Unidad 2: Fundamentos Matemáticos de ML

Machine Learning

Aprendizaje Supervisado

Aprendizaje Supervisado

Problemas de regresión

 Predecir un valor continuo para una variable. Se utilizan los valores de otras variables conocidas. Ej: predecir los ingresos anuales de una persona con base en su edad, educación, donde vive.

Aprendizaje Supervisado

- Problemas de clasificación

 Predecir una clase para un elemento. Ej.: clasificación de objetos.

Aprendizaje No Supervisado

Aprendizaje No Supervisado

- Problemas de Clustering (Agrupamiento)
 - Dividir los datos de entrada en grupos con características similares. Ej.: detección de rostros en nuestra galería de fotos

Aprendizaje No Supervisado

- Problemas de Deteccion de Anomalias
 - Entregar un algoritmo que ayude a detectar comportamientos diferentes.
 - REducir la dimensionalidad del dataset con el fin de crear una nueva representación de los datos más comprensible. Ej.: Detección de fraude en tarjetas de crédito.

"El aprendizaje No Supervisado en muchos casos se utiliza

como primer paso para los algoritmos de aprendizaje

supervisado"

Diferencias entre aprendizaje Supervisado y no Supervisado

Importancia de las Matemáticas en Machine Learning

Modelos

Cómo construir el modelo??

$$m{lpha}$$
- Probability Theory $\mathbb{P}: \mathcal{A}
ightarrow [0,1]$ Part 2 $\mathbb{P}(\Omega)=1$

Importancia de las "Matemáticas" en ML

Importancia de las "Matemáticas" en ML

- Elegir la configuración de los hiperparametros
- Estrategia de validación
- Entender por que los valores que eligió arrojaron una precisión diferente a la del modelo de su amigo.
 - Porcentaje de aleatoriedad a pesar que dos personas usaron los mismos hiperparametros y el mismo modelo.
 - Si se aplica la misma semilla a los modelos con aleatoriedad se podrá obtener los mismos resultados

Ejemplos del uso de Cálculo en Machine Learning

Por qué Cálculo?

- Hacer predicciones/inferencias.
- Las predicciones se hacen optimizando, la optimización es natural en el cálculo usando diferenciales para encontrar maximos y minimos.

Funciones

Derivadas

$$f'(x) = \frac{d}{dx}f(x) = \frac{df(x)}{dx}$$

Función	Derivada f'(x) = 0		
f(x) = c			
$f(x) = x^n$	$f'(x) = nx^{n-1}$		
$f(x) = \sqrt{x}$	$f'(x) = 1$ $2\sqrt{x}$		
f(x) = 1/x	$f'(x) = -1$ x^2		
$f(x) = \ln x$	f'(x) = 1 x		

Derivadas

Descenso del Gradiente

Ejemplos del uso de Álgebra Lineal en Machine Learning

Por qué Algebra Lineal?

- Representación natural de los objetos.
- Transformaciones y efectos sobre objetos.

Algebra: Datos como Vectores

Gender ID	Degree	Latitude (in degrees)	Longitude (in degrees)	Age	Annual Salary (in thousands)
-1	2	51.5073	0.1290	36	89.563
-1	3	51.5074	0.1275	47	123.543
+1	1	51.5071	0.1278	26	23.989
-1	1	51.5075	0.1281	68	138.769
+1	2	51.5074	0.1278	33	113.888

Algebra: Datos como Vectores (Computer Vision)

Algebra: Entrenamiento ML (Regresión Lineal Simple)

Algebra: Predicción ML (Deep Learning)

Ejemplos del uso de Probabilidad en Machine Learning

Por qué Estadística y Probabilidad?

- El proceso de inferencia tiene incertidumbre sobre grandes volúmenes de datos.
- La estadística permite recopilar, organizar y analizar información:
 - Estadística descriptiva
 - Estadística inferencial
- La probabilidad sirve para medir la incertidumbre. Cuán probable es ; que estoy pensando?

Modelo de Mixturas Gaussiana

Un modelo de mistura puede ser usada para especificar una distribución P(x) por una combinación convexa de K distribuciones simples (Bases)

Cada variable aleatoria se la representa con una Gaussiana.

Modelo de Mixturas Gaussiana

Una gaussiana es un tipo de distribución de probabilidades de cantidades continuas, por ejemplo: salario.

La mixtura de gaussianas es aprender varias gaussianas que representen nuestros datos, una distribución de probabilidades es ajustar los parámetros: media y varianza y ambos tienen pesos.

Python Tutorials

- https://www.learnpython.org/es/
- https://www.kaggle.com/learn

Time of GAME

Thanks!

Any questions?

You can find me at

- Twitter: @ruthy_root
- Email: ruth.chirinos@gmail.com