# School on Column Generation: Applications

#### Jacques Desrosiers

HEC Montréal & GERAD, Canada

#### Guy Desaulniers

Polytechnique de Montréal & GERAD, Canada

Marco Lübbecke

RWTH Aachen University, Germany

What is the relationship between *La Commission* scolaire des Chênes de Drummondville, UPS, Tokyo Metro Co., NAV Canada, Mount Sinai Hospital (Toronto), La Société des Casinos du Québec, Bombardier Flexjet, Autoroutes de France, and Wal-Mart?

## A SIMPLE SCHEDULING PROBLEM

- Goal: Find work schedules for a set of people.
- Each person works 6 consecutive hours and can start at the beginning of any hour.
- Data: demand curve per hour.



## SIMPLE SCHEDULING PATTERNS

|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23  | offer |   | dmd |
|----|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-------|---|-----|
| 0  | 1 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | 1  | 1  | 1  | 1  | 1   | 0     | ≥ | 8   |
| 1  | 1 | 1 |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  | 1  | 1  | 1   | 0     | ≥ | 5   |
| 2  | 1 | 1 | 1 |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  | 1  | 1   | 0     | ≥ | 4   |
| 3  | 1 | 1 | 1 | 1 |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    | 1  | 1   | 0     | ≥ | 4   |
| 4  | 1 | 1 | 1 | 1 | 1 |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1   | 0     | ≥ | 3   |
| 5  | 1 | 1 | 1 | 1 | 1 | 1 |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 0     | ≥ | 7   |
| 6  |   | 1 | 1 | 1 | 1 | 1 | 1 |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 0     | ≥ | 20  |
| 7  |   |   | 1 | 1 | 1 | 1 | 1 | 1 |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 0     | ≥ | 32  |
| 8  |   |   |   | 1 | 1 | 1 | 1 | 1 | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 0     | ≥ | 40  |
| 9  |   |   |   |   | 1 | 1 | 1 | 1 | 1 | 1 |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 0     | ≥ | 30  |
| 10 |   |   |   |   |   | 1 | 1 | 1 | 1 | 1 | 1  |    |    |    |    |    |    |    |    |    |    |    |    |     | 0     | ≥ | 30  |
| 11 |   |   |   |   |   |   | 1 | 1 | 1 | 1 | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |     | 0     | ≥ | 35  |
| 12 |   |   |   |   |   |   |   | 1 | 1 | 1 | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    |    |     | 0     | 2 | 40  |
| 13 |   |   |   |   |   |   |   |   | 1 | 1 | 1  | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    |     | 0     | ≥ | 35  |
| 14 |   |   |   |   |   |   |   |   |   | 1 | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |    |    |     | 0     | ≥ | 35  |
| 15 |   |   |   |   |   |   |   |   |   |   | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    |    |     | 0     | 2 | 40  |
| 16 |   |   |   |   |   |   |   |   |   |   |    | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |    | -11 | 0     | ≥ | 45  |
| 17 |   |   |   |   |   |   |   |   |   |   |    |    | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |    |     | 0     | ≥ | 50  |
| 18 |   |   |   |   |   |   |   |   |   |   |    |    |    | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |    |     | 0     | ≥ | 40  |
| 19 |   |   |   |   |   |   |   |   |   |   |    |    |    |    | 1  | 1  | 1  | 1  | 1  | 1  |    |    |    |     | 0     | ≥ | 30  |
| 20 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    | 1  | 1  | 1  | 1  | 1  | 1  |    |    |     | 0     | ≥ | 30  |
| 21 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    | 1  |    | 1  | 1  | 1  | 1  |    |     | 0     | ≥ | 20  |
| 22 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  | 1  | 1  | 1  | 1  | 1  |     | 0     | ≥ | 10  |
| 23 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1_ | 1  | 1  | 1_ | 1   | 0     | 2 | 10  |

### VARIOUS SCHEDULING PROBLEMS

- Minimum number of persons
- Minimum cost
- Split duties: 6 on 7 hrs
  - 3hrs, 1hr lunch, 3hrs
  - Fractional solution
  - Large branch & bound tree (very difficult!)
  - Rounding cut

