

Display Timing Calculation

(MB86R01 'Jade')

Display Timing Formulae

$$f_{dot_clk} = pixel clock$$

 $f_v = vertical frequency$
 $f_{ref} = reference clock (PLL)$
 $SC = Scaler$
 $f_h = horizontal frequency$

$$JADE: f_{ref} = 666Mhz$$

Note:

$$|JADE: f_{dot_clock} < 67Mhz|$$

$$|f_{dot_clk} = f_v *VTR * HTP|$$

$$f_{dot_clk} = \frac{f_{ref}}{SC}$$

$$f_{v} = \frac{f_{dot_clk}}{VTR * HTP}$$

$$|f_h = V_t * VDP|$$

$$f_{v} = \frac{f_{ref}}{SC * VTR * HTP}$$

$$SC = \frac{f_{ref}}{f_{v} * VTR * HTP} = \frac{f_{ref}}{f_{dot_clk}}$$

Clock Generation in Jade

Display Timing Parameters

НТР	Horizontal Total Pixels	VTR	Vertical Total Raster
HSP	Horizontal Synchronize pulse Position	VSP	Vertical Synchronize pulse Position
HSW	Horizontal Synchronize pulse Width	vsw	Vertical Synchronize pulse Width
HDP	Horizontal Display Period	VDP	Vertical Display Period

Display Timing Guideline - 1

1. Select the display parameters from the display panel specification

2. Calculate the pixel frequency

$$f_{dot clk} = f_v *VTR *HTP$$

3. Calculate the scaler value

$$SC = \frac{f_{ref}}{f_{v} * VTR * HTP} = \frac{f_{ref}}{f_{dot_clk}}$$

Select integer value:

- ->Round down
- ->Round up

Calculate the resulting pixel vertical frequency with the selected scaler value:

$$f_{dot_clk} = \frac{f_{ref}}{SC}$$
 $f_v = \frac{f_{ref}}{SC * VTR * HTP}$

$$f_{dot_clock} < 67 Mhz$$

Check that the calculated values fulfill the display specifications. Optional: adapt the blanking area to reach a more precise result.

Note:

Skew occurs between the syncs and the RGB/DE signals (the RGB and DE signals are delayed) :

- Coral family 13 pixel clock cycles
- Carmine 15 pixel clock cycles
- The timing at the GDC pads is different to the register settings
- Panels requiring less H-sync back porch are not supported the H-sync has to be delayed by external logic

Display Timing Guideline - 2

4. Set scaler register value

The scaler value depends on the selected offset

Divides display reference clock by the preset ratio to generate dot clock

Offset = 0)	Offset = 100 _H							
x00000	Frequency not divided	000000	Frequency not divided						
x00001	Frequency division rate = 1/4	000001	Frequency division rate = 1/2						
x00010	Frequency division rate = 1/6	000010	Frequency division rate = 1/3						
X00011	Frequency division rate = 1/8	000011	Frequency division rate = 1/4						
:		:							
x11111	Frequency division rate = 1/64	111111	Frequency division rate = 1/64						

When n is set, with Offset = 0, the frequency division rate is 1/(2n + 2).

When m is set, with Offset = 100h, the frequency division rate is 1/(m + 1).

Basically, these are setting parameters with the same function (2n + 2 = m + 1). Because of this, m = 2n + 1 is established. When n is set to the SC field with Offset = 0, 2n + 1 is reflected with Offset = 100h.

Also, when PLL is selected as the reference clock, frequency division rates 1/1 to 1/5 are non-functional even when set; other frequency division rates are assigned.

