МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ

«КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Кафедра автоматизованих систем обробки інформації та управління

Лабораторна робота №2 з дисципліни «Методи та системи підтримки прийняття рішень»

Виконав студент гр. ІС-72

Кривохижа Р.А.

Перевірив викладач Фіногенов О. Д.

Київ

Тема: Багатокритеріальний вибір з врахуванням думки одного експерта

Мета: Ознайомитися з методом аналізу ієрархій

Завдання:

Ціль: вибір магістратури для вступу в 2021 році.

Критерії:

- 1) Рейтинг ВНЗ
- 2) Вартість навчання
- 3) Якість викладання
- 4) Наявність вільного відвідування
- 5) Відстань від дому до ВНЗ

Альтернативи:

- 1) УКУ факультет прикладних наук
- 2) КПІ, ФТІ математичні методи моделювання
- 3) КАУ штучний інтелект та наука про дані
- 4) КПІ, ФІОТ інформаційні управляючі системи та технології
- 5) КАУ математичні та інформаційні технології

Оцінки та метрики за критеріями:

Критерії\альтерн	УКУ –	КПІ, ФТІ	КАУ –	КПІ,	КАУ –
ативи	факультет	_	штучний	ФІОТ –	математи
	прикладн	математич	інтелект	інформаці	чні та
	их наук	ні методи	та наука	йні	інформац
		моделюва	про дані	управляю	ійні
		ння		чі	технолог
				системи	iï
				та	
				технологі	
				ï	
Рейтинг ВНЗ	1	6	86	6	86

Вартість	210000	46000	40000	74000	30000
навчання					
Якість	5	3	4	2	3
викладання					
Наявність	1	1	0	1	0
вільного					
відвідування					
Відстань від	550	10.5	13.2	10.5	13.2
дому до ВНЗ					

Розв'язання

Порівняння критеріїв

$$Q = \begin{vmatrix} 1 & \frac{1}{5} & \frac{1}{7} & 3 & \frac{1}{3} \\ 5 & 1 & \frac{1}{3} & 7 & 3 \\ 7 & 3 & 1 & 9 & 5 \\ \frac{1}{3} & \frac{1}{7} & \frac{1}{9} & 1 & 5 \\ 3 & \frac{1}{3} & \frac{1}{5} & 5 & 1 \end{vmatrix}$$

$$\mathbf{w}(\mathbf{Q}) = \begin{vmatrix} 4.68 \\ 16.33 \\ 25 \\ 1.79 \\ 9.53 \end{vmatrix} = \sum_{i=1}^{5} w_i = 57.33 \Rightarrow \overline{w}(Q) = \frac{w_i(Q)}{\sum_{i=1}^{5} w_i} = \begin{vmatrix} 0.082 \\ 0.285 \\ 0.436 \\ 0.031 \\ 0.166 \end{vmatrix}$$

$$b_1(Q) = \sqrt[5]{1 * \frac{1}{5} * \frac{1}{7} * 3 * \frac{1}{3}} = 0.4911$$

$$b_2(Q) = \sqrt[5]{5 * 1 * \frac{1}{3} * 7 * 3} = 2.0361$$

$$b_3(Q) = \sqrt[5]{7 * 3 * 1 * 9 * 5} = 3.9362$$

$$b_4(Q) = \sqrt[5]{\frac{1}{3} * \frac{1}{7} * \frac{1}{9} * 1 * 5} = 0.2540$$

$$b_5(Q) = \sqrt[5]{3 * \frac{1}{3} * \frac{1}{5} * 5 * 1} = 1$$

$$B = \sum_{i=1}^{5} b_i = 0.4911 + 2.0361 + 3.9362 + 0.2540 + 1 = 7.7176$$

$$\overline{w_i}(Q) = \frac{b_i}{B} = \begin{vmatrix} 0.064 \\ 0.264 \\ 0.510 \\ 0.033 \\ 0.130 \end{vmatrix}$$

