Plant Disease Detection Project Report

Authors: M. Islahuddin and Hamza Soomro

1. Introduction

The Plant Disease Detection project aims to assist farmers and agricultural specialists by using Artificial Intelligence to identify plant diseases through leaf images. This tool provides a fast and efficient way to diagnose diseases, reducing dependency on manual inspection and improving agricultural productivity.

2. Objectives

- Build an Al model capable of identifying plant diseases from images.
- Create a user-friendly web app using Streamlit for disease detection.
- Provide detailed predictions with high accuracy and confidence.

3. Dataset Overview

- Dataset Composition: Images of healthy and diseased plant leaves.
- Classes:
 - 1. Tomato-Bacterial Spot
 - 2. Potato-Early Blight
 - 3. Corn-Common Rust
- Preprocessing:
 - Resized images to 256x256 pixels for uniformity.
 - Applied normalization for better model performance.

4. Methodology

- 1. Model Development:
 - o Built a Convolutional Neural Network (CNN) using TensorFlow and Keras.
- 2. Streamlit Integration:
 - Developed a web app for easy interaction with the model.
- 3. Image Processing:
 - Used OpenCV to resize, normalize, and preprocess images for prediction.

5. Features

- Image Upload: Supports .jpg, .png, and .jpeg formats.
- Prediction: Identifies plant diseases and provides confidence scores.
- Visualization: Displays uploaded images alongside predictions.

6. Tools and Libraries

- TensorFlow and Keras (Model Training & Inference)
- Streamlit (Web App Interface)
- OpenCV (Image Processing)
- NumPy (Numerical Operations)

7. Results

- Accuracy: Achieved high accuracy on the test dataset (average confidence > 90%).
- Success: Successfully classified all three diseases.
- Integration: The web app seamlessly integrates model predictions.

8. Challenges and Learnings

- Challenges:
 - Variability in dataset images.
 - Adapting the model for real-time predictions.
- Learnings:
 - Enhanced understanding of CNNs, image preprocessing, and app deployment.

9. Conclusion and Future Work

- Conclusion: Successfully demonstrated Al's role in agriculture.
- Future Improvements:
 - 1. Expand the dataset to include more diseases.
 - 2. Improve model accuracy with advanced architectures.

3. Add localization features to highlight diseased areas on leaves.

10. How to Run the Project

1. Install necessary libraries:

bash Copy code pip install streamlit opencv-python keras tensorflow numpy

- 2. Place the trained model file (plant_disease_model.h5) in the project directory.
- 3. Run the app:

bash Copy code streamlit run plant_disease_detection.py

4. Upload a plant leaf image to detect diseases.