $\mathcal{A} \subseteq \mathcal{P}X$ . Then the set  $\mathcal{A}$  is *countably locally discrete* iff it is the union of countably many locally discrete sets.

## 3.12 Closure of a Set

**Definition 3.12.1** (Closure). Let X be a topological space and  $A \subseteq X$ . The *closure* of A, Cl A or  $\overline{A}$ , is the intersection of all closed sets that include A.

PROOF: This intersection always exists because X is a closed set that includes A.  $\square$ 

**Proposition 3.12.2.** Let X be a topological space and  $A \subseteq X$ . Then  $A \subseteq \overline{A}$ .

PROOF: Immediate from definitions.  $\square$ 

**Proposition 3.12.3.** Let X be a topological space and  $A \subseteq X$ . Then  $\overline{A}$  is closed.

PROOF: This follows from Proposition 3.6.5.

**Proposition 3.12.4.** Let X be a topological space and  $A, C \subseteq X$ . If  $A \subseteq C$  and C is closed then  $\overline{A} \subseteq C$ .

PROOF: Immediate from definitions.  $\square$ 

**Proposition 3.12.5.** Let X be a topological space and  $A, B \subseteq X$ . If  $A \subseteq B$  then  $\overline{A} \subseteq \overline{B}$ .

#### Proof:

 $\langle 1 \rangle 1$ . Assume:  $A \subseteq B$ 

 $\langle 1 \rangle 2$ .  $A \subseteq \overline{B}$ 

Proof: Proposition 3.12.2.

 $\langle 1 \rangle 3. \ \overline{A} \subseteq \overline{B}$ 

Proof: Propositions 3.12.3, 3.12.4.

П

**Proposition 3.12.6.** Let X be a set and  $A \subseteq X$ . Then A is closed if and only if  $A = \overline{A}$ .

Proof:

- $\langle 1 \rangle 1$ . If A is closed then  $A = \overline{A}$ 
  - $\langle 2 \rangle$ 1. Assume: A is closed
  - $\langle 2 \rangle 2$ .  $A \subseteq \overline{A}$

PROOF: By Proposition 3.12.2.

 $\langle 2 \rangle 3. \ \overline{A} \subseteq A$ 

PROOF: By Proposition 3.12.4 since  $A \subseteq A$ .

 $\langle 1 \rangle 2$ . If  $A = \overline{A}$  then A is closed.

PROOF: By Proposition 3.12.3.

Corollary 3.12.6.1.

$$\overline{\emptyset} = \emptyset$$

**Theorem 3.12.7** (Kuratowski Closure Axioms). Let X be a set and  $(-): \mathcal{P}X \to \mathcal{P}X$  be a function such that:

- 1.  $\overline{\emptyset} = \emptyset$
- 2. For all  $A \subseteq X$ ,  $A \subseteq \overline{A}$
- 3. For all  $A \subseteq X$ ,  $\overline{A} = \overline{\overline{A}}$
- 4. For all  $A, B \subseteq X$ ,  $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Then there exists a unique topology  $\mathcal{T}$  on X such that  $\overline{A}$  is the closure of A for all  $A \in \mathcal{P}X$ .

Proof:

- $\langle 1 \rangle 1$ . For all  $C, D \subseteq X$ , if  $C \subseteq D$  then  $\overline{C} \subseteq \overline{D}$ 
  - $\langle 2 \rangle 1$ . Assume:  $C \subseteq D$
  - $\langle 2 \rangle 2$ .  $\overline{C} = \overline{D}$

Proof:

$$\overline{D} = \overline{C \cup D}$$
 (\langle 2\rangle 1)
$$= \overline{C} \cup \overline{D}$$
 (axiom 4)

- $\langle 1 \rangle 2$ . Let:  $\mathcal{T}$  be the topology in which a set C is closed iff  $\overline{C} = C$ .
  - $\langle 2 \rangle 1. \ \emptyset = \emptyset$

PROOF: This is axiom 1.

 $\langle 2 \rangle 2. \ \overline{X} = X$ 

PROOF: By axiom 2.

- $\langle 2 \rangle 3$ . For any set  $\mathcal{A}$  of sets C such that  $\overline{C} = C$ , we have  $\overline{\bigcap \mathcal{A}} = \bigcap \mathcal{A}$ 
  - $\langle 3 \rangle 1. \ \overline{\bigcap \mathcal{A}} \subseteq \bigcap \mathcal{A}$ 
    - $\langle 4 \rangle 1$ . Let:  $C \in \mathcal{A}$
    - $\langle 4 \rangle 2. \ \overline{\bigcap \mathcal{A}} \subseteq C$

Proof:

$$\overline{\bigcap} \mathcal{A} \subseteq \overline{C} \tag{\langle 1 \rangle 1}$$

$$=C$$
  $(\langle 4 \rangle 1)$ 

$$\langle 3 \rangle$$
2. Q.E.D.  $\langle 2 \rangle$ 4. If  $\overline{C} = C$  and  $\overline{D} = D$  then  $\overline{C \cup D} = C \cup D$  PROOF: By axiom 4.  $\langle 2 \rangle$ 5. Q.E.D.

PROOF: By Theorem 3.6.7.

 $\langle 1 \rangle 3$ . For all  $A \subseteq X$ , the closure of A in  $\mathcal{T}$  is  $\overline{A}$ 

 $\langle 2 \rangle 1$ .  $\overline{A}$  is closed

PROOF: From axiom 3.

 $\langle 2 \rangle 2$ . If  $A \subseteq C$  and C is closed then  $\overline{A} \subseteq C$  PROOF:

$$C = \overline{C}$$
 (C is closed)  
 $= \overline{A \cup C}$  (A  $\subseteq$  C)  
 $= \overline{A} \cup \overline{C}$  (axiom 4)

**Theorem 3.12.8.** Let A be a subset of the topological space X and  $\mathcal{B}$  a basis for X. Then  $x \in \overline{A}$  if and only if, for all  $B \in \mathcal{B}$ , if  $x \in B$  then B intersects A.

#### Proof:

 $\langle 1 \rangle 1$ . If  $x \in \overline{A}$  then, for all  $B \in \mathcal{B}$ , if  $x \in B$  then B intersects A. PROOF: Immediate from Theorem 3.13.3.

 $\langle 1 \rangle 2$ . If, for all  $B \in \mathcal{B}$ , if  $x \in B$  then B intersects A, then  $x \in \overline{A}$ .

 $\langle 2 \rangle 1$ . Assume: for all  $B \in \mathcal{B}$ , if  $x \in B$  then B intersects A.

 $\langle 2 \rangle 2$ . Let: U be a neighbourhood of x

 $\langle 2 \rangle 3$ . Pick  $B \in \mathcal{B}$  such that  $x \in B \subseteq U$ 

PROOF:  $\mathcal{B}$  is a basis.

 $\langle 2 \rangle 4$ . B intersects A.

Proof: By  $\langle 2 \rangle 1$ .

 $\langle 2 \rangle 5$ . U intersects A.

 $\langle 2 \rangle 6$ . Q.E.D.

PROOF: By Theorem 3.13.3.

**Lemma 3.12.9.** If  $\{A_i\}_{i\in I}$  is locally finite then so is  $\{\overline{A_i}\}_{i\in I}$ .

#### Proof:

 $\langle 1 \rangle 1$ . Let:  $\{A_i\}_{i \in I}$  be a locally finite family of subsets of the space X.

 $\langle 1 \rangle 2$ . Let:  $x \in X$ 

 $\langle 1 \rangle 3$ . PICK a neighbourhood U of x that intersects only  $A_{i_1}, \ldots, A_{i_n}$ .

 $\langle 1 \rangle 4$ . *U* intersects only  $A_{i_1}, \ldots, A_{i_n}$ .

**Lemma 3.12.10.** Let  $\{A_i\}_{i\in I}$  be locally finite. Then  $\overline{\bigcup_{i\in I} A_i} = \bigcup_{i\in I} \overline{A_i}$ .

#### Proof:

 $\langle 1 \rangle 1$ . Let:  $x \in \overline{\bigcup_{i \in I} A_i}$ 

 $\langle 1 \rangle 2$ . PICK a neighbourhood U of x that intersects only  $A_{i_1}, \ldots, A_{i_n}$ .

 $\langle 1 \rangle 3. \ x \in \overline{A_{i_1}} \cup \cdots \cup \overline{A_{i_n}}$ PROOF: If not, then  $U - \overline{A_{i_1}} - \cdots - \overline{A_{i_n}}$  would be a neighbourhood of x that does not intersect  $\bigcup_{i \in I} A_i$ .

**Definition 3.12.11** (Precise Refinement). Let X be a topological space and  $\{U_{\alpha}\}_{{\alpha}\in J}$  be a family of subsets of X. Then a *precise refinement* of  $\{U_{\alpha}\}_{{\alpha}\in J}$  is a family  $\{V_{\alpha}\}_{{\alpha}\in J}$  such that, for all  ${\alpha}\in J$ , we have  $\overline{V_{\alpha}}\subseteq U_{\alpha}$ .

**Definition 3.12.12** (Support). Let X be a topological space and  $\phi: X \to \mathbb{R}$  be a function. Then the *support* of  $\phi$  is the closure of  $\phi^{-1}(\mathbb{R} \setminus \{0\})$ .

**Lemma 3.12.13.** Let X be a topological space and  $\{f_{\alpha}: X \to \mathbb{R}\}_{\alpha \in J}$  be a family of continuous functions. If  $\{\text{supp } f_{\alpha}\}_{\alpha \in J}$  is locally finite then, for all  $x \in X$ , we have  $f_{\alpha}(x) = 0$  for all but finitely many  $\alpha \in J$ .

#### Proof

- $\langle 1 \rangle 1$ . Assume:  $\{ \sup f_{\alpha} \}_{\alpha \in J}$  is locally finite.
- $\langle 1 \rangle 2$ . Let:  $x \in X$
- $\langle 1 \rangle 3$ . PICK an open neighbourhood U of x that intersects only supp  $f_{\alpha}$  for only finitely many  $\alpha$ , say  $\alpha_1, \ldots, \alpha_n$

Proof:  $\langle 1 \rangle 1, \langle 1 \rangle 2$ 

 $\langle 1 \rangle 4$ . For all  $\alpha \in J$ , if  $f_{\alpha}(x) = 0$  then  $\alpha$  is one of  $\alpha_1, \ldots, \alpha_n$ . PROOF:  $\langle 1 \rangle 3$ , Proposition 3.12.2.

**Definition 3.12.14** (Partition of Unity). Let X be a topological space. Let  $\{U_{\alpha}\}_{{\alpha}\in J}$  be an open covering of X. A partition of unity dominated by  $\{U_{\alpha}\}_{{\alpha}\in J}$  is a family of continuous functions  $\{\phi_{\alpha}: X \to [0,1]\}_{{\alpha}\in J}$  such that:

- 1. for all  $\alpha \in J$ , supp  $\phi_{\alpha} \subseteq U_{\alpha}$ ;
- 2. the family  $\{\operatorname{supp} \phi_{\alpha}\}_{{\alpha} \in J}$  is locally finite;
- 3.  $\sum_{\alpha \in J} \phi_{\alpha}(x) = 1$

## 3.13 Interior of a Set

**Definition 3.13.1** (Interior). Let X be a topological space and  $A \subseteq X$ . The *interior* of A, Int A, is the union of all open sets included in A.

**Lemma 3.13.2.** If  $A \subseteq B$  then  $\overline{A} \subseteq \overline{B}$ .

PROOF:  $\overline{B}$  is a closed set that includes B, hence includes A.  $\square$ 

**Theorem 3.13.3.** Let A be a subset of the topological space X and  $x \in X$ . Then  $x \in \overline{A}$  if and only if every neighbourhood of x intersects A.

Proof:

$$x \notin \overline{A} \Leftrightarrow \exists C \text{ closed } (A \subseteq C \land x \notin C)$$
  
 $\Leftrightarrow \exists U \text{ open } (A \subseteq X \setminus U \land x \in U)$   
 $\Leftrightarrow \exists U \text{ open } (A \text{ intersects } U \land x \in U)$ 

Lemma 3.13.4.

$$X \setminus \operatorname{Int} A = \overline{X \setminus A}$$

Proof:

$$\begin{array}{c|c} \langle 1 \rangle 1. & X \setminus \operatorname{Int} A \subseteq \overline{X \setminus A} \\ \langle 2 \rangle 1. & X \setminus A \subseteq \overline{X \setminus A} \\ \langle 2 \rangle 2. & X \setminus \overline{X \setminus A} \subseteq A \\ \langle 2 \rangle 3. & X \setminus \overline{X \setminus A} \subseteq \operatorname{Int} A \\ \langle 1 \rangle 2. & \overline{X \setminus A} \subseteq X \setminus \operatorname{Int} A \\ \langle 2 \rangle 1. & \operatorname{Int} A \subseteq A \\ \langle 2 \rangle 2. & \underline{X \setminus A} \subseteq X \setminus \operatorname{Int} A \\ \langle 2 \rangle 3. & \overline{X \setminus A} \subseteq X \setminus \operatorname{Int} A \end{array}$$

## 3.14 Boundary

**Definition 3.14.1** (Boundary). Let X be a topological space and  $A \subseteq X$ . The boundary of A, Bd A, is  $\overline{A} \cap \overline{X} \setminus \overline{A}$ .

Lemma 3.14.2.

$$\operatorname{Bd} A = \overline{A} \setminus \operatorname{Int} A$$

PROOF: From Lemma 3.13.4.  $\square$ 

**Lemma 3.14.3.**  $\overline{A} = \operatorname{Int} A \cup \operatorname{Bd} A$ 

Proof:

$$\operatorname{Int} A \cup \operatorname{Bd} A = \operatorname{Int} A \cup (\overline{A} \cap (X \setminus \operatorname{Int} A))$$
$$= \operatorname{Int} A \cup \overline{A}$$
$$= \overline{A}$$

Corollary 3.14.3.1. Bd  $A = \emptyset$  iff A is open and closed.

**Lemma 3.14.4.** For any set U, the following are equivalent:

- 1. U is open.
- 2. Bd  $U \cap U = \emptyset$
- 3. Bd  $U = \overline{U} \setminus U$

Proof:

 $\langle 1 \rangle 1. \ 1 \Rightarrow 3$ 

```
PROOF: From Lemma 3.14.2.  \begin{array}{l} \langle 1 \rangle 2. \ 3 \Rightarrow 2 \\ \text{PROOF: Set theory.} \\ \langle 1 \rangle 3. \ 2 \Rightarrow 1 \\ \text{PROOF:} \\ U \subseteq \overline{U} \\ = \operatorname{Int} U \cup \operatorname{Bd} U \\ \therefore U \subseteq \operatorname{Int} U \end{array}  (Lemma 3.14.3)
```

## 3.15 Limit Points

**Definition 3.15.1** (Limit Point). Let X be a topological space,  $A \subseteq X$ , and  $x \in X$ . Then x is a *limit point*, *cluster point* or *point of accumulation* of A iff every neighbourhood of x intersects A in a point other than x.

**Lemma 3.15.2.** If  $A \subseteq B$  then every limit point of A is a limit point of B.

PROOF: Immediate from the definition.  $\square$ 

**Theorem 3.15.3.** Let A be a subset of the topological space X. Let A' be the set of all limit points of A. Then  $\overline{A} = A \cup A'$ .

Proof:

 $\langle 1 \rangle 1$ . If  $x \in \overline{A}$  and  $x \notin A$  then  $x \in A'$ 

PROOF: in this case, every neighbourhood of x intersects A in a point other than x.

 $\langle 1 \rangle 2$ .  $A \subseteq \overline{A}$ 

PROOF: From the definition of  $\overline{A}$ .

 $\langle 1 \rangle 3. \ A' \subseteq \overline{A}$ 

3.16

PROOF: By Theorem 3.13.3.

Subbases

**Definition 3.16.1** (Subbasis). Let X be a topological space. A *subbasis* for the topology on X is a set  $S \subseteq \mathcal{P}X$  such that, for every open set U and  $x \in U$ , there exist  $S_1, \ldots, S_n \in \mathcal{S}$  such that  $x \in S_1 \cap \cdots \cap S_n \subseteq U$ . We say the topology is *generated* by S.

Corollary 3.15.3.1. A set is closed if and only if it contains all its limit points.

**Lemma 3.16.2.** Let  $\mathcal{T}$  be a topology on X and  $S \subseteq \mathcal{P}X$ . Then the following are equivalent:

1. S is a subbasis for T.

- 2. The set of all finite intersections of members of S is a basis for T
- 3.  $\mathcal{T}$  is the set of all unions of finite intersections of members of  $\mathcal{S}$ .

PROOF: 1  $\Leftrightarrow$  2 holds immediately from the definitions. 2  $\Leftrightarrow$  3 holds by Proposition 3.5.2.  $\square$ 

**Corollary 3.16.2.1.** If S is a subbasis for the topology T, then T is the coarsest topology in which every element of S is open.

**Lemma 3.16.3.** Let X be a set and  $S \subseteq PX$ . Then S is a subbasis for a topology on X if and only if  $\bigcup S = X$ .

#### Proof:

- $\langle 1 \rangle 1$ . If S is a subbasis for a topology on X then  $\bigcup S = X$ 
  - $\langle 2 \rangle 1$ . Assume: S is a subbasis for a topology  $\mathcal{T}$  on X.
  - $\langle 2 \rangle 2$ . Let:  $x \in X$
  - $\langle 2 \rangle 3$ . PICK  $S_1, \ldots, S_n \in \mathcal{S}$  such that  $x \in S_1 \cap \cdots \cap S_n \subseteq X$ PROOF: From the definition of subbasis  $(\langle 2 \rangle 1, \langle 2 \rangle 2)$ .
  - $\langle 2 \rangle 4. \ x \in \bigcup \mathcal{S}$

PROOF: Immediate from  $\langle 2 \rangle 3$ .

- $\langle 1 \rangle 2$ . If  $\bigcup S = X$  then S is a subbasis for a topology on X
  - $\langle 2 \rangle 1$ . Assume:  $\bigcup \mathcal{S} = X$

PROVE: The set of all finite intersections of elements of S is a basis for a topology on X.

- $\langle 2 \rangle 2$ . Let:  $\mathcal{B}$  be the set of all finite intersections of elements of  $\mathcal{S}$ .
- $\langle 2 \rangle 3$ .  $\bigcup \mathcal{B} = X$

PROOF: From  $\langle 2 \rangle 1$  and  $\langle 2 \rangle 2$ .

 $\langle 2 \rangle$ 4. For all  $B_1, B_2 \in \mathcal{B}$  and  $x \in B_1 \cap B_2$ , there exists  $B_3 \in \mathcal{B}$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ 

PROOF: Take  $B_3 = B_1 \cap B_2$  ( $\langle 2 \rangle 2$ ).

 $\langle 2 \rangle 5$ .  $\mathcal{B}$  is a basis for a topology on X.

PROOF: By Lemma 3.5.3.

 $\langle 2 \rangle 6$ . Q.E.D.

PROOF: By Lemma 3.16.2.

## 3.17 Convergence

**Definition 3.17.1** (Net). Let X be a topological space. A net  $(x_{\alpha})_{{\alpha} \in J}$  in X consists of a directed set J and a function  $x: J \to X$ .

**Definition 3.17.2** (Convergence). Let  $(x_{\alpha})_{{\alpha}\in J}$  be a net in the topological space X, and  $l\in X$ . Then the net *converges* to  $l, x_{\alpha}\to l$ , if and only if, for every neighbourhood U of l, there exists  $\alpha\in J$  such that, for all  $\beta\geq\alpha$ , we have  $x_{\beta}\in U$ .

**Theorem 3.17.3** (AC). Let X be a topological space and  $A \subseteq X$ . Then  $x \in \overline{A}$  if and only if there exists a net of points of A converging to x.

```
PROOF:
```

- $\langle 1 \rangle 1$ . If  $x \in \overline{A}$  then there exists a net of points of A converging to x.
  - $\langle 2 \rangle 1$ . Let:  $x \in \overline{A}$
  - $\langle 2 \rangle 2$ . Let: J be the poset of neighbourhoods of x under  $\supseteq$ .
  - $\langle 2 \rangle 3$ . For  $U \in J$  PICK a point  $x_U \in U \cap A$

PROOF: By Theorem 3.13.3

 $\langle 2 \rangle 4$ .  $(x_U)_{U \in J}$  is a net

PROOF: Given  $U, V \in J$  we have  $U \cap V \in J$  and  $U \supseteq U \cup V$ ,  $V \supseteq U \cup V$ .

 $\langle 2 \rangle 5. \ x_U \to x$ 

PROOF: For any neighbourhood U of x we have  $U \in J$  and if  $U \supseteq V$  then  $x_V \in U$ .

- $\langle 1 \rangle 2$ . If there exists a net of points of A converging to x then  $x \in \overline{A}$ .
  - $\langle 2 \rangle 1$ . Let:  $(x_{\alpha})_{\alpha \in J}$  be a net of points in A that converges to x.
  - $\langle 2 \rangle 2$ . Let: U be a neighbourhood of x
  - $\langle 2 \rangle 3$ . PICK  $\alpha \in J$  such that, for all  $\beta \geq \alpha$ , we have  $x_{\beta} \in U$
  - $\langle 2 \rangle 4. \ x_{\alpha} \in U \cap A$
  - $\langle 2 \rangle$ 5. Q.E.D.

PROOF: By Theorem 3.13.3

**Theorem 3.17.4.** Let X and Y be topological spaces and  $f: X \to Y$ . Then f is continuous if and only if, for every net  $(x_{\alpha})_{{\alpha} \in J}$  in X, if  $x_{\alpha} \to x$  then  $f(x_{\alpha}) \to f(x)$ .

#### Proof:

- $\langle 1 \rangle 1$ . If f is continuous and  $x_{\alpha} \to x$  then  $f(x_{\alpha}) \to f(x)$ 
  - $\langle 2 \rangle 1$ . Assume: f is continuous.
  - $\langle 2 \rangle 2$ . Assume:  $x_{\alpha} \to x$
  - $\langle 2 \rangle 3$ . Let: V be a neighbourhood of f(x)
  - $\langle 2 \rangle 4$ .  $f^{-1}(V)$  is a neighbourhood of x
  - $\langle 2 \rangle$ 5. Pick  $\alpha$  such that, for all  $\beta \geq \alpha$ , we have  $x_{\beta} \in f^{-1}(V)$
  - $\langle 2 \rangle 6$ . For all  $\beta \geq \alpha$  we have  $f(x_{\beta}) \in V$
- $\langle 1 \rangle 2$ . If, for every net  $(x_{\alpha})$  in X, if  $x_{\alpha} \to x$  then  $f(x_{\alpha}) \to f(x)$ , then f is continuous.
  - $\langle 2 \rangle 1$ . Assume: for every net  $(x_{\alpha})$  in X, if  $x_{\alpha} \to x$  then  $f(x_{\alpha}) \to f(x)$
  - $\langle 2 \rangle 2$ . Let:  $A \subseteq X$

PROVE:  $f(\overline{A}) \subseteq \overline{f(A)}$ 

- $\langle 2 \rangle 3$ . Let:  $x \in \overline{A}$
- $\langle 2 \rangle 4$ . PICK a net  $(x_{\alpha})$  in A such that  $x_{\alpha} \to x$

PROOF: Theorem 3.17.3

 $\langle 2 \rangle 5. \ f(x_{\alpha}) \to f(x)$ 

Proof: By  $\langle 2 \rangle 1$ 

 $\langle 2 \rangle 6. \ f(x) \in f(A)$ 

PROOF: Theorem 3.17.3

 $\langle 2 \rangle 7$ . Q.E.D.

PROOF: By Theorem 5.2.2.

**Definition 3.17.5** (Subnet). Let  $(x_{\alpha})_{\alpha \in J}$  be a net in X. Let K be a directed set and  $g: K \to J$  be a monotone function such that g(K) is cofinal in J. Then the net  $(x_{g(\beta)})_{\beta \in K}$  is called a *subnet* of  $(x_{\alpha})$ .

## 3.18 Accumulation Points

**Definition 3.18.1** (Accumulation Point). Let X be a topological space, and  $(x_{\alpha})_{\alpha \in J}$  a net in X, and  $a \in X$ . Then a is an accumulation point of  $(x_{\alpha})$  iff, for every neighbourhood U of x, the set  $\{\alpha \in J : x_{\alpha} \in U\}$  is cofinal in J.

**Lemma 3.18.2.** Let X be a topological space,  $(x_{\alpha})_{\alpha \in J}$  be a nonempty net in X and  $a \in X$ . Then a is an accumulation point of  $(x_{\alpha})$  if and only if there exists a subnet of  $(x_{\alpha})$  that converges to a.

#### Proof:

- $\langle 1 \rangle 1$ . If a is an accumulation point of  $(x_{\alpha})$  then there exists a subnet of  $(x_{\alpha})$  that converges to a.
  - $\langle 2 \rangle 1$ . Assume: a is an accumulation point of  $(x_{\alpha})$ .
  - $\langle 2 \rangle 2$ . Let: K be the poset  $\{(\alpha, U) : \alpha \in J, U \text{ is a neighbourhood of } a, x_{\alpha} \in U\}$  under:  $(\alpha, U) \leq (\beta, V)$  iff  $\alpha \leq \beta$  and  $U \subseteq V$ .
  - $\langle 2 \rangle 3. \ (x_{\alpha})_{(\alpha,U) \in K}$  is a subnet of  $(x_{\alpha})_{\alpha \in J}$ 
    - $\langle 3 \rangle 1$ . K is directed.
      - $\langle 4 \rangle 1$ . Let:  $(\alpha, U), (\beta, V) \in K$
      - $\langle 4 \rangle 2$ . Pick  $\gamma \in J$  such that  $\alpha \leq \gamma$  and  $\beta \leq \gamma$ .
      - $\langle 4 \rangle$ 3. Pick  $\delta \in J$  such that  $\gamma \leq \delta$  and  $x_{\delta} \in U \cap V$ Proof: By  $\langle 2 \rangle$ 1.
      - $\langle 4 \rangle 4. \ (\delta, U \cap V) \in K \text{ and } (\alpha, U) \leq (\delta, U \cap V), \ (\beta, V) \leq (\delta, U \cap V)$
    - $\langle 3 \rangle 2$ . If  $(\alpha, U) \leq (\beta, V)$  then  $\alpha \leq \beta$

PROOF: From  $\langle 2 \rangle 2$ .

 $\langle 3 \rangle 3$ .  $\{ \alpha : \exists U . (\alpha, U) \in K \}$  is cofinal in J

PROOF: For  $\alpha \in J$  we have  $(\alpha, X) \in K$ , so in fact  $\{\alpha : \exists U.(\alpha, U) \in K\} = J$ .

- $\langle 2 \rangle 4$ . The subnet converges to a.
  - $\langle 3 \rangle 1$ . Let: U be a neighbourhood of a.
  - $\langle 3 \rangle 2$ . Pick  $\alpha \in J$
  - $\langle 3 \rangle 3$ . PICK  $\beta \in J$  such that  $\alpha \leq \beta$  and  $x_{\beta} \in U$ PROOF: By  $\langle 2 \rangle 1$ .
  - $\langle 3 \rangle 4$ . For all  $(\gamma, V) \geq (\beta, U)$  we have  $x_{\gamma} \in U$ PROOF:  $x_{\gamma} \in V \subseteq U$ .
- $\langle 1 \rangle 2$ . If there exists a subnet of  $(x_{\alpha})$  that converges to a then a is an accumulation point of  $(x_{\alpha})$ .
  - $\langle 2 \rangle 1$ . Assume:  $(x_{g(\beta)})_{\beta \in K}$  converges to a
  - $\langle 2 \rangle 2$ . Let: U be a neighbourhoof of a
  - $\langle 2 \rangle 3$ . Let:  $\alpha \in J$

PROVE: There exists  $\gamma \geq \alpha$  such that  $x_{\gamma} \in U$ 

 $\langle 2 \rangle 4$ . PICK  $\beta \in K$  such that, for all  $\beta' \geq \beta$ , we have  $x_{g(\beta')} \in U$ 

```
PROOF: By \langle 2 \rangle 1.

\langle 2 \rangle 5. PICK \beta' \in K such that g(\beta') \geq \alpha

PROOF: Since g(K) is cofinal in J.

\langle 2 \rangle 6. PICK \beta'' \in K such that \beta \leq \beta'' and \beta' \leq \beta''

PROOF: K is directed.

\langle 2 \rangle 7. g(\beta'') \geq \alpha and x_{g(\beta'')} \in U
```

## 3.19 Dense Sets

**Definition 3.19.1** (Dense). Let X be a topological space and  $A \subseteq X$ . Then A is dense in X iff  $\overline{A} = X$ .

## 3.20 $G_{\delta}$ Sets

**Definition 3.20.1** ( $G_{\delta}$  Set). A  $G_{\delta}$  set is the intersection of a countable set of open sets.

**Definition 3.20.2** ( $F_{\sigma}$  Set). Let X be a topological space and  $A \subseteq X$ . Then A is an  $F_{\sigma}$ -set iff it is a countable union of closed sets.

## 3.21 Separated Sets

**Definition 3.21.1** (Separated Sets). Let X be a topological space and  $A, B \subseteq X$ . Then A and B are *separated* iff  $\overline{A} \cap B = \emptyset$  and  $A \cap \overline{B} = \emptyset$ .

## 3.22 Coherent Topology

**Definition 3.22.1** (Coherent Topology). Let  $X_1 \subseteq X_2 \subseteq \cdots$  be a sequence of topological spaces such that each  $X_n$  is a closed subspace of  $X_{n+1}$ . Let  $X = \bigcup_{n=1}^{\infty} X_n$ . Then the topology on X coherent with the subspaces  $X_n$  is the topology defined by:  $U \subseteq X$  is open iff  $U \cap X_n$  is open in  $X_n$  for all n.

## Chapter 4

# Constructions of Topological Spaces

## 4.1 The Order Topology

**Definition 4.1.1** (Order Topology). Let X be a linearly ordered set with more than one element. The *order topology* on X is the topology generated by the basis consisting of:

- all open intervals (a, b)
- all half-open intervals  $(a, \top]$  where  $\top$  is the greatest element of X, if there is one:
- all half-open intervals  $[\bot, a)$  where  $\bot$  is the least element of X, if there is one.

We prove this is a basis for a topology.

#### PROOF:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{B}$  be the set of all sets of these three forms.
- $\langle 1 \rangle 2$ .  $\bigcup \mathcal{B} = X$ 
  - $\langle 2 \rangle 1$ . Let:  $x \in X$

PROVE: There exists  $B \in \mathcal{B}$  such that  $x \in B$ 

- $\langle 2 \rangle 2$ . Case: x is least in X
  - $\langle 3 \rangle 1$ . PICK  $a \in X$  such that a > x

PROOF: X has more than one element.

- $\langle 3 \rangle 2. \ x \in [x, a) \in \mathcal{B}$
- $\langle 2 \rangle 3$ . Case: x is greatest in X
  - $\langle 3 \rangle 1$ . PICK  $a \in X$  such that a < x

PROOF: X has more than one element.

- $\langle 3 \rangle 2. \ x \in (a, x] \in \mathcal{B}$
- $\langle 2 \rangle 4$ . Case: x is neither least nor greatest in X

```
\langle 3 \rangle 1. PICK a, b \in X such that a < x < b
      \langle 3 \rangle 2. \ x \in (a,b) \in \mathcal{B}
\langle 1 \rangle 3. For all B_1, B_2 \in \mathcal{B} and x \in B_1 \cap B_2, there exists B_3 \in \mathcal{B} such that
        x \in B_3 \subseteq B_1 \cap B_2
   \langle 2 \rangle 1. Let: B_1, B_2 \in \mathcal{B} and x \in B_1 \cap B_2
   \langle 2 \rangle 2. Case: B_1 = (a, b), B_2 = (c, d)
      PROOF: Take B_3 = (\max(a, c), \min(b, d)).
   \langle 2 \rangle 3. Case: B_1 = (a, b), B_2 = (c, \top)
      PROOF: Take B_3 = (\max(a, c), b).
   \langle 2 \rangle 4. Case: B_1 = (a, b), B_2 = [\bot, d)
      PROOF: Take B_3 = (a, \min(b, d)).
   \langle 2 \rangle 5. Case: B_1 = (a, \top], B_2 = (c, d)
      Proof: Similar to \langle 2 \rangle 3.
   \langle 2 \rangle 6. Case: B_1 = (a, \top], B_2 = (c, \top]
      PROOF: Take B_3 = (\max(a, c), \top].
   \langle 2 \rangle 7. Case: B_1 = (a, \top], B_2 = [\bot, d)
      PROOF: Take B_3 = (a, d).
   \langle 2 \rangle 8. Case: B_1 = [\bot, b), B_2 = (c, d)
      Proof: Similar to \langle 2 \rangle 4.
   \langle 2 \rangle 9. Case: B_1 = [\bot, b), B_2 = (c, \top]
      Proof: Simlar to \langle 2 \rangle 7.
   \langle 2 \rangle 10. Case: B_1 = [\bot, b), B_2 = [\bot, d)
      PROOF: Take B_3 = [\bot, \min(b, d)).
\langle 1 \rangle 4. Q.E.D.
   Proof: By Lemma 3.5.3.
```

**Lemma 4.1.2.** Let X be a linearly ordered set,  $U \subseteq X$  be open, and  $a \in U$ . Then:

- 1. Either a is greatest in X, or there exists a' > a such that  $[a, a') \subseteq U$
- 2. Either a is least in X, or there exists a' < a such that  $(a', a] \subseteq U$ .

#### Proof:

```
\langle 1 \rangle 1. Either a is greatest in X, or there exists a' > a such that [a,a') \subseteq U \langle 2 \rangle 1. Assume: a is not greatest in X \langle 2 \rangle 2. Pick a basic open set B such that a \in B \subseteq U \langle 2 \rangle 3. Case: B = (a'',a') Proof: a < a' and [a,a') \subseteq B \subseteq U \langle 2 \rangle 4. Case: B = [\bot,a')
```

 $\langle 2 \rangle 4$ . Case:  $B = [\bot, a')$ Proof: a < a' and  $[a, a') \subseteq B \subseteq U$  $\langle 2 \rangle 5$ . Case:  $B = (a'', \top]$ 

PROOF: Pick any a' > a (one exists by  $\langle 2 \rangle 1$ ). Then  $[a, a') \subseteq B \subseteq U$ .S  $\langle 1 \rangle 2$ . Either a is least in X, or there exists a' < a such that  $(a', a] \subseteq U$ . PROOF: Similar.

```
Lemma 4.1.3. The open rays form a subbasis for the order topology.
```

```
\langle 1 \rangle 1. Let: X be a linearly ordered set with more than one element.
\langle 1 \rangle 2. The open rays form a subbasis for a topology.
   \langle 2 \rangle 1. Let: x \in X
            PROVE: x is an element of an open ray.
   \langle 2 \rangle 2. Case: x is greatest in X
       \langle 3 \rangle 1. PICK a \in X such that a < x
          PROOF: X has more than one element (\langle 1 \rangle 1).
       \langle 3 \rangle 2. \ x \in (a, +\infty)
   \langle 2 \rangle 3. Case: x is not greatest in X
       \langle 3 \rangle 1. Pick a \in X such that x < a
       \langle 3 \rangle 2. \ x \in (-\infty, a)
   \langle 2 \rangle 4. Q.E.D.
       PROOF: By Lemma 3.16.2.
\langle 1 \rangle 3. Let: \mathcal{T}_o be the order topology and \mathcal{T}_S be the topology generated by the
                  open rays.
\langle 1 \rangle 4. \mathcal{T}_o \subseteq \mathcal{T}_S
   \langle 2 \rangle 1. Every open interval (a,b) is open in \mathcal{T}_S
       PROOF: (a, b) = (a, +\infty) \cap (-\infty, b).
   \langle 2 \rangle 2. If \top is greatest then (a, \top] is open in \mathcal{T}_S
       PROOF: (a, \top] = (a, +\infty).
   \langle 2 \rangle 3. If \perp is least then [\perp, b) is open in \mathcal{T}_S
       PROOF: [\bot, b) = [\bot, +\infty).
   \langle 2 \rangle 4. Q.E.D.
       Proof: By Corollary 3.5.2.1.
\langle 1 \rangle 5. \mathcal{T}_S \subseteq \mathcal{T}_o
   \langle 2 \rangle 1. For all a \in X, we have (a, +\infty) is open in \mathcal{T}_o
       \langle 3 \rangle 1. Let: x \in (a, +\infty)
               PROVE: There exists a basis element B such that x \in B \subseteq (a, +\infty)
       \langle 3 \rangle 2. Case: x is greatest
          PROOF: Take B = (a, x]
       \langle 3 \rangle 3. Case: x is not greatest
          \langle 4 \rangle 1. Pick b > x
          \langle 4 \rangle 2. \ x \in (a,b) \subseteq (a,+\infty)
   \langle 2 \rangle 2. For all a \in X, we have (-\infty, a) is open in \mathcal{T}_o
       Proof: Similar.
   \langle 2 \rangle 3. Q.E.D.
       Proof: By Corollary 3.16.2.1.
```

**Lemma 4.1.4.** In a linearly ordered set X under the order topology, the closed intervals and closed rays are closed.

$$X \setminus [a, b] = (-\infty, a) \cup (b, +\infty)$$

$$X \setminus (-\infty, a] = (a, +\infty)$$

$$X \setminus [a, +\infty) = (-\infty, a)$$

**Definition 4.1.5** (Standard Topology on  $\mathbb{R}$ ). The *standard topology* on  $\mathbb{R}$  is the order topology.

**Lemma 4.1.6.** The standard topology is strictly coarser than the lower limit topology.

### Proof:

- $\langle 1 \rangle 1$ . The standard topology is coarser than the lower limit topology.
  - $\langle 2 \rangle 1$ . For every open interval (a,b) and  $x \in (a,b)$ , there exists a half-open interval [c,d) such that  $x \in [c,d) \subseteq (a,b)$

PROOF: Take [c,d) = [x,b).

 $\langle 2 \rangle 2$ . Q.E.D.

PROOF: By Lemma 3.5.4.

 $\langle 1 \rangle 2$ . There exists a set U open in the lower limit topology that is not open in the standard topology.

PROOF: Take U = [0, 1).

П

**Lemma 4.1.7.** The standard topology is strictly coarser than the K-topology.

### Proof:

 $\langle 1 \rangle 1$ . The standard topology is coarser than the K-topology.

PROOF: Every open interval is open in the K-topology.

 $\langle 1 \rangle 2$ . There exists a set U open in the K-topology that is not open in the standard topology.

PROOF: Take  $U = (-1,1) \setminus K$ . Then  $0 \in U$  but there is no open interval (a,b) such that  $0 \in (a,b) \subseteq U$ .

П

**Definition 4.1.8** (Ordered Square). The ordered square  $I_o^2$  is the topological space  $[0,1]^2$  under the order topology induced by the lexicographic order.

**Lemma 4.1.9.** Let L be a linear continuum with a greatest element. Then every non-empty closed set in L has a greatest element.

### Proof:

- $\langle 1 \rangle 1$ . Let: C be a non-empty closed set in L
- $\langle 1 \rangle 2$ . Let: u be the supremum of C
- $\langle 1 \rangle 3. \ u \in C$ 
  - $\langle 2 \rangle 1$ . Assume: w.l.o.g u is not least in L

PROOF: If u is least then  $C = \{u\}$ .

- $\langle 2 \rangle 2$ . Let: U be any open neighbourhood of u
- $\langle 2 \rangle 3$ . Pick v < u such that  $(v, u] \subseteq U$

PROOF: By Lemma 4.1.2.  $\langle 2 \rangle 4. \text{ PICK } x \in C \text{ such that } v < x \\ \text{PROOF: } v \text{ is not an upper bound for } C \ (\langle 1 \rangle 2). \\ \langle 2 \rangle 5. \ U \text{ intersects } C \text{ in } v \\ \langle 2 \rangle 6. \text{ Q.E.D.} \\ \text{PROOF: By Theorem 3.13.3.}$ 

**Definition 4.1.10** (Long Line). The long line is  $(S_{\Omega} \times [0,1)) \setminus \{(0,0)\}$  under the dictionary order, where  $S_{\Omega}$  is the first uncountable ordinal under the order topology.

# 4.2 The Product Topology

**Definition 4.2.1** (Product Topology). Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces. The *product topology* on  $\prod_{{\alpha}\in J} X_{\alpha}$  is the topology generated by the subbasis consisting of all sets of the form  $\pi_{\alpha}^{-1}(U)$  where  ${\alpha}\in J$  and U is open in  $X_{\alpha}$ . The *product space* of  $\{X_{\alpha}\}_{{\alpha}\in J}$  is  $\prod_{{\alpha}\in J} X_{\alpha}$  under the product topology.

For X a set and Y a topological space, we also call the product topology on  $Y^X$  the topology of pointwise convergence or the point-open topology.

**Lemma 4.2.2.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces and  $A_{\alpha}$  be closed in  $X_{\alpha}$  for all  $\alpha$ . Then  $\prod_{{\alpha}\in J}A_{\alpha}$  is closed in  $\prod_{{\alpha}\in J}X_{\alpha}$ .

PROOF: This holds because  $\prod_{\alpha \in J} X_{\alpha} \setminus \prod_{\alpha \in J} A_{\alpha} = \bigcup_{\alpha \in J} \pi_{\alpha}^{-1}(X_{\alpha} \setminus A_{\alpha})$ .  $\square$ 

**Theorem 4.2.3.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces. The set of all sets of the form  $\prod_{{\alpha}\in J}U_{\alpha}$  where each  $U_{\alpha}$  is open in  $X_{\alpha}$ , and  $U_{\alpha}=X_{\alpha}$  for all but finitely many  $\alpha$ , is a basis for the product topology on  $\prod_{{\alpha}\in J}X_{\alpha}$ .

PROOF: By Lemma 3.16.2.  $\square$ 

**Theorem 4.2.4.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces, and let  $\mathcal{B}_{\alpha}$  be a basis for the topology on  $X_{\alpha}$  for each  $\alpha$ . Then

$$\mathcal{B} = \{ \prod_{\alpha \in J} U_{\alpha} : \text{for finitely many } \alpha \in J, U_{\alpha} \in \mathcal{B}_{\alpha},$$

$$\text{and } U_{\alpha} = X_{\alpha} \text{ for all other values of } \alpha \}$$

is a basis for the product topology on  $\prod_{\alpha \in J} X_{\alpha}$ .

### Proof:

 $\langle 1 \rangle 1$ . Every member of  $\mathcal{B}$  is open in the product topology.

Proof: Immediate from definitions.

- $\langle 1 \rangle 2$ . For every open set U and  $\{x_{\alpha}\}_{{\alpha} \in J} \in U$ , there exists  $B \in \mathcal{B}$  such that  $\{x_{\alpha}\}_{{\alpha} \in J} \in B \subseteq U$ .
  - $\langle 2 \rangle 1$ . Let: U be open and  $\{x_{\alpha}\}_{{\alpha} \in J} \in U$

 $\langle 2 \rangle 2$ . Pick  $U_{\alpha}$  open in  $X_{\alpha}$  for each  $\alpha$  such that  $\{x_{\alpha}\}_{{\alpha} \in J} \in \prod_{{\alpha} \in J} U_{\alpha} \subseteq U$  and  $U_{\alpha} = X_{\alpha}$  for all  $\alpha$  except  $\alpha_1, \ldots, \alpha_n$ .

PROOF: By Theorem 4.2.3.

 $\langle 2 \rangle 3$ . Pick  $B_{\alpha_i} \in \mathcal{B}_{\alpha_i}$  such that  $x_{\alpha} \in B_{\alpha_i} \subseteq U_{\alpha_i}$  for  $i = 1, \dots, n$ 

 $\langle 2 \rangle 4$ .  $\{x_{\alpha}\}_{{\alpha} \in J} \in \prod_{{\alpha} \in J} V_{\alpha} \subseteq U$  where  $V_{\alpha_i} = B_{\alpha_i}$  for  $i = 1, \ldots, n$ , and  $V_{\alpha} = X_{\alpha}$  for all other  $\alpha$ .

**Theorem 4.2.5** (AC). Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces and  $A_{\alpha}\subseteq X_{\alpha}$  for all  $\alpha$ . If  $\prod_{{\alpha}\in J} X_{\alpha}$  is given the product topology, then

$$\prod_{\alpha \in J} \overline{A_{\alpha}} = \overline{\prod_{\alpha \in J} A_{\alpha}} .$$

Proof:

 $\langle 1 \rangle 1. \prod_{\alpha \in J} \overline{A_{\alpha}} \subseteq \overline{\prod_{\alpha \in J} A_{\alpha}}$ 

 $\langle 2 \rangle 1$ . Let:  $\{x_{\alpha}\}_{{\alpha} \in J} \in \prod_{{\alpha} \in J} \overline{A_{\alpha}}$ 

 $\langle 2 \rangle 2$ . Let:  $\prod_{\alpha \in J} U_{\alpha}$  be a basic neighbourhood of  $\{x_{\alpha}\}_{\alpha \in J}$ , where each  $U_{\alpha}$  is open in  $X_{\alpha}$ , and  $U_{\alpha} = X_{\alpha}$  except for  $\alpha = \alpha_1, \ldots, \alpha_n$ .

 $\langle 2 \rangle 3$ . For  $\alpha \in J$ , PICK  $a_{\alpha} \in A_{\alpha} \cap U_{\alpha}$ .

PROOF: By Theorem 3.13.3, using the Axiom of Choice.

 $\langle 2 \rangle 4. \ \{a_{\alpha}\}_{{\alpha} \in J} \in \prod_{{\alpha} \in J} A_{\alpha} \cap \prod_{{\alpha} \in J} U_{\alpha}$ 

 $\langle 2 \rangle$ 5. Q.E.D.

PROOF: By Theorem 3.13.3.

 $\langle 1 \rangle 2$ .  $\overline{\prod_{\alpha \in J} A_{\alpha}} \subseteq \prod_{\alpha \in J} \overline{A_{\alpha}}$ 

 $\langle 2 \rangle 1$ . Let:  $\{x_{\alpha}\}_{{\alpha} \in J} \in \overline{\prod_{{\alpha} \in J} A_{\alpha}}$ 

 $\langle 2 \rangle 2$ . Let:  $\alpha \in J$ 

Prove:  $x_{\alpha} \in \overline{A_{\alpha}}$ 

 $\langle 2 \rangle 3$ . Let: U be a neighbourhood of  $x_{\alpha}$  in  $X_{\alpha}$ 

 $\langle 2 \rangle 4$ .  $\pi_{\alpha}^{-1}(U)$  is a neighbourhood of  $\{x_{\alpha}\}_{{\alpha} \in J}$ 

 $\langle 2 \rangle$ 5. PICK  $\{a_{\alpha}\}_{{\alpha} \in J} \in \pi_{\alpha}^{-1}(U) \cap \prod_{{\alpha} \in J} A_{\alpha}$ PROOF: By Theorem 3.13.3.

 $\langle 2 \rangle 6. \ a_{\alpha} \in U \cap A_{\alpha}$ 

 $\langle 2 \rangle$ 7. Q.E.D.

PROOF: By Theorem 3.13.3.

**Definition 4.2.6** (Standard Topology on  $\mathbb{R}^J$ ). For J a set, the *standard topology* on  $\mathbb{R}^J$  is the product topology where  $\mathbb{R}$  is given the standard topology.

**Definition 4.2.7** (Closed Unit Ball). The closed unit ball  $B^2$  is  $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$  as a subset of  $\mathbb{R}^2$ .

**Definition 4.2.8** (Sorgenfrey Plane). The Sorgenfrey plane is  $\mathbb{R}^2$ .

# 4.3 The Subspace Topology

**Definition 4.3.1** (Subspace Topology). Let X be a topological space and  $Y \subseteq X$ . The *subspace topology* on Y is  $\{Y \cap U : U \text{ open in } X\}$ . With this topology, Y is a *subspace* of X.

We prove this is a topology.

```
Proof:
\langle 1 \rangle 1. Let: \mathcal{T} = \{ Y \cap U : U \text{ open in } X \}
\langle 1 \rangle 2. \ Y \in \mathcal{T}
    Proof: Y = Y \cap X
\langle 1 \rangle 3. \mathcal{T} is closed under union.
    \langle 2 \rangle 1. Let: \mathcal{A} \subseteq \mathcal{T}
               PROVE: \bigcup A = Y \cap \bigcup \{U \text{ open in } X : Y \cap U \in A\}
    \langle 2 \rangle 2. \bigcup \mathcal{A} \subseteq Y \cap \bigcup \{U \text{ open in } X : Y \cap U \in \mathcal{A} \}
        \langle 3 \rangle 1. Let: x \in \bigcup A
        \langle 3 \rangle 2. PICK V \in \mathcal{A} such that x \in V
        \langle 3 \rangle 3. PICK U open in X such that V = Y \cap U
            PROOF: By the definition of \mathcal{T} (\langle 1 \rangle 1, \langle 2 \rangle 1, \langle 3 \rangle 2)
         \langle 3 \rangle 4. \ x \in Y \cap \bigcup \{U \text{ open in } X : Y \cap U \in \mathcal{A} \}
    \langle 2 \rangle 3. \ Y \cap \bigcup \{U \text{ open in } X : Y \cap U \in \mathcal{A}\} \subseteq \bigcup \mathcal{A}
        PROOF: Set theory.
\langle 1 \rangle 4. \mathcal{T} is closed under binary intersection.
    PROOF: This holds because (Y \cap U) \cap (Y \cap V) = Y \cap (U \cap V).
```

**Lemma 4.3.2.** Let X be a topological space,  $Y \subseteq X$ , and  $A \subseteq Y$ . Then the topology A inherits as a subspace of X is the same as the topology A inherits as a subspace of Y.

Proof:

```
topology as a subspace of Y
=\{V \cap A : V \text{ open in } Y\}
=\{V \cap A : \exists U \text{ open in } X.V = U \cap Y\}
=\{U \cap Y \cap A : U \text{ open in } X\}
=\{U \cap A : U \text{ open in } X\}
=topology as a subspace of X\square
```

**Lemma 4.3.3.** Let Y be a subspace of X. If U is open in Y and Y is open in X then U is open in X.

```
Proof:  \begin{array}{l} \text{Proof:} \\ \langle 1 \rangle 1. \text{ Pick } V \text{ open in } X \text{ such that } U = Y \cap V \\ \langle 1 \rangle 2. \ U \text{ is open in } X \\ \text{Proof:} \text{ The open sets in } X \text{ are closed under binary intersection.} \\ \end{array}
```

**Theorem 4.3.4.** Let Y be a subspace of X. Let  $A \subseteq Y$ . Let  $\overline{A}$  be the closure of A in X. Then the closure of A in Y is  $\overline{A} \cap Y$ .

### PROOF:

- $\langle 1 \rangle 1$ .  $\overline{A} \cap Y$  is a closed set in Y that includes A.
  - $\langle 2 \rangle 1$ .  $\overline{A} \cap Y$  is closed in Y.

PROOF: By Lemma 4.3.4.1.

- $\langle 2 \rangle 2$ .  $A \subseteq \overline{A} \cap Y$ .
- $\langle 1 \rangle 2$ . If C is any closed set in Y that includes A then  $\overline{A} \cap Y \subseteq C$ .
  - $\langle 2 \rangle 1$ . Let: C be a closed set in Y that includes A.
  - $\langle 2 \rangle 2$ . PICK D closed in X such that  $C = D \cap Y$ .

PROOF: By Lemma 4.3.4.1.

- $\langle 2 \rangle 3. \ \overline{A} \subseteq D$

**Corollary 4.3.4.1.** Let Y be a subspace of X. Then a set  $A \subseteq Y$  is closed in Y if and only if it is the intersection of a closed set in X with Y.

Corollary 4.3.4.2. Let Y be a subspace of X. If A is closed in Y and Y is closed in X then A is closed in X.

**Lemma 4.3.5.** Let X be a topological space and  $Y \subseteq X$ . If  $\mathcal{B}$  is a basis for the topology on X then  $\{B \cap Y : B \in \mathcal{B}\}$  is a basis for the subspace topology on Y.

### Proof:

 $\langle 1 \rangle 1$ . For all  $B \in \mathcal{B}$ , we have  $B \cap Y$  is open in Y.

PROOF: Immediate from definitions.

- $\langle 1 \rangle 2$ . For every V open in Y and  $y \in V$ , there exists  $B \in \mathcal{B}$  such that  $y \in B \cap Y \subseteq V$ .
  - $\langle 2 \rangle 1$ . Let: V be open in Y and  $y \in V$
  - $\langle 2 \rangle 2$ . PICK U open in X such that  $V = Y \cap U$
  - $\langle 2 \rangle 3$ . Pick  $B \in \mathcal{B}$  such that  $y \in B \subseteq U$
- $\langle 2 \rangle 4. \ y \in B \cap Y \subseteq V$

**Lemma 4.3.6.** Let X be a topological space and  $Y \subseteq X$ . If S is a subbasis for the topology on X then  $\{S \cap Y : S \in S\}$  is a subbasis for the subspace topology on Y.

### Proof:

 $\langle 1 \rangle 1$ . For all  $S \in \mathcal{S}$ , we have  $S \cap Y$  is open in Y.

PROOF: Immediate from definitions.

- $\langle 1 \rangle 2$ . For every V open in Y and  $y \in V$ , there exist  $S_1, \ldots, S_n \in \mathcal{S}$  such that  $y \in (S_1 \cap Y) \cap \cdots \cap (S_n \cap Y) \subseteq V$ 
  - $\langle 2 \rangle 1$ . Let: V be open in Y and  $y \in V$
  - $\langle 2 \rangle 2$ . PICK U open in X such that  $V = U \cap Y$
  - $\langle 2 \rangle 3$ . PICK  $S_1, \ldots, S_n \in \mathcal{S}$  such that  $y \in S_1 \cap \cdots \cap S_n \subseteq U$

```
\langle 2 \rangle 4. \ y \in (S_1 \cap Y) \cap \dots \cap (S_n \cap Y) \subseteq V
```

**Theorem 4.3.7.** Let X be a linearly ordered set in the order topology. Let  $Y \subseteq X$  be convex. Then the order topology on Y is the same as the subspace topology.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{T}_o$  be the order topology and  $\mathcal{T}_s$  be the subspace topology.
- $\langle 1 \rangle 2$ .  $\mathcal{T}_o \subseteq \mathcal{T}_s$ 
  - $\langle 2 \rangle$ 1. For all  $a \in Y$ , we have  $\{ y \in Y : a < y \} \in \mathcal{T}_s$ PROOF:  $\{ y \in Y : a < y \} = \{ x \in X : a < x \} \cap Y$
  - $\langle 2 \rangle 2$ . For all  $a \in Y$ , we have  $\{y \in Y : y < a\} \in \mathcal{T}_s$ PROOF: Similar.
  - $\langle 2 \rangle 3$ . Q.E.D.

PROOF: Lemma 4.1.3 and Corollary 3.16.2.1.

- $\langle 1 \rangle 3. \ \mathcal{T}_s \subseteq \mathcal{T}_o$ 
  - $\langle 2 \rangle 1$ . The sets  $(a, +\infty) \cap Y$  and  $(-\infty, a) \cap Y$  for  $a \in X$  form a subbasis for  $\mathcal{T}_s$  PROOF: Lemma 4.3.6, Lemma 4.1.3.
  - $\langle 2 \rangle 2$ . For all  $a \in X$ , we have  $(a, +\infty) \cap Y \in \mathcal{T}_o$ 
    - $\langle 3 \rangle 1$ . Let:  $a \in X$
    - $\langle 3 \rangle 2$ . Case:  $a \in Y$

PROOF: In this case,  $(a, +\infty) \cap Y$  is an open ray in Y.

- $\langle 3 \rangle 3$ . CASE: For all  $y \in Y$  we have a < y PROOF: In this case,  $(a, +\infty) \cap Y = Y$ .
- $\langle 3 \rangle 4$ . Case: For all  $y \in Y$  we have y < a Proof: In this case,  $(a, +\infty) \cap Y = \emptyset$ .
- $\langle 3 \rangle 5$ . Q.E.D.

PROOF: These are the only cases because Y is convex.

 $\langle 2 \rangle 3$ . For all  $a \in X$ , we have  $(-\infty, a) \cap Y \in \mathcal{T}_o$ 

PROOF: Similar.

 $\langle 2 \rangle 4$ . Q.E.D.

Proof: Corollary 3.16.2.1.

Ш

**Theorem 4.3.8.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces, and let  $A_{\alpha}$  be a subspace of  $X_{\alpha}$  for all  $\alpha$ . Then the product topology on  $\prod_{{\alpha}\in J}A_{\alpha}$  is the same as the topology it inherits as a subspace of  $\prod_{{\alpha}\in J}X_{\alpha}$ .

PROOF: Each is the topology generated by the subbasis consisting of  $\pi_{\alpha}^{-1}(U) \cap \prod_{\alpha \in J} A_{\alpha} = \pi_{\alpha}^{-1}(U \cap A_{\alpha})$  where  $\alpha \in J$  and U is open in  $X_{\alpha}$ , using Lemma 4.3.6.

**Definition 4.3.9** (Unit Circle). The unit circle  $S^1$  is  $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$  as a subspace of  $\mathbb{R}^2$ .

**Proposition 4.3.10.** Let Y be a subspace of X,  $A \subseteq Y$ , and  $a \in Y$ . Then a is a limit point of A in the subspace topology on Y if and only if a is a limit point of A is the topology of X.

a is a limit point of A in Y  $\Leftrightarrow \forall U \text{ open in } Y(a \in U \Rightarrow U \text{ intersects } A \text{ outside } a)$   $\Leftrightarrow \forall V \text{ open in } X(a \in V \cap Y \Rightarrow V \cap Y \text{ intersects } A \text{ outside } a)$   $\Leftrightarrow \forall V \text{ open in } X(a \in V \Rightarrow V \text{ intersects } A \text{ outside } a)$   $(a \in Y, A \subseteq Y)$   $\Leftrightarrow a \text{ is a limit point of } A \text{ in } X$ 

# 4.4 The Box Topology

**Definition 4.4.1** (Box Topology). Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces. The box topology on  $\prod_{{\alpha}\in J} X_{\alpha}$  is the topology generated by the basis consisting of all sets of the form  $\prod_{{\alpha}\in J} U_{\alpha}$ , where each  $U_{\alpha}$  is open in  $X_{\alpha}$ .

We prove this is a basis.

Proof:

 $\langle 1 \rangle 1$ . Let:  $\mathcal{B}$  be the set of all sets of the form  $\prod_{\alpha \in J} U_{\alpha}$ , where each  $U_{\alpha}$  is open in  $X_{\alpha}$ .

 $\langle 1 \rangle 2. \ \bigcup \mathcal{B} = \prod_{\alpha \in J} X_{\alpha}$ 

PROOF: This holds because  $\prod_{\alpha \in J} X_{\alpha} \in \mathcal{B}$ .

 $\langle 1 \rangle 3$ .  $\mathcal{B}$  is closed under binary intersection.

PROOF:  $\prod_{\alpha \in J} U_{\alpha} \cap \prod_{\alpha \in J} V_{\alpha} = \prod_{\alpha \in J} (U_{\alpha} \cap V_{\alpha}).$ 

 $\langle 1 \rangle 4$ . Q.E.D.

PROOF: Corollary 3.5.3.1.

**Theorem 4.4.2** (AC). Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces, and let  $\mathcal{B}_{\alpha}$  be a basis for the topology on  $X_{\alpha}$  for each  $\alpha$ . Then

$$\mathcal{B} = \{ \prod_{\alpha \in J} B_{\alpha} : \forall \alpha \in J.B_{\alpha} \in \mathcal{B}_{\alpha} \}$$

is a basis for the box topology on  $\prod_{\alpha \in J} X_{\alpha}$ .

Proof:

 $\langle 1 \rangle 1$ . Every member of  $\mathcal{B}$  is open in the box topology.

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$ . For every open set U and  $\{x_{\alpha}\}_{{\alpha} \in J} \in U$ , there exists  $B \in \mathcal{B}$  such that  $\{x_{\alpha}\}_{{\alpha} \in J} \in B \subseteq U$ .

 $\langle 2 \rangle 1$ . Let: U be open and  $\{x_{\alpha}\}_{{\alpha} \in J} \in U$ 

 $\langle 2 \rangle 2$ . PICK  $U_{\alpha}$  open in  $X_{\alpha}$  for each  $\alpha$  such that  $\{x_{\alpha}\}_{{\alpha} \in J} \in \prod_{{\alpha} \in J} U_{\alpha} \subseteq U$ .

 $\langle 2 \rangle 3$ . PICK  $B_{\alpha} \in \mathcal{B}_{\alpha}$  such that  $x_{\alpha} \in B_{\alpha} \subseteq U_{\alpha}$  for each  $\alpha$ 

PROOF: Using the Axiom of Choice.

 $\langle 2 \rangle 4. \ \{x_{\alpha}\}_{{\alpha} \in J} \in \prod_{{\alpha} \in J} B_{\alpha} \subseteq U$ 

**Theorem 4.4.3.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces, and let  $A_{\alpha}$  be a subspace of  $X_{\alpha}$  for all  $\alpha$ . Let  $\prod_{\alpha \in J} X_{\alpha}$  be given the box topology. Then the box topology on  $\prod_{\alpha \in J} A_{\alpha}$  is the same as the topology it inherits as a subspace of  $\prod_{\alpha \in J} X_{\alpha}$ .

PROOF: Each is the topology generated by the basis  $\{\prod_{\alpha\in J}(U_{\alpha}\cap A_{\alpha}): U_{\alpha} \text{ is open in } X_{\alpha}\}, \text{ using Lemma 4.3.5. } \sqcup$ 

**Theorem 4.4.4.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of Hausdorff spaces. Then  $\prod_{{\alpha}\in J} X_{\alpha}$ is Hausdorff under the box topology.

### Proof:

 $\langle 1 \rangle 1$ . Let:  $\{x_{\alpha}\}_{{\alpha} \in J}, \{y_{\alpha}\}_{{\alpha} \in J} \in \prod_{{\alpha} \in J} X_{\alpha} \text{ with } \{x_{\alpha}\}_{{\alpha} \in J} \neq \{y_{\alpha}\}_{{\alpha} \in J}$ 

 $\langle 1 \rangle 2$ . Pick  $\alpha \in J$  such that  $x_{\alpha} \neq y_{\alpha}$ 

 $\langle 1 \rangle 3$ . PICK disjoint neighbourhoods U of  $x_{\alpha}$  and V of  $y_{\alpha}$ .

 $\langle 1 \rangle 4$ .  $\pi_{\alpha}^{-1}(U)$  and  $\pi_{\alpha}^{-1}(V)$  are disjoint neighbourhoods of  $\{x_{\alpha}\}_{{\alpha} \in J}$  and  $\{y_{\alpha}\}_{{\alpha} \in J}$ 

Corollary 4.4.4.1. The space  $\mathbb{R}^{\omega}$  under the box topology is Hausdorff.

**Theorem 4.4.5** (AC). Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces and  $A_{\alpha}\subseteq$  $X_{\alpha}$  for all  $\alpha$ . If  $\prod_{\alpha \in J} X_{\alpha}$  is given the box topology, then

$$\prod_{\alpha \in J} \overline{A_{\alpha}} = \overline{\prod_{\alpha \in J} A_{\alpha}} .$$

### Proof:

 $\langle 1 \rangle 1. \prod_{\alpha \in J} \overline{A_{\alpha}} \subseteq \prod_{\alpha \in J} A_{\alpha}$ 

 $\langle 2 \rangle 1$ . Let:  $\{x_{\alpha}\}_{{\alpha} \in J} \in \prod_{{\alpha} \in J} A_{\alpha}$ 

 $\langle 2 \rangle 2$ . Let:  $\prod_{\alpha \in J} U_{\alpha}$  be a basic neighbourhood of  $\{x_{\alpha}\}_{\alpha \in J}$ , where each  $U_{\alpha}$ is open in  $X_{\alpha}$ .

 $\langle 2 \rangle 3$ . For  $\alpha \in J$ , Pick  $a_{\alpha} \in A_{\alpha} \cap U_{\alpha}$ .

PROOF: By Theorem 3.13.3, using the Axiom of Choice.

 $\langle 2 \rangle 4. \{a_{\alpha}\}_{\alpha \in J} \in \prod_{\alpha \in J} A_{\alpha} \cap \prod_{\alpha \in J} U_{\alpha}$ 

 $\langle 2 \rangle 5$ . Q.E.D.

PROOF: By Theorem 3.13.3.

 $\langle 1 \rangle 2$ .  $\prod_{\alpha \in J} A_{\alpha} \subseteq \prod_{\alpha \in J} A_{\alpha}$ 

 $\langle 2 \rangle 1$ . Let:  $\{x_{\alpha}\}_{{\alpha} \in J} \in \overline{\prod_{{\alpha} \in J} A_{\alpha}}$ 

 $\langle 2 \rangle 2$ . Let:  $\alpha \in J$ 

PROVE:  $x_{\alpha} \in \overline{A_{\alpha}}$ 

 $\langle 2 \rangle 3$ . Let: U be a neighbourhood of  $x_{\alpha}$  in  $X_{\alpha}$ 

 $\langle 2 \rangle 4$ .  $\pi_{\alpha}^{-1}(U)$  is a neighbourhood of  $\{x_{\alpha}\}_{{\alpha} \in J}$ 

 $\langle 2 \rangle$ 5. Pick  $\{a_{\alpha}\}_{{\alpha} \in J} \in \pi_{\alpha}^{-1}(U) \cap \prod_{{\alpha} \in J} A_{\alpha}$ PROOF: By Theorem 3.13.3.

 $\langle 2 \rangle 6. \ a_{\alpha} \in U \cap A_{\alpha}$ 

 $\langle 2 \rangle$ 7. Q.E.D.

PROOF: By Theorem 3.13.3.

# 4.5 The Quotient Topology

2. p maps saturated open sets to open sets.

1. p is a quotient map.

**Definition 4.5.1** (Quotient Map). Let X and Y be topological spaces. Let  $p: X \to Y$  be a surjective map. Then p is a *quotient map* iff, for all  $U \subseteq Y$ , we have U is open in Y iff  $p^{-1}(U)$  is open in X.

**Lemma 4.5.2.** Let X and Y be topological spaces and  $p: X \to Y$  be surjective and continuous. Then the following are equivalent.

```
3. p maps saturated closed sets to closed sets.
Proof:
\langle 1 \rangle 1. \ 1 \Rightarrow 2
    \langle 2 \rangle 1. Assume: p is a quotient map.
    \langle 2 \rangle 2. Let: U \subseteq X be a saturated open set.
   \langle 2 \rangle 3. U = p^{-1}(p(U))
\langle 3 \rangle 1. U \subseteq p^{-1}(p(U))
           Proof: Set theory.
        \langle 3 \rangle 2. \ p^{-1}(p(U)) \subseteq U
            \langle 4 \rangle 1. Let: x \in p^{-1}(p(U))
            \langle 4 \rangle 2. Pick y \in U such that p(x) = p(y)
            \langle 4 \rangle 3. \ x \in U
               Proof: \langle 2 \rangle 2, \langle 4 \rangle 2.
    \langle 2 \rangle 4. p(U) is open
       Proof: \langle 2 \rangle 1, \langle 2 \rangle 3.
\langle 1 \rangle 2. 2 \Rightarrow 3
    \langle 2 \rangle 1. Assume: p maps saturated open sets to open sets
    \langle 2 \rangle 2. Let: C \subseteq X be a saturated closed set.
    \langle 2 \rangle 3. X \setminus C is a saturated open set.
        \langle 3 \rangle 1. Let: x \in X \setminus C and x' \in X be such that p(x) = p(x')
       \langle 3 \rangle 2. \ x' \notin C
           PROOF: If x' \in C then x \in C since C is saturated.
    \langle 2 \rangle 4. p(X \setminus C) is open.
       PROOF: By \langle 2 \rangle 1 and \langle 2 \rangle 3.
    \langle 2 \rangle 5. \ p(X \setminus C) = Y \setminus p(C)
        \langle 3 \rangle 1. \ p(X \setminus C) \subseteq Y \setminus p(C)
            \langle 4 \rangle 1. Let: x \in X \setminus C
            \langle 4 \rangle 2. Assume: for a contradiction p(x) \in p(C)
            \langle 4 \rangle 3. Pick x' \in C such that p(x) = p(x')
            \langle 4 \rangle 4. Q.E.D.
               PROOF: We have x \notin C, x' \in C and p(x) = p(x'), contradicting \langle 2 \rangle 2.
        \langle 3 \rangle 2. \ Y \setminus p(C) \subseteq p(X \setminus C)
            \langle 4 \rangle 1. Let: y \notin p(C)
```

 $\langle 4 \rangle 2$ . PICK  $x \in X$  such that p(x) = y

Proof: p is surjective.

$$\langle 4 \rangle 3. \ x \notin C$$

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$ 

- $\langle 2 \rangle 1$ . Assume: p maps saturated closed sets to closed sets
- $\langle 2 \rangle 2$ . Let:  $C \subseteq Y$  be such that  $p^{-1}(Y)$  is closed
- $\langle 2 \rangle 3. \ p^{-1}(C)$  is saturated
  - $\langle 3 \rangle 1$ . Let:  $x \in p^{-1}(C), x' \in X$  and p(x) = p(x')
  - $\langle 3 \rangle 2. \ x' \in p^{-1}(C)$
- $\langle 2 \rangle 4$ .  $p(p^{-1}(C))$  is closed

PROOF: By  $\langle 2 \rangle 1$  and  $\langle 2 \rangle 3$ .

 $\langle 2 \rangle 5. \ C = p(p^{-1}(C))$ 

PROOF: By set theory, since p is surjective.

**Corollary 4.5.2.1.** If  $p: X \to Y$  is a surjective continuous map that is either an open map or a closed map, then p is a quotient map.

**Definition 4.5.3** (Quotient Topology). Let X be a topological space, A a set, and p: X woheadrightarrow A a surjective map. Then the *quotient topology* on A induced by p is

$$\{U \subseteq A : p^{-1}(U) \text{ is open in } X\}$$
.

It is easy to check this is a topology.

**Lemma 4.5.4.** Let X be a topological space, A a set, and  $p: X \rightarrow A$  a surjective map. Then the quotient topology induced by p is the unique topology on A such that p is a quotient map.

PROOF: Immediate from definitions.

**Definition 4.5.5** (Quotient Space). Let X be a topological space and  $X^*$  a partition of X. Let  $p: X woheadrightarrow X^*$  be the canonical map. Then  $X^*$  under the quotient topology induced by p is called a *quotient space* of X.

**Proposition 4.5.6.** Let  $p: X \to Y$  be a quotient map. Let  $A \subseteq X$  be open and saturated. Then  $p \upharpoonright_A: A \to p(A)$  is a quotient map.

### PROOF

- $\langle 1 \rangle 1$ . Let:  $q = p \upharpoonright_A : A \twoheadrightarrow p(A)$
- $\langle 1 \rangle 2$ . For all  $V \subseteq p(A)$ , we have  $q^{-1}(V) = p^{-1}(V)$ 
  - $\langle 2 \rangle 1. \ q^{-1}(V) \subseteq p^{-1}(V)$

PROOF: Trivial.

- $\langle 2 \rangle 2. \ p^{-1}(V) \subseteq q^{-1}(V)$ 
  - $\langle 3 \rangle 1$ . Let:  $x \in p^{-1}(V)$
  - $\langle 3 \rangle 2$ . Pick  $x' \in A$  such that p(x') = p(x)

PROOF: One exists because  $p(x) \in V \subseteq p(A)$ .

 $\langle 3 \rangle 3. \ x \in A$ 

PROOF: This holds because A is saturated.

 $\langle 3 \rangle 4. \ x \in q^{-1}(V)$ 

```
PROOF: From \langle 3 \rangle 1 and \langle 3 \rangle 3.
\langle 1 \rangle 3. For all U \subseteq X, we have p(U \cap A) = p(U) \cap p(A)
\langle 1 \rangle 4. Let: V \subseteq p(A) be such that q^{-1}(V) is open in A.
        PROVE: V is open in p(A).
\langle 1 \rangle 5. q^{-1}(V) is open in X
\langle 1 \rangle 6. \ p^{-1}(V) is open in X
\langle 1 \rangle 7. V is open in Y
\langle 1 \rangle 8. V is open in p(A)
Proposition 4.5.7. Let p: X \rightarrow Y be a quotient map. Let A \subseteq X be closed
and saturated. Then p \upharpoonright_A : A \rightarrow p(A) is a quotient map.
Proof: Similar.
Proposition 4.5.8. Let p: X \rightarrow Y be an open quotient map. Let A \subseteq X be
saturated. Then p \upharpoonright_A : A \rightarrow p(A) is a quotient map.
\langle 1 \rangle 1. Let: q = p \upharpoonright_A : A \twoheadrightarrow p(A)
\langle 1 \rangle 2. For all V \subseteq p(A), we have q^{-1}(V) = p^{-1}(V)
   \langle 2 \rangle 1. \ q^{-1}(V) \subseteq p^{-1}(V)
      PROOF: Trivial.
   \langle 2 \rangle 2. \ p^{-1}(V) \subseteq q^{-1}(V)
       \langle 3 \rangle 1. Let: x \in p^{-1}(V)
      \langle 3 \rangle 2. Pick x' \in A such that p(x') = p(x)
          PROOF: One exists because p(x) \in V \subseteq p(A).
       \langle 3 \rangle 3. \ x \in A
          PROOF: This holds because A is saturated.
       \langle 3 \rangle 4. \ x \in q^{-1}(V)
          PROOF: From \langle 3 \rangle 1 and \langle 3 \rangle 3.
\langle 1 \rangle 3. For all U \subseteq X, we have p(U \cap A) = p(U) \cap p(A)
   \langle 2 \rangle 1. \ p(U \cap A) \subseteq p(U) \cap p(A)
      PROOF: Set theory.
   \langle 2 \rangle 2. p(U) \cap p(A) \subseteq p(U \cap A)
       \langle 3 \rangle 1. Let: x \in U, y \in A, p(x) = p(y)
               PROVE: p(x) \in p(U \cap A)
       \langle 3 \rangle 2. \ x \in A
          Proof: A is saturated.
       \langle 3 \rangle 3. \ x \in U \cap A
\langle 1 \rangle 4. Let: V \subseteq p(A) be such that q^{-1}(V) is open in A.
        PROVE: V is open in p(A).
\langle 1 \rangle 5. \ p^{-1}(V) is open in A
```

 $\langle 1 \rangle 6$ . Pick U open in X such that  $p^{-1}(V) = U \cap A$ 

Proof: By  $\langle 1 \rangle 2$ 

 $\langle 1 \rangle 7. \ V = p(U) \cap p(A)$ 

$$V = p(p^{-1}(V))$$
 (p is surjective)  
=  $p(U \cap A)$  ( $\langle 1 \rangle 6$ )  
=  $p(U) \cap p(A)$  ( $\langle 1 \rangle 3$ )

 $\langle 1 \rangle 8. \ p(U)$  is open in Y

PROOF:  $\langle 1 \rangle 6$ , p is an open map.

