94-242600/30 RHONE POULENC RORER SA RHON 93.01.07 C*FR 2700166-A1

93.01.07 93FR-000078 (94.07.08) C07D 207/08, A61K 31/40

New pyrrolidine derivs. with affinity for cholecystokinin and gastrin receptors - are used to treat e.g. psychosis, anxiety, irritable colon syndrome, tumours and pancreatitis. C94-110768

Addnl. Data: CAPET M. DUBROEUCO M

Pyrrolidine derivs. of formula (I) and their salts and isomers are new:

B(5-B1A, 6-D1, 6-D2, 7-D3, 14-C1, 14-D2B, <u>14-E8,</u> 14-E10C, 14-E11, 14-E12, 14-H1B, <u>14-J1A1, 14-J1A3, 14-J1A4</u>, 14-J1B3, 14-J1B4, 14-M1A, 14-M1C) .10

R = 1-12C alkyl, 3-12C cycloalkyl or 6-12C polycycloalkyl (all opt. mono or polyunsatd); phenylalkyl (opt. ring-substd. by alkyl, alkoxy and/or halo); diphenylalkyl; cinnamyl; pyridyl, furyl, thienyl, quinolyl, naphthyl or indolyl (all opt, substd. by one or more alkyl); or phenyl (opt. substd. by halo, alkyl, alkoxy, OH, NO₂, amino, mono- or di alkylamino, alkoxycarbonyl, CONR₇R₈, NHCOMe, CF₃, Ph and/or OCF₃);

 R_1 , R_3 , $R_4 = H$ or alkyl;

 R₁, R₃, R₄ = H of alkyl;
 R₂ = (CH₂)_n- COR₆, (CH₂)_mOCOR*₆, -(CH₂)_mNR₉R₁₀ or oxazolinyl (opt. substd. by alkyl, and/or alkyl-3-oxadiazolyl);
 R₅ = phenyl (opt. substd. by halo, alkyl, alkoxy, and/or alkylthio), or naphthyl, indolyl, quinolyl, or phenylamino (all opt. phenyl-substd. by halo, alkyl, alkoxy, alkylthio, CF₃, COOH, alkoxycarbonyl, OH, NO₂, amino, acyl, CN, sulphamoyl, oxabarooul, budovycinic alkad, alkoxyinincalkyl carbamoyl, hydroxyimino alkyl, alkoxyiminoalkyl, hydroxyamino carbonyl, alkoxyaminocarbonyl, tetrazol-5-yl, tetrazol-5-ylalkyl, trifluoromethylsulphonamido, alkylsulphinyl, mono- or polyhydroxyalkyl, sulpho, alk-O-CO-alk, alk-COOX,

FR 2700166-A+

© 1994 Derwent Information Ltd

R₆ = OH, alkoxy, cycloalkoxy, cycloalkyl-alkoxy, phenyl or NR₉R₁₀;

 R_0^* = alkoxy, cycloalkoxy, cycloalkylalkoxy, phenyl or NR_9R_{10} ; R_7 = H, alkyl, phenylalkyl or phenyl (opt. substd. by halo, alkyl, alkoxy and/or alkylthio);

R₈ = alkyl, phenylalkyl or phenyl (opt. substd. by halo, alkyl, alkoxy and/or alkylthio); or

NR₇R₈ = mono- or polycyclic opt. unsatd. heterocyclyl contg. 4-9C atoms and one or more O or N atoms and opt substd. by one or more alkyl;

R₉ = H, alkyl, cycloalkylalkyl, cycloalkyl, phenylalkyl or phenyl (opt.

substd. by halo, alkyl, alkoxy, and/or alkylthio),
= alkyl, cycloalkyl, cycloalkyl sphenylalkyl, or phenyl (opt. substd. by halo, alkyl, alkoxy and/or alkylthio); or

NR₉R₁₀ =mono- or polycyclic opt. unsatd. heterocyclyl contg. 4-9C and one or more O,N and S, and opt. substd. by one or more

R₁₁ = H, alkyl or phenylalkyl;

R₁₂ = alkyl, phenylalkyl, phenylsulphonyl, (CH₂),COR₁₇, CN, CXO, CX=NOH, CX = NOalkCOOX, CHXOH, CHXOCOalk, NH₂ or NHCOalk;

R₁₃ =alkyl, cycloalkyl, CF₃, or phenyl (opt. substd. by CN, NO₂, amino, halo and/or alkoxy);

 R_{14} = tetrazol-5-yl;

FR 2700166-A+/1

() 1994 Derwent Information Ltd

94-242600/30

 $R_{15} = CO \text{ or } SO;$ $R_{16} = O \text{ or } CO$;

R₁₇ =OH, alkoxy, cycloalkoxy, cycloalkylalkoxy, phenyl, phenylalkoxy, alkyl or NR₉R₁₀;

m = 1 or 2;

p = 0 or 1; X = H, alkyl, or phenyl alkyl; alk - alkyl or alkylene; and

alk! = hydroxyalkyl, hydroxyalkylene, alkoxyalkyl or alkoxyalkylene; unless otherwise stated all alkyl moieties contain 1-4C; acyl contain 2-4C; and cycloalkyl contains 3-6C.

