

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

MELBOURNE, VICTORIA

MATERIALS NOTE 130

AN ASSESSMENT OF THE CORROSIVE POTENTIAL OF THE CHEMICALS USED IN PENETRANT TESTING TOWARDS AIRCRAFT STRUCTURAL MATERIALS

by

R. S. G. DEVEREUX and L. WILSON

Approved for Public Release.

C COMMONWEALTH OF AUSTRALIA 1981

.

JULY 1981

004

ADA 112191

IC FILE BOPY

OTE FILE

COPY NO

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

MATERIALS NOTE 130

AN ASSESSMENT OF THE CORROSIVE POTENTIAL OF THE CHEMICALS USED IN PENETRANT TESTING TOWARDS AIRCRAFT STRUCTURAL MATERIALS

by

R. S. G. DEVEREUX and L. WILSON

SUMMARY

Various chemicals are used in non-destructive penetrant testing for cracks in aircraft structural materials. Tests have been carried out to assess the corrosive effect of these chemicals on aircraft aluminium alloys. These tests showed that the chemicals themselves are unlikely to have any deleterious effects. However, water used in removing the chemicals from the test area could cause surface corrosion and increase the rate of stress corrosion crack propagation if it is not removed at the conclusion of testing.

POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories, Box 4331, P.O., Melbourne, Victoria, 3001, Australia.

DOCUMENT CONTROL DATA SHEET

 Document Numbers (a) AR Number: AR-002-300 (b) Document Series and Number: Materials Note 130 (c) Report Number: ARL-MAT-NOTE-130 	 2. Security Classification (a) Complete document: Unclassified (b) Title in isolation: Unclassified (c) Summary in isolation: Unclassified 		
	E CORROSIVE POTENTIAL OF THE ENETRANT TESTING TOWARDS MATERIALS		
4. Peronal Author(s): R. S. G. Devereux	5. Document Date: July 1981		
L. Wilson	6. Type of Report and Period Covered:		
7. Corporate Author(s): Aeronautical Research Laboratories	8. Reference Numbers (a) Task: AIR 80/077		
9. Cost Code: 33 1680	(b) Sponsoring Agency: RAAF		
10. Imprint Aeronautical Research Laboratories, Melbourne	11. Computer Program(s) (Title(s) and language(s)):		
12. Release Limitations (of the document): Approved for Public Release		
12.0 Overseas: N.O. P.R.	A B C D E		
13. Announcement Limitations (of the in	formation on this page): No Limitations		
14. Descriptors: Corrosion tests Stress Corrosion Penetrants Aluminium Alla Fluorescent Pen Nondestructive Aircraft Panels	etration Tests 110c		
structural materials. Tests have been c chemicals on aircraft aluminium alloys. are unlikely to have any deleterious	ABSTRACT destructive penetrant testing for cracks in aircraft arried out to assess the corrosive effect of these These tests showed that the chemicals themselves effects. However, water used in removing the e surface corrosion and increase the rate of stress		

CONTENTS

	Copy No.
1. INTRODUCTION	1
	1
2. CORROSION TESTS	1
2.1 Visual and Weight-loss Corrosion Tests	3
2.2 Stress Corrosion Tests	3
3. CONCLUSION	3
REFERENCES	
FIGURES	
DISTRIBUTION	

1. INTRODUCTION

Penetrant testing is one of the non-destructive inspection techniques used by the Royal Australian Air Force (RAAF) to detect cracks in aircraft structures. The procedure most commonly employed consists of the following steps:

- (i) the surface to be inspected is cleaned with a solvent;
- (ii) a fluorescent penetrating liquid is applied to the surface;
- (iii) excess penetrant, treated with an emulsifier, is washed off the surface with tap water;
- (iv) the surface is dried;
- (v) an absorbent developing powder is applied which attracts the fluorescent liquid from the interfaces of any cracks;
- (vi) the surface is examined under ultra-violet radiation for indication of the presence of cracks; and finally
- (vii) the developer is removed from the surface by washing with tap water or by compressed

Recently, the RAAF expressed concern at the likelihood of chemical residues from the various steps in the penetrant-testing procedure causing corrosion of the structures being examined and requested that this matter be investigated. This report describes tests carried out to assess the effect of the various chemicals used in the penetrant test procedure on the corrosion and stress-corrosion of aluminium alloys used in aircraft structures.

2. CORROSION TESTS

2.1 Visual and Weight-loss Corrosion Tests

Aluminium alloy 2024-T3 was chosen for these tests because it was considered to be one of the more corrosion-prone aluminium alloys commonly used in aircraft structures. Test specimens (50 mm long by 25 mm wide by 12 mm thick) were polished to a 600 grit finish, degreased, and weighed. The test solutions were:

- (i) Zyglo Cleaner ZC7;
- (ii) Zyglo Penetrant ZL22;
- (iii) Zyglo Emulsifier ZE3;
- (iv) Zyglo Emulsifier ZE3 (20%) and tap water (80%);
- (v) a 50/50 slurry of Zyglo developer powder ZP4A and tap water—this was used as the powder developer is sometimes removed by washing off with water; and
- (vi) tap water.

Each test consisted of suspending each test specimen in a glass bottle, covering it with 100 ml of one of the test solutions (above) and sealing with a plastic lid. Each specimen was inspected regularly in situ; the observations made are recorded in Table 1. All tests were carried out in duplicate.

