ABSTRACT

The well-established advantages of resonant converters, including simplicity of circuit configuration, easy of the control scheme, low switching losses, and low electromagnetic interference (EMI), among other converters. The existing system consists of switched mode power converters, so it takes more time to charge the battery and it has high switching losses. In order to overcome these disadvantages, The proposed system is designed. The proposed system develops a highly efficient battery charger with an improved series-loaded resonant converter for fast charging applications to improve the performance of traditional switching mode charger circuits. The switching frequency of the improved series-loaded resonant battery charger was at continuous conduction mode. The Charging efficiency can be improved using an improved series-loaded resonant converter with modular converter.

ஆய்வுசுருக்கம்

எளிமை, கட்டுப்பாட்டுத் திட்டத்தின் சுமற்சியின் எளிதானது, குறைந்த மின்விசை மாற்றுக்குமிழி நஷ்டங்கள் மற்றும் குறைந்த மின்காந்த இடையீடு (EMI) எதிர்ப்பாளர்களுடனான ஒத்திசைவான மாற்றிகளால் போன்ற பிற நன்கு தயாரிக்கப்பட்ட நன்மைகள். தற்போதுள்ள அமைப்பு மின்விசை மாற்றுக்குமிழி மின் மாற்றிகளை கொண்டுள்ளது, எனவே மின்விசை சேர்வி நேரத்தை எடுக்கிறது மற்றும் அதிக மாறுதல் இழப்புகள் உள்ளன. இந்த குறைபாடுகள் சமாளிக்க பொருட்டு, முன்மொழியப்பட்ட அமைப்பு வடிவமைக்கப்பட்டுள்ளது. முன்மொழியப்பட்ட முறைமை ஒரு சிறந்த செயல்திறன் மின்கல சார்ஜர் செயல்திறனை மேம்படுத்துவதற்காக வேகமாக சார்ஜ் செய்யும் பயன்பாடுகளுக்கு மேம்படுத்தப்பட்ட தொடர்-ஏற்றப்பட்ட ரெசோனண்ட் மாற்றி கொண்டு மிகவும் பேட்டரி சார்ஜரை உருவாக்குகிறது. மேம்படுத்தப்பட்ட திறமையான தொடர்-ஏற்றப்பட்ட ஒத்ததிர்வு பேட்டரி சார்ஜரின் மின்விசை மாற்றுக்குமிழி அதிர்வெண் தொடர்ச்சியான கடத்தல் முறையில் சார்ஜிங் செயல்திறன் இருந்தது மேம்படுத்தப்பட்ட தொடர்-ஏற்றப்பட்ட ஒத்ததிர்வு மாற்றி பயன்படுத்தி மட்டு மாற்றி கொண்டு மேம்படுத்தலாம்.

TABLE OF CONTENTS

CHAPTER	NO	CONTENTS PAGE	NO
	ABS	TRACT ENGLISH	iv
	ABS	TRACT TAMIL	v
	TAB	BLE OF CONTENTS	vi
	LIST	Γ OF FIGURES	ix
	LIST	Γ OF ABBREVATIONS	xi
1. INTR	RODU	UCTION	1
	1.1	GENERAL	1
	1.2	OBJECTIVES OF THE PROJECT WORK	3
	1.3	ORGANISATION OF THE REPORT	3
2. LITE	RAT	URE SURVEY	4
	2.1	INPUT PARALLEL OUTPUT SERIES CONNECTION	N OF
		ISOLATED DC-DC CONVERTERS	4
	2.2	INTERLEAVED 3 PHASE DC/DC CONVERTER FOR	3
		AUTOMOTIVE APPLICATIONS	4
	2.3	MULTIPHASE CONVERTERS FOR CHARGING OF	
		ENERGY STORAGE ELEMENTS	5
	2.4	COMPARATIVE ANALYSIS OF RESONANT	5
		CONVERTERS FOR ENERGY STORAGE SYSTEMS	5 5
3. PHAS	SE-SI	HIFTED FULL BRIDGE AND LLC RESONANT	
CON	VER'	TERS FOR HIGH POWER APPLICATION	6
	3.1	PHASE SHIFTED FULL BRIDGE CONVERTER	6
	3.2	TOPOLOGY DESCRIPTION	7
	3.3	OPERATING MODES	10
4. EXIS	TINO	G SYSTEM	15

