

Report No:CCISE161105603

FCC REPORT

(UNII)

Applicant: NINGBO PLUS AND POPSCREENS ELECTRONIC

TECHNOLOGY CO., LTD.

Address of Applicant: #7 HONGDA ROAD, HONG TANG INDUSTRIAL ZONE A,

JIANGBEI DISTRICT, NINGBO, ZHEJIANG PROVINCE, CHINA

Equipment Under Test (EUT)

Product Name: ANDROID TOUCH PLAYER INDUSTRIAL GRADE

Model No.: MB4KM

FCC ID: 2AFI3MB4KM

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 24 Nov., 2016

Date of Test: 24 Nov., 2016 to 18 Jan., 2017

Date of report issued: 18 Jan., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Jan., 2017	Original

Tested by: Date: 18 Jan., 2017

Test Engineer

Reviewed by: Lee Date: 18 Jan., 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS ANDMEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	19
	6.5	Power Spectral Density	31
	6.6	BAND EDGE	
	6.7	Spurious Emission	
	6.7.1	. Ormanica Emicercia careras or are opramily barraminimum	
	6.8	FREQUENCY STABILITY	53
7	TES	T SETUP PHOTO	55
Q	FUT	CONSTRUCTIONAL DETAILS	57

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass
26dB Occupied Bandwidth	15.407 (a)	Pass
6dB Emission Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407 (a)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	NINGBO PLUS AND POPSCREENS ELECTRONIC TECHNOLOGY CO., LTD.
Address of Applicant:	#7 HONGDA ROAD, HONG TANG INDUSTRIAL ZONE A, JIANGBEI DISTRICT, NINGBO, ZHEJIANG PROVINCE, CHINA
Manufacturer:	NINGBO PLUS AND POPSCREENS ELECTRONIC TECHNOLOGY CO., LTD.
Address of Manufacturer:	#7 HONGDA ROAD, HONG TANG INDUSTRIAL ZONE A, JIANGBEI DISTRICT, NINGBO, ZHEJIANG PROVINCE, CHINA

5.2 General Description of E.U.T.

Product Name:	ANDROID TOUCH PLAYER INDUSTRIAL GRADE
Model No.:	MB4KM
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4 Band 4: 802.11a/802.11n20: 5
Channel separation:	802.11a/802.11n20:20MHz
Modulation technology: (IEEE 802.11a)	BPSK,QPSK,16-QAM,64-QAM
Modulation technology: (IEEE 802.11n)	BPSK,QPSK,16-QAM,64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps, MCS4:39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Antenna Type:	Internal Antenna
Antenna gain:	Band 1: 2dBi Band 4: 2dBi
AC adapter:	Model: KPL-040F-VI Input: AC100-240V 50/60Hz 1.7A Output: DC 12.0V, 3.33A
Power supply:	DC12 V

Operation Frequency each of channel

eporation requestoy each or channel				
Band 1		Band 4		
802.11a/	802.11n20	802.11a/802.11n20		
Channel	Frequency	Channel	Frequency	
36	5180MHz	149	5745MHz	
40	5200MHz	153	5765MHz	
44	5220MHz	157	5785MHz	
48	5240MHz	161	5805MHz	
		165	5825MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band	1	Band 4		
802.11a/802	2.11n20	802.11a/802.11n20		
Channel	Channel Frequency		Frequency	
The lowest channel 5180MHz		The lowest channel	5745MHz	
The middle channel	5200MHz	The middle channel	5785MHz	
The highest channel	5240MHz	The highest channel	5825MHz	

5.3 Test environment andmode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case. Mode Data rate 802.11a 6Mbps 802.11n20 6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6Mbps for 802.11a,6.5 Mbps for 802.11n20. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC- Registration No.: 817957

Shenzhen ZhongjianNanfang Testing Co., Ltd. EMC Laboratory has been registered andfullydescribedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen ZhongjianNanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen ZhongjianNanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen ZhongjianNanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen ZhongjianNanfang Testing Co., Ltd.

