11 Publication number:

0 462 531 A2

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 91109856.4

2 Date of filing: 15.06.91

(a) Int. Cl.5: **C07K** 7/56, C12P 21/04, C12N 1/14, //(C12N1/14, C12R1:645)

Priority: 18.06.90 GB 9013558 31.10.90 GB 9023666 24.01.91 GB 9101552

Date of publication of application:27.12.91 Bulletin 91/52

Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE

Applicant: FUJISAWA PHARMACEUTICAL CO., LTD.
 4-7, Doshomachi 3-chome Chuo-ku
 Osaka-shi Osaka 541(JP)

2 Inventor: Toshiro, Iwamoto
16-4-308, Azuma 4-chome
Tsukuba-shi, Ibaraki 305(JP)
Inventor: Akihiko, Fujie
41-1, Sakuragaokacho
Tsuchiura-shi, Ibaraki 300(JP)
Inventor: Kumiko, Nitta
1160-4, Nagakuni
Tsuchiura-shi, Ibaraki 300(JP)
Inventor: Yasuhisa, Tsurumi
21-1-510-601, Takezono 3-chome
Tsukuba-shi, Ibaraki 305(JP)

Inventor: Nobuharu, Shigematsu 5-4-601, Umezono 2-chome Tsukuba-shi, Ibaraki 305(JP) Inventor: Chiyoshi, Kasahara 2-2-13, Midorigaoka Ikeda-shi, Osaka 563(JP) Inventor: Motohiro, Hino 13-3-1003, Touzaki-cho Tsuchiura-shi, Ibaraki 300(JP) Inventor: Masakuni, Okuhara 14-10, Umezono 2-chome Tsukuba-shi, Ibaraki 305(JP) Inventor: Kazuo, Sakane 15, Azayamagata, Mino Kawanishi-shi, Hyogo 666-01(JP) Inventor: Kohji, Kawabata 1-72, Maruyamadai 2-chome Kawanishi-shi, Hyogo 666-01(JP) Inventor: Hidenori, Ohki 2-2-10, Midorigaoka Ikeda-shi, Osaka 563(JP)

Representative: Türk, Gille, Hrabal Brucknerstrasse 20
W-4000 Düsseldorf 13(DE)

Cyclic polypeptide with antiblotic activity, process for its preparation and pure culture of a Coelomycetes strain.

(5) A polypeptide compound of the following general formula:

P 0 462 531 A2

wherein

R1 is hydrogen or acyl group,

R² is hydroxy or acyloxy,

R³ is hydrogen or hydroxysulfonyloxy, and

R4 is hydrogen or carbamoyl,

with proviso that

(i) R2 is acyloxy, when R3 is hydrogen, and

(ii) R1 is not palmitoyl, when R2 is hydroxy,

R3 is hydroxysulfonyloxy and

R4 is carbamoyl,

and a pharmaceutically acceptable salt thereof, processes for their preparation and pharmaceutical compositions comprising them. The invention relates also to intermediates of the formula

wherein

R⁶ is (C₄-C₆)alkoxy, higher alkoxy or higher alkenyloxy, and

R⁷ is -COOH or -SO₃H,

or its reactive derivative at the carboxy group or a salt thereof and

Wherein

R8 is 1 to 4 halogen, and

EP 0 462 531 A2

R⁹ is lower alkoxy which has one or more halogen, higher alkoxy which has one or more halogen, or its reactive derivative at the carboxy group or a salt thereof. The invention also relates to a biologically pure culture of the microorganism Coelomycetes strain F-11899 (FERM BP-2635).

The present invention relates to new polypeptide compound and a pharmaceutically acceptable salt thereof.

More particularly, it relates to new polypeptide compound and a pharmaceutically acceptable salt thereof, which have antimicrobial activities (especially antifungal activities), to a process for preparation thereof, to pharmaceutical composition comprising the same, and to a method for treating or preventing infectious diseases in human being or animals.

Accordingly, one object of the present invention is to provide the polypeptide compound and a pharmaceutically acceptable salt thereof, which are highly active against a number of pathogenic microorganisms in human being and animals.

Another object of the present invention is to provide a process for the preparation of the polypeptide compound and a salt thereof.

A further object of the present invention is to provide a pharmaceutical composition comprising, as an active ingredient, said polypeptide compound or a pharmaceutically acceptable salt thereof.

Still further object of the present invention is to provide a method for treating or preventing infectious diseases caused by pathogenic microorganisms, which comprises administering said polypeptide compound to human being or animals.

The object polypeptide compound of the present invention is novel and can be represented by the following general formula [I]:

20

25

30

35

10

HO OH

HO OH

HO OH

$$HO$$
 R^4
 HO
 OH
 NH
 OH
 NH
 OH
 OH

wherein

40 R¹ is hydrogen or acyl group,

R² is hydroxy or acyloxy.

R3 is hydrogen or hydroxysulfonyloxy, and

R4 is hydrogen or carbamoyl,

with proviso that

(i) R2 is acyloxy, when R3 is hydrogen, and

(ii) R1 is not palmitoyl, when R2 is hydroxy.

R3 is hydroxysulfonyloxy and

R4 is carbamovl.

The polypeptide compound [I] of the present invention can be prepared by the processes as illustrated in the following schemes.

Process 1

Process 2

25

55

Process 3

[Ic]
or a salt thereof

or a salt thereof

[Id]
or a salt thereof

or a salt thereof

Process 4

25

30

Process 5

5

25

30

35

40

[IV]

or a salt thereof

[Ig]

or a salt thereof

wherein

 R_a^3 and R^4 are each as defined above, $R_a^1 \qquad \text{is acyl group exclusive of palmitoyl,} \\ R_b^1 \qquad \text{is ar(lower)alkanoyl which has higher alkoxy and protected amino,} \\ R_c^1 \qquad \text{is ar(lower)alkanoyl which has higher alkoxy and amino,} \\ R_d^1 \qquad \text{is halo(lower)alkanoyl,} \\ R_e^1 \qquad \text{is pyridylthio(lower)alkanoyl which may have higher alkyl,} \\ \text{is acyl group,} \\$

 R_i^2 is acyl group, R_a^2 is acyloxy, and R^5 is acyl group.

The starting compound [II] or a salt thereof is novel and can be prepared by the following fermentation process.

45

50

Process A

A strain belonging to the <u>Coleophoma</u> which is capable of producing the compound [II] or a salt thereof

[II]
or a salt thereof

25

40

20

5

10

15

Some of the starting compound [IV] are novel and can be prepared according to the aforesaid Process 1 to 4.

Suitable pharmaceutically acceptable salt of the object compound [I] is conventional non-toxic mono or disalts and include a metal salt such as an alkali metal salt [e.g. sodium salt, potassium salt, etc.] and an alkaline earth metal salt [e.g. calcium salt, magnesium salt, etc.], an ammonium salt, an organic base salt [e.g. trimethylamine salt, triethylamine salt, pyridine salt, picoline salt, dicyclohexylamine salt, N,N-dibenzylethylenediamine salt, etc.] an organic acid addition salt [e.g. formate, acetate, trifluroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.], an inorganic acid addition salt [e.g. hydrochloride, hydrobromide, hydroiodide, sulfate, phosphate, etc.], a salt with an amino acid [e.g. arginine salt, aspartic acid salt, glutamic acid salt, etc.], and the like.

In the above and subsequent description of this specification, suitable examples of the various definitions are explained in detail as follows:

The term "lower" is intended to mean 1 to 6 carbon atom(s), unless otherwise indicated.

The term "higher" is intended to mean 7 to 20 carbon atoms, unless otherwise indicated.

Suitable "acyl group" may be aliphatic acyl, aromatic acyl, heterocyclic acyl, arylaliphatic acyl and heterocyclic-aliphatic acyl derived from carboxylic acid, carbonic acid, carbamic acid, sulfonic acid, and the like.

Suitable example of the "acyl group" thus explained may be :

lower alkanoyl [e.g. formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, hexanoyl, pivaloyl, etc.] which may have one or more (preferably 1 to 3) suitable substituent(s) such as halogen (e.g. fluoro, chloro, bromo, iodo); aryl (e.g. phenyl, naphthyl, anthryl, etc.) which may have one or more (preferably 1 to 3) suitable substituent(s) like hydroxy, higher alkoxy as explained below, aforesaid aryl, or the like; lower alkoxy as explained below; amino; protected amino, preferably, acylamino such as lower alkoxycarbonylamino (e.g. methoxycarbonylamino, ethoxycarbonylamino, butoxycarbonylamino, t-butoxycarbonylamino, pentyloxycarbonylamino, hexyloxycarbonylamino, etc.); or the like; di(lower)alkylamino (e.g. dimethylamino, N-methylethylamino, diethylamino, N-propylbutylamino, dipentylamino, dihexylamino, etc.); lower alkoxyimino (e.g. methoxyimino, ethoxyimino, propoxyimino, butoxyimino, t-butoxyimino, pentyloxyimino, hexyloxyimino, etc.); ar(lower)alkoxyimino such as phenyl(lower)alkoxyimino (e.g. benzyloxyimino, phenethyloxyimino, benzhydryloxyimino, etc.) which may have one or more (preferably 1 to 3) suitable substituent(s) like higher alkyl (e.g. heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, 3-methyl-10-

ethyldodecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, etc.), or the like; heterocyclic group (e.g. thienyl, imidazolyl, pyrazolyl, furyl, tetrazolyl, thiazolyl, thiadiazolyl, etc.) which may have one or more (preferably 1 to 3) suitable substituent(s) like amino, aforesaid protected amino, aforesaid higher alkyl, or the like; or the like;

higher alkanoyl [e.g. heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, lauroyl, tridecanoyl, myristoyl, pentadecanoyl, palmitoyl, 10,12-dimethyltetradecanoyl, heptadecanoyl, stearoyl, nonadecanoyl, icosanoyl, etc.];

lower alkenoyl [e.g. acryloyl, methacryloyl, crotonoyl, 3-pentenoyl, 5-hexenoyl, etc.] which may have one or more (preferably 1 to 3) suitable substituent(s) such as aforesaid aryl which may have one or more (preferably 1 to 3) suitable substituent(s) like higher alkoxy as explained below, or the like, or the like;

higher alkenoyl [e.g. 4-heptenoyl, 3-octenoyl, 3,6-decadienoyl, 3,7,11-trimethyl-2,6,10-dodecatrienoyl, 4,10-heptadecadienoyl, etc.];

lower alkoxycarbonyl [e.g. methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, t-butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl, etc.];

higher alkoxycarbonyl [e.g. heptyloxycarbonyl, octyloxycarbonyl, 2-ethylhexyloxycarbonyl, nonyloxycarbonyl, decyloxycarbonyl, 3,7-dimethyloctyloxycarbonyl, undecyloxycarbonyl, dodecyloxycarbonyl, tridecyloxycarbonyl, tetradecyloxycarbonyl, pentadecyloxycarbonyl, 3-methyl-10-ethyldodecyloxycarbonyl, hexadecyloxycarbonyl, heptadecyloxycarbonyl, octadecyloxycarbonyl, nonadecyloxycarbonyl, icosyloxycarbonyl, etc.];

aryloxycarbonyl [e.g. phenoxycarbonyl, naphthyloxycarbonyl, etc.];

arylglyoxyloyl [e.g. phenylglyoxyloyl, naphthylglyoxyloyl, etc.];

15

20

25

50

55

ar(lower)alkoxycarbonyl which may have one or more suitable substituent(s) such as phenyl(lower)-alkoxycarbonyl which may have nitro or lower alkoxy [e.g. benzyloxycarbonyl, phenethyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, etc.];

lower alkylsulfonyl [e.g. methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, pentylsulfonyl, butylsulfonyl, etc.];

arylsulfonyl [e.g. phenylsulfonyl, naphthylsulfonyl, etc.] which may have one or more (preferably 1 to 3) suitable substituent(s) such as lower alkyl as explained below, higher alkoxy as explained below, or the like; ar(lower)alkylsulfonyl such as phenyl(lower)alkylsulfonyl [e.g. benzylsulfonyl, phenethylsulfonyl, benz-hydrylsulfonyl, etc.], or the like;

aroyl [e.g. benzoyl, naphthoyl, anthrylcarbonyl, etc.] which may have one or more (preferably 1 to 5) suitable substituent(s) such as aforesaid halogen; lower alkyl (e.g. methyl, ethyl, propyl, butyl, t-butyl, pentyl, hexyl, etc.); aforesaid higher alkyl; lower alkoxy (e.g. methoxy, ethoxy, propoxy, butoxy, t-butoxy, pentyloxy, hexyloxy, etc.) which may have one or more (preferably 1 to 10) suitable substituent(s) like aforesaid lower alkoxy, aforesaid halogen, aforesaid aryl, or the like; higher alkoxy (e.g. heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy, undecyloxy, dodecyloxy, tridecyloxy, tetradecyloxy, pentadecyloxy, 3-methyl-10-ethyldodecyloxy, hexadecyloxy, heptadecyloxy, octadecyloxy, nonadecyloxy, icosyloxy, etc.) which may have one or more (preferably 1 to 17) suitable substituent(s) like aforesaid halogen; higher alkenyloxy (e.g. 3-heptenyloxy, 7-octenyloxy, 2,6-octadienyloxy, 5-nonenyloxy, 1-3,7-dimethyl-6-octenyloxy, 3,7-dimethyl-2,6-octadienyloxy, 8-undecenvloxy. dodecatrienyloxy, 5-tridecenyloxy, 7-tetradecenyloxy, 1,8-pentadecadienyloxy, 15-hexadecenyloxy, 11-heptadecenyloxy, 7-octadecenyloxy, 10-nonadecenyloxy, 18-icosenyloxy, etc.); carboxy; aforesaid aryl which may have one or more (preferably 1 to 3) suitable substituent(s) like aforesaid higher alkoxy; aryloxy (e.g. phenoxy, naphthyloxy, anthryloxy, etc.) which may have one or more (preferably 1 to 3) suitable substituent-(s) like aforesaid lower alkoxy, or aforesaid higher alkoxy; or the like; or the like.

In said "acyl group", the preferred one may be lower alkanoyl; halo(lower)alkanoyl;

ar(lower)alkanoyi which may have one or more (preferably 1 to 3) hydroxy, lower alkoxy, higher alkoxy, aryl, amino, protected amino, di(lower)alkylamino, lower alkoxyimino or ar(lower)alkoxyimino which may have one or more (preferably 1 to 3) higher alkoxy;

heterocyclicthio(lower)alkanoyl which may have one or more (preferably 1 to 3) higher alkyl;

heterocyclic(lower)alkanoyl which may have one or more (preferably 1 to 3) lower alkoxyimino, higher alkyl, amino or protected amino;

ar(lower)alkoxyimino(lower)alkanoyl which may have one or more (preferably 1 to 3) higher alkoxy; higher alkanoyl;

ar(lower)alkenoyl which may have one or more (preferably 1 to 3) higher alkoxy;

higher alkenoyl; lower alkoxycarbonyl; higher alkoxycarbonyl; aryloxycarbonyl;

arylsulfonyl which may have one or more (preferably 1 to 3) lower alkyl or higher alkoxy;

aroyl which may have one or more (preferably 1 to 5) halogen, lower alkyl, higher alkyl, carboxy, lower

alkoxy which may have one or more (preferably 1 to 10) halogen, lower alkoxy(lower)alkoxy, ar(lower)alkoxy, higher alkoxy which may have one or more (preferably 1 to 17) halogen, higher alkenyloxy, aryl which may have one or more (preferably 1 to 3) higher alkoxy or aryloxy which may have one or more (preferably 1 to 3) lower alkoxy or higher alkoxy;

in which the more preferred one may be lower alkanoyl; halo(lower)alkanoyl;

phenyl(lower)alkanoyl or naphthyl(lower)alkanoyl, each of which may have 1 to 3 hydroxy, lower alkoxy, higher alkoxy, phenyl, amino, lower alkoxycarbonylamino, di(lower)alkylamino, lower alkoxyimino, or phenyl-(lower)alkoxyimino which may have 1 to 3 higher alkoxy;

pyridylthio(lower)alkanoyl which may have 1 to 3 higher alkyl;

imidazolyl(lower)alkanoyl or thiazolyl(lower)alkanoyl, each of which may have 1 to 3 lower alkoxyimino, higher alkyl, amino or lower alkoxycarbonylamino;

phenyl(lower)alkoxyimino(lower)alkanoyl which may have 1 to 3 higher alkoxy;

higher alkanoyl;

5

15

25

30

phenyl(lower)alkenoyl which may have 1 to 3 higher alkoxy;

higher alkenoyl; lower alkoxycarbonyl, higher alkoxycarbonyl; phenoxycarbonyl;

phenylsulfonyl or naphthylsulfonyl, each of which may have 1 to 3 lower alkyl or higher alkoxy;

benzoyl, naphthoyl or anthrylcarbonyl, each of which may have 1 to 5 halogen, lower alkyl, higher alkyl, carboxy, lower alkoxy which may have 6 to 10 halogen, lower alkoxy(lower)alkoxy, phenyl (lower)alkoxy, higher alkoxy which may have 1 to 3 higher alkoxy, phenoxy which may have 1 to 3 lower alkoxy or higher alkoxy;

the much more preferred one may be (C1-C4)alkanoyl; halo(C1-C4)alkanoyl;

phenyl(C_1 - C_4)alkanoyl which may have 1 to 3 hydroxy, (C_1 - C_4)alkoxy, (C_7 - C_{16})alkoxy, phenyl, amino, (C_1 - C_4)alkoxycarbonylamino, di(C_1 - C_4)alkylamino, (C_1 - C_4)alkoxyimino or phenyl(C_1 - C_4)alkoxyimino which may have (C_7 - C_{16})alkoxy;

naphthyl(C₁-C₄)alkanoyl which may have 1 to 3 (C₁-C₄)alkoxycarbonylamino;

1-(C₇-C₁₅)alkylpyridiniothio(C₁-C₄)alkanoyl;

imidazolyl(C₁-C₄)alkanoyl which may have 1 to 3 (C₇-C₁₆)alkyl or (C₁-C₄)alkoxycarbonylamino;

thiazolyl(C1-C4)alkanoyl which may have 1 to 3 (C1-C4)alkoxyimino or amino;

phenyl(C₁-C₄)alkoxyimino(C₁-C₄)alkanoyl which may have 1 to 3 (C₇-C₁₆)alkoxy;

(C1-C17)alkyl;

phenyl(C₁-C₄)alkenoyl which may have 1 to 3 (C₇-C₁₆)alkoxy;

(C₇-C₁₈)alkenoyl; (C₃-C₆)alkoxycarbonyl; (C₇-C₁₆)alkoxycarbonyl; phenoxycarbonyl;

phenylsulfonyl which may have (C1-C4)alkyl or (C7-C16)alkoxy;

naphthylsulfonyl which may have (C7-C16)alkoxy;

benzoyl which may have 1 to 5 halogen, (C₃-C₆)alkyl, (C₇-C₁₆)alkyl, carboxy, (C₁-C₆)alkoxy which may have 6 to 10 halogen, (C₁-C₄)alkoxy(C₁-C₄)alkoxy,

phenyl(C_3 - C_6)alkoxy, (C_7 - C_{16})alkoxy which may have 12 to 17 halogen, phenyl which may have 1 to 3 (C_7 - C_{16})alkoxy or phenoxy which may have 1 to 3 (C_3 - C_6) alkoxy or (C_7 - C_{16}) alkoxy;

naphthoyl which may have 1 to 3 (C₃-C₆)alkoxy (C₇-C₁₆)alkoxy or (C₇-C₁₆)alkenyloxy;

anthrylcarbonyl;

and the most preferred one may be acetyl, 2-bromoacetyl, 2-(4-biphenylyl)acetyl, 2-(4-octyloxyphenyl)acetyl, 3-(4-octyloxyphenyl)propionyl, 2-amino-2-(4-octyloxyphenyl)acetyl, 2-(t-butoxycarbonylamino)-2-(4octyloxyphenyl)acetyl, 2-amino-3-(4-octyloxyphenyl)propionyl, 2-(t-butoxycarbonylamino)-3-(4-octyloxyphenyl)propionyl, 2-dimethylamino-3-(4-octyloxyphenyl)propionyl, 2-(t-butoxycarbonylamino)-2-(2-naphthyl)acetyl, 2-methoxy-2-(4-octyloxyphenyl)acetyl, 2-methoxyimino-2-(4-octyloxyphenyl)acetyl, 2-(4-octyloxyphenyl)acetyl, 2-methoxyimino-2-(4-octyloxyphenyl)acetyl, 2-methoxymino-2-(4-octyloxyphenyl)acetyl, 2-meth ybenzyloxyimino)-2-(4-hydroxyphenyl)acetyl, 2-(4-octyloxybenzyloxyimino)-2-phenylacetyl, 2-(4-octyloxybenzyloxyimino)acetyl, 2-(1-octyl-4-pyridinio)thioacetyl, 2-methoxyimino-2-(2-aminothiazol-4-yl)acetyl, 2-(tbutoxycarbonylamino)-3-(1-octyl-4-imidazolyl)propionyl, 3-(4-octyloxyphenyl)acryloyl, 3,7,11-trimethyl-2,6,10dodecatrienoyl, t-butoxycarbonyl, octyloxycarbonyl, phenoxycarbonyl, p-tolylsulfonyl, 4-octyloxyphenylsulfonyl, 6-octyloxy-2-naphthylsulfonyl, 4-(t-butyl)benzoyl, 4-octylbenzoyl, 2,3,5,6-tetrafluoro-4-(2,2,3,3,4,4,5,5octafluoropentyloxy)benzoyl, 4-(2-butoxyethoxy)benzoyl, 4-(4-phenylbutoxy)benzoyl, 4-octyloxybenzoyl, 2carboxy-4-octyloxybenzoyl, 3-methoxy-4-octyloxybenzoyl, 4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8-pentadecafluorooctyloxy)-2,3,5,6-tetrafluorobenzoyl, 4-(4-octyloxyphenyl)benzoyl, 4-(4-octyloxyphenoxy)benzoyl, 6-butoxy-2naphthoyl, 6-hexyloxy-2-naphthoyl, 6-octyloxy-2-naphthoyl, 6-(2-ethylhexyloxy)-2-naphthoyl, 6-decyloxy-2naphthoyl, 6-(3,7-dimethyloctyloxy)-2-naphthoyl, 6-dodecyloxy-2-naphthoyl, 6-(3,7-dimethyl-6-octenyloxy)-2naphthoyl, 6-(3,7-dimethyl-2,6-octadienyloxy)-2-naphthoyl, 2-anthrylcarbonyl, 4-(4-heptyloxyphenyl)-benzoyl and 4-(4-hexyloxyphenoxy)benzovl.

Suitable "acyl group exclusive of palmitoyl" can be referred to the ones is exemplified before for "acyl

group" except palmitoyl.

10

15

20

25

30

55

Suitable "ar(lower)alkanoyl" moiety in "ar(lower)alkanoyl which has higher alkoxy and protected amino" and "ar(lower)alkanoyl which has higher alkoxy and amino" can be referred to the ones as exemplified before for "acyl group" and suitable examples of the substituent(s) "higher alkoxy" and "protected amino" can be referred to the ones as exemplified before for "acyl group".

Suitable "halo(lower)alkanoy!" can he referred to the ones as exemplified before for "acyl group".

Suitable "pyridylthio(lower)alkanoy!" in "pyridylthio(lower)alkanoy! which may have higher alky!" can be referred to the ones as exemplified before for "acyl group", and suitable examples of the substituent "higher alky!" can be exemplified before for "acyl group".

Suitable "acyloxy" may include hydroxysulfonyloxy, phosphonooxy, and the like.

In the object compound [I] thus defined, the following compound [Ih] is especially preferable.

wherein R¹ is hydrogen or acyl group, with proviso that R¹ is not palmitoyl.

Suitable "acylating agent" for the acylation reaction is <u>Process 2</u> may be an acid compound corresponding to the acyl group to be introduced or its reactive derivative at the carboxy group or a salt thereof and suitable example of said acylating agent is represented by the formula:

 R_a^1 - OH [V]

wherein R_a is as defined above,

or its reactive derivative at the carboxy group or a salt thereof.

In the compound [V], the following compounds are novel.

or its reactive derivative

at the carboxy group

or a salt thereof

10

15

20

5

[V-2]

or its reactive derivative at the carboxy group or a salt thereof

wherein

R⁶ is lower alkoxy, higher alkoxy or higher alkenyloxy,

R⁷ is -COOH or -SO₃H,

R8 is 1 to 4 halogen,

R⁹ is lower alkoxy which has one or more halogen, higher alkoxy which has one or more halogen. The compounds [V-1] and [V-2] can be prepared by the following processes.

25

Process B

30

35

40

HO R⁷

 $R^{10} - X \rightarrow$

R⁶ R⁷

[VI]

[VII]

[V-1]

or a salt thereof or

or a salt thereof

or a salt thereof

45

50

Process C

[VIII] [IX] [V-2]

or a salt thereof or a salt thereof

20 wherein

15

R⁶, R⁷, R⁸ and R⁹ are each as defined above,

R¹⁰ is lower alkyl, higher alkyl or higher alkenyl,

R¹¹ is lower alkyl which has one or more halogen or higher alkyl which has one or

more halogen, and

25 X and Y are each a leaving group.

In the above definitions, suitable "lower alkoxy", "higher alkoxy", "higher alkenyloxy", "halogen", "lower alky!" and "higher alky!" can be referred to the ones as exemplified before.

Suitable "higher alkenyl" may include 3-heptenyl, 7-octenyl, 2,6-octadienyl, 5-nonenyl, 1-decenyl, 3,7-dimethyl-6-octenyl, 3,7-dimethyl-2,6-octadienyl, 8-undecenyl, 3,6,8-dodecatrienyl, 5-tridecenyl, 7-tetradecenyl, 1,8-pentadecadienyl, 15-hexadecenyl, 11-heptadecenyl, 7-octadecenyl, 10-nonadecenyl, 18-icosenyl and the like, in which the preferred one may be (C₇-C₁₆)alkenyl.

As for R⁹, "lower alkoxy" has one or more (preferably 1 to 10, more preferably 6 to 10) halogen, and "higher alkoxy" has one or more (preferably 1 to 17, more preferably 12 to 17) halogen.

As for R¹¹, "lower alkyl" has one or more (preferably 1 to 10, more preferably 6 to 10) halogen, and "higher alkyl" has one or more (preferably 1 to 17, more preferably 12 to 17) halogen.

As for R⁶, preferred "lower alkoxy" may be (C₄-C₆)alkoxy.

Suitable "a leaving group" may include aforesaid halogen, lower alkanoyloxy (e.g. acetoxy, etc.), sulfonyloxy (e.g. mesyloxy, tosyloxy, etc.), and the like.

Regarding suitable salts and the reactive derivatives at the carboxy group of the compounds [V-1] and [V-2], they can be referred to the ones as exemplified below for the compound [V].

The reactions in Processes B and C can be carried out according to the methods disclosed later in Preparations of the present specification or the similar manners thereto.

In the compound [V], there are other novel compounds than-compounds [V-1] and [V-2], and they can be prepared, for example, by the methods disclosed later in Preparations.

Suitable "pyridinethione" in Process 4 may include 1,2-dihydropyridine-2-thione, 1,4-dihydropyridine-4-thione, and the like, and said "pyridinethione" may have aforesaid "higher alkyl".

The processes for preparing the object compound [I] or a salt thereof of the present invention are explained in detail in the following.

50 Process 1

45

The object compound [la] or a salt thereof can be prepared by subjecting a compound [ll] or a salt thereof to elimination reaction of N-acyl group.

This reaction is carried out in accordance with a conventional method such as hydrolysis, reduction, reaction with an enzyme or the like.

The hydrolysis is preferably carried out in the presence of a base or an acid including Lewis acid. Suitable base may include an inorganic base and an organic base such as an alkali metal [e.g. sodium, potassium, etc.], an alkaline earth metal [e.g. magnesium, calcium, etc.], the hydroxide or carbonate or

bicarbonate thereof, trialkylamine [e.g. trimethylamine, triethylamine, etc.], picoline, 1,5-diàzabicyclo[4.3.0]-non-5-ene, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, or the like.

Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.] and an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, etc.]. The elimination using Lewis acid such as trihaloacetic acid [e.g. trichloroacetic acid, trifluoroacetic acid, etc.] or the like is preferably carried out in the presence of cation trapping agents [e.g. anisole, phenol, etc.].

The reaction is usually carried out in a solvent such as water, an alcohol [e.g. methanol, ethanol, etc.], methylene chloride, tetrahydrofuran, a mixture thereof or any other solvent which does not adversely influence the reaction. A liquid base or acid can be also used as the solvent. The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

The reduction method applicable for the elimination reaction may include chemical reduction and catalytic reduction.

Suitable reducing agents to be used in chemical reduction are a combination of metal [e.g. tin, zinc, iron, etc.] or metallic compound [e.g. chromium chloride, chromium acetate, etc.] and an organic or inorganic acid [e.g. formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.].

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts [e.g. platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.], palladium catalysts [e.g. spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.], nickel catalysts [e.g. reduced nickel, nickel oxide, Raney nickel, etc.], cobalt catalysts [e.g. reduced cobalt, Raney cobalt, etc.], iron catalysts [e.g. reduced iron, Raney iron, etc.], copper catalysts [e.g. reduced copper, Raney copper, Ullman copper, etc.] and the like.

The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, methanol, ethanol, propanol, N,N-dimethylformamide, or a mixture thereof. Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent. Further, a suitable solvent to be used in catalytic reduction may be the above-mentioned solvent, and other conventional solvent such as diethyl ether, dioxane, tetrahydrofuran, etc., or a mixture thereof.

The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling to warming.

The reaction with an enzyme can be carried out by reacting the compound [II] or a salt thereof with an enzyme suitable for the elimination reaction of N-acyl group.

Suitable example of said enzyme may include the one produced by certain microorganisms of the Actinoplanaceae, for example, Actinoplanes utahensis IFO-13244, Actinoplanes utahensis ATCC 12301, Actinoplanes missourienses NRRL 12053, or the like; and the like.

This elimination reaction is usually carried out in a solvent such as phosphate buffer, Tris-HCl buffer or any other solvent which does not adversely influence the reaction

The reaction temperature is not critical and the reaction can be carried out at room temperature or under warming.

Process 2

The object compound [lb] or a salt thereof can be prepared by subjecting the compound [la] or a salt thereof to acylation reaction.

The acylation reaction of this process can be carried out by reacting the compound [la] or a salt thereof with aforesaid "acylating agent", for example, the compound [V] or its reactive derivative at the carboxy group or a salt thereof.

Suitable reactive derivative at the carboxy group of the compound [V] may include an acid halide, an acid anhydride, an activated amide, an activated ester, and the like. Suitable examples of the reactive derivatives may be an acid chloride; an acid azide; a mixed acid anhydride with an acid such as substituted phosphoric acid [e.g. dialkylphosphoric acid, phenylphosphoric acid diphenylphosphoric acid, dibenzylphosphoric acid, halogenated phosphoric acid, etc.], dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, sulfuric acid, sulfonic acid [e.g. methanesulfonic acid, etc.], aliphatic carboxylic acid [e.g. acetic acid, propionic acid, butyric acid, isobutyric acid, pivaric acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, etc.]; or aromatic carboxylic acid [e.g. benzoic acid, etc.]; a symmetrical acid anhydride; an activated amide with imidazole, 4-substituted imidazole, dimethylpyrazole, triazole, tetrazole

or 1-hydroxy-1H-benzotriazole; or an activated ester [e.g. cyanomethyl ester, methoxymethyl ester, dimethyliminomethyl [$(CH_3)_2$ N = CH-] ester, vinyl ester, propargyl ester, p-nitrophenyl ester, 2,4-dinitrophenyl ester, trichlorophenyl ester, pentachlorophenyl ester, mesylphenyl ester, phenylazophenyl ester, phenyl thioester, p-nitrophenyl thioester, p-cresyl thioester, carboxymethyl thioester, pyranyl ester, pyridyl ester, piperidyl ester, 8-quinolyl thioester, etc.], or an ester with a N-hydroxy compound [e.g. N,N-dimethylhydroxylamine, 1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide, N-hydroxyphthalimide, 1-hydroxy-1H-benzotriazole, etc.], and the like. These reactive derivatives can optionally be selected from them according to the kind of the compound [V] to be used.

Suitable salts of the compound [V] and its reactive derivative can be referred to the ones as exemplified for the compound [I].

The reaction is usually carried out in a conventional solvent such as water, alcohol [e.g. methanol, ethanol, etc.], acetone, dioxane, acetonitrile, chloroform, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvent which does not adversely influence the reaction. These conventional solvent may also be used in a mixture with water.

In this reaction, when the compound [V] is used in a free acid form or its salt form, the reaction is preferably carried out in the presence of a conventional condensing agent such as N,N'-dicyclohexylcar-bodiimide; N-cyclohexyl-N'-(4-diethylaminocyclohexyl)-carbodiimide; N-cyclohexyl-N'-(4-diethylaminocyclohexyl)-carbodiimide; N,N'-diethylcarbodiimide, N,N'-diisopropylcarbodiimide; N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide, N,N'-carbonylbis-(2-methylimidazole); pentamethyleneketene-N-cyclohexylimine; diphenylketene-N-cyclohexylimine; ethoxyacetylene; 1-alkoxy-1-chloroethylene; trialkyl phosphite; ethyl polyphosphate; isopropyl polyphosphate; phosphorus oxychloride (phosphoryl chloride); phosphorus trichloride; thionyl chloride; oxalyl chloride; lower alkyl haloformate [e.g. ethyl chloroformate, isopropyl chloroformate, etc.]; triphenylphosphine; 2-ethyl-7-hydroxybenzisoxazolium salt; 2-ethyl-5-(m-sulfophenyl)isoxazolium hydroxide intramolecular salt; 1-(p-chlorobenzenesulfonyloxy)-6-chloro-1H-benzotriazole; so-called Vilsmeier reagent prepared by the reaction of N,N-dimethylformamide with thionyl chloride, phospene, trichloromethyl chloroformate, phosphorus oxychloride, methanesulfonyl chloride, etc.; or the like.

The reaction may also be carried out in the presence of an inorganic or organic base such as an alkali metal carbonate, alkali metal bicarbonate, tri(lower)alkylamine, pyridine, di(lower)alkylaminopyridine (e.g. 4-dimethylaminopyridine, etc.), N-(lower)alkylmorpholine, N,N-di(lower)alkylbenzylamine, or the like.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

Process 3

30

The object compound [Id] or a salt thereof can be prepared by subjecting a compound [Ic] or a salt thereof to elimination reaction of amino protective group.

Suitable salts of the compounds [Ic] and [Id] can be referred to the ones as exemplified for the compound [I].

This elimination reaction can be carried out in accordance with a conventional method as explained above for Process 1.

Process 4

The object compound [lf] or a salt thereof can be prepared by reacting a compound [le] or a salt thereof with a compound [lll] or a salt thereof.

Suitable salt of the compound [If] can be referred to the ones as exemplified for the compound [I].

Suitable salt of the compound [III] can be referred to acid addition salts as exemplified for the compound [I].

The present reaction may be carried out in a solvent such as water, phosphate buffer, acetone, chloroform, acetonitrile, nitrobenzene, methylene chloride, ethylene chloride, formamide, N,N-dimethylformamide, methanol, ethanol, diethyl ether, tetrahydrofuran, dimethyl sulfoxide, or any other organic solvent which does not adversely affect the reaction, preferably in ones having strong polarities. Among the solvents, hydrophilic solvents may be used in a mixture with water. When the compound [III] is in liquid, it can also be used as a solvent.

The reaction is preferably conducted in the presence of a base, for example, inorganic base such as alkali metal hydroxide, alkali metal carbonate, alkali metal bicarbonate, organic base such as trialkylamine, and the like.

The reaction temperature is not critical, and the reaction is usually carried out under cooling, at room temperature, under warming or under heating.

The present reaction is preferably carried out in the presence of alkali metal halide [e.g. sodium iodide, potassium iodide, etc.], alkali metal thiocyanate [e.g. sodium thiocyanate, potassium thiocyanate, etc.] or the like.

5 Process 5

The object compound [Ig] or a salt thereof can be prepared by subjecting a compound [IV] or a salt thereof to acylation reaction.

Suitable salts of the compounds [Ig] and [IV] can be referred to the ones as exemplified for the compound [I].

Suitable "acylating agent" in this <u>Process 5</u> may be an acid compound corresponding to the acyl group to be introduced, for example, phosphoric acid and its derivative (e.g. phosphoryl chloride, diphenyl-phosphorochloridate, etc.), sulfuric acid and its derivative [e.g. sulfur trioxide-pyridine, sulfur trioxide-tri-(lower)alkylamine (e.g. trimethylamine, triethylamine, etc.), chlorosulfonic acid, etc.], or the like.

This reaction can be carried out in a conventional manner.

The process for preparing the starting compound [II] or a salt thereof of the present invention is explained in detail in the following.

Process A

20

15

The compound [II] or a salt thereof can be prepared by the fermentation process.

The fermentation process is explained in detail in the following.

The compound [II] or a salt thereof of this invention can be produced by fermentation of the compound [II] or a salt thereof-producing strain belonging to the genus Coleophoma such as Coleophoma sp. F-11899 in a nutrient medium.

(i) Microorganism:

Particulars of the microorganism used for producing the compound [II] or a salt thereof is explained in the following.

The strain F-11899 was originally isolated from a soil sample collected at lwaki-shi, Fukushima-ken, Japan. This organism grew rather restrictedly on various culture media, and formed dark grey to brownish grey colonies. Anamorph (conidiomata) produced on a steam-sterilized leaf segment affixed on a Miura's LCA plate ¹⁾or a corn meal agar plate by inoculating the isolate, while neither teleomorph nor anamorph formed on the agar media. Its morphological, cultural and physiological characteristics are as follows.

Cultural characteristics on various agar media are summarized in Table 1. Cultures on potato dextrose agar grew rather rapidly, attaining 3.5-4.0 cm in diameter after two weeks at 25° C. This colony surface was plane, felty, somewhat wrinkly and brownish grey. The colony center was pale grey to brownish grey, and covered with aerial hyphae. The reverse color was dark grey. Colonies on malt extract agar grew more restrictedly, attaining 2.5-3.0 cm in diameter under the same conditions. The surface was plane, thin to felty and olive brown. The colony center was yellowish grey, and covered with aerial hyphae. The reverse was brownish grey.

The morphological characteristics were determined on basis of the cultures on a sterilized leaf affixed to a Miura's LCA plate. Conidiomata formed on the leaf segment alone. They were pycnidial, superficial, separate, discoid to ampulliform, flattened at the base, unilocular, thin-walled, black, 90-160(-200) μ m in diameter and 40-70 μ m high. Ostiole was often single, circular, central, papillate, 10-30 μ m in diameter and 10-20 μ m high. Conidiophores formed from the lower layer of inner pycnidial walls. They were hyaline, simple or sparingly branched, septate and smooth. Conidiogenous cells were enteroblastic, phialidic, determinate, ampulliform to obpyriform, hyaline, smooth, 5-8 x 4-6 μ m, with a collarette. The collarettes were campanulate to cylindrical, and 14-18 x 3-5 μ m. Conidia were hyaline, cylindrical, thin-walled, aseptate, smooth and 14-16(-18) x 2-3 μ m.

The vegetative hyphae were septate, brown, smooth and branched. The hyphal cells were cylindrical and $2-7~\mu m$ thick. The chlamydospores were absent.

The strain F-11899 had a temperature range for growth of 0 to 31°C and an optimum temperature of 23 to 27°C on potato dextrose agar.

Miura, K. and M. Y. Kudo: An agar-medium for aquatic Hyphomycetes., Trans. Ycolo. Soc. Japan, 11:116-118, 1970.

EP 0 462 531 A2

The above characteristics indicate that the strain F-11899 belongs to the order Coelomycetes ^{2), 3), 4)}. Thus, we named the strain "Coelomycetes strain F-11899".

- 2) Arx, J. A. von: The Genera of Fungi Sportulating in Pure Culture (3rd ed.), 315 p., J. Cramer, Vaduz, 1974.
- 3) Sutton. B. C.: The Coelomycetes Fungi Imperfecti with Pycnidia, Acervuli and 55 Stromata., 696 p., Commonwealth Mycological Institute, Kew, 1980.
 - 4) Hawksworth, D. L., B. C. Sutton and G. C. Ainsworth: Dictionary of the Fungi (7th ed.), 445 p., Commonwealth Mycological Institute, Kew., 1983.

Table 1 Cultural characteristics of the strain F-11899

		•
5	Medium	Cultural characteristics
3		
•	Malt extract agar	G: Rather restrictedly, 2.5-3.0 cm
	(Blakeslee 1915)	S: Circular, plane, thin to felty, olive brown (4F5), arising aerial hyphae at the center (yellowish grey (4B2))
		R: Brownish grey (4F2)
	Potato dextrose agar	G: Rather rapidly, 3.5-4.0 cm
	(Difco 0013)	S: Circular, plane, felty, somewhat wrinkly, brownish grey (4F2), arising aerial hyphae at the
		center (pale grey (4B1) to
		brownish grey (4F2))
		R: Dark grey (4F1)
	Czapeck's solution	G: Very restrictedly, 1.0-1.5 cm
	agar (Raper and Thom 1949)	, , , , , , , , , , , , , , , , , , , ,
	2340)	immersed, subhyaline to white R: Subhyaline to white
	Sabouraud dextrose	G: Restrictedly, 2.0-2.5 cm
	agar (Difco 0109)	S: Circular, plane, thin; white,
	•	sectoring, light brown (6D5) at
		the colony center
		R: Pale yellow (4A3)
	Oatmeal agar	G: Fairly rapidly, 4.0-4.5 cm
	(Difco 0552)	S: Circular, plane, felty to
		cottony, dark grey (4F1) to
		brownish grey (4F2)
		R: Brownish grey (4D2)

Medium	Cultural characteristics
Emerson Yp Ss agar	G: Restrictedly, 2.0-2.5 cm
(Difco 0739)	S: Circular to irregular, plane,
	felty, dark grey (4F1) to
	brownish grey (4F2)
	R: Medium grey (4E1) to dark grey (4
Corn meal agar	G: Rather restrictedly, 2.5-3.0 cm
(Difco 0386)	S: Circular, plane, thin to felty,
•	dark grey (2F1) to olive (2F3)
	R: Dark grey (2F1) to olive (2F3)
MY20 agar	G: Restrictedly, 1.5-2.0 cm
	S: Circular to irregular, thin,
	sectoring, yellowish white (4A2)
	R: Pale yellow (4A3) to orange white
	(5A2)

S: colony surface

R: reverse

35

These characteristics were observed after 14 days of incubation at 25 °C. The color descriptions were based on the Methuen Handbook of Colour ⁵⁾.

A culture of Coelomycetes strain F-11899 thus named has been deposited with the Fermentation Research Institute Agency of Industrial Science and Technology (1-3, Higashi 1 chome, Tsukuba-shi, IBARAKI 305 JAPAN) on October 26, 1989 under the number of FERM BP-2635.

After that, however, we have further studied the classification of the strain F-11899, and have found that the strain F-11899 resembled Coleophoma empetri (Rostrup) Petrak 1929 2), 3), 4) belonging to the order Coelomycetes, but differed in some pycnidial characteristics: globose or flattened at the base, immersed, and not papillate.

Considering these characteristics, we classified this strain in more detail and renamed it as "Coleophoma sp. F-11899".

In this connection, we have already taken step to amend the name, "Coelomycetes strain F-11899" to Coleophoma sp. F-11899 with the Fermentation Research Institute Agency of Industrial Science and Technology on September 21, 1990.

(ii) Production of the compound [II] or a salt thereof

The compound [II] or a salt thereof of this invention is produced when the compound [II] or a salt thereof-producing strain belonging to the genus Coleophoma is grown in a nutrient medium containing sources of assimilable carbon and nitrogen under aerobic conditions (e.g. shaking culture, submerged

⁵⁾ Kornerup, A. and Wanscher, J. H.: Methuen Handbook of Colour (3rd ed.), 252 p., Methuen, London, 1983.

culture, etc.).

20

The preferred sources of carbon in the nutrient medium are carbohydrates such as glucose, sucrose, starch, fructose or glycerin, or the like.

The preferred sources of nitrogen are yeast extract, peptone, gluten meal, cotton seed flour, soybean meal, corn steep liquor, dried yeast, wheat germ, etc., as well as inorganic and organic nitrogen compounds such as ammonium salts (e.g. ammonium nitrate, ammonium sulfate, ammonium phosphate, etc.), urea or amino acid, or the like.

The carbon and nitrogen sources, though advantageously employed in combination, need not to be used in their pure form because less pure materials, which contain traces of growth factors and considerable quantities of mineral nutrients, are also suitable for use.

When desired, there may be added to the medium mineral salts such as sodium or calcium carbonate, sodium or potassium phosphate, sodium or potassium chloride, sodium or potassium iodide, magnesium salts, copper salts, zinc salt, or cobalt salts, or the like.

If necessary, especially when the culture medium foams seriously a defoaming agent, such as liquid paraffin, fatty oil, plant oil, mineral oil or silicone, or the like may be added.

As in the case of the preferred methods used for the production of other biologically active substances in massive amounts, submerged aerobic cultural conditions are preferred for the production of the compound [II] or a salt thereof in massive amounts.

For the production in small amounts, a shaking or surface culture in a flask or bottle is employed.

Further, when the growth is carried out in large tanks, it is preferable to use the vegetative form of the organism for inoculation in the production tanks in order to avoid growth lag in the process of production of the compound [II] or a salt thereof. Accordingly, it is desirable first to produce a vegetative inoculum of the organism by inoculating a relatively small quantity of culture medium with spores or mycelia of the organism and culturing said inoculated medium, and then to transfer the cultured vegetative inoculum to large tanks. The medium, in which the vegetative inoculum is produced, is substantially the same as or different from the medium utilized for the production of the compound [II] or a salt thereof.

Agitation and aeration of the culture mixture may be accomplished in a variety of ways. Agitation may be provided by a propeller or similar mechanical agitation equipment, by revolving or shaking the fermentor, by various pumping equipment or by the passage of sterile air through the medium. Aeration may be effected by passing sterile air through the fermentation mixture.

The fermentation is usually conducted at a temperature between about 10°C and 40°C, preferably 20°C to 30°C, for a period of about 50 hours to 150 hours, which may be varied according to fermentation conditions and scales.

When the fermentation is completed, the culture broth is then subjected for recovery of the compound [II] or a salt thereof to various procedures conventionally used for recovery and purification of biological active substances, for instance, solvent extraction with an appropriate solvent or a mixture of some solvents, chromatography or recrystallization from an appropriate solvent or a mixture of some solvents, or the like.

According to this invention, in general, the compound [II] or a salt thereof is found both in the cultured mycelia and cultured broth. Accordingly, then the compound [II] or a salt thereof is removed from the whole broth by means of extraction using an appropriate organic solvent such as acetone or ethyl acetate, or a mixture of these solvents, or the like.

The extract is treated by a conventional manner to provide the compound [II] or a salt thereof, for example, the extract is concentrated by evaporation or distillation to a smaller amount and the resulting residue containing active material, i.e. the compound [II] or a salt thereof is purified by conventional purification procedures, for example, chromatography or recrystallization from an appropriate solvent or a mixture of some solvents.

When the object compound is isolated as a salt of the compound [II], it can be converted to the free compound [II] or another salt of the compound [II] according to a conventional manner.

Biological properties of the polypeptide compound [I] of the present invention

In order to show the usefulness of the polypeptide compound [I] of the present invention, some biological data of the representative compounds are explained in the following.

5 Test 1 Antimicrobial activity (1):

Antimicrobial activity of the compound of Example 2 disclosed later (hereinafter referred to as FR131535 substance) was measured by micro-broth dilution method in 96 well multi-trays employing yeast

nitrogen base dextrose medium. To a 50 μ I sample solution with serial 2-fold dilution was added a 50 μ I of microorganism suspension in saline to yield a final concentration of 1 x 10⁵ colony forming units/ml. The Candida cultures were incubated at 37 °C for 22 hours. After incubation, the growth of microorganism in each well was determined by measuring the turbidity. The results were shown as IC₅₀ value in which concentration the turbidity was half of that in the well without sample. The results are shown in Table 2.

Table 2

10

organism	IC ₅₀
Candida albicans FP578	0.31
Candida tropicalis YC118	0.47

Test 2 Acute toxicity of FR131535 substance :

The acute toxicity of the FR131535 substance was determined to ICR mice (female, 4 weeks old) by a single intravenous injection. No toxic symptom was observed at the dose of 500 mg/kg.

Test 3 Antimicrobial activity (2):

In vitro antimicrobial activity of the compound of Example 12 disclosed later (hereinafter referred to as FR139687 substance) was determined by the two-fold agar-plate dilution method as described below.

One loopful of an overnight culture of each test microorganism in Sabouraud broth containing 2 % Glucose (10⁵ viable cells per ml) was streaked on yeast nitrogen base dextrose agar (YNBDA) containing graded concentrations of the FR139687 substance, and the minimal inhibitory concentration (MIC) was expressed in terms of µg/ml after incubation at 30 °C for 24 hours.

30

organism	MIC (μg/ml)	
Candida albicans YU-1200	0.05	

From the test results, it is realized that the polypeptide compound [I] of the present invention has an anti-microbial activity (especially, antifungal activity).

The pharmaceutical composition of this invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid or liquid form, which contains the polypeptide compound [I] or a pharmaceutically acceptable salt thereof, as an active ingredient in admixture with an organic or inorganic carrier or excipient suitable for rectal, pulmonary (nasal or buccal inhalation), nasal, ocular, external (topical), oral or parenteral (including subcutaneous, intravenous and intramuscular) administrations or insufflation. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, troches, capsules, suppositories, creams, ointments, aerosols, powders for insufflation, solutions, emulsions, suspensions, and any other form suitable for use. And, if necessary, in addition, auxiliary, stabilizing, thickening and coloring agents and perfumes may be used. The polypeptide compound [I] or a pharmaceutical acceptable salt thereof is/are included in the pharmaceutical composition in an amount sufficient to produce the desired antimicrobial effect upon the process or condition of diseases.

