(lecture notes for Math 2603 at the University of Arkansas)
Fall 2014
by Ashley K. Wheeler
Last modified: 29 August 2014

Sets and Logic

Definition. A set is a collection of objects called elements or members; order is not taken into account.

Example.

$$A = \{a, b, c, d\}$$

is a set. Its elements are a, b, c, and d.

Although the definition for set is very generic and vague, there are many less obvious examples of sets:

Example.

Definition. Suppose A is a set. The non-negative integer

$$|A| = number of elements in A$$

is called the **cardinality** of A.

Definition. The set with no elements is called the **empty set** (also the **null set**, or the **void set**) and is denoted \emptyset , or $\{\}$.

Definition. Two sets X and Y are equal means X and Y have the same cardinality. We write X = Y.

Definition. Suppose X, Y are sets. X is a subset of Y means every element of X is an element of Y. We write $X \subseteq Y$.

Definition. The set of all subsets of a set X is called the **power set** of X, denoted $\mathcal{P}(X)$, or 2^X .

Definition. Suppose $X \subseteq Y$. X is a **proper subset** of Y means, in addition, that X does not equal Y. We write $X \subset Y$. Note, some authors write $X \subsetneq Y$ to emphasize non-equality.

Definition. Let X, Y denote sets. The set

$$X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$$

is called the union of X and Y.

Definition. Let X, Y denote sets. The set

$$X \cap Y = \{x \mid x \in X \text{ and } x \in Y\}$$

is called the intersection of X and Y.

Definition. Let X, Y denote sets. The set

$$X \setminus Y = \{x \mid x \in X \text{ and } x \notin Y\}$$

is called the difference or relative complement. Some authors use X - Y.

Definition. The set $\mathbb{R} \setminus \mathbb{Q}$ is called the set of irrational numbers.

Definition. Sets X and Y are disjoint means $X \cap Y = \emptyset$.

Definition. A collection of sets S is pairwise disjoint means any two distinct sets in Sare disjoint.

Definition. A universal set or universe is a set, usually inferred via context, whose subsets are those we are considering.

Definition. Given a universal set U with $X \subseteq U$, the set

$$\overline{X} = U \setminus X$$

is called the **complement** of X in U.

Definition. A Venn diagram is a pictorial view of sets drawn as follows: A rectangle depicts the universal set. Subsets of the universal set are drawn as circles. The inside of a circle represents the members of that set.

Theorem. Let U be a universal set and let $A, B, C \subseteq U$.

 $(A \cup B) \cup C = A \cup (B \cup C)$ Associative Laws:

 $(A \cap B) \cap C = A \cap (B \cap C)$

Commutative Laws: $A \cup B = B \cup A$

 $A \cap B = B \cap A$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributive Laws:

 $A \cup (B \cup C) = (A \cup B) \cap (A \cup C)$

Identity Laws: $A \cup \emptyset = A$

 $A \cap U = A$

Complement Laws:

 $A \cup \overline{A} = U$

 $A \cap \overline{A} = \emptyset$ Idempotent Laws: $A \cup A = A$

 $A \cap A = A$

Bound Laws: $A \cup U = U$

 $A \cap \emptyset = \emptyset$

Absorption Laws: $A \cup (A \cap B) = A$

 $A \cap (A \cup B) = A$

Proof. Left as an exercise. \square

Definition. A collection S of non-empty sets of X is a **partition** of the set X means every element in X belongs to exactly one member of S.

Definition. An ordered pair of elements, written (a,b) is considered distinct from the ordered pair (b,a), unless a=b.

Definition. Say X, Y are sets. The set of ordered pairs

$$X \times Y = \{(x, y) \mid x \in X \text{ and } y \in Y\}$$

is called the Cartesian product of X and Y.

Definition. Ordered lists need not be restricted to two elements. An n-tuple, written (a_1, \ldots, a_n) takes order into account.

Definition. A non-zero integer d divides an integer m means there exists an integer q, called the **quotient**, such that m = dq. A positive integer is **prime** means the only positive integers that divide it are 1 and itself.

Definition. A sentence that is either true of false, but not both, is called a **proposition**.

Definition. Suppose P, Q are propositions. The conjunction of P and Q is

Conditional Propositions and Logical Equivalence

Definition. Suppose P,Q are propositions. The statement "if P then Q" is called a conditional proposition, denoted $P \to Q$. P is called the hypothesis, or antecedent. Q is called the conclusion, or consequent.

 $\rightarrow Q$

	Truth Tables	
Q		P
${ m true}$		${ m tr}$

true true true true false true false false true false false true

When a conditional has a false antecedent, its truth value is always true. For this reason we sometimes say $P \to Q$ is vacuously true or true by default. In the order of operations, \to is evaluated last.

Truth values can be difficult to parse when propositions are expressed in everyday conversation. The following statements mean the same thing:

1) "if P, then Q"

P

- $P \rightarrow Q$
- 3) "Q only if P"
- 4) "When P, Q."
- 5) "If not Q, then not P." (called the *contrapositive* to the conditional proposition $P \to Q$)
- 6) Q is necessary for P.
- 7) P suffices for Q.

Definition. Suppose $R = P \rightarrow Q$. The converse of R is $Q \rightarrow P$.

Warning, the converse of a conditional and the contrapositive of a conditional are NOT THE SAME THING.

Definition. A biconditional proposition, denoted $P \leftrightarrow Q$, is defined by the truth table

P	Q	$P \leftrightarrow Q$
true	true	true
true	false	false
false	true	false
false	false	true

Some equivalent statements:

- 1) " $P \leftrightarrow Q$ "
- 2) "P if and only if Q"
- 3) "P is necessary and sufficient for Q."
- 4) "Q is necessary and sufficient for P."
- 5) " $Q \leftrightarrow P$ "
- 6) "P iff Q"

Defining a proposition via truth table remedies the ambiguity that comes with trying to express a logical statement in lay-speak. Truth tables are very effective tools in writing proofs.

Definition. Two propositions are logically equivalent means their truth tables are the same. The symbol for logical equivalence is \equiv .

Example. De Morgan's Laws:

- 1) $\neg (P \lor Q) \equiv \neg P \land \neg Q$
- 2) $\neg (P \land Q) \equiv \neg P \lor \neg Q$

Proof. In each case, the propositions we are trying to show are logically equivalent are the proposition on the lefthand side (LHS) of \equiv and the proposition on the righthand side (RHS) or \equiv .

1)			
P	Q	$\neg (P \lor Q)$	$\neg P \wedge \neg Q$
true	true	false	false
true	false	false	false
false	true	false	false

false false true true 2)