## SPLIT PATTERNS

|    | 0  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | offer |             | dmd |
|----|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|-------------|-----|
| 0  | 1  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    | 1  | 1  | 1  |    | 1  | 1  | 8     | ≥           | 8   |
| 1  | 1  | 1 |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | 1  | 1  | 1  |    | 1  | 5     | ≥           | 5   |
| 2  | 1  | 1 | 1 |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    | 1  | 1  | 1  |    | 6     | ≥           | 4   |
| 3  |    | 1 | 1 | 1 |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    | 1  | 1  | 1  | 17    | ≥           | 4   |
| 4  | 1  |   | 1 | 1 | 1 |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    | 1  | 1  | 20    | ≥           | 3   |
| 5  | 1  | 1 |   | 1 | 1 | 1 |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    | 1  | 17    | ≥           | 7   |
| 6  | 1  | 1 | 1 |   | 1 | 1 | 1 |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 23    | <u>&gt;</u> | 20  |
| 7  |    | 1 | 1 | 1 |   | 1 | 1 | 1 |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 32    | ≥           | 32  |
| 8  |    |   | 1 | 1 | 1 |   | 1 | 1 | 1 |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 40    | ≥           | 40  |
| 9  |    |   |   | 1 | 1 | 1 |   | 1 | 1 | 1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 30    | ≥           | 30  |
| 10 |    |   |   |   | 1 | 1 | 1 |   | 1 | 1 | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    | 30    | ≥           | 30  |
| 11 |    |   |   |   |   | 1 | 1 | 1 |   | 1 | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |    | 35    | ≥           | 35  |
| 12 |    |   |   |   |   |   | 1 | 1 | 1 |   | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    | 42    | ≥           | 40  |
| 13 | 19 |   |   |   |   |   |   | 1 | 1 | 1 |    | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    |    | 44    | ≥           | 35  |
| 14 |    |   |   |   |   |   |   |   | 1 | 1 | 1  |    | 1  | 1  | 1  |    |    |    |    |    |    |    |    |    | 35    | ≥           | 35  |
| 15 |    |   |   |   |   |   |   |   |   | 1 | 1  | 1  |    | 1  | 1  | 1  |    |    |    |    |    |    |    |    | 40    | ≥           | 40  |
| 16 |    |   |   |   |   |   |   |   |   |   | 1  | 1  | 1  |    | 1  | 1  | 1  |    |    |    |    |    |    |    | 45    | ≥           | 45  |
| 17 |    |   |   |   |   |   |   |   |   |   |    | 1  | 1  | 1  |    | 1  | 1  | 1  |    |    |    |    |    |    | 50    | ≥           | 50  |
| 18 |    |   |   |   |   |   |   |   |   |   |    |    | 1  | 1  | 1  |    | 1  | 1  | 1  |    |    |    |    |    | 40    | ≥           | 40  |
| 19 |    |   |   |   |   |   |   |   |   |   |    |    |    | 1  | 1  | 1  |    | 1  | 1  | 1  |    |    |    |    | 30    | ≥           | 30  |
| 20 | W  |   |   |   |   |   |   |   |   |   |    |    |    |    | 1  | 1  | 1  |    | 1  | 1  | 1  |    |    |    | 31    | ≥           | 30  |
| 21 |    |   |   |   |   |   |   |   |   |   |    |    |    |    |    | 1  | 1  | 1  |    | 1  | 1  | 1  |    |    | 24    | ≥           | 20  |
| 22 |    |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    | 1  | 1  | 1  |    | 1  | 1  | 1  |    | 18    | ≥           | 10  |
| 23 |    |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | 1  | 1  | 1  |    | 1  | 1  | 1  | 10    | <u>&gt;</u> | 10  |

### VARIOUS SCHEDULING PROBLEMS

- Split duties: 7 on 8 hrs
  - 3hrs, 1hr lunch, 4hrs or 4hrs, 1hr lunch, 3hrs
  - 48 variables
- Additional am & pm breaks (15 minutes)
  - More constraints

