Date of Issue: August 31, 2009

RADIO FREQUENCY EXPOSURE

LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See §15.247(b)(4) and §1.1307(b)(1) of this chapter.

EUT Specification

<u>Le l'opechication</u>	
EUT	Digital USB Transmitter
Frequency band (Operating)	 □ WLAN: 2.412GHz ~ 2.462GHz □ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz □ WLAN: 5.745GHz ~ 5825GHz □ Others 2.403GHz ~ 2.479GHz
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	Occupational/Controlled exposure $(S = 5mW/cm^2)$ General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	 Single antenna Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity
Max. output power	16.07dBm (40.46mW)
Antenna gain (Max)	2 dBi (Numeric gain:1.58)
Evaluation applied	✓ MPE Evaluation✓ SAR Evaluation
<u>antenna gain</u> .) 2. For mobile or fixed location	is 16.07 dBm (40.46mW) at 2442MHz (with 1.58 numeric transmitters, no SAR consideration applied. The minimum d is at least 20 cm, even if the calculations indicate that the ter.

TEST RESULT

No non-compliance noted.

Report No: SZ090714B05-MPE

FCC ID: XMQEOS-C200-TX

Date of Issue: August 31, 2009

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field Strength in Volts / meter

P = Power in Watts

G=*Numeric* antenna gain

d=*Distance in meters*

S=Power Density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = 100 * d(m)$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Maximum Permissible Exposure

EUT Output Power=40.46mW

Numeric antenna gain=1.58

Substituting the MPE safe distance using d=20 cm into *Equation 1*:

Yields

 $S=0.000199 \times P \times G$

Where

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

The power density $S = 0.000199 \times 40.46 \times 1.58 \ mW/cm^2 = 0.0127 \ mW/cm^2$

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)