 $\langle 1 \rangle 9$ . V is open in p(A)PROOF:  $\langle 1 \rangle 7$ ,  $\langle 1 \rangle 8$ 

П

**Proposition 4.5.9.** Let  $p: X \to Y$  be a closed quotient map. Let  $A \subseteq X$  be saturated. Then  $p \upharpoonright_A: A \to p(A)$  is a quotient map.

PROOF: Similar.  $\square$ 

**Proposition 4.5.10.** The composite of two quotient maps is a quotient map.

PROOF: From Proposition 5.2.22.  $\square$ 

**Proposition 4.5.11.** Let  $X^*$  be a quotient space of X. If every element of  $X^*$  is closed in X, then  $X^*$  is  $T_1$ .

Proof:

- $\langle 1 \rangle 1$ . Let:  $C \in X^*$
- $\langle 1 \rangle 2. \ p^{-1}(\{C\}) = C$

PROOF: Definition of p.

 $\langle 1 \rangle 3. \ p^{-1}(\{C\})$  is closed in X

PROOF: By hypothesis.

 $\langle 1 \rangle 4$ .  $\{C\}$  is closed in  $X^*$ .

Proof: By Proposition 5.2.21.

П

# Chapter 5

# Functions Between Topological Spaces

# 5.1 Open Maps

**Definition 5.1.1.** Let X and Y be topological spaces and  $f: X \to Y$ . Then f is an *open map* iff, for all U open in X, f(U) is open in Y.

**Lemma 5.1.2.** Let X and Y be topological spaces and  $f: X \to Y$ . Let  $\mathcal{B}$  be a basis for the topology on X. Then f is an open map if and only if, for all  $B \in \mathcal{B}$ , f(B) is open in Y.

### Proof:

 $\langle 1 \rangle 1$ . If f is an open map then, for all  $B \in \mathcal{B}$ , f(B) is open in Y.

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$ . If, for all  $B \in \mathcal{B}$ , f(B) is open in Y, then f is an open map.

 $\langle 2 \rangle 1$ . Assume: For all  $B \in \mathcal{B}$ , f(B) is open in Y.

 $\langle 2 \rangle 2$ . Let: U be open in X

PROVE: f(U) is open in Y

 $\langle 2 \rangle 3$ . Let:  $\mathcal{B}_0 \subseteq \mathcal{B}$  be such that  $U = \bigcup \mathcal{B}_0$ 

 $\langle 2 \rangle 4$ .  $f(U) = \bigcup_{B \in \mathcal{B}_0} f(B)$ 

Proof: Set theory.

 $\langle 2 \rangle 5$ . f(U) is open in Y.

PROOF: From  $\langle 2 \rangle 1$ ,  $\langle 2 \rangle 4$  and the fact that the open sets are closed under union.

**Corollary 5.1.2.1.** Let X and Y be topological spaces and  $f: X \to Y$ . Let S be a subbasis for the topology on X. Then f is an open map if and only if, for all  $S \in S$ , f(S) is open in Y.

**Lemma 5.1.3** (AC). Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces. Then the projection  $\pi_{\alpha}:\prod_{{\alpha}\in J}X_{\alpha}\to X_{\alpha}$  is an open map.

 $\langle 1 \rangle 1$ . For U open in  $X_{\alpha}$ , we have  $\pi_{\alpha}(\pi_{\alpha}^{-1}(U))$  is open in  $X_{\alpha}$ 

PROOF:  $\pi_{\alpha}(\pi_{\alpha}^{-1}(U)) = U$  if all the other  $X_{\alpha}$  are nonempty,  $\emptyset$  otherwise.

 $\langle 1 \rangle 2$ . For  $\beta \neq \alpha$  and U open in  $X_{\beta}$ , we have  $\pi_{\alpha}(\pi_{\beta}^{-1}(U))$  is open in  $X_{\alpha}$ 

PROOF:  $\pi_{\alpha}(\pi_{\beta}^{-1}(U)) = X_{\alpha}$  if all the  $X_{\gamma}$  are nonempty for  $\gamma \neq \alpha$ ,  $\emptyset$  otherwise.

 $\langle 1 \rangle 3$ . Q.E.D.

PROOF: By Corollary 5.1.2.1.

## 5.2 Continuous Functions

**Definition 5.2.1** (Continuous). Let X and Y be topological spaces and  $f: X \to Y$  a function. Then f is *continuous* if and only if, for every open set U in Y, the set  $f^{-1}(U)$  is open in X.

**Theorem 5.2.2.** Let X and Y be topological spaces and  $f: X \to Y$ . Then the following are equivalent.

- 1. f is continuous.
- 2. For every closed set C in Y, the set  $f^{-1}(C)$  is closed in X.
- 3. For every set  $A \subseteq X$ , we have  $f(\overline{A}) \subseteq \overline{f(A)}$ .

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 3$ 
  - $\langle 2 \rangle 1$ . Assume: f is continuous.
  - $\langle 2 \rangle 2$ . Let:  $A \subseteq X$
  - $\langle 2 \rangle 3$ . Let:  $x \in \overline{A}$

Prove:  $f(x) \in \overline{f(A)}$ 

- $\langle 2 \rangle 4$ . Let: V be a neighbourhood of f(x)
- $\langle 2 \rangle 5$ .  $f^{-1}(V)$  is a neighbourhood of x

Proof:  $\langle 2 \rangle 1$ ,  $\langle 2 \rangle 3$ ,  $\langle 2 \rangle 4$ 

 $\langle 2 \rangle 6.$   $f^{-1}(V)$  intersects A in a, say.

PROOF:  $\langle 2 \rangle 3$ ,  $\langle 2 \rangle 5$ , Theorem 3.13.3.

- $\langle 2 \rangle 7$ . V intersects f(A) in f(a).
- $\langle 2 \rangle 8$ . Q.E.D.

Proof: Theorem 3.13.3.

- $\langle 1 \rangle 2. \ 3 \Rightarrow 2$ 
  - $\langle 2 \rangle 1$ . Assume: 3
  - $\langle 2 \rangle 2$ . Let: C be a closed set in Y
  - $\langle 2 \rangle 3. \ \overline{f^{-1}(C)} = f^{-1}(C)$

$$f(\overline{f^{-1}(C)}) \subseteq \overline{f(f^{-1}(C))}$$

$$\subset \overline{C}$$

$$(\langle 2 \rangle 1)$$

- $\langle 1 \rangle 3. \ 2 \Rightarrow 1$ 
  - $\langle 2 \rangle 1$ . Assume: 2

```
\langle 2 \rangle 2. Let: V be open in Y
\langle 2 \rangle 3. f^{-1}(Y \setminus V) is closed in X
   Proof: By \langle 2 \rangle 1.
\langle 2 \rangle 4. f^{-1}(V) is open in X.
   PROOF: f^{-1}(V) = X \setminus f^{-1}(Y \setminus V).
```

**Lemma 5.2.3.** If  $f: X \to Y$  maps all of X to the single point  $y_0$  of Y, then f is continuous.

PROOF: For V open in Y, the set  $f^{-1}(V)$  is either X (if  $y_0 \in V$ ) or  $\emptyset$  (if  $y_0 \notin V$ ).

**Definition 5.2.4** (Continuity at a Point). Let X and Y be topological spaces,  $f: X \to Y$  a function, and  $x \in X$ . Then f is continuous at x if and only if, for every neighbourhood V of f(x), there exists a neighbourhood U of x such that  $f(U) \subseteq V$ .

**Theorem 5.2.5.** Let X and Y be topological spaces and  $f: X \to Y$ . Then f is continuous if and only if f is continuous at every point of X.

- $\langle 1 \rangle 1$ . If f is continuous then f is continuous at every point of X.
  - $\langle 2 \rangle 1$ . Assume: f is continuous
  - $\langle 2 \rangle 2$ . Let:  $x \in X$
  - $\langle 2 \rangle 3$ . Let: V be a neighbourhood of f(x)
  - $\langle 2 \rangle 4$ .  $f^{-1}(V)$  is a neighbourhood of x
  - $\langle 2 \rangle 5$ .  $f(f^{-1}(V)) \subset V$
- $\langle 1 \rangle 2$ . If f is continuous at every point of X then f is continuous.
  - $\langle 2 \rangle 1$ . Assume: f is continuous at every point of X.
  - $\langle 2 \rangle 2$ . Let: V be open in Y PROVE:  $f^{-1}(V)$  is open in X.  $\langle 2 \rangle 3$ . Let:  $x \in f^{-1}(V)$

  - $\langle 2 \rangle 4$ . V is a neighbourhood of f(x)
  - $\langle 2 \rangle$ 5. Pick a neighbourhood U of x such that  $f(U) \subseteq V$

Proof: By  $\langle 2 \rangle 1$ .

- $\langle 2 \rangle 6. \ x \in U \subseteq f^{-1}(V)$
- $\langle 2 \rangle$ 7. Q.E.D.

PROOF: By Proposition 3.2.3.

**Lemma 5.2.6.** Let X and Y be topological spaces and  $f: X \to Y$ . Let  $\mathcal{B}$  be a basis for the topology on Y. Then f is continuous if and only if, for all  $B \in \mathcal{B}$ , the set  $f^{-1}(B)$  is open in X.

### Proof:

П

- $\langle 1 \rangle 1$ . If f is continuous then, for all  $B \in \mathcal{B}$ , the set  $f^{-1}(B)$  is open in X. PROOF: Immediate from definitions.
- $\langle 1 \rangle 2$ . If, for all  $B \in \mathcal{B}$ , the set  $f^{-1}(B)$  is open in X, then f is continuous.

```
\langle 2 \rangle 1. Assume: For all B \in \mathcal{B}, the set f^{-1}(B) is open in X.
\langle 2 \rangle 2. Let: x \in X
\langle 2 \rangle 3. Let: V be a neighbourhood of f(x)
\langle 2 \rangle 4. Pick B \in \mathcal{B} such that f(x) \in B \subseteq V
\langle 2 \rangle 5. f^{-1}(B) is a neighbourhood of x
   Proof: By \langle 2 \rangle 1.
\langle 2 \rangle 6. \ f(f^{-1}(B)) \subseteq B
   PROOF: Set theory.
\langle 2 \rangle 7. Q.E.D.
   PROOF: Theorem 5.2.5.
```

**Lemma 5.2.7.** The projections  $\pi_1: X \times Y \to X$  and  $\pi_2: X \times Y \to Y$  are

Proof:Immediate from definitions.

**Theorem 5.2.8.** If A is a subspace of X, the inclusion function  $j: A \to X$  is continuous.

PROOF: For V open in X, the set  $j^{-1}(V) = V \cap A$  is open in A.

**Theorem 5.2.9.** If  $f: X \to Y$  and  $g: Y \to Z$  are continuous, then the map  $g \circ f: X \to Z$  is continuous.

### Proof:

- $\langle 1 \rangle 1$ . Let: V be open in Z
- $\langle 1 \rangle 2$ .  $g^{-1}(V)$  is open in Y
- $\langle 1 \rangle 3. \ f^{-1}(g^{-1}(V))$  is open in X

**Proposition 5.2.10.** If  $f: X \to Y$  is continuous and if A is a subspace of X, then the restricted function  $f \upharpoonright A : A \to Y$  is continuous.

PROOF: For V open in Y, the set  $(f \upharpoonright A)^{-1}(V) = f^{-1}(V) \cap A$  is open in A.  $\square$ 

**Theorem 5.2.11.** Let  $f: X \to Y$  be continuous. If Z is a subspace of Y that includes the range of f, then the function  $g: X \to Z$  obtained by restricting the codomain of f is continuous. If Z is a space having Y as a subspace, then the function  $h: X \to Z$  obtained by expanding the codomain of f is continuous.

### Proof:

- $\langle 1 \rangle 1$ . If Z is a subspace of Y that includes the range of f, then the function  $g: X \to Z$  obtained by restricting the codomain of f is continuous.
  - $\langle 2 \rangle 1$ . Let: V be open in Z
  - $\langle 2 \rangle 2$ . PICK W open in Y such that  $V = W \cap Z$
  - $\langle 2 \rangle 3$ .  $f^{-1}(W)$  is open in X.
  - $\langle 2 \rangle 4$ .  $g^{-1}(V)$  is open in X.

PROOF:  $q^{-1}(V) = f^{-1}(W)$ .

 $\langle 1 \rangle 2$ . If Z is a space having Y as a subspace, then the function  $h: X \to Z$  obtained by expanding the codomain of f is continuous.

PROOF: For V open in Z, we have  $h^{-1}(V) = f^{-1}(V \cap Y)$  is open in X.

**Theorem 5.2.12.** Let X and Y be topological spaces and  $f: X \to Y$ . If  $x_n \to x$  as  $n \to \infty$  in X and f is continuous at x, then  $f(x_n) \to f(x)$  as  $n \to \infty$  in Y.

### PROOF:

- $\langle 1 \rangle 1$ . Assume:  $x_n \to x$  as  $n \to \infty$
- $\langle 1 \rangle 2$ . Assume: f is continuous at x
- $\langle 1 \rangle 3$ . Let: V be a neighbourhood of f(x)
- $\langle 1 \rangle$ 4. PICK a neighbourhood U of x such that  $f(U) \subseteq V$  PROOF: By  $\langle 1 \rangle$ 2.
- $\langle 1 \rangle$ 5. PICK N such that, for all  $n \geq N$ ,  $x_n \in U$

Proof: By  $\langle 1 \rangle 1$ 

 $\langle 1 \rangle 6$ . For  $n \geq N$ ,  $f(x_n) \in V$ 

PROOF: By  $\langle 1 \rangle 4$ .

П

**Corollary 5.2.12.1.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces and  $(x_n)$  a family of points in  $\prod_{{\alpha}\in J}X_{\alpha}$ . We have  $x_n\to l$  as  $n\to\infty$  if and only if, for all  ${\alpha}\in J$ ,  $\pi_{\alpha}(x_n)\to\pi_{\alpha}(l)$  as  $n\to\infty$ .

### PROOF:

- $\langle 1 \rangle 1$ . If  $x_n \to l$  as  $n \to \infty$  then, for all  $\alpha \in J$ ,  $\pi_{\alpha}(x_n) \to \pi_{\alpha}(l)$  as  $n \to \infty$  PROOF: Theorem 5.2.12 and Proposition 5.2.7.
- $\langle 1 \rangle 2$ . If, for all  $\alpha \in J$ , we have  $\pi_{\alpha}(x_n) \to \pi_{\alpha}(l)$  as  $n \to \infty$ , then  $x_n \to l$  as  $n \to \infty$ 
  - $\langle 2 \rangle 1$ . Assume: For all  $\alpha \in J$ , we have  $\pi_{\alpha}(x_n) \to \pi_{\alpha}(l)$  as  $n \to \infty$
  - $\langle 2 \rangle 2$ . Let:  $B = \prod_{\alpha \in J} U_{\alpha}$  be a basic open neighbourhood of l, where  $U_{\alpha} = X_{\alpha}$  except for  $\alpha = \alpha_1, \dots, \alpha_k$
  - $\langle 2 \rangle 3$ . PICK N such that, for all  $n \geq N$  and  $1 \leq i \leq k$ , we have  $\pi_i(x_n) \in U_{\alpha_i}$
- $\langle 2 \rangle 4$ . For  $n \geq N$  we have  $x_n \in B$

**Theorem 5.2.13.** Let X and Y be topological spaces. Let  $f: X \to Y$ . If there exists a set A of open sets in X such that:

- $\bullet \mid JA = X;$
- for all  $U \in \mathcal{A}$ , the function  $f \upharpoonright U : U \to X$  is continuous;

then f is continuous.

- $\langle 1 \rangle 1$ . Let: V be open in Y
- $\langle 1 \rangle 2$ . For all  $U \in \mathcal{A}$ , the set  $(f \upharpoonright U)^{-1}(V)$  is open in X.
  - $\langle 2 \rangle 1$ . Let:  $U \in \mathcal{A}$

 $\langle 2 \rangle 2$ .  $(f \upharpoonright U)^{-1}(V)$  is open in U

PROOF: Since  $f \upharpoonright U : U \to X$  is continuous.

 $\langle 2 \rangle 3$ . Q.E.D.

Proof: By Lemma 4.3.3.

 $\langle 1 \rangle 3$ . Q.E.D.

PROOF: Since  $f^{-1}(V) = \bigcup_{U \in A} (f \upharpoonright U)^{-1}(V)$ .

**Theorem 5.2.14** (The Pasting Lemma). Let  $X = A \cup B$  where A and B are closed in X. Let  $f: A \to Y$  and  $g: B \to Y$  be continuous. If f(x) = g(x) for every  $x \in A \cap B$ , then the function  $h: X \to Y$  defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$$

is continuous.

Proof:

 $\langle 1 \rangle 1$ . Let: C be closed in Y

 $\langle 1 \rangle 2$ .  $f^{-1}(C)$  is closed in A

PROOF: Theorem 5.2.2.

 $\langle 1 \rangle 3.$   $f^{-1}(C)$  is closed in X

Proof: Lemma 4.3.4.1.

 $\langle 1 \rangle 4$ .  $g^{-1}(C)$  is closed in B

PROOF: Theorem 5.2.2.

 $\langle 1 \rangle 5.$   $g^{-1}(C)$  is closed in X

Proof: Lemma 4.3.4.1.

 $\langle 1 \rangle 6. \ h^{-1}(C)$  is closed in X

PROOF:  $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$ 

 $\langle 1 \rangle 7$ . Q.E.D.

PROOF: Theorem 5.2.2.

**Theorem 5.2.15.** Let  $f: A \to \prod_{\alpha \in J} X_{\alpha}$  be given by the equation

$$f(a) = \{ f_{\alpha}(a) \}_{\alpha \in J} ,$$

where  $f_{\alpha}: A \to X_{\alpha}$  for each  $\alpha$ . Let  $\prod_{\alpha \in J} X_{\alpha}$  have the product topology. Then the function f is continuous if and only if each function  $f_{\alpha}$  is continuous.

Proof:

 $\langle 1 \rangle 1$ . If f is continuous then each  $f_{\alpha}$  is continuous.

PROOF: This holds because  $f_{\alpha} = \pi_{\alpha} \circ f$ .

- $\langle 1 \rangle 2$ . If every  $f_{\alpha}$  is continuous then f is continuous.
  - $\langle 2 \rangle 1$ . Assume: Every  $f_{\alpha}$  is continuous.
  - $\langle 2 \rangle 2$ . Let:  $\alpha \in J$  and U be open in  $X_{\alpha}$

 $\langle 2 \rangle 3. \ f^{-1}(\pi_{\alpha}^{-1}(U)) \text{ is open in } A$ PROOF:  $f^{-1}(\pi_{\alpha}^{-1}(U)) = f_{\alpha}^{-1}(U).$ 

### 5.2.1 Homeomorphisms

**Definition 5.2.16** (Homeomorphism). Let X and Y be topological spaces and  $f: X \to Y$ . Then f is a homeomorphism between X and Y iff f is a bijection, and f and  $f^{-1}$  are both continuous.

**Definition 5.2.17** (Topological Property). A property P of topological spaces is a *topological property* iff, for any spaces X and Y, if X is homeomorphic to Y then P holds of X if and only if P holds of Y.

**Definition 5.2.18** ((Topological) Imbedding). Let X and Y be topological spaces and  $f: X \to Y$ . Then f is a (topological) imbedding iff f is a homeomorphism between X and im f.

**Definition 5.2.19** (Homogeneous). A topological space X is homogeneous iff, for all  $x, y \in X$ , there exists a homeomorphism  $f: X \cong X$  such that f(x) = y.

### 5.2.2 Strongly Continuous Functions

**Definition 5.2.20** (Strongly Continuous). Let X and Y be topological spaces and  $f: X \to Y$ . Then f is *strongly continuous* iff, for all  $V \subseteq Y$ , we have V is open in Y if and only if  $f^{-1}(V)$  is open in X.

**Proposition 5.2.21.** Let X and Y be topological spaces and  $f: X \to Y$ . Then f is strongly continuous if and only if, for all  $C \subseteq Y$ , C is closed in Y if and only if  $f^{-1}(C)$  is closed in X.

### Proof:

 $\langle 1 \rangle 1$ . If f is strongly continuous then, for all  $C \subseteq Y$ , we have C is closed in Y if and only if  $f^{-1}(C)$  is closed in X.

Proof:

$$C$$
 is closed in  $Y \Leftrightarrow Y \setminus C$  is open in  $Y$   
 $\Leftrightarrow f^{-1}(Y \setminus C)$  is open in  $X$   
 $\Leftrightarrow X \setminus f^{-1}(C)$  is open in  $X$   
 $\Leftrightarrow f^{-1}(C)$  is closed in  $X$ 

 $\langle 1 \rangle 2$ . If, for all  $C \subseteq Y$ , we have C is closed in Y if and only if  $f^{-1}(C)$  is closed in X, then f is strongly continuous.

PROOF: Similar.

П

**Proposition 5.2.22.** The composite of two strongly continuous functions is strongly continuous.

- $\langle 1 \rangle 1$ . Let:  $f: X \to Y$  and  $g: Y \to Z$  be strongly continuous.
- $\langle 1 \rangle 2$ . Let:  $V \subseteq Z$
- $\langle 1 \rangle 3. \ V$  is open iff  $f^{-1}(g^{-1}(V))$  is open

$$V$$
 is open  $\Leftrightarrow g^{-1}(V)$  is open  $(\langle 1 \rangle 1)$ 

$$\Leftrightarrow f^{-1}(g^{-1}(V))$$
 is open  $(\langle 1 \rangle 1)$ 

П

**Proposition 5.2.23.** Let X, Y and Z be topological spaces. Let  $f: X \to Y$ and  $g: Y \to Z$ . If f is strongly continuous and  $g \circ f$  is continuous, then g is continuous.

Proof:

- $\langle 1 \rangle 1$ . Let:  $V \subseteq Z$  be open in Z.
- $\langle 1 \rangle 2$ .  $f^{-1}(g^{-1}(V))$  is open in X.

Proof:  $g \circ f$  is continuous.

 $\langle 1 \rangle 3.$   $g^{-1}(V)$  is open in Y.

Proof: f is strongly continuous.

**Proposition 5.2.24.** Let X, Y and Z be topological spaces. Let  $f: X \to Y$  and  $g: Y \to Z$ . If f and  $g \circ f$  are strongly continuous, then g is strongly continuous.

Proof:

- $\langle 1 \rangle 1$ . Let:  $U \subseteq Z$
- $\langle 1 \rangle 2$ . U is open in Z iff  $g^{-1}(U)$  is open in Y

U is open in  $Z \Leftrightarrow f^{-1}(g^{-1}(U))$  is open in  $X \quad (g \circ f \text{ is strongly continuous})$  $\Leftrightarrow g^{-1}(U)$  is open in Y (f is strongly continuous)

#### 5.3 Closed Maps

**Definition 5.3.1** (Closed Map). Let X and Y be topological spaces and f:  $X \to Y$ . Then f is a closed map iff, for every closed set  $C \subseteq X$ , the set f(C) is closed in Y.

**Lemma 5.3.2.** Let  $p: X \to Y$  be a closed map. Let  $B \subseteq Y$ . Let U be an open neighbourhood of  $p^{-1}(B)$ . Then there exists an open neighbourhood V of B such that  $p^{-1}(V) \subseteq U$ .

- $\langle 1 \rangle 1$ . Let:  $V = Y \setminus p(X \setminus U)$
- $\langle 1 \rangle 2$ . V is open
- $\langle 1 \rangle 3. \ p^{-1}(V) \subseteq U$

# 5.4 Local Homeomorphism

**Definition 5.4.1** (Locally Homeomorphic). Let X and Y be topological spaces. Then X is *locally homeomorphic* to Y iff every point in X has an open neighborhood that is homeomorphic with an open set in Y.

**Proposition 5.4.2.** The long line is locally homeomorphic with  $\mathbb{R}$ .

```
Proof:  \begin{array}{l} \langle 1 \rangle 1. \ \ \text{Let:} \ \ x \in L \\ \langle 1 \rangle 2. \ \ \text{Pick an ordinal } \alpha \ \text{such that} \ \ x < (\alpha, 0). \\ \langle 1 \rangle 3. \ \ (-\infty, (\alpha, 0)) \ \text{is an open neighbourhood of} \ x \ \text{that is homeomorphic to} \ (0, 1). \\ \square \end{array}
```

### 5.5 Retracts

**Definition 5.5.1** (Retract). Let Z be a topological space. If Y is a subspace of Z, we say that Y is a *retract* of Z iff there exists a continuous function  $r:Z\to Y$  such that r(y)=y for all  $y\in Y$ .

# Chapter 6

# Separation Axioms

# 6.1 $T_1$ Spaces

**Definition 6.1.1** ( $T_1$  Space). A topological space X is a  $T_1$  space iff every finite set is closed.

**Theorem 6.1.2.** Let X be a  $T_1$  space and  $A \subseteq X$ . Then x is a limit point of A if and only if every neighbourhood of x contains infinitely many points of A.

#### PROOF

- $\langle 1 \rangle 1$ . If some neighbourhood of x contains only finitely many points of A then x is not a limit point of A.
  - $\langle 2 \rangle 1$ . Assume: Some neighbourhood U of x contains only finite many points  $a_1, \ldots, a_n$  of A.
  - $\langle 2 \rangle 2$ .  $X \setminus \{a_1, \dots, a_n\}$  is open. PROOF: X is  $T_1$ .
  - $\langle 2 \rangle 3$ .  $U \setminus \{a_1, \ldots, a_n\}$  is a neighbourhood of x that does not intersect A.
- $\langle 1 \rangle 2$ . If every neighbourhood of x contains infinitely many points of A then x is a limit point of A.

PROOF: From the definition of limit point.

**Proposition 6.1.3.** A subspace of a  $T_1$  space is  $T_1$ .

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a  $T_1$  space and  $Y \subseteq X$
- $\langle 1 \rangle 2$ . Let:  $a \in Y$
- $\langle 1 \rangle 3$ .  $\{a\}$  is closed in X

Proof: By  $\langle 1 \rangle 1$ .

 $\langle 1 \rangle 4$ .  $\{a\}$  is closed in Y

PROOF: By Corollary 4.3.4.1.

Ш

**Definition 6.1.4** (Separate Points from Closed Sets). Let X be a space and  $\{f_{\alpha}\}_{{\alpha}\in J}$  be a family of continuous functions  $f_{\alpha}:X\to\mathbb{R}$ . Then  $\{f_{\alpha}\}$  separates points from closed sets in X iff, for every point  $x_0\in X$  and every neighbourhood U of  $x_0$ , there exists  $\alpha\in J$  such that  $f_{\alpha}$  is positive at  $x_0$  and vanishes outside U

**Theorem 6.1.5** (Imbedding Theorem). Let X be a  $T_1$  space and  $\{f_{\alpha}\}_{{\alpha}\in J}$  be a family of functions  $X\to\mathbb{R}$  that separates points from closed sets. Then the function  $F:X\to\mathbb{R}^J$  defined by

$$F(x)_{\alpha} = f_{\alpha}(x)$$

is an imbedding. If each  $f_{\alpha}$  maps X into [0,1] then F is an imbedding  $X \to [0,1]^J$ .

### Proof:

 $\langle 1 \rangle 1$ . F is continuous

PROOF: By Theorem 5.2.15.

 $\langle 1 \rangle 2$ . F is injective

 $\langle 2 \rangle 1$ . Let:  $x, y \in X$  with  $x \neq y$ 

 $\langle 2 \rangle 2$ . PICK a neighbourhood U of x such that  $y \notin U$ 

PROOF: X is  $T_1$ 

 $\langle 2 \rangle 3$ . PICK  $\alpha \in J$  such that  $f_{\alpha}$  is positive at x and vanishes outside U

 $\langle 2 \rangle 4. \ f_{\alpha}(x) \neq f_{\alpha}(y)$ 

 $\langle 2 \rangle 5. \ F(x) \neq F(y)$ 

 $\langle 1 \rangle 3$ . F is open as a map  $X \to F(U)$ 

 $\langle 2 \rangle 1$ . Let: U be open

 $\langle 2 \rangle 2$ . Let:  $z \in F(U)$ 

 $\langle 2 \rangle 3$ . Pick  $x \in U$  such that F(x) = z

 $\langle 2 \rangle 4$ . PICK  $\alpha \in J$  such that  $f_{\alpha}$  is positive at x and vanishes outside U

 $\langle 2 \rangle 5. \ z \in \pi_{\alpha}^{-1}((0, +\infty)) \cap F(U) \subseteq F(U)$ 

# 6.2 Hausdorff Spaces

**Definition 6.2.1** (Hausdorff Space). A topological space X is a *Hausdorff space* iff, for any points  $x, y \in X$  with  $x \neq y$ , there exist disjoint neighbourhoods U of x and Y of y.

**Theorem 6.2.2.** Every Hausdorff space is  $T_1$ .

### Proof:

 $\langle 1 \rangle 1$ . Let: X be a Hausdorff space

 $\langle 1 \rangle 2$ . Let:  $a \in X$ 

PROVE:  $\{a\}$  is closed.

 $\langle 1 \rangle 3$ . Let:  $b \in X \setminus \{a\}$ 

 $\langle 1 \rangle 4$ . Pick disjoint neighbourhoods U of a and V of b

```
\langle 1 \rangle5. b \in V \subseteq X \setminus \{a\}
\langle 1 \rangle6. Q.E.D.
PROOF: By Proposition 3.2.3.
```

**Theorem 6.2.3.** In a Hausdorff space, a sequence has at most one limit.

### Proof:

- $\langle 1 \rangle 1$ . Assume: for a contradiction  $x_n \to l$  and  $x_n \to m$  as  $n \to \infty$ , and  $l \neq m$
- $\langle 1 \rangle 2$ . PICK disjoint neighbourhoods U of l and V of m
- $\langle 1 \rangle 3$ . PICK N such that, for all  $n \geq N$ ,  $x_n \in U$  and  $x_n \in V$
- $\langle 1 \rangle 4. \ x_N \in U \cap V$

**Theorem 6.2.4.** Every linearly ordered set is Hausdorff under the order topology.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a linearly ordered set under the order topology.
- $\langle 1 \rangle 2$ . Let:  $x, y \in X$  with  $x \neq y$
- $\langle 1 \rangle 3$ . Assume: w.l.o.g. x < y

PROVE: There exist disjoint neighbourhoods U of x and V of y.

 $\langle 1 \rangle 4$ . Case: There exists z such that x < z < y

PROOF: In this case, take  $U = (-\infty, z)$  and  $V = (z, +\infty)$ .

 $\langle 1 \rangle$ 5. Case: There does not exist z such that x < z < y

PROOF: In this case, take  $U = (-\infty, y)$  and  $V = (x, +\infty)$ .

**Theorem 6.2.5.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of Hausdorff spaces. Then  $\prod_{{\alpha}\in J} X_{\alpha}$  is Hausdorff under the product topology.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $\{x_{\alpha}\}_{\alpha \in J}, \{y_{\alpha}\}_{\alpha \in J} \in \prod_{\alpha \in J} X_{\alpha} \text{ with } \{x_{\alpha}\}_{\alpha \in J} \neq \{y_{\alpha}\}_{\alpha \in J}$
- $\langle 1 \rangle 2$ . PICK  $\alpha \in J$  such that  $x_{\alpha} \neq y_{\alpha}$
- $\langle 1 \rangle 3$ . PICK disjoint neighbourhoods U of  $x_{\alpha}$  and V of  $y_{\alpha}$ .
- $\langle 1 \rangle 4$ .  $\pi_{\alpha}^{-1}(U)$  and  $\pi_{\alpha}^{-1}(V)$  are disjoint neighbourhoods of  $\{x_{\alpha}\}_{\alpha \in J}$  and  $\{y_{\alpha}\}_{\alpha \in J}$

Corollary 6.2.5.1. The Sorgenfrey plane is Hausdorff.

Corollary 6.2.5.2. For any set I, the space  $\mathbb{R}^I$  is Hausdorff.

**Proposition 6.2.6.** Let X and Y be topological spaces and  $f: X \to Y$ . If f is continuous and injective and Y is Hausdorff then X is Hausdorff.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $x, y \in X$  with  $x \neq y$
- $\langle 1 \rangle 2. \ f(x) \neq f(y)$

PROOF: f is injective.

```
\langle 1 \rangle 3. PICK disjoint neighbourhoods U, V of f(x) and f(y) PROOF: Y is Hausdorff. \langle 1 \rangle 4. f^{-1}(U) and f^{-1}(V) are disjoint neighbourhoods of x and y.
```

Corollary 6.2.6.1. A subspace of a Hausdorff space is Hausdorff.

**Corollary 6.2.6.2.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of nonempty spaces. If  $\prod_{{\alpha}\in J} X_{\alpha}$  is Hausdorff then so is each  $X_{\alpha}$ .

**Corollary 6.2.6.3.** Let  $\mathcal{T}$  and  $\mathcal{T}'$  be topologies on the same set X. If  $\mathcal{T} \subseteq \mathcal{T}'$  and X is Hausdorff under  $\mathcal{T}$  then X is Hausdorff under  $\mathcal{T}'$ .

Corollary 6.2.6.4. The space  $\mathbb{R}_K$  is Hausdorff.

**Proposition 6.2.7.**  $\mathbb{R}_l$  is Hausdorff.

PROOF: Let  $a, b \in \mathbb{R}_l$  with a < b. Then  $(-\infty, b)$  and  $[b, +\infty)$  are disjoint open sets containing a and b respectively.  $\square$ 

**Proposition 6.2.8.** The continuous image of a Hausdorff space is not necessarily Hausdorff.

PROOF: The identity map from the discrete two-point space to the indiscrete two-point space is continuous.  $\Box$ 

**Lemma 6.2.9.** Let A be a subspace of X and Z be Hausdorff. Let  $f: A \to Z$  be continuous. Then there is at most one extension of f to a continuous function  $\overline{A} \to Z$ .

### Proof:

- $\langle 1 \rangle 1$ . Assume: for a contradiction  $g,h:\overline{A}\to Z$  are continuous extensions of f with  $g(x)\neq h(x)$
- $\langle 1 \rangle 2$ . Pick disjoint open neighbourhoods U of g(x) and V of h(x)
- $\langle 1 \rangle$ 3. PICK a point  $a \in A \cap g^{-1}(U) \cap h^{-1}(V)$ PROOF: One exists because  $g^{-1}(U) \cap h^{-1}(V)$  is a neighbourhood of  $x \in \overline{A}$ .  $\langle 1 \rangle$ 4.  $g(a) \in U \cap V$

# 6.3 Regular Spaces

**Definition 6.3.1** (Regular). A topological space X is regular iff, for every closed set A and point  $a \notin A$ , there exist disjoint neighbourhoods U of A and V of a.

**Proposition 6.3.2.** Let X be a  $T_1$  space. Then X is regular if and only if, for every point x and neighbourhood U of x, there exists a neighbourhood V of x such that  $\overline{V} \subseteq U$ .

- $\langle 1 \rangle 1$ . If X is regular then, for every point x and neighbourhood N of x, there exists a neighbourhood V of x such that  $\overline{V} \subseteq N$ .
  - $\langle 2 \rangle 1$ . Assume: X is regular.
  - $\langle 2 \rangle 2$ . Let:  $x \in X$  and N be a neighbourhood of x
  - $\langle 2 \rangle$ 3. PICK an open set U such that  $x \in U \subseteq N$
  - $\langle 2 \rangle 4$ . PICK disjoint open sets V, W such that  $x \in V$  and  $X \setminus U \subseteq W$
  - $\langle 2 \rangle 5. \ \overline{V} \subseteq N$

$$\overline{V} \subseteq X \setminus W$$

$$\subseteq U$$

$$\subseteq N$$

- $\langle 1 \rangle 2$ . If, for every point x and neighbourhood U of x, there exists a neighbourhood V of x such that  $\overline{V} \subseteq U$ , then X is regular.
  - $\langle 2 \rangle 1$ . Assume: For every point x and neighbourhood U of x, there exists a neighbourhood V of x such that  $\overline{V} \subseteq U$ .
  - $\langle 2 \rangle 2$ . Let:  $x \in X$  and A be a closed set with  $x \notin A$
  - $\langle 2 \rangle 3$ . PICK a neighbourhood V of x such that  $\overline{V} \subseteq X \setminus A$
- $\langle 2 \rangle 4. \ x \in V \text{ and } A \subseteq X \setminus \overline{V}$

**Proposition 6.3.3.** Every linearly ordered set under the order topology is regular.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a linearly ordered set under the order topology.
- $\langle 1 \rangle 2$ . Let:  $x \in X$  and U be a neighbourhood of xProve: There exists a neighbourhood V of x with  $\overline{V} \subseteq U$
- $\langle 1 \rangle 3$ . Case: x is greatest and least in X

PROOF: Take  $V = U = X = \{x\}$ 

- $\langle 1 \rangle 4$ . Case: x is greatest in X and there exists a < x such that  $(a, x] \subseteq U$ 
  - $\langle 2 \rangle 1$ . Case: There exists b such that a < b < x

PROOF: Take V = (b, x].

- $\langle 2 \rangle 2$ . Case: There is no b such that a < b < x
  - $\langle 3 \rangle 1$ . Let:  $V = U = \{x\}$
  - $\langle 3 \rangle 2. \ \overline{V} = V$

PROOF: For any  $y \neq x$ , we have  $(-\infty, x)$  is a neighbourhood of y that does not intersect V.

- $\langle 1 \rangle$ 5. Case: x is least in X and there exists b > x such that  $[x,b) \subseteq U$  Proof: Similar.
- $\langle 1 \rangle 6$ . Case: There exist a < x < b such that  $(a, b) \subseteq U$ 
  - $\langle 2 \rangle 1.$  Pick a point c such that a < c < x if there is one, otherwise Let: c = a
  - $\langle 2 \rangle 2.$  Pick a point d such that x < d < b if there is one, otherwise Let: d = b
  - $\langle 2 \rangle 3$ . Let: V = (c, d)
  - $\langle 2 \rangle 4. \ \overline{V} \subseteq U$

$$\overline{V} \subseteq [c, d]$$

$$\subseteq (a, b)$$

$$\subseteq U$$

 $\langle 1 \rangle 7$ . Q.E.D.

PROOF: These cases are exhaustive by Lemma 4.1.2. They prove X is regular by Proposition 6.3.2.

Ш

Proposition 6.3.4. A subspace of a regular space is regular.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a regular space and  $Y \subseteq X$
- $\langle 1 \rangle 2$ . Let:  $A \subseteq Y$  be closed in Y and  $a \in Y \setminus A$
- $\langle 1 \rangle$ 3. PICK C closed in X such that  $A = C \cap Y$ PROOF: By Corollary 4.3.4.1.
- $\langle 1 \rangle 4$ . PICK disjoint open sets U, V in X such that  $C \subseteq U$  and  $a \in V$
- $\langle 1 \rangle$ 5.  $U \cap Y$  and  $V \cap Y$  are disjoint open sets in Y such that  $A \subseteq U \cap Y$  and  $a \in V \cap Y$

П

**Corollary 6.3.4.1.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of nonempty spaces. If  $\prod_{{\alpha}\in J} X_{\alpha}$  is regular then so is each  $X_{\alpha}$ .

**Proposition 6.3.5** (AC). The product of a family of regular spaces is regular.

### PROOF:

- $\langle 1 \rangle 1$ . Let:  $\{X_{\alpha}\}_{{\alpha} \in J}$  be a family of regular spaces.
- $\langle 1 \rangle 2$ .  $\prod_{\alpha \in J} X_{\alpha}$  is  $T_1$
- $\langle 1 \rangle 3$ . Let:  $\vec{a} \in U$  where U is open in  $\prod_{\alpha \in J} X_{\alpha}$
- $\langle 1 \rangle 4$ . PICK  $\prod_{\alpha \in J} U_{\alpha}$  such that each  $U_{\alpha}$  is open in  $X_{\alpha}$ ,  $U_{\alpha} = X_{\alpha}$  except at  $\alpha_1$ , ...,  $\alpha_n$ , and  $\vec{a} \in \prod_{\alpha \in J} U_{\alpha} \subseteq U$
- $\langle 1 \rangle$ 5. For  $1 \leq i \leq n$ , PICK  $V_{\alpha_i}$  open in  $X_{\alpha_i}$  such that  $a_{\alpha_i} \in V_{\alpha_i}$  and  $\overline{V_{\alpha_i}} \subseteq U_{\alpha_i}$
- $\langle 1 \rangle$ 6. For  $\alpha \neq \alpha_1, \dots, \alpha_n$ , LET:  $V_{\alpha} = X_{\alpha}$
- $\langle 1 \rangle 7. \ \vec{a} \in \prod_{\alpha \in J} V_{\alpha}$
- $\langle 1 \rangle 8. \ \overline{\prod_{\alpha \in J} V_{\alpha}} \subseteq \prod_{\alpha \in J} U_{\alpha}$ PROOF: By Theorem 4.2.5.

П

Corollary 6.3.5.1. The Sorgenfrey plane is regular.

Corollary 6.3.5.2. For any set I, the space  $\mathbb{R}^I$  is regular.

**Proposition 6.3.6.** The space  $\mathbb{R}_K$  is not regular.

PROOF: There do not exist disjoint neighbourhoods of 0 and K.  $\square$ 

**Proposition 6.3.7.** The continuous image of a regular space is not necessarily regular.

PROOF: The identity map from the discrete two-point space to the indiscrete two-point space is continuous.

#### Completely Regular Spaces 6.4

**Definition 6.4.1** (Separated by a Continuous Function). Let A and B be subsets of a topological space X. Then A and B can be separated by a continuous function iff there exists a continuous  $f: X \to [0,1]$  such that  $f(A) = \{0\}$  and  $f(B) = \{1\}.$ 

**Definition 6.4.2** (Completely Regular). A space X is completely regular iff X is  $T_1$  and, for every point a and closed set A not containing a, we have that  $\{a\}$ and A can be separated by a continuous function.

**Theorem 6.4.3.** The product of a family of completely regular spaces is completely regular.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $\{X_{\alpha}\}_{{\alpha} \in J}$  be a family of completely regular spaces.
- $\langle 1 \rangle 2$ . Let:  $a \in \prod_{\alpha \in J} X_{\alpha}$  and A be closed in  $\prod_{\alpha \in J} X_{\alpha}$  such that  $a \notin A$   $\langle 1 \rangle 3$ . Pick a basic open neighbourhood  $\prod_{\alpha \in J} U_{\alpha} \subseteq \prod_{\alpha \in J} X_{\alpha} \setminus A$  of a such that  $U_{\alpha} = X_{\alpha}$  except for  $\alpha = \alpha_1, \dots, \alpha_n$
- $\langle 1 \rangle 4$ . For  $1 \leq i \leq n$ , PICK a continuous  $f_i: X_{\alpha_i} \to [0,1]$  that is 0 at  $a_{\alpha_i}$  and 1 on  $X_{\alpha_i} \setminus U_{\alpha_i}$
- $\langle 1 \rangle$ 5. Let:  $f: \prod_{\alpha \in J} X_{\alpha} \to [0,1]$  be given by  $f(x) = \prod_{i=1}^n f_i(x_{\alpha_i})$
- $\langle 1 \rangle 6.$  f(a) = 0
- $\langle 1 \rangle 7$ . f(x) = 1 for  $x \in A$
- $\langle 1 \rangle 8$ . f is continuous

Corollary 6.4.3.1. The Sorgenfrey plane is completely regular.

Corollary 6.4.3.2. For any set I, the space  $\mathbb{R}^I$  is completely regular.

**Proposition 6.4.4.** For any set J, the space  $\mathbb{R}^J$  in the box topology is completely regular.

- $\langle 1 \rangle 1$ . Let:  $a \in \mathbb{R}^J$  and  $A \subseteq \mathbb{R}^J$  be closed with  $a \notin A$ PROVE: There exists  $f: \mathbb{R}^J_{\text{box}} \to [0,1]$  continuous such that f(a) = 1and  $f(A) = \{0\}$
- $\langle 1 \rangle 2$ . Assume: w.l.o.g.  $A \cap (-1,1)^J = \emptyset$  and  $a = \vec{0}$ 
  - $\langle 2 \rangle$ 1. Pick a basic open set  $\prod_{\alpha \in J} U_{\alpha}$  such that  $a \in \prod_{\alpha \in J} U_{\alpha} \subseteq \mathbb{R}^{J} \setminus A$
  - $\langle 2 \rangle 2$ . For  $\alpha \in J$ , Pick  $b_{\alpha}, c_{\alpha}$  such that  $a_{\alpha} \in (b_{\alpha}, c_{\alpha}) \subseteq U_{\alpha}$
  - $\langle 2 \rangle 3$ . For  $\alpha \in J$ , PICK a homeomorphism  $f_{\alpha} : \mathbb{R} \to \mathbb{R}$  that maps  $b_{\alpha}$  to -1,  $a_{\alpha}$  to 0 and  $c_{\alpha}$  to 1
  - $\langle 2 \rangle 4$ .  $\prod_{\alpha \in J} f_{\alpha}$  is an automorphism  $\mathbb{R}^{J}_{\text{box}}$  that maps a to  $\vec{0}$  and A to a closed set disjoint from  $(-1,1)^J$

- $\langle 1 \rangle 3$ . PICK a continuous function  $f : \mathbb{R}^J_{\text{uniform}} \to [0,1]$  such that  $f(\vec{0}) = 1$  and  $f(\mathbb{R}^J \setminus (-1,1)^J) = \{0\}$
- $\langle 1 \rangle 4$ . f is continuous w.r.t. the box topology

### Proposition 6.4.5. Not every regular space is completely regular.

- $\langle 1 \rangle 1$ . For  $m \in \mathbb{Z}$ ,
  - Let:  $L_m = \{m\} \times [-1, 0]$
- $\langle 1 \rangle$ 2. For each odd integer n and each integer  $k \geq 2$ , Let:  $C_{nk} = (\{n+1-1/k\} home/robin/fun/RogOMatic/src/actuatortimes[-1,0]) \cup (\{n-1+1/k\} \times [-1,0]) \cup \{(x,y): (x-n)^2 + y^2 = (1-1/k)^2, y \geq 0\}$
- $\langle 1 \rangle 3$ . For each odd integer n and each integer  $k \geq 2$ , Let:  $p_{nk} = (n, 1 1/k)$
- $\langle 1 \rangle 4$ . PICK two points a, b not in any  $L_m$  or  $C_{nk}$
- $\langle 1 \rangle$ 5. Let:  $X = \bigcup_{m \in \mathbb{Z}} L_m \cup \bigcup_{n,k} C_{nk} \cup \{a,b\}$
- $\langle 1 \rangle$ 6. Let:  $\mathcal{B}$  be the set consisting of all subsets of  $\mathbb{R}^2$  of the following forms:
  - 1. The intersection of X with a horizontal open line segment that contains none of the points  $p_{nk}$
  - 2. A set formed from one of the sets  $C_{nk}$  by deleting finitely many points.
  - 3. For each even integer m, the set  $\{a\} \cup \{(x,y) \in X : x < m\}$
  - 4. For each even integer m, the set  $\{b\} \cup \{(x,y) \in X : x > m\}$
- $\langle 1 \rangle 7$ .  $\mathcal{B}$  is a basis for a topology on X
  - $\langle 2 \rangle 1$ . For all  $x \in X$ , there exists  $B \in \mathcal{B}$  such that  $x \in B$
  - $\langle 2 \rangle 2$ . For all  $B_1, B_2 \in \mathcal{B}$  and  $x \in B_1 \cap B_2$ , there exists  $B_3 \in \mathcal{B}$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ 
    - $\langle 3 \rangle 1$ . CASE:  $B_1$ ,  $B_2$  are both of type 1 PROOF: Their intersection is of type 1.
    - $\langle 3 \rangle$ 2. Case:  $B_1$  is of type 1 and  $B_2$  is of type 2 PROOF: Their intersection is of type 2, since a horizontal line segment intersects  $C_{nk}$  in at most two points.
    - $\langle 3 \rangle 3$ . Case:  $B_1$  is of type 1 and  $B_2$  is of type 3 Proof: Their intersection is of type 1
    - $\langle 3 \rangle 4$ . Case:  $B_1$  is of type 1 and  $B_2$  is of type 4 PROOF: Their intersection is of type 1
    - $\langle 3 \rangle$ 5. Case:  $B_1$  is of type 2 and  $B_2$  is of type 2 Proof: Their intersection is of type 2
    - $\langle 3 \rangle$ 6. Case:  $B_1$  is of type 2 and  $B_2$  is of type 3 Proof: Their intersection is  $B_1$
    - $\langle 3 \rangle$ 7. CASE:  $B_1$  is of type 2 and  $B_2$  is of type 4
    - PROOF: Their intersection is  $B_1$  (3)8. Case:  $B_1$  is of type 3 and  $B_2$  is of type 3 PROOF: Their intersection is of type 3
    - $\langle 3 \rangle 9$ . Case:  $B_1$  is of type 3 and  $B_2$  is of type 4

- $\langle 4 \rangle 1$ . Let:  $B_1 = \{a\} \cup \{(x,y) \in X : x < m\}$  and  $B_2 = \{b\} \cup \{(x,y) \in X : x < m\}$ X: x > n
- $\langle 4 \rangle 2$ . Case: x = (s, 1 1/k) for some s and integer  $x \geq 2$ PROOF: In this case,  $x \in C_{nk}$  for some n and  $C_{nk} \subseteq B_1 \cap B_2$ .
- $\langle 4 \rangle 3$ . Case: x = (s,t) and  $t \neq 1 1/k$  for any integer  $k \geq 2$ PROOF: In this case,  $x \in ((n, m) \times \{t\}) \cap X \subseteq B_1 \cap B_2$
- $\langle 3 \rangle 10$ . Case:  $B_1$  is of type 4 and  $B_2$  is of type 4

Proof: Their intersection is of type 4

- $\langle 1 \rangle 8$ . For any continuous function  $f: X \to \mathbb{R}$ , we have f(a) = f(b)
  - $\langle 2 \rangle 1$ . Let:  $f: X \to \mathbb{R}$  be continuous
  - $\langle 2 \rangle 2$ . For any  $c \in \mathbb{R}$ , we have  $f^{-1}(c)$  is  $G_{\delta}$ PROOF:  $f^{-1}(c) = \bigcap_{q \in \mathbb{Q}^+} f^{-1}(c-q, c+q)$  $\langle 2 \rangle 3$ . Let:  $S_{nk} = \{ p \in C_{nk} : f(p) \neq f(p_{nk}) \}$

  - $\langle 2 \rangle 4$ . For all n, k, we have  $S_{nk}$  is countable.
    - $\langle 3 \rangle 1$ . Let:  $f^{-1}(p_{nk}) = \bigcap_{m=1}^{\infty} U_m$  where  $U_m$  is open in X
    - $\langle 3 \rangle 2$ . For each m, Pick  $B_m \in \mathcal{B}$  such that  $p_{nk} \in B_m \subseteq U_m$
    - $\langle 3 \rangle 3. \ S_{nk} \subseteq \bigcup_{m=1}^{\infty} (C_{nk} \setminus B_m)$
    - $\langle 3 \rangle 4$ . Each  $C_{nk} \setminus B_m$  is countable
      - $\langle 4 \rangle 1$ . Let:  $m \in \mathbb{Z}$
      - $\langle 4 \rangle 2$ .  $B_m$  cannot be of type 1
      - $\langle 4 \rangle 3$ . If  $B_m$  is of type 2 then  $C_{nk} \setminus B_m$  is finite.
      - $\langle 4 \rangle 4$ . If  $B_m$  is of type 3 or 4 then  $C_{nk} \setminus B_m$  is empty.
  - $\langle 2 \rangle$ 5. Pick  $d \in [-1,0]$  such that  $\mathbb{R} \times \{d\}$  intersects none of the sets  $S_{nk}$
  - $\langle 2 \rangle 6$ . For *n* odd, we have

$$f(n-1,d) = \lim_{k \to \infty} f(p_{nk}) .$$

- $\langle 3 \rangle 1$ . Let:  $\epsilon > 0$
- $\langle 3 \rangle 2$ . Pick  $B \in \mathcal{B}$  such that  $(n-1,d) \in B \subseteq f^{-1}(f(n-1,d)-\epsilon,f(n-1,d))$  $1, d) + \epsilon$
- $\langle 3 \rangle 3$ . There exists  $\delta > 0$  such that, for  $x \in (n-1-\delta, n-1+\delta)$ , we have  $(x,d) \in B$
- $\langle 3 \rangle 4$ . PICK K such that  $1/K < \delta$
- $\langle 3 \rangle 5$ . Let:  $k \geq K$
- $\langle 3 \rangle 6. \ f(n-1+1/k,d) = f(p_{nk})$
- $\langle 3 \rangle 7. |f(n-1,d) f(n-1+1/k,d)| < \epsilon$
- $\langle 3 \rangle 8. |f(n-1,d) f(p_{nk})| < \epsilon$
- $\langle 2 \rangle$ 7. For *n* odd, we have

$$f(n+1,d) = \lim_{k \to \infty} f(p_{nk}) .$$

Proof: Similar.

- $\langle 2 \rangle 8$ . Q.E.D.
  - $\langle 3 \rangle 1$ . Assume:  $f(a) \neq f(b)$
  - $\langle 3 \rangle 2$ . Assume: w.l.o.g. f(a) < f(b)
  - $\langle 3 \rangle 3$ . Pick  $B \in \mathcal{B}$  such that  $a \in B \subseteq f^{-1}(-\infty, (f(a) + f(b))/2)$
  - $\langle 3 \rangle 4$ . Let: m be even such that  $B = \{a\} \cup \{(x,y) \in X : x < m\}$
  - (3)5. Pick  $B \in \mathcal{B}$  such that  $b \in B \subseteq f^{-1}((f(a) + f(b))/2, +\infty)$
  - $\langle 3 \rangle 6$ . Let: m' be even such that  $B = \{b\} \cup \{(x,y) \in X : x > m'\}$

```
\langle 3 \rangle 7. f(m,d) = f(m',d)
```

- $\langle 3 \rangle 8$ . Q.E.D.
- $\langle 1 \rangle 9$ . X is regular.
- $\langle 1 \rangle 10$ . X is not completely regular.

PROOF: a and b cannot be separated by a continuous function.

**Theorem 6.4.6** (AC). A space is completely regular iff it is homeomorphic to a subspace of  $[0,1]^J$  for some J.

### Proof:

- $\langle 1 \rangle 1$ . Every completely regular space is homeomorphic to a subspace of  $[0,1]^J$  for some J.
  - $\langle 2 \rangle 1$ . Let: X be completely regular
  - $\langle 2 \rangle 2$ . For every point a and open set U that contains a, PICK a continuous function  $f_{aU}$  that is positive on a and vanishes outside U
  - $\langle 2 \rangle 3$ . The family  $\{f_{aU}\}$  separates points from closed sets
  - $\langle 2 \rangle 4$ . Q.E.D.

PROOF: By the Imbedding Theorem.

 $\langle 1 \rangle 2$ . Every subspace of  $[0,1]^J$  is completely regular.

PROOF: By Theorem 6.4.3 and Proposition 6.3.4.

**Proposition 6.4.7.** The continuous image of a completely regular space is not necessarily completely regular.

PROOF: The identity map from the discrete two-point space to the indiscrete two-point space is continuous.  $\Box$ 

# 6.5 Normal Spaces

**Definition 6.5.1** (Normal Space). A *normal* space is a  $T_1$  space such that, for any disjoint closed sets A, B, there exist disjoint open sets U, V such that  $A \subseteq U$  and  $B \subseteq V$ .

**Theorem 6.5.2.** Every linearly ordered set is normal under the order topology.

Proof: See Steen and Steerbach Counterexamples in Topology Example 39.

**Proposition 6.5.3.** The product space  $S_{\Omega} \times \overline{S_{\Omega}}$  is not normal.

- $\langle 1 \rangle 1$ . Let:  $\Delta = \{(x, x) : x \in \overline{S_{\Omega}}\} \subseteq \overline{S_{\Omega}} \times \overline{S_{\Omega}}\}$
- $\langle 1 \rangle 2$ .  $\Delta$  is closed in  $\overline{S_{\Omega}} \times \overline{S_{\Omega}}$
- $\langle 1 \rangle 3$ . Let:  $A = \Delta \cap (S_{\Omega} \times \overline{S_{\Omega}})$
- $\langle 1 \rangle 4$ . A is closed in  $S_{\Omega} \times \overline{S_{\Omega}}$
- $\langle 1 \rangle 5$ . Let:  $B = S_{\Omega} \times \{\Omega\}$
- $\langle 1 \rangle 6$ . B is closed

```
\langle 1 \rangle 7. A \cap B = \emptyset
\langle 1 \rangle 8. Assume: for a contradiction U and V are disjoint open sets including A
                          and B respectively
\langle 1 \rangle 9. For all x \in S_{\Omega} there exists \beta \in (x, \Omega) such that (x, \beta) \notin U
    \langle 2 \rangle 1. Let: x \in S_{\Omega}
    \langle 2 \rangle 2. \ (x, \Omega) \in V
       Proof: (x, \Omega) \in B \subseteq V
    \langle 2 \rangle 3. Pick y < \Omega such that \{x\} \times (y, \Omega] \subseteq V
       PROOF: By Lemma 4.1.2.
    \langle 2 \rangle 4. PICK \beta such that x, y < \beta < \Omega
       PROOF: Such a \beta exists because \Omega is a limit ordinal.
\langle 1 \rangle 10. For x \in S_{\Omega},
           Let: \beta(x) be the least element of (x,\Omega) such that (x,\beta(x)) \notin U
\langle 1 \rangle 11. Let: b = \sup_{n=1}^{\infty} \beta^n(0)
\langle 1 \rangle 12. \ \beta^n(0) \to b \text{ as } n \to \infty
\langle 1 \rangle 13. \ (\beta^n(0), \beta^{n+1}(0)) \to (b, b) \text{ as } n \to \infty
\langle 1 \rangle 14. \ (b,b) \in A
\langle 1 \rangle 15. \ (b,b) \in U
\langle 1 \rangle 16. For all n we have (\beta^n(0), \beta^{n+1}(0)) \notin U
   PROOF: By \langle 1 \rangle 10.
\langle 1 \rangle 17. Q.E.D.
   PROOF: Steps \langle 1 \rangle 12, \langle 1 \rangle 15 and \langle 1 \rangle 16 form a contradiction.
```

Corollary 6.5.3.1. Not every completely regular space is normal.

**Corollary 6.5.3.2.** An open subspace of a normal space is not necessarily normal.

Corollary 6.5.3.3. The product of two normal spaces is not necessarily normal.

Proposition 6.5.4. A closed subspace of a normal space is normal.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be normal and  $C \subseteq X$  be closed.
- $\langle 1 \rangle 2$ . Let: A and B be closed in C
- $\langle 1 \rangle 3$ . A and B are closed in X

Proof: By Corollary 4.3.4.2.

- $\langle 1 \rangle 4$ . PICK disjoint open neighbourhoods U and V of A and B in X
- $\langle 1 \rangle$ 5.  $U \cap C$  and  $V \cap C$  are disjoint open neighburhoods of A and B in C

**Corollary 6.5.4.1.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of nonempty spaces. If  $\prod_{{\alpha}\in J} X_{\alpha}$  is normal then each  $X_{\alpha}$  is normal.

**Proposition 6.5.5.** If the Continuum Hypothesis then  $\mathbb{R}^{\omega}$  under the box topology is normal.

PROOF: See Rudin. The box product of countably many compact metric spaces. General Topology and Its Applications, 2:293–298, 1972.  $\Box$ 

**Proposition 6.5.6** (Stone (DC)). If J is uncountable then  $\mathbb{R}^J$  is not normal.

PROOF

 $\langle 1 \rangle 1$ . Let:  $X = (\mathbb{Z}^+)^J$ 

Prove: X is not normal.

 $\langle 1 \rangle 2$ . For  $x \in X$  and  $B \subseteq^{fin} J$ , Let:

$$U(x,B) = \{ y \in X : \forall \alpha \in B. y_{\alpha} = x_{\alpha} \} .$$

- $\langle 1 \rangle 3. \{ U(x,B) : x \in X, B \subseteq^{\text{fin}} J \}$  is a basis for X
  - $\langle 2 \rangle 1$ . Let:  $x \in X$  and  $\prod_{\alpha \in J} U_{\alpha}$  be a basic open set including x, where  $U_{\alpha} = \mathbb{Z}^+$  for all  $\alpha$  except  $\alpha_1, \ldots, \alpha_n$
  - $\langle 2 \rangle 2. \ x \in U(x, \{\alpha_1, \dots, \alpha_n\}) \subseteq \prod_{\alpha \in J} U_{\alpha}$
- $\langle 1 \rangle 4$ . For  $n \in \mathbb{Z}^+$ ,

Let:  $P_n = \{x \in X : x \text{ is injective on } J \setminus x^{-1}(n)\}$ 

- $\langle 1 \rangle$ 5.  $P_1$  and  $P_2$  are closed and disjoint.
  - $\langle 2 \rangle 1$ .  $P_1$  is closed
    - $\langle 3 \rangle 1$ . Let:  $x \in X \setminus P_1$
    - $\langle 3 \rangle 2$ . PICK  $\alpha, \beta \in J$  such that  $x_{\alpha} = x_{\beta} \neq 1$
    - $\langle 3 \rangle 3$ . Let:  $U_{\gamma} = \{x_{\alpha}\}$  if  $\gamma = \alpha$  or  $\gamma = \beta$ ,  $\mathbb{Z}^+$  for all other  $\gamma \in J$
    - $\langle 3 \rangle 4. \ x \in \prod_{\gamma \in J} U_{\gamma} \subseteq X \setminus P_1$
  - $\langle 2 \rangle 2$ .  $P_2$  is closed

PROOF: Similar.

 $\langle 2 \rangle 3. \ P_1 \cap P_2 = \emptyset$ 

PROOF: If  $x \in P_1 \cap P_2$  then x is injective on J, contradicting the fact that J is uncountable.

- $\langle 1 \rangle$ 6. Assume: for a contradiction U and V are disjoint open sets including  $P_1$  and  $P_2$
- $\langle 1 \rangle$ 7. Given a sequence  $(\alpha_i)$  of distinct elements of J and a strictly increasing sequence  $(n_i)$  of positive integers, Let:

$$B_i^{\alpha,n} = \{\alpha_1, \dots, \alpha_{n_i}\}$$

$$x_i^{\alpha,n} \in X$$

$$(x_i^{\alpha,n})_{\beta} = \begin{cases} j & \text{if } \beta = \alpha_j, 1 \le j \le n_{i-1} \\ 1 & \text{for all other values of } \beta \end{cases}$$

for  $i \geq 1$ 

- $\langle 1 \rangle 8$ . PICK sequences  $(\alpha_i)$ ,  $(n_i)$  such that, for all  $i \geq 1$ , we have  $U(x_i^{\alpha,n}, B_i^{\alpha,n}) \subseteq U$ 
  - $\langle 2 \rangle 1$ . Let:  $x_1 \in X$  be given by  $(x_1)_{\alpha} = 1$  for all  $\alpha \in J$
  - $\langle 2 \rangle 2. \ x_1 \in U$

PROOF:  $x_1 \in P_1 \subseteq U$ 

 $\langle 2 \rangle 3$ . PICK  $B_1 \subseteq^{\text{fin}} J$  such that  $U(x_1, B_1) \subseteq U$ PROOF: By  $\langle 1 \rangle 3$ .

 $\langle 2 \rangle 4$ . Let:  $n_1 = |B_1|$  and  $B_1 = \{\alpha_1, \dots, \alpha_{n_1}\}$ 

 $\langle 2 \rangle$ 5. Assume: We have chosen  $n_1, \ldots, n_k$  strictly increasing and  $\alpha_1, \ldots, \alpha_{n_k}$  such that, for  $1 \leq i \leq k$ , we have  $U(x_i^{\alpha,n}, B_i^{\alpha,n}) \subseteq U$ 

**Theorem 6.5.7** (Urysohn Lemma). Let X be a normal space. Let A and B be disjoint closed subsets of X. Then there exists a continuous map  $f: X \to [0,1]$  such that f(x) = 0 for all  $x \in A$  and f(x) = 1 for all  $x \in B$ .

### PROOF:

- $\langle 1 \rangle 1$ . Let: P be the set of all rational numbers in [0,1]
- $\langle 1 \rangle$ 2. For all  $q \in P$ , PICK an open set  $U_q$  in X such that  $A \subseteq U_0$ ,  $U_1 \subseteq X \setminus B$ , and whenever p < q then  $\overline{U_p} \subseteq U_q$ 
  - $\langle 2 \rangle 1$ . Pick an enumeration  $(q_n)$  of P such that  $q_1 = 1$  and  $q_2 = 0$
  - $\langle 2 \rangle 2$ . Let:  $U_1 = X \setminus B$
  - $\langle 2 \rangle 3$ . PICK an open set  $U_0$  such that  $A \subseteq U_0$  and  $\overline{U_0} \subseteq U_1$
  - $\langle 2 \rangle 4$ . Assume: we have open sets  $U_1, U_0, \ldots, U_{q_n}$  such that whenever p < q then  $\overline{U_p} \subseteq U_q$
  - $\langle 2 \rangle 5. \ q_2 < q_{n+1} < q_1$
  - $\langle 2 \rangle$ 6. Let:  $q_k$  be greatest among  $q_1, \ldots, q_n$  such that  $q_k < q_{n+1}$ , and  $q_l$  be least such that  $q_{n+1} < q_l$
  - $\langle 2 \rangle$ 7. Pick an open set  $U_{q_{n+1}}$  such that  $\overline{U_{q_k}} \subseteq U_{q_{n+1}}$  and  $\overline{U_{q_{n+1}}} \subseteq U_{q_l}$
  - $\langle 2 \rangle 8$ . For all  $p, q \in \{q_1, \dots, q_{n+1}\}$ , if p < q then  $\overline{U_p} \subseteq U_q$
- $\langle 1 \rangle 3$ . Extend the family  $(U_q)$  to  $\mathbb Q$  by defining:  $U_q = \emptyset$  if q < 0 and  $U_q = X$  if q > 1
- $\langle 1 \rangle 4$ . For all rationals p, q with p < q we have  $\overline{U_p} \subseteq U_q$
- (1)5. Define  $f: X \to [0,1]$  by  $f(x) = \inf\{q \in \mathbb{Q} : x \in U_q\}$ PROOF: This set is nonempty since  $x \in U_1$  and bounded below since if  $x \in U_q$  then  $q \geq 0$ .
- $\langle 1 \rangle 6$ . For all  $x \in A$  we have f(x) = 0
- $\langle 1 \rangle 7$ . For all  $x \in B$  we have f(x) = 1
- $\langle 1 \rangle 8$ . If  $x \in \overline{U_r}$  then  $f(x) \leq r$
- $\langle 1 \rangle 9$ . If  $x \notin U_r$  then  $f(x) \geq r$
- $\langle 1 \rangle 10$ . f is continuous
  - $\langle 2 \rangle 1$ . Let:  $x_0 \in X$
  - $\langle 2 \rangle 2$ . Let: (c,d) be an open interval containing  $f(x_0)$ Prove: There exists a neighbourhood U of  $x_0$  such that  $f(U) \subseteq (c,d)$

```
\langle 2 \rangle 3. Pick rationals p, q such that c 
   \langle 2 \rangle 4. \ x \notin \overline{U_p}
      Proof: By \langle 1 \rangle 8
   \langle 2 \rangle 5. \ x \in U_q
      Proof: By \langle 1 \rangle 9
   \langle 2 \rangle 6. Let: U = U_q \setminus \overline{U_p}
Definition 6.5.8 (Vanish Precisely). Let X be a set and A \subseteq X. Let f: X \to X
[0,1]. Then f vanishes precisely on A iff f^{-1}(0) = A.
Theorem 6.5.9 (CC). Let X be a normal space and A \subseteq X. Then there exists
```

 $\langle 1 \rangle 1$ . If there exists f such that f vanishes precisely on A then A is closed. PROOF: This holds because  $A = f^{-1}(0)$ .

a continuous function  $f: X \to [0,1]$  such that f vanishes precisely on A if and

 $\langle 1 \rangle 2$ . If there exists f such that f vanishes precisely on A then A is  $G_{\delta}$ . PROOF: This holds because  $A = \bigcap_{q \in \mathbb{Q}^+} f^{-1}([0, q))$ .

 $\langle 1 \rangle 3$ . If A is closed and  $G_{\delta}$  then there exists f that vanishes precisely on A.  $\langle 2 \rangle 1$ . Let:  $A = \bigcap_{n=1}^{\infty} U_n$ 

only if A is a closed  $G_{\delta}$  set.

 $\langle 2 \rangle 2$ . For  $n \geq 1$ , Pick  $f_n: X \to [0, 1/2^n]$  such that f(x) = 0 for  $x \in A$  and  $f(x) = 1/2^n$  for  $x \in X \setminus U_n$ 

Proof: By the Urysohn Lemma.

 $\langle 2 \rangle 3$ . Let:  $f: X \to [0,1]$  be given by  $f(x) = \sum_{n=1}^{\infty} f_n(x)$ 

Proof: The series converges for every x by the Comparison Test.

 $\langle 2 \rangle 4$ . f is continuous

 $\langle 3 \rangle 1$ .  $f_n$  converges uniformly to f

PROOF: By the Weierstrass M-test.

 $\langle 3 \rangle 2$ . Q.E.D.

PROOF: By the Uniform Limit Theorem.

 $\langle 2 \rangle 5$ . f(x) = 0 for  $x \in A$ 

PROOF: From  $\langle 2 \rangle 2$ .

 $\langle 2 \rangle 6$ . f(x) > 0 for  $x \notin A$ 

 $\langle 3 \rangle 1$ . Let:  $x \notin A$ 

 $\langle 3 \rangle 2$ . PICK N such that  $x \notin U_N$ 

 $\langle 3 \rangle 3$ . Q.E.D.

Proof:

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \qquad (\langle 2 \rangle 3)$$

$$\geq f_N(x)$$

$$> 0 \qquad (\langle 2 \rangle 2)$$

**Theorem 6.5.10** (Strong Form of Urysohn Lemma). Let X be a normal space.

Then there exists a continuous function  $f: X \to [0,1]$  such that  $f^{-1}(0) = A$ and  $f^{-1}(1) = B$  if and only if A and B are disjoint, closed and  $G_{\delta}$ .

### PROOF:

- $\langle 1 \rangle 1$ . If there exists a continuous function  $f: X \to [0,1]$  such that  $f^{-1}(0) = A$ and  $f^{-1}(1) = B$  then A and B are disjoint, closed and  $G_{\delta}$ 
  - $\langle 2 \rangle 1$ . Assume: there exists a continuous function  $f: X \to [0,1]$  such that  $f^{-1}(0) = A$  and  $f^{-1}(1) = B$
  - $\langle 2 \rangle 2$ . A and B are disjoint
  - $\langle 2 \rangle 3$ . A is closed and  $G_{\delta}$

PROOF: By Theorem 6.5.9.

 $\langle 2 \rangle 4$ . B is closed and  $G_{\delta}$ 

PROOF: Apply Theorem 6.5.9 to 1 - f.

- $\langle 1 \rangle 2$ . If A and B are disjoint, closed and  $G_{\delta}$  then there exists a continuous function  $f: X \to [0,1]$  such that  $f^{-1}(0) = A$  and  $f^{-1}(1) = B$ 
  - $\langle 2 \rangle 1$ . Assume: A and B are disjoint, closed and  $G_{\delta}$
  - $\langle 2 \rangle 2$ . PICK  $g: X \to [0,1]$  that vanishes precisely on A and  $h: X \to [0,1]$  that vanishes precisely on B
- $\langle 2 \rangle 3$ . Let: f = g/(g+h)

**Definition 6.5.11** (Universal Extension Property). A topological space Y has the universal extension property iff, for every normal space X and closed subspace A of X, every continuous function  $A \to Y$  can be extended to a continuous function  $X \to Y$ .

**Theorem 6.5.12** (Tietze Extension Theorem (DC)). Let X be a normal space. Let A be closed subspace of X.

- 1. Any continuous function  $A \to [a,b]$  can be extended to a continuous func $tion X \rightarrow [a,b].$
- 2. Any continuous function  $A \to \mathbb{R}$  can be extend to a continuous function  $X \to \mathbb{R}$ .

