NEU Proteomics Capstone Module: Case Studies in Quantitative Proteomics

Jacob D. Jaffe, Lev Litichevski, Jarrett Egerston, Mike MacCoss, Meena Choi, Olga Vitek w/ special guest: Ruedi Aebersold

Goals for this course

- Understand the concepts and value of a proteomic sentinel assay
- Understand the considerations in moving from discovery proteomics data to targeted proteomics
 - Practical: Selection of probes for a targeted proteomics sentinel assay
- Understand considerations for treatment and normalization of research grade targeted proteomics assays
 - Practical: Construct your own data processing pipeline
- Introduction to next-gen MS methods to expand targeted panels
- Understand the conceptual differences between using markers and profiles of activity
- Introduction to the concept of connectivity and exploration of the dataset in this space

Key Differences from Previous Modules

- This is the first time we have attempted this course
 - Expect some bumps in the road!
- Hackathons, not exercises
 - Put into practice all you have learned so far
 - Team-based work
 - There are no right or wrong answers
 - Key learning comes from sharing of experiences

Course Structure

	Wednesday (May 10)	Thursday (May 11)	Friday (May 12)					
8:00-9:00		Finish Hackathon 1						
9:00-9:30			Europeian of D100 via Next Con MS (DIA)					
9:30-10:00		Compare, Contrast, and Discuss Results from Hackthon 1, Compare to P100 Set	Expansion of P100 via Next-Gen MS (DIA)					
10:00-10:30		makeron 1, compare to 1 100 Set	Mini Hackathon: Hack 1 probe observability					
10:30-11:00		refreshments						
11:00-11:30		The Targeted P100 Assay in Practice and	The Constant death of Minima Mile all a state and a book					
11:30-12:00		Considerations for Reproducible Research	The Statistician's View: What's right and what wrong with the P100 Methodologies					
12:00-12:30		Prep for Hackathon 2 - Data intro, code review						
12:30-13:00	Dogistration	Lunch						
13:00-13:30	Registration	Lunch						
13:30-14:00								
14:00-14:30	Keynote Address: Ruedi Aebersold	Hackathon 2 - Build your own data processing pipeline	Using Sentinel Profiles for Drug Characterization Clustering and connectivity					
14:30-15:00		pipeline	Gustering and connectivity					
15:00-15:30		refreshments						
15:30-16:00	Intro to Sentinel Assay Concept, Development of		Closing Address: Ruedi Aebersold					
16:00-16:30	P100 Discovery Data Set	Keynote: Mike MacCoss - Proteomics Data Ecosystems						
16:30-17:00	Prep for Hackathon 1 - Data intro, code review	Loosystems						
17:00-17:30	Danie Hankathan 4 Danka Calantina	Compare, Contrast, and Discuss Results from	Mana					
17:30-18:00	Begin Hackathon 1 - Probe Selection	Hackthon 2	Wrap-up					

Everything you need:

bit.ly/PCCSEData

Lecture 1: Targeted Proteomics, the Sentinel Assay Concept, and Initial Development of the P100 Assay

Jacob D. Jaffe

Targeted vs. Discovery Proteomics

Shotgun Proteomics

- Complex sample is interrogated stochastically
- Get protein/peptide IDs
- Irreproducible repeats

Targeted Proteomics

- Focus efforts on relatively fewer analytes
- Verify ID, get quantification
- Consistency

Targeted MS: Experimental Implementation

- 100s of analytes in a single experiment
- Synthetic peptide internal standards quantification and proof of ID
- When you want to guarantee you measure it each and every time!

Why do targeted studies?

- Instrumentation inherently undersamples population
 - Speed
 - Sensitivity
 - Dynamic Range

Data Shapes in Proteomics

1. Long and skinny

LUITE	, unic	a Jiki
	1	2
mmm	###	###
***	###	###
***	###	###
mmm	###	###
m mm	###	###
m mm	###	###
mmm	###	###
mmm mmm	###	###
mmm	###	###
mmm	###	###
***	###	###
***	###	###
mmm	###	###
****	###	###
mmm	###	###
mmm	###	###
	###	###
	###	###
***	###	###

	###	###
***	###	###
mmm	###	###
***	###	###
***	###	###
mmm	###	###
mmm	###	###
mmm	###	###
mmm	###	###
mmm	###	###
mmm	###	###
***	###	###
***	###	###
m mm	###	###
	###	###

	###	###
****	###	###
mmm	###	###
mmm	###	###
***	###	###
***	###	###
***	###	###
mmm	###	###
mmm	###	###
mmm	###	###
mmm	###	###
***	###	
***	###	
<i></i>	*****	###
mmm		###

2. Short and wide

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
mmm	###	###	###	###	###	###	###	###	###	###	###	###	###	###
mmm	###	###	###	###	###	###	###	###	###		###	###	###	###
mmm	###	###	###	###	###	###	###	###	###	####	###	###	###	###
mmm	###	###	###	###	###	###	###	###	###	###	###	###	###	###

