REGRESSION LINEAIRE

©Année Universitaire 2021-2022 ©

PLAN

01 Introduction

Regression linéaire simple

03

Regression linéaire multiple

Régression

Prédire des valeurs continues(numériques)

Classification

Prédire des valeurs discrets

VS

INTRODUCTION ()

La régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite cible, et une ou plusieurs variables, dites explicatives.

Regression D2 linéaire Simple D2

La régression linéaire consiste à déterminer une droite qui se rapproche le plus possible d'un ensemble de points.

- Les points (xi, yi) sont les données d'entrée
- Les valeurs xi sont les variables prédictives.
- La valeur yi est la valeur observée

➤ On cherche à trouver une droite : y = ax+b qui soit le plus proche possible de tous les points de nos données d'apprentissage Pour trouver a et b on utilise le critère des moindres carrés:

$$\begin{cases} \hat{a} = \frac{\sum_{i} (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i} (x_i - \overline{x})^2} \\ \hat{b} = \overline{y} - \hat{a}\overline{x} \end{cases}$$

Exemple de régression simple :

Expliquer le rendement de maïs Y (en quintal) à partir de la quantité d'engrais utilisé (en kilo) sur des parcelles de terrain similaires.

Variable à prédire Quantitative

Variables prédictives Descripteur

N° de parcelle	Y	Х
1	16	20
2	18	24
3	23	28
4	24	22
5	28	32
6	29	28
7	26	32
8	31	36
9	32	41
10	34	41

Modèle de régression simple :

$$Y = a x + b$$

	Y	X	(Y-YB)	(X-XB)	(Y-YB)(X-XB)	(X-XB)^2
1	16	20	-10.1	-10.4	105.04	108.160
2	18	24	-8.1	-6.4	51.84	40.960
3	23	28	-3.1	-2.4	7.44	5.760
4	24	22	-2.1	-8.4	17.64	70.560
5	28	32	1.9	1.6	3.04	2.560
6	29	28	2.9	-2.4	-6.96	5.760
7	26	32	-0.1	1.6	-0.16	2.560
8	31	36	4.9	5.6	27.44	31.360
9	32	41	5.9	10.6	62.54	112.360
10	34	41	7.9	10.6	83.74	112.360
	26.1	30.4	Somn	ne	351.6	492.4

10

$$a = 351, 6/492, 4 = 0,714$$

 $b = 26, 1-0, 714*30, 4=4,39$

Moyenne

ACTIVITE

Pouvez-vous deviner quelle est la meilleure estimation pour le prix d'une maison de 140 mètres carrés?

A.\$60,000 B.\$95,000 C.\$85,000

X	Υ	X-XB	Y-YB	(X-XB)(Y-YB)	(X-XB) ²
30	30,000	-88,75	-40	3550	7876,5625
70	40,000	-48,75	-30	1462,5	2376,5625
90	55,000	-28,75	-15	431,25	826,5625
110	60,000	-8,75	-10	87,5	76,5625
130	80,000	11,25	10	112,5	126,5625
150	90,000	31,25	20	625	975,5625
180	95,000	61,25	25	1531,25	3751,5625
190	110,000	71,25	40	2850	5076,5625
XB=118,75	YB=70	Moyenne	Somme	10650	21086,5
		1	3		

Regression 13 linéaire Multipe 03

Dans la régression linéaire simple on a une variable dépendante (y) et une variable indépendante (x)

Dans la régression linéaire multiple on a plusieurs variables indépendantes (plusieurs x)

Imaginons que l'on veuille déterminer le prix d'une voiture en fonction de nombre de cylindres et du nombre de portes

> Avec une régression linéaire simple c'est impossible!

Dans le cas d'une régression linéaire multivariée, la fonction prédictive s'écrit sous la forme :

$$Y = \alpha x_1 + \beta x_2 + \gamma x_3 + ... + \omega x + b$$

On rajoute des variables indépendantes càd on rajoute des dimensions

Et pour que ça soit visuel!

On va juste passer sur deux variables indépendantes(x1 et x2)

Simple

On va prédire une droite

On va prédire un plan (avec deux x)

MERCI POUR VOTRE ATTENTION!

Elaboré par:

ABID Ameni

ZOUARI Asma

SADDOUD Oumaima