Порівняння за критерієм "Рейтинг ВНЗ"

$$Q_1 = \begin{vmatrix} 1 & 3 & 9 & 3 & 7 \\ 1/3 & 1 & 9 & 1 & 9 \\ 1/9 & 1/9 & 1 & \frac{1}{9} & 1 \\ 1/3 & 1 & 9 & 1 & 9 \\ 1/7 & 1/9 & 1 & \frac{1}{9} & 1 \end{vmatrix}$$

$$\mathbf{w}(Q_1) = \begin{vmatrix} 23 \\ 20.33 \\ 2.33 \\ 20.33 \\ 2.37 \end{vmatrix} = \sum_{i=1}^{5} w_i = 68.37 \Rightarrow \overline{w}(Q_1) = \frac{w_i(Q_1)}{\sum_{i=1}^{5} w_i} = \begin{vmatrix} 0.336 \\ 0.297 \\ 0.034 \\ 0.297 \\ 0.034 \end{vmatrix}$$

$$b_1(Q_1) = \sqrt[5]{1 * 3 * 9 * 3 * 7} = 3.553$$

$$b_2(Q_1) = \sqrt[5]{\frac{1}{3} * 1 * 9 * 1 * 9} = 1.933$$

$$b_3(Q_1) = \sqrt[5]{\frac{1}{9} * \frac{1}{9} * 1 * \frac{1}{9} * 1} = 0.267$$

$$b_4(Q_1) = \sqrt[5]{\frac{1}{3} * 1 * 9 * 1 * 9} = 1.933$$

$$b_5(Q_1) = \sqrt[5]{\frac{1}{7} * \frac{1}{9} * 1 * \frac{1}{9} * 1} = 0.281$$

$$B = \sum_{i=1}^{5} b_i = 3.553 + 1.933 + 0.267 + 1.933 + 0.281 = 7.969$$

$$\overline{w_i}(Q_1) = \frac{b_i}{B} = \begin{vmatrix} 0.445 \\ 0.242 \\ 0.033 \\ 0.242 \\ 0.035 \end{vmatrix}$$

Порівняння за критерієм "Вартість навчання"

$$Q_2 = \begin{vmatrix} 1 & \frac{1}{7} & \frac{1}{8} & \frac{1}{5} & \frac{1}{9} \\ 7 & 1 & \frac{1}{2} & 6 & \frac{1}{3} \\ 8 & 2 & 1 & 7 & \frac{1}{2} \\ 5 & \frac{1}{6} & \frac{1}{7} & 1 & \frac{1}{8} \\ 9 & 3 & 2 & 8 & 1 \end{vmatrix}$$

$$\mathbf{w}(Q_2) = \begin{vmatrix} 1.58 \\ 14.83 \\ 18.50 \\ 6.43 \\ 23.00 \end{vmatrix} = > \sum_{i=1}^5 w_i = 64.35 \Rightarrow \overline{w}(Q_2) = \frac{w_i(Q_2)}{\sum_{i=1}^5 w_i} = \begin{vmatrix} 0.024 \\ 0.230 \\ 0.287 \\ 0.099 \\ 0.357 \end{vmatrix}$$

$$b_1(Q_2) = \sqrt[5]{1 * \frac{1}{7} * \frac{1}{8} * \frac{1}{5} * \frac{1}{9}} = 0.2087$$

$$b_2(Q_2) = \sqrt[5]{7 * 1 * \frac{1}{2} * 6 * \frac{1}{3}} = 1.4757$$

$$b_3(Q_2) = \sqrt[5]{8 * 2 * 1 * 7 * \frac{1}{2}} = 2.2368$$

$$b_4(Q_2) = \sqrt[5]{5 * \frac{1}{6} * \frac{1}{7} * 1 * \frac{1}{8}} = 0.4310$$

$$b_5(Q_2) = \sqrt[5]{9 * 3 * 2 * 8 * 1} = 3.3658$$

$$B = \sum_{i=1}^{5} b_i = 0.2087 + 1.4757 + 2.2368 + 0.4310 + 3.3658 = 7.7183$$

$$\overline{w_i}(Q_2) = \frac{b_i}{B} = \begin{vmatrix} 0.027 \\ 0.191 \\ 0.289 \\ 0.055 \\ 0.436 \end{vmatrix}$$

