2.5 (3). Сравнимость любых двух вполне упорядоченных множеств.

Теорема. Если A и B - в.у.м., то верно ровно одно из трёх:

- 1) $A \simeq B$
- 2) $A \simeq [0, b), b \in B$
- 3) $B \simeq [0, a), a \in A$

- 1. Покажем, что 2 и 3 не могут быть выполнены одновременно. $A \simeq [0,b), B \simeq [0,a)$ \Rightarrow начальный отрезок В изоморфен начальному отрезку начального отрезка A, а начальный отрезок начального отрезка так же является начальным отрезком. Получили что A изоморфно своему начальному отрезку, что невозможно по следствию, противоречие. Аналогичными рассуждениями можно понять, что 1 и 2, 1 и 3 тоже не могут быть выполнены одновременно. Таким образом, понимаем, что не больше одного из этих пунктов может быть выполнено.
- 2. Покажем, что хотя бы один из этих пунктов будет выполнен (будем использовать трансфинитную рекурсию): постепенно построим функцию с аргументами в A и значениями в B. Строим функцию $g:A\to B\cup\{\bot\}$, где \bot специальный символ неопределённости (любую частично определённую функцию можно переделать во всюду определённую, если добавить специальный символ неопределённости)

Строим функцию рекурсивно: $g(a) = \{ \min\{ y \in B : y \neq g(x) \text{ для } x < a \} \}$ (1), если это множество не пусто, иначе - \bot .

Корректность определения: функция g существует и единственна. Скажем, что $g|_{[0,a)}$: $[0,a) \to B \cup \{\bot\}$ корректна, если она удовлетворяет соотношению (1). Докажем по трансфинитной индукции, что $g|_{[0,a)}$ существует и единственна. Пусть $\forall x < a \ g|_{[0,a)}$ существует и единственна. Тогда при $x < a \ g|_{[0,a)}(x)$ определено однозначно.

Пусть а < с . Тогда $g|_{[0,a)}$ и $g|_{[0,c)}$ совпадают на [0,a) (ввиду однозначности). Можно рассмотреть $g:A\to B\cup\{\bot\}$, которая продолжает все $g|_{[0,a)}$. Если в множестве A есть максимальный элемент, то он не попадёт ни в один из полуинтервалов, но он ровно один, и для него всё доопределится по (1). Если же максимального элемента нет, то нужно всё объединить.

```
I. \exists a: g(a) = \bot \Rightarrow при всех c > a g(c) = \bot
```

Если $g(c) = \bot$, то пусть $a = min\{x|g(x) = \bot\}$. Тогда $B \simeq [0,a)$. Доказывается, что при x < a начальный отрезок $[0,x) \simeq [0,g(x))$, g - изоморфизм. Пусть при $y < x[0,y) \simeq [0,g(y))$. инъекция: $y_1 < y_2 < x \Rightarrow g(y_2) = min\{z \in B : z \neq g(x)$ для $x < y_2\} \Rightarrow g(y_1) \neq g(y_2)$ сюръекция: $z < g(x) \Rightarrow z = g(y)$ при y < x

Сохранение порядка: $y_1 < y_2 < x \Rightarrow g(y_1) < g(y_2)$. По написанному выше $g(y1) \neq g(y2)$. Но $g(y_2)$ не может быть меньше, чем $g(y_1)$, иначе бы получилось, что до $g(y_1)$ есть какие-то пустые места, и $g(y_1)$ бы определилось не так, как оно определилось, а занято было бы то пустое место.

```
II. \nexists a: g(a) = \perp:
```

- все значения в В принимаются. Тогда $A \simeq B$
- не все значения в В принимаются. Тогда $b = min\{y|y \neq g(x), x \in A\}$, и $A \simeq [0, b)$