UNCLASSIFIED

AD 433088

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

433088

CATALOGED

RTD-TDR-63-4287 VOLUME II ITEM__COPY__

A STUDY OF NUCLEAR RADIATION EFFECTS ON TELEMETRY

VOLUME II — NUCLEAR RADIATION EFFECTS DESIGN ALLOWABLES

TECHNICAL DOCUMENTARY REPORT NO. RTD-TDR-63-4287

FEBRUARY 1964

AIR FORCE AVIONICS LABORATORY RESEARCH AND TECHNOLOGY DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

PROJECT NO. 4107, TASK NO. 410721

(PREPARED UNDER CONTRACT NO. AF 33(657)-11646)

BY

LTV VOUGHT AERONAUTICS DIVISION

P. O. Box 5907 Dallas, Texas 75222

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC), (formerly ASTIA), Cameron Station, Bldg. 5, 5010 Duke Street, Alexandria, Virginia, 22314.

This report has been released to the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., for sale to the general public.

Items and materials used in the study, or called out in the report by trade name or specifically identified with a manufacturer, were not originated for use in this specific study or for applications necessary to this study. Therefore, the failure of any item or material to meet requirements of the study is no reflection on the quality of a manufacturer's product or on the manufacturer. No criticism of any item or material is implied or intended, nor is any indorsement of any item or material by the USAF implied or intended.

Copies of this report should not be returned to the Research and Technology Division, Wright-Patterson Air Force Base, Ohio, unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This report was prepared by LTV Vought Aeronautics Division of Ling-Temco-Vought, Inc., Dallas, Texas, under Contract Number AF 33(657)-11646, Project Number 4107, Task Number 410721. The contract effort was administered under the cognizance of the Electronic Warfare Division (AVW), AF Avionics Laboratory (AFAL), AFSC, Wright-Patterson Air Force Base, Ohio. Project monitor for the effort was Mr. Kenneth W. Foulke (AVWC).

This report consists of two volumes.

ABSTRACT - VOLUME II

Approximately 1500 nuclear radiation effects "Design Allowables" on electronic materials and parts were compiled to provide a useful working tool for designing nuclear radiation tolerant telemetry systems. The radiation effects Design Allowable is a nuclear radiation environmental exposure under which the associated material or part is expected to exhibit certain specified characteristic changes. The information presented does not include all available data, but is felt to be representative of the current nuclear radiation effects state-of-technology. This data should serve as an aid in performing nuclear radiation effects analyses of currently available telemetry systems and provide useful inputs for hardening such systems for use in a nuclear radiation environment.

This technical documentary report has been reviewed and is approved.

RONALD G. STIMME!

Asst Chief

Electronic Warfare Division

TABLE OF CONTENTS

																								Page
1.0) IN	roduct:	ION			•	•				•		•			•	•	•	•	•	•	•		1
2.0	ST	EADY-ST	ATE :	IRRA	DI	ΓA	OI	1 I	AT)	١.	•	•	•	•	•	•	•	•	•	•	•	•	•	5
	2.1	Batter	ies	• •	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	2.2	Capaci	tors		•	•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
			2.2	ctro .2.1 .2.3 ss. a . ar. ar s	oly	ti Al Co Ta	um: olur inte	inu nbi	um um	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	7 11 12 13 17 19 22 27 29 37
	2.3	Coaxia	l Ca	bles		•	•			•	•	•	•	•	•	•	•	•	•	•		•	•	3 9
	2.4	Connec	tors	, El	ec	tr	ica	al.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	41
	2.5	Cores,	Com	pute	r				•	•	•	•	•		•	•	•		•	•		•		45
	2.6	Crysta	ls.			•			•	•	•		•			•	•		•	•	•		•	46
	2.7	Delay	Line	s.		•				•	•	•	•		•	•	•	•			•	•	•	63
	2.8	Dielec	tric	Mat	er	ia	ls.		•	•	•	•	•	•	•	•	•	•	•		•		•	65
	2.9	Glass							•	•	•	•			•	•			•	•				68
	2.10	Induct	ors		•	•	•		•	•	•	•	•		•		•	•	•	•		•	•	70
	2.11	Insula	tion	, E1	.ec	tr	ice	al.	•	•	•			•	•		•	•	•	•				71
	2.12	Lamina	tes		•	•				•	•	•		•	•		•		•	•	•	•	•	81
	2.13	Lubric	ants			•				•	•	•	•		•		•	•	•			•	•	85
	2.14	Magnet	ic M	ater	·ia	ús					•		,•	•	•		•	•	•		•		•	87
		2.14.1 2.14.2	Ferm	roma	gn	et	ic.	•	•	•						•	•	•	•	•	•	•	•	87 89 95

v

TABLE OF CONTENTS (Continued)

		Page
2.15	Motors	100
2.16	O-Rings	101
2.17	Potentiometers	104
	2.17.1 Carbon Composition	104 105
2.18	Potting Compounds	107
2.19	Printed Circuits	110
	2.19.1 Assemblies	111 110
2.20	Protective Coatings	117
	2.20.1 Enamels	117 118 120 121
2.21	Relays	122
2.22	Resistors	126
	2.22.1 Boron-Carbon Composition 2.22.2 Boron-Carbon Film	126 127 128 132 141 146 147
2.23	Semiconductor Devices	159
	2.23.1 Diodes	159 165
2.24	Solder	167
2.25	Switches	168
2.26	Terminals, Electrical	171
2.27	Thermocouples	172
2.28	Transducers	173

TABLE OF CONTENTS (Continued)

		Pa	ge
	2.29	Transformers	80
	2.30	Transistors	86
		2.30.1.1 NPN	86 86 87 89 89 94
	2.31	Tubes, Electron	96
	2.32	Wire, Electrical	26
3.0	PULSE	IRRADIATION DATA	35
	3.1	Amplifiers	36
	3.2	Capacitors	37
		3.2.2 Electrolytic 2 3.2.3 Glass 2 3.2.4 Mica 2 3.2.5 Mylar 2 3.2.6 Paper 2	37 38 39 40 41 42 43
	3•3	Circulators	44
	3.4	Coaxial Cables	45
	3.5	Crystals	47
	3.6	Inductors	48
	3.7	Isolators	49
	3.8	Limiters	50
	3.9	Oscillators	51
	3.10	Power Supplies	52
	3.11	Resistors	53
		3.11.2 Carbon Film	53 54 55 56

TABLE OF CONTENTS (Continued)

		Page
	3.12 Semiconductor Devices	257
	3.13 Tubes, Electron	260
4.0	DESIGN ALLOWABLE REFERENCES	267
	4.1 Steady-State Irradiation	267
	4.2 Pulse Irradiation	276
5.0	LIST OF AEBREVIATIONS USED IN DESIGN ALLOWABLES	278
6.0	CONVERSION FACTORS	279
7.0	RADIATION EFFECTS FACILITIES UTILIZED IN GENERATING	
	TEST DATA REFERENCED IN THIS REPORT	282
	7.1 Steady-State Reactor Facilities	282
	7.2 Gamma Sources and Particle Accelerators	284
	7.3 Pulsed Reactors	285
8.0	ADDITITIONAL REFERENCES	287

RTD-TDR-63-4287

VOLUME II

LIST OF ILLUSTRATIONS

	Figure		Page
	1	Format for Presenting Nuclear Radiation Effects Test Data	4
	2	Number of Gamma Rays Vs. Dose Rate for Various Gamma Energies	280
_	3	Curve to Convert Neutron Flux to Dose Rate	281

.

1.0 INTRODUCTION

The radiation effects information presented in this Volume was compiled to provide a useful working tool for designing nuclear radiation tolerant telemetry systems. Most of the data was taken from the 92 different reports listed in the references. Inconsistencies in experimental conditions, variations in test objectives, and different methods of reporting test data make it impossible to give equal credence to each entry in the following tables. This should not detract from the usefulness of such tables, however, if the designer recognizes this fact and takes it into account in formulating his design goals. The information presented herein will suffice to select nuclear radiation tolerant materials and parts to be used in a wide range of nuclear environments.

This data, entitled nuclear radiation effects Design Allowables, is presented in a form that will give the designer a summary of extracted data on the behavior, stability and capabilities of components and materials operating in a nuclear radiation environment without having to examine in detail numerous documents containing the results of irradiation tests on these components and materials. The term "Radiation Effects Design Allowable" is defined as the nuclear radiation environmental exposure under which the associated material or component is expected to exhibit certain specified characteristic changes. These specific characteristic changes are presented as the basis for the "Design Allowable." This information cannot be interpreted as specific parameter variations for other materials or components made by the same or different manufacturers unless an accurate evaluation establishes the similarity of the two items. Material formulation, processing, quality control, fabrication techniques, parameter utilization, and environmental test conditions all have pertinent bearing on the data presented in these tables, hence, care must be exercised in its application.

Although both steady-state (Section 2.0) and pulse (Section 3.0) radiation effects information is contained in this document, the major effort (about 90 percent) has been devoted to the steady-state effects. This represents a logical division based on the availability of useful information and the nature of the respective problems. The steady-state data readily lends itself to the tabular presentation used here and should be most useful for designing nuclear radiation tolerant telemetry systems. The nature of pulse radiation effects and the lack of good experimental pulse data on parts make this type of presentation extremely difficult to compile and use. However, when Section 3.0 is used in conjunction with the information presented in Section 2.0 of Volume I, it should serve a very useful purpose in giving the designer a feel for the primary pulse effects problems, the general type of experimental work which has been conducted, and sufficient source references to obtain additional information as required.

Manuscript released by the author January 1964 for publication as an RTD Technical Documentary Report.

The information contained herein does not include all available data but is representative of the current nuclear radiation effects state-of-technology. Ninety-two documents were selected from a total of 800 reviewed. From the 92 documents 1500 radiation effects Design Allowables have been extracted, analyzed, compiled, and presented in a tabular form in this Volume. In general, the tables contain a description of the material or part, the nuclear radiation exposure to which it was tested, the specific changes observed, and the source reference (Figure 1). The following paragraphs further describe the specific information contained in the tables and discuss the general guidelines which were used in extracting and presenting the data.

Components and materials are categorized under their general classification. Specific identification, such as manufacturer, part numbers, functional rating values, element composition, basic use and other identifying remarks, are called out to the extent that this information is available in the referenced reports. Also, whenever known, the number of items irradiated are given. Manufacturers are listed in alphabetical order under the specified material or component. Under each manufacturer, the materials are listed in alphabetical order and the components are listed in ascending functional rating value. The exceptions to these two types of listings are crystals and electron tubes which are listed in ascending numerical order by part number identification. Materials and components for which the manufacturer is unknown are listed within the section under the heading of Miscellaneous.

The "Design Allowables" are presented as previously defined. Selective "characteristic changes" observed during the irradiation and the corresponding nuclear radiation levels at which they occurred are presented as the basis for the Design Allowables. If no defined exposure is given in this column, the percentage changes were assumed to refer to the total exposures presented in the "Design Allowable" columns. In most cases these changes are expressed in the percentage of change from the pretest value.

The exposure data presented in the Design Allowable Tables are based on the definitions given below:

Nomenclature	Symbol	Definition			
Thermal Neutrons	nt	Neutrons whose energy are above .025 ev.(E>.025 ev)			
Epicadmium Neutrons	n _e	Neutrons whose energy is above the cadmium cutoff, approximately 0.4 ev. (E>.4 ev)			
Fast Neutrons	nf	Neutrons with energies greater than 0.01 Mev. (E>.01 Mev)			

Nomenclature.	Symbol	Definition
Neutron Flux	n/cm ² -sec or n φ	The number of neutrons passing through an imaginary sphere of one cm ² cross-sectional area in one sec.
Neutron Exposure or Time Integrated Flu	nvt	The total number of neutrons passing through an imaginary sphere of one cm ² cross-sectional area in a specified time t.
Gamma Dose Rate	ergs/gm-(C)-sec	The energy, in ergs, which would be absorbed from the gamma field by a gram of carbon per second.
Gamma Exposure Dose	ergs/gm-(C)	Gamma dose rate times time.
Proton Exposure	P/cm ²	The total number of protons passing through an imaginary sphere of one cm ² cross-sectional area in a specified time t.

For converting gamma exposures reported in roentgens to ergs/gm-(C), a nominal conversion factor of 100 was used. In recording all nuclear radiation exposures only one decimal place accuracy was used.

The Radiation Effects Reference Number refers to the source of information as listed in the references, Section 4.0, and the respective pages from which this data was extracted. These references may be consulted for more detailed information if required.

Additional information on the general effects of nuclear radiation on numerous materials and components, certain criteria for designing nuclear radiation tolerant telemetry systems, and specific examples of the use of these tables in establishing the nuclear radiation effects state-of-technology on telemetry systems are contained in Volume I.

MATERIAL OR MATERIAL OR COMPONENT General Classification Classification	DESIGN ALLOWABLES	BASIS FOR DESIGN ALLOWABLES	RADIATION FFFECTS
General Classification Circuit Component	تصه - (C) معن		REFERENCE No.
Component Identification - Manufacturer, component value, type or nart number and number of items tested. The two, exceptions are the electron tubes and crystals which are listed in numerical order followed by the manufacturer and number tested. 1.e., Aerovox Corp. 1.e., ZDZIW/5727 1.e., ZDZIW/57	This represent test. ron energy (E) d flux to whic dmium neutrons all neutrons neutrons of un	teristic changes" observed during the irradister radiation levels at which they occurred bare is given, the percentage changes refer in the Design Allowable columns. (-5%)	Radiation Effects References as given in Bibliography, Section 4.0. i.e., AA p. BB, CC-DD AA - Document Reference No., p page BB, CC-DD - pages on which information was obtained

FIGURE 1 FORMAT FOR PRESENTING NUCLEAR RADIATION EFFECTS TEST DATA

.

1.0 INTRODUCTION

The radiation effects information presented in this Volume was compiled to provide a useful working tool for designing nuclear radiation tolerant telemetry systems. Most of the data was taken from the 92 different reports listed in the references. Inconsistencies in experimental conditions, variations in test objectives, and different methods of reporting test data make it impossible to give equal credence to each entry in the following tables. This should not detract from the usefulness of such tables, however, if the designer recognizes this fact and takes it into account in formulating his design goals. The information presented herein will suffice to select nuclear radiation tolerant materials and parts to be used in a wide range of nuclear environments.

This data, entitled nuclear radiation effects Design Allowables, is presented in a form that will give the designer a summary of extracted data on the behavior, stability and capabilities of components and materials operating in a nuclear radiation environment without having to examine in detail numerous documents containing the results of irradiation tests on these components and materials. The term "Radiation Effects Design Allowable" is defined as the nuclear radiation environmental exposure under which the associated material or component is expected to exhibit certain specified characteristic changes. These specific characteristic changes are presented as the basis for the "Design Allowable." This information cannot be interpreted as specific parameter variations for other materials or components made by the same or different manufacturers unless an accurate evaluation establishes the similarity of the two items. Material formulation, processing, quality control, fabrication techniques, parameter utilization, and environmental test conditions all have pertinent bearing on the data presented in these tables, hence, care must be exercised in its application.

Although both steady-state (Section 2.0) and pulse (Section 3.0) radiation effects information is contained in this document, the major effort (about 90 percent) has been devoted to the steady-state effects. This represents a logical division based on the availability of useful information and the nature of the respective problems. The steady-state data readily lends itself to the tabular presentation used here and should be most useful for designing nuclear radiation tolerant telemetry systems. The nature of pulse radiation effects and the lack of good experimental pulse data on parts make this type of presentation extremely difficult to compile and use. However, when Section 3.0 is used in conjunction with the information presented in Section 2.0 of Volume I, it should serve a very useful purpose in giving the designer a feel for the primary pulse effects problems, the general type of experimental work which has been conducted, and sufficient source references to obtain additional information as required.

Menuscript released by the author January 1964 for publication as an RTD Technical Documentary Report.

P.1 2 A BATTERIES

-	000000000000000000000000000000000000000	0 00	. Po 2 . V -		وحاء مستعد معارضا المعا
	ANA MEDITAL COD	DECTON	LLOWABLES.	THE PART OF THE PA	FEARA DIA TION AL
ŧ	MATERIALOOR .	DESIGN A	ALLOWABLES	TOR TORK	EFFECTS
,	COMPONENT .	acirgis 🐾 🤉	Go'n &	STESIGN IN THE STEEL STE	230
3	- m - n - m - m - n - m - m - m - m - m	mf (C)		A ALUO ABLES	REFERENCE No.:
	Batteries	Sing (21) The	De cur ém	of a man	The state of the s
3	Eagle-Rich reco	Se Car Trib	Ca Ca : 23	日子 中国中国中部 第十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	
٠	VEagle-Pich Tool & San San	5000	butter of .		
	- 10 0 J-52 5-75 V S S S S S S S S S S S S S S S S S S	6 3 . may . A	0:00 2 000 good	0 3 6 5 7 6 7 6 7	
3	GAP-4019 12v or 28v	2:6(10)		No effect on the	. 34 p20
:	5A, Silver-zinc (3ea)	To Carlotte ()	(E>10Mey);	Coperation of 2 of	
3	W. M	35.82.629.	20 000 D	these batteries	6,7% p
1		0 800 C. C.	80 - 0000 0	The output of the	100
,	V A FRANCE TO STATE	· ma o · man ?	1 0 0000	The output of the remaining battery	a way de son
	ha P So state a N	moon st	€2.0g &	was cut-off. A	48.8
5	5 1 Ald 8 24 . De con a	0000	A CONTRACTOR OF THE STATE OF TH	small increase in	
		- Co	(10 eD		F 0 D
,	6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	*** <u>and</u>	Po distrib	neutron & gamma	4 4 5 5 5 6 5 8
:	The same of the sa	B. 0 . 0 . 5	€0 _m d på refer N	exposure may cause	Ch and a complete a sign
١.	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			batteries of this type to fail.	. 1000000000000000000000000000000000000
1		20	3.	type to fail.	4 6 35
٥	The state of the s	San Table Sales	<i>\$</i> %	100 Mg	
1	LAP-6034, 23v	2(10)	1.5 (°16). "	No effects on	34p20
3	Thermal battery 23	* " " " " " " " " " " " " " " " " " " "	(E>1 Mev.)	battery operation	
ı	(6,ea)		D 4		. ,
ı		8 P Promb	2 00	No.	
I	:#6062: 3	2 7(20)	3.7(16)	No damage	-31p 376-82
٠	Thermal Battery	2.1(10)	(E>:3Mev)	No danage	~31p 310=02
1		1 2 1 4 1 5 5 W	(E.S. MGA)		
ı	(2 ea)			10	
ı		3 114			
ı	#767A, 14.5v	\$ 10 m	S		
ı	Lifetime.1500.watt-	2.7(10)	3.7(16)	-75% Capacity	31p 376-82
ı	min.		-	2.1	
ı	Silver Oxide-zinc	21 O C	(E>.3Mev)	\$ s	1
ı	(.) ea)				
ı	, ,	• 1		* * * * * * * * * * * * * * * * * * * *	
ļ	Rechargeable Silver -	257(10)	3.7 (16)	Inconclusive	31p 376÷82
Į	Oxide-zinc cell(lea)	الشر المصا	(E>. 3Mev).	1 de	
١		. `. + "η			
ı		· Same	1 A 🕶 📆 🔾	~	
ı			· Done way	`	
l					
١	·				
1					
1					i
I					
Į					
I					
۱					
l	<u></u>				<u> </u>

2.2.1 CERAMIC

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Capacitors, Ceram	ergs c	em ²	DESIGN ALLOWABLES	REFERENCE No.
41 99 7	6tu-(c)	Cm ·		
Allen-Bradley Co.	i Deiv		:	. (9)
220pf ₀ ± 10%,500 VDC C16-2211	2.8(10)	1.3 (15)nf	Capacitance(-11.2%) at 1.29(14)nf	4p142
Epoxy Sealed .	a 20.	Car 205, ode 02		£
A STATE OF THE PARTY OF THE PAR	2.6.(9)	7. 8-(15)nf	Capacitance(-3.2%)	4p142
		(ESO:5Hev)	٠٠.	
108 · 108 ·	A STATE OF THE PARTY OF			
A STATE OF THE STA	M. waye	0 5 6-5 B		
	क्षा व्यक्ति			
Aerovox Corp.		03 10, 9, 9, 0		
A sound world & The	10 00 00 00 00 00 00 00 00 00 00 00 00 0	Sand Sand	(Capacitance (-0.6%)	0) 05 605
CC25CH4505(4 ea)	2.9 (10)	1.0 (15.)ne	capacitance(-0.0%).	1r84,87,685
100pf 1:20%	6.2 (10)	4.2 (16)	Leakage R(-99.9%)	12p213
CZBO-VIOTAM(Cerafil)	0.0	(E>1 Mev)	at 8,58(15)nf	
1500pf # # # **		~ 1. (a) A		
CK60Y321Z(4:ea)	2.4 (10)	(.4 (14)ne	Capacitance (-13:2%) at 3.7(14)ne 2.3.	1p127;685
1720pf				4.50
CK27W152Z(4 ea)	2.6 (10)	4.3(14)ne	Capacitance(-6.5%) at 2.88(14)ne	lp105, 685
	0 1 (20)			10 COS
2000pf (4 ea)	2.4 (10)).> (14)ne	Capacitance(25.5%) at 4.33(14)nf	lp135, 685,
5200pi	2.0, (10)	1.9 (14)ne	Capacitance(-13%)	lp121-125,685
CK37W472Z(4 ea)			at 1.9(14)ne	1
0.lmf ± 20%	6.2 (10)	4.2 (16)	Leakage R(-99.9%)	12p208
CR-90 Mil-C-11015A		(E > 1 Mev)	at 1.65(16)nf	
0.25mf <u>*</u> 20%	6.2 (10)	4.2 (16)	Leakage R(-99.9%)	12p207 · ·
C.4-90 Mil-C-11015A(1 ea)		(E > î Mev)	at 1.3(16)nf	
MILLO- TT LINET COL			<u> </u>	

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Capacitors, Ceramic	ergs gm-(C)	n · em²	DESIGN ALLOWABLES	REFERENCE No.
Centralab Division			A subject of	
45pf CC25CH45OJ(4 ea)	2.9 (10)	1.0 (15)ne	Capacitance (-10%) at 4.18(14)ne	1p84,685
1500pf CK60Y321Z(4 ea)	2.4 (10)	7.4 (14)ne	Capacitance (-16.5%) at 4.95(14)ne	1p127,685
200 0 pi CK61Y152Z(1 ea)	2.4 (10)	5:57(14)ne	Capacitance (-16.5%) at, 4,33(14)ne	1p135,685
23:0pf CK27W152Z(4 ea)	2.6 (10)	4.3(349)ne	Capacitance (+3%) at 3.58(14)ne	1p105,685
5000pf CK37W472Z(4 ea)	2.0 (10)	1.9 (14)ne	at 1.3(14)ne	1p121-125,685
6200pf, +ბ0% to -20%. Type CE ∪r CF(1 ea	7.1 (10)	4 7 (16) (E>1 Mev)	Leakage R(-99.9%) at 1.45(16)nf	12p217
0.02mf, +30% to -30%, D.F. 2%, DDA-104(1 ea)	6.2 (10)	4.2 (16) (E>1 Mev)	Leakage R(-99.8%) at 8.58(15)nf	12p215
0.lmf, 30% to -30% DDA-104, 75-V(1 ea)	6.2 (10)	(E≥E Mev)	Leakage R(-99.8%) at 08.58(15)nf	12p216
0.47mr, -30% to -20% IA 10-474 (1 ea)	7.5 (10)	3.9 (16) E>1.Mev)	Leakage R(+16.%) at 2.13(16)n1	12p219
847	•	3.000 · · ·	* ?	
		ا و را <mark>مند</mark> اورا ایمند ۱۰	≓ ÷	
		. · • · · ·		
Cornell-Inc lice Electi	ic Corp.			
40pf CD-White (1 ea)	6 . 2 (10)	4.2 (16) (E>1 Mev)	Leakage R(-99.3%) at 3.58(15)nf	12p209
1.00inf = 40% CD (Black) (2 ca)	6.2 (10)	4.2 (16) (E>1 Mev)	Leakage R(-99.%) at 0.50(15)nf	12p211

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION		
COMPONENT	ergs	n	DESIGN	EFFECTS		
Capacitor, Ceramic	gm-(C)	cm ²	ALLOWABLES	REFERENCE No.		
Erie Resistor Corp.						
45pf CC25CH45OJ(4 ea)	2.9 (10)	1.0 (15)ne	Capacitance (-0.4%) at 8.63(14)ne	1p84,685		
1500pf CK60Y321Z(4 ea)	2.4 (10)	7.4 (14)ne	Capacitance (-11.5%) at 5.85(14)ne	lp127,685		
2000pf CK61Y152Z(4 ea)	2.4 (10)	5.5 (14)ne	Capacitance (-14%) at 4.5(14)ne	lp135,685		
2300pf CK27W152Z(4 ea)	2.6 (10)	4.3(14)ne	Capacitance (-%) at 2.88(14)ne	lp105,685		
5200pf CK37W472Z(4 ea)	2.0 (10)	1.9 (14)ne	Capacitance (-5.5%) at 1.3(14)ne	lp121-125,685		
Litton Systems, Inc. 500pf BaTiJ3 Wafer(2 ea)		1.5 (16) (E≯ 2.9 Mev	Leakage R(-88.5%) at 4.59(15)nf	11p29		

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Ceramic	ergs gm-(C)	cm _S	ALLOWABLES	REFERENCE No.
Onondaga Pottery Co.				
.000pf @200 %(Temp. Gensitive)Type CH, Hi K	6 (9)	2.1 (16)nf (E>0.5Mev	Capacitance (-24.6%) @ 2 (16) nf	4p100,133
H A	4.1 (10)	2.4 (14)nf (U>0.5Mev)	Capacitance (-44%) at 1(13)nf	4p100,133
***	.g. •		w with	
			•	-
•				
prague Products Co.				
700pf,+80% to -20% 00VDC, Ceramic Disc 1 ea)	7.1 (10)	4.7 (16) (E>1 Mev)	Leakage R(-99.9%) at 19.54(15)nf	12p218
.(1 ea),	6.2 (10)	4-2-(16) (E)>1 Mev)	Leakage R(-99.9%) at 1.65(16)nf	12p210
	,			
		- 10 mg 4		
2				
		ه ایر میاهد م در میاهد در این		

2.2.2 ELECTROLYTIC

2.2.2.1 Aluminum

MATERIAL OR COMPONENT Capacitors,	ergs	LLOWABLES n	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Electrolytic (AL)	&ш−(C)	cm ²	* THEONADIES	REFERENCE NO.
Bell Telephone Labs,	nc.	. • -	The state of the s	year of the second seco
0.3mf, 35VDC Experimental (3 ea)		2.6(17)nf.	Capacitance (+65%) at 2(16)nf	16p167
3mf, 35VDC Experimental (3 ea)		2.6(17)nf	Capacitance (-20%)	16p167
* **	o su s			
	3			
				* 1
				Na.
1	443			
S. C. Santa				
	Man experience			
のでも、大型	FA 22 53.			
	الهِ ﴿ أَبْيِيمُ	•		
		•		

2.2.2 ELECTROLYTIC

2.2 Columbium

		· · · · · · · · · · · · · · · · · · ·	
MATERIAL OR	DESIGN ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Capacitors, Electrolytic (Columbium	ergs)pm-(c)	DESIGN ALLOWABLES	REFERENCE No.
***		<u>:</u>	
fansteel Metallurgical			25. 20.20.05
Teflon Spacer, 41037-1	(6.3(10) 1.6(16) (E>0.5Mey)	Capacitance (-10%)	359 10.10-25
17mf, 10VDC	6.3(10)	Capacitance (-10%)	35p 10.18-25
1037-2	(E>0.5Mey)		
The Control		geore.	
+74. + \$120 LA		80 m	
	and the same		
	ميد: من ديم أهوره د ودي در		
		R.	
		•	
		·	
	ф2 Ф2		
7			
~			
200			
L		L	

2.2.2 ELECTROLYTIC

2.2.2.3 Tantalum

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Electro- lytic (Tantalum)	622 (C)	cm ²	ALLOWABLES	REFERENCE No.
Astron Corp.	X 6			
1.0mf ± 20%, dissipa- tion 6%, TES-1M-25-20 Mil-C-26655(USAF) (100 ea)		2.1 (16) (E>2.9Mev)	Capacitance-92 ea were out of tolerance No catastrophic failures. Tolerance threshold is 5.15(13 nf > 2.9 Mev & 1.475(8) ergs/gm-(C)	45p11
Fansteel Metallurgical 20mf, 35V STA377(Teflon:Spacer) (12 ea) 20m1, 35V	.Côrp. 6.4(10) 6.4(10)	1.6(16)	2 Failed 6.2(15)nf Capacitance (-1%) 2 Failed 6.2(15)nf	35p 10.10-17
STA377(modified)(12ea 70mf, 10V STA357 (12 ea)	6.4 (10)	(E>0.5Mev) 1.6(16) (E>0.5Mev)	All good No failures	35p 10.10-17
General Electric Co. 75mf, 30VDC (Foil) (Minuteman) (2 ea)		1.5 (16) (E> 0.1Mev)	Capacitance (-9.35%) at 3.8(13)nf	32 Fig. 23
75mf, 30 VDC (F oil) (2 ea)	1.5 (9)	1(16) (E>0.lMev)	Capacitance (-4%)	10p118

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Capacitors, Electro- lytic (Tantalum)	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
		Cin		
General Electric (Cont 1000mf 50VDC Wet Slug, Hermetically Sealed,200D180-6113 (3 en)	4.6(8)	3.6(15) (E≫.1Mev)	Capacitance (+6.6%) at 1.3(6)ergs/gm-(C) & 1(13)nf	53 Fig 29
<u>utt</u>	ı			
100mf 20VDC Solid Tant. Hermeti- cally Sealed (1 ea)		1(16) (E>O.lMev)		10p118
100mf, 20VDC, Solid, HS (1 ea)		6.5(15) (E>0.1Mev)	Capacitance (+11.5%)	32 Fig. 23
	П		· · · · · · · · · · · · · · · · · · ·	
Kemet Co.	6 1/101		, 601, 0000 1 1/2=3	
5mf 50V :5H5OD6 (11 ea)		1.6(16) (E≯0.5Mev)	1 failure at 4.4(15)n	135p 10.10-17
.2mf, ±10%, 60 VDC (3R2J60K, J Series (Solid)	7 .6(9)	3.7 (15) (E > 1 Mev)	Leakage R(-97.8%) at 1.8(15)nf	12 p 201
L5mf. 75 VDC (15J75 (Solid Tant.) (9 ea)	r (9)	7 (15) (E>O.lMev)	Capacitance (-30%) at 3(15)nf © 150 ⁰ C	10p 124

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
Capacitors, Electro- lytic (Tantalum)	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Kemet Cont.				
15mf 75 VDC @ 85 ^O C Kl5J75 (10 ea)		l(16) (E>0.lMev)	Capacitance (+11.2%)	53 Fig. 28
25mf, 45 V K25H45 (30 ea)	1.3 (11)	4.3 (16) (E>0.5Mev)	8 failed <1(16)nf 14 failed between 1(16) & 3.8(16)nf	35p 10.10-17
35mf ⓒ 6 V K35H6D5 (12 ea)	6.4(10)	1.6(16) (E>0.5Mev)	Leakage R(large decrease) 3 failed at <1(16)nf	35p 10.10-17
		1	il a	
			1 0 0 1 9	
		211.		:
Sprague Products Co.			_	
40mf, 50VDC, hermeti- cally sealed, (foil) 143D (2 ea)	1.5 (9)	1(16) (E>0.1Mev)	'Capacitance (-4%)	10p 119
40mf, 50VDC, H.S. (foil 142D (2 ea)		1(16) *** (E>0:1Mev)	Capacitance (+17.5%) at 9(14)nf	32 Fig. 9 & 24
40mf, 50VDC, H.S. (foil) 143D (2 ea)		6(15) - (E>O:1Mev)	Capacitance (+10%) at 9(14)nf	32 Fig. 9 & 24
75mf, 30VDC (Herm. Seal) Etched foil, 143D (2 ea)	1.5 (9)	1(16) (E>0.1Mev)	Capacitance (-4%)	10p 119
75mf, 30VDC, double seal, Foil tant., 222D (2 ea)	1.5 (9)	1(16) (E≻0.lMev)	Capacitance (-4%)	10p 119
75mf, 30VDC, double seal, Tant. foil, 222D (2 ea)	Ħ	1.5(16) (ЕЮ.Шеv)	Capacitance (-9.3%)	32 Fig. 23

	-111 /			
MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	n n	DESIGN ALLOWABLES	EFFECTS
Capacitors, Electro-	gm-(C)-	."*.ecm.2	ADLONADIEO	REFERENCE No.
U. S. Semcor		A 60 69 7		
U. S. Semcor		4.1		
18mf, 100VDC		1(16)	Capacitance (+21 %)	10p 119
Wet Tant. Slug(1 ea)		(E>0.1Mev)	at 5.5(15)nf	
47mf, 100VDC	1.5(9)	1(16)	Capacitance (+12%)	10p 119
Wet Tant. Slug(1 ea)	721	(E>0.1Mev)	at 9(15)nf	
47mf, 100VDC		1.5(15)	Capacitance (+38%)	32 Fig. 9 & 24
Wet Tant. Slug(1 ea)		(E>O. 1Mev)	•	9
A The Walter		Time Time		
			60	
			. 8	
			•	
		10 to 2		
	ا منا			
Western Electric Cor-	3.6	4.		
Womf, 35VDC, Solid:	5.6 (10)	2.4(17)nf.	Capacitance (+5%)	15p 21,22
Tant. Hermetically			at 1(16)nf	Typ cl,cc
Scaled (4 ca)		Profession and the	2 failed	
				Ш
* ***		- · ·		
	74		•	
	(A)	• •	·	
*:,7			24 mm	(4)
la de _{sol} ar		1		
		72.20		
		24	*, * *	
İ			•	
·				

2.2

CAPACITORS

2.2.3

GLASS

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT Capacitor, Glass	ergs	n cm ²	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
Corning Glass Works				
4.7pf ± 5%, 300VDC CY20C-472J Mil-C-112728	7.6(9)	3.7 (15) (E>1 Mev)	Leakage R(-78.4%) at 2.08(15)nf	12p 200
1200pf CY15C122J (6 ea)	3.1 (10)	1.1 (15)ne	Capacitance (+2.5%) at 2.34(14)ne	lp 253, 687
5100pf CY20C512J (6 ea)	3.1 (10)	1.1 (15)ne	Capacitance (1.5%) at 1.36(14)ne	1 _p 259, 687
0.02mf 200VDC (4 ca)	5.6 (10)	2.4 (17)nf	Capacitance (+2%)	15p 17, 19
				5
•		·		
Vitramon, Inc.				
200pf, 500VDC CY13C20LJ-A (Vitreous Enamel)	7 .3(9)	2.2 (16)nf (E X 0.5Mev)	70 -1/1	4p 119
220pf, 300VDC CY13C22LJ-A (Vitreous Enamel)	5.3(9)	1.6 (16)nf (E>0.5Mev)	Capacitance (+2%) at 8(15)nf	4p 119
220pf, 500VDC (Vitreous Enamel) CY17C22LJ-A	7 .3(9)	2.27 (16)n f (E≫.5Mev)	Capacitance (+2%) at 1.09(16)nf	4p 119
560pf, 300VDC (Vitreous Enamel) CY1756LJ-A	5 .3(9)	1.6 (16)nf (E>O.5Mev)	Capacitance (+1.6%) at 8(15)nf	4p 119
560p:, 500VDC (Vitreous Enamel) CY22C56LJ-A	2.8 (10)	1.4 (14)nf (E>O.5Mev)	Capacitance (+0.4%) at 1.25(14)nf	4 _р 124

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Glass	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Vitramon Cont.				
560pf, 500VDC (Vitreous Enamel) CY22C56LJ-A	6.0(9)	2.2 (16)ni (EXO.5Mev)	Capacitance (+1.6%) at 1.04(16)nf	4p 125
1200pf, 300VDC (Vitreous Enamel) CY22C122J-A	3.1 (10)	1.8 (14)ni (E>0.5Mev)	Capacitance (+0.4%) at 7.4(13)nf	4p 124
***************************************	7.3(9)	2.2 (16)ni (E > 0.5Mev)	Capacitance (+1.5%) at 4.3(15)nf	4p 125
1200pf, 500VDC (Vitreous Enamel) CY32C122J-A	5. 3 (9)	1.6 (16)ni (E > 0.5Mev)	Capacitance (+2%) at 3.69(15)nf	4p 125
"	2.6 (10)	1.2 (14)ni (E>O.5Mev)	Capacitance (-0.5%) at 2.25(12)nf	4p 128
5600pf, 300VDC (Vitreous Enamel) CY32C562J-A	2.7 (10)	1.3 (14)ni (E>0.5Mev)	Capacitance (+1%)	4р 128
		:		
		!		

2.2

CAPACITORS

2.2.4

MICA

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Mica	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Aerovox Corp.				
200pf CC45CH201J (3 ea)	2.7 (10)	9.3(14)ne	Capacitance (-1.5%) at 7.68(14)ne	lp 94, 685
6200pf CM35B622J (4 ea)	3.5(10)	1.1 (15) ne	Capacitance (-5.5%) at 7.97(14)ne	lp 143, 686
" (6 ea)	1.7 (11)	1.1 (15)ne	Capacitance (-1%)	5p12
0.lmf CM65B104J (4 ea)	9.0 (10)	2.4 (15)ne	Capacitance (-5%)	5p17
Bendix Corp. 0.12mf, 500VDC E-315, Hi-Temp "Samica" (6 ea)	1.3(9)	2.2(14) (E > 0.5Mev	Capacitance (0.0%)	35p 10.34
200pf	2.7 (10)	9.3(14) nf	Capacitance (+10.5%)	1p 94, 685
CC45CH2OLJ (3 ea)	L		at 3.82(14)nf	

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Mica	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Cornell-Dubilier Elect	rical Cor	٠.		
6200pf CM35B622J (4 ea)	3.5(10)	1.1 (15)n	Capacitance (-0.26%) at 1.13(15)ne	lp 143, 686
0.lmf CM65C1O4J (6 ea)	3.4 (10)	1.1 (15)n	Capacitance (-1.7%) at 1.05(15)ne	lp 174, 686
Erie Resistor Corp.				
100pf CB11PX681G (6 ea)	1.9 (10)	6.4 (14)ne	Capacitance (-3.5%) at 5.35(14)ne	lp 72, 685
200pf CC45CH201J (3 ea)	2.7 (10)	9.3(14)ne	Capacitance (-2%) at 7.68(14)ne	1 р 94, 685
680pf CB21FX101G (6 ea)	1.9 (10)	6.4 (14)ne	Capacitance (-1%) at 5.35(14)ne	1 p 78, 685
	•			
		je.	·	

			. —	
MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Mica	ergs gm-(C).	m cm ²	ALLOWABLES	REFERENCE No.
Micamold Radio Corp. 6200pf CM35B622J (4 ea)	3.5(10)	1.1 (15-)ne	Capacitance (+0.26%) at 1.34(14)ne	lp 143, 686
		•	•	
Sprague Products Co. O.lmf CM65C104J (6 ea)	3.4 (10)	1.1 (15)ne	Capacitance (-2.2%) at 1.03(15)ne	lp 174, 686
	Production of the second of th		• • • •	
			·	

2.2.5 MYTAR

MATERIAL OR	DESIGN ALLOWABLES		BASIS FOR	RADIATION EFFECTS
COMPONENT Capacitors Mylar	ergs gm-(C)	n 2	DESIGN ALLOWABLES	REFERENCE No.
Balco Research Labs 0.5mf, 200vdc QTM-1(Zinc-Metalized Mylar) (6 ea)	4.3(10)	1.4(16) (E>0.5Mev)	Capacitance(-2%)	35p 10.26-33
Cornell-Dubilier Elec	ric Corp			
0.25mf+20%, 400vdc STM (Miniroc) (6 ea)	1.1(10)	2.7(15) (E>0.5Mev)	Capacitance(-2%)	35p 10.25-33
0.25mf <u>+</u> 20%,400vdc MUF (6ea)	1.1(10)	2.7(15) (E)0.5Mev)	Capacitance(-2%)	35p 10.25-33
Electron Products Div. Preco, Inc. 36500pf+5%, 200vdc Dry Mylar (3 ea) 0.047mf+20%, Diss.>		.1(16) E>0.1Mev) 4.2 (16)	Capacitance(-15%) @ 4.5(15)nf Leakage R(-99.7%)	10p 118 12p 205
0.6%, MyTar film & foil, E-120 (1 ea)		(E> 1Mev)	@ 1.65(16)nf	
O.lmf, 200vdc (Metalized Mylar) DG2-104(IS) (2 ea)	3.9 (8)		Leakage R(-90%) @ 2.8(6) ergs/gm-(C)	12p 183
" (1 ea)	1.8 (10)	1.4 (15) (E≫.9Mev	Leakage R(-94.6%)	12p 189

				
MATERIAL OR COMPONENT	DESIGN ALLOWABLES		BASIS FOR DESIGN	RADIATION EFFECTS
	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Capacitors, Mylar	(C)	Cit		
Electron con't	ļ		1	
0.22mf @400vdc +20% Mylar film & foil E4-224(IS)	7.6(9)	3.7 (15) (E> 1Mev)	Leakage R(-96.1%) @ 7.5(13)nf	12p 203
0.22mf+20%, Diss(0.6% Mylar film E-120, E4-224 (1 ea)	6.2 (10)	4.2 (16) (E > 1Mev)	Leakage R(-98%) @ 8.58(15)mf	12p 204
0.68mf+1%, 200vdc Dry Mylar (3 ea)	1.5(9)	1(16) (E>.1Mev)	Capacitance(-7.3%) @ 9(15)nf	10p 118
Electronic Fabricator Inc. 0.5mf+10%, 200vdc Type MW Mylar General Electric Co.	2.2(9)	5.6(14) (E>0.5Mev)	Capacitance(-2%)	35p 10.26-33
0.039mf, 300vdc Dry Impregnated CTM 393VDK, 2V104 (3 ea)	3.6(8)	2.4(15) (E > 0.1Mev)	Capacitance (<1%)	10p 122
0.039mf 300vdc Dry Impregnated CTM 393VDK,2V104 (3 ea)	4.6(8)	3.6(15) (E>0.1Mev)	Capacitance(+3.62%)	53 Fig 29

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Capacitors, Mylar	ergs gm-(C)	r cm ²	DESIGN ALLOWABLES	REFERENCE No.
Good-All Electric Many				
2200pf+20%, 100vde 663-UW 200vde " 400vde " 600vde	5•3(9)	1.6(16)ne	Capacitance(+9.2%) @ 5.4(15)ne Capacitance(+10.4%) @ 8(15)ne Capacitance(+8.5%) @ 8(15)ne Capacitance(+14.3%) @ 1.01(15)ne	4 p 112
0.047mf, 600vdc Dry Impregnated 663F (3 ea)	3.6(8)	2.4(15) (E>0.1Mev)	Capacitance(+2.28%)	53 Fig 29
0.047mf, 600vdc X663F (3 ea)	3.6(8)	2.4(15) (E>0.1Mev)	Capacitance(-6%) @ 2(13)nf	10p 122
0.05 mf, 50 vdc Dry impregnated X601PE (446) (3 ea)	3.6(8)	2.4(15) (E>0.1Mev)	Capacitance(-7.2%) @ 2(12)nf	10p 121
" (3 ea)	4.6(8)	3.6(15) (E>0.1Mev)	Capacitance(-5.9%) at 2.4(15)nf	53 Fig. 29
0.1mf, 100vdc Dry Impregnated 613G (1049.1W2)(3 ca)	4.6(8)	3.6(15) (E>0.1Mev)	Capacitance(-9.3%) @ 1(13)nf	53 Fig. 29
" (3 ea)	3.6(8)	2.4(15) (E>0.1Mev)	Capacitance(-1%)	10p 121
			(F)	

MATERIAL OR	DESIGN ALLOWABLES		BASIS FOR	RADIATION
COMPONENT Capacitors Mylar	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
Good-All con't Oslmf, 50vdc Dry Impregnated 627G (1049.5W2)(3 ea)	¥ . 6(8)	3.6(15) (E>0.1M ev)	Capacitance(+9.8%) @ 2.4(15)nf &3.6(8) ergs/gm-(C)	53 Fig. 29
O.lmf, 50vdc Dry Impregnated X601PE (3ea)	4.6(8)	3.6(15) (E>0.1Mev)	Capacitance(-2.63%) @ 3.2(6)ergs/gm-(C), 2.1(15)nf	53 Fig. 29
0.lmf, 50vdc X601PE (446) (3ea)	3.6(8)	2.4(15) (E>0.1Mev)	Capacitance(-1%)	10p 121
0.15mf, 50vdc Liquid Impregnated 617G (1540-S) (3ea)	3.6(8)	2.4(15) (E>O.1Mev)	Capacitance(+2.5%) @ 2(13)nf	10 p 121
" (3ea)	4.6(8)	3.6(15) (E>0.1Mev)	Capacitance(+3.1%) @ 7.6(lh)nf	53 Fig. 29
0.22mf+10%, 300vdc BSAD-[663 VW (6 ea)	1.1(10)	2.7(15) (E>0.5Mev)	Capacitance(-2%) Leakage R -1(3)	35p 10.26-33
0.3mf, 100vdc Dry Impregnated 663F (3 ea)	3.6(8)	2.4(15) (E>0.1Mev)	Capacitance(-2.3%) @ 2.4(15)nf	10p 121
" (3 ea)	4.6(8)	3.6(15) (E>0.1Mev	Capacitance(=7.15%)	53 Fig. 29
	a e			
·				

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Mylar	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Hopkins EngineeringCo.				
0.lmf, 200vdc P-12M (Metalized Mylan	1.9(10) ')	1.5(15) (E>2.9Mev)	Leakage R(-94.6%) @ 5.2(8) ergs/gm-(C)	12 p 193
0.lmf @200vdc+20% P-12M(A03678-5) (film	7.6(9)	3.8(15) (E>1Mev)	Leakage R(-80.8%) @ 4.2(9) ergs/gm-(C)	12p 197
0.12mf @200vdc+5% P-122MFC (film)	7.6(9)	3.8(15) (E>1Mev)	Leakage R(-82.3%) @ 1.0(9)ergs/gm-(C)	12p 199
Plastic Capacitors,Inc	<u>.</u>			
O.Olmf+20% Impregnated with Stycast #62 IS4=103 (9 ea)	1.6(11)	7.6(14)ne	Capacitance(+8.3%) immediately	2p 328
Sprague Products Co. lmf HYDREL MIL-C-26244 (100 ea)	9.1(10)	2.2(16) (E>2.9Mev)	Capacitance(small increase) 94ea failed Threshold of failure 1.845(15)nf>2.9Mev & 8.495(9)ergs/gm-(C	45p 11,19
		•	•	
			-1.	
				ľ

