SE598 Design of Soft Mechanisms - Mini Project 1

hackang 2

- 1. Consider the compliant motion amplifier in the figure below. The right subfigure shows a symmetric half of the mechanism. Without changing any other dimensions, find the angle θ_2 that
 - a. Maximizes the output displacement.

Large Deflections

b. Maximizes the geometric advantage. GA

Use **wo** analysis methods of your choice to show both these solutions.

2. Consider a compliant mechanism shown in the left part of the figure below. Without changing l_2 , and changing everything else ensure that the force-displacement profile is constant for a large fraction of the displacement range δ . Use **two** analysis methods of your choice to show both these solutions.

(iv) Some other recults of parameters variation

30 mm

35 mm

to MM

(C) Varying h,

(d) Varying Nz

(e) Varying Youngs Modulus of link 2

500

400

2x10

2x10

Norm

1 2x10

Norm

3. From intuition, design your own robotic gripper mechanism. With a downward force, the two ends at either side must displace towards each other. Use any one analysis method to show your mechanism's deformed behavior.

$$l_1 = 20 \text{ mm}$$
 $l_2 = l_3 = 15 \text{ mm}$