1916)= C 60) e & 1. $\frac{g(y|\theta)}{a(\theta)} = \frac{1}{a(\theta)} \frac{\theta + i(y)}{b(y)}$ by $\frac{1}{\theta} = \frac{1}{\theta} \frac{\theta + i(y)}{a(\theta)} \frac{1}{\theta} \frac{\theta + i(y)}{a(\theta)} = \frac{1}{\theta} \frac{\theta + i(y)}{a(\theta)} \frac{1}{\theta} \frac{$ where alo) = Jy Coty) big dy. Zik = {0 ow. filzi | zi,0) = # Jk(yn | BK) Zt,K. Pr(yr, Zr) 8, 7) = fr(zr) (zr) (zr) = # fakfk(yr) (ok) ? 22/K Q(Q, N/OP, NP)= = Ezyllog P, 174, 20/18, 20/18, N) = = Ezy [log fi(y) (3), (6) [8, 20] + = Ezy[log 9(8) (2) | 8,20] E-step: = Elgrigal Or Eary (Zak | Opiap) 1 Ezy [Log (12012) | 8pizy] = [zy] [Zyk Log (TK) | 8p, Tp] = Ely Tre Ezy(Str OPitp) ②, Exty (Zok | Coto,) => Exy (Zik (Dpitp) = Tipgk(Yilor) = Tipgk(Yilor) Trep gr (7/3/0 kp) ① to (日、ストロア、マ)=デニスを見らりましていしてい) + しのはい) · 葉スタタナはらりり) Since Exik=1, use a Lagrenge multiplier. プルト (Q(0,7/0x,7p) -)(上版 -1)) = デ TK を 分((201/0)p) - 入

カル= 一点 (サラル(サン10 mp) 素 スタタン(サン10 mp) した の (LO) ストロアンアン も get のpH $\frac{d}{d\theta_{k}}\left(X\left(\theta,\lambda\right)\partial\rho,\lambda_{p}\right) = \frac{n}{k!}\left(\frac{\lambda_{k}g_{k}(y_{i}(\theta_{k}p))}{\frac{k}{2}\lambda_{i}pg_{i}(y_{i}|\theta_{j}p)},\frac{\int_{\theta_{k}}g_{k}(y_{i}(\theta_{k}))}{g_{k}(y_{i}|\theta_{k})}\right)$ Now suppose we have a seta distribution.

gry, 0) = yd-1 (-4) b-1 The The gi (y) 1830) For X and B, there is no closed form since there is a gamma function in the likelihood, he can use gradient descent to solve

2.
$$\frac{1}{37} \sim N (3/8), \frac{1}{12/8} + 6/1)^{-\frac{1}{2}} + \frac{1}{12} + \frac{1}{12}$$