2.2 CAPACITORS

2.2.6 MYLAR & PAPER

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Mylar & Paper	ergs gm-(C)	m ²	ALLOWABLES	REFERENCE No.
Sangamo Electric Co.	1(10)		100% of all	70 p. 94
impregnated with C16-18 alkyl biphenyl dielectric fluid(10ea			capacitors tested failed under a voltage pulse of 200 volt @ 135°C after a dose of 8(8)e/g-C	p. 10 p. 1
O.lmf, CPMO8 impregnated with Bis(Phenoxphenyl) Ether Dielectric Fluid (10 ea)	1(10)		86% of all capacitors tested failed under a voltage pulse of 200 volts @ 135°C after a dose of 1(9)e/g-C	70 p. 94 p. 10 p. 1
O.lmf, CPMO8 impregnated with MONO ISOPROPYLBIPHENY Dielectric Fluid (25 ea)	1(10) L		65% of all capacitors tested failed under a voltage pulse of 2000-V @ 135°C after a dose of 1(9)e/g-C	70 p. 94 p. 10 p. 1
O.lmf, CPMO8 impregnated with Etherm "A" dielectric fluid	1(9)		57% of all capacitors tested failed under a voltage pulse of 2000-V @ 135°C after a dose of 1(9) e/g-C	70 p. 94 p. 10 p. 1
O.lmf, CPMO8 impregnated with Etherm "A" Dielectric fluid with 4 % inhibitor (14 ea)	1(9)		50% of all capacitors tested failed under a voltage pulse of 2000-V @ 135°C after a dose of 1(9) e/g-C	70 p. 96 p. 10 p. 1

				DADTAMION
MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Mylar & Paper	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Sangamo con't				
O.lmf, CPMO8 impregnated with Bis(Phenoxyphenyl) Ether Dielectric Fluid (50 ea)	1(10)		8% of all capacitors tested failed under a voltage pulse of 2000 volts @ 135°C after a dose of 1(9)	
O.lmf, CPMO8 impregnated with Mono IsopropylBipheny Dielectric Fluid with out inhibitor			62% of all capacitors tested failed under a voltage pulse of 2000-V @ 135°C after a dose of 1(9)e/g-C	70 p 96,10,1
O.lmf, CPMO8 impregnated with Mono IsopropylBipheny Dielectric Fluid with inhibitor	1(10) 1		30% of all capacitors tested failed under a voltage pulse of 2000-V @ 135°C after a dose of 1(9)e/g-C	70 p 96,10,1
O.lmf, CPMO8 with Etherm "A" Dielectric Fluid	1(10)		10% of all capacitors tested failed under a voltage pulse of 2000vdc @ 135 C after a dose of 1(9) e/g-C	70 p 100,1,1
O.lmi, CPMO8 impregnated with oversized inhibited FC-43 Dielectric fluid (Perfluorutri- butylamine) (8 ea)	1(10)		100% of all capacitors tested failed under a voltage pulse of 2000volts @ 135°C after a dose of 6.2(8) e/g-C	70 p 98,1,10

2.2 CAPACITORS

2.2.7 PAPER

MATERIAL OR	DESTON A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	n	DESIGN	effects
Capacitors, Paper	gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Aerovox Corp.				
0.lmf + 20% CPO4AlEE104M (3 ea)	3.3 (10)	2.7 (15)ne	Capacitance (-12.6%) at 6.24(14)ne	1 p 185
" (3 ea)	2.6 (10)	1.1 (15)ne	Capacitance (-20%)	2p 285, 286
0.lmf CPO4AlKElO4M (3 ea)	2.6 (10)	1.1 (15)ne	Capacitance (-11%) 1 shorted	2p 297
" (3 ea)	3.3 (10)	2.7 (15)ne	Capacitance (-14.5%) at. 3.95(14)ne	lp 193, 686
O.lmf CP25AlEF104K (3 ea)	2.6 (10)	1.1 (15)ne	All failed 2 shorted, 1 rupture	2p 307
0.5mf CP53B2FF504K (3 ea)	2.7 (10)	1.3 (15)ne	Capacitance (-20.9%) at 6.25(14)ne	lp 219, 687
0.5mf CP53BlD504K (3 ea)	2.9 (10)	2.4 (15)ne	Capacitance (32.3%) at 2.13(14)ne	1p 206, 687
" (3 ea)	4.6 (10)	3.0 (15)ne	Capacitance All 3 shorted out in pile, All had oil leaks at end of test	
0.5mf CP53B1FF504K (3 ea)	4.6 (10)	7.2(15)ne	Capacitance (-16.5%) at 6.6(14)ne 2 shorted at 3.78 (15)ne	2p 319
1.0mf CP63B1EF105K (3 ea)	2.7 (10)	1.3 (15)ne	Capacitance (-28%) at 3.36(14)ne	1p 229, 687
10 mf CP70ELEF106K (3 ea)	2.7 (10)	1.3 (15)ne	Capacitance (-34.5%) at 3.19(14)ne	1p 240, 687
		/		

MATERIAL OR COMPONENT	DESIGN ALLOWABLES		BASIS FOR DESIGN	RADIATION EFFECTS
Component Capacitors, Paper	ergs gm-(C)	m cm ²	ALLOWABLES	REFERENCE No.
Astron Corp. 1.0 mf CPO8AlKELO5M M11-C-25A (100 ea)	8.1(10)	1.8(16) (E>2.9 Mev)	89 Failed Catastroph- ically. General capa- citance decrease, 22- had exploded, 59- shorted. Threshold tolerance-1.04(14)nf >2.9 Mev & 3.92(8) ergs/gm-(C)	_
Bendix Corp. Scintilla Div. O.1 mf E - 200 Impregnated with Polyester Resin	1(9)		10% of all capacitors tested failed under a voltage pulse of 2000 volts @ 135°C	70 p. 100
Chicago Condensor Corp. 10 mf CP70ElEF106K (3 ea)	2.7 (10)	1.3 (15)ne	Capacitance (-37.6%)	1 p. 245, 687

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Paper	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Cornell-Dubilier Elect. Corp.				
O.1 mf CPO4AlEE1O4M (3 ea)	2.6 (10)	1.1 (15) ne	Capacitance (-13.7%) @ 1.11(15)ne, 1 shorted	2 p. 285, 286
0.1 mf CPO4A1EE1O4M (3 ea)	3.3 (10)	2.7 (15) ne	Capacitance (-12.6%) @ 6.23(14) ne	1 p. 185, 686
0.1 mf CPO4A1KE1O4M (3 ea)	3.3 (10)	2.7 (15) ne	Capacitance (+16.2%) @ 2.58 (15)ne	1 p. 198, 68 6
0.1 mf CPO4AlKElO4M (3 ea)	3.3 (10)	1.1 (15) ne	Capacitance (+17%) @ 1.11(15)ne,1 opened	2 p.297
0.1 mf CP25AlEF104K (3 ea)	2.6 (10)	1.1 (15) ne	Capacitance (-20.5%) @ 5.81 (14)ne	2 p. 303
0.5 mf CP53B1FF504K (3 ea)	4.6 (10)	6.9(15)ne	Capacitance, All failed ≤ 3(15)ne	2 p. 321
0.5 mf CP53BlEF504K (3 ea)	2.9 (10)	2.4 (15) ne	Capacitance (-18%) @ 9.9(14)ne, 2 shorted	l p. 215
0.5 mf CP53B2FF504K (3 ea)	2.7 (10)	1.3 (15) ne	Capacitance (-36.2%) @ 2.19(14)ne	1 p. 225, 687
l mf CP63BlEF105K (3 ea)	2.7 (10	1.3 (15) ne	Capacitance (-32.6%) @ 3.36(14)ne	1 p. 229, 687
10 mf CP70ElEF106K (3 ea)	2.7 (10)	1.3 (15) ne	Capacitance (-31.9%) @ 2.09(14)ne	1 p. 249, 687
				-

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Paper	821-(C)	cm ²	ALLOWABLES	REFERENCE No.
Crocker, Burbank Paper, Inc. 0.5mf, 400 vdc Metal clad tubular, Impregnated with refined Sun-XX oil	1(10)		Capacitance decreased about 3% @ 25°c & 7% @ 125°c, D.F. more than doubled @ 25°c & increased 6 times @ 125°c, I.R.(-33%) @ 25°c & (-12.5%) @ 125°c. The paper was also weakened & shorted when voltage was applied.	70p 32
Electron Products Division, Preco, Inc. O.1 mf, 200 vdc (Metalized) MG2-104 (2 ea)	1.8 (10)	1.4 (15) (E>2.9Mev)	Leakage R(-95.2%)	12p 191
" (2 ea)	3.9 (8)		Leakage R(-44%) @ 6.88(6)ergs/gm-(C)	12p 184
0.1 mf @ 200 vdc ± 10% (Metalized) encased in epoxy tube, ME2-104E (Epicon)	7.6(9)	3.7 (15) (E>1 Mev)	Leakage R(-83%) @ 2.79(15) nf	12p 202
0.1 mf - 20%, DF<1% Metalized Paper Epoxy Impregnated M150 (lea)	6.2 (10)	4.2 (16) (E> 1Mev)	Leakage R(-99.8%) @ 1.65(16)nf	12p 206
0.47 mf, 200 vdc Metalized Paper, Epoxy impregnated, wrap & end fill, M2-474	1.8 (10)	1.4 (15) (E>2.9Mev)	Leakage R(-94.7%)	12P 190
" (2 ea)	3.9 (8)		Leakage R(-44%) @ 6.88(6)ergs/gm-(C)	12p 184

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitor, Paper	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Micamold Radio Corp.				
O.1 mf CPOHALEELOH M (3ea)	3.3(10)	2.7 (15)ne	Capacitance (+18.5%) @ 2.6(15)ne	1p 180,686
" (3ea)	2.6(10)	1.1 (15)ne	Capacitance (+16.9%) @ 1.11(15)ne 1 shorted	2p 286
0.1 mf CP25A1KE104 M (3ea)	2 .6(10)	1.1 (15)ne	Capacitance (+21.6%) @1.11(15)ne	2p 298
O.1 mf CPO4A1KE1O4 M (3ea)	3.3(10)	2.7 (15)ne	Capacitance (+17.5%) @ 2.6(15)ne	lp 201,686
Sangamo Electric Co. O.l mf CMPO8	1(10)		Capacitance (-6%). Factor of 2 increase in dissipation factor, factor of 7 decrease in insulation R	70p 30
O.1 mf, Samica with C-oil solid impreg- nated	1(9)		30% of all capacitors tested failed under a voltage pulse of 2000v @ 135°C	70p 100
O.l mf, Samica with mono-isopropyl-biphenyl dielectric fluid	1(10)		20% of all capacitors tested failed under a voltage pulse of 2000v @135°C	70p 100

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitor, Paper	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Sprague Products Co.				
O.1 mf CPOHALEELOHM (3 ea)	2.6(10)	1.1 (15)ne	Capacitance(+24.1%) @ 6.8(14) ne 1 opened	2p 285,286
" (3 ea)	3 . 9 (10)	2.7 (15)ne	capacitance (-17%) @ 3.6(14)ne	lp 188, 686
0.1 mf CPO4AlEE1O4M (2 ea)	3.9(10)	2.7 (15)ne	capacitance (-18.5%)	lp 188, 686
" (3 ea)	2.6(10).	1.1 (15)ne	Capacitance (-21%) l shorted	2p 291
0.1 mf CPO4AlKELO4K (3ea)	2.6(10)	1.1 (15)ne	Capacitance (-26.2%) 1 shorted	2p 294
" (2ea)	3.9(10)	2.7 (15)ne	Capacitance (-19%)@ 3.95(14)ne	lp 204,687
0.lmf CPO4AlKElO4M (3 ea)	3.9 (10)	2.7 (15)ne	Capacitance (-18.4%) @6.05(14)ne	lp 193 ,686
" (3 ea)	2.6(10)	1.1 (15)ne	Capacitance(-28.5%) 1 shorted	2р 298
0.1 mf CP25AlEF104K (3 ea)	2.6(10)	1.1 (15)ne	Capacitance(-28.5%) l shorted	2p 311
0.1 mf, 200vdc 195P (Hyrel) (4 ea)	5.7(10)	2.4(17)nf	Capacitance(-12%) @ 1.1(17),all failed from outgassing	15p 17,20
0.47mf @600vdc Hi Density paper impregnated with standard amount of Vitamin Q (8ea)	1.9(10)		Paper deteriorates & capacitor burst due to outgassing of impregnant & paper, capacitance (-10%) at 4.38 (7)ergs/gm-(C	55p 3, 11, 16
0.47mf @600 vdc Standard paper im- pregnated extra full with Vitamin Q (8 ea)	5.8 (9)		Paper deteriorates & capacitor burst due to outgassing. capacitance (-8%) @ 4.38(7)ergs/gm-(C)	55p 3,11, 16

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Paper	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Sprague Con't	8(0)	CIII		
0.47mf @600vdc Hi density paper impregnated extra full with VitaminQ (8 ea)	1(10)		Paper deteriorated due to outgassing of impregnant & paper. capacitance (-1.8%) at 2.26(7)ergs/gm-(0	
0.47mf @ 600vdc standard paper, standard impregnated with ether	1.9(10)		Paper gasses and becomes weak, brittle and flakey, Dissipation factor increases several orders of magnitude. Capacitance (-13%)	55p 3,11,17
0.47 mf @600vdc standard paper and impregnated with standard ether (extra full)	1.9(10)		Paper gasses and becomes weak, brittle and flakey. Capacitor ruptures due to out- gassing of paper and ether. Capacitance (-13%)	55p 3, 11, 17
O.47mf 6600vdc Hi density paper and impregnated extra full with ether	1.9(10)		Paper gases and deteriorates. Capacitor ruptures due to outgassing of paper and ether. Capacitance (5.0%) @ 2.26(7)ergs/gm-(C)	55p 17
0.47mf @600vdc Hi density paper and impregnated with a standard load of ether	1.9(10)		Paper gases and deteriorates. Capacitor ruptures due to outgassing of paper and ether. Capacitance(-13.3%) 32.26(7)ergs/gm-(C)	55p 17
0.5 mf CP53B2FF504K (3 ea)	2.8(10)	1.4(15)ne	Capacitance (-19.5%) © 2.25 (14)ne	lp 225

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Paper	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Sprague Con't				
0.5mf CP53B1EF504K (3 ea)	2.9(10)	2.4(15)ne	Capacitance (-17.3%) @ 3.97 (14)ne	lp 217,687
1 mf CP63BIEF105K (3 ea)	2.7(10)	1.4(15)ne	Capacitance (-30.2%)	lp 229,687
10mf CP70EIEF106K (3 ea)	2.7(10)	1.3(15)ne	Capacitance (-35.7%) @ 6.8(14)ne	1p 240,687
!	:			
			=1	
."	ļ			

2.2 CAPACITORS

2.2.8 PLASTIC

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Capacitors, Plastic	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Bendix Corp., Cincinnati Div. 3000pf+10%, 600vdc Experimental, Modifie Poylstyrene Dielectri (6 ea)	2 . 2(9)	5.6(14) (E X 0.5Mev)	Capacitance(-2%)	35p 10.26-33
Plastic Capacitors				
0.01mf+10% Cellulose Acetate Dielectric, OG6-103 (6 ea)	2.4(10)	1.3(15)ne	Capacitance(-8%) 6 Failed - Shorted	2p 327
0.02mf, Terlon Dielectric, TG75-202 (6 ea)	3.1(10)	9.6(14)ne	Capacitance(+14%)	2p 33?
lmf, 006-105 (6 ea)	9.1(10)	2.4(15)ne	Capacitance(+11%) 5 failed	5 p 71
Hopkins Engineering C	<u>.</u>			
0.1 mf @ 100 vdc [±] 1% Folystyrene dielectri P11PF		1.5(15) (E>2.9Mev)	Leakage R (-96.9%) @ 5.2(8)ergs/gm-(C)	12 p 192
"	7.6(9)	3.8(15) (E>1 Mev)	Leakage R (-87.5%) @ 1.1(7)ergs/gm-(C)	12 p 198

MATERIAL OR COMPONENT	ergs	LLOWABLESn_	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Capacitors, Plastics	gm-(C)	cm ²	ABLOWADIES	REFERENCE NO.
Sprague Products Co. 0.3mf, 1000vdc Polyester dielectric in dry metal can Type 65213 (4 ea)		1.1(17) (E>0.5Mev)	Capacitance(-10%) l failed	35p 10.39-43
0.3mf, 1000vdc Polyester dielectric with oil-filled can Type 65214 (5 ea)		1.1(17) (E>0.5Mev)	Capacitance(-10%) 3 failed	35p 10.39-43
Western Electric Co. 0.04mf Polystyrene dielectri (4 ea)	5.7(10)	2.4(17)nf	Capacitance(+8%) @ 6(16)nf, 1 failure	15 p 17,18
,				

2.3 COAXIAL CABLES

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Coaxial Cables	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Amphenol-Borg Electronics Corp.	Ξ			
RG-29/U Polyethylene (Amphenol #21-018) Z = 53.5 ohms	1.3(9)	2.2(14) (E > 0.5Mev)	Z (/ 9.7%) Leakage R increased by factor 100	35 p 10.90
RG 59/U Polyfoam Equivalent (Amphenol #621-715) Z-73 ohms	1.3(9)	2.4(14) (E > 0.5Mev)	Z (/ 31%) Leakage R fairly constant	35 p. 10.90
Andrews Corp. Air Dielectric Type with "Refrasl" insulator, 43 ohms 3/8" diameter (50ft)	~1(11)		Insulation R decrease factor~100 VSWR 1.15: 1.26 unable to maintain air pressure in cable due to silicone grease leak	,
Prodelin, Inc. RG-260/U 50 ohm "Spir-O-Line" (3ea)	7 (10)	6.1(16) (E>0.3Mev)	Attenuation(/13%) at,4.1(16)nf, Z = 2 ohms	31 p 173-189
Raychem Corp. RG-8/U Equivalent Polyolefin (09-008R)			Z(/7%) at 2(10)e/g-c Attenuation(/8.3%)at 2.5(10) e/g-c	30 p. 111-122
RG-9/U Equivalent 50 ohms, Raylin R(3ea)	7(10)	6.1(16) (E>0.3Mev)	Attenuation(f11%) at 4.8(16)nf Z f- 2 ohms	31 p. 173-189

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Coaxial Cables	ergs gm-(C)	m cm ²	DESIGN ALLOWABLES	REFERENCE No.
Rockbestos Products Aircraft Cable, Hi- Temp, Fire Resistant, Ni Clad Cu Wire, Inorganic Barrier, Impregnated Teflon Jacket & Glass Braid			Insulation R decreased by order ~100	1 60 p42, 36, 46, 61
Thomas A. Edison Indus Solid Dielectric Type Silica Dielectric, 50 ohms, 0.170" diameter (48 ft)	tries ~1(11)		Insulation R decreased by order ~100 VSWR 1.05:1.11	. 4 p8-15
Times Wire and Cable RG-8A/u Standard Mil-C-17 (3 ea)	2.7(11)	1.9(17) · (E>1 Mev)	Z (+10%) @ 5(8)ergs/g (C) attenuation (± 4.76%)	3- 30 plll-122
Miscellaneous RG-225/u Teflon (60 ft.)	2(9)	1(16) E >0.1 Mev)	VSWR 1.09:1 Teflon cracked & soft	10 p24

2.4 CONNECTORS, ELECTRICAL

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Connectors, Electri-	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Amphenol-Borg Electronics Corp. AN-3102A-12S-3P & S	2.4(8)		Leakage I increased by factor ~10 ⁴	14 p 11
(lea) 26-4100-32P 32 contacts (lea)	2.2(10)	1.6(14)ne		5 p 129
Bendix Corp. AN Hi-Temp Type (Scintilla Div) Mil-C-5015-C, Series K, 20 Amp,	1.4(9)	2.5(14) (E>0.5Mev)	Leakage R decreased by factor >10, not rec. for nuc.	35 p 10.100
700vdc or 500vac, Glass-Bonded Mica and Silicone Rubber (6ea)			environments	
PTO6CE-8-4S (Bendix Special Blend rubber insert) (1 ea)	1.3(9)	8.7(11)nf 1(12)nt	Insert swelled and Turned gray. Good condition.	8 p 113-120
PTOOSE-12-10P and PTO6SE-12-10S (Neoprene Inserts) (3ea)	1(9)	5.1(15) (E>O.1Mev)	Pin/Pin R decreased by order~103	10 p 141
PT 1H-1210P (hermetic Seal)(2ea)	1(9)	5.1(15) (E> 0.1Mev)	Pin/Pin R decreased by order~104	10 p 141

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Connectors, Electrical	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Cannon Electric Co.				
CAOZHR-14S-55 & 5P (1 ea)	2.4(8)		Leakage I increased factor ~10 ⁴	14 p 11
CAO2HR-20(2006-44)P 14 pins, ceramic in- serts	1.2(9)	1.8(15) (E>0.5Mev)	Insulation Rdecrease factor ~100, No other damage	135 p 10.105
CAO6HR-20(2006-44)S 14 pins, ceramic in- serts	1.2(9)	1.8(15) (E>0.5Mev)	Insulation R de- creased factor ~100, no other failure	35 p 10.105
DA-15S & 15P-(C-7) (1 ea)	2.4(8)		Leakage I increased by factor ~10 ⁴	14 p 11
HR Type (4ea)	6.2(9)	(E>0.5Mev)	Contact R increased factor~10 All Survived	4 p 54
0	4.4(9)	2.2(14) nf	Contact R Changes from 7.8(-4) → 63(-4), No change in insulation R	72 p 78
"	3.8(10)	1.03(16) nf	Contact R Changes from 6.3(-4)1000(-4), No change in insulation R	72 p 78

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Connectors, Electri-	ergs gm-(C)	m 2	DESIGN ALLOWABLES	REFERENCE No.
Deutsch Co. 262DTKOC-12-10P and 262DTKO6-12-10S (Silicone Rubber and diallyl phthalate Inserts) (lea)	1(9)	5.1(15) (EXO.1Mev)	Pin/Pin R decreased factor ~100	10 p 140
Deutsch with silicone rubber inserts	7.2(10)	4.8(16) (E>lMev)	Leakage R (-91.6%) at 1.45(16)nf	12 p 229
Seal Corp. Hermetic glass type	7.5(10)	4.8(16) (E>1Mev)	Leakage R(-92.7%) at 1.8(16)nf	12 p 231
Titeflex, Inc. H06-7-50S-9 Type with: RTV-90potting with: PR1201-Q " with: Teflon(TFE)"	1.3(9)	8.7(11)nf 1(12)nt	Good condition "" Soft but o.k. (Not Rec. for use in Nuc. Environment)	8 p 117

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Connectors, Electri-	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Winchester Electronic				
Winchester connectors with the following inserts: Diallyl phthalate	7.5(10)	4.8(16) (E>1Mev)	Leakage R(-90.9%) at 2.7(16)nf	12 p 233
: Melamine Formaldehyde	"	31	Leakage R (-92.5%) at 1.8(16)nf	12 p 232
: Phenolic Formaldhyde	"	tt	Leakage R(-99.2%) at 1.5(16)nf	12 p 229

2.5 CORES, COMPUTER

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Cores, Computer	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Engineered Magnetics C				
EM # W30-2-1207 Mag. Metals 2A-8602 Wire: 40 HF Potting: Hysol 6620 Cup: 22042-1A (2 ea)	6.7(8)	4.8(15) (E>0.1MEV	$V_{S}(\cancel{+}7.8\%)$ at 1.4(14) nf, I_{S} (\nabla48%) at 3.3(13)nf	10 p. 23, 163
EM #W29-2-1207 Arnold Eng.6T534052 Wire: 40 HF Potting: Hysol 6620 Cup: 22042-1A (2 ea)	6.7(8)	4.8(15) (E > 0.1MEV	V _s (/ 7.5%) and I _s)(/ 55.5 %) at 3.3 (13) nf	10 p. 23, 163
EM #W 32-2-1207 Mag. Metals 75A-4602 Wire: 27HF Insul: HL 1/2 Mil Mylar (2 ea)	6.7 (8)	4.8 (15) (E>∩.1MEV	V _s (/ 5%) at 1.4(14),) I _s (-52.3%) at 2.8 (12) nf	10 p. 23, 163
EM #W31-2-1207 Arnold Eng.2T5772R4	6.7(8)	4.8 (15) (E>0.1MEV)	V_s (-3.15% and I_s (7.104%) at 4 (12)nf	10 p. 23, 163
Wire: 25 MF Insul: HL 1/2 MIL Mylar (2 ca)				

2.6 CRYSTALS

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
Crystals	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR-16/U				
120Kc "DT" Cut Quartz in HC-5/U Holder	3.6(10)	5•7(13)nf		2 p769, 660
James Knights Co. (2 ea)			Parallel Resonant Fr (-94.1 ppm)@2.5(13)n Ser. Resonant Freq. (-128.3ppm)@1.2(12)n	-
Midland Manufactur Co., Inc. (2 ea)	ng "	H .	Parallel Resonant Fr (+140ppm)@4.9(13)nf Series Resonant Freq. (failed)	¢q. "
Wright Electronics Inc. (2 ea)	н	"	Parallel Resonant Fro (failed) Series Resonant Freq.(-538.3pp @ 1.2(12)nf	-
CR-(XM-17)/U 17Mc Gold Plated Glass Holder (5 ea)	8.8(9)		Freq. (- 0.880Kc)	27 p4-15, A-8
" (5 ea)		3.6(12) p/cm ²	Freq.(- 0.087Kc)	27 pA- 10

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR-18/U				
5275Kc ±0.0005%, (12 ea)	2.7(9)	7.4(13) (E>2.9Mev)		22 p3,59
Scientific Radio Products, Inc.	1		Resonance Frequency (50 ppm)	
4Mc Anti-resonant Alum. plated, metal holder Y-Bar syntheti quartz (5 ea)	2	3.6(12) p/cm ²	Freq. (- 0.042Kc)	27 pl5,A-2
13.025Mc, Unpolished Finish, Compression Base	3.8(10)	2.9(1 ¹ mf		35 pA-73- 77
Scientific Radio Products Inc.(3 ea)	ì	Frequency (-1355ppm)	
17Mc Alum. Plated Anti-resonant, Metal Holder (5 ea)	8.8(9)		Freq. (- 0.875Kc) @ 6.5(7)ergs/gm-(C)	27 p4-15, A-5
" (5 ea)		3.6(12) p/cm ²	Freq. (- 0.080Kc)	27 pA-6
<u>CR-19/U</u>				
lMc "AT" Cut HC-6/U Holder	1.7(10)	2.1(13)ni		2 p666, 769
James Knights Co. (3 ea)			Parallel Resonant Freq. (+46.5ppm) @ 2.3(12)nf, Series Resonant Freq. failed @ 1(13)nf	

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR-19/U (Cont.)				
Midland Mfg. Co., Inc. (2 ea)	1.7(10)	2.1(13)nf	Parallel Resonant From (-343.2ppm), Series Resonant Freq.(failed @ 1(13)nf	769
Scientific Radio Products, Inc. (2 ea)	11	"	Parallel Resonant Fre (failed) @ 9.4(12)nf Series Resonant Freq. (-1134.4ppm)	-
Wright Electronics, Inc., (2 ea)	"	11	Parallel Resonant Fre (+19.5ppm) @ 5.2(12)m Series Resonant Freq. (-2217 ppm)	g. f
12Mc "AT" Cut Quartz HC-6/U Holder	3.5(10)	2.1 (15)ne		2 p672, 769
Midland Manufacturi Co., Inc. (2 ea)	ng "	n	Parallel Resonant Fre - failed @ 2.3(14)nf Series Resonant Freq. - failed @ 2.3(14)nf	
Scientific Radio Products Inc.(2 ea)	n_j	**	Parallel Resonant Fre (-4925ppm), Series Resonant Freq.(-3971p	
Sherold Crystals, Inc. (2 ea)	**	(11)	Parallel & Series Resonant Freq failed @ 3.3(14)nf	
Wright Electronics (2 ea)	n	n	Failed @ 3.5(14)nf	
20Mc "AT" Cut Quartz HC-6/U Holder	1.8(10)	1(15)ne	Parallel Resonant Fre	2 p769, 680-689
Wright Electronics (2 ea)	н	н	(failed @ 7.9(14)ne) Series Resonant Freq (failed @ 7.5(14)ne)	

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	m cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR-23/U				
29.3 Mc, "AT" Cut Quartz	0			
Midland Mfg. Co. Inc. (3 ea)	2.3(10)	1.8(16) (E>0.3Mev)	Freq. (+60ppm)	31 pl4-48
40Mc, AL. plated Crystals				
Midland Mfg. Co. Inc. (2 ea)	3.2(10)	1.4(15)ne	Freq. (-44.4ppm)	35 pA- 94
Scientific Radio Products. Inc. with following: (1) Au Electrodes, polished Quartz, metal holder with compression base (2 ea)	3.1(10)	2(15)ne	Freq. (-1120 cps) @ 1.6(18) ergs/gm-(C)	35 pA- 19-24
" (2 ea)	1.9(10)	2.4(16)ne	Freq. (+2863 cps)	**
(2) Same as (1) except standard base (2 ea)	#	11	Freq. (-2743 cps) @ 6.7(14)ne	35 pA-25-3 0
" (2 ea)	3.1(10)	2(15)ne	Freq. (+2216 cps) @ 5.7(9) ergs/gm-(C)	Ħ
(3) Same as (1) except unpolished (2 ea)	lt.	н	Freq. (-2861 cps)@ 4.8(18) ergs/gm-(C)	35 pA-31-3 5
" (2 ea)	1.9(10)	2.4(16)ne	Freq. (+5773 cps) @ 2.1(16)ne	n
(4) Same as (3) except standard base (2 ea)		n	Freq. (-625 cps) @ 9.4(14)ne	35 pA-36-40
" (2 ea)	3.1(10)	2(15)ne	Freq. (+1579 cps) @ 6(9) ergs/gm-(C)	11

		_		
MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs	n	DESIGN ALLOWABLES	REFERENCE No.
Crystals	gm-(C)	cm ²	ABOWADIEC	REFERENCE NO.
CR-23/U 40Mc (Cont.)				
Scientific Radio Products, Inc. (Co	nt.)		:	
(5) Au Electrodes unpolished quartz plate, all-glass holder, T 62 (2 ea)	, 3.1(10)	2(15)ne	Freq. (-1799 cps) @ 1.6(8) ergs/gm-(C)	35 pA-41-45
" (2 ea)	1.9(10)	2.4(16)ne	Freq. (-674 cps) @ 1.4(15)ne	Ħ
(6) Al Electrodes polished quartz plate, metal holde with compression base (2 ea)		2.4(16)ne	Freq. (-971 cps) 8 9.4(14)ne	35 pA-46-50
" (2 ea)	3.1(10)	2(15)ne	Freq. (-1268 cps) @ 1.8(8) ergs/gm-(C)	² ii
(7) Same as (6) except standard base (2 ea)	11	н	Freq. (-614 cps) @ 1.8(18) ergs/gm-(C)	35 pA-51-55
" (2 ea)	1.9(10)	2.4(16)ne	Freq. (-934 cps) @ 1.1(16)ne	Ξ n
(8) Same as (6) except unpolished plate (2 ea)	**	**	Freq. (+1259 cps) 8 2.1(16)ne	35 pa-56-60
" (2 ea.)	3.1(10)	2(15)ne	Freq. (-1670 cps) @ 1.8(8) ergs/gm-(C)	m
(9) AL Electrodes unpolished plate, metal holder with standard base (HC-6/U) (2 ea)	, H	Ħ	Freq. (+1137 cps) @ 6.4(9) ergs/gm-(C)	35 pA-61-65
" (2 ea)	1.9(10)	2.4(16)ne	Freq. (-1228 cps) 8 1.1(15)ne	п

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR-23/U 40Mc (Cont.	_			
Scientific Radio Products, Inc. (
(10) Same as (9 except all-glass holder T 62 (2 ea		ij	Freq. (+1215 cps)	35 pA-66-7 0
" (2 ea	3.1(10	2(15)ne	Freq. (-814 cps) @ 1.8(8) ergs/gm-(C)	. .
45Mc, Al plated Crystals				
Midland Mfg. Co. Inc. (2 ea)	3 . 2(10)	1.4(15)r	e Freq. (-25.2ppm)	35 pA-9 4
M-23 14.27 Mc, Ag plated Crystal, metal hold McCoy Electronic Co. (2 ea)		1.4(15)ne	Failed to oscillate, One open - circuited	35 pA-91

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Crystals	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
CR-24/U 25 Mc ±50 ppm, "AT" Cut Quartz in HC-10/U Metal Holder				
Midland Mfg. Co., Inc. (2 ea)	3.4(10)	2.1(15)ne 5.4(13)nf	Parallel Resonant Freq. (failed) 8 1.2(15)ne, Series Resonant Freq. (-21.4 ppm) @ 1.9(13)ne	2 p769, 690- 697
Scientific Radio Products, Inc. (2 ea)	*	11	Parallel Resonant Freq. (+35.4 ppm), Series Resonant Freq. (-42.8 ppm) @ 1.9(13)	ne
Wright Electronics Inc. (2 ea)	Ħ	••	Series and Parallel Freq.'s (failed) @ 1.2(15)ne	
CR-25/U 300Kc ±100 ppm, Metal plated, "DT" Cut Quartz in HC-6/U metal holder				
Midland Mfg. Co., Inc., (2 ea)	1.7(10)	6.1(14)ne 2.1(13)nf	Parallel Resonant Freq. (+688.3 ppm), Series Resonant Freq (+388.3 ppm)	2 p769, 698-707
Sherold Crystals, Inc. (2 ea)	n	; n	Parallel Resonant Fro (+117.3 ppm), Series Resonant Freq. (+122 ppm)	

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	n	DESIGN ALLOWABLES	EFFECTS
Crystals	gm-(C)	cm ²	AULOWADILES	REFERENCE No.
CR-25/U (Cont.) 300Kc(Cont.) Wright Electronic Inc. (2 ea)	s, 1.7(10) 6.1(14)ne 2.1(13)ni	Parallel Resonant Freq. failed @ 1.3 (14)ne, Series faile on insertion	2 p769, 698- 707 a
<u>CR-27/U</u>			=	
833.33 Kc ±30 ppm Scientific Radio	0.7(0)	5 1/20X	(0)	
Products, Inc. (12 ea)	2.7(9)	7.4(13) (E>2.9Mev)	Frequency (18 ppm)	22 p3, 59
3400 Kc ±30 ppm				
Scientific Radio Products, Inc. (12 ea)	11	11	Frequency (21 ppm)	
Ħ				

			<u> </u>	DADTA MTON
MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
	ergs	m ²	ALLOWABLES	REFERENCE No.
Crystals	gm-(C)	cm_		
CR-32/U 56.99Mc ±34 ppm Scientific Radio Products, Inc. (12 ea)	2.7(9)	7.4(13) (E>2.9Mev)	Frequency (33 ppm)	22 p3, 59
CR-38/U 60Kc ±120 ppm, Metal plated, "NT" Cut Quartz, HC-13/U Metal holder James Knights Co. (2 ea)	3.4(10)	2.1(15)ne 5.4(13)nf	Parallel Resonant Freq. (-83.3 ppm) @ 3.5(14)ne, Series	2 p769, 703- 707
i			Resonant Freq.	
Midland Mfg. Co., Inc., (2 ea)	"	11	Parallel Resonant Freq. (Failed) @ 1.5(15)ne, Series Resonant Freq. (-341.6 ppm)	⊗ 91
Wright Electronics Inc., (2 ea)	3 , 11:	U	Parallel Resonant Freq. (Failed) @ 1.5(15)ne, Series Resonant Frequency (Failed) @ 3.9(14)ne	**

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
CR-39/U 200 Kc, "GT" Cut Quartz (unpolished), Vacuum Tube Type Hold	er		,	
Bliley Electric Co. (3 ea)	2(10)	1.5(16) (E>0.3Mev)	Frequency (-115ppm)	31 p14-48
250Kc ±30 ppm @ 25°C Metal plated "GT" Cut Quartz, Vacuum Tube Type Holder	•			
James Knights Co. (4 ea)	2.7(10)	9.5(14)ne 3.3(13)nf	Parallel Resonant Freq. (-68 ppm) @ 1.4(14)ne, Series Resonant Freq. (-103.6 ppm) @ 1.8(14)ne	2 p769, 708- 714
Wright Electronic Inc. (2 ea)	s, "	11	Parallel Resonant Freq. (-168.4 ppm) @ 1.8(14)ne, Series Resonant Freq. (-126.8 ppm)	••

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	n cm ²	Design Allowables	REFERENCE No.
CR-47/U 300 Kc, Fund. Freq. Gold Plating, Metal Holder Antiresonant (4 ea) " (5 ea)	8.8(9)	3.6(12) p/cm ²	Frequency (-29 cps) Frequency (+3 cps)	27 p4-15,A-2 27 p4-15, A-26
CR-51/U 13.025, Al Electrodes Standard HC-6/U, glas base, unpolished Scientific Radio Products, Inc. (3 ea)	5	2.2(15)ne	Frequency (-456ppm) @ 1.3(13)ne	35 pA-78-8 4
CR-52/U 15 Mc ±50 ppm, Metal plated "AT" Quartz, HC-6/U, Metal Holder Midland Mfg. Co., Inc. (2 ea)	3•9(10)	2.4(15)ne	Parallel Resonant Fr (failed) @ 3,1(14)ne	eq. 2 p770, 715 -723

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR-52/U (Cont.)				
15Mc (Cont.)				
Scientific Radio Products, Inc.	3.9(10)	2.4(15)ne	Parallel Resonant Freq. (-1664 ppm), Series Resonant Freq. (-262 ppm) @ 1.1(15)ne	2 p770,715- 723
Sherold Crystals, Inc. (2 ea)	"	u,	Series & Parallel Freq. (failed) @ 2.1(14)ne	н
Wright Electronic Inc. (2 ea)	5, "		Parallel Resonant Freq. (-2042 ppm), Series Resonant (Circuit Malfunction	" ed)
18Mc, Au plated, Series Resonant, Metal Holder (5 ea) " (5 ea)	8.8(9)	3.6(12) p/cm ²	Frequency (-1006cps) Frequency (-114 cps)	A-17
19.5Mc, Al Electrodes Unpolished, Compressi bases	on .			
Scientific Radio Products, Inc. (3 ea)	3.8 (10)	2.4(15)ne	Freq. (-418 cps) @ 2.7(14)ne	35 pA- 85- 89

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs gm-(C)	cm ²	DESIGN ALLOWABLES	REFERENCE No.
Crystals	8.1-(0)	- Gil		
CR-52/U (Cont.)			1	
50Mc ±50 ppm, Metal plated "AT" Cut Quartz in HC-6/U Mctal Holder				
Midland Mfg. Co. Inc. (2 ea)	1.8(10)	1(15)ne	Series & Parallel Resonant Freq.(fail @ 6.7(14)ne	2 p770, 724- ed) 73 ⁴
Scientific Radio Products, Inc. (2 ea)	11	If	Parallel Resonant Freq. (-1392ppm), Series Resonant Fre (-1988ppm)	н •
Sherold Crystals, Inc. (2 ea)	11	n	Parallel Resonant Freq. (failed) @ 9.8(14)ne, Series Resonant Freq. (-2173ppm)	н
Wright Electronic Inc. (2 ea)	s "	11	Parallel Resonant Freq. (-2580ppm), Series Resonant Freq. (-1669ppm)	н
<u>CR-53/U</u>				
70Mc, "AT" Cut Quart: Au plated, polished with Metal Compression Base				
Midland Mfg. Co. Inc. (3 ea)	2.1(10)	1.8(16) (E>0.3Mev)	Frequency (+76ppm) One failed @ 1.2(16)	31 pl4-48 of

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	m cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR-54/U 60 Mc ±50ppm, Metal Plated "AT" Cut Quart: HC-6/U Metal Holder				
James Knights Co. (2ea)	3.5(10)	2.1(15)ne	Parallel Resonant Freq. (-26ppm) @ 2.7(13)ne, Series Resonant Freq. (-29ppm)@1.5(15)ne	2 p770,735- 745
Midland Mfg. Co., Inc. (2 ea)	11	**	Parallel Resonant Freq. (-26ppm) @ 4.7(12)ne, Series Resonant Freq. (-50ppm) @ 1.5(15)ne	W
Scientific Radio Products, Inc. (2 ea)	11	н	Parallel Resonant Freq. (failed) @ 1.5(15)ne, Series Resonant Freq. (-442ppm) @ 1.2(15)ne	
Wright Electronic Inc. (2 ea)	5, ¹¹	н	Parallel Resonant Freq. (-4362ppm), Series Resonant Freq (failed) @ 1.3(15)ne	
				€:
75Mc ±50ppm, Metal Plated, "AT" Cut Quartz, HC-6/U Metal Holder				
Midland Mfg. Co. Inc. (2 ea)	3 .7(10)	1.8(15)ne 5.1(13)nf	Parallel Resonant Freq. (-110.5ppm), Series Resonant Freq (+46.1ppm) @ 3.7(13)	

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT Crystals	ergs	n cm ²	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
	gm-(C)	cm -		
CR-54U (Cont.)				
75Mc (Cont.)				
Scientific Radio Products, Inc. (2 ea)	3.7(10)	1.8(15)ne 5.1(13)nf	Parallel Resonant Freq. (-1141.3ppm) @ 1(15)ne, Series Res. Freq. (-930.3ppm) @ 8.5(14)ne	2 p770,746- 752
Sherold Crystals, Inc. (2 ea)	11	11	Parallel Resonant Freq. (-2750.6ppm), Series Resonant Freq (-2362.7ppm)	,
Wright Electronic	, "	11	Parallel Resonant Freq. (-2605.6ppm), Series Resonant Freq (-3533.3ppm)	**
85Mc, Al Plating, Series Resonant, Meta Holder (5 ea)	8 . 8(9)		Frequency (+8768cps)	27 p4-15, A-20
" (5 ea.)		3.6(12) p/cm ²	Frequency (-466cps)	27 p4-15, A-23
			,	

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Crystals	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR-55/U 40Mc *50ppm, Metal Plated, "AT" Cut Quard HC-18/U Metal Holder	z			
Midland Mfg. Co., Inc. (2 ea)	3.1(10)	1.1(15)ne 3.6(13)nf	Series & Parallel Freq. (failed) @ 5.6(14)ne	2 p770, 753- 758
Scientific Radio Products, Inc. (2 ea)	п	'n	Parallel & Series Resonant Freq. (faile @ 5.6(14)ne	d)
Sherold Crystals, Inc. (2 ea)	10) State	11	Parallel Resonant Freq. (-641.8ppm), Series Resonant Freq. (failed)	11
Wright Electronics Inc. (2 ea)	, n	11	Parallel Resonant Freq. (failed) @ 5.6(14)ne, Series Resonant Freq. (faile @ 8.2(14)ne	đ)
cr-56u				
70Mc ±50ppm, Metal Plated, "AT" Cut Quart HC-18/U Subminiature Metal Holder	z			
Midland Mfg. Co., Inc. (2 ea)	3.7(10)	1.8(15)ne 5.1(13)nf	Parallel Resonant Fre (-27.9ppm) @ 2(12)ne Series Resonant Freq. (-10.5ppm) @ 2(12)ne	770

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
Crystals	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
CR56/U (Cont.) 70 Mc (Continued)				
Scientific Radio Products. Inc. (2 ea)	3.7(10)	1.8(15)ne 5.1(13)nf	Parallel Resonant Freq. (-2481ppm), Series Resonant Freq. (failed) @ 1(15)ne	2 ₁ 760-770
Sherold Crystals, Inc. (2 ea)	n	w	Parallel Resonant Freq. (failed) @ 4.2(14)ne, Series Resonant Freq.(failed @ 5.8(14)ne	"
Wright Electronics Inc. (2 ea)))	in .	Parallel Resonant Freq. (failed) 6 8.7(14)ne, Series Resonant Freq.(failed @ 1.8(15)ne	, ,
CR-74/U				
47.5Mc, Ag Plated, Glass Holder				
McCcy Electronics Co. (2 ea)	3.2(10)	1.4(15)ne	Frequency (-29.8ppm)	35 pA-91
62.5Mc, Ag Plated, Glass Holder				
McCoy Electronics Co. (2 ea)	11	399	Frequency (-30.4ppm)	Ħ

2.7 DELAY LINES

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Delay Lines	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Corning Glass Works 100 µ sec Pb-Potash Glass Delay Piezoelectric Ceramic Transducers, Type 852798 S/N 32001 Corning Series C-Z (1 each)		5•7(16) (1 8>•3 Mev	No effect from radia- tion observed at the time of instrumenta- tion failure @ 1.5(16 nf and 2(10)ergs/gm- (C)	
General Electric Co. 2 µ sec Transmission Media is Ni Span C, magneto - strictive Type - Alnico V & Ni Alloy Experimental (1 each)		6.8(16) (B>1 Mev)	Output - 95% @ 3.16(16) nf (failed	30 p 157-162
170 µ sec Same composition as 2 u sec delay Line Experimental (1 each)	5.8(10)		No change in delay time. Output signal begins to degrade @ 5.3(15) nf & 6(8) ergs/gm-(C)	31 p 239-263
298 µ Sec Transmission wire is Ni Span C, Ceramic Transducer is PZT Type, Experimental (1 each)	5.8(10)	5(16) (B>.3 Mev	No change in delay time. Output (-50%) @ 2.5(15) nf & 3.3(9) ergs/gm-(C)	31 p 239-263

MATERIAL OR	DESIGN A	LLOWABLES	LASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Delay Lines	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
NYT Electronics, Inc. 1.0 ±5% µ sec Z = 1K ±10%, 500 vdc Attenuation (25% Max) Rise Time = 0.15 µsec Max., Mil-C-15305A, Grade 1, Class B (6 each)		(E>.5 Mev)	Delay time average (-2.3 %). Rec. for use in Nuclear Environment	35 p 10.137

2.8 DIELECTRIC MATERIALS

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Dielectric Materials	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
EI Dupont De Nemours				
Mylar Sheet, Type "C" Polyester	1(10)		No effect noted	70 p30
Orlon	1(10)		Thickness (+140%), Tensile Strength (-60%), Tonque Tear (-91.5%)	70 p 35
			e.	ir
Electrical Industries	, Inc.			
Compression glass end seals	1(10)		No effects noted	70 <u>p</u> 29-30
Hooker Chemical Corp FS-5 (Trifluorovinyl chloride polymer)	1(10)		0.235 cc gas formed per cc of material	70 p 23 , 28
			·	

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR	RADIATION EFFECTS
Dielectric Materials	ergs gm-(C)	cm ²	DESIGN ALLOWABLES	REFERENCE No.
Minnesota Mining & Mi	g Co.	en e a lui a - e a		
FC-43 (Perfluoro-Tri- butyl-amine)	1(10)		0.18 cc gas formed r cc of material	er 70 p23,28
	-			
Niemand Industries				
Kraft Paper Insulator	s 1(10)		Paper becomes brittle and cracks on handli	e 70 p30 ng
Republic Foil Co. Aluminum Foil	1(10)		No effects noted	70 p30
Stevens Paper Mill Kraft Dielectric Tissue	1(10)		Tissue becomes britt and cracked	Le 70 p30

