

Discrete POWER & Signal **Technologies**

2N5401

MMBT5401

PNP General Purpose Amplifier

This device is designed as a general purpose amplifier and switch for applications requiring high voltages. Sourced from Process 74.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	150	V
V _{CBO}	Collector-Base Voltage	160	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units
		2N5401	*MMBT5401	
P_D	Total Device Dissipation	625	350	mW
	Derate above 25°C	5.0	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

PNP General Purpose Amplifier

(continued)

Flectrica	Charas	40-10-10-
FIECTRICA	ı Charac	'teristics

Symbol	Parameter	Test Conditions	Min	Max	Units
	RACTERISTICS				
		1 40 1 0	450	1	\ \/
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	150		V
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	160		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V
СВО	Collector Cutoff Current	$V_{CB} = 120 \text{ V}, I_{E} = 0$		50	nA
		$V_{CB} = 120 \text{ V}, I_E = 0, T_A = 100^{\circ}\text{C}$		50	μΑ
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
		$I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$	60	240	
h _{FE}	DC Current Gain	$I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$	50		
		$I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$	50	240	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 10 mA, I _B = 1.0 mA		0.2	V
		$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		0.5	V
$V_{BE(sat)}$	Base-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		1.0	V
		$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		1.0	V
SMALL S	IGNAL CHARACTERISTICS				
f _T	Current Gain - Bandwidth Product	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V},$	100	300	MHz
		f = 100 MHz			
C _{obo}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0,$ f = 1.0 MHz		6.0	pF
NF	Noise Figure	$I_C = 250 \mu\text{A}, V_{CE} = 5.0 \text{V},$		8.0	dB
		$R_S = 1.0 \text{ k}\Omega$			
		f = 10 Hz to 15.7 kHz		I	1

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

Spice Model

Itf=0 Vtf=0 Xtf=0 Rb=10)

PNP General Purpose Amplifier

(continued)

Typical Characteristics

PNP General Purpose Amplifier

(continued)

Typical Characteristics (continued)

V_R - REVERSE BIAS VOLTAGE(V)

0.1

