17. Vstupno – výstupný podsystém počítača

Popíšte úlohu vstupno-výstupného podsystému a úlohu RJ:

- → úlohou V/V podsystému je styk počítača s rôznymi V/V (periférnymi) zariadeniami
- → jeho súčasťou je riadiaca jednotka (RJ)/adaptér (A) a periférne zariadenie (PZ)
- → úlohou RJ je prispôsobiť vnútorné rozhranie rozmanitému vonkajšiemu
 - + podrobnejšie:
 - → prijať príkazy z vnútorných podsystémov a prekódovať pre PZ
 - → [fyzicky prekódovať dáta] nie vždy potrebné
 - → prijať správy z vonkajších podsystémov a prekódovať pre vnútorné podsystémy
 - → [realizovať kontrolu prenosu] nie vždy potrebné

Rozdeľte rozhrania podľa rôznych kritérií:

Rozhranie = hranica medzi funkčne odlišnými zariadeniami, kde po fyzickej ceste dochádza k prenosu údajov medzi Z

1. podľa umiestnia rozhrania

VNÚTORNÉ = v rámci jedného zariadenia

Pr.: Zbernica spája CPU, OP, pevný disk a V/V zariadenia

VONKAJŠIE = rozhranie medzi zariadeniami

<u>Pr.:</u> Prepojenia viac PC navzájom; a prepojenie externých zariadení k PC

2. podľa fyzickej cesty a počtu zariadení

Direktívne = fyzická cesta len medzi 2 Zar.

Výhoda: rýchlosť prenosu

<u>Nevýhody:</u> zložitosť pri viacerých zariadeniach (modulárnosť) \rightarrow pri komunikácií viac zariadení s každým, tak je n*(n-1)/2 rozhraní kde n je počet zariadení.

Indirektívne

- **1. Zbernicové** jedna fyzická cesta medzi viacerými zariadeniami, ale v danom okamihu prichádza k prenosu údajov len medzi dvomi zariadeniami počet ciest pre údaje pri zberniciach
- a. špecializované prenos dát, adries, riadiacich signálov po extra linkách (zberniciach)

b. univerzálne - po jednej zbernici prenos dát, adries, riadiacich signálov v rôznych časoch

2. Kruhové (Token Ring)

3. podľa počtu bitov

Paralelné = prenos bitov naraz (v jednom čase všetky bity)

Výhoda: rýchlosť

Nevýhoda: použitie len na krátke vzdialenosti (množstvo vodičov -> cena)

Sériové = prenos bitov postupne (všetky bity postupne, v rôznom po sebe idúcom čase)

Nevýhoda: rýchlosť

Výhoda: použitie aj na dlhé vzdialenosti (dva vodiče -> cena)

4. podľa smeru prenosu INFO

<mark>IN</mark> (vstupné)

OUT (výstupné)-údaje sa prenášajú iba jedným

smerom

IN/OUT (obojsmerné)

 $extstyle{ extstyle{Half Duplex}} o ext{údaje sa prenášajú iba oboma smermi, ale v danom okamihu sa môže iba vysielať alebo prijímať$

Full Duplex → údaje sa prenášajú iba oboma smermi a v danom okamihu sa môže vysielať aj prijímať

5. podľa synchronizácie prenosu

synchrónny prenos = je zabezpečený časovacími (synchrónnymi) signálmi

Výhoda: rýchlosť

Nevýhoda: použitie len na krátke vzdialenosti

- → (chybovosť z dôvodu rôzneho oneskorenia na dátových a synchronizačných linkách
- → ak chceme použiť na väčšie vzdialenosti, tak sa zmiešavajú dátové a synchrónne signály)

asynchrónny prenos = je zabezpečený protokolárnymi signálmi

 $\frac{\text{Jednostrann\'e riadenie}}{\text{Triaden\'e}} \text{ - riaden\'e } \text{Triaden\'e}$

Dvojstranné riadenie - iniciátor zdroj

Porovnajte riadenie pri synchrónnom a asynchrónnom prenose:

- Synchrónny prenos údajov
 prenos údajov je spojený s hodinovým signálom
 nemá štart bit ani stop bit
 medzi jednotlivými dátovými blokmi nie sú medzery
 ... 7 8 1 2 3 4 5 6 7 8 1 2 3 4 ...
- Asynchrónny prenos údajov

 medzi jednotlivými dátovými blokmi sú medzery

 S 1 2 3 4 5 6 7 8 P T T

 S 1 2 3 4 5 6 7 8 T

 S 1 2 3 4 5 6 7 8 T

 S 1 2 3 4 5 6 7 8 T S 1 2 3 ...
- S = štart bit (úvodný bit, za ním nasledujú dátové bity)
- **1-8 bitov** (dátové bity)
- P = paritný bit (log. 0 alebo log. 1 párna a nepárna parita)
- T = stop bit (1/2 bity, ktoré ukončujú proces)

Analyzujte sériové rozhranie RS 232:

- → navrhnuté pre pripájanie modemov ku komunikujúcim zariadeniam
- → pre prenos dát (pre každý smer) je určený **1 vodič**
- → ostatné vodiče = použité ako **riadiace signály** (riadenie modemov)
- → riadiace signály = použité na prenos doplnkových riadiacich a stavových informácií
- → Použitie: prepojenie rôznych zariadení / zariadenia s modemom do vzd. 10 15m
 - → v priemyselných systémoch
 - → prístrojoch na vedeckú analýzu
 - → pokladničné systémy
 - → konfigurácia routerov a switchov
- → 2 typy rozhraní voči sebe inverzné (signály majú opačný smer toku informácie)
 - → DTE Data terminal equipment (koncové zariadenie prenosu dát počítač)
 - → DCE Data control equipment (zariadenie pre riadenie prenosu dát modem)
 - jednotka dátovej informácie = 1 bit

definovanie stavovi	na datovych a	riadiacich vodic	och:
 log.informácia 	stav	norma	
		RS-232C,	RS-232B
log."0"	ON	+3 až +15 V	+5 až +25 V
log."1"	OFF	-3 až -15 V	-5 až -25 V