MATERIAL OR COMPONENT Dielectric Materials	DESIGN A ergs gm-(C)	LLOWABLES n cm ²	Basis for Design Allowables	RADIATION EFFECTS REFERENCE No.
Miscellaneous				
Bis (Phenoxyphenyl) Ether	1(10)		0.003 cc gas formed per cc of material	70 p28
Chlorinated Biphenyl (Aroclor 1254 with added stablizer of the quinone type)	1(10)		0.0246 cc gas formed per cc of material	, 70 p28
Etherm "A" (Mineral oil, Sun XX with adde stablizer of the quinone type)	1(10) d		1.97 cc gas formed per cc of material	70 p28
Etherm "B" (Mixture of Polybutene (Ornite 32-X) and water-white mineral oil, stablize of the quinone type)			1.79 cc gas formed per cc of material	70 p28
Monoisopropylbiphenyl	1(10)		0.0917 cc gas formed per cc of material	70 p28

2.9 GLASS

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Glass	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Corning Glass Works				
Type 1723 Alumino Silicate(5ea)		5.8(18)nt	All enclosures o.k. but Gassy	49 p.8, 11
" (5 ea)		9.2(16)nt	Badly discolored Questionable Reduction in stress	49 p.8, 12
Type 7052 No leads (5 ea)		3.6(18)nt	Some enclosures leaky, all gassy	49 p. 6, 11
Types 7056 Enclosure with kovar leads (5 ea)		7.5(17)nt	All enclosures o.k. but gassy	49 p.11
Type 7720 Nonex under vacuum (2ea)		2.1(17)nt	Both cracked	49 p. 11
"in air (2ea)		7.5(17)nt	l cracked	49 p. 11
" with Ni-W-Ni leads (5 ea)		5.8(18)nt	Some leakers all gassy	49 p.11

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Glass	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Kimble Glass Co., Sub. Owens-Tllinois Glass Co.				
Type 51-26 Boron-Free (5ea)	: ii	.2(16)nt	Slight discoloration, Questionable Re- duction in stress	49 p.11
" Enclosures with Moly leads (5ea)	Ш	5.8(18)nt	All enclosures o.k., no trace of gas	49 p. 8, 11
Type 57-529 5% B ₂ 0 ₃ (5 ea)		9.2(16)nt	Some discoloration, Questionable re- duction in stress	49 p.8, 12 —
Type 58-20 3% B ₂ 03 (5ea)		9.2(16)nt	Some discoloration, Questionable re- duction in stress	49 p.8, 12
				Ξ
				=

2.10 INDUCTORS

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Inductors	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Arnold Magnetics Corp Type 384-3000 3 hy, Toroidal (12ea		4.3(16) (E>0.5Mev)	Induction (5%) DC Resistance (10%) No damage	35 p 10.139- 141
Engineered Magnetics Corp. Type G 357 (2 ea)	1(9)	6.3(15) (EXO.1Mev)	Magnetizing I(-8.1%)	10 p 23, 162

2.11 INSULATION, ELECTRICAL

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Insulation, Electrical	ergs gm-(C)	n cm ²	ALICWABLES	REFERENCE No.
Dow Corning Corp. DC-675 (Methyl Phenyl Polysiloxane Silicone Elastomer)	1.3(10)		Shore A Durometer Hardness(+54%) compression set (+90%)	69 p23,31
Silastic 80 (3 ea) Wire Insulation	=1	4.1(16) (E >0.5Mev)	Insulation R (failed) Cracked and brittle	35 plo.96- 100
General Aniline & Film	Co.			
Gafite (Methyl Alpha- Chloroacrylate)	3.2(8)		Luminous Transmittane (-66%)	e 57 pl0
n	1(9)		Tensile Strength = 20% of original	57 pl2
n .	3(9)		Flexural Strength = 10% of original	5 7 pl 3
11	1(10)		Heat Distortion Temperature (-15%)	5 7 pl 4

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Insulation, Electrical	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
General Electric Co.				
SE-361 (Methylvinyl Polysilomane) Silicone Elastomer	1.3(10)		Shore A Durometer Hardness (+75%) Compression Set - (+334%)	69 p 23, 31
SE-551 (Methylphenyl Polysiloxane) Silicone Elastomer	1.3(10)		Shore A Durometer Hardness (+100%) Compression Set - (+2400%)	69 p 23, 31
SE-975 (wire Insulation)	,	4.1(16) (E>0.5Mev)	Insulation Resistance (failed) cracked and brittle	35 pl0.96- 100
XE-9003A (Wire Insulation)		4.1(16) (E≫.5Mev)	Insulation Resistance (failed) cracked and brittle	35 pl0.96- 100
Kish Industries, Inc.				
358G (Also for potting) 1(11)	1.1(16) (E>0.5Mev)	Large variation in volume resistivity	35 pl0.85- 88
412M (Also for potting)	1(11)	1.1(16) (E>0.5Mev)	No damage, good up to 1.1(16)nf	35 pl0.85- 88
420A (Also for potting) 1(11)	1.1(16) (E >0.5Mev)	No damage, good up to 1.1(16)nf	35 pl0.85- 88

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Insulation, Electrical	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Marblette Corp. Maraset 622-B (Also used for potting) Marblette 3056 with Boron (Primarily used for neutron shielding)	i(17)	1.1(16)	Volume resistivity (+1900%), Dissipation factor (+1570%) Dielectric Constant (No change) Electrical character tics failed @ 1.5(15)	ls- 35 plo.85-
McDanel Refractory Por AP 35 (Ceramic Alumin in a boiling dissolver solution of 1M Nitric Acid with 75 g/l Stain less steel metal com- ponents. Material unaffected in this solution with no weight loss.	a) 1(11)		Impact strength - (+39%), Compressive strength (+26%), Volume resistivity decreases by factor ~100 Impact strength - (+18.5%), Compressive strength (<1%)	64 p15

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	_ n_	DESIGN ALLOWABLES	REFERENCE No.
Insulation, Electrical	gm-(C)	n cm ²	ABBOWADIED	REFERENCE NO.
Minnesota Mining & Mfg	. Co.			
Scotchcast 5 (also used for potting)	~1(11)	1.1(16) (E>0.5Mev)	No damage, good up to 1.1(16)nf	35 pl0.85- 88
Scotchcast 212 (also used for potting)	~1(11)	1.1(16) (E>0.5Mev)	No damage, good up to 1.1(16)nf	35 plo.85- 88
				Ē
Mycalex				
Supramica 555	1.2(10)		Material becomes	33 p2,8
Mycalex Bobbin		2.2(14) (E>0.5Mev)	Warped	35 pl0.123
Pennsalt Chemical Cor	·			
KYNAR (Polyvinylidene Fluoride Resin) In boiling dissolver sol			Impact strength - (41.4%), Compressive strength - (+4.2%)	64 p15
tion of lM nitric acide with 75 g/l stainless	L		Impact strength (-279) <u>"</u>
steel metal components Resistant to this			Compressive strength (-37%), Volume	
solution but undergoes slight weight gain			Resistivity decreases by factor ~ 103	

MATERIAL OR -	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Insulation, Electric	ergs gm-(C)	m cm ²	ALLOWABLES	REFERENCE No.
Phillips Petroleum Co MARIEX (Hi-density Polyethylene of Poly- olefin Resin family) In boiling dissolver solution of 1M Nitric Acid with 75 g/l stai less steel metal com- ponents. Resistant to solution with no weight loss.	1(10)		Impact strength (-4.3%), Compressive strength (<<1%) Impact strength(-85%) Compressive strength (0.0%), Volume resistivity decreases by factor ~105	64 pl5
Raychem Corp. Modified Polyolefin	1.3(9)	8.7(11)nf 1(12)nt	Survived in good condition	8 pl18
Rayclad Tubes, Inc. Thermofit Tubing (Modified Polyolefin)	1.3(9)	8.7(11)nf 1(12)nt	Survived in good condition	8 pl18

MATERIAL OR	DESIGN .	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Insulation, Electrics	ergs	cm ²	DESIGN ALLOWABLES	REFERENCE No.
Rohm & Haas Co.				
Plexiglas 55 (methyl Methacrylate)	5(8)		Luminous Transmittane (-33%)	57 plo
	1(9)		Tensile strength(-10%)	Ħ
	i(10)		Flexural strength = 10% of original, Heat Ristortion temperature (-20%)	•
Sierracin Corp. Sierracin 611 Polyester	1(10)	•	Luminous transmittance (-52%), Tensile strength (+20%), Flex- aral strength (+5%), leat distortion temp. (-20%)	
Miscellaneous	.	. 9/1/2		
Diallyl Phthetate (in Winchester Plug)	7.5(10)	4.8(16) (B> 1Mev)	eak R (-91%) @ 2.7(16 nf) 12 p 233
Fiberglass Impregnated with Teflon	1.3(9)	8.7(11)nf 1(12)nt	Survived in good condition but has temperature limited	8 bir8

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT Insulation, Electrical	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
Miscellaneous (Cont.)			•	
Fiberglass (Epoxy coated) Insulating Sheet	3•3(9)	8(15)ne	Tensile strength (-60%), Ultimate Elongation (-55%)	65 pl0 Table IV
"	3.1(11)	9(17)ne	Electrical Breakdown V (-90%)	65 pl0 Table II
Fiberglass (silicone varnished) Insulation Sheet	3.5(10)	8(16)ne	Tensile strength(-11 Ultimate Elongation (-97%), Electrical Breakdown V (-7%)	() 65 pl0 Table II Table IV
u	3.1(11)	9(17)ne	Electrical Breakdown V (-90%)	65 pl0 Table II
Hermetic Glass in Seal Corp. Connector	7.5(10)	(E>TWEA) (**)	Leak R (-93%) @ 1.8(16)nf	12 p 231
Kraftpaper Insulating Sheet	3 •3(9)	8(15)ne	Electrical Breakdown V (-17%)	65 p9 Table II
11	3.5(10)	8(16)ne	Electrical Breakdown V (failed), Tensile strength (-100%), Ultimate Elongation (-100%), All parameters failed at this dose	n
Melamine, GP Red 1077-RV22 Melma	1.3(10)		Material became brittle	33 p2, 8
Melamine Formaldehyde in Winchester Connect		4.8(16) (E>lMev)	Leak R (-92.5%) @ 1.8(16)nf	12 p23 2
Mica (Reconstructed) Silicone Treated Insulating Sheet	3.3(9)	8(15)ne	Tensile strength (-80%), Ultimate Elongation (-80%)	65 plo Table IV
11	3.1(11)	9(17)ne	No effect on electric breakdown voltage	65 p9 Table II
				L

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
Insulation, Electrical	ergs	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
	B.11-(0)	Cin		
Miscellaneous (Cont.)				
Neoprene WRT 45.5% by weight Vulcanizate	1(9)		(+38%)	46 p19
"	1(11)		Compression Set(+100	6) "
Phenolic, GP Black #7345 Resinox	1.3(10)		Material becomes brittle	33 p2, 8
Phenolic, GP Black ES 024 03	1.3(10)		Material becomes brittle	33 p2, 7
Phenolic Formaldehyde in Winchester Connect		4.8(16) (E>1Mev)	Leak R (-99.2%) @ 1.5(16)nf	12 p22 9
Polyester Enamel with Oil-modified Phenolic Varnish, Magnet Wire Insulation	1.3(10)		Thermal life (-16%) @ 200°C	63 p7
Polyester Enamel (Modified) with Oil- modified Phenolic Varnish, Magnet Wire Insulation	1.3(10)		Thermal life (+10%) @ 200°C	63 pT
Polyethylene Insulating Sheet	2.5(8)	6(14)ne	Tensile strength (no change), Ultimate Elongation (-24%)	65 pl0 Table IV
u u	3.5(10)	8(16)ne	Electrical breakdown V (-15%)	65 p9 Table II
er e	3.1(11)	9(17)ne	Electrical breakdown V (failed)	t†
Polyethylene Disks	1.3(10)		Volume (-0.018%)	13 p19
"	3.1(10)		Thickness 0.025" to 0.125", Diameter 1.33" to 0.55"	13 p22, 2 4
Polyethylene	1.6(9)		Viscosity increases) factor ~ 103, Shore AD. Hardness (+22.5%)	

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Insulation, Electrical	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Miscellaneous (Cont.)				
Polyethylene Terephthalate Insulating Sheet	3.5(10)	8(16)ne	Tensile strength(-529 Ultimate elongation = 0% of original, Elec- trical breakdown V (-14%)) 65 pl0 Table IV
11	3.1(11)	9(17)ne	Electrical breakdown V = 0% of original	65 p 9 Table II
Polyfluoroethyl- Propylene (FEP Teflon) Insulation Sheet	2.5(8)	5(14)ne	Tensile strength(-609 Ultimate Elongation (-65%)) 65 plO Table IV
ii	3.5(10)	8(16)ne	Electric Breakdown V (-94%)	65 p9 Table II
Polytetrafluoroethylen (TFE Teflon) Insulating Sheets	e 4.7(8)	4(14)ne	Tensile strength & Ultimate Elongation = 0% of original	65 pl0 Table IV
"	2.5(8)	6(14)ne	Electric breakdown V (-53%)	65 p9 Table II
, 11	3•3(9)	8(15)ne	Electric breakdown V = 0% of original	65 p9 Table II
Polytetrafluoroethylen (TFE Teflon) Wiring Insulation	e 1.3(9)	8.7(11)nf 1(12)nt	Brittle and powdery	8 pl17
Polytetrafluoroethyler (TFE) Tubing	e 4.7(18)	4(14)ne	Breakdown V (-53%)	65 p9 Table III
11	3.4(9)	4.5(15)ne	Breakdown V (failed)	.01
Polytetrafluoroethyler Enamel with Silicone Varnish, Magnet Wire Insulation	e 2.5(9)		Zero thermal life	63 p7
Polyurethane- Fiberglass Insulating Tube	5(11)	5(17)ne	Tensile strength(-40% Ultimate Elongation (-35%), Electric Breakdown V(-68%)) 65 plO Table V

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Insulation, Electrical	gm-(C)	Cm -	L	
Miscellaneous (Cont.) Polyvinyl Chloride (PVC) 105°C Tubing	5(11)	5(17)ne	Tensile strength and Ultimate Elongation failed at this dose, Electric Breakdown	65 pl0 Table V
			V (-68%)	65 p9 Table III
PolyvinylFormal Enamel with no Varnis Magnet Wire Insulation	F		Thermal life (-13%)	63 p7
Silicone Enamel with Silicone Varnish, Magnet Wire Insulation	1.3(10)		Thermal life (-11%)	63 p 7
Silicone Rubber in Deutsch Connector	7.2(10)	4.8(16) (E>1Mev)	Leak R (-91.6%) @ 9.5(15)nf	12 p 230
Silicone LS-53 (Fluorinated Methyl/	1(9)		Compression Set (+77%)	46 p19
Tri-Fluoropropyl) 176.9% by weight	1(11)		Compression Set (+108%)	"
Silicone Resin- Fiberglass, Insulatin Tube	3•4(9)	4(15)ne	Tensile strength (-11%), Ultimate Elongation (-20%)	65 pl0 Tuble V
	5 (11)	5(17)ne	Electric breakdown Voltage (no change)	65 p9 Table III
Viton A (Vinylidene Fluoride/Hexafluoro-	1(9)		Compression Set(+84%	919 و1م
propylene Copolymer) 70% by weight	1(11)		Compression Set (+105%)	11
Silicone Rubber (Extruded) Tubing	3•4(9)	4(15)ne	Tensile strength (-26%), Ultimate Elongation (-62%)	65 pl0 Table V
11	3.6(10)		Electrical Breakdown V (-41%)	65 P9 Table III
u	5(11)	5(17)ne	Breakdown Voltage failed at this dose	n

2.12 <u>LAMINATES</u>

NUCLEAR RADIATION EFFECTS DESIGN ALLOWABLES

F. TV 1752 . 9	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
9.3(9)	1.2(15) (E>2.9Mev)	Modulus of Elasticity (/1.7%), Tensile strength(/4.2%)	7 25 p ●
9.3(9)	1.2(15) (E>2.9Mev)		
			1
8.3(11)		Tensile Strength (-43%), Compressive Strength (457%) Flexural Rigidity (410%)	56 p 19
2.5(11)		Compressive Strength (-25%)	56 p 20
8.3(11)		Tensile Strength (-26%), Flexural Strength(-80%)	"
9•3(9)	1.2(15) (E) 2.9Mev)	Tensile Strength (-4.7%)	25 p 8
9•3(9)	1.2(15) (EX2.9Mev)	Tensile Strength (/28%)Compression Strength (-5.3%)	25 p 8
8.3(11)		Tensile Strength(-57%) Compressive Strength (-50%), Flexural Rigidity (-72%))56 p 18
8.3(11)		Tensile strength(-30%) Compressive strength (-54%), Flexural strength (-71%))56 p 16
	9.3(9) 9.3(9) 8.3(11) 9.3(9) 9.3(9) 8.3(11) 9.3(9)	9.3(9) 1.2(15) (E>2.9Mev)	9.3(9) 1.2(15) (F>2.9Mev) (1.7%), Tensile strength(4.2%) 9.3(9) 1.2(15) (Modulus of Elasticity (1.7%), Tensile strength(4.2%) 9.3(9) 1.2(15) (E>2.9Mev) (1.4.5%), Compressive Strength (1.4.5%), Compressive Strength (1.4.5%) 8.3(11) (Compressive Strength (1.4.5%)) 8.3(11) (Compressive Strength (1.26%), Flexural Strength (1.26%), Flexural Strength (1.4.7%) 9.3(9) 1.2(15) (E>2.9Mev) (1.4.7%) 9.3(9) 1.2(15) (E>2.9Mev) (1.4.7%) 8.3(11) (E>2.9Mev) (1.28%)(Compression Strength (1.5.3%) 8.3(11) (Finalle Strength (1.5.3%)

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Laminates	ergs	n cm ²	Design Allowables	REFERENCE No.
	gm-(C)	cm -		
Coast Manufacturing ((Slectron 5003 Laminate	8.3(11)	,	Tensile strength (No change)compress.sive strength(-64%) Flexural rigidity (-71%)	56 p 17
Cordo Moulding Pdts.	:			
Mobiloy AH-81 (Phenolic Resin- Asbestos Fabric)	9.3(9)	1.2(15) (EX2.9Mev)	Tensile strength (+ 2.6%)Modulus of Elasticity (-7.7%)	25 p 8
Mobiloy AH-81 (Phenolic Resin- Glass Fabric)	9.3(9)	1.2(15) (E>2.9Mev)	Tensile Strength (/5%), Modulus of Elasticity (-5%)	25 p 8
Insulation Mfrs. Corp	•			
G-7 Glass Fabric- silicone resin lamin- ate, in boiling dis- solver solution of	1(11)		Compressive strength	64 p 15
l M nitric acid with 75 g/l of stainless steel metal. Resistant to this solution but suffers 10% weight loss	1(12)		Compressive strength (-72.2%)	71

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Laminates	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Narmco Mfg. Co.				
CONOLON 506 (Phenolic Resin-asbestos fabric		1.2(15) (E>2.9Mev)	Modulus of Elasticity (-13.5%)Tensile Strength (/3.4%)	25 p 8
CONOLON 506 (Phenolic Resin-glass fabric)	9•3(9)	1.2(15) (E>2.9Mev	Modulus of Elasticity (-13.2%), Compression strength (/1.5%)	25 p 8
Shell Development Co.				
EPON 828 (Epoxy Resin asbestos fabric)	-9•3(9)	1.2(15) (E>2.9Mev)	Compressive strength (/4.3%), Tensile Strength (-4%)	25 p 8
EPON 828 (Epoxy Resinglass fabric)	-9 - 3(9)	1.2(15) (E>2.9Mev)	Tensile Strength (/2.6%)Modulus of Elasticity(-2.5%)	25 p 8
EPON X-131 (Epoxy Re- sin-asbestos fabric)	9.3(9)	1.2(15) (E>2.9Nev)	Tensile Strength (/5%)Modulus of Elasticity (-2.1%)	25 p 8
EPON X-131 (Epoxy Re- sin-glass fabric)	9.3(9)	1.2(15) (E>2.9Mev	Compressive Strength (/8%), Tensile strength (/4.7%)	25 p 8

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Laminates	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Shell, Con't.				
X-131-Plastic Laminate with BF3400	8.3(11)		Tensile strength (-8.3%)Compression strength (-88%), Flexural strength (-75%)	56 p 21
X-131-Plastic laminate with dicyandiamide	8.3(11)		Tensile strength (-22%), Flexural strength (-51%)	56 p 22
Taylor Corp.				4
G-7 Glass fabric- silicone resin laminate, In boiling dissolver solution of	1(10)		Impact strength (/27%)Compressive strength(-16%)	64 p 15
IM Nitric acid with 75 g/l stainless steel metal components. Resistant to this solution but suffers 10% weight loss	1(11)		Inpact strength (60%), Compressive strength(-29%), Volume resistivity decreases factor ~10°	.
	1(12)		Impact strength decreases factor~10	н

2.13 LUBRICANTS

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Lubricants	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Hooker Chemical Co. Fluorolube (Gyro Fluid)	2 - 111 - 11	~1(16) (E>2.9Mev)	Outgassing (0.37 ML gas/ML fluid)	12 p22 5
	8			
Shell Development Co.	•			
Shell APL grease	2.7(9)	2•9(15) (E> 2•9Mev)	Grease apparently Crystallizes	31 p319
Type Hi Temp Jet Oil A, (Complex-ester base (-450F to 3500F) Ref. GTO-790	7•4(9))	5.8(14) (E>2.9Mev)	5 change in neutralization No(Mgm KOH/gm Viscosity (+19%) Flash point (-24%)	44 p55-56
			55	
Sinclair Refining Co. Turbo S-Oil (L-697) Mil-C-7808C, Sebacate- base fluid, -65°F to 300°F	8.6(9)	5.1(14) (E >2.9Mev)	12.5 change in neutra ization No(Mgm KOH/gm Viscosity (-31%) Flash Point (-23.2%)	1- 44 p55-56)

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	n	DESIGN ALLOWABLES	EFFECTS
Lubricants	gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Sperry Gyroscope Co. Bromotriflouroethylene (Gyro fluid)		~1(16) (E> 2.9Mev)	Outgassing (1.6 ML gas/ML fluid)	12 p22 6
Miscellaneous	-()		u i ma	68 Oli
Mil-L-9236A, Sub- stituted-ester base	1(11)		Undergoes 90% decompositon @ 500°F	68 p94
Mil-L-9236B, Sub- stituted-ester base, -65°F to 400°F, Ref. GTO-915 furnished by ASD	1.1(10)	6.3(14) (E>2.9Mev)	7.2 change in neutra ization No(Mgm KOH/gm), Viscosity(+19%) Flash Point (-24%)	L- 44 p55-56
4P3E, Bis (Mix- phenoxyphenoxy) Benze in Gear Test	1(11) ne		Viscosity changes from 65cs to 10,000c	68 p74,87
Mixed-4P3E, Mix Bis (Phenoxyphenyl) Ether, 350°F, 3000 psi, Ref. GTO-927, hydraulic Fluid (also for lubrication use)		3.9(15) (E>2.9Mev)	Viscosity (cs)(+4.75 +0.145 change in neutralization No. (Mgm KOH/gm), Filtrat (particles>5 4 (Mgm/ ML)) +14.04, Boiling Range Broadened	Lon
5P4E Mix-Bis (Phenoxy phenoxy) Benzene in gear test	- 1(11)		Viscosity changes fr 400cs to 17000cs @ 600°F. Undergoes 40 decomposition @ 6000 and 50% @ 700°F. Ac No. changes from 0 to 12 (Agm KOH/gm)	86 6 F

2.14 MAGNETIC MATERIALS

2.14.1 FERRIMAGNETIC

MATERIAL OR		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Magnetic Materials, Ferrimagnetic	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Diamonite	3•7(9)	N .	No effect on Dielect	ric 212 p 4-50
Ferramic Q "permalloy type"	1.1(10)	1(18)nf	Hysteresis Loop flattened consideral	42 Fig. 15 Ly
MF3876 Memory Core General Ceramics Corp	7•7(9) •	2(17)ne	Br/Bm % of initial Value (±1%)	15 p 65
223MI - Mg, Mn, Fe RCA	1.6(11)	1.2(17) (E>1 Mev)	d Vz (+40%) @ 85°F and 4(14)nf	30 pl28-132
226MI- Mg, Mn, Fe, Zn, RCA		1.2(17) (E>1 Mev)	d Vz (+50%) @ 85°F and 4(14)nf	30 pl28 - 132
231 MI - Mg, Mn, Fe, Zn, Cd, RCA	1.6(11)	1.2(17) (E>1 Mev)	d Vz (+20%) @ 85°F and 4(14)nf	30 pl28-132
Nickel Ferrite Ni Fe ₂ O ₄		3(18)nf	Hysteresis Loop flattened considerat	42 Fig. 15 ly
NiZn and MnZn Western Electric	7•7(9)	2(17)ne	Loss of magnetic properties due to temperature heating. No radiation effects damage	
NXF 0023 - Mg, Mn, Fe, Li, RCA		1.2(17) (B>1 Mev)	d Vz (+150%) @ 158° and 3.5(15)nf	30 pl28-132
S-5 Memory Core General Ceramics Corp	7•7(9) •	2(17)ne	Br/Bm % of initial value (-7%)@1.2(17)r	15 p 65 e
Square-Loop Bell Tele. Labs (2 ea)	7•7(9)	. 2(17)ne	Br/Bm % of initial value (-12%)@1.2(17)	15 p65 ne .
T-l (Square Loop Ferrite) fast switch- ing, Telemeter Mag. I	1.1(10) nc	3(18)nf	Rysteresis Loop flattened slightly	42 Fig. 13
T-5 (Square Loop Ferrite) Slower Switc ing, Telemeter Mag.In		3(18)nf	Hysteresis Loop flattened considerat	42 Fig. 1 4 ly

	2222		DAGEG	RADIATION
MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	EFFECTS
Magnetic Materials,	ergs gm-(C)	em ²	ALLOWABLES	REFERENCE No.
Ferrimagnetic	gm-(C)	cm		
Yttrium Iron Garnet	3•7(9)		Linewidth (+10%) geff factor does not change, Dielectric constant (<<1%)	212 p4-49
		7	consoano (~~zp)	
Yttrium Iron Garnet (polycrystalline)	1.1(10)	3(18)nf	Hysteresis Loop flattens considerabl	42 Fig. 16
40% Yttrium Iron Garnet - 60% Gadalini Iron Ferrite	3•7(9) .m		Linewidth (<1%) gef factor does not chan	212 p4-49 ge
Yttrium Aluminum Garnet Ferrite	3•7(9)		Linewidth (-6%), Ber factor does not char Dielectric Constant (<< 1%)	ge £ 212 р4-49
		I		
		-4		
	i			
		•		
			_	

2.14

MAGNETIC MATERIALS

2.14.2

FERROMAGNETIC

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Magnetic Materials, Ferromagnetics	ergs gm-(C)	n cm²	DESIGN ALLOWABLES	REFERENCE No.
Alfenol (Disordered) 16 Al, Bal. Fe		2(18)nt	60 cps Coercive force (0%), 60 cps Residual Induction (0%), Max. Permeability (-4%), Permeability @ 30 gauss (-4%), negligit effect on normal induction curve and hysteresis loop, no decrease in initial permeability	52, 46
Alfenol (Oriented) 16 Al, Bal. Fe		2(18)nt	Max. permeability (+15%), Permeability @ 20 gauss (+34%), coercive force (-8%), Induction @ 30 Oersteds (-5%), Squareness Ratio (+13%), Remaner @ 60 cps (-2%), Coerc force @ 60 cps (+8%), negligble effect on normal induction curv	ce ive
Carbonyl Iron E (Glass Binder) 98.5 Fe, Bal. C,N,O		2(18)nt	Eddy I loss coefficie (-40%), Core loss factor (+16.7%), Permeability (No change)	nt 61 p20
Carbonyl Iron E (Plastic Binder) 98.5 Fe, Bal. C,N,O		2(18)nt	Permeability (no chan Eddy I loss coefficie (+25%), Core loss factor (-28.6%)	

MATERIAL OR			RADIATION EFFECTS	
COMPONENT Magnetic Materials, Ferromagnetics	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Deltamax Arnold Eng. Corp.	7•7(9)	2(17)ne	Br/Bm % of initial value (-9%) @ 1.2 (17)ne	15 p65
Flakenol, Sendust Flake, 5.5 Al, 9.5 Si, Bal. Fe		2(18)nt	Permeability (+11.4%), hysteresis loss coefficient (+10%), Eddy I loss coefficient (+500%), Residual loss coefficien (+88.9%), Core loss factor (+100%)	61 p20
2-81 Mo Permalloy, Pressed Powder, 2 Mo, 81 Ni, Bal. Fe		2(18)nt	Permeability (<1%) Hysteresis loss coefficient (-33%), Eddy I loss coeffi- cient (+100%), Resi- dual loss coefficien (0%), Core loss factor (+100%)	
4-79 Mo Permalloy 4 Mo, 79 Ni., Bal. Fe		2(18)nt	Permeability @ 20 gauss (-89%), Max. permeability (-79%) Coercive force (+403%), Coercive force @ 60 cps(+110%) Remanence (-44%) Remanence @ 60 cps (-51%), Induction @ 30 Oersteds (+1%), Squareness Ratio (-44%), Normal induction curve @ 0.2 oersteds (-60%), Initial permeability (-91%)	
4-79 Mo Permalloy Arnold Eng. Corp. (2 ea)	7.7(9)	2(17)ne	Br/Bm % of Initial Value (no change) Coercive force in- creased factor of 4	15 p6 9
4-79 Mo Permalloy Arnold Eng. Corp.(2ea	7•7(9))	2(17)ne	Br/Bm % of initial value (-46%)	15 p 65

MATERIAL OR				RADIATION EFFECTS
COMPONENT Magnetic Materials Ferromagnetic	ergs gm-(C)	m cm ²	DESIGN ALLOWABLES	REFERENCE No.
Mumetal 5 Cu, 2 Cr, 77 Ni, Bal. Fe		2(18)nt	Permeability @ 20 gauss (-65%), Max. permeability (-38%), Coercive force (+158%), Coercive force @ 60 cps (+35% Remanence (-26%), Remanence @ 60 cps (-16%), Induction @	·
		9	30 Oersteds (-3%), Squareness Ratio (-23%), Initial permeability (-74%), Normal induction curve @ 0.2 Oersteds (+8.8%)	
Nickel Ferrite NiO • Fe203		2(18)nt	Permeability (no change), hysteresis loss coefficient (-11%), Core loss factor (-44%)	61 p20
48 Nickel-Iron 48 Ni, Bal Fe		2(18)nt	Permeability @ 20 gauss (-70%), Max. permeability (-10%), Coercive force (+9%) Coercive force @ 60 cps (+35%), Remanence @ 60 cps (-33%), Induction @ 40 Cersted (-2%), Squareness ratio (-26%), Initia permeability(-75%), Normal induction curve @ 0.2 Cersteds (-36%)	5

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION. EFFECTS
COMPONENT Magnetic Materials, Ferromagentic	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Orthonol, 50 Wickel- Iron, 50 Ni, Bal. Fe		2(18)nt	Permeability @ 20 gauss (-31%), Max. permeability (+15%), Coercive force (-28% Coercive force @ 60 cps (+44%), Remanence @ 60 cps (-24%), Remanence @ 60 cps (-20%), Induction @ 30 oersted (-4%), Squareness ratio (-21%), Initia permeability (-37%), Normal induction curve @ 0.2 oersteds (-7.9%)	e
2 V Permendur, 2 V, 49 Co, Bal. Fe		2(18)nt	Permeability @ 20 gauss (+3%), Max. permeability (+2%), Coercive force (-2%) Coercive force @ 60 cps (+5%), Remanence @ 60 cps (-6%), Induction @ 30 oersteds (-1%), Squareness ratio (0%), Initial permeability (0%), Normal induction curve @ 0.2 oersteds (no effect)	
3-1 Silicon-Aluminum- Iron, 3 Si, 1 Al, Bal. Fe		2(18)nt	Permeability @ 20 gauss (+1%), Max. permeability (+1%), Coercive force (-2%) Coercive force @ 60 cps (0%), Remanence (-1%), Remanence @ 60 cps (0%), Induction @ 30 oersteds (-1%), Squareness ratio (0%), Initial permeability (0%), No effect on normal induction curve or hysterests loop	61 p18, 19, 43, 44, 52

MATERIAL OR	DESIGN A	SIGN ALLOWABLES BASIS F		RADIATION
COMPONENT Magnetic Materials, Ferromagnetic	ergs gm-(C)	cm ²	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
3 Silicon-Iron (Oriented) 3 Si, Bal. Fe		2(18)nt	Permeability @ 20 gauss (+10%), Max. permeability (+1%), Coercive force (-2%) Coercive force @ 60 cps (0%), Remanence (-3%), Remanence @ 60 cps (0%), Induction @ 30 cersteds (-1%), Squareness ratio (-1%), Initial permeability (0%), No effect on normal induction curve or hysteresis loop	61 p18, 19, 41, 42, 52
3.5 Silicon-Iron 3.5 Si, Bal. Fe		2(18)nt	Permeability @ 20 gauss (+8%), Max. permeability (-1%), Coercive force (+6%) Coercive force @ 60 cps (+9%), Remanence (+1%), Remanence @ 60 cps (+2%), Induction @ 30 cersteds (0%), Squareness ratio (+1%), No effect on normal induction curve	61 p18, 19,
Supermalloy 50 Mo, 79 Ni, Bal. Fe		2(18)nt	Permeability @ 20 gauss (-93%), Max. permeability (-93%) Coercive force @ 60 cps (+1000%), Remanence (-38%), Remanence @ 60 cps (-46%) Induction @ 30 oersteds (-3%), Squareness ratio (-36%), Initial permeability (-98%)	61 p18, 19, 52

MATERIAL OR		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Magnetic Materials Ferromagnetic	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Supermalloy Arnold Eng. Corp. (2 ea)	7•7(9)	2(17)ne	Permeability (-55%) also other changes	15 p 69
Supermendur Arnold Eng. Corp.	7 .7(9)	2(17)ne	Br/Bm % of initial value (+4%) @ 4(16)ne	15 p6 5
				=
-				l l
				±

2.14 MAGNETIC MATERIALS

2.14.3 PERMANENT MAGNETS

NUCLEAR	RADIATION	EFFECTS	DESIGN	ALLOWABLES
---------	-----------	---------	--------	------------

MATERIAL OR	1.544.0000	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Magnetic Materials, Permanent Magnets	ergs gm-(C)	n 	DESIGN ALLOWABLES	REFERENCE No.
Alnico II		5(20) (\$>0.025ev)	4% decrease in open circuit induction	66 Fig. 1
п		1(20)ne	Change in open mag- netic circuit induc- tion: -2% @ 60°C -3% @ 235°C & 325°C	59 p777
"		2(18)ne	No change in demag- netization curve	59 p2 8
Alnico IIA		2(19)ne	Open magnetic circui induction change: -5% @ 3(18)ne -2% @ 2(19)ne	t 59 pl 9
Almico V		5(20) (E>0.025ev	l % decrease in open circuit induction	66 Fig. 1
п		2(18)ne	Demagnetization curvintercepts change: H(cersteds) (-10%) B(K gauss)(+1.4%) @ 5000C	e 59 p25
"		1(20)ne	Open magnetic circui induction change: -2.5% @ 60°C -1% @ 235°C +1% @ 325°C	t 59 pl7
Alnico VC		2(19)ne	Open magnetic circui induction change: -9% @ 3(18)ne -3.5% @ 2(19)ne	t 59 pl9
Alnico XII		2(19)ne	Open magnetic circui induction change: -1.5% @ 3(18)ne -2% @ 2(19)ne	t 59 p19
n		1(20)ne	Open magnetic circui induction change: -6.5% @ 60°C -4.5% @ 235°C -1.5% @ 325°C	t 59 pl7

MATERIAL OR	DESIGN A	ALLOWABLES BASIS FOR		RADIATION EFFECTS
COMPONENT Magnetic Materials, Permanent Magnets	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Alnico XII	0	2(18)ne	Demagnetization Curve intercepts change: H(oersteds)(-2.5%) B(Kguass)no change @ 500°C	59 p2
	(5(20) E>0.025ev)	1% decrease in open circuit induction	66 Fig. 1
Barium Ferrite (Oriented)		2(18)ne	Demagnetization curve intercepts change: H(oersteds)(-2.5%) B(K gauss)(-2.6%)	59 p26
ti		2(19)ne	Open magnetic circuit induction change: -3% @ 3(18)ne 8% @ 2(19)ne	59 pl9
11	ļ	1(20)ne	Open magnetic circuit induction change: -63% @ 60°C -24.5% @ 235°C -24% @ 325°C	59 pl7
н	Ó	5(<i>2</i> 0) E>0.025ev)	24% decrease in open circuit induction	66 Fig. 1
Barium Ferrite (Unoriented)		2(19)ne	Open magnetic circuit induction change: -3% @ 3(18)ne -8% @ 2(19)ne	59 pl9
"		1(20)ne	Open magnetic circuit induction change: -54.5% @ 60°C -21% @ 235°C ~ 0 @ 325°C	59 pl7
"		2(18)ne	Demagnetization curve intercepts change: H(oersteds)(-9.2%) B(K gauss)(no change	59 p 26
n		5(20) E>0.025ev)	24% decrease in open circuit induction	66 Fig. 1

MATERIAL OR COMPONENT Magnetic Materials, Permanent Magnets	DESIGN ALLOWABLES		BASIS FOR	RADIATION EFFECTS
	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
3½ Chromium Steel		2(18)ne	Demagnetization curve intercepts change: H(oersteds)(-71.4%) B(K gauss)(-40%) @ 5000C	59 p27
н		1(20)ne	Open magnetic circui induction change: +2.5% @ 60°C -68% @ 235°C -66.5% @ 325°C	59 p17
**		2(19)ne	Open magnetic circui induction change: -8% @ 2(18)ne -4.5% @ 2(19)ne	; 59 pl9
36 Cobalt Steel		2(19)ne	Open magnetic circui induction change: -30.5% @ 3(18)ne -9% @ 2(19)ne	; 59 pl9
"		1(20)ne	Open Magnetic circuit induction change: -37% @ 60°C -37.5% @ 235°C -34.5% @ 325°C	; 59 pl7
n.		2(18)ne	Demagnetization curve intercepts change: H(cersteds)(-62.5%) B(K gauss)(-36.3%) @ 500°C	59 p2 5
"		5(20) E>0. 025ev)	40% decrease in open circuit induction	66 Fig. 1
Cunico I		2(19)ne	Open magnetic circuit induction change: -5.5% @ 3(18)ne -1.5% @ 2(19)ne	59 p 19
"		1(20)ne	Open magnetic circuit induction change: -7.5% @ 60°C -1.5% @ 325°C	59 p17

MATERIAL OR COMPONENT	DESIGN .	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
Magnetic Materials, Permanent Magnets	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Cunico I		2(18)ne	Demagnetization Curve intercepts change: H(oersteds)(-8.75%) B(Kgauss)(5%) @ 500	
и		5(20) (E>0.025ev	8% decrease in open circuit induction	66 Fig. 1
Cunife I		2(19)ne	Open magnetic circuit induction change: -45.5% @ 3(18)me -1.5% @ 2(19)ne	; 59 pl9
**		1(20)ne	Open magnetic circuit induction change: +13% @ 60°C -52.5% @ 235°C -92% @ 325°C	59 pl7
u		2(18)ne	Demagnetization curve intercepts change: H(oersteds)(-3.8%) B(Kgauss)(-1.8%)	59 p2 5
"		5(20) (5>0•025ev)	97% decrease in open circuit induction	66 Fig. 1
ESD Fine Iron		2(18)ne	Demagnetization curve intercepts change: H(oersteds)(-5%) B(Kgauss)(-4.7%)@500	
17	-	2(19)ne	Open magnetic circuit induction change: -3.5% @ 3(18)ne -2% @ 2(19)ne	59 pl9
ESD Fine Iron Cobalt		3(18)ne	Open magnetic circuit induction change: (-6.5%)	59 p19
G _F		2(18)ne	Demagnetization curve induction change: H(oersteds)(-25.7%) B(Kgauss)(-7.7%)	59 p 28

MATERIAL OR COMPONENT	C19 13/34	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Magnetic Materials, Permanent Magnets	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Platinum Cobalt		2(18)ne	Demagnetization curvintercepts change: H(oersteds)(-2.7%) B(Kgauss)(-4%)@5000C	: 59 p 26
н	}	5(20) E >0•025ev)	67% decrease in open circuit induction	66 Fig. 1
H	1	2(19)ne	Open magnetic circuinduction change: (-12%)	59 pl7
N.		1(20)ne	Open magnetic circui induction change: -38% @ 235°C -40% @ 325°C	: 59 pl7
Silmanal		2(19)ne	Open magnetic circui induction change: -10% @ 3(18)ne +5.5% @ 2(19)ne	: 59 pl9
11		1(20)ne	Open magnetic circuitinduction change: -46.5% @ 60°C -72.5% @ 235°C -93.5% @ 325°C	; 59 pl7
11		2(18)ne	Demagnetization curvintercepts change: H(oersteds) (-60%) B(Kgauss)(-50%) @ 500°C	: 59 p26
11		5(20) (E>0.025ev)	95% decrease in open circuit induction	66 Fig. 1

2.15 MOTORS

MATERIAL OR COMPONENT Motors	DESIGN A ergs gm-(C)	ALLOWABLES n cm ²	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Diehl Manufacturing Co 60 cps, 2-pole, 2- phase FPE216 Servo- motor (1 ea)	Γ		Failed @ 8.7(16) nf	30 p 152-157
Electric Indicator Co Hysteresis Synchronous Motor, Class H insu- lation, 115 v @ 60cps with CAL Research #159 grease, Type AL4541 (1 ea)			Much of the original power was lost	71 p 6, 13, 16
Inland Motor Corp. T2139C, DC Torquer Motor (1 ea)	1.6(10)	1.2(15) (E>2.9Mev)	Apparent Torquer Load (oz-inch) increases from zero to ~ 1	12 p 69
Lear-Siegler, Inc. D. C. Actuator Motor (1 ea)	2•7(9)	2•9(15) (E>0•3 Mev)	APL grease failed	31 p 276-319

MATERIAL OR DESIGN ALLOWABLES COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
O-Rings	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Alleghany Plastic				
Teflon X	5 (6)		Weight Change(-0.01%)	8 p 125
Dupont Co.				
Teflon Back-up Ring	1.3(9)		Brittle	47 p 80
Linear, Inc.				
Copolymer XP-9-13	5 (6)		Shore Durometer Hardness(-1%)	8 p 125
XWT-15T (Experimental Com- pound Viton A- Asbestos)	4.9(9)		Performance satisfactory	47 p 80
Precision Rubber Products				
Compound 1387 (Oil-Resistant)	1(11)		Hardness(/38%) Tensile (/ 110%) Elongation (-91%) Flat bend (Broke)	Technical Bulletin from PRP
Compound 4387 (Non-oil Resistant)	1(11)		Hardness (/41%) Elongation (-97%) Tensile (-20%) Flat bend (Broke)	11
Compound 1700 (Viton A)	4.9(9)		Failed-hardened and Leaked Tensile (-20%)	47 p 80

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
0-Rings	ergs gm-(C)	n cm	ALLOWABLES	REFERENCE No.
Miscellaneous				
Acrylonitrile TDXE-121 #72 (2ea)	5 (6)		Weight(/1.08%) Shore Durometer hardness (-2%)	8 p 125
Acrylonitrile TDXE-35 #74 (2 ea)	5(6)		Weight Change(/1.16%) Shore Durometer hardness (-10%)	8 p 125
Buna-N	3.1(9)		Hardened but kept seal	47 p 42, 80
En-Jay Butyl XI-351 (2 ea)	5(6)		Weight (-0.09%) Shore Durometer Hardness (/ 2%)	8 p 125
KEL-F Poppet	1.1(10)		Crystallized Brittle and Cracked	8 p 88
Leather Backup Ring	1.3(9)		No damage	47 p 42, 80
Neoprene #72 Compound (2 ea)	5(6)		Weight (/1.009%) Shore Durometer Hardness (0.0%)	8 p 125
Neoprene #74 Compound (2 ea)	5(6)		Weight (/ 1.007%)	8 p 125
Parco 805 (Butyl Rubber)	1.1(10)		Melted (Not Rec. For Nuc. Use)	8 p 88
Parker B-496-7 (2 ea)	5(6)		Weight (/ 1%) Shore Durometer Hardness (-10%)	8 p 125

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT O-Rings	ergs gm-(C)	m cm ²	ALLOWABLES	REFERENCE No.
Miscellaneous Con't				
Rubber 366YV (2 ea)	5 (6)		Weight (-0.85%) Shore Durometer Hardness (-9%)	8 p 125
Rubber 524A (2 ea)	5(6)		Weight (/1%) Shore Durometer Hardness (/4%)	8 p 125
50% Teflon loaded XIT 351 (2 ea)	5(6)		Weight (# 0.04%) Shore Durometer Hardness (-3%)	8 p 125
Teflon (TFE)	1.1(10)		Shredded, Brittle	8 p 88
				ſ
				1

2.17 POTENTIOMETERS

2.17.1 CARBON COMPOSITION

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Potentiometers, Carbon Composition	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Allen-Bradley				
0-0.1K [/] 10% at 120°C RV41AYSA101A (6 ea)	4.5(10)	6.3(13)nf 2.4(15)ne	Max R (-1.2%) at 9.2 (12)nf, Min R (-72%) at 4.9(13)nf	2 p. 216, 218
0-25K (Molded) RV6IAXSA253A (6ea)	1.6(11)	4(16) (E > 0.5MEV)	Max R(/12%) at 1.5(6) nf, Contract ArmR(<1%)	35 p. 10.41-59
0-100K 2 10% at 12000 RV4LAYSA104A (3ea)	4.5(10)	6.3(13)nf	Max R(-3.1%) at 1.3 (15)ne,Min R(/61%) at 2.3(15) ne	2 p. 216, 221
0-250K (Molded) RV6LA X SA254A (6ea)	1.6(11)		MaxR(/8.3%)at~1(16) nf,Contact Arm R(<1%)	35 p. 10.41 - 59
0-1 Meg = 10% at120°0 RV4LAYSA105A (6ea)		1.1(15)ne 3.7(13)nf	MaxR(-4.1%) at 2.6 (14) ne,MinR(/ 35%) at 5.2(14)ne	2 p. 216, 223
Chicago Telephone Supply Corp.				
0-50K (Film Type) RV5LAXSB503A (6ea)	1.6(11)	4(16) (E > 0.5MEV	Max R(-23%)at 2.3(16)) nf,contact R (∠1%)	35 p. 10. 41-59
O-500K (Film Type) RV5LAXSB504A (6ea)		11	Max R(-19%) Contact R (< 1%)	11
0-2.5 Meg (Film Type) RV5LAXSD255B (6 ea)	11	v	Max R (-24%) Contact R (<1%)	"

