Thème 3 – Champ créé par une distribution continue de charges

I- Champ créé par un fil rectiligne

Une charge électrique q > 0 est distribuée uniformément sur un fil de longueur 2a porté par l'axe (O, \vec{u}_y) , où O est le centre du fil.

- 1- Quelle est la densité linéique de charge λ portée par le fil ?
- 2- On cherche à exprimer le champ $\vec{E}(M)$ créé par ce fil en un point M d'abscisse x fixée de l'axe (O, \vec{u}_x) .
- a- Exprimer le champ électrostatique élémentaire $d\vec{E}(M)$ créé par l'élément de longueur $d\ell_P$ entourant le point P du fil d'ordonnée y.
- b- Justifier, en invoquant des arguments de symétrie, que le champ résultant $\vec{E}(M)$ est orienté selon \vec{u}_x et donc que seule, la composante $dE_x = d\vec{E}.\vec{u}_x$ est à considérer pour le calcul du champ total $\vec{E}(M)$ créé par le fil.
- c- Exprimer dE_x en fonction de λ , x et de l'angle $\theta = (\overline{PM}, \vec{u}_x)$. En déduire l'expression de $\vec{E}(M)$ en fonction de λ , x et a.
- 3- Que devient cette expression lorsque $a \to +\infty$?
- 4- Le fil forme un carré de côté 2a et porte toujours la charge linéique λ . Quelle est la valeur du champ électrique créé par ce carré en son centre ?

II- Condensateur plan

A- Champ créé par un plan infini

On considère un plan infini $(O, \vec{u}_x, \vec{u}_y)$, chargé uniformément avec une densité surfacique $\sigma > 0$. On repère tout point P de ce plan par ses coordonnées cylindriques $(\rho, \theta, z = 0)$ dans le repère $(O, \vec{u}_x, \vec{u}_\theta, \vec{u}_z)$.

On cherche l'expression du champ électrostatique $\vec{E}(M)$ créé en tout point M de l'axe (O, \vec{u}_z) , situé audessus du plan à l'ordonnée z > 0, par cette distribution de charges.

- 1- Faire un schéma de la situation on y indiquant en particulier le point M, le point P et ses coordonnées, ainsi que les vecteurs de la base cylindrique.
- 2- Soit un élément infinitésimal de surface dS_P du plan entourant un point P. Donner les expressions de dS_P et r = PM dans le système de coordonnées cylindriques.
- 3- Soit le vecteur unitaire $\vec{u}_{P/M} = \frac{\overline{PM}}{\|\overline{PM}\|}$. Donner l'expression de $\vec{u}_{P/M}$ dans la base cylindrique.
- 4- Rappeler l'expression du champ électrostatique élémentaire $d\vec{E}(M)$ créé par l'élément de surface dS_P . Représenter qualitativement $d\vec{E}(M)$ sur le schéma précédent.

5- Justifier, en invoquant des arguments de symétrie, que le champ résultant $\vec{E}(M)$ est orienté selon \vec{u}_z et donc que seule, la composante $dE_z = d\vec{E}.\vec{u}_z$ est à considérer pour le calcul du champ total $\vec{E}(M)$ créé par le plan.

6- En déduire que
$$\vec{E}(M) = \frac{\sigma}{2\varepsilon_0} \vec{u}_z$$
.

B- Modèle de condensateur plan

Deux plans de surface S, considérés comme infinis, chargés uniformément avec les densités surfaciques $+\sigma > 0$ et $-\sigma < 0$, sont situés respectivement en z = -d/2 et z = +d/2. On note P_1 et P_2 ces deux plans.

- 1- Faire un schéma de la situation.
- 2- Donner les expressions des champs \vec{E}_1 et \vec{E}_2 créés par les plans respectivement P_1 et P_2 en z < -d/2, -d/2 < z < d/2 et z > d/2. Représenter qualitativement ces champs sur le schéma précédent.
- 3- Donner l'expression du champ électrostatique $\vec{E}(M)$ résultant de la superposition de \vec{E}_1 et \vec{E}_2 en tout point M de l'espace.
- 4- Comment varie le potentiel électrostatique V(M) en tout point M de l'espace ? Représenter V(z). On choisira V(z=0)=0. En déduire la différence de potentiel $\Delta V=V_1-V_2$ entre les plans P_1 et P_2 .
- 5- Le système étudié modélise un condensateur plan. Les deux plans de surface S et distants de d sont appelés armatures. On définit alors la capacité C (exprimée en farad F) de ce condensateur comme le rapport entre la charge Q portée par l'armature inférieure, de densité surfacique $+\sigma>0$, et la différence de

potentiel
$$\Delta V$$
. Montrer que $C = \frac{\varepsilon_0 S}{d}$.