

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Lineare Algebra II

Sommersemester 2021

Übungsblatt 1

19.04.21

Aufgabe 1 (Eine Matrix ist ähnlich zu ihrer Transponierten)

(10 Punkte)

a) Es sei $\lambda \in \mathbb{C}, n \in \mathbb{N}$ und $J_n(\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \mathbb{C}^{n \times n}$ ein Jordankästchen, wobei freie

Stellen in der Matrix für Nullen stehen. Beweisen Sie, dass $J_n(\lambda)$ und $J_n(\lambda)^{\top}$ ähnlich zueinander sind.

Hinweis: Es gibt eine invertierbare Matrix S, die nur Nullen und Einsen als Einträge hat, und $J_n(\lambda)^{\top} = S J_n(\lambda) S^{-1}$ erfüllt. Versuchen Sie die Aufgabe zunächst für n = 2 und n = 3 zu lösen.

- b) Nun sei $J \in \mathbb{C}^{n \times n}$ eine Matrix in jordanscher Normalform. Beweisen Sie, dass J und J^{\top} ähnlich zueinander sind.
- c) Nun sei $A \in \mathbb{C}^{n \times n}$ eine beliebige quadratische Matrix. Beweisen Sie, dass A und A^{\top} ähnlich zueinander sind.

Bemerkung: Die Aussage dass A und A^{\top} ähnlich zueinander sind, gilt sogar für jede quadratische Matrix $A \in \mathbb{K}^{n \times n}$ über jedem beliebigen Körper \mathbb{K} . Dies lässt sich mit Verallgemeinerungen der Jordanschen Normalform zeigen.

Aufgabe 2 (Jordansche Normalform)

(10 Punkte)

Es sei $A \in \mathbb{C}^{5 \times 5}$ eine Matrix, die genau die Eigenwerte $\lambda_1, \lambda_2 \in \mathbb{C}$ mit $\lambda_1 \neq \lambda_2$ hat.

- a) Bestimmen Sie alle möglichen charakteristischen Polynome, die A haben kann. Geben Sie für jedes dieser Polynome ein Beispiel für eine solche Matrix A an.
- b) Wir betrachten nun das Polynom $m=(X-\lambda_1)(X-\lambda_2)\in\mathbb{C}[X]$. Beweisen Sie: A ist genau dann diagonalisierbar, wenn m(A)=0 gilt. Hinweis: Erinnern Sie sich an Aufgabe 1 von Übungsblatt 12 der Linearen Algebra I.

c) Ab jetzt sei

$$A = \begin{pmatrix} 3 & 0 & 0 & 6 & 6 \\ 0 & 3 & 0 & 5 & 5 \\ 0 & 0 & 3 & 4 & 4 \\ 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}.$$

Bestimmen Sie alle Eigenwerte, deren geometrische Vielfachheiten und die jordansche Normalform J von A.

d) Bestimmen Sie eine invertierbare Matrix S, sodass $SJS^{-1} = A$. Hinweis: Dies ist auch äquivalent zu SJ = AS. Überlegen Sie sich zuerst, dass vier der Spalten von S Eigenvektoren von A sind. Worauf wird die verbleibende Spalte abgebildet?

Abgabe bis Montag, den 26.04.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.