Statement

Assess your performance by solving these problems on your own!

There are two problems in a contest.

- Problem A is worth 500 points at the start of the contest.
- Problem B is worth 1000 points at the start of the contest.

Once the contest starts, after each minute:

- ullet Maximum points of Problem A reduce by ${f 2}$ points .
- Maximum points of Problem B reduce by 4 points.

It is known that Chef requires X minutes to solve Problem A correctly and Y minutes to solve Problem B correctly.

Find the maximum number of points Chef can score if he optimally decides the order of attempting both the problems.

Input Format

- ullet First line will contain T, number of test cases. Then the test cases follow.
- Each test case contains of a single line of input, two integers X and Y the time required to solve problems A and B in minutes
 respectively.

Output Format

For each test case, output in a single line, the **maximum** number of points Chef can score if he optimally decides the order of attempting both the problems.

Constraints

- $1 \le T \le 1000$
- $1 \le X, Y \le 100$

Sample 1:

Input	Output
4	1360
10 20	1292
8 40	1380
15 15	1400
20 10	

Explanation:

Test Case 1: If Chef attempts in the order $A \to B$ then he submits Problem A after 10 minutes and Problem B after 30 minutes. Thus, he gets $500-10\cdot 2=480$ points for problem A and $1000-30\cdot 4=880$ points for problem B. Thus, total 480+880=1360 points for both the problems.

If Chef attempts in the order $B \to A$ then he submits Problem B after 20 minutes and Problem A after 30 minutes. Thus, he gets $1000-20\cdot 4=920$ points for Problem B and $500-30\cdot 2=440$ points for Problem A. Thus total 920+440=1360 points for both the problems.

So, in both cases Chef gets 1360 points in total.

Test Case 2: If Chef attempts in the order $A \to B$ then he submits Problem A after 8 minutes and Problem B after 48 minutes. Thus, he gets $500-8\cdot 2=484$ points for problem A and $1000-48\cdot 4=808$ points for problem B. Thus, total 484+808=1292 points for both the problems.

If Chef attempts in the order $B \to A$ then he submits Problem B after 40 minutes and Problem A after 48 minutes. Thus, he gets $1000-40\cdot 4=840$ points for Problem B and $500-48\cdot 2=404$ points for Problem A. Thus total 840+404=1244 points for both the problems.

So, Chef will attempt in the order A o B and thus obtain 1292 points.

Test Case 3: If Chef attempts in the order $A \to B$ then he submits Problem A after 15 minutes and Problem B after 30 minutes. Thus, he gets $500-15\cdot 2=470$ points for problem A and $1000-30\cdot 4=880$ points for problem B. Thus, total 470+880=1350 points for both the problems.

If Chef attempts in the order $B \to A$ then he submits Problem B after 15 minutes and Problem A after 30 minutes. Thus, he gets $1000-15\cdot 4=940$ points for Problem B and $500-30\cdot 2=440$ points for Problem A. Thus total 940+440=1380 points for both the problems.

So, Chef will attempt in the order B o A and thus obtain 1380 points.

Test Case 4: If Chef attempts in the order $A \to B$ then he submits Problem A after 20 minutes and Problem B after 30 minutes. Thus, he gets $500-20\cdot 2=460$ points for problem A and $1000-30\cdot 4=880$ points for problem B. Thus, total 460+880=1340 points for both the problems.

If Chef attempts in the order B o A then he submits Problem B after 10 minutes and Problem A after 30 minutes.

Thus, he gets $1000-10\cdot 4=960$ points for Problem B and $500-30\cdot 2=440$ points for Problem A. Thus total 960+440=1400 points for both the problems.

So, Chef will attempt in the order B o A and thus obtain 1400 points.