hw3

Wangqian Ju, Yudi Zhang

10/28/2021

q2

```
Vj <- function(tau, sigma, z, nj)</pre>
            (sigma^2) * diag(nj) + (tau^2) * z %*% t(z)
Aj <- function(tau, sigma, beta, x, y, z, q, nj, Vj)
      sum(diag(t(z) %*% z %*% ((tau^2)*diag(q) - (tau^4)*t(z) %*% (tau^2)*diag(q) - (tau^4)*t(z) %*% (tau^4)*t(z
                                                                                 solve(Vj(tau, sigma, z, nj))%*%z))) +
      (tau^4)*t(y-x %*% beta) %*% solve(Vj(tau, sigma, z, nj)) %*% z %*%
      t(z) %*% z %*% t(z) %*% solve(Vj(tau, sigma, z, nj)) %*% (y-x %*% beta)
Cj <- function(tau, sigma, beta, x, y, z, q, nj, Vj)
      (tau^4)*t(y-x %*% beta) %*% solve(Vj(tau, sigma, z, nj)) %*%
      z %*% t(z) %*% solve(Vj(tau, sigma, z, nj)) %*% (y-x %*% beta) +
      sum(diag((tau^2)*diag(q)-(tau^4)*t(z) %*% solve(Vj(tau, sigma, z, nj)) %*% z))
Dj <- function(tau, sigma, beta, x, y, z, nj, Vj)
      (tau^2)*z %*% t(z) %*% solve(Vj(tau, sigma, z, nj)) %*% (y-x %*% beta)
em <- function(beta0, tau0, sigma0, X, Y, Z, n, p, q, tol = 1e-5){
      beta_new=beta0
      tau_new=tau0
      sigma_new=sigma0
      N = cumsum(n)
      m <- length(n)
     z = list()
     y = list()
      x = list()
      for (j in 1:m) {
           zs=matrix(nrow = n[j],ncol = q)
           xs=matrix(nrow = n[j],ncol = p)
           ys = matrix(nrow = n[j], ncol = 1)
           if(j==1) {
                for (i in 1:n[1])
                      for (k in 1:q)
                            zs[i,k]=Z[i,k]
                for (i in 1:n[1])
                      for (k in 1:p)
```

```
xs[i,k]=X[i,k]
    for (i in 1:n[1])
        ys[i,1]=Y[i,1]
 }
 if(j>1) {
    for (i in 1:n[j])
      for (k in 1:q)
        zs[i,k]=Z[(N[j-1]+i),(q*(j-1))+k]
    for (i in 1:n[j])
      for (k in 1:p)
        xs[i,k]=X[(N[j-1]+i),k]
    for (i in 1:n[j])
        ys[i,1]=Y[(N[j-1]+i),1]
 }
 x[[j]] = xs
 z[[j]] = zs
 y[[j]] = ys
#####E-Step
A=matrix(nrow = m, ncol = 1)
C=matrix(nrow = m,ncol = 1)
for (j in 1:m) {
 A[j] = Aj(tau_new, sigma_new[j], beta_new, x[[j]], y[[j]], z[[j]], q, n[j], Vj)
 C[j] = Cj(tau_new, sigma_new[j], beta_new, x[[j]], y[[j]], z[[j]], q, n[j], Vj)
siginv = diag(rep((1/sigma_new)^2,n))
tmp = c()
for (j in 1:m)
 tmp=c(tmp, Dj(tau_new,sigma_new[j],beta_new,x[[j]],y[[j]],z[[j]], n[j], Vj))
#####M-Step
beta_hat=solve(t(X)%*%siginv%*%X)%*%t(X)%*%siginv%*%(Y-tmp)
tau_hat=sqrt(sum(C)/(m*q))
sigma_hat=sigma_new
for (j in 1:m)
  sigma_hat[j] =
  sqrt((A[j]-2*t(y[[j]]-(x[[j]]%*%beta_new)) %*%
          Dj(tau_new,sigma_new[j],beta_new,x[[j]],y[[j]],z[[j]], n[j], Vj)+
          t(y[[j]]-(x[[j]]%*%beta_new)) %*% (y[[j]]-(x[[j]]%*%beta_new)))/n[j])
while((abs(tau_new-tau_hat) >= tol) ||
      (abs(sigma_new-sigma_hat) >= tol) || (abs(beta_new-beta_hat) >= tol)) {
 beta_new <- beta_hat</pre>
  sigma_new <- sigma_hat</pre>
 tau_new <- tau_hat</pre>
  #####E-Step
 for (j in 1:m) {
    A[j] <- Aj(tau_new, sigma_new[j],
             beta_new, x[[j]], y[[j]], z[[j]], q, n[j], Vj)
    C[j] <-Cj(tau_new, sigma_new[j],</pre>
             beta_new, x[[j]], y[[j]], z[[j]], q, n[j], Vj)
 }
```

```
tmp = c()
    for (j in 1:m)
        tmp=c(tmp, Dj(tau_new,sigma_new[j],
                       beta_new,x[[j]],y[[j]],z[[j]], n[j], Vj))
    siginv=diag(rep((1/sigma_new)^2,n))
    #####M-Step
    beta_hat <- solve(t(X)%*%siginv%*%X)%*%t(X)%*%siginv%*%(Y-tmp)
    for (j in 1:m)
      sigma_hat[j] = sqrt((A[j]-2*t(y[[j]]-(x[[j]])%%beta_new))
      %*% Dj(tau_new,sigma_new[j],beta_new,x[[j]],y[[j]],z[[j]], n[j], Vj) +
        t(y[[j]]-(x[[j]]%*%beta_new)) %*% (y[[j]]-(x[[j]]%*%beta_new)))/n[j])
    tau hat=sqrt(sum(C)/(m*q))
  par <- list(bate = beta_hat, tau = tau_hat, sigma = sigma_hat)</pre>
  return(par)
}
n \leftarrow c(10, 10, 10)
p < -2
q <- 2
m <- length(n)
X <- matrix(runif(sum(n) * p), nrow = sum(n), ncol = p, byrow = T)</pre>
Z \leftarrow bdiag(matrix(rnorm(n[1] * q), nrow = n[1], ncol = q, byrow = T),
          matrix(rnorm(n[2] * q), nrow = n[2], ncol = q, byrow = T),
          matrix(rnorm(n[3] * q), nrow = n[3], ncol = q, byrow = T))
Z <- as.matrix(Z)</pre>
beta <- matrix(rnorm(p), nrow = p, ncol = 1, byrow = T)</pre>
sigma <- rnorm(m)</pre>
tau <- rnorm(1)</pre>
b \leftarrow matrix(rnorm(m * q, 0, tau^2), nrow = m * q, ncol = 1, byrow = T)
e <- matrix(c(rmvnorm(1, rep(0, n[1]), (sigma[1])^2*diag(n[1])),
            rmvnorm(1, rep(0, n[2]), (sigma[2])^2*diag(n[2])),
            rmvnorm(1, rep(0, n[3]), (sigma[3])^2*diag(n[3]))),
            nrow = sum(n), ncol = 1, byrow = T)
Y <- X %*% beta + Z %*% b + e
beta0 <- matrix(c(1, 1), nrow = p, ncol = 1, byrow = T)
tau0 <- 1
sigma0 < c(1, 1, 1)
em(beta0, tau0, sigma0, X, Y, Z, n, q = q, p = p)
## $bate
##
               [,1]
## [1,] 1.2873534
## [2,] -0.8636941
##
## $tau
## [1] 0.01362274
##
## $sigma
## [1] 0.007755035 0.664061092 0.652090124
```

3. (a)

Let
$$X_1 = r\cos\theta$$
, $X_2 = r\sin\theta$; $M = T\cos\theta$, $M = T\sin\theta$, then
$$f_{R,\theta}(r,\theta) = f_{X_1,X_2}(x_1,x_2) \cdot r$$
.

We have
$$f_{x,y}(x,y) = \frac{1}{2\pi 6.6} \frac{1}{6.5} \frac{1-\rho^2}{1-\rho^2} \exp\left(-\frac{z}{2(1-\rho^2)}\right)$$
, where
$$z = \frac{(x.-\mu_1)^2}{6.^2} - \frac{2\rho(x.-\mu_1)(x.-\mu_2)}{6.6} + \frac{(x.-\mu_1)}{6.5}$$

$$= \frac{\cos^2\theta(r-t)^2}{6.^2} - \frac{2\rho(r-t)^2\sin\theta\cos\theta}{6.6} + \frac{\sin^2\theta(r-t)^2}{6.5}$$

$$= (r-t)^2 \left(\frac{\cos^2\theta}{6.^2} - \frac{2\rho\sin\theta\cos\theta}{6.6} + \frac{\sin^2\theta}{6.5}\right)$$

