JOURNAL DE MOLECULAR SPECTROSCOPY 61, 92-99 (1976)

Predissociation and A-Doubling in the Even-Parity Rydberg States of the Nitrogen Molecule

ROBERT S. MULLIKEN

Nobel laureate

Department of Chemistry, University of Chicago, Chicago, Illinois 60637

Predissociations in the y ' Π_p and x' Π_p '. Rydberg states of N_s (configurations $1\pi_s^{-1}4p\sigma$ and $1\pi_s^{-1}4p\sigma$, respectively) and their likely causes, are discussed. Peaking of rotational intensity at unusually how J values, without sharp breaking off, is interpreted as due to case e^* or case e^* predissociation. A doubling in the y state, attributed to interactions with the x' Π_p ' state and with another, ' Π_p ', atta to of the same electron configuration as x_s is analyzed. From this analysis the location of the (unobserved) ' Π_p ' state, here labeled x', is obtained. It is concluded that the predissociation in the Π^* levels of the y state is an indirect one mediated by the interaction with x' coupled with predissociation of x' by a ' Π_p ' state dissociating to ' Π ' Y' atoms; combined, however, with perturbation of the y state by the x' Y' Y atoms; combined, however, with perturbation of the Y' state by the X' Y' Y' state (configuration Y', whose Y' Y' is a recompletely predissociation.

I. INTRODUCTION

Among the Rydberg states of the nitrogen molecule above 13.0 eV, just two of even parity have long been known, $x^{+}\Sigma_{\tau}^{-}$ and $y^{+}\Pi_{\tau}^{-}$. A third, $k^{+}\Pi_{\tau}^{-}$, has recently been discovered (1). These states are known from emission bands as follows: $x^{+}\Sigma_{\tau}^{-} \rightarrow \sigma'^{+}\Sigma_{\tau}^{-}$ (fifth positive bands), $y^{+}\Pi_{\tau} \rightarrow \sigma'^{+}\Sigma_{\tau}^{-}$ (Kaplan's second system), $k^{+}\Pi_{\tau} \rightarrow \sigma'^{+}\Sigma_{\tau}^{-}$ (Carroll–Subbaram second system), and $k^{+}\Pi_{\tau}^{-} \rightarrow \sigma'^{+}\Sigma_{\tau}^{-}$ (Carroll–Subbaram show evidences of predissociation.

For brevity the various systems will be referred to as x - a', y - a', y - w, k - a', and k - w. A consideration of electron configurations leaves no reasonable doubt that states x, y, and k have the respective electron configurations A $3p\tau_w$, A $4p\sigma_w$, and X $4d\tau_w$, where A refers to the first excited state $- - 1v^{-1}3\sigma_w^{-1}1\Pi_w$, and X to the ground state $- - 1v^{-1}3\sigma_w^{-1}1\Pi_w$, and X to the ground state $- - 1v^{-1}3\sigma_w^{-1}1\Pi_w$ and X to the ground state $- - 1v^{-1}3\sigma_w^$

The y II, state shows anomalous behavior in the spacings of its rotational and vibrational levels (2). These anomalies have now been fully explained as the results of a homogenous mutual (vibronic) perturbation between the y and k II, states. Carroll and Subbaram (1) have carried out a deperturbation analysis which shows the rotational and vibrational constants of the unperturbed y and k-levels to be close to those of their respective parent ions X and A, a relation which is somewhat disgulated in the observed perturbed states.

In the χ 'II, state two vibrational levels v=0 and 1 have long been known, but recently v=2 has also been discovered (1). For the k 'II, state, only v=0 and 1 have

92

Cappright O 1878 by Academir Press, Inc., All rights of reproduction in any form reserved.

Salient features of the follow-up work by Professor R.S. Mulliken on the Nitrogen Molecule that provided the theoretical spine to the experimental work.

Extract from the above original publication of Professor R.S. Mulliken

"A third, $k^1\Pi g$," has recently been discovered (1). These states are ...

 $k^1\Pi q \longrightarrow a^{'1}\Sigma u^{-}$ (Carroll-Subbaram second system), and,

 $k^1\Pi g \longrightarrow w^1\Delta u$ (Carroll-Subbaram first system).

All these systems show evidences of "predissociation."