3. Hole-y

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
mmm	###	###	####	####	###	###	###	###	###	###	###	###	###	###
mmm	###	###	####	####	###	###	###	###	###		###	###	###	###
mmm	###	###	####	####	####	###	###	###	###	###	###	###	###	###
mmm	###	###	###	###	###	###	###	###	###	###	###	###	###	###
mmm	###	###	###	###	###	###	###	###	###	###	###	###	###	###
mmm	###	###	###		###	###	###	###	###	###	###	###	###	###
mmm	###	###	###	###	###	###			###	###	###	###	###	###
mmm		###	###	###	###	###	###	###	###	###	###	###	###	
mmm		###	###			###	###	###	###	###	###	###	###	###
mmm	###	###	###	###	####	###		###	###		###	###	###	###
mmm	###	###	###	###	###	###	###	###	###		###	###	###	###
mmm	###	###	####	###	####	###	###	###	###	###	###	###	###	###
mmm	###	###	###	###	####	###	###			###	###	###	###	###
mmm	###	###		###			###				###	###	###	
m	###	###	###	###	####	###	###	###		###	###		###	###
mmm	###	###	###		####	###		###	###	###		###	###	###
mmm	###			###	####		###	###		###	###	###		###
mmm	###	###	###		####	###	###	###	###	###	###	###	###	
mmm	###		###	###	####		###	###	###	###	###	###	###	###
mmm	###		###		###	###	###		###	###	###	###		###
mmm	###				####	###	###	###		###	###	###		###
mmm		###	###	###	####	###	###				###	###	###	###
mmm	###		###		###			###	###		###	###		###
mmm	###			###	####		###	###	###		###	###	###	###
mmm	###			###			###		###			###		###
mmm		###		###	###	###	###	###		###		###	###	###
mmm	###	###	###	###	####	###	###		###	###	###	###		###
mmm	###	###	###	###	####	###	###	###				###		###
mmm	###	###	###	###		###			###		###		###	
mmm	###		####		####	###	###	###			###	###		
mmm				###		###				###	###		###	
mmm		###			###	###	###	###	###		###	###	###	
mmm	###		####		####	###	###						###	
***	###		####		####	###	###	###	###	###	###		###	###
mmm			####	###	####	###	###	###		###		###		###
m		###	###	###		###		###			###		###	
mmm	###	####	####			###								###

It's hard to be hole-y

Instrument Jockeys

OUTERSPACE VACUUMI QUADRUPOLESI?I

OUTERSPACE VACUUMI QUADRUPOLESI VACUUMI QUADRUPOLESI VACUUMI QUADRUPOLESI VACUUMI QUADRUPOLESI VACUUMI QUADRUPOLESI VACUU

Data Geniuses

The Sentinel Assay Concept

A Sentinel Assay for Yeast Biology

A sentinel protein assay for simultaneously quantifying cellular processes

Martin Soste¹, Rita Hrabakova^{1,2}, Stefanie Wanka³, Andre Melnik¹, Paul Boersema¹, Alessio Maiolica⁴, Timon Wernas¹, Marco Tognetti¹, Christian von Mering³ & Paola Picotti¹

Nature Methods 11:1045-8 (2014)

ously, in high throughput. The approach we describe here is based on the concept of 'sentinel' proteins that report on the activation state of a specific biological process and are selected on the basis of literature evidence or computational prediction (Fig. 1). Our

- Two targeted proteomics assays:
 - Protein
 - Phosphopeptide
- Characterizes a range of biochemical responses to stimulation
- Targets nominated by literature, prior knowledge

A Sentinel Assay for Yeast Biology

Fig. 1 from Soste et al., Nature Methods 11:1045-8 (2014)

Examples of Specific Sentinel Behaviors

Selected from Fig. 3 from Soste et al., *Nature Methods* 11:1045-8 (2014)

Examples of Sentinel Reporting Profiles

Protein Level Reporters

Phospho Level Reporters

Selected from Fig. 2 from Soste et al., Nature Methods 11:1045-8 (2014)

Considerations for Translating to a Human Sentinel Assay

- Human proteome/phosphoproteome is bigger
- Pathway architecture in human cells is more complex
- Probably less direct knowledge as to what the sentinels would be
- Proteomic accessibility of desired sentinel peptides
- Diversity of biology and cell types coupled with proteome dynamic range might make life difficult

"P100" – A different kind of sentinel assay

Reduced Representation Phosphosignaling

Why phosphoproteomics?

- Classic "pathways" are commonly represented as signaling cascades of phosphoproteomic events
- Phosphoproteomic events are the "first responders" of cells and occur on a range of time scales from minutes to days
- Phosphoproteins are not easily quantified using nucleic acid based techniques
- Kinase inhibitors are a major class of emerging therapeutics

Reduced Representation Signaling Set: P100

- Phosphosignaling is likely coordinated
 - Kinase-substrate relationships tend to be 1-to-many
 - A priori expectation of coordinate regulation of sites

- Don't need to monitor every phosphosite all the time?
 - Amenable to reductionist approaches?

