10/9/23 Henceforth we will work with metric spaces (M,d) with metric topology Jd Recall f: M -> N vo a homeomorphism if byective & f, f cts. Examples intranslations, diletions, and rotations in TR (f(x) = Ax + b. det A = 0) • $B(x,r) \stackrel{\sim}{=} B(y,s)$

Comparable merrics 2 different metrics on M.2 be Say d, d, are conforable of $\exists C \ge 1$ such that $\forall x x \in M$ $Cd_2(x,x) \leq d(x,x') \leq Cd_2(x,x')$ Prop if d, i dz are comparable, then id: (M,d,) -> (M,d2) IS a nomeo. Proof Note: $d_2(id(x), id(x')) \leq c \cdot d_i(x, x')$ To show $(d, d'(x), d'(x)) \in Cd_2(x, x')$. Lemma: If F.M >N 13 Lipschitz (IL70 Sit. of (f(x), f(x)) & Light, x), then f is cts. Pf: 2-8: Given &, let S= 2LX

Let (X,dx), (Y, di) be metric spaces. M = XxY
Consider, For $P = (x, y)$ $P(x, y')$ $d_{E}(p, p') = \sqrt{d_{X}(x, x')^{2} + d_{Y}(y, y')^{2}}$ $d_{\max}(p, p') = \max\{d_{X}(x, x'), d_{Y}(y, y')\}$ $d_{\sup}(p, p') = d_{X}(x, x') + d_{Y}(y, y')$
hemma: all 3 are comparable: $d_{\max} \leq d_E \leq d_{\min} \leq 2d_{\max}$.
Cor Jamax = J = Jasum
convergence in any one metric on any other
closed, open. Cor f:M >N 2 g:X > 1 Cts => f x g:M x X >> N x Y cts.

Application: Complethess of 12h A sequence of points (pn) n > 1 in M. converges of 1 pe M, 42 20 INZI NZN => d(Pn, p) < E n, o la Cauche of tezo 3N21 M = N = d(pn, pm)< E. Lemma o (p_n,q_n) \rightarrow (p,q) in dE, d_{max} , d_{sum} \rightleftharpoons $p_n \rightarrow p$ $q_n \rightarrow q$ ((pn, qn)) Cauchy in de max)
(pn) (qn) Cauchy deum Def (x,d) Complete 1f + (Pn)
Cauchy, IXEX: Xn = >X. Recall: R is complete (uses: UB property) Cor (R,de) complete.