

Prova escrita especialmente adequada destinada a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de técnico superior profissional,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

ENGENHARIA QUÍMICA E BIOLÓGICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA 2018

Duração da prova: 120 minutos

Candidatura n.º				
Nome:				
C.C. / B.I. / Passaporte N.º	Emitido por:	Validade: .	1	

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos que tenham obtido aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das notas aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Só se consideram os cursos que previamente tenham sido objeto de homologação pelo conselho técnico científico.
- Indique em todas as folhas o número de candidatura e o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação <u>deverão estar desligados</u>. A utilização deste equipamento implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- Grupo 2 Um problema de matemática.
- Grupo 3 Três questões de resposta múltipla de física.
- Grupo 4 Um problema de física.
- **Grupo 5** Cinco questões de resposta múltipla enquadradas nos conteúdos do curso.
- **Grupo 6** Um problema no âmbito do curso.
- **Grupo 7** Questão para desenvolvimento de assunto de cultura científica na área do curso.

_	_					_
Cai	പ		411	ra	n	0
Ua:	шч	uc	ш	ıa		-

Grupo 1

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: - 0,2 valores)

Para cada uma das questões indique a resposta correta do seguinte modo X.

- \Box (A) (1,0)
- \Box (B) (0, -1)
- \square (C) (ln 2, 2)
- \Box (D) (-1, -e)
- \Box (E) (2, 2e)
- 2. Para efetuar uma aposta simples do jogo "Euromilhões" escolhem-se cinco números, entre cinquenta possíveis e duas estrelas numeradas, entre doze distintas. Quantas apostas simples diferentes é possível fazer?
 - \Box (A) ${}^{50}A_5 \times {}^{12}A_2$
 - □ (B) 139 838 160
 - □ (C) 13 983 816
 - □ (D) 145 127 015
 - □ (E) 14 512 715
- 3. Considere o triângulo $\triangle ABC$ de vértices A, B e C e seja M o ponto médio do segmento \overline{BC} . Sabendo que A(-2,1), $\overrightarrow{AM} = (3,1)$ e $\overrightarrow{BC} = (-2,4)$, quais as coordenadas dos pontos B e C?
 - \Box (A) B(1,2) e C(0,4)
 - \Box (B) B(2,0) e C(1,2)
 - \square (C) B(1,2) e C(-1,2)
 - \square (D) B(2,0) e C(0,4)
 - \Box (E) B(0,4) e C(2,0)

Candidatura n.º

C.C. / B.I. / Passaporte N.º

Grupo 2

(Cotação total: 2,0 valores; cotação parcial: 1,0 valores por alínea)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Recorra somente a métodos analíticos e não utilize a calculadora.

Considere a função f, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} x \cos x, x \le \frac{\pi}{2}, \\ 2x - \pi, x > \frac{\pi}{2}. \end{cases}$$

Usando métodos exclusivamente analíticos, sem recorrer à calculadora, responda às questões que se seguem:

- a) Estude a continuidade de f em \mathbb{R} .
- b) Determine a equação reduzida da reta tangente ao gráfico de f, no ponto de abcissa 0.

_			_	
Can	didat	tura	n o	

Candidatura n.º	
C.C. / B.I. / Passaporte N.º	

Grupo 3

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: - 0,2 valores)

Indique <u>as respostas corretas</u> do seguinte modo \boxtimes .

1.	Um comboio Alfa Pendular sai de Lisboa com uma velocidade de 180 km/h. No mesmo instante,
	sai de Coimbra um Inter-Cidades, com velocidade de 120 km/h. Admita que a trajetória Lisboa-
	Coimbra é retilínea, com um comprimento de 200 km. Assumindo que os comboios viajam
	sempre às velocidades indicadas, a que distância de Lisboa se cruzam os dois comboios?
	\Box (A) 60 km
	□ (B) 80 km
	\square (C) 100 km
	\square (D) 120 km
	\square (E) 140 km
2.	Considere duas cargas elétricas pontuais, $q_1 = +10$ C e $q_2 = +20$ C, em repouso no vácuo,
	colocadas à distância de 2 m. Diga qual das seguintes afirmações é verdadeira:
	\square (A) A interação entre as cargas q_1 e q_2 é atrativa.
	\square (B) A intensidade da força eletrostática sobre a carga q_2 é o dobro da intensidade da força
	sobre a carga q ₁ .
	☐ (C) Se a distância entre as cargas diminuir para 1 m, a intensidade das forças sobre as cargas
	aumenta para o dobro do valor inicial.
	\square (D) Se a distância entre as cargas aumentar para 4 m, a intensidade das forças sobre as cargas
	diminui para metade do valor inicial.
	☐ (E) Se a distância entre as cargas aumentar para 4 m, a intensidade das forças sobre as cargas
	diminui para um quarto do valor inicial.