Порівняння за критерієм "Якість викладання"

$$Q_3 = \begin{vmatrix} 1 & 5 & 3 & 7 & 5 \\ \frac{1}{5} & 1 & \frac{1}{3} & 3 & 1 \\ \frac{1}{3} & 3 & 1 & 5 & 3 \\ \frac{1}{7} & \frac{1}{3} & \frac{1}{5} & 1 & \frac{1}{3} \\ \frac{1}{5} & 1 & \frac{1}{3} & 3 & 1 \end{vmatrix}$$

$$\mathbf{w}(Q_3) = \begin{vmatrix} 21.00 \\ 5.33 \\ 12.33 \\ 2.01 \\ 5.53 \end{vmatrix} = > \sum_{i=1}^5 w_i = 46.41 = > \overline{w}(Q_3) = \frac{w_i(Q_3)}{\sum_{i=1}^5 w_i} = \begin{vmatrix} 0.452 \\ 0.119 \\ 0.265 \\ 0.043 \\ 0.119 \end{vmatrix}$$

$$b_1(Q_3) = \sqrt[5]{1 * 5 * 3 * 7 * 5} = 3.4997$$

$$b_2(Q_3) = \sqrt[5]{\frac{1}{5} * 1 * \frac{1}{3} * 3 * 1} = 0.7247$$

$$b_3(Q_3) = \sqrt[5]{\frac{1}{3} * 3 * 1 * 5 * 3} = 1.7187$$

$$b_4(Q_3) = \sqrt[5]{\frac{1}{7} * \frac{1}{3} * \frac{1}{5} * 1 * \frac{1}{3}} = 0.3164$$

$$b_5(Q_3) = \sqrt[5]{\frac{1}{5} * 1 * \frac{1}{3} * 3 * 1} = 0.7247$$

$$B = \sum_{i=1}^{5} b_i = 3.4997 + 0.7247 + 1.7187 + 0.3164 + 0.7247 = 6.984$$

$$\overline{w_i}(Q_3) = \frac{b_i}{B} = \begin{vmatrix} 0.501 \\ 0.103 \\ 0.246 \\ 0.045 \\ 0.103 \end{vmatrix}$$

Порівняння за критерієм "Наявність вільного відвідування"

$$Q_4 = \begin{vmatrix} 1 & 1 & 9 & 1 & 9 \\ 1 & 1 & 9 & 1 & 9 \\ \frac{1}{9} & \frac{1}{9} & 1 & 1 & 9 \\ 1 & 1 & 1 & 1 & 9 \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & 1 \end{vmatrix}$$

$$\mathbf{w}(Q_4) = \begin{vmatrix} 21.00 \\ 21.00 \\ 11.22 \\ 13.00 \\ 1.44 \end{vmatrix} = > \sum_{i=1}^5 w_i = 67.67 \Rightarrow \overline{w}(Q_4) = \frac{w_i(Q_4)}{\sum_{i=1}^5 w_i} = \begin{vmatrix} 0.310 \\ 0.310 \\ 0.165 \\ 0.192 \\ 0.021 \end{vmatrix}$$

$$b_1(Q_4) = \sqrt[5]{1 * 1 * 9 * 1 * 9} = 2.4082$$

$$b_2(Q_4) = \sqrt[5]{1 * 1 * 9 * 1 * 9} = 2.4082$$

$$b_3(Q_4) = \sqrt[5]{\frac{1}{9} * \frac{1}{9} * 1 * 1 * 9} = 0.6443$$

$$b_4(Q_4) = \sqrt[5]{1 * 1 * 1 * 1 * 9} = 1.5518$$

$$b_5(Q_4) = \sqrt[5]{\frac{1}{9} * \frac{1}{9} * \frac{1}{9} * \frac{1}{9} * 1} = 0.1724$$

