

University of Stuttgart

Institute of Industrial Automation and Software Engineering

Agenda

- Einführung
- Forschungsfragen und Ziele
- Konzept Entwurf
- Implementierung
- Auswertung und Ergebnisanalyse
- Fazit

Motivation

Risikoeinschätzung

- Je früher die Risikoeinschätzung erfolgt, desto kosteneffizienter ist es im Produktlebenszyklus.
- Methods: Failure Modes and Effects
 Analysis (FMEA), Fault Tree Analysis
 (FTA)
- Standards wie **ISO 14971**(Risikobewertung im
 Produktlebenszyklus), **ISO 15026**(System- und SoftwarelebenszyklusProzesse Risikomanagement) und **ISO**31000 (Risikomanagement).

Hintergrund

LLM

Problem

Manuell, arbeitsintensiv, könnten kritische Probleme übersehen und erfordern Fachkräfte in unterschiedlichen Bereichen.

- Warum LLM nutzen?
 - Internalisiertes menschliches Wissen
 - Verschiedene Domänen
 - Automatisierte Informationsverarbeitung
 - Anpassungsfähigkeit
 - Skalierbarkeit durch Agent-design

___ Forschungsfrage _____ Wie können LLMs für Risikomanagementprozesse eingesetzt werden?

Forschungsfragen und -schritte

Einsatz von LLMs zur Unterstützung von Ingenieuren im Risikomanagement.

Befolgung von ISO-Normen: ISO 14971, ISO 15026, ISO 31000

Entwicklung eines automatisierten Workflows

Modelle bewerten und Fein tuning

Grundlagen LLM-Agent

Allgemeine Methodik für den Entwurf von LLM-Systemen

Vom LLM-Modell zum LLM-Agentensystem

Yuchen Xia, M.Sc. IAS Universität Stuttgart 07.07.2025

Verfahren der Risikoanalyse

Ergebnis-Vorschau

Prozess Ablauf

University of Stuttgart, IAS 09/25/2024

8

Autocomplete-Textfunktion

System Design

System Design

Web-Anwendungs-Workflow

System Design

University of Stuttgart, IAS 09/25/2024

11

Integriere das Informationsmodell in den digitalen Zwilling

Wir benötigen einen digitalen Zwilling des Analyseobjekts, um die notwendigen Daten für die Risikobewertung bereitzustellen.

Asset Administration Shell (AAS)

- Informationsmodell
- Vorteile:

Ermöglicht Datenanalyse, Automatisierung und Interoperabilität.

University of Stuttgart, IAS 09/25/2024

12

Informationsmodell

- Testing und Evaluierung von Modelle
- Training

Gesamtkonzept Design

University of Stuttgart, IAS 1/20/2016 14

Evaluierungskonzept für jedes Modell

50 Samples per

Model

15

Evaluierung verschiedener Modelle für Risikomanagementaufgaben

Model	Human Evaluation (%)	
GPT-4	100.0%	
Llama-3.1-70B-instruct	87.0%	
Qwen2-72B_instruct	82.2%	
Mistral-7B-instruct	80.0%	
Meta_Llama_3.2_8B_instruct	72.0%	

University of Stuttgart, IAS

Human Evaltion

1/20/2016

Evaluierung verschiedener Modelle für Risikomanagementaufgaben

Model	Human Evaluation (%)	GPT-4 Evaluation (%)
GPT-4	100.0%	100.0%
Llama-3.1-70B-instruct	87.0%	85.0%
Qwen2-72B_instruct	82.2%	83.8%
Mistral-7B-instruct	80.0%	82.0%
Meta_Llama_3.2_8B_instruct	72.0%	76.4%

Wie wählt man in Zukunft ein Modell für die Risikoanalyse aus?

• Problem: Es kostet Zeit und Geld, um ein Modell für die Risikoanalyse zu testen.

• Token-Kosten: 200 Euro

Zeitaufwand: 5 Stunden für jede Modell

 Vorschlag: Korrelation zwischen der Leistung in der Risikoanalyse und allgemeinen Benchmarks finden.

University of Stuttgart, IAS 09/25/2024

18

Benchmark- und Korrelationsanalyse von LLMs für das Risikomanagement

Top 3 Pearson-Korrelationen

valuation Pair	Correlation Coefficient (r)	P-Value
Human vs. GPQA	0.948	0.014
Human vs. AAQI	0.850	0.068
Human vs. MMLU	0.802	0.102

•Zweck dieser Benchmarks:

- Messen die Fähigkeit, verschiedene Problemstellungen über mehrere Domänen hinweg zu lösen.
- Bewerten das logische Denken und die Analysefähigkeiten der Modelle.

Bedeutung der Fähigkeiten:

 Entscheidend zur Identifikation von Modellen, die effizient Risiken analysieren und bewerten können.

•Schlussfolgerung:

 Mit diesen Benchmarks können in Zukunft auch andere Modelle für die Risikoanalyse ausgewählt werden.

Erstellung von Daten

- Testing und Evaluierung
- Training (mit ausgewählter GPT4-Generation)

Overall Concept Design

Fine tuning

University of Stuttgart, IAS 20

Fine-Tuning the Llama 8B Model

Evaluation Metric	Before Fine-Tuning (%)	After Fine-Tuning (%)	Improvement (%)
GPT-4 Evaluation	76.4%	81.0%	+6.0%
Human Evaluation	72.0%	77.0%	+6.9%

Fazit

Fazit

- Effiziente Automatisierung durch LLM Agents
- Gezielte Modellauswahl mithilfe von Benchmarks
- Leistungssteigerung durch Feinabstimmung
- Kosteneffizienz durch angepasste Modelle
 - Ausblick auf zukünftige Verbesserungen
 - Erstellung qualitativ hochwertiger Datensätze
 - Vergleich RAG vs. Fine-Tuning

University of Stuttgart, IAS 09/25/2024

22

Thank you!

Belal Abulabn

e-mail st18211@stud.uni-stuttgart.de

phone +49 (0) 711 685-

fax +49 (0) 711 685-

University of Stuttgart

