Dimension Reduction

Jaegul Choo

Assistant Professor

Dept. of Computer Science and Engineering

Korea University

Overview of Dimension Reduction Let's Reduce Data (along Dimension Axis)

Benefits of Dimension Reduction

Obviously,

- Less storage
- Faster computation
 - Computing distances: 100,000-dim vs. 10-dim vectors

More importantly,

- Noise removal (improving data quality)
 - Works as pre-processing for better performance
 - e.g., microarray data analysis, information retrieval, face recognition, protein disorder prediction, network intrusion detection, document categorization, speech recognition
- 2D/3D representation
 - Interactive visual exploration

Two Main Techniques

- 1. Feature **selection**
- Selects a subset of the original variables as reduced dimensions
- e.g., the number of genes responsible for a particular disease may be small
- 2. Feature extraction
- Each reduced dimension combines multiple original dimensions
- Active research area

Feature = Variable = Dimension

Feature Selection

What are the optimal subset of *m* features to maximize a given criterion?

- Widely-used criteria
 - Information gain, correlation, ...
- Typically combinatorial optimization problems
- Therefore, greedy methods are popular
 - Forward selection: Empty set → Add one variable at a time
 - Backward elimination: Entire set → Remove one variable at a time

Feature Extraction (Our main topic from now on)

Aspects of Dimension Reduction Linear vs. Nonlinear

Linear

Represents each reduced dimension as a linear combination of original dimensions

■ e.g.,
$$Y1 = 3*X1 - 4*X2 + 0.3*X3 - 1.5*X4$$
, $Y2 = 2*X1 + 3.2*X2 - X3 + 2*X4$

Naturally capable of mapping new data to the same space

	D1	D2	→	Dimension Reduction	$\Bigg] \longrightarrow$		D1	D2
X1	1	1				Y1	1.75	-0.27
X2	1	0				Y2	-0.21	0.58
Х3	0	2					<u> </u>	

Principal Component Analysis

- Finds the axis showing the largest variation, and project all points into this axis
- Reduced dimensions are orthogonal
- Algorithm: Eigen-decomposition
- Pros: Fast
- Cons: Limited performances

Linear Unsupervised Global Feature vectors

Multidimensional Scaling (MDS)

Nonlinear

Global

Unsupervised

Similarity input

Main idea

Tries to preserve given pairwise distances in low-dimensional space Low-dim distance ideal distance

$$\min_{x_1, \dots, x_I} \sum_{i < j} (||x_i - x_j|| - \delta_{i,j})^2.$$

- Metric MDS
 - Preserves given distance values
- Nonmetric MDS
 - When you only know/care about ordering of distances
 - Preserves only the orderings of distance values
- Algorithm: gradient-decent type
- ²¹ C.f. classical MDS is the same as PCA

Multidimensional Scaling Sammon's mapping

Sammon's mapping

- Local version of MDS
- Down-weights errors in large distances

$$E = \frac{1}{\sum_{i < j} d_{ij}^*} \sum_{i < j} \frac{(d_{ij}^* - d_{ij})^2}{d_{ij}^*}.$$

Algorithm: gradient-decent type

Nonlinear
Unsupervised
Local
Similarity input

Linear Discriminant Analysis

What if clustering information is available?

LDA tries to separate clusters by

- Putting different cluster as far as possible
- Putting each cluster as compact as possible

30

Aspects of Dimension Reduction Unsupervised vs. Supervised

Supervised

Uses the input data + additional info

Linear Discriminant Analysis vs. Principal Component Analysis

2D visualization of 7 Gaussian mixture of 1000 dimensions

Linear discriminant analysis

Principal component analysis

(Unsupervised)