Intro to Neural Networks

Data Science Immersive

Henry Cham

Quote:

AI is the new electricity. Just as electricity transformed almost everything 100 years ago, today I actually have a hard time thinking of an industry that I don't think AI will transform in the next several years.

-Andrew Ng

Question:

What are some current use cases for neural networks?

Current use cases:

Supervised Learning

Input(x)	Output (y)	Application
Home features	Price	Real Estate
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging
Audio	Text transcript	Speech recognition
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving
		Androw Na

Aims:

 Examine the intuition of why neural networks can solve complex problems

 Explain the mathematics operations underlying how artificial neurons predict and learn

Predicting House Price

Size of House

Predicting House Price

Predicting House Price

size

of bedrooms

zip code

wealth

(x)

price

Predicting House Price

(x)

Size of House

Input

MNIST

Input

What do the hidden layers of a network train on MNIST data capture?

Neural Network Activation Functions

What are some good activation functions for neural networks?

Neural Network Activation Functions

Activation function	Equation	Example	1D Graph
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit) Copyright © Sebastian Raschka 2016	$\phi(z) = \max(0, z)$	Multi-layer Neural Networks	
(http://sebastianraschka.com)			

Simple logistic network to predict the quality of wine

alcohol weight bias activation Good wine
$$x = x + b$$
 $\hat{y} = \frac{1}{1 + e^{-z}}$ y

Simple logistic network to predict the quality of wine

alcohol weight bias activation Good wine
$$z=wx+b$$
 $\hat{y}=\frac{1}{1+e^{-z}}$ y $x=.12$ $w=15$, $b=-.4$ Find \hat{y} random initial values

Simple logistic network to predict the quality of wine

Good wine alcohol weight bias activation z=wx+b $\hat{y}=\frac{1}{1+e^{-z}}$ X w=15, b=-.4 $\hat{y}=.80$ x = .12random initial values

Simple logistic network to predict the quality of wine

alcohol	weight bias	activation	Good wine
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	y
x=.12	w=15, b =4	ŷ = .80	If y = 1, what was the error in the
	random initial values		predict?

Logistic error function

Predicted (\hat{y})	Real (y)	error	Squared
i redicted (y)			error
.01	1	.99	.980
.001	1	.999	.998

Logistic error function

Predicted (\hat{y})	Real (y)	error	Squared	Negative
			error	Log error
.01	1	.99	.980	4.6
.001	1	.99	.998	6.9

$$\int_{-\ln(1-\hat{y})}^{-\ln(\hat{y})} if y = 1$$
= if y = 0

J is the logistic regression loss (error)

Neural Network Loss Minimization

Simple logistic network to predict the quality of wine

alcohol	weight bias			
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	y	J
x=.12	w=15, b =4	ŷ = .80	y= 1	J= 1.6

Neural Network Loss Minimization

Simple logistic network to predict the quality of wine

	weight bias			Loss
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	y	J
x=.12	w=15, b =4	ŷ = .80	y= 1	J= 1.6

How should we change w and b to minimize the error?

We can find the w and b that minimizes the error using gradient descent.

Andrew Ng, Neural Networks and Deep Learning, Coursera

We can find the w and b that minimizes the error using gradient descent.

Andrew Ng, Neural Networks and Deep Learning, Coursera

Simple logistic network to predict the quality of wine

	weight bias			
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	y	J
x=.12	w=15, b =4	ŷ = .80	y= 1	J= 1.6

How do we calculate how changing w and b affects the error?

alcohol	weight bias			Loss
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	y	J
x=.12	w=15, b =4	ŷ = .80	y= 1	J= 1.6

$$\frac{dJ}{d\hat{y}} = -\frac{1}{\hat{y}}$$

Simple logistic network to predict the quality of wine

w=15, b =-.4

x = .12

	weight bias			Loss
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	y	J

ŷ= .80

$$\frac{dJ}{dz} = \frac{dJ}{d\hat{y}} \frac{d\hat{y}}{dz} \qquad \qquad \frac{dJ}{d\hat{y}} = -\frac{1}{\hat{y}}$$

