

Applied Nanotechnology for Human Space Exploration

Leonard L. Yowell

NASA Johnson Space Center

February 20th, 2007

E-Mail: leonard.yowell-1@nasa.gov

Phone: 281-483-2811

NASA's Strategic Vision

Exploration Architecture

Launch
Vehicles

Lunar / Interplanetary Transfer

Lunar Surface
Operations

Crew Exploration Vehicle (CEV)
ISS Operations

Planetary Operations
(Human/Robotic)

Future Exploration Mission Requirements Cannot Be Met with Conventional Materials

Vehicles and Habitats

- Reduced mass and volume
- High strength
- Thermal and radiation protection
- Self-healing, self-diagnostic
- Multi-functionality
- Improved durability
- Environmental resistance
(dust, atmosphere, radiation)

EVA Suits

- Reduced mass
- Increased functionality and mobility
- Thermal and radiation protection
- Environmental resistance

Satellites and Rovers

- Reduced mass and volume
- Reduced power requirements
- Increased capability, multifunctionality

Nanomaterials: Single Wall Carbon Nanotubes

Unique Properties

- Exceptional strength
- Interesting electrical properties (metallic, semi-conducting, semi-metal)
- High thermal conductivity
- Large aspect ratios
- Large surface areas

Size Comparison –
 C_{60} , Nanotubes, and Atoms

Possible Applications

- High-strength, light-weight fibers and composites
- Nano-electronics, sensors, and field emission displays
- Radiation shielding and monitoring
- Fuel cells, energy storage, capacitors
- Biotechnology
- Advanced life support materials
- Electromagnetic shielding and electrostatic discharge materials
- Multifunctional materials
- Thermal management materials

Current Limitations

- High cost for bulk production
- Inability to produce high quality, pure, type specific SWCNTs
- Variations in material from batch to batch
- Growth mechanisms not thoroughly understood
- Characterization tools, techniques and protocols not well developed

Applied Nanotechnology at JSC: Fundamentals to Applications

Technology Readiness Levels (TRL)

Growth, Modeling, Diagnostics and Production

Objective: Ensure a reliable source of single wall carbon nanotubes with tailored properties (length, diameter, purity, chirality)

Laser Ablation

- Batch process
- ~1g/day
- Large diameters (~1.4 nm)

High Pressure CO (HiPCO)

Rice Univ.
& NASA → Carbon Nanotechnologies,
Inc.

- Continuous process
- 10-100's g/day
- Small diameters (0.9nm)
- Company spin-off (CNI)

Modeling, Diagnostics, and Parametric Studies

Growth, Modeling, Diagnostics and Production

Journal of **Nanoscience and Nanotechnology**

Volume 4 Number 4

April 2004

NASA / Rice University
3rd Single-Wall Nanotube Growth Mechanisms Workshop

April 2007

Canyon of the Eagles Ranch, Texas

A Special Issue on
Single-Walled Carbon Nanotubes
Growth Mechanisms

GUEST EDITORS

Carl D. Scott and Sivaram Arepalli

ASP
AMERICAN
SCIENTIFIC
PUBLISHERS

Online: www.aspbooks.com/jnn

Characterization: Purity, Dispersion & Consistency

Standard Nanotube Characterization Protocol

New Purity Reference Standard

Arepalli, et al., Carbon, 2004

Processing

- * Dispersion
- * Purification
- * Functionalization
- * Alignment
- * Surface Area

Nanoelectronics: Enabling Technologies

Nano-Fabrication

Laser Vaporization / Diagnostics

(10,10) Armchair Tube

Nano-Characterization

Standard Nanotube Characterization Protocol

Type-Specific Nanotube Synthesis

Applications

Applications for Human Space Exploration

Multi-functional / Structural Materials

- Primary structure (airframe)
- Inflatables

Advanced Life Support

- Regenerable CO₂ Removal
- Water recovery

Power / Energy Storage Materials

- Proton Exchange Membrane (PEM) Fuel Cells
- Supercapacitors / batteries

Thermal Protection and Management

- Ablators and ceramic nanofibers
- TPS repair materials
- Passive / active thermal management (spacesuit fabric, avionics)

Electromagnetic / Radiation Shielding and Monitoring

- ESD/EMI coatings
- Radiation monitoring

Nano-Biotechnology

- Health monitoring (assays)
- Countermeasures

Exploration Life Support

CHALLENGE:

