Sharpness Aware Minimization

Определения, часть 1

$$\mathcal{S} = \bigcup_{i=1}^n \{(\boldsymbol{x_i}, \boldsymbol{y_i})\}$$
 — обучающая выборка

$$L_{\mathcal{S}}(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^{n} l(\boldsymbol{w}, \boldsymbol{x_i}, \boldsymbol{y_i})$$
 — функция потерь на \mathcal{S}

Что делаем обычно?

$$L_{\mathcal{S}}(\boldsymbol{w}) \to \min_{\boldsymbol{w}}$$

Поиск параметров через оптимизацию функции потерь

Функции потерь для сложных моделей:

- Много локальных минимумов
- Разные обобщающие способности в этих минимумах
- Качество модели сильно зависит от оптимизатора

Новый подход

$$L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) = \max_{\|\boldsymbol{\varepsilon}\|_{2} \le \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\varepsilon})$$

Обучение:

$$L_{\mathcal{S}}^{SAM}(oldsymbol{w})
ightarrow \min_{oldsymbol{w}}$$

Что получается?

$$L_{\mathcal{S}}(\boldsymbol{w}) \to \min_{\boldsymbol{w}}$$

$$L^{SAM}_{\mathcal{S}}(oldsymbol{w})
ightarrow \min_{oldsymbol{w}}$$

Проблема острых минимумов наглядно

Определения, часть 2

$$\mathcal{S}=\cup_{i=1}^n\{(m{x_i},m{y_i})\}$$
 — берется из распределения \mathscr{D} $L_{\mathscr{D}}(m{w})=\mathbb{E}_{(m{x},m{y})\sim\mathscr{D}}[l(m{w},m{x},m{y})]$

Теоретическое обоснование

Теорема. Для любого $\rho > 0$ с большой вероятностью для множества ${\mathcal S}$ выполнено

$$L_{\mathscr{D}}(\boldsymbol{w}) \leq \max_{\|arepsilon\|_2 \leq
ho} L_{\mathcal{S}}(\boldsymbol{w} + oldsymbol{arepsilon}) + h\left(rac{\|\boldsymbol{w}\|_2^2}{
ho^2}
ight)$$
 h — возрастающая функция

Функция потерь с регуляризацией

$$L_{\mathscr{D}}(\boldsymbol{w}) \leq \max_{\|\varepsilon\|_{2} \leq \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\varepsilon}) + h\left(\frac{\|\boldsymbol{w}\|_{2}^{2}}{\rho^{2}}\right)$$
$$L_{\mathscr{D}}(\boldsymbol{w}) \leq L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) + h\left(\frac{\|\boldsymbol{w}\|_{2}^{2}}{\rho^{2}}\right)$$

Обучение:

$$L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} \rightarrow \min_{\boldsymbol{w}}$$

Осталось найти $\nabla_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w})$

Формула шага, часть 1

Находим ε с максимальным $L_{\mathcal{S}}(\boldsymbol{w}+\boldsymbol{\varepsilon})$:

$$\boldsymbol{\varepsilon}^*(\boldsymbol{w}) = \operatorname*{argmax}_{\|\boldsymbol{\varepsilon}\|_2 \leq \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\varepsilon}) \approx \operatorname*{argmax}_{\|\boldsymbol{\varepsilon}\|_2 \leq \rho} L_{\mathcal{S}}(\boldsymbol{w}) + \boldsymbol{\varepsilon}^T \nabla_w L_{\mathcal{S}}(\boldsymbol{w}) = \operatorname*{argmax}_{\|\boldsymbol{\varepsilon}\|_2 \leq \rho} \boldsymbol{\varepsilon}^T \nabla_w L_{\mathcal{S}}(\boldsymbol{w})$$

$$\hat{\boldsymbol{\varepsilon}}(\boldsymbol{w}) = \frac{\rho}{\|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\|_{2}} \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})$$

