

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Examen

Geometría Diferencial - MAT2305 Fecha de Entrega: 2020-07-9

Solución problema 1:

- (a) Se denota $\mathbf{x}(u,v) = \alpha(u) + v\hat{b}(u)$, se nota que como α cumple que $\kappa > 0$ y es una curva entonces α es \mathcal{C}^{∞} , al igual que \hat{b} , por lo que \mathbf{x} es \mathcal{C}^{∞} . Más aún es localmente invertible en cada punto ya que $\langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0^1$, de otra forma las columnas del Jacobiano son l.i. Con todo lo anterior, se tiene que la superficie es regular, ya que el último punto implica que d \mathbf{x} es inyectiva y que \mathbf{x} localmente tiene inversa continua.
- (b) Se ve lo siguiente:

$$\mathbf{x}_{u} = \alpha' + v\hat{b}'$$

$$\mathbf{x}_{v} = \hat{b}$$

$$\mathbf{x}_{uu} = \alpha'' + v\hat{b}''$$

$$\mathbf{x}_{uv} = \hat{b}'$$

$$\mathbf{x}_{vv} = 0$$

Con lo anterior se calculan las formas fundamentales:

$$E = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle$$

$$= \langle \alpha' + v\hat{b}', \alpha' + v\hat{b}' \rangle$$

$$= \langle \alpha', \alpha' + v\hat{b}' \rangle + \langle v\hat{b}', \alpha' + v\hat{b}' \rangle$$

$$= \langle \alpha', \alpha' \rangle + \langle \alpha', v\hat{b}' \rangle + \langle v\hat{b}', \alpha' \rangle + \langle v\hat{b}', v\hat{b}' \rangle$$

$$= \langle \alpha', \alpha' \rangle + 2 \langle \alpha', v\hat{b}' \rangle + \langle v\hat{b}', v\hat{b}' \rangle \qquad /\hat{b}' \parallel \hat{n} \text{ y } \hat{t} \perp \hat{n}$$

$$= \|\alpha'\|^{2} + v^{2} \|\hat{b}'\|^{2}$$

$$= \|\hat{t}\|^{2} + v^{2} \|-\tau \hat{n}\|^{2}$$

$$= 1 + v^{2}\tau^{2}$$

¹El cálculo aparece en la siguiente parte de la respuesta.

$$F = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle$$

$$= \langle \alpha' + v\hat{b}', \hat{b} \rangle$$

$$= \langle \alpha', \hat{b} \rangle + \langle v\hat{b}', \hat{b} \rangle \qquad /\hat{b}' \parallel \hat{n}, \hat{t} \perp \hat{n} \text{ y } \hat{b} \perp \hat{n}$$

$$= 0$$

$$G = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle$$

$$= \langle \hat{b}, \hat{b} \rangle$$

$$= \|\hat{b}\|^{2}$$

$$= 1$$

Ahora se calcula $\mathbf{x}_u \wedge \mathbf{x}_v$:

$$\mathbf{x}_{u} \wedge \mathbf{x}_{v} = (\alpha' + v\hat{b}') \wedge \hat{b}$$

$$= \alpha' \wedge \hat{b} + v\hat{b}' \wedge \hat{b}$$

$$= \hat{t} \wedge \hat{b} + v(-\tau \hat{n}) \wedge \hat{b}$$

$$= -\hat{n} - v\tau \hat{t}$$

Por lo que $\|\mathbf{x}_u \wedge \mathbf{x}_v\| = \sqrt{1 + v^2 \tau^2}$, lo cual se denotará λ para facilitar los cálculos.

$$N = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{\|\mathbf{x}_u \wedge \mathbf{x}_v\|}$$
$$= -\frac{1}{\lambda} \left(\hat{n} + v\tau \hat{t} \right)$$