Používajú sa 2 typy konektorov:

- → 25 vývodov
- → štandardný konektor pre pripojenie modemov,
- → poskytuje všetky potrebné signály (DTE má piny= samec/male, DCE má dierky = samica/female)
- → 9 vývodov
- ightarrow konektor s obmedzeným počtom riadiacich signálov, používaný v novších zariadeniach

Signály	Funkcia
TxD (Transmitt Data)	Dáta z PC do modemu
RxD (Recieve Data)	Dáta z modemu do PC
DTR (Data Terminal	Počítaču signalizuje, že je pripravený vysielať/
Ready)	prijímať dáta
DSR (Data Set Ready)	Pripravenosť modemu vysielať dáta
RTS (Request To Send)	Požiadavka vysielať dáta
CTS (Clear to Send)	Povolenie pre vysielanie dát
DCD (Data Carrier	Modem má nosný signál na telef. linke a môže
Detector)	vysielať dáta
RI (Ring Indicator)	Niekto požaduje dátové spojenie
GND (Ground)	Signálová zem

Popíšte rozhranie SCSI:

- Je to štandardné rozhranie a súbor príkazov pre výmenu dát medzi externými alebo internými počítačovými zariadeniami a počítačovou zbernicou
- Používa sa na pripojovanie pevných diskov alebo magnetopáskových jednotiek ale vieme pripojiť aj skener, CD-ROM alebo DVD
- Najčastejšie sa používa v serveroch alebo výkonných počítačoch, ktoré používajú RAID prepojenie
- Osobné PC používajú SCSI len výnimočne
- Výhodou SCSI bola možnosť pripojiť väčší počet HDD než pri ATA/IDE, takisto zbernica SCSI mala väčšiu rýchlosť, výkon a životnosť oproti vtedajším diskom

Nakreslite vývojový diagram programu na zaistenie algoritmu, v ktorom máme zistiť; Koľko z 10 čísel na vstupe je záporných?

Napíšte k vývojovému diagramu program v Jazyku C

// VARIANT 2 → PRE MENEJ ZBEHLÝCH ĽUDÍ

```
#include <stdio.h>
int main ()
 int cisla[10];
 int j,nctr = 0;
 scanf ("%d", &cisla[0]);
 scanf ("%d", &cisla[1]);
 scanf ("%d", &cisla[2]);
 scanf ("%d", &cisla[3]);
 scanf ("%d", &cisla[4]);
 scanf ("%d", &cisla[5]);
 scanf ("%d", &cisla[6]);
 scanf ("%d", &cisla[7]);
 scanf ("%d", &cisla[8]);
 scanf ("%d", &cisla[9]);
  for(j=0;j<10;j++) {
 if (cisla[j] < 0)
   {
   nctr++;
   }
 printf ("\nkolko je cisel zapornych: %d", nctr);
  return 0;
```

Vysvetlite princíp a využitie pulznej kódovej modulácie (PCM)

Pulzne kódová modulácia (PCM)

Používa sa na - prevod z analógového signál na digitálny

Akou zmenou prechádza analógový signál?

1. Vzorkovanie:

v určitom časovom okamihu odoberáme z analógového signálu vzorky

Pri vzorkovaní platí <u>SHANON-KOTEĽNÍKOV TEOREM</u>

Vzorkovacia frekvencia je min 2x väčšia, ako max. frekvencia signálu

> frank = 2x fmax

At = 1
2x fmax dalsej varrky

Je tu možný výskyt **aliasing** efektu (falošne kópie) – vieme ho obísť prekladaním vzorkovaním, t.j. budeme viackrát vzorkovať pri sebe

Aliasing objavíme skusmým prepnutím časovej základne na rýchlejší rozsah a tak nájdeme správny obraz priebehu. Keď zveríme nastavenie osciloskopu automatickému nastaveniu (AUTOSET, AUTOSCALE), je pri jeho činnosti rozpoznaná skutočná frekvencia pozorovaného signálu a automatické nastavenie zvolí správnu časovú základňu

Reálne vzorkovanie - Celý signál sa uloží do Pa DO a naraz sa odoberú vzorky **Ekvivalentne vzorkovanie** – Celý signál sa načíta do Pa a odoberie sa jedna vzorka, opäť sa načíta do Pa a odoberie sa ďalšia vzorka

2. Kvantovanie:

Signál **rozdelíme vodorovne** na **kvantizačné hladiny**. Max. počet hladín je **256 = 2**⁸ Vzorke prisúdime **najbližšiu kvantizačnú hladinu**. Hladina má svoj **binárny kód**. **Čím via**c kvantizačných **úrovní**, tým je proces kvantovania **presnejší**.

3. Kódovanie:

Hladiny sú vyjadrene binárnym kódom log. 0, log. 1. Prenáša sa binárny kód hladiny, na ktorej sedí vzorka

V meracej technike sa používa napr. **BCD kód** alebo **Váhový kód** – každej pozícií je pridelená váha

Na prijímacej strane musíme signál najprv zdekódovať a potom demodulovať

Maturitné otázky, odbor-POS

