TransE

《Translating Embeddings for Modeling Multi-relational Data》

任务

- 在低维向量空间中,将多种关系的图谱中的实体和关系在一个低维空间中进行表示,获得每个实体的表征结果。
- 提出一种易于训练的规范模型,该模型包含数量较少的参数,并且可以扩展到非常大的知识库。
- 对知识图谱中的多元关系数据进行建模,在不引入额外知识的情况下,高效的实现知识补全,关系 预测。

方法(模型)

TransE:基于能量的模型,用于学习实体的低维嵌入。

- 1. 关系作为向量空间转变的桥梁:如果三元组 (h,1,t) 成立,则头实体embedding和关系 embedding相加约等于尾实体的embedding。
 - $h+l \approx t$
- 2. 利用空间传递不变形,找到一个实体和向量空间,使得整关系三元组之间的势能差值最小。

$$min(t-(h+l))$$

- 3. 模型
- 给定一个训练集 S ,三元组表示为 (h,l,t) ,其中 $h,t\in E,l\in L$,实体和关系的嵌入维度设为 k,希望 h+l 与 t能够尽可能的相似,因此定义一个能量函数:

$$d(h+l,t) = [(h+l)-t]^2 = \mid\mid h\mid\mid_2^2 + \mid\mid l\mid\mid_2^2 + \mid\mid t\mid\mid_2^2 - 2(h^Tt + l^T(t-h))$$

欧式距离

• 为了训练实体embedding和关系embedding,需要引入负样本。目标是尽可能对正样本中最小化d(h+l,t),负样本中则尽可能最大化d(h'+l,t')。h',t'表示不属于某个三元组的实体。因此可以得出基于间距排序标准目标优化函数(**损失函数**):

$$L = \sum_{(h,\ell,t) \in S} \sum_{(h',\ell,t') \in S'_{(h,\ell,t)}} [\gamma + d(h+\ell,t) - d(h'+\ell,t')]_+$$

其中 $[x]_+$ 表示 x 中正例的部分, $\gamma > 0$ 表示距离因子。

通过最小化正样本的损失,最大化负样本的距离,达到优化嵌入表示的目的。

● 错误三元组生成:将正确三元组的头或者尾替换成其他的(每次只能选择头或者尾进行替换,不同时替换),得到错误的三元组。

$$S'_{(h,l,t)} = (h',l,t) \mid h' \in E \cup (h,l,t') \mid t' \in E$$

测试数据集

- FreeBase
- WordNet

DATA SET	WN	FB15K	FB1M
ENTITIES	40,943	14,951	1×10^{6}
RELATIONSHIPS	18	1,345	23,382
TRAIN. EX.	141,442	483,142	17.5×10^6
VALID EX.	5,000	50,000	50,000
TEST EX.	5,000	59,071	177,404

性能水平

链接预测

评价方法

• 对于每个三元组,都将头部移除并依次替换为字典中的任意一个实体。

Table 3: Link prediction results. Test performance of the different methods.

DATASET	WN			FB15K				FB1M		
METRIC	MEAN	RANK	HITS@	10 (%)	MEAN	RANK	HITS@	10 (%)	MEAN RANK	HITS@10 (%)
Eval. setting	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Raw
Unstructured [2]	315	304	35.3	38.2	1,074	979	4.5	6.3	15,139	2.9
RESCAL [11]	1,180	1,163	37.2	52.8	828	683	28.4	44.1	-	-
SE [3]	1,011	985	68.5	80.5	273	162	28.8	39.8	22,044	17.5
SME(LINEAR) [2]	545	533	65.1	74.1	274	154	30.7	40.8	-	-
SME(BILINEAR) [2]	526	509	54.7	61.3	284	158	31.3	41.3	-	-
LFM [6]	469	456	71.4	81.6	283	164	26.0	33.1	-	-
TransE	263	251	75.4	89.2	243	125	34.9	47.1	14,615	34.0

• raw: 原始数据

• filtered: 移除错误三元组

某些错误的三元组会变成有效的三元组。在测试中,可能会出现某些错误三元组排序比测试集三元组靠前的情况,但是这些三元组都是真实的。为了解决这个缺陷对评价指标带来的影响,从数据集中删除错误的三元组。

结论

在原始数据集和去除错误的三元组之后的数据集上,TransE均具有较低的平均排名和较高的hits@10排名。

四种类型的实体预测 [1-1,1-N,N-1,N-N]

- 根据头实体和尾实体的对应关系划分。
- 给定关系和实体预测另一个实体。

Table 4: **Detailed results by category of relationship.** We compare Hits@10 (in %) on FB15k in the filtered evaluation setting for our model, TransE and baselines. (M. stands for MANY).

