El muestreo por importancia es una técnica utilizada en simulación Monte Carlo para estimar el valor esperado de una función cuando las simulaciones directas son ineficientes debido a una alta varianza o a la baja probabilidad de los eventos relevantes bajo la distribución original.

Sea X una variable aleatoria con densidad f(x), y sea h(x) una función tal que se desea estimar

 $\mu = \mathbb{E}_f[h(X)] = \int h(x)f(x) dx.$

Si muestrear desde f es difícil o conduce a estimadores de alta varianza, se puede usar otra densidad g(x), llamada densidad de importancia, desde la cual sí sea más conveniente simular, y tal que $f(x) > 0 \Rightarrow g(x) > 0$.

Reescribiendo:

$$\mu = \int h(x) \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g \left[h(X) \frac{f(X)}{g(X)} \right],$$

lo que permite estimar μ mediante simulaciones desde g:

$$\hat{\mu}_{IS} = \frac{1}{N} \sum_{i=1}^{N} h(X_i) \frac{f(X_i)}{g(X_i)}, \quad X_i \sim g.$$

Este estimador puede tener menor varianza que el estimador clásico si g(x) se elige de modo que asigne mayor peso a las regiones donde h(x)f(x) es grande.

Ejercicio 1. Estime el valor de la siguiente integral utilizando el método de Monte Carlo con al menos 10⁵ repeticiones:

$$\int_0^1 \frac{1}{1+x^2} \, dx$$

Compare su estimación con el valor exacto y analice la convergencia al aumentar el número de repeticiones. Calcule la varianza del estimador y proponga un método de reducción de varianza.

- **Ejercicio 2.** Considere la función $f(x) = \exp(-x^2)$ definida en [0,1]. Estime $\int_0^1 f(x) dx$ usando:
 - Muestreo uniforme
 - Muestreo por importancia con densidad propuesta g(x) = 2(1-x)

Compare ambas estimaciones en términos de sesgo y varianza.

- **Ejercicio 3.** Diseñe una simulación de Monte Carlo para estimar el valor de π utilizando el método del círculo inscrito. Repita el procedimiento 50 veces y construya un intervalo de confianza del 95% para el estimador. Comente sobre la estabilidad del resultado.
- **Ejercicio 4.** Sea $X \sim \mathcal{N}(0,1)$. Estime la probabilidad P(X > 2.5) mediante simulación Monte Carlo y compare con el valor exacto obtenido de la tabla normal. Luego, proponga un cambio de variable (muestreo por importancia) que reduzca la varianza de su estimador y verifique su desempeño.

- **Ejercicio 5.** Se desea estimar el valor esperado E[Y] donde $Y = \frac{X^2 + 3X + 2}{X + 4}$ y $X \sim \text{Exp}(1)$. Simule 10^5 valores y estime la media y la varianza de Y. Comente sobre la estabilidad del estimador y la distribución empírica de Y.
- **Ejercicio 6.** Suponga que se desea estimar el valor de una expectativa condicional $E[X \mid X > 2]$, donde $X \sim \mathcal{N}(0,1)$. Proponga una estrategia de simulación para resolver este problema. Analice la eficiencia del método si $X \sim \mathcal{N}(\mu,1)$ con $\mu = 3$.