

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Bluetooth low energy module

ISSUED TO MIR Medical International Research

via del Maggiotino 125, 00155 Rome Italy

Model Name: MIR060 Brand Name: MIR Test Standard:

FCC ID: TUKMIR059

Test conclusion: PASS Date of Issue: Nov 18, 2014

Report No.: BL-SZ14B0057-401

EUT Type: Bluetooth low energy module

47 CFR Part 15 Subpart B

Test Date: Nov 14, 2014 ~ Nov 18, 2014

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Block B, 1st FL,Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R, China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271

Email: info@baluntek.com www.baluntek.com

Revision History

VersionIssue DateRevisionsRev. 01Nov 18, 2014Initial Issue

TABLE OF CONTENTS

1 GI	ENERAL INFORMATION	4
1.1	Identification of the Testing Laboratory	4
1.2	Identification of the Responsible Testing Location	4
1.3	Announce	4
2 PF	RODUCT INFORMATION	5
2.1	Applicant	5
2.2	Manufacturer	5
2.3	General Description for Equipment under Test (EUT)	5
2.4	Ancillary Equipment	5
3 SI	UMMARY OF TEST RESULTS	6
3.1	Test Standards	6
3.2	Verdict	6
3.3	Test Uncertainty	6
4 GI	ENERAL TEST CONFIGURATIONS	7
4.1	Test Environments	7
4.2	Test Equipment List	7
4.3	Test Enclosure list	8
4.4	Test Configurations	8
4.5	Test Setups	9
4.6	Test Conditions	11
5 TE	EST ITEMS	12
5.1	Emission Tests	12
ANNE	X A TEST RESULTS	14
A.1	Radiated Emission	14
A.2	Conducted Emission	18
ANNE	X B TEST SETUP PHOTOS	20
A.2	Conducted Emission	

B.1	Radiated Field Strength Measurement	. 20
B.2	Conducted Emission	. 21
ANNEX	C EUT PHOTOS	. 23
C.1	Appearance of the EUT	. 23
C.2	Inside of the EUT	. 27

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.		
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,		
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China		
Phone Number	+86 755 6683 3402		
Fax Number	+86 755 6182 4271		

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.		
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,		
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China		
	The laboratory has been listed by Industry Canada to perform		
	electromagnetic emission measurements. The recognition numbers of		
	test site are 11524A-1.		
	The laboratory has been listed by US Federal Communications		
	Commission to perform electromagnetic emission measurements. The		
	recognition numbers of test site are 832625.		
Accreditation Certificate	The laboratory has met the requirements of the IAS Accreditation Criteria		
	for Testing Laboratories (AC89), has demonstrated compliance with		
	ISO/IEC Standard 17025:2005. The accreditation certificate number is		
	TL-588.		
	The laboratory is a testing organization accredited by China National		
	Accreditation Service for Conformity Assessment (CNAS) according to		
	ISO/IEC 17025. The accreditation certificate number is L6791.		
	All measurement facilities used to collect the measurement data are		
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi		
Description	Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China		
	518055		

1.3 Announce

- (1) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (2) The test report is invalid if there is any evidence and/or falsification.
- (3) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (4) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant

Applicant	MIR Medical International Research	
Address	via del Maggiotino 125, 00155 Rome Italy	

2.2 Manufacturer

Manufacturer	MIR Medical International Research
Address via del Maggiotino 125, 00155 Rome Italy	

2.3 General Description for Equipment under Test (EUT)

EUT Type	Bluetooth low energy module		
The Under Test Model	MIR060		
Name			
Hardware Version	0		
Software Version	1.5		
Network and Wireless	Bluetooth 4.0 Low Energy (BLE)		
connectivity	Bidetootiff 4.0 Low Effergy (BEE)		
	The equipment is Bluetooth low energy module, it is a pocket spirometer,		
About the Product	with an optional pulse oximetry module. It can operate either in		
About the Froduct	stand-alone mode or it can be connected to a PC or to a printer using any		
	one of several methods: USB, Bluetooth.		

