A non-semisimple Kitaev lattice model

based on joint work with Ulrich Krähmer 2025-04-24

Sebastian Halbig Sebastian.Halbig@uni-marburg.de

The big picture

Fault-tolerant quantum computation: Kitaev's toric code

Kitaev's construction for fault-tolerant quantum computation:

- 1. Consider a $k \times k$ lattice in the torus and associate the Hilbert space \mathbb{M}_k .
- 2. Specify a "Hamiltonian" $H: \mathbb{M}_k \longrightarrow \mathbb{M}_k$ using "local" features of the lattice.
- 3. Define as a "quantum memory" the space $\operatorname{Prot}_k \stackrel{\text{def}}{=} \ker H$.

This leads to error correction/prevention implemented on a physical level:

Theorem

For any $k \in \mathbb{N}$ we have dim $Prot_k = 4$.

 \rightsquigarrow For k large, most errors (modelled by linear operations on \mathbb{M}_k) act either trivially Prot_k or can be "detected" using various physical methods.

Kitaev's toric code - lattices and the (extended) Hilbert space

Let $k \in \mathbb{N}$ and consider a $k \times k$ lattice embedded on a torus:

Assign to each edge a copy of \mathbb{C}^2 and set $\mathbb{M}_k = \bigotimes_{1 \leq i,j \leq k} \mathbb{C}^2 \bigotimes \bigotimes_{1 \leq i,j \leq k} \mathbb{C}^2$.

Kitaev's toric code - vertex actions

Set $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Given a *vertex* (point in the lattice) v define

$$A_v\colon \, \mathbb{I}\!\!M_k \longrightarrow \mathbb{I}\!\!M_k$$

- 1. Gives rise to a representation $\triangleright_v \colon \mathbb{C}\mathbb{Z}_2 \otimes \mathbb{M}_k \longrightarrow \mathbb{M}_k$.
- 2. Combining all "vertex actions" leads to $\triangleright : (\mathbb{C}\mathbb{Z}_2)^{\otimes k^2} \otimes \mathbb{M}_k \longrightarrow \mathbb{M}_k$.

Kitaev's toric code - face coactions

Set $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Given a *face* (square of the lattice) f define

$$B_f \colon \mathbb{I} \mathbb{M}_k \longrightarrow \mathbb{I} \mathbb{M}_k$$

- 1. Can be interpreted as a corepresentation $\delta_f \colon \mathbb{M}_k \longrightarrow \mathbb{C}\mathbb{Z}_2 \otimes \mathbb{M}_k$.
- 2. Combining all "face coaction" leads to a "global" comodule structure $\delta \colon \mathbb{M}_k \longrightarrow (\mathbb{C}\mathbb{Z}_2)^{\otimes k^2} \otimes \mathbb{M}_k$.

The local and global module structure of M_k

Associate to each vertex the face to its "top right" $\rightsquigarrow \{vertices\} \xrightarrow{1:1} \{faces\}$. For every such vertex-face-pair (v, f) the vertex action and face coaction turn \mathbb{M}_k into a $D(\mathbb{C}\mathbb{Z}_2)$ -module.

Topological invariance of the protected space

We consider \mathbb{M}_k as a $D(\mathbb{C}\mathbb{Z}_2)^{\otimes k^2}$ -module

Definition

The protected space of the Kitaev lattice model is $\operatorname{Prot}_k = \mathbb{I}M_k^{\text{inv}}$.

Theorem (Kitaev '97)

For any $k \in \mathbb{N}$ we have dim $Prot_k = 4$.

Proof sketch (based on Buerschaper, Mombelli, Christandl, Aguado '18).

Suppose $k \geq 1$. Define an explicit isomorphism between Prot_k and $\operatorname{Prot}_{k+1}$ using projectors coming from the Haar integral of $\mathbb{C}\mathbb{Z}_2$.

Works for complex semisimple Hopf algebras.

Where to go from here?

Our aim is to generalise this to finite-dimensional non-semisimple Hopf algebras. This needs three levels of generalisations:

- 1. lattices on oriented surfaces
- → Kitaev graphs

2. regular Hopf bimodule

→ involutive (twisted) Hopf bimodules

3. invariant subspaces

→ bitensor products

Generalisation 1: From lattices to Kitaev graphs

Each Kitaev graph Γ gives rise to a surface with boundary Σ_{Γ} and a surface without boundary Σ_{Γ}^{cl} :

Generalisation 1: From lattices to Kitaev graphs

Observation: We can increase the number of boundary components of Σ_{Γ} by gluing a certain graph A to Γ . The surface $\Sigma_{\Gamma \# A}$ of $\Gamma \# A$ has the same genus as Σ_{Γ} but one more boundary component.