2.17 POTENTIOMETERS

2.17.2 WIREWOUND

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Potentiometers, Wire-wound	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Bourns Labs, Inc.				
0-0.5K, Trim-pot 3040-W-1-501 (6ea)	1.3(11)	5.1 (16) E>1 MEV)	Resistance (/0.85%) at 2(14)nf, one opened	30 p. 190-202
0-20K - 10%, Trim-pot 220-W-1-203 (lea)		4.3(16) E>1 MEV)	MaxR(/ 1.5%) at 8.6 (13)nf	12 p. 165
0-20K, Trim-pot 3040-W-1-203 (6 ea)		5.1(16) (E >1 MEV)	Resistance (# 0.1%) at 3(15)nf	30 p, 190-202
Chicago Telephone				
Supply Corp.			'	
0-15K [£] 5% RA 3OALSD153AJ (6ea)	2.5 (10)	6.1(14)ne 3.6(13)nf	Max R (\$\fo.008\\$) at 3(14)ne, Min R(-19\\$) at 3.1(13)ne	2 p.209, 212
Hadley Co. Inc, Robert M.				
0-0.5K 5%, 1/2W, Temp Coeff 20ppm/°C	7.2(10)	4.8(16) (E>1MEV)	Max R (/ 4.78%) at 1.4(15)nf	12 p.180 11 p.11
Trimpot, 500 TP (lea)		:		
P.R. Mallory and Co.				
0-5K, \$ 5% RA15AlSD502AJ (6ea)	2.5(10)	1.4(15)ne 3.6(13)nf	Max R (/3.3%) at 1.2 (15)ne, MinR(-26%) at 5.7 (13)ne	2 p.209, 210
		L	L	L

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT Potentiometer, Wire- Wound	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
Olomata Maria Co				
Ohmite Mfg. Co. O-lon 2 10% RP101SJ100KK (12 ea)	3.2(10)	1.4(15)ne	MaxR(≠ 13.1%) at 3.5 (14)ne	2 p.194, 196- 199
0-100 n / 10% RP101SJ101KK (6ea)	5 . 1 (10)	3.7(15)ne	Max R (≠ 1.15%) at 1.4(15)ne	2 p.194, 200- 201
0-1K = 10% RP101SJ102KK (9ea)	3 .8(10)	1.7(15)ne	MaxR (≠ 3.7,5) at 1(15)ne	2 p.194, 202- 204
0-5K - 10% RP101SJ502KK (6ea)	5.1(10)	3.7(15)ne	MaxR (/ 1.1%) at 1.9 (15)ne	2 p.194, 205- 207
	,	i		
5 %.				
				,
		:		

2.18 POTTING COMPOUNDS

MATERIAL OR	DESIGN	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Potting Compounds	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
American Latex Fibre (orp.			
Stay Foam AA-402 (2 ea)	2(8)	1.5(15) (E>O.1Mev)	Resistance Ratio Ro/R = 31, Volume (+15.4%)	10 pl51
Dennis Chemical Co. Insulating Lacquer 1162 A/B (2 ea)	"	"	Resistance Ratio Ro/R = 38 Volume (+1.4%)	10 p149
Dow Corning Corp. RTV-501 (2 ea)	5(8)	3•3(15) (E>O•1Mev)	R. Ratio Ro/R = 18 Volume (+16%) changed from tan to g	10 pl47 rey
Emerson & Cuming, Inc. Conducting Epoxy 57C	1.9(10)		Resistance (+1.03%) @ 9.2(12)nf	12 p239
Stycast 2651 MM (2 ea)	5(8)	3•3(15) (E > 0.1Mev)	R. Ratio Ro/R = 3.3 Volume (-0.58%)	10 р146

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Potting Compounds	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
General Electric Co. Silicone Rubber RTV-90	1.3(9)		Good condition but less pliable	8 p117
Hysol Corp. #12.007 (2 ea)	2 (8)	1.5(15) (E>O.1Mev)	R. Ratio Ro/R = 1.3 No volume change	10 pl50
Mica Corp. EG758T (2 ea)	2(8)	1.5(15) (E>O.1Mev)	R. Ratio Ro/R = 450 Volume (+6.9%), darket	10 p152 ned
Minnesota Mining & M Scotchcast #3 (2 ea Scotchcast foam Resin #603 (2 ea)		3•3(15) (E>0•1Mev)	R. Ratio Ro/R = 2.7 Volume (+0.89%) R. Ratio Ro/R = 170	10 p146 10 p154

				
MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Potting Compounds	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Products Research Co.	- π ±			
Polysulfide Rubber PR-1201-Q	1.3(9)	8.7(11)nf 1(12)nt		8 pl17
Shell Chemical Co. EPON 828 Cat. D (2 ea)	5(8)	3•3(15) (E≫•1Mev)	R. Ratio Ro/R = 2.7 Volume (+1.3%), Darker	10 pl48 led
		,		

2.19 PRINTED CIRCUITS

2.19.1 ASSEMBLIES

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Printed Circuits (Assemblies)	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Aerovox Corp. Type PA-95 consisting of a resistor and a capacitor (6 ea)	4.9(10)		Resistance (/10.8%) capacitance (-46%) No effect on board.	2 p• 796
Centralab Division Type PC-33 with resistor and capacitor (6 ea)	4.9(10)	2.8(15)ne	Resistance (-13.8%) Capacitance (-31%) No Effect on Board.	2 p. 796

2.19 PRINTED CIRCUITS

2.19.2 BOARDS

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Printed Circuit, Boards	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Centralab Division				
Steatite Type (Uncoated) (3 ea)	5.5 (10)	3.6(15)ne	Capacitance between leads (# 3.3%)	2 p. 776, 7 93
(Acrylic Coated)(3ea)	11	11	Capacitance between leads (# 2%) Some permanent effects on both types	11
Chance Vought Corp.				
Copper-clad fiberglass Melamine (2.5" x 4") following coatings were used: (1) Nitro-	2.1(8)			
cellulose lacquer			Leakage I increased by factor 1(3) at 2.6(7) ergs/gm-(C)	14 p. 3, 6
(2) Silicone Varnish (DC 997)			Leakage I increased by factor 1(5) at 2.6(7)e/g-(c) at 70°c Breakdown V(-30%)	14 p. 3, 10
(3) Epoxy - polyamid			Leakage I increased by factor 1(4) at 2.6(7)e/g-c)at 70°c Breakdown V(-20%)	14 p. 3, 10
(4) Polyester catalyzed with methyl ethyl ketone (MEK) peroxide			Leakage I increased by factor ~1(3) at 2.6(7)e/g-c) at 70°c Breakdown V(-25%) Superior coating of those tested.	14 p. 3, 10
(5) Uncoated			Leakage I increased by factor~1(5) at 2.6(7) ergs/gm-(C) Breakdown V (0.0%)	14 p. 3, 10

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Printed Circuit, Board:	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Continental Connector				
Corp. Glass Epoxy Type (Uncoated) (2 ea)	5.5(10)	3.6(15)ne	Insulation resistance decreased by factor 1(4) at 1.2(14)ne and 1.7 (9)e/g-c) corroded, and blistered.	
(Acrylic ^C oated) (2ea) "	*1	Insulation resistance decreased by factor 1(3) at 2.8(15) ne and 4.3 (10)ergs/gm-(corroded and blistered.	
Glass Melamine Type	5 . 5(10)	3.6(15)ne	Copper corroded,1 lead opened, . capacitance between leads (/ 14%)	2P· 776, 785
Nylon Phenolic Type	5.5(10)	3.6(15)ne	Capacitance between leads (-5%), No Physical damage but leads easily removed from board	2 p. 776, 792-
Paper Phenolic Type XXXP	5.5(10)	3.6(15)ne	Capacitance between Leads († 7.7%), Boards were extremely Brittle	2P. 776, 787
Teflon Type	5.5(10)	3.6(15)ne	Board was destroyed by radiation	2 p. 776, 791

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Printed Circuit Board	ergs gm-(C)	n cm²	ALLOWABLES	REFERENCE No.
Formica Corp. Subs. American Cyanamid Co.				
Glass Melamine Type	5.5(10)	3.6(15)ne	Capacitance (0%) Copper Strips cor- roded	2 p. 776, 786
Paper Phenolic Type 36	5.5(10)	3.6(15)ne	Capacitance (#24.7%) Boards were extremel Brittle	2 p. 776, 788 y
General Electric Co.				
Paper Phenolic Type- XXXP	5.5(10)	3.6(15)ne	Capacitance (/14.%), Boards were Extremely Brittle, 1 Lead opened	2 p•776, 788
Mica Corp.				
Glass Melamine Type	5 . 5(10)	3.6(15)ne	Capacitance (# 40%) Copper Strip Corrode	2 p. 776, 786
Paper Phenolic Type- 6038	5.5(10)	3 .6(15) ne	Capacitance (/16.5%) Boards Extremely Brittle	2 p. 776, 788
	!			
		ļ		

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Printed Circuit Boards	gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
New England Electronic	Componer	t, Inc.	•	
Glass Epoxy Type (Uncoated) (2 ea)	5•5(10)	3.6(15)ne	Insulation resistance decreased by factor 1(14) @ 3.2(15)ne & 3.3(10)ergs/gm-(C) Blistered & Warped	2 p776,781
(Acrylic Coating) (2 ea)			Insulation resistance decreased by factor 1(4) @ 3.2(15)ne & 3.3(10)ergs/gm~(C) Blistered & Warped	
Paper Phenolic Type XXXP230	5.5(10)	3.6(15)ne	Capacitance (+30%), Boards extremely brittle	2 p776,788
Richardson Company				
Glass Melamine Type	5.5(10)	3.6(15)ne	Capacitance (+12.5%) Badly corroded	2 p776 ,78 6
Paper Phenolic Type XXXP	5.5(10)	3.6(15)ne	Capacitance (+12.1%), Extremely brittle, 1 broke by normal handling	2 p776,788

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Printed Circuit Board	ergs	cm ²	DESIGN ALLOWABLES	REFERENCE No.
Synthane Corporation	- Gu - (17)	CIII		
Glass Epoxy Type (Uncoated) (2 ea)	5.5(10)	3.6(15)ne	Insulation resistance decreased by factor ~1(4) @ 2.9(15)ne & 4.3(10)ergs/gm-(C) Strips corroded, No other damage	
(Acrylic Coating) (2 ea)	11	**	Insulation resistance decreased by factor $\sim 1(4)$ @ 3.2(15)ne & 3.3(10)e/g-(C), No physical damage	
Glass Mulamine Type	5.5(10)	3.6(15)ne	Capacitance (+10%), Corroded strips, Extremely brittle	2 p776,786
Nylon Phenolic Type	5.5(10)	3.6(15)ne	Capacitance (+21%), No physical damage, Copper strips easily removed	2 p776,791
Paper Phenolic Type XXXP	5•5(10)	3.6(15)ne	Capacitance (+17%), Extremely brittle	2 p776,7 87
Taylor Fibre Company Glass Epoxy Type (uncoated) (2 ea) (Aerylic Cating) (2 ea)	5•5 (10)	3.6 (15)ne	Insulation resistance decreased by factor ~1(4) immediately, Blistered & Warped Insulation resistance decreased by factor ~1(3) @ e.2(15)ne & 3.3(10)ergs/gm-(C) Blistered & Warped	

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs		DESIGN ALLOWABLES	EFFECTS
Printed Circuit Board	s gm-(C)	cm ²	MELOWADLES	REFERENCE No.
Taylor Fibre Company(Cont.)			
Glass Melamine Type	5•5(10)	3.6(15)ne	Capacitance (-60%), Corroded, Extremely brittle	2 p776,786
Nylon Phenolic Type	5.5(10)	3.6(15)ne	Capacitance (+16%), No physical damage, Copper strips loose	2 p776,791
Paper Phenolic Type XXXP242	5.5(10)	3.6(15)ne	Capacitance (+27%), Extremely brittle	2 p776,788
Miscellaneous Flourcarbon Type	5•5(10)	3.6(15)ne	Boards melted in-pile due to radiation	2 p 792

2.20 PROTECTIVE COATINGS

2.20.1 ENAMELS

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Protective Coatings (Enamels)	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Type I, white Enamel MIL-E-7729	1(11)	·	Change of 5% in reflectance, a mark- ed decrease in adhesion, a marked increase in abrasion resistance	73 p. 17
Type I, Red Enamel MIL-E-7729	7(10)		A change in color, a slight decrease in adhesion, decrease in corrosion re- sistance.	73 p. 17
Type I, Black Enamel, MIL-E-7729	7(10)		A decrease in adhesion, improved flexibility. No effects were noted at 1 (10) ergs/gm-(C)	73 p. 17
Drying Oil Alkyd Enamel Type 1 MIL-E-7729	1(11)		Very good resistance to radiation. Further Irradiation would seriously degrade this material	73 p. 17
Glyceryl Pthalate Alkyd Enamel, Type I, MIL-E-5557	1(11)		Very good resistance to radiation	73 p. 17

2.20 PROTECTIVE COATINGS

2.20.2 FINISHES

NUCLEAR RADIATION EFFECTS DESIGN ALLOWABLES

San San

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Protective Coatings (Finishes)	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Phenolic (A Phenol- formaldehyde thermo- setting resin color- ed by a blue organic dye.) MIL-C-3043 Blue	1 (11)		This dose was slightly harmful at 2500F but improved the coating at 5000F. At 5000F the humidity resistance and film condition improved.	73 p. 18
Epoxy Coatings MIL-C-4456 (USAF) Blue - Gray	1 (11)		Increased Irradiation caused a decrease in humidity resistance, adhesion, reflectance for the unbaked samples. For the baked samples, adhesion, abrasion resistance, humidity resistance, flexibility, and film properties decreased; the color changed also.	
Silicone - Alkyds MTL-E-25606(USAF)	1 (10)		Little Effect	73 p.19
White (Plaskon St-873 resin	5 (11))		Large decrease in reflectance, adhesion and film condition. A large increase in abrasion resistance.	73 p. 20

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Protective Coatings (Finishes)	ergs gm-(C)	n cm²	ALLOWABLES	REFERENCE No.
Nitrocellulose Lacquer MIL-L-7178	7 (10) 5 (10)		Moderate degradation. Appears to be the upper limit of usefullness.	73 p• 20
Phenolic Coating MIL-R-3043	1 (11)		Excellent resistance to radiation and heat	
	I			

2.20

PROTECTIVE COATINGS

2.20.3

FLUORINATED VINYLS

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Protective Coatings (Fluorinated Vinyls)	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
M. W. Kellogg Co. Fluorinated vinyl Lacquer, aluminized,	1 (11)		Unbaked samples showed greatly increased abrasion resistance and apparent adhesion.	73 p. 19
"	5 (11)		Decreased abrasion resistance and apparent adhesion due to flaking of the film.	73 P• 19
,,	1 (11)		Baked samples de- creased apparent adhesion and increas- ed abrasion re- sistance	73 p• 19
11	5 (11)		Greatly decreased apparent adhesion, abrasion resistance, and flexibility	73 p• 19
Fluorinated Vinyl Lacquer, aluminized KEL-F-800	5 (11)		This material has poor resistance to radiation. At 1(11) there was moderate degradation at 75°F and 250°F. Degradation was severe at 5 (11) at 75°F and 250°F.	
				21.7

2.20 PROTECTIVE COATINGS

2.20.4 LACQUERS

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Protective Coatings (Lacquers)	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
White Nitrocellulose Lacquer, MIL-L-7178	1 (11)		A marked yellowing (27% change in reflectance), an increase in adhesion and humidity resistance, a decrease in flexibility, abrasion resistance, gloss, and film condition.	73 p. 17
Red nitrocellulose Lacquer, Mil-L-7178	1 (11)		A noticeable darkenin increase in adhesion and abrasion resistance decrease in flexibility, gloss, and film condition.	g 73P•17
Black nitroceliulose Lacquer, MIL-L-7178	1 (11)		Increased adhesion, abrasion resistance, humidity resistance, and a loss of gloss.	73 p. 17
			N. B. Irradiations of 7 (10) embrittled the lacquers, increased blistering in humidity. No effect was noted at 1 (10)ergs/gm-(C)	73 p. 17

2.21 RELAYS

NUCLEAR RADIATION EFFECTS DESIGN ALLOWABLES

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Relays	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Allied Control Co., In Type MH-180 hermetically sealed (4 ea)	4.46(10)	4.38(12)	CoilR(/7.3%) at 1.38(11)nf, Drop out current- erratic	21 p.35, 66
Branson Corp. Time Delay, 6.3v heater 2P2T, 115V Type MTRH-3127 (lea)		6.3(16) (E>O.5MEV)	No damage to Relay operation	35 p.6.55, 10.127
C.P. Clare and Co. Telephone Type (uncovered) A29034 (4ea)	h.3 (10)	3.3(12) (E>2.9MEV)	Coil R(/ 2.87%) at 1.06(11)nf,Drop-out current (/ 3.26%)	21 p.37,68
General Electric Co. ZL176 Magnet wire (Basically Formex) Type FB 100Yl (3 ca)	7.8 (8)	5.1(15) (E>0.1MEV)	Coil $R(\frac{1}{3}.54\%)$ at 1.4(15)nf, contact $R(\frac{1}{2})$	10 p.16, 131
TFE Teflon wire Type FB100Y2 (3 ea)	8.8(8)	5.7(15) (E>0.1MEV)	Coil R (\neq 5.9%) at 4.2(15)nf, contact R(12.5%)	10 p.16, 132
ML Enamel Magnet Wire Type FB100Y3 (3 ea)	9.7(8)	6.1(15) (E>0.1MEV)	Coil R (# 5.5%) at 5.1(15)nf, Contact R (12.5%)	10 p.16, 133

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Relays	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Hartman Electrical Manufacturing Power Contractor Coil: 28VDC Contacts: 200VAC, 400cps Type BH-138AH (lea)	3(10)	1.7(16) (E > 1MEV)	Satisfactory operation throughout test. Contact operation o.k.	30 p. 183
Hathaway Electronics Inc. Dri-reed relay Series M-Form A (lea		5.3(16) (E>0.3MEV)	Normal operation throughout test	31 p.190
Potter and Brumfield Inc. DPDT 2A at 30 VDC Type PBSC11DA (3ea)	1.1(9)	6.5(15) (E>O.1MEV)		10 p.16, 134
SP2T, 2A, 1.8K, 65mw Coil, 500V(RMS) PW Type (2 ea)		6.1(15) (E>O.5MEV)	Contact resistance increased, contacts were pitted and black; not rec. for Hi-I or low Signal application in Nuc. Environment	35 p. 10.119- 124
General Purpose Uncovered Type SP11D (4 ea)	5 . 4 (10)	4.5(12) (E>2.9MEV)	Coil R (7.9%) at 1.42(11) nf Drop-out I (4 3.85%)	21 p. 33, 64

MATERIAL OR	DESIGN ALLOWABLES		BASIS FOR	RADIATION EFFECTS
COMPONENT Relays	ergs gm-(C)	n cm²	DESIGN ALLOWABLES	REFERENCE No.
Potter and Brumfield Con't				
Midget, Hermetically Sealed, Type SM5DS (4 ea)	5 . 5 (10)	4.9(12) (E>2.9MEV)	Coil R (# 7.8%) at 1.56(11)nf Drop-out I (# 13.4%)	21 p.36,67
2 PST - N.O., 28VDC 5.6 ma, 5K Type MH (4 ea)		1.2(17) (E > 0.5MEV	Pull-in V (+30%) Drop-out V (±20%) Satisfactory oper- ation	35 p. 10•124- 127
Price Electric Co.				
Rotary (uncovered) Type 76-3 (4 ea	7.6(10))	6.1(12) (E > 2.9MEV)	Coil R (/ 7.37%) at 1.93(11)nf	21 p. 39
26VDC, Selenoid type Hermetically sealed KB part # 300R022 (3 ea)	3.7(10) 5.7(9)	1.7(16)nf	Pull-in, drop-out Time, current and voltage all remained within specification	4 p.16-35
			9	:
		±		

MATERIAL OR	DESIGN ALLOWABLES		BASIS FOR	RADIATION EFFECTS
COMPONENT Relays	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Sigma Instruments, Inc.				
Midget Hermetically Sealed Type 22 RJC-200G(4ea)	6.9(10)	6(12) (E>2.9MEV	Coil R (/8%)@ 2(11)nf Drop-out I (/5.7%) at 1.1(12)nf	21 p. 38, 69
Sensitive Aircraft Type Hermetically Sealed Type 5 RJ-20006 (4ea)	5.5(10)	4.5(12) (E>2.9MEV)	CoilR(/ 6.%) at 1.42(11)nf, Drop-out I (/7.5%) at 3.7(12) nf	21 _{, p} .31, 62
Sensitive Aircraft Type	9.9(10)	7.6(12) (E>2.9Mev)	Coil R(/7.6%) at 2.4 (11)nf, Drop-out I (/ 3.85%)	21 p. 33, 64
Type 5R-20006 (4ea)			,	
Western Electric		!		1
Mercury-wetted contacts Hermetically sealed Type 275C (4ea)	5.4(10)	4.5(12) (E > 2.9Mev)	Coil R(/7.7%) at 1.5 (11)nf Drop-out I (/3.95%)	21 p. 34, 65
Westinghouse Air Brake Co.				1 1
26.5VDC, Hermetic #312587-002 (4ea)	3.9(10) 5.5(9)		Satisfactory oper- ation,lcoil opened	4 p.16-35

2.22 RESISTORS

2.22.1 BORON-CARBON COMPOSITION

MATERIAL OR		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Resistors, Boron- Carbon Composition	ergs gm-(C)	m cm ²	ALLONABLES	REFERENCE No.
International Resistar	ce Co.			
0.1K +1%, 2W Type BOH, RN30 (12 ea)	2.4(10)	5.1(15) (E > 2.9Mev)	Resistance(-0.2%)	23p 19, 48
10K+1%, 2W Type BOH, RN30 (12 ea)	1.6(9)	7.5(13) (E>2.9Mev)	No Resistance change	22p 3, 31
10K <u>+</u> 1%, 2W Type BOH, RN30 (12 ea)	2.4(10)	5.1(15) (E>2.9Mev)	Resistance(+0.6%)	23p 19. 48
			41	
	:			
			^	

2.22 RESISTORS

2.22.2 BORON-CARBON FILM

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors, Boron- Carbon Film	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Corning Glass Works	2.6(10)	1.4(15)ne 9.0 (17)nt	Resistance(+4.6%)	2p 163,145
International Resistan O.1K+2% RN2OR1000G (4 ea)	2.5(10)	1.2(15)ne 8.9(17)nt	Resistance(+16.9%) @ 1.13(15)ne	2p 147,144
lK+1% RN7OB1001F (3 ea)	4.1(10)	2.1(15)ne 1.7(18)nt	Resistance(+1.1%)	2p 145,186
100K+2% RN20R1003G (4 ea)		2.0(15)ne 1.3(18)nt	Resistance(+11.8%) @ 1.88(15)ne	2ր 144 ,14 9
l Meg+2% RN2OR1004G (4ea)	4.0(10)	2.0(15)ne 1.3(18)nt	Resistance(+3.1%) @ 1.22(15)ne	2թ144,150
			_	145

2.22 RESISTORS

2.22.3 CARBON COMPOSITION

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Carbon Composition	ergs gm-(C)	n cm ²	DESIGN ALLONABLES	REFERENCE No.
Allen-Bradley Co.				
0.1K+10%, 1W Type GB, RC-30(12 ea)	6.2(10)	1.4(16) (E>2.9Mev)	Resistance(-4.9%) @ 2.88(10)ergs/gm-(C)	23p 19,48,61
0.1K $\frac{1}{2}$ W (3 ea)	5.7(10)	2.5(17)ne	Resistance(-12%)	15 p 26
0.1K,MTL-R-11 B RC32 G F101J (12 ea)	2.6(10)	1.0(15)ne	Resistance(-2.7%) @ 4.34(14)ne	2p 25
O.1K RC2O BF101J (4 ea)	5.1(10)	3.1(15) ne	Resistance(-2.9%)	lp 300 689
0.1K+10%, $\frac{1}{2}$ W Type EB, RC-20(12 ea)	6.2(10)	1.4(16) (E>2.9Mev)	Resistance(+7.5%) @ 3.54(9)ergs/gm-(C)	23p 19,48,63
0.1K+10%, 2W Type HB, RC-30 (12ea)	6.2(10)	1.4(16) (E)2.9Mev)	Resistance(-4.1%) @ 1.95(10)ergs/gm-(C)	23p 19,48,61
lK, MIL-R-11B RC32GF102J (12 ea)	2.6(10)	1.0(15) ne	Resistance(-3.3%) @ 7.06(14)ne	2p 27
lK, RC2OBF102J (5 ea)	2.9(10)	1.0(15)ne	Resistance (-5.5%)	1p 308, 689
10K+10%, ½W Type EB, RC-20(12 ea)		1.4(16) (E > 2.9 Me v)	Resistance(-4%) @ 1.5(10)ergs/gm-(C)	23p 19,48,60
10K+10%, 1W Type GB, RC-30 (12ea)		1.4(16) (E>2.9Mev)	Resistance(-4.9%) @ 1.95(10)ergs/gm-(C)	23p 19,48,60
		ľ		
1				

MATERIAL OR COMPONENT			LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors, (Carbon	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Allen-Bradle	y con't				
22 K+5% R 0 07 (1		1(9)	7(15) (E>0.lMev)	Resistance(+0.14%)	10p 126
34K+5% R∞7 (1	ea)		7(15) (E>O.lMev)	Resistance(<<1%)	10p 126
125K RC20BF124J	(4 ea)	5.7(1.0)	2.1(15)ne	Resistance(-7.7%) @ 1.87(15)ne	lp 325, 690
125K RC32 GF 124J	(12 ea)	2.6(10)	1.0(15)ne	Resistance(-6.5%) @ 6.58(14)ne	2p 29
240K, ½W	(3 ea)	5.7(10)	2.5(17)ne	Resistance(-12%)	15p 26
l Meg ½W	(3 ea)	5.7(10)	2.5(17)ne	Resistance(-9%)	15p 26
l Meg RC32 G F105J	(12 ea)	2.6(10)	1.0(15)ne	Resistance(-6.8%) @ 6.58(14)ne	2p 31
10 Meg, ½W	(3 ea)	5.7(10)	2.5(17)ne	Resistance(-10%)	15p 26
			ı		
			I		
			1		

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION
COMPONENT Resistors, Carbon	ergs	<u>n</u>	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
Composition	gm-(C)	cm ²		
International Resistan	ce Co.			
0.1K+10%, 2W Type BTB, RC-41 (12ea)	6.2(10)	1.4(16) (E>2.9Mev)	Resistance(+5%) @ 1.95(10)ergs/gm(C)	23p 19,48,50
10K+10%, 2W Type BTB, RC-41 (12ea)	6.2(10)	1.4(16) (E > 2.9Mev)	Resistance(+6.3%) @ 1.95(10)ergs/gm-(C)	23p 19,48,51
10K+10%, 2W BT-13, RC41G1 09 2K (12 ea)	1.6(9)	7.5(13) (E)2.9Mev)	Resistance(+0.75%) @ 2.97(13)nf	22p 3,31
1				
Speer Carbon Co.				
0.1K RC2OBF101J (4 ea)	5.1(10)	3.1 (15) ne	Resistance(-10.3%)	1p 300,689
lK RC20BF102J (3 ea)	2.9(10)	1.0(15)ne	Resistance(-4.8%) @ 9.45(15)ne	1p 308, 689
125K RC2OBF124J (4 ea)	5 .7 (10)	2.1(15)ne	Resistance(-5.9%) @ 1.9(15)ne	lp 325,690
l Meg RC2OBF105J (4 ea)	2.1(10)	6.6(14)ne	Resistance(-20.5%)	lp 317, 690

MATERIAL OR COMPONENT	DESIGN ALLOWABLES		BASIS FOR DESIGN	RADIATION EFFECTS
Resistor, Carbon Composition	ergs gm-(C)	em ²	ALLOWABLES	REFERENCE No.
Stackpole Carbon Co.				
O.lK RC2OBF101J (4 ea)	5.1(10)	3.1(15)ne	Resistance(-3.3%)	lp 300,689
lK RC20BF102J (4 ea)	2.9(10)	1.0(15)ne	Resistance(-6.7%)	lp 308,689
125K RC2OBF124J (4 ea)	5.7(10)	2.0(15)ne	Resistance(-15.8%) @ 1.9(15)ne	lp 325,690
1 Meg RC20BF105J (4 ea)	2.1(10)	6.6(14)ne	Resistance(-13.1%) @ 6.2(14)ne	1p 317,690
		•		
	į		•	
		!		
·				

2.22 RESISTORS

2.22.4 CARBON FILM

	MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors 0		ergs gm-(C)	m ²	ALLOWABLES	REFERENCE No.
Aerovox Corp					
0.1K+2% RN2OX1000G		4.0(10)	2.0(15)ne	Resistance(+4.3%) @ 1.4(15)ne	2p152,144
0.1K+2% RN25X1000F	(2 ea)	2.5(10)	1.2(15)ne	Resistance(+1.7%) @ 9.9(14)ne	2p167,144
0.1K+2% RN25X1000G	(4 ea)	2.5(10)	1.2(15)ne	Resistance(+1.6%) @ 1.04(15)ne	2p 177,144
1K+2 % RNŽOX1001G	(4 ea)	2 .5(10)	1.2(15)ne	Resistance(-1.7%) @ 2.54(14)ne	2p 153,144
1K+2% RN25X1001G	(4 ea)	3 .8(10)	2(15)ne	Resistance(-1.5%) @ 2.49(13)ne	2p 179,144
100K+2% RN2OX1003G	(4 ea)	2.0(10)	8.0(14)ne	Resistance(-1.9%) @ 1.75(14)ne	2p 156,144
100K+2% RN25X1003G	(4 ea)	3.8(10)	2(15)ne	Resistance(-1.5 \$) @ 1.34(13)ne	2p 181,145
250K+1% RN25X2503F	(2 ea)	4.5(10)	2.3(15)ne	Resistance(-0.8%) @ 1.76(15)ne	2p 175,144
1 Meg+2% RN25X1004G	(3 ea)	3.8(10)	2(15)ne	Resistance(-5%) @ 1.42(15)ne	2p 182,145
1 Meg+2% RN2OX1004G	(4 ea)	2.0(10)	B.0(14)ne	Resistance(-2%) @ 1.67(14)ne	2p 159,144
l Meg+ 2% RN25X1004F	(2 ea)	4.2(10)	2.0(15)ne	Resistance(-2.7%) @ 2.63(13)ne	2p 172,144

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	n	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
Resistors, Carbon File	gm-(C)	n cm ²	ABDOWADIE:	REFERENCE NO.
Daven Co., The				
0.1K+1 % RN25X1000F (4 ea)	2.5(10)	1.2(15)ne	Resistance(+2.6%)	2p 168,144
International Resistar	ce Co.			
0.1K+1%, 2W Type DCH, RN-30(12ea)	6.2(10)	1.4(16) (E > 2.9Mev)	Resistance(+3%) @ 1(10)ergs/gm-(C)	23p 19,48,55
0.1K+2% RN2OX1000G (4 ea)	2.5(10)	1.2 (15)ne	Resistance(-1.6%) @ 2.67(14)ne	2p176,144
0.1K+2% RN20X1000G (4 ea)	4.0(10)	2.0(15)ne	Resistance(-1.4%) @ 2.49(13)ne	2p 151,144
0.1K+1% RN25X1000F (2 ea)	2.5(10)	1.2(15)ne	Resistance(+1.1%) @ 8.54(14)ne	2p 165,144
0.1K+1% RN75B1000F (3 ea)	4.6(10)	2.2(15)ne	Resistance(+1.3%) @ 9.6(13)ne	2p 188,144
O.lK, $\frac{1}{2}$ W (Molded) (3 ea)	5.67(10)	2.5(17)ne	Resistance(+2.5%)	15p 25, 29
lK+2% RN25X1001G (4 ea)	3.8(10)	2(15)ne	Resistance(-1.7%) @ 1.3(13)ne	2p 178,144
lK+2% RNZOX1003G (4 ea)	2.0(10)	8.0(1½)ne	Resistance(-1.1%) @ 1.59(14)ne	2p 154,144
lK <u>+</u> 2% RN70Al00lF (3 ea)	4.1(10)	2.1(15)ne	Resistance(+25.1%)	2p 185,144
	Ι			

MATERIA	I. OR	DESTON (ALLOWABLES	BASIS FOR	RADIATION
COMPONE		ergs	7	DESIGN	effects
Resistors (erbon Fili		cm ²	ALLOWABLES	REFERENCE No.
IRC con't					
lK+1%, ½W Type HTC	350V (6 ea)	3(10)	1.4(14) (E> 0.5	Resistance(+0.2%) @ 5.2(13)nf	4p 42
"	(6 ea)	6(9)	Mev) 2.2(16) (E > 0.5 Mev)	Resistance(-1.8%) @ 1.04(16)nf	40p 40
lK+1%, lW Type HTF	500V (6 ea)	5.4(10)	1.6(16) (E > 0.5 Mev)	Resistance(-1.8%) @ 1.09(16)nf	4p 41
"	(6 ea)	2.6(10)	1.2(14) (E > 0.5 Mev)	Resistance(-0.5%) @ 4.47(12)nf	4р 43
1 K RF50K102	(3 ea)	2.9(10)	1.7(15) ne	Resistance Varies from (+5.6%)-max.of (+6.04%) at shutdown	lp 367,690
10K RF50K103	(3 ea)	2.9(10)	1.7(15)ne	Resistance(+6.69%) l failed-opened	lp 375,690
10K+1%, 2W DCH, RN3OX10	02F (12ea)	1.6(9)	7.5(13) (E>2.9Mev)	Resistance(-2.1%)	22p 3,31
10K+1%, 2W Type DCH, RN		6.2(10)	1.4(16) (E>2.9Mev)	Resistance(+0.5%) @ 4.43(9)ergs/gm-(C)	2 3 p 19,48,55
77K+2%, ½ W RN2ŌX, DCC S (3 ea)	eries	1(9)	7(15) (E>0.lMev)	Resistance(-1.3%) @ 7.5(14)nf	10p 126
100K RF40K104K	(6 ea)	2.9(10)	1.7(15)ne	Resistance(-4.93 %) @ 3.19(14)ne	lp 349,690
100K RF50K104	(3 ea)	2.9(10)	1.7(15)ne	Resistance(+9.93%)	lp 384,690

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Carbon Fil	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
IRC con't				
100K+2% RN25X1003G (4 ea)	3.9(10)	2(15)ne	Resistance(-1.8%) @ 1.34(13)ne	2p 180,144
240K, $\frac{1}{2}$ W Molded (3 ea)	5.6(10)	2.5(17)ne	Resistance(+2.5%)	15p 25,29
250K+1% RN75B2503F (3 ea)	4.6(10)	2.2(15)ne	Resistance(+4.4 %) @ 2.19(15)ne	2p 191, 144
250K+1%, ½W, 350V Type HTC (6 ea)	3.8(9)	1.6(16) (E > 0.5	Resistance(+4.2%) @ 5.4(13)nf	ћ ^Б фО
" (6 ea)	3 (10)	Mev) 1.4(14)nf	Resistance(+1.7%)	4p 42
250K±1%, 1W, 500V Type HTF (6 ea)	6(9)	1.6(16) (E > 0.5	Resistance(-2.7%) @ 1.34(16)nf	4p 41
" (6 ea)	3.3(10)	Mev) 1.9(14) (E > 0.5	Resistance(+2.3%) @ 1.07(14)nf	4p 43
250K+1% RN25X2503F (2 ea)	4.2(10)	Mev) 2.0(15)ne	Resistance(+1.1%) @ 8.6(14)ne	2p 173,144
1 Meg+2% RN25X1004G (4 ea)	3.9(10)	2(15)ne	Resistance(-2.4%) @ 2.26(14)ne	2p 183, 144
l Meg+1% RN25X1004F (2 ea)	4.2(10)	2.0(15)ne	Resistance(+2.7%) @ 9(14)ne	2p 170, 144
1 Meg <u>+</u> 1% RN75Bl004F (3 ea)	4.6(10)	2.2(15)ne	Resistance(+2.5%) @ 4.31(14)ne, all opened @ 9.6(14)ne	2p 190,144
	:			
	I			
	ļ.			

	,			
MATERIAL OR COMPONENT	DESIGN ALLOWABLES		BASIS FOR DESI G N	RADIATION EFFECTS
Resistors, Carbon Film	ergs gm-(C)	cm ²	ALLONABLES	REFERENCE No.
IRC con't				
l Meg, 출W Molded (3 ea)	5.6(10)	2.5(17)ne	Resistance(+7%)	15p 25,29
1 Meg+1%, ½W, 350V Type HTC (6 ea)	7.4(9)	2.2(16) (E > 0.5 Mev)	Resistance(-2.8%) @ 6.8(15)nf	4 _р 40
" (6 ea)	2.6(10)	1.2(14)nf	Resistance(+3.4%)	4p 42
1 Meg <u>+</u> 1%, 1W, 500V Туре HTF (6 ea)	5.4(9)	1.6(16) (E>0.5 Mev)	Resistance(-2.2%) @ 3.68(15)nf	4p 41
" (6 ea)	3.3(10)	1.9(14) (E > 0.5	Resistance(+2.4%) @ 1.08(14)nf	4p 43
		Mev)		
	•			
	,			
			ı	
	H			
	Į.	2	, and the second	
		1		

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors Carbon Film	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Mepco, Inc.		<u> </u>	•	
0.1K+1% RN75B1000F (3 ea)	4.6(10)	2.2(15)ne	Resistance(+2.7%) @ 9.6(14)ne	2p 187,145
0.1K+1%, 5W Type C-25P (12 ea)	6.2(10)	1.4(16) (E>2.9Mev)	Resistance(+2.4%) @ 2.52(10)ergs/gm-(C)	23p 19,48,57
10K+1%, 2W C177BN, RN8OB1002F (12 ea)	1.6(9)	7.5(13) (E>2.9Mev)	Resistance(~0.6%)	22p 3, 33
" (12 ea)	6.2(10)	1.4(16) (E>2.9Mev)	Resistance(-0.5%) @ 3.54(9)ergs/gm-(C)	23,019,48,57
10K+1 % , 5W Type C-25P (12 ea)	1.6(9)	7.5(13) (E>2.9Mev)	Resistance(-0.2%)	22p 3, 31
" (12 ea)	6.2(10)	1.4(16) (E>2.9Mev)	Resistance(+0.8%) @ 8.63(9)ergs/gm-(C)	23p 19,½8,57
10K+1%,1/8W(Herm.Seal) LS 8456-090 (4 ea)	2(9)	1.2(16) (E>O.lMev)	Resistance(-0.63%)	10p 129
" (4 ea)		1.3(16) (E>O.lMev)	Resistance(+1%)	32p 3,Fig.28
15K+1%, 1/8 W, RN6OB (Herm. Sealed) (4 ea)	2(9)	1.2(16) (E)0.lMev)	Resistance(+0.13%)	10p 130
" (4 ea)		1.3(16)nf	Resistance(+1%)	32p 3, Fig.28
27K+1% RN65B2702 (4 ea)	2.6(10)	1.4(15)ne	Resistance(-1.59%) @ 3.28(14)ne	2p 184,145
	l :			
			91 -	

MATERIAL OR COMPONENT	DESIGN	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors, Carbon Fi	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Mepco con't				
250K+1% RN75B2503F (3 ea)	4.6(10)	2.2(15)ne	Resistance(-0.8%) @ 1.05(15)ne	2p 191, 145
1 Meg+1% RN75B1004F (3 ea)	4.6(10)	2.2(15)ne	Resistance(-1.9%) @ 1.62(15)ne	2p145,189
Resistance Products				,
10 ^ RF40 K100 (6 ea)	2.9(10)	1.7(15)ne	Resistance(-1.68%) @ 1.68(15)ne	1p332,690
10 ^ RF50 K100 (3 ea)	2.9(10)	1.7(15)ne	Resistance(+3.81%) @ 1.68(15)ne	lp 356,690
0.1K RF50 K101 (3 ea)	2.9(10)	1.7(15)ne	Resistance(-9.63%)	lp 361,690
lK RF50 Kl02 (3 ea)	2.9(10)	1.7(15)ne	Resistance(-1.1%) @ 1.59(15)ne	lp 369,690
1K RF40 K102 (6 ea)	2.9(10)	1.7(15)ne	Resistance(-4.89%) @ 6.47(13)ne	1p337,690
10K RF40 K103 (6 ea)	2.9(10)	1.7(15)ne	Resistance(-2.27 %) @ 6.47(13)ne	1p343,690
		!		

