5.4 Замена переменной в двойном и тройном интегралах

Проблема. $S = \iint_D dxdy$

Если $S_{D'}=\int_0^{2\pi}d\varphi\int_0^Rd\rho=\iint_{D'}d\rho d\varphi$ - то это не площадь круга, а площадь прямоугольника S в распрямленных координатах

Введем Δs_i - площадь кольцевого сектора в полярных координатах, а $\Delta s_i'$ - площадь прямоугольника, причем $\Delta s_i \neq \Delta s_i'$

Nota. Будем искать поправочный коэффициент так, чтобы $\Delta s_i \approx$ коэфф. $\cdot \Delta s_i'$ Дроблению будем подвергать область D' в распрямленной системе координат

Введем новые криволинейные координаты: $\begin{cases} x = \varphi(u, v) \\ y = \psi(u, v) \end{cases}$, где функции $\varphi(u, v), \psi(u, v)$ непре-

рывно дифференцируемы по обоим аргумента. Исходно область *D* в *Oxy*

картинка

Заменим криволинейный параллелограмм на обычный, стянув вершины хордами (погрешность в площади - малая более высокого порядка, чем площадь)

$$A(x_{A}, y_{A}) = (\varphi(u, v), \psi(u, v))$$

$$B(x_{B}, y_{B}) = (\varphi(u, v + \Delta v), \psi(u, v + \Delta v))$$

$$C(x_{C}, y_{C}) = (\varphi(u + \Delta u, v + \Delta v), \psi(u + \Delta u, v + \Delta v))$$

$$D(x_{D}, y_{D}) = (\varphi(u + \Delta u, v), \psi(u + \Delta u, v))$$

$$S_{ABCD} = |\overrightarrow{ABAD}| = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_{B} - x_{A} & y_{B} - y_{A} & 0 \\ x_{D} - x_{A} & y_{D} - y_{A} & 0 \end{vmatrix} = \begin{vmatrix} \overrightarrow{k} & x_{B} - x_{A} & y_{B} - y_{A} \\ x_{D} - x_{A} & y_{D} - y_{A} \end{vmatrix}$$

$$x_{B} - x_{A} = \varphi(u, v + \Delta v) - \varphi(u, v) = \Delta_{v} \varphi \approx \frac{\partial \varphi}{\partial v} \Delta v$$

$$y_{B} - y_{A} = \psi(u, v + \Delta v) - \psi(u, v) = \Delta_{v} \psi \approx \frac{\partial \varphi}{\partial v} \Delta v$$

$$x_{D} - x_{A} = \varphi(u + \Delta u, v) - \varphi(u, v) = \Delta_{u} \varphi \approx \frac{\partial \varphi}{\partial u} \Delta u$$

$$y_{D} - y_{A} = \psi(u + \Delta u, v) - \psi(u, v) = \Delta_{u} \psi \approx \frac{\partial \varphi}{\partial u} \Delta u$$

$$\begin{vmatrix} \overrightarrow{k} & x_{B} - x_{A} & y_{B} - y_{A} \\ x_{D} - x_{A} & y_{D} - y_{A} \end{vmatrix} = \begin{vmatrix} \frac{\partial \varphi}{\partial v} \Delta v & \frac{\partial \psi}{\partial v} \Delta v \\ \frac{\partial \varphi}{\partial v} \Delta v & \frac{\partial \varphi}{\partial v} \Delta u \end{vmatrix} = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \varphi}{\partial v} & \frac{\partial \varphi}{\partial v} & \frac{\partial \varphi}{\partial v} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \varphi}{\partial v} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \varphi}{\partial v} & \frac{\partial \varphi}{\partial$$

Nota. В пределе это точное равенство:

$$|J| = \lim_{\Delta x \to 0} \frac{\Delta s}{\Delta s'}$$

(легко понять, если считать частные приращения по теореме Лагранжа $\Delta_u \varphi = \frac{\partial \varphi}{\partial u}(\xi, \eta) \Delta u \to \frac{\partial \varphi}{\partial u}(u, v) \Delta u$)

$$Def$$
. Определитель $J = \begin{vmatrix} \frac{\partial x_1}{\partial \xi_1} & \cdots & \frac{\partial x_1}{\partial \xi_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial \xi_1} & \cdots & \frac{\partial x_n}{\partial \xi_n} \end{vmatrix}$, где $\begin{cases} x_1 = f_1(\xi_1, \dots, \xi_n) \\ \dots & \text{- преобразование координат} \\ x_n = f_n(\xi_1, \dots, \xi_n) \end{cases}$

$$Ox_i \rightarrow O\xi_i(f_k \in C_D^1)$$

называется определителем Якоби или якобиан Построение интеграла.

- 1. Дробление D' в распрямленной Ouv
- 2. Выбор средней точки, поиск значения $f(\xi_i, \eta_i)$ Значение величины на элементе $f(\xi_i, \eta_i)|J|dudv$
- 3. Интегральная сумма $\sigma_n = \sum f(\xi_i, \eta_i) |J| du dv$
- 4. В пределе интеграл $\iint_D f(x,y) dx dy = \iint_{D'} f(u,v) |J| du dv$ Якобианы в ПСК, ЦСК, СфСК

1. IICK:
$$\begin{cases} x = \rho \cos \varphi & \frac{\partial x}{\partial \rho} = \cos \varphi & \frac{\partial x}{\partial \varphi} = -\rho \sin \varphi \\ y = \rho \sin \varphi & \frac{\partial y}{\partial \rho} = \sin \varphi & \frac{\partial y}{\partial \varphi} = \rho \cos \varphi \end{cases}$$
$$J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} = \rho \begin{vmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{vmatrix} = \rho$$
$$2. IICK: \begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \qquad J = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi & 0 \\ \sin \varphi & \rho \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho$$

3. CфCK - Lab

Ex.
$$T: \frac{x^2 + y^2 = z^2}{x^2 + y^2 = z}$$

Конус в ЦСК: $\rho=z,z>0$ Параболоид в ЦСК: $\rho=\sqrt{z},z>0$ $V_{T} = \iiint_{T} dx dy dz = \iiint_{T'} \rho d\rho d\phi dz = \int_{0}^{2\pi} d\phi \int_{0}^{1} d\rho \int_{z_{1}=\rho^{2}}^{z_{2}=\rho} \rho dz = 2\pi \int_{0}^{1} \rho z \Big|_{z_{1}=\rho^{2}}^{z_{2}=\rho} d\rho = 2\pi \int_{0}^{1} (\rho^{2} - \rho^{2})^{2} d\rho = 2\pi \int_{0}^{1} (\rho^{2} - \rho^{2})^{2} d\rho d\rho d\phi dz$ $\rho^3)d\rho = 2\pi (\frac{\rho^3}{3} - \frac{\rho^4}{4})\Big|_0^1 = 2\pi (\frac{1}{3} - \frac{1}{4}) = \frac{\pi}{6}$ Lab. $T: \frac{x^2 + y^2 + z^2 = 1}{\sqrt{x^2 + y^2} = z}$ - мороженка, считать в СфСК

5.5 Криволинейные интегралы

I рода. Область интегрирования - кривая $l = \overline{AB}$ (дуга) (начнем с плоской дуги)

На l действует скалярная функция f(x,y) (физ. смысл - плотность, то есть имеем неоднородный кривой стержень)

Задача в нахождении «суммарной» величины f(x,y), то есть интеграла: «складываем» элементы $f_{\rm cp}(x,y)dl$

Обозн. Получаем
$$\int_{l} f(x,y) dl = \int_{AB} f(x,y) dl$$