Модели согласования скрытого пространства в задаче корреляционного анализа

Роберт Сафиуллин

Научный руководитель: д.ф.-м.н. В. В. Стрижов

Московский физико-технический институт Факультет управления и прикладной математики Кафедра Интеллектуальных систем

Москва, 2023

Задача декодирования временного ряда

Задача

Дана пара синхронизированных рядов из двух фазовых пространств одной системы. Требуется построить устойчивую предсказательную модель для восстановления одного ряда по известным значениям второго

Проблема

Сложная структура рядов - наличие нелинейных зависимостей и высокая размерность данных.

Предлагается

Построить модели для получения низкоразмерной аппроксимации измерений состояния системы в исходном и целевом пространствах. Между полученными скрытыми представлениями построить согласующую модель для отображения одного пространства на другое.

Использованная литература

- Hadwiger, M., Theußl, T., et al. (2023).
 "Riemannian Geometry for Scientific Visualization." In ACM SIGGRAPH Asia 2022 Courses (SIGGRAPH Asia '22). Association for Computing Machinery, New York, NY, USA, Article 5, 1–82.
- Barachant, A., Bonnet, S., et al. (2012). "Multiclass
 Brain-Computer Interface Classification by Riemannian
 Geometry". In IEEE Transactions on Biomedical Engineering,
 vol. 59, no. 4, pp. 920-928.
- Isachenko, R., Vladimirova, M., et al. (2018).
 "Dimensionality Reduction for Time Series Decoding and Forecasting Problems." DEStech Transactions on Computer Science and Engineering, 2018. No. optim: 286–296.

Постановка задачи

Дано

$$\{\mathbf{X},\mathbf{Y}\}=\{x_i,y_i\}_{i=1}^N$$
 - выборка из сигналов. $x_i,y_i\in\mathbb{R}^{\mathsf{a} imes T}$

где a - число осей датчика, T - число временных отсчетов.

Требуется построить функции аппроксимации:

$$\phi: \mathbb{R}^{a \times T} \to \mathbb{R}^h$$
$$\psi: \mathbb{R}^{a \times T} \to \mathbb{R}^p$$

для получения признаковых описаний исходных рядов и модель согласования этих представлений:

$$\mathbf{f}: \mathbb{R}^h \to \mathbb{R}^p$$

Затем, по полученному представлению $\mathbf{f}(\phi(\mathbf{X}))$ строится прогноз $\hat{\mathbf{Y}}$ ряда \mathbf{Y} :

$$\hat{\mathbf{Y}} = \mathbf{g}(\mathbf{f}(\phi(\mathbf{X})))$$

 $\mathbf{g}: \mathbb{R}^p \to \mathbb{R}^{a \times T}$

Риманова геометрия СПО матриц

Определение

Симметрично положительно определенные (СПО) матрицы $\{\mathbf{C_j}\}_{j=1}^S \in \mathbb{R}^{a \times a}$ формируют риманово многообразие \mathbf{M} , расстояние между двумя точками $\mathbf{C_1}, \mathbf{C_2}$ которого определяется как:

$$\delta_R(C_1, C_2) = \|\log(C_1^{-1}C_2)\|_F = \left(\sum_{i=1}^n \log^2 \lambda_i\right)^{1/2} (1)$$

где $\lambda_1,...,\lambda_n$ - положительные собственные значения матрицы $C_1^{-1}C_2$.