No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017
6	Pre-amplifier (18-40GHz)	A.H System	PAM-1840	GTS219	04-01-2016	03-31-2017
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017
11	Spectrum Analyzer	HP	8564E	CCIS0150	03-28-2016	03-28-2017
12	Coaxial Cable	N/A	N/A	CCIS0018	04-01-2016	03-31-2017
13	Coaxial Cable	N/A	N/A	CCIS0020	04-01-2016	03-31-2017

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirementdoes not apply to carrier currentdevices or to devices operated underthe provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbances ensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 1	5.207			
Test Method:	ANSI C63.4: 2014	ANSI C63.4: 2014			
TestFrequencyRange:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kH				
Limit:	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	 Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). Itprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details.				
Test results:	Passed				

Measurement Data

Trace: 33

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : ANDROID TOUCH PLAYER INDUSTRIAL GRADE EUT

: MB4KM Model

Test Mode : 5G-Wifi mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

	Freq	Read Level	LISN Factor		Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.150	29.45	0.14	10.78	40.37	66.00	-25.63	QP
2	0.162	10.60	0.14	10.77	21.51	55.34	-33.83	Average
3	0.558	18.75	0.27	10.77	29.79	46.00	-16.21	Average
4	0.561	24.91	0.27	10.77	35.95	56.00	-20.05	QP
1 2 3 4 5 6 7 8 9	1.147	16.20	0.27	10.89	27.36	56.00	-28.64	QP
6	1.790	6.93	0.31	10.95	18.19	46.00	-27.81	Average
7	2.664	9.16	0.33	10.93	20.42	46.00	-25.58	Average
8	2.707	18.70	0.33	10.93	29.96	56.00	-26.04	QP
9	8.323	18.51	0.33	10.87	29.71	60.00	-30.29	QP
10	9.809	13.22	0.30	10.93	24.45	50.00	-25.55	Average
11	11.807	13.39	0.28	10.92	24.59	50.00	-25.41	Average
12	12.124	22.41	0.28	10.92	33.61	60.00	-26.39	QP

Neutral:

Trace: 35

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : ANDROID TOUCH PLAYER INDUSTRIAL GRADE EUT

Model : MB4KM

Test Mode : 5G-Wifi mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

: Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark	
MHz	dBu∇	<u>dB</u>	<u>d</u> B	dBu₹	—dBu₹	<u>d</u> B		
0.150	26.04	0.12	10.78	36.94	66.00	-29.06	QP	
0.174	9.24	0.14	10.77	20.15	54.77	-34.62	Average	
0.555	24.29	0.27	10.77	35.33	56.00	-20.67	QP	
0.558	17.30	0.27	10.77	28.34	46.00	-17.66	Average	
0.779	16.61	0.31	10.80	27.72	56.00	-28.28	QP	
1.345	15.95	0.26	10.91	27.12	56.00	-28.88	QP	
1.858	4.84	0.26	10.95	16.05	46.00	-29.95	Average	
2.678	11.09	0.29	10.93	22.31	46.00	-23.69	Average	
2.946	17.10	0.30	10.92	28.32	56.00	-27.68	QP	
9.809	13.70	0.25	10.93	24.88	50.00	-25.12	Average	
13.057	26.33	0.25	10.91	37.49	60.00	-22.51	QP	
13.408	14.61	0.25	10.91	25.77	50.00	-24.23	Average	
	MHz 0. 150 0. 174 0. 555 0. 558 0. 779 1. 345 1. 858 2. 678 2. 946 9. 809 13. 057	MHz dBuV 0.150 26.04 0.174 9.24 0.555 24.29 0.558 17.30 0.779 16.61 1.345 15.95 1.858 4.84 2.678 11.09 2.946 17.10 9.809 13.70 13.057 26.33	Freq Level Factor MHz dBuV dB 0.150 26.04 0.12 0.174 9.24 0.14 0.555 24.29 0.27 0.558 17.30 0.27 0.779 16.61 0.31 1.345 15.95 0.26 1.858 4.84 0.26 2.678 11.09 0.29 2.946 17.10 0.30 9.809 13.70 0.25 13.057 26.33 0.25	Freq Level Factor Loss MHz dBuV dB dB	MHz dBuV dB dB dBuV 0.150 26.04 0.12 10.78 36.94 0.174 9.24 0.14 10.77 20.15 0.555 24.29 0.27 10.77 35.33 0.558 17.30 0.27 10.77 28.34 0.779 16.61 0.31 10.80 27.72 1.345 15.95 0.26 10.91 27.12 1.858 4.84 0.26 10.95 16.05 2.678 11.09 0.29 10.93 22.31 2.946 17.10 0.30 10.92 28.32 9.809 13.70 0.25 10.93 24.88 13.057 26.33 0.25 10.91 37.49	Freq Level Factor Loss Level Line MHz dBuV dB dB dBuV dBuV 0.150 26.04 0.12 10.78 36.94 66.00 0.174 9.24 0.14 10.77 20.15 54.77 0.555 24.29 0.27 10.77 35.33 56.00 0.558 17.30 0.27 10.77 28.34 46.00 0.779 16.61 0.31 10.80 27.72 56.00 1.345 15.95 0.26 10.91 27.12 56.00 1.858 4.84 0.26 10.95 16.05 46.00 2.678 11.09 0.29 10.93 22.31 46.00 2.946 17.10 0.30 10.92 28.32 56.00 9.809 13.70 0.25 10.93 24.88 50.00 13.057 26.33 0.25 10.91 37.49 60.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dB dBuV dBuV dB dB <td> Treq Level Factor</td>	Treq Level Factor

