CMPE349 Intro to Professional Practice

Architectural View

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved 1-3

Functional Trade Studies

- Trade studies are hard to do at the functional level
- Heuristic: Do the hard parts first
- What do we trade?
 - Function sets defining different mission scenarios
 - Different functional decompositions of the same higher-level function
- Alternatives should span the range of potential solutions
- What are our metrics?
 - Number
 - Complexity
 - Reuse
 - Scaleability
 - Integrity/reliability
- The trade need not be explicit or detailed, but does need to be captured.
- Heuristic: Simplify, Simplify, Simplify!
- Heuristic: It doesn't exist if it isn't written down

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

						40	THE REAL PROPERTY.		
			Fun	ctional Pr	oduct Req	uirements	- Operati	ng Param	eters
	Maximize, minimize, or target								
Γ									
3, 9)	ıting				Н			
Ĺ		Importance Rat	7-	42	\$2	4	₽	₽	2
)Ce	Arch #1	Arch #2	Arch #3	Arch #4	Arch #5	Arch #6	777
		rta	Ā	Ā	Ā	<u>Ā</u>	Ā	¥	3
		od							
c	Customer Need	트				Щ			
A	ADS-B functionality	5	9	9	9	9	9	9	
A	Advanced Surveillance Functionality	3	9	9	9	9	9	9	
Ε	OSB-AM Voice	5	9	9	9	9	9	9	
A	ATS Data Comm.	3	9	9	9	9	9	9	
C	Good availability	3	9	3	0	1	3	9	
C	Good continuity	4	9	3	0	1	3	9	
Ν	Minimize interference to existing Sys.	3	3	3	3	3	1	3	
Ν	Minimize susceptibility to existing Sys.	3	3	3	3	3	1	3	
ι	Jpgrade of existing radio	1	0	0	0	0	0	0	
Ν	Minimize Number of Antennas	4	0	0	3	3	9	1	
C	Comp. wcurrent antenna placement	2	1	1	3	3	9	3	
P	AOC Data Comm.	3	9	9	9	9	9	9	
	Minimize acq. cost.	5	0	3	1	0	3	1	
Λ	Minimize installation complexity	3	1	3	3	3	9	1	
L									
F								-	ļ
-	Relative Importance		257	236	221	223	294	270	Ç Q

Things to consider

- Heuristic: Act on fact!
- Often the simple trade study will only show what you don't know.
- Heuristic: Know what you don't know.
- Be careful with your weighting, as it can change the results of table-based trades...
- ...try slight modifications of the weighting to check for sensitivity.
- Less sensitivity to weighting is good!
- Heuristic: The last time your solution is perfect is before you show it to someone else.

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

Design is less conceptual than analysis

- Heuristic (paraphrase): There comes a time to shoot all the analysts and get around to building something.
- Heuristic: Avoid the "analysis to paralysis" syndrome.
- The design problem is "where to start?"
- The design weakness is "I already know how to do this!"

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

Taylor's Rules for Decomposition (1 of 5)

- Apply Operational and Functional Analysis steps to assure that top level specification ("A Spec") is
 - Unambiguous
 - Accurate
 - Complete
 - Consistent
 - Verifiable
- Assure that the A-Spec has quantifiable and quantified performance requirements, e.g.
 - Accuracy
 - Availability
 - Capacity
 - Response time
 - Scaleability

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved 1-1

Taylor's Rules for Decomposition (2 of 5)

- Decomposition adds detail, not clarity
 - If the requirements in the top level specification aren't clear, fix them first
- If a given function (element of the functional analysis) can't be mapped into a single architectural component or configuration item, decompose it until it can.
- The first level of decomposition below the system level is often the "site" level, not necessarily the subsystem level.
 - A "site" is a physically distinct type of location where elements of the system must reside.
 - Example: A mobile communication system may have two types of sites: mobile users and base stations.
 - Example: A banking system might have headquarters, regional centers, local centers, remote elements for 4 site types

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

Taylor's Rules of Decomposition (3 of 5)

- Allocate functions to a single site type
 - If the function can't be allocated to a single site type, then decompose it!
 - A function that can be allocated to a single site type need not be decomposed at this time.
 - This decomposition is the "B Spec"
 - Update the functional analysis to match any additional decompositions done in this step
- A Configuration Item is the instantiation of a group of similar functions that are
 - Relatively autonomous from other functions
 - Can be developed by a single team of 3-8 developers
- Reapply the functional allocation and decomposition rules to the CIs

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved 1-1

Taylor's Rules of Decomposition (4 of 5)

- Most systems continue the decomposition to the component level
 - This is the level where COTS or pre-existing products come in
 - The component spec (functional, performance, etc) is the "C Spec".
- Update the functional analysis! DO IT!
- Each leaf in the functional architecture must map to a single CI.
 - Multiple functions to one CI is fine.
 - Single leaf function to multiple CIs is a recipe for disaster.
 - Stop the decomposition when this rule is met!

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

Taylor's Rules of Decomposition (5 of 5)

- How to handle performance requirements?
 - If performance can be allocated to single CI, handle like functional requirement.
 - If not, performance must be partitioned!
- Maintain a quantitative assessment of the performance partitioning
 - Technical Budgeting (we'll discuss later in detail)
- Heuristic: It doesn't exist if it isn't written down!

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved 1-15

Two Types of Physical Architectures

Generic Architecture

- Contains components that support all required functions
- Includes support resources for operation, maintenance, distribution, training, etc.
- Does not specify performance characteristics of each physical resource.
- Contains components that can be implemented multiple ways.

Instantiated Architecture

- Starts with generic architecture
- Includes complete definitions of performance characteristics
- Allocates specific COTS products or custom development to components
- Identifies quantities of each component

Heuristic: Except for good and sufficient reasons, generic and instantiated structuring should match

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

Architectural Heuristic

"When working on a problem, I never think about beauty. I think only of how to solve the problem. But when I have finished, if the solution is not beautiful, I know that it is wrong."

Buckminster Fuller

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

Cautions related to the physical architecture

- There is cultural inertia to jump immediately to this step based on perceived prior experience
 - Local optimizations in the architecture
 - Reduce the effectiveness and/or increase the cost of the final implementation
- Successful architectural design requires iteration.
- Consider multiple options.
- Be careful not to let pre-conceived ideas drive architectural decisions.
- Interface definition is critical
 - Spend the time required to complete this step.
 - It will reduce the need for future rework.

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved 1-22

Architectural Heuristic

- Employ the principle of "deferred commitment"
- The later that you can commit to a specific implementation technology, the more robust the final architecture will be.
- Make a implementation technology choice when you must, not when you can.

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

Configuration Item Matrix

- Brainstorming activity results in list of CIs
- In some cases, the customer will have specified configuration items as part of the requirements.
 Capture this as part of the Architectural Design step.

		Functions									
		Navigation	Lateral Guidance	Vertical guidance	Threat Avoidance	Mission Planning					
Configuration Items	ADC #1	Х		X							
	ADC #2	Х		X							
	CDU #1	Х									
	CDU #2	Х									
	CMFD#1		X	X							
	CMFD#2		X	X							
	EFIS #1			X							
	EFIS #2			X							
	EGI#1	Х		X							
	EGI#2	Х		Х							
	IFF	Х		X							
	ILS	Х	X	X							
	MISP #1	Х	X	Х	Х	Х					
	MISP #2	Х	X	Х	Х	Х					
	Radar Alt	Х		Х							
	CSDS				X	Х					
	MMU					Х					

UMBC ENEE 661 System Architecture & Design © EFCLaBerge 2004 All rights reserved

