

POLITECNICO MILANO 1863

Case study: Bulk Free Radical Polymerization (FRP)

Prof. Davide Moscatelli, Eng. Gabriele Galbo Milano, 22/11/2023

Polymerization Mechanisms: Stepwise vs. Chainwise Polymerization

	$P_n + P_m \leftrightarrows P_{n+m} + W$	$P_n + M \rightarrow P_{n+1}$
	Step Growth	Chain Growth Free-Radical Polymerization (Conventional *)
Number and kind of reactions	Only one necessary, that between two functional (usually different) groups	At least three: Initiation, Propagation, Termination Propadterm are very fast processes
Reacting Species	Two dissimilar functional groups: species of any size react with one another	Active species (free-radical) with monomer; active species can react only with monomer to further grow
What is considered polymer	All species	Unreacted monomer is not considered polymer
MWD Composition	PolyDisperisityIndex (PDI) near to 2	Relatively broad; random alternating and graft
		we can control the polymer distribution

^{*} Other chain growth mechanism exist (*Controlled FRP, Living FRP*) for a better control of the polymer MWD and architecture

Polymerization Mechanisms: Stepwise vs. Chainwise Polymerization

$$D \perp D \leftarrow D \perp M$$

$$P_n + P_m \leftrightarrows P_{n+m} + W$$
 $P_n + M \to P_{n+1}$

	Step Growth	Chain Growth Free-Radical Polymerization (Conventional *)		
Number and kind of reactions	Only one necessary, that between two functional (usually different) groups	At least three: Initiation, Propagation, Termination		
Reacting Species	Two dissimilar functional groups: species of any size react with one another	Active species (free-radical) with monomer; active species can react only with monomer to further grow		
What is considered polymer	All species	Unreacted monomer is not considered polymer		
MWD Composition	PolyDisperisityIndex (PDI) near to 2	Relatively broad; random alternating and graft		

- The active center is a **free-radical** (a very reactive species containing an unpaired electron **created by an initiator**)
- Very popular Polymerization mechanism Examples:

^{*} Other chain growth mechanism exist (*Controlled FRP*, *Living FRP*) for a better control of the polymer MWD and architecture

Polymerization Process	Ingredients	Remarks
Bulk	Monomer, Initiator	Homogeneous & heterogeneous
Solution	Monomer, Initiator, Solvent	Low viscosity Heat removed by reflux cooling Large amounts of unfriendly solvents
Suspension	Monomer, Initiator, Stabilizer, Water	Low viscosity, easy heat removal Aqueous medium Droplet size controlled by agitation and stabilizers (10 micron –1 mm)
Emulsion	Monomer, Initiator, Surfactant, Water	Low viscosity, easy heat removal Aqueous medium Particle size controlled by emulsifier (100 nm) Product ready for use (paints, adhesives,)
Slurry	Monomer, Catalyst, Medium	Monomer and catalyst dispersed or solubilized in the medium Polymer insoluble in the medium
Gas	Monomer, Catalyst	Monomer in gas phase (pure or diluted) Catalyst and polymer dispersed in the gas phase

Reaction rates

Initiation

Initiator is activaled to produce radicals
$$I_2 \! o \! 2R_1^{ullet}$$

$$r = 2fk_d I_2$$

Propagation

$$R_n^{\bullet} + M \rightarrow R_{n+1}^{\bullet}$$

$$r = k_p M R_n^{\bullet}$$

Chain Transfer

$$R_n^{\bullet} + S \rightarrow P_n + R_1^{\bullet}$$

 $R_n^{\bullet} + M \rightarrow P_n + R_1^{\bullet}$

$$R_n^{\bullet} + CTA \rightarrow P_n + R_1^{\bullet}$$

$$r = k_{fM} M R_n^{\bullet}$$

$$r = k_{fS} SR_n^{\bullet}$$

(CT to Monomer)

$$r = k_{fCTA}(CTA)R_n^{\bullet}$$
 (CT to CTA)

Termination

$$R_n^{\bullet} + R_m^{\bullet} \longrightarrow P_{n+m}$$

$$R_n^{\bullet} + R_m^{\bullet} \longrightarrow P_n + P_m$$

L> 2 polymers: 1) length m 1) length m

$$r = k_{tc} R_n^{\bullet} R_m^{\bullet}$$

$$r = k_{td} R_n^{\bullet} R_m^{\bullet}$$

(Combination)

(Disproportionation)

• Overall Concentration of active species (notation):

$$R^{\bullet} = \sum_{n=1}^{\infty} R_n^{\bullet}$$
 we consider species one by one summation of all radicals

Concerning the initiation step:

Iniator is activated forming two primary radicals I.

