

Álgebra

- 7. Polinomios
- 8. Ecuaciones de 1^{er} y 2º grado
- 9. Sistemas de ecuaciones lineales

Polinomios

1. Lenguaje algebraico

PIENSA Y CALCULA

Dado el cubo de la figura siguiente, halla su área y su volumen en función de \mathbf{x}

Solución:

$$A(x) = 6x^2$$

$$V(x) = x^3$$

<u>APLICA LA TEORÍA</u>

- 1 Escribe en lenguaje algebraico las siguientes expresiones coloquiales:
 - a) Un número x aumentado en 5 unidades.
 - b) El lado de un cuadrado mide x metros. ¿Cuánto mide su área?
 - c) Los lados de un rectángulo miden x metros e y metros. ¿Cuánto mide su perímetro?

Solución:

- $a) \times + 5$
- b) $A(x) = x^2$
- c) P(x, y) = 2x + 2y
- 2 En la expresión algebraica: 4xy 5x + 6x 3, halla los términos, el término independiente, las variables y los coeficientes.

Solución:

Términos: 4xy, -5x, 6x, -3

Término independiente: -3

Variables: x, y

Coeficientes: 4, -5, 6, -3

3 Completa la siguiente tabla:

Monomio	$-7x^5$	$4x^3y^2z$	5	-6x
Coeficiente				
Grado				

Solución:

Monomio	$-7x^5$	$4x^3y^2z$	5	-6x
Coeficiente	-7	4	5	-6
Grado	5	6	0	-1

4 Halla cuáles de los siguientes monomios son semejantes:

$$5x^3$$
, $7x$, $-7x^2$, $-9x^3$, $8x^2$, x^3 , $9x$

- a) $5x^3$, $-9x^3$, x^3
- b) $-7x^2$, $8x^2$
- c) 7x, 9x

Términos	Grado	Coeficientes	Coeficiente principal	Término independiente

Solución:

Términos (Grado	Coefi-	Coeficiente	Término independiente
Terminos	Grado	cientes	principal	independiente
$7x^3, -9x, -2$	3	7, -9, -2	7	-2

6 Halla el valor numérico del polinomio

$$P(x) = x^2 - 7x + 6$$

para los valores que se indican:

$$a) x = 0$$

b)
$$x = 1$$

c)
$$x = 5$$

d)
$$x = -5$$

Solución:

a)
$$P(0) = 6$$

b)
$$P(1) = 1 - 7 + 6 = 0$$

c)
$$P(5) = 5^2 - 7 \cdot 5 + 6 = -4$$

d)
$$P(-5) = (-5)^2 - 7 \cdot (-5) + 6 = 66$$

7 Halla el valor numérico de los siguientes polinomios para los valores que se indican:

a)
$$P(x) = x^3 + 3x - 1$$
 para $x = 2$

b)
$$P(x) = x^4 - 7x^2 + 5 para x = -3$$

c)
$$P(x) = 5x^3 + 6x^2 - 4x + 7 para x = 1$$

Solución:

a)
$$P(2) = 13$$

b)
$$P(-3) = 23$$

c)
$$P(1) = 14$$

2. Operaciones con monomios

<u>PIENSA Y CALCULA</u>

Aplicando las propiedades de las potencias, calcula:

a)
$$a^n \cdot a^p$$

b)
$$a^n : a^p$$

c)
$$(a^n)^p$$

Solución:

a)
$$a^{n+p}$$

b)
$$a^{n-p}$$

c)
$$a^{n \cdot p}$$

Carné calculista
$$\frac{3}{2} \cdot \frac{5}{2} + \frac{7}{4} : \frac{3}{2} = \frac{59}{12}$$

<u>APLICA</u> LA TEORÍA

8 Realiza las siguientes operaciones de monomios:

a)
$$4x^5 - x^5 + 8x^5$$

b)
$$-9x^3 \cdot x^3$$

c)
$$(-3x)^4$$

d)
$$-7x^3:x^3$$

Solución:

a)
$$11x^5$$

b)
$$-9x^{6}$$

$$d)-7$$

9 Realiza las siguientes operaciones de monomios:

a)
$$(7x^5)^2$$

b)
$$-9x^3 + x^3 + 5x^3$$

c)
$$-15x^4:(-3x)$$

d)
$$-7x^2 \cdot (-5x) \cdot x^2$$

b)
$$-3x^{3}$$

c)
$$5x^3$$

d)
$$35x^5$$

10 Realiza las siguientes operaciones de monomios:

a)
$$12x^5:3x^2$$

b)
$$7x^3 \cdot (-7) \cdot x^5$$

c)
$$(3x^3)^3$$

d)
$$-7x^2 + 12x^2 + 6x^2 - x^2$$

Solución:

a)
$$4x^3$$

b)
$$-49x^{8}$$

c)
$$27x^9$$

d)
$$10x^2$$

11 Realiza las siguientes operaciones de monomios:

a)
$$5x^5 \cdot (-3x)$$

b)
$$(-2x^3)^5$$

c)
$$2x - 7x + x - 15x$$
 d) $7x^3 : 2x$

d)
$$7x^3 : 2x$$

Solución:

a)
$$-15x^{6}$$

b)
$$-32x^{15}$$

d)
$$\frac{7}{2}x^2$$

12 Multiplica los siguientes polinomios por mono-

a)
$$(x^4 - 5x^3 + 4x + 1) \cdot 2x^4$$

b)
$$(x^6 - 3x^4 + 6x^2 - 9) \cdot 3x^5$$

c)
$$(x^4 + 4x^3 - 9x + 5) \cdot (-4x)$$

d)
$$(x^4 - 7x^3 + 2x - 12) \cdot (-5x^2)$$

Solución:

a)
$$2x^8 - 10x^7 + 8x^5 + 2x^4$$

b)
$$3x^{11} - 9x^9 + 18x^7 - 27x^5$$

c)
$$-4x^5 - 16x^4 + 36x^2 - 20x$$

d)
$$-5x^6 + 35x^5 - 10x^3 + 60x^2$$

13 Elimina los paréntesis y reduce las siguientes expresiones:

a)
$$6x - (5x^2 - 3 + 4x^2) - 9x - 8$$

b)
$$5x^2 - 6x - 2(3x + 8x^2 - 9x - 4)$$

c)
$$-(5x-7+2x-4x^2+8)+9x^2$$

d)
$$9(3x^2 - 5x + 7) - 5(4x - 8x^2 + 1)$$

Solución:

a)
$$-9x^2 - 3x - 5$$

b)
$$-11x^2 + 6x + 8$$

c)
$$13x^2 - 7x - 1$$

d)
$$67x^2 - 65x + 58$$

14 Extrae todos los factores que puedas como factor común:

b)
$$4x^5 - 6x^3$$

c)
$$3x^4 + 15x^2 - 6x$$

d)
$$4x^2y + 6xy^2 - 2xy$$

Solución:

a)
$$4(2x - 3y)$$

b)
$$2x^3(2x^2-3)$$

c)
$$3x(x^3 + 5x - 2)$$

d)
$$2xy(2x + 3y - 1)$$

3. Operaciones con polinomios

PIENSA Y CALCULA

Halla el polinomio que calcula el área del siguiente rectángulo:

Solución:

$$A(x) = (x + 5)x \Rightarrow A(x) = x^2 + 5x$$

Carné calculista 62,4 : 9,7 | C = 6,43; R = 0,029

15 Dados los siguientes polinomios:

$$P(x) = 5x^3 - 6x + 9$$

$$Q(x) = -7x^4 + 5x^3 + 6x - 12$$

calcula:

- a) P(x) + Q(x)
- b) P(x) Q(x)

Solución:

- a) $-7x^4 + 10x^3 3$
- b) $7x^4 12x + 21$
- 16 Dados los siguientes polinomios:

$$P(x) = 3x^5 - 7x^4 + 9x^2 - 13$$

$$Q(x) = 5x^4 - 9x^2 + 7x - 1$$

calcula:

- a) P(x) + Q(x)
- b) P(x) Q(x)

Solución:

- a) $3x^5 2x^4 + 7x 14$
- b) $3x^5 12x^4 + 18x^2 7x 12$
- 17 Dado el siguiente polinomio:

$$P(x) = -8x^5 + 5x^4 - 9x^2 + 2$$

- a) halla su opuesto: -P(x)
- b) suma P(x) con -P(x). ¿Qué polinomio se obtiene?

Solución:

a)
$$-P(x) = 8x^5 - 5x^4 + 9x^2 - 2$$

b)
$$P(x) - P(x) = 0$$

18 Multiplica los siguientes polinomios:

$$P(x) = x^2 - 7x + 2$$

$$Q(x) = 3x + 1$$

halla el grado del producto.

Solución:

$$3x^3 - 20x^2 - x + 2$$

El grado del producto es 2 + 1 = 3

19 Multiplica los siguientes polinomios:

$$P(x) = x^4 - 5x^3 - 3x + 1$$

$$Q(x) = 2x^2 - x + 7$$

halla el grado del producto.

Solución:

$$2x^{6} - 11x^{5} + 12x^{4} - 41x^{3} + 5x^{2} - 22x + 7$$

El grado del producto es 4 + 2 = 6

20 Multiplica los siguientes polinomios:

$$P(x) = x^3 - 2x^2 - 4$$

$$Q(x) = -3x^2 + x - 5$$

halla el grado del producto.

Solución:

$$-3x^5 + 7x^4 - 7x^3 + 22x^2 - 4x + 20$$

El grado del producto es 3 + 2 = 5

21 Multiplica los siguientes polinomios:

$$P(x) = x^2 + x + 1$$

$$Q(x) = x - I$$

halla el grado del producto.

Solución:

$$x^3 - 1$$

El grado del producto es 2 + 1 = 3

4. Igualdades notables

PIENSA Y CALCULA

Sustituye los puntos suspensivos por el signo de igualdad = o de desigualdad ≠

a)
$$(3+4)^2$$
 3^2+4^2

b)
$$(3 + 4)^2$$
 49

c)
$$(5-3)^2$$
 4

a)
$$(3+4)^2 \dots 3^2 + 4^2$$
 b) $(3+4)^2 \dots 49$ c) $(5-3)^2 \dots 4$ d) $(5-3)^2 \dots 5^2 - 3^2$

a)
$$(3 + 4)^2 \neq 3^2 + 4^2$$

b)
$$(3 + 4)^2 = 49$$

c)
$$(5-3)^2 = 4$$

a)
$$(3+4)^2 \neq 3^2+4^2$$
 b) $(3+4)^2=49$ c) $(5-3)^2=4$ d) $(5-3)^2\neq 5^2-3^2$

Carné calculista
$$\frac{6}{5} \cdot \left(\frac{5}{4} - \frac{2}{3}\right) = \frac{7}{10}$$

b)
$$(x - 1)^0$$

c)
$$(x + 1)^1$$

d)
$$(x - 1)^1$$

Solución:

a) I

b) I

c) x + 1

d) x - 1

23 Calcula mentalmente:

a)
$$(x + 1)^2$$

b)
$$(x - 1)^2$$

c)
$$(x + 1)(x - 1)$$

Solución:

a)
$$x^2 + 2x + 1$$

b)
$$x^2 - 2x + 1$$

c)
$$x^2 - 1$$

24 Calcula mentalmente:

a)
$$(x + 4)^2$$

b)
$$(x - 4)^2$$

c)
$$(x + 4)(x - 4)$$

d)
$$(x + 5)^2$$

e)
$$(x - 5)^2$$

f)
$$(x + \sqrt{5})(x - \sqrt{5})$$

Solución:

a)
$$x^2 + 8x + 16$$

b)
$$x^2 - 8x + 16$$

c)
$$x^2 - 16$$

d)
$$x^2 + 10x + 25$$

e)
$$x^2 - 10x + 25$$

f)
$$x^2 - 5$$

25 Calcula:

a)
$$(2x + 3)^2$$

b)
$$(2x - 3)^2$$

c)
$$(2x + 3)(2x - 3)$$

Solución:

a)
$$4x^2 + 12x + 9$$

b)
$$4x^2 - 12x + 9$$

c)
$$4x^2 - 9$$

26 Halla mentalmente la descomposición factorial de:

a)
$$x^2 + 3x$$

b)
$$x^2 - 3x$$

c)
$$x^2 - 49$$

d)
$$x^2 + 4x + 4$$

e)
$$x^2 - 6x + 9$$

Solución:

a)
$$x(x + 3)$$

b)
$$x(x - 3)$$

c)
$$(x + 7)(x - 7)$$

d)
$$(x + 2)^2$$

e)
$$(x - 3)^2$$

27 Calcula:

a)
$$\left(3x + \frac{1}{2}\right)^2$$
 b) $\left(3x - \frac{1}{2}\right)^2$

b)
$$\left(3x - \frac{1}{2}\right)^{3}$$

c)
$$\left(3x + \frac{1}{2}\right)\left(3x - \frac{1}{2}\right)$$

Solución:

a)
$$9x^2 + 3x + 1/4$$

b)
$$9x^2 - 3x + 1/4$$

c)
$$9x^2 - 1/4$$

28 Halla mentalmente la descomposición factorial de:

a)
$$3x^4 + 6x^2$$
 b) $6x^3 - 8x$

b)
$$6x^3 - 8x$$

c)
$$x^2 - 5$$

d)
$$x^2 - 2x + 1$$
 e) $x^3 + 2x^2 + x$

e)
$$x^3 + 2x^2 + 1$$

Solución:

a)
$$3x^2(x^2 + 2)$$

b)
$$2x(3x^2-4)$$

c)
$$(x + \sqrt{5})(x - \sqrt{5})$$

d)
$$(x - 1)^2$$

e)
$$x(x + 1)^2$$

29 Halla los cinco primeros números cuadrangulares sabiendo que vienen dados por la fórmula:

$$C(n) = n^2$$

Solución:

1, 4, 9, 16, 25

30 Escribe una fórmula, una ecuación y una identidad.

Solución:

Fórmula:

Área del cuadrado: $A(x) = x^2$

Ecuación: x + 5 = 7

Identidad:
$$(x + 1)^2 = x^2 + 2x + 1$$

1. Lenguaje algebraico

- 31 Escribe en lenguaje algebraico las siguientes expresiones coloquiales:
 - a) El triple de un número **x** disminuido en 7 unidades.
 - b) Tenía x euros y me han dado 15 €. ¿Cuánto tengo?
 - c) El lado de un cuadrado mide **x** metros. ¿Cuánto mide su perímetro?
 - d) Los lados de un rectángulo miden **x** metros e **y** metros. ¿Cuánto mide su área?

