Labradors_vetCompass_post.csv_run_23_20250529_153251

May 29, 2025

/Users/navehr/Dropbox/naveh/weizmann/uri alon/aging/code_3

Loading file from: /Users/navehr/Dropbox/naveh/weizmann/uri alon/aging/code_3/baysian02/posterior_csvs_baysian01/DOGS/Labradors_vetCompass_post.csv

Reading Labrador_vetCompass

1 # 1. Density coner plot

A sample is 1 parameter set scanned. For the corner plot below, the quantiles (represented by the solid lines) are 0.16,0.5,0.84 of the samples. Dots represent individual samples (outside the line surrounding 0.84 of the samples) The parameter search is performed in the transformed space of x_c/η , β/η , x_c^2/ϵ , x_c but we also show the regular parameters (16,)

2 2. Heat map corner plot of raw samples

This plot shows all the raw sample points and their lnprobability

3 3. Posterior distributions of parameters

1d marginalizations of posterior distributions. we use a grid of size nbins=100-150

2D marginalizations of posterior distributions

2D Marginalized Posterior

Rescaling the samples TIME by 365

4 4. Table of results

mode is the marginalized mode, max_likwlihood is the sample with highest likelihood mode_overall is the $4\mathrm{D}$ posterior mode

	mean		std	mode	\
xc/eta	1.918	[0.912,		1.908	
beta/eta	17.73	[2.446,		17.62	
xc^2/epsilon	1.811	[1.039,		1.757	
xc	10.916	[11.543,		6.724	
eta	5.423	[5.079,		9.54	
beta	97.523	[81.576,		160.378	
epsilon	57.966	[165.539, 4		138.069	
sqrt(xc/eta)	1.422	[0.321, 0.262]		1.381	
$s = eta^0.5*xc^1.5/epsilon$	1.35	[0.42, 0.32]		1.265	
beta*xc/epsilon	16.549	[1.797, 1.621]		15.647	
eta*xc/epsilon	0.949	[0.0702, 0		0.916	
Fx=beta^2/eta*xc	151.166	[143.145, 7		162.614	
<pre>Dx =beta*epsilon/eta*xc^2</pre>	9.125	[7.463,		10.076	
Pk=beta*k/epsilon	0.764	[0.97,		0.511	
Fk=beta^2/eta*k	3559.133	[2828.982, 157		5855.25	
Dk =beta*epsilon/eta*k^2	4584.269	[11222.361, 32		9659.354	
Fk^2/Dk=beta^3/eta*epsilon	2724.281	[2762.933, 137		2775.94	
epsilon/beta^2	0.00628	[0.00504, 0	.0028]	0.00593	
k/beta	0.00516	[0.00438, 0.	00237]	0.00385	
k^2/epsilon	0.00424	[0.0121, 0.	00314]	0.00161	
best fit_MedianLifetime	12.83		0.51	12.83	
best fit_MaxLifetime	19.15		0	19.15	
${\tt data_MedianLifetime}$	12.3		0.52	12.3	
${\tt data_MaxLifetime}$	19.36		0	19.36	
	_	ercentile_16		percentile_	
xc/eta		1.72, 2.032]	_	[1.396, 2.	
beta/eta		[17.144, 18.11] [16.528, 19.131]			
xc^2/epsilon	[1.55, 1.894] [1.207, 2.314]				
xc	[5.663, 7.982] [5.288, 14.806]				
eta	[7.813, 10.392] [4.949, 11.649				
beta	[140.522, 183.04] [87.317, 203.455]				
epsilon				.381, 209.053]	
sqrt(xc/eta)	[1.311, 1.425] [1.207, 1.582]				
s= eta^0.5*xc^1.5/epsilon	[1.175, 1.321]			[1.077, 1.575]	
beta*xc/epsilon				5.005, 16.513]	
eta*xc/epsilon	[0.902, 0.93]			[0.884, 0.968]	
Fx=beta^2/eta*xc	[144.641, 182.82]		[97.89, 231.076]		
<pre>Dx =beta*epsilon/eta*xc^2</pre>	[9.095, 11.163]		[6.465, 13.7]		
Pk=beta*k/epsilon	[0.419, 0.625]		[0.387, 1.284]		
Fk=beta^2/eta*k		3, 6379.005]		48, 6753.95	
Dk =beta*epsilon/eta*k^2				3, 15864.83	
Fk^2/Dk=beta^3/eta*epsilon		6, 3167.342]		69, 4502.50	
epsilon/beta^2		34, 0.00658]		404, 0.0081	
k/beta		37, 0.00439]		233, 0.0054	
k^2/epsilon	[0.001	34, 0.00243]	[0.00	106, 0.0070	7]

best fit_MedianLifetime	[12.34, 13.34]	[12.34, 13.34]
best fit_MaxLifetime	[19.15, 19.15]	[19.15, 19.15]
	[11.82, 12.82]	[11.82, 12.82]
data_MedianLifetime		-
data_MaxLifetime	[19.36, 19.36]	[19.36, 19.36]
	percentile_95	max_likelihood mode_overall
xc/eta	[0.96, 4.3]	1.731 1.57
beta/eta	[14.021, 20.962]	17.423 17.195
xc^2/epsilon	[0.809, 4.436]	1.56 1.408
xc	[3.503, 44.406]	15.561 22.728
eta	[1.581, 15.495]	8.988 10.795
beta	[30.331, 251.368]	156.595 196.283
epsilon	[4.184, 539.577]	155.185 184.9
sqrt(xc/eta)	[0.98, 2.162]	1.316 1.398
s= eta^0.5*xc^1.5/epsilon	[0.827, 2.304]	1.186 1.279
beta*xc/epsilon	[14.476, 19.527]	15.702 15.65
eta*xc/epsilon	[0.841, 1.102]	0.901 0.924
Fx=beta^2/eta*xc	[38.354, 431.56]	175.338 169.554
<pre>Dx =beta*epsilon/eta*xc^2</pre>	[2.662, 25.325]	11.166 10.801
Pk=beta*k/epsilon	[0.148, 2.859]	0.505 0.81
Fk=beta^2/eta*k	[1025.635, 8016.282]	5456.852 7038.435
Dk =beta*epsilon/eta*k^2	[417.056, 34327.194]	10815.449 13447.918
Fk^2/Dk=beta^3/eta*epsilon	[650.544, 8332.66]	2753.213 3788.678
epsilon/beta^2	[0.00248, 0.0215]	0.00633 0.0048
k/beta	[0.00199, 0.0165]	0.00319 0.00255
k^2/epsilon	[0.000463, 0.053]	0.00161 0.00135
best fit_MedianLifetime	[12.34, 13.34]	12.83 NaN
best fit_MaxLifetime	[19.15, 19.15]	19.15 NaN
${\tt data_MedianLifetime}$	[11.82, 12.82]	12.3 NaN
${\tt data_MaxLifetime}$	[19.36, 19.36]	19.36 NaN

5 5. Fits of simulations to data

best params is the sample with highest likelihood. mode trans is the 4D posterior mode in the transformed space of $x_c/\eta,\,\beta/\eta,\,x_c^2/\epsilon,\,x_c$

