《近平衡态中的输运过程*》内容概要

理论内容总结:

本滞现象
 宏观规律,应用
 微观解释,黏度系数
 法规律,应用
 微观解释,应用
 微观解释,热传导系数
 扩散
 宏观规律,应用
 微观解释,热传导系数
 扩散
 微观解释,扩散系数

近平衡态的 输运过程 与规律

「平均碰撞频率和平均 亩 程,表达式,推导 基本相关知识分子按自由程分布的概率密度 分子按飞行时间分布的概率密度

补充一非平衡过程的常见现级特点

习题总结

本章习题可分为三大类

第一类: 近平衡态中的输运过程的宏观规律

- 1、黏性现象
- 2、热传导现象
- 3、扩散现象

牛顿黏性定律: $f = \frac{\Delta p}{\Delta t} = -\eta \frac{du}{dz} \Delta S$ 知识点 傅立叶热传导定律: $\Phi = \frac{\Delta Q}{\Delta t} = -\kappa \frac{dT}{dz} \Delta S$ 菲克扩散定律: $J = \frac{\Delta M}{\Delta t} = -D \frac{d\rho}{dz} \Delta S$ 宏观规律 习题:3.1~3.6 作业:3.1,3.3, 3.5 例题:3个,建议习题课上讲.2,3.6

第二类: 气体分子的平均碰撞频率和平均自由程

- 1、平均碰撞频率和平均自由程
- 2、分子按自由程分布的概率
- 3、分子按飞行时间分布的概率

1

平均碰撞频率 平均自由程
$$\overline{\lambda} = \frac{\overline{v}}{\overline{Z}} = n \circ \overline{u} = n \cdot \pi d^2 \cdot \sqrt{2} \overline{v} = 4 d^2 p \sqrt{\frac{\pi}{mkT}}$$
 (同种分子) 平均自由程 $\overline{\lambda} = \frac{\overline{v}}{\overline{Z}} = \frac{1}{\sqrt{2n\pi}d^2} = \frac{kT}{\sqrt{2\pi d^2p}}$ 分子按自由程分布的概率: $P(\lambda) = \frac{1}{\overline{\lambda}}e^{-\frac{\lambda}{\overline{\lambda}}}$ 分子按飞行时间分布的概率: $P(\tau) = \frac{1}{\overline{\tau}}e^{-\frac{\tau}{\overline{\tau}}}$ 习题:3.7~3.10 作业:3.10 例题:2个,建议习题课上讲3.9

第三类: 气体中输运现象的微观解释

- 1、一般形式
- 2、具体形式

「一般公式:
$$J_{P} = \frac{\Delta Q}{\Delta t} = -\frac{1}{3} \left[\frac{d(nQ)}{dz} \right]_{z_{0}} \bar{\lambda} \bar{\upsilon} \Delta S$$

都度: $\eta = \frac{\rho \bar{\lambda} \bar{\upsilon}}{3} = \frac{2}{3\pi d^{2}} \sqrt{\frac{mkT}{\pi}} \propto \sqrt{T}$, \sqrt{m}
热导率: $\kappa = \eta c_{V} = \frac{c_{V} \rho \bar{\lambda} \bar{\upsilon}}{3} = \frac{ik^{3/2}}{3\pi d^{2}} \sqrt{\frac{T}{m\pi}} \propto \sqrt{T}$, $1/\sqrt{m}$
自扩散系数: $D = \frac{\eta}{\rho} = \frac{\bar{\lambda} \bar{\upsilon}}{3} = \frac{2}{3d^{2}p} (\frac{kT}{\pi})^{3/2} \sqrt{\frac{1}{m}} \propto T^{3/2}$, $1/\sqrt{m}$, $1/p$
习题:3.11–17
作业:3.11, 3.15~16
例题: 无

第四类:布朗运动及其引起的扩散

布朗运动的特点

关系式:
$$\overline{x_i^2} = \frac{k_B T}{3\pi u \eta} t = 2Dt$$
, $D = \frac{k_B T}{6\pi u \eta}$
不朗运动运动 习题:3.18
作业:3.18
例题: 无

习题课

建议讲述下列习题:

3.9

补充题

(05-06-1)

一. 选择题(每题1分,共15分)

**15. 理想气体绝热地向真空自由膨胀,体积增大为原来的两倍,

则始、末两态的温度 T_1 与 T_2 和始、末两态气体分子的

平均自由程 $\overline{\lambda}$,与 $\overline{\lambda}$,的关系为 [D]

- (A) $T_1=2T_2$, $\overline{\lambda}_1=\overline{\lambda}_2$. (B) $T_1=2T_2$, $\overline{\lambda}_1=\overline{\lambda}_2$.
- (C) $T_1 = T_2$, $\overline{\lambda}_1 = \overline{\lambda}_2$. (D) $T_1 = T_2$, $\overline{\lambda}_1 = \frac{1}{2}\overline{\lambda}_2$
- 二. 填空题(每题1分,共15分)

*6. 按照分子运动论的观点,气体中的扩散现象是由于分子热运动所引起的 质量 输运; 热传导 现象是由于分子热运动所引起的_动能_输运; 粘滞现象是由于分子热运动所引起的____定向动量 __输运.

***7. 一定量的某种理想气体, 先经过等体过程使其热力学温度升高为原来的 4 倍; 再经过等温过 程使其体积膨胀为原来的 2 倍,则分子的平均碰撞频率变为原来的__1_倍.

(06-07-1)

无

(08-09-1)

无