CS223: Hardware Lab

Digital Circuit Design using (a) Breadboard and ICs and (b) FPGA

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

<u>Outline</u>

- Course Administrative
 - -Assignments, Grading, Timing, Rules
- ASIC / FPGA Design process
- What is VHDL: Requirement of VHDL
- VHDL
 - basic language concepts
 - basic design methodology
 - examples

CS223: Administration

- Course timing: 2PM-5PM, FRIDAY
- Venue : Hardware Lab
- Class Attendance is NOT mandatory
- There will be LAB assignments
 - Using breadboard and ICs
 - Using HDL and FPGA board
 - Need coding, simulation, synthesis, demonstration on FPGA board

CS223: Administration

SI	W	Deadline	Part I	Part II
1	(5+5)%	12 Jan	BB+ICs	HDL+FPGA
2	(5+5)%	25 Jan	BB+ICs	HDL+FPGA
3	(6+6)%	09 Feb	BB+ICs	HDL+FPGA
4	(7+7)%	23 Feb	BB+ICs	HDL+FPGA
5	10%	16 Mar	HDL+FPGA	
6	12%	06 Apr	HDL+FPGA	
7	12%	20 Apr	HDL+FPGA	
8	20%	Before ES	Written test/Viva	

Digital Design Using Breadboard and IC

- Beardboard
 - You can put IC components to design circuit
 - Inbuilt power supply, LEDs, Input switches
- ICs
 - Gates, FF, Counter, Mux, Register, ALU, Adder
 - Memory, Buffers, ShiftReg, 7-Seg Display
- Hookup Wires
- Design will be limited to available components and size of the breadboard == > Not suitable for bigger desugn == > FPGA == >Soft Design

Digital Design Using Breadboard and IC

- Main work
 - Need to read SPEC of the required Ics for your design
 - SPEC from internet
 - Use the ICs based on the SPEC
- Careful
 - Using ICs wrongly may BLOW UP == > Permanent loss
 - Using 7-SEG LED without resistor: blow up == > Permanent loss
- Design will be limited to available components and size of the breadboard == > Not suitable for bigger design == > FPGA == >Soft Design

FPGAs

• FPGA: Field-Programmable Gate Array

FPGA - Field Programmable Gate Array

Programmable logic blocks

- Implement combinatorial and sequential logic.
- Based on LUT and DFF.

Programmable I/O blocks

- Configurable I/Os for external connections
- Supports various voltages and tri-states.

Programmable interconnect

- Wires to connect inputs, outputs and logic blocks.
- -Clocks
- -short distance local connections
- long distance connections across chip

Logic Blocks

- used to implement logic
- lookup tables and flip-flops

Altera: LABs

Xilinx: CLBs

I/O Blocks

- interface off-chip
- can usually support many I/O Standards

FPGA Structures

Basic Lookup Table (LUT)

A	B	C
0	0	0
0	1	0
1	0	0
1	1	1

FPGA Structures

Synchronous Look-UP

CLB: Conf Logic Block

- Implement any Boolean Function using LUTs
 - Suppose any 3 input one output function can be implemented using a 8 Loc x1 bit RAM (memory)

Α	В	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Configuring LUT

- LUT is a RAM with data width of 1bit.
- The contents are programmed at power up

Required Function

Truth Table

а	b	С	у
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Programmed LUT

Logic Block:

Basic Logic Gate: Lookup-Table

Function of each lookup table can be configured by shifting in bit-stream.

CLB: Conf Logic Block

- Use Shanon's law to implement any Boolean function of N inputs using
 - -Two Block of CLB of N-1 input
- Example
 - $-F(A,B,C) = A \cdot F(0,B,C) + A \cdot F(1,B,C)$
 - F(0,B,C) = 1. F(0,B,C) + 0. F(1,B,C) = F(0,B,C)
 - F(1,B,C) = 0. F(0,B,C) + 1. F(1,B,C) = F(1,B,C)
- Can be extended to higher inputs

Logic Clusters

Several lookup tables are grouped into "clusters"

