Série 2015

Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2.1 Bases technologiques

Nom, prénom	N° de candidat	Date

Temps: 30 minutes

Auxiliaires : Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation : - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.
- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

1,0

- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

Barème: Nombres de points maximum: 17,0

0,0 -

		=		
16,5	-	17,0	Points = Note	6,0
14,5	-	16,0	Points = Note	5,5
13,0	-	14,0	Points = Note	5,0
11,5	-	12,5	Points = Note	4,5
9,5	-	11,0	Points = Note	4,0
8,0	-	9,0	Points = Note	3,5
6,0	-	7,5	Points = Note	3,0
4,5	-	5,5	Points = Note	2,5
3,0	-	4,0	Points = Note	2,0
1,0	-	2,5	Points = Note	1,5

0,5 Points = Note

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

expertes / experts :	obtenus	

Délai d'attente : Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2016.

Créé par : Groupe de travail EFA de l'USIE pour la profession

d'installatrice-électricienne CFC / installateur-électricien CFC

Editeur : CSFO, département procédures de qualification, Berne

Bases technologiques

Exer	cices	Nombre maximal	de points obtenus	
1.	Nommez les formes d'énergie disponibles aux différents points.	2		
	Energie absorbée Turbine à vapeur Energie utile Lampe			
	a) b) c) d)			
	a) =			
	b) =			
	c) =			
	d) =			
2.	Une force s'exerce sur deux conducteurs parallèles lorsque ceux-ci sont parcourus par un courant électrique.	2		
	 a) Dessiner le champ magnétique engendré par les deux conducteurs lorsque ceux-ci sont parcourus par des courants de même sens. b) Quelle force agit sur les deux conducteurs ? 			
	a)			
	b)			

Bases technologiques

Exer	cices	Nombre of maximal	de points obtenus
3.	Tracez les affirmations incorrectes :	2	
	a) La résistance équivalente de deux résistances égales, couplées en parallèle, vaut :		
	 la moitié d'une des résistances. le double d'une des résistances. 		
	b) La résistance équivalente de deux résistances égales, couplées en série, est :		
	 plus grande qu'une des résistances. égale à une des résistances. plus petite qu'une des résistances. 		
4.	Que vaut le moment de cette force ? Cochez la bonne réponse.	1	
	30.0°		
	M = 0,25 m × 100 N × sin 30° M = 0,25 m × 100 N × cos 30° M = 0,25 m × 100 N / sin 30° M = 0,25 m × 100 N Aucune réponse n'est correcte		

Bases technologiques

Exer	cices	Nombre maximal	de points obtenus
5.	Une plaque de cuivre a une largeur de 17 cm, une longueur de 270 mm et une épaisseur de 10 mm. Elle a un trou de fixation de 12 mm de diamètre, dans chacun des quatre coins. Masse volumique du cuivre : $8.9 \frac{kg}{dm^3}$ Calculez la masse de cette plaque de cuivre.	3	
6.	Soulignez la bonne réponse. Pour un signal électrique alternatif, le temps d'une période correspond au temps : a) d'une alternance négative. b) entre la valeur maximale positive et la valeur maximale négative. c) d'une alternance positive. d) de l'écoulement d'une oscillation complète.	1	

Exer	Exercices		
7.	Quelle est la longueur maximale d'une ligne de cuivre de 1,5 mm² de sorte que pour un courant de charge de 8 A, la chute de tension en ligne ne dépasse pas 4 % de la tension de réseau (230 V) ?	3	
8.	Un signal sinusoïdal est appliqué à un redresseur en pont (redresseur à double alternance). a) Tracez le signal de sortie (tension aux bornes de la résistance de charge). b) Calculez la valeur maximale de la tension de sortie si le signal d'entrée a une valeur efficace de 6 V. (Remarque : La tension de seuil des diodes de redressement au silicium est de 0,7 V) a) u t b)	3	
	Total	17	