

行业轮动的黄金律: 日内动量与隔夜反转

"市场行为的宝藏"系列研究(一)

金融工程研究

2017.11.21

方正证券研究所证券研究报告

金融工程高级分析师:魏建榕

执业证书编号: \$1220516020001 E-mail: weijianrong@foundersc.com

金融工程首席分析师: 高子剑

执业证书编号: S1220514090003 E-mail: gaozijian@foundersc.com

联系人: 朱文

E-mail: zhuwen@foundersc.com

相关研究

枯木生花:基于日内模式的动量因子革新——"聆听高频世界的声音"系列研究(七)

研究结论:

- ➤ 在金融市场中, 优势信息的价值只有通过交易去实现, 而但凡做过交易的, 又必定留下痕迹。因此, 量价之类的交易数据, 从行为学的眼光去看, 会是一个潜能巨大的 alpha来源。我们将陆续推出"市场行为的宝藏"系列的研究专题, 本报告为第1篇。
- 本篇报告重点讨论动量因子的行业轮动应用。基于"日内不同时段交易者行为模式存在差异"的考虑,我们将传统动量因子进行拆分,首次提出了"日内动量+隔夜反转"的行业轮动黄金律。
- 在行业轮动黄金律的基础上,我们构建了新的行业轮动模型。多头组合的年化收益为 28.8%,相对于基准年化超额收益为 10.1%,月度胜率达到 59%;多空对冲的年化收益为 13.5%,信息比率为 1.02。
- 风险提示:模型测试基于历史数据,市场未来可能发生变化。

行业轮动模型的分组效果

请务必阅读最后特别声明与免责条款

1 引言

金融市场最奇妙之处在于, 优势信息的价值只有通过交易去实 现,而但凡做过交易的,又必定留下痕迹。因此,量价之类的交易数 据,从行为学的眼光去看,会是一个潜能巨大的 alpha 之源。本报告 系"市场行为的宝藏"系列研究的第1篇。基于"日内不同时段交易 者行为模式存在差异"的考虑,我们将传统动量因子进行拆分,提出 了"日内动量+隔夜反转"的行业轮动黄金律。

在行业轮动策略的构建中, 动量是一个常被讨论的因子。图表 1 展示了传统动量因子(以15日涨跌幅替代)在行业轮动上的应用效 果,测试对象为申万一级行业指数。可以看出五分组净值曲线之间的 区分度不太理想。图表 2 给出了多空净值(第1组-第5组)的走势, 结论是上升趋势不够稳定且回撤较大。也就是说,直接基于指数前期 涨跌幅构建的动量轮动策略, 效果是难以令人满意的。

图表1: 传统动量因子的行业轮动效果 (五分组净值曲线)

资料来源:方正证券研究所, wind 资讯

传统动量因子的行业轮动效果(多空对冲净值曲线)

资料来源:方正证券研究所, wind 资讯

2 黄金律:日内动量+隔夜反转

不同的交易者群体,会有不同的行为模式。在交易日内的不同时段,交易者的成分可能存在系统性差异,因而会导向不同的市场行为特征,最终形成各式各样的日内模式(intraday patterns)。按照这个思路,为了研究动量效应的日内精细规律[1],方正金工将行业指数的每日收益率拆解为日内收益率(今收/今开-1)和隔夜收益率(今开/昨收-1),如图表 3 所示。

1+R ☐=[1+Ct/Ot-1][1+Ot/C(t-1)-1] =Ct/Ot*Ot/C(t-1)=Ct/C(t-1)

资料来源: 方正证券研究所

在本篇报告中,我们将过去 15 个交易日的日内收益率加总,命名为日内涨跌幅因子 M0;将过去 15 个交易日的隔夜收益率加总,称为隔夜涨跌幅因子 M1。为了考察因子对行业指数未来收益的预测能力,我们分别按照 M0、M1 由高到低将行业指数排序分成 5 组,在每个自然月的月末进行调仓。图表 4 给出了两种因子下各组合的年化收益率。我们的结论是:日内涨跌幅因子 M0 呈现显著的动量效应,而隔夜涨跌幅因子 M1 则呈现反转效应。