Формула шага, часть 2

$$L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \approx L_{\mathcal{S}}(\boldsymbol{w} + \hat{\boldsymbol{\varepsilon}}(\boldsymbol{w}))$$

$$\nabla_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \approx \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w} + \hat{\boldsymbol{\varepsilon}}(\boldsymbol{w})) = \frac{d(\boldsymbol{w} + \hat{\boldsymbol{\varepsilon}}(\boldsymbol{w}))}{d\boldsymbol{w}} \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w}) \big|_{\boldsymbol{w} + \hat{\boldsymbol{\varepsilon}}(\boldsymbol{w})}$$

$$= \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w}) \big|_{\boldsymbol{w} + \hat{\boldsymbol{\varepsilon}}(\boldsymbol{w})} + \underbrace{\frac{d\hat{\boldsymbol{\varepsilon}}(\boldsymbol{w})}{d\boldsymbol{w}} \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w}) \big|_{\boldsymbol{w} + \hat{\boldsymbol{\varepsilon}}(\boldsymbol{w})}}_{\text{добавка второго порядка}}$$

Таким образом,

$$\nabla_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \approx \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w}) \big|_{\boldsymbol{w} + \hat{\boldsymbol{\varepsilon}}(\boldsymbol{w})}$$

Алгоритм

```
Input: Training set S \triangleq \bigcup_{i=1}^n \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}, Loss function
            l: \mathcal{W} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+, Batch size b, Step size \eta > 0,
            Neighborhood size \rho > 0.
Output: Model trained with SAM
Initialize weights w_0, t=0;
while not converged do
       Sample batch \mathcal{B} = \{(x_1, y_1), ...(x_b, y_b)\};
       Compute gradient \nabla_{\boldsymbol{w}} L_{\mathcal{B}}(\boldsymbol{w}) of the batch's training loss;
       Compute \hat{\boldsymbol{\epsilon}}(\boldsymbol{w}) per equation 2;
       Compute gradient approximation for the SAM objective
         (equation 3): \mathbf{g} = \nabla_{\mathbf{w}} L_{\mathcal{B}}(\mathbf{w})|_{\mathbf{w} + \hat{\boldsymbol{\epsilon}}(\mathbf{w})};
       Update weights: \boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \boldsymbol{g};
       t = t + 1:
```

end

return w_t

Figure 2: Schematic of the SAM parameter update.

 $-\eta\nabla L(w_{adv})$

 W_t

Wadv

Эксперименты: CIFAR-10, CIFAR-100

		CIFAR-10		CIFAR-100	
Model	Augmentation	SAM	SGD	SAM	SGD
WRN-28-10 (200 epochs)	Basic	2.7 _{±0.1}	$3.5_{\pm 0.1}$	16.5 _{±0.2}	$18.8_{\pm 0.2}$
WRN-28-10 (200 epochs)	Cutout	$2.3_{\pm 0.1}$	$2.6_{\pm 0.1}$	14.9 $_{\pm 0.2}$	$16.9_{\pm 0.1}$
WRN-28-10 (200 epochs)	AA	$2.1_{\pm < 0.1}$	$2.3_{\pm 0.1}$	13.6 \pm 0.2	$15.8_{\pm0.2}$
WRN-28-10 (1800 epochs)	Basic	2.4 _{±0.1}	$3.5_{\pm 0.1}$	16.3 _{±0.2}	$19.1_{\pm 0.1}$
WRN-28-10 (1800 epochs)	Cutout	$2.1_{\pm 0.1}$	$2.7_{\pm 0.1}$	$14.0_{\pm 0.1}$	$17.4_{\pm 0.1}$
WRN-28-10 (1800 epochs)	AA	$1.6_{\pm 0.1}$	$2.2 \pm < 0.1$	12.8 ± 0.2	$16.1_{\pm 0.2}$
Shake-Shake (26 2x96d)	Basic	2.3±<0.1	$2.7_{\pm 0.1}$	15.1 _{±0.1}	$17.0_{\pm 0.1}$
Shake-Shake (26 2x96d)	Cutout	$2.0_{\pm < 0.1}$	$2.3_{\pm 0.1}$	14.2 _{±0.2}	$15.7_{\pm 0.2}$
Shake-Shake (26 2x96d)	AA	1.6 \pm <0.1	$1.9_{\pm 0.1}$	12.8 ± 0.1	$14.1_{\pm 0.2}$
PyramidNet	Basic	$2.7_{\pm 0.1}$	$4.0_{\pm 0.1}$	14.6 _{±0.4}	$19.7_{\pm 0.3}$
PyramidNet	Cutout	$1.9_{\pm 0.1}$	$2.5_{\pm 0.1}$	12.6 \pm 0.2	$16.4_{\pm0.1}$
PyramidNet	AA	$1.6_{\pm 0.1}$	$1.9_{\pm 0.1}$	11.6±0.1	$14.6_{\pm0.1}$
PyramidNet+ShakeDrop	Basic	2.1 _{±0.1}	$2.5_{\pm 0.1}$	$13.3_{\pm 0.2}$	$14.5_{\pm 0.1}$
PyramidNet+ShakeDrop	Cutout	1.6 \pm <0.1	$1.9_{\pm 0.1}$	11.3 ± 0.1	$11.8_{\pm 0.2}$
PyramidNet+ShakeDrop	AA	$1.4_{\pm < 0.1}$	$1.6_{\pm < 0.1}$	$10.3_{\pm 0.1}$	$10.6_{\pm0.1}$

