53. 空间两直线的位置关系

一、基本训练题

- 1. 已知平面 α 一平面 $\beta = a,b \subset \alpha,c \subset \beta$,则直线 b,c 是异面直线的一个充分条件是______. (只需填写一个.)
- 2. 如图,在正四面体 ABCD 中,E,F 分别是 AB,CD 的中点,则 EF 与 AC 所成角的大小为______.
- 3. 下列各图是正方体或四面体,P,Q,R,S 分别是所在棱的中点,这四个点不共面的一个图是

二、典型例题

1. 已知: a二平面 α ,A \in α ,B \in α .用反证法证明: 直线 AB 和 a 是异面直线.

2. 设 E,F,G,H 依次是空间四边形 ABCD 各边 AB,BC, CD,DA 的中点(如图),设 AC+BD=a, $AC \cdot BD=b$,求 EG^2+FH^2 的值.

3. 在长方体 $ABCD-A_1B_1C_1D_1$ 中, AB=a, BC=b, $AA_1=c$, 求异面直线 BD_1 和 B_1C 所成角的余弦值.

三、测试题

1. 如图,在三棱锥 A-BCD 中,六条棱长均相等,E 是 AD 的中点,则 AB 和 CE 所成角的余弦值为_____.

2. 如图,正方体 ABCD- $A_1B_1C_1D_1$ 中,PQ 是异面直线 A_1D 和 AC 的公垂线,则直线 PQ 与 BD_1 的关系是

(A) 异面直线

(B) 平行

(C) 垂直不相交

(D) 垂直相交

3. 在正方体的一个面所在的平面内任意画一条直线,则与它异面的正方体的棱的条数是 ()

- (A) 4或5或6或7
- (B) 4或6或7或8

(C) 6或7或8

(D) 4 或 5 或 6

4. 如图,已知 P 为 $\triangle ABC$ 所在平面外的一点,E 为 PA 的中点,F 为 PC 的中点, $BE \perp AC$, $PC \perp AC$.

- (1) 求证: EF 是 BE, PC 的公垂线;
- (2) 若 PA=a, PC=b, 求异面直线 BE, PC 的距离.

5. 如图,ABC- $A_1B_1C_1$ 是直三棱柱, $\angle ACB$ =90°,点 D_1 , E_1 分别是 A_1B_1 , A_1C_1 的中点,若 BC=CA= CC_1 ,求 BD_1 与 AE_1 所成角的余弦值.

6. 如图,在三棱锥 D-ABC 中,DA 上平面 ABC, $\angle ACB$ = 90°, $\angle ABD$ = 30°,AC = BC,求异面直线 AB 与 CD 所成的角的余弦值.

四、说明

- 1. 本节复习内容为: (1) 平面的性质(三个公理及其推论);(2) 空间两直线的位置关系;(3) 两异面直线所成的角;(4) 给出公垂线的两异面直线的距离.
- **2.** 通过复习,应初步掌握反证法.证明两直线异面常用反证法外,本节例 1 即教材第 10 页的结论也可用来证明两直线异面.
- 3. 通过平移,把两异面直线所成角转化为两相交直线所成角时,注意异面直线所成角的取值范围为 $\left(0,\frac{\pi}{2}\right)$.