## VARIOUS SPLIT PATTERNS

#### 48 Variables

|   | 0a | 0b | 1a | 1b |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | offer |             |  |
|---|----|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|--|
| 0 | 1  | 1  |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
| 1 | 1  | 1  | 1  | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <u>&gt;</u> |  |
| 2 | 1  | 1  | 1  | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
| 3 |    | 1  | 1  | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
| 1 | 1  |    |    | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
| 5 | 1  | 1  | 1  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   | 1  | 1  | 1  | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   | 1  | 1  | 1  | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <u>≥</u>    |  |
|   |    |    | 1  | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
| 3 |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
|   |    |    |    |    | TO BE SELECT THE SECOND OF THE |       | ≥           |  |
| ) |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
| 1 |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
| 2 |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |
| 3 |    |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ≥           |  |

### **AIRLINE APPLICATIONS**

Replace time periods to be covered,
 each by a certain number of people by

```
flights to be covered, each by a single aircraft
```

or

each by a certain number of pilots each by a certain number of flight attendants

. . .

## AIRLINE APPLICATIONS: AIRCRAFT PATTERNS

Possible aircraft routes



## AIRLINE APPLICATIONS: PILOT PATTERNS

#### Possible pilot schedules



## AIRLINE APPLICATIONS: FLIGHT ATTENDANT PATTERNS

#### Possible flight attendant schedules

| Flights |     |             |    |
|---------|-----|-------------|----|
| 1       | 1   | <u>&gt;</u> | 12 |
| 2       |     | ≥           | 4  |
| 3       |     | ≥           | 10 |
|         |     | ≥           |    |
|         | 1   | ≥           |    |
|         |     | ≥           |    |
|         |     | ≥<br>≥      |    |
|         |     | ≥<br>≥      |    |
|         | 1 1 | ≥           |    |
|         |     | <u>&gt;</u> |    |
|         | 1   | ≥           |    |
|         |     | ≥           |    |
|         | 1   | ≥           |    |
|         |     | ≥           |    |
|         |     | ≥           |    |
|         |     | ≥           |    |
|         |     | ≥ \         |    |
|         |     | ≥<br>≥      |    |
|         |     | ≥           |    |
|         |     | <u>&gt;</u> |    |
| 865     |     | ≥           | 10 |
| 866     |     | <u>&gt;</u> | 8  |
|         |     |             |    |

### RAIL APPLICATIONS

Replace time periods to be covered,
 each by a certain number of people by

trains to be covered,
each by a certain number of locomotives

## RAIL APPLICATIONS: LOCOMOTIVE PATTERNS

#### Possible locomotive routes



### GENERAL STRUCTURE

Replace time periods to be covered,
 each by a certain number of people by

tasks to be performed,
each by a certain number of vehicles or crews

### GENERAL STRUCTURE

- Each column provides a feasible pattern, represented by a set of 0/1 values, that is, uncovered and covered tasks.
- Patterns are given
   by paths on time space networks.

### PROBLEM STRUCTURE

- Time-Space Networks
- Local (Path) Restrictions
- Covering of a Set of Tasks
- Schedule Composition
- Non Linear Cost Functions