Solución:

- a) 3x 7
- b) x + 15
- c) P(x) = 4x
- d) A(x, y) = xy
- 32 En la expresión algebraica:

$$7x^2y - 9xy^2 + 5xy - 3x + 1$$

halla los términos, el término independiente, las variables y los coeficientes.

Solución:

Términos: $7x^2y$, $-9xy^2$, 5xy, -3x, I

Término independiente: I

Variables: x, y

Coeficientes: 7, -9, 5, -3, 1

33 Completa la siguiente tabla:

Monomio	Coeficiente	Grado
9x ³		
$-7x^2yz^5$		
8x		
-3		

Solución:

Monomio	Coeficiente	Grado
9x ³	9	3
$-7x^2yz^5$	-7	8
8×	8	1
-3	-3	0

34 Halla cuáles de los siguientes monomios son semejantes:

$$7x, -5x^3, -x, 5x^3, 4x^2, x, 9x^2$$

Solución:

- a) $-5x^3$, $5x^3$
- b) $4x^2$, $9x^2$
- c) 7x, -x, x
- 35 Completa la siguiente tabla:

$P(x) = -9x^4 + 5x^2 - 17$					
Términos Grado Coeficientes			Coeficiente principal	Término independiente	

Solución:

$P(x) = -9x^4 + 5x^2 - 17$				
Términos	Grado	Coeficien- tes	Coeficiente principal	Término independiente
$-9x^4, 5x^2,$ -17	4	-9,5,-17	-9	-17

36 Halla el valor numérico del siguiente polinomio:

$$P(x) = -x^3 + 5x - 1$$

para los valores que se indican:

$$a) x = 0$$

b)
$$x = 1$$

c)
$$x = 3$$

d)
$$x = -3$$

Solución:

a)
$$P(0) = -1$$

b)
$$P(1) = 3$$

c)
$$P(3) = -13$$

d)
$$P(-3) = 11$$

37 Halla el valor numérico de los siguientes polinomios para los valores que se indican:

a)
$$P(x) = -x^3 + 5x - 4 para x = -2$$

b)
$$P(x) = x^4 + 7x - 12 para x = 3$$

c)
$$P(x) = 2x^5 - 8x^3 + 5x + 3 para x = 1$$

d)
$$P(x) = -3x^5 + 7x^3 - 8x + 5 para x = -1$$

a)
$$P(-2) = -6$$

b)
$$P(3) = 90$$

c)
$$P(1) = 2$$

d)
$$P(-1) = 9$$

2. Operaciones con monomios

- 38 Realiza las siguientes operaciones de monomios:
 - a) $7x^5 4x^5 + 9x^5$
 - b) $-5x^2 \cdot x$
 - c) $(-2x^5)^3$
 - d) $-6x^3 : (-3x)$

Solución:

a) $12x^5$

b) $-5x^{3}$

c) $-8x^{15}$

- d) 2x²
- 39 Realiza las siguientes operaciones de monomios:
 - a) $(3x^4)^3$
 - b) $-5x^3 + 2x^3 + 4x^3$
 - c) $-12x^2:(-4x)$
 - d) $-6x^2 \cdot (-9x) \cdot x^3$

Solución:

a) 27x¹²

b) x³

c) 3x

- d) 54x⁶
- 40 Realiza las siguientes operaciones de monomios:
 - a) $56x^5 : 8x$
 - b) $6x^3 \cdot (-9x^2)$
 - c) $-3x^2 + 15x^2 + 4x^2$
 - d) $(2x^5)^2$

Solución:

a) 7x⁴

b) $-54x^5$

c) 16x²

- d) $4x^{10}$
- 41 Realiza las siguientes operaciones de monomios:
 - a) $6x^4 \cdot (-9x^3)$
- b) $(-3x^3)^3$
- c) 5x 9x + 7x x
- d) $6x^5 : 4x$

Solución:

a) $-54x^{7}$

b) $-27x^9$

c) 2x

- d) $\frac{3}{2}$ x⁴
- 42 Multiplica los siguientes polinomios por monomios:

a)
$$(x^5 - 7x^3 + 6x - 1) \cdot 8x^2$$

b)
$$(2x^4 - 8x^2 + 7x - 9) \cdot 7x^3$$

c)
$$(6x^4 + 5x^3 - 8x + 7) \cdot (-9x)$$

d)
$$(x^4 - 9x^3 + 7x - 6) \cdot (-6x^4)$$

Solución:

- a) $8x^7 56x^5 + 48x^3 8x^2$
- b) $14x^7 56x^5 + 49x^4 63x^3$
- c) $-54x^5 45x^4 + 72x^2 63x$
- d) $-6x^8 + 54x^7 42x^5 + 36x^4$
- 43 Reduce las siguientes expresiones:

a)
$$8x - 12x^2 + 1 + 7x^2 - 3x - 5$$

b)
$$x^2 - 6x - 5x^2 + 7x^2 - 5x - 9$$

c)
$$-7x - 8 + 9x - 11x^2 + 6 + 8x^2$$

d)
$$7x^2 - 9x + 6 - 7x - 8x^2 + 12$$

Solución:

- a) $-5x^2 + 5x 4$
- b) $3x^2 11x 9$
- c) $-3x^2 + 2x 2$
- d) $-x^2 16x + 18$
- 44 Elimina los paréntesis y reduce las siguientes expresiones:

a)
$$7x - (8x^2 + 9 + 5x^2) - 7x - 2$$

b)
$$2x^2 - 5x - 3(2x^2 + 4x^2 - 5x - 6)$$

c)
$$-(3x-5+9x-7x^2+4)+10x^2$$

d)
$$7(x^2 - 6x + 9) - 7(3x - 7x^2 + 9)$$

Solución:

- a) $-13x^2 11$
- b) $-16x^2 + 10x + 18$
- c) $17x^2 12x + 1$
- d) $56x^2 63x$
- 45 Extrae todos los factores que puedas como factor común:
 - a) 6x 8y
 - b) $8x^3 12x^2$
 - c) $4x^4 + 10x^3 6x^2$
 - d) $9x^2y + 6xy^2 3xy$

