الجاحظ فرض محروس رقم 2 السنة الدراسية: 2012/13 هيلية الدورة الاولى الهاعتان	-	
في مادة الرياضيات استاذ: عبد الفتاح قويدر	المست	
1 – 1	التنقيط	
$egin{cases} U_0-1 \ U_{n+1}=rac{3U_n+2}{2+U_n} \ ; n\in\mathbb{N} \end{cases}$: لتكن (U_n) المتتالية العددية المعرفة بمايلي: (U_n+1)	6ن	
$oxed{U_2}$ احسب $oxed{U_1}$ احسب $oxed{U_1}$		
$orall n\in\mathbb{N}\;;\;1\leq \mathrm{U_n}<2$ بين بالترجع (2		
$ m U_{n+1} - U_{n} = rac{(U_{n}+1)(2-U_{n})}{2+U_{n}}$ اً- تحقق من ان (3		
ب- ادرس رتابة المتتالية ($U_{ m n}$)		
ج- استنتج ان $(\mathbf{U_n})$ متقاربة		
$orall \mathbf{n} \in \mathbb{N}$ انضع (4 نضع (4		
\mathbf{v}_{n} بدلالة N متتالية هندسية اساسها \mathbf{v}_{n} ثم حدد ا \mathbf{v}_{n} بدلالة	1ن	
$(\mathrm{U_n})$ بین ان $egin{aligned} egin{aligned} U_n & \in \mathbb{N} \ ; \ U_n = rac{2V_n+1}{V_n-1} \end{aligned}$ ثم احسب نهایة	1.5ن	
تمرین II:	10ن	
$f(x)=egin{cases} \sqrt[3]{x(x^2-1)}-x;x>1\ x>1 \end{cases}$: نعتبر الدالة العددية f المعرفة بمايلي $x>1$: $x>1$		
$(x\sqrt{1-x}) ; x \ge 1$		
f- بین ان الدالة f متصلة في 1 متصلة المام ما المام مام	0.5ن 1ن	
2- أ- ادرس قابلية اشتقاق f على اليسار وعلى اليمين في 1 ب- اعط تأويلا هندسيا للنتيجتين المحصل عليها		
3- ضع جدول تغيرات الدالة f		
ا أ- أحسب $\frac{f(x)}{x}$ واول هندسيا النتيجة المتوصل اليها $\lim_{x o -\infty} rac{f(x)}{x}$		
ب- بین ان $\min_{x o +\infty} (f(x) - x) = 0$ ،ماذا تستنتج ؟		
$y=x$ ج-ادرس الوضع النسبي للمنحنى الدالة f بالنسبة للمستقيم (Δ) الذي معادلته		
د- انشئ المنحنى (C) في معلم متعامد ممنظم		
5- بين ان g قصور الدالة f على المجال $[1;+\infty[$ تقبل دالة عكسية معرفة على J تم تحديده -6 انشئ $(C_{g^{-1}})$ منحنى الدالة g^{-1} في نفس المعلم السابق		
	1ن	
$egin{cases} \mathbf{U_0}=U_1=1 \ \mathbf{U_{n+1}}=\mathbf{U_n}+U_{n-1}$; $\mathbf{n}\geq 1$: تمرين $\mathbf{U_n}$) المنتالية العددية المعرفة بمايلي $\mathbf{U_{n+1}}=\mathbf{U_n}+U_{n-1}$	ن4 1ن	
U_n امن $U_n \geq n$ ثم احسب نهایة U_n ثم الكل n من $U_n \geq 0$ ثم احسب نهایة U_n		
$orall n\in\mathbb{N}^*$; $~U_{m n}^{~2}=U_{m n-1} imes U_{m n+1}+(-1)^{m n}$: بين بالترجع ان		
$orall n \in \mathbb{N} \; ; \; \pmb{V_n} = rac{\pmb{u_{n+1}}}{\pmb{u_n}}$ نضع ان -3		
$V_{n+1}-V_n$ بین ان $V_{n+1}-V_n=rac{(-1)^n}{u_nu_{n+1}}$ ، ثم استنتج نهایهٔ		
والله ولي التوفيق		

