Trabajo Final Integrador Visión por Computadora II

Dataset TrashNet

INTEGRANTES:

- Diego Araujo
- Christopher Charaf
- Azul Villanueva

Tabla de contenidos

01 blema y dataset TrashNet

O3
Modelos
empleados

02

Data augmentation

04

Análisis y resultados obtenidos

Tabla de contenidos

Optimización y ajuste de hiperparámetros

Conclusiones y sugerencias

Conjunto de Datos TrashNet

El problema que se aborda con este dataset es la clasificación de residuos para reciclaje.

Para resolverlo, se entrena un modelo que, a partir de imágenes, pueda identificar y clasificar distintos tipos de residuos (plástico, vidrio, papel y orgánicos), con el objetivo de optimizar los procesos de reciclaje y la gestión de residuos.

Conjunto de Datos TrashNet

El dataset está compuesto por carpetas que contienen imágenes de residuos organizadas en distintas categorías. Cada categoría incluye mayormente entre 400 y 500 imágenes en formato JPG, con una resolución de 512x384 píxeles.

Distribución por clase:

• Basura: 137 imágenes

• Papel: 594 imágenes

Metal: 410 imágenes

Plástico: 482 imágenes

• Vidrio: 501 imágenes

• Cartón: 403 imágenes

Conjunto de Datos TrashNet

Este problema de clasificación presenta dos desafíos clave:

- Escasez de datos, junto con un desbalance en las clases.
- Alta semejanza visual entre imágenes de distintas categorías, lo que puede dificultar la correcta clasificación.

Este último punto puede observarse en los ejemplos mostrados a la derecha.

Data augmentation

El dataset presenta variaciones limitadas en fondo, iluminación y ángulo, lo que puede llevar al modelo a aprender patrones específicos en lugar de generalizar correctamente.

Para mitigar este problema, se aplicaron técnicas de *Data Augmentation* (rotaciones, variaciones, distorsiones, etc) con el objetivo de simular condiciones más realistas de descarte de residuos.

Data augmentation

Para aumentar la diversidad visual del dataset se realizaron las siguientes transformaciones:

- Rotaciones, para representar residuos en distintas orientaciones.
- Volteos horizontales y verticales, simulando cómo pueden ser depositados.
- Zoom y escalado, para reflejar diferentes tamaños y distancias respecto a la cámara.
- Ajustes de color y brillo, imitando condiciones de iluminación variables (por ejemplo, interior vs. exterior).

Estas técnicas ayudaron a **reducir el overfitting** en los modelos entrenados, al introducir variaciones visuales sin necesidad de recolectar más datos.

Data augmentation (implementación)

```
# Data augmentation para training
train_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomRotation(30),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomAffine(degrees=0, translate=(0.1, 0.1), scale=(0.9, 1.1)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# Transformaciones básicas para validation
val_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
```

Ejemplos luego de la transformación

Modelos empleados - CNN Convencional

Arquitectura de la Red Neuronal (CNN)

 Entrada: Imágenes de tamaño 224x224 píxeles, con 3 canales (RGB).

Capas Convolucionales:

4 bloques compuestos por:

- Conv2D + ReLU con 32, 64, 128 y 256 filtros
- MaxPooling2D para reducción de dimensiones

Capas Densas (Fully Connected):

- Flatten implícito para vectorizar las características
- Capa oculta con 512 neuronas, activación
 ReLU y Dropout para regularización
- Capa de salida con 6 neuronas (una por clase)
- Parámetros entrenables: ~ 26 millones

```
Layer (type)
                                    Output Shape
                                                          Param #
                              [-1, 32, 224, 224]
            Conv2d-1
              ReLU-2
                              [-1, 32, 224, 224]
         MaxPool2d-3
                              [-1, 32, 112, 112]
            Conv2d-4
                              [-1, 64, 112, 112]
                                                          18,496
              ReLU-5
                              [-1, 64, 112, 112]
         MaxPool2d-6
                               [-1, 64, 56, 56]
            Conv2d-7
                               [-1, 128, 56, 56]
                                                          73,856
                              [-1, 128, 56, 56]
              Rel II-8
         MaxPool2d-9
                              [-1, 128, 28, 28]
           Conv2d-10
                              [-1, 256, 28, 28]
                                                         295,168
                              [-1, 256, 28, 28]
             ReLU-11
        MaxPool2d-12
                               [-1, 256, 14, 14]
                                       [-1, 512]
           Linear-13
                                                      25,690,624
                                       [-1, 512]
             Rel II-14
          Dropout-15
                                       [-1, 512]
           Linear-16
                                                            3.078
Total params: 26,082,118
Trainable params: 26,082,118
Non-trainable params: 0
Input size (MB): 0.57
Forward/backward pass size (MB): 51.69
Params size (MB): 99.50
Estimated Total Size (MB): 151.76
```

Modelos empleados - ResNet50

Arquitectura de la Red Neuronal (ResNet50)

• Entrada: imágenes de tamaño 224x224 píxeles, con 3 canales (RGB).