For applying the composition to human, it is preferable to apply it by intravenous, intramuscular, pulmonary, or oral administration, or insufflation. While the dosage of therapeutically effective amount of the polypeptide compound [I] varies from and also depends upon the age and condition of each individual patient to be treated, in the case of intravenous administration, a daily dose of 0.01 - 20 mg of the polypeptide compound [I] per kg weight of human being, in the case of intramuscular administration, a daily dose of 0.1 - 20 mg of the polypeptide compound [I] per kg weight of human being, in case of oral administration, a daily dose of 0.5 - 50 mg of the polypeptide compound [I] per kg weight of human being is generally given for treating or preventing infectious diseases.

The following Preparations and Examples are given for the purpose of illustrating the present invention in more detail.

Preparation 1

To methanol (50 ml) was added thionyl chloride (8.73 ml) at -5°C and the mixture was stirred for 10 minutes and then D-2-(p-hydroxyphenyl)glycine (5 g) was added thereto under ice-cooling. The mixture was stirred for 12 hours at room temperature. The reaction mixture was evaporated under reduced pressure to give D-2-(p-hydroxyphenyl)glycine methyl ester hydrochloride (6.3 g).

IR (Nujoi):

3380, 1720, 1580, 1250 cm⁻¹

NMR (DMSO- d_6 , δ):

3.70 (3H, s), 5.11 (1H, s), 6.83 (2H, d, J=8.6Hz), 7.28 (2H, d, J=8.6Hz), 8.91

(2H s), 9.93 (1H, s)

10

20

30

45

55

Preparation 2

To a solution of D-2-(p-hydroxyphenyl)glycine methyl ester hydrochloride (6.3 g) and triethylamine (8.71 ml) in tetrahydrofuran (100 ml) was added di-t-butyl dicarbonate (6.82 g). The mixture was stirred for 2 hours at room temperature. The reaction mixture was added to diethyl ether (1 1) and an insoluble material was filtered off, and the filtrate was evaporated under reduced pressure to give N-(t-butoxycarbonyl)-D-2-(phydroxyphenyl)glycine methyl ester (6.83 g).

IR (Nujol):

3420, 3350, 1720, 1660 cm⁻¹

NMR (DMSO- d_6 , δ):

1.38 (9H, s), 3.59 (3H, s), 5.05 (1H, d, J=7.9Hz), 6.70 (2H, d, J=8.5Hz), 7.16

(2H, d, J=8.5Hz), 7.60 (1H, d, J=7.9Hz), 9.48 (1H, s)

Preparation 3

To a suspension of N-(t-butoxycarbonyl)-D-2-(p-hydroxyphenyl)glycine methyl ester (6.8 g) and potassium bicarbonate (1.84 g) in N,N-dimethylformamide (34 ml) was added octyl bromide (4.176 ml). The mixture was stirred for 6 hours at 60°C. The reaction mixture was added to a mixture of water and ethyl acetate. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give N-(t-butoxycarbonyl)-D-2-(poctyloxyphenyl)glycine methyl ester (6.96 g).

IR (Nujol):

1710, 1490, 1240, 1160 cm⁻¹

NMR (DMSO- d_6 , δ):

0.859 (3H, t, J=6.2Hz), 1.17-1.33 (10H, m), 1.38 (9H, s), 1.60-1.80 (2H, m), 3.59 (3H, s), 3.93 (2H, t, J=6.3Hz), 5.11 (1H, d, J=7.9Hz), 6.87 (2H, d, J=8.7Hz), 7.27 (2H, d, J=8.7Hz), 7.68 (1H, d, J=7.9Hz).

Preparation 4

To 4N aqueous solution of sodium hydroxide (8.77 ml) was added N-(t-butoxycarbonyl)-D-2-(poctyloxyphenyl)glycine methyl ester (6.9 g) and stirred for 1.5 hours at room temperature. The reaction mixture was added to a mixture of water and ethyl acetate and 1N hydrochloric acid was added thereto to adjust the mixture to pH 3. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give N-(tbutoxycarbonyl)-D-2-(p-octyloxyphenyl)glycine (3.9 g).

NMR (DMSO- d_6 , δ):

0.860 (3H, t, J = 6.8Hz), 1.17 - 1.33 (10H, m), 1.38 (9H, s), 1.60 - 1.80 (2H, m), 3.93(2H, t, J=6.4Hz), 5.10 (1H, d, J=8.2Hz), 6.87 (2H, d, J=8.7Hz), 7.28 (2H, d, J=8.7Hz)

J = 8.7Hz), 7.46 (1H, d, J = 8.2Hz)

Preparation 5

To a solution of N-(t-butoxycarbonyl)-D-2-(p-octyloxyphenyl)glycine (1 g) in acetonitrile (10 ml) and pyridine (0.213 ml) in acetonitrile (10 ml) was added N,N'-disuccinimidyl carbonate (0.675 g). The mixture was stirred for 12 hours at room temperature. The reaction mixture was added to a mixture of water and ethyl acetate. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give N-(t-butoxycarbonyl)-D-2-(poctyloxyphenyl)glycine succinimido ester (0.92 g).

IR (Nujol):

3350, 1810, 1730, 1680 cm⁻¹

NMR (DMSO-d₆, δ):

0.862 (3H, t, J = 6.7Hz), 1.17 - 1.33 (10H, m), 1.40 (9H, s), 1.60 - 1.80 (2H, m), 2.77(4H, s), 3.97 (2H, t, J=6.5Hz), 5.54 (1H, d, J=8.1Hz), 6.91 (2H, d, J=8.7Hz), 7.39 (2H, d, J = 8.7Hz), 8.05 (1H, d, J = 8.1Hz)

Preparation 6

N-(t-Butoxycarbonyl)-L-tyrosine methyl ester was obtained according to a similar manner to that of

5 Preparation 2.

IR (Nujol):

3430, 3360, 1730, 1670, 1170 cm⁻¹

NMR (DMSO-d₆, δ):

1.33 (9H, s), 2.90 (2H, m), 3.59 (3H, s), 4.05 (1H, m), 6.65 (2H, d, J=8.4Hz),

7.00 (2H, d, J=8.4Hz), 7.21 (1H, d, J=8.0Hz), 9.22 (1H, s)

10

Preparation 7

O⁴-Octyl-N-(t-butoxycarbonyl)-L-tyrosine methyl ester was obtained according to a similar manner to that of

15

20

Preparation 3.

IR (Nujol):

3350, 1735, 1685, 1250, 1170 cm⁻¹

NMR (DMSO-d₆, δ):

0.859 (3H, t, J=6.7Hz), 1.20-1.30 (10H, m), 1.68 (2H, quintet, J=7.3Hz), 2.82

(2H, m), 3.60 (3H, s), 3.91 (2H, t, J=7.3Hz), 4.08 (1H, m), 6.81 (2H, d,

J = 8.6Hz), 7.12 (2H, d, J = 8.6Hz), 7.25 (1H, d, J = 8.0Hz)

Preparation 8

O⁴-Octyl-N-(t-butoxycarbonyl)-L-tyrosine was obtained according to a similar manner to that of Preparation 4.

IR (Nujol):

3400-2900 (br), 1700, 1240, 1160 cm⁻¹

NMR (DMSO-d₆, δ):

0.859 (3H, t, J=6.8Hz), 1.20-1.30 (10H, m), 1.32 (9H, s), 1.68 (2H, quintet, J=7.0Hz), 2.67-2.95 (1H, m), 3.90 (2H, t, J=7.0Hz), 4.01 (1H, m), 6.81 (2H, d,

J=8.6Hz), 7.02 (1H, d, J=8.3Hz), 7.13 (2H, d, J=8.6Hz)

30

Preparation 9

O⁴-Octyl-N-(t-butoxycarbonyl)-L-tyrosine succinimido ester was obtained according to a similar manner to that of Preparation 5.

IR (Nujol):

3350, 1780, 1720, 1690 cm⁻¹

NMR (DMSO- d_6 , δ):

0.860 (3H, t, J=6.7Hz), 1.20-1.30 (10H, m), 1.32 (9H, s), 1.68 (2H, quintet, J=7.0Hz), 2.82 (4H, s), 2.80-3.20 (1H, m), 3.92 (2H, t, J=7.0Hz), 4.44 (1H, m),

6.81 (2H, d, J=8.5Hz), 7.22 (2H, d, J=8.5Hz), 7.60 (1H, d, J=8.3Hz)

40 Prop

Preparation 10

(1) A seed medium (160 ml) consisting of sucrose 4%, cotton seed flour 2%, dried yeast 1%, peptone 1%, KH₂PO₄ 0.2%, CaCO₃ 0.2% and Tween 80 (made by NAKARAI CHEMICALS LTD.) 0.1% was poured into each of two 500 ml Erlenmeyer flasks and sterilized at 121 °C for 30 minutes. A loopful of slant culture of Coleophoma sp. F-11899 was inoculated to each of the medium and cultured under shaking condition at 25 °C for 4 days.

A production medium (20 liters) consisting of Pine Dex #3 (made by Matsutani Chemical Ltd.) 3%, glucose 1%, wheat germ 1%, cotton seed flour 0.5%, KH₂PO₄ 2%, Na₂HPO₄ *12H₂O 1.5%, ZnSO₄ *7H₂O 0.001% and Adekanol (defoaming agent, made by Asahi Denka Co., Ltd.) 0.05% was poured into a 30 literjar fermentor and sterilized at 121 °C for 30 minutes.

The resultant seed culture broth (320 ml) was inoculated to the production medium and cultured at 25 °C for 4 days, agitated at 200 rpm and aerated at 20 liters per minute. To the cultured broth thus obtained (20 liters) was added an equal volume of acetone. After occasionally stirring at room temperature for a while, the broth was filtered. The filtrate was concentrated in vacuo to remove acetone. The aqueous filtrate (10 liters) was washed with two equal volume of ethyl acetate and extracted with n-butanol (10 liters) twice. The combined n-butanol layer was concentrated in vacuo and the residue was applied on a column (300 ml) of Silica gel 60 (made by E. Merck) and eluted with a stepwise organic solvent mixture consisting

of dichloromethane-methanol. The fractions having anti-Candida activity were eluted in the range of the solvent mixture (3:1 through 1:1). The active fractions were combined and concentrated in vacuo to dryness. The residue was dissolved in 50% aqueous methanol (15 ml) and applied on a column (250 ml) of ODS YMC GEL (made by Yamamura Chemical Lab.). The column was washed with 50% aqueous methanol and eluted with 80% aqueous methanol. The eluate was concentrated and was further purified on a centrifugal partition chromatography (CPC) using a solvent system n-butanol:methanol:water (4:1:5) of upper stationary phase and lower mobile phase in a descending model. The pooled fractions containing the object compound (major component) were concentrated in vacuo and applied on a column (35 ml) of silica gel 60. The column was developed with n-butanol:acetic acid:water (6:1:1). The active fractions were combined and concentrated in vacuo to dryness and dissolved in a small volume of 50% aqueous methanol. The solution was passed through a column (3.5 ml) of ODS YMC GEL. The column was washed with 50% aqueous methanol and eluted with methanol. The eluate was concentrated to dryness, dissolved in a small volume of water and adjusted to pH 7.0 with 0.01N NaOH. The solution was freeze-dried to give a white powder of said compound in its sodium salt form (hereinafter referred to as FR901379 substance) (11 mg).

The FR901379 substance as obtained has the following physico-chemical properties.

Appearance:

white powder

Nature:

15

30

35

40

neutral substance

20 Melting point:

215-221 C (dec.)

Specific rotation:

 $[\alpha]_0^{23}$ -20.3 (C: 0.5, H₂O)

Molecular formula:

25 C₅₁H₈₁N₈O₂₁SNa

Elemental Analysis:				
Calcd.: for C ₅₁ H ₈₁ N ₈ SO ₂₁ Na	C 51.17,	H 6.77,	N 9.36,	S 2.68 (%)
Found:	C 49.61,	H 7.58,	N 7.65,	S 2.14 (%)

Molecular weight:

HRFAB-MS : 1219.5078

(Calcd for $C_{51}H_{82}N_8SO_{21} + 2Na - H: 1219.5032$)

Solubility:

soluble: methanol, water

slightly soluble: ethyl acetate, acetone

insoluble : chloroform, n-hexane

Color reaction:

positive:

iodine vapor reaction, cerium sulfate reaction, ferric chloride reaction, Ninhydrin reaction

negative: Dragendorff reaction, Ehrlich reaction

50

Thin layer chromatography (TLC) :

Stationary phase	Developing solvent	Rf value
silica gel*	n-butanol:acetic acid;	
	water (3:1:1)	0.36
	ethyl acetate:isopropyl	•
	alcohol:water (5:3:1)	0.31

* Silica Gel 60 (made by E. Merck)

Ultraviolet absorption spectrum:

15

20

25

30

40

$$\lambda_{\text{max}}^{\text{methanol}} = (E_{1\text{cm}}^{1\%}) : 207(169), 276(13.5), 225(sh), 283(sh) nm$$

methanol+0.01N-NaOH, 1%

 $\lambda: \max = (E_{lcm}^{13}) : 209(232), 244(59.5), 284(13.5), 294(sh) nm$

Infrared absorption spectrum:

¹H Nuclear magnetic resonance spectrum : (CD₃OD, 400MHz)

investigation of identification of chemical structure, the chemical structure of the FR901379 substance has

m), 2.03-1.93 (3H, m), 1.57 (2H, m), 1.45-1.20 (24H, m), 1.19 (3H, d, J=6Hz), 1.08 (3H, d, J=6Hz), 0.90 (3H, t, J=7Hz)

From the analysis of the above physical and chemical properties, and the result of the further

been identified and assigned as follows.

20 Example 1

5

10

15

35

45

55

N-acyl group of FR901379 substance was eliminated by the reaction with an enzyme. In the following, this elimination process is explained in detail.

(1) Fermentation of Actinoplanes utahensis

The enzyme which is useful for eliminating N-acyl group of FR901379 Substance is produced by certain microorganisms of the Actinoplanaceae, preferably the microorganism Actinoplanes utahensis IFO-13244.

A stock culture of Actinoplanes utahensis IFO-13244 is prepared and maintained on agar slant. A loopful of the slant culture was inoculated into a seed medium consisted of starch 1%, sucrose 1%, glucose 1%, cotton seed flour 1%, peptone 0.5%, soy bean meal 0.5% and CaCO₃ 0.1%. The inoculated vegetative medium was incubated in a 225-ml wide mouth Erlenmeyer flask at 30°C for about 72 hours on a rotary shaker.

This incubated vegetative medium was used directly to inoculate into a production medium consisted of sucrose 2%, peanut powder 1%, K₂HPO₄ 0.12% KH₂PO₄ 0.05% and MgSO₄ 7H₂O 0.025%. The inoculated production medium was allowed to ferment in a 30-liter jar fermentor at a temperature of 30°C for about 80 hours. The fermentation medium was stirred with conventional agitators at 250 rpm and aerated at 20 liters per minute. The vegetative mycelium was collected from the fermented broth by filtration and once washed with water. The washed mycelium was directly used to eliminate N-acyl group of FR901379 substance as an enzyme source.

(2) Elimination Condition

FR901379 substance was dissolved in 0.25 M phosphate buffer (pH 6.5) at a concentration of 0.9 mg/ml. To a 36-liter of the solution was added a 2 kg wet weight of washed mycelium of Actinoplanes utahensis IFO-13244. The elimination reaction was carried out at 37 °C under for 23 hours. Reduction of FR901379 substance and increase of the deacylated FR901379 substance(hereinafter referred to as FR133303 substance) were measured using a HPLC equipped with a reverse phase column. From a 30 g of FR901379 substance, a 22.2 g of FR133303 substance was formed in the reaction mixture.

(3) Isolation of FR133303 Substance

The reaction mixture described above was filtered with a filter aid. The mycelial cake was discarded. The filtrate thus obtained was passed through a column of activated carbon (2 L). The column was washed with 6 L of water and eluted with 12 L of 50% aqueous acetone. The eluate was evaporated in vacuo to remove acetone and then passed through a column (4 L) of YMC GEL ODS-AM 120-S50 (Yamamura

Chemical Labs). The column was washed with water and eluted with 2% aqueous acetonitrile containing 50 mM NaH₂PO₄. Elution was monitored by analytical HPLC, using a column of LiChrospher 100 RP-18 (Cica-MERCK) and a solvent system of 3% aqueous acetonitrile containing 0.5% NH₄H₂PO₄ at a flow rate of 1 ml/min, detecting the FR133303 substance with a UV monitor at 210 nm. The fractions containing the FR133303 substance were combined and passed through a column of activated carbon (400 ml). The column was washed with water and eluted with 50% aqueous acetone. The eluate was concentrated in vacuo to remove acetone and lyophilized to give 16.4 g of FR133303 substance as a white powder. FR133303 substance has following physico-chemical properties:

Appearance:

white powder

Melting point :

150-160 °C (dec.)

Specific rotation :

 $[\alpha]_D^{24}$ -31.17° (C: 1.0, H₂O)

Molecular formula :

C35 H51 N8 SO20 Na

Elemental Analysis:				
Calcd: for C ₃₅ H ₅₁ N ₈ SO ₂₀ Na	1	H 5.36,	N 11.69,	S 3.34 (%)
Found:		H 5.74,	N 10.88,	S 3.10 (%)

Solubility:

20

25

30

soluble :

water

slightly soluble:

methanol n-hexane

insoluble : Color reaction :

positive :

e: io

iodine vapor reaction, cerium sulfate reaction, Ninhydrin reaction

negative:

Molish reaction

Thin layer chromatography (TLC):

35	Stationary phase	Developing solvent	Rf value
	silica gel*	n-butanol:acetic acid	
40		water (3:1:2)	0.15

^{*} Silica Gel 60 (made by E. Merck)

Ultraviolet absorption spectrum :

$$^{\text{H}}_{2}^{\text{O}}$$
 .

 $^{\lambda}_{\text{max}}$ (E^{1%}_{1 cm}): 201(340), 273(18), 224(sh), 281(sh) nm

55
 $^{\text{H}_2\text{O+0.01N-NaOH}}_{\lambda_{\text{max}}}$ $(E_{1\text{ cm}}^{1\text{%}}): 207(414), 243(122), 292 (34)$

Infrared absorption spectrum:

NET: 3350, 2920, 1660, 1625, 1515, 1440, 1270, 1080, 1045, 800, 755, 715 cm⁻¹

¹H Nuclear magnetic resonance spectrum :

(D₂O, 400MHz)

5

20

δ: 7.31 (1H, d, J=2Hz), 7.12 (1H, dd, J=2Hz and 8Hz), 7.06 (1H, d, J=8Hz), 5.40 (1H, d, J=3Hz), 5.04 (1H, d, J=3.5Hz), 4.94 (1H, d, J=6Hz), 4.73-4.55 (3H, m), 4.51-4.38 (4H, m), 4.31-4.23 (3H, m), 4.11-4.06 (2H, m), 3.94-3.89 (2H, m), 3.41 (1H, m), 2.60-2.34 (5H, m), 2.14 (1H, m), 2.03 (1H, m), 1.28 (3H, d, J=6Hz), 1.01 (3H, d, J=6.5Hz)

5 ¹³C Nuclear magnetic resonance spectrum : (D₂O, 100MHz)

δ: 178.3 (s), 175.9 (s), 174.3 (s), 174.2 (s), 174.0 (s), 171.8 (s), 171.3 (s), 150.9 (s), 141.5 (s), 134.4 (s), 128.2 (d), 124.5 (d), 120.3 (d), 78.1 (d), 77.0 (d), 76.9 (d), 76.6 (d), 72.9 (d), 72.8 (d), 71.2 (d), 69.3 (d), 69.2 (d), 63.7 (d), 60.1 (d), 58.3 (t), 58.0 (d), 56.9 (d), 55.3 (d), 54.7 (t), 41.8 (t), 39.7 (d), 39.5 (t), 33.5 (t), 21.4 (q), 13.3 (q)

The chemical structure of FR133303 substance has been identified and assigned as follows.

Example 2

40

(1) A solution of 4-hydroxybenzoic acid (19.2 g) in 10% NaOH (120 ml) was dropwise added to 480 ml of dimethyl sulfoxide over 30 minutes during which the temperature in reaction mixture was controlled between 30 and 40° C. After adding, the solution was cooled to 17-20° C. 1-Bromooctane (28.95 g) was dropwise added to the solution over 30 minutes and the reaction mixture was vigorously stirred for 4 hours at room temperature. The reaction mixture was poured into ice water (1200 ml) and acidified with 40 ml of conc. hydrochloric acid. After vigorously stirring for another 1 hour, the resulting solid was removed by filtration and dissolved in 60 ml of acetonitrile. The solution was refluxed over 30 minutes and was allowed to stand overnight at room temperature to yield 4-octyloxybenzoic acid (13.8 g) as a crystal (MP 96° C, Anal Calcd. for C₁₅H₂₂O₃: C 71.97, H 8.86, Found: C 71.30, H 8.89).

To a solution of 4-octyloxybenzoic acid (13.8 g) in diethyl ether (552 ml) were added 2,4,5-trich-lorophenol (10.87 g) and N,N'-dicyclohexylcarbodiimide (11.37 g). The solution was stirred under a nitrogen atmosphere for 18 hours at room temperature. The precipitate was removed by filtration and the filtrate was concentrated in vacuo. The residue was dissolved in petroleum ether and was allowed to stand on ice-water. The resulting crystals (15.2 g) were filtered and dissolved in warm n-hexane (150 ml). After standing

EP 0 462 531 A2

overnight at room temperature, the resulting crystal was removed by filtration. The filtrate was concentrated to an oil which was purified by a column chromatography over silica gel using a mixture of ethyl acetate and n-hexane to give 2,4,5-trichlorophenyl 4-octyloxybenzoate (7.58 g)(MP 53° C, Anal Calcd. for $C_{21}H_{23}O_3Cl_3$: CI 24.75, Found : CI 24.05).

(2) To a solution of FR133303 substance (2.04 g) in N,N-dimethylformamide (60 ml) were added 2,4,5-trichlorophenyl 4-octyloxybenzoate (2.04 g) and 4-dimethylaminopyridine (0.283 g). The solution was stirred under a nitrogen atmosphere at room temperature for 15 hours. 4-Dimethylaminopyridine (0.20 g) was added to the solution and mixture was stirred for another 24 hours. The reaction mixture was poured into water (600 ml) and the pH was adjusted to 6.0. The mixture was washed twice with an equal volume of ethyl acetate and concentrated to 30 ml. The concentrate was applied on a column (150 ml) of DEAE-Toyopearl (CI type, manufactured by Tosoh). The column was washed with 50% aqueous methanol and developed with 50% aqueous methanol containing 1M sodium chloride aqueous solution. The elution of product was assessed by the same HPLC system as described in Example 1(3) except that the concentration of acetonitrile in solvent was 40%. The fractions containing the object compound were pooled and evaporated in vacuo to remove methanol. The solution was absorbed on a column (I L) of YMC GEL ODS-AM 120-S50 in order to remove salt. The column was washed with water and eluted with 30% aqueous acetonitrile. The eluate was evaporated in vacuo to remove acetonitrile and lyophylized to give the object compound (hereinafter referred to as FR131535 substance) (1.4 g) as a white powder.

FR131535 substance has following physico-chemical properties:

20 Appearance:

white powder

Melting point:

170-189 °C (dec.)

Specific rotation: $[\alpha]_D^{20}$ -14.4 ° (C: 10, H₂O)

Molecular formula:

C50H71N8SO22Na

Elemental Analysis:					
Calcd :for C ₅₀ H ₇₁ N ₈ SO ₂₂ Na*6H ₂ O	C 46.22,	H 6.44,	N 8.62,	S 2.46,	Na 1.77 (%)
Found:	C 46.80,	H 6.13,	N 8.78,	S 1.96,	Na 1.81 (%)

35 Solubility:

30

soluble:

methanol, water

slightly soluble:

acetone

insoluble :

n-hexane

Color reaction:

positive:

iodine vapor reaction, cerium sulfate reaction

55

45

Thin layer chromatography (TLC):

Stationary phase	Developing solvent	Rf value
silica gel*	n-butanol:acetic acid: water (6:1:1)	0.21

* Silica Gel 60 (made by E. Merck)

Infrared absorption spectrum:

NET : 3330, 2900, 2850, 1620, 1500, 1430, 1270, 1250, 1170, 1110, 1080, 1040, 960, 940, 880, 840, 800, 750, 710 cm⁻¹

20 ¹H Nuclear magnetic resonance spectrum : (CD₃OD, 200MHz)

 δ : 7.78 (2H, d, J=8Hz), 7.31 (1H, d, J=2Hz), 7.03 (1H, dd, J=2Hz and 8Hz), 6.96 (2H, d, J=8Hz), 6.87 (1H, d, J=8Hz), 5.33 (1H, d, J=3Hz), 5.08 (1H, d, J=4Hz), 4.99 (1H, d, J=3Hz), 4.80-3.20 (17H, m), 2.83 (1H, m), 2.65-2.30 (4H, m), 2.22-1.90 (2H, m), 1.79 (2H, m), 1.56-1.25 (10H, m), 1.19 (3H, d, J=6Hz), 1.06 (3H, d, J=6.5Hz), 0.90 (3H, t, J=6.5Hz)

The chemical structure of FR131535 substance has been identified and assigned as follows.

In the following, the structures of the compounds of Examples 3 to 11 are shown.

55

50

5

10

15

EP 0 462 531 A2

	Example No.	Compound No.	R
25	3	FR138260	-COCH-O(CH ₂) ₇ CH ₃ NHCOO ^E Bu
30	4	FR138727	-coch-coch ₂) ₇ CH ₃
35	5	FR138364	-cochcH ₂
40	6	FR138261	-coo ^t Bu
45	7	FR138363	-сосн ³

5	8	FR138728	-coch ₂ Br
	9	FR138538	-coo-
10	10	FR138539	CH ₃ O-N S NH ₂
15	11	FR138365	-o ₂ s-Сн ₃

Example 3

20

35

40

55

To a solution of FR133303 substance (1 g) and N-(t-butoxycarbonyl)-D-2-(p-octyloxyphenyl)glycine succinimido ester (0.596 g) in N,N-dimethylformamide (3 ml) was added 4-dimethylaminopyridine (0.165g). The mixture was stirred for 12 hours at room temperature. The reaction mixture was added to water (30 ml) and then adjusted to pH 6. The aqueous solution was washed with ethyl acetate, and subjected to ion exchange chromatography on DEAE-Toyopearl (C1 e)(60 ml) and eluted with 50% methanol in 1M aqueous solution of sodium chloride. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The aqueous solution was adjusted to pH 4.5 with 1N hydrochloric acid and subjected to column chromatography on Diaion HP-20 (Trademark, Manufactured by Mitsubishi Chemical Industries) (130 ml) and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give object acylated compound (hereinafter referred to as FR138260 substance) (0.77 g).

IR (Nujol):

3300, 1660, 1500, 1240, 1045, 800, 720 cm⁻¹

NMR (CD₃OD, δ):

0.92 (3H, t, J=6.8Hz), 1.05 (3H, d, J=6.8Hz), 1.17-1.33 (13H, m), 1.43 (9H, s), 1.6-1.8 (2H, m), 1.9-2.1 (3H, m), 2.50 (3H, m), 2.75 (1H, dd, J=16Hz and 4Hz), 3.35 (1H, m), 3.7-3.8 (1H, m), 3.93 (2H, t, J=6.2Hz), 3.9-4.2 (5H, m), 4.3-4.5 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d, J=3Hz), 5.05 (1H, d, J=4Hz), 5.11 (1H, s), 5.30 (1H, d, J=3Hz), 6.85 (2H d, J=8.3Hz), 7.02 (1H, d, J=8.3Hz), 7.02 (1H, d, 7.02 (1H,

7.26 (2H, d, J=8.6Hz), 7.31 (1H, s)

FAB-MS:

e/z = 1343 (M + Na)

Example 4

45

FR138260 substance obtained in Example 3 (0.25 g) was added to trifluoroacetic acid (1.25 ml) and stirred for 10 minutes. The reaction mixture was added to water (30 ml) and then adjusted to pH 4.5 with saturated aqueous solution of sodium bicarbonate. The aqueous solution was subjected to column chromatography on Diaion HP-20 (100 ml) and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give the object compound (hereinafter referred to as FR138727 substance) (15 mg).

NMR (CD₃OD, δ):

0.90 (3H, t, J=6.8Hz), 1.05 (3H, d, J=6.8Hz), 1.17-1.33 (13H, m), 1.6-1.8 (2H, m), 1.9-2.1 (3H, m), 2.50 (1H, m), 2.75 (1H, dd, J=16Hz and 4Hz), 3.40 (1H, m), 3.7-3.8 (1H, m), 3.98 (2H, t, J=6.2Hz), 3.9-4.2 (5H, m), 4.3-4.5 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d, J=3Hz), 5.06 (1H, s), 5.20 (1H, d, J=3Hz), 5.40 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 6.95 (2H, d, J=8.5Hz), 7.02 (1H, d, J=8.3Hz), 7.30 (1H, d, J=8.5Hz), 7.44 (1H, s)

FAB-MS:

e/z = 1259 (M + K)

Example 5

FR138364 substance was obtained by reacting FR133303 substance with O⁴-octyl-N-(t-butoxycarbonyl)-L-tyrosine succinimide ester according to a similar manner to that of

Example 3.

10 IR (Nujol):

3300, 1660, 1620, 1240, 1050 cm⁻¹

NMR (CD₃OD, δ):

0.904 (3H, t, J=6.8Hz), 1.06 (3H, d, J=6.8Hz), 1.17 (3H, d, J=6.7Hz), 1.20-1.30 (10H, m), 1.35 (9H, s), 1.74 (2H, quintet, J=6.5Hz), 1.9-2.1 (3H, m), 2.45 (3H, m), 2.76 (1H, dd, J=16Hz and 4Hz), 3.0-3.1 (2H, m), 3.37 (1H, m), 3.77 (1H, d, J=11Hz), 3.92 (2H, t, J=6.8Hz), 3.9-4.2 (7H, m), 4.3-4.5 (5H, m), 4.5-4.6 (3H, m), 4.94 (1H, d, J=3Hz), 5.05 (1H, d, J=3.8Hz), 5.31 (1H, d, J=3Hz), 6.79 (2H, d, J=8.5Hz), 6.85 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz) and 2Hz), 7.12 (2H, d,

J = 8.5Hz), 7.31 (1H, d, J = 2Hz)

FAB-MS:

e/z = 1357 (M + Na)

20 Example 6

15

A solution of FR133303 substance (0.5 g) in a mixture of water (5 ml) and tetrahydrofuran (5 ml) was adjusted to pH 7 with saturated aqueous solution of sodium bicarbonate and N,N-di-t-butylcarbonate (0.114 g) was added thereto at room temperature. The mixture was stirred for 5 hours at room temperature maintaining pH 7 with saturated aqueous solution of sodium bicarbonate. The reaction mixture was added to water and adjusted to pH6. The aqueous solution was washed with ethyl acetate, and subjected to ion exchange chromatography on DEAE-Toyopearl (Ct⁻) (30 ml) and eluted with 50% methanol in 1M aqueous solution of sodium chloride. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The aqueous solution was adjusted to pH 4.5 with 1N hydrochloric acid and subjected to column chromatography on Diaion HP-20 (100 ml) and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give the object acylated compound (hereinafter referred to as FR138261 substance) (0.145 g).

IR (Nujol):

3300, 1660, 1620, 1240, 1050 cm⁻¹

NMR (CD₃OD, δ):

1.06 (3H, d, J=6.8Hz), 1.18 (3H, d, J=6.0Hz), 1.40 (9H, s), 1.9-2.1 (3H, m), 2.44 (3H, m), 2.82 (1H, dd, J=16Hz and 4Hz), 3.37 (1H, m), 3.75 (1H, d, J=11Hz), 3.89-4 (2H, m), 4.10 (1H, m), 4.15 (1H, m), 4.29 (1H, dd, J=6Hz and 2Hz), 4.36-4.45 (5H, m), 4.5-4.6 (3H, m), 4.97 (1H, tt, J=3Hz), 5.06 (1H, dd, J=8.2Hz and 4Hz), 5.33 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz) and

2Hz), 7.30 (1H, d, J=2Hz), 7.50 (1H, d, J=8.2Hz)

FAB-MS:

35

40

e/z = 1081 (M + Na)

Example 7

FR138363 substance was obtained by reacting FR133303 substance with acetyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1620, 1250, 1040 cm⁻¹

NMR (CD₃OD, δ):

1.06 (3H, d, J=6.8Hz), 1.20 (3H, d, J=6Hz), 1.78-2.05 (3H, m), 1.96 (3H, s), 2.21-2.54 (3H, m), 2.95 (1H, m), 3.35-3.42 (1H, m), 3.58-4.42 (11H, m), 4.50-5.05 (5H, m), 5.23 (1H, m), 6.88 (1H, d, J=8.3Hz), 7.05 (1H, dd, J=8.3Hz and 2Hz), 7.35

(1H, d, J = 2Hz)

FAB-MS:

1023 (M + Na)

Example 8

55

FR138728 substance was obtained by reacting FR133303 substance with 2-bromoacetyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1660, 1620, 1500, 1220, 1040 cm⁻¹

EP 0 462 531 A2

NMR (CD₃OD, δ):

1.06 (3H, d, J = 6.9Hz), 1.17 (3H, d, J = 6.1Hz), 1.9-2.1 (3H, m), 2.50 (3H, m), 2.80 (1H, dd, J=16Hz and 4Hz), 3.37 (1H, m), 3.6-4.0 (5H, m), 4.09 (1H, m), 4.16 (1H, m), 4.29 (1H, dd, J=6Hz and 2Hz), 4.36-4.45 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d. J=3Hz), 5.04 (1H, dd, J=8.6Hz and 4Hz), 5.25 (1H, d, J=3.1Hz), 6.85 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2.1Hz), 7.31 (1H, d, J=2Hz), 7.52 (1H, d, J = 8.6Hz

FAB-MS:

e/z = 1103 (M + Na)

Example 9

FR138538 substance was obtained by reacting FR133303 substance with benzoyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1640, 1240 cm⁻¹

NMR (CD₃OD, δ):

1.05 (3H, d, J = 6.8Hz), 1.18 (3H, d, J = 6Hz), 1.89-2.12 (3H, m), 2.31-2.53 (3H, m), 2.75 (1H, dd, J=12Hz and 4Hz), 3.38 (1H, m), 3.76 (1H, d, J=11Hz), 3.87-3.98 (1H, m), 4.02-4.18 (2H, m), 4.22-4.32 (4H, m), 4.37-4.40 (3H, m), 4.49-4.62 (3H, m), 4.98 (1H, m), 5.02 (1H, m), 5.37 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 7.04 (1H, dd, J=8.3Hz and 2Hz), 7.11-7.50 (6H, m)

FAB-MS:

e/z = 1101 (M + Na)

20

25

30

5

10

15

Example 10

FR138539 substance was obtained by reacting FR133303 substance with 2-(2-aminothiazol-4-yl)-2methoxyiminoacetic acid according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1650, 1620, 1520, 1260, 1040 cm⁻¹

NMR (CD₃OD, δ):

1.05 (3H, d, J=6.8Hz), 1.21 (3H, d, J=5.9Hz), 1.89-2.21 (3H, m), 2.29-2.61 (3H, m), 2.78-2.89 (1H, m), 3.32-3.42 (1H, m), 3.76-3.82 (1H, m), 3.91-4.01 (2H, m), 3.95 (3H, s), 4.13 (1H, m), 4.16 (1H, m), 4.24-4.27 (1H, m), 4.32-4.43 (5H, m), 4.46-4.62 (3H, m), 4.97-4.99 (1H, m), 5.08 (1H, m), 5.41 (1H, m), 6.79 (1H, s), 6.86 (1H, d, J=8.1Hz), 7.04 (1H, dd, J=8.1Hz and 2Hz), 7.31 (1H, d, J=2Hz), 7.51 (1H, d,

J = 7Hz

FAB-MS:

 $e/z = 1143 (M^{*})$

Example 11

35

40

45

55

FR138365 substance was obtained by reacting FR133303 substance with tosyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1650, 1620, 1260, 1060 cm⁻¹

NMR (CD₃OD, δ):

0.75 (3H, d, J=6.8Hz), 1.07 (3H, d, J=6.0Hz), 1.61-1.79 (1H, m), 1.91-2.05 (3H, m), 2.30-2.59 (3H, m), 3.36 (1H, m), 3.68 (1H, d, J=11Hz), 3.81-4.07 (4H, m), 4.22 (1H, m), 4.32-4.40 (5H, m), 4.42-4.60 (3H, m), 4.7 (1H, m), 5.0 (1H, m), 5.42 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2Hz), 7.29-7.33 (3H, m), 7.75 (1H, d, J = 8.3Hz)

FAB-MS:

e/z = 1135 (M + Na)

Preparation 11

To a solution of 6-hydroxy-2-naphthoic acid (1 g) in the mixture of 10 % sodium hydroxide aqueous solution (4.25 ml) and dimethylsulfoxide (17 ml) was added octyl bromide (0.918 ml). The mixture was stirred for 6 hours at 60 °C.

The reaction mixture was added to a mixture of water and ethyl acetate and adjusted to pH 3 with conc. hydrochloric acid. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 6-octyloxy-2naphthoic acid (0.91 g).

IR (Nujol):

1670, 1620, 1210 cm⁻¹

NMR (DMSO- d_6,δ):

0.86 (3H, t, J = 6.7 Hz), 1.2 - 1.6 (10H, m), 1.78 (2H, m), 4.10 (2H, t, J = 6.7 Hz), 7.19 (1H, dd, J=2.3 and 8.8 Hz), 7.36 (1H, d, J=2.3 Hz), 7.83 (1H, d, J=8.8 Hz), 7.97 (2H, d, J = 8.8 Hz), 8.52 (1H, s)

Preparation 12

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.703 g) was added to a solution of 6-octyloxy-2-naphthoic acid (0.85 g) and 1-hydroxy-1H-benzotriazole (0.382 g) in ethyl acetate (26 ml). The mixture was stirred for two hours at room temperature.

The reaction mixture was added to water and the separated organic layer was washed with water and sodium chloride aqueous solution. Then the organic layer was dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-(6-octyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide (0.74 g).

IR (Nujol):

10

1770, 1740, 1620, 1190, 1020, 740 cm⁻¹

NMR (CDCI₃, δ):

0.90 (3H, t, J=6.8 Hz), 1.2 - 1.6 (10H, m), 1.89 (2H, m), 4.14 (2H, t, J=6.8 Hz), 7.1

- 7.3 (2H, m), 7.4 - 7.6 (3H, m), 7.8 - 8.0 (2H, m), 8.1 - 8.2 (2H, m), 8.80 (1H, s)

In the following, the structure of the compound of Example 12 is shown.

35	Example No.	Compound No.	. R
40	12	FR139687	-co-Ch ₂) ₇ CH ₃

5 Example 12

50

To a solution of FR133303 substance (0.5 g) and 1-(6-octyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide (0.271 g) in N,N-dimethylformamide (1.5 ml) was added 4-dimethylaminopyridine (0.0828 g). The mixture was stirred for 12 hours at room temperature.

The reaction mixture was added to water and adjusted to pH 6. The aqueous solution was washed with ethyl acetate, and subjected to ion exchange chromatography on DEAE-Toyopearl (CI⁻) (30 ml) and eluted with 50 % methanol in 1M sodium chloride solution. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The aqueous solution was adjusted to pH 4.5 with 1N hydrochloric acid and subjected to column chromatography on Diaion HP-20 (65 ml) and eluted with 80 % aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give object acylated compound (hereinafter referred to as FR139687 substance) (0.214 g).

IR (Nujol):

3300, 1620, 1500 cm⁻¹

EP 0 462 531 A2

NMR (DMSO- $d_6 + D_2O, \delta$): 0.86 (3H, t, J = 6.8 Hz), 0.97 (3H, d, J = 6.8 Hz), 1.06 (3H, d, J = 6.8 Hz). 1.2 - 1.5 (10H, m), 1.6 - 2.0 (5H, m), 2.2 - 2.5 (3H, m), 2.4 - 2.6 (1H, m), 3.18 (1H, m), 3.6 - 3.9 (1H, m), 4.0 - 4.6 (15H, m), 4.84 (1H, d, J=3 Hz). 4.90 (1H, d, J=3 Hz), 5.11 (1H, d, J=3 Hz), 6.76 (1H, d, J=8.3 Hz),

6.93 (1H, d, J = 8.3 Hz), 7.13 (1H, s), 7.25 (1H, d, J = 8.3 Hz), 7.39 (1H,

s), 7.8 - 8.0 (3H, m), 8.44 (1H, s)

FAB-MS e/z = 1264 (M + Na)

The following compounds (Preparations 13 to 16) were obtained according to a similar manner to that of Preparation 5.

Preparation 13

5

10

15

25

30

35

N-(t-Butoxycarbonyl)-L-2-(2-naphthyl)glycine succinimido ester

3350, 1800, 1770, 1730, 1680, 1500, 1200 cm⁻¹ IR (Nuiol):

Preparation 14

Succinimido 2-(4-biphenylyl)acetate

IR (Nujol):

1800, 1770, 1720, 1200 cm⁻¹

20 NMR (DMSO- d_6 , δ): J = 8.1 Hz

Preparation 15

Succinimido 4-t-butylbenzoate

IR (Nujol):

1760, 1730, 1200, 1070, 990 cm⁻¹

NMR (DMSO-d₆, δ): 1.33 (9H, s), 2.89 (4H, s), 7.68 (2H, d, J=8.5Hz), 8.03 (2H, d, J=8.5Hz)

Preparation 16

Succinimido 4-(4-phenylbutoxy)benzoate

IR (Nujol): 1730, 1600, 1240, 1170, 1070 cm⁻¹

NMR (DMSO-d₆, δ): 1.75 (4H, m), 2.65 (2H, m), 4.14 (2H, m), 7.15 (2H, d, J=8.9Hz), 7.13-7.35 (5H,

m), 8.03 (2H, d, J = 8.9Hz)

Preparation 17

To neat 3,7-dimethyloctanol (5 ml) was added phosphorus tribromide (1.01 ml). The mixture was stirred for 4 hours at 60°C. The reaction mixture was added to a mixture of water and n-hexane. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 3,7-dimethyloctyl bromide (4.40 g).

IR (Neat):

2900, 1450 cm⁻¹

NMR (CDCl₃, δ): 0.87 (6H, d, J = 6.6Hz), 0.89 (3H, d, J = 6.4Hz), 1.1-1.3 (6H, m), 1.5-1.9 (4H, m), 3.3-1.93.5 (2H, m)

The following compounds (Preparations 18 to 23) were obtained according to a similar manner to that of 45 Preparation 11.

Preparation 18

50 4-[4-(Octyloxy)phenoxy]benzoic acid

IR (Nujol):

1680, 1600, 1240, 840 cm⁻¹

NMR (DMSO- d_6 , δ):

0.87 (3H, t, J=6.7Hz), 1.1-1.6 (10H, m), 1.71 (2H, m), 3.96 (2H, t, J=6.4Hz),

6.9-7.1 (6H, m), 7.92 (2H, d, J=8.7Hz), 12.8 (1H, br s)

Preparation 19

6-(Butoxy)-2-naphthoic acid

IR (Nujol):

1660, 1610, 1205 cm⁻¹

NMR (DMSO-d₆, δ): 0.96 (3H, t, J = 7.29Hz), 1.48 (2H, qt, J = 7.29Hz and 7Hz), 1.78 (2H, tt, J = 7Hz

and 6.45Hz), 4.12 (2H, t, J=6.45Hz), 7.24 (1H, dd, J=9.0Hz and 2.3Hz), 7.40 (1H, d, J=2.3Hz), 7.86 (1H, d, J=8.7Hz), 7.94 (1H, d, J=8.7Hz), 8.01 (1H, d,

J = 9.0Hz), 8.52 (1H, s)

5

Preparation 20

6-Decyloxy-2-naphthoic acid

IR (Nujol):

1670, 1620, 1210 cm⁻¹

NMR (DMSO- d_6 , δ):

0.85 (3H, t, J = 6.7Hz), 1.2 - 1.6 (14H, m), 1.78 (2H, m), 4.11 (2H, t, J = 6.4Hz), 7.23 (1H, dd, J=8.9Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.86 (1H, d,

J=8.7Hz), 7.93 (1H, d, J=8.7Hz), 8.01 (1H, d, J=8.9Hz), 8.5 (1H, s)

Preparation 21

15

20

10

6-Hexyloxy-2-naphthoic acid

IR (Nujol):

1660, 1620, 1290, 1210 cm⁻¹

NMR (DMSO-d₆, δ):

0.89 (3H, t, J=6.8Hz), 1.2-1.6 (6H, m), 1.78 (2H, quint, J=6.5Hz), 4.11 (2H, t, J=6.5Hz), 7.23 (1H, dd, J=9.0Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.86 (1H,

d, J=8.7Hz), 7.94 (1H, d, J=8.7Hz), 8.01 (1H, d, J=9.0Hz), 8.52 (1H, s)

Preparation 22

6-Dodecyloxy-2-naphthoic acid

IR (Nuiol): 25

1670, 1620, 1210 cm⁻¹

NMR (DMSO- d_6 , δ):

0.85 (3H, t, J=6.7Hz), 1.20-1.60 (18H, m), 1.78 (2H, m), 4.11 (2H, t, J=6.5Hz),7.22 (1H, dd, J=9.0Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.85 (1H, d, J=8.7Hz), 7.93 (1H, d, J=8.7Hz), 8.00 (1H, d, J=9.0Hz), 8.51 (1H, s), 12.90

(1H, s)

30

35

45

50

Preparation 23

6-(3,7-Dimethyloctyloxy)-2-naphthoic acid

IR (Nujol):

1660, 1610, 1290, 1210 cm⁻¹

NMR (DMSO- d_6 , δ):

0.84 (6H, d, J=6.6Hz), 0.94 (3H, d, J=6.1Hz), 1.1-1.4 (6H, m), 1.4-1.9 (4H, m), 4.15 (2H, t, J=6.7Hz), 7.22 (1H, dd, J=9.0Hz and 2.4Hz), 7.41 (1H, d, J=2.4Hz), 7.86 (1H, d, J=8.6Hz), 7.93 (1H, d, J=8.6Hz), 8.01 (1H, d,

J = 9.0Hz), 8.52 (1H, s)

The following compounds (Preparations 24 to 31) were obtained according to a similar manner to that of Preparation 12.

Preparation 24

1-[4-(4-Octyloxy)phenoxy]benzoyl-1H-benzotriazole-3-oxide

IR (Nujol):

1770, 1730, 1600, 1500, 1230, 980 cm⁻¹

Preparation 25

1-(6-Butoxy-2-naphthoyl)-1H-benzotriazole-3-oxide

IR (Nujol):

1760, 1610, 1260, 1180, 1020 cm⁻¹

Preparation 26

1-(6-Decyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide

IR (Nujol): 55

1780, 1620, 1190, 1000 cm⁻¹

1-(6-Hexyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide

IR (Nujol):

1780, 1610, 1190 cm⁻¹

NMR (DMSO-d₆, δ):

0.89 (3H, t, J=6.7Hz), 1.2-1.6 (6H, m), 1.79 (2H, m), 4.12 (2H, t, J=6.5Hz), 7.24 (1H, dd, J=9.0Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.41 (1H, t, J=8Hz), 7.54 (1H, t, J=8Hz), 7.72 (1H, d, J=8Hz), 7.88 (1H, d, J=8.7Hz), 7.90 (1H, d, J=8.7Hz), 7.97 (1H, d, J=8Hz), 8.02 (1H, d, J=9.0Hz), 8.51 (1H, s)

Preparation 28

1-(6-Dodecyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide

IR (Nujol):

1770, 1620, 1190, 1030, 730 cm⁻¹

NMR (DMSO-d₆, δ):

0.85 (3H, t, J=6.7Hz), 1.2-1.3 (18H, m), 1.78 (2H, m), 4.11 (2H, t, J=6.5Hz), 7.22 (1H, dd, J=9.0Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.40 (1H, t, J=8Hz), 7.55 (1H, t, J=8Hz), 7.73 (1H, d, J=8Hz), 7.85 (1H, d, J=8.7Hz), 7.99 (1H, d, J=8.7Hz), J=8.7Hz), J=8.7Hz

15

5

10

Preparation 29

1-[6-(3,7-Dimethyloctyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide

20 IR (Nujol):

1780, 1620, 1190 cm⁻¹

Preparation 30

1-[(2E,6E)-3,7,11-Trimethyl-2,6,10-dodecatrienoyl]-1H-benzotriazole-3-oxide

IR (Neat):

2900, 1780, 1620, 1420, 1070 cm⁻¹

Preparation 31

3,7-Dimethyl-6-octenyl bromide was obtained according to a similar manner to that of Preparation 17.

IR (Neat):

2900, 1440, 1380 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H d, J=6.3Hz), 1.0-1.5 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m) 3.4-3.7 (2H, m) 5.08 (1H, m)

m), 3.4-3.7 (2H, m), 5.08 (1H, m)

Preparation 32

35

55

25

30

To a suspension of sodium hydride (2.04 g) in N,N-dimethylformamide (50 ml) was added 4-hydroxypyridine (5 g) at room temperature. Octyl bromide (9.08 ml) was added thereto. The mixture was stirred for 2 hours at 50 °C. The reaction mixture was added to a mixture of brine (100 ml), trtrahydrofuran (100 ml) and ethyl acetate (100 ml). The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-octyl-4-pyridone (14.7 g).

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6Hz), 1.1-1.4 (10H, m), 1.4-1.8 (2H, m), 3.81 (2H, t, J=7Hz), 6.05 (2H, d, J=8Hz), 7.63 (2H, d, J=8Hz)

45 Preparation 33

To a solution of 1-octyl-4-pyridone (10.9 g) in pyridine (100 ml) was added phosphorous pentasulfide (8.65 g) at room temperature. The mixture was stirred for 3 hours at 80°C. The reaction mixture was added to a mixture of water (200 ml) and methylene chloride (200 ml). The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-octyl-1,4-dihydropyridine-4-thione (5.27 g).

IR (Neat):

2910, 2850, 1620, 1460, 1110 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6Hz), 1.1-1.4 (10H, m), 1.5-1.9 (2H, m), 3.95 (2H, t, J=7Hz), 7.13 (2H, d, J=7Hz), 7.60 (2H, d, J=7Hz)

The following compounds (<u>Preparations 34 to 36</u>) were obtained according to a similar manner to that of <u>Preparation 1</u>.