سنة الدراسية :2012/2013 تصحيح فرض محروس رقم 2 الدورة الاولى ستاذ : عبدالفتاح قويدر المستوى: 2 باك علوم تجريبية في مادة الرياضيات <u>تمرين الاول</u> $egin{cases} U_0=1 \ U_{n+1}=rac{3U_n+2}{3+H} \ ; n\in\mathbb{N} \end{cases}$: لتكن U_n ; المنتالية العدية المعرفة بمايلي 1) احسب U₂ و U₃ $U_2 = \frac{3U_1+2}{2+U_2} = \frac{21}{11}$ $U_1 = \frac{3U_0+2}{2+U_2} = \frac{5}{2}$ $\forall n \in \mathbb{N} \; ; \; 1 \leq \mathrm{U_n} < 2$ بين بالترجع (2 $1 \leq U_0 < 2$ اذن $1 \leq U_0 = 1$ من اجل n=0 لدينا $U_0 = 1$ و $1 \leq \mathrm{U_{n+1}} < 2$ نفترض ان $n \in \mathbb{N}$; $1 \leq \mathrm{U_n} < 2$ نفترض ان $U_{ ext{n+1}} < 2$ لدينا $U_{ ext{n+2}} < 0$ و لدينا $U_{ ext{n}} < 2$ و لدينا $U_{ ext{n}} < 2$ فإن $U_{ ext{n+2}} < 0$ و لدينا $\mathrm{U_{n+1}}>1$ و لاينا $\mathrm{U_{n}}>0$ فإن $\mathrm{U_{n+1}}>1$ و لاينا $\mathrm{U_{n+1}}>0$ $1 \le U_{n+1} < 2$ ويالتالي $\forall n \in \mathbb{N} : 1 \leq U_n < 2$ ومنه $\mathbf{U_{n+1}} - \mathbf{U_n} = \frac{(\mathbf{U_n+1})(2-\mathbf{U_n})}{2+\mathbf{U_n}}$ أ- تحقق من ان $\mathbf{U_{n+1}} - \mathbf{U_n} = \frac{3U_n + 2}{2 + \mathbf{U_n}} - \mathbf{U_n} = \frac{3U_n + 2 - \mathbf{U_n^2} - 2\mathbf{U_n}}{2 + \mathbf{U_n}} = \frac{-\mathbf{U_n^2} + \mathbf{U_n} + 2}{2 + \mathbf{U_n}} = \frac{(\mathbf{U_n} + 1)(2 - \mathbf{U_n})}{2 + \mathbf{U_n}}$ ب- ادرس رتابة المتتالية (U_n)

$$2-_{
m n}>0$$
 كَانِن $n\in\mathbb{N}$; $1\leq {
m U_n}<2$ و $U_{
m n+1}-{
m U_n}=rac{({
m U_n+1})(2-{
m U_n})}{2+{
m U_n}}$ لدينا

و و
$$U_{
m n}>U_{
m n}$$
 و منه $U_{
m n+1}>U_{
m n}$ و بالتالي فإن $U_{
m n}>0$ و عنه و $U_{
m n+1}>0$

ج- استنتج ان (U_n) متقاربة

بما أن $(\mathbf{U_n})$ تزايدية ومكبورة بالعدد 2 فإنها متقاربة

$$orall \mathbf{n} \in \mathbb{N}$$
 $V_{\mathbf{n}} = rac{u_{\mathbf{n}}+1}{u_{\mathbf{n}}-2}$ نضع (4

اً- بین ان (V_n) متتالیة هندسیة اساسها ا

$$V_{n+1} = \frac{U_{n+1}+1}{U_{n+1}-2} = \frac{\frac{U_{n}+1}{U_{n}-2}+1}{\frac{U_{n}+1}{U_{n}-2}-2} = \frac{4U_{n}+4}{U_{n}-2} = 4V_{n}$$

$$V_0 = rac{ ext{U}_0 + 1}{ ext{U}_0 - 2} = -2$$
 ويالتالي (V_n) متتالية هندسية اساسها $P_n = V_0 q^n = -2 imes 4^n$; $\forall n \in \mathbb{N} : n$ يا بدلالة $P_n = V_0 q^n = -2 imes 4^n$; $\forall n \in \mathbb{N} : n$ يا بدلالة $P_n = rac{2V_n + 1}{V_n - 1}$ \Rightarrow $P_n = P_n = P_n$ \Rightarrow $P_n = P_n$

$$\lim_{+\infty}rac{1}{4^n}=0$$
 ال $\lim_{+\infty}U_n=\lim_{+\infty}rac{4-rac{1}{4^n}}{2+rac{1}{2}}=2$ وبالنالي

تمرین 2:

$$f(x)=egin{cases} \sqrt[3]{x(x^2-1)}\,;x>1\ x>1\ x\sqrt{1-x}\ ;x\leq 1 \end{cases}$$
: نعتبر الدالة العددية f المعرفة بمايلي

1- بين ان الدالة f متصلة في 1

لاينا f(0)=1

ومنه
$$f$$
 متصلة على يمين ا $\lim_{1^+} f(x) = \lim_{1^+} \sqrt[3]{x(x^2-1)} = 0 = f(0)$

