Error = Approximation - Exact

1 Cell Average to Nodal Values

Variable	Formula	Lowest Order of Error
\mathcal{M}_A	$\frac{2}{k\Delta x}\sin\left(\frac{k\Delta x}{2}\right)$	_
\mathcal{M}_1	1	$\frac{k^2 \Delta x^2}{24}$
\mathcal{M}_2	1	$\frac{k^2 \Delta x^2}{24}$
\mathcal{M}_3	$\frac{24}{26 - 2\cos\left(k\Delta x\right)}$	$\frac{3k^4\Delta x^4}{640}$

2 Reconstruction

2.1 Reconstructions for η and G

$\mathbf{2.1.1}$ \mathcal{R}^+

Variable	Formula	Lowest Order of Error	
\mathcal{R}_A^+	$\exp\left(ik\frac{\Delta x}{2}\right)$	_	
\mathcal{R}_1^+	$\exp\left(ik\Delta x\right)$	$\frac{1}{2}k\Delta x$	
\mathcal{R}_2^+	$\exp(ik\Delta x)\left(1 - \frac{i\sin(k\Delta x)}{2}\right)$	$\frac{1}{8}k^2\Delta x^2$	
\mathcal{R}_3^+	$\frac{2\exp(2ik\Delta x) - 10\exp(ik\Delta x) - 4}{\cos(k\Delta x) - 13}$	$\frac{i}{12}k^3\Delta x^3$	

Variable	Formula	Lowest Order of Error	
\mathcal{R}_A^-	$\exp\left(ik\frac{\Delta x}{2}\right)$	_	
\mathcal{R}_1^-	1	$\frac{1}{2}k\Delta x$	
\mathcal{R}_2^-	$1 + \frac{i\sin\left(k\Delta x\right)}{2}$	$\frac{1}{8}k^2\Delta x^2$	
\mathcal{R}_3^-	$\frac{2\exp(-ik\Delta x) - 4\exp(ik\Delta x) - 10}{\cos(k\Delta x) - 13}$	$-\frac{i}{12}k^3\Delta x^3$	

2.2 Reconstruction for v

$oldsymbol{2.2.1} \mathcal{R}^u$

Variable	Formula	Lowest Order of Error	
\mathcal{R}^u_A	$\exp\left(ik\frac{\Delta x}{2}\right)$	_	
\mathcal{R}_1^u	$\frac{\exp\left(ik\Delta x\right) + 1}{2}$	$-\frac{1}{8}k^2\Delta x^2$	
\mathcal{R}_2^u	$\frac{\exp\left(ik\Delta x\right) + 1}{2}$	$-\frac{1}{8}k^2\Delta x^2$	
\mathcal{R}_3^u	$\frac{-\exp(-ik\Delta x) + 9\exp(ik\Delta x) - \exp(2ik\Delta x) + 9}{16}$	$-\frac{3}{128}k^4\Delta x^4$	

3 Elliptic Equation

Variable	Formula	Lowest Order of Error	
\mathcal{G}_A	$H + \frac{H^3}{3}k^2$	_	
\mathcal{G}_1	$H - \frac{H^3}{3} \frac{2\cos(k\Delta x) - 2}{\Delta x^2}$	$-\frac{H^3}{36}k^4\Delta x^2$	
\mathcal{G}_{2FD}	$H - \frac{H^3}{3} \frac{2\cos(k\Delta x) - 2}{\Delta x^2}$	$-\frac{H^3}{36}k^4\Delta x^2$	
\mathcal{G}_{2FEM}	*	$-\frac{3H}{40}k^{2}\Delta x^{2} - \frac{H^{3}}{36}k^{4}\Delta x^{2}$	
\mathcal{G}_3	$H - \frac{H^3}{3} \frac{32\cos(k\Delta x) - 2\cos(2k\Delta x) - 30}{12\Delta x^2}$	$-\frac{H^3}{270}k^6\Delta x^4$	

$$\mathcal{G}_{2FEM} = \left(\frac{2H^3}{3\Delta x^2} \left(\exp\left(ik\frac{3\Delta x}{2}\right) + 14\exp\left(ik\frac{\Delta x}{2}\right) - 8\exp\left(ik\Delta x\right) - 8 + \exp\left(-ik\frac{\Delta x}{2}\right)\right) + \frac{H}{5} \left(-\exp\left(ik\frac{3\Delta x}{2}\right) + 8\exp\left(ik\frac{\Delta x}{2}\right) + 2\exp\left(ik\Delta x\right) + 2 - \exp\left(-ik\frac{\Delta x}{2}\right)\right)\right) \div \left(-\frac{1}{4}\exp\left(2i\Delta xk\right) + \exp\left(i\Delta xk\right) + \frac{i}{2}\sin\left(k\Delta x\right) + \frac{5}{4}\right)$$
(1)

4 Conservation Equation

				x^4	
Lowest Order Truncation Term	FDVM_3	$\frac{\sqrt{gH}}{12}k^4\Delta x^3$	$-\frac{9iH}{320}k^5\Delta x^4$	$-\frac{ig(9+2H^2k^2)}{30(3+h^2k^2)^2}k^5\Delta x^4$	$\frac{\sqrt{gH}}{12}k^4\Delta x^3$
	${ m FEVM_2}$	$rac{\sqrt{gH}}{8}k^4\Delta x^3$	$-\frac{iH}{24}k^3\Delta x^2$	$\frac{ig(57+20H^2k^2)}{40(3+h^2k^2)^2}k^3\Delta x^2$	$rac{\sqrt{gH}}{8}k^4\Delta x^3$
	FDVM_2	$\frac{\sqrt{gH}}{8}k^4\Delta x^3$	$-\frac{iH}{6}k^3\Delta x^2$	$\frac{ig(2H^2k^2+3)}{4(H^2k^2+3)^2}k^3\Delta x^2$	$rac{\sqrt{gH}}{8}k^4\Delta x^3$
	FDVM_1	$\frac{\sqrt{gH}}{2}k^2\Delta x$	$-\frac{iH}{6}k^3\Delta x^2$	$-\frac{ig(H^2k^2+6)}{4(H^2k^2+3)^2}k^3\Delta x^2$	$rac{\sqrt{gH}}{2}k^2\Delta x$
Exact		0	ikH	$\frac{3ikgH}{H^2k^2 + 3}$	0
Variable		$rac{\mathcal{D}}{\mathcal{M}\Delta x}\mathcal{F}\eta,\eta$	$rac{\mathcal{D}}{\mathcal{M}\Delta x}\mathcal{F}\eta,v$	$rac{\mathcal{D}}{\mathcal{G}\mathcal{M}\Delta x}\mathcal{F}^{G,\eta}$	$\frac{\mathcal{D}}{G\mathcal{M}\Delta x}\mathcal{F}G,v$