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Carbon Fill	ergs gm-(C)	cm ²	DESIGN ALLOWABLES	REFERENCE No.
RPC con't.				
	2.9(10)	1.7(15)ne	Resistance(-0.91%) @ 5.18(14)ne, 1 ca opened in-pile	1p377,690
100K RF50 Kl04 (3 ea)	2.9(10)	1.7(15)ne	Resistance(-1.11%) @ 3.19(14)ne	1p386, 690
7.				
Sprague Products Co.				
0.1K+1%, \frac{1}{4}W(Filmistor) RN65\overline{B}, 406E 1000F (1 ea)	6.2(10)	4.2(16) (E>0.1Mev)	Resistance(+26.9%) @ 1.29(15)nf	12p 178
lK (Pyrolytic) RN65B, Type 406E	7.2(9)		Resistance(+0.2%)	43p212÷14
l Meg (Pyrolytic) RN65B, Type 406E	7.2(9)		Resistance(-0.2%)	43p 212-14
				÷ '
))		

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors, Carbon Fil	ergs mgm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Texas Instruments Inc				
0.1K <u>+</u> 1% RN25X100F (2 ea)	2.5(10)	1.2(15)ne	Resistance(+1%) @ 1.61(14)ne	2p166,144
0.931K+1% CD 4R	7.5(9)	3.7(15) (E > 1Mev)	Resistance(+1.84 %) @ 5(14)nf	12p 157
, ,,		1.3(15) (E>2.9Mev)	Resistance<<<1% Rec. for Low Pwr. Nuc. Environments	llp 23,25
250K <u>+</u> 1% RN25X2503F (2 ea)	4.2(10)	2.0(15)ne	Resistance(-0.6%) @ 1.23(15)ne	2p 174,144
1 Meg+1% RN25X1004F (2 ea)	4.2(10)	2.0(15)ne	Resistance(-5%) @ 2.63(13)ne	2p 171,144
		:		
				1
Western Electric				
0.1K $\frac{1}{2}$ W Epoxy Tube (3 ea)	5.6(10)	2.5(17)ne	Resistance(+0.8%) Not Rec. for Nuc. use	15p 25,28
250K ½W Epoxy Tube (3 ea)	5.6(10)	2.5(17)ne	Resistance(+13%) l failed, net Rec. for Nuc. use	15p 25,28
1 Meg $\frac{1}{2}$ W Epoxy Tube (3 ea)	5.6(10)	2.5(17)ne	Resistance(+38%) Not Rec. for Nuc. use	15p 25,28
1 Meg 2W Class Enclosed (3ea)	5.6(10)	2.5(17)ne	Resistance(+6%) l failed@2(17)ne	15p 30,31
5 Meg 2W Glass Enclosed (3ee)	5.6(10)	2.5(17)ne	Resistance(+5%) 1 failed @ 9(16)ne	15p 30,31

2.22 RESISTORS

2.22.5 METAL FILM

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Metal Film	ergs gm-(C)	n cm ²	DESIGN ALLONABLES	REFERENCE No.
Corning Glass Works				
0.1K+2 % , 7W, Pyrex Core, RD31P1000G (6ea)	3.0(10)	3.1(13)nf	Resistance(+2.8%) @ 2.69(13)nf	2p 38,36
0.1K+2%, 2W, Solid Glass core RD65P1000G (6 ea)	4.5(10)	2.3(15)ne	Resistance(+8.5%) @ 1.36(15)ne	2p 42, 36
5.65K+2%, ½W, @ 120°C 350V Pyrex core, CGW- s-20 (1 ea)		4.2(16) (E > 1 Mev)	Resistance(-0.64%) @ 1.65(16)nf	12p 161
"		1.5(16) (E>2.9Mev)		llp 11,25
15K+2%, 2W, Solid Glass core, RD65P1502G	4.5(10)	2.3(15)ne	Resistance(+7%) @ 1.58(15)ne	2p 43, 36
30K+2%, 2W, Solid Glass core, RD65P3002G	4.2(10)	6.1(13)nf	Resistance(+22.99%) @ 5.3(13)nf	2p 44,36
38K+2%, 7W, Pyrex core RD3IP3832 (3 ea)	4.2(10)	2.0(15)ne	Resistance(+4.4%) @ 1.48(15)ne	2p 39, 36
" (3 ea)	3.0(10)	2.1(13)nf	Resistance(+2.1%) @ 2.77(13)nf	2p 40, 36
40K+2%, 2W, Solid Glass core, RD65P4003G (6 ea)	3.0(10)	3.1(13)nf	Resistance(+26.4%) @ 2.8(13)nf	2p 45 , 36
68K+2%, 7W, Pyrex core RD31P6812G (6 ea)	3(10)	3.1(13)nf	Resistance(+2.9%) @ 2.01(13)nf	2p 41, 36
Ll				

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors, Metal Film	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Daystrom, Inc.	5.2(10)	4.2(16) (E > LMev)	Resistance(+2.26%) @ 1.29(15)nf	12p 179
International Resists	nce Co.			
0.1K, $\frac{1}{2}$ W Molded (3 ea)	5.6(10)	2.5(17)ne	Resistance(+1.5%) @ 9(16)ne	15p 26, 23
2.5K+1% (glass) XLT Series (4 ea)	1(9)	7(15) (E > 0.lMev)	Resistance(-0.28%)	10p 126
2.87K+1%, 0.1W RN55, EM Series (4ea)	1(9)	7(15) (E>0.1Mev)	Resistance(+0.28%) @ 6(12)nf	10p 126
9.75K+1%, 1/8W Herm. Sealed-Glass Type XLT (4 ea)	1(9)	6.8 (15) (E 7 0.1Mev)	Resistance(0.0%)	10p 128
10K+1%, ¼W CEB Series (4 ea)	1(9)	7(15) (E 7 0.1Mev)	Resistance(-0.28%) @ 6(12)nf	10p 126
10K <u>+</u> 1%, 1/8W, MEA Series,RN60C1002F (4 ea)	1(9)	6.8(15) (E > 0.1Mev)	Resistance(+0.02%) @ 1.5(13) nf	10p 127
67K+1% RN60C (2 ea)	1(9)	7(15) (E>0.lMev)	Resistance(0.0%)	10թ 126
81K+1% RN6OC (2 ea)	1(9)	7(15) (E > 0.lMev)	Resistance(-0.12%) @ 6(12)nf	10 _p 126

MATERIAL OR	DESIGN	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Metal Film	ergs gm-(C)	n	DESIGN ALLOWABLES	REFERENCE No.
I R C con't	, , , , , , , , , , , , , , , , , , ,			
240K, ½W Molded (3 ea)	5.7(10)	2.5(17)ne	Resistance(+0.9%)	15p 26, 23
l Meg ½W Molded (3 ea)	5.7(10)	2.5(17)ne	Resistance(+1.3%) @ 7(16)ne	15p 23, 26
	:			
Key Resistor Corp				
0.1K+1% Type A-66 (1 ea)	7.2(10)	4.8(16) (E>1Mev)	Resistance(+27.1%) @ 9.54(13)nf	12p 177
30K+1%, $\frac{1}{2}$ W @ 125°C 350 \overline{V} , EM-70, MIL-R- 10509-C (1 ea)	7.2(10)	4.8(16) (E> 1Mev)	Resistance(-5.8%)	12p 175
100K+1%, ½W @ 125°C 350V, EM-70, Mil-R- 10509-C (1 ea)	7.2(10)	4.8(16) (E > 1Mev)	Resistance(-2.06%) @ 2.67(16)nf	12p 174
100K+1% A-66. Mil-R-10509-C (lea)	7.2(10)	4.8(16) (E > 1Mev)	Resistance(-1.6%) @ 2.67(16)nf	12p 176

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Metal Film	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Litton Systems, Inc.				
0.26K, Deposited Ni Cr film on BaTiO ₃ wafer (1 ea)	7.5(10)	4.0(16) (E≯lMev)	Resistance(+8.86%) @ 1.9(15)nf	12 _P 167
0.28K, Deposited NiCr film on BaTi 03 wafer (1 ea)	7.5(10)	4.0(16) (E>lMev)	Resistance(+8.66%)	12p 166
				<i>.</i>
Ohmita Namusaatumia	a-			
Ohmite Manufacturing	_			
0.1K+1%, $\frac{1}{4}$ W Type 771-2 (12 ea)		1.4(16) (E > 2.9Mev)	Resistance(+2.1%) @ 1.81(10)ergs/gm-(C)	23p 19, 48
10K+1%, ½W Type 771-2 (12 ea)	6.2(10)	1.4(16) (E) 2.9Mev)	Resistance(+0.4 %) @ 4.87(9)ergs/gm-(C)	23p 19, 48
				i
Pyrofilm Resistor Co.	Inc.			
125K±1% Type PT-60 (1 ea)	7.5(10)	4.0(16) (E > 1Mev)	Resistance(+2.65 %) @ 1.19(15)nf	1 2 p 168
2 15K+1% Type PT-60 (1 ea)		4.3(16) (E > 1Mev)	Resistance(-6.42%) @ 1.3(16)nf	12p 169
				7
· · · · · · · · · · · · · · · · · · ·				

MATERIAL OR	DESIGN	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs gm-(C)	m ²	DESIGN ALLOWABLES	REFERENCE No.
Resistors, Metal Film	gn-(c)	Cm		
Sprague Products Co.				
IK RN65C, Type 419E	7.1(9)		Resistance(+0.1%)	43p 214
750K RN65C, Type 419E	7.1(9)		Resistance(-0.05%)	43p 214
				75
				¥1
Varo Manufacturing Co., Inc.	1			
0.65K, Experimental Microcircuit, NiCr Film, No. 235	1.9(10)	1.5(15) (E>2.9Mev)		12p 153 11p 25
Weston Instruments Div of Daystrom, Inc.				- a
0.25K ½W Vamistor Type (3 ea)	5.7(10)	2.5(17)ne	Resistance(+200%) 2 failed,(not Rec. for Nuc. use)	15p 25,27
10K+1%, ½W, 9800Serie RN 60C1002F (4 ea)	s 1(9)	6.8(15) (E>0.1Mev)	Resistance << 1%	10p 127
$240K$, $\frac{1}{2}W$ Vamistor Type (3 ea)	5.7(10)	2.5(17)ne	Opened after a dose 2.7(16)ne, (not Rec. for Nuc. use)	15p 25, 27
l Meg, ½W Vamistor Type (3 ea)	5.7(10)	2.5(17)ne	Opened after dose of 2.7(16)ne (Not Rec. for Nuc. use)	11

2.22 RESISTORS

2.22.6 TEMPERATURE SENSITIVE

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Temp.	ergs gm-(C)	n cm ²	Design Allowables	REFERENCE No.
Sensitive	G (5)	5.1.1		
Texas InstrumentsInc	,			
0.1K+10% @ 25 ⁰ C Sensīstor, Silicon Temp. Sens. P-100	7.6(9)	3.8(15) (E>LMev)	Resistance(+2280%)	12p 158
0.1K+10% @ 25°C Type TO12 Silicon, Sensistor, TC-1/8	7.6(9)	3.8(15) (E>LMev)	Resistance(+6290%)	12p 159 11p 23
				1
	=			
		1		

2.22 RESISTORS

2.22.7 WIREWOUND

	,		<u></u>	<u> </u>
MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs	n	DESIGN ALLOWABLES	REFERENCE No.
Resistors, Wire wound	8m-(C)	cm ²	NEED WELL	REFERENCE NO.
Cinema Engineering				
1K+1% @ 25°C, ½W @ 300V, Mil-R-93, Mil- R-9444, CE 276E (lea)		4.3(10) (E > 1Mev)	Resistance(+2.34%) @ 1.29(15)nf	12p 171
1K+1% @ 25°C, 1W @ 600V,CE 278E (1 ea)	6.3(10)	4.3(16) (E > 1Mev)	Resistance(+1.74 %) @ 2.4(16)nf	12p 173
100K+1% @ 25 ⁰ C, 1W @ 600V,CE 278E (lea)		4.3(16) (E>1Mev)	Resistance(-1.74%) @ 3.35(16)nf	12p 172
100K+1% @ 25°C, ½W @ 300V,CE 276E (lea)	6.3(10)	4.3(16) (E > 1Mev)	Resistance(-2.29%) @ 2.4(16)nf	12p 170
Dale Products, Inc. 1K+1%, 1W, Precision RS-1A (4 ea)	2(9)	1.2(16) (E >0.1M ev)		10p 129
1K+1%, 1W, Precision Power, ARS-2 (2 ea)	2(9)	1.2(16) (E >0 .1Mev)	Resistance(<< 1%)	10p 129

	 		· · · · · · · · · · · · · · · · · · ·	
MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors. Wire wound	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Daven Co., The				
0.1K+0.5% Mil-R-9444(USAF) AFRT 19E100ROD (3ea)	4.5(10)	5.4(13)nf	Resistance(+0.4%) @ 1(12)nf	2 _p 129,1 1 7
0.1K+0.5% Mil-R-9444(USAF) AFRT19J100ROD (3ea)	4.5(10)	5.4(13)nf	Resistance(-0.7%) © 2.3(13)nf Blistered	2p 117, 135
10K+1% AFRT Series (4ea)		1.2(16) (E > 0.1Mev)	Resistance(-0.07 %) @ 6(15)nf	10p 129 32p 3, Fig.28
360K+0.5% Mil-R-9444(USAF) AFRT 19J36002D (3 ea)	4.2(10)	6.1(13)nf	Resistance(-0.3%) @ 5.2(12)nf	2p 136,117
360K+0.5% Mil-R-9444(USAF) AFRT 19E 36002D (3ea)	4.5(10)	6.4(13)nf	Resistance(-0.3%) @ 3.1(13)nf	2p 131,117
1 Meg+0.5% Mil-R-9444 (USAF) AFRT 19E 10003D (3ea)	3.4(10)	3.6(13)nf	Resistance(-2.2%) @ 1.3 (13)nf	2p 133,117
l Meg+ 0.5% Mil-R-9444 (USAF) AFRT 19J 10003D (3ea)	2.5(10)	3.6(13) nf	Resistance(+3.5%) @ 7.4(11)nf	2p 139,117

MARTERIAL OR	DESTON A	LLOWABLES	BASIS FOR	RADIATION
MATERIAL OR COMPONENT	ergs	n n	DESIGN	EFFECTS
Resistors, Wire wound		cm ²	ALLOWABLES	REFERENCE No.
International Resista	nce Co.			
20 A RW33G2ORO (4 ea)	3(10)	2.2(15)ne	Resistance(+9.41%) @ 1.9(14)nf	lp 410, 691
20 1 +5 4 ,1W Mil-R-26C RW31G2ORO (4 ea)	2.6(10)	7.4(14)ne	Resistance(+12.5%) @ 4.1(13)ne	2p 53,49
O.1K RB17AE100ROF (4 ea)	3.1(10)	1.2(15)ne	Resistance(+0.4 9%) @ 9.6(13)ne, 1 ea. operated intermittent	lp 271, 689
0.2K RW31G2O1 (4 ea)	2.4(10)	9.3(14)ne	Resistance(+0.3%) @ 8.8(14)ne	1p 394,691
0.2K+5%, 18W Mil-R-26C RW33G2O1 (4 ea)	4.1(10)	2.4(15)ne	Resistance(+1.1%) @ 1.54(15)ne	2p 74, 49
0.2K+5%, 38W Mil-R-26C RW35G2O1 (4 ea)	4.1(10)	2.6(15)ne	Resistance(-0.2%) @ 1.26(15)ne	2p 94, 5 0
0.314K+0.05% Type 208A		3.7(15) (E > 1Mev)	Resistance(-0.06%) @ 2.63(13)nf, Rec.for Low Pwr.Nuc.environ- ment	12p 160 11p 25, 23
1K RB 17AE10000F(4 ea)	1.8(10)	6.5 (14) ne	Resistance(+0.19%) @ 3.5(14)ne, 1 opened in-pile	lp 280, 689
lK+1%, 3W @ 25°C Mil-R-26C P/N AS2 (1 ea)	6.3(10)		Resistance(+7.3%) @ 8.58(13)nf	12p 164
1		1		

	-		Y	
MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
1	ergs	n	ALLOWABLES	REFERENCE No.
Resistors, Wire wound	<i>ლ</i> ო-(C)	cm ²		
I R C con't				
2K+5%, 38W Mil-R-26C RW35G2O2 (4 ea)	3.3(10)	1.5(15)ne	Resistance(-0.2%) @ 1.1(13)ne	2p 100,50
2K RW33G2O2 (4 ea)	3(10)	2.2(15)ne	Resistance(+1%) ⊌ 1.24(15)ne	lp 417, 691
2K RW31G202 (4 ea)	2.4(10)	9.3(14)ne	Resistance(+0.65%) @ 5.9(14)ne	lp 403, 691
10K+1%, 2W WW-Z-J, RE16AE1002F (12 ea)	1.6(9)	7.5(13) (E>2.9Mev)	Resistance(0.0%)	22p 3,33
" (12 ea)	6.2(10)	1.4(16) (E > 2.9Mev	Resistance(+0.3%) @ 1.35(10)ergs/gm-(C)	23p 19,48,59
10K+5%, 2W RW32G1002, Type 2C (12 ea)	1.6(9)	7.5(13) (E > 2.9Mev)	Resistance(0.0 %)	22p 3, 33
" (12 ea)	6.2(10)	1.4(16) (E > 2.9Mev)	Resistance(+0.6%) @ 2.3(10)ergs/gm-(C)	23p 19,48,59
20K±5%, 10W, Mil-R- 26C, RW31G2O3 (4ea)	3.4(10)	1.9(15) ne	Resistance(0.0%)	2p 58, 49
20K±5%, 38W Mil-R-26C RW35G2O3 (4 ea)	3.8(10)	2.4(15) ne	Resistance(+0.7%) @ 2(15)ne	2 p 49, 102
20К RW33G2O3 (4 ea)	2.9(10)	2.2(15)ne	Resistance(-2.5%) @ 1.8(14)ne	lp 424, 691
100K RB17AE10002F (4 ea)	2.9(10)	9.6(14)ne	Resistance(-0.99%) @ 9.6(13)ne	lp 291, 689

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Wire wound	ergs gm-(C)	em ²	DESIGN ALLOWABLES	REFERENCE No.
Kelvin Electric Co.				
10K+1%, 0.1W EP Series (4 ea)	1(9)	5.8(15) (E > 0.1Mev)	Resistance < 1%	10p 127, 4 36 Fig. 32
11K+1 $\%$, $\frac{1}{4}$ W EP Series (4 ea)	1(9)	5.8(15) (E>0.1Mev)	Resistance(-5.17%) @ 1.5(13)nf	10p 127, 4
				;
Mepco, Inc.				
0.1K RB17AE100ROF (4 ea)	3.1(10)	1.2(15)ne	Resistance(+3.94%) @ 8.8(14)ne	lp 271, 689
0.1K $\pm \frac{1}{2}$ %, Mil-R-9444 AFRT14E100ROD (6 ea)	3.9(10)	5.7(13)ne	Resistance(+0.62%) @ 1.5(13)ne	2p 119 , 11 7
0.1K+½%, Mil-R-9444 AFRT14J100ROD (6 ea)	3.9(10)	5.7(13) ne	Resistance(+0.6%) @ 3.8(13)ne,Blistered	2p 122, 117
0.1 $K + \frac{1}{2}$ %, Mil-R-9444 AFRTI4K100ROD (3 ea)	4.5(10)	5.4(13)ne	Resistance(+0.3%) @ 1(13)ne, Blistered	2p 117, 125
$0.1K + \frac{1}{2}\%$, Mil-R-9444 AFRT19E100ROD (3 ea)	4.5(10)	5.4(13)ne	Resistance(+0.4%) @ 1(13)ne, Blistered	2p117 , 128
0.1K+½%, Mil-R-9444 AFRT19J100ROD (3 ea)	4.5(10)	5.4(13)ne	Resistance(+0.5%) @ 2.26(13)neBlistered	2p 117, 134
lK RB17AE1000F (4 ea)	1.8(10)	5.5(14)ne	Resistance(+0.79%) @ 3.7(14)ne	lp 280, 689
100K RB17AE10002F (4 ea)	2.5(10)	9.6(14)ne	Resistance(-0.89 %) @ 4.1(14)ne	lp 291, 689

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Wire wound	ergs gm-(C)	em ²	DESIGN ALLOWABLES	REFERENCE No.
Mepco con't				
360K+½%, Mil-R-9444 AFRT14E36002D (6 ea)	3.9(10)	5.7(13)ne	Resistance(+0.9%)	2p 120,117
360K+½%, Mil-R-9444 AFRT14J36002D (6 ea)	4.6(10)	6.6(13)ne	Resistance(-0.4%) @ 1.2(13)ne, one opened	2p 117, 123
360K±2%, Mil-R-9444 AFRT14K 36002D (6ea)	4.5(10)	6.4(13)ne	Resistance(-1.1%) @ 2.26(13)ne	2p 117, 126
$360K + \frac{1}{2}\%$, Mil-R-9444 AFRT19E36002D (3 ea)	4.5(10)	6.4(13)ne	Resistance(-0.3%) © 3(13)ne	2p 117, 130
360K+1/9, Mil-R-9444 AFRT19J36002D (3 ea)	4.2(10)	6.1(13)ne	Resistance(-0.4%) © 5.2(12)ne	2p 117,137
l Meg+1/26, Mil-R-9444 AFRT14E10003D (5 ea)	3.9(10)	5.7(13)ne	Resistance(+3.2%) @ 4.7(13)ne	2p 117, 121
1 Meg+ $\frac{1}{2}$ %, Mil-R-9444 AFRT14J10003D (6 ea)	4.5(10)	6.4(13)ne	Resistance(-1.5%) @ 3.1(13)ne	2p 117, 124
1 Meg+½%, Mil-R-9444 AFRT14K10003D (6 ea)	4.6(10)	6.6(13)ne	Resistance(-3.6%) ② 3(13)ne, 1 opened in-pile	2p 117, 127
1 Μες+½%, Mil-R-9444 AFRT19E10003D (3 ea)	3.4(10)	3.6(13)ne	Resistance(-2%) @ 1.3(13)ne	2p 117, 132
1 Meg+½%, Mil-R-9444 AFRT19J10003D (3 ea)	2.5(10)	3.6(13)ne	Resistance(+3.5%) ② 1.1(12)ne	2p 117, 138
		!		
			·	

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Wire wound	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Ohmite Manufacturing				
20 n RW33G2ORO (4 ea)	3(10)	2.3(15)ne	Resistance(+15.06%) @ 1.27(15)ne	lp 470, 691
20 n. +5%, 38W RW35 G 200 (3 ea)	3.7(10)	2.3(15)ne	Resistance(-3.4%) ② 1.7(15)ne	2p 89, 49
201.45%, Mil-R-26C RW31G2ORO (4 ea)	2.6(10)	7.4(14)ne	Resistance(+6.9%) @ 4.1(13)ne	2p 54, 49
0.2K RW31G2O1 (4 ea)	2.4(10)	9.3(14)ne	Resistance(+2.34%) @ 5.4(14)ne,1 opened in-pile	lp 394, 691
0.2K+5%, 18W Mil-R-26C,RW33G2O1 (4 ea)	4.1(10)	2.4(15)ne	Resistance(+4.4%) @ 1.54(15)ne	2p 75, 49
0.2K±5%, 26W,Mil-R- 26C,RW33V2Ol (4 ea)	4.1(10)	2.4(15)ne	Resistance(+1.2%) @ 1.3(15)ne	2p 82, 49
0.2K+5%, 38W Mil-R-26C,RW35G201 (4 ea)	4.1(10)	2.6(15)ne	Resistance(+1.2%) @ 1.57(15)ne	2p 50, 92
0.2K+5%, 14W Mil-R.26C,RW31V201 (3 ea)	4.4(10)	2.3(15)ne	Resistance(+2.9%) @ 1.92(15)ne	2p 49, 63
0.2K+5%, 55W Mil-R-26C, RW35V201 (3 ea)	3.5(10)	1.4 (15) ne	Resistance(+4.1%) @ 1.3(15)ne	2p 50,106
2K RW33 G 202 (4 ea)	3(10)	2.2(15)ne	Resistance(+1.5%)	lp 417, 691
2K RW31G202 (4 ea)	2.4(10)	9.3(14)ne	Resistance(+1.75%) @ 5.4(14)ne,2 opened in-pile	1p 403, 691

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs gm-(C)	em ²	DESIGN ALLOWABLES	REFERENCE No.
Resistors, Wire wound	811-(0)	CM		
Ohmite con't			1	
2K+5%, 14W Mil-R-26C, RW31V2O2 (4 ea)	3.5(10)	1.8(15)ne	Resistance(+1 %) @ 1.3(15)ne	2p 49, 68
2K+5%, 26W Mil-R-26C,RW33V202 (4 ea)	4.1(10)	2.4(15)ne	Resistance(+1 %) @ 1.53(15)ne	2 _p 49, 85
2K+5%, 38W Mil-r-26c, RW35G2O2 (4 ea)	3.3(10)	1.5(15)ne	Resistance(+1.15%) @ 8.9(14)ne	2p 96, 50
2K+5%, 55W Mil-r-26C, RW35V2O2 (2 ea)	3.1(10)	1.9(15)ne	Resistance(+4.1%) @ 9.6(14)ne	2p 110, 49
6K+1%, 1W Size A Mil-R-26C, Mil-R- 10509-C, Type 88A (1 ea)	6.3(10)	4.3(16) (E> 1Mev)	Resistance (-0.78%) Recommended for low Pwr. Nuc. Environ- ment	12p 162 11p 25
20K RW33G203 (4 ^a)	2.9(10)	2.2(15)ne	Resistance(+0.9%)	lp 424, 691
20K <u>+</u> 5%, 55W, Mil-R-26C, RW35V2O3 (4 ea)	3.8(10)	2.4(15)ne	Resistance(+3.8%) @ 1(15)ne	2p 112, 50
Resistors, Inc. 2K+5%, 14W Mil-R-26C, RW31V202 (4 ea)	3.2(10)	1.6(15) ne	Resistance(-1%) @1.1(14)ne	2p 70, 49

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Resistors, Wire wound	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Sprague Products Co.				
20 A. +5%, 14 W , Mil- R-26C, RW31Y2ORO (4 ea)	4.8(10)	3.1(15)ne	Resistance (+0.3%) @ 2.4(14)ne	2 p. 49, 61
20 <u>n. +</u> 5%, 26W, Mil-R- 26 C, RW 33V2ORO (4 ea)	3.1(10)	1.9(15)ne	Resistance (-2.8%) @ 8.6(14)ne	2 p. 49, 79
20 1 +5%, 55W, Mil-R- 26C, RW 35V2ORO (4 ea)	4(10)	3.1(15)ne	Resistance (+3.9%) @ 7.2(14)ne	2 p. 50, 105
O.lK RB17AE100ROF (4 ea)	3.1(10)	1.2 (15) ne	Resistance (+3.31%) @ 9.3(14)ne	1 p. 272, 689
0.2K +5%, 14W, Mil- R-26C, RW31V201 (4 ea)	4.4(10)	2.3(15)ne	Resistance (+0.25%) @ 1.5(14)ne	2 p. 49, 64
lK RB17AE10000F (4 ea)	1.8(10)	6.5(14)ne	Resistance (+1.58%) @ 5.5(14)ne	1 p. 280, 689
2K +5%, Mil-R-26C Koolohm,10 NIT (1 ea)	6.3(10)	4.3(16) (E>1 Mev)	Resistance (+4.1%) @ 8.6(13)nf	12 p. 163 11 p. 25
2K +5%, 14W, Mil-R- 26C, RW31V2O2 (4 ea)	3.5(10)	1.8(15)ne	Resistance (-0.7%) @ 2.8(14)ne	2 p. 69, 49
2K +5%, 55W, Mil-R- 26C, RW35V2O2 (2 ea)	3.1(10)	1.9(15)ne	Resistance (+0.3%)	2 p. 49, 168
20K +5%, 10W, Mil-R- 26C, RW31G203 (4 ea)	3.4(10)	1.8(15)ne	Resistance (+0.1%) @ 8.2(14)ne	2 p. 49, 56
20K +5%, 14W, Mil-R- 26C, RW31V2O3 (3 ea)	4.4(10)	2.3(15)ne	Resistance (-2.3%) @ 4.6(11)ne	2 p. 72, 49
20K +5%, 26W, Mil-R- 26C, RW33V2O3 (4 ea)	3.1(10)	1.9(15)ne	Resistance (+0.2%) @ 8.3(14)ne	2 p. 88, 49
100K RB17AE10002F (4 ea)	2.5(10)	9.6(14)ne	Resistance(-0.99%) @ 1.46(14)ne	l p. 291, 689
2K ±5%, 26w, Mi1-R- 26C, RW33V2O2 (4ea)	4.1(10)	2.4(15)ne	Resistance (+0.4%) @ 3(14)ne	2 p. 49, 84

MATERIAL OR	DESIGN .	ALLOWABLES	BASIS FOR	RADIATION
COMPONENT Resistors, Wire wound	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Truchm Products Div. Model Eng. and Manuf. Co.	Su-(c)	CM.		
20 1 RW33G2ORO (4 ea)	3(10)	2.3(15)ne	Resistance(-4.92%) @ 1.7(14)ne	1 p. 410, 691
20 <u>~ +</u> 5%, 10W, Mil-R- 26C, RW31G2ORO (4 ea)	2.6(10)	7.4(14)ne	Resistance (-1%) @ 1.04(13)ne	2 p. 55, 49
20 145%, 14W, Mil-R- 26C, RW31V2ORO (4 ea)	4.8(10)	3.1(15)ne	Resistance (+0.3%) @ 1.25(15)ne	2 p. 60, 49
20 ^ +5% , 26W, Mil-R- 26C, RW33V2ORO	3.1(10)	1.9(15)ne	Resistance (+8.7%) @ 1.3(15)ne	2 p. 49, 78
20 <u>~ +5</u> %, 38W, Mil-R- 26 C , RW35 G 200 (4 ca)	3.7 (10)	2.2(15)ne	Resistance (-0.5%) @ 2(14)ne	2 p. 90, 50
20 ~ +5% , 55W, Mil-R- 26C,RW35V2ORO (4 ea)	4(10)	3.1 (15)ne	Resistance (+5.3%) immediately	2 p. 104, 50
0.2K RW31 G 201 (4 ea)	2 .4(10)	9.3(14)ne	Resistance (+1.66%) @ 5.4(14)ne	1 p. 394, 691
0.2K +5%, 1¼W, Mil-R- 26C,RW31V2O1 (4 ea)	4.4(10)	2.3(15)ne	Resistance (+2.2%) @ 1.9(15)ne	2 p. 49, 66
0.2K +5%, 18W, Mil-R- 26C, RW33G201 (4 ea)	4.1(10)	2.4 (15) ne	Resistance (+4.3%) @ 1.5(15)ne	2 p. 49, 76
0.2K +5%, 26W, Mil-R- 26C, RW33V2O1 (4 ea)	4.1(10)	2.4 (15)ne	Resistance (+1.3%) @ 1.3(15)ne	2 р. 49, 80
0.2K <u>+</u> 5%, 38w, Mil-R- 26C, RW35 G 201 (4 ea)	4.1(10)	2.6(15)ne	Resistance (+0.4%) @ 1.6(14)ne	2 p. 50, 93
0.2K +5%, 55W, Mil-R- 26C,RW35V2O1 (3 ea)	3 .5(10)	1.4(15)ne	Resistance (-1.1%) @ 1.1(15)ne	2 p. 50, 107
2K RW31 G 202 (4 ea)	2.4 (10)	9.3(14)ne	Resistance (+1.73%) ② 5.9(14)ne, 2 snorted in-pile	1 p. 403, 691
2K ଲ⊮33G202 (4 ea.)	3(10)	2.2 (15)ne	Resistance (+1.6%) @ 1.45(15)ne	1 p. 417, 691

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Wire wound	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Truohm Cont'd				
2K +5%, 14W, Mil-R- 26C, RW31V202 (4 ea)	3.2(10)	1.6(15)ne	Resistance (+1.2%) @ 1.1(15)ne	2 p. 67, 49
2K +5%, 26W, Mil-R- 26C, RW33V202 (4 ea)	4.1(10)	2.4(15)ne	Resistance (+1%) @ 1.5(15)ne	2 p. 83, 49
2K +5%, 38W, Mil-R- 26C, RW35G202 (4 ea)	3.3(10)	1.4(15)ne	Resistance (+1.21)@ 1(15)ne	2 p. 50, 98
2K +5%, 55W, Mil-R- 26C, RW35V202 (2 ea)	3.1(10)	1.9 (15)ne	Resistance (+3.6%) @ 9.4(14)ne	2 p. 49, 109
20K RW33 G 203 (4 ea.)	2.9(10)	2.2 (15)ne	Resistance (+1.9%)	1 p. 424, 691
20K +5%, 10W, Mil-R- 26C, RW31G203 (4 ea)	3.4(10)	1.9 (15)ne	Resistance (+3.7%) @ 1.7(15)ne	2 p. 49, 57
20K +5%, 14W, Mil-R- 26C, RW31V2O3 (4 ea)	4.4(10)	2.3 (15)ne	Resistance (+4%) @ 1.95(15)ne	2p. 71, 49
20K <u>+</u> 5%, 26W, Mil-R- 26C, RW33V2O3 (4 ea)	3.1(10)	1.9(15)ne	Resistance (+4.59%)	2 p. 87, 49
20K +5%, 55W, Mil-R- 26C, RW35V2O3 (4 ea)	3.8(10)	2.4 (15)ne	Resistance (+3.3%) @ 2(15)ne	2 p. 113, 50
	I			
Ultronix, Inc.				
1K +0.1% 102P-AA	3 .9(8)		Resistance(-1.52%) @ 4.7(6)ergs/gm-(C)	12p. 147
1K +0.1% 102F-AA	1.8(10)	1.4(15) (E>2.9 Mev)	Resistance (0.0%)	12 p. 151

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistors, Wire wound	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Ultronix, Inc. Cont.				
100K +0.1% 102P-MB	3.9 (8)		Resistance (0.0%)	12 p. 147
100K +0.1% 102P-MB	1.8(10)	1.4(15) (E>2.9 Mev)	Resistance (0.0%)	12 p. 152
	!			

2.23 SEMICONDUCTOR DEVICES

2.23.1 DIODES

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
Semiconductor De- vices, Diodes	ergs gm-(C)	cm ²	DESIGN ALLOWABLES	REFERENCE No.
Bell Telephone Labs				
Diff. junction (zinc)(1 ea.)		4.6 (15) (E>O.1 Mev)	Forward Bias (+19.4% Reverse V (+20.5%)	17 p 135
Magnesium - doped, Tin Alloyed junction (1 ea.)		4.6 (15) (E>O.1 Mev)	Forward Bias (+43.5%) & Reverse V (37.5%) @ 2.2 (15)nf	17 p 145
Bomac Labs 1N21B, Si Crystal Rectifier (2 ea)	1.1 (10)	6.6(14)ne	Backward I (+1100%) © 4.5 (14)ne, Permanent damage	1 p 462-473
CBS Hytron, Div. of Columbia Broadcast- ing System 1N58 Crystal Rectifier (2 ea.)	3.9(10)	2.4 (15) ne	Forward I (-85.5%) Backward I (+7115%) Failed in-pile	1 p 476-484

MATERIAL OR	DESIGN	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Semiconductor Devices Diodes	, ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
CD3137, Zener Diode (3 ea.)	1(9)	6.8 (15) (E>0.1 Mev)	Zener V @ 100 μA (-36.3%) @ 5.4 (15) nf, Knees round	10 p 11, 77, 113 36 Fig. 31
CD 3147 Zener Diode (2 ea)	1(9)	6.8(15) (E>0.1 Mev)	Zener V @ 100 μA (-6.4%) @ 2(13) nf, Knees Round	10 p 11, 77, 113 36 Fig. 30
CD 4113, Zener Diode, Temp. Compensated (2 ea)	1(9)	6.8(15) (E>0.1 Mev)	Zener V @ 100 μ A (-41%) @ 5.4(15)nf, Knees Round	10 p 11, 77, 113 36 Fig. 29
Fairchild Semi- Conductor Corp.				
FD204 Diode (4 ea)	1(9)	6.8(15) (E >0. 1 Mev)	Forward V drop (+185%)	10 p 10, 75, 110 36 Fig. 27
FA 2083 Diode (4 ea)	1(9)	6.8(15) (E>0.1 Mev)	Forward V drop (-23.8%) @ 5.4(15) nf	10 p 10, 110 36 Fig. 25
				#
·			•	

MATERIAL OR	DESIGN /	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Semiconductor De- vices. Diodes	ergs gm-(C)	m cm ²	DESIGN ALLOWABLES	REFERENCE No.
General Electric Co.				
C35, Si PNPN Rectifier (2 ea.)	1.7(7)	7(13) (E>O.1 Mev)	I _{TO} (+1900%) good to ~1(14)nf	16 p 121-131
C5Bl39, Si Controlled Rectifiers (2 ea.)	1(9)	1(16) (E>0.1 Mev)	Failed @ 1(12)nf	10 p 13, 116
2N490 Silicon Unijuction (2 ea.)	1(9)	1(16) (E>0.1 Mev)	Failed @ 5(11)nf	10 p 14, 80 53 p 1
2N491 Silicon Unijunction (2 ea.)	1(9)	1(16) (E>0.1 Mev)	Failed @ 5(11)nf	10 p 14, 80 53 p 1
1N2939 Tunnel Diode (5 ea.)	7.5(9)	6.4(15) (E>0.1 Mev)	I _p (-9%) @ 1(14)nf I ^p (+122%) V ^v _{fp} (-23%)	10 p 19, 136 · 139
EM13920A (Graded 2N490) Sil. Uni- junction (2 ea.)	1(9)	1(16) (E>0.1 Mev)	Failed 5(11)nf	10 p 14, 80
6RS7PH 70THB1, 1575 VAC Single phase, half-wave, 1.6ma, Selenium Rectifier (2 ea.)	2.5(10)	1.6(16) (E>1 Mev)	DC Output (+10%)	30 p 181-182
6RS32LBlADH1, 28 Vdc 10A, Single phase, full-wave Selenium Rectifier (1 ea.)	2.5(10)	1.6(16) (E>0.1 Mev)	No changes noted	30 p 181-182

MATERIAL OR	DESIGN	ALLOWABLES	BASIS FOR	RADIATION
COMPONENT Semiconductor De-	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
vices, Diodes	84-(0)	Cm		
Kemtron Electron Pdts., Inc.				
lN2lB Si Crystal Rectifier (1 ea.)	1.1(10)	6.6(14)ne	Backward I (+150%) © 5(14)ne, Permanent damage	1 p 462-473
Microwave Associates,		şı ı		
lN2lB Si Crystal Rectifier (1 ea.)	1.1(10)	6.6(14)ne	Backward I (Failed @ 2.2(14)ne	1 p 462-473
MA-159D Si Mixer l to 4 KMc (6 ea.)	8.7(10)	2.1(16) (E>1 Mev)	Still Operational at end of test, gradual degradation	30 р 91-106
Motorola, Inc.			'	
1N943, Si Reference Diode, Temp. Com- pensated (5 ea.)		8(15) (E>O.1 Mev)	Zener V @ 2.5 ma (+37.2%) Rounding of "breaking point" @ 4.7(14)nf, Zener V changes appreciably @ 3(15)nf	10 p 11, 77, 114 53 p 2
Pacific Semicon-				
ductors, Inc.				
PD105 Diode (3 ea.)	1.8(10)	7.9(15) (E>1 Mev)	Forward I @ 2V(-94.24 @ 2.6(15)nf, Reverse I @ 23.5 V (-94%) @ 2.8(15)nf)12 p 124 - 126
PC115, Alloyed Si, Abrupt Junction type (3 ea.)	1(9)	6.8(15) (E>0.1 Mey)	Forward V drop (+425%)	10 p 110 36 Fig. 2

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Semiconductor De- vices, Diodes	ergs gm-(C)	em ²	ALLOWABLES	REFERENCE No.
Pacific Semicon-ductors, Inc. (con't)				
PD-400 Diode (1 ea.)	3.9(8)		Forward I @ lv (-23.5%) @ 2.4(6) ergs/gm -(C), Re- verse I (-50%)	12 p 115
PD-400 Diode (1 ea.	1.9(10)	1.4(15) (E>2.9 Mev)	Forward I @ lv (-78.6%), Reverse I (+1300%)	12 p 119
PD-400 Diode (3 ea.)	1.8(10)	7.9(15) (E>1 Mev)	Forward I (+7.1%) Reverse I (-96%)	12 p 130-132
RCA Experimental GaAs Tunnel Diodes, Ceramic-to-Metal Seals (7 ea.)	2.7(11)	2.4(17) (E>1 Mev)	Excessive Leakage I @ 6.5 (14)nf	30 p 141
Sylvania Electric Products	1 1/10)	6 6(3):)	Backward I (Failed)	1 p 462-473
1N21B Si Crystal Rectifier (2 ca.)	1.1(10)	6.6(14)ne	@ 2.2(14)ne)	T p 402=413
1N58 Crystal Rectifier (2 ea.)	3.9(10)	2.4(15)ne	Forward I (one failed) @ 2.3(14)ne, Backward I (one failed) @ 1(15)ne	1 p 476-484
1N263, Ge Crystal Mixer, 12 KMc (max) (6 ea.)	6(10)	1.6(16) (E>LMev)	Still operational at end of test, degraded Signal	30 р 91-106

MATERIAL OR	DESIGN	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Semiconductor De- vices, Diodes	ergs gm-(C)	n cm ²	DESIGN ALLONABLES	REFERENCE No.
Texas Instruments,				
TI-2 Silicon Diode (1 ea.)	5.8(9)	2.9(15) (E>Liev)	Forward (-8.2%) Reverse (+~150%)	12 p 123
Transitron Electronic Corp.				
1N690 Diode (3 ea.)	1.8(10)	7.9(15) (E>lMev)	Forward I (+14.3%) Reverse I (-89.4%)	12 p 127-1 2 9
1N919 Si Di∞de (4 ca.	6.4(10)	3.4(16) (E>1Mev)	Forward V drop (+22,013%)	12 p 136
SG 1537 Diode (3 ea)	1.8(10)	7.9(15) (E>1Mev)	Forward I (-68.3%) Reverse I (-88.4%)	12 p 133 - 135
Westinghouse Electric Corp.				
Experimental gallium - phosphide Diodes (2 ea.)		1.1(16) (E>0.1 Mev)	Reverse V (+391%) Forward V (+69.6%)	17 p 138
Experimental Si- Carbide Rectifiers (1 ea.)	6.3(9)		Reverse V breakdown (-7.2%), Reverse Bias I (-31%)	17 p 127
Experimental Si- Carbide Rectifiers (3 ea.)		3.5(6) (E>0.1 Mev)	Forward V © 5 ma (+140%) @ 1.2(16)nf Reverse V beakdown (+2567%)	17 p 133

2.23 SEMICONDUCTOR DEVICES

2.23.2 TEMPERATURE SENSORS

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Semiconductor Devices, Temp. Sensors	ergs gm-(C)	n 2	DESIGN ALLOWABLES	REFERENCE No.
Fenwall Electronics, Inc. Thermistors Type X-A 10K 100°C (4 ea) X-B 20 Meg 100°C (4 ea.) X-C 100 Meg 100°C (4 ea.)	3.8(9)	7.2(15) (E>2.9 Mev)	Radiation sensitive. All decreased in resistance due to Radiation but no permanent damage	24 p 296 - 298
Gulton Industries 45 T G-2 Therm- istor (4 ea.) 45 T G-2 Therm- istor (4 ea.)	7.3(9) 7.5(9)	4(15) (E>0.1 Mev)	Decrease in R≈ (30%) Decrease in R≈ (50%)	10 p 17, 91, 145 10 p 17, 91,
Micro-Sensors Corp. T 101-1000, 1K Temp. Sensor (4 ea)	7.8(8)	4.4(15) (E>0.1 Mev)	Failed @ 1(13)nf	10 p 21, 145
Texas Instruments Inc. TC-1/8-6038 0.22K Temp. Sensing Resistor (2 ea.)	1.5(9)	1(16) (E>0.1 Mev)	Failed @ 5(13)nf, Not Recommended for use in Nuclear Environment	10 p 12, 46, 115 11 p 25

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
Semiconductor Devices,	ergs	n	ALLONABLES	REFERENCE No.
MATERIAL OR COMPONENT Semiconductor Devices, Temp. Sensors Miscellaneous Giannini Controls Corp. Model 8643, Photo- Pots (a) Stintered and Powdered (b) Single crystal	ergs gm-(C)	n cm ²	DESIGN	effects

2.24

SOLDER

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
MIL Ag 1.5 (97.5% Pb, 1.5% Ag, 1% Sn)			Higher tensile strength than available electronic hardware. High and increasing impact strength at low temperatures; N.B. This appears to be the optimum solder for nuclear environments.	67 P.89

2.25 SWITCHES

NUCLEAR RADIATION EFFECTS DESIGN ALLOWABLES

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Switches	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Autronics Corp.				
400 cps Transfer Switch Type III, 1360 (lea)		1(16) (E>0.1Mev)	Unit failed at 4(12)nf and 5(5) ergs/gm-(C)	10 p 23
" (lea)	1(8)	6.8(14) (E>0.1Mev)	Drop-out V (/75%) Pick-up V(/ 47%) Unit Failed	10 p 159, 23
Giannini Controls Corp.				
Acceleration integrating switch. Type 2358 (2 ea)	2(10)	1.5(16) (E>1 Mev)	1 Failed at 1.8(14)nf No effect on other switch	37 p 8
Kinetics Corp.				
Main Power Transfer, Motor Driven, SPDT M362-1, Ser. 0045 (1 ea)	1(9)	5.8 (15) (E>0.1 Mev)	Satisfactory Operation throughout test	10 р 23, 158
		1,,	_	

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Switches	ergs gm-(C)	n	DESIGN ALLOWABLES	REFERENCE No.
Leach Corp 400 cps Transfer, Type 9410, Serial 123 (1 ea)	1(9)	1(16)	Satisfactory Operation up to 8 (13)nf and 1(7)ergs/gm-(C)	10 p 23
Micro Switch Div. Minn-Honeywell Regulator Co. Type 1EN1-6	1.5(10)		Satisfactory	33 p 2, 4
Type TEMI-0	1.)(10)		Performance Teflon Seal-rings deteriorate	33 p 2, 4
Type 1HS1	1.3(10)		No Effects Noted	33 p 2,4
Model 1HT1, Hi Temp	1.1(11)		No effects Noted	71 p 8
Type lLS1	1.2(10)		No effect on Switch but rubber seals hardened	3 p 2, 3
Type 1SE1-3	1.5(9)		Increase in Operating and release force and pretravel	33 p 2,5
Type 1SM1	1.3(10)		Case material became Brittle-GF Black Phenolic #7345 Resinox	33 p 2,8
				4

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Switches	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Micro Switch Con't				
Type 2EPZ-E	1.2(10)		Seal Becomes Brittle and Breaks	33 p 2
Type BA-2R	1.3(10)		Black Phenolic (ESO2403) case became Brittle	33 p 2, 7
Type BZ-2R	1.3(10)		Rlack Phenolic case becomes Brittle	33 p 2, 7
Type V3-1	1.3(10)		GP Red Malamine 1077-RV22 Melma cover became Brittle	33 p 2, 8
Type V3-1301	1.2(10)		Supramica 555 case became Brittle	33 p 2, 8
Transco Products, Inc. SPDT RF Switch 28VDC Type 13730-30 (1 ea)	1.5(9)	8(15) (E > 0.1Mev)	Negligible Changes Occurred	10 p 24

2.26

TERMINALS, ELECTRICAL

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Terminals, Electrical	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Alac, Inc. Type 530, Small size composition= Glass-fiber-filled diallyl insulation (6 ea)	9.8(10)	3.1(16) (E>0.5Mev	All Failed	35 p 10.81
Type 533, Medium Size, Same compo- sition as 530 (6 ea)	9.8(10)	3.1 (16) (E>0.5Mev)	3 Failed, Leakage Resistance decreased by factor of 1 (4)	35 p 10.81
Type 535 Large Size Same composition as 530 (6 ea)	9.8(10)	3.1 (16) (E>0.5Mev	3 Failed, Leakage Resistance decreased by factor of 1 (4)	35 p 10.81
			•	
				Ì

2.27 THERMOCOUPLES

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Thermocouple	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Platinum temperature probe, 100 at 0°C			Used to measure air temperature. Induced activity precludes damage error analysis In previous gamma test, error at 3.96 (8) ergs/g-(c) ~ 0.26°c at 0°C.	

