傅里叶 & 拉普拉斯

		1
1	$2\pi\delta(\omega)$	$\frac{1}{s}$
$f(t-t_0)$	$F(\omega)e^{-i\omega t_0}$	
$e^{at}f(t)$	$F(\omega - \omega_0), i\omega_0 = a$	F(s-a)
$f(\alpha t)$	$\frac{1}{ \alpha }F(\frac{\omega}{\alpha})$	
u(t-a)	$\frac{1}{i\omega} + \pi\delta(\omega), a = 0$	$\frac{e^{-as}}{s}$
f(t-a)u(t-a)		$e^{-as}F(s)$
$\delta(t)$	1	1
$\delta(t-t_0)$	$e^{-i\omega t_0}$	e^{-st_0}
$t^n f(t)$	$i^n \frac{\mathrm{d}^n}{\mathrm{d}\omega^n} F(\omega)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
f'(t)	$i\omega F(\omega)$	sF(s) - f(0)
$f^{(n)}(t)$	$(i\omega)^n F(\omega)$	$s^n F(s) - s^{(n-1)} f(0)$
		$-\cdots-f^{(n-1)}(0)$
$\int_0^t f(t) \mathrm{d}t$		$\frac{F(s)}{s}$
$\frac{1}{t}f(t)$		$\int_{s}^{+\infty} F(s) \mathrm{d}s$
$\int_{-\infty}^{t} f(\tau) \mathrm{d}\tau$	$\frac{F(\omega)}{i\omega} + \pi F(0)\delta(\omega)$	
t^n	$2\pi i\delta'(\omega), n=1$	$\frac{n!}{s^{n+1}}$
$\sin kt$	$-i\pi[\delta(\omega-k)-\delta(\omega+k)]$	$\frac{k}{s^2 + k^2}$
$\cos kt$	$\pi[\delta(\omega-k)+\delta(\omega+k)]$	$\frac{s}{s^2 + k^2}$
e^{at}	$2\pi\delta(\omega-\omega_0), i\omega_0=a$	$\frac{1}{s-a}$
$f_1(t) * f_2(t)$	$F_1(\omega)F_2(\omega)$	same
$f_1(t)f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$	same

 $\mathcal{F}[f(t)] = F(\omega)$

一阶线性常微分方程的解

1. 通解法

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x) \implies y = Ce^{-\int P(x) \, \mathrm{d}x} + e^{-\int P(x) \, \mathrm{d}x} \cdot \int Q(x)e^{\int P(x) \, \mathrm{d}x} \, \mathrm{d}x$$

2. 特征线法:

对于方程

$$a(x,y)\frac{\partial u}{\partial x} + b(x,y)\frac{\partial u}{\partial y} + c(x,y)u = f(x,y)$$

称

$$\frac{\mathrm{d}x}{a(x,y)} = \frac{\mathrm{d}y}{b(x,y)}$$

为特征方程, 其积分曲线称为特征线。设积分曲线为 ξ , $\eta=y$. 将 u 表示为 ξ , η 的函数, 可将原方程化简.

二阶线性常微分方程的解

二阶偏微分方程的标准形式为

$$A\frac{\partial^2 u}{\partial x^2} + 2B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu = G$$

利用特征线法, 特征方程为

$$A\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - 2B\frac{\mathrm{d}y}{\mathrm{d}x} + C = 0$$

令特征方程的解为 ξ, η . 并做变量代换 $u = u(\xi, \eta)$, 可如下化简

$$a\frac{\partial^{2} u}{\partial \xi^{2}} + 2b\frac{\partial^{2} u}{\partial \xi \partial \eta} + c\frac{\partial^{2} u}{\partial \eta^{2}} + d\frac{\partial u}{\partial \xi} + e\frac{\partial u}{\partial \eta} + fu = g$$

$$a = A\left(\frac{\partial \xi}{\partial x}\right)^{2} + 2B\frac{\partial \xi}{\partial x}\frac{\partial \xi}{\partial y} + C\left(\frac{\partial \xi}{\partial y}\right)^{2}$$

$$b = A\frac{\partial \xi}{\partial x}\frac{\partial \eta}{\partial x} + B\left(\frac{\partial \xi}{\partial x}\frac{\partial \eta}{\partial y} + \frac{\partial \xi}{\partial y}\frac{\partial \eta}{\partial x}\right) + C\frac{\partial \xi}{\partial y}\frac{\partial \eta}{\partial y}$$

