Tutorial of Basic Configurations in Texas Instrument's mmWave Studio with DCA1000EVM and IWR6843ISK

Detailed requirements and setups refer to the following video:

DCA1000 Training Video: https://training.ti.com/dca1000-training-video Video for following steps: https://youtu.be/6t-P8zM8yU4

Step A: Connection [Figures 1-6]

Follow the color-coded and numbered buttons to set up the connections

- 1. Reset control
- 2. Connect COM port for RS232 operations
- 3. Load BSS firmware
- 4. Load MSS firmware
- 5. SPI Connect
- 6. RF Power-up

• Step B: Static Configuration (StaticConfig) [Figures 7-9]

- 1. Select Tx2 (the 3rd transmitter) for IWR6843ISK to use MIMO configuration in azimuth direction
- 2. Set basic configuration
- 3. Set advanced configuration (default settings)
- 4. Click RF Init button (changes to RF Init Done after clicking it)

• Step C: Data Configuration (DataConfig) [Figures 10-12]

- 1. Set data path configuration (default settings)
- 2. Set clock configuration (default settings)
- 3. Set data configuration (default settings)

Step D: Sensor Configuration (SensorConfig) [Figures 13-19]

- 1. In **Profile** section, change the **Sample Rate (ksps)** to **2047** and **Ramp End Time (\mus)** to **133** (so that Bandwidth=3987.61MHz for a range resolution \cong 4cm), then **Set**
- 2. In Chirp section, select Tx0 only with Start Chirp 0 and End Chirp 0, then Set
- 3. In Chirp section, select Tx1 only with Start Chirp 1 and End Chirp 1, then Set
- 4. In Chirp section, select Tx2 only with Start Chirp 2 and End Chirp 2, then Set
- 5. In **Frame** section, **Start Chirp TX 0** and **End Chirp TX 2** for TDM MIMO configuration. Set up desire number of chirps and frames with appropriate frame periodicity.

$$DutyCycle = \frac{ChirpDuration*NumChirp*NumTx}{FramePeriodicity} = \frac{(IdleTime + RampEndTime)*NumChirp*NumTx}{FramePeriodicity}$$

Example:

Idle Time = 100 μ s, Ramp End Time = 133 μ s, Periodicity = 180 ms Number of Transmitters = 3 (Tx0, Tx1, Tx2), Number of Chirp(No of Chirp Loops) = 128, $DutyCycle = \frac{(100\mu s + 133\mu s)*128*3}{180ms} \cong 49.7\%$

- 6. At the left-most section, click the Set Up DCA1000 button to open the RFDataCaptureCard window
- 7. Click the **Connect, Reset and Configure** button to setup the DCA100EVM

Step E: Data Capture and Post Processing (SensorConfig – Capture and Post Processing Section) [Figures 20-22]

- 1. Browser and select the .bin file to save captured data
- 2. DCA100 ARM
- 3. Trigger Frame
- 4. PostProc (post processing)

Fig. 1. Reset Control

Fig. 2. COM Port Connect for RS232 Operations

Fig. 3. Load BSS Firmware

Fig. 4. Load MSS Firmware

Fig. 5. SPI Connect

Fig. 6. RF Power-up

Fig. 7. Basic Static Configuration

Fig. 8. Advanced Static Configuration

Fig. 9. RF Init

Fig. 10. Data Path Configuration

Fig. 11. Clock Configuration

Fig. 12. Data Configuration

Fig. 13. Profile Setup

Fig. 14. Chirp Setup with Tx0

Fig. 15. Chirp Setup with Tx1

Fig. 16. Chirp Setup with Tx2

Fig. 17. Frame Setup

Fig. 18. Open RFDataCaptureCard Configuration Window

Fig. 19. Connect, Reset and Configure DCA1000

Fig. 20. DCA1000 ARM

Fig. 21. Trigger Frames

Fig. 22. Post Processing