Final goals of P100 assay development

- Drug responsiveness
- Universal (-ish)
- Ser/Thr focused
- Compact
- Operates at scale
- Longitudinally comparable

Major Problem #1: No easily usable prior data

- Many piecemeal, ad hoc drug studies
 - 1 or 2 drugs
 - Many focus on pTyr signaling
 - Wide range of biological models
 - Inconsistent data reporting formats
 - General lack of systematic studies
- We decided to make our own
 - Discovery proteomics
 - Quantitation by SILAC

Selection of Compounds for Systematic Data Generation

- Start with gene expression profiles induced by drug treatment
 - Multiple cell types
 - Extract kinase/phosphatase genes

Generation of foundational data

Select representative phosphopeptide probes from coherent clusters

Chosen based on:

- Modulates kinase/phosphatase expression
- Concentration from CMAP
- Have matching gene expression data
- Several same class examples
- PosCon = staurosporine

Jinal Patel, Xiaodong Lu

MS-275

H-7

geldanamycin

valproic acid

SILAC and Stable Isotopes: Let cells do the work

- Feed cells growth medium with "heavy" amino acids
- Proteins incorporate these amino acids
- All proteins are slightly "heavier" but otherwise biochemically equivalent
- Choice of Lys and Arg typical because of trypsin

SILAC-based discovery profiling

- Cells pre-labeled by SILAC
- Treatments: 6 hours, concentrations from gene expression study
- IMAC-based phosphopeptide enrichment
 - Primary yield: Ser/Thr
- Mass spec provides both ID (MS2) and quantification (MS1)

Considerations for successful assay configuration

- Are there a set of phosphosites that we can (almost) always observe?
- Do these phosphosites behave in interesting ways in response to perturbations?
- Do we gain anything over gene expression measurements?
- Can we pick a (small) set of highly informative phosphopeptides?
- Could profiling these peptides reproduce the observations of a deeper experiment?
- Is the assay generally useful?

Experimental Implementation

More than 7.5 x 10^8 cells grown for experiments! True bio-replicates

Computational Fractionation Acquisition Strategy

- All experiments performed on a Q-Exactive mass spectrometer
 - 2 hour, "Top 12" shotgun proteomics experiments
 - Each sample analyzed 3 times:

Primary interpretation and quantification in MaxQuant

P100 Source Dataset

- Large systematic set of perturbations with phosphoproteomics readout
 - Over 10,000 phosphosites observed
- Over 1,200 sites present in >75% of all experiments

Will it work?

- ✓ Are there a set of phosphosites that we can (almost) always observe?
- Do these phosphosites behave in interesting ways in response to perturbations?
- Do we gain anything over gene expression measurements?
- Can we pick a (small) set of highly informative phosphopeptides?
- Could profiling these peptides reproduce the observations of a deeper experiment?
- Is the assay generally useful?

Signals span lineages

All 6 Taxol treatments cluster – regardless of lineage

Signals group related compounds and replicates

Will it work?

- ✓ Are there a set of phosphosites that we can (almost) always observe?
- ✓ Do these phosphosites behave in interesting ways in response to perturbations?
- Do we gain anything over gene expression measurements?
- Can we pick a (small) set of highly informative phosphopeptides?
- Could profiling these peptides reproduce the observations of a deeper experiment?
- Is the assay generally useful?

Phospho-state adds value over gene expression

A. Information angle between phosphosignaling vs. gene expression

Will it work?

- ✓ Are there a set of phosphosites that we can (almost) always observe?
- ✓ Do these phosphosites behave in interesting ways in response to perturbations?
- ✓ Do we gain anything over gene expression measurements?
- Can we pick a (small) set of highly informative phosphopeptides?
- Could profiling these peptides reproduce the observations of a deeper experiment?
- Is the assay generally useful?

Determining the Right Number of Groups to Monitor

- Each group should contain phosphopeptides with similar patterns
- PCA and HC methods suggest ~50 clusters are optimal
- Further refinement by hierarchical clustering leads to 55 clusters
- We can choose 2 probes per cluster to build redundancy into assay

Principles for picking group representatives

- 1. # sites (1 is best)
- 2. Missed cuts (0 is best)
- 3. C and M count (0 is best)
- 4. Observability (156 is best)
- 5. Localization (1 is best)
- 6. Length (shorter is better)

Dimensionality reduction: >1000 to 55 with 2x probe redundancy

Probeset recalls replicates significantly better than random

Random Probes

Non-Landmark Replicate Correlation 160 140 120 100 60 40 20 -0.8 -0.4 -0.2 0.2 0.6 8.0 0.4 Replicate Correlation

P100 probes

Looks like it is going to work.

Will it work?

- ✓ Are there a set of phosphosites that we can (almost) always observe?
- ✓ Do these phosphosites behave in interesting ways in response to perturbations?
- ✓ Do we gain anything over gene expression measurements?
- ✓ Can we pick a (small) set of highly informative phosphopeptides?
- Could profiling these peptides reproduce the observations of a deeper experiment?
- Is the assay generally useful?

To be continued...

But first, a hackathon

