

Roxane LEDUC Oct. 2023 – Jan. 2024

1. Introduction

2. Un premier circuit quantique

3. Qubits, portes et mesures

4. Algorithmes de Deutsch/Grover

5. Algorithme de Shor

6. Circuit quantique de l'algorithme de Shor

7. Implémentation avec Qiskit

8. Conclusion

Projet de Fin d'Études à l'INSA Rouen
 Normandie en collaboration avec le CEA.

- Découvrir les grands principes de l'algorithmique quantique.
- Comprendre et implémenter l'algorithme de Shor.

```
circuit = QuantumCircuit(3, 3)
circuit.x(1)
circuit.h(range(3))
circuit.cx(0, 1)
circuit.measure(range(3), range(3))
```

0\ θ

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|\psi\rangle \equiv \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{\mathrm{i}\phi}|1\rangle$$

$$|\Psi\rangle = \begin{bmatrix} lpha \\ eta \end{bmatrix} \qquad \langle \Psi| = [ar{lpha}, ar{eta}]$$

produit scalaire (inner product

$$\langle \Psi | \Psi \rangle = \left[\overline{\alpha}, \overline{\beta} \right] \times \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha^2 + \beta^2 = 1$$

produit externe (outer product)

$$|\Psi\rangle\langle\Psi| = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mathbf{x} [\bar{\alpha}, \bar{\beta}] = \begin{bmatrix} \alpha \bar{\alpha} & \alpha \bar{\beta} \\ \beta \bar{\alpha} & \beta \bar{\beta} \end{bmatrix}$$

produit tensoriel (tensor product)

$$|\psi.\phi\rangle = |\psi\rangle \otimes |\phi\rangle$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \vdots \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \\ \vdots \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\vdots \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Operator	Gate(s)		Matrix		
Pauli-X (X)	$-\mathbf{x}$		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$		
Pauli-Y (Y)	$-\!$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	Gra	ands pri
Pauli-Z (Z)	$- \boxed{\mathbf{z}} -$		$\begin{bmatrix} 1 & & 0 \\ 0 & -1 \end{bmatrix}$		matiqu
Hadamard (H)	$- \boxed{\mathbf{H}} -$		$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$	•	Intri
Phase (S, P)	$-\mathbf{s}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	•	Inter
$\pi/8~(\mathrm{T})$	$-\!\!\left[\mathbf{T}\right]\!\!-\!\!$		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	•	Non-dét
Controlled Not (CNOT, CX)	<u> </u>		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	•	Non-c
Controlled Z (CZ)			$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ initialisation à 0	porte de Hadamard	autres porte
SWAP		_ * _		φ Ψ)	θ/ Ψ⟩
Toffoli (CCNOT, CCX, TOFF)			1 0 0 0 1 0 0 0 1 0	$\frac{ 0\rangle + 1\rangle}{\sqrt{2}}$	elles vont continuer à tourner le vecteur da sphère de Bloch
			=	, –	les nortes à deux sur

rincipes de ie quantique:

- rication
- rférence
- terminisme
- clonabilité

superposition de 0 et 1

es

à faire lans la sphère de Bloch

les portes à deux ou trois qubits vont les relier de manière conditionnelle par intrication rémanente et créer des "états mixtes" difficiles à représenter

mesure

retourner un |0) avec une probabilité α² dépendant de l'état évalué et l'état du qubit deviendra |0)

la mesure va

la mesure va retourner un |1) avec une probabilité β² dépendant de l'état évalué et l'état du deviendra |1)

Ol Deutsch

$$\begin{aligned} |\psi_3\rangle &\equiv \left((-1)^{f(0)} + (-1)^{f(1)}\right) 0.0 \\ &+ \left(-(-1)^{f(0)} - (-1)^{f(1)}\right) 0.1 \\ &+ \left((-1)^{f(0)} - (-1)^{f(1)}\right) 1.0 \\ &+ \left(-(-1)^{f(0)} + (-1)^{f(1)}\right) 1.1 \end{aligned}$$

02 Grover

- 1. Vérifier que N n'est pas un nombre pair, premier ou une puissance d'un nombre premier.
- 2. Choisir aléatoirement 1 < a < N.
- 3. Si b = pgcd(a, N) > 1, renvoyer b (facteur non trivial).
- 4. Sinon, trouver l'ordre de a modulo N... nécessité d'user d'un circuit quantique!
- 5. Si r est impair, retourner à l'étape 1.
- 6. Sinon, calculer $x \equiv a^{r/2} + 1[N]$ et $y \equiv a^{r/2} 1[N]$. Si $x \equiv 0[N]$, retourner à l'étape 2.
- 7. Calculer : p = pgcd(x, N) et q = pgcd(y, N). Au moins l'un d'entre eux sera un facteur non trivial de N.

