Subsampled Factor Models for Asset Pricing: The Rise of Vasa

Gianluca De Nard, Simon Hediger, Markus Leippold Working Paper

王健 2021-11-07

Content

- Introduction
 - Background & Motivation
 - Question
 - Research content
 - Related researches
 - Contribution
- Methodology
- Monte Carlo Simulation
- Empirical results
- Conclusion

Background & Motivation

- Recent research suggests that machine learning models dominate traditional models in predicting cross-sectional stock returns.
- Nonlinear algorithms require a vast amount of data for training. A lack of sufficient data may introduce instability, making simpler methods preferable to more complex ones.
- VASA, provides similar and even superior results than some benchmark neural networks and random forest.

Question

- What is VASA?
 - Variable subsample aggregation.
- Why do we choose VASA?
 - For its simplicity and robustness.
- How does VASA perform?
 - Generally its performance is as good as those of some well-known ML methodologies, but in some places, it has its advantages.

Research contents

- Section 2 gives a short overview of the benchmark models used in our study and provides the details on our new subsampling framework.
- Section 3 examines and compares the finite-sample behavior of the different methods via Monte Carlo simulations.
- In Section 4, we describe the empirical methodology and present the results of the out-of-sample backtest exercise based on historical stock returns and stock characteristics.
- Section 5 concludes.

Related researches

- Gu et al. (2020) compare a wide variety of different machine learning methods, ranging from penalized linear models to random forests and neural nets.
- Jacobsen et al. (2019) introduce ensemble machine learning for stock return prediction. Rossi (2018) follows a similar approach, but uses nonlinear models.
- VASA is close to dropout regressions introduced by *Srivastava et al.* (2014a), where we set at random some of the elements in the design matrix to zero such that any input dimension is retained.

Contribution

- We introduce VASA in asset pricing as a simple method for prediction and we show its advantages.
- It becomes evident that the global R_{OOS}^2 might not be a sufficient measure to guarantee superior portfolio performance. The distribution of the individual $R_{OOS,i}^2$ plays a crucial role.
- However, VASA is not restricted to linear submodels, and future research should focus on more complex nonlinear base algorithms and aggregation functions.

1) VASA in General

• We describe an asset (excess) return $r_{i,t+1}$ as:

$$r_{i,t+1} := \mathbb{E}_t[r_{i,t+1}] + \epsilon_{i,t+1} \qquad \mathbb{E}_t[r_{i,t+1}] := g(\boldsymbol{z}_{i,t})$$

- where $z_{i,t}$ (a vector of P predictors) is a mixture of asset specific factors (characteristics) and macroeconomic variables.
- VASA trains B submodels via a common base algorithm.

$$\hat{r}_{i,t+1} = \hat{g}^{\text{VASA}}(\boldsymbol{z}_{i,t}) := f\left[\hat{g}^{BASE}(\tilde{\boldsymbol{z}}_{i,t,1}), \dots, \hat{g}^{BASE}(\tilde{\boldsymbol{z}}_{i,t,B})\right]$$

• Instead of taking a bootstrap sample in the observational space, we suggest taking a subset in the predictor space (a vector of K_b predictors).

1) VASA in General

```
Algorithm 1 VASA \leftarrow function(x, z, r, B, K_b, f)
```

Require: $x \in \mathbb{R}^{1 \times P}$, $\mathbf{z} \in \mathbb{R}^{N \times T \times P}$, $r \in \mathbb{R}^{N \times T}$, $B \in \mathbb{N}$, $K_b \in \{1, \dots, P\} \ \forall \ b = 1, \dots, B \ \text{and an aggregation function } f : \mathbb{R}^B \to \mathbb{R}$

- 1: **for** b in 1 : B **do**
- 2: $V_b \leftarrow \text{randsample}(p, K_b, \text{replacement=FALSE}) // V_b \sim \text{HGeom}(P, K_b)$
- 3: $\tilde{\boldsymbol{z}}_b \leftarrow \tilde{\boldsymbol{z}}[:,:,V_b]$
- 4: Estimate the b-th submodel using $\tilde{\boldsymbol{z}}_b$ and the response r
- 5: **return** $f\left[\hat{g}^{BASE}(x[V_1]), \dots, \hat{g}^{BASE}(x[V_1])\right]$

$$\hat{g}^{ ext{VASA}}(oldsymbol{z}_{i,t}) := \sum_{b=1}^{B} \omega_b \hat{g}^{BASE}(ilde{oldsymbol{z}}_{i,t,b}) \hspace{0.5cm} ilde{oldsymbol{z}}_{t,b} := ilde{oldsymbol{z}}_t \Lambda(V_b)'$$

• $V_b \in \{0,1\}^P$, Hence, for $V_b = \{v_{b,1}, \dots, v_{b,P}\}'$ such that $v_b 1 = K_b$, where 1 denotes a vector of ones of dimension $P \times 1$.