	4.1	SERIES RESONANT CONVERTER	17
	4.2	PARALLEL RESONANT CONVERTER	19
	4.3	SERIES PARALLEL RESONANT CONVERTER	20
	4.4	LLC RESONANT CONVERTER	20
5.	PROPOSE	ED SYSTEM	25
	5.1	INTRODUCTION	25
	5.2	BLOCK DIAGRAM	26
	5.3	MATLAB SIMULATION	28
		5.3.1 SIMULATION RESULTS	28
	5.4	APPLICATIONS	29
		5.4.1 ELECTRIC VEHICLE	29
		5.4.2 INDUSTRIAL CONTROLS	29
	5.5	ADVANTAGES	30
		5.5.1 PROMOTES THE USE OF BATTERIES WITH	
		HIGHER CAPACITIES	30
	5.6	LIMITATIONS AND DISADVANTAGES OF FAST	
		CHARGING TECHNOLOGY	31
		5.6.1 SHORTENS THE LIFESPAN OF LITHIUM-ION	
		BATTERIES	31
		5.6.2 INCREASES THE SUSCEPTIBILITY TO	
		OVERHEATING OF A DEVICE	32
		5.6.3 DEPENDENT ON HARDWARE	
		COMPATIBILITIES	32
	5.7	FEATURES	32
		5.7.1 EV CHARGING MODE	33

6.	CONCLUSION	34
7.	APPENDICES	35
	1. HARDWARE SNAPSHOT	35
	2. PIC PROGRAM	36
	3. DATA SHEET	41
	REFERENCES	

LIST OF FIGURES

FIGURE NO NAME		PAGE NO	
3.1	PHASE-SHIFTED FULL BRIDGE CONVERTER	7	
3.1.1	PHASE-SHIFTED FULL BRIDGE CONVERTER WAVE FOR	2M 8	
3.2	THE DIFFERENCE BETWEEN REGULAR FULL BRIDGE A	ND PH-	
	FULL BRIDGE ZVS PWM DC/DC CONVERTER TOPOLOG	IES	
	CONTROL SWITCHING	9	
3.3	PHASE-SHIFTED FULL BRIDGE CONVERTER MODES	10	
3.3.1	PHASE-SHIFTED FULL BRIDGE CONVERTER WAVE FOR	2M 10	
3.4	MODE 1: AT TIME t ₁	11	
3.4.1	AT TIME T ₁ WAVE FORM	11	
3.5	MODE 2: AT INTERVAL t ₁ ~t ₂	12	
3.5.1	AT INTERVAL T1~T2 WAVE FORM	12	
3.6	MODE 3: AT INTERVAL t ₂ ~t ₃	12	
3.6.1	AT INTERVAL t ₂ ~t ₃ WAVE FORM	12	
3.7	MODE 4: AT INTERVAL t ₃ ~t ₄	13	
3.7.1	AT INTERVAL T ₃ ~T ₄ WAVE FORM	13	
3.8	MODE 5: AT TIME t ₄	14	
3.8.1	AT TIME T ₄ WAVE FORM	14	
3.9	MODE 6: INTERVAL t ₄ ~t ₅	14	
3.9.1	INTERVAL T ₄ ~T ₅ WAVE FORM	14	
4.1	EXISTING SYSTEM	15	
4.2	INTERLEAVED BUCK CONVERTER	16	
4.3	HALF BRIDGE SERIES RESONANT CONVERETER	17	
4.4	HALF BRIDGE SRC GAIN CURVES	18	
4.5	HALF BRIDGE PARALLEL RESONANT CONVERTER	19	

4.6	HALF BRIDGE PRC GAIN CURVES	20
4.7	HALF BRIDGE SERIES PARALLEL RESONANT CONVERTER	21
4.8	HALF BRIDGE SPRC GAIN CURVES	22
4.9	HALF BRIDGE LLC RESONANT CONVERTER	23
4.10	HALF BRIDGE LLC RESONANT CONVERTER GAIN CURVES	23
5.1	BLOCK DIAGRAM PROPOSED SYSTEM	26
5.2	DRIVER CIRCUIT	27
5.3	SIMULATION CIRCUIT	28
5.4	OUTPUT WAVE FORM	28

LIST OF ABBREVATIONS

SRC - Series Resonant Converter

ZCS - Zero Current Switching

ZVS - Zero Voltage Switching

PRC - Parallel Resonant Converter

SPRC - Series Parallel Resonant Converter

PWM - Pulse Width Modulation

EV - Electric Vehicle

DC - Direct Current

ESS - Energy Storage Systems