

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Laboratório de Algoritmos e Estruturas de Dados – 2/2023

AULA PRÁTICA – RECURSIVIDADE

Prof. Edwaldo Soares Rodrigues

1 – Faça um método	que receba	um núme	ro inteiro	n e efetue	e o número	o de multipli	icações,
pedido nos casos a se	guir:						

- a) $5n + 4n^3$
- b) $9n^4 + 5n^2 + n/2$
- c) $4n^3 + 2$
- d) $lg(n) + n^2$
- e) $3\lg(n) + \lg(n)$
- f) $2n + 2n2 + \lg(n)$

2 – Marque verdadeiro ou falso, em cada célula da tabela abaixo:

a)

	Θ (1)	Θ(lg n)	Θ (n)	Θ (n.lg(n))	Θ(n²)	Θ(n³)	Θ (n⁵)	Θ(n ²⁰)
f(n) = Ig(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

b)

	Ω(1)	Ω(lg n)	Ω(n)	$\Omega(n.lg(n))$	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

c)

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n ²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = Ig(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

3 – Apresente a função e a taxa de complexidade para as 3 notações vistas em sala, referente ao número de comparações e movimentações de registros, para o pior e melhor caso, para as opções a seguir:

a)

```
void imprimirMaxMin(int [] array, int n){
    int maximo, minimo;

if (array[0] > array[1]){
        maximo = array[0];
    } else {
        maximo = array[1];
    }

for (int i = 2; i < n; i++){
        if (array[i] > maximo){
            maximo = array[i];
        } else if (array[i] < minimo){
            minimo = array[i];
        }
        else if (array[i] < minimo){
            minimo = array[i];
        }
    }
}</pre>
```

b)

```
i = 0;

while (i < n) {
    i++;
    a--;
}

if (b > c) {
    i--;
} else {
    i--;
    a--;
}
```


c)

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

4 – Apresente o tipo de crescimento que melhor caracteriza as funções abaixo:

	Constante	Linear	Polinomial	Exponencial
3n				
1				
(3/2)n				
2n ³				
2 ⁿ				
3n ²				
1000				
(3/2) ⁿ				

5- Classifique as funções $f_1(n)=n.$ lg(n), $f_2(n)=lg(n)$, $f_3(n)=8n^2$, $f_4(n)=64$, $f_5(n)=6n^3$, $f_6(n)=8^{2n}$ e f7(n)=4n de acordo com o crescimento, do mais rápido para o mais lento.