J= 1.6

y= 1

alcohol weight bias activation Good wine Loss
$$x = x + b$$
 $\hat{y} = \frac{1}{1 + e^{-z}}$ $y = 1$ $y = 1.6$

$$\frac{dJ}{dz} = \frac{dJ}{d\hat{y}}\hat{y} (1-\hat{y}) \qquad \frac{dJ}{d\hat{y}} = -\frac{1}{\hat{y}}$$

alcohol	weight bias	activation	Good wine	e Loss
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	у	J
x=.12	w=15, b =4	ŷ = .80	y= 1	J= 1.6
	$\frac{dJ}{dw} = \frac{dJ}{d\hat{y}} \frac{d\hat{y}}{dz}$	$\frac{dz}{dw}$ $\frac{dJ}{dz}$ =	dJ dŷ (1-ŷ)	$\frac{dJ}{d\hat{y}} = -\frac{1}{\hat{y}}$

alcohol	weight bias	activation	Good wine	Loss
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	y	J
x=.12	w=15, b =4	ŷ = .80	y= 1	J= 1.6
	$\frac{dJ}{dw} = \frac{dJ}{d\hat{v}} \frac{d\hat{v}}{dz}$	$\frac{dJ}{dz} = \frac{dJ}{dz}$	$\frac{dJ}{d\hat{\mathbf{v}}}\hat{\mathbf{y}}(1-\hat{\mathbf{y}})$	$\frac{dJ}{d\hat{v}} = -\frac{1}{\hat{v}}$

Simple logistic network to predict the quality of wine

w=15, b =-.4

x = .12

alcohol weight bias activation Good wine Loss
$$x = x + b$$
 $\hat{y} = \frac{1}{1 + e^{-z}}$ y $y = \frac{1}{1 + e^{-z}}$

08. **=v**̂

y=1

J= 1.6

$$\frac{dJ}{db} = \frac{dJ}{d\hat{y}} \frac{d\hat{y}}{dz} \frac{dz}{db} \qquad \frac{dJ}{dw} = \frac{dJ}{d\hat{y}} \frac{d\hat{y}}{dz} \times \qquad \frac{dJ}{dz} = \frac{dJ}{d\hat{y}} \hat{y} (1 - \hat{y}) \qquad \frac{dJ}{d\hat{y}} = -\frac{1}{\hat{y}}$$

Simple logistic network to predict the quality of wine

w=15, b =-.4

x = .12

alcohol weight bias activation Good wine Loss
$$x = x + b$$
 $\hat{y} = \frac{1}{1 + e^{-z}}$ $y = J$

08. =ŷ

y=1

J = 1.6

$$\frac{dJ}{db} = \frac{dJ}{d\hat{y}} \frac{d\hat{y}}{dz} 1 \qquad \frac{dJ}{dw} = \frac{dJ}{d\hat{y}} \frac{d\hat{y}}{dz} \times \qquad \frac{dJ}{dz} = \frac{dJ}{d\hat{y}} \hat{y} (1 - \hat{y}) \qquad \frac{dJ}{d\hat{y}} = -\frac{1}{\hat{y}}$$

Simple logistic network to predict the quality of wine

	weight bias			Loss
X	z=wx+b	$\hat{y} = \frac{1}{1 + e^{-z}}$	y	J

J = 1.6

$$x=.12$$
 $w=15$, $b=-.4$ $\hat{y}=.80$ $y=1$ $J=1.6$ $\frac{dJ}{db}=-.2$ $\frac{dJ}{dw}=-.024$ $\frac{dJ}{dz}=-.2$ $\frac{dJ}{d\hat{y}}=-1.25$

old weight bias

$$w=15, b=-.4$$

gradients

$$\frac{dJ}{db} = -.2$$
 $\frac{dJ}{dw} = -.024$

update rule

$$w:= w - a \frac{dJ}{dw}$$

$$b := b - a \frac{dJ}{db}$$

a is the learning rate

old weight bias

gradients

$$\frac{dJ}{db} = -.2$$
 $\frac{dJ}{dw} = -.024$

update rule

$$w:= w - a \frac{dJ}{dw} \qquad b:= b - a \frac{dJ}{db}$$

a is the learning rate

If a = .1, what is the new w and b?

old weight bias

$$w=15, b=-.4$$

gradients

$$\frac{dJ}{db} = -.2$$
 $\frac{dJ}{dw} = -.024$

update rule

$$w:= w - a \frac{dJ}{dw}$$

$$b := b - a \frac{dJ}{db}$$

a is the learning rate

new weight bias

Summary

Neural networks create advanced features to make predictions

 A forward pass of a neural network require weight, bias, and an activation function

 Neural networks minimizes the error in the prediction by using gradient descent to change the weights and biases