

Prova especialmente adequada destinada a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de técnico superior profissional,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA MECÂNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA MODELO

Duração da prova: 120 minutos

Candidatura n.º			
Nome:			
C.C./B.I./Passaporte N.º	Emitido por:	Validade: .	11

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos que tenham obtido aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das notas aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Só se consideram os cursos que previamente tenham sido objeto de homologação pelo conselho técnico-científico.
- Indique em todas as folhas o número de candidatura e o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação <u>deverão estar desligados</u>. A utilização deste equipamento implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- Grupo 2 Um problema de matemática.
- **Grupo 3** Três questões de resposta múltipla de física.
- Grupo 4 Um problema de física.
- Grupo 5 Seis questões de resposta múltipla enquadradas nos conteúdos do curso.
- **Grupo 6** Questão para desenvolvimento de assunto de cultura científica na área do curso.

Candidatura n.º

C.C. / B.I. / Passaporte N.º

Grupo 1

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: - 0,2 valores)

Para cada uma das questões indique a resposta correta do seguinte modo 🗵.

- 1. Considere a função exponencial $f(x) = e^x$. Qual de entre os seguintes pontos está no gráfico de f? (**In** designa o logaritmo natural de base e.) \Box (A) (1, 0)

 - \Box (B) (0, -1)
 - \square (C) (ln 2, 2)
 - \Box (D) (-1, -e)
 - \Box (E) (2, 2e)
- 2. Para efetuar uma aposta simples do jogo "Euromilhões" escolhem-se cinco números, entre cinquenta possíveis e duas estrelas numeradas, entre doze distintas. Quantas apostas simples diferentes é possível fazer?
 - \Box (A) ${}^{50}A_5 \times {}^{12}A_2$
 - □ (B) 139 838 160
 - □ (C) 13 983 816
 - □ (D) 145 127 015
 - □ (E) 14 512 715
- 3. Considere o triângulo $\triangle ABC$ de vértices A, B e C e seja M o ponto médio do segmento \overline{BC} . Sabendo que A(-2,1), $\overrightarrow{AM} = (3,1)$ e $\overrightarrow{BC} = (-2,4)$, quais as coordenadas dos pontos B e C?
 - \Box (A) B(1,2) e C(0,4)
 - \square (B) B(2,0) e C(1,2)
 - \Box (C) B(1,2) e C(-1,2)
 - \square (D) B(2,0) e C(0,4)
 - \Box (E) B(0,4) e C(2,0)

Candidatura n.º

C.C. / B.I. / Passaporte N.º

Grupo 2

(Cotação total: 2,0 valores; cotação parcial: 1,0 valores por alínea)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Recorra somente a métodos analíticos e não utilize a calculadora.

Considere a função f, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} x \cos x, x \le \frac{\pi}{2}, \\ 2x - \pi, x > \frac{\pi}{2}. \end{cases}$$

Usando métodos exclusivamente analíticos, sem recorrer à calculadora, responda às questões que se seguem:

- a) Estude a continuidade de f em \mathbb{R} .
- b) Determine a equação reduzida da reta tangente ao gráfico de f, no ponto de abcissa 0.

`an	did	latı	ıra	n)

C.C./B.I./Passaporte N.º

Grupo 3

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: - 0,2 valores)

Indique <u>a resposta correta</u> do seguinte modo ⊠.

1. Um homem puxa um pequeno trenó com uma força \vec{F} de intensidade igual a 50,0 N e que faz um ângulo com a horizontal $\theta=25^{\circ}$ (ver figura). Qual é o trabalho da força exercida pelo homem para deslocar o trenó 2,0 m horizontalmente?

 \Box (B) 50,0 J

 \Box (C) 90,6 J

 \square (D) 100,0 J

 \Box (E) 500,0 J

2. Um objeto de massa m = 5.0 kg move-se retilineamente sobre uma superfície horizontal com velocidade constante de módulo 10.0 m·s⁻¹. Num certo ponto da trajetória, passa a haver atrito com a superfície e o objeto percorre 20.0 m até parar. Qual é a intensidade da força de atrito, F_a , que atua sobre o objeto?

