

Large Language Models Operations (LLMOps)

- LLMOPs introduction
- Deployment and scalability of LLMs
- Monitoring and maintenance of models in production
- Performance evaluation and continuous improvement
- Ethical considerations and privacy

XOP

Automation

Collaboration

Reproducibility

CI/CD

Observability

DevOps

https://medium.com/@ritusherke86/what-is-devops-and-why-devops-86051071a42b

Continuous Integration

Collaboration & 2

LLMOps

Training and deployment of Large Language Models

Data Governance Officer

Data Engineer

Data Scientist

ML Engineer

Business Stakeholder

Data Preparation

Exploratory Data analysis

Feature Engineering

Model Training

Model Validation

Deployment

Monitoring

<----

What specific scaling challenges exist for LLMs?

Initial training: trillions of tokens, <u>hundreds to thousands of GBs</u> & very long run times.

Fine-tuning: updating model weights based on your own data, still requires relatively large data and long training times. Plus lots of evaluation!

Storage: the models contain billions of parameters, often <u>hundreds of GB</u>. This can be prohibitive for some devices.

Latency: Running inference on these models can be very costly in terms of time.

Cost: All of this costs \$\$\$!

What specific scaling challenges exist for LLMs?

Initial training: don't do it!

Fine-tuning: Optimize and use a scalable framework, such as Ray.

Storage: Quantization, memorization, caching ...

Latency: Quantization, memorization, caching, hardware and memory bandwidth optimization...

Cost: Above plus use 'open source' models

Types of use-cases for Enterprises

How willing are enterprises to use LLMs for different use cases?

(% of enterprises experimenting with given use case who have deployed to production)

Source: a16z survey of 70 enterprise AI decision makers

LLM application archetypes

Prompt Engineering Applications

Retrieval Augmented Generation Applications

Agentic Applications

Multi-Agent Applications

Fine-tunning LLM Applications

Operationalizing Fine-tuning Pipelines

- Automation, version control, reproducibility
- Distributed training infrastructure
 - DeepSpeed, PEFT, GPUs
- Similar to classical model training serving
- Optimization techniques
 - vLLM, MLC, CudaGraph, MQA, Quantization, TensorRT
- Deeper understanding of GPUs, TTFT, TPOT

Types of LLM Applications

Architecture: fine-tuning

Types of LLM Applications

Practitioner's Perspective

LLMOps Starting Points

Use-Case

Improve Asset Management with LLM Evaluation Pipelines

Creating efficient AI-powered summaries, LLMs save up to 93% of the time taken by traditional manual processes. Our white paper explains how this allows you to optimize asset management operations.

https://info.softserveinc.com/summarization-tasks-for-llm-white-paper

