Lab 05B – Subnetting

Author: Raymond Ng

Course Number/Section: IS 3413-006

Date: October 9, 2022

INTRODUCTION

The purpose of this lab is to allow the user to practice subnetting a network. Moreover, to outline the subnet's characteristics.

PROCESS

Below is the target IP address I will be using for this lab (Figure 1).

	IF	addre	SS	Check	Show	-	Answe	Correct?	
Network].[Check	Show				
First Host				Check	Show				
Last Host				Check	Show				
Broadcast].[].[Check	Show			1).[
Next Subnet				Check	Show				
Chec	Check	Show							

Figure 1: My target IP address

Here, using an online converter from rapidtables.com [1], I translated the four octets into binary:

11011011.10000100.01111100.11100101

Using a Cheat Sheet obtained from *practicalnetworking.net* (*Figure 2*), I determined my subnet mask was 255.255.255.192 by observing for the Subnet associated with CIDR /26 of my target IP address [2].

Group Size	128	64	32	16	8	4	2	1
Subnet	128	64 192 /26	224	240	248	252	254	255
CIDR	/25	/26	/27	/28	/29	/30	/31	/32

Figure 2: Cheat Sheet from practicalnetworking.net

255.255.192 converted to binary: 111111111.11111111.11111111.11000000 (Binary Subnet Mask)

To mask the first 25 bits, I used the binary Target IP address and Subnet Mask.

```
      Mask:
      11011011
      10000100
      01111100
      11100101

      Mask:
      11111111
      11111111
      11111111
      11000000

      Subnet:
      11011011
      10000100
      01111100
      11000000
```

Resulting in binary subnet: 11011011.10000100.01111100.11000000

```
11011011.10000100.011111100.11000000 converted into IPv4 is 219.132.124.192.
```

In order to figure out my First Host, Network, Broadcast, Last Host, and Next Subnet addresses I needed to recall the Cheat Sheet I obtained from *practicalnetworking.net* (*Figure 3*). Observing CIDR /26, I determined that the Group Size was 64; therefore, I would start with ".0" and increase by .64 until I passed my Target IP Subnet, 192, to figure out the aforementioned IP addresses.

Group Size	128	64	32	16	8	4	2	1
Subnet	128	64 192 /26	224	240	248	252	254	255
CIDR	/25	/26	/27	/28	/29	/30	/31	/32

Figure 3: Cheat Sheet from practicalnetworking.net

```
229 / 26
Target IP:
               219 .
                        132 . 124 .
               219 .
                        132
                                 124
               219
                        132 . 124
                                                         Here, based on the Cheat Sheet, I
                                          64
                        132
                                 124
                                                           increased by Group Size, 64,
               219
                                           128
Network:
               219
                        132
                                 124
                                           192
                                                            until I passed the Target IP.
                        <del>132</del>
                                 <del>124</del>
                                          256
               <del>219</del>
Next Subnet:
                        132 . 125 . 0
               219 .
```

Based upon the above results I know my network address is 219.132.124.192.

To find my First Host I simply +1 to last octet of the network address, which would be 219.132.124.193, which is also the number after the Network IP.

Observing the above results, I ran into an erroneous result ending in .256. .256 is not a valid IP address. Each octet in an IP address can only from 0 to .255. So, .256 becomes .0 and I had to increase the next octet from .124 to .125, which creates the Next Subnet address 219.132.125.0

Next, I determined the Broadcast address by determining the IP right before the Next Subnet, which is 219.132.124.255.

Lastly, I determined the Last Host, which is the number before the Broadcast IP, 219.132.124.254. I simply -1 from the last octet of the Broadcast address.

Below is the screen shot of the IP address table from *subnetipv4.com* to validate my results from above (*Figure 4*).

			IP a	do	Iress			Check	/Show	0		A	ns	wer			Correct?
Network	219		132].	124		192	Check	Show	219		132	0	124	1	192	YES
First Host	219] .	132].	124],	193	Check	Show	219		132	1	124	1	193	YES
Last Host	219]	132].	124	2	254	Check	Show	219		132		124		254	YES
Broadcast	219].	132].	124].	255	Check	Show	219		132		124	ĺ.	255	YES
Next Subnet	219] ::	132].	125		0	Check	Show	219].	132		125].	0	YES
Check or Show ALL						Check	Show										

Figure 4: Completed target IP address table

To figure out how many IP addresses are usable in my subnet I performed the following calculations:

There are 32 bits in all IP addresses. The number of host bits is equal to the number of network bits. In my case, this is 32 - 26 = 6

The first address and last address are reserved. So, I can use the formula $2^{\text{number of host bits}} - 2$ $2^{6} - 2 = 62$

Therefore, there are 62 IP addresses that are usable in my subnet.

According to *techrepublic.com*, to determine the number of subnets, use the 2^x-2 , where the x exponent is the number of subnet bits in the mask. Moreover, I used a chart (*Figure 5*) sourced from the same site to determine what masks can be used with Class C networks. [3]

Mask	Binary	# Subnet bits	# Host bits	Subnets	Hosts
255.255.255.128	10000000	1	7	2	126
255.255.255.192	11000000	2	6	2	62
255.255.255.224	11100000	3	5	6	30
255.255.255.240	11110000	4	4	14	14
255.255.255.248	11111000	5	3	30	6
255.255.255.252	11111100	6	2	62	2

Figure 5: Only masks that can be used with Class C networks

Therefore, $2^2 - 2 = 2$ subnets available in my network.

LIMITATIONS/CONCLUSION

The lab's difficulty was fairly simple. I do not assess there were any limitations because everything was executed in a live environment versus a controlled environment. Moreover, there were plenty of online resources to guide the user. This biggest takeaway from the lab was learning how to take a network and dividing it into sub-networks.

REFERENCES

- [1] RapidTables [Online]. "Online Calculators & Tools". Available: https://www.rapidtables.com/convert/numeber/decimal-to-binary.html [Accessed: 09-Oct-2022].
- [2] Harmoush [Online]. "Subnetting Mastery", September 21, 2021. Available: https://www.practicalnetworking.net/stand-alone/subnetting-mastery/ [Accessed: 09-Oct-2022].
- [3] Toddlammie, *Networking* [Online]. "Subnetting a Class C network address, May 24, 2001. Available: https://www.techrepublic.com/article/subnetting-a-class-c-network-address/ [Accessed: 09-Oct-2022].

COLLABORATION

The entirety of this lab was executed independently by the author. No additional collaboration to report.