

FCC TEST REPORT

Issued to

Megasoft Limited

For

Active Poster-Virtual mobile commerce terminal

Model Name:

AP-BX-GX

Brand Name:

XIUS

Trade Name:

Active Poster / Mobile Touch Transaction (MTT)

FCC ID:

ZTDAPBXGX

Standard:

47 CFR Part 2

47 CFR Part 22 Subpart H

47 CFR Part 24 Subpart E

Test date:

May 20, 2011 -July 15, 2011

Issue date:

August 12, 2011

Shenzhen Morlad Communications Technology Co., Ltd.

Tu Lang

Date

2011.8.12

Certification

Approved by MC Pulong

Pate

Approved by MC Pulong

Review by

Cao Shaqdong

Date

201.8.12

IEEE 1725

OTA

Reg. No. 741109

電訊管理局

o ed in confidence to the client and it will be strictly treated

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

1.0

August 12, 2011

		TAI	BLE OF CONTENTS	
1.	GENE	RAL INFORMATION		3
1.1	EUT I	Description		3
1.2	Test St	andards and Results		5
1.3	Facilit	ies and Accreditations		6
2.	47 CF	R PART 2, PART 22H &	24E REQUIREMENTS	7
2.1	Condu	icted RF Output Power		7
2.2	99% (Occupied Bandwidth		21
2.3	Freque	ency Stability		25
2.4	Condu	cted Out of Band Emission	ons	27
2.5	Band 1	Edge		31
2.6	Transı	nitter Radiated Power (E	IRP/ERP)	34
2.7	Radiat	ted Out of Band Emission	ns	41
			Change History	
	Issue	Date	Reason for change	

First edition

1. GENERAL INFORMATION

1.1 EUT Description

EUT Type: Active Poster- Virtual mobile commerce terminal

Serial No.....: (n.a, marked #1 by test site)

Hardware Version: 01

Software Version 3.10.5.8

Applicant Megasoft Limited

6-3-1192/2/1, Kundanbagh, Begumpet, Hyderabad – 500016

Manufacturer: Megasoft Limited

6-3-1192/2/1, Kundanbagh, Begumpet, Hyderabad – 500016

Frequency Range GPRS 850MHz:

Tx: 824.20 - 848.80MHz (at intervals of 200kHz);

Rx: 869.20 - 893.80MHz (at intervals of 200kHz)

GPRS 1900MHz:

Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz); Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)

Modulation Type.....: GMSK
Emission Designators: 300KGXW
Power Supply Battery

Brand Name: Wisewod

Model No.: WD335585PN1800mAh Serial No.: (n.a. marked #1 by test site)

Capacitance: 1800mAh Rated Voltage: 3.7V

Charge Limit: 4.2V

Manufacturer: Shenzhen Wisewod Technology Co. Limited

Ancillary Equipment A....... AC Adapter (Charger for Battery)

Brand Name: Oiw

Model Name: GFP181DA-0530-1

Serial No.: (n.a. marked #1 by test site)
Rated Input: ~ 100-240V, 50/60Hz, 0.35A

Rated Output: = 5V, 3A

Manufacturer: DEE VAN ENTERPRISE CO., LTD.

Note 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).

Note 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2*(n-512), 512 <= n <= 810; the lowest,

middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz). Note 3: The GPRS was tested under 4 time-slots mode. *Note 4:* The Bhagyashree Industries of the AC Adapter is SA151102050030. Note 5: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22 and Part 24 for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General
	(10-1-09 Edition)	Rules and Regulations
2	47 CFR Part 22	Public Mobile Services
	(10-1-09 Edition)	
3	47 CFR Part 24	Personal Communications Services
	(10-1-09 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	2.1046	Conducted RF Output Power	PASS
2	2.1049	20dB Occupied Bandwidth	PASS
3	2.1055	Frequency Stability	PASS
	22.355		
	24.235		
4	2.1051	Conducted Out of Band Emissions	PASS
	2.1057		
	22.917		
	24.238		
5	2.1051	Band Edge	PASS
	2.1057		
	22.917		
	24.238		
6	22.913	Transmitter Radiated Power (EIPR/ERP)	PASS
	24.232		
7	2.1053	Radiated Out of Band Emissions	PASS
	2.1057		
	22.917		
	24.238		

NOTE: Measurement method according to ANSI/TIA-603-D 2010.