$$\Box$$
 (A) $F_a = 5.0 \text{ N}$

$$\Box$$
 (B) $F_a = 10.0 \text{ N}$

$$\Box$$
 (C) $F_a = 12.5 \text{ N}$

$$\Box$$
 (D) $F_a = 25,0 \text{ N}$

$$\Box$$
 (E) $F_a = 50,0 \text{ N}$

3. Uma máquina térmica recebe 200 J como calor da fonte quente, realiza trabalho e dissipa 160 J para o ambiente. Qual das expressões A, B, C ou D, permite definir o seu rendimento η?

$$\square$$
 (A) $\eta = 200 - 160 = 40$

$$\square$$
 (B) $\eta = 160 - 200 = -40$

$$\square$$
 (C) $\eta = (200 - 160) / 200 = 0.20$

$$\square$$
 (D) $\eta = (200 - 160) / 160 = 0.25$

☐ (E) Nenhuma das anteriores.

Candidatura n.º

C.C./B.I./Passaporte N.º

Grupo 4

(Cotação total: 2,0 valores; cotação parcial: 0,5 valor por alínea)

Um pêndulo simples de massa igual a 1 kg e com 2 m de comprimento descreve um arco de circunferência no plano vertical, sendo largado sem velocidade inicial da posição indicada na figura. Despreze a resistência do ar e trate o pêndulo como um ponto material. Considere $g = 10 \text{ m} \cdot \text{s}^{-2}$.

Determine:

- a) a altura do pêndulo na posição inicial, h_A , considerando que o ponto mais baixo da trajetória, ponto B, se encontra à altura $h_B = 0$ m; (0.5 val)
- b) a energia potencial gravítica do pêndulo na posição inicial, A; (0,5 val)
- c) a energia cinética do pêndulo quando passa no ponto B; (0,5 val)
- d) o módulo da velocidade do pêndulo no ponto B; (0,5 val)

Tel. (+351) 21 831 70 00 Fax. (+351) 21 831 70 01

۰		 4		n.º	
.ar	M	ш	га	nv	

C.C. / B.I. / Passaporte N.º

`an			

C.C. / B.I. / Passaporte N.º

 $\label{eq:Grupo5} Grupo\ 5 \\ \text{(Cotação total: 6,0 valores; cotação parcial: 1,0 valores por questão; por cada resposta errada: -0,2 valores)}$

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

 1 – Qual dos sistemas se pode considerar, aproximadamente, isolado? □ (A) Gás propano numa botija. □ (B) Corpo humano. □ (C) Alimentos dentro de um saco térmico hermeticamente fechado. □ (D) Mercúrio contido num termómetro. 	
 2 - A condutividade térmica do alumínio é 238 W/mK e a do ar é quatro ordens de grande inferior. A condutividade térmica do ar, na unidade SI, é: □ (A) 0,023 W/mK. □ (B) 2,30 W/mK. □ (C) 0,0023 W/mK. □ (D) 0,23 W/mK. 	za
3 – Na escala de Kelvin os pontos de fusão e de ebulição da água correspondem, respetivamente: □ (A) a 0 K e a 273,15 K. □ (B) a 273,15 K e a 373,15 K. □ (C) a 0 K e a 373,15 K. □ (D) a 100 K e a 373,15 K.	
 4 – Quando um corpo está sujeito apenas à ação de forças conservativas: □ (A) a energia cinética mantém-se constante. □ (B) a energia potencial gravítica mantém-se constante. □ (C) a energia potencial gravítica e a energia cinética podem variar mas a sua soma manté se constante. □ (D) a energia potencial gravítica e a energia cinética podem variar assim como a sua soma. 	
 5 - É mais fácil fechar uma porta se a mão que nela atua a empurrar numa zona mais afastada região das dobradiças, pois: □ (A) o momento de força gerado aumenta. □ (B) o momento de força gerado diminui. □ (C) a força gerada torna-se nula. □ (D) o momento de força gerado anula-se. 	da
6 – O módulo da velocidade de um corpo de 2,0 kg varia de 2,0 m/s para 4,0 m/s. A variação energia cinética e o trabalho realizado pela resultante das forças são, respetivamente: □ (A) -12 J, -12 J □ (B) 12 J, 12 J □ (C) -12 J, 12 J □ (D) 12 J -12 J	de

_					_
Can	di	da	ntu	ıra	n.º

C.C./B.I./Passaporte N.º ..

Grupo 6 (Cotação: 4,0 valores)

(Responda ou desenvolva o tema proposto. Escreva entre 15 a 25 linhas)

ação no isolament			
	 		
		 	