UPPSALA UNIVERSITY

Introduction to Machine Learning, Big Data, and AI

Assignment 6

General information

- The recommended tool in this course is R (with the IDE R-Studio). You can download R here and R-Studio here. You can use Python and Jupyter Notebooks, although the assignments may use data available only through the R package, a problem you would need to solve yourself.
- Report all results in a single, *.pdf-file. Other formats, such as Word, Rmd, Jupyter Notebook, or similar, will automatically be failed. Although, you are allowed first to knit your document to Word or HTML and then print the assignment as a PDF from Word or HTML if you find it difficult to get TeX to work.
- The report should be written in English.
- If a question is unclear in the assignment. Write down how you interpret the question and formulate your answer.
- You should submit the report to **Studium**.
- To pass the assignments, you should answer all questions not marked with *, although minor errors are ok.
- To get VG on the assignment, all questions should be answered, including questions marked with a *, although minor errors are ok.
- A report that does not contain the general information (see the **template**), will be automatically rejected.
- When working with R, we recommend writing the reports using R markdown and the provided R markdown template. The template includes the formatting instructions and how to include code and figures.
- Instead of R markdown, you can use other software to make the pdf report, but you should use the same instructions for formatting. These instructions are also available in the PDF produced from the R markdown template.
- The course has its own R package uuml with data and functionality to simplify coding. To install the package just run the following:
 - 1. install.packages("remotes")
 - 2. remotes::install_github("MansMeg/IntroML",
 subdir = "rpackage")
- We collect common questions regarding installation and technical problems in a course Frequently Asked Questions (FAQ). This can be found here.
- ullet Deadlines for all assignments are **Sunday 23.59**. See the course page for dates.
- If you have any suggestions or improvements to the course material, please post in the course chat feedback channel, create an issue **here**, or submit a pull request to the public repository.

Contents

1	General Questions	3
2	The k-means Algorithm	3
3	Probabilistic PCA	6
	* The EM-algorithm for soft clustering: Univariate Two-Component	8

Introduction to Unsupervised Learning

This computer assignment will look into two to three widespread algorithms for unsupervised learning.

The dataset iris contain data on petal and sepal length and width for three different species of iris flowers. In addition, we will also use the faithful data on the Old Faithful Geyser in Yellowstone. The data consists of the eruption time (in minutes) and the waiting time (in minutes) until the next eruption. Finally we will also use the mixture_data from Table 8.1 in Hastie et al. (2009).

To access the data, just use:

```
data("iris")
data("faithful")
library(uuml)
data("mixture_data")
```

For a more indepth description of the datasets, just run?iris, ?faithful, or ?mixture_data in R.

1 General Questions

You will be able to answer the following questions based on the reading assignments for this assignment. See the course plan for detailed reading **here**.

- 1. As a first step, describe, with your own words, what unsupervised learning is, and give relevant references to the course literature. (max 1 paragraph)
- 2. Describe the two steps of the EM algorithm. (max 1 paragraph)
- 3. Describe the difference between a Gaussian mixture model and the k-means clustering model. (max 1 paragraph)
- 4. What is the difference between Principal Component Analysis (PCA) and probabilistic PCA? (max 1 paragraph)

2 The k-means Algorithm

We are now going to build a k-means algorithm from scratch.

- 1. In the iris data we will use the Speices variable as one way to cluster the data. Visualize (for yourself) the faithful data and manually allocate each data point to two different clusters of your choosing.
- 2. Visualize the iris as a scatterplot based on Petal.length and Petal.width. Show the different species using different colors. *Hint!* Use ggplot2 and geom_point.

- 3. Similarly, visualize the faithful dataset as a scatterplot by eruptions and waiting. Show your manually assigned clusters in the Figure using different colors.
- 4. Now, we are going to implement the different parts of the k-means algorithm. This will follow Algorithm 14.1 in Hastie et al. (2009). First, implement Step 1 in this algorithm as a function called compute_cluster_means(X, C) that takes a $n \times p$ matrix X and a $p \times 1$ vector of cluster assignments called C, where n is the number of rows (observations) and p is the number of variables (columns). The algorithm should output the cluster means of the algorithm as a $K \times p$ matrix, where K is the total number of clusters in C.

