CONTINUOUS FUNCTIONS

FROM LAST TIME:

Definition: A function f is continuous at a provided: For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $|x-a| < \delta$ then f(x) is defined and $|f(x)-f(a)| < \varepsilon$.

Theorem: If f is defined at a then f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.

Theorem: If f and g are both continuous at a, and c is any constant, then

- (1) f + q is continuous at a.
- (2) cf is continuous at a.
- (3) fg is continuous at a.
- (4) f/q is continuous at a, provided $q(a) \neq 0$.

Theorem: If g is continuous at a and f is continuous at g(a), then $f \circ g$ is continuous at a.

(1) Let

$$f(x) = \begin{cases} 2x & \text{if } x \ge 1\\ x+1 & \text{if } x < 1 \end{cases}.$$

Use the $\varepsilon - \delta$ definition to show that f(x) is continuous at 1.

(2) Let

$$g(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}.$$

Show that q(x) is continuous at 0 and is *not* continuous at any other real number. You can use any theorems you like and anything relevant from the homework.

(3) Let $h(x) = \sqrt{x^2 + 5}$. Show that h is continuous at a for every $a \in \mathbb{R}$.

It is tiresome to say "continuous at a for every $a \in \mathbb{R}$ ". The following definition is then convenient.

Definition 21.1: Let S be an open interval of \mathbb{R} of the form $S=(a,b), S=(a,\infty), S=(-\infty,a),$ or $S = (-\infty, \infty) = \mathbb{R}$. We say f is continuous on S if f is continuous at a for all $a \in S$.

- (4) Which of the following functions are continuous on \mathbb{R} ?
 - $f(x) = \sqrt{x^2 + 5}$.

- $f(x) = \sqrt{x}.$ $f(x) = \frac{1}{x}.$
- Every polynomial function.

- (5) Which of the following functions are continuous on $(0, \infty)$?
 - $f(x) = \sqrt{x^2 + 5}$.

• $f(x) = \sqrt{x}$. • $f(x) = \frac{1}{x}$.

• Every polynomial function.

- (6) Prove that $j(x) = x \sin(1/x)$ is continuous on \mathbb{R} . (You can use wiithout proof that $\sin(x)$ is continuous on \mathbb{R}).
- (7) Prove or disprove: If f and g are two functions, $a \in \mathbb{R}$, and f(a) = g(a), then f is continuous at a if and only if q is continuous at a.
- (8) Prove or disprove: If f and q are two functions, a < b, and f(x) = g(x) for all $x \in (a, b)$, then f is continuous on (a, b) if and only if q is continuous on (a, b).

The definition of continuous on a closed interval [a, b] is actually a bit different: we shouldn't necessarily ask that f be continuous at a, since to know that would have to use something about f on input values outside of our interval!

Definition 21.2: Given a function f(x) and real numbers a < b, we say f is continuous on the closed interval [a, b] provided

- (1) for every $r \in (a, b)$, f is continuous at r in the sense defined already,
- (2) for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $a \le x < a + \delta$, then $|f(x) f(a)| < \varepsilon$.
- (3) for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $b \delta < x < b$, then $|f(x) f(b)| < \varepsilon$.
- (9) Explain why if f is continuous at x for every $x \in [a, b]$, then f is continuous on the closed interval [a, b]. Conclude that every polynomial is continuous on every closed interval.
- (10) Show that the function $f(x) = \sqrt{1-x^2}$ is continuous on the closed interval [-1,1]:
 - For showing condition (1), I recommend using a Theorem from last class.
 - For condition (2), it may help to write $\sqrt{1-x^2} = \sqrt{1-x}\sqrt{1+x}$.
 - Condition (3) is similar to condition (2) so you can just say "Similar to (2)" for that.