2.28 TRANSDUCERS

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Transducers	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Atlantic Research Corp Model No. LD-77 LeadZirconate, piezoelectric, type- Pressure (1 ea)	<u>.</u>	1(18)nvt	90% loss of output-not suited for high Radiation Fields	58 p 20, 46
Model #LD-80 Lead Zirconate, Piezoelectric pressure type (lea)		1(17)nvt	Failed, 20-25% Loss of output at 1(16)nt, not suited for high radiation fields	11
Baldwin-Lima- Hamilton Corp. Type AB-7 Resistance-Wire Strain Gage (3 ea)	1.9(9)		Strain level (-1.8%) at 4(12)nf	41 p 49-55
Type EBDF-7D Resistance-wire Strain gage (3 ea)	5 .8(9)	6.1(13) (E≫.3Mev)	Strain Level- Slight drop through- out test, one failure	ы
				- 14

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Transducers	ergs gm-(C)	cm ²	DESIGN ALLOWABLES	REFERENCE No.
Bourns, Inc.				
Model 2421 0-4000 PSID Pressure type (lea)	2.1(10)	5.4(15) (E>1Mev)	Output error Max.of 25%, No Permanent damage	9р78
Century Electronics and Instruments, Inc. Model 750X 0-75 psig, Si.strip Element, Pressure (lea)	6.1(10)	2.7(16) (E>1Mev)	Gradual shift in calibration	30 p 202 - 217
Consolidated Electro- dynamics Corp. Model 4-102A vibration pickup	4.7(9)	4.9(13) (E>.3Mev)	Sensitivity (/17%) at 2.5(13)nf	41p 14-24
fluid-damaged (6 ea)	-		Damping factor	
Model 4-118 Magnetic damping, Vibration Pickup(3ea)	11	u	Response curve (45.8%)	11
Model 4-312 Element-unbonded Strain gage (0-75psia Pressure Pickup(3ea)	2.1(10))		Output(/4000%) at 5.2(15)nf	41 p 36

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Transducers	ergs gm-(C)	m ²	ALLOWABLES	REFERENCE No.
CEC con't Type 4-316A Unbonded strain- gauge windings Pressure pickup(lea)	1(11)		Unaffected by gamma radiation	71 p 16
Dynamic Instrument Co. Model P3AlM unbonded strain wire (1 ea)		1(18)nvt	No effects noted	58 p 20
Endevco Corp. Model #2501-1000 Ceramic element piezoelectric type (lea)		1(18)nvt	93% loss of output	58 p 20
Erich Brosa Model 6014 quartz Piezoelectric (lea)		1(17)nvt	lo∮ loss of first Peak at l(16)nvt	58 p 2 0

MATERIAL OR				RADIATION
COMPONENT Transducers	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
Fairchild Controls Corp. Model 747E Double Angular position, potentio- meter type (lea)	3.1(10)		Failed in-pile due to electrical wire degradation	9 p 78, 82
Giannini Controls Corp Model 45154 0-20 psia, Pressure pickup Potentiometer Actuated (3ea)		4.5(15) (E>2.9Mev)	Response curve slope at 10 psig (-6%), Internal wiring was brittle	41 p 37-48
Model 46119Y 0-1500 psia, Potentiometer type, Pressure	2.3(10)	6.7(15) (E>1Mev)	-1.8% Max deviation	9 p 73, 102
Model 46155-H-D 0-4000 Psid Pressure Responsive Bourdon tube and Potentiometer (lea)	2.4(10)	5.1(15) (E≯lMev)	Response Degraded 8% at 1.8(15)nf and 8.5(9)ergs/gm-(C) DC 510 silicone fluid Failure	9 р 73
			8	

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Transducers	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Model 451218 0-30 Psig NI-Span C Element Potentiometer, Pressure type (lea)	2.9(10)	7.2(15) (E>1Mev)	Output (< / 1%) up to 3.3(15)nf, Failure due to unknown origin	9 p 69, 101
Model 461265J 1000 psia Potentiometer output	6.4(10)	(E>lMev)	Satisfactory Performance, No Malfunctions	30 p 202-217
Kistler Instrument Corp. (SLM) Model #PZ-14, Quartz Element Piezoelectric type (lea)			No effects Noted	58 p 20
Model 701 Quartz Element Pressure pickup (lea)	1(11)		Very sensitive to Radiation, Not Rec. for use in Radiation Field	71 p 16

MATERIAL OR COMPONENT			BASIS FOR	RADIATION EFFECTS
Transducers	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Markite Corp.				
Model 3108 Double angular Position, pot. type (lea)	3.1(10)	7.6(15) (E > 1 Mev)	Failure due to degradation of Electrical wire Insulation	9 р 78
		9		
Norwood Controls Div. Of Detroit Controls		1		×
Model #EPK-1000 Strain Wire Type bonded - 2-arms of		1(17)nvt	10% Loss of Out- put at 1(16)nvt	58 p 20
bridge element (lea)				22
Omega Instrument Co.				
Model /21-10 Variable Capacitance Type (1 ea)		1(17)nvt	50% loss of output	58 p 2 0
Statham Instruments Inc.				
Model PA-217a-1M-350 unbonded 4-armbridge Element, strain wire Type (1 ea)		1(18)nvt	Failed Electrically	5 8 p 2 0
Model PA-217ca-1M-350 unbonded 4-armbridge element, strain wire Type (1 ea)		1(17)nvt	No effects noted	58 g 20
	I			

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Transducers	ergs gm-(C)	cm ²	Design Allowables	REFERENCE No.
Trans-Sonies, Inc.	Bu-(0)	Cit		
Model 1301D Bulb Resistance Thermometer, Platinum winding pickup (2ea)	1(11)	3.2(13) (E>O.3Mev)	Response (-22%) at 4(12)nf	41 p 25 - 30
Model 2115 0-150 psia Pressure Type (lea)	2.3(10)	6.7(15) (E>lMev)	Max.of 6.5% Output Error, Operated Satisfactorily	9 p 78, 81
Ultradyne Engineer- ing Lab, Inc. Model S-3 0-50 psia, inductive sensing element, pressure pickup(3ea)	2.1(10)	7.8(15) (E>0.3Mev)	Output at 50 Psia (-87.7%), permament radiation damage incurred	41 p 36, 38, 43-46
Wiancko Engineering Co. Model PX94 0-1000psig Variable-reluctance, pressure type (lea	6 . 3(10)	2.6(16) (E>lMev)	(0.5%) zero shift & (-2.8%) slope shift at 1.6(16)nf	30 p 201-217

2.29 TRANSFORMERS

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Transformers	ergs gm-(C)	cm ²	Design Allowables	REFERENCE No.
Aladdin Electronics Type 02-164 1:10 step-up Epoxy encapsulated Al cased, pulse type (4ea)		4.5(16) (E>0.5Mev)	Wave-forms showed slight degradation, Output V (decrease) Rec. for use in Nuc. Environment	35 p 10.35
Arnold Magnetics Corp Part #533-769 Ewapsulated, 6.3 V 400 cycle, filament XFmr, at 3.5A, 115V single phase Primary Pwr. XFmr.	Į.	3.2(16) (E>0.5Mev)	No Physical Damage Resistance & second- ary V-No degradation	35 p 10 .13 0
Part#77-777 hermetically sealed, 500v, 400 cycle Secondary at 100ma, 115V, single phase secondary, Pwr. XFmr.		3.2(16) (E>O.5Mev)	**	**

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Transformers	ergs gm-(C)	m cm ²	ALLOWABLES	REFERENCE No.
Electron Mfg. Co.				
Encapsulated Type (various elements used in construction make-up)	9.5(9)	3.2(16)ne	No Physical or Electrical damage.	3 p 12-25
Hermetically sealed type (Various elements used in construction make-up)	1.1(10)	3.2(16)ne	Some samples ruptured (wax potted and some asphalt potted is cause of rupture and failure), All electrical parameters remained unchanged.	3 p 12-25
Engineered Magnetics Div. of Gulton Industries, Inc. Type #14902 (2 ea)	1(9)	6.3(15) (E>0.1Mev	Magnetizing I(£1%)	10 p 23, 161
Type #14898 (2 ea)	1(9)	6.3(15) (E>O.lMev)	Magnetizing I(\$\frac{1}{2}37.7\frac{1}{2}\) at 150V for #1, #2 (\$\frac{1}{2}1500\frac{1}{2}\) at 2(14)nf	10 p 23, 160

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Transformers	ergs gm-(C)	cm ²	DESIGN ALLOWABLES	REFERENCE No.
Microtran Co., Inc. Type VM5-H(Transistor Hermetically Sld. Interstage, 5mw, (3ea)) 4.6(9)	1.4(16) (E>0.5Mev)	Primary R(#5.3%) Self Inductance(-18% IR-Pri. To sec. decreased factor~100	4 p 81-97
Type VM 8-H, Hermetically scaled Audio output, 15mw (Transistor)(3ea)	6.1(9)	2.2(16) (E>O.5Mev)	Primary R(-16%) Self Inductance (/25%)IR-Pri. to Sec. decreased factor~100	4 p 81-97
Raytheon Mfg. Co. HTL-T-434-A Power Xfmr, silicone rubber encapsulate (4 ea)	~5(9)	~1(16) (E≫.5Mev)	IR-Pri.to sec. at 600v-decreased factor ~100, silicone cracked and flaked off.	4р60-80
Schaevitz Engineering Co. Model 200SS-L Linear variable diff. Transformer, (9with cores cycled, 3 with cores locked in null position) (12ea)		5.1(16) (E > 0.3Mev)	Insulation on wire disintegrated, Inconclusive due to leads shorting	41 p 29-22

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Transformers	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Stancor(Chicago Standard Transformer Corp.)				
S-16147 Metal case, potted with silicasand Power Xfmr. (4 ea)	~5(9)	~1(16) (E>0.5Mev)	IR-Pri. to sec. at 600v-decreased factor 100, one drew excessive primary I inpile	4 p 60-80
S-16148 same as S-16147 without metal case (4ea)	11	**	IR-Pri. to sec. at 600V-decreased factor ~100	"
UM-110, Audio Interstage, 1mw Open frame (3ea)	2.5(10)	1.3(14) (E>0.5Mev)	Primary R(-15%) Self induction(/36%) Primary to core short on all units	4P 81 - 97
UM-112, Audio Hi-Z Input, 1mw, Open frame (3ea)	3.9(10)	2.3(14) (E > 0.5Mev)	Primary R(-3.5%) Self Inductance (/420%) IR-Pri.to core decreased factor ~100	
UM-114 Audio Output, lmw, open Frame (3 ea)	"	"	Primary R (failed) Self Induction(-28%) Ir-Primary to core decreased factor~10	n
Sylvania Electric Products, Inc.				() ()
Type 23130, Audio Z =9K /- 10% (llea)		3.9(16) (E>O.5Mev)	Pri. and Sec. R (small Inductance (/20%) constitutes failure	35 p 10.131-

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Transformers	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Telex, Inc.				
Telex, Inc.				
Type 11135, Audio Interstage, 1 mw, Open Frame (3 ea)	2.5(10)	1.3(14) (E>0.5Mev)	Primary R (Failed) Self Inductance(-15%) IR-Pri.to core decreased factor~100	4 p 81-97
Type 11137, Audio Output, 1 mw, Open Frame (3ea)	4.6(9)	1.4(16) (E>0.5Mev)	Primary R (/5.8%) Self Inductance (-9.5%), IR-Pri. to sec. decreased factor ~10	11
Type 8929, Audio Output, 3mw,open Frame (3ea)	5.1(9)	1.8(16) (E>0.5Mev)	Primary R(/5.9%) Self Inductance(-11%) IR-Pri.to core de- creased factor ~10	ti
United Transformer Corp.				
AR-378, Audio Hermetically sealed, Epoxy resin fill, (4ea)	7.6(12)		Cases ruptured due to outgassing	35 p 10.133, 3.27
Dot-1-Audio Interstage, 50 mw, Hermetically sealed (3 ea)	6.1(9)	2.2(16) (E > 0.5Mev)	Primary R(\(\frac{1}{32\(\frac{1}{32}\)}\) Self Induction(\(\frac{1}{21}\)\) IR-Pri. to sec. decreases factor \(^{210}\)	4 p 81-97
" (3 ea)	2.6(10)	1.3(14) (E>O.5Mev)	Primary R (#13%) Self induction (#23%), IR-Pri.to core decreases factor ~ 100	"

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
Transformers	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
UTC con't Dot - 5, audio Output, 100 mw, Hermetically sealed (3 ea	6 . 1(9)	2.2(16) (E>0.5Mev)	Primary R(-2%) Self Inductance (/8%) IR-Pri. to Sec. decreases factor~100	4 p 81-97
Dot-7- Audio Input, 25 mw, Hermetically Sealed (3 ea)	4.6(9)	1.4(16) (E>0.5Mev)	Primary R (+8.9%) Self Inductance (+15%) IR-Pri. to Sec decreases factor ~10	
" (3 ea)		2.5(14) (E>0.5Mev)	Primary R (+13.5%) Self Induction(-15.6%) IR-Pri. to Core decreases factor~100	
				ţ
		ı		

2.30 TRANSISTORS

2.30.1 GERMANIUM

2.30.1.1 NPN

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Transistors, Germanium (NPN)	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Texas Instruments, Inc	<u>.</u>			
20797 Mesa (1 ea)	3•9(8)		\$/\$_o(dc) (-23.3%) @ 7.1(17)ergs/gm-(C)	12 p 73
2N797, Mesa (1 ea)	4(9)	2.7(14) (E>2.9Mev)	\$ \$o(dc) (+9.14%) @ 7.6(13)nf	12 p79
2N797, Mesa (3 ea)	9•5(9)	4 .2(15) (E> 2 .9M ev)	β/β ₀ (dc) (-92%)	21 p99-101
2N797 Epitaxial	5•9(9)	2.9(15) (E>1 Mev)	β/β _o (dc) (-82.8%) @ 2.8(15)nf	12 pl02
			t en	
			:	

2.30 TRANSISTORS

2.30.1 GERMANIUM

2.30.1.2 PNP

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Transistors, Germaniu (PNP)	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Bendix Corporation	P			
EM73327-U, diff. allow (Graded 2N1653) F_T 600Kc(min) (3 ea)	1(9)	1(16) E>0.1Mev)	Failed @ 3(13)nf	10 p59
				=
Motorola Semiconducto	r Product	, Inc.		
2N700 Mesa (1 ea)	4(8)		8/Bo(dc) (+9.47%)	12 p74
" (1 ea)	5•9(8)	1.5(13) (E>2.9Mev)	// Bo(dc)(+1900%)@ 1.1(13)nf	12 p 80
" (2 ea)	1.1(10)	5(15) (E>1 Mev)	\$/ \$ o(dc) (-36.7%)	12 pl 08-109
2N828, Epitaxial Mesa (3 ea)	1.8(10)	7.9(15) (E>1 Mev)	\$/ \$0(de) (-96%) @ 2.6(15)nf	12 pl10-112
2N1561 Mesa (1 ea)	1.8(10)	7.9(15) (E>1 Mev)	// fo(dc) (-55%) @ 1.2(15)mf	12 p106
				i i
Philco Corporation			=	
2N769 (1 ea)	4(8)		8/8 ₀ (dc) (+100%) @ 6(6) ergs/gm-(C)	12 p 75
" (1 ea)	1.4(9)	7.6(13) (B>2.9Mev)	\$1 \$ o(de) (+764\$)	12 p 81
L-5446 MADT (5 ea)		1(14)nvt	No Serious Damage	75 p47

MATERIAL OR		LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Fransistors, Germanium (PMP)	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Texas Instruments, Inc				
rexas instruments, ind	<u>•</u>		_	
2Mll41 Mesa (1 ea)	1.8(10)	7.9(15) (E>1 Mev)	P/Bo(dc) (-97%) @ 4.9(15)nf	12 pl03
2N1195 Mesa (2 ea)	1.8(10)	7.9(15) (E>1 Mev)	\$/\$ o(dc) (-94%) @ 2.9(15)nf	12 pl04-105
2N1908, Alloy diff. F _T 20 Mc(min) (2 ea)	7 . 5 (9)	1(16) (E>O.lMev)	Failed @ 4.8(13)nf	10 p 65
Western Electric Co.,	Inc.			
2N599, Diff. Low Power Hi-speed Switching, Epitaxial (10 ea)		1.4(15) (E>0.1Mev)	Igain (-5.15%) BV _{CBO} (-77%)	19 p51,53,54
2N599E, Epitaxial Switching (10 ea)		1.4(15) (E>O.lMev)	Igain (-14.4%) BVcso (-58.4%)	19 p51,53,5 4
				11
	-			

2.30 TRANSISTORS

2.30.2 SILICON

2.30.2.1 NPN

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
Transistors, Silicon (NPN)	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Cyrstalonics, Inc.				
C652 (Hi Resistance) Field Effect Device (2 ea.)		6.8(14) (E>0.48 ev	94% decrease in) Mutual Conduc- tion	62 Fig. 2
C652 (Low Resistance) Field Effect Device (3 ea.) Fairchild Semiconductor, Corp.		6.8(14) (E>0.48 ev	83% decrease in) Mutual Conduc- tance	62 Fig. 2
2N699, DD Planar. f _T 50 Mc (Min) (3 ea)	1(9)	1(16) (E>0.1 Mev)	Failed @ 4.8(13)nf	10 p. 66
2N706, Mesa, (3 ea)	1.8(10)	7.9(15) (E>1 Mev)	8/6.(dc) (-100%) Failed	12 p. 86-88
2N708, Planar F _T 60 Mc(Min) (3 ea)	~1(8)	8.3(14) (E>0.1 Me	<i>B/8</i>	10 p. 54
2N708, Planar F _T 60 Mc(Min) (1 ea)		2.6(13) (E>0.1 Me	$\beta = 34\%$ of βo	36 Fig. 24
2N708, Planar Fr 300 Mc (Min) (2 ea	7•5(9)	1(16) (E>0.1 Me	β/βο (-80%) @ v) 1.8(14) nf	10 p. 63
2N709, Planar F _T 600 Mc (Min) (2 ea	~1(8)	1(15) (E>0.1 Me	\$/\$0 (-85%)	10 p. 54
2N709, Planar F_{T} 600 Mc(Min) (1 ea)		5(14) (E>0.1 Me	β = 20% βο v)	36 Fig. 24
2N718A, DD Planar, F _T 300 Mc(Min) (2 ea)	7•5(9)	1(16) (E>0.1 Mev)	β/βο (-95.7%) @ 2.2(14) nf	10 p. 63
2N718A, DD Planar, F _T 60 Mc(Min) (1 ea)	1(9)	1(16) (E>0.1 Mev)	b/ho (-34.3%) @ ~5(7)ergs/gm-(C)	10 p. 60
2N917, DD Planar, F _T 500 Mc (Min)(3 ea)		1(15) (E>0.1 Mev)	B/B0 (-90%)	10 p. 53

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Transistors, Silicon	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Fairchild Semiconduct	or Corp.			
2N917 (Cont.)				
" (1 ea)		5(14) (E>0.1Mev	$\beta = 20\%$ of β_0	36 Fig. 24
2N1613, DD Planar, F _T 60 Mc(min) (2 ea)	~2(6)	2.2(13) (E>0.1Mev	8/80 (-80.4%)	10 p 52
" (2 ea)	5(9)	1(16) (E>0.1Mev)	8/80 (-92%) @ 2.4(14)nf	10 p 64,65
"		2(13) (E>0.1Mev)	$\beta = 9\%$ of β o	36 Fig. 24
General Electric Comp	ny			
2N2193A, Epitaxial Planar, F _T 50Mc(min) (4 ea)	5(9)	1(16) (E>0.1Mev)	Failed @ 2(14)nf	10 p64,57
2N2193A, Sandwich Construction (2 ea)		3(12) (E>0.1Mev)	β = 20% of β 0	53 p 2
Motorola Semiconducto			0	
2N707A, DD Epitaxial Mesa, Fr 70Mc(min) (2 ea)	~1(6)	3.5(13) (E>0.1Mev)	8180 (-41%)	10 p52
2N707A, Mesa, F _T 500 (1 ea)		3(13) (E>0.1Mev)	$\beta = 65\%$ of β_0	36 Fig. 24

MATERIAL OR COMPONENT Transistors, Silicon (NPM)	DESIGN A ergs gm-(C)	LLOWABLES n cm ²	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Motorola Semiconductor 2N834, Epitaxial Mesa (2 ea)		, Inc. (Co 7.5(15) (E>1Mev)	nt。) ドルタ _O (dc) Failed	12 p97,98
Pacific Semiconductors PT 901, 10 Amp (2 ea)	, Inc.	3.2(14) (E>O.1Mev)	Ic (-48%) @ 1.8(13)m	17 p 63 , 98
PT 955, Triple diff. Mesa, (Graded 2N1902) FT 50Mc(min) (1 ea)		1(16) (E>0.lMev)	β/β _o (-68.7%) @ 3.3(13)nf β/β _o No change	10 p65 10 p62
EM-13531-Al (Graded 2N1259) Fr 160Mc(min) (2 ea) EM 13531-Al (Graded		4(12)	\$/\$0 (-100%), Failed @ 3.3(14)nf \$ = 75% of \$0	10 p55 53 p 2
2N1613) 200Mc (2 ea) EM74706-U, Triple diff Mesa, (Graded 2N1893) 50Mc(min) (2 ea)	. 8(9)	(E≫•lMev)	β/β _o (-52.5%) @ ~8(7)ergs/gm-(C)	10 p60
" (2 ea)	7•5(9)	1(16) (E>O.lMev)	/// (-91.5%) @ 1.3(14)nf	10 p63

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Transistors, Silicon (NPN)	ergs gm-(C)	m ²	DESIGN ALLOWABLES	REFERENCE No.
Silicon Transistor Co	rporation			
2N1722, diff. Fy 1Mc (min) (2 ea)	1(9)	1(16) (E>0.1Mev	Failed @ 9(12)nf	10 p58
" (1 ea)		2(12) (E>0.1Mev)	$\beta = 20\% \text{ of } \beta_0$	53 p 2
		1/4		
Texas Instruments, In	<u>c.</u>			
т1605 (2 еа)	1(9)	1(16) (E> 0.1Mev)	\$/\$ (-93%) @ 2(13)nf	10 p52 36 Fig. 24
2N706A, Mesa (3 ea)	1.8(10)	7•9(15) (E>1 Mev)	$\beta/\beta_0(dc)$ Failed	12 p89-92
2N753, Mesa (3 ea)	1.8(10)	7.9(15) (E>1 Mev)	$\beta/\beta_{0}(dc)$ Failed	12 p 93 -9 6
2N1717, Triple diff. Mesa F _T 16Mc(Min)(4ea	1(9)	1(16) (E≫.lMev)	Failed @ 1.2(14)nf	10 p56, 64
" (2 ea)		3(12) (E>0.1Mev	$\beta = 20\%$ of β_0	5 3 p 2
2N1722, Triple diff. Mesa F_T lOMc(min)(2ea	1(9)	1(16) (E>0.1Mev)	Failed @ 5.7(13)nf	10 p58
" (2 ea)	7	2(12) (E>0.1Mev	$\beta = 50\%$ of β_0	53 p 2
2N1936, Triple diff. Mesa,F _T 7Mc(min)(2ea)	1(9)	1(16) (E>O.lMev)	Failed @ 7.7(13)nf	10 p56
"		2(12) (E> 0.1Mev)	$\beta = 50\%$ of β_0	5 3 p2

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Transistors, Silicon (NPN)	gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Western Electric Co.,	Inc			
2N1060, Epitaxial Switching (10 ea)	(2.2(14) E>0.1Mev)	Igain (-28.4%) @ 6.5(13)nf	18 p47,51
2N1060E, Epitaxial (10 ea		2.2(14) (E>0.1Mev)	Igain (-27.5%) @ 2.1(14)nf	18 p47,51
2N1675 double Diff. 50W, 10 Amp (5 ea)	(2.1(13) E>0.1Mev)	Igain (I _C = ½A)(-15% @ 2(13)nf	17 p63,78
2082(prototype of 2N167 (15 ea	5)	3.2(14) (E>0.1Mev)	Igain (Ic = 0.1A) -20% @ 1.8(13)nf	17 p63,74
	:			
	П			
		=		
1				

2.30 TRANSISTORS

2.30.2 SILICON

2.30.2.2 PNP

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Transistors, Silicon (PNP)	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Fairchild Semiconducto	r Corp.			
2N869, Planar DD, FT 100Mc (Min) (2 ea)	1(9)	l(16) (E>0.lMev)	Failed @ 2(13)nf	10 p43
" (1 ea)		4.4(14) (E>O.1Mev)	$\beta = 4\%$ of β_0	36 Fig. 24
2N1132, diff., F _T 6OMc (min) (2 ea)	1(9)	l(16) (E≫.lMev)	B/Bo (-93%) @ 3.4(13)nf	10 p54
2N1132, Mesa, F _T 100Mc (1 ea)		3(13) (E≫.lMev)	β = 12% of β_0	36 Fig. 24
Hughes Aircraft Co.		i		
EM 74709, DD Mesa, (Graded 2N1259) Fr 40Mc (min) (2 ea)	5(9)	1(16) (E>0.1Mev	B/B (-64.3%) @ 4.8(13)nf	10 p66
" (2 ea)		l(13) (E≫.lMev)	β = 60% of β o	53 p2
				12. 1
Philco Corporation				
2N861, Precision Alloy Fr 75Mc (min) (2 ea)	, 1(9)	l(16) (E≫∙lMev)	β/β ₀ (-88%) @ 2.3(13)nf	10 p53
" (1 ea)		3.4(13) (E>0.1Mev)	$\beta = 14\%$ of β_0	36 Fig. 24
2N2187, Precision Allo Fr 22Mc(min) (2 ea)	y, 1(9)	1(16) (E >0.l M ev)	β/β ₀ (-91%) @ 1.8(13)nf	10 p52

MATERIAL OR COMPONENT Transistors, Silicon (PNP)	DESIGN A ergs gm-(C)	LLOWABLES n cm ²	BASIS FOR DESIGN ALLONABLES	RADIATION EFFECTS REFERENCE No.
Philco Corporation (C 2N2187 (Cont.) " (1 ea)		4(13) (E≫∙lMev)	β= 6% of β ₀	36 Fig. 24
Texas Instruments, In 2N1385 Mesa (1 ca) Experimental, Field Effect Device		7.9(15) (E>O.1Mev) 2.9(15) (E>1 Mev)	β/β ₀ (dc)(- 92%) Gm(umhos)(-98.2%) Gm/Gm ₀ (-98%)	12 p107 12 p85

2.31 TUBES, ELECTRON

MATERIAL OR COMPONENT		ALLOWABLES,	BASIS FOR DESIGN	RADIATION EFFECTS
Tubes, Electron	ergs gm-(C)	m ²	ALLOWABLES	REFERENCE No.
OA2WA				
Gaseous, Voltage Rectifier		I		
CBS (Hytron) (3 ea)	3.5(10)	1.2(15)ne 1.2(18)nt	Plate V @ 30 ma dc (+1.6%) @ 2.5(14)ne	1 p435
RCA (3 ea)	11	11	Plate V @ 30 ma dc (+5.5%) @ 2.4(14) ne	1 p435
	1			
	i		,	
OB2WA				
Miniature Voltage Regulator				
Raytheon (3 ea)	3.5(10)	1.2(15) ne 1.2(18) nt	Plate V @ 30 ma dc (-2%) @ 2.5(14) ne	1 թ երիր
Sylvania (3 ea)	111	11	Plate V @ 30 ma dc (< 1%)	1 թիկկ

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES n	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Tubes, Electron	8m-(C)	m cm ²	KDLOWABLES	REFERENCE NO.
OZ4 Full-wave Gas, Cathodo Rectifier Raytheon (6 ea)		5.4(14)ne 5.4(17)nt	Plate I (+17.2%) @ 1.1(13)ne	1 թ ^{իլի} 9
IAD4 RF Sharp Cut-off Pentode Raytheon (3 ea) Tung-Sol (3 ea)	3•4(10) "	1.9(15)ne 1(18) nt "	Plate I (+50%) @6.5(14) ne Plate I (-50%) @ 5.8(14) ne	1 p453-461 "
1B35A Gas Switching Tube (ATR) Bomac & Sylvania (Static)	3.8(10)	4.5(13)nf 1.4(18)nt	Cracks in RF window	2 p390

	MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Tubes, Elec	~	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
1B63A					
Gas Switching TR (Band Pass					
Boma.c	(1 ea)	3.1(9)	1.1(15)ne 7.3(17)nt	Insertion Loss (-73%) @ 2.3(13) ne	2 p 394
Bomac	(1 ea)	6.5(9)	2.4(15)ne 1.5(18)nt	Keep-Alive I intermitten, RF window cracked	2 p395
Sylvania	(2 ea)	6.5(9)	2.4(15)ne 1.5(18)nt	Keep-Alive I - Failed © 5(13)ne, RF window cracked	2 p3 95
Sylvania	(2 ea)	3.1(9)	1.1(15)ne 7.3(17)nt	Insertion Loss (-88%) @ 1.9(14)ne	¥ p394
Half-wave Hi- Rectifier Chatham	vacuum (6 ea)	3(10)	1(15)ne 1(18)nt	Rectifier Operation is made (+7.3%) @ 7.3(13)ne	n 1 p489

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Tubes, Electron	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
VG 1 A Ionization Gauge with Pyrex Glass (1 ea)		6.6(16) NVT	Completely Shattered	49 p 11, 7
with Type 008 lime glass (1 ea)		3.7(15) NVT	Discolored Prepressure reading 10-0mm but weld opened on collector in-pile	49 p 7, 12
with type 7720 Nonex Glass (lea)		3.7(15) NVT	Pressure reading changes from 10-6mm to 5x10-3mm	49 p 7, 12
with type 1723 alumino silicate glass (1 ea)		3.7(15) NVT	Pressure reading changes from 10-6mm tc 3.7x10-3mm	49 p 7, 12
		Į.	•	

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Tubes, Electron	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
IC-2				
Ceramic Power Tetrode				
Eitel-McCullough(4 ea	3•5(9)	1.3(15)ne	Excessive Screen I,	2 p555
		8.2(17)nt	2 failed in Grid V	·
0000				
2039				
UHF Triode (hi-mu)				
Eitel-McCullough(2ea)	7.2(9)	6.7(14)ne 3.7(17)nt	Failed @ 1.7(13)ne due to glass fracture	2 p474
G.E. (Ceramic) (2 ea)	н	u ~	Plate I (-6.8%) @ 5.3(14)ne, no failur	es
Machlett (2 ea)	1 H	11	Failed @ 1.7(13) ne due to glass fracture	11
			Tracture	
<u>2040</u>				р
UHF Triode				
G.E. (6 ea)	4.7(10)	1.7(15)ne 1.6(18)nt	Plate I (-0.118%) Transconductance	1 p494-501
			(-0.7%) @ 4.9(14)ne l failed in-pile	
				<u> </u>

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Tubes, Electron	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
2D21W/5727 Thyratron-Xenon gas				
G. E. (3 ea)	4.1(10)	2.6(15)ne 1.3(18)nt	Output V (-13%)@ 7.4(14)ne, deionizing time (-40%)@ 9(14)ne 1 failed in pile	2 p414-421
RCA (3 ea)	"	11	Output V (-3.5%) and deionizing Time (+25%) @ 2(14) ne 1 failed in pile	**
Tung-Sol (6 ea (3 ea) with Cadmium Shields	1.2(11)	2.4(16) (E>0.5 Mev)	Deionizing Time (+14%), 1 failed Plate V (-9%) @ 3.2(15)nf	6 p27, 35, 53
2K50 Reflex Klystron, K-Band 23.5→ 24.5KMC Bendix (3 ea)		5.2(13)ne 3.5(16)nt	Failed in-pile immediately due to glass fracture	2 թ400-405

	MATERIAL OR COMPONENT Tubes, Electron		ALLOWABLES	BASIS FOR	RADIATION EFFECTS
			m cm ²	DESIGN ALLOWABLES	REFERENCE No.
<u>3</u> 828			,		
Half-Wave Xer Rectifier	on gas				
Chatham	(1 ea)	2.8(10)		Load I - (+5.3%) @ 3.8(14)ne	2 p450
Chatham	(1 ea)	3•2(9)		Output I (+6.2%) @ 6.7(8)ergs/gm-(C)	2 p610
Electronic Enterprises	(1 ea)	2.8(10)	1.1(15)ne 6.3(17)nt	Load I - failed @ 5.4(14) ne due to glass fracture	2 p450
RCA	(1 ea)	3•2(9)		Output I (+11%) @ 2.1(9)ergs/gm-(C)	2 p 610
RCA	(2 ea)	2.8(10)	1.1(15)ne 6.3(17)nt	Both failed in-pile due to glass fracture	2 p450
United Electronics	(2 ea)	"	"	One failed in-pile due to glass fracture	2 p450
ı					
	;				
3CX100A5					
Ceramic Hi-M Triode	u (VHF)			I	
Eitel-McCull	ough(3ea	1.5(10)	3.8(16) (E≫.5Mev)	Cathode V (+800%) @ 3.1(15)nf, Control Grid I (+133%) @ 2.9(16)nf, Survived Irradiation	6 p27,50,53

MATERIAL OR COMPONENT	ergs	ALLOWABLES	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Tubes, Electron	gm-(C)	cm ²		TULY ETGENOR THO:
3D21B Pulsed Modulator Pentode CBS-Hytron (3 ea)	1.3(11)	3.8(16) (E>0.5Mev)	Transconductance (-14.5%), Plate V (+3%%), Test Leads shorted in-pile on	6 p27,46,53
3W20			all samples	
3E29 Dual Tetrode RCA (6 ea) (3 ea cadmium Shielded)	1.2(11)	2.4(16) (B>0.5Mev)	Transconductance (+11%) @ 2.2(15)ne, Glass fracture caused failure on 3 tubes in-pile	6 p27,31,53
4 <u>D21</u>	rode			
Transmitting Type Tet	Tode			
Lewis & Kaufman (2 ea)	1.4(9)		Grid V @ 75 ma dc (-250%) @ 1.7(13)ne	1 p511-524
Penta Labs (1 ea)	'n	"	Grid V @ 65 ma dc (failed @ 1.9(14)ne)	и

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron	ergs gm-(C)	m cm ²	DESIGN ALLOWABLES	REFERENCE No.
4J52A Pulsed Magnetron Frequency - 9375 Mc Litton Industries(2ea) 4(7)		Both failed due to glass fractures	2 p ⁴ 06
5C22/HT-415 Hydrogen Thyratron Kuthe Labs (3 ea)	1.8(9)	4.9(14)ne 3.5(17)nt	Plate I (-10%) @ 1.9(12)ne, All failed @ 3.8(14)ne due to glass fracture	2 p427-430
5R4WGA Duodiode Tung-Sol (4 ea)		7.8(16) NVT	All cracked	49 pl1

			i Tivi Luc		RADIATION
MATERIAL COMPONENT			LLOWABLES	BASIS FOR DESIGN	EFFECTS
Tubes, Ele		ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
5Y3WCTA					
Full-Wave Re	ctifier	i			
CBS-Hytron	(3 ea	3(10)	1.2(15)ne 1(18)nt	Output I (-1.3%) @ 3.8(14)ne	2 p461
Sylvania	(3 ea)	3.8(10)	2.5(15)ne 1.2(18)nt	Output I (-2.2%) @ 1.2(13)ne	2 p460
			243		
6AGTY			!		
Power Amplif Pentode	ier,				
G.E.	(3 ea)	2.8(9)	2.1(15)ne 9.4(17)nt	Plate I (+7.1%) and Transconductance (+8.5%) @ 7.6(14)ne	1 p525-536
RCA	(3 ea)	11	"	Plate I (+14.4%); Transconductance (+10.5%) @ 7.6(14)ne	H
				·	
					11
		ı			

	MATERIAL OR		LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron		ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
6AK5/5654/60					
Pentode	, Miniacu	re			I
G.E.	(1 ea)	3(10)	1.4(15)ne 1(18)nt	Plate I (+13%) @ 7(14)ne, Transconductance (-7%) @ 1.7(13)ne	1 p537-547
Raytheon	(2 ea)	3(10)	н	Plate I (+36%) @ 1.4(14)ne Transconductance (-10%) @ 1.1(14)ne	i W T
RCA	(2 ea)	н	**	Plate I (+19%) @ 1.4(14)ne Transconductance (-12%) @ 9.2(14)ne	.11
Sylvania	(1 ea)	r	**	Plate I (+14%) @ 2.9(13)ne, Transconductance (-12%) @ 2.9(13)ne	₽ I

MATERIAL OR COMPONENT Tubes, Electron		DESIGN	ALLOWABLES	BASIS FOR	RADIATION
		ergs gm-(C)	m ²	DESIGN ALLOWABLES	EFFECTS REFERENCE No.
6AL5WA					
Receiving Two	in Diode				
CBS(Hytron)	(lea)	2.2(10)	1.7(15)ne 1.2(18)nt	Output V(0.0%), Emission I(+19%) @1(1%)ne	lp 548-557
GE	(lea)	2.2(10)	1.7(15)ne 1.2(18)nt	Output V(0.0%) Emission I (+20%)	1p 548-557
RCA	(2ea)	2.2(10)	1.7(15)ne 1.2(18)nt	Output V(-1%)@ 2.1(14)ne, Emission I(+200%)	lp 548-557
Sylvania	(lea)	2.2(10)	1.7(15)ne 1.2(18)nt	Output V(0.0%) Emission I(+10%)@ 1(14)ne	lp 548-557
Tung-Sol	(lea)	2.2(10)	1.7(15)ne 1.2(18)nt	Output V(0.0%) Emission I(+20%)@ 1.6(15)ne	lp 548-557
6au6wa					
Sharp Cutoff ature RF Pent				_	
GE	(2ea)	3(10)	1.9(15)ne 1 (18)nt	Plate I(-8%)@ 4.8(14)ne Transconductance (+3.3%)@ 2(14)ne	1p 558-568
Sylvania	(2ea)	3(10)	1.9(15)ne 1 (18)nt	Plate I(+12%)@ 1.4(15)ne Transconductance (+5%)@ 1.2(15)ne	1p 558-568
Tung-Sol	(2ea)	3(10)	1.9(15)ne 1 (18)nt	Plate I(-23%)@ 1.3(15)ne Transconductance (-14%)	1p 558-568

MATERIAL OR COMPONENT Tubes, Electron		DESIGN	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
		ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
6EE6/5750 Miniature Pen Converter	Miniature Pentagrid				
GE	(6ea)	3.3(10)	1.1(15)ne 1.1(18)nt	Plate I(+5.9)% @ 9(13)ne Screen I(-6.1%)@ 8.1(14)ne Grid V(-14%)@ 3.1(14)ne	lp 569-579
6C4 Hi Freq. Med: Triode	ium-Mu				
GE	(2ea)		1.1(15)ne 1.1(18)nt	Plate I(-31%)@ 1.4(14)ne Emission I(-30%)@ 1.4(14)ne	lp 580-589
RCA	(2ea)		1.1(15)ne 1.1(18)nt	Plate I(-48%)@ 5.9(14)ne Emission I(-35%)@ 5.6(14)ne	lp 580-589
Tung-Sol	(2 ea)		1.1(15)ne 1.1(18)nt	Plate I(-30%)@ 7.1(14)ne Emission I(-23%)@ 2.4(14)ne	lp 580-589
616WGB Beam Power Ar Tung-Sol			3 (15)ne 1.4(18)nt	Plate I(+33%)@ 1.9(15)ne Screen I(-24.4%)@ 8.1(14)ne, believed gessy	2p 602-606

	MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR	RAPIATION EFFECTS
Tubes, Electron		ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
12.\T7\/A					
Twin Triode (1	Mini-				
GE	(3e a)	4.4(10)	2.9(15)ne	Plate I(+70.8%)@ 3(14)ne	2p 501-504
			1.4(18)nt	gassy	
Sylvania	(3ea)	4.4(10)	2.9(15)ne	Plate I (+38,5)@ 1.1(15)ne	2p 501-50l
	1		1.4(18)nt		
12/107/6189					
Twin Troide (Fature)	lin i -				
GE	(3ea)	3.2(10)	1.4(15)ne	Plate I(-24.55)@ 1.5(14)ne	2p 498-500
:			1.1(18)nt	1.)(14)he	
Sylvania	(3ea)	3.2(10)	1.4(15)ne	Plate I(-32.2%)⊖ 1.5(14)ne	2p 498-500
			1.1(18)nt	1.)(14)ne	
CD-16 Twin Troice (Comic) Eitel-McCullou		3.5(10)	2.1(15)ne	Plate I(+2 8. 5%)© 1.5(15)ne	2p 506
	(cea)		1.2(18)nt	1.3(13)He	
<u>CD-18</u>					
Miniature Charr off Pentode (C mic)					
Eitel-McCullou	igh (4ea)	3.5(10)	1.5(15)ne	Plate I(+66.7%)@ 2.9(14)ne. 1 Failure	2p 569-573

MATERIAL OR COMPONENT	DESIGN	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
Tubes, Electron	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
	3 (0)			
SK-221F				
Reflex Klystron				
Sylvania (2ea)	8.5(10)	6.2(16) (E>1Mev)	freq.(+0.16%) power output (30p 83-90
371B				
HiVacuum Half-Wave Rectifier				
Electronic Enter- prises (3ea)	1.1(9)	5.1(14)ne 2.7(17)nt	Plate I(-88%) 1 Failed in-pile due to glass fracture	2p 453-458
Electronic Enter- prises (lea)	4(9)		Plate I(-2.3%)@ 6.9(8)ergs/gm-(C)	2p 611
United Electronics (les)	4(9)	. 7/1	Plate I(-2.4%)@ 6.9(8)ergs/gm-(C)	2p 611
United Electronics (3ea)	1.1(9)	5.1(14)ne 2.7(17)nt	Plate I(+72.5%)@ 2.9(13)ne, 2 failed in-pile due to glass fracture	2p 453-458
<u>4-65A</u>				
Transmitting Tetrode				
Eitel-McCullough (6ea)	~8.2(9)	~8(13)ne ~8(16)nt	Grid V - all tubes failed in pile due to glass fracture	lp 590-595

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION
COMPONENT Tubes, Electron	ergs gm-(C)	n cm²	Design Allowables	REFERENCE No.
1011	gii-(U)	CIN		
<u>583</u>				
Hi-Vacuum, Clipper, Diode	1			
United Electronics (6ea)	2(9)	3.9(14)ne 4.4(17)nt	Plate I(+102%)@ 1.1(14)ne, all had fractured envelopes	lp 596-605
BL800A				
Klystron				(1.122
Bomac (3ea) (2ea with cadmium shields)	6.8(10)	3.5(16) (E >0.5 Me v)	Beam I(±5%) freq.(-50%) power out (+75%) all survived but sil icon rubber anode caps deteriorated	6p 27, 39, 53
829В				
Push-Pull RF Beem Power Amplifier				
RCA (6ea)	2(10)	2.4(14)ne 1.4(17)nt	all failed in-pile due to glass frac- ture	lp 606-612
SN-2146B				
Metal-Ceramic Pen- tode				
S yl∵ania (5ea)		8.8(15) (E > 0.5 Mev)	no change in tube characteristics noted	35p 10.77-81

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Tubes, Election	gm-(C)	cm		
SN-2225A				
Twin-Triode (Cer- amic)		-		
Sylvania	6.3(10)	1.6(16) (E>0.5 Mev)	Large Grid I increase, probably not suitable for Nuclear use	35p 10.73-77
<u>5517</u>				
Half-Wave Rectifier				
R a ytheon (5ea)	2.3(9)	6.8(14)ne 8.5(17)nt	Cathode I (+10.4%)© 4.3(12)ne	2p 447-449
<u>5636</u>				
Subminiature, dual- control Pentode				
GE (2ea)	3.8(10)	2.4(15)ne 1.2(18)nt	Plate I(-52.7%) & Screen I(-57.2%)() 3.1(13)ne	2p 586-591
Sylvania (2ea)	3.8(10)	2.4(15)ne 1.2(18)nt	Plate I(-32%) & Screen I(- 37%)@ 3.1(13)ne	
Tung-Sol (2ea)	3.8(10)	2.4(15)ne 1.2(18)nt	Plate I(-29%) & Screen I(-35%)© 3.1(13)ne	2p 586 - 591
1				

MATERIAL OR COMPONENT Tubes, Electror		DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
		ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
5639					
Subminiature Amplifier; P					
Raytheon	(3e a)	4.5(10)	2.5(15)ne 1.6(18)nt	Plate I(+16.4%)@ 1.5(15)ne	2p 557-561
Sylvania	(3ea)	4.5(10)	2.5(15)ne 1.6(18)nt	Plate I(-17.4%)@ 1.7(15)ne	2p 557-561
<u> </u> 			=		
<u>5643</u>					
Subminiature tron Gas Tet					
Sylvania	(6ea)	1.1(10)	9.1(14)ne 4.8(17)nt	Plate I(-3.4%)@ 1.5(14)ne, two failed in-pile	lp 613-620
<u>5651</u>					
Voltage Refe Tube	rence		1		,
Raytheon	(3e a)	3.5(10)	1.2(15)ne 1.2(18)nt	Plate V @ 3.5 mAdc (+5%) @ 9(14)ne,	lp 621-629
RCA	(3e a)	3.5(10)	1.2(15)ne 1.2(18)nt	Plate V @ 3.5 mAdc (+2.5%) @ 8.3(14)ne	1p 621-629
					·
			1		

	MATERIAL OR		LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron		ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Tuoco, Erc	COTON	gii-(c)	CM		
<u>5670</u>					
Miniature M Twin Triode					
GE	(2e a)	4.1(10)	2.7(15)ne 1.3(18)nt	Plate I(+36%)@ 3.7(14)ne, gassy	2p 518-525
Sylvania	(2e a)	4.1(10)	2.7(15)ne 1.3(18)nt	Plate I(+28.5%)@ 2(15)ne, gassy	2p 518-525
Tung-Sol	(2ea)	4.1(10)	2.7(15)ne 1.3(18)nt	Plate I(+66.6%)@ 2(15)ne, gassy	2p 518-525
<u>5687</u>					
Miniature, Lo Twin Triode	ow-Mu,	,			
Tung-Sol	(6ea)	3.1(10)	1.8(15)ne 1 (18)nt	Plate I(-22.2%)@ 1.3(15)ne	2p 508-510
<u>5702</u>					
Sharp Cut-of tode	ff Pen-				,
Raytheon	(12ea)	3.1(9)	7.6(13) (E>2.9 Mev)	Plate I(-5%)@ 4.1(12)nf	22p 3 , 4 6
Raytheon	(12ea)	3.9(10)	8.6(15) (E>2.9 Mev)	Plate I(+6%)@ 1.4(15)nf	23p 19, 32
	i				
:					

MATERIAL COMPONENT		DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
Tubes, Electron		ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
5703WA Subminiature	Priode				
Raytheon	(6e a)	2.9(10)	1.9(15)ne 9.4(17)nt	Cathode I(-4.7%)@ 3.7(14)ne, Transcon- ductance (-24%)@ 8.3(14)ne	2p 483-486
<u>5718</u>					
Subminiature	riode				
GE	(lea)	3.6(10)	1.2(15)ne 1.2(18)nt	Plate I(+17.5%)@ 7.6(13)ne	lp 630-636
R CA	(2ea)	3.6(10)	1.2(15)ne 1.2(18)nt	Plate I(-18%)@ 6.6(14)ne	1p 630-636
Sylvania	(2ea)	3.6(10)	1.2(15)ne 1.2(18)nt	Plate I(-13.8%)@ 8.3(14)ne	1p 630-636
<u>5719</u>					
Subminiature 5	Triode				
GE	(2ea)	2.5(10)	1.5(15)ne 8.7(17)nt	Cathode I(+12.5%) 3.6(14)ne, Trans- conductance (-12.4%) @ 1.3(15)ne	2p 487-495
RCA	(2ea)	2.5(10)		Cathode I(-14%)@ 1.3(15)ne Transconductance (-16%)@ 1.3(15)ne	2 ր 487 - 495
Sylvania	(2ea)	2.5(10)	1.5(15)ne 8.7(17)nt	Cathode I(-25%) & Transconductance (-25%)@ 1.3(15)ne	2p 487-495

MATERIAL COMPONENT		DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
1975 191-17	Tubes, Electron		n cm ²	DESIGN ALLOWABLES	REFERENCE No.
5725/6AS6W Miniature Sharp Cut-off, Dual Con-					
trol Pentode	(3ea)	4.1(10)	2.6(15)ne 1.4(18)nt	Plate I(-20.7%) & Screen I(-28%) @ 2(15)ne	2p 581-585
Tung-Sol	(3ea)	4.1(10)	2.6(15)ne 1.4(18)nt	Plate I(-22.8%) & Screen I(-45.4%)@ 2(15)ne	2p 581-585
5744WA	5744WA				
Subminiature F Triode	H1-Nu				
Raytheon	(6ea)	4(10)	2.4(15)ne 1.3(18)nt	Plate I(-19%)@ 6.8(13)ne	2p 480-482
5751WA					
Miniature Hi-1 Triode	h Twin				
GE	(2ea)	3.8(10)	2.5(15)ne 1.2(18)nt	Plate I(+50%)@ 1.8(15)ne	2p 511-517
Sylvania	(2ea)	3.8(10)	2.5(15)ne 1.2(18)nt	Plate I(+50%)@ 1.8(15)ne	2p 511-517
Tung-Sol	(2ea)	3.8(10)	2.5(15)ne 1.2(18)nt	Plate I(+57.1%)@ 1.5(15)ne	2p 511-517

MATERIAL		DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron		ergs gm-(C)	m ²	DESIGN ALLOWABLES	REFERENCE No.
5814WA					
Miniature Med Twin Triode	ium-Mu				
G.E.	(1 ea)	4.3(10)	1.8(15)ne 1.5(18)nt	Plate I(-33.9%) at 9.2(14)ne, possibly gassy	2 p 527-533
Sylvania	(2 ea)	11	11	Plate I (-25%) at 9.1 (14)ne	"
Tung-Sol	(2 ea)	11	n	Plate I(/18%) at 7.4(14)ne	11
					:
<u>5819</u> Photo-Multip	lier				
RCA		2.2(7) ergs/gm -(C)-hr		≠0.3 ma Anode current	9 p 91
<u>5829</u>					
Dual Diode					
Raytheon	(12ea)	3.1(9)	7.6(13) (E>2.9Mev)	${ m I_p/_{E_p}}$ Ratio (0.0%)	22 p 3, 48
Raytheon	(12ea)	3.9(10)	8.6(15) (E>2.9Mev)	Plate I (/ 1%) at 2.9(15)nf	23 p 19, 33
					l

				RADIATION
MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	EFFECTS
Tubes, Electron	ergs gm-(C)	m cm ²	ALLOWABLES	REFERENCE No.
	G., (4)	Cit		
5840 (6205)		<u>{</u>		}
Subminiature Sharp- cutoff Pentode	1			7
GE (2 ea)	6.6(10)	4.4(15)ne 2.1(18)nt	Plate I(/19.2%) and screen I(+16%) @ 2.4(12)ne, gassy	2 p 574 - 580
RCA (2 ea)	u	"	Plate I(/22.4%) and screen I(+15%) @ 2.4(12)ne	2 p 574-580
Sylvania (2 ea)	***	11	Plate I (+25.6%) and screen, I(+18.2%) @ 2.4(12)ne, gassy	11
<u>5876</u>				
Subminiature pencil Type, UNF Triode				
RCA (6 ea)	5.9(10)	3.3(15)ne 2.1(18)nt	Plate I(-1%) at 1.7(15)ne, all gassy	2 p 477-479
<u>5896</u>				
Subminiature dual diode				
GE (lea)	3.7(10)	1.2(15)ne 1.2(18)nt	Output V (-0.5%) at 8.6(13)ne, Emission I (-28%) at 1.1(15)ne	1 p 648-659
Sylvania (3ea)	11	и	Output V(-1%) at 7.6(13)ne, Emission I (/15%)	"
		_		

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron	ergs gm-(C)	m cm ²	DESIGN ALLOWABLES	REFERENCE No.
5899A Subminiature semi-re-				
mote cutoff Pentode				
GE (2ea)		3.2(15)ne 1.6(18)nt	Plate I(/21%) at 3.6(14)ne, Screen I (/25%) at 2.5(15)ne	2 p 562-568
Sonotone (2 ea	11	11	Plate I(-30%) at 2.5(15)ne, Screen I (-13.6%) at2(15)ne, All failed to Survive Irradiation	u
Sylvania (2ea)	11	11	Plate I(-7%) and Screen I (-8.3%) at 7.2(14)ne	"
<u>5902</u>				1
Subminiature Pentode (Beam Pwr.)				
GE (3ea)	3.3(10)	2.6(15)ne 1.4(18)nt	Plate I(-9.1%) at 1.4(14)ne, Screen I (-19%)	1 p 660-671
" (3ea)	3.1(9)	7.6(13) (E>2.9Mev)	Plate I (/5%) at 2.2(13)nf	22 p 3, 44
GE and Sylvania (12ea)	3.9(10)	8.6(15) (E>2.9Mev)	Plate I(/5%) at 6.6(15)nf	23 p 19,30
Sylvania (6ea)	3.1(9)		Plate I(/5%) at 2.2(13)nf	22 p 3, 44
" (3ea)	3.3(10)	2.6(15)ne 1.4(18)nt	Plate I(-13%) Screen I (-19%) at 1.9(15)ne	1 p 660-671

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Tubes, Electron	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
<u>5903</u>	•			
Dual diode (UHF)				
Sylvania (3ea)	1.6(9)	2.5(14) (E>O.5Mev)	Envelopes Turned Brown but no other Damage	35 p 10.71-73
<u>5907</u>				
Remote Cut-off Pentode				
Sylvania (3ea)	1.6(9)	2.5(14) (E>0.5Mev)	Envelopes Brown, No other damage	35 p 10.71-73
<u>5908</u>				
Sharp Cut-off, dual control pentode				
Sylvania (3ea)	1.6(9)	2.5(14) (E > 0.5Mev)	Envelopes Brown, No other damage	35 p 10.71-73
5993 Miniature, full-wave, hi-vacuum rectifier	:			
Bendix (6 ea)	3(10)	1.3(15)ne 1(18)nt	Output I(-1.3%) at 1.4(13)ne, All survived	2 p 463

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	, ,	DESIGN ALLOWABLES	EFFECTS
Tubes, Electron	gm-(C)	cm ²	ADDOWABLES	REFERENCE No.
6005/6AQ5 Miniature beam power pentode				
GE (6ea)	3.6(10)	1.6(15)ne 1.3(18)nt	Plate I(-37%) at 1(15)ne, Screen I (/16.7%) at 3.5(14)ne one failed in-pile	2 p 593-595
6021 Subminiature Medium		-		v
Mu twin triode	Į.	·		
GE (lea)	3.7(10)	2.3(15)ne 1.2(18)nt	Plate I(/37%) at 7.3(14)ne	2 p 534-536
Raytheon (2 ea)	u	н	Plate I(/180%) at 3.7(14)ne, gassy	"
Sylvania (2 ea)	"	11	Plate I(/61.4%) at 1.7(15)ne	2 p 534-536
" (llea)	3.1(9)	7.6(13) (E>2.9Mev)	$I_{ m p}/_{ m Ep}$ Ratio($ mu/5\%$) at 1.8(12)nf	22 p 3, 47
GE, Raytheon and Sylvania (12 tota)	3.9(10)	8.6(15) (E>2.9Mev)	Plate I(/ 3%) at 2.7(15)nf	23 p 19, 31
	tā.			

