String Operation

Time: 1 sec / Memory: 256 MB

Problem Statement

In this problem, you are given a string s that an alphabet of the first k characters from {a,b,...,z} and the replacement rules for each of the k characters.

Your task is to apply a number of replacement operations to the given string s and output the length of the resulting string modulo $10^9 + 7$.

- The character a is to be replaced by abc.
- The character b is to be replaced by cb.
- The character c is to be replaced by a.

Then the first replacement operation will turn the input string cab into aabccb.

The second operation will make it abcabccbaacb, and so on so forth.

Input

The first line contains two integers n and m: the length of string s and the number of replacement operations to perform.

The second line contains the string s.

The third line contains an integer k, which denotes the number of leading characters in $\{a,b,...,z\}$ to be used.

After this, there are k lines, where the i-th line contains a string p_i to denote the rule of replacing the i-th character in {a,b,...,z} with the string p_i .

You may assume that

• $1 \le n \le 500$

- $1 \le m \le 10^9$
- $1 \le k \le 26$
- $1 \leq |p_i| \leq 20$ for all $1 \leq i \leq k$.

Furthermore, s and p_i for all i contain only the first k characters from {a,b,...,z}.

Output

Print the length of the resulting string after m replacement operations modulo $10^9 + 7.$

Example

Input1:

3 2

cab

3

abc

cb

Output1:

12

Input2:

3 1

aab

3

abc

cb

а

Output2:

8

Input3:

5 5

aacce

5

db

aee

eb

ba

dd

Output3:

264