图表4: M0和 M1的分组表现(年化收益率)

资料来源:方正证券研究所, wind 资讯

3 基于黄金律的行业轮动模型

按照前文所述,行业指数存在"日内动量"与"隔夜反转"的黄金律,下面我们尝试将这两个效应结合在一起,构建新的行业轮动模型。在具体操作上,我们将 N 个行业指数按照 MO 因子值从低到高分

别打1分至N分,按照M1因子值从高到低分别打1分至N分,将两 项打分相加,得到每个行业的总得分。

行业轮动的回测框架如下:

- 1) 测试时段: 2006年1月-2017年11月;
- 2) 样本空间: 申万一级行业指数 (共28个);
- 3) 调仓方式:在每个月初,将行业指数按总得分排序,划分为 五组, 分别持有至月末;
- 4) 得分最高的组合为多头组合, 得分最低的组合为空头组合。

图表 5 为各分组的净值走势曲线;图表 6 为多空对冲净值走势表 现;图表7为各分组的收益统计。其中,多头组合年化收益为28.8%; 多空对冲年化收益为13.5%,年化波动为13.2%,信息比率为1.02。

图表5: 分组净值走势曲线

资料来源:方正证券研究所, wind 资讯

资料来源:方正证券研究所, wind 资讯

图表7: 五分组的收益统计

指标	年收益率	年波动率	收益波动比	最大回撤
分组一	28.76%	34. 65%	0.830	67. 24%
分组二	17.73%	33. 74%	0. 526	70. 91%
分组三	16.44%	33.62%	0.489	65.94%
分组四	11.90%	33. 23%	0.358	75. 50%
分组五	13.48%	32. 11%	0.420	73. 42%
多空	13.46%	13. 22%	1.018	21.96

资料来源:方正证券研究所, wind 资讯

图表 8 给出了多头组合相对于基准的表现;图表 9 为多头组合每月的超额收益。其中,基准按照所有行业指数的平均收益计算(每月底调仓一次)。多头相对基准的年化超额收益为 10.1%,月度胜率达到59%。

图表8: 多头组合 vs 基准组合

资料来源:方正证券研究所, wind 资讯

图表9: 多头组合的月度超额收益

资料来源:方正证券研究所, wind 资讯

为了更加贴近实际应用,我们进一步考察了手续费水平对模型效果的影响。图表 10 给出了在手续费设为 0、双边千分之 1、双边千分

之 1.5 和双边千分之 2 的情况下, 行业轮动模型多头组合的净值表现。 不难看到, 即使在考虑手续费的情况下, 多头组合也能很好地战胜基 准。

资料来源:方正证券研究所, wind 资讯

4 2017 年以来的行业持仓明细

图表11: 多头组合的持仓明细(2017年)

调入日期	行业1	行业2	行业3	行业4	行业5	行业1(%)	行业2(%)	行业3(%)	行业4(%)	行业5(%)	平均收益(%)
2017/1/3	建筑材料	钢铁	商业贸易	建筑装饰	国防军工	0.28	5.65	-2.91	-0.51	6.10	1.72
2017/2/3	建筑材料	国防军工	采掘	钢铁	建筑装饰	6.42	0.98	1.34	4.93	5.61	3.86
2017/3/1	建筑材料	钢铁	交通运输	建筑装饰	传媒	2.68	-2.61	1.10	3.96	-4.21	0.18
2017/4/5	建筑材料	建筑装饰	机械设备	家用电器	医药生物	-1.82	-3.55	-6.14	-0.69	-2.32	-2.90
2017/5/2	建筑材料	公用事业	建筑装饰	家用电器	非银金融	-8.60	-4.75	-7.45	1.84	4.50	-2.89
2017/6/1	家用电器	非银金融	公用事业	银行	建筑材料	12.81	4.62	1.42	1.69	5.10	5.13
2017/7/3	钢铁	建筑材料	汽车	有色金属	轻工制造	16.32	2.50	-2.55	20.20	0.80	7.45
2017/8/1	银行	化工	非银金融	传媒	有色金属	0.93	0.20	6.33	3.45	5.46	3.27
2017/9/1	钢铁	综合	计算机	传媒	有色金属	-2.76	2.06	2.47	-0.79	2.33	0.66
2017/10/9	通信	有色金属	建筑材料	电子	食品饮料	-5.30	-6.45	-1.10	4.89	8.76	0.16
2017/11/1	建筑材料	建筑装饰	家用电器	钢铁	非银金融						