Ahora se calculan los coeficientes de la segunda forma fundamental:

$$e = \langle N, \mathbf{x}_{uu} \rangle$$

$$= \left\langle -\frac{1}{\lambda} \left(\hat{n} + v\tau \hat{t} \right), \alpha'' + v \hat{b}'' \right\rangle$$

$$= \left\langle -\frac{1}{\lambda} \left(\hat{n} + v\tau \hat{t} \right), \hat{t}' + v \left(-\tau \hat{n} \right)' \right\rangle$$

$$= \left\langle -\frac{1}{\lambda} \left(\hat{n} + v\tau \hat{t} \right), k \hat{n} - v\tau \left(-k \hat{t} - \tau \hat{b} \right) \right\rangle$$

$$= \left\langle -\frac{1}{\lambda} \left(\hat{n} + v\tau \hat{t} \right), k \hat{n} + kv\tau \hat{t} + v\tau^2 \hat{b} \right\rangle$$

$$= -\frac{1}{\lambda} \left(\left\langle \hat{n}, k \hat{n} + kv\tau \hat{t} + v\tau^2 \hat{b} \right\rangle + \left\langle v\tau \hat{t}, k \hat{n} + kv\tau \hat{t} + v\tau^2 \hat{b} \right\rangle \right)$$

$$= -\frac{1}{\lambda} \left(k + kv^2 \tau^2 \right)$$

$$= -\frac{k}{\lambda} \left(1 + v^2 \tau^2 \right)$$

$$= -\frac{k}{\lambda} \cdot \lambda^2$$

$$= -k\lambda$$

$$f = \langle N, \mathbf{x}_{uv} \rangle$$

$$= \left\langle -\frac{1}{\lambda} \left(\hat{n} + v\tau \hat{t} \right), \hat{b}' \right\rangle$$

$$= \left\langle -\frac{1}{\lambda} \left(\hat{n} + v\tau \hat{t} \right), -\tau \hat{n} \right\rangle$$

$$= \frac{\tau}{\lambda}$$

$$g = \langle N, \mathbf{x}_{vv} \rangle$$

$$= \langle N, 0 \rangle$$

$$= 0$$

Con lo que se tienen todos los coeficientes de la primera y de la segunda forma fundamental.

(c) Usando los coeficientes de las formas fundamentales se tiene lo siguiente:

$$K = \frac{eg - f^2}{EG - F^2}$$
$$= \frac{-f^2}{EG}$$
$$= -\frac{\left(\frac{\tau}{\lambda}\right)^2}{\lambda^2}$$
$$= -\frac{\tau^2}{\lambda^4}$$

Ahora por el teorema de Minding se tiene que dos superficies son localmente isométricas sei su curvatura gaussiana es igual. Ahora se nota que K=0 sei $\tau=0^2$, y eso quiere decir que S es localmente isométrica al plano sei α es una curva planar.

Solución problema 2:

(a) Para calcular τ_g primero se escribirá \hat{t} y \hat{h} en la base ortonormal $\{e_1, e_2\}^3$, sea φ el ángulo entre \hat{t} y e_1 , entonces se tiene que $\hat{t} = e_1 \cos \varphi + e_2 \sin \varphi$ y como $\hat{t} \perp \hat{h}$ se tiene que $\hat{h} = e_1 \sin \varphi - e_2 \cos \varphi$. Además, se tiene que $\frac{dN}{ds} = dN(\hat{t})$ por lo que se tiene lo siguiente:

$$\tau_g = \left\langle \frac{\mathrm{d}N}{\mathrm{d}s}, \hat{h} \right\rangle \\
= \left\langle \mathrm{d}N(\hat{t}), \hat{h} \right\rangle \\
= \left\langle \mathrm{d}N(e_1 \cos \varphi + e_2 \sin \varphi), e_1 \sin \varphi - e_2 \cos \varphi \right\rangle \\
= \left\langle \mathrm{d}N(e_1 \cos \varphi) + \mathrm{d}N(e_2 \sin \varphi), e_1 \sin \varphi - e_2 \cos \varphi \right\rangle \\
= \left\langle e_1 k_1 \cos \varphi + e_2 k_2 \sin \varphi, e_1 \sin \varphi - e_2 \cos \varphi \right\rangle \\
= \left\langle e_1 k_1 \cos \varphi, e_1 \sin \varphi - e_2 \cos \varphi \right\rangle + \left\langle e_2 k_2 \sin \varphi, e_1 \sin \varphi - e_2 \cos \varphi \right\rangle \\
= k_1 \cos \varphi \sin \varphi - k_2 \sin \varphi \cos \varphi \\
= (k_1 - k_2) \sin \varphi \cos \varphi$$

