Exercice 47.

Justifier que les fonctions suivantes sont des fonctions affines :

1. $f_1: x \longmapsto 5x+4$

 $2. \ f_2 : x \longmapsto 5 - 3x$

 $3. \ f_3 : x \longmapsto -\frac{x}{4}$

Exercice 48.

On donne ci-après la droite $\mathcal D$ représentative d'une fonction affine :

- 1. Lire x_A , x_B , y_A et y_B .
- 2. De A à B quel est l'accroissement des x? Celui des y?
- 3. Calculer le coefficient directeur de la droite (AB).
- 4. En déduire l'équation de la fonction affine représentée par (AB).

Exercice 49.

Mêmes questions que précédemment avec la droite donnée ci-après :

Exercice 50.

Représenter graphiquement les fonctions f et g définies sur $\mathbb R$ par :

1.
$$f(x) = 2x - 1$$

2.
$$g(x) = -\frac{3}{4}x + 3$$

Exercice 51.

La fonction affine f admet le tableau de valeurs suivant :

ſ	x	-3	-2	3	7
	f(x)		-5	15	

- 1. Quels sont les accroissements des antécédents et des images entre les deux colonnes de nombres connus?
- 2. Compléter alors ce tableau de valeurs.

Exercice 52.

On rappelle qu'augmenter un prix de 5 % revient à le multiplier par $1 + \frac{5}{100} = 1,05$.

- 1. Déterminer en fonction f qui, à l'ancien prix x, associe le nouveau prix augmenté de 5 %.
- 2. Quelle est la nature de la fonction f? Justifier

Exercice 53.

On rappelle que baisser un prix de 6 % revient à le multiplier par $1 - \frac{6}{100} = 0,94$.

- 1. Déterminer en fonction f qui, à l'ancien prix x, associe le nouveau prix baissé de 6 %.
- 2. Quelle est la nature de la fonction f? Justifier.

Exercice 54.

Dans un magasin de reprographie les 20 premières photocopies sont facturées à $0,10 \in$ et les suivantes à $0,08 \in$.

- 1. Calculer le prix de 5,10 et de 25 photocopies.
- 2. Si n désigne le nombre de photocopies et p(n) le prix à payer, en euros, exprimer p(n) en distinguant deux cas.
- 3. On définit une fonction en Python $\operatorname{prix}(n)$ qui automatise ce calcul. Compléter ce programme :

```
def prix(n):
    if n<=20:
        return .....
    else:
        return .....</pre>
```

Exercice 55.

Une piscine propose deux tarifs.

- Tarif A : chaque entrée coûte $2,60 \in$.
- Tarif B : on paye un abonnement à l'année de $15 \in$ et chaque entrée coûte $1,50 \in$.
- 1. Quel est le tarif le plus intéressant pour 8 entrées? 10 entrées?
- 2. Soit x le nombre d'entrées. Exprimer en fonction de x le prix payé pour x entrées pour le tarif A puis pour le tarif B.
- 3. On a défini ci-dessous deux fonctions :

```
def tarifA(x):
    return .....

def tarifB(x):
    return .....
```

Compléter ces scripts.

- 4. Représenter graphiquement les deux fonctions affines associées aux différents tarifs.
- 5. Au bout de combien d'entrées, le tarif A devient-il plus intéressant? Justifier.

Exercice 56.

Soit la fonction f définie sur \mathbb{R} par f(x) = 3x - 4.

- 1. Donner le sens de variation de f sur \mathbb{R} .
- 2. Déterminer l'intervalle dans lequel se trouvent les images par f des réels compris entre -2 et 5.
- 3. Démontrer que f admet une unique racine x_0 que l'on précisera.
- 4. Dresser le tableau de signes de f.

Exercice 57.

Soit f définie sur \mathbb{R} par f(x) = -2x - 6.

- 1. Faire le tableau de signes de f(x) dans \mathbb{R} .
- 2. On considère la fonction ci-dessous en Python :

```
def signe(x):
    if x>-3:
        resultat="négatif"
    elif x<-3:
        resultat="positif"
    else:
        resultat=0
    return(resultat)</pre>
```

- (a) Quel est l'affichage si l'on entre dans la console signe(-4)? signe(5)? Justifier.
- (b) Quel est le rôle de cette fonction?
- (c) Expliquer la valeur -3 de la condition « if ».

Exercice 58.

On considère la fonction affine f pour laquelle on dispose du tableau incomplet suivant :

x		-1	0	2
f(x)	20	5		-4

- 1. f est-elle croissante?
- 2. Représenter graphiquement f.
- 3. Déterminer **graphiquement** l'expression algébrique de f puis compléter le tableau précédent.
- 4. (a) Démontrer que f admet une racine unique x_0 .
 - (b) Établir le tableau de signes de f et vérifier la cohérence du résultat à l'aide de la représentation graphique de f.

Exercice 59.

La mesure de la température peut s'effectuer dans plusieurs unités. En France, on utilise le degré Celsius (°C). Aux États-Unis, on utilise le degré Fahrenheit (°F). Pour obtenir en degré Fahrenheit une température mesurée en degré Celsius, on multiplie par 1,8 et on ajoute 32.

- 1. On note x une mesure en degré Celsius. Donner l'expression f(x) en fonction de x de cette mesure en degrés Fahrenheit.
- 2. Quelle est la mesure en °F de l'eau gelée?
- 3. À quelle température en °C correspondent 230 °F?
- 4. Voici un script incomplet écrit en Python qui permet à partir d'une température x exprimée en degrés Fahrenheit de déterminer sa valeur en degrés Celsius :

```
def Conversion_FC(x):
return .....
```

- (a) Quel est le nom de la fonction écrite dans ce script?
- (b) Combien cette fonction possède-t-elle d'argument(s)?
- (c) Compléter ce script.

Exercice 60.

On se demande s'il est possible de construire le triangle rectangle suivant.

- 1. Montrer que x vérifie : x(2x 10) = 0.
- 2. Résoudre cette équation.
- 3. Interpréter les résultats : est-il possible de construire un tel triangle?