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)		
Test Method:	ANSI C63.10: 2013, KDB789033		
Limit:	Band 1:24dBm Band 4:30dBm.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Band 1

24.14				
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result
	Lowest	12.78	24.00	Pass
802.11a	Middle	13.72	24.00	Pass
	Highest	13.98	24.00	Pass
	Lowest	12.12	24.00	Pass
802.11n20	Middle	12.92	24.00	Pass
	Highest	13.87	24.00	Pass

Band 4

Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result
	Lowest	13.73	30.00	Pass
802.11a	Middle	14.36	30.00	Pass
	Highest	14.02	30.00	Pass
	Lowest	14.16	30.00	Pass
802.11n20	Middle	13.83	30.00	Pass
	Highest	13.95	30.00	Pass

Test plot as follows:

Band 1

Band 4:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)		
Test Method:	ANSI C63.10:2013 and KDB 789033		
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Band 1:

Toot Channal	26dB Emission E	Limit	Dogult	
Test Channel	802.11a	802.11n20	Limit	Result
Lowest	19.12	19.52		
Middle	19.20	19.52	N/A	N/A
Highest	19.20	19.44		

Toot Channal	99% Occupy Ba	Limit	Result	
Test Channel	802.11a	802.11n20 Limit		Result
Lowest	16.72	17.60		
Middle	16.72	17.68	N/A	N/A
Highest	16.64	17.60		

Band 4:

Test Channel	26dB Emission B	Limit	Dooult	
rest Channel	802.11a	802.11n20	LIIIII	Result
Lowest	19.28	19.60		
Middle	19.20	19.44	N/A	N/A
Highest	19.28	19.44		

Toot Channal	99% Occupy Ba	Limit	Result	
Test Channel	802.11a	802.11n20		Result
Lowest	16.72	17.60		
Middle	16.72	17.60	N/A	N/A
Highest	16.72	17.60		

Test Channel	6dB Emission B	Limit	Desult	
	802.11a	802.11n20	Limit	Result
Lowest	15.44	16.16		
Middle	15.36	15.36	>500kHz	N/A
Highest	15.36	15.36		

Test plot as follows:

Band 1:

Date: 2.DEC.2016 10:18:18

Lowest channel

Date: 2.DEC.2016 10:19:07

Middle channel

Date: 2.DEC.2016 10:19:28

Highest channel

Date: 2.DEC.2016 10:21:12

Date: 2.DEC.2016 10:21:42

Date: 2.DEC.2016 10:22:40

Highest channel

Date: 2.DEC.2016 10:18:32

Lowest channel

Date: 2.DEC.2016 10:18:54

Date: 2.DEC.2016 10:19:41

Highest channel

Date: 2.DEC.2016 10:21:00

Date: 2.DEC.2016 10:22:00

Date: 2.DEC.2016 10:22:24

Highest channel

Band 4:

Date: 2.DEC.2016 10:31:47

*

Date: 2.DEC.2016 10:32:17

Date: 2.DEC.2016 10:35:34

Highest channel

Date: 2.DEC.2016 14:06:17

Date: 2.DEC.2016 10:36:28

Date: 2.DEC.2016 10:37:34

Highest channel

Date: 2.DEC.2016 10:31:23

Date: 2.DEC.2016 10:32:29

Date: 2.DEC.2016 10:35:22

Highest channel

Date: 2.DEC.2016 10:50:05

Date: 2.DEC.2016 10:36:41

Highest channel

Date: 2.DEC.2016 10:37:10

Date: 2.DEC.2016 13:56:31

Date: 2.DEC.2016 13:57:58

Date: 2.DEC.2016 14:00:03

Highest channel

Date: 2.DEC.2016 14:01:24

Date: 2.DEC.2016 14:02:56

Date: 2.DEC.2016 14:04:03

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)			
Test Method:	ANSI C63.10:2013, KDB 789033			
Limit:	Band 1:11 dBm/MHz Band 4: 30dBm/500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Band 1

