Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 3

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- c) 0 10010010 1110101111000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$\mathtt{BX} = \mathtt{A4E1}_{(16)}, \quad \mathtt{CX} = \mathtt{F4B3}_{(16)}, \quad \mathtt{DX} = \mathtt{F55F}_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& (\mathtt{DX} \vee 89) + \mathtt{BX} \\ \mathtt{VAR2} &=& \mathtt{CX} + ((79 \wedge \mathtt{DX}) \vee \mathtt{CX}) \\ \mathtt{VAR3} &=& 72 - (\mathtt{BX} + \mathtt{DX}) \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e madhja duke e ruajtur indeksin e saj në regjistrin CX. Psh. nëse është variabla VAR2 atëherë në regjistrin CX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat tek ndërmjet numrit 19 dhe numrit 50 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin AX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $25_{(16)} + 29_{(16)}$
- b) $F4_{(16)} + C9_{(16)}$
- c) $66_{(16)} B2_{(16)}$
- d) $7C_{(16)} \wedge 0A_{(16)}$
- e) $9A_{(16)} + 96_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 16 bajtëshe. Cache memoria L1 ka kapacitet prej 512KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 2-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$445050AE_{(16)}$$
, $0B91BB6A_{(16)}$, $B05FC8E8_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 2-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku	w_0	w_1	w_2	w_3	w_4	w_5	w_6	w_7
$\overline{B_0}$	35	8D	1C	10	79	A8	88	17
B_1	17	FA	99	01	5F	A2	7C	BC
B_2	A4	2F	A8	E2	В8	CO	62	1A
B_3	9F	FE	1A	68	C8	F4	2D	A5
B_4	1B	59	37	D5	3C	1E	4A	7C
B_5	93	27	97	20	6B	D1	C7	AO
B_6	67	62	81	F6	32	05	9E	CO
B_7	C8	CC	EC	CE	BB	9E	2B	8B
B_8	E3	CE	4B	5B	BE	72	ВЗ	5D
B_9	8D	11	DE	CD	B4	57	EF	C1
B_A	F2	06	16	48	40	93	71	29
B_B	E6	23	99	77	55	F4	01	ВЗ
B_C	2E	A2	31	53	DC	EB	3F	EE
B_D	10	A5	24	F5	AD	99	24	47
B_E	D4	8B	7D	01	DD	00	61	52
B_F	85	92	A7	24	53	44	9D	9A

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?