- a) 2(3x 4y)
- b) $4x^2(2x 3)$
- c) $2x^2(2x^2 + 5x 3)$
- d) 3xy(3x + 2y 1)

3. Operaciones con polinomios

46 Dados los siguientes polinomios:

$$P(x) = 7x^4 - 5x^2 + 2$$

$$Q(x) = -5x^4 + 9x^2 + 4x - 10$$

calcula:

a)
$$P(x) + Q(x)$$

b)
$$P(x) - Q(x)$$

Solución:

a)
$$2x^4 + 4x^2 + 4x - 8$$

b)
$$12x^4 - 14x^2 - 4x + 12$$

47 Dados los siguientes polinomios:

$$P(x) = -2x^4 + 5x^3 + 12x^2 - 9$$

$$Q(x) = 4x^4 - 8x^2 - 5x - 3$$

calcula:

a)
$$P(x) + Q(x)$$

b)
$$P(x) - Q(x)$$

Solución:

a)
$$2x^4 + 5x^3 + 4x^2 - 5x - 12$$

b)
$$-6x^4 + 5x^3 + 20x^2 + 5x - 6$$

48 Dado el siguiente polinomio:

$$P(x) = 5x^4 + 7x^3 - 2x + 9$$

- a) halla su opuesto: -P(x)
- b) suma P(x) con -P(x). ¿Qué polinomio se obtie-

Solución:

a)
$$-P(x) = -5x^4 - 7x^3 + 2x - 9$$

b)
$$P(x) - P(x) = 0$$

49 Multiplica los siguientes polinomios:

$$P(x) = x^2 + 4x - 3$$

$$Q(x) = 5x + 2$$

Halla el grado del producto.

Solución:

$$5x^3 + 22x^2 - 7x - 6$$

El grado del producto es 2 + 1 = 3

50 Multiplica los siguientes polinomios:

$$P(x) = -2x^4 + 3x^2 - 5x + 7$$

$$Q(x) = 4x^2 - 2x + 6$$

Halla el grado del producto.

Solución:

$$-8x^6 + 4x^5 - 26x^3 + 56x^2 - 44x + 42$$

El grado del producto es 4 + 2 = 6

51 Multiplica los siguientes polinomios:

$$P(x) = 5x^3 - 3x - 1$$

$$Q(x) = -x^2 + 2x - 4$$

Halla el grado del producto.

Solución:

$$-5x^5 + 10x^4 - 17x^3 - 5x^2 + 10x + 4$$

El grado del producto es 3 + 2 = 5

52 Multiplica los siguientes polinomios:

$$P(x) = x^3 - 2x^2 + 4x - 8$$
 $Q(x) = x + 2$

Halla el grado del producto.

Solución:

$$x^4 - 16$$

El grado del producto es 3 + 1 = 4

53 Multiplica los siguientes polinomios:

$$P(x) = 2x^3 + 5x^2 - 7$$

$$Q(x) = 3x^2 - 4x + 6$$

Halla el grado del producto.

Solución:

$$6x^5 + 7x^4 - 8x^3 + 9x^2 + 28x - 42$$

El grado del producto es 3 + 2 = 5

54 Multiplica los siguientes polinomios:

$$P(x) = 7x^3 - 4x - 1$$

$$Q(x) = -2x^2 + 5x - 3$$

Halla el grado del producto.

Solución:

$$-14x^5 + 35x^4 - 13x^3 - 18x^2 + 7x + 3$$

El grado del producto es 3 + 2 = 5

55 Multiplica los siguientes polinomios:

$$P(x) = x^3 + 2x^2 + 4x + 8$$
 $Q(x) = x - 2$

Halla el grado del producto.

Solución:

$$x^4 - 16$$

El grado del producto es 3 + 1 = 4

4. Igualdades notables

- 56 Calcula mentalmente:
 - a) $(x + 2)^0$
 - b) $(x-2)^0$
 - c) $(x + 2)^{1}$
 - d) $(x 2)^{1}$

Solución:

a) I

b) I

c) x + 2

- d) x 2
- 57 Calcula mentalmente:
 - a) $(x + 2)^2$
 - b) $(x-2)^2$
 - c) (x + 2)(x 2)

Solución:

- a) $x^2 + 4x + 4$
- b) $x^2 4x + 4$
- c) $x^2 4$
- 58 Calcula mentalmente:
 - a) $(x + 3)^2$
 - b) $(x 3)^2$
 - c) $(x + \sqrt{3})(x \sqrt{3})$

Solución:

- a) $x^2 + 6x + 9$
- b) $x^2 6x + 9$
- c) $x^2 3$
- 59 Calcula mentalmente:
 - a) $(x + 6)^2$
 - b) $(x 6)^2$
 - c) (x + 6)(x 6)

Solución:

- a) $x^2 + 12x + 36$
- b) $x^2 12x + 36$
- c) $x^2 36$
- 60 Calcula:
 - a) $(3x + 5)^2$
 - b) $(3x 5)^2$
 - c) (3x + 5)(3x 5)

Solución:

- a) $9x^2 + 30x + 25$
- b) $9x^2 30x + 25$
- c) $9x^2 25$
- 61 Calcula:

a)
$$\left(2x + \frac{1}{2}\right)^2$$
 b) $\left(2x - \frac{1}{2}\right)^2$

c)
$$\left(2x + \frac{1}{2}\right)\left(2x - \frac{1}{2}\right)$$

Solución:

- a) $4x^2 + 2x + 1/4$
- b) $4x^2 2x + 1/4$
- c) $4x^2 1/4$
- 62 Sustituye los puntos suspensivos por uno de los signos = o ≠:
 - a) $(x-3)^2 \dots x^2 6x + 9$
 - b) $(x + 2)^2 \dots x^2 + 4$
 - c) $(x-3)^2 \dots x^2 9$
 - d) $(x + 2)^2 \dots x^2 + 4x + 4$

Solución:

- a) $(x-3)^2 = x^2 6x + 9$
- b) $(x + 2)^2 \neq x^2 + 4$
- c) $(x-3)^2 \neq x^2 9$
- d) $(x + 2)^2 = x^2 + 4x + 4$
- 63 Halla mentalmente la descomposición factorial de los siguientes polinomios:
 - a) $x^2 + 5x$
 - b) $x^2 5x$
 - c) $x^2 25$
 - d) $x^2 + 2x + 1$
 - e) $x^2 10x + 25$

- a) x(x + 5)
- b) x(x 5)
- c) (x + 5)(x 5)
- d) $(x + 1)^2$
- e) $(x 5)^2$

64 Halla mentalmente la descomposición factorial de los siguientes polinomios:

a)
$$6x^3 + 9x^2$$

b)
$$8x^4 - 12x^2$$

c)
$$x^2 - 3$$

d)
$$x^2 - 8x + 16$$

e)
$$x^3 - 2x^2 + x$$

Solución:

a)
$$3x^2(2x + 3)$$

b)
$$4x^2(2x^2-3)$$

c)
$$(x + \sqrt{3})(x - \sqrt{3})$$

d)
$$(x - 4)^2$$

e)
$$x(x - 1)^2$$

65 Halla los cinco primeros números triangulares, sabiendo que vienen dados por la fórmula:

$$t(n) = \frac{n^2}{2} + \frac{n}{2}$$

Solución:

66 Identifica cada una de las siguientes igualdades como fórmula, identidad o ecuación:

a)
$$3x = 5 + 2x$$

b)
$$A(R) = \pi R^2$$

c)
$$(x + 2)(x - 2) = x^2 - 4$$

Solución:

- a) Ecuación.
- b) Fórmula del área del círculo.
- c) Identidad.

