

Time Series and Sequence Learning

Lecture 5a - Structural Time-Series, Modelling the Trend

Johan Alenlöv, Linköping University

Structural time series:
$$y_t = \mu_t + \gamma_t + \varepsilon_t$$

Structural time series: $y_t = \mu_t + \gamma_t + \varepsilon_t$

Let's start by considering the trend component μ_t .

Exact linear trend
$$\mu_t = a \cdot t \cdot t$$

=D $\Delta \mu_t = \mu_t - \mu_{t-1} = a \cdot b \cdot b - (a \cdot (t-1) + b) = a$ const.

 $\Delta^2 \mu_t = \Delta \mu_b - \Delta \mu_{t-1} = a - a = 0$

This can be generalized to a leth order polynomial using

 $\Delta^2 \mu_t = 0$

1

In practice we don't assume exact liver/polynomial send send send Model: 5k+1 µ = 3, 5, ~ D(0, 04) Exemple: Linear trend D H6 = 3+ δ μt 2 s μt - s μt-1 2 μt - μt-1 - (μt-1 - μt-1) = μ_{t} - $2\mu_{t}$ - 1 μ_{t} - 2 = 3_{t}

Solve for
$$\mu_t$$
 gives
$$\mu_t = 2\mu_{t-1} - \mu_{t-2} + 3_t$$
ARI2) model

Introduce the state-vector dr = [16-1] = 2 dr = [16-1] On matrix form we get d = = [2 -1] d = + [3] 5 = Ht = [1 0] dt

4

Similarly, a k-1th order polynomial trend model $\Delta^k \mu_t = \zeta_t$ can be written as

$$\alpha_{t} = \begin{bmatrix} c_{1} & c_{2} & \cdots & c_{k-1} & c_{k} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \alpha_{t-1} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \cdots \\ 0 \end{bmatrix} \zeta_{t},$$

$$\mu_{t} = \begin{bmatrix} 1 & 0 & 0 & \vdots & 0 \end{bmatrix} \alpha_{t},$$

where the state vector is

$$lpha_t = egin{bmatrix} \mu_t & \mu_{t-1} & \cdots & \mu_{t-k+1} \end{bmatrix}^{\mathsf{T}}$$
 and $c_i = (-1)^{i+1} egin{pmatrix} k \\ i \end{pmatrix}$.