- $\langle 1 \rangle 1$ . Any continuous function  $A \to [-1,1]$  can be extended to a continuous function  $X \to [-1, 1]$ 
  - $\langle 2 \rangle 1$ . For every continuous function  $f: A \to [-r, r]$ , there exists a continuous  $g: X \to \mathbb{R}$  such that

$$|g(x)| \le \frac{1}{3}r \qquad (x \in X)$$

$$|g(x)-f(x)| \leq \frac{2}{3}r \qquad (x \in A)$$
  $\langle 3 \rangle 1$ . Let:  $f:A \to [-r,r]$  be continuous

- $\langle 3 \rangle 2$ . Let:  $I_1 = [-r, -\frac{1}{3}r]$   $\langle 3 \rangle 3$ . Let:  $I_2 = [-\frac{1}{3}r, \frac{1}{3}r]$   $\langle 3 \rangle 4$ . Let:  $I_3 = [\frac{1}{3}r, r]$

- $\langle 3 \rangle$ 5. Let:  $B = f^{-1}(I_1)$  $\langle 3 \rangle$ 6. Let:  $C = f^{-1}(I_3)$
- $\langle 3 \rangle$ 7. PICK a continuous  $g: X \to [-\frac{1}{3}r, \frac{1}{3}r]$  such that  $g(x) = -\frac{1}{3}r$  for  $x \in B$ and  $g(x) = \frac{1}{3}r$  for  $x \in C$

PROOF: By the Urysohn Lemma, since B and C are closed disjoint subsets of X.

- $\langle 3 \rangle 8$ . For all  $x \in A$  we have  $|g(x) f(x)| \leq \frac{2}{3}r$ 
  - $\langle 4 \rangle 1$ . Let:  $x \in A$
  - $\langle 4 \rangle 2$ . Case:  $f(x) \in I_1$

Proof:

$$|g(x) - f(x)| = \left| -\frac{1}{3}r - f(x) \right| \qquad (x \in B)$$

$$\leq \frac{2}{3}r \qquad (f(x) \in I_1)$$

 $\langle 4 \rangle 3$ . Case:  $f(x) \in I_2$ 

PROOF: In this case,  $|g(x) - f(x)| \le \frac{2}{3}r$  since  $f(x), g(x) \in I_2$ .

 $\langle 4 \rangle 4$ . Case:  $f(x) \in I_3$ 

Proof:

$$|g(x) - f(x)| = \left| \frac{1}{3}r - f(x) \right| \qquad (x \in C)$$

$$\leq \frac{2}{3}r \qquad (f(x) \in I_3)$$

$$\langle 2 \rangle 2$$
. Let:  $f: A \to [-1,1]$  be continuous.  $\langle 2 \rangle 3$ . Pick a sequence of functions  $(g_n)$  such that  $|g_n(x)| \leq \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$   $(x \in X)$ 

$$|f(x) - g_1(x) - \dots - g_n(x)| \le (2/3)^n$$
  $(x \in A)$ 

 $|f(x)-g_1(x)-\cdots-g_n(x)|\leq (2/3)^n$   $(x\in A)$ PROOF:Given  $g_1,\ldots,g_n$ , we apply  $\langle 2\rangle 1$  with  $f=f-g_1-\cdots-g_n$  and

 $\langle 2 \rangle$ 4. Let:  $g(x) = \sum_{n=1}^{\infty} g_n(x)$  for  $x \in X$ Proof: This series converges by the Comparison Test since  $\sum_{n=1}^{\infty} (2/3)^n$ converges.

- $\langle 2 \rangle 5$ . g is continuous.
  - $\langle 3 \rangle$ 1.  $\sum_{n=1}^{N} g_n$  converges to g uniformly

PROOF: By the Weierstrass M-test.

 $\langle 3 \rangle 2$ . Q.E.D.

PROOF: By the Uniform Limit Theory.

 $\langle 2 \rangle$ 6. For all  $x \in A$  we have g(x) = f(x)PROOF:  $|\sum_{n=1}^N g_n(x) - f(x)| \le (2/3)^N \to 0$  as  $N \to \infty$ .  $\langle 2 \rangle$ 7. For all  $x \in X$  we have  $-1 \le g(x) \le 1$ 

Proof:

$$\left| \sum_{n=1}^{N} g_n(x) \right| \le \sum_{n=1}^{N} |g_n(x)|$$

$$\le 1/3 \sum_{n=1}^{N} (2/3)^{n-1}$$

$$\to 2/3$$

as  $n \to \infty$ 

- $\langle 1 \rangle 2$ . Any continuous function  $A \to (-1,1)$  can be extend to a continuous function  $X \to (-1,1)$ 
  - $\langle 2 \rangle 1$ . Let:  $f: A \to (-1,1)$  be continuous
  - $\langle 2 \rangle 2$ . PICK a continuous  $g: X \to [-1, 1]$  that extends f Proof: By  $\langle 1 \rangle 1$ .
  - $\langle 2 \rangle 3$ . Let:  $D = g^{-1}(-1) \cup g^{-1}(1)$
  - $\langle 2 \rangle 4$ . D is closed in X

PROOF: Since g is continuous and  $\{-1\}$ ,  $\{1\}$  are closed in [-1,1].

 $\langle 2 \rangle 5$ .  $D \cap A = \emptyset$ 

PROOF: Since  $g(A) = f(A) \subseteq (-1, 1)$ .

- $\langle 2 \rangle 6$ . PICK a continuous  $\phi: X \to [0,1]$  such that  $\phi(D) = \{0\}$  and  $\phi(A) = \{1\}$ PROOF: By the Urysohn Lemma.
- $\langle 2 \rangle 7$ . Let:  $h = g\phi$
- $\langle 2 \rangle 8$ . h is continuous
- $\langle 2 \rangle 9$ . h extends f
- $\langle 2 \rangle 10$ . im  $h \subseteq (-1,1)$
- $\langle 1 \rangle 3$ . Q.E.D.

PROOF: The result follows because any closed interval in  $\mathbb{R}$  is homeomorphic to [-1, 1] and  $\mathbb{R} \cong (-1, 1)$ .

Lemma 6.5.13 (Shrinking Lemma (AC)). Let X be a normal space. Let  $\{U_{\alpha}\}_{{\alpha}\in J}$  be a point-finite indexed open covering of X. Then there exists an indexed open covering  $\{V_{\alpha}\}_{{\alpha}\in J}$  such that  $V_{\alpha}\subseteq U_{\alpha}$  for all  ${\alpha}\in J$ .

#### Proof:

- $\langle 1 \rangle 1$ . PICK a well-ordering  $\prec$  on J
- $\langle 1 \rangle$ 2. PICK open sets  $V_{\alpha}$  for  $\alpha \in J$  such that  $A_{\alpha} \subseteq V_{\alpha}$  and  $\overline{V_{\alpha}} \subseteq U_{\alpha}$ , where  $A_{\alpha} = X \setminus \bigcup_{\beta \prec \alpha} V_{\beta} \cup \bigcup_{\alpha \prec \beta} U_{\beta}$ PROOF: Apply transfinite induction to Proposition 13.1.16.

$$A_{\alpha} = X \setminus \bigcup_{\beta \prec \alpha} V_{\beta} \cup \bigcup_{\alpha \prec \beta} U_{\beta}$$

- $\langle 1 \rangle 3. \{V_{\alpha}\}_{{\alpha} \in J} \text{ covers } X$ 
  - $\langle 2 \rangle 1$ . Let:  $x \in X$
  - $\langle 2 \rangle 2$ . Let:  $\alpha_1, \ldots, \alpha_n$  be the elements of J such that  $x \in U_{\alpha_i}$ , where  $\alpha_1 \prec \alpha_1 = 1$  $\cdots \prec \alpha_n$

Prove:  $x \in V_{\alpha_i}$  for some i

- $\langle 2 \rangle 3$ . Assume:  $x \notin V_{\alpha_1}, \dots, V_{\alpha_{n-1}}$
- $\langle 2 \rangle 4. \ x \in A_{\alpha_n}$
- $\langle 2 \rangle 5. \ x \in V_{\alpha_n}$

### **Proposition 6.5.14** (DC). $S_{\Omega} \times \overline{S_{\Omega}}$ is not normal.

```
Proof:
```

- $\langle 1 \rangle 1$ . Let:  $\Delta = \{(x, x) : x \in \overline{S_{\Omega}}\}$
- $\langle 1 \rangle 2$ .  $\Delta$  is closed in  $\overline{S_{\Omega}}^2$ 

  - $\langle 2 \rangle$ 1. Let:  $(x,y) \in \overline{S_{\Omega}}^2 \setminus \Delta$   $\langle 2 \rangle$ 2. Pick disjoint open sets U, V such that  $x \in U$  and  $y \in V$
  - $\langle 2 \rangle 3. \ (x,y) \in U \times V \subseteq \overline{S_{\underline{\Omega}}}^2 \setminus \Delta$
- $\langle 1 \rangle 3$ . Let:  $A = \Delta \cap (S_{\Omega} \times \overline{S_{\Omega}})$
- $\langle 1 \rangle 4$ . A is closed in  $S_{\Omega} \times \overline{S_{\Omega}}$
- $\langle 1 \rangle 5$ . Let:  $B = S_{\Omega} \times \{\Omega\}$
- $\langle 1 \rangle 6$ . B is closed in  $S_{\Omega} \times \overline{S_{\Omega}}$
- $\langle 1 \rangle 7$ .  $A \cap B = \emptyset$
- $\langle 1 \rangle 8$ . Assume: for a contradiction U and V are disjoint open sets including A and B respectively
- $\langle 1 \rangle 9$ . PICK a sequence  $x_n$  in  $S_{\Omega}$  such that  $x_n < x_{n+1} < \Omega$  and  $(x_n, x_{n+1}) \notin U$ for all n
  - $\langle 2 \rangle 1$ . Let:  $x_n \in S_{\Omega}$
  - $\langle 2 \rangle 2. \ (x_n, \Omega) \in V$
  - $\langle 2 \rangle 3$ . Pick open sets  $W \subseteq S_{\Omega}$ ,  $X \subseteq \overline{S_{\Omega}}$  such that  $x_n \in W$ ,  $\Omega \in X$  and  $W \times X \subseteq V$
  - $\langle 2 \rangle 4$ . PICK  $y < \Omega$  such that  $(x_{n+1}, \Omega] \subseteq X$
  - $\langle 2 \rangle 5$ . Let:  $x_{n+1} = y + 1$
- $\langle 1 \rangle 10$ . Let: b be the supremum of  $\{x_n : n \geq 1\}$
- $\langle 1 \rangle 11. \ (x_n, x_{n+1}) \to (b, b) \text{ as } n \to \infty$
- $\langle 1 \rangle 12. \ (b,b) \in A$
- $\langle 1 \rangle 13. \ (b,b) \in U$
- $\langle 1 \rangle 14$ . For all n we have  $(x_n, x_{n+1}) \notin U$

#### **Proposition 6.5.15** (AC). $\mathbb{R}_l$ is normal.

#### Proof:

- $\langle 1 \rangle 1$ . Let: A and B be disjoint closed sets in  $\mathbb{R}_l$
- $\langle 1 \rangle 2$ . For  $a \in A$ , PICK  $x_a > a$  such that  $[a, x_a)$  not intersecting B
- $\langle 1 \rangle 3$ . For  $b \in B$ , PICK  $x_b > b$  such that  $[b, x_b)$  does not intersect A
- $\langle 1 \rangle 4$ . Let:  $U = \bigcup_{a \in A} [a, x_a)$  and  $V = \bigcup_{b \in B} [b, x_b)$
- $\langle 1 \rangle$ 5. U and V are disjoint open sets including A and B respectively.

### **Lemma 6.5.16.** The set $L = \{(x, -x); x \in \mathbb{R}\}$ as a subspace of $\mathbb{R}^2_l$ is closed

- $\langle 1 \rangle 1$ . Let:  $(x,y) \notin L$ , so  $y \neq -x$ PROVE: There exists a neighbourhood U of (x, y) that does not intersect
- $\langle 1 \rangle 2$ . Case: y > -x

```
\langle 1 \rangle 3. Case: y < -x
   PROOF: In this case, take U = [x, (x - y)/2) \times [y, (y - x)/2).
Proposition 6.5.17 (AC). The Sorgenfrey plane is not normal.
Proof:
\langle 1 \rangle 1. Assume: for a contradiction the Sorgenfrey plane is normal.
\langle 1 \rangle 2. Let: L = \{(x, -x); x \in \mathbb{R}\} as a subspace of \mathbb{R}^2
\langle 1 \rangle 3. L has the discrete topology.
   \langle 2 \rangle 1. Let: (x, -x) \in L
            PROVE: \{(x, -x)\} is open in L
   \langle 2 \rangle 2. \{(x, -x)\} = ([x, +\infty) \times [-x, +\infty)) \cap L
\langle 1 \rangle 4. Every subset of L is closed in \mathbb{R}^2_L
   Proof: By Corollary 4.3.4.2.
\langle 1 \rangle5. For every nonempty proper subset A of L, PICK disjoint open sets U_A,
         V_A containing A and L \setminus A
   Proof: By \langle 1 \rangle 1 and \langle 1 \rangle 4.
\langle 1 \rangle 6. Let: D = \mathbb{Q}^2
\langle 1 \rangle 7. D is dense in \mathbb{R}^2_l
   PROOF: Given any basic open set [a,b) \times [c,d), pick rationals q, r such that
   a \leq q < b and c \leq r < d. Then (q,r) \in ([a,b) \times [c,d)) \cap D
\langle 1 \rangle 8. Let: \theta : \mathcal{P}L \to \mathcal{P}D be the function
                                      \theta(A) = U_A \cap D
                                                                                 (\emptyset \neq A \neq L)
                                      \theta(\emptyset) = \emptyset
                                      \theta(L) = D
\langle 1 \rangle 9. \theta is injective
   \langle 2 \rangle 1. Let: A, B \subseteq L with \theta(A) = \theta(B)
            Prove: A = B
   \langle 2 \rangle 2. Case: \emptyset \neq A \neq L and \emptyset \neq B \neq L
       \langle 3 \rangle 1. \ A \subseteq B
           \langle 4 \rangle 1. Let: x \in A
          \langle 4 \rangle 2. \ x \in U_A
             Proof: By \langle 1 \rangle 5
          \langle 4 \rangle 3. \ x \in U_B
             Proof: By \langle 2 \rangle 1
          \langle 4 \rangle 4. \ x \notin L \setminus B
             Proof: By \langle 1 \rangle 5
          \langle 4 \rangle 5. \ x \in B
             PROOF: Since x \in L by \langle 4 \rangle 1
       \langle 3 \rangle 2. \ B \subseteq A
          PROOF: Similar.
   \langle 2 \rangle 3. Case: \emptyset \neq A \neq L and B = \emptyset
       PROOF: This implies U_A \cap D = \emptyset which contradicts the fact that D is dense.
   \langle 2 \rangle 4. Case: \emptyset \neq A \neq L and B = L
       PROOF: This implies V_A \cap D = \emptyset which contradicts the fact that D is dense.
```

PROOF: In this case, take  $U = [x, +\infty) \times [y, +\infty)$ 

```
\langle 2 \rangle 5. Case: A = B = \emptyset
       PROOF: Trivial
    \langle 2 \rangle 6. Case: A = \emptyset and B = L
       PROOF: This implies D = \emptyset which is a contradiction.
    \langle 2 \rangle7. Case: A = B = L
       PROOF: Trivial
\langle 1 \rangle 10. Q.E.D.
   PROOF: This is a contradiction since D is countable and L is uncountable.
Proposition 6.5.18. The continuous image of a normal space is not necessarily
normal.
PROOF: The identity map from the discrete two-point space to the indiscrete
two-point space is continuous.
Lemma 6.5.19. Let X be a regular space with a countably locally finite basis.
Then X is normal and every closed set is G_{\delta}.
\langle 1 \rangle 1. Let: X be regular with a countably locally finite basis.
\langle 1 \rangle 2. For every open set W, there exists a countable set \mathcal{U} of open sets such
         that W = \bigcup \mathcal{U} = \bigcup_{U \in \mathcal{U}} U
    \langle 2 \rangle 1. Pick a locally finite set \mathcal{B}_n for n \in \mathbb{N} such that \bigcup_{n=0}^{\infty} \mathcal{B}_n is a basis.
       Proof: By \langle 1 \rangle 1.
    \langle 2 \rangle 2. For n \in \mathbb{N},
             Let: C_n = \{B \in \mathcal{B}_n : \overline{B} \subseteq W\}
    \langle 2 \rangle 3. For n \in \mathbb{N}, C_n is locally finite.
       PROOF: This holds because C_n \subseteq \mathcal{B}_n (\langle 2 \rangle 1, \langle 2 \rangle 2).
    \langle 2 \rangle 4. For n \in \mathbb{N},
             Let: U_n = \bigcup C_n
    \langle 2 \rangle 5. For n \in \mathbb{N}, U_n is open.
       PROOF: This holds because every element of C_n is open (\langle 2 \rangle 1, \langle 2 \rangle 2, \langle 2 \rangle 4).
    \langle 2 \rangle 6. For n \in \mathbb{N}, \overline{U_n} = \bigcup_{B \in \mathcal{C}_n} B
       Proof: By Lemma 3.12.10.
    \langle 2 \rangle 7. For n \in \mathbb{N}, \overline{U_n} \subseteq W
       Proof: From \langle 2 \rangle 2 and \langle 2 \rangle 6.
    \langle 2 \rangle 8. \ W \subseteq \bigcup_{n=0}^{\infty} U_n
       \langle 3 \rangle 1. Let: x \in W
       \langle 3 \rangle 2. PICK a neighbourhood U of x such that \overline{U} \subseteq W
          PROOF: By Proposition 6.3.2 and \langle 3 \rangle 1 since X is regular (\langle 1 \rangle 1).
       \langle 3 \rangle 3. Pick n \in \mathbb{N} and B \in \mathcal{B}_n such that x \in B \subseteq U
          PROOF: By \langle 2 \rangle 1 and \langle 3 \rangle 2.
       \langle 3 \rangle 4. \ B \in \mathcal{C}_n
           \langle 4 \rangle 1. \ \overline{B} \subseteq W
              Proof:
                                  \overline{B}\subseteq \overline{U}
                                                                 (Proposition 3.12.5, \langle 3 \rangle 3)
```

 $(\langle 3 \rangle 2)$ 

 $\subseteq W$ 

```
\langle 4 \rangle 2. Q.E.D.
                  Proof: \langle 2 \rangle 2, \langle 3 \rangle 3, \langle 4 \rangle 1
         \langle 3 \rangle 5. \ x \in U_n
             Proof: \langle 2 \rangle 4, \langle 3 \rangle 3, \langle 3 \rangle 4.
\langle 1 \rangle 3. Every closed set is G_{\delta}
   Proof:
    \langle 2 \rangle 1. Let: C be closed
    \langle 2 \rangle 2. PICK a countable set \mathcal{U} of open sets such that X \setminus C = \bigcup \mathcal{U} = \bigcup_{U \in \mathcal{U}} \overline{U}
        Proof: By \langle 1 \rangle 2
    \langle 2\rangle 3. C=\bigcap_{U\in\mathcal{U}}X\setminus\overline{U} Proof: From \langle 2\rangle 2 and De Morgan's laws.
\langle 1 \rangle 4. X is normal
     \langle 2 \rangle 1. Let: C and D be disjoint closed sets.
    \langle 2 \rangle 2. PICK a countable sequence of open sets U_n such that X \setminus D = \bigcup_{n=0}^{\infty} U_n =
               \bigcup_{n=0}^{\infty} \overline{U_n}
        PROOF: By \langle 1 \rangle 2 and \langle 2 \rangle 1.
    \langle 2 \rangle 3. Pick a countable sequence of open sets V_n such that X \setminus C = \bigcup_{n=0}^{\infty} V_n =
                \bigcup_{n=0}^{\infty} \overline{V_n}
        PROOF: By \langle 1 \rangle 2 and \langle 2 \rangle 1.
   \langle 2 \rangle 4. For n \in \mathbb{N},

LET: U'_n = U_n \setminus \bigcup_{i=0}^n \overline{V_i}

\langle 2 \rangle 5. For n \in \mathbb{N},
   LET: V'_n = V_n \setminus \bigcup_{i=0}^n \overline{U_i}

\langle 2 \rangle 6. LET: U = \bigcup_{n=0}^{\infty} U'_n

\langle 2 \rangle 7. LET: V = \bigcup_{n=0}^{\infty} V'_n
    \langle 2 \rangle 8. U is open
         \langle 3 \rangle 1. For each n, U'_n is open
              \langle 4 \rangle 1. Let: n \in \mathbb{N}
              \langle 4 \rangle 2. U_n is open
                  Proof: By \langle 2 \rangle 2.
              \langle 4 \rangle 3. \bigcup_{i=0}^{n} \overline{V_i} is closed
                  PROOF: By Proposition 3.6.4 and Proposition 3.12.3.
              \langle 4 \rangle 4. Q.E.D.
                 PROOF: Since U'_n = U_n \cap (X \setminus \bigcup_{i=0}^n \overline{V_i})
         \langle 3 \rangle 2. Q.E.D.
              Proof: By \langle 2 \rangle 6
    \langle 2 \rangle 9. V is open
        PROOF: Similar.
    \langle 2 \rangle 10. \ U \cap V = \emptyset
         \langle 3 \rangle 1. Assume: for a contradiction x \in U \cap V
        \langle 3 \rangle 2. PICK m, n such that x \in U'_m and x \in V'_n
              Proof: \langle 2 \rangle 6, \langle 2 \rangle 7, \langle 3 \rangle 1
         \langle 3 \rangle 3. Assume: w.l.o.g. m \leq n
         \langle 3 \rangle 4. \ x \in V'_n \text{ and } x \in U_m
             PROOF: From \langle 2 \rangle 4 and \langle 3 \rangle 2.
```

 $\langle 3 \rangle 5$ . Q.E.D.

```
\langle 2 \rangle 11. \ C \subseteq U
        \langle 3 \rangle 1. Let: x \in C
       \langle 3 \rangle 2. \ x \in X \setminus D
           PROOF: By \langle 2 \rangle 1 and \langle 3 \rangle 1.
        \langle 3 \rangle 3. Pick n such that x \in U_n
           PROOF: By \langle 2 \rangle 2 and \langle 3 \rangle 2.
        \langle 3 \rangle 4. \ x \in U'_n
           \langle 4 \rangle 1. For all i, x \notin V_i
              PROOF: From \langle 2 \rangle 3 and \langle 3 \rangle 4.
           \langle 4 \rangle 2. Q.E.D.
              PROOF: From \langle 2 \rangle 4 and \langle 3 \rangle 3 and \langle 4 \rangle 1.
        \langle 3 \rangle 5. Q.E.D.
           Proof: By \langle 2 \rangle 6.
    \langle 2 \rangle 12. D \subseteq V
       PROOF: Similar.
Lemma 6.5.20. Let X be a normal space. Let A be a closed G_{\delta} set in X.
Then there exists a continuous f: X \to [0,1] such that f(x) = 0 for x \in A and
f(x) > 0 for x \notin A.
Proof:
\langle 1 \rangle 1. Let: X be a normal space.
\langle 1 \rangle 2. Let: A be a closed G_{\delta} set in X.
\langle 1 \rangle 3. Pick open sets U_n such that A = \bigcup_{n=0}^{\infty} U_n
   PROOF: From \langle 1 \rangle 2
\langle 1 \rangle 4. For n \in \mathbb{N}, Pick f_n : X \to [0,1] continuous such that f(x) = 0 for x \in A
         and f(x) = 1 for x \notin U_n
PROOF: By the Urysohn lemma, \langle 1 \rangle 1, \langle 1 \rangle 2 and \langle 1 \rangle 3. \langle 1 \rangle 5. Let: f: X \to [0,1] with f(x) = \sum_{n=0}^{\infty} f_n(x)/2^{n+1}
   PROOF: The sequence converges by the Comparison Test with \sum_{n=0}^{\infty} 1/2^{n+1}.
\langle 1 \rangle 6. f is continuous
   PROOF: By the Weierstrass M-test and the Uniform Limit Theorem.
\langle 1 \rangle 7. f vanishes on A
\langle 1 \rangle 8. f is positive on X \setminus A
```

# 6.6 Completely Normal Spaces

PROOF: This contradicts  $\langle 2 \rangle 5$ .

**Definition 6.6.1** (Completely Normal). A space X is *completely normal* iff every subspace is normal.

**Proposition 6.6.2.** A subspace of a completely normal space is completely normal.

PROOF: Immediate from definitions.

**Proposition 6.6.3.** Let X be a topological space. Then X is completely normal iff X is  $T_1$  and, for any pair of separated sets A, B in X, there exist disjoint open sets including them.

#### Proof:

- $\langle 1 \rangle 1$ . If X is completely normal then X is  $T_1$  and, for any pair of separated sets A, B in X, there exist disjoint open sets including them.
  - $\langle 2 \rangle 1$ . Assume: X is completely normal.
  - $\langle 2 \rangle 2$ . X is  $T_1$

PROOF: Holds because X is normal.

- $\langle 2 \rangle 3$ . For any pair of separated sets A, B in X, there exist disjoint open sets including them.
  - $\langle 3 \rangle 1$ . Let: A and B be separated in X
  - $\langle 3 \rangle 2$ . Let:  $Y = X \setminus (\overline{A} \cap \overline{B})$
  - $\langle 3 \rangle 3$ . PICK disjoint open sets U, V in Y such that  $\overline{A} \cap Y \subseteq U$  and  $\overline{B} \cap Y \subseteq V$  PROOF: Y is normal by  $\langle 2 \rangle 1$ .
  - $\langle 3 \rangle 4$ . PICK open sets  $U_0$ ,  $V_0$  in X such that  $U = U_0 \cap Y$ ,  $V = V_0 \cap Y$
  - $\langle 3 \rangle 5$ .  $A \subseteq U_0 \setminus \overline{B}$  and  $B \subseteq V_0 \setminus \overline{A}$

Proof: Using  $\langle 3 \rangle 1$ .

- $\langle 1 \rangle 2$ . If X is  $T_1$  and, for any pair of separated sets A, B in X, there exist disjoint open sets including them, then X is completely normal.
  - $\langle 2 \rangle 1$ . Assume: X is  $T_1$  and, for any pair of separated sets A, B in X, there exist disjoint open sets including them
  - $\langle 2 \rangle 2$ . Let:  $Y \subseteq X$
  - $\langle 2 \rangle 3$ . Y is  $T_1$

PROOF: By Proposition 6.1.3.

- $\langle 2 \rangle 4$ . Let: A and B be disjoint closed sets in Y
- $\langle 2 \rangle 5$ . A and B are separated in X
  - $\langle 3 \rangle 1$ .  $\overline{A} \cap Y = A$  and  $\overline{B} \cap Y = B$

PROOF: By Proposition 3.12.6 and Theorem 4.3.4.

 $\langle 3 \rangle 2$ .  $\overline{A} \cap B = \emptyset$ 

$$\overline{A} \cap B = \overline{A} \cap \overline{B} \cap Y \tag{(3)1)}$$

$$= A \cap B \tag{(3)1}$$

$$=\emptyset \qquad (\langle 2 \rangle 4)$$

 $\langle 3 \rangle 3. \ A \cap \overline{B} = \emptyset$ 

PROOF: Similar.

- $\langle 2 \rangle$ 6. Pick disjoint open sets U and V that include A and B respectively. Proof: By  $\langle 2 \rangle$ 1.
- $\langle 2 \rangle 7.~U \cap Y$  and  $V \cap Y$  are disjoint open sets in Y that include A and B respectively.

**Proposition 6.6.4.** A well-ordered set in the order topology is completely normal.

Proof:

```
\langle 1 \rangle 1. Let: X be a well-ordered set.
\langle 1 \rangle 2. For all a, b \in X with a < b, we have (a, b] is open.
   \langle 2 \rangle 1. Case: b is greatest in X
      PROOF: This case holds by the definition of the order topology.
   \langle 2 \rangle 2. Case: b is not greatest in X
      PROOF: In this case, (a, b] = (a, c) where c is the successor of b.
\langle 1 \rangle 3. Let: A and B be separated sets in X
        Prove: There exist disjoint open sets U, V including A and B
\langle 1 \rangle 4. Case: The least element of X is not in A or B
   (2)1. Let: U = \bigcup \{(x, a] : a \in A, x < a, (x, a] \cap B = \emptyset \}
   \langle 2 \rangle 2. Let: V = \bigcup \{ (y, b] : b \in B, y < b, (y, b] \cap A = \emptyset \}
   \langle 2 \rangle 3. U is open
      PROOF: From \langle 1 \rangle 2.
   \langle 2 \rangle 4. V is open
      PROOF: From \langle 1 \rangle 2.
   \langle 2 \rangle 5. A \subseteq U
      \langle 3 \rangle 1. Let: a \in A
      \langle 3 \rangle 2. PICK W a neighbourhood of a such that W \cap B = \emptyset
         PROOF: By \langle 1 \rangle 3.
      \langle 3 \rangle 3. Pick x < a such that (x, a] \subseteq W
         PROOF: By Lemma 4.1.2
      \langle 3 \rangle 4. \ a \in (x, a] \subseteq U
   \langle 2 \rangle 6. \ B \subseteq V
      Proof: Similar.
   \langle 2 \rangle 7. \ U \cap V = \emptyset
\langle 1 \rangle5. Case: \bot \in A
   \langle 2 \rangle 1. PICK disjoint open sets U and V that include A \setminus \{\bot\} and B
      PROOF: From \langle 1 \rangle 4.
   \langle 2 \rangle 2. U \cup \{\bot\} and V are disjoint open sets that include A and B
      PROOF: \{\bot\} is open because it is (-\infty, a) where a is the successor of \bot.
\langle 1 \rangle 6. Q.E.D.
   Proof: By Proposition 6.6.3.
Proposition 6.6.5. The product of two completely normal spaces is not neces-
sarily completely normal.
Proof:
\langle 1 \rangle 1. S_{\Omega} is completely normal.
   Proof: By Proposition 6.6.4
\langle 1 \rangle 2. S_{\Omega} is completely normal.
   Proof: By Proposition 6.6.4
\langle 1 \rangle 3. S_{\Omega} \times \overline{S_{\Omega}} is not completely normal.
   PROOF: By Proposition 6.5.3.
```

**Proposition 6.6.6.** A compact Hausdorff space is not necessarily completely normal.

```
Proof:
```

- $\langle 1 \rangle 1$ . PICK an uncountable set J
- $\langle 1 \rangle 2$ .  $[0,1]^J$  is compact Hausdorff

PROOF: By Tychonoff's Theorem and Theorem 6.2.5.

 $\langle 1 \rangle 3$ .  $(0,1)^J$  is not normal.

PROOF: By Proposition 6.5.6, since  $(0,1) \cong \mathbb{R}$ .

**Proposition 6.6.7.** The space  $\mathbb{R}_l$  is completely normal.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $X \subseteq \mathbb{R}_l$
- $\langle 1 \rangle 2$ . Let: A and B be disjoint closed sets in X.
- $\langle 1 \rangle 3$ . Pick closed sets C and D such that  $A = C \cap X$  and  $B = D \cap X$
- $\langle 1 \rangle 4$ . For  $a \in A$ , PICK  $x_a > a$  such that  $[a, x_a) \cap D = \emptyset$
- $\langle 1 \rangle 5$ . For  $b \in B$ , PICK  $x_b > b$  such that  $[b, x_b) \cap C = \emptyset$
- $\langle 1 \rangle 6$ .  $\bigcup_{a \in A} [a, x_a) \cap X$  and  $\bigcup_{b \in B} [b, x_b) \cap X$  are disjoint open sets in X that include A and B

# 6.7 Perfectly Normal Spaces

**Definition 6.7.1** (Perfectly Normal). A space is *perfectly normal* iff it is normal and every closed set is  $G_{\delta}$ .

Proposition 6.7.2. Every perfectly normal space is completely normal.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be perfectly normal.
- $\langle 1 \rangle 2$ . Let: A and B be separated sets in X
- $\langle 1 \rangle$ 3. PICK continuous functions  $f, g: X \to [0, 1]$  that vanish precisely on  $\overline{A}$  and  $\overline{B}$ , respectively.

PROOF: By Theorem 6.5.9.

- $\langle 1 \rangle 4$ . Let: h = f g
- $\langle 1 \rangle 5$ .  $B \subseteq h^{-1}((0, +\infty))$  and  $A \subseteq h^{-1}((-\infty, 0))$
- $\langle 1 \rangle 6$ . Q.E.D.

Proof: By Proposition 6.6.3.

П

**Proposition 6.7.3.** The space  $\overline{S_{\Omega}}$  is not perfectly normal.

PROOF: The set  $\{\Omega\}$  is not  $G_{\delta}$ .  $\square$ 

# Chapter 7

# Countability Axioms

# 7.1 The First Countability Axiom

**Definition 7.1.1** (First Countability Axiom). A topological space X satisfies the *first countability axiom*, or is *first countable*, iff every point has a countable local basis.

**Proposition 7.1.2.**  $S_{\Omega}$  is first countable.

PROOF: For every countable ordinal  $\alpha > 0$ , the set  $\{(\beta, \alpha + 1) : \beta < \alpha\}$  is a local basis at  $\alpha$ . The set  $\{\{0\}\}$  is a local basis at 0.  $\square$ 

**Theorem 7.1.3** (The Sequence Lemma (CC)). Let X be a first countable space and  $A \subseteq X$ . If  $x \in \overline{A}$ , then there exists a sequence of points of A that converges to x.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $x \in \overline{A}$
- $\langle 1 \rangle 2$ . PICK a countable basis  $\{B_n\}_{n \in \mathbb{Z}^+}$  at x.
- $\langle 1 \rangle 3$ . For  $n \geq 1$ , PICK a point  $a_n \in B_1 \cap \cdots \cap B_n \cap A$ PROVE:  $a_n \to x$  as  $n \to \infty$

PROOF: Using Countable Choice. Such an  $a_n$  exists because  $B_1 \cap \cdots \cap B_n$  is a neighbourhood of x. Apply Theorem 3.13.3.

- $\langle 1 \rangle 4$ . Let: U be a neighbourhood of x
- $\langle 1 \rangle$ 5. PICK N such that  $B_N \subseteq U$

PROOF: From  $\langle 1 \rangle 2$ .

 $\langle 1 \rangle 6$ . For  $n \geq N$ , we have  $a_n \in U$ 

Proof:

$$a_n \in B_1 \cap \dots \cap B_n$$
  $(\langle 1 \rangle 3)$   
 $\subseteq B_N$   $(n \ge N)$   
 $\subseteq U$   $(\langle 1 \rangle 5)$ 

**Theorem 7.1.4** (CC). Let X and Y be topological spaces where X is first countable. Let  $x \in X$ . Suppose that, for every sequence  $\{x_n\}_{n\geq 1}$  such that  $x_n \to x$  as  $n \to \infty$ , we have  $f(x_n) \to f(x)$  as  $n \to \infty$ . Then f is continuous at x.

#### Proof:

- $\langle 1 \rangle 1$ . Let: V be a neighbourhood of f(x)
- $\langle 1 \rangle 2.$  Assume: for a contradiction that, for every neighbourhood U of  $x,\,f(U) \not\subseteq V$
- $\langle 1 \rangle 3$ . PICK a countable local basis  $\{B_n\}_{n\geq 1}$
- $\langle 1 \rangle 4$ . For  $n \geq 1$ , PICK  $a_n \in B_1 \cap \cdots \cap B_n$  such that  $f(a_n) \notin V$
- $\langle 1 \rangle 5. \ a_n \to x \text{ as } n \to \infty$

#### Proof:

- $\langle 2 \rangle 1$ . Let: U be a neighbourhood of x
- $\langle 2 \rangle 2$ . PICK N such that  $B_N \subseteq U$
- $\langle 2 \rangle 3$ . For all  $n \geq N$ ,  $a_n \in U$  PROOF:

$$a_n \in B_1 \cap \dots \cap B_n$$
  $(\langle 1 \rangle 4)$   
 $\subseteq B_N$   $(n \ge N)$   
 $\subseteq U$   $(\langle 2 \rangle 2)$ 

- $\langle 1 \rangle 6. \ f(a_n) \to f(x) \text{ as } n \to \infty$
- $\langle 1 \rangle 7$ . There exists N such that, for all  $n \geq N$ , we have  $f(a_n) \in V$
- $\langle 1 \rangle 8$ . Q.E.D.

**Lemma 7.1.5** (CC).  $\mathbb{R}^{\omega}$  under the box topology is not first countable.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\{B_n\}_{n\geq 1}$  be any countable set of neighbourhoods of  $\vec{0}$
- $\langle 1 \rangle 2$ . For  $n \geq 1$ , PICK  $U_{nm}$  for  $m \geq 1$  such that  $\vec{0} \in \prod_{m=1}^{\infty} U_{nm} \subseteq B_n$
- $\langle 1 \rangle 3$ . For  $n \geq 1$ , Pick  $a_n$ ,  $b_n$  such that  $0 \in (a_n, b_n) \subseteq U_{nn}$
- $\langle 1 \rangle 4$ . Let:  $U = \prod_{n=1}^{\infty} (a_n/2, b_n/2)$
- $\langle 1 \rangle 5. \ \vec{0} \in U$
- $\langle 1 \rangle 6$ . For all  $n, B_n \nsubseteq U$

**Lemma 7.1.6** (CC). If J is uncountable then  $\mathbb{R}^J$  is not first countable.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\{B_n\}_{n \geq 1}$  be a countable family of neighbourhoods of  $\vec{0}$
- $\langle 1 \rangle 2$ . For  $n \geq 1$ , PICK  $U_{n\alpha}$  such that  $\vec{0} \in \prod_{\alpha \in J} U_{n\alpha} \subseteq B_n$  where  $U_{n\alpha}$  is open in  $\mathbb{R}$  and  $U_{n\alpha} = \mathbb{R}$  except for  $\alpha = \alpha_{n1}, \ldots, \alpha_{nr_n}$
- $\langle 1 \rangle 3$ . Pick  $\beta$  such that  $\beta$  is different from  $\alpha_{ni}$  for all n, i
- $\langle 1 \rangle 4$ . Let:  $V = \pi_{\beta}^{-1}((-1,1))$
- $\langle 1 \rangle 5. \ \vec{0} \in V$
- $\langle 1 \rangle 6$ .  $V \not\subseteq B_n$  for all n

#### **Lemma 7.1.7.** $\mathbb{R}_l$ is first countable.

PROOF: For all  $x \in \mathbb{R}$ ,  $\{[x,q) : q \in \mathbb{Q}, q > x\}$  is a basis at x.  $\square$ 

Lemma 7.1.8. The ordered square is first countable.

#### Proof:

 $\langle 1 \rangle 1$ . Let:  $(x,y) \in I_o^2$ 

PROVE: There exists a countable local basis  $\mathcal{B}$  at (x,y)

 $\langle 1 \rangle 2$ . Case: (x,y) = (0,0)

PROOF: Take  $\mathcal{B} = \{[(0,0),(0,q)) : q \in \mathbb{Q}, 0 < q < 1\}.$ 

 $\langle 1 \rangle 3$ . Case: 0 < y < 1

PROOF: Take  $\mathcal{B} = \{((x, q), (x, q')) : q, q' \in \mathbb{Q}, q < y < q'\}.$ 

 $\langle 1 \rangle 4$ . Case: x < 1, y = 1

PROOF: Take  $\mathcal{B} = \{((x, q), (q', 0)) : q, q' \in \mathbb{Q}, 0 < q < 1, x < q' < 1\}.$ 

 $\langle 1 \rangle 5$ . Case: x > 0, y = 0

PROOF: Take  $\mathcal{B} = \{((q, 1), (x, q')) : q, q' \in \mathbb{Q}, 0 < q < x, 0 < q' < 1\}$ 

 $\langle 1 \rangle 6$ . Case: (x, y) = (1, 1)

PROOF: Take  $\mathcal{B} = \{((1, q), (1, 1)] : q \in \mathbb{Q}, 0 < q < 1\}.$ 

Proposition 7.1.9. A subspace of a first countable space is first countable.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a first countable space and  $A \subseteq X$
- $\langle 1 \rangle 2$ . Let:  $a \in A$
- $\langle 1 \rangle 3$ . Pick a countable basis  $\mathcal{B}$  at a in X
- $\langle 1 \rangle 4$ .  $\{B \cap A : B \in \mathcal{B} \text{ is a countable basis at } a \text{ in } A$ .

**Proposition 7.1.10** (CC). A countable product of first countable spaces is first countable.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\{X_n\}_{n \in \mathbb{Z}^+}$  be a countable family of first countable spaces.
- $\langle 1 \rangle 2$ . Let:  $\vec{x} \in \prod_{n=1}^{\infty} X_n$
- $\langle 1 \rangle 3$ . PICK a countable basis  $\mathcal{B}_n$  at  $x_n$  in  $X_n$  for all n
- $\langle 1 \rangle 4$ . Let:  $\mathcal{B}$  be the set of all sets  $\prod_{i=1}^n U_n$  where  $U_n \in \mathcal{B}_n$  for finitely many n and  $U_n = X_n$  for all other n.
- $\langle 1 \rangle 5$ .  $\mathcal{B}$  is a countable basis at  $\vec{x}$  in  $\prod_{n=1}^{\infty} X_n$

Corollary 7.1.10.1. The space  $\mathbb{R}^{\omega}$  is first countable.

**Proposition 7.1.11.** The space  $S_{\Omega}$  is first countable.

#### Proof:

 $\langle 1 \rangle 1$ . Let:  $\alpha \in S_{\Omega}$ 

Prove:  $\alpha$  has a countable local basis.

 $\langle 1 \rangle 2$ . Case:  $\alpha$  is zero or a successor ordinal.

PROOF: In this case,  $\{\{\alpha\}\}\$  is a local basis.

- $\langle 1 \rangle 3$ . Case:  $\alpha$  is a limit ordinal.
  - $\langle 2 \rangle 1$ . PICK a countable sequence  $(\beta_n)$  with supremum  $\alpha$
- $\langle 2 \rangle 2$ .  $\{(\beta_n, \alpha + 1) : n \in \mathbb{Z}^+\}$  is a local basis.

**Proposition 7.1.12.** The space  $\overline{S_{\Omega}}$  is not first countable.

#### Proof:

- $\langle 1 \rangle 1$ . Assume: for a contradiction  $\mathcal{B}$  is a countable local basis at  $\Omega$
- $\langle 1 \rangle 2$ . Let:  $\alpha = \sup \{ \inf B : B \in \mathcal{B} \}$
- $\langle 1 \rangle 3. \ \alpha < \Omega$
- $\langle 1 \rangle 4$ . There is no  $B \in \mathcal{B}$  such that  $B \subseteq (\alpha, +\infty)$

**Proposition 7.1.13.** The continuous image of a first countable space is first countable.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a first countable space, Y a space and  $f: X \to Y$  continuous.
- $\langle 1 \rangle 2$ . Let:  $y \in f(X)$
- $\langle 1 \rangle 3$ . Pick  $x \in X$  such that y = f(x)
- $\langle 1 \rangle 4$ . PICK a countable local basis  $\mathcal{B}$  at x
- $\langle 1 \rangle$ 5.  $\{f(B): B \in \mathcal{B}\}$  is a countable local basis at y.

**Proposition 7.1.14.**  $S_{\Omega} \times \overline{S_{\Omega}}$  is not first countable.

PROOF:  $(0,\Omega)$  has no countable basis.  $\square$ 

**Proposition 7.1.15.** The Sorgenfrey plane is first countable.

PROOF: For any point (a,b), the set  $\{[a,a+q)\times[b,b+r):q,r\in\mathbb{Q}\}$  is a countable local basis at (a, b).

#### 7.2Separable Spaces

**Definition 7.2.1** (Separable Space). A topological space X is separable iff it has a countable dense subset.

**Proposition 7.2.2.** The space  $S_{\Omega}$  is not separable.

- $\langle 1 \rangle 1$ . Let:  $D \subseteq S_{\Omega}$  be countable.
- $\langle 1 \rangle 2$ . Let:  $\alpha = \sup D$
- $\langle 1 \rangle 3. \ \overline{D} \subseteq (-\infty, \alpha]$

**Proposition 7.2.3.** The space  $\overline{S_{\Omega}}$  is not separable.

```
Proof:
```

- $\langle 1 \rangle 1$ . Let:  $D \subseteq S_{\Omega}$  be countable.
- $\langle 1 \rangle 2$ . Let:  $\alpha = \sup \{ \beta \in D : \beta < \Omega \}$
- $\langle 1 \rangle 3. \ \alpha < \Omega$

PROOF:  $\alpha$  is the supremum of countably many countable ordinals.

 $\langle 1 \rangle 4. \ \overline{D} \subseteq (-\infty, \alpha] \cup \{\Omega\}$ 

Corollary 7.2.3.1. Not every compact Hausdorff space is separable.

Proposition 7.2.4. Every open subspace of a separable space is separable.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a separable space with countable dense subset D.
- $\langle 1 \rangle 2$ . Let: U be an open subspace of X Prove:  $D \cap U$  is a countable dense subset of U.
- $\langle 1 \rangle 3$ .  $D \cap U$  is countable.
- $\langle 1 \rangle 4$ . Let: V be an open set in U.
- $\langle 1 \rangle$ 5. V is open in X

Proof: Lemma 4.3.3

- $\langle 1 \rangle 6$ . V intersects D
- $\langle 1 \rangle 7$ . V intensects  $D \cap U$

**Proposition 7.2.5** (CC). The product of a countable family of separable spaces is separable.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $(X_n)$  be a countable family of separable spaces.
- $\langle 1 \rangle 2$ . For  $n \geq 1$ , PICK a dense set  $D_n$  in  $X_n$
- $\langle 1 \rangle 3$ .  $\prod_{n=1}^{\infty} \overline{D}_n$  is dense in  $\prod_{n=1}^{\infty} X_n$ .

**Proposition 7.2.6.** The continuous image of a separable space is separable.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a separable space, Y a space and  $f: X \to Y$  be continuous.
- $\langle 1 \rangle 2$ . PICK a countable dense set D in X
- $\langle 1 \rangle 3$ . f(D) is dense in f(X).

**Corollary 7.2.6.1.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of nonempty topological spaces. If  $\prod_{{\alpha}\in J} X_{\alpha}$  is separable then each  $X_{\alpha}$  is separable.

Corollary 7.2.6.2.  $S_{\Omega} \times \overline{S_{\Omega}}$  is not separable.

Proposition 7.2.7. The ordered square is not separable.

PROOF:  $\{\{x\} \times (0,1) : x \in [0,1]\}$  is an uncountable set of disjoint open sets.  $\square$ 

| Proposition 7.2.8. $\mathbb{R}_l$ is separable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proof: $\mathbb{Q}$ is dense. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Proposition 7.2.9. The Sorgenfrey plane is separable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PROOF: $\mathbb{Q}^2$ is dense. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Proposition 7.2.10.</b> Not every closed subspace of a separable space is separable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PROOF: $\mathbb{R}^2_l$ is separable but the subspace $\{(x,-x):x\in\mathbb{R}\}$ is not. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.3 The Second Countability Axiom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Definition 7.3.1</b> (Second Countability Axiom). A topological space satisfies the <i>second countability axiom</i> , or is <i>second countable</i> , iff it has a countable basis.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Proposition 7.3.2.</b> $S_{\Omega}$ is not second countable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROOF: $\{\{\alpha\}: \alpha \text{ is a countable successor ordinal}\}$ is an uncountable set of disjoint open sets. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Proposition 7.3.3.</b> A subspace of a second countable space is second countable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PROOF: $\langle 1 \rangle 1$ . Let: $X$ be a second countable space and $A \subseteq X$ $\langle 1 \rangle 2$ . Pick a countable basis $\mathcal B$ for $X$ $\langle 1 \rangle 3$ . $\{B \cap A : B \in \mathcal B\}$ is a countable basis for $A$                                                                                                                                                                                                                                                                                                                                                             |
| <b>Proposition 7.3.4</b> (CC). The product of countably many second countable spaces is second countable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PROOF: $ \langle 1 \rangle 1. \text{ Let: } \{X_n\}_{n \in \mathbb{Z}^+} \text{ be a countable family of second countable spaces.} \\ \langle 1 \rangle 2. \text{ For } n \in \mathbb{Z}^+, \text{ Pick a countable basis } \mathcal{B}_n \text{ for } X_n. \\ \langle 1 \rangle 3. \text{ Let: } \mathcal{B} \text{ be the set of all sets of the form } \prod_{n=1}^\infty U_n, \text{ where } U_n \in \mathcal{B}_n \text{ for finitely many } n, \text{ and } U_n = X_n \text{ for all other } n. \\ \langle 1 \rangle 4. \mathcal{B} \text{ is a countable basis for } \prod_{n=1}^\infty X_n \\ \square$ |
| Theorem 7.3.5 (CC). Every second countable space is separable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PROOF: $\langle 1 \rangle 1$ . Let: X be a second countable space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

- $\langle 1 \rangle$ 1. Let: X be a second countable space.  $\langle 1 \rangle$ 2. Pick a countable basis  $\mathcal{B}$  for X  $\langle 1 \rangle$ 3. For  $B \in \mathcal{B}$  nonempty, Pick a point  $x_B \in \mathcal{B}$   $\langle 1 \rangle$ 4.  $D = \{x_B : B \in \mathcal{B} \setminus \{\emptyset\}\}$  is dense.  $\langle 2 \rangle$ 1. Let:  $l \in X$

Prove:  $l \in \overline{D}$ 

- $\langle 2 \rangle 2$ . Let:  $B \in \mathcal{B}$  such that  $l \in B$
- $\langle 2 \rangle 3. \ x_B \in B \cap D$
- $\langle 2 \rangle 4$ . Q.E.D.

PROOF:By Theorem 3.12.8

Corollary 7.3.5.1.  $S_{\Omega} \times \overline{S_{\Omega}}$  is not second countable.

Corollary 7.3.5.2. The space  $\mathbb{R}^{\omega}$  is separable.

Corollary 7.3.5.3. If J is uncountable then  $\mathbb{R}^J$  is not second countable.

Proposition 7.3.6. The ordered square is not second countable.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{B}$  be any basis
- $\langle 1 \rangle 2$ . For  $x \in [0,1]$ , PICK  $B_x$  such that  $x \in B_x \subseteq ((x,0),(x,1))$
- $\langle 1 \rangle 3$ . The function  $B_{(-)}$  is an injective function  $[0,1] \to \mathcal{B}$
- $\langle 1 \rangle 4$ .  $\mathcal{B}$  is uncountable.

**Proposition 7.3.7.** The space  $\overline{S_{\Omega}}$  is not second countable.

PROOF: It is not first countable (Proposition 7.1.12).  $\square$ 

**Proposition 7.3.8.** The continuous image of a second countable space is second countable.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a second countable space, Y a space and  $f: X \to Y$  be continuous.
- $\langle 1 \rangle 2$ . PICK a countable basis  $\mathcal{B}$  for X.
- $\langle 1 \rangle 3. \{ f(B) : B \in \mathcal{B} \text{ is a countable basis for } f(X) \}$

**Theorem 7.3.9.** Every regular Lindelöf space is normal.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a regular Lindelöf space.
- $\langle 1 \rangle 2$ . Let: A and B be disjoint closed sets in X.
- $\langle 1 \rangle 3$ .  $\{ U \text{ open in } X : \overline{U} \cap B = \emptyset \} \text{ covers } A$ Proof: Proposition 6.3.2.
- $\langle 1 \rangle 4$ . Pick a countable open covering  $\{U_n : n \in \mathbb{Z}^+\}$  of A such that  $\overline{U_n} \cap B = \emptyset$
- (1)5. Pick a countable open covering  $\{V_n : n \in \mathbb{Z}^+\}$  of B such that  $\overline{V_n} \cap A = \emptyset$ for all n

PROOF: Similar.

- $\begin{array}{ll} \langle 1 \rangle 6. \ \, \text{For} \,\, n \in \mathbb{Z}^+, \\ \quad \quad \text{Let:} \,\, U_n' = U_n \setminus \bigcup_{i=1}^n \overline{V_i} \,\, \text{and} \,\, V_n' = V_n \setminus \bigcup_{i=1}^n \overline{U_i} \\ \langle 1 \rangle 7. \,\, \text{Let:} \,\, U' = \bigcup_{n=1}^\infty U_n' \,\, \text{and} \,\, V = \bigcup_{n=1}^\infty V_n' \end{array}$

$$\begin{array}{ll} \langle 1 \rangle 8. & A \subseteq U' \text{ and } B \subseteq V' \\ \langle 1 \rangle 9. & U' \cap V' = \emptyset \\ & & \\ & & \\ \end{array}$$

Corollary 7.3.9.1. If J is uncountable then  $\mathbb{R}^J$  is not Lindelöf.

**Proposition 7.3.10.** Every second countable regular space is completely normal.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be second countable and regular and  $Y \subseteq X$
- $\langle 1 \rangle 2$ . Y is second countable

Proof: Proposition 7.3.3.

 $\langle 1 \rangle 3$ . Y is regular

Proof: Proposition 6.3.4

 $\langle 1 \rangle 4$ . Y is normal

PROOF: Theorem 7.3.9

**Proposition 7.3.11.** The space  $\mathbb{R}^{\omega}$  is second countable.

PROOF: The sets  $\prod_{n=0}^{\infty} U_n$  form a basis, where  $U_n$  is an interval of the form (q,r) for  $q,r \in \mathbb{Q}$  for finitely many n, and  $U_n = \mathbb{R}$  for all other n.  $\square$ 

**Proposition 7.3.12** (CC). In a second countable space, every discrete subspace is countable.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a second countable space
- $\langle 1 \rangle 2$ . PICK a countable basis  $\mathcal{B}$
- $\langle 1 \rangle 3$ . Let:  $D \subseteq X$  be discrete
- $\langle 1 \rangle 4$ . For  $a \in D$ , PICK  $B_a \in \mathcal{B}$  such that  $B_a \cap D = \{a\}$
- $\langle 1 \rangle 5$ .  $a \mapsto B_a$  is injective

**Proposition 7.3.13.** The space  $\mathbb{R}_K$  is second countable.

PROOF:  $\{(a,b): a,b \in \mathbb{R}\} \cup \{(a,b)-K: a,b \in \mathbb{Q}\}$  is a basis.  $\square$ 

Corollary 7.3.13.1. The space  $\mathbb{R}_K$  is first countable.

Corollary 7.3.13.2. The space  $\mathbb{R}_K$  is separable.

**Proposition 7.3.14.** Let J be a set with  $|J| > |\mathbb{R}|$ . Then  $\mathbb{R}^J$  is not separable.

#### Proof:

- $\langle 1 \rangle 1$ . Assume: D is countable and dense in  $\mathbb{R}^J$  Prove:  $|J| \leq |\mathbb{R}|$
- $\langle 1 \rangle 2$ . Define  $f: J \to \mathcal{P}D$  by  $f(\alpha) = D \cap \pi_{\alpha}^{-1}((0,1))$
- $\langle 1 \rangle 3$ . f is injective

```
\begin{array}{l} \langle 2 \rangle 1. \ \text{Let:} \ \alpha, \beta \in J \ \text{with} \ \alpha \neq \beta \\ \langle 2 \rangle 2. \ \text{Pick} \ x \in D \cap \pi_{\alpha}^{-1}((0,1)) \cap \pi_{\beta}^{-1}((2,3)) \\ \langle 2 \rangle 3. \ x \in f(\alpha) \ \text{but} \ x \notin f(\beta) \end{array}
```

**Corollary 7.3.14.1.** The product of a family of separable spaces is not necessarily separable.

# Chapter 8

# Connectedness

## 8.1 Connected Spaces

**Definition 8.1.1** (Separation). Let X be a topological space. A *separation* of X is a pair of disjoint nonempty subsets whose union in X.

**Definition 8.1.2** (Connected). A topological space is *connected* iff it has no separation.

**Proposition 8.1.3.**  $S_{\Omega}$  is not connected.

PROOF:  $\{0\}$  and  $S_{\Omega} \setminus \{0\}$  form a separation.  $\square$ 

**Proposition 8.1.4.** A space X is connected if and only if the only sets that are both closed and open are  $\emptyset$  and X.

PROOF: Immediate from definitions.  $\square$ 

**Proposition 8.1.5.** Let Y be a subspace of X. Then a separation of Y is a pair of disjoint nonempty sets A, B such that  $A \cup B = Y$  and neither of A, B contains a limit point of the other.

#### Proof:

- $\langle 1 \rangle 1$ . If A and B form a separation of Y then A and B are disjoint and nonempty,  $A \cup B = Y$ , and neither of A, B contains a limit point of the other.
  - $\langle 2 \rangle 1$ . Let: A and B be a separation of Y
  - $\langle 2 \rangle 2$ . A and B are disjoint and nonempty and  $A \cup B = Y$  PROOF: Immediate from the definition of separation.
  - $\langle 2 \rangle$ 3. A does not contain a limit point of B PROOF: B is closed in Y, hence contains all its limit points (Corollary 3.15.3.1), and so the result follows because A and B are disjoint.
  - $\langle 2 \rangle 4$ . B does not contain a limit point of A PROOF: Similar.
- $\langle 1 \rangle 2$ . If A and B are disjoint and nonempty,  $A \cup B = Y$ , and neither of A, B contains a limit point of the other, then A and B are a separation of Y.

- $\langle 2 \rangle 1$ . Assume: A and B are disjoint and nonempty,  $A \cup B = Y$ , and neither of A, B contains a limit point of the other
- $\langle 2 \rangle 2$ . A is closed in Y

PROOF: Every limit point of A is not in B, so is in A. Apply Corollary 3.15.3.1.

 $\langle 2 \rangle 3$ . B is open in Y

Proof: $B = Y \setminus A$ 

 $\langle 2 \rangle 4$ . A is open in Y

PROOF: Similar.

**Proposition 8.1.6.** If the sets C and D form a separation of X, and Y is a connected subspace of X, then  $Y \subseteq C$  or  $Y \subseteq D$ .

PROOF: Otherwise,  $Y \cap C$  and  $Y \cap D$  would be a separation of Y.  $\square$ 

**Proposition 8.1.7.** The union of a set of connected subspaces of X that have a point in common is connected.

#### Proof:

- $\langle 1 \rangle 1$ . Let: S be a set of connected subspaces that have the point a in common.
- $\langle 1 \rangle 2$ . Assume: for a contradiction U and V form a separation of  $\bigcup S$
- $\langle 1 \rangle 3$ . Assume: w.l.o.g.  $a \in U$
- $\langle 1 \rangle 4$ . For all  $Y \in \mathcal{S}$  we have  $Y \subseteq U$

Proof: By Proposition 8.1.6.

- $\langle 1 \rangle 5. \ V = \emptyset$
- $\langle 1 \rangle 6$ . Q.E.D.

PROOF: This contradicts  $\langle 1 \rangle 2$ .

**Theorem 8.1.8.** Let A be a connected subspace of X. If  $A \subseteq B \subseteq \overline{A}$  then B is connected.

#### Proof:

- $\langle 1 \rangle 1$ . Assume: for a contradiction U and V are a separation of B
- $\langle 1 \rangle 2$ .  $A \subseteq U$  or  $A \subseteq V$

Proof: By Proposition 8.1.6.

- $\langle 1 \rangle 3$ . Assume: w.l.o.g.  $A \subseteq U$
- $\langle 1 \rangle 4. \ \overline{A} \subseteq \overline{U}$

PROOF: By Proposition 3.12.5.

- $\langle 1 \rangle 5. \ B \subset \overline{U}$ 
  - PROOF: Since  $B \subseteq \overline{A}$ .
- $\langle 1 \rangle 6$ . The closure of *U* in *B* is *B*

PROOF: By Theorem 4.3.4.

 $\langle 1 \rangle 7. \ U = B$ 

PROOF: Since U is closed in B.

 $\langle 1 \rangle 8$ . Q.E.D.

PROOF: This contradicts  $\langle 1 \rangle 1$ .

**Theorem 8.1.9.** The image of a connected space under a continuous map is connected.

PROOF: Let X be a connected space, Y a topological space, and  $f: X \to Y$  be surjective. If U and V form a separation of Y, then  $f^{-1}(U)$  and  $f^{-1}(V)$  form a separation of X.  $\square$ 

**Corollary 8.1.9.1.** Let  $\mathcal{T}$  and  $\mathcal{T}'$  be topologies on the same set X. If  $\mathcal{T} \subseteq \mathcal{T}'$  and X is connected under  $\mathcal{T}'$  then X is connected under  $\mathcal{T}$ .

**Corollary 8.1.9.2.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces. If  $\prod_{{\alpha}\in J} X_{\alpha}$  is connected then each  $X_{\alpha}$  is connected.

Corollary 8.1.9.3. The Sorgenfrey plane is disconnected.

**Proposition 8.1.10.** The product of a family of connected spaces is connected.

#### PROOF

- $\langle 1 \rangle 1$ . The product of two connected spaces is connected.
  - Proof:
  - $\langle 2 \rangle 1$ . Let: X and Y be connected spaces.
  - $\langle 2 \rangle 2$ . Assume: w.l.o.g. X and Y are nonempty.

PROOF: If either is empty then  $X \times Y = \emptyset$  is connected.

- $\langle 2 \rangle 3$ . Assume: for a contradiction U and V are a separation of  $X \times Y$ .
- $\langle 2 \rangle 4$ . Pick  $b \in Y$

Proof: By  $\langle 2 \rangle 2$ .

 $\langle 2 \rangle 5$ . For all  $x \in X$ ,

Let: 
$$T_x = (X \times \{b\}) \cup (\{x\} \times Y)$$

- $\langle 2 \rangle 6$ . For all  $x \in X$ ,  $T_x$  is connected
  - $\langle 3 \rangle 1. \ X \times \{b\}$  is connected

PROOF: It is homeomorphic to X.

 $\langle 3 \rangle 2$ .  $\{x\} \times Y$  is connected

PROOF: It is homeomorphic to Y.

 $\langle 3 \rangle 3$ . Q.E.D.

Proof: By Proposition 8.1.7.

- $\langle 2 \rangle 7. \ X \times Y = \bigcup_{x \in X} T_x$
- $\langle 2 \rangle 8$ . Q.E.D.
  - $\langle 3 \rangle 1$ . Pick  $a \in X$

Proof: By  $\langle 2 \rangle 2$ .

- $\langle 3 \rangle 2$ .  $(a,b) \in T_x$  for all  $x \in X$
- $\langle 3 \rangle 3$ . Q.E.D.

Proof: By Proposition 8.1.7.

- $\langle 1 \rangle 2$ . Let:  $\{X_{\alpha}\}_{{\alpha} \in J}$  be a family of connected spaces.
- $\langle 1 \rangle 3$ . Assume: w.l.o.g.  $\prod_{\alpha \in J} X_{\alpha}$  is nonempty
- $\langle 1 \rangle 4$ . Pick  $\vec{a} \in \prod_{\alpha \in J} X_{\alpha}$
- $\langle 1 \rangle 5$ . For K a finite subset of J,

Let:  $X_K = \{ \vec{x} \in \prod_{\alpha \in J} X_\alpha : x_\alpha = a_\alpha \text{ for all } \alpha \in J \setminus K \}$ 

 $\langle 1 \rangle 6$ . For all  $K, X_K$  is connected.

PROOF: It is homeomorphic to  $\prod_{\alpha \in K} X_{\alpha}$ , so it is connected by  $\langle 1 \rangle 1$ .

 $\langle 1 \rangle 7$ .  $\bigcup_{K \subset \text{fin } J} X_K$  is connected.

PROOF: By Proposition 8.1.7 since  $\vec{a} \in X_K$  for all K.

- $\begin{array}{l} \langle 1 \rangle 8. \ \prod_{\alpha \in J} X_{\alpha} = \overline{\bigcup_{K \subseteq \text{fin } J} X_K} \\ \langle 2 \rangle 1. \ \text{Let:} \ \vec{x} \in \prod_{\alpha \in J} X_{\alpha} \end{array}$ 

  - $\langle 2 \rangle 2$ . Let: U be an open neighbourhood of  $\vec{x}$
  - $\langle 2 \rangle 3$ . Pick a basic open set  $\prod_{\alpha \in J} V_{\alpha}$  such that  $\vec{x} \in \prod_{\alpha \in J} V_{\alpha} \subseteq U$ , where each  $V_{\alpha}$  is open in  $X_{\alpha}$ , and  $V_{\alpha} = X_{\alpha}$  except for  $\alpha \in K$  for some finite  $K \subseteq J$

Prove: U intersects  $X_K$ 

- $\langle 2 \rangle$ 4. Let:  $\vec{y} \in \prod_{\alpha \in J} X_{\alpha}$  with  $y_{\alpha} = x_{\alpha}$  for  $\alpha \in K$ ,  $y_{\alpha} = a_{\alpha}$  for  $\alpha \notin K$
- $\langle 2 \rangle 5. \ \vec{y} \in U \cap X_K$
- $\langle 1 \rangle 9$ . Q.E.D.

**Corollary 8.1.10.1.** For any set I, the space  $\mathbb{R}^I$  under the product topology is

**Proposition 8.1.11.**  $\mathbb{R}^{\omega}$  under the box topology is disconnected.

PROOF: The set of all bounded sequences and the set of all unbounded sequences form a separation.  $\square$ 

**Definition 8.1.12** (Totally Disconnected). A space is totally disconnected iff the only connected subspaces are the singletons.

**Theorem 8.1.13.** Let L be a linearly ordered set under the order topology. Then L is connected if and only if L is a linear continuum.

- $\langle 1 \rangle 1$ . If L is a linear continuum then L is connected.
  - $\langle 2 \rangle 1$ . Let: L be a linear continuum.
  - $\langle 2 \rangle 2$ . Assume: for a contradiction U and V are a separation of L.
  - $\langle 2 \rangle 3$ . Pick  $a \in U$  and  $b \in V$
  - $\langle 2 \rangle 4$ . Assume: w.l.o.g. a < b
  - $\langle 2 \rangle$ 5. Let:  $l = \sup\{x \in A : x < b\}$
  - $\langle 2 \rangle 6$ . Case:  $l \in A$ 
    - $\langle 3 \rangle 1$ . Pick a' > l such that  $[l, a') \subseteq A$

PROOF: By Lemma 4.1.2. We know l is not greatest in X because l < b.

 $\langle 3 \rangle 2$ . Pick  $a^*$  such that  $l < a^* < a'$ 

Proof: L is dense.

 $\langle 3 \rangle 3. \ l < a^*, a^* \in A, a^* < b$ 

PROOF: If  $b < a^*$  then  $b \in A$  by  $\langle 3 \rangle 1$ .

 $\langle 3 \rangle 4$ . Q.E.D.

PROOF: This contradicts  $\langle 2 \rangle 5$ .

- $\langle 2 \rangle 7$ . Case:  $l \in B$ 
  - $\langle 3 \rangle 1$ . Pick b' < l such that  $(b', l] \subseteq B$

```
PROOF: By Lemma 4.1.2. We know l is not least in X because a < l.
```

 $\langle 3 \rangle 2$ . Pick  $b^*$  such that  $b' < b^* < l$ 

PROVE:  $b^*$  is an upper bound for  $\{x \in A : x < b\}$ 

- $\langle 3 \rangle 3$ . Let:  $x \in A$  and x < b
- $\langle 3 \rangle 4. \ x \leq b^*$

PROOF: If  $b^* < x$  then  $b^* < x \le l$  and so  $x \in B$  by  $\langle 3 \rangle 1$ .

 $\langle 3 \rangle 5$ . Q.E.D.

PROOF: This contradicts  $\langle 2 \rangle 5$ .

- $\langle 1 \rangle 2$ . If L is connected then L is a linear continuum.
  - $\langle 2 \rangle 1$ . Assume: L is connected
  - $\langle 2 \rangle 2$ . L has the least upper bound property
    - $\langle 3 \rangle 1$ . Assume: for a contradiction  $A \subseteq L$  is bounded above with no least upper bound
    - $\langle 3 \rangle 2$ . Let: U be the set of upper bounds of A
    - $\langle 3 \rangle 3$ . *U* is open
      - $\langle 4 \rangle 1$ . Let:  $u \in U$
      - $\langle 4 \rangle 2$ . PICK an upper bound v for A with v < u PROOF: u is not the least upper bound for A ( $\langle 3 \rangle 1$ )
      - $\langle 4 \rangle 3. \ u \in (v, +\infty) \subseteq U$
    - $\langle 3 \rangle 4$ . Let: V be the set of lower bounds of U
    - $\langle 3 \rangle 5$ . U and V form a separation of L
      - $\langle 4 \rangle 1$ . V is open

Proof: Similar to  $\langle 3 \rangle 3$ .

- $\langle 4 \rangle 2$ . U and V are disjoint
  - $\langle 5 \rangle 1$ . Assume: for a contradiction  $x \in U \cap V$
  - $\langle 5 \rangle 2$ . Pick  $u \in U$  such that u < x

PROOF: x is not the lowest upper bound of A

- $\langle 5 \rangle 3. \ x \leq u < x$
- $\langle 4 \rangle 3. \ U \cup V = L$ 
  - $\langle 5 \rangle 1$ . Let:  $x \in L \setminus U$
  - $\langle 5 \rangle 2$ . Pick  $a \in A$  such that x < a
  - $\langle 5 \rangle 3. \ a \in V$
  - $\langle 5 \rangle 4. \ x \in V$
- $\langle 2 \rangle 3$ . For all  $x, y \in L$ , there exists  $z \in L$  such that x < z < y

PROOF: Otherwise  $(-\infty, y)$  and  $(x, +\infty)$  would form a separation of L.

Corollary 8.1.13.1. The real line  $\mathbb{R}$  is connected, and so is every ray and interval in  $\mathbb{R}$ .

Corollary 8.1.13.2. The ordered square is connected.

Corollary 8.1.13.3. Not every closed subspace of a connected space is connected.

PROOF: The set  $\{0,1\}$  is disconnected as a subspace of  $\mathbb{R}$ .

Corollary 8.1.13.4. Not every open subspace of a connected space is connected.

| <b>Theorem 8.1.14</b> (Intermediate Value Theorem). Let $X$ be a connected space and $Y$ a linearly ordered set under the order topology. Let $f: X \to Y$ be continuous. Let $a, b \in X$ and $r \in Y$ . If $f(a) < r < f(b)$ , then there exists $c \in X$ such that $f(c) = r$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROOF: If not, then $f^{-1}((-\infty,r))$ and $f^{-1}((r,+\infty))$ would be a separation of $X$ . $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Proposition 8.1.15.</b> Every connected regular space with more than one point is uncountable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROOF: $\langle 1 \rangle 1$ . Every connected completely regular space with more than one point is uncountable. $\langle 2 \rangle 1$ . Let: $X$ be connected and completely regular and $a,b \in X$ with $a \neq b$ $\langle 2 \rangle 2$ . Pick a continuous $f: X \to [0,1]$ such that $f(a) = 0$ and $f(b) = 1$ $\langle 2 \rangle 3$ . $f$ is surjective. PROOF: By the Intermediate Value Theorem. $\langle 1 \rangle 2$ . Every connected regular space with more than one point is uncountable. $\langle 2 \rangle 1$ . Assume: for a contradiction $X$ is connected, regular and countable with more than one point. $\langle 2 \rangle 2$ . $X$ is Lindelöf $\langle 2 \rangle 3$ . $X$ is normal PROOF: By Theorem 7.3.9 $\langle 2 \rangle 4$ . Q.E.D. PROOF: Contradicting $\langle 1 \rangle 1$ . |
| <b>Proposition 8.1.16.</b> $\overline{S_{\Omega}}$ is not conneced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Proof: $\{0\}$ is clopen. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Proposition 8.1.17.</b> $\mathbb{R}_l$ is not connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PROOF: The set $[0, +\infty)$ is clopen. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Proposition 8.1.18.</b> The space $\mathbb{R}^{\omega}$ under the uniform topology is not connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Proof: The set of all bounded sequences and the set of all unbounded sequences form a separation. $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Proposition 8.1.19.</b> The space $\mathbb{R}_K$ is connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Proof: Easy. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Proof: The space  $\mathbb{R}\setminus\{0\}$  is a disconnected open subspace of  $\mathbb{R}.$   $\Box$ 

## 8.2 Components and Local Connectedness

**Definition 8.2.1** ((Connected) Component). Let X be a topological space. Define an equivalence relation  $\sim$  on X by:  $x \sim y$  iff there exists a connected subspace  $U \subseteq X$  such that  $x \in U$  and  $y \in U$ . The (connected) components of X are the equivalence classes under  $\sim$ .

We prove this is an equivalence relation.

```
Proof:
```

 $\langle 1 \rangle 1$ . For all  $x \in X$  we have  $x \sim x$ .

PROOF: The subspace  $\{x\} \subseteq X$  is connected.

 $\langle 1 \rangle 2$ . For all  $x, y \in X$ , if  $x \sim y$  then  $y \sim x$ .

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3$ . For all  $x, y, z \in X$ , if  $x \sim y$  and  $y \sim z$  then  $x \sim z$ .

Proof: By Proposition 8.1.7.

**Proposition 8.2.2.** Let X be a topological space. If  $C \subseteq X$  is connected and nonempty, then there exists a unique component D of X such that  $C \subseteq D$ .

#### Proof:

 $\langle 1 \rangle 1$ . Pick  $a \in C$ 

 $\langle 1 \rangle 2$ . Let: D be the  $\sim$ -equivalence class of A

 $\langle 1 \rangle 3. \ C \subseteq D$ 

PROOF: For all  $x \in C$  we have  $a \sim x$  by definition.

 $\langle 1 \rangle 4$ . D is unique

PROOF: This holds because the components are disjoint.

П

**Proposition 8.2.3** (AC). Every component is connected.

#### Proof:

 $\langle 1 \rangle 1$ . Let: C be a component of the topological space X

 $\langle 1 \rangle 2$ . Pick  $a \in C$ 

 $\langle 1 \rangle 3$ . For all  $x \in C$ , PICK a connected subspace  $C_x$  of X containing both a and x.

PROOF: Such a  $C_x$  exists since  $a \sim x$ .

 $\langle 1 \rangle 4. \ C = \bigcup_{x \in C} C_x$ 

PROOF: This holds because  $C_x \subseteq C$  by Proposition 8.2.2.

 $\langle 1 \rangle 5$ . Q.E.D.