Can	-1	-	-1-	 n

3.	. Dois corpos A e B com temperaturas T_A e T_B são postos em contacto. Sabendo que $T_A > T_B$,
	podemos afirmar que:
	☐ (A) o corpo B cede calor ao corpo A até que ambos atinjam a mesma temperatura;
	□ (B) o corpo B cede calor ao corpo A, mas os corpos nunca atingirão a mesma temperatura;
	☐ (C) nada acontece;
	\square (D) o corpo A cede calor ao corpo B até que ambos atinjam a mesma temperatura.
	□ (E) o corpo A cede calor ao corpo B, mas os corpos nunca atingirão a mesma temperatura.

Grupo 4

(Cotação: 2,0 valores, cotação parcial: 0,5 valores por alínea)

Considere o circuito eléctrico representado na figura e os valores dos parâmetros nele indicados.

- a) Determine a resistência equivalente a cada uma das associações de resistências em paralelo mostradas no circuito.
- b) Sabendo que a resistência interna da fonte é R_i = 11 Ω , determine a intensidade da corrente lida no amperímetro 1.
- c) Determine a diferença de potencial indicada pelo voltímetro 1 e a intensidade da corrente lida no amperímetro 2.
- d) Determine a diferença de potencial lida no voltímetro 2.

Tel. (+351) 21 831 70 00 Fax. (+351) 21 831 70 01

							_
:an	м	id	o t	ш	ra	n	U

_				_
Can	did:	atı II	a n	0
vaii	uiu	auui	ап	

Grupo 5

(Cotação total: 3 valores; cotação parcial: 0,6 valores por questão; por cada resposta errada: - 0,12 valores)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

1. Tendo em conta a seguinte reação química, qual das seguintes afirmações está correta?

$$2 H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

- \square (A) O consumo de O_2 é o dobro do consumo de H_2
- \square (B) O consumo de H_2 é o dobro da formação de O_2 .
- \square (C) O consumo de H₂O é o dobro do consumo de O₂.
- \square (D) A formação de H_2O é o dobro do consumo de O_2 .
- \square (E) O consumo de H_2 é igual ao consumo de O_2 .
- **2.** A figura A representa:
 - \square (A) um hidrocarboneto.
 - \square (B) um éter.
 - \square (C) um ácido.
 - □ (D) uma cetona.
 - ☐ (E) uma amina.

H H H H-C-C-N H H H

Figura A

- 3. Considere uma liga constituída por prata e cobre. Num fio desta liga com massa de 18 g existem 3,6 g de átomos de cobre. A fração mássica de cobre é:
 - \Box (A) 0,1.
 - \Box (B) 0,15.
 - \Box (C) 0,2.
 - \Box (D) 3,6.
 - □ (E) 5.

Candidatura n.º	
C.C. / B.I. / Passaporte N.º	

4.	A filtraç	ão é um processo de separação que se baseia em diferenças de:
	□ (A)	densidades.
	□ (B)	tamanhos de partículas.
	\square (C)	solubilidades.
	\square (D)	hidrofobicidades.
	□ (E)	pontos de ebulição.
5.		(H_2O) , o sal de cozinha (NaCl) e o metano (CH_4) têm as suas estruturas constituídas, ramente, por ligações do tipo:
	\square (A)	iónicas, metálicas e covalentes.
	□ (B)	metálicas, iónicas e covalentes.
	\square (C)	covalentes, iónicas e metálicas.
	□ (D)	covalentes, iónicas e covalentes.
	□ (E)	covalentes, covalentes e covalentes.

Candidatura n.º

C.C. / B.I. / Passaporte N.º

Grupo 6

(Cotação: 3 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere a seguinte reação química:

$$Na(s) + Cl_2(g) \rightarrow NaCl(s)$$

- a) Acerte a reação química.
- b) Depois de devidamente acertada, faça a leitura quantitativa da reação química.
- c) A reação química é heterogénea ou homogénea?
- d) Considere que a reação é completa e que tem inicialmente 7 moles de Na e 5 moles de Cl₂, qual o reagente limitante? Qual a massa do sal produzida nestas condições?

Dados: M(Na)=23 g/mol; M(Cl)=35.5 g/mol

Tel. (+351) 21 831 70 00 Fax. (+351) 21 831 70 01

_			_	
Can	dida	tura	n o	

Candidatura n.º	
C.C. / B.I. / Passaporte N.º	

Grupo 7 (Cotação: 4 valores)

Os processos sustentáveis de fabrico de produtos são atualmente um desígnio de muitas empresas, que pretendem produzir bens minimizando os impactos sociais e ambientais. Para este fim, podem ser adotadas múltiplas estratégias, como por exemplo a reutilização de materiais. Discuta o papel do Engenheiro e em particular do Engenheiro Químico e Biológico no desenvolvimento de tecnologias sustentáveis de produção.

Escrev	eva entre 10 a 15 linhas.	
-		
-		
-		
-		
-		
-		
-		
-		
-		