

CMSC 141 Finite automata and regular languages

We had constructive proofs of Kleene's Theorem:

Finite Automata = Regular Expressions

Finite automata and regular expressions describe exactly the same class of languages – the class of regular languages

Stephen Kleene

What's next?

- Minimization of finite automata and simplification of regular expressions
- Finite automata with output (transducers, or Moore and Mealy machines)
- Probabilistic finite automata related to Markov chains in probability theory
- Regular grammars
- Closure properties of regular sets
- Pumping Lemma for regular sets and non-regular languages

Simplification of regular expressions

(Proofs left as exercises)

Identity elements for union and concatenation

$$\varnothing$$
+x = x+ \varnothing = x and ε x = x ε = x

Annihilation element for concatenation

$$\emptyset x = x\emptyset = \emptyset$$

Commutativity of union

$$x+y = y+x$$

Associativity of union, concatenation

$$(x+y)+z = x+(y+z)$$
 and $(xy)z = x(yz)$

More identities

(Proofs left as exercises)

Distributive properties

$$x(y+z) = xy + xz$$
 and $(x+y)z = xz + yz$
but $(x+y)^* \neq x^*+y^*$ in general \leftarrow why?

Idempotency of union and Kleene closure

$$x+x = x$$
 and $(x^*)^* = x^*$ and $(x^+)^+ = x^+$

More identities

(Proofs left as exercises)

Absorption property

If
$$x \subseteq y$$
 then $x+y = y$

Kleene star properties

$$\varepsilon^* = \varepsilon^+ = \varepsilon$$
 and $\emptyset^* = \varepsilon$
 $(x^*y^*)^* = (x+y)^* \leftarrow why?$

Minimization of finite automata

- Idea is to identify pairs of states that are essentially the same, or indistinguishable, and merge them into a single state
- Easy to do with a graphical tool like JFLAP in which we can drag the states around
- But how does JFLAP's DFA minimization algorithm work?

Distinguishable states

a recursive definition

- States p and q are distinguishable if
 - one is a final state and the other is a non-final state, or
 - there is some string $x \in \Sigma^*$, such that $\delta(p,x)$ and $\delta(q,x)$ are distinguishable

Minimization of a DFA

States q1 and q2 are distinguishable:

 $\delta(q1,a) = q3$ (a non-final state)

 $\delta(q2,a) = q1$ (a final state)

States q3 and q4 are indistinguishable:

for any string x, $\delta(q3,x)$ and $\delta(q4,x)$ are both non-final states

JFLAP minimizes a DFA

by building a partition tree instead of a matrix

Regular grammars

- Grammars are rule-based systems for describing languages
- Example: the regular grammar below consists of a single variable { S }, two terminals { rose, red } and two production rules

```
\{ S \rightarrow rose, S \rightarrow red S \}
```

This grammar generates the language

```
{ rose, red rose, red red rose, red red red rose, ... }
```


Regular grammars

formal definition

- A regular grammar is a 4-tuple (V,T,P,S) where
 - V is a finite set of variables
 - T is a finite set of terminal symbols = Σ
 - P is a finite set of production rules, each of the form

```
<variable> → <terminal>* or
```

<variable> -> <terminal>* <variable>

(right hand side of each rule contains at most one variable at the right end)

S is the start variable, S∈ V

$$\{S \rightarrow rose, S \rightarrow red S\} = S \rightarrow rose | red S$$

Derivations

- A grammar G is said to generate a string x, if x can be derived from the start variable S, by a finite sequence of variable replacements based on the production rules
- Ex: A linear derivation and parse tree of "red red rose"
 - $S \rightarrow red S$
 - → red red S
 - → red red rose
- Note that L(G) = (red)* rose

Regular grammars = FA

Idea of proof

- FA states are variables in the regular grammar
- The start state is the start variable
- $\delta(X, a) = Y$ if and only if the rule $X \rightarrow aY$ is present
- X is a final state if and only if the rule X → ε is present

$$S \rightarrow red S \mid rose T$$

 $T \rightarrow \varepsilon$

Closure properties

- The set of regular languages is closed under union, concatenation, and Kleene star
 - Proof follows immediately from the definition of regular expressions
 - If R and S are regular languages, then they can be described by some regular expressions r and s
 - r+s, rs, and r* are also regular expressions that describe the regular languages R∪S, RS and R*

Closure under complementation

- The set of regular languages is closed under complementation
- Proof is by FA construction

Build the DFA for L, then negate the status of all the states (all final states are made non-final, and all non-final states are made final). The resulting DFA is the DFA for $L^c = \Sigma^* - L$.

Closure under intersection

- The set of regular languages is closed under intersection
- Proof is by De Morgan's Law

 $(A \cap B)^c = A^c \cup B^c$ and hence, $A \cap B = (A^c \cup B^c)^c$

- If A and B are regular languages, then so are A^c , B^c , $A^c \cup B^c$, and $(A^c \cup B^c)^c$ by the closure properties we have shown.
- While this proof is valid, actual construction of the FA or the regular expression is a long and complex process. Is there a more direct constructive proof?