PROOF: It follows that C is connected by Proposition 8.1.7.

П

Proposition 8.2.4. Every component is closed.

PROOF: From Theorem 8.1.8.  $\square$ 

**Proposition 8.2.5.** The component of  $\vec{a}$  in  $\mathbb{R}^{\omega}$  under the uniform topology is  $\{\vec{b}:\vec{b}-\vec{a} \text{ is bounded}\}.$ 

#### Proof

- $\langle 1 \rangle 1$ .  $C = \{\vec{b} : \vec{b} \vec{a} \text{ is bounded} \}$  is connected.
  - $\langle 2 \rangle 1$ . Assume:  $C = U \cup V$  is a separation of C with  $\vec{a} \in U$
  - $\langle 2 \rangle 2$ . Pick  $\vec{b} \in V$
  - $\langle 2 \rangle 3$ .  $\{ \epsilon : \epsilon \vec{b} + (1 \epsilon) \vec{a} \in U \}$  and  $\{ \epsilon : \epsilon \vec{b} + (1 \epsilon) \vec{a} \in V \}$  form a separation of [0, 1]
- $\langle 1 \rangle 2$ . If  $\vec{a}, \vec{b} \in C$  and  $\vec{b} \vec{a}$  is unbounded then C is disconnected.

PROOF:  $\{\vec{c}: \vec{c} - \vec{a} \text{ is bounded}\}\$ and  $\{\vec{c}: \vec{c} - \vec{a} \text{ is unbounded}\}\$ 

**Proposition 8.2.6.** Let  $x, y \in \mathbb{R}^{\omega}$  under the box topology. Then x and y are in the same component iff x - y is eventually zero.

#### Proof:

- $\langle 1 \rangle 1$ . For all  $x \in \mathbb{R}^{\omega}$  the set  $\{y : x-y \text{ is eventulally zero}\}$  is connected PROOF: It is the union of the sets  $C_N = \{y : \forall n \geq N. y_n = 0\}$ , each of which is connected because it is homeomorphic to  $\mathbb{R}^{N-1}$ .
- $\langle 1 \rangle 2$ . If x y is not eventually zero then x and y are in different components
  - $\langle 2 \rangle 1$ . Assume: x y is not eventually zero

$$\langle 2 \rangle 2$$
. Define  $h: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$  by:  $h(z)_n = \begin{cases} z_n - x_n & \text{if } x_n = y_n \\ n(z_n - x_n)/(y_n - x_n) & \text{if } x_n \neq y_n \end{cases}$ 

- $\langle 2 \rangle 3$ . h is an automorphism of  $\mathbb{R}^{\omega}$  under the box topology
- $\langle 2 \rangle 4$ . h(x) = 0
- $\langle 2 \rangle 5$ . h(y) is unbounded
- $\langle 2 \rangle 6$ . Q.E.D.

П

PROOF: The inverse image under h of the set of bounded sequences and the set of unbounded sequences form a separation of  $\mathbb{R}^{\omega}$  with x and y in different sets.

### 8.3 Path Connectedness

**Definition 8.3.1** (Path). Let X be a topological space and  $a, b \in X$ . A path from a to b is a continuous function  $p : [0,1] \to X$  such that p(0) = a and p(1) = b.

**Definition 8.3.2** (Path Connected). A topological space is *path connected* iff there exists a path between any two points.

**Proposition 8.3.3.** Every path connected space is connected.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a path connected space
- $\langle 1 \rangle 2$ . Assume: for a contradiction U and V are a separation of X.
- $\langle 1 \rangle 3$ . Pick  $a \in U$  and  $b \in V$

- $\langle 1 \rangle 4$ . Pick a path  $p:[0,1] \to X$  from a to b
- $\langle 1 \rangle 5$ .  $p^{-1}(U)$  and  $p^{-1}(V)$  form a separation of [0,1].
- $\langle 1 \rangle 6$ . Q.E.D.

Proof: This contradicts Corollary 8.1.13.1.

Corollary 8.3.3.1.  $S_{\Omega}$  is not path connected.

Corollary 8.3.3.2.  $\overline{S_{\Omega}}$  is not path connected.

Corollary 8.3.3.3.  $\mathbb{R}_l$  is not path connected.

Corollary 8.3.3.4. The Sorgenfrey plane is not path connected.

Corollary 8.3.3.5. The space  $\mathbb{R}^{\omega}$  under the uniform topology is not path connected. connected.

Corollary 8.3.3.6. The space  $\mathbb{R}^{\omega}$  under the box topology is not path connected.

Proposition 8.3.4. The long line is path connected.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $a, b \in L$
- (1)2. PICK an ordinal  $\alpha$  such that  $a, b < (\alpha, 0)$
- $\langle 1 \rangle$ 3. There exists a path from a to b PROOF: This holds because  $[(0,0),(\alpha,0))$  is homeomorphic to [0,1) by Proposition 1.14.11.

Corollary 8.3.4.1. Not every closed subspace of a path connected space is path connected.

PROOF: Take any two-element subspace of the long line.

Corollary 8.3.4.2. Not every open subspace of a path connected space is path connected.

PROOF: The space  $\mathbb{R} \setminus \{0\}$  is not path connected as a subspace of  $\mathbb{R}$ .  $\square$ 

**Proposition 8.3.5** (AC). The product of a family of path connected spaces is path connected.

PROOF: Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of path connected spaces. Let  $(a_{\alpha}), (b_{\alpha}) \in \prod_{\alpha} X_{\alpha}$ . For each  $\alpha \in J$ , pick a path  $p_{\alpha} : [0,1] \to X_{\alpha}$  from  $a_{\alpha}$  to  $b_{\alpha}$ . Then  $p : [0,1] \to \prod_{\alpha} X_{\alpha}$  defined by  $p(t) = (p_{\alpha}(t))_{\alpha}$  is a path from  $(a_{\alpha})$  to  $(b_{\alpha})$ .  $\square$ 

**Definition 8.3.6** (Path Component). Let X be a topological space. Define an equivalence relation  $\sim$  on X by:  $x \sim y$  iff there exists a path from x to y. The equivalence classes are called the *path components* of X.

We prove this is an equivalence relation.

#### Proof:

 $\langle 1 \rangle 1$ . For all  $x \in X$  we have  $x \sim x$ 

PROOF: The constant path  $p:[0,1]\to X$  where p(t)=x is a path from x to x.

 $\langle 1 \rangle 2$ . If  $x \sim y$  then  $y \sim x$ 

PROOF: If  $p:[0,1] \to X$  is a path from x to y then  $\lambda t.p(1-t)$  is a path from y to x.

- $\langle 1 \rangle 3$ . If  $x \sim y$  and  $y \sim z$  then  $x \sim z$ 
  - $\langle 2 \rangle 1$ . Let: p be a path from x to y and q be a path from y to z.
  - $\langle 2 \rangle 2$ . Let:  $r:[0,1] \to X$  where

$$r(t) = \begin{cases} p(2t) & \text{if } 0 \le t \le 1/2\\ q(2t-1) & \text{if } 1/2 \le t \le 1 \end{cases}$$

 $\langle 2 \rangle 3$ . r is a path from x to z.

PROOF: r is continuous by the Pasting Lemma.

Proposition 8.3.7. Every path component is path connected.

PROOF: By definition, if x and y are in the same path component then there is a path from x to y.  $\square$ 

**Proposition 8.3.8.** If A is a nonempty path connected subspace of the space X, then A is included in a unique path component.

#### Proof:

- $\langle 1 \rangle 1$ . Pick  $a \in A$
- $\langle 1 \rangle 2$ . Let: C be the equivalence class of a under  $\sim$
- $\langle 1 \rangle 3. \ A \subseteq C$

PROOF: For all  $x \in A$ , there exists a path from a to x.

 $\langle 1 \rangle 4$ . C is unique

PROOF: C is the unique path component such that  $a \in C$ .

\*\*\* 0.00

Proposition 8.3.9. Every path component is included in a component.

PROOF: From Propositions 8.3.3 and 8.2.2.  $\square$ 

**Proposition 8.3.10.** The ordered square is not path connected.

#### Proof:

- $\langle 1 \rangle 1$ . Assume: for a contradiction  $p:[0,1] \to I_o^2$  is a path from (0,0) to (1,1).
- $\langle 1 \rangle 2$ . For all  $x \in [0,1]$ ,  $p^{-1}(\{x\} \times (0,1))$  is open in [0,1]
- $\langle 1 \rangle 3$ . For all  $x \in [0,1]$ , PICK a rational  $q_x \in p^{-1}(\{x\} \times (0,1))$
- $\langle 1 \rangle 4$ .  $\{q_x : x \in [0,1]\}$  is an uncountable set of rationals.

**Proposition 8.3.11** (AC). The product of a family of path connected spaces is path connected.

#### Proof:

 $\langle 1 \rangle 1$ . Let:  $\{X_{\alpha}\}_{{\alpha} \in J}$  be a family of path connected spaces and  $a, b \in \prod_{{\alpha} \in J} X_{\alpha}$ 

```
\langle 1 \rangle 2. For \alpha \in J, PICK a path p_{\alpha} : [0, 1] \to X_{\alpha} from a_{\alpha} to b_{\alpha} \langle 1 \rangle 3. Define p : [0, 1] \to \prod_{\alpha \in J} X_{\alpha} by p(t)_{\alpha} = p_{\alpha}(t) \langle 1 \rangle 4. p is a path from a to b
```

Proof: By Theorem 5.2.15

**Corollary 8.3.11.1.** For any set I, the space  $\mathbb{R}^I$  in the product topology is path connected.

**Proposition 8.3.12.** The space  $\mathbb{R}_K$  is not path connected.

#### Proof:

- $\langle 1 \rangle 1$ . Assume: for a contradiction  $p:[0,1] \to \mathbb{R}_K$  is a path from 0 to 1
- $\langle 1 \rangle 2$ . Let:  $p:[0,1] \to \mathbb{R}_K$  be a path from 0 to 1
- $\langle 1 \rangle 3$ . p([0,1]) is compact and connected in  $\mathbb{R}_K$ .

PROOF: Theorem 8.1.9 and Proposition 9.5.10.

 $\langle 1 \rangle 4$ . p([0,1]) is connected in  $\mathbb{R}$ .

Proof: Corollary 8.1.9.1

 $\langle 1 \rangle 5. \ [0,1] \subseteq p([0,1])$ 

PROOF: For any  $x \in [0,1]$ , if  $x \notin p([0,1])$  then  $p([0,1]) \cap (-\infty, x)$  and  $p([0,1]) \cap (x, +\infty)$  form a separation of p([0,1]).

 $\langle 1 \rangle 6$ . [0,1] is compact in  $\mathbb{R}_K$ 

PROOF: Proposition 9.5.6.

 $\langle 1 \rangle 7$ . Q.E.D.

PROOF: This contradicts Corollary 9.5.11.2.

П

**Proposition 8.3.13.** Let  $f: X \to Y$  be continuous and surjective. If X is path connected then Y is path connected.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $a, b \in Y$
- $\langle 1 \rangle 2$ . PICK  $x, y \in X$  such that f(x) = a and f(y) = b
- $\langle 1 \rangle 3$ . PICK a path  $p:[0,1] \to X$  such that p(0)=x and p(1)=y
- $\langle 1 \rangle 4$ .  $f \circ p$  is a path from a to b

**Corollary 8.3.13.1.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of non-empty topological spaces. If  $\prod_{{\alpha}\in J} X_{\alpha}$  is path connected then each  $X_{\alpha}$  is path connected.

# 8.4 Connected Subspaces of Euclidean Space

**Definition 8.4.1** (Unit 2-Sphere). The unit 2-sphere is  $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$  as a subspace of  $\mathbb{R}^3$ .

**Definition 8.4.2** (Unit Ball). For any  $n \geq 1$ , the closed unit ball in  $\mathbb{R}^n$  is

$$B^n = \{ \vec{x} \in \mathbb{R}^n : ||\vec{x}|| \le 1 \}$$
.

**Proposition 8.4.3.** Every open unit ball and closed unit ball in  $\mathbb{R}^n$  is path connected.

PROOF: The straight line between any two points is a path in the ball.  $\square$ 

**Definition 8.4.4** (Punctured Euclidean Space). For  $n \geq 1$ , punctured Euclidean space is  $\mathbb{R}^n \setminus \{\vec{0}\}$ .

**Proposition 8.4.5.** Punctured Euclidean space in  $\mathbb{R}^n$  is path connected iff n > 1.

Proof: Easy.  $\square$ 

**Definition 8.4.6** (Unit Sphere). For  $n \ge 1$ , the unit sphere  $S^n$  is  $\{\vec{x} \in \mathbb{R}^{n+1} : \|\vec{x}\| = 1\}$ .

**Proposition 8.4.7.** In any number of dimensions, the unit sphere is path connected.

Proof: Easy.

**Definition 8.4.8** (Topologist's Sine Curve). The *topologist's sine curve* is the closure of

$$S = \{(x, \sin 1/x) : x \in \mathbb{R}\}$$

in  $\mathbb{R}^2$ .

Proposition 8.4.9. The topologist's sine curve is connected.

Proof:

- $\langle 1 \rangle 1$ .  $S = \{(x, \sin 1/x) : x \in \mathbb{R}\}$  is connected.
  - $\langle 2 \rangle 1$ . The function  $f : \mathbb{R} \to \mathbb{R}^2$  given by  $f(x) = (x, \sin 1/x)$  is continuous.

PROOF: By Theorem 5.2.15.

 $\langle 2 \rangle 2$ . Q.E.D.

PROOF: By Theorem 8.1.9.

 $\langle 1 \rangle 2$ . Q.E.D.

Proof: By Theorem 8.1.8.

П

**Proposition 8.4.10** (CC). The topologist's sine curve is not path connected.

Proof:

- $\langle 1 \rangle 1$ . Let:  $S = \{(x, \sin 1/x) : x \in \mathbb{R}\}$
- $\langle 1 \rangle 2$ . Assume: for a contradiction  $p:[0,1] \to \overline{S}$  is a path from (0,0) to  $(1,\sin 1)$ .
- $\langle 1 \rangle 3. \ p^{-1}(\{0\} \times [-1,1])$  is closed.
- $\langle 1 \rangle 4$ .  $p^{-1}(\{0\} \times [-1,1])$  has a greatest element.

PROOF: By Lemma 4.1.9.

- $\langle 1 \rangle 5$ . Let:  $q:[0,1] \to \overline{S}$  be a path such that:
  - $q(0) \in \{0\} \times [-1, 1]$
  - $q(x) \in S$  for x > 0

PROOF: Let b be greatest in  $p^{-1}(\{0\} \times [-1,1])$ . Then q is obtained by rescaling p restricted to [b,1].

- $\langle 1 \rangle 6$ . Let: q(t) = (x(t), y(t)) for  $0 \le t \le 1$
- $\langle 1 \rangle 7. \ x(0) = 0$
- $\langle 1 \rangle 8. \ x(t) > 0 \text{ for } t > 0$
- $\langle 1 \rangle 9$ .  $y(t) = \sin 1/x(t)$  for t > 0
- $\langle 1 \rangle 10$ . There exists a sequence  $t_n \in [0,1]$  such that  $t_n \to 0$  as  $n \to \infty$  and  $y(t_n) = (-1)^n$  for all n.
  - $\langle 2 \rangle 1$ . For each n, PICK  $u_n$  such that  $0 < u_n < x(1/n)$  and  $\sin 1/u_n = (-1)^n$ . PROOF: Such a  $u_n$  exists because  $\sin 1/x$  takes values 1 and -1 infinitely often in (0, x(1/n)).
  - $\langle 2 \rangle 2$ . For each n, PICK  $t_n$  such that  $0 < t_n < 1/n$  and  $x(t_n) = u$  PROOF: By the Intermediate Value Theorem.
- $\langle 1 \rangle 11$ . Q.E.D.

PROOF: This is a contradiction as  $y(t_n) \to y(0)$  as  $n \to \infty$  because y is continuous.

### 8.5 Local Connectedness

**Definition 8.5.1** (Locally Connected). Let X be a topological space and  $x \in X$ . Then X is *locally connected* at x iff every neighbourhood of x includes a connected neighbourhood of x.

The space X is *locally connected* iff it is locally connected at every point.

**Proposition 8.5.2.**  $S_{\Omega}$  is not locally connected.

PROOF: There is no connected neighbourhood of  $\omega$ .

**Proposition 8.5.3.**  $\overline{S_{\Omega}}$  is not locally connected.

PROOF: There is no connected neighbourhood of  $\omega$ .  $\square$ 

**Proposition 8.5.4.** For any set I, the space  $\mathbb{R}^I$  is locally connected.

PROOF: Every basic open set is the product of connected spaces, hence connected.  $\Box$ 

**Proposition 8.5.5.** Let X be a topological space. Then X is locally connected if and only if, for every open set U in X, every component of U is open in X.

#### Proof:

- $\langle 1 \rangle 1$ . If X is locally connected then, for every open set U in X, every component of U is open in X.
  - $\langle 2 \rangle 1$ . Assume: X is locally connected.
  - $\langle 2 \rangle 2$ . Let: U be open in X.
  - $\langle 2 \rangle 3$ . Let: C be a component of U.
  - $\langle 2 \rangle 4$ . Let:  $x \in C$

| PROVE: $C$ is a neighbourhood of $x$                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $\langle 2 \rangle$ 5. <i>U</i> is a neighbourhood of <i>x</i> in <i>X</i> .                                                                        |
| PROOF: From $\langle 2 \rangle 2$ , $\langle 2 \rangle 3$ and $\langle 2 \rangle 4$ .                                                               |
| $\langle 2 \rangle$ 6. PICK a connected neighbourhood V of x such that $V \subseteq U$ .<br>PROOF: Using $\langle 2 \rangle$ 1.                     |
| $\langle 2 \rangle 7. \ V \subseteq C$                                                                                                              |
| PROOF: By Proposition 8.2.2.                                                                                                                        |
| $\langle 2 \rangle 8$ . C is a neighbourhood of x                                                                                                   |
| Proof: By Proposition 3.2.4.                                                                                                                        |
| $\langle 2 \rangle 9$ . Q.E.D.                                                                                                                      |
| Proof: By Proposition 3.2.3.                                                                                                                        |
| $\langle 1 \rangle$ 2. If, for every open set $U$ in $X$ , every component of $U$ is open in $X$ , then                                             |
| X is locally connected. $\langle 2 \rangle 1$ . Assume: For every open set U in X, every component of U is open in                                  |
| X.                                                                                                                                                  |
| $\langle 2 \rangle 2$ . Let: $x \in X$ and N be a neighbourhood of x                                                                                |
| $\langle 2 \rangle$ 3. PICK $U$ open such that $x \in U \subseteq N$                                                                                |
| $\langle 2 \rangle$ 4. Let: C be the component of U that contains x                                                                                 |
| $\langle 2 \rangle$ 5. C is open in X                                                                                                               |
| PROOF: By $\langle 2 \rangle 1$ . $\langle 2 \rangle 6$ . C is a connected neighbourhood of x that is included in N                                 |
| 2/0. C is a connected heighbourhood of x that is included in 17                                                                                     |
| Corollary 8.5.5.1. In a locally connected space, every component is open.                                                                           |
| Corollary 8.5.5.2. The space $\mathbb{R}^{\omega}$ under the box topology is not locally connected.                                                 |
| Corollary 8.5.5.3. Not every closed subspace of a locally connected space is locally connected.                                                     |
| Proof: The topologist's sine curve is not locally connected. $\Box$                                                                                 |
| <b>Proposition 8.5.6.</b> $S_{\Omega} \times \overline{S_{\Omega}}$ is not locally connected.                                                       |
| $(\omega,\omega)$ has no connected neighbourhood. $\Box$                                                                                            |
| <b>Proposition 8.5.7.</b> $\mathbb{R}_l$ is not locally connected.                                                                                  |
| PROOF: 0 has no connected neighbourhood. $\Box$                                                                                                     |
| Proposition 8.5.8. The Sorgenfrey plane is not locally connected.                                                                                   |
| PROOF: Any basic open set $[a,b) \times [c,d)$ can be separated into $[a,b) \times [c,e)$ and $[a,b) \times [e,d)$ for some $c < e < d$ . $\square$ |
| <b>Proposition 8.5.9.</b> The space $\mathbb{R}^{\omega}$ under the uniform topology is locally connected.                                          |
| PROOF: For any neighbourhood $U$ of a point $x$ , the neighbourhood $U \cap \{y : y - x \text{ is bounded}\}$ is connected. $\square$               |

| <b>Proposition 8.5.10.</b> The space $\mathbb{R}_K$ is not locally connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROOF: The open set $(-1,1)-K$ does not include a connected neighbourhood of 0. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Proposition 8.5.11.</b> Every open subspace of a locally connected space is locally connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Proof: Follows easily from definition. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Proposition 8.5.12</b> (AC). The product of a family of locally connected spaces is locally connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PROOF: $ \langle 1 \rangle 1. \text{ Let: } \{X_{\alpha}\}_{\alpha \in J} \text{ be a family of locally connected spaces and } \vec{x} \in \prod_{\alpha \in J} X_{\alpha} \langle 1 \rangle 2. \text{ Let: } \prod_{\alpha \in J} U_{\alpha} \text{ be any basic neighbourhood of } \vec{x}, \text{ where each } U_{\alpha} \text{ is oper in } X_{\alpha}, \text{ and } U_{\alpha} = X_{\alpha} \text{ except for } \alpha = \alpha_{1}, \ldots, \alpha_{n} $ $ \langle 1 \rangle 3. \text{ For } \alpha \in J, \text{ PICK a connected neighbourhood } C_{\alpha} \text{ of } x_{\alpha} \text{ with } C_{\alpha} \subseteq U_{\alpha} $ $ \langle 1 \rangle 4. \prod_{\alpha \in J} C_{\alpha} \text{ is connected PROOF: Proposition } 8.1.10 $ |
| Proposition 8.5.13. Every discrete space is locally connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PROOF: For any point $x$ , the set $\{x\}$ is a connected neighbourhood of $x$ . $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Corollary 8.5.13.1. The continuous image of a locally connected space is no necessarily locally connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.6 Local Path Connectedness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Definition 8.6.1</b> (Locally Path Connected). Let $X$ be a topological space and $x \in X$ . Then $X$ is locally path connected at $x$ iff every neighbourhood of $x$ includes a path connected neighbourhood of $x$ .  The space $X$ is locally path connected iff it is locally path connected at every point.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Proposition 8.6.2.</b> $S_{\Omega}$ is not locally path connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Proof: There is no path connected neighbourhood of $\omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Proposition 8.6.3.</b> $\overline{S_{\Omega}}$ is not locally path connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Proof: There is no path connected neighbourhood of $\omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Proposition 8.6.4.</b> Not every closed subspace of a locally path connected space is locally path connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Proof: The topologist's sine curve is not loally path connected. $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Proposition 8.6.5.</b> Every open subspace of a locally path connected space is locally path connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

PROOF: Follows easily from definition.

**Proposition 8.6.6.** Every locally path connected space is locally connected.

PROOF: From Proposition 8.3.3.  $\square$ 

Corollary 8.6.6.1.  $\mathbb{R}_l$  is not locally path connected.

Corollary 8.6.6.2. The Sorgenfrey plane is not locally path connected.

Corollary 8.6.6.3. The space  $\mathbb{R}^{\omega}$  under the box topology is not locally path connected.

Corollary 8.6.6.4. The space  $\mathbb{R}_K$  is not locally path connected.

Corollary 8.6.6.5. The topologist's sine curve is not locally path connected.

**Proposition 8.6.7** (AC). The product of a family of locally path connected spaces is locally path connected.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\{X_{\alpha}\}_{{\alpha} \in J}$  be a family of locally connected spaces and  $\vec{x} \in \prod_{{\alpha} \in J} X_{\alpha}$
- $\langle 1 \rangle 2$ . Let:  $\prod_{\alpha \in J} U_{\alpha}$  be any basic neighbourhood of  $\vec{x}$ , where each  $U_{\alpha}$  is open in  $X_{\alpha}$ , and  $U_{\alpha} = X_{\alpha}$  except for  $\alpha = \alpha_1, \ldots, \alpha_n$
- $\langle 1 \rangle 3$ . For  $\alpha \in J$ , PICK a path connected neighbourhood  $C_{\alpha}$  of  $x_{\alpha}$  with  $C_{\alpha} \subseteq U_{\alpha}$
- $\langle 1 \rangle 4$ .  $\prod_{\alpha \in J} C_{\alpha}$  is path connected

Proof: Proposition 8.3.5

**Proposition 8.6.8.** Let X be a topological space. Then X is locally path connected if and only if, for every open set U in X, every path component of U is open in X.

#### Proof:

- $\langle 1 \rangle 1$ . If X is locally path connected then, for every open set U in X, every path component of U is open in X.
  - $\langle 2 \rangle$ 1. Assume: X is locally path connected.
  - $\langle 2 \rangle 2$ . Let: U be open in X.
  - $\langle 2 \rangle 3$ . Let: C be a path component of U.
  - $\langle 2 \rangle 4$ . Let:  $x \in C$

Prove: C is a neighbourhood of x

 $\langle 2 \rangle 5$ . U is a neighbourhood of x in X.

PROOF: From  $\langle 2 \rangle 2$ ,  $\langle 2 \rangle 3$  and  $\langle 2 \rangle 4$ .

 $\langle 2 \rangle$ 6. PICK a path connected neighbourhood V of x such that  $V \subseteq U$ . PROOF: Using  $\langle 2 \rangle$ 1.

 $\langle 2 \rangle 7. \ V \subseteq C$ 

Proof: By Proposition 8.3.8.

 $\langle 2 \rangle 8$ . C is a neighbourhood of x

PROOF: By Proposition 3.2.4.

 $\langle 2 \rangle 9$ . Q.E.D.

| Proof: By Proposition 3.2.3.                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\langle 1 \rangle 2$ . If, for every open set $U$ in $X$ , every path component of $U$ is open in $X$ ,                                               |
| then $X$ is locally path connected.                                                                                                                    |
| $\langle 2 \rangle 1$ . Assume: For every open set $U$ in $X$ , every path component of $U$ is open in $X$ .                                           |
| $\langle 2 \rangle 2$ . Let: $x \in X$ and N be a neighbourhood of x                                                                                   |
| $\langle 2 \rangle 3$ . Pick U open such that $x \in U \subseteq N$                                                                                    |
| $\langle 2 \rangle 4$ . Let: C be the path component of U that contains x                                                                              |
| $\langle 2 \rangle$ 5. $C$ is open in $X$<br>PROOF: By $\langle 2 \rangle$ 1.                                                                          |
| $\langle 2 \rangle$ 6. C is a path connected neighbourhood of x that is included in N                                                                  |
|                                                                                                                                                        |
| <b>Theorem 8.6.9</b> (AC). Let $X$ be a topological space. If $X$ is locally path connected, then its components and its path components are the same. |
| Proof:                                                                                                                                                 |
| $\langle 1 \rangle 1$ . Let: P be a path component of X                                                                                                |
| $\langle 1 \rangle 2$ . Let: C be the component such that $P \subseteq C$                                                                              |
| PROVE: $P = C$                                                                                                                                         |
| $\langle 1 \rangle 3$ . Let: $Q = C \setminus P$                                                                                                       |
| $\langle 1 \rangle 4$ . P is open in X                                                                                                                 |
| PROOF: By Proposition 8.6.8. $\langle 1 \rangle 5$ . $Q$ is open in $X$                                                                                |
| PROOF: By Proposition 8.6.8 since $Q$ is the union of the path components                                                                              |
| included in $C$ other than $P$ .                                                                                                                       |
| $\langle 1 \rangle 6. \ Q = \emptyset$                                                                                                                 |
| PROOF: Otherwise $P$ and $Q$ would form a separation of $C$ , contradicting 8.2.3.                                                                     |
|                                                                                                                                                        |
| <b>Proposition 8.6.10.</b> $S_{\Omega} \times \overline{S_{\Omega}}$ is not locally path connected.                                                    |
| PROOF: $(\omega, \omega)$ has no path connected neighbourhood. $\square$                                                                               |
| Proposition 8.6.11. The ordered square is not locally path connected.                                                                                  |
| Proof:                                                                                                                                                 |
| $\langle 1 \rangle 1.$ Assume: for a contradiction $(1/2,0)$ has a path connected neighbourhod $U$                                                     |
| $\langle 1 \rangle 2$ . Pick $a < 1/2$ such that $((a,1),(1/2,0)) \subseteq U$                                                                         |
| $\langle 1 \rangle$ 3. Let: $p:[0,1] \to I_o^2$ be a path from $(a,1)$ to $(1/2,0)$                                                                    |
| $\langle 1 \rangle 4$ . For every x such that $a < x < 1/2$ , PICK a rational $q_x$ such that $p(q_x) \in$                                             |
| ((x,0),(x,1))                                                                                                                                          |
| $\langle 1 \rangle$ 5. $\{q_x : a < x < 1/2\}$ is an uncountable set of rationals.                                                                     |
| <b>Proposition 8.6.12.</b> For any set $I$ , the space $\mathbb{R}^{I}$ is locally path connected.                                                     |
| PROOF: Every basic open set is the product of path connected spaces, hence                                                                             |
| path connected. $\square$                                                                                                                              |

**Proposition 8.6.13.** The space  $\mathbb{R}^{\omega}$  under the uniform topology is locally path connected.

PROOF: Its components and path components are the same.  $\Box$ 

Proposition 8.6.14. Every discrete space is locally path connected.

PROOF: For any point x, the set  $\{x\}$  is a path connected neighbourhood of x.  $\sqcap$ 

Corollary 8.6.14.1. The continuous image of a locally path connected space is not necessarily locally path connected.

**Proposition 8.6.15.** A quotient of a locally connected space is locally connected.

```
Proof:
```

```
\langle 1 \rangle 1. Let: p: X \to Y be a quotient map where X is locally connected.
```

 $\langle 1 \rangle 2$ . Let: U be open in Y

```
\langle 1 \rangle 3. Let: C be a component of U
```

Prove: C is open

 $\langle 1 \rangle 4$ .  $p^{-1}(C)$  is a union of components of  $p^{-1}(U)$ 

 $\langle 2 \rangle 1$ . Let:  $x \in p^{-1}(C)$  and D be the component of  $p^{-1}(U)$  that contains x

 $\langle 2 \rangle 2$ . p(D) is connected.

PROOF: Theorem 8.1.9.

 $\langle 2 \rangle 3. \ p(D) \subseteq U$ 

PROOF: Because  $D \subseteq p^{-1}(U)$ 

 $\langle 2 \rangle 4$ . p(D) intersects C

PROOF: Both contain p(x)

 $\langle 2 \rangle 5. \ p(D) \subseteq C$ 

PROOF: From  $\langle 1 \rangle 3$  and  $\langle 2 \rangle 2$  and  $\langle 2 \rangle 4$ 

 $\langle 2 \rangle 6. \ D \subseteq p^{-1}(C)$ 

PROOF: From  $\langle 2 \rangle 5$ 

 $\langle 1 \rangle$ 5. Every component of  $p^{-1}(U)$  is open in X

 $\langle 2 \rangle 1. \ p^{-1}(U)$  is open.

 $\langle 2 \rangle 2$ .  $p^{-1}(U)$  is locally connected.

 $\langle 2 \rangle 3$ . Every component of  $p^{-1}(U)$  is open in  $p^{-1}(U)$ 

 $\langle 2 \rangle 4$ . Every component of  $p^{-1}(U)$  is open in X.

 $\langle 1 \rangle 6$ .  $p^{-1}(C)$  is a saturated open set.

 $\langle 2 \rangle 1$ .  $p^{-1}(C)$  is saturated.

PROOF: If  $x \in p^{-1}(C)$  and p(x) = p(y) then  $p(y) \in C$  so  $y \in p^{-1}(C)$ .

 $\langle 2 \rangle 2$ .  $p^{-1}(C)$  is open.

PROOF: By  $\langle 1 \rangle 4$  and  $\langle 1 \rangle 5$ .

 $\langle 1 \rangle 7$ . C is open.

Proof: Lemma 4.5.2.

 $\langle 1 \rangle 8$ . Q.E.D.

Proof: Proposition 8.5.5

П

## 8.7 Weak Local Connectedness

**Definition 8.7.1** (Weakly Locally Connected). Let X be a topological space and  $x \in X$ . Then X is weakly locally connected at x iff every neighbourhood of x contains a connected subspace that contains a neighbourhood of x.

# Chapter 9

# **Compact Spaces**

## 9.1 Countable Compactness

**Definition 9.1.1** (Countably Compact). A topological space is *countably compact* iff every countable open covering has a finite subcovering.

## 9.2 Limit Point Compactness

**Definition 9.2.1** (Limit Point Compact). A space is *limit point compact* iff every infinite set has a limit point.

**Proposition 9.2.2** (CC).  $S_{\Omega} \times \overline{S_{\Omega}}$  is limit point compact.

```
Proof:
\langle 1 \rangle 1. Let: A \subseteq S_{\Omega} \times \overline{S_{\Omega}} be infinite
\langle 1 \rangle 2. CASE: \pi_1(A) is finite.
   \langle 2 \rangle 1. PICK x such that there are infinitely many y such that (x,y) \in A
   \langle 2 \rangle 2. PICK a limit point l of \{y : (x,y) \in A\}
   \langle 2 \rangle 3. (x, l) is a limit point of A
\langle 1 \rangle 3. Case: \pi_1(A) is infinite.
   \langle 2 \rangle 1. PICK a limit point l of \pi_1(A).
   \langle 2 \rangle 2. l is a limit ordinal
   \langle 2 \rangle 3. PICK a countable sequence x_n with limit l
   \langle 2 \rangle 4. For n \geq 1, PICK a_n > x_n and y_n such that (a_n, y_n) \in A
   \langle 2 \rangle5. Case: \{y_n : n \geq 1\} is finite
       \langle 3 \rangle 1. PICK y such that y = y_n for infinitely many n
       \langle 3 \rangle 2. (l, y) is a limit point for A
   \langle 2 \rangle 6. Case: \{y_n : n \geq 1\} is infinite
       \langle 3 \rangle 1. PICK a limit point m for \{y_n : n \geq 1\}
       \langle 3 \rangle 2. (l, m) is a limit point for A
```

Proposition 9.2.3. The Sorgenfrey plane is not limit point compact.

PROOF:  $\mathbb{Z}^2$  has no limit point.  $\square$ 

**Proposition 9.2.4.** The space  $\mathbb{R}^{\omega}$  under the box topology is not limit point compact.

PROOF: The set of all constant sequences of integers is an infinite set with no limit point.  $\Box$ 

**Proposition 9.2.5.** Not every open subspace of a limit point compact space is limit point compact.

PROOF: The space [0,1] is limit point compact but (0,1) is not.  $\square$ 

**Proposition 9.2.6.** The product of two limit point compact spaces is not necessarily limit point compact.

PROOF: See Steen and Seebach Countexamples in Topology Example 112.

**Proposition 9.2.7.** The continuous image of a limit point comapct space is not necessarily limit point comapct.

PROOF: Let Y be a two-point set under the indiscrete topology. Then  $\mathbb{N} \times Y$  is limit point compact, but  $\mathbb{N}$  is not.  $\square$ 

## 9.3 Lindelöf Spaces

**Definition 9.3.1** (Lindelöf Space). A topological space X is  $Lindel\"{o}f$  iff every open covering has a countable subcovering.

**Theorem 9.3.2** (CC). Every second countable space is Lindelöf.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a second countable space
- $\langle 1 \rangle 2$ . PICK a countable basis  $\mathcal{B}$  for X.
- $\langle 1 \rangle 3$ . Let:  $\mathcal{A}$  be an open cover of X
- $\langle 1 \rangle$ 4. For every  $B \in \mathcal{B}$  such that there exists  $U \in \mathcal{A}$  such that  $B \subseteq U$ , PICK  $U_B \in \mathcal{A}$  such that  $B \subseteq U_B$
- $\langle 1 \rangle 5$ .  $\{U_B : B \in \mathcal{B}, \exists U \in \mathcal{A}.B \subseteq U\}$  covers X.
  - $\langle 2 \rangle 1$ . Let:  $x \in X$
  - $\langle 2 \rangle 2$ . PICK  $U \in \mathcal{A}$  such that  $x \in U$
  - $\langle 2 \rangle 3$ . Pick  $B \in \mathcal{B}$  such that  $x \in B \subseteq U$
  - $\langle 2 \rangle 4. \ x \in U_B$

Corollary 9.3.2.1. The space  $\mathbb{R}^{\omega}$  is Lindelöf.

Corollary 9.3.2.2. The space  $\mathbb{R}_K$  is Lindelöf.

**Proposition 9.3.3.** The space  $S_{\Omega}$  is not Lindelöf.

```
PROOF: \{(-\infty, \alpha) : \alpha \in S_{\Omega}\} is an open cover that has no countable subcover. \square
```

**Proposition 9.3.4** (CC). The space  $\overline{S_{\Omega}}$  is Lindelöf.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{A}$  be an open cover of  $\overline{S_{\Omega}}$
- $\langle 1 \rangle 2$ . PICK  $U \in \mathcal{A}$  such that  $\Omega \in U$
- $\langle 1 \rangle 3$ . Pick  $\alpha < \Omega$  such that  $(\alpha, \Omega] \subseteq U$
- $\langle 1 \rangle 4$ . For  $\beta \leq \alpha$ , PICK  $U_{\beta} \in \mathcal{A}$  such that  $\beta \in U_{\beta}$
- $\langle 1 \rangle$ 5.  $\{U\} \cup \{U_{\beta} : \beta \leq \alpha\}$  is a countable subcover of  $\mathcal{A}$ .

**Proposition 9.3.5** (CC). The continuous image of a Lindelöf space is Lindelöf.

#### PROOF:

- $\langle 1 \rangle 1$ . Let: X be a Lindelöf space, Y a space and  $f: X \to Y$  continuous.
- $\langle 1 \rangle 2$ . Let:  $\mathcal{A}$  be an open covering of Y
- $\langle 1 \rangle 3. \{ f^{-1}(V) : V \in \mathcal{A} \}$  is an open covering of X
- $\langle 1 \rangle 4$ . Pick a countable subcovering  $\{f^{-1}(V_1), f^{-1}(V_2), \ldots\}$  of  $\{f^{-1}(V) : V \in \mathcal{A}\}$
- $\langle 1 \rangle 5. \ \{V_1, V_2, \ldots\}$  is a countable subcovering of  $\mathcal A$

**Proposition 9.3.6.** The Sorgenfrey plane is not Lindelöf.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $L = \{(x, -x) : x \in \mathbb{R}\}$
- $\langle 1 \rangle 2$ . L is closed in  $\mathbb{R}^2_l$ 
  - $\langle 2 \rangle 1$ . Let:  $(x,y) \notin L$ , so  $y \neq -x$

PROVE: There exists a neighbourhood U of (x, y) that does not intersect L

 $\langle 2 \rangle 2$ . Case: y > -x

PROOF: In this case, take  $U = [x, +\infty) \times [y, +\infty)$ 

 $\langle 2 \rangle 3$ . Case: y < -x

PROOF: In this case, take  $U = [x, (x - y)/2) \times [y, (y - x)/2)$ .

- $\langle 1 \rangle 3$ . Let:  $\mathcal{U} = \{ \mathbb{R}^2_l \setminus L \} \cup \{ [a,b) \times [-a,d) : a,b,d \in \mathbb{R} \}$
- $\langle 1 \rangle 4$ .  $\mathcal{U}$  is an open covering of  $\mathbb{R}^2_l$
- $\langle 1 \rangle 5$ . No countable subset of  $\mathcal{U}$  covers  $\mathbb{R}^2_I$

PROOF: Every set  $[a,b) \times [-a,d)$  intersects L in exactly one point, namely (a,-a).

Corollary 9.3.6.1. The Sorgenfrey plane is not second countable.

Corollary 9.3.6.2. The product of two Lindelöf spaces is not necessarily Lindelöf.

**Proposition 9.3.7.** The space  $\mathbb{R}^{\omega}$  under the box topology is not Lindelöf.

PROOF: The set  $\{\prod_{n=0}^{\infty}(a_n,a_n+1): \forall n.a_n \in \mathbb{Z}\}$  covers the space but has no countable subcover.  $\square$ 

Proposition 9.3.8. Not every open subspace of a Lindelöf space is Lindelöf.

PROOF: The ordered square is Lindelöf but the subspace  $[0,1] \times (0,1)$  is not.  $\square$ 

## 9.4 Paracompactness

**Definition 9.4.1** (Paracompact). A topological space X is *paracompact* iff every open covering of X has a locally finite open refinement that covers X.

**Theorem 9.4.2.** Every paracompact Hausdorff space is normal.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a paracompact Hausdorff space.
- $\langle 1 \rangle 2$ . X is regular.
- $\langle 2 \rangle 1$ . Let: A be a closed set.
- $\langle 2 \rangle 2$ . Let:  $a \notin A$
- $\langle 2 \rangle$ 3. For all  $x \in A$ , there exists an open set U such that  $x \in U$  and  $a \notin \overline{U}$ 
  - $\langle 3 \rangle 1$ . Let:  $x \in A$
  - $\langle 3 \rangle 2. \ x \neq a$

Proof:  $\langle 2 \rangle 2$ ,  $\langle 3 \rangle 1$ 

 $\langle 3 \rangle$ 3. PICK disjoint open neighbourhoods U of x and V of a

PROOF:  $\langle 1 \rangle 1, \langle 3 \rangle 2$ 

 $\langle 3 \rangle 4. \ a \notin \overline{U}$ 

PROOF: Theorem 3.13.3,  $\langle 3 \rangle 3$ .

 $\langle 2 \rangle$ 4. Pick a locally finite open refinement  $\mathcal C$  of  $\{U \text{ open in } X: a \notin \overline{U}\} \cup \{X \setminus A\}$  that covers X

PROOF: By  $\langle 2 \rangle 3$ ,  $\{ U \text{ open in } X : a \notin \overline{U} \} \cup \{ X \setminus A \}$  is an open covering of X.

- $\langle 2 \rangle 5$ . Let:  $\mathcal{D} = \{ U \in \mathcal{C} : U \cap A \neq \emptyset \}$
- $\langle 2 \rangle 6$ .  $\mathcal{D}$  covers A

PROOF: From  $\langle 2 \rangle 4$  and  $\langle 2 \rangle 5$ .

 $\langle 2 \rangle 7$ . For all  $U \in \mathcal{D}$  we have  $a \notin \overline{U}$ 

PROOF: From  $\langle 2 \rangle 4$  and  $\langle 2 \rangle 5$ .

- $\langle 2 \rangle 8$ . Let:  $V = \bigcup \mathcal{D}$
- $\langle 2 \rangle 9$ . V is open
  - $\langle 3 \rangle 1$ . Every member of  $\mathcal{D}$  is open.

PROOF: From  $\langle 2 \rangle 4$  and  $\langle 2 \rangle 5$ .

 $\langle 3 \rangle 2$ . Q.E.D.

Proof: By  $\langle 2 \rangle 8$ .

 $\langle 2 \rangle 10. \ A \subseteq V$ 

PROOF: From  $\langle 2 \rangle 6$  and  $\langle 2 \rangle 7$ .

- $\langle 2 \rangle 11. \ a \notin \overline{V}$ 
  - $\langle 3 \rangle 1$ .  $\mathcal{D}$  is locally finite.

PROOF: Lemma 13.1.45,  $\langle 2 \rangle 4$ ,  $\langle 2 \rangle 5$ .

```
\langle 3 \rangle 2. \ \overline{V} = \bigcup_{U \in \mathcal{D}} \overline{U}
            PROOF: By Lemma 3.12.10, \langle 2 \rangle 8 and \langle 3 \rangle 1.
        \langle 3 \rangle 3. Q.E.D.
            Proof: By \langle 2 \rangle 7.
    \langle 2 \rangle 12. Q.E.D.
        Proof: Proposition 6.3.2.
\langle 1 \rangle 3. X is normal.
    \langle 2 \rangle 1. Let: A, B be disjoint closed sets.
    \langle 2 \rangle 2. For all x \in A, there exists an open set U such that x \in U and B is
              disjoint from \overline{U}
        \langle 3 \rangle 1. Let: x \in A
        \langle 3 \rangle 2. \ x \notin B
            Proof: \langle 2 \rangle 2, \langle 3 \rangle 1
        \langle 3 \rangle 3. PICK disjoint open neighbourhoods U of x and V of B
            Proof: \langle 1 \rangle 2, \langle 3 \rangle 2
        \langle 3 \rangle 4. B is disjoint from \overline{U}
            Proof: B \subseteq V \subseteq X \setminus \overline{U}
    \langle 2 \rangle 3. Pick a locally finite open refinement \mathcal C of \{U \text{ open in } X : B \cap \overline{U} = 0\}
              \emptyset} \cup {X \setminus A} that covers X
        PROOF: By \langle 2 \rangle 2, \{ U \text{ open in } X : B \cap \overline{U} = \emptyset \} \cup \{ X \setminus A \} is an open covering
        of X.
    \langle 2 \rangle 4. Let: \mathcal{D} = \{ U \in \mathcal{C} : U \cap A \neq \emptyset \}
    \langle 2 \rangle 5. \mathcal{D} covers A
        PROOF: From \langle 2 \rangle 3 and \langle 2 \rangle 4.
    \langle 2 \rangle 6. For all U \in \mathcal{D} we have B \cap \overline{U} = \emptyset
        PROOF: From \langle 2 \rangle 3 and \langle 2 \rangle 4.
    \langle 2 \rangle 7. Let: V = \bigcup \mathcal{D}
    \langle 2 \rangle 8. V is open
        \langle 3 \rangle 1. Every member of \mathcal{D} is open.
            PROOF: From \langle 2 \rangle 3 and \langle 2 \rangle 4.
        \langle 3 \rangle 2. Q.E.D.
            Proof: By \langle 2 \rangle 7.
    \langle 2 \rangle 9. A \subseteq V
        PROOF: From \langle 2 \rangle 5 and \langle 2 \rangle 6.
    \langle 2 \rangle 10. \ B \cap \overline{V} = \emptyset
        \langle 3 \rangle 1. \mathcal{D} is locally finite.
            Proof: Lemma 13.1.45, \langle 2 \rangle 3, \langle 2 \rangle 4.
        \langle 3 \rangle 2. \ \overline{V} = \bigcup_{U \in \mathcal{D}} \overline{U}
            PROOF: By Lemma 3.12.10, \langle 2 \rangle 7 and \langle 3 \rangle 1.
        \langle 3 \rangle 3. Q.E.D.
            Proof: By \langle 2 \rangle 6.
    \langle 2 \rangle 11. Q.E.D.
        PROOF: V and X \setminus \overline{V} are disjoint open neighbourhoods of A and B respec-
        tively.
```

**Theorem 9.4.3.** Every closed subspace of a paracompact space is paracompact.

#### PROOF:

- $\langle 1 \rangle 1$ . Let: X be a paracompact space.
- $\langle 1 \rangle 2$ . Let: Y be closed in X.
- $\langle 1 \rangle 3$ . Let:  $\mathcal{A}$  be an open covering of Y.
- $\langle 1 \rangle 4$ . {U open in  $X : U \cap Y \in A$ }  $\cup \{X \setminus Y\}$  is an open covering of X.
- $\langle 1 \rangle$ 5. Pick a locally finite open refinement  $\mathcal{B}$  that covers X.
- $\langle 1 \rangle$ 6.  $\{U \cap Y : U \in \mathcal{B}\}$  is a locally finite open refinement of  $\mathcal{A}$  that covers Y.
  - $\langle 2 \rangle 1$ . Let:  $\mathcal{C} = \{ U \cap Y : U \in \mathcal{B} \}$
  - $\langle 2 \rangle 2$ . C is locally finite.

Proof: Proposition 3.8.2,  $\langle 1 \rangle 5$ ,  $\langle 2 \rangle 1$ .

 $\langle 2 \rangle 3$ . C refines A

**Lemma 9.4.4** (E. Michael (AC)). Let X be a regular space. Then the following are equivalent.

- 1. Every open covering of X has a countably locally finite open refinement that covers X.
- 2. Every open covering of X has a locally finite refinement that covers X.
- 3. Every open covering of X has a locally finite closed refinement that covers X.
- 4. X is paracompact.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a regular space.
- $\langle 1 \rangle 2. \ 1 \Rightarrow 2$ 
  - $\langle 2 \rangle 1$ . Assume: 1
  - $\langle 2 \rangle 2$ . Let:  $\mathcal{A}$  be an open covering of X.
  - $\langle 2 \rangle$ 3. PICK a countably locally finite open refinement  $\mathcal{B}$  of  $\mathcal{A}$  that covers X. PROOF:  $\langle 2 \rangle$ 1,  $\langle 2 \rangle$ 2
  - $\langle 2 \rangle 4$ . PICK locally finite sets  $\mathcal{B}_n$  for  $n \in \mathbb{N}$  such that  $\mathcal{B} = \bigcup_{n=0}^{\infty} \mathcal{B}_n$ PROOF: From  $\langle 2 \rangle 3$
  - $\langle 2 \rangle 5$ . For  $n \in \mathbb{N}$ ,

Let:  $V_n = \bigcup \mathcal{B}_n$ 

 $\langle 2 \rangle 6$ . For  $n \in \mathbb{N}$  and  $U \in \mathcal{B}_n$ ,

Let:  $S_n(U) = U \setminus \bigcup_{i < n} V_i$ 

 $\langle 2 \rangle 7$ . For  $n \in \mathbb{N}$ ,

Let:  $C_n = \{S_n(U) : U \in \mathcal{B}_n\}$ 

 $\langle 2 \rangle 8$ . For  $n \in \mathbb{N}$ , we have  $\mathcal{C}_n$  refines  $\mathcal{B}_n$ 

PROOF: This holds because  $S_n(U) \subseteq U$ .

- $\langle 2 \rangle 9$ . Let:  $\mathcal{C} = \bigcup_n \mathcal{C}_n$
- $\langle 2 \rangle 10$ . C is locally finite
  - $\langle 3 \rangle 1$ . Let:  $x \in X$

```
\langle 3 \rangle 2. Let: N be least such that there exists U \in \mathcal{B}_N such that x \in U
   Proof: By \langle 2 \rangle 3 and \langle 2 \rangle 4
```

- $\langle 3 \rangle 3$ . PICK  $U \in \mathcal{B}_N$  such that  $x \in U$
- $\langle 3 \rangle 4$ . For  $1 \leq i \leq N$ , PICK a neighbourhood  $W_i$  of x that intersects only finitely many elements of  $\mathcal{B}_i$

Proof: By  $\langle 2 \rangle 4$ 

- $\langle 3 \rangle 5$ . For  $1 \leq i \leq N$ ,  $W_i$  intersects only finitely many elements of  $C_i$ PROOF: If  $W_i$  intersects  $S_i(U)$  then  $W_i$  intersects U.
- $\langle 3 \rangle 6$ . Let:  $W = U \cap W_1 \cap \cdots \cap W_N$
- $\langle 3 \rangle$ 7. W intersects only finitely many elements of C
  - $\langle 4 \rangle 1$ . For  $i \leq N$ , W intersects only finitely many elements of  $C_i$ PROOF: From  $\langle 3 \rangle 5$  and  $\langle 3 \rangle 6$ .
  - $\langle 4 \rangle 2$ . For i > N, W intersects no elements of  $C_i$ . PROOF: This holds because  $W \subseteq U \subseteq V_N$ .
- $\langle 2 \rangle 11$ . C refines  $\mathcal{A}$

PROOF: From  $\langle 2 \rangle 3$  and  $\langle 2 \rangle 8$ 

- $\langle 2 \rangle 12$ . C covers X
  - $\langle 3 \rangle 1$ . Let:  $x \in X$
  - $\langle 3 \rangle 2$ . Let: N be least such that there exists  $U \in \mathcal{B}_N$  such that  $x \in U$
  - $\langle 3 \rangle 3$ . Pick  $U \in \mathcal{B}_N$  such that  $x \in U$
  - $\langle 3 \rangle 4. \ x \in S_N(U)$
- $\langle 1 \rangle 3. \ 2 \Rightarrow 3$ 
  - $\langle 2 \rangle 1$ . Assume: 2
  - $\langle 2 \rangle 2$ . Let:  $\mathcal{A}$  be an open covering of X.
  - $\langle 2 \rangle 3$ . Let:  $\mathcal{B} = \{ U \text{ open in } X : \exists V \in \mathcal{A}.\overline{U} \subseteq V \}$
  - $\langle 2 \rangle 4$ .  $\mathcal{B}$  covers X
    - $\langle 3 \rangle 1$ . Let:  $x \in X$
    - $\langle 3 \rangle 2$ . PICK  $V \in \mathcal{A}$  such that  $x \in V$

Proof: From  $\langle 2 \rangle 2$ 

- $\langle 3 \rangle 3$ . PICK U an open neighbourhood of x such that  $\overline{U} \subseteq V$ PROOF: From Proposition 6.3.2,  $\langle 1 \rangle 1$ ,  $\langle 3 \rangle 1$ ,  $\langle 3 \rangle 3$ .
- $\langle 3 \rangle 4. \ U \in \mathcal{B}$

Proof:  $\langle 2 \rangle 3$ ,  $\langle 3 \rangle 2$ ,  $\langle 3 \rangle 3$ .

 $\langle 2 \rangle$ 5. Pick a locally finite refinement  $\mathcal{C}$  of  $\mathcal{B}$  that covers X. Proof:  $\langle 2 \rangle 1$ ,  $\langle 2 \rangle 3$ ,  $\langle 2 \rangle 4$ .

- $\langle 2 \rangle 6$ . Let:  $\mathcal{D} = \{ \overline{C} : C \in \mathcal{C} \}$
- $\langle 2 \rangle 7$ .  $\mathcal{D}$  is a locally finite closed refinement of  $\mathcal{A}$  that covers X.
  - $\langle 3 \rangle 1$ .  $\mathcal{D}$  is locally finite.

Proof: Lemma 3.12.9,  $\langle 2 \rangle 5$ ,  $\langle 2 \rangle 6$ .

 $\langle 3 \rangle 2$ . Every member of  $\mathcal{D}$  is closed.

Proof: Proposition 3.12.3,  $\langle 2 \rangle 6$ .

- $\langle 3 \rangle 3$ .  $\mathcal{D}$  refines  $\mathcal{A}$ .
  - $\langle 4 \rangle 1$ . Let:  $D \in \mathcal{D}$
  - $\langle 4 \rangle 2$ . PICK  $C \in \mathcal{C}$  such that  $D = \overline{C}$

Proof:  $\langle 2 \rangle 6$ ,  $\langle 4 \rangle 1$ 

 $\langle 4 \rangle 3$ . PICK  $U \in \mathcal{B}$  such that  $C \subseteq U$ 

```
Proof: \langle 2 \rangle 5, \langle 4 \rangle 2
             \langle 4 \rangle 4. PICK V \in \mathcal{A} such that \overline{U} \subseteq V
                Proof: \langle 2 \rangle 3, \langle 4 \rangle 3
             \langle 4 \rangle 5. \ D \subseteq V
                Proof:
                                        D = \overline{C}
                                                                                                                (\langle 4 \rangle 2)
                                            \subseteq \overline{U}
                                                                            (\langle 4 \rangle 3, Proposition 3.12.5)
                                            \subseteq V
                                                                                                                (\langle 4 \rangle 4)
        \langle 3 \rangle 4. \mathcal{D} covers X.
             \langle 4 \rangle 1. Let: x \in X
            \langle 4 \rangle 2. PICK C \in \mathcal{C} such that x \in C
                Proof: \langle 2 \rangle 5, \langle 4 \rangle 1
             \langle 4 \rangle 3. \ x \in \overline{C} \in \mathcal{D}
                 \langle 5 \rangle 1. \ x \in \overline{C}
                     Proof: Proposition 3.12.2, \langle 4 \rangle 2.
                 \langle 5 \rangle 2. \ \overline{C} \in \mathcal{D}
                     Proof: \langle 2 \rangle 6, \langle 4 \rangle 2.
\langle 1 \rangle 4. \ 3 \Rightarrow 4
    \langle 2 \rangle 1. Assume: 3
    \langle 2 \rangle 2. Let: \mathcal{A} be an open covering of X
    \langle 2 \rangle 3. Pick a locally finite refinement \mathcal{B} of \mathcal{A} that covers X.
        Proof: \langle 2 \rangle 1, \langle 2 \rangle 2
    \langle 2 \rangle 4. {U open in X : U intersects only finitely many elements of \mathcal{B}} is an open
              covering of X.
        Proof: From \langle 2 \rangle 3
    \langle 2 \rangle5. Pick a locally finite closed refinement \mathcal{C} of \{U \text{ open in } X : U \text{ intersects only finitely many elements} \}
               that covers X.
        Proof: \langle 2 \rangle 1, \langle 2 \rangle 4.
    \langle 2 \rangle6. Every element of \mathcal{C} intersects only finitely many elements of \mathcal{B}
        \langle 3 \rangle 1. Let: C \in \mathcal{C}
        \langle 3 \rangle 2. There exists U open in X such that U intersects only finitely many
                   elements of \mathcal{B} and C \subseteq U
            Proof: \langle 2 \rangle 5, \langle 3 \rangle 1
        \langle 3 \rangle 3. C intersects only finitely many elements of \mathcal{B}
            Proof: From \langle 3 \rangle 2
    \langle 2 \rangle 7. For B \in \mathcal{B},
               Let: C(B) = \{C \in \mathcal{C} : C \subseteq X \setminus B\}
    \langle 2 \rangle 8. For B \in \mathcal{B},
               Let: E(B) = X \setminus \bigcup C(B)
    \langle 2 \rangle 9. The union of any subset of \mathcal{C} is closed.
        PROOF: Lemma 3.12.10, \langle 2 \rangle 5.
    \langle 2 \rangle 10. For all B \in \mathcal{B}, we have E(B) is open.
        Proof: \langle 2 \rangle 7, \langle 2 \rangle 8, \langle 2 \rangle 9.
    \langle 2 \rangle 11. For all B \in \mathcal{B}, we have B \subseteq E(B).
        Proof: \langle 2 \rangle 7, \langle 2 \rangle 8.
```

```
\langle 2 \rangle 12. For B \in \mathcal{B}, PICK F(B) \in \mathcal{A} such that B \subseteq F(B).
        Proof: \langle 2 \rangle 3
    \langle 2 \rangle 13. Let: \mathcal{D} = \{ E(B) \cap F(B) : B \in \mathcal{B} \}
    \langle 2 \rangle 14. \mathcal{D} refines \mathcal{A}.
        Proof: \langle 2 \rangle 12, \langle 2 \rangle 13
    \langle 2 \rangle 15. \mathcal{D} covers X.
        \langle 3 \rangle 1. Let: x \in X
        \langle 3 \rangle 2. Pick B \in \mathcal{B} such that x \in B
            Proof: \langle 2 \rangle 3, \langle 3 \rangle 1.
        \langle 3 \rangle 3. \ x \in E(B) \cap F(B) \in \mathcal{D}
            Proof: \langle 2 \rangle 11, \langle 2 \rangle 12, \langle 2 \rangle 13, \langle 3 \rangle 2.
    \langle 2 \rangle 16. \mathcal{D} is locally finite.
        \langle 3 \rangle 1. Let: x \in X
        \langle 3 \rangle 2. PICK an open neighbourhood W of x that intersects only finitely
                   many elements of C, say C_1, \ldots, C_k.
                   Prove: W intersects only finitely many elements of \mathcal{D}.
            Proof: \langle 2 \rangle 5, \langle 3 \rangle 1
        \langle 3 \rangle 3. W is covered by C_1, \ldots, C_k.
            Proof: \langle 2 \rangle 5, \langle 3 \rangle 2.
        \langle 3 \rangle 4. Every element of \mathcal{C} intersects only finitely many elements of \mathcal{D}.
             \langle 4 \rangle 1. Let: C \in \mathcal{C}
            \langle 4 \rangle 2. If C intersects E(B) \cap F(B) for B \in \mathcal{B} then C intersects B
                 \langle 5 \rangle 1. Let: x \in C \cap E(B) \cap F(B)
                 \langle 5 \rangle 2. \ C \notin C(B)
                     Proof: \langle 2 \rangle 8, \langle 5 \rangle 1
                 \langle 5 \rangle 3. C intersects B
                     Proof: \langle 2 \rangle 7, \langle 5 \rangle 2
             \langle 4 \rangle 3. C intersects only finitely many elements of \mathcal{B}
                Proof: \langle 2 \rangle 6, \langle 4 \rangle 1
            \langle 4 \rangle 4. Q.E.D.
                PROOF: Using \langle 2 \rangle 13.
    \langle 2 \rangle 17. Every element of \mathcal{D} is open.
        \langle 3 \rangle 1. Let: B \in \mathcal{B}.
        \langle 3 \rangle 2. E(B) is open.
            Proof: \langle 2 \rangle 10, \langle 3 \rangle 1.
        \langle 3 \rangle 3. F(B) is open.
            Proof: \langle 2 \rangle 2, \langle 2 \rangle 12
        \langle 3 \rangle 4. Q.E.D.
            PROOF: Using \langle 2 \rangle 13.
\langle 1 \rangle 5. \ 4 \Rightarrow 1
    PROOF: Trivial.
```

Corollary 9.4.4.1. Every regular Lindelöf space is paracompact.

**Lemma 9.4.5** (Shrinking Lemma (AC)). Let X be a paracompact Hausdorff space. Let  $\{U_{\alpha}\}_{\alpha inJ}$  be a family of open sets that covers X. Then there exists a

locally finite family  $\{V_{\alpha}\}_{{\alpha}\in J}$  of open sets that covers X such that, for all  ${\alpha}\in J$ , we have  $\overline{V_{\alpha}}\subseteq U_{\alpha}$ .

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a paracompact Hausdorff space.
- $\langle 1 \rangle 2$ . Let:  $\{U_{\alpha}\}_{{\alpha} \in J}$  be a family of open sets that covers X.
- $\langle 1 \rangle 3$ . Let:  $\mathcal{A} = \{ V \text{ open in } X : \exists \alpha \in J. \overline{V} \subseteq U_{\alpha} \}.$
- $\langle 1 \rangle 4$ .  $\mathcal{A}$  covers X.
  - $\langle 2 \rangle 1$ . Let:  $x \in X$ .
  - $\langle 2 \rangle 2$ . Pick  $\alpha \in J$  such that  $x \in U_{\alpha}$ .

Proof:  $\langle 1 \rangle 2$ 

- $\langle 2 \rangle 3$ . PICK V open such that  $x \in V$  and  $\overline{V} \subseteq U_{\alpha}$
- PROOF: Theorem 9.4.2,  $\langle 2 \rangle 2$ .  $\langle 2 \rangle 4$ .  $x \in V \in \mathcal{A}$

Proof:  $\langle 1 \rangle 3, \langle 2 \rangle 3$ 

 $\langle 1 \rangle$ 5. PICK a locally finite open refinment  $\mathcal{B}$  of  $\mathcal{A}$  that covers X.

Proof:  $\langle 1 \rangle 1$ ,  $\langle 1 \rangle 3$ ,  $\langle 1 \rangle 4$ 

- $\langle 1 \rangle 6$ . For  $B \in \mathcal{B}$  PICK  $f(B) \in J$  such that  $\overline{B} \subseteq U_{f(B)}$ 
  - $\langle 2 \rangle 1$ . Let:  $B \in \mathcal{B}$
  - $\langle 2 \rangle 2$ . PICK  $V \in \mathcal{A}$  such that  $B \subseteq V$

Proof:  $\langle 1 \rangle 5$ ,  $\langle 2 \rangle 1$ 

 $\langle 2 \rangle 3$ . PICK  $\alpha \in J$  such that  $\overline{V} \subseteq U_{\alpha}$ .

Proof:  $\langle 1 \rangle 3$ ,  $\langle 2 \rangle 2$ 

 $\langle 2 \rangle 4. \ \overline{B} \subseteq U_{\alpha}$ 

Proof:

$$\overline{B} \subseteq \overline{V}$$
 (Proposition 3.12.5,  $\langle 2 \rangle 2$ )  
 $\subseteq U_{\alpha}$  ( $\langle 2 \rangle 3$ )

 $\langle 1 \rangle 7$ . For  $\alpha \in J$ 

Let:  $V_{\alpha} = \bigcup_{f(B)=\alpha} B$ 

- $\langle 1 \rangle 8$ . For all  $\alpha \in J$  we have  $\overline{V_{\alpha}} \subseteq U_{\alpha}$ 
  - $\langle 2 \rangle 1$ . Let:  $\alpha \in J$
  - $\langle 2 \rangle 2$ .  $\overline{V_{\alpha}} \subseteq U_{\alpha}$

Proof:

$$\overline{V_{\alpha}} = \overline{\bigcup_{f(B)=\alpha}} B$$

$$= \bigcup_{f(B)=\alpha} \overline{B}$$
(\langle 1\rangle 7)
$$\subseteq \bigcup_{f(B)=\alpha} U_{f(B)}$$
(\langle 1\rangle 6)
$$= U_{\alpha}$$
(\langle 1\rangle 7)
(\langle 1\rangle 6)
(\langle 1\rangle 6)

- $\langle 1 \rangle 9$ .  $\{V_{\alpha}\}_{{\alpha} \in J}$  is locally finite.
  - $\langle 2 \rangle 1$ . Let:  $x \in X$
  - $\langle 2 \rangle 2$ . PICK an open neighbourhood W of x that intersects only finitely many elements of  $\mathcal{B}$ , say  $B_1, \ldots, B_n$

```
\langle 3 \rangle 1. Let: \alpha \in J
        \langle 3 \rangle 2. Assume: W intersects V_{\alpha}
        \langle 3 \rangle 3. Pick y \in W \cap V_{\alpha}
           Proof: \langle 3 \rangle 2
        \langle 3 \rangle 4. PICK B such that f(B) = \alpha and y \in B
           Proof: \langle 1 \rangle 7, \langle 3 \rangle 3
        \langle 3 \rangle 5. B is one of B_1, \ldots, B_n
           Proof: \langle 2 \rangle 2, \langle 3 \rangle 3, \langle 3 \rangle 4
    \langle 2 \rangle 4. W intersects only finitely many V_{\alpha}
       Proof: \langle 2 \rangle 3
Theorem 9.4.6. Let X be a paracompact Hausdorff space. Let \mathcal{C} \subseteq \mathcal{P}X be
locally finite. For C \in \mathcal{C} let \epsilon_C > 0. Then there exists a continuous function
f: X \to \mathbb{R} such that f(x) > 0 for all x \in X, and f(x) \le \epsilon_C for all C \in \mathcal{C} and
x \in C.
PROOF:
\langle 1 \rangle 1. Let: \mathcal{A} = \{ U \text{ open in } X : U \text{ intersects at most finitely many elements of } \mathcal{C} \}
\langle 1 \rangle 2. A covers X.
    PROOF: Holds since \mathcal{C} is locally finite.
\langle 1 \rangle 3. PICK a partition of unity \{\phi_U\}_{U \in \mathcal{A}} dominated by \{U\}_{U \in \mathcal{A}}.
   PROOF: Theorem 10.2.58, \langle 1 \rangle 1, \langle 1 \rangle 2.
\langle 1 \rangle 4. For U \in \mathcal{A},
          Let:
                   \delta_U = \begin{cases} \min\{\epsilon_C : C \in \mathcal{C}, C \cap \text{supp } \phi_U \neq \emptyset\} & \text{if there exists at least one such } C \\ 1 & \text{if not} \end{cases}
\langle 1 \rangle5. Let: f(x) = \sum_{U \in \mathcal{A}} \delta_U \phi_U(x)
    \langle 2 \rangle 1. For x \in X we have \phi_U(x) = 0 for all but finitely many U
        \langle 3 \rangle 1. Let: x \in X
        \langle 3 \rangle 2. Pick an open neighbourhood W of x that intersects supp \phi_U for only
                 finitely many U, say U_1, \ldots, U_n
           Proof: \langle 1 \rangle 3, \langle 3 \rangle 1
        \langle 3 \rangle 3. For all U \in \mathcal{A}, if \phi_U(x) \neq 0 then U is one of U_1, \ldots, U_n
            \langle 4 \rangle 1. Let: U \in \mathcal{A}
            \langle 4 \rangle 2. Assume: \phi_U(x) \neq 0
           \langle 4 \rangle 3. \ x \in \operatorname{supp} \phi_U
               Proof: Proposition 3.12.2, \langle 4 \rangle 2.
           \langle 4 \rangle 4. U is one of U_1, \ldots, U_n
               Proof: \langle 3 \rangle 2, \langle 4 \rangle 3
\langle 1 \rangle 6. f(x) > 0 for all x \in X.
    \langle 2 \rangle 1. Let: x \in X
    \langle 2 \rangle 2. PICK U \in \mathcal{A} such that \phi_U(x) > 0
       Proof: Such a U exists since \sum_{U \in \mathcal{A}} \phi_U(x) = 1 by \langle 1 \rangle 3.
```

 $\langle 2 \rangle 3$ . For all  $\alpha \in J$ , if W intersects  $V_{\alpha}$  then  $\alpha$  is one of  $f(B_1), \ldots, f(B_n)$ .

Proof:  $\langle 1 \rangle 5$ ,  $\langle 2 \rangle 1$ 

$$\langle 2 \rangle 3. \ \delta_U > 0$$

Proof:  $\langle 1 \rangle 4$ 

 $\langle 2 \rangle 4$ . Q.E.D.

Proof:  $\langle 1 \rangle 5$ 

 $\langle 1 \rangle 7$ . For  $C \in \mathcal{C}$  and  $x \in C$  we have  $f(x) \leq \epsilon_C$ .

- $\langle 2 \rangle 1$ . Let:  $C \in \mathcal{C}$
- $\langle 2 \rangle 2$ . Let:  $x \in C$
- $\langle 2 \rangle 3$ . For all  $U \in \mathcal{A}$  we have  $\delta_U \phi_U(x) \leq \epsilon_C \phi_U(x)$ 
  - $\langle 3 \rangle 1$ . Let:  $U \in \mathcal{A}$

PROVE:  $\delta_U \phi_U(x) \le \epsilon_C \phi_U(x)$ 

 $\langle 3 \rangle 2$ . Case:  $x \in \operatorname{supp} \phi_U$ 

PROOF: In this case,  $\delta_U \leq \epsilon_C$  by  $\langle 1 \rangle 4, \langle 2 \rangle 2$ .

 $\langle 3 \rangle 3$ . Case:  $x \notin \operatorname{supp} \phi_U$ 

PROOF: In this case we have  $\phi_U(x) = 0$  by Proposition 3.12.2.

 $\langle 2 \rangle 4. \ f(x) \leq \epsilon_C$ 

Proof:

$$f(x) = \sum_{U \in \mathcal{A}} \delta_U \phi_U(x) \qquad (\langle 1 \rangle 5)$$

$$\leq \sum_{U \in \mathcal{A}} \epsilon_C \phi_U(x) \qquad (\langle 2 \rangle 3)$$

$$= \epsilon_C \sum_{U \in \mathcal{A}} \phi_U(x)$$

 $= \epsilon_C \tag{\langle 1 \rangle 3}$ 

**Lemma 9.4.7** (Expansion Lemma). Let  $\{B_{\alpha}\}_{{\alpha}\in J}$  be a locally finite family of subsets of the paracompact Hausdorff space X. Then there exists a locally finite family  $\{U_{\alpha}\}_{{\alpha}\in J}$  of open sets such that  $B_{\alpha}\subseteq U_{\alpha}$  for all  ${\alpha}\in J$ .

#### PROOF:

- $\langle 1 \rangle 1$ . Let: X be a paracompact Hausdorff space.
- $\langle 1 \rangle 2$ . Let:  $\{B_{\alpha}\}_{{\alpha} \in J}$  be locally finite
- $\langle 1 \rangle 3$ . Let:  $\mathcal{A} = \{ U \text{ open in } X : U \text{ intersects } B_{\alpha} \text{ for only finitely many } \alpha \}$
- $\langle 1 \rangle 4$ . PICK a locally finite open refinement  $\mathcal B$  of  $\mathcal A$  that covers X.
  - $\langle 2 \rangle 1$ . Every element of  $\mathcal{A}$  is open.

PROOF: From  $\langle 1 \rangle 3$ .

 $\langle 2 \rangle 2$ .  $\mathcal{A}$  covers X

Proof: From  $\langle 1 \rangle 2$ ,  $\langle 1 \rangle 3$ .

 $\langle 2 \rangle 3$ . Q.E.D.

PROOF: From  $\langle 1 \rangle 1$ .

