CLASS 33, MAY 8TH: NORMAL IN CODIMENSION 1

Today we will study what normal tells you about the singular locus of a given algebraic variety. This is one of the essential results that make normal rings/varieties a nice class of objects to study. First, one last example of a valuation ring in general.

Example 33.1. If R is a DVR with parameter t, we can construct a new valuation ring by adjoining all the roots of t. Let $A = R[t^{\frac{1}{2}}, t^{\frac{1}{3}}, \ldots]_{\mathfrak{m}}$. It is easy to check that

$$L = \operatorname{Frac}(A) = \operatorname{Frac}(R)(t^{\frac{1}{2}}, t^{\frac{1}{3}}, \dots)$$

Therefore, we can define a valuation $v: L \to \mathbb{Q}: t^{\alpha} \mapsto \alpha$, which extends the valuation for R. Then A is exactly the set of elements for which $v(a) \geq 0$.

We can do a similar thing with \mathbb{R} to produce a valuation ring with value group \mathbb{R} .

Now we turn to the condition of being normal. Recall the definition:

Definition 33.2. An integral domain R is **normal** if R is integrally closed in $K = \operatorname{Frac}(R)$.

First, we will start with a local characterization:

Lemma 33.3. If R is an integral domain, then $R_{\mathfrak{p}} \subseteq K$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Furthermore,

$$R = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} R_{\mathfrak{p}} = \bigcap_{\mathfrak{m} \in m\text{-}\operatorname{Spec}(R)} R_{\mathfrak{m}}$$

Note these intersections are all happening in K by the first part.

Proof. For $x \in K$, define the **ideal of denominators** of x to be

$$D(x) = \{r \in R \mid rx \in R\} = \{0\} \cup \{s \in R \mid x = \frac{r}{s} \text{ for some } r \in R\}$$

This is an ideal. For $x \in K$, we have $x \in R$ iff $D(x) \neq R$. If D(x) is proper, it is contained within some maximal ideal \mathfrak{m} , and therefore $x \notin R_{\mathfrak{m}}$. $x \notin \bigcap_{\mathfrak{m} \in \mathbf{m-Spec}(R)} R_{\mathfrak{m}}$ as desired. \square

Now we can prove that being normal is a local condition, much like being 0 as a module.

Proposition 33.4. TFAE:

- (a) R is normal
- (b) $R_{\mathfrak{p}}$ is normal for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
- (c) $R_{\mathfrak{m}}$ is normal for all $\mathfrak{m} \in m$ -Spec(R).

Proof. For (a) \Rightarrow (c) \Rightarrow (b), I prove instead that $W^{-1}R$ is normal if R is normal for any multiplicative set W. If $\alpha \in K$ satisfies some monic polynomial with coefficients in $W^{-1}R$, then

$$\alpha^n + \frac{a_1}{b_1}\alpha^{n-1} + \ldots + \frac{a_n}{b_n} = 0$$

Therefore, we can multiply the whole equation by $(b_1 \cdots b_n)^n$ to produce a non-monic relation in R:

$$(b_1 \cdots b_n \alpha)^n + a_1 b_2 \cdots b_n (b_1 \cdots b_n \alpha)^{n-1} + \dots + b_{n-1}^{-1} (b_1 \cdots b_{n-1})^n a_n = 0$$

Therefore, since R is normal, we note $b_1 \cdots b_n \alpha \in R$. As a result, we can conclude that $\alpha \in S^{-1}R$, as desired.

Since (b) \Rightarrow (c) is a triviality, it suffices to check (c) implies (a). If x is integral over R, then x is clearly integral over $R_{\mathfrak{m}}$ for each \mathfrak{m} . As a result, $x \in R_{\mathfrak{m}}$ by normality. But then $x \in \cap_{\mathfrak{m}} R_{\mathfrak{m}} = R$ by Lemma 33.3.

This brings us to the central theorem about Normal domains:

Theorem 33.5. Let R be a normal Noetherian domain. If $\mathfrak{p} \neq 0$ is minimal among non-zero primes, then $R_{\mathfrak{p}}$ is a DVR. Furthermore, if $I \neq 0$ is principal, $\mathfrak{p} \in Ass(R/I)$ are among the minimal non-zero prime ideals of R.