Mode	Test CH	PSD (dBm)	Limit (dBm)	Result
802.11a	Lowest	-5.23	11.00	Pass
	Middle	-4.62	11.00	Pass
	Highest	-3.59	11.00	Pass
802.11n20	Lowest	-5.53	11.00	Pass
	Middle	-4.76	11.00	Pass
	Highest	-3.95	11.00	Pass

Band 4

Dana 4						
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result		
802.11a	Lowest	0.68	30.00	Pass		
	Middle	0.26	30.00	Pass		
	Highest	0.05	3.000	Pass		
802.11n20	Lowest	-0.91	30.00	Pass		
	Middle	-0.09	30.00	Pass		
	Highest	0.55	30.00	Pass		

Test plot as follows:

Band 1:

Date: 2.DEC.2016 10:53:51

Date: 2.DEC.2016 10:54:17

Date: 2.DEC.2016 10:55:01

Highest channel

Test mode:802.11n20

Date: 2.DEC.2016 10:56:45

Lowest channel *RRW 1 MHz *VBW 3 MHz SWT 20 ms 5.196

Date: 2.DEC.2016 10:56:16

Middle channel

Date: 2.DEC.2016 10:55:35

Highest channel

Band 4:

Highest channel

Highest channel

6.6 Band Edge

6.6 Band Edge				
Test Requirement:	FCC Part15 E Sec	tion 15.407 (b)		
Test Method:	ANSI C63.10:2013	, KDB 789033		
Receiver setup:	Detector	RBW	VBW	Remark
	Peak	1MHz	3MHz	Peak Value
	RMS	1MHz	3MHz	Average Value
Limit:	Band	Limit (dBu	V/m @3m)	Remark
	Band 1		.20	Peak Value
	24.14		.00	Average Value
	Band 4		.20	Peak Value
	Remark:	54	.00	Average Value
	1. Band 1 limit:			
		RP[dBm] + 95.2=68.	2 dBuV/m,for E	IPR[dBm]=-27dBm.
	2. Band 4 limit:		,	
				IPR[dBm]=-17dBm.
Test Procedure:			•	able 1.5 meters above
				s rotated 360 degrees
		ne position of the h		erference-receiving
				ariable-height antenna
	tower.	iiwao iiioantoa oii	ino top or a v	anabio noight amonna
		neight is varied fro	m one meter t	to four meters above
				of the field strength.
			rizations of th	e antenna are set to
	make the mea			14. 9
	•			rranged to its worst
			•	nts from 1 meter to 4 egrees to 360 degrees
		ximum reading.	ned nom o de	grees to 500 degrees
		ver system was se	et to Peak Det	ect Function and
		dwidth with Maxim		
			•	was 10dB lower than
	•	-		ed and the peak values
				emissions that did not
				one using peak, quasi- n reported in a data
	sheet.	ge memod as spe	cined and the	irreported iir a data
Test setup:				-
·		\bigcirc	$\sim\sim$	
				\leq
		AE EUT	Horn Antenna A	Intenna Tower
		AE EUT		
		31	, ,	_
		(Turntable)	VV -	
		Ground Re	ference Plane	
		Test Receiver	Pre- Amplifier Control	oller
		I		
Toot Instruments:	Defer to postion 5 (? for data!!s		
Test Instruments: Test mode:	Refer to section 5.6 Refer to section 5.3			
Test results:	Passed	J IOI UGIAIIS		
rost rosults.	1 00000			

Band 1:

			802.11a										
Test cl	nannel		Lowest		Le	vel	F	Peak					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
5150.00	42.11	36.23	7.05	41.93	43.46	68.20	-24.74	Horizontal					
5150.00	41.65	36.23	7.05	41.93	43.00	68.20	-25.20	Vertical					
	802.11a												
Test cl	nannel		Lowest		Le	vel	Av	rerage					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
5150.00	32.58	36.23	7.05	41.93	33.93	54.00	-20.07	Horizontal					
5150.00	31.36	36.23	7.05	41.93	32.71	54.00	-21.29	Vertical					
				802.11a									
Test cl	nannel		Highest		Le	vel	F	Peak					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
5350.00	41.52	35.37	7.11	41.89	42.11	68.20	-26.09	Horizontal					
5350.00	42.78	35.37	7.11	41.89	43.37	68.20	-24.83	Vertical					
				802.11a									
Test cl	nannel		Highest		Le	vel	Av	rerage					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
5350.00	31.32	35.37	7.11	41.89	31.91	54.00	-22.09	Horizontal					
5350.00	32.49	35.37	7.11	41.89	33.08	54.00	-20.92	Vertical					

			8	02.11n-HT20)				
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	42.05	36.23	7.05	41.93	43.40	68.20	-24.80	Horizontal	
5150.00	41.11	36.23	7.05	41.93	42.46	68.20	-25.74	Vertical	
802.11n-HT20									
Test cl	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	32.78	36.23	7.05	41.93	34.13	54.00	-19.87	Horizontal	
5150.00	31.69	36.23	7.05	41.93	33.04	54.00	-20.96	Vertical	
			8	02.11n-HT20)				
Test cl	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	42.25	35.37	7.11	41.89	42.84	68.20	-25.36	Horizontal	
5350.00	41.36	35.37	7.11	41.89	41.95	68.20	-26.25	Vertical	
			8	02.11n-HT20)				
Test cl	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	32.81	35.37	7.11	41.89	33.40	54.00	-20.60	Horizontal	
5350.00	31.27	35.37	7.11	41.89	31.86	54.00	-22.14	Vertical	

Band 4:

Danu 4.									
				802.11a					
Test cl	nannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	41.23	34.65	7.69	41.94	41.63	68.20	-26.57	Horizontal	
5725.00	42.52	34.65	7.69	41.94	42.92	68.20	-25.28	Vertical	
802.11a									
Test cl	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	31.38	34.65	7.69	41.94	31.78	54.00	-22.22	Horizontal	
5725.00	32.47	34.65	7.69	41.94	32.87	54.00	-21.13	Vertical	
				802.11a					
Test cl	nannel		Highest		Le	Level Pea			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.69	34.63	7.90	42.03	42.19	68.20	-26.01	Horizontal	
5850.00	40.52	34.63	7.90	42.03	41.02	68.20	-27.18	Vertical	
				802.11a					
Test cl	nannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	31.74	34.63	7.90	42.03	32.24	54.00	-21.76	Horizontal	
5850.00	30.85	34.63	7.90	42.03	31.35	54.00	-22.65	Vertical	

			8	02.11n-HT20)				
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	42.58	34.65	7.69	41.94	42.98	68.20	-25.22	Horizontal	
5725.00	41.62	34.65	7.69	41.94	42.02	68.20	-26.18	Vertical	
802.11n-HT20									
Test cl	nannel		Lowest		Le	Limit Line (dBuV/m) (dB) 68.20 -25.22 68.20 -26.18 Yel		rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Line	Over Limit	Polarization	
5725.00	32.60	34.65	7.69	41.94	33.00	54.00	-21.00	Horizontal	
5725.00	31.37	34.65	7.69	41.94	31.77	54.00	-22.23	Vertical	
			8	02.11n-HT20)				
Test cl	nannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Line	Limit	Polarization	
5850.00	42.11	34.63	7.90	42.03	42.61	68.20	-25.59	Horizontal	
5850.00	41.35	34.63	7.90	42.03	41.85	68.20	-26.35	Vertical	
			8	02.11n-HT20)				
Test cl	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Line	Over Limit	Polarization	
5850.00	33.02	34.63	7.90	42.03	33.52	` ,	-20.48	Horizontal	
5850.00	31.25	34.63	7.90	42.03	31.75	54.00	-22.25	Vertical	

