BDA x 이지스 퍼블리싱 머신러닝 스터디 2주차 과제조 이름 : 런닝머신 (9조)

1. 다음의 데이터는 전등의 수명을 나타낸 자료이다.

3, 5, 7, 18, 43, 85, 91, 98, 100, 130, 230, 487

위의 시간이 지수분포 $Exp(\lambda)$ 를 따른다고 가정해보자.

- 1.1 p45를 참고해 기울기가 0이 지점의 최적의 λ 를 구하시오.
- 1.2 뉴턴법을 이용하여 최적의 λ 를 구하는 알고리즘을 작성해보시오.

1.1

import numpy as np

```
def find_optimal_lambda(data):
   n = len(data)
   optimal_lambda = n / np.sum(data)
   return optimal_lambda
```

#주어진 데이터

data = np.array([3, 5, 7, 18, 43, 85, 91, 98, 100, 130, 230, 487])

#최적의 람다 계산

optimal_lambda = find_optimal_lamba(data)
print(optimal_lambda)

계산된 최적의 람다: 0.009252120277563608

1.2

뉴턴법은 함수의 극소점을 찾는 방법 중 하나로, 다음과 같이 반복하여 근사적으로 해를 찾는다.

$$\lambda_{
m new} = \lambda_{
m old} - rac{f'(\lambda_{
m old})}{f''(\lambda_{
m old})}$$

import numpy as np

#주어진 데이터

data = np.array([3, 5, 7, 18, 43, 85, 91, 98, 100, 130, 230, 487])

#로그-우도 함수의 미분과 이계도 함수 정의

 $def \ log_likelihood_lambda(lmbda, \ data):$

n = len(data)

return -(n / lmbda) + np.sum(data)

def log likelihood lambda prime(Imbda, data):

n = len(data)

return n / (lmbda**2) - np.sum(data)

```
def log_likelihood_lambda_double_prime(Imbda, data):
  n = len(data)
  return -2 * n / (lmbda**3)
# 뉴턴법 알고리즘
def newton_method(data, initial_guess, tol=1e-6, max_iter=100):
  lmbda_old = initial_guess
  for i in range(max iter):
    Imbda_new = Imbda_old - log_likelihood_lambda_prime(Imbda_old, data) /
log_likelihood_lambda_double_prime(Imbda_old, data)
    if np.abs(lmbda_new - lmbda_old) < tol:
      return Imbda_new
    Imbda_old = Imbda_new
  return Imbda_old
#초기 추정값 설정
initial_guess = 0.1
#최적의 lambda 계산
optimal_lambda = newton_method(data, initial_guess)
print("Optimal lambda:", optimal_lambda)
```

```
2. A = egin{pmatrix} 3 & 0 \ 4 & 5 \end{pmatrix}일때, U, \Sigma, V^T를 구해보시오.
```