$$f_{R,\theta}(r,\theta) = \frac{1}{2\pi 6.62 \sqrt{1-\rho^2}} \exp \left[-\frac{1}{2(1-\rho^2)} \left(r-\tau \right)^2 \left(\frac{\cos^2 \theta}{61^2} - \frac{2\rho \sin \theta \cos \theta}{6162} + \frac{\sin^2 \theta}{62^2} \right) \right] \cdot r$$

$$\therefore f_{R}(r) = \frac{1}{2\pi 6.62 \sqrt{1-\beta^{2}}} + \int \exp\left[-\frac{1}{2(1-\beta^{2})} \left(r-\tau\right)^{2} \left(\frac{\cos^{2}\theta}{6.2} - \frac{2\beta \sin\theta \cos\theta}{6.62} + \frac{\sin^{2}\theta}{6.2}\right)\right] d\theta$$

$$f_{\theta|R}(\theta|r) = \frac{\int_{R,\theta} (r,\theta)}{\int_{R} (r)} = \frac{\exp\left[-\frac{1}{2((-\rho^{2})}(r-t)^{2}\left(\frac{\cos\theta}{6i^{2}} - \frac{2\cos\theta\sin\theta}{6\cdot 6i} + \frac{\sin\theta}{6i^{2}}\right)\right]}{\int_{\theta} \exp\left[-\frac{1}{2((-\rho^{2})}(r-t)^{2}\left(\frac{\cos\theta}{6i^{2}} - \frac{2\cos\theta\sin\theta}{6\cdot 6i} + \frac{\sin\theta}{6i^{2}}\right)\right]d\theta}$$

Then, we have:

$$E[X, |R] = E[R\cos\theta|R] = RE[\cos\theta|R]$$

$$= R \cdot \int \cos\theta \ f_{\theta R}(\theta | r) \ d\theta$$

$$E[X_1X_2|R] = E[R^2 \cos \theta \sin \theta |R] = R^2 E[\cos \theta \sin \theta |R]$$
$$= R^2 \cdot \int \cos \theta \sin \theta \int_{\theta |R} (\theta |r) d\theta$$

(b)(i)

Let
$$Y = (\mu, \Sigma)$$
, $\|\mu\| = T$

$$\begin{array}{lll}
E-step: & & \\
\widehat{Q}(\Upsilon, \Upsilon^*) &= E_{\Upsilon^*} \left[\log f(R, 0; \Upsilon) \middle| R \right] \\
&= \int \left(\sum\limits_{i=1}^n \log f(R_i, 0_i; \Upsilon) \right) \cdot \prod\limits_{i=1}^n f_{0:/R_i}(\Theta_i | \Pi_i; \Upsilon^*) dQ
\end{array}$$

$$= \sum_{i=1}^{n} \int \log f(R_i, \theta_i; \gamma) \cdot f_{\theta_i \mid R_i}(\theta_i \mid \Gamma_i; \gamma^*) d\theta_i$$

We have:

$$\log f(R_{i}, \theta_{i}; \gamma) = -\left[\log 2\pi + \log 6_{i} + \log 6_{2} + \frac{1}{2}\log(1-\rho^{2})\right] + \log r_{i}$$

$$-\frac{1}{2(1-\rho^{2})}\left(r_{i} - \tau_{i}\right)^{2}\left(\frac{\cos^{2}\theta_{i}}{6i^{2}} - \frac{2\rho\sin\theta_{i}\cos\theta_{i}}{6i^{2}} + \frac{\sin^{2}\theta_{i}}{6i^{2}}\right)$$

$$\int (ugf(R; \theta; \theta; y)) \cdot f_{\theta;R}(\theta; |r; y^{*}) d\theta;$$

$$= -\left[(\log 2\pi + \log 6_{1} + (\log 6_{2} + \frac{1}{2} \log (1 - p^{2})) + (\log r; -\frac{1}{2(1 - p^{2})} (r; -\tau;)^{2} \cdot \int (\frac{\cos \theta;}{6_{1}^{2}} - \frac{2f \sin \theta; \cos \theta;}{6_{1}} + \frac{\sin \theta;}{6_{2}^{2}}) f_{\theta;R}(\theta; |r; y^{*}) d\theta;$$

$$= -\left[(\log 2\pi + \log 6_{1} + (\log 6_{2} + \frac{1}{2} \log (1 - p^{2})) + (\log r; -\frac{1}{2} \log 6_{2}) + (\log r; -\frac{1}{2}$$

Monte Carlo method: Sample $0^{(k)}$ from $f_{0;1R:}(0;1r;)$ y^*) and compute $\frac{1}{K}\sum_{k=1}^{K}\frac{\cos^2\theta^{(k)}}{G_1^2}-\frac{2\rho\sin\theta^{(k)}\cos\theta^{(k)}}{G_0^2}+\frac{\sin^2\theta^{(k)}}{G_2^2}$

$$\mathcal{M}^{-} \text{ step} : \text{ pbtain}$$

$$\frac{1}{2} \frac{1}{(1-p)^{2}} \cdot (-2p)$$

$$\chi = -\frac{1}{2(1-p^{2})} \quad \chi' = -\frac{p}{(1-p^{2})^{2}}$$

$$\chi = -\frac{1}{2(1-p^{2})} \quad \chi' = -\frac{p}{(1-p^{2})}$$

(b) (b')

$$\frac{\partial}{\partial \rho} Q(\gamma, \gamma^{*}) = \frac{\rho}{1-\rho^{2}} + (\Gamma - \tau)^{2} \left[-\frac{\rho}{(1-\rho^{2})^{2}} \cdot \int \left(\frac{\cos^{2}\theta}{6i^{2}} - \frac{2\rho\cos\theta\sin\theta}{6i\delta} + \frac{\sin^{2}\theta}{6i^{2}} \right) \int \frac{\partial}{\partial \rho} (\theta | \Gamma; \gamma^{*}) d\theta \right]$$

