Nov 1 2023	Ro
	Random Variables & y 3 i=1 Realized value Numbers { y 3 i=1 (No randominen)
	Numbers [4,3]. (No randonumens)
	Z → to create randomners, generalit a un random var
	$P(Z=yi)=\frac{1}{n}$ what is This?
*	lisk $R(\theta) = E[e(Y, \theta)]$ what is a loss f^n
	Empirical Risk $\hat{R}(\theta) = \epsilon_n [L(z,\theta)] = \frac{1}{n} \sum_{i=1}^{n} L(y_i,\theta)$
	DE PCR Capital Thete
	$\theta_0 = \underset{\theta}{\text{arg min }} R(\theta)$ $\hat{R}(\theta) = \underset{\theta}{\underline{\downarrow}} \underset{\theta}{\hat{E}} L(y_i, \theta)$
	Unatainty in $\Omega(\theta)$: How an we evaluate how far 1210) is from $\Omega(\theta)$ - let's look at the data collection process — reverse engineer the r.v. I from which the data was collected. This revene engineering is imagined. You can't actually do it.
	$\widehat{\ell}(\theta) = \underbrace{\perp}_{n} \widehat{z}_{i-1} \ell(\gamma_{i}, \theta) \longrightarrow \ell.V.$
<u> </u>	y law of large number;
	$\widehat{\mathbb{R}}(\theta) = \prod_{i=1}^{n} \mathbb{E}(Y_{i}, \theta) \xrightarrow{P} \mathbb{E}[\mathbb{L}(Y, \theta)] = \mathbb{R}(\theta)$

Uniform Convergence Def: $\hat{R}(.)$ converges to R(.) uniformly in probability if $X_n = \sup_{\theta \in \mathbb{R}} |\hat{R}(\theta) - R(\theta)| \xrightarrow{P} 0$ (thow supremum behaves as $n = \infty$) for every C_{∞} Linfring norm: $\sup_{x \in \mathbb{R}} |f(x)|^{1}$ sample eite. (Converge Uniformly in probability > Converge in probability in the Evorat case) Def: ê() converges to RLD uniformly a.s: = $\sup_{\theta \in \Omega} |\hat{\ell}_n(\theta) - R(\theta)| \xrightarrow{\alpha.s} 0$ We are ultimately interested in proximity of ô to to what are the conds. when ô - ?

Theorem	:- Suppose following unditions are satisfied:—
	(f) is a compact set.
2.	R(.) u continuous
	R() is converging to R uniformly in probability
4.	(Identification) R(·) attains a unique global min at
	Then, $\hat{\theta} \stackrel{P}{\longrightarrow} \theta_0$ [converge of sequence of the emproval parameter of the
1055	conclion
	$\hat{\theta} = \underset{\text{argmin}}{\text{argmin}} \hat{R}(\theta) = \underset{\text{in}}{\overset{\text{n}}{\text{limite}}} \hat{R}(\theta)$
	$ \frac{\hat{\theta} = \operatorname{argmin} \hat{R}(\theta) = \frac{1}{n} \frac{2}{i!} $ Therefore your estimated θ is to actual θ .