Proof. By Lemma 33.3, $R_{\mathfrak{p}}$ is a normal Noetherian domain. Moreover, $\operatorname{Spec}(R_{\mathfrak{p}})$ contains only \mathfrak{p} and 0 by assumption of minimality of \mathfrak{p} . Therefore, by Theorem 31.3, we have $R_{\mathfrak{p}}$ is a DVR.

For the second statement, we first reduce to the local case. Given $\mathfrak{p} \in \mathrm{Ass}(R/I)$, consider the local ring $(R_{\mathfrak{p}},\mathfrak{p}R_{\mathfrak{p}})$. Let $I' = xR_{\mathfrak{p}}$ be the extension of I. Since $R_{\mathfrak{p}}/I' = (R/I)_{\mathfrak{p}}$, we have by Corollary 29.7 that $\mathfrak{p}R_{\mathfrak{p}} \in \mathrm{Ass}(R_{\mathfrak{p}}/I')$. If we can show $\mathfrak{p}R_{\mathfrak{p}}$ is a minimal non-zero prime ideal of $R_{\mathfrak{p}}$, then \mathfrak{p} is minimal non-zero in R by our relationships of ideals through localization.

Let $\mathfrak{m} = \mathfrak{p}R_{\mathfrak{p}}$. Since $\mathfrak{m} \in \mathrm{Ass}(R_{\mathfrak{p}}/I')$, there exists $y \notin I'$ such that $y \cdot \mathfrak{m} \subseteq I'$. As a result, there exists $x \in I'$ such that $\frac{y}{x} \in \mathrm{Frac}(R)$ satisfies $\frac{y}{x} \cdot \mathfrak{m} \subseteq R_{\mathfrak{p}}$. Therefore, we can mirror the proof of Theorem 31.3:

Case 1: $\frac{y}{x}\mathfrak{m} \subseteq \mathfrak{m}$. In this case, $\frac{y}{x}$ is integral over $R_{\mathfrak{p}}$. But $R_{\mathfrak{p}}$ is normal, so $\frac{y}{x} \in R_{\mathfrak{p}}$. But this would contradict that $y \notin I'$.

Case 2: $\frac{y}{x}\mathfrak{m} = R_{\mathfrak{p}}$. This implies the existence of $y' \in \mathfrak{m}$ such that $\frac{yy'}{x} = 1$, or equivalently x = yy'. But then we would have for all $z \in \mathfrak{m}$, $z\frac{y}{x} = \frac{z}{y'} \in R_{\mathfrak{p}}$, or $z \in \langle y' \rangle$.

In this case, we know $\mathfrak{m} = \langle y' \rangle$. As a result, $R_{\mathfrak{p}}$ is a DVR and \mathfrak{m} is a minimal non-zero prime ideal.

Geometrically, what we have just ascertained is that the singular points of a normal variety must exist in codimension ≥ 2 . This is a major result, as it gives us the following information:

- (a) Normal curves are non-singular.
- (b) Normal surfaces have isolated point singularities.
- (c) Normal 3-folds have at worst singularities lying on a curve.
- (d) Normal *n*-folds have at worst singularities lying on a (n-2)-fold.

Example 33.6. We have already shown that the cusp $R = K[x, y]/\langle y^2 - x^3 \rangle$ is non-normal; \tilde{R} contains $\frac{y}{x}$ as a root of $t^2 - x$.

Additionally, on the Midterm it was demonstrated that $R = K[x,y]/\langle y^2 - x^3 - x \rangle$ is non-normal for the same reason. These 2 facts are special cases of (a) in this classification.

The Whitney umbrella is an example of a surface with a singular curve C = V(x, y) (or worse if char(K) = 2); $R = K[x, y, z]/\langle x^2z - y^2 \rangle$. Thus we immediately know R cannot be normal. This is further verified by noting

$$\left(\frac{y}{x}\right)^2 = \frac{x^2z}{x^2} = z$$
 or $\left(\frac{xz}{y}\right)^2 = \frac{y^2z}{y^2} = z$

This condition of being regular in codimension 1 is insufficient to verify normalcy. You also need a condition known as S_2 , Serre's second condition. This is beyond our scope!