 $\langle 1 \rangle 5$ . For  $\alpha \in J$ ,

Let:  $U_{\alpha} = \bigcup \{ V \in \mathcal{B} : V \cap B_{\alpha} \neq \emptyset \}$ 

- $\langle 1 \rangle 6$ .  $\{U_{\alpha}\}_{{\alpha} \in J}$  is locally finite.
  - $\langle 2 \rangle 1$ . Every element of  $\mathcal{B}$  intersects  $B_{\alpha}$  for only finitely many  $\alpha$ .
    - $\langle 3 \rangle 1$ . Let:  $V \in \mathcal{B}$
    - $\langle 3 \rangle 2$ . PICK  $U \in \mathcal{A}$  such that  $U \subseteq V$

```
Proof: \langle 1 \rangle 4, \langle 3 \rangle 1
         \langle 3 \rangle 3. U intersects B_{\alpha} for only finitely many \alpha
             Proof: \langle 1 \rangle 3, \langle 3 \rangle 2
         \langle 3 \rangle 4. V intersects B_{\alpha} for only finitely many \alpha
             Proof: \langle 3 \rangle 2, \langle 3 \rangle 3
     \langle 2 \rangle 2. Let: x \in X
     \langle 2 \rangle 3. PICK an open neighbourhood W of x that intersects only finitely many
                elements of \mathcal{B}, say V_1, \ldots, V_n.
         Proof: \langle 1 \rangle 4, \langle 2 \rangle 2
     \langle 2 \rangle 4. For 1 \leq i \leq n,
                Let: \alpha_{i1}, \ldots, \alpha_{ir_i} be the finitely many values of \alpha such that V_i inter-
                PROVE: If W intersects B_{\alpha} then \alpha = \alpha_{ij} for some i, j
         Proof: \langle 2 \rangle 1, \langle 2 \rangle 3.
     \langle 2 \rangle5. Let: y \in W \cap B_{\alpha}
     \langle 2 \rangle6. Pick V \in \mathcal{B} such that y \in V
         Proof: \langle 1 \rangle 4
     \langle 2 \rangle 7. Let: V = V_i
         Proof: \langle 2 \rangle 3, \langle 2 \rangle 5, \langle 2 \rangle 6
     \langle 2 \rangle 8. V_i intersects B_{\alpha}
         Proof: \langle 2 \rangle 5, \langle 2 \rangle 6, \langle 2 \rangle 7
     \langle 2 \rangle 9. \alpha = \alpha_{ij} for some j.
         Proof: \langle 2 \rangle 4, \langle 2 \rangle 8
\langle 1 \rangle 7. For all \alpha \in J, we have U_{\alpha} is open.
    Proof: \langle 1 \rangle 5
\langle 1 \rangle 8. For all \alpha \in J, we have B_{\alpha} \subseteq U_{\alpha}.
     \langle 2 \rangle 1. Let: \alpha \in J
     \langle 2 \rangle 2. Let: x \in B_{\alpha}
     \langle 2 \rangle 3. Pick V \in \mathcal{B} such that x \in V
         Proof: \langle 1 \rangle 4
     \langle 2 \rangle 4. \ V \cap B_{\alpha} \neq \emptyset
         Proof: \langle 2 \rangle 2, \langle 2 \rangle 3
     \langle 2 \rangle 5. \ x \in U_{\alpha}
         Proof: \langle 1 \rangle 5, \langle 2 \rangle 3, \langle 2 \rangle 4
```

## 9.5 Compactness

**Definition 9.5.1** (Compact). A topological space is *compact* iff every open cover has a finite subcover.

**Proposition 9.5.2.**  $S_{\Omega}$  is not compact.

PROOF: The open covering  $\{(-\infty, \alpha) : \alpha \in S_{\Omega}\}$  has no finite subcovering.  $\square$ 

**Proposition 9.5.3.**  $\mathbb{R}_l$  is not compact.

PROOF:  $\{[n, n+1) : n \in \mathbb{Z}\}$  has no finite subcover.  $\square$ 

**Proposition 9.5.4.** The space  $\mathbb{R}^{\omega}$  under the box topology is not compact.

PROOF: The set  $\{\prod_{n=0}^{\infty}(a_n, a_n+1) : n \in \mathbb{Z}\}$  is a cover that has no finite subcover.

**Proposition 9.5.5.** Let Y be a subspace of X. Then Y is compact if and only if every covering of Y by sets open in X contains a finite subcollection covering Y.

#### PROOF:

- $\langle 1 \rangle 1$ . If Y is compact then every covering of Y by sets open in X contains a finite subcollection covering Y.
  - $\langle 2 \rangle 1$ . Assume: Y is compact.
  - $\langle 2 \rangle 2$ . Let:  $\mathcal{A}$  be a covering of Y by sets open in X.
  - $\langle 2 \rangle 3$ .  $\{ U \cap Y : U \in \mathcal{A} \}$  is an open covering of Y.
  - $\langle 2 \rangle 4$ . PICK a finite subcovering  $V_1, \ldots, V_n$  of  $\{U \cap Y : U \in \mathcal{A}\}$
  - $\langle 2 \rangle 5$ . For  $1 \leq i \leq n$ , PICK  $U_i \in \mathcal{A}$  such that  $V_i = U_i \cap Y$ .
  - $\langle 2 \rangle 6$ .  $\{U_1, \ldots, U_n\}$  is a finite subset of  $\mathcal{A}$  that covers Y.
- $\langle 1 \rangle 2$ . If every covering of Y by sets open in X contains a finite subcollection covering Y then Y is compact.
  - $\langle 2 \rangle$ 1. Assume: Every covering of Y by sets open in X contains a finite sub-collection covering Y.
  - $\langle 2 \rangle 2$ . Let:  $\mathcal{A}$  be an open covering of Y
  - $\langle 2 \rangle 3$ . Let:  $\mathcal{B} = \{ U \text{ open in } X : U \cap Y \in \mathcal{A} \}$
  - $\langle 2 \rangle 4$ .  $\mathcal{B}$  covers Y
  - $\langle 2 \rangle$ 5. Pick a finite subcollection  $\{U_1, \ldots, U_n\} \subseteq \mathcal{B}$  that covers Y
  - $\langle 2 \rangle 6$ .  $\{U_1 \cap Y, \dots, U_n \cap Y\}$  is a finite subcover of  $\mathcal{A}$ .

**Proposition 9.5.6.** Every closed subspace of a compact space is compact.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a compact space and  $Y \subseteq X$  be closed.
- $\langle 1 \rangle 2$ . Let:  $\mathcal{A}$  be a covering of Y by spaces open in X
- $\langle 1 \rangle 3$ .  $\mathcal{A} \cup \{X \setminus Y\}$  is an open covering of X.
- $\langle 1 \rangle 4$ . PICK a finite subcovering  $\{U_1, \ldots, U_n\}$  or  $\{U_1, \ldots, U_n, X \setminus Y\}$
- $\langle 1 \rangle 5$ .  $\{U_1, \ldots, U_n\}$  is a finite subset of  $\mathcal{A}$  that covers Y.
- $\langle 1 \rangle 6$ . Q.E.D.

Proof: Proposition 9.5.5.

Corollary 9.5.6.1. Not every compact Hausdorff space is connected.

PROOF: The space  $[0,1] \cup [2,3]$  is compact Hausdorff and disconnected.  $\square$ 

Corollary 9.5.6.2. Not every compact Hausdorff space is path connected.

Corollary 9.5.6.3. Not every compact Hausdorff space is locally connected.

The space  $[0,1] \cap \mathbb{Q}$  is not locally connected.

Corollary 9.5.6.4. Not every compact Hausdorff space is locally path connected.

Proposition 9.5.7. Not every open subspace of a compact space is compact.

PROOF: The space [0,1] is compact but (0,1) is not.  $\square$ 

**Lemma 9.5.8.** If Y is a compact subspace of the Hausdorff space X and  $a \notin Y$ , then there exist disjoint open sets U and V of X containing a and Y, respectively.

### Proof:

- $\langle 1 \rangle 1$ . For  $y \in Y$ , there exist disjoint open sets U and V such that  $a \in U$  and  $y \in V$ .
- $\langle 1 \rangle 2$ . {V open in  $X : \exists U$  open and disjoint from  $V.a \in U$ } is a covering of Y by open sets in X.
- $\langle 1 \rangle 3$ . PICK a finite subset  $\{V_1, \ldots, V_n\}$  that covers Y.
- $\langle 1 \rangle 4$ . For  $1 \leq i \leq n$ , PICK $U_i$  disjoint from  $V_i$  such that  $a \in U_i$
- $\langle 1 \rangle 5$ . Let:  $U = U_1 \cap \cdots \cap U_n$  and  $V = V_1 \cup \cdots \cup V_n$

Proposition 9.5.9. Every compact subspace of a Hausdorff space is closed.

#### **PROOF**

- $\langle 1 \rangle 1$ . Let: X be a Hausdorff space and  $Y \subseteq X$  be compact.
- $\langle 1 \rangle$ 2. Every point  $a \notin Y$  has an open neighbourhood disjoint from Y. PROOF: By Lemma 9.5.8.
- $\langle 1 \rangle 3$ . Q.E.D.

PROOF: By Proposition 3.2.3.

**Proposition 9.5.10.** The image of a compact space under a continuous map is compact.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $f: X \to Y$  be continuous where X is compact.
- $\langle 1 \rangle 2$ . Let:  $\mathcal{A}$  be a covering of f(X) by open sets in Y.
- $\langle 1 \rangle 3$ .  $\{ f^{-1}(U) : U \in \mathcal{A} \}$  is an open covering of X.
- $\langle 1 \rangle 4$ . PICK a finite subcovering  $\{f^{-1}(U_1), \dots, f^{-1}(U_n)\}$
- $\langle 1 \rangle 5$ .  $\{U_1, \ldots, U_n\}$  is a finite subset of  $\mathcal{A}$  that covers f(X).
- $\langle 1 \rangle 6$ . Q.E.D.

PROOF: By Proposition 9.5.5.

Corollary 9.5.10.1. Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of topological spaces. If  $\prod_{{\alpha}\in J} X_{\alpha}$  is compact then each  $X_{\alpha}$  is compact.

Corollary 9.5.10.2.  $S_{\Omega} \times \overline{S_{\Omega}}$  is compact.

Corollary 9.5.10.3. The Sorgenfrey plane is not compact.

Corollary 9.5.10.4. For any nonempty set I, the sapce  $\mathbb{R}^I$  is not compact.

**Corollary 9.5.10.5.** Let  $\mathcal{T}$  and  $\mathcal{T}'$  be topologies on the same set X. If  $\mathcal{T} \subseteq \mathcal{T}'$  and  $\mathcal{T}'$  is compact then  $\mathcal{T}$  is compact.

Corollary 9.5.10.6. The space  $\mathbb{R}_K$  is not compact.

**Theorem 9.5.11.** Let  $f: X \to Y$  be a bijective continuous function. If X is compact and Y is Hausdorff then f is a homeomorphism.

#### Proof:

- $\langle 1 \rangle 1$ . Let: C be closed in X
- $\langle 1 \rangle 2$ . C is compact

Proof: Proposition 9.5.6.

 $\langle 1 \rangle 3$ . f(C) is compact

Proof: Proposition 9.5.10

 $\langle 1 \rangle 4$ . f(C) is closed

PROOF: Proposition 9.5.9.

 $\langle 1 \rangle$ 5. Q.E.D.

PROOF: By Theorem 5.2.2 we have that  $f^{-1}$  is continuous.

**Corollary 9.5.11.1.** Let  $\mathcal{T}$  and  $\mathcal{T}'$  be topologies on the same set X. If  $\mathcal{T} \subseteq \mathcal{T}'$ ,  $\mathcal{T}$  is Hausdorff and  $\mathcal{T}'$  is compact then  $\mathcal{T} = \mathcal{T}'$ .

Corollary 9.5.11.2. The space [0,1] is not compact as a subspace of  $\mathbb{R}_K$ .

**Theorem 9.5.12** (Tube Lemma). Let A and B be subspaces of X and Y, respectively; let N be an open set in  $X \times Y$  including  $A \times B$ . If A and B are compact, then there exist open sets U and V in X and Y, respectively, such that

$$A \times B \subseteq U \times V \subseteq N$$
.

## Proof:

 $\langle 1 \rangle 1.$  For all  $a \in A,$  there exist open sets U and V in X and Y, respectively, such that

$$\{a\} \times B \subseteq U \times V \subseteq N$$
.

- $\langle 2 \rangle 1$ . Let:  $a \in A$
- $\langle 2 \rangle 2$ . For all  $b \in B$ , there exist open sets U and V in X and Y, respectively, such that  $(a,b) \in U \times V \subseteq N$ .
- $\langle 2 \rangle 3$ .  $\{ V \text{ open in } Y : \exists U \text{ open in } X.a \in U, U \times V \subseteq N \}$  covers B
- $\langle 2 \rangle 4$ . PICK a finite subset  $\{V_1, \ldots, V_n\}$  that covers B.
- $\langle 2 \rangle$ 5. For  $1 \leq i \leq n$ , PICK  $U_i$  open in X such that  $a \in U_i$  and  $U_i \times V_i \subseteq N$
- $\langle 2 \rangle 6$ . Let:  $U = U_1 \cap \cdots \cap U_n$  and  $V = V_1 \cup \cdots \cup V_n$
- $\langle 1 \rangle 2$ . {U open in  $X : \exists V$  open in  $Y.B \subseteq V$  and  $U \times V \subseteq N$ } covers A.
- $\langle 1 \rangle 3$ . PICK a finite subset  $\{U_1, \ldots, U_n\}$  that covers A.
- $\langle 1 \rangle 4$ . For  $1 \leq i \leq n$ , PICK  $V_i$  open in B such that  $B \subseteq V_i$  and  $U_i \times V_i \subseteq N$ .
- $\langle 1 \rangle 5$ . Let:  $U = U_1 \cup \cdots \cup U_n$  and  $V = V_1 \cap \cdots \cap V_n$
- $\langle 1 \rangle 6. \ A \times B \subseteq U \times V \subseteq N$

**Lemma 9.5.13.** Let A be a set of basis elements for  $X \times Y$  such that no finite subset of A covers  $X \times Y$ . If X is compact, then there exists a point  $x \in X$  such that no finite subset of A covers  $\{x\} \times Y$ .

#### PROOF:

- $\langle 1 \rangle 1$ . Assume: X is compact.
- $\langle 1 \rangle 2$ . Assume: For all  $x \in X$ , there is a finite subset of  $\mathcal{A}$  that covers  $\{x\} \times Y$  Prove: A finite subset of  $\mathcal{A}$  covers  $X \times Y$
- $\langle 1 \rangle 3$ .  $\{ U \text{ open in } X : \exists U_1 \times V_1, \dots, U_r \times V_r \in \mathcal{A}. U = U_1 \cap \dots \cap U_r, Y = V_1 \cup \dots \cup V_r \} \text{ covers } X.$
- $\langle 1 \rangle 4$ . PICK a finite subcover  $\{U_1, \ldots, U_n\}$
- $\langle 1 \rangle$ 5. For  $1 \leq i \leq n$ , PICK $U_{i1} \times V_{i1}, \dots, U_{ir_i} \times V_{ir_i} \in \mathcal{A}$  such that  $U_i = U_{i1} \cap \dots \cap U_{ir_i}$  and  $Y = V_{i1} \cup \dots \cup V_{ir_i}$
- $\langle 1 \rangle 6. \ \{U_{ij} : 1 \leq i \leq n, 1 \leq j \leq r_i\} \text{ covers } X \times Y$

**Proposition 9.5.14.** The product of two compact spaces is compact.

#### **PROOF**

- $\langle 1 \rangle 1$ . Let: X and Y be compact spaces.
- $\langle 1 \rangle 2$ . Let:  $\mathcal{A}$  be an open covering of  $X \times Y$
- $\langle 1 \rangle 3$ . For all  $x \in X$ , there exists a neighbourhood W of x such that  $W \times Y$  is covered by finitely many elements of  $\mathcal{A}$ .
  - $\langle 2 \rangle 1$ . Let:  $x \in X$
  - $\langle 2 \rangle 2$ .  $\{x\} \times Y$  is compact.

PROOF: It is homeomorphic to Y.

- $\langle 2 \rangle$ 3. PICK a finite subset  $\{U_1, \ldots, U_m\}$  of  $\mathcal{A}$  that covers  $\{x\} \times Y$  PROOF: By Proposition 9.5.5.
- $\langle 2 \rangle 4$ . There exists a neighbourhood W of x such that  $W \times Y \subseteq U_1 \cup \cdots \cup U_m$  PROOF: By the Tube Lemma.
- $\langle 1 \rangle 4$ . {W open in  $X : W \times Y$  is covered by finitely many elements of  $\mathcal{A}$ } is an open covering of X.
- $\langle 1 \rangle 5$ . Pick a finite subcovering  $\{W_1, \dots, W_n\}$
- $\langle 1 \rangle 6$ . For  $1 \leq i \leq n$ , PICK a finite subset  $\{U_{i1}, \ldots, U_{ir_i}\}$  of  $\mathcal{A}$  that covers  $W_i \times Y$
- $\langle 1 \rangle 7$ .  $\{U_{11}, \ldots, U_{nr_n}\}$  is a finite subcovering of  $\mathcal{A}$ .

**Proposition 9.5.15.** A topological space is compact if and only if every nonempty set of closed sets that has the finite intersection property has nonempty intersection.

PROOF: Immediate from definitions.

**Lemma 9.5.16.** If Y is compact then  $\pi_1: X \times Y \to X$  is a closed map.

#### Proof:

 $\langle 1 \rangle 1$ . Let:  $C \subseteq X \times Y$  be closed

```
\langle 1 \rangle 2. Let: x \in X \setminus \pi_1(C)
```

- $\langle 1 \rangle 3$ . For all  $y \in Y$ , we have  $(x, y) \notin C$
- $\langle 1 \rangle 4$ . For all  $y \in Y$ , there exist open neighbourhoods U of x and V of y such that  $U \times V \subseteq (X \times Y) \setminus C$
- $\langle 1 \rangle$ 5.  $\{ V \text{ open in } Y : \exists U \text{ an open neighbourhood of } x \text{ such that } U \times V \subseteq (X \times Y) \setminus C \}$  is an open covering of Y.
- $\langle 1 \rangle 6$ . PICK a finite subcovering  $\{V_1, \ldots, V_n\}$
- $\langle 1 \rangle$ 7. For  $1 \leq i \leq n$ , PICK an open neighbourhood  $U_i$  of x such that  $U_i \times V_i \subseteq (X \times Y) \setminus C$

$$\langle 1 \rangle 8. \ \ x \in U_1 \cap \cdots \cap U_n \subseteq X \setminus \pi_1(C)$$

**Theorem 9.5.17.** Let X be a compact space. Let  $f_n: X \to \mathbb{R}$  be a sequence of continuous functions such that, for all  $x \in X$ ,  $f_n(x) \to f(x)$  as  $n \to \infty$ . If f is continuous, and if the sequence  $(f_n)_n$  is monotone increasing, and if X is compact, then the convergence is uniform.

#### Proof:

 $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$ 

PROVE: There exists N such that, for all  $n \ge N$ , we have  $|f_n(x) - f(x)| < \frac{1}{2}$ 

 $\langle 1 \rangle 2$ . For  $n \in \mathbb{Z}^+$ ,

Let:  $U_n = \{x \in X : f(x) - f_n(x) < \epsilon\}$ 

 $\langle 1 \rangle 3$ . Each  $U_n$  is open

PROOF: Let  $g(x) = f(x) - f_n(x)$ . Then g is continuous and  $U_n = g^{-1}((-\infty, \epsilon))$ .

- $\langle 1 \rangle 4$ .  $\{U_n : n \geq 1\}$  is an open covering of X
  - $\langle 2 \rangle 1$ . Let:  $x \in X$
  - $\langle 2 \rangle 2$ . PICK N such that, for all  $n \geq N$ ,  $|f(x) f_n(x)| < \epsilon$

PROOF:  $f_n(x) \to f(x)$  as  $n \to \infty$ 

 $\langle 2 \rangle 3. \ f(x) - f_N(x) < \epsilon$ 

PROOF: This holds since the sequece  $(f_n)_n$  is monotone.

- $\langle 1 \rangle$ 5. PICK a finite subcovering  $\{U_{n_1}, \dots, U_{n_k}\}$
- $\langle 1 \rangle 6$ . Let:  $N = \max(n_1, \dots, n_k)$
- $\langle 1 \rangle 7$ . For all  $n \geq N$  we have  $|f_n(x) f(x)| < \epsilon$

Lemma 9.5.18. Every compact Hausdorff space is normal.

PROOF:From Thearem 9.4.2

 ${\bf Corollary~9.5.18.1.~\it The~\it ordered~\it square~\it is~\it normal.}$ 

**Theorem 9.5.19.** Let X be a complete linearly ordered set under the order topology. Then every closed interval in X is compact.

#### PROOF:

- $\langle 1 \rangle 1$ . Let: X be a complete linearly ordered set in the order topology
- $\langle 1 \rangle 2$ . Let:  $a, b \in X$ , a < b

```
PROVE: [a, b] is compact
\langle 1 \rangle 3. Let: \mathcal{A} be a set of open sets that covers [a, b]
\langle 1 \rangle 4. For all x \in [a,b), there exists y \in (x,b] such that [x,y] is covered by at
         most two points of A
   \langle 2 \rangle 1. Let: x \in [a, b]
   \langle 2 \rangle 2. Pick U \in \mathcal{A} such that x \in U
       PROOF: By \langle 1 \rangle 3 and \langle 2 \rangle 1
   \langle 2 \rangle 3. Pick y \in (x, b] such that [x, y) \subseteq U
       PROOF: By Lemma 4.1.2.
   \langle 2 \rangle 4. PICK V \in \mathcal{A} such that y \in V
       PROOF: By \langle 1 \rangle 3 and \langle 2 \rangle 3.
   \langle 2 \rangle 5. [x, y] is covered by \{U, V\}
       PROOF: By \langle 2 \rangle 3 and \langle 2 \rangle 4.
\langle 1 \rangle5. Let: C = \{ y \in (a, b] : [a, y] \text{ is covered by a finite subset of } \mathcal{A} \}
\langle 1 \rangle 6. C is nonempty
   Proof: By \langle 1 \rangle 4.
\langle 1 \rangle 7. Let: c = \sup C
   Proof: By \langle 1 \rangle 1.
\langle 1 \rangle 8. \ c \in C
    \langle 2 \rangle 1. Pick U \in \mathcal{A} such that c \in U
   \langle 2 \rangle 2. Pick y \in [a, c) such that (y, c] \subseteq U
       Proof: By Lemma 4.1.2
   \langle 2 \rangle 3. Pick z such that y < z and z \in C
       PROOF: This exists because y is not an upper bound for C.
   \langle 2 \rangle 4. PICK a finite \mathcal{A}_0 \subseteq \mathcal{A} such that [a, z] is covered by \mathcal{A}_0
   \langle 2 \rangle5. [a, c] is covered by \mathcal{A}_0 \cup \{U\}
\langle 1 \rangle 9. \ c = b
    \langle 2 \rangle 1. Assume: for a contradiction c < b
   \langle 2 \rangle 2. PICK y \in (c, b] such that [c, y] is covered by at most two elements of \mathcal{A}.
       Proof: By \langle 1 \rangle 4
    \langle 2 \rangle 3. \ y > c \text{ and } y \in C
   \langle 2 \rangle 4. Q.E.D.
       PROOF: This contradicts \langle 1 \rangle 7.
\langle 1 \rangle 10. Q.E.D.
```

### Corollary 9.5.19.1. Every closed interval in $\mathbb{R}$ is compact.

#### Corollary 9.5.19.2 (CC). $S_{\Omega}$ is limit point compact.

#### Proof:

- $\langle 1 \rangle 1$ . Let: A be an infinite subset of  $S_{\Omega}$
- $\langle 1 \rangle 2$ . Pick a countably infinite subset  $B \subseteq A$
- $\langle 1 \rangle 3$ . Let:  $b = \sup B$
- $\langle 1 \rangle 4$ .  $B \subseteq [0, b]$
- $\langle 1 \rangle 5$ . [0, b] is compact

PROOF: By the theorem.

 $\langle 1 \rangle 6$ . B has a limit point in [0, b]

 $\langle 1 \rangle 7$ . A has a limit point in [0, b]

Corollary 9.5.19.3. The ordered square is compact.

Corollary 9.5.19.4. The ordered square is limit point compact.

Corollary 9.5.19.5. Not every subspace of a compact space is compact.

PROOF: [0,1] is compact but (0,1) is not.  $\square$ 

**Theorem 9.5.20** (Extreme Value Theorem). Let  $f: X \to Y$  be continuous where Y is a linearly ordered set in the order topology. If X is compact, then there exist  $c, d \in X$  such that, for all  $x \in X$ , we have  $f(c) \leq f(x) \leq f(d)$ .

#### Proof:

 $\langle 1 \rangle 1$ . f(X) is compact.

Proof: By Proposition 9.5.10.

- $\langle 1 \rangle 2$ . f(X) has a greatest element.
  - $\langle 2 \rangle 1$ . Assume: for a contradiction f(X) has no greatest element.
  - $\langle 2 \rangle 2$ .  $\{(-\infty, f(x)) : x \in X\}$  is a set of open sets that covers f(X).
  - $\langle 2 \rangle 3$ . PICK a finite subset  $\{(-\infty, f(x_1)), \dots, (-\infty, f(x_n))\}$  that covers f(X). PROOF: By Proposition 9.5.5
  - $\langle 2 \rangle 4$ . Let:  $f(x_N)$  be largest out of  $f(x_1), \ldots, f(x_n)$
  - $\langle 2 \rangle 5$ .  $f(x_N) < f(x_N)$
  - $\langle 2 \rangle 6$ . Q.E.D.

Proof: This is a contradiction.

 $\langle 1 \rangle 3$ . f(X) has a least element.

PROOF: Similar.

П

**Theorem 9.5.21** (DC). A nonempty compact Hausdorff space with no isolated points is uncountable.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a nonempty compact Hausdorff space with no isolated points.
- $\langle 1 \rangle 2$ . For every nonempty open  $U \subseteq X$  and point  $x \in X$ , there exists a nonempty open  $V \subseteq U$  such that  $x \notin \overline{V}$ 
  - $\langle 2 \rangle 1$ . Let:  $U \subseteq X$  be nonempty and open and  $x \in X$
  - $\langle 2 \rangle 2$ . PICK  $y \in U$  such that  $y \neq x$

PROOF: This is possible because  $U \neq \{x\}$  since x is not an isolated point.

- $\langle 2 \rangle$ 3. PICK disjoint open neighbourhoods  $W_1$  and  $W_2$  of x and y PROOF: Since X is Hausdorff
- $\langle 2 \rangle 4$ . Let:  $V = U \cap W_2$
- $\langle 2 \rangle 5. \ x \notin \overline{V}$

PROOF: We have  $\overline{V} \subseteq \overline{W_2} \subseteq X \setminus W_1$ .

 $\langle 1 \rangle 3$ . Let:  $f: \mathbb{Z}^+ \to X$ 

Prove: f is not surjective

 $\langle 1 \rangle 4$ . PICK a sequence of open sets  $V_1 \supseteq V_2 \supseteq \cdots$  such that  $f(n) \notin \overline{V_n}$ 

```
PROOF: By \langle 1 \rangle 2 and Dependent Choice. \langle 1 \rangle 5. Pick a point b \in \bigcap_{i=1}^{\infty} \overline{V_i}
PROOF: By Proposition 9.5.15. \langle 1 \rangle 6. b \neq f(n) for all n
PROOF: For each n we have b \in \overline{V_n} (\langle 1 \rangle 5) and f(n) \notin \overline{V_n} (\langle 1 \rangle 4).
```

Corollary 9.5.21.1. Every closed interval in  $\mathbb{R}$  is uncountable.

Theorem 9.5.22. Every compact space is limit point compact.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be a compact space.
- $\langle 1 \rangle 2$ . Let:  $A \subseteq X$  be a set with no limit points. Prove: A is finite.
- $\langle 1 \rangle 3$ . A is closed.

PROOF: By Corollary 3.15.3.1.

 $\langle 1 \rangle 4$ . A is compact.

PROOF: By Proposition 9.5.6.

- $\langle 1 \rangle 5$ .  $\{ U \text{ open in } X : U \cap A \text{ is a singleton} \} \text{ covers } A$ 
  - $\langle 2 \rangle 1$ . Let:  $a \in A$
  - $\langle 2 \rangle$ 2. PICK an open neighbourhood U of a such that U does not intersect A at a point other than a

PROOF: One must exist because a is not a limit point of  $A(\langle 1 \rangle 2)$ .

- $\langle 2 \rangle 3$ .  $U \cap A = \{a\}$
- $\langle 1 \rangle 6$ . PICK a finite subcover  $\{U_1, \ldots, U_n\}$

PROOF: By  $\langle 1 \rangle 4$  using Proposition 9.5.5.

 $\langle 1 \rangle 7$ . For  $1 \le i \le n$ , LET:  $U_i \cap A = \{a_i\}$  $\langle 1 \rangle 8$ .  $A = \{a_1, \dots, a_n\}$ 

**Proposition 9.5.23.** *Let* X *be a space and*  $C, D \subseteq X$  *be compact. Then*  $C \cup D$  *is compact.* 

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{A}$  be a set of open sets that covers  $C \cup D$
- $\langle 1 \rangle$ 2. PICK a finite subset  $A_1$  that covers C and a finite subset  $A_2$  that covers D.
- $\langle 1 \rangle 3$ .  $A_1 \cup A_2$  is a finite subset of A that covers  $C \cup D$ .
- $\langle 1 \rangle 4$ . Q.E.D.

**Proposition 9.5.24.** Not every compact Hausdorff space is first countable.

PROOF: The space  $\overline{S_{\Omega}}$  is compact Hausdorff but not first countable.  $\square$ 

Corollary 9.5.24.1. Not every compact Hausdorff space is second countable.

**Theorem 9.5.25** (Tychonoff (AC)). The product of a family of compact spaces is compact.

 $\langle 1 \rangle 1$ . Let:  $\{X_{\alpha}\}_{{\alpha} \in J}$  be a family of compact spaces.

Let:  $X = \prod_{\alpha \in J} X_{\alpha}$  $\langle 1 \rangle 2$ . Let:  $\mathcal{A} \subseteq \mathcal{P}X$  satisfy the finite intersection property.

PROVE:  $\bigcap_{A \in \mathcal{A}} \overline{A}$  is nonempty.

 $\langle 1 \rangle 3$ . PICK a set  $\mathcal{D} \subseteq \mathcal{P}X$  that includes  $\mathcal{A}$  and is maximal with respect to the finite intersection property.

Proof: By Lemma 1.12.6.

- $\langle 1 \rangle 4$ . For  $\alpha \in J$ , PICK  $x_{\alpha} \in \bigcap_{D \in \mathcal{D}} \overline{\pi_{\alpha}(D)}$ 
  - $\langle 2 \rangle 1$ . Let:  $\alpha \in J$
  - $\langle 2 \rangle 2$ .  $\{ \overline{\pi_{\alpha}(D)} : D \in \mathcal{D} \}$  satisfies the finite intersection property.
  - $\langle 2 \rangle 3$ . Q.E.D.

Proof: By Proposition 9.5.15

- $\langle 1 \rangle 5$ . Let:  $x = (x_{\alpha})_{\alpha \in J}$
- $\langle 1 \rangle 6$ . For all  $D \in \mathcal{D}$  we have  $(x_{\alpha})_{\alpha \in J} \in \overline{D}$

- $\langle 2 \rangle 1$ . Every subbasis element containing x intersects every member of  $\mathcal{D}$ 
  - $\langle 3 \rangle 1$ . Let:  $\pi_{\alpha}(U)^{-1}$  be a subbasis element containing x where U is open in  $X_{\alpha}$
  - $\langle 3 \rangle 2$ . Let:  $D \in \mathcal{D}$
  - $\langle 3 \rangle 3$ . U intersects  $\pi_{\alpha}(D)$
- $\langle 2 \rangle 2$ . Every subbasis element containing x is a member of  $\mathcal{D}$

Proof: By Lemma 1.12.8

- $\langle 2 \rangle 3$ . Every basis element containing x is a member of  $\mathcal{D}$ 
  - Proof: By Lemma 1.12.7
- $\langle 2 \rangle 4$ . Every basis element containing x intersects every member of  $\mathcal{D}$ PROOF: This follows because  $\mathcal{D}$  satisfies the finite intersection property.  $\langle 1 \rangle 7$ . Q.E.D.

Proof: By Proposition 9.5.15

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\{X_{\alpha}\}_{{\alpha} \in J}$  be a family of compact spaces and  $X = \prod_{{\alpha} \in J} X_{\alpha}$ .
- $\langle 1 \rangle 2$ . PICK a well-ordering  $\langle$  of J such that J has a greatest element  $\top$
- $\langle 1 \rangle 3$ . For all  $\alpha \in J$  and every family of points  $p = \{p_i \in X_i\}_{i < \alpha}$ , Let:  $Y_{\alpha}(p) = \{x \in X : \forall i \leq \alpha. x_i = p_i\}$
- $\langle 1 \rangle 4$ . For all  $\beta \in J$  and every family of points  $p = \{p_i \in X_i\}_{i < \beta}$ , Let:  $Z_{\beta}(p) = \bigcap_{\alpha < \beta} Y_{\alpha} = \{x \in X : \forall i < \beta.x_i = p_i\}$
- $\langle 1 \rangle$ 5. Given  $\beta \in J$ , a family of points  $\{p_i \in X_i\}_{i < \beta}$ , and a finite set  $\mathcal{A}$  of basis elements that covers  $Z_{\beta}(p)$ , there exists  $\alpha < \beta$  such that  $\mathcal{A}$  covers  $Y_{\alpha}(p)$ 
  - $\langle 2 \rangle 1$ . Assume: ( w.l.o.g.  $\beta$  has no immediate predecessor)
  - $\langle 2 \rangle 2$ . For  $A \in \mathcal{A}$ ,

Let:  $J_A = \{i < \beta : \pi_i(A) \neq X_i\}$ 

 $\langle 2 \rangle 3$ . Let:  $\alpha$  be the largest element of  $\bigcup_{A \in \mathcal{A}} J_A$ 

PROOF: The set has a greatest element because each  $J_A$  is finite and A is

finite.

 $\langle 2 \rangle 4$ .  $\mathcal{A}$  covers  $Y_{\alpha}(p)$ 

 $\langle 3 \rangle 1$ . Let:  $x \in Y_{\alpha}(p)$ 

 $\langle 3 \rangle 2$ . Let:  $y \in Z_{\beta}(p)$  be the point with

$$y_i = \begin{cases} p_i & \text{if } i < \beta \\ x_i & \text{if } i \ge \beta \end{cases}$$

 $\langle 3 \rangle 3$ . Pick  $A \in \mathcal{A}$  such that  $y \in A$ 

 $\langle 3 \rangle 4. \ x \in A$ 

 $\langle 4 \rangle 1$ . For  $i \leq \alpha$  we have  $x_i \in \pi_i(A)$ 

 $\langle 5 \rangle 1. \ x_i = p_i$ 

PROOF: From  $\langle 3 \rangle 1$  and  $\langle 1 \rangle 3$ .

 $\langle 5 \rangle 2. \ y_i = p_i$ 

Proof: From  $\langle 3 \rangle 2$ 

 $\langle 5 \rangle 3. \ y_i \in \pi_i(A)$ 

PROOF: From  $\langle 3 \rangle 3$ .

 $\langle 4 \rangle 2$ . For  $\alpha < i < \beta$  we have  $x_i \in \pi_i(A)$ 

 $\langle 5 \rangle 1. \ i \notin J_A$ 

PROOF: From  $\langle 2 \rangle 3$ 

 $\langle 5 \rangle 2. \ \pi_i(A) = X_i$ 

Proof: From  $\langle 2 \rangle 2$ 

 $\langle 4 \rangle 3$ . For  $i \geq \beta$  we have  $x_i \in \pi_i(A)$ 

 $\langle 5 \rangle 1. \ x_i = y_i$ 

PROOF: By  $\langle 3 \rangle 2$ 

 $\langle 5 \rangle 2. \ y_i \in \pi_i(A)$ 

PROOF: By  $\langle 3 \rangle 3$ 

 $\langle 1 \rangle 6.$  Assume: for a contradiction  ${\mathcal A}$  is a set of basis elements such that no finite subset covers X

- $\langle 1 \rangle$ 7. For all  $\alpha \in J$  there exists a family of points  $\{p_i \in X_i\}_{i \leq \alpha}$  such that no finite subset of  $\mathcal{A}$  covers  $Y_{\alpha}(p)$ 
  - $\langle 2 \rangle 1$ . Assume: as induction hypothesis  $\beta \in J$  and  $p_i$  has been chosen for all  $i < \beta$  such that, for all  $\alpha < \beta$ , no finite subset of  $\mathcal{A}$  covers  $Y_{\alpha}(p)$

 $\langle 2 \rangle 2$ . No finite subset of  $\mathcal{A}$  covers  $Z_{\beta}(p)$ 

Proof: By  $\langle 1 \rangle 5$ 

(2)3. PICK  $p_{\beta} \in X_{\beta}$  such that no finite subset of  $\mathcal{A}$  covers  $Z_{\beta}(p) \times \{p_{\beta}\} = Y_{\beta}(p)$ 

Proof: By Lemma 9.5.13.

(1)8. Q.E.D

PROOF: This is a contradiction since  $Y_{\top}(p) = \{p\}$  and so must be covered by a single element of  $\mathcal{A}$ .

**Theorem 9.5.26.** In a compact Hausdorff space, the components and the quasicomponents coincide.

Proof:

 $\langle 1 \rangle 1$ . Let: X be a compact Hausdorff space and  $x,y \in X$  lie in the same quasicomponent.

PROVE: x and y are in the same component.

- $\langle 1 \rangle 2$ . Let:  $\mathcal{A}$  be the set of all closed subspaces A of X such that x and y lie in the same quasicomponent of A.
- $\langle 1 \rangle 3$ . Every chain in  $\mathcal{A}$  has a lower bound.
  - $\langle 2 \rangle$ 1. Let:  $\mathcal{B} \subseteq \mathcal{A}$  be a chain Prove:  $Y = \bigcap \mathcal{B} \in \mathcal{A}$
  - $\langle 2 \rangle 2$ . Assume: for a contradiction  $Y = C \cup D$  were C and D are disjoint and open in  $Y, x \in C$  and  $y \in D$
  - $\langle 2 \rangle 3$ . PICK disjoint open sets U and V in X such that  $C \subseteq U$  and  $D \subseteq V$  PROOF: By Lemma 9.5.18.
  - $\langle 2 \rangle 4$ .  $\{B \setminus (U \cup V) : B \in \mathcal{B}\}$  satisfies the finite intersection property.
    - $\langle 3 \rangle 1$ . Let:  $B_1, \ldots, B_n \in \mathcal{B}$
    - $\langle 3 \rangle 2. \ B_1 \cap \cdots \cap B_n \in \mathcal{B}$

Proof: By  $\langle 2 \rangle 1$ .

 $\langle 3 \rangle 3. \ B_1 \cap \cdots \cap B_n \setminus (U \cap V)$  is nonempty

PROOF:  $B_1 \cap \cdots \cap B_n \cap U$  and  $B_1 \cap \cdots \cap B_n \cap V$  cannot be disjoint, because x and y are in the same quasicomponent of  $B_1 \cap \cdots \cap B_n$ .

 $\langle 2 \rangle$ 5.  $Y \setminus (U \cup V)$  is nonempty.

PROOF: By Proposition 9.5.15.

 $\langle 2 \rangle 6$ . Q.E.D.

PROOF: This is a contradiction since  $Y \setminus (U \cup V) = Y \setminus (C \cup D)$ .

 $\langle 1 \rangle 4$ . Pick a minimal element  $D \in \mathcal{A}$ 

PROOF: One exists by Zorn's Lemma.

- $\langle 1 \rangle 5$ . D is connected.
  - $\langle 2 \rangle 1$ . Assume: [

for a contradiction  $D = U \uplus V$  is a separation of D

 $\langle 2 \rangle 2$ . Case:  $x, y \in U$ 

PROOF: In this case we have  $U \in \mathcal{A}$  contradicting the minimality of D.

 $\langle 2 \rangle 3$ . Case:  $x \in U, y \in V$ 

PROOF: This is a contradiction because x and y are in the same quasicomponent of D.

 $\langle 2 \rangle 4$ . Case:  $x \in V, y \in U$ 

PROOF: Similar to  $\langle 2 \rangle 3$ .

 $\langle 2 \rangle$ 5. Case:  $x, y \in V$ 

PROOF: Similar to  $\langle 2 \rangle 2$ .

## 9.6 Perfect Maps

**Proposition 9.6.1.** Let  $p: X \to Y$  be a closed continuous surjective map. For all  $y \in Y$  and U an open neighbourhood of  $p^{-1}(y)$ , there exists an open neighbourhood W of y such that  $p^{-1}(W) \subseteq U$ .

PROOF: Take  $W = Y \setminus p(X \setminus U)$ .  $\square$ 

**Proposition 9.6.2** (AC). Let  $p: X \rightarrow Y$  be a closed continuous surjective map. If X is normal then Y is normal.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $A, B \subseteq Y$  be closed
- $\langle 1 \rangle 2$ .  $p^{-1}(A)$ ,  $p^{-1}(B)$  are closed in X.
- $\langle 1 \rangle 3$ . PICK disjoint open sets U, V of  $p^{-1}(A), p^{-1}(B)$  respectively.
- $\langle 1 \rangle 4$ . For all  $a \in A$ , PICK an open neighbourhood  $W_a$  of a such that  $p^{-1}(W_a) \subseteq U$

Proof: By Proposition 9.6.1.

 $\langle 1 \rangle$ 5. For all  $b \in B$ , PICK an open neighbourhood  $W_b'$  of b such that  $p^{-1}(W_b') \subseteq V$ 

PROOF: By Proposition 9.6.1.

- $\langle 1 \rangle$ 6. Let:  $W = \bigcup_{a \in A} W_a$  and  $W' = \bigcup_{b \in B} W'_b$
- $\langle 1 \rangle 7. \ W \cap W' = \emptyset$

PROOF: This holds because  $p^{-1}(W) \subseteq U$ ,  $p^{-1}(W') \subseteq V$ , and p is surjective.

**Definition 9.6.3** (Perfect Map). Let X and Y be topological spaces and  $p: X \to Y$ . Then p is perfect iff p is closed, continuous, surjective, and  $p^{-1}(y)$  is compact for all  $y \in Y$ .

**Proposition 9.6.4.** Let  $p: X \to Y$  be a perfect map. If X is Hausdorff then so is Y.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $a, b \in Y$  with  $a \neq b$
- $\langle 1 \rangle 2.$  Pick disjoint open neighbourhoods U and V of  $\pi^{-1}(a)$  and  $\pi^{-1}(b),$  respectively.

Proof: By Lemma 9.5.18.

 $\langle 1 \rangle 3$ . Pick open neighbourhoods W and W' of a and b such that  $\pi^{-1}(W) \subseteq U$  and  $\pi^{-1}(W') \subseteq V$ 

Proof: By Proposition 9.6.1.

 $\langle 1 \rangle 4$ . W and W' are disjoint.

**Proposition 9.6.5.** Let  $p: X \rightarrow Y$  be perfect. If X is regular then so is Y.

#### Proof:

 $\langle 1 \rangle 1$ . Y is  $T_1$ 

Proof: By Proposition 9.6.4.

- $\langle 1 \rangle 2$ . Let:  $C \subseteq Y$  be closed and  $a \in Y \setminus C$
- $\langle 1 \rangle 3$ .  $p^{-1}(C)$  is closed and  $p^{-1}(a)$  is disjoint from  $p^{-1}(C)$ .
- $\langle 1 \rangle 4$ . PICK disjoint open neighbourhoods U, V of  $p^{-1}(C), p^{-1}(a)$  respectively. PROOF: By Lemma 9.5.8.
- $\langle 1 \rangle$ 5. PICK an open neighbourhood W' of a such that  $p^{-1}(W') \subseteq V$  PROOF: By Proposition 9.6.1.
- $\langle 1 \rangle$ 6. For  $c \in C$ , PICK an open neighbourhood  $W_c$  such that  $p^{-1}(W_c) \subseteq U$

```
\langle 1 \rangle7. W = \bigcup_{c \in C} W_c is an open neighbourhood of C disjoint from W'
Proposition 9.6.6 (AC). Let p: X \rightarrow Y be perfect. If X is locally compact
then so is Y.
Proof:
\langle 1 \rangle 1. Let: b \in Y
\langle 1 \rangle 2. {U open in X : \exists C \subseteq X \text{ compact.} U \subseteq C} covers p^{-1}(b)
\langle 1 \rangle 3. PICK a finite subcover \{U_1, \ldots, U_n\}
\langle 1 \rangle 4. For 1 \leq i \leq n, Pick a compact C_i \subseteq X such that U_i \subseteq C_i
(1)5. For 1 \leq i \leq n, PICK a neighbourhood W_i of b such that p^{-1}(W_i) \subseteq U_i
   Proof: By Proposition 9.6.1
\langle 1 \rangle 6. \ b \in W_1 \cup \cdots \cup W_n \subseteq p(C_1) \cup \cdots \cup p(C_n)
\langle 1 \rangle 7. p(C_1) \cup \cdots \cup p(C_n) is compact.
   \langle 2 \rangle 1. Each p(C_i) is compact.
      PROOF: By Proposition 9.5.10.
   \langle 2 \rangle 2. Q.E.D.
      Proof: By Proposition 9.5.23.
Proposition 9.6.7. The image of a regular space under a perfect map is regular.
Proof:
\langle 1 \rangle 1. Let: p: X \to Y be a perfect map where X is regular.
\langle 1 \rangle 2. Let: A \subseteq Y be closed and a \notin A.
\langle 1 \rangle 3. PICK disjoint open neighbourhoods U and V of p^{-1}(A) and p^{-1}(a) re-
       spectively.
```

## 9.7 Sequential Compactness

Proof: Lemma 9.5.8

 $p^{-1}(V') \subseteq V$ . PROOF: Lemma 5.3.2.  $\langle 1 \rangle$ 5. U' and V' are disjoint.

Proof: By Proposition 9.6.1.

**Definition 9.7.1** (Sequentially Compact). A space is *sequentially compact* iff every sequence has a convergent subsequence.

 $\langle 1 \rangle 4$ . PICK neighbourhoods U' of A and V' of a such that  $p^{-1}(U') \subseteq U$  and

**Proposition 9.7.2.**  $\overline{S_{\Omega}}$  is not sequentially compact.

PROOF:  $\Omega$  is a limit point of  $S_{\Omega}$  but is not the limit of any sequence of points in  $S_{\Omega}$ .  $\square$ 

## 9.8 Local Compactness

**Definition 9.8.1** (Local Compactness). Let X be a topological space.

For  $x \in X$ , the space X is *locally compact* at x iff there exists a compact subspace  $C \subseteq X$  that includes a neighbourhood of x.

The space X is *locally compact* iff it is locally compact at every point.

**Proposition 9.8.2.** Every complete linearly ordered set is locally compact under the order topology.

#### Proof:

 $\langle 1 \rangle 1$ . Let: L be a complete linearly ordered set and  $x \in L$ 

PROVE: There exists a compact subspace  $C \subseteq L$  that includes a neighbourhood U of x

 $\langle 1 \rangle 2$ . Case: x is least and greatest in L

PROOF: In this case,  $L = \{x\}$  is compact.

- $\langle 1 \rangle 3$ . Case: x is least in L but not greatest
  - $\langle 2 \rangle 1$ . Pick a < x
  - $\langle 2 \rangle 2$ . Take C = [a, x] and U = (a, x]
- $\langle 1 \rangle 4$ . Case: x is greatest in L but not least

PROOF: Similar.

- $\langle 1 \rangle$ 5. Case: x is neither least nor greatest
  - $\langle 2 \rangle 1$ . Pick a < x and b > x
  - $\langle 2 \rangle 2$ . Take C = [a, b] and U = (a, b)

Corollary 9.8.2.1. For every ordinal  $\alpha$ , the space  $S_{\alpha}$  is locally compact.

**Theorem 9.8.3.** Every closed subspace of a locally compact Hausdorff space is locally compact.

#### Proof:

- $\langle 1 \rangle 1$ . Let: X be locally compact Hausdorff and  $C \subseteq X$  be closed.
- $\langle 1 \rangle 2$ . Let:  $x \in C$
- $\langle 1 \rangle 3$ . PICK  $D \subseteq X$  compact and  $U \subseteq D$  open such that  $x \in U$
- $\langle 1 \rangle 4$ . D is closed.

Proof: Proposition 9.5.9.

 $\langle 1 \rangle 5$ .  $C \cap D$  is closed

Proof: Proposition 3.6.5.

 $\langle 1 \rangle 6$ .  $C \cap D$  is compact

Proof: Proposition 9.5.6.

 $\langle 1 \rangle 7$ . Q.E.D.

PROOF:  $C \cap D \subseteq C$  is compact and includes the open neighbourhood  $U \cap C$  of x.

**Proposition 9.8.4.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of nonempty topological spaces. If  $\prod_{{\alpha}\in J} X_{\alpha}$  is locally compact, then each  $X_{\alpha}$  is locally compact.

| $\mathbf{T}$       | _          | _     |     | _  |   |
|--------------------|------------|-------|-----|----|---|
| $\boldsymbol{\nu}$ | $D_{\ell}$ | ` ` ( |     | L. | ٠ |
|                    | $n_{i}$    | . , , | . , | г. |   |

- $\langle 1 \rangle 1$ . Let:  $\alpha \in J$  and  $x_{\alpha} \in X_{\alpha}$
- $\langle 1 \rangle 2$ . Pick  $x_{\beta} \in X_{\beta}$  for all  $\beta \in J \setminus \{\alpha\}$
- (1)3. Pick a compact subspace  $C \subseteq \prod_{\alpha \in J} X_{\alpha}$  that a neighbourhood U of x included in C
- $\langle 1 \rangle 4$ . PICK a basic open set  $\prod_{\alpha \in J} U_{\alpha}$  such that  $x \in \prod_{\alpha \in J} U_{\alpha} \subseteq U$
- $\langle 1 \rangle 5. \ x_{\alpha} \in U_{\alpha} \subseteq \pi_{\alpha}(C)$
- $\langle 1 \rangle 6$ .  $\pi_{\alpha}(C)$  is compact.

Proof: By Proposition 9.5.10.

**Proposition 9.8.5.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of locally compact spaces such that  $X_{\alpha}$  is compact for all but finitely many values of  $\alpha$ . Then  $\prod_{\alpha \in I} X_{\alpha}$  is locally compact.

#### PROOF:

- $\langle 1 \rangle 1$ . Assume:  $X_{\alpha}$  is compact if  $\alpha \neq \alpha_1, \ldots, \alpha_n$
- $\langle 1 \rangle 2$ . Let:  $\vec{x} \in \prod_{\alpha \in J} X_{\alpha}$
- $\langle 1 \rangle 3$ . For  $1 \leq i \leq n$ , PICK  $C_{\alpha_i} \subseteq X_{\alpha_i}$  compact and  $U_{\alpha_i}$  open such that  $x_{\alpha_i} \in X_{\alpha_i}$  $U_{\alpha_i} \subseteq C_{\alpha_i}$
- $\langle 1 \rangle 4$ . For  $\alpha \neq \alpha_1, \dots, \alpha_n$ , Let:  $C_{\alpha} = U_{\alpha} = X_{\alpha}$
- $\begin{array}{l} \langle 1 \rangle 5. \ \, \vec{x} \in \prod_{\alpha \in J} U_{\alpha} \subseteq \prod_{\alpha \in J} C_{\alpha} \\ \langle 1 \rangle 6. \ \, \prod_{\alpha \in J} C_{\alpha} \text{ is compact} \end{array}$

PROOF: By Tychonoff's Theorem.

**Proposition 9.8.6.**  $\mathbb{R}_l$  is not locally compact.

PROOF:  $[0, +\infty)$  can be partitioned into infinitely many disjoint open sets, which therefore do not have a finite subcover.  $\square$ 

Corollary 9.8.6.1. The Sorgenfrey plane is not locally compact.

**Proposition 9.8.7.** Let  $\{X_{\alpha}\}_{{\alpha}\in J}$  be a family of nonempty topological spaces. If  $\prod_{\alpha \in J} X_{\alpha}$  is locally compact, then all but finitely many of the  $X_{\alpha}$  are compact.

- $\langle 1 \rangle 1$ . PICK a point  $a = (a_{\alpha})_{\alpha \in J} \in \prod_{\alpha \in J} X_{\alpha}$
- $\langle 1 \rangle 2$ . PICK a compact  $C \subseteq \prod_{\alpha \in J} X_{\alpha}$  that includes the basic neighbourhood  $\prod_{\alpha \in J} U_{\alpha}$  of a, where  $U_{\alpha} = X_{\alpha}$  for all  $\alpha$  except  $\alpha = \alpha_1, \ldots, \alpha_n$
- $\langle 1 \rangle 3$ . For  $\alpha \neq \alpha_1, \ldots, \alpha_n$ , we have  $X_{\alpha}$  is compact.

PROOF:  $X_{\alpha}$  is homeomorphic to a closed subspace of C.

Corollary 9.8.7.1. For any infinite set I, the space  $\mathbb{R}^I$  is not locally compact.

**Proposition 9.8.8.**  $[0,1]^{\omega}$  is not compact under the uniform topology.

PROOF: $\{a_i : i \geq 0\}$  is an infinite set with no limit point, where  $a_i$  is the point with ith component 1 and all other components 0.  $\Box$ 

Corollary 9.8.8.1.  $\mathbb{R}^{\omega}$  under the uniform topology is not locally compact.

#### PROOF

- $\langle 1 \rangle 1$ . Assume:  $\mathbb{R}^{\omega}$  is locally compact
- $\langle 1 \rangle 2$ . Let: C be a compact subspace such that  $B(\vec{0}, \epsilon) \subseteq C$
- $\langle 1 \rangle 3$ .  $B(\vec{0}, \epsilon)$  is compact.
- $\langle 1 \rangle 4$ . Q.E.D.

PROOF: This contradicts the proposition.

**Proposition 9.8.9.** Not every subspace of a locally compact Hausdorff space is locally compact.

PROOF:  $\mathbb{R}$  is locally compact Hausdoff,  $\mathbb{Q}$  is not locally compact.  $\square$ 

**Proposition 9.8.10.** The continuous image of a locally compact Hausdorff space is not necessarily locally compact.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\{q_0, q_1, \ldots\}$  be an enumeration of  $[0, 1] \cap \mathbb{Q}$ .
- $\langle 1 \rangle 2$ . Define  $f: (0, +\infty) \setminus \mathbb{Z} \to [0, 1] \cap \mathbb{Q}$  by:  $f(x) = q_n$  for  $x \in (n, n+1)$
- $\langle 1 \rangle 3$ . f is continuous.

PROOF: The inverse image of any set is a union of open intervals.

П

## 9.9 Compactifications

**Definition 9.9.1** (Compactification). Let X and Y be spaces. Then Y is a compactification of X iff Y is a compact Hausdorff space and X is a subspace of Y with  $\overline{X} = Y$ .

Two compcactifications  $Y_1$ ,  $Y_2$  of X are equivalent iff there exists a homeomorphism between  $Y_1$  and  $Y_2$  that is the identity on X.

**Lemma 9.9.2.** Let  $h: X \to Z$  be an imbedding. Then there exists a compactification  $c: X \to Y$  of X, unique up to equivalence, and an imbedding  $i: Y \to Z$  such that  $h = i \circ c$ .

PROOF: Simply take Y to be the closure of X in Z.  $\sqcup$ 

**Definition 9.9.3** (One-Point Compactification). A *one-point compactification* of X is a compactification Y of X such that  $Y \setminus X$  is a singleton.

**Theorem 9.9.4.** Let X be a topological space. Then X is locally compact Hausdorff if and only if there exists a space Y such that:

- 1. X is a subspace of Y
- 2. The set  $Y \setminus X$  is a singleton.
- 3. Y is a compact Hausdorff space.

If Y and Y' are two spaces satisfying these conditions, then there exists a unique homeomorphism between Y and Y' that is the identity on X.

#### Proof:

- $\langle 1 \rangle 1.$  If X is locally compact Hausdorff then there exists a space Y satisfying  $^{1-3}$ 
  - $\langle 2 \rangle 1$ . Let:  $Y = X \cup \{\infty\}$  under the topology  $\mathcal{T} = \{U \subseteq X : U \text{ is open in } X\} \cup \{Y \setminus C : C \subseteq X \text{ is compact}\}.$ 
    - $\langle 3 \rangle 1. \ Y \in \mathcal{T}$

PROOF: This holds because  $Y = Y \setminus \emptyset$ .

- $\langle 3 \rangle 2$ . For all  $U, V \in \mathcal{T}$  we have  $U \cap V \in \mathcal{T}$ .
  - $\langle 4 \rangle 1$ . Let:  $U, V \in \mathcal{T}$
  - $\langle 4 \rangle 2$ . Case: U, V are open in X

PROOF: In this case,  $U \cap V$  is open in X.

- $\langle 4 \rangle 3$ . Case: U is open in  $X, V = Y \setminus C$  where  $C \subseteq X$  is compact.
  - $\langle 5 \rangle 1. \ U \cap V = U \setminus C$
  - $\langle 5 \rangle 2$ . C is closed in X

Proof: Proposition 9.5.9.

- $\langle 5 \rangle 3$ .  $U \cap V$  is open in X
- $\langle 4 \rangle 4.$  Case:  $U=Y \setminus C$  where  $C \subseteq X$  is compact, V is open in X. Proof: Similar.
- $\langle 4 \rangle$ 5. Case:  $U = Y \setminus C$ ,  $V = Y \setminus D$  where  $C, D \subseteq X$  are compact.
  - $\langle 5 \rangle 1. \ U \cap V = Y \setminus (C \cup D)$
  - $\langle 5 \rangle 2$ . C and D are closed in X

Proof: Proposition 9.5.9.

 $\langle 5 \rangle 3$ .  $C \cup D$  is closed in X

Proof: Proposition 3.6.4.

 $\langle 5 \rangle 4$ .  $C \cup D$  is compact.

Proof: By Proposition 9.5.23.  $\square$ 

- $\langle 3 \rangle 3$ . For all  $\mathcal{A} \subseteq \mathcal{T}$  we have  $\bigcup \mathcal{A} \in \mathcal{T}$ .
  - $\langle 4 \rangle 1$ . Let:  $\mathcal{A} \subseteq \mathcal{T}$
  - $\langle 4 \rangle 2$ . Case: Every element of  $\mathcal{A}$  is an open set in X.

PROOF: In this case,  $\bigcup A$  is open in X.

- $\langle 4 \rangle 3$ . Case: There exists C compact in X such that  $Y \setminus C \in \mathcal{A}$ 
  - $\langle 5 \rangle 1. \bigcup \mathcal{A} = Y \setminus (\bigcap \{D \subseteq X : D \text{ compact}, Y \setminus D \in \mathcal{A} \} \setminus \bigcup \{U \text{ open in } X : U \in \mathcal{A} \})$

Proof: Set theory.

 $\langle 5 \rangle$ 2.  $\bigcap \{D \subseteq X : D \text{ compact}, Y \setminus D \in \mathcal{A}\} \setminus \bigcup \{U \text{ open in } X : U \in \mathcal{A}\}$  is compact.

PROOF: It is a closed subset of the compact set C.

- $\langle 2 \rangle 2$ . X is a subspace of Y
  - $\langle 3 \rangle 1$ . For every open set U of X, there exists V open in Y such that  $U = V \cap X$

PROOF: Take V = U.

- $\langle 3 \rangle 2$ . For every open set V in Y, we have  $V \cap X$  is open in X.
  - $\langle 4 \rangle 1$ . Let: V be open in Y

 $\langle 4 \rangle 2$ . Case: V is open in X

PROOF: In this case,  $V \cap X = V$ .

- $\langle 4 \rangle 3$ . Case:  $V = Y \setminus C$  where  $C \subseteq X$  is compact.
  - $\langle 5 \rangle 1$ . C is closed in X.

PROOF: By Proposition 9.5.9.

- $\langle 5 \rangle 2. \ V \cap X = X \setminus C$
- $\langle 2 \rangle 3. \ Y \setminus X = \{\infty\}$
- $\langle 2 \rangle 4$ . Y is compact.
  - $\langle 3 \rangle 1$ . Let:  $\mathcal{A}$  be an open covering of Y
  - $\langle 3 \rangle 2$ . PICK  $U \in \mathcal{A}$  such that  $\infty \in U$
  - $\langle 3 \rangle 3$ . Pick  $C \subseteq X$  compact such that  $U = Y \setminus C$ .
  - $\langle 3 \rangle 4$ .  $\{ V \cap X : V \in \mathcal{A} \}$  is set of open sets that covers C
  - $\langle 3 \rangle$ 5. PICK a finite subset  $\{V_1, \ldots, V_n\}$  such that  $\{V_1 \cap X, \ldots, V_n \cap X\}$  covers C.
  - $\langle 3 \rangle 6. \{U, V_1, \dots, V_n\}$  is a finite subcover of Y.
- $\langle 2 \rangle 5$ . Y is Hausdorff.
  - $\langle 3 \rangle 1$ . Let:  $x, y \in Y$  with  $x \neq y$

Prove: There exist disjoint open neighbourhoods U, V of x and y.

 $\langle 3 \rangle 2$ . Case:  $x, y \in X$ 

PROOF: In this case, we just use the fact that X is Hausdorff.

- $\langle 3 \rangle 3$ . Case:  $x = \infty, y \in X$ 
  - $\langle 4 \rangle$ 1. PICK  $C \subseteq X$  compact such that C includes an open neighbourhood V of y
  - $\langle 4 \rangle 2$ . Let:  $U = Y \setminus C$
- $\langle 3 \rangle 4$ . Case:  $x \in X, y = \infty$

PROOF: Simlar.

- $\langle 1 \rangle 2$ . If there exists a space Y satisfying 1–3 then X is locally compact Hausdorff.
  - $\langle 2 \rangle 1$ . Let: Y be a space satisfying 1–3
  - $\langle 2 \rangle 2$ . Let:  $\infty$  be the point in  $Y \setminus X$
  - $\langle 2 \rangle 3$ . X is locally compact
    - $\langle 3 \rangle 1$ . Let:  $x \in X$
    - $\langle 3 \rangle 2$ . PICK disjoint open neighbourhoods U of x and V of  $\infty$
    - $\langle 3 \rangle 3$ .  $X \setminus V$  is compact and includes U

PROOF:  $X \setminus V = Y \setminus V$  is compact because it is a closed subset of Y (Proposition 9.5.6).

 $\langle 2 \rangle 4$ . X is Hausdorff.

PROOF: By Corollary 6.2.6.1.

- $\langle 1 \rangle 3$ . If Y and Y' are two spaces satisfying 1–3 then there exists a unique homemorphism between Y and Y' that is the identity on X.
  - $\langle 2 \rangle 1$ . Let: Y and Y' be two spaces that satisfy 1–3.
  - $\langle 2 \rangle 2$ . Let:  $Y \setminus X = \{p\}$  and  $Y' \setminus X = \{q\}$
  - $\langle 2 \rangle 3$ . Let:  $h: Y \to Y'$  be given by

$$h(x) = x (x \in X)$$

h(p) = q

```
\langle 2 \rangle 4. h is a homeomorphism
```

- $\langle 3 \rangle 1$ . h is bijective.
- $\langle 3 \rangle 2$ . h is continuous.
  - $\langle 4 \rangle$ 1. Let:  $V \subseteq Y'$  be open. Prove:  $h^{-1}(V)$  is open.
  - $\langle 4 \rangle 2$ . Case:  $V \subseteq X$ 
    - $\langle 5 \rangle 1. \ h^{-1}(V) = V$
    - $\langle 5 \rangle 2$ . V is open in X

PROOF: Condition 1 for Y'.

 $\langle 5 \rangle 3$ . V is open in Y

PROOF: Condition 1 for Y.

- $\langle 4 \rangle 3$ . Case:  $q \in V$ 
  - $\langle 5 \rangle 1$ .  $Y' \setminus V$  is compact.

Proof: Proposition 9.5.6.

 $\langle 5 \rangle 2$ .  $Y' \setminus V$  is closed in Y.

Proof: Proposition 9.5.9.

 $\langle 5 \rangle 3. \ h^{-1}(V) = Y \setminus (Y' \setminus V)$ 

 $\langle 3 \rangle 3$ .  $h^{-1}$  is continuous.

PROOF: Similar.

 $\langle 2 \rangle$ 5. If  $h': Y \to Y'$  is a homeomorphism such that  $h' \upharpoonright_X = \mathrm{id}_X$  then h' = h

**Theorem 9.9.5.** Let X be a Hausdorff space. Then X is locally compact if and only if, for all  $x \in X$  and any neighbourhood U of x, there exists an open neighbourhood V of x such that  $\overline{V}$  is compact and  $\overline{V} \subseteq U$ .

#### Proof:

- $\langle 1 \rangle 1$ . If X is locally compact then, for all  $x \in X$  and any neighbourhood U of x, there exists an open neighbourhood V of x such that  $\overline{V}$  is compact and  $\overline{V} \subset U$ .
  - $\langle 2 \rangle 1$ . Assume: X is locally compact.
  - $\langle 2 \rangle 2$ . Let:  $x \in X$  and U be a neighbourhood of x.
  - $\langle 2 \rangle 3$ . Let: Y be the one-point compactification of X.

PROOF: By Theorem 9.9.4.

- $\langle 2 \rangle 4$ . Let:  $C = Y \setminus U$
- $\langle 2 \rangle$ 5. C is compact

Proof: By Proposition 9.5.6.

 $\langle 2 \rangle 6$ . PICK disjoint open sets V, W containing x and C

Proof: Lemma 9.5.8

 $\langle 2 \rangle 7$ . V is open in X

PROOF:  $V \subseteq X$  since  $\infty \in W$ .

- $\langle 2 \rangle 8$ . The closure of V in X is compact
  - $\langle 3 \rangle 1$ . The closure of V is X is the same as the closure of V in Y.

PROOF: The point  $\infty$  cannot be a limit point of V since W is a neighbourhood disjoint from V.

 $\langle 3 \rangle 2$ . The closure of V in Y is compact.

Proof: By Proposition 9.5.6.

 $\langle 2 \rangle 9. \ \overline{V} \subseteq U$ PROOF:

$$\overline{V} \subseteq Y \setminus W$$
$$\subseteq Y \setminus C$$
$$= U$$

- $\langle 1 \rangle 2$ . If, for all  $x \in X$  and any neighbourhood U of x, there exists an open neighbourhood V of x such that  $\overline{V}$  is compact and  $\overline{V} \subseteq U$ , then X is locally compact.
  - $\langle 2 \rangle 1$ . Assume: for all  $x \in X$  and any neighbourhood U of x, there exists an open neighbourhood V of x such that  $\overline{V}$  is compact and  $\overline{V} \subset U$
  - $\langle 2 \rangle 2.$  Let:  $x \in X$  Prove: There exists  $C \subseteq X$  compact such that C includes a neighbourhood U of x
  - $\langle 2 \rangle$ 3. PICK an open neighbourhood V of x such that  $\overline{V}$  is compact and  $\overline{V} \subseteq X$

 $\langle 2 \rangle 4$ . Take  $C = \overline{V}$  and U = V

**Corollary 9.9.5.1.** Every open subspace of a locally compact Hausdorff space is locally compact.

Corollary 9.9.5.2. A space is locally compact Hausdorff if and only if it is an open subspace of a compact Hausdorff space.

Corollary 9.9.5.3. Every locally compact Hausdorff space is completely regular.

Corollary 9.9.5.4. The space  $\mathbb{R}_K$  is not locally compact.

**Lemma 9.9.6** (AC). If  $p: X \to Y$  is a quotient map and Z is a locally compact Hausdorff space, then the map

$$\pi = p \times \mathrm{id}_Z : X \times Z \to Y \times Z$$

is a quotient map.

Proof:

 $\langle 1 \rangle 1$ .  $\pi$  is surjective.

PROOF: This holds because p is surjective.

 $\langle 1 \rangle 2$ .  $\pi$  is continuous.

PROOF: By Theorem 5.2.15.

- $\langle 1 \rangle 3$ . For  $A \subseteq Y \times Z$ , if  $\pi^{-1}(A)$  is open in  $X \times Z$  then A is open in  $Y \times Z$ .
  - $\langle 2 \rangle 1$ . Let:  $A \subseteq Y \times Z$
  - $\langle 2 \rangle 2$ . Assume:  $\pi^{-1}(A)$  is open in  $X \times Z$
  - $\langle 2 \rangle 3$ . Let:  $(y,z) \in A$
  - $\langle 2 \rangle 4$ . PICK  $x \in X$  such that p(x) = y

PROOF: Since p is surjective.

 $\langle 2 \rangle$ 5. PICK open sets  $U_1$ , V with  $\overline{V}$  compact such that  $(x,y) \in U_1 \times V$  and  $U_1 \times \overline{V} \subseteq \pi^{-1}(A)$ 

PROOF: Using Theorem 9.9.5

- $\langle 2 \rangle$ 6. PICK a sequence of open sets  $U_1, U_2, \ldots$  in X such that  $p^{-1}(p(U_n)) \subseteq U_{n+1}$  and  $U_n \times \overline{V} \subseteq \pi^{-1}(A)$  for all n
  - $\langle 3 \rangle$ 1. Let: U be open with  $U \times \overline{V} \subseteq \pi^{-1}(A)$ PROVE: There exists W open with  $p^{-1}(p(U)) \subseteq W$  and  $W \times \overline{V} \subseteq \pi^{-1}(A)$
  - $\langle 3 \rangle$ 2. For all  $x \in p^{-1}(p(U))$ , PICK open sets  $U_x$ ,  $V_x$  such that  $x \in U_x$ ,  $\overline{V} \subseteq V_x$  and  $U_x \times V_x \subseteq \pi^{-1}(A)$

PROOF: By the Tube Lemma.

- $\langle 3 \rangle 3$ . Let:  $W = \bigcup_{x \in p^{-1}(p(U))} U_x$
- $\langle 2 \rangle 7$ . Let:  $U = \bigcup_{n=1}^{\infty} U_n$
- $\langle 2 \rangle 8$ . U is saturated with respect to p
  - $\langle 3 \rangle 1$ . Let:  $a \in U$ ,  $b \in X$ , p(a) = p(b)
  - $\langle 3 \rangle 2$ . PICK n such that  $a \in U_n$
  - $\langle 3 \rangle 3. \ b \in p^{-1}(p(U_n))$
  - $\langle 3 \rangle 4. \ b \in U_{n+1}$
  - $\langle 3 \rangle 5. \ b \in U$
- $\langle 2 \rangle 9$ . p(U) is open in Y

PROOF: By Lemma 4.5.2.

- $\langle 2 \rangle 10. \ (y,z) \in p(U) \times V \subseteq A$
- $\langle 2 \rangle 11$ . Q.E.D.

Proof: By Proposition 3.2.3.

**Theorem 9.9.7.** Let  $p: A \to B$  and  $q: C \to D$  be quotient maps. If B and C are locally compact Hausdorff spaces, then  $p \times q: A \times C \to B \times D$  is a quotient map.

PROOF: This holds by Lemma 9.9.6 and Proposition 4.5.10 because  $p \times q = (\mathrm{id}_B \times q) \circ (p \times \mathrm{id}_C)$ .  $\square$ 

**Theorem 9.9.8.** Let X be a completely regular space. Let Y be a compactification of X such that every bounded continuous map  $X \to \mathbb{R}$  extends uniquely to a continuous map  $Y \to \mathbb{R}$ . Then, for every compact Hausdorff space C, every continuous map  $X \to C$  extends uniquely to a continuous map  $Y \to C$ .

#### Proof:

- $\langle 1 \rangle 1.$  Let: C be a compact Hausdorff space and  $f: X \to C$  a continuous function
- $\langle 1 \rangle 2$ . Pick a set J and an imedding  $C \subseteq [0,1]^J$ 
  - $\langle 2 \rangle 1$ . C is normal

PROOF: By Lemma 9.5.18

 $\langle 2 \rangle 2$ . Q.E.D.

PROOF: By Theorem 6.4.6.

 $\langle 1 \rangle 3$ . For  $\alpha \in J$ ,

Let:  $g_{\alpha}: Y \to \mathbb{R}$  be the unique continuous extension of  $\pi_{\alpha} \circ f$ 

 $\langle 1 \rangle 4$ . Define  $g: Y \to \mathbb{R}^J$  by  $g(y)_\alpha = g_\alpha(y)$ 

```
\langle 1 \rangle 5. g is continuous
   PROOF: By Theorem 5.2.15.
\langle 1 \rangle 6. g extends f
\langle 1 \rangle 7. We have g: Y \to C
   Proof:
                             g(Y) = g(\overline{X})
                                       \subseteq \overline{g(X)}
                                                                                   (Theorem 5.2.2)
                                       =\overline{f(X)}
                                                                                                     (\langle 1 \rangle 6)
                                       \subset \overline{C}
                                                                               (Proposition 9.5.9)
\langle 1 \rangle 8. q is unique
    \langle 2 \rangle 1. Let: h: Y \to C be a continuous extension of f
    \langle 2 \rangle 2. For all \alpha \in J, \pi_{\alpha} \circ h extends \pi_{\alpha} \circ f
   \langle 2 \rangle 3. For all \alpha \in J, \pi_{\alpha} \circ h = g_{\alpha}
       Proof: By \langle 1 \rangle 3
   \langle 2 \rangle 4. h = g
       Proof: By \langle 1 \rangle 4
```

**Corollary 9.9.8.1.** Let X be a completely regular space. Let  $Y_1$  and  $Y_2$  be compactifications of X such that every bounded continuous map  $X \to \mathbb{R}$  extends uniquely to a continuous map  $Y_i \to \mathbb{R}$ . Then  $Y_1$  and  $Y_2$  are equivalent.

**Definition 9.9.9** (Stone-Čech Compactification). Let X be a completely regular space. The *Stone-Čech compactification* of X,  $\beta(X)$ , is the compactification of X such that, for every compact Hausdorff space C, every continuous function  $X \to C$  extends uniquely to a continuous function  $\beta(X) \to C$ .

# 9.10 Compactly Generated Spaces

**Definition 9.10.1** (Compactly Generated). A topological space X is *compactly generated* iff, for every  $U \subseteq X$ , if  $U \cap C$  is open in C for every compact  $C \subseteq X$ , then U is open in X.

**Lemma 9.10.2.** Let X be a topological space. Then X is compactly generated iff, for every  $A \subseteq X$ , if  $A \cap C$  is closed in C for every compact  $C \subseteq X$ , then A is closed in X.

Proof: Easy.