Methyl 2-(4-hydroxyphenyl)-2-methoxyacetate

IR (Nujol):

3350, 1740, 1610, 1600, 1220, 1100 cm⁻¹

NMR (DMSO-d₆, δ):

3.23 (3H, s), 3.60 (3H, s), 4.73 (1H, s), 6.72 (2H, d, J=8.9Hz), 7.15 (2H, d,

J = 8.9Hz

EI-MS (e/z) = 196 (M^*)

Preparation 35

D-Tyrosine methyl ester hydrochloride

IR (Nujol):

3300, 1740, 1220 cm⁻¹

NMR (DMSO-d₆, δ):

3.02 (2H, m), 3.67 (3H, s), 4.16 (1H, t, J=6.7Hz), 6.72 (2H, d, J=8.4Hz), 7.01

(2H, d, J = 8.4Hz), 8.58 (2H, s), 9.47 (1H, s)

Preparation 36

15

25

10

Methyl (4-hydroxyphenyl)glyoxylate

IR (Nujol):

3380, 1730, 1700, 1600, 1580, 1220 cm⁻¹

NMR (DMSO-d₆, δ):

3.91 (3H, s), 6.94 (2H, d, J = 8.8Hz), 7.83 (2H, d, J = 8.8Hz), 10.9 (1H, s)

20 Preparation 37

N-(t-Butoxycarbonyl)-D-tyrosine methyl ester was obtained according to a similar manner to that of Preparation 2.

IR (Nujol):

•

3360, 1700, 1680, 1290, 1270, 1250 cm⁻¹

NMR (DMSO-d₆, δ):

1.33 (9H, s), 2.73 (2H, m), 3.59 (3H, s), 4.05 (1H, m), 6.65 (2H, d, J=8.4Hz),

7.00 (2H, d, J=8.4Hz), 7.23 (1H, d, J=7.9Hz), 9.23 (1H, s)

Preparation 38

To a solution of L-tyrosine methyl ester hydrochloride (1 g) in water (1.5 ml) was added sodium bicarbonate (0.363 g) under ice-cooling and stirred for 10 minutes, and then acetonitrile (7 ml), 37% formaldehyde aqueous solution (0.637 ml) and sodium cyanoborohydride (0.182 g) was added thereto at -5°C. The mixture was stirred for 2 hours at -5°C. The resultant insoluble material was filtered off, and the filtrate was extracted with ethyl acetate. The organic layer was separated and dried over magnesium sulfate.

The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give N,N-dimethyl-L-tyrosine methyl ester (0.21 g).

IR (Nujol):

1730, 1260, 1010 cm⁻¹

NMR (DMSO-d₆, δ):

2.24 (6H, s), 2.72 (2H, m), 3.34 (1H, m), 3.53 (3H, s), 6.64 (2H, d, J=8.4Hz),

6.97 (2H, d, J=8.4Hz), 9.18 (1H, s)

The following compounds (Preparations 39 to 44) were obtained according to a similar manner to that of Preparation 3.

Preparation 39

Methyl 2-(4-octyloxyphenyl)acetate

IR (Neat):

2910, 2850, 1730, 1240 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.3Hz), 1.2-1.5 (10H, m), 1.6-1.9 (2H, m), 3.58 (2H, s), 3.59 (3H,

s), 3.92 (2H, t, J=6.4Hz), 6.85 (2H, d, J=8.7Hz), 7.15 (2H, d, J=8.7Hz)

50 Preparation 40

45

55

Ethyl 3-(4-octyloxyphenyl)propionate

IR (Neat):

2920, 2850, 1730, 1240 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J = 6.7Hz), 1.15 (3H, t, J = 7.1Hz), 1.2 - 1.5 (10H, m), 1.6 - 1.8 (2H, m),

2.55 (2H, t, J=7.2Hz), 2.77 (2H, t, J=7.2Hz), 3.90 (2H, t, J=6.4Hz), 4.03 (2H, q,

J=7.1Hz), 6.81 (2H, d, J=8.6Hz), 7.11 (2H, d, J=8.6Hz)

Methyl 2-(4-octyloxyphenyl)-2-methoxyacetate

IR (Neat):

2910, 2850, 1740, 1600, 1240, 1100 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 3.26 (3H, s), 3.62 (3H, s), 3.94 (2H, t, J=6.4Hz), 4.83 (1H, s), 6.91 (2H, d, J=8.7Hz), 7.27 (2H, d,

J = 8.7Hz

EI-MS (e/z) = 308 (M)

Preparation 42

O⁴-Octyl-N-(t-butoxycarbonyl)-D-tyrosine methyl ester

IR (Nujol):

3350, 1730, 1680, 1510, 1240, 1160 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.7Hz), 1.2-1.3 (10H, m), 1.68 (2H, m), 2.82 (2H, m), 3.60 (3H, s), 3.91 (2H, t, J=7.3Hz), 4.08 (1H, m), 6.81 (2H, d, J=8.6Hz), 7.12 (2H, d,

J = 8.6Hz), 7.25 (1H, d, J = 8.0Hz)

15

20

25

30

10

Preparation 43

O4-Octyl-N,N-dimethyl-L-tyrosine methyl ester

IR (Neat):

2930, 2860, 1730, 1250 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.6Hz), 1.26 (10H, m), 1.68 (2H, m), 2.80 (2H, m), 3.33 (6H, s), 3.37 (1H, m), 3.53 (3H, s), 3.89 (2H, t, J=6.4Hz), 6.79 (2H, d, J=8.6Hz), 7.08

(2H, d, J = 8.6Hz)

Preparation 44

Methyl (4-octyloxyphenyl)glyoxylate

IR (Neat):

2930, 2850, 1730, 1670, 1600, 1260, 1210, 1160 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J = 6.3Hz), 1.2 - 1.5 (10H, m), 1.6 - 1.9 (2H, m), 3.93 (3H, s), 4.10 (2H,

t, J=6.5Hz), 7.12 (2H, d, J=8.9Hz), 7.92 (2H, d, J=8.9Hz)

The following compounds (Preparations 45 to 51) were obtained according to a similar manner to that of Preparation 4.

Preparation 45

35 4-(2-Butoxyethoxy)benzoic acid

IR (Nujol):

1670, 1610, 1260 cm⁻¹

NMR (DMSO-d₆, δ):

0.87 (3H, t, J=7.2Hz), 1.2-1.6 (4H, m), 3.45 (2H, t, J=6.4Hz), 3.70 (2H, t, J=4.4Hz), 4.16 (2H, t, J=4.4Hz), 7.02 (2H, d, J=8.9Hz), 7.88 (2H, d, J=8.9Hz).

12.63 (1H, s)

40

Preparation 46

2-(4-Octyloxyphenyl)acetic acid

IR (Nujol):

1680, 1240, 820, 780 cm⁻¹

45 NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.8Hz), 1.1-1.5 (10H, m), 1.6-1.8 (2H, m), 3.47 (2H, s), 3.92 (2H,

t, J = 6.4Hz), 6.84 (2H, d, J = 8.6Hz), 7.14 (2H, d, J = 8.6Hz)

Preparation 47

50 3-(4-Octyloxyphenyl)propionic acid

IR (Nujol);

1680, 1500, 1200 cm⁻¹

NMR (DMSO- d_{δ} , δ):

0.86 (3H, t, J=6.3Hz), 1.1-1.5 (10H, m), 1.6-1.8 (2H, m), 2.47 (2H, t, J=7.2Hz), 2.74 (2H, t, J=7.2Hz), 3.90 (2H, t, J=6.4Hz), 6.81 (2H, d, J=8.6Hz), 7.11 (2H,

d, J=8.6Hz), 12.10 (1H, br s)

55

Preparation 48

2-(4-Octyloxyphenyl)-2-methoxyacetic acid

IR (Nujol):

1760, 1720, 1600, 1500, 1240, 1180, 1100, 830 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J = 6.7Hz), 1.2-1.5 (10H, m), 2.6-2.8 (2H, m), 3.26 (3H, s), 3.94 (2H,

t, J=6.4Hz), 4.67 (1H, s), 6.90 (2H, d, J=8.6Hz), 7.27 (2H, d, J=8.6Hz)

5 Preparation 49

10

15

25

O4-Octyl-N-(t-butoxycarbonyl)-D-tyrosine

IR (Nujol):

3400-2900, 1700, 1500, 1240, 1160 cm⁻¹

NMR (DMSO- d_6 , δ):

0.859 (3H, t, J=6.8Hz), `1.20-1.30 (10H, m), 1.32 (9H, s), 1.68 (2H, m), 2.67-2.95

(1H, m), 3.90 (2H, t, J=7Hz), 4.01 (1H, m), 6.81 (2H, d, J=8.6Hz), 7.02 (1H, d, J=8.6Hz)

J = 8.3Hz), 7.13 (2H, d, J = 8.6Hz)

Preparation 50

O4-Octyl-N,N-dimethyl-L-tyrosine

IR (Neat):

2940, 2860, 2600, 1620, 1240 cm⁻

NMR (DMSO- d_{6} , δ):

0.86 (3H, t, J = 6.6 Hz), 1.26 (10H, m), 1.68 (2H, m), 2.67 (6H, s), 2.8-3.6 (3H, m),

3.91 (2H, t, J=6.4Hz), 6.85 (2H, d, J=8.5Hz), 7.16 (2H, d, J=8.5Hz)

20 Preparation 51

O4-Octyloxyphenyl)glyoxylic acid

IR (Neat):

1730, 1670, 1600, 1260, 1160 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.65-1.85 (2H, m), 4.09 (2H, t,

J = 6.5Hz), 7.12 (2H, d, J = 8.9Hz), 7.89 (2H, d, J = 8.9Hz)

Preparation 52

N'-Octyl-N-(t-butoxycarbonyl)-L-histidine was obtained from N-(t-butoxycarbonyl)-L-histidine methyl ester according to similar manners to those of Preparations 3 and 4.

NMR (DMSO- d_6 , δ):

0.85 (3H, t, $J = \overline{6.3Hz}$), 1.23 ($\overline{10H}$, \overline{m}), 1.35 (9H, s), 2.83 (2H, m), 3.90 (2H, t, J = 7Hz), 4.0-4.2 (1H, m), 6.36 (1H, s), 7.02 (1H, d, J = 8Hz), 7.75 (1H, s)

The following compounds (Preparations 53 to 60) were obtained according to a similar manner to that of Preparation 11.

35

40

45

50

55

Preparation 53

4-Octyloxyphthalic acid

IR (Neat):

2930, 2860, 2500, 1700, 1600, 1260 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.5-1.8 (2H, m), 4.05 (2H, t, J=6.2Hz), 7.03 (1H, d, J=2.6Hz), 7.06 (1H, dd, J=8.4Hz and 2.6Hz), 7.72 (1H, d,

J = 8.4Hz

Preparation 54

3-Methoxy-4-octyloxybenzoic acid

IR (Nujoi):

2600, 1680, 1600, 1270, 1230 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 3.80 (3H, s), 4.01 (2H, t, J=6.5Hz), 7.03 (1H, d, J=8.5Hz), 7.44 (1H, d, J=1.9Hz), 7.54 (1H, dd,

J=8.5Hz and 1.9Hz)

Preparation 55

4-(4-Octyloxyphenyl)benzoic acid

IR (Nuiol):

1670, 1600, 830, 770 cm⁻¹

NMR (DMSO-d₆, δ):

0.87 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 4.01 (2H, t, J=6.4Hz),

7.04 (2H, d, J = 8.8Hz), 7.68 (2H, d, J = 8.8Hz), 7.75 (2H, d, J = 8.5Hz), 7.99 (2H,

d, J = 8.5Hz)

Preparation 56

6-(2-Ethylhexyloxy)-2-naphthoic acid

IR (Nuiol):

1660, 1610, 1280, 1200 cm⁻¹

NMR (DMSO- d_6 , δ):

0.88 (3H, t, J = 7.3Hz), 0.92 (3H, t, J = 7.3Hz), 1.2-1.6 (8H, m), 1.7-1.9 (1H, m), 4.01 (2H, d, J = 5.7Hz), 7.23 (1H, dd, J = 8.9 and 2.4Hz), 7.42 (1H, d, J = 2.4Hz), 7.86 (1H, d, J = 8.7Hz), 7.94 (1H, d, J = 8.7Hz), 8.01 (1H, d, J = 8.9Hz), 8.51 (1H, s), 12.9 (1H, s)

10 Preparation 57

5

15

20

25

30

6-(3,7-Dimethyl-6-octenyloxy)naphthoic acid

IR (Nuiol):

1660, 1610, 1290, 1200 cm⁻¹

NMR (DMSO- d_6 , δ):

0.95 (3H, d, J=6.1Hz), 1.1-1.5 (2H, m), 1.57 (3H, s), 1.64 (3H, s), 1.6-2.1 (5H, m), 4.15 (2H, t, J=6.7Hz), 5.10 (1H, t, J=7.1Hz), 7.22 (1H, dd, J=8.9Hz and 2.3Hz), 7.42 (1H, d, J=2.3Hz), 7.86 (1H, d, J=8.6Hz), 7.94 (1H, d, J=8.6Hz), 8.01 (1H, d, J = 8.9Hz), 8.52 (1H, s), 12.89 (1H, s)

Preparation 58

6-(3,7-Dimethyl-2,6-octadienyloxy)naphthoic acid

IR (Nujol):

1660, 1620, 1210 cm⁻¹

NMR (DMSO-d₆, δ):

1.57 (3H, s), 1.60 (3H, s), 1.76 (3H, s), 2.07 (4H, m), 4.70 (2H, d, J = 6.5Hz), 5.07 (1H, m), 5.51 (1H, t, J=6.5Hz), 7.24 (1H, dd, J=8.9Hz and 2.4Hz), 7.41 (1H, d, J=2.4Hz), 7.85 (1H, d, J=8.7Hz), 7.94 (1H, d, J=8.7Hz), 8.01 (1H, d,

J = 8.9Hz), 8.52 (1H, s), 12.88 (1H, s)

Preparation 59

(2E)-3(4-Octyloxyphenyl)acrylic acid

IR (Nujol):

1660, 1600, 1240 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J = 6.7Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 4.00 (2H, t, J = 6.4Hz), 6.36 (1H, d, J=16Hz), 6.95 (2H, d, J=8.7Hz), 7.54 (1H, d, J=16Hz), 7.61 (2H,

d, J = 8.7Hz), 12.20 (1H, br s)

35

40

50

Preparation 60

Sodium 6-octyloxy-2-naphthalene sulfonate

IR (Nujol):

1230, 1180, 860, 820 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6Hz), 1.1-1.6 (10H, m), 4.06 (2H, t, J=5Hz), 7.08 (1H, d, J=9Hz), 7.21 (1H, s), 7.79 (1H, d, J=9Hz), 8.00 (1H, s)

Preparation 61

To a solution of thionyl chloride (0.692 ml) and N,N-dimethylformamide (0.022 ml) was added sodium 6-45 octyloxy-2-naphthalenesulfonate (1 g) under ice-cooling and stirred for 1.5 hours at 95°C. The reaction mixture was evaporated under reduced pressure to give 6-octyloxy-2-naphthylsulfonyl chloride (1 g).

IR (Nuiol):

1610, 1260, 1160 cm⁻¹

NMR (CDCl₃, δ):

0.90 (3H, t, J = 6.2Hz), 1.2-1.7 (10H, m), 1.8-2.0 (2H, m), 4.12 (2H, t, J = 6.5Hz), 7.20 (1H, d, J = 2.2Hz), 7.32 (1H, dd, J = 9.0Hz and 2.2Hz), 7.84-7.97 (3H, m), 8.49 (1H,

The following compounds (Preparations 62 to 71) were obtained according to a similar manner to that of Preparation 12.

Preparation 62

1-(4-Octylbenzoyl)-1H-benzotriazole-3-oxide IR (Neat): 2930, 2850, 1780, 1610, 1240, 990 cm⁻¹

Preparation 63

 $1-[4-(4-Octyloxyphenyl)benzoyl]-1H-benzotriazole-3-oxide IR (Nujol): 1770, 1600, 980 cm<math>^{-1}$

Preparation 64

1-[6-(2-Ethylhexyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide

IR (Nuiol):

1770, 1620, 1270, 1180 cm⁻¹

NMR (CDCl₃, δ):

0.93 (3H, t, J=7.1Hz), 0.98 (3H, t, J=7.4Hz), 1.3-1.7 (8H, m), 1.7-2.0 (1H, m), 4.03 (2H, d, J=5.7Hz), 7.22 (1H, d, J=2.2Hz), 7.29 (1H, dd, J=8.9Hz, 2.2Hz), 7.4-7.7 (3H, m), 7.87 (1H, d, J=9.5Hz), 7.92 (1H, d, J=9.5Hz), 8.1-8.2 (2H, m), 8.80 (1H, e)

15 Preparation 65

10

1-[6-(3,7-Dimethyl-6-octenyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide IR (Neat): 2900, 1770, 1620, 1180 cm⁻¹

20 Preparation 66

 $1-[6-{(E)-3,7-Dimethyl-2,6-octadienyloxy}-2-naphthoyl]-1H-benzotriazole-3-oxide IR (Nujol): 1770, 1620, 1270, 1180 cm<math>^{-1}$

25 Preparation 67

1-(2-Anthrylcarbonyl)-1H-benzotriazole-3-oxide IR (Nujol): 1780, 1200, 720, 740 cm⁻¹

30 Preparation 68

1-[2-(4-Octyloxyphenyl)acetyl]-1H-benzotriazole-3-oxide IR (Nujol): 1730, 1460, 1420, 1250, 1130 cm⁻¹

35 Preparation 69

1-[3-(4-Octyloxyphenyl)propionyl]-1H-benzotriazole-3-oxide IR (Nujol): 1730, 1420, 1340, 1240, 950 cm⁻¹

40 Preparation 70

1-1(E)-3-(4-Octyloxyphenyl)acryloyl]-1H-benzotriazole-3-oxide IR (Nujol): 1770, 1600, 1260, 1080 cm⁻¹

45 Preparation 71

1-(O⁴-Octyl-N,N-dimethyl-L-tyrosyl)-1H-benzotriazole-3-oxide IR (Neat): 2930, 2850, 1800, 1610 cm⁻¹

50 Preparation 72

To a suspension of lithium aluminum hydride (4.05 g) in tetrahydrofuran (475 ml) was added dropwise a solution of 4-octyloxybenzaldehyde (25 g) in tetrahydrofuran (25 ml) at 55 ~ 60° C. The reaction mixture was stirred under reflux for 1 hour, and thereto was added sodium fluoride (35.84 g) and water (11.52 ml) under ice-cooling. The mixture was stirred for 30 minutes, and filtrated. The filtrate was evaporated in vacuo to give 4-octyloxybenzyl alcohol (25.1 g) as crystals.

IR (Nujol):

3200, 1605, 1510 cm⁻1

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J = 6.7Hz), 1.26-1.38 (10H, m), 1.62-1.72 (2H, m), 3.92 (2H, t,

J=6.5Hz), 4.40 (2H, d, J=5.7Hz), 5.03 (1H, t, J=5.7Hz), 6.85 (2H, d, J=8.6Hz), 7.20 (2H, d, J=8.6Hz)

Preparation 73

5

10

To a suspension of 4-octyloxybenzyl alcohol (25 g), N-hydroxyphthalimide (17.15 g) and triphenyl-phosphine (27.74 g) in tetrahydrofuran (250 ml) was added dropwise diethyl azodicarboxylate (18.4 g) under ice-cooling. The reaction mixture was stirred at room temperature for 2 hours, and evaporated in vacuo. The residue was purified by chromatography on silica gel to give N-(4-octyloxybenzyloxy)phthalimide (33.45 g) as crystals.

IR (Nujol):

1780, 1725, 1605, 1580, 1505 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, m), 1.26 (10H, m), 1.70 (2H, m), 3.95 (2H, t, J = 6.5Hz), 5.08 (2H, s),

6.93 (2H, d, J=8.6Hz), 7.40 (2H, d, J=8.6Hz), 7.85 (4H, s)

15 Preparation 74

To a solution of N-(4-octyloxybenzoyloxy)phthalimide (4.13 g) in tetrahydrofuran (16 ml) was added hydrazine-hydrate (0.53 ml) at room temperature. After the mixture was stirred at the same temperature for 1 hour, the precipitate was filtered off. To the filtrate was added water (6 ml) and 4-hydroxyphenylglyoxylic acid (1.5 g) at room temperature. The mixture was maintained at pH 4~4.5 with aqueous sodium bicarbonate solution for 2 hours, thereto was added ethyl acetate, and adjusted to pH 2 with 1N hydrochloric acid. The separated organic layer was washed with brine, and dried over magnesium sulfate. The organic solvent was evaporated in vacuo to give 2-(4-hydroxyphenyl)-2-(4-octyloxybenzyloxyimino)-acetic acid (3.4 g).

IR (Nujol):

3400, 1715, 1605, 1590, 1505 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, m), 1.25 (10H, m), 1.69 (2H, m), 3.94 (2H, t, J=6.4Hz), 5.07 (2H, s), 6.82 (2H, d, J=8.7Hz), 6.90 (2H, d, J=8.6Hz), 7.29 (2H, d, J=8.6Hz), 7.35 (2H,

d, J = 8.7Hz

The following compounds (Preparations 75 and 76) were obtained according to a similar manner to that of Preparation 74.

Preparation 75

2-Phenyl-2-(4-octyloxybenzyloxyimino)acetic acid

IR (Nujol):

1720, 1610, 1585, 1515 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.7Hz), 1.26 (10H, m), 1.69 (2H, m), 3.94 (2H, t, J=6.5Hz), 5.13

(2H, s), 6.91 (2H, d, J=8.6Hz), 7.22-7.49 (7H, m)

Preparation 76

40

35

25

2-(4-Octyloxybenzyloxyimino)acetic acid

IR (Nujol):

1700, 1670, 1600 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J = 6.2Hz), 1.26 (10H, m), 1.70 (2H, m), 3.95 (2H, t, J = 6.5Hz), 5.13

(2H, s), 6.91 (2H, d, J=8.6Hz), 7.29 (2H, d, J=8.6Hz), 7.56 (1H, s)

45

Preparation 77

A solution of 4-octyloxyphenylglyoxylic acid (0.935 g) in a mixture of water (9 ml) and tetrahydrofuran (18 ml) and adjusted to pH 3.5-4 with 1N hydrochloric acid and methoxyamine hydrochloride (0.337 g) was added thereto at room temperature. The mixture was stirred for 2 hours at room temperature maintaining pH 3.5~4 with 1N hydrochloric acid. The reaction mixture was added to ethyl acetate. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 2-(4-octyloxyphenyl)-2-methoxyiminoacetic acid (0.57 g).

IR (Nujol):

1700, 1600, 1250, 1030 cm⁻¹

55 NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.3Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 3.89 (3H, s), 3.99 (2H,

t, J = 6.4Hz), 7.00 (2H, d, J = 8.9Hz), 7.45 (2H, d, J = 8.9Hz), 14.05 (1H, s)

To a mixture of 2,3,4,5,6-pentafluorobenzoic acid (1 g) and 2,2,3,3,4,4,5,5-octafluoropentanol (1.18 g) in N,N-dimethylformamide (5 ml) was added 62% sodium hydride (0.39 g) at room temperature. The mixture was stirred at the same temperature for 1 hour, and thereto was added a mixture of water and ethyl acetate. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by chromatography on silica gel to give 4-(2,2,3,3,4,4,5,5-octafluoropentyloxy)-2,3,5,6-tetrafluorobenzoic acid (923.0 mg).

IR (Nujol):

1700, 1580 cm⁻¹

NMR (DMSO-d₆, δ):

4.96 (2H, t, J = 14.2Hz), 7.10 (1H, tt, J = 5.6Hz and 50.2Hz)

10 Preparation 79

4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Pentadecafluorooctyloxy)-2,3,5,6-tetrafluorobenzoic acid

IR (Nujol):

3400, 1640, 1560 cm⁻¹

NMR (DMSO- d_6 , δ):

4.95 (2H, t, J = 14.0Hz)

The following compounds (Preparations 80 to 90) were obtained according to a similar manner to that of Preparation 5.

Preparation 80

Succinimido 2-(4-hydroxyphenyl)-2-(4-octyloxybenzyloxyimino)acetate IR (Nujol): 1800, 1770, 1700, 1600 cm⁻¹

Preparation 81

25 Succinimido 2-phenyl-2-(4-octyloxybenzyloxyimino)acetate

IR (Nujol):

1780, 1730, 1605 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, m), 1.26 (10H, m), 1.69 (2H, m), 2.90 (4H, m), 3.94 (2H, t, J = 6.4Hz),

5.30 (2H, s), 6.91 (2H, d, J=8.6Hz), 7.25-7.56 (7H, m)

30 Preparation 82

Succinimido 2-(4-Octyloxybenzyloxyimino)acetate

IR (Nujol) :

1760, 1725, 1600, 1580 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.7Hz), 1.26 (10H, m), 1.70 (2H, m), 2.85 (4H, s), 3.96 (2H, m),

5.28 (2H, s), 6.91 (2H, d, J=8.6Hz), 7.33 (2H, d, J=8.6Hz), 8.12 (1H, s)

Preparation 83

Succinimido 4-(2,2,3,3,4,4,5,5-octafluoropentyloxy)-2,3,5,6-tetraflurobenzoate

40 IR (Nujol):

3500, 1770, 1740, 1640 cm⁻¹

NMR (DMSO-d₆, δ):

2.90 (4H, s), 5.23 (2H, t, J=13.8Hz), 7.11 (1H, tt, J=50.2Hz and 5.6Hz)

Preparation 84

45 Succinimido 4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyloxy)-2,3,5,6-tetrafluorobenzoate

IR (Nuiol):

1735, 1620, 1600 cm⁻¹

NMR (DMSO-d₆, δ):

2.90 (4H, s), 5.12 (2H, t, J = 13.8Hz)

Preparation 85

50

55

35

Succinimido 3-methoxy-4-octyloxybenzoate

IR (Nujol):

1760, 1730, 1600, 1280, 1200, 880 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.6-1.9 (2H, m), 2.88 (4H, s), 3.84 (3H, s), 4.09 (2H, t, J=6.5Hz), 7.19 (1H, d, J=8.6Hz), 7.49 (1H, d, J=2.0Hz), 7.73

(1H, dd, J = 8.6 and 2.0Hz)

Succinimido 4-(2-butoxyethoxy)benzoate

IR (Nujol):

1730, 1600, 1250, 1060 cm⁻¹

NMR (DMSO- d_6 , δ):

0.87 (3H, t, J=7.2Hz), 1.2-1.6 (4H, m), 2.89 (4H, s), 3.46 (2H, t, J=6.3Hz), 3.73 (2H, t, J=4.4Hz), 4.25 (2H, t, J=4.4Hz), 7.18 (2H, d, J=9.0Hz), 8.04 (2H, d,

J = 9.0Hz

Preparation 87

5

10

25

30

40

45

Succinimido 2-(4-Octyloxyphenyl)-2-methoxyacetate

IR (Nujol):

1810, 1740, 1610, 1250, 1210, 1100 cm⁻¹

NMR (DMSO- d_{6} , δ):

0.86 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 2.80 (4H, s), 3.35 (3H, s), 3.97 (2H, t, J=6.4Hz), 5.35 (1H, s), 6.96 (2H, d, J=8.7Hz), 7.38 (2H, d,

J = 8.7Hz

15 Preparation 88

O⁴-Octyl-N-(t-butoxycarbonyl)-D-tyrosine succinimido ester IR (Nujol): 3370, 1780, 1730, 1700, 1250, 1200 cm⁻¹

20 Preparation 89

Succinimido 2-(4-octyloxyphenyl)-2-methoxyiminoacetate

IR (Nujol):

1800, 1780, 1730, 1600, 1250, 1180, 1130 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J = 6.6Hz), 1.2 - 1.5 (10H, m), 1.6 - 1.8 (2H, m), 2.89 (4H, s), 4.01 (3H,

s), 4.03 (2H, t, J=6.4Hz), 7.08 (2H, d, J=8.9Hz), 7.68 (2H, d, J=8.9Hz)

Preparation 90

N^r-Octyl-N-(t-butoxycarbonyl)-L-histidine succinimido ester

IR (Neat):

1810, 1780, 1730, 1500, 1360, 1200, 1160 cm⁻¹

Preparation 91

4-Octyloxyphthalic anhydride was obtained from 4-octyloxyphthalic acid according to a similar manner to that of Preparation 5.

IR (Neat):

2910, 2850, 1840, 1760, 1640, 1610, 1290, 1260 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.6-1.9 (2H, m), 4.19 (2H, t, J=6.5Hz), 7.47 (1H, dd, J=8.4Hz and 2.2Hz), 7.57 (1H, d, J=2.2Hz), 7.98 (1H, d, J=0.4Hz)

J = 8.4Hz

Preparation 92

N-Octyloxycarbonyloxysuccinimide was obtained according to a similar manner to that of Preparation 5.

IR (Neat):

2960, 2850, 1780, 1740, 1260, 1230 cm⁻¹

NMR (CDCl₃, δ):

0.89 (3H, t, J = 6.7Hz), 1.2-1.4 (10H, m), 1.6-1.8 (2H, m), 2.84 (4H, s), 4.32 (2H, t, J = 6.7Hz)

Preparation 93

To a solution of octyl phenyl ether (1.53 g) in chloroform (6 ml) was added chlorosulfonic acid at 0°C. The mixture was stirred at room temperature for 30 minutes, then the mixture was poured into a mixture of water and tetrahydrofuran.

The separated organic layer was washed with sodium chloride aqueous solution, dried over magnesium sulfate and then the solvent was evaporated in vacuo. The residue was subjected to a column chromatography on silica gel to give 4-octyloxyphenylsulfonyl chloride (1.25 g).

IR (Nujol):

1600, 1580, 1500, 1380, 1180 cm⁻¹

NMR (CDCl₃, δ):

0.89 (3H, t, J = 6.6Hz), 1.20-1.50 (10H, m), 1.80 (2H, m), 4.06 (2H, t, J = 6.4Hz), 7.03

(2H, d, J=9.0Hz), 7.96 (2H, d, J=9.0Hz)

In the following, the structures of the compounds of Examples 13 to 53 are shown.

но OH 5 NH NH-R HO =0 ΟН 10 0 НŲ HQ 15 0 ОН HO 20

In the following formulae, 'Bu means t-butyl, and p-TsOH means p-toluenesulfonic acid.

25	Example No.	Compound No.	R
30	13	FR139835	-соо(сн ₂) ₇ сн ₃
35	14	FR139537	-co-()- ^t Bu
	15	FR141145	-co-(ch ₂) ₂ o(ch ₂) ₃ ch ₃
40	16	FR139538	-co-(CH ₂) ₄ -(_)

55

50

	Example No.	Compound No.	R
5	17	FR140215	-co-——-o(сн ₂) ₇ сн ₃
. 15	18	FR140216	-co-(CH ₂) ₇ CH ₃
20	19	FR140727	F F -CO-CH ₂ (CF ₂) ₄ H F F
25	20	FR143301	F F -co
35	21	FR140495	-сосн ₂ -
40	22	FR139503	осн ₃ -сосн-——-о(сн ₂) ₇ сн ₃
45	23	FR139500	инсоо ^t ви -соснсн ₂ -√-о(сн ₂) ₇ сн ₃ (D)
50	24	FR139501	NHCOO [†] Bu

	Example No.	Compound No.	R
10	25	FR139502	NHCOO [†] Bu -COCHCH ₂ N-(CH ₂) ₇ CH ₃
15	26	FR138959	OCH ₃ N -co-c-\(\bigcip \)-o(CH ₂) ₇ CH ₃
20	27	FR140291	о-сн ₂ -о(сн ₂) ₇ сн ₃ N -со-сон
30	28	FR141580	O-CH ₂ -O(CH ₂) ₇ CH ₃ N -co-c-
35	29	FR141579	о-сн ₂
40	30	FR141146	
4 5	31	FR140731	-co-(CH ₂) ₇ CH ₃
50	32	FR140217	-co-(CH ₂) ₇ CH ₃

5	Example No.	Compound No.	R
	33	FR142472	-co-———————————————————————————————————
10	34	FR140496	-co-CH ₂) ₃ CH ₃
15	35	FR140497	-co
20	36	FR143483	-co-\o
25	37	FR140728	-co-CH ₂) ₉ CH ₃
30	38	FR142172	-co-\
35	39	FR143326	-co-\
40	40	FR142390	-co-(
45	41	FR140729	-co-CCH ₂) ₁₁ CH ₃
50	42	FR140730	-co

	Example No.	Compound No.	R
5	43	FR143020	-сосн ₂ -Сосн ₂) ₇ сн ₃
10	44	FR143021	-co(cH ₂) ₂ -()-o(cH ₂) ₇ cH ₃
15	45	FR141315	-co————————————————————————————————————
20	46	FR140105	N(CH ₃) ₂ -co-chcH ₂
25	47	FR141564	-so ₂ -CH ₂) ₇ CH ₃
30	48	FR143170	-so ₂
36	49	FR138912	NH ₂ · p-TsOH -CO-CHCH ₂ -\(\bigce_{\text{D}}\)-O(CH ₂) ₇ CH ₃
40	50	FR138960	-coch ₂ s-\(\bigcap_{N-(ch_2)_7ch_3}\)
45 50	51	FR138727	NH2 -COCHO(CH ₂) ₇ CH ₃

Example No.	Compound No.	R
52	FR138912	NH ₂ · p-TsOH -co-chch ₂ -Chch ₂) ₇ ch ₃
53	FR138960	Br ⊖ -coch ₂ s-√N [⊕] (ch ₂) ₇ ch ₃

35

45

5

10

15

Example 13

FR139835 substance was obtained by reacting FR133303 substance with N- octyloxycarbonyloxysuccinimide according to a similar manner to that of Example 3.

IR (Nujol): 3300, 1620 cm⁻¹ FAB-MS e/z = 1137 (M + Na)

Example 14

FR139537 substance was obtained by reacting FR133303 substance with succinimido 4-t-butylbenzoate according to a similar manner to that of Example 3.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (D₂O, δ):

1.05 (3H, d, J=6.9Hz), 1.15 (3H, d, J=5.9Hz), 1.33 (9H, s), 2.0-2.3 (3H, m), 2.4-2.6 (3H, m), 2.7-2.9 (1H, m), 3.4-3.6 (1H, m), 3.8-4.9 (12H, m), 5.07 (2H, m), 5.40 (1H, d, J=3Hz), 7.06 (1H, d, J=8.2Hz), 7.08 (1H, dd, J=8.2Hz) and 2Hz), 7.27 (1H, d, J=2Hz), 7.60 (1H, d, J=8.6Hz), 7.75 (1H, d, J=8.6Hz)

Example 15

FR141145 substance was obtained by reacting FR133303 substance with succinimido 4-(2-butox-yethoxy)benzoate according to a similar manner to that of Example 3.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆, + D₂O, δ):

0.88 (3H, t, J=7.3Hz), 0.96 (3H, d, J=6.7Hz), 1.04 (3H, d, J=5.7Hz), 1.2-1.6 (4H, m), 1.7-2.0 (3H, m), 2.1-2.65 (4H, m), 3.16 (1H, m), 3.7-4.5 (20H, m), 4.78 (1H, d, J=3Hz), 4.86 (1H, d, J=3.8Hz), 5.02 (1H, d, J=3Hz), 6.74 (1H, d, J=8.2Hz), 6.79 (1H, d, J=8.2Hz), 7.00 (2H, d, J=8.9Hz), 7.06 (1H, s), 7.87 (2H, d, J=8.9Hz)

FAB-MS e/z = 1201 (M + Na)

50 Example 16

FR139538 substance was obtained by reacting FR133303 substance with succinimido 4-(4-phenyl-butoxy)benzoate according to a similar manner to that of <u>Example 3.</u>

IR (Nujol): 3300, 1620 cm⁻¹

FAB-MS e/z = 1233 (M + Na)

Example 17

FR140215 substance was obtained by reacting FR133303 substance with 4-octyloxyphthalic anhydride according to a similar manner to that of Example 3.

```
IR (Nujol) : 3300, 1620 cm^{-1}
FAB-MS e/z = 1257 (M + Na)
```

Example 18

5

FR140216 substance was obtained by reacting FR133303 substance with succinimido 3-methoxy-4-octyloxybenzoate according to a similar manner to that of Example 3.

```
R = 18 \text{ (Nujol)} : 3300, 1620 \text{ cm}^{-1}
FAB-MS e/z = 1243 (M + Na)
```

Example 19

FR140727 substance was obtained by reacting FR133303 substance with succinimido 4-(2,2,3,3,4,4,5,5-octafluoropentyloxy)-2,3,5,6-tetrafluorobenzoate according to a similar manner to that of Example 3.

```
IR (Nujol): 3300, 1630 cm^{-1}
FAB-MS e/z: 1387 (M + Na)
```

20 Example 20

FR143301 substance was obtained by reacting FR133303 substance with succinimido 4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyloxy)-2,3,5,6-tetrafluorobenzoate according to a similar manner to that of Example 3.

```
5 IR (Nujol): 3300, 1630 cm<sup>-1</sup>
FAB-MS e/z = 1534 (M<sup>1</sup>)
```

Example 21

FR140495 substance was obtained by reacting FR133303 substance with succinimido 2-(4-biphenylyl)-acetate according to a similar manner to that of Example 3.

```
IR (Nujol) : 3300, 1620 cm<sup>-1</sup>
```

NMR (CD₃OD, δ): 1.0-1.1 (6H, m), 1.9-2.2 (3H, m), 2.3-2.6 (3H, m), 2.7-2.85 (1H, m), 3.35 (1H, m), 3.58 (2H, s), 3.65-4.7 (13H, m), 4.93 (1H, d, J=3Hz), 5.04 (1H, d, J=3.8Hz), 5.25 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 7.01 (1H, dd, J=8.3Hz and 2Hz), 7.3-7.6 (10H, m)

Example 22

35

FR139503 substance was obtained by reacting FR133303 substance with succinimido 2-(4-octylox-yphenyl)-2-methoxyacetate according to a similar manner to that of Example 3.

```
IR (Nujol): 3330, 1620 \text{ cm}^{-1}
FAB-MS e/z = 1257 \text{ (M + Na)}
```

45 Example 23

FR139500 substance was obtained by reacting FR133303 substance with O⁴-octyl-N-(t-butoxycarbonyl)-D-tyrosine succinimido ester according to a similar manner to that of Example 3.

```
IR (Nujol) : 3300, 1620 cm<sup>-1</sup>

NMR (CD<sub>3</sub>OD, \delta) : 0.90 (3H, t, J=6.8Hz), 1.06 (3H, d, J=6.8Hz), 1.17 (3H, d, J=6.7Hz), 1.20-1.30 (10H, m), 1.35 (9H, s), 1.74 (2H, m), 1.9-2.1 (3H, m), 2.45 (3N, m), 2.76 (1H, m), 3.0-3.1 (1H, m), 3.37 (1H, m), 3.7-4.6 (18H, m), 4.94 (1H, d, J=3Hz), 5.01 (1H, d, J=3.8Hz), 5.25 (1H, d, J=3Hz), 6.79 (2H, d, J=8.5Hz), 6.83 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2Hz), 7.12 (2H, d, J=8.5Hz), 7.31 (1H, d, J=2Hz)
```

Example 24

55

FR139501 substance was obtained by reacting FR133303 substance with N-(t-butoxycarbonyl)-L-2-(2-

naphthyl)glycine succinimido ester according to a similar manner to that of Example 3. IR (Nujol): 3300, 1620 cm⁻¹

Example 25

5

10

15

20

FR139502 substance was obtained by reacting FR133303 substance with N^r-octyl-N-(t-butoxycarbonyl)-L-histidine succinimido ester according to a similar manner to that of Example 3.

IR (Nujol) : 3300, 1620 cm^{-1} FAB-MS e/z = 1330 (M + Na)

Example 26

FR138959 substance was obtained by reacting FR133303 substance with succinimido 2-(4-octylox-yphenyl)-2-methoxyiminoacetate according to a similar manner to that of Example 3.

IR (Nujol) :

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.91 (3H, t, J=6.6Hz), 1.06 (3H, d, J=6.8Hz), 1.25 (3H, d, J=6.3Hz), 1.25-1.6 (10H, m), 1.65-1.9 (2H, m), 1.9-2.2 (3H, m), 2.3-2.65 (3H, m), 1.75-1.9 (1H, m), 3.3-3.5 (1H, m), 3.95 (3H, s), 3.7-4.75 (16H, m), 5.03 (1H, d, J=3.0Hz), 5.11 (1H, d, J=3.7Hz), 5.46 (1H, d, J=2.7Hz), 6.86 (1H, d, J=8.2Hz), 6.89 (2H, d, J=8.9Hz), 7.01 (1H, dd, J=8.2Hz) and 2Hz), 7.31 (1H, d, J=2.7Hz), 7.54 (2H, d, J=8.9Hz)

FAB-MS e/z = 1270 (M + Na)

Example 27

FR140291 substance was obtained by reacting FR133303 substance with succinimido 2-(4-hydrox-yphenyl)-2-(4-octyloxybenzyloxyimino)acetate according to a similar manner to that of Example 3.

IR (Nujol) : 3250, 1650, 1620 cm⁻¹

FAB-MS e/z = 1363 (M + Na)

30 Example 28

FR141580 substance was obtained by reacting FR133303 substance with succinimido 2-phenyl-2-(4-octyloxybenzyloxyimino)acetate according to a similar manner to that of Example 3.

IR (Nujol): 3300, 1646 cm⁻¹ FAB-MS e/z = 1346 (M + Na)

Example 29 FR141579 substance was obtained by reacting FR133303 substance with succinimido 2-(4-octyloxybenzyloxyimino)acetate according to a similar manner to that of Example 3.

IR (Nujol): 3250, 1650 cm⁻¹

40 FAB-MS e/z = 1270 (M + Na)

Example 30

FR141146 substance was obtained by reacting FR133303 substance with 1-[(2E,6E)-3,7,11-trimethyl-25 2,6,10-dodecatrienoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620, 1040 cm⁻¹

NMR (CD₃OD, δ):

1.06 (3H, d, J=6.8Hz), 1.19 (3H, d, J=5.9Hz), 1.60 (3H, s), 1.62 (3H, s), 1.66 (3H, s), 1.9-2.2 (11H, m), 2.05 (3H, s), 2.3-2.6 (3H, m), 2.7-2.9 (1H, m), 3.35 (1H, m), 3.7-5.0 (14H, m), 5.08 (4H, m), 5.27 (1H, d, J=2.8Hz), 5.77 (1H, s), 6.86 (1H, d, J=8.3Hz), 7.04 (1H, dd, J=8.3Hz and 1.9Hz), 7.32 (1H, d, J=1.9Hz)

Example 31

50

FR140731 substance was obtained by reacting FR133303 substance with 1-(4-octylbenzoyl)-1H-55 benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620, 1040 cm⁻¹

NMR (CD₃OD, δ):

0.86 (3H, t, J=6.8Hz), 1.06 (3H, d, J=6.8Hz), 1.21 (3H, d, J=5.8Hz), 1.25-1.45 (10H, m), 1.55-1.75 (2H, m), 1.9-2.25 (3H, m), 2.35-2.6 (3H, m), 2.65 (2H, t,

J=7.5Hz), 2.81 (1H, m), 3.32 (1H, m), 3.7-4.8 (14H, m), 4.98 (1H, d, J=3Hz), 5.09 (1H, d, J=3.9Hz), 5.31 (1H, d, J=3Hz), 6.86 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2Hz), 7.24 (2H, d, J=8.2Hz), 7.33 (1H, d, J=2Hz), 7.74 (2H, d, J=8.2Hz)

 $_{5}$ FAB-MS e/z = 1197 (M + Na)

Example 32

FR140217 substance was obtained by reacting FR133303 substance with 1-[4-(4-octyloxy)phenoxy]10 benzoyl-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol): 3300, 1620 cm^{-1} FAB-MS e/z = 1305 (M + Na)

Example 33

15

20

40

55

FR142472 substance was obtained by reacting FR133303 substance with 1-[4-(4-octyloxyphenyl)-benzoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.88 (3H, t, J=6.7Hz), 1.06 (3H, d, J=6.8Hz), 1.23 (3H, d, J=6.1Hz), 1.3-1.6 (10H, m), 1.8-1.9 (2H, m), 1.9-2.3 (3H, m), 2.3-2.7 (3H, m), 2.9-3.0 (1H, m), 3.39 (1H, m), 3.7-4.7 (16H, m), 4.99 (1H, d, J=3.0Hz), 5.10 (1H, d, J=3.7Hz), 5.35 (1H, d, J=2.7Hz), 6.87 (1H, d, J=8.3Hz), 6.99 (2H, d, J=8.8Hz), 7.04 (1H, dd, J=8.3Hz and 1.9Hz), 7.33 (1H d, J=1.9Hz), 7.58 (2H, d, J=8.8Hz), 7.62 (2H, d, J=8.4Hz), 7.87 (2H, d, J=8.4Hz)

25 FAB-MS e/z = 1289 (M + Na)

Example 34

FR140496 substance was obtained by reacting FR133303 substance with 1-(6-butoxy-2-naphthoyl)-1H-butoxy-2-naphthoyl

IR (Nujol): 3300, 1620 cm^{-1} FAB-MS e/z = 1207 (M + Na)

Example 35

FR140497 substance was obtained by reacting FR133303 substance with 1-(6-hexyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO- $d_6 + D_2O, \delta$):

0.89 (3H, t, J=6.6HZ), 0.97 (3H, d, J=6.9Hz), 1.08 (3H, d, J=5.9Hz), 1.2-1.6 (6H, m), 1.7-2.1 (5H, m), 2.1-2.5 (3H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.73 (2H, m), 3.8-4.5 (12H, m), 4.80 (1H, d, J=3Hz), 4.88 (1H, d, J=3.8Hz), 5.08 (1H, d, J=3Hz), 6.74 (1H, d, J=8.2Hz), 6.80 (1H, dd, J=8.2Hz) and 2Hz), 7.08 (1H, d, J=2.4Hz), 7.26 (1H, dd, J=8.7Hz), 7.89 (1H, d, J=8.7Hz), 7.89 (1H, d, d, J=8.7Hz)

J = 8.7Hz), 7.93 (1H, d, J = 8.9Hz), 8.44 (1H, s)

FAB-MS e/z = 1236 (M + Na)

Example 36

FR143483 substance was obtained by reacting FR133303 substance with 1-[6-(2-ethylhexyloxy)-2-, naphthoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3250, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.93 (3H, t, J=7.4Hz), 0.98 (3H, t, J=7.4Hz), 1.06 (3H, d, J=6.8Hz), 1.24 (3H, d, J=6.0Hz), 1.3-1.7 (8H, m), 1.7-1.9 (1H, m), 1.9-2.3 (3H, m), 2.3-2.7 (3H, m), 2.8-3.0 (1H, m), 3.39 (1H, m), 3.7-4.7 (16H, m), 5.00 (1H, d, J=4.4Hz), 5.11 (1H, d, J=3.7Hz), 5.37 (1H, d, J=2.6Hz), 6.87 (1H, d, J=8.3Hz), 7.04 (1H, dd, J=8.3Hz and 2Hz), 7.17 (1H, dd, J=8.9Hz and 1.9Hz), 7.22 (1H, d, J=2Hz), 7.33 (1H, d, J=1.9Hz), 7.7-7.9 (3H, m), 8.29 (1H, s) -

FAB-MS e/z = 1263 (M + Na)

Example 37

FR140728 substance was obtained by reacting FR133303 substance with 1-(6-decyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nuiol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆ + D_2O , δ):

0.86 (3H, t, J=6.6Hz), 0.97 (3H, d, J=6.7Hz), 1.07 (3H, d, J=5.9Hz), 1.2-1.6 (14H, m), 1.7-2.1 (5H, m), 2.1-2.5 (3H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.45 (1H, m), 3.73 (2H, m), 3.9-4.5 (12H, m), 4.79 (1H, d, J=3Hz), 4.87 (1H, d, J=3.8Hz), 5.07 (1H, d, J=3Hz), 6.74 (1H, d, J=8.2Hz), 6.79 (1H, dd, J=8.1Hz and 2Hz), 7.06 (1H, d, J=2Hz), 7.23 (1H, dd, J=8.9Hz and 2.4Hz), 7.38 (1H, d, J=2.4Hz), 7.85 (1H, d, J=8.7Hz), 7.89 (1H, d, J=8.7Hz), 7.93 (1H, d, J=8.9Hz), 8.45 (1H, s)

15 FAB-MS e/z = 1291 (M + Na)

Example 38

10

25

30

35

40

50

FR142172 substance was obtained by reacting FR133303 substance with 1-[6-(3,7-dimethyloctyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1610 cm⁻¹

NMR (DMSO-d₆ + D_2O , δ):

0.85 (6H, d, J=6.6Hz), 0.95 (3H, d, J=5.9Hz), 0.97 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.9Hz), 1.1-1.4 (6H, m), 1.4-2.1 (7H, m), 2.1-2.5 (3H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.74 (2H, m), 3.9-4.6 (12H, m), 4.81 (1H, d, J=3Hz), 4.87 (1H, d, J=3.8Hz), 5.07 (1H, d, J=3Hz), 6.74 (1H, d, J=8.2Hz), 6.83 (1H, dd, J=8.1Hz and 2Hz), 7.06 (1H, d, J=2Hz), 7.23 (1H, dd, J=8.9Hz and 2.4Hz), 7.40 (1H, d, J=2.4Hz), 7.85 (1H, d, J=8.7Hz), 7.89 (1H, d, J=8.7Hz), 7.93 (1H, d, J=8.9Hz), 8.45 (1H, s)

FAB-MS e/z = 1291 (M + Na)

Example 39

FR143326 substance was obtained by reacting FR133303 substance with 1-[6-(3,7-dimethyl-6-octenyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620, 1260, 1040 cm⁻¹

NMR (CD₃OD, δ):

1.00 (3H, d, J=6.2Hz), 1.06 (3H, d, J=6.8Hz), 1.25 (3H, d, J=5.9Hz), 1.2-1.6 (2H, m), 1.61 (3H, s), 1.67 (3H, s), 1.63-2.3 (8H, m), 2.3-2.7 (3H, m), 2.8-3.0 (1H, m), 3.39 (1H, m), 3.7-4.8 (16H, m), 5.00 (1H, d, J=5.1Hz), 5.08-5.2 (2H, m), 5.37 (1H, d, J=2.5Hz), 6.87 - (1H, d, J=8.3Hz), 7.04 (1H, d, J=8.3Hz), 7.15 (1H, d, J=8.9Hz), 7.21 (1H, s), 7.33 (1H, s), 7.71 (1H, d, J=8.7Hz), 7.77-7.85 (2H, m), 8.28 (1H, s)

Example 40

FR142390 substance was obtained by reacting FR133303 substance with 1-[6-{(E)-3,7-dimethyl-2,6-octadienyloxy}-2-naphthoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆ + D₂O, δ):

0.97 (3H, d, J=6.7Hz), 1.07 (3H, d, J=6.0Hz), 1.57 (3H, s), 1.61 (3H, s), 1.76 (3H, s), 1.8-2.5 (9H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.45 (1H, m), 3.73 (2H, m), 3.9-4.6 (11H, m), 4.70 (2H, d, J=6.5Hz), 4.80 (1H, d, J=3Hz), 4.87 (1H, d, J=3.8Hz), 5.07 (2H, m), 5.51 (1H, t, J=6.5Hz), 6.74 (1H, d, J=8.3Hz), 6.83 (1H, dd, J=8.3Hz and 2Hz), 7.07 (1H, d, J=2Hz), 7.24 (1H, dd, J=8.9Hz and 2.4Hz), 7.40 (1H, d, J=2.4Hz), 7.8-8.0 (3H, m), 8.45 (1H, s)

55 FAB-MS e/z = 1287 (M + Na)

Example 41

FR140729 substance was obtained by reacting FR133303 substance with 1-(6-dodecyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1610 cm⁻¹

NMR (DMSO-d₆ + D_2O , δ):

0.85 (3H, t, J=6.6Hz), 0.97 (3H, d, J=6.7Hz), 1.07 (3H, d, J=5.9Hz), 1.2-1.6 (18H, m), 1.7-2.1 (5H, m), 2.1-2.5 (3H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.45 (1H, m), 3.73 (2H, m), 3.9-4.5 (12H, m), 4.79 (1H, d, J=3Hz), 4.87 (1H, d, J=3.8Hz), 5.07 (1H, d, J=3Hz), 6.74 (1H, d, J=8.1Hz), 6.78 (1H, dd, J=8.1Hz) and 2Hz), 7.06 (1H, d, J=2Hz), 7.23 (1H, dd, J=8.9Hz) and 2.4Hz), 7.38 (1H, d, J=2.4Hz), 7.85 (1H, d, J=8.7Hz), 7.89 (1H, d, J=8.9Hz), 8.44 (1H, s)

10

5

FAB-MS e/z = 1320 (M + Na)

Example 42

FR140730 substance was obtained by reacting FR133303 substance with 1-(2-anthrylcarbonyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol) : 3300, 1620 cm⁻¹ FAB-MS e/z = 1185 (M + Na)

20 Example 43

FR143020 substance was obtained by reacting FR133303 substance with 1-[2-(4-octyloxyphenyl)-acetyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.87 (3H, t, J=6.8Hz), 1.0-1.2 (6H, m), 1.2-1.6 (10H, m), 1.6-1.85 (2H, m), 1.85-2.1 (3H, m), 2.3-2.6 (3H, m), 2.7-2.85 (1H, m), 3.32 (1H, m), 3.46 (2H, s), 3.7-4.7 (16H, m), 5.04 (1H, d, J=3.7Hz), 5.23 (1H, d, J=2.7Hz), 6.75-6.9 (3H, m), 7.01 (1H, d, J=8.3Hz), 7.15 (2H, d, J=8.5Hz), 7.30 (1H, s)

FAB-MS e/z = 1227 (M + Na)

30

25

Example 44

FR143021 substance was obtained by reacting FR133303 substance with 1-[3-(4-octyloxyphenyl)-propionyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

35 IR (Nujol): 3300, 1620 cm⁻¹

FAB-MS e/z = 1241 (M + Na)

Example 45

FR141315 substance was obtained by reacting FR133303 substance with 1-[(E)-3-(4-octyloxyphenyl)-acryloyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO- $d_6 + D_2O, \delta$):

0.86 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.7Hz), 1.04 (3H, d, J=5.4Hz), 1.2-1.5 (10H, m), 1.6-2.0 (5H, m), 2.1-2.5 (3H, m), 2.5-2.6 (1H, m), 3.17 (1H, m), 3.3-4.5 (15H, m), 4.79 (1H, d, J=3Hz), 4.86 (1H, d, J=3.8Hz), 5.01 (1H, d, J=3Hz), 6.57 (1H, d, J=15.8Hz), 6.74 (1H, d, J=8.2Hz), 6.82 (1H, d, J=8.2Hz), 6.97 (2H, d, J=8.8Hz), 7.09 (1H, s), 7.34 (1H, d, J=15.8Hz), 7.52 (2H, d, J=8.8Hz)

FAB-MS e/z = 1239 (M + Na)

50

45

55

Example 46

FR140105 substance was obtained by reacting FR133303 substance with 1-(O⁴-octyl-N,N-dimethyl-L-tyrosyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (CD₃OD, δ): 0.91 (3H, t, J=6.8Hz), 1.06 (3H, d, J=6.8Hz), 1.12 (3H, d, J=6.1Hz), 1.33 (10H, m), 1.74 (2H, m), 1.98 (3H, m), 2.40 (6H, s), 2.3-2.6 (3H, m), 2.8 (2H, m), 2.9-3.1 (1H, m), 3.3-3.5 (2H, m), 3.6-4.7 (16H, m), 5.06 (1H, d, J=3.8Hz), 5.33 (1H, d,

J=3Hz), 6.77 (2H, d, J=8.6Hz), 6.86 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hzand 2Hz), 7.07 (2H, d, J=8.6Hz), 7.31 (1H, d, J=2Hz)

Example 47

FR141564 substance was obtained by reacting FR133303 substance with 4-octyloxyphenylsulfonyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO- $d_6 + D_2O, \delta$):

0.87 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.8Hz), 1.04 (3H, d, J=5.7Hz). 1.1-1.5 (10H, m), 1.6-2.1 (5H, m), 2.45 (3H m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.7-4.5 (16H, m), 4.80 (1H, d, J=3Hz), 4.88 (1H, d, J=4Hz), 5.08(1H, d, J=3Hz), 6.74 (1H, d, J=8.2Hz), 6.82 (1H, d, J=8.2Hz), 6.84 (2H, d, J=8.2Hz)d, J=8.7Hz), 7.07 (1H, s), 7.51 (2H, d, J=8.7Hz)

FAB-MS e/z = 1249 (M + Na)

15

20

5

10

Example 48

FR143170 substance was obtained by reacting FR133303 substance with 6-octyloxy-2-naphthylsulfonyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.29 (3H, d, J=6.0Hz), 0.91 (3H, t, J=6.7Hz), 1.07 (3H, d, J=6.9Hz), 1.25-1.6(10H, m), 1.7-2.2 (5H, m), 2.2-2.6 (4H, m), 3.37 (1H, m), 3.55-4.65 (17H, m), 4.97 (1H, m), 5.54 (1H, m), 6.84 (1H, d, J=8.3Hz), 7.01 (1H, dd, J=8.4Hz and 2Hz), 7.15-7.3 (3H, m), 7.75-8.0 (3H, m), 8.35 (1H, s)

FAB-MS e/z = 1299 (M + Na)

Example 49

To a solution of FR138364 substance obtained in Example 5 (0.24 g) in acetonitrile (5 ml) was added ptoluenesulfonic acid (0.132 g) and stirred for 8 hours at room temperature. The reaction mixture was added to water and the aqueous layer was adjusted to pH 4.5 with saturated sodium bicarbonate aqueous solution. The aqueous solution was subjected to column chromatography on Diaion HP-20 and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give FR138912 substance (0.15 g).

