Jeremy Mange CS 6800 Summer 2009

DFA

- Deterministic Finite Automata (DFSA)
 - (Q, Σ, δ, q₀, F)
 - Q (finite) set of states
 - Σ alphabet (finite) set of input symbols
 - δ transition function
 - q₀ start state
 - F set of final / accepting states

DFA

• Often representing as a diagram:

- Some states can be redundant:
 - The following DFA accepts (a|b)+
 - State s1 is not necessary

So these two DFAs are equivalent:

- This is a state-minimized (or just minimized)
 DFA
 - Every remaining state is necessary

- The task of DFA minimization, then, is to automatically transform a given DFA into a state-minimized DFA
 - Several algorithms and variants are known
 - Note that this also in effect can minimize an NFA (since we know algorithm to convert NFA to DFA)

DFA Minimization Algorithm

- Recall that a DFA $M=(Q, \Sigma, \delta, q_0, F)$
- Two states p and q are distinct if
 - p in F and q not in F or vice versa, or
 - for some α in Σ , $\delta(p, \alpha)$ and $\delta(q, \alpha)$ are distinct

 Using this inductive definition, we can calculate which states are distinct

DFA Minimization Algorithm

- Create lower-triangular table DISTINCT, initially blank
- For every pair of states (p,q):
 - If p is final and q is not, or vice versa
 - DISTINCT(p,q) = ϵ
- Loop until no change for an iteration:
 - For every pair of states (p,q) and each symbol α
 - If DISTINCT(p,q) is blank and DISTINCT($\delta(p,\alpha)$, $\delta(q,\alpha)$) is not blank
 - DISTINCT $(p,q) = \alpha$
- Combine all states that are not distinct

Very Simple Example

s0			
s1			
s2			
	s0	s1	s2

s0			
s1	w		
s2	3		
	s0	s1	s2

Label pairs with ε where one is a final state and the other is not

s0			
s1	3		
s2	3		
	s0	s1	s2

Main loop (no changes occur)

s0			
s1	w		
s2	3		
	s0	s1	s2

DISTINCT(s1, s2) is empty, so s1 and s2 are equivalent states

Very Simple Example

Check for pairs with one state final and one not:

First iteration of main loop:

Second iteration of main loop:

- Third iteration makes no changes
 - Blank cells are equivalent pairs of states

Combine equivalent states for minimized DFA:

Conclusion

- DFA Minimization is a fairly understandable process, and is useful in several areas
 - Regular expression matching implementation
 - Very similar algorithm is used for compiler optimization to eliminate duplicate computations
- The algorithm described is $O(kn^2)$
 - John Hopcraft describes another more complex algorithm that is O(k (n log n))

Possible Exam Question

- Question: Inductively define when two states in a DFA are distinct.
- Answer:
 - Two states p and q are distinct if
 - p F and q F or vice versa, or
 - for some α Σ , $\delta(p, \alpha)$ and $\delta(q, \alpha)$ are distinct

References

- Ullman, A. V., Hopcroft, J. E. and Ullman, J. D. (1974) The Design and Analysis of Computer Algorithms. Addison-Wesley.
- Hopcroft, J. (1971) An N Log N Algorithm for Minimizing States in a Finite Automaton. Stanford University.
- Parthasarathy, M. and Fleck, M. (2007) DFA Minimization. University of Illinois at Urbana-Champaign.
 - http://www.cs.uiuc.edu/class/fa07/cs273/Handouts/minimization/minimization.pdf