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
6080				
Low-Mu Twin Triode				
RCA (óea)	2.5(10)	8.2(14)ne 8.2(17)nt	Cathode V (-2.4%) at 2.7(13)ne	1 p 672-679
6111				
Subminiature Med-Mu Twin Triode				
GE (3 ea)		3 (17) nt	Tube failed	52 p 8, 17
" (2 ea)	2.9(10)	1.2(15)ne 1(18)nt	Plate I(/11.4%) at 1(15)ne	2 p 546-551
Raytheon (2 ea)	**	11	Plate I (/20%) at 3.8(14)ne	11
Sylvania (2ea)	"	tt	Plate I (-21%) at 3.2(14)ne	11
:				
			=	

MATERIAL OR COMPONENT	DESIGN A	ALLOWABILES	BASIS FOR DESIGN	RADIATION EFFECTS
Tubes, Electron	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
6112				
Subminiature hi-mu twin triode				
GE (2ea)	3 .6(10)	2(15)ne 1.3(18)nt	Plate I(-45%) at 3(14)ne	2 p 53 7- 543
GE(in circuit with GE 6111) (2 circuits)		3(17)nt	Circuit Failed	52 p 8
Raytheon (2 ea)	3.6(10)	2(15)ne 1.3(18)nt	Plate I(-20%) at 3(14)ne, gassy	2 p 537-543
Sylvania (2ea)	11	11 ,	Plate I(-27.3%) a 3(14)ne	u
		15		-
<u>6292</u>				
Multiplier Phototube				
Dumont (2ea)	2.27(7) ergs/gm -(C)-hr		/ 1.25 ma anode current	9 p 91
6384				
Beam Power Amplifier				
Bendix (9 ea)	4.1(10)	2.5(15)ne 1.3(18)nt	all failed due to glass fractures	2 p 596-601

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
6442 Ceramic Triode GE (5ea)	7(10)	5.5(16) (E > 0.3Mev)	No damage	31 p 2-14
SHF, intermediate- pwr. Traveling Wave Amplifier Federal Tele. and Radio (2ea)	3.1(9)	8.6(13)ne 6.5(16)nt	Both Failed at 7.2(13)ne	2 p 431-436
Triode GE (5ea)	7(10)	5.5(16) E > 0.3Mev)	No damage	31 p 14
7296 Ceramic Triode GE		2.2(18)nt	No damage	52 p 17
				·

MATERIAL OR		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT Tubes, Electron	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
7588 Ceramic Triode GE (4ea)	7 (10)	5.5(16) (E>0.3Mev)	No damage	31 p 14
7895 Metal-Ceramic Nuvistor RCA (4 Tested in 2 circuits)		1.4(18)nt	1 circuit failed at 9.7(17)nt and the other at 1.4(18)nt	52 p 17
Miscellaneous Type MgC Cold Cathode Type				
Tung-Sol (4 ea)	5(9)	5(16)nf	Three had large signal degradation	28 p 3

2.32 WIRE, ELECTRICAL

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Wire, Electrical	ergs gm-(C)	cm ²	DESIGN ALLONABLES	REFERENCE No.
Autolite Mil-W-5086, Ag Plated Cu conductor, Sili- cone Rubber Insula- tion, 1st Braid Com- bination of glass fibre and synthetic fibre, 2nd Braid	4.3 (10)	1.8(15)ne	Insulation R, de- creased by order ~10	60 p36, 42, 46
synthetic fiber and heat resistant Lacque Insulation, Hi-volt. (3 ea)	r			
Belden Mfg. Co. Mil-W-583, Heavy Beldtherm, Class "B" Insulation (Epoxide- Polyester Resin) Magnet Wire (3 ea)	2.8(10)	8.1(13)ne	Insulation R de- creased by order ~100	60 p36, 42, 46, 59
Heavy Nyclad, Nylon & Vinyl-Acetal Insulation, Magnet Wire (3 ea)	3.3(10)	1.1(15)ne	Insulation R decreases factor ~ 103	74 p33
Heavy Formvar, Vinyl- Acetal Insulation, Magnet Wire (3 ea)	3.2(10)	1.1(15)ne	Insulation R de- creases factor~10 ³ @ 1.1(14)ne	74 p31,26
Mil-W-583, Heavy Beldsol, Pclyurthane Disocyanate Insula- tion (3 ea)	2.8 (10)	8.1(14)ne	Insulation R decreases by order ~ 10 ² immediately	60 p37,43,46 60
		-		
			9	

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Wire, Electrical	ergs gm-(C)	n cm ²	ALLOWABLES	REFERENCE No.
Birnback Radio Co., 3 Mil-W-16878A #20 AWG, Insulated type E (Teflon) Hi- Temp.	inc. 4.3(10)	1.8(15)ne	Insulation R decreased by factor ~ 100	60 p35,46, 42,56
600V,Copper, Aircraft Shielded by Copper Shield (3 ea)	, 3.7(10)	1.4(15)ne 1.4(18)nt	Insulation R de- creased by factor ~10 ⁴ , two shorted in-pile	74 p30
" (3 ea)		2.2(16)ne	Insulation R decreased by factor ~10 ⁵ @ 1.7(16)ne. Two shorted in-pile	74 p42
600V, Copper, Air- craft (3 ea)	4(10)	2.2(15)ne	Insulation R de- creased by factor ~105@ 1.9(15)ne	74 p26, 39
" (3 ea)		2.2(16)ne	Insulation R decreased by factor ~10 ⁴ @ 1.9(16)ne	74 p42, 27
William Brand Co.				
AWG 22, 19 Strands #34 AWG Tinned Soft Cu; Insulation 0.016 Dow Corning Silastic 80 (10 ft)		4.1(16) (E>0.5Mev)	Cracked and became so Brittle that no tests could be performed	
AWG 22, 7 Strands of #30 AWG, Ag-plated Soft Cu, Insulation 0.031" GE XE-9003A (10 ft)		"	**	n

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs gm-(C)	n cm ²	DESIGN ALLONABLES	REFERENCE No.
Wire, Electrical William Brand Co. (Co AWG 20, 19 Strands of #32 AWG Ag-plated Soft Cu, Insulation 0.016" Silastic 80 (10 ft)		4.1(16) (E≫.5Mev)	Cracked and became so brittle that no tests could be performed.	35 plo. 96- 100
AWG 14, 19 Strands of #27 Tinned Soft Cu, Insulation 3/64" GE SE-975 (10 ft)	:	10	11	· •
AWG 14, 19 Strands of #27 AWG Ag-Plated Soft Cu, Insulation 3/64" Silastic 80 (10 ft)		11	2 †	n =
Gavitt Wire & Cable Mil-W-76A, Hook-up Covering "J", Nylon Jacket, Polyvinyl Insulation (3 ea)	<u>Co.</u> 3.3(10)	9.6(14)ne	Insulation R de- creased by factor ~10 ⁴ @ 1.9(12)ne	60 p35, 46, 48
" (3 ea)	3(11)	1.1(15)ne	Insulation R decreased by factor ~ 105 @ 3.8(13)ne. All shorted in-pile	74 p40, 27
Mil-W-76A, Hook-up Covering "B", Glass Yarn Braid, PVC Insulation (3 ea)	3.3(10)	9.6(14)ne	Insulation R decreased by factor ~103@ 1.8(12)ne	60 p35, 46, 48

MATERIAL OR COMPONENT		ALLOWABLES	DESIGN	RADIATION EFFECTS
Wire, Electrical	ergs gm-(C)	cm ²	ALLOWABLES	REFERENCE No.
Gavitt Wire & Cable Mil-W-76, Hook-up Covering "BS," Glass Yarn Braid & Cu Shiel PVC Insulation (3 ea)	4.2(10)	•) 2•2(15)ne	Insulation R de- creased by factor ~10 4.5(13)ne	60 p35,46. 52
" (3 ea)	3(11)	1.1(15)ne	Insulation R de- creased by factor ~10 ⁴ @ 3.2(13)ne	74 p40, 27
Mil-W-76A, Hook-up Covering "S" Cu Shiel PVC Insulation (3 ea)	4•3(10) d	2.2(15)ne	Insulation R de- creased by factor ~10 ⁴ @ 1.5(1 ⁴)ne	60 p35, 46,
Mil-W-76A, Hook-up Covering "U," PVC Insulation (3 ea)	4.1(10)	1.9(15)ne	Insulation R decrease factor ~103 @ 1.8(14)ne	60 p35,46,
Phelps Dodge Copper Pamil-W-583, Magnet Wire, Heavy Thermalese Single Daglas, Silicor Glass fiber, Dacron Yarn (polyester), Class "B" Insulation (Epoxide-polyester Resin) (Ethylane glycol & Terephthalic Acid Insulation)(3 ea	2.8(10)	Corp. 8.1(14)ne	Insulation R decreases by factor ~100 @ 9.8(13)ne	60 p36, 42, 46, 59

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Wire, Electrical	8m-(C)	cm ²	ALLOWABLES	REFERENCE No.
Phelps Dodge Copper I Mil-W-583, Magnet Wire, Heavy Thermale: Single Daglas, Silico Glass fiber, Dacron Yarn (polyester), Class "B" Insulation	2.6(11) e,		Insulation R decreases by factor ~100 @ 2.4(12)ne	74 p27, 47
(Epoxide-polyester Resin)(Ethylene glyco & Terephthalic Acid Insulation) (3 ea)	1			
Mil-W-583, Magnet Wire, Same as above but has double rather than single Daglas (3 ca)	2.8(10)	8.1(14)ne	Insulation R decreases by factor ~100 @ 9.8(13)ne	60 p36, 42, 46, 59
" (3 ea.)	2.6(11)	9.5(14)ne	Insulation R de- creases by factor ~100 @ 2.4(12)ne	74 p27,47
Mil-W-583, Magnet Wire, Single Solderez polyurathane, Disocyanate Insulatio (3 ea)	е,	8.1(14)ne	Insulation R de- creases by factor ~100 @ 9.8(13)ne	60 p37, 43, 46, 60
" (3 ea)	2.6(11)	9.5(14)ne	Insulation R decrease by factor~100 @ 3.3(12)ne	s 74 p50, 27
Mil-W-583, Magnet Wire, Heavy Thermalez "B" Insulation (epoxi Polyester Resin) (Ethylene glycol & Terephthalic Acid Insulation) (3 ea)		1.9(15)ne	Insulation R decrease by factor ~100 @ 6.8(12)ne	s 74 ph6, 26
Mil-W-583, Magnet Wire, Single Nyform Combination of Vinyl- Acetal & Nylon Enameled Insulation (3 ea)	n	Ħ	Insulation R decrease by factor ~100 € 8.4(12)ne	s 74 p26, 48

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Wire, Electrical	ergs gm-(C)	cm ²	DESIGN ALLOWABLES	REFERENCE No.
Phelps Dodge Copper 1 Mil-W-583, Magnet Wire, Heavy Nyform, similar to wire of last item on previous page (3 ea)	4.1(10)	. (Cont.)	Insulation R de- creases by factor ~10 @ 1.6(14)ne	74 p26, 36
" (3 ea)	2.6(11)	9.5(14)ne	Insulation R decrease by factor ~100 @ 2.4(12)ne	s 74 p27, 49
Mil-W-583, Magnet Wire, Heavy Formvar, Vinyl-Acetal Insulation (3 ea)	2.6(11)	9.5(14)ne	Insulation R decreases by factor ~100 @ 2.4(12)ne	74 p27, 49
Mil-W-583, Magnet Wire, Heavy Formvar, Single Daglas, Glass fibre, Dacron Yarn (Polyester) (3 ea	4.1(10)	2 .2(15) ne	Insulation R decreases by factor ~10 @ 2.3(14)ne	74 p26, 34
Same as above except Single Formvai & double Daglas(3 ea	2.6(11)	9.5(14)ne	Insulation R decreases by factor ~100 @ 3.4(12)ne	74 p27, 50

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
Wire, Electrical	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Sprague Products, Inc Mil-W-583, Magnet Wire, Ceroc, Teflon, Inorganic Ceramic & Teflon Insulation (3 ea)	<u>•</u> 3•5(10)	1.9(15)ne	All Shorted in- pile	74 p48, 26
Mil-W-583, Magnet Wire, Ceroc., Silicon Inorganic Ceramic & Silicone Insulation (3 ea)	" e,	11	Two shorted in-pile	74 p 26, 52
Miscellaneous Mil-W-16878C, Type (1000V) Extruded Insulation (Teflon -	1.3(9)	8.7(11)nf 1(12)nt	Very brittle & powdery	8 pl17, 114
Mil-W-16878C, Teflon Wire, Single Conductor 1000V, Ag-plated Cu Shield Jacket of Wram	ł	"	Flaked off & powdery	8 pl17, 114
Teflon, Also twisted pair types Mil-W-12349(SIGC) Modified Polyolefin Insulation	"	"	Withstood radiation in good condition	7ينو 8

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Wire, Electrical	ergs gm-(C)	n cm ²	DESIGN ALLOWABLES	REFERENCE No.
Miscellaneous (Cont.				
Miscellaneous (Cont. Mil-W-7139A, Inner Insulation. Two servings of wrapped Teflon. Outer - Two servings of braided fibre - glass im- pregnated with Teflor	1.3(9)	8.7(11)nf	Inner was very britt Outer is in good condition and con- fines inner	le 8 pl17
			_	
				1

3.0 PULSE IRRADIATION DATA

3.1 AMPLIFIERS

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS	
Amplifiers	ergs gm-(C)-sec	$\frac{n}{\text{cm}^2\text{-sec}}$	ALLOWABLES	REFERENCE No.	
Miscellaneous		·			
Two Stage Instrument Amplifier (Transistor 2N43A And 2N952)		1 (16)	Amplifier gain (-8%)	211 p 99	
Low Level Servo Amplifier (Transistor 3 Type 2N43)		1 (16)	Amplifier gain (-15%)	211 p 99	
Mixer or Buffer Magnetic Amplifier (Diodes) 4 Types HD 6006		1 (16)	No effect on amplifier gain	211 p 99	
5					

3.2

CAPACITORS

3.2.1

CERAMIC

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs	<u>n</u>	DESIGN ALLOWABLES	REFERENCE No.
Capacitors, Ceramic	gm-(C)-sec	cm ² -sec		
Aerovox Corp.				
0.0lmf C80AT	3.0 (9)	~9(16)	Capacitance (/1.6%) Diss. factor (/8.7%)	203 p 5, 12,62
Sprague Pdts Co.				
0.01mf Type C46	4.3 (9)	>1(17)	Capacitance (0%) diss.factor (/4%)	203 p 5
Vitramon, Inc.				.55
0,0047mf Type VK 20 (2ea)	3.1(9)	~9(16)	Capacitance #1 (/0.22%) Capacitance #2 (-0.11%) Diss.factor (-3.2%)	203 p 5,13,62
Miscellaneous		1		
0.01mf, ති00 VDC Disk Type Ceramic	2.7 (8)		Initial V change (-0.4%)	208 p 83, 109

3.2 CAPACITORS

3.2.2 ELECTROLYTIC

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS .
COMPONENT Capacitors, Electrolytic	ergs gm-(C)-sec	n cm ² -sec	DESIGN ALLOWABLES	REFERENCE No.
G.E. 6 mf, 600 VDC Dykanal G (chlori- nated diphenyl) TJU 6000J	4.3(8)		No Electric Breakdown, No capa- citance Change	208 p. 83, 114
Sprague Products Co. 10 mf TVL Type	1.78(9)	~5(16)	2270 Microamp Leakage Current	203 p. 6, 62
40 mt TVL Type	1.02(9)	~3(16)	>>2700 Microamp Leakage Current	203 p. 6, 62
100 mf TVL Type (2 en)	9.1(9)	~1(16)	569 Microamp Leakage Current	203 p. 6, 62
			-	

3.2 CAPACITORS

3.2.3 GLASS

MATERIAL OR		LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Capacitors, Glass	ergs gm-(C)-sec	n cm ² -sec	DESIGN ALLOWABLES	REFERENCE No.
Corning Glass Works				
O.Ol mf Glass Type CY30	3.4(9)	~9(16)	No change in capacitance	203 p. 5, 12, 62
International Busi- ness Machines				
O.Ol mf Evaporated Glass	4.0 (9)	~1(17)	No change in capacitance. 64 microamp leakage current.	203 p. 6, 62
			1	
			•	

3.2

CAPACITORS

3.2.4

MICA

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS		
	ergs gm-(C)-sec	<u>n</u>	ALLOWABLES	REFERENCE No.		
Capacitors, Mica	MIL C PSEC	cmsec				
El Menco						
0.01 mf Ruby Mica	4.3 (9)	>1(17)	Capacitance (-0.02%)	203 p. 12, 62		
0.01 mf, 500 VDC Silver-Mica	1.1 (8)		Capacitance (015%) Initial V Change (-0.6%)	208 p. 83, 101 109		

3.2 CAPACITORS

3.2.5 MYLAR

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS		
Capacitors, Mylar	ergs gm-(C)-sec	m cm ² -sec	ALLOWABLES	REFERE	NCE	No.
Good-All						¥.
1 mf, 600 VDC Type 613G	2.0 (8)		Capacitance (0115%)	208 p.	83,	101
Miscellaneous						
Type Polyethylene Terephthalate (Mylar) Capacitor	3.8(8)		Induced conductivity (ohm-cm) (1.1 x 10-11)	202 p.	14	
		:				
			g 151			
	1.0					
			_			

3.2

CAPACITORS

3.2.6

PAPER

MATERIAL OR COMPONENT Capacitors, Paper	DESIGN A ergs gm-(C)-sec	LLOWABLES n cm ² -sec	BASIS FOR DESIGN ALLOWABLES	RADIATIO EFFECTS REFERENCE	10
Cornell-Dubilier Co.				(0	
0.1mf 600 vdc 0il-Impregnated CP28A1EF104K Cub Type	2.7 (8)		Maximum Voltage Change less than 5.4 volts. Capacitance (-3.5%)	211 p. 62 208 p. 83,	101
1 mf 600 vdc Wax-Impregnated Pup Type (6 ea)	1.2 (8)		Initial V Change	208 p. 83,	101
6 mf - Epoxy Kish Potting Compound, Pup Type (6 each 1 mf in parallel)	1.1(8)		Maximum Voltage Change = 10.8 volts	211 p. 62	
Sprague Products Co.	6.3(8)		Capacitance (+7.6%)	200 p 12	
Vitamin Q Impreg- nated	0.3(0)		Diss. factor (-25%)	200 p 12	
0.47 mf 400 VDC Vitamin Q Impres- nated	2.0 (8)		Capacitance (0±12%)	208 p 83,	101

3.2 CAPACITORS

3.2.7 TANTALUM

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Capacitors, Tantalum	ergs		Design Allowables	REFERENCE No.
Capacitors, Tantalum	Mil-(C)-Sec	cmsec		
Sprague Products Co.				- 1
O.Ol mf Type 150D	3.7(9)	~1(17)	Capacitance (*0.36%) Diss factor (-3.2%) Leakage I (26.6 ma)	203 p. 12, 62
O.1 mf Type 150D	3.4(9)	~9(16)	Capacitance (+0.47%) Diss. factor (-10.9%)	203 p. 12, 62
l mf Type 150D	~3(9)	~7(16)	Capacitance (+0.77%) diss. factor (-13.9%)	203 p. 12, 62
4 mf Type 120D (2 ea)	2.1 (9)	~ 6.3(16)	Capacitance (+1.2%) Diss. factor (+24%)	203 p. 6, 12, 62
10 mf Type 150D (3 ea)	3.4(9)	~ 9(16)	Capacitance (+6.1%) Diss.factor (-27.2%) Leakage I (+160 ma)	203 p. 12, 62, 6
10 mf Type 120D (2 ea)	~ 2(9)	~ 6(16)	Capacitance (-2.5%) Diss.factor (-21.3%) Leakage I (19.7 ma)	203 p. 6, 12, 62
10 mf Type 109D (4 ea)	3 . 2 (9)	~ 7.2(16)	Capacitance (+6.5%) Diss.factor (-19.6%) Leakage I (872 ma)	203 p. 6, 12, 62
12 mf Type 120D	1.8 (9)	~5.8(16)	Capacitance (+3.7%) Diss factor (-7.2%)	203 p. 12, 62
22 mf Type 150D (2 ea)	~ 3.3(9)	~7.2(16)	Capacitance (+4.79%) Diss. factor (-3%)	203 p. 12, 62
12 mf Tantalex Type (2ea)	6.5(8)	~ 2(15)	Capacitance (+0.33%) Diss factor (+16.66%)	200 p. 12
	L	1		

3.3 CIRCULATORS

MATERIAL OR COMPONENT Circulators	DESIGN A ergs gm-(C)-sec	ALLOWABLES n cm ² -sec	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Sperry - Rand Corporation C - Band Coaxial Y - Junction Circulator			Changes in Output signal levels from the antenna port of the unpotted circulator and the antennand receiver ports of the potted circulator area less than 0.05db.	212 p. 5-1

3.4 COAXTAL CABLES

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	<u>n</u>	DESIGN ALLOWABLES	REFERENCE No.
Coaxial Cables	gm-(C)-sec	cm ² -sec	AMONADIEO	REFERENCE NO.
Phelps Dodge Copper Products				1
Air dielectric coaxial cable (Spirafil)	1.2 (7)		The degree of ioni- zation was found to increase when the air pressure was reduced below one atmosphere	212 p. 5 - 2
Miscellaneous				
Coaxial Cable (Open Circuit) RG-58/u and RG-9A/u.	~7 (9)		RG-58/U. Voltage Pulse of 0.2 → 05 volt is developed during the burst RG-9A/u voltage pulse of 1.0 to 2.0 volts.	204 p. 8
RG-62 Coaxial	~7 (9)		-0.90 induced voltage in cable	210 p. 29
RG-59/u	~7 (9)	1 (16)	0.10 induced voltage in cable & 6.1 induced microamps in cable	211 p. 21
RG- 62/u	~ 7 (9)	1 (16)	-15% capacitance	211 p. 21
RG-58/u Solid Polyethylene dielectric, solid center conductor shield tinned - Cu Braid	9.5 (8)	5.5(16)	Induced I 100 Ma @ 1500v Induced I 30 Ma no volts applied	205 p. 36-39, 45

MATERIAL OR COMPONENT Coaxial Cables	DESIGN A ergs gm-(C)-sec	LLOWABLES n cm²-sec	Basis For Design Allowables	RADIATION EFFECTS REFERENCE No.
RG-8/u	B.: (0)	Cin -sec		
Solid polyethylene dielectric stranded center conductor, shield Cu braid	1 (9)	5.9(16)	Induced I @ 1500v applied (600 A.e.) Induced I, no volts applied (25 A.e.)	205 p. 39-43, 45
			785	
man promise				
	9			
1				

3.5 CRYSTALS

MATERIAL OR COMPONENT Crystals	DESIGN A ergs gm-(C)-sec	LLOWABLES n cm ² -sec	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Bulova 300 GAX 161.73 KC	~1(9)		Oscillator Amplitude (-50%) Freq. remained stable	200 p21
		37		

3.6 <u>INDUCTORS</u>

MATERIAL OR COMPONENT	DESIGN A	ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Inductors	ergs gm-(C)-sec	n cm ² -sec	ALLOWABLES	REFERENCE No.
Ferrite Inductor Mn-Zn	2.8 (9)		Core located at the reactor. No shunt resistance. ΔV Percent = - 42	206 Table III
Ferrite Inductor Mn-Zn	2.8 (9)		Core located outside reactor with a 100 Km shunt resistance outside the reactor. $\Delta V = -58$ percent	
Ferrite Inductor Ni-Zn	2.8 (9)		No shunt resistance $\Delta V = -47\%$ Core located at the reactor	206 Table III
Ferrite Inductor Ni-Zn	2.8 (9)		No shunt resistance $\Delta V = -32$ percent Core located 60 in. back from the reactor	206 Table III
		D)	- Com	w.

3.7 ISOLATORS

MATERIAL OR COMPONENT Isolators	DESIGN A ergs gm-(C)-sec	LLOWABLES n cm ² -sec	Basis for Design Allowables	RADIATION EFFECTS REFERENCE No.
Sperry Rand Corporation Internal Magnet Coaxial Isolator		1.2 (17)	Changes in output signal levels from the potted and un- potted isolators are less than 0.05db.	212 p 5 - 1
;;;				

3.8 LIMITERS

MATERIAL OR COMPONENT	DESIGN A ergs gm-(C)-sec	LLOWABLES n cm ² -sec	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
Sperry Rand Corp. Gyromagnetic Coupling Limiter	3.1 (7)		Changes in output signal levels from the unpotted and potted limiters are less than 0.05db	212 p. 5-1

				· · · · · · · · · · · · · · · · · · ·
MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
	ergs	_n_	ALLOWABLES	REFERENCE No.
Oscillators	gm-(C)-sec	cm2-sec		
Hewlett - Packard Model 200 CD	1 (9)	1(12)	Output vanishes for a period of about	203 p34
Miscellaneous			30 mil sec	
22 Kc, Model 1250 A with 3 ea.Type 2N1139 & 2 ea.Type 2N495 Xsistors	3.8(8)	5.5 (15)	Freq. Shift (+26%) Amplitude Shift (-90%)	211 p98 - 99
22 Kc, Model 1250 A with 3 ea.Type 2N1139 & 2 ea. Type 2N495 Xsistors	1.1 (8)		Freq. Shift (-20%) Amplitude Shift (-30%)	211 p99,97
40 Kc, EMR Model 75B with 2 type 5840 Tube	3.8(8) s	4.9 (15)	Freq. Shift (-4%) Amplitude Shift (-40%)	211 p 98
40 Kc, EMR Model 75B with 2 type 5840 Tube	1.1 (8) s		Amplitude Shift (-7%) Freq. Shift (<1%)	211 p99, 97
70 Kc, TDI Model 1202A with 4 type 611 Tubes	3.5 (8)	5(15)	Freq. Shift (+20%) Amp. Shift (-60%)	211 p 98
70 Kc, TDI Model 1202A with 4 type 611 Tubes	1.1 (8)		Amp. Shift (-10%) Freq. Shift (+3%)	211 p 99, 97
900 cps. Oscillator with 3 type 2N903 Kistors (6ea)		1 (16)	4 Units failed	211 p 99
40 Kc, EMR Model 75B with types 5840,5718, 5719 Tubes(2 ea)	8.7(8)	1(15)	Center Frequency Shift (-0.6%)	211 p 100
70 Kc, EMR Model 75B with types 5840,5718, 5719 Tubes	8.7 (8)	1(15)	Center freq. Shift (- 0.4%)	211 p 100
Blocking Oscillator Multivibrator (6 ea) with 1N137A & 2N904		1 (16)	3 failed,output amp (-80%)	211 p 99

3:10 POWER SUPPLIES

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Power Supplies	ergs gm-(C)-sec	$\frac{n}{\text{cm}^2\text{-sec}}$	DESIGN ALLOWABLES	REFERENCE No.
Boeing Co. PS-210, 150 VDC				
Transistorized		1 (16)	Power unit went out of specification limits due to change in transistor parameters	216 p 1 211 p 97
PS-223, 250 VDC Fransistorized Power Supply		1 (16)	Output V (0.05V) failed, ripple V (0.3mv)	211 p 97
PS-210, 150VDC Fransistors: 1 type PN 338, 2 N 539, & 2N 575		1.4 (16)	Output V (-1.4%) poor regulation ripple V (1 V)	211 p 97
			ria.	

3.11 RESISTORS

3.11.1 CARBON COMPOSITION

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Carbon Composition	ergs	<u>n</u>	DESIGN ALLOWABLES	REFERENCE No.
	gm-(C)-sec	cm²-sec		
Allen Bradley Co.	j			
0.1 K 2W (3 ea) Unpotted	1.4(9)		Resistance (<1%)	200 p. 7 211 p. 47
1 K, 2W	1.6(9)		Resistance (1.65%)	200 p. 7
1 K, 2W	3.8(8)		Resistance (2.3%)	211 p. 47-49
1.021 K, 2W, paraf- fin potted	3.8(9)		Resistance (0.3%)	211 p. 47-49
10 K 2W (3 ea)	1(9)		Resistance (4.8%)	200 p. 7
10 K 2W, Unpotted	1.4(9)		Resistance (0.2%)	211 р. 47-49
10 K, 2W, paraffin potted	4.3(8)		Resistance (1.5%)	211 p. 47-49
100 K 2W (3 ca)	1(9)		Resistance (25%)	200 p. 7
100 K	7.4(9)		Resistance (-16%)	20 1 p. 29
100 K 2W Acrylic potted	2.3(8)		Resistance (2.2%)	211 p. 48
100 K, 2W, paraffin potted	4.2 (9)		Resistance (3.1%)	211 p. 48
1 Meg 2W (3 ea)	1.1(9)		Resistance (75%)	200 p. 7
1 Meg, 2W, Unpotted	2.3(8)		Resistance (5.6%)	211 p. 48
1 Meg, 2W, paraffin potted	8.1(8)		Resistance (30.5%)	211 p. 48
10 Meg 2W Unpotted (1 ea)	1.3(9)		Resistance (87%)	200 p. 7
10 Meg, 2W, Paraf- fin potted	4.8(9)		Resistance (85%)	211 p. 49

3.11 RESISTORS

3.11.2 CARBON FILM

MATERIAL OR COMPONENT	DESIGN A	LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Resistor, Carbon Film			ALLOWABLES	REFERENCE No.
Miscellaneous				
O.1K, 1/2 watt,	~3(9)	2(17)	$\Delta V(\max \text{ volts}) = 0$ $\frac{\Delta R}{R_0} = 0 \text{ (Applied }$ $\text{voltage} = 6 \text{ volts})$	206 p.6
0.1K, 1/2 watt	~3(9)	2(17)	ΔV (max. volts = -0.005 ΔR/ _{Ro} = -0.09 (Applied voltage = 22 volts.	206 p. 6
0.1K, 1/2 watt	~3 (9)	2(17)	$\Delta V(\text{Max. Volts}) = 0.005$ $\Delta R/R_0 = -0.04$ applied voltate = -45 volts	206 p. 6
0.1K, 1/2 watt,	~ 3(9)	2(17)	ΔV (max volts)=1.0 ΔR/ _{Ro} = 0, Applied voltage=3 vac	
1K, 1/2 watt	~ 3(9)	2(17)	\times V(max. volts)=0.16 \times AP _{RO} = -1.6. Applie voltage = 45 volts	206 p. 6 d
1K, 1/2 watt	~3(9)	2(17)	ΔV(max volts)=4.0 ΔR/ _{Ro} = -7.2 Applied Voltage = -200 volts	206 р б
10K, 1/2 watt	~3(9)	2(17)	$\Delta V = -0.65$ $\Delta R_{/R_0} = -21.6\%$	206 р б
100K, 1/2 watt	2(9)	2(17)	Applied Voltage = 12V ΔV(max volts) = -4.2 ΔR/R _O = -147%	206 p 6

3.11 RESISTORS

3.11.3 FILM

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Film	ergs gm-(C)-sec	n cm ² -sec	DESIGN ALLOWABLES	REFERENCE No.
Corning Glass	7			
100K Film Resistor	8.7(9)		Resistance(-18%)	201 p. 29
100K Film Resistor	1.1(10)		Resistance (-15%)	201. p. 29
International Resistar Corporation	ice			
100K Metal Film	7.9(9)		Resistance (-14%)	201 p. 29
100K Metal Film	5.9 (9)		Resistance (-15%)	201. p. 29
Victoreen Instrument (<u>o</u> .			
O.1K, 5W Vacuum-En- capsulated deposited Film	3.9(8)		Resistance (11.3%)	200 p. 7
				2.
,				
		1		

3.11 RESISTORS

3.11.4 WIREWOUND

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Resistors, Wirewound	ergs gm-(C)-sec	n cm ² -sec	DESIGN ALLOWABLES	REFERENCE No.
Mepco, Inc.				
10 K, Paraffin Pot- ted	6.0 (8)		1.8% change in resis- tance	211 p 52
100K, Paraffin Potte	19.4 (8)	;	13.2% change in resis	- 211 p 52
100K	8.7(9)		Resistance (-22%)	201 p 29
l Meg, Paraffin Pot- ted	8.5 (8)		53.6% change in resis	- 211 p 52
1 Meg, Paraffin Pot- ted	7.0 (8)		51.2% change in resis	- 211 p 52
				:
				Z

3.12 SEMICONDUCTOR DEVICES

MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Semiconductor Devices	ergs gm-(C)-sec	m cm ² -sec	ALLOWABLES	REFERENCE No.
IBMO1 (Tunnel Diode) Ge PNP	1.5 (9)		I _{co} (/98%)@ Peak	211 p 14
IN76A Ge Diode	2(8)		Reverse I pulse @ 15V (50 ua) @ 50 V (62 ua)	211 p 18
IN277 Diode	7.2(8)	1	peak increase I (132 ua)	211 p 18 Table 3
IN254 Alloy-Junction Silicon Diode Recti- fier		1 (17)	Increase of 200 to 450 ua from an original reverse (Leakage I of < 1 ua were observed during first half mil sec. The Amount of Change & subsequent recovery are Neutron dose dependent	210 p 2, 33
IN 629 Si Diode	2 (8)		Forward I pulse @ Ov (11 ua),Reverse I pulse @100v (18ua)	211 p 18
2N 123 Ge PNP	1.5 (9)		I _{co} increase from Pretest value of 0.4 ua to 2800 ua at peak Transient	211 p 1 ⁴
PN 167 Ge PNP	1.4(9)		I increases from pretest value of lua to 250 ua @peak Transient	211 p 14
IN251 Diode Transitron	5 (9)		Peak Leakage I @ 90°c (40 ua)	201 p 22
IN543 Diode Pacific Semiconductor, Inc.	7 (9)		Peak Leakage I @ 25 [°] c (425 ua)	201 p 23
IN 658 Diode Radio Receptor	~ 6 (9)		Peak Leakage I @ 25°c (310 ua)	201 p 24
2N335 Si NPN T.I.	2 (9)	Ц.	I _{co} Peak Transient value(35ua	211 p 14

MATERIAL OR COMPONENT Semiconductor Devices	ergs	LLOWABLES n cm ² -sec	BASIS FOR DESIGN ALLOWABLES	RADIATION EFFECTS REFERENCE No.
2n 335 r. i.	4 (9)		Peak I _{co} (800 ua) B/B _o (Failed)	201 p 7
2N 335 General Electric	1 (10)		Peak I (360ua) B/B _o (-90%)	201 p 8, 14
2N 335 S1 NPN GE	4 (9)	L	I Peak Transient (490 ua)	211 p 14
2n 338 si npm	1 (9)		Peak I _{co} Transient (540 ua)	211 p.14
2N 338 T I	1 (10)		Peak I _{CO} (240ua)	201 p 6
2n 338 si npn T I	2 (9)		I _{co} Peak Transient (35 ua)	211 p 14
2n 389 Si NPN	1 (9)		I _{co} Peak Transient (12000 ua)	211 p 14
2n 389 ti	1 (6)		B/B _o (-80%)	201 p 15
- 2N 495 Si PNP Philco	1 (10)		I _{co} Peak Transient (170 ua)	211 p 14 201 p 9
Z 3.9 Zener Diode U.S. Semiconductor,Inc	7.3 (9)		14 mv change in regulation V	201 p 27
IN 1313A Zener diode Hoffman	1 (9)		Knee reverse Characteristics (No change) Min diode V did not return to zer	211 p 19 o
SV-6 Zener diode Transitron	7.5 (8)		29 mv changes in regulator V	201 p <i>2</i> 7
651 C4 Zener diode TI	1 (9)		Knee reverse charac- teristics (no change) Min. diodes V did not return to zero	
SE 6M16 Selenium Diode Rectifier	2 (8)	1 (17)	Leakage I (+60%)	210 p 2,28
IBM 51 Ge PNP	1.4(9)		I _{CO} Peak Transient (3000 us)	211 p 14

MATERIAL OR COMPONENT		LLOWABLES	Basis For Design	RADIATION EFFECTS
	ergs	<u>n</u>	ALLOWABLES	REFERENCE No.
Semiconductor Devices	gm-(C)-sec	cm²-sec		
1275 Si PNP	1.5 (9)		I Peak Transient (66 ua)	211 p 14
HD6008 Si Diode	2 (8)		Current pulse @ 100v (75 ua)	211 p 18
li .				

3.13 TUBES, ELECTRON

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
Tubes, Electron	ergs gm-(C)-sec	n cm ² -sec	ALLOWABLES	REFERENCE No.
<u>0 B 2</u>				
Gas filled voltage regulator		:		
Westinghouse (2 ea)	1.1 (9)		12.95% Change in Current	200 P. 17
XDIC				
Gas Diode (Firing) V _f = 113v				ı
GE	~2.8(9)		Diode Bias firing = 88% of V	213 P 11
<u>1 P 28</u>			.=	
Photomultiplier				
RCA (1 ea)	1.8(8)		Current Change (8900 ± 500 ma)	211 P. 3 ⁴
4=1			4	7.
			±-	
,				

MATERIAL OR	DESIGN A	LLOWABLES	BASIS FOR	RADIATION
COMPONENT	ergs	n	DESIGN ALLOWABLES	EFFECTS
Tubes, Electron	gm-(C)-sec	cm ² -sec	ALLOWABLES	REFERENCE No.
2D21 Thyratrons G.E. (2 ea)	5.9(8)		9.85% change in tube current. Pulsed radiation caused non- conducting tubes to fire.	200 P. 15
G.E.	2.4 (9)		Critical Grid Voltage = -1.75 volts, applied grid voltage = -2 volts. The tube fire during this burst.	
G.E.	4.1(9)	0	Critical Grid Voltage 0.75 volts. Applie grid voltage = -4 vol The tube did not fire during the burst.	
G.E.	3.7(9)		Critical Grid Voltage = -4 volts. Applied grid voltage = -1.8 volts. The tubes fired during the burs	
••				,

MATERIAL OR	L	LLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT Tubes, Electron	ergs gm-(C)-sec	n cm ² -sec	DESIGN ALLOWABLES	REFERENCE No.
XD-100				
Gas firing Diode V _f = 100 V				**
G.E.	~2.8(9)		Diode Bias firing = 68% of V _f	213 p. 10
<u>XD-150</u>			:	
Gas firing Diode V _f = 150 V				
G.E.	~6.5(9)		Diode Bias firing = 58% of V _f	213 p. 12
XD-225				
Gas firing Diode V _f = 225 V				9
G.E.	~ 6.5(9)	ļ	Diode Bias firing = 55% of V _f	213 p. 13
<u>xD-300</u>				
Gas firing Diode V _f = 300 V				
G.E.	~6.5(9)		Diode Bias firing = 57% of V _f	213 p. 14
XD-375	ĺ	ļ		
Gas firing Diode $V_{\hat{\Gamma}} = 375 \text{ V}$				
G.E.	~8(9)		Diode Bias firing = 5 2% of V _f	213 p. 15

MATERIAL OR	DESIGN ALLOWABLES		BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs	n	DESIGN ALLOWABLES	REFERENCE No.
Tubes, Electron	gm-(C)-sec	cm ² -sec		TEN EIGHOL NO.
XD-750				
Gas firing Diode V _f = 750 V				
G.E.	~8(9)		Diode Bias firing = 62% of V _f	213 p. 16
1724G			31	
Ceramic Equivalent of 6J6		· -		
Sylvania (Operating under Applied Voltage)		3.8(16)	Signal Attenuation varies with Distance from the reactor. (-33%) @ 3.7 cm from reactor screen.	209 p. 15
Sylvania (No voltage)	ii.	3.1(16)	No effect on Tube	209 p. 24
2146 в			i	
Ceramic Equivalent of 6AQ5				
Sylvania (Operating Under Applied Volt- age)		3.8(16)	Tube Output Completed Attenuated for 150 milsec after Burst Tube Behavior varies with distance from Reactor.	. 209 p. 24

MATERIAL OR COMPONENT		LLOWABLES	BASIS FOR DESIGN	RADIATION EFFECTS
COMPONENT	ergs	<u>n</u>	ALLOWABLES	REFERENCE No.
Tubes, Electron	gm-(C)-sec	cm ² -sec		TER ENTRICE NO.
2225A Ceramic Equivalent of 12AT7		1		
Sylvania (Operating under Applied Voltage)		3.8(16)	Signal Amplitude attenuated to zero at 250 milsec after burst. Varies with distance from reactor	209 p. 15
Sylvania (No Voltage)		3 .1(16)	No effect on tube	209 p. 24
<u>z-5312</u>				
Voltage-Tunable Magne- tron (VTM)			,	
G.E. #1697 (air atmosphere)	1.7(9)	1(17)	Power Output (+64%) Freq. (-15 Mc or -0. 75%) Anode I (+10 ma. or +107.6%)	205 p. 19-25, 45
G.E. #1697 (Nitrogen Atmosphere)	3 .9(8)	~ 7(16)	Power (+64%) Freq. (No change)	225 p. 21
G.E. #1674	2.8(8)	1.6(16)	Freq. (-6 Mc or-0.269 Power output (+33%) Anode I (+3 ma or +20%) for 125 usec, Control Electrode I (+130 ua)	205 p. 31, 49
G.E.	1.5(9)		Negligible Effect on Parameters.	204 p. 53

		50 L 63	24.070 200	RADIATION
MATERIAL OR COMPONENT		ALLOWABLES	BASIS FOR DESIGN	EFFECTS
Thibes Fleetwon	ergs gm-(C)-sec	n	ALLOWABLES	REFERENCE No.
Tubes, Electron	MIN C FSEC	cm-sec		
<u>z-5337</u>]			
Voltage Tunable Magnetron				
GE #193	1.8 (9)	1.1 (17)	Power output (+2.5%) Freq. (Unchanged) Control Electrode I + 75 Ma. for 200 Asec	205 p. 12 -16, 45
<u>z-5428</u>				
Voltage Tunable Magnetron				
GE #30	9.2 (8)		Freq. & Power (Unaffected)Anode I (+3 ma or +20%) for 100usec,control Electrode I (+100 #4)	205 p. 31-35, 45
<u>5636</u>	140		for 250 usec.	
Triode				
Sylvania (3 ea)	6.4 (9)		0.98 ma increase in current @ cutoff	201 p. 33
<u>5840</u>				
Pentode			·	
RCA (3 ea)	1.1 (10)		0.82 ma increase in current @ cutoff	201 p. 33
<u>5896</u>				
Duo diode			ı	ļ.
Sylvania (8 ea)	7.8 (8)		Plate I (6%)	200 p. 14

MATERIAL OR	DESIGN A	ALLOWABLES	BASIS FOR	RADIATION EFFECTS
COMPONENT	ergs	n	DESIGN ALLOWABLES	REFERENCE No.
Tubes, Electron	gm-(C)-sec	cm ² -sec	AMACHADIEO .	REFERENCE NO.
6111 Sylvania (2 ea)	6.8 (9)		1.01 ma increase in current @ cutoff	201 p. 33
<u>6590</u>				
Subminiature Thyratron		1.8(15)ne	83% amplitude decrease	215 p. 58
6690				
Triode		9.8(14)ne	Plate signal (90%) Shift, no permanent damage	215 p. 51
7077				~~* *
Ceramic Triode				
GE (4 ea)	9.1 (9)		1.5 ma increase in current @ cutoff	201 p. 33
Unknown		1.8(15)ne	Plate signal (71%) Shift, no permanent damage	215 p. 51
		⊹ =		
	=3			

4.0 DESIGN ALLOWABLE REFERENCES

4.1 STEADY-STATE IRRADIATION

- Pfaff, E. R. and Skelton, R. D. Effects of Nuclear Radiation on Electronic Components. WADC-TR-57-361
 Vol. I. Admiral Corp., Chicago, Illinois. Contract No. AF 33(616)-3091. August 1958. DDC AD155789.
- Pfaff, E. R. and Skelton, R. D. Effects of Nuclear Radiation on Electronic Components. WADC-TR-57-361
 Vol. II. Admiral Corp., Chicago, Illinois. Contract No. AF 33(616)-3091. August 1958. DDC AD155790.
- Pfaff, E. R. Effects of Nuclear Radiation on Electronic Components. WADC-TR-57-361 Vol. III. Admiral Corp., Chicago, Illinois. January 1960.
- Pfaff, E. R. Effects of Nuclear Radiation on Electronic Components. WADC-TR-57-361 Vol. IV. Admiral Corp., Chicago, Illinois. Contract No. AF 33(616)-5464.