$$c = A\left(\frac{\partial \eta}{\partial x}\right)^{2} + 2B\frac{\partial \eta}{\partial x}\frac{\partial \eta}{\partial y} + C\left(\frac{\partial \eta}{\partial y}\right)^{2}$$

$$d = A\frac{\partial^{2} \xi}{\partial x^{2}} + 2B\frac{\partial^{2} \xi}{\partial x\partial y} + C\frac{\partial^{2} \xi}{\partial y^{2}} + D\frac{\partial \xi}{\partial x} + E\frac{\partial \xi}{\partial y}$$

$$e = A\frac{\partial^{2} \eta}{\partial x^{2}} + 2B\frac{\partial^{2} \eta}{\partial x\partial y} + C\frac{\partial^{2} \xi}{\partial y^{2}} + D\frac{\partial \eta}{\partial x} + E\frac{\partial \eta}{\partial y}$$

$$f = F$$

$$g = G$$

波动方程

 $\mathcal{L}[f(t)] = F(s)$

1. 波动方程的行波解

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

利用特征线法可得到行波解为

$$u(x,t) = f_1(x+at) + f_2(x-at)$$

2. 齐次波动方程 + 无界弦 (Cauchy 问题)

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \quad (-\infty < x < +\infty), \quad \left. u \right|_{t=0} = \phi(x), \quad \left. \frac{\partial u}{\partial t} \right|_{t=0} = \psi(x)$$

的达朗贝尔解为

$$u(x,t) = \frac{1}{2} [\phi(x+at) + \phi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(X) dX$$

物理意义:可以看作时空中一点 (x_0,t_0) 处的数值受到两个从 $(x_0-at_0,0)$ 与 $(x_0+at_0,0)$ 处传来的波动和 $t=0,x_0+at_0$ x x_0-at_0 范围内的初速度的影响。

3. 齐次波动方程 + 端点固定半无界弦: 设初始条件反对称于坐标原点

$$\begin{cases} &\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \infty, t > 0\\ &u(x,0) = \varphi(x), \frac{\partial u(x,0)}{\partial t} = \psi(x), 0 < x < \infty\\ &u(0,t) = 0 \qquad t > 0 \end{cases}$$

的通解为

$$u(x,t) = \frac{1}{2} \left[\varphi(x+at) - \varphi(at-x) \right] + \frac{1}{2a} \int_{at-x}^{x+at} \psi(\xi) d\xi$$

4. 齐次波动方程 + 端点自由半无界弦: 设初始条件对称于坐标原点 (方程同上) 的通解为

$$u(x,t) = \frac{1}{2} [\varphi(x+at) + \varphi(at-x)] + \frac{1}{2a} \left[\int_0^{x+at} \psi(\xi) \mathrm{d}\xi + \int_0^{at-x} \psi(\xi) \mathrm{d}\xi \right]$$

5. 半无界弦 + 非齐次初始条件: 设 u(x,t) = v(x,t) + w(x,t), 分别满足非齐次初始条件和边界条件。其中 v 为端点固定半无界问题的解. w 满足齐次初始条件

$$\begin{cases} \frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2}, & 0 < x < \infty, t > 0 \\ w(x,0) = 0, w_t(x,0) = 0, & 0 < x < \infty \\ w(0,t) = \mu(t) & t > 0 \end{cases}$$

其解为 $w(x,t) = \mu\left(-\frac{x-at}{a}\right)$, x-at < 0.

6. 非齐次波动方程 + 非齐次初始条件 = (齐次方程 + 非齐次初始条件)(B)+(非齐次方程 + 齐次初始条件)(C)

问题 (B) 可用达朗贝尔公式求解,下面用<mark>齐次化原理</mark>来求问题 (C): 设 $\tau \geq 0$ 为参数,如果函数 $w(x,t;\tau)$ 是如下初值问题

$$\left\{ \begin{array}{l} \frac{\partial^2 W}{\partial t^2} = a^2 \frac{\partial^2 W}{\partial x^2}, \quad t > \tau > 0 \\ W\big|_{t-\tau=0} = 0, \frac{\partial W}{\partial t}\big|_{t-\tau=0} = f(x,\tau) \end{array} \right.$$

的解,则函数 $u(x,t) = \int_0^t w(x,t;\tau) d\tau$ 是非齐次方程初值问题 (C) 的解。物理意义: 将短时间外力作用的冲量 f(x,t) dt 看做物体在 t 拥有初速度 W = f(x,t) dt. 利用叠加原理,将各个时间的 W 积分即可得到 f(x,t).