Для каждой ковариационной матрицы $\mathbf{C_i}$ существует проекция $\mathbf{S_i}$ в касательную плоскость в точке среднего геометрического \mathbf{C} :

$$\begin{aligned} \mathbf{S_i} &= \mathbf{C}^{1/2} \mathsf{log}(\mathbf{C}^{-1/2} \mathbf{C_i} \mathbf{C}^{-1/2}) \mathbf{C}^{1/2} \\ \mathbf{C} &= \mathsf{arg} \, \mathsf{min}_{\mathbf{C}} \sum_i \delta_{\mathcal{R}}(\mathbf{C}, \mathbf{C}_i)^2 \end{aligned}$$

Риманова геометрия СПО матриц

Гипотеза

С помощью признакового описания:

$$\textit{vec}(\textbf{S}) = [\textbf{S}_{1,1}; \sqrt{2} \textbf{S}_{1,2}; \sqrt{2} \textbf{S}_{1,3}; \textbf{S}_{2,2}; \sqrt{2} \textbf{S}_{2,3}; \textbf{S}_{3,3}]$$

составленного из элементов проекций ковариационных матриц на касательное к их средней точке пространство, можно построить устойчивую модель прогнозирования.

Теоретическое обоснование

Пусть $\mathbf{X} = \{x_i\}_{i=1}^N$ и $\mathbf{Y} = \{y_i\}_{i=1}^M$ обозначают временные ряды, полученные от двух различных устройств, согласованных таким образом, что они представляют собой отображения одной и той же системы. Пусть представления этих временных рядов в виде ковариационных матриц обозначены как $\{\mathbf{C_i^X}\}_{i=1}^N$ и $\{\mathbf{C_i^Y}\}_{i=1}^M$ соответственно.

Теорема 1. (Сафиуллин, 2023)

Эти представления лежат на одном и том же Римановом многообразии, но в разных его точках, определяющихся средними ковариационных матриц данных измерений.

Предложенный метод

В соответствии с *Теоремой 1*, $\phi(\mathbf{X})$ и $\psi(\mathbf{Y})$ являются касательными пространствами к поверхности Римана, а значит между ними существует диффеоморфизм \mathbf{f} . Для моделирования \mathbf{f} , \mathbf{g} использовалась полносвязная нейронная сеть

Прогноз $\hat{\mathbf{Y}}$ ряда \mathbf{Y} строится как:

$$\hat{\mathbf{Y}} = \mathbf{g}(\mathbf{f}(\phi(\mathbf{X})))$$

 $\mathbf{g}: \mathbb{R}^p \to \mathbb{R}^{3 \times 200}$

Схема метода

Данные

Датасет: Smartphone and Smartwatch Activity and Biometrics Dataset

 $\{{f X},{f Y}\}=\{x_i,y_i\}_{i=1}^N$ - выборка из сигналов с акселерометра смартфона и смартчасов соответственно.

 $x_i, y_i \in \mathbb{R}^{3 \times 200}$

¹Gary M. Weiss, Kenichi Yoneda, and Thaier Hayajneh. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access, 7:133190-133202, Sept. 2019.

Вычислительный эксперимент

Цели эксперимента

- Проверить качество предсказания с помощью предложенного метода по метрикам: R², MSE
- Изучить зависимость качества от количества выбранных признаков в сравнении с другим способом аппроксимации измерений.

Для проверки устойчивости метода использован отбор признаков на основе **QPFS**

Сравнение метода производится с аппроксимациями сигналов, полученными с помощью автокодировщика

Результаты

Скрытое представление автокодировщика

Высокие показатели коэффициента корреляции. Большой разброс ошибки

Результаты

Проецирование на многообразие

Использование проекций ковариационных матриц в качестве описания систем позволило достичь более низких показателей ошибки.

Выносится на защиту

- Предложен и теоретически обоснован метод восстановления временных рядов с помощью мультимоделей
- Выполнен численный эксперимент для проверки качества метода
- Показано, что предложенный метод успешно решает задачу корреляционного анализа и показывает высокую устойчивость

Публикации по специальности

- Boginskaya, I.; Safiullin, R.; et al.
 Human Angiotensin I-Converting Enzyme Produced by
 Different Cells: Classification of the SERS Spectra with Linear Discriminant Analysis. Biomedicines 2022, 10, 1389.
- Slipchenko, E.A.; Boginskaya, I.A.; Safiullin, R.R.; et.al.
 SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods. Chemosensors 2022, 10, 520.