Histopathology Research Template

true

2019-11-06

Contents

1	impute1.1 impute continious1.2 impute categorical1.3 impute outlier	3 3 3		
2	transform 2.1 min -max 2.2 skewness 2.3 log	3 3 3		
3	binning 3.1 optimal binning	3 3		
	data transformation report	3		
5	inspectdf	3		
6	Descriptive Statistics 6.1 Table 1 6.2 Categorical Variables 6.2.1 Split-Group Stats Categorical 6.2.2 Grouped Categorical 6.3 Continious Variables 6.3.1 Split-Group Stats Continious 6.3.2 Grouped Continious	4 4 4 4 5 5 5		
7	Cross Tables			
8	Plots 8.1 Categorical Variables	7 7		
9	Plots 9.1 Continious Variables	7 7		
10	Survival Analysis	8		
11	Pairwise comparison	8		
12	12 Multivariate Analysis Survival			
13	3 KM plot			
14	4 Separate tables			
15	5 Pipe together			

16 Separate tal	ables	10
17 Pipe togeth	ner	10
18 OR plot		10
19 HR plot (no	ot fully tested)	10
20 ANOVA		10
21 Save Final I	Data	10
22 Final Data	Summary	11
23 Software an	nd Libraries Used	12
24 Session Info	0	13
25 Notes		14
iris %>% mutate	e(sumVar = rowSums(.[1:4]))	
iris %>% mutate	e(sumVar = rowSums(select(., contains("Sepal")))) %>% head	
	e(sumVar = select(., contains("Sepal")) %>% rowSums()) %>% head	
	<pre>var2 <chr> sex.factor2 age.factor2</chr></pre>	
<pre>\$counts \$counts[[1]] # A tibble: 2 sex.factor s <fct> < 1 Female</fct></pre>	sex.factor2 n <fct> <int> M 445</int></fct>	
<pre></pre>	<pre>age.factor2</pre>	
	<60 years 204 60+ years 241	
	<60 years 210	
	•	

4 F 60+ years 274

i Rename Column. R

iSelectColumn.R

<= 22 Low >= 23 & <= 41 Average >=42 High

1 impute

- 1.1 impute continious
- 1.2 impute categorical
- 1.3 impute outlier
- 2 transform
- 2.1 min -max
- 2.2 skewness
- 2.3 log
- 3 binning
- 3.1 optimal binning
- 3.2 standardize
- 4 data transformation report
- 5 inspectdf

- 6 Descriptive Statistics
- 6.1 Table 1

- 6.2 Categorical Variables
- 6.2.1 Split-Group Stats Categorical
- 6.2.2 Grouped Categorical

- 6.3 Continious Variables
- 6.3.1 Split-Group Stats Continious
- 6.3.2 Grouped Continious

7 Cross Tables

- 8 Plots
- 8.1 Categorical Variables
- 9 Plots
- 9.1 Continious Variables

10 Survival Analysis

11 Pairwise comparison

12 Multivariate Analysis Survival

13 KM plot

Notes

 ∞

Use Hmisc::label() to assign labels to variables for tables and plots.

label(colon_s\$age.factor) = "Age (years)"

Export dataframe tables directly or to R Markdown using knitr::kable().

Note wrapper summary.missing() can be useful. Wraps mice::md.pattern.

 ${\rm colon_s~\%>\%~summary.missing(dependent,~explanatory)}$

Where a multivariable model contains a subset of the variables specified in the full univariable set, this can be specified.

 $explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") \ explanatory.multi = c("age.factor", "obstruct.factor") \ dependent = 'mort_5yr' \ colon_s \ \%>\% \ summarizer(dependent, explanatory, explanatory.multi)$

Random effects.

e.g. lme4::glmer(dependent ~ explanatory + (1 | random_effect), family="binomial")

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") explanatory.multi = c("age.factor", "obstruct.factor") random.effect = "hospital" dependent = 'mort_5yr' colon_s %>% summarizer(dependent, explanatory, explanatory, multi, random.effect)

metrics=TRUE provides common model metrics.

colon_s %>% summarizer(dependent, explanatory, explanatory.multi, metrics=TRUE)

Cox proportional hazards

e.g. survival::coxph(dependent ~ explanatory)

 $explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") \ dependent = "Surv(time, status)" \\$

colon_s %>% summarizer(dependent, explanatory)

Rather than going all-in-one, any number of subset models can be manually added on to a summary.factorlist() table using summarizer.merge(). This is particularly useful when models take a long-time to run or are complicated.

Note requirement for glm.id=TRUE. fit2df is a subfunction extracting most common models to a dataframe.

$$\label{eq:condition} \begin{split} & explanatory = c(\text{``age.factor''}, \text{``sex.factor''}, \text{``obstruct.factor''}, \text{``perfor.factor''}) \ explanatory.multi = c(\text{``age.factor''}, \text{``obstruct.factor''}) \ random.effect = \text{``hospital''} \ dependent = \text{``mort_5yr'} \end{split}$$

14 Separate tables

colon s %>% summary.factorlist(dependent, explanatory, glm.id=TRUE) -> example.summary

 ${\it colon_s~\%>\%~glmuni(dependent,~explanatory)~\%>\%~fit2df(estimate.suffix="~(univariable)")~->~example.univariable}$

 ${\it colon_s~\%>\%~glmmulti(dependent,~explanatory)~\%>\%~fit2df(estimate.suffix="(multivariable)")~->~example.multivariable}$

 $colon_s \% > \% \ glmmixed (dependent, \ explanatory, \ random.effect) \% > \% \ fit2df (estimate.suffix=" (multilevel") -> \ example.multilevel$

15 Pipe together

example.summary %>% summarizer.merge(example.univariable) %>% summarizer.merge(example.multivariable) %>% summarizer.merge(example.multilevel) %>% select(-c(glm.id, index)) -> example.final example.final

Cox Proportional Hazards example with separate tables merged together.

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") explanatory.multi = c("age.factor", "obstruct.factor") dependent = "Surv(time, status)"

16 Separate tables

 ${\tt colon_s~\%>\%~summary.factorlist(dependent,~explanatory,~glm.id=TRUE)~->~example2.summary}$

 ${\it colon_s~\%>\%~coxphuni(dependent,~explanatory)~\%>\%~fit2df(estimate.suffix="~(univariable)")~->~example2.univariable}$

 $colon_s~\%>\%~coxphmulti(dependent,~explanatory.multi)~\%>\%~fit2df(estimate.suffix="(multivariable)")~>>~example2.multivariable$

17 Pipe together

example2.summary %>% summarizer.merge(example2.univariable) %>% summarizer.merge(example2.multivariable) %>% select(-c(glm.id, index)) -> example2.final example2.final

18 OR plot

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or.plot(dependent, explanatory) # Previously fitted models (glmmulti() or glmmixed()) can be provided directly to glmfit

19 HR plot (not fully tested)

explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = "Surv(time, status)" colon_s %>% hr.plot(dependent, explanatory, dependent_label = "Survival") # Previously fitted models (coxphmulti) can be provided directly using coxfit

20 ANOVA

21 Save Final Data

22 Final Data Summary

23 Software and Libraries Used

The jamovi project (2019). jamovi. (Version 0.9) [Computer Software]. Retrieved from https://www.jamovi. org. R Core Team (2018). R: A Language and environment for statistical computing. [Computer software]. Retrieved from https://cran.r-project.org/. Fox, J., & Weisberg, S. (2018). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.

24 Session Info

25 Notes

Last update on 2019-11-06 12:29:44

Serdar Balci, MD, Pathologist drserdarbalci@gmail.com https://rpubs.com/sbalci/CV