Llegando a lo pedido.

$$^{2}\lambda^{4} = (1 + v^{2}\tau^{2})^{2} \ge 1$$

 $^{^3}$ Vectores propios de dN

(b) Se nota lo siguiente:

$$\tau_g = 0 \iff \left\langle dN(\hat{t}), \hat{h} \right\rangle = 0$$

$$\iff dN(\hat{t}) \perp \hat{h}$$

$$\iff dN(\hat{t}) \parallel \hat{t}$$

$$\iff dN(\hat{t}) = \lambda(s)\hat{t}$$

$$\iff dN(\alpha') = \lambda(s)\alpha'$$

$$\iff \alpha \text{ es linea de curvatura}^4$$

(c) Para esto se recuerda que $k_n = k \cos \theta$ donde $\cos \theta = \langle \hat{n}, N \rangle$, como $k \neq 0$ se tiene que $\hat{n} \perp N$, por lo que $\hat{n} \in T_p(S)$, más como $\hat{t} \perp \hat{n}$ se puede tomar \hat{h} tal que $\hat{h} = \hat{n}$. Ahora, se tiene que $\langle N, \hat{n} \rangle = 0$, por lo que $\tau_g = -\langle N, \hat{n}' \rangle$, desarrollándolo un poco más:

$$\tau_g = -\langle N, \hat{n}' \rangle$$

$$= -\langle N, -k\hat{t} - \tau \hat{b} \rangle^5$$

$$= -\langle \hat{b}, -k\hat{t} - \tau \hat{b} \rangle$$

$$= -(-\tau)$$

$$= \tau$$

⁴Esto último es por Olinde-Rodrigues

Usando lo demostrado en (a) se tiene que:

$$\tau^{2} = \tau_{g}^{2}$$

$$= ((k_{1} - k_{2}) \sin \varphi \cos \varphi)^{2}$$

$$= (k_{1} - k_{2})^{2} \sin^{2} \varphi \cos^{2} \varphi$$

$$= ((k_{1} + k_{2})^{2} - 4k_{1}k_{2}) \sin^{2} \varphi \cos^{2} \varphi$$

$$= ((-2H)^{2} - 4K) \sin^{2} \varphi \cos^{2} \varphi$$

$$= (4H^{2} - 4K) \sin^{2} \varphi \cos^{2} \varphi$$

$$= 4(H^{2} - K) \sin^{2} \varphi \cos^{2} \varphi$$

Luego con unos cálculos formales se tiene que H=0 y que $\varphi=\frac{\pi}{4}$, por lo que $\tau^2=-K$.

Solución problema 3:

- (a) Para calcular la curvatura geodésica se usará la siguiente identidad $k^2 = k_g^2 + k_n^2$, se sabe que para una circunferencia de radio r se tiene que $k = \frac{1}{r}$, más aún se sabe que en una esfera unitaria $k_1 = k_2 = 1$ por lo que $k_n = 1$, con esto se tiene que $k_g = \frac{\sqrt{1-r^2}}{r}$.
- (b) Sean A_i las regiones que no contienen el polo norte de la esfera delimitadas por los círculos de radio r_i y con centro en el plano XY tal que son tangentes a pares. Sean B_j con j=1,2 las regiones triangulares restantes. Se nota que $\iint_{S^2} 1 \, d\sigma = 4\pi$, que S^2 es la unión disjunta de los B_j y los A_i , y por último que $\iint_{B_1} 1 \, d\sigma = \iint_{B_2} 1 \, d\sigma$. Dado esto se ve que el área que corresponde al triángulo en el polo norte es

$$\frac{4\pi - \sum_{i=1}^{3} \iint_{A_i} 1 \,\mathrm{d}\sigma}{2}$$

Ahora, se recuerda que tras una rotación se puede parametrizar A_i con $\mathbf{x}(\theta,\varphi) = (\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)$ donde $\theta\in[0,\theta_i]^6$ y $\varphi\in[0,2\pi]$. Se ve que $E=1,F=0,G=\sin^2\theta$. Dado lo anterior se puede calcular el área de A_i con la siguiente integral:

