برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

تاریخ در نگی: 12 مئی <u>2020</u>

عنوان

ix		ديباچه
1	عا كنّ	1 بنیادی<
1	ينيادى اكائياں	1.1
1	غيرستى	1.2
2	سمتير	1.3
3		1.4
3	1.4.1 كار تىبى محددى نظام	
5	1.4.2 نگلی محددی نظام	
7	سمتيررقبر	1.5
9	ر قبه عمودی تراش	1.6
10	برقی اور مقناطیسی میدان	1.7
10	1.7.1 برقی میدان اور برقی میدان کی شدت	
11	1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

11	سطحی اور تحجی کثاف ت	1.8	
11	1.8.1 سطی کثافت		
12	حجى ڭافت	1.9	
13	صلیبی خرب اور ضرب نقطه	1.10	
13	1.10.1 صلیبی ضرب		
15	1.10.2 نقطی ضرب		
18	تفرق اور جزوی تفرق	1.11	
18	خطی تکمل	1.12	
19	سطح تکمل	1.13	
20	دوری سمتیہ	1.14	
25) اد وار	مقناطيسو	2
2525	ماد وار مز احمت اور پیچکیا ہٹ	, -	2
25	····•	2.1	2
2526	مزاحمت اور نیکچابٹ	2.1	2
252628	مزاحمت اور نیچکیا پٹ	2.1	2
25 26 28 30	مزاحمت اور نیکچابث کثافت بر تی رواور برتی میدان کی شدت برتی ادوار متناطبیسی دور حصد اول	2.12.22.3	2
25 26 28 30 32	مزاحمت اور نیجگیا پت کثافت ِ برقی رواور برقی میدان کی شدت برقی ادوار متناطیسی دور حصه اول کثافت ِ مقناطیسی بهاواور مقناطیسی میدان کی شدت	2.1 2.2 2.3 2.4	2
25 26 28 30 32 34	مزاحمت اور آنچکوابت کثافت برقی رواور برقی میدان کی شدت برقی ادوار	2.1 2.2 2.3 2.4 2.5 2.6	2
25 26 28 30 32 34 38	مزاحمت اور نیجگیا په بل کثافت برتی رواور برتی میدان کی شدت برتی او وار متناطیسی دور حصه اول کثافت ِمتناطیسی بهاواور متناطیسی میدان کی شدت متناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6	2

عـــنوان

	1	ٹرانسفار	3
	ٹرانسفار مرکی اہمیت	3.1	
	ٹرانسفار مرکے اقسام	3.2	
	امالى برقى د باو	3.3	
	ميجان انگيز برقى رواور قالبى ضياع	3.4	
د خواص	تبادله برقی د باواور تبادله برقی روکے	3.5	
	ثانوى جانب بوجھ كاابتدائى جانباژ	3.6	
طلب	ٹرانسفار مرکی علامت پر نقطوں کام	3.7	
	ر کاوٹ کا تباد لہ	3.8	
	ٹرانسفار مر کاوولٹ-ایمپیئر	3.9	
	ٹرانسفار مر کے امالہ اور مساوی ادوار	3.10	
اس کی متعامله علیحده کرنا	3.10.1 کچھے کی مزاحمت اور ا		
	3.10.2 رِستالماليد		
ب کے اثرات	3.10.3 ثانوى برتى رواور قالى		
	3.10.4 ثانوى كچھے كالمالى برقى		
ت اور متعاملہ کے اثرات	3.10.5 ثانوی کچھے کی مزاحمت		
نوی جانب تبادله	3.10.6 ر كاوٹ كاابتدا كى ياثان		
ترین مساوی اد دار	3.10.7 ٹرانسفار مر کے سادہ		
	كطيے د ور معائنه اور كسر د ور معائنه	3.11	
	3.11.1 كىلادورمعائنە .		
	3.11.2 كسردور معائنه .		
	تین دوری ٹرانسفار مر	3.12	
لى بر قى رو كاگزر	ٹرانسفار مر جالو کرتے لمحہ زیادہ محر ک	3.13	

vi

ميكاني توانائي كابا يمى تبادله	بر قی اور	4
متناطبيسي نظام ميس قوت اور قوت مر وڑ	4.1	
تبادلية توانا كي والاايك لمجيد كا فظام	4.2	
توانائی اور جم - توانائی	4.3	
متعدد کچھول کامقناطیسی نظام	4.4	
مشین کے بنیاد ی اصول	گھومتے	5
قانون فيراد ك	5.1	
معاصر مشین	5.2	
محرک برقی دباو	5.3	
ت كليل كجي اور سائن نمامقناطيسي دياو	5.4	
5.4.1 بدلتار ووالے مشین		
مقناطيسي د باو کی گھومتی امواج	5.5	
5.5.1 ایک دورکی لپٹی مشین		
5.5.2 تين دورکي لپڻي مشين کا تحليلي تجربي		
5.5.3 تين دورکي لپڻي مشين کاتر سيمي تجربير		
محرک برتی د باد	5.6	
5.6.1 برلتاروبر قی جزیئر		
5.6.2 يك ست روبر قى جزيئر		
جموار قطب مشينوں ميں قوت مروڑ	5.7	
5.7.1 ميكاني قوت مرور بذريعه تركيب توانائي		
5.7.2 ميكاني قوت مر وژبذريعه مقناطيسي بهاو		

vii

رار چالو معاصر مشين	6 كيسال حال، برقر
د دوری معاصر مشین	6.1 متعدد
ر مشین کے امالہ	6.2 معاص
.6 خوداماله	2.1
.6 مشتر كداماله	2.2
.6 معاصراماله	2.3
ر مشین کامساوی دوریار یاضی نمونه	6.3 معاص
ىاقت كى ^{ئىتق} ى	6.4 برتی,
) حال، بر قرار چالومشین کے خواص	6.5 كياد
معاصر جزیئر: برتی بو جھ بالمقابل I_m کے خط I_m معاصر جزیئر: برتی بو جھ بالمقابل I_m	5.1
I_a معاصر موٹر: I_a بالمقابل I_m کے خط I_m خط I_m معاصر موٹر: 6.	5.2
راور کمر دور معائنه	6.6 كىلادو
.6 کھلادورمعائنہ	6.1
.6 کسر دور معائنہ	6.2

211	، امالی مشین	7
212	7.1 ساكن كچھوں كى گھومتى مقناطيسى موج	
212	7.2 مشین کاسر کاواور گھومتی امواج پر تبصرہ ، . ، . ، . ،	
215	7.3 ساكن كچھوں ميں امالى برقى د باو	
215	7.4 ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیداامالی برقی دباو	
219	7.5 گھومتے کچھوں کی گھومتے مقناطیبی دباو کی موج کی موج کے مقاطیبی دباو کی موج کے مقاطیبی دباو کی موج	
220	7.6 گھومتے کچھوں کے مساوی فرضی ساکن کچھے	
221	7.7 امالي موٹر کا مساوي برقی دور	
226	7.8 مىادى برقى دورېرغور	
230	7.9 امالى موٹر كامساوى تھونن دوريارياضى نمونە	
236	7.10 پنجره نمااهالی موڑ	
237	7.11 بے بوجھ موٹراور جامد موٹر کے معائنہ	
237	7.11.1 بے بو جھ موٹر کامعائنہ	
239	7.11.2 جامد موٹر کامعائنہ	
245	} پ ست رومشین	8
245		
	8.1.1 مىكانى سىت كارى تفصيل	
252	8.2 كى سمت جزيرٌ كابر تى د باو	
254	8.3 قوت مروڑ	
255	8.4 بير وني ميجان اور خود بيجان يك سمت جزيئر	
260	8.5 کیک سمت مشین کی کار کرد گی کے خط	
260	8.5.1 حاصل برقی د باد بالمقابل برقی بوچھ	
262	8.5.2 ر فتار بالمقابل قوت مر وڑ	

ديباجيه

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکتان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

ہمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے تابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پھھ کرنے کی نیت رکھنے کے باوجود پھھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور پول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں کھی گئی ہے۔کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سکتیکی الفاظ میں استعال کئے جائیں۔جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی اصطلاحات کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا قوامی نظامِ اکائی استعال کی گئ ہے۔اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

یہ کتاب Ubuntu استعال کرتے ہوئے XeLatex میں تشکیل دی گئی۔ یہ کتاب خطِ جمیل نوری نستعلق میں ککھی گئی ہے۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیز نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیز نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری برقیاتی پنۃ

khalidyousafzai@comsats.edu.pk

پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

میں یہاں عائشہ فاروق اور ان کے والد فاروق اعظم کا شکریہ ادا کرنا چاہوں گا جنہوں نے اس کتاب کو بار بار پڑھا اور جھے مجبور کرتے رہے کہ میں اپنی اردو بہتر کروں۔ میں ڈاکٹر نعمان جعفری کا نہایت مشکور ہوں جنہوں نے کتاب کی تکنیکی اصطلاح کرنے میں مدد کی۔ حرا خان اور ان کی والدہ عزرا برلاس نے مل کے کتاب کو درست کرنے میں مدد کی۔ یہاں میں اپنے شاگرد فیصل خان کا بھی شکریہ ادا کرنا چاہوں گا جنہوں نے تکنیکی اصطلاحات چننے میں میری مدد کی۔

میں یہاں کامسیٹ یونیور سٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے الیمی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

2011 توبر 2011

باب1

بنيادي حقائق

اس کتاب میں مستعمل حقائق کو اس باب میں اکٹھے کرنے کی کوشش کی گئی ہے۔ توقع کی جاتی ہے کہ یوں کتاب پڑھتے وقت اصل مضمون پر توجہ رکھنا زیادہ آسان ہو گا۔

1.1 بنيادي اكائيال

اس كتاب ميں بين الاقوامي نظام اكائي استعال كيا گيا ہے جس ميں كميت 2 كى اكائى كلوگرام، لمبائى كى اكائى ميٹر اور وقت كى اكائى سيكنڈ ہے۔

1.2 غيرسمتي

وہ متغیر جس کی مقدار (مطلق قیمت) اس کو مکمل طور پر بیان کرتی ہو غیر سمتے c متغیر کہلاتا ہے۔ اس کتاب میں غیر سمتی متغیر کو سادہ طرز کی لکھائی میں انگریزی یا لاطینی زبان کے چھوٹے حروف لیعنی a,b,α,\cdots یا بڑے حروف لیعنی A,B,Ψ,\cdots یا بڑے حروف لیعنی A,B,Ψ,\cdots

International System Of Units, SI¹

 mass^2

scalar3

2 باب1. بنيادي حقائق

شكل 1.1: كارتيسي محد د

1.3 سمتير

وہ متغیر جس کو مکمل طور پر بیان کرنے کے لئے اس کی مقدار (طول یا مطلق قیمت) اور سمت جاننا ضروری ہو، سمتیہ کہ انگریزی یا لاطینی زبان کے چھوٹے یا بڑے حروف، جن کو موٹے طرز کی لکھائی میں لکھا گیا ہو، کا طول ایک کے برابر ہو، اکائی سمتیہ ⁵ کہلائے گا۔ یہاں شکل 1.1 سے رجوع کرنا بہتر ہو گا۔ وہ سمتیہ جس کا طول ایک کے برابر ہو، اکائی سمتیہ ⁵ کہلائے گا۔ اس کتاب میں اکائی سمتیہ کو انگریزی زبان کے پہلے حرف کو موٹے طرز کی لکھائی میں لکھا جائے گا، مثلاً اکائی سمتیہ و کہلائے گا۔ اس کتاب میں اکائی سمتیہ کو انگریزی زبان کے پہلے حرف کو موٹے لکھتے ہوئے، زیر نوشت میں x، اس بات کی نشاندہی کرتا ہے کہ یہ اکائی سمتیہ خلاء کی تین عبودی سمتیہ کو ظاہر کرتے ہیں۔ اگر کی لکھائی سمتیہ کا طول اور اس کی سمت کو علیحدہ علیحدہ کھنا ہو تو اس کے طول کو ظاہر کرنے کے لئے سادہ طرز کی لکھائی ہوں۔ میں وہی حرف استعال کیا جائے گا جو اس سمتیہ کو ظاہر کرنے کے لئے، موٹے طرز کی لکھائی میں، استعال کیا گیا ہو۔ یعنی سمتیہ کا طول F کے طول کو خاہر کریا جائے گا۔ شکل میں سمتیہ کا طول F، چار کے برابر ہے۔ اگر کی سمتیہ کی سمت میں ایک اکائی سمتیہ بنایا جائے تو یہ اکائی سمتیہ اس سمتیہ کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسے کی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسی سمت کو ظاہر کرتا ہے۔ جیسے پہلے ذکر ہوا ہے ایسی سمت کو ظاہر کرتا ہے۔ جیسے پہلے دیں، تو تو ہو کا رخ دائیں ہے اللہ سمتیہ کی سمت کو ظاہر کرتا ہے۔ شکل 1.1 میں قوت F کا رخ دائیں ہے اللہ بات کی یاد دہائی کرتا ہے۔ میں گو سے گارخ دائیں ہے للہ کہ بابر ہوں گے۔

vector⁴ unit vector⁵ 1.4. محسد د

شكل 1.2: دائين ہاتھ كانظام۔

1.4 محدد

الیا طریقہ جس کے ذریعہ کسی نقطہ کا مقام متعین کیا جاسکے محدد کہلاتا ہے۔

خلاء تین بعدی (تین طرفہ) 6 ہے المذاکسی ایک نقطہ کے مقام کو تین محدد کی مدد سے ظاہر کیا جا سکتا ہے۔اسی طرح خلاء میں سمتیہ کو تین عمودی اکائی سمتیوں کی مدد سے لکھا جا سکتا ہے۔اب ہم ایسے چند محدد کے نظام دیکھتے ہیں۔

1.4.1 كار تيسى محددى نظام

شکل 1.1 میں خلاء کی دو سمتوں کو اکائی سمتیات $a_{\rm X}$ اور $a_{\rm y}$ سے ظاہر کیا گیا ہے جو آپس میں عمودی ہیں، لیعنی، ان کے بی 00° وزاویہ ہے۔خلاء تین بعدی ہے لہذا اسے تین آپس میں عمودی اکائی سمتیائے 00° سے ظاہر کیا جاتا ہے۔ ان سمتوں کے رخ، طول (لمبائیوں) کو x,y,z سے ظاہر کیا جاتا ہے۔ آپ ان سے بخوبی واقف ہیں۔

وائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90° زاویہ پر رکھتے ہوئے اگر شہادت کی انگلی $a_{\rm x}$ اور بڑی انگلی $a_{\rm y}$ کے رخ ہول تب انگوٹھا $a_{\rm z}$ کے رخ ہوگا (شکل 1.2)۔ اس کئے تین اکائی سمتیات کا یہ نظام دائیں ہاتھ کا نظام 8 کہلاتا ہے۔

 $\begin{array}{c} {\rm three\ dimensional^6} \\ {\rm orthonormal\ vectors^7} \\ {\rm right\ handed\ coordinate\ system^8} \end{array}$

اب 1 بنيادي حسائق

شكل 1.3: كارتيسي محد د نظام ميں ايك سمتيه۔

مبدا سے نقطہ P(x,y,z) تک سمتیہ A کو شکل 1.3 میں دکھایا گیا ہے جس کو کارتیہ محدد میں تین محدد کمیں تین محدد کی مدد سے

$$(1.1) A = A_x + A_y + A_z$$

l

$$(1.2) A = xa_X + ya_Y + za_Z$$

لکھا جا سکتا ہے۔

1.3 کار تنیسی محددی نظام میں متغیر z صفر رکھتے ہوئے x,y تبدیل کرنے سے سطح xy ملتی ہے۔ یوں شکل xy میں محددی نظام میں متغیر xy کو زمین تصور کرتے ہوئے، ڈبے کی بالائی سطح xy جبکہ x کی قیمت صفر تا تین اور xy کی قیمت صفر تا جار ہو گی۔ اس طرح اس ڈبے کی بالائی سطح درج ذبل کھی جائے گی۔

متغیر z کو صفر اور تین کے درمیان ہر ممکن قیت پر رکھ کر x کو صفر اور دو جبکہ y کو صفر اور چار کے درمیان تبدیل کرنے سے شکل 1.3 میں دکھائے گئے ڈبے کا حجم حاصل ہو گا، للذا اس ڈبے کا حجم درج ذیل لکھا

cartesian coordinates⁹

5 1.4. محسد د

شكل 1.4: نلكي محد دي نظام

حائے گا۔

1.4.2 نلكي محددي نظام

مبدا سے نقطہ P(x,y,z) تک سمتیہ A کو شکل 1.4 میں دکھایا گیا ہے جس کو دو سمتیات کی مدد سے $A = \rho + A_z$ (1.5)

يا

(1.6)
$$A = \rho a_{\rho} + z a_{Z}$$

$$\lambda = \rho a_{\rho} + z a_{Z}$$

$$\lambda = \frac{2}{2} \sin \theta$$

$$\lambda = \rho \cos \theta, \quad y = \rho \sin \theta$$

ہے۔ یوں خلاء میں کسی بھی نقطہ کو اس کے تین متغیرات ho, heta, z سے ظاہر کیا جا سکتا ہے۔

وہ نظام جس میں متغیرات ho, heta, z کسی نقطہ کو متعین کرتے ہوں نلکھ محدد 10 کہلاتا ہے۔ یہاں شکل 20 سے cylindrical coordinates 10 باب ١. بنيادي حسائق

شكل 1.5: نلكى نمامحد د كى تعريف

رجوع کریں۔ نکی محددی نظام کے تین آپس میں عمودی اکائی سمتیات $a_{
ho}, a_{ heta}, a_{
ho}$ ہیں۔ یہ نظام بھی دائیں ہاتھ کا نظام ہے لئیں آپس میں عمودی اکائی سمتیات $a_{
ho}, a_{ heta}, a_{
ho}$ ہوئے اگر نظام ہے لہذا دائیں ہاتھ کا انگو ٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ $a_{
ho}$ پر رکھتے ہوئے اگر شہادت کی انگلی $a_{
ho}$ کے رخ ہوں تب انگو ٹھا $a_{
ho}$ کے رخ ہوگا۔

سطے xy میں مبدا پر، محدد x کے ساتھ θ زاویہ پر اکائی سمتیہ a_{ρ} ہو گا۔ سطے xy میں مبدا پر اکائی سمتیہ a_{θ} معودی، بڑھتے θ رخ، اکائی سمتیہ a_{θ} ہو گا۔ کارتیسی محدد کی نظام کا اکائی سمتیہ a_{Z} بی نگی محدد کا اکائی سمتیہ a_{Z} ہے۔

واضح رہے کہ نکی محدد کے نظام میں $a_{
ho}$ اور $a_{ heta}$ کی سمتیں ہر نقطہ پر مختلف ہیں جیسا کہ شکل 1.6 میں دکھایا گیا ہے۔

مستوی xy میں (یعن z=0 لیتے ہوئے) مبدا پر مستقل رداس $\rho=\rho_0$ کے سمتیہ کو صفر زاویہ پر رکھ کر زاویہ بتدر تک z=0 تک بڑھانے سے سمتیہ کی چونج مستوی z=0 میں ایک دائرہ پر چلتی ہے (شکل 1.7)۔ اب اس سمتیہ کے متغیر z=0 و تبدیل کرنے سے، مثلاً ہر z=0 پر z=0 و صفر تا تین کرنے سے، یہ سمتیہ ایک نکلی بنائے گا۔ اسی وجہ سے اس نظام کو نکلی محدد کہتے ہیں۔ سمتیہ کے تینوں متغیرہ تبدیل کرنے سے نکلی کا حجم ملے گا۔ اگلی تین

7 1.5 سمتيەرقس

شكل $a_{
ho}$: نكى محد دمين اكائى سمتيات $a_{
ho}$ اور $a_{
ho}$ بر نقطه پر مختلف ہيں۔

مساوات ان حقائق کو پیش کرتی ہیں۔

(1.7)
$$\delta \dot{\beta} = \begin{cases} \rho = \rho_0 \\ 0 < \theta < 2\pi \\ z = 0 \end{cases}$$

سطح پر کھڑا اکائی سمتیہ سطح کا رخ دیتا ہے (شکل 1.8)۔ چونکہ کسی بھی سطح کے دواطراف ہوتے ہیں للذا اس کے دو مخالف رخ بیان کیے جا سکتے ہیں۔عموماً مسلم کو مد نظر رکھتے ہوئے ان میں سے ایک رخ کو سطح کا رخ تصور کیا جاتا 8 باب، بنيادي حت أق

شکل 1.7: نلکی محد د میں دائر ہاور نلکی

$$\mathbf{A}_1 = A_1 \mathbf{a}_{A1} = wl\mathbf{a}_z$$
$$\mathbf{A}_2 = A_2 \mathbf{a}_{A2} = wh\mathbf{a}_y$$

شكل 1.8: سمتيه رقبه كاتعارف

ہے۔ البتہ بند سطح، مثلاً گیند، کے بیرونی رخ کو ہی سطح کا رخ تصور کیا جاتا ہے۔ شکل 1.8 میں بالائی سطح A_1 کا رقبہ A_2 اور اس کا رخ a_2 ہے لہذا A_1 سمتیہ کا طول A_1 اور رخ a_2 ہو گا:

$$A_1 = wl$$
$$a_{A1} = a_{Z}$$

يوں بالائي سطح کا سمتی رقبہ درج ذیل ہو گا۔

$$\mathbf{A_1} = A_1 \mathbf{a_{A1}} = w l \mathbf{a_z}$$

ای طرح دائیں سطح A_2 سمتیہ کا طول A_2 اور اس کا رخ a_{A2} ہے

$$A_2 = wh$$

$$a_{A2} = a_{y}$$

للذا درج ذيل هو گا۔

(1.11)
$$A_2 = A_2 a_{A1} = wha_y$$

1.6 رقب عب ودي تراسش

شكل 1.9:رقبه عمودي تراش

نجی سطح کا رقبہ $A_3=w$ اور اس کا رخ a_z کے مخالف ہے لہذا درج ذیل ہو گا۔

(1.12)
$$A_3 = A_3 a_{A3} = wl(-a_z) = -wla_z$$

دھیان رہے کہ رقبہ کی مقدار ہر صورت مثبت ہو گی البتہ اس کا رخ مثبت یا منفی ہو سکتا ہے۔ یہ بات کسی بھی سمتیہ کے لئے درست ہے لہذا کسی بھی سمتیہ کا طول ہر صورت مثبت ہی ہو گا جبکہ اس کا رخ مثبت یا منفی ہو سکتا ہے۔

1.6 رقبه عمودی تراش

سلاخ کی لمبائی کے ساتھ زاویہ قائمہ پر کٹائی کو عمودی تراثی 11 کہتے ہیں اور عمودی تراش کے رقبہ کو رقبہ عمودی تراثی 12 کہتے ہیں۔ شکل 1.9 میں سلاخ کی لمبائی 12 رخ ہے اور رقبہ عمودی تراش 12 کی مقدار 12 ہے

$$(1.13) A = wh$$

لهذا رقبه عمودی تراش کا رخ $a_{
m y}$ ہو گا:

$$a_A = a_y$$

شکل 1.9 میں اکائی سمتیات a_y اور a_z د کھائے گئے ہیں جن کے ابتدائی نقاط پر گول دائرہ میں بند ایک نقطہ د کھایا گیا ہے۔ گول دائرہ میں بند نقطہ صنحہ کے عمودی (کتاب سے باہر) رخ a_x ظاہر کرتا ہے جس کے مخالف رخ (صنحہ کے عمودی اندر) کو گول دائرہ میں بند صلیب کی نشان سے ظاہر کیا جائے گا۔

 $^{{\}rm cross\ section^{11}} \\ {\rm cross\ sectional\ area^{12}} \\$

با___1 بنسادی حتسائق 10

ىرقى اور مقناطىسى مىدان

1.7.1 ىرقى مىدان اورىرقى مىدان كى شدت

کولمھے کے قانور نے ¹³ کے تحت برقیر مار ¹⁴ سے لدے جسموں کے در میان قوت کشش ¹⁵ یا قوت دفع ¹⁶ ان اجسام پر q_1 بار q_1 ہوتی ہے۔ یوں بار q_1 اور q_2 جن کے درمیان فاصلہ r ہو کے نیچ قوت F درج ذیل ہو گا جہاں ϵ 18 برقی مستقل ہے۔

(1.15)
$$F = \frac{q_1 q_2}{4\pi \epsilon r^2}$$

ایک برقی بارے قریب دوسرا برقی بار لانے سے (پہلے اور) دوسرے برقی باریر کشش با دفع کی قوت عمل کرے گی جس کا تغین قانون کولمپ سے ہوتا ہے۔ دوسرے برقی بار کو پہلے برقی بار سے آہشہ آہشہ دور کرنے سے قوت کشش یا دفع بتدر تئے تم ہوتی ہے جو ایک خاص فاصلے کے بعد تقریباً صفر ہو حاتی ہے اور دوسرا باریہلے بار کے حلقہ اثر سے باہر ہو جاتا ہے۔ یہ حلقہ برقمہ میدارمز کہلاتا ہے۔ برقی میدان کسی ایک باریا متعدد باروں کی وجہ سے ہو سکتا ہے۔

تعریف: کسی بار کے برقی میدان سے مراد بار کے اِرد گرد وہ حلقہ ہے جس میں اس کا برقی اثر محسوس کیا جاتا

برتی میدان میں اکائی مثبت بار پر قوت اس مقام پر برقے میدال کی شدے E E کی مطلق قیت) دیگا جبکہ اکائی بارپر قوت کا رخ برقی میدان کا رخ دیگا۔ برقی میدان کی شدت کی اکائی وولئے فہر میڑ²⁰ ہے۔

Coulomb's law¹³

electric charge¹⁴

attractive force¹⁵ repulsive force¹⁶

 $^{{\}rm charge}^{17}$

electric constant, electric permittivity 18

electric field intensity¹⁹

 V/m^{20}

1.8. سطحي اور حجمي كثافت.

قانون کولمب (مساوات 1.15) سے Q بار کے برقی میدان کی شدت کی مطلق قی ت حاصل کرتے ہیں۔بار Q اور اکائی بار (ایک کولمب بار) کے چھ قوتِ کشش یا قوتِ د فع

$$(1.16) F = \frac{Q \times 1}{4\pi\epsilon r^2} = \frac{Q}{4\pi\epsilon r^2}$$

نیوٹن ہو گی۔ یہی برقی میدان کی شدت کی مطلق قیت ہو گی:

$$(1.17) E = \frac{Q}{4\pi\epsilon r^2}$$

دو باروں کے مابین قوت کشش یا قوت دفع کا رخ ان کے درمیان کھینچی گئی سیدھی کلیر پر ہو گا۔

1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت

متناطیعی میدان اور مقناطیسی میدان کی شدھے 21 بالترتیب بالکل برقی میدان اور برقی میدان کی شدت کی طرح ہیں۔ تعریف : کسی مقناطیس کے مقناطیسی میدان سے مراد مقناطیس کے اِرد گرد وہ علقہ ہے جس میں اس کا مقناطیسی اثر محسوس کیا جاتا ہو۔

1.8 سطحی اور حجمی کثافت

1.8.1 سطى كثافت

اکائی رقبہ کی سطح پر کسی چیز کی کل مقدار کو اس چیز کی سطح کثافت 22 کہتے ہیں۔ یوں رقبہ A پر کسی چیز کی کل مقدار ϕ ہونے کی صورت میں اس کی اوسط سطحی کثافت ϕ ہونے کی صورت میں اس کی اوسط سطحی کثافت ϕ

$$(1.18) B_{b-1} = \frac{\phi}{A}$$

 $\begin{array}{c} {\rm magnetic~field~intensity^{21}} \\ {\rm surface~density^{22}} \end{array}$

اب ١٠ بنيادي حسائق

اس مساوات سے

$$\phi = B_{\mathsf{level}} A$$

لکھا جا سکتا ہے جو کسی سطح پر ایک متغیرہ کی اوسط سطحی کثافت معلوم ہونے کی صورت میں سطح پر متغیرہ کی کل مقدار دیتی ہے۔

غیر یکسال متغیرہ کی صورت میں سطحی کثافت جگہ جگہ مختلف ہو گی۔ ایسی صورت میں اتنے جھوٹے رقبے پر، جس میں متغیرہ کو یکسال تصور کیا جا سکتا ہو، سطحی کثافت

$$(1.20) B = \frac{\Delta \phi}{\Delta A}$$

ہو گی جہاں ΔA چھوٹا رقبہ اور $\Delta \phi$ اس رقبے پر متغیرہ کی چھوٹی مقدار ہے۔ اس چھوٹے رقبہ کو نقطہ مانند کرنے سے نقطی کثافت

$$(1.21) B = \frac{\mathrm{d}\phi}{\mathrm{d}A}$$

حاصل ہو گی جس کو

$$d\phi = B \, dA$$

بھی لکھا جا سکتا ہے۔ یوں نقطی کثافت جانتے ہوئے ایک نقطہ کے چھوٹے رقبہ پر متغیرہ کی کل (چھوٹی) مقدار معلوم کی حاسکتی ہے۔

یوں ایک برتی تار جس کا رقبہ عمودی تراش A اور جس میں برتی روI کی اوسط کثافت ِ برتی رو درج ذیل ہوگی۔ $\rho_{bul} = \frac{I}{A}$ (1.23)

1.9 محجمي كثافت

m اکائی حجم میں کسی چیز کی کل مقدار کو اس چیز کی حجم کافٹ کہتے ہیں۔ یوں اگر کسی چیز کا حجم H اور اس کی کمیت H ہو تب اس کی اوسط (کمیت) حجمی کثافت درج ذیل ہو گی۔

$$\rho_{\text{local}} = \frac{m}{H}$$

غیر یکسال کمیت کی صورت میں جم میں مختلف مقامات پر کمیت مختلف ہو گا۔ ایک صورت میں اتنا جھوٹا جم لیتے ہوئے جس میں کمیت کو یکسال تصور کیا جا سکتا ہو، حجمی کثافت درج ذیل ہو گی۔

$$\rho = \frac{\Delta m}{\Delta H}$$

اس چھوٹے جم کو نقطہ مانند بنانے سے درج ذیل نقطی حجمی کثافت لکھی جا سکتی ہے۔

$$\rho = \frac{\mathrm{d}m}{\mathrm{d}H}$$

بول

$$dm = \rho \, dH$$

ہو گا للذا نقطی محجمی کثافت جانتے ہوئے ایک چھوٹے حجم کی (چھوٹی) کمیت حاصل کی جاستی ہے۔

1.10 صليبي ضرب اور ضرب نقطه

دو غیر سمتی متغیرات کا حاصل ضرب غیر سمتی متغیر ہوتا ہے جبکہ دو سمتیات کا حاصل ضرب سمتی یا غیر سمتی ہو سکتا ہے۔ان دواقسام کے ضرب پریہاں غور کیا جائے گا۔

1.10.1 صليبي ضرب

دو سمتی متغیرات کا ایسا ضرب جو سمتی متغیر دیتا ہو صلیبی ضربے 23 کہلاتا اور درج ذیل لکھا جاتا ہے۔

$$(1.28) C = A \times B$$

صلیبی ضرب میں ضرب کے نشان کو صلیب کی علامت سے ظاہر کیا جاتا ہے جس کی بنا اس کو صلیبی ضرب کہتے ہیں۔

 $[{]m cross\ product}^{23}$

اب ١٠ بنيادي حسائق

حاصل ضرب سمتیہ *C* کی مقدار

(1.29)
$$C = |C| = |A||B| \sin \theta_{AB}$$
$$= AB \sin \theta_{AB}$$

ہے جہاں θ_{AB} ان کے مابین زاویہ ہے۔اس حاصل سمتیہ کی سمت دائیں ہاتھ کے قانون سے حاصل کی جاتی ہے۔ یوں دائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90° زاویہ پر رکھتے ہوئے، شہادت کی انگلی کو Aکی انگلی کو Aکی رخ رکھنے سے انگوٹھا Cکی انگلی کو سمتیہ A اور بڑی انگلی کو Aکے رخ رکھنے سے انگوٹھا Cکا رخ دیگا۔

مثال 1.1: درج ذیل ضرب صلیبی حاصل کریں۔

- $oldsymbol{a}_{ ext{X}} imes oldsymbol{a}_{ ext{Y}} = oldsymbol{a}_{ ext{Y}} imes oldsymbol{a}_{ ext{Z}} = oldsymbol{a}_{ ext{Z}} imes oldsymbol{a}_{ ext{X}} = oldsymbol{a}_{ ext{X}} imes oldsymbol{a}_{ ext{X}} imes oldsymbol{a}_{ ext{X}} imes oldsymbol{a}_{ ext{X}} o$
- $oldsymbol{a}_{ extsf{Z}} imes oldsymbol{a}_{ extsf{Y}} = oldsymbol{a}_{ extsf{Y}} imes oldsymbol{a}_{
 ho} imes oldsymbol{a}_{ heta} = oldsymbol{a}_{ extsf{Z}} imes oldsymbol{a}_{ heta}$

حل: اس مثال میں سب سمتیات اکائی ہیں۔اکائی سمتیہ کا طول ایک کے برابر ہوتا ہے للذا درج ذیل ہوں گے۔

- $\boldsymbol{a}_{\mathrm{X}} \times \boldsymbol{a}_{\mathrm{Y}} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{Z}} = \boldsymbol{a}_{\mathrm{Z}}$
- $\boldsymbol{a}_{\mathrm{Y}} \times \boldsymbol{a}_{\mathrm{Z}} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{X}} = \boldsymbol{a}_{\mathrm{X}}$
- $\boldsymbol{a}_{\text{Z}} \times \boldsymbol{a}_{\text{X}} = (1)(1)\sin 90\boldsymbol{a}_{\text{Y}} = \boldsymbol{a}_{\text{Y}}$ •
- $\boldsymbol{a}_{\mathrm{X}} \times \boldsymbol{a}_{\mathrm{Z}} = (1)(1)\sin 90(-\boldsymbol{a}_{\mathrm{Y}}) = -\boldsymbol{a}_{\mathrm{Y}}$
- $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\mathrm{Y}} = (1)(1)\sin 90(-\boldsymbol{a}_{\mathrm{X}}) = -\boldsymbol{a}_{\mathrm{X}}$ •
- چونکہ دونوں سمتیات کے رخ ایک جیسے ہیں لہذا ان کے مابین زاویہ صفر ہو گا۔ صفر زاویہ کا سائن بھی صفر ہوتا ہے، $\sin 0 = 0$ ۔ یوں ان دو سمتیات کا ضرب صلیبی صفر ہو گا۔ $a_{\rm y} \times a_{\rm y} = (1)(1)\sin 0 = 0$
 - $\boldsymbol{a}_{\rho} \times \boldsymbol{a}_{\theta} = (1)(1)\sin 90\boldsymbol{a}_{\mathrm{Z}} = \boldsymbol{a}_{\mathrm{Z}}$ •
 - $\boldsymbol{a}_{\mathrm{Z}} \times \boldsymbol{a}_{\rho} = (1)(1)\sin 90\boldsymbol{a}_{\theta} = \boldsymbol{a}_{\theta}$

مثال 1.12 شکل 1.10 میں چار نیوٹن کی قوت F محور سے تین میٹر کی سمتی فاصلہ L پر لاگو ہے جس کی مثال 1.2 شکل میں دی گئی ہے۔اس قوت کی قوت مروڑ حاصل کریں۔ حل: قوت مروڑ T کی تعریف درج ذیل ہے۔ $T = L \times F$

کار تیسی نظام میں بیہ سمتی فاصلہ

 $(1.31) L = L\sin\theta a_{X} - L\cos\theta a_{Y}$

ہو گا للذا

 $T = (L \sin \theta \mathbf{a}_{X} - L \cos \theta \mathbf{a}_{Y}) \times F \mathbf{a}_{Y}$ $= L \sin \theta \mathbf{a}_{X} \times F \mathbf{a}_{Y} - L \cos \theta \mathbf{a}_{Y} \times F \mathbf{a}_{Y}$ $= LF \sin \theta \mathbf{a}_{Z}$

ہو گا جہاں بچپلی مثال کی مدد سے $a_{
m z}=a_{
m z}$ اور $a_{
m y} imes a_{
m y}=a_{
m z}$ ہو گا جہاں بچپلی مثال کی مدد سے $a_{
m z}=a_{
m z}$ اور $a_{
m y} imes a_{
m y}=a_{
m z}$ اور $a_{
m z} imes a_{
m z}=12\sin\theta a_{
m z}$ N m

اس مثال میں $\theta - \sin \alpha = \sin(180^\circ - \alpha)$ ہوتا ہے لہذا $\alpha = \sin(180^\circ - \alpha)$ ہوتا ہے لہذا ہیں مثال میں کو درج ذیل بھی کھا جا سکتا ہے۔

 $T = LF \sin \theta \mathbf{a}_{\mathbf{Z}}$ $= LF \sin \theta_{LF} \mathbf{a}_{\mathbf{Z}}$

یمی جواب ضرب صلیبی کی تعریف یعنی مساوات 1.29 اور دائیں ہاتھ کے قانون کی مدد سے زیادہ آسانی سے حاصل ہوتا ہے۔

1.10.2 نقطی ضرب

رو سمتی متغیرات کا ایبا حاصل ضرب جو غیر سمتی متغیر ہو نقطی ضربے 24 کہلاتا ہے جو درج ذیل لکھا جاتا ہے۔ $C=A\cdot B$

 ${\rm dot\ product^{24}}$

ابب،بنيادي حتائق

شكل 1.10: كارتيسى نظام ميں قوت مروڑ كاحل

نقطی ضرب میں ضرب کے نشان کو نقطہ کی علامت سے ظاہر کیا جاتا ہے جس کی بنا پر اس کا نام نقطی ضرب ہے۔

نقطی ضرب کی مقدار درج ذیل ہو گی

(1.33)
$$\begin{aligned} \boldsymbol{C} &= \boldsymbol{A} \cdot \boldsymbol{B} \\ &= |\boldsymbol{A}| |\boldsymbol{B}| \cos \theta_{AB} \\ &= AB \cos \theta_{AB} \end{aligned}$$

جہال θ_{AB} ان سمتیات کے نیج زاویہ ہے۔

مثال 1.3: مندرجه ذیل نقطی ضرب حاصل کریں۔

$$a_{\mathrm{X}} \cdot a_{\mathrm{X}} - a_{\mathrm{y}} \cdot a_{\mathrm{y}} - a_{\mathrm{z}} \cdot a_{\mathrm{z}} \bullet$$

$$oldsymbol{a}_{ extsf{X}} \cdot oldsymbol{a}_{ extsf{Y}} = oldsymbol{a}_{ extsf{Y}} \cdot oldsymbol{a}_{ extsf{Z}} = oldsymbol{a}_{
ho} \cdot oldsymbol{a}_{
ho} \cdot oldsymbol{a}_{
ho} = oldsymbol{a}_{
ho$$

حل: اس مثال میں سب سمتیات اکائی ہیں۔ اکائی سمتیہ کا طول ایک (1) کے برابر ہوتا ہے:

$$a_{x} \cdot a_{x} = (1)(1)\cos 0 = 1$$
 •

$$a_{\rm V} \cdot a_{\rm V} = (1)(1)\cos 0 = 1$$
 •

$$a_z \cdot a_z = (1)(1)\cos 0 = 1$$
 •

$$a_{X} \cdot a_{V} = (1)(1)\cos 90^{\circ} = 0$$
 •

$$a_{\rm V} \cdot a_{\rm Z} = (1)(1)\cos 90^{\circ} = 0$$

$$\boldsymbol{a}_{\rho} \cdot \boldsymbol{a}_{\rho} = (1)(1)\cos 0 = 1 \bullet$$

شكل 1.11: كارتيسي نظام ميں كام

 $a_{\rho} \cdot a_{\theta} = (1)(1)\cos 90^{\circ} = 0$

مثال 1.4: شکل 1.11 میں قوت F ایک بوجھ کو دھکیل رہی ہے۔ سمتی فاصلہ L طے کرنے پر قوت کتنا کام کر پکی ہوگی۔

حل: کام W کی تعریف درج ذیل ہے۔

$$(1.34) W = \mathbf{F} \cdot \mathbf{L}$$

كار تيسى نظام مين سمتى فاصله

$$(1.35) L = L\cos\theta a_{X} + L\sin\theta a_{Y}$$

ہو گا۔ یوں درج ذیل ہو گا

(1.36)
$$W = (F\boldsymbol{a}_{X}) \cdot (L\cos\theta\boldsymbol{a}_{X} + L\sin\theta\boldsymbol{a}_{y})$$
$$= FL\cos\theta(\boldsymbol{a}_{X} \cdot \boldsymbol{a}_{X}) + FL\sin\theta(\boldsymbol{a}_{X} \cdot \boldsymbol{a}_{y})$$
$$= FL\cos\theta$$

جہاں پچھلی مثال کی مدد سے $a_{\rm X}\cdot a_{\rm X}=0$ اور $a_{\rm X}\cdot a_{\rm Y}=0$ کے ہیں۔ یہی جواب نقطی ضرب کی تعریف، مثال کی مدد سے 1 $a_{\rm X}\cdot a_{\rm X}=1$ مساوات 1.33، سے با آسانی حاصل ہوتا ہے۔

اب ١. بنيادي حسّائق

1.11 تفرق اور جزوی تفرق

مساوات 1.37 میں ایک تفاعل کا تفرق 25 دیا گیا ہے، جس میں B_0 ایک مستقل ہے، جبکہ مساوات 1.38 میں ایک تفاعل کا جرور تفرق 26 دیا گیا ہے۔

(1.37)
$$B(\theta) = B_0 \cos \theta$$

$$\frac{\mathrm{d}B}{\mathrm{d}\theta} = -B_0 \sin \theta$$

(1.38)
$$\partial W(x,\lambda) = \frac{\partial W}{\partial x} dx + \frac{\partial W}{\partial \lambda} d\lambda$$

1.12 خطى تكمل

مساوات 1.39 میں ایک تفاعل $B(\theta)$ دیا گیا ہے جے شکل 1.12 میں دکھایا گیا ہے۔ اس کا طول موج 2π ریڈیئن ہے۔

$$(1.39) B_0 \cos \theta$$

ہم $-\pi/2 < \theta < \pi/2$ پر اس تفاعل کی اوسط قیمت تلاش کرتے ہیں۔

(1.40)
$$B_{k',l} = \frac{B_0}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

اس طرح ہم B^2 کی اوسط تلاش کرتے ہیں۔ $\pi/2 < \theta < \pi/2$ کی اوسط تلاش کرتے ہیں۔

(1.41)
$$B_{k,j}^{2} = \frac{B_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2}\theta \,d\theta$$
$$= \frac{B_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \,d\theta$$
$$= \frac{B_{0}^{2}}{2}$$

 $[\]begin{array}{c} {\rm differentiation^{25}} \\ {\rm partial~differentiation^{26}} \\ {\rm wavelength^{27}} \end{array}$

1.1.3 سطح تمل

شكل 1.12: كوسائن موج

تفاعل کے مربع کی اوسط کا جذر نہایت اہم قیمت ہے جو تفاعل کی موڑ 28 قیمت کہلاتی ہے اور جسے مہڑ B کھھا جاتا ہے۔

(1.42)
$$B_{\mu\nu} = \sqrt{B_{\mu\nu}^2} = \frac{B_0}{\sqrt{2}}$$

یہ ایک بہت اہم متیجہ ہے جو آپ کو زبانی یاد ہونا چاہئے۔ یہ مساوات ہر سائن نما تفاعل کے لئے درست ہے۔ کسی متغیرہ کے مربع کی اوسط کا جذر اس متغیرہ کی موڑ²⁹ قیت کہلاتی ہے۔

1.13 سطحى تكمل

فرض کریں شکل 1.13 میں نکلی کے بیرونی سطح پر سطحی کثافت، B، کی قیمت مساوات 1.39 دیتی ہے۔ ہم آدھے بیرونی سطح، زاویہ $\pi/2$ تا $\pi/2$ ، کے نیج اس کی کل مقدار ϕ معلوم کرتے ہیں۔اس سطح میں نکلی کے سر شامل نہیں ہیں۔

ہم نکی کے بیرونی سطح پر خطہ abcd لیتے ہیں جس کی چوڑائی $\rho\Delta\theta$ ، کمبائی I اور رقبہ ΔA ہے۔ ΔA کو نہایت ΔB ماتھ تبدیل نہیں ہوتی ΔB ماتھ تبدیل نہیں ہوتی ΔB ماتھ تبدیل نہیں ہوتی ΔB اور کل ΔB ورج ذیل ہوگا۔

rms, root mean square²⁸ effective²⁹

باب،بنيادي حسائق

شکل 1.13: نکلی کی بیرونی سطح پر متغیرہ کا تکمل کل مقدار دے گا۔

(1.43)
$$\phi = \int_{-\pi/2}^{\pi/2} d\phi = \int_{-\pi/2}^{\pi/2} (B_0 \cos \theta) (\rho l \, d\theta)$$
$$= B_0 l \rho \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta = 2B_0 l \rho$$

مساوات 1.43 میں نحیلا حد $(-\pi/2-lpha)$ اور بالائی کا حد $(\pi/2-lpha)$ کینے سے درج ذیل حاصل ہو گا۔

(1.44)
$$\phi(\alpha) = B_0 l \rho \int_{-\frac{\pi}{2} - \alpha}^{\frac{\pi}{2} - \alpha} \cos \theta \, d\theta = 2B_0 l \rho \cos \alpha$$

نگی کے بیرونی نصف سطح پر $\phi(\alpha)$ کی عمومی قیت مساوات 1.44 دیتی جو α پر منحصر ہے۔ یہ ایک بہت اہم مساوات ہے۔ مساوات ہے۔ مساوات 4.44 میں $\alpha=0$ پر کرنے سے مساوات 1.43 حاصل ہوتا ہے۔

1.14 دوری سمتیه

 30 سائن نما امواج جن کی تعدد معین ہو کو دور کی سمتیہ سے ظاہر کرنا مفید ثابت ہوتا ہے۔ مساوات یولر $A_0e^{\mp j(\omega t + \phi)} = A_0\cos(\omega t + \phi) \mp j\sin(\omega t + \phi)$

Euler's equation³⁰

1.14 دوري سمتي

شکل1.14: دوری سمتیه

کی مدد سے کوسائن موج درج ذیل لکھی جاسکتی ہے۔

(1.46)
$$A_0 \cos(\omega t + \phi) = \frac{A_0}{2} \left(e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)} \right)$$

اس سے ثابت ہوتا ہے کہ کوسائن موج دراصل دو مخلوط اعداد کا مجموعہ ہے۔ مساوات پولر ایک مخلوط عدد کو ظاہر کرتا ہے جس کے دو جزو ہیں۔ اس کا ایک جزو حقیقی عدد ہے اور اس کا دوسرا جزو فرضی عدد ہے۔ اس کا حقیقی جزو کوسائن موج کو ظاہر کرتا ہے۔ لہذا ایک کوسائن موج $A_0e^{j(\omega t+\phi)}$ یا $A_0e^{-j(\omega t+\phi)}$ کا حقیقی جزو ہوتا ہے۔ رسمی طور پر سائن نما امواج کو $A_0e^{j(\omega t+\phi)}$ سے ظاہر کیا جاتا ہے جس کو مختصراً $A_0e^{j\phi}$ یا $A_0e^{j(\omega t+\phi)}$ کسا جو دوری سمتیہ کا طول $A_0e^{j(\omega t+\phi)}$ اور افقی کلیر کے ساتھ زاویہ ϕ ہے۔

دوری سمتیہ استعال کرتے وقت آپ کو یہ ذہن میں رکھنا ہو گا کہ یہ در حقیقت ایک کوسائن موج ہے جس کا حیطہ A_0 ، زاویائی فاصلہ ϕ اور زاویائی تعدد ω ہے۔

اس کتاب میں دوری سمتیات کو سادہ طرز لکھائی میں انگریزی کے بڑے حروف جن پر ٹوپی کا نشان ہو سے ظاہر کیا جائے گا۔ یوں برقی کیا جائے گا۔ یوں برقی

 ${\rm phasor}^{31}$

با___1 بنسادی حتسائق 22

وباو $v=20\cos(\omega t+\frac{\pi}{3})$ وباو $v=20\cos(\omega t+\frac{\pi}{3})$

$$v = 20\cos\left(\omega t + \frac{\pi}{3}\right)$$

$$\hat{V} = 20e^{j\frac{\pi}{3}}$$

$$\hat{V} = 20/\frac{\pi}{3}$$

$$V = 20$$

اس مساوات میں پہلا جزو ایک عام کوسائن موج ہے جس کو دوسرے جزو میں دوری سمتیہ کی صورت میں لکھا گیا ہے۔ تیسرا اس دوری سمتیہ کا طول اور چوتھا اس کا زاویہ بتلا رہا ہے۔

دوری سمتیات کو عام سمتیات کی طرح ہی تصور کیا جاتا ہے۔ اس مساوات میں \hat{V} کا طول 20 اور افقی کیبر سے زاویہ 🧸 ریڈیٹن ہے۔زاویہ کو افقی کئیر سے گھڑی کے مخالف رخ نایا جانا ہے۔افقی کئیر سے گھڑی کے رخ منفی زاویہ ہو گا۔ شکل 1.14 میں اس \hat{V} کے علاوہ چند دوسرے دوری سمتیات بھی دکھائے گئے ہیں۔

برقی ادوار میں عموماً برقی دیاو \hat{V} کی نسبت سے برقی رو \hat{I} کا زاویہ بیان کیا جاتا ہے۔شکل \hat{V} میں \hat{I} تیس درجہ برقی دباو سے آگے ہے جبکہ \hat{I}_2 بینتالیس درجہ برقی دباو کے پیھے ہے۔ہم کہتے ہیں \hat{I}_1 تیس درجہ پیش زاویہ 32 جبکہ \hat{I}_2 بینتالیس درجہ تاخیرہ زاویہ 33 پر ہے۔ یوں \hat{I}_2 پیش رو جبکہ \hat{I}_3 تاخیری رو کہلاتے ہیں۔ دو دوری سمتیات کے \hat{y} زاویے کو زاواکی فرور \hat{y} کہتے ہیں للذا \hat{y} اور \hat{y} میں °75 زاویائی فرق پایا جاتا ہے۔ یہاں دھیان رہے کہ شکل \hat{y} 1.14 میں °45 مثبت لکھا گیا ہے۔ چونکہ یہ افقی ککیر سے زاویہ ناپنے کے الٹ رخ بے للذا یہ ایک منفی زاویہ ہے۔

طاقت $p=V_0I_0\cos heta$ ہو گا جہاں $\cos heta$ کو جزوطاقتے 35 اور heta کو زاویہ جزوطاقتے 36 کہتے ہیں۔ اس طرح تاخیرہ زاویہ کی صورت میں $\cos heta$ کو تاخیر کیر بربوطاقتے 37 اور پیژیر زاویہ کی صورت میں $\cos heta$ کو پیژیر بربوطاقتے 38 کہتے ہیں۔

آئیں دوری سمتیات استعال کرتے ہوئے ایک سادہ برقی دور حل کرتے ہیں۔ یوں دوری سمتیات سے وابستگی پیدا ہو گی اور ان کا استعال بھی سکھ لیں گے۔

leading angle³²

lagging angle³³

phase difference³⁴ power factor³⁵

power factor angle³⁶

lagging power factor³⁷

leading power factor³⁸

23 1.14. دوری سمتیه

شکل 1.15 دوری سمتیات کی مد دسے RL دور کاحل

$$v(t)=V_0\cos(\omega t+\alpha)$$
 بازه $\hat{V}=V_0\cos(\omega t+\alpha)$ بازه $\hat{V}=V_0\cos(\omega t+\alpha)$ $\hat{V}=V_0\cos(\omega t+\alpha)$

دوری سمتیات کی استعال سے ہم برقی رو \hat{I} معلوم کرتے ہیں

(1.49)
$$\hat{I} = \frac{\hat{V}}{R + jX} = \frac{V_{0/\alpha}}{|Z|/\phi_Z}$$

$$= \frac{V_0}{|Z|}/\alpha - \phi_Z = I_0/\alpha - \phi_Z$$

(1.50)

جہال
$$rac{X}{R} = an^{-1} rac{X}{R}$$
 رکاوٹ کا زاویہ اور $rac{V_0}{|Z|}$ ہیں۔یوں برقی رو درج ذیل ہو گا۔

(1.50)
$$i(t) = I_0 \cos(\omega t + \alpha - \phi_Z)$$

$$I(t) = I_0 \cos(\omega t + \alpha - \phi_Z)$$

$$I(t) = I_0 \cos(\omega t + \alpha - \phi_Z)$$

single phase³⁹

باب 1. بنيادي حت اَتَ باب 1. بنيادي حت اَتَ

إب2

مقناطيسى ادوار

2.1 مزاحمت اور ہچکچاہٹ

شکل 2.1 میں ایک سلاخ و کھائی گئی ہے جس کی لمبائی کے رخ مزاحمہا

$$(2.1) R = \frac{l}{\sigma A}$$

 μ ررج و گل جہال σ موصلیتے 2 اور A=wh رقبہ عمودی تراش ہے۔ اس سلاخ کی بھیکھا ہے 3 ورج و بل ہے جہال م

شكل 2.1:مزاحمت اور جيكيا ہٹ

resistance¹ conductivity²

ا___2. مقت طبیبی اووار

مقناطبیھے متقل 4 کہلاتا ہے۔

$$\Re = \frac{l}{\mu A}$$

مقناطیسی مستقل μ کو عموماً خلاء کی مقناطیسی مستقل $\mu_0=4\pi\,10^{-7}\,rac{ ext{H}}{ ext{m}}$ مقناطیسی مستقل مستقل میرود.

$$\mu = \mu_r \mu_0$$

جہاں μ_r برومقناطیسی متقل کہلاتا ہے۔ ایکچاہٹ کی اکائی ایمپیر - چکر فی ویبر ہے جس کی وضاحت جلد کی جائے گی۔

 $\mu_r=10\,\mathrm{cm}$ مثال $\mu_r=2000$ مثال المراجع بين معاون

حل:

$$\begin{split} \Re &= \frac{l}{\mu_r \mu_0 A} \\ &= \frac{10 \times 10^{-2}}{2000 \times 4\pi \times 10^{-7} \times 2.5 \times 10^{-2} \times 3 \times 10^{-2}} \\ &= 53\,044\,\mathrm{A} \cdot \mathrm{turns/Wb} \end{split}$$

2.2 کثافت برقی رواور برقی میدان کی شدت

 5 گل 2.2 میں ایک موصل سلاخ کے سروں پر برتی دباو v لاگو کیا گیا ہے۔سلاخ میں برتی روز اوہم کے قانون 5 ہے حاصل ہو گی۔

$$(2.4) i = \frac{v}{R}$$

 $\begin{array}{c} {\rm reluctance^3} \\ {\rm permeability,\ magnetic\ constant^4} \\ {\rm Ohm's\ law^5} \end{array}$

شكل 2.2: كثافت برقى رواور برقى د باوكى شدت

درج بالا مساوات كو مساوات 2.1 كى مدد سے

$$(2.5) i = v\left(\frac{\sigma A}{l}\right)$$

لعيني

$$\frac{i}{A} = \sigma\left(\frac{v}{l}\right)$$

يا

$$(2.7) J = \sigma E$$

کھا جا سکتا ہے جہاں J اور E کی تعریفات درج ذیل ہیں۔

$$(2.8) J = \frac{i}{A}$$

$$(2.9) E = \frac{v}{l}$$

شکل 2.2 میں سمتیہ J کی مطلق قیت J اور سمتیہ E کی مطلق قیت E لیتے ہوئے مساوات 2.7 کو درج ذیل کھا جا سکتا ہے

$$(2.10) J = \sigma E$$

جو قانون اوہم کی دوسری روپ ہے۔ J اور E دونوں کا رخ $a_{
m y}$ ہے۔

28 باب_2. مقت طبيسي ادوار

شکل 2.2 سے ظاہر ہے کہ برقی روi سلاخ کی رقبہ عمودی تراث A سے گزرتی ہے للذا مساوات 2.8 کے تحت I کا فیضے برقی روI ہو گی۔ ای طرح مساوات 2.9 سے واضح ہے کہ I برقی دباو نی اکائی لمبائی کو ظاہر کرتی ہے للذا I کو برقی میدان کی شدھے کہتے ہیں۔ I کو برقی میدان کی شدھے کہتے ہیں۔ I

بالکل اسی طرح کی مساواتیں مقناطیسی متغیرات کے لئے حصہ 2.5 میں لکھی جائیں گی۔

2.3 رقى ادوار

 $\sigma=5.9\times10^7\,rac{\mathrm{S}}{\mathrm{m}}$ رقی دور میں برقی دباوہ v^8 وجہ سے برقی رو v^8 اللہ پیدا ہوتی ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے جو بہت بڑی مقدار ہے۔ موصلیت کی اکائی v^8 ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے بنی تارکی مزاحمت v^8 عموماً قابل نظر انداز ہو گی۔ تار میں برقی رو v^8 گرزنے سے تارکے سروں کے نیج برقی دباو کے گھٹاو کی مزاحمت v^8 بیدا ہو گا جس کو v^8 کی بنا نظر انداز کیا جا سکتا ہے۔ یوں تانبے کی تار میں برقی دباو کے گھٹاو کو رد کیا جا سکتا ہے۔ یعنی ہم v^8 کی سکتے ہیں۔

شکل 2.3-الف میں ایک ایسا ہی برقی دور دکھایا گیا ہے جس میں تانبے کی تارکی مزاحمت کو اکٹھے کر کے ایک ہی جگہ _{تار}R دکھایا گیا ہے۔اس دور کے لئے درج ذیل کھا جا سکتا ہے۔

$$(2.11) v = \Delta v + v_L$$

تار میں برقی گھٹاو Δv نظرانداز کرتے ہوئے

$$(2.12) v = v_L$$

حاصل ہوتا ہے۔اس کا مطلب ہوا کہ تار میں برقی دباو کا گھٹاو قابل نظرانداز ہونے کی صورت میں لا گو برقی دباو کا توں مزاحمت R_L تک پنچتا ہے۔ برقی ادوار حل کرتے ہوئے یہی حقیقت بروئے کار لاتے ہوئے تار میں برقی دباو کے نظرانداز کیا جاتا ہے۔شکل 2.3-الف میں الیا کرنے سے شکل 2.3-ب حاصل ہوتا ہے۔ یہاں ہے سمجھ لینا ضروری ہے کہ برقی تار کو اس غرض سے استعال کیا جاتا ہے کہ لا گو برقی دباو کو مقام استعال تک بغیر گھٹائے پہنچایا جائے۔

