Inter (Part-I) 2021

inter (Part-1) 2021					
Mathematics Time: 30 Minutes		Group-II (OBJECTIVE TYPE)			PAPER: I Marks: 20
				Ξ)	
	circle in front	e choice wh of that ques ook. Cutting ero mark in	ich you thin stion with M g or filling to that question	k is o arke wo o on.	correct, fill that r or Pen ink in r more circles
	(a) Symmetri (c) Singular	(b)	Non-singu	lar √	A IS.
2-	The given fo (a) Transider (b) Cubic equal (c) An equation	rm (x – 4) ² : ntal equation uation	$= x^2 - 8x \div$	16 is	called:
3-	55	ic mean bet		-	and 1 + x + x ²
4-	-	f the equa < 0 ✓ (b)	tion $ax^2 +$ $b^2 - 4ac =$	0	+ c = 0 are
5-		of linear if the syste utions (b)	equations em has: Unique so	is lution	
6-	If $z = \cos \theta +$ (a) 0 (c) 2	(b)	1 ✓		
7-	If ω is the cu (a) 256 (c) -256ω	(b)	inity, then -256 256ω ✓	(1 +	$\omega - \omega^2)^8 = :$

8-	The geometric	mean between $\frac{1}{a}$ and $\frac{1}{b}$ is:				
	(a) $\pm \sqrt{\frac{1}{ab}} \checkmark$	(b) ± √ab				
	(c) $\frac{1}{ab}$	(d) ab				
9-	No term of geometric series is:					
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$.				
	(c) Zero ✓	(d) 1				
10-	as:	ys in which a set can be describe	ď			
	(a) 1	(b) 2	<u>.</u> 5.			
	(c) 3 ✓	(d) 4				
11-		m in the expansion $(a + x)^n$, when	n i			
	is even:					
		m \checkmark (b) $\left(\frac{n}{2}-1\right)$ th term				
. 1	(n).	(n+1)				
		(d) $\left(\frac{n+1}{2}\right)$ th term				
12-			n			
12-	For a trian	gle ABC with usual notation	n .			
12-		gle ABC with usual notation	n			
12-	For a trians $ \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} $	gle ABC with usual notation equals:	n			
12-	For a trian	gle ABC with usual notation	n			
12-	For a trians $ \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} $	equals:	n			
12-	For a triang $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ (a) $\tan \gamma$ (c) $\cot \gamma$	gle ABC with usual notation equals: (b) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$	n			
12-	For a triang $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ (a) $\tan \gamma$ (c) $\cot \gamma$ With usual nota	gle ABC with usual notation equals: $(b) \tan \frac{\gamma}{2}$ $(d) \cot \frac{\gamma}{2}$ tion ℓ equals to:	n			
3-	For a triang $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ (a) $\tan \gamma$ (c) $\cot \gamma$ With usual notation (a) r	gle ABC with usual notation equals: (b) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$ tion ℓ equals to: (b) θ	n			
3-	For a triang $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ (a) $\tan \gamma$ (c) $\cot \gamma$ With usual nota (a) r (c) $r\theta \checkmark$	gle ABC with usual notation equals: (b) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$ tion ℓ equals to: (b) θ (d) $2\pi r$	n			
12- 3-	For a triang $\sqrt{(s-a)(s-b)}$ $\sqrt{(s-a)(s-b)}$ $\sqrt{(s-c)}$ (a) $\tan \gamma$ (c) $\cot \gamma$ With usual nota (a) r (c) $r\theta \checkmark$ The circum radio	gle ABC with usual notation equals: (b) tan $\frac{\gamma}{2}$ (d) cot $\frac{\gamma}{2}$ tion ℓ equals to: (b) θ' (d) $2\pi\Gamma$ us 'R' is equal to:	n			
12- 3-	For a triang $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ (a) $\tan \gamma$ (c) $\cot \gamma$ With usual nota (a) r (c) $r\theta \checkmark$ The circum radius (a) $\frac{abc}{\Delta}$	gle ABC with usual notation equals: (b) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$ tion ℓ equals to: (b) θ (d) $2\pi r$	n			
12- 3-	For a triang $\sqrt{(s-a)(s-b)}$ $\sqrt{(s-a)(s-b)}$ $\sqrt{(s-c)}$ (a) $\tan \gamma$ (c) $\cot \gamma$ With usual nota (a) r (c) $r\theta \checkmark$ The circum radio	gle ABC with usual notation equals: (b) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$ tion ℓ equals to: (b) θ (d) $2\pi r$ us 'R' is equal to:	n			
3- 1-	For a triang $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ (a) $\tan \gamma$ (c) $\cot \gamma$ With usual nota (a) r (c) $r\theta \checkmark$ The circum radius (a) $\frac{abc}{\Delta}$	gle ABC with usual notation equals: (b) $\tan \frac{\gamma}{2}$ (d) $\cot \frac{\gamma}{2}$ tion ℓ equals to: (b) θ (d) $2\pi r$ us 'R' is equal to: (b) $\frac{4abc}{\Delta}$	n			

15-	A die is rolled, then n(s) is:			
	(a) 36 (b) 6 ✓			
	(c) 1 (d) 9			
16-	If cos 2x = 0, then solution in I quadrant is:			
	(a) 30° (b) 60°			
	(c) 45° √ (d) 15°			
17-	An angle is said to be in standard position if its			
	vertex is:			
*	(a) (0, 0) \(\square \) (b) (0, 1)			
	(c) (1, 1) (d) (1, 0)			
18-	The range of sin x is:			
	(a) [-1, 0] (b) [-1, 1] ✓			
i - Tarj-	(c) [0, 2] (d) [-2, 2]			
19-	sin ⁻¹ A + sin ⁻¹ B equals:			
	(a) $\cos^{-1} \left(AB - \sqrt{(1 - A^2)(1 - B^2)} \right)$			
	(b) $\cos^{-1} \left(AB + \sqrt{(1 - A^2)(1 - B^2)} \right)$			
	(c) $\sin^{-1} \left(A \sqrt{1 - B^2} + B \sqrt{1 - A^2} \right) \checkmark$			
	(d) $\sin^{-1} \left(A \sqrt{1 - B^2} - B \sqrt{1 - A^2} \right)$			
20-	tan 20 = :			
	$\frac{1}{2}$ tan θ			
	(a) $\frac{2 \tan \theta}{1 + \tan^2 \theta}$ (b) $\frac{\tan \theta}{1 - \tan^2 \theta}$			
	$2 \tan \theta$ $0 - 1 - \tan^2 \theta$			
	(c) $\frac{2 \tan \theta}{1 - \tan^2 \theta}$ (d) $\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$			
	. 하게 되는 요			
. ~	일반이 다양 그리를 보면 하셨다면 하셨다면 되었다면 하셨다면 하는데			