Weak Convergence

Definition: Weak Convergence

Let E be an inner product space and let (\vec{x}_n) be a sequence of vectors in E. To say that (\vec{x}_n) converges to $\vec{x} \in E$ weakly, denoted $\vec{x}_n \xrightarrow{w} \vec{x}$, means $\forall \vec{y} \in E$:

$$\langle \vec{x}_n, y \rangle \to \langle \vec{x}, y \rangle$$

Properties

Let H be a Hilbert space over a field \mathbb{F} . Let $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$ and $\vec{y}_n \stackrel{w}{\longrightarrow} \vec{y}$ in H and $\alpha_n \to \alpha$ in \mathbb{F} :

- 1). The weak limit is unique i.e., if $\forall\,n\in\mathbb{N}, \vec{x}_n=\vec{y}_n$ then $\vec{x}=\vec{y}$.
- 2). $\vec{x}_n + \vec{y}_n \stackrel{w}{\longrightarrow} \vec{x} + \vec{y}$
- 3). $\alpha_n \vec{x}_n \xrightarrow{w} \alpha \vec{x}$

Proof

1). Assume $\vec{z} \in H$ such that $\vec{z} \neq \vec{0}$ and $\vec{z} \not\perp (\vec{x} - \vec{y})$.

$$\langle \vec{x} - \vec{y}, \vec{z} \rangle = \langle (\vec{x} - \vec{x}_n) + (\vec{x}_n - \vec{y}), \vec{z} \rangle$$

$$= \langle \vec{x} - \vec{x}_n, \vec{z} \rangle + \langle \vec{x}_n - \vec{y}, \vec{z} \rangle$$

$$\to 0 + 0$$

$$= 0$$

And so $\vec{x} - \vec{y} = \vec{0}$.

$$\therefore \vec{x} = \vec{y}$$

2). $\langle \vec{x}_n + \vec{y}_n, \vec{z} \rangle = \langle \vec{x}_n, \vec{z} \rangle + \langle \vec{y}_n, \vec{z} \rangle \rightarrow \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle = \langle \vec{x} + \vec{y}, \vec{z} \rangle$

$$\therefore \vec{x}_n + \vec{y}_n \stackrel{w}{\longrightarrow} \vec{x} + \vec{y}$$

3). $\langle \alpha_n \vec{x}_n, \vec{z} \rangle = \alpha_n \langle \vec{x}_n, \vec{z} \rangle \rightarrow \alpha \langle \vec{x}, \vec{z} \rangle = \langle \alpha \vec{x}, \vec{z} \rangle$

$$\therefore \alpha_n \vec{x}_n \stackrel{w}{\longrightarrow} \alpha \vec{x}$$

Theorem

Let E be an inner product space and let (\vec{x}_n) be a sequence of vectors in E:

$$\vec{x}_n \to \vec{x} \implies \vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$$

Proof

Assume $\vec{x}_n \to \vec{x}$.

$$\|\vec{x}_n - \vec{x}\| \to 0$$

Assume $\vec{y} \in E$.

$$|\langle \vec{x}_n, \vec{y} \rangle - \langle \vec{x}, \vec{y} \rangle| = |\langle \vec{x}_n - \vec{x}, \vec{y} \rangle| \le ||\vec{x}_n - \vec{x}|| \, ||\vec{y}|| \to 0$$

$$\therefore \vec{x}_n \xrightarrow{w} \vec{x}$$

Theorem

Let E be an inner product space and let (\vec{x}_n) be a sequence of vectors in E:

$$\vec{x}_n \xrightarrow{w} \vec{x} \text{ and } ||\vec{x}_n|| \to ||\vec{x}|| \implies \vec{x}_n \to \vec{x}$$

Proof

Assume $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$ and $||\vec{x}_n|| \rightarrow ||\vec{x}||$.