2.3. برتی ادوار

شكل 2.3: برقى ادواريس برقى تاركى مزاحت كو نظرانداز كياجاسكتا ہے۔

شکل 2.4: کم مزاحمتی راه میں برقی رو کی مقدار زیادہ ہو گی۔

عالي 2. مقت طيسي ادوار

شكل 2.5: مقناطيسي دور

شکل 2.4 میں دوسری مثال دی گئی ہے۔ یہاں ہم دیکھتے ہیں کہ برقی رواس راہ زیادہ ہو گی جس کی مزاحمت کم $n_1>n_2$ مورت میں $n_1>n_2$ ہو۔ یوں $n_2>n_3$ مورت میں واحد میں مثال دی گئے ہے۔ یہاں ہم دیکھتے ہیں کہ برقی رواس راہ زیادہ ہو گئے ہیں مزاحمت کم مزاحمت کم

2.4 مقناطیسی دور حصه اول

current density⁶

electric field intensity⁷

electric voltage⁸

⁹ بر تی دیاو کیا اکائی وولٹ ہے جوا ٹلی کے الیا نڈر ووولٹا کے نام ہے جنہوں نے برقی میٹری ایجاد کی۔ 10 م

electric current¹⁰

copper¹²

¹³ مزاحت کی اکائی اوہم ہے جو جر منی کے جارج سائن اوہم کے نام ہے جنہوں نے قانون اوہم دریافت کیا۔

magnetomotive force, mmf¹⁴

 $flux^{15}$

 $[\]rm reluctance^{16}$

2.4. مقت طيسي دور حصبه اول

بہاو ﴿، بالكل او ہم كے قانون كى طرح، درج ذيل مساوات سے حاصل ہو گا۔

$$\tau = \phi \Re_a$$

جہاں \Re_c قابل نظرانداز ہو وہاں، سلسلہ وار مزاحمتوں کی طرح، دو سلسلہ وار ہیکچاہٹوں کا مجموعی ہیکچاہٹ \Re_s استعال کر کے برتی روحاصل ہو گی۔

$$\Re_s = \Re_a + \Re_c$$

برقی دور کی طرح، مقناطیسی د باو کو کم بچکچاہٹ کی راہ استعال کرتے ہوئے مقام ضرورت تک پہنچایا جاتا ہے۔ مساوات 2.2 تحت بچکچاہٹ کی قیمت مقناطیسی مستقل μ پر منحصر ہے ۔ مقناطیسی مستقل کی اکائی ہمیزی فی میٹر مساوات μ_r کو عموماً μ_r کو عموماً μ_r کسا جاتا ہے جہال μ_r جہال μ_r μ_0 وعموماً مستقل کی میٹر کے برابر ہے اور μ_r کو جو مقناطیسی مستقل μ_r بین ۔ لوہا، پھے دھاتیں اور چند جدید مصنوعی مواد ایسی ہیں جن کی μ_r کی قیمت 2000 اور جو مقناطیسی مواد گئی بائی جاتی ہیں۔ مقناطیسی د باو کو ایک جگہ سے دوسری جگہ منتقل کرنے کے لئے ان ہی مقناطیسی مواد کو استعال کیا جاتا ہے۔

بد قتمتی سے مقناطیسی مواد کے μ کی قیمت اتنی زیادہ نہیں ہوتی ہے کہ ان سے بن سلاخ کی ہیکچاہٹ ہر موقع پر قابل نظر انداز ہو۔ مساوات 2.2 کے تحت ہیکچاہٹ کم سے کم کرنے کی خاطر رقبہ عمودی تراش کو زیادہ سے زیادہ اور لمبائی کو کم سے کم کرنا ہو گا۔ یوں مقناطیسی دباو منتقل کرنے کے لئے باریک تار نہیں بلکہ خاصا زیادہ رقبہ عمودی تراش کا مقناطیسی راستہ درکار ہوتا ہے۔

مقناطیسی مثین، مثلاً موٹر اور ٹرانسفار مر، کا بیشتر حصہ مقناطیسی دباو منتقل کرنے والے ان مقناطیسی مواد پر مشتمل ہوتا ہے۔ایسے مثینوں کے قلب میں عموماً یہی مقناطیسی مادہ پایا جاتا ہے للمذا ایسا مواد مقناطیسی قالب 18 کہلاتا ہے (شکل 2.6)۔

برقی مشینوں میں مستعمل مقناطیسی قالب لوہے کی باریک چادر یا پتری 19 تہہ در تہہ رکھ کر بنائی جاتی ہے۔ مقناطیسی قالب کے بارے میں مزید معلومات حصہ 2.8 میں فراہم کی جائے گی۔

_

relative permeability, relative magnetic constant¹⁷

magnetic core¹⁸

laminations¹⁹

عن الحيسي ادوار باب 2. مقت الحيسي ادوار

شكل 2.6: كثافت مقناطيسي بهاواور مقناطيسي ميدان كي شدت_

2.5 كثافت ِمقناطيسى بهاواور مقناطيسى ميدان كى شدت

حصہ 2.2 میں برقی دور کی مثال دی گئی۔ یہاں شکل 2.6 میں دکھائے گئے مقناطیسی دور پر غور کرتے ہیں۔ مقناطیسی قالب کی $\mu_r = \infty$ تقالب کی $\mu_r = \infty$ تصور کرتے ہوئے آگے بڑھتے ہیں۔ یوں قالب کی ہنچکچاہٹ μ_c صفر ہو گی۔ حصہ 2.2 میں تانبا کی تار کی طرح یہاں مقناطیسی قالب کو مقناطیسی دباو τ ایک مقام سے دوسری مقام تک منتقل کرنے کے لئے استعال کیا گیا ہے۔ شکل 2.6 میں مقناطیسی دباو کو خلائی درز کی ہنچکچاہٹ μ_c تک پنجپایا گیا ہے۔ یہاں μ_c کو نظرانداز کرتے ہوئے کل ہنچکھاہٹ کو خلائی درز کی ہنچکھاہٹ کے برابر تصور کیا جا سکتا ہے:

$$\Re_a = \frac{l_a}{\mu_0 A_a}$$

خلائی درز کی لمبائی l_a قالب کے رقبہ عمودی تراش کے اضلاع b اور w ہے بہت کم ہونے کی صورت میں، لیخی $l_a \ll w$ اور $w \gg l_a \ll w$ خوری تراش $l_a \ll b$ کو قالب کے رقبہ عمودی تراش $l_a \ll w$ کے برابر تصور کیا جا سکتا ہے:

$$(2.17) A_a = A_c = wb$$

اں کتاب میں جہاں بتلایا نہ گیا ہو وہاں $l_a \ll b$ اور $w \gg l_a \ll b$ کاب میں جہاں بتلایا نہ گیا ہو وہاں

مقناطیسی دباو
$$au$$
 کی تعریف درج ذیل مساوات پیش کرتی ہے۔ $au=Ni$

یوں برقی تار کے چکر ضرب تار میں برقی رو کو مقناطیسی دباو کہتے ہیں۔ مقناطیسی دباو کی اکائی ایمپیئر-چکر²⁰ ہے۔ حصہ 2.2 کی طرح ہم مساوات 2.15 کو یوں لکھ سکتے ہیں۔

$$\phi_a = \frac{\tau}{\Re_a}$$

مقناطیسی بہاو کی اکائی 22 ورہر 22 اور ہیکچاہٹ کی اکائی ایمپیئر۔ چکر فی ویبر 23 ہے۔ اس سلسلہ وار دور کے خلائی درز میں مقناطیسی بہاو ϕ_c ایک دوسرے کے برابر ہوں گے۔درج بالا مساوات کو مساوات کی مدد ہے 0 کی مدد ہے

$$\phi_a = \tau \left(\frac{\mu_0 A_a}{l_a} \right)$$

يا

$$\frac{\phi_a}{A_a} = \mu_0 \left(\frac{\tau}{l_a}\right)$$

کھ سکتے ہیں جہاں درز کی نشاندہی زیر نوشت میں a کھ کر کی گئی ہے۔ اس مساوات میں بائیں ہاتھ مقناطیسی بہاو فی اکائی رقبہ کو کثافیہ مقناطیسی بہاو²⁵ B_a اور دائیں ہاتھ مقناطیسی دباو فی اکائی لمبائی کو مقناطیسی میدالنے کی شدھے B_a کا کھا جا سکتا ہے:

$$(2.21) B_a = \frac{\phi_a}{A_a}$$

$$(2.22) H_a = \frac{\tau}{l_a}$$

کافت مقناطیسی بہاوکی اکائی ویبرفی مرفع میٹر ہے جس کو ٹسلا²⁶ کا نام دیا گیا ہے۔مقناطیسی میدان کی شدت کی اکائی المبیئرفی میٹر²⁷ ہے۔ یوں مساوات 2.20 کو درج ذیل لکھا جا سکتا ہے۔

$$(2.23) B_a = \mu_0 H_a$$

جہاں متن سے واضح ہو کہ مقناطیسی میدان کی بات ہو رہی ہے وہاں مقناطیسی میدان کی شدت کو مختصراً میدانھے شدھے²⁸ کہا جاتا ہے۔

ampere-turn²⁰

Weber²¹

²²یہ اکائی جر منی کے ولیم اڈورڈو میر کے نام ہے جن کا برقی ومتناطبی میدان میں اہم کر دار رہاہے ampere-turn per weber²³

magnetic flux density²⁴

magnetic field intensity²⁵

Tesla: ²⁶ یا الای سربیا کے بکولاٹسلا کے نام ہے جنہوں نے بدلتار وبر قی طاقت عام کرنے میں اہم کر دار اداکیا۔

 $[\]begin{array}{c} {\rm ampere\ per\ meter^{27}} \\ {\rm field\ intensity^{28}} \end{array}$

باب2. مقت طبيسي ادوار

 $B_a=1$ گل 2.6 میں خلائی درز میں مقناطیسی بہاو کا رخ اکائی سمتیہ a_Z کا مخالف ہے لہذا کثافت ِ مقناطیسی بہاو a_Z کی سمتیہ a_Z کی مخالف رخ دباو ڈال رہا ہے لہذا $-B_aa_Z$ مقناطیسی دباو کی شدت $H_a=-H_aa_Z$ جائے گی۔ اس طرح درج بالا مساوات کو درج ذیل سمتی روپ میں لکھا جا سکتا ہے۔

$$(2.24) B_a = \mu_0 H_a$$

خلاء کی جگہ کوئی دوسرا مادہ ہونے کی صورت میں یہ مساوات درج ذیل لکھی جائے گی۔

$$(2.25) B = \mu H$$

مثال 2.2: شکل 2.6 میں خلائی درز میں کثافتِ مقناطیسی بہاو 0.1 ٹسلا درکار ہے۔ قالب کی $\mu_r = \infty$ خلائی درز کی لمبائی 1 ملی میٹر اور قالب کے گرد برقی تار کے چکر 100 ہیں۔ درکار برقی رو i تلاش کریں۔

حل: مساوات 2.13 سے

$$\tau = \phi \Re$$

$$Ni = \phi \left(\frac{l}{\mu_0 A}\right)$$

$$\frac{\phi}{A} = B = \frac{Ni\mu_0}{l}$$

لکھ کر درج ذیل حاصل ہو گا۔

$$0.1 = \frac{100 \times i \times 4\pi 10^{-7}}{0.001}$$
$$i = \frac{0.1 \times 0.001}{100 \times 4\pi 10^{-7}} = 0.79567 \,\text{A}$$

بر تی رو خلائی درز میں $B=0.1\,\mathrm{T}$ کثافت مقناطیسی بہاو پیدا کریے گا۔ $i=0.795\,67\,\mathrm{A}$

2.6 مقناطیسی دور حصه دوم

شکل 2.7 میں ایک سادہ مقناطیسی نظام دکھایا گیا ہے جس میں قالب کے مقناطیسی مستقل کو محدود تصور کرتے ہیں۔مقناطیسی دباو au=0 مقناطیسی قالب میں مقناطیسی بہاو au=0 پیر۔مقناطیسی دباو au=0 مقناطیسی قالب میں مقناطیسی بہاو م

2.6. مقن طيسي دور حصبه دوم

شكل 2.7: ساده مقناطيسي دور ـ

مقام پر کیساں ہے اور قالب کی اوسط لمبائی 1ء ہے۔ قالب میں مقناطیسی بہاو کا رخ فلیمنگے!دایارے ہاتھ قانور 29 کے دائیں ہاتھ کے قانون سے معلوم کیا جا سکتا ہے۔اس قانون کو دو طریقوں سے بیان کیا جا سکتا ہے۔

- اگرایک کچھے کو دائیں ہاتھ سے یوں کپڑا جائے کہ ہاتھ کی چار انگلیاں کچھے میں برقی رو کے رخ لیٹی ہوں تب انگوٹھا اُس مقناطیسی بہاو کے رخ ہو گا جو اس برقی رو کی وجہ سے وجود میں آیا ہو۔
- اگرایک تارجس میں برقی رو کا گزر ہو کو دائیں ہاتھ سے بول کپڑا جائے کہ انگوٹھا برقی رو کے رخ ہو تب باقی چار انگلیاں اُس مقناطیسی بہاو کے رخ لپٹی ہول گی جو اس برقی رو کی وجہ سے پیدا ہو گا۔

ان دو بیانات میں پہلا بیان کچھے میں مقناطیسی بہاو کا رخ معلوم کرنے کے لئے زیادہ آسان ثابت ہوتا ہے جبکہ سید تھی تار کے گرد مقناطیسی بہاو کا رخ دوسرے بیان سے زیادہ آسانی سے معلوم کیا جا سکتا ہے۔

قالب میں مقناطیسی بہاو گھڑی کے رخ ہے۔ مقناطیسی بہاو ہ کو شکل 2.7 میں ہلکی سیاہی کے تیر دار کلیر سے ظاہر کیا گیا ہے۔ قالب کی بچکھاہٹ

$$\Re_c = \frac{l_c}{\mu_c A_c}$$

لکھتے ہوئے مقناطیسی بہاو

$$\phi_c = \frac{\tau}{\Re_c} = Ni \left(\frac{\mu_c A_c}{l_c} \right)$$

Fleming's right hand rule²⁹

اب 2. مقت طبیمی ادوار

شكل 2.8: خلائى درزاور قالب كے ہيكياہائ

ہو گا۔یوں تمام نا معلوم متغیرات حاصل ہو بچیے۔

مثال 2.3: شکل 2.8 میں ایک مقناطیسی قالب دکھایا گیا ہے جس کی معلومات درج زیل ہیں۔

(2.26)
$$\psi = \begin{cases} h = 20 \,\mathrm{cm} & m = 10 \,\mathrm{cm} \\ n = 8 \,\mathrm{cm} & w = 2 \,\mathrm{cm} \\ l_a = 1 \,\mathrm{mm} & \mu_r = 40 \,000 \end{cases}$$

قالب اور خلائی درز کی ہیکچاہٹیں تلاش کریں۔

عل:

$$b = \frac{m-n}{2} = \frac{0.1-0.08}{2} = 0.01 \,\mathrm{m}$$

$$A_a = A_c = bw = 0.01 \times 0.02 = 0.0002 \,\mathrm{m}^2$$

$$l_c = 2(h+n) - l_a = 2(0.2+0.08) - 0.001 = 0.559 \,\mathrm{m}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 A_c} = \frac{0.559}{40000 \times 4\pi 10^{-7} \times 0.0002} = 55\,598\,\text{A} \cdot \text{t/Wb}$$

$$\Re_a = \frac{l_a}{\mu_0 A_a} = \frac{0.001}{4\pi 10^{-7} \times 0.0002} = 3\,978\,358\,\text{A} \cdot \text{t/Wb}$$

قالب کی لمبائی خلائی درز کی لمبائی سے 559 گنا زیادہ ہونے کے باوجود خلائی درز کی انچکچاہٹ قالب کی انچکچاہٹ سے $\Re_a\gg\Re_c$ ہو گا۔

2.6. مقت طيسي دور حصب دوم

مثال 2.4: شکل 2.9 سے رجوع کریں۔خلائی درز 5 ملی میٹر لمباہے اور گھومتے حصہ پر 1000 چکر ہیں۔خلائی درز میں T کا 0.95 کثافت ِ برقی بہاو حاصل کرنے کی خاطر درکار برقی رو معلوم کریں۔

حل: اس شکل میں گھومتے مشین، مثلاً موٹر، کی ایک سادہ صورت دکھائی گئی ہے۔ ایسی مشینوں کا ہیرونی حصہ ساکن رہتا ہے للذا اس جھے کو مشین کا ساکھنے حصہ 30 کہتے ہیں۔ ساکن جھے کے اندر مشین کا گھومتا حصہ 31 کہتے ہیں۔ اس مثال میں ان دونوں حصوں (قالب) کا $m_r = \infty$ تصور کیا گیا ہے للذا ان کی بچکچاہٹ صفر ہو گی۔ مقاطیسی بہاو کو ہلکی سیابی کی لکیر سے ظاہر کیا گیا ہے۔ مقاطیسی بہاو کی ایک مکمل چکر کے دوران مقاطیسی بہاو دو خلائی درزوں سے گزرتا ہے۔ یہ دو خلائی درز ہر لحاظ سے ایک دوسرے جیسے ہیں للذا ان دونوں خلائی درزوں کی بچکچاہٹ سلسلہ وار ہوں خلائی درزوں کی بچکچاہٹ سلسلہ وار ہیں۔ شکل 2.9 میں مقاطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔ خلائی درز کی لمبائی A_c میں مقاطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔ خلائی درز کی لمبائی A_c ، قالب کے رقبہ تراش میں بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درز کا عمودی رقبہ تراش ہوا کہا گھومتے حصہ کے رقبہ تراش کے برابر تصور کیا جائے گا۔

يوں
$$A_a=A_c$$
 ليتے ہوئے ايک خلائی درز کی ہيچاہئ $A_a=A_c$ يوں $\Re_a=rac{l_a}{\mu_0A_a}=rac{l_a}{\mu_0A_c}$ اور دو سلسلہ وار خلائی درزوں کی کل پیچاہٹ درج ذیل ہو گی۔ $\Re_s=\Re_a+\Re_a=rac{2l_a}{\mu_0A_c}$

stator³⁰ rotor³¹ باب_2.مقت طبيسي ادوار

خلائی درز میں مقناطیسی بہاہ ϕ_a اور کثافتِ مقناطیسی بہاہ B_a درج ذیل ہوں گے۔

$$\begin{split} \phi_a &= \frac{\tau}{\Re_s} = (Ni) \left(\frac{\mu_0 A_c}{2l_a} \right) \\ B_a &= \frac{\phi_a}{A_a} = \frac{\mu_0 Ni}{2l_a} \end{split}$$

دی گئی معلومات پر کرتے ہوئے درج ذیل حاصل ہو گا۔

$$0.95 = \frac{4\pi 10^{-7} \times 1000 \times i}{2 \times 0.005}$$
$$i = \frac{0.95 \times 2 \times 0.005}{4\pi 10^{-7} \times 1000} = 7.56 \,\text{A}$$

روایتی موٹروں اور جزیٹروں کی خلاء میں تقریباً ایک ٹسلا کثافت برقی بہاو ہوتی ہے۔

2.7 خوداماله، مشتركه اماله اور توانائي

وقت کے ساتھ بدلتا مقناطیسی میدان برقی دباو پیدا کرتا ہے جس کو قانون فیراؤے 32 کے تحت 33

$$\oint_C \mathbf{E} \cdot \mathrm{d}s = -\frac{\mathrm{d}}{\mathrm{d}t} \int_S \mathbf{B} \cdot \mathrm{d}S$$

سے حاصل کیا جا سکتا ہے۔ یہ مساوات کہتی ہے کہ کسی بند راہ کی ہمراہ مقناطیسی سمتی میدان E کا ارتفاعی کمل اس راہ کے ارتباط بہاہ کے (وقت کے ساتھ) تفرق کے برابر ہو گا۔ برقی ادوار میں مستعمل برقی تاروں کی کی ہمراہ E قابل نظر انداز ہوتا ہے لہٰذا اس مساوات کا بایاں ہاتھ تاروں کے سروں پر امالی برقی دباوہ e^{34} کے برابر ہو گا۔ یوں یہ مساوات کی دائیں ہاتھ تکمل کا بیشتر حصہ E کے برابر ہو گا۔ یوں یہ مساوات درج ذیل صورت اختیار کرتی ہے۔

$$(2.27) e = N \frac{\partial \phi}{\partial t} = \frac{\partial \lambda}{\partial t}$$

شکل 2.10: قالب میں مقناطیسی بہاو کی تبدیلی کھیے میں برقی دیاوپیدا کرتی ہے۔

یوں شکل 2.10-ا کے قالب میں مقناطیسی بہاو ϕ کی تبدیل کی بنا کچھے میں برقی دباو e پیدا ہو گا جو کچھے کے سروں پر نمودار ہو گا۔

امالی برقی دباو کو منبع برقی دباو تصور کریں۔

امالی برقی دباو کا رخ تعین کرنے کی خاطر کچھے کے سرول کو کسرِ دور³⁵ کریں۔کچھے میں پیدا برقی رواُس رخ ہو گا جو متناطیسی بہاو کی تبدیلی کو روکے۔

فرض کریں شکل 2.10-ا میں بہاو ہ گھڑی کی سوئیوں کے گھومنے کے رخ ہے اور بہاو کی مقدار بڑھ رہی ہے۔ بہاو کی تبدیلی کا مخالف بہاو ہل پیدا کرنے کی خاطر کچھے کا بالائی سر مثبت ہو گا۔شکل 2.10-ب میں کچھے کے سروں کے بچ مزاحمت نسب کیا گیا ہے۔ کچھے کو منبع دباو تصور کرتے ہوئے آپ دیکھ سکتے ہیں کہ مزاحمت میں روکا رخ قالب میں گھڑی کے مخالف رخ بہاو کھی پیدا کرے گا۔

قالب میں مقناطیسی بہاو ϕ ، قالب پر لییٹے گئے کچھے کے تمام چکروں N کے اندر سے گزرتا ہے۔N کو کچھے کا ارتباط بہاو λ کے اندر سے گزرتا ہے۔ λ اکائی ویبر۔ چکر λ کا ارتباط بہاو

$$(2.28) \lambda = N\phi$$

Faraday's law³²

³³ انگل فیراڈے انگلتانی سائنسدان تھے جنہوں نے محرک برقی د باودریافت کی۔

induced voltage³⁴

short $circuit^{35}$

 $^{{\}rm flux\ linkage^{36}}$

weber-turn 37

با__ 2. مقت طبيسي اووار

شكل 2.11: اماليه (مثال 2.5)

جن مقناطیسی ادوار میں مقناطیسی مستقل μ کو اٹل مقدار تصور کیا جا سکے یا جن میں خلائی درز کی ہیکچاہٹ قالب کی جن مقاطیسی مستقل $\Re_a\gg\Re_c$ ، ان میں کیھے کی امالہ L^{38} کی تعریف درج ذیل مساوات دیتی ہے۔

$$(2.29) L = \frac{\lambda}{i}$$

 $\lambda=N\phi$ اوالہ کی اکائی و بیر - چکر فی ایمپیئر ہے جس کو ہینری H^{39} کا نام H^{39} دیا گیا ہے۔ مساوات $\phi=R_c$ میں $\phi=R_c$ اور $\phi=R_c$ پر کرتے ہوئے درج ذیل حاصل ہو گا

(2.30)
$$L = \frac{N\phi}{i} = \frac{NB_cA_c}{i} = \frac{N^2\mu_0A_a}{l_a}$$

جہاں قالب کا رقبہ عمودی تراش A_c اور درز کا رقبہ عمودی تراش A_a ایک دوسرے کے برابر لیے گئے ہیں۔

مثال 2.5: شکل 2.11 میں $b=5\,\mathrm{cm}, w=4\,\mathrm{cm}, l_a=3\,\mathrm{mm}$ مثال 2.11 شکل 2.15 شکل اور قالب کی اوسط لمبائی $l_c=30\,\mathrm{cm}$ ہے۔درج ذیل دو صورتوں میں کچھے کی امالہ تلاش کریں۔

- -ے $\mu_r=\infty$ قالب کا •
- قالب کا $\mu_r = 500$

inductance³⁸

Henry³⁹

40 مر کی سائنسدان جوزف ہینری جنہوں نے مائکل فیراڈے سے علیحدہ طور پر محرک برقی د باودریافت کی

حل: (1) قالب کے $\mu_r=\infty$ کی بنا قالب کی پھکھاہٹ قابل نظرانداز ہو گی لہذا امالہ درج ذیل ہو گا۔

$$\begin{split} L &= \frac{N^2 \mu_0 w b}{l_a} \\ &= \frac{1000^2 \times 4 \pi 10^{-7} \times 0.04 \times 0.05}{0.003} \\ &= 0.838 \, \mathrm{H} \end{split}$$

(+) کی صورت میں قالب کی بیچکیاہٹ قابل نظر انداز نہیں ہو گی۔خلاء اور قالب کی بیچکیاہٹ دریافت کرتے ہیں۔

$$\begin{split} \Re_a &= \frac{l_a}{\mu_0 w b} = \frac{0.003}{4\pi 10^{-7} \times 0.04 \times 0.05} = 1\,193\,507\,\mathrm{A\cdot t/Wb} \\ \Re_c &= \frac{l_c}{\mu_r \mu_0 w b} = \frac{0.3}{500 \times 4\pi 10^{-7} \times 0.04 \times 0.05} = 238\,701\,\mathrm{A\cdot t/Wb} \end{split}$$

یوں بہاو، ارتباط اور امالہ درج ذیل ہوں گے۔

$$\begin{split} \phi &= \frac{Ni}{\Re_a + \Re_c} \\ \lambda &= N\phi = \frac{N^2i}{\Re_a + \Re_c} \\ L &= \frac{\lambda}{i} = \frac{N^2}{\Re_a + \Re_c} = \frac{1000^2}{1\,193\,507 + 238\,701} = 0.698\,\mathrm{H} \end{split}$$

مثال 2.16: شکل 2.12 میں ایک پیچپرار لچھا 4 و کھایا گیا ہے جس کی جسامت درج ذیل ہے۔
$$N=11, r=0.49\,\mathrm{m}, l=0.94\,\mathrm{m}$$

یچپرار کچھے کے اندر مقناطیسی بہاو ϕ کا بیشتر حصہ محوری رخ ہوتا ہے۔ کچھے کے بار یہی بہاو پوری کا نئات سے گزرتے ہوئے واپس کچھے میں داخل ہوتا ہے۔ چونکہ پوری کا نئات کا رقبہ عمودی تراش A لا متناہی ہے لہذا کچھے کے باہر کثافت مقناطیسی بہاو $B = \frac{\phi}{A}$ کی مقدار قابل نظرانداز ہوگی۔ کچھے کے اندر محوری رخ مقناطیسی شدت درج ذیل ہوگی۔ خال ہوگی۔ خال ہوگی۔

$$H = \frac{Ni}{l}$$

42 باب_2. مقت طبيسي ادوار

اس کچھے کی خود امالہ حاصل کریں۔

عل:

$$B = \mu_0 H = \frac{\mu_0 Ni}{l}$$

$$\phi = B\pi r^2 = \frac{\mu_0 Ni\pi r^2}{l}$$

$$\lambda = N\phi = \frac{\mu_0 N^2 i\pi r^2}{l}$$

$$L = \frac{\lambda}{i} = \frac{\mu_0 N^2 \pi r^2}{l}$$

اور l کی قیمتیں پر کرتے ہوئے درج ذیل امالہ حاصل ہو گا 42 ۔

$$L = \frac{4\pi 10^{-7} \times 11^2 \times \pi \times 0.49^2}{0.94} = 122 \,\mu\text{H}$$

 i_1 ور اس میں برقی رو N_1 کی ہے۔ ایک کچھے کے چگر N_1 اور اس میں برقی رو رو کھایا گیا ہے۔ ایک کچھے کے چگر N_2 اور اس میں برقی رو N_2 ہیں ہے، دوسرا کچھا N_2 چکر کا ہے اور اس میں برقی رو N_2 ہے۔ دونوں کچھوں میں مثبت برقی رو قالب میں ایک جیسے رخ مقناطیسی دباو پیدا کرتے ہیں۔ اگر قالب کا R_c قابل نظرانداز ہو تب مقناطیسی بہاو 0درج ذیل ہو گا۔

(2.31)
$$\phi = (N_1 i_1 + N_2 i_2) \frac{\mu_0 A_a}{l_a}$$

شكل 2.13: دولچھے والا مقناطیسی دور۔

دونوں کچھوں کا مجموعی مقناطیسی دباو، $N_1 i_1 + N_2 i_2$ ، مقناطیسی بہاو ϕ پیدا کرتا ہے۔ اس مقناطیسی بہاو کا پہلے کچھے کے ساتھ ارتباط

(2.32)
$$\lambda_1 = N_1 \phi = N_1^2 \frac{\mu_0 A_a}{l_a} i_1 + N_1 N_2 \frac{\mu_0 A_a}{l_a} i_2$$

لعيني

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

ہے جہاں L_{11} اور L_{12} ہے مراد درج ذیل ہے۔

$$(2.34) L_{11} = N_1^2 \frac{\mu_0 A_a}{l_a}$$

$$(2.35) L_{12} = N_1 N_2 \frac{\mu_0 A_a}{l_a}$$

 L_{11} پہلے کچھے کا نود امالہ 43 ہے اور L_{11} اس کچھے کے اپنے برقی رو i_1 سے پیدا مقناطیسی بہاو کے ساتھ ارتباط بہاو L_{12} ہیں۔ L_{12} اِن دونوں کچھوں کا مشرکہ امالہ 45 ہے اور L_{12} کچھا- L_{12} ساتھ i_2 سے پیدا بہاو کے ساتھ ارتباط بہاو ہے جسے مشرکہ ارتباط بہاو 64 کہتے ہیں۔ بالکل اسی طرح ہم دوسرے کچھے کے لئے درخ زیل لکھ سکتے ہیں

(2.36)
$$\lambda_2 = N_2 \phi = N_2 N_1 \frac{\mu_0 A_a}{l_a} i_1 + N_2^2 \frac{\mu_0 A_a}{l_a} i_2$$
$$= L_{21} i_1 + L_{22} i_2$$

spiral coil⁴¹

⁴² پية پيرار لچھاميں نے 3000 كلو گرام لوہا پچھلانے والى بھٹی ميں استعال كياہے۔

 $[\]rm self\ inductance^{43}$

self flux linkage⁴⁴

 $[\]rm mutual\ inductance^{45}$

mutual flux linkage⁴⁶

با___2.مقن طیسی ادوار 44

جہال L_{22} اور L_{21} سے مراد درج ذیل ہے۔

$$(2.37) L_{22} = N_2^2 \frac{\mu_0 A_a}{l_a}$$

(2.38)
$$L_{21} = L_{12} = N_2 N_1 \frac{\mu_0 A_a}{l_a}$$

یے الے ہے۔ امالہ کا تصور اس وقت کارآمد ہوتا ہے $L_{21}=L_{12}$ دونوں کچھوں کا مشتر کہ امالہ ہے۔ امالہ کا تصور اس وقت کارآمد ہوتا ہے حب مقناطیسی مستقل پر کو اٹل تصور کرنا ممکن ہو۔

مباوات 2.29 کو مباوات 2.27 میں پر کرتے ہیں۔

(2.39)
$$e = \frac{\partial \lambda}{\partial t} = \frac{\partial (Li)}{\partial t}$$

اگر اماله کی قیمت اٹل ہو، جبیا کہ ساکن مشینوں میں ہوتا ہے، تب ہمیں اماله کی جانی پیجانی مساوات

$$(2.40) e = L \frac{\partial i}{\partial t}$$

ملتی ہے۔ اگر امالہ بھی تبدیل ہو، جیسا کہ موٹروں اور جزیٹروں میں ہوتا ہے، تب درج ذیل ہو گا۔

$$(2.41) e = L \frac{\partial i}{\partial t} + i \frac{\partial L}{\partial t}$$

توا کی 57 کی اکائی جاول 48 49 ہے اور طاقت 50 کی اکائی 51 جاول فی سینڈ ہے جس کو والے 52 49 کا نام دیا گیا

اس كتاب ميں توانائي ياكام كو W سے ظاہر كيا جائے گا اگرچه طاقت كى اكائى واٹ W كے لئے بھى يہى علامت استعال ہوتی ہے۔امید کی حاتی ہے کہ متن سے اصل مطلب جاننا ممکن ہو گا۔

وقت $t \geq -$ ساتھ توانائی W کی تبدیلی کی شرح کو طاقہ p = p کہتے ہیں۔یوں درج ذیل لکھا حاسکتا ہے۔

$$(2.42) p = \frac{\mathrm{d}W}{\mathrm{d}t} = ie = i\frac{\mathrm{d}\lambda}{\mathrm{d}t}$$

energy⁴⁷

⁴⁹ جیمس پریسقوٹ حاول انگلتانی سائنسدان جنہوں نے حرارت اور مکافی کام کارشتہ دریافت کیا

⁵¹ کاٹلدنڈ کے جیمزواٹ جنہوں نے بخارات پر چلنے والے انجن پر کام کیا

2.8. مقت طیسی مادہ کے خواص

مقناطیسی دور میں لمحہ t_1 تا t_2 مقناطیسی توانائی کی تبدیلی کو تکمل کے ذریعہ حاصل کیا جا سکتا ہے:

(2.43)
$$\Delta W = \int_{t1}^{t2} p \, \mathrm{d}t = \int_{\lambda 1}^{\lambda 2} i \, \mathrm{d}\lambda$$

ایک لچھے کا مقناطیسی دور، جس میں امالہ کی قیمت اٹل ہو، کے لئے درج ذیل لکھا جا سکتا ہے۔

(2.44)
$$\Delta W = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda = \int_{\lambda_1}^{\lambda_2} \frac{\lambda}{L} \, \mathrm{d}\lambda = \frac{1}{2L} \left(\lambda_2^2 - \lambda_1^2 \right)$$

یوں
$$t_1$$
 پر 0 نصور کرتے ہوئے کسی بھی λ پر مقناطیسی توانائی درج ذیل ہو گ۔
$$\Delta W = \frac{\lambda^2}{2L} = \frac{Li^2}{2}$$

2.8 مقناطیسی مادہ کے خواص

قالب کے استعال سے دو فوائد حاصل ہوتے ہیں۔ قالب کے استعال سے کم مقناطیسی دباو، زیادہ مقناطیسی بہاو پیدا کرتا ہے اور مقناطیسی بہاو کو پہند کی راہ پر رہنے کا پابند بنایا جا سکتا ہے۔ یک دوری ٹرانسفار مروں میں قالب کے استعال سے مقناطیسی بہاو کو اس طرح پابند کیا جاتا ہے کہ تمام کچھوں میں کیساں بہاو پایا جاتا ہو۔ موٹروں میں قالب کے استعال سے مقناطیسی بہاو کو یوں پابند کیا جاتا ہے کہ زیادہ سے زیادہ قوت پیدا ہو جبکہ جزیئروں میں زیادہ سے زیادہ برق دباو عاصل کرنے کی نیت سے بہاو کو پابند کیا جاتا ہے۔

B-H کے اور B اور H کا تعلق ترسیم کی صورت میں پیش کیا جاتا ہے۔ لوہا نما مقناطیسی مادے کی B مقناطیسی مواد کی B اور B کا نقط مورت میں مقناطیسی اثر نہیں پایا جاتا ہو کو نقط میں مقناطیسی اثر نہیں پایا جاتا ہو کو نقط سے ظاہر کیا گیا ہے۔ اس نقط پر درج ذیل ہوں گے۔

$$H_a = 0$$

$$B_a = 0$$

باب_2.مقت طبيسي ادوار

شکلB - Hخطوط یامقناطیسی جال کے دائرے۔

اس مادہ کو کچھے میں رکھ کر اس پر مقناطیسی دباو لا گو کیا جا سکتا ہے۔ مقناطیسی میدان کی شدت H لا گو کرنے سے لوہا نما مقناطیسی مادے میں کثافت مقناطیسی بہاو B پیدا ہو گی۔میدانی شدت بڑھانے سے کثافت مقناطیسی بہاو b بھی بڑھے گی۔اس عمل کو نقطہ a سے ابتدا کرتے ہوئے ایک تیردار قوس سے دکھایا گیا ہے۔میدانی شدت کو نقطہ b تک بڑھایا گیا ہے جہال b ہوں گے۔

نقطہ b تک پہنچنے کے بعد میدانی شدت کم کرتے ہوئے دیکھا گیا ہے کہ واپی قوس ایک مختلف راستہ اختیار کرتا ہے۔ یوں نقطہ b سے میدانی شدت کم کرتے ہوئے صفر کرنے سے لوہا نما مادہ کی کثافتِ مقناطیسی بہاہ کم ہو کر نقطہ c پر آن پہنچتی ہے۔ نقطہ d سے نقطہ کی کثافتِ مقناطیسی بہاہ صفر نہیں ہے۔ یہ مادہ ایک مقناطیس بن گیا ہے جس کی کثافتِ مقناطیسی بہاہ مقاطیسی بہاہ مقاطیسی بہاہ مقاطیس اسی طرح بنایا جاتا ہے۔

نقطہ c سے میدانی شدت منفی رخ بڑھانے سے B کم ہوتے ہوتے آخر کار ایک مرتبہ دوبارہ صفر ہو جائے گی۔اس نقطہ کو d سے ظاہر کیا گیا ہے۔مقناطیسیت ختم کرنے کے لئے درکار میدانی شدت کی مقدار $|H_d|$ کو مقناطیسیت ختم کرنے والی شدت یا مختصراً غاتم شدھے 54 کہتے ہیں۔

منفی رخ میدانی شدت مزید بڑھانے سے نقطہ e حاصل ہو گا۔ اس کے بعد منفی رخ کی میدانی شدت کی مطلق قیت کم کرنے سے نقطہ f حاصل ہو گا جہاں میدانی شدت صفر ہونے کے باوجود کثافت مقاطیسی بہاو صفر نہیں

magnetic flux!residual⁵³ coercivity⁵⁴

2.8. مقت طیسی مادہ کے خواص

شکل 5:2.15 M فولاد کی 0.3048 ملی میٹر موٹی پتری کی ترسیم۔میدانی شدت کاپیانہ لاگ ہے۔

ہے۔اس نقطہ پر لوہا نما مادہ اُلٹ رخ مقناطیس بن چکا ہے اور B_f بقایا کثافتِ مقناطیسی بہاو ہے۔اسی طرح اس رخ مقناطیسیت ختم کرنے کی شدت $|H_g|$ ہے۔میدانی شدت بڑھاتے ہوئے نقطہ b کی بجائے نقطہ b پہنچا جاتا ہے۔

برقی شدت کو متواتر اسی طرح پہلے ایک رخ اور پھر مخالف (دوسری) رخ ایک خاص حد تک پہنچانے سے آخر کار گلا ہے۔ اس دائرہ پر گھڑی کے مخالف کار H – H منحنی کا ایک بند دائرہ حاصل ہو گا جسے شکل 2.14-ب میں دکھایا گیا ہے۔اس دائرہ پر گھڑی کے مخالف رخ سفر ہو گا۔ شکل 2.14-ب کو مقناطیسی چالے کا دائرہ 55 کہتے ہیں۔

مختلف H کے لئے شکل 2.14-ب حاصل کر کے ایک ہی کاغذ پر کھینچنے کے بعد ان تمام کے b نقطے جوڑنے سے شکل 2.15 میں دکھائی گئ B-H ترسیم حاصل ہو گی۔ ٹرانسفار مروں میں استعال ہونے والی 0.3048 ملی میٹر موٹی M5 قالبی پتری کی B-H ترسیم شکل 2.15 میں دکھائی گئ ہے۔ اس ترسیم میں موجود مواد جدول 2.1 میں بھی دیا گیا ہے۔ عموماً مقناطیسی مسائل حل کرتے ہوئے شکل 2.14 کی جگہ شکل 2.15 طرز کی ترسیم استعال کی جاتی ہے۔دھیان رہے کہ اس ترسیم میں H5 کی بیانہ لاگھے H6 ہے۔

اوہ نما مقناطیسی مادے پر لا گو متناطیسی شدت بڑھانے سے کثافتِ مقناطیسی بہاو بڑھنے کی شرح بتدر ج کم ہوتی جاتی ہے حتی کہ آخر کار یہ شرح خلاء کی شرح μ_0 کے برابر ہو جاتی ہے:

$$\frac{\Delta B}{\Delta H} = \mu_0$$

اس اثر کو سیرابید 57 کہتے ہیں جو شکل 2.15 میں واضح ہے۔

 $\begin{array}{c} {\rm hysteresis~loop^{55}} \\ {\rm log^{56}} \\ {\rm saturation^{57}} \end{array}$

48 باب_2 مقت طبيسي ادوار

شکل 2.14 سے واضح ہے کہ H کی کسی بھی قیمت پر B کے دو مکنہ قیمتیں ہوں گی۔ بڑھتے مقناطیسی بہاو کی صورت میں ترسیم میں نیچ سے اُوپر جانے والی منحنی B اور H کا تعلق بیش کرے گی جبکہ گھٹے ہوئے مقناطیسی بہاو کی صورت میں اوپر سے نیچ جانے والی منحنی اس تعلق کو بیش کرے گی۔ چو نکہ B/H ہے المذا B کی مقدار تبدیل ہونے سے B کی متدار صورت میں اوپر سے نیچ جانے والی منحنی اس تعلق کو بیش کرے گی۔ چو نکہ B مقال میں مقال تصور کرتے تبدیل ہو گی۔ باوجود اس کے ہم مقناطیسی ادوار میں B کو ایک مستقل تصور کرتے ہیں۔ ایسا کرنے سے عموماً نتائج پر زیادہ اثر انداز نہیں ہوتا۔

مثال 2.7: شکل 2.15 یااس کے مساوی جدول 2.1 میں دی گئی مواد استعال کرتے ہوئے شکل 2.6 کی خلاء میں ایک ٹسلا اور دو ٹسلا کثافت مقناطیسی بہاو حاصل کرنے کے لئے درکار برقی رو معلوم کریں۔درج ذیل معلومات استعال کریں۔ قالب اور خلاء کا رقبہ عمودی تراش ایک دوسرے جتنا لیں۔

 $b = 5 \text{ cm}, w = 4 \text{ cm}, l_a = 3 \text{ mm}, l_c = 30 \text{ cm}, N = 1000$

حل: ایک ٹسلا کے لئے۔ جدول 2.1 کے تحت قالب میں 1 ٹسلا کے لئے قالب کو 11.22 ایمپیئر - چکر فی میٹر قیمت کی شدت H در کار ہو گی۔ یوں 30 سم لمبے قالب کو 3.366 = 11.22 \times 10.3 ایمپیئر چکر در کار ہوں گے۔

خلاء کو درج ذیل ایمپیئر - چکر فی میٹر شدت درکار ہے۔

$$H = \frac{B}{\mu_0} = \frac{1}{4\pi 10^{-7}} = 795\,671$$

يوں 3 ملى ميٹر خلاء كو 2387 = 795671 = 2387 × 0.003 ايمپيئر چكر دركار ہوں گے۔اس طرح كل دايمپيئر - چكر +3.366 2390.366 = 2387 ميں جن سے درج ذیل حاصل كيا جا سكتا ہے۔

$$i = \frac{2390.366}{1000} = 2.39 \,\mathrm{A}$$

حل: دو ٹسلا کے لئے۔

جدول 2.1 کے تحت قالب میں 2 ٹسلا کثافت کے لئے قالب کو 10000 ایمپیئر - چکر فی میٹر H درکار ہو گی۔ یوں 300 سم قالب کو $3000=0.3\times1000$ ایمپیئر چکر درکار ہوں گے۔خلاء کو

$$H = \frac{B}{\mu_0} = \frac{2}{4\pi 10^{-7}} = 1591342$$

2.9. بيجبان شده لچھ

B	H	B	H	B	H	B	H	B	H	B	H
0.000	0	0.700	9	1.480	30	1.720	200	1.852	1000	1.998	9000
0.040	2	0.835	10	1.540	40	1.752	300	1.900	2000	2.000	10000
0.095	3	1.000	11.22	1.580	50	1.780	400	1.936	3000	2.020	20000
0.160	4	1.100	12.59	1.601	60	1.800	500	1.952	4000	2.040	30000
0.240	5	1.200	14.96	1.626	70	1.810	600	1.968	5000	2.048	40000
0.330	6	1.300	17.78	1.640	80	1.824	700	1.975	6000	2.060	50000
0.440	7	1.340	20	1.655	90	1.835	800	1.980	7000	2.070	60000
0.560	8	1.400	23.77	1.662	100	1.846	900	1.985	8000	2.080	70000

جدول 2.1: مقناطيسي بهاو بالمقابل شدت

ایمپیئر- چکر فی میٹر درکار ہیں للذا 3 ملی میٹر کمبی خلاء کو 4774 = 4791342 × 0.003 ایمپیئر چکر درکار ہوں گے۔یوں کل ایمپیئر- چکر 7774 = 4774 + 3000 ہیں جن سے درج ذیل حاصل کیا جا سکتا ہے۔

$$i = \frac{7774}{1000} = 7.774 \,\mathrm{A}$$

اس مثال میں مقناطیسی سیر ابیت واضح ہے۔

2.9 ميجان شده لجها

بدلتا رو بجلی میں برتی دباو اور مقناطیسی بہاو عموماً سائن نما ہوتے ہیں جن کا وقت کے ساتھ تعلق sin wt یا sin ساتھ ہوگا۔ اس حصہ میں بدلتا رو سے کچھا ہیجان کرنا اور اس سے نمودار ہونے والی برتی توانائی کے ضیاع پر تذکرہ کیا جائے گا۔ قالب میں کثافت مقناطیسی بہاو

$$(2.48) B = B_0 \sin \omega t$$

کی صورت میں قالب میں درج ذیل بدلتا مقناطیسی بہاو $\,arphi$ پیدا ہو گا۔

(2.49)
$$\varphi = A_c B = A_c B_0 \sin \omega t = \phi_0 \sin \omega t$$

باب 2. مقت طبيسي ادوار

اس مساوات میں مقناطیسی بہاو کا حیطہ ϕ_{\mp} ، کثافت مقناطیسی بہاو کا حیطہ π_0 ، قالب کا رقبہ عمود کی تراش A_c (جو ہر مقام پر مکسال ہے)، زاویائی تعدد $\alpha=2\pi$ اور تعدد $\alpha=2\pi$

فیراڈے کے قانون (ماوات 2.27) کے تحت یہ مقناطیسی بہاو کیھے میں e(t) امالیے برقی دباو 58 پیدا کرے گا

(2.50)
$$e(t) = \frac{\partial \lambda}{\partial t}$$

$$= \omega N \phi_0 \cos \omega t$$

$$= \omega N A_c B_0 \cos \omega t$$

$$= E_0 \cos \omega t$$

جس کا حیطہ درج ذیل ہو گا۔

$$(2.51) E_0 = \omega N \phi_0 = 2\pi f N A_c B_0$$

ہم بدلتے رو مقداروں کے مربع کی اوسط کے جذر میں ولچین رکھتے ہیں جو ان مقداروں کی موثر 69 قیت ہوتی ہے۔ جیسا صفحہ 19 پر مساوات 1.42 میں ویکھا گیا، سائن نما موج کی موثر قیت موج کے حیطہ کی $1/\sqrt{2}$ گنا ہو گی لہذا امالی برتی و باو کی موثر قیت E_{rms} درج ذیل ہو گی۔

(2.52)
$$E_{rms} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N A_c B_0}{\sqrt{2}} = 4.44 f N A_c B_0$$

ہے مساوات بہت اہم ہے جس کو ہم بار بار استعال کریں گے۔بدلتے برقی دباو یا بدلتے برقی رو کی قیمت سے مراد ان کی موثر قیمت ہو گی۔پاکتان میں گھریلو برقی دباو کی موثر قیمت 220 وولٹ ہے۔اس سائن نما برقی دباو کی چوٹی $\sqrt{2} \times 220 = 311$

مثال 2.8: شکل 2.16 میں کچھے کے 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 2.8 مثال 2.8 مربع سم ہے۔ کچھے کو گھر بلو 220 وولٹ موثر برتی دباوسے بیجان کیا جاتا ہے۔جدول 2.1 کی مدد سے مختلف برتی دباو پر محرک برتی رو معلوم کریں اور اس کا خط کھیجنیں۔

حل: گھریلو برقی دباو 50 ہرٹز کی سائن نما موج ہو گ۔

(2.53)
$$v = \sqrt{2} \times 220 \cos(2\pi 50t)$$

 $\begin{array}{c} \rm induced\ voltage^{58} \\ \rm root\ mean\ square,\ rms^{59} \end{array}$

2.9. بيجبان شده لچھ

شكل 2.16: ساده مقناطيسي دور (مثال 2.8) ـ

ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$	ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$
0.675	1.000	11.22	3.366	0.125	0.000	0.000	0	0.000	0.000
0.757	1.100	12.59	3.777	0.140	0.025	0.040	2	0.600	0.022
0.847	1.200	14.96	4.488	0.166	0.059	0.095	3	0.900	0.033
0.948	1.300	17.78	5.334	0.198	0.100	0.160	4	1.200	0.044
0.992	1.340	20	6.000	0.222	0.150	0.240	5	1.500	0.056
1.064	1.400	23.77	7.131	0.264	0.208	0.330	6	1.800	0.067
1.180	1.480	30	9.000	0.333	0.278	0.440	7	2.100	0.078
1.294	1.540	40	12.000	0.444	0.357	0.560	8	2.400	0.089
1.409	1.580	50	15.000	0.556	0.453	0.700	9	2.700	0.100
1.571	1.601	60	18.000	0.667	0.549	0.835	10	3.000	0.111

جدول2.2: محرک برقی رو

ماوات 2.52 کی مدد سے ہم کثافتِ مقناطیسی بہاو کی چوٹی حاصل کرتے ہیں۔

(2.54)
$$B_0 = \frac{220}{4.44 \times 50 \times 27 \times 0.0229253} = 1.601 \,\mathrm{T}$$

يوں قالب ميں کثافتِ مقناطيسي بہاو کا حيطہ 1.601 ہو گا اور قالب ميں کثافتِ مقناطيسي بہاو کی مساوات ورج ذيل ہو گی۔

$$(2.55) B = 1.601 \sin \omega t$$

ہم جدول کی مدو ہے 0 اور 1.601 ٹسلا کے ﷺ مختلف قیمتوں پر درکار محرک برقی رو i_{ϕ} معلوم کرنا چاہتے ہیں۔ہم مختلف B پر جدول 2.1 ہے قالب کی H حاصل کریں گے جو ایک میٹر کہی قالب کے لئے درکار ایمپیئر - چکر ہوں گے۔اس سے 30 سم کمی قالب کے لئے درکار ایمپیئر - چکر کر معلوم کر کے برقی رو حاصل کریں گے۔

جدول 2.2 مختلف کثافتِ مقناطیسی بہاو کے لئے درکار محرک برقی رو دیتی ہے۔جدول میں ہر B کی قیمت پر ωt مساوات 2.55 کی مدد سے حاصل کی گئی ہے۔ ωt بالمقابل محرک برقی رو کا خط شکل Δt میں دیا گیا ہے۔ ωt

52 باب 2. مقت طبیسی ادوار

شکل M 5:2.17 پتری کے قالب میں 1.6 ٹسلاتک بیجان پیدا کرنے کے لئے در کار بیجان انگیز برقی رو۔

شكل 2.18: ہيجان انگيز پر قي روپ

برتی کچھے میں برتی دباو سے بیجان پیدا کیا جاتا ہے۔ بیجان شدہ کچھا میں گزرتے برتی رو i_{φ} کی بنا قالب میں مقناطیسی بہاو پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقھے رو i_{φ} کو میجارہے انگیز برقھے رو i_{φ} کا مقاطیسی بہاد پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقھے رو i_{φ} کا مقاطیسی بہاد پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقھے رو

مثال 2.8 میں بیجان انگیز برقی رو معلوم کی گئی جے شکل 2.17 میں دکھایا گیا۔ اسے حاصل کرتے وقت مقناطیسی چالے 61 کو نظر انداز کیا گیا۔ شکل 2.18 میں بیجان انگیز برقی رو $_{i_{\varphi}}$ دکھائی گئی ہے جو مقناطیسی چال کو مدِ نظر رکھ کر حاصل کی گئی ہے۔ اس کو سبجھنا ضروری ہے۔

شکل 2.18-الف میں مقناطیسی چال کا دائرہ و کھایا گیا ہے۔درج ذیل تعلقات کی بنا مقناطیسی چال کے خط کو

 $\begin{array}{c} {\rm excitation~current^{60}} \\ {\rm hysteresis^{61}} \end{array}$

2.9. بيجبان شده لچھ

شکل 2.19: پچاس ہر ٹزیر 0.3 ملی میٹر موٹی پتری کے لئے در کار موثر وولٹ -امپیئر فی کلو گرام قالب

کا خط لکھا جا سکتا ہے۔ $arphi-i_{arphi}$

قالب میں سائن نما مقناطیسی بہاو φ کو شکل 2.18-ب میں دکھایا گیا ہے۔سائن نما مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے۔ لمحہ t_1 پر اس کی قیمت φ ہو گ۔مقناطیسی بہاو φ حاصل کرنے کے لئے درکار بیجان انگیز برقی رو i_1 شکل-الف سے حاصل کی جا سکتی ہے۔اسی بیجان انگیز برقی رو کو شکل-ب میں لمحہ i_1 پر دکھایا گیا ہے۔

دھیان رہے کہ لمحہ t_1 پر مقناطیسی بہاو بڑھ رہا ہے للذا مقناطیسی چال کے خط کا درست حصہ استعال کرنا ضروری ہوئے سے اوپر ہے۔ شکل 2.18-الف میں $\varphi - i_{\varphi}$ خط میں گھڑی کی سوئیوں کے مخالف رخ گھومتے ہوئے یوں نیچ سے اوپر جاتا ہوا حصہ استعال کیا گیا ہے۔ شکل 2.14-ب میں تیر کے نشان مقناطیسی بہاو بڑھنے (ینچے سے اوپر) اور گھنے (اوپر سے نیچے) والے حصوں کی نشانہ ہی کرتے ہیں۔

لمحہ t_2 پر مقناطیسی بہاو گھٹ رہا ہے۔اس لمحہ پر مقناطیسی بہاو φ_2 ہے اور اسے حاصل کرنے کے لئے درکار بیجان انگیز برقی رو i_2 ہے۔

اسی طرح مختلف کمحات پر درکار ہیجان انگیز برتی رو حاصل کرنے سے شکل 2.18-ب کا i_{arphi} خط ملتا ہے جو غیر سائن نما ہے۔

ا___2, مقت طبيسي ادوار

 $e=N\frac{\mathrm{d}\varphi}{\mathrm{d}t}=N\phi_0\omega\cos\omega t$ وباو کو $\varphi=\phi_0\sin\omega t$ ہو گا۔ شکل $\varphi=\phi_0\sin\omega t$ ہو گا۔ شکل جانتے ہیں کہ برقی دباو سے مقاطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقاطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ ہے۔

 $H_{c,rms}$ قالب میں $B=B_0\sin\omega t$ کی صورت میں B اور i_{arphi} فیر سائن نما ہوں گے جن کی موثر قیتوں

$$(2.57) Ni_{\varphi,rms} = l_c H_{c,rms}$$

مساوات 2.52 اور مساوات 2.57 سے درج ذیل حاصل ہو گا

$$(2.58) E_{rms}i_{\varphi,rms} = \sqrt{2\pi}fB_0H_{c,rms}A_cl_c$$

جہاں $A_c l_c$ قالب کا مجم ہے۔ یوں $A_c l_c$ مجم کے قالب کو B_0 کثافت مقناطیسی بہاو تک بیجان کرنے کے لئے درکار $A_c l_c$ میاوات $A_c l_c$ دے گی۔ ایک مقناطیسی قالب جس کا مجم $A_c l_c$ اور میکانی کثافت $A_c l_c$ ہو، کی کمیت $E_{rms} i_{\varphi,rms}$ ہو گی لہٰذا ایک کلو گرام قالب کے لئے مساوات $A_c l_c$ کو درج ذیل روپ میں کھا جا سکتا ہے۔ $m_c = \rho_c A_c l_c$

$$(2.59) P_a = \frac{E_{rms}i_{\varphi,rms}}{m_c} = \frac{\sqrt{2\pi}f}{\rho_c}B_0H_{c,rms}$$

 $H_{c,rms}$ ویکھا جائے تو کسی ایک تعدد f پر P_a کی قیمت صرف قالب اور اس میں B_0 یعنی چوٹی B_0 پیدا کرنے کے خود B_0 پیدا کرنے کے خود B_0 پیدا کرنے کے قالب میں مختلف چوٹی B_0 پیدا کرنے کے لئے درکار B_0 کی B_0 کی B_0 کی B_0 کی جائے الی کے درکار B_0 کی میٹر موٹی پتری کے لئے الیک ترسیم شکل B_0 میں دکھایا گیا ہے۔

باب3

ٹرانسفار مر

ٹرانسفار مر وہ آلہ ہے جو برلتا برقی دباو کو تبدیل کرتا ہے۔ یہ دویا دوسے زیادہ کچھوں پر مشتمل ہوتا ہے جو مقناطیسی قالب اپر لیلئے ہوتے ہیں۔ یہ کچھے عموماً آپس میں جڑے ہوئے نہیں ہوتے۔ شکل 3.1-الف میں ٹرانسفار مرکی علامت د کھائی گئی ہے۔ دو کچھوں کے در میان متوازی کلیریں مقناطیسی قالب کو ظاہر کرتی ہیں۔