2.4 Ancillary Equipment

	Charger		
	Brand Name	N/A	
Ancillant Equipment 1	Model No	FW7662M/05	
Ancillary Equipment 1	Serial No	(N/A. marked #1 by test site)	
	Input	~ 100V~240V, 50~60Hz,150mA	
	Output	= 5V, 1.1A	
	Battery		
	Brand Name	N/A	
	Model No	1S1P/UF553450Z	
Ancillary Equipment 2	Serial No	(N/A. marked #1 by test site)	
	Capacitance	1100mAh	
	Rated Voltage	3.7V	
	Extreme Voltage	Low: 3.3V / High: 4.2V	

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title	
1	FCC 47 CFR Part 15 Subpart	Unintentional Radiators	
l	B (10-1-13 Edition)	Offiniteritional Radiators	
	ANGL CG2 4 2044	American National Standard for Standard for Methods of	
2		Measurement of Radio-Noise Emissions from Low-Voltage	
	ANSI C63.4-2014	Electrical and Electronic Equipment in the Range of 9 kHz	
		40 GHz	

3.2 Verdict

No.	Description	FCC Rule	Test Verdict	Result
1	Radiated Emission	15.109	PASS	Annex A .1
2	Conducted Emission, AC Ports	15.107	PASS	Annex A .2

3.3 Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions (9KHz-30MHz)	1.12 dB
Radiated emissions (30MHz-1GHz)	2.11 dB
Radiated emissions (1GHz-18GHz)	3.31 dB

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

Environment	Selected Values During Tests			
Parameter	Temperature	Voltage	Relative Humidity	Ambient Pressure
Normal Temperature, Normal Voltage (NTNV)	23°C~26°C	DC 5V	45%-55%	100 to 102 kPa

4.2 Test Equipment List

	R	adiated Em	ission Test			
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2014.07.07	2015.07.06	\boxtimes
Test Antenna- Loop(9kHz- 30MHz)	SCHWARZBECK	FMZB 1519	1519-037	2013.07.02	2015.07.01	\boxtimes
Test Antenna- Bi-Log(30MHz -3GHz)	SCHWARZBECK	VULB 9163	9163-624	2013.07.03	2015.07.02	\boxtimes
Test Antenna- Horn(1- 18GHz)	SCHWARZBECK	BBHA 9120D	9120D-1148	2013.07.02	2015.07.01	\boxtimes
Test Antenna- Horn(15- 26.5GHz)	SCHWARZBECK	BBHA 9170	9170-305	2013.07.02	2015.07.01	
Anechoic Chamber	RAINFORD	9m*6m*6 m	N/A	2014.10.07	2015.10.06	\boxtimes

	Co	onducted dis	turbance Test			
Description	Manufacturer	Model Serial No.		Cal. Date	Cal. Due	Use
EMI Receiver	ROHDE&SCHWA RZ	ESRP	101036	2014.07.07	2015.07.06	\boxtimes
LISN	SCHWARZBECK	NSLK 8127 8127-687 2014.07.07		2014.07.07	2015.07.06	\boxtimes
AMN	SCHWARZBECK	HWARZBECK NNBM812 8124-509 2014.07.07		2014.07.07	2015.07.06	
AMN	SCHWARZBECK	NNBM812 4	8124-510	2014.07.07	2015.07.06	
ISN	TESEQ	ISN T800	34449	2014.07.07	2015.07.06	
Shielded Enclosure	ChangNing	CN-13070 1	130703	N/A	N/A	\boxtimes

4.3 Test Enclosure list

Description	Manufacturer	Model	Serial No.	Length	Description	Use
PC	N/A	N/A	N/A	N/A	Special Handled	\boxtimes
Printer	HP	DESKJET 1000	N/A	N/A	N/A	\boxtimes
Keyboard	Logitech	Y-BP62a	N/A	N/A	N/A	\boxtimes
Mouse	Logitech	M100	N/A	N/A	N/A	\boxtimes
USB disk	Kingston	N/A	N/A	N/A	N/A	
TF Card	Kingston	N/A	N/A	N/A	N/A	
VGA Cable	N/A	N/A	N/A	1.5m	Shielded with core	
HDMI Cable	N/A	N/A	N/A	1.5m	Shielded with core	
DVI Cable	N/A	N/A	N/A	1.5m	Shielded with core	
Coaxial video cable	N/A	N/A	N/A	2m	Shielded with core	
Phone	BBK	HCD007TSD	N/A	N/A	N/A	
laptop	LENOVO	K29	N/A	N/A	N/A	

4.4 Test Configurations

Test Configurations (TC) No.	Description
	The PC Test mode
	The EUT configuration of the emission tests is EUT + USB cable + PC+ Keyboard +
	Mouse + Printer.
	During the measurement, the EUT is connected to a PC via a USB cable (or to
TC01	another computerised system) to configure the instrument. All spirometry test data
	including the related patient details stored inside the device can be transferred from
	the device to the PC and then viewed on the PC (Flow/volume curves, spirometry
	parameters, plus optional oximetry parameters). The EUT is connected with a
	Printer via a cable, the test data is printed by the printer.
	The Charge Test mode
TC02	The EUT configuration of the emission tests is EUT + Charger.
	During the measurement, the EUT is power on, and charged by the AC power.