**Proposition 9.10.3.** Every locally compact space is compactly generated.

- $\langle 1 \rangle 1$ . Let: X be locally compact.
- $\langle 1 \rangle 2$ . Let: U be a set such that  $U \cap C$  is open in C for every compact  $C \subseteq X$  Prove: U is open in X

```
\langle 1 \rangle 3. Let: x \in U \langle 1 \rangle 4. Pick a neighbourhood V of x and a compact C \subseteq X such that V \subseteq C \langle 1 \rangle 5. U \cap C is open in C \langle 1 \rangle 6. Pick an open set W in X such that U \cap C = W \cap C \langle 1 \rangle 7. x \in V \cap W \subseteq U
```

Proposition 9.10.4. Every first countable space is compactly generated.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be first countable.
- $\langle 1 \rangle 2$ . Let: A be a set such that  $A \cap C$  is closed in C for every compact  $C \subseteq X$ . Prove: A is closed in X.
- $\langle 1 \rangle 3$ . Let:  $x \in \overline{A}$ . Prove:  $x \in A$ .
- $\langle 1 \rangle 4$ . PICK a sequence  $(x_n)$  in A that converges to x.

PROOF: Theorem 7.1.3.

- $\langle 1 \rangle 5$ . Let:  $C = \{x\} \cup \{x_n : n \in \mathbb{Z}^+\}$
- $\langle 1 \rangle 6$ . C is compact.
- $\langle 1 \rangle 7$ .  $A \cap C$  is closed in C.
- $\langle 1 \rangle 8. \ x \in A$

**Proposition 9.10.5.** Let X be a compactly generated space, Y a topological space, and  $f: X \to Y$ . Then f is continuous if and only if, for every compact  $C \subseteq X$ , the function  $f \upharpoonright_C: C \to Y$  is continuous.

### Proof:

 $\langle 1 \rangle 1$ . If f is continuous then, for every compact  $C \subseteq X$ , the function  $f \upharpoonright_C$  is continuous

Proof: Proposition 5.2.10.

- $\langle 1 \rangle 2$ . If, for every compact  $C \subseteq X$ , the function  $f \upharpoonright_C$  is continuous, then f is continuous.
  - $\langle 2 \rangle 1$ . Let:  $V \subseteq Y$  be open.
  - $\langle 2 \rangle 2$ . For every compact  $C \subseteq X$  we have  $f^{-1}(V) \cap C$  is open.
  - $\langle 2 \rangle 3.$   $f^{-1}(V)$  is open.

145

# Chapter 10

# Metric Spaces

## 10.1 Metrics

**Definition 10.1.1** (Metric). A *metric* on a set X is a function  $d: X \times X \to \mathbb{R}$  such that, for all  $x, y, z \in X$ :

- 1.  $d(x,y) \ge 0$ ;
- 2. d(x,y) = 0 if and only if x = y;
- 3. d(x,y) = d(y,x);
- 4. Triangle Inequality

$$d(x,z) \le d(x,y) + d(y,z)$$

A metric space X consists of a set X and a metric on X. We call d(x,y) the distance between x and y.

## 10.1.1 Open Balls

**Definition 10.1.2** (Open Ball). Let X be a metric space with metric  $d, x \in X$  and  $\epsilon > 0$ . The *open ball* with *centre* x and *radius*  $\epsilon$  is

$$B_d(x,\epsilon) = \{ y \in X : d(x,y) < \epsilon \} .$$

**Lemma 10.1.3.** Let X be a metric space,  $x, y \in X$  and  $\epsilon > 0$ . If  $y \in B(x, \epsilon)$ , then there exists  $\delta$  such that  $0 < \delta < \epsilon$  and

$$B(y,\delta) \subseteq B(x,\epsilon)$$
.

- $\langle 1 \rangle 1$ . Let:  $\delta = \epsilon d(x, y)$
- $\langle 1 \rangle 2$ . Let:  $z \in B(y, \delta)$
- $\langle 1 \rangle 3. \ d(x,z) < \epsilon$

Proof:

$$\begin{aligned} d(x,z) &\leq d(x,y) + d(y,z) & \text{(Triangle Inequality)} \\ &< d(x,y) + \delta & \text{($\langle 1 \rangle 2$)} \\ &= \epsilon & \text{($\langle 1 \rangle 1$)} \end{aligned}$$

### 10.1.2 Bounded Sets

**Definition 10.1.4** (Bounded). Let X be a metric space and  $A \subseteq X$ . Then A is bounded iff  $\{d(x,y): x,y \in A\}$  is bounded above, in which case its diameter is

$$\operatorname{diam} A = \sup_{x,y \in A} d(x,y) .$$

### 10.1.3 Bounded Functions

**Definition 10.1.5** (Bounded Function). Let X be a set and Y a metric space. A function  $f: X \to Y$  is bounded iff ran f is bounded.

We write  $\mathcal{B}(X,Y)$  for the set of all bounded functions  $X \to Y$ .

### The Sup Metric

**Definition 10.1.6** (Sup Metric). Let X be a nonempty set and Y a metric space. The *sup-metric*  $\rho$  on  $\mathcal{B}(X,Y)$  is defined by

$$\rho(f,g) = \sup_{x \in X} d(f(x), g(x)) .$$

We write  $\mathcal{B}(X,Y)$  for the metric space of all bounded functions  $X \to Y$  under the sup-metric.

We prove this is well-defined and is a metric.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a nonempty set.
- $\langle 1 \rangle 2$ . Let: Y be a metric space.
- $\langle 1 \rangle 3$ . For all  $f, g \in \mathcal{B}(X, Y)$ , the set  $\{d(f(x), g(x)) : x \in X\}$  is bounded above.
  - $\langle 2 \rangle 1$ . Let:  $f, g \in \mathcal{B}(X, Y)$
  - $\langle 2 \rangle 2$ . Let:  $M = \operatorname{diam} f(X)$  and  $N = \operatorname{diam} g(X)$
  - $\langle 2 \rangle 3$ . Pick  $x_0 \in X$

Proof:  $\langle 1 \rangle 1$ 

- $\langle 2 \rangle 4$ . Let:  $D = d(f(x_0), g(x_0))$
- $\langle 2 \rangle 5$ . Let:  $x \in X$
- $\langle 2 \rangle 6. \ d(f(x), g(x)) \leq M + N + D$

Proof:

$$d(f(x), g(x)) \le d(f(x), f(x_0)) + d(f(x_0), g(x_0)) + d(g(x_0), g(x)) \quad \text{(Triangle inequality)}$$
  
 
$$\le M + D + N \quad (\langle 2 \rangle 2, \langle 2 \rangle 4)$$

 $\langle 1 \rangle 4$ . For all  $f, g \in \mathcal{B}(X, Y)$  we have  $\rho(f, g) \geq 0$ 

```
\langle 2 \rangle 1. Let: f, g \in \mathcal{B}(X, Y)
    \langle 2 \rangle 2. Pick x_0 \in X
       Proof: \langle 1 \rangle 1
    \langle 2 \rangle 3. \ \rho(f,g) \geq 0
       Proof:
                         \rho(f,g) \ge d(f(x_0), g(x_0))
                                                                                    (Definition of \rho)
 \geq 0 \\ \langle 1 \rangle 5. \text{ For all } f \in \mathcal{B}(X,Y) \text{ we have } \rho(f,f) = 0 
                                                                                                     (\langle 1 \rangle 2)
   PROOF: This holds because d(f(x), f(x)) = 0 for all x \in X.
\langle 1 \rangle 6. For all f, g \in \mathcal{B}(X, Y) we have \rho(f, g) = \rho(g, f)
   Proof:
                     \begin{split} \rho(f,g) &= \sup_{x \in X} d(f(x),g(x)) \\ &= \sup_{x \in X} d(g(x),f(x)) \end{split}
                                                                                    (definition of \rho)
                                                                                                    (\langle 1 \rangle 2)
                                                                                    (definition of \rho)
\langle 1 \rangle 7. For all f, g, h \in \mathcal{B}(X, Y) we have \rho(f, h) \leq \rho(f, g) + \rho(g, h)
   Proof:
        \rho(f,h) = \sup_{x \in X} d(f(x),h(x))
                                                                                                  (definition of \rho)
                    \leq \sup_{x \in X} (d(f(x),g(x)) + d(g(x),h(x)))
                                                                                          (Triangle inequality)
                    \leq \sup_{x \in X} d(f(x),g(x)) + \sup_{x \in X} d(g(x),h(x))
                                                                                                    (Lemma 2.0.1)
                    = \rho(f,g) + \rho(g,h)
                                                                                                  (definition of \rho)
```

### 10.1.4 Totally Bounded Metric Spaces

**Definition 10.1.7** (Totally Bounded). A metric space X is totally bounded iff, for every  $\epsilon > 0$ , there exists a finite covering of X by  $\epsilon$ -balls.

# 10.2 The Metric Topology

**Definition 10.2.1** (Metric Topology). Let d be a metric on X. The *metric topology* on X induced by d is the topology generated by the basis consisting of the open balls.

We prove this is a topology.

### Proof:

 $\langle 1 \rangle 1$ . Every point is in an open ball.

Proof:  $x \in B(x, 1)$ 

 $\langle 1 \rangle 2$ . If  $B_1$ ,  $B_2$  are open balls and  $x \in B_1 \cap B_2$ , then there exists an open ball  $B_3$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ .

 $\langle 2 \rangle 1$ . Let:  $x \in B(y, \epsilon_1) \cap B(z, \epsilon_2)$ 

```
\langle 2 \rangle 2. Pick \delta_1, \delta_2 such that 0 < \delta_1 < \epsilon_1, 0 < \delta_2 < \epsilon_2, B(x, \delta_1) \subseteq B(y, \epsilon_1) and B(x, \delta_2) \subseteq B(z, \epsilon_2).
```

PROOF: Lemma 10.1.3.

- $\langle 2 \rangle 3$ . Let:  $\delta = \min(\delta_1, \delta_2)$
- $\langle 2 \rangle 4. \ x \in B(x, \delta) \subseteq B(y, \epsilon_1) \cap B(y, \epsilon_2)$

 $\langle 1 \rangle 3$ . Q.E.D.

Proof: Lemma 3.5.3.

**Lemma 10.2.2.** A set U is open in the metric topology induced by d if and only if, for all  $x \in U$ , there exists  $\epsilon > 0$  such that  $B(x, \epsilon) \subseteq U$ .

### Proof:

- $\langle 1 \rangle 1$ . If U is open then, for all  $x \in U$ , there exists  $\epsilon > 0$  such that  $B(x, \epsilon) \subseteq U$ .
  - $\langle 2 \rangle 1$ . Assume: U is open.
  - $\langle 2 \rangle 2$ . Let:  $x \in U$
  - $\langle 2 \rangle 3$ . Pick  $B(y, \delta)$  such that  $x \in B(y, \delta) \subseteq U$
  - $\langle 2 \rangle 4$ . PICK  $\epsilon$  such that  $0 < \epsilon < \delta$  and  $B(x, \epsilon) \subseteq B(y, \delta)$

PROOF: Lemma 10.1.3.

 $\langle 2 \rangle 5. \ B(x, \epsilon) \subseteq U$ 

PROOF: From  $\langle 2 \rangle 3$  and  $\langle 2 \rangle 4$ .

 $\langle 1 \rangle 2$ . If, for all  $x \in U$ , there exists  $\epsilon > 0$  such that  $B(x, \epsilon) \subseteq U$ , then U is open. PROOF: Immediate from definition of metric topology.

**Lemma 10.2.3.** Let d and d' be two metrics on the set X. Let  $\mathcal{T}$  and  $\mathcal{T}'$  be the topologies the induce, respectively. Then  $\mathcal{T} \subseteq \mathcal{T}'$  if and only if, for all  $x \in X$  and  $\epsilon > 0$ , there exists  $\delta > 0$  such that  $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$ .

### Proof:

- $\langle 1 \rangle 1$ . If  $\mathcal{T} \subseteq \mathcal{T}'$  then, for all  $x \in X$  and  $\epsilon > 0$ , there exists  $\delta > 0$  such that  $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$ .
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{T} \subseteq \mathcal{T}'$
  - $\langle 2 \rangle 2$ . Let:  $x \in X$  and  $\epsilon > 0$
  - $\langle 2 \rangle 3. \ B_d(x,\epsilon) \in \mathcal{T}'$

PROOF: From  $\langle 2 \rangle 1$ .

 $\langle 2 \rangle 4$ . There exists  $\delta > 0$  such that  $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$ 

Proof: By Lemma 10.2.2.

- $\langle 1 \rangle 2$ . If, for all  $x \in X$  and  $\epsilon > 0$ , there exists  $\delta > 0$  such that  $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$ , then  $\mathcal{T} \subseteq \mathcal{T}'$ 
  - $\langle 2 \rangle 1$ . Assume: For all  $x \in X$  and  $\epsilon > 0$ , there exists  $\delta > 0$  such that  $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$ .
  - $\langle 2 \rangle 2$ . Let:  $U \in \mathcal{T}$

Prove:  $U \in \mathcal{T}'$ 

- $\langle 2 \rangle 3$ . Let:  $x \in U$
- $\langle 2 \rangle 4$ . PICK  $\epsilon > 0$  be such that  $B_d(x, \epsilon) \subseteq U$

PROOF: By Lemma 10.2.2.

 $\langle 2 \rangle$ 5. PICK  $\delta > 0$  such that  $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$ 

```
Proof: By \langle 2 \rangle 1.
  \langle 2 \rangle 6. \ B_{d'}(x,\delta) \subseteq U
     PROOF: By \langle 2 \rangle 4 and \langle 2 \rangle 5.
  \langle 2 \rangle7. Q.E.D.
     PROOF: By Lemma 10.2.2.
Definition 10.2.4 (Metrizable). A topological space is metrizable if and only
if there exists a metric that induces its topology.
Lemma 10.2.5. Every discrete space is metrizable.
PROOF: The discrete topology is induced by the metric d(x,y) = 1 if x \neq y, 0
if x = y. \square
Proposition 10.2.6. The continuous image of a metrizable space is not nec-
essarily metrizable.
PROOF: The identity map from the discrete two-point space to the indiscrete
two-point space is continuous.
Lemma 10.2.7. \mathbb{R} is metrizable.
PROOF: The standard topology is induced by the metric d(x,y) = |x-y|. \square
Lemma 10.2.8. Let (X,d) be a metric space and A \subseteq X. Then d \upharpoonright_{A \times A} is a
metric on A that induces the subspace topology.
Proof:
\langle 1 \rangle 1. d \upharpoonright_{A \times A} is a metric on A.
  PROOF: Each of the axioms for a metric follows immediately from the same
  axiom for d.
```

Lemma 10.2.9. Every metric space is Hausdorff.

open balls  $B_{d \upharpoonright_{A \times A}}(a, \epsilon) = B_d(a, \epsilon) \cap A$ .

Proof

 $\langle 1 \rangle 1$ . Let: X be a metric space and  $x,y \in X$  with  $x \neq y$ .  $\langle 1 \rangle 2$ . Let:  $\epsilon = d(x,y)$   $\langle 1 \rangle 3$ .  $B(x,\epsilon/2)$  and  $B(y,\epsilon/2)$  are disjoint neighbourhoods of x and y.

 $\langle 1 \rangle 2$ . The topology induced by  $d \upharpoonright_{A \times A}$  is the product topology.

PROOF: Both are the topology generated by the basis consisting of all the

**Theorem 10.2.10.** Every metric space is first countable.

PROOF:  $\{B(x,q): q \in \mathbb{Q}^+\}$  is a local basis at x.  $\square$ 

Corollary 10.2.10.1. If J is infinite then the space  $\mathbb{R}^J$  is not metrizable.

**Definition 10.2.11** (Standard Bounded Metric). Let d be a metric on X. The standard bounded metric corresponding to d is

$$\overline{d}(x,y) = \min(d(x,y),1) .$$

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1. \ \overline{d}(x,y) \geq 0$ 

PROOF: This holds because  $d(x,y) \ge 0$  (d is a metric) and 1 > 0.

 $\langle 1 \rangle 2$ .  $\overline{d}(x,y) = 0$  iff x = y

PROOF: Immediate from definition.

 $\langle 1 \rangle 3. \ \overline{d}(x,y) = \overline{d}(y,x)$ 

PROOF: Immediate from definition.

 $\langle 1 \rangle 4. \ \overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z)$ 

 $\langle 2 \rangle 1$ . Case:  $d(x,y) \leq 1$ ,  $d(y,z) \leq 1$ 

Proof:

$$\overline{d}(x,z) \le d(x,z)$$

$$\le d(x,y) + d(y,z)$$

$$= \overline{d}(x,y) + \overline{d}(y,z)$$

 $\langle 2 \rangle 2$ . Case: d(y,z) > 1

Proof:

$$\overline{d}(x,z) \le 1$$

$$\le \overline{d}(x,y) + 1$$

$$= \overline{d}(x,y) + \overline{d}(y,z)$$

 $\langle 2 \rangle 3$ . Case: d(x,y) > 1

PROOF: Similar.

**Theorem 10.2.12.** Let d be a metric on X. Then the standard bounded metric  $\overline{d}$  corresponding to d induces the same topology as d.

- $\langle 1 \rangle 1$ . Let:  $\mathcal{T}$  be the topology induced by d and  $\mathcal{T}'$  be the topology induced by
- $\langle 1 \rangle 2$ .  $\mathcal{T} \subseteq \mathcal{T}'$ 
  - $\langle 2 \rangle 1$ . Let:  $x \in X$  and  $\epsilon > 0$
  - $\langle 2 \rangle 2$ . Let:  $\delta = \min(\epsilon, 1/2)$
  - $\langle 2 \rangle 3. \ B_{\overline{d}}(x,\delta) \subseteq B_d(x,\epsilon)$ 
    - $\langle 3 \rangle 1$ . Let:  $y \in B_{\overline{d}}(x, \delta)$
    - $\langle 3 \rangle 2$ .  $\overline{d}(x,y) < \delta$
    - $\langle 3 \rangle 3. \ \overline{d}(x,y) < 1$

PROOF: From  $\langle 2 \rangle 2$  and  $\langle 3 \rangle 2$ .

 $\langle 3 \rangle 4. \ \overline{d}(x,y) = d(x,y)$ 

PROOF: From  $\langle 3 \rangle 3$  and the definition of  $\overline{d}$ .

 $\langle 3 \rangle 5. \ d(x,y) < \epsilon$ 

PROOF: By  $\langle 2 \rangle 2$  and  $\langle 3 \rangle 2$  and  $\langle 3 \rangle 4$ .

- $\langle 1 \rangle 3. \ \mathcal{T}' \subseteq \mathcal{T}$ 
  - $\langle 2 \rangle 1$ . Let:  $x \in X$  and  $\epsilon > 0$
  - $\langle 2 \rangle 2$ .  $B_d(x,\epsilon) \subseteq B_{\overline{d}}(x,\epsilon)$

PROOF: This holds because  $\overline{d}(x,y) \leq d(x,y)$ .

**Definition 10.2.13** (Square Metric). The square metric on  $\mathbb{R}^n$  is defined by

$$\rho(\vec{x}, \vec{y}) = \max(|x_1 - y_1|, \dots, |x_n - y_n|)$$
.

We prove this is a metric.

### Proof:

 $\langle 1 \rangle 1. \ \rho(\vec{x}, \vec{y}) \geq 0$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$ .  $\rho(\vec{x}, \vec{y}) = 0$  iff  $\vec{x} = \vec{y}$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3. \ \rho(\vec{x}, \vec{y}) = \rho(\vec{y}, \vec{x})$ 

PROOF: Immediate from definitions.

- $\langle 1 \rangle 4. \ \rho(\vec{x}, \vec{z}) \leq \rho(\vec{x}, \vec{y}) + \rho(\vec{y}, \vec{z})$ 
  - $\langle 2 \rangle 1$ . For all i, we have  $|x_i z_i| \leq |x_i y_i| + |y_i z_i|$
  - $\langle 2 \rangle 2$ . For all  $i, |x_i z_i| \leq \rho(\vec{x}, \vec{y}) + \rho(\vec{y}, \vec{z})$
  - $\langle 2 \rangle 3. \ \rho(\vec{x}, \vec{z}) \le \rho(\vec{x}, \vec{y}) + \rho(\vec{y}, \vec{z})$

**Theorem 10.2.14.** The square metric induces the standard topology on  $\mathbb{R}^n$ .

### Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{T}_{\rho}$  be the topology induced by the square metric and  $\mathcal{T}_{s}$  the standard topology.
- $\langle 1 \rangle 2$ .  $\mathcal{T}_{\rho} \subseteq \mathcal{T}_{s}$

PROOF: This holds because  $B_{\rho}(\vec{x}, \epsilon) = (x_1 - \epsilon, x_1 + \epsilon) \times \cdots \times (x_n - \epsilon, x_n + \epsilon)$ .

- $\langle 1 \rangle 3. \ \mathcal{T}_s \subseteq \mathcal{T}_{\rho}$ 
  - $\langle 2 \rangle 1$ . Let:  $B = U_1 \times \cdots \times U_n$  be a basic open set in  $\mathcal{T}_s$ , where each  $U_i$  is open in  $\mathbb{R}$ .
  - $\langle 2 \rangle 2$ . Let:  $\vec{x} \in B$
  - $\langle 2 \rangle 3$ . For  $1 \leq i \leq n$ , PICK  $\epsilon_i > 0$  such that  $(x_i \epsilon_i, x_i + \epsilon_i) \subseteq U_i$
  - $\langle 2 \rangle 4$ . Let:  $\epsilon = \min(\epsilon_1, \dots, \epsilon_n)$
  - $\langle 2 \rangle 5. \ B_{\rho}(\vec{x}, \epsilon) \subseteq B$

**Lemma 10.2.15.** The product of a countable family of metrizable spaces is metrizable.

### Proof:

 $\langle 1\rangle 1.$  Let:  $\{X_n\}_{n\in\mathbb{Z}^+}$  be a family of metric spaces with metrics bounded by 1,  $X=\prod_{n=1}^\infty X_n.$ 

$$\langle 1 \rangle 2$$
. Let:  $D: X \times X \to \mathbb{R}$  be given by

$$D(\vec{x}, \vec{y}) = \sup_{n \ge 1} \frac{d(x_n, y_n)}{n} .$$

 $\langle 1 \rangle 3$ . D is a metric on X.

 $\langle 2 \rangle 1$ .  $D(\vec{x}, \vec{y}) \geq 0$ 

PROOF: Immediate from definitions.

 $\langle 2 \rangle 2$ .  $D(\vec{x}, \vec{y}) = 0$  iff  $\vec{x} = \vec{y}$ 

PROOF: Immediate from definitions.

 $\langle 2 \rangle 3. \ D(\vec{x}, \vec{y}) = D(\vec{y}, \vec{x})$ 

PROOF: Immediate from definitions.

 $\langle 2 \rangle 4$ .  $D(\vec{x}, \vec{z}) \leq D(\vec{x}, \vec{y}) + D(\vec{y}, \vec{z})$ 

- $\langle 3 \rangle$ 1. For all n, we have  $\frac{d(x_n, z_n)}{n} \leq \frac{d(x_n, y_n)}{n} + \frac{d(y_n, z_n)}{n} \langle 3 \rangle$ 2. For all n, we have  $\frac{d(x_n, z_n)}{n} \leq D(\vec{x}, \vec{y}) + D(\vec{y}, \vec{z})$
- $\langle 3 \rangle 3. \ D(\vec{x}, \vec{z}) \leq D(\vec{x}, \vec{y}) + D(\vec{y}, \vec{z})$
- $\langle 1 \rangle 4$ . Let:  $\mathcal{T}_D$  be the topology induced by D and  $\mathcal{T}_p$  the product topology.

- $\langle 1 \rangle 5. \ \mathcal{T}_D \subseteq \mathcal{T}_p$  $\langle 2 \rangle 1. \ \text{Let:} \ U \in \mathcal{T}_D$ PROVE:  $U \in \mathcal{T}_p$ 
  - $\langle 2 \rangle 2$ . Let:  $\vec{x} \in U$
  - $\langle 2 \rangle 3$ . Pick  $\epsilon > 0$  such that  $B_D(\vec{x}, \epsilon) \subseteq U$
  - $\langle 2 \rangle 4$ . PICK N such that  $1/N < \epsilon$
  - $\langle 2 \rangle$ 5. Let:  $V = B(x_1, \epsilon) \times \cdots \times B(x_N, \epsilon) \times X_{N+1} \times X_{N+2} \times \cdots$
  - $\langle 2 \rangle 6. \ \vec{x} \in V \subseteq B_D(\vec{x}, \epsilon)$

 $\langle 1 \rangle 6. \ \mathcal{T}_p \subseteq \mathcal{T}_D$ 

- $\langle 2 \rangle 1$ . Let:  $U = \prod_{n=1}^{\infty} U_n$  be a basic open set in  $\mathcal{T}_p$ , where each  $U_n$  is open in  $X_n$ , and  $U_n = X_n$  for n > N.
- $\langle 2 \rangle 2$ . Let:  $\vec{x} \in U$

PROVE: There exists  $\epsilon > 0$  such that  $B_D(\vec{x}, \epsilon) \subseteq U$ .

- $\langle 2 \rangle 3$ . For  $n \leq N$ , PICK  $\epsilon_n > 0$  such that  $B(x_n, \epsilon_n) \subseteq U_n$
- $\langle 2 \rangle 4$ . Let:  $\epsilon = \min(\epsilon_1, \epsilon_2/2, \dots, \epsilon_n/n)$
- $\langle 2 \rangle 5$ . Let:  $\vec{y} \in B_D(\vec{x}, \epsilon)$
- $\langle 2 \rangle 6$ . For  $n \leq N$ ,  $y_n \in U_n$ 
  - $\langle 3 \rangle 1$ .  $D(\vec{x}, \vec{y}) < \epsilon$
  - $\langle 3 \rangle 2$ .  $d(x_n, y_n)/n < \epsilon$
  - $\langle 3 \rangle 3. \ d(x_n, y_n)/n < \epsilon_n/n$
  - $\langle 3 \rangle 4$ . Q.E.D.

Proof: By  $\langle 2 \rangle 3$ .

Corollary 10.2.15.1. The space  $\mathbb{R}^{\omega}$  is metrizable.

**Definition 10.2.16** (Uniform Metric). Let (X, d) be a metric space and J be a set. The uniform metric  $\overline{\rho}$  on  $X^J$  is defined by

$$\overline{\rho}(\vec{x}, \vec{y}) = \sup_{\alpha \in J} \overline{d}(x_{\alpha}, y_{\alpha}) .$$

where  $\overline{d}$  is the standard bounded metric

$$\overline{d}(x,y) = \min(d(x,y),1) .$$

The uniform topology is the topology induced by the uniform metric. We prove this is a metric.

### PROOF:

 $\langle 1 \rangle 1. \ \overline{\rho}(\vec{x}, \vec{y}) \geq 0$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$ .  $\overline{\rho}(\vec{x}, \vec{y}) = 0$  iff  $\vec{x} = \vec{y}$ 

Proof: Immediate from definitions.

 $\langle 1 \rangle 3. \ \overline{\rho}(\vec{x}, \vec{y}) = \overline{\rho}(\vec{y}, \vec{x})$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4. \ \overline{\rho}(\vec{x}, \vec{z}) \leq \overline{\rho}(\vec{x}, \vec{y}) + \overline{\rho}(\vec{y}, \vec{z})$ 

Proof:

- $\langle 2 \rangle 1$ . For all  $\alpha \in J$ ,  $\overline{d}(x_{\alpha}, z_{\alpha}) \leq \overline{d}(x_{\alpha}, y_{\alpha}) + \overline{d}(y_{\alpha}, z_{\alpha})$
- $\langle 2 \rangle 2$ . For all  $\alpha \in J$ ,  $\overline{d}(x_{\alpha}, z_{\alpha}) \leq \overline{\rho}(\vec{x}, \vec{y}) + \overline{\rho}(\vec{y}, \vec{z})$
- $\langle 2 \rangle 3. \ \overline{\rho}(\vec{x}, \vec{z}) \leq \overline{\rho}(\vec{x}, \vec{y}) + \overline{\rho}(\vec{y}, \vec{z})$

**Theorem 10.2.17** (DC). The uniform topology on  $\mathbb{R}^J$  is finer than the product topology and coarser than the box topology. These three topologies are different iff J is infinite.

### PROOF:

- $\langle 1 \rangle 1$ . The uniform topology is finer than the product topology.
  - $\langle 2 \rangle 1$ . Let:  $B = \prod_{\alpha \in J} U_{\alpha}$  be a basic open set in the product topology, where each  $U_{\alpha}$  is open in  $\mathbb{R}$ , and  $U_{\alpha} = \mathbb{R}$  except for  $\alpha = \alpha_1, \dots, \alpha_n$ .
  - $\langle 2 \rangle 2$ . Let:  $\vec{x} \in U$
  - $\langle 2 \rangle 3$ . For  $1 \leq i \leq n$ , PICK  $0 < \epsilon_i < 1$  such that  $(x_{\alpha_i} \epsilon_i, x_{\alpha_i} + \epsilon_i) \subseteq U_{\alpha_i}$ .
  - $\langle 2 \rangle 4$ . Let:  $\epsilon = \min(\epsilon_1, \dots, \epsilon_n)$
  - $\langle 2 \rangle 5. \ B_{\overline{\rho}}(\vec{x}, \epsilon) \subseteq B$ 
    - $\langle 3 \rangle 1$ . Let:  $\vec{y} \in B_{\overline{\rho}}(\vec{x}, \epsilon)$
    - $\langle 3 \rangle 2$ . For  $1 \leq i \leq n$ , we have  $y_i \in U_{\alpha_i}$ 
      - $\langle 4 \rangle 1$ . Let:  $1 \le i \le n$
      - $\langle 4 \rangle 2. \ \overline{d}(x_{\alpha_i}, y_{\alpha_i}) < \epsilon_i$

PROOF: From  $\langle 2 \rangle 4$  and  $\langle 3 \rangle 1$ .

 $\langle 4 \rangle 3. \ d(x_{\alpha_i}, y_{\alpha_i}) < \epsilon_i$ 

PROOF: From  $\langle 4 \rangle 2$  since  $\epsilon_i < 1$  ( $\langle 2 \rangle 3$ ).

 $\langle 4 \rangle 4$ . Q.E.D.

Proof: By  $\langle 2 \rangle 3$ .

- $\langle 1 \rangle 2$ . The uniform topology is coarser than the box topology.
  - $\langle 2 \rangle 1$ . Let:  $\vec{x} \in \mathbb{R}^J$  and  $\epsilon > 0$

PROVE:  $B_{\overline{\rho}}(\vec{x}, \epsilon)$  is open in the box topology.

 $\langle 2 \rangle 2$ . Case:  $\epsilon < 1$ 

PROOF: In this case,  $B(\vec{x}, \epsilon) = \prod_{\alpha \in J} (x_{\alpha} - \epsilon, x_{\alpha} + \epsilon)$ .

```
\langle 2 \rangle 3. Case: \epsilon \geq 1
```

PROOF: In this case,  $B(\vec{x}, \epsilon) = \mathbb{R}^J$ .

- $\langle 1 \rangle 3$ . If J is finite then the product topology is the same as the box topology. PROOF: Immediate from definitions.
- $\langle 1 \rangle 4$ . If J is infinite then the uniform topology is distinct from the product topology.
  - $\langle 2 \rangle 1$ .  $B(\vec{0}, 1/2)$  is not open in the product topology.
    - $\langle 3 \rangle 1. \ \vec{0} \in B(\vec{0}, 1/2)$
    - $\langle 3 \rangle$ 2. Let:  $\prod_{\alpha \in J} U_{\alpha}$  be any basic open set containing  $\vec{0}$ , where  $U_{\alpha}$  is open in  $\mathbb{R}$  for all  $\alpha$ , and  $U_{\alpha} = \mathbb{R}$  except for  $\alpha = \alpha_1, \ldots, \alpha_n$
    - $\langle 3 \rangle 3$ . PICK  $\alpha_0 \in J$  such that  $\alpha_0 \neq \alpha_1, \ldots, \alpha_n$
    - $\langle 3 \rangle 4$ . Let:  $\vec{x}$  be such that  $x_{\alpha_0} = 1$ , and  $x_{\alpha} = 0$  for  $\alpha \neq \alpha_0$ .
    - $\langle 3 \rangle 5. \ \vec{x} \in \prod_{\alpha \in J} U_{\alpha}$
    - $\langle 3 \rangle 6. \ \vec{x} \notin B(\vec{0}, 1/2)$
- $\langle 1 \rangle$ 5. If J is infinite then the uniform topology is distinct from the box topology.
  - $\langle 2 \rangle 1$ . PICK a countable sequence  $\alpha_1, \alpha_2, \ldots$  in J
  - $\langle 2 \rangle 2$ . Let:  $U = \prod_{\alpha \in J} U_{\alpha}$ , where  $U_{\alpha_n} = (-1/n, 1/n)$  for all n, and  $U_{\alpha} = \mathbb{R}$  for all other  $\alpha$ .

Prove: U is not open in the uniform topology.

- $\langle 2 \rangle 3. \ \vec{0} \in U$
- $\langle 2 \rangle 4$ . Let:  $\epsilon > 0$

Prove:  $B(\vec{0}, \epsilon) \not\subseteq U$ 

- $\langle 2 \rangle$ 5. PICK N such that  $1/N < \epsilon$
- $\langle 2 \rangle 6$ . Let:  $\vec{x}$  be such that  $x_{\alpha_N} = 1/N$  and  $x_{\alpha} = 0$  for all other  $\alpha$
- $\langle 2 \rangle 7. \ \vec{x} \in B(\vec{0}, \epsilon)$
- (2)8.  $\vec{x} \notin U$

**Proposition 10.2.18.** The space  $\mathbb{R}^{\omega}$  under the uniform topology is not second countable.

Proof: The set of all sequences of 0s and 1s is discrete but uncountable.  $\square$ 

Corollary 10.2.18.1. Not every metric space is second countable.

**Theorem 10.2.19.** Let X and Y be metric spaces. Let  $f: X \to Y$  and  $x \in X$ . Then f is continuous at x if and only if, for every  $\epsilon > 0$ , there exists  $\delta > 0$  such that, for all  $x' \in X$ , if  $d(x, x') < \delta$  then  $d(f(x), f(x')) < \epsilon$ .

- $\langle 1 \rangle 1$ . If f is continuous at x then, for every  $\epsilon > 0$ , there exists  $\delta > 0$  such that, for all  $x' \in X$ , if  $d(x, x') < \delta$  then  $d(f(x), f(x')) < \epsilon$ .
  - $\langle 2 \rangle 1$ . Assume: f is continuous at x.
  - $\langle 2 \rangle 2$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle$ 3. PICK a neighbourhood U of x such that  $f(U) \subseteq B(f(x), \epsilon)$ PROOF: One exists by  $\langle 2 \rangle$ 1, since  $B(f(x), \epsilon)$  is a neighbourhood of f(x).
  - $\langle 2 \rangle 4$ . PICK  $\delta > 0$  such that  $B(x, \delta) \subseteq U$  PROOF: By  $\langle 2 \rangle 3$  and Lemma 10.2.2.

```
\langle 2 \rangle5. Let: x' \in X with d(x, x') < \delta
    \langle 2 \rangle 6. \ x' \in U
       PROOF: From \langle 2 \rangle 4 and \langle 2 \rangle 5.
    \langle 2 \rangle 7. \ f(x') \in B(f(x), \epsilon)
       PROOF: From \langle 2 \rangle 3 and \langle 2 \rangle 6.
\langle 1 \rangle 2. If, for all \epsilon > 0, there exists \delta > 0 such that, for all x' \in X, if d(x, x') < \delta
         then d(f(x), f(x')) < \epsilon, then f is continuous at x.
    \langle 2 \rangle 1. Assume: For all \epsilon > 0 there exists \delta > 0 such that, for all x' \in X, if
                            d(x, x') < \delta then d(f(x), f(x')) < \epsilon.
    \langle 2 \rangle 2. Let: V be a neighbourhood of f(x)
    \langle 2 \rangle 3. Pick \epsilon > 0 such that B(f(x), \epsilon) \subseteq V
       Proof: By Lemma 10.2.2.
    \langle 2 \rangle 4. PICK \delta > 0 such that, for all x' \in X, if d(x, x') < \delta then d(f(x), f(x')) < \delta
       PROOF: By \langle 2 \rangle 1 and \langle 2 \rangle 3.
    \langle 2 \rangle5. B(x, \delta) is a neighbourhood of x
       PROOF: By the definition of the metric topology.
    \langle 2 \rangle 6. \ f(B(x,\delta)) \subseteq V
       \langle 3 \rangle 1. Let: x' \in B(x, \delta)
       \langle 3 \rangle 2. d(f(x), f(x')) < \epsilon
          PROOF: From \langle 2 \rangle 4.
       \langle 3 \rangle 3. \ x' \in V
          PROOF: From \langle 2 \rangle 3.
```

**Lemma 10.2.20.** Let X be a metric space. Then the metric  $d: X^2 \to \mathbb{R}$  is continuous.

```
Proof:
```

- $\langle 1 \rangle 1$ . Give  $X^2$  the square metric.
- $\langle 1 \rangle 2$ . Let:  $x, y \in X$  and  $\epsilon > 0$
- $\langle 1 \rangle 3$ . Let:  $\delta = \epsilon/2$
- $\langle 1 \rangle 4$ . Let:  $x', y' \in X$  with  $d((x, y), (x', y')) < \delta$
- $\langle 1 \rangle 5. |d(x,y) d(x',y')| < \epsilon$ 
  - $\langle 2 \rangle 1. \ d(x,y) < d(x',y') + \epsilon$

Proof:

PROOF: 
$$d(x,y) \leq d(x,x') + d(x',y') + d(y,y') \qquad \text{(Triangle inequality)}$$
$$< d(x',y') + 2\delta \qquad \qquad (\langle 1 \rangle 4)$$
$$= d(x',y') + \epsilon \qquad \qquad (\langle 1 \rangle 3)$$
$$\langle 2 \rangle 2. \ d(x',y') < d(x,y) + \epsilon$$

PROOF: Similar.

**Lemma 10.2.21.** Addition is a continuous function  $\mathbb{R}^2 \to \mathbb{R}$ .

- $\langle 1 \rangle 1$ . Let:  $(x,y) \in \mathbb{R}^2$  and  $\epsilon > 0$
- $\langle 1 \rangle 2$ . Let:  $\delta = \epsilon/2$

```
\langle 1 \rangle 3. Let: (x', y') \in \mathbb{R}^2 be such that \rho((x, y), (x', y')) < \delta, where \rho is the square metric
```

$$\langle 1 \rangle 4$$
.  $|x - x'| < \delta$  and  $|y - y'| < \delta$ 

$$\langle 1 \rangle 5$$
.  $|(x+y) - (x'+y')| < \epsilon$ 

Proof:

$$|(x+y) - (x'+y')| \le |x-x'| + |y-y'|$$
 $< 2\delta$ 
((1)4)

$$=\epsilon$$
  $(\langle 1 \rangle 2)$ 

 $\langle 1 \rangle 6$ . Q.E.D.

PROOF: By Theorem 10.2.19.

**Lemma 10.2.22.** Additive inverse is a continuous function  $-: \mathbb{R} \to \mathbb{R}$ .

PROOF: If 
$$|x-y| < \epsilon$$
 then  $|(-x) - (-y)| < \epsilon$ .

**Lemma 10.2.23.** *Multiplication is a continuous function*  $\cdot : \mathbb{R}^2 \to \mathbb{R}$ .

Proof:

$$\langle 1 \rangle 1$$
. Let:  $(x,y) \in \mathbb{R}^2$  and  $\epsilon > 0$ 

$$\langle 1 \rangle 2$$
. Let:  $\delta = \min(1, \epsilon/(|x| + |y| + 1))$ 

$$\langle 1 \rangle 3$$
. Let:  $(x', y') \in \mathbb{R}^2$  and  $\rho((x, y), (x', y')) < \delta$ 

$$\langle 1 \rangle 4$$
.  $|xy - x'y'| < \epsilon$ 

Proof:

$$|xy - x'y'| = |x(y' - y) + y(x' - x) + (x - x')(y - y')|$$

$$\leq |x||y' - y| + |y||x' - x| + |x - x'||y - y'|$$

$$< |x|\delta + |y|\delta + \delta^{2}$$

$$= \delta(|x| + |y| + \delta)$$

$$\leq \delta(|x| + |y| + 1)$$

$$\leq \epsilon$$

$$(\langle 1 \rangle 2)$$

**Lemma 10.2.24.** Multiplicative inverse is a continuous function ( )<sup>-1</sup> :  $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ .

Proof:

$$\langle 1 \rangle 1$$
. Let:  $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$  be defined by  $f(x) = x^{-1}$ .

 $\langle 1 \rangle 2$ . Let:  $a, b \in \mathbb{R}$  with a < b

PROVE:  $f^{-1}((a,b))$  is open

 $\langle 1 \rangle 3$ . Case: 0 < a < b

PROOF:  $f^{-1}((a,b)) = (b^{-1}, a^{-1})$ 

 $\langle 1 \rangle 4$ . Case: a < 0 < b

PROOF:  $f^{-1}((a,b)) = (-\infty, a^{-1}) \cup (b^{-1}, +\infty)$ 

 $\langle 1 \rangle 5$ . Case: a < b < 0

PROOF:  $f^{-1}((a,b)) = (b^{-1}, a^{-1})$ 

**Definition 10.2.25** (Uniform Convergence). Let X be a set and Y a metric space. Let  $f_n: X \to Y$  for  $n \ge 1$ , and  $f: X \to Y$ . Then  $f_n$  converges uniformly to f as  $n \to \infty$  iff, for all  $\epsilon > 0$ , there exists N such that, for all  $x \in X$  and  $n \ge N$ ,  $d(f_n(x), f(x)) < \epsilon$ .

**Theorem 10.2.26** (Uniform Limit Theorem). Let X be a topological space and Y a metric space. Let  $f_n: X \to Y$  for  $n \ge 1$  and  $f: X \to Y$ . If  $f_n$  converges uniformly to f and each  $f_n$  is continuous, then f is continuous.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $x \in X$  and  $\epsilon > 0$
- (1)2. PICK N such that, for all  $x' \in X$  and  $\delta > 0$ ,  $d(f_n(x'), f(x')) < \epsilon/3$
- (1)3. PICK  $\delta > 0$  such that, for all  $x' \in X$ , if  $d(x, x') < \delta$  then  $d(f_N(x), f_N(x')) < \epsilon/3$
- $\langle 1 \rangle 4$ . For all  $x' \in X$ , if  $d(x,x') < \delta$  then  $d(f(x),f(x')) < \epsilon$  PROOF:

$$d(f(x), f(x')) \le d(f(x), f_N(x)) + d(f_N(x), f_N(x')) + d(f_N(x'), f(x'))$$

$$< \epsilon/3 + \epsilon/3 + \epsilon/3$$

$$- \epsilon$$

**Lemma 10.2.27.** Let X be a set and Y a metric space. Let  $f_n : X \to Y$  for  $n \ge 1$  and  $f : X \to Y$ . Then  $f_n$  converges uniformly to f if and only if  $f_n$  converges to f in  $Y^X$  under the uniform topology.

### Proof:

- $\langle 1 \rangle 1$ . If  $f_n$  converges uniformly to f then  $f_n$  converges to f under the uniform topology.
  - $\langle 2 \rangle 1$ . Assume:  $f_n$  converges uniformly to f
  - $\langle 2 \rangle 2$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 3$ . PICK N such that, for all  $x \in X$  and  $n \geq N$ ,  $d(f_n(x), f(x)) < \epsilon/2$
  - $\langle 2 \rangle 4. \ \overline{\rho}(f_n, f) \le \epsilon/2$
  - $\langle 2 \rangle 5. \ \overline{\rho}(f_n, f) < \epsilon$
- $\langle 1 \rangle 2$ . If  $f_n$  converges to f under the uniform topology then  $f_n$  converges uniformly to f.
  - $\langle 2 \rangle 1$ . Assume:  $f_n$  converges to f under the uniform topology.
  - $\langle 2 \rangle 2$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 3$ . Pick N such that, for all  $n \geq N$ ,  $\overline{\rho}(f_n, f) < \epsilon$
- $\langle 2 \rangle 4$ . For all  $n \geq N$  and  $x \in X$ ,  $d(f_n(x), f(x)) < \epsilon$

**Theorem 10.2.28.** Every monotone increasing sequence of real numbers that is bounded above converges to its supremum.

### PROOF:

 $\langle 1 \rangle 1$ . Let:  $\{s_n\}_{n \geq 1}$  be a monotone increasing sequence of real numbers bounded above with supremum l.

- $\langle 1 \rangle 2$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle 3$ .  $l \epsilon$  is not an upper bound for  $\{s_n : n \geq 1\}$ .
- $\langle 1 \rangle 4$ . PICK N such that  $x_N > l \epsilon$
- $\langle 1 \rangle 5$ . For all  $n \geq N$ , we have  $l \epsilon < x_n \leq l$
- $\langle 1 \rangle 6$ . For all  $n \geq N$ , we have  $|x_n l| < \epsilon$

**Definition 10.2.29** (Infinite Series). Let  $\{a_n\}_{n\geq 1}$  be a sequence of real numbers. The infinite series  $\sum_{n=1}^{\infty} a_n$  converges to s iff  $\sum_{n=1}^{N} a_n \to s$  as  $N \to \infty$ .

**Proposition 10.2.30.** If  $\sum_{n=1}^{\infty} a_n = s \text{ and } \sum_{n=1}^{\infty} b_n = t \text{ then } \sum_{n=1}^{\infty} (ca - n + ca)$  $b_n) = cs + t.$ 

PROOF: This holds because  $\sum_{n=1}^{N} (ca_n + b_n) = c \sum_{n=1}^{N} a_n + \sum_{n=1}^{N} b_n \to cs + t$ as  $N \to \infty$ .

**Theorem 10.2.31** (Comparison Test). If  $|a_i| \leq b_i$  for all i and  $\sum_{i=1}^{\infty} b_i$  converges, then  $\sum_{i=1}^{\infty} a_i$  converges.

Proof:

 $\langle 1 \rangle 1$ .  $\sum_{i=1}^{\infty} |a_i|$  converges

PROOF:  $\sum_{i=1}^{N} |a_i|$  is a monotone increasing sequence bounded above by  $\sum_{i=1}^{\infty} b_i$ .

- $\langle 1 \rangle 2$ . Let:  $c_i = |a_i| + a_i$

 $\langle 1 \rangle 3$ .  $\sum_{i=1}^{\infty} c_i$  converges PROOF:  $\sum_{i=1}^{N} c_i$  is a monotone increasing sequence bounded above by  $2 \sum_{i=1}^{\infty} |a_i|$ .  $\langle 1 \rangle 4$ . Q.E.D.

PROOF: Since  $a_i = c_i - |a_i|$ .

**Lemma 10.2.32.** If  $\sum_{n=1}^{\infty} a_n$  converges then  $\sum_{n=N}^{\infty} a_n \to 0$  as  $N \to \infty$ .

PROOF:

$$\sum_{n=N}^{\infty} a_n = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N-1} a_n$$

$$\rightarrow \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} a_n$$

$$= 0$$

as  $N \to \infty$ .

**Theorem 10.2.33** (Weierstrass M-Test). Let X be a set and  $f_n: X \to \mathbb{R}$  for  $n \ge 1$ . If  $|f_n(x)| \le M_n$  for all  $n \ge 1$  and all  $x \in X$ , and if  $\sum_{n=1}^{\infty} M_n$  converges, then

$$\sum_{n=1}^{N} f_n(x) \to \sum_{n=1}^{\infty} f_n(x)$$

uniformly in x as  $N \to \infty$ .

 $\langle 1 \rangle 1$ . For  $N \geq 1$ ,

LET:  $s_N: X \to \mathbb{R}, s_N(x) = \sum_{n=1}^N f_n(x)$  $\langle 1 \rangle 2$ . For all  $x \in X$ ,  $\sum_{n=1}^{\infty} f_n(x)$  converges.

- PROOF: By the Comparison Test.  $\langle 1 \rangle 3$ . Let:  $s: X \to \mathbb{R}, s(x) = \sum_{n=1}^{\infty} f_n(x)$ .
- $\langle 1 \rangle 4$ . For  $N \geq 1$ ,

Let:  $r_N = \sum_{n=N+1}^{\infty} M_n$   $\langle 1 \rangle 5$ . For  $1 \leq N < K$ , we have  $|s_K(x) - s_N(x)| \leq r_N$  for all  $x \in X$ Proof:

$$|s_K(x) - s_N(x)| = \left| \sum_{n=N+1}^K f_n(x) \right|$$

$$\leq \sum_{n=N+1}^K |f_n(x)|$$

$$\leq \sum_{n=N+1}^K M_n$$

$$\leq \sum_{n=N+1}^\infty M_n$$

- $\langle 1 \rangle 6$ . For  $N \geq 1$  and  $x \in X$  we have  $|s(x) s_N(x)| \leq r_N$ PROOF: Let  $K \to \infty$  in  $\langle 1 \rangle 5$ .
- $\langle 1 \rangle 7$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle 8$ . PICK N such that, for all  $N' \geq N$ , we have  $r_{N'} < \epsilon$ PROOF: Such an N exists by Lemma 10.2.32.
- $\langle 1 \rangle 9$ . For all  $N' \geq N$  and  $x \in X$  we have  $|s_{N'}(x) s(x)| < \epsilon$

**Definition 10.2.34.** Let X be a metric space. Let  $x \in X$  and  $A \subseteq X$  be nonempty. The distance from x to A is

$$d(x,A) = \inf_{a \in A} d(x,a) .$$

**Lemma 10.2.35.** Let X be a metric space and  $A \subseteq X$  be nonempty. Then the function  $d(-,A): X \to \mathbb{R}$  is continuous.

Proof:

- $\langle 1 \rangle 1$ . Let:  $x \in X$  and  $\epsilon > 0$
- $\langle 1 \rangle 2$ . Let:  $y \in X$  with  $d(x,y) < \epsilon$
- $\langle 1 \rangle 3. |d(x,A) d(y,A)| < \epsilon$

Proof:

 $\langle 2 \rangle 1. \ d(x,A) - d(y,A) < \epsilon$ 

Proof:

$$\begin{aligned} d(x,A) &= \inf_{a \in A} d(x,a) \\ &\leq \inf_{a \in A} (d(x,y) + d(y,a)) \\ &= d(x,y) + \inf_{a \in A} d(y,a) \\ &= d(x,y) + d(y,A) \\ &< \epsilon + d(y,A) \end{aligned}$$

 $\langle 2 \rangle 2$ .  $d(y,A) - d(x,A) < \epsilon$ 

Proof: Similar.

 $\langle 1 \rangle 4$ . Q.E.D.

PROOF: By Theorem 10.2.19.

**Definition 10.2.36** (Shrinking Map). Let X be a metric space and  $f: X \to X$ X. Then f is a shrinking map iff, for all  $x, y \in X$  with  $x \neq y$ , we have d(f(x), f(y)) < d(x, y).

**Definition 10.2.37** (Contraction). Let X be a metric space and  $f: X \to X$ . Then f is a contraction iff there exists  $\alpha < 1$  such that, for all  $x, y \in X$ ,

$$d(f(x), f(y)) \le \alpha d(x, y)$$
.

Proposition 10.2.38. Every separable metric space is second countable.

- $\langle 1 \rangle 1$ . Let: X be a separable metric space.
- $\langle 1 \rangle 2$ . Pick a countable dense set D
- $\langle 1 \rangle 3$ . Let:  $\mathcal{B} = \{ B(d,q) : d \in D, q \in \mathbb{Q}^+ \}$
- $\langle 1 \rangle 4$ .  $\mathcal{B}$  is a countable basis for X

Corollary 10.2.38.1. The space  $\mathbb{R}^{\omega}$  under the uniform topology is not separa-

Corollary 10.2.38.2. Not every metric space is separable.

Corollary 10.2.38.3. The space  $\mathbb{R}^{\omega}$  under the box topology is not separable.

**Proposition 10.2.39** (CC). Every Lindelöf metric space is second countable.

- $\langle 1 \rangle 1$ . Let: X be a Lindelöf metric space.
- $\langle 1 \rangle 2$ . For all  $n \in \mathbb{Z}^+$ , PICK a countable covering  $\mathcal{A}_n$  of X by 1/n-balls Proof: One exists by the Lindelöf condition, since the set of all 1/n-balls covers X.
- $\langle 1 \rangle 3$ .  $\bigcup_{n=1}^{\infty} A_n$  is a countable basis.

Corollary 10.2.39.1. The space  $\mathbb{R}^{\omega}$  under the uniform topology is not Lindelöf.

Corollary 10.2.39.2. Not every metric space is Lindelöf.

**Proposition 10.2.40.** The space  $\mathbb{R}_l$  is not metrizable.

PROOF: It is Lindelöf but not second countable.  $\Box$ 

Proposition 10.2.41. The ordered square is not metrizable.

PROOF: It is compact but not second countable.  $\Box$ 

**Proposition 10.2.42.** The space  $\mathbb{R}^{\omega}$  under the uniform topology is not second countable.

PROOF: It contains a subspace homeomorphic to  $\mathbb{R}$ .  $\square$ 

Theorem 10.2.43 (AC). Every metrizable space is normal.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a metric space.
- $\langle 1 \rangle 2$ . Let: A and B be disjoint closed subspaces of X.
- $\langle 1 \rangle 3$ . For  $a \in A$ , Pick  $\epsilon_a > 0$  such that  $B(a, \epsilon_a)$  does not intersect B.
- $\langle 1 \rangle 4$ . For  $b \in B$ , PICK  $\epsilon_b > 0$  such that  $B(b, \epsilon_b)$  does not intersect A.
- $\langle 1 \rangle$ 5. Let:  $U = \bigcup_{a \in A} B(a, \epsilon_a/2)$
- $\langle 1 \rangle 6$ . Let:  $V = \bigcup_{b \in B} B(b, \epsilon_b/2)$
- $\langle 1 \rangle 7. \ U \cap V = \emptyset$ 
  - $\langle 2 \rangle 1$ . Let:  $z \in U \cap V$
  - $\langle 2 \rangle 2$ . PICK  $a \in A$  and  $b \in B$  such that  $z \in B(a, \epsilon_a/2)$  and  $z \in B(b, \epsilon_b/2)$
  - $\langle 2 \rangle 3$ . Assume: w.l.o.g.  $\epsilon_a \leq \epsilon_b$
  - $\langle 2 \rangle 4. \ a \in B(b, \epsilon_b)$

Proof:

$$\begin{split} d(a,b) & \leq d(a,z) + d(b,z) & \text{(Triangle Inequality)} \\ & < \epsilon_a/2 + \epsilon_b/2 & \text{($\langle 2 \rangle 2$)} \\ & \leq \epsilon_b & \text{($\langle 2 \rangle 3$)} \end{split}$$

 $\langle 2 \rangle 5$ . Q.E.D.

PROOF: This contradicts  $\langle 1 \rangle 4$ .

Corollary 10.2.43.1. The space  $\mathbb{R}^{\omega}$  is normal.

Corollary 10.2.43.2. The space  $\mathbb{R}_K$  is not methizable.

**Proposition 10.2.44.** Every metrizable space is completely normal.

PROOF: Every subspace is metrizable (Lemma 10.2.8) hence normal (Theorem 10.2.43).  $\Box$ 

Proposition 10.2.45. Every metrizable space is perfectly normal.

- $\langle 1 \rangle 1$ . Let: X be a metric space.
- $\langle 1 \rangle 2$ . X is normal.

Proof: Theorem 10.2.43

 $\langle 1 \rangle 3$ . Every closed set is  $G_{\delta}$ .

PROOF: If A is closed then  $A = \bigcap_{q \in \mathbb{Q}^+} \{x \in X : d(A, x) < q\}.$ 

**Theorem 10.2.46** (Urysohn Metrization Theorem (CC)). Every second countable regular space is metrizable.

### PROOF

- $\langle 1 \rangle 1$ . Let: X be a second countable regular space.
- $\langle 1 \rangle 2$ . X is normal.
- $\langle 1 \rangle 3$ . PICK a countable basis  $\mathcal{B} = \{B_n : n \in \mathbb{Z}^+\}$
- $\langle 1 \rangle 4$ . For every pair of integers m, n with  $\overline{B_m} \subseteq B_n$ , PICK a continuous function  $g_{mn}: X \to [0,1]$  such that  $g_{mn}(\overline{B_m}) = \{1\}$  and  $g_{mn}(X \setminus B_n) = \{0\}$

PROOF: By the Urysohn Lemma.

- $\langle 1 \rangle$ 5. The set  $\{g_{mn} : \overline{U_m} \subseteq U_n\}$  separates points from closed sets in X
  - $\langle 2 \rangle 1$ . Let:  $x \in X$  and U be a neighbourhood of x
  - $\langle 2 \rangle 2$ . PICK  $B_n \in \mathcal{B}$  such that  $x \in B_n \subseteq U$
  - $\langle 2 \rangle 3$ . PICK V open such that  $x \in V$  and  $\overline{V} \subseteq B_n$
  - $\langle 2 \rangle 4$ . PICK  $B_m \in \mathcal{B}$  such that  $x \in B_m \subseteq V$
  - $\langle 2 \rangle 5$ .  $g_{mn}(x) = 1$  and  $g_{mn}$  vanishes outside U
- $\langle 1 \rangle 6$ . X is imbeddable in  $[0,1]^{\omega}$

PROOF: By the Imbedding Theorem.

 $\langle 1 \rangle 7$ . Q.E.D.

Corollary 10.2.46.1. The space  $\mathbb{R}^{\omega}$  under the box topology is not second countable.

**Proposition 10.2.47.** Not every second countable Hausdorff space is metrizable

PROOF:  $\mathbb{R}_K$  is second countable and Hausdorff but not metrizable (because it is not regular).  $\square$ 

**Proposition 10.2.48.** There exists a space that is completely normal, first countable, Lindelöf and separable but not metrizable.

PROOF: The space  $\mathbb{R}_l$  is all of these.  $\square$ 

**Proposition 10.2.49.**  $\overline{S_{\Omega}}$  is not metrizable.

PROOF: It is compact but not sequentially compact.

**Proposition 10.2.50.** Every compact metric space is second countable.

### Proof:

 $\langle 1 \rangle 1$ . Let: X be a compact etric space

 $\langle 1 \rangle 2$ . For every  $n \geq 1$ , PICK a finite covering  $\mathcal{A}_n$  of X by open balls of radius 1/n

PROOF: Such a covering exists because  $\{B_{1/n}(x) : x \in X\}$  covers X.

 $\langle 1 \rangle 3. \bigcup_{n=1}^{\infty} A_n$  is a countable basis for X

Corollary 10.2.50.1. The space  $\mathbb{R}^{\omega}$  under the uniform topology is not compact.

Corollary 10.2.50.2. The space  $\mathbb{R}^{\omega}$  under the uniform topology is not limit point compact.

**Proposition 10.2.51.** The space  $\mathbb{R}^{\omega}$  under the box topology is not locally compact.

### Proof:

- $\langle 1 \rangle 1$ . Assume:  $\mathbb{R}^{\omega}$  under the box topology is locally compact.
- $\langle 1 \rangle 2$ . For every point x, there exists a basic open set  $B = \prod_{i=0}^{\infty} U_i$  such that  $x \in B$  and  $\overline{B}$  is compact.
- $\langle 1 \rangle 3$ . The box topology on  $\overline{B}$  is the same as the product topology on  $\overline{B}$  PROOF: By Corollary 9.5.11.1.
- $\langle 1 \rangle 4.$  The box topology on  $\overline{B}$  is strictly finer than the product topology. PROOF:By Theorem 10.2.17.

Proposition 10.2.52. Not every metrizable space is connected.

Proof: The discrete space with two points is metrizable but not connected.  $\square$ 

Corollary 10.2.52.1. Not every metrizable space is path connected.

Proposition 10.2.53. Not every metric space is limit point compact.

PROOF: The space  $\mathbb{R}$  is not limit point compact.  $\square$ 

Proposition 10.2.54. Not every metric space is locally compact.

The space  $\mathbb{R}^{\omega}$  in the uniform topology is not locally compact.

**Lemma 10.2.55** (AC). Let X be a metrizable space. Then every open covering A of X has a countably locally discrete open refinement  $\mathcal{E}$  that covers X.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a metric space.
- $\langle 1 \rangle 2$ . Pick a well-ordering  $\langle$  for  $\mathcal{A}$ .
- $\langle 1 \rangle 3$ . For  $n \in \mathbb{Z}^+$  and  $U \in \mathcal{A}$ , Let:

$$S_n(U) = \{ x \in X : B(x, 1/n) \subseteq U \}$$

 $\langle 1 \rangle 4$ . For  $n \in \mathbb{Z}^+$  and  $U \in \mathcal{A}$ , LET:

$$T_n(U) = S_n(U) - \bigcup_{V < U} V$$

 $\langle 1 \rangle$ 5. For  $n \in \mathbb{Z}^+$  and  $U \in \mathcal{A}$ , Let:

$$E_n(U) = \bigcup_{x \in T_n(U)} B(x, 1/3n)$$

 $\langle 1 \rangle 6$ . For  $n \in \mathbb{Z}^+$ , LET:

$$\mathcal{E}_n = \{ E_n(U) : U \in \mathcal{A} \}$$

 $\langle 1 \rangle 7$ . Let:

$$\mathcal{E} = \bigcup_{n \in \mathbb{Z}^+} \mathcal{E}_n$$

- $\langle 1 \rangle 8$ .  $\mathcal{E}$  is countably locally discrete
  - $\langle 2 \rangle 1$ . For all n,  $\mathcal{E}_n$  is locally discrete.
    - $\langle 3 \rangle 1$ . For all  $x \in X$ , we have B(x, 1/6n) intersects at most one element of  $\mathcal{E}_n$ 
      - $\langle 4 \rangle$ 1. Assume: for a contradiction  $a \in B(x,1/6n) \cap E_n(U)$  and  $b \in B(x,1/6n) \cap E_n(V)$
      - $\langle 4 \rangle 2$ . PICK  $c \in T_n(U)$  such that d(a,c) < 1/3n and  $d \in T_n(V)$  such that d(b,d) < 1/3n
      - $\langle 4 \rangle 3$ . Assume: w.l.o.g. V < U
      - $\langle 4 \rangle 4. \ c \in V$ 
        - $\langle 5 \rangle 1.$  d(c,d) < 1/n

Proof:

$$\begin{split} d(c,d) &\leq d(c,a) + d(a,x) + d(x,b) + d(b,d) \quad \text{(Triangle Inequality)} \\ &< 1/3n + 1/6n + 1/6n + 1/3n \qquad (\langle 4 \rangle 1, \, \langle 4 \rangle 2) \\ &= 1/n \end{split}$$

 $\langle 5 \rangle 2$ .  $B(d, 1/n) \subseteq V$ 

 $\langle 6 \rangle 1. \ d \in S_n(V)$ 

PROOF: From  $\langle 1 \rangle 4$  and  $\langle 4 \rangle 2$ .

 $\langle 6 \rangle 2$ . Q.E.D.

PROOF: From  $\langle 1 \rangle 3$ 

 $\langle 4 \rangle 5$ . Q.E.D.

PROOF: This is a contradiction because  $c \in T_n(U)$  ( $\langle 4 \rangle 2$ ) so  $c \notin V$  ( $\langle 1 \rangle 4, \langle 4 \rangle 3$ ).

- $\langle 1 \rangle 9$ .  $\mathcal{E}$  is an open refinement of  $\mathcal{A}$ 
  - $\langle 2 \rangle 1$ .  $\mathcal{E}$  is a refinement of  $\mathcal{A}$ 
    - $\langle 3 \rangle 1$ . For every n, we have  $\mathcal{E}_n$  is a refinement of  $\mathcal{A}$ .
      - $\langle 4 \rangle 1$ . Let: n be a positive integer
      - $\langle 4 \rangle 2$ . For every  $U \in \mathcal{A}$  we have  $E_n(U) \subseteq U$ 
        - $\langle 5 \rangle 1$ . Let:  $U \in \mathcal{A}$  and  $x \in E_n(U)$
        - $\langle 5 \rangle 2$ . PICK  $y \in T_n(U)$  such that  $x \in B(y, 1/3n)$

Proof:  $\langle 1 \rangle 5$ ,  $\langle 5 \rangle 1$ .

 $\langle 5 \rangle 3. \ y \in S_n(U)$ 

Proof:  $\langle 1 \rangle 4$ ,  $\langle 5 \rangle 2$ 

 $\langle 5 \rangle 4. \ x \in U$ 

Proof:  $\langle 1 \rangle 3$ ,  $\langle 5 \rangle 2$ ,  $\langle 5 \rangle 3$ 

```
\langle 2 \rangle 2. Every member of \mathcal E is open. \langle 3 \rangle 1. For all n, every member of \mathcal E_n is open. \langle 4 \rangle 1. Let: n be a positive integer \langle 4 \rangle 2. For all U \in \mathcal A, E_n(U) is open. Proof: By \langle 1 \rangle 5, E_n(U) is a union of open balls. \langle 4 \rangle 3. Q.E.D. Proof: By \langle 1 \rangle 6 \langle 3 \rangle 2. Q.E.D. Proof: By \langle 1 \rangle 7. \langle 1 \rangle 10. \mathcal E covers X \langle 2 \rangle 1. Let: x \in X \langle 2 \rangle 2. Let: U be the least member of \mathcal A such that x \in U \langle 2 \rangle 3. Pick n such that B(x, 1/n) \subseteq U \langle 2 \rangle 4. x \in E_n(U) \in \mathcal E
```

**Theorem 10.2.56.** Every metrizable space is paracompact.

PROOF: From Michael's Lemma and Lemma 10.2.55.

**Theorem 10.2.57** (Bing-Nagata-Smirnov Metrization Theorem (AC)). Let X be a topological space. Then the following are equivalent.

- 1. X is metrizable.
- 2. X is regular and has a countably locally finite basis.
- 3. X is regular and has a countably locally discrete basis.

### Proof:

- $\langle 1 \rangle 1$ . Every regular space with a countably locally finite basis is metrizable.
  - $\langle 2 \rangle 1$ . Let: X be a regular space with a countably locally finite basis  $\mathcal{B}$ .
  - $\langle 2 \rangle 2$ . X is normal.

PROOF: Lemma 6.5.19,  $\langle 2 \rangle 1$ .

 $\langle 2 \rangle 3$ . Every closed set in X is  $G_{\delta}$ .

PROOF: Lemma 6.5.19,  $\langle 2 \rangle 1$ .

- $\langle 2 \rangle 4$ . PICK locally finite sets  $\mathcal{B}_n$  such that  $\mathcal{B} = \bigcup_{n=0}^{\infty} \mathcal{B}_n$ . PROOF: From  $\langle 2 \rangle 1$ .
- $\langle 2 \rangle$ 5. For  $n \in \mathbb{N}$  and  $B \in \mathcal{B}_n$ , PICK a continuous function  $f_{nB}: X \to [0, 1/n]$  such that  $f_{nB}(x) > 0$  for  $x \in B$  and  $f_{nB}(x) = 0$  for  $x \notin B$ 
  - $\langle 3 \rangle 1$ . Let:  $n \in \mathbb{N}$  and  $B \in \mathcal{B}_n$
  - $\langle 3 \rangle 2$ . B is open.
    - $\langle 4 \rangle 1. \ B \in \mathcal{B}.$

Proof:  $\langle 2 \rangle 4$ ,  $\langle 3 \rangle 1$ 

 $\langle 4 \rangle 2$ . Q.E.D.

Proof:  $\langle 2 \rangle 1$ ,  $\langle 4 \rangle 1$ 

- $\langle 3 \rangle 3$ .  $X \setminus B$  is closed and  $G_{\delta}$ .
  - $\langle 4 \rangle 1$ .  $X \setminus B$  is closed.

```
Proof: Proposition 3.6.6, \langle 3 \rangle 2.
       \langle 4 \rangle 2. X \setminus B is G_{\delta}.
          Proof: \langle 2 \rangle 3, \langle 4 \rangle 1.
   \langle 3 \rangle 4. PICK g: X \to [0,1] that vanishes precisely on X \setminus B.
       PROOF: Theorem 6.5.9, \langle 2 \rangle 2, \langle 3 \rangle 3.
   \langle 3 \rangle 5. Q.E.D.
       PROOF: Let f(x) = g(x)/n.
\langle 2 \rangle 6. \{f_{nB}\}_{n \in \mathbb{N}, B \in \mathcal{B}_n} separates points from closed sets in X.
   \langle 3 \rangle 1. Let: x_0 \in X and U be a neighbourhood of x_0
   \langle 3 \rangle 2. PICK n \in \mathbb{N} and B \in \mathcal{B}_n such that x_0 \in B \subseteq U
       \langle 4 \rangle 1. PICK B \in \mathcal{B} such that x_0 \in B \subseteq U
           Proof: \langle 2 \rangle 1, \langle 3 \rangle 1.
       \langle 4 \rangle 2. Pick n \in \mathbb{N} such that B \in \mathcal{B}_n
          Proof: \langle 2 \rangle 4, \langle 4 \rangle 1.
   \langle 3 \rangle 3. \ f_{nB}(x_0) > 0
       Proof: \langle 2 \rangle 5, \langle 3 \rangle 2.
   \langle 3 \rangle 4. f_{nB} vanishes outside U.
       Proof: \langle 2 \rangle 5, \langle 3 \rangle 2.
\langle 2 \rangle7. Let: J = \sum_{n \in \mathbb{N}} \mathcal{B}_n
\langle 2 \rangle8. Let: F: X \to [0,1]^J be the function F(x)(n,B) = f_{nB}(x)
\langle 2 \rangle 9. F is an imbedding relative to the product topology on [0,1]^J
   PROOF: By the Imbedding Theorem and \langle 2 \rangle 6.
\langle 2 \rangle 10. F is an imbedding relative to the uniform topology on [0,1]^J
   \langle 3 \rangle 1. F is injective.
       Proof: From \langle 2 \rangle 9
   \langle 3 \rangle 2. F is an open map relative to the uniform topology.
       PROOF: From \langle 2 \rangle 9 and Theorem 10.2.17.
   \langle 3 \rangle 3. F is continuous relative to the uniform topology.
       \langle 4 \rangle 1. Let: x_0 \in X
       \langle 4 \rangle 2. Let: \epsilon > 0
       \langle 4 \rangle 3. For all n \in \mathbb{N}, Pick a neighbourhood V_n of x_0 such that, for all
                B \in \mathcal{B}_n, f_{nB} varies by at most \epsilon/2 on V_n.
           \langle 5 \rangle 1. Let:
                    n \in \mathbb{N}
           \langle 5 \rangle 2. Pick a neighbourhood U of x_0 that intersects only finitely many
                    elements of \mathcal{B}_n, say B_1, \ldots, B_k
              PROOF: By \langle 2 \rangle 4 and \langle 4 \rangle 1.
           \langle 5 \rangle 3. For j = 1, \dots, k, PICK a neighbourhood W_j of x_0 such that f_{nB_j}
                    varies by at most \epsilon/2 on W_i
              Proof: By \langle 2 \rangle 5.
           \langle 5 \rangle 4. Let: V_n = U \cap W_1 \cap \cdots \cap W_k
           \langle 5 \rangle 5. Q.E.D.
               \langle 6 \rangle 1. Let: B \in \mathcal{B}_n
                        PROVE: f_{nB} varies by at most \epsilon/2 on V_n
               \langle 6 \rangle 2. Case: B is one of B_1, \ldots, B_j
                  PROOF: From \langle 5 \rangle 3 and \langle 5 \rangle 4
```

```
\langle 6 \rangle 3. Case: B is not one of B_1, \ldots, B_j
                        \langle 7 \rangle 1. f_{nB} is zero on U
                            Proof: \langle 2 \rangle 5, \langle 5 \rangle 2
                        \langle 7 \rangle 2. f_{nB} is zero on V_n
                            Proof: \langle 5 \rangle 4, \langle 7 \rangle 1
            \langle 4 \rangle 4. PICK N such that 1/N \leq \epsilon/2
               Proof: Using \langle 4 \rangle 2
            \langle 4 \rangle 5. Let: W = V_0 \cap V_1 \cap \cdots \cap V_N
            \langle 4 \rangle 6. For all x \in W, we have \rho(F(x), F(x_0)) < \epsilon
                \langle 5 \rangle 1. Let: x \in W
                \langle 5 \rangle 2. For n \leq N and B \in \mathcal{B}_n we have |f_{nB}(x) - f_{nB}(x_0)| \leq \epsilon/2
                    Proof: \langle 4 \rangle 3, \langle 4 \rangle 5
                \langle 5 \rangle 3. For n > N and B \in \mathcal{B}_n we have |f_{nB}(x) - f_{nB}(x_0)| \le \epsilon/2
                    Proof: \langle 2 \rangle 5, \langle 4 \rangle 4
                \langle 5 \rangle 4. \ \rho(F(x), F(x_0)) \le \epsilon/2
                    Proof: \langle 2 \rangle 8, \langle 5 \rangle 2, \langle 5 \rangle 3
        \langle 3 \rangle 4. Q.E.D.
\langle 1 \rangle 2. Every metrizable space is regular.
   PROOF: Theorem 10.2.43.
\langle 1 \rangle 3. Every metrizable space has a countably locally discrete basis.
    \langle 2 \rangle 1. Let: X be a metric space.
    \langle 2 \rangle 2. For n \in \mathbb{Z}^+,
              Let: A_n be the set of all open balls of radius 1/n.
    \langle 2 \rangle 3. For n \in \mathbb{Z}^+, PICK a locally finite open refinement \mathcal{B}_n of \mathcal{A}_n that covers
       PROOF: Theorem 10.2.56.
   \langle 2 \rangle 4. Let: \mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n
\langle 2 \rangle 5. \mathcal{B} is countably locally finite.
       Proof: \langle 2 \rangle 3, \langle 2 \rangle 4
    \langle 2 \rangle 6. \mathcal{B} is a basis for X.
        \langle 3 \rangle 1. Every element of \mathcal{B} is open.
           Proof: \langle 2 \rangle 3, \langle 2 \rangle 4
        \langle 3 \rangle 2. For every open set U and x \in U, there exists B \in \mathcal{B} such that
                  x \in B \subseteq U
            \langle 4 \rangle 1. Let: U be an open set and x \in U.
            \langle 4 \rangle 2. PICK n such that B(x, 1/n) \subseteq U
               Proof: \langle 4 \rangle 1
            \langle 4 \rangle 3. PICK B \in \mathcal{B}_n such that x \in B \subseteq B(x, 1/n)
                \langle 5 \rangle 1. \ B(x, 1/n) \in \mathcal{A}_n
                    Proof: \langle 2 \rangle 2, \langle 4 \rangle 1
                \langle 5 \rangle 2. Q.E.D.
                    Proof: \langle 2 \rangle 3, \langle 5 \rangle 1
            \langle 4 \rangle 4. B \in \mathcal{B}
               Proof: \langle 2 \rangle 4, \langle 4 \rangle 3
        \langle 3 \rangle 3. Q.E.D.
           Proof: Proposition 3.5.2
```

**Theorem 10.2.58** (AC). Let X be a paracompact Hausdorff space. Let  $\{U_{\alpha}\}_{{\alpha}\in J}$  be an open covering of X. Then there exists a partition of unity on X dominated by  $\{U_{\alpha}\}_{{\alpha}\in J}$ .