$$-\frac{1}{2(1-\rho^{2})} \int -\frac{2\sin\theta\cos\theta}{6i\delta} \int \frac{\partial}{\partial \rho} (\theta | \Gamma; \gamma^{*}) d\theta$$

$$-\frac{1}{2(1-\rho^{2})} \int -\frac{2\sin\theta\cos\theta}{6i\delta} \int \frac{\partial}{\partial \rho} (\theta | \Gamma; \gamma^{*}) d\theta$$

$$\frac{\partial}{\partial \sigma} Q(\gamma, \gamma^{*}) = -\frac{1}{6i} - \frac{1}{2(1-\rho^{2})} (\Gamma - \tau)^{2} \int \left(\frac{-2\cos\theta}{6i\delta} + \frac{2\rho\sin\theta\cos\theta}{6i\delta} \right) \cdot \int_{\theta | R} (\theta | \Gamma; \gamma^{*}) d\theta$$

$$\frac{\partial}{\partial \sigma} Q(\gamma, \gamma^{*}) = -\frac{1}{6i} - \frac{1}{2(1-\rho^{2})} (\Gamma - \tau)^{2} \int \left(\frac{2\rho\sin\theta\cos\theta}{6i\delta} - \frac{2\sin^{2}\theta}{6i\delta} \right) \cdot \int_{\theta | R} (\theta | \Gamma; \gamma^{*}) d\theta$$

$$\frac{\partial}{\partial \tau} Q(\gamma, \gamma^{*}) = \frac{\Gamma - \tau}{1-\rho^{2}} \cdot \int \left(\frac{\cos^{2}\theta}{6i\delta} - \frac{2\rho\sin\theta\cos\theta}{6i\delta} + \frac{\sin^{2}\theta}{6i\delta} \right) \int_{\theta | R} (\theta | \Gamma; \gamma^{*}) d\theta$$

$$\frac{\partial}{\partial \tau} Q(\gamma, \gamma^{*}) = \frac{\Gamma - \tau}{1-\rho^{2}} \cdot \int \left(\frac{\cos^{2}\theta}{6i\delta} - \frac{2\rho\sin\theta\cos\theta}{6i\delta} + \frac{\sin^{2}\theta}{6i\delta} \right) \int_{\theta | R} (\theta | \Gamma; \gamma^{*}) d\theta$$

$$\frac{\partial}{\partial \tau} Q(\gamma, \gamma^{*}) = \frac{\Gamma - \tau}{1-\rho^{2}} \cdot \int \left(\frac{\cos^{2}\theta}{6i\delta} - \frac{2\rho\sin\theta\cos\theta}{6i\delta} + \frac{\sin^{2}\theta}{6i\delta} \right) \int_{\theta | R} (\theta | \Gamma; \gamma^{*}) d\theta$$

$$\frac{\partial}{\partial \tau} Q(\gamma, \gamma^{*}) = \frac{\Gamma - \tau}{1-\rho^{2}} \cdot \int \left(\frac{\cos^{2}\theta}{6i\delta} - \frac{2\rho\sin\theta\cos\theta}{6i\delta} + \frac{\sin^{2}\theta}{6i\delta} \right) \int_{\theta | R} (\theta | \Gamma; \gamma^{*}) d\theta$$

then $I_i = \frac{q}{2} \frac{q^T}{n}$ for observation i, and $I_n = \sum_{i=1}^n I_i$, and the variance

estimates con	r be found on	the diagonal	of In-1	
30,1	7		,	

3 The three selected regions are:

```
d = oro.nifti::readNIfTI(fname = "new_phantom.nii.gz")
data = d@.Data
data = drop(data)
r1 = data[40:53,95:114 , ]
r2 = data[81:90, 81:90, ]
r3 = data[100:167, 100:167, ]
```


The functions for the EM algorithm and all other functions used for q3:

```
sigma1 <- par[1]
  sigma2 <- par[2]</pre>
  rho <- par[3]
  tau <- par[4]
  intt <-
    cos(theta.cond)^2/sigma1^2 -
    (2*rho*sin(theta.cond)*cos(theta.cond))/(sigma1*sigma2) +
    sin(theta.cond)^2/sigma2^2
  intt <- mean(intt)</pre>
  result <-
    -\log(\text{sigma1}) - \log(\text{sigma2}) - 0.5*\log(1-\text{rho}^2) + \log(r) -
    1/(2*(1-rho^2)) * (r-tau)^2 * intt
 result
}
Qfunc <- function(par, par.cur, r.vec, sample.size=1000) {
  result <- sapply(r.vec, function(r) {</pre>
    Qfunc.each(par, par.cur, r, sample.size)
  })
 return(-sum(result))
em_q3 <- function(r, iter.max=40, tol=1e-4, sample.size=1000){</pre>
  par.cur \leftarrow c(sd(r), sd(r), 0.5, mean(r))
  iter <- 0
  while(TRUE){
    iter <- iter + 1
    par.old <- par.cur</pre>
    # obtain the estimates
    opt <- optim(par.cur, Qfunc, par.cur=par.cur,</pre>
                  r.vec=r, sample.size=sample.size,
                  method = "L-BFGS-B", lower = c(0.0001, 0.0001, -0.99, 0.0001),
                  upper=c(1000, 1000, 0.99, 5000))
    # update the current value
    par.cur <- opt$par</pre>
    12.diff <- sum((par.cur-par.old)^2)</pre>
    cat(paste("iter:", iter, "l2.diff:", l2.diff, "Q value:", opt$value, "\n"))
    if(12.diff < tol){</pre>
      cat("less than the tolerance. exit\n")
    } else if (iter > iter.max) {
      cat("reach max iteration. exit\n")
      break
```

```
}
  }
  return(par.cur)
}
variance.est.each <- function(par, r, sample.size = 1000, FUNC = logf){</pre>
  sigma1 <- par[1]</pre>
  sigma2 <- par[2]
  rho <- par[3]
  tau <- par[4]
  theta.cond <- arms(sample.size, FUNC, -pi, pi, metropolis = TRUE,
                      arguments = list(
                        r=r, sigma1=sigma1, sigma2=sigma2, rho=rho, tau=tau
                      ))
  part.sigma1 <-
    mean(-2*cos(theta.cond)^2/sigma1^3 +
            (2*rho*sin(theta.cond)*cos(theta.cond))/(sigma1^2*sigma2))
  part.sigma2 <-
    mean(-2*sin(theta.cond)^2/sigma2^3 +
            (2*rho*sin(theta.cond)*cos(theta.cond))/(sigma1*sigma2^2))
  part.rho1 <-
    mean(cos(theta.cond)^2/sigma1^2 -
            (2*rho*cos(theta.cond)*sin(theta.cond))/(sigma1*sigma2) +
    sin(theta.cond)^2/sigma2^2)
  part.rho2 <- mean(-2*sin(theta.cond)*cos(theta.cond)/(sigma1*sigma2))</pre>
  part.tau <- part.rho1</pre>
  dev.sigma1 \leftarrow -1/sigma1 - 1/(2*(1-rho^2))*(r-tau)^2*part.sigma1
  dev.sigma2 \leftarrow -1/sigma2 - 1/(2*(1-rho^2))*(r-tau)^2*part.sigma2
  dev.rho <-
    rho/(1-rho^2) +
    (r-tau)^2 * (-rho/(1-rho^2)^2 * part.rho1 - 1/(2*(1-rho^2)) * part.rho2)
  dev.tau \leftarrow (r-tau)/(1-rho^2) * part.tau
  q <- c(dev.sigma1, dev.sigma2, dev.rho, dev.tau)
  I.matrix <- q %*% t(q)</pre>
  return(I.matrix)
variance.est <- function(par, r.vec, sample.size = 1000, return_inv = TRUE){</pre>
  result <- lapply(r.vec, function(r) {</pre>
    variance.est.each(par, r, sample.size)
  })
  result <- Reduce("+", result)</pre>
  if(return_inv) {
```

```
return(solve(result))
} else {
  return(result)
}
```

