15.6 习题

张志聪

2025年4月14日

15.6.1

设
$$z_1 = (a, b), z_2 = (c, d), z_3 = (e, f)$$
。

(a) 可交换性: z₁ + z₂ = z₂ + z₁。
 按照定义 15.6.3(复数的加法运算)可知,

$$z_1 + z_2 = (a + c, b + d)$$

$$z_2 + z_1 = (c + a, d + b)$$

因为

$$a + c = c + a$$

$$b + d = d + b$$

于是,由定义15.6.2中关于相等的定义可知,

$$z_1 + z_2 = z_2 + z_1$$

• (b) 结合性: $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ 。 我们有

$$(z_1 + z_2) + z_2 = (a + c, b + d) + (e, f)$$

= $(a + c + e, b + d + f)$

又因为

$$z_1 + (z_2 + z_3) = (a, b) + (c + e, d + f)$$

= $(a + c + e, b + d + f)$

于是,由定义15.6.2中关于相等的定义可知,

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$

(c) 恒等性: z₁ + 0_C = 0_C + z₁。
 我们有,

$$z_1 + 0_{\mathbb{C}} = (a, b) + (0, 0)$$

= (a, b)

又因为

$$0_{\mathbb{C}} + z_1 = (0,0) + (a,b)$$

= (a,b)

于是,由定义15.6.2中关于相等的定义可知,

$$z_1 + 0_{\mathbb{C}} = 0_{\mathbb{C}} + z_1$$

• (d) 逆元性: $z_1 + (-z_1) = (-z_1) + z_1 = 0_{\mathbb{C}}$ 。 由 (a) 可交换性可知

$$z_1 + (-z_1) = (-z_1) + z_1$$

我们有,

$$z_1 + (-z_1) = (a, b) + (-a, -b)$$

= $(0, 0)$
= $0_{\mathbb{C}}$

15.6.2

设
$$z_1 = (a, b), z_2 = (c, d), z_3 = (e, f)$$
。

• (a) 可交换性: $z_1z_2 = z_2z_1$ 。 由定义 15.6.5 可知,

$$z_1 z_2 = (a, b)(c, d)$$
$$= (ac - bd, ad + bc)$$

$$z_2 z_1 = (c, d)(a, b)$$
$$= (ca - db, cb + da)$$

因为

$$ac - bd = ca - db$$
$$ad + bc = cb + da$$

于是,由定义15.6.2中关于相等的定义可知,

$$z_1 z_2 = z_2 z_1$$

(b) 结合性: (z₁z₂)z₃ = z₁(z₂z₃)。
 因为

$$(z_1 z_2) z_3 = ((a, b)(c, d))(e, f)$$

$$= (ac - bd, ad + bc)(e, f)$$

$$= ((ac - bd)e - (ad + bc)f, (ac - bd)f + (ad + bc)e)$$

$$= (ace - bde - adf - bcf, acf - bdf + ade + bce)$$

$$\begin{split} z_1(z_2z_3) &= (a,b)((c,d)(e,f)) \\ &= (a,b)(ce-df,cf+de) \\ &= (a(ce-df)-b(cf+de),a(cf+de)+b(ce-df)) \\ &= (ace-adf-bcf-bde,acf+ade+bce-bdf) \end{split}$$

