

Agents

This presentation explores the fundamental concepts of agent, environment, perceptions, and actions within the context of artificial intelligence.

by Penousal Machado

Artificial Intelligence

What is AI?

Artificial intelligence (AI) is the ability of a computer or machine to perform tasks typically requiring human intelligence, such as learning, problem-solving, and decision-making.

Key Areas of AI

Al encompasses various subfields, including machine learning, deep learning, natural language processing, and computer vision.

What is an Agent?

An agent is an entity that can perceive its environment, act upon it, and learn from its experiences. It's a software or hardware system designed to behave autonomously.

General vs. Narrow AI

General AI

Artificial General Intelligence (AGI) refers to a theoretical form of artificial intelligence that possesses the ability to understand, learn, and apply knowledge across a wide range of tasks, matching or surpassing human cognitive capabilities.

There is no proof that Human Intelligence is General Intelligence

Narrow AI

Narrow Al focuses on developing systems that excel in a particular domain or task, like image recognition, natural language processing, or playing a specific game.

Key Characteristics of AGI:

Generalization

The ability to apply knowledge learned in one context to different, unrelated situations

Autonomy

The capacity to operate independently, set goals, and make decisions without human intervention.

Self-improvement

The capability to learn from experiences and enhance performance over time.

Current Status and Challenges:

Complexity of Cognition

"In from three to eight years we will have a machine with the general intelligence of an average human being." Marvin Minsky, 1970

Ethical and Safety Concerns

Ensuring that AGI systems act in alignment with human values and do not pose unintended risks.

Technical Limitations

Current computational models and hardware may not yet support the development of AGI (e.g. Energy)

Strong vs Weak AI

Strong Al

Al that is not just capable of general intelligence but may also possess consciousness, self-awareness, and sentience.

Agent and Environment Agent Sensors Percepts Percepts Percepts Actions Actions

The Agent-Environment Interaction

1

Perception

Agents gather information about their environment through sensors.

2

Internal Representation

There is a diference between the sensorial stimuli and the perception of that stimuli.

3

Controler

The "brain" of the agent

4

External Representation

From brain to actuators

5

Action

Agents act on their environment using actuators, influencing its state.

A brain is not enough!

Two-Way Connection

The brain doesn't just control the body - our physical experiences actively shape how our brain thinks and learns.

Sensorimotor Loop

Every action creates new sensory feedback, forming a continuous loop where physical movements influence perception and learning.

Embodied Cognition

Our understanding of concepts is grounded in physical experiences - we think about "grasping" an idea because we physically grasp objects.

Developmental Impact

Physical interaction with the environment is crucial for both biological and artificial intelligence to develop sophisticated understanding.

Agents and Their Environments

Static vs. Dynamic

A static environment remains unchanged over time, while a dynamic environment is constantly evolving.

Deterministic vs. Non-Deterministic

In a deterministic environment, the outcome of an action is predictable, while in a non-deterministic environment, there's an element of randomness or uncertainty.

Accessible vs. Inaccessible

An accessible environment allows an agent to fully perceive its state, while an inaccessible environment has

Real-World Environments

Agents interact with physical environments, like robots navigating factories or self-driving cars on roads.

Virtual Environments

Agents can also exist in virtual environments, like game characters in video games or chatbots in online platforms.

Defining the Agent's Perceptions

Perception refers to the agent's ability to gather information about its environment. It involves the agent's senses and how it interprets the sensory data.

Agents perceive their environments through various sensors, which capture data about the surroundings, such as light, sound, and physical contact.

Sensors and Perception

1 Sensory Input

Sensors gather raw data from the environment.

2 Signal Processing

Raw data is preprocessed and filtered to remove noise.

3 Feature Extraction

Meaningful features are extracted or created from the processed data.

____ Interpretation

4

The extracted features are interpreted to form a perception of the environment.

Executing Actions in the Environment

Actions are executed through actuators, which are the agent's physical components that interact with the environment, carrying out tasks based on the agent's decisions.

The Feedback Loop: Perception and Action

Perception

The agent perceives the environment.

Perception

The agent perceives the new state of the environment.

Decision

The agent makes a decision.

Action

The agent takes action.

Environment

The environment changes based on the action.

What about "Agentic AI"?

It is just a buzz word. Agents have been around for decades.

Evaluating Agent Performance

Task Completion

How effectively the agent completes its assigned tasks.