Preprocesamiento:

- Capa de entrada con padding cero (Zero Padding)
- Procesamiento inicial (Shape 1-5)

Bloques Convolucionales:

- 4 bloques compuestos por:
 - Capa CONV (Convolución)
 - o Batch Normalization (Normalización)
 - ReLU (Función de activación)
 - MaxPooling (Reducción dimensional)

Capas Finales:

- Average Pooling (Agrupamiento promedio)
- Flattening (Aplanamiento)
- Fully Connected (Capa densa final)
- Salida (Output)
- Parámetros entrenables: ~25 millones

Modelos empleados - ResNet50

Características de Resnet50:

- Arquitectura profunda con 50 capas (de ahí el nombre ResNet50).
- Uso de "skip connections" (conexiones residuales) que permiten entrenar redes muy profundas.
- Bloques de identidad (ID Block) que mantienen la dimensión.
- Bloques convolucionales (Conv Block) que modifican la dimensión

Ventajas:

- Eficaz para problemas complejos de visión por computadora.
- Menor problema de vanishing gradients que otras arquitecturas profundas.
- Buen desempeño en clasificación de imágenes.

Análisis y resultados obtenidos

Modelos Entrenados:

- CNN sin data augmentation: desempeño modesto, con signos evidentes de overfitting.
- CNN con data augmentation: mejora en la capacidad de generalización, aunque con cierta inestabilidad durante el entrenamiento.
- ResNet50 con fine-tuning parcial: buenos resultados en pocas épocas
- ResNet50 con fine-tuning completo: se obtuvo el mejor rendimiento global, con mejoras consistentes en las métricas.

Métricas de Evaluación:

- Accuracy
- Precisión, Recall y F1-score, calculados por clase.
- Matriz de confusión, para análisis detallado de errores.
- Curvas ROC y valores de AUC, para evaluar el comportamiento del modelo.

CNN sin data augmentation

Reporte de Cl	asificación:			
<i>A</i> .	precision		f1-score	support
metal	0.64	0.56	0.60	82
cardboard	0.82	0.81	0.82	81
paper	0.71	0.89	0.79	119
trash	0.65	0.74	0.69	27
glass	0.66	0.56	0.61	100
plastic	0.72	0.65	0.68	97
accuracy			0.71	506
macro avg	0.70	0.70	0.70	506
weighted avg	0.70	0.71	0.70	506

CNN sin data augmentation

- El desempeño fue modesto, con métricas aceptables, aunque se observó confusión en la clasificación de ciertos tipos de residuos.
- Se evidenció overfitting, dado que la precisión en entrenamiento fue considerablemente mayor que en validación, y la pérdida en validación permaneció
- El modelo no logró una buena generalización, probablemente debido a la falta de variabilidad en los datos de entrenamiento, lo cual refuerza la necesidad de aplicar técnicas de data augmentation.

CNN con data augmentation

	precision	recall	f1-score	support
metal	0.69	0.74	0.72	82
cardboard	0.88	0.81	0.85	81
paper	0.80	0.85	0.82	119
trash	0.67	0.44	0.53	27
glass	0.64	0.72	0.68	100
plastic	0.72	0.64	0.68	97
accuracy			0.74	506
macro avg	0.73	0.70	0.71	506
weighted avg	0.74	0.74	0.74	506

CNN con data augmentation

Impacto del Data Augmentation:

- La incorporación de data augmentation permitió reducir el overfitting, al introducir mayor variabilidad en los datos de entrenamiento.
- Si bien la precisión en entrenamiento disminuyó levemente, el modelo mostró una mejor capacidad de generalización, con un desempeño más equilibrado entre los conjuntos de entrenamiento y validación.

