Note 1

Haojie Liu

2023-09-28

Conditional prob function

$$P(Y|X=x) = \frac{P_{xy}(x,y)}{P_X(x)}$$

$$P(X|Y = y) = \frac{P_{xy}(x,y)}{P_Y(y)}$$

$$P_{xy}(x,y) = P(Y|X=x) * P_X(x) = P(X|Y=y) * P_Y(y)$$

With all of these cases above, we state that Y and X are independent

$$P(Y|X=x) = P(y)$$

$$P(X|Y=y) = P(x)$$

$$\rightarrow P(x,y) = P(x)P(y)$$

$$F_{xy}(x,y) = F_X(x)F_Y(y)$$

$$E(X) = \Sigma X P_X(x)$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - E(X)^2$$

 $E(X^3): skewness$

 $E(X^4): kurtosis$

Smaller ${\cal E}(X^4)$ will have a flatter shape of the distribution

$$g(x|r) = x^r$$

$$g(x) = e^x$$

$$g(x,y) = log(x) - log(y)$$

Bernulli

$$x = \{0, 1\}$$

$$P(x) = p^x (1-p)^{1-x}$$

$$X_1 \sim Ber(p)$$

$$X_2 \sim Ber(p)$$

$$X_n \sim Ber(p)$$

$$\Sigma X_i \sim Ber(p)$$

as $p \to 0$ and $n \to \infty$

$$Y \sim Pos(\lambda)$$

$$\lambda = np$$

$$E(Y) = Var(Y) = \lambda$$

$$F_x(x) = P(X \le x) = 1 - (1 - p)^x$$

memoryless

$$P(X > a + b|X > a) = P(X > b)$$

$$= \frac{P(X > a + b)}{P(X > a)} = \frac{1 - P(X \le a + b)}{1 - P(X \le a)}$$

$$=\frac{(1-p)^{a+b}}{(1-p)^a}=(1-p)^b=P(X>b)$$

negative binomial

$$\Sigma_1^r X_i \sim NB(r,p)$$

uniform

$$f(x) = \frac{1}{b-a}$$

$$a \le x \le b$$

I(statement)

$$f(x) = \frac{I(a \le x \le b)}{b - a}$$

Exponential

X: the wait time (discrete) between successive events from a possion process

Example:

$$\lambda = 10 calls/hour$$

$$\frac{1}{\lambda} = calls/hour = 6 min/call$$

Let λ be the expected # of class during a one-minute interval. If $\lambda=2$, the expected # of calls in 1 minute is 2 calls will be $2\times 2=4$

 N_x the # of calls in x-minute interval $N_x \sim Possion(\lambda x)$