Para ampliar

- 67 Escribe en lenguaje algebraico las siguientes expresiones coloquiales:
 - a) El año pasado me daban x € de paga y este año me dan un euro más. ¿Cuánto recibo de paga este año?
 - b) Ayer anduve **x** y hoy he andado el doble. ¿Cuánto he recorrido hoy?
 - c) Un perro come x y un gato come la mitad. ¿Cuánto come el gato?
 - d) La altura de un rectángulo mide x y la base mide el triple de la altura. ¿Cuánto mide la base?

- 69 Escribe la expresión algebraica de:
 - a) Un número par.
 - b) Un número impar.
 - c) Tres números pares consecutivos.

Solución:

- a) 2x
- b) 2x + 1
- c) 2x, 2x + 2, 2x + 4
- 70 Escribe la expresión algebraica de:
 - a) Un cuadrado perfecto.
 - b) Un cubo perfecto.

Solución:

a)
$$x^2$$

- 68 Escribe la expresión algebraica de:
 - a) El siguiente de un número.
 - b) El anterior de un número.

Solución:

Solución:

a) x + 1

b) 2xc) x/2d) 3x

$$a) x + 1$$

71 Halla mentalmente el valor numérico de los siguientes polinomios para x = 0:

a)
$$x^2 - 3x - 5$$

b)
$$7x^3 + 4x^2 - 6x + 1$$

c)
$$x^4 - 7x^2 + x - 7$$

d)
$$2x^5 + 9x^3 - 12x + 23$$

Observando los resultados obtenidos, ¿cómo enunciarías una ley para hallar el valor numérico de un polinomio para x = 0?

Solución:

- a) 5
- b) I
- c) -7
- d) 23

El valor numérico de un polinomio para x = 0 es igual al término independiente.

- 72 Halla mentalmente el valor numérico de los siguientes polinomios para x = 1:
 - a) $2x^2 + 5x 3$
 - b) $x^3 3x^2 + 5x + 2$
 - c) $3x^4 + 9x^2 7x 5$
 - d) $x^5 2x^3 + 13x + 8$

Observando los resultados obtenidos, ¿cómo enunciarías una ley para hallar el valor numérico de un polinomio para x = 1?

Solución:

- a) 4
- b) 5
- c) 0
- d) 20

El valor numérico de un polinomio para x = 1 es igual a la suma de sus coeficientes.

- 73 Halla mentalmente los valores que anulan los siguientes binomios:
 - a) x 5
 - b) x + 3
 - c) 2x 6
 - d) 3x + 15

Solución:

- a) x = 5
- b) x = -3
- c) x = 3
- d) x = -5
- 74 Halla el valor numérico de los siguientes polinomios para los valores que se indican:
 - a) $x^2 + 6x 1$ para x = 2
 - b) $3x^3 5x^2 + 3x + 4$ para x = -2
 - c) $x^4 + 2x^2 5x 7$ para x = 3
 - d) $2x^5 5x^3 + x + 1$ para x = -3

Solución:

- a) 15
- b) -46
- c) 77
- d) 353

75 Dados el triángulo rectángulo y el cuadrado siguientes, halla sus áreas en función de x

Solución:

Triángulo

$$A(x) = 2x(2x + 2) : 2 \Rightarrow A(x) = 2x^2 + 2x$$

Cuadrado

$$A(x) = (x + 5)^2 = x^2 + 10x + 25$$

- 76 Realiza las siguientes operaciones de monomios:
 - a) $(5x^3)^2$
- b) $7x^3 x^3 + 2x^3$
- c) $12x^3 : (-3x^2)$
- d) $x^3 \cdot (-3x) \cdot x^2$

Solución:

- a) $25x^{6}$
- b) 8x³
- c) -4x
- d) $-3x^{6}$
- 77 Realiza las siguientes multiplicaciones de polinomios por monomios:
 - a) $(x^3 3x^2 + 6x + 2) \cdot 3x$
 - b) $(x^5 + 5x^3 + 7x 1) \cdot 2x^2$
 - c) $(x^4 3x^3 6x + 7) \cdot (-5x^3)$
 - d) $(-3x^4 9x^3 + 7x 6) \cdot (-8x^4)$

Solución:

- a) $3x^4 9x^3 + 18x^2 + 6x$
- b) $2x^7 + 10x^5 + 14x^3 2x^2$
- c) $-5x^7 + 15x^6 + 30x^4 35x^3$
- d) $24x^8 + 72x^7 56x^5 + 48x^4$
- 78 Extrae todos los factores que puedas como factor común:
 - a) $8x^2 12x$
- b) $8x^4 + 6x^2$
- c) $2x^4 + 4x^3 6x^2$ d) $6x^2y + 4xy^2 8xy$

- a) 4x(2x 3)
- b) $2x^2(4x^2 + 3)$
- c) $2x^2(x^2 + 2x 3)$
- d) 2xy(3x + 2y 4)

$$P(x) = 7x^3 - 5x + 1$$

$$Q(x) = -4x^4 - 9x^2 + 4x - 7$$

$$R(x) = 5x^4 - 7x^3 + 5x + 6$$

calcula:

a)
$$P(x) + Q(x) + R(x)$$

b)
$$P(x) + Q(x) - R(x)$$

c)
$$P(x) - Q(x) - R(x)$$

Solución:

a)
$$x^4 - 9x^2 + 4x$$

b)
$$-9x^4 + 14x^3 - 9x^2 - 6x - 12$$

c)
$$-x^4 + 14x^3 + 9x^2 - 14x + 2$$

80 Dados los siguientes polinomios:

$$P(x) = 2x^3 - 7x + 5$$

$$Q(x) = 3x^2 + 6x - 1$$

calcula:
$$P(x) \cdot Q(x)$$

Solución:

$$6x^5 + 12x^4 - 23x^3 - 27x^2 + 37x - 5$$

81 Dados los siguientes polinomios:

$$P(x) = x^4 - 8x^2 + 6$$

$$Q(x) = 5x^3 + 7x - 9$$

calcula:
$$P(x) \cdot Q(x)$$

Solución:

$$5x^7 - 33x^5 - 9x^4 - 26x^3 + 72x^2 + 42x - 54$$

82 Sustituye los puntos suspensivos por uno de los signos = o ≠:

a)
$$(x + 5)^2 \dots x^2 + 25$$

b)
$$(x + 5)^2 \dots x^2 + 10x + 25$$

c)
$$(x-4)^2 \dots x^2 - 8x + 16$$

d)
$$(x-4)^2 \dots x^2 - 16$$

Solución:

a)
$$(x + 5)^2 \neq x^2 + 25$$

b)
$$(x + 5)^2 = x^2 + 10x + 25$$

c)
$$(x-4)^2 = x^2 - 8x + 16$$

d)
$$(x-4)^2 \neq x^2 - 16$$

83 Calcula:

a)
$$(x + 1/3)^2$$

b)
$$(x - 1/2)^2$$

c)
$$(x + \sqrt{2})(x - \sqrt{2})$$

Solución:

a)
$$x^2 + 2x/3 + 1/9$$

b)
$$x^2 - x + 1/4$$

c)
$$x^2 - 2$$

84 Calcula:

a)
$$(x + 3/2)^2$$

b)
$$(x - 2/3)^2$$

c)
$$(x + \sqrt{5})(x - \sqrt{5})$$

Solución:

a)
$$x^2 + 3x + 9/4$$

b)
$$x^2 - 4/3x + 4/9$$

c)
$$x^2 - 5$$

85 Halla mentalmente la descomposición factorial de los siguientes polinomios:

a)
$$12x^4 + 18x^3$$

b)
$$18x^5 - 24x^4$$

c)
$$x^2 - 7$$

d)
$$x^2 - x + 1/4$$

e)
$$x^3 + 2x^2 + x$$

Solución:

a)
$$6x^3(2x + 3)$$

b)
$$6x^4(3x - 4)$$

c)
$$(x + \sqrt{7})(x - \sqrt{7})$$

d)
$$(x - 1/2)^2$$

e)
$$x(x + 1)^2$$

86 Halla mentalmente la descomposición factorial de los siguientes polinomios:

a)
$$15x^6 + 20x^3$$

b)
$$20x^6 - 30x^4$$

c)
$$x^2 - 1/4$$

d)
$$x^3 + 6x^2 + 9x$$

e)
$$x^5 - 10x^4 + 25x^3$$

a)
$$5x^3(3x^3 + 4)$$

b)
$$10x^4(2x^2-3)$$

c)
$$(x + 1/2)(x - 1/2)$$

d)
$$x(x + 3)^2$$

e)
$$x^3(x-5)^2$$

87 Identifica cada una de las siguientes igualdades como fórmula, identidad o ecuación:

a)
$$5 + 3x - 4 = 5x + 1 - 2x$$

b)
$$(x + 1/2)(x - 1/2) = x^2 - 1/4$$

c)
$$V(x, y, z) = xyz$$

Solución:

- a) Identidad.
- b) Identidad.
- c) Fórmula.
- 88 Las siguientes fórmulas corresponden a Geometría. Identifica cada una de ellas:

a)
$$P(a) = 4a$$

b)
$$A(a) = a^2$$

c)
$$L(R) = 2\pi R$$

d)
$$A(R) = \pi R^2$$

Solución:

- a) Perímetro de un cuadrado.
- b) Área de un cuadrado.
- c) Longitud de la circunferencia.
- d) Área del círculo.

Calculadora

89 Dada la fórmula de Herón para el cálculo del área de un triángulo:

$$A(a,b,c) = \sqrt{p(p-a)(p-b)(p-c)}$$

p = semiperímetro

halla el área de un triángulo cuyos lados miden a = 9 m, b = 8 m y c = 5 m. Redondea el resultado a dos decimales.

Solución:

$$A = 19,90 \text{ m}^2$$

90 Dada la fórmula del área del rombo:

$$A(D, d) = \frac{D \cdot d}{2}$$

halla el área de uno cuyas diagonales miden D = 7,5 m y d = 3,8 m. Redondea el resultado a dos decimales.

Solución:

$$A = 14,25 \text{ m}^2$$

91 Dada la fórmula de la longitud del arco:

$$L_{Arco} = \frac{2\pi R}{360^{\circ}} \cdot n^{\circ}$$

halla la longitud de uno que tiene 3,5 m de radio y un ángulo de 135° . Toma como valor de π el que da la calculadora y redondea el resultado a dos decimales.

Solución:

L = 8,25 m

92 Dada la fórmula del volumen de la esfera:

$$V(R) = \frac{4}{3}\pi R^3$$

halla el volumen de una que tiene 6,5 m de radio. Toma como valor de π el que da la calculadora y redondea el resultado a dos decimales.

Solución:

$$V = 1150.35 \text{ m}^3$$

Problemas

93 Dados el rombo y el romboide siguientes, halla sus áreas en función de x

Solución:

Rombo:
$$A(x) = 2x^2 - 18$$

Romboide: $A(x) = 3x^2 - 5x$

94 Dado el ortoedro o paralelepípedo de la siguiente figura, halla el volumen en función de x

$$V(x) = x^3 - 9x$$

$$e = \frac{1}{4}(7t - t^2)$$
, donde **e** se mide en metros, y **t**, en segundos.

Calcula el espacio que recorre en los 3 primeros segundos.

Solución:

$$e = \frac{1}{4}(7 \cdot 3 - 3^2) = \frac{1}{4}(21 - 9) = \frac{1}{4} \cdot 12 = 3 \text{ m}$$

96 Dada la fórmula del área del triángulo:

$$A(b, a) = \frac{b \cdot a}{2}$$

halla el área de uno de 8 m de base y 9 m de altura.

Solución:

 $A = 36 \text{ m}^2$

97 Dada la fórmula del área del círculo: $A(R) = \pi R^2$ halla el área de uno que tiene 5 m de radio. Toma como valor de π = 3,14, y redondea el resultado a dos decimales.

Solución:

 $A = 78.50 \text{ m}^2$

98 Dada la fórmula del área del paralelepípedo u ortoedro: A(a, b, c) = 2(ab + ac + bc)
halla el área de uno en el que a = 12 m, b = 7 m y c = 3 m

Solución:

 $V = 282 \text{ m}^3$

Dada la fórmula del volumen del cubo: $V(a) = a^3$ calcula el volumen de uno que tiene 5 m de arista.

Solución:

 $V = 125 \text{ m}^3$

100 Dada la fórmula del área de la esfera:

$$A(R) = 4\pi R^2$$

halla el área de una que tiene 8 m de radio. Toma como valor de π = 3,14 y redondea el resultado a dos decimales.