## AIRLINE CREW SCHEDULING: PILOT PAIRINGS



## MONTHLY SCHEDULES: MONTHLY ROSTERING



## AIRLINE OPTIMIZATION DIVIDED IN 3 STEPS



## BUS DRIVER SCHEDULING



#### **WORK SHIFT CONSTRAINTS**

MAX 8 HOURS
MIN 6 HOURS
1 HOUR LUNCH TIME

#### **GLOBAL CONSTRAINTS**

80% OF SHIFTS ≥ 7 HOURS

## BUS DRIVER OPTIMIZATION DIVIDED IN 3 STEPS



### A GENERIC PROBLEM



- COVER AT MINIMUM COST
- A SET OF TASKS
- WITH
  FEASIBLE
  PATHS

## VARIOUS EXAMPLES

|                        | TASKS         | PATHS           |
|------------------------|---------------|-----------------|
| URBAN BUS              |               |                 |
| <b>BUS ROUTING</b>     | BUS TRIPS     | ROUTES          |
| DRIVER SCHEDULING      | TRIP SEGMENTS | SHIFTS          |
| ROSTERING              | SHIFTS        | ROSTERS         |
|                        |               | 3               |
| AIRLINE                |               |                 |
| AIRCRAFT ROUTING       | FLIGHTS       | ROUTES          |
| CREW PAIRING           | FLIGHTS       | PAIRINGS        |
| MONTHLY BLOCKS         | PAIRINGS      | BLOCKS          |
|                        |               |                 |
| RAIL                   |               |                 |
| ROUTING of LOCOMOTIVES | TRAINS        | ROUTES          |
|                        |               |                 |
| PRODUCTION             |               |                 |
| JOB-SHOP               | OPERATIONS    | SEQUENCES       |
|                        |               | ON A MACHINE 24 |

## SOME ELEMENTS OF CREW PAIRING PROBLEMS

TaskFlights

Types
 # Bases x 7 (implicit pairing duration)

PathsPairings

Networks

• Arcs Duties; Night rests; Connections

• Resources Min rest time; Max worked time;...

*Max/Min of pairing types* 

Cost Function

$$Min\sum_{Pairings} \max \left\{ \frac{duration}{3.5}, \sum_{Duties} \max \left\{ 4, credits \right\} \right\}$$

## SOME ELEMENTS OF MONTHLY ROSTERING PROBLEMS

Task Pairing

Types # Crew members

PathsBlocks

Networks

• Arcs Pairings; Rests; Trainings; ...

Resources Max credits; no. days off;

Days off patterns;...

• Cost Function Min Uncovered Tasks;

Balance workload

## SOME ELEMENTS OF PREFERENTIAL BIDDING PROBLEMS

Task Pairing

Types # Crew members

PathsBlocks

Networks

• Arcs Pairings; Rests; Trainings; ...

Resource Max credits; no. days off;

Days off patterns8/24 rule;...

- Cost Function Max Satisfaction Scores

in Seniority Order

### PROBLEM STRUCTURE

(CREW PAIRING: 1000 FLIGHTS)

#### SEPARABLE CREW COST FUNCTIONS

**COVERING OF EACH FLIGHT (Tasks)** 1000

SET OF GLOBAL CONSTRAINTS 10



**LOCAL FLOW AND** RESOURCE COMPATIBILITIES

300 000 ARC VARIABLES

28

**BINARY FLOWS** 

28

## DANTZIG-WOLFE REFORMULATION



#### ADVANTAGES

- Simpler and fewer constraints
- Complex costs can be easily pre-computed

#### DIFFICULTIES

Astronomical number of path variables !!!

## COLUMN GENERATION OF VARIABLES ... AS NEEDED

#### Master Problem

- Tasks Covering
- Global Constraints

#### Sub-Problems

- Path Structure
- Local Feasibility by Using Resource Variables

## SUBPROBLEM: CONSTRAINED SHORTEST PATH

#### **MIN REDUCED COST**

MIN 
$$\sum$$
 MAX ( Pairing Duration  $\sum$  MAX (4, Credits)) – Dual Costs PAIRINGS DAYS

- S.T. PATH STRUCTURE
  - DAY DURATION ≤ 12 HOURS
  - WORK TIME / DAY ≤ 8 HOURS
  - WORK TIME / PAIRING ≤ MAX
  - NIGHT REST ≥ MIN

- ...

