Decoding Connections: Workshop in Network Data Analysis

Beatrice Franzolini¹

 $^1{\rm Bocconi}$ Institute for Data Science and Analytics Bocconi University

June 8, 2025 - SICSS-Lake Como

Contents

- 1. Introduction to Network Data
- 2. How to Encode Network Data
- 3. Descriptive Analysis of Networks
- 4. Simple Probabilistic Models
- 5. Stochastic Block Models

Network Data

- Network data describe the connections (edges/links) among a set of entities (nodes / vertices), showing who or what is connected to whom or what.
- Because those connections create interdependencies and define a specific structure (different than most datasets), we need specialized statistical techniques to make sense of the patterns and analyze networks.

Example 1:

Wiretapping Network of Drug Dealing in Colombia¹

¹Kaustav Basu, Arunabha Sen, Identifying individuals associated with organized criminal networks: A social network analysis, Social Networks, Volume 64, 2021, Pages 42-54,

Example 2: DTI Networks ²

² J. Cabral , M. L. Kringelbach , G. Deco, Functional Graph Alterations in Schizophrenia: A Result from a Global Anatomic Decoupling? Pharmacopsychiatry 2012; 45(S 01): 557-564

Example 3: X Network of Italian Members of Parliament

Examples of Network Data

- **Social networks:** individuals connected by "friendship" or interactions (e.g., likes, DMs).
- Information networks: webpages linked by hyperlinks; citation networks
- Physical networks: transportation and infrastructure networks
- Biological/medical networks: protein-protein interaction; neural connectomes
- Organizational networks: co-authorship; trade partnerships
- A good resource with many network data: https://networkrepository.com/index.php

Examples of Research Questions Related to Network Data

- Influence & centrality: Who are the most central/influential actors?
- **Community detection:** How to uncover cohesive subgroups? How to detect groups of subjects that behave similarly within the network?
- **Structure—outcome relations:** How are the network connections influenced by a set of available covariates?
- Evolution of ties: Do links form by preferential attachment or homophily?
- Robustness & intervention: What happens if key nodes are removed?

A Formal Representation of a Network

In order to analyze network data, we need first a way to represent them formally!

Network data are represented by graphs.

A graph G is an ordered pair G = (V, E) where:

- V is a set of n vertices (nodes).
- $E \subset \{\{u,v\}: u,v \in V, u \neq v\}$ is a set of unordered, distinct pairs.

Notation:
$$|V| = n$$
, $|E| = m$, $d_i = \deg(i) = \#\{j : \{i, j\} \in E\}$.

$$V = \{A, B, C\}$$
 $|V| = n = 3$ $E = \{\{A, B\}, \{B, C\}\}$ $|E| = m = 2$ $d_A = 1, d_B = 2, d_C = 1$

Undirected vs Directed networks

Undirected Edges are unordered pairs $\{u, v\}$; mutual relation (e.g., friendship). Directed Edges are ordered pairs (u, v); asymmetric relation (e.g., Twitter follow).

Figure: Undirected network

Figure: Directed network

In directed graphs, $\deg^{\operatorname{in}}(i) \neq \deg^{\operatorname{out}}(i)$.

Simple vs Multi graphs

- Simple graph: at most one edge per node-pair, no loops.
- Multigraph: allows parallel edges and self-loops.

 $Figure: \ Multigraph \ example$

Networks with Attributes

- Node attributes: categories, covariates (e.g., gender, age).
- Edge weights: tie strength (e.g., number of emails).
- **Signed networks:** positive/negative ties (e.g., like vs dislike on YouTube).

Figure: Attributed network example, colors represent node attributes (node-colored network), thickness of the edges represents edge weights

Figure: Attributed network example, colors represent node attributes (node-colored network), numbers on the edges represents edge weights

And actually... many others³

³ Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of complex networks, 2(3), 203-271.