7. 三维波动方程的行波解法

$$\left\{ \begin{array}{l} \frac{\partial^2 u}{\partial t^2} = a^2 \Delta u, \\ \left. u \right|_{t=0} = f(x,y,z), \left. u_t \right|_{t=0} = g(x,y,z) \end{array} \right.$$

其解为泊松公式的累次积分形式

$$u(x,y,z,t) = \frac{\partial}{\partial t} \left[\frac{t}{4\pi} \int_0^{2\pi} \int_0^{\pi} f(\xi,\eta,\zeta) \sin\theta d\theta d\varphi \right] + \frac{t}{4\pi} \int_0^{2\pi} \int_0^{\pi} g(\xi,\eta,\zeta) \sin\theta d\theta d\varphi$$
 其中

 $\xi=x+at\sin\theta\cos\varphi, \eta=y+at\sin\theta\sin\varphi, \zeta=z+at\cos\theta$

对于中心对称的情况, 有达朗贝尔解:u(r,t) =

$$\begin{cases} \frac{1}{2r}[(r+at)\varphi(r+at)+(r-at)\varphi(r-at)] + \frac{1}{2ar}\int_{r-at}^{r+at}\xi\psi(\xi)\mathrm{d}\xi, & t \leq \frac{r}{a} \\ \frac{1}{2r}[(r+at)\varphi(r+at)-(at-r)\varphi(at-r)] + \frac{1}{2ar}\int_{at-r}^{r+at}\xi\psi(\xi)\mathrm{d}\xi, & t > \frac{r}{a} \end{cases}$$

- 8. 高维泊松公式的物理意义
 - 三维: 当初始扰动限制在空间局部范围内时,空间中任意一点 M 受到的扰动总有清晰的"前锋"和"阵尾",称为惠更斯原理或无后效现象。
 - 二维:像这种当初始扰动限制在二维平面局部范围内时,二维平面中任意一点 M 受到的扰动只有清晰的"前锋"而无"阵尾",称为波的弥散或有后效现象。
- 9. 二维齐次波动方程

$$\begin{split} u(x,y,t) &= \tfrac{1}{2\pi a} \tfrac{\partial}{\partial t} \int_0^{2\pi} \int_0^{at} \tfrac{f(x+\rho\cos\theta,y+\rho\sin\theta)}{\sqrt{(at)^2-\rho^2}} \rho \mathrm{d}\rho \mathrm{d}\theta + \\ &\tfrac{1}{2\pi a} \int_0^{2\pi} \int_0^{at} \tfrac{g(x+\rho\cos\theta,y+\rho\sin\theta)}{\sqrt{(at)^2-\rho^2}} \rho \mathrm{d}\rho \mathrm{d}\theta \\ & \sharp + \xi - x = \rho\cos\theta, \eta - y = \rho\sin\theta \end{split}$$

影响区域

解在点 (x,t) 的值只与区间 [x-at,x+at] 的初始条件有关,该区域称为点 (x,t) 的 依赖区间。

影响区域和决定区域: 在影响区域内任意一点的位移值都要受该区间上初始条件的影响,影响区域内包含一个决定区域,该区域内任意一点的位移值都由 $[x_1,x_2]$ 上的初始条件决定。

泊松方程

$$\nabla^2 u = -f(x, y, z)$$

分离变量法: 边界条件为 u(x,0) = g(x).

$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} g(x_0) \frac{y}{(x-x_0)^2 + y^2} dx_0$$
$$+ \frac{1}{4\pi} \int_{y=0}^{\infty} \int_{x=-\infty}^{\infty} f(x_0, y_0) \ln \frac{(x-x_0)^2 + (y+y_0)^2}{(x-x_0)^2 + (y-y_0)^2} dx_0 dy_0$$

Green 函数法求解:

1. 第一类边界条件 (狄利克雷条件)
$$\left\{ \begin{array}{l} \nabla^2 u(r) = -f(r) \\ \\ u(r)|_{\partial\Omega} = \varphi(r) \end{array} \right.$$

其解为 (Poission 公式)

$$u(\mathbf{r}) = \iiint_{\Omega} G(\mathbf{r}, \mathbf{r}_{0}) f(\mathbf{r}_{0}) dV_{0} - \oint_{\partial \Omega} \varphi(\mathbf{r}_{0}) \frac{\partial G(\mathbf{r}, \mathbf{r}_{0})}{\partial n} dS_{0}$$