4.5 Test Setups

Test Setup 1

For Radiated Emission Test (Below 30MHz))

Test Setup 2

(For Radiated Emission Test (30MHz-1GHz))

Test Setup 3

(For Radiated Emission Test (above 1GHz))

Test Setup 4

(For Conducted Emission, AC Ports Test)

4.6 Test Conditions

Test Case		Test Conditions
	Test Env.	NTNV
Radiated Emission	Test Setup	Test Setup 1&3
	Test Configuration	TC01~TC02 Note
Conducted Emission AC	Test Env.	NTNV
Conducted Emission, AC	Test Setup	Test Setup 4
Ports	Test Configuration	TC01~TC02 Note

Note: Because there is no instruction, and only the PC test mode is tested in this report.

5 TEST ITEMS

5.1 Emission Tests

5.1.1 Radiated Emission

5.1.1.1 Limit

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)				
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	24000/F(kHz)	30				
1.705 - 30.0	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

NOTE:

- 1) Field Strength ($dB\mu V/m$) = 20*log [Field Strength ($\mu V/m$)].
- 2) In the emission tables above, the tighter limit applies at the band edges.
- 3) For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

5.1.1.2 Test Procedure

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

An initial pre-scan was performed in the chamber using the EMI Receiver in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by Bi-Log antenna with 2 orthogonal polarities.

5.1.2 Conducted Emission

5.1.2.1 Test Limit

Frequency range (MHz)	Conducted Limit (dBµV)						
	Quasi-peak	Average					
0.15 - 0.50	66 to 56	56 to 46					
0.50 - 5	56	46					
5 - 30	60	50					

NOTE:

- 1) The limit is applicable to Class B ITE.
- 2) The lower limit shall apply at the band edges.
- 3) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

5.1.2.2 Test Procedure

The EUT is connected to the power mains through a LISN which provides $50\Omega/50\mu H$ of coupling impedance for the measuring instrument. The test frequency range is from 150 kHz to 30MHz. The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels that are more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed.

ANNEX A TEST RESULTS

A.1 Radiated Emission

Note 1: The symbol of "--" in the table which means not application.

Note 2: For the test data above 1GHz, According the ANSI C63.4-2014, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Test Data and Plots (PC test mode)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

A.1.1 Test Antenna Vertical, 30MHz – 1GHz

No.	Frequency	Results	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)						(cm)		
1	39.21	31.05	-19.96	40.0	8.95	Peak	71.60	100	Vertical	PASS
2	61.52	37.62	-20.23	40.0	2.38	Peak	343.40	100	Vertical	PASS
2*	61.52	33.67	-20.23	40.0	6.33	QP	343.40	100	Vertical	PASS
3	143.95	23.31	-23.56	43.5	20.19	Peak	66.00	100	Vertical	PASS
4	239.95	41.08	-19.10	46.0	4.92	Peak	82.70	100	Vertical	PASS
5	479.97	35.76	-13.81	46.0	10.24	Peak	337.80	100	Vertical	PASS
6	605.31	40.75	-10.66	46.0	5.25	Peak	160.10	100	Vertical	PASS

A.1.2 Test Antenna Vertical, 1GHz – 6GHz

Frequency	Peak	Q-peak	Average	Factor	PK Limit	QP Limit	AV Limit	Margin	Table (o)	Height	ANT	Verdict
(MHz)	Level	Level	Level	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)		
	(dBuV/m)	(dBuV/m)	(dBuV/m)									
1164.96	42.53		1	-5.95	74.0	1	54.0	11.47	11.60	100	Vertical	PASS
1422.89	43.50			-5.04	74.0		54.0	10.50	256.80	100	Vertical	PASS
1839.29	43.79			-3.87	74.0		54.0	10.21	177.20	100	Vertical	PASS
2333.67	46.10			-1.03	74.0		54.0	7.90	67.00	100	Vertical	PASS
3398.90	43.66			8.74	74.0		54.0	10.34	358.50	100	Vertical	PASS
4343.66	46.73			11.64	74.0		54.0	7.27	360.30	100	Vertical	PASS