35 IR (Nujol): 3300, 1620 cm⁻¹

FAB-MS e/z = 1272 (M + K)

Example 50

The mixture of FR138728 substance obtained in Example 8 (0.15 g) and 1-octyl-1,4-dihydropyridine-4thione (0.031 g) in N,N-dimethylformamide was stirred for 1.5 hours under ice-cooling. The reaction mixture was pulverized with diethyl ether (50 ml). The precipitate was filtrated and dried over phosphorus pentoxide under reduced pressure. The powder was added to water (300 ml) and adjusted to pH 4.5. The aqueous solution was subjected to column chromatography on Diaion HP-20 (50 ml) and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give FR138960 substance (0.15 g). IR (Nujol): 3300, 1620 cm⁻¹

FAB-MS e/z = 1222 (Free M + Na)

The following compounds (Examples 51 to 53) were obtained according to a similar manner to that of Example 3. 50

Example 51

55

FR138727 substance

NMR (CD₃OD, δ):

0.90 (3H, t, J=6.8Hz), 1.05 (3H, d, J=6.8Hz), 1.17-1.33 (13H, m), 1.6-1.8 (2H, m), 1.9-2.1 (3H, m), 2.50 (1H, m), 2.75 (1H, dd, J = 16Hz and 4Hz), 3.40 (1H, m), 3.7-3.8 (1H, m), 3.98 (2H, t, J=6.2Hz), 3.9-4.2 (5H, m), 4.3-4.5 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d, J = 3Hz), 5.06 (1H, s), 5.20 (1H, d, J = 3Hz), 5.40 (1H, d, J = 3Hz),

6.85 (1H, d, J=8.3Hz), 6.95 (2H, d,, J=8.5Hz), 7.02 (1H, d, J=8.3Hz), 7.30 (1H, d, J=8.5Hz), 7.44 (1H, s)

Example 52

5

10

15

20

25

30

35

40

45

50

FR138912 substance IR (Nujol) : 3300, 1620 cm⁻¹

Example 53

FR138960 substance

IR (Nujol): 3300, 1620 cm⁻¹

The following compounds (Preparations 94 and 95) were obtained according to a similar manner to that of Preparation 5.

Preparation 94

Succinimido 4-(4-heptyloxyphenyl)benzoate

IR (Nujol):

1160, 1740, 1600 cm⁻¹

NMR (CDCI₃, δ):

0.87 (3H, t, J=6.8 Hz), 1.2-1.7 (8H, m), 1.7-1.9 (2H, m), 2.92 (4H, s), 4.01 (2H, t, J=6.5 Hz), 7.00 (2H, d, J=8.8 Hz), 7.58 (2H, d, J=8.8 Hz), 7.69 (2H, d, J=8.5 Hz),

8.17 (2H, d, J = 8.5 Hz)

Preparation 95

Succinimido 4-(4-hexyloxyphenoxy)benzoate

IR (Nujol):

1760, 1720, 1600 cm⁻⁻¹

NMR (CDCI₃, δ):

0.92 (3H, t, J=6.8 Hz), 1.2-1.5 (6H, m), 1.7-1.9 (2H, m), 2.90 (4H, s), 3.96 (2H, t,

J=6.5 Hz), 6.9-7.1 (6H, m), 8.07 (2H, d, J=9 Hz)

In the following, the structures of the compounds of Examples 54 and 55 are shown.

25

30

40

45

50

55

Example No.	Compound No.	R
54	FR144274	-co-(cH ₂) ₆ CH ₃
55.	FR144271	-co

The following compounds (Examples 54 and 55) were obtained according to a similar manner to that of Example 3.

Example 54

FR144274

IR (Nujol): 3300, 1620 cm⁻¹

Anal. Calcd. for $C_{55}H_{73}N_8SO_{22}Na$ 6H2O

C: 48.53, H: 6.29, N: 8.23, S: 2.35

Found C: 48.36, H: 6.34, N: 8.15, S: 2.30

FAB-MS e/z 1275 (M+Na)

Example 55

FR144271

Anal. Calcd. for $C_{54}H_{71}N_8SO_{23}Na$ $6H_2O$

C: 47.57, H: 6.14, N: 8.22, S: 2.35

Found C: 47.58, H: 6.05, N: 8.18, S: 2.27

FAB-MS e/z = 1277 (M+Na)

Claims

1. A polypeptide compound of the following general formula:

wherein

25

30

35

R1 is hydrogen or acyl group,

R² is hydroxy or acyloxy,

R³ is hydrogen or hydroxysulfonyloxy, and

R4 is hydrogen or carbamoyl,

with proviso that

(i) R2 is acyloxy, when R3 is hydrogen, and

(ii) R1 is not palmitoyl, when R2 is hydroxy,

R3 is hydroxysulfonyloxy and

R4 is carbamoyl,

and a pharmaceutically acceptable salt thereof.

2. A polypeptide compound of claim 1, which is shown by the following formula:

wherein R1 is as defined above.

3. A compound of claim 2, wherein

R1 is lower alkanoyl which may have one or more suitable substituent(s); higher alkanoyl, lower alkenoyl which may have one or more suitable substituent(s); higher alkenoyl; lower alkoxycarbonyl; higher alkoxycarbonyl; aryloxycarbonyl; arylglyoxyloyl; ar(lower)alkoxycarbonyl which may have one or more suitable substituent(s); lower alkylsulfonyl; arylsulfonyl which may have one or more suitable substituent(s); ar(lower)alkylsulfonyl; or aroyl which may have one or more suitable substituent(s).

4. A compound of claim 3, wherein

5

10

15

20

25

30

35

40

50

55

is lower alkanoyl; halo(lower)alkanoyl; ar(lower)alkanoyl which may have 1 to 3 suitable substituent(s) selected from the group consisting of hydroxy, lower alkoxy, higher alkoxy, aryl, amino, protected amino, di(lower)alkylamino, lower alkoxyimino and ar(lower)alkoxyimino which may have 1 to 3 higher alkoxy; heterocyclicthio(lower)alkanoyl which may have 1 to 3 higher alkyl; heterocyclic(lower)alkanoyl which may have 1 to 3 suitable substituent(s) selected from the group consisting of lower alkoxyimino, higher alkyl, amino and protected amino; ar(lower)alkoxyimino(lower)alkanoyl which may have 1 to 3 higher alkoxy; higher alkanoyl; ar(lower)alkenoyl which may have 1 to 3 higher alkoxy; higher alkoxycarbonyl; higher alkoxycarbonyl; aryloxycarbonyl; arylsulfonyl which may have 1 to 3 suitable substituent(s) selected from the group consisting of lower alkyl and higher alkoxy; or aroyl which may have 1 to 5 suitable substituent(s) selected from the group consisting of halogen, lower alkyl, higher alkyl, carboxy, lower alkoxy which may have 1 to 10 halogen, lower alkoxy(lower)alkoxy, ar(lower)alkoxy, higher alkoxy and aryloxy which may have 1 to 3 lower alkoxy or higher alkoxy.

5. A compound of claim 4, wherein

R١

is lower alkanoyl; halo(lower)alkanoyl; phenyl(lower)alkanoyl or naphthyl(lower)alkanoyl, each of which may have 1 to 3 suitable substituent(s) selected from the group consisting of hydroxy, lower alkoxy, higher alkoxy, phenyl, amino, lower alkoxycarbonylamino, di(lower)alkylamino, lower alkoxyimino and phenyl(lower)alkoxyimino which may have 1 to 3 higher alkoxy; pyridylthio(lower)alkanoyl which may have 1 to 3 higher alkyl; imidazolyl(lower)alkanoyl or thiazolyl(lower)alkanoyl, each of which may have 1 to 3 suitable substituent(s) selected from the group consisting of lower alkoxyimino, higher alkyl, amino and lower alkoxycarbonylamino; phenyl(lower)alkoxyimino(lower)alkanoyl which may have 1 to 3 higher alkoxy; higher alkanoyl; phenyl(lower)alkenoyl which may have 1 to 3 higher alkoxy; higher alkenoyl; lower alkoxycarbonyl, higher alkoxycarbonyl; phenoxycarbonyl; phenylsulfonyl or naphthylsulfonyl, each of which may have 1 to 3 suitable substituent(s) selected from the group consisting of lower alkyl and higher alkoxy; or, benzoyl, naphthoyl or anthrylcarbonyl, each of which may have 1 to 5 suitable substituent(s) selected from the group consisting of halogen, lower alkyl, higher alkyl, carboxy, lower alkoxy which may have 6 to 10 halogen, lower alkoxy(lower)alkoxy, phenyl(lower)alkoxy, higher alkoxy which may have 12 to 17 halogen, higher alkenyloxy, phenyl which may have 1 to 3 higher alkoxy, and phenoxy which may have 1 to 3 lower alkoxy or higher alkoxy.

45 6. A compound of claim 5, wherein

R¹ is phenyl(lower)alkenoyl which may have 1 to 3 higher alkoxy; or benzoyl, naphthoyl or anthrylcarbonyl, each of which may have 1 to 5 suitable substituent(s) selected from the group consisting of halogen, lower alkyl, higher alkyl, carboxy, lower alkoxy which may have 6 to 10 halogen, lower alkoxy(lower)alkoxy, phenyl(lower)alkoxy, higher alkoxy which may have 12 to 17 halogen, higher alkenyloxy, phenyl which may have 1 to 3 higher alkoxy, and phenoxy which may have 1 to 3 lower alkoxy or higher alkoxy.

7. A compound of claim 6, wherein

R1 is phenyl(lower)alkenoyl which may have higher alkoxy; or benzoyl or naphthoyl, each of which may have higher alkoxy, higher alkenyloxy, or phenyl which may have higher alkoxy.

8. A compound of claim 7, wherein

R1 is benzoyl which has higher alkoxy.

- 9. A compound of claim 8, wherein
 - R¹ is 4-octyloxybenzoyl.
- 10. A compound of claim 7, wherein
 - R1 is phenyl(lower)alkenoyl which has higher alkoxy; or naphthoyl which has higher alkoxy or higher alkenyloxy.
- 11. A compound of the following formula:

15

5

wherein

 R^6 is (C_4-C_6) alkoxy, higher alkoxy or higher alkenyloxy, and

R⁷ is -COOH or -SO₃H,

or its reactive derivative at the carboxy group or a salt thereof.

12. A compound of the following formula:

25

30

20

35

40

Wherein

R8 is 1 to 4 halogen, and

R⁹ is lower alkoxy which has one or more halogen, higher alkoxy which has one or more halogen,

or its reactive derivative at the carboxy group or a salt thereof.

13. A process for the preparation of a polypeptide compound of the formula [I]:

50

45

5

$$H_3C$$
 H_3C
 H

20 wherein

30

R1 is hydrogen or acyl group,

R² is hydroxy or acyloxy,

R3 is hydrogen or hydroxysulfonyloxy, and

R4 is hydrogen or carbamoyl,

25 with proviso that

(i) R2 is acyloxy, when R3 is hydrogen, and

(ii) R1 is not palmitoyl, when R2 is hydroxy,

R3 is hydroxysulfonyloxy and

R4 is carbamoyl,

or a salt thereof, which comprises

i) subjecting a compound [II] of the formula:

or a salt thereof,

to elimination reaction of N-acyl group, to give a compound of the formula [la]:

5

$$H_3C$$
 H_3C
 H

or a salt thereof, or

ii) subjecting a compound of [la] or a salt thereof thus obtained to acylation reaction, to give a compound of the formula [lb] :

HO OH

HO OH

HO OH

$$H_3C$$
 NH
 OH
 OH

wherein R_a^1 is acyl group exclusive of palmitoyl, or a salt thereof, or iii) subjecting a compound [lc] of the formula :

50

45

20

5

$$H_3C$$
 H_3C
 H

wherein R_b^1 is ar(lower)alkanoyl which has higher alkoxy and protected amino, or a salt thereof, to elimination reaction of amino protective group, to give a compound [Id] of the formula:

wherein R_c^1 is ar(lower)alkanoyl which has higher alkoxy and amino, or a salt thereof, or iv) reacting a compound of the formula [le]:

5

$$H_3C$$
 NH
 $NH-R_d^1$
 OHO
 OHO

wherein R_d^1 is halo(lower)alkanoyl, or a salt thereof, with pyridinethione which may have higher alkyl or a salt thereof, to give a compound of the formula [If]:

HO OH

HO OH

HO OH

$$H_3$$
C

 NH
 OHO
 OHO

wherein R_{e}^{1} is pyridylthio(lower)alkanoyl which may have higher alkyl, or a salt thereof, or

v) subjecting a compound of the formula [IV]:

55

50

45

20 wherein

R³ and R⁴ are each as defined above, and

R⁵ is acyl group,

or a salt thereof, to acylation reaction, to give a compound of the formula [Ig]:

wherein

45

R3 and R4

are each as defined above,

 R_t^1

is acyl group, and

 R_a^2

is acyloxy,

or a salt thereof.

- 50 14. A pharmaceutical composition which comprises, as an active ingredient, a compound of claim 1 or a pharmaceutically acceptable salt thereof in admixture with a pharmaceutically acceptable carrier or excipient.
- 15. Use of a compound of claim 1 or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating or preventing infectious diseases.
 - 16. A compound of claim 1 and a pharmaceutically acceptable salt thereof for use as a medicament.

	17.	Use of a commedicament.	npound of clai	m 1 or a pharr	naceutically acc	ceptable salt th	nereof for th	manufacture	of a
5	18.	A biologically	pure culture c	of the microorga	anism Coelomy	cetes strain F-1	1899 (FERM	BP-2635).	
10							·		
15									
20									
25									
30							•		
35									
40									
45					•				
50									
55									

(11) EP 0 462 531 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:02.10.1996 Bulletin 1996/40

(21) Application number: 91109856.4

(22) Date of filing: 15.06.1991

(51) Int CI.⁶: **C07K 7/56**, C12P 21/04, C12N 1/14 // A61K38/12,(C12N1/14, C12R1:645)

(54) Cyclic polypeptide with antibiotic activity, process for its preparation and pure culture of a Coelomycetes strain

Zyklisches Polypeptid mit antibiotischer Aktivität, dessen Herstellung und Reinkultur eines Coelomycetes Stammes

Polypeptide cyclique ayant une activité antibiotique, sa préparation et une bouillon de culture de la souche de Coelomycetes

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priority: 18.06.1990 GB 9013558 31.10.1990 GB 9023666 24.01.1991 GB 9101552

(43) Date of publication of application: 27.12.1991 Bulletin 1991/52

(60) Divisional application: 95117638.7

(73) Proprietor: FUJISAWA PHARMACEUTICAL CO., LTD.

Osaka-shi Osaka 541 (JP)

(72) Inventors:

Toshiro, Iwamoto
 Tsukuba-shi, Ibaraki 305 (JP)

Akihiko, Fujie
 Tsuchiura-shi, Ibaraki 300 (JP)

 Kumiko, Nitta Tsuchiura-shi, Ibaraki 300 (JP)

 Yasuhisa, Tsurumi Tsukuba-shi, Ibaraki 305 (JP)

 Nobuharu, Shigematsu Tsukuba-shi, Ibaraki 305 (JP) Chiyoshi, Kasahara Ikeda-shi, Osaka 563 (JP)

 Motohiro, Hino Tsuchiura-shi, Ibaraki 300 (JP)

 Masakuni, Okuhara Tsukuba-shi, Ibaraki 305 (JP)

 Kazuo, Sakane Kawanishi-shi, Hyogo 666-01 (JP)

Kohji, Kawabata
 Kawanishi-shi, Hyogo 666-01 (JP)

 Hidenori, Ohkl Ikeda-shi, Osaka 563 (JP)

(74) Representative: Türk, Gille, Hrabal, Leifert Brucknerstrasse 20 40593 Düsseldorf (DE)

(56) References cited:

EP-A- 0 031 220

EP-A- 0 359 529

EP-A- 0 431 350

EP-A- 0 448 354

Remarks

The file contains technical information submitted after the application was filed and not included in this specification

P 0 462 531 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Ų,

5

10

15

20

25

30

35

40

45

50

55

The present invention relates to new polypeptide compounds and pharmaceutically acceptable salts thereof, which have antimicrobial activities (especially antifungal activities), to a process for preparation thereof, to pharmaceutical composition comprising the same, and to a use thereof for the manufacture of a medicament for treating or preventing infectious diseases. EP-A-0 359 529 discloses a method for the treatment of Pmeumocystis carinii, the causative agent of pneumonia of particular severity to immune compromised patients by administering a lipophilic cyclohexapeptide compound and compositions suitable for the treatment of C. carinii. The cyclohexapeptide compounds include echinocandin type of antibiotics and their derivatives.

The object polypeptide compound of the present invention can be represented by the following general formula [I]:

wherein

R1 is hydrogen or acyl group,

R² is hydroxy,

R3 is or hydroxysulfonyloxy, and

R4 is hydrogen or carbamoyl,

with proviso that

R1 is not palmitoyl, when R2 is hydroxy,

R3 is hydroxysulfonyloxy and

R4 is carbamoyl.

The polypeptide compound [I] of the present invention can be prepared by the processes as illustrated in the following schemes.

Process 1

Process 2

25

55

Process 3

[Ic]
or a salt thereof

[Id]
or a salt thereof

Process 4

30

[Ie]
or a salt thereof

or a salt thereof

55

Process 5

25

35

40

45

50

55

[IV] or a salt thereof

[Ig] or a salt thereof

wherein R3 and R4 are each as defined above, 30

R_a¹ is acyl group exclusive of palmitoyl

 R_b^{1} is ar (C_1-C_6) alkanoyl which has C_7-C_{20} alkoxy and protected amino, R_c^{1} is ar (C_1-C_6) alkanoyl which has C_7-C_{20} alkoxy and amino,

R is halo(C1-C6)alkanoyl,

 R_e^1 is pyridylthio(C_1 - C_6)alkanoyl which may have C_7 - C_{20} alkyl,

R_f is acyl group,

R² is acyloxy, and R⁵ is acyl group.

The starting compound [II] or a salt thereof is novel and can be prepared by the following fermentation process.

Process A

A strain belonging to the <u>Coleophoma</u> which is capable of producing the compound [II] or a salt thereof

[II]
or a salt thereof

25

30

35

40

45

50

55

5

10

15

20

Some of the starting compound [IV] are novel and can be prepared according to the aforesaid Process 1 to 4.

Suitable pharmaceutically acceptable salt of the object compound [I] is conventional non-toxic mono or di salts and include a metal salt such as an alkali metal salt [e.g. sodium salt, potassium salt, etc.] and an alkaline earth metal salt [e.g. calcium salt, magnesium salt, etc.], an ammonium salt, an organic base salt [e.g. trimethylamine salt, triethylamine salt, pyridine salt, picoline salt, dicyclohexylamine salt, N,N-dibenzylethylenediamine salt, etc.] an organic acid addition salt [e.g. formate, acetate, trifluroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.], an inorganic acid addition salt [e.g. hydrochloride, hydrobromide, hydroiodide, sulfate, phosphate, etc.], a salt with an amino acid [e.g. arginine salt, aspartic acid salt, glutamic acid salt, etc.], and the like.

In the above and subsequent description of this specification, suitable examples of the various definitions are explained in detail as follows:

The term "C₁-C₆" is intended to mean 1 to 6 carbon atom(s), unless otherwise indicated.

The term "C₇-C₂₀" is intended to mean 7 to 20 carbon atoms, unless otherwise indicated.

Suitable "acyl group" may be aliphatic acyl, aromatic acyl, heterocyclic acyl, arylaliphatic acyl and heterocyclicaliphatic acyl derived from carboxylic acid, carbonic acid, carbamic acid, sulfonic acid, and the like.

Suitable example of the "acyl group" thus explained may be:

C₁-C₆ alkanoyl [e.g. formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, hexanoyl, pivaloyl, etc.] which may have one or more (preferably 1 to 3) suitable substituent(s) such as halogen (e.g. fluoro, chloro, bromo, iodo); aryl (e. g. phenyl, naphthyl, anthryl, etc.) which may have one or more (preferably 1 to 3) suitable substituent(s) like hydroxy, C7-C20 alkoxy as explained below, aforesaid aryl, or the like; C1-C6 alkoxy as explained below; amino protected amino, preferably, acylamino such as C₁-C₆ alkoxycarbonylamino (e.g. methoxycarbonylamino, ethoxycarbonylamino, propoxycarbonylamino, butoxycarbonylamino, t-butoxycarbonylamino, pentyloxycarbonylamino, hexyloxycarbonylamino, etc.); or the like; di(C₁-C₆)alkylamino (e.g. dimethylamino, N-methylethylamino, diethylamino, N-propylbutylamino, dipentylamino, dihexylamino, etc.); C₁-C₆ alkoxyimino (e.g. methoxyimino, ethoxyimino, propoxyimino, butoxyimino, t-butoxyimino, pentyloxyimino, hexyloxyimino, etc.); ar(C1-C6)alkoxyimino such as phenyl (C1-C6)alkoxyimino (e.g. benzyloxyimino, phenethyloxyimino, benzhydryloxyimino, etc.) which may have one or more (preferably 1 to 3) suitable substituent(s) like C_7 - C_{20} alkoxy as explained below, or the like; heterocyclicthio, preferably, pyridylthio, which may have one or more preferably 1 to 3) suitable substituent(s) like C₇-C₂₀ alkyl (e. g. heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, 3-methyl-10-ethyldodecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, etc.), or the like, heterocyclic group (e.g. thienyl, imidazolyl, pyrazolyl, furyl, tetrazolyl, thiazolyl, thiadiazolyl, etc.) which may have one or more (preferably 1 to 3) suitable substituent(s) like amino, aforesaid protected amino, aforesaid C₇-C₂₀ alkyl, or the like; or the like;

C₇-C₂₀ alkanoyl [e.g. heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, lauroyl, tridecanoyl, myristoyl, pentadecanoyl, palmitoyl, 10,12-dimethyltetradecanoyl, heptadecanoyl, stearoyl, nonadecanoyl, icosanoyl, etc.];

 C_1 - C_6 alkenoyl [e.g. acryloyl, methacryloyl, crotonoyl, 3-pentenoyl, 5-hexenoyl, etc.] which may have one or more (preferably 1 to 3) suitable substituent(s) such as aforesaid aryl which may have one or more (preferably 1 to 3) suitable substituent(s) like C_7 - C_{20} alkoxy as explained below, or the like,

C₇-C₂₀ alkenoyl [e.g. 4-heptenoyl, 3-octenoyl, 3,6-decadienoyl, 3,7,11-trimethyl-2,6,10-dodecatrienoyl, 4,10-heptadecadienoyl, etc.];

C₁-C₆ alkoxycarbonyl [e.g. methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, t-butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl, etc.];

C₇-C₂₀ alkoxycarbonyl [e.g. heptyloxycarbonyl, octyloxycarbonyl, 2-ethylhexyloxycarbonyl, nonyloxycarbonyl, decyloxycarbonyl, 3,7-dimethyloctyloxycarbonyl, undecyloxycarbonyl, dodecyloxycarbonyl, tridecyloxycarbonyl, tetradecyloxycarbonyl, pentadecyloxycarbonyl, 3-methyl-10-ethyldodecyloxycarbonyl, hexadecyloxycarbonyl, heptadecyloxycarbonyl, octadecyloxycarbonyl, nonadecyloxycarbonyl, icosyloxycarbonyl, etc.]; aryloxycarbonyl [e.g. phenoxycarbonyl, naphthyloxycarbonyl, etc.];

arylglyoxyloyl [e.g. phenylglyoxyloyl, naphthylglyoxyloyl, etc.];

 $ar(C_1-C_6)alkoxycarbonyl$ which may have one or more suitable substituent(s) such as phenyl(C_1-C_6)alkoxycarbonyl which may have nitro or C_1-C_6 alkoxy [e.g. benzyloxycarbonyl, phenethyloxycarbonyl, p-nitrobenzyloxycarbonyl, etc.];

C₁-C₆ alkylsulfonyl [e.g. methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, pentylsulfonyl, butylsulfonyl, etc.];

arylsulfonyl [e.g. phenylsulfonyl, naphthylsulfonyl, etc.] which may have one or more (preferably 1 to 3) suitable substituent(s) such as C_1 - C_6 alkyl as explained below, C_7 - C_{20} alkoxy as explained below, or the like; ar(C_1 - C_6)alkylsulfonyl such as phenyl(C_1 - C_6)alkylsulfonyl [e.g. benzylsulfonyl, phenethylsulfonyl, benzhydrylsulfonyl]

fonyl, etc.], or the like;

5

10

15

20

25

30

35

55

aroyl [e.g. benzoyl, naphthoyl, anthrylcarbonyl, etc.] which may have one or more (preferably 1 to 5) suitable substituent(s) such as aforesaid halogen; C₁-C₆ alkyl (e.g. methyl, ethyl propyl, butyl, t-butyl, pentyl, hexyl, etc.); aforesaid C₇-C₂₀ alkyl; C₁-C₆ alkoxy (e.g. methoxy, ethoxy, propoxy, butoxy, t-butoxy, pentyloxy, hexyloxy, etc.) which may have one or more (preferably 1 to 10) suitable substituent(s) like aforesaid C₁-C₆ alkoxy, aforesaid halogen, aforesaid aryl, or the like; C₇-C₂₀ alkoxy (e.g. heptyloxy, octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy; undecyloxy, dodecyloxy, tridecyloxy, tetradecyloxy, pentadecyloxy, 3-methyl-10-ethyldodecyloxy, hexadecyloxy, heptadecyloxy, octadecyloxy, nonadecyloxy, icosyloxy, etc.) which may have one or more (preferably 1 to 17) suitable substituent(s) like aforesaid halogen; C₇-C₂₀ alkenyloxy (e.g. 3-heptenyloxy, 7-octenyloxy, 2,6-octadienyloxy, 5-nonenyloxy, 1-decenyloxy, 3,7-dimethyl-6-octenyloxy, 3,7-dimethyl-2,6-octadienyloxy, 8-undecenyloxy, 3,6,8-dodecatrienyloxy, 5-tridecenyloxy, 7-tetradecenyloxy, 1,8-pentadecadienyloxy, 15-hexadecenylaxy, 11-heptadecenyloxy, 7-octadecenyloxy, 10-nonadecenyloxy, 18-icosenyloxy, etc.); carboxy; aforesaid aryl which may have one or more (preferably 1 to 3) suitable substituent(s) like aforesaid C₇-C₂₀ alkoxy; aryloxy (e.g. phenoxy, naphthyloxy, anthryloxy, etc.) which may have one or more (preferably 1 to 3) suitable substituent

In said "acyl group", the preferred one may be C₁-C₆ alkanoyl; halo(C₁-C₆)alkanoyl;

(s) like aforesaid C₁-C₆ alkoxy, or aforesaid C₇-C₂₀ alkoxy; or the like; or the like.

 $ar(C_1-C_6)alkanoyl$ which may have one or more (preferably 1 to 3) hydroxy, C_1-C_6 alkoxy, C_7-C_{20} alkoxy, aryl, amino, protected amino, $di(C_1-C_6)alkylamino$, C_1-C_6 alkoxyimino or $ar(C_1-C_6)alkoxyimino$ which may have one or more (preferably 1 to 3) C_7-C_{20} alkoxy;

heterocyclicthio(C₁-C₆)alkanoyl which may have one or more (preferably 1 to 3) C₇-C₂₀ alkyl; heterocyclic(C₁-C₆)alkonyl which may have one or more (preferably 1 to 3) C₁-C₆ alkoxyimino, C₇-C₂₀ alkyl, amino or protected amino;

 $ar(C_1-C_6)alkoxyimino(C_1-C_6)alkanoyl which may have one or more (preferably 1 to 3) <math>C_7-C_{20}$ alkoxy; C_7-C_{20} alkanoyl;

ar(C₁-C₆)alkenoyl which may have one or more (preferably 1 to 3) C₇-C₂₀ alkoxy; C₇-C₂₀ alkenoyl; C₁-C₆ alkoxycarbonyl; C₇-C₂₀ alkoxycarbonyl; aryloxycarbonyl; aryloxycarbonyl which may have one or more (preferably 1 to 3) C₁-C₆ alkyl or C₇-C₂₀ alkoxy;

aroyl which may have one or more (preferably 1 to 5) halogen, C_1 - C_6 alkyl, C_7 - C_{20} alkyl, carboxy, C_1 - C_6 alkoxy which may have one or more (preferably 1 to 10) halogen, C_1 - C_6 alkoxy(C_1 - C_6)alkoxy, ar(C_1 - C_6)alkoxy, C_7 - C_{20} alkoxy which may have one or more (preferably 1 to 17) halogen, C_7 - C_{20} alkenyloxy, aryl which may have one or more (preferably 1 to 3) C_7 - C_{20} alkoxy or aryloxy which may have one or more (preferably 1 to 3), C_1 - C_6 alkoxy or C_7 - C_{20} alkoxy;

in which the more preferred one may be C₁-C₆ alkanoyl; halo(C₁-C₆)alkanoyl;

phenyl(C₁-C₆)alkanoyl or naphthyl(C₁-C₆)alkanoyl; each of which may have 1 to 3 hydroxy, C₁-C₆ alkoxy, C₇-C₂₀ alkoxy, phenyl, amino, C₁-C₆ alkoxycarbonylamino, di(C₁-C₆)alkylanino, C₁-C₆ alkoxyimino, or phenyl (C₁-C₆) alkoxyimino which may have 1 to 3 C₇-C₂₀. alkoxy;

pyridylthio(C₁-C₆)alkanoyl which may have 1 to 3 C₇-C₂₀ alkyl;

5 imidazolyl(C₁-C₆)alkanoyl or thiazolyl(C₁-C₆)alkanoyl, each of which may have 1 to 3 C₁-C₆ alkoxyimino, C₇-C₂₀ alkyl, amino or C₁-C₆ alkoxycarbonylamino;

phenyl(C₁-C₆)alkoxyimino(C₁-C₆)alkanoyl which may have 1 to 3 C₇-C₂₀ alkoxy;

C7-C20 alkanoyl;

phenyl(C₁-C₆)alkenoyl which may have 1 to 3 higher alkoxy;

10 C₇-C₂₀ alkenoyl; C₁-C₆ alkoxycarbonyl, C₇-C₂₀ alkoxycarbonyl; phenoxycarbonyl; phenylsulfonyl or naphthylsulfonyl, each of which may have 1 to 3 C₁-C₆ alkyl or C₇-C₂₀ alkoxy;

benzoyl, naphthoyl or anhrylcarbonyl, each of which may have 1 to 5 halogen, C₁-C₆ alkyl, C₇-C₂₀ alkyl, carboxy, C₁-C₆ alkoxy which may have 1 to 10 halogen, C₁-C₆ alkoxy(C₁-C₆)alkoxy, phenyl(C₁-C₆)alkoxy, C₇-C₂₀ alkoxy which may have 12 to 17 halogen, C_7 - C_{20} alkenyloxy, phenyl which may have 1 to $3\,C_7$ - C_{20} alkoxy, phenoxy which may have 1 to 3 C_1 - C_6 alkoxy or C_7 - C_{20} alkoxy;

the much more preferred one may be (C₁-C₄)alkanoyl; halo(C₁-C₄)alkanoyl;

phenyl(C_1 - C_4)alkanoyl which may have 1 to 3 hydroxy, (C_1 - C_4)alkoxy, (C_7 - C_{16})alkoxy, phenyl, amino, (C_1 - C_4) alkoxycarbonylamino, di(C₁-C₄)alkylamino, (C₁-C₄)alkoxyimino or phenyl(C₁-C₄)alkoxyimino which may have (C₇-

naphthyl(C₁-C₄)alkanoyl which may have 1 to 3 (C₁-C₄)alkoxycarbonylamino;

1-(C₇-C₁₆)alkylpyridiniothio(C₁-C₄)alkanoyl;

imidazolyl(C₁-C₄)alkanoyl which may have 1 to 3 (C₇-C₁₆)alkyl or (C₁-C₄)alkoxycarbonylamino;

thiazolyl(C₁-C₄)alkanoyl which may have 1 to 3 (C₁-C₄)alkoxyimino or amino;

phenyl(C₁-C₄)alkoxyimino(C₁-C₄)alkanoyl which may have 1 to 3 (C₇-C₁₆)alkoxy;

25 (C7-C17)alkyl;

15

20

30

40

45

50

55

phenyl(C₁-C₄)alkenoyl which may have 1 to 3 (C₇-C₁₆)alkoxy;

(C₇-C₁₈)alkenoyl; (C₃-C₆)alkoxycarbonyl; (C₇-C₁₆)alkoxycarbonyl; phenoxycarbonyl;

phenylsulfonyl which may have (C1-C4)alkyl or (C7-C16)alkoxy;

naphthylsulfonyl which may have (C7-C16)alkoxy;

benzoyl which may have 1 to 5 halogen, (C3-C6)alkyl, (C7-C16)alkyl, carboxy, (C1-C6)alkoxy which may have 6 to 10 halogen, (C₁-C₄)alkoxy(C₁-C₄)alkoxy,

phenyl(C₃-C₆)alkoxy, (C₇-C₁₆)alkoxy which may have 12 to 17 halogen, phenyl which may have 1 to 3 (C₇-C₁₆) alkoxy or phenoxy which may have 1 to 3 (C₃-C₆) alkoxy or (C₇-C₁₆) alkoxy;

naphthoyl which may have 1 to 3 (C₃-C₆)alkoxy (C₇-C₁₆)alkoxy or (C₇-C₁₆)alkenyloxy;

35 anthrylcarbonyl;

> and the most preferred one may be acetyl, 2-bromoacetyl, 2-(4-biphenylyl)acetyl, 2-(4-octyloxyphenyl)acetyl, 3-(4-octyloxyphenyl)propionyl, 2-amino-2-(4-octyloxyphenyl)acetyl, 2-(t-butoxycarbonylamino)-2-(4-octyloxyphenyl)acetyl, 2-amino-3-(4-octyloxyphenyl)propionyl, 2-(t-butoxycarbonylamino)-3-(4-octyloxyphenyl)propionyl, 2-dimethylamino-3-(4-octyloxyphenyl)propionyl, 2-(t-butoxycarbonylamino)-2-(2-naphthyl)acetyl, 2-methoxy-2-(4-octyloxyphenyl)acetyl, 2-methoxyimino-2-(4-octyloxyphenyl)acetyl, 2-(4-octyloxybenzyloxyimino)-2-(4-hydroxyphenyl)acetyl, 2-(4-octyloxybenzy)oxyimino)-2-phenylacetyl, 2-(4-octyloxybinzyloxyimino)acetyl, 2-(1-octyl-4-pyridinio)thioacetyl, 2-methoxyimino-2-(2-aminothiazol-4-yl)acetyl, 2-(t-butoxycarbonylamino)-3-(1-octyl-4-imidazolyl)propionyl, 3-(4-octyloxyphenyl)acryloyl, 3,7,11-trimethyl-2,6,10-dodecatrienoyl, t-butoxycarbonyl, octyloxycarbonyl, phenoxycarbonyl, p-tolylsulfonyl, 4-octyloxyphenylsulfonyl, 6-octyloxy-2-naphthylsulfonyl, 4-(t-butyl) benzoyl, 4-octylbenzoyl, 1,3,5,6-tetrafluoro-4-(2,2,3,3,4,4,5,5-octafluoropentyloxy)benzoyl, 4-(2-butoxyethoxy) benzoyl, 4-(4-phenylbutoxy)benzoyl, 4-octyloxybenzoyl, 2-carboxy-4-octyloxybenzoyl, 3-methoxy-4-octyloxybenzoyl, 4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyloxy)-2,3,5,6-tetrafluorobenzoyl, 4-(4-octyloxyphenyl) benzoyl, 4-(4-octyloxyphenoxy)benzoyl, 6-butoxy-2-naphthoyl, 6-hexyloxy-2-naphthoyl, 6-octyloxy-2-naphthoyl, 6-(2-ethylhexyloxy)-2-naphthoyl, 6-decyloxy-2-naphthoyl, 6- (3,7-dimethyloctyloxy)-2-naphthoyl, 6-dodecyloxy-2-naphthoyl, 6-(3,7-dimethyl-6-octenyloxy)-2-naphthoyl, 6-(3,7-dimethyl-2,6-octadienyloxy)-2-naphthoyl, 2-anthrylcarbonyl, 4-(4-heptyloxyphenyl)-benzoyl and 4-(4-hexyloxyphenoxy)benzoyl.

Suitable "acyl group exclusive of palmitoyl" can be referred to the ones as exemplified before for "acyl group" except palmitoyl.

Suitable "ar(C_1 - C_6)alkanoyl" moiety in "ar(C_1 - C_6)alkanoyl which has C_7 - C_{20} alkoxy and protected amino" and "ar (C₁-C₆)alkanoyl which has C₇-C₂₀ alkoxy and amino" can be referred to the ones as exemplified before for "acyl group" and suitable examples of the substituent(s) "C7-C20 alkoxy" and "protected amino" can be referred to the ones as exemplified before for "acyl group".

Suitable "halo(C₁-C₆)alkanoy!" can be referred to the ones as exemplified before for "acyl group".

Suitable "pyridylthio(C_1 - C_6)alkonoyl" in "pyridylthio(C_1 - C_6)alkonoyl which may have C_7 - C_{20} alkyl" can be referred to the ones as exemplified before for "acyl group", and suitable examples of the substituent C_7 - C_{20} alkyl" can be exemplified before for "acyl group".

Suitable "acyloxy" may include hydroxysulfonyloxy, phosphonooxy, and the like.

In the object compound [I] thus defined, the following compound [Ih] is especially preferable.

wherein R1 is hydrogen or acyl group, with proviso that R1 is not palmitoyl.

Suitable "acylating agent" for the acylation reaction in <u>Process 2</u> may be an acid compound corresponding to the acyl group to be introduced or its reactive derivative at the carboxy group or a salt thereof and suitable example of said acylating agent is represented by the formula:

35

40

45

55

5

10

15

20

25

30

wherein R₂ is as defined above,

or its reactive derivative at the carboxy group or a salt thereof.

Suitable "pyridinethione" in <u>Process 4</u> may include 1,2-dihydropyridine-2-thione, 1,4-dihydropyridine-4-thione, and the like, and said "pyridinethione" may have aforesaid " C_7 - C_{20} alkyl".

The processes for preparing the object compound [I] or a salt thereof of the present invention are explained in detail in the following.

Process 1

The object compound [Ia] or a salt thereof can be prepared by subjecting a compound [II] or a salt thereof to elimination reaction of N-acyl group.

This reaction is carried out in accordance with a conventional method such as hydrolysis, reduction, reaction with an enzyme or the like.

The hydrolysis is preferably carried out in the presence of a base or an acid including Lewis acid. Suitable base may include an inorganic base and an organic base such as an alkali metal [e.g. sodium, potassium, etc.], an alkaline earth metal [e.g. magnesium, calcium, etc.], the hydroxide or carbonate or bicarbonate thereof, trialkylamine [e.g. trimethylamine, triethylamine, etc.], picoline, 1,5-diazabicyclo[4.3.0]non-5-ene, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, or the like.

Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.] and an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, etc.]. The elimination using Lewis acid such as trihaloacetic acid [e.g. trichloroacetic acid, trifluoroacetic acid, etc.] or the like is preferably carried out in the presence of cation trapping agents [e.g. anisole, phenol, etc.].

The reaction is usually carried out in a solvent such as water, an alcohol [e.g. methanol, ethanol, etc.], methylene chloride, tetrahydrofuran, a mixture thereof or any other solvent which does not adversely influence the reaction. A liquid base or acid can be also used as the solvent. The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

The reduction method applicable for the elimination reaction may include chemical reduction and catalytic reduction.

Suitable reducing agents to be used in chemical reduction are a combination of metal [e.g. tin, zinc, iron, etc.] or metallic compound [e.g. chromium chloride, chromium acetate, etc.] and an organic or inorganic acid [e.g. formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.].

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts [e.g. platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.], palladium catalysts [e.g. spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.], nickel catalysts [e.g. reduced nickel, nickel oxide, Raney nickel, etc.], cobalt catalysts [e.g. reduced cobalt, Raney cobalt, etc.], iron catalysts [e.g. reduced iron, Raney iron, etc.], copper catalysts [e.g. reduced copper, Raney copper, Ullman copper, etc.] and the like.

The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, methanol, ethanol, propanol, N,N-dimethylformamide, or a mixture thereof. Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent. Further, a suitable solvent to be used in catalytic reduction may be the above-mentioned solvent, and other conventional solvents such as diethyl ether, dioxane, tetrahydrofuran, etc., or a mixture thereof.

The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling to warming.

The reaction with an enzyme can be carried out by reacting the compound [II] or a salt thereof with an enzyme suitable for the elimination reaction of N-acyl group.

Suitable example of said enzyme may include the one produced by certain microorganisms of the Actinoplanaceae, for example, Actinoplanes utahensis IFO-13244, Actinoplanes utahensis ATCC 12301, Actinoplanes missourienses NRRL 12053, or the like; and the like.

This elimination reaction is usually carried out in a solvent such as phosphate buffer, Tris-HCI buffer or any other solvent which does not adversely influence the reaction

The reaction temperature is not critical and the reaction can be carried out at room temperature or under warming.

Process 2

10

15

20

25

30

35

40

45

55

The object compound [lb] or a salt thereof can be prepared by subjecting the compound [la] or a salt thereof to acylation reaction.

The acylation reaction of this process can be carried out by reacting the compound [Ia] or a salt thereof with aforesaid "acylating agent", for example, the compound [V] or its reactive derivative at the carboxy group or a salt thereof

Suitable reactive derivative at the carboxy group of the compound [V] may include an acid halide, an acid anhydride, an activated amide, an activated ester, and the like. Suitable examples of the reactive derivatives may be an acid chloride; an acid azide; a mixed acid anhydride with an acid such as substituted phosphoric acid [e.g. dialkylphosphoric acid, phenylphosphoric acid diphenylphosphoric acid, dibenzylphosphoric acid, halogenated phosphoric acid, etc.], dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, sulfuric acid, sulfonic acid [e.g. methanesulfonic acid, etc.], aliphatic carboxylic acid [e.g. acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, etc.]; or aromatic carboxylic acid [e.g. benzoic acid, etc.]; a symmetrical acid anhydride; an activated amide with imidazole, 4-substituted imidazole, dimethylpyrazole, triazole, tetrazole or 1-hydroxy₊1H-benzotriazole; or an activated ester [e.g. cyanomethyl ester, methoxymethyl ester, dimethyliminomethyl [(CH₃)₂N=CH-] ester, vinyl ester, propargyl ester, p-nitrophenyl ester, 2,4-dinitrophenyl ester, trichlorophenyl ester, pentachlorophenyl ester, mesylphenyl ester, phenylazophenyl ester, phenyl thioester, p-nitrophenyl thioester, p-cresyl thioester, carboxymethyl thioester, pyranyl ester, pyridyl ester, piperidyl ester, 8-quinolyl thioester, etc.], or an ester with a N-hydroxy compound [e.g. N,N-dimethylhydroxylamine, 1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide, N-hydroxyphthalimide, 1-hydroxy-1H-benzotriazole, etc.], and the like. These reactive derivatives can optionally be selected from them according to the kind of the compound [V] to be used.