10 TO 20 RESOURCES

## **Linear Master Problem**

|       |    |    |    |    |    |    |    |     | CO | STS |    |    |    |    |    |    |    |     |   |    |
|-------|----|----|----|----|----|----|----|-----|----|-----|----|----|----|----|----|----|----|-----|---|----|
|       |    | 39 | 43 | 42 | 40 | 38 | 38 |     | 43 | 44  | 34 | 41 | 34 | 33 | 38 | 58 | 41 |     |   |    |
|       | 1  | 1  |    |    |    |    |    |     | 1  |     |    | 1  |    |    |    | 1  |    |     | = | 1  |
|       | 2  |    | 1  | 1  |    |    | 1  |     |    | 1   | 1  |    | 1  |    | 1  |    | 1  |     | = | 1  |
|       | 3  | 1  | 1  |    | 1  |    |    |     | 1  |     |    | 1  |    | 1  |    | 1  |    |     | = | 1  |
|       | 4  |    | 1  | 1  |    | 1  | 1  |     |    | 1   | 1  |    |    | 1  | 1  | 1  |    |     | = | 1  |
| K     | 5  |    |    | 1  |    | 1  |    |     | 1  | 1   |    |    | 1  |    |    |    | 1  |     | = | 1  |
| TASKS | 6  |    |    | 1  | 1  |    | 1  |     |    |     |    | 1  |    |    | 1  | 1  | 1  | ••• | = | 1  |
|       | 7  |    |    |    | 1  |    |    | ••• | 1  |     | 1  |    | 1  |    |    |    |    |     | = | 1  |
|       | 8  | 1  | 1  |    |    | 1  |    |     |    | 1   |    |    |    | 1  |    | 1  | 1  |     | = | 1  |
|       | 9  |    |    |    |    | 1  | 1  | ••• | 1  |     |    | 1  | 1  |    | 1  | 1  |    |     | = | 1  |
|       | 10 | 1  | 1  |    | 1  |    |    |     |    | 1   | 1  |    |    |    |    | 1  |    |     | = | 1  |
|       |    | 13 | 17 | 15 | 11 | 13 | 14 |     |    |     |    |    |    |    |    |    |    |     |   | 25 |
|       |    |    |    |    |    |    |    |     | 12 | 18  | 13 | 12 | 9  | 10 | 14 | 24 | 13 |     | ≤ | 40 |
|       |    | 1  | 1  | 1  | 1  | 1  | 1  |     |    |     |    |    |    |    |    |    |    |     | ≤ | 2  |
|       |    |    |    |    |    |    |    |     | 1  | 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1  |     | ≤ | 4  |

### SUCCESSFUL APPLICATIONS

- Vehicle Routing with Time Windows
- Dial-a-Ride for Physically Disabled Persons
- Urban Transit Crew Scheduling
- Multiple Depot Vehicle Scheduling
- Aircraft Routing
- Crew Pairing
- Crew Rostering (Pilots & Flight Attendants)
- Locomotive and Car Assignment

### CREW PAIRING AIR CANADA

FLIGHT ATTENDANTS

DC-9 + A 320

| 5 BASES | FLIGHTS | % FAT |
|---------|---------|-------|
| DAILY   | 430     | 0.47  |
| WEEKLY  | 2425    | 1.39  |
| MONTHLY | 11914   | 2.03  |

Air Canada solution vs. Savings :  $7.8 \% \rightarrow 2.03 \%$ 

TRANSAT, CAN. REGIONAL, NORTHWEST, U.P.S., DELTA, SWISSAIR, FEDEX

## CREW ROSTERING AIR FRANCE

Flight Attendants

|          | ORLY  | CDG    |
|----------|-------|--------|
| PAIRINGS | 454*7 | 3000*5 |
| PERSONS  | 240   | 840    |

**SAVINGS** 7.4% 7.6%

## FLEET ASSIGNMENT & AIRCRAFT ROUTING AIR CANADA

### 91 AIRCRAFT, 9 TYPES, 33 STATIONS

| SAVINGS | 3.8 %    | 8.9 %    | 13.9 %   |
|---------|----------|----------|----------|
| TWs     | ± 10 MIN | ± 20 MIN | ± 30 MIN |

## FLEET REDUCTION WITH TIME WINDOWS ON FLIGHT SCHEDULE

### AIRCRAFT ROUTING & SCHEDULING CANADIAN ARMY (C-130)

#### WEST CHALLENGE (19 city-pairs)

- 750 soldiers and equipment
- MAX 65 soldiers per flight

|                  | FLIGHT<br>TIME | NUMBER<br>OF AIRCRAFT |
|------------------|----------------|-----------------------|
| Manual solution  | 59 HRS         | 4                     |
| GENCOL Optimizer | 39 HRS         | 3                     |
| SAVINGS          | 20 HRS (34 %)  | 1 (33 %)              |

