

Magic Molecules: Material Innovations for Lightweight, Adaptive, and Multifunctional Structures

Dr. Ajay Misra NASA Glenn Research Center Cleveland, OH 44135

Presented at the CAFÉ Electric Aircraft Symposium VI, Santa Rosa, CA, April 27-28, 2012

Material Innovations

- Composites reinforced with nanotubes, nanofibers for improving structural properties
- Nanotube reinforced composites for enhancement of functional properties (e.g., thermal and electrical conductivity, damping)
- Adaptive structures based on smart materials, including shape memory materials and superelastic materials
- Self healing materials
- Thin, flexible, and mechanically strong aerogels
- Multifunctional structures incorporating a wide range of materials

Carbon Nanotubes – Where Are We Today?

CNT Reinforced Polymer in LockHeed Martin's **Lighting II Aircraft** Wingtip Fairing (Nonload bearing structure)

Wind Turbine Blade with CNT (CWRU)

CNT Sheets, Fabric and Wire (Nanocomp, General Nano, FSU)

Lightweight Cables Nanocomp, Inc.

CNT Sheet from Nanocomp (Used for EMI Shielding in NASA's Juno Spacecraft)

Superior Strength of Carbon Nanotube

Harris, Shuart, Gray, NASA TM 211664, 2002

Potential Strength Benefits of Polymer Composites Reinforced With Carbon Nanotubes

Harris, Shuart, Gray, NASA TM 211664, 2002

CNT Sheet Composite Vs IM7 Composite

Cheng, Wang, Zhang, and Liang, "Functionalized Carbon Nanotube Sheet/Bismaleimide Nanocomposites: Mechanical and Electrical Performance Beyond Carbon-Fiber Composites," Small, 6(6), 763-763 (2010).

Fibers Incorporating Nanotubes

Polymer - CNT **Nanocomposite Fiber By Electrospinning**

TISSUE ENGINEERING Volume 12, Number 5, 2006

PAN/CNT Derived Carbon Fiber (Ga Tech)

Braided CNT Fibers (Nanocomp)

Tensile Strength of CNT- Based Fibers

Enhancement of Composite Mechanical Properties by Incorporation of Nanotubes

MIT - Wardle et al.

Nanotubes used to enhance properties of continuous fiber reinforced polymer composites

Airbus – Nanocomposites for Future Airbus Airplanes

National Aeronautics and Space Administration Enhancement of Composite Functional Properties By Incorporation of Nanotubes

TUESDAY, APRIL 03, 2012

US Patent 8146861 - Lightning protection for aircraft using CNT material

http://www.freepatentsonline.com/8146861.html

This patent from Airbus Deutschland GmbH teaches a carbon nanotube based alternative to aluminum or copper-mesh skins for aircraft to protect from lightning strikes.

Benefits of Nanocomposites for Lightening Protection

Interfacial slippage/sliding in CNT composites can enable vibration damping

From Suhr, Zhang, Ajayan, Karatkar Nano. Lett. 2006, 6 (2), 219-23

Rice Univ: Adv. Funct. Mater. 2011, 21, 2527-2533

Nanotube Cables Hit a Milestone: As Good as Copper

Carbon nanotubes with same electrical conductivity as Cu developed by researchers at Rice University

Potential for lightweight electrical wirings, multifunctional conductive structures, and high power density electric motors

Thermal Management Using Nanotubes

Theoretical predictions suggest values as high as 3000 W/mK and 6600 W/mK] for individual multiwalled CNTs and single-wall CNTs, respectively.

Cool Findings -Nanotubes Could
Improve Thermal
Management In
Electronics
ScienceDaily (Mar.
29, 2007)

Boron nitride nanotubes possess unique combination of high thermal conductivity and electrical insulation characteristics

Actuation Based on Shape Memory Alloys

A special type of metallic alloy that when deformed at low temperatures is capable of "remembering" and recovering its original shape upon heating

SMA Rotary Actuator: 150 in-lbs 1 lbs

Current NASA Research on Shape Memory

Alloy

Modeling to Predict Performance and Enable 3-D Actuation

Shape Change for Rotating Fan Blade

Superelastic Materials

Strain (%)

T Omori et al. Science 2011;333:68-71

Application to Lattice and Auxetic Structures

Expands capabilities into three dimensional actuation, new flap and winglet designs, variable geometry inlets and nozzles, as well as highly-impact resistant structures. Takes advantage of superelastic nature of SMAs

Shape Memory Polymers

Thermally Induced Shape Change

Langer, R., and Tirrell, D. A., Nature (2004)

Magnetically Induced Shape Change

Mohr, R., et al., Proc. Natl. Acad. Sci. USA (2006) 103, 3540

Self Healing Composites

G. Lanzara, Y. Yoon, H. Liu, S. Peng and W. I. Lee, Nanotechnology, 2009, 20, 335704

S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown and S. Viswanathan, Nature, 2001, 409, 794-797

Self Healing Polymers

Materials science: The gift of healing
Justin L. Mynar & Takuzo Aida
Nature 451, 895-896(21 February 2008)

Overlapping Film

Self-Healed Film

Murphy, E. B. et al. Synthesis and characterization of a single-component thermally remendable polymer network; Staudinger and Stille revisited. Macromolecules 41, 5203–5209 (2008)

Possible through engineering of the dynamic bond within the polymer

Mechanically Strong Aerogels

Highly porous solid, 10-40 nm pore size

...but are extremely fragile and moisture sensitive

NASA developed strong silica aerogel

Sandwich Structure Incorporating Aerogels

NASA developed polyimide thin film aerogels with high strength and higher temperature insulation capability offer the potential for multifunctional structure with thermal insulation capability - can be reinforced with nanotubes and nanofibers to further improve strength

Multifunctional Skin for Aircraft Structure

- Composite primary structure with external protective skin
- Multifunctional skin provides protection external to primary structure
 - Acoustic treatment
 - Thermal insulation
 - Lightening strike protection
 - Smoothness to facilitate laminar flow
 - Impact detection/indication
 - Ice protection

Schematic of STAR-C2 concept (under development on Cessna NRA contract) Smoothing, Thermal, Absorbing, Reflective, Conductive, Cosmetic (STAR - C2) Concept Being Funded by NASA

Concluding Remarks

- Reinforcement of composites with nanotubes and nanofiber offer the potential for significant improvement in strength, but replacement of carbon fibers with nanotubes or nanofibers in polymer composites is still a long term goal
- Near-term application of nanotubes or nanofibers in continuous carbon fiber reinforced composites
 - Increasing interlaminar strength and fracture toughness
 - Increasing thermal and electrical conductivity
 - Improving damping resistance
- Lightweight adaptive structures can be achieved by use of smart materials
- Basic research on self healing materials offers future potential
- Thin, flexible, mechanically strong aerogels offer promise for structural applications
- Multifunctional structures will require combination of new materials and advanced structural concepts