Tutorial1-2212 19000822

1) Prove that $(w^R)^R = w$ for all $w \in \Sigma^*$ by using induction.

- We can prove this using induction on the length |w| of w.
- \circ For the base case, we have |w| = 0, which means that $w = \epsilon$.
- From the definition of the reversal of a string, we have that $\epsilon R = \epsilon$. So, $(w^R)^R = (\epsilon^R)^R = (\epsilon^R$
- For the induction hypothesis, assume that $(w^R)^R=W$ for every string w such that |w|=k, where k is an integer with $k \ge 0$.
- Now, we can prove that $(w^R)^R = w$ for every string w such that |w| = k+1. Since $k+1 \ge 1$, we can write w = ua, where $a \in \Sigma$ and $u \in \Sigma *$. From the definition of reversal of a string, we know that $w^R = (ua)^R = au^R$. From item (b) in Problem (1), we also know that $(w^R)^R = (au^R)^R = (u^R)^R$. Since the length of u is u, we can use the induction hypothesis to conclude that $(u^R)^R = u$. So, $(w^R)^R = (au^R)^R = (u^R)^R$ and our claim also holds for $u \in \Sigma^*$ such that |u| = k+1. From the first principle of induction, our claim holds for every $u \in \Sigma^*$.

2. Let L = {ab, aa, baa}. Which of the following strings are in L*: abaabaaabaa, aaaabaaaa, baaaaabaa? Which strings are in L4?

- o abaabaaabaa → ab aa baa ab aa (L5)
- o aaaabaaaa → aa aa baa aa (L4)
- o baaaaabaaaab \rightarrow baa aa ab aa aa b (Not a string of Ln) (: $b \in L$)
- o baaaaabaa → baa aa ab aa (L4)

3.Let $\Sigma = \{a, b\}$ and $L = \{aa, bb\}$. Use set notation to describe L'.

- $\sum -L(L' = \{x: x \notin L \text{ and } x \in \Sigma^* \})$
- $\{\lambda, a, b, ab, ba\} \cup \{w \in \{a, b\}^* \mid |w| \ge 3\}$

4.Let L be any language on a non-empty alphabet. Show that L and L' cannot both be finite.

 If we think a as a letter of the alphabet and both L and L' are finite, their union L+L' is finite. But L+L' contains all words aⁿ for natural n, as infinitely many, So there is a contradiction. So L and L' cannot both be finite. Tutorial1-2212 19000822

- 5. Find grammars for $\Sigma = \{a, b\}$ that generate the sets of
 - (a) all strings with exactly one a.
 - \circ S->AaA , A->bA|| λ
 - (b) all strings with at least one a.
 - \circ S \rightarrow AaA, A \rightarrow aA|bA| λ
 - (c) all strings with no more than three a's.
 - \circ S \rightarrow A|AaA|AaAaA|AaAaAaA, A \rightarrow bA| λ
 - (d) all strings with at least three a's. In each case, give convincing arguments that the grammar you give does indeed generate the indicated language
 - \circ S →AaAaAaA, A→aA|bA|λ
- 6. Give a simple description of the language generated by the grammar with productions

 $S \longrightarrow aA$

 $A \longrightarrow bS$

 $S \longrightarrow \lambda$

- \circ S--> λ
- o S-->aA-->abS-->ab
- o S-->aA-->abS- ->abaA-->abab
- This string in this language has empty strings and it starts with a and ends with b. It is a pattern of ab. L(G)=(ab)*
- 7. What language does the grammar with these productions generate?

 $S \rightarrow Aa$

 $A \longrightarrow B$

 $B \longrightarrow Aa$

- o S-->Aa-->Ba-->Aaa-->.....
- o It gets non terminal values. So it is not a valid string.

Tutorial1-2212

19000822

8. Are the two grammars with respective productions S \rightarrow aSb |ab| λ And S \rightarrow aAb |ab A \rightarrow aAb | λ equivalent? Assume that S is the start symbol in both cases.

$$S \rightarrow aSb |ab|\lambda$$

$$S-->\lambda$$

$$S \rightarrow aAb \mid ab$$

$$A \longrightarrow aAb \mid \lambda$$

o These two grammars are not equivalent, because λ is generated from the first grammar at the start but λ does not generate from the second at the start. So the grammars are not equivalent.

9. Show that the grammar S ightarrow aSb | bSa | SS| a and S ightarrow aSb | bSa | a are not equivalent

- o S-->aSb|bSa|SS|a
- o S-->SS-->aa
- \circ S \rightarrow aSb | bSa | a
- o S-->a

 From the grammar 2, we can not get two 'a's in sequence order. So these are not equivalent.