Mathematics

Robin Adams

September 3, 2023

Contents

1	\mathbf{The}	Foundations	5
	1.1	Primitive Notions and Axioms	5
	1.2	Subsets of a Set	7

4 CONTENTS

Chapter 1

The Foundations

1.1 Primitive Notions and Axioms

Let there be sets

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ for 'f is a function from A to B'. We call A the domain of A, and B the codomain

Given sets A, B and C, and functions $f:A\to B$ and $g:B\to C$, let there be a function $gf=g\circ f:A\to C$, the *composite* of f and g.

Axiom 1.1 (Associativity). For any functions $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

Axiom 1.2 (Identity). For any set A, there exists a function $id_A : A \to A$, called an identity function on A, such that:

- for every set B and function $f: A \to B$, we have $f \circ id_A = f$;
- for every set B and function $f: B \to A$, we have $id_A \circ f = f$.

Proposition 1.3. The identity function on a set is unique.

PROOF: If $i, j: A \to A$ are identity functions on A then we have $i = i \circ j = j$. \square

Definition 1.4 (Isomorphism). A function $i:A\to B$ is an *isomorphism*, $i:A\cong B$, iff there exists a function $i^{-1}:B\to A$, the *inverse* of i, such that $i^{-1}\circ i=\mathrm{id}_A$ and $i\circ i^{-1}=\mathrm{id}_B$.

Axiom 1.5 (Terminal Set). There exists a set 1 such that, for any set A, there exists a unique function $A \to 1$.

Proposition 1.6. The terminal set is unique up to unique isomorphism.

Proof:

- $\langle 1 \rangle 1$. Let: A and B be terminal sets.
- $\langle 1 \rangle 2$. Let: i be the unique function $A \to B$.
- $\langle 1 \rangle 3$. Let: i^{-1} be the unique function $B \to A$.
- $\langle 1 \rangle 4. \ i \circ i^{-1} = \mathrm{id}_B$

PROOF: Since there is only one function $B \to B$.

 $\langle 1 \rangle 5. \ i^{-1} \circ i = \mathrm{id}_A$

PROOF: Since there is only one function $A \to A$.

Definition 1.7 (Element). For any set A, an element of A is a function $1 \to A$. We write $a \in A$ for $a: 1 \to A$. Given $f: A \to B$ and $a \in A$, we write f(a) for $f \circ a$.

Axiom 1.8 (Extensionality). Let A and B be sets. Let $f, g : A \to B$. If, for all $x \in A$, we have f(x) = g(x), then f = g.

Axiom 1.9 (Empty Set). There exists a set with no elements.

Axiom 1.10 (Products). Let A and B be sets. There exists a set $A \times B$ and functions $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$, the projections, such that, for every set X and functions $f : X \to A$, $g : X \to B$, there exists a unique function $\langle f, g \rangle : X \to A \times B$ such that

$$\pi_1 \circ \langle f, g \rangle = f, \qquad \pi_2 \circ \langle f, g \rangle = g.$$

Proposition 1.11. If $\pi_1: P \to A$ and $\pi_2: P \to B$ form a product of A and B, and $p_1: Q \to A$ and $p_2: Q \to B$ form a product of A and B, then there exists a unique isomorphism $i: P \cong Q$ such that $p_1 \circ i = \pi_1$ and $p_2 \circ i = \pi_2$.

Proof:

- $\langle 1 \rangle 1$. Let: $i: P \to Q$ be the unique function such that $p_1 \circ i = \pi_1$ and $p_2 \circ i = \pi_2$.
- $\langle 1 \rangle 2$. Let: $i^{-1}: Q \to P$ be the unique function such that $\pi_1 \circ i^{-1} = p_1$ and $\pi_2 \circ i^{-1} = p_2$
- $\langle 1 \rangle 3$. $i \circ i^{-1} = \mathrm{id}_Q$

PROOF: Each is the unique $x: Q \to Q$ such that $p_1 \circ x = p_1$ and $p_2 \circ x = p_2$. $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_P$

PROOF: Each is the unique $x: P \to P$ such that $\pi_1 \circ x = \pi_1$ and $\pi_2 \circ x = \pi_2$.

Definition 1.12. Given functions $f:A\to B$ and $g:C\to D$, define $f\times g:A\times C\to B\times D$ by

$$f \times q = \langle f \circ \pi_1, q \circ \pi_2 \rangle$$
.

Axiom 1.13 (Function Sets). Let A and B be sets. There exists a set A^B and function $\epsilon: A^B \times B \to A$ such that, for any set X and function $f: X \times B \to A$, there exists a unique function $\lambda f: X \to A^B$ such that

$$f = \epsilon \circ \langle \lambda f \circ \pi_1, \pi_2 \rangle$$
.

