[Total No. of Printed Pages—3

Seat	
No.	9,49

[5459]-183

S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2018 DATA STRUCTURES AND ALGORITHMS

(2015 PATTERN)

Time: Two Hours

Maximum Marks : 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Assume suitable data, if necessary.
- 1. (a) Explain static and dynamic data structures with examples. [4]
 - (b) What is recurrence relation? Explain with example. [2]
 - (c) Explain the algorithmic strategy of divide and conquer. Explain its application in binary search. [6]

Or

- 2. (a) Write pseudo C/C++ code for reversing a string and state its time complexity. [4]
 - (b) Explain the need for fast transpose of sparse matrix. Comment on its time complexity. [2]
 - (c) Explain two-dimensional arrays with row and column major implementation. Explain address calculation in both cases with example. [6]

P.T.O.

3.	(a)	Represent the following using GLL:	[3]
		(p, q(r, s(u, v), w) (x, y))	
	(<i>b</i>)	Explain the algorithm for evaluation of a postfix express	sion
		with an example.	[3]
	(c)	Write pseudo C/C++ code to delete a node from a doubly lin	ked
		list.	[6]
		Or	
4.	(a)	What is backtracking? Explain the use of stack	in
		backtracking.	[4]
	(b)	Compare sequential and linked organisation of data.	[2]
	(c)	Write pseudo C/C++ code to perform addition of two polynom	ials
		using arrays.	[6]
		30,00	
5.	(a)	Define the following with example:	[6]
		(1) Multi-queue	
		(2) Dequeue	
		(3) Circular queue.	
	(<i>b</i>)	Explain circular queue using linked list. Write pseudo C o	obos
	(0)	for enqueue operation.	:oue [7]
		Or Or	
G	(~)		tion
6.	(a)	Write pseudo C/C++ code to perform insert and delete operation linear queue.	[6]
	(b)		
	(<i>b</i>)	Explain priority queue. Write ADT for priority queue and sits applications.	[7]
			Γ.1

- 7. (a) What is heap? Explain heap sort with suitable example. State its complexity. [6]
 - (b) Sort the following numbers using quick sort : [7] 25, 82, 17, 23, 38, 7, 64, 86, 21

State its time complexity and space complexity.

Or

- 8. (a) Write pseudo C/C++ code to perform shell sort. State its time complexity. [6]
 - (b) Explain linear search with example. State its time complexity and compare it with binary search. [7]

[5459]-183