SERIES

let $X = (x_n)$ be an R-seq. Define a new sequence: Sn = $\sum_{i=1}^{n} x_i$. This is called the nth partial Sum.

Def: We write $\Sigma x_k = x$ if S_n converges to $x \in \mathbb{R}$.

Examples:

1.
$$\chi_n = \frac{1}{n}$$
. $\Sigma_n^{\perp} = \infty$.

When do we say $\lim a_n = \infty$?

We say $\lim_{n \to \infty} a_n = \infty$ if $\forall k \in \mathbb{R}$ $\exists N \in \mathbb{N}$ s.t. $n \geqslant N \Rightarrow a_n > k$.

 $\chi_n = \begin{cases}
1 & \text{if } n = 1,2 \pmod{3} \\
-1 & \text{otherwise}
\end{cases}$

 $S_n: 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5,$ 6,7,6,...

We write $\Sigma \alpha_n = \infty$.

 $\lim S_n = \infty$

 $S_{3\alpha+1} = \alpha+1 > \alpha$

S_{3a+2} = a+2 > a

 $S_{3a+3} = a+1 > \infty$

 $S_{3\alpha+4} = \alpha+2 > \alpha$

Pf: Let $K \in \mathbb{R}$ given. Pick $a = \max \{ \lceil k+1 \rceil, 1 \}$

Claim: n=3a+1 => Sn > a

Do the proof yourself.

So we pick N = 3a+1. Then $n \neq N \Rightarrow S_n \neq a \neq k$.

i. lim Sn = ~.

(3)
$$x_n = 0$$
. $\sum x_n = 0$
(4) $x_n = c$ (<0). $\sum x_n = -\infty$.

(5)
$$a_n = (-1)^n$$
. $\sum a_n$ diverges in \mathbb{R} .
 $S_n : -1, 0, -1, 0, \dots$

(6)
$$\chi_n = \frac{1}{n^2}$$
. $\sum \chi_n = \frac{\pi^2}{6}$. $\chi_n = \frac{1}{4}$. $\chi_n = \frac{\pi^4}{90}$.

Facts: (1) Say In ER. Then lim xn = 0. Remark: A: Zxn ER. B: lim an =0.

(Contrapositivity) $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$

: We can conclude: $\lim x_n \neq 0 \implies \sum x_n \notin \mathbb{R}$.

(2) If all xn 70 then ∑xn ∈ Ry {∞}. Reason: Look at $S_n = \sum_{k=1}^{n} x_k$. $S_n \uparrow$. Then S_n cgs (in \mathbb{R}) to its supremum

is either a real or + or : lim Sn ER >0 U {too}.

(4)
$$\chi_n \geqslant 0$$
, $m \geqslant 1$. $\Sigma \chi_n \in \mathbb{R} \Rightarrow \Sigma \chi_n^M \in \mathbb{R}$

(6)
$$x_n 70$$
, $\pi: N \xrightarrow{bij} N$. $y_n = x_{\pi(n)}$.

Then $\Sigma y_n = \Sigma x_n$.

Rightmost

Idea: 3 2.0.0.0- - - 2 - - 2k -I civiled n $y_1 y_2 y_3 \dots$

Proof: Let
$$S_{n} = \sum_{i=1}^{n} x_{i}$$

$$S_{n}' = \sum_{i=1}^{n} y_{i};$$

$$\forall n \in \mathbb{N}, \quad \exists m(n) \in \mathbb{N} \quad S. \in.$$

$$y_{i} + \dots + y_{n} \quad \equiv x_{i} + \dots + x_{m(n) + n}$$

$$\Leftrightarrow \quad S_{n}' \quad \leq \quad S_{m(n) + n}$$

$$Coal: \quad \exists n = \alpha \in \mathbb{R}. \quad \text{Then} \quad \leq m(n) + n \leq \alpha \quad \forall n.$$

$$\vdots \quad 0 \leq S_{n}' \quad \leq \quad S_{m(n) + n} \leq \alpha \quad \forall n.$$

$$S_{n}' \quad \text{inc} \quad \vdots \quad y_{n} > 0 \} \Rightarrow S_{n}' \quad cge.$$

$$S_{n}' \quad \text{bld} \qquad \Rightarrow y \leq \alpha \quad (\forall n)$$

$$\Rightarrow y \leq \alpha \quad (\forall n)$$

$$\Leftrightarrow y \leq \alpha \quad (\forall n)$$

$$\text{Observe that} \quad (x_{n}) \text{ is a rearrangement} \quad \text{of } (y_{n})$$

$$(i.e., \quad x_{n} := y_{n}, \quad where \quad \sigma = \pi^{-1} \text{ is a bijection } \mathbb{N} \Rightarrow \mathbb{N}).$$

By the same reasoning, $\Sigma x_{\eta} = \Sigma y_{\eta} \implies \pi \leq y.$ Conclude $\pi = y$.

Case: $\sum x_n = \infty$. $x_n = y_{\Gamma(n)}$ So $\forall n \in \mathbb{N}$ $\exists k(n) \in \mathbb{N}$ S.t. $x_1 + \dots + x_n \leq y_1 + \dots + y_{n+k(n)}$ $\Rightarrow S_n \leq S_{n+k(n)}$ Let $\alpha \in \mathbb{R}$ given. Then (by def & hypothesis), $\exists N \in \mathbb{N} S.t.$ $S_n > \alpha + n > N$.

Take N' = N + k(N).

Then $n \geqslant N' \Rightarrow S_n' \geqslant S_{N'} \geqslant S_N > \alpha$.

Then $n \geqslant N' \Rightarrow S_n' \geqslant S_N > \alpha$.

By def, line Sn' = 00, i.e., Zyn = Zxn = 0.