

DESIGN AN IMPLEMENTATION OF IRS FOR SMALL MIMO WIRELESS NETWORK

A PROJECT REPORT

Submitted by

D. MAHESWARAN	821121106025
M. MOHAMED YASEEN	821121106030
M. MUKILVANNAN	821121106032

in partial fulfillment for the award of the degree

821121106055

P. SUDHARSAN

of

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING, PUNALKULAM

ANNA UNIVERSITY: CHENNAI 600 025

MAY 2025

ANNA UNIVERSITY: CHENNAI – 600 025

BONAFIDE CERTIFICATE

Certified that this report titled "DESIGN AN IMPLEMENTATION OF IRS FOR SMALL MIMO WIRELESS NETWORK" is the Bonafide work of "D. MAHESWARAN (821121106025), M. MOHAMED YASEEN (821121106030), M. MUKILVANNAN (821121106032), P. SUDHARSAN (821121106055)" who carried out the project work under my supervision.

SIGNATURE	SIGNATURE
Mrs. N. MANGAIYARKARASI, M.E.,	Mr. K. SUDARSANAN, M.E.
HEAD OF THE DEPARTMENT,	SUPERVISOR,
	Assistant Professor,
Department of ECE,	Department of ECE,
Kings College of Engineering,	Kings College of Engineering.
Punalkulam,	Punalkulam,
Pudukkottai – 613 303.	Pudukkottai – 613 303.
Submitted for the university viva voce held on	

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We owe great thanks to the Almighty for His shoers of blessings and his divine help which enables us to complete the Project successfully.

We would like to express out thanks to **Dr. R. Rajendran**, **Secretary**, for his support and encouragement.

We wish to express our deep sense of gratitude and respect to **Dr. J. Arputha Vijaya Selvi, Principal,** Kings College of Engineering, Punalkulam, for giving permission to do the project work successfully.

A special thanks to **Shri. T. R. S. Muthukumar, CEO**, Kings College of Engineering, Punalkulam, for offering the means of attaining our most cherished goal and for their incessant support.

We express our sincere thanks to Mrs. N. Mangaiyarkarasi, Head of the Department, Electronics and Communication Engineering, and Mr. W. Newton Davod Raj, Project Coordinator, who endorsed us with constant encouragement, and for extending full support.

With immense pleasure, we extend our sincere and heartfelt thanks to Mr. K. Sudarsanan, Project Guide. We also extend our sincere thanks to all the staff members of ECE department.

We extend our sincere and heartfelt thanks to non-teaching staff members of ECE department. Our deepest thanks to our parents for updating us by providing professional Education and for their prayerful support that make me to complete the project.

(D. MAHESWARAN)

(M. MOHAMED YESEEN)

(M. MUKILVANNAN)

(P. SUDHARSAN)

ABSTRACT

The exponential growth of wireless data demand and the limitations of conventional communication infrastructure have necessitated the development of innovative technologies to improve signal quality and energy efficiency. Intelligent Reflecting Surfaces (IRS) have emerged as a promising solution in next-generation wireless networks.

This project explores the design and implementation of an IRS-assisted wireless communication system, where a programmable meta surface is used to dynamically control the reflection of incident signals toward the receiver, thereby enhancing the overall communication performance.

The IRS is modelled using discrete phase shifts and is integrated into a simulation environment to analyse its impact on system parameters such as signal-to-noise ratio (SNR), bit error rate (BER), and achievable data rate. Optimization algorithms are employed to configure the IRS elements in real-time, maximizing signal strength at the receiver while minimizing interference.

The project demonstrates that IRS can significantly improve wireless coverage, reliability, and spectral efficiency, especially in non-line-of-sight (NLoS) scenarios.

This work contributes toward the practical realization of IRS in 6G networks, highlighting its potential in future smart radio environments.