5. Next, implement the second step in Algorithm 14.1 of Hastie et al. (2009) and call the function compute_cluster_encoding(X, m). The function should take a $n \times p$ (design) matrix X and a $K \times p$ matrix m with one cluster mean per row. The function should return a $n \times 1$ vector of cluster assignments.

```
C <- compute_cluster_encoding(X, m)
C[1:10]
## [1] 2 1 2 1 2 1 2 2 1 2</pre>
```

- 6. Now, use compute_cluster_means(X, C) and compute_cluster_encoding(X, m) to implement Algorithm 14.1 in Hastie et al. (2009) as k_means(X,K). The k_means(X,K) should take an $n \times p$ matrix X and the number of clusters K. The function should return a $n \times 1$ vector of cluster assignments C and a $K \times p$ mean matrix m after the algorithm has run until no cluster assignments change. Randomly initialize the cluster assignments as a part of the algorithm.
- 7. Implement a function called k_means_W(X,C) that computes the k-means within-point scatter (WPS) of Eq. 14.31 in Hastie et al. (2009).

```
set.seed(4711)
X <- as.matrix(faithful)
C <- sample(1:3, nrow(X), replace = TRUE)
k_means_W(X, C)
## [1] 4601439</pre>
```

8. Now run your $k_{means}(X,K)$ a couple of times for both faithful with K=2 and iris with K=3 using the two variables used above. Use different seeds every time. Compute the WPS for the final cluster assignments. Below is an example how this could be done.

```
set.seed(4711)
X <- as.matrix(faithful)
result1 <- k_means(X, K = 2)
wps1 <- k_means_W(X, result1$C)
result2 <- k_means(X, K = 2)
wps2 <- k_means_W(X, result2$C)</pre>
```

- 9. Visualize the clustering for the worst and the best clustering according to the WPS. *Note!* There might be multiple runs with the same (best) WPS.
- 10. Describe and discuss the results you get.

3 Probabilistic PCA

As a last part of the assignment, we will look into the probabilistic Principal Component analysis model. Here, Ch. 13 - 13.1 in Goodfellow et al. (2016) is helpful.

- 1. Implement a function pPCA(W, b, sigma2) that simulate data $\mathbf{x} \in \mathbb{R}^D$ from the probabilistic PCA model with $\mathbf{h} \sim N(0, I_K)$ where $\mathbf{h} \in \mathbb{R}^{K \times 1}$, $\mathbf{W} \in \mathbb{R}^{D \times K}$, $\mathbf{b} \in \mathbb{R}^{D \times 1}$ and $\sigma^2 = 1$.
- 2. Simulate 300 observation PCA model with $\mathbf{W} = (-1,3)^T$, $\mathbf{b} = (0.5,2)^T$, and $\sigma^2 = 1$. The resulting distribution should look something similar as in Figure 1.

Figure 1: Data from a pPCA model with $\mathbf{W} = (-1,3)^T$, $\mathbf{b} = (0.5,2)^T$ and $\sigma^2 = 1$

- 3. Describe the different parts of the model. What are the parameters? What are the latent variables?
- 4. Try some other parameter values for W and b and visualize the result in a similar scatter plot as in Fig. 1.
- 5. Now run principal component analysis on your simulated data (with $\mathbf{W} = (-1,3)^T$, $\mathbf{b} = (0.5,2)^T$) using

```
pr <- prcomp(X, center = TRUE, scale. = FALSE)</pre>
```

Multiply the first stdev with the first principal component (rotation).

- 6. What parameters in your pPCA model do these results correspond to. *Note!* You might have to multiply your result/vector with -1.
- 7. Finally, simulate values \mathbf{x} of dimension five from a probabilistic PCA model for a given choice of parameters. The latent variables \mathbf{h} should be of dimension two, i.e. $\mathbf{h} \in \mathbb{R}^{2 \times 1}$ for each simulated observation. You are free to choose the parameter

values \mathbf{W} , \mathbf{b} and σ^2 yourself, but the resulting distribution should have at least one negative and one positive correlation between the Xs. Visualize the variables using a pair-wise scatterplot using pairs(X) in R.

4 * The EM-algorithm for soft clustering: Univariate Two-Component Normal Mixture

This task is only necessary to get one point toward a pass with distinction (VG) grade. Hence, if you do not want to get a pass with distinction (VG) point, you can ignore this part of the assignment.