#### SUBWAY DRIVER TOKYO

2000 – 3000 bus segments One- or two-day shifts Collective agreement rules

SAVINGS ≈ 15 %

**GIRO** contract > 1.5M \$US (in 1993)

### LOCOMOTIVES CANADIAN NATIONAL WEEKLY PROBLEM

2000 Trains

26 Locomotive types

Maintenance constraints

Minimal demand for each train: no. of locos & hp

SAVINGS: 100 locos over 1090 (9.17 %)

#### GENCOL R&D

School Busing Rus Drivers recreate Routing Loconotive Assignment Referential Bidding

1981 Integer Programming Column Generation

#### GENCOL R&D

Locomotives & Cars

Buses & Drivers

Aircraft & Crews

Crew Recovery

1997 2-Level Structures

### Flexjet Fractional Raised the Bar

# Bombardier Flexjet Aircraft Fractional Ownership Operations

Flight Scheduling & Fleet Assignment & Aircraft Routing & Crew Scheduling

**2000** A 4-Level Integrated Structure

#### WHAT IS THE RELATIONSHIP BETWEEN ...?

- Commission scolaire des Chênes de Drummondville
- UPS
- Tokyo Metro Co.
- NAV Canada
- Mount Sinai Hospital (Toronto)
- Casinos du Québec (Montréal, Charlevoix, Lac-Leamy)
- Bombardier Flexjet
- Autoroutes de France
- Wal-Mart

- ...

#### VEHICLE ROUTING & CREW SCHEDULING SOLVED BY GENCOL





### TWO ADDITIONAL SET PARTITIONING APPLICATIONS

- 1. MBA Teams
- 2. A Secret Ballot Problem

#### 1. MBA TEAMS

• 26 persons to form teams of 4 or 5 persons.

4 teams of 4and 2 teams of 5

• A Transportation Prob. Constraint Structure

#### TRANSPORTATION CONSTRAINTS



### MBA TEAMS: QUADRATIC OBJECTIVE FUNCTION

 $\min \sum_{teams} dist(team, target)$ 

- Target vector
  - Average (proportion) of attributes
     within the class group
- Team vector
  - Average (proportion) of attributes
     within the team

#### Attributes

- Male/Female
- Scientist
- Country
- -IQ
- etc.

#### **MBA TEAMS**

- Some integrality difficulties in solving this *quadratic* transportation problem.
- Moreover, assume 70% males
  - => 2.8 in team of 4; 3.5 in team of 5 2 and 3 are acceptable; 3 and 4 are acceptable

#### Solution procedure

- complete enumeration of all acceptable team patterns
- cost easily computed a priori.

#### **MBA TEAM PATTERNS**

Acceptable team patterns of 4 and 5 people



#### 2. A SECRET BALLOT PROBLEM:

#### CAN YOU DECODE THE VOTE?



|    |       | а     | b     | С     | d     | е     | f    |   |
|----|-------|-------|-------|-------|-------|-------|------|---|
| 1  | 14.3% | 1     |       |       |       |       |      | • |
| 2  | 13.2% | 1     |       |       |       |       |      |   |
| 3  | 12.4% |       |       |       | 1     |       |      |   |
| 4  | 8.4%  |       |       | 1     |       |       |      |   |
| 5  | 7.8%  |       |       |       |       | 1     |      |   |
| 6  | 6.2%  |       | 1     |       |       |       |      |   |
| 7  | 5.7%  | 1     |       |       |       |       |      |   |
| 8  | 5.5%  |       |       | 1     |       |       |      | • |
| 9  | 4.5%  |       |       |       | 1     |       |      | · |
| 10 | 4.2%  |       |       |       |       | 1     |      | • |
| 11 | 3.6%  |       | 1     |       |       |       |      | · |
| 12 | 3.1%  |       |       |       |       |       | 1    |   |
| 13 | 2.7%  | 1     |       |       |       |       |      |   |
| 14 | 2.4%  |       |       | 1     |       |       |      |   |
| 15 | 1.5%  |       |       |       |       | 1     |      |   |
| 16 | 1.4%  |       |       |       |       |       | 1    | • |
| 17 | 1.3%  |       | 1     |       |       |       |      |   |
| 18 | 1.1%  |       |       | 1     |       |       |      |   |
| 19 | 0.4%  |       |       |       | 1     |       |      | , |
| 20 | 0.3%  |       |       |       |       | 1     |      |   |
|    |       | 35.9% | 11.1% | 17.4% | 17.3% | 13.8% | 4.5% |   |