于是,由定义15.6.2中关于相等的定义可知,

$$(z_1 z_2) z_3 = z_1(z_2 z_3)$$

(c) 恒等性: z₁1_C = 1_Cz₁ = z₁。
由 (a) 可知

$$z_1 1_{\mathbb{C}} = 1_{\mathbb{C}} z_1$$

又有

$$z_1 1_{\mathbb{C}} = (a, b)(1, 0)$$

= $(a \times 1 - b \times 0, a \times 0 + b \times 1)$
= (a, b)
= z_1

• (d) 分配性: $z_1(z_2+z_3)=z_1z_2+z_1z_3$ 和 $(z_2+z_3)z_1=z_2z_1+z_3z_1$ 。 因为

$$z_1(z_2 + z_3) = (a, b)((c, d) + (e, f))$$

$$= (a, b)(c + e, d + f)$$

$$= (a(c + e) - b(d + f), a(d + f) + b(c + e))$$

$$= (ac + ae - bd - bf, ad + af + bc + be)$$

$$z_1 z_2 + z_1 z_2 = (a, b)(c, d) + (a, b)(e, f)$$

$$= (ac - bd, ad + bc) + (ae - bf, af + be)$$

$$= (ac - bd + ae - bf, ad + bc + af + be)$$

于是,由定义15.6.2中关于相等的定义可知,

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$$

同理可得,

$$(z_2 + z_3)z_1 = z_2 z_1 + z_3 z_1$$

15.6.3

这个引理是想说明:形式符号 z = (a, b) 与 z = a + bi 是等价的。

因为

$$a + bi = (a, 0) + (b, 0)(0, 1)$$
$$= (a, 0) + (0, b)$$
$$= (a, b)$$

从而, a + bi 与 (a,b) 就是一回事。

15.6.4

设 z = a + bi, w = c + di。

• $\overline{z+w} = \overline{z} + \overline{w} \circ$

因为

$$z + w = a + bi + c + di = a + c + (b + d)i$$

于是

$$\overline{z+w} = a + c - (b+d)i$$

又

$$\overline{z} + \overline{w} = a - bi + c - di$$

= $a + c - (b + d)i$

所以, $\overline{z+w} = \overline{z} + \overline{w}$ 。

• $\overline{-z} = -\overline{z}$ \circ

$$\overline{-z} = \overline{-a - bi}$$
$$= -a + bi$$

$$-\overline{z} = -(a - bi)$$
$$= -a + bi$$

所以, $\overline{-z} = -\overline{z}$ 。

 $\bullet \ \overline{zw} = \overline{z} \ \overline{w} \circ$

因为

$$\overline{zw} = \overline{(a+bi)(c+di)}$$

$$= \overline{(ac-bd) + (ad+bc)i}$$

$$= (ac-bd) - (ad+bc)i$$

$$\overline{z} \overline{w} = \overline{a + bic + di}$$

$$= (a - bi)(c - di)$$

$$= ac - bd - (ad + bc)i$$

所以, $\overline{zw} = \overline{z} \overline{w}$ 。

• $\overline{\overline{z}} = z \circ$

$$\overline{\overline{z}} = \overline{a + bi}$$

$$= \overline{a - bi}$$

$$= a + bi$$

$$= z$$

• $\overline{z} = \overline{w}$ 当且仅当 z = w。

 $- \Rightarrow$

$$\overline{z} = \overline{w}$$
$$a - bi = c - di$$

于是, a=c且 -b=-d, 即 a=c且 b=d。所以 z=w。

- =

z=w,所以 a=c且 b=d。

$$\overline{z} = a - bi$$

$$\overline{w} = c - di$$

于是 a = c 且 -b = -d,所以 $\overline{z} = \overline{w}$ 。

- $\overline{z} = z$ 当且仅当 z 是一个实数。
 - $-\Rightarrow$ $\overline{z}=z$,那么 -b=b,所以 b=0,即 $\Im(z)=0$,所以 z 是一个实数。
 - \leftarrow z 是一个实数, $\Im(z) = 0$,于是 b = 0,所以 $\overline{z} = z$ 。

15.6.5

设 z=a+bi,所以 $\Re(z)=a,\Im(z)=b$ 。 又因为

$$\frac{z + \overline{z}}{2} = \frac{a + bi + a - bi}{2}$$
$$= \frac{2a}{2}$$
$$= a$$
$$= \Re(z)$$

$$\frac{z - \overline{z}}{2i} = \frac{a + bi - (a - bi)}{2i}$$
$$= \frac{b2i}{2i}$$
$$= b$$
$$= \Im(z)$$

15.6.6

设 z = a + bi, w = c + di。

• 恒等式 $z\overline{z} = |z|^2$,从而有 $|z| = \sqrt{z\overline{z}}$ 。

$$z\overline{z} = (a+bi)(a-bi)$$

$$= a^2 - b^2i^2 - abi + abi$$

$$= a^2 - b^2i^2$$

$$= a^2 + b^2$$

又因为

$$|z|^2 = \sqrt{a^2 + b^2}^2$$
$$= a^2 + b^2$$

于是, $z\overline{z} = |z|^2$,从而有 $|z| = \sqrt{z\overline{z}}$ 。

|zw| = |z||w| 且 |z| = |z|。
 由之前的讨论可得,

$$\begin{split} |zw| &= \sqrt{zw\overline{z}\overline{w}} \\ &= \sqrt{zw\overline{z}\ \overline{w}} \\ &= \sqrt{z\overline{z}w\overline{w}} \\ &= \sqrt{|z|^2|w|^2} \\ &= |z||w| \end{split}$$