In the next step, we will implement the EM algorithm conceptually similar to k-means clustering. We are going to implement the EM by testing at the mixture data of Hastie et al. (2009). This dataset has been added to the course R package.

```
library(uuml)
data("mixture_data")
theta0 <- list(mu_1 = 4.12, mu_2 = 0.94, sigma_1 = 2, sigma_2 = 2, pi = 0.5)</pre>
```

- 1. Simulate data from a univariate mixture model by implementing a mixture model as in Eq. 8.36 in Hastie et al. (2009). That is, create a hiearchical simulation that first sample δ for each observation, and then sample Y_i from the relevant component. The function should be called $r_{uni_two_comp(n, theta)}$ take have the arguments n (the number of observations to simulate) (the number of simulated observations) and theta, an R list with with values mu1, mu2, sigma1, sigma2, and pi.
- 2. Simulate 200 observations using $\mu_1 = -2$, $\mu_2 = 1.5$, $\sigma_1 = 2$, $\sigma_2 = 1$ and $\pi = 0.3$. Visualize observations drawn in a histogram.
- 3. Implement a function d_uni_two_comp(x, theta) that computes the density value for a given set of parameters theta for values of x. *Hint!* The function dnorm might be handy.
- 4. Visualize the density for the mixture model above over the interval -4 to 4 (by steps of 0.01).
- 5. Visualize the eruptions variable in the faithful dataset using a histogram.
- 6. Manually choose values for μ_1 , μ_2 , σ_1 , σ_2 and π that gives a density you think is a good fit for the **eruptions** variable.
- 7. Implement a function called e_uni_two_comp(X, theta) that returns a vector of gamma values for each row in X (for component 2). This function should implement the expectation step in algorithm 8.1 in Hastie et al. (2009).

```
gamma <- e_uni_two_comp(mixture_data, theta0)
head(gamma)
## [1]  0.9106339  0.8716861  0.7797225  0.6645640  0.6484311  0.5178799</pre>
```

Note! Gamma values for component 1 is just 1 - gamma.

8. How can we interpret γ here?

9. Implement a function called max_uni_two_comp(X, gamma) that returns a list with parameters mu1, mu2, sigma1, sigma2 and pi. This function should implement the maximization step in algorithm 8.1 in Hastie et al. (2009).

```
theta <- max_uni_two_comp(mixture_data, gamma)
theta
## $mu_1
## [1] 3.842941
##
## $mu_2
## [1] 1.450413
##
## $sigma_1
## [1] 1.700666
##
## $sigma_2
## [1] 1.47168
##
## $pi
## [1] 0.4883709
```

10. Implement the log-likelihood of the model as ll_uni_two_comp(x, theta). Hint! See Eq. 8.39 in Hastie et al. (2009).

```
ll_uni_two_comp(mixture_data, theta0)
## -43.1055
```

11. Now combine the implemented functions to an EM algorithm em_uni_two_comp(X, theta_0, iter) that takes in a $n \times p$ data matrix X and an initialization value for as theta_0. Then the algorithm should be run iter number of iterations. For each iteration print out the log-likelihood value for that current iteration and store the value of θ for each iteration.

```
theta_and_gamma_em3 <- em_uni_two_comp(mixture_data, theta0, iter = 3)
## Log Lik: -41.53247
## Log Lik: -41.11211
## Log Lik: -40.48348
```

12. Test your algorithm on the mixture_data for 20 iterations. Do you get the same results for $\hat{\pi}$ as in Hastie et al. (2009, p. 275)? Note that you might get slightly different results (at the second decimal place). Also, compare your log-likelihoods with Figure 8.6 in Hastie et al. (2009). Do you have a similar result? *Hint!* There can be a slight different order depending on if you compute the log-likelihood value before or after the update of θ .

```
theta_and_gamma_em20 <- em_uni_two_comp(mixture_data, theta0, iter = 20)
## Log Lik: -41.53247
## ...</pre>
```

- 13. Run your EM algorithm on the eruptions variable of the faithful data and on the Petal.Length variable of the iris data. What are the estimated parameters for the two datasets?
- 14. Visualize the density for the two datasets in two different figures using the parameters estimated with your EM algorithm. Also show histograms for the real data in the same Figures (i.e. so you show the data and the estimated density). *Hint!* You should be able to use d_uni_two_comp(x, theta).

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, 2009.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.