Let $\tau = |\mu|$, the estimates and variance estimates of σ_1 , σ_2 , ρ , and τ is showing in the following table

image region pa	rameter estimates	variance	lower	upper
1 1 sig	gma1 172.8668	972.8182	111.7354	233.9981
1 1 sig	gma2 170.5234	1294.8561	99.9959	241.0510
1 1 rhe	0.9692	0.0001	0.9551	0.9833
1 1 tan	u 1751.2732	18.7354	1742.7896	1759.7568
1 2 sig	gma1 36.4765	750.3110	-17.2104	90.1635
1 2 sig	gma2 36.5039	723.2372	-16.2056	89.2133
1 2 rhe	0.9454	0.0012	0.8787	1.0120
1 2 tai	u 1228.0466	3.7083	1224.2723	1231.8209
1 3 sig	gma1 38.6535	77.8482	21.3604	55.9466
1 3 sig	gma2 37.8958	82.3696	20.1076	55.6840
1 3 rh	0.7796	0.0001	0.7586	0.8006
1 3 tai	u 1308.3897	0.2555	1307.3990	1309.3804
2 1 sig	gma1 105.9257	218.6615	76.9433	134.9081
2 1 sig	gma2 114.4804	134.0315	91.7895	137.1712
2 1 rhe	0.9900	0.0000	0.9844	0.9956
2 1 tan	u 1250.0448	2.7651	1246.7857	1253.3040
2 2 sig	gma1 30.6110	10130.3104	-166.6582	227.8803
2 2 sig	gma2 30.6110	9540.5085	-160.8295	222.0516
2 2 rhe	0.5000	0.0520	0.0532	0.9468
2 2 tar	u 1015.1200	9.5989	1009.0476	1021.1924
2 3 sig	gma1 32.1237	4.2511	28.0826	36.1648
_	32.2347	4.1522	28.2408	36.2285
2 3 rhe		0.0000	0.9804	0.9852
2 3 tai	u 1079.3206	0.0259	1079.0054	1079.6358
	gma1 149.7907	2311.5452	55.5585	244.0229
~	gma2 149.9697	2353.2047	54.8921	245.0472
3 1 rhe	0.9771	0.0000	0.9671	0.9871
3 1 tai	u 1546.0981	11.2722	1539.5177	1552.6785
	gma1 32.2603	2346.8384	-62.6885	127.2091
3 2 sig	gma2 32.1726	2109.7667	-57.8528	122.1981
3 2 rhe		0.0068	0.6590	0.9820
3 2 tai	u 1149.2288	6.1511	1144.3678	1154.0898
	gma1 35.3751	5.6038	30.7354	40.0148
3 3 sig	gma2 36.4938	5.2187	32.0164	40.9713
3 3 rhe		0.0000	0.9773	0.9825
3 3 tai	u 1235.9117	0.0351	1235.5445	1236.2790
	gma1 91.7492	1829.0065	7.9276	175.5707
	gma2 92.4030	1692.5092	11.7699	173.0362
4 1 rhe		0.0000	0.9615	0.9849
4 1 tai		4.7016	950.7490	959.2486
4 2 sig	gma1 23.3054	1559.7548	-54.1009	100.7117
4 2 sig	gma2 24.1364	1293.0455	-46.3418	94.6147