2) VASA with Linear Submodels

$$\hat{g}^{\text{VASA}}(\boldsymbol{z}_{i,t}) := \sum_{b=1}^{B} \omega_b \hat{g}^{\text{OLS}}(\boldsymbol{\tilde{z}}_{i,t,b}) = \sum_{b=1}^{B} \omega_b (\hat{\alpha}_b + \boldsymbol{\tilde{z}}'_{i,t,b} \boldsymbol{\hat{\beta}}_b)$$

- $K \equiv K_b$. Hence, each $z_{i,t,b}$ contains K (pseudo) randomly chosen variables (without replacement) from the P predictors
- If we take equally distributed subsampling probabilities, $q_p=1/P$ and weights $\omega_h=1/B$

$$q_p = R_{i,p}^2 / \sum_{j=1}^P R_{i,j}^2$$

• where $R_{i,p}^2$ is the in-sample R^2 from regressing r_i on the p_{th} factor.

3) Sample Splitting and Performance Evaluation

- A training sample, comprising of the first 30% observations.
- A validation sample, retaining the successive 20% of observations (the number of subsampled factor models B and their dimension K for VASA)
- A testing sample containing the next (last) twelve months of data.

$$R_{OOS,i}^2 := 1 - \frac{\sum_{t \in \mathcal{T}} (r_{i,t+1} - \hat{r}_{i,t+1})^2}{\sum_{t \in \mathcal{T}} r_{i,t+1}^2}$$

Data Generating Process

$$\bar{c}_{i,p,t} := \rho_p \bar{c}_{i,p,t-1} + e_{i,p,t} \quad c_{i,p,t} := \frac{2}{N+1} \operatorname{CSRank}(\bar{c}_{i,p,t}) - 1$$

• $\bar{c}_{i,p,t}=0$, $\rho_p\sim U(0.9,1)$, $e_{i,p,t}\sim N\big(0,1-\rho_p^2\big)$, We then use this auxiliary variable to generate the cross section and time series of all the characteristics.

$$\boldsymbol{x}_t := \rho \boldsymbol{x}_{t-1} + u_t$$
 $\boldsymbol{z}_{i,t} := (1, x_t)' \otimes \boldsymbol{c}_{i,t}$

• we simulate a time series x_t representing the (macro-) economic environment, and $x_0 = 0$, $\rho = 0.95$, $u_t \sim N(0.1 - \rho^2)$

$$r_{i,t+1} := g^*(\boldsymbol{z}_{i,t}) + \epsilon_{i,t+1}$$
 $\epsilon_{i,t+1} := \boldsymbol{v}'_{t+1} \boldsymbol{\beta}^*_{i,t} + \varepsilon_{i,t+1}$

• we define a latent K^* -factor model to generate (excess) returns, and $v_{t+1} \sim N(0,0.005^2 * 1_3)$, $\varepsilon_{i,t+1} \sim t_5(0,0.005^2)$

Data Generating Process

• we suggest to introduce sparsity by simulating a three-factor model with $\beta_{i,t}^* = (c_{i,1,t}, c_{i,2,t}, c_{i,3,t})'$ and we use two cases for the functional form $g^*(z_{i,t})$

$$g^*(\boldsymbol{z}_{i,t}) := (c_{i,1,t}, c_{i,2,t}, c_{i,3,t} \times x_t)\theta_0 = (\boldsymbol{\beta}_{i,t}^* \circ (1, 1, x_t)')'\theta_0$$

• For $\beta_{i.t}^* = (0.02, 0.02, 0.02)'$

$$g^*(\boldsymbol{z}_{i,t}) := (c_{i,1,t}^2, c_{i,1,t} \times c_{i,2,t}, \operatorname{sign}(c_{i,3,t} \times x_t))\theta_0$$

- For $\beta_{i,t}^* = (0.04, 0.03, 0.012)'$
- Finally, we set N = 100, T = 480, $P_c = 100$

Base-case Setting Comparison of Machine Learning Methods										
	"Oracle"	Average	OLS	LASSO	RIDGE	VASA	RF	NNET		
MED	4.61	0.02	4.33	5.13	4.40	4.73	4.12	3.04		
AV	4.46	0.00	3.93	4.67	4.01	4.51	3.81	3.33		
SD	4.62	0.11	4.82	4.45	4.60	4.63	3.68	4.21		
P10	-1.48	-0.15	-2.60	-1.33	-2.40	-1.63	-1.30	-2.23		
R_{OOS}^2	4.53	0.00	4.01	4.74	4.08	4.58	3.87	3.43		