第一项物理意义为源点 r_0 处所有电荷在 r 处产生电势的累加;第二项代表边界处产生的感应电荷在 r 产生电势的累加。

2. 第二类边值问题(纽曼边值问题)
$$\left\{ \begin{array}{l} \nabla^2 u = -f(r) \\ \frac{\partial u}{\partial n} \Big|_{\partial \Omega} = \varphi(r) \end{array} \right.$$

其解为

$$u(\mathbf{r}) = \frac{1}{S} \iiint_{\Omega} u(\mathbf{r}_0) dV_0 + \iiint_{\Omega} G(\mathbf{r}, \mathbf{r}_0) f(\mathbf{r}_0) dV_0 + \oint_{\Omega} \varphi(\mathbf{r}_0) G(\mathbf{r}, \mathbf{r}_0) dS_0$$

3. 第三类边值问题 $\left\{ \begin{array}{l} \nabla^2 u = -f(r) \\ \left. \alpha u + \beta \left. \frac{\partial u}{\partial n} \right|_{\partial \Omega} = \varphi(r) \end{array} \right.$

其解为

$$u(r) = \iiint_{\Omega} G(r, r_0) f(r_0) dV_0 + \frac{1}{\beta} \oint_{\partial \Omega} \varphi(r) G(r, r_0) dS_0$$

或

$$u(\mathbf{r}) = \iiint_{\Omega} G(\mathbf{r}, \mathbf{r}_{0}) f(\mathbf{r}_{0}) dV_{0} - \frac{1}{\alpha} \oint_{\partial \Omega} \varphi(\mathbf{r}) \frac{\partial G(\mathbf{r}, \mathbf{r}_{0})}{\partial n} dS_{0}$$

Laplace 方程

直角坐标 Laplace 方程边值问题

 $u|_{y=0} = \varphi(x)$

 $u(x,y) = \int [A(\omega)\cos\omega x + B(\omega)\sin\omega x]e^{-\omega y} d\omega,$

$$f(x) = \int_0^\infty [A(\omega)\cos\omega x + B(\omega)\sin\omega x] d\omega, \ A(\omega) = \frac{1}{\pi} \int_{-\infty}^\infty f(x)\cos\omega x dx,$$

 $B(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin \omega x \, dx$

极坐标 Laplace 方程边值问题

$$u(r,\varphi) = C_0 + D_0 \ln r$$
$$+ \sum_{n=1}^{\infty} \left[\left(C_n r^n + D_n r^{-n} \right) \cos(n\varphi) + \left(A_n r^n + B_n r^{-n} \right) \sin(n\varphi) \right]$$

轴对称球坐标 Laplace 方程边值问题

$$u(r,\theta) = \sum_{n=0}^{\infty} \left(C_n r^n + D_n r^{-(n+1)} \right) P_n(\cos \theta)$$

不对称球坐标 Laplace 方程边值问题

 $u(r, \theta, \varphi)$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{n} (A_n r^n + B_n r^{-(n+1)}) P_n^m(\cos \theta) (C_{nm} \cos m\varphi + D_{nm} \sin m\varphi)$$

= $\sum_{n=0}^{\infty} \sum_{m=0}^{n} (A_{nm} r^n + B_{nm} r^{-(n+1)}) Y_{nm}(\theta, \varphi)$

热传导方程

$$u_t = k\Delta u$$

分类变量法解:

$$T'(t) = -\lambda kT(t)$$
$$X''(x) = -\lambda X(x)$$

可解得

$$u(t,x) = \sum_{n=1}^{+\infty} D_n \left(\sin \frac{n\pi x}{L} \right) e^{-\frac{n^2 \pi^2 kt}{L^2}}, \quad \lambda = \left(\frac{n\pi}{L} \right)^2$$

其中

$$D_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$

分离变量法

- 1. 要求: 对于非齐次方程和齐次边界条件适用. 泛定方程必须是线性的.
- 2. 本征值和本征函数: 在分离变量法的过程中,所引入的常数 λ ,既不能为负,也不能为 0,只能取给定的特定数值,称为本征值,相应的 X_n 的解,称为本征函数。
- 3. 对于一般的齐次的定解问题

$$L_t u + L_x u = 0$$

可将系统分离变量为

$$L_x X(x) + \lambda X(x) = 0$$
, $L_t T(t) - \lambda T(t) = 0$

- 4. 步骤
 - (a) 对于泛定方程 $\mathbf{L}u(x,t)=0$ 写出形式解 u(x,t)=X(x)T(t)
 - (b) 分离变量得到空间函数的本征值问题
 - (c) 解出 T(t) 得到本征解 $u_n(x,t) = X_n(x)T_n(t)$
 - (d) 利用叠加原理得到一般解 $u(x,t) = \sum_n u_n(x,t)$
 - (e) 代入初始条件求出待定系数
- 5. 系数确定