$$\|\vec{x}_n - \vec{x}\|^2 = \langle \vec{x}_n - \vec{x}, \vec{x}_n - \vec{x} \rangle$$

$$= \langle \vec{x}_n, \vec{x}_n \rangle - \langle \vec{x}_n, \vec{x} \rangle - \langle \vec{x}, \vec{x}_n \rangle + \langle \vec{x}, \vec{x} \rangle$$

$$= \|\vec{x}_n\|^2 - \langle \vec{x}_n, \vec{x} \rangle - \langle \vec{x}, \vec{x}_n \rangle + \|\vec{x}\|^2$$

$$\rightarrow \|\vec{x}\|^2 - \langle \vec{x}, \vec{x} \rangle - \langle \vec{x}, \vec{x} \rangle + \|\vec{x}\|^2$$

$$= 2 \|\vec{x}\|^2 - 2 \|\vec{x}\|^2$$

$$= 0$$

$$\vec{x}_n \to \vec{x}$$

Theorem

Let H be a finite dimensional Hilbert space over a field \mathbb{F} . For all sequences (\vec{x}_n) in H:

$$\vec{x}_n \to \vec{x} \iff \vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$$

Thus, weak convergence implies strong convergence in a finite dimensional Hilber space.

Proof

Assume (\vec{x}_n) is a sequence in H.

 \implies Assume $\vec{x}_n \to \vec{x}$.

But strong convergence implies weak convergence in any inner product space.

$$\therefore \vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$$

$$\iff$$
 Assume $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$.

Assume $B=\{\vec{b}_1,\ldots,\vec{b}_N\}$ is a basis for H. AWLOG: B is an orthonormal basis (otherwise, use Graham-Schmitt).

$$\forall n \in \mathbb{N}, \exists x_{n,k} \in \mathbb{F} \text{ such that } \vec{x_n} = \sum_{k=1}^n x_{n,k} \vec{b_k}.$$

$$\exists x_k \in \mathbb{F} \text{ such that } \vec{x} = \sum_{k=1}^N x_k \vec{b}_k.$$

Assume $\vec{z} \in H$.

$$\exists\, z_k \in \mathbb{F} ext{ such that } ec{z} = \sum_{k=1}^N z_k ec{b}_k.$$

Since $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$:

$$\langle \vec{x}_n - \vec{x}, \vec{z} \rangle = \left\langle \sum_{k=1}^N x_{n,k} \vec{b}_k - \sum_{k=1}^N x_k \vec{b}_k, \sum_{k=1}^N z_k \vec{b}_k \right\rangle$$

$$= \left\langle \sum_{k=1}^N (x_{n,k} - x_k) \vec{b}_k, \sum_{k=1}^N z_k \vec{b}_k \right\rangle$$

$$= \sum_{k=1}^N (x_{n,k} - x_k) \overline{z}_k$$

$$\to 0$$

But this is for any $\vec{z} \in E$, and so it must be the case that $x_{n,k} - x_n \to 0$.

So \vec{x}_n converges to \vec{x} component-wise.

It has already been shown that $\|\cdot\|_{\infty}$ with respect to a particular basis is a proper norm. Now, since all norms are equivalent in a finite dimensional vector space:

$$\|\vec{x}_n - \vec{x}\|_{\infty} = \sup_{k \in \mathbb{N}} |x_{n,k} - x_k| \to 0$$

$$\vec{x}_n \rightarrow \vec{x}$$

Theorem

Let E be an inner product space and let $S \subseteq E$ such that $\operatorname{span}(S)$ is dense in E. Let (\vec{x}_n) be a bounded sequence in E.

$$\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x} \iff \forall \vec{y} \in S, \langle \vec{x}_n, \vec{y} \rangle \rightarrow \langle \vec{x}, \vec{y} \rangle$$

Proof

$$\implies$$
 Assume $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$.

$$\forall \vec{y} \in E, \langle \vec{x}_n, \vec{y} \rangle \to \langle \vec{x}, \vec{y} \rangle$$

$$\mathrm{But}\ X\subseteq E.$$

$$\therefore \forall \, \vec{y} \in S, \langle \vec{x}_n, \vec{y} \rangle \to \langle \vec{x}, \vec{y} \rangle$$

$$\iff$$
 Assume $\forall \, \vec{y} \in S, \langle \vec{x}_n, \vec{y} \rangle \rightarrow \langle \vec{x}, \vec{y} \rangle$

Assume $\epsilon > 0$.

Assume $\vec{z} \in E$.

Since (\vec{x}_n) is bounded, $\exists M > 0$ such that $\|\vec{x}_n\|, \|\vec{x}\| \leq M$.

