- 1. Siano $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\} \in C = \{4, 5, 6, 7, 8, 9, 10\}.$ Determinare:
 - (a) $A \cap B \cap C$;
- (c) $A \cup (B \cap C)$; (e) A (B C); (d) (A B) C; (f) $A \cap (B C)$.
- (b) $(A \cup B) \cap C$;

- 2. (a) Per ogni $n \in \mathbb{N}$ sia $A_n = \{m \in \mathbb{N} : m \leq n\}$. Determinare $A_4 \cap A_5 \cap A_6 \cap A_7$ e determinare $A_4 \cup A_5 \cup A_6 \cup A_7$.
 - (b) Per ogni $n \in \mathbb{N}$ sia $B_n = \{m \in \mathbb{Z} : \text{esiste un } k \in \mathbb{Z} \text{ tale che } m = kn\}$. Determinare $B_4 \cap B_5 \cap B_6$.
- 3. Costruire tre insiemi A, B, C per cui $A \cap (B \cup C) \neq (A \cap B) \cup C$.
- 4. Siano A, B sottoinsiemi di un insieme X. È vero che $A^c \cup B^c = (A \cup B)^c$??? Dimostrarlo, o determinare insiemi A, B, X per cui non vale.
- 5. Siano $A, B \in C$ tre sottoinsiemi di X. Dimostrare
 - (a) $A \cup B \subset A \cup B \cup C$;
- (b) $(A B) C \subset A C$;
- (c) $(A-C) \cap (C-B) = \emptyset$; (d) $(B-A) \cup (C-A) = (B \cup C) A$.
- 6. (a) Determinare $\mathcal{P}(\emptyset)$, $\mathcal{P}(\mathcal{P}(\emptyset))$.
 - (b) Determinare $\mathcal{P}(\{0\})$ e $\mathcal{P}(\mathcal{P}(\{0\}))$.
- 7. Determinare le seguenti intersezioni infinite $\bigcap_{n\in\mathbb{N}} [-\frac{1}{n}, \frac{1}{n}], \bigcap_{n\in\mathbb{N}}]-\infty, n], \bigcap_{n\in\mathbb{N}} [n, \infty[$
- 8. Determinare le seguenti unioni infinite $\bigcup_{n\in\mathbb{N}}(-\frac{1}{n},\frac{1}{n}),\ \bigcup_{n\in\mathbb{N}}]-\infty,n],\ \bigcup_{n\in\mathbb{N}}[n,\infty[.$
- 9. Siano $A = \{0, 2, 4, 6, 8, 10\}$ e $B = \{0, 1, 2, 3, 4, 5, 6\}$. e $C = \{4, 5, 6, 7, 8, 9, 10\}$.
 - (i) Determinare due funzioni iniettive distinte $f, g: A \to B$. Quante ce ne sono in tutto?
 - (i) Determinare due funzioni suriettive distinte $f, g: B \to A$. Ne esistono di iniettive?
 - (i) Determinare due funzioni biiettive distinte $f, g: B \to C$. Quante ce ne sono in tutto?
- 10. Sia $f: \mathbb{N} \longrightarrow \mathbb{N}$, definita da $f(n) = 3n^2$. Determinare se f è iniettiva, suriettiva, biiettiva.
- 11. Sia $f: \mathbb{Z} \longrightarrow \mathbb{N}$, definita da $f(n) = 3n^2 + 4$. Determinare se f è iniettiva, suriettiva, biiettiva.
- 12. Costruire una funzione $f: \mathbb{N} \longrightarrow \mathbb{Z}$ tale che
 - (a) f è una iniezione ma non una suriezione.
 - (b) f è una suriezione ma non una iniezione.
- 13. Se esiste, costruire una biiezione fra i seguenti insiemi.
 - (a) $A = \{1, 2, 3\} \in B = \{7, 8, 10\};$
- (c) \mathbf{Z} e $\{x \in \mathbf{Z} : x \text{ è dispari}\};$
- (e) **R** e **C**;

