Analysis II - 2014.05.12

Erinnerung: Ein diff'bares Skalarfeld f auf $U \subset \mathbb{R}^n$ offen mit $\nabla f = K$ oder K^T heisst Potential von K.

Sei: $U = I_1 \times ... \times I_n$ für Intervalle I_i

Fakt: Ist K stetig diff'bar, so existiert ein Potential genau dann wenn $\forall i, j : \frac{\partial K_i}{\partial x_j} = \frac{\partial K_j}{\partial x_i}$ Denn: $K = (K_1...K_n) = \nabla f \Rightarrow f$ zweimal stetig diff'bar und $K_i = \frac{\partial f}{\partial x_i} \Rightarrow \frac{\partial K_i}{\partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial K_j}{\partial x_i}$ ⇒ Notwendig. Hinreichend später.

Explizite Konstruktion

Sei K stetig.

$$i = 1$$
: " $f = \int K_1 dx_1$ "

Wähle Stammfunktion $g_1 := \int K_1 dx_1 \Rightarrow f = g_1 + f_1$ wobei $f_1(x)$ von x_1 unabhängig ist. $i = 2 : K_2 = \frac{\partial f}{\partial x_2} = \frac{\partial g_1}{\partial x_2} + \frac{\partial f_1}{\partial x_2} \iff \frac{\partial f_1}{\partial x_2} = K_2 - \frac{\partial g_1}{\partial x_2}$ Notwendige Bedingung: $K_2 - \frac{\partial g_1}{\partial x_2}$ unabhängig von x_1 . Wähle eine Stammfunktion

$$i = 2$$
: $K_2 = \frac{\partial f}{\partial x_2} = \frac{\partial g_1}{\partial x_2} + \frac{\partial f_1}{\partial x_2} \iff \frac{\partial f_1}{\partial x_2} = K_2 - \frac{\partial g_1}{\partial x_2}$

 $g_2 := \int (K_2 - \frac{\partial g_1}{\partial x_2}) \ dx_2$ die von x_1 unabhängig ist. $\Rightarrow f_1 = g_2 + f_2$ mit f_2 von x_1 und x_2 unabhängig.

$$i=3: K_3 = \frac{\partial f}{\partial r_2} = \frac{\partial}{\partial r_2} (g_1 + g_2 + f_2)$$

i=3: $K_3=\frac{\partial f}{\partial x_3}=\frac{\partial}{\partial x_3}(g_1+g_2+f_2)$ Bedingung: $K_3-\frac{\partial g_1}{\partial x_3}-\frac{\partial g_2}{\partial x_3}$ von x_1 und x_2 unabhängig.

Beispiel:
$$K = (x^2 + xy^2, x^2y - y^2)$$
 auf \mathbb{R}^2 : Wähle $g_1(x) = \int (x^2 + xy^2) dx$

Z.B:
$$g_1 := \frac{x^3}{3} + \frac{x^2 y^2}{2} \iff K_2 - \frac{\partial g_1}{\partial y} = (x^2 y - y^2) - (x^2 y) = -y^2 = \frac{\partial}{\partial y} (-\frac{y^3}{3})$$

Z.B: $g_1 := \frac{x^3}{3} + \frac{x^2y^2}{2} \longrightarrow K_2 - \frac{\partial g_1}{\partial y} = (x^2y - y^2) - (x^2y) = -y^2 = \frac{\partial}{\partial y}(-\frac{y^3}{3})$ Mit $g_2 := \frac{-y^3}{3} \Rightarrow K_2$ besitzt ein Potential, nämlich $f = \frac{x^3}{3} + \frac{x^2y^2}{2} - \frac{y^3}{3} + c$ für jede Konstante c.

Beispiel: Für welche $a, b, c \in \mathbb{R}$ besitzt $K \begin{pmatrix} x \\ y \\ z \end{pmatrix} = (2xy + yz, x^2 + xz + z, axy + by + cz)$ ein

$$f:=\int (2xy+yz)\ dx=x^2y+xyz+\underbrace{f_1}_{\text{yon }x\text{ unabbänging}}\Rightarrow x^2+xz+z=\tfrac{\partial f}{\partial y}=x^2+xz+\tfrac{\partial f_1}{\partial y}\iff \tfrac{\partial f_1}{\partial y}=z$$

$$f_1 = \int z \ dy = yz + \underbrace{f_2}_{\text{1.5.5}} \Rightarrow axy + by + cz = \frac{\partial f}{\partial z} = \frac{\partial}{\partial z}(x^2y + xyz + yz + f_2) = xy + y + \frac{\partial f_2}{\partial z}$$

$$\Leftrightarrow \frac{\partial f_2}{\partial x} = (a-1)xy + (b-1)y + cz \Rightarrow \text{ wir brauchen } a = b = 1 \Rightarrow$$

 $\iff \frac{\partial f_2}{\partial z} = (a-1)xy + (b-1)y + cz \Rightarrow \text{ wir brauchen } a = b = 1 \Rightarrow f_2 = \int cz \ dz = c\frac{z^2}{2} + \underbrace{f_3}_{2} \text{ Antwort wenn } a = b = 1 \text{ ist. Und dann ist } f = x^2y + xyz + yz + \frac{cz^2}{2} + c'$

Bemerkung: $K_2 - \frac{\partial g_1}{\partial x_2}$ von x_1 unabhängig $\iff \frac{\partial}{\partial x_1}(K_2 - \frac{\partial g_1}{\partial x_2}) = 0 \iff \frac{\partial K_2}{\partial x_1} = \frac{\partial}{\partial x_2}(\frac{\partial g_1}{\partial x_1}) = \frac{\partial K_1}{\partial x_2}$

Beispiel: $K = \text{konstant } K_0 \text{ hat Potential } f(x) = K_0 \cdot x$

Beispiel: $-c_{|x|^3}$ auf $\mathbb{R}^3_{\setminus\{0\}}$ hat Potential $f = \frac{c}{|x|}$

Beispiel: $K = \omega \times x$ für $\omega \in \mathbb{R}^3_{\{0\}}$. Nach Drehung ist oBdA $\omega = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ für $c \neq 0$. $K \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} c \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -cx_3 \\ -cx_2 \end{pmatrix} \quad \frac{\partial K_2}{\partial x_3} = \frac{\partial}{\partial x_3} (-cx_3) = -c \quad \frac{\partial K_3}{\partial x_2} = \frac{\partial}{\partial x_2} (cx_2) = +c$ \Rightarrow besitzt kein Potential.

Beispiel:
$$K = \frac{\omega \times x}{|\omega \times x|^2}$$
 oBdA $\omega = \begin{pmatrix} c \\ 0 \\ 0 \end{pmatrix} \Rightarrow K = \frac{1}{c(x_2^2 + x_3^2)} \begin{pmatrix} 0 \\ -x_3 \\ +x_2 \end{pmatrix}$ $\frac{\partial K_1}{\partial x_2} = 0 = \frac{\partial K_2}{\partial x_1} \quad \frac{\partial K_1}{\partial x_3} = 0 = \frac{\partial K_3}{\partial x_1} \quad \frac{\partial K_2}{\partial x_3} = \frac{\partial K_3}{\partial x_2} = \frac{x_3^2 - x_2^2}{c(x_2^2 + x_3^2)^2}$ \Rightarrow auf jedem Quader in $\mathbb{R}^3_{\backslash \mathbb{R}\omega}$ existiert ein Potential. Lokal tut's $f(x) = \frac{1}{c} \arg(x_2 + ix_3) + c'$

Global existiert kein Potential.

Bemerkung: Zu \mathbb{C} : besitzt eine Funktion f eine komplexe Stammfunktion genau dann wenn die Cauchy-Riemannschen DGL. gelten.

Vektorielles Kurvenintegral

Sei $\gamma:[a,b]\to C\subset\mathbb{R}^n$ eine C^1 -parametrisierte Kurve. Die überall durch γ' definierte Richtung heisst Orientierung von C. γ Weg von $\gamma(a)$ nach $\gamma(b)$. Falls $\gamma(a) = \gamma(b)$ ist, heisst γ ein geschlossener Weg.

Definition: Eine Umparametrisierung $\psi: [\widetilde{a}, \widetilde{b}] \tilde{\rightarrow} [a, b]$ bijektiv C^1 mit ψ monoton wachsend heisst orientierungserhaltend, sonst orientierungsvertauschend.

Definition: Seien f eine Funktion auf C und g eine auf einer Umgebung von C definierte Funktion. $\left(\int_{\gamma} = \int_{C} f \, dg := \int_{a}^{b} f(\gamma(t)) \cdot (g \circ \gamma)'(t) \, dt\right)$

Satz: Dies ist invariant unter orientierungserhaltender Umparametrisierung und wechselt das Vorzeichen unter orientierungserhaltender.

Definition: Für ein Vektorfeld K auf C ist $(\int_C = \int_{\gamma}) K \cdot dx := \int_{\gamma} (K_1 dx_1 + ... + K_n dx_n)$ $= \int_a^b (K \cdot \gamma)(t) \underbrace{\hspace{1em}}_{} \gamma'(t) \ dt$

Satz: Voriger Satz genauso.

Bemerkung: Skalares Kurvenintegral $\int_C f \ d \operatorname{vol}_1 = \int_C \cdot f |dx|$

Integralsatz

Für jedes C^1 Skalarfeld f auf $U \subset \mathbb{R}^n$ offen und jeden Weg γ in U von P nach Q gilt

$$\int_{\gamma} \nabla f \cdot dx = f(Q) - f(P)$$