Class 8: Mini Project

In todays mini project we will explore a complete analysis using the unsupervised learning techniques covered in class (clustering nd PCA for now).

The data itself comes from the wisconsin Breast Cancer Diagnostic Data Set FNA breast biopsy data.

#Save your input file into your Project directory

```
fna.data <- "WisconsinCancer (1).csv"</pre>
```

Complete the following code to input the data and store as wics.df

diagnosis radius_mean texture_mean perimeter_mean area_mean

```
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	•		-	_	_	
842302	M	17.99	0.38	122.80	1001.0	
842517	М	20.57	7.77	132.90	1326.0	
84300903	М	19.69 2	1.25	130.00	1203.0	
84348301	М	11.42	0.38	77.58	386.1	
84358402	М	20.29	4.34	135.10	1297.0	
843786	М	12.45	5.70	82.57	477.1	
	${\tt smoothness_mean}$	compactness_me	an concavity_	_mean conca	ve.point	ts_mean
842302	0.11840	0.277	60 0.	.3001	(0.14710
842517	0.08474	0.078	64 0.	. 0869	(0.07017
84300903	0.10960	0.159	90 0.	. 1974	(0.12790
84348301	0.14250	0.283	00	0444		1000
84348301	0.14250	0.203	90 0.	. 2414	(0.10520
84358402	0.14250	0.132		. 1980		0.10520 0.10430
			80 0.		(

symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se

040200	0.0410		0 07071	1 0050	0 0052	0 500
842302	0.2419		0.07871		0.9053	8.589
842517	0.1812		0.05667		0.7339	3.398
84300903	0.2069		0.05999		0.7869 1.1560	4.585
84348301	0.2597		0.09744			3.445
84358402	0.1809		0.05883			5.438
843786	0.2087		0.07613		0.8902	2.217
842302	area_se smoothn 153.40 0.	ess_se compa 006399	0.04904	•	_	0.01587
842517		005225	0.01308			0.01340
84300903		005225	0.01306			0.01340
			0.07458			
84348301		009110				0.01867
84358402		011490	0.02461			0.01885
843786		007510 atal dimana	0.03345			0.01137
040200	symmetry_se fra 0.03003		on_se rad: 006193	25.38	xture_worst 17.33	
842302 842517	0.03003		003532	25.30	23.41	
84300903 84348301			004571	23.57 14.91	25.53 26.50	
			009208 005115			
84358402	0.01756			22.54	16.67	
843786	0.02165		005082	15.47	23.75	-+
842302	perimeter_worst 184.60			0.1622	o.66!	
842517	158.80			0.1022	0.186	
84300903	152.50			0.1236	0.100	
84348301	98.87			0.2098	0.42	
84358402	152.20			0.2098		
843786	103.40			0.1374	0.20! 0.52 ⁴	
043700			inta worat			±9
842302	concavity_worst 0.7119	_	0.2654			
842517	0.7119		0.1860	0.40		
84300903	0.4504		0.2430	0.3		
84348301	0.6869		0.2575	0.66		
84358402	0.4000		0.1625	0.00		
843786	0.5355		0.1023	0.2		
043700	fractal_dimensi		0.1741	0.3	900	
842302	Tractar_drmensr	0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.00730				
84358402		0.07678				
843786		0.12440				
0-10100		0.12770				

Remove the diagnosis column and keep it in a separate vector for later. # We can use -1 here

```
diagnosis <- as.factor(wisc.df[,1])
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean te	vturo moon	norimot	or moon	area mean	gmoothr	ogg moon
842302	17.99	10.38	berrmer	122.80	1001.0	SIIIOOCIIII	0.11840
842517	20.57	17.77		132.90	1326.0		0.11040
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
010100	compactness_me		.v mean o			an symme	
842302	0.277		0.3001		0.147	•	0.2419
842517	0.078		0.0869		0.070		0.1812
84300903	0.159		0.1974		0.1279		0.2069
84348301	0.283		0.2414		0.1052		0.2597
84358402	0.132	80	0.1980		0.1043	30	0.1809
843786	0.170	00	0.1578		0.0808	39	0.2087
	fractal_dimens	ion_mean ra	adius_se	texture	e_se perime	eter_se	area_se
842302	_	0.07871	1.0950		9053	8.589	153.40
842517		0.05667	0.5435	0.7	7339	3.398	74.08
84300903		0.05999	0.7456	0.7	7869	4.585	94.03
84348301		0.09744	0.4956	1.1	1560	3.445	27.23
84358402		0.05883	0.7572	0.7	7813	5.438	94.44
843786		0.07613	0.3345	0.8	3902	2.217	27.19
	smoothness_se	compactness	s_se con	cavity_s	se concave	.points_	se
842302	0.006399	0.04	1904	0.0537	73	0.015	87
842517	0.005225	0.01	1308	0.0186	30	0.013	340
84300903	0.006150	0.04	1006	0.0383	32	0.020	58
84348301	0.009110	0.07	7458	0.0566	31	0.018	867
84358402	0.011490	0.02	2461	0.0568	38	0.018	885
843786	0.007510	0.03	3345	0.0367	72	0.011	.37
	symmetry_se fr	actal_dimer	nsion_se	radius_	worst text	ture_wor	st
842302	0.03003	(0.006193		25.38	17.	33
842517	0.01389	(0.003532		24.99	23.	41
84300903	0.02250	(0.004571		23.57	25.	53
84348301	0.05963		0.009208		14.91	26.	50
84358402	0.01756		0.005115		22.54	16.	67
843786	0.02165		0.005082		15.47	23.	
	perimeter_wors	t area_wors	st smootl	nness_wo	orst compa	ctness_w	orst

