

planetmath.org

Math for the people, by the people.

Recursive Z-statistic

Canonical name RecursiveZstatistic
Date of creation 2013-03-22 19:11:30
Last modified on 2013-03-22 19:11:30
Owner statsCab (25915)
Last modified by statsCab (25915)

Numerical id 4

Author statsCab (25915)

Entry type Definition Classification msc 62-00 In response to: Consider a standard Z-statistic used in hypothesis testing. One of the variables needed to compute the Z-statistic is the number of observations. The problem is that with each additional observation one has to recompute the Z-statistic from scratch. It seems like there is no recursive formulation, e.g. a representation such as Z(n) = Z(n-1) + new piece of information. Is there perhaps an approximate recursive formulation? Any other thoughts? Thanks.

An example hypothesis test is:

 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$

We reject this hypothesis if \overline{x} is either greater than or lower than a critical value. Assuming the critical values do not change all you have to update is Z_0 .

The test statistic is:

$$Z_0 = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

Assuming you know σ , when you get a new variable X_{n+1} you can update \overline{x} using n, \overline{X} , and X_{n+1} , then recalculate Z_0 .

Now if you do not know σ , and your sample size is large enough to use the Normal distribution, you have to update your sample variance, S^2 . If your sample size is not large enough and you are using the t-distribution then your critical values will change when n changes.

To do update S without recalculating, you should keep running totals of $\sum_i X_i$ and $\sum_i X_i^2$, so you can update S using the computation formula for the sample variance.