|z| = |z| 直接可以从复数绝对值定义中得到。

• 不等式 $-|z| \le \Re(z) \le |z|$ 。 因为

$$|z|^2 = a^2 + b^2 \ge a^2$$

由引理 5.6.9(d) (更准确的说是实数版本) 可得

$$|z| \ge |a| \ge \Re(z) = a$$

于是,

$$-|z| \le -|a| \le a = \Re(z)$$

- 不等式 $-|z| \le \Im(z) \le |z|$ 。 与上一个不等式证明方式一致。
- 不等式 |z| ≤ |玳| + |ℑ|。
 因为

$$(|\mathfrak{R}| + |\mathfrak{I}|)^2 = (|a| + |b|)^2$$

= $a^2 + b^2 + 2|ab|$
 $\geq a^2 + b^2 = |z|^2$

由引理 5.6.9(d) (更准确的说是实数版本) 可得

$$|z| \le |\Re| + |\Im|$$

三角不等式 |z+w| ≤ |z| + |w|。
 按照书中的提示进行证明。
 由之前的命题可得,

$$\Re(z\overline{w}) \le |z\overline{w}| = |z||\overline{w}| = |z||w|$$

于是,

$$\Re(z\overline{w}) \le |z||w|$$

利用习题 15.6.5 可得,

$$\begin{split} \Re(z\overline{w}) &= \frac{z\overline{w} + \overline{z\overline{w}}}{2} \\ &= \frac{z\overline{w} + \overline{z}w}{2} \end{split}$$

于是,

$$\frac{z\overline{w} + \overline{z}w}{2} \le |z||w|$$
$$z\overline{w} + \overline{z}w \le 2|z||w|$$

然后,不等式两端加上 $|z|^2 + |w|^2$,

$$z\overline{w} + \overline{z}w + |z|^2 + |w|^2 \le 2|z||w| + |z|^2 + |w|^2$$

$$z\overline{w} + \overline{z}w + z\overline{z} + w\overline{w} \le (|z| + |w|)^2$$

$$(z+w)(\overline{z+w}) \le (|z| + |w|)^2$$

$$|z+w|^2 \le (|z| + |w|)^2$$

$$|z+w| \le |z| + |w|$$

15.6.7

注意:实数也是复数,所以复数的相关性质,实数也具备。 因为

$$\begin{split} |z/w| &= |zw^{-1}| \\ &= |z|w|^{-2}\overline{w}| \\ &= \left|\frac{z\overline{w}}{|w|^2}\right| \\ &= |\frac{1}{|w|^2}||z\overline{w}| \\ &= \frac{1}{|w|^2}|z||\overline{w}| \\ &= \frac{|\overline{w}|}{|w|^2}|z| \\ &= \frac{|z|}{|w|} \end{split}$$

15.6.8

注意: 实数也是复数, 所以复数的相关性质, 实数也具备。

- ⇒
- =

$$|z+w| = |cw+w|$$
$$= |(c+1)w|$$
$$= |c+1||w|$$

$$|z| + |w| = |cw| + |w|$$

= $|c||w| + |w|$
= $|c + 1||w|$

所以 |z+w| = |z| + |w|。

15.6.9

$$z = \Re(z) + \Im(z)i_{\,\circ}$$

• **⇒**

(1)
$$\lim_{n\to\infty} \Re(z_n) = \Re(z)$$
.

反证法, 假设 $\lim_{n\to\infty} \mathfrak{R}(z_n)$ 不收敛于 $\mathfrak{R}(z)$ 。

于是存在 ϵ ,不存在 N > 0,使得只要 $n \ge N$,就有

$$|\Re(z_n) - \Re(z)| < \epsilon$$

即对所有的 n 都有

$$|\Re(z_n) - \Re(z)| \ge \epsilon$$

又因为 $\lim_{n\to\infty}z_n=z$,所以对 $\epsilon>0$,存在 N>0,使得只要 $n\geq N$,都

$$|z_n - z| < \epsilon$$

$$\implies$$

$$\sqrt{(\Re(z_n) - \Re(z))^2 + (\Im(z_n) - \Im(z))^2} < \epsilon$$

因为

$$\sqrt{(\Re(z_n) - \Re(z))^2 + (\Im(z_n) - \Im(z))^2} > |\Re(z_n) - \Re(z)| \ge \epsilon$$

存在矛盾。

所以, $\lim_{n\to\infty} \Re(z_n) = \Re(z)$ 。

(2)
$$\lim_{n\to\infty} \Im(z_n) = \Im(z)$$
.

证明类似,不做赘述。

• =

对任意 $\epsilon > 0$ 。

因为 $\lim_{n\to\infty} \Re(z_n) = \Re(z)$,存在 $N_1 > 0$,使得只要 $n \ge N_1$,都有

$$|\Re(z_n) - \Re(z)| < \frac{1}{\sqrt{2}}\epsilon$$

同理,因为 $\lim_{n\to\infty} \Im(z_n) = \Im(z)$,存在 $N_2 > 0$,使得只要 $n \geq N_2$,都有

$$|\Im(z_n) - \Im(z)| < \frac{1}{\sqrt{2}}\epsilon$$

取 $N = max(N_1, N_2)$,使得只要 $n \ge N$,都有

$$|z_n - z| = \sqrt{(\Re(z_n) - \Re(z))^2 + (\Im(z_n) - \Im(z))^2}$$

$$< \epsilon$$

由 ϵ 的任意性可得, $\lim_{n\to\infty} z_n = z$ 。

15.6.10

由定义 12.4.9(完备度量空间)可知,我们需要证明,度量空间 (\mathbb{C} , d) 中的任意 $(z_n)_{n=1}^{\infty}$ 柯西序列都有极限。

