

Word Translation Without Parallel Data (2018)

A. Conneau, G. Lample, M. Ranzato, L. Denoyer, H. Jégou

Poster by: A. Puigdemont Monllor, J. Čieško

Faculty of Informatics, Masaryk University

November 11, 2024

Model Overview

Embedding Spaces and Translation Mapping

- We assume two sets of embeddings *X* (source) and *Y* (target), trained independently on monolingual data.
- Objective: Learn a linear mapping matrix W such that translations are close in a shared embedding space. This is achieved by minimizing:

$$W^* = \underset{W \in M_d(\mathbb{R})}{\operatorname{argmin}} ||WX - Y||_F$$

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$
(1)

■ Translation of a source word *s* is computed by finding the target *t* that maximizes the cosine similarity:

$$t = \operatorname*{argmax} \cos(Wx_s, y_t) \tag{2}$$

The approach draws on prior work (Mikolov et al., 2013) that demonstrated successful alignment with a linear mapping.

Method Illustration

(A) The embeddings of English (red, X) and Italian (blue, Y) words are shown, where dot size indicates word frequency. (B) Adversarial learning is used to align X and Y with a rotation matrix W, tested using randomly selected words. (C) The mapping W is refined through Procrustes, using frequent words as anchor points to minimize an energy function. (D) Translation uses W and CSLS, which adjusts distances in dense regions to reduce "hub" effects, ensuring better word vector alignment.

Adversarial Training

Domain-Adversarial Approach

- We use a domain-adversarial approach to learn the mapping W without relying on cross-lingual supervision.
- Let $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_m\}$ be two sets of word embeddings from a source and a target language, respectively.
- A discriminator is trained to distinguish between the transformed embeddings WX and the target embeddings Y. This forms a two-player game:
 - The discriminator aims to maximize its ability to identify the origin of an embedding.
 - The mapping *W* is optimized to minimize the discriminator's predictive accuracy by making *WX* and *Y* as similar as possible.
- Discriminator's objective:

$$L_{D}(\theta_{D}|W) = -\frac{1}{n} \sum_{i=1}^{n} \log P_{\theta_{D}}(\text{source} = 1|Wx_{i}) - \frac{1}{m} \sum_{i=1}^{m} \log P_{\theta_{D}}(\text{source} = 0|y_{i})$$
 (3)

Mapping Objective

Training the Mapping

■ The mapping matrix W is optimized to make it difficult for the discriminator to accurately predict the origins of the embeddings:

$$L_W(W|\theta_D) = -\frac{1}{n} \sum_{i=1}^n \log P_{\theta_D}(\text{source} = 0|Wx_i) - \frac{1}{m} \sum_{i=1}^m \log P_{\theta_D}(\text{source} = 1|y_i) \quad (4)$$

- This training process involves **stochastic gradient updates**, alternating between training the discriminator and updating *W*.
- The goal is to ensure that *WX* and *Y* become indistinguishable, thus learning a more robust mapping.
- This process follows the standard adversarial training protocols established by Goodfellow et al. (2014), where models are trained in opposition to each other to improve performance.

Refinement Procedure

Refining the Mapping with Procrustes

- The initial mapping *W* from adversarial training performs well but struggles with rare words, which often have less reliable embeddings.
- Frequent words serve as reliable anchors for refinement to enhance alignment quality.
- We aim to minimize the difference between aligned embeddings:

$$W^* = \underset{W \in O_d(\mathbb{R})}{\operatorname{argmin}} ||WX - Y||_F \tag{5}$$

- A synthetic vocabulary is formed using mutual nearest neighbors among frequent words for a high-quality dictionary.
- The Procrustes method is applied iteratively for further refinement, but improvements beyond the first iteration are typically small, often below 1%.

Cross-Domain Similarity Local Scaling (CSLS)

Improving Nearest Neighbor Matching

- CSLS enhances the reliability of matching pairs across languages by adjusting the similarity metric.
- The similarity measure is defined as:

$$CSLS(Wx_s, y_t) = 2\cos(Wx_s, y_t) - r_T(Wx_s) - r_S(y_t)$$
(6)

Where:

$$r_T(Wx_s) = \frac{1}{K} \sum_{y_t \in N_T(Wx_s)} \cos(Wx_s, y_t)$$
 (mean similarity to target neighbors) (7)

$$r_S(y_t) = \frac{1}{K} \sum_{x_s \in N_S(y_t)} \cos(x_s, y_t)$$
 (mean similarity to source neighbors) (8)

- CSLS effectively addresses the hubness problem, where some words (hubs) serve as nearest neighbors for many others, leading to inaccuracies in translation.
- This method improves accuracy by scaling similarity based on the density of neighboring words, enhancing translation quality.

Thank You for Your Attention!