1.3 Facilities and Accreditations

1.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at 3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR PART 2, PART 22H & 24E REQUIREMENTS

2.1 Conducted RF Output Power

2.1.1 Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2 Test Description

1. Test Setup:

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator	Agilent	E5515C	GB43130131	2011.05
Spectrum Analyzer	Agilent	E7405A	US44210471	2011.05
Power Splitter	Weinschel	1506A	NW521	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)

2.1.3 Test Result

Here the lowest, middle and highest channels are selected to perform testing to verify the conducted

RF output power of the EUT. For the GPRS 850MHz operates at PCL=5 (where Power Class is 4), the rated conducted RF output power is 33dBm, and For the GPRS 1900MHz operates at PCL=0 (where Power Class is 1), the rated conducted RF output power is 30dBm.

1. Test Verdict:

Dond	Multislot	Channal	Frequency	Measured O	Limit	Vandi ot	
Band	Config	Channel	(MHz)	dBm	Refer to Plot	dBm	Verdict
GPRS	1 Down,	128	824.2	31.98	Plot A1		PASS
850MHz	4Up	190	836.6	31.89	Plot A2	35	PASS
830MHZ		251	848.8	31.70	Plot A3		PASS
GPRS	1 Down,	512	1850.2	26.95	Plot B1		PASS
1900MHz	4Up	661	1880.0	27.35	Plot B2	32	PASS
1900MHZ		810	1909.8	27.35	Plot B3		PASS
GPRS	2 Down,	128	824.2	30.52	Plot C1		PASS
850MHz	3 Up	190	836.6	30.35	Plot C2	35	PASS
OSUMITZ		251	848.8	30.16	Plot C3		PASS
GPRS	2 Down,	512	1850.2	26.96	Plot D1		PASS
1900MHz	3 Up	661	1880.0	27.31	Plot D2	32	PASS
1900MHZ		810	1909.8	27.36	Plot D3		PASS
GPRS	3 Down,	128	824.2	30.41	Plot E1		PASS
850MHz	2Up	190	836.6	30.39	Plot E2	35	PASS
OJUMITZ		251	848.8	30.22	Plot E3		PASS
GPRS	3 Down,	512	1850.2	26.90	Plot F1		PASS
1900MHz	2Up	661	1880.0	27.27	Plot F2	32	PASS
1900WITIZ		810	1909.8	27.33	Plot F3		PASS
GPRS	4 Down,	128	824.2	31.86	Plot G1		PASS
850MHz	1 Up	190	836.6	31.82	Plot G2	35	PASS
OSUMITZ		251	848.8	31.65	Plot G3		PASS
GPRS	4 Down,	512	1850.2	28.34	Plot H1		PASS
1900MHz	1 Up	661	1880.0	28.69	Plot H2	32	PASS
1 9001VII IZ		810	1909.8	28.63	Plot H3		PASS

2. Test Plots:

(Plot A1: GPRS 850MHz Channel = 128 Multislot Config: 1 Down, 4Up)

(Plot A2: GPRS 850MHz Channel = 190 Multislot Config: 1 Down, 4Up)

(Plot A3: GPRS 850MHz Channel = 251 Multislot Config: 1 Down, 4Up)

(Plot B1: GPRS 1900MHz Channel = 512 Multislot Config: 1 Down, 4Up)

(Plot B2: GPRS 1900MHz Channel = 661 Multislot Config: 1 Down, 4Up)

(Plot B3: GPRS 1900MHz Channel = 810 Multislot Config: 1 Down, 4Up)

(Plot C1: GPRS 850MHz Channel = 128 Multislot Config: 2 Down, 3Up)

(Plot C2: GPRS 850MHz Channel = 190 Multislot Config: 2 Down, 3Up)

(Plot C3: GPRS 850MHz Channel = 251 Multislot Config: 2 Down, 3Up)

(Plot D1: GPRS 1900MHz Channel = 512 Multislot Config: 2 Down, 3Up)