### Proof:

 $\langle 1 \rangle 1$ . Pick a locally finite open cover  $\{V_{\alpha}\}_{{\alpha} \in J}$  of X such that  $\overline{V_{\alpha}} \subseteq U_{\alpha}$  for all  $\alpha$ .

PROOF: By the Shrinking Lemma.

 $\langle 1 \rangle 2$ . Pick a locally finite open cover  $\{W_{\alpha}\}_{{\alpha} \in J}$  of X such that  $\overline{W_{\alpha}} \subseteq V_{\alpha}$  for all  $\alpha$ .

PROOF: By the Shrinking Lemma and  $\langle 1 \rangle 1$ .

- $\langle 1 \rangle 3$ . For  $\alpha \in J$ , PICK a continuous  $\psi_{\alpha} : X \to [0,1]$  such that  $\psi_{\alpha}(\overline{W_{\alpha}}) = \{1\}$  and  $\psi_{\alpha}(X \setminus V_{\alpha}) = \{0\}$ .
  - $\langle 2 \rangle 1$ . Let:  $\alpha \in J$
  - $\langle 2 \rangle 2$ . X is normal.

PROOF: Theorem 9.4.2.

 $\langle 2 \rangle 3$ .  $\overline{W_{\alpha}}$  and  $X \setminus V_{\alpha}$  are disjoint.

PROOF: From  $\langle 1 \rangle 2$ .

 $\langle 2 \rangle 4$ .  $\overline{W_{\alpha}}$  is closed.

Proof: Proposition 3.12.3.

 $\langle 2 \rangle 5$ .  $X \setminus V_{\alpha}$  is closed.

Proof: Proposition 3.6.6,  $\langle 1 \rangle 1$ .

 $\langle 2 \rangle 6$ . Q.E.D.

PROOF: By the Urysohn Lemma.

- $\langle 1 \rangle 4$ . For all  $\alpha \in J$  we have supp  $\psi_{\alpha} \subseteq \overline{V_{\alpha}}$ 
  - $\langle 2 \rangle 1$ . Let:  $\alpha \in J$
  - $\langle 2 \rangle 2. \ \phi^{-1}(\mathbb{R} \setminus \{0\}) \subseteq V_{\alpha}$

Proof:  $\langle 1 \rangle 3, \langle 2 \rangle 1$ 

 $\langle 2 \rangle 3$ . Q.E.D.

Proof: Proposition 3.12.5.

- $\langle 1 \rangle 5$ .  $\{ \overline{V_{\alpha}} \}_{{\alpha \in J}}$  is locally finite.
  - PROOF: Lemma 3.12.9,  $\langle 1 \rangle 1$ .
- $\langle 1 \rangle 6$ .  $\{ \sup \psi_{\alpha} \}_{\alpha \in J}$  is locally finite.

PROOF: Proposition 3.8.2,  $\langle 1 \rangle 4$ ,  $\langle 1 \rangle 5$ .

 $\langle 1 \rangle 7$ . For  $x \in X$ , there exists  $\alpha \in J$  such that  $\psi_{\alpha}(x) > 0$ .

Proof:  $\langle 1 \rangle 1$ ,  $\langle 1 \rangle 3$ .

- $\langle 1 \rangle 8.$  Let:  $\Psi: X \to \mathbb{R}$  with  $\Psi(x) = \sum_{\alpha \in J} \psi_\alpha(x)$ 
  - $\langle 2 \rangle 1$ . For all  $x \in X$  there are only finitely many  $\alpha$  such that  $\psi_{\alpha}(x) \neq 0$ .
    - $\langle 3 \rangle 1$ . Let:  $x \in X$
    - $\langle 3 \rangle 2$ . PICK a neighbourhood U of x that intersects only finitely many  $V_{\alpha}$ , say  $V_{\alpha_1}, \ldots, V_{\alpha_n}$

Proof:  $\langle 1 \rangle 1$ ,  $\langle 3 \rangle 1$ 

- $\langle 3 \rangle 3$ . If  $\psi_{\alpha}(x) \neq 0$  then  $\alpha$  is one of  $\alpha_1, \ldots, \alpha_n$ .
  - $\langle 4 \rangle 1$ . Assume:  $\psi_{\alpha}(x) \neq 0$
  - $\langle 4 \rangle 2. \ x \in V_{\alpha}$

```
Proof: \langle 1 \rangle 3, \langle 4 \rangle 1
             \langle 4 \rangle 3. U intersects V_{\alpha}
                 Proof: \langle 3 \rangle 2, \langle 4 \rangle 2
             \langle 4 \rangle 4. Q.E.D.
                 Proof: By \langle 3 \rangle 2
\langle 1 \rangle 9. \Psi is continuous.
    \langle 2 \rangle 1. For x \in X, Pick an open neighbourhood W_x of x that intersects
               supp \psi_{\alpha} for only finitely many \alpha.
        Proof: \langle 1 \rangle 6
    \langle 2 \rangle 2. For all x \in X we have \Psi \upharpoonright W_x is continuous.
         \langle 3 \rangle 1. Let: x \in X
         \langle 3 \rangle 2. \alpha_1, \ldots, \alpha_n be the values of \alpha such that W_x intersects supp \psi_\alpha
             Proof: \langle 2 \rangle 1
         \langle 3 \rangle 3. For y \in W_x we have \Psi(y) = \sum_{i=1}^n \psi_{\alpha_i}(y)
             \langle 4 \rangle 1. Let: y \in W_x
             \langle 4 \rangle 2. For \alpha \neq \alpha_1, \ldots, \alpha_n we have \psi_{\alpha}(y) = 0
                  \langle 5 \rangle 1. Let: \alpha \in J \setminus \{\alpha_1, \dots, \alpha_n\}
                  \langle 5 \rangle 2. \ y \notin \operatorname{supp} \psi_{\alpha}
                      Proof: \langle 3 \rangle 2, \langle 4 \rangle 1, \langle 5 \rangle 1
                  \langle 5 \rangle 3. \ \psi_{\alpha}(y) = 0
                     Proof: Proposition 3.12.2, \langle 5 \rangle 2
         \langle 3 \rangle 4. Q.E.D.
             PROOF: Theorem 5.2.9, Lemma 10.2.21, \langle 1 \rangle 3.
    \langle 2 \rangle 3. Q.E.D.
        PROOF: Theorem 5.2.13.
\langle 1 \rangle 10. \Psi(x) > 0 for all x \in X.
     \langle 2 \rangle 1. Let: x \in X
    \langle 2 \rangle 2. Pick \alpha \in J such that x \in W_{\alpha}
        Proof: \langle 1 \rangle 2, \langle 2 \rangle 1
    \langle 2 \rangle 3. \ \psi_{\alpha}(x) = 1
        Proof: \langle 1 \rangle 3, \langle 2 \rangle 2
    \langle 2 \rangle 4. Q.E.D.
        Proof: \langle 1 \rangle 3, \langle 1 \rangle 8, \langle 2 \rangle 3
\langle 1 \rangle 11. For \alpha \in J,
             Let: \phi_{\alpha}(x) = \psi_{\alpha}(x)/\Psi(x)
    PROOF: \Psi(x) \neq 0 by \langle 1 \rangle 10
\langle 1 \rangle 12. \{\phi_{\alpha}\}_{{\alpha} \in J} is a partition of unity dominated by \{U_{\alpha}\}_{{\alpha} \in J}.
    \langle 2 \rangle 1. For all \alpha \in J we have supp \phi_{\alpha} = \text{supp } \psi_{\alpha}
         \langle 3 \rangle 1. Let: \alpha \in J
         \langle 3 \rangle 2. For all x \in X we have \phi_{\alpha}(x) = 0 iff \psi_{\alpha}(x) = 0
             Proof: From \langle 1 \rangle 11
    \langle 2 \rangle 2. For all \alpha \in J we have supp \phi_{\alpha} \subseteq U_{\alpha}.
         \langle 3 \rangle 1. Let: \alpha \in J
         \langle 3 \rangle 2. supp \phi_{\alpha} \subseteq U_{\alpha}
```

Proof:

$$\sup \phi_{\alpha} = \sup \psi_{\alpha} \qquad (\langle 2 \rangle 1)$$

$$\subseteq \overline{V_{\alpha}} \qquad (\langle 1 \rangle 4, \langle 3 \rangle 1)$$

$$\subseteq U_{\alpha} \qquad (\langle 1 \rangle 1, \langle 3 \rangle 1)$$

 $\langle 2 \rangle 3$ . {supp  $\phi_{\alpha}$ } $_{\alpha \in J}$  is locally finite.

Proof:  $\langle 1 \rangle 6$ ,  $\langle 2 \rangle 1$ 

 $\langle 2 \rangle 4$ . For all  $x \in X$  we have  $\sum_{\alpha \in J} \phi_{\alpha}(x) = 1$ 

Proof:  $\langle 1 \rangle 8$ ,  $\langle 1 \rangle 11$ 

**Theorem 10.2.59** (Smirnov Metrization Theorem (AC)). A space is metrizable if and only if it is locally metrizable, paracompact and Hausdorff.

### Proof

 $\langle 1 \rangle 1$ . Every metrizable space is locally metrizable.

PROOF: If x is a point in the metrizable space X, then X is a metrizable neighbourhood.

 $\langle 1 \rangle 2$ . Every metrizable space is paracompact.

PROOF: Theorem 10.2.56.

 $\langle 1 \rangle 3$ . Every metrizable space is Hausdorff.

Proof: Lemma 10.2.9.

- (1)4. Every locally metrizable, paracompact Hausdorff space is metrizable.
  - $\langle 2 \rangle 1$ . Let: X be a locally metrizable, paracompact Hausdorff space.
  - $\langle 2 \rangle 2$ . X is regular.

PROOF: Theorem 9.4.2.

- $\langle 2 \rangle 3$ . X has a countably locally finite basis.
  - $\langle 3 \rangle 1$ . Pick a locally finite open cover  $\mathcal{C}$  of X by metrizable sets.
    - $\langle 4 \rangle 1$ . {U open in X : U is metrizable} covers X.

PROOF: Because X is locally metrizable ( $\langle 2 \rangle 1$ ).

 $\langle 4 \rangle 2$ . Q.E.D.

PROOF: Because X is paracompact  $(\langle 2 \rangle 1)$ .

- $\langle 3 \rangle$ 2. For  $C \in \mathcal{C}$ , PICK a metric  $d_C : C^2 \to \mathbb{R}$  that induces the topology on C.
- $\langle 3 \rangle 3$ . For  $C \in \mathcal{C}$  and  $x \in C$  and  $\epsilon > 0$ ,

Let:  $B_C(x,\epsilon) = \{ y \in C : d_C(x,y) < \epsilon \}$ 

 $\langle 3 \rangle 4$ . For  $n \geq 1$ ,

Let:  $\mathcal{A}_n = \{B_C(x, 1/n) : C \in \mathcal{C}, x \in C\}$ 

 $\langle 3 \rangle$ 5. For  $n \geq 1$ , PICK a locally finite open refinement  $\mathcal{D}_n$  of  $\mathcal{A}_n$  that covers X.

PROOF: Because X is paracompact ( $\langle 2 \rangle 1$ ).

 $\langle 3 \rangle 6$ . Let:  $\mathcal{D} = \bigcup_{n=1}^{\infty} \mathcal{D}_n$ .

PROVE:  $\mathcal{D}$  is a basis for X.

- $\langle 3 \rangle$ 7. Let: *U* be open in *X* and  $x \in U$ .
- $\langle 3 \rangle 8$ . Let:  $C_1, \ldots, C_k$  be the elements of  $\mathcal{C}$  that U intersects.

PROOF: Because C is locally finite ( $\langle 3 \rangle 1$ ).

 $\langle 3 \rangle 9$ . For  $1 \leq i \leq k$ , PICK  $\epsilon_i > 0$  such that  $B_{C_i}(x, \epsilon_i) \subseteq U \cap C_i$ 

```
\langle 3 \rangle 10. Pick m \geq 1 such that 2/m < \epsilon_1, \ldots, \epsilon_k
    \langle 3 \rangle 11. PICK D \in \mathcal{D}_m such that x \in D
        PROOF: Since \mathcal{D}_m covers X (\langle 3 \rangle 5).
    \langle 3 \rangle 12. \ D \subseteq U
        \langle 4 \rangle 1. PICK C \in \mathcal{C} and y \in C such that D \subseteq B_C(y, 1/m)
           Proof: \langle 3 \rangle 5
        \langle 4 \rangle 2. PICK i such that C = C_i
            Proof: \langle 3 \rangle 8 since x \in U \cap C.
        \langle 4 \rangle 3. \ B_C(y, 1/m) \subseteq B_C(x, 2/m)
            \langle 5 \rangle 1. Let: z \in B_C(y, 1/m)
            \langle 5 \rangle 2. d_C(x,z) < 2/m
                Proof:
                          d_C(x,z) \le d_C(x,y) + d_C(y,z)
                                                                                         (Triangle inequality)
                                         < 1/m + 1/m
                                                                                               (\langle 3 \rangle 11, \langle 4 \rangle 1, \langle 5 \rangle 1)
                                         =2/m
        \langle 4 \rangle 4. D \subseteq U
           Proof:
                                       D \subseteq B_{C_i}(y, 1/m)
                                                                                                  (\langle 4 \rangle 1)
                                           \subseteq B_{C_i}(x,2/m)
                                                                                                  (\langle 4 \rangle 3)
                                           \subseteq B_{C_i}(x, \epsilon_i)
                                                                                                 (\langle 3 \rangle 10)
                                           \subseteq U
                                                                                                  (\langle 3 \rangle 9)
\langle 2 \rangle 4. Q.E.D.
```

PROOF: By the Bing-Nagata-Smirnov Metrization Theorem.

**Theorem 10.2.60.** Let X be a topological space and Y a complete metric space. Then the set C(X,Y) of all continuous functions from X to Y is closed in  $Y^X$  under the uniform topology.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $f: X \to Y$  be a limit point of  $\mathcal{C}(X,Y)$  in the uniform topology.
- $\langle 1 \rangle 2$ . PICK a sequence  $(f_n)$  in  $Y^X$  that converges to f under the uniform topology.

PROOF: By the Sequence Lemma.

 $\langle 1 \rangle 3$ .  $f_n$  converges to f uniformly.

PROOF: Lemma 10.2.27.

 $\langle 1 \rangle 4$ . f is continuous.

PROOF: By the Uniform Limit Theorem.

 $\langle 1 \rangle$ 5. Q.E.D.

Proof: Corollary 3.15.3.1.

П

**Theorem 10.2.61.** Let X be a topological space and Y a complete metric space. Then the set  $\mathcal{B}(X,Y)$  of all bounded functions from X to Y is closed in  $Y^X$  under the uniform topology.

- $\langle 1 \rangle 1$ . Let: f be a limit point of  $\mathcal{B}(X,Y)$
- $\langle 1 \rangle 2$ . PICK a sequence  $(f_n)$  of bounded functions that converges to f in the uniform topology.
- $\langle 1 \rangle 3$ . PICK N such that, for all  $n \geq N$ , we have  $\overline{\rho}(f_n, f) < 1/2$
- $\langle 1 \rangle 4$ . For all  $x \in X$  and  $n \geq N$  we have  $d(f_n(x), f(x)) < 1/2$
- $\langle 1 \rangle$ 5. Let:  $M = \operatorname{diam} f_N(X)$
- $\langle 1 \rangle 6$ . diam  $f(X) \leq M + 1$

PROOF:For  $x, y \in X$  we have

$$d(f(x), f(y)) \le d(f(x), f_N(x)) + d(f_N(x), f_N(y)) + d(f_N(y), f(y))$$

$$< 1/2 + M + 1/2 \qquad (\langle 1 \rangle 4, \langle 1 \rangle 5)$$

$$= M + 1$$

П

**Definition 10.2.62** (Equicontinuous). Let X be a topological space and Y a metric space. Let  $\mathcal{F}$  be a set of continuous functions from X to Y and  $x \in X$ . Then  $\mathcal{F}$  is equicontinuous at x iff, for every  $\epsilon > 0$ , there exists an open neighbourhood U of x such that, for all  $y \in U$  and  $f \in \mathcal{F}$ ,

$$d(f(x), f(y)) < \epsilon$$
.

The set  $\mathcal{F}$  is equicontinuous iff it is equicontinuous at every point of X.

**Lemma 10.2.63.** Let X be a topological space and Y a metric space. Let  $\mathcal{F} \subseteq \mathcal{C}(X,Y)$ . If  $\mathcal{F}$  is totally bounded under the uniform metric, then  $\mathcal{F}$  is equicontinuous.

### Proof:

- $\langle 1 \rangle 1$ . Assume:  $\mathcal{F}$  is totally bounded under the uniform metric.
- $\langle 1 \rangle 2$ . Let:  $x \in X$  and  $\epsilon > 0$
- $\langle 1 \rangle 3$ . Assume: w.l.o.g.  $\epsilon < 1$
- $\langle 1 \rangle 4$ . PICK a finite covering  $B(f_1, \epsilon/3), \ldots, B(f_n, \epsilon/3)$  of  $\mathcal{F}$  by  $\epsilon/3$ -balls.
- $\langle 1 \rangle$ 5. For i = 1, ..., n, PICK an open neighbourhood  $U_i$  of x such that, for all  $y \in U_i$ , we have  $d(f_i(x), f_i(y)) < \epsilon/3$
- $\langle 1 \rangle 6$ . Let:  $U = U_1 \cap \cdots \cap U_n$
- $\langle 1 \rangle 7$ . Let:  $y \in U$  and  $f \in \mathcal{F}$
- $\langle 1 \rangle 8$ . PICK i such that  $f \in B(f_i, \epsilon/3)$
- $\langle 1 \rangle 9. \ d(f(x), f(y)) < \epsilon$

PROOF:

$$d(f(x), f(y)) \le d(f(x), f_i(x)) + d(f_i(x), f_i(y)) + d(f_i(y), f(y))$$

$$< \epsilon/3 + \epsilon/3 + \epsilon/3$$

$$< \epsilon$$

**Lemma 10.2.64.** Let X be a compact space and Y a metric space. Then any continuous function  $f: X \to Y$  is bounded.

PROOF: f(X) is compact, hence bounded.  $\square$ 

**Lemma 10.2.65.** Let X be a compact space and Y a compact metric space. Let  $\mathcal{F} \subseteq \mathcal{C}(X,Y)$ . If  $\mathcal{F}$  is equicontinuous then  $\mathcal{F}$  is totally bounded under the uniform metric and the sup metric.

### Proof:

- $\langle 1 \rangle 1$ . Assume:  $\mathcal{F}$  is equicontinuous.
- $\langle 1 \rangle 2$ .  $\mathcal{F}$  is totally bounded under the sup metric.
  - $\langle 2 \rangle 1$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 2$ . {U open in  $X : \forall x, y \in U . \forall f \in \mathcal{F} . d(f(x), f(y)) < \epsilon/4$ } covers X
  - $\langle 2 \rangle 3$ . PICK a finite subcover  $U_1, \ldots, U_n$
  - $\langle 2 \rangle 4$ . Pick  $a_1 \in U_1, \ldots, a_n \in U_n$
  - $\langle 2 \rangle$ 5. PICK a finite cover  $V_1, \ldots, V_m$  of Y by sets of diamater  $< \epsilon/4$
  - $\langle 2 \rangle 6$ . Let: J be the set of all functions  $\{1,\ldots,n\} \to \{1,\ldots,m\}$
  - $\langle 2 \rangle 7$ . Let:  $J' = \{ \alpha \in J : \exists f \in \mathcal{F}. \forall i. f(a_i) \in V_{\alpha(i)} \}$
  - $\langle 2 \rangle 8$ . For all  $\alpha \in J'$ , PICK  $f_{\alpha} \in \mathcal{F}$  such that, for all i, we have  $f_{\alpha}(a_i) \in V_{\alpha(i)}$ PROVE:  $\{B(f_{\alpha}, \epsilon) : \alpha \in J'\}$  covers  $\mathcal{F}$
  - $\langle 2 \rangle 9$ . Let:  $f \in \mathcal{F}$
  - $\langle 2 \rangle$ 10. PICK  $\alpha \in J$  such that, for all i, we have  $f(a_i) \in V_{\alpha(i)}$  PROVE:  $f \in B(f_{\alpha}, \epsilon)$
  - $\langle 2 \rangle 11$ . Let:  $x \in X$
  - $\langle 2 \rangle 12$ . Pick i such that  $x \in U_i$
  - $\langle 2 \rangle 13. \ d(f(x), f_{\alpha}(x)) < 3\epsilon/4$

Proof:

$$d(f(x), f_{\alpha}(x)) \le d(f(x), f(a_i)) + d(f(a_i), f_{\alpha}(a_i)) + d(f_{\alpha}(a_i), f_{\alpha}(x))$$
$$< \epsilon/4 + \epsilon/4 + \epsilon/4$$

 $\langle 1 \rangle 3$ .  $\mathcal{F}$  is totally bounded under the uniform metric.

PROOF: For  $\epsilon < 1$ , an  $\epsilon$ -ball under the sup metric is an  $\epsilon$ -ball under the uniform metric.

П

**Definition 10.2.66** (Pointwise Bounded). Let X be a set and Y a metric space. A set  $\mathcal{F}$  of functions from X to Y is *pointwise bounded* iff, for all  $x \in X$ , the set  $\{f(x): f \in \mathcal{F}\}$  is bounded.

### 10.3 Isometries

**Definition 10.3.1** (Isometry). Let X be a metric space. An *isometry* of X is a function  $f: X \to X$  such that, for all  $x, y \in X$ ,

$$d(f(x), f(y)) = d(x, y) .$$

# 10.4 Lebesgue Numbers

**Definition 10.4.1** (Lebesgue Number). Let X be a metric space and  $\mathcal{A}$  an open covering of X. A Lebesgue number for  $\mathcal{A}$  is a real  $\delta > 0$  such that, for

every nonempty set  $A \subseteq X$  of diameter  $< \delta$ , there exists  $U \in \mathcal{A}$  such that  $A \subseteq U$ .

**Lemma 10.4.2** (Lebesgue Number Lemma). In a compact metric space, every open covering has a Lebesgue number.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a compact metric space and  $\mathcal{A}$  an open covering of X Prove: There exists a Lebesgue number  $\delta$  for  $\mathcal{A}$ .
- $\langle 1 \rangle 2$ . Assume: w.l.o.g.  $X \notin \mathcal{A}$

PROOF: If  $X \in \mathcal{A}$  then we can take  $\delta = 1$ .

- $\langle 1 \rangle 3$ . PICK a finite subcovering  $\{U_1, \ldots, U_n\} \subseteq \mathcal{A}$  that covers X
- $\langle 1 \rangle 4$ . For  $1 \le i \le n$ ,

Let:  $C_i = X \setminus U_i$ 

 $\langle 1 \rangle$ 5. Let:  $f: X \to \mathbb{R}$  be defined by

$$f(x) = 1/n \sum_{i=1}^{n} d(x, C_i)$$
.

PROOF: Each  $C_i$  is nonempty by  $\langle 1 \rangle 2$ .

- $\langle 1 \rangle 6$ . For all  $x \in X$  we have f(x) > 0
  - $\langle 2 \rangle 1$ . Let:  $x \in X$
  - $\langle 2 \rangle 2$ . PICK i such that  $x \in U_i$

Proof: By  $\langle 1 \rangle 3$ .

 $\langle 2 \rangle 3$ . PICK  $\epsilon > 0$  such that  $B(x, \epsilon) \subseteq U_i$ 

PROOF: By Lemma 10.2.2.

- $\langle 2 \rangle 4. \ d(x, C_i) \geq \epsilon$
- $\langle 1 \rangle 7$ . f is continuous

PROOF: From Lemma 10.2.35.

 $\langle 1 \rangle 8$ . Let:  $\delta = \min f(X)$ 

PROVE: For every nonempty set  $A\subseteq X$  with diameter  $<\delta,$  there exists  $U\in\mathcal{A}$  such that  $A\subseteq U$ 

PROOF: f(X) has a minimum by the Extreme Value Theorem.

- $\langle 1 \rangle 9$ . Let:  $A \subseteq X$  be nonempty with diam  $A < \delta$
- $\langle 1 \rangle 10$ . Pick  $x_0 \in A$
- $\langle 1 \rangle 11$ . Let: i be such that  $d(x_0, C_i)$  is greatest among  $d(x_0, C_1), \ldots, d(x_0, C_n)$
- $\langle 1 \rangle 12. \ \delta \leq d(x_0, C_i)$

Proof:

$$\delta \le f(x_0) \tag{\langle 1 \rangle 8}$$

$$=1/n\sum_{j=1}^{n}d(x_0,C_j) \qquad (\langle 1\rangle 5)$$

$$\leq 1/n \sum_{j=1}^{n} d(x_0, C_i) \tag{\langle 1 \rangle 11}$$

$$= d(x_0, C_i)$$

 $\langle 1 \rangle 13. \ x_0 \in U_i$ 

PROOF:  $x_0 \notin C_i$  because  $d(x_0, C_i) > 0$ .

**Theorem 10.4.3** (DC). Let X be a metrizable space. Then the following are equivalent:

- 1. X is compact.
- 2. X is limit point compact.
- 3. X is sequentially compact.

### Proof:

 $\langle 1 \rangle 1. \ 1 \Rightarrow 2$ 

PROOF: Theorem 9.5.22.

- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$ 
  - $\langle 2 \rangle 1$ . Assume: X is limit point compact.
  - $\langle 2 \rangle 2$ . Let:  $(x_n)$  be a sequence in X Prove:  $(x_n)$  has a convergent subsequence.
  - $\langle 2 \rangle 3$ . Case:  $\{x_n : n \in \mathbb{Z}^+\}$  is finite.

PROOF: In this case,  $(x_n)$  has a constant subsequence.

- $\langle 2 \rangle 4$ . Case:  $\{x_n : n \in \mathbb{Z}^+\}$  is infinite.
  - $\langle 3 \rangle 1$ . Pick a limit point l of  $\{x_n : n \in \mathbb{Z}^+\}$
  - $\langle 3 \rangle 2.$  For every poisitive integer r, PICK  $n_r$  such that  $n_r > n_{r-1}$  and  $d(x_{n_r},l) < 1/r$

PROOF: There always exists such an  $n_r$  since B(l, 1/r) intersects  $\{x_n : n \in \mathbb{Z}^+\}$  in infinitely many points by Theorem 6.1.2.

- $\langle 3 \rangle 3. \ x_{n_r} \to l \text{ as } r \to \infty$
- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$ 
  - $\langle 2 \rangle 1$ . Assume: X is sequentially compact.
  - $\langle 2 \rangle 2$ . Every open covering of X has a Lebesgue number.
    - $\langle 3 \rangle 1$ . Let:  $\mathcal{A}$  be an open covering of X.
    - $\langle 3 \rangle 2$ . Assume: for a contradiction that, for all  $\delta > 0$ , there exists a set  $C \subseteq X$  with diam  $C < \delta$  such that there is no  $U \in \mathcal{A}$  such that  $C \subseteq U$
    - (3)3. For  $n \ge 1$ , PICK  $C_n \subseteq X$  with diam  $C_n < 1/n$  such that there is no  $U \in \mathcal{A}$  such that  $C_n \subseteq U$
    - $\langle 3 \rangle 4$ . For  $n \geq 1$ , PICK  $x_n \in C_n$
    - $\langle 3 \rangle$ 5. PICK a convergent subsequence  $(x_{n_r})$  of  $(x_n)$  PROOF: By  $\langle 2 \rangle$ 1.
    - $\langle 3 \rangle 6$ . Let:  $x_{n_r} \to l$  as  $r \to \infty$
    - $\langle 3 \rangle$ 7. Pick  $U \in \mathcal{A}$  with  $l \in U$

Proof: By  $\langle 3 \rangle 1$ 

 $\langle 3 \rangle 8$ . Pick  $\epsilon > 0$  such that  $B(l, \epsilon) \subseteq U$ 

PROOF: By Lemma 10.2.2.

 $\langle 3 \rangle 9$ . PICK R such that  $1/n_R < \epsilon/2$  and  $d(x_{n_R}, l) < \epsilon/2$ 

Proof: By  $\langle 3 \rangle 6$ 

 $\langle 3 \rangle 10. \ C_{n_R} \subseteq U$ 

Proof:

$$C_{n_R} \subseteq B(x_{n_R}, 1/n_R) \qquad (\langle 3 \rangle 3, \langle 3 \rangle 4)$$

$$\subseteq B(x_{n_R}, \epsilon/2) \qquad (\langle 3 \rangle 9)$$

$$\subseteq B(l, \epsilon) \qquad (\langle 3 \rangle 9)$$

$$\subseteq U \qquad (\langle 3 \rangle 8)$$

 $\langle 3 \rangle 11$ . Q.E.D.

PROOF: This contradicts  $\langle 3 \rangle 3$ .

- $\langle 2 \rangle 3$ . For all  $\epsilon > 0$ , there exists a finite covering of X by  $\epsilon$ -balls.
  - $\langle 3 \rangle 1$ . Let:  $\epsilon > 0$
  - $\langle 3 \rangle 2$ . Assume: for a contradiction there is no finite covering of X by  $\epsilon$ -balls.
  - $\langle 3 \rangle 3$ . PICK a sequence  $(x_n)$  in X such that, for all n,

$$x_n \notin B(x_1, \epsilon) \cup \cdots \cup B(x_{n-1}, \epsilon)$$
.

- $\langle 3 \rangle 4$ . For all m, n with m > n we have  $d(x_m, x_n) \geq \epsilon$
- $\langle 3 \rangle 5$ . Any  $\epsilon/2$ -ball contains at most one element of  $(x_n)$ .
- $\langle 3 \rangle 6$ .  $(x_n)$  has no convergent subsequence.
- $\langle 3 \rangle 7$ . Q.E.D.

PROOF: This contradicts  $\langle 2 \rangle 1$ .

- $\langle 2 \rangle 4$ . Let:  $\mathcal{A}$  be an open covering of X
- $\langle 2 \rangle$ 5. PICK a Lebesgue number  $\delta$  for  $\mathcal{A}$

Proof: By  $\langle 2 \rangle 2$ .

 $\langle 2 \rangle$ 6. PICK a finite covering  $\{B_1, \ldots, B_n\}$  of X by  $\delta/3$ -balls.

Proof: By  $\langle 2 \rangle 3$ .

- $\langle 2 \rangle 7$ . For  $1 \leq i \leq n$ , PICK  $U_i \in \mathcal{A}$  such that  $B_i \subseteq U_i$
- $\langle 2 \rangle 8. \{U_1, \ldots, U_n\} \text{ covers } X.$

Corollary 10.4.3.1.  $S_{\Omega}$  is not metrizable.

PROOF: It is limit point compact (Corollary 9.5.19.2) but not compact (Proposition 9.5.2).  $\Box$ 

Corollary 10.4.3.2. The space  $\mathbb{R}^{\omega}$  is not limit point compact.

# 10.5 Uniform Continuity

**Definition 10.5.1** (Uniform Continuity). Let X and Y be metric spaces and  $f: X \to Y$ . Then f is uniformly continuous iff, for all  $\epsilon > 0$ , there exists  $\delta > 0$  such that, for all  $x, y \in X$ , if  $d(x, y) < \delta$  then  $d(f(x), f(y)) < \epsilon$ .

**Theorem 10.5.2** (Uniform Continuity Theorem). Let X be a compact metric space, Y a metric space, and  $f: X \to Y$  be continuous. Then f is uniformly continuous.

### Proof:

 $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$ 

PROVE: There exists  $\delta > 0$  such that, for all  $x, y \in X$ , if  $d(x, y) < \delta$  then  $d(f(x), f(y)) < \epsilon$ .

```
\begin{split} &\langle 1 \rangle 2. \text{ Let: } \mathcal{A} = \{f^{-1}(B(y,\epsilon/2)) : y \in Y\} \\ &\langle 1 \rangle 3. \text{ $\mathcal{A}$ is an open covering of } X \\ &\langle 1 \rangle 4. \text{ Pick a Lebesgue number } \delta \text{ for } \mathcal{A}. \\ &\text{Prove: For all } x,y \in X, \text{ if } d(x,y) < \delta \text{ then } d(f(x),f(y)) < \epsilon \\ &\text{Proof: By the Lebesgue Number Lemma} \\ &\langle 1 \rangle 5. \text{ Let: } x,y \in X \text{ with } d(x,y) < \delta \\ &\langle 1 \rangle 6. \text{ diam} \{x,y\} < \delta \\ &\langle 1 \rangle 7. \text{ Pick } z \in Y \text{ such that } \{x,y\} \subseteq f^{-1}(B(z,\epsilon/2)) \\ &\langle 1 \rangle 8. \ d(f(x),f(y)) < \epsilon \end{split}
```

**Definition 10.5.3** (Metrically Equivalent). Let d and d' be two metrics on the same set X. Then d and d' are *metrically equivalent* iff the identity map  $i:(X,d)\to (X,d')$  and its inverse are both uniformly continuous.

# 10.6 Locally Metrizable Spaces

**Definition 10.6.1** (Locally Metrizable). A space is *locally metrizable* iff every point has a metrizable neighbourhood.

Proposition 10.6.2. Every metrizable space is locally metrizable.

Proof: Trivial.

Corollary 10.6.2.1. The space  $\mathbb{R}^{\omega}$  is locally metrizable.

**Proposition 10.6.3.** A compact Hausdorff space is metrizable if and only if it is locally metrizable.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a locally metrizable compact Hausdorff space
- $\langle 1 \rangle 2$ . X is regular

Proof: Lemma 9.5.18

- $\langle 1 \rangle 3$ . X is second countable
  - $\langle 2 \rangle 1$ .  $\{U : U \text{ open in } X \text{ and metrizable} \}$  covers X
  - $\langle 2 \rangle 2$ . PICK a finite subcover  $U_1, \ldots, U_n$
  - $\langle 2 \rangle 3$ . For  $1 \leq i \leq n$ , PICK a countable basis  $\mathcal{B}_i$  of  $U_i$
  - $\langle 2 \rangle 4$ .  $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_n$  is a basis for X
- $\langle 1 \rangle 4$ . Q.E.D.

PROOF: By the Urysohn Metrization Theorem.

]

Corollary 10.6.3.1.  $\overline{S_{\Omega}}$  is not locally metrizable.

Corollary 10.6.3.2. The ordered square is not locally metrizable.

**Proposition 10.6.4.** Every subspace of a locally metrizable space is locally metrizable.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be locally metrizable and  $Y \subseteq X$
- $\langle 1 \rangle 2$ . Let:  $y \in Y$
- $\langle 1 \rangle 3$ . Pick a metrizable neighbourhood U of y in X
- $\langle 1 \rangle 4$ .  $U \cap Y$  is a metrizable neighbourhood of y in Y

Corollary 10.6.4.1.  $S_{\Omega} \times \overline{S_{\Omega}}$  is not locally metrizable.

PROOF: It has a subspace homeomorphic to  $\overline{S_{\Omega}}$ .  $\square$ 

**Proposition 10.6.5** (CC). Every locally metrizable regular Lindelöf space is metrizable.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a locally metrizable regular Lindelöf space.
- $\langle 1 \rangle 2$ . Every point in X has an open second countable neighbourhood.
  - $\langle 2 \rangle 1$ . Let:  $x \in X$
  - $\langle 2 \rangle 2$ . Pick an open metrizable U containing x Proof: X is locally metrizable ( $\langle 1 \rangle 1$ )
  - $\langle 2 \rangle 3$ . PICK an open V such that  $x \in V \subseteq \overline{V} \subseteq U$

Proof: Proposition 6.3.2

 $\langle 2 \rangle 4$ .  $\overline{V}$  is Lindelöf

Proof: Proposition 13.1.32

 $\langle 2 \rangle 5$ .  $\overline{V}$  is second countable

Proof: Proposition 10.2.39

- $\langle 1 \rangle$ 3. PICK a countable covering of secound countable open sets  $\mathcal{U}$  PROOF: X is Lindelöf ( $\langle 1 \rangle 1$ )
- $\langle 1 \rangle 4$ . For  $U \in \mathcal{U}$ , PICK a countable basis  $\mathcal{B}_U$
- $\langle 1 \rangle 5$ .  $\bigcup_{U \in \mathcal{U}} \mathcal{B}_U$  is a countable basis for X
  - $\langle 2 \rangle 1$ . Let:  $x \in U$  where U is open in X
  - $\langle 2 \rangle 2$ . Pick  $V \in \mathcal{U}$  such that  $x \in V$
  - $\langle 2 \rangle 3$ . There exists  $B \in \mathcal{B}_V$  such that  $x \in B \subseteq U \cap V$
- $\langle 1 \rangle 6$ . Q.E.D.

PROOF: By the Urysohn Metrization Theorem.

Corollary 10.6.5.1.  $\mathbb{R}_l$  is not locally metrizable.

**Proposition 10.6.6.** The Sorgenfrey plane is not locally metrizable.

### Proof:

 $\langle 1 \rangle 1$ . Let: U be any neighbourhood of (0,0)

Prove: U is not Lindelöf

- $\langle 1 \rangle 2$ . Pick a > 0 such that  $[0, a)^2 \subseteq U$
- $\langle 1 \rangle 3$ . Let:  $L = \{(x, a x) : 0 < x < a\}$
- $\langle 1 \rangle 4$ . L is closed in U

PROOF: By Lemma 6.5.16 since  $(x,y) \mapsto (x,a+y)$  is a homeomorphism of  $\mathbb{R}^2_l$  with itself.

```
\langle 1 \rangle5. Let: \mathcal{U} = \{U \setminus L\} \cup \{([x,b) \times [a-x,c)) \cap U : b > a,c > a-x\}
\langle 1 \rangle 6. \mathcal{U} covers \mathcal{U}
\langle 1 \rangle 7. No countable subset of \mathcal{U} covers U
  PROOF: Every set of the for [x,b) \times [a-x,c) intersects L in exactly one point.
Corollary 10.6.6.1. The Sorgenfrey plane is not metrizable.
Proposition 10.6.7. The space \mathbb{R}_K is locally metrizable.
PROOF: The set (-1,1)-K is a metrizable neighbourhood of 0. For any other
point p, pick an open interval around p that does not contain 0. \square
Proposition 10.6.8. The product of two locally metrizable spaces is locally
metrizable.
Proof:
\langle 1 \rangle 1. Let: X and Y be locally metrizable
\langle 1 \rangle 2. Let: (a,b) \in X \times Y
\langle 1 \rangle 3. PICK metrizable neighbourhoods U of a and V of b
\langle 1 \rangle 4. U \times V is a metrizable neighbourhood of (a, b).
  Proof: By Lemma 10.2.15.
Proposition 10.6.9. The product of two locally metrizable spaces is locally
metrizable.
Proof:
\langle 1 \rangle 1. Let: X and Y be locally metrizable
\langle 1 \rangle 2. Let: (a,b) \in X \times Y
\langle 1 \rangle 3. PICK metrizable neighbourhoods U of a and V of b
\langle 1 \rangle 4. U \times V is a metrizable neighbourhood of (a, b).
  PROOF: By Lemma 10.2.15.
Proposition 10.6.10. The space \mathbb{R}_K^{\omega} is not locally metrizable.
PROOF: If it were, then there would be a basic open set \prod_n U_n that is metrizable,
but then \mathbb{R}_K would be metrizable as it is homeomorphic to a subspace of \prod_n U_n.
```

Corollary 10.6.10.1. The product of a countable family of locally metrizable spaces is not necessarily locally metrizable.

**Proposition 10.6.11.** The continuous image of a locally metrizable space is not necessarily locally metrizable.

PROOF: The identity map from the discrete two-point space to the indiscrete two-point space is continuous.  $\square$ 

# 10.7 Completeness

**Definition 10.7.1** (Cauchy Sequence). Let X be a metric space. A sequence  $(x_n)$  of points in X is a *Cauchy sequence* iff, for every  $\epsilon > 0$ , there exists N such that, for all  $m, n \geq N$ ,

$$d(x_m, x_n) < \epsilon$$
.

Lemma 10.7.2. Every convergent sequence is Cauchy.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $x_n \to l$  as  $n \to \infty$
- $\langle 1 \rangle 2$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle 3$ . PICK N such that, for all  $n \geq N$ , we have  $d(x_n, l) < \epsilon/2$
- $\langle 1 \rangle 4$ . For all  $m, n \geq N$ , we have  $d(x_m, x_n) < \epsilon$

**Definition 10.7.3** (Complete). A metric space is *complete* iff every Cauchy sequence converges.

**Definition 10.7.4** (Topologically Complete). A topological space X is *topologically complete* iff there exists a metric that induces the topology on X under which X is complete.

**Lemma 10.7.5.** A metric space is complete if and only if every Cauchy sequence has a convergent subsequence.

# Proof:

 $\langle 1 \rangle 1$ . In a complete metric space, every Cauchy sequence has a convergent subsequence.

PROOF: Trivial.

- (1)2. In a metric space, if every Cauchy sequence has a convergent subsequence, then the space is complete.
  - $\langle 2 \rangle 1.$  Let: X be a metric space in which every Cauchy sequence has a convergent subsequence.
  - $\langle 2 \rangle 2$ . Let:  $(x_n)$  be a Cauchy sequence in X.
  - $\langle 2 \rangle 3$ . PICK a convergent subsequence  $(x_{n_r})$  with limit l.
  - $\langle 2 \rangle 4. \ x_n \to l \text{ as } n \to \infty$ 
    - $\langle 3 \rangle 1$ . Let:  $\epsilon > 0$
    - $\langle 3 \rangle$ 2. PICK N such that, for all  $m,n \geq N$  we have  $d(x_m,x_n) < \epsilon/2$  and for all  $r \geq N$  we have  $d(x_{n_r},l) < \epsilon/2$

Proof:  $\langle 2 \rangle 3$ ,  $\langle 2 \rangle 4$ 

 $\langle 3 \rangle 3$ . For  $n \geq N$  we have  $d(x_n, l) < \epsilon$ . PROOF:

$$d(x_n, l) \le d(x_n, x_{n_n}) + d(x_{n_n}, l)$$
 (Triangle Inequality)  
$$< \epsilon/2 + \epsilon/2$$
 (\langle 3\rangle 2)  
$$= \epsilon$$

**Theorem 10.7.6** (DC). For any k we have  $\mathbb{R}^k$  is complete.

```
\langle 1 \rangle 1. Let: (x_n) be a Cauchy sequence in \mathbb{R}^k
\langle 1 \rangle 2. \{x_n : n \geq 1\} is bounded.
   \langle 2 \rangle 1. PICK N such that, for all m, n \geq N, we have \rho(x_m, x_n) < 1
      Proof: \langle 1 \rangle 1
   \langle 2 \rangle 2. Let: M = \max(\rho(x_1, 0), \dots, \rho(x_{N-1}, 0), \rho(x_N, 0) + 1)
   \langle 2 \rangle 3. For all n, we have x_n \in [-M, M]^k
      \langle 3 \rangle 1. Let: n \geq 1
              PROVE: x_n \in [-M, M]^k
      \langle 3 \rangle 2. Case: n < N
         PROOF: For 1 \le i \le k,
                    |\pi_i(x_n)| \le \rho(x_n, 0)
                                                         (definition of Euclidean metric)
                                \leq M
                                                                                              (\langle 2 \rangle 2)
      \langle 3 \rangle 3. Case: n \geq N
         PROOF: For 1 \le i \le k,
              |\pi_i(x_n)| \le \rho(x_n, 0)
                                                                (definition of Euclidean metric)
                          \leq \rho(x_n, x_N) + \rho(x_N, 0)
                                                                               (Triangle inequality)
                          < 1 + \rho(x_N, 0)
                                                                                                     (\langle 2 \rangle 1)
                          < M
                                                                                                     (\langle 2 \rangle 2)
\langle 1 \rangle 3. PICK M such that \{x_n : n \geq 1\} \subseteq [-M, M]^k
   PROOF: From \langle 1 \rangle 2.
\langle 1 \rangle 4. (x_n) has a convergent subsequence.
   \langle 2 \rangle 1. [-M, M]^k is compact.
      PROOF: Theorem 9.5.19, Proposition 9.5.14.
   \langle 2 \rangle 2. Q.E.D.
      PROOF: Theorem 10.4.3.
\langle 1 \rangle5. Q.E.D.
```

**Theorem 10.7.7** (DC). For any k we have  $\mathbb{R}^k$  is complete under the square metric.

# PROOF:

- $\langle 1 \rangle 1$ . Let:  $(x_n)$  be a Cauchy sequence under the square metric.
- $\langle 1 \rangle 2$ .  $(x_n)$  is Cauchy under the Euclidean metric.
  - $\langle 2 \rangle 1$ . Let:  $\epsilon > 0$

Proof: Lemma 10.7.5.

- $\langle 2 \rangle 2$ . PICK N such that, for all  $m, n \geq N$ , we have  $\rho(x_m, x_n) < \epsilon / \sqrt{k}$
- $\langle 2 \rangle 3$ . For  $m, n \geq N$ , we have  $d(x_m, x_n) < \epsilon$

$$d(x_m, x_n) = \sqrt{((x_m)_1 - (x_n)_1)^2 + \dots + ((x_m)_k - (x_n)_k)^2}$$

$$\leq \sqrt{\rho(x_m, x_n)^2 + \dots + \rho(x_m, x_n)^2}$$

$$= \sqrt{k\rho(x_m, x_n)}$$

$$< \epsilon \qquad (\langle 2 \rangle 2)$$

- $\langle 1 \rangle 3$ . PICK a subsequence  $(x_{n_r})$  that converges under the Euclidean metric. PROOF: Theorem 10.7.6,  $\langle 1 \rangle 2$ .
- $\langle 1 \rangle 4$ .  $(x_{n_r})$  converges under the square metric.
  - $\langle 2 \rangle 1$ . Let:  $l = \lim_{r \to \infty} x_{n_r}$  under the Euclidean metric.
  - $\langle 2 \rangle 2$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 3$ . PICK R such that, for all  $r \geq R$ , we have  $d(x_{n_r}, l) < \epsilon$
  - $\langle 2 \rangle 4$ . For all  $r \geq R$  we have  $\rho(x_{n_r}, l) < \epsilon$

PROOF: From  $\langle 2 \rangle 3$  since  $\rho(x,y) \leq d(x,y)$  for all x,y.

**Theorem 10.7.8.** There exists a metric that induces the product topology on  $\mathbb{R}^{\omega}$  under which  $\mathbb{R}^{\omega}$  is complete.

- $\langle 1 \rangle 1$ . Let:  $\overline{d}$  be the standard bounded metric on  $\mathbb{R}$ .
- $\langle 1 \rangle 2$ . Let:  $D: (\mathbb{R}^{\omega})^2 \to \mathbb{R}$  be defined by  $D(x,y) = \sup_{i \geq 1} \overline{d}(x_i,y_i)/i$
- $\langle 1 \rangle 3$ . D is a metric that induces the product topology on  $\mathbb{R}^{\omega}$ 
  - $\langle 2 \rangle 1$ . D is a metric on  $\mathbb{R}^{\omega}$ 
    - $\langle 3 \rangle 1$ .  $D(\vec{x}, \vec{y}) \geq 0$

PROOF: Immediate from definitions.

 $\langle 3 \rangle 2$ .  $D(\vec{x}, \vec{y}) = 0$  iff  $\vec{x} = \vec{y}$ 

PROOF: Immediate from definitions.

 $\langle 3 \rangle 3. \ D(\vec{x}, \vec{y}) = D(\vec{y}, \vec{x})$ 

Proof: Immediate from definitions.

- $\begin{array}{l} \langle 3 \rangle 4. \ D(\vec{x},\vec{z}) \leq D(\vec{x},\vec{y}) + D(\vec{y},\vec{z}) \\ \langle 4 \rangle 1. \ \text{For all } n, \, \text{we have } \frac{d(x_n,z_n)}{n} \leq \frac{d(x_n,y_n)}{n} + \frac{d(y_n,z_n)}{n} \\ \langle 4 \rangle 2. \ \text{For all } n, \, \text{we have } \frac{d(x_n,z_n)}{n} \leq D(\vec{x},\vec{y}) + D(\vec{y},\vec{z}) \end{array}$ 

  - $\langle 4 \rangle 3. \ D(\vec{x}, \vec{z}) \leq D(\vec{x}, \vec{y}) + D(\vec{y}, \vec{z})$
- $\langle 2 \rangle 2$ . Let:  $\mathcal{T}_D$  be the topology induced by D and  $\mathcal{T}_p$  the product topology.
- $\langle 2 \rangle 3. \ \mathcal{T}_D \subseteq \mathcal{T}_p$ 
  - $\langle 3 \rangle 1$ . Let:  $U \in \mathcal{T}_D$

PROVE:  $U \in \mathcal{T}_p$ 

- $\langle 3 \rangle 2$ . Let:  $\vec{x} \in U$
- $\langle 3 \rangle 3$ . PICK  $\epsilon > 0$  such that  $B_D(\vec{x}, \epsilon) \subseteq U$
- $\langle 3 \rangle 4$ . PICK N such that  $1/N < \epsilon$
- $\langle 3 \rangle 5$ . Let:  $V = B(x_1, \epsilon) \times \cdots \times B(x_N, \epsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots$
- $\langle 3 \rangle 6. \ \vec{x} \in V \subseteq B_D(\vec{x}, \epsilon)$
- $\langle 2 \rangle 4$ .  $\mathcal{T}_p \subseteq \mathcal{T}_D$ 
  - $\langle 3 \rangle 1$ . Let:  $U = \prod_{n=1}^{\infty} U_n$  be a basic open set in  $\mathcal{T}_p$ , where each  $U_n$  is open, and  $U_n = \mathbb{R}$  for n > N.

```
\langle 3 \rangle 2. Let: \vec{x} \in U
                 PROVE: There exists \epsilon > 0 such that B_D(\vec{x}, \epsilon) \subseteq U.
       \langle 3 \rangle 3. For n \leq N, PICK \epsilon_n > 0 such that B(x_n, \epsilon_n) \subseteq U_n
       \langle 3 \rangle 4. Let: \epsilon = \min(\epsilon_1, \epsilon_2/2, \dots, \epsilon_n/n)
        \langle 3 \rangle 5. Let: \vec{y} \in B_D(\vec{x}, \epsilon)
       \langle 3 \rangle 6. For n \leq N, y_n \in U_n
           \langle 4 \rangle 1. \ D(\vec{x}, \vec{y}) < \epsilon
           \langle 4 \rangle 2. d(x_n, y_n)/n < \epsilon
           \langle 4 \rangle 3. \ d(x_n, y_n)/n < \epsilon_n/n
           \langle 4 \rangle 4. Q.E.D.
              Proof: By \langle 3 \rangle 3.
\langle 1 \rangle 4. \mathbb{R}^{\omega} is complete under D.
    \langle 2 \rangle 1. Let: (x_n) be a Cauchy sequence
    \langle 2 \rangle 2. For all i we have (\pi_i(x_n)) is Cauchy.
       \langle 3 \rangle 1. Let: \epsilon > 0
       \langle 3 \rangle 2. PICK N such that, for all m, n \geq N, we have D(x_m, x_n) < \epsilon/i
       \langle 3 \rangle 3. For all m, n \geq N we have d(\pi_i(x_m), \pi_i(x_n)) < \epsilon
    \langle 2 \rangle 3. For all i we have (\pi_i(x_n)) converges.
   \langle 2 \rangle 4. Q.E.D.
       pf Corollary 5.2.12.1.
Theorem 10.7.9. Let X be a complete metric space and J a set. Then X^J is
complete under the uniform metric.
Proof:
\langle 1 \rangle 1. Let: (f_n) be a Cauchy sequence in X^J.
\langle 1 \rangle 2. Let: f: J \to X be given by: f(\alpha) = \lim_{n \to \infty} f_n(\alpha)
         Prove: f_n \to f as n \to \infty
    \langle 2 \rangle 1. For all \alpha \in J, we have (f_n(\alpha)) is Cauchy in X.
        \langle 3 \rangle 1. Let: \alpha \in J
        \langle 3 \rangle 2. Let: \epsilon > 0
       \langle 3 \rangle 3. PICK N such that, for all m, n \geq N, we have \overline{\rho}(f_m, f_n) < \epsilon
        \langle 3 \rangle 4. For all m, n \geq N we have d(f_m(\alpha), f_n(\alpha)) < \epsilon
   \langle 2 \rangle 2. For all \alpha \in J, we have (f_n(\alpha)) converges.
       PROOF: Since X is complete.
\langle 1 \rangle 3. Let: \epsilon > 0
\langle 1 \rangle 4. PICK N such that, for all m, n \geq N, we have \overline{\rho}(f_m, f_n) < \epsilon/2
\langle 1 \rangle 5. For all \alpha \in J and m \geq N we have \overline{d}(f_m(\alpha), f(\alpha)) \leq \epsilon/2
    \langle 2 \rangle 1. Let: \alpha \in J and m \geq N
    \langle 2 \rangle 2. For all n \geq N we have d(f_m(\alpha), f_n(\alpha)) < \epsilon/2
    \langle 2 \rangle 3. Q.E.D.
       PROOF: Taking the limit as n \to \infty.
\langle 1 \rangle 6. For n \geq N we have \overline{\rho}(f_n, f) < \epsilon
```

**Proposition 10.7.10.** A closed subspace of a complete metric space is complete.

#### PROOF

- $\langle 1 \rangle 1$ . Let: X be a complete metric space and  $A \subseteq X$  be closed.
- $\langle 1 \rangle 2$ . Let:  $(x_n)$  be a Cauchy sequence in A.
- $\langle 1 \rangle 3$ . Let: l be the limit of  $x_n$  in X
- $\langle 1 \rangle 4. \ l \in A$

PROOF: Corollary 3.15.3.1.

**Theorem 10.7.11.** Let X be a topological space and Y a metric space. Then the space C(X,Y) of all continuous functions under the uniform metric is complete.

PROOF: From Theorem 10.2.60 and Proposition 10.7.10.  $\Box$ 

**Theorem 10.7.12.** Let X be a topological space and Y a metric space. Then the space  $\mathcal{B}(X,Y)$  of all bounded functions under the uniform metric is complete.

PROOF: From Theorem 10.2.61 and Proposition 10.7.10.  $\Box$ 

**Theorem 10.7.13.** Every metric space can be isometrically imbedded in a complete metric space.

# Proof:

- $\langle 1 \rangle 1$ . Let: X be a metric space.
- $\langle 1 \rangle 2$ . Assume: w.l.o.g. X is nonempty

Proof: Otherwise X is already complete.

 $\langle 1 \rangle 3$ . Pick  $x_0 \in X$ 

Proof:  $\langle 1 \rangle 2$ 

 $\langle 1 \rangle 4$ .  $\mathcal{B}(X, \mathbb{R})$  is complete.

PROOF: Theorem 10.7.12.

 $\langle 1 \rangle$ 5. Let:  $\Phi: X \to \mathcal{B}(X, \mathbb{R})$  be defined by

$$\Phi(x)(y) = d(x,y) - d(x_0,y)$$

PROOF: For all  $x \in X$ ,  $\Phi(x)$  is bounded because  $\Phi(x)(y) \leq d(x, x_0)$  for all  $y \in X$  by the triangle inequality.

- $\langle 1 \rangle 6$ .  $\Phi$  is an isometric imbedding.
  - $\langle 2 \rangle 1$ . For  $x, y \in X$  we have  $\sup_{z \in X} |d(x, z) d(y, z)| = d(x, y)$ 
    - $\langle 3 \rangle 1. \sup_{z \in X} |d(x, z) d(y, z)| \le d(x, y)$

PROOF: From the triangle inequality.

 $\langle 3 \rangle 2$ .  $\sup_{z \in X} |d(x, z) - d(y, z)| \ge d(x, y)$ 

PROOF: This holds because |d(x,y) - d(y,y)| = d(x,y).

 $\langle 2 \rangle 2$ . For  $x, y \in X$  we have  $\overline{\rho}(\Phi(x), \Phi(y)) = d(x, y)$ 

PROOF

$$\begin{split} \overline{\rho}(\Phi(x), \Phi(y)) &= \sup_{z \in X} |\Phi(x)(z) - \Phi(y)(z)| \\ &= \sup_{z \in X} |d(x, z) - d(x_0, z) - d(y, z) + d(y_0, z)| \\ &= \sup_{z \in X} |d(x, z) - d(y, z)| \\ &= d(x, y) \end{split}$$

# 10.7.1 Completion of a Metric Space

**Theorem 10.7.14.** For every metric space X, there exists a complete metric space C(X) and an isometric imbedding  $i: X \to C(X)$  such that, for every complete metric space Y and isometric imbedding  $j: X \to Y$ , there exists a unique isometric imbedding  $\overline{j}: C(X) \to Y$  such that

$$j = \overline{j} \circ i$$

Proof:

 $\langle 1 \rangle 1$ . PICK a complete metric space Z such that  $X \subseteq Z$ 

PROOF: From Theorem 10.7.13.

 $\langle 1 \rangle 2$ . Let:  $C(X) = \overline{X}$  as a subspace of Z and i be the inclusion.

 $\langle 1 \rangle 3$ . Let: Y be a complete metric space and  $j: X \to Y$  an isometric imbedding

 $\langle 1 \rangle 4$ . Let:  $\overline{j}: C(X) \to Y$  be defined as follows: for  $a \in \overline{X}$ , pick a sequence  $(x_n)$  in X that converges to a. Then  $\overline{j}(a) = \lim_{n \to \infty} j(x_n)$ 

 $\langle 2 \rangle$ 1. For all  $a \in \overline{X}$ , there exists a sequence in X that converges to a. PROOF: By the Sequence Lemma.

 $\langle 2 \rangle 2$ . If  $(x_n)$  is a sequence in X that converges in C(X) then  $(j(x_n))$  converges in Y

 $\langle 3 \rangle 1$ . Let:  $(x_n)$  be a convergent sequence in X.

 $\langle 3 \rangle 2$ .  $(x_n)$  is Cauchy.

PROOF: Lemma 10.7.2

 $\langle 3 \rangle 3$ .  $(j(x_n))$  is Cauchy in Y.

PROOF: This holds because j is an isometry between X and j(X).

 $\langle 3 \rangle 4$ . Q.E.D.

PROOF: Since Y is complete.

 $\langle 2 \rangle 3$ . If  $(x_n)$  and  $(y_n)$  are sequences in X that have the same limit in C(X) then  $\lim_{n \to \infty} j(x_n) = \lim_{n \to \infty} j(y_n)$ 

PROOF:

Theory. In theory. 
$$d(\lim_{n\to\infty} j(x_n), \lim_{n\to\infty} j(y_n)) = \lim_{n\to\infty} d(j(x_n), j(y_n)) \text{ (Theorem 5.2.12, Lemma 10.2.20)}$$

$$= \lim_{n\to\infty} d(x_n, y_n)$$

$$= d(\lim_{n\to\infty} x_n, \lim_{n\to\infty} y_n) \text{ (Theorem 5.2.12, Lemma 10.2.20)}$$

$$= 0$$

 $\langle 1 \rangle 5$ .  $\overline{j}$  is an isometric imbedding

 $\langle 2 \rangle 1$ . Let:  $a, b \in C(X)$ 

 $\langle 2 \rangle 2$ . PICK sequences  $(x_n)$ ,  $(y_n)$  in X that converge to a and b respectively. PROOF: By the Sequence Lemma.

 $\langle 2 \rangle 3. \ d(\overline{j}(a), \overline{j}(b)) = d(a, b)$ 

Proof:

$$d(\overline{j}(a),\overline{j}(b)) = d(\lim_{n \to \infty} j(x_n), \lim_{n \to \infty} j(y_n))$$

$$d(\lim_{n \to \infty} j(x_n), \lim_{n \to \infty} j(y_n)) = \lim_{n \to \infty} d(j(x_n), j(y_n)) \text{(Theorem 5.2.12, Lemma 10.2.20)}$$

$$= \lim_{n \to \infty} d(x_n, y_n)$$

$$= d(\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n) \text{(Theorem 5.2.12, Lemma 10.2.20)}$$

$$= d(a, b)$$

 $\langle 1 \rangle 6. \ j = \overline{j} \circ i$ 

PROOF: For  $a \in X$  we have

$$\overline{j}(i(a)) = \overline{j}(a) 
= \overline{j}(\lim_{n \to \infty} a) 
= \lim_{n \to \infty} j(a) 
= i(a)$$

- $\langle 1 \rangle 7$ . If  $k: C(X) \to Y$  is an isometric imbedding and  $j=k \circ i$  then  $k=\overline{j}$ 
  - $\langle 2 \rangle 1$ . Let:  $a \in C(X)$
  - $\langle 2 \rangle 2$ . PICK a sequence  $(x_n)$  in X that converges to a

PROOF: By the Sequence Lemma.

 $\langle 2 \rangle 3. \ k(a) = \lim_{n \to \infty} j(x_n)$ 

Proof:

$$k(a) = k \left( \lim_{n \to \infty} x_n \right)$$

$$= \lim_{n \to \infty} k(x_n) \qquad (Theorem 5.2.12)$$

$$= \lim_{n \to \infty} j(x_n) \qquad (j = k \circ i)$$

$$= \overline{j}(a)$$

**Definition 10.7.15** (Completion). The *completion* of a metric space X is the complete metric space C(X) such that:

- X is a sub-metric space of C(X)
- For every complete metric space Y, every isometric imbedding  $X \to Y$  extends uniquely to an isometric imbedding  $C(X) \to Y$

**Theorem 10.7.16** (Uniqueness of Completion). Suppose  $C_1(X)$  and  $C_2(X)$  are both completions of the metric space X. Then there exists a unique isometry  $\phi: C_1(X) \cong C_2(X)$  that is the identity on X.

Proof:

- $\langle 1 \rangle 1$ . Let:  $\phi: C_1(X) \to C_2(X)$  be the unique isometric imbedding that extends the inclusion  $X \hookrightarrow C_2(X)$
- $\langle 1 \rangle 2$ . Let:  $\phi^{-1}: C_2(X) \to C_1(X)$  be the unique isometric imbedding that extends the inclusion  $X \hookrightarrow C_1(X)$

```
\begin{array}{l} \langle 1 \rangle 3. \ \phi \circ \phi^{-1} = \operatorname{id}_{C_2(X)} \\ \text{PROOF: This holds because } \operatorname{id}_{C_2(X)} \text{ is the unique isometric imbedding } C_2(X) \to \\ C_2(X) \text{ that extends the inclusion } X \hookrightarrow C_2(X). \\ \langle 1 \rangle 4. \ \phi^{-1} \circ \phi = \operatorname{id}_{C_1(X)} \\ \text{PROOF: Similar.} \end{array}
```

**Definition 10.7.17** (Peano space). A topological space is a *Peano space* iff it is Hausdorff and it is the continuous image of the unit interval [0, 1].

**Theorem 10.7.18.**  $[0,1]^2$  is a Peano space.

### Proof:

- $\langle 1 \rangle 1$ . Let: I = [0, 1]
- $\langle 1 \rangle 2$ . Give  $I^2$  the square metric and  $\mathcal{C}(I, I^2)$  the sup-metric.
- $\langle 1 \rangle 3$ . Define the sequence  $(f_n)$  in  $\mathcal{C}(I, I^2)$  by:
  - $f_0$  is the path consisting of a straight line from (0,0) to (1/2,1/2) then a straight line from (1/2,1/2) to (1,0).
  - Given  $f_n$ ,  $f_{n+1}$  is the result of replacing:
    - Every path UR-DR with a path UR-UL-UR-DR-UR-DR-DL-DR
    - Every path UR-UL with a path UR-DR-UR-UL-UR-UL-DL-UL
    - Etc.

```
\langle 1 \rangle 4. \rho(f_n, f_{n+1}) \leq 1/2^n
\langle 1 \rangle 5. (f_n) is Cauchy
```

 $\langle 1 \rangle 6$ . Let: f be the limit of  $(f_n)$ 

 $\langle 1 \rangle 7$ . f(I) is dense in  $I^2$ 

 $\langle 2 \rangle 1$ . Let:  $x \in I^2$  and  $\epsilon > 0$ 

 $\langle 2 \rangle 2$ . PICK N such that  $\rho(f_N, f) < \epsilon/2$  and  $1/2^N < \epsilon/2$ 

 $\langle 2 \rangle 3$ . Pick  $t \in I$  such that  $d(f_N(t), x) < 1/2^N$ 

 $\langle 2 \rangle 4. \ d(f(t), x) < \epsilon$ 

 $\langle 1 \rangle 8. \ f(I) = I^2$ 

 $\langle 2 \rangle 1$ . f(I) is compact.

Proof: Proposition 9.5.10.

 $\langle 2 \rangle 2$ . f(I) is closed.

Proof: Proposition 9.5.9.

\_

**Theorem 10.7.19** (Hahn-Mazurkiewicz). A space is a Peano space if and only if it is compact, connected, locally connected and metrizable.

# Proof:

- $\langle 1 \rangle 1.$  Every Peano space is compact, connected, locally connected and metrizable.
  - $\langle 2 \rangle 1$ . Let: X be a Peano space.
  - $\langle 2 \rangle 2$ . Pick a continuous surjection  $p:[0,1] \rightarrow X$
  - $\langle 2 \rangle 3$ . p is a perfect map.

- $\langle 3 \rangle 1$ . p is a closed map.
  - $\langle 4 \rangle 1$ . Let:  $C \subseteq [0,1]$  be closed.
  - $\langle 4 \rangle 2$ . C is compact.

Proof: Proposition 9.5.6.

 $\langle 4 \rangle 3$ . p(C) is compact.

Proof: Proposition 9.5.10.

 $\langle 4 \rangle 4$ . p(C) is closed.

Proof: Proposition 9.5.9.

- $\langle 3 \rangle 2$ . For all  $x \in X$  we have  $p^{-1}(x)$  is compact.
  - $\langle 4 \rangle 1$ . Let:  $x \in X$
  - $\langle 4 \rangle 2$ .  $\{x\}$  is closed.

PROOF: Theorem 6.2.2

 $\langle 4 \rangle 3$ .  $p^{-1}(x)$  is closed.

PROOF: Theorem 5.2.2

 $\langle 4 \rangle 4$ .  $p^{-1}(x)$  is compact.

Proof: Proposition 9.5.9.

 $\langle 2 \rangle 4$ . X is compact.

Proof: Proposition 9.5.10.

 $\langle 2 \rangle 5$ . X is connected.

PROOF: Theorem 8.1.9.

 $\langle 2 \rangle 6$ . X is locally connected.

Proof: Proposition 8.6.15

 $\langle 2 \rangle 7$ . X is metrizable.

 $\langle 3 \rangle 1$ . X is second countable.

Proof: Proposition 13.1.20

 $\langle 3 \rangle 2$ . X is regular.

PROOF: Proposition 9.6.7.

 $\langle 3 \rangle 3$ . Q.E.D.

PROOF: By the Urysohn Metrization Theorem.

 $\langle 1 \rangle 2.$  Every compact, connected, locally connected, metrizable space is a Peano space.

PROOF: See J. G. Hocking and G. S. Young, *Topology* p. 129.

**Theorem 10.7.20** (DC). A metric space is compact if and only if it is complete and totally bounded.

# Proof:

 $\langle 1 \rangle 1$ . Every compact metric space is complete.

PROOF: Lemma 10.7.5 and Theorem 10.4.3.

 $\langle 1 \rangle 2$ . Every compact metric space is totally bounded.

PROOF: For every  $\epsilon > 0$ , the set of all  $\epsilon$ -balls covers the space, hence has a finite subcover.

- $\langle 1 \rangle 3$ . Every complete, totally bounded metric space is compact.
  - $\langle 2 \rangle 1.$  Let: X be a complete, totally bounded metric space.

Prove: X is sequentially compact.

 $\langle 2 \rangle 2$ . Let:  $(x_n)$  be a sequence of points in X.

- $\langle 2 \rangle$ 3. PICK a sequence of infinite sets of integers  $J_1 \supseteq J_2 \supseteq \cdots$  such that, for each k, there exists an open ball of radius 1/k that contains  $x_n$  for all  $n \in J_k$ 
  - $\langle 3 \rangle 1$ . Let:  $J_0 = \mathbb{Z}^+$
  - $\langle 3 \rangle 2$ . Assume: we have chosen  $J_1 \supseteq \cdots \supseteq J_{k-1}$  satisfying the condition
  - $\langle 3 \rangle 3$ . PICK finitely many balls  $B_1, \ldots, B_r$  of radius 1/k that cover X.
  - $\langle 3 \rangle 4$ . Pick i such that  $B_i$  contains  $x_n$  for infinitely many  $n \in J_{k-1}$
  - $\langle 3 \rangle 5$ . Let:  $J_k = \{ n \in J_{k-1} : x_n \in B_i \}$
- $\langle 2 \rangle 4$ . PICK a sequence  $n_1 < n_2 < \cdots$  with  $n_k \in J_k$  for all k.
- $\langle 2 \rangle 5$ .  $(x_{n_r})$  is Cauchy.

PROOF: For all r, s with  $r \leq s$  we have  $d(x_{n_r}, x_{n_s}) \leq 2/r$ .

 $\langle 2 \rangle 6$ .  $(x_{n_r})$  converges.

Proof:  $\langle 2 \rangle 1$ ,  $\langle 2 \rangle 5$ 

 $\langle 2 \rangle 7$ . Q.E.D.

PROOF: Theorem 10.4.3.

**Theorem 10.7.21** (Ascoli's Theorem, Classical Version). Let X be a compact space. Give  $\mathbb{R}^n$  either the Euclidean metric or the square metric. Give  $\mathcal{C}(X,\mathbb{R}^n)$  the corresponding uniform topology. Let  $\mathcal{F} \subseteq \mathcal{C}(X,\mathbb{R}^n)$ . Then  $\overline{\mathcal{F}}$  is compact if and only if  $\mathcal{F}$  is equicontinuous and pointwise bounded.

## Proof:

- $\langle 1 \rangle 1$ . Let:  $\rho$  be the sup metric on  $\mathcal{C}(X,\mathbb{R}^n)$  and  $\overline{\rho}$  the uniform metric.
- $\langle 1 \rangle 2$ . Let:  $\mathcal{G} = \overline{\mathcal{F}}$
- $\langle 1 \rangle$ 3. If  $\mathcal{G}$  is compact then  $\mathcal{G}$  is equicontinuous and pointwise bounded.
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{G}$  is compact.
  - $\langle 2 \rangle 2$ .  $\mathcal{G}$  is totally bounded under  $\rho$  and  $\overline{\rho}$ .

PROOF: Theorem 10.7.20.

 $\langle 2 \rangle 3$ .  $\mathcal{G}$  is equicontinuous.

Proof: Lemma 10.2.63.

 $\langle 2 \rangle 4$ .  $\mathcal{G}$  is bounded under  $\rho$ 

PROOF: From  $\langle 2 \rangle 2$ .

 $\langle 2 \rangle$ 5.  $\mathcal{G}$  is pointwise bounded.

PROOF: From  $\langle 2 \rangle 4$ .

- $\langle 1 \rangle 4$ . If  $\mathcal{F}$  is equicontinuous then  $\mathcal{G}$  is equicontinuous.
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{F}$  is equicontinuous.
  - $\langle 2 \rangle 2$ . Let:  $x_0 \in X$  and  $\epsilon > 0$
  - $\langle 2 \rangle$ 3. PICK an open neighbourhood U of  $x_0$  such that, for all  $y \in U$  and  $f \in \mathcal{F}$ , we have  $d(f(x_0), f(y)) < \epsilon/3$
  - $\langle 2 \rangle 4$ . Let:  $y \in U$  and  $g \in \mathcal{G}$
  - $\langle 2 \rangle$ 5. Pick  $f \in \mathcal{F} \cap B(g, \epsilon/3)$
  - $\langle 2 \rangle 6. \ d(g(x_0), g(y)) < \epsilon$

```
Proof:
```

$$d(g(x_0), g(y)) \le d(g(x_0), f(x_0)) + d(f(x_0), f(y)) + d(f(y), g(y))$$
 (Triangle inequality) 
$$< \epsilon/3 + \epsilon/3 + \epsilon/3$$
 (\langle 2\rangle 3, \langle 2\rangle 5)

- $\langle 1 \rangle$ 5. If  $\mathcal{F}$  is pointwise bounded then  $\mathcal{G}$  is pointwise bounded.
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{F}$  is pointwise bounded.
  - $\langle 2 \rangle 2$ . Let:  $a \in X$
  - $\langle 2 \rangle 3$ . Let:  $D = \operatorname{diam} \{ f(a) : f \in \mathcal{F} \}$
  - $\langle 2 \rangle 4$ . Let:  $g, g' \in \mathcal{G}$

PROVE: d(g(a), g'(a)) < D + 2

- $\langle 2 \rangle 5$ . Pick  $f, f' \in \mathcal{F}$  such that  $\rho(f, g) < 1$  and  $\rho(f', g') < 1$
- $\langle 2 \rangle 6.$  d(g(a), g'(a)) < D + 2

PROOF:

$$d(g(a), g'(a)) \le d(g(a), f(a)) + d(f(a), f'(a)) + d(f'(a), g(a))$$

$$< 1 + D + 1$$

- $\langle 1 \rangle$ 6. If  $\mathcal{G}$  is equicontinuous and pointwise bounded then there exists a compact  $Y \subseteq \mathbb{R}^n$  that includes g(X) for all  $g \in \mathcal{G}$ 
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{G}$  is equicontinuous and pointwise bounded.
  - $\langle 2 \rangle 2.$  {Uopen in  $X: \forall x,y \in U. \forall g \in \mathcal{G}. d(g(x),g(y)) < 1} is an open cover of X$

PROOF: For all  $a \in X$  there exists U such that, for all  $x \in U$  and  $g \in \mathcal{G}$  we have d(g(a),g(x)) < 1/2.