Suitable salts of the compound [V] and its reactive derivative can be referred to the ones as exemplified for the compound [i].

The reaction is usually carried out in a conventional solvent such as water, alcohol [e.g. methanol, ethanol, etc.], acetone, dioxane, acetonitrile, chloroform, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvent which does not adversely influence the reaction. These con-

ventional solvent may also be used in a mixture with water.

In this reaction, when the compound [V] is used in a free acid form or its salt form, the reaction is preferably carried out in the presence of a conventional condensing agent such as N,N'-dicyclohexylcarbodiimide; N-cyclohexyl-N'-morpholinoethylcarbodiimide; N-cyclohexyl-N'-(4-diethylaminocyclohexyl)carbodiimide; N,N'-diethylcarbodiimide, N,N'-diethylca

The reaction may also be carried out in the presence of an inorganic or organic base such as an alkali metal carbonate, alkali metal bicarbonate, $tri(C_1-C_6)$ alkylamine, pyridine, $di(C_1-C_6)$ alkylaminopyridine (e.g. 4-dimethylaminopyridine, etc.), $N-(C_1-C_6)$ alkylmorpholine, $N,N-di(C_1-C_6)$ alkylbenzylamine, or the like.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

Process 3

5

10

15

20

25

30

35

40

45

50

55

The object compound [Id] or a salt thereof can be prepared by subjecting a compound [Ic] or a salt thereof to elimination reaction of amino protective group.

Suitable salts of the compounds [Ic] and [Id] can be referred to the ones as exemplified for the compound [I].

This elimination reaction can be carried out in accordance with a conventional method as explained above for Process 1.

Process 4

The object compound [If] or a salt thereof can be prepared by reacting a compound [Ie] or a salt thereof with a compound [III] or a salt thereof.

Suitable salt of the compound [If] can be referred to the ones as exemplified for the compound [I].

Suitable salts of the compound [III] can be referred to acid addition salts as exemplified for the compound [I].

The present reaction may be carried out in a solvent such as water, phosphate buffer, acetone, chloroform, acetonitrile, nitrobenzene, methylene chloride, ethylene chloride, formamide, N,N-dimethylformamide, methanol, ethanol, diethyl ether, tetrahydrofuran, dimethyl sulfoxide, or any other organic solvent which does not adversely affect the reaction, preferably in ones having strong polarities. Among the solvents, hydrophilic solvents may be used in a mixture with water. When the compound [III] is in liquid, it can also be used as a solvent.

The reaction is preferably conducted in the presence of a base, for example, inorganic base such as alkali metal hydroxide, alkali metal carbonate, alkali metal bicarbonate, organic base such as trialkylamine, and the like.

The reaction temperature is not critical, and the reaction is usually carried out under cooling, at room temperature, under warming or under heating.

The present reaction is preferably carried out in the presence of alkali metal halide [e.g. sodium iodide, potassium iodide, etc.], alkali metal thiocyanate [e.g. sodium thiocyanate, potassium thiocyanate, etc.] or the like.

Process 5

The object compound [Ig] or a salt thereof can be prepared by subjecting a compound [IV] or a salt thereof to acylation reaction.

Suitable salts of the compounds [Ig] and [IV] can be referred to the ones as exemplified for the compound [I].

Suitable "acylating agent" in this <u>Process 5</u> may be an acid compound corresponding to the acyl group to be introduced, for example, phosphoric acid and its derivative (e.g. phosphoryl chloride, diphenylphosphorochloridate, etc.), sulfuric acid and its derivative [e.g. sulfur trioxide-pyridine, sulfur trioxide-tri(C₁-C₆)alkylamine (e.g. trimethylamine, triethylamine, etc.), chlorosulfonic acid, etc.], or the like.

This reaction can be carried out in a conventional manner.

The process for preparing the starting compound [II] or a salt thereof of the present invention is explained in detail in the following.

Process A

5

10

15

20

25

30

35

40

45

50

55

The compound [II] or a salt thereof can be prepared by the fermentation process.

The fermentation process is explained in detail in the following.

The compound [II] or a salt thereof of this invention can be produced by fermentation of the compound [II] or a salt thereof-producing strain belonging to the genus Coleophoma such as Coleophoma sp. F-11899 in a nutrient medium.

(i) Microorganism:

Particulars of the microorganism used for producing the compound [II] or a salt thereof is explained in the following. The strain F-11899 was originally isolated from a soil sample collected at lwaki-shi, Fukushima-ken, Japan. This organism grew rather restrictedly on various culture media, and formed dark grey to brownish grey colonies. Anamorph (conidiomata) produced on a steam-sterilized leaf segment affixed on a Miura's LCA plate¹⁾ or a corn meal agar plate by inoculating the isolate, while neither teleomorph nor anamorph formed on the agar media. Its morphological, cultural and physiological characteristics are as follows.

Cultural characteristics on various agar media are summarized in Table 1. Cultures on potato dextrose agar grew rather rapidly, attaining 3.5-4.0 cm in diameter after two weeks at 25°C. This colony surface was plane, felty, somewhat wrinkly and brownish grey. The colony center was pale grey to brownish grey, and covered with aerial hyphae. The reverse color was dark grey. Colonies on malt extract agar grew more restrictedly, attaining 2.5-3.0 cm in diameter under the same conditions. The surface was plane, thin to felty and olive brown. The colony center was yellowish grey, and covered with aerial hyphae. The reverse was brownish grey.

The morphological characteristics were determined on basis of the cultures on a sterilized leaf affixed to a Miura's LCA plate. Conidiomata formed on the leaf segment alone. They were pycnidial, superficial, separate, discoid to ampulliform, flattened at the base, unilocular, thin-walled, black, 9.0-160(-200) μ m in diameter and 40-70 μ m high. Ostiole was often single, circular, central, papillate, 10-30 μ m in diameter and 10-20 μ m high. Conidiophores formed from the lower layer of inner pycnidial walls. They were hyaline, simple or sparingly branched, septate and smooth. Conidiogenous cells were enteroblastic, phialidic, determinate, ampulliform to obpyriform, hyaline, smooth, 5-8 x 4-6 μ m, with a collarette. The collarettes were campanulate to cylindrical, and 14-18 x 3-5 μ m. Conidia were hyaline, cylindrical, thin-walled, aseptate, smooth and 14-16(-18) x 2-3 μ m.

The vegetative hyphae were septate, brown, smooth and branched. The hyphal cells were cylindrical and 2-7 μm thick. The chlamydospores were absent.

The strain F-11899 had a temperature range for growth of 0 to 31°C and an optimum temperature of 23 to 27°C on potato dextrose agar.

The above characteristics indicate that the strain F-11899 belongs to the order Coelomycetes^{2), 3), 4)}. Thus, we named the strain "Coelomycetes strain F-11899".

12

Table 1 Cultural characteristics of the strain F-11899

5	Medium	Cultural characteristics
10	Malt extract agar (Blakeslee 1915)	G: Rather restrictedly, 2.5-3.0 cm S: Circular, plane, thin to felty, olive brown (4F5), arising aerial hyphae at the center (yellowish
15		grey (4B2)) R: Brownish grey (4F2)
20	Potato dextrose agar (Difco 0013)	G: Rather rapidly, 3.5-4.0 cm S: Circular, plane, felty, somewhat
25		wrinkly, brownish grey (4F2), arising aerial hyphae at the center (pale grey (4B1) to brownish grey (4F2)) R: Dark grey (4F1)
30	Czapeck's solution agar (Raper and Thom	G: Very restrictedly, 1.0-1.5 cm S: Irregular, thin, scanty,
35	1949)	immersed, subhyaline to white R: Subhyaline to white
40	Sabouraud dextrose agar (Difco 0109)	<pre>G: Restrictedly, 2.0-2.5 cm S: Circular, plane, thin, white, sectoring, light brown (6D5) at the colony center</pre>
45		R: Pale yellow (4A3)
50	Oatmeal agar (Difco 0552)	<pre>G: Fairly rapidly, 4.0-4.5 cm S: Circular, plane, felty to cottony, dark grey (4F1) to</pre>
	•	brownish grey (4F2) R: Brownish grey (4D2)

Medium	Cultural characteristics
Emerson Yp Ss agar	G: Restrictedly, 2.0-2.5 cm
(Difco 0739)	S: Circular to irregular, plane,
	felty, dark grey (4F1) to
	brownish grey (4F2)
	R: Medium grey (4E1) to dark grey (4E
Corn meal agar	G: Rather restrictedly, 2.5-3.0 cm
(Difco 0386)	S: Circular, plane, thin to felty,
	dark grey (2F1) to olive (2F3)
	R: Dark grey (2F1) to olive (2F3)
MY20 agar	G: Restrictedly, 1.5-2.0 cm
	S: Circular to irregular, thin,
•	sectoring, yellowish white (4A2)
	R: Pale yellow (4A3) to orange white
	· (5A2)

S: colony surface

R: reverse

40

45

50

55

35

These characteristics were observed after 14 days of incubation at 25°C. The color descriptions were based on the Methuen Handbook of Colour⁵).

- 1) Miura, K. and M. Y. Kudo: An agar-medium for aquatic Hyphomycetes., Trans. Ycolo. Soc. Japan, 11:116-118,
 - 2) Arx, J. A. von: The Genera of Fungi Sporulating in Pure Culture (3rd ed.), 315 p., J. Cramer, Vaduz, 1974.
 - 3) Sutton, B. C.: The Coelomycetes Fungi Imperfecti with Pycnidia, Acervuli and stromata., 696 p., commonwealth Mycological Institute, Kew, 1980.
 - 4) Hawksworth, D. L., B. C. Sutton and G. C. Ainsworth: Dictionary of the Fungi (7th ed.), 445 p., Commonwealth Mycological Institute, Kew., 1983.
 - 5) Kornerup, A. and Wanscher, J. H.: Methuen Handbook of Colour (3rd ed.), 252 p., Methuen, London, 1983.

A culture of <u>Coelomycetes</u> strain F-11899 thus. named has been deposited with the Fermentation Research Institute Agency of Industrial Science and Technology (1-3, Higashi 1 chome, Tsukuba-shi, IBARAKI 305 JAPAN) on October 26, 1989 under the number of FERM BP-2635.

After that, however, we have further studied the classification of the strain F-11899, and have found that the strain F-11899 resembled <u>Coleophoma empetri</u> (Rostrup) Petrak 1929 2), 3), 4) belonging to the order <u>Coelomycetes</u>, but differed in some pycnidial characteristics: globose or flattened at the base, immersed, and not papillate.

Considering these characteristics, we classified this strain in more detail and renamed it as "Coleophoma sp. F-11899".

In this connection, we have already taken step to amend the name, "Coelomycetes strain F-11899" to Coleophoma sp. F-11899 with the Fermentation Research Institute Agency of Industrial Science and Technology on September 21, 1990.

(ii) Production of the compound [II] or a salt thereof

5

10

15

20

25

30

35

40

45

50

55

The compound [II] or a salt thereof of this invention is produced when the compound [II] or a salt thereof-producing strain belonging to the genus <u>Coleophoma</u> is grown in a nutrient medium containing sources of assimilable carbon and nitrogen under aerobic conditions (e.g. shaking culture, submerged culture, etc.).

The preferred sources of carbon in the nutrient medium are carbohydrates such as glucose, sucrose, starch, fructose or glycerin, or the like.

The preferred sources of nitrogen are yeast extract, peptone, gluten meal, cotton seed flour, soybean meal, corn steep liquor, dried yeast, wheat germ, etc., as well as inorganic and organic nitrogen compounds such as ammonium salts (e.g. ammonium nitrate, ammonium sulfate, ammonium phosphate, etc.), urea or amino acid, or the like.

The carbon and nitrogen sources, though advantageously employed in combination, need not to be used in their pure form because less pure materials, which contain traces of growth factors and considerable quantities of mineral nutrients, are also suitable for use.

When desired, there may be added to the medium mineral salts such as sodium or calcium carbonate, sodium or potassium phosphate, sodium or potassium chloride, sodium or potassium iodide, magnesium salts, copper salts, zinc salt, or cobalt salts, or the like.

If necessary, especially when the culture medium foams seriously a defoaming agent, such as liquid paraffin, fatty oil, plant oil, mineral oil or silicone, or the like may be added.

As in the case of the preferred methods used for the production of other biologically active substances in massive amounts, submerged aerobic cultural conditions are preferred for the production of the compound [II] or a salt thereof in massive amounts.

For the production in small amounts, a shaking or surface culture in a flask or bottle is employed.

Further, when the growth is carried out in large tanks, it is preferable to use the vegetative form of the organism for inoculation in the production tanks in order to avoid growth lag in the process of production of the compound [II] or a salt thereof. Accordingly, it is desirable first to produce a vegetative inoculum of the organism by inoculating a relatively small quantity of culture medium with spores or mycelia of the organism and culturing said inoculated medium, and then to transfer the cultured vegetative inoculum to large tanks. The medium, in which the vegetative inoculum is produced, is substantially the same as or different from the medium utilized for the production of the compound [II] or a salt thereof.

Agitation and aeration of the culture mixture may be accomplished in a variety of ways. Agitation may be provided by a propeller or similar mechanical agitation equipment, by revolving or shaking the fermentor, by various pumping equipment or by the passage of sterile air through the medium. Aeration may be effected by passing sterile air through the fermentation mixture.

The fermentation is usually conducted at a temperature between about 10°C and 40°C, preferably 20°C to 30°C, for a period of about 50 hours to 150 hours, which may be varied according to fermentation conditions and scales.

When the fermentation is completed, the culture broth is then subjected for recovery of the compound [II] or a salt thereof to various procedures conventionally used for recovery and purification of biological active substances, for instance, solvent extraction with an appropriate solvent or a mixture of some solvents, chromatography or recrystallization from an appropriate solvent or a mixture of some solvents, or the like.

According to this invention, in general, the compound [II] or a salt thereof is found both in the cultured mycelia and cultured broth. Accordingly, then the compound [II] or a salt thereof is removed from the whole broth by means of extraction using an appropriate organic solvent such as acetone or ethyl acetate, or a mixture of these solvents, or the like.

The extract is treated by a conventional manner to provide the compound [II] or a salt thereof, for example, the extract is concentrated by evaporation or distillation to a smaller amount and the resulting residue containing active material, i.e. the compound [II] or a salt thereof is purified by conventional purification procedures, for example, chromatography or recrystallization from an appropriate solvent or a mixture of some solvents.

When the object compound is isolated as a salt of the compound [II], it can be converted to the free compound [II] or another salt of the compound [II] according to a conventional manner.

Biological properties of the polypeptide compound [I] of the present invention

In order to show the usefulness of the polypeptide compound [I] of the present invention, some biological data of the representative compounds are explained in the following.

Test 1 Antimicrobial activity (1):

Antimicrobial activity of the compound of Example 2 disclosed later (hereinafter referred to as FR131535 substance) was measured by micro-broth dilution method in 96 well multi-trays employing yeast nitrogen base dextrose medium. To a 50 μ l sample solution with serial 2-fold dilution was added a 50 μ l of microorganism suspension in saline to yield a final concentration of 1 x 10⁵ colony forming units/ml. The Candida cultures were incubated at 37°C for 22 hours. After incubation, the growth of microorganism in each well was determined by measuring the turbidity. The results were shown as IC₅₀ value in which concentration the turbidity was half of that in the well without sample. The results are shown in Table 2.

15

20

25

30

5

10

Table 2

organism	IC ₅₀
Candida albicans FP578	0.31
Candida tropicalis YC118	0.47

Test 2 Acute toxicity of FR131535 substance:

The acute toxicity of the FR131535 substance was determined to ICR mice (female, 4 weeks old) by a single intravenous injection. No toxic symptom was observed at the dose of 500 mg/kg.

Test 3 Antimicrobial activity (2):

In vitro antimicrobial activity of the compound of <u>Example 12</u> disclosed later (hereinafter referred to as FR139687 substance) was determined by the two-fold agar-plate dilution method as described below.

One loopful of an overnight culture of each test microorganism in Sabouraud broth containing 2 % Glucose (10⁵ viable cells per ml) was streaked on yeast nitrogen base dextrose agar (YNBDA) containing graded concentrations of the FR139687 substance, and the minimal inhibitory concentration (MIC) was expressed in terms of µg/ml after incubation at 30°C for 24 hours.

35

40

45

55

organism	MIC (μg/ml)
Candida albicans YU-1200	0.05

From the test results, it is realized that the polypeptide compound [I] of the present invention has an anti-microbial activity (especially, antifungal activity).

The pharmaceutical composition of this invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid or liquid form, which contains the polypeptide compound [I] or a pharmaceutically acceptable salt thereof, as an active ingredient in admixture with an organic or inorganic carrier or excipient suitable for rectal, pulmonary (nasal or buccal inhalation), nasal, ocular, external (topical), oral or parenteral (including subcutaneous, intravenous and intramuscular) administrations or insufflation. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, troches, capsules, suppositories, creams, ointments, aerosols, powders for insufflation, solutions, emulsions, suspensions, and any other form suitable for use. And, if necessary, in addition, auxiliary, stabilizing, thickening and coloring agents and perfumes may be used. The polypeptide compound [I] or a pharmaceutical acceptable salt thereof is/are included in the pharmaceutical composition in an amount sufficient to produce the desired antimicrobial effect upon the process or condition of diseases.

For applying the composition to human, it is preferable to apply it by intravenous, intramuscular, pulmonary, or oral administration, or insufflation. While the dosage of therapeutically effective amount of the polypeptide compound [I] varies from and also depends upon the age and condition of each individual patient to be treated, in the case of intravenous administration, a daily dose of 0.01 - 20 mg of the polypeptide compound [I] per kg weight of human being, in the case of intramuscular administration, a daily dose of 0.1 - 20 mg of the polypeptide compound [I] per kg weight of human being, in case of oral administration, a daily dose of 0.5 - 50 mg of the polypeptide compound [I] per kg weight of human being is generally given for treating or preventing infectious diseases.

The following Preparations and Examples are given for the purpose of illustrating the present invention in more detail.

Preparation 1

5

10

To methanol (50 ml) was added thionyl chloride (8.73 ml) at -5°C and the mixture was stirred for 10 minutes and then D-2-(p-hydroxyphenyl)glycine (5 g) was added thereto under ice-cooling. The mixture was stirred for 12 hours at room temperature. The reaction mixture was evaporated under reduced pressure to give D-2-(p-hydroxyphenyl)glycine methyl ester hydrochloride (6.3 g).

IR (Nujol):3380, 1720, 1580, 1250 cm⁻¹

NMR (DMSO-d₆, δ):3.70 (3H, s), 5.11 (1H, s), 6.83 (2H, d, J=8.6Hz), 7.28 (2H, d, J=8.6Hz), 8.91 (2H s), 9.93 (1H, s)

Preparation 2

15

20

To a solution of D-2-(p-hydroxyphenyl)glycine methyl ester hydrochloride (6.3 g) and triethylamine (8.71 ml) in tetrahydrofuran (100 ml) was added di-t-butyl dicarbonate (6.82 g). The mixture was stirred for 2 hours at room temperature. The reaction mixture was added to diethyl ether (1 ℓ) and an insoluble material was filtered off, and the filtrate was evaporated under reduced pressure to give N-(t-butoxycarbonyl)-D-2-(p-hydroxyphenyl)glycine methyl ester (6.83 g).

IR (Nujol):3420, 3350, 1720, 1660 cm⁻¹

NMR (DMSO- d_6 , δ): 1.38 (9H, s), 3.59 (3H, s), 5.05 (1H, d, J=7.9Hz), 6.70 (2H, d, J=8.5Hz), 7.16 (2H, d, J=8.5Hz), 7.60 (1H, d, J=7.9Hz), 9.48 (1H, s)

25 Preparation 3

To a suspension of N-(t-butoxycarbonyl)-D-2-(p-hydroxyphenyl)glycine methyl ester (6.8 g) and potassium bicarbonate (1.84 g) in N,N-dimethylformamide (34 ml) was added octyl bromide (4.176 ml). The mixture was stirred for 6 hours at 60°C. The reaction mixture was added to a mixture of water and ethyl acetate. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give N-(t-butoxycarbonyl)-D-2-(p-octyloxyphenyl)glycine methyl ester (6.96 g).

IR (Nujol):1710, 1490, 1240, 1160 cm⁻¹

.NMR (DMSO-d₆, δ):0.859 (3H, t, J=6.2Hz), 1.17-1.33 (10H, m), 1.38 (9H, s), 1.60-1.80 (2H, m), 3.59 (3H, s), 3.93 (2H, t, J=6.3Hz), 5.11 (1H, d, J=7.9Hz), 6.87 (2H, d, J=8.7Hz), 7.27 (2H, d, J=8.7Hz), 7.68 (1H, d, J=7.9Hz)

35

40

45

30

Preparation 4

To 4N aqueous solution of sodium hydroxide (8.77 ml) was added N-(t-butoxycarbonyl)-D-2-(p-octyloxyphenyl) glycine methyl ester (6.9 g) and stirred for 1.5 hours at room temperature. The reaction mixture was added to a mixture of water and ethyl acetate and 1N hydrochloric acid was added thereto to adjust the mixture to pH 3. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give N-(t-butoxycarbonyl)-D-2-(p-octyloxyphenyl)glycine (3.9 g).

IR (Nujol): 1710, 1490, 1240, 1160 cm⁻¹NMR

 $(DMSO-d_6, \delta)$: 0.860 (3H, t, J=6.8Hz), 1.17-1.33 (10H, m), 1.38 (9H, s), 1.60-1.80 (2H, m), 3.93 (2H, t, J=6.4Hz), 5.10 (1H, d, J=8.2Hz), 6.87 (2H, d, J=8.7Hz), 7.28 (2H, d, J=8.7Hz), 7.46 (1H, d, J=8.2Hz)

Preparation 5

50

55

To a solution of N-(t-butoxycarbonyl)-D-2-(p-octyloxyphenyl)glycine (1 g) in acetonitrile (10 ml) and pyridine (0.213 ml) in acetonitrile (10 ml) was added N,N'-disuccinimidyl carbonate (0.675 g). The mixture was stirred for 12 hours at room temperature. The reaction mixture was added to a mixture of water and ethyl acetate. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give N-(t-butoxycarbonyl)-D-2-(p-octyloxyphenyl)glycine succinimido ester (0.92 g).

IR (Nujol): 3350, 1810, 1730, 1680 cm⁻¹

NMR (DMSO-d₆, δ): 0.862 (3H, t, J=6.7Hz), 1.17-1.33 (10H, m), 1.40 (9H, s), 1.60-1.80 (2H, m), 2.77 (4H, s), 3.97 (2H, t, J=6.5Hz), 5.54 (1H, d, J=8.1Hz), 6.91 (2H, d, J=8.7Hz), 7.39 (2H, d, J=8.7Hz), 8.05 (1H, d, J=8.1Hz)

Preparation 6

N-(t-Butoxycarbonyl)-L-tyrosine methyl ester was obtained according to a similar manner to that of <u>Preparation 2</u>. IR (Nujol): 3430, 3360, 1730, 1670, 1170 cm⁻¹

NMR (DMSO- d_6 , δ): 1.33 (9H, s), 2.90 (2H, m), 3.59 (3H, s), 4.05 (1H, m), 6.65 (2H, d, J=8.4Hz), 7.00 (2H, d, J=8.4Hz), 7.21 (1H, d, J=8.0Hz), 9.22 (1H, s)

Preparation 7

5

10

15

20

25

30

35

40

45

O⁴-Octyl-N-(t-butoxycarbonyl)-L-tyrosine methyl ester was obtained according to a similar manner to that of <u>Preparation 3</u>.

IR (Nujol): 3350, 1735, 1685, 1250, 1170 cm⁻¹

NMR (DMSO-d₆, δ): 0.859 (3H, t, J=6.7Hz), 1.20-1.30 (10H, m), 1.68 (2H, quintet, J=7.3Hz), 2.82 (2H, m), 3.60 (3H, s), 3.91 (2H, t, J=7.3Hz), 4.08 (1H, m), 6.81 (2H, d, J=8.6Hz), 7.12 (2H, d, J=8.6Hz), 7.25 (1H, d, J=8.0Hz)

Preparation 8

O⁴-Octyl-N-(t-butoxycarbonyl)-L-tyrosine was obtained according to a similar manner to that of <u>Preparation 4</u>. IR (Nujol) :3400-2900 (br), 1700, 1240, 1160 cm⁻¹

NMR (DMSO-d₆, δ):0.859 (3H, t, J=6.8Hz), 1.20-1.30 (10H, m), 1.32 (9H, s), 1.68 (2H, quintet, J=7.0Hz), 2.67-2.95 (1H, m), 3.90 (2H, t, J=7.0Hz), 4.01 (1H, m), 6.81 (2H, d, J=8.6Hz), 7.02 (1H, d, J=8.3Hz), 7.13 (2H, d, J=8.6Hz)

Preparation 9

O⁴-Octyl-N-(t-butoxycarbonyl)-L-tyrosine succinimido ester was obtained according to a similar manner to that of <u>Preparation 5</u>.

IR (Nujol):3350, 1780, 1720, 1690 cm⁻¹

NMR (DMSO-d₆, δ) :0.860 (3H, t, J=6.7Hz), 1.20-1.30 (10H, m), 1.32 (9H, s), 1.68 (2H, quintet, J=7.0Hz), 2.82 (4H, s), 2.80-3.20 (1H, m), 3.92 (2H, t, J=7.0Hz), 4.44 (1H, m), 6.81 (2H, d, J=8.5Hz), 7.22 (2H, d, J=8.5Hz), 7.60 (1H, d, J=8.3Hz)

Preparation 10

(1) A seed medium (160 ml) consisting of sucrose 4%, cotton seed flour 2%, dried yeast 1%, peptone 1%, KH₂PO₄ 0.2%, CaCO₃ 0.2% and Tween 80 (made by NAKARAI CHEMICALS LTD.) 0.1% was poured into each of two 500 ml Erlenmeyer flasks and sterilized at 121°C for 30 minutes. A loopful of slant culture of <u>Coleophoma</u> sp. F-11899 was inoculated to each of the medium and cultured under shaking condition at 25°C for 4 days.

A production medium (20 liters) consisting of Pine Dex #3 (made by Matsutani Chemical Ltd.) 3%, glucose 1%, wheat germ 1%, cotton seed flour 0.5%, KH₂PO₄ 2%, Na₂HPO₄·12H₂O 1.5%, ZnSO₄·7H₂O 0.001% and Adekanol (defoaming agent, made by Asahi Denka Co., Ltd.) 0.05% was poured into a 30 liter-jar fermentor and sterilized at 121°C for 30 minutes.

The resultant seed culture broth (320 ml) was inoculated to the production medium and cultured at 25°C for 4 days, agitated at 200 rpm and aerated at 20 liters per minute. To the cultured broth thus obtained (20 liters) was added an equal volume of acetone. After occasionally stirring at room temperature for a while, the broth was filtered. The filtrate was concentrated in vacuo to remove acetone. The aqueous filtrate (10 liters) was washed with two equal volume of ethyl acetate and extracted with n-butanol (10 liters) twice. The combined n-butanol layer was concentrated in vacuo and the residue was applied on a column (300 ml) of Silica gel 60 (made by E. Merck) and eluted with a stepwise organic solvent mixture consisting of dichloromethane-methanol. The fractions having anti-Candida activity were eluted in the range of the solvent mixture (3:1 through 1:1). The active fractions were combined and concentrated in vacuo to dryness. The residue was dissolved in 50% aqueous methanol (15 ml) and applied on a column (250 ml) of ODS YMC GEL (made by Yamamura Chemical Lab.). The column was washed with 50% aqueous methanol and eluted with 80% aqueous methanol. The eluate was concentrated and was further purified on a centrifugal partition chromatography (CPC) using a solvent system n-butanol:methanol:water (4:1:5) of upper stationary phase and lower mobile phase in a descending model. The pooled fractions containing the object compound (major component) were concentrated in vacuo and applied on a column (35 ml) of silica gel 60. The column was developed with n-butanol:acetic acid:water (6:1:1). The active fractions were combined and concentrated in vacuo to dryness and dissolved in a small volume of 50% aqueous methanol. The solution was passed through a column (3.5 ml) of ODS YMC GEL. The column was

washed with 50% aqueous methanol and eluted with methanol. The eluate was concentrated to dryness, dissolved in a small volume of water and adjusted to pH 7.0 with 0.01N NaOH. The solution was freeze-dried to give a white powder of said compound in its sodium salt form (hereinafter referred to as FR901379 substance) (11 mg).

The FR901379 substance as obtained has the following physico-chemical properties.

Appearance:

5

10

white powder

Nature:

neutral substance

Melting point:

215-221°C (dec.)

15 Specific rotation:

 $[\alpha]_{D}^{23}$

-20.3 (C: 0.5, H₂O)

Molecular formula:

20

 $C_{51}H_{81}N_8O_{21}SNa$

· Elemental Analysis:

25

Calcd.:	for C ₅₁ H ₈₁ N ₈ SO ₂₁ Na			
	C 51.17,	H 6.77,	N 9.36,	S 2.68 (%)
Found:	C 49.61,	H 7.58,	N 7.65,	S 2.14 (%)

Molecular weight: 30

HRFAB-MS: 1219.5078

(Calcd for C₅₁H₈₂N₈SO₂₁ + 2Na - H: 1219.5032)

Solubility:

35

50

55

soluble: methanol, water

slightly soluble: ethyl acetate, acetone insoluble: chloroform, n-hexane

Color reaction: 40

positive:

iodine vapor reaction, cerium sulfate reaction, ferric chloride reaction, Ninhydrin reaction

negative:

Dragendorff reaction, Ehrlich reaction

45 Thin layer chromatography (TLC):

Stationary phase	Developing solvent	Rf value
silica gel*	silica gel* n-butanol:acetic acid; water (3:1:1)	
	ethyl acetate:isopropyl alcohol:water (5:3:1)	0.31

^{*} Silica Gel 60 (made by E. Merck)

Ultraviolet absorption spectrum:

 $\lambda^{\text{methanol}}$ (E_{1cm}^{1%}): 207(169), 276(13.5), 225(sh), 283(sh) nm

λ max (Ε1cm) . 207 (103), 2.70 (10.5), 2.10

Infrared absorption spectrum:

 $v_{\text{max}}^{\text{KBr}}: 3350, 2920, 2840, 1660, 1625, 1530, 1510, 1435, 1270, 1240, 1070, 1045, 800, 755, 710 \, \text{cm}^{-1}$

¹H Nuclear magnetic resonance spectrum: (CD₃OD, 400MHz)

δ: 7.30 (1H, d, J=2Hz), 7.03 (1H, dd, J=8 and 2Hz), 6.85 (1H, d, J=8Hz), 5.23 (1H, d, J=3Hz), 5.06 (1H, d, J=4Hz), 4.93 (1H, d, J=3Hz), 4.59-4.51 (3H, m), 4.47-4.35 (5H, m), 4.29 (1H, dd, J=6 and 2Hz), 4.17 (1H, m), 4.07 (1H, m), 3.95-3.89 (2H, m), 3.76 (1H, broad d, J=11Hz), 3.36 (1H, m), 2.75 (1H, dd, J=16 and 4Hz), 2.50 (1H, m), 2.47 (1H, dd, J=16 and 9Hz), 2.38 (1H, m), 2.21 (2H, m), 2.03-1.93 (3H, m), 1.57 (2H, m), 1.45-1.20 (24H, m), 1.19 (3H, d, J=6Hz), 1.08 (3H, d, J=6Hz), 0.90 (3H, t,J=7Hz)

From the analysis of the above physical and chemical properties, and the result of the further investigation of identification of chemical structure, the chemical structure of the FR901379 substance has been identified and assigned as follows.

35 Example 1

50

55

5

10

N-acyl group of FR901379 substance was eliminated by the reaction with an enzyme. In the following, this elimination process is explained in detail.

40 (1) Fermentation of Actinoplanes utahensis

The enzyme which is useful for eliminating N-acyl group of FR901379 substance is produced by certain microorganisms of the Actinoplanaceae, preferably the microorganism Actinoplanes utahensis IFO-13244.

A stock culture of Actinoplanes utahensis IFO-13244 is prepared and maintained on agar slant. A loopful of the slant culture was inoculated into a seed medium consisted of starch 1%, sucrose 1%, glucose 1%, cotton seed flour 1%, peptone 0-5%, soy bean meal 0.5% and CaCO₃ 0.1%. The inoculated vegetative medium was incubated in a 225-ml wide mouth Erlenmeyer flask at 30°C for about 72 hours on a rotary shaker.

This incubated vegetative medium was used directly to inoculate into a production medium consisted of sucrose 2%, peanut powder 1%, K₂HPO₄ 0.12% KH₂PO₄ 0.05% and MgsO₄ 7H₂O 0.025%. The inoculated production medium was allowed to ferment in a 30-liter jar fermentor at a temperature of 30°C for about 80 hours. The fermentation medium was stirred with conventional agitators at 250 rpm and aerated at 20 liters per minute. The vegetative mycelium was collected from the fermented broth by filtration and once washed with water. The washed mycelium was directly used to eliminate N-acyl group of FR901379 substance as an enzyme source.

(2) Elimination Condition

FR901379 substance was dissolved in 0.25 M phosphate buffer (pH 6.5) at a concentration of 0.9 mg/ml. To a 36-liter of the solution was added a 2 kg wet weight of washed mycelium of Actinoplanes utahensis IFO-13244. The

elimination reaction was carried out at 37°C under for 23 hours. Reduction of FR901379 substance and increase of the deacylated FR901379 substance(hereinafter referred to as FR1333.03 substance) were measured using a HELC equipped with a reverse phase column. From a 30 g of FR901379 substance, a 22.2 g of FR133303 substance was formed in the reaction mixture.

(3) Isolation of FR133303 Substance

The reaction mixture described above was filtered with a filter aid. The mycelial cake was discarded. The filtrate thus obtained was passed through a column of activated carbon (2 L). The column was washed with 6 L of water and eluted with 12 L of 50% aqueous acetone. The eluate was evaporated in vacuo to remove acetone and then passed through a column (4 L) of YMC GEL ODS-AM 120-S50 (Yamamura Chemical Labs). The column was washed with water and eluted with 2% aqueous acetonitrile containing 50 mM NaH₂PO₄. Elution was monitored by analytical HPLC, using a column of Lichrospher 100 RE-18 (Cica-MERCK) and a solvent system of 3% aqueous acetonitrile containing 0.5% NB₄H₂PO₄ at a flow rate of 1 ml/min, detecting the FR133303 substance with a UV monitor at 210 nm. The fractions containing the FR133303 substance were combined and passed through a column of activated carbon (400 ml). The column was washed with water and eluted with 50%, aqueous acetone. The eluate was concentrated in vacuo to remove acetone and lyophilized to give 16.4 g of FR133303 substance as a white powder. FR133303 substance has following physico-chemical properties:

Appearance:

white powder

Melting point:

150-160°C (dec.)

Specific rotation:

 $[\alpha]_{D}^{24}$

-31.17° (C: 1.0, H₂O)

Molecular formula:

C₃₅H₅₁N₈SO₂₀Na

30

35

25

5

15

20

Elemental Analysis:

Calcd.: for C₃₅H₅₁N₈SO₂₀Na

C 43.84, H 5.36, N 11.69, S 3.34 (%)
Found: C 41.14, H 5.74, N 10.88, S 3.10 (%)

solubility:

40 soluble:

slightly soluble :

water methanol

insoluble :

n-hexane

Color reaction:

45

positive :

iodine vapor reaction, cerium sulfate reaction, Ninhydrin reaction

negative:

Molish reaction

Thin layer chromatography (TLC)

50

Stationary phase	Developing solvent	Rf value
silica gel*	n-butanol:acetic acid water (3:1:2)	0.15

^{*} Silica Gel 60 (made by E. Merck)

55

Ultraviolet absorption spectrum:

$$\lambda_{\text{max}}^{\text{H}_2\text{O}} = (E_{1 \text{ cm}}^{1\%}) : 201(340), 273(18), 224(\text{sh}), 281(\text{sh}) \text{ nm}$$

 $\lambda^{\text{H}_2\text{O+0.01N-NaOH}}$

 $(E_{1cm}^{1\%})$: 207(414), 243(122), 292 (34)

Infrared absorption spectrum:

v KBr :

5

10

3350, 2920, 1660, 1625, 1515, 1440, 1270, 1080, 1045, 800, 755, 715 cm⁻¹

¹H Nuclear magnetic resonance spectrum : (D₂O, 400MHz)

- δ: 7.31 (1H, d, J=2Bz), 7.12 (1H, dd, J=2Hz and 8Hz), 7.D6 (1H, d, J=8Hz), 5.40 (1H, d, J=3Hz), 5.04 (1H, d, J=3.5Hz), 4-94 (1H, d, J=6Bz), 4.73-4.55 (3H, m), 4.51-4.38 (4H, m), 4.31-4.23 (3H, m), 4.11-4.06 (2H, m), 3.94-3.89 (2H, m), 3.41 (1H, m), 2.60-2.34 (5H, m), 2.14 (1H, m), 2.03 (1H, m), 1.28 (3H, d, J=6Hz),1.01 (3H, d, J=6.5Hz)
- 15 Nuclear magnetic resonance spectrum: (D₂O, 100MHz)
 - δ: 178.3 (s), 175.9 (s), 174.3 (s), 174.2 (s), 174.0 (s), 171.8 (s), 171.3 (s), 150.9 (s), 141.5 (s), 134.4 (s), 128.2 (d), 124.5 (d), 120.3 (d), 78.1 (d), 77.0 (d), 76.9 (d), 76.6 (d), 72.9 (d), 72.8 (d), 71.2 (d), 69.3 (d), 69.2 (d), 63.7 (d), 60.1 (d), 58.3 (t), 58.0 (d), 56.9 (d), 55.3 (d), 54.7 (t), 41.8 (t), 39.7 (d), 39.5 (t), 33.5 (t), 21.4 (q), 13.3 (q)

The chemical structure of FR133303 substance has been identified and assigned as follows.

25

30

35

40

50

55

20

45 Example 2

(1) A solution of 4-hydroxybenzoic acid (19.2 g) in 10% NaOH (120 ml) was dropwise added to 480 ml of dimethyl sulfoxide over 30 minutes during which the temperature in reaction mixture was controlled between 30 and 40°C. After adding, the solution was cooled to 17-20°C. 1-Bromooctane (28.95 g) was dropwise added to the solution over 30 minutes and the reaction mixture was vigorously stirred for 4 hours at room temperature. The reaction mixture was poured into ice water (1200 ml) and acidified with 40 ml of conc. hydrochloric acid. After vigorously stirring for another 1 hour, the resulting solid was removed by filtration and dissolved in 60 ml of acetonitrile. The solution was refluxed over 30 minutes and was allowed to stand overnight at room temperature to yield 4-octyloxybenzoic acid (13.8 g) as a crystal (MP 96°C, Anal Calcd. for $C_{15}H_{22}O_3$: C 71.97, H 8.86, Found: C 71.30, H 8.89).

To a solution of 4-octyloxybenzoic acid (13.8 g) in diethyl ether (552 ml) were added 2,4,5-trichlorophenol (10.87 g) and N,N'-dicyclohexylcarbodiimide (11.37 g). The solution was stirred under a nitrogen atmosphere for 18 hours at room temperature. The precipitate was removed by filtration and the filtrate was concentrated in vacuo.

The residue was dissolved in petroleum ether and was allowed to stand on ice-water. The resulting crystals (15.2 g) were filtered and dissolved in warm n-hexane (150 ml). After standing overnight at room temperature, the resulting crystal was removed by filtration. The filtrate was concentrated to an oil which was purified by a column chromatography over silica gel using a mixture of ethyl acetate and n-hexane to give 2,4,5-trichlorophenyl 4-octyloxybenzoate (7.58 g)(MP 53°C, Anal Calcd. for $C_{21}H_{23}O_3CI_3$: CI 24.75, Found: CI 24.05).

(2) To a solution of FR133303 substance (2.04 g) in N,N-dimethylformamide (60 ml) were added 2,4,5-trichlorophenyl 4-octyloxybenzoate (2.04 g) and 4-dimethylaminopyridine (0.283 g). The solution was stirred under a nitrogen atmosphere at room temperature for 15 hours. 4-Dimethylaminopyridine (0.20 g) was added to the solution and mixture was stirred for another 24 hours. The reaction mixture was poured into water (600 ml) and the pH was adjusted to 6.0. The mixture was washed twice with an equal volume of ethyl acetate and concentrated to 30 ml. The concentrate was applied on a column (150 ml) of DEAE-Toyopearl (CI type, manufactured by Tosoh). The column was washed with 50% aqueous methanol and developed with 50% aqueous methanol containing 1M sodium chloride aqueous solution. The elution of product was assessed by the same HPLC system as described in Example 1(3) except that the concentration of acetonitrile in solvent was 40%. The fractions containing the object compound were pooled and evaporated in vacuo to remove methanol. The solution was absorbed on a column (1 L) of YMC GEL ODS-AM 120-S50 in order to remove salt. The column was washed with water and eluted with 30% aqueous acetonitrile. The eluate was evaporated in vacuo to remove acetonitrile and lyophylized to give the object compound (hereinafter referred to as FR131535 substance) (1.4 g) as a white powder. FR131535 substance has following physico-chemical properties:

Appearance:

5

10

15

20

25

40

45

55

white powder

Melting point:

170-189°C (dec.)

Specific rotation:

 $[\alpha]_D^{20}$ -14.4° (C: 10, H₂O)

30 Molecular formula :

C₅₀H₇₁N₈SO₂₂Na

35 Elemental Analysis:

Calcd.:	for C ₅₀ H ₇₁ N ₈ SO ₂₂ Na-6H ₂ O				
	C 46.22,	H 6.44,	N 8.62,	S 2.46,	Na 1.77 (%)
Found:	C 46.80,	H 6.13,	N 8.78,	S 1.96,	Na 1.81 (%)

solubility:

soluble

: methanol, water

slightly soluble

: acetone

insoluble

: n-hexane

Color reaction:

50 positive:

iodine vapor reaction, cerium sulfate reaction

Thin layer chromatography (TLC):

Stationary phase Developing solvent Rf value silica gel* n-butanol:acetic acid water (6:1:1) 0.21

^{*} Silica Gel 60 (made by E. Merck)

Infrared absorption spectrum:

v^{KBr}_{max}: 3330, 2900, 2850, 1620, 1500, 1430, 1270, 1250, 1170, 1110, 1080, 1040, 960, 940, 880, 840, 800, 750,

710 cn

5

10

15

20

25

30

35

40

45

50

55

¹H Nuclear magnetic resonance spectrum : (CD₃OD, 200MHz)

δ: 7.78 (2H, d, J=8Hz);7.31 (1H, d, J=2Hz), 7.03 (1H, dd, J=2Hz and 8Hz), 6.96 (2H, d, J=8Hz), 6.87 (1H, d, J=8Hz), 5.33 (1H, d, J=3Hz), 5.08 (1H, d, J=4Hz), 4.99 (1H, d, J=3Hz), 4.80-3.20 (17H, m), 2.83 (1H, m), 2.65-2.30 (4H, m), 2.22=1.90 (2H, m), 1.79 (2H, m), 1.56-1.25 (10H, m), 1.19 (3H, d, J=6Hz), 1.06 (3H, d, J=6.5Hz), 0.90 (3H, t, J=6.5Hz)

The chemical structure of FR131535 substance has been identified and assigned as follows.

In the following, the structures of the compounds of Examples 3 to 11 are shown.

Example No.	Compound No.	R
3	FR138260	-coch-o(CH ₂) ₇ CH ₃ NHCOO Bu
4	FR138727	-coch
5	FR138364	-COCHCH ₂ -O(CH ₂) ₇ CH ₃ NHCOO Bu
6	FR138261	-coo ^t Bu
7	FR138363	-coch ₃

35	8	FR138728	-coch ₂ Br
40	9	FR138538	-coo-
	10	FR138539	CH ₃ O-N S NH ₂
45	11	FR138365	-o ₂ s-—сн ₃

Example 3

To a solution of FR133303 substance (1 g) and N-(t-butoxycarbonyl)-D-2-(p-octyloxyphenyl)glycine succinimido ester (0.596 g) in N,N-dimethylformamide (3 ml) was added 4-dimethylaminopyridine (0.165g). The mixture was stirred for 12 hours at room temperature. The reaction mixture was added to water (30 ml) and then adjusted to pH 6. The aqueous solution was washed with ethyl acetate, and subjected to ion exchange chromatography on DEAE-Toyopearl ($C\ell \ominus$) (60 ml) and eluted with 50% methanol in 1M aqueous solution of sodium chloride. The fractions containing the

object compound were combined and evaporated under reduced pressure to remove methanol. The aqueous solution was adjusted to pH 4.5 with 1N hydrochloric acid and subjected to column chromatography on Diaion HP-20 (Trademark, Manufactured by Mitsubishi Chemical Industries) (130 ml) and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give object acylated compound (hereinafter referred to as FR138260 substance) (0.77 g).

IR (Nujol) :3300, 1660, 1500, 1240, 1045, 800, 720 cm⁻¹ NMR (CD₃OD, δ) :0.92 (3H, t, J=6.8Hz), 1.05 (3H, d, J=6.8Hz), 1.17-1.33 (13H, m), 1.43 (9H, s), 1.6-1.8 (2H, m), 1.9-2.1 (3H, m), 2.50 (3H, m), 2.75 (1H, dd, J=16Hz and 4Hz), 3.35 (1H, m), 3.7-3.8 (1H, m), 3.93 (2H, t, J=6.2Hz), 3.9-4.2 (5H, m), 4.3-4.5 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d, J=3Hz), 5.05 (1H, d, J=4Hz), 5.11 (1H, s), 5.30 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 6.86 (2H d, J=8.6Hz), 7.02 (1H, d, J=8.3Hz), 7.26 (2H, d, J=8.6Hz), 7.31 (1H, s) FAB-MS :e/z = 1343 (M + Na)

5 Example 4

10

20

25

30

35

40

45

FR138260 substance obtained in <u>Example 3</u> (0.25 g) was added to trifluoroacetic acid (1.25 ml) and stirred for 10 minutes. The reaction mixture was added to water (30 ml) and then adjusted to pH 4.5 with saturated aqueous solution of sodium bicarbonate. The aqueous solution was subjected to column chromatography on Diaion HP-20 (100 ml) and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give the object compound (hereinafter referred to as FR138727 substance) (15 mg).

NMR (CD₃OD, δ): 0.90 (3H, t, J=6.8Hz), 1.05 (3H, d, J=6.8Hz), 1.17-1.33 (13H, m), 1.6-1.8 (2H, m), 1.9-2.1 (3H, m), 2.50 (1H, m), 2.75 (1H, dd, J=16Hz and 4Hz), 3.40 (1H, m), 3.7-3.8 (1H, m), 3.98 (2H, t, J=6.2Hz), 3.9-4.2 (5H, m), 4.3-4.5 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d, J=3Hz), 5.06 (1H, s)

J=6.2Hz), 3.9-4.2 (5H, m), 4.3-4.5 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d, J=3Hz), 5.06 (1H, s), 5.20 (1H, d, J=3Hz), 5.40 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 6.95 (2H, d, J=8.5Hz), 7.02

(1H, d, J=8.3Hz), 7.30 (1H, d, J=8.5Hz), 7.44 (1H, s)

FAB-MS: e/z = 1259 (M + K)

Example 5

FR138364 substance was obtained by reacting FR133303 substance with O⁴-octyl-N-(t-butoxycarbonyl)-L-tyrosine succinimido ester according to a similar manner to that of Example 3.

IR (Nujol): 3300, 1660, 1620, 1240, 1050 cm⁻¹

NMR (CD₃OD, δ) :0.904 (3H, t, J=6.8Hz), 1.06 (3H, d, J=6.8Hz), 1.17 (3H, d, J=6.7Hz), 1.20-1.30 (10H, m), 1.35 (9H,

s), 1.74 (2H, quintet, J=6.5Hz), 1.9-2.1 (3H, m), 2.45 (3H, m), 2.76 (1H, dd, J=16Hz and 4Hz), 3.0-3.1 (2H, m), 3.37 (1H, m), 3.77 (1H, d, J=11Hz), 3.92 (2H, t, J=6.8Hz), 3.9-4.2 (7H, m), 4.3-4.5 (5H, m), 4.5-4.6 (3H, m), 4.94 (1H, d, J=3Hz), 5.05 (1H, J=3.8Hz), 5.31 (1H, d, J=3Hz), 6.79 (2H, d, J=8.5Hz), 6.85 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2Hz), 7.12 (2H, d, J=8.5Hz), 7.31 (1H, d, J=2Hz)

FAB-MS: e/z = 1357 (M + Na)

Example 6

A solution of FR133303 substance (0.5 g) in a mixture of water (5 ml) and tetrahydrofuran (5 ml) was adjusted to pH 7 with saturated aqueous solution of sodium bicarbonate and N,N-di-t-butylcarbonate (0.114 g) was added thereto at room temperature. The mixture was stirred for 5 hours at room temperature maintaining pH 7 with saturated aqueous solution of sodium bicarbonate. The reaction mixture was added to water and adjusted to pH6. The aqueous solution was washed with ethyl acetate, and subjected to ion exchange chromatography on DEAE-Toyopearl (Cl⁺) (30 ml) and eluted with 50% methanol in 1M aqueous solution of sodium chloride. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The aqueous solution was adjusted to pH 4.5 with 1N hydrochloric acid and subjected to column chromatography on Diaion HP-20 (100 ml) and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give the object acylated compound (hereinafter referred to as FR138261 substance) (0.145 g).

