Math 324 C - Winter 2017 Midterm 2A Friday, February 24, 2017

Name:		
Student ID Number: _		

Problem 1	8	
Problem 2	6	
Problem 3	10	
Problem 4	9	
Problem 5	8	
Problem 6	9	
Total	50	

- There are 6 problems spanning 6 pages (your last page should be numbered as 6). Please make sure your exam contains all these questions.
- You are allowed to use a scientific calculator (**no graphing calculators**) and one **hand-written** 8.5 by 11 inch page of notes.
- You must show your work on all problems (unless explicitly instructed otherwise). The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded. Give exact answers wherever possible.
- If you need more room, use the back of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- Any student found engaging in academic misconduct will receive a score of 0 on this exam.
- You have 50 minutes to complete the exam. Budget your time wisely.

 Do not spend too much time on an individual problem, unless you are done with all the rest.
- You are not allowed to discuss this exam with other people until 2.00 pm today.

1. (8 pts) You do not need to explain your answers for this problem.

(a) Choose the plot that corresponds to the vector field $f(x,y) = \langle x^2, 3y \rangle$.

(b) Mark the following sentence as **true** or **false**. Let c be the unit circle in \mathbb{R}^2 parametrized counterclockwise, so that -c is the unit circle parametrized clockwise. Then for every scalar valued continuous function f(x,y) we have

$$\int_{-c} f(x,y)ds = -\int_{c} f(x,y)ds.$$

True False

(c) Mark the correct answer: Let $\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ be a vector field in \mathbb{R}^3 , where P, Q, R have continuous second partial derivatives. Then

$$(\operatorname{div}(\operatorname{curl} \vec{F}))\vec{F}$$

is

- a. A vector field
- **b.** A scalar field
- c. Undefined (nonsense)
- (d) Mark the correct answer: Let $\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ be a vector field in \mathbb{R}^3 , where P,Q,R have continuous third partial derivatives. Then

$$\vec{F} \cdot \operatorname{curl}(\nabla (\operatorname{div} \vec{F}))$$

is

- a. A vector field
- **b.** A scalar field
- c. Undefined (nonsense)
- 2. (6 pts) The mass of a wire lying on a curve c on the xy-plane and having density function $\rho(x,y)$ is given by

$$m = \int_{c} \rho(x, y) ds.$$

If c is the part of the ellipse $9x^2 + 4y^2 = 36$ between the points $(\sqrt{2}, \frac{3\sqrt{2}}{2})$ and (-2, 0) satisfying $y \ge 0$, as in the picture, and $\rho(x, y) = y$, **set up but do not evaluate** an integral calculating the mass of the wire.

3. (10 pts) You are given the vector field

$$\vec{F}(x,y) = \langle 6\cos(y) + 2xy^3, -6x\sin(y) + 3x^2y^2 + 1 \rangle$$

in \mathbb{R}^2 and the curve c paramatrized by $\vec{r}(t) = \langle \cos(t), t \sin^2(3t) \rangle$, $t \in [0, \frac{\pi}{2}]$ as in the picture.

a) Show that \vec{F} is conservative.

b) Evaluate $\int_c \vec{F} \cdot d\vec{r}$ (show your work clearly).

- 4. (9 pts) Let c be the curve of the picture, consisting of the following pieces:
 - A line segment from (0,0) to (1,1)
 - An arc of the circle $(x-1)^2 + y^2 = 1$ from (1,1) to (2,0) (the one that satisfies $y \ge 0$).
 - A line segment from (2,0) to (0,0).

Evaluate $\int_c f(x,y)dx$, where $f(x,y) = xy^2$.

5. (8 pts) The temperature at a point (x, y) of the plane is given in degrees Celcius by

$$T(x,y) = x^2 y^3 + 2\cos(3x\pi + y\pi),$$

where x and y are in meters. You are standing at the point (1,2) and you want to move towards the direction in which the temperature **drops** most rapidly (that is, the direction in which you have the minimum net rate of change of temperature).

(a) Find a vector that gives this direction.

(b) Find the directional derivative of T in the direction determined by this vector. Make sure to include units in your answer.

6. (9 pts) Let z = z(x, y) be a twice differentiable function with continuous second partial derivatives and x = x(t), y = y(t) be differentiable with continuous first partial derivatives. You are given the following table with data. Use the chain rule to evaluate $\frac{d^2z}{dt^2}(0)$.

x(0) = 1	y(0) = -1	z(1,-1) = -1
$\frac{\partial z}{\partial x}(1, -1) = -2$	$\frac{\partial z}{\partial y}(1, -1) = 3$	$\frac{dx}{dt}(0) = 1$
$\frac{dy}{dt}(0) = 0$	$\frac{d^2x}{dt^2}(0) = 0$	$\frac{d^2y}{dt^2}(0) = 2$
$\frac{\partial^2 z}{\partial x^2}(1, -1) = -2$	$\frac{\partial^2 z}{\partial y^2}(1, -1) = -6$	$\frac{\partial^2 z}{\partial x \partial y}(1, -1) = 6$

Hint: Note that some of the partial derivatives given are 0; this may simplify your calculation.