على يسار 1 ا
$$\lim_{1^{-}} f(x) = \lim_{1^{-}} x \sqrt{1-x} = 0 = f(0)$$

و بماان
$$\lim_{1^+} f(x) = \lim_{1^-} f(x) = 0 = f(0)$$
 و بالتالي و متصلة في 1

2- أ- ادرس قابلية اشتقاق f على اليسار و على اليمين في 1

لله لندرس قابلية اشتقاق f على اليسار في 1 t

$$\lim_{1^{-}} \frac{x\sqrt{1-x}}{x-1} = \lim_{1^{-}} \frac{x\sqrt{1-x}}{-(1-x)} = \lim_{1^{-}} \frac{-x}{\sqrt{1-x}} = -\infty$$

وبالتالي f غير قابلية اشتقاق على اليسار في 1

لندرس قابلية اشتقاق f على اليمين في 1 riangleright

$$\lim_{\mathbf{1}^{+}} \frac{\sqrt[3]{x(x^2-1)}}{x-1} = \lim_{\mathbf{1}^{+}} \sqrt[3]{\frac{x(x^2-1)}{(x-1)^3}} = \lim_{\mathbf{1}^{+}} \sqrt[3]{\frac{x(x+1)}{(x-1)^2}} = +\infty$$

وبالتالي f غير قابلية اشتقاق على اليمين في 1

ت- اعط تأويلا هندسيا للنتيجتين المحصل عليها

- ❖ وبماان f غير قابلية اشتقاق على اليسار في 1 فأن منحنى الدالة f يقبل نصف مماس عمودي نحو الاسفل على يسار 1
 - بماان f غير قابلية اشتقاق على اليمين في 1 فأن منحنى الدالة f يقبل نصف مماس عمودي نحو االاعلى على يمين 1

3- ضع جدول تغيرات الدالة f

$$f(x) = \sqrt[3]{x(x^2-1)}$$
 لکن $x>1$ لکن $x>1$

 $]1;+\infty[$ على $x\mapsto x(x^2-1)$ الدالة $x\mapsto x$ موجبة قطعا وقابلة الاشتقاق

$$]\mathbf{1};+\infty[$$
 اذن الدالة $f(x)=\sqrt[3]{x(x^2-\mathbf{1})}$ قابلة الاشتقاق على

$$orall x \in \,]1;+\infty[\,;f'(x)=rac{3x^2-1}{3\sqrt[3]{(x(x^2-1))^2}}\,:$$
لينا

$$3x^2-3$$
 اشارة $x>1$ فإن $x>3$ وبالتالي $x>1$ اشارة $x>1$ بماان المرة المرة $x>1$ فإن المرة الم

1 > 0

$$f(x)=x\sqrt{1-x}$$
 ليكن x عنصر من المجال $-\infty$; 1[لدينا x

الدالة t=uv اذن f قابلة الاشتقاق على f=1 (لانها جداء دالتين قابلتين للاشتقاق)

$$orall x \in \left] \mathbf{1}; +\infty \right[\; ; f'(x) = \sqrt{1-x} + x rac{-1}{2\sqrt{1-x}} = rac{2-3x}{2\sqrt{1-x}} \; :$$
لدينا

$$2-3x$$
 اشارة $f'(x)$ على $f'(x)$ على $+\infty$

x	-∞	2 3		+∞
2-3x	+	0	-	

اليها النتيجة المتوصل اليها ا $\lim_{x \to -\infty} rac{f(x)}{x}$ اليها -4

: $\lim_{x\to-\infty} \frac{f(x)}{x}$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x\sqrt{1-x}}{x} = \lim_{x \to -\infty} \sqrt{1-x} = +\infty$$

لله التاويل الهندسي:

$$\lim_{x o -\infty} rac{f(x)}{x} = +\infty$$
 او $\lim_{x o -\infty} f(x) = -\infty$ لاينا

 $-\infty$ وبالتالي فإن منحنى الدالة f يقبل فرعا شلجميا اتجاهه محور الاراتيب بجوار

ب بین ان $\lim_{x o +\infty} (f(x) - x) = 0$ ،ماذا تستنتج

$$\lim_{x\to+\infty} (f(x)-x)=0$$

$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(\sqrt[3]{x(x^2 - 1)} - x \right) = \lim_{x \to +\infty} \frac{x^3 - x - x^3}{\sqrt[3]{(x(x^2 - 1))^2} + x\sqrt[3]{x(x^2 - 1)} + x^2}$$

$$\lim_{+\infty} \frac{-x}{\sqrt[3]{(x(x^2-1))^2 + x}\sqrt[3]{x(x^2-1) + x^2}} = \lim_{+\infty} \frac{-1}{x(\sqrt[3]{(1-\frac{1}{x^2})^2 + \sqrt[3]{x(x^2-1) + x}}} = 0$$

$$(\lim_{\infty} x(\sqrt[3]{\left(1-\frac{1}{x^2}\right)^2}+\sqrt[3]{x(x^2-1)}+x=+\infty$$
 (لان