ResNet50 con fine-tuning parcial

Reporte de Cl	asificación:			
	precision		f1-score	support
metal	0.68	0.99	0.80	82
cardboard	0.99	0.85	0.91	81
paper	0.86	0.85	0.85	119
trash	0.75	0.33	0.46	27
glass	0.90	0.70	0.79	100
plastic	0.75	0.84	0.79	97
accuracy			0.81	506
macro avg	0.82	0.76	0.77	506
weighted avg	0.83	0.81	0.81	506

ResNet50 con fine-tuning parcial

- El modelo obtuvo un buen rendimiento general, especialmente destacable considerando que se entrenó con solo 20 epochs.
- Al utilizar pesos preentrenados (IMAGENET1K_V1), el modelo parte de una base sólida de representación de características, lo que permite una rápida mejora en el aprendizaje.
- Presenta un excelente equilibrio entre costo computacional y desempeño, lo cual lo convierte en una opción eficiente para entornos con recursos limitados.

ResNet50 con fine-tuning completo

Reporte de Cl	asificación:			
	precision	recall	f1-score	support
metal	0.93	0.95	0.94	82
cardboard	0.97	0.96	0.97	81
paper	0.98	0.92	0.95	119
trash	0.79	0.85	0.82	27
glass	0.93	0.99	0.96	100
plastic	0.96	0.93	0.94	97
accuracy			0.94	506
macro avg	0.93	0.93	0.93	506
weighted avg	0.95	0.94	0.94	506

ResNet50 con fine-tuning completo

Es el modelo con mejor desempeño entre todos los evaluados.

 Se observó una alta precisión en validación, pérdida baja y curvas de aprendizaje estables, lo que indica un entrenamiento sólido.

 El ajuste completo de los pesos permitió una adaptación total al dominio del problema, maximizando la capacidad predictiva del modelo.

Discusión y Análisis

Discusión y Análisis

Comparación de Modelos – Desempeño General:

- CNN Básica: muestra una mejora progresiva pero limitada, alcanzando un techo de exactitud
 cercano
 al
 65%.
- CNN con Data Augmentation: logra una ligera mejora respecto a la CNN básica, evidenciando mejor generalización pero sin un salto significativo en el rendimiento.
- ResNet50 con Fine-Tuning Parcial: parte de una buena precisión inicial y mejora con rapidez, aunque presenta cierta inestabilidad durante el entrenamiento.
- ResNet50 con Fine-Tuning Completo: domina desde el inicio y logra una exactitud superior al 90%, con un entrenamiento estable y consistente, mostrando la mejor capacidad de generalización entre todos los modelos evaluados.

Optimización y ajuste de

hiperparámetros Para el ajuste de hiperparámetros se hizo uso de <u>Optuna</u> (búsqueda bayesiana) en 10 trials.

- Búsqueda más inteligente que random/grid search.
- Más rápido: menos modelos entrenados, pero más efectivos.
- Podado temprano (pruning): evita perder tiempo en combinaciones malas.

Hiperparámetro	Tipo de Búsqueda	Rango / Valores	Descripción	Valores óptimos
Ir	Float (log)	1e-5 – 1e-3	Tasa de aprendizaje.	0.000590221941118705 9
optimizer	Categorical	'Adam', 'SGD'	Tipo de optimizador.	Adam
Weight decay	Float (log)	1e-6 – 1e-2	Regularización L2.	0.0001252367872397
dropout rate	Float	0.1 – 0.5	Dropout en la cabeza del modelo.	0.28355204189043265
Batch size	Categorical	16, 32, 64	Tamaño de mini-batch.	32
scheduler	Categorical	'ReduceLROnPlateau', 'CosineAnnealing', None	Tipo de scheduler.	CosineAnnealing

ResNet50 con Optuna (20 trials)

Reporte de Cl	asificación:			
	precision		f1-score	support
metal	0.97	0.94	0.96	82
cardboard	0.92	0.96	0.94	81
paper	0.93	0.94	0.94	119
trash	0.93	0.48	0.63	27
glass	0.90	0.98	0.94	100
plastic	0.91	0.93	0.92	97
accuracy			0.92	506
macro avg	0.93	0.87	0.89	506
weighted avg	0.93	0.92	0.92	506

Trabajo futuro

Próximos Pasos:

- Continuar con el ajuste de hiperparámetros utilizando Optuna, enfocándose en otras arquitecturas, como por ejemplo, la tasa de aprendizaje (lr) en la CNN
 CNN
 Con
 data
 augmentation.
- Explorar nuevos datasets y probar arquitecturas más avanzadas, con el fin de mejorar la precisión y generalización del modelo.

Gracias !

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution

