DM 7

Problème 1 : Nombres parfaits pairs

On dit qu'un entier naturel n est parfait lorsque la somme de ses diviseurs dans \mathbb{N} est égale à 2n.

1°) Soit $k \in \mathbb{N}$ tel que $k \ge 2$ et $2^k - 1$ est un nombre premier. Montrer que $n = 2^{k-1}(2^k - 1)$ est un nombre parfait pair.

On souhaite maintenant démontrer la réciproque : on suppose que n est un entier naturel parfait et pair.

- **2°)** Montrer qu'il existe $k \geq 2$ et m impair tel que $n = 2^{k-1}m$. En notant S(n) la somme des diviseurs dans \mathbb{N} de n et S(m) la somme des diviseurs de m dans \mathbb{N} , montrer que $S(n) = S(m)(2^k - 1)$.
- **3°)** Montrer qu'il existe $M \in \mathbb{N}^*$ tel que $m = M(2^k 1)$.
- **4°)** Exprimer 1 + m + M en fonction de S(m). En déduire qu'un entier naturel est parfait et pair si et seulement si il est de la forme $2^{k-1}(2^k - 1)$ avec $k \ge 2$ et $2^k - 1$ premier.

Problème 2 : confluence

Pour tout $n \in \mathbb{N}$, on note $\mathbb{N}_n = \{1, \dots, n\}$, en convenant que $\mathbb{N}_0 = \emptyset$. Soit E un ensemble muni d'une relation binaire notée \longrightarrow .

Pour tout $x, y \in E$, on note $x \longrightarrow^* y$ si et seulement si il existe $p \in \mathbb{N}$ et $x_0, \dots, x_p \in E$ tels que $x_0 = x$, $x_p = y$ et, pour tout $i \in \mathbb{N}_p$, $x_{i-1} \longrightarrow x_i$.

- 1°) Lorsque la relation \longrightarrow est symétrique, montrer que \longrightarrow * est une relation d'équivalence.
- **2°)** Soit $p \in \mathbb{N}^*$. Pour cette question seulement, on suppose que $E = \mathbb{Z}$ et que, pour tout $x, y \in \mathbb{Z}$, $x \longrightarrow y \iff |y x| = p$. Quelle est alors la relation \longrightarrow^* ?
- **3°)** Montrer qu'on ne modifie pas \longrightarrow^* si l'on remplace la relation \longrightarrow par la relation \longrightarrow^+ définie par : pour tout $x,y\in E, x\longrightarrow^+ y \Longleftrightarrow (x\longrightarrow y \land x\neq y)$.
- **4°**) À quelle condition nécessaire et suffisante la relation \longrightarrow^* est-elle une relation d'ordre?

5°) On dit que la relation \longrightarrow est localement confluente lorsque, pour tout $x, y_1, y_2 \in E$ tels que $x \longrightarrow y_1$ et $x \longrightarrow y_2$, il existe $z \in E$ tel que $y_1 \longrightarrow^* z$ et $y_2 \longrightarrow^* z$.

On dit que la relation \longrightarrow est confluente lorsque, pour tout $x, y_1, y_2 \in E$ tels que $x \longrightarrow^* y_1$ et $x \longrightarrow^* y_2$, il existe $z \in E$ tel que $y_1 \longrightarrow^* z$ et $y_2 \longrightarrow^* z$.

Montrer que si \longrightarrow est confluente, alors elle est localement confluente, mais que la réciproque est fausse.

Pour la fin de ce problème, on suppose que la relation \longrightarrow est noethérienne, c'est-àdire qu'il n'existe pas de suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E telle que, pour tout $n\in\mathbb{N}$, $x_n \longrightarrow x_{n+1}$.

6°) Pour tout $x, y \in E$, on note $x \leq y$ si et seulement si $y \longrightarrow^* x$.

Montrer que \leq est un ordre sur E.

Montrer que toute partie non vide de E possède un élément minimal.

Est-ce que toute partie non vide de E possède un minimum?

 7°) Soit P un prédicat défini sur E tel que

$$\forall x \in E, \ [\forall y \in E, \ (x \longrightarrow y \Longrightarrow P(y))] \Longrightarrow P(x).$$

Montrer que P(x) est vrai pour tout $x \in E$.

 8°) On suppose que la relation \longrightarrow est localement confluente. Montrer que \longrightarrow est confluente.

Problème 3 : Les valeurs absolues de O

Lorsque V est une application de \mathbb{Q} dans \mathbb{R} , on dit que V est une valeur absolue sur Q si et seulement si

- $-- \forall x \in \mathbb{Q}, \ V(x) \geq 0$ (propriété de positivité);
- $-- \forall x \in \mathbb{Q}, \ V(x) = 0 \iff x = 0 \text{ (propriété de séparation)};$
- $-- \forall x, y \in \mathbb{Q}, \ V(xy) = V(x)V(y) \ (\text{multiplicativit\'e}).$
- $-- \forall x, y \in \mathbb{Q}, \ V(x+y) \leq V(x) + V(y)$ (inégalité triangulaire).
- 1°) On pose $V_0(0) = 0$ et pour tout $x \in \mathbb{Q}^*$, $V_0(x) = 1$.

Montrer que V_0 est une valeur absolue sur \mathbb{Q} . C'est la valeur absolue triviale sur \mathbb{Q} .

- **2°**) Soit V une valeur absolue sur \mathbb{Q} . Montrer que pour tout $n \in \mathbb{N}^*$,
 - pour tout $x_1, \ldots, x_n \in \mathbb{Q}$, $V(x_1 \times \cdots \times x_n) = V(x_1) \times \cdots \times V(x_n)$;
 - pour tout $x \in \mathbb{Q}$, $V(x^n) = V(x)^n$;
 - pour tout $x_1, \ldots, x_n \in \mathbb{Q}$, $V(x_1 + \cdots + x_n) \leq V(x_1) + \cdots + V(x_n)$.
- 3°) Soit V une valeur absolue sur \mathbb{Q} . Montrer que
 - -V(1)=1;

Pour toute la suite de ce problème, on considère une valeur absolue V sur \mathbb{Q} . On suppose que V n'est pas la valeur absolue triviale.

 4°) Soit p un nombre premier.

Pour tout entier $n \in \mathbb{N}^*$, on note $v_p(n)$ la valuation p-adique de n, c'est-à-dire le plus grand entier naturel k tel que p^k divise n.

Lorsque $n \in \mathbb{Z}^*$, on convient que $v_p(n) = v_p(|n|)$.

Montrer qu'on peut poser, pour tout $a \in \mathbb{Z}^*$ et $b \in \mathbb{N}^*$, $v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b)$.

On prolonge ainsi la valuation p-adique sur \mathbb{Q}^* .

Montrer que, pour tout $r, s \in \mathbb{Q}^*$, $v_p(rs) = v_p(r) + v_p(s)$.

Montrer que, pour tout $r, s \in \mathbb{Q}^*$ tels que $r + s \neq 0$, $v_p(r + s) \geq \min(v_p(r), v_p(s))$, avec égalité lorsque $v_p(r) \neq v_p(s)$.

 5°) Soit p un nombre premier.

On note $|\cdot|_p: \mathbb{Q} \longrightarrow \mathbb{R}$ l'application définie par $|0|_p = 0$ et $\forall r \in \mathbb{Q}^*$, $|r|_p = p^{-v_p(r)}$. Vérifier que, pour tout $\alpha \in \mathbb{R}_+^*$, l'application $(|\cdot|_p)^{\alpha}$ est une valeur absolue sur \mathbb{Q} .

- **6°)** On suppose pour cette question que $\forall n \in \mathbb{N}, V(n) \leq 1$.
- a) Démontrer qu'il existe un nombre premier p tel que V(p) < 1.
- **b)** Soit q un nombre premier distinct de p. Démontrer que, pour tout $k \in \mathbb{N}^*$, on a $V(p)^k + V(q)^k \ge 1$ et en déduire que V(q) = 1.
- c) Justifier l'existence de $\alpha \in \mathbb{R}_+^*$ tel que $V = (|\cdot|_p)^{\alpha}$.
- **7**°) On note $|\cdot|$ la valeur absolue classique sur \mathbb{Q} définie par $\forall r \in \mathbb{Q}, |r| = \max\{-r, r\}$. Vérifier que, pour tout $\alpha \in]0, 1]$, l'application $|\cdot|^{\alpha}$ est une valeur absolue sur \mathbb{Q} .
- **8**°) Soient $a, b \in \mathbb{N} \setminus \{0, 1\}$. On pose $\log_b a = \frac{\ln a}{\ln b}$.
- a) Soit $k \in \mathbb{N}^*$. Montrer que la décomposition de a^k en base b s'écrit $a^k = \sum_{j=0}^{\lfloor k \log_b a \rfloor} b_{k,j} b^j$,

où pour tout $j \in \mathbb{N}, b_{k,j} = \lfloor a^k b^{-j} \rfloor - b \lfloor a^k b^{-j-1} \rfloor.$

b) On pose $M_b = \max\{V(0), V(1), \dots, V(b-1)\}.$

Démontrer que si $V(b) \le 1$, on a $\forall k \in \mathbb{N}^*$, $V(a)^k \le M_b (1 + k \log_b a)$

et que si V(b) > 1, on a $\forall k \in \mathbb{N}^*$, $V(a)^k \leq \frac{M_b V(b)}{V(b) - 1} V(b)^{k \log_b a}$.

- **9°)** On suppose qu'il existe $n_0 \in \mathbb{N} \setminus \{0,1\}$ tel que $V(n_0) > 1$.
- a) Démontrer que $\forall n \in \mathbb{N} \setminus \{0,1\}, \ V(n) > 1.$
- **b)** Pour tout $n, m \in \mathbb{N} \setminus \{0, 1\}$, montrer que $V(n)^{\frac{1}{\ln n}} \leq V(m)^{\frac{1}{\ln m}}$, puis que $V(n)^{\frac{1}{\ln n}} = V(m)^{\frac{1}{\ln m}}$.
- c) Justifier l'existence de $\alpha \in]0,1]$ tel que $V = |\cdot|^{\alpha}$.
- 10°) Énoncer le théorème que démontre ce problème.