دستیاب برقی د باو² پر ٹرانسفار مر کے ایک کچھے کو برقی طاقت فراہم کی جاتی ہے اور باقی کچھوں سے مختلف برقی د باو پر یہی برقی طاقت حاصل کی جاتی ہے۔ جس کچھے پر برقی د باو لا گو کیا جائے اسے ابتدائیے کچھا³ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو ابتدائی جانب⁴ کہتے ہیں۔اس طرح جس کچھے (کچھوں) سے برقی طاقت حاصل کی جاتی ہے اسے (انہیں) اگونوںے کچھا³ (کچھے) کہتے ہیں اور اس جانب کو اگونوںے جانب⁶ کہتے ہیں۔اییا شکل 3.1-ب میں دکھایا گیا ہے۔ٹرانسفار مرکی علامت میں ابتدائی جانب کو ہائیں طرف اور ٹانوی جانب کو دائیں طرف دکھایا جاتا ہے۔

بڑے ٹرانسفار مر عموماً صرف دو کچھوں پر مشمل ہوتے ہیں۔اس کتاب میں مقناطیسی قالب پر لیٹے ہوئے دو کچھوں کے قوی ٹرانسفار مر پر تبصرہ کیا جائے گا۔

magnetic core¹

² بدلتا برقی دیاو کی علامت میں مثبت اور منفی نشان وقت صفر پر برقی دیاو کی مثبت اور منفی سرے ظاہر کرتے ہیں۔

primary coil³

primary side⁴

secondary coil⁵

secondary side⁶

56 باب. 3. ٹرانسفار مسم

شكل 3.1: ٹرانسفار مركى علامت۔

ٹرانسفار مرکے کم برقی دباو کے کچھے کو کم برقی دباو کا کچھا⁷ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو کم برقی دباو والی جانب کہتے ہیں جبکہ ٹرانسفار مرکے زیادہ برقی دباو کے کچھے کو زیادہ برقی دباو کا کچھا⁸ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو زیادہ برقی دباو والی جانب کہتے ہیں۔

یوں اگر ٹرانسفار مرکے کم برقی دباو جانب برقی دباو لا گو کیا جائے اور زیادہ برقی دباو جانب سے برقی دباو حاصل کیا جائے تو ٹرانسفار مرکی کم برقی دباو جانب کو ابتدائی جانب کہیں گے اور اس کی زیادہ برقی دباو جانب کو ثانوی جانب کہیں گے۔ کہیں گے۔

3.1 ٹرانسفار مرکی اہمیت

برلتے رو کی برقی طاقت ایک مقام سے دوسرے مقام با آسانی اور نہایت کم برقی طاقت کی ضیاع سے منتقل کی جا سکتی ہے۔ یہی اس کی مقبولیت کا راز ہے۔ ٹرانسفار مر کے تبادلہ برقی دباو⁹ کی خصوصیت ایسا کرنے میں کلیدی کردہر ادا کرتی ہے جسے درج ذیل مثال کی مدد سے سمجھتے ہیں۔

مثال 3.1: شکل 3.2 سے رجوع کریں۔ برتی دباو اور برتی روکی حاصل ضرب برتی طاقت ہوتی ہے:

 $p = v_1 i_1 = v_2 i_2$

تصور کریں کہ تربیلا ڈیم سے 500 MW برقی طاقت لاہور 10 شہر کے گھریلو صارفین کو 220 وولٹ پر مہیا کرنی

low voltage coil⁷ high voltage coil⁸

voltage transformation property⁹

10 صْلْع صوابي ميں بھی لاہورا یک تحصیل ہے لیکن اس شہر کواتنی طاقت نہیں در کار

3.1. ٹرانسفار مسر کی اہمیت

شكل 3.2: برقى طاقت كى منتقلى ـ

ہے۔اگر ہم اس طاقت کو 220 وولٹ پر ہی منتقل کرنا چاہیں تب برقی رو

$$i = \frac{p}{v} = \frac{500\,000\,000}{220} = 2\,272\,727\,\mathrm{A}$$

ہو گی۔ برقی تار میں کثافتِ برقی رو J_{au} تقریباً 5 ایمپیئر فی مربع ملی میٹر $\frac{A}{mm^2}$ کی مربع ملی میٹر $J_{au}=5$ ممکن ہوتی ہے۔ یہ ایک محفوظ کثافتِ برقی رو ہے۔ اگر برقی تار میں اس سے زیادہ برقی رو گزاری جائے تو اس کی مزاحمت میں برقی طاقت کے ضیاع سے یہ گرم ہو کر پھول سکتی ہے۔ اس طرح صفحہ 12 پر مساوات 1.23 سے برقی تار کا رقبہ عمودی تراش

$$A = \frac{i}{J_{au}} = \frac{2272727}{5} = 454545 \,\text{mm}^2$$

ہو گا۔ گول تار تصور کریں تو اس کا رداس درج ذیل ہو گا۔

$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{454545}{\pi}} = 380 \,\mathrm{mm} = 0.38 \,\mathrm{m}$$

ا تنی موٹی برقی تار کہیں نہیں پائی جاتی ہے 11 اگر یہ تار الموٹیم کی بنی ہو جس کی کثافت $\frac{\mathrm{kg}}{\mathrm{m}^3}$ ہوتی ہے تب ایک میٹر کمبی تار کی کمیت

$$m=2700\times\pi\times0.38^2\times1=1224\,\mathrm{kg}$$

یعنی 1.2 ٹن ہو گی۔المو ٹیم اتنی مہنگی ہے کہ اس صورت میں اتنی برقی طاقت کو لاہور پہنچانا ممکن نہیں ہو گا¹²۔

¹¹آپ مانیں بانی مانیں، آپ نے بھی اتنی موٹی بر قی تاریجھی نہیں دیکھی ہوگی۔ 1¹آج کل لاہور میں بکلی کی معطلی اس وجہ سے نہیں ہے۔

58 باب 3. ٹرانسفار مسر

آئیں اب ٹرانسفار مر استعال کر کے دیکھتے ہیں۔ ڈیم پر ایک ٹرانسفار مر نسب کر کے برقی دباو کو بڑھا کر 000 132 وولٹ یعنی 132 کلو وولٹ کیا جاتا ہے۔ یوں برقی رو درج ذیل ہو گا

$$i = \frac{p}{v} = \frac{500\,000\,000}{132\,000} = 3788\,\mathrm{A}$$

جس کے لئے درکار برقی تار

$$A = \frac{i}{J_{au}} = \frac{3788}{5} = 758 \,\text{mm}^2$$
$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{1667}{\pi}} = 15.5 \,\text{mm}$$

صرف 15.5 ملی میٹر رداس کی ہو گی۔

اس مثال میں اگر تربیلا ڈیم میں نسب جزیٹر 11000 وولٹ برقی دباو پیدا کر رہا ہو تو تربیلا ڈیم پر نسب ٹرانسفار مر برقی دباو کو 11000 وولٹ سے بڑھا کر 132 کلو وولٹ کرے گا جبکہ لاہور شہر میں نسب ٹرانسفار مر 132 کلو وولٹ کو واپس 11000 وولٹ کرے گا۔

اسی مثال کو بڑھاتے ہیں۔ شہر میں 220 دولٹ کی بجائے 11000 دولٹ صارف کے قریب پہنچا کر محلہ میں نسب ٹرانسفار مر کی مدد سے 11000 دولٹ کو مزید گھٹا کر 220 دولٹ کیا جائے گا جو صارف کو فراہم کیے جائیں گے۔

شکل 3.2 میں ڈیم سے شہر تک کا نظام دکھایا گیا ہے جہاں ڈیم پر نسب ٹرانسفار مر کو برقی دباو بڑھا ٹرانسفار مر¹³ اور لاہور میں نسب ٹرانسفار مر کو برقی دباو گھٹا ٹرانسفار مر¹⁴ کہا گیا ہے۔

برتی طاقت عموماً 11 کلو وولٹ اور 25 کلو وولٹ کے مابین پیدا کی جاتی ہے۔اس کی منتقلی 110 کلو وولٹ اور 1000 کلو وولٹ سے کم پر کیا جاتا ہے۔ 1000 کلو وولٹ کے چیج کی جاتی ہے جبکہ اس کا استعال 1000 وولٹ سے کم پر کیا جاتا ہے۔

step up $transformer^{13}$ step down $transformer^{14}$

3.2. ٹرانسفار مسرکے اتب م

3.2 ٹرانسفار مرکے اقسام

گھروں اور کارخانوں کو برقی طاقت فراہم کرنے والے ٹرانسفار مر مقناطیسی قالب پر کپیٹے جاتے ہیں۔ یہ عموماً تیریخ دوری 15 ہوتے ہیں جنہیں لوہے کے قالب والے تیریخ مرملہ قوبی ٹرانسفار م¹⁶ کہتے ہیں۔

نہایت جھوٹے ٹرانسفار مر عموماً لوہے کے قالب پر بنائے جاتے ہیں اور یکے دوری 17 ہوتے ہیں۔یہ گھر ملو استعال کے برقی مثین، مثلاً موبائل چار جر، وغیرہ میں نب ہوتے ہیں اور 220 وولٹ سے برقی دباو مزید گھٹاتے ہیں۔

برقی دباوکی پیائش کے لئے مستعمل ٹرانسفار مر، جو دباو کے ٹرانسفارم ¹⁸ کہلاتے ہیں، کے ثانوی اور ابتدائی برقی دباو کی تناسب پر خاص توجہ دی جاتی ہے۔اسی طرح برقی روکی پیائش کے لئے مستعمل ٹرانسفار مر، جو روکے ٹرانسفارم ¹⁹ کہلاتے ہیں، کے ثانوی اور ابتدائی روکی تناسب پر خاص توجہ دی جاتی ہے۔ ویسے تو ہر ٹرانسفار مرکسی تناسب سے برقی دباویا برقی روکم یا زیادہ کرتا ہے لیکن جیسا پہلے ذکر کیا گیا، ان دو اقسام کے ٹرانسفار مروں میں کم اور زیادہ کرنے کی تناسب پر خاص توجہ دی جاتی ہے۔ان دو اقسام کے ٹرانسفار مروں کی برقی سکت²⁰ نہایت کم ²¹ ہوتی ہے۔

ٹرانسفار مر کے کچھوں کے مابین مشتر کہ مقناطیسی بہاو خلاء کے ذریعہ بھی ممکن ہے۔انہیں ظلائمے قالب ٹرانسفار مروں کہتے ہیں۔ ایسے ٹرانسفار مر ذرائع ابلاغ ²³ کے ادوار، لیعنی ریڈیو، ٹی وی وغیرہ میں پائے جاتے ہیں۔ان ٹرانسفار مروں کی علامت شکل 3.3 میں دکھائی گئی ہے جس میں قالب ظاہر کرنے والی متوازی کلیریں نہیں پائی جاتی ہیں۔

3.3 امالى برتى دباو

اس جھے کا بنیادی مقصد بیرونی برقی دباو v اور اندرونی امالی برقی دباو e میں فرق واضح کرنا اور ان سے متعلق سمنیکی اصطلاحات کا تعارف ہے۔

three $phase^{15}$

iron core, three phase power $transformer^{16}$

single phase¹⁷

 $potential\ transformer^{18}$

current transformer 19

electrical rating 20

²¹ پير عموماً تقريباً پچيس وولٺ -ايمپيئر سکت رکھتے ہيں۔

air core transformer²²

 $communication\ transformer^{23}$

60 باب. 3. ٹرانسفار مسم

شکل 3.4 میں بے بو جھ 24 ٹرانسفار مر دکھایا گیا ہے، یعنی اس کا ثانوی کچھا کھلے دور رکھا گیا ہے۔ ابتدائی کچھے کی مزاحمت R_1 ہے جس کو بیرونی جزو دکھایا گیا ہے۔ابتدائی کچھے پر v_1 برقی دباو لا گو کرنے سے ابتدائی کچھے میں بیجان انگیز برقی رو سے پیدا مقناطیسی دباو N_1i_{φ} قالب میں مقناطیسی بہاو φ پیدا کے گا۔ یہ بداتا مقناطیسی بہاو ابتدائی کچھے میں امالی برقی دباو e_1 پیدا کرتا ہے جسے درج ذیل مساوات پیش کرتی ہے۔

(3.1)
$$e_1 = \frac{\mathrm{d}\lambda}{\mathrm{d}t} = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

اس مساوات میں

- λ ابتدائی کیجے کی مقناطیسی بہاو کے ساتھ ارتباط بہاو ہے،
- φ مقناطیسی قالب میں مقناطیسی بہاو جو دونوں کیھوں میں سے گزرتی ہے،
 - ابتدائی کھھے کے چکر ہیں۔ N_1

ابتدائی کچھے کی مزاحمت R_1 صفر نہ ہونے کی صورت میں کرخوف کے قانون برائے برقی دباو کے تحت درج ذیل ہو گا۔

$$(3.2) v_1 = i_{\varphi} R_1 + e_1$$

 $\begin{array}{c} unloaded^{24} \\ excitation \ current^{25} \end{array}$

شکل 3.4 میں اس مزاحت کو بطور بیرونی جزو، ٹرانسفار مر کے باہر، دکھایا گیا ہے۔اس کچھے کی رستا متعاملہ بھی ہو گی جے نظرانداز کیا گیا ہے۔ عموماً طاقت کے ٹرانسفار مروں اور موٹروں میں $i_{\varphi}R_1$ کی قیمتوں سے بہت کم ہوتی ہے لہذا اسے نظرانداز کیا جا سکتا ہے۔ ایسا کرتے ہوئے درج ذیل لکھا جا سکتا ہے۔

$$(3.3) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

مساوات 3.2 سے ثابت ہوتا ہے کہ بیرونی لاگو برقی دباو v_1 اور اندرونی امالی برقی دباو e_1 دو علیحدہ برقی دباو ہیں۔ یہ بات سمجھ لینا بہت ضروری ہے۔ مساوات 3.3 کے تحت v_1 اور e_1 کی مطلق قیمتیں (تقریباً) ایک دوسرے کے برابر ہوتی ہیں v_1

لچھا ہیجارے ²⁷ کرنے سے مراد اس پر بیرونی برتی دباو لا گو کرنا ہے جبکہ کچھ پر لا گو بیرونی برتی دباو کو ہیجارے انگیز برتھے دباو²⁸ کہتے ہیں۔کچھے کو ہیجارے شدہ کچھا²⁹ جبکہ اس میں رواں برتی رو کو ہیجارے انگیزبرتھے رو³⁰ کہتے ہیں۔

کچھے میں گزرتی مقناطیسی بہاو کی تبدیلی سے برقی دباو حاصل کیا جا سکتا ہے۔ ٹرانسفار مروں میں ساکن کچھا سے برقی دباو کا امالی برقی دباو ³¹ کہتے ہیں۔ برقی دباو کا حصول مقناطیسی میدان میں کچھے کی حرکت سے بھی ممکن ہے۔ ایسے برقی دباو کو محرکھے برقی دباو³² کہتے ہیں۔ یاد رہے ان برقی دباو میں کسی قشم کا فرق نہیں ہوتا۔ انہیں مختلف نام صرف بہچان کی خاطر دئے جاتے ہیں۔

3.4 ميجان انگيز برقى رواور قالبى ضياع

جہاں مقناطیسی قالب میں بدلتا مقناطیسی بہاو ثانوی لیھوں میں فائدہ مند برقی دباو پیدا کرتا ہے وہاں یہ مقناطیسی قالب میں نقصان دہ برقی دباو کو بھی جنم دیتا ہے جس سے مقناطیسی قالب میں بھورنما برقی رو³³ پیدا ہوتا ہے۔ بھنور نما برقی

²⁶ جس سے طلبہ کی ذبن میں بیر غلط منجی پیدا ہوتی ہے کہ بیدا یک ہی برتی دیاو کے دو مختلف نام ہیں۔ 27 ۔

 $[\]begin{array}{c} {\rm excitation\ voltage^{28}} \\ {\rm excited\ coil^{29}} \end{array}$

excitation current³⁰

induced voltage³¹

electromotive force, emf³² eddy currents³³

62 باب. 3. ٹرانسفار مسم

شکل 5. 3: قالبی پتری کے اشکال اور ان کو تہہ در تہہ رکھنے کاطریقہ۔

رو مقناطیسی قالب میں برقی طاقت کے ضیاع کا سبب بنتا ہے جے بھور نما برقی رو کا ضیاع 36 یا مخضراً قالبی ضیاع 35 کہتے ہیں۔ قالبی ضیاع کو کم سے کم کرنے کے لئے مقناطیسی قالب کو باریک لوہے کی پیزیان 36 تہہ در تہہ رکھ کر بنایا جاتا ہے۔ان پتریوں پر غیر موصل روغن 37 کی تہہ لگائی جاتی ہے تا کہ بھنور نما برتی روکو روکا جا سکے۔آپ ویکھیں گے کہ برتی مشین کا قالب عموماً اسی طرح بنایا جاتا ہے۔شکل 2.15 اور جدول 2.1 میں 3048 میں میٹر موٹی کا کہ برتی موٹ کا 37 کے مواد دیا گیا ہے۔

شکل 3.5-الف میں قالبی پتر یوں کے دو اشکال دکھائے گئے ہیں۔ان کی صورت کی وجہ سے انہیں ایک اور اور علی علی علی بی بتر یوں اور تین پتر یوں اور تین پتر یوں کو دو طرح آپس میں رکھا گیا ہے۔ان دو طریقوں سے انہیں تہہ در تہہ رکھا جاتا ہے۔الذا اگر پہلی تہہ میں ایک دائیں جانب اور تین بائیں جانب رکھا جائے تو اس کے اوپر دوسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جانب رکھا جائے گا۔ تیسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جوڑ کر شکل 3.5۔پ میں دکھایا گیا قالب حاصل دائیں اور تین کو بائیں جانب رکھا جائے گا، وغیرہ۔اسی طرح انہیں جوڑ کر شکل 3.5۔پ میں دکھایا گیا قالب حاصل کیا جاتا ہے۔

ہیجان انگیز برقی رو بے بوجھ اور بوجھ بردار ٹرانسفار مر میں یکسال ہوتا ہے ۔جیسا کہ پہلے بھی ذکر کیا گیا ہے، قوی ٹرانسفار مر اور موٹرول میں برقی دباو اور مقناطیسی بہاو سائن نما ہوتے ہیں جبکہ ان میں بیجان انگیز برقی رو غیر سائن نما ہوتا ہے۔ بول اگر

(3.4)
$$\varphi = \phi_0 \sin \omega t = \phi_0 \cos (\omega t - 90^\circ)$$
$$\hat{\varphi} = \phi_0 / -90^\circ$$

eddy current loss³⁴

core loss³⁵

 $laminations^{36} \\$

 $enamel^{37}$

 $[\]mathrm{E.I}^{38}$

شکل3.6: مختلف دوری سمتیوں کے زاویے۔

ہو تب

(3.5)
$$e_1 = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \omega N_1 \phi_0 \cos \omega t$$

$$\hat{E_1} = \omega N_1 \phi_0 / 0$$

 π^{0} ہو π^{0} گا۔ یہاں π^{0} مقناطیسی بہاو کے حیطہ کو ظاہر کرتی ہے اور π^{0} ناویائی تعداد ارتعاش لیعنی π^{0} کو ظاہر کرتی ہے π^{0} ہوں π^{0} تعداد ارتعاش ہے جسے ہرٹر π^{0} ہیں نایا جاتا ہے۔ جیسا شکل π^{0} ہیں دکھایا گیا ہے π^{0} اور π^{0} کا زاوبیہ ہو گا۔ π^{0} ہوگ موثر قیت π^{0}

(3.6)
$$E_{rms} = \frac{\omega N_1 \phi_0}{\sqrt{2}} = 4.44 f N_1 \phi_0$$

ہے جس سے درج ذیل لکھا جا سکتا ہے۔

(3.7)
$$\phi_0 = \frac{E_{rms}}{4.44f N_1 \phi_0}$$

یہاں رکھ کر دوبارہ نظر ثانی کرتے ہیں۔ اگر ایک کچھ پر E_{rms} موثر برتی دباو لاگو کیا جائے تو یہ کچھا اتنا ہجان انگیز برتی رو i_{arphi} گزرنے دیتا ہے جس سے نمودار ہونے والا مقناطیسی بہاو مساوات 3.7 میں دیے گئے مقناطیسی بہاو ϕ_0 کے برابر ہو۔ یہ حقیقت نہ صرف ٹرانسفار مر بلکہ کسی بھی مقناطیسی دور کے لئے درست اور لازم ہے۔

نیر سائن نما ہیجان انگیز برقی رو i_{φ} کو فوریئر تسلسل 40 سے درج ذیل لکھا جا سکتا ہے۔ $i_{\varphi} = \sum_{n} \left(a_{n} \cos n\omega t + b_{n} \sin n\omega t \right)$ (3.8)

³⁹ن مساوات میں اور اس کے بعد پور کی کتاب میں امالی برقی دباو کے ساتھ منفی علامت نہیں لگائی گئی ہے۔ Fourier series ⁴⁰

اس تسلسل میں $(a_1\cos\omega t + b_1\sin\omega t)$ کو بنیادی جزو $(a_1\cos\omega t + b_1\sin\omega t)$ کے بیادی جزو میں آنے والے امالی برقی دباو، $(a_1\cos\omega t + b_1\sin\omega t)$ کے ہم قدم ہے اور میں آنے والے امالی برقی دباو، $(a_1\cos\omega t + b_1\sin\omega t)$ کے ہم قدم ہے اور دونوں ایک ساتھ بڑھے اور گھٹے ہیں جبہ $(a_1\cos\omega t + b_1\sin\omega t)$ کے لخاظ سے $(a_1\cos\omega t + b_1\sin\omega t)$ کے خاط ہے۔ قالب میں مختلف وجوہات کی بنا برقی طاقت کی ضائع، کو $(a_1\cos\omega t + b_1\sin\omega t)$ خاص بنانے والا برقی رو یا مقناطیسی برقی رو $(a_1\cos\omega t + b_1\sin\omega t)$ منفی کر کے مقناطیس بنانے والا برقی رو یا مقناطیسی برقی رو $(a_1\cos\omega t + b_1\cos\omega t)$ میں تیبرا موسیقائی جزو عموماً کل ہوگان انگیز برقی رو کا 40 فی صد ہوتا ہے۔

ماسوائے جب بیجان انگیز برقی رو کے اثرات پر غور کیا جا رہا ہو، ہم بیجان انگیز برقی رو کے غیر سائن نما ہونے کو نظرانداز کرتے ہیں۔ قوی ٹرانسفار مرکا بیجان انگیز برقی رو اس کے کل برقی رو 45 کا تقریباً 5 فی صد ہوتا ہے للذا اس کا اثر بہت کم ہوتا ہے۔ یوں ہم بیجان انگیز برقی رو کو سائن نما تصور کر کے اس کے اثرات پر غور کرتے ہیں۔ ایسا کرنے سے مسئلہ پر غور کر نا آسان ہو جاتا ہے۔ اس فرضی سائن نما بیجان انگیز برقی رو 46 کی موثر قیمت کے برابر رکھی جاتی ہے جبکہ اس کا زاویہ 6 یوں رکھا جاتا ہے کہ اس سے ماصل برقی ضیاع اصل برتی ضیاع کے برابر ہو۔ شکل 6 کی مدد سے بیہ بات سمجھنی زیادہ آسان ہے۔ قالبی ضیاع مورت میں 6 کی قیمت یوں منتخب کی جائے گی کہ درج ذیل مساوات درست ہو۔

 $(3.9) p_c = E_{rms} I_{\varphi,rms} \cos \theta_c$

رباو \hat{I}_{arphi} د باو \hat{E}_{1} سے \hat{I}_{arphi} تاخیر کی ہو گا۔

3.5 تبادله برقی د باواور تبادله برقی روکے خواص

 N_2 ہم شکل N_1 کی مدد سے ٹرانسفار مر کا مطالعہ کرتے ہیں۔ ہم فرض کرتے ہیں کہ ابتدائی لچھا N_1 اور ثانوی لچھا و N_2 چیکر کا ہے اور دونوں لچھوں کی مزاحمتیں صفر ہیں۔ ہم مزید فرض کرتے ہیں کہ یورا مقناطیسی بہاو قالب ہیں رہتا اور

fundamental component⁴¹

harmonic components⁴²

core loss component⁴³

magnetizing current⁴⁴

⁴⁵کل بر تی روے مرادوہ بر تی روہ جو کل بر تی پو جھ لادنے سے حاصل ہوتا ہے۔ ⁴⁶ یعنی بدلتا بر تی رو_ن ہی کواپ دوری سمتہ کی ہد دسے <u>، آ</u>کھتے ہیں

شكل 3.7: كامل بوجھ بردارٹرانسفار مر۔

دونوں کچھوں سے گزرتا ہے، قالب میں برقی توانائی ضائع نہیں ہوتی اور قالب کا مقناطیسی مستقل اتنا بڑا ہے کہ بیجان انگیز برقی رو قابل نظر انداز ہے۔ برقی رو i_1 اور i_2 کے رخ یوں رکھے گئے ہیں کہ ان سے پیدا مقناطیسی بہاو ایک دوسرے کے مخالف رخ ہیں۔ اصل ٹرانسفار مر ان باتوں پر تقریباً پورا اترتا ہے۔ ایسے ٹرانسفار مر کو کامل ٹرانسفار مر t_1 کہتے ہیں۔

کامل ٹرانسفار مر کے ابتدائی کچھے پر بدلتا برتی دباو v_1 لا گو کرنے سے قالب میں بدلتا مقناطیسی بہاو φ_m پیدا ہو گا جو ابتدائی کچھے میں ، لا گو برتی دباو v_1 براب، امالی برتی دباو v_1 پیدا کرتا ہے۔

$$(3.10) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

یمی مقناطیسی بہاو دوسرے کیجے سے بھی گزرے گا اور اس میں e_2 امالی برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو v_2 صورت میں نمودار ہو گا۔

$$(3.11) v_2 = e_2 = N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

مساوات 3.10 کو مساوات 3.11 سے تقیم کرتے ہوئے درج ذیل رشتہ حاصل ہوتا ہے

$$\frac{v_1}{v_2} = \frac{N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}}{N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}} = \frac{N_1}{N_2}$$

جس کے تحت کامل ٹرانسفار مر دونوں لیجھوں کے چکروں کی نسبت سے تبادلہ برقی دباو⁴⁸ کرتا ہے۔

کامل ٹرانسفار مر میں طاقت کا ضیاع نہیں ہوتا ہے لہذا اس کو ابتدائی جانب جنتی برقی طاقت فراہم کی جائے وہ اتنی برقی طاقت ثانوی جانب دے گا:

$$(3.13) p = v_1 i_1 = v_2 i_2$$

 $[\]begin{array}{c} ideal\ transformer^{47}\\ voltage\ transformation^{48} \end{array}$

درج بالا مساوات سے

$$\frac{v_1}{v_2} = \frac{i_2}{i_1}$$

کھا جا سکتا ہے جس کو مساوات 3.12 کے ساتھ ملا کر درج ذیل حاصل ہوتا ہے۔

$$\frac{v_1}{v_2} = \frac{i_2}{i_1} = \frac{N_1}{N_2}$$

مساوات 3.15 ٹرانسفار مر کی تبادلہ برقی دباو اور تبادلہ برقی رو⁴⁹ کی خاصیت پیش کرتی ہے جسے عموماً دو حصوں میں پیوں لکھا جاتا ہے:

$$(3.16)$$
 $rac{v_1}{v_2}=rac{N_1}{N_2}$ تبادلہ برتی دیاہ $rac{i_1}{i_2}=rac{N_2}{N_1}$ تبادلہ برتی رو

اس مساوات کا پہلی جزو کہتا ہے کہ ٹرانسفار مرکی دونوں جانب برقی دباو دونوں اطراف چکروں کا راست متناسب ہو گا جبکہ مساوات کا دوسری جزو کہتا ہے کہ ٹرانسفار مرکے دونوں اطراف برقی رو چکروں کا بالعکس متناسب ہو گا۔

مثال 3.2: شکل 3.7 میں درج ذیل لیتے ہوئے ٹرانسفار مرکی دونوں جانب برقی دباو اور برقی رو معلوم کریں۔

$$\hat{V}_1 = 220/0$$
 $N_1 : N_2 = 220 : 22$
 $Z = R = 10 \Omega$

حل: اہتدائی جانب برقی دباو 220 وولٹ دیا گیا ہے۔ ہم ثانوی جانب برقی دباو کو مساوات 3.16 کے پہلی جزو کی مدد سے حاصل کرتے ہیں۔

$$\hat{V}_2 = \frac{N_2}{N_1} \hat{V}_1 = \frac{22}{220} \times 220 / 0 = 22 / 0$$

ثانوی دباو 22 وولٹ ہے جو ابتدائی دباو کے ہم قدم ہے۔ ثانوی برقی دباو 10 اوہم کی مزاحمت میں برقی رو پیدا کرے گا جے اوہم کے قانون سے حاصل کرتے ہیں:

$$\hat{I}_2 = \frac{22/0}{10} = 2.2/0$$

 $current\ transformation^{49}$

ثانوی رو 2.2 ایمپیئر ہے۔ ابتدائی رو مساوات 3.16 کے دوسری جزو سے حاصل کرتے ہیں۔

$$\hat{I}_1 = \frac{N_2}{N_1} \hat{I}_2 = \frac{22}{220} \times 2.2 / 0 = 0.22 / 0$$

اس مثال کے نتائج ایک جگہ لکھ کر ان پر غور کرتے ہیں۔

$$\hat{V}_1 = 220/0$$
, $\hat{V}_2 = 22/0$, $\hat{I}_1 = 0.22/0$, $\hat{I}_2 = 2.2/0$

ابتدائی دباو ثانوی دباو کے دس گنا ہے جبکہ برقی رو میں قصہ الٹ ہے۔ ثانوی رو ابتدائی رو کے دس گنا ہے۔ طاقت دونوں اطراف برابر ہے۔ یہاں رک کر اس بات کو اچھی طرح سمجھ لیں کہ جس جانب برقی دباو زیادہ ہوتا ہے اس جانب برقی رو کم ہو گا۔ یوں زیادہ دباو لچھا کے چکر زیادہ ہوں گے اور اس لچھے میں نسبتاً باریک برقی تار استعال ہو گی جبکہ کم دباو لچھا کم چکر کا ہو گا اور اس میں نسبتاً موٹی برقی تار استعال ہو گی۔ موٹی تار زیادہ رو گزارنے کی سکت رکھتی ہے۔

مثال 3.3: صفحہ 72 پر شکل 3.10-الف میں رکاوٹ Z_2 کو بدلتے برقی دباو \hat{V}_1 کے ساتھ ایک ٹرانسفار مرکے ذریعہ جوڑا گیا ہے۔درج ذیل معلومات کی روشنی میں رکاوٹ میں برقی رو اور طاقت کا ضیاع دریافت کریں۔

$$\hat{V}_1 = 110 / 0, \quad Z_2 = R + jX = 3 + j2, \quad N_1 : N_2 = 220 : 22$$

حل: ٹرانسفار مرکی تبادلہ برقی دباوکی خاصیت کے تحت ابتدائی 110 وولٹ دباو ٹانوی جانب درج ذیل دباو \hat{V}_s دے گا۔

$$\hat{V_s} = \frac{N_2}{N_1} \hat{V_1} = \frac{22}{220} \times 110 / 0 = 11 / 0$$

یوں ثانوی رو

$$\hat{I}_2 = \frac{\hat{V}_s}{Z} = \frac{11\underline{/0}}{3+i2} = 3.05\underline{/-33.69}^{\circ}$$

اور رکاوٹ میں برقی طاقت کا ضیاع p_z درج ذیل ہو گا۔

$$p_z = I_2^2 R = 3.05^2 \times 3 = 27.9 \,\mathrm{W}$$

3.6 ثانوى جانب بوجھ كاابتدائي جانب اثر

شکل 3.8 میں ابتدائی کچھے کی تارکی مزاحمت کو R سے ظاہر کیا گیا ہے جبکہ ثانوی جانب بوجھ Z ہے۔ فرض کریں ہم Z آتار کر ٹرانسفار مر کے ثانوی سرے کھلے دور کرتے ہیں۔ بے بوجھ ٹرانسفار مرکی ابتدائی جانب بدلتا برقی دباو v_1 قالب میں گھڑی کے رخ بیق دباو v_1 قالب میں گھڑی کے رخ مقاطیسی دباو v_2 پیدا کرے گا۔ بہاو v_3 ابتدائی کچھے میں v_4 امالی برقی دباو پیدا کرتا ہے۔

$$(3.17) e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

ابتدائی رو، فراہم کردہ دباو اور ابتدا امالی دباو کا تعلق قانون اہم سے لکھا جا سکتا ہے۔

$$(3.18) i_{\varphi} = \frac{v_1 - e_1}{R}$$

اب ہم ثانوی جانب برتی ہو جھ Z لادتے ہیں۔ ہو جھ بردار ٹرانسفار مر i_1 کے ثانوی جانب برتی رو i_2 رواں ہو گا جس کی وجہ سے N_2i_2 مقناطیسی دباو وجود میں آئے گا۔ یہ مقناطیسی دباو قالب میں گھڑی کے مخالف رخ مقناطیسی بہاو جہ یہاو جہ سے وہ سے ایندائی کے میں اور ابتدائی کھے میں امالی دباو گھٹ کر $\varphi_m - \varphi_0 = i_2$ اور ابتدائی کھے میں امالی دباو گھٹ کی وجہ سے ابتدائی رو بڑھے گا۔

آپ نے دیکھا کہ ثانوی جانب کا رو قالب میں مقناطیسی بہاو تبدیل کر کے ابتدائی کچھے کو بوچھ کے بارے میں خبر دار کرتا ہے۔

اگیاہے۔ φ_m کو یہاں φ_m کہا گیاہے۔ loaded transformer 51

$$(3.19) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

اب ٹرانسفار مر پر Z ہوجھ ڈالتے ہیں۔ اس ہوجھ کی بنا ثانوی کچھے میں i_2 رو پیدا ہو گا جو قالب پر گھڑی کے مخالف رخ مقناطیسی دباو N_2i_2 مسلط کر کے اس میں گھڑی کے مخالف رخ بہاو φ_2 پیدا کرے گا۔ اگر φ_2 مسلط کر کے اس میں گھڑی کے مخالف رخ بہاو ہو جائے گا اور ابتدائی کچھے میں امالی دباو گھٹ نہ کیا جائے تب قالب میں کل مقناطیسی بہاو گھٹ کر $\varphi_m - \varphi_2$ ہو جائے گا۔ مساوات v_1 کے تحت یہ ایک ناممکن صورت حال ہے چونکہ v_1 کو جم صورت v_1 کے برابر مونا ہو گا (یاد رہ ہ کی قیت جوں کی توں ہے)۔ لہذا φ_2 کے اثر کو ختم کرنے کے لئے ابتدائی کچھے میں برقی رو نامورار ہو گا جس سے پیدا مقناطیسی دباو v_1 مقناطیسی دباو v_1 مقناطیسی دباو صفر ہو گا۔ اور v_1 کا مجموعی مقناطیسی دباو صفر ہو گا۔

$$(3.20) N_1 i_1 - N_2 i_2 = 0$$

درج بالا مساوات میں دونوں دباو ایک دوسرے کے مخالف رخ ہیں للذا ان کا مجموعہ در حقیقت ان کے فرق کے برابر ہوگا۔ مقناطیسی دباو N_1i_1 اور N_2i_2 قالب میں ایک دوسرے کے مخالف رخ ہیں للذا یہ ایک دوسرے کے اثر کو مکمل طور پر ختم کرتے ہیں۔ یوں بے بوجھ اور بوجھ بردار ٹرانسفار مر دونوں میں مقناطیسی بہاو φ_m کے برابر ہوگا۔ مساوات 3.20 سے تنادلہ رو کا کلیہ اخذ کیا جا سکتا ہے:

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}$$

3.7 ٹرانسفار مرکی علامت پر نقطوں کا مطلب

شکل 3.9 میں جس لمحہ پر ابتدائی کچھے کا بالائی سر مثبت برقی دباو پر ہو، اس لمحہ پر ثانوی کچھے کا بالائی سر مثبت دباو پر ہے۔ اس حقیقت کو کچھوں پر نقطوں سے ظاہر کیا گیا ہے۔ یول نقطی سروں پر دباو ہم قدم ہوں گے۔

شكل 9. 3: ٹرانسفار مركى علامت ميں نقطوں كامفہوم۔

مزید ابتدائی کیچے کے نقطی سرسے مثبت برتی رو کیچے میں داخل جبکہ ثانوی کیچے کے نقطی سرسے مثبت برتی رو کیچے سے خارج ہو گی۔

3.8 ركاوك كاتبادله

اس حصہ میں کامل ٹرانسفار مر میں رکاوٹ کے تبادلہ پر غور کیا جائے گا۔ شکل 3.10-الف میں ایک ٹرانسفار مر دکھایا گیا ہے جس کی ابتدائی جانب سائن نما برقی دباو $V_1 = V_1 / \theta$ لاگو کیا گیا ہے۔ یہاں دوری سمتیہ استعمال کئے جائیں گے۔ ٹرانسفار مر پر نقطے ہم قدم سروں کی نشاندہی کرتے ہیں۔

جیسے اوپر ذکر ہوا، برقی دباو \hat{V}_1 اور \hat{V}_2 آپس میں ہم قدم ہیں اور اسی طرح برقی رو \hat{I}_1 اور \hat{I}_2 آپس میں ہم قدم ہیں۔ سیاوات 3.12 اور مساوات 3.21 کو دوری سمتیہ کی مدد سے لکھتے ہیں۔

$$(3.22) \qquad \hat{V_1} = \left(\frac{N_1}{N_2}\right) \hat{V_2}$$

$$\hat{I_1} = \left(\frac{N_2}{N_1}\right) \hat{I_2}$$

خارجی د باو، رو اور رکاوٹ کا تعلق قانون اہم سے لکھتے ہیں۔

$$(3.23) Z_2 = \frac{\hat{V_2}}{\hat{I_2}} = |Z_2| \underline{/\theta_z}$$

مساوات 3.22 سے درج ذیل لکھا جا سکتا ہے جہاں آخری قدم پر رکاوٹ کی قیمت پر کی گئی ہے۔

(3.24)
$$\frac{\hat{V_1}}{\hat{I_1}} = \left(\frac{N_1}{N_2}\right)^2 \frac{\hat{V_2}}{\hat{I_2}} = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

3.8 رکاوٹ کاتب دلہ

یوں داخلی رو درج ذیل ہو گا۔

$$\hat{I}_1 = \frac{\hat{V}_1}{(N_1/N_2)^2 Z_2}$$

 Z_2' کو فراہم کیا گیا ہے۔ \hat{V}_1 ورج ذیل قیت کے رکاوٹ Z_2' کو فراہم کیا گیا ہے۔

(3.26)
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

آپ تىلى كر كين كە اس دور مين تجى \hat{V}_1 كا برقى رو مساوات 3.25 دىتى ہے۔

ماوات 3.25 سے نبیت $\frac{\hat{V_1}}{\hat{I_1}}$ کھتے ہیں جو شکل 3.10-ب کے تحت Z_2' کے برابر ہے۔

(3.27)
$$\frac{\hat{V_1}}{\hat{I_1}} = Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

دونوں ادوار سے \hat{V}_1 کی طاقت درج ذیل حاصل ہوتی ہے۔

(3.28)
$$p = \hat{V_1} \cdot \hat{I_1} = \frac{V_1^2 \cos \theta_z}{\left(\frac{N_1}{N_2}\right)^2 |Z_2|}$$

یوں حساب کرنے کے نقطہ نظر سے ہم $\hat{V_1}$ کو مساوات 3.26 میں دی گئی قیمت کے رکاوٹ Z_2' پر لا گو کرتے ہوئے $\hat{V_1}$ کا برتی رو اور طاقت جان سکتے ہیں۔

 Z_2 منبع \hat{V}_1 کو شکل Z_2 -الف اور ب میں کوئی فرق نظر نہیں آتا ہے۔اس کے ساتھ ٹرانسفار مرکے ذریعہ جوڑنا یا بغیر ٹرانسفار مر Z_2 جوڑنا ایک برابر ہے۔ ٹرانسفار مر Z_2 کو یوں تبدیل کرتا ہے کہ \hat{V}_1 کو رکاوٹ Z_2' نظر آتا ہے۔ ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہے Z_2' کی خاصیت کہتے ہیں جس کو درج ذیل مساوات بیان کرتی ہے۔ ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہے Z_2'

(3.29)
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

ہم حماب کرنے کی خاطر رکاوٹ کوٹرانسفار مرکی ایک جانب سے دوسری جانب منتقل کر سکتے ہیں۔

شكل 3.11: برقى طاقت كى منتقلى ـ

3.8 رکاوٹ کاتب دلہ

شكل3.12: ٹرانسفار مرقدم باقدم حل كرنے كاطريقه۔

مثال 3.4: شکل 3.11-الف میں رکاوٹ Z_B کا برقی بوجھ ایک جزیٹر پر لدا ہے۔ بوجھ تک برقی طاقت دو برقی تاروں کے ذریعہ منتقل کیا گیا ہے۔ ان تاروں کا مجموعہ رکاوٹ Z_t ہے۔

شکل-ب میں جزیٹر کے قریب نسب برقی دباو بڑھانے والا ٹرانسفار مر برقی دباو کو دس گنا بڑھاتا ہے اور برقی بوجھ کے قریب نسب برقی دباو گھٹانے والا ٹرانسفار مر برقی دباو کو دس گنا گھٹاتا ہے۔دونوں ٹرانسفار مروں کے بچ تاروں کا مجموعہ رکاوٹ Z_t ہے جبکہ باقی مستعمل تاروں کی رکاوٹ قابل نظر انداز ہے۔دونوں اشکال میں

$$Z_B = 2 + j4$$
, $Z_t = 0.1 + j0.15$, $\hat{V} = 415/0$

لیتے ہوئے

- برقی بوجھ پر برقی دباو معلوم کریں،
- برقی تارول میں برقی طاقت کا ضیاع معلوم کریں۔

impedance transformation 52

حل الف:

$$\begin{split} \hat{I}_t &= \frac{\hat{V}}{Z_t + Z_B} = \frac{415/0}{0.1 + j0.15 + 2 + j4} \\ &= \frac{415/0}{2.1 + j4.15} = 89.23 / -63.159^{\circ} \\ &= 40.3 - j79.6 \end{split}$$

يوں رکاوٹ پر برقی د باو

$$\hat{V}_B = \hat{I}_B Z_B = (40.3 - j79.6) (2 + j4)$$

= 399 + j2 = 399/0.287°

اور برقی تاروں میں برقی طاقت کا ضیاع درج ذیل ہو گا۔

$$p_t = I_t^2 R_t = 89.23^2 \times 0.1 = 796 \,\mathrm{W}$$

حل ب: شکل 3.11 اور شکل 3.12 سے رجوع کریں۔ شکل 3.11 میں ٹرانسفار مر T_2 گانوی رکاوٹ کو مساوات 3.26 کی مدد سے ابتدائی جانب منتقل کرتے ہیں۔

$$Z_B' = \left(\frac{N_3}{N_4}\right)^2 Z_B = \left(\frac{10}{1}\right)^2 (2+j4) = 200 + j400$$

یوں شکل 3.12-الف حاصل ہوتا ہے جس میں برقی تار کا رکاوٹ اور تبادلہ شدہ رکاوٹ سلسلہ وار جڑے ہیں۔ان کے مجموعہ کو 'Z

$$Z' = Z_t + Z'_B = 0.1 + j0.15 + 200 + j400 = 200.1 + j400.15$$

لکھتے ہوئے شکل 3.12-ب حاصل ہوتا ہے۔ایک مرتبہ دوبارہ مساوات 3.26 استعال کرتے ہوئے کا کو گرانسفار مرکے ابتدائی جانب منتقل کرتے ہوئے

$$Z'' = \left(\frac{N_1}{N_2}\right)^2 Z' = \left(\frac{1}{10}\right)^2 (200.1 + j400.15) = 2.001 + j4.0015$$

شکل 3.12-پ ماصل ہو گا جس سے جزیر کا برتی رو درج زیل ہو گا۔

$$\hat{I}_G = \frac{\hat{V}}{Z''} = \frac{415/0}{2.001 + i4.0015} = 92.76/-63.432^{\circ}$$

شکل 3.12-ب میں جزیٹر کا برتی رو جانتے ہوئے تبادلہ برتی روسے \hat{I}_t حاصل کرتے ہیں۔ $\binom{N_1}{t}$ برگ روسے $\binom{N_1}{t}$ جا کہ کرتے ہیں۔ $\binom{N_1}{t}$ جا کہ کرتے ہیں۔

 $\hat{I}_t = \left(\frac{N_1}{N_2}\right)\hat{I}_G = \left(\frac{1}{10}\right)92.76/-63.432^\circ = 9.276/-63.432^\circ$

یوں برقی تار میں طاقت کا ضیاع درج ذیل ہو گا۔

 $p_t = I_t^2 R_t = 9.276^2 \times 0.1 = 8.6 \,\mathrm{W}$

اسی طرح شکل 3.11 میں \hat{I}_t جانتے ہوئے تبادلہ برقی روسے

 $\hat{I}_B = \left(\frac{N_3}{N_4}\right) \hat{I}_t = \left(\frac{10}{1}\right) 9.276 / -63.432^{\circ}$ $= 92.76 / -63.432^{\circ} = 41.5 - j82.9$

حاصل کیا جا سکتا ہے۔رکاوٹ پر برقی دباو درج ذیل ہو گا۔

$$\hat{V}_B = \hat{I}_B Z_B = (41.5 - j82.9)(2 + j4) = 414 + j0.2$$

بغیر ٹرانسفار مر استعال کیے برقی تاروں میں طاقت کا ضیاع 796 واٹ جبکہ ٹرانسفار مر استعال کرتے ہوئے صرف 8.6 ا واٹ یعنی 92 گنا کم ہے۔اس میں ٹرانسفار مرکی مقبولیت کا راز ہے۔

3.9 ٹرانسفار مر کاوولٹ-ایمپیئر

ٹرانسفار مرکی دونوں جانب برقی دباو کچھوں کے چکروں پر منحصر ہوتا ہے۔ٹرانسفار مر ایک مخصوص برقی دباو اور برقی رو کے لئے بنایا جاتا ہے۔ٹرانسفار مر بناوٹی برقی دباو پر بھی استعال کیا جا سکتا ہے اگرچہ عموماً اسے بناوٹی برقی دباو پر بھی جا ہوتا ہے۔ اس طرح ٹرانسفار مر بناوٹی برقی رویا $I_1:I_2$ سے کم برقی رو پر بھی استعال کیا جا سکتا ہے۔ تھی استعال میں ٹرانسفار مرکا برقی روعموماً بناوٹی قیت سے کم ہوتا ہے۔

ٹرانسفار مرکی ایک جانب کے برقی دباو اور برقی رو کا حاصل ضرب دوسری جانب کے برقی دباو اور برقی رو کا حاصل ضرب کا برابر ہوتا ہے۔

$$(3.30) V_1 I_1 = V_2 I_2$$

برتی دباہ اور برتی رو کے حاصل ضرب، V_1I_1 یا V_2I_2 ، کوٹرانسفار مرکا وولٹ ضرب ایمپیئر یا مختصراً وولھے۔ایمپیئر V_2I_2 بہتے ہیں V_2I_3 جوٹرانسفار مر کے برقی سکت کا ناپ ہے۔ٹرانسفار مر اور دیگر برقی مشین، مثلاً موٹر اور جزیئر جوٹرانسفار مرکے بین ، پر نسب معلوماتی شختی پر ان کا سکت، بناوٹی برقی دباہ اور بناوٹی تعداد لکھا جاتا ہے۔ یوں ٹرانسفار مرکا وولٹ۔ایمپیئر درج ذیل ہوگا۔

$$(3.31) V_1 I_1 = V_2 I_2$$

مثال 3.5: ایک 25000 وولٹ-ایمپیئر اور 220 : 11000 وولٹ برقی سکت کے ٹرانسفار مر کے زیادہ برقی د ہاو کی جانب 11000 وولٹ لاگو ہیں۔

- اس کی ثانوی جانب زیادہ سے زیادہ کتنا برقی بوجھ ڈالا جا سکتا ہے؟
- زیادہ سے زیادہ برقی بوجھ پر ٹرانسفار مر کا ابتدائی برقی رو حاصل کریں۔

حل: اس ٹرانسفار مر کی معلومات درج ذیل ہیں۔

 $25 \,\mathrm{kV} \,\mathrm{A}, \quad 11000 : 220 \,\mathrm{V}$

تبادلہ برقی دباوکی مساوات سے ثانوی برقی دباو 220 وولٹ حاصل ہوتا ہے۔ ثانوی لیمنی کم برقی دباو جانب زیادہ سے زیادہ سرقی رو مساوات 3.31 سے حاصل ہو گا۔

$$I_2 = \frac{25000}{220} = 113.636 \,\mathrm{A}$$

اسی طرح ابتدائی جانب زیادہ سے زیادہ برقی رو اسی مساوات سے حاصل ہو گا۔

$$I_1 = \frac{25000}{11000} = 2.27 \,\mathrm{A}$$

П

ٹرانسفار مرکی دونوں جانب کچھوں میں استعال برقی تارکی موٹائی یوں رکھی جاتی ہے کہ ان میں کثافتِ برقی رو 55 کیساں ہو۔ کچھوں کی مزاحمت میں برقی رو گزرنے سے برقی طاقت کا ضیاع ہوتا ہے جس سے تار گرم ہوتی

volt-ampere, VA⁵³

⁶⁴ ووك - ايمييئر كو عموماً كلوووك - اليمييئر ليني لا VA مين بيان كياجاتا بـ

¹⁰⁰⁰ kV A⁵⁵ لرانسفار مر کی کیھوں میں کثافت برتی رو تقریباً 3 A/mm² کی جاتی ہے

ہے۔ٹرانسفار مر کے برقی رو کی حد کچھوں کی گرمائش پر منحصر ہوتی ہے۔تار کی زیادہ سے زیادہ درجہ حرارت کو محفوظ حد کے اندر رکھا جاتا ہے۔زیادہ درجہ حرارت سے تار پر لگا روغن خراب ہو گا اور تار کا ایک چکر دوسرے چکر کے ساتھ کسر دور ہو گا۔ایہا ہونے سے ٹرانسفار مر جل کر خراب ہو جاتا ہے۔

رٹے ٹرانسفار مرکا قالب اور کچھے غیر موصل تیل سے بھری ٹینکی ہیں ڈبو کر رکھے جاتے ہیں۔اس تیل کو ٹرانسفار مرکا قالب اور کچھے غیر موصل تیل سے بھری ٹینکی ہیں ڈبو کر رکھے جاتے ہیں۔اس تیل کو ٹرانسفار مرتیل 56 کہتے ہیں۔ یہ تیل برقی کچھوں کی حرارت کم کرنے اور (غیر موصل ہونے کی بنا) مختلف برقی دباور ہر حصول کو برقی طور پر جدا رکھنے ہیں مدد دیتا ہے۔ٹرانسفار مرتیل تقریباً 8 کارآ مد زندگی ہوتا ہے اور ہر 8° درجہ حرارت پر اس کی زندگی آدھی رہ جاتی ہے۔یوں اگر 8 کی گارآ مد زندگی 8 سال ہو تب 8 کی گارآ مد زندگی 8 سال ہو تب 8 کی گارآ مد زندگی 8 سال ہو گی۔

ٹرانسفار مرتیل گرم ہو کر پھیلتا ہے جس کی بنا اس کی کثافت کم ہوتی ہے۔ یوں ٹیکی میں گرم تیل اوپر اور ٹھنڈا تیل نیچ مسلسل منتقل ہو گا۔ گرم تیل کو ٹھنڈا کرنے کے لئے ٹینکی کے ساتھ بہت سارے پائپ منسلک کئے جاتے 57 جن میں گرم تیل اوپر سے داخل ہوتا ہے۔ پائپ کا سطحی رقبہ زیادہ ہونے کی بنا ہوا اسے جلد ٹھنڈا کرتی ہے، اس میں تیل کا درجہ حرارت گھنتا اور کثافت بڑھتی ہے۔ ٹھنڈا تیل پائپ میں نیچے حرکت کرتے ہوئے دوبارہ ٹینکی میں داخل ہوتا ہے۔

3.10 ٹرانسفار مرکے امالہ اور مساوی ادوار

3.10.1 لیھے کی مزاحمت اوراس کی متعاملہ علیجدہ کرنا

ٹرانسفار مر کے ابتدائی کچھے کی مزاحمت R₁ پر حصہ 3.3، مساوات 3.2 میں بات کی گئی جہاں مزاحمت کو کچھے سے باہر سلسلہ وار جڑا دکھایا گیا تھا۔آئیں دیکھیں ہم حساب کی خاطر کیسے مزاحمت کو کچھے سے علیحدہ کر سکتے ہیں۔

شکل 3.13-الف میں ایک کچھے پر بدلتا برقی دباو لاگو کیا گیا ہے۔اگر کچھے کی برقی تار کو جھوٹے کلڑوں میں تقسیم کیا جائے تب ہر کلڑے کی ایک جھوٹی مزاحمت ΔR اور ایک جھوٹا متعاملہ $j\Delta X$ ہو گا۔تار کا ایبا ایک

شكل 3.13: لجھے كى مزاحت اور متعاملہ۔

گلڑا شکل-ب میں دکھایا گیا ہے۔چونکہ کچھا ان سب کلڑوں کے سلسلہ وار جڑنے سے بنتا ہے للذا شکل-الف کو ہم شکل-پ کی طرح بنا سکتے ہیں جہال کچھے کے n ککڑے کیے گئے ہیں۔

اس دور کی مساوات

$$\hat{V}_1 = \hat{I}_1 \left(\Delta R_1 + j \Delta X_1 + \Delta R_2 + j \Delta X_2 + \dots \Delta R_n + j \Delta X_n \right)$$

$$= \hat{I}_1 \left(\Delta R_1 + \Delta R_2 + \dots \Delta R_n \right) + \hat{I}_1 \left(j \Delta X_1 + j \Delta X_2 + \dots j \Delta X_n \right)$$

ہے جس میں

$$R = \Delta R_1 + \Delta R_2 + \cdots \Delta R_n$$
$$X = \Delta X_1 + \Delta X_2 + \cdots \Delta X_n$$

لکھ کر درج ذیل حاصل ہوتا ہے۔

(3.32)
$$\hat{V}_1 = \hat{I}_1 (R + jX)$$

شکل 3.14 سے بھی مساوات 3.32 لکھی جا سکتی ہے۔ یوں حساب کی خاطر کچھے کی مزاحمت اور متعاملہ علیحدہ کیے جا سکتے ہیں۔

 ${\rm transformer~oil^{56}}$

⁵⁷ وایڈا کے ٹرانسفار مر کابیر ونی حصدانہیں بائیوں پر مشتمل ہوتاہے۔

شكل 3.14: لحصے كى مزاحمت اور متعامله كى عليجد گا۔

3.10.2 رستااماله

یہاں تک ہم کامل ٹرانسفار مر پر بحث کرتے رہے ہیں۔ اب ہم ٹرانسفار مر میں ان عناصر کا ذکر کرتے ہیں جن کی وجہ سے ٹرانسفار مر غیر کامل ہوتا ہے۔ بہت سی جگہول پر ٹرانسفار مر استعال کرتے وقت ان عناصر کو مدِ نظر رکھنا ضرور ی ہوتا ہے۔ ان عناصر کے اثرات کو شامل کرنے کے لئے ہم ٹرانسفار مر کا مساوی دور بناتے ہیں۔

ابتدائی کچھے کے مقناطیسی بہاو کو دو حصول میں تقسیم کیا جا سکتا ہے۔ پہلا حصہ وہ جو قالب سے گزر کر ابتدائی اور ثانوی کچھے کے مقناطیسی بہاو ہے۔ دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور ثانوی کچھے دونوں کے اندر سے گزرتا ہے۔ یہ مشتر کہ مقناطیسی بہاو ہے۔ دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور زیادہ تر قالب کے باہر خلاء میں رہتا ہے۔ اس کو رستا مقناطیسی بہاو اقتدائی کچھے کے برقی رو کا راست مستقل μ_0 اٹل ہے للذا یہاں بچکچاہٹ بھی اٹل ہو گی۔ یوں رستا مقناطیسی بہاو ابتدائی کچھے کے برقی رو کا راست متناسب ہو گا۔

 $X_1=2\pi f L_1$ 60 یارتا متعاملہ کے اثر کو بالکل کچھے کی مزاحمت کی طرح کچھے سے باہر رستا امالہ کا L_1 کیا جاتا ہے۔ سے ظاہر کیا جاتا ہے۔

ٹرانسفار مر کے ابتدائی کیچے میں برتی رو \hat{I}_1 گزرنے سے رستا متعاملہ میں $\hat{V}_{X1}=j\hat{I}_1X_1$ برتی دباو اور کیچے کے تار کی مزاحمت میں $\hat{V}_{R1}=\hat{I}_1R_1$ برتی دباو گھٹتا ہے۔

جبیہا شکل 3.15 میں دکھایا گیا ہے، ابتدائی کچھے پر لا گو دباہ \hat{V}_1 ، مزاحمت R_1 اور متعاملہ X_1 میں گھٹاہ اور ابتدائی امالی دباہ \hat{E}_1 کا مجموعہ ہو گا۔

leakage magnetic flux 58 leakage inductance 59

leakage reactance 60

3.10.3 ثانوی برقی رواور قالب کے اثرات

قالب میں دونوں کچھوں کا مشتر کہ مقناطیسی بہاو ان کے مجموعی مقناطیسی دباو کی وجہ سے وجود میں آتا ہے۔ اس حقیقت کو ایک مختلف اور بہتر انداز میں بیان کیا جا سکتا ہے۔ ہم کہتے ہیں کہ ابتدائی برتی رو کو دو شرائط مطمئن کرنے ہوں گے۔ اول اسے قالب میں بیجانی مقناطیسی بہاو وجود میں لانا ہو گا اور دوم اسے ثانوی کچھے کے پیدا کردہ مقناطیسی بہاو کو ختم کرنا ہو گا۔ لہذا ابتدائی برتی رو کو ہم دو حصوں میں تقسیم کر سکتے ہیں۔ ایک حصہ $_{\varphi}$ ، جو بیجانی مقناطیسی بہاو کیدا کرتا ہے۔ اور دوم را $_{2}$ جو ثانوی کچھے کے مقناطیسی دباو کا اثر ختم کرتا ہے۔ یوں $_{2}$ درج ذیل ہو گا۔

$$\hat{I}_2' = \frac{N_2}{N_1} \hat{I}_2$$

ثانوی کچھے کے مقناطیسی بہاو کے اثر کو ختم کرنے پر حصہ 3.6 میں غور کیا گیا ہے۔

اگرچہ برقی رو i_{arphi} فیر سائن نما ہوتا ہے ہم اسے سائن نما \hat{I}_{arphi} تصور کر کے دو حصول، \hat{I}_{c} اور \hat{I}_{m} ، میں تقسیم کرتے ہیں۔

$$\hat{I}_{\varphi} = \hat{I}_c + \hat{I}_m$$

مذکورہ بالا مساوات میں برقی رو کو دوری سمتیات کی صورت میں لکھا گیا ہے۔ان میں \hat{I}_c ابتدائی کچھے کے امالی برقی دباو بور گیا ہم قدم ہے اور قالب میں برقی توانائی کے ضیاع کو ظاہر کرتا ہے جبکہ \hat{I}_m وہ حصہ ہے جو \hat{E}_1 سے نوے درجہ ماخیری \hat{E}_1 زاویہ پر رہتا اور کچھے میں مقناطیسی بہاو پیدا کرتا ہے۔

