Theoretische Grundlagen der Informatik II Blatt 4

Markus Vieth, David Klopp, Christian Stricker 17. November 2015

Aufgabe 1

1. INTEGER PROGRAMMING

Eingabe: Matrix C aus ganzen Zahlen und ein ganzzahliger Vektor d

Beschreibung: Es gibt einen Vektor x bestehend aus 0 und 1, so dass Cx = d gilt.

2. CLIQUE:

Eingabe: Graph G, positive ganze Zahl k

Beschreibung: Es gibt eine Menge der Größe k von Knoten, die alle paarweise untereinander verbunden

sind.

3. SET PACKING:

Eingabe: Familie von Mengen $\{S_i\}$, positive ganze Zahl l

Beschreibung: Beinhaltet $\{S_j\}$ l paarweise disjunkte Teilmengen.

4. NODE COVER:

Eingabe: Graph G', positive ganze Zahl l

Beschreibung: Es gibt eine Knotenmenge der Größe l, sodass alle Kanten mit mindestens einem Knoten

aus dieser Menge verbunden sind.

5. SET COVERING:

Eingabe: endliche Familie von endlichen Mengen $\{S_i\}$, positive ganze Zahl k

Beschreibung: Es gibt eine Unterfamilie $\{T_h\}\subseteq\{S_j\}$ mit \leq k Mengen, sodass $\cup T_h=\cup S_j$.

6. UNDIRECTED HAMILTON CIRCUIT:

Eingabe: Graph G

Beschreibung: G enthält einen Zirkel, der jeden Knoten genau einmal beinhaltet.

7. DIRECTED HAMILTON CIRCUIT:

Eingabe: gerichteter Graph H

Beschreibung: G enthält einen gerichteten Zirkel, der jeden Knoten genau einmal beinhaltet.

8. CLIQUE COVER:

Eingabe: Graph G', positive ganze Zahl l

Beschreibung: N' ist die Vereinigung von 1 oder weniger Cliquen.

9. Knapsack:

```
Eingabe: (a_1, a_2, ..., a_r, b) \in \mathbb{Z}^{n+1}
Beschreibung: \sum a_j x_j = b hat eine 0-1 Lösung.
```

10. PARTITION:

```
Eingabe: (c_1, c_2, ..., c_s) \in Z^s
Beschreibung: Es gibt eine Menge I \subseteq \{1, 2, ..., s\}, sodass \sum_{h \in I} c_h = \sum_{h \notin I} c_h.
```

Aufgabe 2

Sei $f(x_1,...,x_n)$ ein boolscher Ausdruck mit den Klauseln $Y_1,...,Y_k$.

Behauptung: $SAT \in NP$

Guess

Es werden nichtdeterministisch die Wahrheitsbelegungen von x_1 bis x_n geraten.

Check

```
For Y_i in f(x_1, ..., x_n):

KlauselIstWahr = true

For x_i in Y_i:

// Falls ein Term 0 ist, wird die ganze Klausel false

If x_i == 0:

KlauselIstWahr = false

//Wenn eine Klausel wahr ist, ist der ganze boolsche Ausdruck wahr

If KlauselIstWahr == true:

return Ja

return Nein
```

Im worst-case beträgt die Laufzeit $O(k^*n) => SAT \in NP$

Aufgabe 3

Reduktion 3-SAT \leq CLIQUE

Seien $Y_1, ... Y_n$ die Klauseln des boolschen Ausdrucks.

Graph bilden:

```
Bilde die Menge aller Knoten V: V = \{ < \sigma, i > | \text{ wobei } \sigma \text{ ein Literal aus der Klausel } Y_i \text{ meint } \} D.h jedes Literal pro Klausel ist eindeutig durch einen Knoten vertreten.
```

```
Bilde die Menge der Kanten E:
```

 $E = \{\{\langle \sigma, i \rangle, \langle \delta, j \rangle\} \mid i \neq j \lor \sigma \neq \delta \}$ D.h verbinde alle Kanten miteinander, die nicht in der selben

Klausel sind und bei denen das Literal nicht der Negation des Literals entspricht.

Es ergibt sich somit der Graph G(V,E). Wähle k = $\#\{Y_1,...Y_n\}$. D.h k entspricht der Anzahl von Klauseln des boolschen Ausdrucks.

Diese Operationen lassen sich in poylnomieller Laufzeit erstellen.

Wende nun den CLIQUEN-Algorithmus an. Die Lösung von 3-SAT ist nun äquivalent zur Lösung von CLIQUE.

q.e.d