Since $\operatorname{span}(S)$ is dense in $E, \exists \vec{y_0} \in \operatorname{span}(S)$ such that:

$$\|\vec{z} - \vec{y}_0\| < \frac{\epsilon}{3M}$$

Furthermore, by assumption, $\exists N > 0$ such that $\forall n > N$:

$$|\langle \vec{x}_n, \vec{y}_0 \rangle - \langle \vec{x}, \vec{y}_0 \rangle| < \frac{\epsilon}{3}$$

Assume n > N:

$$\begin{aligned} |\langle \vec{x}_n, \vec{z} \rangle - \langle \vec{x}, \vec{z} \rangle| &= |(\langle \vec{x}_n, \vec{z} \rangle - \langle \vec{x}_n, \vec{y}_0 \rangle) + (\langle \vec{x}_n, \vec{y}_0 \rangle - \langle \vec{x}, \vec{y}_0 \rangle) + (\langle \vec{x}, \vec{y}_0 \rangle - \langle \vec{x}, \vec{z} \rangle)| \\ &\leq |\langle \vec{x}_n, \vec{z} \rangle - \langle \vec{x}_n, \vec{y}_0 \rangle| + |\langle \vec{x}_n, \vec{y}_0 \rangle - \langle \vec{x}, \vec{y}_0 \rangle| + |\langle \vec{x}, \vec{y}_0 \rangle - \langle \vec{x}, \vec{z} \rangle| \\ &\leq |\langle \vec{x}_n, \vec{z} - \vec{y}_0 \rangle| + \frac{\epsilon}{3} + |\langle \vec{x}, \vec{y}_0 - \vec{z} \rangle| \\ &\leq ||\vec{x}_n|| \, ||\vec{z} - \vec{y}_0|| + \frac{\epsilon}{3} + ||\vec{x}|| \, ||\vec{y}_0 - \vec{z}|| \\ &\leq M \frac{\epsilon}{3M} + \frac{\epsilon}{3} + M \frac{\epsilon}{3M} \\ &= \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\ &= \epsilon \end{aligned}$$

$$\vec{x}_n \xrightarrow{w} \vec{x}$$

Theorem

Let H be a Hilbert space and let (\vec{x}) be a sequence in H:

$$\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x} \implies (\vec{x}_n)$$
 is bounded.

Proof

Assume $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$.

Define $f_n: H \to \mathbb{C}$ by $f_n(\vec{y}) = \langle \vec{y}, \vec{x}_n \rangle, \forall n \in \mathbb{N}$.

 f_n is clearly linear (due to sesquilinearity of the inner product).

Assume $\vec{y}_n o \vec{y}$, and so $\|\vec{y}_n - \vec{y}\| o 0$

Since strong implies weak, $\vec{y_n} \xrightarrow{\vec{y_n}} \vec{y}$.

So
$$\langle \vec{y}_n, \vec{x}_n \rangle \rightarrow \langle \vec{y}, \vec{x}_n \rangle$$
.

$$||f_n(\vec{y}_n) - f_n(\vec{y})|| = |\langle \vec{y}_n, \vec{x}_n \rangle - \langle \vec{y}, \vec{x}_n \rangle| \to 0$$

Therefore $f_n(y)$ is continuous, and thus bounded.

Now, $\forall \vec{y} \in H$ the sequence $(f_n(\vec{y})) = (\langle \vec{y}, \vec{x}_n \rangle)$ converges to $\langle \vec{y}, \vec{x} \rangle$, and so it is bounded:

$$\forall \vec{y} \in H, \exists M_y > 0, |f_n(\vec{y})| = \langle \vec{y}, \vec{x}_n \rangle < M_y$$

And so, by the principle of uniform boundedness:

$$\exists M > 0, \forall n \in \mathbb{N}, ||f_n|| \le M$$

Finally:

$$||f_n(\vec{x}_n)|| = |\langle \vec{x}_n, \vec{x}_n \rangle| = ||\vec{x}_n||^2 \le ||f_n|| \, ||\vec{x}_n||$$

Therefore $\|\vec{x}_n\| \leq \|f_n\| \leq M$ and thus (\vec{x}_n) is bounded.