Adjacency List

- For each node, list neighbors (feasible for sparse or small graphs).
- Example (triangle A–B–C):

$$A:[B,C],\ B:[A,C],\ C:[A,B]$$

R / igraph:

```
library(igraph)
edges <- data.frame(from=c("A","A","B"), to=c("B", "C", "C"))
g <- graph_from_data_frame(edges,dir=FALSE)
adj_list <- adjacent_vertices(g, V(g))
print(adj)list)</pre>
```

Edge List

- Two-column table of edges.
- Example (triangle A–B–C):

 $\begin{array}{ccc} A & B \\ A & C \\ B & C \end{array}$

R / igraph:

as_edgelist(g)

Adjacency Matrix

- $n \times n$ matrix A with $A_{ij} = 1$ if edge exists, else 0.
- Symmetric for undirected; memory $O(n^2)$.

A real data example: Infinito network ^a

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

R / igraph:

as_adjacency_matrix(g)

^aCalderoni, F., & Piccardi, C. (2014). Uncovering the structure of criminal organizations by community analysis: The infinito network. In 2014 tenth international conference on signal-image technology and Internet-based systems (pp. 301-308). IEEE.

Summing Up: Encoding

Adjacency Matrix

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Edge List

A B C B C

Adjacency List

A: [B, C]

B: [A, C]

C: [A, B]

Density of a Network

Density

$$\mathsf{Density} = \frac{m}{\binom{n}{2}} = \frac{2\,m}{n(n-1)} \quad \big(0 \le \mathsf{Density} \le 1\big)$$

where m = num. of edges and n = num. of nodes

- What it measures: Fraction of realized edges out of all possible $\binom{n}{2}$. Density $\approx 0 \implies$ very sparse; Density $\approx 1 \implies$ almost complete.
- Special cases:
 - Complete graph K_n : $m = \frac{n(n-1)}{2} \implies \text{Density} = 1$.
 - Tree on n nodes: $m = n 1 \implies \text{Density} = \frac{2}{n}$, which vanishes as n grows.
- Why use it:
 - Compare overall connectivity across networks of different sizes.
 - Quick sanity check (e.g. is my statistical model generating graphs that are too sparse?).

In R / igraph: edge_density(g)

Vertex Degree

Undirected network. The degree of node i, denoted

$$d_i = \sum_j A_{ij},$$

is the number of edges incident on i, where the adjacency matrix entry

$$A_{ij} = \begin{cases} 1, & \text{if there is an (undirected) edge between } i \text{ and } j, \\ 0, & \text{otherwise.} \end{cases}$$

Directed network.

$$d_i^{\text{in}} = \sum_j A_{ji}, \qquad d_i^{\text{out}} = \sum_j A_{ij}.$$

Incoming degree counts arrows into i; outgoing degree counts arrows out.

Vertex Degree Distribution

R / igraph: degree(g)

Degree distribution.

Let n be the number of nodes. Then

$$P(k) = \frac{\#\{i : d_i = k\}}{n}$$

is the fraction of nodes of degree k.

In our example $(d_1, d_2, d_3, d_4) = (3, 2, 3, 2)$, so

$$P(2) = \frac{2}{4} = 0.5, \quad P(3) = \frac{2}{4} = 0.5.$$

Vertex Centrality

Many network-analysis questions boil down to:

• Which nodes are most important in the network?

Research questions examples:

- "What airports are key bottlenecks in transportation?"
- "Who should we vaccinate first to stop an epidemic most efficiently?"
- "Which employee's departure would fragment the organization most?"
- "Which web pages serve as gateways to the broader Internet?"
- "Which user in a social media network has the greatest influence potential?"

Centrality measures answer these questions = quantify different notions of "importance".

Degree centrality (i.e., node degree)

$$C_D(i) = d_i,$$

Limitations of Degree Centrality

Two nodes with the same degree but very different roles

- Degree centrality: $d_A = 2$ and $d_B = 2$.
- Node A: lies entirely within one cluster its removal does not disconnect the network.
- Node B: is the *only* bridge between two clusters – its removal *splits* the network into two disconnected parts.
- Takeaway: Node degree is just local popularity. Nodes with equal degree can play very different global roles. Degree centrality alone can miss critical structural importance.

We need different measures of centrality!

Shortest Path

Path and Shortest Path

In an unweighted graph G = (V, E), a path from node u to node v is a sequence of distinct vertices

$$u = x_0, x_1, \dots, x_k = v$$
 with $(x_{i-1}, x_i) \in E$ for $i = 1, \dots, k$.

The *length* of such a path is simply the number of edges, k.

A shortest path between u and v is one having the minimum possible k.

Notation: $d(u, v) = \min\{k : \exists \text{ a path of length } k \text{ from } u \text{ to } v\}.$

Here, d(A,C)=2, since the minimum number of hops from A to C is two (via B).

Vertex Centrality: Definitions

Betweenness centrality

$$C_B(i) = \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}},$$

where σ_{st} is the number of shortest paths $s \to t$, and $\sigma_{st}(i)$ counts those that pass through i. Measures how much i "bridges" pairs of nodes.

Closeness centrality

$$C_C(i) = \frac{1}{\sum_j d(i,j)},$$

with d(i, j) the shortest-path distance. Quantifies how quickly i can reach all others.

In R: betweenness(g), closeness(g)

Franzolini Network data analysis June 8, 2025 - SICSS-Lak

Vertex Centrality: Toy Network Example

Degree centrality:

$$C_D(A) = 3$$
, $C_D(B) = 2$, $C_D(C) = 5$, $C_D(D) = 1$, $C_D(E) = 1$, $C_D(F) = 2$.

• Betweenness centrality:

$$C_B(A) = 1$$
, $C_B(B) = 0$, $C_B(C) = 8$, $C_B(D) = 0$, $C_B(E) = 0$, $C_B(F) = 0$.

Closeness centrality:

$$C_C(A) = \frac{1}{7} \approx 0.143, \quad C_C(B) = C_C(F) = \frac{1}{8} = 0.125,$$

 $C_C(C) = \frac{1}{5} = 0.200, \quad C_C(D) = C_C(E) = \frac{1}{9} \approx 0.111.$

Vertex Centrality: Toy Network Example

Transitivity in Networks

What is transitivity?

- Intuitively: "a friend of a friend is likely also my friend."
- More formally: if edges A-B and B-C exist, how often do we also see A-C?
- Captures the tendency toward *closure* and local cohesion in real-world networks.
- High transitivity \implies strong community structure.

Basic patterns to measure transitivity:

Open triad (two-path without closure)

There are three distinct triads in a triangle!

Closed triad = Triangle (fully connected triple)

Local & Average Clustering Coefficients

Local and Average clustering coefficients

Local clustering coefficient:

$$C(v) = \frac{\text{num. of couples of "friends" of v that are "friends"}}{\text{num. of couples of "friends" of v}}$$

$$= \begin{cases} \frac{\#\{\text{triangles containing v}\}}{\binom{\deg(v)}{2}}, & \deg(v) \geq 2, \\ 0, & \text{otherwise.} \end{cases}$$

• Average clustering coefficient: $\bar{C} = \frac{1}{n} \sum_{v \in V} C(v)$.

Example:

$$C(1) =?, \quad C(2) =?, \quad C(3) =?,$$

 $C(4) =?, \quad C(5) =?,$
 $\bar{C} =?.$

$$C(4) = ?, \quad C(5) = ?$$

$$\bar{C}=?$$

Local & Average Clustering Coefficients

Local and Average clustering coefficients

• Local clustering coefficient:

$$C(v) = \frac{\text{num. of couples of "friends" of v that are "friends"}}{\text{num. of couples of "friends" of v}}$$

$$= \begin{cases} \frac{\#\{\text{triangles containing v}\}}{\binom{\deg(v)}{2}}, & \deg(v) \geq 2, \\ 0, & \text{otherwise.} \end{cases}$$

• Average clustering coefficient: $\bar{C} = \frac{1}{n} \sum_{v \in V} C(v)$.

Example:

$$C(1) = 1,$$
 $C(2) = 1,$ $C(3) = \frac{1}{3},$
 $C(4) = 0,$ $C(5) = 0,$

$$\bar{C} = \frac{1+1+\frac{1}{3}+0+0}{5} \approx 0.467.$$

Network data analys

Global Clustering Coefficient

Global clustering coefficient

$$C_{\rm global} = \frac{3 \times {\rm num.~of~triangles}}{{\rm num.~of~triads}} \label{eq:cglobal}$$

Example:

number of triangles = ? number of triads = ? C_{global} =?