#### SOLUTION PROCEDURE

- An infinite number of fractional solutions
- 4.5% = 0.1\*14.3% + 0.23257576\*13.2% etc.
- A very limited number of *integer* solutions
  - 4.5% : 10 combinations
  - 35.9%: 12 combinations

#### Full enumeration and Set Partitioning Formulation

### WHO CAN HAVE VOTED FOR CANDIDATE f?



## ONLY 10 PATTERNS FOR CANDIDATE f



#### ENUMERATION OF ALL POSSIBLE PATTERNS



#### ENUMERATION OF ALL POSSIBLE PATTERNS

|         |       |     |   |   |   |   |   |   |     |     |   | 1 |   |     |          |   |   |   |   |     |   |   |   |     |     |   |   |   |   |   |     |   |   |  |
|---------|-------|-----|---|---|---|---|---|---|-----|-----|---|---|---|-----|----------|---|---|---|---|-----|---|---|---|-----|-----|---|---|---|---|---|-----|---|---|--|
|         |       | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | l 1 | 1 |   |   |     |          |   |   |   |   |     |   |   |   |     |     |   |   |   |   |   |     |   |   |  |
|         |       | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | I 1 | 1 |   |   |     |          |   |   |   |   |     |   |   |   |     |     |   |   |   |   |   |     |   |   |  |
|         |       |     |   |   |   |   |   |   |     |     |   | 1 |   |     |          |   |   |   |   |     |   |   |   |     |     |   |   |   |   |   |     |   |   |  |
|         |       | 1   |   |   |   |   |   |   |     |     |   |   | 1 | 1 1 | 1 1      | 1 | 1 | 1 | 1 |     |   |   |   |     |     |   |   |   |   |   |     |   |   |  |
|         |       |     |   |   |   |   |   |   |     |     |   |   |   |     |          |   |   |   |   | 1 1 | 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 |   |  |
|         |       | 1   | ı |   |   |   |   |   |     |     |   |   |   |     |          |   |   |   |   |     |   |   |   |     |     |   |   |   |   |   |     |   | 1 |  |
|         |       |     | 1 | 1 | 1 |   |   |   |     |     |   |   |   |     |          |   |   |   |   | 1   |   |   |   |     |     |   |   |   |   |   |     |   | 1 |  |
|         |       | -   |   |   |   | 1 | 1 | 1 |     |     |   |   |   |     |          |   |   |   |   |     |   |   |   |     |     |   |   |   |   |   |     |   |   |  |
|         |       |     |   |   |   |   |   |   | 1 1 | l 1 | 1 |   |   |     |          |   |   |   |   | 1   | 1 |   |   |     |     |   |   |   |   |   |     |   |   |  |
| 1       |       |     |   |   |   |   |   |   |     |     |   |   |   |     |          |   |   |   |   |     |   | 1 | 1 | 1   |     |   |   |   |   |   |     |   |   |  |
|         |       |     |   |   |   |   |   |   | 1   |     |   |   | 1 | 1 1 | I        |   |   |   |   |     |   |   |   | •   | 1 1 | 1 | 1 |   |   |   |     |   |   |  |
| 1 1     |       |     |   |   |   |   |   |   |     |     |   |   |   |     |          |   |   |   |   |     |   |   |   |     |     |   |   | 1 | 1 |   |     |   |   |  |
| 1 1 1   |       |     | 1 |   |   |   |   |   |     |     |   |   |   |     | 1        | 1 |   |   |   |     |   |   |   |     |     |   |   |   |   | 1 | 1   |   |   |  |
|         | 1     |     |   | 1 |   |   |   |   |     | l 1 |   |   |   |     | 1        |   |   | 1 | 1 |     |   |   |   | •   | 1   | 1 |   |   |   |   |     | 1 |   |  |
| 1       | 1     | 1   |   |   |   | 1 | 1 |   | 1   | I   | 1 |   | 1 |     |          |   |   | 1 |   | 1   |   | 1 |   |     |     |   |   | 1 |   | - | 1   | 1 |   |  |
| 1 1     | 1 1 1 |     |   |   | 1 | 1 |   | 1 |     |     |   |   |   | 1   |          | 1 |   |   | 1 |     |   |   | 1 |     |     |   |   | 1 | 1 | 1 |     | 1 |   |  |
|         | 1 1   |     |   |   | 1 |   |   |   |     |     | 1 |   |   |     |          | 1 |   |   | 1 |     |   |   |   |     | 1   |   | 1 |   |   |   |     |   |   |  |
| 1 1     | •     |     |   |   |   |   | 1 |   |     |     | 1 | 1 |   | 1   |          |   | 1 |   |   |     | 1 |   |   | 1   | 1   | l | 1 |   | 1 |   | 1   |   |   |  |
| 1 1     | 1 1   | 1   |   |   |   |   |   | 1 |     | 1   |   |   |   | 1 1 |          |   |   | 1 |   |     | 1 |   | 1 | 1   |     |   |   |   | 1 | 1 | 1   |   |   |  |
| 1 1 1 1 | 1 1 1 | 1   |   | 1 |   |   | 1 |   | 1   |     |   | 1 | 1 | 1   | <u> </u> |   | 1 |   | 1 | 1   |   | 1 |   | 1   |     |   |   |   |   |   | _1_ | 1 |   |  |