IR (Nujol): 3300, 1660, 1620, 1240, 1050 cm⁻¹

NMR (CD₃OD, δ):

1.06 (3H, d, J=6.8Hz), 1.18 (3H, d, J=6.0Hz), 1.40 (9H, s), 1.9-2.1 (3H, m), 2.44 (3H, m), 2.82 (1H, dd, J=16Hz and 4Hz), 3.37 (1H, m), 3.75 (1H, d, J=11Hz), 3.89-4 (2H, m), 4.10 (1H, m), 4.15 (1H, m), 4.29 (1H, dd, J=6Hz and 2Hz), 4.36-4.45 (5H, m), 4.5-4.6 (3H, m), 4.97 (1H, d, J=3Hz), 5.06 (1H, dd, J=8.2Hz and 4Hz), 5.33 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 7.03 (1H,

dd, J=8.3Hz and 2Hz); 7.30 (1H, d, J=2Hz), 7.50 (1H, d, J=8.2Hz)

FAB-MS:

e/z = 1081 (M + Na)

Example 7

FR138363 substance was obtained by reacting FR133303 substance with acetyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1620, 1250, 1040 cm⁻¹

NMR (CD₃OD, δ):

1.06 (3H, d, J=6.8Hz), 1.20 (3H, d, J=6Hz), 1.78-2.05 (3H, m), 1.96 (3H, s), 2.21-2.54 (3H, m),

2.95 (1H, m), 3.35-3.42 (1H, m), 3.58-4.42 (11H, m), 4.50-5.05 (5H, m), 5.23 (1H, m), 6.88 (1H,

d, J=8.3Hz), 7.05 (1H, dd, J=8.3Hz and 2Hz), 7.35 (1H, d, J=2Hz)

FAB-MS:

1023 (M + Na)

Example 8

20

25

5

10

15

FR138728 substance was obtained by reacting FR133303 substance with 2-bromoacetyl chloride according to a similar manner to that of <u>Example 6</u>.

IR (Nujol):

3300, 1660, 1620, 1500, 1220, 1040 cm⁻¹

NMR (CD₃OD, δ):

1.06 (3H, d, J=6.9Hz), 1.17 (3H, d, J=6.1Hz), 1.9-2.1 (3H, m), 2.50 (3H, m), 2.80 (1H, dd, J=16Hz and 4Hz), 3.37 (1H, m), 3.6-4.0 (5H, m), 4.09 (1H, m), 4.16 (1H, m), 4.29 (1H, dd, J=6Hz and 2Hz), 4.36-4.45 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d, J=3Hz), 5.04 (1H, dd, J=8.6Hz and 4Hz), 5.25 (1H, d, J=3.1Hz), 6.85 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2.1Hz), 7.31 (1H, d, J=3.1Hz), 7

J=2Hz), 7.52 (1H, d, J=8.6Hz)

30 FAB-MS:

e/z = 1103 (M + Na)

Example 9

FR138538 substance was obtained by reacting FR133303 substance with benzoyl chloride according to a similar manner to that of Example 6.

IR (Nuiol):

3300, 1640, 1240 cm⁻¹

NMR (CD₃OD, δ):

1.05 (3H, d, J=6.8Hz), 1.18 (3H, d, J=6Hz), 1.89-2.12 (3H, m), 2.31-2.53 (3H, m), 2.75 (1H, dd, J=12Hz and 4Hz), 3.38 (1H, m), 3.76 (1H, d, J=11Hz), 3.87-3.98 (1H, m), 4.02-4.18 (2H, m), 4.22-4.32 (4H, m), 4.37-4.40 (3H, m), 4.49-4.62 (3H, m), 4.98 (1H, m), 5.02 (1H, m), 5.37 (1H,

d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 7.04 (1H, dd, J=8.3Hz and 2Hz), 7.11-7.50 (6H, m)

FAB-MS:

e/z = 1101 (M + Na)

Example 10

45

40

FR138539 substance was obtained by reacting FR133303 substance with 2-(2-aminothiazol-4-yl)-2-methoxyiminoacetic acid according to a similar manner to that of <u>Example 6</u>.

IR (Nujol):

3300, 1650, 1620, 1520, 1260, 1040 cm⁻¹

50 NMR (CD₃OD, δ):

1.05 (3H, d, J=6.8Hz), 1.21 (3H, d, J=5.9Hz), 1.89-2.21 (3H, m), 2.29-2.61 (3H, m), 2.78-2.89 (1H, m), 3.32-3.42 (1H, m), 3.76-3.82 (1H, m), 3.91-4.01 (2H, m), 3.95 (3H, s), 4.13 (1H, m), 4.16 (1H, m), 4.24-4.27 (1H, m), 4.32-4.43 (5H, m), 4.46-4.62 (3H, m), 4.97-4.99 (1H, m), 5.08 (1H, m), 5.41 (1H, m), 6.79 (1H, s), 6.86 (1H, d, J=8.1Hz), 7.04 (1H, dd, J=8.1Hz and 2Hz), 7.31 (1H, dd, J=8.1Hz), 7.04 (1H, dd, J

(1H, d, J=2Hz), 7.51 (1H, d, J=7Hz)

55 FAB-MS:

 $e/z = 1143 (M^+)$

Example 11

FR138365 substance was obtained by reacting FR133303 substance with tosyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

5

10

15

20

25

30

35

3300, 1650, 1620, 1260, 1060 cm⁻¹

NMR (CD₃OD, δ):

0.75 (3H, d, J=6.8Hz), 1.07 (3H, d, J=6.0Hz), 1.61-1.79 (1H, m), 1.91-2.05 (3H, m), 2.30-2.59 (3H, m), 3.36 (1H, m), 3.68 (1H, d, J=11Hz), 3.81-4.07 (4H, m), 4.22 (1H, m), 4.32-4.40 (5H, m), 4.42-4.60 (3H, m), 4.7 (1H, m), 5.0 (1H, m), 5.42 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 7.03

(1H, dd, J=8.3Hz and 2Hz), 7.29-7.33 (3H, m), 7.75 (1H, d, J=8.3Hz)

FAB-MS:

e/z = 1135 (M + Na)

Preparation 11

To a solution of 6-hydroxy-2-naphthoic acid (1 g) in the mixture of 10 % sodium hydroxide aqueous solution (4.25 ml) and dimethylsulfoxide (17 ml) was added octyl bromide (0.918 ml). The mixture was stirred for 6 hours at 60 °C.

The reaction mixture was added to a mixture of water and ethyl acetate and adjusted to pH 3 with conc. hydrochloric acid. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 6-octyloxy-2-naphthoic acid (0.91 g), which is not included in the claims.

IR (Nujol) :

1670, 1620, 1210 cm⁻¹

NMR (DMSO- d_6, δ):

0.86 (3H, t, J=6.7 Hz), 1.2 - 1.6 (10H, m), 1.78 (2H, m), 4.10 (2H, t, J=6.7 Hz), 7.19 (1H, dd, J=2.3 and 8.8 Hz), 7.36 (1H, d, J=2.3 Hz), 7.83 (1H, d, J=8.8 Hz), 7.97 (2H, d, J=8.8 Hz), 8.52

(1H, s)

Preparation 12

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.703 g) was added to a solution of 6-octyloxy-2-naphthoic acid (0.85 g) and 1-hydroxy-1H-benzotriazole (0.382 g) in ethyl acetate (26 ml). The mixture was stirred for two hours at room temperature.

The reaction mixture was added to water and the separated organic layer was washed with water and sodium chloride aqueous solution. Then the organic layer was dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-(6-octyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide (0.74 g).

IR (Nujol):

1770, 1740, 1620, 1190, 1020, 740 cm⁻¹

NMR (CDCI₃, δ):

0.90 (3H, t, J=6.8 Hz), 1.2 - 1.6 (10H, m), 1.89 (2H, m), 4.14 (2H, t, J=6.8 Hz), 7.1 - 7.3 (2H, m),

7.4 - 7.6 (3H, m), 7.8 - 8.0 (2H, m), 8.1 - 8.2 (2H, m), 8.80 (1H, s)

40

45

In the following, the structure of the compound of Example 12 is shown.

55

50

20

25

30

35

40

45

50

55

5

10

15

Example 12

To a solution of FR133303 substance (0.5 g) and 1-(6-octyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide (0.271 g) in N,N-dimethylformamide (1.5 ml) was added 4-dimethylaminopyridine (0.0828 g). The mixture was stirred for 12 hours at room temperature.

The reaction mixture was added to water and adjusted to pH 6. The aqueous solution was washed with ethyl acetate, and subjected to ion exchange chromatography on DEAE-Toyopearl (Cl⁻) (30 ml) and eluted with 50 % methanol in 1M sodium chloride solution. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The aqueous solution was adjusted to pH 4.5 with 1N hydrochloric acid and subjected to column chromatography on Diaion HP-20 (65 ml) and eluted with 80 % aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give object acylated compound (hereinafter referred to as FR139687 substance) (0.214 g).

IR (Nujol): 3300, 1620, 1500 cm⁻¹

NMR (DMSO-d₆ + D₂O, δ) :0.86 (3H, t, J=6.8 Hz), 0.97 (3H, d, J=6.8 Hz), 1.06 (3H, d, J=6.8 Hz), 1.2 - 1.5 (10H, m), 1.6 - 2.0 (5H, m), 2.2 - 2.5 (3H, m), 2.4 - 2.6 (1H, m), 3.18 (1H, m), 3.6 - 3.9 (1H, m), 4.0 - 4.6 (15H, m), 4.84 (1H, d, J=3 Hz), 4.90 (1H, d, J=3 Hz), 5.11 (1H, d, J=3 Hz), 6.76 (1H, d, J=8.3 Hz), 7.13 (1H, e), 7.25 (1H, d, J=8.3 Hz), 7.13 (1H, e), 7.1

Hz), 6.93 (1H, d, J=8.3 Hz), 7.13 (1H, s), 7.25 (1H, d, J=8.3 Hz), 7.39 (1H, s), 7.8 - 8.0 (3H, m), 8.44 (1H, s)

8.44 (1H, s)

FAB-MS e/z=1264 (M+Na)

The following compounds ($\underbrace{Preparations\ 13\ to\ 16}$) were obtained according to a similar manner to that of $\underbrace{Preparation}$ 5.

Preparation 13

N-(t-Butoxycarbonyl)-L-2-(2-naphthyl)glycine succinimido ester

IR (Nujol):

3350, 1800, 1770, 1730, 1680, 1500, 1200 cm⁻¹

Preparation 14

5 Succinimido 2-(4-biphenylyl)acetate

IR (Nujol):

1800, 1770, 1720, 1200 cm⁻¹

NMR (DMSO-d₆, δ): 2.82 (4H, s), 4.17 (2H, s), 7.30-7.50 (5H, m), 7.45 (2H, d, J=8.1Hz), 7.67 (2H, d, J=8.1Hz)

10 Preparation 15

Succinimido 4-t-butylbenzoate

1760, 1730, 1200, 1070, 990 cm⁻¹

15

NMR (DMSO-d₆, δ): 1.33 (9H, s), 2.89 (4H, s), 7.68 (2H, d, J=8.5Hz), 8.03 (2H, d, J=8.5Hz)

Preparation 16

Succinimido 4-(4-phenylbutoxy)benzoate

20

30

45

1730, 1600, 1240, 1170, 1070 cm⁻¹

J=8.9Hz)

25 Preparation 17

To neat 3,7-dimethyloctanol (5 ml) was added phosphorus tribromide (1.01 ml). The mixture was stirred for 4 hours at 60°C. The reaction mixture was added to a mixture of water and n-hexane. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 3,7-dimethyloctyl bromide (4.40 g).

IR (Neat):

2900, 1450 cm⁻¹

NMR (CDCI₃, δ):

0.87 (6H, d, J=6.6Hz), 0.89 (3H, d, J=6.4Hz), 1.1-1.3 (6H, m), 1.5-1.9 (4H, m), 3.3-3.5 (2H, m)

The following compounds (Preparations 18 to 23) were obtained according to a similar manner to that of Preparation 35 <u>11</u>.

Preparation 18

40 4-[4-(Octyloxy)phenoxy]benzoic acid

IR (Nujol):

1680, 1600, 1240, 840 cm⁻¹

NMR (DMSO-d₆, δ): 0.87 (3H, t, J=6.7Hz), 1.1-1.6 (10H, m), 1.71 (2H, m), 3.96 (2H, t, J=6.4Hz), 6.9-7.1 (6H, m),

7.92 (2H, d, J=8.7Hz), 12.8 (1H, br s)

Preparation 19

6-(Butoxy)-2-naphthoic acid (not included in the claims)

50 IR (Nujol):

1660, 1610, 1205 cm⁻¹

NMR (DMSO-d₆, δ): 0.96 (3H, t, J=7.29Hz), 1.48 (2H, qt, J=7.29Hz and 7Hz), 1.78 (2H, tt, J=7Hz and 6.45Hz), 4.12 (2H, t, J=6.45Hz), 7.24 (1H, dd, J=9.0Hz and 2.3Hz), 7.40 (1H, d, J=2.3Hz), 7.86 (1H, d,

J=8.7Hz), 7.94 (1H, d, J=8.7Hz), 8.01 (1H, d, J=9.0Hz), 8.52 (1H, s)

55 Preparation 20

6-Decyloxy-2-naphthoic acid (not included in the claims)

IR (Nujol):

1670, 1620, 1210 cm⁻¹

NMR (DMSO-d₆, δ): 0.85 (3H, t, J=6.7Hz), 1.2-1.6 (14H, m), 1.78 (2H, m), 4.11 (2H, t, J=6.4Hz), 7.23 (1H, dd, J=8.9Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.86 (1H, d, J=8.7Hz), 7.93 (1H, d, J=8.7Hz), 8.01 (1H, d,

J=8.9Hz), 8.5 (1H, s)

5

Preparation 21

6-Hexyloxy-2-naphthoic acid (not included in the claims)

10 IR (Nujol): 1660, 1620, 1290, 1210 cm⁻¹

NMR (DMSO-d₆, δ): 0.89 (3H, t, J=6.8Hz), 1.2-1.6 (6H, m), 1.78 (2H, quint, J=6.5Hz), 4.11 (2H, t, J=6.5Hz), 7.23 (1H, dd, J=9.0Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.86 (1H, d, J=8.7Hz), 7.94 (1H, d, J=8.7Hz),

8.01 (1H, d, J=9.0Hz), 8.52 (1H, s)

15 Preparation 22

6-Dodecyloxy-2-naphthoic acid (not included in the claims)

IR (Nujol):

1670, 1620, 1210 cm⁻¹

NMR (DMSO-d₆, δ): 0.85 (3H, t, J=6.7Hz), 1.20-1.60 (18H, m), 1.78 (2H, m), 4.11 (2H, t, J=6.5Hz), 7.22 (1H, dd, J=9.0Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.85 (1H, d, J=8.7Hz), 7.93 (1H, d, J=8.7Hz), 8.00

(1H, d, J=9.0Hz), 8.51 (1H, s), 12.90 (1H, s)

Preparation 23

25

30

20

6-(3,7-Dimethyloctyloxy)-2-naphthoic acid (not included in the claims)

IR (Nujol):

1660, 1610, 1290, 1210 cm⁻¹

NMR (DMSO- d_6 , δ): 0.84 (6H, d, J=6.6Hz), 0.94 (3H, d, J=6.1Hz), 1.1-1.4 (6H, m), 1.4-1.9 (4H, m), 4.15 (2H, t, t)

J=6.7Hz), 7.22 (1H, dd, J=9.0Hz and 2.4Hz), 7.41 (1H, d, J=2.4Hz), 7.86 (1H, d, J=8.6Hz), 7.93

(1H, d, J=8.6Hz), 8.01 (1H, d, J=9.0Hz), 8.52 (1H, s)

The following compounds (Preparations 24 to 31) were obtained according to a similar manner to that of Preparation 12.

35

Preparation 24

1-[4-(4-Octyloxy)phenoxy]benzoyl-1H-benzotriazole-3-oxide

40 IR (Nujol):

1770, 1730, 1600, 1500, 1230, 980 cm⁻¹

Preparation 25

1-(6-Butoxy-2-naphthoyl)-1H-benzotriazole-3-oxide

IR (Nujol):

1760, 1610, 1260, 1180, 1020 cm⁻¹

Preparation 26

50

1-(6-Decyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide

IR (Nujol):

1780, 1620, 1190, 1000 cm⁻¹

Preparation 27

55

45

1-(6-Hexyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide

IR (Nujol):

1780, 1610, 1190 cm⁻¹

NMR (DMSO-d₆, δ): 0.89 (3H, t, J=6.7Hz), 1.2-1.6 (6H, m), 1.79 (2H, m), 4.12 (2H, t, J=6.5Hz), 7.24 (1H, dd, J=9.0Hz. and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.41 (1H, t, J=8Hz), 7.54 (1H, t, J=8Hz), 7.72 (1H, d, J=8Hz). 7.88 (1H, d, J=8.7Hz), 7.90 (1H, d, J=8.7Hz), 7.97 (1H, d, J=8Hz), 8.02 (1H, d, J=9.0Hz), 8.51 (1H, s)

5

Preparation 28

1-(6-Dodecyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide

10 IR (Nujol): 1770, 1620, 1190, 1030, 730 cm⁻¹

NMR (DMSO-d₆, δ): 0.85 (3H, t, J=6.7Hz), 1.2-1.3 (18H, m), 1.78 (2H, m), 4.11 (2H, t, J=6.5Hz), 7.22 (1H, dd, J=9.0Hz) and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.40 (1H, t, J=8Hz), 7.55 (1H, t, J=8Hz), 7.73 (1H, d, J=8Hz), 7.85 (1H, d, J=8.7Hz), 7.93 (1H, d, J=8.7Hz), 7.99 (1H, d, J=8Hz), 8.00 (1H, d, J=9.0Hz), 8.51

(1H, s)

15

Preparation 29

1-[6-(3,7-Dimethyloctyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide

20 IR (Nujol): 1780, 1620, 1190 cm⁻¹

Preparation 30

1-[(2E,6E)-3,7,11-Trimethyl-2,6,10-dodecatrienoyl]-1H-benzotriazole-3-oxide

IR (Neat):

2900, 1780, 1620, 1420, 1070 cm⁻¹

Preparation 31

3,7-Dimethyl-6-octenyl bromide was obtained according to a similar manner to that of Preparation 17.

IR (Neat):

2900, 1440, 1380 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, d, J=6.3Hz), 1.0-1.5 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 1.57 (3H, s), 1.65 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 1.57 (3H, s), 1.7-2.1 (5H, m), 3.4-3.7 (2H, m), 3.4-3.7 (3H, s), 3.4-3.7 (3H

m), 5.08 (1H, m)

35

40

30

25

Preparation 32

To a suspension of sodium hydride (2.04 g) in N,N-dimethylformamide (50 ml) was added 4-hydroxypyridine (5 g) at room temperature. Octyl bromide (9.08 ml) was added thereto. The mixture was stirred for 2 hours at 50°C. The reaction mixture was added to a mixture of brine (100 ml), tetrahydrofuran (100 ml) and ethyl acetate (100 ml). The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-octyl-4-pyridone (14.7 g).

45

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6Hz), 1.1-1.4 (10H, m), 1.4-1.8 (2H, m), 3.81 (2H, t, J=7Hz), 6.05 (2H, d, J=8Hz).

7.63 (2H, d, J=8Hz)

Preparation 33

To a solution of 1-octyl-4-pyridone (10.9 g) in pyridine (100 ml) was added phosphorous pentasulfide (8.65 g) at room temperature. The mixture was stirred for 3 hours at 80°C. The reaction mixture was added to a mixture of water (200 ml) and methylene chloride (200 ml). The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-octyl-1,4-dihydropyridine-4-thione (5.27 g).

55 IR (Neat):

2910, 2850, 1620, 1460, 1110 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6Hz), 1.1-1.4 (10H, m), 1.5-1.9 (2H, m), 3.95 (2H, t, J=7Hz), 7.13 (2H, d, J=7Hz),

7.60 (2H, d, J=7Hz)

The following compounds (Preparations 34 to 36) were obtained according to a similar manner to that of Preparation 1.

Preparation 34

5

Methyl 2-(4-hydroxyphenyl)-2-methoxyacetate

IR (Nujol):

3350, 1740, 1610, 1600, 1220, 1100 cm⁻¹

NMR (DMSO-d₆, δ) : 3.23 (3H, s), 3.60 (3H, s), 4.73 (1H, s), 6.72 (2H, d, J=8.9Hz), 7.15 (2H, d, J=8.9Hz)

. EI-MS (e/z)

= 196 (M+)

Preparation 35

D-Tyrosine methyl ester hydrochloride

15

IR (Nujol):

3300, 1740, 1220 cm⁻¹

NMR (DMSO-d₆, δ): 3.02 (2H, m), 3.67 (3H, s), 4.16 (1H, t, J=6.7Hz), 6.72 (2H, d, J=8.4Hz), 7.01 (2H, d, J=8.4Hz),

8.58 (2H, s), 9.47 (1H, s)

20 Preparation 36

Methyl (4-hydroxyphenyl)glyoxylate

IR (Nujol):

3380, 1730, 1700, 1600, 1580, 1220 cm⁻¹

25

NMR (DMSO-d₆, δ): 3.91 (3H, s), 6.94 (2H, d, J=8.8Hz), 7.83 (2H, d, J=8.8Hz), 10.9 (1H, s)

Preparation 37

N-(t-Butoxycarbonyl)-D-tyrosine methyl ester was obtained according to a similar manner to that of Preparation 2.

30

IR (Nujol):

3360, 1700, 1680, 1290, 1270, 1250 cm⁻¹

NMR (DMSO-d₆, δ): 1.33 (9H, s), 2.73 (2H, m), 3.59 (3H, s), 4.05 (1H, m), 6.65 (2H, d, J=8.4Hz), 7.00 (2H, d,

J=8.4Hz), 7.23 (1H, d, J=7.9Hz), 9.23 (1H, s)

35 Preparation 38

To a solution of L-tyrosine methyl ester hydrochloride (1 g) in water (1.5 ml) was added sodium bicarbonate (0.363 g) under ice-cooling and stirred for 10 minutes, and then acetonitrile (7 ml), 37% formaldehyde aqueous solution (0.637 ml) and sodium cyanoborohydride (0.182 g) was added thereto at -5°C. The mixture was stirred for 2 hours at -5°C. The resultant insoluble material was filtered off, and the filtrate was extracted with ethyl acetate. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give N,N-dimethyl-L-tyrosine methyl ester (0.21 g).

IR (Nujol):

1730, 1260, 1010 cm⁻¹

NMR (DMSO-d₆, δ): 2.24 (6H, s), 2.72 (2H, m), 3.34 (1H, m), 3.53 (3H, s), 6.64 (2H, d, J=8.4Hz), 6.97 (2H, d,

J=8.4Hz), 9.18 (1H, s)

The following compounds (Preparations 39 to 44) were obtained according to a similar manner to that of Preparation 3.

50

40

45

Preparation 39

Methyl 2-(4-octyloxyphenyl)acetate

55 IR (Neat): 2910, 2850, 1730, 1240 cm⁻¹

J=6.4Hz), 6.85 (2H, d, J=8.7Hz), 7.15 (2H, d, J=8.7Hz)

Preparation 40

Ethyl 3-(4-octyloxyphenyl)propionate

IR (Neat):

2920, 2850, 1730, 1240 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.7Hz), 1.15 (3H, t, J=7.1Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 2.55 (2H, t, J=7.1Hz) J=7.2Hz), 2.77 (2H, t, J=7.2Hz), 3.90 (2H, t, J=6.4Hz), 4.03 (2H, q, J=7.1Hz), 6.81 (2H, d, J=8.6Hz), 7.11 (2H, d, J=8.6Hz)

10 Preparation 41

Methyl 2-(4-octyloxyphenyl)-2-methoxyacetate

2910, 2850, 1740, 1600, 1240, 1100 cm⁻¹

15

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 3.26 (3H, s), 3.62 (3H, s), 3.94 (2H, t, t) J=6.4Hz), 4.83 (1H, s), 6.91 (2H, d, J=8.7Hz), 7.27 (2H, d, J=8.7Hz)

EI-MS (e/z)

= 308 (M+)

Preparation 42

20

25

O4-Octyl-N-(t-butoxycarbonyl)-D-tyrosine methyl ester

3350, 1730, 1680, 1510, 1240, 1160 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.7Hz), 1.2-1.3 (10H, m), 1.68 (2H, m), 2.82 (2H, m), 3.60 (3H, s), 3.91 (2H, t, t, t) J=7.3Hz), 4.08 (1H, m), 6.81 (2H, d, J=8.6Hz), 7.12 (2H, d, J=8.6Hz), 7.25 (1H, d, J=8.0Hz)

Preparation 43

O4-Octyl-N,N-dimethyl-L-tyrosine methyl ester

30

IR (Neat): 2930, 2860, 1730, 1250 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.6Hz), 1.26 (10H, m), 1.68 (2H, m), 2.80 (2H, m), 3.33 (6H, s), 3.37 (1H, m), 3.53

(3H, s), 3.89 (2H, t, J=6.4Hz), 6.79 (2H, d, J=8.6Hz), 7.08 (2H, d, J=8.6Hz)

35 Preparation 44

Methyl (4-octyloxyphenyl)glyoxylate

IR (Neat):

2930, 2850, 1730, 1670, 1600, 1260, 1210, 1160 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.3Hz), 1.2-1.5 (10H, m), 1.6-1.9 (2H, m), 3.93 (3H, s), 4.10 (2H, t, J=6.5Hz), 7.12

(2H, d, J=8.9Hz), 7.92 (2H, d, J=8.9Hz)

The following compounds (Preparations 45 to 51) were obtained according to a similar manner to that of Preparation

45

<u>4</u>.

40

Preparation 45

4-(2-Butoxyethoxy)benzoic acid

50 IR (Nujol):

1670, 1610, 1260 cm⁻¹

NMR (DMSO-d₆, δ): 0.87 (3H, t, J=7.2Hz), 1.2-1.6 (4H, m), 3.45 (2H, t, J=6.4Hz), 3.70 (2H, t, J=4.4Hz), 4.16 (2H, t, J=6.4Hz)

J=4.4Hz), 7.02 (2H, d, J=8.9Hz), 7.88 (2H, d, J=8.9Hz), 12.63 (1H, s)

Preparation 46

55

2-(4-Octyloxyphenyl)acetic acid

IR (Nujol):

1680, 1240, 820, 780 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.8Hz), 1.1-1.5 (10H, m), 1.6-1.8 (2H, m), 3.47 (2H, s), 3.92 (2H, t, J=6.4Hz), 6.84 (2H, d, J=8.6Hz), 7.14 (2H, d, J=8.6Hz)

Preparation 47

5

10

3-(4-Octyloxyphenyl)propionic acid

IR (Nujol):

1680, 1500, 1200 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.3Hz), 1.1-1.5 (10H, m), 1.6-1.8 (2H, m), 2.47 (2H, t, J=7.2Hz), 2.74 (2H, t, J=7.2Hz), 3.90 (2H, t, J=6.4Hz), 6.81 (2H, d, J=8.6Hz), 7.11 (2H, d, J=8.6Hz), 1.10 (1H, br s)

. . .

Preparation 48

2-(4-Octyloxyphenyl)-2-methoxyacetic acid

15

IR (Nujol):

1760, 1720, 1600, 1500, 1240, 1180, 1100, 830 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 2.6-2.8 (2H, m), 3.26 (3H, s), 3.94 (2H, t, J=6.4Hz),

4.67 (1H, s), 6.90 (2H, d, J=8.6Hz), 7.27 (2H, d, J=8.6Hz)

20 Preparation 49

O4-Octyl-N-(t-butoxycarbonyl)-D-tyrosine

IR (Nujol):

3400-2900, 1700, 1500, 1240, 1160 cm⁻¹

NMR (DMSO-d₆, δ):

0.859 (3H, t, J=6.8Hz), 1.20-1.30 (10H, m), 1.32 (9H, s), 1.68 (2H, m), 2.67-2.95 (1H, m),

3.90 (2H, t, J=7Hz), 4.01 (1H, m), 6.81 (2H, d, J=8.6Hz), 7.02 (1H, d, J=8.3Hz), 7.13 (2H, d,

J=8.6Hz)

Preparation 50

30

35

25

O4-Octyl-N, N-dimethyl-L-tyrosine

IR (Neat):

2940, 2860, 2600, 1620, 1240 cm⁻

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.6Hz), 1.26 (10H, m), 1.68 (2H, m), 2.67 (6H, s), 2.8-3.6 (3H, m), 3.91 (2H, t,

J=6.4Hz), 6.85 (2H, d, J=8.5Hz), 7.16 (2H, d, J=8.5Hz)

Preparation 51

O4-Octyloxyphenyl)glyoxylic acid

40

IR (Neat):

1730, 1670, 1600, 1260, 1160 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.65-1.85 (2H, m), 4.09 (2H, t, J=6.5Hz), 7.12 (2H,

d, J=8.9Hz), 7.89 (2H, d, J=8.9Hz)

45 Preparation 52

N^{\tau}-Octyl-N-(t-butoxycarbonyl)-L-histidine was obtained from N-(t-butoxycarbonyl)-L-histidine methyl ester according to similar manners to those of Preparations 3 and 4.

50 NMR (DMSO-d₆, δ):

0.85 (3H, t, J=6.3Hz), 1.23 (10H, m), 1.35 (9H, s), 2.83 (2H, m), 3.90 (2H, t, J=7Hz), 4.0-4.2

(1H, m), 6.36 (1H, s), 7.02 (1H, d, J=8Hz), 7.75 (1H, s)

The following compounds (<u>Preparations 53 to 60</u>) were obtained according to a similar manner to that of <u>Preparation 11</u>.

55

Preparation 53

4-Octyloxyphthalic acid

IR (Neat):

2930, 2860, 2500, 1700, 1600, 1260 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.5-1.8 (2H, m), 4.05 (2H, t, J=6.2Hz), 7.03 (1H, d,

J=2.6Hz), 7.06 (1H, dd, J=8.4Hz and 2.6Hz), 7.72 (1H, d, J=8.4Hz)

5 Preparation 54

3-Methoxy-4-octyloxybenzoic acid

IR (Nujol):

2600, 1680, 1600, 1270, 1230 cm⁻¹

10 NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 3.80 (3H, s), 4.01 (2H, t, J=6.5Hz),

7.03 (1H, d, J=8.5Hz), 7.44 (1H, d, J=1.9Hz), 7.54 (1H, dd, J=8.5Hz and 1.9Hz)

Preparation 55

4-(4-Octyloxyphenyl)benzoic acid

IR (Nujol):

1670, 1600, 830, 770 cm⁻¹

NMR (DMSO- d_6 , δ):

0.87 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 4.01 (2H, t, J=6.4Hz), 7.04 (2H, d,

J=8.8Hz), 7.68 (2H, d, J=8.8Hz), 7.75 (2H, d, J=8.5Hz), 7.99 (2H, d, J=8.5Hz)

20

Preparation 56 (not included in the claims)

6-(2-Ethylhexyloxy)-2-naphthoic acid

25 IR (Nujol):

1660, 1610, 1280, 1200 cm⁻¹

NMR (DMSO- d_6 , δ):

0.88 (3H, t, J=7.3Hz), 0.92 (3H, t, J=7.3Hz), 1.2-1.6 (8H, m), 1.7-1.9 (1H, m), 4.01 (2H, d,

J=5.7Hz), 7.23 (1H, dd, J=8.9 and 2.4Hz), 7.42 (1H, d, J=2.4Hz), 7.86 (1H, d, J=8.7Hz), 7.94

(1H, d, J=8.7Hz), 8.01 (1H, d, J=8.9Hz), 8.51 (1H, s), 12.9 (1H, s)

30 Preparation 57 (not included in the claims)

6-(3,7-Dimethyl-6-octenyloxy)naphthoic acid

IR (Nujol):

1660, 1610, 1290, 1200 cm⁻¹

NMR (DMSO-d₆, δ):

0.95 (3H, d, J=6.1Hz), 1.1-1.5 (2H, m), 1.57 (3H, s), 1.64 (3H, s), 1.6-2.1 (5H, m), 4.15 (2H,

t, J=6.7Hz), 5.10 (1H, t, J=7.1Hz), 7.22 (1H, dd, J=8.9Hz and 2.3Hz), 7.42 (1H, d, J=2.3Hz), 7.86 (1H, d, J=8.6Hz), 7.94 (1H, d, J=8.6Hz), 8.01 (1H, d, J=8.9Hz), 8.52 (1H, s), 12.89 (1H, s)

Preparation 58 (not included in the claims)

40

45

50

35

6-(3,7-Dimethyl-2,6-octadienyloxy)naphthoic acid

IR (Nujol):

1660, 1620, 1210 cm⁻¹

NMR (DMSO-d₆, δ):

1.57 (3H, s), 1.60 (3H, s), 1.76 (3H, s), 2.07 (4H, m), 4.70 (2H, d, J=6.5Hz), 5.07 (1H, m),

5.51 (1H, t, J=6.5Hz), 7.24 (1H, dd, J=8.9Hz and 2.4Hz), 7.41 (1H, d, J=2.4Hz), 7.85 (1H, d,

J=8.7Hz), 7.94 (1H, d, J=8.7Hz), 8.01 (1H, d, J=8.9Hz), 8.52 (1H, s), 12.88 (1H, s)

Preparation 59

(2E)-3-(4-Octyloxyphenyl)acrylic acid

IR (Nujol):

1660, 1600, 1240 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 4.00 (2H, t, J=6.4Hz), 6.36 (1H, d,

J=16Hz), 6.95 (2H, d, J=8.7Hz), 7.54 (1H, d, J=16Hz), 7.61 (2H, d, J=8.7Hz), 12.20 (1H, br s)

Preparation 60 (not included in the claims)

Sodium 6-octyloxy-2-naphthalene sulfonate

IR (Nujol):

1230, 1180, 860, 820 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6Hz), 1.1-1.6 (10H, m), 4.06 (2H, t, J=5Hz), 7.08 (1H, d, J=9Hz), 7.21 (1H, s),

7.79 (1H, d, J=9Hz), 8.00 (1H, s)

Preparation 61 (not included in the claims)

To a solution of thionyl chloride (0.692 ml) and N,N-dimethylformamide (0.022 ml) was added sodium 6-octyloxy-2-naphthalenesulfonate (1 g) under ice-cooling and stirred for 1.5 hours at 95°C. The reaction mixture was evaporated under reduced pressure to give 6-octyloxy-2-naphthylsulfonyl chloride (1 g).

10

20

IR (Nujol):

1610, 1260, 1160 cm⁻¹

NMR (CDCI₃, δ):

0.90 (3H, t, J=6.2Hz), 1.2-1.7 (10H, m), 1.8-2.0 (2H, m), 4.12 (2H, t, J=6.5Hz), 7.20 (1H, d,

J=2.2Hz), 7.32 (1H, dd, J=9.0Hz and 2.2Hz), 7.84-7.97 (3H, m), 8.49 (1H, s)

The following compounds (<u>Preparations 62 to 71</u>) were obtained according to a similar manner to that of <u>Preparation 12</u>.

Preparation 62

1-(4-octylbenzoyl)-1H-benzotriazole-3-oxide IR (Neat) : 2930, 2850, 1780, 1610, 1240, 990 cm⁻¹

Preparation 63

1-[4-(4-octyloxyphenyl)benzoyl]-1H-benzotriazole-3-oxide

25 IR (Nujol):

1770, 1600, 980 cm⁻¹

Preparation 64

30 1-[6-(2-Ethylhexyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide

IR (Nujol):

1770, 1620, 1270, 1180 cm⁻¹

NMR (CDCI₃, δ):

0.93 (3H, t, J=7.1Hz), 0.98 (3H, t, J=7.4Hz), 1.3-1.7 (8H, m), 1.7-2.0 (1H, m), 4.03 (2H, d,

J=5.7Hz), 7.22 (1H, d, J=2.2Hz), 7.29 (1H, dd, J=8.9Hz, 2.2Hz), 7.4-7.7 (3H, m), 7.87 (1H,

d, J=9.5Hz), 7.92 (1H, d, J=9.5Hz), 8.1-8.2 (2H, m), 8.80 (1H, s)

Preparation 65

1-[6-(3,7-Dimethyl-6-octenyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide

IR (Neat):

2900, 1770, 1620, 1180 cm⁻¹

Preparation 66

45 1-[6-{(E)-3,7-Dimethyl-2,6-octadienyloxy}-2-naphthoyl]-1H-benzotriazole-3-oxide

IR (Nujol):

1770, 1620, 1270, 1180 cm⁻¹

Preparation 67

50

35

40

1-(2-Anthrylcarbonyl)-1H-benzotriazole-3-oxide

IR (Nujol):

1780, 1200, 720, 740 cm⁻¹

55 Preparation 68

1-[2-(4-octyloxyphenyl)acetyl]-1H-benzotriazole-3-oxide

IR (Nujol):

1730, 1460, 1420, 1250, 1130 cm⁻¹

Preparation 69

1-[3-(4-octyloxyphenyl)propionyl]-1H-benzotriazole-3-oxide

IR (Nujol):

1730, 1420, 1340, 1240, 950 cm⁻¹

Preparation 70

10

5

1-[(E)-3-(4-octyloxyphenyl)acryloyl]-1H-benzotriazole-3-oxide

IR (Nujol):

1770, 1600, 1260, 1080 cm⁻¹

15 Preparation 71

1-(O⁴-octyl-N,N-dimethyl-L-tyrosyl)-1H-benzotriazole-3-oxide

IR (Neat):

2930, 2850, 1800, 1610 cm⁻¹

20

25

30

35

Preparation 72

To a suspension of lithium aluminum hydride (4.05 g) in tetrahydrofuran (475 ml) was added dropwise a solution of 4-octyloxybenzaldehyde (25 g) in tetrahydrofuran (25 ml) at $55 \sim 60^{\circ}\text{C}$. The reaction mixture was stirred under reflux for 1 hour, and thereto was added sodium fluoride (35.84 g) and water (11.52 ml) under ice-cooling. The mixture was stirred for 30 minutes, and filtrated. The filtrate was evaporated in vacuo to give 4-octyloxybenzyl alcohol (25.1 g) as crystals.

IR (Nujol):

3200, 1605, 1510 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.7Hz), 1.26-1.38 (10H, m), 1.62-1.72 (2H, m), 3.92 (2H, t, J=6.5Hz), 4.40 (2H,

d, J=5.7Hz), 5.03 (1H, t, J=5.7Hz), 6.85 (2H, d, J=8.6Hz), 7.20 (2H, d, J=8.6Hz)

Preparation 73

To a suspension of 4-octyloxybenzyl alcohol (25 g), N-hydroxyphthalimide (17.15 g) and triphenylphosphine (27.74 g) in tetrahydrofuran (250 ml) was added dropwise diethyl azodicarboxylate (18.4 g) under ice-cooling. The reaction mixture was stirred at room temperature for 2 hours, and evaporated in vacuo. The residue was purified by chromatography on silica gel to give N-(4-octyloxybenzyloxy)phthalimide (33.45 g) as crystals.

IR (Nujol):

1780, 1725, 1605, 1580, 1505 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, m), 1.26 (10H, m), 1.70 (2H, m), 3.95 (2H, t, J=6.5Hz), 5.08 (2H, s), 6.93 (2H, d,

J=8.6Hz), 7.40 (2H, d, J=8.6Hz), 7.85 (4H, s)

Preparation 74

45

To a solution of N-(4-octyloxybenzoyloxy)phthalimide (4.13 g) in tetrahydrofuran (16 ml) was added hydrazine-hydrate (0.53 ml) at room temperature. After the mixture was stirred at the same temperature for 1 hour, the precipitate was filtered off. To the filtrate was added water (6 ml) and 4-hydroxyphenylglyoxylic acid (1.5 g) at room temperature. The mixture was maintained at pH 4~4.5 with aqueous sodium bicarbonate solution for 2 hours, thereto was added ethyl acetate, and adjusted to pH 2 with 1N hydrochloric acid. The separated organic layer was washed with brine, and dried over magnesium sulfate. The organic solvent was evaporated in vacuo to give 2-(4-hydroxyphenyl)-2-(4-octyloxybenzyloxyimino)acetic acid (3.4 g).

IR (Nujol):

3400, 1715, 1605, 1590, 1505 cm⁻¹

55 NMR (DMSO-d₆, δ):

0.86 (3H, m), 1.25 (10H, m), 1.69 (2H, m), 3.94 (2H, t, J=6.4Hz), 5.07 (2H, s), 6.82 (2H, d,

J=8.7Hz), 6.90 (2H, d, J=8.6Hz), 7.29 (2H, d, J=8.6Hz), 7.35 (2H, d, J=8.7Hz)

The following compounds (Preparations 75 and 76) were obtained according to a similar manner to that of Prep-

aration 74

Preparation 75

2-Phenyl-2-(4-octyloxybenzyloxyimino)acetic acid

IR (Nujol):

1720, 1610, 1585, 1515 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.7Hz), 1.26 (10H, m), 1.69 (2H, m), 3.94 (2H, t, J=6.5Hz), 5.13 (2H, s), 6.91

(2H, d, J=8.6Hz), 7.22-7.49 (7H, m)

Preparation 76

2-(4-Octyloxybenzyloxyimino)acetic acid

15 IR (Nujol):

1700, 1670, 1600 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.2Hz), 1.26 (10H, m), 1.70 (2H, m), 3.95 (2H, t, J=6.5Hz), 5.13 (2H, s), 6.91

(2H, d, J=8.6Hz), 7.29 (2H, d, J=8.6Hz), 7.56 (1H, s)

Preparation 77

20

25

30

35

5

10

A solution of 4-octyloxyphenylglyoxylic acid (0.935 g) in a mixture of water (9 ml) and tetrahydrofuran (18 ml) and adjusted to pH 3.5-4 with 1N hydrochloric acid and a methoxyamine hydrochloride (0.337 g) was added thereto at room temperature. The mixture was stirred for 2 hours at room temperature maintaining pH 3.5~4 with 1N hydrochloric acid. The reaction mixture was added to ethyl acetate. The organic layer was separated and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 2-(4-octyloxy-phenyl)-2-methoxyiminoacetic acid (0.57 g).

IR (Nujol):

1700, 1600, 1250, 1030 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.3Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 3.89 (3H, s), 3.99 (2H, t, J=6.4Hz),

7.00 (2H, d, J=8.9Hz), 7.45 (2H, d, J=8.9Hz), 14.05 (1H, s)

Preparation 78 (not included in the claims)

To a mixture of 2,3,4,5,6-pentafluorobenzoic acid (1 g) and 2,2,3,3,4,4,5,5-octafluoropentanol (1.18 g) in N,N-dimethylformamide (5 ml) was added 62% sodium hydride (0.39 g) at room temperature. The mixture was stirred at the same temperature for 1 hour, and thereto was added a mixture of water and ethyl acetate. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by chromatography on silica gel to give 4-(2,2,3,3,4,4,5,5-octafluoropentyloxy)-2,3,5,6-tetrafluorobenzoic acid (923.0 mg).

40

IR (Nujol):

1700, 1580 cm⁻¹

NMR (DMSO-d₆, δ):

4.96 (2H, t, J=14.2Hz), 7.10 (1H, tt, J=5.6Hz and 50.2Hz)

Preparation 79 (not included in the claims)

45

4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Pentadecafluorooctyloxy)-2,3,5,6-tetrafluorobenzoic acid

IR (Nujol):

3400, 1640, 1560 cm⁻¹

NMR (DMSO-d₆, δ):

4.95 (2H, t, J=14.0Hz)

50

The following compounds ($\underline{\text{Preparations 80 to 90}}$) were obtained according to a similar manner to that of $\underline{\text{Preparation}}$ $\underline{5}$.

Preparation 80

55

Succinimido 2-(4-hydroxyphenyl)-2-(4-octyloxybenzyloxyimino)acetate

IR (Nujol):

1800, 1770, 1700, 1600 cm⁻¹

Preparation 81

Succinimido 2-phenyl-2-(4-octyloxybenzyloxyimino)acetate

IR (Nujol):

1780, 1730, 1605 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, m), 1.26 (10H, m), 1.69 (2H, m), 2.90 (4H, m), 3.94 (2H, t, J=6.4Hz), 5.30 (2H, s),

6.91 (2H, d, J=8.6Hz), 7.25-7.56 (7H, m)

Preparation 82

10

15

Succinimido 2-(4-Octyloxybenzyloxyimino)acetate

IR (Nujol):

1760, 1725, 1600, 1580 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.7Hz), 1.26 (10H, m), 1.70 (2H, m), 2.85 (4H, s), 3.96 (2H, m), 5.28 (2H, s),

6.91 (2H, d, J=8.6Hz), 7.33 (2H, d, J=8.6Hz), 8.12 (1H, s)

Preparation 83 (not included in the claims)

Succinimido 4-(2,2,3,3,4,4,5,5-octafluoropentyloxy)-2,3,5,6-tetraflurobenzoate

20

IR (Nujol):

3500, 1770, 1740, 1640 cm⁻¹

NMR (DMSO- d_6 , δ):

2.90 (4H, s), 5.23 (2H, t, J=13.8Hz), 7.11 (1H, tt, J=50.2Hz and 5.6Hz)

Preparation 84 (not included in the claims)

25

Succinimido 4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyloxy)-2,3,5,6-tetrafluorobenzoate

IR (Nujol):

1735, 1620, 1600 cm⁻¹

NMR (DMSO-d₆, δ):

2.90 (4H, s), 5.12 (2H, t, J=13.8Hz)

30

Preparation 85

Succinimido 3-methoxy-4-octyloxybenzoate

35 IR (Nujol):

1760, 1730, 1600, 1280, 1200, 880 cm⁻¹

NMR (DMSO-d₆, δ):

0.86 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.6-1.9 (2H, m), 2.88 (4H, s), 3.84 (3H, s), 4.09 (2H, t, J=6.5Hz), 7.19 (1H, d, J=8.6Hz), 7.49 (1H, d, J=2.0Hz), 7.73 (1H, dd, J=8.6 and 2.0Hz)

Preparation 86

40

45

Succinimido 4-(2-butoxyethoxy)benzoate

IR (Nujol):

1730, 1600, 1250, 1060 cm⁻¹

NMR (DMSO- d_6 , δ):

NMR (Dmso-d₆, δ):

0.87 (3H, t, J=7.2Hz), 1.2-1.6 (4H, m), 2.89 (4H, s), 3.46 (2H, t, J=6.3Hz), 3.73 (2H, t, J=4.4Hz),

4.25 (2H, t, J=4.4Hz), 7.18 (2H, d, J=9.0Hz), 8.04 (2H, d, J=9.0Hz)

Preparation 87

Succinimido 2-(4-Octyloxyphenyl)-2-methoxyacetate

50

IR (Nuiol): 1810

1810, 1740, 1610, 1250, 1210, 1100 cm⁻¹
0.86 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 2.80 (4H, s), 3.35 (3H, s), 3.97 (2H,

t, J=6.4Hz), 5.35 (1H, s), 6.96 (2H, d, J=8.7Hz), 7.38 (2H, d, J=8.7Hz)

55 Preparation 88

O4-Octyl-N-(t-butoxycarbonyl)-D-tyrosine succinimido ester

IR (Nujol):

3370, 1780, 1730, 1700, 1250, 1200 cm⁻¹

Preparation 89

5 Succinimido 2-(4-octyloxyphenyl)-2-methoxyiminoacetate

IR (Nujol):

1800, 1780, 1730, 1600, 1250, 1180, 1130 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.6Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 2.89 (4H, s), 4.01 (3H, s), 4.03 (2H,

t, J=6.4Hz), 7.08 (2H, d, J=8.9Hz), 7.68 (2H, d, J=8.9Hz)

Preparation 90

N^τ-Octyl-N-(t-butoxycarbonyl)-L-histidine succinimido ester

15 IR (Neat):

10

25

1810, 1780, 1730, 1500, 1360, 1200, 1160 cm⁻¹

Preparation 91

4-Octyloxyphthalic anhydride was obtained from 4-octyloxyphthalic acid according to a similar manner to that of Preparation 5.

IR (Neat):

2910, 2850, 1840, 1760, 1640, 1610, 1290, 1260 cm⁻¹

NMR (DMSO- d_6 , δ):

0.86 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.6-1.9 (2H, m), 4.19 (2H, t, J=6.5Hz), 7.47 (1H, dd,

J=8.4Hz and 2.2Hz), 7.57 (1H, d, J=2.2Hz), 7.98 (H, d, J=8.4Hz)

Preparation 92

N-Octyloxycarbonyloxysuccinimide was obtained according to a similar manner to that of Preparation 5.

30 IR (Neat):

2960, 2850, 1780, 1740, 1260, 1230 cm⁻¹

NMR (CDCI₃, δ):

0.89 (3H, t, J=6.7Hz), 1.2-1.4 (10H, m), 1.6-1.8 (2H, m), 2.84 (4H, s), 4.32 (2H, t, J=6.7Hz)

Preparation 93

To a solution of octyl phenyl ether (1.53 g) in chloroform (6 ml) was added chlorosulfonic acid at 0°C. The mixture was stirred at room temperature for 30 minutes, then the mixture was poured into a mixture of water and tetrahydrofuran.

The separated organic layer was washed with sodium chloride aqueous solution, dried over magnesium sulfate and then the solvent was evaporated in vacuo. The residue was subjected to a column chromatography on silica gel to give 4-octyloxyphenylsulfonyl chloride (1.25 g).

IR (Nujol):

1600, 1580, 1500, 1380, 1180 cm⁻¹

NMR (CDCI₃, δ):

0.89 (3H, t, J=6.6Hz), 1.20-1.50 (10H, m), 1.80 (2H, m), 4.06 (2H, t, J=6.4Hz), 7.03 (2H, d,

J=9.0Hz), 7.96 (2H, d, J=9.0Hz)

In the following, the structures of the compounds of Examples 13 to 53 are shown.

