Introduction to Telecommunications Networks

Philip Branch

Outline of talk

- Why engineers and software developers need to know comms
- Network requirements for different applications
- General network characteristics
- Core networks
- Access networks
- Review of network types

But first... Why do you need to know about Telecommunications and Networks

• Engineers:

- Electrical Engineers may actually end up working for a telco and electrical systems often centrally monitored and controlled
- Smart grid relies on communications to transfer or store energy
- Mechanical, Electrical and Civil engineering equipment now connected to remote controllers
- Civil engineering use sensors for building and bridge stress and movement, mining for wall deformation
- Biomedical Engineers have many body sensor devices moving to wireless and remote access
- Computer Systems Engineers work with multiple devices that need to communicate

But first... Why do you need to know about Telecommunications and Networks

- Computer scientists:
 - Most systems distributed
- Game Developers:
 - Game performance depends on underlying network infrastructure

Requirements of different applications of communications networks

- Different applications need different things from a network
- Voice
 - Low bit rate, can tolerate some loss but very intolerant of delay
- Video conferencing
 - Similar to voice (tolerant of some loss, intolerant of delay) but higher bit rates needed
- Video streaming
 - Can be buffered to deal with delay but very high bit rates
 - Ultra-High Definition Television can be encoded at up to 91 Mbps
 - Netflix 4k is encoded at 15.4 Mbps but Netflix recommend minimum 25 Mbps
- Data services such as eCommerce, online banking, web pages, emails...
 - Can tolerate delay and usually low bit rates but cannot tolerate errors

Network Characteristics

- Some networks are less reliable than others
 - Wireless for example
 - But can be made reliable at the cost of delay and delay variation
 - Protocols such as TCP include error checking and correction
- Some have much lower bit rates than others
 - Internet of Things technologies such as LoRa, NB-IoT, LTE-M have much lower bit rates than WiFi, LTE and Ethernet for example
- Some have less coverage than others
 - WiFi about 100 metres while LTE (4G cellular) has up to 30 kms
- Some are much more expensive than others
 - Satellite much more expensive than WiFi
- Some are more readily available than others
 - Satellite available most places while cellular much less available outside population centres

Appropriate Network Technologies

- The appropriate network technology for a particular client or clients will depend on many things
 - Cost, number of users, distribution of users, available infrastructure, purpose of the network...
- It may be appropriate to implement a mix of technologies
 - Fixed wireless or ADSL for distances of up to two or three km and a satellite uplink for example
- There will usually be many possible mixes of technologies for any particular situation....

Communications Technologies

- Many ways to classify network technologies
 - Topological location: Core / Distribution / Access
 - Medium: Wireless / Copper / Fibre
 - Ownership: Public / Corporate / Home
 - Coverage: PAN / LAN / MAN / WAN
 - Capacity: 1000Ethernet / Cable Modem / ADSL2
 - Purpose: IoT, Voice, Data

Access and Core Networks

- Access networks concerned with 'last mile' problem
 - Provide connectivity to a users
- Core networks shift large volumes of traffic between different nodes in the network which may be located vast distances apart
- Many different Access networks but only a few Core networks
 - appropriate Access network depends on many factors
 - population density of users to be connected
 - the distance to the nearest core network node (such as a telephone exchange or wireless base station)
 - existing installed network infrastructure
 - purpose of network

Core networks

- Sometimes "backhaul" network
- A few technologies
 - Satellite
 - Optic fiber
 - Microwave
- Uses SDH or Gigabit Ethernet along with ATM, TCP/IP...
- Used to connect different sites together
 - Exchanges, campuses, transmission towers...

Access Networks

- Will review each of the following
 - Ethernet
 - Cable Modem
 - ADSL
 - Wireless LAN
 - LTE
 - 5G NR
 - GPON
 - FTTP
 - Fixed Wireless
 - Satellite
 - Internet of Things wireless networks

Ethernet

- Frame-based Local Area Network (LAN) technology
- Defines frame formats, Medium Access Controls
 - Mostly standardised by IEEE 802.3
- Short distances but can be linked to form large-ish networks
- Widely used Access network

Cable Modem networks

- Cable Television based
 - Use CATV infrastructure for data networking
 - Hybrid Fiber Coaxial Network
- Implemented as an inverted tree
 - root of the tree referred to as the 'head-end'
- An analog medium
 - 6 MHz broadcast channels
 - data from multiple users is modulated onto multiple 6MHz channels
- Usually an asymmetric network
 - high bit rate forward link
 - low in reverse link