 $\rm lagging^{61}$

شکل3.16:ٹرانسفار مر مساوی دور، حصه دوم۔

ہو لینی jX_m کی مقدار اتنی رکھی جاتی ہے $R_c=E_{1,rms}^2/p_c$ کی مقدار اتنی رکھی جاتی ہے که بین دیاو اور تعدد پر حاصل کئے جاتے ہیں۔ R_c اور jX_m اور jX_m اور jX_m کے مقدار اصل برقی دیاو اور تعدد پر حاصل کئے جاتے ہیں۔

3.10.4 ثانوي لجھے کالمالی برقی دیاو

قالب میں مشتر کہ مقاطیسی بہاو ثانوی کھیے میں امالی برتی دباو \hat{E}_2 پیدا کرے گا۔ چونکہ یہی مقاطیسی بہاو ابتدائی کیھے میں \hat{E}_1 امالی پیدا کرتا ہے للذا درج ذیل لکھا جا سکتا ہے۔

$$\frac{\hat{E}_1}{\hat{E}_2} = \frac{N_1}{N_2}$$

مباوات 3.34 اور مباوات 3.35 کو ایک کامل ٹرانسفار مرسے ظاہر کیا جا سکتا ہے جے شکل 3.17 میں و کھایا گیا

3.10.5 ثانوی کھے کی مزاحت اور متعاملہ کے اثرات

ثانوی کیھے میں امالی دباو \hat{E}_2 پیدا ہو گا۔ابتدائی کیھے کی طرح، ثانوی کیھے کی مزاحمت R_2 اور متعاملہ jX_2 ہوں گ جن میں ثانوی برتی رو \hat{V}_2 کی بنا برتی دباو گھٹے گا۔ یوں ثانوی کیھے کے سروں پر برتی دباو \hat{V}_2 تدرِ کم ہو گا:

$$\hat{V}_2 = \hat{E}_2 - \hat{I}_2 R_2 - j \hat{I}_2 X_2$$

یوں حاصل ٹرانسفار مر کا مکمل مساوی دور یا ریاضی نمونہ 62 شکل 3.18 میں دکھایا گیا ہے۔

 $^{{\}rm mathematical\ model}^{62}$

شكل 19.3: ثانوى جانب ركاوث كالبندائي جانب تبادله كيا گياہے۔

3.10.6 ركاوك كالبندائي ياثانوي جانب تبادله

شکل 3.18 میں تمام اجزاء کا تبادلہ ابتدائی یا ثانوی جانب کیا جا سکتا ہے۔ ایبا کرتے ہوئے کامل ٹرانسفار مر کو مساوی دور کی بائیں یا دائیں جانب رکھا جا سکتا ہے۔شکل 3.19 میں ثانوی رکاوٹ کو ابتدائی جانب منتقل کیا گیا ہے جبکہ شکل 3.20 میں ابتدائی رکاوٹوں کا تبادلہ ثانوی جانب کیا گیا ہے۔جیسا شکل 3.20 میں دکھایا گیا ہے، ایسے مساوی ادوار میں کامل ٹرانسفار مرعموماً دکھایا نہیں جاتا ہے۔

تبادلہ شدہ رکاوٹ Z کو Z سے ظاہر کیا جاتا ہے۔ یوں تبادلہ شدہ R_2 کو R_2 سے ظاہر کیا گیا ہے۔ ایسا دور استعال کرتے وقت یاد رکھنا ہو گا کہ مساوی دور میں اجزاء کس جانب منتقل کیے گئے ہیں۔

مثال 3.6: ایک 50 کلو وولٹ-ایمپیئر اور 220: 220 وولٹ برقی سکت کے ٹرانسفار مرکی زیادہ برقی دباو جانب رستا رکاوٹ $Z_1=0.0089+j0.011$ اوہم کم برقی دباو جانب رستا رکاوٹ $Z_1=0.099+j0.011$

، $R_c = 6.4\,\mathrm{k}$ اور $X_m = 47\,\mathrm{k}$ ہیں۔ اس کے لئے شکل $R_c = 3.20$ اور $X_m = 47\,\mathrm{k}$ ہونے والے اجزاء معلوم کریں۔

حل الف: معلومات:

 $50 \,\mathrm{kV} \,\mathrm{A}, \quad 50 \,\mathrm{Hz}, \quad 2200 : 220 \,\mathrm{V}$

ر انسفار مر کے برقی و باو سے کچھوں کے چکر کا تناسب حاصل کرتے ہیں۔ $\frac{N_1}{N_2} = \frac{2200}{220} = \frac{10}{1}$

زیادہ برقی دباو جانب تبادلہ شدہ اجزاء درج ذیل ہوں گے۔

$$R'_{2} + jX'_{2} = \left(\frac{N_{1}}{N_{2}}\right)^{2} (R_{2} + jX_{2})$$

$$= \left(\frac{10}{1}\right)^{2} (0.0089 + j0.011)$$

$$= 0.89 + j1.1$$

مساوی دور میں باقی رکاوٹ پہلے سے زیادہ برقی دباو جانب ہیں للذا یہ تبدیل نہیں ہوں گے۔یوں شکل 3.19 کے جزو حاصل ہوئے۔

حل ب: مساوی دور کے اجزاء کا تبادلہ کم دباو جانب کرتے ہیں۔

$$R'_1 + jX'_1 = \left(\frac{N_2}{N_1}\right)^2 (R_1 + jX_1)$$
$$= \left(\frac{1}{10}\right)^2 (0.9 + j1.2)$$
$$= 0.009 + j0.012$$

اسی طرح درج ذیل حاصل ہوں گے

$$R'_c = \left(\frac{N_2}{N_1}\right)^2 R_c = 64$$

$$X'_m = \left(\frac{N_2}{N_1}\right)^2 X_m = 470$$

П

جبہ Z_2 پہلے سے کم برقی دباہ جانب ہے للذااس کی قیت تبدیل نہیں ہو گا۔

3.10.7 ٹرانسفار مرکے سادہ ترین مساوی ادوار

ایک انجنیئر ٹرانسفار مر استعال وقت حساب کی خاطر شکل 3.19 یا شکل 3.20 کے ادوار استعال کر سکتا ہے۔ یہ ادوار حقیق ٹرانسفار مر کی بہت اچھی عکاسی کرتے ہیں۔ البتہ جہاں بہت صحیح جوابات مطلوب نہ ہوں وہاں ان ادوار کی سادہ اشکال بھی استعال کی جا سکتی ہیں۔ اس حصہ میں ہم ایسے سادہ مساوی ادوار حاصل کرتے ہیں۔

 $R_2' + j X_2'$ اور X_m کو X_m کو بائیں منتقل کرنے سے شکل 3.21 اور X_m کو X_m کا 1.20 اور X_m کے دائیں منتقل کرنے سے شکل 3.22 حاصل ہوتے ہیں۔ چونکہ پاُ کی مقدار نہایت کم X_m ہوتی ہے للذا ایبا کرنے سے نتائج پر خاص فرق نہیں پڑتا ہے۔

 X_2' اور شکل $X_1 = X_1$ اور شکل $X_1 = X_2$ سلسلہ وار جڑے $X_1 = X_1$ اور $X_2 = X_2$ ہوتے ہیں۔ کو $X_1 = X_2 = X_3$ ادوار شکل $X_2 = X_3 = X_4$ ماصل ہوتے ہیں۔

ر انسفار مرکے کل برقی ہوجھ کا صرف دوسے چھ فی صد ہوتا ہے۔ $\hat{I}_{arphi}{}^{63}$

شکل 3.23:ٹرانسفار مر کے سادہ مساوی ادوار۔

شکل R_1 میں R_c اور X_m رکاوٹ R_1+jX_1 اور R_1+jX_2 اور R_2+jX_2 اور R_1+jX_1 اور R_2 اور شکل R_2 میں یہ اجزاء باقی دور کے بائیں یا دائیں ہاتھ ہیں اور ایسے ادوار کا حل نسبتاً ڈیادہ آسان ہوتا ہے۔

 R_c مزید سادہ دور حاصل کرنے کی خاطر \hat{I}_{φ} کو صفر تصور کر کے نظر انداز کیا جا سکتا ہے۔ یوں مساوی دور میں دور اور میں دور اور کیا ہے۔ اس دور jX_m کو کھلے دور تصور کرتے ہوئے دور سے ہٹایا جا سکتا ہے۔ شکل 3.23-الف میں ایبا کیا گیا ہے۔ اس دور میں قالب کے اثرات کو مکمل طور پر نظر انداز کیا گیا ہے۔

یشتر وقت اس سے بھی کم در شگی کے نتائج مطلوب ہوتے ہے۔ یوں $X_{ms}\gg R_{ms}$ کی بنا R_{ms} کو نظرانداز کرتے ہوئے شکل $X_{ms}\gg X_{ms}$ کرتے ہوئے شکل X_{ms} کا ل ٹرانسفار مر ماصل ہوگا جو X_{ms} کی بنا X_{ms} کی بنا رکھی کے ماصل ہوگا جو X_{ms} کی بورا اتر تا ہے۔

3.11 كطلے دور معائنه اور كسر دور معائنه

گزشتہ حصہ میں ٹرانسفار مر کے مساوی ادوار پر بات کی گئ۔ان مساوی ادوار کے اجزاء ٹرانسفار مر کے دو معا ننول سے حاصل کئے جا سکتے ہیں جنہیں کھلا دور معائنہ اور کسر دور معائنہ کہتے ہیں۔اس حصہ میں ان معا ننول پر غور کیا گیا ہے۔

3.11.1 كطلاد ورمعائنه

کھلا دور معائنہ 64، جیسا کہ نام سے واضح ہے، ٹرانسفار مرکی ایک جانب کچھے کے سروں کو آزاد رکھ کر کیا جاتا ہے۔ یہ معائنہ ٹرانسفار مرکی بناوٹی 65 برقی دباو اور تعدد یا ان کے قریب قیمتوں پر کیا جاتا ہے۔ اگرچہ ٹرانسفار مرکے کسی بھی جانب کچھے پر کھلے دور معائنہ سرانجام دیا جا سکتا ہے، حقیقت میں ایسا کم برقی دباو کچھے پر کرنا زیادہ آسان اور کم خطرناک ہوتا ہے۔یہ بات ایک مثال سے بہتر سمجھ آئے گی۔

مثال کے طور پر ہم A 25 kV A، 220 V : 50 Hz ، 11000 نیک دوری ٹرانسفار مرکا معائنہ کرنا چاہتے ہیں۔
یہ معائنہ گیارہ ہزار کچھے پر کرتے ہوئے گیارہ ہزار وولٹ کے لگ بھگ برقی دباو استعال ہو گا جبکہ دو سو بیس برقی
دباو کچھے پر معائنہ کرنے سے دو سو بیس وولٹ کے لگ بھگ برقی دباو استعال کرنا ہو گا۔ دونوں صور توں میں تعدد
50 Hz برقی دباو کچھے پر کیا جاتا ہے۔
کہ کطا دور معائنہ کم برقی دباو کچھے پر کیا جاتا ہے۔

 p_t کھلے دور معائنہ میں کم برقی دباو کچھے پر بناوٹی برقی دباویا اس کا قریب دباو V_t لاگو کر کے کھلا دور برقی طاقت p_t اور کھلا دور برقی رو برقی را ناپا جاتا ہے۔بناوٹی برقی دباو کے قریب دباو پر معائنہ کرنے سے بہتر نتائج حاصل ہوں گے۔ ٹرانسفار مرکی دوسری جانب کچھے کے سرے چونکہ آزاد رکھے جاتے ہیں المذا اس میں برقی رو صفر ہو گا۔ اس طرح ناپا گیا برقی رو صرف ہیجان انگیز برقی رو گا۔ بیجان انگیز برقی رو ٹرانسفار مرکے بناوٹی روکا دو سے چھ فی صد ہوتا ہے۔

یاد رہے $\hat{V}_t = V_t / \frac{\phi_v}{\psi_v}$ اور $\hat{I}_t = I_t / \frac{\phi_i}{\psi_v}$ اور $\hat{V}_t = V_t / \frac{\phi_v}{\psi_v}$ مطلق قیمتوں، V_t اور V_t ، V_t ، V_t ، V_t ، V_t ،

شکل 3.19 میں بائیں ہاتھ کو کم برتی دباو والا جانب تصور کریں۔ یوں V_t مقام V_t پر فراہم کیا جائے گا جبکہ پیائٹی رو غیر سمتی 66 رو I_1 ہو گا۔ خارجی کچھا کھلا دور ہونے کی بنا I_2' صفر ہو گا لہذا I_1 در حقیقت \hat{I}_c کی مطلق قیمت I_2 کے برابر ہو گا۔

 $I_t = I_1 = I_{\varphi}$

open circuit $ext{test}^{64}$ $ext{design}^{65}$ $ext{scalar}^{66}$

ا تنى كم برقى روسے كچھے كے ركاوٹ ميں بہت كم برقى دباو گھٹتا ہے للذا اسے نظر انداز كيا جاتا ہے:

$$V_{R1} = I_t R_1 = I_{\varphi} R_1 \approx 0$$
$$V_{X1} = I_1 X_1 = I_{\varphi} X_1 \approx 0$$

یوں جیسا شکل 3.19 سے ظاہر ہے R_c اور X_m پر تقریباً V_t برتی دیاہ چائے گا۔ ان حقائق کو مد نظر رکھتے ہوئے شکل 3.24 صول زیادہ آسان ہے۔

برتی طاقت کا ضیاع صرف مزاحمت میں ممکن ہے لہذا p_t صرف R_c میں ضائع ہو گا۔ یوں درج ذیل ہو گا۔

$$p_t = \frac{V_t^2}{R_c}$$

اس سے ٹرانسفار مر کے مساوی دور کا جزو R_c حاصل ہوتا ہے۔

$$(3.37) R_c = \frac{V_t^2}{p_t}$$

درج ذیل کی بنا

$$Z_t=rac{\hat{V}_t}{\hat{I}_t}=rac{V_t/\phi_v}{I_t/\phi_i}=rac{V_t}{I_t}/\phi_v-\phi_i$$
 فراہم کردہ دباہ اور پیائتی رو کا تناسب درج ذیل ہو گا۔ $|Z_t|=rac{V_t}{I_t}$

اب شکل 3.24 سے درج ذیل واضح ہے

$$\frac{1}{Z_t} = \frac{1}{R_c} + \frac{1}{jX_m}$$

للذا

$$Z_t = \frac{jR_c X_m}{R_c + jX_m}$$
$$|Z_t| = \frac{R_c X_m}{\sqrt{R_c^2 + X_m^2}}$$

ہو گا۔یوں ٹرانسفار مر کے مساوی دور کا جزو X_m حاصل ہوتا ہے۔

(3.38)
$$X_{m} = \frac{R_{c}|Z_{t}|}{\sqrt{R_{c}^{2} - |Z_{t}|^{2}}}$$

ماوات R_c سے ماصل ہوتی ہیں۔ X_m ماوات R_c ماوات R_c ماوات کا بیں۔

یاد رہے حاصل کردہ R_c اور X_m ٹرانسفار مرکے پیائش جانب کے لئے درست ہوں گے۔ تبادلہ رکاوٹ سے دوسری جانب کی قیمتیں حاصل کی جاسکتی ہیں۔

3.11.2 كسردورمعائنه

کسر دور معائنہ بھی کھلے دور معائنہ کی طرح ٹرانسفار مر کے کسی بھی طرف ممکن ہے لیکن حقیقت میں اسے زیادہ برقی دباو کچھے پر کرنا آسان ہوتا ہے۔ یہ معائنہ ٹرانسفار مر کے بناوٹی برقی رویااس کے قریب رو پر کیا جاتا ہے۔

کلے دور معائنہ میں مستعمل ٹرانسفار مرکی بات آگے بڑھاتے ہوئے زیادہ برتی دباو کچھے کا بناوٹی رو A 2.2727 مور کی دباو کچھے کا بناوٹی رو A 113.63 جبکہ زیادہ اور کم دباو کچھے کا بناوٹی رو A 113.63 جبکہ زیادہ برتی دباو کچھے پر کرتے ہوئے A 2.2727 موائنہ زیادہ آسان ہو گا۔

اس معائنہ میں کم برقی دباو کچھے کے سروں کو آپس میں جوڑ کر کسر دور کیا جاتا ہے جبکہ زیادہ برقی دباو کچھے پر کچھے کے بناوٹی دباو کا دو سے بارہ فی صد دباو V_t لاگو کر کے اس کچھے کا برقی رو I_t اور فراہم کردہ طاقت p_t ناپا جاتا

شكل 3.25: كسر دور معائنه به

ہے جنہیں بالترتیب کسر دور رو اور کسر دور طاقت کہتے ہیں۔ کسر دور کیچھ میں گزرتے برقی رو کا عکس دوسری جانب موجود ہو گا۔ یہ برقی روٹرانسفار مر کے بناوٹی برقی رو کے لگ بھگ ہوتا ہے۔

چونکہ یہ معائنہ بہت کم برقی دباو پر سرانجام دیا جاتا ہے للذا بیجان انگیز برقی رو کو مکمل طور پر نظرانداز کیا جا سکتا R_c ہوئے R_c اور R_c اور R_c اور شکل 3.25 میں دکھایا گیا ہے جہاں بیجان انگیز رو کو نظرانداز کرتے ہوئے R_c اور R_c کو کھلے دور کیا گیا ہے۔ کسر دور معائنہ میں شکل 3.20 کے بائیں ہاتھ کو کم برقی دباو جانب تصور کرتے ہوئے R_c کو کیا جگہ لاگو کرنا ہو گا۔

برتی طاقت صرف مزاحمت میں ضائع ہو سکتا ہے للذا شکل 3.25 سے درج ذیل لکھا جا سکتا ہے
$$p_t = I_t^2 R_{ms}$$
 يوں ٹرانسفار مر کے مساوی دور کا جزو R_{ms} حاصل ہوتا ہے۔ $R_{ms} = \frac{p_t}{I_c^2}$

کسر دور برقی رو اور کسر برقی دباو سے

$$|Z_t| = \frac{V_t}{I_t}$$

جببه شكل 3.25 سے درج ذیل لکھا جا سكتا ہے۔

$$Z_t = R_{ms} + jX_{ms}$$
$$|Z_t| = \sqrt{R_{ms}^2 + X_{ms}^2}$$

یوں X_{ms} کی قیمت مساوات 3.39 سے جانتے ہوئے R_{ms} حاصل ہوتا ہے۔

$$(3.40) X_{ms} = \sqrt{|Z_t|^2 - R_{ms}^2}$$

مساوات 3.39 کل مزاحمت دیتا ہے البتہ اس سے R_1 یا R_2 حاصل نہیں کیا جا سکتا۔ اس طرح مساوات 3.40 سے X_1 اور X_2 علیحدہ نہیں کئے جا سکتے۔ کسر دور معائنہ سے اتنی ہی معلومات حاصل کرنا ممکن ہے جو حقیقت میں کافی ثابت ہوتا ہے۔ جہاں ان اجزاء کی علیحدہ فیمتیں درکار ہوں وہاں درج ذیل تصور کیا جا سکتا ہے

$$R'_1 = R_2 = \frac{R_{ms}}{2}$$

 $X'_1 = X_2 = \frac{X_{ms}}{2}$

ٹرانسفار مر معائنے اسی مقام پر کیے جاتے ہیں جہاں ٹرانسفار مر نسب ہو۔یوں وہی برتی دباہ استعال کرنا ہو گا جو وہاں موجود ہو۔ہاں ضروری ہے کہ کمر دور معائنہ میں ٹرانسفار مر کو ڈیزائن برتی دباہ کا دو سے بارہ فی صد دیا جائے۔ $11000 \times \frac{12}{100} = 1320 \, \text{V}$ مثلاً $11000 \times \frac{12}{100} = 1320 \, \text{V}$ مثلاً $11000 \times \frac{12}{100} = 1320 \, \text{V}$ مثلاً $11000 \times \frac{12}{100} = 1320 \, \text{V}$ کے نیچ دباہ پر کیا جا سکتا ہے۔ چو نکہ ہمارے ہاں $11000 \times \frac{12}{100} = 1320 \, \text{V}$ عام پائے جاتے ہیں لہذا ہم $11000 \times \frac{12}{100} = 1320 \, \text{V}$ ہی استعال کریں گے۔اسی طرح دستیاب $11000 \times \frac{12}{1000} = 1320 \, \text{V}$ میں استعال کریں گے۔اسی طرح دستیاب $11000 \times \frac{12}{1000} = 1320 \, \text{V}$

یاد رہے کہ ٹرانسفار مرکی ایک جانب کچھے کے سرے آپس میں جوڑ کر، یعنی کسر دور کر کے، دوسری جانب کچھے پر کسی بھی صورت اس جانب کی اپوری برقی دباو لاگو نہیں کیجھے گا۔ ایسا کرنا شدید خطرناک اور جان لیوا ثابت ہو سکتا ہے۔

یاد رہے کہ ان معائنوں سے حاصل مساوی دور کے اجزاء اسی جانب کے لئے درست ہوں گے جس جانب انہیں حاصل کیا گیا ہو۔ان کی قیمتیں دوسری جانب تبادلہ رکاوٹ سے حاصل کی جاسکتی ہیں۔

مثال 3.7: ایک 25 کلو وولٹ-ایمپیئر، 220 : 11000 وولٹ اور 50 ہرٹز پر چلنے والے ٹرانسفار مر کے کھلے دور اور کسر دور معائنے کیے جاتے ہیں جن کے نتائج درج ذیل ہیں۔ ٹرانسفار مر مساوی دور کے اجزاء تلاش کریں۔

• کھلا دور معائنہ میں کم برقی دباو جانب V 220 لاگو کیا جاتا ہے۔اسی جانب برقی رو A 39.64 اور طاقت کا ضیاع W 600 ناپے جاتے ہیں۔

• کسر دور معائنہ میں زیادہ برقی دباو جانب V 440 لا گو کیا جاتا ہے۔اسی جانب برقی رو A 2.27 اور طاقت کا ضیاع W 560 ناپے جاتے ہیں۔

حل کھلا دور:

$$\begin{split} |Z_t| &= \frac{220}{39.64} = 5.55\,\Omega \\ R_c &= \frac{220^2}{600} = 80.67\,\Omega \\ X_m &= \frac{80.67\times5.55}{\sqrt{80.67^2-5.55^2}} = 5.56\,\Omega \end{split}$$

حل کسر دور:

$$Z_t = \frac{440}{2.27} = 193.83 \,\Omega$$

$$R_{ms} = \frac{560}{2 \times 2.27^2} = 108.68 \,\Omega$$

$$X_{ms} = \sqrt{193.83^2 - 108.68^2} = 160 \,\Omega$$

ور
$$X_{ms}$$
 اور X_{ms} کو کم برقی د باو جانب منتقل کرتے ہوئے R_{ms} $\left(\frac{220}{11000}\right)^2 imes 108.68 = 43.47\,\mathrm{m}\Omega$ $\left(\frac{220}{11000}\right)^2 imes 160 = 64\,\mathrm{m}\Omega$

لعيني

$$R_1 = R'_2 = \frac{43.47 \,\text{m}\Omega}{2} = 21.7 \,\text{m}\Omega$$

 $X_1 = X'_2 = \frac{64 \,\text{m}\Omega}{2} = 32 \,\text{m}\Omega$

حاصل ہو گا۔ان نتائج سے حاصل کم برقی دباو جانب مساوی دور شکل 3.26 میں دکھایا گیا ہے۔

3.12. تين دوري ٹرانسفار مسر

شکل 3.26: کھلے دوراور کسرِ دور معائنہ سے کم برقی د باوجانب مساوی دور۔

شكل3.27: ايك ہى قالب پر تين ٹرانسفار مر۔

3.12 تین دوری ٹرانسفار مر

اب تک ہم یکے دور ہے 67 ٹرانسفار مر پر غور کرتے رہے ہیں۔ حقیقت میں برقی طاقت کی منتقل میں عموماً تیہ وروہے 68 ٹرانسفار مر استعال ہوتے ہیں۔ تین دور کی ٹرانسفار مر کیسال تین عدد یک دور کی ٹرانسفار مر اکٹھے رکھ کر بنایا جا سکتا ہے۔ یوں ایک ٹرانسفار مر خراب ہونے کی صورت میں اس کو ہٹا کر ٹھیک کرنے کے دوران باقی دو ٹرانسفار مر استعال کئے جا سکتے ہیں۔ تین دور کی ٹرانسفار مر بنانے کا اس سے بہتر طریقہ شکل 27 میں دکھایا گیا ہے جہاں ایک ہی مقاطیسی قالب پر تینوں ٹرانسفار مر کے لچھے لیٹے گئے ہیں۔ اس شکل میں 2 پہلے ٹرانسفار مر کا ابتدائی لچھا اور 2 ہیں اس کا ثانوی لچھا ہے۔ اس طرح کے تین دور کی ٹرانسفار مر سے، ملکے اور چھوٹے ہونے کی وجہ سے عام ہو گئے ہیں اور آپ کو روز مرہ زندگی میں یہی نظر آئیں گے۔ ان میں برتی ضیاع بھی نسبتاً کم ہوتا ہے۔

شکل 3.28-الف میں تین ٹرانسفار مر د کھائے گئے ہیں۔ان ٹرانسفار مروں کے ابتدائی کیھے آپی میں دو طریقوں

 $[\]begin{array}{c} \text{single phase}^{67} \\ \text{three phase}^{68} \end{array}$

سے جوڑے جا سکتے ہیں۔ایک کو ستارہ نما جوڑ Y^{69} اور دوسرے کو تکونی جوڑ 70 کہتے ہیں۔ای طرح ان ٹرانسفار مروں کے ثانوی کچھے بھی انہیں دو طریقوں سے جوڑے جا سکتے ہیں۔یوں انہیں درج ذیل چار مختلف طریقوں سے جوڑا جا سکتا ہے۔

- $Y:\Delta$ ستاره: تکونی •
- Y:Y ساره: ساره •
- $\Delta:\Delta$ $\exists \lambda$
- $\Delta: Y$ $\exists z$

شکل 3.28 میں $\Delta: Y$ ٹرانسفار مر دکھایا گیا ہے جس میں بایاں ہاتھ Y اور دایاں ہاتھ $\Delta: Y$ ٹرانسفار مر $\Delta: Y$ کھتے ہوئے X: Y کو بائیں اور X: Y کو دائیں کھا جاتا ہے۔جیسا پہلے ذکر ہو چکا ہے ہم اشکال میں ٹرانسفار مر کا ابتدائی طرف بائیں جانب رکھتے ہیں للذا X: Y: Y ابتدائی اور X: Y: X ثانوی طرف ہے۔ روائگی سے پڑھتے ہوئے ابتدائی کو پہلے اور ثانوی کو بعد میں پڑھا جاتا ہے للذا اس کو X: Y: X ککھ کر ستارہ۔ تکونی پڑھیں گے۔

شکل 3.28-الف میں تین ٹرانسفار مرول کے ابتدائی کیھوں کو ستارہ نما جوڑا گیا ہے جبکہ ان کی ٹانوی کیھوں کو سارہ نما جوڑا گیا ہے۔اسی طرح ٹانوی کیھوں کو تکونی جوڑا گیا ہے۔شکل-ب میں تینوں ٹرانسفار مر کے ابتدائی کیھوں کو ستارہ نما دکھایا گیا ہے۔اس طرح ٹانوی کیھوں کو شکونی دکھایا گیا ہے۔ان اشکال کی وجہ سے اس طرز کے جوڑ کو ستارہ نما جوڑ اور تکونی جوڑ کہتے ہیں۔

اییا شکل بناتے ہوئے ہر ٹرانسفار مر کے ابتدائی اور ثانوی کچھے کو ایک ہی زاویہ پر دکھایا جاتا ہے۔۔یوں شکل 3.28-الف میں بالائی ٹرانسفار مر، جس کے ابتدائی سرے an اور ثانوی سرے a'n' ہیں، کو شکل 3.28-ب میں صفر زاویہ پر دکھایا گیا ہے۔ تین مرحلہ ٹرانسفار مرول کو اس طرح کی علامتوں سے ظاہر کیا جاتا ہے اور ان میں قالب نہیں دکھایا جاتا۔

ٹرانسفار مر کے جوڑ بیان کرتے وقت باعیں جوڑ کو پہلے اور دائیں جوڑ کو بعد میں پکارتے ہیں۔یوں شکل 3.28-ب میں ٹرانسفار مر کو ستارہ- تکونی جڑا ٹرانسفار مر یا مخضراً ستارہ- تکونی ٹرانسفار مر کہیں گے۔اسی طرح ابتدائی جانب کو بائیں اور ثانوی جانب کو دائیں ہاتھ بنایا جاتا ہے۔یوں اس شکل میں ابتدائی جانب ستارہ نما ہے جبکہ ثانوی جانب تکونی ہے۔

> star connected⁶⁹ delta connected⁷⁰

3.12. تين دوري ٹرانسفار مسسر

شكل 3.28: تين دوري ستاره- تكوني ٹرانسفار مر

ستارہ نما سے چار برقی تاریں نکلتی ہیں۔ ان میں مشترک تار n کو عموماً ٹرانسفار مر کے نزدیک زمین میں گہرائی تک دھنسا جاتا ہے۔ اس تار کو زمینی تار 73 یا صرف زمین 72 کہتے ہیں۔ عام فہم میں اسے ٹھنڈی تار 73 کہتے ہیں۔ باقی تین تارین a,b,c کہلاتے ہیں۔

ٹرانسفار مر کے کچھے پر برقی دباو کو یکے دور ہے برقی دباو_{کہ مل}⁷⁵ کہتے ہیں اور کچھے میں برقی رو کو یکے دور ہے برقی رو کر ہے۔ اور کے برقی دباو کو کار کا برقی دباو ہار⁷⁷ کہتے ہیں۔ بہر ⁷⁶ کہتے ہیں۔ بہر ⁷⁶ کہتے ہیں۔ نینی تاریس برقی رو کو زمینی برقی رو کو آرگا کہتے ہیں۔ زمینی تاریس برقی رو کو زمینی برقی رو کو آری⁷⁹ کہتے ہیں۔ نمینی تاریس برقی رو کو زمینی برقی رو کو آرین کا برقی رو کو آرین کے بیں۔ نمین تاریس برقی رو کو زمینی برقی رو کو آرین کا برقی رو برقی رو کو آرین کا برقی رو کو زمینی برقی رو کو آرین کی برقی رو کو آرین کا برقی رو کو آرین کا برقی رو کو زمینی برقی رو کو زمین کی برقی رو کو آرین کی کو کو کی کر کو کر کو کر کو کر کو کر کو کر کو کر کی کو کو کو کر کو کر

 $ground^{71}$

ground, earth, neutral⁷²

 $neutral^{73}$

live wires⁷⁴

phase voltage⁷⁵

phase current⁷⁶

line to line voltage⁷⁷

line current⁷⁸

 $^{{\}rm ground}\ {\rm current}^{79}$

سارہ Y جانب یک دوری مقداروں اور تار کے مقداروں کا تعلق درج ذیل ہو گا۔

(3.41)
$$V_{J\tau} = \sqrt{3}V_{\lambda \tau}$$

$$I_{J\tau} = I_{\lambda \tau}$$

کلونی ∆ جانب یک دوری اور تار کی مقداروں کا تعلق درج ہے۔

$$V_{\text{J}} = V_{\text{J}}$$

$$I_{\text{J}} = \sqrt{3}I_{\text{J}}$$

$$2J_{\text{J}} = \sqrt{3}I_{\text{J}}$$

مساوات 3.41 اور مساوات 3.42 دوری سمتیہ کے رشتے نہیں بلکہ غیر سمتی مطلق قیمتوں کے رشتے دیتی ہیں۔ان رشتوں کو شکل 3.29 میں دکھایا گیا ہے۔مساوات 3.41 اور مساوات 3.42 سے درج ذیل حاصل ہوتا ہے۔

$$(3.43) V_{J\tau}I_{J\tau} = \sqrt{3}V_{z_1}I_{z_2}I_{z_3}$$

یک دوری ٹرانسفار مر کے وولٹ-ایمپیئر کیر ملہ V ہوتے ہیں اور ایسے تین ٹرانسفار مر مل کر ایک عدد تین دوری ٹرانسفار مر بناتے ہیں لہذا تین مرحلہ ٹرانسفار مر کے وولٹ-ایمپیئر تین گنّا ذیل ہوں گے۔

(3.44)
$$3V_{\rm JL}I_{\rm JL} = 3 \times \frac{V_{\rm JL}I_{\rm JL}}{\sqrt{3}} = \sqrt{3}V_{\rm JL}I_{\rm JL}$$

یہ مساوات تاہین دوری ادوار میں کثرت سے استعال ہوتی ہے۔

ٹرانسفار مرجس طرح بھی جوڑے جائیں وہ اپنی بنیادی کار کردگی تبدیل نہیں کرتے ہیں للذا انہیں سارہ نما یا تکونی جوڑنے کے بعد بھی ان میں ہر ایک ٹرانسفار مر انفرادی طور پر صفحہ 66 پر دے مساوات 3.16 اور صفحہ 17 پر دے مساوات 3.26 پر پورا اترے گا۔ انہیں استعال کر کے شکل 3.29 میں دیے گئے ٹرانسفار مروں کے ابتدائی اور ثانوی جانب کی یک دوری اور تارکی مقداروں کے رشتے حاصل کئے جا سکتے ہیں۔ اس شکل میں N_1/N_2 ہے جہاں جہاں $N_1:N_2$ ان میں ایک دوری ٹرانسفار مرکے چکر کا تناسب ہے۔ تین دوری ٹرانسفار مرپر لگی شختی پر دونوں جانب تارکے برقی دباوکا تناسب کھا جاتا ہے۔

شكل 3.29 مين ستاره- تكونى شرانسفار مركى تارير برقى دباو كا تناسب

(3.45)
$$\frac{V_{\acute{\mathcal{S}}^{|\mathcal{F}|}}}{V_{\mathcal{S}^{|\mathcal{F}|}}} = \sqrt{3}a = \sqrt{3}\left(\frac{N_1}{N_2}\right)$$

3.12 تين دوري ٹرانسفار مسسر

شکل 3.29: ابتدائی اور ثانوی جانب تار اوریک دوری مقداروں کے رشتے۔

جبکه ستاره-ستاره کا

(3.46)
$$\frac{V_{\mathring{\mathcal{S}}|\mathcal{F}|}}{V_{\mathcal{S}|\mathfrak{F}}} = a = \left(\frac{N_1}{N_2}\right)$$

تکونی-ستاره کا

(3.47)
$$\frac{V_{\hat{\mathcal{G}},\hat{\mathcal{E}}}}{V_{\hat{\mathcal{G}},\hat{\mathcal{E}}}} = \frac{a}{\sqrt{3}} = \frac{1}{\sqrt{3}} \left(\frac{N_1}{N_2}\right)$$

اور تکونی- تکونی کا درج ذیل ہو گا۔

$$\frac{V_{\dot{\mathcal{G}}|\mathcal{F}|}}{V_{\mathcal{G}\dot{\mathcal{F}}}} = a = \left(\frac{N_1}{N_2}\right)$$

مثال 3.8: کی دوری تین کیساں ٹرانسفار مروں کو ستارہ-تکونی کے $Y:\Delta$ جوڑ کر تین دوری ٹرانسفار مر بنایا گیا ہے۔ یک دوری ٹرانسفار مر کی برقی سکھے 80 درج ذیل ہے:

 $50\,\mathrm{kV\,A}, \quad 6350:440\,\mathrm{V}, \quad 50\,\mathrm{Hz}$

ستارہ- تکونی ٹرانسفار مر کی اہتدائی جانب 11000 وولٹ تین دوری دباو تار لا گو کیا گیا۔اس تین دوری ٹرانسفار مر کی ثانوی جانب دباو تار معلوم کریں۔

rating⁸⁰

حل: حل کرتے وقت ہم ایک عدد یک دوری ٹرانسفار مر پر نظر رکھیں گے۔ یک دوری ٹرانسفار مر کے چکر کا تناسب درج ذیل ہو گا۔

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{6350}{440}$$

مساوات 3.41 سے دباو تار درج ذیل حاصل ہوتا ہے۔

$$V_{\rm span} = \sqrt{3} \times 6350 \approx 11\,000\,{
m V}$$

یک دوری ٹرانسفار مرکی ثانوی جانب ط40 V ہوں گے جس کو مساوات 3.16 کی مدد سے بھی حاصل کیا جا سکتا ہے۔

$$V_{\mathcal{G}_{\mathcal{F}}} = \frac{N_2}{N_1} V_{\mathcal{G}_{\mathcal{F}}} = \frac{440}{6350} \times 6350 = 440 \,\mathrm{V}$$

ثانوی جانب تین یک دوری ٹرانسفار مروں کو تکونی جوڑا گیا ہے۔ یوں مساوات 3.42 کی مدد سے ثانوی دباو تاریبی ہو گا۔ تین دوری ٹرانسفار مر کے دباو تار کا تناسب درج ذیل ہو گا۔

$$\frac{V_{\text{ji,i,i,i,j}}}{V_{\text{ji,i,i,j}}} = \frac{11000}{440}$$

یک دوری ٹرانسفار مر 50 کلو وولٹ-ایمپیئر کا ہے للذا تین دوری ٹرانسفار مر 150 کلو وولٹ-ایمپیئر کا ہو گا۔یوں تین دوری ٹرانسفار مرکی سکت 81 درج ذیل ہو گی۔

 $150 \,\mathrm{kV} \,\mathrm{A}$, $11000 : 440 \,\mathrm{V}$, $50 \,\mathrm{Hz}$

ٹرانسفار مر شختی ⁸² پر ٹرانسفار مر کی سکت بیان ہوتی ہے۔ اس شختی پر تین دوری ٹرانسفار مر کے دونوں جانب دباو تار ککھا جاتا ہے نہ کہ کچھوں کے چکر۔

ستارہ-ستارہ ٹرانسفار مر میں تین دوری برقی دباو کے بنیادی اجزاء آپس میں °120 زاویائی فاصلے پر جبکہ تیسرے موسیقائی اجزاء آپس میں ہم قدم ہوتے ہیں۔ قالب کی غیر تدریجی خاصیت کی بنا ٹرانسفار مر میں ہر صورت تیسری موسیقائی اجزاء پائے جاتے ہیں۔ تیسری موسیقائی اجزاء ہم قدم ہونے کی وجہ سے جمع ہو کر برقی دباوکا ایک بڑا موج

rating⁸¹ name plate⁸²

3.12. تين دوري ٹرانسفار مسسر

شکل3.30 :ٹرانسفار مر تکونی متوازن بوجھ کوطاقت فراہم کررہاہے۔

پیدا کرتے ہیں جو تبھی کھار برقی دباو کے بنیادی جزو سے بھی زیادہ بڑھا ہوتا ہے۔اس وجہ سے ستارہ-ستارہ ٹرانسفار مر عام طور استعال نہیں ہوتا ہے۔

باقی تین قسم جڑے ٹرانسفار مروں میں تکونی جوڑ پایا جاتا ہے جس میں تیسری موسیقائی اجزاء کی موج گرد ثی رو پیدا کرتی ہے۔ یہ گرد ثی رو تیسری موسیقائی اجزاء کی موج کے اثر کو ختم کرتا ہے۔

تین دوری ٹرانسفار مر کے متوازن دور حل کرتے وقت ہم تصور کرتے ہیں کہ ٹرانسفار مرستارہ جڑا ہے۔یوں ی
دوری برقی رو، تار کا برقی رو ہو گا اور یک دوری لا گو برقی دباو، یک دوری برقی دباو ہو گا۔اسی طرح ہم اس پر لدے
برقی بوجھ کو بھی ستارہ جڑا تصور کرتے ہے۔یوں تین دوری دور کی بجائے ہم نسبتاً آسان یک دوری دور حل کرتے
ہیں۔ ایسا کرنے سے مسلہ پر غور کرنا آسان ہو جاتا ہے۔آئیں ایک مثال سے اس عمل کو سمجھیں۔

مثال 3.9: شکل 3.30 میں تین دوری $\Delta: Y: 2000$ کلو وولٹ-ایمپیئر، 600: 11000 وولٹ اور 50 ہر ٹز y جانب ورک متوازن تکونی ہو جھ کو طاقت مہیا کر رہا ہے۔ بو جھ کا ہر حصہ y وارک متوازن تکونی ہو جھ کو طاقت مہیا کر رہا ہے۔ بو جھ کا ہر حصہ y وارک متوازن تکونی ہو جھ کو طاقت مہیا کر رہا ہے۔ بوجھ کا ہر حصہ y وارک ہے۔ کے برابر ہے۔

- اس شکل میں تمام برقی رو معلوم کریں۔
- برقی بوجه 83 کو در کار طاقت معلوم کریں۔

حل: پہلے تکونی بوجھ کو سارہ بوجھ میں تبدیل کرتے ہیں:

$$Z_Y = \frac{Z_\Delta}{3} = \frac{0.504 + j0.1917}{3} = 0.168 + j0.0639$$

electrical load 83

100 باب. 3. ٹرانسفار مسر

شكل 3.31: تكونى بوجھ كومساوى ستاره بوجھ ميں تبديل كيا گياہے۔

ستارہ بوجھ کو شکل 3.31 میں دکھایا گیا ہے جہال ایک برقی تار جسے نقطہ دار لکیر سے ظاہر کیا گیا ہے کو ٹرانسفار مرک زمینی نقطہ سے بوجھ کے مشتر کہ سرے کے در میان جڑا دکھایا گیا ہے۔ متوازن دور میں اس تار میں برقی رو صفر ہو گا۔ حل کرنے کی نیت سے ہم اس متوازن دور سے یک دوری حصہ لے کر حل کرتے ہیں۔

مساوی ستاره بوجه میں برقی رو

$$I = \frac{346.41}{0.168 + j0.0639} = 1927.262 / -20.825^{\circ}$$

اور یک دوری طاقت درج ذیل ہو گی۔

$$p = 346.41 \times 1927.262 \times \cos(-20.825^\circ) = 624\,007\,\mathrm{W}$$

کل طاقت تین گنا ہو گی لیعنی 1872 kW جس بوجھ کا جزو طاقت ⁸⁴ درج ذیل ہو گا۔

$$\cos(-20.825^{\circ}) = 0.93467$$

تکونی بوجھ میں برتی رو 1112.7 $=rac{1927.262}{\sqrt{3}}$ ایمپیئر ہو گا۔ ٹرانسفار مرکی ابتدائی جانب برتی تاروں میں برتی رو درج ذیل ہو گا۔

$$\left(\frac{600}{11000}\right)\times1927.262=105.12\,\mathrm{A}$$

 $power\ factor^{84}$

اس مثال میں جزو طاقت 0.93467 ہے۔اس کتاب کے لکھتے وقت پاکستان میں اگر صنعتی کارخانوں کی برقی بوجھ کی جزو طاقت 0.9 سے کم ہو جائے تو برقی طاقت فراہم کرنے والا ادارہ (واپڈا) جرمانہ نافذ کرتا ہے۔

3.13 ٹرانسفار مرچالو کرتے لمحہ زیادہ محرکی برقی روکا گزر

ہم دیکھ کچے ہیں کہ اگر ٹرانسفار مرکے قالب میں کثافتِ مقناطیسی بہاو سائن نما ہو لیعنی $B=B_0\sin\omega t$ تو اس کے لئے ہم لکھ سکتے ہیں

$$v = e = N \frac{\partial \varphi}{\partial t} = N A_c \frac{\partial B}{\partial t}$$
$$= \omega N A_c B_0 \cos \omega t$$
$$= V_0 \cos \omega t$$

لعيني

$$(3.49) B_0 = \frac{V_0}{\omega N A_c}$$

یہ مساوات برقرار چالو85 ٹرانسفار مر کے لئے درست ہے۔

تصور کریں کہ ایک ٹرانسفار مر کو چالو کیا جا رہا ہے۔ چالو ہونے سے پہلے قالب میں مقناطیسی بہاو صفر ہے اور جس لمحہ اسے چالو کیا جائے اس لمحہ بھی یہ صفر ہی رہتا ہے۔

جس لمحه ٹرانسفار مر کو چالو کیا جائے اس لمحہ لا گو برقی دباو

$$v = V_0 \cos(\omega t + \theta)$$

ہے۔اگر $\pi/2$ یہ لمحہ ہو تو آدھے دوری عرصہ $\pi/2$ بعد قالب میں کثافتِ مقناطیسی بہاو $heta=\pi/2$

$$B = \frac{1}{NA_c} \int_0^{\pi/\omega} V_0 \cos(\omega t + \pi/2) dt$$
$$= \frac{V_0}{\omega NA_c} \sin(\omega t + \pi/2)_0^{\pi/\omega}$$
$$= -\left(\frac{2V_0}{\omega NA_c}\right)$$

steady state 85 time period 86

102 باب. 3. ٹرانسفار مسر

یعنی کثافتِ مقناطیسی بہاو کا طول معمول سے دگنا ہو گا۔ اگر یہی حساب $\theta=0$ لحمہ کے لئے کیا جائے تو زیادہ سے زیادہ کثافتِ مقناطیسی بہاو بالکل مساوات 3.49 کے عین مطابق ہو گا۔ ان دو زاویوں کے مابین زیادہ سے زیادہ کثافتِ مقناطیسی بہاو ان دو حدوں کے در میان رہتا ہے۔

قالب کی B-H خط غیر بندر تک بڑھتا ہے۔ لہذا B دگنا کرنے کی خاطر H کو کئی گنا بڑھانا ہو گا جو کچھے میں محرک برتی رو بڑھانے سے ہوتا ہے 88 یہاں صفحہ 52 پر دکھائے شکل 2.17 سے رجوع کریں۔ قومی ٹرانسفار مروں میں بیجانی کثافتِ مقناطیسی بہاو کی چوٹی 1.3 0.1 0.1 0.1 ہوتی ہے۔ ٹرانسفار مر چالو کرتے لمحہ یوں کثافتِ مقناطیسی بہاو کے سے 0.1 ٹیلز برتی رو نہایت زیادہ ہو گی۔

2000⁸⁷ کلووولٹ -ایمپیئرٹرانسفار مرسے جالو کرتے وقت تھر تھراہٹ کی آواز آتی ہے

باب4

برقی اور میکانی توانائی کا باہمی تبادلہ

برقی رو یا مقناطیسی بہاو کی مدد سے برقی توانائی کو میکانی توانائی یا میکانی توانائی کو برقی توانائی میں مختلف مشین تبدیل کرتے ہیں۔ پیائش آلات، لاؤڈ سیکیر، ماکروفون، وغیرہ نہایت کم طاقت کا تبادلہ کرتے ہیں جبکہ ریلے 1، برقی مقناطیس، وغیرہ، قوت پیدا کرتے ہیں۔ کئی مشین، جن میں برقی موٹر اور جزیٹر شامل ہیں، ایک قسم کی توانائی کو لگاتار دوسری قسم کی توانائی میں تبدیل کرتے ہیں۔

اس باب میں مقناطیسی بہاو کی مدد سے توانائی کے تبادلہ پر غور کیا جائے گا۔ برقی رو کی مدد سے بھی توانائی کا تبادلہ سمجھا جا سکتا ہے جس کا تذکرہ اس کتاب میں نہیں کیا جائے گا۔

اس باب میں ہم وہ اہم تراکیب سکھیں گے جو انجنیئری مسائل حل کرنے میں مددگار ثابت ہوں گے۔

4.1 مقناطیسی نظام میں قوت اور قوت مروڑ

برقی میدان E میں برقی بار q پر درج ذیل قوت اثر انداز ہوگ۔

$$\mathbf{F} = q\mathbf{E}$$

 $relay^1$

a کارخ دیگا۔ a کارخ دیگا۔ b اگردائیں ہاتھ کی شہادت کی انگلی b اور بڑی انگلی b کے رخ ہوں تب انگوٹھا مثبت باریر

مثبت برقی بار پر قوت برقی شدت E کے رخ ہو گی جبکہ منفی بار پر قوت E کے مخالف رخ ہو گی۔

مقاطیسی میدان میں متحرک بار q ، جس کی سمتی رفتارv ہو، پر درج ذیل قوت اثر انداز ہو گی۔ $\mathbf{F} = q\left(\mathbf{v} \times \mathbf{B}\right)$

مثبت برتی بار پر قوت کا رخ دائیں ہاتھ کے قانون 6 دیگا۔دائیں ہاتھ کا انگوٹھا، شہادت کی انگلی اور بڑی انگلی کو ایک دوسرے کے ساتھ 90 زاویہ پر رکھتے ہوئے اگر شہادت کی انگلی 0 اور بڑی انگلی 0 کے رخ ہوں تب انگوٹھا 0 کے رخ ہوگا (شکل 0)۔ منفی بار پر قوت مخالف رخ ہوگی۔ یہاں سمتی رفتار 0 اور 0 کے بھے۔

برتی اور متناطیسی (دونوں) میدان میں حرکت پذیر بار پر قوت مساوات 4.1 اور مساوات 4.2 کے مجموعہ سے حاصل ہو گی جس کو مساوات لوریزہ کہتے ہیں۔

(4.3)
$$F = q(E + v \times B)$$
 مساوات لورینز

مساوات 4.2 میں $v=\mathrm{d}L/\mathrm{d}t$ کھے کر درج ذیل حاصل ہو گا جہاں آخری قدم پر $v=\mathrm{d}L/\mathrm{d}t$ کھا گیا -

(4.4)
$$\begin{aligned} \boldsymbol{F} &= q \left(\frac{\mathrm{d} \boldsymbol{L}}{\mathrm{d} t} \times \boldsymbol{B} \right) \\ &= \frac{q}{\mathrm{d} t} \left(\mathrm{d} \boldsymbol{L} \times \boldsymbol{B} \right) \\ &= i \left(\mathrm{d} \boldsymbol{L} \times \boldsymbol{B} \right) \end{aligned}$$

velocity² right hand rule³ Lorenz equation⁴

شكل 4.2: ايك چكرك لچھے پر قوت اور قوت مروڑ

مثال 4.1: شکل 4.2 میں ایک لچھا مقناطیسی میدان میں دکھایا گیا ہے۔ لچھے کا رداس 15 سم، محوری لمبائی 50 سم اور اس میں برقی رو 5 ایمپیئر ہے۔ کثافت مقناطیسی بہاو کو نقطہ دار نو کیلی لکیروں سے شالی قطب سے جنوبی قطب کے رخ دکھایا گیا ہے۔ اگر کثافت مقناطیسی بہاو 0.55 ٹسلا ہو تب

- کھھے کے اطراف پر قوت دریافت کریں اور
 - کھے پر قوت مروڑ τ دریافت کریں۔

حل: شکل-الف اور ب میں کار تیسی اکائی سمتیات دکھائے گئے ہیں۔ برقی تار کے سروں کو نظر انداز کرتے ہوئے اے ایک بند مستطیل تصور کرتے ہیں۔ یوں شکل-الف میں برقی رو کے رخ تار کے اطراف کی لمبائیاں ورج ذیل ہوں گی جبکہ $B = B_0 a_{\rm X}$ ہوں گی جبکہ جہو گا۔

$$egin{aligned} oldsymbol{L}_{bc} &= loldsymbol{a}_{
m y} \ oldsymbol{L}_{cd} &= -2roldsymbol{a}_{
m x} \ oldsymbol{L}_{de} &= -loldsymbol{a}_{
m y} \ oldsymbol{L}_{eb} &= 2roldsymbol{a}_{
m x} \end{aligned}$$

یوں مساوات 4.2 کے تحت ان اطراف پر قوت (نیوٹن) درج ذیل ہو گا۔

$$egin{aligned} m{F}_{bc} &= i \left(m{L}_{bc} imes B_0 m{a}_{
m X}
ight) \ &= 5 \left(0.5 m{a}_{
m Y} imes 0.55 m{a}_{
m X}
ight) \ &= -1.375 m{a}_{
m Z} \ m{F}_{cd} &= 5 \left(-0.3 m{a}_{
m X} imes 0.55 m{a}_{
m X}
ight) \ &= 0 \ m{F}_{de} &= 5 \left(-0.5 m{a}_{
m Y} imes 0.55 m{a}_{
m X}
ight) \ &= 1.375 m{a}_{
m Z} \ m{F}_{ea} &= 0 \end{aligned}$$

ہم دیکھتے ہیں کہ صرف محوری اطراف پر قوتیں پائی جاتی ہیں جنہیں شکل 4.2-ب میں دکھایا گیا ہے۔ محوری اطراف پر اثر انداز قوت، مروڑ پیدا کرتی ہیں جس کا رخ دائیں ہاتھ کے قانون سے حاصل ہو گا۔ متنظیل تاریر قوت مروڑ (نیوٹن میٹر) درج ذیل ہو گا۔

$$\tau = -1.375 \times 2 \times 0.15 \times \sin \theta \mathbf{a}_{y}$$
$$= -0.4125 \sin \theta \mathbf{a}_{y}$$

مساوات 4.1 تا مساوات 4.3 كا استعال صرف سادہ ترين صورتوں ميں ممكن ہوتا ہے۔ حقیقی مشینوں میں ان مساوات سے قوت لغین كرنا مشكل ثابت ہوتا ہے۔ آئيں ايك ايك تركيب سيكھتے ہیں جس سے ہم مختلف مشینوں میں پائی جانی والی قوتیں لغین كر سكيں ۔ اس تركیب ہم-توانائی كا طريقه كہتے ہیں جو توانائی كے الل ہونے پر مبنی ہے۔

گھومتی برتی مثین عموماً دو کچھوں پر مشتمل ہوتی ہیں۔ ان میں ایک کچھا مثین کے ساکن حصہ پر لپٹا ہوتا ہے جس کی بنا یہ ساکن رہتا ہے اور ساکن لچھا⁵ کہلاتا ہے۔ دوسرا کچھا مثین کے گھومنے حصہ پر لپٹا ہوتا ہے اور مثین گھومنے سے یہ بھی گھومتا ہے۔ اس کو گھومتا کچھا⁶ کہتے ہیں۔ان کچھوں کو دو عدد مقناطیس تصور کرتے ہوئے ایسی مشینوں کی کارکردگی باآسانی سمجھی جا سکتی ہے۔

جس طرح دو مقناطیس اگر قریب لائے جائیں تو یہ کوشش کرتے ہیں کہ ایک کا شال N دوسرے کے جنوب S کی سمت ہو۔

stator coil⁵ rotor coil⁶

شکل 4.3: برتی توانائی سے میکانی توانائی کے تبادلہ کا نظام۔

موٹر کے دو کچھے مقناطیس پیدا کرتے ہیں۔ہم جانتے ہیں کہ ایک مقناطیس کے شال N اور دوسرے کے جنوب S کے نقی قوت کشش پائی جاتی ہے۔ ساکن کچھے کا مقناطیسی بہاو گھومتے کچھے کے مقناطیسی بہاو سے کچھ آگے رہ کر اسے کھینے کر کام کرتا ہے۔ جزیٹر میں اس کے بر عکس گھومتا کچھا، ساکن کچھے پر کام کرتے ہوئے اس میں برقی دباو پیدا کرتا ہے۔

توانائی کے طریقے کو شکل 4.3 کی مدد سے سمجھا جا سکتا ہے۔ یہاں مقناطیسی نظام کو ایک ڈبہ مانند دکھایا گیا ہے۔ اس نظام کو برقی توانائی مہیا کی جاتی ہے جس کو یہ میکانی توانائی میں تبدیل کرتا ہے۔ یہاں برقی توانائی کے متغیرات فاصلہ x اور میدانی قوت F_m ہیں۔ اس شکل میں بائیں یعنی ابتدائی یا اولین جانب i کا رُخ باہر سے اندر ہے جبکہ دائیں یعنی ثانوی جانب F_m کا رُخ اندر سے باہر رخ ہے۔ یہ ٹرانسفار مر دور کے شکل 3.7 کی مانند ہے۔

جہاں نظام میں توانائی کے ضیاع کو ذخیرہ توانائی سے علیحدہ کرنا ممکن ہو وہاں توانائی کے ضیاع کو بیرونی رکن تصور کیا جاتا ہے۔ شکل 4.4 میں ایک ایسا ہی نظام دکھایا گیا ہے جس میں کچھا برقی نظام اور حرکی حصہ میکانی نظام کو ظاہر کرتے ہیں اور کچھے میں توانائی کے ضیاع کو بیرونی مزاحمت R سے ظاہر کیا گیا ہے۔

توانائی کا بنیادی اصول کہتا ہے کہ توانائی نا تو پیدا کی جاسکتی ہے اور نا ہی اسے تباہ کیا جا سکتا ہے۔ اس کو صرف ایک قشم سے دوسرے قشم کی توانائی میں تبدیل کیا جا سکتا ہے۔ یوں نظام کو فراہم برتی توانائی بن ∂W_{ij} کا ایک حصہ میکانی توانائی می_{کا}نی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی توانائی میکانی ہو گا جبہ اس کا دوسرا حصہ میلائی کا مناظیسی میدان میں ذخیرہ ہو گا اور باتی حصہ میلائی مختلف طریقوں سے ضائع ہو گیا جو ہمارے کسی کام نہ آسکے گا:

$$\partial W_{\mathbf{j}} = \partial W_{\mathbf{j}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}} + \partial W_{\mathbf{n}}$$