55

50

In the following formulae, ¹Bu means t-butyl, and p-TsOH means p-toluenesulfonic acid.

 mample No.	Compound No.	R
13	FR139835	- coo(сн ₂) ₇ сн ₃
14	FR139537	-co-()- ^t Bu
15	FR141145	-co-(CH ₂) ₂ O(CH ₂) ₃ CH ₃
16	FR139538	-co-(CH ₂) ₄ -()

	Example No.	Compound No.	R			
10	17	FR140215	-co- ССН ₂) 7 ^{СН} 3			
15	18	FR140216	-co-———————————————————————————————————			
20	19	FR140727	F F -COOCH ₂ (CF ₂) ₄ H			
25 30	20	FR143301	F F -cocoH ₂ (CF ₂) ₆ CF ₃			
35	21	FR140495	-сосн ₂ -			
40	22	FR139503	осн ₃ -сосн———-о(сн ₂) ₇ сн ₃			
45	23	FR139500	инсоо [†] ви -соснсн ₂ о(сн ₂) ₇ сн ₃			
50	24	FR139501	NHCOO [†] Bu			
55	. <u></u>	L				

		·	
5	Example No.	Compound No.	R .
10	25	FR139502	NHCOO ^t Bu -cochch ₂ N-(ch ₂) ₇ ch ₃
15	26	FR138959	OCH ₃ N -co-c-\(-\frac{1}{2} \) -o(cH ₂) ₇ CH ₃
20	27	FR140291	о-сн ₂ -о(сн ₂) ₇ сн ₃ N -со-сон
30	28	FR141580	O-CH ₂ -O(CH ₂) ₇ CH ₃ N -co-C-
35 40	29	FR141579	O-CH ₂ -O(CH ₂) ₇ CH ₃ N N -CO-CH
45	30	FR141146	
50	31	FR140731	-co-(CH ₂) ₇ CH ₃
	32	FR140217	-co-(CH ₂) ₇ CH ₃
55			

		T	T
5	Example No.	Compound No.	R
	33	FR142472	-co-(СH ₂) ₇ СH ₃
10	34	FR140496	-co-CH ₂) ₃ CH ₃
15	35	FR140497	-co-CH ₂) ₅ CH ₃
25	36	FR143483	-co-\
30	37	FR140728	-co-Ch ₂) ₉ CH ₃
35	38	FR142172	-co-(
40	39	FR143326	-co-
45	40	FR142390	-co-(
50	41	FR140729	-co-CH ₂) ₁₁ CH ₃
	42	FR140730	-co
55			

5	Example No.	Compound No.	R
	43	FR143020	-сосн ₂ -о(сн ₂) ₇ сн ₃
10	44	FR143021	-co(cH ₂) ₂
15	45	FR141315	-co————————————————————————————————————
20	46	FR140105	n(сн ₃) ₂ -со-снсн ₂ ————————————————————————————————————
25	47	FR141564	-so ₂
30	48	FR143170	-so ₂
35	49	FR138912	NH ₂ · p-TsOH -CO-CHCH ₂ -CO(CH ₂) ₇ CH ₃ (L)
45	50	FR138960	-coch ₂ s-(ch ₂) ₇ ch ₃
50	51	FR138727	-coch-(ch ₂) ₇ CH ₃

	mple	Compound No.	R
5:	2	FR138912	NH ₂ · p-TsOH -co-chch ₂ -\(\(_\)\)-o(ch ₂) ₇ ch ₃
5:	3	FR138960	Br ⊖ -coch ₂ s-√ N (CH ₂) ₇ CH ₃

25

30

35

5

10

15

Example 13

FR139835 substance was obtained by reacting FR133303 substance with N- octyloxycarbonyloxysuccinimide according to a similar manner to that of Example 3.

IR (Nujol): 3300, 1620 cm⁻¹ FAB-MS e/z = 1137 (M + Na)

Example 14

FR139537 substance was obtained by reacting FR139303 substance with succinimido 4-t-butylbenzoate according to a similar manner to that of Example 3.

IR (Nujol):

3300. 1620 cm⁻¹

NMR (D_2O , δ):

1.05 (3H, d, J=6.9Hz), 1.15 (3H, d, J=5.9Hz), 1.33 (9H, s), 2.0-2.3 (3H, m), 2.4-2.6 (3H, m), 2.7-2.9 (1H, m), 3.4-3.6 (1H, m), 3.8-4.9 (12H, m), 5.07 (2H, m), 5.40 (1H, d, J=3Hz), 7.06 (1H, d, J=8.2Hz), 7.08 (1H, dd, J=8.2Hz and 2Hz), 7.27 (1H, d, J=2Hz), 7.60 (1H, d, J=8.6Hz), 7.75 (1H,

d, J=8.6Hz)

Example 15

40

45

50

FR141145 substance was obtained by reacting FR133303 substance with succinimido 4-(2-butoxyethoxy)benzoate according to a similar manner to that of Example 3.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆, + D_2 O, δ) :0.88 (3H, t, J=7.3Hz), 0.96 (3H, d, J=6.7Hz), 1.04 (3H, d, J=5.7Hz), 1.2-1.6 (4H, m), 1.7-2.0

(3H, m), 2.1-2.65 (4H, m), 3.16 (1H, m), 3.7-4.5 (20H, m), 4.78 (1H, d, J=3Hz), 4.86 (1H, d, J=3.8Hz), 5.02 (1H, d, J=3Hz), 6.74 (1H, d, J=8.2Hz), 6.79 (1H, d, J=8.2Hz), 7.00 (2H, d,

J=8.9Hz), 7.06 (1H, s), 7.87 (2H, d, J=8.9Hz)

FAB-MS e/z =

1201 (M + Na)

Example 16

FR139538 substance was obtained by reacting FR133303 substance with succinimido 4-(4-phenylbutoxy)benzoate according to a similar manner to that of Example 3.

55 IR (Nujol): 3300, 1620 cm⁻¹ FAB-MS e/z = 1233 (M + Na)

Example 17

0

5

FR140215 substance was obtained by reacting FR133303 substance with 4-octyloxyphthalic anhydride according to a similar manner to that of Example 3.

IR (Nujol): 3300, 1620 cm⁻¹ FAB-MS e/z = 1257 (M + Na)

Example 18

FR140216 substance was obtained by reacting FR133303 substance with succinimido 3-methoxy-4-octyloxybenzoate according to a similar manner to that of Example 3.

IR (Nujol): 3300, 1620 cm^{-1} FAB-MS e/z = 1243 (M + Na)

15 Example 19

FR140727 substance was obtained by reacting FR133303 substance with succinimido 4-(2,2,3,3,4,4,5,5-octafluor-opentyloxy)-2,3,5,6-tetrafluorobenzoate according to a similar manner to that of <u>Example 3</u>.

20 IR (Nujol): 3300, 1630 cm⁻¹ FAB-MS e/z: 1387 (M + Na)

Example 20

FR143301 substance was obtained by reacting FR133303 substance with succinimido 4- (2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyloxy)-2,3,5,6-tetrafluorobenzoate according to a similar manner to that of Example 3.

IR (Nujol): 3300, 1630 cm⁻¹ FAB-MS e/z = 1534 (M⁺)

Example 21

30

35

40

55

FR140495 substance was obtained by reacting FR133303 substance with succinimido 2-(4-biphenylyl)acetate according to a similar manner to that of Example 3.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

1.0-1.1 (6H, m), 1.9-2.2 (3H, m), 2.3-2.6 (3H, m), 2.7-2.85 (1H, m), 3.35 (1H, m), 3.58 (2H, s), 3.65-4.7 (13H, m), 4.93 (1H, d, J=3Hz), 5.04 (1H, d, J=3.8Hz), 5.25 (1H, d, J=3Hz), 6.85

(1H, d, J=8.3Hz), 7.01 (1H, dd, J=8.3Hz and 2Hz), 7.3-7.6 (10H, m)

Example 22

FR139503 substance was obtained by reacting FR133303 substance with succinimido 2-(4-octyloxyphenyl)-2-methoxyacetate according to a similar manner to that of <u>Example 3</u>.

45 IR (Nujol): 3330, 1620 cm⁻¹ FAB-MS e/z = 1257 (M + Na)

Example 23

FR139500 substance was obtained by reacting FR133303 substance with O⁴-octyl-N-(t-butoxycarbonyl)-D-tyrosine succinimido ester according to a similar manner to that of Example 3.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.90 (3H, t, J=6.8Hz), 1.06 (3H, d, J=6.8Hz), 1.17 (3H, d, J=6.7Hz), 1.20-1.30 (10H, m), 1.35 (9H, s), 1.74 (2H, m), 1.9-2.1 (3H, m), 2.45 (3N, m), 2.76 (1H, m), 3.0-3.1 (1H, m), 3.37 (1H, m), 3.7-4.6 (18H, m), 4.94 (1H, d, J=3Hz), 5.01 (1H, d, J=3.8Hz), 5.25 (1H, d, J=3Hz), 6.79 (2H, d, J=8.5Hz), 6.83 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2Hz), 7.12 (2H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz), 7.12 (2H, d, J=8.3Hz), 7.12 (2H, d, J=8.3Hz), 7.12 (2H, d, J=8.3Hz), 7.12 (2H, d, J=8.3Hz), 7.13 (2H, d, J=8.3Hz), 7.14 (2H, d, J=8.3Hz), 7.15 (2H, d,

J=8.5Hz), 7.31 (1H, d, J=2Hz)

Example 24

FR139501 substance was obtained by reacting FR133303 substance with N-(t-butoxycarbonyl)-L-2-(2-naphthyl) glycine succinimide ester according to a similar manner to that of Example 3.

IR (Nujol):

5

3300, 1620 cm⁻¹

Example 25

FR139502 substance was obtained by reacting FR133303 substance with N^τ-octyl-N-(t-butoxycarbonyl)-L-histidine succinimido ester according to a similar manner to that of Example 3.

IR (Nujol): 3300, 1620 cm^{-1} FAB-MS e/z = 1330 (M + Na)

15 Example 26

FR138959 substance was obtained by reacting FR133303 substance with succinimido 2-(4-octyloxyphenyl)-2-methoxyiminoacetate according to a similar manner to that of <u>Example 3</u>.

20 IR (Nujol):

25

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.91 (3H, t, J=6.6Hz), 1.06 (3H, d, J=6.8Hz), 1.25 (3H, d, J=6.3Hz), 1.25-1.6 (10H, m), 1.65-1.9 (2H, m), 1.9-2.2 (3H, m), 2.3-2.65 (3H, m), 1.75-1.9 (1H, m), 3.3-3.5 (1H, m), 3.95 (3H, s), 3.7-4.75 (16H, m), 5.03 (1H, d, J=3.0Hz), 5.11 (1H, d, J=3.7Hz), 5.46 (1H, d, J=2.7Hz), 6.86 (1H, d, J=8.2Hz), 6.89 (2H, d, J=8.9Hz), 7.01 (1H, dd, J=8.2Hz and 2Hz), 7.31 (1H, d, J=2Hz),

7.54 (2H, d, J=8.9Hz)

FAB-MS e/z =

1270 (M + Na)

Example 27

FR140291 substance was obtained by reacting FR133303 substance with succinimido 2-(4-hydroxyphenyl)-2-(4-octyloxybenzyloxyimino)acetate according to a similar manner to that of <u>Example 3</u>.

IR (Nujol): 3250, 1650, 1620 cm⁻¹ FAB-MS e/z = 1363 (M + Na)

35 Example 28

FR141580 substance was obtained by reacting FR133303 substance with succinimido 2-phenyl-2-(4-octyloxyben-zyloxyimino)acetate according to a similar manner to that of <u>Example 3</u>.

IR (Nujol): 3300, 1646 cm⁻¹ FAB-MS e/z = 1346 (M + Na)

Example 29

FR141579 substance was obtained by reacting FR133303 substance with succinimido 2-(4-octyloxybenzyloxyimino)acetate according to a similar manner to that of <u>Example 3</u>.

IR (Nujol): 3250, 1650 cm $^{-1}$ FAB-MS e/z = 1270 (M + Na)

Example 30

50

55

40

FR141146 substance was obtained by reacting FR133303 substance with 1-[(2E,6E)-3,7,11-trimethyl-2,6,10-dodecatrienoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of <u>Example 12</u>.

IR (Nujol):

3300, 1620, 1040 cm⁻¹

NMR (CD₃OD, δ):

1.06 (3H, d, J=6.8Hz), 1.19 (3H, d, J=5.9Hz), 1.60 (3H, s), 1.62 (3H, s), 1.66 (3H, s), 1.9-2.2 (11H, m), 2.05 (3H, s), 2.3-2.6 (3H, m), 2.7-2.9 (1H, m), 3.35 (1H, m), 3.7-5.0 (14H, m), 5.08 (4H, m), 5.27 (1H, d, J=2.8Hz), 5.77 (1H, s), 6.86 (1H, d, J=8.3Hz), 7.04 (1H, dd, J=8.3Hz and 1.9Hz), 7.32 (1H, d, J=1.9Hz)

Example 31

FR140731 substance was obtained by reacting FR133303 substance with 1-(4-octylbenzoyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620, 1040 cm⁻¹

NMR (CD₃OD, δ):

0.86 (3H, t, J=6.8Hz), 1.06 (3H, d, J=6.8Hz), 1.21 (3H, d, J=5.8Hz); 1.25-1.45 (10H, m), 1.55-1.75 (2H, m), 1.9-2.25 (3H, m), 2.35-2.6 (3H, m), 2.65 (2H, t, J=7.5Hz), 2.81 (1H, m), 3.32(1H, m), 3.7-4.8(14H, m), 4.98(1H, d, J=3Hz), 5.09(1H, d, J=3.9Hz), 5.31(1H, d, J=3Hz), 6.86 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2Hz), 7.24 (2H, d, J=8.2Hz), 7.33 (1H, d,

J=2Hz), 7.74 (2H, d, J=8.2Hz)

FAB-MS e/z =

1197 (M + Na)

Example 32

15

10

Ç

5

FR140217 substance was obtained by reacting FR133303 substance with 1-[4-(4-octyloxy)phenoxy]benzoyl-1Hbenzotriazole-3-oxide according to a similar manner to that of Example 12. IR (Nujol): 3300, 1620 cm⁻¹

FAB-MS e/z = 1305 (M + Na)

20

25

30

Example 33

FR142472 substance was obtained by reacting FR133303 substance with 1-[4-(4-octyloxyphenyl)benzoyl]-1Hbenzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.88 (3H, t, J=6.7Hz), 1.06 (3H, d, J=6.8Hz), 1.23 (3H, d, J=6.1Hz), 1.3-1.6 (10H, m), 1.8-1.9 (2H, m), 1.9-2.3 (3H, m), 2.3-2.7 (3H, m), 2.9-3.0 (1H, m), 3.39 (1H, m), 3.7-4.7 (16H, m), 4.99 (1H, d, J=3.0Hz), 5.10 (1H, d, J=3.7Hz), 5.35 (1H, d, J=2.7Hz), 6.87 (1H, d, J=8.3Hz), 6.99 (2H, d, J=8.8Hz), 7.04 (1H, dd, J=8.3Hz and 1.9Hz), 7.33 (1H, d, J=1.9Hz), 7.58 (2H, d,

J=8.8Hz), 7.62 (2H, d, J=8.4Hz), 7.87 (2H, d, J=8.4Hz)

FAB-MS e/z =

1289 (M + Na)

Example 34

35

40

FR140496 substance was obtained by reacting FR133303 substance with 1-(6-butoxy-2-naphthoyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol): 3300, 1620 cm⁻¹ FAB-MS e/z = 1207 (M + Na)

Example 35

FR140497 substance was obtained by reacting FR133303 substance with 1-(6-hexyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

45

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆ + D₂O, δ) :0.89 (3H, t, J=6.6Hz), 0.97 (3H, d, J=6.9Hz), 1.08 (3H, d, J=5.9Hz), 1.-2-1.6 (6H, m), 1.7-2.1

(5H, m), 2.1-2.5 (3H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.73 (2H, m), 3.8-4.5 (12H, m), 4.80 (1H, d, J=3Hz), 4.88 (1H, d, J=3.8Hz), 5.08 (1H, d, J=3Hz), 6.74 (1H, d, J=8.2Hz), 6.80 (1H, dd, J=8.2Hz and 2Hz), 7.08 (1H, d, J=2Hz), 7.26 (1H, dd, J=8.9Hz and 2.4Hz), 7.39 (1H, d, J=2.4Hz), 7.85 (1H, d, J=8.7Hz), 7.89 (1H, d, J=8.7Hz), 7.93 (1H, d, J=8.9Hz), 8.44 (1H, s)

FAB-MS e/z =

1236 (M + Na)

Example 36

55

50

FR143483 substance was obtained by reacting FR133303 substance with 1-[6-(2-ethylhexyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

67

5

10

15

20

25

30

40

45

50

3250, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.93 (3H, t, J=7.4Hz), 0.98 (3H, t, J=7.4Hz), 1.06 (3H, d, J=6.8Hz), 1.24 (3H, d, J=6.0Hz), 1.3-1.7 (8H, m), 1.7-1.9 (1H, m), 1.9-2.3 (3H, m), 2.3-2.7 (3H, m), 2.8-3.0 (1H, m), 3.39 (1H, m), 3.7-4.7 (16H, m), 5.00 (1H, d, J=4.4Hz), 5.11 (1H, d, J=3.7Hz), 5.37 (1H, d, J=2.6Hz), 6.87 (1H, d, J=8.3Hz), 7.04 (1H, dd, J=8.3Hz and 2Hz), 7.17 (1H, dd, J=8.9Hz and 1.9Hz),

7.22 (1H, d, J=2Hz), 7.33 (1H, d, J=1.9Hz), 7.7-7.9 (3H, m), 8.29 (1H, s)

FAB-MS e/z =

1263 (M + Na)

Example 37

FR140728 substance was obtained by reacting FR133303 substance with 1-(6-decyloxy-2-naphthoyl)-1H-benzo-triazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆ + D₂O, δ) :0.86 (3H, t, J=6.6Hz), 0.97 (3H, d, J=6.7Hz), 1.07 (3H, d, J=5.9Hz), 1.2-1.6 (14H, m),

 $1.7-2.1\ (5H,\,m),\ 2.1-2.5\ (3H,\,m),\ 2.5-2.7\ (1H,\,m),\ 3.19\ (1H,\,m),\ 3.45\ (1H,\,m),\ 3.73\ (2H,\,m),\ 3.9-4.5\ (12H,\,m),\ 4.79\ (1H,\,d,\,J=3Hz),\ 4.87\ (1H,\,d,\,J=3.8Hz),\ 5.07\ (1H,\,d,\,J=3Hz),\ 6.74\ (1H,\,d,\,J=8.2Hz),\ 6.79\ (1H,\,dd,\,J=8.1Hz\ and\ 2Hz),\ 7.06\ (1H,\,d,\,J=2Hz),\ 7.23\ (1H,\,dd,\,J=8.7Hz),\ 7.93\ (1H,\,d,\,J=8.7Hz),\ 7.93\ (1H,\,d,$

J=8.9Hz), 8.45 (1H, s)

FAB-MS e/z =

1291 (M + Na)

Example 38

FR142172 substance was obtained by reacting FR133303 substance with 1-[6-(3,7-dimethyloctyloxy)-2-naph-thoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of <u>Example 12</u>.

IR (Nujol):

3300, 1610 cm⁻¹

NMR (DMSO-d₆ + D₂O, δ):0.85 (6H, d, J=6.6Hz), 0.95 (3H, d, J=5.9Hz), 0.97 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.9Hz),

 $1.1-1.4 \ (6H, m), \ 1.4-2.1 \ (7H, m), \ 2.1-2.5 \ (3H, m), \ 2.5-2.7 \ (1H, m), \ 3.19 \ (1H, m), \ 3.74 \ (2H, m), \ 3.9-4.6 \ (12H, m), \ 4.81 \ (1H, d, J=3Hz), \ 4.87 \ (1H, d, J=3.8Hz), \ 5.07 \ (1H, d, J=3Hz), \ 6.74 \ (1H, d, J=8.2Hz), \ 6.83 \ (1H, dd, J=8.1Hz \ and \ 2Hz), \ 7.06 \ (1H, d, J=2Hz), \ 7.23 \ (1H, dd, J=8.9Hz \ and \ 2.4Hz), \ 7.40 \ (1H, d, J=2.4Hz), \ 7.85 \ (1H, d, J=8.7Hz), \ 7.89 \ (1H, d, J=8.7Hz), \ 7.93 \ (1H, d, J=$

J=8.9Hz), 8.45 (1H, s)

35 FAB-MS e/z =

1291 (M + Na)

Example 39

FR143326 substance was obtained by reacting FR133303 substance with 1-[6-(3,7-dimethyl-6-octenyloxy)-2-naphthoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620, 1260, 1040 cm⁻¹

NMR (CD₃OD, δ):

1.00 (3H, d, J=6.2Hz), 1.06 (3H, d, J=6.8Hz), 1.25 (3H, d, J=5.9Hz), 1.2-1.6 (2H, m), 1.61 (3H, s), 1.67 (3H, s), 1.63-2.3 (8H, m), 2.3-2.7 (3H, m), 2.8-3.0 (1H, m), 3.39 (1H, m), 3.7-4.8 (16H, m), 5.00 (1H, d, J=5.1Hz), 5.08-5.2 (2H, m), 5.37 (1H, d, J=2.5Hz), 6.87 - (1H, d, J=8.3Hz), 7.04 (1H, d, J=8.3Hz), 7.15 (1H, d, J=8.9Hz), 7.21 (1H, s), 7.33 (1H, s), 7.71 (1H, d, J=8.3Hz), 7.65 (2H, m), 2.80 (4Hz), 2.80

d, J=8.7Hz), 7.77-7.85 (2H, m), 8.28 (1H, s)

Example 40

FR142390 substance was obtained by reacting FR133303 substance with 1-[6- $\{(E)$ -3,7-dimethyl-2,6-octadienyloxy}-2-naphthoyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆ + D₂O, δ) :0.97 (3H, d, J=6.7Hz), 1.07 (3H, d, J=6.0Hz), 1.57 (3H, s), 1.61 (3H, s), 1.76 (3H, s), 1.8-2.5 (9H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.45 (1H, m), 3.73 (2H, m), 3.9-4.6 (11H, m), 4.70 (2H, m), 4

d, J=6.5Hz), 4.80 (1H, d, J=3Hz), 4.87 (1H, d, J=3.8Hz), 5.07 (2H, m), 5.51 (1H, t, J=6.5Hz), 6.74 (1H, d, J=8.3Hz), 6.83 (1H, dd, J=8.3Hz and 2Hz), 7.07 (1H, d, J=2Hz), 7.24 (1H, dd, J=8.3Hz), 6.83 (1H, dd, J=8.3Hz), 6.83

J=8.9Hz and 2.4Hz), 7.40 (1H, d, J=2.4Hz), 7.8-8.0 (3H, m), 8.45 (1H, s)

FAB-MS e/z =

1287 (M + Na)

Example 41

FR140729 substance was obtained by reacting FR133303 substance with 1-(6-dodecyloxy-2-naphthoyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1610 cm⁻¹

NMR (DMSO-d₆ + D_2O , δ) :0.85 (3H, t, J=6.6Hz), 0.97 (3H, d, J=6.7Hz), 1.07 (3H, d, J=5.9Hz), 1.2-1.6 (18H, m), 1.7-2.1 (5H, m), 2.1-2.5 (3H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.45 (1H, m); 3.73 (2H, m), 3.9-4.5 (12H, m), 4.79 (1H, d, J=3Hz), 4.87 (1H, d, J=3.8Hz), 5.07 (1H, d, J=3Hz), 6.74 (1H, d, J=8.1Hz), 6.78 (1H, dd, J=8.1Hz and 2Hz), 7.06 (1H, d, J=2Hz), 7.23 (1H, dd, J=8.9Hz and 2.4Hz), 7.38 (1H, d, J=2.4Hz), 7.85 (1H, d, J=8.7Hz), 7.89 (1H, d, J=8.7Hz), 7.93 (1H, d,

J=8.9Hz), 8.44 (1H, s)

15

.

5

10

FAB-MS e/z =

1320 (M + Na)

Example 42

20 FR140730 substance was obtained by reacting FR133303 substance with 1-(2-anthrylcarbonyl)-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol): 3300, 1620 cm⁻¹ FAB-MS e/z = 1185 (M + Na)

25 Example 43

FR143020 substance was obtained by reacting FR133303 substance with 1-[2-(4-octyloxyphenyl)acetyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

30 IR (Nujol): 3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.87 (3H, t, J=6.8Hz), 1.0-1.2 (6H, m), 1.2-1.6 (10H, m), 1.6-1.85 (2H, m), 1.85-2.1 (3H, m), 2.3-2.6 (3H, m), 2.7-2.85 (1H, m), 3.32 (1H, m), 3.46 (2H, s), 3.7-4.7 (16H, m), 5.04 (1H, d, J=3.7Hz), 5.23 (1H, d, J=2.7Hz), 6.75-6.9 (3H, m), 7.01 (1H, d, J=8.3Hz), 7.15 (2H, d,

J=8.5Hz), 7.30 (1H, s)

35 FAB-MS e/z = 1227 (M + Na)

Example 44

FR143021 substance was obtained by reacting FR133303 substance with 1-[3-(4-octyloxyphenyl)propionyl]-1H-40 benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol): 3300, 1620 cm-1 FAB-MS e/z = 1241 (M + Na)

Example 45

45

50

FR141315 substance was obtained by reacting FR133303 substance with 1-[(E)-3-(4-octyloxyphenyl)acryloyl]-1H-benzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nuiol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆ + D₂O, δ) :0.86 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.7Hz), 1.04 (3H, d, J=5.4Hz), 1.2-1.5 (10H, m), 1.6-2.0 (5H, m), 2.1-2.5 (3H, m), 2.5-2.6 (1H, m), 3.17 (1H, m), 3.3-4.5 (15H, m), 4.79 (1H, d, J=3Hz), 4.86 (1H, d, J=3.8Hz), 5.01 (1H, d, J=3Hz), 6.57 (1H, d, J=15.8Hz), 6.74 (1H, d, J=8.2Hz), 6.82 (1H, d, J=8.2Hz), 6.97 (2H, d, J=8.8Hz), 7.09 (1H, s), 7.34 (1H, d, J=15.8Hz),

7.52 (2H, d, J=8.8Hz)

55 FAB-MS e/z = 1239 (M + Na)

Example 46

FR140105 substance was obtained by reacting FR133303 substance with 1-(O⁴-octyl-N,N-dimethyl-L-tyrosyl)-1Hbenzotriazole-3-oxide according to a similar manner to that of Example 12.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.91 (3H, t, J=6.8Hz), 1.06 (3H-, d, J=6.8Hz), 1.12 (3H, d, J=6.1Hz), 1.33 (10H, m), 1.74 (2H, m), 1.98 (3H, m), 2.40 (6H, s), 2.3-2.6 (3H, m), 2.8 (2H, m), 2.9-3.1 (1H, m), 3.3-3.5 (2H, m), 3.6-4.7 (16H, m), 5.06 (1H, d, J=3.8Hz), 5.33 (1H, d, J=3Hz), 6.77 (2H, d, J=8.6Hz), 6.86 (1H, d, J=8.3Hz), 7.03 (1H, dd, J=8.3Hz and 2Hz), 7.07 (2H, d, J=8.6Hz), 7.31 (1H, d, J=2Hz)

10

15

20

40

50

55

5

Example 47

FR141564 substance was obtained by reacting FR133303 substance with 4-octyloxyphenylsulfonyl chloride according to a similar manner to that of Example 6.

IR (Nujol):

3300, 1620 cm⁻¹

NMR (DMSO-d₆ + D₂O, δ) :0.87 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.8Hz), 1.04 (3H, d, J=5.7Hz), 1.1-1.5 (3H, d, J=6.8H

1.04 (3H, d, J=5.7Hz), 1.1-1.5 (10H, m), 1.6-2.1 (5H, m), 2.45 (3H, m), 2.5-2.7 (1H, m), 3.19 (1H, m), 3.7-4.5 (16H, m), 4.80 (1H, d, J=3Hz), 4.88 (1H, d, J=4Hz), 5.08 (1H, d, J=3Hz), 6.74 (1H, d, J=8.2Hz), 6.82 (1H, d, J=8.2Hz), 6.84 (2H, d, J=8.7Hz), 7.07 (1H, s), 7.51 (2H, d,

J=8.7Hz)

FAB-MS e/z =

1249 (M + Na)

25 Example 48

FR143170 substance was obtained by reacting FR133303 substance with 6-octyloxy-2-naphthylsulfonyl chloride according to a similar manner to that of Example 6.

30 IR (Nujol): 3300, 1620 cm⁻¹

NMR (CD₃OD, δ):

0.29 (3H, d, J=6.0Hz), 0.91 (3H, t, J=6.7Hz), 1.07 (3H, d, J=6.9Hz), 1.25-1.6 (10H, m), 1.7-2.2 (5H, m), 2.2-2.6 (4H, m), 3.37 (1H, m), 3.55-4.65 (17H, m), 4.97 (1H, m), 5.54 (1H, m), 6.84 (1H, d, J=8.3Hz), 7.01 (1H, dd, J=8.4Hz and 2Hz), 7.15-7.3 (3H, m), 7.75-8.0 (3H, m), 8.35

(1H, s)

35 FAB-MS e/z = 1299 (M + Na)

Example 49

To a solution of FR138364 substance obtained in Example 5 (0.24 g) in acetonitrile (5 ml) was added p-toluenesulfonic acid (0.132 g) and stirred for 8 hours at room temperature. The reaction mixture was added to water and the aqueous layer was adjusted to pH 4.5 with saturated sodium bicarbonate aqueous solution. The aqueous solution was subjected to column chromatography on Diaion HP-20 and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give FR138912 substance (0.15 g).

45 IR (Nujol): 3300, 1620 cm-1

FAB-MS e/z = 1272 (M + K)

Example 50

The mixture of FR138728 substance obtained in Example 8 (0.15 q) and 1-octyl-1,4-dihydropyridine-4-thione (0.031 g) in N,N-dimethylformamide was stirred for 1.5 hours under ice-cooling. The reaction mixture was pulverized with diethyl ether (50 ml). The precipitate was filtrated and dried over phosphorus pentoxide under reduced pressure. The powder was added to water (300 ml) and adjusted to pH 4.5. The aqueous solution was subjected to column chromatography on Diaion HP-20 (50 ml) and eluted with 80% aqueous methanol. The fractions containing the object compound were combined and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give FR138960 substance (0.15 g).

IR (Nujol): 3300, 1620 cm⁻¹

FAB-MS e/z = 1222 (Free M + Na)

The following compounds (Examples 51 to 53) were, obtained according to a similar manner to that of Example 3.

Example 51

FR138727 substance

NMR (CD₃OD, δ): 0.90 (3H, t, J=6.8Hz), 1.05 (3H, d, J=6.8Hz), 1.17-1.33 (13H, m), 1.6-1.8 (2H, m), 1.9-2.1 (3H, m), 2.50 (1H, m), 2.75 (1H, dd, J=16Hz and 4Hz), 3.40 (1H, m), 3.7-3.8 (1H, m), 3.98 (2H, t, J=6.2Hz), 3.9-4.2 (5H, m), 4.3-4.5 (5H, m), 4.5-4.7 (3H, m), 4.97 (1H, d, J=3Hz), 5.06 (1H, s), 5.20 (1H, d, J=3Hz), 5.40 (1H, d, J=3Hz), 6.85 (1H, d, J=8.3Hz), 6.95 (2H, d, J=8.5Hz), 7.02

(1H, d, J=8.3Hz), 7.30 (1H, d, J=8.5Hz), 7.44 (1H, s)

Example 52

FR138912 substance

IR (Nujol): 3300, 1620 cm⁻¹

Example 53

20

5

10

15

FR138960 substance

IR (Nujol): 3300, 1620 cm⁻¹

The following compounds (<u>Preparations 94 and 95</u>) were obtained according to a similar manner to that of <u>Preparation 5</u>.

Preparation 94

30 Succinimido 4-(4-heptyloxyphenyl)benzoate IR (Nujol):1160, 1740, 1600 cm⁻¹

NMR (CDCl₃, δ):0.87 (3H, t, J=6.8 Hz), 1.2-1.7 (8H, m), 1.7-1.9 (2H, m), 2.92 (4H, s), 4.01 (2H, t, J=6.5 Hz), 7.00 (2H, d, J=8.8 Hz), 7.58 (2H, d, J=8.8 Hz), 7.69 (2H, d, J=8.5 Hz), 8.17 (2H, d, J=8.5 Hz)

35 Preparation 95

Succinimido 4-(4-hexyloxyphenoxy)benzoate

IR (Nujol):1760, 1720, 1600 cm⁻¹

NMR (CDCl₃, δ):0.92 (3H, t, J=6.8 Hz), 1.2-1.5 (6H, m), 1.7-1.9 (2H, m), 2.90 (4H, s), 3.96 (2H, t, J=6.5 Hz), 6.9-7.1 (6H, m), 8.07 (2H, d, J=9 Hz)

In the following, the structures of the compounds of Examples 54 and 55 are shown.

55

45

The following compounds (Example 54 and 55) were obtained according to a similar manner to that of Example 3.

Example 54

FR144274

IR (Nujol) :	3300, 1620 cm ⁻¹				
Anal. Calcd.	for C ₅₅ H ₇₃ N ₈ SO ₂₂ Na 6H ₂ O				
	C : 48.53,	H:6.29,	N : 8.23,	S: 2.35	
Found:	C : 48.36,	H : 6.34,	N: 8.15,	S: 2.30	

FAB-MS e/z 1275 (M+Na)

Example 55

FR144271

Anal. Calcd. for C₅₄H₇₁N₈SO₂₃Na 6H₂O

C: 47.57, H: 6.14, N: 8.22, S: 2.35

55

5

10

15

20

25

30

35

40

45

(continued)

Anal. Calcd.	for C ₅₄ H ₇₁ N ₈ SO ₂₃ Na 6H ₂ O				
Found:	C: 47.58,	H∶6.05,	N : 8.18,	S : 2.37	

FAB-MS e/z = 1277 (M+Na)

Claims

5

10

15

20

25

30

35

40

45

50

. Claims for the following Contracting States : AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, NL, SE

1. A polypeptide compound of the following general formula:

wherein

R1 is hydrogen or acyl group,

R² is hydroxy,

H3 is hydroxysulfonyloxy, and

R4 is hydrogen or carbamoyl,

with proviso that

R1 is not palmitoyl, when R2 is hydroxy,

R3 is hydroxysulfonyloxy and

R4 is carbamoyl,

and a pharmaceutically acceptable salt thereof.

2. A polypeptide compound of claim 1, which is shown by the following formula:

OH

NH-R1

OH

HN

0

wherein R1 is as defined above.

3. A compound of claim 2, wherein

25

30

35

40

45

50

55

R¹ is(a) (C₁-C₆)alkanoyl which may have one or more substituent(s) selected from the group consisting of (1) halogen, (2) phenyl which may have one or more substituent(s) selected from the group consisting of hydroxy, (C₇-C₂₀)alkoxy, phenyl, naphthyl, and anthryl,

(3) naphthyl which may have one or more substituent(s) selected from the group consisting of hydroxy, (C₇-C₂₀)alkoxy, phenyl, naphthyl, and anthryl,

(4) anthryl which may have one or more substituent(s) selected from the group consisting of hydroxy, (C₇-C₂₀)alkoxy, phenyl, naphthyl, and anthryl,

(5) (C_1-C_6) alkoxy, (6) amino, (7) protected amino, (8) di (C_1-C_6) alkylamino, (9) (C_1-C_6) alkoxyimino, (10) phenyl (C_1-C_6) alkoxyimino which may have one or more (C_7-C_{20}) alkoxy,

(11) pyridylthio which may have one or more (C7-C20)alkyl,

(12) thienyl which may have one or more substituent(s) selected from the group consisting of amino, protected amino and (C_7-C_{20}) alkyl,

(13) imidazolyl which may have one or more substituent(s) selected from the group consisting of amino, protected amino and (C_7-C_{20}) alkyl,

(14) pyrazolyl which may have one or more substituent(s) selected from the group consisting of amino, protected amino and (C₇-C₂₀)alkyl,

(15) furyl which may have one or more substituent(s) selected from the group consisting of amino, protected amino and (C_7-C_{20}) alkyl,

(16) tetrazolyl which may have one or more substituent(s) selected from the group consisting of amino, protected amino and (C_7-C_{20}) alkyl,

(17) thiazolyl which may have one or more substituent(s) selected from the group consisting of amino, protected amino and (C₇-C₂₀)alkyl, and

(18) thiadiazolyl which may have one or more substituent(s) selected from the group consisting of amino, protected amino and (C₇-C₂₀)alkyl;

(b) (C7-C20)alkanoyl;

- (c) (C_1-C_6) alkenoyl which may have one or more substituent(s) selected from the group consisting of (1) phenyl which may have one or more (C_7-C_{20}) alkoxy, (2) naphthyl which may have one or more (C_7-C_{20}) alkoxy and (3) anthyl which may have one or more (C_7-C_{20}) alkoxy;
- (d) (C₇-C₂₀)alkenoyl; (e) (C₁-C₆)alkoxycarbonyl;
- (f) (C₇-C₂₀)alkoxycarbonyl;
- (g) phenoxycarbonyl; (h) naphthyloxycarbonyl;

(k) phenyl(C₁-C₆)alkoxycarbonyl which may have one or more substitutent(s) selected from the group

(i) phenylglyoxyloyl; (j) naphthylglyoxyloyl;

consisting of nitro and (C₁-C₆)alkoxy; (I) (C_1-C_6) alkylsulfonyl; (m) phenylsulfonyl which may have one or more substituent(s) selected from 5 the group consisting of (C₁-C₆)alkyl and (C₇-C₂₀)alkoxy; (n) naphthylsulfonyl which may have one or more substituent(s) selected from the group consisting of (C₁-C₆)alkyl and (C₇-C₂₀)alkoxy; (o) phenyl(C₁-C₆)alkylsulfonyl; (p) benzoyl which may have one or more substituent(s) selected from the group consisting of (1) 10 halogen, (2) (C₁-C₆)alkyl, (3) (C₇-C₂₀)alkyl, (4) (C₁-C₆)alkoxy which may have one or more substituent(s) selected from the group consisting of (C₁-C₆)alkoxy, halogen, phenyl, naphthyl and anthryl, (5) (C₇-C₂₀)alkoxy which may have one or more halogen, (6) (C₇-C₂₀)alkenyloxy, (7) carboxy, 15 (8) phenyl which may have one or more (C7-C20)alkoxy, (9) naphthyl which may have one or more (C7-C20)alkoxy, (10) anthryl which may have one or more (C7-C20)alkoxy, (11) phenoxy which may have one or more (C7-C20)alkoxy, (12) naphthyloxy which may have one or more (C₇-C₂₀)alkoxy, (13) anthryloxy which may have one or more (C₇-C₂₀)alkoxy; 20 (q) naphthoy! which may have one or more substituent(s) selected from the group consisting of (1) halogen, (2) (C_1 - C_6)alkyl, (3) (C_7 - C_{20})alkyl, (4) (C_1 - C_6)alkoxy which may have one or more substituent(s) selected from the group consisting of (C1-C6)alkoxy, halogen, phenyl, naphthyl and anthryl, 25 (5) (C₇-C₂₀)alkoxy which may have one or more halogen, (6) (C₇-C₂₀)alkenyloxy, (7) carboxy, (8) phenyl which may have one or more (C₇-C₂₀)alkoxy, (9) naphthyl which may have one or more (C7-C20)alkoxy, (10) anthryl which may have one or more (C₇-C₂₀)alkoxy, (11) phenoxy which may have one or more (C₇-C₂₀)alkoxy, (12) naphthyloxy which may have 30 one or more (C₇-C₂₀)alkoxy, (13) anthryloxy which may have one or more (C₇-C₂₀)alkoxy; or (r) anthrylcarbonyl which may have one or more substituent(s) selected from the group consisting of (1) halogen, (2) (C1-C6)alkyl, 35 (3) (C₇-C₂₀)alkyl, (4) (C₁-C₆)alkoxy which may have one or more substituent(s) selected from the group consisting of (C₁-C₆)alkoxy, halogen, phenyl, naphthyl and anthryl, (5) (C₇-C₂₀)alkoxy which may have one or more halogen, (6) (C₇-C₂₀)-alkenyloxy, (7) carboxy, (8) phenyl which may have one or more (C7-C20)alkoxy, (9) naphthyl which may have one or more (C₇-C₂₀)alkoxy, (10) anthryl which may have one or more (C₇-C₂₀)alkoxy, (11) phenoxy 40 which may have one or more (C₇-C₂₀)alkoxy, (12) naphthyloxy which may have one or more (C₇-C₂₀)alkoxy, (13) anthryloxy which may have one or more (C₇-C₂₀)alkoxy. A compound of claim 3, wherein 45 R1 is (C1-C6)alkanoyl; halo(C₁-C₆)alkanoyl; phenyl(C_1 - C_6)alkanoyl or naphthyl(C_1 - C_6)alkanoyl, each of which may have 1 to 3 substituent(s) selected from the group consisting of hydroxy, (C₁-C₆)alkoxy, (C₇-C₂₀)alkoxy, phenyl, naphthyl, anthryl, 50 amino, protected amino, $di(C_1-C_6)alkylamino$, $(C_1-C_6)alkoxyimino$, and phenyl $(C_1-C_6)alkoxyimino$ which may have 1 to 3 (C7-C20)alkoxy; pyridylthio(C₁-C₆)alkanoyl which may have 1 to 3 (C₇-C₂₀)alkyl; thienyl(C₁-C₆)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of (C₁-C₆)alkoxyimino, (C₇-C₂₀)alkyl, amino and protected amino; 55 imidazolyl(C1-C6)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of (C₁-C₆)alkoxyimino, (C₇-C₂₀)alkyl, amino and protected amino; pyrazolyl(C₁-C₆)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of (C₁-C₆)alkoxyimino, (C₇-C₂₀)alkyl, amino and protected amino;

furyl(C_1 - C_6)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of (C_1 - C_6) alkoxyimino, (C_7 - C_{20})alkyl, amino and protected amino;

tetrazolyl(C_1 - C_6)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of (C_1 - C_6)alkoxyimino, (C_7 - C_{20})alkyl, amino and protected amino;

thiazolyl(C_1 - C_6)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of (C_1 - C_6)alkoxyimino, (C_7 - C_{20})alkyl, amino and protected amino;

thiadiazolyl(C_1 - C_6)alkanoyl which may have to 3 substituent(s) selected from the group consisting of $(C_1$ - C_6)alkoxyimino, $(C_7$ - C_{20})alkyl, amino and protected amino;

phenyl(C₁-C₆)alkoxyimino(C₁-C₆)alkanoyl which may have 1 to 3 (C₇-C₂₀)alkoxy;

(C7-C20)alkanoyl;

5

10

15

20

30

35

40

45

50

55

phenyl(C₁-C₆)alkenoyl which may have 1 to 3 (C₇-C₂₀)alkoxy;

(C7-C20)alkenoyl;

(C1-C6)alkoxycarbonyl;

(C7-C20)alkoxycarbonyl;

phenoxycarbonyl;

naphtyloxycarbonyl;

phenylsulfonyl or napthylsulfonyl each of which may have 1 to 3 substituent(s) selected from the group consisting of (C_1-C_6) alkyl and (C_7-C_{20}) alkoxy;

benzoyl, naphthoyl or anthrylcarbonyl, each of which may have 1 to 5 substituent(s) selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_7-C_{20}) alkyl, carboxy, (C_1-C_6) alkoxy which may have 1 to 10 halogen, (C_1-C_6) alkoxy(C_1-C_6)alkoxy, phenyl(C_1-C_6)alkoxy, (C_7-C_{20}) alkoxy which may have 1 to 17 halogen, (C_7-C_{20}) alkenyloxy, phenyl which may have 1 to 3 (C_7-C_{20}) alkoxy;

phenoxy which may have 1 to 3 (C₁-C₆)alkoxy or(C₇-C₂₀)alkoxy;

5. A compound of claim 4, wherein

 R^1 is (C_1-C_6) alkanoyl; halo (C_1-C_6) alkanoyl;

phenyl(C_1 - C_6)alkanoyl or naphthyl(C_1 - C_6)alkanoyl, each of which may have 1 to 3 substituent(s) selected from the group consisting of hydroxy, (C_1 - C_6)alkoxy, (C_7 - C_{20})alkoxy, phenyl, amino, (C_1 - C_6)alkoxyimino, di(C_1 - C_6)alkylamino, (C_1 - C_6)alkoxyimino and phenyl(C_1 - C_6)alkoxyimino which may have 1 to 3 (C_7 - C_{20})alkoxy;

pyridylthio(C₁-C₆)alkanoyl which may have 1 to 3 (C₇-C₂₀)alkyl;

imidazolyl(C_1 - C_6)alkanoyl or thiazolyl(C_1 - C_6)alkanoyl, each of which may have 1 to 3 substituent(s) selected from the group consisting of (C_1 - C_6)alkoxyimino, (C_7 - C_{20})alkyl, amino and (C_1 - C_6)alkoxycarbonylamino.

phenyl((C₁-C₆)alkoxyimino(C₁-C₆)alkanoyl which may have 1 to 3 (C₇-C₂₀)alkoxy;

 (C_7-C_{20}) alkanoyl; phenyl (C_1-C_6) alkenoyl which may have 1 to 3 (C_7-C_{20}) alkoxy; (C_7-C_{20}) alkenoyl; (C_1-C_6) alkoxycarbonyl;

(C7-C20)alkoxycarbonyl; phenoxycarbonyl;

phenylsulfonyl or naphthylsulfonyl, each of which may have 1 to 3 substituent(s) selected from the group consisting of (C_1-C_6) alkyl and (C_7-C_{20}) alkoxy; or

benzoyl, naphthoyl or anthrylcarbonyl, each of which may have 1 to 5 substituent(s) selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_7-C_{20}) alkyl, carboxy, (C_1-C_6) alkoxy which may have 6 to 10 halogen, (C_1-C_6) alkoxy, (C_1-C_6) alkoxy, phenyl (C_1-C_6) alkoxy, (C_7-C_{20}) alkoxy which may have 12 to 17 halogen, (C_7-C_{20}) alkenyloxy, phenyl which may have 1 to 3 (C_7-C_{20}) alkoxy.

6. A compound of claim 5, wherein

R1 is phenyl(C1-C6)alkenoyl which may have 1 to 3 (C7-C20)alkoxy; or

benzoyl, naphthoyl or anthrylcarbonyl, each of which may have 1 to 5 substituent(s) selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_7-C_{20}) alkyl, carboxy, (C_1-C_6) alkoxy which may have 6 to 10 halogen, (C_1-C_6) alkoxy, (C_1-C_6) alkoxy, phenyl (C_1-C_6) alkoxy, (C_7-C_{20}) alkoxy which may have 12 to 17 halogen, (C_7-C_{20}) alkenyloxy, phenyl which may have 1 to 3 (C_7-C_{20}) alkoxy.

7. A compound of claim 6, wherein

R¹ is phenyl(C_1 - C_6)alkenoyl which may have (C_7 - C_{20})alkoxy; or benzoyl or naphthoyl, each of which may have (C_7 - C_{20})alkoxy, (C_7 - C_{20})alkenyloxy, or phenyl which may have (C_7 - C_{20})alkoxy.

8. A compound of claim 7, wherein

5

10

15

45

50

R1 isbenzoyl which has (C7-C20)alkoxy.

9. A compound of claim 7, wherein

R1 is phenyl(C₁-C₆)alkenoyl which has (C₇-C₂₀)alkoxy, or naphthoyl which has (C₇-C₂₀)alkoxy or (C₇-C₂₀)alkenoyl which has (C₇-C₂₀)alkoxy or (C₇-C₂₀)alkenoyl which has (C₇-C₂₀)alkoxy or (C₇-C₂₀)alkoxy or (C₇-C₂₀)alkoxy.

10. A compound of claim 9, wherein

R1 isnaphthoyl which has (C7-C20)alkoxy.

11. A process for the preparation of a polypeptide compound of the formula [I]:

25 H_3C H_3C

- wherein R¹, R², R³, and R⁴ are each as defined in claim 1, or a salt thereof, which comprises
 - i) subjecting a compound [II] of the formula:

HO OH H_3 C H_3 C H_3 C H_3 C H_4 H_5 H_5

or a salt thereof,

to elimination reaction of N-acyl group, to give a compound of the formula [Ia]:

or a salt thereof, or

ii) subjecting a compound of [la] or a salt thereof thus obtained to acylation reaction, to give a compound of the formula [lb]:

wherein R^1_a is acyl group exclusive of palmitoyl, or a salt thereof, or iii) subjecting a compound [lc] of the formula :

wherein R_b^1 is phenyl(C_1 - C_6)alkanoyl which has (C_7 - C_{20})alkoxy and protected amino, or naphthyl(C_1 - C_6)alkanoyl which has (C_7 - C_{20})alkoxy and protected amino, or a salt thereof, to elimination reaction of amino protective group, to give a compound [Id] of the formula:

wherein R_c^1 is phenyl(C_1 - C_6)alkanoyl which has (C_7 - C_{20})alkoxy and amino, or naphthyl(C_1 - C_6)alkanoyl which has (C_7 - C_{20})alkoxy and amino, or a salt thereof or,

iv) reacting a compound of the formula [le]:

wherein R_d^1 is halo(C_1 - C_6)alkanoyl, or a salt thereof, with pyridinethione which may have (C_7 - C_{20})alkyl or a salt thereof, to give a compound of the formula [If]:

wherein $\rm H^1_e$ is pyridylthio(C $_1$ -C $_6$)alkanoyl which may have (C $_7$ -C $_{20}$)alkyl, or a salt thereof, or

v) subjecting a compound of the formula [IV] :

HO OH

HO OH

$$HO$$
 HO
 HO

wherein

 ${\rm R}^3$ and ${\rm R}^4$ are each as defined above, and ${\rm R}^5$ is acyl group,

or a salt thereof, to acylation reaction to give a compound of the formula [Ig]:

55

50

20

25

30

35

40

HO OH

HO OH

$$H_3^C$$
 H_0
 H_0

25

10

15

wherein R3 and R4 are each as defined above,

R_f¹ is acyl group, and

R_a is acyloxy,

or a salt thereof.

- 12. A pharmaceutical composition which comprises, as an active ingredient, a compound of claim 1 or a pharmaceutically acceptable salt thereof in admixture with a pharmaceutically acceptable carrier or excipient.
 - 13. Use of a compound of claim 1 or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating or preventing infectious diseases.
- 35 14. A compound of claim 1 and a pharmaceutically acceptable salt thereof for use as a medicament.
 - 15. Use of a compound of claim 1 or a pharmaceutically acceptable salt thereof for the manufacture of a medicament.