#### **ADDITIONAL APPLICATIONS**

- 1. Cutting Stock Problem
- 2. Single Depot Vehicle Scheduling Problem
- 3. Multiple Depot Vehicle Scheduling Problem

- Gilmore-Gomory formulation (binary)
- Gilmore-Gomory formulation (integer)
- Kantorovich formulation
- Valério de Carvalho formulation
- Dantzig-Wolfe reformulations

Given are indentical rolls of length L and demands  $d_i$  for small items i in N of length  $l_i$  (< L).

Find the minimum number of rolls to satisfy the demand.

P: set of cutting patterns of a roll

 $a_{ip}$ : number of times item i appears in pattern p

$$\sum_{i \in I} a_{ip} \le L, \quad \forall p \in P$$

 $\lambda_p$ : number of times pattern p is choosen in the solution

$$\min \sum_{p \in P} \lambda_p$$

$$\sum_{p \in P} a_{ip} \lambda_p = d_i \qquad \forall i \in I$$

$$\lambda_p \ge 0, \text{integer} \quad \forall p \in P$$

The linear relaxation is 
$$Z_{LP} = \frac{\sum_{i \in I} l_i d_i}{L}$$

Lower bound on  $Z_{IP} = [Z_{LP}]$ 

For non identical rolls, patterns are generated according to the selected roll length.



#### SINGLE DEPOT VEHICLE SCHEDULING PROBLEM

- Network formulation (homogeneous fleet)
- DW with extreme points
- DW with extreme rays and a single extreme point
- Specialized network representations
  School busing
  Urban bus routing
  Periodic aircraft routing
- Homogeneous vs. Heterogeneous fleet

#### SINGLE DEPOT VEHICLE SCHEDULING PROBLEM

- Network formulation (homogeneous fleet)
- DW with extreme points
- DW with extreme rays and a single extreme point
- Specialized network representations
   School busing
   Urban bus routing
   Periodic aircraft routing
- Homogeneous vs. Heterogeneous fleet

#### MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM

- Multi-commodity network formulation
- Discussion on the objective function
- Block diagonal decomposition