Solución:

 $A = 803,84 \text{ m}^2$

101 Dibuja y halla los cinco primeros números triangulares.

Solución:

102 Dibuja y halla los cinco primeros números cuadrangulares.

Solución:

103 Prueba que la suma de dos números impares consecutivos es siempre múltiplo de 4

Solución:

Dos números impares consecutivos son:

$$2n + 1.2n + 3$$

$$2n + 1 + 2n + 3 = 4n + 4 = 4(n + 1)$$

Se observa que es múltiplo de 4

- 104 El perímetro de un rectángulo mide 24 m
 - a) ¿Cuánto mide la base más la altura?
 - b) Si la base mide x, ¿cuánto mide la altura?
 - c) Calcula el polinomio que halla el área del rectángulo en función de x
 - d) Calcula el área del rectángulo cuando la base mide 5 m

Solución:

a) 12 m

b) Base: x, altura: 12 - x

c) $A(x) = x(12 - x) \Rightarrow P(x) = 12x - x^2$

d) $A(5) = 12 \cdot 5 - 5^2 = 60 - 25 = 35$

105 El primer polinomio de los números primos de Euler es: $P(x) = x^2 + x + 41$

Para x = 0, 1, 2, ..., 39, P(x) es un número primo. Halla los 5 primeros números primos que se obtienen aplicando dicho polinomio.

Solución:

41, 43, 47, 53 y 61

Para profundizar

106 Dados el trapecio y el círculo siguientes, halla sus áreas en función de x

Solución:

Trapecio:

$$A(x) = \frac{x+5+x-5}{2} \cdot x = x^2$$

Círculo:

$$A(x) = \pi(x-3)^2 = \pi(x^2 - 6x + 9)$$

107 Dibuja y halla los cinco primeros números pentagonales.

108 Dibuja y halla los cinco primeros números hexagonales.

- 109 Dado un número x:
 - a) halla el siguiente.
 - b) eleva este siguiente al cuadrado y desarrolla el cuadrado.
 - c) observa el resultado y escribe una ley que permita calcular, a partir del cuadrado de un número, el cuadrado del siguiente.
 - d) pon un ejemplo.

Solución:

- $a) \times + 1$
- b) $(x + 1)^2 = x^2 + 2x + 1$
- c) Dado un número al cuadrado, para hallar el cuadrado del siguiente, se le suma el doble del número más uno.
- d) Ejemplo:

$$|1|^2 = |0|^2 + 2 \cdot |0| + |1| = |0| + 20 + |1| = |2|$$

110 Simplifica las siguientes fracciones algebraicas:

a)
$$\frac{x^2 + 3x}{x^2 + 6x + 9}$$
 b) $\frac{x^2 + 2x + 1}{x^2 - 1}$

b)
$$\frac{x^2 + 2x + 1}{x^2 - 1}$$

Solución:

a)
$$\frac{x^2 + 3x}{x^2 + 6x + 9} = \frac{x(x+3)}{(x+3)^2} = \frac{x}{x+3}$$

b)
$$\frac{x^2 + 2x + 1}{x^2 - 1} = \frac{(x + 1)^2}{(x + 1)(x - 1)} = \frac{x + 1}{x - 1}$$

111 Simplifica las siguientes fracciones algebraicas:

a)
$$\frac{x^2 - 2x}{x^2 - 4}$$

b)
$$\frac{x^2-25}{x^2+10x+25}$$

Solución:

a)
$$\frac{x^2 - 2x}{x^2 - 4} = \frac{x(x-2)}{(x+2)(x-2)} = \frac{x}{x+2}$$

b)
$$\frac{x^2 - 25}{x^2 + 10x + 25} = \frac{(x + 5)(x - 5)}{(x + 5)^2} = \frac{x - 5}{x + 5}$$

112 El segundo polinomio de los números primos de Euler es: $P(x) = x^2 - 79x + 1601$

Para x = 0, 1, 2, ..., 79, P(x) es un número primo.

Halla los 2 últimos números primos que se obtienen aplicando dicho polinomio.

Solución:

1523 y 1601

Aplica tus competencias

Longitudes, áreas y volúmenes

En el cálculo de longitudes aparecen siempre variables lineales; en el de áreas, variables cuadradas; y en el de volúmenes, variables cúbicas, porque se miden en unidades lineales, cuadradas y cúbicas, respectivamente.

Halla la fórmula del perímetro de un cuadrado de lado **x.** Aplica la fórmula al caso en que x = 5 m

Solución:

$$P(x) = 4x$$

$$P(5) = 4 \cdot 5 = 20 \text{ m}$$

Halla la fórmula de la longitud de una circunferencia de radio x. Aplica la fórmula al caso en que x = 5 m. Utiliza como valor de π el que trae la calculadora, y redondea el resultado a dos decimales.

Solución:

$$L(x) = 2\pi x$$

$$L(5) = 2\pi \cdot 5 = 31,42 \text{ m}$$

Halla la fórmula del área de un cuadrado de lado **x.** Aplica la fórmula al caso en que x = 6 m

Solución:

$$A(x) = x^2$$

$$A(6) = 6^2 = 36 \text{ m}^2$$

116 Halla la fórmula del área de un círculo de radio \mathbf{x} . Aplica la fórmula al caso en que $\mathbf{x} = 7$ m. Utiliza como valor de π el que trae la calculadora, y redondea el resultado a dos decimales.

Solución:

$$A(x) = \pi x^2$$

$$A(7) = \pi \cdot 7^2 = 153,94 \text{ m}^2$$

117 Halla la fórmula del área de un cubo de arista x. Aplica la fórmula al caso en que x = 8 m

Solución:

$$A(x) = 6x^2$$

$$A(8) = 6 \cdot 8^2 = 384 \text{ m}^2$$

118 Halla la fórmula del área de una esfera de radio x. Aplica la fórmula al caso en que x = 9 m. Utiliza como valor de π el que trae la calculadora, y redondea el resultado a dos decimales.

Solución:

$$A(x) = 4\pi x^2$$

$$A(9) = 4\pi \cdot 9^2 = 1017,88 \text{ m}^2$$

Halla la fórmula del volumen de un cubo de arista **x.** Aplica la fórmula al caso en que x = 10 m

Solución:

$$V(x) = x^3$$

$$V(10) = 10^3 = 1000 \text{ m}^3$$

120 Halla la fórmula del volumen de una esfera de radio x. Aplica la fórmula al caso en que x = 11 m. Utiliza como valor de π el que trae la calculadora, y redondea el resultado a dos decimales.

$$V(x) = \frac{4}{3}\pi x^3$$

$$V(11) = \frac{4}{3}\pi \cdot 11^3 = 5575,28 \text{ m}^3$$

Comprueba lo que sabes

1 Define qué es el valor numérico de un polinomio. Pon un ejemplo.

Solución:

El valor numérico de un polinomio es el valor que se obtiene al sustituir la variable por un número y efectuar las operaciones.

