Chapitre 24

Comparaison locale des suites

$\bf 24$	Comparaison locale des suites	1
	24.18Caractérisation de l'équivalence par la négligabilité	2
	24.20Equivalent d'un polynôme	2
	24.31 Exemple	3
	24.36Exemple	4
	24.43Exemple	4
	24.46Exemple	5

Caractérisation de l'équivalence par la négligabilité 24.18

On a:

$$u_n \sim v_n \Leftrightarrow u_n = v_n + o(v_n)$$

 \Longrightarrow Si $u_n \sim v_n$ à partir d'un certain rang :

$$u_n = a_n v_n \text{ avec } a_n \xrightarrow[n \to +\infty]{} 1$$

Ainsi:

$$u_n = \underbrace{(a_n - 1)}_{=o(1)} v_n + v_n$$
$$= \underbrace{v_n + o(v_n)}_{n \to +\infty}$$

$$u_n = v_n + \epsilon_n v_n \text{ avec } \epsilon_n = o(1)$$

= $\underbrace{(1 + \epsilon_n)}_{\substack{n \to +\infty}} v_n$

Donc:

$$u_n \sim v_n$$

Equivalent d'un polynôme 24.20

Soit P un polynôme de monôme dominant $a_d X^d$. Alors $P(n) \sim a_d n^d$.

On note $P = \sum_{k=0}^{d} a_k X^k$. Pour $k \in [0, d-1]$:

$$n^k \underset{n \to +\infty}{=} o(n^d)$$
 et $a_k n^k \underset{n \to +\infty}{=} o(a_d n^d)$

Donc:

$$\sum_{k=0}^{d-1} a_k n^k = o(a_d n^d)$$

$$P(n) = a_d n^d + o(a_d n^d)$$
$$\sim a_d n^d$$

24.31 Exemple

Exemple 24.31

Déterminons :

$$\lim_{n \to +\infty} \frac{\left(e^{\frac{1}{n}} - 1\right)^3 \left(\sqrt{1 + \frac{1}{n}} - 1\right)}{\sin\left(\frac{1}{\sqrt{n}}\right) \ln^2\left(\frac{n^2 + 3}{n^2}\right) \sqrt{3n + 1}}$$

On note u_n l'expression de l'exemple.

But : trouver un équivalent (simple) de u_n .

 $e^{\frac{1}{n}} - 1 \sim \frac{1}{n}$

Donc:

 $(e^{\frac{1}{n}}-1)^3 \sim \frac{1}{n^3}$

 $\sqrt{1 + \frac{1}{n}} - 1 = (1 + \frac{1}{n})^{\frac{1}{2}} - 1$ $\sim \frac{1}{2n}$

 $\sin\left(\frac{1}{\sqrt{n}}\right) \sim \frac{1}{\sqrt{n}}$

 $\ln\left(\frac{n^2+3}{n^2}\right) = \ln\left(1+\frac{3}{n^2}\right)$ $\sim \frac{3}{n^2}$

Donc:

 $\ln^2\left(\frac{n^2+3}{n^2}\right) \sim \frac{9}{n^4}$

 $\sqrt{3n+1} \sim \sqrt{3n}$

 ${\bf Donc}:$

$$u_n \sim \frac{\frac{1}{n^3} \times \frac{1}{2n}}{\frac{1}{\sqrt{n}} \times \frac{9}{n^4} \times \sqrt{3n}}$$
$$= \frac{1}{18\sqrt{3}}$$

$$u_n \underset{n \to +\infty}{\longrightarrow} \frac{1}{18\sqrt{3}}$$

24.36 Exemple

Exemple 24.36

Déterminer un équivalent de $\sin\left(\frac{2}{n}\right) - \sin\left(\frac{1}{n}\right)$.

$$\sin\left(\frac{2}{n}\right) = \frac{2}{n} + o\left(\frac{2}{n}\right)$$
$$= \frac{1}{n} + o\left(\frac{1}{n}\right)$$
$$\sin\left(\frac{1}{n}\right) = \frac{1}{n} + o\left(\frac{1}{n}\right)$$

Donc:

$$\sin\left(\frac{2}{n}\right) - \sin\left(\frac{1}{n}\right) = \frac{2}{n} - \frac{1}{n} + o\left(\frac{1}{n}\right)$$
$$= \frac{1}{n} + o\left(\frac{1}{n}\right)$$
$$\sim \frac{1}{n}$$

24.43 Exemple

Exemple 24.43

Trouver un équivalent de $\ln \sin \frac{1}{n}$.

$$\sin\left(\frac{1}{n}\right) = \frac{1}{n} + o\left(\frac{1}{n}\right)$$

$$\ln\left(\sin\left(\frac{1}{n}\right)\right) = \ln\left(\frac{1}{n} + o\left(\frac{1}{n}\right)\right)$$

$$= \ln\left(\frac{1}{n}\right) + \ln\left(1 + o\left(1\right)\right)$$

$$= \ln\left(\frac{1}{n}\right) + o(1) + o(o(1))$$

$$= \ln\left(\frac{1}{n}\right) + o(1)$$

$$= \ln\left(\frac{1}{n}\right) + o\left(\ln\left(\frac{1}{n}\right)\right)$$

$$\sim \ln\left(\frac{1}{n}\right)$$

24.46 Exemple

Exemple 24.46

Soit (u_n) une suite non nulle de limite nulle. On admet que $\ln(1+u_n)=u_n-\frac{u_n^2}{2}+o(u_n^2)$, montrer que :

$$\exp\left(5n + n^2 \ln\left(1 + \frac{1}{n}\right)\right) \sim \frac{e^{6n}}{\sqrt{e}}$$

