The Linux Audit System

WAJIH 04/30/2018

\$whoami

- Third year Ph.D. student in CS Dept.
- Working with Prof. Adam Bates
- Research Interests:
 - System Security
 - Data provenance

Recent Cyber Attacks

Equifax

145 million americans' sensitive data (e.g. SSN) was stolen

WannaCry

- A ransomware attack that spans over 150 countries
- Hackers demanded money to unlock files

A Yahoo bombshell

Yahoo's 3 billion accounts was hacked in 2013 – found out in 2016

Recent Cyber Attacks

Equifax

Advanced Persistent Threat (APT)

Targeted: Targets specific organizations to exfiltrate information or disrupt the systems.

- A Yahoo bombshell
 - Yahoo's 3 billion accounts was hacked in 2013 found out in 2016

5 Stages of APTs

1. Reconnaissance

Understand about the target using social media or company's website

2. Incursion

 Enters into victim's system using different attack vectors (e.g. social engineering)

3. Discovery

The attackers stay low and operate patiently in order to avoid detection

4. Capture

 Hackers access unprotected systems and capture data over an extended period of time

5. Exfiltration

 Finally, captured information is sent back to the attack team's home base for analysis

5 Stages of APTs

1. Reconnaissance
2. Due to complexity of APTs
3. Attack investigation such as finding root cause is challenging
4. iod

5. Exfiltration

 Finally, captured information is sent back to the attack team's home base for analysis

Audit Logging Or Data Provenance

- Attack investigation and reconstruction technique
- Captures data life cycle:
 - Modifications
 - Deletions
 - Creations
- Detects causal dependencies between different events

Example Audit Log


```
chromium.exe reads from ip 10.0.0.2 chromium.exe reads from ip 165.10.0.1 chromium.exe reads from ip 91.0.0.2
```

```
chromium.exe downloads a.ppt chromium.exe downloads b.doc chromium.exe downloads malware.exe
```

malware.exe reads /etc/passwd
malware.exe sends /etc/passwd to ip
X.X.X.X

Represented as causal graph

- Vertices represents system entities (e.g. chrome process, a.ppt)
- Edges represents causal relationships (e.g. created, read, open)

Linux Audit System

- Linux Audit System collects audit logs
- Available on vanilla Linux kernels > version 2.6
- It collects information regarding:
 - Kernel event (System calls)
 - User events (Audit-enable programs)
 - It does not, however, provide additional security itself—it does not protect your system from code malfunctions

Linux Audit Use cases

- Watching file access:
 - Audit can track whether a file or a directory has been accessed, modified, executed
- Monitoring system calls:
 - Generate a log entry every time a particular system call is used
- Recording commands run by a user:
- Monitoring network access:
 - The iptables and ebtables utilities can be configured to trigger Audit events

How Linux Audit Works?

- Audit kernel module intercepts the system calls and records the relevant events
- The auditd daemon writes the audit reports to disk.
- Various command line utilities take care of displaying, querying, and archiving the audit trail.

How Linux Audit Works?

Components of Linux Audit

- auditctl utility for managing the auditd daemon; returns information on the audit subsystem's current status and can be used to add and delete rules
- ausearch utility for searching for events in log files
- aureport utility for generating reports on the audit system

Components of Linux Audit

Creating rules

- auditctl is command line utility to :
 - Control behaviour of audit daemon (auditd)
 - Add and remove audit rules
- There are two main types of rules:
 - File system audit rules
 - System call audit rules

File System Rules

- File System rules are sometimes called watches.
- These rules are used to audit access to particular files or directories that you may be interested in.
- The syntax of these rules generally follow this format:
 - -w path-to-file -p permissions -k keyname
- where the permission are any one of the following:
 - r read of the file
 - w write to the file
 - x execute the file
 - a change in the file's attribute

System call rules

- The system call rules are loaded into a matching engine that intercepts each syscall that all programs on the system makes.
- Very important to only use syscall rules when you have to since these affect performance
- Syscall rules take the general form of:
 - -a action, list -S syscall -F field=value -k keyname
- To see files opened by a specific user:
 - -a exit, always -S open -F auid=I337
- To see unsuccessful open calls:
 - -a exit,always -S open -F success=0

Example

Track a file by inode number
auditctl -a exit,always -S open -F inode=`ls -i /etc/auditd.conf | gawk
'{print \$1}'`
auditctl -l

AUDIT_LIST: exit,always inode=1637178 (0x18fb3a) syscall=open

When someone opens the files you receive following log message

type=PATH msg=audit(1251123553.303:206): item=0 name="/etc/audit/audit.rules" inode=77546 dev=fd:01 mode=0100640 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:auditd_etc_t:s0

Analyzing logs -- ausearch

• Ausearch is a command-line utility to query your audit logs

ausearch -f

ausearch -ui

Analyzing logs - aureport

Audit Data Visualization

- Various tools to generate causal graphs from audit logs.
- I use SPADE tool
- SPADE (https://github.com/ashish-gehani/SPADE)
 - Parses audit log in realtime
 - Generates causal graphs which can be queried to find the root cause of attack

Audit Data Visualization

ADD here about SPADE tools

Resources

- The Audit Manual Pages:
 - There are several man pages installed along with the audit tools that provide valuable and very detailed information
- http://people.redhat.com/sgrubb/audit/index.html
 - The home page of the Linux audit project.