- $\langle 2 \rangle 3$ . PICK a finite subcover  $\{U_1, \ldots, U_n\}$
- $\langle 2 \rangle 4$ . Pick  $a_1 \in U_1, \ldots, a_n \in U_n$
- $\langle 2 \rangle$ 5. For each i,  $\{g(a_i) : g \in \mathcal{G}\}$  is bounded.
- (2)6. PICK N such that, for each  $g \in \mathcal{G}$  and each i, we have  $g(a_i) \in B(0,N)$
- $\langle 2 \rangle 7$ . Let:  $Y = \overline{B(0, N+1)}$
- $\langle 1 \rangle 7$ . If  $\mathcal{F}$  is equicontinuous and pointwise bounded then  $\mathcal{G}$  is compact.
  - $\langle 2 \rangle 1$ . Assume:  $\mathcal{F}$  is equicontinuous and pointwise bounded.
  - $\langle 2 \rangle 2$ .  $\mathcal{G}$  is complete under the sup metric.

PROOF: It is a closed subset of the complete metric space  $\mathcal{C}(X,\mathbb{R}^n)$  under a.

- $\langle 2 \rangle 3$ .  $\mathcal{G}$  is totally bounded under the sup metric.
  - $\langle 3 \rangle 1$ . PICK a compact Y such that  $g(X) \subseteq Y$  for all  $g \in \mathcal{G}$

Proof: By  $\langle 1 \rangle 6$ 

- $\langle 3 \rangle 2$ .  $\mathcal{G}$  is an equicontinuous subset of  $\mathcal{C}(X,Y)$
- $\langle 3 \rangle 3$ . Q.E.D.

PROOF: Lemma 10.2.65.

 $\langle 2 \rangle 4$ . Q.E.D.

PROOF: Theorem 10.7.20.

Corollary 10.7.21.1. Let X be a compact space. Give  $\mathbb{R}^n$  either the square metric or the Euclidean metric. Give  $\mathcal{C}(X,\mathbb{R}^n)$  the corresponding sup metric. A subspace  $\mathcal{F}$  of  $\mathcal{C}(X,\mathbb{R}^n)$  is compact if and only if it is closed, bounded and

equicontinuous.

**Corollary 10.7.21.2** (Arzela's Theorem). Let X be a compact space and let  $(f_n)$  be a sequence of continuous functions  $X \to \mathbb{R}^k$ . If the set  $\{f_n : n \in \mathbb{Z}^+\}$  is pointwise bounded and equicontinuous, then the sequence  $(f_n)$  has a uniformly convergent subsequence.

# 10.8 The Topology of Compact Convergence

**Definition 10.8.1** (Topology of Compact Convegence). Let Y be a metric space and X a topological space. For  $f: X \to Y$  a function, C a compact subspace of X, and  $\epsilon > 0$ , let  $B_C(f, \epsilon) = \{g: X \to Y \mid \sup_{x \in C} d(f(x), g(x)) < \epsilon\}$ . Then the sets  $B_C(f, \epsilon)$  form a basis for a topology on  $Y^X$ , which we call the topology of compact convergence or the topology of uniform convergence on compact sets.

We prove this forms a basis.

# Proof:

```
\langle 1 \rangle 1. Given g \in B_C(f, \epsilon), we have B_C(g, \delta) \subseteq B_C(f, \epsilon), where \delta = \epsilon - \sup_{x \in C} d(f(x), g(x))
    \langle 2 \rangle 1. Let: g \in B_C(f, \epsilon)
    \langle 2 \rangle 2. Let: \delta = \epsilon - \sup_{x \in C} d(f(x), g(x))
    \langle 2 \rangle 3. Let: h \in B_C(g, \delta)
    \langle 2 \rangle 4. \sup_{x \in C} d(f(x), h(x)) < \epsilon
       Proof:
       \sup_{x \in C} d(f(x), h(x)) \leq \sup_{x \in C} d(f(x), g(x)) + \sup_{x \in C} d(g(x), h(x)) \quad \text{(Triangle Inequality)}
                                      <\sup_{x\in C}d(f(x),g(x))+\delta
                                                                                                                                         (\langle 2 \rangle 3)
                                                                                                                                         (\langle 2 \rangle 2)
\langle 1 \rangle 2. For every f \in Y^X we have f \in B_{\emptyset}(f,1)
(1)3. If f \in B_C(g,\epsilon) \cap B_D(h,\delta), then there exists \chi such that f \in B_{C \cup D}(f,\chi) \subseteq
          B_C(g,\epsilon) \cap B_D(h,\delta)
    \langle 2 \rangle 1. Let: f \in B_C(g, \epsilon) \cap B_D(h, \delta)
    \langle 2 \rangle 2. Let: \chi = \min(\epsilon - \sup_{x \in C} d(f(x), g(x)), \delta - \sup_{x \in D} d(f(x), h(x)))
    \langle 2 \rangle 3. \ B_{C \cup D}(f, \chi) \subseteq B_C(g, \epsilon) \cap B_D(h, \delta)
       Proof: By \langle 1 \rangle 1
\langle 1 \rangle 4. Q.E.D.
    Proof: Lemma 3.5.3.
```

**Theorem 10.8.2.** Let Y be a metric space and X a topological space. Let  $(f_n)$  be a sequence of functions from X to Y. Then  $f_n$  converges to f under the topology of compact convergence iff, for every compact  $C \subseteq X$ , we have  $f_n \upharpoonright_C$  converges to  $f \upharpoonright_C$  uniformly.

PROOF: Immediate from definitions.

**Theorem 10.8.3.** Let X be a compactly generated space and Y a metric space. Then C(X,Y) is closed in  $Y^X$  under the topology of compact convergence.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } f \in \overline{\mathcal{C}(X,Y)} \\ \text{Prove: } f \text{ is continuous.} \\ \langle 1 \rangle 2. \text{ Let: } C \subseteq X \text{ be compact} \\ \text{Prove: } f \upharpoonright_C: C \to Y \text{ is continuous.} \\ \langle 1 \rangle 3. \text{ Let: } x \in C \text{ and } \epsilon > 0 \\ \text{Prove: } \text{There exists a neighbourhood } U \text{ of } x \text{ in } C \text{ such that } f(U) \subseteq B(f(x),\epsilon) \\ \langle 1 \rangle 4. \text{ PICK } g \in B_C(f,\epsilon/2) \\ \langle 1 \rangle 5. \text{ PICK a neighbourhood } U \text{ of } x \text{ such that } g(U) \subseteq B(g(x),\epsilon/2) \\ \langle 1 \rangle 6. f(U \cap C) \subseteq B(f(x),\epsilon) \\ \langle 1 \rangle 7. \text{ Q.E.D.} \\ \text{Proof: Proposition 9.10.5.} \\ \square
```

**Corollary 10.8.3.1.** Let X be a compactly generated space and Y a metric space. If the sequence of continuous functions  $f_n: X \to Y$  converges to f is the topology of compact convergence, then f is continuous.

# Chapter 11

# Manifolds

# 11.1 Manifolds

**Definition 11.1.1** (Manifold). Let  $m \ge 1$ . An *m-manifold* is a second countable Hausdorff space such that each point has a neighbourhood that is homeomorphic to an open subset of  $\mathbb{R}^m$ .

A curve is a 1-manifold and a surface is a 2-manifold.

**Theorem 11.1.2** (Existence of Finite Partitions of Unity). Let X be a normal space. Let  $\{U_1, \ldots, U_n\}$  be a finite indexed open covering of X. Then there exists a partition of unity dominated by  $\{U_1, \ldots, U_n\}$ .

# Proof:

- $\langle 1 \rangle 1$ . For every finite indexed open covering  $\{U_1, \ldots, U_n\}$  of X, there exists a finite indexed open covering  $\{V_1, \ldots, V_n\}$  such that  $\overline{V_i} \subseteq U_i$ 
  - $\langle 2 \rangle 1$ . For  $1 \leq k \leq n$ , there exist open sets  $V_1, \ldots, V_k$  such that  $\overline{V_i} \subseteq U_i$  for all i and  $\{V_1, \ldots, V_k, U_{k+1}, \ldots, U_n\}$  covers X
    - $\langle 3 \rangle$ 1. Assume: as an induction hypothesis that 0 leq k < k and there exist open sets  $V_1, \ldots, V_k$  such that  $\overline{V_i} \subseteq U_i$  for all i and  $\{V_1, \ldots, V_k, U_{k+1}, \ldots, U_n\}$  covers X
    - $\langle 3 \rangle 2$ . Let:  $A = X \setminus (V_1 \cup \cdots \cup V_k) \setminus (U_{k+2} \cup \cdots \cup U_n)$
    - $\langle 3 \rangle 3$ . A is closed
    - $\langle 3 \rangle 4$ .  $A \subseteq U_{k+1}$

PROOF: Since  $\{V_1, \ldots, V_k, U_{k+1}, \ldots, U_n\}$  covers X

- $\langle 3 \rangle$ 5. PICK an open set  $V_{k+1}$  such that  $A \subseteq V_{k+1}$  and  $\overline{V_{k+1}} \subseteq U_{k+1}$  PROOF: By Proposition 6.3.2
- $\langle 3 \rangle 6. \{ V_1, \dots, V_k, V_{k+1}, U_{k+2}, \dots, U_n \} \text{ covers } X$
- $\langle 1 \rangle 2$ . PICK an open covering  $\{V_1, \ldots, V_n\}$  with  $\overline{V_i} \subseteq U_i$  for all i PROOF: By  $\langle 1 \rangle 1$ .
- $\langle 1 \rangle 3$ . Pick an open covering  $\{W_1, \ldots, W_n\}$  with  $\overline{W_i} \subseteq V_i$  for all i Proof: By  $\langle 1 \rangle 1$ .
- $\langle 1 \rangle 4$ . For  $1 \leq i \leq n$ , PICK a continuous function  $\psi_i : X \to [0,1]$  such that  $\psi_i(\overline{W_i}) = \{1\}$  and  $\psi_i(X \setminus V_i) = \{0\}$

```
PROOF: By the Urysohn Lemma.
\langle 1 \rangle5. Let: \Psi: X \to \mathbb{R} where \Psi(x) = \sum_{i=1}^n \psi_i(x)
\langle 1 \rangle 6. \Psi(x) > 0 for all x \in X
    \langle 2 \rangle 1. Let: x \in X
    \langle 2 \rangle 2. Pick i such that x \in W_i
    \langle 2 \rangle 3. \ \psi_i(x) = 1
\langle 1 \rangle 7. For 1 \le j \le n,
          LET: \phi_j(x) = \frac{\psi_j(x)}{\Psi(x)}
\langle 1 \rangle 8. \ \psi_1, \ldots, \psi_n are a partition of unity dominated by \{U_1, \ldots, U_n\}
    \langle 2 \rangle 1. supp \psi_i \subseteq U_i
        \langle 3 \rangle 1. \ \psi_i^{-1}(\mathbb{R} \setminus \{0\}) \subseteq V_i
            Proof: By \langle 1 \rangle 4
         \langle 3 \rangle 2. supp \psi_i \subseteq \overline{V_i}
            Proof: Proposition 3.12.5
    \langle 2 \rangle 2. \sum_{i=1}^{n} \psi_i(x) = 1 for all x \in X
```

**Theorem 11.1.3.** Let X be a compact Hausdorff space. Suppose that, for every  $x \in X$ , there exists a neighbourhood U of x and a positive integer k such that U can be imbedded in  $\mathbb{R}^k$ . Then there exists a positive integer N such that X can be imbedded in  $\mathbb{R}^N$ .

# Proof:

 $\langle 1 \rangle 1$ . PICK a finite open covering  $\{U_1, \ldots, U_n\}$  of X such that each  $U_i$  can be imbedded in  $\mathbb{R}^k$  for some k

PROOF: Since  $\{U \text{ open in } X : U \text{ can be imbedded in } \mathbb{R}^k \text{ for some } k\}$  covers

- $\langle 1 \rangle 2$ . For  $1 \leq i \leq n$ , Pick a positive integer  $k_i$  and an imbedding  $g_i : U_i \to \mathbb{R}^{k_i}$
- $\langle 1 \rangle 3$ . Pick a partition of unity  $\phi_1, \ldots, \phi_n$  dominated by  $\{U_1, \ldots, U_n\}$ 
  - $\langle 2 \rangle 1$ . X is normal

Proof: By Lemma 9.5.18.

 $\langle 2 \rangle 2$ . Q.E.D.

PROOF: Theorem 11.1.2

 $\langle 1 \rangle 4$ . For  $1 \leq i \leq n$ ,

Let:  $A_i = \operatorname{supp} \phi_i$ 

 $\langle 1 \rangle 5$ . For  $1 \le i \le n$ ,

PROOF: If 
$$x \in U_i$$
 and  $x \in X \setminus A_i$  then  $x \notin \text{supp } \phi_i$  so  $\phi_i(x) = 0$ .

LET:  $h_i : X \to \mathbb{R}^{k_i}$  be defined by
$$h_i(x) = \begin{cases} \phi_i(x)g_i(x) & \text{for } x \in U_i \\ \vec{0} & \text{for } x \in X \setminus A_i \end{cases}$$
PROOF: If  $x \in U_i$  and  $x \in X \setminus A_i$  then  $x \notin \text{supp } \phi_i$  so  $\phi_i(x) = 0$ .

- $\langle 1 \rangle 6$ . Let:  $N = n + k_1 + \dots + k_n$
- $\langle 1 \rangle 7$ . Let:  $F: X \to \mathbb{R}^N$  be the function

$$F(x) = (\phi_1(x), \dots, \phi_n(x), h_1(x), \dots, h_n(x))$$

- $\langle 1 \rangle 8$ . F is an imbedding
  - $\langle 2 \rangle 1$ . F is continuous

PROOF: Each  $h_i$  is continuous by Theorem 5.2.13.

```
\langle 2 \rangle 2. F is injective
        \langle 3 \rangle 1. Assume: F(x) = F(y)
        \langle 3 \rangle 2. PICK i such that \phi_i(x) > 0
           Proof: Since \sum_{i} \phi_{i}(x) = 1 \ (\langle 1 \rangle 3)
        \langle 3 \rangle 3. \ \phi_i(y) = 0
           Proof: By \langle 3 \rangle 1
        \langle 3 \rangle 4. \ x, y \in U_i
            PROOF: Since supp \phi_i \subseteq U_i
        \langle 3 \rangle 5. h_i(x) = h_i(y)
            Proof: By \langle 3 \rangle 1
        \langle 3 \rangle 6. \ g_i(x) = g_i(y)
            Proof: By \langle 1 \rangle 5
        \langle 3 \rangle 7. \ x = y
           Proof: By \langle 1 \rangle 2
    \langle 2 \rangle 3. Q.E.D.
        PROOF: By Theorem 9.5.11
```

Corollary 11.1.3.1. Every compact manifold can be imbedded in  $\mathbb{R}^N$  for some N.

**Proposition 11.1.4.** The line with two origins is a second countable  $T_1$  space where every point has a neighbourhood that is homeomorphic to an open subset of  $\mathbb{R}$ , but it is not a 1-manifold.

# Chapter 12

# Normed Spaces

#### 12.1 The Norm on $\mathbb{R}^n$

**Definition 12.1.1** (Norm). Given  $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ , the norm  $\|\vec{x}\|$  is defined by

 $\|\vec{x}\| = \sqrt{x_1^2 + \dots + x_n^2}$ .

**Definition 12.1.2** (Vector Sum). Define the sum of  $\vec{x}, \vec{y} \in \mathbb{R}^n$  by

$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$
.

**Definition 12.1.3** (Scalar Product). Given  $c \in \mathbb{R}$  and  $\vec{x} \in \mathbb{R}^n$ , define the scalar product  $c\vec{x}$  to be

$$c\vec{x} = (cx_1, \dots, cx_n)$$
.

**Definition 12.1.4** (Inner Product). The inner product of  $\vec{x}, \vec{y} \in \mathbb{R}^n$  is

$$\vec{x} \cdot \vec{y} = x_1 y_1 + \dots + x_n y_n .$$

Lemma 12.1.5.

$$\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$$

PROOF: Both are equal to  $\sum_{i=1}^{n} (x_i y_i + x_i z_i)$ .  $\square$ 

Lemma 12.1.6.

$$|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$$

Proof:

 $\langle 1 \rangle 1$ . Case:  $\vec{x} = \vec{0}$  or  $\vec{y} = \vec{0}$ 

PROOF: In this case, both sides are 0.

 $\langle 1 \rangle 2$ . Case:  $\vec{x} \neq \vec{0} \neq \vec{y}$ 

 $\langle 2 \rangle 1$ . Let:  $a = 1/\|\vec{x}\|, b = 1/\|\vec{y}\|$ 

 $\langle 2 \rangle 2. \ 2 + 2ab\vec{x} \cdot \vec{y} \ge 0$  $\langle 3 \rangle 1. \ \|a\vec{x} + b\vec{y}\|^2 \ge 0$ 

$$\begin{array}{c} \langle 3 \rangle 2. \ \sum_{i=1}^{n} (ax_{i} + by_{i})^{2} \geq 0 \\ \langle 3 \rangle 3. \ a^{2} \sum_{i=1}^{n} x_{i}^{2} + b^{2} \sum_{i=1}^{n} y_{i}^{2} + 2ab \sum_{i=1}^{n} x_{i} y_{i} \geq 0 \\ \langle 3 \rangle 4. \ a^{2} \|\vec{x}\|^{2} + b^{2} \|\vec{y}\|^{2} + 2ab\vec{x} \cdot \vec{y} \geq 0 \\ \langle 2 \rangle 3. \ 2 - 2ab\vec{x} \cdot \vec{y} \geq 0 \\ \text{PROOF: Similar.} \\ \langle 2 \rangle 4. \ 2 - 2ab |\vec{x} \cdot \vec{y}| \geq 0 \\ \text{PROOF: From } \langle 2 \rangle 2 \text{ and } \langle 2 \rangle 3. \\ \langle 2 \rangle 5. \ |\vec{x} \cdot \vec{y}| \leq 1/ab \\ \end{array}$$

# Lemma 12.1.7.

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$

Proof:

$$\begin{aligned} \|\vec{x} + \vec{y}\|^2 &= (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y}) \\ &= \|\vec{x}\|^2 + 2\vec{x} \cdot \vec{y} + \|\vec{y}\|^2 & \text{(Lemma 12.1.5)} \\ &\leq \|\vec{x}\|^2 + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^2 & \text{(Lemma 12.1.6)} \\ &= (\|\vec{x}\| + \|\vec{y}\|)^2 & \Box \end{aligned}$$

**Definition 12.1.8** (Euclidean Metric). The *euclidean metric* on  $\mathbb{R}^n$  is given by

$$d(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\|$$

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1. \ d(\vec{x}, \vec{y}) \geq 0$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$ .  $d(\vec{x}, \vec{y}) = 0$  iff  $\vec{x} = \vec{y}$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3. \ d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4. \ d(\vec{x}, \vec{z}) \leq d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z})$ 

PROOF: From Lemma 12.1.7.

П

**Lemma 12.1.9.** Let d be the euclidean topology on  $\mathbb{R}^n$  and  $\rho$  the square topology. Then, for all  $x, y \in \mathbb{R}^n$ , we have

$$\rho(x,y) \le d(x,y) \le \sqrt{n}\rho(x,y)$$

Proof:

 $\langle 1 \rangle 1. \ \rho(x,y) \leq d(x,y)$ 

 $\langle 2 \rangle 1$ . For  $1 \leq i \leq n$  we have  $|x_i - y_i| \leq d(x, y)$ 

PROOF: By the definition of the euclidean metric.

 $\langle 2 \rangle 2$ . Q.E.D.

PROOF: By the definition of the square metric.

$$\langle 1 \rangle 2. \ d(x,y) \leq \sqrt{n} \rho(x,y)$$
  
PROOF:

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

$$\leq \sqrt{\rho(x,y)^2 + \dots + \rho(x,y)^2}$$

$$= \sqrt{n\rho(x,y)^2}$$

$$= \sqrt{n}\rho(x,y)$$

Corollary 12.1.9.1. The euclidean metric induces the standard topology on

**Definition 12.1.10.** Let  $l_2$  be the set of sequences  $\vec{a} \in \mathbb{R}^{\omega}$  such that  $\sum_{n=1}^{\infty} a_n^2 < 1$ 

**Lemma 12.1.11.** If  $\vec{a}, \vec{b} \in l_2$  then  $\sum_{n=1}^{\infty} |a_n b_n| < \infty$ .

Proof:

$$\sum_{n=1}^{N} |a_n b_n| \le \sqrt{\left(\sum_{n=1}^{N} a_n^2\right) \left(\sum_{n=1}^{N} b_n^2\right)}$$

$$\rightarrow \sqrt{\sum_{n=1}^{\infty} a_n^2 \left(\sum_{n=1}^{\infty} b_n^2\right)}$$
 (Lemma 12.1.6)

**Lemma 12.1.12.** *If*  $\vec{a}, \vec{b} \in l_2$  *then*  $\vec{a} + \vec{b} \in l_2$ .

PROOF: 
$$\sum_{n=1}^{\infty} (a_n + b_n)^2 = \sum_{n=1}^{\infty} a_n^2 + 2 \sum_{n=1}^{\infty} a_n b_n + \sum_{n=1}^{\infty} b_n^2$$
 
$$\leq \sum_{n=1}^{\infty} a_n^2 + 2 \sum_{n=1}^{\infty} |a_n b_n| + \sum_{n=1}^{\infty} b_n^2$$
 
$$< \infty$$
 (Lemma 12.1.11)

**Lemma 12.1.13.** If  $c \in \mathbb{R}$  and  $\vec{a} \in l_2$  then  $c\vec{a} \in l_2$ .

Proof: 
$$\sum_{n=1}^{\infty} (ca_n)^2 = c^2 \sum_{n=1}^{\infty} a_n^2$$
.

**Definition 12.1.14** (The  $l^2$ -metric). The  $l^2$ -metric is defined on  $l_2$  by

$$d(\vec{a}, \vec{b}) = \left[\sum_{n=1}^{\infty} (a_n - b_n)^2\right]^{\frac{1}{2}}$$
.

The topology induced by this metric is the  $l^2$ -topology. We write  $l_2$  for this set under the  $l^2$ -topology.

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1. \ d(\vec{a}, \vec{b}) \geq 0$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$ .  $d(\vec{a}, \vec{b}) = 0$  iff  $\vec{a} = \vec{b}$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3. \ d(\vec{a}, \vec{b}) = d(\vec{b}, \vec{a})$ 

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4. \ d(\vec{a}, \vec{c}) \le d(\vec{a}, \vec{b}) + d(\vec{b}, \vec{c})$ 

PROOF:  $\sqrt{\sum_{i=1}^{N}(a_n-c_n)^2} \leq \sqrt{\sum_{i=1}^{N}(a_n-b_n)^2} + \sqrt{\sum_{i=1}^{N}(b_n-c_n)^2}$  since the euclidean metric on  $\mathbb{R}^N$  is a metric.

**Definition 12.1.15** (Hilbert Cube). The *Hilbert cube* is  $\prod_{n=1}^{\infty} [0, 1/n]$  as a subspace of the  $l_2$ .

**Definition 12.1.16** (Isometric Imbedding). Let X, Y be metric spaces and  $f: X \to Y$ . Then f is an *isometric imbedding* iff, for all  $x, y \in X$ , d(f(x), f(y)) = d(x, y).

Lemma 12.1.17. Every isometric imbedding is an imbedding.

Proof:

- $\langle 1 \rangle 1$ . Let:  $f: X \to Y$  be an isometric imbedding.
- $\langle 1 \rangle 2$ . f is continuous.

PROOF: If  $d(x,y) < \epsilon$  then  $d(f(x), f(y)) < \epsilon$ .

 $\langle 1 \rangle 3$ . f is injective.

PROOF: If f(x) = f(y) then d(f(x), f(y)) = 0 so d(x, y) = 0 hence x = y.

 $\langle 1 \rangle 4. \ f^{-1}: f(X) \to X$  is continuous.

PROOF: If  $d(f^{-1}(x), f^{-1}(y)) < \epsilon$  then  $d(x, y) < \epsilon$ .

200

# Chapter 13

# **Topological Groups**

# 13.1 Topological Groups

**Definition 13.1.1** (Topological Group). A topological group G consists of a group G that is also a  $T_1$  space such that  $\cdot: G^2 \to G$  and  $()^{-1}: G \to G$  are continuous.

**Proposition 13.1.2.** Every topological group is homogeneous.

#### Proof

```
\langle 1 \rangle 1. Let: G be a topological group.
```

$$\langle 1 \rangle 2$$
. Let:  $x, y \in G$ 

$$\langle 1 \rangle 3$$
. Let:  $f: G \to G$  be given by  $f(g) = yx^{-1}z$ 

 $\langle 1 \rangle 4$ . f is a homeomorphism

$$\langle 1 \rangle 5. \ f(x) = y$$

**Definition 13.1.3** (Symmetric). Let G be a topological group. A neighbourhood U of e is symmetric iff  $U = U^{-1}$ .

**Proposition 13.1.4.** For every neighbourhood U of e, there exists a symmetric neighbourhood V of e such that  $VV \subseteq U$ .

# Proof:

```
\langle 1 \rangle 1. Let: m: G^2 \to G be the multiplication function
```

- $\langle 1 \rangle 2. \ ee \in U$
- $\langle 1 \rangle 3. \ (e,e) \in m^{-1}(U)$
- (1)4. Pick neighbourhoods  $U_1$ ,  $U_2$  of e such that  $(e,e) \in U_1 \times U_2 \subseteq m^{-1}(U)$
- $\langle 1 \rangle 5$ . Let:  $V' = U_1 \cap U_2$
- $\langle 1 \rangle 6. \ V'V' \subseteq U$
- $\langle 1 \rangle$ 7. Let:  $f: G^2 \to G$  be the function  $f(x,y) = xy^{-1}$
- $\langle 1 \rangle 8. \ (e, e) \in f^{-1}(V')$
- $\langle 1 \rangle 9$ . PICK a neighbourhood W of e such that  $WW^{-1} \subseteq V'$
- $\langle 1 \rangle 10$ . Let:  $V = WW^{-1}$

```
\langle 1 \rangle11. V is a neighbourhood of e PROOF: V is open because V = \bigcup_{a \in W^{-1}} Wa. \langle 1 \rangle12. V is symmetric \langle 1 \rangle13. VV \subseteq U
```

**Proposition 13.1.5.** Every topological group is regular.

#### PROOF

- $\langle 1 \rangle 1$ . Let: G be a topological group
- $\langle 1 \rangle 2$ . Let:  $A \subseteq G$  be closed and  $a \notin A$
- $\langle 1 \rangle 3$ .  $G \setminus Aa^{-1}$  is a neighbourhood of e
- $\langle 1 \rangle 4$ . PICK a symmetric neighbourhood V of e such that  $VV \subseteq G \setminus Aa^{-1}$  PROOF: Proposition 13.1.4.
- $\langle 1 \rangle$ 5. VA and Va are disjoint neighbourhoods of A and a

Proposition 13.1.6. The long line is not second countable.

PROOF:Let  $\mathcal{B}$  be a basis for L. Then, for every countable ordinal  $\alpha$ ,  $\mathcal{B}$  mst contain a basic open set that contains  $(\alpha, 1/2)$  but not  $(\beta, 1/2)$  for any other  $\beta$ . Therefore,  $\mathcal{B}$  is uncountable.  $\square$ 

**Corollary 13.1.6.1.** *The long line cannot be imbedded in*  $\mathbb{R}$ .

**Theorem 13.1.7.** Let  $f: X \to Y$ . Let Y be compact Hausdorff. Then f is continuous if and only if the graph of f is closed in  $X \times Y$ .

## Proof:

- $\langle 1 \rangle 1$ . Let:  $G_f$  be the graph of f.
- $\langle 1 \rangle 2$ . If f is continuous then the graph of f is closed.
  - $\langle 2 \rangle 1$ . Assume: f is continuous.
  - $\langle 2 \rangle 2$ . Let:  $(x,y) \in (X \times Y) \setminus G_f$
  - $\langle 2 \rangle 3. \ y \neq f(x)$
  - $\langle 2 \rangle$ 4. PICK disjoint open neighbourhoods U of f(x) and V of y PROOF: Y is Hausdorff.
  - $\langle 2 \rangle 5. \ (x,y) \in f^{-1}(U) \times V \subseteq (X \times Y) \setminus G_f$
  - $\langle 2 \rangle 6$ . Q.E.D.
- $\langle 1 \rangle 3$ . If the graph of f is closed then f is continuous.
  - $\langle 2 \rangle 1$ . Assume:  $G_f$  is closed.
  - $\langle 2 \rangle 2$ . Let:  $x_0 \in X$  and V be an open neighbourhood of  $f(x_0)$
  - $\langle 2 \rangle 3.$   $G_f \cap (X \times (Y \setminus V))$  is closed
  - $\langle 2 \rangle 4$ .  $\pi_1(G_f \cap (X \times (Y \setminus V)))$  is closed

Proof: Lemma 9.5.16

- $\langle 2 \rangle 5. \ x_0 \in X \setminus \pi_1(G_f \cap (X \times (Y \setminus V))) \subseteq f^{-1}(V)$
- $\langle 2 \rangle 6$ . Q.E.D.

П

**Theorem 13.1.8.** Let X be a compact Hausdorff space. Let A be a set of closed connected subspaces of X that is linearly ordered by proper inclusion. Then

$$Y = \bigcap \mathcal{A}$$

is connected.

# PROOF:

- $\langle 1 \rangle 1$ . Assume: for a contradiction C and D form a separation of Y
- $\langle 1 \rangle 2$ . PICK disjoint U and V open in X such that  $C = U \cap Y$  and  $D = V \cap Y$   $\langle 2 \rangle 1$ . C and D are compact
  - $\langle 3 \rangle 1$ . Y is compact

PROOF: Y is a closed subset of X, hence compact by Proposition 9.5.6.

 $\langle 3 \rangle 2$ . Q.E.D.

PROOF: C and D are closed subsets of Y hence compact by Proposition 9.5.6.

 $\langle 2 \rangle 2$ . Q.E.D.

PROOF: By Lemma 9.5.18.

 $\langle 1 \rangle 3$ . For all  $A \in \mathcal{A}$ , we have  $A \setminus (U \cup V)$  is nonempty

Proof: Since A is connected.

 $\langle 1 \rangle 4$ .  $\{ A \setminus (U \cup V) : A \in \mathcal{A} \}$  has the finite intersection property

PROOF: This holds because A is linearly ordered under proper inclusion.

 $\langle 1 \rangle$ 5.  $\bigcap_{A \in \mathcal{A}} (A \setminus (U \cup V))$  is nonempty

Proof: By Proposition 9.5.15.

**Theorem 13.1.9.** Let  $A \subseteq \mathbb{R}^n$ . Then the following are equivalent:

- 1. A is compact.
- 2. A is closed and bounded under the euclidean metric.
- 3. A is closed and bounded under the square metric.

# Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$ 
  - $\langle 2 \rangle 1$ . Assume: A is compact.
  - $\langle 2 \rangle 2$ . A is closed.

Proof: By Proposition 9.5.9.

- $\langle 2 \rangle 3. \{B(\vec{0}, n) : n \in \mathbb{Z}^+\} \text{ covers } A$
- $\langle 2 \rangle 4$ . PICK a finite subcover  $\{B(\vec{0}, n_1), \dots, B(\vec{0}, n_k)\}$
- $\langle 2 \rangle 5$ . Let:  $N = \max(n_1, \ldots, n_k)$
- $\langle 2 \rangle 6$ . For all  $x, y \in A$  we have d(x, y) < 2N

PROOF: We have  $d(x,y) \leq d(\vec{0},x) + d(\vec{0},y) < N + N$ .

 $\langle 1 \rangle 2. \ 2 \Rightarrow 3$ 

PROOF: If  $d(x,y) < \epsilon$  for all  $x,y \in A$  then  $\rho(x,y) < \epsilon \sqrt{n}$  by Lemma 12.1.9.  $\langle 1 \rangle 3$ .  $3 \Rightarrow 1$ 

 $\langle 2 \rangle 1$ . Assume: A is closed and  $\rho(x,y) < \epsilon$  for all  $x,y \in A$ 

```
\begin{array}{ll} \langle 2 \rangle 2. & \text{Pick } x_0 \in A \\ \langle 2 \rangle 3. & \text{Let: } b = \rho(\vec{0}, x_0) \\ \langle 2 \rangle 4. & \text{Let: } P = \epsilon + b \\ \langle 2 \rangle 5. & A \subseteq [-P, P]^n \\ & \text{Proof:For any } y \in A \text{ we have} \\ & \rho(\vec{0}, y) \leq \rho(\vec{0}, x_0) + \rho(x_0, y) & \text{(Triangle Inequality)} \\ & < b + \epsilon & (\langle 2 \rangle 3, \, \langle 2 \rangle 1) \\ & = P & (\langle 2 \rangle 4) \\ \langle 2 \rangle 6. & [-P, P]^n \text{ is compact.} \\ & \text{Proof: By Corollary } 9.5.19.1 \text{ and Proposition } 9.5.14. \\ \langle 2 \rangle 7. & \text{Q.E.D.} \\ & \text{Proof: By Proposition } 9.5.6. \end{array}
```

**Theorem 13.1.10** (AC). Let X be a topological space. Then X is compact if and only if every nonempty net in X has a convergent subnet.

## Proof:

- $\langle 1 \rangle 1$ . If X is compact then every nonempty net in X has a convergent subnet.
  - $\langle 2 \rangle 1$ . Assume: X is compact.
  - $\langle 2 \rangle 2$ . Let:  $(x_{\alpha})_{\alpha \in J}$  be a nonempty net in X
  - $\langle 2 \rangle 3$ . For  $\alpha \in J$ , LET:  $B_{\alpha} = \{ \beta \in J : \alpha \leq \beta \}$ .
  - $\langle 2 \rangle 4$ .  $\{B_{\alpha} : \alpha \in J\}$  has the finite intersection property.
    - $\langle 3 \rangle 1$ . Let:  $\alpha_1, \ldots, \alpha_n \in J$
    - $\langle 3 \rangle 2$ . PICK  $\beta \in J$  such that  $\alpha_1 \leq \beta, \ldots, \alpha_n \leq \beta$
    - $\langle 3 \rangle 3. \ x_{\beta} \in B_{\alpha_1} \cap \cdots \cap B_{\alpha_n}$
  - $\langle 2 \rangle$ 5. Pick  $l \in \bigcap_{\alpha \in J} B_{\alpha}$

Proof: Proposition 9.5.15.

- $\langle 2 \rangle 6$ . Let:  $K = \{ \alpha \in J : x_{\alpha} = l \}$
- $\langle 2 \rangle 7$ . K is cofinal in J
  - $\langle 3 \rangle 1$ . Let:  $\alpha \in J$
  - $\langle 3 \rangle 2. \ l \in B_{\alpha}$

Proof: By  $\langle 2 \rangle 5$ .

- $\langle 3 \rangle 3$ . There exists  $\beta \geq \alpha$  such that  $x_{\beta} = l$ .
- $\langle 2 \rangle 8$ .  $(x_{\alpha})_{\alpha \in K}$  is a subnet of  $(x_{\alpha})_{\alpha \in J}$  that converges to l.
- $\langle 1 \rangle 2$ . If every nonempty net in X has a convergent subnet then X is compact.
  - $\langle 2 \rangle 1$ . Assume: Every nonempty net in X has a convergent subnet
  - $\langle 2 \rangle 2$ . Let:  $\mathcal{A}$  be a nonempty set of closed sets with the finite intersection property.
  - $\langle 2 \rangle$ 3. Let: J be the poset of all finite intersections of elements of A under  $\supset$
  - $\langle 2 \rangle 4$ . Pick  $x_C \in C$  for all  $C \in J$

PROOF: These are all nonempty by  $\langle 2 \rangle 2$ .

 $\langle 2 \rangle$ 5. Pick an accumulation point l of  $(x_C)$ 

Prove:  $l \in \bigcap \mathcal{A}$ 

Proof: One exists by Lemma 3.18.2.

```
\langle 2 \rangle 6. Let: C \in \mathcal{A}
           Prove: l \in C
   \langle 2 \rangle7. Let: U be a neighbourhood of l
           Prove: U intersects C
   \langle 2 \rangle 8. Pick D \subseteq C such that x_D \in U
      Proof: By \langle 2 \rangle 5.
   \langle 2 \rangle 9. U intersects C
   \langle 2 \rangle 10. \ l \in C
      PROOF: By Theorem 3.13.3 since C is closed (\langle 2 \rangle 2).
   \langle 2 \rangle 11. Q.E.D.
      Proof: Proposition 9.5.15.
Corollary 13.1.10.1 (AC). Let G be a topological group. Let A and B be
subsets of G. If A is closed in G and B is compact then AB is closed in G.
Proof:
\langle 1 \rangle 1. Let: c \in \overline{AB}
        Prove: c \in AB
\langle 1 \rangle 2. PICK a net (x_{\alpha})_{{\alpha} \in J} that converges to c
   PROOF: By Theorem 3.17.3.
\langle 1 \rangle 3. For \alpha \in J, PICK a_{\alpha} \in A and b_{\alpha} \in B such that x_{\alpha} = a_{\alpha} b_{\alpha}
\langle 1 \rangle 4. PICK a convergent subnet (b_{g(\beta)})_{\beta \in K} of (b_{\alpha})_{\alpha \in J}
   PROOF: By Theorem 13.1.10.
\langle 1 \rangle 5. Let: b_{q(\beta)} \to b
\langle 1 \rangle 6. \ b \in B
   \langle 2 \rangle 1. B is closed
      Proof: By Proposition 9.5.9.
   \langle 2 \rangle 2. Q.E.D.
      PROOF: By Theorem 3.17.3
\langle 1 \rangle 7. \ a_{g(\beta)} \to cb^{-1}
   PROOF: By Theorem 3.17.4
\langle 1 \rangle 8. \ cb^{-1} \in A
   PROOF: By Theorem 3.17.3
\langle 1 \rangle 9. \ c \in AB
\langle 1 \rangle 10. Q.E.D.
   PROOF: By Proposition 3.12.6.
Proposition 13.1.11. Let A_0 + A_1 be the sum of A_0 and A_1 with injections
i_0: A_0 \to A_0 + A_1 \text{ and } i_1: A_1 \to A_0 + A_1.
    Let g: B \to A_0 + A_1 be a function.
    Let B_0 be the pullback of i_0 and g with projections j_0: B_0 \to B and k_0:
B_0 \to A_0.
```

Then B is the sum of  $B_0$  and  $B_1$  with injections  $j_0$  and  $j_1$ .

 $B_1 \to A_1$ .

Let  $B_1$  be the pullback of  $i_1$  and g with projection  $sj_1:B_1\to B$  and  $k_1:$ 

$$B_0 \xrightarrow{j_0} B \xleftarrow{j_1} B_1$$

$$\downarrow \qquad \qquad \downarrow g \qquad \qquad \downarrow \downarrow$$

$$A_0 \xrightarrow{i_0} A_0 + A_1 \xleftarrow{i_1} A_1$$

Proof:

 $\langle 1 \rangle 1$ . Let: X be any set and  $x: B_0 \to X, y: B_1 \to X$ 

**Proposition 13.1.12** (CC). Let X be a space and  $\mathcal{B}$  be a basis for X. Suppose that every subset of  $\mathcal{B}$  that covers X has a countable subcover. Then X is Lindelöf.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{A}$  be an open cover of X.
- $\langle 1 \rangle 2$ .  $\{ B \in \mathcal{B} : \exists U \in \mathcal{A}.B \subseteq U \}$  covers X.
- $\langle 1 \rangle 3$ . PICK a countable subcover  $\mathcal{B}_0$
- $\langle 1 \rangle 4$ . For  $B \in \mathcal{B}_0$ , PICK  $U_B \in \mathcal{A}$  such that  $B \subseteq U_B$
- $\langle 1 \rangle$ 5.  $\{U_B : B \in \mathcal{B}_0\}$  is a countable subcover of  $\mathcal{A}$ .

**Proposition 13.1.13** (CC). The space  $\mathbb{R}_l$  is Lindelöf.

# Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{A}$  be a set of basis elements [a,b) that covers X Prove:  $\mathcal{A}$  has a countable subcover.
- $\langle 1 \rangle 2$ . Let:  $C = \bigcup \{(a,b) : [a,b) \in \mathcal{A}\}$
- $\langle 1 \rangle 3$ .  $\mathbb{R} \setminus C$  is countable.
  - $\langle 2 \rangle 1$ . For all  $x \in \mathbb{R} \setminus C$ , PICK a rational  $q_x$  such that there exists b such that  $q_x \in [x,b) \in \mathcal{A}$ 
    - $\langle 3 \rangle 1$ . PICK  $[a,b) \in \mathcal{A}$  such that  $x \in [a,b)$
    - $\langle 3 \rangle 2$ . x = a

PROOF: If not we would have  $x \in C$ 

- $\langle 3 \rangle 3$ . There exists a rational in (a,b)
- $\langle 2 \rangle 2$ . For  $x, y \in \mathbb{R} \setminus C$ , if x < y then  $q_x < q_y$ 
  - $\langle 3 \rangle 1$ . PICK b, c such that  $q_x \in [x, b) \in \mathcal{A}$  and  $q_y \in [y, c) \in \mathcal{A}$  PROOF: By  $\langle 2 \rangle 1$ .
  - $\langle 3 \rangle 2. \ b \leq y$

PROOF: Otherwise we would have  $y \in (x, b) \subseteq C$ .

 $\langle 3 \rangle 3. \ q_x < q_y$ 

PROOF:  $q_x < b \le y \le q_y$ 

- $\langle 2 \rangle 3$ . The map  $q_- : \mathbb{R} \setminus C \to \mathbb{Q}$  is injective.
- $\langle 1 \rangle 4$ . For  $x \in \mathbb{R} \setminus C$ , PICK  $[a_x, b_x) \in \mathcal{A}$  such that  $a_x \leq x < b_x$
- $\langle 1 \rangle$ 5. PICK a countable subset  $((a_n, b_n))_{n \in \mathbb{Z}^+}$  of  $\{(a, b) : [a, b) \in \mathcal{A}\}$  that covers C
  - $\langle 2 \rangle 1.$  The set C as a subspace of  $\mathbb R$  with the standard topology is second countable.

- $\langle 2 \rangle 2$ . The set C as a subspace of  $\mathbb{R}$  with the standard topology is Lindelöf. PROOF: By Theorem 9.3.2.
- $\langle 1 \rangle 6. \ \{[a_x, b_x) : x \in \mathbb{R} \setminus C\} \cup \{[a_n, b_n) : n \in \mathbb{Z}^+\} \text{ is a countable subcover of } \mathcal{A}.$  $\langle 1 \rangle 7$ . Q.E.D.

Proof: By Proposition 13.1.12.

**Proposition 13.1.14** (AC). The space  $\mathbb{R}_l$  is not second countable.

# Proof:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{B}$  be any basis for  $\mathbb{R}_l$
- $\langle 1 \rangle 2$ . For  $x \in \mathbb{R}$ , Pick  $B_x \in \mathcal{B}$  such that  $x \in B_x \subseteq [x, x+1)$
- $\langle 1 \rangle 3$ . The mapping  $B_{(-)}$  is an injective function  $\mathbb{R} \to \mathcal{B}$

PROOF: For any x we have  $x = \min B_x$ .

 $\langle 1 \rangle 4$ .  $\mathcal{B}$  is uncountable.

Proposition 13.1.15. The product of a Lindelöf space and a compact space is Lindelöf.

# Proof:

- $\langle 1 \rangle 1$ . Let: X be a Lindelöf space and Y a compact space.
- $\langle 1 \rangle 2$ . Let:  $\mathcal{A}$  be an open covering of  $X \times Y$
- $\langle 1 \rangle 3$ . For all  $x \in X$ , there exists a neighbourhood W of x such that  $W \times Y$  is covered by finitely many elements of A.
  - $\langle 2 \rangle 1$ . Let:  $x \in X$
  - $\langle 2 \rangle 2$ .  $\{x\} \times Y$  is compact.

PROOF: It is homeomorphic to Y.

- $\langle 2 \rangle 3$ . PICK a finite subset  $\{U_1, \ldots, U_m\}$  of  $\mathcal{A}$  that covers  $\{x\} \times Y$ Proof: By Proposition 9.5.5.
- $\langle 2 \rangle 4$ . There exists a neighbourhood W of x such that  $W \times Y \subseteq U_1 \cup \cdots \cup U_m$ PROOF: By the Tube Lemma.
- $\langle 1 \rangle 4$ . {W open in  $X : W \times Y$  is covered by finitely many elements of  $\mathcal{A}$ } is an open covering of X.
- $\langle 1 \rangle$ 5. Pick a countable subcovering  $\{W_1, W_2, \ldots\}$
- $\langle 1 \rangle$ 6. For  $i \geq 1$ , PICK a finite subset  $\{U_{i1}, \ldots, U_{ir_i}\}$  of  $\mathcal{A}$  that covers  $W_i \times Y$
- $\langle 1 \rangle$ 7.  $\{U_{1j} : i \geq 1, 1 \leq j \leq r_i\}$  is a countable subcovering of  $\mathcal{A}$ .

**Proposition 13.1.16.** Let X be a  $T_1$  space. Then X is normal if and only if, for every closed set A and open set  $U \supseteq A$ , there exists an open set  $V \supseteq A$  such that  $\overline{V} \subseteq U$ .

# Proof:

- $\langle 1 \rangle 1$ . If X is normal then, for every closed set A and open set  $U \supset A$ , there exists an open set  $V \supset A$  such that  $\overline{V} \subset U$ .
  - $\langle 2 \rangle 1$ . Assume: X is normal.
  - $\langle 2 \rangle 2$ . Let: A be a closed set and U an open set with  $A \subseteq U$

- $\langle 2 \rangle 3$ . PICK disjoint open sets V, W such that  $A \subseteq V$  and  $X \setminus U \subseteq W$
- $\langle 2 \rangle 4. \ \overline{V} \subseteq U$

Proof:

$$\overline{V} \subseteq X \setminus W$$
 
$$\subset U$$

- $\langle 1 \rangle 2$ . If, for every closed set A and open set  $U \supseteq A$ , there exists an open set  $V \supseteq A$  such that  $\overline{V} \subseteq U$ , then X is normal.
  - $\langle 2 \rangle 1$ . Assume: for every closed set A and open set  $U \supseteq A$ , there exists an open set  $V \supseteq A$  such that  $\overline{V} \subseteq U$ .
  - $\langle 2 \rangle 2$ . Let: A, B be disjoint closed sets
  - $\langle 2 \rangle 3$ . PICK an open set V such that  $A \subseteq V$  and  $\overline{V} \subseteq X \setminus B$
- $\langle 2 \rangle 4$ .  $A \subseteq V$  and  $B \subseteq X \setminus \overline{V}$

**Definition 13.1.17** (Action). Let G be a topological group and X a topological space. An *action* of G on X is a continuous function  $\cdot: G \times X \to X$  such that, for all  $g,h \in G$  and  $x \in X$ :

- 1.  $e \cdot x = x$
- 2.  $g \cdot (h \cdot x) = gh \cdot x$

**Definition 13.1.18** (Orbit Space). Let G be a topological group, X a topological space, and  $\cdot: G \times X \to X$  an action of G on X. Then the *orbit space* X/G is the quotient space of X by the equivalence relation  $\sim$  generated by  $x \sim g \cdot x$  for all  $x \in X$ ,  $g \in G$ .

**Theorem 13.1.19.** Let G be a topological group. Let X be a topological space. Let  $\cdot : G \times X \to X$  be an action of G on X. Then the canonical map  $\pi : X \twoheadrightarrow X/G$  is perfect.

- $\langle 1 \rangle 1$ .  $\pi$  is closed.
  - $\langle 2 \rangle 1$ . Let:  $A \subseteq X$  be closed.
  - $\langle 2 \rangle 2$ .  $GA = \{g \cdot a : g \in G, a \in A\}$  is closed
    - $\langle 3 \rangle 1$ . Let:  $z \notin GA$
    - $\langle 3 \rangle 2$ . For all  $g \in G$  we have  $g \cdot z \notin A$
    - $\langle 3 \rangle 3$ . For  $g \in G$ , there exist U an open neighbourhood of g and V an open neighbourhood of z such that UV does not intersect A
    - $\langle 3 \rangle 4. \ \{ U \ \text{open in} \ G : \exists V \ \text{an open neighbourhood of} \ z.UV \cap A = \emptyset \}$  covers G
    - $\langle 3 \rangle 5$ . Pick a finite subcover  $\{U_1, \ldots, U_n\}$
    - (3)6. For  $1 \le i \le n$ , PICK  $V_i$  an open neighbourhood of z such that  $U_i V_i \cap A = \emptyset$
    - $\langle 3 \rangle 7. \ z \in V_1 \cap \cdots \cap V_n \subseteq X \setminus GA$
  - $\langle 2 \rangle 3$ .  $\pi(A)$  is closed
    - $\pi^{-1}(\pi(A)) = GA$
- $\langle 1 \rangle 2$ .  $\pi$  is continuous.

Proof: By definition of the quotient topology.

```
\langle 1 \rangle 3. \pi is surjective.
   PROOF: By definition.
\langle 1 \rangle 4. For all a \in X/G we have \pi^{-1}(a) is compact.
   \langle 2 \rangle 1. Let: a \in X/G
   \langle 2 \rangle 2. PICK x \in X such that a = \pi(x)
   \langle 2 \rangle 3. \ \pi^{-1}(a) = \{ gx : g \in G \}
   \langle 2 \rangle 4. \pi^{-1}(a) is homeomorphic to G
Corollary 13.1.19.1. If X is Hausdorff then so is X/G.
Corollary 13.1.19.2. If X is regular then so is X/G.
Corollary 13.1.19.3. If X is normal then so is X/G.
Corollary 13.1.19.4. If X is locally compact then so is X/G.
Corollary 13.1.19.5. If X is second countable then so is X/G.
Proposition 13.1.20. Let p: X \rightarrow Y be perfect. If X is second countable then
so is Y.
Proof:
\langle 1 \rangle 1. PICK a countable basis \mathcal{B} for X
\langle 1 \rangle 2. Let: \mathcal{J} = \{ J \subseteq^{\text{fin}} \mathcal{B} : \exists W \text{ open in } Y.p^{-1}(W) \subseteq \bigcup J \}
\langle 1 \rangle 3. For every J \in \mathcal{J},
        Let: W_J = \bigcup \{ W \text{ open in } Y : p^{-1}(W) \subseteq \bigcup J \}.
        PROVE: \{W_J : J \in \mathcal{J}\} is a basis for Y.
\langle 1 \rangle 4. \ y \in V where V is open in Y
\langle 1 \rangle 5. \{ B \in \mathcal{B} : x \in B \subseteq p^{-1}(V) \} \text{ covers } p^{-1}(y) \}
\langle 1 \rangle6. PICK a countable subcover J \subseteq ^{\text{fin}} \mathcal{B}
\langle 1 \rangle 7. \ y \in W_J \subseteq V
   \langle 2 \rangle 1. \ p^{-1}(y) \subseteq \bigcup J
   \langle 2 \rangle 2. Pick an open neighbourhood W of y such that p^{-1}(W) \subseteq \bigcup J
      Proof: By Proposition 9.6.1.
   \langle 2 \rangle 3. \ W \subseteq W_J
Proposition 13.1.21. A subspace of a T_1 space is T_1.
Proof:
\langle 1 \rangle 1. Let: X be T_1 and Y \subseteq X
\langle 1 \rangle 2. Let: a \in Y
\langle 1 \rangle 3. \{a\} is closed in X
\langle 1 \rangle 4. \{a\} is closed in Y
   Proof: By Corollary 4.3.4.1.
```

 ${\bf Proposition~13.1.22~(DC).~\it Not~every~topological~group~is~normal.}$ 

Proof: From Proposition 6.5.6.  $\square$ 

**Theorem 13.1.23.** A subspace of a completely regular space is completely regular.

# Proof:

- $\langle 1 \rangle 1$ . Let: X be completely regular and  $Y \subseteq X$
- $\langle 1 \rangle 2$ . Let:  $a \in Y$  and A be closed in Y such that  $a \notin A$
- $\langle 1 \rangle 3$ . PICK C closed in X such that  $A = X \cap C$
- $\langle 1 \rangle 4$ . PICK a continuous function  $f: X \to [0,1]$  such that f(a) = 0 and  $f(C) = \{1\}$
- $\langle 1 \rangle$ 5.  $f \upharpoonright Y : Y \to [0,1]$  is a continuous function such that  $(f \upharpoonright Y)(a) = 0$  and  $(f \upharpoonright Y)(A) = \{1\}$

**Proposition 13.1.24** (DC). Every topological group is completely regular.

# Proof:

- $\langle 1 \rangle 1$ . Let: G be a topological group
- $\langle 1 \rangle 2$ . Let:  $x \in G$  and  $A \subseteq G$  be closed such that  $x \notin A$ Prove: There exists a continuous  $f: G \to [0,1]$  such that f(x) = 0 and  $f(A) = \{1\}$
- $\langle 1 \rangle 3$ . Assume: w.l.o.g. x = e

PROOF:  $\lambda y.x^{-1}y$  is an automorphism of G that maps x to e.

- $\langle 1 \rangle 4$ . PICK a sequence  $V_n$   $(n \geq 0)$  of symmetric neighbourhoods of e disjoint from A such that  $V_n V_n \subseteq V_{n-1}$  for all n
  - $\langle 2 \rangle 1$ . Let:  $V_0 = X \setminus A$
  - $\langle 2 \rangle 2$ . Given  $V_n$ , PICK a symmetric neighbourhood  $V_{n+1}$  of e such that  $V_{n+1}V_{n+1} \subseteq V_n$

Proof: By Proposition 13.1.4.

 $\langle 1 \rangle 5$ . For every dyadic rational p, define an open set U(p) as follows:

$$U(1/2^{n}) = V_{n} (n \ge 0)$$

$$U((2k+1)/2^{n+1}) = V_{n+1}U(k/2^{n}) (0 < k < 2^{n})$$

$$U(p) = \emptyset (p \le 0)$$

$$U(p) = G (p > 1)$$

 $\langle 1 \rangle 6$ . For all k and n, we have

$$V_n U(k/2^n) \subseteq U((k+1)/2^n)$$

 $\langle 2 \rangle 1. \ k \leq 0$ 

PROOF: In this case,  $V_n U(k/2^n) = \emptyset$ 

 $\langle 2 \rangle 2$ . k = 1 and n > 0

Proof:

$$V_n U(1/2^n) = V_n V_n$$

$$\subseteq V_{n-1}$$

$$= U(1/2^{n-1})$$

 $\langle 2 \rangle 3$ . k = 2a for some  $0 < a < 2^{n-1}$ 

Proof:

$$V_n U(2a/2^n) = V_n U(a/2^{n-1})$$
  
=  $U(2a + 1/2^n)$ 

 $\langle 2 \rangle 4$ . k = 2a + 1 for some  $0 < a < 2^{n-1}$ 

Proof:

$$V_n U((2a+1)/2^n) = V_n V_n U(a/2^{n-1})$$

$$\subseteq V_{n-1} U(a/2^{n-1})$$

$$\subseteq U((a+1)/2^{n-1})$$

 $\langle 2 \rangle 5.$   $k \geq 2^n$ 

PROOF: In this case,  $U((k+1)/2^n) = G$ .

 $\langle 1 \rangle 7$ . Define  $f: G \to [0,1]$  by

$$f(x) = \inf\{p : x \in U(p)\}\$$

PROOF: This set is nonempty because  $x \in U(1)$  and bounded below because if  $x \in U(p)$  then p > 0.

- $\langle 1 \rangle 8$ . For n > 0 we have  $\overline{U(k/2^n)} \subseteq V_n U(k/2^n)$ 
  - $\langle 2 \rangle 1$ . Let:  $x \in \overline{U(k/2^n)}$
  - $\langle 2 \rangle 2$ .  $V_n x$  is a neighbourhood of x
  - $\langle 2 \rangle 3$ . Pick  $y \in V_n x \cap U(k/2^n)$
  - $\langle 2 \rangle 4$ . PICK  $z \in V_n$  such that y = zx
  - $(2)5. \ x = z^{-1}y$
- $\langle 1 \rangle 9$ . For p and q dyadic rationals, if p < q then  $\overline{U(p)} \subseteq U(q)$
- $\langle 1 \rangle 10$ . If  $x \in \overline{U(p)}$  then  $f(x) \leq p$ 
  - $\langle 2 \rangle 1$ . For all q > p we have  $x \in U(q)$
  - $\langle 2 \rangle 2$ . For all q > p we have  $f(x) \leq q$
- $\langle 1 \rangle 11$ . If  $x \notin U(p)$  then  $f(x) \geq p$

PROOF: If  $x \notin U(p)$  and  $x \in U(q)$  then q > p.

- $\langle 1 \rangle 12$ . f is continuous
  - $\langle 2 \rangle 1$ . Let:  $x_0 \in X$
  - $\langle 2 \rangle 2$ . Let:  $c < f(x_0) < d$

PROVE: There exist a neighbourhood U of  $x_0$  such that  $f(U) \subseteq (c,d)$ 

- $\langle 2 \rangle 3$ . Pick rational numbers p, q such that c
- $\langle 2 \rangle 4. \ x \notin U(p)$
- $\langle 2 \rangle 5. \ x \in U(q)$
- $\langle 2 \rangle 6$ . Take  $U = U(q) \setminus \overline{U(p)}$
- $\langle 1 \rangle 13. \ f(e) = 0$

PROOF: We have  $e \in U(1/2^n)$  for all n.

 $\langle 1 \rangle 14. \ f(A) = \{1\}$ 

PROOF: If  $x \in A$  and  $x \in U(p)$  then p > 1.

**Definition 13.1.25** (Bijection). A function  $f: A \to B$  is a bijection,  $f: A \cong B$ , iff there exists a function  $f^{-1}: B \to A$ , the inverse of f, such that  $f^{-1} \circ f = \mathrm{id}_A$  and  $f \circ f^{-1} = \mathrm{id}_B$ .

**Theorem 13.1.26.** Let Y be a normal space. Then Y is an absolute retract if and only if Y has the universal extension property.

# Proof:

- $\langle 1 \rangle 1$ . If Y is an absolute retract then Y has the universal extension property.
  - $\langle 2 \rangle 1$ . Assume: Y is an absolute retract.
  - $\langle 2 \rangle 2.$  Let: X be a normal space, A a closed subspace of X and  $f:A \to Y$  a continuous function.
  - $\langle 2 \rangle 3$ . Let:  $Z_f$  be the quotient space of  $X \cup Y$  under:  $a \sim f(a)$  for all  $a \in A$
  - $\langle 2 \rangle 4$ . Let:  $p: X \cup Y \rightarrow Z_f$  be the quotient map
  - $\langle 2 \rangle$ 5. For all  $x_1, x_2 \in X$  we have  $p(x_1) = p(x_2)$  iff  $x_1 = x_2$  or  $x_1, x_2 inA$  and  $f(x_1) = f(x_2)$ ; and for  $x \in X$  and  $y \in Y$  we have p(x) = p(y) iff f(x) = y; and for  $y_1, y_2 \in Y$  we have  $p(y_1) = p(y_2)$  iff  $y_1 = y_2$
  - $\langle 2 \rangle$ 6. p imbeds Y into a closed subspace of  $Z_f$ 
    - $\langle 3 \rangle 1$ . p is injective on Y
    - $\langle 3 \rangle 2. \ p^{-1} : p(Y) \to Y \text{ is continuous}$ 
      - $\langle 4 \rangle$ 1. Let:  $U \subseteq Y$  be open Prove: p(U) is open
      - $\langle 4 \rangle 2. \ p^{-1}(p(U)) = f^{-1}(U) \cup U$
    - $\langle 3 \rangle 3$ . p(Y) is closed

PROOF:  $p^{-1}(p(Y)) = A \cup Y$ 

- $\langle 2 \rangle 7$ .  $Z_f$  is normal
  - $\langle 3 \rangle 1$ .  $Z_f$  is  $T_1$

PROOF: For  $y \in Y$  we have  $p^{-1}(y) = f^{-1}(y) \cup \{y\}$  which is closed.

- $\langle 3 \rangle$ 2. Any two disjoint closed sets in  $Z_f$  can be separated by a continuous function
  - $\langle 4 \rangle 1$ . Let: C and D be disjoint closed sets in  $Z_f$
  - ⟨4⟩2. PICK  $g: Y \to [0,1]$  such that  $g(Y \cap p^{-1}(C)) = \{0\}$  and  $g(Y \cap p^{-1}(D)) = \{1\}$

PROOF: By the Urysohn Lemma.

 $\langle 4 \rangle 3$ . PICK  $h: X \to [0,1]$  such that  $h(X \cap p^{-1}(C)) = \{0\}$  and  $h(X \cap p^{-1}(D)) = \{1\}$  and h agrees with  $g \circ f$  on A

PROOF: By the Tietze Extension Theorem applied to  $A \cup (X \cap p^{-1}(C)) \cup (X \cap p^{-1}(D))$ .

 $\langle 4 \rangle 4$ . Let:  $k: Z_f \to [0,1]$  be the continuous function such that k(p(x)) = h(x) for  $x \in X$  and k(p(y)) = g(y) for  $y \in Y$ 

PROOF: By the Pasting Lemma

- $\langle 4 \rangle 5. \ k(C) = \{0\}$
- $\langle 4 \rangle 6. \ k(D) = \{1\}$
- $\langle 3 \rangle 3$ . Q.E.D.

PROOF: If g is such a continuous function then  $g^{-1}([0,1/2))$  and  $g^{-1}((1/2,1])$  are disjoint open sets that include A and B respectively.

- $\langle 2 \rangle 8$ . Pick a retraction  $r: Z_f \to p(Y)$
- $\langle 2 \rangle 9. \ p^{-1} \circ r \circ p : X \to Y \text{ extends } f$
- $\langle 1 \rangle 2$ . If Y has the universal extension property then Y is an absolute retract.
  - $\langle 2 \rangle 1$ . Assume: Y has the universal extension property
  - $\langle 2 \rangle 2.$  Let: Z be a normal space,  $Y_0$  a closed subspace of Z, and  $\phi: Y \cong Y_0$  a homeomorphism
  - $\langle 2 \rangle 3$ . PICK a continuous extension  $f: Z \to Y$  of  $\phi^{-1}$

```
\langle 2 \rangle 4. \phi \circ f is a retraction
Theorem 13.1.27. Every manifold is metrizable.
PROOF:
\langle 1 \rangle 1. Let: X be an m-manifold.
\langle 1 \rangle 2. X is regular.
   \langle 2 \rangle 1. X is T_1
   \langle 2 \rangle 2. Let: x \in X and U be a neighbourhood of x
   \langle 2 \rangle 3. PICK a neighbourhood V of x that is imbeddable in \mathbb{R}^m
   \langle 2 \rangle 4. PICK a neighbourhood W of x such that \overline{W} \subseteq U \cap V
      Proof: One exists since V is regular (Proposition 6.3.4)
   \langle 2 \rangle 5. \ x \in W \text{ and } \overline{W} \subseteq U
   \langle 2 \rangle 6. Q.E.D.
      Proof: Proposition 6.3.2
\langle 1 \rangle 3. Q.E.D.
   PROOF: By the Urysohn Metrization Theorem.
Theorem 13.1.28. Let X be a compact Hausdorff space in which every point
has a neighbourhood that is imbeddable in \mathbb{R}^m. Then X is an m-manifold.
Proof:
\langle 1 \rangle 1. There exists N such that X is imbeddable in \mathbb{R}^N
   PROOF: Theorem 11.1.3
\langle 1 \rangle 2. X is second countable.
   Proof: Proposition 7.3.3
Proposition 13.1.29. S_{\Omega} is locally metrizable.
PROOF: For any \alpha \in S_{\Omega}, the neighbourhood [0, \alpha] = (-\infty, \alpha + 1) is imbeddable
in \mathbb{R}.
Proposition 13.1.30 (DC). \overline{S}_{\Omega} is compact.
Proof:Proof:
\langle 1 \rangle 1. Let: \mathcal{A} be an open cover of \overline{S_{\Omega}}
\langle 1 \rangle 2. Assume: for a contradiction there is no finite subcover of \mathcal{A}
\langle 1 \rangle 3. There exists a sequence of sets U_n \in \mathcal{A} and ordinals \alpha_n such that \alpha_{n+1} < 1
        \alpha_n for all n and \alpha_n \in U_n for all n
   \langle 2 \rangle 1. Let: \alpha_1 = \Omega
   \langle 2 \rangle 2. Given \alpha_1, \ldots, \alpha_n and U_1, \ldots, U_{n-1} with 0 \neq \alpha_n < \alpha_{n-1} < \cdots < \alpha_1
           and \alpha_i \in U_i for i < n, PICK U_n \in \mathcal{A} with \alpha_n \in U_n
      Proof: By \langle 1 \rangle 1.
   \langle 2 \rangle 3. PICK \alpha_{n+1} < \alpha_n such that (\alpha_{n+1}, \alpha_n] \subseteq U_n
      Proof: By Lemma 4.1.2.
   \langle 2 \rangle 4. \ \alpha_{n+1} \neq 0
```

| PROOF: If $\alpha_{n+1} = 0$ then $U_1, \ldots, U_n$ cover $\overline{S_{\Omega}}$ , contradicting $\langle 1 \rangle 2$ . $\langle 1 \rangle 4$ . Q.E.D.  PROOF: This is a contradiction because the ordinals are well-ordered.                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Proposition 13.1.31.</b> $\mathbb{R}_l$ is not limit point compact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Proof: $\mathbb Z$ has no limit point. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Proposition 13.1.32. Every closed subspace of a Lindelöf space is Lindelöf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PROOF: $ \langle 1 \rangle 1. \text{ Let: } X \text{ be Lindel\"of and } A \subseteq X \text{ be closed} \\ \langle 1 \rangle 2. \text{ Let: } \mathcal{U} \text{ be an open covering of } A \\ \langle 1 \rangle 3. \{ U \text{ open in } X : U \cap A \in \mathcal{U} \} \cup \{ X \setminus A \} \text{ covers } X \\ \langle 1 \rangle 4. \text{ Pick a countable subcovering } \mathcal{V} \\ \langle 1 \rangle 5. \{ U \cap A : U \in \mathcal{V}, U \neq X \setminus A \} \text{ is a countable subcover of } \mathcal{U} \\ \square$ |
| <b>Proposition 13.1.33.</b> $\mathbb{R}^{\omega}$ is locally connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Proof:This holds because every basic open set is connected, being the product of a family of connected spaces. $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Proposition 13.1.34.</b> The space $\mathbb{R}^{\omega}$ under the box topology is not first countable.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PROOF: $ \langle 1 \rangle 1. \text{ Assume: for a contradiction } \{U_n\}_{n \geq 0} \text{ is a countable basis at } 0. \\ \langle 1 \rangle 2. \text{ For } n \geq 1, \text{ Pick a basic open set } B_n = \prod_{j=0}^{\infty} (a_{nj}, b_{nj}) \text{ such that } 0 \in B_n \subseteq U_n \\ \langle 1 \rangle 3. \prod_{n=0}^{\infty} (a_{nn}/2, b_{nn}/2) \text{ is a neighbourhood of } 0 \text{ that does not include any } U_n $                                                                                                   |
| <b>Proposition 13.1.35.</b> The space $\mathbb{R}^{\omega}$ under the box topology is not locally metrizable.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROOF: $ \langle 1 \rangle 1. \text{ Let: } U \text{ be any neighbourhood of } 0 \\ \langle 1 \rangle 2. \text{ Let: } A \text{ be the set of all sequences in } U \text{ with all coordinates positive } \\ \langle 1 \rangle 3. \ 0 \in \overline{A} \\ \langle 1 \rangle 4. \text{ There is no sequence of points of } A \text{ converging to } 0. \\ \langle 1 \rangle 5. \ U \text{ is not metrizable.} \\ \text{PROOF: By the Sequence Lemma.} $                                                                                       |
| <b>Proposition 13.1.36.</b> For any nonempty set $I$ , the space $\mathbb{R}^I$ is not limit point compact.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PROOF: $\mathbb{Z}^I$ is an infinite set with no limit point. $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

**Proposition 13.1.37.** The space  $\mathbb{R}^{[0,1]}$  is separable. PROOF: The set D is dense where D is the set of all functions  $f:[0,1]\to\mathbb{Q}$ such that there exists a sequence of rationals  $0 = q_0 < q_1 < \cdots < q_N = 1$  such that f is constant on  $[q_i, q_{i+1})$  for  $0 \le i < N$ .  $\square$ **Proposition 13.1.38.** If J is uncountable then  $\mathbb{R}^J$  is not locally metrizable. PROOF: Every point has a neighbourhood homeomorphic to  $\mathbb{R}^J$ .  $\square$ **Proposition 13.1.39.** The space  $\mathbb{R}_K$  is not limit point compact. PROOF: The set  $\mathbb{Z}$  has no limit point.  $\square$ Proposition 13.1.40. The topologist's sine curve is not locally connected. PROOF: There is no connected neighbourhood of (0,0). Corollary 13.1.40.1. Not every metric space is locally connected. Corollary 13.1.40.2. Not every metric space is locally path connected. **Proposition 13.1.41.** Not every metric space is compact. PROOF: The space  $\mathbb{R}$  is not compact.  $\square$ **Proposition 13.1.42.** Every closed subspace of a limit point compact space is limit point compact. Proof:  $\langle 1 \rangle 1$ . Let: X be a limit point compact space and  $C \subseteq X$  be closed.  $\langle 1 \rangle 2$ . Let:  $A \subseteq C$  be infinite.  $\langle 1 \rangle 3$ . Pick a limit point l of A in X  $\langle 1 \rangle 4. \ l \in C$  $\langle 2 \rangle 1$ . l is a limt point of CProof: By Lemma 3.15.2.  $\langle 2 \rangle 2$ . Q.E.D. Proof: By Corollary 3.15.3.1.  $\langle 1 \rangle 5$ . *l* is a limit point of *A* in *C*. Proof: By Proposition 4.3.10. **Proposition 13.1.43.** For any part  $i: S \hookrightarrow X$  of a set X, we have  $\emptyset \subseteq_X i$ . PROOF: We have  $i \circ_{S} = X$  by the uniqueness of X. **Theorem 13.1.44.** Let X be a completely regular space. Then there exists a compactification Y of X such that every bounded continuous map  $X \to \mathbb{R}$ extends uniquely to a continuous map  $Y \to \mathbb{R}$ .

Proof:

 $\langle 1 \rangle 1$ . Let: J be the set of all bounded continuous functions  $X \to \mathbb{R}$ 

 $\langle 1 \rangle 2$ . For  $\alpha \in J$ ,

Let:  $I_{\alpha} = [\inf \alpha, \sup \alpha]$ 

- $\langle 1 \rangle 3$ . Let:  $Z = \prod_{\alpha \in J} I_{\alpha}$  $\langle 1 \rangle 4$ . Let:  $h: X \to Z$  be defined by

$$h(x)_{\alpha} = \alpha(x)$$

- $\langle 1 \rangle$ 5. Z is compact Hausdorff
  - $\langle 2 \rangle 1$ . Z is compact

PROOF: By Tychonoff's Theorem.

 $\langle 2 \rangle 2$ . Z is Hausdorff

PROOF: By Theorem 6.2.5

- $\langle 1 \rangle 6$ . h is an imbedding
  - $\langle 2 \rangle 1$ . The set J separates points from closed sets

PROOF: This holds because X is completely regular.

 $\langle 2 \rangle 2$ . Q.E.D.

PROOF: By the Imbedding Theorem.

- $\langle 1 \rangle$ 7. Let: Y be the compactification of X such that  $X \subseteq Y \to Z$  factors h PROOF: By Lemma 9.9.2
- $\langle 1 \rangle 8$ . Every bounded continuous map  $X \to \mathbb{R}$  extends uniquely to a continuous  $\mathrm{map}\ Y\to\mathbb{R}$ 
  - $\langle 2 \rangle 1$ . Let:  $\alpha: X \to \mathbb{R}$  be a bounded continuous function
  - $\langle 2 \rangle 2$ . Let:  $k: Y \to Z$  be the imbedding from  $\langle 1 \rangle 7$
  - $\langle 2 \rangle 3$ . Let:  $\overline{\alpha} = \pi_{\alpha} \circ k : Y \to \mathbb{R}$
  - $\langle 2 \rangle 4$ .  $\overline{\alpha}$  extends  $\alpha$

PROOF: For  $x \in X$ , we have

$$\overline{\alpha}(x) = k(x)_{\alpha}$$

$$= h(x)_{\alpha}$$

$$= \alpha(x)$$

 $\langle 2 \rangle 5$ . If  $f: Y \to Z$  is continuous and extends  $\alpha$  then  $f = \overline{\alpha}$ 

Proof: By Lemma 6.2.9.

**Lemma 13.1.45.** Every subfamily of a locally finite family is locally finite.

Proof: Immediate from the definition.  $\square$