Разработка алгоритмов нелинейной фильтрации на основе идентификации линейных по параметрам моделей

Выпускник

Руководитель работы

Елкин Д.А.

Фурсов В. А.

Цель работы

Целью настоящей работы является разработка алгоритма нелинейной фильтрации на основе идентификации линейной по параметрам модели. А также написание программного обеспечения и проведение экспериментального, наглядного иллюстрирования качества восстановления изображений с помощью данного алгоритма.

Задачи

- 1. Проанализировать проблемы улучшения качества изображений;
- 2. Разработать технологию построения нелинейных фильтров на основе идентификации линейной по параметрам модели;
- 3. Провести экспериментальные исследования по восстановлению изображений с помощью разработанного алгоритма;
- 4. Визуально сравнить качество работы алгоритма с работой линейного фильтра.

Алгоритм идентификации

 $\text{Линейный КИХ-фильтр: } g\left(n_{\scriptscriptstyle 1},n_{\scriptscriptstyle 2}\right) = \sum_{\left(m_{\scriptscriptstyle 1},m_{\scriptscriptstyle 2}\right) \in \mathcal{Q}_g} a_{m_{\scriptscriptstyle 1},m_{\scriptscriptstyle 2}} g\left(n_{\scriptscriptstyle 1}-m_{\scriptscriptstyle 1},n_{\scriptscriptstyle 2}-m_{\scriptscriptstyle 2}\right) + \sum_{\left(m_{\scriptscriptstyle 1},m_{\scriptscriptstyle 2}\right) \in \mathcal{Q}_f} b_{m_{\scriptscriptstyle 1},m_{\scriptscriptstyle 2}} f\left(n_{\scriptscriptstyle 1}-m_{\scriptscriptstyle 1},n_{\scriptscriptstyle 2}-m_{\scriptscriptstyle 2}\right) + \xi\left(n_{\scriptscriptstyle 1},n_{\scriptscriptstyle 2}\right).$

Отсчеты и параметры в векторном виде:

$$\mathbf{x}_{i} = \left[x_{i,1}, x_{i,2}, \dots, x_{i,M}\right] = \left[\dots, g\left(n_{1} - m_{1}, n_{2} - m_{2}\right), \dots, f\left(n_{1} - m_{1}, n_{2} - m_{2}\right), \dots\right], \left(m_{1}, m_{2}\right) \in Q_{g} \cup Q_{f}, i = \overline{1, N},$$

$$\mathbf{c} = \left[c_{1}, c_{2}, \dots, c_{M}\right]^{T} = \left[\dots, a_{m_{1}, m_{2}}, \dots, b_{m_{1}, m_{2}}, \dots\right]^{T}, \left(m_{1}, m_{2}\right) \in Q_{g} \cup Q_{f}, i = \overline{1, N}.$$

Линейный КИХ-фильтр в матричном виде: $y = Xc + \xi$.

Задача заключается в том, чтобы по одной реализации (фрагменту изображения) построить оценку $\hat{\mathbf{c}}$ вектора параметров \mathbf{c} по доступным для непосредственного наблюдения $N \times M$ -матрице \mathbf{X} и $N \times 1$ -вектору $\mathbf{y}(N > M)$, при неизвестном $N \times 1$ -векторе ошибок $\mathbf{\xi}$.

Нелинейная фильтрация на основе идентификации линейной по параметрам модели

Для изучения была выбрана маска размером 5х5:

5 3 2 3 4 2 1 2 4 5 6 5 4 5

и функция вида: $f(x) = x + x^2 + x^3$

Тогда для данной маски, уравнение выходного сигнала будет иметь следующий вид: $y = a_1x_1 + a_2x_2 + a_3x_2^2 + a_4x_3^3 + a_5x_3 + a_6x_3^2 + a_7x_3^3 + a_8x_4 + a_9x_4^2 + a_{10}x_4^3 + a_{11}x_5 + a_{12}x_5^2 + a_{13}x_5^3 + a_{14}x_6 + a_{15}x_6^2 + a_{16}x_6^3$,

где a_i , $i = \overline{1,16}$ — идентифицируемые параметры;

 x_i — среднее значение яркости пикселей изображения с индексом соответствующим значению в маске, т.е. равноудаленные от центра маски значения.

Тогда по простой формуле находится оценка вектора решений: $\hat{a} = \left[\mathbf{X}^T \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{y}$.

Принцип работы программного средства

Исходное тестовое и размытое изображения

Восстановленные изображения

Нелинейный фильтр

Линейный фильтр

Исходное контрольное и размытое изображение

Изображения восстановленные фильтрами, с уже найденными параметрами

Нелинейный фильтр

Линейный фильтр

Выводы

По представленным результатам можно судить о преимуществе использования нелинейного фильтра перед линейным:

границы объектов, при восстановлении с помощью не линейного фильтра более четкие, чем при восстановлении линейным фильтром.

Также следует отметить удобство и простоту использования алгоритма идентификации параметров модели для задачи восстановления изображений.

Среди недостатков стоит отметить, что в работе не учтено влияние, наличие и появление шума на изображении.