$$\iint_{[0,\theta_i]\times[0,2\pi]} \sqrt{EG - F^2} \,\mathrm{d}\sigma$$

 $^{^5\}hat{b} = \hat{t} \wedge \hat{n} = N$

 $^{^6\}theta_i = \arccos(r_i)$

Reescribiendo la integral:

$$\iint_{[0,\theta_i]\times[0,2\pi]} \sqrt{EG - F^2} \, d\sigma = \int_0^{\theta_i} \int_0^{2\pi} \sin \theta^7 \, d\varphi \, d\theta$$
$$= 2\pi \int_0^{\theta_i} \sin \theta \, d\theta$$
$$= 2\pi \int_0^{\theta_i} \sin \theta \, d\theta$$
$$= 2\pi \left(1 - \cos(\theta_i)\right)$$
$$= 2\pi \left(1 - r_i\right)$$

Juntando todo se tiene que el área del triángulo es:

$$\frac{4\pi - \sum_{i=1}^{3} \iint_{A_i} 1 \, d\sigma}{2} = 2\pi - \sum_{i=1}^{3} \pi (1 - r_i)$$
$$= \pi \left(r_1 + r_2 + r_3 - 1 \right)$$

Solución problema 4:

(a) Se nota que el toro dado es la superficie de revolución generada por la curva cerrada $\alpha(t) = (2 + \cos(t), 0, \sin(t))$ respecto al eje Z, por lo que los meridianos son lineas de curvatura. Además, se nota que la curva γ corresponde a un paralelo⁸, por lo que también es una linea de curvatura.

Solución problema 5:

⁷Se tiene que $0 \le \theta_i \le \frac{\pi}{2}$, por lo que $|\sin \theta| = \sin \theta$ ⁸Corresponde a fijar el punto (3,0,0) y rotarlo respecto al eje Z.

(a) Para calcular los símbolos de Christoffel se ve lo siguiente:

$$\begin{cases} \Gamma_{11}^{1} \cdot \frac{1}{y^{2}} + \Gamma_{11}^{2} \cdot 0 = 0 \\ \Gamma_{11}^{1} \cdot 0 + \Gamma_{11}^{2} \cdot \frac{1}{y^{2}} = \frac{1}{y^{3}} \end{cases}$$

$$\begin{cases} \Gamma_{12}^{1} \cdot \frac{1}{y^{2}} + \Gamma_{12}^{2} \cdot 0 = \frac{1}{y^{3}} \\ \Gamma_{12}^{1} \cdot 0 + \Gamma_{12}^{2} \cdot \frac{1}{y^{2}} = 0 \end{cases}$$

$$\begin{cases} \Gamma_{22}^{1} \cdot \frac{1}{y^{2}} + \Gamma_{22}^{2} \cdot 0 = 0 \\ \Gamma_{22}^{1} \cdot 0 + \Gamma_{22}^{2} \cdot \frac{1}{y^{2}} = \frac{1}{y^{3}} \end{cases}$$

Por lo que $\Gamma_{11}^1 = \Gamma_{12}^2 = \Gamma_{22}^1 = 0$ y $\Gamma_{11}^2 = \Gamma_{12}^1 = \Gamma_{22}^2 = \frac{1}{y}$. Ahora como F = 0 se puede usar la siguiente identidad demostrada en tarea:

$$K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_y}{\sqrt{EG}} \right)_y + \left(\frac{G_x}{\sqrt{EG}} \right)_x \right)$$

Se desarrolla lo anterior:

$$K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_y}{\sqrt{EG}} \right)_y + \left(\frac{G_x}{\sqrt{EG}} \right)_x \right)$$

$$= -\frac{1}{2} y^2 \left(\left(\frac{\frac{-2}{y^3}}{\frac{1}{y^2}} \right)_y + \left(\frac{0}{\frac{1}{y^2}} \right) \right)$$

$$= -\frac{1}{2} y^2 \left(\frac{-2}{y} \right)_y$$

$$= -\frac{1}{2} y^2 \frac{2}{y^2}$$

$$= -1$$