資訊安全 HW2

40647027S 陳冠頴

1. (1.) 135 mod 61

$$135 = 2*61 + 13$$

 $61 = 4*13 + 9$
 $13 = 1*9 + 4$
 $9 = 2*4 + 1$

$$1 = 9 - 2*4$$

 $1 = 9 - 2(13-1*9) = 3*9 - 2*13$
 $1 = 3(61 - 4*13) - 2*13 = 3*61 - 14*13$
 $1 = 3*61 - 14(135 - 2*61) = 31*61 - 14*135$
 $1 = 31*61 + (-14)*135$

The modular multiplicative inverse of 135 mod 61 = 47 + 61k, $k \in \mathbb{Z}$.

$$7465 = 3*2464 + 73$$

 $2464 = 33*73 + 55$
 $73 = 1*55 + 18$
 $55 = 3*18 + 1$
 $1 = 55 - 3*18$
 $1 = 55 - 3(73 - 1*55) = 4*55 - 3*73$
 $1 = 4(2464 - 33*73) - 3*73 = 4*2464 - 135*73$
 $1 = 4*2464 - 135(7465 - 3*2464) = 409*2464 - 135*7465$
 $1 = 409*2464 + (-135) * 7465$

The modular multiplicative inverse of 7465 mod 2464 = 2329 + 2464k, $k \in \mathbb{Z}$.

(3.)
$$42828 \mod 6407$$

 $42828 = 6*6407 + 4386$
 $6407 = 4386 + 2021$
 $4386 = 2*2021 + 344$
 $2021 = 5*344 + 301$
 $344 = 301 + 43$
 $301 = 7*43 + 0$

(2.) 7465 mod 2464

因為 gcd(42828, 6407) = 43, 說明 42828 與 6407 不互質, 因此模反元素不存在。

2. 因為
$$gcd(4, 13) = 1$$
, By Fermat's little theorem $4^{12} \equiv 1 \mod(13)$ 。
$$4^{255} \equiv 4^{12^{21}} * 4^3 \equiv 1 * 4^3 \equiv 64 \equiv 12 \mod(13)$$

因為
$$gcd(7, 93) = 1$$
,By Fermat's little theorem $7^{92} \equiv 1 \mod(93)$
$$7^{1013} \equiv 7^{92^{11}} * 7 \equiv 1 * 7 \equiv 7 \mod(93)$$

3.
$$\Rightarrow P = p_1 p_2 \dots p_k$$

 $\mathbb{E} P_i = \frac{P}{p_i}, \forall i = 1, 2, \dots, k$

因為 $p_1, ..., p_k$ 彼此互質,所以 $\gcd(P_i, p_i) = 1$, $\forall i = 1, 2, ..., k$ 因此 P_i 在 \bmod p_i 下具有乘法反元素 M_i ,即

$$M_i P_i \equiv 1 \pmod{p_i}, \forall i = 1, 2, ..., k$$

取

$$n = \sum_{i=1}^{k} n_i M_i P_i \ (mod \ P)$$

因為 $p_i|P_i, \forall i \neq j$, 所以

$$n_i M_i P_i \equiv 0 \pmod{p_j}, \forall i \neq j \rightarrow n \equiv \sum_{i=1}^k n_i M_i P_i \equiv n_j M_j P_j \equiv n_j \pmod{p_j}, \forall j = 1, 2, ..., k$$

所以n為該系統的解。

接著證明其唯一性:

若存在X1, X2使得

$$x_1 \equiv x_2 \equiv n_j \ (mod \ p_j)$$
, $\forall j=1,2,...$, $k \rightarrow p_j | (x_1-x_2)$, $\forall j=1,2,...$, k ,因為 $P=p_1p_2...p_k$,所以 $P|(x_1-x_2)$,因此 $x_1 \equiv x_2 (mod \ P)$ 。