Global Clustering Coefficient

Global clustering coefficient

$$C_{\rm global} = \frac{3 \times {\rm num.~of~triangles}}{{\rm num.~of~triads}} \label{eq:cglobal}$$

Example:

number of triangles =1number of triads =5 $C_{\rm global}=3/5=0.6$

Local vs Global Transitivity

$$\begin{split} C_{\rm local}(1) &= \frac{\#\{\text{triangles at }1\}}{{10 \choose 2}} = \frac{5}{45} = \frac{1}{9} \approx 0.111 \\ C_{\rm local}(i) &= \frac{1}{{2 \choose 2}} = 1, \quad i = 2, \dots, 11 \\ \bar{C} &= \frac{1}{11} \sum_{i=1}^{11} C_{\rm local}(v) = \frac{\frac{1}{9} + 10 \cdot 1}{11} = \frac{91}{99} \approx 0.919 \end{split}$$

$$C_{\rm global} = \frac{3 \times (\# \text{triangles} = 5)}{\sum_v \binom{d_v}{2}} = \frac{15}{55} = \frac{3}{11} \approx 0.273$$

Summing Up: Descriptive Statistics

General measures structure and size

Density: how much connected is the network. (in [0,1]) edge_density(g)
Degree dist: how many nodes with x connections. table(degree(g))

Measures of centrality

Degree: how many connections with node v degree(g)
Betweenness: how often v connects others betweenness(g)
Closeness: how close if v to others closeness(g)

Measures of transitivity

Average clustering: local transitivity transitivity(g, type="local")
Global clustering: global transitivity transitivity(g, type="global")

Probabilistic Generative Network Models

Given the observed set of nodes V, we can probabilistically model the network by assuming some **distribution** generating the links between them, i.e., define the distribution of the adjacency matrix A:

$$pr(A \mid \theta)$$

Then:

- Estimate θ from the observed network.
- Predict links for new nodes

Erdős–Rényi Random Graph⁴

Each pair of the n vertices is connected with **probability** p independently.

$$A_{u,v} \mid p \overset{\text{iid}}{\sim} \mathsf{Bernoulli}(p) \quad \forall u < v$$

- $\mathbb{E}[m] = \binom{n}{2}p$
- $d_i \sim \text{Bin}(n-1, p)$.

⁴Erdős & Rényi (1959). "On Random Graphs. I" Publicationes Mathematicae. 6 (3–4): 290–297.

Preferential Attachment Models⁵

- i. There is a fixed **initial network** G_{m_0} with $2 \le m_0 << m$ nodes
- ii. A new node v enters the network and creates m_0 links with the existing nodes sampling them according to

$$\operatorname{pr}(A_{v,u}=1) \underset{u}{\propto} f(\theta,d_u)$$

with f increasing function in d_u depending on the parameter θ .

iii. Step ii. is repeated until all n nodes are in the network.

Barabási & Albert (1999). "Emergence of scaling in random networks", Science, 286 (5439): 509–512.

Stochastic Block Model (SBM)⁶ Overview

- ullet A generative model for networks: n nodes are partitioned into K latent blocks.
- Each node i is assigned to a community $z_i \in \{1, \dots, K\}$ (unknown labels).
- Edge probabilities depend only on the communities:

$$pr(A_{ij} = 1 \mid z_i = k, z_j = \ell) = \theta_{k\ell}, \quad \forall i > j.$$

⁶Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. *Social Networks*, 5(2), 109–137.

f. Franzolini Network data analysis June 8, 2025 - SICSS-Lak

Blocks vs. Communities

Blocks in SBM

Nodes share the same *connectivity patterns*, i.e., they behave similarly, but they are not necessarily connected among themselves.

i, j in same block means

$$\operatorname{pr}(A_{i\cdot} \mid z_i = k) \approx \operatorname{pr}(A_{j\cdot} \mid z_j = k).$$

Community

Usually refers to a subset of nodes that form a *densely connected* subgraph:

- **Block:** A set of nodes with *equivalent linking profiles* to all blocks.
- Community: A cluster with high internal density of edges.

Assortativity in Stochastic Block Models

Assortative SBM

Dense intra-block connectivity, few inter-block links.

Non-assortative SBM

Sparse intra-block connectivity, relatively more inter-block links.