TABLE 1
Corrosion Test Observations

Teef collision		Observations made after	made after	
	One day	One week	One month	Two months
Cleaner	No change	No change	No change	Slight pitting of both speci- mens
Penetrant	No change	No change	No change	No change
Emulsifier	No change	No change	No change	No change
Emulsifier plus water	No change	Specks of white precipitate had formed on the specimens	The amount of white precipitate had increased	The surface of both specimens had darkened and the amount of white precipitate had increased
Developer plus water	No change	Specks of white precipitate had formed on the specimens	The amount of white precipitate had increased	The surface of both specimens had darkened and the amount of white precipitate had increased
Tap water	Light staining of both speci- mens had occurerd	A white precipitate had formed on both specimens	A white precipitate covered each specimen and was dispersed throughout the solution	The amount of white precipitate had increased considerably

After 70 days, the specimens were taken from their solutions, corrosion products removed by scrubbing with a soft bristle brush, washed with alcohol, dried, and weighed. Calculated corrosion rates, based on weight losses are shown in Table 2.

TABLE 2
Corrosion Rate Results

(based on weight loss)

Test solution	Average corrosion rate (mg/cm ² /70 days)	Average corrosion rate (mm penetration/year)
Cleaner	Nil	Nil
Penetrant	Nil	Nil
Emulsifier	Nil	Nil
Emulsifier plus water	1 · 68	0.032
Developer plus water	1 · 66	0.031
Tap water	1 · 73	0.033

Tables 1 and 2 show that the chemicals used in the penetrant test method do not themselves cause severe corrosion of aluminium alloy 2024-T3. However, when water is mixed with the chemicals, significant corrosion does occur.

2.2 Stress Corrosion Tests

Aluminium alloy 7075-T651 was chosen for these tests because of its known susceptibility to stress-corrosion cracking. Seven Double Cantilever Beam (DCB) specimens¹ manufactured from 76 mm plate, containing "pop-in" pre-cracks were bolt-loaded in the short transverse direction. The lengths and opening displacements of the cracks introduced into the specimens were measured and the specimens treated as follows:

- Specimen 1—Cleaned using Zyglo Cleaner ZL7.
- Specimen 2—Coated with Zyglo Penetrant ZL22.
- Specimen 3—Cleaned and coated with penetrant.
- Specimen 4—Treated with Zyglo Emulsifier ZE3.
- Specimen 5—Cleaned, coated with penetrant, excess penetrant treated with emulsifier and the emulsion removed by washing with tap water.
- Specimen 6—Treated with Zyglo Developer ZP4A.
- Specimen 7—Cleaned, coated with penetrant, excess penetrant treated with emulsifier, emulsion removed with tap water, dried in air, and developer added.

The length of crack in each specimen was measured every 24 hours for 46 days. Figure 1 shows the plots of increase in crack length versus time for each of the specimens. The only specimens with significant increases in crack length were numbers 5 and 7; both of these were washed in tap water at some stage of their preparation.

3. CONCLUSIONS

Visual and weight-loss corrosion tests and stress-corrosion tests indicate that the chemicals used in penetrant-testing are unlikely to cause corrosion problems in aircraft structures. However, any water left behind or trapped in cracks would be deleterious. Care should therefore be taken to dry aircraft structures thoroughly after the removal of the emulsifier and at the conclusion of penetrant-testing.

REFERENCE

1. Hyatt, M. V.—Use of precracked specimens in stress corrosion testing of high strength aluminium alloys. *Corrosion*, Vol. 26, 487 (November 1970).

DISTRIBUTION

AUSTRALIA	Copy No.
- ·- 	
Department of Defence Central Office	
Chief Defence Scientist	
Deputy Chief Defence Scientist	1
Superintendent, Science and Technology Programmes	2 3
Aust. Defence Scientific and Technical Rep. (U.K.)	3
Counsellor. Defence Science (U.S.A.)	
Defence Central Library	4
Document Exchange Centre, D.I.S.B.	5-21
Joint Intelligence Organisation	22
Aeronautical Research Laboratories	
Chief Superintendent	23
Library Superintendent Man 11	24
Superintendent Materials Divisional File-Materials	25
Authors: R. S. G. Devereux	26
L. Wilson	27
Materials Research Laboratories	28
Library	
•	29
Defence Research Centre Library	30
Central Office	
Director General—Army Development (NSO)	31-34
Navy Office	31-34
Naval Scientific Adviser	
	35
Army Office Army Scientific Adviser	
	36
Air Force Office	
Air Force Scientific Adviser	37
Technical Division Library Director General Aircraft Engineering	38
Director General Operational Requirements	39
HQ Operational Command (CEWO)	40
HQ Support Command (SESO)	41 42
RAAF Academy, Point Cook	42
Department of Industry and Commerce	7.)
Government Aircraft Factories	
Library	44
Department of Transport	44
Library	
·· •	45

 Statutory and State A 	Authorities and Industry	
Trans-Australia	Airlines, Library	46
Gas and Fuel Co	orp, of Victoria, Manager Scientific Services	47
SEC of Vic., He	rman Research Laboratory, Library	48
Ansett Airlines of	of Australia, Library	49
B.H.P., Melbour	ne Research Laboratories	50
Commonwealth Aircraft Corporation, Library		51
CANADA		
Institute for Aer	ospace Studies	52
International Ci	vil Aviation Organization, Library	53
Energy Mines and	Resources Dept.	
Physics and Met	allurgy Research Laboratories	54
INDIA		
Defence Ministry	y, Aero Development Establishment, Library	55
Hindustan Aeroi	nauties Ltd., Library	56
National Aerona	nutical Laboratory, Information Centre	57
NEW ZEALAND		
Defence Scientifi	c Establishment, Library	58
Universities		
Canterbury	Library	59
	Professor D. Stevenson, Mechanical Eng.	60
UNITED KINGDOM		
Ministry of Defe	nce, Research, Materials and Collaboration	61
Royal Aircraft F	stablishment	
Bedford, Lib	•	62
	d, Materials Department	63
	l Laboratory, Library	64
British Library,	Lending Division	65
Spares		66 75

- 101 478