$\underline{\text{image}}$	region	parameter	estimates	variance	lower	upper
4	2	rho	0.6750	0.0394	0.2860	1.0640
4	2	tau	869.6367	4.1366	865.6504	873.6230
4	3	sigma1	28.4894	4.6577	24.2594	32.7193
4	3	sigma2	28.4488	4.5940	24.2479	32.6497
4	3	$_{ m rho}$	0.9689	0.0000	0.9652	0.9727
4	3	tau	926.1581	0.0311	925.8124	926.5038
5	1	sigma1	88.7581	7510.0904	-81.0939	258.6101
5	1	sigma2	143.4657	2807.3466	39.6182	247.3132
5	1	rho	0.6634	0.2646	-0.3447	1.6715
5	1	tau	1375.3600	89.4089	1356.8273	1393.8927
5	2	sigma1	30.8775	5528.4234	-114.8524	176.6074
5	2	sigma2	30.8487	5740.7612	-117.6534	179.3509
5	2	rho	0.6314	0.0313	0.2849	0.9780
5	2	tau	1094.7087	7.2510	1089.4310	1099.9865
5	3	sigma1	31.2342	3.4768	27.5797	34.8888
5	3	sigma2	32.5680	2.9101	29.2245	35.9115
5	3	rho	0.9848	0.0000	0.9827	0.9870
5	3	tau	1159.8642	0.0231	1159.5662	1160.1622
6	1	sigma1	71.6738	655.7060	21.4854	121.8621
6	1	sigma2	72.5632	580.1050	25.3567	119.7696
6	1	rho	0.9722	0.0000	0.9597	0.9848
6	1	tau	741.1539	2.9326	737.7975	744.5103
6	$\overset{-}{2}$	sigma1	22.5099	2831.8319	-81.7895	126.8093
6	$\overline{2}$	sigma2	22.5099	2734.1864	-79.9756	124.9953
6	$\overline{2}$	rho	0.5000	0.0808	-0.0570	1.0570
6	$\overline{2}$	tau	793.5500	4.6440	789.3263	797.7737
6	3	sigma1	27.3865	8.7217	21.5983	33.1748
6	3	sigma2	27.0155	9.3124	21.0344	32.9965
6	3	rho	0.9097	0.0000	0.9004	0.9191
6	3	tau	832.4242	0.0632	831.9316	832.9167
7	1	sigma1	168.4028	14912.8256	-70.9443	407.7498
7	1	sigma2	168.5830	16875.8787	-86.0304	423.1964
7	1	rho	0.9717	0.0000	0.9589	0.9845
7	1	tau	1756.9999	17.3031	1748.8470	1765.1527
7	$\stackrel{-}{2}$	sigma1	49.5991	9433.3081	-140.7628	239.9611
7	$\overline{2}$	sigma2	49.7350	10183.4233	-148.0508	247.5207
7	$\overline{2}$	rho	0.5006	0.0753	-0.0374	1.0385
7	$\overline{2}$	tau	1927.4637	21.1872	1918.4421	1936.4854
7	3	sigma1	57.1891	73.9748	40.3318	74.0465
7	3	sigma2	57.3743	73.9176	40.5235	74.2252
7	3	rho	0.8892	0.0000	0.8797	0.8986
7	3	tau	2036.9860	0.3929	2035.7574	2038.2146
8	1	sigma1	105.5890	1263.1388	35.9306	175.2475
8	1	sigma2	105.4428	1317.0921	34.3123	176.5734
8	1	rho	0.9803	0.0000	0.9714	0.9892
8	1	tau	1253.5531	4.5946	1249.3519	1257.7543
8	$\overset{1}{2}$	sigma1	38.8348	4639.6879	-94.6687	172.3382
8	2	sigma2	38.7468	4572.3840	-93.7848	171.2784
8	$\frac{2}{2}$	rho	0.7688	0.0147	0.5309	1.0067
8	$\frac{2}{2}$	tau	1630.2189	8.8564	1624.3861	1636.0517
8	3	sigma1	49.6102	28.7190	39.1067	60.1137
8	3	sigma2	49.5727	28.3345	39.1398	60.0056
O	9	21811102	10.0121	20.0010	30.1000	33.0000

					1	
image	region	parameter	estimates	variance	lower	upper
8	3	rho	0.9497	0.0000	0.9445	0.9548
8	3	tau	1698.7909	0.1362	1698.0677	1699.5141
9	1	sigma1	144.5341	5491.9618	-0.7145	289.7826
9	1	sigma2	144.5341	5548.8671	-1.4650	290.5332
9	1	$_{ m rho}$	0.5000	0.0030	0.3929	0.6071
9	1	tau	1548.5000	320.6022	1513.4061	1583.5939
9	2	sigma1	44.9617	4558.0793	-87.3624	177.2859
9	2	sigma2	44.9392	4944.9922	-92.8867	182.7651
9	2	$_{ m rho}$	0.6069	0.0433	0.1989	1.0148
9	2	tau	1837.6550	15.8000	1829.8643	1845.4457
9	3	sigma1	57.5551	182.5874	31.0711	84.0391
9	3	sigma2	57.5551	183.0233	31.0395	84.0707
9	3	$_{ m rho}$	0.5000	0.0002	0.4706	0.5294
9	3	tau	1926.3352	1.1747	1924.2110	1928.4595
10	1	sigma1	81.4150	26.2058	71.3816	91.4483
10	1	sigma2	73.5549	37.6981	61.5210	85.5888
10	1	$_{ m rho}$	0.8633	0.0004	0.8227	0.9039
10	1	tau	970.2726	15.8921	962.4592	978.0860
10	2	sigma1	35.5073	4926.4989	-102.0607	173.0752
10	2	sigma2	35.9139	4712.0104	-98.6260	170.4538
10	2	$_{ m rho}$	0.7714	0.0153	0.5287	1.0141
10	2	tau	1422.9334	7.2336	1417.6621	1428.2048
10	3	sigma1	47.0160	23.6150	37.4915	56.5405
10	3	sigma2	46.0728	26.0671	36.0660	56.0796
10	3	$_{ m rho}$	0.8943	0.0000	0.8838	0.9048
10	3	tau	1488.3486	0.2159	1487.4379	1489.2594
11	1	sigma1	127.3234	81576.7880	-432.4746	687.1215
11	1	sigma2	127.8040	81527.1660	-431.8238	687.4318
11	1	$_{ m rho}$	0.5012	0.0031	0.3926	0.6097
11	1	tau	1356.9157	241.8609	1326.4346	1387.3969
11	2	sigma1	44.2364	2904.6021	-61.3946	149.8674
11	2	sigma2	43.4000	3576.4868	-73.8131	160.6132
11	2	$_{ m rho}$	0.7184	0.0334	0.3603	1.0765
11	2	tau	1729.5467	12.5723	1722.5971	1736.4962
11	3	sigma1	55.9941	150.7748	31.9276	80.0606
11	3	sigma2	55.8112	148.7484	31.9070	79.7154
11	3	$_{ m rho}$	0.8269	0.0001	0.8123	0.8416
11	3	tau	1813.2962	0.4675	1811.9561	1814.6363
12	1	sigma1	57.5720	1675.6581	-22.6588	137.8027
12	1	sigma2	60.5875	1594.3334	-17.6721	138.8471
12	1	$_{ m rho}$	0.7886	0.0019	0.7023	0.8750
12	1	tau	724.8224	11.2361	718.2526	731.3923
12	2	sigma1	33.8474	9251.8717	-154.6750	222.3698
12	2	sigma2	33.5162	9303.9012	-155.5355	222.5680
12	2	rho	0.4976	0.1071	-0.1438	1.1391
12	2	tau	1319.1868	10.6269	1312.7976	1325.5761
12	3	sigma1	44.7066	5.7664	40.0001	49.4132
12	3	sigma2	46.3287	5.1340	41.8877	50.7696
12	3	rho	0.9852	0.0000	0.9829	0.9874
12	3	tau	1379.6723	0.0507	1379.2309	1380.1137
13	1	sigma1	163.1989	24501.6613	-143.5944	469.9921
13	1	sigma2	163.4228	24326.4390	-142.2715	469.1172