4. (1.) 令
$$\overline{L_{l}}$$
, $\overline{R_{l}}$ 為以 $\overline{L_{l-1}}$, $\overline{R_{l-1}}$ 為輸入且使用 \overline{k} 為 key,經過第 i 輪費斯托網路之後的結果。
$$L_{i} = R_{i-1} \rightarrow \overline{L_{l}} = \overline{R_{l-1}}$$
 \therefore 在 $f(\overline{R}, \overline{k})$ 中 \overline{R} 跟 \overline{k} 會做 xor \therefore f($\overline{R}, \overline{k}$) = f(R , k)
$$R_{i} = \overline{L_{l-1}} \oplus f(\overline{R_{l-1}}, \overline{k_{l}}) = \overline{L_{l-1}} \oplus f(R_{l-1}, k_{l}) = \overline{L_{l-1}} \oplus f(R_{l-1}, k_{l})$$
 所以當使用 \overline{X} 作為輸入 \overline{k} 作為 key,則完成全部的流程後加密的結果為 \overline{Y} 。

(2.) 假設明文 M 是 1111 則可以知道 \overline{M} 是 0000,如果用 K 解密 C 的結果為 0101,則暗示了用 \overline{K} 解 \overline{C} 的結果為 1010,因此只要解出來是 1111 或 0000 其中一個出現則可以知道 key 是 K 或 \overline{K} ,代表嘗試一種 key 就已經嘗試了兩種 key,因此需要嘗試的 key 數目為 $\frac{2^{56}}{2}$ = 2^{55} 。

5.

(1.)
$$(x^3 + 1) = (x + 1) * (x^2 + x + 1)$$

 $gcd(x^3 + 1, x^2 + x + 1) = (x^2 + x + 1)$, where the coefficient is in \mathbb{Z}_2 .

(2.)
$$x^3 + x + 1 = x * (x^2 + 1) + 1$$

 $gcd(x^3 + x + 1, x^2 + 1) = 1$, where the coefficient is in Z_3 .

(3.)
$$x^4 + 8x^3 + 7x + 8 = (6x + 10) * (2x^3 + 9x^2 + 10x + 1) + (4x^2 + 9)$$

 $(2x^3 + 9x^2 + 10x + 1) = (6x + 5) * (4x^2 + 9) + 0$
 $gcd(x^4 + 8x^3 + 7x + 8, 2x^3 + 9x^2 + 10x + 1) = (4x^2 + 9)$, where the coefficient is in Z_{11} .

6.明文為:

My power flurrie s through the ai r into the groun d. My soul is sp iraling in froze n fractals all a round. And one t hought crystalli zes like an icy blast. I'm never going back, the past is in the past.

我是參考 wiki 的做法: Reference

程式碼: 附加檔案 attack.py,使用 python3,額外用到的 Package 為 requests。

主要用到的公式

進行密碼塊連結解密的數學公式為

 $P_i = D_K(C_i) \oplus C_{i-1},$

 $C_0 = IV.$

Cipher 的第一組為 IV

因此從第二組開始送,原理為只要自己嘗試的 IV 與 cipher 送過去為合法的 padding 就能夠一個 Byte 一個 Byte 找到 $D(C\ i)$ 。

一開始先從最後一個 Byte 嘗試,假如 IV 的最後一個 Byte 為 IV_15,Cipher 的最後一個 Byte 為 C_15,如果送到 Server 嘗試成功為合法的 padding,則代表 IV_15 xor $D(C_15)$ 為 0x01,則 $D(C_15) = IV_15$ xor 0x01,可以找到 $D(C_15)$,再來找倒數第二個 Byte,先將 $D(C_15)$ xor 0x02 則只要嘗試 IV 的倒數第二個 Byte 有 $0\sim255$ 共 256 種可能,因為 $D(C_15)$ xor 0x02 到 Server 那邊解開一定會是 0x02,就能再找到 $D(C_14)$,以此類堆。

當解完 16 個 Byte 後,再將 D(C)與前一組 Cipher 的每個 Byte 做 xor 則可以得到前一組 cipher 的明文。

重複做完共13組即可得到13段明文,組合起來即為要求的訊息。

7. Crypto RSA Lab 因內容較多,固寫在另一份 PDF 檔案,檔名: Lab.HW2.pdf