Operacijski sistemi

Vsebina

- Virtualizacija pomnilnika
- Ostranjevanje
- Uporabna zunanjega pomnilnika

- Cilji
 - proces vidi sklenjen kos pomnilnika
 - lahko gre za zelo velik kos
 - izolacija procesov
 - procesi ne morejo vplivati drug na drugega
 - tudi OS je izoliran od procesov
 - uporaba mehanizma zaščite (strojna podpora)
 - transparentnost
 - proces se ne zaveda virtualizacije
 - učinkovitost
 - preslikava naslovov mora biti hitra (strojna podpora)

Preslikava naslovov

- podpora strojne opreme
 - OS skrbi za konfiguracijo
 - MMU izvaja preslikovanje
 - TLB skrbi za učinkovitost preslikovanja

- Izvedbe preslikovanja
 - celotna preslikovalna tabela
 - izvedba za vse navidezne naslove je nemogoča
 - premeščanje (relocation)
 - naslovni prostor premestimo na poljubno mesto v fizičnem pomnilniku
 - segmentacija (segmentation)
 - razdelitev pomnilnika na bloke različnih velikosti
 - ostranjevanje (paging)
 - razdelitev pomnilnika na bloke enake velikosti
 - segmentacija in ostranjevanje
 - segmenti so razdeljeni na strani

- Statično premeščanje
 - program se prevede na naslov 0
 - nalaganje programa
 - program se naloži na izbrani ciljni fizični naslov
 - ponoven preračun in prepis naslovnih operandov
 - težavna zaščita
 - statični naslovi: ok, dinamični naslovi: težava
 - težavno ponovno premeščanje programov
 - uporaba, le če ni strojne podpore za virtualizacijo pomnilnika

- Dinamično premeščanje
 - nalaganje programa
 - program se naloži na izbrani ciljni fizični naslov
 - bazni register hrani nalagalni naslov
 - mejni register hrani velikost naslovnega prostora
 - enostavno preslikovanje
 - enostavna zaščita
 - enostavno premeščanje

- Dinamično premeščanje strojna podpora
 - MMU
 - bazni (base) in mejni (bounds/limit) register
 - izvedba preslikovanja in preverjanja zaščite
 - pasti
 - prekoračitev baznega registra: OS ukine proces
 - izvedba priviligeranih ukazov: OS ukine proces
 - posebni strojni ukazi
 - uporaba le s strani OS (privilegirani način)
 - manipuliranje baznega in mejnega registra
 - namestitev pasti

- Segmentacija in ostranjevanje
 - pomnilnik razdeljen na bloke velikosti 2^P
 - preslikovanje
 - iz M bitnega navideznega naslovnega prostora
 - v N bitni fizični naslovni prostor

Segmentacija

- bloki: segmenti
- segmenti so različne velikosti
- segmenti imajo nek pomen
 - npr. koda, podatki itd.
- težavno upravljanje pomnilnika
 - iskanje prostora za alokacijo segmenta
- zunanja fragmentacija

Ostranjevanje

- bloki: strani in okvirji
- strani so enake velikosti
- strani nimajo posebnega pomena
- lažje upravljanje pomnilnika
 - enostavno iskanje prostega okvirja strani
- notranja fragmentacija

V sodobnih OS se uporablja le ostranjevanje.

Stran

blok v navideznem naslovnem prostoru

Okvir strani

- blok v fizičnem naslovnem prostoru
- okvir hrani poljubno stran
 - okvirji so enake velikosti kot strani

Preslikovanje

navidezni naslov (naslov strani + odmik)
 preslikamo v fizični naslov (naslov okvirja + odmik)

Preslikovanje s tabelo strani

- Velikost tabele strani
 - 2^{M-P} deskriptorjev v tabeli

P	2 ^{<i>p</i>}	2^{M-P} , $M = 32$	2^{M-P} , $M = 64$
12	4 KiB	$2^{20} = 1048576$	2 ⁵²
22	4 MiB	2 ¹⁰ = 1024	2 ⁴²

Primer iz x86/Linux:

- P = 12: 4 KiB strani
- M = 32: 32 bitni naslovni prostor
- npr. 4 bajtni deskriptor
- 4 MiB za tabelo strani na proces

• rešitvi

- večnivojska tabela strani
- invertirana tabela strani

- Učinkovitost preslikovanja
 - ena preslikava
 - št. dostopov do pomnilnika
 št. dostopov do tabel in podtabel strani + 1
 - rešitev
 - TLB translation lookaside buffer
 - preslikovalnik predpomnilnik (SRAM v MMU enoti)
 - prostorska lokalnost
 - podatki so blizu skupaj v pomnilniku (na isti strani)
 - časovna lokalnost
 - ponoven dostop istih podatkov

- Naloge OS
 - vodenje evidence prostih okvirjev strani
 - upravljanje preslikovalnih tabel
 - stvaritev procesa: inicializacija naslovnega prostora
 - končanje procesa: sprostitev vseh zasedenih okvirjev
 - preslikava pomnilnika (mmap): izvedba dodatne preslikave
 - praznenje TLB ob preklopu procesa

- Pomnilniška hierarhija
 - notranji oz. fizični pomnilnik: RAM
 - zunanji pomnilnik: trdi disk ali SSD
- Izziv
 - Čeprav je na voljo le malo notranjega pomnilnika, je naslovni prostor procesov zelo velik.

Kako procesu zagotoviti navidezni naslovni prostor večji od velikosti fizičnega pomnilnika?

- Pomnilniški prekrivki (memory overlays)
 - star programski pristop
 - celoten program je prevelik za pomnilnik
 - program razdeljen na več ustrezno velikih kosov
 - posamezni kosi so shranjeni v datotekah
 - programer sam poskrbi za sproščanje pomnilnika in nalaganje nove kode, ki prekrije staro

- Večprogramiranje
 - več procesov hkrati naloženih v premajhnem pomnilniku: uporaba zunanjenga pomnilnika je nujna

- Odlagalni prostor (swap space)
 - del zunanjega pomnilnika
 - swap out
 - shranjevanje strani iz pomnilnika na disk
 - swap in
 - nalaganje strani iz diska v pomnilnik

Primer – 4 procesi

• P0: 3 strani: 1+2

• P1: 4 strani: 2+2

• P2: 2 strani: 1+1

• P3: 2 strani: 0+2

	PFN0	PFN1	PFN2	PFN3
fizični	PO	P1	P1	P2
pomnilnik	VPNO	VPN2	VPN3	VPN0

odlagalni	Р0	PO	prosto	P1	P1	Р3	P2	Р3
prostor	VPN1	VPN2	prosto	VPN0	VPN1	VPN0	VPN1	VPN1

- Postopek naslavljanja podatka
 - zadetek v TLB
 - preveri, če VPN obstaja v TLB
 - če obstaja, potem naslovi ustrezni del fizičnega pomnilnika
 - zgrešitev v TLB, iskanje v tabeli strani
 - preveri, če VPN obstaja v preslikovalni tabeli strani
 - če je zapis veljaven (valid) in stran obstaja (present), potem naslovi ustrezni del fizičnega pomnilnika
 - zgrešitev strani (page fault, page miss)
 - naloži stran iz zunanjega pomnilnika
 - osveži vnos v preslikovalni tabeli strani
 - ponovi strojni ukaz

- Kaj če je pomnilnik v celoti zaseden?
 - zgrešitev strani, vendar ni prostora za novo stran
 - potem pride do zamenjave strani
 - izbrana stran gre ven (swap out)
 - nova stran gre noter (swap in)
 - izbira strani (page replacement policy)
 - minimizacija števila zgrešitev strani
 - page (out) daemon
 - high / low watermark

- Algoritmi izbire strani za izločitev
 - FIF furthest in future, optimalni algoritem
 - izločitev strani, ki bo dostopana najdlje v prihodnosti
 - zgrešitev strani prestavimo karseda v prihodnost
 - zahteva poznavanje prihodnost
 - FIFO first in, first out
 - izločitev strani, ki je najdlje v pomnilniku
 - stare strani se lahko pogosto uporabljajo
 - Naključna zamenjava
 - izločitev naključne strani

- Algoritmi izbire strani za izločitev
 - LFU least-frequently used
 - izloči najmanj uporabljano stran
 - potrebno evidentirati frekvenco uporabe
 - LRU least-recently used
 - izloči najdlje neuporabljeno stran
 - izvedba: časovni zaznamek
 - za vsak vnos v preslikovalni tabeli strani
 - osvežitev zaznamka pri vsakem dostopu do strani
 - izvedba: vrsta strani
 - dostopano stran pomaknemo na začetek vrste
 - ob vsakem dostopu do strani

- Strojna pomoč
 - dodatni biti v vnosu tabele strani
 - modified/dirty bit
 - če je bila stran spremenjena od zadnjega nalaganja
 - nespremenjenih strani ni potrebno shraniti nazaj na disk
 - fixed bit
 - preslikava je fiksna, pusti pri miru
 - za dostop do V/I preslikanih naprav
 - access/reference
 - ali je bila stran dostopana (branje ali pisanje)
 - osnova za gradnjo približnih LRU algoritmov