لله التاويل الهندسي:

$$\lim_{x \to -\infty} f(x) - x = 0$$
 لاينا $\lim_{x \to -\infty} f(x) = +\infty$ لاينا

 $+\infty$ بجوار y=x بجوار مائلا معادلته y=x

y=x ج-ادرس الوضع النسبي للمنحنى الدالة f بالنسبة للمستقيم (Δ) الذي معادلته

$$f(x) - x = \frac{-x}{\sqrt[3]{(x(x^2-1))^2 + x} \sqrt[3]{x(x^2-1) + x^2}}$$

$$[1;+\infty[$$
 و من المجال x من المجال $-x<0$ و $\sqrt[3]{(x(x^2-1))^2}+x\sqrt[3]{x(x^2-1)}+x^2>0$ و يماأن

$$[1;+\infty[$$
 على المجال $f(x)-x<0$ وبالتالي

د- انشئ المنحنى (٢) في معلم متعامد ممنظم

5- بين ان g قصور الدالة f على المجال $[1; +\infty[$ تقبل دالة عكسية معرفة على J تم تحديده

لدينا
$$x\mapsto x^3-x$$
 متصلة و موجبة على المجال $x\mapsto x^3-x$ المجال $y\mapsto x^3-x$ لدينا $y\mapsto x^3-x$ المجال المجال المجال $y\mapsto x^3-x$ وتزايدية قطعا على المجال $y\mapsto x^3-x$ وبالتالي $y\mapsto x^3-x$ المجال المجال $y\mapsto x^3-x$ المجال المجال $y\mapsto y\mapsto y\mapsto y$ المجال $y\mapsto y\mapsto y\mapsto y$ المجال $y\mapsto y\mapsto y\mapsto y$ المجال المجال المجال $y\mapsto y\mapsto y\mapsto y$ المجال ال

انشئ ($C_{g^{-1}}$) منحنى الدالة g^{-1} في نفس المعلم السابق $ot \!\!\!/$

منحنايان (C_g) و ($C_{g^{-1}}$) متماثلان بالنسبة للمنصف الاول للمعلم ، اي بالنسبة للمستقيم ذي المعادلة

y = x

$$egin{cases} \mathbf{U_0} = U_1 = 1 \ \mathbf{U_{n+1}} = \mathbf{U_n} + U_{n-1}$$
 ; $\mathbf{n} \geq 1$: نمرين ($\mathbf{U_n}$) المتتالية العددية المعرفة بمايلي المعرفة المعرفة بمايلي المعرفة بمايلي المعرفة ا

$$U_n$$
 نهایة ان لکل n من $U_n \geq n$: N من n بین ان لکل 1-

$$U_n \geq n$$
 : $\mathbb N$ من n انبین ان لکل $ot\hspace{-.1cm}
ot\hspace{-.1cm}
ot\hspace{-.1cm}$

$$U_0 \geq 0$$
 اذن n =0 من اجل n =0 لدينا $U_0 = 1$ ادن

$$U_{n+1} \geq n+1$$
 و نبین ان $n \in \mathbb{N}$; $U_n \geq n$: نفترض ان

$$\mathbf{U_{n+1}} - \mathbf{U_n} = U_{n-1} > 0$$
 و اي ان $\mathbf{U_{n+1}} = \mathbf{U_n} + U_{n-1}$ لدينا

لان
$$n-1>0$$
 ومنه فإن $(U_{
m n})$ المتتالية تزايدية قطعا (لان

$$m{U_n} \geq m{U_{n-1}} \geq m{U_1}$$
 اي ان

$$U_{n+1} \geq n+1 \ \varphi | \ U_{n+1} = U_n + U_{n-1} \geq n+1 \ \varphi | \ U_n \geq n: \mathbb{N} \ \text{in n do n do noted}$$
 وبالتالي لكل n $\omega > n: \mathbb{N} \ \text{in n do noted}$ وبالتالي لكل n $\omega > n: \mathbb{N} \ \text{in n do noted}$
$$\forall n \in \mathbb{N} \ ; \ 1 \leq U_n < 2 \ \text{do noted}$$

$$\exists U_n \leq n \text{do noted}$$

$$\exists$$

$$rac{-1}{u_n u_{n+1}} \leq V_{n+1} - V_n = rac{(-1)^n}{u_n u_{n+1}} \leq rac{1}{u_n u_{n+1}}$$
: وبماأن $\lim_{+\infty} rac{1}{u_n u_{n+1}} = \lim_{+\infty} rac{-1}{u_n u_{n+1}} = 0$ ولدينا $\lim_{+\infty} V_{n+1} - V_n = 0$ وبالتالي حسب مبر هنة الدركيين فإن

للمزيد من الفروض و التمارين الرياضيات الثانية باك زورونا على:

www.bestcours.net