Reaction scheme

$$I_2 \xrightarrow{k_d} I^{\bullet} + I^{\bullet}$$

$$I^{ullet} + M \stackrel{k_I}{\longrightarrow} R_1^{ullet}$$
 active chain of largeth: cooling the cooling the cooling the cooling the cooling the cooling the cooling that the cooling the cooling that cooling the cool

$$I_2 = \text{initiator}$$
 $I^{\bullet} = \text{primary radical}$

$$r_d = k_d I_2$$

$$r_1 = k_I M I^{\bullet}$$

 R_1^{\bullet} = active chain, length 1

Primary radical formation

Active chain of length 1 formation

* 'f' factor: it accounts for the possibility, for a primary radical, to recombine with another primary radical and form the initiator molecule

stoich coeff is inside these relations

$$\frac{dI_2}{dt} = -k_d I_2$$

$$\frac{dI^{\bullet}}{dt} = 2 \int_{2 \text{ because}}^{\infty} k_d I_2 - k_I I^{\bullet} M$$

Initiator molecule

Primary radical

The reactivity of the primary radicals is extremely high \rightarrow the rate of radical formation is much lower than the rate of radical reaction with the monomer. Accordingly, the concentration of primary radicals remains very small in the system and, neglecting their accumulation inside the reactor, the corresponding material balance becomes:

STEADY STATE
APPROXIMATION
(accomulation form
equal to zero)

$$\frac{dI^{\bullet}}{dt} = 2f k_d I_2 - k_I I^{\bullet} M \approx 0 \quad \Rightarrow \quad k_I I^{\bullet} M = 2f k_d I_2 \equiv r_I$$
Active chain production rate

| 22/11/2023

Typical Assumptions

1) Long Chain Assumption (LCA):

Chain-length independent rate constants (universally applied when dealing with high MW polymers)

Since we have many polymer with high MW we can consider this approximation

Balance made on the active chains
Radical formed with initiation and ended with termination

R. consumed to form

R., R. forms R. ...

* we don't consider

the propagation term

Material balances for I, R' and M

$$\frac{dI_2}{dt} = -k_d I_2$$

$$\frac{dR^{\bullet}}{dt} = 2fk_d I_2 - k_t R^{\bullet 2}$$

$$\frac{dM}{dt} = -k_p MR^{\bullet} - k_{fm} MR^{\bullet} - k_I MI^{\bullet} \approx -k_p MR^{\bullet}$$

$$\frac{dM}{dt} = -k_p MR^{\bullet} - k_{fm} MR^{\bullet} - k_I MI^{\bullet} \approx -k_p MR^{\bullet}$$
Singher walks

2) Steady-state approximation (SSA):

The radicals consumptions rate is much higher than the radical formation rate

No accumulation term in the radicals mass balances

$$\frac{dI^{\bullet}}{dt} = 2f k_d I_2 - k_I I^{\bullet} M \approx 0 \qquad \Rightarrow \qquad k_I I^{\bullet} M = 2f k_d I_2 \equiv r_I$$

Active chain production rate Initiation rate

*
$$\frac{dR^{\bullet}}{dt} = 2fk_dI_2 - k_tR^{\bullet 2} \approx 0$$
 \Rightarrow $R^{\bullet} = \sqrt{\frac{2fk_dI_2}{k_t}}$ initiation devices the description of the second secon

POLITECNICO MILANO 1863

E2 polymerisation mechanisms (Chain-growth) :

Bulk FRP

Monomor

Initiation:
$$I_2 \xrightarrow{k_d, f} 2R_1$$

Propagation:
$$R_n^{\cdot} + M \xrightarrow{\kappa_p} R_{n+1}^{\cdot}$$

Termination:
$$R_n^{\cdot} + R_m^{\cdot} \xrightarrow{k_{tC}} P_{n+m}$$

$$R_n + R_m \xrightarrow{k_{tD}} P_n + P_m$$

Methyl Acrylate

 $6.0*10^9$

Main assumptions:

- 1) SSA for all active species
- 2) (CLA) Chain length-independent rate coefficients
- 3) Constant volume, isothermal, well-mixed batch reactor
- **4) Irreversible reactions** –neglect reverse reaction such as depropagation at high temperature
 - 5) No CTA —chain transfer to monomer and solvent only

Problem DATA

Starting conditions for all monomers:

• $M_{in} = 4 \text{ [mol/L]}$ • $I_{in} = 6*10^{-3} \text{ [mol/L]}$ • f=0.5 [-]

Kinetic Rate Constants at 50°C, 1 atm

Monomer	Ethylene	Styrene	wietny wietnacrylate	e ivietnyi Atrylate			
$\mathbf{k_d} \left[1/s \right]$	$2*10^{-4}$	$2 * 10^{-4}$	2 * 10-4	2 * 10-4			
$k_P [L/mol/s]$	54	238	648	22900			
$k_t [L/mol/s]$	2.9* 10 ⁸	2.0* 10 ⁸	$9.4 * 10^7$	$5.1 * 10^8$			
Propagation							
Monomer	$\mathbf{E}_{\mathbf{P}}$	[kJ/mo <i>l</i>]	$\Delta V_P \left[L/mol \right]$	$A_P [L/mol/s]$			
Methyl Acryla	te	17.7	-11.7* 10 ⁻³	1.66* 10 ⁷			
Termination							
Monomer	Et	[kJ/mol]	$\Delta V_t \left[L/mol \right]$	$A_t [L/mol/s]$			

 $20.0*\ 10^{-3}$

Requests:

1) $I(\tau)$? $M(\tau)$? $X(\tau)$?

- For all the 4 monomers

- Both **analytical** and **numerical** resolution

- In PFR and CSTR

2) Ι (τ)? Μ (τ) ? Χ (τ) ?

- For PMA

- In PFR and CSTR in series

3) Rate constants effect on $I(\tau)$ $M(\tau)$ $X(\tau)$

- For PMA

- In PFR

Methyl Acrylate

CSTR (continuous , homogen., NO ACC, Algebraic)

F volumetric flourate

 $F=const \left[\frac{m^3}{5}\right]$

$$O = C_{i}^{IN} - C_{i}^{OUT} + \sum_{j=1}^{Nreactions} V_{ij} R_{j} C \qquad \qquad \left(C = \frac{V}{F}\right)$$

Multiple CSTR

$$C_{\text{single}} = \frac{C}{N_{\text{CSTRs}}}$$

$$Ci|_{N} = \frac{C_{i,N}}{(1+7\kappa)}m$$
 m: number of CSTR

PFR (F const, homogeneous...)
$$\frac{dCi}{d\tau} = \sum_{j=1}^{NR} V_{ij} R_{j}.$$

$$Ci (Y=0) = Ci^{N}$$

PFR coordinate is in space

CSTR

$$T(\mathcal{C}) = \frac{I_M}{1 + K_L \mathcal{C}}$$
 initiator

$$M(\mathcal{L}) = \frac{M_{IN}}{1 + K_p \cdot R^{\bullet} \cdot \mathcal{L}}$$
 monomer

$$M(\mathcal{C}) = \frac{M_{IN}}{1 + K_{p} \cdot R^{\bullet} \cdot \mathcal{C}}$$

$$R^{\bullet} = \sum_{n=1}^{\infty} Rm^{\bullet} \longrightarrow R^{\bullet} = \sqrt{\frac{25 \text{ kd} \cdot \text{Trc}}{K_{t}}}$$
radical concentration ??

$$X = 1 - \frac{1}{1 + k_0 \cdot R \cdot Y}$$
 conversion

$$X = \frac{M_{IN} - M_{IC}}{M_{IN}}$$

$$M(\mathcal{C}) = M^{IN} \cdot \exp\left[\frac{2K\rho}{Kd} \sqrt{\frac{2FkdT_{IN}}{K_{t}}} \left(\exp\left(-\frac{kd\mathcal{C}}{2}\right)\right) - 1\right] \left(\frac{dH}{dt}\right)$$

$$\chi(\mathcal{C}) = 1 - \exp\left[\frac{2K\rho}{Kd} \sqrt{\frac{2FkdT_{IN}}{K_{t}}} \left(\exp\left(-\frac{kd\mathcal{C}}{2}\right)\right) - 1\right]$$

Inside MIN we have R. inside

Exercise

$$P) \qquad Rm \cdot + M \xrightarrow{\ \ \ \ \ \ \ \ \ \ \ } R \cdot_{n+1}$$

T)
$$R_n \cdot + R_m \cdot \underline{K_{tot}} \Rightarrow R_{n+m}$$

 $R_n \cdot + R_m \cdot \underline{K_{tot}} \Rightarrow P_n + P_m$ $(K_t = K_{tc} + K_{tot})$