In [1]: # Support vector machines generally deals with the separation between two layers # there is a linear model, non linear model.

FOREST FIRE

```
In [4]: import numpy as np
    import pandas as pd
    from sklearn import preprocessing
    from sklearn import metrics
    import seaborn as sns
    from sklearn.svm import SVC
    from sklearn.model_selection import train_test_split
    from matplotlib import pyplot as plt
    from sklearn.decomposition import PCA
    from mlxtend.plotting import plot_decision_regions
```

In [5]: #classify the Size_Categorie using SVM

In [6]: # Let us import the dataset
forest_fire=pd.read_csv("C:\\Users\\nishi\\Desktop\\Assignments\\Support_Vector_N

In [7]: forest_fire

Out[7]:

	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	 monthfeb	monthjan	mont
0	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	 0	0	
1	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	 0	0	
2	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	 0	0	
3	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	 0	0	
4	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	 0	0	
512	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	 0	0	
513	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	 0	0	
514	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	 0	0	
515	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	 0	0	
516	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	 0	0	

517 rows × 31 columns

In [8]: forest_fire1=forest_fire.copy()

In [9]: forest fire1.head() Out[9]: day FFMC DMC DC ISI temp RH wind rain ... monthfeb monthjul month 0 0 fri 86.2 26.2 94.3 5.1 8.2 51 6.7 0.0 0 0 mar ... 1 oct tue 90.6 35.4 669.1 6.7 18.0 33 0.9 0.0 ... 0 0 0 2 43.7 686.9 oct sat 90.6 6.7 14.6 33 1.3 0.0 ... 0 0 3 fri 91.7 33.3 77.5 9.0 8.3 97 4.0 0.2 ... 0 0 0 mar 51.3 102.2 9.6 0 0 0 4 89.3 11.4 99 1.8 0.0 ... mar sun 5 rows × 31 columns In [10]: forest_fire1.iloc[:,0:11] Out[10]: month day **FFMC DMC** DC ISI temp RH wind rain area 0 mar fri 86.2 26.2 94.3 5.1 8.2 51 6.7 0.0 0.00 1 oct tue 90.6 35.4 669.1 6.7 18.0 33 0.9 0.0 0.00 2 90.6 43.7 686.9 14.6 0.00 oct sat 6.7 33 1.3 0.0 3 0.00 mar fri 91.7 33.3 77.5 9.0 8.3 97 4.0 0.2 4 51.3 102.2 9.6 99 0.0 0.00 89.3 11.4 1.8 mar sun ••• 512 81.6 56.7 665.6 1.9 27.8 32 2.7 0.0 6.44 aug sun 513 81.6 665.6 71 0.0 54.29 aug sun 56.7 1.9 21.9 5.8 514 81.6 665.6 21.2 11.16 56.7 1.9 70 6.7 0.0 aug sun 515 146.0 614.7 25.6 0.0 0.00 94.4 11.3 42 4.0 aug sat 516 nov tue 79.5 3.0 106.7 1.1 11.8 31 4.5 0.0 0.00

517 rows × 11 columns

In [11]: | forest_fire1.shape

Out[11]: (517, 31)

In [12]: forest_fire1.describe()

Out[12]:

	FFMC	DMC	DC	ISI	temp	RH	wind	
count	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	517.00
mean	90.644681	110.872340	547.940039	9.021663	18.889168	44.288201	4.017602	0.02
std	5.520111	64.046482	248.066192	4.559477	5.806625	16.317469	1.791653	0.29
min	18.700000	1.100000	7.900000	0.000000	2.200000	15.000000	0.400000	0.00
25%	90.200000	68.600000	437.700000	6.500000	15.500000	33.000000	2.700000	0.00
50%	91.600000	108.300000	664.200000	8.400000	19.300000	42.000000	4.000000	0.00
75%	92.900000	142.400000	713.900000	10.800000	22.800000	53.000000	4.900000	0.00
max	96.200000	291.300000	860.600000	56.100000	33.300000	100.000000	9.400000	6.40

8 rows × 28 columns

4

•

```
In [13]: forest_fire1.isnull().sum()
Out[13]: month
                            0
                            0
          day
          FFMC
                            0
          DMC
                            0
          DC
                            0
          ISI
                            0
                            0
          temp
          RH
                            0
          wind
                            0
          rain
                            0
                            0
          area
          dayfri
                            0
                            0
          daymon
                            0
          daysat
                            0
          daysun
                            0
          daythu
          daytue
                            0
          daywed
                            0
                            0
          monthapr
          monthaug
                            0
          monthdec
                            0
                            0
          monthfeb
          monthjan
                            0
                            0
          monthjul
          monthjun
                            0
                            0
          monthmar
          monthmay
                            0
          monthnov
                            0
                            0
          monthoct
                            0
          monthsep
          size_category
                            0
          dtype: int64
In [14]: # Correlation
          corr=forest_fire1.iloc[:,0:11].corr()
```