Supply the daily needs of humans for long duration missions

- Air Revitalization
- Food Management
- Solid Waste Management
- Thermal Control
- Water Reclamation

Human consumable and throughput values
in kg/crewmember/day Klaus et al, 2005

Exploration Life Support: Atmosphere Revitalization System

MISSION:

- Vehicle cabin atmospheric pressure & quality
- Atmospheric gas storage, supply and distribution
- Carbon dioxide partial pressure control
- Trace contaminant & particulate control
- Resource recovery, storage and distribution
- Lower spacecraft complexity = Lower risk
- Lower risk = Greater safety

LiOH Canisters

Experimental
Regenerable System

Advanced Life Support: Regenerable CO₂ Removal

CHALLENGE:

- Long duration space flight requires a regenerable system for air revitalization
- NASA need: lower mass, higher performance, reduced volume

SOLUTION:

- Carbon Nanotubes: superior surface area & thermal conductivity
- Functionalized with CO₂ scrubbing chemistry – less volatile
- Suitable for both EVA and vehicle applications
- Applicability to smokestack applications on Earth

COLLABORATION:

- Rice University: Nanotube functionalization
- UTA: Primary amine chemistry
- JSC (EC): Requirements for space systems
- NASA Ames: Nanomaterials for trace contaminant control system & CO₂ Sensors
- Energy industry participation interest

Current RCRS materials:
Zeolites and amine-
coated polymer beads.

Single Wall Carbon
Nanotube (SWCNT)
Structure

To be
replaced
by

Micro-scale testing with thermo-gravimetric analysis

RICE

University of
Hartford

Exploration Life Support: Regenerable CO₂ Removal

NanoMaterial Solution:

- Use SWCNT functionalized with CO₂/H₂O scavenging amines
- Amines require lower energy for regeneration than present molecular sieve
- Higher surface area reduces system size/ weight

Nanotube functionalization chemistry

(Chattopadhyay et al, 2005)

CO₂ capacity testing

Exploration Life Support: Water Recovery

- Transport and storage of wastewater from human interfaces
- Primary processing: organic and nitrogenous contaminant reduction
- Secondary processing: inorganic contaminant reduction
- Brine dewatering: water removal from highly concentrated brine
- Post-processing and disinfection: polishing to meet potability standards
- Storage and transport of potable water prior to consumption

Advanced Life Support: Water Disinfection / Recovery

CHALLENGE:

- NASA requires renewable chemical-free systems to purify water in space
- Current solution: Iodine – toxic to astronauts and non-regenerable

SOLUTION:

- C₆₀ /fullerene enhances disinfection property of UV light
- Singlet oxygen production enhances the rate at which bacteria are killed
- Chemical-free system for closed loop water purification
- Commercial Potential - Portable water disinfection devices

COLLABORATION:

- NASA JSC Advanced Life Support (EC)
- Rice University: C₆₀ deposition

RICE

Water purifier UV Light source
cell

Power & Energy: Supercapacitors

CHALLENGE:

- NASA requires reliable, robust power sources suitable for both EVA and vehicle applications
- NASA requires increased power & energy densities, increased cycle life, reduced mass

SOLUTION:

- Carbon nanotube surface area and nanoporosity superior to current materials for electrolyte ion support
- Carbon nanotube electrolyte supports: enhanced electrical and thermal conductivity
- Potential for enhanced performance and longer cycle life

COLLABORATION:

- NASA Glenn: Separator materials
- JSC (EP): Requirements
- Georgia Tech: Functionalized nanomaterials
- ReyTech Corp.: Improved fabrication & packaging

Power-Energy Tradeoff

Nanotube electrolyte support

Supercapacitor test cell

Georgia Tech Research Institute

Power & Energy: Fuel Cells

CHALLENGE:

- NASA requires reliable, robust power sources suitable for both EVA and vehicle applications
- NASA requires increased power & energy densities, increased cycle life, reduced mass

SOLUTION:

- Novel carbon nanotube high surface area, high thermal & high gas diffusivity catalyst support
- Reduced activation polarization – increased reliability
- Higher power density from more efficient utilization of platinum catalysts

COLLABORATION:

- NASA Glenn: High temperature membranes
- JSC (EP): Testing, requirements

Prototype Membrane Electrode Assembly

PEM Fuel Cell Schematic
(Dept. of Energy)

NanoMaterials for EMI Shielding

CHALLENGE:

- Control of electromagnetic emission and susceptibility characteristics of electronic, electrical and electromechanical equipment and subsystems for space exploration

SOLUTION:

- Single-wall carbon nanotubes (SWCNT) offer low material density and high electrical conductivity
- Can be integrated into polymer matrices as well as applied onto surfaces as thin **transparent** coatings
- Cheap & ease of fabrication for application to off-the-shelf products: Laptops, PDAs etc.

Translucent Appliqués: Potential coatings for LCD screens

EMI testing in collaboration with UTPA

RICE

The University of Texas-Pan American

Nanotube materials
EMI testing & test development
Nanomaterials functionalization
Nanomaterials functionalization
Testing, requirements

COLLABORATION:

- UTD:
- UTPA:
- U of Florida:
- Rice:
- JSC (EV):

Active Radiation Dosimeter

CHALLENGE:

- Acute radiation sickness poses a risk to astronaut health for interplanetary travel
- Currently no “real-time” personal radiation detecting sensor for extravehicular activity
- Current technologies lack desired sensitivity

Solar
Particle
Event

SOLUTION:

- Use radiation sensitive functionalized SWCNTs to measure radiation dose rates and total dose.
- High surface area nanomaterials can increase sensitivity

Earth's
Protection

COLLABORATION:

• JSC (SF)	Dosimeter
• JSC (EB)	Sensors
• JSC (EC)	Advanced EVA
• NASA Ames	Gas sensors
• Rice Univ.	Nanotube functionalization
• PVAM	Radiation Testing

Radiation
Testing

Device Under
Test (DUT) Board

Advanced Thermal Protection System (TPS) Repair

CHALLENGE:

- Improve and expedite curing and repair processes for current missions
- Long duration missions need more effective repair processes: On Orbit/En Route/On the surface

SOLUTION:

- Use microwave energy to heat nanotubes in polymer and ceramic matrices for localized heating, curing & bonding
- Repair of RCC and tiles, CEV materials
- Potential commercial applications including composite curing

→
700 W
2.45 GHz
→

COLLABORATION:

- Rice: Nanotube microwave research (Tour Functionalized nanomaterials)

~ 1:1 Energy transfer in nanotubes

Microwaves:Heat

RICE

Thermal Radiation & Impact Protection (TRIPS)

CHALLENGE:

- Thermal protection system with impact and radiation protection
- Lower weight = Greater performance
- Lower spacecraft complexity = Lower risk
- Lower risk = Greater safety

SOLUTION:

- Use SWCNT impregnated into Phenolic Impregnated Carbon Ablator (PICA) Thermal Protection System (TPS) – additional strength
- Enhanced radiation protection via integration of polyethylene
- Nextel and/or Kevlar fabric incorporated for impact protection

COLLABORATION:

- NASA Ames: TPS Lead
- JSC (ES3): Composites, Arc Jet Testing

PICA with phenolic resin impregnated

PICA - Fiberform before impregnation

Nanotechnology: Astronaut Health Management

Basic Biomedical Research

- The role that forces play on cell mechanisms (gravitational forces)
- Molecular machines (ATPase, Kinesin, Microtubules, Polymerase, etc.)
- In vivo monitoring of ultra-low concentration proteins and biomolecules

Major Medical Operations

- Contrast agents to target specific sites for surgery
- Bio-mimetic or engineered compounds to help wound healing
- Miniaturized electron microscopes for biopsies

Personal Biomedical Monitoring

- Identification of molecular indicators for onset of conditions
- High sensitivity assays
- Short prep-time assays, no prep-time assays and in vivo monitoring
- Multiple simultaneous assays

Life Support

- High surface area materials for CO₂ removal
- Inorganic coatings that catalyze the revitalization of air and water
- Sensors to monitor harmful vapor/gases

Toxicology & Ethics

- Biodistribution of nanoparticles
- Toxicology of nanoparticles
- Ethical use of information from nanotech devices

Personal Countermeasures

- Timed drug release
- Targeted drug therapy
- Triggered drug release
- Indicators for drugs effectiveness

Systems Integration

- Develop 'common toolkit' for bio-nano chemistry and assembly processes

JSC Nanomaterials Group

Collaborations

Government

National Institute of Standards and Technology

- Development of nanoscale measurement standards (Friedman)

Oak Ridge National Lab.