A.1.3 Test Antenna Horizontal, 30MHz – 1GHz

No.	Frequency	Results	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)						(cm)		
1	71.94	22.54	-23.54	40.0	17.46	Peak	104.60	100	Horizontal	PASS
2	143.95	28.28	-23.56	43.5	15.22	Peak	26.40	100	Horizontal	PASS
3	200.68	27.57	-20.19	43.5	15.93	Peak	76.50	100	Horizontal	PASS
4	239.95	39.87	-19.10	46.0	6.13	Peak	76.50	100	Horizontal	PASS
5	383.96	30.79	-15.58	46.0	15.21	Peak	71.00	100	Horizontal	PASS
6	479.97	37.60	-13.81	46.0	8.40	Peak	71.00	100	Horizontal	PASS

A.1.4 Test Antenna Horizontal, 1GHz – 6GHz

Frequency	Peak	Q-peak	Average	Factor	PK Limit	QP Limit	AV Limit	Margin	Table (o)	Height	ANT	Verdict
(MHz)	Level	Level	Level	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)		
	(dBuV/m)	(dBuV/m)	(dBuV/m)									
1170.46	42.15			-5.87	74.0		54.0	11.85	221.80	100	Horizontal	PASS
1467.88	42.50			-4.61	74.0		54.0	11.50	284.80	100	Horizontal	PASS
1940.76	43.64			-2.98	74.0		54.0	10.36	39.50	100	Horizontal	PASS
2459.14	46.99			-0.62	74.0		54.0	7.01	277.00	100	Horizontal	PASS
3790.30	44.39			10.21	74.0		54.0	9.61	219.50	100	Horizontal	PASS
4666.08	48.01			12.58	74.0		54.0	5.99	13.40	100	Horizontal	PASS

A.2 Conducted Emission

Test Data and Plots (PC test mode)

A.2.1 L Phase

Frequency	Peak Level	Q-peak Level	Average	Factor (dB)	QP Limit	AV Limit	Margin (dB)	Line	Verdict
(MHz)	(dBuV)	(dBuV)	Level (dBuV)		(dBuV)	(dBuV)			
0.17	36.5		27.7	13.00	65.4	55.4	27.70	L Line	PASS
0.35	39.0		29.5	13.00	60.4	50.4	20.90	L Line	PASS
0.63	49.3		42.6	13.00	56.0	46.0	3.40	L Line	PASS
1.27	46.3		38.3	13.00	56.0	46.0	7.70	L Line	PASS
3.69	43.6		31.0	13.00	56.0	46.0	15.00	L Line	PASS
20.84	38.5		27.7	13.00	60.0	50.0	22.30	L Line	PASS

A.2.2 N Phase

Frequency	Peak Level	Q-peak Level	Average	Factor (dB)	QP Limit	AV Limit	Margin (dB)	Line	Verdict
(MHz)	(dBuV)	(dBuV)	Level (dBuV)		(dBuV)	(dBuV)			
0.17	36.0		31.0	13.00	65.4	55.4	24.40	N Line	PASS
0.34	39.2		32.5	13.00	60.5	50.5	18.00	N Line	PASS
0.63	48.9		45.0	13.00	56.0	46.0	1.00	N Line	PASS
2.13	41.7		30.9	13.00	56.0	46.0	15.10	N Line	PASS
4.20	38.0		25.0	13.00	56.0	46.0	21.00	N Line	PASS
21.16	39.5		27.7	13.00	60.0	50.0	22.30	N Line	PASS

ANNEX B TEST SETUP PHOTOS

B.1 Radiated Field Strength Measurement

30MHz-1GHz (Charge test mode) Front

30MHz-1GHz (Charge test mode) Back

1GHz-6GHz (Charge test mode)

B.2 Conducted Emission

ANNEX C EUT PHOTOS

C.1 Appearance of the EUT

THE FRONT OF EUT

THE BACK OF EUT

THE LEFT OF EUT

THE RIGHT OF EUT

THE UP OF EUT

THE DOWN OF EUT

CHARGER

DATA CABLE

C.2 Inside of the EUT

EUT UNCOVER VIEW 1

EUT UNCOVER VIEW 2

MAIN BOARD VIEW 1

MAIN BOARD VIEW 2

MAIN BOARD VIEW 3

MAIN BOARD VIEW 4

MAIN BOARD VIEW 5

MAIN BOARD VIEW 6

MAIN BOARD BACK VIEW 6

Battery

--END OF REPORT--