میدانی قوت F_m میں چھوٹی ککھائی میں mلفظ میدانی کو ظاہر کر رہاہے۔

شكل 4.4: قوت پيدا كرنے والا آلا۔

برقی توانائی کے ضیاع کو نظرانداز کرتے ہوئے $\partial W_{ij} = \partial W_{ij} + \partial W_{ij} + \partial W_{ij}$ (4.6) $\partial W_{ij} = \partial W_{ij} + \partial W_{ij}$ کھھا جا سکتا ہے جس کو ∂t سے تقسیم کر کے

(4.7)
$$\frac{\partial W_{\ddot{\mathbf{J}}_{2}}}{\partial t} = \frac{\partial W_{\dot{\mathbf{J}}_{2}}}{\partial t} + \frac{\partial W_{\dot{\mathbf{J}}_{2}}}{\partial t}$$

کھا جا سکتا ہے جو توانائی کی بجائے طاقت کی بات کرتی ہے۔ اس مساوات کے بائیں ہاتھ برقی طاقت کو ei اور دائیں ہاتھ میکانی حصہ میں $\partial W_{\dot{0}} = F_m \partial x$ لکھ کر

(4.8)
$$ei = F_m \frac{\partial x}{\partial t} + \frac{\partial W_m}{\partial t}$$

حاصل ہو گا جہاں میراطیم W_m کو W_m کھا گیا ہے۔ مساوات 2.27 استعال کرتے ہوئے اس کو

$$i\frac{\partial \lambda}{\partial t} = F_m \frac{\partial x}{\partial t} + \frac{\partial W_m}{\partial t}$$

کھا جا سکتا ہے۔ دونوں اطراف کو ∂t سے ضرب دے کر ترتیب نو کرتے ہوئے درج ذیل حاصل ہو گا۔ $\partial W_m = i\partial \lambda - F_m \partial x$

مساوات 4.10 توانائی کے طریقہ کی بنیاد ہے۔ اس مساوات کو استعال کرتے وقت یاد رہے کہ قوت بنیادی طور پر لوریز کے قانون e ہے ہی پیدا ہوتی ہے۔مساوات 4.10 میں برقی متغیرات i اور e کی بجائے i اور k ہیں۔ لہذا شکل 4.3 کو شکل 4.5 کی طرح بھی بنایا جا سکتا ہے۔

کسی بھی تفاعل z(x,y) کا کل تفرق درج ذیل ہو گا جہاں $\frac{\partial z}{\partial x}$ لیتے ہوئے y کو مستقل تصور کیا جاتا ہے

Lorenz equation⁸ function⁹

شكل 4.5: تواناكى كى قشم تبديل كرنے والاايك نظام۔

اور $\frac{\partial z}{\partial y}$ کو مستقل تصور کیا جاتا ہے۔

(4.11)
$$\partial z(x,y) = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

اسی طرح $W_m(x,\lambda)$ کا کل تفرق

(4.12)
$$\partial W_m(x,\lambda) = \frac{\partial W_m}{\partial x} dx + \frac{\partial W_m}{\partial \lambda} d\lambda$$

ہو گا جس کا موازنہ مساوات 4.10 کے ساتھ کر کے درج ذیل اخذ کیا جا سکتا ہے جہاں ایک متغیر کے ساتھ جزوی تفرق لیتے وقت دوسرے متغیر کو صریحاً مستقل ظاہر کیا گیا ہے۔

(4.13)
$$F_m(x,\lambda) = -\left. \frac{\partial W_m(x,\lambda)}{\partial x} \right|_{\lambda_0}$$

(4.14)
$$i(x,\lambda) = \left. \frac{\partial W_m(x,\lambda)}{\partial \lambda} \right|_{x_0}$$

مقناطیسی میدان میں مقناطیسی توانائی $W_m(x,\lambda)$ دریافت کر کے مساوات 4.13 کی استعال سے قوت دریافت کی جاسکتی ہے۔ اگلے حصد میں مقناطیسی توانائی کا حصول سکھایا جائے گا۔

4.2 تبادله توانائی والاایک کچھے کا نظام

شکل 4.4 میں ایک کچھے کا سادہ نظام و کھایا گیا ہے۔ کچھے میں برتی ضیاع کو بیرونی مزاحمت سے ظاہر کیا گیا ہے جبکہ میکانی نظام میں حرکی حصہ کی کمیت کو نظرانداز کیا گیا ہے۔ جہاں اس کمیت کا اثر جاننا ضروری ہو وہاں اس کو ایک بیرونی کمیت تصور کیا جا سکتا ہے۔ اس طرح تبادلہ توانائی کے نظام پر غور کرنا آسان ہوتا ہے۔ قوت پیدا کرنے والی مشین میں حرکت نا گزیر ہے۔ عموماً حرکت تب ممکن ہوگی جب مقناطیسی قالب میں قابل تبدیل خلاء موجود ہو۔ قالب میں خلاء کی موجود گی کی بنا عام طور پر $\Re_a\gg\Re_c\gg\Re_c$ ہوگا اور ایسا مقناطیسی دور حل کرتے ہوئے \Re_c کو نظر انداز کیا جائے گا۔ یوں، جیسا مساوات 2.19 میں دیا گیا ہے، مقناطیسی دباو τ اور مقناطیسی بہاو ϕ براہ راست متناسب ہول گے۔ ایسی صورت میں مساوات 2.29 میں امالہ M شکل M میں خلاء کی لمبائی M پر منحصر ہوگی لہذا اس مساوات کو درج ذیل کھتے ہیں۔

$$(4.15) \lambda = L(x)i$$

شکل 4.4 میں قوت F_m کے رخ طے ہونے والا فاصلہ x ہے۔ یوں میکانی کام مل ہوگا جبکہ ہوگا جبکہ فراہم برتی توانائی $\partial W_{ij} = i\,\mathrm{d}\lambda$ ہوگا $\partial W_{ij} = i\,\mathrm{d}\lambda$ فراہم برتی توانائی $\partial W_{ij} = i\,\mathrm{d}\lambda$ کو مساوات 4.10 کا تکمل $\partial W_{ij} = i\,\mathrm{d}\lambda$ کا تحمل کرتے ہیں۔

(4.16)
$$\int \partial W_m(x,\lambda) = \int i(x,\lambda) \, d\lambda - \int F_m(x,\lambda) \, dx$$

اس تکمل کا حصول شکل 4.6 سے واضح ہو گا۔ابتدائی نقطے پر مقناطیسی نظام کو کوئی برتی توانائی فراہم نہیں کی گئی ہے۔ یوں نظام میں برقی رو صفر ہو گی جس کی بنا مقناطیسی بہاو اور ارتباط بہاو بھی صفر ہوں گے النذا مقناطیسی میدان میں مقناطیسی توانائی بھی صفر ہو گی۔ کسی بھی مقناطیس کی قوت کشش اس کی مقناطیسی بہاو پر منحصر ہوتی ہے للذا صفر مقناطیسی بہاو کی بنا اس نظام میں قوت کشش صفر ہو گا اور یوں اس میں حرکت بھی صفر ہو گا۔اس طرح ابتدائی نقطہ پر درج ذیل ہوں گے۔

$$i = \phi = \lambda = W_m = F_m = x = 0$$

ابتدائی نقطہ شکل 4.6 میں دکھایا گیا ہے۔ اب کچھے کو برتی توانائی فراہم کی جاتی ہے۔ کچھے میں برتی رو کی بنا قوت اور حرکت پیدا ہو گی۔ آخر کار نظام اختتای نقطہ پر پنچے گا۔اختتای نقطہ بھی شکل میں دکھایا گیا ہے۔ اس نقطہ پر $x=x_0$ اور $x=x_0$ اور $x=x_0$ بیں اور مقناطیسی میدان میں توانائی ($x=x_0$) سہالیہ ہے۔ابتدائی نقطہ سے اختتای نقطہ تک $x=x_0$ کی توانائی کو یوں بڑھایا جاتا ہے کہ $x=x_0$ میں موٹی کیر (اصل راستے) پر رہیں۔ آخری نقطہ پر مقناطیسی میدان میں مقناطیسی توانائی $x=x_0$ جائے ہم متبادل راستہ اختیار کرتے ہیں۔ حاصل کرنا ہو گا جو ایک مشکل کام ہے۔اس راہ پر تکمل کی بجائے ہم متبادل راستہ اختیار کرتے ہیں۔

 $integral^{10}$

شكل 4.6: مقناطيسي ميدان ميں توانائي۔

ہم اس حقیقت سے فائدہ اٹھاتے ہیں کہ مقناطیسی میدان ایک قدامتے پہند میدالین الے جس کا مطلب ہے کہ مقاطیسی میدان میں مقاطیسی میدان مقاطیس و آنائی کا دارو مدار راہ پر مخصر نہیں ہے لہذا توانائی کے حصول کے حکمل میں ہم من پہند راستہ اختیار کرتے ہیں ہم می لیتے ہوئے شکل 4.6 میں ابتدائی نقطہ سے پہلی راہ چل کر فاصلہ x_0 سے کر کے دوسری راہ اختیار کر کے اختیامی نقطہ (x_0, λ_0) کت نقطہ (x_0, λ_0) کت مقاطہ کا مجموعہ کہ مقاطبات کا مجموعہ کی اور دوسرا یہاں سے نقطہ (x_0, λ_0) کت لیا جائے گا:

(4.17)
$$\int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda) = \int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda) + \int_{\partial U_m(x,\lambda)} \partial W_m(x,\lambda)$$

اس مساوات کے دائیں ہاتھ کھلات کو باری باری دیکھتے ہیں۔ پہلی راہ کھل کو مساوات 4.16 کی مدد سے لکھتے ہیں۔

(4.18)
$$\int_{0}^{\infty} \partial W_m(x,\lambda) = \int_0^0 i(x,0) \,\mathrm{d}\lambda - \int_0^{x_0} F_m(x,0) \,\mathrm{d}x$$

جیبیا شکل 4.6 میں دکھایا گیا ہے، پہلی راہ پر $0=\lambda$ ہے۔ مساوات 4.18 میں اس بات کو برتی رو i(x,0) اور قوت f_0^0 i(x,0) $\mathrm{d}\lambda=0$ کیا گیا ہے۔ چونکہ ابتدائی اور اختتامی نقطوں پر λ صفر ہے للمذا δ δ ہوگا۔ ایسے تکمل کی قیمت صفر ہوتی ہے جس کا ابتدائی اور اختتامی نقطے ایک دوسرے کے برابر ہوں۔

conservative field¹¹

المين ميدان مجى قدامت پندميدان ہے۔ اى لئے اگر كيت mكوكسى مجى رائے ميدان ميدان ميدان ميدان ہے۔ اى لئے اگر كيت mكوكسى مجى رائے ميدان ميدان ميدان ہے۔ اى لئے اگر كيت ميدان ہے۔ اى كئے اگر كيت ہے۔ ان كئے اگر كيت ہے۔ ان كئے اگر كیت ہے۔ ان كئے اگر كيت ہے۔ ان كئے اگر كيت ہے۔ ان كئے اگر كيت ہے۔ ان كئے اگر كئے ان كئے اگر كے اگر كے ان كئے اگر كے اگر كے ان كئے اگر كئے ان كئے اگر كے ان كئے اگر كئے اگ

پہلی راہ پر $0=\lambda$ ہونے کی بنا اس راہ پر مقناطیسی بہاو بھی صفر ہو گا لہذا اس راہ پر مقناطیسی اثر نہیں پایا جائے گا اور قوت F_m صفر ہو گا۔ ہم جانتے ہیں کہ صفر کا تکمل صفر ہوتا ہے لہذا $0=F_m$ صفر ہو گا۔ یوں کہ میں راہ پر کا تکمل (میاوات 4.18) صفر ہو گا:

(4.19)
$$\int_{0}^{\infty} \partial W_m(x,0) = \int_0^0 i(x,0) \, d\lambda - \int_0^{x_0} F_m(x,0) \, dx = 0$$

مساوات 4.17 میں دوسری راہ کا تکمل

(4.20)
$$\int_{\partial L(\zeta,z)} \partial W_m(x_0,\lambda) = \int_0^{\lambda_0} i(x_0,\lambda) \,\mathrm{d}\lambda - \int_{x_0}^{x_0} F_m(x_0,\lambda) \,\mathrm{d}x$$

ہو گا۔ دوسری راہ پر $x=x_0$ ہے لہذا مساوات 4.20 میں دائیں ہاتھ دوسرے تکمل کا ابتدائی نقطہ x_0 اور اختتامی نقطہ بھی x_0 ہو گا جس کی بنا قوت کا تکمل صفر ہو گا:

(4.21)
$$\int_{x_0}^{x_0} F_m(x_0, \lambda) \, \mathrm{d}x = 0$$

آخر میں مساوات 4.20 کے دائیں ہاتھ، برتی رو کا تکمل حل کرنا باقی ہے۔ مساوات 4.15 استعال کرتے ہوئے اسے حل کرتے ہیں۔

(4.22)
$$\int_0^{\lambda_0} i(x_0, \lambda) \, d\lambda = \frac{1}{L(x_0)} \int_0^{\lambda_0} \lambda \, d\lambda = \frac{\lambda_0^2}{2L(x_0)}$$

مباوات 4.20، مباوات 4.21 اور مباوات 4.22 کے نتائج استعال کرتے ہوئے مباوات 4.17 میں دیے تکمل کا حل کھتے ہیں:

$$W(x_0, \lambda_0) = \frac{\lambda_0^2}{2L(x_0)}$$

اس مباوات میں اختتامی نقطہ کو عمومی نقطہ (x,λ) لیتے ہوئے درج ذیل حاصل ہو گا جو مقناطیسی میدان میں توانائی کی مباوات ہے۔

$$(4.23) W(x,\lambda) = \frac{\lambda^2}{2L(x)}$$

شكل 4.7: حركت اور توانائي _

مساوات 4.23 کی مدد سے مساوات 4.13 کے ذریعہ قوت $F_m(x,\lambda)$ اور مساوات 4.14 کے ذریعہ برقی رو $i(x,\lambda)$ کا حساب اب ممکن ہے۔

مثال 4.2: شکل 4.7 میں حرکت کرنے والا ایک مقناطیسی نظام دکھایا گیا ہے۔ حرکی اور ساکن حصوں کے نظم مثال 4.2: شکل 4.7 میں حرکت کرنے والا ایک مقناطیسی نظام دکھایا گیا ہے۔ حرکی اور ساکن حصوں کے نظم خلائی درز g موجود ہے۔ اگر i=30 A میں i=30 A موبود ہے۔ اگر i=30 A میں توانائی i=30 A کیا ہوگی؟

(4.24)
$$W_m(x,i) = \frac{1}{2} \frac{N^2 \mu_0 w(b-x)}{2g} i^2$$

ہو گا جس میں دی گئ معلومات پر کرنے سے درج ذیل توانائی حاصل ہو گی (جس کی اکائی جاول ہے)۔

$$W_m(x,i) = \frac{1}{2} \times \frac{500^2 \times 4\pi 10^{-7} \times 0.4(0.2 - x)}{2 \times 0.001} \times 30^2$$
$$= 28278(0.2 - x)$$

مثال 4.3: شکل 4.7 میں توانائی کے طریقہ سے قوت F_m دریافت کریں۔

 λ اور λ ماوات 4.13 کہتی ہے کہ مینے رات x اور x ہو گا جہاں توانائی کے متغیرات x اور x اور x اور x ہیں۔

مثال 4.2 میں مساوات 4.24 حاصل کی جو توانائی کا کلیہ ہے۔اییا کرتے ہوئے λ کی جگہ میں عبول λ جانے ہوئے λ اور λ ہیں۔ قوت کے حصول گیا جس کی بنا مساوات 4.24 میں λ بیل کے متغیرات λ اور λ کا بجائے λ اور λ ہیں۔ قوت کے حصول کے تاکہ توانائی کے درست متغیرات درکار ہوں گے تاکہ توانائی کے کئے مساوات 4.24 استعال نہیں کیا جا سکتا ہے۔ ہمیں توانائی کے درست متغیرات درکار ہوں گے تاکہ توانائی درست وقت حاصل نہیں ہوتا ہے)۔ درست طریقہ درج ذیل ہے۔

(4.25)
$$W_m(x,\lambda) = \frac{\lambda^2}{2L} = \frac{\lambda^2}{2\left(\frac{N^2 \mu_0 A_g}{2g}\right)} = \frac{g\lambda^2}{N^2 \mu_0 w(b-x)}$$

مساوات 4.25 اور مساوات 4.13 مل كر درج ذيل ديتي هين-

$$F_m = -\frac{\partial W_m(x,\lambda)}{\partial x}$$
$$= -\frac{g\lambda^2}{N^2 \mu_0 w (b-x)^2}$$

تفرق لینے کے بعد λ کی جگہ Li پر کیا جا سکتا ہے۔یوں قوت

$$F_m = -\frac{gL^2i^2}{N^2\mu_0w(b-x)^2}$$
$$= -\frac{N^2\mu_0wi^2}{4g}$$
$$= -28278$$

نیوٹن حاصل ہوتی ہے۔ قوت کی علامت منفی ہے جس کے تحت قوت گھٹت x رخ ہو گی۔ یوں حرکی حصہ بائیں رخ کھینچا جائے گا۔

4.3. توانائی اور جم – توانائی

شكل 4.8: ہم-توانائي كى تعريف_

4.3 توانائی اور ہم-توانائی

شکل 4.8 میں λ اور i کے مابین ترسیم و کھایا گیا ہے۔اس کیبر کے نیچے رقبہ ہم-توانائی W_m تصور کریں۔ اس ترسیم پر کوئی ایک نقطہ (λ,i) لے کر ایک کیبر نیچے اور دوسری بائیں کھینچ کر ایک مستطیل مکمل کیا گیا ہے جس کا رقبہ λ ہے۔ مستطیل کے رقبہ سے توانائی W_m منفی کرنے سے حاصل رقبہ ہم-توانائی W_m^{-13} کہلاتا ہے۔

$$(4.26) W_m' = \lambda i - W_m$$

ہم-توانائی کے جزوی فرق

$$\partial W'_m = \partial(\lambda i) - \partial W_m$$
$$= \lambda \partial i + i \partial \lambda - \partial W_m$$

میں مساوات 4.10 کا استعال

$$\partial W_m' = \lambda \partial i + i \partial \lambda - (i \partial \lambda - F_m \partial x)$$

لعيني

$$\partial W_m' = \lambda \partial i + F_m \partial x$$

د يگا۔

 $co-energy^{13}$

یبان بھی مساوات 4.11 تا مساوات 4.14 کی طرح کسی بھی تفاعل z(x,y) کا جزوی فرق

$$\partial z(x,y) = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

ہو گا لہذا ہم-توانائی $W_m'(x,i)$ کا جزوی فرق درج ذیل ہو گا۔

(4.28)
$$\partial W'_m(x,i) = \frac{\partial W'_m}{\partial x} dx + \frac{\partial W'_m}{\partial i} di$$

مساوات 4.28 کا مساوات 4.27 کے ساتھ موازنہ کرنے سے درج زیل حاصل ہو گا۔

$$\lambda = \left. \frac{\partial W_m'}{\partial i} \right|_{x_0}$$

اور

$$(4.30) F_m = \frac{\partial W_m'}{\partial x} \Big|_{i_0}$$

مساوات 4.30 توت دریافت کرنے کا دوسرا کلیہ دیتی ہے۔ مساوات 4.30 میں ہم-توانائی جبکہ مساوات 4.13 میں توانائی کے ذریعہ قوت حاصل کی گئی۔

توانائی کے طریقہ کی طرح مساوات 4.29 سے درج ذیل تکمل لکھا جا سکتا ہے۔

(4.31)
$$W'_m(i_0, x_0) = \int_0^{i_0} \lambda(i, x_0) \, \mathrm{d}i$$

جن نظام میں λ اور i کا تعلق تغیر راست ہو، جس کو مساوات 2.29 بیان کرتی ہو، ان کے لئے درج بالا تکمل کا حل درج ذیل ہو گا جہال x_0 کی بجائے عمومی متغیرات i اور x کھھے گئے ہیں۔

(4.32)
$$W'_m(i,x) = \int_0^i L(x)i \, \mathrm{d}i = \frac{L(x)i^2}{2}$$

بعض مسائل میں توانائی اور بعض میں ہم-توانائی کا استعال زیادہ آسان ثابت ہوتا ہے۔

مثال 4.4: شکل 4.9 میں ایک پیچیدار کچھا دکھایا گیا ہے جس کی محوری لمبائی I، رداس r اور چکر N ہیں۔ پیچیدار کچھے کے مقناطیسی بہاو کا بیشتر حصہ محوری رخ کچھے کے اندر رہتا ہے۔ کچھے کے باہر مقناطیسی بہاو کو نظر انداز کرتے ہوئے کچھے کے اندر محوری لمبائی رخ میدانی شدت $\frac{NI}{l} \approx H$ ہو گی۔

4.3. توانائی اور جم – توانائی

موصل دھات کو امالی برقی توانائی سے بگھلانے کے لئے پیچپرار کچھا استعال کیا جاتا ہے۔ میں 100 تا 1500 کلو واٹ برقی طاقت کی امالی برقی بھٹیارے 14 بناتا رہا جو بالترتیب 500 تا 1200 ہرٹز پر کام کرتی اور 100 سے 3000 کلو گرام لوہا پگھلاتی ہیں۔

امالی بھٹی کے پیچپرار کچھے کے اندر غیر موصل پیالے میں دھات کے ٹکڑے ڈال کر کچھے میں بدلتا رو گزاری جاتی ہے جو دھات میں بھنور نما امالی برقی رو پیدا کرتی ہے۔ بھنور نما رو دھات کو گرم کر کے پکھلاتی ہے۔امالی برقی بھٹی میں لوہے کو 1650 ڈ گری سیسیئرچ ¹⁵ تک گرم کیا جاتا ہے۔

یچپار کچھ میں برتی رو I_0 کی بنا کچھ پر رواسی رخ میکانی دباہ یعنی قوت فی مربع رقبہ پیدا ہو گا۔میری 3000 کلو گرام لوہا پکھلانے کی بھٹی کے پیچپار کچھ کی تفصیل درج ذیل ہے۔

$$N = 11$$
, $I_0 = 10\,000\,\mathrm{A}$, $l = 0.94\,\mathrm{m}$, $r = 0.49\,\mathrm{m}$

اس پر رداسی رخ میکانی دباو (نیوش فی مربع میش) حاصل کریں۔

حل: ہم-توانائی کا طریقہ استعال کرتے ہیں۔

$$L = \frac{\mu_0 N^2 \pi r^2}{l}$$

$$W'_m(r, i) = \frac{Li^2}{2} = \frac{\mu_0 N^2 \pi r^2 I_0^2}{2l}$$

$$F = \frac{\partial W'_m}{\partial r} = \frac{\mu_0 N^2 \pi r I_0^2}{l}$$

high frequency, induction furnaces¹⁴ Celsius, Centigrade¹⁵

شكل4.10: برقى مقناطيس ـ

اں قوت کی علامت مثبت ہے للذا یہ رداسی رخ باہر جانب ہو گا۔ کچھے کو نکلی تصور کریں جس کی گول سطح کا رقبہ $A=2\pi rl$

$$\frac{F}{A} = \frac{\mu_0 N^2 \pi r I_0^2}{2\pi r l^2} = \frac{\mu_0 N^2 I_0^2}{2l^2}$$

دی گئی معلومات پر کرتے ہوئے درج ذیل حاصل ہو گا۔

$$\frac{F}{A} = \frac{4\pi 10^{-7} \times 11^2 \times 10000^2}{2 \times 0.94^2} = 8605 \,\frac{\text{N}}{\text{m}^2}$$

مثال 4.5: 2700 کلوواٹ امالی بھٹی یومیہ 70 ٹن 16 لوہا پگھلاتی 17 ہے۔اتنے وزن کی منتقل کے لئے برقی مقناطیس استعال کیا جاتا ہے۔شکل 4.10 میں ایک ایسا برقی مقناطیس دکھایا گیا ہے جس کی تفصیل درج ذیل ہے۔

$$N = 300, \quad A = 0.8 \,\mathrm{m}^2, \quad I = 30 \,\mathrm{A}$$

برقی مقناطیس اور لوہے کے ﷺ اوسط فاصلہ 2.5 سنٹی میٹر لیں۔ یہ برقی مقناطیس کتنی کمیت کا لوہا اٹھا سکتا ہے؟ حل:

$$\begin{split} L &= \frac{\mu_0 N^2 A}{2l} \\ W_m'(l,i) &= \frac{Li^2}{2} = \frac{\mu_0 N^2 Ai^2}{4l} \\ F &= \frac{\partial W_m'}{\partial l} = -\frac{\mu_0 N^2 Ai^2}{4l^2} = -\frac{4\pi 10^{-7} \times 300^2 \times 0.8 \times 30^2}{4 \times 0.0254^2} = -31\,558\,\mathrm{N} \end{split}$$

¹⁶ہزار کلو گرام ایک ٹن کے برابر ہوتے ہیں۔ ¹⁷ یہ میں اینے تجربے کی بنیاد پر کہد رہاہوں۔

شكل 4.11: دولچھوں كانظام۔

قوت کی علامت منفی ہے۔یوں یہ مقناطیس اور لوہے کے ﷺ فاصلہ کم کرنے کی کوشش کرتی ہے۔یہ مقناطیس $\frac{31558}{9.8} = 3220\,\mathrm{kg}$

مثال 4.6: مثال 4.3 کو ہم-توانائی کے طریقہ سے حل کریں۔

حل: مساوات 4.32 سے

$$W'_{m} = \frac{L(x)i^{2}}{2} = \frac{N^{2}\mu_{0}w(b-x)i^{2}}{4g}$$

لکھ کر مساوات 4.30 سے درج ذیل قوت حاصل ہوتی ہے۔

$$F_m = \frac{\partial W'_m}{\partial x} = -\frac{N^2 \mu_0 w i^2}{4g} = -28278 \,\text{N}$$

4.4 متعدد ليجعول كامقناطيسي نظام

اب تک ایک کچھے کے نظام پر غور کیا گیا۔ اس حصہ میں ایک سے زیادہ کچھوں کے نظام پر غور کیا جائے گا۔ متعدد کچھوں کا نظام بھی ایک کچھے کا برقی رو i_1 اور دوسرے کچھوں کا نظام بھی ایک کچھے کا برقی رو i_1 اور دوسرے

کھے کا برتی رو $_{12}$ ہے۔ اس نظام کے لئے درج ذیل لکھنا ممکن ہے جہاں W_{m} ذخیرہ توانائی کو ظاہر کرتی ہے۔

$$\partial W_{\mathbf{i}} = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2$$

$$\partial W_{\mathbf{j}} = \partial W_{\mathbf{j}} + \partial W_{m}$$

 $\partial W_{\mathbf{j}_{\mathbf{k}}} = F_m \, \mathrm{d} x$ میں پُر کرتے ہوئے درج ذیل مساوات حاصل ہوتی ہے جس میں پُر کرتے ہوئے درج ذیل مساوات ککھا گیا ہے۔

$$(4.35) i_1 d\lambda_1 + i_2 d\lambda_2 = F_m dx + \partial W_m$$

اس کی ترتیب نو درج ذیل دیگی۔

$$\partial W_m(\lambda_1, \lambda_2, x) = i_1 \, \mathrm{d}\lambda_1 + i_2 \, \mathrm{d}\lambda_2 - F_m \, \mathrm{d}x$$

اب بالكل مساوات 4.12 كى طرح درج ذيل لكها جا سكتا ہے۔

(4.37)
$$\partial W_m(\lambda_1, \lambda_2, x) = \frac{\partial W_m}{\partial \lambda_1} d\lambda_1 + \frac{\partial W_m}{\partial \lambda_2} d\lambda_2 + \frac{\partial W_m}{\partial x} dx$$

مساوات 4.36 اور 4.37 کے موازنہ سے درج ذیل تعلقات اخذ ہوتے ہیں۔

(4.38)
$$i_1 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial \lambda_1} \right|_{\lambda_2, x}$$

(4.39)
$$i_2 = \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial \lambda_2} \bigg|_{\lambda_1, x}$$

(4.40)
$$F_m = \left. \frac{\partial W_m(\lambda_1, \lambda_2, x)}{\partial x} \right|_{\lambda_1, \lambda_2}$$

ان مساوات کا استعال تب ممکن ہو گا جب ہمیں توانائی W_m معلوم ہو للذا ہم پہلے توانائی دریافت کرتے ہیں۔

شکل 4.11 میں کچھوں کو بوں طاقت دی جاتی ہے کہ λ_1 اور λ_2 صفر سے بالترتیب λ_{1_0} اور λ_{2_0} تک پہنچتے ہیں اور ساتھ ہی x صفر سے تبدیل ہو کر x_0 ہوتا ہے۔ اس عمل کو شکل x_0 میں موٹی کلیر سے بطور "اصل راہ" دکھایا گیا ہے۔ مساوات x_0 کی طرح ذخیرہ توانائی کے تکمل کے لئے درج ذیل کھا جا سکتا ہے۔

$$\int_{\partial U_m} \partial W_m = \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m + \int_{\partial U_m} \partial W_m$$

شکل 4.12: دولچھوں کے نظام میں مقناطیسی میدان میں توانائی۔

ہم دائیں ہاتھ تکملات کو باری باری حل کرتے ہیں۔

پہلی راہ پر λ_1 اور λ_2 صفر رہتے ہیں جبکہ x کی ابتدائی قیت 0 اور اختتامی قیت λ_2 ہے۔یوں پہلی راہ پر تکمل درج ذیل ہو گا۔

(4.42)
$$\int_{0}^{\infty} \partial W_m = \int_0^0 i_1 \, d\lambda_1 + \int_0^0 i_2 \, d\lambda_2 - \int_0^{x_0} F_m \, dx$$

کسی بھی تکمل کا ابتدائی اور اختیامی نقطہ ایک دوسرے جیسا ہونے کی صورت میں تکمل کی قیمت صفر ہوتی ہے للذا درج بالا میں دائیں ہاتھ، پہلے دو تکملات صفر ہوں گے:

(4.43)
$$\int_0^0 i_1 \, \mathrm{d}\lambda_1 = \int_0^0 i_2 \, \mathrm{d}\lambda_2 = 0$$

پہلی راہ پر λ_1 اور λ_2 صفر ہیں، یعنی، دونوں کچھوں میں برقی رو صفر ہے، للذا مقناطیسی بہاو اور قوت F_m صفر ہوں گے۔ یوں مساوات 4.42 میں قوت کا تکمل صفر ہو گا۔

$$\int_{0}^{x_{0}} F_{m} \, \mathrm{d}x = \int_{0}^{x_{0}} 0 \, \mathrm{d}x = 0$$
 (4.44) (4.44)

مساوات 4.43 اور مساوات 4.44 کے نتائج کے تحت پہلی راہ پر تکمل صفر ہو گا۔

$$\int_{\mathbb{R}^d \setminus \mathbb{R}^n} \partial W_m = 0$$

ووسری راہ پر λ_1 کی ابتدائی قیمت 0 اور اختتامی قیمت λ_2 ہے، λ_2 صفر رہتا ہے جبکہ x کی قیمت x رہتی ہے۔ یوں دوسری راہ پر تکمل درج ذیل ہو گا۔ x

(4.46)
$$\int_{y_1 \neq y_2} \partial W_m = \int_0^{\lambda_{1_0}} i_1 \, d\lambda_1 + \int_0^0 i_2 \, d\lambda_2 - \int_{x_0}^{x_0} F_m \, dx$$

تکمل کا ابتدائی اور اختتامی نقطه ایک جیسا ہونے کی صورت میں تکمل صفر ہو گا:

$$\int_0^0 i_2 \, \mathrm{d}\lambda_2 = \int_{x_0}^{x_0} F_m \, \mathrm{d}x = 0$$

یوں مساوات 4.46 درج ذیل صورت اختیار کرتی ہے۔

$$\int_{\partial U_{0}(\zeta_{1}, \zeta_{2})} \partial W_{m} = \int_{0}^{\lambda_{1_{0}}} i_{1} \, \mathrm{d}\lambda_{1}$$

يهال مساوات 2.33 ، 2.36 اور 2.38 كي ضرورت پيش آئے گي جنهيں دوبارہ پيش كرتے ہيں۔

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

$$(4.49) \lambda_2 = L_{21}i_1 + L_{22}i_2$$

$$(4.50) L_{12} = L_{21}$$

= 4.48 اور مساوات 4.48 کو i_2 اور = 4.48 اور مساوات

$$(4.51) i_1 = \frac{L_{22}\lambda_1 - L_{12}\lambda_2}{D}$$

$$(4.52) i_2 = \frac{L_{11}\lambda_2 - L_{21}\lambda_1}{D}$$

حاصل ہو گا جہاں D درج ذیل ہے۔

$$D = L_{11}L_{22} - L_{12}L_{21}$$

مساوات 4.47 کو مساوات 4.51 کے برابر کھرا کر، دوسری راہ پر λ_2 صفر لے کر درج ذیل حاصل ہو گا۔

$$\int_0^{\lambda_{10}} \left(\frac{L_{22}\lambda_1 - L_{12}\lambda_2}{D} \right) \mathrm{d}\lambda_1 = \frac{L_{22}}{D} \int_0^{\lambda_{10}} \lambda_1 \, \mathrm{d}\lambda_1 = \frac{L_{22}\lambda_{10}^2}{2D}$$

یوں دوسری راہ پر تکمل کی قیمت درج ذیل ہو گی۔

$$\int_{\theta \cup \mathcal{G}(x)} \partial W_m = \frac{L_{22} \lambda_{1_0}^2}{2D}$$

تیسری راہ پر λ_1 کی قیمت λ_1 اور x کی قیمت x_0 پر بر قرار رہتی ہے جبکہ λ_2 کی ابتدائی قیمت λ_1 اختتامی قیمت λ_2 ہے۔ یوں تیسری راہ پر تکمل درج زبل ہو گا۔

(4.54)
$$\int_{\lambda_{10}} \partial W_m = \int_{\lambda_{10}}^{\lambda_{10}} i_1 \, d\lambda_1 + \int_0^{\lambda_{20}} i_2 \, d\lambda_2^2 - \int_{x_0}^{x_0} F_m \, dx$$

تکمل کا ابتدائی اور اختتامی نقطہ ایک جیبا ہونے کی صورت میں تکمل کی قیمت صفر ہوتی ہے للذا درج بالا میں دائیں ہاتھ پہلا اور تیسرا تکمل صفر ہوگا:

(4.55)
$$\int_{\lambda_{10}}^{\lambda_{10}} i_1 \, \mathrm{d}\lambda_1 = \int_{x_0}^{x_0} F_m \, \mathrm{d}x = 0$$

مباوات 4.52 کی استعال سے مساوات 4.54 کا باقی حصہ حل کرتے ہیں۔

(4.56)
$$\int_{0}^{\lambda_{20}} i_{2} d\lambda_{2} = \int_{0}^{\lambda_{20}} \left(\frac{L_{11}\lambda_{2} - L_{21}\lambda_{10}}{D} \right) d\lambda_{2}$$

$$= \frac{L_{11}}{D} \int_{0}^{\lambda_{20}} \lambda_{2} d\lambda_{2} - \frac{L_{21}\lambda_{10}}{D} \int_{0}^{\lambda_{20}} d\lambda_{2}$$

$$= \frac{L_{11}\lambda_{20}^{2}}{2D} - \frac{L_{21}\lambda_{10}\lambda_{20}}{D}$$

مساوات 4.55 اور مساوات 4.56 کی نتائج سے تیسری راہ کا تکمل درج ذیل حاصل ہو گا۔

(4.57)
$$\int_{0}^{\infty} \partial W_m = \frac{L_{11}\lambda_{20}^2}{2D} - \frac{L_{21}\lambda_{10}\lambda_{20}}{D}$$

(4.58)
$$W_m(x,\lambda_1,\lambda_2) = \frac{L_{22}\lambda_1^2}{2D} + \frac{L_{11}\lambda_2^2}{2D} - \frac{L_{21}\lambda_1\lambda_2}{D}$$

$$W_m' = i_1 \lambda_1 + i_2 \lambda_2 - W_m$$

ہو گی۔ یوں درج ذیل ہو گا۔

$$\partial W_m' = i_1 \partial \lambda_1 + \lambda_1 \partial i_1 + i_2 \partial \lambda_2 + \lambda_2 \partial i_2 - \partial W_m$$

مساوات 4.36 استعال کرتے ہوئے ہم-توانائی کے جزوی فرق کی مساوات حاصل ہو گی:

(4.59)
$$\partial W'_m(x, i_1, i_2) = \lambda_1 di_1 + \lambda_2 di_2 + F_m dx$$

جبکه λ_1 اور F_m کی مساواتیں درج ذیل ہوں گ۔

(4.60)
$$\lambda_1 = \left. \frac{\partial W'_m(x, i_1, i_2)}{\partial i_1} \right|_{x, i_2}$$

(4.61)
$$\lambda_2 = \frac{\partial W'_m(x, i_1, i_2)}{\partial i_2} \bigg|_{x, i_1}$$

(4.62)
$$F_m = \left. \frac{\partial W_m'(x, i_1, i_2)}{\partial x} \right|_{i_1, i_2}$$

مساوات 4.58 کی مقابل ہم-توانائی کی مساوات درج ذیل ہو گی۔

(4.63)
$$W'_m(x, i_1, i_2) = \frac{1}{2}L_{11}(x)i_1^2 + \frac{1}{2}L_{22}(x)i_2^2 + L_{12}(x)i_1i_2$$

ہم-توانائی سے قوت حاصل کرتے ہیں:

(4.64)
$$F_m = \frac{\partial W'_m(x, i_1, i_2)}{\partial x}\bigg|_{i_1, i_2} = \frac{i_1^2}{2} \frac{\mathrm{d}L_{11}(x)}{\mathrm{d}x} + \frac{i_2^2}{2} \frac{\mathrm{d}L_{22}(x)}{\mathrm{d}x} + i_1 i_2 \frac{\mathrm{d}L_{12}(x)}{\mathrm{d}x}$$

مثال 4.7: شکل 4.11 میں میکانی کام کو $\theta \theta$ کام کو $\partial W_{\dot{b}} = T_m \, \mathrm{d}\theta$ کریں۔

حل: توانائی کی مساوات

$$\partial W_{\ddot{\ddot{\mathbf{J}}}} = \partial W_{\dot{\ddot{\mathbf{J}}}} + \partial W_m$$
بي

ىيں

$$\partial W_{i,x} = i_1 \,\mathrm{d}\lambda_1 + i_2 \,\mathrm{d}\lambda_2$$
 اور $\partial W_{i,x} = T_m \,\mathrm{d}\theta$ پر کر کے ترتیب نو سے درج ذیل حاصل ہو گا۔ $\partial W_m = i_1 \,\mathrm{d}\lambda_1 + i_2 \,\mathrm{d}\lambda_2 - T_m \,\mathrm{d}\theta$ (4.65)

ے جروی فرق W_m

$$\partial W_m(\lambda_1, \lambda_2, \theta) = \frac{\partial W_m}{\partial \lambda_1} \, \mathrm{d}\lambda_1 + \frac{\partial W_m}{\partial \lambda_2} \, \mathrm{d}\lambda_2 + \frac{\partial W_m}{\partial \theta} \, \mathrm{d}\theta$$

كا مساوات 4.65 ك ساتھ موازنه كرنے سے درج ذيل اخذ كيے جا سكتے ہيں۔

(4.66)
$$i_1 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \lambda_1} \right|_{\lambda_2, \theta}$$

(4.67)
$$i_2 = \left. \frac{\partial W_m(\lambda_1, \lambda_2, \theta)}{\partial \lambda_2} \right|_{\lambda_1, \theta}$$

(4.68)
$$T_{m} = -\left. \frac{\partial W_{m}(\lambda_{1}, \lambda_{2}, \theta)}{\partial \theta} \right|_{\lambda_{1}, \lambda_{2}}$$

مساوات 4.65 عین مساوات 4.36 کی مانند ہے۔ مساوات 4.65 حل کرنے کا ایک ایک قدم مساوات 4.36 مساوات $\lambda_1, \lambda_2, \theta$ حل کرنے کی طرح ہے، بس فاصلہ x کی جگہ زاویہ θ آئے گا۔ یوں جواب میں میدانی توانائی کے متغیرات x معنیرات x ہوں گے:

(4.69)
$$W_m(\lambda_1, \lambda_2, \theta) = \frac{L_{22}\lambda_1^2}{2D} + \frac{L_{11}\lambda_2^2}{2D} - \frac{L_{21}\lambda_1\lambda_2}{D}$$

اسی طرح ہم-توانائی کے لئے درج ذیل ہوں گے۔

(4.70)
$$\partial W'_m(i_1, i_2, \theta) = \lambda_1 di_1 + \lambda_2 di_2 + T_m d\theta$$

(4.71)
$$\lambda_{1} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial i_{1}} \Big|_{i_{2}, \theta}$$

$$\lambda_{2} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial i_{2}} \Big|_{i_{1}, \theta}$$

$$T_{m} = \frac{\partial W'_{m}(i_{1}, i_{2}, \theta)}{\partial \theta} \Big|_{i_{1}, i_{2}}$$

П

شکل 4.13: دولچھوں کے نظام میں قوت مروڑ۔

ہم-توانائی کی مساوات درج ذیل ہو گ۔

(4.72)
$$W'_m(i_1, i_2, \theta) = \frac{1}{2} L_{11} i_1^2 + \frac{1}{2} L_{22} i_2^2 + L_{12} i_1 i_2$$

مثال 4.8: شکل 4.13 میں دو کیجھوں کا نظام دکھایا گیا ہے۔اس نظام کا ایک حصہ ساکن رہتا ہے اور دوسرا گھوم سکتا ہے۔افقی کلیر سے گھڑی کی سوئیوں کے مخالف رخ گھومتے ہوئے زاویہ θ ناپا جاتا ہے۔ کیجھوں کی خود امالہ اور مشتر کہ امالہ مندرجہ ذیل ہیں۔

$$L_{11} = 20 + 30\cos 2\theta$$

$$L_{22} = (20 + 30\cos 2\theta) \times 10^{-3}$$

$$L_{12} = 0.15\cos \theta$$

برتی رو T_m معلوم کریں۔ $i_1=0.02\,\mathrm{A}, i_2=5\,\mathrm{A}$ برقی رو

حل: مساوات 4.72 ہم-توانائی دیتی ہے۔

$$W_m' = \frac{1}{2}(20 + 30\cos 2\theta)i_1^2 + \frac{1}{2}(20 + 30\cos 2\theta)(10^{-3})i_2^2 + (0.15\cos \theta)i_1i_2$$

مساوات 4.71 کا آخری جزو قوت مروڑ دیتی ہے۔

$$T_m = \frac{\partial W'_m}{\partial \theta} = -30i_1^2 \sin 2\theta - 30 \times 10^{-3} i_2^2 \sin 2\theta - 0.15 i_1 i_2 \sin \theta$$
$$= -0.012 \sin 2\theta - 0.75 \sin 2\theta - 0.015 \sin \theta$$
$$= -0.762 \sin 2\theta - 0.015 \sin \theta$$

 θ توت مروڑ کی علامت منفی ہے لہذا یہ زاویہ میں تبدیلی کی مخالفت کرے گا۔یوں اگر آپ زاویہ بڑھائیں (مثبت T_m) تو یہ نظام زاویہ کم کرنے کے رخ قوت مروڑ (منفی T_m) پیدا کرے گا اور اگر آپ زاویہ کم (منفی T_m) کی کوشش کریں تو یہ نظام زاویہ بڑھانے کے رخ قوت مروڑ (مثبت T_m) پیدا کرے گا۔سادہ زبان میں گھومتا حصہ افقی کئیر پر رہنے کی کوشش کرے گا۔

باب5

گھومتے مشین کے بنیادی اصول

اس باب میں مختلف گھومتے مشینوں کے بنیادی اصولوں پر غور کیا جائے گا۔ظاہری طور پر مختلف مشین ایک ہی قشم کے اصولوں پر کام کرتے ہیں جنہیں اس باب میں اکٹھا کیا گیا ہے۔

5.1 قانون فيرادُك

قانور فیراڈے 1 کے تحت جب بھی کسی کچھے کا ارتباط بہاو λ وقت کے ساتھ تبدیل ہو، اس کچھے میں برقی دباو پیدا ہو گا:

(5.1)
$$e = \frac{\partial \lambda}{\partial t} = N \frac{\partial \phi}{\partial t}$$

گھومتے مثین میں ارتباط بہاو کی تبدیلی مختلف طریقوں سے پیدا کی جا سکتی ہے۔مثلاً کچھے کو ساکن مقناطیسی بہاو میں گھما کر یا ساکن کچھے میں مقناطیس گھما کر، وغیرہ وغیرہ۔

Faraday's law¹

ان برقی مثینوں میں کچھے مقناطیسی قالب² پر لییٹے جاتے ہیں۔ اس طرح کم سے کم مقناطیسی دباو سے زیادہ سے زیادہ سے زیادہ مقناطیسی بہاو ماصل کیا جاتا ہے اور کچھوں کے مابین مشتر کہ مقناطیسی بہاو بڑھایا جاتا ہے۔ مزید قالب کی شکل تبدیل کر کہ مقناطیسی بہاو کو ضرورت کے مقام پر پہنچایا جاتا ہے۔

ان مشینوں کے قالب میں مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے للذا قالب میں بھنور نما برقی رو³ پیدا ہوتا ہے۔ان بھنور نما برقی رو کو کم سے کم کرنے کی خاطر باریک لوہے کی پتری⁴ تہہ در تہہ رکھ قالب بنایا جاتا ہے۔ ۔ آپ کو یاد ہو گا، ٹرانسفار مرکا قالب بھی اس طرح بنایا جاتا ہے۔

5.2 معاصر مشين

شکل 5.1 میں معاصر برقی جزیئر کا ایک بنیادی شکل دکھایا گیا ہے۔ اس کے قالب میں ایک مقناطیس ہے جو کہ گھوم سکتا ہے۔ مقناطیس کا مقام اس کے میکانی زاویہ θ_m سے بتلائی جاتی ہے۔ افتی کیبر سے گھڑی کے مخالف زاویہ θ_m ناپا جاتا ہے۔

یہاں کچھ باتیں وضاحت طلب ہیں۔ اگر مقناطیں ایک مقررہ رفتار ہے، فی سینڈ n مکمل چکر کائنا ہو تب ہم کہتے ہیں کہ اس مقناطیں کے گھومنے کا تعدد n ہرٹر آئی ہے۔ اس بات کو یوں بھی بیان کیا جاتا ہے کہ مقناطیں 60n فی منٹ 6 کی رفتار سے گھوم رہا ہے۔ آپ جانتے ہیں کہ ایک چکر 360 زاویہ یا 2π ریڈ بیک 7 پر مشتمل ہوتا ہے للذا گھومنے کی اس رفتار کو 2π ریڈ بیک فی سیکٹہ بھی کہہ سکتے ہیں۔ یوں اگر مقناطیس f ہرٹز کی رفتار سے گھوم رہا ہو تب ہے 2π میں خوام کی جاتا ہے۔

$$(5.2) \omega = 2\pi f$$

اس كتاب مين كهومنے كى رفتار كو عموماً ريدينن في سينٹر مين بيان كيا جائے گا۔

شکل 5.1 میں مثین کے دو مقاطیسی قطب ہیں، اس لئے اس کو دو قطبی مثین کہتے ہیں۔ ساکن قالب میں، اندر کی جانب دو شگاف ہیں، جن میں N چکر کا کچھا موجود ہے۔ کچھے کو a اور a سے ظاہر کیا گیا ہے۔اس کچھے کی بنا

magnetic core²
eddy currents³
laminations⁴
Hertz⁵

nertz-

rounds per minute, rpm⁶ radians⁷

5.2 معاصر مشين

شکل 5.1: دوقطب، یک دوری معاصر جنریٹر۔

اس مشین کو ایک کچھے کا مشین بھی کہتے ہیں۔ چونکہ یہ کچھا جزیٹر کے ساکن حصہ پر پایا جاتا ہے للذا یہ کچھا بھی ساکن ہو گا جس کی بنا اسے ساکھے کچھا⁸ کہتے ہیں۔

مقناطیس کا مقناطیسی بہاو شالی قطب 9 N سے خارج ہو کر خلائی درز میں سے ہوتا ہوا، باہر گول قالب میں سے گزر کر، دوسرے خلائی درز میں سے ہوتا ہوا، مقناطیس کے جنوبی قطب 10 S میں داخل ہو گا۔ اس مقناطیسی بہاو کو ہلکی سیابی کے کمیروں سے دکھایا گیا ہے۔ یہ مقناطیسی بہاو، سارا کا سارا، ساکن کچھے میں سے بھی گزرتا ہے۔ شکل 5.1 میں مقناطیس سیدھی سلاخ کی مانند دکھایا گیا ہے۔

شکل 5.2 میں مقناطیس تقریباً گول ہے اور اس کے محور کا زاویہ θ_m صفر کے برابر ہے۔ مقناطیس اور ساکن قالب کے پچ صفر زاویہ، $0 = \theta$ ، پر خلائی درز کی لمبائی کم سے کم اور نوے زاویہ، $0 = |\theta|$ ، پر زیادہ سے زیادہ سے کم خلائی درز پر پچکچاہٹ کم ہو گی جبکہ زیادہ خلائی درز پر پچکچاہٹ زیادہ ہو گی للذا $0 = \theta$ پر خلائی درز سے زیادہ مقناطیسی بہاو گزرے گا۔خلائی درز کی لمبائی یوں تبدیل کی جاتی ہے کہ خلائی درز میں سائن نما مقناطیسی بہاو پیدا ہو۔ مقناطیسی بہاو مقناطیس سے قالب میں عمودی زاویہ پر داخل ہوتا ہے۔ اگر خلائی درز میں 0 = 0 سائن نما ہو

$$(5.3) B = B_0 \cos \theta_p$$

تب کثافت مقناطیسی بہاو B صفر زاویہ $\theta_p=0^\circ$ ، پر زیادہ سے زیادہ اور نوے زاویہ، $\theta_p=90^\circ$ ، پر صفر ہو گل اور خلائی درز میں مقناطیسی بہاو $\theta_p=0$ کے ساتھ تبدیل ہو گا۔ $\theta_p=0$ کو مقناطیس کے شالی قطب سے گھڑی کے مخالف

stator coil⁸ north pole⁹ south pole¹⁰

شكل 5.2: كثافت مقناطيسي بهاواور زاويه كاتبديلي_

رخ ناپا جاتا ہے۔ شکل 5.2 میں ساکن جے کے باہر نو کیلی لکیروں کی لمبائی سے کثافت مقناطیسی بہاو کی مطلق قیمت اور کلیروں کے رخ سے بہاو کا رخ دکھایا گیا ہے۔ اس شکل میں ہاکی سیابی سے $^{\circ}0$ - $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ باتی آ دھے میں مخالف کے مخالف ہے۔ یوں شکل 5.2 میں آ دھے خلائی درز میں کثافت مقناطیسی بہاو کا ترسیم سائن نما ہو گا۔ شکل 5.3 میں مقناطیس دوسرے زاویہ پر دکھایا گیا ہے۔ یاد رہے کثافت مقناطیسی بہاو کی مطلق قیمت مقناطیس کے شائی قطب پر زیادہ سے زیادہ ہو گا۔ ور شائی قطب پر کثافت مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رہ وگا۔ شکل قطب پر کثافت مقناطیسی بہاو رداسی درج ذیل کھا جا سکتا ہے۔

(5.4)
$$B = B_0 \cos \theta_p$$
$$\theta_p = \theta - \theta_m$$

يوں درج ذيل ہو گا۔

$$(5.5) B = B_0 \cos(\theta - \theta_m)$$

شکل 5.3 میں مقناطیس اور اس کا سائن نما مقناطیسی دباو پیش کیا گیا ہے۔ جیسا شکل 5.4 میں دکھایا گیا ہے، ایسے مقناطیسی دباو کو عموماً ایک سمتیہ سے ظاہر کیا جاتا ہے جہاں سمتیہ کا طول مقناطیسی دباو کا حیطہ اور سمتیہ کا رخ مقناطیس کے شال کو ظاہر کرتا ہے۔ 5.2 معاصر مشين

شکل 5.5: چار قطب یک دوری معاصر جنریٹر۔

شکل 5.3 میں مقناطیس کو لمحہ t_1 ، زاویہ $\theta_m(t_1)$ پر دکھایا گیا ہے جہاں ساکن کچھے کا ارتباط بہاو $\theta_m(t_1)$ مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار ω_0 سے گھوم رہا ہو تب ساکن کچھے میں اس لمحہ پر برقی دباو e(t) پیدا ہو گا:

$$(5.6) e(t) = \frac{\mathrm{d}\lambda_{\theta}}{\mathrm{d}t}$$

آوھے چکر، π ریڈیئن گھومنے کے، بعد مقناطیسی قطبین آپس میں جگہیں تبدیل کرتے ہیں، کچھے میں مقناطیسی بہاو کا رخ الٹ ہو گا، کچھے میں ارتباط بہاو θ_0 اور اس میں امالی برقی دباو e(t) ہو گا۔ ایک مکمل چکر بعد مقناطیس دوبارہ ای مقام پر ہو گا جو شکل 5.3 میں دکھایا گیا ہے، ساکن کچھے کا ارتباط بہاو دوبارہ θ_0 اور اس میں امالی برقی دباو کی دباو کو گا۔ یوں جب بھی مقناطیس $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں دو سرے کے برابر تبدیلی رونما ہوگی لہذا دو قطب، ایک کچھے کی مثنین میں میکانی زاویہ θ_m اور برقی زاویہ θ_0 ایک دو سرے کے برابر ہوں گ

$$\theta_e = \theta_m$$

اس مشین میں میکانی زاویہ θ_m اور برقی زاویہ θ_e وقت کے ساتھ تبدیل ہونے کے باوجود آپس میں ایک تناسب رکھتے ہیں لہٰذا ایسے مشین کو معاصر مشین 0 کہتے ہیں۔ یہاں یہ تناسب ایک کے برابر ہے۔

frequency¹¹

Hertz¹²

synchronous machine¹³

5.2 معاصر مشين

شکل 5.5 میں چار قطب، یک دوری معاصر جزیٹر دکھایا گیا ہے۔ چھوٹے مثینوں میں عموماً مقناطیس جبکہ بڑے مثینوں میں برقی مقناطیس جبکہ بڑے مثینوں میں برقی مقناطیس 14 استعال ہوتے ہیں۔ اس شکل میں برتی مقناطیس استعال کیے گئے ہیں۔ دو سے زائد قطبین والے مثینوں میں کسی ایک شالی قطب کو حوالہ قطب تصور کیا جاتا ہے۔ شکل میں اس حوالہ قطب کو θ_m پر دکھایا گیا ہے اور یوں دوسرا شالی قطب کو θ_m زاویہ پر ہے۔

حییا کہ نام سے واضح ہے، اس مشین میں مقناطیس کے چار قطبین ہیں۔ ہر ایک ثالی قطب کے بعد ایک جنوبی قطب آتا ہے۔ یک دوری آلات میں مقناطیسی قطبین کے جوڑوں کی تعداد اور ساکن کچھوں کی تعداد ایک دوسرے قطب آتا ہے۔ یک دوری آلات میں مثنا سے قطبین قطبین ہیں، للذا اس مشین کے ساکن حصہ پر کے برابر ہوتی ہے۔ شکل 5.5 میں مشین کے چار قطب یعنی دو جوڑی قطبین ہیں، للذا اس مشین کے ساکن حصہ پر دو ساکن کچھے ہوں ہیں۔ ایک کچھے کو واشح کیا گیا ہے اور دوسرے کو ہے ہے۔ کچھے کو قالب میں موجود دوشگان اور a_1 میں رکھا گیا ہے۔ ان وونوں کچھوں دوشگان اور a_2 میں رکھا گیا ہے۔ ان دونوں کچھوں میں یکسال برقی دباو پیدا ہوتا ہے۔ دونوں کچھوں کو سلسلہ وار 15 جوڑا جاتا ہے۔ اس طرح جزیڑ سے حاصل برقی دباو ایک کچھے میں پیدا برقی دباو کا دگنا ہو گا۔ یک دوری آلات میں قالب کو مقناطیس کے قطبین کی تعداد کے برابر حصوں میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا نوے مکانی زاویہ کے اطاطے کو گھیرتا ہے۔

ساکن اور حرکی کیجھوں کی کار کردگی ایک دوسرے سے مختلف ہوتی ہے۔اس کی وضاحت کرتے ہیں۔

حیسا پہلے بھی ذکر کیا گیا چھوٹی گھومتی مشینوں میں مقناطیسی میدان ایک مقناطیس فراہم کرتا ہے جبکہ بڑی مشینوں میں برقی مقناطیس کو گھومتا حصہ دکھایا گیا ہے، حقیقت میں برقی مقناطیس کی مشین میں گھومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والا لچھا مشین کے کل برقی طاقت میں مقناطیس کسی مشین میں گھومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والے اس لچھ کو میدانی لچھا¹⁶ کہتے ہیں۔اس کے چند فی صد برابر برقی طاقت استعال کرتا ہے۔میدان فراہم کرنے والے اس لچھ کو میدانی لچھا ہے بیں۔اس کے برعکس مشین میں موجود دو سری نوعیت کے لچھے کو قومی لچھا¹⁷ کہتے ہیں۔برقی جزیڑ کے قوی لچھے سے برقی طاقت کے میاوہ تمام برقی طاقت واصل کی جاتی ہے۔برقی موٹروں میں میدانی لچھے میں چند فی صد برقی طاقت کے ضیاع کے علاوہ تمام برقی طاقت

