1) Se debe diseñar un filtro **pasa-altos**, que presente máxima planicidad en la banda de paso (frecuencia de corte = 300 Hz) y un cero de transmisión en 100 Hz. El **prototipo pasabajos normalizado** presenta la siguiente respuesta:

- a) Determine la expresión de H(s) del filtro pasa-altos normalizado
- b) Realizar el diagrama de polos y ceros de H(s)
- c) Sintetice el circuito del filtro pedido. Se utilizará para la estructura de segundo orden el siguiente circuito:

d) Compare la estructura sugerida y discuta las similitudes y diferencias con la red propuesta por Schaumann:

Figure 5.16 A general biquad based on the GIC circuit.

TABLE 5.4 Parameter Choice to Define the Filter Type for Eq. $(5.36)^a$

Filter type	а	b	С	Comments
Highpass	и	0	0	2a sets the high-frequency gain
Lowpass	c/2	c/2	C	c sets the low-frequency gain
Bandpass	0	b	0	2b sets the bandpass gain
Allpass	1	0	1	
Notch	1	1/2	1	
Highpass notch	a > c	c/2	c	c sets the low-frequency gain $(2a - c)$ sets the high-frequency gain
Lowpass notch	a < c	c/2	С	c sets the low-frequency gain $(2a - c)$ sets the high-frequency gain

In all cases $R = 1/(\omega_0 C)$.