TABLE OF CONTENTS

CHAPTERNO.		TITLE	PAGE NO.
	ABS	TRACT	iv
	LIST	C OF TABLES	viii
	LIST	C OF FIGURES	ix
	LIST	C OF ABBREVIATIONS	x
1	INTE	RODUCTION	1
	1.1	OVERVIEW OF THE PROJECT	1
	1.2	WIRELESS COMMUNICATION	3
	1.3	WIRELESS TECHNOLOGY	3
	1.4	WIRELESS COMMUNICATION STANDARD	4
	1.5	5G / 6G GENERATION	5
	1.6	MIMO AND TYPES	6
	1.7	IRS DETAILS	7
	1.8	COMSOL MULTIPHYSICS 6.3	8
	1.9	SCOPE OF THE PROJECT	9
	1.10	OBJECTIVE	10
2	LITE	ERATURE SURVEY	11
3	EXIS	STING AND PROPOSED SYSTEM	15
	3.1	EXISTING SYSTEM	15
		3.1.1 DISADVANTAGES	15
	3.2	PROPOSED SYSTEM	17
		3.2.1 ADVANTAGES	17
4	SYST	ΓEM DESIGN	19
	4 1	BLOCK DIAGRAM	19

	4.2 DESCRIPTION	20
5	HARDWARE REQUIREMENTS	23
	5.1 POWER SUPPLY	24
	5.2 ARDUINO UNO MICROCONTROLLER	27
	5.2.1 PIN DIAGRAM	29
	5.2.2 PIN CONFIGURATION OF ARDUINO	30
	5.2.3 FEATURES OF ARDUINO UNO	31
	5.2.4 PERIPHERAL FEATURES	32
	5.2.5 SPECIAL FEATURES	32
	5.2.6 DETAILED FEATURES OF ARDUINO	22
	UNO	33
	5.2.7 SPECIAL FUNCTION REGISTERS	34
	5.2.8 PROGRAMMING IN ARDUINO UNO	35
	5.3 CAPACITOR	37
	5.4 INDUCTOR	37
	5.5 VARACTOR DIODE	37
	5.6 IRS PANEL	38
	5.7 RF TRANSMITTER & RECEIVER	40
	5.7.1 RF TRANSMITTER	40
	5.7.2 RF RECEIVER	41
	5.8 TOWER	42
	5.9 ANTENNA	43
6	SOFTWARE REQUIREMENTS	45
	6.1 INTRODUCTION OF THE SOFTWARE	45
	6.1.1 SYSTEM COMPONENT	45
	6.2 APPLICATION OF THE SOFTWARE	47
	6.3 FUNCTIONS	49
7	SYSTEM IMPLEMENTATION	51

	7.1 SYSTEM IMPLEMENTATION	51
	7.1.1 ARCHITECTURE AND COMPONENTS	51
	7.1.2 PASSIVE BEAMFORMING	50
	TECHNIQUES	52
	7.1.3 DEPLOYMENT AND NETWORK	52
	OPTIMIZATION	53
	7.1.4 COMPUTATIONAL MODELLING &	54
	PERFORMANCE EVALUATION	34
8	EXPERIMENTAL RESULT AND ANALYSIS	55
9	CONCLUSION	58
10	FUTURE SCOPE	60
	APPENDEX	61
	REFERENCES	62

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
5.2.2	PIN CONFIGURATION OF ARDUINO	30
5.2.6	DETAILED FEATURES OF ARDUINO UNO	33

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.	
1.4	EVALUATION OF 1G TO 6G WIRELESS	5	
1.4	COMMUNICATION	5	
4.1	BLOCK DIAGRAM	19	
5.1.1	USB POWER	24	
5.1.2	EXTERNAL DC POWER	25	
5.1.3	VIN PIN	25	
5.1.4	VARACTOR DIODE	26	
5.2.1	PIN DIAGRAM OF ARDUINO UNO	29	
5.2	ARDUINO MICROCONTROLLER	36	
5.3.1	CAPACITOR	37	
5.4.1	INDUCTOR	37	
5.4.1	VARACTOR DIODE	38	
5.7	RF TRANSMITTER AND RECEIVER	40	
5.8.1	COMMUNICATION TOWER	42	
5.9.1	ANTENNA	43	
7.1	IRS PANEL	51	
7.1.1	SINGLE ELEMENT EXPLODED VIEW	52	
7.1.2	RADIATION PATTERN OF THE IRS	53	
8.1	IRS ARRAY	56	
8.2	SINGLE ARRAY OUTLINE	56	
8.3	RADIATION PATTERN OF IRS PANEL	57	

ABBREVIATIONS

S. NO. ABBREVIATION

EXPANSION