将初始条件表示为

$$\begin{aligned} u|_{t=0} &= \sum_{n=1}^{\infty} C_n \sin \frac{n\pi}{L} x = \phi(x) \\ \frac{\partial u}{\partial t}\Big|_{t=0} &= \sum_{n=1}^{\infty} D_n \frac{na\pi}{L} \sin \frac{n\pi}{L} x = \psi(x) \end{aligned}$$

其中

$$C_n = \frac{2}{L} \int_0^L \phi(x) \sin \frac{n\pi}{L} x dx$$
$$D_n = \frac{2}{n\pi a} \int_0^L \psi(x) \sin \frac{n\pi}{L} x dx$$

6. 本征函数

边界条件	本征值 λ_n	本征函数 $X_n(x)$	n
$u _{x=0} = 0, u _{x=L} = 0$	$\left(\frac{n\pi}{L}\right)^2$	$B_n \sin \frac{n\pi}{L} x$	1,2
$u _{x=0} = 0, \frac{\partial u}{\partial x}\Big _{x=L} = 0$	$\left[\frac{(2n+1)\pi}{2L}\right]^2$	$B_n \sin \frac{(2n+1)\pi}{2L} x$	0,1
$\left. \frac{\partial u}{\partial x} \right _{x=0} = 0, \left. u \right _{x=L} = 0$	$\left[\frac{(2n+1)\pi}{2L}\right]^2$	$A_n \cos \frac{(2n+1)\pi}{2L} x$	0,1
$\left. \frac{\partial u}{\partial x} \right _{x=0} = 0, \left. \frac{\partial u}{\partial x} \right _{x=L} = 0$	$\left(\frac{n\pi}{L}\right)^2$	$A_n \cos \frac{n\pi}{L} x$	0,1

Gamma 函数

$$\begin{split} &\Gamma(x)=\int_0^\infty e^{-t}t^{x-1}dt \quad (x>0),\, \Gamma(x+1)=x\Gamma(x),\, \Gamma(n+1)=n!,\\ &\Gamma\left(n+\frac{1}{2}\right)=\frac{(2n)!}{2^{2n}n!}\sqrt{\pi}, \end{split}$$

斯特林公式 $n! = \sqrt{2\pi n} n^n e^{-n}$

贝塞尔函数

第一类贝塞尔函数

v 阶贝塞尔方程

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + [x^{2} - v^{2}]y = 0 \quad (x > 0)$$

的通解为:

$$y = AJ_v(x) + BJ_{-v}(x), v$$
不为整数

定义为

$$J_v(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+1+v)} \left(\frac{x}{2}\right)^{2m+v}$$
$$J_{\alpha}(x) = \frac{1}{2\pi} \int_0^{2\pi} \cos(\alpha\tau - x\sin\tau) d\tau$$
$$J_{\alpha}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(\alpha\tau - x\sin\tau)} d\tau$$

整数阶 $J_n(x)$ 和 $J_{-n}(x)$ 线性相关

奇偶性

$$J_{\nu}(-x) = (-1)^{\nu} J_{\nu}(x)$$

母函数

$$e^{(x/2)(t-1/t)} = \sum_{n=-\infty}^{\infty} J_n(x)t^n$$

递推公式 (Y(x), H(x) 也满足)

$$\frac{\mathrm{d}}{\mathrm{d}x} [J_0(x)] = -J_1(x)$$

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}x} [x^v J_v(x)] = x^v J_{v-1}(x) \\ \frac{\mathrm{d}}{\mathrm{d}x} [x^{-v} J_v(x)] = -x^{-v} J_{v+1}(x) \end{cases}$$

$$J_{\nu}'(x) = \frac{1}{2} [J_{\nu-1}(x) - J_{\nu+1}(x)]$$

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x)$$

渐近公式

$$J_n(x) pprox \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi}{4} - \frac{n\pi}{2}\right)$$

贝塞尔函数的正交完备性

$$\begin{split} & \int_0^a r J_n \left(\frac{\mu_m^{(n)}}{a} r \right) J_n \left(\frac{\mu_k^{(n)}}{a} r \right) dr = \\ & \left\{ \begin{array}{ll} 0 & m \neq k \\ & \\ \frac{a^2}{2} J_{n-1}^2 \left(\mu_m^{(n)} \right) = \frac{a^2}{2} J_{n+1}^2 \left(\mu_m^{(n)} \right) & m = k \end{array} \right. \end{split}$$

三角函数变换:

$$\cos x = J_0(x) + 2\sum_{n=1}^{\infty} (-1)^n J_{2n}(x), \quad \sin x = 2\sum_{n=0}^{\infty} (-1)^n J_{2n+1}(x)$$

将

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (\lambda^{2}x^{2} - \nu^{2}) y = 0$$

称为参数形式的 Bessel 方程, 其解为参数形式的 Bessel 函数 $J_{\nu}(\lambda x)$.