In [15]: plt.figure(figsize=(16,16))
sns.heatmap(corr,annot=True)

Out[15]: <AxesSubplot:>

Outlier Check

```
In [16]: outL=sns.boxplot(forest_fire1['area'])
```

C:\Users\nishi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.

warnings.warn(

We find 3 Outliers in the data.

```
In [17]: plt.rcParams["figure.figsize"] = 9,5
In [18]: data=forest_fire1['area']
         print(data)
          0
                  0.00
          1
                  0.00
          2
                  0.00
          3
                  0.00
          4
                  0.00
                 . . .
          512
                  6.44
          513
                 54.29
          514
                 11.16
          515
                  0.00
                  0.00
          516
          Name: area, Length: 517, dtype: float64
```

```
In [33]: plt.figure(figsize=(16,5))
    print("Skew: {}".format(forest_fire1['area'].skew()))
    print("Kurtosis: {}".format(forest_fire1['area'].kurtosis()))
    outL= sns.kdeplot(forest_fire1['area'],color='orange',shade='True')
    plt.xticks([i for i in range(0,1200,50)])
    plt.show()
```

Skew: 12.846933533934868 Kurtosis: 194.1407210942299

The plot above is skewed to the right and has a high kurtosis value. We observe that most of the forest fire area lies in less than 150 hectares.

```
In [34]: dfa = forest_fire1[forest_fire1.columns[0:10]]
month_column = dfa.select_dtypes(include='object').columns.tolist()
```

```
In [35]: plt.figure(figsize=(16,10))
           for i,col in enumerate(month_column,1):
                plt.subplot(2,2,i)
                sns.countplot(data=dfa,y=col)
                plt.subplot(2,2,i+2)
                forest_fire1[col].value_counts(normalize=True).plot.bar()
                plt.ylabel(col)
                plt.xlabel('% distribution per category')
           plt.tight_layout()
           plt.show()
             aug
             sep
                                                            g sun
             dec
                                                                                    count
             0.35
                                                             0.175
             0.30
                                                             0.150
             0.25
                                                             0.125
           fj 0.20
                                                            æ 0.100
             0.15
                                                             0.075
             0.10
                                                             0.050
             0.05
                                                             0.025
```

We can conclude that majority of the fires occur in the month of august and september. When we talk about the days the major cases occurr on friday, saturday and sunday.

Sun

```
In [36]: num_columns = dfa.select_dtypes(exclude='object').columns.tolist()
```

may

E

Out[37]:

	FFMC	DMC	DC	ISI	temp	RH	wind	rain
skewness	-6.575606	0.547498	-1.100445	2.536325	-0.331172	0.862904	0.571001	19.816344
kurtosis	67.066041	0.204822	-0.245244	21.458037	0.136166	0.438183	0.054324	421.295964

SVM

```
In [38]: X = forest_fire1.iloc[:,2:30]
y = forest_fire1.iloc[:,30]

In [39]: mapping = {'small': 1, 'large': 2}

In [40]: y = y.replace(mapping)

In [41]: x_train,x_test,y_train,y_test = train_test_split(X,y,test_size = 0.20, stratify = 0.20)
```

Linear

```
In [45]: model_linear = SVC(kernel = "linear")
model_linear.fit(x_train,y_train)
pred_test_linear = model_linear.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_linear))
```

Accuracy: 0.9711538461538461

Poly

```
In [46]: model_poly = SVC(kernel = "poly")
model_poly.fit(x_train,y_train)
pred_test_poly = model_poly.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_poly))
```

Accuracy: 0.7403846153846154

RBF

```
In [48]: model_rbf = SVC(kernel = "rbf")
model_rbf.fit(x_train,y_train)
pred_test_rbf = model_rbf.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_rbf))
```

Accuracy: 0.7403846153846154

Sigmoid

```
In [49]: model_sigmoid = SVC(kernel = "sigmoid")
model_sigmoid.fit(x_train,y_train)
pred_test_sigmoid = model_sigmoid.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_sigmoid))
```

Accuracy: 0.7019230769230769

CONCLUSION

The linear model gives us the best accuracy compared to poly, rbf and sigmoid model.