Exploratory Data Analysis

```
In [1]:
```

```
import os
import numpy as np
import pandas as pd
import pandas_profiling
import matplotlib.pyplot as plt
import seaborn as sns
```

Load Data

In [2]:

```
cwd = os.getcwd()
path_to_challenge1 = os.path.dirname(os.path.dirname(cwd))
path_to_all_data = os.path.join(path_to_challenge1, 'data', 'dataset_500.csv')
path_to_test_data = os.path.join(path_to_challenge1, 'data', 'test_dataset_500.csv')
path_to_train_data = os.path.join(path_to_challenge1, 'data', 'training_dataset_500.csv')
```

In [3]:

```
# All Data
df = pd.read_csv(path_to_all_data)
df_test = pd.read_csv(path_to_test_data)
df_train = pd.read_csv(path_to_train_data)
```

In [4]:

```
df.head()
```

Out[4]:

	ID	Label	House	Year	Month	Temperature	Daylight	EnergyProduction
0	0	0	1	2011	7	26.2	178.9	740
1	1	1	1	2011	8	25.8	169.7	731
2	2	2	1	2011	9	22.8	170.2	694
3	3	3	1	2011	10	16.4	169.1	688
4	4	4	1	2011	11	11.4	169.1	650

```
In [5]:
```

```
df_test.head()
```

Out[5]:

	ID	Label	House	Year	Month	Temperature	Daylight	EnergyProduction
0	23	23	1	2013	6	22.0	125.5	778
1	47	23	2	2013	6	21.1	123.1	627
2	71	23	3	2013	6	21.9	126.8	735
3	95	23	4	2013	6	20.2	125.2	533
4	119	23	5	2013	6	20.2	125.2	533

```
In [6]:
```

```
len(df_test)
```

Out[6]:

500

Profiles

```
In [7]:
```

```
profile = df.profile_report(title='Pandas Profiling Full Data Report')
profile.to_file(output_file="data_profile_full.html")
```

```
In [8]:
```

```
test_profile = df_test.profile_report(title='Pandas Profiling Test Data Report')
test_profile.to_file(output_file="data_profile_test.html")
```

```
In [9]:
```

```
train_profile = df_train.profile_report(title='Pandas Profiling Train Data Report')
train_profile.to_file(output_file="data_profile_training.html")
```

```
In [ ]:
```

Manual Exploration

```
In [10]:
```

```
df['DateTime'] = pd.to_datetime(df.Year.map(str) + df.Month.map(str), format="%Y%m"
df.set_index('DateTime', inplace=True)
```

In [11]:

df.head()

Out[11]:

	ID	Label	House	Year	Month	Temperature	Daylight	EnergyProduction
DateTime								
2011-07-01	0	0	1	2011	7	26.2	178.9	740
2011-08-01	1	1	1	2011	8	25.8	169.7	731
2011-09-01	2	2	1	2011	9	22.8	170.2	694
2011-10-01	3	3	1	2011	10	16.4	169.1	688
2011-11-01	4	4	1	2011	11	11.4	169.1	650

In [12]:

```
# Visualise All values of Timeseries data
cols_plot = ['Temperature', 'Daylight', 'EnergyProduction']
axes = df[cols_plot].plot(marker='.', alpha=0.5, linestyle='None', figsize=(14, 10),
for ax in axes:
    ax.set_ylabel('All Montly Values')
```



```
In [13]:
```

```
# Distribution of Time Series
fig, axes = plt.subplots(3, 1, figsize=(14, 10), sharex=True)
for name, ax in zip(cols_plot, axes):
    sns.boxplot(data=df, x=df.index, y=name, ax=ax)
    ax.set_ylabel(name)
    ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
    # Remove the automatic x-axis label from all but the bottom subplot
    if ax != axes[-1]:
        ax.set_xlabel('')
```



```
In [ ]:
```

House with Higest and Lowest Values

This plots aim to help visualise how different are houses with large vs low Energy Production

```
In [14]:
```

```
group_houses = df.groupby(['House'])[cols_plot].agg(['min', 'max', 'mean', 'std'])
```

In [15]:

```
# Sort DataFrame by "Mean EnergyProduction"
group_houses.sort_values([('EnergyProduction', 'mean')], ascending=False)
```

Out[15]:

	Temp	eratur	re ·		Daylight				EnergyProduction			
	min	max	mean	std	min	max	mean	std	min	max	mean	
House												
443	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
395	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
365	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
160	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
109	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
86	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
96	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
277	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
152	2.7	29.0	15.229167	8.862254	129.1	257.5	193.158333	34.706971	698	1254	931.166	
338	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
110	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
447	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
1	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
341	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
81	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
67	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
386	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
281	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
391	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
461	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
15	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
177	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
212	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
190	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
262	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
185	1.8	27.4	14.329167	8.744364	125.5	257.1	189.083333	32.015494	593	1088	799.54 ⁻	
272	2.5	28.4	15.158333	8.836678	126.0	257.9	195.529167	33.161797	637	1046	794.580	
348	2.5	28.4	15.158333	8.836678	126.0	257.9	195.529167	33.161797	637	1046	794.580	
60	2.5	28.4	15.158333	8.836678	126.0	257.9	195.529167	33.161797	637	1046	794.580	
174	2.5	28.4	15.158333	8.836678	126.0	257.9	195.529167	33.161797	637	1046	794.580	

	Temp	oeratur	e		Daylig	ht			EnergyProduction		
	min max mean		std	min	max	mean	min	max	mean		
House											
344	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
242	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
346	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
138	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
5	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
92	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
4	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
111	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
406	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
203	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
120	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
292	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
436	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
472	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
410	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
464	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
119	2.7	27.0	14.495833	8.153552	125.2	268.8	180.779167	31.233218	311	723	499.416
263	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
209	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
496	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
441	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
156	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
357	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
469	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
439	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
438	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
275	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
227	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
287	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958
359	2.9	26.2	14.212500	7.839937	125.9	271.3	180.591667	32.593903	357	691	498.958

500 rows × 12 columns

In [16]:

```
# Based on the above, lets filter DT
df_filter = df[ df['House'].isin([443,395,287,359]) ]
```

In [17]:

```
axes = df_filter[cols_plot].plot(marker='.', alpha=0.5, linestyle='None', figsize=(1
for ax in axes:
    ax.set_ylabel('All Montly Values')
```



```
In [18]:
```

```
# Distribution of Time Series
fig, axes = plt.subplots(3, 1, figsize=(14, 10), sharex=True)
for name, ax in zip(cols_plot, axes):
    sns.boxplot(data=df_filter, x=df_filter.index, y=name, ax=ax)
    ax.set_ylabel(name)
    ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
    # Remove the automatic x-axis label from all but the bottom subplot
    if ax != axes[-1]:
        ax.set_xlabel('')
```


This demonstrates that as expected "House" is an Important Feature for any Model, it is also possible to see that there seems to be very high and very low production Houses.

Good to mention that this looks a great dataset in terms of data quality, no missing values, no obvious outliers, etc.

```
In [ ]:
```

Visualising House Types

In [19]:

```
# Flatening Group House DF
group_houses.columns = [' '.join(col).strip() for col in group_houses.columns.values
```

In [20]:

In []: