Unit No. 13

Probability

Exercise No. 13.1

Question No. 1

Arshad rolls a dice, with sides labelled L, M, O, P, U. What is the probability that the dice lands on a consonant?

Solution:

Number of letters = n = 6 = n(S)

No. of vowels = n(O) = 2

No. of consonants = n(A) = 6-2 = 4

(Since O, U are not consonants)

Using;

$$P(A) = \frac{n(A)}{n(S)} = \frac{4}{6} = \frac{2}{3}$$

Question No. 2

Shazia throws a pair of fair dice. What will be the probability of getting;

- (i) sum of dots is at least 4.
- (ii) product of both dots is between 5 to 10.
- (iii) the difference between both the dots is equal to 4.
- (iv) number at least 5 on the first dice and the number at

least 4 on the second dice.

Solution:

When a pair of fair dice is rolled, the sample space will be:

	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

(i) Sum of dots is at least 4.

$$(1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)$$

Solution:

No. of favourable outcomes = n(A) = 33

$$P(A) = \frac{n(A)}{n(S)} = \frac{33}{36} = \frac{11}{12}$$

(ii) Product of both dots is between 5 and 10.

$$(1, 5), (1,6), (2, 3), (2, 4), (2, 5), (5, 1), (3, 2), (3, 3), (4, 2), (5, 2), (6, 1)$$

Solution:

No. of favourable outcomes = n(A) = 11

$$n(S) = 36$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{11}{36}$$

(iii) the difference between both the dots is equal to 4.

Solution:

Favourable outcomes are; (1, 5), (2, 6), (5, 1), (6, 2)

No. of favourable outcomes = n(A) = 4

$$n(S) = 36$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{4}{36} = \frac{1}{9}$$

(iv) There are six outcomes having at least 5 on the first dice and the number at least 4 on the second dice.

Solution:

No. of favourable outcomes = n(A) = 6

$$n(S) = 36$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{6}{36} = \frac{1}{6}$$

Question No. 3

One alphabet is selected at random from the word "MATHEMATICS".

Find the probability of getting:

- (i) vowel
- (ii) consonant
- (iii) an E
- (iv) an A
- (v) not M
- (vi) not T

Solution:

The word is MATHEMATICS

(i) Total letters in the word MATHEMATICS,

$$n(S) = 11$$

No. of vowels dot = n(A) = 4

Probability of getting vowel = $P(A) = \frac{n(A)}{n(S)} = \frac{4}{11}$

(ii) No. of consonants = 11 - 4

$$n(A) = 7$$

$$n(S) = 11$$

Probability of getting consonants = $P(A) = \frac{n(A)}{n(S)} = \frac{7}{11}$

(iii) an "E"

$$n(A) = 1$$

$$n(S) = 11$$

Probability of getting "E" = $P(A) = \frac{n(A)}{n(S)} = \frac{1}{11}$

(iv) an "A"

Here A appears twice.

So,
$$n(A) = 2$$

$$n(S) = 11$$

Probability of getting "A" = P(A) = $\frac{n(A)}{n(S)} = \frac{2}{11}$

(v) not "M"

Here M appears twice;

But not "M";

So,
$$n(A) = 11 - 2 = 9$$

$$n(S) = 11$$

Probability of getting not "M" = P(A) = $\frac{n(A)}{n(S)} = \frac{9}{11}$

(vi) not "T"

Here T appears twice;

But not "T";

So,
$$n(A) = 11 - 2 = 9$$

$$n(S) = 11$$

Probability of getting not "T" = $P(A) = \frac{n(A)}{n(S)} = \frac{9}{11}$

Question No. 4

Aslam rolled a dice. What is the probability of getting the numbers 3 or 4? Also find the probability of not getting the numbers 3 or 4.

Solution:

Finding probability of getting the numbers 3 to 4.

Total outcomes = n(S) = 6

Favourable outcomes = n(A) = 2

Probability of getting the numbers 3 to $4 = P(A) = \frac{n(A)}{n(S)} = \frac{2}{6} = \frac{1}{3}$

Finding Probability of **not** getting the numbers 3 or 4.

Total outcomes = n(S) = 6

Favourable outcomes = n(A) = 2

$$P(A) = \frac{1}{3}$$

Probability of **not** getting the numbers 3 to $4 = P(A') = 1 - \frac{1}{3} = \frac{3-1}{3} = \frac{2}{3}$

Question No. 5

Abdul Hadi labelled cards from 1 to 30 and put them in a box. He selects a card at random. What is the probability that selected card containing:

(i) the number 25

Solution:

Total outcomes = n(S) = 30

Favourable outcomes = n(A) = 1 (the number 25)

Probability that selected card contains the number $25 = P(A) = \frac{n(A)}{n(S)} = \frac{1}{30}$

(ii) number between 17 to 22

Solution:

Total outcomes = n(S) = 3.0

Favourable outcomes = n(A) = 6 (17, 18, 19, 20, 21, 22)

Probability that selected card contains the number between 17 to $22 = P(A) = \frac{n(A)}{n(S)} = \frac{6}{30} = \frac{1}{5}$

(iii) number at least 20

Solution:

Total outcomes = n(S) = 30

Favourable outcomes = n(A) = 11 (20,21,22,23,24,25,26,27,28,29,30)

Probability that selected card contains the number at least $20 = P(A) = \frac{n(A)}{n(S)} = \frac{11}{30}$

(iv) number not 27 and 29

Solution:

Total outcomes = n(S) = 30

Number not 27 and 29;

Favourable outcomes = n(A) = 30 - 2 = 28

Probability that selected card contains the number not 27 and $29 = P(A) = \frac{n(A)}{n(S)} = \frac{28}{30} = \frac{14}{15}$

(v) number not between 12 - 15

Solution:

Total outcomes = n(S) = 30

Favourable outcomes = n(A) = 30 - 4 = 26 (outcomes contain those numbers which are not between 12 - 15)

Probability that selected card contains the number not between 12 - 15 = P(A) = $\frac{n(A)}{n(S)} = \frac{26}{30} = \frac{13}{15}$

Question No. 6

The probability that Ayesha will pass the examination is 0.85. What will be the probability that Ayesha will not pass the examination?

Data:

Probability that Ayesha will pass the examination = P(A) = 0.85

Probability that Ayesha will not pass examination = ?

Solution:

$$P(A') + P(A) = 1$$

$$P(A') = 1 - P(A)$$

$$P(A') = 1 - 0.85$$

$$P(A') = 0.15$$

Where A' denotes Ayesha will not pass examination.

Question No. 7

Taabish tossed a fair coin and rolled a fair dice once. Find the probability of the following events:

(i) fail on coin and at least 4 on dice.

Solution:

> For coin:

Favourable outcome = n(A) = 1

$$n(S) = 2$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{1}{2}$$

➣ For dice:

Favourable outcome n(B) = 3

$$n(S) = 6$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{6} = \frac{1}{2}$$

Probability of events = $P(A) \times P(B)$

Probability of events =
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

(ii) head on coin and the number 2,3 on dice.

Solution:

➤ Head on coin, probability:

Head on coin, probability = $\frac{1}{2}$

> On dice, the numbers 2, 3:

On dice, the numbers 2, 3 probability = $\frac{2}{6} = \frac{1}{3}$

Probability of events = $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$

(iii) Head and tail on coin and the number 6 on dice.

Solution:

> Head and tail on coin.

Favourable outcomes = 2

Probability = $\frac{2}{2}$ = 1

> Number 6 on dice.

No. of Favourable outcomes = 1

Probability = $\frac{1}{6}$

Required Probability = $1 \times \frac{1}{6} = \frac{1}{6}$

(iv) not tail on coin and the number 5 on dice.

Solution:

> Not-tail on coin.

Probability = $\frac{1}{2}$

> Number 5 on dice.

Probability = $\frac{1}{6}$

Required probability = $\frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$

(v) not head on coin and the number 5 and 2 on dice.

Solution:

> Not head.

Probability = $\frac{1}{2}$

> Number 5 and 2 on dice.

Probability = $\frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$

Let A be the event, then;

$$P(A) = \frac{1}{2} + \frac{1}{3} = \frac{3+2}{6} = \frac{5}{6}$$

Question No. 8

A card is selected at random from a well shuffled pack of 52 plying cards.

What will be the probability of selecting;

(i) a queen.

Solution:

No. of favourable outcomes = n(A) = 4 (Queen)

Total possible outcomes = n(S) = 52

Probability of selecting a queen = $P(A) = \frac{n(A)}{n(S)} = \frac{4}{52} = \frac{1}{13}$

(ii) neither a queen nor a jack.

Solution:

No. of jacks in a deck of 52 cards = 4

No. of queen in a deck of 52 cards = 4

Total no. of queen and jack = 4 + 4 = 8

No. of cards which is neither a queen nor a jack = 52 - 8 = 44

Probability P(E) =
$$\frac{\text{No.of outcomes favourable to E}}{\text{Number of all possible outcomes of the experiment}} = \frac{44}{52} = \frac{11}{13}$$

Question No. 9

A card is chosen at random from a pack of 52 playing cards. Find the probability of getting:

(i) a jack.

Solution:

No. of jack = 4

So, probability of getting a jack = $\frac{4}{52} = \frac{1}{13}$

(ii) no diamond.

Solution:

Given, a standard deck of 52 cards, we have to find the probability of getting no diamond.

There are 13 cards of diamond in a 52-card deck.

So, probability of getting **no** diamond =
$$1 - \frac{13}{52} = \frac{52 - 13}{52} = \frac{39}{52} = \frac{3}{4}$$