Discrete logarithm in finite fields of small characteristic

Édouard Rousseau Université de Versailles

June 1, 2017

CONTENTS

INTRODUCTION

The discrete logarithm problem Terminology Historical background

INDEX CALCULUS

Overview

An example

QUASI-POLYNOMIAL ALGORITHMS

Barbulescu, Gaudry, Joux and Thomé algorithm Granger, Kleinjung and Zumbrägel algorithm

CONTEXT

Let *G* be a cyclic group generated by an element *g*, we denote by *N* the cardinal of *G*. Then we have a *bijection*

$$exp_g: \ \mathbb{Z}/N\mathbb{Z} \to G \\ \bar{n} \mapsto g^n .$$

The inverse of exp_g will be denoted by log_g .

THE DISCRETE LOGARITHM PROBLEM

- ▶ In practice, given an integer n, we have efficient algorithms to compute g^n
- ▶ Given $x = g^n \in G$, we do not hace efficient algorithm to compute n.

This last problem is called the *discrete logarithm problem*.

DEFINITIONS

To express the hardness of a problem, we study its complexity and we use the notation

$$L_N(\alpha, c) = \exp((c + o(1))(\log N)^{\alpha}(\log \log N)^{1-\alpha}).$$

We also note $L_N(\alpha)$ when we do not want to deal with the constant.

There are two families of algorithms:

- ► The *generic* algorithms (with complexity $O(\sqrt{N})$)
- ▶ The *index calculus* algorithms, which use the structure of groups coming from finite fields : \mathbb{F}_q^{\times}

DEFINITIONS

- ▶ We say that a finite field $\mathbb{F}_q = \mathbb{F}_{p^k}$ is of *small characteristic* when p is small compared to q, it usually means that p is polynomial in $\log q$.
- ▶ Let $l = \log q$, the complexity is then said to be *quasi-polynomial* if it is $l^{O(\log l)}$. This complexity is smaller that $L(\varepsilon)$ for any $\varepsilon > 0$ but greater than any polynomial in l.

HISTORICAL BACKGROUND

- ► First appearance in [DH76]
- ► First sub-exponential algorithm [A79] : L(1/2)
- ▶ Between 1984 and 2006 : algorithms in L(1/3)

And more recently, in finite fields of small characteristic:

- ▶ New algorithm with L(1/4) complexity [Joux13]
- ▶ Quasi-polynomial algorithm [BGJT14]
- Second quasi-polynomial algorithm [GKZ14]

OVERVIEW

Assume that we want to find $log_g(h)$ with $h \in G$. We first choose $F \subset G$ such that $\langle F \rangle = G$. Then

- 1. We find multiplicative relations between the elements in *F*
- 2. We solve the linear system arising from these relations
- 3. We express h as a product of elements in F

The steps 1 and 3 depends on the representation of the finite field, and give different complexities.

Context:

- ▶ We considere $G = \mathbb{F}_p^{\times}$ for a prime integer p and we still have N = |G|
- ▶ We choose $F = \{f \mid f \leq B, f \text{ prime}\}$ for a chosen integer B
- ▶ We assume that $g \in F$, otherwise we add it to F.

Step 1 : relations generation

- ▶ We randomly choose $e \in \mathbb{Z}/N\mathbb{Z}$
- ▶ We compute g^e
- ▶ We test if g^e , seen as an integer, is B-smooth, i.e. has only prime factors $\leq B$
- ▶ If it is the case, it yields a relation in *G* :

$$g^e = \prod_{f \in F} f^{e_f}$$
, où $e_f \in \mathbb{N}$

that can be written

$$e = \sum_{f \in F} e_f \log_g(f).$$

Step 2 : linear algebra. Once we have enough relations, *i.e.* at least |F|, we solve the linear system in $\mathbb{Z}/N\mathbb{Z}$ in order to obtain the $\log_{\sigma}(f)$ for all $f \in F$.

Step 3: express h in function of the elements in F:

- ▶ We randomly choose $e \in \mathbb{Z}/N\mathbb{Z}$
- ▶ We compute hg^e
- We test if hg^e is B-smooth
- ▶ If it is the case, it yields a relation :

$$\log_{g}(h) = \sum_{f \in F} e_{f} \log_{g}(f) - e$$

This algorithm depends on the choice of *B* :

- ▶ The larger B is, the larger $\langle F \rangle$ is, and the easier it is to find relations
- ▶ But when |F| is large, we need to solve a large linear system In the end, we can choose B to obtain a L(1/2) complexity.

Barbulescu, Gaudry, Joux and Thomé ALGORITHM

Context : we denote by \mathbb{K} the finite field where we want to compute discrete logarithms.