1. Initialisation : $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$

- 2. Transformation de Hadamard : $|\psi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{0}\rangle$
- 3. Passage de l'oracle : $|\psi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{a^k[N]}\rangle$
- 4. Qubit du premier registre, obtenu après mesure du second registre : $|\bar{\psi}_3\rangle = \frac{1}{\sqrt{A}} \sum_{\alpha=0}^{A-1} |\underline{\alpha}r + \beta_0\rangle$
- 5. Transformation de Fourier Inverse : $|\bar{\psi}_4\rangle = \hat{F}^{-1} |\bar{\psi}_3\rangle = \frac{1}{\sqrt{A}\sqrt{2^n}} \sum_{j=0}^{2^n-1} (\sum_{\alpha=0}^{A-1} e^{-2i\pi \frac{\alpha j}{2^n/r}}) e^{-2i\pi \frac{\beta_0 j}{2^n}} |\underline{j}\rangle$

r divise 2ⁿ

$$\left|\bar{\psi}_{4}\right\rangle = \frac{1}{\sqrt{r}} \sum_{\substack{j=0,\dots,2^{n}-1\\\text{avec }\frac{j}{2^{n}/r} \text{ entier}}} e^{-2\mathrm{i}\pi\frac{\beta_{0}j}{2^{n}}} \left|\underline{j}\right\rangle = \frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} e^{-2\mathrm{i}\pi\beta_{0}\frac{\ell}{r}} \left|\frac{2^{n}\ell}{r}\right\rangle$$

La mesure fournit un entier (2^n)l/r

r pair mais ne divise pas 2^n

La mesure conduit à un entier proche de (2^n)l/r, fraction non-entière... ->
Développement en fraction continue

ZOLVEN POLICIES DE LA CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA

Estimation quantique de phase

Exponentiation modulaire

$$U^{2^x} = a^{2^x}[N]$$

Transformée de Fourier


```
# Creation du circuit
qc = QuantumCircuit(n1 + n2, n1)
for q in range(n1):
   qc.h(q)
qc.x(3+n1)
for q in range(n1):
    qc.append(apmod15(a,2**q), [q]+[i+n1 for i in range(n2)])
qc.append(tfi(n1), range(n1))
qc.measure(range(n1), range(n1))
qc.draw(fold=-1)
# Transformee de Fourier quantique Inverse
def tfi(n):
    qc = QuantumCircuit(n)
    for qubit in range(n//2):
        qc.swap(qubit, n-qubit-1)
    for j in range(n):
        qc.h(j)
        for m in range(j+1, n):
            qc.cp(-np.pi/float(2**(j-m)), m, j)
    qc.name = "Transformee de Fourier Inverse"
    return qc
```

```
Init.
                 2 <-> 3
                            1 <-> 2
                                      0 <-> 1
                                                   X
        0001
                  0010
                                       1000
                                                  0111
                             0100
p=1
p=2
         0111
                                        1011
                                                 0100
                   0111
                             0111
```

```
# Exponentiation modulaire
def apmod15(a, power):
    U = QuantumCircuit(4)

for iteration in range(power):
        U.swap(2,3)
        U.swap(1,2)
        U.swap(0,1)
        for q in range(4):
            U.x(q)

U = U.to_gate()
U.name = "%i ^ %i mod 15" %(a,power)
c_U = U.control()

return c_U
```

MOLTATION SERVICE SERV

On détermine la période...

```
0 00000000(bin) = 0(dec) 0/256 = 0.00
1 11000000(bin) = 192(dec) 192/256 = 0.75
2 10000000(bin) = 128(dec) 128/256 = 0.50
3 01000000(bin) = 64(dec) 64/256 = 0.25
```

Fractions irréductibles, r = 4 ou 2

Finalement:

$$p = PGCD(7^2 - 1, 15) = 3$$

 $q = PGCD(7^2 + 1, 15) = 5$

Conclusion

- Introduction approfondie au calcul quantique, révélant son potentiel révolutionnaire.
- Exploration détaillée de trois algorithmes quantiques de renom.
- Implémentation de l'un de ces algorithmes via la manipulation de simulateurs quantiques et l'apprentissage de Quiskit, un langage de programmation dédié.
- Collaboration enrichissante avec un expert du domaine.

MERCIPOUR VOTRE ATTENTION!