资料来源:方正证券研究所, wind 资讯

5 参数敏感性分析

方正金工对模型的参数敏感性进行了考察。模型的潜在参数主要有: (1) 计算动量因子所用的回溯期,前文均已取为 15 日; (2) 加总 M0 与 M1 的排序打分时,若采用加权求和,权重分别记为 T0、T1,且 T0+T1=1。

图表 12 给出了不同回溯期与不同权重 T1 时,策略多空净值的信息比率。图表 13 与图表 14,分别是图表 12 沿横向与纵向的切片。在不同的回溯期下,合成动量大概率优于传统动量。在图表 14 中我们还可以看到: 当 T1 取 0.5 时,遍历回溯期 10 天-25 天,合成动量始终优于传统动量;传统动量的表现对回溯期比较敏感,而合成动量的表现却相当稳健。

图表12: 参数敏感性检验(多空净值的信息比率)

回溯期\T1权重	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	传统动量
10	0.76	0.79	0.84	0.90	1.02	1.08	0.86	0.83	0.57	0.55
11	0.76	0.82	1.04	0.90	0.89	0.84	0.98	1.01	0.64	0.48
12	0.83	0.87	0.95	0.93	0.96	1.00	1.07	1.03	0.88	0.52
13	0.83	0.81	0.88	0.91	0.71	0.95	0.83	0.84	0.83	0.54
14	0.85	0.98	0.89	0.95	1.05	0.96	1.05	0.96	0.75	0.64
15	0.91	0.85	1.02	1.05	1.02	0.92	0.87	0.78	0.64	0.56
16	0.75	0.86	0.90	1.07	0.99	1.09	0.99	0.78	0.69	0.74
17	0.78	0.85	0.82	1.05	1.00	1.03	1.04	0.87	0.81	0.82
18	0.59	0.55	0.71	0.87	0.96	1.03	0.78	0.64	0.54	0.92
19	0.63	0.65	0.88	1.02	1.06	0.94	0.68	0.67	0.45	0.83
20	0.65	0.66	0.77	0.89	0.88	0.88	0.86	0.67	0.53	0.65
21	0.52	0.72	0.79	0.82	0.89	0.96	1.03	0.73	0.50	0.49
22	0.59	0.81	0.98	0.91	0.98	1.10	0.85	0.61	0.59	0.57
23	0.49	0.73	0.64	0.76	0.71	0.83	0.70	0.61	0.55	0.39
24	0.52	0.50	0.57	0.68	0.77	0.70	0.70	0.59	0.54	0.32
25	0.43	0.37	0.57	0.59	0.68	0.61	0.55	0.50	0.56	0.33

资料来源:方正证券研究所, wind 资讯

图表13: 权重T1的参数测试(回溯期取15日)

资料来源:方正证券研究所, wind 资讯

图表14: 回溯期的参数测试(T1取0.5)

资料来源:方正证券研究所, wind 资讯

6 风险提示

模型测试基于历史数据, 市场未来可能发生变化。

附注:

[1]我们已将类似方法用于构建选股因子,效果非常稳健。感兴趣的读者,可参见专题报告《枯树生花:基于日内模式的动量因子革新》(魏建榕、高子剑,20170914)。

[2]方正金工团队成员朱文,全程参与本课题的讨论、计算以及报告撰写,对本报告有重要的贡献。