last time V, W fin. dim. vector spaces over F

(v_1, ..., v_n) an ordered basis for V, (w 1, ..., w m) an ordered basis for W

any linear map T : V to W rep by $m \times n$ matrix M:

in "column" notation, entry M_{j, i} in the jth row and ith col is def by

$$Tv_i = sum_j M_{j, i}w_j$$

so ith col of M lists the coeffs of Tv_i wrt (w_i)_i

[draw]

given

Q let $P_3 = \{p \text{ in } F[x] \mid p = 0 \text{ or deg } p \le 3\}$ $D(p)(x) = dp(x)/dx \text{ is an operator on } P_3$ [why?]

(1, x, x^2, x^3) is an ordered basis for P_3 what is the matrix of D wrt this ordered basis?

$$D(x^n) = nx^n\{n-1\} so$$

in general an operator T is <u>nilpotent</u> iff some power of T is 0

Q N: P_3 to P_3 def by

$$N(1) = x$$

 $N(x) = x^2$
 $N(x^2) = x^3$
 $N(x^3) = 0$

matrix of N wrt $(1, x, x^2, x^3)$?

[this is also nilpotent: why?]

U another vector space over F, T': W to U, can always form T' ○ T: V to U

matrices of N \circ D and D \circ N wrt (1, x, x^2, x^3)?

note: D \circ N – N \circ D is almost the id matrix...

what are im(D) and im(N)? im(D) = span(1, x, x^2) im(N) = span(x, x^2 , x^3) [visible in the matrices]

Df for any m x n matrix M
span(cols of M) is a lin. subsp. of F^m
column rank of M is dim span(cols of M)

iso F^m to W : jth std basis vec to w_j ith col of M to Tv_i [= sum_M_{j, i}w_j]

restricts to iso span(cols of M) to im(T)

thus column rank of $M = \dim \operatorname{im}(T)$

Rem analogous notion of <u>row rank</u>
turns out that column rank = row rank
[we will defer the proof]

<u>Principle</u> lin maps : abstract :: matrices : explicit

[another example:]

[what is the corresponding structure for lin maps?]

<u>Df</u>	the hom	space from	V to	W is
-----------	---------	------------	------	------

Hom(V, W) = {linear maps from V to W}

which forms a [basis-indep] vector space under:

$$(T + T')v = Tv + T'v,$$

$$(a \cdot T)v = a \cdot Tv$$

0_{Hom(V, W)} = zero map

<u>Prop</u> if dim V = n and dim W = m

then a choice of bases (v_i)_i, (w_j)_j
defines a linear iso

Hom(V, W) to $Mat_{m \times n}(F)$

Pf send T to its matrix wrt (v_i)_i, (w_j)_j check axioms

Rem Hom(V, W) exists even when V, W are not finite-dimensional

Specific Linear Maps as Specific Matrices

suppose that $V = W = F^n$ (in the std basis)

what is the matrix of

$$T(v) = v$$
? identity $I = I_n$

$$T(v) = \mathbf{0}_{v}? zero 0_n$$

take n = 2what is the matrix of scaling y-axis by 2? reflect across y = -x?

projection onto x-axis?

note: these all depend on the axes chosen				
want: basis-indep defns of geometric ops				
Df a matrix is invertible iff it reps a lin iso				
	b s.t. ad – bc ≠ 0 d			
[inverse?] $M^{-1} = (1/det(M)) adj(M)$				
where	det(M) = ad - bc			
	adj(M) = d -b $-c a$			

<u>Df</u> a matrix is a projection iff $M^2 = M$ which projections are invertible? <u>Q</u> only the identity I a matrix is unipotent iff it takes the form <u>Ex</u> I + N, where N is nilpotent shears in F^2 like 1 b e.g.,