Devoir n°2 : (A rendre le 12/12/20 au format pdf)

Exercice 1. On pose $F = \left\{ \left(x, y, z, t \right) \in \mathbb{R}^4 \ / \ x + t = 0 \text{ et } 2x + y - z = 0 \right\}$ et $G = \left\{ \left(x, y, z, t \right) \in \mathbb{R}^4 \ / \ 2x + y - z = 0 \right\}$

- . Montrer que F et G sont des \mathbb{R} -espaces vectoriels.
- 2. Comparer F et G. En déduire $F \cap G$.
- 3. Soit u = (1+a, -2, 0, b+4) où $(a,b) \in \mathbb{R}^2$. Déterminer les réels a et b pour que $u \in F$

Exercice 2. \mathbb{R}^4 est muni de la base canonique $b_4 = (e_1, e_2, e_3, e_4)$ et \mathbb{R}^3 est muni de la base canonique $b_3 = (i, j, k)$

Soit

$$\begin{array}{ccc} f: & \mathbb{R}^4 & \rightarrow & \mathbb{R}^3 \\ & u = \big(x,y,z,t\big) \mapsto & \big(x+y+z-t,x-2y+2z+t,x-y+z\big) \end{array}$$

- 1. Déterminer $A = Mat(f, b_4, b_3)$
- 2. Soit $E = \{u \in \mathbb{R}^4 \mid f(u) = 0_{\mathbb{R}^3}\}$. Montrer que E est une droite vectorielle dont on précisera une base.
- 3. On pose $F = \{(x, y, z, t) \in \mathbb{R}^4 / 2x + 6y + 7z t = 0\}$. Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 dont on donnera une base.
- $4. \quad \text{Soient} \quad \epsilon_1 = \left(2,1,-1,2\right) \;, \\ \epsilon_2 = \left(1,1,-1,1\right) \;\;, \; \epsilon_3 = \left(-1,-2,3,7\right) \; \text{et} \;\; \epsilon_4 = \left(4,4,-5,-3\right) \;\; \text{quatre vecteurs} \;\; \mathbb{R}^4 \;.$
 - a. Montrer $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ est une base de \mathbb{R}^4 .
 - b. Montrer que $F = Vect(\varepsilon_2, \varepsilon_3, \varepsilon_4)$. $(\varepsilon_2, \varepsilon_3, \varepsilon_4)$ est-elle une base de F?
 - c. Soit $u = (x, y, z, t) \in F$. Exprimer u comme combinaison linéaire des vecteurs ϵ_2 , ϵ_3 et ϵ_4 .

Exercice 3. \mathbb{R}^3 est muni de la base canonique $b_3 = (e_1, e_2, e_3)$.

Soit

$$\mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$$

$$\mathbf{u} = (\mathbf{x}, \mathbf{y}, \mathbf{z},) \mapsto (3\mathbf{x} - 2\mathbf{y} + 2\mathbf{z}, 2\mathbf{x} - \mathbf{y} + 2\mathbf{z}, 2\mathbf{x} - 2\mathbf{y} + 3\mathbf{z}).$$

On admet que f est une application linéaire.

- 1. Déterminer une base du noyau ker f.
- 2. Déterminer la matrice $A = Mat(f, b_3)$.
- 3. Déterminer les valeurs propres de A
- 4. Déterminer une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$
- 5. Soit $n \in \mathbb{N}$. Calculer, en fonction de n, A^n
- $6. \quad \text{Soit Soient } \left(a_{n}\right)_{n\geq 0}, \ \left(b_{n}\right)_{n\geq 0} \text{ et } \left(c_{n}\right)_{n\geq 0} \text{ les suites définies , pour tout } n \in \mathbb{N} \text{ , par: } \begin{cases} a_{n+1} & = 3a_{n} 2b_{n} + 2c_{n} \\ b_{n+1} & = 2a_{n} b_{n} + 2c_{n} \\ c_{n+1} & = 2a_{n} 2b_{n} + 3c_{n} \end{cases}$

Exprimer, pour tout $n \in \mathbb{N}$, a_n , b_n et c_n en fonction de n et de a_0 , b_0 et c_0 .