6.7 Spurious Emission

6.7.1 Unwanted Emissions outside of the oprating band

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205							
Test Method:	ANSI C63.10:2013									
TestFrequencyRange:	30MHz to 40GHz Measurement Distance: 3m									
Test site:	Measurement D	istance: 3m								
Receiver setup:	Frequency	Detector	RBW	VB	SW.	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300		Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3M		Peak Value				
I invite	Fraguana	RMS	1MHz mit (dBuV/m @3	3M	HZ	Average Value Remark				
Limit:	Frequence 30MHz-88M	•	40.0	5111)	<u>O</u> ı	Jasi-peak Value				
	88MHz-216M		43.5	+		Jasi-peak Value				
	216MHz-960		46.0			uasi-peak Value				
	960MHz-1G		54.0			uasi-peak Value				
				L						
	Frequenc	у	Limit (dBm/MHz	<u>z</u>)		Remark				
	Above 1GI	J ₇	68.20			Peak Value				
	Above 101	IZ	54.00		ŀ	Average Value				
	Remark:									
	1. Above 1GHz		05.0.00.0.40.4	//) 1 OZ-ID				
	Restricted band:	= EIRP[dBm] +	95.2=68.2 dBu\	//m,tor E	:IPK[aE	smj=-2/asm.				
	Frequence	v	Limit (dBm/MHz	2)		Remark				
			74	-/		Peak Value				
	Above 1GI	-lz	54		F	Average Value				
Test Procedure:	/1.5m(above was rotated radiation. 2. The EUT wantenna, we tower. 3. The antenre ground to compare the following of the fol	re 1GHz) aboved 360 degrees was set 3 meter hichwas mount a height is varied termine the read vertical polent. Uspected emiste antenna was atablewas turn reading. The reading and width with the sion level of the ed, then testing be reported.	e the groundat todetermine the saway from the ted on the top ied from one maximum value arizations of the tuned to heighed from 0 degrows set to Pea Maximum Hold to the EUT in peak is could be stop therwise the electron of the telectron of telectron of the telectron of the telectron of the telectron of telectron of the telectron of the telectron of the telectron of telectron of the telectron of the telectron of telectron	a 3 me e position e interfor a var meter to e of the me anter was arrants from rees to did Mode. I Mode was ped anomission	eter car on of the erence riable-h four m field stana are anged 1 met 360 de ct Func was 100 d the p	e-receiving neight antenna neters above the trength. Both e set to make the to its worst case er to 4 meters egrees to find the ction and dB lower than the eak values of the				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : ANDROID TOUCH PLAYER INDUSTRIAL GRADE Condition

EUT

Model : MB4KM Test mode : 5G-Wifi mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: MT REMARK

	•								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	—dBu₹	<u>dB</u> /m	d <u>B</u>	<u>ab</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	172.599	56.29	9.65	2.68	29.03	39.59	43.50	-3.91	QP
2	267.546	55.27	12.00	2.86	28.51	41.62	46.00	-4.38	QP
2	375.939	52.26	15.09	3.09	28.68	41.76	46.00	-4.24	QP
4	455.906	52.79	16.28	3.25	28.88	43.44	46.00	-2.56	QP
4 5	501.179	50.76	16.80	3.63	28.96	42.23	46.00	-3.77	QP
6	750.108	45.99	20.40	4.36	28.48	42.27	46.00	-3.73	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : ANDROID TOUCH PLAYER INDUSTRIAL GRADE Condition

EUT

: MB4KM Model Test mode : 5G-Wifi mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: MT REMARK :

	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∀	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	125.007	55.14	12.06	2.22	29.36	40.06	43.50	-3.44	QP
2	197.893	54.87	10.11	2.86	28.84	39.00	43.50	-4.50	QP
1 2 3	250.301	54.61	11.88	2.81	28.54	40.76	46.00	-5.24	QP
4	375.939	51.26	15.09	3.09	28.68	40.76	46.00	-5.24	QP
5	455.906	48.79	16.28	3.25	28.88	39.44	46.00	-6.56	QP
	750.108	43.99	20.40	4.36	28.48	40.27	46.00	-5.73	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	49.58	40.10	9.82	41.97	57.53	68.20	-10.67	Vertical			
10360.00	48.63	40.10	9.82	41.97	56.58	68.20	-11.62	Horizontal			
		802.11	a mode Lowe	est channe	I (AverageV	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	40.07	40.10	9.82	41.97	48.02	54.00	-5.98	Vertical			
10360.00	39.51	40.10	9.82	41.97	47.46	54.00	-6.54	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	50.13	40.00	9.85	41.95	58.03	68.20	-10.17	Vertical			
10400.00	50.06	40.00	9.85	41.95	57.96	68.20	-10.24	Horizontal			
		802.11	a mode Mido	lle channe	(AverageVa	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	40.07	40.00	9.85	41.95	47.97	54.00	-6.03	Vertical			
10400.00	39.92	40.00	9.85	41.95	47.82	54.00	-6.18	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	50.18	39.70	9.96	41.88	57.96	68.20	-10.24	Vertical			
10480.00	50.03	39.70	9.96	41.88	57.81	68.20	-10.39	Horizontal			
		802.11a	a mode High	est channe	l (AverageV	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	40.74	39.70	9.96	41.88	48.52	54.00	-5.48	Vertical			
10480.00	40.36	39.70	9.96	41.88	48.14	54.00	-5.86	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	48.59	40.10	9.82	41.97	56.54	68.20	-11.66	Vertical			
10360.00	49.26	40.10	9.82	41.97	57.21	68.20	-10.99	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	√alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	39.14	40.10	9.82	41.97	47.09	54.00	-6.91	Vertical			
10360.00	40.25	40.10	9.82	41.97	48.20	54.00	-5.80	Horizontal			

