

Do LMs dream of molecule structures?

Lost in Translation: Chemical LMs and the Misunderstanding of Molecule Structures

Veronika Ganeeva Andrey Sakhovskiy Kuzma Khrabrov Artur Kadurin Andrey Savchenko Elena Tutubalina

Language Models: from text to text

Text+Chem T5

LMs are Transformer-like architecture models and used to seq2seq tasks, when input and output are both texts.

Chemistry provide some text-based tasks like molecule captioning or molecular reaction result prediction.

Textual representations of molecule structures allow to use LMs for chemical tasks: MoIT5 (Edwards et al., 2022) Text+Chem T5 (Christofidellis et al., 2023)

SMILES: from molecule to text

SMILES – best known string-based molecular representations.

Novel cross-domain LMs are pre-trained on both chemical and textual data for chemical tasks.

CC1=C2C=C(C=C(C2=CC=C1)C(=0)0)[O-]

3-Hydroxy-5-methyl-1-naphthoate

Do LMs reconstruct molecule structure from SMILES?

Do ChemLMs learn relationships within symbolic representations of molecular structures, enabling them to differentiate structures?

Molecule representation in LMs is crucial for enhancing chemical understanding. The valuation of chemical LMs is often conducted through downstream tasks that do not directly assess knowledge of chemistry

AMORE: evaluation framework

AMORE encodes original and augmented SMILES representations, calculates embedding distances, and assesses model performance based on top-1 accuracy, where the correct augmented SMILES is retrieved first

Models & Data

We augmented the ChEBI-20 dataset test part, which consists of 3,300 pairs of molecule description and filtered qm9 dataset, which consists of 990 isomeric molecules...

...and evaluate best known ChemLMs: MoIT5 (Edwards et al., 2022) Text+Chem T5 (Christofidellis et al., 2023), etc

Model	Domain	# Params	
Text+Chem T5-standard	Cross	220M	
Text+Chem T5-augm	Cross	220M	
MolT5-base	Cross	220M	
MolT5-large	Cross	770M	
SciFive	Text	220M	
PubChemDeBERTa	Chem	86M	
ChemBERT-ChEMBL	Chem	6M	
ChemBERTa	Chem	125M	
BARTSmiles	Chem	400M	
ZINC-RoBERTa	Chem	102M	
ZINC-GPT	Chem	87M	

Carl Edwards, ChengXiang Zhai, and Heng Ji. Text2mol: Cross-modal molecule retrieval with natural language queries. EMNLP 2021 Carl Edwards et al. Translation between molecules and natural language. EMNLP 2022 Dimitrios Christofidellis et al. Unifying molecular and textual representations via multi-task language modelling. ICLR 2023

Results: molecule captioning

ChemLMs are not robust to augmentations and robustness to different augmentations varies. Captioning quality **is consistent with AMORE** (CHEBI-20 dataset, Text+Chem T5 and MoIT5)

Augmentation \longrightarrow		canon		hydro			
Metrics	Acc@1	ROUGE2	METEOR	Acc@1	ROUGE2	METEOR	
Text+Chem T5-standard	63.03	0.381	0.515	5.46	0.187	0.314	
Text+Chem T5-augm	60.64	0.377	0.514	5.61	0.201	0.336	
MolT5-base	42.88	0.315	0.450	2.36	0.199	0.329	
MolT5-large	46.94	0.390	0.532	2.7	0.174	0.317	
Augmentation →	kekul			cycles			
Metrics	Acc@1	ROUGE2	METEOR	Acc@1	ROUGE2	METEOR	
Text+Chem T5-standard	76.76	0.413	0.574	96.7	0.483	0.600	
Text+Chem T5-augm	77.09	0.410	0.546	97.18	0.458	0.581	
MolT5-base	62.76	0.333	0.475	90.94	0.417	0.540	
MolT5-large	59.7	0.405	0.546	98.21	0.477	0.603	

High metrics Less changes on SMILES

cycles →

kekule →

canonical →

hydrogen

Low metrics More changes on SMILES

Results: AMORE scores

AMORE allows to evaluate **different architectures**: encoders, decoders, encoder-decoders: Text+Chem T5, MoIT5, ZINC-GPT, ChemBERTa, etc.

Model	Canon		Hydro		Kekul		Cycle	
	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5
		C	ross-mod	al models				
Text+Chem T5-standard	63.03	82.76	5.46	10.85	76.76	92.03	96.7	99.82
Text+Chem T5-augm	60.64	82.79	5.61	12.64	77.09	92.06	97.18	99.7
MolT5-base	55.64	59.79	5.97	7.27	62.76	80.52	90.94	97.18
MolT5-large	46.94	63.58	2.36	5.06	59.7	75.84	98.21	100
			Unimodal	models				
BARTSmiles	25.76	38.09	1.21	2.15	39.03	54.97	61.67	71.24
ZINC-GPT	23.85	33.85	0.85	1.64	35.09	48.45	75.3	85.03
SciFive	29.73	44.94	2.58	4.64	48.21	68.15	98.48	100
PubChemDeBERTa	32.79	48.09	2.15	4.33	53.55	73.15	96.39	99.45
ChemBERT-ChEMBL	26.06	37.79	1.73	3.3	37.7	54.91	79.55	87.03
ChemBERTa	26.61	40.12	1.09	2.3	44.18	65.42	92.58	98.42
ZINC-RoBERTa	23.33	33.61	0.97	2.39	33.09	46.97	90.61	97.48

High metrics Less changes on SMILES

cycles →

kekule →

canonical →

hydrogen

Low metrics More changes on SMILES

Results: hidden states

Representation robustness on model layers correlates across different augmentations. Top-1 retrieval accuracy (Acc@1) on CheBI-20 dataset is calculated for hidden representations for different layers of LMs

Results: MoleculeNet benchmark

BACE task (MoleculeNet): qualitative (binary label) binding results for a set of inhibitors of human β -secretase 1 (BACE-1).

Augmented SMILES **lead to degraded performance** on chemical tasks, robustness to different augmentations varies, range of robustness repeats.

Performance (BACE task) on five test sets: orig, cycle, canon, kekul, hydro

Summary

- We introduced **AMORE: flexible framework** for ChemLM evaluation
- We shows that captioning quality is consistent with AMORE
- Augmented SMILES lead to degraded performance on chemical tasks
- Representation robustness on model layers correlates across different augmentations