شکل 5.6 میں گھومتے اور ساکن حصہ کے بی خلائی درز میں شالی قطب سے مقناطیسی بہاو باہر نکل کر قالب میں داخل ہوتا ہے۔ شکل 5.6 میں داخل ہوتا ہے۔ شکل 5.6 میں

electromagnet¹⁴

series connected 15

field coil¹⁶

armature coil¹⁷

شكل 6.5: چار قطب، دولچھے مثین میں مقناطیسی بہاو۔

اس مقناطیسی بہاو کی کثافت کو دکھایا گیا ہے۔ یوں اگر ہم اس خلائی درز میں ایک گول چکر کا ٹیس تو مقناطیسی بہاو کا رخ دو مرتبہ باہر کی جانب اور دو مرتبہ اندر کی جانب ہو گا۔ ان مشینوں میں کوشش کی جاتی ہے کہ خلائی درز میں B سائن نما ہو۔ یہ کیسے کیا جاتا ہے، اس پر آگے خور کیا جائے گا۔ اگر تصور کر لیا جائے کہ B سائن نما ہے تب خلائی درز میں B کی مطلق قیت شکل 5.7 کی طرح ہو گی جہاں θ برتی زاویہ ہے۔

P قطبی مقناطیس کے معاصر مثین کے لئے لکھ درج ذیل ہو گا۔

$$\theta_e = \frac{P}{2}\theta_m$$

$$(5.8) f_e = \frac{P}{2} f_m$$

یہاں برقی اور میکانی تعدد کا تناسب 2 ہے۔

مثال 5.1: پاکستان میں گھریلو اور صنعتی صارفین کو $_{\rm Hz}$ کی برتی طاقت فراہم کی جاتی ہے۔یوں ہمارے ہاں $_{\rm fe}=50$

- اگر برقی طاقت دو قطبی جزیٹر سے حاصل کی جائے تب جزیٹر کی رفتار کتنی ہو گی؟۔
 - اگر جزیر کے بیں قطب ہوں تب جزیر کی رفار کتنی ہو گی؟

حل:

5.2 معاصر شين

شکل 5.8: دو قطب، تین دوری معاصر مثین ـ

- مساوات 5.8 تحت وو قطبی، P=2، جنریٹر کا میکانی رفتار 50=6 تحت وو قطبی، P=9، جنریٹر کا میکانی رفتار 5.8 تحت وی سیکنڈ لیمنی 18 ہو گا۔
- بیں قطبی، P=20، جزیٹر کا میکانی رفتار $f_m=rac{2}{20}(50)=5$ چکر فی سینٹر لیعنی P=20، جزیٹر کا میکانی رفتار P=20

اب یہ فیصلہ کس طرح کیا جائے کہ جزیر کے قطب کتنے رکھے جائیں۔ در حقیقت پانی سے چلنے والے جزیر سست رفتار جبکہ ٹربائن سے چلنے والے جزیر تیزر فلار ہوتے ہیں، للذا پانی سے چلنے والے جزیر نریادہ قطب رکھتے ہیں جبکہ ٹربائن سے چلنے والے جزیر عموماً دو قطب کے ہوتے ہیں۔

a شکل 5.8 میں دو قطب تین دوری معاصر مشین دکھایا گیا ہے۔اس میں تین ساکن کچھے ہیں۔ان میں ایک کچھا a جو قالب میں شکاف a اور a میں رکھا گیا ہے۔ اگر اس شکل میں باقی دو کچھے نہ ہوتے تب یہ بالکل شکل a میں دیا گیا مشین ہی تھا۔البتہ دیے گئے شکل میں ایک کی بجائے تین ساکن کچھے ہیں۔

لچھے کا رخ درج ذیل طریقہ سے تعین کیا جاتا ہے۔

rpm, rounds per minute¹⁸

شكل 5.9: دوقطب تين دوري مشين ـ

• دائیں ہاتھ کی چار انگلیوں کو دونوں شافوں میں برتی رو کے رخ کیپیٹیں۔ دائیں ہاتھ کا انگوٹھا کچھے کا رخ دے گا۔ گا۔

شکل 5.8 میں کچھا a کا برقی رو شگاف a میں، کتاب کے صفحہ کو عمودی، باہر رخ جبکہ a' میں اس کے مخالف اندر رخ تصور کرتے ہوئے کچھا a کا رخ تیر دار لکیر سے دکھایا گیا ہے۔ اس رخ کو ہم صفر زاویہ تصور کرتے ہیں۔ یوں کچھا a صفر زاویہ پر لپیٹا گیا ہے، لیعنی a a ہے۔ باقی کچھوں کے زاویات کچھا a کے رخ سے، گھڑی کے مخالف رُخ نابے جاتے ہیں۔

شکل 5.8 میں کچھا b کو شگاف b اور b' میں رکھا گیا ہے اور کچھا c کو شگاف c اور c' میں رکھا گیا ہے۔ مزید کچھا d کو d و شگاف d کو d و d

شکل 5.9 میں اگر لمحہ t_1 پر لچھا a کا ارتباط بہاو (t_1) ہو تب لمحہ t_2 بر، جب مقناطیس °120 زاویہ طے کر لے، لچھا d کا ارتباط بہاو (t_1) ہو گا۔ لمحہ t_2 بر مقناطیس اور لچھا d ایک دوسرے کے لحاظ سے بالکل ای طرح نظر آتے ہیں جیسے t_1 پر مقناطیس اور لچھا a ایک دوسرے کے لحاظ سے نظر آتے تھے۔ یوں لمحہ t_2 پر لچھا کا ارتباط بہاو تھا:

$$\lambda_b(t_2) = \lambda_a(t_1)$$

اسی طرح کھے t_3 پر، جب مقناطیس مزید °120 زاویہ طے کر لے، کچھا c کا ارتباط بہاو ($\lambda_c(t_3)$ ہو گا جو $\lambda_c(t_1)$ کے برابر ہو گا۔یوں درج ذیل لکھا جا سکتا ہے۔

$$\lambda_c(t_3) = \lambda_b(t_2) = \lambda_a(t_1)$$

.5. معاصر مثين

شكل5.10: چار قطب، تين دوري معاصر مشين ـ

ان کمحات پر کچھوں کے امالی برقی دباو

(5.11)
$$e_a(t_1) = \frac{\mathrm{d}\lambda_a(t_1)}{\mathrm{d}t}$$

(5.12)
$$e_b(t_2) = \frac{\mathrm{d}\lambda_b(t_2)}{\mathrm{d}t}$$

$$(5.13) e_c(t_3) = \frac{\mathrm{d}\lambda_c(t_3)}{\mathrm{d}t}$$

ہوں گے۔ مساوات 5.10 کی روشنی میں درج ذیل ہو گا۔

(5.14)
$$e_a(t_1) = e_b(t_2) = e_c(t_3)$$

اگر شکل 5.9 میں صرف کچھا a پایا جاتا تب یہ بالکل شکل 5.1 کی طرح ہوتا اور اگر ایسی صورت میں مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار a سے گھمایا جاتا تب، جیسے پہلے تذکرہ کیا گیا ہے، کچھا a میں سائن نما برقی دباو پیدا ہوتا۔ شکل 5.9 میں کسی ایک کچھے کو کسی دوسرے کچھے پر کوئی برتری حاصل نہیں ہے۔ یوں اگر شکل 5.9 میں مقناطیس اسی طرح گھمایا جائے تب تینوں ساکن کچھوں میں سائن نما برقی دباو پیدا ہوگا البتہ مساوات 5.14 کے تحت یہ برقی دباو آپس میں a میں a دوسر گھری کے۔

شکل 5.10 میں چار قطب ، تین دوری معاصر مثین دکھایا گیا ہے۔ گھومتے تھے پر شالی اور جنوبی قطبین باری باری باری بائے جاتے ہیں اور °180 میکانی زاویہ میں شال اور قریبی جنوب قطب کی ایک جوڑی بائی جاتی ہے۔ یہی میکانی زاویہ میں شال اور قریبی جنوب قطب کی ایک جوڑی بائی جاتی ہے۔ یہی میکانی زاویہ کے مارہ ہوگا۔ شکل 5.8 میں ساکن حصہ کے °360 برقی زاویہ کے اعاطہ میں تین دوری کچھوں نسب ہیں جن کی اطراف کی ترتیب، گھڑی کے مخالف رخ چلتے ہوئے، ہم، ناہ دوری کچھوں کے اطراف دو قطبین کے اعاطہ ، °100 میکانی زاویہ (یا °360 برتی زاویہ)، میں بالکل اسی طرح تین دوری کچھوں کے اطراف کی ترتیب ہوئے، میں بالکل اسی طرح آپ کو چھوں کے اطراف کی ترتیب ہوئے دوری کچھوں کے اطراف کی ترتیب ہوئے دوری کے میں جھی بالکل اسی طرح آپ کو گھوں کے دوری دوری کی ترتیب کو گئیں گئی دوری ہوئے دوری برتی دوری کی گیا ہے۔ شکل 5.10 میں انہیں متوازی جوڑ کر دکھایا گیا ہے جہاں می کچھے کو صفر زاویہ پر تصور کیا گیا ہے۔

5.3 محرك برتى دباو

قانون لورینز 19 کے تحت مقناطیسی میدان $m{B}$ میں سمتی رفتار $m{v}$ سے حرکت پذیر برقی بار q^{20} درج ذیل قوت $m{F}$ محسوس کرے گا۔

$$(5.15) F = q(\boldsymbol{v} \times \boldsymbol{B})$$

یہاں سمتی رفتار سے مراد برقی میدان کے لحاظ سے برقی بار کی سمتی رفتار ہے للذا F کو ساکن مقاطیسی میدان میں برقی بار کی سمتی رفتار تصور کیا جا سکتا ہے۔اس قوت کا رخ دائیں ہاتھ کے قانون سے معلوم کیا جاتا ہے۔

مقناطیسی میدان میں ابتدائی نقطہ سے اختامی نقطہ تک، جن کے ﷺ ہٹاو l ہے، برتی بار q نتقل کرنے کے لئے درکار کام W ہو گا:

$$(5.16) W = \mathbf{F} \cdot \mathbf{l} = q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

اکائی مثبت برتی بار کو ایک نقطہ سے دوسرے نقطہ منتقل کرنے کے لئے درکار کام کو ان دو نقطوں کے پیج برقی دباو²¹ کہتے ہیں جس کی اکائی وولئے۔ V²² ہے۔ یوں اس مساوات سے ان دو نقطوں کے پیچ درج ذیل برتی دباو ہو گا۔

(5.17)
$$e = \frac{W}{q} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

5.3. محسر كب بر قي دباو

شكل 5.11: ابك چيكر كالجھامقناطيسي ميدان ميں گھوم رہاہے۔

حرکت کی مدد سے یوں حاصل برقی دباو کو محرکے برقی دباو²³ کہتے ہیں۔ روایتی طور پر کسی بھی طریقہ سے حاصل برقی دباو کو محرک برقی دباو کہتے ہیں۔ یوں کیمیائی برقی سیل وغیرہ کا برقی دباو بھی محرک برقی دباو کہلائے گا۔

شکل 5.11 میں گھڑی کے مخالف رخ گھومتے حصہ پر ایک چکر کا کچھا نسب ہے۔بائیں خلاء میں کچھا کی تارکے قطع پر غور کریں۔ مساوات 5.15 کے تحت بایاں قطع میں موجود مثبت برتی بار پر صفحہ کے عمودی باہر رخ قوت پیدا ہو گی۔مساوات 5.17 کے تحت اس قطع کا بالائی سرا مثبت اور نجلا سرا منفی برتی دباو پر ہو گا۔

ہم گھومتے حصہ کی محور پر نگی محدد قائم کرتے ہیں۔ یوں جنوبی قطب کے سامنے خلاء میں B رداسی رخ جبکہ شالی قطب کے سامنے خلاء میں B رداس کے مخالف رخ ہو گا۔ جنوبی قطب کے سامنے شگاف میں برقی تار B کے ہم درج ذیل لکھ سکتے ہیں۔

$$egin{aligned} oldsymbol{v}_S &= v oldsymbol{a}_{ heta} = \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_S &= B oldsymbol{a}_{ extsf{T}} \ oldsymbol{l}_S &= l oldsymbol{a}_{ extsf{Z}} \end{aligned}$$

یوں جنوبی قطب کے سامنے تار کے قطع میں درج ذیل محرک برقی دباو پیدا ہو گا۔

(5.19)
$$e = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

$$= \omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$

$$= \omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$

$$= -\omega r B l$$

Lorentz law¹⁹ charge²⁰

potential difference, voltage²¹

volt²²

electromotive force, emf^{23}

جنوبی مقناطیسی قطب کے سامنے شگاف میں برتی تارکی لمبائی کا رخ a_z لیا گیا۔اس مساوات میں برتی دباو منفی ہونے کا مطلب ہے کہ برتی تارکا مثبت سراتار پر $-a_z$ رخ ہے لیعنی تارکا نجلا سرا مثبت اور بالائی سرا منفی ہے۔ اگر اس تار میں رو گزر سکے تو اس رو کا رخ $-a_z$ لینی صفحہ کو عمودی اندر رخ ہو گا جے شکل 5.11 میں شگاف میں دائرہ کے اندر صلیبی نشان سے ظاہر کیا گیا ہے۔

ای طرح شالی مقناطیسی قطب کے سامنے شگاف میں موجود برقی تار کے لئے ہم درج ذیل لکھ سکتے ہیں۔

(5.20)
$$egin{aligned} oldsymbol{v}_N &= v oldsymbol{a}_{ heta} &= \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_N &= -B oldsymbol{a}_{ ext{r}} \ oldsymbol{l}_N &= l oldsymbol{a}_{ ext{z}} \end{aligned}$$

یوں اس قطع میں درج ذیل دباو ہو گا۔

(5.21)
$$e_{N} = (\mathbf{v}_{N} \times \mathbf{B}_{N}) \cdot \mathbf{l}_{N} \\ = -\omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z} \\ = -\omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z} \\ = \omega r B l$$

شالی مقناطیسی قطب کے سامنے شگاف میں برتی تارکی لمبائی کا رخ a_z لیا گیا ہے۔اس مساوات میں برتی دباو مثبت ہونے کا مطلب ہے کہ برتی تارکا مثبت سراتار پر a_z رخ ہو گا لیمن تارکا بالائی سرا مثبت اور نجلا سرا منفی ہو گا۔اگر اس تار میں رو گزر سکے تو اس کا رخ a_z لیمن صفحہ کو عمودی باہر رخ ہو گا جے شکل 5.11 میں شگاف میں دائرہ کے اندر نقطہ کے نشان سے دکھایا گیا ہے۔

یہ دونوں تار مل کر ایک چکر کا لچھا بناتے ہیں۔ ان تاروں کے نچلے سر ایک دوسرے کے ساتھ سلسلہ وار جڑے ہیں جس کو شکل میں نہیں دکھایا گیا۔یوں اس کچھے کے بالائی، نظر آنے والے، سروں پر کل برقی دباو e ان دو برقی تاروں میں پیدا برقی دباو کا مجموعہ ہو گا:

(5.22)
$$e = 2rlB\omega$$
$$= AB\omega$$

یہاں کچھے کا رقبہ A=2rl ہے۔اگر ایک چکر سے اتنا برقی دباو حاصل ہو تب N چکر کے کچھے سے درج ذیل دباو حاصل ہو گا جہاں $\phi=AB$ مقناطیسی بہاو ہے۔

(5.23)
$$e = \omega NAB$$
$$= 2\pi f NAB$$
$$= 2\pi f N\phi$$

گومتی مشینوں کی خلائی درز میں B اور v ہر لمحہ ایک دوسرے کے عمودی ہوتے ہیں۔ مساوات 5.17 کت مستقل زاویائی رفتار اور محوری لمبائی کی صورت میں پیدا کردہ برقی دباو ہر لمحہ B کا براہ راست متناسب ہو گا۔ خلائی درز میں زاویہ کے ساتھ تبدیل ہوتے ہوئے B کی صورت میں گھومتے کچھے میں پیدا برقی دباو بھی زاویہ کے ساتھ تبدیل ہو گا۔ یوں جس شکل کا برقی دباو درکار ہو اسی شکل کی کثافت مقناطیسی دباو خلائی درز میں پیدا کرنی ہو گی۔ سائن نما برقی دباو پیدا کرنے کے لئے خلائی درز میں سائن نما کثافت مقناطیسی بہاو درکار ہو گی۔

اگلے جھے میں خلائی درز میں ضرورت کے تحت B پیدا کرنے کی ترکیب بتلائی جائے گا۔

5.4 کھیے اور سائن نمامقناطیسی دیاو

ہم نے اب تک جتنے مشین دیکھے ان سب میں گیھ ²⁴ کچھ دکھائے گئے۔ مزید ان مشینوں میں گھومتے تھے پر موجود مقاطیس کے ابھرے قطب ²⁵ تھے۔ عموماً حقیقی مشینوں کے ہموار قطب ²⁶ اور پھیلے کچھ ²⁷ ہوتے ہیں جن کی بنا ساکن اور گھومتے حصوں کے بچ خلائی درز میں سائن نما مقناطیسی دباو اور سائن نما کثافت مقناطیسی بہاو پیدا کرنا ممکن ہوتا ہے۔

شکل 5.12 میں ایک گیجھ کچھا دکھایا گیا ہے جہاں مثین کے گھومتے جھے کا عمودی تراش گول صورت کا ہے۔ متحرک اور ساکن قالب کا $\infty + \mu_r \to \infty$ کا مقناطیسی دباو π کہ متعاطیسی بہاو π بیدا کرتا ہو کہ بیدا کرتا ہو ہلکی سیابی کی لکیروں سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو خلائی درز میں سے دو مرتبہ گزرتا ہوا کچھے کے گرد ایک چکر کا شاہدا درج ذیل ہو گا۔

یوں ساکن کچھے کے مقناطیسی دباو کا آدھا حصہ ایک خلائی درز اور آدھا حصہ دوسرے خلائی درز میں مقناطیسی بہاو پیدا کرتا ہے۔ مزید آدھے خلائی درز میں مقناطیسی دباو (اور مقناطیسی بہاو) رداسی رخ اور باقی خلائی درز میں رداس کے

non-distributed coils²⁴ salient poles²⁵

non-salient poles²⁶

distributed winding²⁷

 $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ (اور مقاطیسی دباو (اور مقاطیسی بہاو (اور مقاطیسی دباو) رداس کے در میان رداسی رخ ہے لہذا اسے مثبت تصور کیا جائے گا جبکہ باقی حصہ پر مقاطیسی دباو (اور مقاطیسی بہاو) رداس کے در میان ردا ہی رخ ہے لہذا اسے منفی تصور کیا جائے گا۔ شکل 5.13 میں خلائی در زمیں مقاطیسی دباو کو زاویہ کے ساتھ ترسیم کیا گیا ہے۔ وقفہ $\frac{\pi}{2} > \theta < \frac{\pi}{2}$ خلائی در زمیں مقاطیسی دباو کے آدھا ہو اور اس کا رخ مثبت ہے جبکہ وقفہ $\frac{\pi}{2} > \theta < \frac{3\pi}{2}$ کے خلائی در زمیں مقاطیسی دباو کچھے کے مقاطیسی دباو کا آدھا اور منفی رخ ہے حوالہ سے نعین کیا جاتا ہے۔

5.4.1 بدلتار ووالے مثین

برلتارو (اے سی) مشین بناتے وقت کوشش کی جاتی ہے کہ خلائی درز میں مقناطیسی دباوسائن نما ہو۔سائن نما مقناطیسی دباو دباو کے حصول کی خاطر لیچھوں کو ایک سے زیادہ شگافوں میں تقسیم کیا جاتا ہے۔ ایسا کرنے سے سائن نما مقناطیسی دباو کیسے حاصل ہوتا ہے، اس بات کی یہاں وضاحت کی جائے گی۔

 $f(heta_p)^{-29}$ فوریئر تسلسل 28 کے تحت ہم کسی بھی تفاعل 29 $f(heta_p)^{-29}$ کو درج ذیل صورت میں لکھ سکتے ہیں۔

(5.25)
$$f(\theta_p) = \sum_{n=0}^{\infty} (a_n \cos n\theta_p + b_n \sin n\theta_p)$$

تفاعل کا دوری عرصہ T^{30} ہونے کی صورت میں فوریئر تسلسل کے عددی سر درج ذیل ہوں گے۔

(5.26)
$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(\theta_p) d\theta_p$$
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \cos n\theta_p d\theta_p$$
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \sin n\theta_p d\theta_p$$

مثال 5.2: شکل 5.13 میں دیے گئے مقناطیسی دباو کا

Fourier series²⁸ function²⁹ time period³⁰

- فوريئر تسلسل حاصل كريي،
- تيسري موسيقائي جزو³¹ اور بنيادي جزو³² كا تناسب معلوم كرين-

حل:

• مساوات 5.26 کی مدد سے

$$a_0 = \frac{1}{2\pi} \left[\int_{-\pi}^{-\pi/2} \left(-\frac{Ni}{2} \right) d\theta_p + \int_{-\pi/2}^{\pi/2} \left(\frac{Ni}{2} \right) d\theta_p + \int_{\pi/2}^{\pi} \left(-\frac{Ni}{2} \right) d\theta_p \right]$$

$$= \frac{1}{2\pi} \left[\left(-\frac{Ni}{2} \right) \left(-\frac{\pi}{2} + \pi \right) + \left(\frac{Ni}{2} \right) \left(\frac{\pi}{2} + \frac{\pi}{2} \right) + \left(-\frac{Ni}{2} \right) \left(\pi - \frac{\pi}{2} \right) \right]$$

$$= 0$$

اور درج ذیل حاصل ہوں گے۔

$$a_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\cos n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \cos n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\cos n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[-\frac{\sin n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} + \frac{\sin n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} - \frac{\sin n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= \frac{Ni}{2n\pi} \left[\sin \frac{n\pi}{2} + 2\sin \frac{n\pi}{2} + \sin \frac{n\pi}{2} \right]$$

$$= \left(\frac{4}{n\pi} \right) \left(\frac{Ni}{2} \right) \sin \frac{n\pi}{2}$$

اس مساوات میں n کی قیمت ایک، دو، تین لیتے ہوئے درج ذیل حاصل ہوتا ہے۔

$$a_1 = \left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right), \quad a_3 = -\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right), \quad a_5 = \left(\frac{4}{5\pi}\right) \left(\frac{Ni}{2}\right)$$

$$a_2 = a_4 = a_6 = 0$$

third harmonic component³¹ fundamental component³²

اسی طرح درج ذیل ہو گا۔

$$b_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\sin n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \sin n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\sin n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[\frac{\cos n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} - \frac{\cos n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} + \frac{\cos n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= 0$$

• ان نتائج کا یکجا کرتے ہیں:

$$\left| \frac{a_3}{a_1} \right| = \frac{\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right)}{\left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right)} = \frac{1}{3}$$

يوں تيسرا موسيقائي جزو بنيادي جزو کا تيسرا حصه ليني 33.33 في صد ہو گا۔

مثال 5.2 میں حاصل کردہ a_1, a_2, \cdots استعال کرتے ہوئے ہم خلائی درز میں مقناطیسی دباو τ کا فوریئر تسلسل کھتے ہیں۔

(5.27)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p - \frac{4}{3\pi} \frac{Ni}{2} \cos 3\theta_p + \frac{4}{5\pi} \frac{Ni}{2} \cos 5\theta_p + \cdots$$

(5.28)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p = \tau_0 \cos \theta_p$$

 au_0 درج ذیل ہے۔ au_0 درج ذیل ہے۔

(5.29)
$$\tau_0 = \frac{4}{\pi} \frac{Ni}{2}$$

شكل 5.14: تين دور لچھے۔

خلائی درج میں τ ، H اور B ایک دوسرے کے برائے راست متناسب ہوتے ہیں۔ یوں مساوات 5.28 کے تحت شکل 5.12 کا کچھے اور شکل 5.2 میں صفر زاویہ پر سلاخ نما مقناطیس کیساں τ (اور B) دیں گ۔ اس طرح اگر شکل 5.12 کا کچھا زاویہ θ_{m} پر ہوتا تب ہمیں شکل 5.3 میں موجود مقناطیس کے نتائج حاصل ہوتے۔

شکل 5.14 میں تین کچھے آپس میں °120 زاویہ پر دکھائے گئے ہیں۔ ہم مساوات 5.64 کی طرح اس شکل میں کچھا a کے لئے درج ذیل کھ سکتے ہیں۔

(5.30)
$$\begin{aligned} \tau_a &= \tau_0 \cos \theta_{p_a} \\ \theta_{p_a} &= \theta - \theta_{m_a} = \theta - 0^{\circ} \\ \tau_a &= \tau_0 \cos(\theta - \theta_m) = \tau_0 \cos \theta \end{aligned}$$

اسی طرح کچھا b اور c جو بالترتیب $\theta_{m_b}=120^\circ$ اور $\theta_{m_b}=120^\circ$ زویہ پر ہیں کے لئے درج ذیل ہو گا۔

(5.31)
$$\begin{aligned} \tau_b &= \tau_0 \cos \theta_{p_b} \\ \theta_{p_b} &= \theta - \theta_{m_b} = \theta - 120^{\circ} \\ \tau_b &= \tau_0 \cos(\theta - \theta_{m_b}) = \tau_0 \cos(\theta - 120^{\circ}) \end{aligned}$$

$$\begin{aligned} \tau_c &= \tau_0 \cos \theta_{p_c} \\ (5.32) \qquad \theta_{p_c} &= \theta - \theta_{m_c} = \theta - 240^\circ \\ \tau_c &= \tau_0 \cos(\theta - \theta_{m_c}) = \tau_0 \cos(\theta - 240^\circ) = \tau_0 \cos(\theta + 120^\circ) \end{aligned}$$

ا گرچہ ظاہری طور پر خلائی درز میں مقناطیسی دباو سائن نما ہر گز نہیں لگتا لیکن مساوات 5.27 ہمیں بتلاتی ہے کہ یہ محض نظر کا دھوکا ہے۔ اس مقناطیسی دباو کا بیشتر حصہ سائن نما ہی ہے۔ اگر ہم کسی طرح مساوات 5.27 میں پہلے رکن کے علاوہ باتی تمام ارکان کو صفر کر سکیں تب ہمیں سائن نما مقناطیسی دباو حاصل ہو گا۔

شكل 5.15: كيسيلا لجهابه

شکل 5.12 کے N چکر کچھے کو تین چھوٹے کیساں کچھوں میں تقسیم کرتے ہوئے شکل 5.15 حاصل کیا گیا ہے جہاں ہر چھوٹا کچھا کچھا کہ چکر کا ہے۔ ایسے چھوٹے کچھوں کو سلسلہ وار جوڑا 33 جاتا ہے لہذا ان میں ایک جیسا برتی روز 3 گزرے گا۔ ان تین کچھوں کو تین مختلف شگافوں میں رکھا گیا ہے۔ پہلے کچھے کو شگاف 3 و شگاف 3 میں رکھا گیا ہے۔ دوسرے کچھے کو شگاف 3 و میں رکھا گیا ہے۔ دوسرے کچھے کو شگاف 3 و میں رکھا گیا ہے۔

شگافوں کے ایک جوڑا کو ایک ہی طرح کے نام دیے گئے ہیں، البتہ ایک شگاف کو a اور دوسرے کو a نام دیا گیا ہے۔ یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} ہے۔ شگاف کا نام شگاف کے زاویہ کے لحاظ سے رکھا گیا ہے۔ یوں شگاف a_{45} در حقیقت a_{50} زاویہ پر ہے، شگاف a_{90} نوے درجہ زاویہ پر اور شگاف a_{135} ایک سو پینیس درجہ زاویہ پر ہے۔ اس طرح a_{45} شگاف a_{45} کا جوڑا ہے۔

متمام کچھے کا جیل اور تمام کچھوں میں برقی روi ایک دوسرے جیبا ہے۔ شکل 5.15 کے تھیلے کچھے کا مقاطیسی دباو بالمقابل زاویہ کا ترسیم شکل 5.16 میں موٹی لکیر سے دکھایا گیا ہے۔ سب سے اوپر لچھا کہ مقاطیسی دباو کی ترسیم ہو شکل 5.13 کی ترسیم کی طرح لیکن صفر زاویہ سے -45 ہٹ کر ہے۔ دوسری ترسیم لچھا a_{90} کی ہے جو ہو بہو شکل 5.13 کی طرح ہے جبکہ تیسری ترسیم کچھا a_{135} کی ہے جو صفر زاویہ سے +45 کی طرح ہے جبکہ تیسری ترسیم کچھا موری ہے ہو صفر زاویہ سے +45 ہٹ کر ہے۔ ان تینوں ترسیمات کا انفرادی طول $-\frac{N_i}{N_i}$ ہے۔

ترسیمات au_{a45} ، اور au_{a135} ی سے کل مقناطیسی دباو کی ترسیم au_{a45} ، حاصل کرنا سیکھتے ہیں۔ شکل au_{a45} میں عمود کی نقطہ دار کلیریں لگائی گئی ہیں۔ سب سے بائیں کہلی کلیر کی بائیں طرف خطہ کو "ا" کہا گیا ہے۔اس

series connected 33

شكل 5.16: تھيلے لچھے كاكل مقناطيسى د باو۔

خطه میں ترسیمات τ_{a45} ، τ_{a45} ، اور τ_{a135} کی انفرادی قیمتیں τ_{a45} ہیں لہذا ان کا مجموعہ τ_{a45} ، τ_{a45} ، وگلہ یا ان میں کل مقناطیسی دباو τ کی ترسیم کی قیمت τ_{a45} ہو گل۔ اس طرح خطہ "ب" میں کل مقناطیسی دباو τ کی ترسیم کی قیمت τ_{a45} ہو گل۔ اس کا مجموعہ τ_{a45} اور τ_{a45} ہو کی مقناطیسی دباو ہو گا۔ نظم بالائی تینوں ترسیمات کی قیمتیں بالترتیب τ_{a45} ، τ_{a45} ، اور τ_{a45} ہیں جن کا مجموعہ τ_{a45} ہیں۔ مقناطیسی دباو ہو گا۔ اس طرح آپ پوری ترسیم تھنچ سکتے ہیں۔

 $^{\circ}$ شکل $^{\circ}$ کی $^{\circ}$ کو شکل $^{\circ}$ کی میں دوبارہ پیش گیا ہے۔ شکل $^{\circ}$ کی لیجے اور شکل $^{\circ}$ کھے کچھ کچھ

شكل 5.17: تھلے لچھے كامقناطيسى دباو۔

شكل 5.18: يهيلے لچھے كاجزو پھيلاو۔

کے دباو کی ترسیمات ہیں۔ شکل 5.13 کے لحاظ سے شکل 5.17 کی صورت سائن نما کے زیادہ قریب ہے۔ فوریئر سلسل حل کرنے سے بھی یہی نتیجہ حاصل ہوتا ہے۔ شگافوں کے مقامات اور ان میں کچھوں کے چکر یول رکھے جا سکتے ہیں کہ ان کے پیدا کردہ مقناطیسی دباوکی ترسیم کی صورت سائن نماکی زیادہ سے زیادہ قریب ہو۔

کے مختلف مے ایک ہی زاویہ پر مقناطیسی دباو نہیں بناتے للذا ان سے حاصل کل مقناطیسی دباو کا حیطہ استے ہی چکر کے) ایک پچھ کچھ کے حیطہ سے کم ہوتا ہے۔ مساوات 5.29 میں اس اثر کو شامل کرنے کے لئے جزو k_w متعارف کیا جاتا ہے

(5.33)
$$\tau_0 = k_w \frac{4}{\pi} \frac{Ni}{2}$$

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$-\xi \sqrt{2} \sin^2 \theta = \frac{1}{2} \sin^2 \theta + \frac{1}{2} \sin^2 \theta = \frac{1}{2} \sin^2 \theta + \frac{1}{2} \sin^2 \theta = \frac{1}{2} \sin^2 \theta$$

مثال 5.3: شکل 5.15 کے تھیلے کچھے کا k_w تلاش کریں۔

 $au_n=rac{4}{\pi}rac{ni}{2}$ حل: شکل 5.18 سے رجوع کریں۔ شکل 5.15 کے تین چھوٹے کچھے ایک جیبیا مقناطیسی دباو پیدا کرتے ہیں البتہ ان کے رخ مختلف ہیں۔ یہاں ایک کچھا $rac{N}{3}$ چکر کا ہے للذا $rac{N}{3}$ ہو گا۔ ہم تینوں مقناطیسی دباو کے دوری سمتیات کا مجموعہ لے کر مقناطیسی دباو au معلوم کرتے ہیں۔

$$\tau_a = \tau_n \cos 45^\circ + \tau_n + \tau_n \cos 45^\circ$$
$$= 2.4142\tau_n$$

winding factor³⁴

يوں درج ذيل ہو گا

$$\tau_a = 2.4142 \frac{4}{\pi} \frac{ni}{2} = \frac{2.4142}{3} \frac{4}{\pi} \frac{Ni}{2} = 0.8047 \frac{4}{\pi} \frac{Ni}{2}$$

للذا $k_w = 0.8047$ کے برابر ہے۔

مثال 5.4: تین دوری، 50 ہر ٹز، ستارہ جڑے جزیٹر کو 3000 چکر فی منٹ کی رفتار سے چلایا جاتا ہے۔ تیس چکر کے میدانی کچھے کا جزو پھیلاو 0.833 ہے۔ مثین کا میدانی کچھے کا جزو پھیلاو 0.833 ہے۔ مثین کا رواس 0.7495 میٹر اور لمبائی 2.828 $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی میں درج ذیل تلاش کریں۔

- میدانی مقناطیسی دباو کی زیادہ سے زیادہ قیمت۔
 - خلائی درز میں کثافت مقناطیسی بہاو۔
 - ایک قطب پر مقناطیسی بہاو۔
 - متحرك تارير برقى د باو_

حل:

$$\tau_0 = k_{w,m} \frac{4}{\pi} \frac{N_m i_m}{2} = 0.9 \times \frac{4}{\pi} \times \frac{30 \times 1000}{2} = 17\,186\,\text{A} \cdot \text{turns/m}$$

$$B_0 = \mu_0 H_0 = \mu_0 \frac{\tau_0}{l_k} = 4\pi 10^{-7} \times \frac{17186}{0.04} = 0.54 \,\mathrm{T}$$

$$\phi_0 = 2B_0 lr = 2\times 0.54\times 2.828\times 0.7495 = 2.289\,15\,\mathrm{Wb}~\bullet$$

$$\begin{split} E_{rms} &= 4.44 f k_{w,q} N_q \phi_0 \\ &= 4.44 \times 50 \times 0.833 \times 15 \times 2.28915 \\ &= 6349.85 \, \mathrm{V} \end{split}$$

یوں ستارہ جڑی جزیئر کی تار کا برقی دباو درج ذیل ہو گا۔

 $\sqrt{3} \times 6349.85 \approx 11000 \,\text{V}$

ہم سائن نما مقناطیسی دباو حاصل کرنا چاہتے ہیں۔ چھوٹے کچھوں کے چکر اور شگافوں کے مقامات یوں چنے جاتے ہیں کہ یہ مقصد پورا ہو۔ شکل 5.17 میں صفر زاویہ کے دونوں اطراف مقناطیسی دباو کی ترسیم ایک جیسے گھٹتی یا بڑھتی ہے۔ مثلاً جمع اور منفی پینتالیس زاویہ پر مقناطیسی دباو $\frac{N_i}{3}$ گھٹتا ہے۔ اس طرح جمع اور منفی نوے زاویہ پر دباو مزید $\frac{N_i}{3}$ گھٹتا ہے، وغیرہ وغیرہ یہ ایک بنیادی اصول ہے جس کا خیال رکھنا ضروری ہے۔

چھوٹے لیجھوں کے چکر اور شگافوں کے مقامات کا فیصلہ فور بیئر تسلسل کی مدد سے کیا جاتا ہے۔فور بیئر تسلسل میں موسیقائی جزو کم سے کم اور بنیادی جزو زیادہ سے زیادہ رکھا جاتا ہے۔

ساکن کچھوں کی طرح متحرک کچھوں کو بھی ایک سے زیادہ چھوٹے کچھوں میں تقسیم کیا جاتا ہے تا کہ سائن نما مقناطیسی دباو حاصل ہو۔

5.5 مقناطيسي د باو کي گھومتي امواج

گھومتے مشین کے لیجھوں کو برقی دباو فراہم کیا جاتا ہے جس سے اس کا گھومنے والا حصہ حرکت میں آتا ہے۔ یہاں ہم اس بات کا مطالعہ کرتے ہیں کہ گھومنے کی حرکت کیسے پیدا ہوتی ہے۔

5.5.1 ایک دورکی لپٹی مشین

مساوات 5.33 مين ايك لحصي كا مقناطيسي دباو

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta$$

دیا گیا ہے جو سائن نما برقی رو

$$(5.36) i_a = I_0 \cos \omega t$$

کی صورت میں

(5.37)
$$\tau_a = k_w \frac{4}{\pi} \frac{NI_0}{2} \cos \theta \cos \omega t = \tau_0 \cos \theta \cos \omega t$$

مقناطیسی رباو دے گا جہاں au_0 درج ذیل ہے اور کچھا کے برقی رو کو au_a کہا گیا ہے۔

(5.38)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

مساوات 5.37 کہتی ہے کہ مقناطیسی دباو زاویہ <math> heta اور کھہ t کے ساتھ تبدیل ہوتا ہے۔ مساوات 5.37 کو کلیہ

(5.39)
$$\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$

کی مدد سے دو ٹکڑوں

(5.40)
$$\tau_a = \tau_0 \left[\frac{\cos(\theta + \omega t) + \cos(\theta - \omega t)}{2} \right] = \tau_a^- + \tau_a^+$$

میں تقسیم کیا جا سکتا ہے جہاں au_a^+ اور au_a^+ درج ذیل ہوں گے۔

(5.41)
$$\tau_a^- = \frac{\tau_0}{2}\cos(\theta + \omega t)$$

$$\tau_a^+ = \frac{\tau_0}{2}\cos(\theta - \omega t)$$

مساوات 5.40 کہتی ہے کہ مقناطیسی دباو دو آپس میں مخالف رخ گھومتے مقناطیسی دباو کی موجوں کا مجموعہ ہے۔ اس کا یہلا جزو τ_a^+ زاویہ θ گھٹے کے رخ، لینی گھڑی کے رخ، گھومتا ہے جبکہ اس کا دوسرا جزو τ_a^+ گھڑی کے مخالف رخ، زاویہ بڑھنے کے رخ، گھومتا ہے۔

ایک دور کی لیٹی مثینوں میں گھومتے مقناطیسی دباو کی امواج میں سے کسی ایک کو بالکل ختم یا کم سے کم کرنے کی کوشش کی جاتی ہے۔ اس طرح ایک ہی رخ مقناطیس کی مانند ہوگا۔ تین دوری مثینوں میں ایسا کر نا نہایت آسان ہوتا ہے للذا انہیں پہلے سمجھ لینا زیادہ بہتر ہوگا۔

شكل 5.19: تين دوركي لپڻي مشين ـ

5.5.2 تين دور کي لپڻي مشين کا تحليلي تجربيه

شکل 5.19 میں تین دور کی لیٹی مشین دکھائی گئی ہے۔ مساوات 5.30 ، 5.31 اور 5.32 میں ایسے تین کچھوں k_x فور میر تسلسل کے بنیادی اجزاء دیے گئے ہیں جن میں جزو کچھلاو k_x شامل کر کے دوبارہ پیش کرتے ہیں۔

(5.43)
$$\tau_a = k_w \frac{4}{\pi} \frac{N_a i_a}{2} \cos \theta$$
$$\tau_b = k_w \frac{4}{\pi} \frac{N_b i_b}{2} \cos(\theta - 120^\circ)$$
$$\tau_c = k_w \frac{4}{\pi} \frac{N_c i_c}{2} \cos(\theta + 120^\circ)$$

ان لچھوں میں بالترتیب تین دوری برقی رو

(5.44)
$$i_a = I_0 \cos(\omega t + \alpha)$$
$$i_b = I_0 \cos(\omega t + \alpha - 120^\circ)$$
$$i_c = I_0 \cos(\omega t + \alpha + 120^\circ)$$

لینے سے مساوات 5.43 ورج ذیل صورت اختیار کرتی ہیں۔

(5.45)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{N_{a} I_{0}}{2} \cos \theta \cos(\omega t + \alpha)$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{N_{b} I_{0}}{2} \cos(\theta - 120^{\circ}) \cos(\omega t + \alpha - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{N_{c} I_{0}}{2} \cos(\theta + 120^{\circ}) \cos(\omega t + \alpha + 120^{\circ})$$

$$N_a = N_b = N_c = N$$

لیتے ہوئے مساوات 5.39 کی استعال سے

(5.46)
$$\tau_{a} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{b} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha - 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{c} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

 au_0 درج ذیل ہے۔ au_0 درج ذیل ہے۔

(5.47)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

کل مقناطیسی دباو 7 ان سب کا مجموعہ ہو گا۔ انہیں جمع کرنے سے پہلے ہم درج ذیل ثابت کرتے ہیں۔

$$\cos\gamma + \cos(\gamma - 240^{\circ}) + \cos(\gamma + 240^{\circ}) = 0$$

ہم کلیات

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

میں
$$\alpha = \gamma$$
 اور $\alpha = 240^{\circ}$ کے کر

$$\cos(\gamma + 240^{\circ}) = \cos\gamma\cos 240^{\circ} - \sin\gamma\sin 240^{\circ}$$
$$\cos(\gamma - 240^{\circ}) = \cos\gamma\cos 240^{\circ} + \sin\gamma\sin 240^{\circ}$$

حاصل کرتے ہیں جن میں جن میں حاصل مو گا۔ $\cos 240^\circ = -\frac{\sqrt{3}}{2}$ ماصل کرتے ہیں جن میں جن میں اور $\cos 240^\circ = -\frac{1}{2}$

$$\cos(\gamma + 240^{\circ}) = -\frac{1}{2}\cos\gamma + \frac{\sqrt{3}}{2}\sin\gamma$$

$$\cos(\gamma-240^{\circ})=-\frac{1}{2}\cos\gamma-\frac{\sqrt{3}}{2}\sin\gamma$$

ان مساوات کو $\gamma \cos \gamma$ کے ساتھ جمع کرنے سے صفر حاصل ہو گا۔

$$\cos \gamma + \cos(\gamma + 240^{\circ}) + \cos(\gamma - 240^{\circ}) = 0$$

ے کئے اس مساوات کو ورج ذیل کھھا جا سکتا ہے۔ $\gamma=\theta+\omega t+\alpha$

$$(5.48) \quad \cos(\theta+\omega t+\alpha)+\cos(\theta+\omega t+\alpha+240^\circ)+\cos(\theta+\omega t+\alpha-240^\circ)=0$$

اب مساوات 5.46 میں دیے au_b ، au_c اور au_c کو جمع کر کے مساوات 5.48 کا استعمال کرتے ہوئے ورج ذیل حاصل ہو گا۔

(5.49)
$$\tau^{+} = \tau_a + \tau_b + \tau_c = \frac{3\tau_0}{2}\cos(\theta - \omega t - \alpha)$$

مساوات 5.49 کہتی ہے کہ کل مقناطیسی دباو کا حیطہ کسی ایک کچھے کے مقناطیسی دباو کے حیطہ کا $\frac{8}{2}$ گنا ہو گا۔ مزید مقناطیسی دباو کی موج گھڑی کے مخالف رخ گھوے گی۔ یول تین کچھوں کو °120 زاویہ پر رکھنے اور انہیں تین دوری برقی رو، جو آپس میں °120 پر ہوں، سے بیجان کرنے سے مقناطیسی دباو کی واحد ایک موج وجود میں آتی ہے۔ یہاں اس بات کا ذکر کرنا ضروری ہے کہ کسی دو برقی رو کو آپس میں تبدیل کرنے سے مقناطیسی موج کا رخ تبدیل ہوتا ہے۔

مساوات 5.49 ایک گھو متے موج کو ظاہر کرتی ہے جس میں ہم برتی رو کا تعدد 5.49 اور اپنی آسانی کے لئے 0.49 مساوات 5.49 ایک آسانی کے لئے میں موج کی چوٹی کا تعین تفاعل 0.49 تعین تفاعل 0.49 کو صفر لیتے ہیں۔ یوں اس موج کی چوٹی کا تعین تفاعل 0.49 تعین تفاعل 0.49 کے خوالی کا کی ہے جو 0.49 کے بیلی جاتی ہے۔

ابتدائی کھے t=0 پر وہ t=0 کی چوٹی $\cos(\theta-\omega t)$ پر ہوگی جس کو t=0 کے گئے حل کرتے وہیں۔

$$\theta - \omega t = 0$$
$$\theta - \omega \times 0 = 0$$
$$\theta = 0$$

یوں موج کی چوٹی صفر برتی زاویہ پر ہو گی جسے شکل 5.20 میں نقطہ دار لکیر سے ظاہر کیا گیا ہے۔ہم کچھ وقفہ، مثلاً t=0.001

$$\theta - \omega t = 0$$

$$\theta - 0.001\omega = 0$$

$$\theta = 0.001\omega$$

$$= 0.001 \times 2 \times \pi \times 50$$

$$= 0.3142 \,\text{rad}$$

شكل5.20: حركت كرتى موج ـ

اب یہ چوٹی 0.3142 یا $\frac{\pi}{10}$ برتی ریڈیئن لیخی 18° برتی زاویہ پر ہے جے شکل 5.20 میں باریک ٹھوس کیبر سے ظاہر کیا گیا ہے۔ آپ دیکھ سکتے ہیں کہ مقناطیسی وہاو کی مون گھڑی کے مخالف رخ، لیخی زاویہ بڑھنے کے رخ، گھوم گئ $\theta - \omega t' = 0$ برچوٹی کا مقام $0 = \omega t' = 0$ ہے۔ اس طرح لحمد 0 = 0 برچوٹی کا مقام $0 = \omega t'$ ہے درج ذیل حاصل ہو گا جے موٹی ٹھوس کیبر سے ظاہر کیا گیا ہے۔

$$(5.50) \theta = \omega t'$$

مساوات 5.50 کہتی ہے کہ چوٹی کا مقام تعین کرنے والا زاویہ وقت کے ساتھ بندر نج بڑھتا ہے۔اس مساوات 2 برقی زاویہ چکر کا دورانیہ T حاصل کرتے ہیں۔

$$(5.51) T = \frac{\theta}{\omega} = \frac{2\pi}{2\pi f} = \frac{1}{f}$$

یاد رہے f برقی رو کی تعدد ہے۔ یوں 50 ہرٹز برقی رو کی صورت میں مقناطیسی دباو کی موج ہر $\frac{1}{50}=0.02$ سینٹر میں ایک مکمل برقی چکر للذا ایک سینٹر میں 50 برقی چکر مکمل کرے گی۔

دو قطبی مشینول میں مساوات 5.7

$$\theta_e = \frac{P}{2}\theta_m$$

ے تحت برقی زاویہ θ_e اور میکانی زاویہ θ_m ایک دوسرے کے برابر ہوں گے۔ یوں دو قطبی مشینوں کی بات کرتے ہوئے مساوات 05.51 کے تحت ایک سینڈ میں مقناطیسی دباو کی موج f برقی یا میکانی چکر کمل کرے گی جہاں f

برقی رو کی تعدد ہے۔ P قطبی مثینوں کے مقناطیسی دباو کی موج ایک سینٹہ میں f مقناطیسی چکر یعنی $\frac{2}{P}$ میکانی شکر کمل کرے گی۔

برتی رو کی تعدد کو f_e ، مقناطیسی دباو کی موج کی چوٹی کے برتی زاویہ کو θ_e ، میکانی زاویہ کو θ_m اور مقناطیسی دباو کی موج کی زاویائی رفتار کو ω_e یا ω_e سے ظاہر کرتے ہوئے درج ذیل ہوں گے۔

$$\omega_m = rac{2}{P}\omega_e \quad \mathrm{rad/s}$$
 (5.53)
$$f_m = rac{2}{P}f_e \quad \mathrm{Hz}$$
 $g = rac{120f_e}{P}$ چيکر في تيکنگر اين تيکنگر

مقناطیسی موج کی برتی معاصر زاویائی رفتار ω_e برقی زاویه فی سینڈ اور میکائی معاصر زاویائی رفتار ω_m میکائی زاویه فی سینڈ ہو گی۔ اس طرح موج کی برتی معاصر رفتار f_e برتی ہرٹز اور میکائی معاصر رفتار f_m میکائی ہرٹز ہوگی۔ برتی معاصر رفتار f_e میکائی ہرٹز ہونے ہے مراد ہے کہ ایک سینڈ میں موج f_e برتی چکر کا فاصلہ طے کرتی ہے جو دو قطب کا لیعن ω_e ریڈ بیئن کا میکائی زاویہ ہے۔ اس طرح میکائی معاصر رفتار ω_e ہرٹز ہونے کا مطلب ہے کہ موج ایک سینڈ میں میکائی چکر کا فاصلہ طے کرے گی۔ ایک میکائی چکر کو ہی گہتے ہیں۔ اس مساوات میکائی چکر کو ہی گہتے ہیں۔ اس مساوات میکائی چکر کو ہی گھتے ہیں۔ اس مساوات میکائی چکر کی جادی کو ظاہر کرتی ہے۔ مساوات 5.53 معاصر رفتار کی مساوات ہے۔

یہاں اس بات کا ذکر کرنا ضروری ہے کہ q دور کی لپٹی مثین جس کے لیچھ $\frac{2\pi}{q}$ برتی زاویہ پر رکھے گئے ہوں اور جن میں برتی رو q دوری ہو میں، تین دوری مثین کی طرح، ایک ہی رخ گھومتے مقناطیسی دباو کی موج پیدا ہو گی۔ مزید، اس موج کا حیطہ کسی ایک لیچھے کے مقناطیسی دباو کے حیطہ کا $\frac{q}{2}$ گنا ہو گا اور اس کی زاویائی رفتار d و گردی برتی ریڈیئن فی سینڈ ہو گی۔ برتی ریڈیئن فی سینڈ ہو گی۔

5.5.3 تين دور کي لپڻي مشين کاتر سيمي تجربيه

شکل 5.21 میں تین دور کی لپٹی مشین دکھائی گئی ہے جس میں مثبت برقی رو کے رخ دکھائے گئے ہیں۔یوں a شکاف میں برقی رو کا رخ صفحہ سے عمودی باہر کو ہے جسے نقطہ سے ظاہر کیا گیا ہے۔ اسی طرح 'a شکاف میں برقی رو کا رخ

_

synchronous speed 35 rpm, rounds per minute 36

شكل 5.21: تين دوركي لپڻي مثين ميں مثبت بر قي رواوران سے حاصل مقناطيسي د باوكے رخ۔

صفحہ میں عمودی اندر کو ہے اور جسے صلیب کے نثان سے ظاہر کیا گیا ہے۔ یوں شگاف a اور a میں مثبت برقی روکا متناطیسی دباو کا رخ ہے۔ لیچے میں برقی رو سے پیدا متناطیسی دباو کا رخ دائیں ہتھ کے قانون سے معلوم کیا جا سکتا ہے۔

a اب اگر کچھا a میں برتی رو منفی ہو تب برتی رو شبت رخ کے مخالف ہو گا، یعنی اب برتی رو کا رخ شگاف a میں صفحہ کے عمودی باہر ہو گا۔ یوں منفی برقی رو سے پیدا مقناطیسی دباو بھی لیس صفحہ کے عمودی اندر اور شگاف a میں صفحہ کے عمودی باہر ہو گا۔ آپ نے دیکھا کہ برتی رو منفی ہونے سے مقناطیسی دباو کا رخ الٹ ہو جاتا ہے۔ شکل کیس کچھوں کے برتی رو اور مقناطیسی دباو درج ذیل ہیں جبکہ ان کے مثبت رخ شکل میں دیے گئے ہیں۔ a

$$i_a = I_0 \cos \omega t$$

$$i_b = I_0 \cos(\omega t - 120^\circ)$$

$$i_c = I_0 \cos(\omega t + 120^\circ)$$

(5.55)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{Ni_{a}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos \omega t = \tau_{0} \cos \omega t$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{Ni_{b}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t - 120^{\circ}) = \tau_{0} \cos(\omega t - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{Ni_{c}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t + 120^{\circ}) = \tau_{0} \cos(\omega t + 120^{\circ})$$

ہم مختلف کمحات پر ان کی قیمتوں تلاش کرتے ہیں اور ان کا مجموعی مقناطیسی دباو حاصل کرتے ہیں۔

شكل5.22: لمحه
$$t_0=0$$
 يربر قى رواور مقناطيسى د باوـ $t_0=0$

لحہ t=0 یر ان درج بالا مساوات سے درج ذیل حاصل ہو گا۔

(5.56)
$$i_a = I_0 \cos 0 = I_0$$

$$i_b = I_0 \cos(0 - 120^\circ) = -0.5I_0$$

$$i_c = I_0 \cos(0 + 120^\circ) = -0.5I_0$$

(5.57)
$$\begin{aligned} \tau_a &= \tau_0 \cos 0 = \tau_0 \\ \tau_b &= \tau_0 \cos (0 - 120^\circ) = -0.5\tau_0 \\ \tau_c &= \tau_0 \cos (0 + 120^\circ) = -0.5\tau_0 \end{aligned}$$

یہاں رکھ کر ذرا غور کریں۔ لمحہ t=0 پر ہٹبت جبکہ i_b اور i_c منفی ہیں۔ یوں i_a کا رخ وہی ہو گا جے شکل جباں رکھ کر ذرا غور کریں۔ لمحہ t_a ور خال ہیں جبکہ i_b اور i_c کی i_c میں نقطے اور صلیب سے دکھایا گیا ہیں جبکہ i_b اور i_c کی رخ کے کے رخ کے کئے رخ کے خالف ہوں گے۔ لمحہ t=0 پر تینوں برتی رو کے درست رخ اور تینوں مقناطیسی دباو شکل 5.22 میں دکھائے ہیں۔

کل مقناطیسی دباو با آسانی بذریعہ ترسیم (شکل 5.22)، مجموعہ سمتیات سے یا الجبرا کے ذریعہ حاصل کیا جا سکتا ہے۔

(5.58)
$$\begin{aligned} \boldsymbol{\tau}_{a} &= \tau_{0} \boldsymbol{a}_{\mathbf{X}} \\ \boldsymbol{\tau}_{b} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} - \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \\ \boldsymbol{\tau}_{c} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} + \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \end{aligned}$$

شكل 5.23: لمحه $t_1=30^\circ$ لمحه $t_1=30^\circ$ باوـ

ان کا مجموعہ درج ذیل ہو گا۔

(5.59)
$$\boldsymbol{\tau} = \boldsymbol{\tau}_a + \boldsymbol{\tau}_b + \boldsymbol{\tau}_c = \frac{3}{2}\tau_0 \boldsymbol{a}_{\mathrm{X}}$$

لمحہ t=0 پر کل مقناطیسی دباو ایک کیجھے کے مقناطیسی دباو کا ڈیڑھ گنا اور صفر زاویہ پر ہے۔

5.54 اب ہم گھڑی کو چلنے دیتے ہیں اور کچھ وقفہ بعد لمحہ t_1 پر دوبارہ مقناطیسی دباو تلاش کرتے ہیں۔ مساوات 5.55 میں متغیر t کی بجائے t کا استعال زیادہ آسان ہے للذا ہم لمحہ t_1 یوں متخب کرتے ہیں کہ ωt ہوں میا گیا ہے۔ ωt عصل ہو گا جنہیں شکل 5.23 میں دکھایا گیا ہے۔

(5.60)
$$i_a = I_0 \cos 30^\circ = \frac{\sqrt{3}}{2} I_0$$
$$i_b = I_0 \cos(30^\circ - 120^\circ) = 0$$
$$i_c = I_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} I_0$$

(5.61)
$$\tau_a = \tau_0 \cos 30^\circ = \frac{\sqrt{3}}{2} \tau_0$$

$$\tau_b = \tau_0 \cos(30^\circ - 120^\circ) = 0$$

$$\tau_c = \tau_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} \tau_0$$

کل مقناطیسی د باو کا طول au اور زاویه تکون سے حاصل کرتے ہیں۔ $au = \sqrt{\tau_a^2 + \tau_c^2 - 2\tau_a \tau_c \cos 120^\circ} = \frac{3}{2}\tau_0$ (5.62)

5.6. محسر ك_بر قي دباو

تکون کے دو اطراف کی لمبائیاں ایک دوسرے کے برابر اور ان کے ﷺ زاویہ ہوں ہے للذا مقناطیسی دباو کا زاویہ افتی کیبر سے 30° ہو گا۔

کل مقناطیسی دباو جو پہلے صفر زاوبیہ پر تھا اب گھڑی کے مخالف رخ گھوم کر 30° زاوبیہ پر ہے۔ اسی طرح کھہ $\omega t = \theta^\circ$ پر حل کرنے سے زاوبیہ 45° پر کل مقناطیسی دباو $\frac{3}{2}\tau_0$ حاصل ہو گا۔ عمومی کھے $\omega t = 40^\circ$ ہو، زاوبیہ θ° پر کل مقناطیسی دباو $\frac{3}{2}\tau_0$ پیدا کرتا ہے۔

5.6 محرك برقى دباو

یہاں محرک برقی دباو³⁷ کو ایک دوسرے نقطہ نظر سے پیش کرتے ہیں۔

5.6.1 بدلتاروبر قی جزیٹر

شکل 5.24 میں ایک بنیادی بدلتارو جنریر 38 دکھایا گیا ہے۔اس کا گھومتا برقی مقناطیس، خلائی درز میں سائن نما مقناطیسی دباو پیدا کرتا ہے جس سے درز میں سائن نما کثافت مقناطیسی بہاو B پیدا ہوتا ہے:

$$(5.63) B = B_0 \cos \theta_p$$

یہ مقناطیس ω زاویاتی رفتار سے گھوم رہا ہے۔ابتدائی لمحہ t=0 پر اس مقناطیس کو کچھا a کے رخ، یعنی ہلکی سیاہی کی افقی کلیر پر تصور کریں۔ یوں لمحہ t پر بیہ گھوم کر زاویہ $\theta_m=\omega t$ پر ہو گا۔اس طرح درج بالا مساوات درج ذیل کھی جا سکتی ہے۔