- (b) $A = \{0, 1\} \in B = \{1\};$
- (d) $\mathbf{R} \in \mathbf{R} \{0\}$;

- (f) $A = \{a, b\} \in \mathcal{P}(A)$.
- 14. Costruire due insiemi finiti A, B per cui $\operatorname{card}(A \cup B) \neq \operatorname{card}(A) + \operatorname{card}(B)$ e due insiemi finiti C, D per $\operatorname{cui} \operatorname{card}(C \cup D) = \operatorname{card}(C) + \operatorname{card}(D).$
- 15. Dimostrare i seguenti fatti:
 - (a) Sia $A \subset B$ un sottoinsieme di un insieme numerabile. Allora A è finito oppure è numerabile.
 - (b) Siano A, B due insiemi numerabili. Allora gli insiemi $A \cup B$ e $A \times B$ sono numerabili.
 - (c) Per k = 1, 2, 3, ..., siano A_k insiemi numerabili. Allora $\bigcup_{k=1}^{\infty} A_k$ è numerabile.
- 16. Sia a > -1. Dimostrare per induzione che $(1+a)^n > 1+na$, per ogni $n \in \mathbb{N}$.
- 17. Dimostrare per induzione che $n^3 n$ è multiplo di 3, per ogni $n \in \mathbb{N}$.
- 18. Dimostrare per induzione che $n^3 + 3n^2 + 2n$ è multiplo di 6, per ogni $n \in \mathbb{N}$.
- 19. (i) Dimostrare per induzione che $3^n < n!$ per ogni n > 7.
 - (ii) Trovare $n_0 \in \mathbb{N}$ tale che $4^{n_0} < n_0!$. Dimostrare per induzione che $4^n < n!$ per ogni $n > n_0$.
- 20. Per quali numeri naturali n si ha che $n! \geq n^2$? Dimostrare per induzione la risposta data.

- 21. Dimostrare per induzione che $1^2+2^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$ per ogni intero $n\geq 1$.
- 22. Dimostrare per induzione che la somma dei cubi dei primi n numeri pari è uguale a $2n^2(n+1)^2$.
- 23. (a) Dimostrare per induzione che, per ogni $n \in \mathbb{N}$, risulta $\sum_{i=0}^{n} (4i+1) = (2n+1)(n+1)$.
 - (b) Determinare $\sum_{i=0}^{n} (4i+2)$ per ogni $n \in \mathbb{N}$.
- 24. Sia $F: \mathbb{N} \to \mathbb{R}$ la funzione ricorsiva definita da F(0) = 1, F(n) = F(n-1) + 2, per $n \geq 1$. Calcolare F(1), F(2), F(3), F(4). Chi sono i numeri F(n)?
- 25. Sia $F: \mathbb{N} \to \mathbb{R}$ la funzione ricorsiva definita da F(1) = 1, F(n) = n + F(n-1), per $n \ge 1$. Calcolare F(1), F(2), F(3), F(4). Dimostrare per induzione che F(n) = n(n+1)/2.
- 26. Siano $F_0=0,\,F_1=1,\,$ ed $F_k=F_{k-2}+F_{k-1},\,$ per $k\in {\bf N},\,$ $k\geq 2,\,$ i numeri di Fibonacci. (i) Dimostrare che $F_1^2+\ldots+F_n^2=F_nF_{n+1}$ per ogni $n\geq 1.$ (ii) Dimostrare per induzione che, per ogni $n\geq 1,\,$ risulta che $\mathrm{mcd}(F_n,F_{n+1})=1.$

 - (iii) Dimostrare che $F_1 + F_3 + \cdots + F_{2n-1} = F_{2n}$ per ogni $n \ge 1$.
- 27. Sia $g: \mathbf{N} \to \mathbf{R}$ la funzione ricorsiva definita da g(0) = 2, g(1) = 5 e g(n) = g(n-2) g(n-1), per $n \ge 2$. Calcolare g(5).