A more efficient constructive proof for closure under intersection

- Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be the DFA for L_1 and L_2 .
- Construct a new DFA M = (Q, Σ , δ , q₀, F) where
 - $Q = Q_1 \times Q_2$ (Cartesian product)
 - $q_0 = (q_1, q_2)$
 - $\delta((p,q),a) = (\delta_1(p,a), \delta_2(q,a))$ for all $p \in Q_1, q \in Q_2, a \in \Sigma$
 - $(p,q) \in F$ if and only if $p \in F_1$ and $q \in F_2$

That Greek algorithm deserves an illustration

String substitutions

also known as homomorphisms

• Let Σ_1 and Σ_2 be two alphabets.

A homomorphism is a function h: $\Sigma_1 \rightarrow \Sigma_2^*$

The domain of h can also be extended to strings or languages, where $h(a_1a_2...a_n) = h(a_1) h(a_2)... h(a_n)$ and $h(L) = \{ h(x): x \in L \}.$

Ex: Let h(a) = 0 and h(b) = 10
 If L = { a, ab, aba, abab, ...} then
 h(L) = { h(a), h(ab), h(aba), h(abab), ...}
 = { 0, 010, 0100, 010010, ...}

Closure under string substitutions

- If L is a regular language and h is any homomorphism for L, then h(L) is also a regular language.
- Proof idea: Apply the homomorphism on the regular expression for L.
- Example: Suppose we have the language

 $L = a(ba)*(b+\varepsilon)$ and we have the

homomorphism h(a) = 0, h(b) = 10.

Then h(L) is regular and is given by $0(100)*(10+\epsilon)$.

Other closure properties

- Is the set of regular languages closed under
 - string reversal?
 where reverse(L) = { reverse(x) : x∈ L }
 - inverse homomorphisms?
 where h⁻¹(L) = { x : h(x) = L }

Pumping lemma

for regular languages

Short version: If L is an infinite regular language, and if w is a sufficiently long string in L, then w contains a non-empty substring y that can be repeated (or "pumped") and preserves membership in L, i.e., w can be represented as w = xyz such that

xz, xyz, xyyz, xyyyz,..., xy^jz, ... are all strings in L

Proof of the pumping lemma

- Pigeonhole principle: If there are more pigeons than pigeonholes, then at least one pigeonhole will contain more than one pigeon.
- If the minimum-state DFA for L has n states, and a string w in L has n or more symbols, then some state q must be revisited. The non-empty substring between these two visits is the string y that we pump. Hence, xy^jz are all in L, for all j = 0, 1, 2, ...

if
$$w = xyz \in L$$

then $xy^*z \subseteq L$

Pumping lemma

for regular languages

Formal Greek version:

∀ infinite regular languages L,

 \exists an integer n > 0,

 \forall strings $w \in \Sigma^*$ with $|w| \ge n$,

 \exists a partition of w = xyz, with y $\neq \varepsilon$ and $|xy| \leq n$

$$\forall$$
 j = 0, 1, 2, 3, ... $xy^{j}z \in L$

Are all languages regular?

- No, some sets of strings are too complex to be described by FA (or regular expressions or regular grammars).
- Example of a non-regular language?

```
    Try L = { a<sup>n</sup>b<sup>n</sup> : n > 0 }
    = { ab, aabb, aaabbb, aaaabbbb, ... }
```

- Or L' = $\{(), (()), ((())), (((())), ...\}$
- But this doesn't look too complex. Why isn't there any DFA for this simple language?

A candidate DFA for L = { anbn : n>0 }?

Why can't this be a valid DFA for L = { ab, aabb, aaabbb, ...}?

The language L = { aⁿbⁿ : n>0 } is non-regular

- Just because we were unable to come up with a DFA for L doesn't mean nobody else couldn't. Perhaps we just didn't try hard enough...
- For a real proof of the non-regularity of L, the Pumping Lemma can help us.
- We use the Pumping Lemma to prove our claim via an indirect proof:
 - PL: If L is infinite and regular then ...
 - Indirect proof. We know that L is infinite. Now suppose L is regular. Then ... (try to reach a contradiction). Because of the contradiction, L cannot be regular.

Proof using the pumping lemma

- Suppose the language L = { aⁿbⁿ : n>0 } is regular. Because it is also infinite, then it must satisfy the pumping lemma.
- Without loss of generality, suppose w = aaaaabbbbb is long enough. (If not, try something longer).
- We must be able to partition w into x(y)z (with y≠ε) so that x(y^j)z is always in L for any j, j=0,1,2,...
 - Try having all a's for y, e.g., aa(aaa)bbbbb
 - Try having all b's for y, e.g., aaaaa(bb)bbb
 - Try having a mix of a's and b's for y, e.g., aa(aaabb)bbb
- In any of these cases, pumping y gives strings that are not in L.
- Because finding the substring y is impossible, L cannot be regular.

Extra notes

- The Pumping Lemma is a theorem, but we call it a lemma (an intermediate key theorem) because we use it to prove theorems about the non-regularity of several languages.
- Note that we cannot use the Pumping Lemma to prove that a certain language is regular, since satisfying the lemma is a necessary but not sufficient condition, for membership in the class of regular languages.
- We do not need to use the pumping lemma every time we need to prove the non-regularity of some language L.
 Sometimes, the closure properties come in handy.

Exercises

- Prove carefully using the string substitution closure property, that { (), (()), ((())), ((())), ... } is non-regular.
- Prove using the pumping lemma that the language L = {a^p: p is prime} is non-regular.
- Prove that the language L' = {a^p: p is **not** a prime} is also non-regular.

baaa