40 Claims for the following Contracting States: ES, GR

1. A process for preparing a polypeptide compound of the following general formula:

45

50

HO OH

HO OH

NH-R

20

25

30

35

40

45

50

55

5

10

15

wherein

R¹ is hydrogen or acyl group,

R² is hydroxy;

H³ is hydroxysulfonyloxy, and

R4 is hydrogen or carbamoyl,

with proviso that

R1 is not palmitoyl, when R2 is hydroxy,

R3 is hydroxysulfonyloxy and

R4 is carbamoyl,

and a pharmaceutically acceptable salt thereof, which comprises

i) subjecting a compound [II] or the formula:

or a salt thereof,

OH

ОН

[Ia]

[Ib]

HN

0 =

to elimination reaction of N-acyl group, to give a compound of the formula [la]:

HО

HO 0:

НО

OH

5

10

15

20

25

or a salt thereof, or

ii) subjecting a compound of [Ia] or a salt thereof thus obtained to acylation reaction, to give a compound of the formula [Ib]:

30

35

40

45

HO O NH NH-Ra

O HO O HN OH

O HO O OH

O HO O OH

O HO O OH

O HO OH

O HO

•

wherein R^1_a is acyl group exclusive of palmitoyl, or a salt thereof, or iii) subjecting a compound [lc] of the formula :

55

wherein R_b^1 is phenyl(C_1 - C_6)alkanoyl which has (C_7 - C_{20})alkoxy and protected amino, or naphthyl(C_1 - C_6)alkanoyl which has (C_7 - C_{20})alkoxy and protected amino,

or a salt thereof, to elimination reaction of amino protective group, to give a compound [Id] of the formula:

wherein R_c^1 is phenyl(C_1 - C_6)alkanoyl which has (C_7 - C_{20})alkoxy and amino, or naphthyl(C_1 - C_6)alkanoyl which has (C_7 - C_{20})alkoxy and amino,

or a salt thereof or,

iv) reacting a compound of the formula [le]:

wherein R_d¹ is halo(C₁-C₆)alkanoyl,

or a salt thereof, with pyridinethione which may have (C₇-C₂₀)alkyl or a salt thereof, to give a compound of the formula [If]:

wherein R_e^1 is pyridylthio(C_1 - C_6)alkanoyl which may have (C_7 - C_{20})alkyl, or a salt thereof, or

v) subjecting a compound of the formula [IV]:

50

20

25

25

30

35

40

45

50

5

10

15

wherein $\ensuremath{\mbox{R}}^3$ and $\ensuremath{\mbox{R}}^4$ are each as defined above, and $\ensuremath{\mbox{R}}^5$ is acyl group,

or a salt thereof, to acylation reaction to give a compound of the formula [Ig]:

HO OH

HO OH

HO OH

$$HO OH$$
 $HO OH$
 $HO OH$

[Ig]

[IV]

wherein

R³ and R⁴ are each as defined above,

R_f¹ is acyl group, and

R_a is acyloxy,

or a salt thereof.

2. A modification of the process of claim 1, which comprises admixture of the compound prepared according to claim
1 with a pharmaceutically acceptable carrier or excipient.

Patentansprüche

5

10

15

20

25

30

40

45

50

55

Patentansprüch für folg nd Vertragsstaaten: AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, NL, SE

1. Eine Polypeptidverbindung der folgenden allgemeinen Formel:

wobei

R1 Wasserstoff oder Acylgruppe ist,

R² ist Hydroxy,

H3 ist Hydroxysulfonyloxy, und

R4 ist Wasserstoff oder Carbamoyl,

mit der Maßgabe, daß

R1 nicht Palmitoyl ist, wenn R2 Hydroxy ist,

R3 Hydroxysulfonyloxy ist und

R4 Carbamoyl ist,

und ein pharmazeutisch annehmbares Salz davon.

2. Eine Polypeptidverbindung von Anspruch 1, welche anhand der folgenden Formel dargestellt wird:

wobei R1 wie oben definiert ist.

- 3. Eine Verbindung von Anspruch 2, wobei
 - R¹ ist (a) (C₁-C₆)Alkanoyl, welche ein oder mehr Substituent(en) haben können, ausgewählt aus der Gruppe bestehend aus (1) Halogen, (2) Phenyl, welche ein oder mehr Substituent(en) haben können, ausgewählt aus der Gruppe bestehend aus Hydroxy, (C₇-C₂₀)Alkoxy, Phenyl, Naphthyl und Anthryl,
 - (3) Naphthyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Hydroxy, (C₇-C₂₀)Alkoxy, Phenyl, Naphthyl, und Anthryl,
 - (4) Anthryl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Hydroxy, (C₇-C₂₀)Alkoxy, Phenyl, Naphthyl, und Anthryl,
 - (5) (C₁-C₆)Alkoxy, (6) Amino, (7) geschütztes Amino,
 - (8) Di(C₁-C₆)alkylamino, (9) (C₁-C₆)Alkoxyimino,
 - (10) Phenyl(C₁-C₆)alkoxyimino, welche ein oder mehr (C₇-C₂₀)Alkoxy haben können,
 - (11) Pyridylthio, welches ein oder mehr (C7-C20)Alkyl haben kann,
 - (12) Thienyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Amino, geschütztem Amino und (C₇-C₂₀)Alkyl,
 - (13) Imidazolyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Amino, geschütztem Amino und (C₇-C₂₀)Alkyl,
 - (14) Pyrazolyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Amino, geschütztem Amino und (C₇-C₂₀)Alkyl,
 - (15) Furyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Amino, geschütztem Amino und (C₇-C₂₀)Alkyl,
 - (16) Tetrazolyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Amino, geschütztem Amino und (C₇-C₂₀)Alkyl,
 - (17) Thiazolyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Amino, geschütztem Amino und (C₇-C₂₀)Alkyl, und
 - (18) Thiadiazolyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Amino, geschütztem Amino und (C₇-C₂₀)Alkyl;
 - (b) (C₇-C₂₀)Alkanoyl;
 - (c) (C_1-C_6) Alkenoyl, welche ein oder mehr Substituent(en) haben können, ausgewählt aus der Gruppe bestehend aus (1) Phenyl, welches ein oder mehr (C_7-C_{20}) Alkoxy haben kann, (2) Naphthyl, welches ein oder mehr (C_7-C_{20}) Alkoxy und (3) Anthryl, welches ein oder mehr (C_7-C_{20}) Alkoxy haben kann;
 - (d) (C₇-C₂₀)Alkenoyl; (e) (C₁-C₆)Alkoxycarbonyl;
 - (f) (C7-C20)Alkoxycarbonyl;
 - (g) Phenoxycarbonyl; (h) Naphthyloxycarbonyl;
 - (i) Phenylglyoxyloyl; (j) Naphthylglyoxyloyl;

50

5

10

15

20

25

30

35

40

45

- (k) Phenyl(C₁-C₆)alkoxycarbonyl, welche ein oder mehr Substituent(en) haben können, ausgewählt aus der Gruppe bestehend aus Nitro und (C₁-C₆)Alkoxy;
- (I) (C_1-C_6) Alkylsulfonyl, (m) Phenylsulfonyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C_1-C_6) Alkyl und (C_7-C_{20}) Alkoxy;
- (n) Naphthylsulfonyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C_1-C_6) Alkyl und (C_7-C_{20}) Alkoxy;
- (o) Phenyl(C₁-C₆)alkylsulfonyl;

5

10

15

20

25

30

35

40

45

50

55

- (p) Benzoyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus
 - (1) Halogen, (2) (C₁-C₆)Alkyl, (3) (C₇-C₂₀)Alkyl,
 - (4) (C₁-C₆)Alkoxy, welche ein oder mehr Substituenten) haben können, ausgewählt aus der Gruppe bestehend aus (C₁-C₆)Alkoxy, Halogen, Phenyl, Naphthyl und Anthryl,
 - (5) (C_7-C_{20}) Alkoxy, welche ein oder mehr Halogen haben können, (6) (C_7-C_{20}) Alkenyloxy, (7) Carboxy,
 - (8) Phenyl, welches ein oder mehr (C7-C20)Alkoxy haben kann,
 - (9) Naphthyl, welches ein oder mehr (C₇-C₂₀)Alkoxy,
 - (10) Anthryl, welches ein oder mehr (C₇-C₂₀)Alkoxy,
 - (11) Phenoxy, welches ein oder mehr (C₇-C₂₀)Alkoxy,
 - (12) Naphthyloxy, welches ein oder mehr (C7-C20)Alkoxy,
 - und (13) Anthryloxy, welches ein oder mehr (C₇-C₂₀)Alkoxy haben kann;
- (q) Naphthoyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus
 - (1) Halogen, (2) (C₁-C₆)Alkyl, (3) (C₇-C₂₀)Alkyl,
 - (4) (C₁-C₆)Alkoxy, welche ein oder mehr Substituent(en) haben können, ausgewählt aus der Gruppe bestehend aus (C₁-C₆)Alkoxy, Halogen, Phenyl, Naphthyl und Anthryl,
 - (5) (C₇-C₂₀)Alkoxy, welche ein oder mehr Halogen haben können, (6) (C₇-C₂₀)Alkenyloxy, (7) Carboxy,
 - (8) Phenyl, welches ein oder mehr (C7-C20) Alkoxy haben kann,
 - (9) Naphthyl, welches ein oder mehr (C_7 - C_{20})Alkoxy haben kann, (10) Anthryl, welches ein oder mehr (C_7 - C_{20})Alkoxy haben kann,
 - (11) Phenoxy, welches ein oder mehr (C7-C20) Alkoxy haben kann,
 - (12) Naphthyloxy, welches ein oder mehr (C_7 - C_{20})Alkoxy haben kann, (13) Anthryloxy, welches ein oder mehr (C_7 - C_{20})Alkoxy haben kann, oder
- (r) Anthrylcarbonyl, welches ein oder mehr Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (1) Halogen, (2) (C₁-C₆)Alkyl,
 - (3) (C₇-C₂₀)Alkyl, (4) (C₁-C₆)Alkoxy, welche ein oder mehr Substituent(en) haben können, ausgewählt aus der Gruppe bestehend aus (C₁-C₆)Alkoxy, Halogen, Phenyl, Naphthyl und Anthryl,
 - (5) (C₇-C₂₀)Alkoxy, welche ein oder mehr Halogen haben können, (6) (C₇-C₂₀)-Alkenyloxy, (7) Carboxy,
 - (8) Phenyl, welches ein oder mehr (C_7 - C_{20})-Alkoxy haben kann, (9) Naphthyl, welches ein oder mehr (C_7 - C_{20}) Alkoxy haben kann, (10) Anthryl, welches ein oder mehr (C_7 - C_{20})Alkoxy haben kann, (11) Phenoxy, welches ein oder mehr (C_7 - C_{20})Alkoxy haben kann, (12) Naphthyloxy, welches ein oder mehr (C_7 - C_{20})Alkoxy haben kann, (13) Anthryloxy, welches ein oder mehr (C_7 - C_{20}) Alkoxy haben kann.
- 4. Eine Verbindung von Anspruch 3, wobei
 - R^1 ist (C_1-C_6) Alkanoyl;

Halo(C₁-C₆)alkanoyl;

Phenyl(C_1 - C_6)alkanoyl oder Naphthyl(C_1 - C_6)alkanoyl, von welchem jedes 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Hydroxy, (C_1 - C_6)Alkoxy, (C_7 - C_{20})Alkoxy, Phenyl, Naphthyl, Anthryl, Amino, geschütztes Amino, Di(C_1 - C_6)Alkoxyimino,

und

5

10

15

20

25

30

35

40

45

50

55

Phenyl(C₁-C₆)alkoxyimino, welches 1 bis 3 (C₇-C₂₀)Alkoxy haben kann;

Pyridylthio(C₁-C₆)alkanoyl, welches 1 bis 3 (C₇-C₂₀)Alkyl haben kann;

Thienyl(C_1 - C_6)alkanoyl, welches 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C_1 - C_6)Alkoxyimino, (C_7 - C_{20})Alkyl, Amino und geschütztes Amino,

Imidazolyl(C₁-C₆)alkanoyl, welches 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C₁-C₆)Alkoxyimino, (C₇-C₂₀)Alkyl, Amino und geschütztes Amino;

Pyrazolyl(C₁-C₆)alkanoyl, welches 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C₁-C₆)Alkoxyimino, (C₇-C₂₀)Alkyl, Amino und geschütztes Amino;

Furyl(C₁-C₆)alkanoyl, welches 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C₁-C₆)Alkoxyimino, (C₇-C₂₀)Alkyl, Amino und geschütztes Amino;

Tetrazolyl(C₁-C₆)alkanoyl, welches 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C₁-C₆)Alkoxyimino, (C₇-C₂₀)Alkyl, Amino und geschütztes Amino;

Thiazolyl(C_1 - C_6)alkanoyl, welches 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C_1 - C_6)Alkoxyimino,

(C₇-C₂₀)Alkyl, Amino und geschütztes Amino;

Thiadiazolyl(C_1 - C_6)alkanoyl, welches 1 bis 3 Substituenten haben kann, ausgewählt aus der Gruppe bestehend aus (C_1 - C_6)Alkoxyimino,

(C7-C20)Alkyl, Amino und geschütztes Amino;

Phenyl(C_1 - C_6)alkoxyimino (C_1 - C_6)alkanoyl, welches 1 bis 3 (C_7 - C_{20})Alkoxy haben kann;

(C₇-C₂₀)Alkanoyi;

Phenyl(C₁-C₆)alkenoyl, welches 1 bis 3 (C₇-C₂₀)Alkoxy haben kann;

(C₇-C₂₀)Alkenoyl;

(C₁-C₆)Alkoxycarbonyl;

(C7-C20)Alkoxycarbonyl;

Phenoxycarbonyi;

Naphthyloxycarbonyl;

Phenylsulfonyl oder Naphthylsulfonyl, von welchem jedes 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C₁-C₆)Alkyl und (C₇-C₂₀)Alkoxy;

Benzoyl, Naphthoyl oder Anthrylcarbonyl, von welchem jedes 1 bis 5 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Halogen, (C_1-C_6) Alkyl, (C_7-C_{20}) Alkyl, Carboxy, (C_1-C_6) Alkoxy, welches 1 bis 10 Halogen haben kann, (C_1-C_6) Alkoxy, (C_1-C_6) Alkoxy, welches 1 bis 17 Halogen haben kann,

(C₇-C₂₀)Alkenyloxy, Phenyl, welche 1 bis 3 (C₇-C₂₀)Alkoxy haben können;

Phenoxy, welche 1 bis 3 (C₁-C₆)Alkoxy oder (C₇-C₂₀)Alkoxy haben können;

5. Eine Verbindung von Anspruch 4, wobei

R1 ist (C₁-C₆)Alkanoyl; Halo(C₁-C₆)alkanoyl;

Phenyl(C_1 - C_6)alkanoyl oder Naphthyl(C_1 - C_6)alkanoyl, von welchen jedes 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Hydroxy, (C_1 - C_6)Alkoxy, (C_7 - C_{20})Alkoxy, Phenyl, Amino, (C_1 - C_6)Alkoxycarbonylamino, Di(C_1 - C_6)alkylamino, (C_1 - C_6)Alkoxyimino und Phenyl(C_1 - C_6)alk- 7 oxyimino, welches 1 bis 3 (C_7 - C_{20})Alkoxy haben kann;

Pyridylthio(C₁-C₆)alkanoyl, welches 1 bis 3 (C₇-C₂₀)Alkyl haben kann;

Imidazolyl(C_1 - C_6)alkanoyl oder Thiazolyl(C_1 - C_6)alkanoyl, von welchen jedes 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C_1 - C_6)Alkoxyimino, (C_7 - C_{20})Alkyl, Amino und (C_1 - C_6)Alkoxycarbonylamino;

Phenyl(C₁-C₆)alkoxyimino(C₁-C₆)alkanoyl, welches 1 bis 3 (C₇-C₂₀)Alkoxy haben kann;

(C₇-C₂₀)Alkanoyl; Phenyl(C₁-C₆) alkenoyl, welches 1 bis 3 (C₇-C₂₀)Alkoxy haben kann;

(C₇-C₂₀)Alkenoyl; (C₁-C₆)Alkoxycarbonyl;

(C₇-C₂₀)Alkoxycarbonyl; Phenoxycarbonyl;

Phenylsulfonyl oder Naphthylsulfonyl, von welchen jedes 1 bis 3 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus (C_1-C_6) Alkyl und (C_7-C_{20}) Alkoxy; oder

Benzoyl, Naphthoyl oder Anthrylcarbonyl, von welchen jedes 1 bis 5 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Halogen, (C_1-C_6) Alkyl, (C_7-C_{20}) Alkyl, Carboxy, (C_1-C_6) Alkoxy, welche 6 bis 10 Halogen haben können, (C_1-C_6) Alkoxy (C_1-C_6) Alkoxy, Phenyl (C_1-C_6) Alkoxy, welche 12 bis 17 Halogen haben können, (C_7-C_{20}) Alkenyloxy, Phenyl, welche 1 bis 3 (C_7-C_{20}) Alkoxy, Phenyl, welche 1 bis 3 (C_7-C_{20}) Alkoxy, Phenyl, welche 1 bis 3 (C_7-C_{20}) Alkoxy, Phenyl, welche 1 bis 3 (C_7-C_{20}) Alkoxy

Alkoxy haben können, und Phenoxy, welche 1 bis 3 (C₇-C₂₀)Alkoxy haben können.

6. Eine Verbindung von Anspruch 5, wobei

5

10

20

- R¹ ist Phenyl(C₁-C₆)alkenoyl, welches 1 bis 3 (C₇-C₂₀)Alkoxy haben kann; oder Benzoyl, Naphthoyl oder Anthrylcarbonyl, von welchen jedes 1 bis 5 Substituent(en) haben kann, ausgewählt aus der Gruppe bestehend aus Halogen, (C₁-C₆)Alkyl, (C₇-C₂₀)Alkyl, Carboxy, (C₁-C₆)Alkoxy, welche 6 bis 10 Halogen haben können, (C₁-C₆)Alkoxy(C₁-C₆)alkoxy, Phenyl(C₁-C₆)alkoxy, (C₇-C₂₀)Alkoxy, welche 12 bis 17 Halogen haben können, (C₇-C₂₀)Alkenyloxy, Phenyl, welches 1 bis 3 (C₇-C₂₀)Alkoxy haben kann, und Phenoxy, welches 1 bis 3 (C₇-C₂₀)Alkoxy haben kann.
- 7. Eine Verbindung von Anspruch 6, wobei
- 15 R¹ ist Phenyl(C₁-C₆)alkenoyl, welches (C₇-C₂₀)Alkoxy haben kann; oder Benzoyl oder Naphthoyl, von welchen jedes (C₇-C₂₀)Alkoxy haben kann, (C₇-C₂₀)Alkenyloxy, oder Phenyl, welches (C₇-C₂₀)Alkoxy haben kann.
 - 8. Eine Verbindung von Anspruch 7, wobei
 - R1 ist Benzoyl, welches (C7-C20)Alkoxy hat.
 - 9. Eine Verbindung von Anspruch 7, wobei
- 25 R1 ist Phenyl(C₁-C₆)alkenoyl, welches (C₇-C₂₀)Alkoxy hat; oder Naphthoyl, welches (C₇-C₂₀)Alkoxy oder (C₇-C₂₀)Alkenyloxy hat.
 - 10. Eine Verbindung von Anspruch 9, wobei
- 30 R1 ist Naphthoyl, welches (C₇-C₂₀)Alkoxy hat.
 - 11. Ein Verfahren zur Herstellung einer Polypeptidverbindung der Formel [I]:

HO OH

HO OH

$$H_3$$
C

 H_3 C

 H_4
 H_5
 H_6
 H_7
 H_8
 H_8

- wobei R¹, R², R³, und R⁴ sind je wie in Anspruch 1 definiert, oder ein Salz davon, welches umfaßt
 - i) Unterwerfen einer Verbindung [II] der Formel:

oder ein Salz davon,

zur Eliminierungsreaktion von N-Acytgruppe, um eine Verbindung der Formel [la] zu erhalten:

oder ein Salz davon, oder

(ii) Unterwerfen einer Verbindung von [Ia] oder ein Salz davon, die auf diese Weise erhalten sind, der Acylierungsreaktion, um eine Verbindung der Formel [Ib] zu erhalten:

wobei R^1_a ist Acylgruppe ausschließlich Palmitoyl, oder ein Salz davon, oder iii) Unterwerfen einer Verbindung [Ic] der Formel:

HO OH

HO OH

$$H_3C$$
 $NH-R_b^1$
 OHO
 O

wobei R_b¹ ist Phenyl(C₁-C₆)alkanoyl, welches (C₇-C₂₀)Alkoxy und geschütztes Amino hat, oder Naphthyl(C₁-C₆)alkanoyl, welches (C₇-C₂₀)Alkoxy und geschütztes Amino hat, oder ein Salz davon, zur Eliminierungsreaktion der Aminoschutzgruppe, um eine Verbindung [Id] zu erhalten der Formel:

wobei R_c^1 ist Phenyl(C_1 - C_6)alkanoyl, welches (C_7 - C_{20})Alkoxy und Amino hat, oder Naphthyl(C_1 - C_6)alkanoyl, welches (C_7 - C_{20})Alkoxy und Amino hat, oder ein Salz davon, oder

iv) Reagieren einer Verbindung der Formel [le]:

wobei R_d^1 ist Halo(C_1 - C_6)alkanoyl, oder ein Salz davon, mit Pyridinthion, welches (C_7 - C_{20})Alkyl haben kann, oder ein Salz davon, um eine Verbindung der Formel [If] zu erhalten:

wobei R_e^1 ist Pyridylthio(C_1 - C_6)alkanoyl, welches (C_7 - C_{20})Alkyl haben kann, oder ein Salz davon, oder v) Unterwerfen einer Verbindung der Formel [IV]:

wobei

 $\ensuremath{\mathsf{R}}^3$ und $\ensuremath{\mathsf{R}}^4$ sind je wie oben definiert, und $\ensuremath{\mathsf{R}}^5$ ist Acylgruppe,

oder ein Salz davon, zur Acylierungsreaktion, um eine Verbindung der Formel [Ig] zu erhalten:

HO O OH

HO O NH NH-R
$$_{f}^{1}$$

HO O HN OH

R⁴-H₂C O NH O CH₃

HO OH

OH

OH

OH

OH

OH

IIg

25

35

40

10

15

wobei

R3 und R4 sind je wie oben definiert,

R_f ist Acylgruppe, und

R² ist Acyloxy,

oder ein Salz davon.

- 12. Eine pharmazeutische Zusammensetzung, welche als aktiven Bestandteil eine Verbindung von Anspruch 1 oder ein pharmazeutisch annehmbares Salz davon, in Beimischung mit einem pharmazeutisch annehmbaren Träger oder Exzipienten, umfaßt.
 - 13. Verwendung einer Verbindung von Anspruch 1 oder ein pharmazeutisch annehmbares Salz davon zur Herstellung von einem Medikament zur Behandlung oder Vorbeugung von Infektionskrankheiten.
 - 14. Eine Verbindung von Anspruch 1 und ein pharmazeutisch annehmbares Salz davon zur Verwendung als Medikament.
 - 15. Verwendung einer Verbindung von Anspruch 1 oder ein pharmazeutisch annehmbares Salz davon zur Herstellung von einem Medikament.

Patentansprüche für folgende Vertragsstaaten: ES, GR

1. Ein Verfahren zur Herstellung einer Polypeptidverbindung der folgenden allgemeinen Formel:

__

20 wobei

5

10

15

25

30

35

45

50

55

R1 ist Wasserstoff oder Acylgruppe,

R² ist Hydroxy,

R3 ist Hydroxysulfonyloxy, und

R4 ist Wasserstoff oder Carbamoyl,

mit der Maßgabe, daß

R1 nicht Palmitoyl ist, wenn R2 Hydroxy ist,

R3 Hydroxysulfonyloxy und

R4 Carbamoyl ist,

und ein pharmazeutisch annehmbares Salz davon, welches umfaßt

i) Unterwerfen einer Verbindung [II] der Formel:

oder ein Salz davon,

zur Eliminierungsreaktion von N-Acylgruppe, um eine Verbindung der Formel [la] zu erhalten:

oder ein Salz davon, oder

ii) Unterwerfen einer Verbindung von [la] oder einem Salz davon, so erhalten, der Acylierungsreaktion, um eine Verbindung der Formel [lb] zu erhalten:

wobei R^1_a ist Acylgruppe ausschließlich Palmitoyl, oder ein Salz davon, oder

iii) Unterwerfen einer Verbindung [lc] der Formel:

wobei R_b^1 ist Phenyl(C_1 - C_6)alkanoyl, welches (C_7 - C_{20})Alkoxy und geschütztes Amino hat, oder Naphthyl(C_1 - C_6)alkanoyl, welches (C_7 - C_{20})Alkoxy und geschütztes Amino hat, oder ein Salz davon, zur Eliminierungsreaktion der Aminoschutzgruppe, um eine Verbindung [Id] zu erhalten der Formel:

wobei R_c^1 ist Phenyl(C_1 - C_6)alkanoyl, welches (C_7 - C_{20})Alkoxy und Amino hat, oder Naphthyl(C_1 - C_6)alkanoyl, welches (C_7 - C_{20})Alkoxy und Amino hat, oder ein Salz davon, oder iv) Reagieren einer Verbindung der Formel [Ie]:

wobei R_d^1 ist Halo(C_1 - C_6)alkanoyl, oder ein Salz davon, mit Pyridinthion, welches (C_7 - C_{20})Alkyl haben kann oder einem Salz davon, um eine Verbindung der Formel [If] zu erhalten:

wobei $\rm R_e^1$ ist Pyridylthio(C $_1$ - C $_6$)alkanoyl, welches (C $_7$ - C $_{20}$)Alkyl haben kann, oder ein Salz davon, oder v) Unterwerfen einer Verbindung der Formel [IV]:

wobei $\ensuremath{\mathsf{R}}^3$ und $\ensuremath{\mathsf{R}}^4$ sind je wie oben definiert, und $\ensuremath{\mathsf{R}}^5$ ist Acylgruppe,

oder ein Salz davon, zur Acylierungsreaktion, um eine Verbindung der Formel [Ig] zu erhalten:

HO OH

HO ONH

$$H_3C$$
 HO
 OH
 HO
 OH
 HO
 OH
 OH

wobei R^3 und R^4 sind je wie oben definiert, R^1_f ist Acylgruppe, und R^2_a ist Acyloxy,

oder ein Salz davon.

2. Eine Modifikation des Verfahrens von Anspruch 1, welche Beimischung der Verbindung, welche gemäß Anspruch 1 hergestellt wurde, mit einem pharmazeutisch annehmbaren Träger oder Exzipienten, umfaßt.

Revendications

5

10

15

20

25

30

40

45

50

55

R v ndications pour les Etats contractants : AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, NL, SE

1. Polypeptide répondant à la formule générale suivante :

dans laquelle

R1 est un atome d'hydrogène ou un groupe acyle,

R² est un groupe hydroxy,

R³ est un groupe hydroxysulfonyloxy, et

R4 est un atome d'hydrogène ou un groupe carbamoyle,

35 sous réserve que :

R1 ne soit pas un groupe palmitoyle lorsque R2 est un groupe hydroxy,

R³ soit un groupe hydroxysulfonyloxy, et

R⁴ soit un groupe carbamoyle,

et un de ses sels pharmaceutiquement acceptables.

2. Polypeptide selon la revendication 1, qui est représenté par la formule suivante :

25

R1 est

5

10

15

dans laquelle R1 est tel que défini ci-dessus.

Composé selon la revendication 2, dans lequel:

(a) un groupe alcanoyle en C_1 à C_6 qui peut avoir un ou plusieurs substituants choisis parmi (1) un atome d'halogène, (2) un groupe phényle qui peut avoir un ou plusieurs substituants choisis parmi les groupes hydroxy, alcoxy en C₇ à C₂₀, phényle, naphtyle, et anthryle,

30

(3) un groupe naphtyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes hydroxy, alcoxy en C₇ à C₂₀, phényle, naphtyle et anthryle, (4) un groupe anthryle qui peut avoir un ou plusieurs substituants choisis parmi les groupes hydroxy,

alcoxy en C₇ à C₂₀, phényle, naphtyle et anthryle, (5) un groupe alcoxy en C₁ à C₆, (6) un groupe amino, (7) un groupe amino protégé, (8) un groupe di(alkylamino en C_1 à C_6), (9) un groupe alcoxyimino en C_1 à C_6 , (10) un groupe phényl(alcoxyimino

35

en C₁ à C₆) qui peut avoir un ou plusieurs groupes alcoxy en C₇ à C₂₀, (11) un groupe pyridylthio qui peut avoir un ou plusieurs groupes alkyle en C₇ à C₂₀,

(12) un groupe thiényle qui peut avoir un ou plusieurs substituants choisis parmi les groupes amino, amino protégé et alkyle en C7 à C20,

40

(13) un groupe imidazolyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes

amino, amino protégé et alkyle en C7 à C20, (14) un groupe pyrazolyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes

amino, amino protégé et alkyle en C7 à C20, (15) un groupe furyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes amino, amino protégé et alkyle en C7 à C20,

45

(16) un groupe tétrazolyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes amino, amino protégé et alkyle en C7 à C20,

(17) un groupe thiazolyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes amino, amino protégé et alkyle en C7 à C20, et

50

(18) un groupe thiadiazolyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes amino, amino protégé et alkyle en C7 à C20;

(b) un groupe alcanoyle en C₇ à C₂₀;

55

(c) un groupe alcénoyle en C₁ à C₆ qui peut avoir un ou plusieurs substituants choisis parmi (1) un groupe phényle qui peut avoir un ou plusieurs groupes alcoxy en C₇ à C₂₀, (2) un groupe naphtyle qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20 et (3) un groupe anthryle qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20;

(d) un groupe alcénoyle en C₇ à C₂₀; (e) un groupe (alcoxy en C₁ à C₆)carbonyle; (f) un groupe (alcoxy en C₇ à C₂₀)carbonyle;

(g) un groupe phénoxycarbonyle; (h) un groupe naphtyloxycarbonyle;

(i) un groupe phénylglyoxyloyle; (j) un groupe naphtylglyoxyloyle; (k) un groupe phényl(alcoxy en C1 à C6)carbonyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes nitro et alcoxy en C1 à C6; 5 (I) un groupe (alkyle en C1 à C6)sulfonyle; (m) un groupe phénylsulfonyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes alkyle en C₁ à C₆ et alcoxy en C₇ à C₂₀; (n) un groupe naphtylsulfonyle qui peut avoir un ou plusieurs substituants choisis parmi les groupes alkyle en C₁ à C₆ et alcoxy en C₇ à C₂₀; (o) un groupe phényl(alkylsulfonyle en C₁ à C₆); 10 (p) un groupe benzoyle qui peut avoir un ou plusieurs substituants choisis parmi (1) un atome d'halogène, (2) un groupe alkyle en C_1 à C_6 , (3) un groupe alkyle en C_7 à C_{20} , (4) un groupe alcoxy en C₁ à C₆ qui peut avoir un ou plusieurs substituants choisis parmi un groupe alcoxy en C_1 à C_6 , un atome d'halogène, un groupe phényle, naphtyle et anthryle, 15 (5) un groupe alcoxy en C₇ à C₂₀ qui peut avoir un ou plusieurs atomes d'halogène, (6) un groupe alcényloxy en C₇ à C₂₀₁ (7) un groupe carboxy, (8) un groupe phényle qui peut avoir un ou plusieurs groupes alcoxy en C₇ à C₂₀, (9) un groupe naphtyle qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20, (10) un groupe anthryle qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20, 20 (11) un groupe phénoxy qui peut avoir un ou plusieurs groupes alcoxy en C_7 à C_{20} , (12) un groupe naphtyloxy qui peut avoir un ou plusieurs groupes alcoxy en C_7 à C_{20} , (13) un groupe anthryloxy qui peut avoir un ou plusieurs groupes alcoxy en C₇ à C₂₀; (q) un groupe naphtoyle qui peut avoir un ou plusieurs substituants choisis parmi (1) un atome 25 d'halogène, (2) un groupe alkyle en C_1 à C_6 , (3) un groupe alkyle en C_7 à C_{20} , (4) un groupe alcoxy en C₁ à C₆ qui peut avoir un ou plusieurs substituants choisis parmi un groupe alcoxy en C₁ à C₆, un atome d'halogène, un groupe phényle, naphtyle et anthryle, (5) un groupe alcoxy en C₇ à C₂₀ qui peut avoir un ou plusieurs atomes d'halogène, (6) un 30 groupe alcényloxy en C₇ à C₂₀, (7) un groupe carboxy, (8) un groupe phényle qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20, (9) un groupe naphtyle qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20, (10) un groupe anthryle qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20, (11) un groupe phénoxy qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20, (12) un 35 groupe naphtyloxy qui peut avoir un ou plusieurs groupes alcoxy en C_7 à C_{20} , (13) un groupe anthryloxy qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20; ou (r) un groupe anthrylcarbonyle qui peut avoir un ou plusieurs substituants choisis parmi (1) un atome d'halogène, (2) un groupe alkyle en C1 à C6, (3) un groupe alkyle en C7 à C20, (4) un 40 groupe alcoxy en C₁ à C₆ qui peut avoir un ou plusieurs substituants choisis parmi un groupe alcoxy en C₁ à C₆, un atome d'halogène, un groupe phényle, naphtyle et anthryle, (5) un groupe alcoxy en C₇ à C₂₀ qui peut avoir un ou plusieurs atomes d'halogène, (6) un groupe alcényloxy en C₇ à C₂₀, (7) un groupe carboxy, 45 (8) un groupe phényle qui peut avoir un ou plusieurs groupes alcoxy en C₇ à C₂₀, (9) un groupe naphtyle qui peut avoir un ou plusieurs groupes alcoxy en C₇ à C₂₀, (10) un groupe anthryle qui peut avoir un ou plusieurs groupes alcoxy en C_7 à C_{20} , (11) un groupe phénoxy qui peut avoir un ou plusieurs groupes alcoxy en C7 à C20, (12) un groupe naphtyloxy qui peut avoir un ou plusieurs groupes alcoxy en C₇ à C₂₀, (13) un groupe anthryloxy qui peut 50 avoir un ou plusieurs groupes alcoxy en C7 à C20). Composé selon la revendication 3, dans lequel : un groupe alcanoyle en C₁ à C₆; 55

88

phényl(alcanoyle en C_1 à C_6) ou naphtyl(alcanoyle en C_1 à C_6), qui peuvent avoir chacun 1 à 3 substituants choisis parmi un groupe hydroxy, un groupe alcoxy en C_1 à C_6 , un groupe alcoxy en

halo(alcanoyle en C_1 à C_6);

 C_7 à C_{20} , un groupe phényle, un groupe naphtyle, un groupe anthryle, un groupe amino, un groupe amino protégé, un groupe di(alkylamino en C₁ à C₆), un groupe alcoxyimino en C₁ à C₆, et un groupe phényl(alcoxyimino en C₁ à C₆) qui peut avoir 1 à 3 groupes alcoxy en C₇ à C₂₀; un groupe pyridylthio(alcanoyle en C₁ à C₆) qui peut avoir 1 à 3 groupes alkyle en C₇ à C₂₀; un groupe thiényl(alcanoyle en C₁ à C₆) qui peut avoir 1 à 3 substituants choisis parmi un groupe alcoxyimino en C₁ à C₆, alkyle en C₇ à C₂₀, amino et amino protégé; un groupe imidazolyl (alcanoyle en C_1 à C_6) qui peut avoir 1 à 3 substituants choisis parmi un groupe alcoxyimino en C₁ à C₆, alkyle en C₇ à C₂₀, amino et amino protégé; un groupe pyrazolyl(alcanoyle en C1 à C6) qui peut avoir 1 à 3 substituants choisis parmi un groupe alcoxyimino en C₁ à C₆, alkyle en C₇ à C₂₀, amino et amino protégé; 10 un groupe furyl(alcanoyle en C1 à C6) qui peut avoir 1 à 3 substituants choisis parmi un groupe alcoxyimino en C₁ à C₆, alkyle en C₇ à C₂₀, amino et amino protégé; un groupe tétrazolyl (alcanoyle en C1 à C6) qui peut avoir 1 à 3 substituants choisis parmi un groupe alcoxyimino en C₁ à C₆, alkyle en C₇ à C₂₀, amino et amino protégé; 15 un groupe thiazolyl(alcanoyle en C₁ à C₆) qui peut avoir 1 à 3 substituants choisis parmi un groupe alcoxyimino en C₁ à C₆, alkyle en C₇ à C₂₀, amino et amino protégé; un groupe thiadiazolyl(alcanoyle en C_1 à C_6) qui peut avoir 1 à 3 substituants choisis parmi un groupe alcoxyimino en C₁ à C₆, alkyle en C₇ à C₂₀, amino et amino protégé; un groupe phényl (alcoxyimino en C₁ à C₆) (alcanoyle en C₁ à C₆) qui peut avoir 1 à 3 groupes alcoxy en C_7 à C_{20} ; 20 un groupe alcanoyle en C7 à C20; un groupe phényl(alcénoyle en C₁ à C₆) qui peut avoir 1 à 3 groupes alcoxy en C₇ à C₂₀, un groupe alcénoyle en C7 à C20; un groupe (alcoxy en C₁ à C₆)carbonyle; 25 un groupe (alcoxy en C₇ à C₂₀)carbonyle; un groupe phénoxycarbonyle; un groupe naphtyloxycarbonyle; un groupe phénylsulfonyle ou naphtylsulfonyle dont chacun peut avoir 1 à 3 substituants choisis parmi un groupe alkyle en C₁ à C₆ et alcoxy en C₇ à C₂₀; un groupe benzoyle, naphtoyle ou anthrylcarbonyle, dont chacun peut avoir 1 à 5 substituants choisis 30 parmi un atome d'halogène, un groupe alkyle en C $_1$ à C $_6$, alkyle en C $_7$ à C $_{20}$, carboxy, alcoxy en C₁ à C₆ qui peut avoir 1 à 10 atomes d'halogène, un groupe (alcoxy en C₁ à C₆) (alcoxy en C₁ à C_6), un groupe phényl(alcoxy en C_1 à C_6), un groupe alcoxy en C_7 à C_{20} qui peut avoir 1 à 17 atomes 35 un groupe alcényloxy en C_7 à C_{20} , un groupe phényle qui peut avoir 1 à 3 groupes alcoxy en C_7 à C_{20} ; un groupe phénoxy qui peut avoir 1 à 3 groupes (alcoxy en C_1 à C_6) ou (alcoxy en C_7 à C_{20}).

Composé selon la revendication 4, dans lequel :

40

45

50

55

R1 est un groupe alcanoyle en C₁ à C₆; un groupe halo(alcanoyle en C₁ à C₆);

> un groupe phényl(alcanoyle en C_1 à C_6) ou naphtyl(alcanoyle en C_1 à C_6), dont chacun peut avoir 1 à 3 substituants choisis parmi un groupe hydroxy, alcoxy en C_1 à C_6 , alcoxy en C_7 à C_{20} , phényle, amino, (alcoxy en C_1 à C_6)carbonylamino, di(alkylamino en C_1 à C_6), alcoxyimino en C_1 à C_6 , et phényl(alcoxyimino en C₁ à C₆) qui peut avoir 1 à 3 groupes alcoxy en C₇ à C₂₀; un groupe pyridylthio(alcanoyle en C₁ à C₆) qui peut avoir 1 à 3 groupes alkyle en C₇ à C₂₀; un groupe imidazolyi(alcanoyle en C1 à C6) ou thiazolyi(alcanoyle en C1 à C6) dont chacun peut avoir 1 à 3 substituants choisis parmi un groupe alcoxyimino en C_1 à C_6 , alkyle en C_7 à C_{20} , amino et (alcoxy en C₁ à C₆)carbonylamino; un groupe phényl (alcoxyimino en C₁ à C₆) (alcanoyle en C₁ à C₆) qui peut avoir 1 à 3 groupes alcoxy en C₇ à C₂₀;

un groupe alcanoyle en C₇ à C₂₀, phényl(alcénoyle en C₁ à C₆) qui peut avoir 1 à 3 groupes alcoxy en C $_{7}$ à C $_{20}$); un groupe alcénoyle en C $_{7}$ à C $_{20}$; un groupe (alcoxy en C $_{1}$ à C $_{6}$)carbonyle; un groupe (alcoxy en C₇ à C₂₀)carbonyle; un groupe phénoxycarbonyle;

un groupe phénylsulfonyle ou naphtylsulfonyle dont chacun peut avoir 1 à 3 substituants choisis parmi un groupe alkyle en C₁ à C₆ et alcoxy en C₇ à C₂₀; ou

un groupe benzoyle, naphtoyle ou anthrylcarbonyle, dont chacun peut avoir 1 à 5 substituants choisis parmi un atome d'halogène, un groupe alkyle en ${
m C_1}$ à ${
m C_6}$, alkyle en ${
m C_7}$ à ${
m C_{20}}$, carboxy, alcoxy en C_1 à C_6 qui peut avoir 6 à 10 atomes d'halogène, un groupe (alcoxy en C_1 à C_6) (alcoxy en C_1 à C_6), phényl(alcoxy en C_1 à C_6), un groupe alcoxy en C_7 à C_{20} qui peut avoir 12 à 17 atomes d'halogène, alcényloxy en C_7 à C_{20} , phényle qui peut avoir 1 à 3 groupes alcoxy en C_7 à C_{20} , et phénoxy qui peut avoir 1 à 3 groupes alcoxy en C_7 à C_{20} .

6. Composé selon la revendication 5, dans lequel :

5

10

15

20

25

30

40

45

50

55

R¹ est un groupe phényl(alcénoyle en C₁ à C₆) qui peut avoir 1 à 3 groupes alcoxy en C₇ à C₂₀; ou un groupe benzoyle, naphtoyle ou anthrylcarbonyle, dont chacun peut avoir 1 à 5 substituants choisis parmi un atome d'halogène, un groupe alkyle en C₁ à C₆, alkyle en C₇ à C₂₀, carboxy, alcoxy en C₁ à C₆ qui peut avoir 6 à 10 atomes d'halogène, (alcoxy en C₁ à C₆) (alcoxy en C₁ à C₆), phényl(alcoxy en C₁ à C₆), alcoxy en C₇ à C₂₀ qui peut avoir 12 à 17 atomes d'halogène, alcényloxy en C₇ à C₂₀, phényle qui peut avoir 1 à 3 groupes alcoxy en C₇ à C₂₀, et phénoxy qui peut avoir 1 à 3 groupes alcoxy en C₇ à C₂₀.

7. Composé selon la revendication 6, dans lequel :

R¹ est un groupe phényl(alcénoyle en C₁ à C₆) qui peut avoir un groupe alcoxy en C₇ à C₂₀; ou un groupe benzoyle ou naphtoyle, dont chacun peut avoir un groupe alcoxy en C₇ à C₂₀, alcényloxy en C₇ à C₂₀, ou phényle qui peut avoir un groupe alcoxy en C₇ à C₂₀.

8. Composé selon la revendication 7, dans lequel :

R1 est un groupe benzoyle qui a un groupe alcoxy en C7 à C20.

9. Composé selon la revendication 7, dans lequel :

R¹ est un groupe phényl(alcénoyle en C₁ à C6) qui a un groupe alcoxy en C7 à C20; ou naphtoyle qui a un groupe alcoxy en C7 à C20 ou alcényloxy en C7 à C20.

10. Composé selon la revendication 9, dans lequel :

R¹ est un groupe naphtoyle qui a un groupe alcoxy en C₇ à C₂₀.

35 11. Procédé pour la préparation d'un polypeptide répondant à la formule []:

HO OH

HO OH

$$H_3$$
C

 H_0
 H_0

dans laquelle R1, R2, R3 et R4 sont chacun tels que définis dans la revendication 1,

ou un de ses sels, qui comprend :

5

10

15

20

25

30

35

40

45

50

55

i) le fait de soumettre un composé [II] répondant à la formule :

EO 0 NH NHCO(CH₂)₁₄CH₃

E2N OH

NHCO(CH₂)₁₄CH₃

OH

NHCO(CH₂)₁₄CH₃

OH

NHCO(CH₂)₁₄CH₃

OH

NHCO(CH₂)₁₄CH₃

ou un de ses sels, à une réaction d'élimination du groupe N-acyle, pour donner un composé répondant à la formule [la]:

ou un de ses sels, ou

ii) le fait de soumettre un composé [la] ou un de ses sels ainsi obtenu à une réaction d'acylation, pour donner un composé répondant à la formule [lb] :

dans laquelle R^1_a est un groupe acyle à l'exclusion du groupe palmitoyle ou un de ses sels, ou iii) le fait de soumettre un composé [Ic] répondant à la formule :

HO OH

HO OH

$$H_3$$
C

 H_3 C

 H_4
 H_5
 H_5
 H_5
 H_5
 H_5
 H_5
 H_6
 H_7
 H_7

dans laquelle

R_b¹ est un groupe phényl(alcanoyle en C₁ à C₆) qui a un groupe alcoxy en C₇ à C₂₀ et un groupe amino protégé ou un groupe naphtyl(alcanoyle en C₁ à C₆) qui a un groupe alcoxy en C₇ à C₂₀ et amino protégé,

ou un de ses sels, à une réaction d'élimination du groupe protecteur du groupe amino, pour donner un composé [ld] répondant à la formule :

5

10

15

20

25

30

35

40

45

50

55

 R_c^1 est un groupe phényl(alcanoyle en C_1 à C_6) qui a un groupe alcoxy en C_7 à C_{20} et un groupe amino, ou un groupe naphtyl(alcanoyle en C_1 à C_6) qui a un groupe alcoxy en C_7 à C_{20} et un groupe amino,

ou un de ses sels, ou

iv) le fait de faire réagir un composé répondant à la formule [le] :

dans laquelle

R_d¹ est un groupe halo(alcanoyle en C₁ à C₆),

ou un de ses sels, avec une pyridinethione qui peut avoir un groupe alkyle en C_7 à C_{20} , ou un de ses sels, pour donner un composé répondant à la formule [If] :

 R_e^1 est un groupe pyridylthio(alcanoyle en C_1 à C_6) qui peut avoir un groupe alkyle en C_7 à C_{20} ,

ou un de ses sels, ou v) le fait de soumettre un composé répondant à la formule [lv] :

HO OH

HO OH

$$H_3$$
C

 H_0
 H_0

dans laquelle

R³ et R⁴ sont chacun tels que définis ci-dessus, et R⁵ est un groupe acyle,

ou un de ses sels, à une réaction d'acylation pour donner un composé répondant à la formule [Ig] :

HO OH

HO OH

HO OH

$$HO$$
 OH

 HO OH

 HO OH

 HO OH

 R^4-H_2C OH

 HO OH

 H

25

30

35

5

10

15

dans laquelle

R3 et R4 sont chacun tels que définis ci-dessus,

R_f¹ est un groupe acyle, et R_a² est un groupe acyloxy,

ou un de ses sels.

- 12. Composition pharmaceutique qui comprend comme ingrédient actif un composé selon la revendication 1 ou un de ses sels pharmaceutiquement acceptables, en mélange avec un support ou excipient pharmaceutiquement acceptable.
 - 13. Utilisation d'un composé selon la revendication 1 ou d'un de ses sels pharmaceutiquement acceptables pour la fabrication d'un médicament pour le traitement ou la prévention de maladies infectieuses.
 - 14. Composé selon la revendication 1 et un de ses sels pharmaceutiquement acceptables pour l'utilisation comme médicament.
- 15. Utilisation d'un composé selon la revendication 1 ou d'un de ses sels pharmaceutiquement acceptables pour la 40 fabrication d'un médicament.

Revendications pour les Etats contractants suivants : ES, GR

1. Procédé de préparation d'un polypeptide répondant à la formule générale suivante :

50

45

5

10

15

20

25

30

35

45

50

55

R1 est un atome d'hydrogène ou un groupe acyle,

R² est un groupe hydroxy,

R3 est un groupe hydroxysulfonyloxy, et

R4 est un atome d'hydrogène ou un groupe carbamoyle,

sous réserve que :

R1 ne soit pas un groupe palmitoyle lorsque R2 est un groupe hydroxy,

R³ soit un groupe hydroxysulfonyloxy, et

R4 soit un groupe carbamoyle,

et un de ses sels pharmaceutiquement acceptables.

i) le fait de soumettre un composé [II] répondant à la formule :

ou un de ses sels,

à une réaction d'élimination du groupe N-acyle, pour donner un composé répondant à la formule [la] :

ou un de ses sels, ou

,

ii) le fait de soumettre un composé [la] ou un de ses sels ainsi obtenu à une réaction d'acylation, pour donner un composé répondant à la formule [lb] :

dans laquelle R_a^1 est un groupe acyle à l'exclusion du groupe palmitoyle ou un de ses sels, ou iii) le fait de soumettre un composé [lc] répondant à la formule :

5

10

15

20

25

30

35

40

45

50

est un groupe phényl(alcanoyle en C₁ à C₆) qui a un groupe alcoxy en C₇ à C₂₀ et un groupe amino protégé ou un groupe naphtyl(alcanoyle en C₁ à C₆) qui a un groupe alcoxy en C₇ à C₂₀ et amino protégé,

ou un de ses sels, à une réaction d'élimination du groupe protecteur du groupe amino, pour donner un composé [ld] répondant à la formule :

dans laquelle

 R_c^1 est un groupe phényl (alcanoyle en C_1 à C_6) qui a un groupe alcoxy en C_7 à C_{20} et un groupe amino, ou un groupe naphtyl (alcanoyle en C_1 à C_6) qui a un groupe alcoxy en C_7 à C_{20} et un groupe amino,

ou un de ses sels, ou iv) le fait de faire réagir un composé répondant à la formule [le] :

5

10

15

20

25

30

35

40

45

50

 R_d^1 est un groupe halo(alcanoyle en C_1 à C_6),

ou un de ses sels, avec une pyridinethione qui peut avoir un groupe alkyle en C_7 à C_{20} , ou un de ses sels, pour donner un composé répondant à la formule [If] :

dans laquelle

R_e¹ est un groupe pyridylthio(alcanoyle en C₁ à C₆) qui peut avoir un groupe alkyle en C₇ à C₂₀,

ou un de ses sels, ou

v) le fait de soumettre un composé répondant à la formule [IV] :

5

10

15

20

25

30

35

40

45

50

55

 ${\sf R}^3$ et ${\sf R}^4$ sont chacun tels que définis ci-dessus, et ${\sf R}^5$ est un groupe acyle,

ou un de ses sels, à une réaction d'acylation pour donner un composé répondant à la formule [lg] :

HO OH

HO OH

$$H_3$$
C

 H_4
 H_5
 H_6
 H_7
 H_8
 H_8
 H_8
 H_9
 H_9

dans laquelle

 R^3 et R^4 sont chacun tels que définis ci-dessus, R^1_f est un groupe acyle, et R^2_a est un groupe acyloxy,

ou un de ses sels.

2. Variante du procédé selon la revendication 1, qui comprend le fait de mélanger le composé préparé conformément à la revendication 1 avec un support ou excipient pharmaceutiquement acceptable.