	No	nlinear Settir	ıg: Compa	rison of Ma	chine Learni	ng Method	\mathbf{s}	
	"Oracle"	Average	OLS	LASSO	RIDGE	VASA	RF	NNET
MED	9.62	3.98	4.41	5.13	4.91	5.39	8.79	4.63
AV	11.09	3.30	4.62	5.19	4.80	5.37	9.75	5.20
SD	6.74	4.75	5.13	4.54	4.82	4.50	6.46	5.20
P10	3.48	-3.14	-1.46	-1.23	-1.10	-0.61	2.56	-0.46
R_{OOS}^2	11.66	3.75	5.08	5.63	5.25	5.80	10.28	5.72

		Sparsity: C	omparison	of Machine	Learning M	ethods				
	"Oracle"	Average	OLS	LASSO	RIDGE	VASA	RF	NNET		
		$K^* = 1$ Driving Covariate								
MED	4.41	0.00	1.97	3.99	1.95	4.03	3.18	2.48		
AV	4.26	0.00	2.03	3.98	2.16	3.97	3.28	2.53		
SD	3.04	0.04	4.02	2.77	3.48	2.89	2.29	2.62		
P10	0.41	-0.05	-3.23	0.43	-2.46	0.35	0.22	-0.50		
R_{OOS}^2	4.25	0.00	2.05	3.96	2.16	3.95	3.29	2.47		
	$K^* = 3$ Driving Covariates									
MED	4.61	0.02	4.33	5.13	4.40	4.73	4.12	3.04		
AV	4.46	0.00	3.93	4.67	4.01	4.51	3.81	3.33		
SD	4.62	0.11	4.82	4.45	4.60	4.63	3.68	4.21		
P10	-1.48	-0.15	-2.60	-1.33	-2.40	-1.63	-1.30	-2.23		
R_{OOS}^2	4.53	0.00	4.01	4.74	4.08	4.58	3.87	3.43		
			K^*	= 10 Drivin	g Covariates					
MED	8.22	0.00	6.36	8.01	7.11	7.60	5.08	6.39		
AV	8.54	0.00	7.25	8.49	7.92	8.34	5.73	7.26		
SD	6.64	0.06	6.66	6.24	6.13	6.49	4.40	5.91		
P10	0.55	-0.08	-1.59	1.44	0.63	0.78	0.19	0.19		
R_{OOS}^2	9.00	0.00	7.73	8.89	8.33	8.78	5.99	7.67		

	Signa	al-to-Noise R	atio: Com	parison of M	Iachine Lear	ning Metho	ods	
	"Oracle"	Average	OLS	LASSO	RIDGE	VASA	RF	NNET
				$\theta_0 = 0$.02			
MED	4.61	0.02	4.33	5.13	4.40	4.73	4.12	3.04
AV	4.46	0.00	3.93	4.67	4.01	4.51	3.81	3.33
SD	4.62	0.11	4.82	4.45	4.60	4.63	3.68	4.21
P10	-1.48	-0.15	-2.60	-1.33	-2.40	-1.63	-1.30	-2.23
R_{OOS}^2	4.53	0.00	4.01	4.74	4.08	4.58	3.87	3.43
				$\theta_0 = 0$.05			
MED	25.15	0.00	25.48	25.65	25.34	25.13	23.91	25.42
AV	26.06	0.00	25.66	26.23	25.74	26.03	24.44	25.05
SD	12.61	0.19	12.69	12.52	12.55	12.60	12.35	12.76
P10	10.11	-0.24	9.88	11.25	10.22	10.44	8.44	10.15
R_{OOS}^2	27.95	0.00	27.56	28.11	27.63	27.92	26.20	26.97
				$\theta_0 = 0$).1			
MED	62.15	0.00	61.42	62.04	61.26	62 .15	57.55	61.08
AV	63.00	0.00	62.42	62.89	62.20	63.03	58.95	61.98
SD	9.09	0.32	9.29	9.07	9.14	9.07	9.29	9.24
P10	51.51	-0.47	50.67	51.53	50.44	51.53	46.95	49.89
R_{OOS}^2	65.03	0.00	64.47	64.91	64.21	65.06	60.92	64.02

1) Stock Data

- Resource: CRSP and Compustat
- Time interval: January 1977 and ends in December 2016 (monthly)
- Risk-free rate: Treasury-bill rate

2) Characteristic Data

 94 stock-level predictive characteristics used by Gu et al. (2020), industry dummies and eight macroeconomic predictors in Welch and Goyal (2008)

3) Sample pool

 we restrict our sample to stocks that have a complete return and stock-level characteristics history for the entire 40 years. In doing so, the number of stocks in our sample reduces to 501.