		802.11	n20 mode M	liddle chan	nel (Peak Va	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	50.01	40.00	9.85	41.95	57.91	68.20	-10.29	Vertical
10400.00	49.63	40.00	9.85	41.95	57.53	68.20	-10.67	Horizontal
		802.11n	20 mode Mid	dle chann	el (Average\	/alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	41.12	40.00	9.85	41.95	49.02	54.00	-4.98	Vertical
10400.00	40.06	40.00	9.85	41.95	47.96	54.00	-6.04	Horizontal

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	50.11	39.70	9.96	41.88	57.89	68.20	-10.31	Vertical			
10480.00	50.06	39.70	9.96	41.88	57.84	68.20	-10.36	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	41.12	39.70	9.96	41.88	48.90	54.00	-5.10	Vertical			
10480.00	40.27	39.70	9.96	41.88	48.05	54.00	-5.95	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Restricted band: 802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.21	34.50	6.80	42.05	42.46	74.00	-31.54	Horizontal
4500.00	42.18	34.50	6.80	42.05	41.43	74.00	-32.57	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.59	34.50	6.80	42.05	31.84	54.00	-22.16	Horizontal
4500.00	31.07	34.50	6.80	42.05	30.32	54.00	-23.68	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.39	34.90	7.18	41.85	41.62	74.00	-32.38	Horizontal
5460.00	42.54	34.90	7.18	41.85	42.77	74.00	-31.23	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.39	34.90	7.18	41.85	31.62	54.00	-22.38	Horizontal
5460.00	32.58	34.90	7.18	41.85	32.81	54.00	-21.19	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	41.74	34.50	6.80	42.05	40.99	74.00	-33.01	Horizontal
4500.00	42.25	34.50	6.80	42.05	41.50	74.00	-32.50	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	31.25	34.50	6.80	42.05	30.50	54.00	-23.50	Horizontal
4500.00	32.76	34.50	6.80	42.05	32.01	54.00	-21.99	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.69	34.90	7.18	41.85	41.92	74.00	-32.08	Horizontal
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Vertical
Test cl	nannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.25	34.90	7.18	41.85	31.48	54.00	-22.52	Horizontal
5460.00	32.77	34.90	7.18	41.85	33.00	54.00	-21.00	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4: Harmonic spurious and restricted band:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	47.36	41.50	10.81	42.29	57.38	74.00	-16.62	Vertical			
11490.00	46.59	41.50	10.81	42.29	56.61	74.00	-17.39	Horizontal			
		802.11	a mode Lowe	est channe	I (AverageVa	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	36.25	41.50	10.81	42.29	46.27	54.00	-7.73	Vertical			
11490.00	37.15	41.50	10.81	42.29	47.17	54.00	-6.83	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	45.58	41.38	10.78	42.27	55.47	74.00	-18.53	Vertical			
11570.00	46.31	41.38	10.78	42.27	56.20	74.00	-17.80	Horizontal			
		802.11a	a mode Midd	le channel	(Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	36.03	41.38	10.78	42.27	45.92	54.00	-8.08	Vertical			
11570.00	35.58	41.38	10.78	42.27	45.47	54.00	-8.53	Horizontal			

	802.11a mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	46.12	41.26	10.76	42.26	55.88	74.00	-18.12	Vertical		
11650.00	46.27	41.26	10.76	42.26	56.03	74.00	-17.97	Horizontal		
		802.11a	mode Highe	est channe	l (Average V	/alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	36.69	41.26	10.76	42.26	46.45	54.00	-7.55	Vertical		
11650.00	35.81	41.26	10.76	42.26	45.57	54.00	-8.43	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	47.12	41.50	10.81	42.29	57.14	74.00	-16.86	Vertical			
11490.00	47.03	41.50	10.81	42.29	57.05	74.00	-16.95	Horizontal			
		802.11n2	20 mode Low	est chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	36.17	41.50	10.81	42.29	46.19	54.00	-7.81	Vertical			
11490.00	37.06	41.50	10.81	42.29	47.08	54.00	-6.92	Horizontal			