image	region	parameter	estimates	variance	lower	upper
13	1	rho	0.9158	0.0002	0.8868	0.9449
13	1	tau	1754.5953	51.2710	1740.5612	1768.6294
13	2	sigma1	50.3444	5891.8100	-100.0987	200.7876
13	2	sigma2	47.5610	6652.9062	-112.3041	207.4262
13	2	rho	0.7778	0.0201	0.5003	1.0553
13	2	tau	2261.7455	13.1163	2254.6472	2268.8438
13	3	sigma1	68.6787	114.3574	47.7193	89.6382
13	3	sigma2	68.3673	115.6790	47.2871	89.4475
13	3	rho	0.8820	0.0000	0.8719	0.8922
13	3	tau	2390.4667	0.5780	2388.9767	2391.9568
14	1	sigma1	91.5993	149.5217	67.6331	115.5656
14	1	sigma2	80.0982	248.0687	49.2284	110.9680
14	1	rho	-0.6612	0.0034	-0.7762	-0.5461
14	1	tau	1228.8387	50.0725	1214.9697	1242.7078
14	2	sigma1	46.4667	16254.1746	-203.4127	296.3462
14	2	sigma2	46.3357	15449.1302	-197.2771	289.9485
14	2	rho	0.5658	0.0676	0.0563	1.0753
14	2	tau	1892.2336	18.1145	1883.8918	1900.5754
14	3	sigma1	58.8446	104.8702	38.7734	78.9158
14	3	sigma2	59.7065	101.2922	39.9806	79.4323
14	3	rho	0.8663	0.0000	0.8548	0.8777
14	3	tau	1989.6063	0.5116	1988.2043	1991.0082
15	1	sigma1	145.7206	2264.7023	52.4481	238.9931
15	1	sigma2	145.4268	1755.1151	63.3159	227.5377
15	1	rho	0.9836	0.0000	0.9744	0.9929
15	1	tau	1546.6990	7.6311	1541.2847	1552.1133
15	2	sigma1	47.2490	5714.0061	-100.9068	195.4047
15	2	sigma2	48.7438	5511.1092	-96.7577	194.2454
15	2	rho	0.5980	0.0422	0.1955	1.0004
15	2	tau	2158.5487	16.0645	2150.6931	2166.4044
15	3	sigma1	66.5225	304.6244	32.3143	100.7307
15	3	sigma2	66.5225	303.1279	32.3984	100.6466
15	3	rho	0.5000	0.0002	0.4724	0.5276
15	3	tau	2258.4276	1.8826	2255.7384	2261.1168
16	1	sigma1	87.0000	10.8454	80.5453	93.4546
16	1	sigma2	68.8029	47.7472	55.2597	82.3461
16	1	rho	0.7098	0.0015	0.6342	0.7854
16	1	tau	941.8164	34.3546	930.3285	953.3043
16	2	sigma1	36.1672	2123.9573	-54.1605	126.4949
16	2	sigma2	35.7607	1949.4222	-50.7761	122.2976
16	2	$_{ m rho}$	0.5599	0.0349	0.1935	0.9262
16	2	tau	1688.4327	8.7227	1682.6441	1694.2213
16	3	sigma1	44.0039	4.9935	39.6242	48.3837
16	3	sigma2	45.5963	4.8714	41.2704	49.9222
16	3	rho	0.9868	0.0000	0.9848	0.9887
16	3	tau	1786.8755	0.0437	1786.4659	1787.2851
17	1	sigma1	132.3303	4119.0916	6.5395	258.1211
17	1	sigma2	103.9252	7414.7497	-64.8452	272.6957
17	1	$_{ m rho}$	0.5971	0.1297	-0.1088	1.3030
17	1	tau	1346.1967	112.1349	1325.4419	1366.9515
17	2	sigma1	50.2326	4591.0289	-82.5689	183.0342
17	2	sigma2	48.4986	4774.8815	-86.9359	183.9332