842302	184.60	2019.0	0.1622	0.6656
842517	158.80	1956.0	0.1238	0.1866
84300903	152.50	1709.0	0.1444	0.4245
84348301	98.87	567.7	0.2098	0.8663
84358402	152.20	1575.0	0.1374	0.2050
843786	103.40	741.6	0.1791	0.5249
	concavity_worst	concave.points_wor	rst symmetry_worst	5
842302	0.7119	0.26	0.4601	L
842517	0.2416	0.18	360 0.2750)
84300903	0.4504	0.24	130 0.3613	3
84348301	0.6869	0.25	0.6638	3
84358402	0.4000	0.16	0.2364	1
843786	0.5355	0.17	741 0.3985	5
	fractal_dimension	on_worst		
842302		0.11890		
842517		0.08902		
84300903		0.08758		
84348301		0.17300		
84358402		0.07678		
843786		0.12440		

Explore the data analysis

The first step of any data analysis, unsupervised or supervised, is to familiarize yourself with the data.

Q1. How many observations (patients) are in this dataset?

```
nrow(wisc.data)

[1] 569

Q2. How many of the observations have a malignant diagnosis?

table(diagnosis)
```

diagnosis B M 357 212 Q3. How many variables/features in the data are suffixed with _mean?

First find the column names

```
colnames(wisc.data)
 [1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness mean"
                                "compactness mean"
 [7] "concavity_mean"
                                "concave.points_mean"
 [9] "symmetry_mean"
                                "fractal_dimension_mean"
[11] "radius_se"
                                "texture_se"
[13] "perimeter_se"
                                "area se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture_worst"
                                "area_worst"
[23] "perimeter_worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal_dimension_worst"
```

Next we need to search within the column for "_mean" pattern. The grep() function might help here.

```
inds <- grep("_mean", colnames(wisc.data))
length(inds)</pre>
```

[1] 10

Q. How many dimensions are in this dataset?

```
ncol(wisc.data)
```

[1] 30

Principal Component Analysis

First do we need to scale the data before PCA or not.

round(apply(wisc.data, 2, sd), 3)

```
radius_mean
                                   texture_mean
                                                          perimeter_mean
                 3.524
                                           4.301
                                                                   24.299
             area_mean
                                smoothness_mean
                                                        compactness_mean
               351.914
                                           0.014
                                                                    0.053
                            concave.points_mean
                                                            symmetry_mean
        concavity_mean
                                           0.039
                 0.080
                                                                    0.027
fractal dimension mean
                                      radius se
                                                               texture se
                 0.007
                                           0.277
                                                                    0.552
          perimeter_se
                                                            smoothness se
                                         area se
                 2.022
                                          45.491
                                                                    0.003
                                                       concave.points_se
        compactness_se
                                   concavity_se
                 0.018
                                           0.030
                                                                    0.006
                           fractal_dimension_se
                                                            radius_worst
           symmetry_se
                                                                    4.833
                 0.008
                                           0.003
                                perimeter_worst
         texture_worst
                                                               area_worst
                 6.146
                                          33.603
                                                                  569.357
      smoothness_worst
                              compactness_worst
                                                          concavity_worst
                 0.023
                                           0.157
                                                                    0.209
                                 symmetry_worst fractal_dimension_worst
  concave.points_worst
                                           0.062
                 0.066
                                                                    0.018
```

Looks like we need to scale.

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
Cumulative Proportion
                           PC8
                                  PC9
                                         PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
```

```
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                         PC24
                                                 PC25
                          PC22
                                  PC23
                                                         PC26
                                                                 PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27%

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 PCs capture 72%

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 PCs capture 91%

PC Plot

We need to make our plot

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```


Interpret PCA results

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

There is a difference in the distance but the plot needs to be more organized in order to understand the data better.

biplot(wisc.pr)

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
plot(wisc.pr$x[, 1],wisc.pr$x[, 3], col = diagnosis,
     xlab = "PC1", ylab = "PC3")
```


##Scatter plot observations by components 1 and 2

```
library(ggplot2)
pc <- as.data.frame(wisc.pr$x)
pc$diagnosis <- diagnosis

ggplot(pc) +aes(PC1, PC2, col=diagnosis) + geom_point()</pre>
```


#Varience Explained

Calculate the variance of each principal component by squaring the sdev component of wisc.pr (i.e. wisc.pr\$sdev^2). Save the result as an object called pr.var.

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Calculate the variance explained by each principal component by dividing by the total variance explained of all principal components. Assign this to a variable called pve and create a plot of variance explained for each principal component.

