• Q1. How do you tune executor and driver configuration for a Spark job?

Goal:

Evaluate your understanding of cluster resource utilization — especially executor sizing, memory vs core trade-offs, and GC behavior.

L4 Expectation:

- You know defaults aren't optimal.
- You reason using:
 - Number of partitions
 - o Shuffle size
 - Caching needs
 - o GC % and Spark UI stats

What to Cover:

- spark.executor.instances, executor.memory, executor.cores, driver.memory
- Sweet spot: 4–5 cores/executor, 8–16 GB memory
- When to reduce memory (to reduce GC stalls)

Quantified Answer Example:

"Reducing cores/executor from 8 to 4 decreased GC time from 38% to 8% and job time from 55 min to 27 min."

• Q2. What is task serialization/deserialization in Spark and how does it impact performance?

Goal:

Check if you understand Spark's internal communication overhead.

L4 Expectation:

- You differentiate between Java and Kryo serializers
- You optimize by avoiding deep nesting, using broadcast variables, etc.

What to Cover:

- Why Kryo is 10x faster
- How task deserialization shows up in Spark UI
- When to register classes

Quantified Answer:

"Switching to Kryo reduced task deserialization time from 1.5s to 0.3s and improved CPU usage by 30%."

• Q3. How does Spark manage memory internally and how can you tune it?

Goal:

See if you know about Spark's **unified memory model** and how execution vs storage memory is split.

L4 Expectation:

- You know how spark.memory.fraction works
- You recognize symptoms of poor memory tuning (e.g., excessive spilling, cache eviction)

What to Cover:

- 60% of JVM heap used by unified memory
- Further split: execution vs storage
- Tuning memory.fraction, memory.storageFraction

Quantified Example:

"Cache hit ratio improved from 64% to 92% after tuning memory fraction. Disk spill reduced from 3.2 GB to 400 MB."

• Q4. How do you tune garbage collection in Spark executors?

Goal:

Evaluate JVM GC understanding and its impact on Spark performance.

L4 Expectation:

- You've analyzed GC time in Spark UI
- You can explain G1GC vs CMS
- You know large heap + many cores = longer GC pauses

What to Cover:

- Use G1GC for large memory jobs
- Lower executor memory → more stable GC
- Enable GC logs for tuning

Quantified Answer:

"GC overhead dropped from 30% to 7% by switching to G1GC and resizing executor memory."

Tactic	Why It Works
✓ Switch to G1GC	Handles large heaps better, parallel GC threads
✓ Reduce executor memory	Less heap = shorter GC pause time
✓ Limit executor cores to 4–5	Fewer concurrent tasks → better GC behavior
✓ Avoid nested objects/UDF leaks	Fewer objects = less GC pressure
✓ Enable GC logging	To measure and debug actual GC overhead

Q5. DataFrame vs RDD vs SQL performance — when to use what?

Goal:

Test your understanding of Catalyst optimization vs manual control.

L4 Expectation:

- You favor DataFrames/SQL for most cases
- You use RDDs only when needed (e.g., custom partitioner, low-level control)

What to Cover:

- Catalyst: logical → physical plan optimization
- DF/SQL > RDD in most ETL jobs
- Avoid RDDs unless DataFrame is too limited

Quantified Example:

"Same pipeline using SQL ran in 12 mins, vs 32 mins with RDDs due to Catalyst optimizations."

1. Predicate Pushdown = Filter Pushdown (Same Thing)

Q Definition:

Spark **pushes filtering conditions** (WHERE clauses) **down to the storage layer** (like Parquet/ORC), so only matching **rows** are read from disk.

Example:

python

CopyEdit

```
df = spark.read.parquet("user_data/")
df.filter("age > 30").select("name").show()
```

Instead of:

- Reading all rows
- Then filtering in memory

Spark:

- Tells **Parquet reader**: "Only give me rows where age > 30"
- Result: Less I/O, faster reads, smaller memory usage

Supported Formats:

Format	Predicate
	Pushdown

Parquet	V	Yes

2. Column Pruning / Projection Pruning

Spark **reads only the needed columns** from disk instead of reading all columns in a dataset.

Example:

python

CopyEdit

```
df = spark.read.parquet("user_data/")
df.select("name").show()
```

If the file has columns like: name, age, email, salary

- X Without column pruning: all 4 columns are read
- With column pruning: only name column is loaded from disk

This is called:

- **Projection pruning** → in SQL language
- **Column pruning** → in Spark/DataFrame context
- Result: Reduced disk read, faster query

• Q6. When should you avoid UDFs in Spark?

Goal:

Test if you know UDFs **break Catalyst optimizations** and run in a slower interpreted mode.