(5.64)
$$B = B_0 \cos(\theta - \theta_m)$$
$$= B_0 \cos(\theta - \omega t)$$

شکل 5.25 میں B کو زاویہ θ اور θ_p کے ساتھ ترسیم کیا گیا ہے اور ساتھ ہی لچھا a دکھایا گیا ہے۔ لمحہ t=0 جب گھومتے برتی مقناطیس کا محور اور لچھا a کا محور ایک رخ ہیں، نقطہ دار لکیر سے B دکھایا گیا ہے جبکہ عمومی لمحہ

^{7&}lt;sup>3</sup> ہتداہ میں حرکت سے پیدا برتی دیاو کو محرک برتی دیاو کہتے تھے۔اب روا بی طور پر کسی بھی طرح پیدا کر دو برتی دیاو کو محرک برتی دیاو کہتے ہیں۔ 38 مدم معرور موروں

5.6. محسر ك برقى دباد

t پر B کو ٹھوس کیبر سے دکھایا گیا ہے۔ چونکہ B کی چوٹی ہر صورت $\theta_p=0^\circ$ پر ہوگی لہذا ترسیم میں محور θ_p پر دکھائے گئے زاویات 0° واللہ 0° عمومی لمحہ t کے لئے درست ہیں ناکہ t والے کے لئے۔ لمحہ t بر دکھائے گئے زاویات t والے t والے محور کہ جمومی لمحہ t بر برتی مقناطیس کے محور اور کچھے کے محور کے t ور اور کچھے کے محور کے t ور اور پہنے مخاص میں اور اور پہنے کے محور کے t ور اور پہنے کے مخاص میں کے اللہ مخصر ہوگا۔

$$(5.65) \theta = \omega t$$

کوہ t=0 پر کچھا a میں مقناطیسی بہاو زیادہ سے زیادہ ہو گا۔ خلائی درز باریک ہونے کی بنا درز کا اندرونی اور بیرونی رداس تقریباً ایک دوسرے جیسا ہوں گے۔ برتی مقناطیس کے گھومنے کے محور سے خلائی درز تک کا اوسط رداسی فاصلہ ρ اور برتی مقناطیس کی محوری لمبائی ρ ہونے کی صورت میں کچھے میں مقناطیسی بہاو وہی ہو گا جو خلائی درز میں ρ اور برتی مقناطیس کی محوری لمبائی ρ بر کچھا ρ سے گزرتا بہاو تلاش کرتے ہیں۔

$$\phi_a(0) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_0 \cos \theta_p) (l\rho d\theta_p)$$

$$= B_0 l\rho \sin \theta_p \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= 2B_0 l\rho$$

$$= \phi_0$$

آخری قدم پر $\phi_a(0)$ کو $\phi_a(0)$ کہا گیا ہے۔ یہی حساب لمحہ t پر درج ذیل ہو گا جہاں آخری قدم پر $\phi_a(0)$ کہا گیا ہے۔

(5.67)
$$\phi_{a}(t) = \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} (B_{0} \cos \theta_{p}) (l\rho d\theta_{p})$$

$$= B_{0} l\rho \sin \theta_{p} \Big|_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta}$$

$$= 2B_{0} l\rho \cos \vartheta$$

$$= 2B_{0} l\rho \cos \omega t$$

axial length³⁹

اس بہاو کو درج ذیل طریقہ سے بھی حاصل کیا جا سکتا ہے۔

$$\phi_{a}(t) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_{0} \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t) \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{\pi}{2} - \omega t\right) - \sin\left(-\frac{\pi}{2} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos \omega t$$

اس مرتبہ کمل زاویہ θ کے ساتھ کیا گیا ہے۔ مساوات 0.66 کی مدو سے $\phi_a(t)$ کو درج ذیل کھا جا سکتا ہے۔ $\phi_a(t) = 2B_0 l \rho \cos \omega t = \phi_0 \cos \omega t$ (5.69)

مساوات 5.68 کی طرح d اور c کیچھوں کے مقناطیسی بہاو کی مساواتیں بھی حاصل کی جا سکتی ہیں۔ شکل 5.24 میں زاویہ $\frac{\pi}{2}$ نامی خوات کی مساوات کی مساوات کی مقناطیسی بہاو کچھا a میں گزرتا ہے۔ اس لئے $\phi_a(t)$ معلوم کرنے کے لئے مساوات خواجہ $\frac{\pi}{6}$ کی میں کمل کے حد یہی رکھے گئے تھے۔ یوں کچھا d کے حکمل کے حد $\frac{\pi}{6}$ اور $\frac{\pi}{6}$ جبکہ c کے حد $\frac{5\pi}{6}$ اور $\frac{\pi}{6}$ ہوں گے۔ تمام زاویات ریڈیئن میں ویے گئے ہیں۔ یوں درج ذبل ہو گا۔

$$\phi_b(t) = \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{\pi}{6}}^{\frac{7\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{7\pi}{6} - \omega t\right) - \sin\left(\frac{\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos\left(\omega t - \frac{2\pi}{3}\right)$$

5.6. محسر ك_بر قي دباو

اور

$$\phi_c(t) = \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{5\pi}{6}}^{\frac{11\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{11\pi}{6} - \omega t\right) - \sin\left(\frac{5\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos\left(\omega t + \frac{2\pi}{3}\right)$$

ا کے لچھا کے N چکر تصور کرتے ہوئے تینوں کچھوں میں پیدا برقی دباہ معلوم کرتے ہیں۔ کچھوں میں ارتباط بہاہ درج ذمل ہو گا۔

(5.72)
$$\lambda_a = N\phi_a(t) = N\phi_0 \cos \omega t$$

$$\lambda_b = N\phi_b(t) = N\phi_0 \cos(\omega t - 120^\circ)$$

$$\lambda_c = N\phi_c(t) = N\phi_0 \cos(\omega t + 120^\circ)$$

ان مساوات میں $\frac{2\pi}{3}$ ریڈیئن کو °120 کھھا گیا ہے۔ کچھوں میں پیدا امالی برقی دباو درج ذیل ہو گا۔

(5.73)
$$e_a(t) = \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = -\omega N\phi_0 \sin \omega t$$
$$e_b(t) = \frac{\mathrm{d}\lambda_b}{\mathrm{d}t} = -\omega N\phi_0 \sin(\omega t - 120^\circ)$$
$$e_c(t) = \frac{\mathrm{d}\lambda_c}{\mathrm{d}t} = -\omega N\phi_0 \sin(\omega t + 120^\circ)$$

ان مساوات کو

$$e_a(t) = \omega N \phi_0 \cos(\omega t + 90^\circ)$$

$$e_b(t) = \omega N \phi_0 \cos(\omega t - 30^\circ)$$

$$e_c(t) = \omega N \phi_0 \cos(\omega t + 210^\circ)$$

کھا جا سکتا ہے جو آپس میں °120 زاویہ پر تین دوری محرک برقی دباو کو ظاہر کرتی ہیں۔ ان سب کے حیطے E_0 ایک دوسرے جینے ہیں

$$(5.75) E_0 = \omega N \phi_0$$

للذا تينول برقى دباو كى موثر قيمت ⁴⁰ درج ذيل هو گي۔

(5.76)
$$E_{j_{r}} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N \phi_0}{\sqrt{2}} = 4.44 f N \phi_0$$

چو نکہ $\phi=BA$ ہوتا ہے لہذا مساوات 5.76 صفحہ 50 پر دی گئی مساوات $\phi=BA$ کی طرح ہے۔

مساوات 5.74 سائن نما برقی دباو کو ظاہر کرتی ہے۔ اگرچہ اسے یہ تصور کر کے حاصل کیا گیا کہ خلائی درز میں مقناطیسی بہاو صرف برقی مقناطیس کی وجہ سے ہے تاہم برقی دباو کا اس سے کوئی تعلق نہیں کہ خلائی درز میں مقناطیسی بہاو کس طرح وجود میں آیا اور یہ مساوات ان حالات کے لئے بھی درست ہے جہاں خلائی درز میں مقناطیسی بہاو جزیئر کے ساکن حصہ میں پیدا ہوئی ہویا ساکن اور حرکت پذیر دونوں حصوں میں پیدا ہوئی ہو۔

مساوات 5.76 ہمیں ایک گچھ لچھ میں پیدا برتی دباو دیتی ہے۔ اگر لچھا تقسیم شدہ ہو تب اس کے مختلف شگافول میں موجود اس لچھے کے حصول میں برتی دباو ہم قدم نہیں ہول گے للذا ان سب کا مجموعی برتی دباو ان سب کا حاصل جمع نہیں ہوگا بلکہ اس سے کچھے کم ہوگا۔ یول سچیلے لیھے کے لئے ہیہ مساوات درج ذبل صورت اختیار کرتی ہے۔

$$(5.77) E_{\dot{\tau}} = 4.44k_w f N \phi_0$$

تین دوری برتی جزیٹر وں کے k_w کی قیمت 0.85 تا 0.95 ہوتی ہے۔ یہ مساوات جمیں یک دوری برتی دباو دیتی ہے۔ تین دوری برتی جزیٹر وں میں ایسے تین کچھوں کے جوڑے ہوتے ہیں اور ان کو Y یعنی شارہ یا Δ یعنی شکونی جوڑا جاتا ہے۔

5.6.2 يك سمت روبر قي جزيرً

ہر گھومنے والا برقی جزیٹر بنیادی طور پر بدلتا رو جزیٹر ہوتا ہے۔ البتہ جہاں یک سمت برقی دباو⁴¹ کی ضرورت ہو وہاں مختلف طریقوں سے بدلتا برقی دباو کو یک سمت برقی دباو میں تبدیل کیا جاتا ہے۔ جزیٹر کے باہر برقیاتی سمھے کار⁴² یا جزیٹر کے اندر میکانی سمھے کار⁴³ نسب کر کے بدلتا دباو سے یک سمت دباو حاصل کیا جا سکتا ہے۔ مساوات 5.73 جزیٹر کے اندر میکانی سمت برقی دباو میں تبدیل کرنے سے شکل 5.26 حاصل ہو گا۔

 $[\]rm rms^{40}$

DC voltage⁴¹

rectifier⁴²

 $commutator^{43}$

شكل 5.26: يك دوري يك سمت برقى دباو ـ

مثال 5.5: شكل 5.26 مين يك ست برقى دباو دكھايا گيا ہے۔اس يك ست برقى دباوكى اوسط قيمت حاصل كريں۔

عل:

$$E_{\mathbf{k},\mathbf{d}} = rac{1}{\pi} \int_0^\pi \omega N \phi_0 \sin \omega t \, \mathrm{d}(\omega t) = rac{2\omega N \phi_0}{\pi}$$

یک سمت جزیٹر پر باب 8 میں غور کیا جائے گا۔

5.7 مهوار قطب مشينول مين قوت مرورً

اس حصہ میں کامل مشین میں قوضے مرور ⁴⁴ کے حصول کے دو تراکیب پر غور کیا جائے گا۔ ایک ترکیب میں مشین کو دو مقاطیس تصور کر کے ان مقاطیسوں کے نیج قوت کشش، قوت دفع اور قوت مروڑ حاصل کیے جائیں گے جبکہ دوسری ترکیب میں مشین کے ساکن اور ہم-توانائی سے ان کا حساب لگایا جائے گا۔ پہلے توانائی کی ترکیب پر غور کرتے ہیں۔

شكل 5.27: ساكن اماليه اور گھومتااماليه۔

5.7.1 ميكاني قوت مرور بذريعه تركيب تواناكي

یہاں یک دوری مثین پر غور کیا جائے گا جس سے حاصل نتائج با آسانی زیادہ دور کی مثینوں پر لا گو کیے جا سکتے ہیں۔ شکل 5.27 میں یک دوری کامل مثین دکھائی گئی ہے۔ کسی بھی لمحہ اس مثین کے دو کچھوں کے آج کوئی زاویہ ہو گا جے θ سے ظاہر کیا گیا ہے۔ خلائی درز ہر مقام پر کیساں ہے لہذا ابھرے قطب کے اثرات کو نظر انداز کیا جاتا ہے۔ مزید قالب کا جزو مقناطیس مستقل لا متناہی $(\infty \to \mu_r)$ تصور کیا گیا ہے لہذا کچھوں کا امالہ صرف خلائی درز کے مقناطیسی مستقل کی مخصر ہو گا۔

 $L_{ar}(\theta)$ اس طرح ساکن کچھے کا امالہ L_{aa} اور گھوے کچھے کا امالہ L_{rr} مستقل ہوں گے جبکہ ان کا مشتر کہ امالہ ورسے لکھے نے زاویہ θ پر منحصر ہو گا۔ جس لمحہ $\theta=0$ یا $\theta=\pm 2\pi$ یا $\theta=0$ ہو اس لمحہ ایک کچھے کا سارا مقناطیسی بہاو دوسرے لکھے سے بھی گزرتا ہے اور ان کا مشتر کہ امالہ زیادہ سے زیادہ ہو گا جسے L_{ar0} سے ظاہر کیا جائے گا۔ جس لمحہ ہوتا ہو اس لمحہ دوبارہ ایک کچھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے لیکن اس بار اس کا رخ الٹ ہوتا ہو اس لمحہ دوبارہ ایک کا مشتر کہ امالہ منفی ہو گا، $-L_{ar0}$ جبکہ $\theta=\pm 9$ پر ان کا مشتر کہ امالہ صفر ہو گا۔ خلائی درز میں مقناطیسی بہاو سائن نما

$$(5.78) L_{ar} = L_{ar0}\cos\theta$$

تصور کرتے ہوئے ساکن اور گھومتے کیچھوں کے ارتباط بہاو درج ذیل ہوں گے۔

(5.79)
$$\lambda_{a} = L_{aa}i_{a} + L_{ar}(\theta)i_{r} = L_{aa}i_{a} + L_{ar0}\cos(\theta)i_{r}$$
$$\lambda_{r} = L_{ar}(\theta)i_{a} + L_{rr}i_{r} = L_{ar0}\cos(\theta)i_{a} + L_{rr}i_{r}$$

magnetic constant, permeability⁴⁵

ساکن کچھے کی مزاحمت R_a اور گھومتے کچھے کی مزاحمت R_r لیتے ہوئے ان کچھوں کے سروں پر قانون کرخوف سے برقی دباو درج ذیل ہوں گے۔

$$(5.80) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = i_a R_a + L_{aa} \frac{\mathrm{d}i_a}{\mathrm{d}t} + L_{ar0} \cos\theta \frac{\mathrm{d}i_r}{\mathrm{d}t} - L_{ar0}i_r \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

$$v_r = i_r R_r + \frac{\mathrm{d}\lambda_r}{\mathrm{d}t} = i_r R_r + L_{ar0} \cos\theta \frac{\mathrm{d}i_a}{\mathrm{d}t} - L_{ar0}i_a \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + L_{rr} \frac{\mathrm{d}i_r}{\mathrm{d}t}$$

یہاں θ برقی زاویہ ہے جس کی وقت کے ساتھ تبدیلی، ω دے گی۔

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega$$

میکانی قوت مروڑ بذریعہ ہم-توانائی حاصل کی جا سکتی ہے۔ ہم-توانائی صفحہ 126 پر مساوات 4.72 سے حاصل ہو گ۔ یہ مساوات موجودہ استعال کے لئے درج زیل صورت اختیار کرتی ہے۔

(5.82)
$$W'_{m} = \frac{1}{2}L_{aa}i_{a}^{2} + \frac{1}{2}L_{rr}i_{r}^{2} + L_{ar0}i_{a}i_{r}\cos\theta$$

اس سے میکانی قوت مروڑ T_m حاصل کرتے ہیں۔

(5.83)
$$T_{m} = \frac{\partial W'_{m}(\theta_{m}, i_{a}, i_{r})}{\partial \theta_{m}} = \frac{\partial W'_{m}(\theta, i_{a}, i_{r})}{\partial \theta} \frac{\partial \theta}{\partial \theta_{m}}$$

چونکہ P قطب مشینوں کے لئے درج ذیل ہوتا ہے

$$\theta = \frac{P}{2}\theta_m$$

للذا جمين مساوات 5.83 سے درج ذيل حاصل ہو گا۔

$$(5.85) T_m = -\frac{P}{2} L_{ar0} i_a i_r \sin\left(\frac{P}{2}\theta_m\right)$$

اس مساوات میں قوت مروڑ T_m کی علامت منفی ہے۔ یوں جس لمحہ پر ساکن اور گھومتے کچھوں کے مقناطیسی بہاو کو ایک نی زاویہ مثبت ہو، اس لمحہ پر ان کچھوں کے نی قوت مروڑ منفی ہو گا۔ قوت مروڑ دونوں مقناطیسی بہاو کو ایک رخ میں رکھنے کی کوشش کرتا ہے۔

شکل5.28: کیھوں کے قطبین۔

5.7.2 مكانى قوت مروڙ بذريعه مقناطيسي بهاو

شکل 5.28-ا میں دو قطبی یک دوری مثین کے صرف گھومتے کچھے میں برقی رو پایا جاتا ہے۔ مثین کا گھومتا حصہ ایک مقناطیس کی مانند ہے جس کے شالی اور جنوبی قطبین دکھائے گئے ہیں۔ اس کچھے کا مقناطیسی بہاو تیر کے نشان سے دکھایا گیا ہے لہذا تیر اس مقناطیس کے محور کو ظاہر کرتا ہے۔

شکل 5.28-ب میں صرف ساکن کچھے میں برتی رو پایا جاتا ہے۔ ساکن حصہ سے مقناطیسی بہاو خارج ہو کر خلائی درز سے ہوتا ہوا گھومتے حصہ میں داخل ہوتا ہے لہذا یہی اس کا شالی قطب ہو گا۔ یہاں ساکن حصہ ایک مقناطیس مانند ہے جس کا محور تیر سے ظاہر کیا گیا ہے۔

اگرچہ شکل 5.28 میں گچھ لچھے دکھائے گئے ہیں، در حقیقت دونوں کچھوں کے مقناطیسی دباو سائن-نما ہیں اور تیر کے نشان ان مقناطیسی دباوکی امواج کی چوٹیوں کو ظاہر کرتے ہیں۔

شکل 5.29 میں دونوں لیجھوں کو برتی رو فراہم کی گئی ہے۔ دونوں لیجھوں کے مخالف قطبین کے آج قوت کشش پایا جائے گا جس کی بنا دونوں لیجھے ایک ہی رخ ہونے کی کوشش کریں گے۔

واضح رہے کہ دونوں کیجے (مقناطیں) کوشش کریں گے کہ θ_{ar} صفر کے برابر ہو لینی ان کا میکانی قوت مروڑ θ_{ar} کے مخالف رخ ہو گا۔ یہی مساوات 5.85 کہتی ہے ۔

شكل 5.29: خلا كي در زمين مجموعي مقناطيسي دباو_

لچھوں کے مقناطیسی دباو کو مقناطیسی محور کے رخ τ_a اور τ_r سے ظاہر کیا گیا ہے جہاں τ_a اور τ_r سائن نما مقناطیسی دباو کی چوٹیوں کے برابر ہیں۔ خلائی درز میں کل مقناطیسی دباو τ_{ar} ان کا مجموعہ ہو گا جس کا طول τ_{ar} کلیہ کوسائن τ_{ar} کا سے حاصل ہو گا:

(5.86)
$$\begin{aligned} \tau_{ar}^2 &= \tau_a^2 + \tau_r^2 - 2\tau_a \tau_r \cos(180^\circ - \theta_{ar}) \\ &= \tau_a^2 + \tau_r^2 + 2\tau_a \tau_r \cos \theta_{ar} \end{aligned}$$

خلائی درز میں کل مقناطیسی دباو au_{ar} درج ذیل مقناطیسی شدت H_{ar} پیدا کرے گا جہاں کا کی درز کی لمبائی au_{ar}

$$\tau_{ar} = H_{ar}l_g$$

مقناطیسی شدت کی چوٹی کو ظاہر کرتا ہے۔ خلاء میں جس مقام پر مقناطیسی شدت H ہو وہاں مقناطیسی H_{ar} ہم۔ توانائی کی کثافت H^2 ہوتی ہے۔ خلائی درز میں اوسط ہم۔ توانائی کی کثافت، درز میں H^2 کی اوسط کو H^2 ہے

 $cosine \ law^{46}$

 H^2 خرب کر کے حاصل ہو گا۔ کسی بھی سائن نما موج $H^2 = H = H_0 \cos \theta$ کا اوسط H^2 حاصل کرتے ہیں:

(5.88)
$$H_{\text{ls},\text{sl}}^{2} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H^{2} \, d\theta$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H_{0}^{2} \cos^{2} \theta \, d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \, d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \left. \frac{\theta + \frac{\sin 2\theta}{2}}{2} \right|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= \frac{H_{0}^{2}}{2}$$

یوں خلائی درز میں اوسط ہم-توانائی کی کثافت $\frac{\mu_0}{2} \frac{H_{ar}^2}{2}$ ہو گی۔ خلائی درز میں اوسط ہم-توانائی کو خلاء کے حجم سے ضرب کر کے درز میں کل ہم-توانائی W_m' حاصل ہو گی:

(5.89)
$$W'_{m} = \frac{\mu_0}{2} \frac{H_{ar}^2}{2} 2\pi r l_g l = \frac{\mu_0 \pi r l}{2 l_g} \tau_{ar}^2$$

اس مساوات میں خلائی درز کی رداسی لمبائی l_g اور دھرے 47 کے رخ محوری لمبائی 48 ہے۔ محور سے خلائی درز کا اوسط رداسی فاصلہ $r \gg l_g$ مزید $r \gg l_g$ تصور کیا گیا ہے جس کی بنا درز میں رداسی رخ، کثافت مقناطیسی بہاو کی تبدیلی نظر انداز کی جا سکتی ہے۔ اس مساوات کو ہم مساوات کی حدد سے درج ذیل لکھ سکتے ہیں۔

(5.90)
$$W'_{m} = \frac{\mu_{0}\pi r l}{2l_{g}} \left(\tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar} \right)$$

یوں میکانی قوت مروڑ درج ذیل ہو گا۔

(5.91)
$$T_m = \frac{\partial W'_m}{\partial \theta_{ar}} = -\frac{\mu_0 \pi r l}{l_a} \tau_a \tau_r \sin \theta_{ar}$$

مساوات 5.91 میں قوت مروڑ دو قطبی مشین کے لئے حاصل کی گئ۔P قطبی مشین کے لئے یہ مساوات ہر جوڑی قطب کی میکانی قوت مروڑ دیتی ہے لہذا P قطبی مشین کی قوت مروڑ $\frac{P}{2}$ گنا ہو گی:

$$(5.92) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

 axis^{47} axial length⁴⁸

مساوات 5.92 ایک اہم مساوات ہے جس کے مطابق مثین کی میکانی قوت مروڑ، ساکن اور گھومتے لیجھوں کے مقاطیسی دباو کی چوٹیوں اور دونوں کے نیچ برتی زاویہ θ_{ar} کے سائن کی راست متناسب ہو گی۔ منفی میکانی قوت مروڑ کی مطلب ہے کہ یہ زاویہ θ_{ar} کا مطلب ہے کہ یہ زاویہ θ_{ar} کا مطلب ہے کہ یہ زاویہ تصول پر ایک دوسرے کے برابر لیکن مخالف رخ میکانی قوت مروڑ ہو گی البتہ ساکن گی۔ مثین کے ساکن اور گھومتے حصوں پر ایک دوسرے کے برابر لیکن مخالف رخ میکانی قوت مروڑ ہو گی البتہ ساکن حصہ کی قوت مروڑ مشین کے وجود کے ذریعہ زمین تک منتقل ہو گی جبکہ گھومتے حصے کی میکانی قوت مروڑ اس حصہ کو متحرک کرتی ہے۔

چونکہ مقناطیسی دباو کچھے کے برقی رو کا راست متناسب ہوں گے ہونکہ مقناطیسی دباو کچھے کے برقی رو کا راست متناسب ہوں گے۔ بیل ظاہر ہوتا ہے کہ مساوات 5.85 اور 5.92 ایک دوسرے جبکہ ہیں۔ در حقیقت یہ ثابت کیا جا سکتا ہے کہ یہ دونوں بالکل ایک جیسے ہیں۔

 ΔAEC کیں دوبارہ ساکن اور گھومتے کیجھوں کے مقناطیسی دباو دکھائے گئے ہیں۔ شکل-اکی تکون ΔAEC اور ΔBEC میں ΔBEC میں ΔBEC میں خان ہوگا۔

(5.93)
$$CE = \tau_r \sin \theta_{ar} = \tau_{ar} \sin \theta_a$$

اس مساوات کی مدد سے مساوات 5.92 کو درج ذیل لکھا جا سکتا ہے۔

$$(5.94) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_{ar} \sin \theta_a$$

اسی طرح شکل WQ ہے جو درج ذیل ہو گا۔ ΔSWQ اور تکون ΔSWQ میں ΔSWQ مشترک ہے جو درج ذیل ہو گا۔

$$(5.95) WQ = \tau_a \sin \theta_{ar} = \tau_{ar} \sin \theta_r$$

اس مساوات کی مدد سے مساوات 5.92 کو درج ذیل لکھا جا سکتا ہے۔

$$(5.96) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_r \tau_{ar} \sin \theta_r$$

مهاوات 5.92، مهاوات 5.94 اور مهاوات 5.96 كو ايك ساتھ لكھتے ہيں۔

(5.97)
$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{r} \sin \theta_{ar}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{ar} \sin \theta_{a}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{r} \tau_{ar} \sin \theta_{r}$$

شکل5.30: مقناطیسی بہاواوران کے زاویے۔

ان مساوات سے واضح ہے کہ میکانی قوت مروڑ کو دونوں کچھوں کے مقناطیسی دباو اور ان کے چی زاویہ کی صورت میں، یا کسی ایک کچھے کے مقناطیسی دباو، کل مقناطیسی دباو اور ان کے چی زاویہ کی صورت میں لکھا جا سکتا ہے۔

اس بات کو یوں بیان کیا جا سکتا ہے کہ میکانی قوت مروڑ دو مقناطیسی دباو کی آپس میں ردعمل کی وجہ سے پیدا اور مقناطیسی دباو کی چوٹیوں اور ان کے چے زاویہ پر منحصر ہوتا ہے۔

مقناطیسی دباو، مقناطیسی شدت، کثافت مقناطیسی بهاو اور مقناطیسی بهاو آپس میں تعلق رکھتے ہیں جنہیں مختلف طریقوں سے لکھا جا سکتا ہے۔ مثلاً خلائی درز میں کل مقناطیسی دباو au_{ar} اور درز میں کثافت مقناطیسی بهاو au_{ar} کا تعلق

$$(5.98) B_{ar} = \frac{\mu_0 \tau_{ar}}{l_q}$$

استعال کر کے مساوات 5.97 کے آخری جزو کو درج زیل لکھا جا سکتا ہے۔

$$(5.99) T_m = -\frac{P}{2}\pi r l \tau_r B_{ar} \sin \theta_r$$

مقناطیسی مشینوں کی قالبی مقناطیسی مستقل μ کی محدود قیمت کی بنا قالب میں کثافت مقناطیسی بہاو تقریباً ایک ٹسلا تک ہی بڑھائی جا سکتی ہے۔ مشین کی بناوٹ کے وقت اس حد کو مد نظر رکھنا ہو گا۔ اسی طرح گھومتے کچھے کا مقناطیسی دباو اس کچھے میں برقی رو پر مخصر ہوتا ہے۔ اس برقی رو سے کچھے کی مزاحمت میں برقی توانائی ضائع ہوتی ہے جس سے کچھا گرم ہوتا ہے۔ برقی رو کو اس حد تک بڑھایا جا سکتا ہے جہاں تک کچھے کو ٹھنڈا رکھنا ممکن ہو۔ یوں مقناطیسی

دباو کو ایک حد سے نیچے رکھنا ہو گا۔ مساوات 5.99 میں B_{ar} اور au_r دونوں صریحاً موجود ہیں للذا مشین کی بناوٹ کے نقطہ نظر سے یہ ایک اہم مساوات ہے۔

مساوات 5.99 کی دوسری اہم صورت دیکھتے ہیں۔ قطب پر اوسط کثافت مقناطیسی بہاو اوسطB اور قطب کے رقبہ A_P

(5.100)
$$B_{\text{begl}} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} B_0 \cos \theta \, \mathrm{d}\theta = \frac{2B_0}{\pi}$$

$$(5.101) A_P = \frac{2\pi rl}{P}$$

کا حاصل ضرب قطب پر مقناطیسی بہاو ϕ_P ہوتا ہے للذا

$$\phi_P = \frac{2B_0}{\pi} \frac{2\pi rl}{P}$$

اور

(5.103)
$$T_m = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_{ar} \tau_r \sin \theta_r$$

ہوں گے۔ مساوات 5.103 معاصر مشینوں کے لئے بہت کار آمد ہے۔

باب6

يكسال حال، بر قرار جالو معاصر مشين

معاصر مشین وہ گھومنے والی مشین ہے جو ایک مقررہ رفتار سے گھومتی ہے۔ یہ رفتار فراہم کردہ برقی دباو کے تعدد پر منصر ہوتی ہے۔

کسی جزیٹر پر بوجھ تبدیل کرنے یا اسے میکانی طاقت فراہم کرنے والے کی رفتار تبدیل کرنے کے چند ہی کھات میں جزیٹر نئی صورتِ حال کے مطابق دوبارہ بر قرار صورت اختیار کر لیتا ہے۔اس بر قرار چالو حال میں اس کی رفتار، برقی دوباد، برقی رو، درجہ حرارت وغیرہ تبدیل نہیں ہوتے ہیں۔اس طرح موٹر پر بوجھ تبدیل کرنے سے موٹر کی درکار طاقت اور برقی رو تبدیل ہوں گے۔بوجھ تبدیل ہونے سے قبل موٹر ایک مستقل برقی رو حاصل کرتی اور ایک مستقل درجہ حرارت پر رہتی ہے۔بوجھ تبدیل ہونے کے چند ہی کھات میں موٹر دوبارہ ایک نئی بر قرار چالو صورت اختیار کرتی ہے جہاں اس کا برقی رو ایک نئی قیت پر برقرار رہتا ہے اور اس کا درجہ حرارت بھی ایک نئی قیت اختیار کرتا ہے۔دو مختلف برقرار چالو، کیساں صور توں کے در میان چند کھات کے لئے مشین عارضے حالے اس میں ہوتی ہے۔اس بیس ہوتی ہے۔اس بیس بوتی ہے۔اس بیس بوتی ہے۔اس بیس بوتی ہے۔اس بیس میں پر تبعرہ کیا جائے گا۔

معاصر مشین کے قوی کچھے عموماً ساکن جبکہ میدانی کچھے معاصر رفتار سے گھومتے ہیں۔ قوی کچھوں کا رو میدانی کچھوں کو کچھوں کے روکی نسبت بہت زیادہ ہوتا ہے اور اسے سرک چھلوں کے ذریعہ گزارنا مشکل ہوتا ہے للذا قوی کچھوں کو ساکن رکھا جاتا ہے جبکہ میدانی کچھوں کو گھمایا جاتا ہے۔

> transient state¹ steady state²

ہم دیکھ چکے ہیں کہ تین دوری ساکن لچھوں میں متوازن تین دوری برقی رو ایک گھومتے مقناطیسی دباوکی موج پیدا کرتے ہیں۔اس گھومتے موج کی رفتار کو معاصر رفتار 3 کہتے ہیں۔ معاصر مثنین کا گھومتا حصہ اسی رفتار سے گھومتا ہے۔

معاصر مشین کے میدانی کچھے کو یک سمت برقی رو درکار ہوتا ہے جو سرک چھلوں کے ذریعہ اس تک باہر سے پہنچایا جاتا ہے یا مشین کے دھرے پر نسب ایک چھوٹے یک سمت جزیٹر سے اسے فراہم کیا جاتا ہے۔

میدانی لچھا ایک میدانی مقناطیسی دباو پیدا کرتا ہے جو اس کچھے کے ساتھ ساتھ معاصر رفتار سے گھومتا ہے۔ یول معاصر مثین کے گھومتے کچھوں کے مقناطیسی دباو اور ساکن کچھوں کے مقناطیسی دباو معاصر رفتار سے گھومتے ہیں۔ اس لئے انہیں معاصر مثین کہتے ہیں۔

6.1 متعدد دوری معاصر مشین

معاصر مشین عموماً تین دوری ہوتے ہیں۔ تین دوری ساکن قوی کچھے خلائی درز میں 120° برقی زاویہ پر نسب ہوتے ہیں جبکہ میدانی کچھے گھومتے حصے پر نسب ہوتے ہیں اور ان میں یک سمت برقی رو ہوتا ہے۔

اگر مشین کے گھومتے جھے کو بیرونی میکانی طاقت سے گھمایا جائے تو یہ مشین ایک معاصر جزیٹر کے طور پر کام کرتی ہے اور اس کے تین دوری ساکن قوی کچھوں میں تین دوری برقی دباو پیدا ہوتا ہے جس کا برقی تعدد گھومنے کی رفتار پر منحصر ہوتا ہے۔ اس کے برعکس اگر مشین کے تین دوری ساکن قوی کچھوں کو تین دوری برقی طاقت مہیا کی جائے تو یہ مشین ایک معاصر موٹر کے طور پر کام کرتی ہے جو معاصر رفتار سے گھومتی ہے۔ مشین کی کل برقی قوت کے چند فی صد برابر برقی قوت میدان کچھے کو درکار ہوتی ہے۔

گھومتے کچھے تک برقی دہاو مختلف طریقوں سے پہنچایا جاتا ہے۔شکل 6.1 میں گھومتے کچھے تک موصل سرکھ پھلے 4 کی مدد سے یک سمت برقی رو پہنچانے کا طریقہ دکھایا گیا ہے۔ یہ سرک چھلے اسی دھرے پر نسب ہوتے ہیں جس پر گھومتا کچھا نسب ہوتا ہے اور دونوں کچھے کے ساتھ ساتھ ایک ہی رفتار سے گھومتے ہیں۔

> synchronous speed³ slip rings⁴

6.1 متعبد د دوری معب صرمت بین

شكل 6.1: كاربن كُبْن اور سرك چھلوں سے گھومتے لچھے تك برقى روينجايا يا گياہے۔

کار بن کے ساکن بش، اسپر نگ کی مدد ہے، سرک چھلوں کے بیر ونی سطح کے ساتھ دباکر رکھے جاتے ہیں۔ جب مشین چلتی ہے، کار بن بش ان سرک چھلوں پر سرکتے ہیں۔ اسپر نگ کا دباو ان کا برقی جوڑ مضبوط رکھتا ہے تا کہ ان کے بچھوں کے بچھ چنگاریاں نہ نگلیں۔ کار بن بش کے ساتھ برقی تاریکی ہے۔ یک سمت برقی رو I_r ، کار بن بش ⁵ اور سرک چھلوں سے ہوتا ہوا، گھومتے کچھے تک پہنچتا ہے۔

بڑی معاصر مشینوں میں میدانی یک سمت رو عموماً بدلتا رو چھوٹے جنریٹر سے حاصل کیا جاتا ہے جو معاصر مشین کے دھرے پر نسب ہوتا ہے اور دھرے کے ساتھ گھومتا ہے چھوٹے جنریٹر کے برتی دباو کو دھرے پر نسب برقیاتی سمت کارکی مدد سے یک سمت برقی دباو میں تبدیل کیا جاتا ہے۔ یوں سرک چھلے کی ضرورت پیش نہیں آتی ہے۔ سرک چھلے بوجہ رگڑ خراب ہوتے ہیں جس کی وجہ سے معاصر مشین کی مرمت درکار ہوتی ہے جو ایک مہنگا کام ہے۔

اُبھرے قطب⁶ مشین، پانی سے چلنے والے ست رفتار جزیٹر اور عام استعال کی موٹروں کے لئے موزوں ہیں۔ جبکہ ہموار قطب⁷ مشین، تیز رفتار دو یا چار قطبی ٹربائن جزیٹروں کے لئے موزوں ہیں۔

ایک (بڑے) مملکت کو درکار برقی توانائی کسی ایک جزیٹر سے دینا ممکن نہیں ہوتا ہے بلکہ چند در جن سے لیکر کئی سو جزیٹر بیک وقت یہ فرنضہ سر انجام دیتے ہیں۔ ایک سے زیادہ جزیٹر استعال کرنا فائدہ مند ثابت ہوتا ہے۔ اوّل، برقی توانائی کی ضرورت کے مطابق جزیٹر چالو کئے جا سکتے ہیں۔ دوم، جزیٹر وں کو ان مقامات کے قریب نسب کیا جا سکتا ہے جہاں جہاں برقی توانائی درکار ہو۔ کسی بھی اس طرح کے بڑے نظام میں ایک جزیٹر کی حیثیت بہت کم ہو

carbon bush⁵ salient poles⁶

non-salient poles⁷

جاتی ہے۔ ایک جزیر چالو یا بند کرنے سے پورے نظام پر کوئی خاص فرق نہیں پڑتا۔ اس صورت میں ہم اس نظام کو ایک مقررہ برقی دباو اور ایک مقررہ برقی تعدد کا نظام تصور کر سکتے ہیں۔ معاصر جزیر کے کئی اہم پہلو با آسانی سمجھے جا سکتے ہیں اگر یہ تصور کر لیا جائے کہ یہ ایک ایسے نظام سے جوڑا گیا ہے۔

مساوات 5.103 معاصر مشین کی قوت مروڑ دیتی ہے۔ اس مساوات کے مطابق برقی قوت مروڑ، مشین میں موجود عمل کرنے والے مقناطیسی دباو کو ایک دوسرے کی سیدھ میں لانے کی کوشش کرتی ہے۔ برقرار چالو مشین کی برق قوت مروڑ اور اس کے دھرے پر لا گو میکانی قوت مروڑ ایک دوسرے کے برابر ہوتے ہیں۔ جب مشین ایک جزیر کی حیثیت سے استعال ہو تب میکانی طاقت دھرے کو گھماتا ہے اور گھومتے کچھے کا مقناطیسی دباو کل مقناطیسی دباو سے گھومنے کے رخ آگے ہوتا ہے۔ مساوات 5.103 سے حاصل قوت مروڑ ایسی صورت میں گھومنے کو روکنے کی کوشش کرتا ہے۔ میکانی طاقت چلتے پانی، ایندھن سے چلتے انجی، وغیرہ سے حاصل ہو سکتا ہے۔ اس طرح اگر مشین ایک موٹر کی حیثیت سے استعال ہو، تب صورت اس کے بالکل اُلٹ ہو گی۔

کل مقناطیسی بہاو ϕ_{ar} اور گھومتے لچھے کا مقناطیسی دباو τ_r تبدیل نہ ہونے کی صورت میں مساوات δ کی مطابق مثین کی قوت مر وڑ ہی صاتھ تبدیل ہو گی۔ اگر زاویہ θ_r صفر ہو تب قوت مر وڑ بھی صفر ہو گ۔ استعال ہو رہی ہے۔ جیسے جیسے موٹر پر لدا میکانی بوجھ بڑھایا جاتا اب تصور کریں کہ یہی مثین ایک موٹر کے طور پر استعال ہو رہی ہے۔ جیسے جیسے موٹر پر لدا میکانی بوجھ بڑھایا جاتا ہے ویسے ویسے اس کے دھرے پر میکانی قوت مر وڑ بڑھے گی۔ موٹر کو برابر کی برقی قوت مر وڑ پیدا کرنے کے لئے، موٹر کو برابر کی برقی قوت مر وڑ پیدا کرنے کے لئے، موٹر کو بید زاویہ کو بڑھانا ہو گا۔ یہاں یہ سمجھنا ضروری ہے کہ موٹر ہر وقت معاصر رفتار سے گھومتا ہے ماسوانے ایک لحم کے لئے جس کے دوران موٹر آہتہ ہو کر زاویہ کو ضرورت کے مطابق درست کرتی ہے۔ یعنی موٹر کا زاویہ ہو وقت میکانی قوت مروڑ کا تعقب 8 کرتا ہے۔

موٹر پر لدا میکانی بوجھ بندر تئے بڑھانے سے ایک لمحہ آئے گا جب زاویہ θ_r نوے درجہ، $\frac{\pi}{2}$ ریڈیئن، تک پہنچتا ہے۔ اس لمحہ موٹر اپنی انتہائی قوت مروڑ پیدا کرے گی۔ موٹر کسی بھی صورت میں اس سے زیادہ قوت مروڑ پیدا نہیں کر سکتی ہے لہذا بوجھ مزید بڑھانے سے موٹر رکھ جائے گی۔ ہم کہتے ہیں کہ موٹر نے غیر معاصر 10 صورت اختیار کر لی ہے۔ مساوات 5.103 سے ظاہر ہے کہ کل مقاطیسی بہاو یا گھومتے کچھے کا مقاطیسی دباو بڑھا کر موٹر کی انتہائی قوت مروڑ بڑھائی جا سکتی ہے۔

hunting⁸ pull out torque⁹ lost synchronism¹⁰

6.2. معاصر مشين كے اماله

یہی صورت اگر مشین برقی جزیٹر کے طور پر استعال کی جائے سامنے آتی ہے۔ جب بھی مشین غیر معاصر صورت اختیار کرے، اسے جلد خود کار دور شکر ہے ¹¹ کی مدد سے برقی بھم رسانی سے الگ کر دیا جاتا ہے۔

ہم نے دیکھا کہ ایک معاصر موٹر صرف اور صرف معاصر رفتار سے ہی گھوم سکتی ہے اور صرف اسی رفتار پر گھوم کر قوت مروڑ پیدا کر علی ہے لہذا ساکن معاصر موٹر کو چالو کرنے کی کوشش ناکام ہو گی۔ معاصر موٹر کو پہلے کسی دوسرے طریقے سے معاصر رفتار تک لایا جاتا ہے اور اس کے بعد اسے چالو کیا جاتا ہے۔ ایسا عموماً ایک چھوٹی امالھے موٹر کو چالو کیا جاتا ہے۔ چس کے بعد معاصر موٹر کو چالو کیا جاتا ہے۔ ایک امالہ موٹر عموماً معاصر موٹر کو دھرے پر نسب ہوتی ہے۔

6.2 معاصر مثين كے اماليہ

ہم تصور کرتے ہیں کہ مشین دو قطب اور تین دوری ہے اور اس کے کچھے ستارہ نما جڑے ہیں۔اس طرح کچھوں میں برقی رو، تار برقی رو¹³ ہی ہو گا اور ان پر لا گو برقی دباو، یک دوری برقی دباو ہو گا۔ایسا کرنے سے مسئلے پر غور کرنا آسان اور نتیجہ کسی بھی موڑ کے لئے درست ہوتا ہے۔

شکل 6.2 میں ایک ایس تین دوری دو قطبی معاصر مثین دکھائی گئی ہے۔ اس کا گھومتا حصہ نکلی نما ہے۔اس کو دو قطبی مثین یا P قطبی مثین کے دو قطب کا حصہ سمجھا جا سکتا ہے۔

اگرچہ یہاں پچھ لچھے دکھائے گئے ہیں، حقیقت میں پھلے لچھے استعال ہوں گے للذا انہیں پھلے لچھے تصور کریں۔
اس طرح ہر لچھا سائن نما برقی دباو پیدا کرتا ہے جس کی چوٹی لچھے کی مقناطیسی محور کے رخ ہو گا۔ چونکہ معاصر مثین کے گھومتے لچھے میں یک سمت رو ہوتا ہے لہذا، جیسا شکل 6.2 میں دکھایا گیا ہے، اس کچھے کا مقناطیسی دباو ہر لمحہ کے مقاطیسی محور کے رخ ہو گا۔ گھومتے لچھے کا مقناطیسی دباو گھومتے حصہ کے ساتھ ساتھ معاصر رفتار سے گھومے گا۔

فرض کریں کہ یہ مثین معاصر رفتار ω سے گھوم رہی ہے۔ یوں اگر لمحہ t=0 پر دور a اور گھومتے کچھے کی مقاطیسی محور کے رخ ایک دوسرے جیسے ہوں تب کسی بھی لمحہ t پر ان کے پھی زاویہ $\theta=\omega t$ ہو گا۔ امالہ کا حساب

circuit breaker¹¹

 $[\]begin{array}{c} \text{induction motor}^{12} \\ \text{line current}^{13} \end{array}$

شکل 6.2: تین دوری، دو قطبی معاصر مثین ـ

 l_g کرنے کے لئے شکل 6.2 سے رجوع کریں جہاں محیط پر خلائی ورز یکساں ہے۔ رداسی رخ خلائی ورز کی لمبائی ρ ہے۔ ساکن جصے میں شگافوں کے اثر کو نظرانداز کریں۔ محور سے خلائی درز تک کا اوسط رداسی فاصلہ ρ ہے اور مشین کی محوری لمبائی (دھرے کے رخ) ρ ہے۔

کسی بھی کچھے کے خود امالہ کا حساب کرتے وقت باقی تمام کچھوں کو نظرانداز کریں۔یوں باقی تمام کچھوں میں برقی رو صفر تصور کریں، یعنی ان کچھوں کے سرے آزاد رکھیں۔کسی ایک کچھے کے خود امالہ کو پیما سے ناپتے وقت بھی باقی تمام کچھوں کے سرے آزاد رکھیں جائیں گے۔

6.2.1 خوداماليه

au گھو متے یا ساکن کچھے کا خود امالہ L زاویہ au پر منحصر نہیں ہوتا ہے۔ ان میں سے کسی بھی کچھے کی مقناطیسی دباو L

$$\tau = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p$$

سے خلائی درز میں درج ذیل کثافت مقناطیسی بہاو B پیدا ہو گا۔

(6.2)
$$B = \mu_0 H = \mu_0 \frac{\tau}{l_g} = \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} \cos \theta_p$$

6.2. معاصر مشین کے امالہ

یہ مساوات زاویہ θ_p کے ساتھ کثافت مقناطیسی دباو B کا تعلق پیش کرتی ہے۔ لچھا کے ایک قطب پر کل مقناطیسی بہاو ϕ اس مساوات کا سطح کمل 14 دے گا۔

(6.3)
$$\phi = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} Bl\rho \, d\theta_p$$

$$= \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} l\rho \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos \theta_p \, d\theta_p$$

$$= \frac{4\mu_0 k_w Nil\rho}{\pi l_q}$$

ایک کیھے کا خود امالہ L، مساوات 2.29 میں جزو کھیلاو k_w کا اثر شامل کرتے ہوئے حاصل کرتے ہیں۔

$$(6.4) L = \frac{\lambda}{i} = \frac{k_w N \phi}{i} = \frac{4\mu_0 k_w^2 N^2 l \rho}{\pi l_q}$$

يه مساوات شكل 6.2 مين تينول توى لچھوں كا خود اماليه

(6.5)
$$L_{aa0} = L_{bb0} = L_{cc0} = \frac{4\mu_0 k_{wa}^2 N_a^2 l\rho}{\pi l_g}$$

اور میدانی کھیے کا خود امالہ دیتی ہے۔

(6.6)
$$L_{mm0} = \frac{4\mu_0 k_{wm}^2 N_m^2 l \rho}{\pi l_g}$$

6.2.2 مشتركه اماله

اب ہم دو کچھوں کا مشتر کہ امالہ حاصل کرتے ہیں۔تصور کریں صرف گھومتا کچھا مقناطیسی بہاو پیدا کر رہا ہے۔ ہم بہاو کے اس حصہ سے، جو a کچھا سے گزرتا ہے، گھومتے کچھا اور a کچھا کا مشتر کہ امالہ حاصل کرتے ہیں ۔شکل 6.2

surface integral¹⁴

میں گھومتے اور a کچھا کے نی زاویہ θ ہے۔الی صورت میں صورت میں گھومتے اور a کچھا کے نی زاویہ a بہاو، a بہاو، a بہاو کا حساب مساوات a میں حکمل کے حد تبدیل کر کے حاصل کرتے ہیں۔

(6.7)
$$\phi_{am} = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} B l \rho \, d\theta_{p}$$

$$= \mu_{0} k_{wm} \frac{4}{\pi} \frac{N_{m} i_{m}}{2 l_{g}} l \rho \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} \cos \theta_{p} \, d\theta_{p}$$

$$= \frac{4 \mu_{0} k_{wm} N_{m} i_{m} l \rho}{\pi l_{g}} \cos \theta$$

یوں گھومتے کچھا اور کچھا کا مشتر کہ امالہ

(6.8)
$$L_{am} = \frac{\lambda_{am}}{i_m} = \frac{k_{wa}N_a\phi_{am}}{i_m} = \frac{4\mu_0k_{wa}k_{wm}N_aN_ml\rho}{\pi l_g}\cos\theta$$

يا

$$(6.9) L_{am} = L_{am0}\cos\theta$$

ہو گا جہاں

$$(6.10) L_{am0} = \frac{4\mu_0 k_{wa} k_{wm} N_a N_m l \rho}{\pi l_a}$$

ہے اور $\omega t = \omega t$ گومنے کی رفتار پر منحصر ہو گا۔ اگرچہ مساوات 6.9 ایک گھومتے اور ایک ساکن کچھے کے لئے حاصل کی گئی ہے، در حقیقت یہ شکل 6.2 میں کسی بھی دو کچھوں کے لئے درست ہے۔ دونوں ساکن کچھے ساکن یا دونوں متحرک لینے سے بھی یہی نتیجہ حاصل ہوتا ہے۔ یوں دو ساکن یکسال کچھے، مثلاً α اور α جن کے آج 120° زاویہ ہے، کا مشتر کہ امالہ کا مشتر کہ امالہ

(6.11)
$$L_{ab} = \frac{4\mu_0 k_{wa} k_{wb} N_a N_b l \rho}{\pi l_g} \cos 120^\circ = -\frac{2\mu_0 k_{wa}^2 N_a^2 l \rho}{\pi l_g}$$

ہو گا جہاں یکسانیت کی بدولت $k_{wb}=k_{wa}$ اور $N_b=N_a$ اور $N_b=N_b$ اور $N_b=k_{wa}$ بالکل یکسال ہوں تب درج بالا مساوات اور مساوات 6.5 کی مدد سے درج ذیل لکھا جا سکتا ہے۔

(6.12)
$$L_{ab} = L_{bc} = L_{ca} = -\frac{L_{aa0}}{2}$$

6.2. معیاصر مثین کے امالہ

6.2.3 معاصراماله

مشین پر لا گو برقی دباو کو مشین کے کچھوں کا خود امالہ، مشتر کہ امالہ اور کچھوں کے برقی رو کی مدد سے لکھا جا سکتا ہے۔ یہ کرنے کے لئے ہم پہلے کچھوں کی ارتباط بہاو 🖍 کو ان کے امالہ اور ان کے برقی رو کی مدد سے لکھتے ہیں۔

(6.13)
$$\lambda_{a} = L_{aa}i_{a} + L_{ab}i_{b} + L_{ac}i_{c} + L_{am}I_{m}$$

$$\lambda_{b} = L_{ba}i_{a} + L_{bb}i_{b} + L_{bc}i_{c} + L_{bm}I_{m}$$

$$\lambda_{c} = L_{ca}i_{a} + L_{cb}i_{b} + L_{cc}i_{c} + L_{cm}I_{m}$$

$$\lambda_{m} = L_{ma}i_{a} + L_{mb}i_{b} + L_{mc}i_{c} + L_{mm}I_{m}$$

ان مساوات میں ساکن کچھوں کا بدلتا رو چھوٹے حروف i_a,i_b,i_c جبکہ گھومتے میدانی کچھے کا یک سمت رو بڑے حرف I_m حرف I_m

ان چار مساوات میں سے ہم کسی ایک کو حل کرتے ہیں۔ چونکہ چاروں مساوات ایک طرح کی ہیں للذا باقی بھی اسی طرح حل ہوں گی۔ ہم ان میں پہلی مساوات منتخب کرتے ہیں:

$$\lambda_a = L_{aa}i_a + L_{ab}i_b + L_{ac}i_c + L_{am}I_m$$

مساوات 6.5 لچھا a کا خود امالہ دیتی ہے اور اس کو حاصل کرتے ہوئے تصور کیا گیا کہ لچھے کا پورا مقناطیسی بہاہ خلائی درز سے گزر تا ہے۔ حقیقت میں ایسا نہیں ہوتا اور مقناطیسی بہاہ کا کچھ حصہ خلائی درز سے گزر کر دوسری جانب نہیں پہنچ پاتا۔ مقناطیسی بہاہ کا یہ حصہ رستا امالہ L_{al} اللہ L_{al} پیدا کرتا ہے جو ٹرانسفار مرکے رستا امالہ کی طرح ہوتا ہے۔ یوں لچھے کا کل خود امالہ میں دو حصوں پر مشتمل ہوگا:

$$(6.15) L_{aa} = L_{aa0} + L_{al}$$

ہم مساوات 6.5، مساوات 6.9، مساوات 6.12 اور مساوات 6.15 کی مدد سے مساوات 6.14 کو درج ذیل صورت میں لکھتے ہیں۔

(6.16)
$$\lambda_{a} = (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} i_{b} - \frac{L_{aa0}}{2} i_{c} + L_{am0} I_{m} \cos \omega t$$
$$= (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} (i_{b} + i_{c}) + L_{am0} I_{m} \cos \omega t$$

leakage inductance¹⁵

اب تین دوری برقی رو کا مجموعہ صفر ہوتا ہے

$$(6.17) i_a + i_b + i_c = 0$$

للذا مساوات 6.16 میں اس کو استعال کرتے ہوئے

(6.18)
$$\lambda_a = (L_{aa0} + L_{al}) i_a - \frac{L_{aa0}}{2} (-i_a) + L_{am0} I_m \cos \omega t$$
$$= \left(\frac{3}{2} L_{aa0} + L_{al}\right) i_a + L_{am0} I_m \cos \omega t$$
$$= L_s i_a + L_{am0} I_m \cos \omega t$$

حاصل ہو گا جہاں

$$(6.19) L_s = \frac{3}{2}L_{aa0} + L_{al}$$

کو معاصراماله ¹⁶ کہتے ہیں۔

مساوات 6.19 اور مساوات 5.49 پر ایک مرتبہ دوبارہ غور کریں۔ یہ دونوں ایک دوسرے جیسے ہیں۔ وہاں کل گھومتا مقناطیسی دباو ایک کچھے کے مقناطیسی دباو کا $\frac{2}{5}$ گنا تھا اور یہاں معاصر امالہ ایک کچھے کے امالہ کا $\frac{2}{5}$ گنا ہے۔ یہ دو مساوات ایک ہی حقیقت کے دو پہلو ہیں۔

معاصر امالہ تین حصوں پر مشتمل ہے۔ پہلا حصہ L_{aa0} ہے جو a کچھے کا خود امالہ ہے۔ دوسرا حصہ $\frac{L_{aa0}}{2}$ ، کچھا کا باقی دو کچھوں کے ساتھ اس صورت مشتر کہ امالہ ہے جب مشین میں تین دوری متوازن برقی رو ہو۔ تیسرا حصہ a کا باقی دو کچھا کا رستا امالہ ہے۔ یوں متوازن برقی روکی صورت میں معاصر امالہ، مشین کے ایک کچھے کا ظاہری امالہ ہوتا ہے۔

مثال 6.1: ایک معاصر جزیر کا یک دوری کل خود اماله 2.2 mH اور رستا اماله 0.2 mH بست 0.2 ہے۔اس مشین کی دو توی کچھوں کا مشتر کہ اماله اور مشین کا معاصر اماله حاصل کریں۔

 $L_{aa0}=2\,\mathrm{mH}$ کی مرو سے $L_{aa0}=L_{aa0}+L_{al}$ ہوتا ہے لہذا $L_{aa0}=2\,\mathrm{mH}$ ہوتا ہے لہذا $L_{aa0}=L_{aa0}+L_{al}$ ہوگا۔ $L_{ab}=-1\,\mathrm{mH}$

synchronous inductance¹⁶

شکل 6.3: معاصر موٹر کامساوی دوریاریاضی نمونه۔

6.3 معاصر مشین کامساوی دوریاریاضی نمونه

لچھ a پر لا گو برقی دباو کچھے کی مزاحمت R_a میں برقی دباو کے گھٹاہ اور مرتی دباو کے برابر ہو گا

$$(6.20) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t}$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} - \omega L_{am0} I_m \sin \omega t$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + e_{am}$$

جہاں

(6.21)
$$e_{am} = -\omega L_{am0} I_m \sin \omega t$$
$$= \omega L_{am0} I_m \cos \left(\omega t + \frac{\pi}{2}\right)$$

سیجانی برقی دباو یا اندرونی پیدا برقی دباو کہلاتا ہے جو گھومتے کچھ سے پیدا مقناطیسی بہاو کی وجہ سے وجود میں آتا ہے۔ اس کی موثر قیت Eam.rms مساوات 1.42 سے حاصل ہو گی۔

(6.22)
$$E_{am,rms} = \frac{\omega L_{am0} I_m}{\sqrt{2}} = 4.44 f L_{am0} I_m$$

مساوات 6.20 کو ایک برقی دور سے ظاہر کیا جا سکتا ہے جے شکل 6.3 میں دکھایا گیا ہے۔ کسی بھی برقی دور میں لا گو برقی دباوے مثبت سر سے (مثبت) رو خارج ہوتا ہے۔ یوں اس شکل میں برقی رو i_a لا گو برقی دباو ہوتا ہے۔ مثبت سر سے خارج ہوتا ہے۔ شکل 6.3 ایک موٹر کو ظاہر کرتی ہے جہاں موٹر کے مثبت سروں پر برقی رو داخل ہوتا ہے۔ اگر موٹر کی بجائے ایک معاصر جزیئر کی بات ہوتی تب جزیئر برقی دباو پیدا کرتا اور برقی رو اس جزیئر کے مثبت سر

شکل 6.4: معاصر جزیٹر کامساوی دوریاریاضی نمونه۔

شکل 6.5: معاصر جزیٹر کے مساوی ادوار۔

سے خارج ہوتا اور ہمیں شکل 6.3 کی بجائے شکل 6.4 حاصل ہوتا۔ شکل 6.4 سے جزیٹر کی مساوات لکھتے ہیں۔

$$e_{am} = i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + v_a$$

دھیان رہے کہ جزیر کے مساوی دور میں برقی رو کا مثبت رخ، موٹر کے مساوی دور میں برقی رو کے مثبت رخ کا اُلٹ ہے۔مساوات 6.23 کی دوری سمتیہ روپ