对任意 $\epsilon > 0$,存在 N > 0,使得只要 $p,q \geq N$,都有

$$\begin{aligned} |z_p - z_q| < \epsilon \\ \Longrightarrow \\ \sqrt{(\Re(z_p) - \Re(z_q))^2 + (\Im(z_p) - \Im(z_q))^2} < \epsilon \end{aligned}$$

所以,

$$\begin{split} \sqrt{(\Re(z_p) - \Re(z_q))^2} < \epsilon \\ \Longrightarrow \\ |\Re(z_p) - \Re(z_q)| < \epsilon \end{split}$$

所以 $(\mathfrak{R}(z_n))_{n=1}^\infty$ 是柯西序列,由于 \mathfrak{z}_n 都是实数,实数度量空间是完备的,所以, $(\mathfrak{R}(z_n))_{n=1}^\infty$ 是收敛序列。

同理可得, $(\Im(z_n))_{n=1}^{\infty}$ 是收敛序列。

综上,利用引理 15.6.13 可得, $(z_n)_{n=1}^{\infty}$ 收敛。

15.6.11

- f是双射。
 证明 f 是单射和双射即可,证明略。
- f, f^{-1} 都是连续函数。

(1) f 是连续函数。

任意 $(x_0,y_0) \in \mathbb{R}^2$,设 $(x^{(n)})_{n=1}^{\infty}$ 是 \mathbb{R}^2 中的序列,其中 $x^{(n)} := (x_n,y_n)$,并且序列收敛于 (x_0,y_0) ,我们需要证明 $(f(x^n))_{n=1}^{\infty}$ 即 $(z_n)_{n=1}^{\infty}$ 其中 $z_n = x_n + y_n i$ 收敛于 $f(x_0,y_0) = x_0 + y_0 i$ 。

由命题 12.1.18 可知,

$$\lim_{n \to \infty} x_n = x_0$$

$$\lim_{n \to \infty} y_n = y_0$$

由引理 15.6.13 可知, $(z_n)_{n=1}^{\infty}$ 收敛于 $f(x_0, y_0)$ 。

(2) f^{-1} 是连续函数。

证明方式与(1)类似,证明略。

15.6.12

我们构造出这样一个通路:

对任意 $z_0, z_1 \in \mathbb{C}$,定义 $\gamma(x) = (1-x)z_0 + z_1x$,其中 $x \in [0,1]$ 。以上定义的通道满足:

- $\gamma(0) = z_0, \gamma(1) = z_1$.
- γ 是连续的。(可以直接使用引理 15.6.14 证明。) 道路连通蕴含连通性,所以, $\mathbb C$ 是连通的。

15.6.13

- (1) 证明: E 是紧致的, 当且仅当 E 既是闭的又是有界的。
 - ⇒ 利用推论 12.5.6 可证。
 - \Leftarrow 设 $(z_n)_{n=1}^{\infty}$ 是 E 中的任意序列。

按照习题 15.6.11 中定义的 f^{-1} ,我们有 $E' = f^{-1}(E)$, $E' \subseteq \mathbb{R}$ 。 因为 \mathbb{C} 的通常度量 d 是与欧几里得度量是一致的,所以,E 是闭的又是有界的,那么,E' 也是闭的又是有界的。

所以, $(f^{-1}(z_n))_{n=1}^{\infty}$ 存在收敛的 R^2 上的子序列 $(a_n)_{n=1}^{\infty}$,其对应的复数序列为 $(f(a_n))_{n=1}^{\infty}$ 。

由命题 12.1.18(d) 可知,我们有以下极限存在,

$$\lim_{n \to \infty} \Re(f(a_n))$$
$$\lim_{n \to \infty} \Im(f(a_n))$$

所以,由引理 15.6.13 可知, $\lim_{n\to\infty} f(a_n)$ 极限存在。 综上,由 $(z_n)_{n=1}^{\infty}$ 的任意性可得,E 是紧致的。

• (2) ℂ 不是紧致的。

ℂ 的子集 ℝ 都不是紧致的, ℂ 不可能是紧致的。

或者直接举一个反例 $(a_n)_{n=1}^{\infty}$, 其中 $a_n = n$, 这个序列就没有收敛的子序列。

15.6.14