- CNT production, purification and characterization (Seochi, Park, Smith)
- Nanotube characterization (Carr)
- Thermal characterization (Wang)

NASA Ames Research Center

- Nanotubes (JSC) for sensors / modelling of HiPco
- (Meyappan, Sivastava)

NASA Glenn Research Center

- Functionalization, purification, high temp mats (Meador, Gray)
- Nanotube toxicology studies (Shvedova)

NASA Marshall Space Flight Center

- Nanotubes, MWCs (Gill, Hudson)

Los Alamos National Lab

- Purification (O'Connell)

National Renewable Energy Lab

- CNT Purification (Heben, Dillon)

Air Force Research Lab.

- Composites (Mauriama, Strong)
- purification (Mauriama, Strong)

National Institute for Occupational Safety and Health

- Functionalization, purification, high temp mats (Meador, Gray)

Zyvex

- SBIR - Nanotube dispersion (Randal)

Carbon Nanotechnologies, Inc.

- Production, purification, applications (Smith)

Hamilton-Sundstrand

- CO₂ Scrubber (Papale)

RevTech

- Epoxy / nanotube composites (Stark)

Nantero, Inc.

- NanoRAM development (Singal)

Nanospectra

- Thermal control coatings (Watkins)

Academia

Rice University

- Advanced Nanotechnology Maths and Applications (Smalley, Tour, Barone)
- Computational Mat's Sci (Yakobson)
- Nanosheets (Itaya)

University of Houston

- GSFP year 3 of 3 - Polymer chemistry, dispersion, composites (Mitchell, Krishnamoorti)

Michigan Tech

- Summer Faculty Fellow - Composites (Canfield)

UC Riverside

- Purification / characterization (Haddad)

University of Paris 13

- Arc process (Fariau)

University of Pennsylvania

- CDDE - Thermal Night. Mat's (Fischer)
- Composites (Luzzi, Winey)

University of Florida

- Isolated SWNTs (Kinsler)

Northwestern

- Nanomechanics (Rudin)

LeTourneau University

- Summer Faculty Fellow
- Nanotube growth process (DeBoe)

University of Tennessee, Knoxville

- Nanodiamond (Perumaladu)

University of Oklahoma

- Thermal stability of nanotubes (Resasco)

University of California - Davis

- Nanocrystalline Ceramics (Muthuraman)

Penn State

- Purification / characterization (Eklund)

GB Tech

- Fuel cells / CO₂ scrubber (Huffman)

Honda

- Magnetic characterization (Huangyan)

Inoworks

- Mass spectrometry (Schulz)

Inorganic Specialists

- SBIR - Electrochemical capacitors (Furukane)

COI Ceramics

- RTF - Ceramic / nanotube composites (Reedell)

Materials and Electrochemical Research

- SBIR - Nanotube production (Loftuy)

Wake Forest

- Characterization of nanotubes (Carroll)

Industry

Rice University

- Advanced Nanotechnology Maths and Applications (Smalley, Tour, Barone)

- Computational Mat's Sci (Yakobson)

- Nanosheets (Itaya)

University of Houston

- GSFP year 3 of 3 - Polymer

- chemistry, dispersion, composites (Mitchell, Krishnamoorti)

University of Pennsylvania

- CDDE - Thermal Night. Mat's (Fischer)

- Composites (Luzzi, Winey)

University of Florida

- Isolated SWNTs (Kinsler)

Northwestern

- Nanomechanics (Rudin)

LeTourneau University

- Summer Faculty Fellow

- Nanotube growth process (DeBoe)

University of Tennessee, Knoxville

- Nanodiamond (Perumaladu)

University of Oklahoma

- Thermal stability of nanotubes (Resasco)

University of California - Davis

- Nanocrystalline Ceramics (Muthuraman)

Penn State

- Purification / characterization (Eklund)

GB Tech

- Fuel cells / CO₂ scrubber (Huffman)

Honda

- Magnetic characterization (Huangyan)

Inoworks

- Mass spectrometry (Schulz)

Inorganic Specialists

- SBIR - Electrochemical capacitors (Furukane)

COI Ceramics

- RTF - Ceramic / nanotube composites (Reedell)

Materials and Electrochemical Research

- SBIR - Nanotube production (Loftuy)

Wake Forest

- Characterization of nanotubes (Carroll)

Applied Nanotechnology for Human Space Exploration

Questions?

leonard.yowell-1@nasa.gov
281-483-2811