The global R_{OOS}^2 and $R_{OOS,i}^2$

Monthly Out-Of-Sample Stock-level Prediction Performance (in %)										
	Average	OLS	OLS-3	LASSO	RIDGE	VASA	RF	NNET		
				$oldsymbol{z}_{i,t}^{ ext{stand}}$	ard					
MED	1.02	1.03	0.88	1.22	1.24	1.26	0.89	1.09		
AV	1.12	1.03	0.89	1.28	1.29	1.33	0.95	1.16		
SD	1.01	1.49	1.24	1.22	1.07	1.22	0.95	1.20		
P10	-0.04	-0.53	-0.17	-0.09	-0.00	-0.04	-0.14	-0.23		
R_{OOS}^2	0.81	0.87	0.77	0.95	0.95	0.97	0.77	0.82		
				$oldsymbol{z}_{i,t}^{ ext{larg}}$	ge					
MED	1.02	-39.64	0.88	0.84	0.91	1.23	2.55	2.59		
AV	1.12	-513	0.89	0.46	0.70	1.07	2.00	2.66		
SD	1.01	2080	1.24	2.39	1.93	1.46	5.24	2.59		
P10	-0.04	-607	-0.17	-2.54	-1.97	-0.56	-4.53	0.36		
R_{OOS}^2	0.81	-194	0.77	0.93	1.07	1.10	2.53	2.30		

The global R_{OOS}^2 and $R_{OOS,i}^2$

Long-Short Portfolio

	A		The Little Married Williams of the Pro-192 Annual Conference of		s (Equal-We	,	DD	NATE
	Average	OLS	OLS-3	LASSO	RIDGE	VASA	RF	NNET
				$oldsymbol{z}_{i,t}^{ ext{sta}}$	ndard			
Value	5.129	41.271	14.816	75.957	56.204	91.181	29.535	52.434
AV	9.504	20.025	16.354	23.892	23.273	24 . 790	19.975	22.843
SD	16.104	16.158	24.037	20.320	24.492	20.260	24.339	24.368
SR	0.590	1.239	0.680	1.176	0.950	1.224	0.821	0.937
Skew	-0.330	0.145	0.554	-0.234	0.087	-0.024	0.250	0.329
Kurt	2.433	1.975	2.973	0.745	3.338	0.070	1.500	0.984
				$oldsymbol{z}_i^{ ext{l}_i}$	$_{,t}^{ m arge}$			
Value	5.129	10.377	14.816	47.378	111.362	522.675	34.154	49.571
AV	9.504	13.346	16.354	21.861	26.191	34.271	20.580	21.424
SD	16.104	18.097	24.037	21.966	21.903	23.156	24.049	18.848
SR	0.590	0.737	0.680	0.995	1.196	1.480	0.856	1.137
Skew	-0.330	$\boldsymbol{0.567}$	0.554	-0.340	-0.353	0.416	0.492	0.002
Kurt	2.433	2.410	2.973	1.862	1.945	0.481	2.079	1.298

Long-Short Portfolio

	Portfolio Analysis (Value-Weighted)									
	Average	OLS	OLS-3	LASSO	RIDGE	VASA	RF	NNET		
				$oldsymbol{z}_{i,}^{ ext{st}}$	$_{t}^{\mathrm{andard}}$					
Value	6.520	10.841	54.507	18.030	97.577	68.906	146.833	45.408		
AV	10.350	13.519	23.852	17.052	26.283	24.149	29.597	23.151		
SD	13.692	17.678	27.646	22.503	25.947	24.052	30.176	28.553		
SR	0.756	0.766	0.863	0.758	1.013	1.004	0.981	0.811		
Skew	-0.448	0.075	0.422	-0.028	1.302	0.380	0.552	0.494		
Kurt	1.095	1.892	1.602	$\boldsymbol{0.512}$	10.335	1.221	4.153	1.123		
				z	i,t					
Value	6.520	8.320	54.507	46.927	104.961	416.884	19.612	94.298		
AV	10.35	12.851	23.852	22.462	26.414	33.577	18.761	26.030		
SD	13.692	21.382	27.646	24.768	24.146	25.081	28.155	25.379		
SR	0.756	0.601	0.863	0.907	1.094	1.339	0.666	1.026		
Skew	-0.448	0.654	0.422	-0.249	-0.226	0.276	0.903	0.659		
Kurt	1.095	2.314	1.602	1.312	3.784	$\boldsymbol{0.652}$	6.139	3.355		