16.7.7.2. Display controller registers

Base = DisplayBase0(=0xF1FD_0000) or

Base = DisplayBase1(=0xF1FD_2000) = DisplayBase0+0x2000

base =		7	~y =	aoı	٠. ر	- 0,	· ·			000	<u>'/</u>		9	4,5	740	00	. 07															
Offset	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
000	DCM0 (Display Control Mode 0)																															
000	DEN												L45E	L23E	L1E	LOE	CKS	CS		S	С				EEQ	EDE	EOF	EOD	SF	ESY	SYI	NC
		DCM1 (Display Control Mode 1)																														
100	DEN										LSE	L4E	L3E	L2E	L1E	TOE	CKS	SOT			S	С			EEQ	EDE	EOF	EOD	SF	ESY	SYI	NC
	DCM2 (Display Control Mode 2)																															
104																												RUM1			RUF	RUMO
												DC	МЗ	3 (D	ispl	ay	Cor	ntro	l M	ode	3)							_				_
108						GVD VPWMs Gswap CSYz CSYz RGBrv RGBrv RGBsh					ST						POM	CKddr	CKinv	CKDe			СК	Dn								
004			П		H.	TP	(H -	Tota	l Pi	xels	s)												Ĭ	Ĭ								
008			П		Н	DB	(H	Dis	play	/ Bo	un	dar	/)							Π	HDP (H Display Period)											
00C	VSWH		VS	SW		Hsw										HSP (H Sync pulse Position)																
010			П		V	VTR (V Total Rasters)																						П				
014			П		VI	VDP (V Display Period)										Π	Π	٧	SP	(V 5	Syn	с рі	ılse	Po	siti	on)			П			
018					WY (Window Y)													W	/X (Wir	ıdo\	v X)									
01C					WH (Window Height)											W	W ((Wi	ndo	w V	Vidt	h)										

NOTE:

Also, when the PLL is selected as the reference clock, frequency division ratios 1/1 to 1/5 are non-functional even if set (!) other frequency division ratios are assigned.

Therefore – valid setting range: 1/6 ... 1/64

NOTE:

To achieve timings that require a setting higher than 1/64, the LCS bit of the DCM0/1 register can be used:

$$LCS = 0$$
: $f_{dot clk} = (f_{PLL})/SC$

$$LCS = 1$$
: $f_{dot clk} = [(f_{PLL})/SC]/4$

Display Panel:

Toshiba Matsushita Display Technology, LTA065B0D0F (6")

Vertical frequency: 60 Hz

Excerpt from the display specification:

TIMING SPECIFICATION 1) 2) 3) 4) 5)

<H-Sync/V-Sync+DE Mode>

Item	Symbol	min.	typ.	Max.	unit
Frame Period	tv	500	525	550	th
Frame Fenod	l V		16.67	17.85	ms
Vertical blanking Term	tvblnk	20	45	70	th
V-sync Pulse Width	tvw	2			th
Vertical Front Porch	tvfp	2			th
Vertical Data Sync Period	tvds	6			th
Vertical Display Term	tvde	480	480	480	th
Horizontal Period	th	740	800	860	tc
Ionzonial Feriod	u 1	31.5	31.75		us
H-sync Pulse Width	thw	8	160		tc
Horizontal Front Porch	thfp	8			tc
Horizontal Data Sync Period	thds	8			tc
Horizontal Display Term	thde	640	640	640	tc
Clock Period	tc	35.0	39.7		ns
Clock "L" Time	tcl	10.0			ns
Clock "H" Time	tch	10.0			ns
Data Setup Time	tds	5.0			ns
Data Hold Time	tdh	10.0			ns

1. Select the display parameter

НТР	800	VTR	525
HSP	648	VSP	482
HSW	160	vsw	2
HDP	640	VDP	480

$$f_{dot_clk \max} = clock period = t_{c \min} = 35ns = 28.75Mhz$$

$$f_{v \min} = Frame Period = tv_{\max} = 17.85ms = 56Hz$$

2. Calculate the pixel frequency

$$f_{dot_clk} = f_v *VTR *HTP = 60Hz *525 *800 = 25.2Mhz$$

 $f_{dot_clock} < 67Mhz$

3. Calculate the scaler

$$SC = \frac{f_{ref}}{f_{v} * VTR * HTP} = \frac{f_{ref}}{f_{dot_clk}} = \frac{666Mhz}{25.2Mhz} = 26.4$$

Round down: SC = 26

$$f_{dot_clk} = \frac{f_{ref}}{SC} = \frac{666Mhz}{26} = 26.62Mhz -> OK$$

$$f_{v} = \frac{f_{ref}}{SC*VTR*HTP} = \frac{666Mhz}{26*525*800} = 60.99Hz -> OK$$

Round up: SC = 27

$$f_{dot_clk} = \frac{f_{ref}}{SC} = \frac{666Mhz}{27} = 24.67Mhz -> OK$$

$$f_{v} = \frac{f_{ref}}{SC * VTR * HTP} = \frac{666Mhz}{27 * 525 * 800} = 58.73Hz -> OK$$

Try to reach a precise result by modifiying the blanking area:

НТР	860	VTR	500
HSP	648	VSP	482
HSW	160	vsw	2
HDP	640	VDP	480

$$SC: 26$$

 $f_{dot_clk} = 26.4Mhz$
 $f_v = 59.57Hz$

4. Set scaler register value

Offset $0x100 \rightarrow m = SC-1 = 25 = 0x19$

Write register DCM1: 0x1900

THE POSSIBILITIES ARE INFINITE