 December 1960.
- 5 Pfaff, E. R. Effects of Nuclear Radiation on Electronic Components, Phase I. Scientific Report #5. Admiral Corporation., Chicago, Illinois. Contract No. AF 33(616)7329. October 15, 1956. DDC AD111976.
- Pfaff, E. R. The Effects of Nuclear Radiation on Electronic Components, Vol. V Electron Tubes.
 WADC-TR-57-361 Vol V. Admiral Corp., Chicago, Illinois.
 Contract No. AF 33(616)7033. November 1962. DDC AD291657.
- 7 Sosnovosky, Dr. H. C. <u>Radiation Effects on Semiconductor Catalysts</u>. ASD-TDR-62-233. Armour Research Foundation, Chicago, Illinois. Contract No. AF 33(616)7740. October 1962.
- 8 Goodman, M. R. Nuclear Irradiation Effects on Plastic and Elastomeric Materials and Components for Space Vehicle Applications. Report No. 9123-920003. Bell Aerosystems Co., Buffalo, N. Y. September 1962.
- Journey, B. T. and Mitchell, J. C. Irradiation of a Telemetering System and Related Reconnaissance Sensors.

 ASD-TDR-62-420. Chance Vought Corp., Dallas, Texas.

 Contract No. AF 33(657)7229. May 1962. DDC AD283351.

- Armstrong, E. L. Results of Irradiation Tests on Electronic Parts and Modules Conducted at the Vallecitos Atomic Laboratory. Report No. SS-840-T62-6, IMSC-A054870. Lockheed Missiles and Space Co., Sunnyvale, Calif. August 27, 1962.
- 11 Kaufman, A. B. and Gardner, L. B. NGL Platform Nuclear Radiation Program, Vol. 1. ASD-TDR-61-511 Vol. I. Litton Systems, Inc., Woodland Hills, Calif. Contract No. AF 33(600)41452. January 1962. DDC AD284445.
- 12 Kaufman, A. B. and Gardner, L. B. NGL Platform Nuclear Radiation Program, Vol. II-Material and NGL Components

 Appendices Section. ASD-TDR-61-511 Vol. II. Litton
 Systems, Inc., Woodland Hills, Calif. Contract No.

 AF 33(600)41452. October 1961.
- Fritz, E. G. and Johnson, P. M. Hot-Flow Characteristics of Irradiated Polyethylene. Report No. NARF-63-1T, MR-N-300. General Dynamics Corp., Fort Worth, Texas. Contract No. AF 33(657)7201. May 15, 1963. DDC AD407815.
- Hanson, J. F. and Cary, H. The Effects of Gamma Induced Ionization on Electrical Properties of Printed Circuits and Connectors. Battelle Memorial Institute, Columbus, Ohio. for Chance Vought Corp. March 5, 1959.
- Nuclear Electronic Effects Program Report for the Tenth Quarter. Bell Telephone Laboratories, Inc., New York, New York. Contract No. AF 33(600)-32662. December 31, 1958. DDC AD214533.
- Nuclear Electronic Effects Program First Triannual
 Technical Note. WADC-TN-59-295. Bell Telephone
 Laboratories, Inc., New York, New York. Contract No.
 AF 33(616)-6235. July 15, 1959. DDC AD226168.
- Nuclear Electronic Effects Program Sixth Triannual
 Technical Note. WADC-TN-61-17. Bell Telephone
 Laboratories, Inc., New York, New York. Contract No.
 AF 33(616)-6235. March 15, 1961. DDC AD257011L.
- Nuclear Electronic Effects Program Seventh Triannual
 Technical Note, ASD-TDR-61-137. Bell Telephone
 Laboratories, Inc., New York, New York. Contract No.
 AF 33(616)-6235. July 15, 1961. DDC AD264121.

- Nuclear Electronics Effects Program Eight Triannual
 Technical Note, ASD-TDR-62-189, Bell Telephone
 Laboratories, Inc., New York, New York, Contract No.
 AF 33(616)-6235, November 15, 1961, DDC AD273100.
- Burnett, J. R. et al. Transducers for Nuclear Vehicles, Vol. II. ASD-TRD-62-551 Vol. II. Bendix Corp., Southfield (Detroit), Mich. Contract No. AF 33(616)-8077. January 24, 1962.
- Spears, A. B. Effect of Radiation on the Electrical Properties of Electronic Components, V-Relays. Report No. NARF-58-35T, MR-N-216. General Dynamics Corp., Fort Worth, Texas. Contract No. AF 33(600)-32054. August 22, 1958.
- Howell, D. et al. The Effects of Reactor Radiation on the Electrical Properties of Electronic Components,

 Part VI Resistors, Vacuum Tubes, and Piezo Crystals.

 Report No. NARF-60-1T, MR-N-250. General Dynamics

 Corp., Fort Worth, Texas. Contract No. AF 33(600)-28946.

 February 1, 1960.
- Palmer, E. E. and Howell, D. <u>The Effects of Reactor</u>
 Radiation on the Electrical Properties of Electronic
 Components, Part VII Resistors and Vacuum Tubes.
 Report No. NARF-61-5T, MR-N-268. General Dynamics
 Corp., Fort Worth, Texas. Contract No. AF 33(600)-28946.
 June 7, 1961.
- Owens, W. R. "The Effects of Nuclear Radiation on High Temperature Thermistors." General Dynamics Corp., Fort Worth, Texas. Proceedings of the IRE.
 October 1961. pp. 296-298.
- Bauerlein, R. R. Effects of Irradiation on Plastic Laminates. Report No. NARF-59-8T, MR-N-225. General Dynamics Corp., Fort Worth, Texas. Contract No. AF 33(600)-32054. February 1959.
- Haley, F. A. Effects of Mixed-Field Radiation on Aircraft Fuels - I. Report No. NARF-58-TT, MR-N-194. General Dynamics Corp., Fort Worth, Texas. Contract No. AF 33(600)-32054. February 3, 1958.

- Gerstein, B., Schlueter, A. and Fuezo, A. Effects of
 Nuclear Radiation on Quartz Crystal Units. Report No.
 3. Admiral Corp., Chicago, Illinois. Contract No.
 DA36-039-SC-85322. March 30, 1962. DDC AD277814.
- Saelens, R. G. Nuclear Radiation Effects on the Cold Cathode-Type Electron Tube at the Curtis-Wright Five-Megawatt Research Reactor. USASRDL-TR-2153.

 U. S. Army Signal Research and Development Laboratory, Ft. Monmouth, N. J. DA Task No. 3A99-1300101.

 December 1960. DDC AD251147.
- Crewe, A. V. Reactor Development Program Progress
 Report. ANL-6619. Argonne National Laboratory,
 Argonne, Illinois. AEC Contract No. W-31-109-eng-38.
 September 1962.
- Hallmark, W. C. Radiation Effects Study for TERCOM.
 ASD-TDR-62-550. Chance Vought Corp., Dallas, Texas.
 Contract No. AF 33(616)-7250. May 1962. DDC AD284191.
- Aerothermodynamic Data and Design Criteria Pertinent to the Development of the Propulsion System of a Supersonic Low-Altitude, Nuclear Propelled Vehicle, Part II Technical Information, Series III Analysis and Tests, Vol. 13 Experimental Nuclear Radiation Effects Results. ASD-TDR-63-165 Vol. 13. Chance Vought Corporation, Dallas, Texas. Contract No. AF 33(657)-8686. March 1963.
- Lockheed Progress Report #10 Snapshot Irradiation.
 Report No. 347.60.00.00-E9-06. Lockheed Aircraft Corp.
 Sunnyvale, Calif. March 1, 1962.
- Hocraffer, V. D. <u>Permanent Effects of Gamma Radiation</u>
 on Various Switches. Laboratory Test Report No. 15027-1,
 File Reference #6335. Micro Switch Division, MirmeapolisHoneywell Regulator Co., Freeport, Illinois.
 December 30, 1960.
- Walker, R. C. and Scarborough, J. R. <u>Nuclear Radiation</u>
 Effects Test on Thermal and Silver-Zinc Batteries.

 Report No. CVC 2-53010/2R415. Chance Vought Corp.,
 Dallas, Texas. July 1962.

I	Radiation Effects Ref. Number	
	35	M and TC System Study - Final Engineering Report, Vol. I, Part I. Report No. BSR 371. Bendix Corp., Ann Arbor, Mich. Contract No. AF 33(600)-35026. December 1960.
	36	Lockheed Progress Report #7 - Snapshot Irradiation. No. IDC 6533.025. Lockheed Aircraft Corporation, Sunnyvale, Calif. February 1962.
	37	Walker, R. C. and Scarborough, J. R. <u>Nuclear</u> Radiation Effects Test of an Acceleration Integrating Switch. Report No. CVC 2-53010/2R507. Chance Vought Corp., Dallas, Texas. June 1962.
	38	Scarborough, J. R. Nuclear Radiation Effects Tests of a Permanent Magnet Generator. Report No. CVC 2-53010/2R506. Chance Vought Corp., Dallas, Texas. June 1962.
	39	Scarborough, J. R. <u>Nuclear Radiation Effects Test of a Rotary Actuator</u> . Report No. CVC 2-53010/2R380. Chance Vought Corp., Dallas, Texas. March 19, 1962.
	40	Walker, R. C. and Scarborough, J. R. Nuclear Radiation Effects Test of an Electromechanical Repeat Cycle Timer. Report No. CVC 2-53010/2R508. Chance Vought Corp., Dallas, Texas. June 1962.
	43.	Bradford, E. W. Irradiation Test of Selected Transducers. Report No. NARF-61-24T, MR-N-265. General Dynamics Corp. Ft. Worth, Texas. Contract No. AF 33(657)-7201. December 15, 1961.
	42 ·	Moss, R. W., Kooi, C. F. and Baldwin, M. E. Neutron and Gamma Irradiation of Some Square Loop and Microwave Ferrites. AIEE Conference Paper No. CP60-1015. Boeing Airplane Co., Seattle, Washington and Lockheed Aircraft Corp., Palo Alto, Calif. August 1960.
	43	Dorst, S. O. and Wurzel, L. H. "The Effect of Radiation Enviornment on Film Resistors." Sprague Electric Co., Nashua, N. H. IRE Convention Record. March 26-29, 1962. Part 6. pp. 206-214.

Radiation Effects Ref. Number	
44	Haley, F. A. Effects of Mixed-Field Radiation on Lubrication Oils. Report No. NARF-61-22T, MR-N-281. General Dynamics Corp., Ft. Worth, Texas. Contract No. AF 33(657)-7201. November 15, 1961.
45	Pryor, II; S.G. Reliability Testing of Capacitors in Combined Environments. Nuclear Report No. 116. Lockheed Aircraft Corp., Georgia Div., Marietta, Ga. Contract No. AF 33(600)-38947. December 1960.
) <u>+</u> 6	Fritz, E. G. and Johnson, P. M. Compression-Set Behavior of Irradiated Elastomers. Report No. NARF- 62-10T, MR-N-296. General Dynamics, Ft. Worth, Texas Contract No. AF 33(657)-7201. August 1962.
47	MacCullen, A. Gamma Irradiation of an Electro- Hydraulic Servo Test Loop Using Oronite 8515 Hydraulic Fluid. WADC-TR-59-592. Lockheed Aircraft Corp., GNL, Dawsonville, Ga. Contract No. AF 33(600)-38947. Jan. 1960.
43	Voyce, A. M. A New Low-Frequency Amplifier with Radiation-Tolerant Properties. Report No. NARF-60-20-T, MR-N-257. General Dynamics Corp., Ft. Worth, Texas. Contract No. AF 33(600)-38946. December 30, 1960.
49	Spencer, R. Development and Evaluation of Electron Tube Glasses Resistant to Radiation Damage. 2nd Series - Annual Progress Report. Chatham Electronics Div. of Tung-Sol Electric, Inc., Livingston, N. J. Contract No. DA36-039-SC-78312. May 1, 1960. DDC AD243561.
50	Shellhase, E. C. et al. <u>Effects of Reactor Irradiation on the Properties of Mix-Bis (Phenoxyphenyl)</u> Ether Operating in a Hydraulic Pump Loop. Report No. NARF-62-3T, MR-N-292. General Dynamics Corp., Ft. Worth, Texas.Contract No. AF33(657)-7201. March 30, 1962.
51	Scarborough, J. R. and Laden, S. C. <u>Nuclear Radiation</u> <u>Effects Test of an Air Turbine Drive Generator Set.</u> Report No. CVC 2-53010/2R50077. Chance Vought Corp., Dallas, Texas. Contract No. AF 33(616)-7250. July 1962.

Radiation Effects Ref. Number.	
52	Mitchell, J. C. High-Flux Irradiation of Electronic Components. Report No. CVC AER-ElR-2-53-1-/2R379 Chance Vought Corp., Dallas, Texas. March 15, 1962
53	Lockheed Snapshot Progress Report No. 11 at GE Vallecitos Laboratory. Report No. 347.60.00.00-E9-10. Lockheed Aircraft Corp., Sunnyvale, Calif. May 1962.
51.	Howell, Jr., D. B., et al. <u>Irradiation of an AN/ARC-34 Transceiver</u> . Nuclear Report No. 80. Lockheed Aircraft Corp., Georgia Div., Marietta, Ga. Contract No. AF 33(600)-32055 and AF 33 (600)-38947. February 1960.
55	Zelmer, Capt. USAF, M.E. and Johnson, D. R. Radiation Effects on Electronic Components: A Comparison of Paper Capacitors Impregnated with Vitamin "Q" Mineral Oil and Bis-(P-Phenoxyphenyl) Ether. WADC-TR-60-645. Wright-Patterson AFB, Ohio. Project 7360. November 1960
55	Keller, R. L. Nuclear Radiation of Reinforced Plastic Materials. WADC-TR-56-296 Supplement I. Wright-Patterson AFR, Ohio. Project No. 7340. December 1959.
57	Schmidt, D. L. and Johnson R. H. 1/Lt's U.S.A.F. Effects of Qamma Radiation on Aircraft Transparent Materials, Part I. WADC-TR-56-557. Wright-Patterson AFR, Ohio. Project No. 7340. March 1957. DDC AD118111.
58	Harris, S. F. and Bumpas, Jr., C. F. Pressure and Temperature Instrumentation for Dynamic Measurements in the KEMB Program. Report No. NAA-SR-4709. Atomics International Division of North American Aviation, Inc., Cunoga, Calif. Contract No. AT (11-1)-Gen-3. November 1960.
50	Sery, R. S. et. al. Radiation Damage Thresholds for Permanent Magnets. HOMTR 61-45. U.S. Naval Ordnance Labs., White Oak, Maryland. Task No. REMA-02008/2121/R007-01-001. Pay 13, 1961. DDC AD262051.
60	Pfaff, E. R. The Effects of Nuclear Radiation on Electronic Components, Phase 2. Scientific Report No. 1. Admiral Corporation, Chicago, Illinois. Contract No. AF 33(616)-5464. April 1958. DDC AD159900.

0.00

Radiatio	on
Effects	Ref.
Mumber	

- Sery, R. S. and Gordon, D. I. <u>Nuclear Irradiation Effects</u>
 on Ferromagnetic Core Materials. <u>NAVORD Report 6127</u>.
 U. S. <u>Naval Ordnance Lab.</u>, White Oak, Maryland.
 June 3, 1958. <u>DDC AD202404</u>.
- Gardner, L. B. et al. Field-Effects Device Neutron Irradiation. Litton Corp., Woodland Hills, Calif. and Chance Vought Corp., Dallas, Texas. January 1962.
- Campbell, F. J. Effects of Combining Thermal and
 Radiation Environments on Magnet Wire Life. Progress
 Report. U. S. Naval Research Laboratory, Washington, D.C.
 April 1963.
- Decker, L. A. The Effect of Radiation and Nitric Acid-Nitrate Salt Solution on Some Mon-Metallic Materials. Report No. IDO-14598. Phillips Petroleum Co., Idaho Falls, Idaho. Contract No. AT(10-1)-205. December 10, 1962.
- Rogers, J. and Craig, C. L. Degradation of Electrical Insulation from Reactor Irradiation. AIEE Conference Paper No. CP 62-1297. Sperry Gyroscope Company, Great Neck, New York. June 1962.
- Gordon, D. I. and Sery, R. S. Effects of Charged Particles and Neutrons on Magnetic Materials.

 IEEE Transactions Paper No. 63-950. U. S. Naval Ordnance Laboratory, Silver Spring, Maryland.

 June 1963.
- Kaufman, A. B. "Which Soft Solder for Nuclear Service?" Litton I dustries, Woodland Hills, Calif. Reprint from Materials In Design Engineering. February 1960. pp. 37-90.
- Borsoff, V. N. et al. <u>High Temperature Lubrication</u>
 in the Presence of Nuclear Irradiation. WADD-TR-60-424.
 Shell Development Co., Emeryville, Calif. Contract
 No. AF 33(616)-6656. Hovember 1960.
- Fritz, E. G. and Johnson, R. M. Compression Set
 Behavior of Irradiated Silicone Elastomers. Report
 No. NARF-63-2T, IR-N-301. General Dynamics Corp.,
 Ft. Worth, Texas. Contract No. AF 33(657)-7201.
 May 15, 1963. DDC AD406689.

Radiatio	on	
Effects	Ref.	
Number		

- 70 Final Development Report For Evaluation-Development
 of MIL-C-14157B Capacitors for Nuclear Radiation
 Environments. Admiral Corp., Chicago, Illinois.
 Contract No. NObsr-77612. August 21, 1961. DDC AD265046.
- Ayer, J. E. and Pokorny, G. J. The Performance of a Motor, a Switch, and Two Types of Pressure Pickup in a High Gamma-Flux Environment. ANL-6347.

 Argonne National Laboratory, Argonne, Illinois.
 Contract No. W-31-109-eng-38. June 1961.
- Pfaff, E. R. The Effects of Nuclear Radiation on Electronic Components, Phase 2. Scientific Report R. Admiral Corp., Chicago, Illinois. Contract No. AF 33 (616)-5464. February 1960. DDC AD236450.
- Horrocks, L. A., 1/Lt. USAF. The Effects of Nuclear Radiation on Military Specification Paints.

 WADC-TR-57-186. Wright-Patterson AFB, Ohio.
 Project 7312. November 1957. DDC AD142143.
- Pfaif, E. R. The Nuclear Radiation on Electronic Components, Phase 2. Scientific Report #2. Admiral Corp., Chicago, Illinois. Contract No. AF 33(600)-5464.

 July 1953. DDC AD200278.
- 75 Byer, A. Nuclear Radiation Resistant Power Transistors.
 Final Report. Philos Corp., Landsdale, Penn.
 Contract No. DA36-039-SC-78307. July 1960. DDC AD249085.

FULSE IRRADIATION

4.2

Radiation Effects Ref. Number	
200	Some Effects of Pulse Neutron Radiation on Electronic Components - III, Results of January 1959 Godiva Test Series. International Business Machines Corp., Owego, New York. DDC AD234768.
201	Some Effects of Pulsed Neutron Radiation on Electronic Components - II, Results of August 1958 Godiva Test Series. International Business Machines Corp., Ovego, New York. DDC AD234767
202	Conrad, E. E. and Marcus, S. M. Gemma Induced Photoconductivity in a Polyethylene Terephtahalate Capacitor. DOFL TR-1037. Diamond Ordnance Fuze Laboratories, Washington, D. C. DOFL Project 23300. 4 May 1962.
203	Final Report on Some Effects of Pulsed Neutron Radiation on Electronic Components. WADC-TR-60-71. International Business Machines Corp., Owego, New York. Contract No. AF 33(600)-31315. January 1960. DDC AD 232336.
2014	Plankis, E. P. Radiation Effects on Microwave Devices. Report No. 3. General Electric Co., Schenectady, N.Y. Contract No. DA36-039-SC-87253. 31 March 1962. DDC AD276646.
205	Plankis, E. P. Radiation Effects on Microwave Devices. Report No. 4. General Electric Co., Schenectady, N.Y. Contract No. DA36-039-SC-87253. 30 June 1962. DDC AD286882.
206	Schlosser, W. et al. "Pulsed Nuclear Radiation Effects on Electronic Components and Materials." U. S. Army Electronics R&D Laboratory, Ft. Monmouth, N. J. Reprint from Electro-Technology. May 1963.
207	Odom, T. and Kothstein, T. Nuclear Pulse Testing of a Vidicon Camera Head. Frankford Arsenal, Philadelphia, Pa January 1961.

1

Radiation Effects Pef Tumber	•
2 33	Keister, G. L. <u>Transient Radiation Effects on Electronice</u> Part I- Kukla <u>Transient Radiation Tests</u> . <u>WADD-TN-61-8</u> . Boeing Airplane Co., <u>Seattle</u> , <u>Washington</u> . Contract No. AF 33(616)-7531. <u>January 1961</u> . <u>DDC AD 261933</u> .
20 י	Saelens, R. G. Radiation Effects on Ceramic Electron Tube Types at Godiva II Facility. USASRDL TR-2030. U. S. Army Signal R&D Laboratory, Ft. Monmouth, N. J. DA Task Nr. 3-19-01-701. 17 March 1959. DDC AD218006
310	Long, A. L. and Degenhart, H. J. Transient Effects of Pulsed Nuclear Radiation on Electronic Parts and
,	Materials. USASRDL TR-2007. U. S. Army Signal R & D Laboratory, Ft. Monmouth, N. J. DA Task Nr. 3-73-01-701. 20 January 1959. DDC AD227502.
211	Wyler, E. N. et al. Transient Radiation Effects on Electronic Components and Semiconductor Devices. REIC Report No. 26. Battelle Memorial Institute, Columbus, Ohio. Contract No. AF 33(657)-10085. April 19, 1963.
313	Harrison, G. R. and Scheiwe, J. R. Study of Pulsed Radiation Effects on Microwave Ferrite Duplexers. Report Mo. 2. Sperry Rand Corp., Clearwater, Fla. Contract No. DA35-039-SC-89113. November 1962. DDC AD296917.
213	Talbert, A. J. and Wilkin, M. D. <u>Pulsed Gamma</u> Initiation of Breakdown in Gas Tubes. DOFL TR-961. Diamond Ordnance Fuze Laboratory, Washington, D. C. DOFL Project 54050. 10 July 1962. DDC AD260821.
214	Plankis, E. P. Radiation Effects on Microwave Devices. Report No. 2. General Electric Co., Schenectady, New York. Contract No. DA36-039-SC-37253. 31 December 1961. DDC AD273695.
215	Sauer, H. S. A Study of Radiation Effects on Electronic Devices, Second Interim Report (Part II). EG & G Report No. B-2115. Edgerton, Germeshausen and Grier, Inc., Boston, Mass. Contract No. DA36-039-SC-73171. 31 July 1960. DDC AD249346.

Vassilakos, D. Radiation Test on the PS210 Transistorized 150 Volt Regulated Power Supply. Report No. D5-5851. Boeing Airplane Co., Seattle, Washington. Contract No. AF 33(600)-35030. October 14, 1959. DDC AD244774.

5.0 LIST OF ABBREVIATIONS USED IN DESIGN ALLOWABLES

absolute abs	kilovoltkv
alternating-current(as adj.only) a-c	kilovolt-ampere kva
American wire gauge Awg	kilowatt
ampereamp	magnetomotive force
ampere-hour amp-hr	maximum
amplification factor of vacuum tube	megacycle Mc
amplitude modulated (as noun or adj.) AM	megavolt-ampere
atmosphere	megawatt
audio-frequency (as adj. only) a-f	microampere
average avg	microfarad
Balance bal	micromicrofarad
British thermal unit	
	micromicron
calorie	micron
centimeter	microsecond
centimeter-gram-second(system)cgs	microvolt
centistokes	microwatt
circular-mil (adjective) cir-mil	milliampere ma
coefficient coeff	millihenry mh
counter electromotive force cemf	millimeter mm
cubic	millimicron wµ
current	millivolt mv
cycles per second cps	minimum min
decibel	minute mi
power in decibels referred to 1 milliwatt.dbm	ohm (2) spell out
degree deg	ohm-centimeterohm-cm
degree (angular measure) °	ounce
degree centigrade	pound
degree Fahrenheit F	pound per square inch psi
diffused	pound per square inch gauge psig
diameter	power pwr
direct-current (as adj. only) d-c	primary pri
dissipation factor D.F.or Diss.F	pulse time modulation PTM
electric	radio-frequency (as adj.) r-f
electromotive force emf	recommended rec
ergs/gm-(C) e/g-c	resistance R
footft	revolutions per minute rpm
frequency	short-circuit ratio scr
frequency modulated (as noun or adj.) FM	signal-to-noise ratio s/n
Germanium	single side bandssb
gersom	squaresq
gravitational acceleration g	standing-wave ratio swr
henry h	superhigh frequency shf
hermetically sealed H.S.or Herm.S	temperature temp
horsepower	thousand
hour	transformer
impedance Z	transistor Xsistor
inch in	ultrahigh frequency
intermediate-frequency (as adj.) i-f	very high frequency
Insulation Resistance	volt
kilocycles per second	volt-ampere va
kilomegacycles	watt
kilometer km	watthourwhr
King Control of the C	ard

6.0 CONVERSION FACTORS

To permit comparison of data from various sources, reported in a variety of units, it is frequently necessary to convert to a standard set of units. The standard units used in this document are ergs/gm-(C) for electromagnetic radiation and particles/ cm2 for any type of particulate radiation. In many cases, insufficient information is presented to permit an accurate conversion. The values, marked with an asterisk, are approximately correct for hydrocarbons, assuming an average energy of 1 Mev for the radiation. These values should be used with caution and only in cases where more applicable information is not available.

To Convert	То	Multiply By
Rads (for any material)	ergs/gm (of that material)	100
Roentgen	ergs/gm-(C)	87.7
Roentgen	ergs/gm (Tissue)	96.4
Rep	ergs/gm-(C)	84.6
Rep	ergs/gm (Tissue)	93•0
Rad (Tissue)	ergs/gm-(C)	90•9
Rad (water)	ergs/gm-(C)	90.0
*(1) Photons/cm ²	rep	5 x 10 ⁻¹⁰
*Rep/hr	n/cm ² -Sec	7.1 x 10 ⁴
*Rad/hr	n/cm ² -Sec	8.3 x 10 ⁴
*(2) Rem/hr	n/cm ² -Sec	8.3 x 10 ³
** Photons/cm ²	ergs/gm-(C)	5.7×10^{-8}

Based on average energy of 1 Mev

For any energy other than 1 Mev, See Figure 2

For any energy other than 1 Mev, See Figure 3 Based on Co-60 source

FIGURE 2 NUMBER OF GAMMA RAYS VS. DOSE RATE FOR VARIOUS CAMMA ENERGIES

FIGURE 3 CURVE TO CONVERT NEUTHON FLUX TO DOSE PATE

Dose Rate in mrem/hr

7.0 RADIATION EFFECTS FACILITIES UTILIZED IN GENERATING TEST DATA REFERENCED IN THIS REPORT

7.1 STEADY-STATE REACTOR FACILITIES

Argonne Research Reactor CP-5 Argonne National Laboratory Argonne, Illinois

R. E. No. 1, 2, 3, 4, 5, 6, 11, 12, 59, 60, 66, 72, 74

Battelle Research Reactor Battelle Memorial Institute Columbus, Ohio

R. E. No. 52, 65

Brookhaven Research Reactor Brookhaven National Laboratory Upton, New York

R. E. No. 15, 16, 17, 49, 59, 61, 65, 66

Curtiss-Wright Research Reactor Curtiss-Wright Corporation Quehanna, Pennsylvania

R. E. No. 28, 75

Ford Nuclear Reactor University of Michigan Ann Arbor, Michigan

R. E. No. 35

General Electric Nuclear Test Reactor (GENTR) Vallecitos Atomic Laboratory Pleasanton, California

R. E. No. 10, 32, 36, 53

Georgia Nuclear Laboratories Radiation Effects Reactor (GNL) Lockheed-Georgia Company Marietta, Georgia

R. E. No. 45, 54

Ground Test Reactor (GTR) General Dynamics Corporation Fort Worth, Texas

R. E. No. 9, 11, 12, 13, 21, 22, 23, 24, 25, 26, 30, 31, 34, 37, 38, 39, 40, 41, 44, 46, 48, 50, 51, 62, 69

Materials Testing Reactor (MTR) National Reactor Testing Station Idaho Falls, Idaho

R. E. No. 42, 56, 58

MTR & ETR Spent Fuel Radiation Irradiation Facility Ioaho Falls, Idaho

R. E. No. 46, 64

MIT Research Reactor Massachusetts Institute of Technology Cambridge, Massachusetts

R. E. No. 75

Oak Ridge Research Reactor Oak Ridge National Laboratory Oak Ridge, Tennessee

R. E. No. 58

Penn St. Research Reactor Penn St. University University Park, Pennsylvania

R. E. No. 16, 17, 18, 19, 75

7.2 GAMMA SOURCES AND PARTICLE ACCELERATORS

Admiral Cobalt-60 Source Admiral Corporation Chicago, Illinois

R. E. No. 1, 2, 3, 6, 60, 70, 74

Argonne Cyclotron and Linear Accelerator Facility Argonne National Laboratory Argonne, Illinois

R. E. No. 27

Argonal High Level Gamma Irradiation Facility Argonal National Laboratory Argonal, Illinois

R. E. No. 8, 33, 71

Armour Research Ion Bombardment Chamber Armour Research Foundation Chicago, Illinois

R. E. No. 7

Battelle Gamma-Irradiation Facility Battelle Memorial Institute Columbus, Ohio

R. E. No. 14

Bell Telephone Laboratories Cobalt-60 Gamma Cell New York, New York

R. E. No. 17

Brookhaven Gamma Irradiation Facility Brookhaven National Laboratory Upton, New York

R. E. No. 19

Cook Technological Gamma Facility Cook Electric Company Morton Grove, Illinois

R. E. No. 47

General Atomics 45 Mev Linear Accelerator General Dynamics Corporation San Diego, California

R. E. No. 213

Shell Van de Graaff Accelerator Shell Development Company

R. E. No. 68

University of Minnesota Gamma-Irradiation Facility University of Minnesota

R. E. No. 33

Van de Graaff (WNYRC) Western New York Research Center, Inc. Buffalo, New York

R. E. No. 8

WADD Cobalt-60 Source Wright-Patterson Air Force Base, Ohio

R. E. No. 11, 12, 55, 57, 73

Miscellaneous Cobalt-60 Sources

R. E. No. 63

7.3 PULSED REACTORS

DOFL TRIGA Mark F Harry Diamond Laboratories Washington, D. C.

R. E. No. 202

General Atomics TRIGA Mark F General Dynamics Corporation Torrey Pines, California

R. E. No. 207

Godiva Los Alamos Scientific Laboratory Los Alamos, New Mexico

R. E. No. 200, 201, 203, 205, 209, 210, 216

KEWB (Kinetic Experiments on Water Boilers) National Reactor Testing Station Idaho Falls, Idaho

R. E. No. 215

Kukla Lawrence Radiation Laboratory Livermore, California

R. E. No. 208

SPRF (Sandia Pulsed Reactor Facility) Sandia Corporation Albuquerque, New Mexico

R. E. No. 11, 12, 30, 204, 206, 212, 214

References for a detailed description of the above facilities.

- (1) Hr un, D. J. and Venwie, Jr. J. H. Survey of Irradiation Pacifities. USIC Report No. 31 (Part 1). Sattelle Jenorial Institute, Columbus, Ohio. Contract No. AFR3(157)-100 5. September 15, 1963.
- (a) Hamman, D. J. and Meazie, Jr. W. H. Survey of Particle Accelerators. REIC Report No. 31 (Part II). Rattelle Memorial Institute, Columbus, Onic. Contract D. AF 33(657)-100 5. September 15, 1963.

8.0 ADDITIONAL REFERENCES

The following list of references may be consulted for additional radiation effects information. These reports were received after the cut-off date for tabulating the "Design Allowables" and, therefore, were not used in this study.

- Chapin, W. E. et al. Space-Radiation Damage to Electronic Components and Materials. REIC Report No. 32. Battelle Memorial Institute, Columbus, Ohio. Contract No. AF 33(657)-10085. October 30, 1963.
- Curtsinger, B. E. Effects of Irradiation on Three Silicone Dielectric Fluids. Report No. NARF-63-7T, FZK-9-188. General Dynamics Corp., Fort Worth, Texas. Contract No. AF 33(657)-7201. July 31, 1963.
- 3. Burnett, J. R. et al. Calibration of Pressure Transducers for Pluto Radiation Environments. Report No. S-238-R. Edgerton. Germeshausen and Grier, Inc., Santa Barbara, California. Contract No. SANL 730/3186005 for University of California, Lawrence Radiation Laboratory. August 1963.
- 4. Study of Effect of High-Intensity Pulsed Nuclear Radiation on Electronic Parts and Materials (SCORRE), Report No. 10. IBM Report No. 63-928-12. IBM Corp., Owego, N.Y. Contract No. DA 36-039SC-85395. January 31, 1963. DDC AD404493.
- 5. Wicklein, H. W. et al. Godiva III Minuteman Radiation Effects Tests, October 1960. IDEP Report No. 347.60.00.00-C6-01.

 Boeing Airplane Company, Seattle, Washington. Contract No. AF 04(647)-289. December 30, 1960. DDC AD271339.
- 6. Shatzkes, M. and Boyd, G. Study of Effect of High-Intensity Pulsed Nuclear Radiation on Electronic Parts and Materials (SCORRE), Report No. 5. IBM Report No. 61-521-10. IBM Corp., Owego, New York. Contract No. DA 36-039SC85395. September 30, 1961. DDC AD267398.
- 7. Study of Effect of High-Intensity Pulsed Nuclear Radiation on Electronic Parts and Materials (SCORRE), Report No. 6. IBM Report No. 62-521-3. IBM Corporation, Owego, New York. Contract No. DA 36-039SC85395. December 31, 1961. DDC AD 273701.
- 8. Study of Effect of High-Intensity Pulsed Nuclear Radiation on Electronic Parts and Materials (SCORRE), Report No. 2. IBM Report No. 61-521-1. IBM Corporation, Owego, New York. Contract No. DA 36-039SC85395. December 31, 1960. DDC AD252023.

- 9. Pulsed Radiation Effects on Electronic Components, Second Triannual Report. IBM Report No. 60-521-10. IBM Corporation, Owego, New York. Contract No. AF 33(600)-40462. October 31, 1960. DDC AD245538L.
- Pulsed Radiation Effects on Electronic Components, Third Triannual Report. IBM Report No. 60-521-2. IBM Corporation, Owego, New York. Contract No. AF 33(600)-40462. February 28, 1961. DDC AD253120L.
- Wong, H. Y. and Price, W. E. Final Report on Evaluation of Field-Effect Transistors. Report No. IMSD 8-19-62-12. Lockheed Missiles and Space Company, Sunnyvale, California. October 4, 1962.
- 12. Lehr, L. J. et al. <u>Equipment Resign Consideration for Space Environment</u>. IDEP Report No. 347.60.00.00-64. Space Technology Laboratories, Inc., Los Angeles, California. February 1962. DDC AD288341.
- 13. Ihnat, M. E. Radiation From Space Powerplants and Its Effect Upon Material. RAD-9-TM-60-82. Avco Corporation, Wilmington, Massachusetts. Contract No. AF 04(647)-305. January 9, 1961. DDC AD249502.
- 14. Hamre, H. G. et al. Semiconductor Diode Performance in Nuclear Radiation Environments. Report No. ASD-TDR-52-12. Armour Research Foundation, Chicago, Illinois. Contract No. AF 33(616)-7329. May 1962.
- 15. Aboaf, J. A. et al. <u>Irradiation Damage to Glass</u>. Bausch and Lomb, Incorporated, Rochester, New York. Contract No. AT (39-1)-1312. November 1961.
- 16. Magee, R. M. et al. Study to Determine Effects of Fission
 Product Gamma Radiation on Electronic Parts and Equipment,
 Final Report. Report No. BSC 39655. Bendix Corporation,
 Ann Arbor, Michigan. Contract No. Nober-87267. August 1963.
- 17. NEEP-Nuclear Electronic Effects Program, Ninth Triannual
 Technical Note. Report No. ASD-TDR-62-477. Bell Telephone
 Laboratories, Inc., New York, New York. Contract No. AF
 33(616)-6235. March 15, 1962. DDC AD278181.
- 18. NEEP-Nuclear Electronic Effects Program, Eleventh Triannual
 Technical Note. Report No. ASD-TDR-62-1101. Bell Telephone
 Laboratories, Inc., New York, New York. Contract No. AF
 33(616)-6235. October 31, 1962.

- 19. Fritz, E. G. and Johnson, P. M. Tensile Behavior and Molecular Characteristics of Irradiated Elastomers. Report No. NARF-62-8T, MR-N-234. General Dynamics Corporation, Fort Worth, Texas. Contract No. AF 33(657)-7201. July 1962.
- 20. Fritz, E. G. and Johnson, P. M. Stress-Strain Behavior of Irradiated Polyurethane Elastomers. Report No. NARF-62-2T, MR MR-N-293. General Dynamics Corporation, Fort Worth, Texas. Contract No. AF 33(657)-7201. February 23, 1962.
- 21. Wattier, D. M. et al. <u>Effects of Reactor Radiation on the Engineering Properties of Elastomers and Plastics. Report No. NARF-62-5T, FZK-9-174. General Dynamics Corporation, Fort Worth, Texas. Contract No. AF 33(657)-7201. June 1962.</u>
- 22. Fritz, E. G. and Johnson, P. M. Ultimate and Pseudo-Equilibrium Tensile Properties of Irradiated Elastomers. Report No. NARF
 62- T. TR-N-295. General Dynamics Corp., Ft. Worth, Texas.

 Contract No. AF 33(657)-7201. August 1962.
- 23. Hopkins, G. R. et al. Transient Radiation Effects on Coaxial Cables. Report No. GA-3616. General Atomics Division of General Dynamics Corporation, San Diego, California. Contract No. DA 36-039-SC-89196. December 18, 1962. DDC AD295486.
- 24. Poll, R. A. and Van Lint, V. A. J. Transient Radiation Effects in Pressure Transducers. Report No. AFSWC-TDR-62-63. General Atomics Division of General Dynamics Corporation, San Diego, California. Contract No. AF 29(601)-4953. June 1962. NASA N62-16174.
- 25. Colley, H. C. A Report of the In-Pile Testing of 12 Bourns
 Trimpots XCI-42. Report No. DC 59-11-196. General Electric
 Company, Cincinnati, Ohio. November 11, 1959.
- 26. Jaffe, L. D. Effects of Space Environment Upon Plastics and Elastomers. Technical Report No. 32-176. Jet Propulsion Laboratory of California Institute of Technology, Pasadena, California. Contract No. NASw-6. November 16, 1961. DDC AD268432.
- 27. Research and Investigation on Radiation Resistant High
 Temperature Thermonic Circuitry. Report No. ASD-TDR-62-1039.
 General Electric Company, Owensboro, Kentucky. Contract No.
 AF 33(616)-8096. December 1962.
- 28. Perkins, C. W. Transient Radiation Effects on Passive Parts, Second Quarterly Progress Report. Report No. FR 63-17-37.

 Hughes Aircraft Company, Fullerton, California. Contract No. DA 36-039-SC-89112. November 30, 1962. DDC AD296880.

- 29. Golub, M. A. and Walrath, R. L. Radiation-Induced Reactions in Swollen Polymers. Report No. PMU-4062. Stanford Research Institute, Newlo Park, California. Contract No. AT(04-3)-115 November 30, 1962.
- 30. Falk, R. A. Nuclear Radiation Resistant Gyroscope Bearing
 Lubricants and Flotation Media, Part I. Report No. WADD-TR-60753 Part I. Sperry Gyroscope Company, Great Neck, New York.
 Contract No. AF 33(616)-6187. March 1961.
- 31. Honaker, W. C. and Bryant, F. R. Irradiation Effects of 40 and 440 MEV Protons on Transistors. Report No. NASA-TND-1490.
 Langley Research Center, Langley Field, Virginia. January 1963.
- 32. Rendler, N. J. Apparatus for In-pile Electrical Measurements and Effect of Radiation Upon Strain Guage Insulation Components.

 NRL Report No. 5674. U. S. Naval Research Laboratory,
 Washington, D. C. October 2, 1961. DDC AD265773.
- 33. Schindler, A. I. The Effects of Irradiation on Magnetic Properties of Alloys and Ferrites. NRL Report 5686. U. S. Naval Research Laboratory, Washington, D. C. August 11, 1961. DDC AD262261.
- 34. Zagorites, H. A. et al. Effects of Nuclear Radiation on Shipboard Electronic Equipment, 1. Some Effects of Simulated Transit Radiation on Parts, a. Transistors. Report No. USNRDL-TR-577. U. S. Naval Radiological Defense Laboratory, San Francisco, California. August 3, 1962. DDC AD287649.
- 35. Kilp, G. R. and Mitchell, P. V. Radiation Effects on Thermoelectric Materials. Report No. WCAP-1680. Westinghouse Electric Corporation, Pittsburgh, Pennsylvania. Contract No. AT (30-3)-500. May 1961.
- 36. Brownlee, J. and McNally, J. P. The Effects of Simulated Space Environments on Structural Plastic Materials. Report No. SP-TP-24, RD-R60-80. Aerojet-General Corporation, Azusa, Calif. August 1960. DDC AD293597.
- 37. RIFT Radiation Effects Program Radiation Test No. 7 DC

 Amplifier-Transducer Exciters. Report No. ND-409. LockheedGeorgia Company, Marietta, Georgia. Contract No. NAS 8-5600.
 October 7, 1963.
- 38. Ebeoglu, D. B. and Saur, A. J. Transient Radiation Effects in Electronic Materials, Report No. 3. Report No. AI-7860. Atomics International Division of North American Aviation, Inc., Canoga Park, California. Contract No. MIPR R62-16SC-00-93. December 26, 1962. DDC AD401170.

- 39. Chapin, W. E. et al. The Effects of Nuclear Radiation on Transducers. REIC Report No. 25. Battelle Memorial Institute, Columbus, Ohio. Contract No. AF 33(657)-10085. April 19, 1963. NASA N63-15866.
- 40. McNally, P. J. The Effect of Nuclear Radiation at Cryogenic Temperatures on Semiconductor Materials. REIC Report No. 30. Battelle Memorial Institute, Columbus, Ohio. Contract No. AF 33(657)-10085. September 30, 1963.
- 41. Perkins, C. W. Transient Radiation Effects on Passive Parts,
 Report No. 3. Report No. FR-63-17-102. Hughes Aircraft Co.,
 Fullerton, California. Contract No. DA 36-039SC-89112. February
 28, 1963. DDC AD405446.
- 42. Scheiwe, J. P. and Harrison, G. R. Study of Pulsed Radiation Effects on Microwave Ferrite Duplexers. Quarterly Report No. 3. Sperry Microwave Electronics Company, Clearwater, Florida. Contract No. DA 36-039SC-89113. February 1963. DDC AD407077.
- 43. Hopkins, G. R. et al. Transient Radiation Effects on Electronic Parts, Quarterly Progress Report No. 4. Report No. GA 4190.

 General Atomics Division of General Dynamics Corporation, San Diego, California. Contract No. DA 36-039SC-89196. May 30, 1963. DDC AD407501.
- 44. Dorman, D. R. Gamma Irradiation Effects on Candidate Electronic, Lighting, Optical, Instrument, and Structural Components for In-Reactor Monitoring Equipment. Report No. HW 76263. General Electric Company, Richland, Washington, Contract No. AT(45-1)-1350. January 23, 1963.
- 45. Gerstein, B. et al. Effects of Nuclear Radiation on Frequency Control Devices. Report No. 1. Admiral Corporation, Chicago, Illinois. Contract No. DA 36-039AMC-00002 (E). December 31, 1962. DDC AD 408427.
- 46. Study of Effect of High-Intensity Pulsed Nuclear Radiation on Electronic Parts and Materials (SCORRE), Report No. 9. IBM Report No. 63-521-1. IBM Corporation, Owego, New York. Contract No. DA 36-039SC-85395. September 30, 1962. DDC AD296023.
- 47. Hopkins, G. R. et al. Transient Radiation Effects on Electronic Parts, Report No. 3. Report No. GA-3858. General Atomics Division of General Dynamics Corporation, San Diego, Calif. Contract No. DA 36-039SC-89196. March 18, 1963. DDC AD299233.

1.7

- 48. Stanley, J. M. The Effects of Pulse Nuclear Radiation on Quartz
 Crystal Units.

 and Development Laboratory, Fort Monmouth, New Jersey. DA Task
 Nr. 3A99-15-001-02. November 1962. DDC AD298552.
- 49. Johnson, E. R. Literature Study of Radiation Effects on Electronic Devices. Final Report for December 1961 30

 November 1962. Stevens Institute of Technology, Roboken, Rev Jersey. Contract No. DA 36-039SC-89148. 1963. DDC AD412531.
- 50. Wicklien, H. W. Transient Radiation Effects in Coaxial Cables

 Due to Gamma-Neutron Pulses. Document No. D2-90172. Boeing

 Airplane Company, Seattle, Washington. May 15, 1962. DDC

 AD412858.
- 51. Degenhart, H. J. et al. Pulsed Nuclear Radiation Induced
 Transients in Electronic Parts and Materials (Godiva IV and V).

 USAELRDL TR-2299. U. S. Army Electronics Research and
 Development Laboratory, Fort Monmouth, New Jersey. January 1963.

 DDC AD409579.
- 52. Linden, E. G. and Lascaro, C. P. Neutron and Camma Radiation
 Effects on Dielectrics. USAELRDL TR-2323. U. S. Army Electronics
 Research and Development Laboratory, Fort Monmouth, New Jersey.

 January 1963. DDC AD409681.
- Nuclear Effects on Airborne Instrumentation Systems (Interis
 Report No. 1). TR No. SELWS-E-105. U. S. Army Electronics
 Research and Development Activity, White Sands Missile Paner.
 New Mexico. October 1962. DDC AD337637. (CONFIDENTIAL REPORT)
- 54. Hunter, E. T. and Wannemacher, H. E. Transient and Steady-State
 Nuclear Radiation Effects on Germanium PNP Alloy Transistors.

 USAELRDL TR-2310. U. S. Army Electronics Research and Tevelopment
 Laboratory, Fort Monmouth, New Jersey. DA Task Nr. 3499-71-001-01.

 October 1962. DDC AD296283.
- 55. Keister, G. L. et al. Contributions to the State-of-the-Art of Transient Radiation Effects in Electronic Parts and Materials Volume 2. Report No. D2-9878-3. The Boeing Company, Scattle, Washington. June 1962. NASA N63-20231.
- 56. Gray, P. D. et al. Rockets in Space Environment, Volume I The Experimental Program. RTD-TDR-63-1050. Aerojet-General
 Corporation, Azusa, California. Contract No. AF 04(611)-7441.
 February 1963. DDC AD416294.

UNCLASSIFIED

UNCLASSIFIED