Эксперименты: ResNet на ImageNet

Model	Epoch	SAM		Standard Training (No SAM)		
		Top-1	Top-5	Top-1	Top-5	
ResNet-50	100	$22.5_{\pm 0.1}$	$6.28_{\pm 0.08}$	$22.9_{\pm 0.1}$	$6.62_{\pm 0.11}$	
	200	$21.4_{\pm 0.1}$	$5.82_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.37_{\pm 0.04}$	
	400	$20.9_{\pm 0.1}$	$5.51_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.40_{\pm 0.06}$	
ResNet-101	100	20.2±0.1	$5.12_{\pm 0.03}$	$21.2_{\pm 0.1}$	$5.66_{\pm 0.05}$	
	200	19.4 ± 0.1	4.76 ± 0.03	$20.9_{\pm 0.1}$	$5.66_{\pm 0.04}$	
	400	$19.0_{\pm < 0.01}$	$4.65_{\pm 0.05}$	$22.3_{\pm 0.1}$	$6.41_{\pm 0.06}$	
ResNet-152	100	19.2 _{±<0.01}	$4.69_{\pm 0.04}$	$20.4_{\pm < 0.0}$	$5.39_{\pm 0.06}$	
	200	18.5 \pm 0.1	$4.37_{\pm 0.03}$	$20.3_{\pm 0.2}$	$5.39_{\pm 0.07}$	
	400	$18.4_{\pm < 0.01}$	$4.35_{\pm 0.04}$	$20.9 \pm < 0.0$	$5.84_{\pm 0.07}$	

Эксперименты: CIFAR-10 with label noise

- Модель ResNet-32, 200 эпох обучения
- Bootstrap обучаемся два раза, во второй раз на предсказанных первой моделью метках

Method	Noise rate (%)				
	20	40	60	80	
Sanchez et al. (2019)	94.0	92.8	90.3	74.1	
Zhang & Sabuncu (2018)	89.7	87.6	82.7	67.9	
Lee et al. (2019)	87.1	81.8	75.4	-	
Chen et al. (2019)	89.7	-	-	52.3	
Huang et al. (2019)	92.6	90.3	43.4	-	
MentorNet (2017)	92.0	91.2	74.2	60.0	
Mixup (2017)	94.0	91.5	86.8	76.9	
MentorMix (2019)	95.6	94.2	91.3	81.0	
SGD	84.8	68.8	48.2	26.2	
Mixup	93.0	90.0	83.8	70.2	
Bootstrap + Mixup	93.3	92.0	87.6	72.0	
SAM	95.1	93.4	90.5	77.9	
Bootstrap + SAM	95.4	94.2	91.8	79.9	

M-sharpness

- Тренируем батчами размера М, минимизация SAM происходит на данном батче, а не на всей обучающей выборке
- График: CIFAR-10 на маленьком ResNet

Гессиан $L_{\mathcal{S}}(\boldsymbol{w})$

- График: CIFAR-10 на маленьком ResNet