Efficiency

How efficiently the agent uses resources and time.

Robustness

How well the agent handles unexpected events or errors.

Designing Agents: The PEAS Framework

Performance

What is the performance measure?

Environment

Modelling the environment, the world the agent operates in.

Actuators

Define the actuators, i.e. the agent's tools for taking actions in the environment.

Sensors

Define the sensors, i.e. agent's ability to perceive the environment.

Designing Agents: A Gradual Approach

Reactive Agents

Start with basic agents that react to their environment.

Search Agents

Agents that search for solutions before acting.

Learning and Adaptive Agents

Agents that can learn and adapt based on experience.

Agent Societies

Sophisticated agents with advanced capabilities.

Our Approach

Study and construction of artificial entities [agents] situated in an environment, with which they interact autonomously, seeking to achieve [internal, external] objectives with maximum performance.

The Three Methaphors

Metaphors for AI

Symbolic AI

This approach uses symbols and rules to represent knowledge and reason about the world.

Connectionist AI

Neural networks. Inspired in biological brains

Nature inspired AI

Inspired in nature it mimics the complex workings of biological systems or other natural phenomena

Reactive Agents

Reactive Agents

- Make a direct mapping between perceptions and actions
- 2 Have a local view of the environment

3 May have memory (typically small)

Designing Agents

Describe the world

- 2D
- Discrete
- Closed
- Objects
- Agents

Describe the Agents

- Sensors
- Neighbourhood
- Actuators
- Memory
- Brain

Actions

- Move
 - North
 - South
 - East
 - Weast

Memory

None

Brain

Symbolic AI

Production System.

Connectionist AI

Linear threshold units

Nature inspired AI

Subordination architecture

Ambiente

Symbolic approach

- Rules map perceptions in actions
- May or not have memory

Production system

 $\neg O1 \rightarrow N$

¬02 → E

¬03 → S

¬04 → 0

What is the emergent behaviour?

Trying to avoid loops

Let's try to avoid loops by changing the environment

$$\neg O1$$
, $\neg P1 \rightarrow N$, Paint

$$\neg O2$$
, $\neg P2 \rightarrow E$, Paint

$$\neg O3$$
, $\neg P3 \rightarrow S$, Paint

$$\neg O4$$
, $\neg P4 \rightarrow O$, Paint

$$T \rightarrow NIL$$

What is the emergent behaviour?

Trying to avoid loops

Let's try to avoid loops by changing the environment

$$\neg O1$$
, $\neg P1 \rightarrow N$, Paint

$$\neg O2$$
, $\neg P2 \rightarrow E$, Paint

$$\neg O3$$
, $\neg P3 \rightarrow S$, Paint

$$\neg O4$$
, $\neg P4 \rightarrow O$, Paint

$$T \rightarrow NIL$$

What is the emergent behaviour?

Different Skills

Sensors

Perceptions

Production system

Implementation with Linear Threshold Units

Implementation with Linear Threshold Units

Chaining Rules

Chaining Rules

Subsumption Architecture

It emphasizes a **decentralized** and **hierarchical design**, enabling complex behavior to **emerge** from simple components without relying on a centralized controller or extensive symbolic reasoning.

Layered Design

The system is composed of layers, each responsible for a specific behavior or task

Higher layers can "subsume" the functionality of lower layers, overriding or modifying their output when needed.

Behavior-Based Approach

Each layer corresponds to a specific behavior, such as obstacle avoidance, path following, or goal seeking

Behaviors operate independently and in parallel, with simpler behaviors typically handled by lower layers.

Reactive and Bottom-Up

Focuses on direct interaction with the environment through sensors and actuators.

Avoids reliance on high-level symbolic reasoning or internal world models.

Decentralization:

No central controller manages the entire system; behaviors are modular and self-contained

Emergent Behavior

Complex and intelligent actions emerge from the interaction of simple behaviors and the environment.

The sum is greater than the parts.

Example

Consider a robot navigating a room:

If an obstacle is detected, the obstacle avoidance layer overrides (or subsumes) the higher-level behaviors (wandering or goal seeking), ensuring safe operation.

Agente Percepção Estado Percepção Acção Regra A

Reactive agents with Memory

Map perceptions and memory into actions

An example: following a trail

 $Off,F \rightarrow A,Off$

Off, $\neg F \rightarrow E$,On

 $On,F \rightarrow A,Off$

On, $\neg F \rightarrow D$, D, On