(Plot D2: GPRS 1900MHz Channel = 661 Multislot Config: 2 Down, 3Up)

(Plot D3: GPRS 1900MHz Channel = 810 Multislot Config: 2 Down, 3Up)

(Plot E1: GPRS 850MHz Channel = 128 Multislot Config: 3 Down, 2Up)

(Plot E2: GPRS 850MHz Channel = 190 Multislot Config: 3 Down, 2Up)

(Plot E3: GPRS 850MHz Channel = 251 Multislot Config: 3 Down, 2Up)

(Plot F1: GPRS 1900MHz Channel = 512 Multislot Config: 3 Down, 2Up)

(Plot F2: GPRS 1900MHz Channel = 661 Multislot Config: 3 Down, 2Up)

(Plot F3: GPRS 1900MHz Channel = 810 Multislot Config: 3 Down, 2Up)

(Plot G1: GPRS 850MHz Channel = 128 Multislot Config: 4 Down, 1Up)

(Plot G2: GPRS 850MHz Channel = 190 Multislot Config: 4 Down, 1Up)

(Plot G3: GPRS 850MHz Channel = 251 Multislot Config: 4 Down, 1Up)

(Plot H1: GPRS 1900MHz Channel = 512 Multislot Config: 4 Down, 1Up)

(Plot H2: GPRS 1900MHz Channel = 661 Multislot Config: 4 Down, 1Up)

(Plot H3: GPRS 1900MHz Channel = 810 Multislot Config: 4 Down, 1Up)

2.2 99% Occupied Bandwidth

2.2.1 Definition

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as the 99% emission bandwidth,.

2.2.2 Test Description

See section 2.1.2 of this report.

2.2.3 Test Verdict

Here the lowest, middle and highest channels are tested to record the 99% occupied bandwidth.

Test Verdict:

Band	Channel	Frequency (MHz)	Measured 99% Occupied Bandwidth (kHz)	Refer to Plot
CDDC	128	824.2	255.00	Plot A
GPRS 850MHz	190	836.6	250.00	Plot B
OSUMITZ	251	848.8	255.00	Plot C
CDDC	512	1850.2	255.00	Plot D
GPRS 1900MHz	661	1880.0	255.00	Plot E
1900MITZ	810	1909.8	255.00	Plot F

3. Test Plots:

(Plot A: GPRS 850MHz Channel = 128)

(Plot B: GPRS 850MHz Channel = 190)

(Plot C: GPRS 850MHz Channel = 251)

(Plot D: GPRS 1900MHz Channel = 512)

(Plot E: GPRS 1900MHz Channel = 661)

(Plot F: GPRS 1900MHz Channel = 810)

2.3 Frequency Stability

2.3.1 Requirement

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30° C to $+50^{\circ}$ C at intervals of not more than 10° C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.3.2 Test Description

1. Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator	Agilent	E5515C	GB43130131	2011.05
DC Power Supply	Good Will	GPS-3030DD	EF920938	2011.05
Temperature	YinHe Experimental	HL4003T	(n.a.)	2011.05
Chamber	Equip.			

2.3.3 Test Verdict

The nominal, highest and lowest extreme voltages are separately 3.7VDC, 4.2VDC and 3.6VDC, which are specified by the applicant; the normal temperature here used is 25°C. The frequency

deviation limit of GPRS 850MHz band is $\pm 2.5 ppm$, and GPRS 1900MHz is $\pm 1 ppm$