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	45.12	41.38	10.78	42.27	55.01	74.00	-18.99	Vertical			
11570.00	46.49	41.38	10.78	42.27	56.38	74.00	-17.62	Horizontal			
		802.11n2	20 mode Mid	dle channe	el (Average '	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	36.12	41.38	10.78	42.27	46.01	54.00	-7.99	Vertical			
11570.00	35.58	41.38	10.78	42.27	45.47	54.00	-8.53	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	46.36	41.26	10.76	42.26	56.12	74.00	-17.88	Vertical			
11650.00	46.27	41.26	10.76	42.26	56.03	74.00	-17.97	Horizontal			
		802.11n2	0 mode High	nest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	37.06	41.26	10.76	42.26	46.82	54.00	-7.18	Vertical			
11650.00	36.12	41.26	10.76	42.26	45.88	54.00	-8.12	Horizontal			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.39	35.37	7.11	41.89	42.98	74.00	-31.02	Horizontal
5350.00	41.74	35.37	7.11	41.89	42.33	74.00	-31.67	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.03	35.37	7.11	41.89	32.62	54.00	-21.38	Horizontal
5350.00	31.27	35.37	7.11	41.89	31.86	54.00	-22.14	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.71	34.90	7.18	41.85	42.94	74.00	-31.06	Horizontal
5460.00	41.29	34.90	7.18	41.85	41.52	74.00	-32.48	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	33.13	34.90	7.18	41.85	33.36	54.00	-20.64	Horizontal
5460.00	32.18	34.90	7.18	41.85	32.41	54.00	-21.59	Vertical

802.11n-HT20

	Test channel Lowest Level Peak								
l est c			Lowest		Le			Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	42.75	35.37	7.11	41.89	43.34	74.00	-30.66	Horizontal	
5350.00	41.31	35.37	7.11	41.89	41.90	74.00	-32.10	Vertical	
Test cl	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	32.64	35.37	7.11	41.89	33.23	54.00	-20.77	Horizontal	
5350.00	31.23	35.37	7.11	41.89	31.82	54.00	-22.18	Vertical	
Test cl	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Horizontal	
5460.00	43.36	34.90	7.18	41.85	43.59	74.00	-30.41	Vertical	
Test cl	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	32.17	34.90	7.18	41.85	32.40	54.00	-21.60	Horizontal	
5460.00	32.25	34.90	7.18	41.85	32.48	54.00	-21.52	Vertical	

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)	
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.	
Test setup:	Temperature Chamber	
	Spectrum analyzer EUT Att. Variable Power Supply	
	Note: Measurement setup for testing on Antenna connector	
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.	
Test results:	Passed	

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions			Postation (com)
Temp(°C)	Voltage(dc)	Frequency(MHz)	Max. Deviation (ppm)
20	13.8V	5179.998412	0.31
	12.0V	5179.979217	4.01
	10.2V	5179.968703	6.04

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Francisco (MIII-)	May Deviation (nnm)
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5179.989631	2.00
	-10	5179.998479	0.29
12.0V	0	5179.966384	6.49
	10	5179.989364	2.05
	20	5179.995516	0.87
	30	5179.974893	4.85
	40	5179.966937	6.38
	50	5179.979981	3.86

Band 4:

Voltage vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		F	Man Davietian (num)
Temp(℃)	Voltage(dc)	Frequency(MHz)	Max. Deviation (ppm)
20	13.8V	5744.979305	3.60
	12.0V	5744.996570	0.60
	10.2V	5744.997492	0.44

Temperature vs. Frequency Stability (Lowest channel=5745MHz)

competatione vs. 1 requested of about y (Lowest Ghammer=57-45MHz)			
Test conditions		[May Davistian (nnm)
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
12.0V	-20	5744.998493	0.26
	-10	5744.994871	0.89
	0	5744.996597	0.59
	10	5744.984481	2.70
	20	5744.996592	0.59
	30	5744.994780	0.91
	40	5744.996091	0.68
	50	5744.994812	0.90