Theorem

There is a group $\mathfrak G$ acting on the set of Kitaev graphs such that for all graphs Γ and Δ :

$$\Sigma_{\Gamma}^{\text{cl}} \cong \Sigma_{\Delta}^{\text{cl}} \iff \exists a, b \in \mathbb{N}_0 \text{ with } \Delta \# \mathbf{A}^{\#a} \in \mathfrak{G} \cdot (\Gamma \# \mathbf{A}^{\#b}).$$

The group \mathfrak{G} is connected to the mapping class group of surfaces. A better (more conceptual understanding) of \mathfrak{G} would be desirable!

Generalisation 1: From lattices to Kitaev graphs

From now on: H is a finite-dimensional complex Hopf algebra.

From now on: *H* is a finite-dimensional complex Hopf algebra.

Classical: Decorate each edge of a Kitaev graph with the regular bimodule-bicomodule H. Use $S \colon H \longrightarrow H$ to model the reversal of edge directions.

Problem: $S^2 = id_H$ is equivalent to H semisimple.

From now on: *H* is a finite-dimensional complex Hopf algebra.

Classical: Decorate each edge of a Kitaev graph with the regular bimodule-bicomodule H. Use $S \colon H \longrightarrow H$ to model the reversal of edge directions.

Problem: $S^2 = id_H$ is equivalent to H semisimple.

Definition

An *involutive Hopf bimodule* is a pair of an S^{-2} -twisted Hopf bimodule M together with an involution $\psi \colon M \longrightarrow M$ that intertwines the left and right (co)actions.

Theorem

There is an algebra $\overleftrightarrow{B(H)}$ whose modules coincide with involutive Hopf bimodules.

We fix an involutive Hopf bimodule (M, ψ) .

Construction

Let Γ be a Kitaev graph. The extended Hilbert space is

$$\mathbb{I}\!M_{\Gamma}\stackrel{\scriptscriptstyle
m def}{=}\otimes_{e\in E_{\Gamma}}M.$$

We fix an involutive Hopf bimodule (M, ψ) .

Construction

Let Γ be a Kitaev graph. The Θ A copy of M for every edge of Γ .

$$\mathbb{I}_{\Gamma} \stackrel{\scriptscriptstyle
m def}{=} \otimes_{e \in E_{\Gamma}} M.$$

We fix an involutive Hopf bimodule (M, ψ) .

Construction

Let Γ be a Kitaev graph. The extended Hilbert space is

$$\mathbb{I}_{\Gamma} \stackrel{\text{\tiny def}}{=} \otimes_{e \in E_{\Gamma}} M.$$

For every vertex $v \in V_{\Gamma}$ and $f \in F_{\Gamma}$ define algebra maps

$$A_v \colon H \longrightarrow \operatorname{End}(\mathbb{M}_{\Gamma}), \qquad B_f \colon (H^*)^{\operatorname{op}} \longrightarrow \operatorname{End}(\mathbb{M}_{\Gamma}).$$

These maps depend on the "local" structure of Γ .

Generalisation 2: The extended Hilbert space as topological invariant

For Γ a Kitaev graph, set $H_v = H$ for each vertex $v \in V_\Gamma$ and write $\mathbb{H}_\Gamma \stackrel{\text{\tiny def}}{=} \otimes_{v \in V_\Gamma} H_v$.

Theorem

The local (co)actions turn \mathbb{M}_{Γ} into an \mathbb{H}_{Γ} -Yetter-Drinfeld-module. Suppose the graphs Γ and Δ satisfy $\Sigma_{\Gamma} \cong \Sigma_{\Delta}$. Then \mathbb{M}_{Γ} and \mathbb{M}_{Δ} are isomorphic as Yetter-Drinfeld modules.

Work by Bene'10, Jackson'18, and Meusburger, Voß'21 suggest that for (certain) M there is a canonical action of the mapping class group of Σ_{Γ} on \mathbb{M}_{Γ} .

Generalisation 2: Involutive bimodules and extended Hilbert spaces

Generalisation 3: Bitensor products

Definition

Let $(X, \triangleleft, \varrho) \in \mathcal{M}_H^H$ and $(N, \triangleright, \delta) \in {}_H^H \mathcal{M}$ be right-right and left-left modules-comodules respectively.

