2024-2025 学年度秋季学期 《热力学和传热学基础》教学计划

一、课程名称、编号及上课班级

课程名称: 热力学和传热学基础

课程号: 20140133-0

学分: 3

上课班级: 未央-机械、机械系、电机系

二、课程简介

教学目的: 理解工程热力学的基本概念、基本定律,掌握基本分析计算方法; 理解热传导、对流换热、热辐射换热的基本概念、基本理论,掌握基本分析计算方法; 掌握热能利用的基本规律以及提高热能利用率的方法。为后续核能类专业课程(如反应堆热工)的学习奠定基础。

教学重点:热力学的基本概念;热力学第一定律及其应用;热力学第二定律与熵;理想气体及其混合物的性质与热力过程;水蒸气的性质与过程;动力循环、制冷循环的组成、工作原理和分析计算方法;热量传递的基本模式;导热基本定律及导热过程的数学描述;一维稳态导热的分析解;瞬态导热的特点;瞬态导热的集总参数法;对流换热的特点、影响因素;对流换热的数学模型及边界层理论;相似理论与对流换热实验方法;强迫对流换热的特性及计算;凝结与沸腾换热基础;热辐射换热的概念、基本定律;黑体及实际物体的辐射特性;辐射换热的计算方法;传热过程;换热器的种类、结构和热工计算方法。

本课程主要包括以下三个方面的内容:

- 1. 课堂授课部分
 - ▶ 绪论
 - ▶ 第一篇 工程热力学 第一章 基本概念
 - ▶ 第二章 热力学第一定律
 - ▶ 第三章 理想气体的性质与热力过程
 - ▶ 第四章 热力学第二定律
 - ▶ 第五章 水蒸气

- ▶ 第六章 动力装置循环
- ▶ 第七章 制冷装置循环
- ▶ 第二篇 传热学 第八章 热量传递的基本方式
- ▶ 第九章 导热
- ▶ 第十章 对流换热
- ▶ 第十一章 辐射换热
- ▶ 第十二章 传热过程与换热器

2. 实验部分

- ▶ TH-pT 饱和蒸汽及超临界相态实验
- ▶ 空气横掠单圆管时强迫对流换热实验
- 3. 作业及大作业
 - ▶ 每章课后布置作业
 - ▶ 热力学与传热学大作业

三、授课教师与助教联系方式

祝银海: yinhai.zhu@mail.tsinghua.edu.cn

胥蕊娜: ruinaxu@mail.tsinghua.edu.cn

齐寅珂(助教): qyk22@mails.tsinghua.edu.cn

冯忆武(助教): 1245566100@qq.com

胡博兴 (助教): hbx23@mails.tsinghua.edu.cn

四、上课地点、时间与授课安排

● 上课时间: 第1-16 周星期1第3-4节

● 上课地点: 6A017

表 1 2024 年秋季学期《热力学与传热学基础》课程安排

周次	日期	授课主要内容	教学要素
1	9月9日	绪论 第1章: 热力学基本概念	绪论 热力学基本概念
2	9月16日	改到 21 日	

	9月21日	第2章: 热力学第一定律	热力学第一定律
3	9月23日	第3章:理想气体的性质与热力过程1	理想气体的性质与热力过程
4	9月30日	第3章: 理想气体的基本热力过程2 第4章: 热力学第二定律I	理想气体的基本热力过程、热力学 第二定律
5	10月7日	停上	
6	10月14日	第4章: 热力学第二定律 第5章: 水蒸气	热力学第二定律、水蒸气的基本热 力过程
7	10月21日	 第 6 章: 动力装置循环 	动力装置循环
8	10月28日	第7章:制冷装置循环	制冷装置循环
9	11月4日	期中考试	
10	11月11日	第8章: 热量传递的基本方式 第9章: 导热 I、II	导热
11	11月18日	第9章:导热Ⅲ—非稳态导热、导热Ⅳ	导热
12	11月25日	第 10 章:对流换热 I—概述及数学描述第 10 章:对流换热 II—外掠等壁温平板层流换热分析解及实验研究方法	对流换热
13	12月2日	第 10 章: 对流换热 III—单相强迫对流换热 期 10 章: 对流换热 V—凝结与沸腾换热	对流换热
14	12月9日	第 11 章:辐射换热 I—基本概念及定律	辐射换热
15	12月16日	第 11 章:辐射换热 II—辐射换热计算	辐射换热
16	12月23日	第 12 章:传热过程与换热器	传热过程与换热器

六、教材与参考资料

教材:

▶ 张学学等,热工基础(第三版),高等教育出版社

参考书:

- ▶ 朱明善等,工程热力学,北京:清华大学出版社
- ▶ 杨世铭、陶文铨,传热学,北京:高等教育出版社
- > Thermodynamics An Engineering Approach, Yunus a. Çengel
- ➤ Heat Transfer, Jack Holman