(au voisinage de 0).

$$\exp\left(5n + n^2 \ln\left(1 + \frac{1}{n}\right)\right) \underset{n \to +\infty}{=} \exp\left(5n + n^2 \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)\right)$$

$$\underset{n \to +\infty}{=} \exp\left(6n - \frac{1}{2} + o(1)\right)$$

$$\underset{n \to +\infty}{=} \frac{e^{6n}}{\sqrt{e}} \times e^{o(1)}$$

$$\sim_{n \to +\infty} \frac{e^{6n}}{\sqrt{e}}$$

Exercice 24.9

Exercice 24.9

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = e^{\frac{1}{n}} - e^{\frac{1}{n+1}}$. Donner un équivalent simple de u_n .

$$u_{n} = e^{\frac{1}{n}} - e^{\frac{1}{n+1}}$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n+1} - \frac{1}{n}})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n} \frac{1}{1 + \frac{1}{n}} - \frac{1}{n}})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n} \left[(1 + \frac{1}{n})^{-1} - 1 \right]})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n} \left[(1 + \frac{1}{n})^{-1} - 1 \right]})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n} \left(-\frac{1}{n} + o\left(\frac{1}{n}\right) \right)})$$

$$= e^{\frac{1}{n}} (1 - e^{-\frac{1}{n^{2}} + o\left(\frac{1}{n^{2}}\right)})$$

$$= e^{\frac{1}{n}} (1 - e^{-\frac{1}{n^{2}} + o\left(\frac{1}{n^{2}}\right)})$$

$$= e^{\frac{1}{n}} (1 - e^{\frac{1}{n^{2}} + o\left(\frac{1}{n^{2}}\right)})$$

Exercice 24.10

Exercice 24.10

Soit u la suite définie par $u_0 = \frac{\pi}{2}$ et :

$$\forall n \in \mathbb{N}, u_{n+1} = \sin u_n$$

- 1. Montrer que la suite u est strictement positive, décroissante et de limite nulle.
- 2. On admet que si u est une suite de limite nulle, alors quand n tend vers $+\infty$, $\sin u_n = u_n \frac{u_n^3}{6} + o(u_n^3)$. Déterminer le réel α tel que la suite $v_n = u_{n+1}^{\alpha} u_n^{\alpha}$ ait une limite réelle non nulle. En appliquant le lemme de Césaro à la suite (v_n) , en déduire un équivalent simple de (u_n) , quand $n \to +\infty$.
- 1. L'intervalle $\left[0,\frac{\pi}{2}\right]$ est stable par la fonction sinus.

Comme sin est croissante, la suite (u_n) est monotone. On a $u_1 < u_0$ donc (u_n) est décroissante. Par stabilité, (u_n) est positive.

D'après le théorème de la limite monotone, (u_n) converge vers $\ell \in [0, \frac{\pi}{2}]$.

D'après le théorème du point fixe, car sin est continue sur $[0, \frac{\pi}{2}]$, on a sin $\ell = \ell$.

En étudiant les variations de $x \mapsto \sin x - x$, on trouve un unique point fixe : 0.

2. Soit $\alpha \in \mathbb{R}^*$.

$$\begin{aligned} v_n &= u_{n+1}^\alpha - u_n^\alpha \\ &= \sin^\alpha u_n - u_n^\alpha \\ &\stackrel{=}{\underset{n \to +\infty}} u_n - \frac{u_n^3}{6} + o(u_n^3) - u_n^\alpha \\ &\stackrel{=}{\underset{n \to +\infty}} u_n^\alpha \left(1 - \frac{u_n^2}{6} + o(u_n^2) \right)^\alpha - u_n^\alpha \\ &\stackrel{=}{\underset{n \to +\infty}} u_n^\alpha \left[1 + \alpha \left(- \frac{u_n^2}{6} \right) + o(u_n^2) \right] - u_n^\alpha \\ &\stackrel{=}{\underset{n \to +\infty}} -\alpha \frac{u_n^{2+\alpha}}{6} + o(u_n^{2+\alpha}) \end{aligned}$$

Pour $\alpha = -2$, on a :

$$v_n = \frac{1}{n \to +\infty} \frac{1}{3} + o(1)$$

D'après le lemme de Césaro :

$$\frac{u_n^{-2} - u_0^{-2}}{n} = \frac{1}{n} \sum_{k=1}^n v_k \underset{n \to +\infty}{\longrightarrow} \frac{1}{3}$$

Donc:

$$\frac{u_n^{-2}}{n} = \frac{u_0^{-2}}{n} + \frac{1}{3} + o(1)$$
$$\sim \frac{1}{3}$$

Donc:

$$u_n^2 \sim \frac{3}{n}$$

$$u_n \sim \sqrt{\frac{3}{n}}$$