- 1. We write $\pi_{X,M} \colon X \otimes_{\mathbb{k}} M \longrightarrow X \otimes_{H} M \stackrel{\text{def}}{=} \operatorname{coker}(\triangleleft \otimes \operatorname{id}_{M} \operatorname{id}_{X} \otimes \triangleright)$.
- 2. We set $\iota_{X,M} \colon X \square_H M \stackrel{\text{\tiny def}}{=} \ker(\varrho \otimes_{\mathbb{k}} \mathrm{id}_M \mathrm{id}_X \otimes_{\mathbb{k}} \delta) \longrightarrow X \otimes_{\mathbb{k}} M.$
- 3. The *bitensor product* of X and M is $Bit_H^H(X, M) \stackrel{\text{def}}{=} \operatorname{im} \iota_{X,M} \pi_{X,M}$.

If H is semisimple and $N \in {}_H^H \mathcal{YD}$, we have $\operatorname{Bit}_H^H(\mathbb{k}^1_{\varepsilon}, N) \cong \operatorname{Hom}_{D(H)}(\mathbb{k}^1_{\varepsilon}, N)$.

This map is particularly interesting in positive characteristic due to its connections with the order of S^4 .

Generalisation 3: Bitensor products and closing boundaries

Let $v \in V_{\Gamma}$ be a vertex. It has a corresponding boundary component b of Σ_{Γ} . We think of $\operatorname{Bit}_{H_0}^{H_0}(X, \mathbb{M}_{\Gamma})$ as closing the boundary b by gluing in a disc labelled X.

Generalisation 3: The annular graph

From now on: We assume dim $M^{\text{coinv}} = 1$ and fix a $Y \in \mathcal{M}_H^H$ which "trivialises" the annular graph.

Note: If dim $M^{\text{coinv}} = 1$, a suitable Y always exists.

Warning: Not all Hopf algebras admit an involutive Hopf bimodule M such that $\dim M^{\text{coinv}} = 1$.

Generalisation 3: The protected space

Definition

Let Γ be a Kitaev graph and $X \in \mathcal{M}_H^H$ and write

$$\mathbb{X}_{\Gamma} \stackrel{\text{\tiny def}}{=} \otimes_{v \in V_{\Gamma}} Z_v, \qquad \text{where } Z_v = egin{cases} X & \text{if } v \text{ is distinguished,} \\ Y & \text{otherwise.} \end{cases}$$

We call $\operatorname{Prot}_M(X,\Gamma) \stackrel{\scriptscriptstyle{\mathrm{def}}}{=} \operatorname{Bit}_{\mathbb{H}_{\Gamma}}^{\mathbb{H}_{\Gamma}}(\mathbb{X}_{\Gamma},\mathbb{M}_{\Gamma})$ the *protected space*.

Generalisation 3: Excision

Recall: Topological features of Kitaev graphs are controlled by the group $\mathfrak G$ and iterated gluings of graphs.

Theorem

Let Γ , Δ be two Kitaev graphs, we have a short exact sequence

$$0 \longrightarrow \operatorname{Prot}_{M}(X, \Gamma) \otimes \operatorname{Prot}_{M}(X', \Delta) \longrightarrow \operatorname{Prot}_{M}(X \otimes X', \Gamma \# \Delta) \longrightarrow \operatorname{CBit}_{M}(X, X', \Gamma, \Delta) \longrightarrow 0.$$

Generalisation 3:topological invariance

Corollary

For any Γ we have $\operatorname{Prot}_M(X,\Gamma) \cong \operatorname{Prot}_M(X,\Gamma \# \mathbf{A})$. In particular, if Γ and Δ are such that $\Sigma_{\Gamma}^{\operatorname{cl}} \cong \Sigma_{\Delta}^{\operatorname{cl}}$ then $\operatorname{Prot}_M(X,\Gamma) \cong \operatorname{Prot}_M(X,\Delta)$.

Any surface can be decomposed as a connected sum of tori. Explicit computations and geometrical interpretation of results?

Thank you

Uncovered topics

- 1. For group-algebras, the invariants we obtain have relations with Seifert fibered spaces.
- 2. "Reduction" procedure for bosonisations of Nichols algebras allows to simplify the computation.
- 3. Induction and restriction type identities.