Definition 1.14 (Inverse Image). Let A, X and Y be sets. Let $f: X \to Y$, $a \in Y$ and $j: A \to X$. Then j is the *inverse image* of a under f if and only if:

- $f \circ j = a \circ !_A$
- for every set I and function $q: I \to X$ such that $f \circ q = a \circ !_I$, there exists a unique $\overline{q}: I \to A$ such that $q = j \circ \overline{q}$.

Axiom 1.15 (Inverse Images). For any sets X and Y, function $f: X \to Y$ and element $a \in Y$, there exists a set $f^{-1}(a)$ and function $j: f^{-1}(a) \to X$ such that j is the inverse image of a under f.

Definition 1.16 (Injective). A function $f: A \to B$ is *injective*, $f: A \rightarrowtail B$, iff, for every set X and functions $x, y: X \to A$, if $f \circ x = f \circ y$ then x = y.

Definition 1.17 (Surjective). A function $f: A \to B$ is *surjective*, $f: A \twoheadrightarrow B$, iff, for every set X and functions $x, y: B \to X$, if $x \circ f = y \circ f$ then x = y.

Axiom 1.18 (Subset Classifier). There exists a set 2 and function $\top: 1 \to 2$ such that, for any sets A and X and any injective function $f: A \to X$, there exists a unique function $\chi: X \to 2$ such that f is the inverse image of \top under χ .

Axiom 1.19 (Natural Numbers). There exists a set \mathbb{N} , an element $0 \in \mathbb{N}$ and a function $s : \mathbb{N} \to \mathbb{N}$ such that, for every set X, element $a \in X$ and function $r : X \to X$, there exists a unique function $x : \mathbb{N} \to X$ such that $x \circ 0 = a$ and $x \circ s = r \circ x$.

Axiom 1.20 (Choice). For every surjective function $r: X \to Y$, there exists $s: Y \to X$ such that $r \circ s$ is an identity function on X.

1.2 Subsets of a Set

Definition 1.21 (Subset). A subset of a set A is a function $A \to 2$.

Proposition 1.22. Let $i: X \rightarrow B$ and $j: Y \rightarrow B$ be injective functions. Then i and j have the same characteristic function if and only if there exists an isomorphism $k: X \cong Y$ such that $j \circ k = i$, in which case k is unique.

Proof:

- $\langle 1 \rangle 1$. If i and j have the same characteristic function then there exists a unique isomorphism $k: X \to Y$ such that $j \circ k = i$.
 - $\langle 2 \rangle 1$. Let: $\chi : B \to 2$
 - $\langle 2 \rangle 2$. Assume: χ is the characteristic function of i and j.
 - $\langle 2 \rangle$ 3. Let: $k: X \to Y$ be the unique function such that $j \circ k = i$.
 - $\langle 2 \rangle 4$. Let: $k^{-1}: Y \to X$ be the unique function such that $i \circ k^{-1} = j$.
 - $\langle 2 \rangle 5$. $k \circ k^{-1} = \mathrm{id}_Y$

PROOF: Each is the unique function x such that $j \circ x = x$.

 $\langle 2 \rangle 6. \ k^{-1} \circ k = \mathrm{id}_X$

PROOF: Each is the unique function x such that $i \circ x = x$.

- $\langle 1 \rangle 2$. If there exists an isomorphism $k: X \cong Y$ such that $j \circ k = i$ then i and j have the same characteristic function.
 - $\langle 2 \rangle 1$. Let: $k: X \cong Y$ satisfy $j \circ k = i$.
 - $\langle 2 \rangle 2$. Let: $\chi: B \to 2$ be the characteristic function of j. Prove: χ is the characteristic function of i.
 - $\langle 2 \rangle 3. \ \chi \circ i = \top \circ !_X$

Proof:

$$\chi \circ i = \chi \circ j \circ k \qquad (\langle 2 \rangle 1)
= \top \circ !_{Y} \circ k \qquad (\langle 2 \rangle 2)
= \top \circ !_{X} \qquad (Uniqueness of !_{X})$$

- $\langle 2 \rangle 4$. For every set I and function $q: I \to B$ such that $\chi \circ q = \top \circ !_I$, there exists a unique $\overline{q}: I \to X$ such that $q = i \circ \overline{q}$.
 - $\langle 3 \rangle 1$. Let: I be a set.
 - $\langle 3 \rangle 2$. Let: $q: I \to B$
 - $\langle 3 \rangle 3$. Assume: $\chi \circ q = \top \circ !_I$
 - $\langle 3 \rangle 4$. Let: $r: I \to Y$ be the unique function such that $q = j \circ r$
 - $\langle 3 \rangle 5$. $k^{-1} \circ r$ is unique such that $q = i \circ k^{-1} \circ r$