Roxane LEDUC

Oct. 2023 - Fev. 2024

Transformation de Hadamard

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$\left|\underline{0}\right\rangle = |0.0\rangle \quad \stackrel{H^{\otimes 2}}{\longleftrightarrow} \quad \frac{1}{2}(|0+1\rangle|0+1\rangle) = \frac{1}{2}(|0.0\rangle + |0.1\rangle + |1.0\rangle + |1.1\rangle) = \frac{1}{2}(\left|\underline{0}\right\rangle + \left|\underline{1}\right\rangle + \left|\underline{2}\right\rangle + \left|\underline{3}\right\rangle)$$

$$H^{\otimes n} \left| \underline{0} \right\rangle = \frac{1}{\sqrt{2^n}} (|0 \dots 0.0\rangle + |0 \dots 0.1\rangle + |0 \dots 1.0\rangle + \dots + |1 \dots 1.1\rangle)$$

$$H^{\otimes n} \left| \underline{0} \right\rangle = \frac{1}{\sqrt{2^n}} \sum_{\ell=0}^{2^n - 1} \left| \underline{\ell} \right\rangle$$

Développement en fractions continues

$$x = \frac{427}{512} = [0, 1, 5, 42, 2] = 0 + \frac{1}{1 + \frac{1}{5 + \frac{1}{42 + \frac{1}{2}}}}$$

Transformée de Fourier Inverse

$$|\bar{\psi}_{4}\rangle = \hat{F}^{-1} |\bar{\psi}_{3}\rangle$$

$$= \hat{F}^{-1} \left(\frac{1}{\sqrt{A}} \sum_{\alpha=0}^{A-1} |\underline{\alpha}r + \beta_{0}\rangle\right)$$

$$= \frac{1}{\sqrt{A}} \sum_{\alpha=0}^{A-1} \hat{F}^{-1} (|\underline{\alpha}r + \beta_{0}\rangle)$$

$$= \frac{1}{\sqrt{A}} \sum_{\alpha=0}^{A-1} \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{-2i\pi \frac{(\alpha r + \beta_{0})j}{2^{n}}} |\underline{j}\rangle$$

$$= \frac{1}{\sqrt{A}\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} (\sum_{\alpha=0}^{A-1} e^{-2i\pi \frac{\alpha j}{2^{n}/r}}) e^{-2i\pi \frac{\beta_{0}j}{2^{n}}} |\underline{j}\rangle$$

$|\psi_2\rangle = \frac{1}{4} \left(|\underline{0}\rangle |\underline{1}\rangle + |\underline{1}\rangle |\underline{2}\rangle + |\underline{2}\rangle |\underline{4}\rangle + |\underline{3}\rangle |\underline{8}\rangle$ $+ |\underline{4}\rangle |\underline{1}\rangle + |\underline{5}\rangle |\underline{2}\rangle + |\underline{6}\rangle |\underline{4}\rangle + |\underline{7}\rangle |\underline{8}\rangle$ $+ |\underline{8}\rangle |\underline{1}\rangle + |\underline{9}\rangle |\underline{2}\rangle + |\underline{10}\rangle |\underline{4}\rangle + |\underline{11}\rangle |\underline{8}\rangle$ $+ |\underline{12}\rangle|\underline{1}\rangle + |\underline{13}\rangle|\underline{2}\rangle + |\underline{14}\rangle|\underline{4}\rangle + |\underline{15}\rangle|\underline{8}\rangle$

$$|\psi_{2}\rangle = \frac{1}{4} \left(|\underline{0}\rangle + |\underline{4}\rangle + |\underline{8}\rangle + |\underline{12}\rangle \right) |\underline{1}\rangle$$

$$+ \frac{1}{4} \left(|\underline{1}\rangle + |\underline{5}\rangle + |\underline{9}\rangle + |\underline{13}\rangle \right) |\underline{2}\rangle$$

$$+ \frac{1}{4} \left(|\underline{2}\rangle + |\underline{6}\rangle + |\underline{10}\rangle + |\underline{14}\rangle \right) |\underline{4}\rangle$$

$$+ \frac{1}{4} \left(|\underline{3}\rangle + |\underline{7}\rangle + |\underline{11}\rangle + |\underline{15}\rangle \right) |\underline{8}\rangle$$

Qubit du premier registre obtenu après mesure du second registre...

Mesure du second registre.

Une mesure sur le second registre renvoie de façon équiprobable :

Le qubit $|\bar{\psi}_3\rangle$ du premier registre dépend alors de cette mesure :

- si la mesure du second registre est $\underline{1}$ alors $|\bar{\psi}_3\rangle = \frac{1}{2}(|\underline{0}\rangle + |\underline{4}\rangle + |\underline{8}\rangle + |\underline{12}\rangle)$ si la mesure du second registre est $\underline{2}$ alors $|\bar{\psi}_3\rangle = \frac{1}{2}(|\underline{1}\rangle + |\underline{5}\rangle + |\underline{9}\rangle + |\underline{13}\rangle)$