Decile Portfolios: average return and the Sharpe ratio

Equal-Weighted Decile Portfolios										
	Average	OLS	OLS-3	LASSO	RIDGE	VASA	RF	NNET		
				AV	V					
High	11.61	20.51	15.33	24.11	24.77	25.36	20.35	25.01		
D9	11.61	15.66	11.69	16.21	17.46	18.23	15.25	16.32		
D8	11.61	14.91	10.72	13.43	16.02	14.50	14.00	13.48		
D7	11.61	12.16	11.82	13.99	13.42	12.81	12.30	12.35		
D6	11.61	10.57	11.93	11.12	10.11	11.76	11.04	10.46		
D5	11.61	8.43	13.19	9.63	11.33	10.31	9.94	9.92		
D4	11.61	8.84	12.77	8.32	7.56	8.60	10.64	9.06		
D3	11.61	10.10	10.05	6.25	6.99	7.39	6.76	8.38		
D2	11.61	7.89	10.77	7.61	5.48	5.27	9.40	7.37		
Low	11.61	7.14	8.11	5.62	3.42	2 .69	6.52	3.70		
				SI	?					
High	0.72	0.84	0.86	1.12	1.16	1.21	0.84	0.99		
D9	0.72	0.76	0.76	0.85	0.94	1.03	0.79	0.84		
D8	0.72	0.79	0.73	0.77	0.90	0.83	0.85	0.76		
D7	0.72	0.70	0.75	0.81	0.79	0.77	0.77	0.72		
D6	0.72	0.61	0.73	0.67	0.63	0.71	0.70	0.70		
D5	0.72	0.50	0.70	0.60	0.71	0.64	0.64	0.67		
D4	0.72	0.57	0.72	0.53	0.46	0.53	0.68	0.61		
D3	0.72	0.68	0.55	0.40	0.42	0.47	0.42	0.60		
D2	0.72	0.61	0.59	0.46	0.34	0.31	0.58	0.48		
Low	0.72	0.55	0.39	0.31	0.20	0.16	0.38	0.22		

$$\min_{\boldsymbol{w}} \boldsymbol{w}' \widehat{\Sigma}_{t+1} \boldsymbol{w}$$

$$\mathbb{E}_t[\boldsymbol{r}_{t+1}]'\boldsymbol{w} = \mathbb{E}_t[\boldsymbol{r}_{t+1}]'\boldsymbol{w}_{t+1}^{\mathrm{EW}}$$

$$\sum_{w_i < 0} |w_i| = \sum_{w_i > 0} |w_i| = 1 .$$

	Portfolio Analysis (Efficient Sorting)								
8	Average	OLS	OLS-3	LASSO	RIDGE	VASA	RF	NNET	
		$oldsymbol{z}_{i,t}^{ ext{standard}}$							
Value	7.802	22.889	2.009	41.230	36.100	60.319	28.174	36.352	
AV	11.608	16.122	4.310	19.386	18.719	21.426	18.08	18.796	
SD	16.055	8.660	12.778	11.547	11.547	12.495	16.395	11.967	
SR	0.723	1.862	0.337	1.679	1.617	1.715	1.103	1.571	
\mathbf{Skew}	-0.365	0.461	-0.253	0.746	0.427	0.785	1.342	0.600	
\mathbf{Kurt}	2.458	2.546	1.307	3.879	3.294	3.282	4.004	3.116	
				$oldsymbol{z}_{i,t}^{ ext{lar}}$	rge				
Value	7.802	2.759	2.009	31.133	47.593	86.393	5.161	50.233	
AV	11.608	5.460	4.310	17.972	20.028	23.215	9.110	20.552	
SD	16.055	8.719	12.778	11.617	10.69	12.166	13.355	12.974	
SR	0.723	0.626	0.337	1.547	1.874	1.908	0.682	1.584	
\mathbf{Skew}	-0.365	0.525	-0.254	0.427	0.178	0.768	0.507	0.941	
Kurt	2.458	2.084	1.307	0.482	0.503	1.681	0.839	3.436	

VASA's Factor Choice

4. Conclusion

- We demonstrate that more sophisticated algorithms like random forest and neural networks do not necessarily beat simpler linear models.
- We confirm that high variability in $R_{OOS,i}^2$'s is detrimental for long-short portfolios sorted according to predicted returns, due to the higher risk of misclassifying the stocks in the wrong deciles.
- As for characteristic selection, momentum turns out to be the most influential factor and most of the submodels in VASA are driven by characteristics with interaction terms.