

1. Za skup $A = \{1, 2, 3, 4\}$ su permutacije $s_i : A \to A, i \in \{1, 2, 3, 4\}$ definisane sa

$$s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad s_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}.$$

Ispitati sve aksiome komutativne grupe na (S, \circ) , gde je $S = \{s_1, s_2, s_3, s_4\}$, a \circ je kompozicija funkcija.

- 2. Naći normirani polinom P(x) nad \mathbb{R} petog stepena koji je deljiv sa $Q(x) = x^2 + 9$, jedan koren mu je 2i, a ostatak pri deljenju P(x) sa x 2 je -10. Zatim polinom P(x) faktorisati nad poljima realnih i kompleksnih brojeva.
- 3. Rešiti po $w \in \mathbb{C}$ jednačinu $w \cdot \overline{w} + 1 = i(w + \overline{w})$.

REŠENJA

1. Računajući kompozicije navedenih funkcija, dobijamo Kejlijevu tablicu grupoida (S, \circ) , gde se iz tablice vidi zatvorenost operacije \circ na skupu S.

Kompozicija funkcija je uvek asocijativna operacija (što je teorema), a komutativna je na skupu S jer je tablica simetrična u odnosu na glavnu dijagonalu. Neutralni element je s_1 jer je to identička funkcija skupa S, a vidi se i po tome što su mu vrsta i kolona jednaki graničnoj vrsti tj. koloni. Iz tablice vidimo da je $s_1^{-1} = s_1$, $s_2^{-1} = s_4$, $s_3^{-1} = s_3$ i $s_4^{-1} = s_2$. Dakle, (S, \circ) je komutativna grupa.

2. Kako je 2i koren polinoma P(x), to i $\overline{2i} = -2i$ mora biti koren polinoma P(x), te je P(x) deljiv i sa $(x-2i)(x+2i) = x^2+4$. Dakle, deljiv je sa $(x^2+9)(x^2+4)$. Kako je P(x) polinom 5-og stepena, sledi da je oblika $P(x) = (x^2+9)(x^2+4)(x-\alpha)$. Ostatak pri deljenju P(x) sa x-2 je -10, što znači da je P(x) = -10. Uvrštavajući 2 u $P(x) = (x^2+9)(x^2+4)(x-\alpha)$ dobijamo

$$P(2) = (2^2 + 9)(2^2 + 4)(2 - \alpha) = 208 - 104\alpha = -10$$
, odakle dobijamo $\alpha = \frac{218}{104} = \frac{109}{52}$.

Kako su koreni polinoma x^2+9 kompleksni brojevi $\pm 3i$, i s druge strane koreni polinoma x^2+4 su kompleksni brojevi $\pm 2i$, sledi da je $P(x)=\left(x^2+9\right)\left(x^2+4\right)\left(x-\frac{109}{52}\right)$ faktorizacija polinoma P(x) nad \mathbb{R} , a

faktorizacija nad \mathbb{C} glasi $P(x) = (x - 3i)(x + 3i)(x - 2i)(x + 2i)\left(x - \frac{109}{52}\right)$. Pri tome je $P(x) = x^5 - \frac{109}{52} x^4 + 12x^3 - \frac{109}{52} x^2 + 26x - \frac{981}{52}$

$$P(x) = x^5 - \frac{109}{52}x^4 + 13x^3 - \frac{109}{4}x^2 + 36x - \frac{981}{13}$$

3. Za w = x + iy, $x, y \in \mathbb{R}$ je

$$w\cdot\overline{w}+1=i\left(w+\overline{w}\right)\quad\Leftrightarrow\quad (x+iy)\cdot(x-iy)+1=i\left((x+iy)+(x-iy)\right)$$

$$\Leftrightarrow x^2 + y^2 + 1 = 2xi \Leftrightarrow (x^2 + y^2 + 1) - 2xi = 0$$

$$\Leftrightarrow$$
 $(x^2 + y^2 + 1 = 0 \land -2x = 0) \Leftrightarrow (x = 0 \land y^2 + 1 = 0),$

gde ne postoji $y \in \mathbb{R}$ takvo da je $y^2 + 1 = 0$, te polazna jednačina nema rešenja po $z = x + iy \in \mathbb{C}$.