01 "	CH () . v ^T	1	فولد	#2# O	ia.	Σ	- 4	TA 9	ir.	1212	122	을 대	각워	14	21-21-	_ CH	7312	2010	ł-										
_					_						_						-		_	_										
40	r, A	212 0(-T.	0,2	2, V	4	ZK2 (갱셕	uiq.	따라	И (U = (. Uə Us	, (V =	(Va I	4)4	irg.	ત્યુ પ											
				. 2	5 2	-	M 7/	0.5			20.00	h0	ALI.																	-
L)								100		Ag :	ن آات	た	グミロ	r.						+										
		9 =																												
										(25-h							= (y-	-5)(1)-4	ਓ)										
	det	(ATA	->	I)	= 0	0[식게?	兆	カット	PRE	TO!	22/	λ=	5,-	15 01	ч :														
				_ /	N/P	٥.		, 2	0 .																					
	٠٠	ar2H	4 2	Ξ = ('	0	īē)	= 15	(%	،) ه	ापः																				
					1																									
																	33.55													
										VΣ²V	т (ζ Σ	: CH 社	행절,	Σ=Σ	τ, υ	: 428	殚, (ο ^τ υ = .	I)										
		25) =											* 4																	
	(⁵ ₄	4 5) =	(9	V. V.	(,	V, (4)							K=	(3)	4)	थ प	, (14 7/2)(71 7	3)=	Can	1234	7674t	12/14)=((10)		
			(9	いべせい	1514	90	3+ V2 3 ² +V4	(4)																	015					
	1)	94	÷V.	2 = 1	B Vi	+(/,ª+ V.	(ځ	= 5																					
									- 37-22 0	23/45	의 성:	살)		∴ v	= = 1															
		2	t V	2 = 9	5		V22	= =																						
		같은	방	식으로	. V ₃	, V	25	계선	라면	V,2=	V2 ²	= V2	2= V	,2 4	불이	id:														
	2)	941	/a+1	/2V4	= 8	V, L	h+1	(v,v	3+V2	V4):	-4																			
						٠. ر	(Va	= 1/2	, V2	V4 =	- 1	Ç.	: V ₁ V ₂	, + V2	V4 =	0)														
	1)	, 2) §	N N	·	FP1	V	= (`	2/2	- JZ/2 .151) or	(,	2/2	J2/2)	olct:															
								-72	142			42	442																	
		a)	V	= (42 -	J2/	2)												b) (/= (JZ/2	. JZ/	(5						
					42	12/	2/															\V2/2	-V2/	2/						
			Α	= (JΣ	۷Τ															A =	():	Σ۷۲							
								30)[1 -1)														301	[[(-1)			
			-4				(l2) 3(4)				1										45				(33		-()			
		<u></u>	6						tu4)										Ī	-/6	0) = (2 (u	144 /	3U1-4 3U2-1	2)				
1		JIO V	8	10 /	(:	รแล	·u4	-sua	TU4 /										Jii	8/8	10	,	\ BUa∙	t U4	344-	A4 J				
				3) =	su.+	u -	みしょも	· U2	= 6			U2=	3								3)	311.	HI. +	->u	· U2 =	6			- 1 <u>10</u>	
					Bu,			-	110			u.=	-										(= U:			110			= <u>100</u>	
								t Un	= 10												41				-U4 =	18			= 3	
			-				カヤラ		110				100								4,				10	110			= - 1 20 - 10	
					-	Ju	" "	Ю				40-	3.10	0						+		u4	- 50	· /	10			((, <u>10</u>	
										U =	ι	((3,	١						+							() =	11	13	
									,	0 =	Vio	(9	-3)												••	U =	100	3 -1 /	
																				+										
-	312	<u>র্</u> পূর্ণ	2		Δ -	1	0) 0	1 20			() -	1 /	. 1	3, 1	-		130)	·/-	√∑ /	ι -	1))(다.					
	শ্ৰ	5742	L,		п=	(4	. 5) ;	2 41	,	1	U =	₩ (9	-ヵ)	, 2	= 15	01	1,	v =	2	-11	/	- (14:					
																	= 15													

3. p50의 표기를 참고해서, $\sigma_{r+1}=\ldots=\sigma_p=0$ 이라고 가정해보자(r< p). Σ_r 을 대각성분이 σ_1,\ldots,σ_r 인 대각행렬, U_r 을 $u_1,\ldots u_r$ 의 행벡터를 가지는 행렬, V_r 을 $v_1,\ldots v_r$ 의 행벡터를 가지는 행렬이라고 할 때, $A=U_r\Sigma_rV_r^T$ 임을 보이시오.

4. L2 규제를 포함한 로지스틱 모델을 구현해 p90에 예시와 비교해보시오.

L2

```
# import modules
import nummay as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import warnings
warnings.filterwarnings('ignore')

X, y = load_breast_cancer(return_X_y=True, as_frame=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1234)

X_train = X_train.iloc[:, :3]

Lif = LogisticRegression(random_state=1234, penalty="12")
clf.fit(X_train, y_train)

y_train_pred = clf.predict(X_train)
y_pred = clf.predict(X_test)

print(f"train set accuracy: {(y_train == y_train_pred).sum() / len(y_train) * 100: .2f}%")

train set accuracy: 91.60%
test set accuracy: 86.70%
```

- train set은 84.51%에 비해 7.09% 올랐다.
- test set은 76.06%에 비해 10.06% 올랐다.