$$B = \sum_{i=1}^{5} b_i = 2.4082 + 2.4082 + 0.6443 + 1.5518 + 0.1724 = 7.1851$$

$$\overline{w_i}(Q_4) = \frac{b_i}{B} = \begin{vmatrix} 0.335 \\ 0.335 \\ 0.089 \\ 0.215 \\ 0.023 \end{vmatrix}$$

Порівняння за критерієм "Відстань від дому до ВНЗ"

$$Q_5 = \begin{vmatrix} 1 & \frac{1}{9} & \frac{1}{8} & \frac{1}{9} & \frac{1}{8} \\ 9 & 1 & 3 & 1 & 3 \\ 8 & \frac{1}{3} & 1 & \frac{1}{3} & 9 \\ 9 & 1 & 3 & 1 & 3 \\ 8 & \frac{1}{3} & 1 & \frac{1}{3} & 1 \end{vmatrix}$$

$$\mathbf{w}(Q_5) = \begin{vmatrix} 1.47 \\ 17.00 \\ 10.67 \\ 17.00 \\ 10.67 \end{vmatrix} = > \sum_{i=1}^{5} w_i = 56.81 \Rightarrow \overline{w}(Q_5) = \frac{w_i(Q_5)}{\sum_{i=1}^{5} w_i} = \begin{vmatrix} 0.025 \\ 0.299 \\ 0.187 \\ 0.299 \\ 0.187 \end{vmatrix}$$

$$b_1(Q_5) = \sqrt[5]{1 * \frac{1}{9} * \frac{1}{8} * \frac{1}{9} * \frac{1}{8}} = 0.1807$$

$$b_2(Q_5) = \sqrt[5]{9 * 1 * 3 * 1 * 3} = 2.4082$$

$$b_3(Q_5) = \sqrt[5]{8 * \frac{1}{3} * 1 * \frac{1}{3} * 9} = 0.9767$$

$$b_4(Q_5) = \sqrt[5]{9 * 1 * 3 * 1 * 3} = 2.4082$$

$$b_5(Q_5) = \sqrt[5]{8 * \frac{1}{3} * 1 * \frac{1}{3} * 9} = 0.9767$$

$$B = \sum_{i=1}^{5} b_i = 0.1807 + 2.4082 + 0.9767 + 2.4082 + 0.9767 = 6.9506$$

$$\overline{w_i}(Q_5) = \frac{b_i}{B} = \begin{vmatrix} 0.026 \\ 0.346 \\ 0.140 \\ 0.346 \\ 0.140 \end{vmatrix}$$

Розрахунок по власному вектору

Матриця	Власний	λ_{max}	Σ	Нормовані
	вектор			ваги
Q	0.491381,	5.23748	7.75336	(0.063,
	2.0275,			0.261,
	3.97602,			0.513,
	0.258459,			0.033,
	1)			0.129)
Q_1	(12.9756,	5.25239	28.191614	(0.46026,
	6.64722,			0.235787,
	0.921574,			0.032689,
	6.64722,			0.235787,
	1)			0.035471)
Q_2	(0.0652282,	5.38954	2.3179832	(0.02814,
	0.448692,			0.193569,
	0.662683,			0.285887,
	0.14138,			0.066099,
	1)			0.431409)
Q_3	(4.92361,	5.12689	9.765986	(0.504159,
_	1,			0.102396,
	2.39436,			0.245173,
	0.448016,			0.045875,
	1)			0.102396)
Q_4	(15.0519,	5.83534	44.51814	(0.338107,
	15.0519,			0.338107,

