CHƯƠNG II: HÀM SỐ NHIỀU BIẾN

- I. Các khái niệm mở đầu
- 1. Tập hợp trong Rⁿ
- 2. Định nghĩa hàm nhiều biến

CHƯƠNG II: HÀM SỐ NHIỀU BIẾN

CÁC KHÁI NIỆM MỞ ĐẦU

1. Tập hợp trong Rⁿ

1.1. Khoảng cách giữa hai điểm

Xét hai điểm M($x_1, x_2, ..., x_n$), N($y_1, y_2, ..., y_n$) trong không gian Rⁿ. Khoảng cách giữa M và N cho bởi công

thức:

$$d(M,N) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}} = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Tính chất: Ba điểm A, B, C tùy ý trong Rⁿ ta có: $\begin{cases} d(A,B) = 0 \Leftrightarrow A \equiv B \\ d(A,B) = d(B,A) \\ d(A,B) \leq d(A,C) + d(C,B) \end{cases}$

$$d(A,B) \le d(A,C) + d(C,B)$$

CHƯƠNG II: HÀM SỐ NHIỀU BIỂN I. CÁC KHÁI NIỆM CƠ BẢN

1. Tập hợp trong Rⁿ

1.2. Lân cận của một điểm.

Tập hợp $B(M_0, r) = \{M \in \mathbb{R}^n : d(M_0, M) < r\}$ gọi là hình cầu mở tâm M_0 bán kính r . Lân cận của M_0 là tất cả các tập hợp chứa một \mathcal{E} - lân cận $B(M_0, \mathcal{E})$ nào đó của M_0 .

Chú ý:

- Trong R hình dạng của $B(x_0, r)$ là khoảng (x_0-r, x_0+r)
- Trong R² hình dạng của B(x₀, r) là miền tròn không lấy những điểm nằm trên biên
- Trong R³ hình dạng của B(x₀, r) là quả cầu không lấy những điểm nằm trên biên (mặt cầu)

 X_0

CHƯƠNG II: HÀM SỐ NHIỀU BIỂN

I. CÁC KHÁI NIỆM CƠ BẢN

1.3. Điểm trong - Tập Mở.

Điểm M₀ gọi là điểm trong của tập A nếu:

 $\exists \varepsilon > 0 : B(M_0, \varepsilon) \subset A$. Tập hợp tất cả các điểm trong gọi là miền trong của tập A và kí hiệu là int A. Tập A gọi là tập mở nếu mọi điểm của nó đều là điểm trong.

1.4. Điểm biên - Tập đóng

Điểm M_0 gọi là điểm biên của tập A nếu với mọi lân cận của M_0 đều chứa những điểm thuộc A và những điểm không thuộc A trừ M_0 . Tập hợp tất cả các điểm biên gọi là biên của tập A và kí hiệu là ∂A . Tập A gọi là đóng nếu nó chứa mọi điểm biên của nó .

CHƯƠNG II: HÀM SỐ NHIỀU BIỂN

I. CÁC KHÁI NIỆM CƠ BẢN

1.5. Điểm Tụ - Điểm cô lập

Đểm M₀ gọi là điểm tụ của tập A nếu:

$$\forall \varepsilon > 0 : B(M_0, \varepsilon) \cap (A \setminus \{M_0\}) \neq \emptyset.$$

Ngược lại, ta nói điểm M₀ là điểm cô lập của A

<u>Chú ý</u>:

- > Điểm tụ có thể là điểm trong hoặc điểm biên
- Tập đóng chứa được mọi điểm tụ của nó

1.6. Tâp bị chặn

Tập E được gọi là một tập bị chặn nếu nó nằm trong một quả cầu nào đó

 $B(x_o,r)$

CHƯƠNG II: HÀM SỐ NHIỀU BIẾN :I. CÁC KHÁI NIỆM CƠ BẢN

1.7. Tâp Compact

Tập A được gọi là tập Compact nếu nó đóng và bị chặn

1.8. Tập liên thông: Tập A gọi là một tập liên thông nếu có thể nối hai điểm bất kỳ M, N bằng một đường liên tục nằm trong A. Tập liên thông A gọi là đơn liên nếu nó được bao bởi một đường kín trong R² (hoặc một mặt kín trong R³). Ngược lại nếu nó được bao bởi nhiều đường, mặt khác nhau đôi một thì ta nói A là đa liên.

CHƯƠNG II: HÀM SỐ NHIỀU BIẾN :I. CÁC KHÁI NIỆM CƠ BẢN

2. Định nghĩa hàm nhiều biến

2.1 Định nghĩa

Xét không gian Euclide n chiều R^n . Một phần tử $M \in R^n$ là một bộ gồm n thành phần .Hàm số n biến thực trên $D \subset R^n$ là một ánh xạ từ D vào R. Khi đó ta thường viết $u = f(x_1, x_2, \dots, x_n)$ hay u = f(M).

- Chú ý:1) D gọi là miền xác định của hàm số.
 - 2) Miền giá trị của hàm f là tập hợp các giá trị của u khi M chạy khắp miền D.
 - 3) Trong giáo trình chỉ xét các hàm hai hoặc ba biến

II. HÀM NHIỀU BIẾN

2.2. Cách cho một hàm nhiều biến

Người ta có thể biểu diễn hàm nhiều biến bằng một hay nhiều biểu thức. Trong trường hợp này ta có thể hiểu D là tập các điểm M sao cho biểu thức của f có nghĩa.

Trong các bài toán ứng dụng ta còn có thể dùng bảng để biểu diễn hàm nhiều biến

CÁC VÍ DŲ-MXĐ

Ví du 1

Tìm miền xác định của $z = f(x,y) = \sqrt{4-x^2-y^2}$

<u>GIÅI</u>

$$D = \{(x, y) : x^2 + y^2 \le 4\}$$

Ví dụ 2:
$$z = \begin{cases} \frac{x^2 y^2}{x^2 y^2 + (x - y)^4} & \text{thi} \quad (x, y) \neq (0, 0) \\ 0 & \text{thi} \quad (x, y) = (0, 0) \end{cases}$$

$$\underline{\text{Ví dụ 3:}} \quad z = \sqrt{x \ln y}$$

• • • BÀI GIẢI

$$Vi du 2:$$
 D = R²

<u>Ví dụ 3 :</u>

z xác định khi x. $lny \ge 0$

$$\Leftrightarrow \begin{bmatrix} \begin{cases} x \ge 0 \\ y \ge 1 \\ \\ x \le 0 \\ 0 < y \le 1 \end{bmatrix}$$

CÁC VÍ DŲ-MXĐ

Ví dụ 1

Tìm miền xác định, miền giá trị của z = f(x,y) cho bằng bảng

(x,y)	(1,2)	(3,4)	(5,6)	(7,9)	(12,14)
f(x,y)	5	6	9	2	1

<u>GIĂI</u>

MXĐ: $D=\{(1,2), (3,4), (5,6), (7,9), (12,14)\}$

 $MGT : f(D) = \{ 5,6,9,2,1 \}$