- Typically 8 to 10 lookup tables per cluster

Connections between lookup tables in the same cluster are fast

Connections between lookup tables in different clusters are slow

CLB: Conf Logic Block

- If Clocked D-Flip available in CLB along with LUTs, we can implement any Sequential circuit
- Clocked Circuit can be implemented

Reconfigurable Logic:

Connect Logic
Blocks using
Fixed Metal
Tracks and
Programmable
Switches

Reconfigurable Logic:

Connect Logic
Blocks using
Fixed Metal
Tracks and
Programmable
Switches

Implementing Systems in an FPGA

FPGA Fabric

Embedded memories

Hardwired multipliers

Xilinx Vertex-II Pro

High-speed I/O

FPGA Advantages

- Designing with FPGA: Faster, Cheaper
- Ideal for customized designs
 - Product differentiation in a fast-changing market
- Offer the advantages of high integration
 - High complexity, density, reliability
 - Low cost, power consumption, small phy. size
- Avoid the problems of ASICs
 - high NRE cost, long delay in design and testing
 - increasingly demanding electrical issues

FPGA Advantages

- Very fast custom logic
 - -massively parallel operation
- Faster than micro-controllers/and processors
 - much faster than DSP engines
- More flexible than dedicated chipsets
 - -allows unlimited product differentiation
- More affordable and less risky than ASICs
 - no NRE, min order size, or inventory risk
- Reprogrammable at any time
 - in design, in manufacturing, after installation

User Expectations

- Logic capacity at reasonable cost
 - 100,000 to a several million gates
 - On-chip fast RAM
- Clock speed
 - 150 MHz and above, global clocks, clock management
- Versatile I/O
 - To accommodate a variety of standards
- Design effort and time
 - synthesis, fast compile times, tested and proven cores
- Power consumption
 - must stay within reasonable limits

Field Programmable Device

Basic Section of FPD:

- Logical Block
- Routing (Switch Matrix)
- Input Output Block

More Advanced FPD Contains:

- –On-chip Memory
- Embedded Processor
- -Clock Management
- High-Speed Transceiver

FPGA - Field Programmable Gate Array

Special FPGA functions

- Internal SRAM
- Embedded Multipliers and DSP blocks
- Embedded logic analyzer
- Embedded CPUs
- High speed I/O (~10GHz)
- DDR/DDRII/DDRIII SDRAM interfaces
- PLLs

Digilent Xilinx Atlys FPGA Board

- Xilinx Spartan-6 LX45 FPGA,
- 6,822 slices: four 6-input LUTs and eight flip-flops
- 2.1Mbits of block RAM, 128 MB DDR2
- 58 DSP slices
- JTAG programming , RJ-45 Ethernet port
- 4 HDMI video ports
- AC-97 Audio Codec mic, & headphone
- Two on-board USB2
- USB-UART and USB-HID port
- GPIO includes 8 LEDs, 6 buttons, and 8 slide switches

Digilent Xilinx Atlys FPGA Board

Digilent Xilinx Basys 3 FPGA Board

- Xilinx Artix-7 FPGA
- 33,280 logic cells in 5200 slices (four 6-input LUTs and 8 flip-flops)
 1,800 Kbits of fast block RAM
- 90 DSP slices
- ADC, USB-JTAG port, USB-UART Bridge, 12-bit VGA output
- USB HID Host for mice, keyboards
- 16 user switches, 16 user LEDs, 5 user pushbuttons, 4-digit 7-segment display

Digilent Xilinx Basys 3 FPGA Board

Digilent Xilinx Zybo FPGA Board

- Xilinx Zynq-7000 (XC7Z010-1CLG400C)
- 28,000 logic cells
- 240 KB Block RAM
- 80 DSP slices , Dual channel, 12-bit, ADC
- 650 MHz dual-core Cortex™-A9 processor
- JTAG programming and UART to USB converter
- 1G Ethernet, USB 2.0, SDIO, SPI, UART, I2C
- Dual-role HDMI port, VGA port, Ethernet PHY
- OTG USB 2.0 PHY (supports host and device)
- GPIO: 6 pushbuttons, 4 slide switches, 5 LEDs

Digilent Xilinx ZYBO FPGA Board

Thanks