	4.41434,			0.099158,
	9,			0.202164,
	1)			0.022462)
Q_5	(0.190849,	5.15669	6.880549	(0.027737
_	2.44485,			0.355327
	1,			0.145337
	2.24485,			0.326260
	1)			0.145337)

Знайдемо найкращу альтернативу, використовуючи результати розрахунків Метод рядкових сум:

$$[A]^*B = \begin{vmatrix} 0.336 & 0.025 & 0.452 & 0.310 & 0.026 \\ 0.297 & 0.231 & 0.119 & 0.310 & 0.299 \\ 0.034 & 0.288 & 0.266 & 0.166 & 0.188 \\ 0.297 & 0.100 & 0.043 & 0.192 & 0.299 \\ 0.035 & 0.357 & 0.119 & 0.021 & 0.188 \end{vmatrix} * \begin{vmatrix} 0.082 \\ 0.285 \\ 0.436 \\ 0.031 \\ 0.166 \end{vmatrix} = \begin{vmatrix} 0.246 \\ 0.201 \\ 0.037 \\ 0.189 \end{vmatrix}$$

Метод середнього геометричного:

$$[A]*B = \begin{vmatrix} 0.446 & 0.027 & 0.501 & 0.335 & 0.026 \\ 0.243 & 0.191 & 0.104 & 0.335 & 0.346 \\ 0.034 & 0.290 & 0.246 & 0.090 & 0.141 \\ 0.243 & 0.056 & 0.045 & 0.216 & 0.346 \\ 0.035 & 0.436 & 0.104 & 0.024 & 0.141 \end{vmatrix} * \begin{vmatrix} 0.064 \\ 0.264 \\ 0.510 \\ 0.033 \\ 0.130 \end{vmatrix} = \begin{vmatrix} 0.305 \\ 0.175 \\ 0.225 \\ 0.105 \\ 0.189 \end{vmatrix}$$

Метод власного вектору:

$$[A]^*B = \begin{vmatrix} 0.460 & 0.028 & 0.504 & 0.338 & 0.028 \\ 0.236 & 0.194 & 0.102 & 0.338 & 0.355 \\ 0.033 & 0.286 & 0.245 & 0.099 & 0.145 \\ 0.236 & 0.061 & 0.046 & 0.202 & 0.326 \\ 0.035 & 0.431 & 0.102 & 0.022 & 0.145 \end{vmatrix} * \begin{vmatrix} 0.063 \\ 0.261 \\ 0.513 \\ 0.033 \\ 0.129 \end{vmatrix} = \begin{vmatrix} 0.310 \\ 0.175 \\ 0.225 \\ 0.103 \\ 0.187 \end{vmatrix}$$

Порядок альтернатив по результуючій оцінці

No	Метод	A1	A2	A3	A4	A5
1	Метод	УКУ –	КАУ –	КПІ, ФТІ –	КАУ –	КПІ, ФІОТ
	рядкових	факульте	штучн	математич	математич	_
	сум	Т	ий	ні методи	ні та	інформаці
		прикладн	інтелек	моделюван	інформаці	йні
		их наук	т та	ня	йні	управляюч
			наука		технології	і системи

			про дані			та технології
2	Метод середнього геометричн ого	УКУ — факульте т прикладн их наук	КАУ – штучн ий інтелек т та наука про дані	КАУ – математич ні та інформаці йні технології	КПІ, ФТІ – математич ні методи моделюван ня	КПІ, ФІОТ — інформаці йні управляюч і системи та технології
3	Метод власного вектору	УКУ – факульте т прикладн их наук	КАУ – штучн ий інтелек т та наука про дані	КАУ – математич ні та інформаці йні технології	КПІ, ФТІ – математич ні методи моделюван ня	КПІ, ФІОТ — інформаці йні управляюч і системи та технології

Оцінка узгодженості думки експерта

Матриця	Q	Q_1	Q_2	Q_3	Q_4	Q_5
Розмірніст	5	5	5	5	5	5
Ь						
λ_{\max}	5.23748	5.25239	5.38954	5.12689	5.83534	5.15669
ИС	0.05937	0.0630975	0.097385	0.0317225	0.208835	0.0391725
СИ	1.12	1.12	1.12	1.12	1.12	1.12
OC	0.053	0.056	0.087	0.028	0.186	0.035

Для матриць Q, Q_1 , Q_2 , Q_3 , Q_5 ОС значно менше 0.1, а для Q_4 в межах 0.2. Таким чином, можна вважати думку експерта узгодженою.

Оцінка узгодженості всієї ієрархії:

$$MC = 0.05937 + (0.082, 0.285, 0.436, 0.031, 0.166)*\begin{pmatrix} 0.063 \\ 0.097 \\ 0.031 \\ 0.208 \\ 0.039 \end{pmatrix} = 0.119$$

$$CH = 1.12 + (0.082, 0.285, 0.436, 0.031, 0.166)*\begin{pmatrix} 1.12\\1.12\\1.12\\1.12\\1.12 \end{pmatrix} = 2.24$$

$$OC = 0.119/2.24 = 0.053 < 0.1$$

Отримана оцінка узгодженості показує гарну узгодженість всієї ієрархії

Розрахунок наближеного значення λ_{max}

Матриця Q:

Q	K1	K2	К3	K4	K5
K1	1	1/5	1/7	3	1/3
K2	5	1	1/3	7	3
K3	7	3	1	9	5
K4	1/3	1/7	1/9	1	1/5
K5	3	1/3	1/5	5	1
Σ	16.33	4.68	1.79	25.00	9.53

По методу рядкових сум:

$$\lambda \max = (16.33, 4.68, 1.79, 25.00, 9.53) * \begin{pmatrix} 0.082 \\ 0.285 \\ 0.436 \\ 0.031 \\ 0.166 \end{pmatrix} = 5.809$$

По методу середнього геометричного:

$$\lambda \max = (16.33, 4.68, 1.79, 25.00, 9.53) * \begin{pmatrix} 0.064 \\ 0.264 \\ 0.510 \\ 0.033 \\ 0.130 \end{pmatrix} = 5.243$$

По методу власного вектору:

$$\lambda \max = (16.33, 4.68, 1.79, 25.00, 9.53) * \begin{pmatrix} 0.063 \\ 0.261 \\ 0.513 \\ 0.033 \\ 0.129 \end{pmatrix} = 5.237$$

Порівняння результатів розрахунку λ_{max} :

Метод	WolframAlpha	рядкові	Середнє	Власний
		суми	геометричне	вектор
λ_{max}	5.23748	5.809	5.243	5.237
Погрішність,%	0.00%	10.90%	0.10%	0.00%

Як бачимо, наближене значення λ_{max} , при використанні середнього геометричного та власного вектору, близьке до значення розрахованого в WolframAlpha.

Висновок: в даній лабораторній роботі я навчився користуватись методом аналізу ієрархій з одним експертом для вирішення задачі багатокритеріального вибору. Використовуючи даний метод, я отримав результати, що приблизно співпадають з моєю власною думкою.

Варто зауважити, що серед перевірених мною методів найкращими, з точки зору точності знаходження λ_{max} , виявились метод «середньо геометричного» та метод «власних векторів». Але я б зупинився на методі «середньо геометричного», враховуючи що він досить легко обраховується та дає непогану точність.

Також, в ході виконання роботи я зрозумів, що обрав не зовсім правильні критерії, з точки зору оцінки альтернатив. І за умови наявності більшої кількості часу, варто було б спробувати використати більш складні критерії, які краще описують саме спеціальність, а не ВНЗ в цілому.

Також, ручний розрахунок ϵ досить кропітким та легко допустити помилку, яка вплине абсолютно на всі подальші підрахунки.