TASK	Predicting head			PREDICTING tail				
REL. CATEGORY	1-то-1	1-то-М.	Мто-1	Мто-М.	1-то-1	1-то-М.	Мто-1	Мто-М.
Unstructured [2]	34.5	2.5	6.1	6.6	34.3	4.2	1.9	6.6
SE [3]	35.6	62.6	17.2	37.5	34.9	14.6	68.3	41.3
SME(LINEAR) [2]	35.1	53.7	19.0	40.3	32.7	14.9	61.6	43.3
SME(BILINEAR) [2]	30.9	69.6	19.9	38.6	28.2	13.1	76.0	41.8
TransE	43.7	65.7	18.2	47.2	43.7	19.7	66.7	50.0

结论

TransE在1-1的情况下预测效果较好。

TransE在FB15k测试集上的样例预测

● 粗体是测试元组正确的尾部,斜体是训练集上其它正确的尾部。

Table 5: **Example predictions** on the FB15k test set using **TransE**. **Bold** indicates the test triplet's true tail and *italics* other true tails present in the training set.

INDUT (HEAD AND LADEL)	PREDICTED TAILS
INPUT (HEAD AND LABEL)	
J. K. Rowling influenced by	G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,
	Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming
Anthony LaPaglia performed in	Lantana, Summer of Sam, Happy Feet, The House of Mirth,
	Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake
Camden County adjoins	Burlington County, Atlantic County, Gloucester County, Union County,
	Essex County, New Jersey, Passaic County, Ocean County, Bucks County
The 40-Year-Old Virgin nominated for	MTV Movie Award for Best Comedic Performance,
	BFCA Critics' Choice Award for Best Comedy,
	MTV Movie Award for Best On-Screen Duo,
	MTV Movie Award for Best Breakthrough Performance,
	MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss,
	D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,
	Screen Actors Guild Award for Best Actor - Motion Picture
Costa Rica football team has position	Forward, Defender, Midfielder, Goalkeepers,
	Pitchers, Infielder, Outfielder, Center, Defenseman
Lil Wayne born in	New Orleans, Atlanta, Austin, St. Louis,
	Toronto, New York City, Wellington, Dallas, Puerto Rico
WALL-E has the genre	Animations, Computer Animation, Comedy film,
	Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama

结论

给定一个头部和一个标签,排在最高位的尾部被预测出来。

不同模型在不同样本数量下的性能

Figure 1: **Learning new relationships with few examples**. Comparative experiments on FB15k data evaluated in mean rank (left) and hits@10 (right). More details in the text.

- 左图表示测试集中平均排名: 当训练集越大, TransE的平均排名下降的最快。
- 右图表示hits@10中正确的比例: 当训练集越大, hits@10占比上升的最快。
- 结果表明TransE对样本预测的性能最优。

结论

TransE模型可以使用最小的参数量得到知识图谱的实体和关系向量表示。

TransE模型的参数较少,计算的复杂度显著降低,并且在大规模稀疏知识库上也同样具有较好的性能与可扩展性。

不足和改进

不足

- 在处理复杂关系 [1-N,N-1,N-N]时,性能显著下降,比较适合处理 1-1 的关系。
- 不能够很好的处理更复杂的知识网络。

改进

- TransH模型:为了解决TransE模型在处理一对多、多对一、多对多复杂关系时的局限性, TransH模型提出让一个实体在不同的关系下拥有不同的表示。
- TransR模型:一个实体是多种属性的综合体,不同关系关注实体的不同属性。不同的关系拥有不同的语义空间。
- TransD模型: 给定三元组(h, r, t), TransD模型设置了2个分别将头实体和尾实体投影到关系空间的 投影矩阵。
- TranSparse模型: TranSparse是通过在投影矩阵上强化稀疏性来简化TransR的工作。通过引入稀疏投影矩阵, TransSparse模型减少了参数个数。
- TransM模型:除了允许实体在涉及不同关系时具有不同的嵌入之外,提高TransE模型性能可以从降低h+r≈t的要求研究开始。TransM模型将为每个事实(h,r,t)分配特定的关系权重theta_r。
- TransF模型: TransF只需要t与h+r位于同一个方向,同时h与t-r也位于同一个方向。
- ManifoldE模型: ManifoldE模型对于每个事实三元组 (h,r,t) 将 $h+r\approx t$ 转换为(h+r-t)的L2范式 约等于theta r的平方。
- TransA模型: TransA模型为每个关系r引入一个对称的非负矩阵Mr,并使用自适应马氏距离定义评分函数。通过学习距离度量Mr, TransA在处理复杂关系时更加灵活。

思考

1. Mean Rank 和 hit@10

在测试过程中,对于一个三元组,我们将头实体或尾实体替换成任意一种其他的实体,得到(n-1)个新的关系三元组,然后对这些三元组计算实体关系距离,将这n-1个三元组按照距离从小到大排列。

• 对Mean Rank的理解

在测试集里, 求真实的实体在n-1个元素中的排名, 得出平均到第多少个才能匹配到正确的结果。

• 对hit@10的理解

在这个排好序的n-1元素中,从第一个开始遍历,看从第一个到第十个是否能够遇到真实的实体,如果遇到了就将 hit @10+1 。