第二类贝塞尔函数(诺依曼函数)

定义为

$$Y_{\alpha}(x) = \frac{J_{\alpha}(x)\cos(\alpha\pi) - J_{-\alpha}(x)}{\sin(\alpha\pi)}$$
$$Y_{-n}(x) = (-1)^{n}Y_{n}(x)$$

可以使得贝塞尔方程的解为

$$y = AJ_v(x) + BY_v(x), v$$
为整数

渐近形式

$$Y_{\alpha}(x) \to \begin{cases} \frac{2}{\pi} \left[\ln(x/2) + \gamma \right] & \text{if } \alpha = 0 \\ -\frac{\Gamma(\alpha)}{\pi} \left(\frac{2}{x} \right)^{\alpha} & \text{if } \alpha > 0 \end{cases}$$

球贝塞尔函数

球贝塞尔方程

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \left(k^2r^2 - \omega^2\right)R = 0$$

的解为

$$y_{nm}(x) = j_n \left(\lambda_{nm} x \right)$$

例题

对于方程

$$\left\{ \begin{array}{l} \frac{1}{\rho}\frac{d}{d\rho}\left(\rho\frac{d\mathbf{P}}{d\rho}\right) + \lambda^2\mathbf{P} = 0 \\ \mathbf{P}(0) \mathbf{f} \mathbf{\mathcal{F}}, \ P'(a) = 0 \end{array} \right., \quad T' + \lambda^2\kappa T = 0$$

解本征值问题得 $\lambda_0 = 0$, $\lambda_i = \frac{\mu_i'}{a}$,

$$P_0(\rho) = A_0, \quad P_i(\rho) = J_0\left(\frac{\mu_i'}{a}\rho\right), \quad T(t) = A_i \exp\left[-\kappa \left(\frac{\mu_i}{a}\right)^2 t\right]$$

对于本征值问题

$$\left\{ \begin{array}{l} Z^{\prime\prime}+k^2Z=0\\ \\ Z(0)=0, Z(h)=0\\ \\ \frac{1}{\rho}\frac{d}{d\rho}\left(\rho\frac{d\mathbf{P}}{d\rho}\right)-k^2\mathbf{P}=0 \end{array} \right.$$

解得本征函数 $Z_n(z) = \sin \frac{n\pi}{h} z, P_n(\rho) = I_0\left(\frac{n\pi}{h}\rho\right).$

$$u(\rho, z) = \sum_{n=1}^{\infty} A_n I_0\left(\frac{n\pi}{h}\rho\right) \sin\frac{n\pi}{h} z$$

勒让德多项式

连带勒让德方程 (l) 为阶数则 $\lambda = l(l+1)$,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\left(1 - x^2 \right) \frac{\mathrm{d}y}{\mathrm{d}x} \right] + \left(\lambda - \frac{m^2}{1 - x^2} \right) y = 0$$

|l| 阶勒让德方程 $\lambda = l(l+1), (m=0)$:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\left(1 - x^2 \right) \frac{\mathrm{d}y}{\mathrm{d}x} \right] + \lambda y = 0$$

勒让德方程的通解为: $y(x) = AP_l(x) + BQ_l(x)$

l 阶勒让德多项式 (罗德里格公式)

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} [(x^2 - 1)^l]$$

连带勒让德多项式

$$P_l^m(x) = (1 - x^2)^{m/2} P_l^{(m)}(x)$$

积分表达 (C 为包含 $\xi = x$ 的回路)

$$P_l(x) = \frac{1}{2\pi i} \oint_C \frac{\left(\xi^2 - 1\right)^l}{2^l (\xi - x)^{l+1}} d\xi$$
$$P_l(x) = \frac{1}{\pi} \int_0^{\pi} \left(x + \sqrt{1 - x^2} i \cos \theta\right)^n d\theta$$

母函数

$$\frac{1}{\sqrt{1-2xt+t^2}} = \begin{cases} \sum_{l=0}^{\infty} P_l(x)t^l, & |t| < 1\\ \frac{1}{t} \sum_{l=0}^{\infty} P_l(x)\frac{1}{t'}, & |t| > 1 \end{cases}$$