(I) have strong affinity for cholecystokinin (CCK) and gastrin receptors. They are particularly useful in the treatment and prevention of disorders due to CCK and gastrin in the nervous system and GI tract. They are used to treat and prevent psychoses, anxiety, depression, neurodegeneration, panic attacks, Parkinson's disease, tardive dyskinesia, irritable bowel syndrome, pancreatitis, ulcers, intestinal motility disorders, certain turnours sensitive to CCK,

memory dysfunction, chronic withdrawal and abuse of alcohol or drugs, as pupil constrictors, analgesics or as potentiators for analgesics (both narcotic and non narcotic), and as appetite regulators.

DOSAGE

Dosage is pref. oral at 0.05-1g/day in unit doses of 10-500

ADVANTAGE

(I) have low toxicity e.g. LD₅₀ of more than 40 mg/kg in

PREPARATION

4 methods are claimed e.g. as follows: (a) (I; R₅=R₅^I) is prepd. by reacting a carbamic acid deriv. obtd. opt. in situ by reaction of a carbonic acid deriv. chosen from N,N¹-diimidazolecarbonyl, phosgene, triphosgene and p nitrophenylchloroformate with a pyrrolidine cpd. of formula (11), with an aniline deriv. where the phenyl ring is opt. substd. by Q, and opt. salifying.

FR 2700166-A+/2

 R₃¹ = phenylamino (opt. ring substd.)
 Q = halo, alkyl, alkoxy, alkylthio, CF₃, COOH, alkoxycarbonyl, OH, NO₂, amino, acyl, CN, sulphamoyl, carbamoyl, hydroxyiminoalkyl, alkoxyiminoalkyl, hydroxyaminocarbonyl, nydroxyntiniocarkyt, ankoxyntiniocarkyt, nydroxyantiniocarbonyt, alkoxyaminocarbonyt, tetrazol-5-yla tetrazol-5-ylalkyl, trifluoromethylsulphonamido,alkylsulphinyl, mono- or polyhydroxyalkyl, S, alk OCOalk, alkCOOX, alk-O-alk, alk'-COOX, O-alkCOOX, CH=CHCOOX, COCO₂X, alkSO₃H (as its salt), CH=CH-alk¹, C(=NOH)-COOX, S-alkCO₂X, SO-alk-COOX, SO₂-alk-COOX, OCH₂-alk¹-COOX,

() 1994 Derwent Information Ltd

94-242600/30

R₂¹ = (CH₂)_mCOR₆;
R₈¹ = alkoxy, cycloalkoxy or cycloalkylalkoxy;
R₈¹¹ = phenyl (opt. substd.) naphthyl, indolyl, quinolyl or phenylamino (opt. ring substd. by halo, alkyl, alkoxy, alkylthio, CF₃, NO₂, acyl, CN, sulphamoyl, alkoxycarbonyl, carbamoyl, alkoxyiminoalkyl, alkoxyaminocarbonyl, alk-O-CO-alk, CH=CH=alk⁴, alk-O-alk, trifluoromethylsulphonamido, alkSO₃H (or its salt), O-alkCOOX, CH=CHCO₂X, COCO₂X, S-alkCO₂X, SO-alk CO₂X, SO₂alkCO₂X, OCH₂-alk⁴-CO₂X, CX=NOalk-CO₂X, alkCO₂X or alk⁴CO₂X); and cods. (f) may be interconverted.

cpds. (I) may be interconverted.

A soln. of 0.32g tertbutyl 4-benzyl 5-phenyl 2-pyrrolidine carboxylate and 0.31g 2-(3-(3-benzyloxycarbonyl-phenyl)ureido) acetic acid in 25ml acetonitrile was treated with 0.2g N,N'-dicyclohexylcarbodiimide at 20 ° C. The mixt, was stirred for 72 hrs. at 20 ° C. and worked up to give 0.54g (2S,4S,5R)tert-butyl-1-(2-(3-(3-benzyloxycarbonylphenyl)ureido) acetyl-4 benzyl 5 phenyl pyrolidinesorboxylote acetyl) 4-benzyl-5-phenyl pyrrolidinecarboxylate.

A soln. of 0.54g. of this prod. in 25ml EtOAc was treated

with 0.1g 10% Pd/C. The suspension was stirred for 18 hrs. at 20 $^{\circ}$ C. under H2 (130KPa). The catalyst was filtered off and the mixt. was worked up and chromatographed to give 0.36g free acid. In tests (I) have IC₅₀ value of < 1000nM for inhibition of

binding to CCK receptors. (48pp1858DwgNo.0/0)

FR 2700166-A/4

FR 2700166-A+/3