				_						
	Test C	onditions		Frequency Deviation						
Band	Power	Power Temperat		Channel $= 128$		Channel $= 190$		Channel = 251		
20110	(VDC)	ure (°C)	(824.	2MHz)	(836.	6MHz)	(848.8MHz)		Verdict	
	(120)	ure (c)	Hz	Limits	Hz	Limits	Hz	Limits		
		-30	15.78		-15.66		-12.38			
		-20	-11.17		9.70		-7.98			
		-10	23.28		-20.06		11.14			
		0	-3.03		24.06		-1.39			
GPRS	3.7	+10	-23.13		23.07		25.47			
850MHz		+20	-11.39	±2060.5	-12.76	±2091.5	-7.61	±2122	PASS	
830MHZ		+30	17.75		-20.05		6.09			
		+40	15.31		-23.77		5.49			
		+50	-12.19		5.39		13.19			
	4.2	+25	20.74		19.65		3.71			
	3.6	+25	23.29		-0.70		-8.32			
	Test C	onditions	Frequency Deviation							
Dand	Power (VDC)	Townsonst	Channel = 512		Chann	el = 661	Channel = 810		Vandiat	
Band		-	Temperat	(1850.2MHz)		(1880.0MHz)		(1909	.8MHz)	Verdict
		ure (°C)	Hz	Limits	Hz	Limits	Hz	Limits		
		-30	8.87		15.07		13.97			
		-20	15.71		-22.63		-19.32			
		-10	-5.22		10.31		8.71			
		0	29.37		-3.20		11.82			
CDDC	3.7	+10	13.97		1.18		1.23			
GPRS		+20	22.42	±1850.2	3.61	±1880.0	-0.60	±1909.8	PASS	
1900MHz		+30	18.57		-11.62		-7.78			
		+40	-19.93		-7.97		0.21			
		+50	23.76		-8.23		-11.57			
	4.2	+25	-10.20		21.16		0.97			
	3.6	+25	-0.09		26.94		21.40			

2.4 Conducted Out of Band Emissions

2.4.1 Requirement

According to FCC section 22.917(a) and FCC section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.4.2 Test Description

See section 2.1.2 of this report.

2.4.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

1. Test Verdict:

Band	Channel	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdic t
GPRS	128	824.2	-30.40	Plot A		PASS
850MHz	190	836.6	-28.41	Plot B	-13	PASS
830MHZ	251	848.8	-29.36	Plot C		PASS
CDDC	512	1850.2	-37.56	Plot D		PASS
GPRS 1900MHz	661	1880.0	-36.12	Plot E	-13	PASS
1900MHZ	810	1909.8	-36.35	Plot F		PASS

2. Test Plots for the Whole Measurement Frequency Range:

Note: the power of the EUT transmitting frequency should be ignored.

(Plot A: GPRS 850MHz Channel = 128, 30MHz to 10GHz)

(Plot B: GPRS 850MHz Channel = 190, 30MHz to 10GHz)

2.5 Band Edge

2.5.1 Requirement

According to FCC section 22.917(b) and FCC section 24.238(b), in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.5.2 Test Description

See section 2.1.2 of this report.

2.5.3 Test Result

The lowest and highest channels are tested to verify the band edge emissions.

1. Test Verdict:

Band	Channel	Frequency (MHz)	Measured Max. Band Edge Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GPRS	128	824.2	-13.71	Plat A	-13	PASS
850MHz	251	848.8	-13.73	Plot B	-13	PASS
GPRS	512	1850.2	-20.51	Plat C	12	PASS
1900MHz	810	1909.8	-19.03	Plot D	-13	PASS

(Plot A: Channel = 128)

(Plot B: Channel = 251)

(Plot C: Channel = 512)

(Plot D: Channel = 810)

2.6 Transmitter Radiated Power (EIRP/ERP)

2.6.1 Requirement

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2Watts e.i.r.p. peak power.

2.6.2 Test Description

1. Test Setup:

The EUT, which is powered by the Battery charged with the AC Adapter, is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GPRS850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GPRS1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded.

- -Maximum RF output power: GPRS850 31.98dBm, GPRS 1900 28.69dBm, Please refer to section 2.1.3 of this report.
- Step size (dB): 3dB
- Minimum RF power: GPRS850 4.01dBm, GPRS 1900 -0.6dBm

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) or a Horn one (used for above 3GHz), and it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator	Agilent	E5515C	GB43130131	2011.05
Spectrum Analyzer	Agilent	E7405A	US44210471	2011.05
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2011.05
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2011.05
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2011.05

2.6.3 Test Result

The Turn Table is actuated to turn from 0° to 360° , and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

 $A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST_TX} is signal generator level,

