Lesson 29: Practice Problems

Liouville's Formula and Applications

Part A: Basic Liouville Calculations (6 problems)

- 1. Use Liouville's formula to find W(t) for $\mathbf{x}' = \begin{bmatrix} 3 & 1 \\ 0 & -2 \end{bmatrix} \mathbf{x}$ with W(0) = 5.
- 2. Calculate the Wronskian at t = 2 for the system $\mathbf{x}' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \mathbf{x}$ if W(0) = 1.
- 3. Find W(t) for solutions of y''' 3y'' + 2y' y = 0 with W(0) = 2.
- 4. Given $\mathbf{x}' = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \mathbf{x}$, find W(t) using Liouville.
- 5. For the harmonic oscillator $\mathbf{x}' = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \mathbf{x}$, verify that volume is preserved.
- 6. Calculate $W(\pi)$ for $\mathbf{x}' = \begin{bmatrix} \sin t & 0 \\ 0 & \cos t \end{bmatrix} \mathbf{x}$ with W(0) = 3.

Part B: Trace and Eigenvalue Connections (5 problems)

- 7. A 3×3 system has eigenvalues $\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = -4$. Find W(t)/W(0).
- 8. If tr(A) = -5 for a constant matrix, and $W(1) = e^{-5}$, findW(3).
- 9. The characteristic polynomial is $\lambda^3 2\lambda^2 5\lambda + 6 = 0$. Find tr(A) and describe W(t) behavior.
- 10. Given eigenvalues $1 \pm 2i$, find the trace and Wronskian evolution for the 2×2 system.
- 11. A system has $W(t) = 3e^{-6t}$. If two eigenvalues are -1 and -2, find the third.

Part C: Stability Analysis (5 problems)

- 7. Determine stability of $\mathbf{x}' = \begin{bmatrix} -2 & 1 \\ 3 & -4 \end{bmatrix} \mathbf{x}$ using Liouville's formula.
- 8. For what values of a is the system $\mathbf{x}' = \begin{bmatrix} a & 1 \\ -1 & -a \end{bmatrix} \mathbf{x}$ volume-preserving?
- 9. Analyze stability of y'' + 3y' + 2y = 0 using the trace of its companion matrix.
- 10. Given $\ddot{x} + b\dot{x} + 4x = 0$, find b values for which the Wronskian decays.
- 11. Determine long-term behavior of W(t) for $\mathbf{x}' = \begin{bmatrix} t & 1 \\ 0 & -t \end{bmatrix} \mathbf{x}$.

Part D: Special Systems (5 problems)

- 12. Show that the system $\mathbf{x}' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \mathbf{x}$ preserves volume.
- 13. For the Hamiltonian system with $H = \frac{1}{2}(p^2 + q^2)$, verify Liouville's theorem.
- 14. Find all 2×2 matrices A with tr(A) = 0 and det(A) = 1.
- 15. Prove that skew-symmetric matrices $(A^T = -A)alwayshavetracezero$.
- 16. For the periodic system $\mathbf{x}' = \begin{bmatrix} \cos(2t) & 0 \\ 0 & -\cos(2t) \end{bmatrix} \mathbf{x}$, find $W(2\pi)/W(0)$.

Part E: Applications and Theory (4 problems)

- 17. Use Liouville to prove that if all eigenvalues have negative real parts, then $W(t) \to 0$ as $t \to \infty$.
- 18. Show that for the equation $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_{0y} = 0$, the Wronskian satisfies W(t) $= W(0)e^{-a_{n-1}t}$.
- 19. If two solutions have Wronskian $W_{12}(t) = e^{3t}$, what can you conclude about the trace of the system matrix?
- 20. Prove that similar matrices have the same trace, hence the same Wronskian evolution.

Part F: Exam-Style Problems (5 problems)

21. (Prof. Ditkowski style) Consider
$$\mathbf{x}' = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{bmatrix} \mathbf{x}$$
:

- (a) Find tr(A) and all eigenvalues
- (b) Use Liouville to find W(t) with W(0) = 1
- (c) Verify using direct eigenvalue sum
- (d) Determine stability of the origin
- (e) Find $\lim_{t\to\infty} W(t)$

22. The damped oscillator $\ddot{x} + 2\zeta\omega\dot{x} + \omega^{2x} = 0$ hasparameters $\omega = 2, \zeta = 0.5$.

- (a) Write as a first-order system
- (b) Find the trace
- (c) Calculate W(t)/W(0)
- (d) How long until the Wronskian decreases by factor of e?

23. Given that solutions to a third-order system have $W(t) = 5e^{-3t}$:

- 24. Find tr(A)
- 25. If $\lambda_1=2$ is an eigenvalue, and the other two are complex conjugates, find them
- 26. Write a possible matrix A
- 27. Analyze stability

For the time-dependent system $\mathbf{x}' = \begin{bmatrix} e^t & 0 \\ 0 & -e^t \end{bmatrix} \mathbf{x}$:

- (a) Compute tr(A(t))
- (b) Find W(t) using Liouville with W(0) = 2
- (c) Determine if volume is preserved
- (d) Find $\lim_{t\to\infty} W(t)$

(Comprehensive) Consider the fourth-order equation $y^{(4)} - 2y''' - 3y'' + 4y' + 4y = 0$.

- (a) Convert to a system and find tr(A)
- (b) Use Liouville to express W(t)
- (c) Given that $\lambda_1 = 2$ and $\lambda_2 = -1$ are eigenvalues, find the others
- (d) Verify $\sum \lambda_i = tr(A) Determine the long term behavior of solutions$
- (e) Is the zero solution stable?

Solutions and Hints

Selected Solutions:

Problem 1: tr(A) = 3 + (-2) = 1, so $W(t) = 5e^t$

Problem 2: tr(A) = 1 + 2 + (-3) = 0, so W(2) = W(0) = 1

Problem 5: tr(A) = 0 + 0 = 0, volume preserved!

Problem 7: $W(t) = W(0) \cdot e^{(2-1-4)t} = W(0) \cdot e^{-3t}$

Problem 12: tr(A) = -2 + (-4) = -6 < 0, system is stable

Problem 13: Need a + (-a) = 0 for all a, so always volume-preserving

Problem 17: tr(A) = 0 + 0 + 0 = 0, confirms volume preservation

Problem 22: Average trace over period is zero, so $W(2\pi) = W(0)$

Problem 26: tr(A) = 1 + (-1) + 2 = 2, so $W(t) = e^{2t}$, unstable

Problem 29: tr(A) = -3, so $\lambda_2 + \lambda_3 = -5$. With conjugates $a \pm bi$: 2a = -5, so $\lambda_{2,3} = -2.5 \pm bi$

Key Formulas:

- Liouville: $W(t) = W(t_0)e^{\int_{t_0}t} \operatorname{tr}(A(s))\operatorname{d}sConstantcase : W(t) = W(0)e^{\operatorname{tr}(A)} \cdot t$
- Trace-eigenvalue: $tr(A) = \sum \lambda_i Scalarnth order : trace = -a_{n-1}$
- Volume preserved $\Leftrightarrow \operatorname{tr}(A) = 0$

Stability Quick Check:

- $\operatorname{tr}(A) < 0 \Rightarrow W(t) \to 0$ (stable tendency)
- $\operatorname{tr}(A) > 0 \Rightarrow W(t) \to \infty$ (unstable)
- $tr(A) = 0 \Rightarrow W(t) = constant (neutral)$