- **Assortative:** High probability of edges within blocks $(\theta_{kk} \gg \theta_{k\ell})$, reflecting strong community structure.
- Non-assortative: Low within-block edge probability ($\theta_{kk} \leq \theta_{k\ell}$), showing disassortative or core-periphery patterns.

Inference in SBMs

- Two sets of unknowns:
 - Block assignments $\mathbf{z} = (z_1, \dots, z_n)$, discrete labels $z_i \in \{1, \dots, K\}$.
 - Connection probabilities $\Theta = (\theta_{k\ell})_{k \leq \ell \leq K}$, continuous parameters.
- Frequentist MLE: $(\hat{z}, \hat{\Theta}) = \arg\max_{z,\Theta} \sum_{i < j} [A_{ij} \log \theta_{z_i, z_j} + (1 A_{ij}) \log (1 \theta_{z_i, z_j})].$
- ullet Degenerate MLE if K free:

Allowing arbitrary K gives the trivial solution: K = n, $z_i = i$, $\hat{\theta}_{ij} = A_{ij}$, i.e. each node in its own block, perfectly fitting every edge.

Take-away: To avoid this, one must

- Fit SBMs for different fixed K and compare fitting via information criteria,
- Use a Bayesian nonparametric approach / impose complexity penalties.

Frequentist SBM: Estimation

$$\begin{split} \text{ML objective:} \qquad & (\hat{z}, \hat{\Theta}) = \arg\max_{z, \Theta} \sum_{i < j} \left[A_{ij} \log \theta_{z_i, z_j} + (1 - A_{ij}) \log (1 - \theta_{z_i, z_j}) \right] \\ \text{E-step:} \qquad & \gamma_{ik} \propto \pi_k \prod_{j \neq i} \theta_{k, z_j}^{A_{ij}} (1 - \theta_{k, z_j})^{1 - A_{ij}} \\ \text{M-step:} \qquad & \pi_k \leftarrow \frac{1}{n} \sum_{i} \gamma_{ik}, \quad \theta_{k\ell} \leftarrow \frac{\sum_{i < j} \gamma_{ik} \gamma_{j\ell} A_{ij}}{\sum_{i < j} \gamma_{ik} \gamma_{j\ell}} \end{split}$$

ML and EM require fixing K.

Integration classification likelihood criterion:

$$ICL(K) = -2\ell(\hat{z}, \hat{\Theta}) + \left[\frac{1}{2}K(K+1)\right] \log \binom{n}{2}$$

ICL(K) often has a clear minimum but must be computed for each K.

The Bayesian Paradigm (Informal)

What is Bayesian inference?

A way to learn about unknown quantities by *updating* knowledge with observed data.

• Bayes' Rule:

$$\underbrace{\mathsf{pr}(\theta \mid \mathsf{data})}_{\mathsf{posterior}} \; \propto \; \underbrace{\mathsf{pr}(\mathsf{data} \mid \theta)}_{\mathsf{likelihood}} \; \times \; \underbrace{\mathsf{pr}(\theta)}_{\mathsf{prior}}.$$

- Prior $p(\theta)$: what you believe about θ before seeing the data.
- Likelihood $p(\text{data} \mid \theta)$: how probable the observed data are, given θ .
- Posterior $p(\theta \mid \text{data})$: your updated belief after seeing the data.

Key ideas / Why use it?:

- Full probabilistic: posterior is a full distribution, not just a point estimate.
- Regularization: the prior can shrink or penalize extreme estimates (avoids overfitting).
- Modularity: easy to build hierarchical and complex models by stacking priors.
- Integration of sources: provides a coherent framework for combining data with existing knowledge or info from different data sources.

A Bayesian Nonparametric Approach to SBM

• Bayesian paradigm: Place priors on both block assignments and connection probabilities, then infer the posterior

$$p(\mathbf{z}, \Theta \mid A) \propto p(A \mid \mathbf{z}, \Theta) p(\Theta) p(\mathbf{z}).$$

This naturally penalizes over-complex partitions (avoiding K = n degeneracy).

