

MANIPAL INSTITUTE OF TECHNOLOGY (Constituent Institute of Manipal University)

MANIPAL-576104

FIFTH SEMESTER B.E. (CSE) DEGREE END SEMESTER EXAMINATION NOV./DEC. 2011
DESIGN AND ANALYSIS OF ALGORITHMS (CSE 301)

DATE: 28-11-2011

TIME: 3 HOURS MAX.MARKS: 50

Instructions to Candidates

- Answer **any five** full questions.
- 1 A) Mention the two most important properties of any sorting algorithm.

--2M

- B) Consider the usual Tower of Hanoi problem with three pegs namely source, destination and temp. There are two disks initially on the source peg.
- i) Draw the tree of recursive calls denoting each node in the form: Tower (n, src, temp, destn).
- ii) What is the total number of calls made by Tower of Hanoi algorithm?
- iii) Write all the moves that are required to solve the puzzle. Show each move in the form "move from A to B".
- iv) Set up and solve the recurrence relation for the number of moves M(n) made by the Tower of Hanoi algorithm -2+1+1+2=6M
- C) Arrange the following functions in the increasing order of growth
 - i. log(n!)
- ii. $n \log n$ iii. $\sqrt{\log n}$
- iv. (log n)!

--2M

- 2 A) Taking P as the probability of a successful search arrive at the average number of key comparisons, $C_{avg}(n)$ for the sequential search algorithm.
- B) Consider the following instance of Assignment problem.

	Job1	Job2	Job3	Job4
Person1	10	3	8	9
Person2	7	5	4	8
Person3	6	9	2	9
Person4	8	7	10	5

i) How many possible solutions can exist using exhaustive search technique

--1M

- ii) Show the optimal solution which finds an assignment with the minimum total cost. Denote the solution in the form <J $_1$, J $_2$,..., J $_n$ >. --1M
- C) i) Write a pseudo code for a divide and conquer algorithm for computing the sum of array A of n numbers.
 - ii) Set up and solve a recurrence relation for the number of additions, A (n) made by the algorithm.-2M
 - iii) How does this algorithm compare with the brute force technique for this problem?

--1M

iv) Solve the recurrence relation by means of Master theorem

--1M

- 3 A) For quick sort, give an example of an array of four elements for which the sentinel is actually needed. What should be its value? Also explain why a single sentinel suffices for any input.
- B) Draw the binary tree for the binary search algorithm for a list of 7 elements containing elements {10, 20, 30, 40, 50, 60, 70}. List all the elements of this array that will require the largest number of key comparisons when searched for by binary search.

 --1+1=2M
- C) Consider the recursive algorithm to compute the height of a binary tree with five internal nodes. What is the total number of external nodes in such a tree? How many comparisons are needed to check that the tree is empty? How many comparisons are needed to compute the maximum of two numbers?

-1+1+1=3M

- D) Consider multiplication of n-digit numbers by applying the classic (pen and paper) method. Set up and solve the recurrence relation M(n) for the total number of multiplications performed.
- 4 A) Show that the average number of key comparisons in insertion sort is equal to $C_{avg}(n) = n^2/4 + n/4 1/2$.

--2M

B) For the source removal algorithm to solve the topological sorting problem, how would you find a source in a digraph represented by its adjacency matrix? What is the time efficiency of this operation?

--2M --2M

- C) Generate all the subsets of a three-element set $A = \{a_1, a_2, a_3\}$ by bottom-up algorithm.
- D) Construct an AVL tree by inserting the elements 100, 200, 300, 250, 270, 70, 40.
- E) Construct heap for the list 4, 1, 3, 2, 9, 8, 7 using bottom up approach.

--2M

- 5A) Is the comparison counting algorithm stable? Show by means of an example
- --2M he binary text of
- B) How many character comparisons will be made in searching for the pattern 01010 in the binary text of 200 zeros using Horspool and Boyer-Moore algorithm? Show all the relevant tables.

-1+2=3M

C) For a closed hashing, explain the meaning of "lazy detection" with an example?

--2M

- D) Compute C(6,3) by applying the dynamic programming algorithm. Derive an equation for time complexity of the algorithm. -1+2=3M
- 6 A) Solve the all-pairs shortest path problem for the digraph with the weight matrix

--3M

--3M

	a	b	c	d	e
a	0	2	8	1	8
b	6	0	3	2	∞
c	∞	8	0	4	8
d	∞	∞	2	0	3

- B) Draw a decision tree and find the key comparisons in the worst and average cases for the five element binary search method.
- C) What is meant by a minimum spanning tree? Compare greedy solutions with that of exhaustive search techniques in finding minimum spanning trees. -1+1=2M
- D) Apply backtracking method to solve the following instance of the subset-sum problem: $S=\{1,2,5,6,8\}$ and d=9 --2M