Balltracking method

Christian Gößl

July 8, 2014

Structure

- Motivation
- Main idea
- Tracking procedure
 - Ball motion
 - Steps to Analysing data
 - Examples
- Further aspects
- Sources

Christian Gößl Balltracking method July 8, 2014

3 / 13

Christian Gößl Balltracking method July 8, 2014

3 / 13

 tracking photospheric flows of the surface of sun

- tracking photospheric flows of the surface of sun
- method for evaluation and calculation of data from SOHO/MDI

- tracking photospheric flows of the surface of sun
- method for evaluation and calculation of data from SOHO/MDI

Main Idea

 consist of bumps which moves(random walk), disappears and forming

- consist of bumps which moves(random walk), disappears and forming
- interaction between the bumps

- consist of bumps which moves(random walk), disappears and forming
- interaction between the bumps
- tracking the bumps with floating balls

- consist of bumps which moves(random walk), disappears and forming
- interaction between the bumps
- tracking the bumps with floating balls

- consist of bumps which moves(random walk), disappears and forming
- interaction between the bumps
- tracking the bumps with floating balls

bumps push the balls

- consist of bumps which moves(random walk), disappears and forming
- interaction between the bumps
- tracking the bumps with floating balls

- bumps push the balls
- approx balls have the average motion/direction of the bumps

- consist of bumps which moves(random walk), disappears and forming
- interaction between the bumps
- tracking the bumps with floating balls

- bumps push the balls
- approx balls have the average motion/direction of the bumps
- prediction of mean motion of the bumps

•
$$m\dot{\vec{v}} = \sum_{i} \vec{f}_{i} - m\vec{g} - \alpha \vec{v}$$

- $m\dot{\vec{v}} = \sum_{i} \vec{f}_{i} m\vec{g} \alpha \vec{v}$
- $\vec{f_i}$ penetration force at each data points at the ball

- $m\dot{\vec{v}} = \sum_{i} \vec{f}_{i} m\vec{g} \alpha \vec{v}$
- $\vec{f_i}$ penetration force at each data points at the ball

- $m\dot{\vec{v}} = \sum_{i} \vec{f}_{i} m\vec{g} \alpha\vec{v}$
- $\vec{f_i}$ penetration force at each data points at the ball
- $m\vec{g}$ gravitation force and $-\alpha \vec{v}$ damping force

Christian Gößl

- $m\dot{\vec{v}} = \sum_{i} \vec{f}_{i} m\vec{g} \alpha\vec{v}$
- $\vec{f_i}$ penetration force at each data points at the ball
- $m\vec{g}$ gravitation force and $-\alpha \vec{v}$ damping force

•
$$d\vec{v} = dt \left(\frac{\tilde{A}_m}{\tilde{Z}_p^2 \tilde{R}_s^2} \sum_i \tilde{d}_i - \tilde{A}_m \tilde{g} - \frac{\vec{v}}{\tilde{T}_d} \right)$$

• 1: choose number of balls

- 1: choose number of balls
 - track every possible future

- 1: choose number of balls
 - track every possible future
 - avoiding multiple balls that tracking the same feature

- 1: choose number of balls
 - track every possible future
 - avoiding multiple balls that tracking the same feature
- 2: divide data surface in a grid and randomly set balls in grid cells

- 1: choose number of balls
 - track every possible future
 - avoiding multiple balls that tracking the same feature
- 2: divide data surface in a grid and randomly set balls in grid cells
- 3: let the balls settle down to the nearest local minimum

- 1: choose number of balls
 - track every possible future
 - avoiding multiple balls that tracking the same feature
- 2: divide data surface in a grid and randomly set balls in grid cells
- 3: let the balls settle down to the nearest local minimum
- 4: update the surface to the next time step

- 1: choose number of balls
 - track every possible future
 - avoiding multiple balls that tracking the same feature
- 2: divide data surface in a grid and randomly set balls in grid cells
- 3: let the balls settle down to the nearest local minimum
- 4: update the surface to the next time step

- 1: choose number of balls
 - track every possible future
 - avoiding multiple balls that tracking the same feature
- 2: divide data surface in a grid and randomly set balls in grid cells
- 3: let the balls settle down to the nearest local minimum
- 4: update the surface to the next time step

 5: bumps moving, disappearing, forming and pushed the balls to the next local minimum (store new position)

- 1: choose number of balls
 - track every possible future
 - avoiding multiple balls that tracking the same feature
- 2: divide data surface in a grid and randomly set balls in grid cells
- 3: let the balls settle down to the nearest local minimum
- 4: update the surface to the next time step

- 5: bumps moving, disappearing, forming and pushed the balls to the next local minimum (store new position)
- 6: remove any balls which too close to each other balls and falling off the edge

- 1: choose number of balls
 - track every possible future
 - avoiding multiple balls that tracking the same feature
- 2: divide data surface in a grid and randomly set balls in grid cells
- 3: let the balls settle down to the nearest local minimum
- 4: update the surface to the next time step

- 5: bumps moving, disappearing, forming and pushed the balls to the next local minimum (store new position)
- 6: remove any balls which too close to each other balls and falling off the edge
- Repeat from Step 4

Christian Gößl

Examples

• smoothing and rescaling the output data

- smoothing and rescaling the output data
 - smoothing resolution

- smoothing and rescaling the output data
 - smoothing resolution
 - speed calibration

- smoothing and rescaling the output data
 - smoothing resolution
 - speed calibration
- comparison between Local Correlation tracking LCT and Balltracking

Sources

- http: //www.astro.gla.ac.uk/users/hugh/balltrack/index.html
- http://www.aanda.org/articles/aa/abs/2004/34/aa0891/aa0891.html