特点

奇偶性: l 为偶数时 $P_l(x)$ 为偶函数, l 为奇数时 $P_l(x)$ 为奇函数

$$P_l(-1) = (-1)^l$$

 $|P_l(x)| < 1, \quad (-1 < x < 1)$

递推公式

$$(2n+1)xP_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x)$$

$$P_n(x) = P'_{n+1}(x) - 2xP'_n(x) + P'_{n-1}(x)$$

$$xP'_n(x) - P'_{n-1}(x) = nP_n(x)$$

$$P'_{n+1}(x) - P'_{n-1}(x) = (2n+1)P_n(x)$$

$$nP'_{n+1}(x) + (n+1)P'_{n-1}(x) = (2n+1)xP'_n(x)$$

$$(n \ge 0) \quad P'_{n+1}(x) = (n+1)P_n(x) + xP'_n(x)$$

正交性

$$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) dx = \frac{(l+m)!}{(l-m)!} \frac{2}{2l+1} \delta_{kl}$$

模值

$$I_l \equiv \int_{-1}^{1} P_l^2(x) dx = \frac{2}{2l+1}$$

函数展成勒让德多项式的级数

设展开式为

$$f(x) = \sum_{l=0}^{\infty} C_l P_l(x)$$

则展开系数为

$$C_l = \frac{2l+1}{2} \int_{-1}^{1} P_l(x) |x| dx$$

前几项勒让德多项式

n	$P_n(x)$
0	1
1	x
2	$\frac{1}{2}(3x^2-1)$
3	$\frac{1}{2}(5x^3 - 3x)$

Sturm-Liouville 定理

标准形式:

$$\left[k(x)\frac{\mathrm{d}y}{\mathrm{d}x}\right] - q(x)y + \lambda\rho(x)y = 0, \quad (a < x < b)$$

一般形式的齐次二阶常微分方程

$$y'' + a(x)y' + b(x)y + \lambda c(x)y = 0$$

总可以化为 Sturm-Liouville 型方程

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[e^{\int a(x) \, \mathrm{d}x} \frac{\mathrm{d}y}{\mathrm{d}x} \right] + \left[b(x) e^{\int a(x) \, \mathrm{d}x} \right] y + \lambda \left[c(x) e^{\int a(x) \, \mathrm{d}x} \right] y = 0$$

定理 1: k(x)、k'(x)、q(x) 在 $(a\ b)$ 上连续,且最多以 x=a,x=b 为一阶极点(正则奇点),则存在无限多个本征值.

定理 2, 所有的本征值 $\lambda_n \geq 0$.

定理 3: 相应于不同本征值 λ_n 的本征函数 $y_n(x)$ 在区间 [a,b] 上带权重 $\rho(x)$ 正交.

定理 4: 所有的本征函数 $y_1(x),y_2(x)$ · · · 是完备的,即若函数 f(x) 满足广义的

Dirichlet 条件, 则必可展为绝对且一致收敛的广义傅立叶级数.

根据 S-L 定理,通过分离变量的方法所求得的级数形式的解以平均收敛的方式逼近问题的真实解.

Green 函数

一个函数可以表示为电源与它所产生的场之间的关系, 可以统一表示为 $u(x)=\int_{-\infty}^{\infty}\phi(\xi)G(\xi,x)\mathrm{d}\xi$, 其中点源响应函数为一个点源在一定的边界,初始条件下所产生的场。定义为

$$abla^2 G\left(x, x'\right) = -rac{1}{arepsilon_0} \delta\left(x - x'\right)$$

无界三维泊松方程对应的 Green 函数

$$G(x, x') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|r - r'|}$$

无界二维泊松方程对应的 Green 函数

$$u(r) = \frac{1}{2\pi\varepsilon} \ln \frac{1}{r}$$

无界三维波动方程的对应的 Green 函数

$$G(\mathbf{r}, \mathbf{r}_0, t) = \frac{1}{4\pi a} \frac{\delta(|\mathbf{r} - \mathbf{r}_0| - at)}{|\mathbf{r} - \mathbf{r}_0|}$$

上半空间的 Green 函数

$$G(x,x') = \frac{1}{4\pi\varepsilon_0} \left[\frac{1}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}} - \frac{1}{\sqrt{(x-x')^2 + (y-y')^2 + (z+z')^2}} \right]$$
球外空间的 Green 函数

x' 为点电荷的位置,镜象点电荷的位置在 $\frac{R_0^2}{R'}\frac{x'}{R'}$ 带电量为 $-\frac{R_0}{R'}$.