ADSL and VDSL

- Digital Subscriber Line technologies leverage existing telephone networks to provide broadband access.
- First major one was ISDN
- The most important of these technologies now are xDSL family
 - xDSL is a family of subscriber link technologies including Asymmetric DSL, High-speed DSL (HDSL), Very high speed DSL (VDSL) and variations of each
 - xDSL uses the existing PSTN twisted pair copper loop otherwise used for standard telephony.
 - Operates in parallel with the existing telephone service but independently and without affecting it.
 - Uses different frequencies to that of standard telephony

Wireless LANs

- Wireless LANs protocols defined by the IEEE 802.11 work group for the ISM band
- All 802.11 networks use a common MAC layer, but vary in the physical layer details.
 - Most commonly used is the 802.11g and 802.11n standard operating in the 2.4 GHz Industrial, Scientific and Medical band (ISM).
 - 802.11n takes advantage of developments in transmitter receiver design (MIMO)
 - 802.11ac up to 7 Gbps (depending on configuration)

Wireless LANs

- Wireless LANs operate in the ISM band
 - An area of spectrum that is minimally regulated in which anyone may operate radio equipment subject to a minimal set of restraints, primarily on power levels
 - 802.11 is subject to interference from Bluetooth communications devices, some cordless telephones, and Microwave ovens.

Long Term Evolution (LTE)

AG AGLTE 5G

- Wireless cellular network
- Sometimes "4G"
- From the fourth generation cellular onwards the core and radio network were separated with the intention of allowing them to develop separately
 - LTE is the radio access network and Evolved Packet System (EPS) is the network core
- LTE and EPS build on successful history of security of other cellular networks
- Flexible security architecture allowing for implementation of developments in cryptography

5G NR

- "Fifth Generation New Radio"
 - Fifth generation of cellular
- Three broad areas of activity defined by use cases
 - eMBB Enhanced Mobile Broadband
 - mMTC Massive Machine Type Communication
 - URLLC Ultra Reliable and Low Latency Communications
- These define what the network will do, not how they will do it
- But we can say a few things about implementation
 - eMBB is a straightforward evolution of LTE
 - mMTC will adapt existing cellular network technologies intended for IoT mainly NB-IoT and LTE-M
 - URLLC is the interesting one

5G NR

- Most significant change with 5G NR is that the base station is distributed
- Introduces a Fronthaul and Midhaul network
- Front haul connects low cost transmitters (Remote Radio Equipment or RRE) and receivers to a "Distributed Unit (DU)"
- Mid haul connects a DU to a Centralised Unit (CU)
- Makes 5G NR look like a carrier grade WiFi network

Gigabit Passive Optical Network (GPON)

- Enables a single fibre to serve multiple users
- Unpowered (passive) Fibre Optic Splitters transmit the optic signal to multiple fibres, each terminating at a single residence
- Each end user receives the full signal but decodes only their component
- Much simpler than Active Optical Networking

Fixed Wireless

- Used in rural and remote areas where other options not feasible
- Uses same technology as cellular 4G but with fixed antennae
 - Technology is usually referred to as LTE (Long Term Evolution)
- Operates in 2.3 GHz range. Cf regular 4G usually 700 MHz and 1800 MHz
- Bit rates up to 50 Mbps downstream and 20 Mbps upstream

Satellite

- Intended for regional and remote areas
- Geosynchronous Earth Orbit adds delay of 240 ms per hop (up and down)
- Service maybe 3% of the population
- Bit rates up to 25 Mbps downstream and 5 Mbps upstream
- Operates in Ka Band 26.5–40 GHz
- Emerging low cost "CubeSat" technology
- Star Link said to be available with about 100 Mbps. Expensive though
- NBN Sky Muster a bit more affordable but slower

Many emerging Internet of Things network technologies

- General
 - LoraWAN, Bluetooth Low Energy, Bluetooth Mesh, 6LoWPAN
- Personal
 - ANT and ANT+
- Home automation
 - ZigBee integrated with IP
- Cellular
 - SigFox, NB-IoT, LTE- M (LTE for Machines)
- Industrial Internet of Things
 - PROFINET, TSN, UA, OPC

Conclusion

- Many network technologies
- Many tradeoffs need to be considered when deciding the most appropriate network or networks for a particular client
- Will usually not just be one network technology