```
pve <- pr.var / sum(pr.var)
head(pve)</pre>
```

[1] 0.44272026 0.18971182 0.09393163 0.06602135 0.05495768 0.04024522

```
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")
```


Examine the PC loadings

How much do the original variables contribute to the PCs that we have calculated? To get at this data we can look at the **\$rotation** portion of the returned PCA object.

```
head(wisc.pr$rotation[,1:3])
```

```
PC1
                                PC2
                                           PC3
radius_mean
               -0.2189024
                         0.23385713 -0.008531243
texture_mean
               -0.1037246
                         0.05970609 0.064549903
perimeter_mean
               -0.2209950
area_mean
                         0.23107671 0.028699526
smoothness mean
              -0.1425897 -0.18611302 -0.104291904
compactness_mean -0.2392854 -0.15189161 -0.074091571
```

Focus in on PC1

```
head(wisc.pr$rotation[,1])
```

```
radius_mean texture_mean perimeter_mean area_mean
-0.2189024 -0.1037246 -0.2275373 -0.2209950
smoothness_mean compactness_mean
-0.1425897 -0.2392854
```

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

There is a complicated mix of variables that go together to make up PC1 - 1.e. there are many of the original variables that together contribute highly tp PC1.

```
loadings <- as.data.frame(wisc.pr$rotation)

ggplot(loadings) +
  aes(PC1, rownames(loadings)) +
  geom_col()</pre>
```


Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

5 PCs to get 84.73%

#3. Hierarchical Clustering

The goal of this section is to do hierarchical clustering of the original data.

First we will scale the data

Scale the wisc.data data using the "scale()" function

```
data.scaled <- scale(wisc.data)
wisc.hclust <- hclust(dist(scale(wisc.data)))
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

dist(scale(wisc.data))
hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```


dist(scale(wisc.data))
hclust (*, "complete")

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

Cut this tree to yield cluster membership vector with cutree() function.

```
grps <- cutree(wisc.hclust, h=19)
table(grps)

grps
1 2 3 4
177 7 383 2

d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
grps <- cutree(wisc.pr.hclust, k=10)
table (grps, diagnosis)</pre>
```

diagnosis

```
grps
       В
            Μ
  1
       0
           14
  2
       0
           47
  3
      13
            5
  4
       0
           31
  5
      11
           63
  6
      39
           28
  7
     149
            1
  8
     145
            4
  9
       0
           17
            2
  10
       0
```

The results from cutting the tree with k=10 allows us to get a better match of clusters vs. diagnosis with cluster 7 corresponding to benign cells.

```
table(grps, diagnosis)
    diagnosis
grps
       В
           М
  1
       0
          14
  2
       0
          47
  3
      13
           5
  4
       0
          31
  5
      11
          63
  6
      39
          28
  7
     149
  8
     145
           4
  9
       0
          17
  10
       0
            2
```

#Using different methods

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="single")
plot(wisc.pr.hclust)</pre>
```


d hclust (*, "single")

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="average")
plot(wisc.pr.hclust)</pre>
```


d hclust (*, "average")

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="complete")
plot(wisc.pr.hclust)</pre>
```


d hclust (*, "complete")

I like the "ward.D2" method the best because it allows for there to be minimum variance increase in the clusters.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```


d hclust (*, "ward.D2")

 $\# \mbox{Combine Methods: PCA}$ and \mbox{HCLUST}

My PCA results were interesting as they showed a separation of M and B samples along PC1.

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```


I want to cluster my PCA results - that is use wisc.pr\$x as input to hclust(). Try clustering 3 PCs, that is PC1 PC2 and PC 3

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```


d hclust (*, "ward.D2")

And my tree results figure

plot(wisc.pr.hclust)

d hclust (*, "ward.D2")

Let's cut this tree into 4 groups/clusters

```
grps <- cutree(wisc.pr.hclust, k=4)
  table (grps)

grps
    1     2     3     4
111    92    216    150</pre>
```

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=grps)
```


Q15. How well does the newly created model with four clusters separate out the two diagnoses?

How well do the two clusters separate the M and B diagnosis?

```
table(grps, diagnosis)
```

The two clusters separate the two clusters well while four clusters is difficult to read. We cannot see the separation between the two diagnosis with four colors present.

```
(179+333)/nrow(wisc.data)
```

[1] 0.8998243