Поляков Иван Михайлович

Отчёт по Лабораторной Работе № 10_1 Парная линейная регрессия

Направление 01.04.02: «Прикладная математика и информатика» Образовательная программа ВМ.5505.2021: «Математическое и информационное обеспечение экономической деятельности»

Преподаватель: доктор технических наук, профессор Буре Владимир Мансурович

1 Ход работы

Все результаты исследований приведены как вывод из консоли в конце отчёта.

Изначально была сгенерирована выборка $\epsilon_1,\ldots,\epsilon_n,\,n=50$ из нормального распределения с a=0 и $\sigma=2$. Коэффициенты α и β были получены случайно из промежутка [0,1]. Также был сгенерирован случайный числовой набор x_1,\ldots,x_n со случаными параметрами математического ожидания и стандартного отклонения. После чего была сформирована выборка наблюдений y_1,\ldots,y_n следующим образом:

$$y_i = \alpha + \beta \cdot x_i + \epsilon_i, i = \overline{1, n} \tag{1}$$

Таким образом, исходные данные для последущего анализа являются значения показателя y и объясняющей переменной x.

Была построена диаграмма зависимости показателя y от признака фактора x:

В соответствии с заданием были вычислены:

- Коэффициенты линейной регрессии
- Коэффициент корреляции
- Расчётные значения $\hat{y}_i = a + b \cdot x_i, i = \overline{1, n}$
- \bullet Отклонения $e_i=y_i-\hat{y}_i,\,i=\overline{1,n}$ истинных значений признака от расчётных
- Средняя квадратическая ошибка аппроксимации

- Значения t-статистики для коэффициента корреляции и оценок a и b. Также были сделаны выводы о статистической значимости данных коэффициентов.
- Доверительные интервалы с уровнем значимости 5% для параметров α и β линейной регрессии
- ullet Стандартная ошибка m_y прогноза индвидуального значения
- Доверительный интервал полученного прогноза с уровнем значимости 5%

Также были построены следующие графики:

 \bullet График остатков e по отношению к фактору x и по отношению к номеру наблюдения

• Совместный график корреляционного поля и прямой линейной регрессии:

• Точечный прогноз $\hat{y}_p = a + b \cdot x_p$, где x_p на 200% больше, чем средний уровень \overline{x}

Все вычисленные результаты представлены ниже.

```
Исходные данные:
```

```
epsilons:
```

```
[ 0.245
       1.137
             0.521 0.225 -0.385 0.749 -0.314 2.472
                                                3.59
                                                     -0.593
 1.625
       1.532
                                                      2.253
 4.052
       1.677 -0.193
                  1.548 -2.367
                              0.716 -2.131 3.19
                                                0.11
                                                      -0.431
       1.506 -0.22
                   0.345 -4.159
                               0.599 0.57
                                           0.595
                                                3.174 0.946
-1.259
             1.035 -3.106  0.862  0.883 -1.61  -2.263 -0.961 -0.697]
-0.72 -0.317
alpha: 0.704
beta: 0.288
```

xs:

```
[ 2.531e+00
           1.536e+00 8.808e+00 -1.810e+00 -4.310e-01 -9.670e-01
  3.181e+00
           7.000e-03 1.746e+00 -7.600e-02 -9.960e-01 -1.674e+00
  3.207e+00 -1.266e+00 -5.620e-01 9.940e-01 4.757e+00 -1.895e+00
  4.958e+00 -1.912e+00 7.957e+00 1.764e+00 7.973e+00 2.798e+00
 3.923e+00 -3.281e+00
                       2.760e-01 -1.522e+00 3.930e-01 -1.544e+00
  5.800e-01 1.350e+00 -2.563e+00
                                 3.509e+00 2.503e+00 1.200e-01
  2.175e+00 -1.951e+00
                       2.575e+00 6.412e+00 5.850e-01
                                                       3.298e+00
 -1.354e+00 3.716e+00
                       3.350e-01 -7.100e-01 2.656e+00 -4.155e+00
  4.850e+00 -5.792e+00]
ys = alpha + beta * xs + epsilons:
```

[1.678 2.284 3.762 0.408 0.195 1.174 1.306 3.178 4.797 0.089 2.042 0.367 1.971 3.227 -2.394 -1.727 -2.024 2.087 3.664 2.406

```
7.048 2.889 2.807 3.058 -0.533 0.476 -1.347 3.456 0.927 -0.172 -0.388 2.599 -0.254 2.059 -2.734 1.337 1.9 0.737 4.62 3.496 0.153 1.337 1.349 -1.332 1.662 1.383 -0.141 -2.755 1.14 -1.661]
```

Найденное уравнение линейной регрессии:

y = 0.921 + (0.273)*X

Коэффициент корреляции:

0.411

Коэффициент детерминации:

0.169

Средняя ошибка апроксимации:

1.46

Результаты F-статистики:

OLS Regression Results

===========			======			=======
Dep. Variable:		У	R-sq	uared:		0.169
Model:		OLS	Adj.	R-squared:		0.152
Method:		Least Squares	F-sta	atistic:		9.781
Date:	Moi	n, 27 Jun 2022	Prob	(F-statistic):		0.00299
Time:		16:35:57	Log-l	Likelihood:		-101.95
No. Observation	ıs:	50	AIC:			207.9
Df Residuals:		48	BIC:			211.7
Df Model:		1				
Covariance Type	e:	nonrobust				
==========	:======:		======		=======	=======
	coef	std err	t	P> t	[0.025	0.975]
const	0.9205	0.286	3.216	0.002	0.345	1.496
x1	0.2732	0.087	3.127	0.003	0.098	0.449
Omnibus:		 0.979	 Durb:	in-Watson:		1.806
<pre>Prob(Omnibus):</pre>		0.613	Jarqı	ıe-Bera (JB):		0.741
Skew:		-0.296	Prob	(JB):		0.690
Kurtosis:		2.933	Cond	. No.		3.54

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

Значения t-статистик:

для коэффициента корреляции: 0.0541

для alpha: 3.22 для beta: 3.13

Коэффициент корреляции статистически не значим,

так как $t_{corr} \le t_{crit} (0.0541 \le 1.68)$

Коэффициент а статистически значим, так как $t_a > t_{crit}$ (3.22 > 1.68) Коэффициент b статистически значим,

так как $t_b > t_{crit}$ (3.13 > 1.68)

Доверительные интервалы: для alpha: [0.345 1.496] для beta: [0.098 0.449]

Значение точечного прогноза:

1.86

Ошибка точечного прогноза:

3.51

Доверительный интервал для прогноза:

(-4.03; 7.74)