$$G\left(x,x'\right) = \frac{1}{4\pi\varepsilon_0} \left[\frac{1}{r} - \frac{R_0}{R'r'} \right] = \frac{1}{4\pi\varepsilon_0} \left[\frac{1}{\sqrt{R^2 + R'^2 - 2RR'\cos\alpha}} - \frac{1}{\sqrt{\left(\frac{RR'}{R_0}\right)^2 + R_0^2 - 2RR'\cos\alpha}} \right]$$

坐标变换

|柱坐标系 (ρ, ϕ, z)

$$\nabla \varphi = \hat{e}_1 \frac{\partial \varphi}{\partial \rho} + \hat{e}_2 \frac{1}{\rho} \frac{\partial \varphi}{\partial \phi} + \hat{e}_3 \frac{\partial \varphi}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{\rho} \frac{\partial (\rho A_1)}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_2}{\partial \phi} + \frac{\partial A_3}{\partial z}$$

$$\nabla \times \mathbf{A} = \hat{e}_1 (\frac{1}{\rho} \frac{\partial A_3}{\partial \phi} - \frac{\partial A_2}{\partial z}) + \hat{e}_2 (\frac{\partial A_1}{\partial z} - \frac{\partial A_3}{\partial \rho}) + \hat{e}_3 \frac{1}{\rho} (\frac{\partial (\rho A_2)}{\partial \rho} - \frac{\partial A_1}{\partial \phi})$$

$$\nabla^2 \varphi = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \frac{\partial \varphi}{\partial \rho}) + \frac{1}{\rho^2} \frac{\partial^2 \varphi}{\partial \phi^2} + \frac{\partial^2 \varphi}{\partial z^2}$$
球坐标系 (r, θ, φ)

$$\nabla \varphi = \widehat{e}_1 \frac{\partial \varphi}{\partial r} + \widehat{e}_2 \frac{1}{r} \frac{\partial \varphi}{\partial \theta} + \widehat{e}_3 \frac{1}{r \sin \theta} \frac{\partial \varphi}{\partial \phi} q$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial r^2 A_1}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_2) + \frac{1}{r \sin \theta} \frac{\partial A_3}{\partial \phi}$$

$$\nabla \times \mathbf{A} = \widehat{e}_1 \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta A_3) - \frac{\partial A_2}{\partial \phi} \right] + \widehat{e}_2 \left[\frac{1}{r \sin \theta} \frac{\partial A_1}{\partial \phi} - \frac{1}{r} \frac{\partial}{\partial r} (r A_3) \right] +$$

$$\widehat{e}_3 \frac{1}{r} \left[\frac{\partial}{\partial r} (r A_2) - \frac{\partial A_1}{\partial \theta} \right]$$

$$\nabla^2\varphi = \frac{1}{r^2\sin\theta}\left[\sin\theta\frac{\partial}{\partial r}(r^2\frac{\partial\varphi}{\partial r}) + \frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\varphi}{\partial\theta}) + \frac{1}{\sin\theta}\frac{\partial^2\varphi}{\partial\phi^2}\right]$$

球谐函数

l	m	$\Phi(\varphi)$	$\Theta(\theta)$
0	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{1}{\sqrt{2}}$
1	0	$\frac{1}{\sqrt{2\pi}}$	$\sqrt{\frac{3}{2}}\cos\theta$
1	+1	$\frac{1}{\sqrt{2\pi}}\exp(i\varphi)$	$\frac{\sqrt{3}}{2}\sin\theta$
1	-1	$\frac{1}{\sqrt{2\pi}}\exp(-i\varphi)$	$\frac{\sqrt{3}}{2}\sin\theta$
2	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{1}{2}\sqrt{\frac{5}{2}}(3\cos^2\theta - 1)$
2	+1	$\frac{1}{\sqrt{2\pi}}\exp(i\varphi)$	$\frac{\sqrt{15}}{2}\sin\theta\cos\theta$
2	-1	$\frac{1}{\sqrt{2\pi}}\exp(-i\varphi)$	$\frac{\sqrt{15}}{2}\sin\theta\cos\theta$
2	+2	$\frac{1}{\sqrt{2\pi}}\exp(2i\varphi)$	$\frac{\sqrt{15}}{4}\sin^2\theta$
2	-2	$\frac{1}{\sqrt{2\pi}}\exp(-2i\varphi)$	$\frac{\sqrt{15}}{4}\sin^2\theta$