Trabalho Final GCC-108 - Teoria da Computação

Prof.: Douglas H. S. Abreu

Nome: Deyvid Andrade Silva, 201820386

Turma: 14A

Link do repositório GitHub:

https://github.com/deyvidandrades/TrabalhoFinalGCC-208

1.

Uma opção seria a seguinte: Eu usei o segundo número como um contador, decrementando ele uma unidade e incrementando o primeiro número em uma unidade, até que o segundo número seja zero, volto na fita trocando tudo depois do primeiro número para branco e retorno a cabeça de leitura para o inicio da fita.

2.

3.

$$\delta(0,0) = (0,0,D)$$

$$\delta(0,1) = (0,1,D)$$

$$\delta(0,B) = (1,B,D)$$

$$\delta(1,0) = (1,0,D)$$

$$\delta(1,1) = (1,1,D)$$

$$\delta(1,B) = (2,0,E)$$

$$\delta(2,0) = (2,1,E)$$

$$\delta(2,1) = (3,0,E)$$

$$\delta(2,B) = (5,B,D)$$

$$\delta(3,0) = (3,0,E)$$

$$\delta(3,1) = (3,1,E)$$

$$\delta(3,B) = (4,B,E)$$

$$\delta(4,0) = (0,1,D)$$

$$\delta(4,1) = (4,0,E)$$

$$\delta(4,B) = (0,1,D)$$

$$\delta(5,1) = (5,1,D)$$

$$\delta(5,B) = (6,B,E)$$

$$\delta(6,1) = (6,B,E)$$

$$\delta(6,B) = (7,B,E)$$

$$\delta(7,0) = (7,0,E)$$
 (estado final)

$$\delta(7,1) = (7,1,E)$$
 (estado final)

4.

R(M) =

5.

No arquivo TrabalhoFinalTeoriaDeyvidAndrade.ipynb

6.

6.1.

A tese de Church-Turing propõe que qualquer computação do mundo real pode ser traduzida em uma computação equivalente envolvendo uma máquina de Turing. "Qualquer função de teoria dos números é computável por um algorítimo, se e somente se, for computável por uma Maquina de Turing."

6.2.

6.3.

(a, aa), (bb, b), (a, bb)

1	2	3
а	bb	а
aa	b	bb

1	3	2	2
а	а	bb	bb
aa	bb	b	b

(a, ab), (ba, aba), (b, aba), (bba, b)

1	2	3	4
а	ba	b	bba
ab	aba	aba	b

1	4	2
а	bba	ba
ab	b	aba

(abb, ab), (aba, ba), (aab, a bab)

Não tem solução

(ab,aba), (baa, aa), (aba, baa)

1	2	3

1	2	3
ab	baa	aba
aba	aa	baa

Não tem solução

(a, aaa), (aab, b), (abaaa, ab)

1	2	3
а	aab	abaaa
aaa	b	ab

1	2
а	aab
aaa	b

(ab, bb), (aa, ba), (ab, abb), (bb, bab)

1	2	3	4
ab	aa	ab	bb
bb	ba	abb	bab

Não tem solução