Introduction to Machine Learning

Plan for today

- Introduction to data analysis
- Data wrangling and getting you used to colab
- Unsupervised learning PCA
- Unsupervised learning exercises, other options

Parts of a study

- Study design
- Collect data
- Clean data exploratory analyses
- Analyse your data
 - Choose a technique
 - Evaluate the model
 - Tune parameters
 - Predict

Collect data

Cleaning/Exploring your data

Model/Technique: Select a question to answer

Train, validate, test, repeat

Splitting your dataset: AVOID Overfitting!

- Train your model parameters
- Validate your model

Test your model on an independent dataset

Real life example

- We are going to look at these steps in a real life example
 - Gene expression studies from multiple tissues in humans: GTEx dataset

RNA-Seq to collect expression

T.	Tissue collection							
Tissue	Breast 2x left	Esophagus mucosa Squamous	Esophagus muscularis Squamous	Heart	Lung	Muscle L Gastro-	Prostate Non-nodular	Skin
	1x right	region	region	ventricle	upper lobe	Cnemius	region	
1	• • •	• • •	•	• •	•	•		•
1			• •	•	• •	• •	••••	• •

RNA Sequencing

5 Perform NGS sequencing

6 Map sequencing reads to the transcriptome/genome

Initial processing - bioinformatics

Data cleaning

Data exploration

Choose your technique

Pick the question you want to answer

Does expression show tissue specificity?

Unsupervised learning: PCA

a. Principal Components PC1 vs. PC2Protein_coding, IncRNAKB, GTEx v7

b. Principal Components PC1 vs. PC2 IncRNAs, IncRNAKB, GTEx v7

Another question?

• Do aging related genes show differences in expression across tissues?

Differential expression – supervised learning (regression)

A technique for every study

- Your dataset is unique
- Choose your methods based on your questions
- Explore a bunch of methods to see what is useful and relevant for your study
 - Remember the assumptions

Deconstructing the black box of analysis

What does the black box do?

- Transform the data in some way
- Your question dictates what aspect of the data you want to understand/preserve and which technique is useful
 - Structure in the data clustering, PCA ...
 - Relation between two variables regression

Deconstructing the black box

Data Black box

Results/
Predictions

Deconstructing the black box

Data

Define loss/cost function

- Function(Data, parameters)

Estimate parameters to minimize cost function, subject to constraints

Results/
Predictions

Deconstructing the black box

Define loss/cost function

- Function(Data, parameters)

Estimate parameters to minimize cost function, subject to constraints

Cost function examples:
Classification- mismatch rate
Regression- estimation error
Clustering- within-cluster heterogeneity