- Nonparametric: Number of blocks K need not be fixed in advance it can grow with the data.
- Priors:
 - Partition prior $p(\mathbf{z})$: Chinese Restaurant Process (CRP) with concentration α .
 - Edge-probability prior $p(\Theta)$: i.i.d. $Beta(\beta, \beta)$ for each $\theta_{k\ell}$.
- **Key benefit:** Let the data "decide" how many blocks are needed, trading off fit vs. complexity.

Infinite SBM Generative Model

$$z_i \sim \text{CRP}(\alpha), \quad i = 1, \dots, N,$$

 $\theta_{k\ell} \sim \text{Beta}(\beta, \beta), \quad \forall k \leq \ell,$
 $A_{ij} \mid z_i = k, z_j = \ell, \Theta \sim \text{Bernoulli}(\theta_{k\ell}), \quad A_{ji} = A_{ij}.$

- α controls the tendency to create new blocks: small α favors fewer, larger clusters; large α allows many small clusters.
- β encodes prior belief on connection sparsity; $\beta = 1$ gives a uniform prior on [0,1].

The Chinese Restaurant Process

- **Seating metaphor:** Customers (nodes) enter one by one into a restaurant with infinitely many tables.
- Assignment rule for customer *i*:

$$\operatorname{pr}(z_i = k \mid z_1, z_2, \dots, z_{i-1}) = \begin{cases} \dfrac{n_k}{i-1+lpha}, & \text{existing table } k, \\ \dfrac{lpha}{i-1+lpha}, & \text{new table}, \end{cases}$$

where n_k is the current size of table k.

- Properties:
 - Expected number of tables $\approx \alpha \log N$.
 - Equivalent to a Dirichlet Process.

CRP Step 1: Customer 1

CRP Step 2: Customer 2

$$P(z_2 = 1 \mid z_1) = \frac{1}{1+\alpha}, \quad P(z_2 = \mathsf{new} \mid z_1) = \frac{\alpha}{1+\alpha}$$

CRP Step 3: Customer 3

$$P(z_3 = 1 \mid z_{1:2}) = \frac{2}{2+\alpha}, \quad P(z_3 = 2 \mid z_{1:2}) = \frac{\alpha}{2+\alpha}$$

CRP Step 4: Customer 4

$$P(z_4 = 1 \mid z_{1:3}) = \frac{2}{3+\alpha}, \quad P(z_4 = 2 \mid z_{1:3}) = \frac{1}{3+\alpha}, \quad P(z_4 = \mathsf{new}) = \frac{\alpha}{3+\alpha}$$

Bayesian Nonparametric SBM: Estimation

Gibbs sampler

- 1. **Initialize** assignments $z^{(0)}$ (e.g. randomly).
- 2. Iterate for $t = 1, \ldots, T$:
 - For each node *i*:
 - 2.1 Remove i from its current block, updating counts n_k^{-i} .
 - 2.2 *Compute* for each existing block k:

$$p_k \propto n_k^{-i} \times \Pr(A_{i,\cdot} \mid z_i = k, z_{-i}),$$

and for a new block:

$$p_{\mathsf{new}} \propto \alpha \times \Pr(A_{i,\cdot} \mid \mathsf{new} \mathsf{ block}).$$

- 2.3 Sample $z_i^{(t)}$ from $\{p_k, p_{\text{new}}\}$.
- (Optional) Sample $\theta_{k\ell} \sim \text{Beta}(\beta + m_{k\ell}, \beta + t_{k\ell} m_{k\ell})$.
- 3. **Output:** Posterior samples $\{z^{(t)}, \Theta^{(t)}\}$.

Summing Up: SBMs

Generative view:

$$A_{ij} \mid z_i = k, z_j = \ell, \Theta \sim \text{Bernoulli}(\theta_{k\ell}).$$

- Parameters to infer:
 - Block assignments $\{z_i\}_{i=1}^n$
 - Connection matrix $\Theta = (\theta_{k\ell})_{k,\ell=1}^K$
 - Number of blocks K
- Inference strategies:

Frequentist EM / MLE with fixed $K \xrightarrow{ICL}$ select KBayesian Gibbs, place CRP prior on z, Beta prior on $\theta_{k\ell}$

- Trade-offs:
 - Fixed-K SBM: faster, needs external model selection
 - ullet CRP: automatic K discovery, quantifies uncertainty, higher computational cost

The End

Thank you for listening!

Questions?