#### CSPB3202 Artificial Intelligence

# Search



# Search Strategy

#### Where we are



Problem Formulation

- Nature of Environment: deterministic, fully-observable, discrete, known
- Formulation: state-space
- Representation: Tree/Graph

### Review: Search Algorithm



function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end

### Review: Tree Search Strategy?

- Can we get to the goal with the fewest effort (without having to expand all the nodes)?
- Which Fringe Node to Explore First?
  - -> Search Strategy

#### Where we are



#### Uninformed Search Overview

#### **Properties**

- Blind search- No information other than problem definition
- Is Goal == True or False
- Does not know if one state is more promising than another

#### Kinds

- Depth-first search (DFS)
- Breadth-first search (BFS)
- Uniform-cost search (UCS)

### Tools for Algorithm Analysis

#### Algorithm Properties

- Completeness- guaranteed to find a solution if one exists?
- Optimality- guaranteed to find an optimal solution?
- Time Complexity- how long the computation take to find a solution?
- Space Complexity- how much memory to do the computation?

### Tools for Algorithm Analysis

#### **Big-O** notation

- BigO notation estimates the complexity given input size N
- It is machine-independent
- They can be used for both time and space complexity
- There are worst-case, best-case, and average-case, but we typically use worst-case
- When analyze, we ignore the constant in front of O, and we only care about the most dominant term.
- Dominance order

$$O(1) < O(\log(n)) < O(\sqrt{n}) < O(n) < O(n\log(n)) < O(n^2) < O(2^n) < O(n!)$$

### Search Algorithm Properties

- Complete?
- Optimal?
- Time complexity?
- Space complexity?
- Quantifying search tree parameters
  - b is the branching factor
  - m is the maximum depth
  - solutions at various depths
- Number of nodes in entire tree?
  - $1 + b + b^2 + .... b^m = O(b^m)$



# Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack





# Depth-First Search (DFS) Properties

- What nodes DFS expand?
  - Some left prefix of the tree.
  - Could process the whole tree!
  - If m is finite, takes time O(b<sup>m</sup>)
- How much space does the fringe take?
  - Only has siblings on path to root, so O(bm)
- Is it complete?
  - m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
  - No, it finds the "leftmost" solution, regardless of depth or cost



### **Breadth-First Search**

Strategy: expand a shallowest node first

*Implementation: Fringe* 

is a FIFO queue





# Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
  - Processes all nodes above shallowest solution
  - Let depth of shallowest solution be s
  - Search takes time O(b<sup>s</sup>)
- How much space does the fringe take?
  - Has roughly the last tier, so O(b<sup>s</sup>)
- Is it complete?
  - s must be finite if a solution exists, so yes!
- Is it optimal?
  - Only if costs are all 1 (more on costs later)



### DFS vs. BFS

# Depth-Limited Search



### **Iterative Deepening**

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
  - Run a DFS with depth limit 1. If no solution...
  - Run a DFS with depth limit 2. If no solution...
  - Run a DFS with depth limit 3. .....
- Isn't that wastefully redundant?
  - Generally most work happens in the lowest level searched, so not so bad!



## Searching the least cost



BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

### **Uniform Cost Search**

Strategy: expand a cheapest

node first:

Fringe is a priority queue (priority: cumulative cost)





# Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
  - Processes all nodes with cost less than cheapest solution!
  - If that solution costs  $C^*$  and arcs cost at least  $\varepsilon$ , then the "effective depth" is roughly  $C^*/\varepsilon$
  - Takes time  $O(b^{C^*/\varepsilon})$  (exponential in effective depth)
- How much space does the fringe take?
  - Has roughly the last tier, so  $O(b^{C*/\varepsilon})$
- Is it complete?
  - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
  - Yes! (Proof next lecture via A\*)



#### **Uniform Cost Issues**

Remember: UCS explores increasing cost contours

• The good: UCS is complete and optimal!

- The bad:
  - Explores options in every "direction"
  - No information about goal location

We'll fix that soon!





# **Uninformed Search Summary**

|                              | DFS                                    | BFS                                       | Iterative<br>Deepening             | UCS                                                   |
|------------------------------|----------------------------------------|-------------------------------------------|------------------------------------|-------------------------------------------------------|
| Completeness                 | Yes only if no cycle                   | Yes                                       | Yes                                | Yes (assuming no cost loops)                          |
| Optimality                   | No                                     | Yes if all costs are equal                | Yes if all costs are equal         | Yes                                                   |
| Time Complexity              | $O(b^m)$                               | $O(b^s)$                                  | $O(b^s)$                           | $O(b^{\mathcal{C}*\!/\mathcal{E}})$                   |
| Space Complexity             | O(bm)                                  | $O(b^s)$                                  | O(bs)                              | $O(b^{C*/\mathcal{E}})$ $O(b^{C*/\mathcal{E}})$       |
| Advantage                    | Efficient in space                     | Relatively efficient in time when $s < m$ | Combines advantages of DFS and BFS | Complete and optimal                                  |
| Disadvantage /<br>Limitation | Not optimal, can go into a rabbit hole | Not memory efficient                      | Does not consider cost             | Cheap cost so far doesn't mean it's a right direction |