P_{SUBST RX} is receiver level,

L_{SUBST CABLES} is cable losses including TX cable,

G_{SUBST_TX_ANT} is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

1. Test Verdict:

Band	Multislot Config	Channel	Frequency (MHz)	Measured ERP/EIRP			Limit		
				dBm	W	Refer to Plot	dBm	W	Verdict
GPRS 850MHz	1 Down,	128	824.20	25.25	0.33				PASS
	4Up	190	836.60	26.32	0.43	Plot A	38.45	7	PASS
		251	848.80	26.29	0.43				PASS
GPRS 1900MHz	1 Down,	512	1850.2	23.76	0.24				PASS
	4Up	661	1880.0	20.77	0.12	Plot B	33	2	PASS
		810	1909.8	15.03	0.03				PASS
GPRS 850MHz	2 Down,	128	824.20	26.66	0.46				PASS
	3 Up	190	836.60	23.60	0.23	Plot C	38.45	7	PASS
		251	848.80	17.89	0.06				PASS
GPRS 1900MHz	2 Down,	512	1850.2	28.07	0.64				PASS
	3 Up	661	1880.0	29.05	0.80	Plot D	33	2	PASS
		810	1909.8	28.98	0.79				PASS
GPRS 850MHz	3 Down,	128	824.20	29.89	0.97				PASS
	2Up	190	836.60	30.80	1.20	Plot E	38.45	7	PASS
		251	848.80	30.74	1.19				PASS
GPRS 1900MHz	3 Down,	512	1850.2	28.01	0.63				PASS
	2Up	661	1880.0	24.94	0.31	Plot F	33	2	PASS
		810	1909.8	19.95	0.10				PASS
GPRS 850MHz	4 Down,	128	824.20	31.63	1.46				PASS
	1 Up	190	836.60	32.48	1.77	Plot G	38.45	7	PASS
		251	848.80	32.24	1.67				PASS
GPRS 1900MHz	4 Down,	512	1850.2	29.35	0.86				PASS
	1 Up	661	1880.0	26.34	0.43	Plot H	33	2	PASS
		810	1909.8	20.39	0.11				PASS

2. Test Plots:

(Plot A: GPRS 850MHz Channel = 128,190,251 Multislot Config: 1 Down, 4Up)

(Plot B: GPRS 1900MHz Channel = 512, 661, 810 Multislot Config: 1 Down, 4Up)

(Plot C: GPRS 850MHz Channel = 128,190,251 Multislot Config: 2 Down, 3Up)

(Plot D: GPRS 1900MHz Channel = 512, 661, 810 Multislot Config: 2 Down, 3Up)

(Plot E: GPRS 850MHz Channel = 128,190,251 Multislot Config: 3 Down, 2Up)

(Plot F: GPRS 1900MHz Channel = 512, 661, 810 Multislot Config: 3 Down, 2Up)

(Plot G: GPRS 850MHz Channel = 128,190,251 Multislot Config: 4 Down, 1Up)

(Plot H: GPRS 1900MHz Channel = 512, 661, 810 Multislot Config: 4 Down, 1Up)

2.7 Radiated Out of Band Emissions

2.7.1 Requirement

According to FCC section 22.917(a) and section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.7.2 Test Description

See section 2.6.2 of this report.

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.7.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360° , and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions.

1. Test Verdict:

Band	Channe 1	Frequenc y (MHz)		ax. Spurious n (dBm)		Limit (dBm)	Verdict
			Test Antenna Horizontal	Test Antenna Vertical	Refer to Plot		
GPRS 850MHz	128	824.2	<-25	<-25	Plot A.1/A.2		PASS
	190	836.6	<-25	<-25	Plot B.1/B.2	-13	PASS
	251	848.8	<-25	<-25	Plot C.1/C.2		PASS
GPRS 1900MHz	512	1850.2	-27.52	-26.53	Plot D.1/D.2		PASS
	661	1880.0	-25.37	-26.85	Plot E.1/E.2	-13	PASS
	810	1909.8	-29.18	-35.46	Plot F.1/F.2		PASS

(Plot F.2: GPRS 1900MHz Channel = 810, Test Antenna Vertical)

** END OF REPORT **