- We assume that $\mathbb{K} = \mathbb{F}_{a^{2k}}$ and we represent \mathbb{K} by $\mathbb{F}_{q^2}[X]/(I_X)$ where I_X is an irreducible polynomial of degree k dividing $h_1 X^q - h_0$ and deg $h_i \leq 2$.
 - ▶ The existence of suitable *h_i* is heuristic
- ▶ The set *F* is the set of the degree one polynomials.

BARBULESCU, GAUDRY, JOUX AND THOMÉ ALGORITHM

The algorithm is based on a descent process: we express the logarithm of a polynomial as a linear combination of $O(q^2k)$ logarithms of polynomials of degree two times smaller, until we have only polynomials in F.

• Complexity : $(q^2k)^{O(\log k)}$.

The descent process is based on the equation:

$$X^{q}Y - XY^{q} = Y \prod_{a \in \mathbb{F}_{q}} (X - aY) = \prod_{\alpha \in \mathbb{P}^{1}(\mathbb{F}_{q})} (X - \alpha Y)$$
 (1)

Assume that we want to find the logarithm of an element P. We will create relations by substituting X by aP + b and Y by cP + d in Equation (1), with $a, b, c, d \in \mathbb{F}_{q^2}$. We obtain a new Equation $(E_{a,b,c,d})$. It follows that

$$\frac{1}{h_1^D} \mathcal{L}_{a,b,c,d} = \lambda \prod_{\alpha \in \mathbb{P}^1(\mathbb{F}_q)} (P - \mu_\alpha)$$

where $\lambda, \mu_{\alpha} \in \mathbb{F}_{q^2}$ and $\mathcal{L}_{a,b,c,d}$ is a polynomial of degree $D \leq 3 \deg P$, obtained using the equality $X^q = \frac{h_0}{h_1} \mod I_X$.

We keep only the equations $(E_{a,b,c,d})$ where $\mathcal{L}_{a,b,c,d}$ is $\left\lceil \frac{\deg P}{2} \right\rceil$ -smooth and we combine these equations in order to keep only P in the right hand side. The left hand side is then composed of irreducible polynomials of degree at most $\left\lceil \frac{\deg P}{2} \right\rceil$.

- ► There are also heuristics
 - ▶ The existence of the combination
 - ▶ The smoothness of the polynomials $\mathcal{L}_{a,b,c,d}$

Context: here $\mathbb{K} = \mathbb{F}_{q^k}$ and we see \mathbb{K} as $\mathbb{F}_q[X]/(I_X)$ where I_X is a polynomial of degree k dividing $h_1X^q - h_0$. The algorithm follows the same steps as the latter, but the descent is different.

"ON THE FLY" ELIMINATION

Assume that $Q \in \mathbb{F}_{q^m}[X]$ and $\deg Q = 2$. This elimination is based on the fact that the polynomial $P = X^{q+1} + aX^q + bX + c$ splits completly in $\mathbb{F}_{q^m}[X]$ for approximately q^{m-3} triples (a,b,c). But

$$P = \frac{1}{h_1}((X+a)h_0 + (bX+c)h_1) \mod I_X$$

So if $Q|(X + a)h_0 + (bX + c)h_1$ (polynomial of degree 3), we have

$$h_1P = QL \mod I_X$$

where *L* is of degree 1 and *P* splits completly.

Assume now that $Q \in \mathbb{F}_q[X]$ is irreducible of degree 2d. Then we have

$$Q = \prod_{i=0}^{d-1} Q_i = \prod_{i=0}^{d-1} Q_0^{[i]}$$

where the Q_i 's are irreducible polynomials of degree 2 in $\mathbb{F}_{q^d}[X]$ and are all conjugates, in the sense that $Q_i = Q_0^{[i]}$ denotes the polynomial obtained by raising all coefficients to the power q^i .

- ▶ We then apply the "on the fly" elimination to $Q_0^{[i]}$ to obtain $Q_0^{[i]}$ as a product of O(q) $P_j^{[i]}$ where the $P_j \in \mathbb{F}_{q^d}[X]$ are all of degree 1
- ▶ Hence, Q is expressed as a product of O(q) norms of linear polynomial $R_j = \prod_{i=0}^{d-1} P_j^{[i]}$

Recall that the norm of a linear polynomial in $\mathbb{F}_{q^d}[X]$ is an irreducible polynomial of degree d_1 to the power d_2 , with $d_1d_2=d$.

► Thus, we expressed log Q as a linear combination of O(q) log R_j where deg $R_i|d$. The complexity obtained is $q^{O(\log q)}$.