image	region	parameter	estimates	variance	lower	upper
17	2	rho	0.7434	0.0213	0.4571	1.0296
17	2	tau	2034.8892	15.5318	2027.1649	2042.6135
17	3	sigma1	62.5900	46.5575	49.2166	75.9634
17	3	sigma2	63.2224	46.4301	49.8673	76.5776
17	3	$_{ m rho}$	0.9419	0.0000	0.9361	0.9476
17	3	tau	2134.3202	0.2586	2133.3235	2135.3169
18	1	sigma1	76.1752	148.4617	52.2940	100.0563
18	1	sigma2	71.5100	258.4399	40.0015	103.0185
18	1	$_{ m rho}$	0.9285	0.0003	0.8953	0.9616
18	1	tau	748.9538	7.6502	743.5327	754.3748
18	2	sigma1	39.4612	13877.1328	-191.4250	270.3474
18	2	sigma2	39.4213	14067.8569	-193.0461	271.8887
18	2	$_{ m rho}$	0.4997	0.0691	-0.0156	1.0150
18	2	tau	1557.1009	13.8762	1549.7998	1564.4019
18	3	sigma1	49.7309	55.8783	35.0799	64.3820
18	3	sigma2	49.6656	56.0487	34.9922	64.3390
18	3	rho	0.8472	0.0001	0.8326	0.8617
18	3	tau	1605.4034	0.3002	1604.3295	1606.4774

We also plotted σ_1/σ_2 and τ for all three regions over the 18 images. It seems that there is some pattern for the normed mean intensity

The variance estimates of ρ have been shown in the previous table, and the variance estimates of $\hat{\sigma}_1 - \hat{\sigma}_2$ are:

image	region	$sig1_sig2$	$var.sig1_sig2$	lower	upper
1	1	2.3434	4477.1884	-128.8014	133.4881
1	2	-0.0273	2899.1689	-105.5595	105.5048
1	3	0.7576	320.2963	-34.3195	35.8348
2	1	-8.5546	687.0855	-59.9298	42.8206
2	2	0.0000	39320.5081	-388.6491	388.6491
2	3	-0.1110	16.7472	-8.1318	7.9098
3	1	-0.1790	9307.8535	-189.2708	188.9129
3	2	0.0877	8889.5934	-184.7068	184.8822
3	3	-1.1187	21.5738	-10.2223	7.9848
4	1	-0.6539	7032.4247	-165.0156	163.7078
4	2	-0.8310	5686.8341	-148.6340	146.9720
$\overline{4}$	3	0.0406	18.4627	-8.3810	8.4622
5	1	-54.7076	19486.0065	-328.3034	218.8883
5	2	0.0287	22516.3184	-294.0725	294.1299
5	3	-1.3338	12.7096	-8.3212	5.6535
6	1	-0.8894	2464.2276	-98.1840	96.4051
6	$\frac{1}{2}$	0.0000	11117.8849	-206.6613	206.6613
6	3	0.3710	36.0126	-11.3908	12.1329
7	1	-0.1803	63490.3915	-494.0383	493.6777
7	$\frac{1}{2}$	-0.1359	39168.9072	-388.0350	387.7633
7	3	-0.1852	295.6608	-33.8864	33.5160
8	1	0.1462	5153.8744	-140.5605	140.8530
8	$\frac{1}{2}$	0.1402	18377.8779	-265.6146	265.7906
8	3	0.0375	114.0077	-20.8899	20.9649
9	1	0.0000	22045.0239	-291.0070	291.0070
9	$\frac{1}{2}$	0.0225	18947.2013	-269.7642	269.8093
9	3	0.0223	730.9137	-52.9884	52.9884
10	1	7.8601	120.5287	-13.6575	29.3777
10	$\frac{1}{2}$	-0.4066	19236.0213	-272.2418	271.4286
10	3	0.9432	99.2021	-18.5781	20.4645
11	1	-0.4806	326180.2194	-1119.8589	1118.8978
11	$\frac{1}{2}$	0.8364	12864.2323	-221.4639	223.1367
11	$\frac{2}{3}$	0.0304 0.1829	598.8847	-47.7815	48.1474
12	1	-3.0155	6536.0091	-161.4700	155.4389
12	$\frac{1}{2}$	0.3312	37076.1581	-377.0633	377.7256
12	$\frac{2}{3}$	-1.6220	21.6729	-10.7465	7.5024
13	1	-0.2240	97632.2470	-612.6375	612.1895
13	$\frac{1}{2}$	2.7834	25019.9071	-307.2374	312.8043
13	3	0.3114	459.8825	-41.7198	42.3426
13 14	3 1	0.5114 11.5011	778.4870	-41.7198	66.1868
14	$\frac{1}{2}$	0.1310	63339.2582	-493.1388	493.4009
14	$\frac{2}{3}$	-0.8619	412.1439	-493.1300 -40.6517	38.9280
15	3 1	0.2938	7985.1767		175.4358
		-1.4949		-174.8482 -294.8741	
15	2		22405.9021		291.8843
15 16	3	0.0000	1215.1089	-68.3212	68.3212
16	1	18.1970	98.2705	-1.2324 176.2674	37.6265
16	2	0.4065	8125.4689	-176.2674	177.0803
16	3	-1.5924 28.4051	19.6868	-10.2887	7.1040
17	1	28.4051	22560.8201	-265.9866	322.7968
17	2	1.7340	18652.2422	-265.9446	269.4126
17	3	-0.6325	185.8087	-27.3491	26.0841
18	1	4.6652	791.0822	-50.4611	59.7915

image	region	sig1_sig2	var.sig1_sig2	lower	upper
18 18	2 3	0.0399 0.0653	55854.5255 223.7318	-463.1694 -29.2512	463.2492 29.3818

It seems that the corresponding confidence intervals for ρ do not include 0, but those for $\hat{\sigma}_1 - \hat{\sigma}_2$ include 0.