L4 Expectation:

- You push for built-in functions
- You understand that Python UDFs slow down the JVM
- You avoid UDFs in joins, filters, and projections

What to Cover:

- Use F.when, F.col, F.expr instead of UDFs
- Avoid UDFs especially in select & where clauses

• UDFs = black box to Catalyst

Quantified Answer:

"Rewriting UDFs using built-in functions reduced runtime by 52% — 44 min ightarrow 21 min."

Problem	Impact
X No Catalyst Optimization	UDFs are treated as black boxes → no predicate pushdown, column pruning
X No JVM Codegen (Tungsten)	Spark cannot generate optimized bytecode for UDF logic
X Serialization Overhead	Python UDFs require data to move from JVM \rightarrow Python (via Py4J) \rightarrow JVM
X Slower Execution	UDFs run row-by-row, interpreted mode \rightarrow slower for large datasets
X Hard to Debug	UDFs are opaque in Spark UI \rightarrow no insight into what's happening

• Q7. What are common causes of executor OutOfMemory (OOM) and how do you fix them?

Goal:

Assess your debugging skills for **real-world failures** — especially memory crashes.

L4 Expectation:

• You give multiple root causes (e.g., caching large DFs, skew, serialization issues)

• You give tuning or refactoring-based solutions

What to Cover:

- Use .unpersist()
- Repartition large DFs
- Avoid caching intermediate stages
- Reduce cores/executor for better GC

Quantified Example:

"OOMs reduced from 9 to 0 after switching to Kryo, reducing executor cores from 8 to 4, and unpersisting."

• 2. Common Root Causes of OOM

Cause	Why It Happens
X Large DataFrame Cached Without Unpersisting	Caches eat up memory and stay unless manually released
➤ Data Skew (e.g., few keys = huge partitions)	A single task ends up processing most of the data
➤ Too Many Cores/Executor	More parallel tasks = more memory pressure = GC overhead
X Using Default Java Serializer	Slower, creates more garbage objects
X Huge Wide Transformations	Large shuffles (joins/groupBy) overload memory
X Nested UDFs or large closures	Leads to bloated task size and high object creation rate

• 3. How to Fix or Prevent OOMs

Fix	Why It Helps
✓ Use .unpersist() after caching	Frees up storage memory
☑ Switch to Kryo serializer	More compact, faster \rightarrow less heap pressure
Reduce executor.cores from 8 \rightarrow 4–5	Fewer concurrent tasks = better GC performance
✓ Avoid unnecessary caching	Don't cache everything — cache only reused data
✓ Repartition skewed or wide DFs	Avoid hot partitions that blow memory
✓ Use broadcast joins when possible	Avoid shuffle-heavy joins
✓ Use G1GC + memoryOverhead	Better JVM memory control

• Q8. What is partition pruning and how does it improve performance?

Goal: Partition Pruning is different from Predicate Performance Check if you understand I/O reduction via predicate pushdown. (Partition pruning is

L4 Expectation:

- You mention static and dynamic pruning
- You explain enabling via config

You give real query example with filter

What to Cover:

- Only read necessary partitions during query execution
- Works best on partitioned Parquet/Delta tables
- Config: spark.sql.optimizer.dynamicPartitionPruning.enabled

Quantified Answer:

"Read reduced from 2000 partitions to 6. Runtime dropped from 40 min \rightarrow 7 min."

Definition:

Partition pruning means Spark **skips reading entire partitions** if it knows from the query that those partitions are not needed.

When it happens:

- Your data is partitioned on disk (like in Parquet or Hive tables).
- Your query filters on partition column.

Example:

Imagine this Parquet table:

python

CopyEdit

```
# Data partitioned by 'country'

df = spark.read.parquet("/data/events") # partitioned by 'country'

df.filter("country = 'IN'").show()
```

- Here, **Spark reads only the folder** /data/events/country=IN/.
- It doesn't read any other countries' data that's partition pruning.
- Happens at file level (before reading data).

Туре	Example	Works With
Partition Pruning	country = 'IN'	= only (equality on partition columns)
Predicate Pushdown	age > 30, salary <= 5000	✓ Inequalities, ranges, complex expressions — on non-partition columns

Types of Partition Pruning

Туре	How It Works	When It Happens
Static	Filter value is known at compile time	<pre>df.filter("country = 'IN'")</pre>
Dynamic	Filter value comes from a JOIN key	e.g., WHERE f.country =
		d.country_code

• Q9. Dynamic vs Static Executor Allocation — which one and when?

Goal:

Evaluate your understanding of **resource elasticity** and **cost optimization**.

L4 Expectation:

- You know when dynamic is good (streaming) vs when static is better (batch)
- You mention executor idle timeout, bounds

What to Cover:

- Dynamic Allocation needs shuffle service
- Config: spark.dynamicAllocation.enabled
- For batch → static gives predictability

Quantified Example:

"Saved ~\$200/week in EMR by enabling dynamic allocation; reduced idle executors from 30 to 5."