5. 3장 되새김 문제 2번을 같이 풀어보시오.

```
intercept = -7
       beta = np.array([[-4, -12, 8, 9, 6]]).reshape(-1, 1)
       np.random.seed(1111)
       for i in range(n):
           xb = np.exp((intercept + (X.iloc[i].values.reshape(1, -1) @ beta))[0] + np.random.normal(0, 7.5))
           pi = xb / (1 + xb)
           ys.append(y)
       y = pd.Series(ys)
       from sklearn.linear_model import LogisticRegression
       clf=LogisticRegression(random_state=1234)
       print(f'계수: {clf.coef_[0]}')
       y_pred =clf.predict(X)
       print(f'정확도:{(y==y_pred).mean() * 100: 2f}%')
     절편: -1.3873690423718181
계수: [-0.68220025 -2.27202536 1.63149555 1.93208239 0.70733439]
     정확도: 89.000000%
```

6. 선형 회귀모델 $Y=X\beta+\epsilon$ $(X\in\mathbb{R}^{n imes(p+1)})$ 는 disigned matrix)을 생각해보자. 부분집합 $M\in\{1,\ldots,p\}$ 에 대해, $\beta_M=(\beta_0,(\beta_j)_{j\in M}), X_M=(1,(x_j)_{j\in M})(x_j$ 는 X의 j번째 열벡터)라 하고, 다음과 같은 선형 모델 $Y\sim N(X_M\beta_M,\sigma^2I)$ 을 모델 M이라고 하자. 충분히 작은 x에 대해 $\log(1+x)$ 를 x로 근사할 수 있다는 사실을 이용하여, 모든 $j\in M^C$ 에 대해 $\beta_j=0$ 일때, 모델 M의 AIC를 Mallows's C_p 로 근사해 보이시오.

(참고.
$$C_p=rac{SSE_p}{S^2}+2(|M|+1)-n$$
, SSE_p 는 모델 M 의 SSE, $AIC_M=-2log\hat{L}(M)+2(|M|+1)$

9 + 2(IMI+1) - n
예측값을 각각 맛,, 맛, 이라 할 때, 오차량이 정권분들 때는
$\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \frac{\frac{2}{2\pi}(y_1 - y_2)^2}{2\sigma^2}$ OICT. (624 P.129)
2 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
£ / 2 2
$\sigma^2 - \frac{\frac{C}{2\pi}(y_i - \hat{y}_{p_i})^2}{2\sigma^2} + 2p$
+ 2p
a =2 SSEa
11

7. 교재 4장 되새김 문제 2번을 풀어보시오.

문제: (최소제곱법)OLS 모델로 (X_train, y_train) 쌍을 학습하고 이를 (X_test, y_test) 쌍에 적용하여 MSE를 계산하라.

라쏘 모델로도 동일한 분석을 한 후 이를 OLS의 결과와 비교하라.

1. OLS 모델로 MSE 계산

```
regl= LinearRegression()
regl= regl.fit(X_train, y_train)

y_train_pred= regl.predict(X_train)
print(f'train data 기준 OLS 모델의 MSE:{((y_train - y_train_pred)**2).mean(): .2f}')

y_test_pred=regl.predict(X_test)
print(f'test data 기준 OLS 모델의 MSE:{((y_test-y_test_pred)**2).mean(): .2f}')
```

결 과:

train data 기준 OLS 모델의 MSE: 0.00 test data 기준 OLS 모델의 MSE: 67809.12

2. 라쏘 모델로 MSE 계산

```
reg2=Lasso()
reg2=reg2.fit(X_train, y_train)

y_train_pred=reg2.predict(X_train)
print(f'train data 기준 LASSO 모델의 MSE:{((y_train - y_train_pred)**2).mean(): .2f}')

y_test_pred=reg2.predict(X_test)
print(f'test data 기준 LASSO 모델의 MSE:{((y_test - y_test_pred)**2).mean(): .2f}')
```

결과:

train data 기준 LASSO 모델의 MSE: 130.41 test data 기준 LASSO 모델의 MSE: 457.40