Eiemplo

Halla el valor numérico de

$$P(x) = x^3 + 5x^2 - 7x - 4 \text{ para } x = 2$$

$$P(2) = 2^3 + 5 \cdot 2^2 - 7 \cdot 2 - 4 =$$

$$= 8 + 20 - 14 - 4 = 28 - 18 = 10$$

- 2 Escribe en lenguaje algebraico las siguientes expresiones coloquiales:
 - a) El triple de un número x disminuido en 7 unidades.
 - b) Dos números impares consecutivos.

Solución:

- a) 3x 7
- b) 2x + 1, 2x + 3
- 3 Realiza las siguientes operaciones de monomios:
 - a) $4x^5 \cdot (-8x^2)$ b) $(-5x^2)^3$
 - c) $x^2 7x^2 + 5x^2 3x^2$ d) $12x^5 : 18x^3$

Solución:

- a) $-32x^{7}$
- b) $-125x^6$
- c) $-4x^2$
- d) $\frac{2}{3}x^2$
- 4 Dados los polinomios:

$$P(x) = 2x^5 - 8x^4 + 7x^2 - 3$$

$$Q(x) = 6x^4 - 5x^2 + 9x - 4$$

calcula:

- a) P(x) + Q(x)
- b) P(x) Q(x)

Solución:

- a) $2x^5 2x^4 + 2x^2 + 9x 7$
- b) $2x^5 14x^4 + 12x^2 9x + 1$

5 Multiplica los siguientes polinomios:

$$P(x) = 3x^3 - 7x - 6$$

$$Q(x) = 5x^2 - 9x + 1$$

Halla el grado del producto.

Solución:

$$15x^5 - 27x^4 - 32x^3 + 33x^2 + 47x - 6$$

El grado del producto es: 3 + 2 = 5

- 6 Calcula:
 - a) $(2x + 1/2)^2$
 - b) (2x + 3)(2x 3)
 - c) $(x-5)^2$

Solución:

- a) $4x^2 + 2x + 1/4$
- b) $4x^2 9$
- c) $x^2 10x + 25$
- 7 El espacio que recorre un coche cuando arranca viene dado por la fórmula:

$$e = \frac{1}{4}(7t - t^2)$$
, donde **e** se mide en metros, y **t**,

Calcula el espacio que recorre en los 3 primeros segundos.

Solución:

$$e = \frac{1}{4}(7 \cdot 3 - 3^2) = \frac{1}{4}(21 - 9) = \frac{1}{4} \cdot 12 = 3 \text{ m}$$

- 8 Halla la descomposición factorial de los siguientes polinomios:
 - a) $6x^3 + 9x^2$
 - b) $x^2 49$
 - c) $x^2 + 10x + 25$
 - d) $x^2 8x + 16$

- a) $3x^2(2x + 3)$
- b) (x + 7)(x 7)
- c) $(x + 5)^2$
- d) $(x-4)^2$

Linux/Windows wires

Paso a paso

121 Calcula el valor numérico del polinomio:

$$P(x) = x^3 + 5x^2 - 7x - 4$$

para
$$x = 2$$

Solución:

Resuelto en el libro del alumnado.

122 Dados los siguientes polinomios:

$$P(x) = x^4 - 6x^3 + 7x - 8$$

$$Q(x) = 2x^3 - 3x^2 + 5x - 1$$

calcula:
$$P(x) - Q(x)$$

Solución:

Resuelto en el libro del alumnado.

123 Multiplica los siguientes polinomios:

$$P(x) = 2x^3 - 3x^2 + 5$$

$$Q(x) = x^2 - 4x + 6$$

Solución:

Resuelto en el libro del alumnado.

124 Desarrolla: $(x + 5)^2$

Solución:

Resuelto en el libro del alumnado.

125 Factoriza: $x^3 + 2x^2 + x$

Solución:

Resuelto en el libro del alumnado.

Plantea el siguiente problema y resuélvelo con ayuda de Wiris o DERIVE:

126 Halla el décimo número triangular, sabiendo que la fórmula de los números triangulares es:

$$t(n) = \frac{n^2}{2} + \frac{n}{2}$$

Solución:

Resuelto en el libro del alumnado.

127 Internet. Abre: **www.editorial-bruno.es** y elige Matemáticas, curso y tema.

Practica -

128 Halla el valor numérico de los siguientes polinomios para los valores que se indican:

a)
$$P(x) = x^2 - 7x - 9$$
 para $x = -2$

b)
$$P(x) = x^3 + 6x^2 - 15$$
 para $x = 3$

Solución:

129 Dados los siguientes polinomios:

$$P(x) = 9x^4 - 6x^2 + 3$$

$$Q(x) = -7x^4 + 8x^2 + x - 19$$

calcula: a)
$$P(x) + Q(x)$$
 b) $P(x) - Q(x)$

Solución:

a)
$$2v^4 + 2v^2 + v = 1$$

a)
$$2x^4 + 2x^2 + x - 16$$
 b) $16x^4 - 14x^2 - x + 22$

130 Multiplica los siguientes polinomios:

$$P(x) = 5x^3 - 7x^2 - 9$$

$$Q(x) = -6x^4 + 4x^2 - 3x + 8$$

Solución:

$$-30x^7 + 42x^6 + 20x^5 + 11x^4 + 61x^3 - 92x^2 + 27x - 72$$

131 Multiplica los siguientes polinomios:

$$P(x) = x^3 + 2x^2 + 4x + 8$$

$$O(x) = x - 2$$

$$x^4 - 16$$

Linux/Windows wires

132 Calcula:

a)
$$(5x + 7/2)^2$$

b)
$$(5x - 7/2)^2$$

c)
$$(5x + 7/2)(5x - 7/2)$$

Solución:

a)
$$25x^2 + 35x + 49/4$$

b)
$$25x^2 - 35x + 49/4$$

c)
$$25x^2 - 49/4$$

133 Halla la descomposición factorial de:

a)
$$x^2 - 5x$$

b)
$$4x^2 - 49$$

c)
$$x^3 - 36x$$

d)
$$x^3 - 2x^2 + x$$

Solución:

a)
$$x(x - 5)$$

b)
$$(2x + 7)(2x - 7)$$

c)
$$x(x + 6)(x - 6)$$

d)
$$x(x-1)^2$$

Plantea los siguientes problemas y resuélvelos con ayuda de Wiris o DERIVE:

134 Dada la fórmula del volumen de la esfera:

$$V = \frac{4}{3}\pi R^3$$

halla el volumen de una con R = 7,25 m

Solución:

1596,3 m³

El primer polinomio de los números primos de Euler es: $P(x) = x^2 + x + 41$

Para x = 0, 1, 2, ..., 39, P(x) es un número primo. Halla los 3 últimos números primos que se obtienen aplicando dicho polinomio.

Solución:

1447, 1523, 1601

136 Dada la fórmula del área del triángulo:

$$A = \frac{b \cdot a}{2}$$

halla el área de uno que tiene 8,75 m de base y 15,42 m de altura.

$$A = 67,4625 \text{ m}^2$$