$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s + \hat{V}_a$$

ہو گی جس کو شکل 6.5-ا میں دکھایا گیا ہے۔

مثال 6.2: دو قطب، 50 ہرٹز کا ایک معاصر جزیٹر 40 ایمپیئر میدانی برقی رو پر 2100 وولٹ یک دوری موثر برقی دباو پیدا کرتا ہے۔اس مثین کے قوی اور میدانی کچھوں کا مشتر کہ امالہ تلاش کریں۔

$$L_{am}=\frac{\sqrt{2}E_{am}}{\omega I_m}=\frac{\sqrt{2}\times 2100}{2\times \pi\times 50\times 40}=0.2363\,\mathrm{H}$$
 (6.25)

6.4. برق ط قت کی منتقلی 6.4

 \neg

6.4 برقی طاقت کی منتقلی

شکل 3.23 ٹرانسفار مرکا مساوی دور (ریاضی نمونہ) اور شکل 6.5 معاصر جزیٹر کا مساوی دور (ریاضی نمونہ) ہے۔ دونوں ایک دوسرے جیسے ہیں، للذا مندرجہ ذیل بیان دونوں کے لئے درست ہوگا، اگرچہ یہاں ہمیں صرف معاصر مثینوں سے دلچیسی ہے۔

معاصر مشینوں میں عموماً $X_s>>R_a$ کی قیمت سے سو یا دو سو گنا زیادہ ہو گی۔ یوں $X_s>>R_a$ ہو گا اور مساوات $X_s>>0$ درج ذیل گا اور R_a کو رد کرنا ممکن ہو گا۔ یول شکل R_a ا اسے شکل R_a ا ور مساوات R_a درج ذیل صورت اختیار کرے گی۔

$$\hat{E}_{am} = j\hat{I}_a X_s + \hat{V}_a$$

اور \hat{E}_{am} اور jX_s اور تصور کریں جہاں ایک متعاملہ jX_s کو بائیں سادہ برقی دور تصور کریں جہاں ایک متعاملہ وائیں \hat{V}_a اور دائیں \hat{V}_a برقی دباو فراہم کی گئی ہے۔ اس برقی دور میں برقی طاقت کی منتقلی پر غور کرتے ہیں۔

 \hat{V}_a شکل 6.5 - ب کی دور کی سمتیہ صورت (مساوات 6.26) کو شکل 6.6 میں دکھایا گیا ہے۔ شکل 6.6 - ا میں \hat{V}_a میں خوالف رخ ناپ کے لحاظ سے \hat{I}_a زاویہ \hat{V}_a جبکہ شکل 6.6 - ب میں \hat{V}_a آگے ہے۔ زاویات افقی لکیر سے گھڑی کے مخالف رخ ناپ جاتے ہیں لہٰذا شکل - ا میں \hat{V}_a مثنی اور \hat{V}_a مثبت ہیں جبکہ شکل - ب میں دونوں زاویات مثبت ہیں۔

$$p_v=V_aI_a\cos\phi$$
 بائیں سے وائیں منتقل ہو رہی ہے: $p_v=V_aI_a\cos\phi$

شكل 6.6-اسے درج ذيل لكھا جاسكتا ہے۔

(6.28)
$$\hat{I}_{a} = I_{a} \underline{/\phi} = \frac{\hat{E}_{am} - \hat{V}_{a}}{jX_{s}}$$

$$= \frac{E_{am}\underline{/\sigma} - V_{a}\underline{/0}}{X_{s}\underline{/\frac{\pi}{2}}}$$

$$= \frac{E_{am}}{X_{s}}\underline{/\sigma - \frac{\pi}{2}} - \frac{V_{a}}{X_{s}}\underline{/-\frac{\pi}{2}}$$

شکل 6.6: معاصر جنزیٹر کادوری سمتیہ۔

کسی بھی دوری سمتیہ کو حقیقی افتی جزو اور فرضی عمودی جزو کا مجموعہ تصور کیا جا سکتا ہے۔ شکل \hat{L}_a سے واضح ہے کہ درج بالا مساوات میں \hat{L}_a کا حقیقی جزو \hat{L}_a کا ہم قدم ہے۔ یوں

(6.29)
$$I_a \cos \phi = \frac{E_{am}}{X_s} \cos \left(\sigma - \frac{\pi}{2}\right) - \frac{V_a}{X_s} \cos \left(-\frac{\pi}{2}\right)$$
$$= \frac{E_{am}}{X_s} \sin \sigma$$

ہو گا جس کو مساوات 6.27 کے ساتھ ملا کر درج ذیل ملتا ہے۔

$$(6.30) p_v = \frac{V_a E_{am}}{X_s} \sin \sigma$$

تین دوری معاصر مشین کے لئے اس مساوات کو تین سے ضرب دیں گے:

$$(6.31) p_v = \frac{3V_a E_{am}}{X_s} \sin \sigma$$

مساوات 6.31 طاقت بالمقابل زاویہ Γ^{17} کا قانون پیش کرتی ہے۔ اٹل V_a کی صورت میں جزیٹر E_{am} یا (اور) σ بڑھا کر طاقت بڑھا سکتا ہے۔ گھومتے کچھے میں برتی رو بڑھا کر E_{am} بڑھایا جاتا ہے جو ایک حد تک کرنا ممکن ہو گا۔ کچھے کی مزاحمت میں برتی توانائی ضائع ہونے سے لچھا گرم ہو گا جس کو خطرناک حد تک پہنچنے نہیں دیا جا سکتا ہے۔ اس طرح σ کو نوے زاویہ تک بڑھایا جا سکتا ہے جس پر، کسی مخصوص E_{am} کے لئے، جزیٹر زیادہ سے زیادہ طاقت مہیا کرتا ہے:

$$p_{v, \mathcal{F}} = \frac{3V_a E_{am}}{X_s}$$

power-angle law¹⁷

6.4. برقى طب قت_كى منتقلى

شکل 6.7: معاصر جنریٹر معاصر موٹر چلار ہی ہے۔

حقیقت میں جزیئر کی بناوٹ یوں کی جاتی ہے کہ زیادہ سے زیادہ قابل استعال طاقت نوے درجے سے کافی کم زاوبیہ پر ممکن ہو۔ نوے درجے پر جزیئر کو قابو رکھنا مشکل ہوتا ہے۔

مثال 6.3: ایک 50 قطبی، ستارہ، تین دوری 50 ہر ٹز، 2300 وولٹ دباو تار پر چلنے والی 1800 کلو وولٹ-ایمپیئر معاصر امالہ 2.1 اوہم ہے۔

• مشین کے برقی سروں پر 2300 وولٹ دباو تار مہیا کیا جاتا ہے جبکہ اس کا میدانی برقی رواتنا رکھا جاتا ہے کہ

پورے بوجھ پر مشین کا جزو طاقت ایک کے برابر ہو۔ اس مشین سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جاستی ہے؟

• اس موٹر کو 2 قطبی، 3000 چکر فی منٹ، تین دوری، ستارہ، 2300 دولٹ دباہ تار پیدا کرنے والا 2200 کلو دولٹ-ایمپیئر کے معاصر جزیئر سے چلایا جاتا ہے جس کا یک دوری معاصر امالہ 2.3 اوہم ہے۔موٹر پر اس کا پورا برقی بوجھ لاد کر جزیئر کو معاصر رفار پر چلاتے ہوئے دونوں مشینوں کے میدانی برقی رو تبدیل کیے جاتے ہیں حتی کہ موٹر ایک جزو طاقت پر چلئے گئے۔دونوں مشینوں کا میدانی برقی رو یہاں برقرار رکھ کر موٹر پر بوجھ آہتہ بڑھایا جاتا ہے۔اس صورت میں موٹر سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جا سکتی ہے اور اس کی سروں پر دباہ تار کتنا ہو گا؟

حل:

• شکل 6.7-ااور 6.7-ب سے رجوع کریں۔ یک دوری برتی دباو اور کل برتی رو درج ذیل ہوں گے۔ $\frac{2300}{\sqrt{3}} = 1327.9\,\mathrm{V}$ $\frac{1\,800\,000}{\sqrt{3}} = 451.84\,\mathrm{A}$

يوں درج ذيل ہو گا۔

$$\hat{E}_{am,m} = \hat{V}_a - j\hat{I}_a X_{s,m}$$

$$= 1327.9/0^{\circ} - j451.84/0^{\circ} \times 2.1$$

$$= 1327.9 - j948.864$$

$$= 1632/-35.548^{\circ}$$

مساوات 6.32 سے یک دوری زیادہ سے زیادہ برقی طاقت حاصل کرتے ہیں۔ $p_{ij}=rac{1327.9 imes1632}{2.1}=1\,031\,968\,\mathrm{W}$

اس طرح تین دوری زیادہ سے زیادہ طاقت 904 904 واٹ ہو گی۔50 ہرٹز اور 50 قطب سے مثین کی معاصر میکانی رفتار مساوات 5.53 کی مدد سے دو چکر فی سکنڈ حاصل ہوتی ہے لیعنی $f_m=2$ یوں مثین سے درج ذیل زیادہ سے زیادہ قوت مروڑ حاصل کی جا سکتی ہے۔

$$T_{|\vec{\varphi}|} = \frac{p_{|\vec{\varphi}|}}{2\pi f_m} = \frac{3095904}{2\times\pi\times2} = 246\,364\,\mathrm{N\,m}$$

• شکل 6.7-ج سے رجوع کریں۔پہلا جزو کی طرح یہاں بھی موٹر کے برقی سروں پر دباو تار 2300 وولٹ اور محرک برقی دباو 1632 وولٹ ہول گے۔ جزیٹر کا محرک برقی دباو درج ذیل ہو گا۔

$$\hat{E}_{am,g} = \hat{V}_a + j\hat{I}_a X_{s,g}$$

$$= 1327.9 / 0^{\circ} + j451.84 / 0^{\circ} \times 2.3$$

$$= 1327.9 + j1039.233$$

$$= 1686 / 38.047^{\circ}$$

یہ صورت شکل 6.7-د میں دکھائی گئی ہے۔

معاصر موٹر اس وقت زیادہ سے زیادہ طاقت پیدا کرے گی جب $\hat{E}_{am,m}$ اور $\hat{E}_{am,m}$ آپس میں $\hat{E}_{am,m}$ زاویہ پر ہوں جیسا شکل 6.7-ھ میں دکھایا گیا ہے۔

یہاں مساوات 6.32 میں ایک معاصر امالہ کی بجائے موٹر اور جزیٹر کے سلسلہ وار جڑے امالہ ہوں گے اور دو برقی دباو اب موٹر کی یک دوری زیادہ سے زیادہ طاقت درج ذبل ہوگی۔ درج ذبل ہوگی۔

$$p_{\mathcal{F}} = \frac{1686 \times 1632}{2.3 + 2.1} = 625352 \,\mathrm{W}$$

اس طرح تین دوری طاقت 876 056 واٹ اور زیادہ سے زیادہ قوت مروڑ درج ذیل ہو گا۔

$$T_{\ddot{\varphi}'} = \frac{1876056}{2 \times \pi \times 2} = 149\,291\,\mathrm{N}\,\mathrm{m}$$

П

6.5 کیسال حال، بر قرار حالومشین کے خواص

معاصر جنریٹر: برقی بوجھ بالمقابل I_m خط 6.5.1

شکل 6.5-ب کی دوری سمتیه مساوات

$$\hat{E}_{am} = \hat{V}_a + j\hat{I}_a X_s$$

(6.34)
$$E_{am}\underline{\sigma} = V_a\underline{0} + I_aX_s/\frac{\pi}{2} + \phi$$

جس کو بطور مخلوط عدد 18

$$E_{am}\cos\sigma + jE_{am}\sin\sigma = V_a\cos0 + jV_a\sin0 + I_aX_s\cos\left(\frac{\pi}{2} + \phi\right) + jI_aX_s\sin\left(\frac{\pi}{2} + \phi\right)$$
$$= E_{am,x} + jE_{am,y}$$

 E_{am} کوتے ہیں۔ اس سے $|\hat{E}_{am}|$ یعنی E_{am} حاصل کرتے ہیں۔

(6.35)
$$\begin{vmatrix} \hat{E}_{am} \end{vmatrix} = E_{am} = \sqrt{E_{am,x}^2 + E_{am,y}^2} \\ = \sqrt{V_a^2 + (I_a X_s)^2 + 2V_a I_a X_s \sin \phi}$$

جزیٹر کے سروں پر V_a اٹل رکھتے ہوئے مختلف ϕ کے لئے E_{am} بالمقابل I_a خط شکل I_a میں دکھائے گئے ہیں۔ یہ خطوط مساوات I_a دیتی ہے۔ چونکہ I_a اور I_a اور I_a راست متناسب ہیں اور کسی مخصوص جزو طاقت اور معین I_a کے بین جزیٹر کی طاقت I_a کے راست متناسب ہوتی ہے لہذا یہی ترسیمات I_a بالمقابل جزیٹر کی طاقت کو بھی ظاہر کرتی ہیں۔

معاصر موٹر: I_a بالمقابل معاصر موٹر: I_a

معاصر موٹر کا مساوی دور (ریاضی نمونہ) شکل 6.3 اور دوری سمتیہ شکل 6.9 میں دکھایا گیا ہے۔ مزاحمت نظرانداز کر کے اس کی مساوات لکھتے ہیں۔

(6.36)
$$\begin{split} \hat{V}_{a} &= \hat{E}_{am} + j\hat{I}_{a}X_{s} \\ V_{a}\underline{/0} &= E_{am}\underline{/\sigma} + jI_{a}\underline{/\phi}X_{s} \\ &= E_{am}\underline{/\sigma} + I_{a}X_{s}/\frac{\pi}{2} + \phi \end{split}$$

اس مساوات میں موٹر پر لاگو برقی دباو \hat{V}_a کے حوالہ سے زاویات کی پیائش کی گئی ہے لہذا \hat{V}_a کا زاویہ صفر ہو گا۔ یاد رہے کہ مثبت زاویہ کی پیائش افتی کلیر سے گھڑی کے مخالف رخ ہو گی لہذا پیچ زاویہ 20 مثبت اور ناخیر کے زاویہ 20

complex number¹⁸

leading angle 19

lagging angle²⁰

 I_a بر تی باریا قوی کچھے کا بر تی رو

شکل 6.8: جزیٹر: برقی بوجھ بالقابل I_m خط

منفی ہو گا۔ اس مساوات سے امالی دباو E_{am} حاصل کرتے ہیں۔

$$\begin{split} E_{am/\underline{\sigma}} &= V_a/\underline{0} - I_a X_s / \frac{\pi}{2} + \phi \\ &= V_a - I_a X_s \cos\left(\frac{\pi}{2} + \phi\right) - j I_a X_s \sin\left(\frac{\pi}{2} + \phi\right) \\ &= V_a + I_a X_s \sin\phi - j I_a X_s \cos\phi \end{split}$$

یوں $|E_{am}|$ درج ذیل ہو گا۔

(6.37)
$$|E_{am}| = \sqrt{(V_a + I_a X_s \sin \phi)^2 + (I_a X_s \cos \phi)^2}$$
$$= \sqrt{V_a^2 + I_a^2 X_s^2 + 2V_a I_a X_s \sin \phi}$$

موٹر پر لاگو برقی دباہ اور اس پر میکانی بوجھ کو % 0، % 25 اور % 75 پر رکھ کر، موٹر کے E_{am} بالمقابل I_a خطوط، مساوات 6.37 سے شکل 6.10 میں ترسیم کیے گئے ہیں۔ چونکہ امالی دباہ I_m کا راست متناسب ہوتا ہے المذا یہی موٹر کے I_a بالمقابل I_a خطوط بھی ہوں گے۔ان میں سے ہر خط ایک معین میکانی بوجھ I_a کے لئے ہے جہاں ورج ذیل ہو گا۔

$$(6.38) p = V_a I_a \cos \phi$$

شکل 6.9: موٹر کادوری سمتیہ۔

 I_m ميدانی کچھے کابر تی رو I_m شکل I_0 : موٹر کی I_m بالمقابل I_0 ترسیم

6.10 اس مساوات کے تحت p اور V_a تبدیل کیے بغیر جزو طاقت تبدیل کر کے I_a تبدیل کیا جا سکتا ہے۔ شکل V_a مساوات E_a کو مساوات E_a کو مساوات E_a کی مدد سے ترسیم کیا جاتا ہے۔ مخصوص E_a اور E_a کی میں پر E_a کی مساوات E_a کے مساوات E_a کی مساوات E_a کی میں پر جساوات E_a کی جاتے ہیں۔ شکل E_a میں کر کے E_a حاصل کیا جاتا ہے۔ مخصوص E_a کے کئے ترسیمات بیش کی گئی ہیں۔ E_a کا میں کے اور E_a طاقت کے لئے ترسیمات بیش کی گئی ہیں۔

موٹر کے خطوط سے واضح ہے کہ I_m تبدیل کر کے موٹر کا جزو طاقت تبدیل کیا جا سکتا ہے۔ یوں موٹر کو پیٹھ زاویہ یا کا خیری زاویہ پر چلایا جا سکتا ہے۔ موٹر کو پیٹل زاویہ چلا کر بطور ایک برتے گھیر 21 استعال کیا جا سکتا ہے۔ حقیقت میں ایسا نہیں کیا جاتا ہے چونکہ معاصر موٹر سے برق گھیر زیادہ ستا دستیاب ہوتا ہے۔

6.6 كطلاد وراور كسر د ورمعائنه

معاصر مشین کا مساوی دور بنانے کے لئے مساوی دور کے اجزاء جاننا لازم ہے جنہیں دو قشم کے معائنوں سے معلوم کیا جاتا ہے۔ انہیں کھلا دور معائنہ اور کسر دور معائنہ کہتے ہیں۔ان معائنوں سے قالب کے سیر ابیت کے اثرات بھی اجاگر ہوتے ہیں۔اسی قشم کے معائنے ٹرانسفار مر کے بھی کیے جاتے ہیں جہاں کھلا دور معائنہ ٹرانسفار مر کے بناوٹی برقی دباہ جبکہ کسر دور معائنہ بناوٹی برقی رو پر کیا جاتا ہے۔ یہاں بھی ایسا کیا جائے گا۔

6.6.1 كطلاد ورمعائنه

معاصر مثین کے برتی سرے کھلا رکھ کر، مثین کو معاصر رفتار پر گھماتے ہوئے مختلف I_m پر پیدا برتی دباو V_a مثین کے سروں پر ناپا جاتا ہے ۔ان کی رو I_m بالمقابل دباو V_a ترسیم شکل 6.11-1 میں دی گیا ہے۔ یہ ترسیم مثین کی کھلا دور خاصیت ظاہر کرتی ہے۔ یہ ترسیم مثین بنانے والے بھی مہیا کر سکتے ہیں۔

اس كتاب كے حصد 2.8 ميں بتايا گيا كہ قالب پر لا گو مقناطيسى دباو بڑھانے سے قالب ميں مقناطيسى بہاو بڑھتا ہے البتہ جلد ہى قالب سيراب ہو جاتا ہے۔يہ اثر شكل-ا ميں ترسيم كے جھكاو سے واضح ہے۔ قالب سيراب نہ ہونے

شكل 6.11: كھلا دور خطاور قالبی ضیاع۔

کی صورت میں ترسیم نقطہ دار سید تھی ککیر کی پیروی کرتی۔مثنین کا بناوٹی برقی دباو اور اس کے حصول کے لئے درکار رو I_{m0} بھی دکھائے گئے ہیں۔

کھلا دور معائنہ کے دوران دھرے پر میکانی طاقت p_1 کی پیائش بے بوجھ مشین کا ضیاع طاقت دے گی۔ اس کا بیشتر حصہ رگڑی ضیاع، کچھ قالبی ضیاع اور کچھ گھومتے لچھے کا ضیاع ہو گا۔ یاد رہے گھومتے لچھے کو عموماً دھرے پر نسب یک سمت جزیئر برقی توانائی فراہم کرتا ہے جس کو از خود طاقت محرک 22 فراہم کرتا ہے۔رگڑی ضیاع کا مشین نسب یک سمت جزیئر برقی خاص تعلق نہیں پایا جاتا ہے للذا بے بوجھ مشین اور بوجھ بردار مشین کا رگڑی ضیاع ایک جیسا تصور کیا جاتا ہے۔

رو I_m صفر رکھتے ہوئے دوبارہ دھرے پر میکانی طاقت p_2 کی پیائش صرف رگڑی ضیاع دے گا۔ان پیائشوں کا فرق (p_1-p_2) قالبی ضیاع اور گھومتے کچھے کا برقی ضیاع ہو گا۔ گھومتے کچھے میں برقی ضیاع بہت کم ہوتا ہے اور اس کو عموماً قالب کے ضیاع کا حصہ تصور کیا جاتا ہے۔ یوں پیائش کردہ قالبی ضیاع کی ترسیم شکل (p_1-p_2) میں دی گئ ہے۔ ۔

6.6.2 كسر دور معائنه

 I_a معاصر مشین کو معاصر رفتار پر بطور جزیئر چلاتے ہوئے ساکن کچھا کسر دور کر کے مختلف I_m پر کسر دور برقی رو I_a نائی جاتی ہے۔ ان کی ترسیم شکل 6.12-ا میں دی گئی ہے جو خط کسر دور مشین کی خاصیت دکھاتی ہے۔

capacitor²¹

²² گھومتے کچھے کو آوانائی یک ست جزیٹر مہیا کرتا ہے اور اس جزیٹر کود ھرے سے توانائی موصول ہوتی ہے۔

شكل 6.12: كسر دور خطاور كھلے دور خط۔

کسر دور معائنہ کے دوران دھیان رہے کہ I_a خطرناک حد تک بڑھ نہ جائے۔ جزیٹر کے بناوٹی I_a یا اس سے دگنی قیمت سے رو کو کم رکھا جاتا ہے۔اییا نہ کرنے سے مشین گرم ہو کر تباہ ہو سکتی ہے۔

کسر دور مشین میں بناوٹی برقی دباو کے دس سے پندرہ فی صد برقی دباو پر مشین میں سو فی صد برقی رو پایا جاتا ہے۔ اتنا کم برقی دباو حاصل کرنے کے لئے خلائی درز میں اسی تناسب سے کم مقناطیسی بہاو درکار ہو گا۔

شکل 6.5-ا میں جزیٹر کا مساوی برتی دور دکھایا گیا ہے جسے شکل 6.13 میں کسر دور دکھایا گیا ہے۔یوں درج زیل ہو گا۔

$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s$$

کی بنا مزاحمت R_a نظر انداز کر کے اس مساوات سے معاصر امالہ حاصل ہو گا۔ $X_s>>R_a$

(6.40)
$$X_s = \frac{\left|\hat{E}_{am}\right|}{\left|\hat{I}_a\right|} = \frac{E_{am}}{I_a}$$

مساوات 6.40 میں \hat{I}_a کسر دور مشین کا برتی رو اور \hat{E}_{am} اسی حال میں مشین کے ایک دور کا امالی دباو ہے۔ کھلے دور مشین میں \hat{I}_a صفر ہونے کی صورت میں \hat{E}_{am} اور مشین میں \hat{I}_a صفر ہونے کی صورت میں \hat{E}_{am} اور مشین میں \hat{I}_a کے ایک معین معین \hat{I}_{am} پر شکل \hat{I}_{am} اور شکل \hat{I}_{am} اور شکل \hat{I}_{am} کے ایک معین \hat{I}_{am} کے مسلم کی جا سے \hat{I}_{am} کی جا سے \hat{I}_{am} کی جا سے مسلم کی جا سے \hat{I}_{am} کی جا سے مسلم کی گرم ک

(6.41)
$$X_s = \frac{V_{a0}}{I_{a0}}$$

$$\begin{split} \hat{E}_{am} &= \hat{I}_a R_a + j \hat{I}_a X_s \\ &\approx j \hat{I}_a X_s \qquad X_s \gg R_a \\ X_s &= \frac{|\hat{E}_{am}|}{|\hat{I}_a|} \end{split}$$

شكل 6.13: معاصراماليه

معاصر امالہ کو عموماً مشین کے پورے (بناوٹی) برقی دباو پر معلوم کیا جاتا ہے تا کہ قالب کی سیر ابیت کے اثرات کو بھی شامل ہو۔

مثین کو ستارہ نما تصور کر کے اس کا یک دوری X_s حاصل کیا جاتا ہے۔یوں اگر معائنہ میں مثین کا تار برقی دباو 23 دباو 23 ناپا گیا ہو تب ضروری ہے کہ اس کو $\sqrt{3}$ سے تقسیم کر کے یک دوری دباو حاصل کر کے مساوات $\sqrt{3}$ میں استعمال کیا جائے گا۔

$$V_{\zeta,j,\zeta} = \frac{V_{\lambda^*}}{\sqrt{3}}$$

مثال 6.4: ایک 75 کلو وولٹ-ایمپیئر، ستارہ، 415 وولٹ پر چلنے والی تین دوری معاصر مشین کا کھلا دور اور کسر دور معائنہ کہا گیا۔حاصل نتائج درج ذیل ہیں۔

- ullet کھلا دور معائنہ: $I_m = 3.2\,\mathrm{A}$ اور $I_m = 3.2\,\mathrm{A}$ ہیں۔
- كسر دور معائنه: جس لمحه قوى لحجهے كا برتى رو A 104 تھا اس لمحه ميدانى لحجھے كا برقى رو A 2.48 تھا اور جس لمحه قوى لحجھے كا برتى رو A 126 تھا اس لمحه ميدانى لحجھے كا برتى رو A 3.2 تھا۔

اس مشین کا معاصر امالیہ تلاش کریں۔

حل: یک دوری برقی دباو درج ذیل ہو گا۔

$$V_{\zeta, \zeta} = \frac{V_{x}}{\sqrt{3}} = \frac{415}{\sqrt{3}} = 239.6 \,\text{V}$$

line $voltage^{23}$

شكل 6.14: كسر دور معاصر مشين ميں ضياع طاقت۔

کھلا دور مشین پر 239.6 وولٹ کے لئے 3.2 ایمپیئر میدانی برقی رو درکار ہو گا جبکہ 3.2 ایمپیئر میدانی برقی رو پر کسر دور برقی رو 126 ایمپیئر ہو گا لہذا یک دوری معاصر امالہ درج ذیل ہو گا۔

$$X_s = \frac{239.6}{126} = 1.901\,\Omega$$

П

کسر دور معائنہ کے دوران دھرے پر لاگو میکانی طاقت p_3 کی پیائش سے کسر دور مشین کا کل ضیاع حاصل ہو گا۔ p_3 ناپ لیں۔اس ضیاع کا پچھ حصہ قالبی ضیاع، پچھ دونوں لچھوں میں برقی ضیاع اور پچھ رگڑی (میکانی) ضیاع ہو گا۔ شکل 6.14 میں ضیاع طاقت بالقابل کسر دور برقی رو د کھایا گیا ہے۔

ضیاع ہوں کے سے، کھلا دور معائد میں حاصل، رگڑی ضیاع p_2 منفی کرنے سے کچھوں کا ضیاع اور قالبی ضیاع حاصل ہو گا۔ جیسا پہلے ذکر کیا گیا، صرف دس تا ہیں فی صد بناوٹی برقی دباو پر کسر دور مشین میں بناوٹی رو پایا جائے گا۔ اتنا کم برقی دباو حاصل کرنے کے لئے درکار مقناطیسی بہاو اتنا ہی کم ہو گا۔ اتنے کم مقناطیسی بہاو پر قالبی ضیاع کو نظر انداز کیا جا سکتا ہے۔ مزید ، کسر دور معاصر مشین کے گھومتے کچھے کا برقی ضیاع ساکن کچھے کے برقی ضیاع سے بہت کم ہو گا لہٰذا گھومتے کچھے کا برقی ضیاع کو بھی کا برقی ضیاع تصور کیا جا سکتا ہے۔ یوں (p_3-p_2) کو ساکن کچھے کا برقی ضیاع تصور کیا جا سکتا ہے۔ یوں درج ذیل ہو گا

$$p_3-p_2=I_{a,3}^2R_a$$
جس سے معاصر مشین کی مساوی مزاحمت عاصل ہو گی۔ $R_a=rac{p_3-p_2}{I_{a,2}^2}$

مثال 6.5: ایک 75 کلو وولٹ-ایمپیئر، 415 وولٹ پر چلنے والی تین دوری معاصر مثین کے پورے (بناوٹی) برقی رو پر کل کسر دور طاقت کا ضیاع 2.2 کلو واٹ ہے۔ اس مثین کی یک دوری موثر مزاحمت حاصل کریں۔

$$-2$$
 اوری ضیاع $=733.33\,\mathrm{W}$ کی دوری ضیاع $=733.33\,\mathrm{W}$ کی دوری ضیاع $=733.33\,\mathrm{W}$ کی دوری ضیاع $=75000$ میں میں خوالم ہوگا۔ $=104.34\,\mathrm{A}$

یوں مشین کی موثر مزاحمت درج ذیل ہو گی۔

$$R_a = \frac{733.33}{104.34^2} = 0.067\,\Omega$$

مثال 6.6: شکل 6.15 میں 500 وولٹ، 50 ہرٹز، 4 قطب، ستارہ، معاصر جزیٹر کا کھلے دور خط دکھایا گیا ہے۔اس جزیٹر کا معاصر امالہ 0.11 اوہم اور قوی کچھے کی مزاحمت 0.01 اوہم ہے۔پورے برقی بوجھ، 0.92 تاخیری جزو طاقت²⁴ پر جزیٹر کا معاصر امالہ 1000 ایمپیئر فراہم کرتا ہے۔پورے بوجھ پر رگڑی ضیاع اور کچھے کی مزاحمت میں ضیاع کا مجموعہ 30 کلو واٹ جبہ قالمی ضیاع 25 کلو واٹ ہے۔

- جزیٹر کی رفتار معلوم کریں۔
- بے بوجھ جزیٹر کی سرول پر 500 وولٹ برقی دباو کتنے میدانی برقی رو پر حاصل ہو گا؟
- اگر جزیٹر پر 0.92 تاخیری جزو طاقت، 1000 ایمپیئر کا برقی بوجھ لادا جائے تب جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنا میدانی برقی رو در کار ہو گا؟
- جزیٹر پورے بوجھ پر کتنی طاقت فراہم کر رہاہے جبکہ اس کو محرک کتنی میکانی طاقت فراہم کر رہاہے۔ان دو سے جزیٹر کی فی صد کارگزاری 25 تلاش کریں۔
 - اگر جزیٹر سے یک دم برقی بوجھ ہٹایا جائے تواس لحہ اس کے برقی سروں پر کتنا برقی دباو ہو گا؟
- اگر جزیٹر پر 1000 ایمپیئر 0.92 پیش جزو طاقت کا بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ بر قرار رکھنے کے لئے کتنا میدانی برقی رو درکار ہو گا؟

شكل 6.15: كعلاد ورخطيه

• ان 1000 ایمبیئر تاخیری جزو طاقت اور پیش جزو طاقت بوجھوں میں کونسا بوجھ زیادہ میدانی برقی روپر حاصل ہو گا؟ جزیر کس بوجھ سے زیادہ گرم ہو گا؟

حل:

- - شکل 6.15 سے 500 وولٹ کے لئے درکار میدانی برتی رو تقریباً 2.86 ایمپیئر پڑھا جاتا ہے۔
- سارہ برقی دباو کے تعلق $V_{JR} = \sqrt{3}V_{JR} = 289$ ہوتا ہے۔ سارہ جو تی دوری برقی دباو کے تعلق میروں برقی رو برابر ہوتے ہیں۔ جزو طاقت کو سارہ یک دوری برقی دباو کے نسبت جوڑ میں یک دوری برقی رو اور تار برقی رو برابر ہوتے ہیں۔ جزو طاقت کو سارہ یک دوری برقی دباو $\frac{2890^\circ}{1000}$ کھا جائے $\frac{2890^\circ}{1000}$ کھا جائے گا۔ یوں شکل 6.4 یا مساوات $\frac{6.24}{1000}$ سے اندرونی یہدا یک دوری برقی دباو

$$\begin{split} \hat{E}_a &= \hat{V}_a + \hat{I}_a \left(R_a + j X_s \right) \\ &= 289 \underline{/0^\circ} + 1000 \underline{/-23.07^\circ} (0.01 + j0.1) \\ &= 349 \underline{/14.6^\circ} \end{split}$$

lagging power factor²⁴ efficiency²⁵

 $\sqrt{3} \times 349 = 604$ ما مل ہو گا جس سے اندرونی پیدا تار برقی دباو $\sqrt{3} \times 349 = 604 \times \sqrt{3}$ وولٹ حاصل ہوتا ہے۔ شکل $\sqrt{3} \times 349 = 604$ میدانی برقی رو پڑھا جاتا ہے۔

• جزیٹر اس صورت میں

$$p = \sqrt{3}\hat{V}_a \cdot \hat{I}_a$$
$$= \sqrt{3} \times 500 \times 1000 \times 0.92$$
$$= 796743 \text{ W}$$

فراہم کر رہاہے جبکہ محرک

$$p_m = 796.743 + 30 + 25 = 851.74 \,\text{kW}$$

$$\eta=\frac{796.743}{851.74} imes 100=93.54\%$$
 فراہم کر رہا ہے للذا اس جزیٹر کی کار گزاری

• جزیٹر سے یک دم برقی بوجھ ہٹانے کے لمحہ پر جزیٹر کے برقی سروں پر 604 وولٹ برقی دباو ہو گا۔

• پیش جزو طاقت کی صورت میں

$$\hat{E}_a = \hat{V}_a + \hat{I}_a (R_a + jX_s)$$

$$= 289/0^{\circ} + 1000/23.07^{\circ} (0.01 + j0.1)$$

$$= 276/20.32^{\circ}$$

ہو گا جس سے اندرونی پیدا تار برتی دباو $478=72\times \sqrt{3}$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتنے دباو کے لئے 2.7 مدانی برتی رو در کار ہو گا۔

• تاخیری جزو طاقت کے بوجھ پر جزیئر کو زیادہ میدانی برقی رو درکار ہے۔میدانی کچھے کی مزاحمت میں اس کی وجہ سے زیادہ برقی طاقت ضائع ہوگی اور جزیئر زیادہ گرم ہوگا۔

مثال 6.7: ایک 415 وولٹ، 40 کلو وولٹ۔ایمپییئر، ستارہ، 0.8 جزو طاقت، 50 ہرٹز پر چلنے والی معاصر موٹر کا معاصر اللہ 2.2 اوہم ہے جبکہ اس کی مزاحمت میں طاقت کا معاصر المالہ 2.2 اوہم ہے جبکہ اس کی مزاحمت میں طاقت کا ضیاع ایک کلو واٹ جبکہ قالمی ضیاع 800 واٹ ہے۔ یہ موٹر 12.2 کلوواٹ میکانی بوجھ سے لدی ہے اور یہ 0.8 پیش جزو طاقت پر چل رہی ہے۔یاد رہے کہ معاصر المالہ مشین کو ستارہ نما تصور کرتے ہوئے حاصل کیا جاتا ہے۔

- اس کا دوری سمتیہ بنائیں۔تار کا برقی رو \hat{I}_t اور قوی کیجھے کا برقی رو \hat{I}_a حاصل کریں۔موٹر کا اندرونی ہیجانی برقی دباو \hat{E}_a حاصل کریں۔
- میدانی برقی رو کو بغیر تبدیل کئے، میکانی بوجھ آہتہ آہتہ بڑھا کر دگنا کیا جاتا ہے۔اس صورت میں موٹر کا رد عمل دوری سمتیہ سے واضح کریں ۔
- اس دگنے میکانی بوجھ پر قوی کچھے کا برقی رو، تار کا برقی رو اور موٹر کا اندرونی بیجانی برقی دباو حاصل کریں۔موٹر کا جزو طاقت بھی حاصل کریں۔

حل:

• ستارہ جڑی موٹر کے سروں پر یک دوری برتی دباو V=239.6 ہوگا جسے صفر زاویہ پر تصور کرتے ہوئے برتی رو کا زاویہ بیان کیا جاتا ہے۔ یوں $\hat{V}_{sa}=239.6$ کھا جائے گا۔ جزو طاقت 0.8 زاویہ 0.8 کو ظاہر کرتا ہے۔ یوں تار برتی رو کا پیچ زاویہ یہی ہو گا۔ موٹر کو مہیا برتی طاقت اس کی میکانی طاقت اور طاقت کے ضیاع کے برابر ہو گی

12200 W + 1000 W + 800 W = 14000 W

جس کے لئے در کار تار کا برقی رو درج ذیل ہو گا۔

$$I_t = \frac{p}{\sqrt{3}V_t \cos \theta}$$
$$= \frac{14\,000}{\sqrt{3} \times 415 \times 0.8}$$
$$= 24.346 \,\text{A}$$

ستارہ جڑی موٹر کے قوی کیچھے کا برقی رو تار کے برقی رو کے برابر ہو گا۔یوں برقی رو کا زاویہ شامل کرتے ہوئے اسے

$$\hat{I}_a = \hat{I}_t = 24.346 / 36.87^{\circ}$$

لکھا جا سکتا ہے۔

موٹر کا اندرونی یک دوری پیجانی برتی دباو موٹر کے مساوی دور شکل 6.3 کی مدد سے درج ذیل ہو گا۔

$$\begin{split} \hat{E}_a &= \hat{V}_{a,s} - jX_s \hat{I}_a \\ &= 239.6 / \underline{0^{\circ}} - j2.2 \times 24.346 / \underline{36.87^{\circ}} \\ &= 276 / \underline{-8.96^{\circ}} \end{split}$$

اس تمام صورت حال کو شکل 6.16 میں دوری سمتیات کی مدد سے دکھایا گیا ہے۔

شکل6.16: بوجھ بر دار معاصر موٹر۔

میکانی بوجھ بڑھنے سے موٹر کو زیادہ برقی طاقت درکار ہوگی۔ یہ اس صورت ممکن ہوگا جب موٹر کے قوی کچھے کا برقی رو بڑھ سکے۔میدانی برقی رو معین ہونے کی وجہ سے موٹر کے اندرونی بیجانی برقی دباو \hat{E}_a کی مطلق قیت تبدیل نہیں ہو سکتی البتہ اس کا زاویہ تبدیل ہو سکتا ہے۔موٹر \hat{E}_a کی مطلق قیت تبدیل کئے بغیر برقی سروں پر لاگو برقی دباو \hat{V}_a اور \hat{E}_a کے نہی زاویہ بڑھا کر قوی کچھے کا برقی رو اور یوں حاصل برقی طاقت بڑھائے گا۔ایسا شکل \hat{V}_a میں دکھایا گیا ہے جہاں \hat{E}_a دوری سمتیہ کی نوک گول دائرہ پر رہتی ہے۔یوں اس کا طول تبدیل نہیں ہوتا۔زاویہ بڑھنے کیا \hat{I}_a بڑھتا ہے۔چونکہ \hat{V}_a نہیں بڑھ رہا لہذا در حقیقت قوی کچھے کا برقی رو بڑھ گیا ہے۔زیادہ بوجھ کی صورت حال کو نقطہ دار دکھایا گیا ہے۔

• دگنی میکانی بو جھ پر موٹر کو کل 26200 = 26200 + 800 + 24400 واٹ یا 26.2 کلو واٹ برتی طاقت درکار ہے۔مساوات 6.30 کی مدد سے درج ذیل ہو گا۔

$$\sigma = \sin^{-1}\left(\frac{pX_s}{3V_aE_a}\right) = \sin^{-1}\left(\frac{26200 \times 2.2}{3 \times 239.6 \times 276}\right) = 16.89^{\circ}$$

يوں موٹر کا اندرونی بيجانی بر تی د باو <u>°276/-16.89</u> ہو گا اور قوی کچھے کا برتی رو درج ذيل ہو گا۔

$$\begin{split} \hat{I}_{a} &= \frac{\hat{V}_{a} - \hat{E}_{a}}{jX_{s}} \\ &= \frac{239\underline{/0^{\circ}} - 276\underline{/-16.89^{\circ}}}{j2.2} \\ &= 38\underline{/17.4^{\circ}} \end{split}$$

 $\cos 17.4^\circ = 0.954$ تاره جوڑ کی وجہ سے \hat{I}_t بھی اتنا ہی ہو گا۔ پیش جزو طاقت

ياب7

امالی مشین

قوی برقیاہے۔ آکی میدان میں ترقی کی بنا امالی موٹروں کی رفتار پر قابو رکھنا ممکن ہوا اور یوں ان موٹروں نے کارخانوں میں یک ست رو موٹر استعال ہوتی جن کی رفتار پر قابو رکھنا نہایت آسان ہوتا ہے۔ پیچاس سال پہلے ترقی یافتہ ممالک میں یک سمت موٹر کی جگہ امالی موٹروں نے لینا شروع کیا۔ آج میں یہی تبدیلی پاکستان میں دیکھ رہا ہوں۔ امالی موٹروں کی مضبوطی اور دیر پاکستان میں دیکھ رہا ہوں۔ امالی موٹروں کی مضبوطی اور دیر پاکستان میں کے ملاحیت مثالی ہے۔ قوی الیکٹرائنس نے ان کی رفتار کو قابو کر کے بلا مقابلہ بنا دیا۔

امالی موٹر ٹرانسفار مرکی دوسری صورت ہے یا یوں کہنا بہتر ہو گا کہ یہ ایک ایبا ٹرانسفار مر ہے جس کا ثانوی لچھا حرکت بھی کرتا ہے۔ یوں امالی موٹر کے ساکن لچھے ٹرانسفار مرکے ابتدائی لچھے اور موٹر کے گھومتے لچھے ٹرانسفار مرکے ثانوی لچھے تصور کیے جا سکتے ہیں۔ موٹر کے ساکن لچھوں کو بیرونی برقی طاقت فراہم کی جاتی ہے جبکہ خلاء میں گھومتے مقناطیسی موج سے پیدا گھومتے لچھوں میں امالی برقی د باوان لچھوں کو طاقت فراہم کرتا ہے۔ اس کی بناان کو امالی موٹر کے کہتے ہیں

اس باب کا مقصد امالی موٹر کے مساوی دور (ریاضی نمونہ) 3کا حصول اور موٹر کی خواص پر غور کرنا ہے۔ ہم دیکھیں گے کہ ان کا مساوی دور ٹرانسفار مر کے مساوی دور کی طرح ہو گا۔

> power electronics¹ induction motor² mathematical model³

ہم فرض کریں گے کہ موٹر دو قطبی، تین دوری، سارہ جڑا ہے۔اس طرح یک دوری کچھوں کا برقی رو، تار برقی رو ہو گا اور ان پر لا گو برقی دباو، یک دوری برقی دباو ہو گا۔ایسا کرنے سے مسئلے پر غور کرنا آسان ہو گا جبکہ نتیجہ کسی بھی موٹر کے لئے کارآ مد ہو گا۔

7.1 ساكن لچھوں كى گھومتى مقناطيسى موج

امالی مشین کے ساکن کیچے بالکل معاصر مشین کے ساکن کیچھوں کی طرح ہوتے ہیں۔ مزید گھومتے حصہ اور ساکن کیچھوں کے قطبین کی تعداد ایک جیسی ہو گی۔ساکن کیچھوں کو متوازن تین دوری برقی روسے بیجان کرنے سے گھومتے مقناطیسی دباوکی ایک موح پیدا ہو گی۔ مساوات 5.49 اس موح کو ظاہر کرتی ہے جبکہ مساوات 5.53 اس کی معاصر رفتار دیتی ہے۔ یہ دونوں مساوات یہاں یاد دھیانی کے لئے دوبارہ پیش کرتے ہیں۔ یہاں ساکن کیچھوں میں برقی روکی تعدد ω کھی گئی ہے اور α صفر لیا گیا ہے۔

(7.1)
$$\tau_s^+(\theta, t) = \frac{3\tau_0}{2}\cos(\theta - \omega_e t)$$
$$f_m = \frac{2}{P}f_e$$

7.2 مثین کاسر کاواور گھومتی امواج پر تبھرہ

ہم دو قطب کے مثین پر غور کر رہے ہیں جو P قطبی مثین کے لئے بھی درست ہے۔ساکن کچھوں میں تین دوری برقی روکی تعدد f_e ہے۔مساوات f_e کہتی ہے کہ دو قطبی مثین میں موج کی معاصر رفتار بھی f_e چکر فی سیکنڈ ہو گی۔ اب نصور کریں مثین کا گھومتا حصہ ، f_e میکانی چکر فی سیکنڈ کی رفتار سے موج کے رخ گھوم رہا ہے جہاں f_e ہے۔ الی صورت میں ہر سیکنڈ گھومتا حصہ مقناطیسی بہاو کی موج سے پیچھے سرک جائے گا۔اس سرکنے کو موج کی معاصر رفتار کی نسبت سے درج ذیل لکھا جاتا ہے۔

$$(7.2) s = \frac{f_s - f}{f_s} = \frac{f_e - f}{f_e}$$

یبال s مشین کے سرکاو 4 کی ناپ ہے۔اس مساوات سے درج ذیل حاصل ہو گا۔

$$(7.3) f = f_s(1-s) = f_e(1-s)$$

$$\omega = \omega_s(1-s) = \omega_e(1-s) (پاگیا گیا)$$

یہاں غور کیجیے گا۔ مقناطیسی بہاو کی موج f_e تعدد سے گھوم رہی ہے جبکہ گھومتے کچھے کی تعدد f ہے۔ گھومتے کچھا کے حوالہ سے مقناطیسی بہاو کی موج (f_e-f) رفتار سے گھوم رہی ہے، یعنی، گھومتے کچھے کو ساکن تصور کرنے سے گھومتے مقناطیسی بہاو کی موج (f_e-f) اضافی رفتار سے گھومتی نظر آئے گی۔ یوں گھومتے لچھا میں امالی برتی دباو کی تعدد بھی (f_e-f) ہو گی۔مساوات f_e کی مدد سے اس امالی برتی دباو کی تعدد f_r درج ذیل کھی جا سکتی ہے۔

(7.4)
$$f_r = f_e - f = f_e - f_e(1 - s) = sf_e$$

مثین بطور امالی موٹر استعال کرنے کے لئے گھومتے کچھے کسر دور کیے جائیں گے۔ان کسر دور کچھوں میں برقی رو کی تعدد sf_e اور رو کی قیمت کچھوں میں پیدا امالی برقی د باو اور کچھوں کی رکاوٹ پر منحصر ہو گی۔ کچھوں کی رکاوٹ برقی رو کی تعدد پر منحصر ہو گی۔

ساکن موٹر جب چالو کی جائے تو اس کا سرکاو s اکائی (s=1) ہوگا لہذا گھومتے کچھوں میں برتی رو کی تعدد f_e ہو گی۔ گھومتے کچھوں میں f_e تعدد کا برتی رو ایک گھومتی مقناطیسی دباو کی موبی پیدا کرے گا جو معاصر رفتار سے گھومے گی۔ یہ بالکل ای طرح ہے جبیبا ساکن کچھوں میں برتی رو سے گھومتے مقناطیسی دباو کی موبی وجود میں آتی ہے۔ یوں موٹر چالو کرنے کے لمحہ پر ساکن اور گھومتے کچھوں کے مقناطیسی دباو کی امواج ایک جبیبی رفتار سے گھومتی بھی موٹر ہو۔ یوں موٹر جیسے مقاطیسی دباو کی امواج ایک جبیبی رفتار سے گھومتی ہیں۔ مقناطیسی دباو کی یہ امواج دو گھومتے مقناطیسوں کی طرح کو شش کرتی ہیں کہ ان کے بی زاو یہ صفر ہو۔ یوں موٹر قوضے مروڑ کی پیدا کردہ قوت مروڑ گیدا کرتی ہے جسے مساوات 29.5 میں پیش کیا گیا ہے۔ اگر موٹر کے دھرے پر لدے بوجھ کو مشین کی پیدا کردہ قوت مروڑ گھا سکے تو مشین گھو ہے گی۔ اس کی رفتار تیز ہو کر ایک برقرار حد تک پینی جائے گی۔ امالی موٹر کی رفتار کہی بھوں کی نسبت سے ساکن کچھوں کی شبت سے ساکن کچھوں کی گھومتی مقناطیسی دباو کی موج ساکن ہو گی اور گھومتے کچھوں میں کوئی امالی برتی دباو پیدا نہیں ہوگا۔

جب موٹر چل پڑتی ہے تو اس کے گومتے کچھوں کے برقی رو کی تعدد sf_e ہو گی۔ معاصر رفتار، برقی رو کی تعدد کے برابر ہونے کی بنا ان برقی رو سے پیدا مقناطیسی دباو کی موج گھومتے کچھے کے حوالہ سے sf_e رفتار سے گھومے

slip⁴ torque⁵

گی۔اب گھومتا لچھا از خود کسی رفتار f سے گھوم رہا ہو گا لہذا یہ موج در حقیقت خلاء میں $(f+sf_e)$ رفتار سے گھو ہے گی۔مساوات f سے درج ذیل کھا جا سکتا ہے جو ایک اہم نتیجہ ہے۔

$$(7.5) f + sf_e = f + f_e - f = f_e$$

یہ مساوات کہتی ہے کہ موٹر جس رفتار سے بھی گھوم رہی ہو، گھومتے کچھوں سے پیدا مقناطیسی دباوکی موج ساکن کچھوں سے پیدا مقناطیسی دباوکی موج کی رفتار سے ہی گھومے گی۔

مثال 7.1: ایک چار قطب، ستارہ، 50 ہر ٹز، 415 وولٹ پر چلنے والی امالی موٹر 15 کلو واٹ کی (پوری) بناوٹی بوجھ پر پاپنچ فی صد سر کاو پر چلتی ہے۔

- اس موٹر کی معاصر رفتار کتنی گی؟
- پورے بوجھ پر اس کی رفتار کتنی ہو گی؟
- پورے بوجھ پر گھومتے کچھے میں برقی تعداد کتنی ہو گی؟
- پورے بوجھ سے لدے موٹر کی دھرے پر قوت مروڑ کتنی ہو گی؟

حل:

- مساوات 7.1 کی مدو سے معاصر رفتار $f_m = \frac{2}{4} \times 50 = 25$ چگر فی سینٹہ یا 7.1 کی مدو سے معاصر رفتار $60 = 25 \times 60 = 25$ چگر فی منٹ ہو گی۔
- پورے بوجھ سے لدی موٹر پانچ فی صد سرکاو پر چلتی ہے للمذا اس کی رفتار معاصر رفتار سے کم ہوگی۔موٹر کی رفتار مساوات 7.3 کی مدو سے 23.75 = 25(1-0.05) = 23 چکر فی سکینڈ یا 1425 چکر فی منٹ حاصل ہوتی ہے۔
 - و گومتے کچھے کی برتی تعداد $f_r = 0.05 \times 50 = 2.5$ ہو گا۔
 - ی میں کے وظرے پر قوت مروڑ $T_m = \frac{p}{\omega_m} = \frac{15000}{2 \times \pi \times 23.75} = 100.5 \, \mathrm{Nm}$ کی۔

Г

7.3 ساكن لچھوں ميں امالى برقى دباو

مساوات 7.1 کا پہلا جزو ساکن کچھوں کی پیدا کردہ مقناطیسی دباو کی موج کو ظاہر کرتی ہے۔ یہ مقناطیسی دباو مثین کی خلائی درز میں مقناطیس بہاو $B^+(\theta)$ پیدا ہو گا۔ خلائی درز میں مقناطیس بہاو $B^+(\theta)$ پیدا ہو گا۔ خلائی درز کی ردای رخ لمبائی $B^+(\theta)$ لیتے ہوئے درج ذیل ہو گا

(7.6)
$$B^{+}(\theta) = \mu_0 H^{+}(\theta) = \mu_0 \frac{\tau^{+}(\theta)}{l_g}$$
$$= \frac{3\mu_0 \tau_0}{2l_g} \cos(\theta - \omega_e t)$$
$$= B_0 \cos(\theta - \omega_e t)$$

جو بالکل مساوات 5.4 کی طرح ہے۔ یوں مساوات 5.74 مقناطیسی موج $B^+(\theta)$ کی ساکن کچھوں میں پیدا کردہ امالی برقی دباو کو ظاہر کرے گی ۔اس مساوات کو یہاں دوبارہ پیش کیا جاتا ہے

(7.7)
$$e_{as}(t) = \omega_e N_s \phi_0 \cos(\omega_t + 90^\circ) = E_s \cos(\omega_t + 90^\circ)$$
$$e_{bs}(t) = \omega_e N_s \phi_0 \cos(\omega_t - 30^\circ) = E_s \cos(\omega_t - 90^\circ)$$
$$e_{cs}(t) = \omega_e N_s \phi_0 \cos(\omega_t + 210^\circ) = E_s \cos(\omega_t + 210^\circ)$$

جہاں N_s ساکن کچھے کے چکر اور E_s درج ذیل ہے۔

$$(7.8) E_s = \omega_e N_s \phi_0$$

a یہاں a کھتے ہوئے زیر نوشت میں a ، دور a کو ظاہر کرتا ہے اور a ساکن a کھتے ہوئے زیر نوشت میں a ، دور a کی بات آگے بڑھاتے ہیں۔ گھومتی مقناطیسی دباو کی موج اس کچھے میں امالی برقی دباو ہے۔ امالی موٹر کے دور a کی بات آگے بڑھاتے ہیں۔ گھومتی مقناطیسی دباو کی موج اس کچھے میں امالی برقی دباو a پیدا کرتی ہے۔

7.4 ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیداامالی برقی دباو

مساوات 7.1 کا پہلا جزو، ساکن کچھوں کی پیدا کردہ، گھومتے مقناطیسی دباو کی موج کو ظاہر کرتا ہے۔اس موج کی چوٹی $\theta = 0$ اور لحمہ چوٹی $\theta = 0$ سفر زاویہ پر ہوگی اور لمحمہ اس مقام پر ہوگی جہال $\theta = 0$ سفر کے برابر ہو۔ یول لحمہ صفر پر اس کی چوٹی صفر زاویہ پر ہوگی اور لمحمہ

الفظ ساکن میں حرف س کے آواز کوsہے ظاہر کیا گیاہے۔ peak^7

شکل 7.1: امالی موٹراوراس کے گھومتے مقناطیسی دیاو کی موجیں۔

t پر اس موج کی چوٹی زاویہ $w_e t$ پر ہوگی۔ ساکن کچھوں کی مقناطیسی دباو کی موج کا زاویہ کسی بھی نقطہ کے حوالے سے ناپا جا سکتا ہے۔ اس کتاب میں ساکن کچھا a کو صفر زاویہ تصور کیا گیا ہے۔ یوں شکل a میں نقطہ دار افقی کلیر سے زاویہ ناپا جائے گا۔ اس شکل میں ایک امالی موٹر دکھائی گئی ہے جس کے ساکن کچھے تین دوری ہیں۔

$$\theta_z = \omega_e t - \omega t$$

 $(\omega_e t - \omega t)$ اگرچہ مقناطیسی موج نے $\omega_e t$ زاویہ طے کیا لیکن گھومتے کچھے کے حوالے سے اس نے صرف زاویہ $\omega_e t$ اضافی $\omega_e t$ نامافی $\omega_e t$ نامافی $\omega_e t$ نامافی $\omega_e t$ نامافی $\omega_e t$ نام ورج ذیل ہوگی اضافی $\omega_e t$ نامافی ω_e

(7.10)
$$\omega_z = \frac{\mathrm{d}\theta_z}{\mathrm{d}t} = \omega_e - \omega$$

جس کو مساوات 7.4 کی مدد سے درج ذیل لکھا جا سکتا ہے۔

$$(7.11) \qquad \qquad \omega_z = 2\pi (f_e - f) = 2\pi s f_e = s \omega_e$$

یں کھتے ہوئے زیر نوشت میں 2، لفظا ضافی کے حرف ض کی آواز کو ظاہر کرتا ہے۔ z^8 relative angular speed

یہ مساوات کہتی ہے کہ گھومتے کچھے کے حوالے سے مقناطیسی موج کی رفتار سرکاو s پر منحصر ہو گی۔البتہ اس موج کا حیطہ تبدیل نہیں ہوا۔ یوں مساوات 7.6 گھومتے کچھے کے حوالے سے درج ذیل صورت اختیار کرے گی۔

(7.12)
$$B_{s,rz}^{+}(\theta,t) = B_0 \cos(\theta - \omega_z t) = B_0 \cos(\theta - s\omega_e t)$$

یں + کا نشان گھڑی کے مخالف رخ گھومتی موج کو ظاہر کرتا ہے جبکہ زیر نوشت میں s,rz اس بات کی یاد دھیانی کرتا ہے کہ یہ موج ساکن کچھوں کی وجہ سے وجود میں آئی اور اسے گھومتے یعنی رواں کچھوں کے حوالے سے دیکھی جا رہی ہے۔مزید، اس مساوات کی تعدد اضافی تعدد su_e کے برابر ہے۔

 $\omega_z=s\omega_e t$ يوں گھومتے کچھوں میں امالی برقی د ہاو مساوات $\sigma=0.7$ کی طرح ہوں گے لیکن ان میں تعدد

(7.13)
$$e_{arz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t + 90^\circ) = sE_r \cos(s\omega_e t = 90^\circ)$$

$$e_{brz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t - 30^\circ) = sE_r \cos(s\omega_e t - 30^\circ)$$

$$e_{crz}(t) = s\omega_e N_r \phi_0 \cos(s\omega_e t + 210^\circ) = sE_r \cos(s\omega_e t + 210^\circ)$$

ان مساوات میں N_r گھومتے کچھے کے چکر ہیں اور E_r درج ذیل ہے۔

$$(7.14) E_r = \omega_e N_r \phi_0$$

اب تصور کریں گھومتے کچھوں کو کسر دور کر دیا جاتا ہے۔امالی برتی دباو گھومتے کچھوں میں برتی رو $^{12}i_{arz}$ ، وغیرہ، پیدا کرے گا جس کا تعدد $s\omega_e$ ہو گا۔ بالکل ساکن کچھے کی طرح، گھومتے کچھے کی مزاحمت $^{13}R_r$ اور اس کا امالہ $^{12}L_r$ ہو گا جس کی متعاملیت $^{13}s\omega_e$ درج ذیل ہو گی۔

$$(7.15) js\omega_e L_r = jsX_r$$

یہاں jX_r کو $j\omega_e L_r$ یعنی jX_r ککھا گیا ہے جو ساکن کچھا (جس کا سرکاو اکائی ہو گا) کی متعاملیت ہے۔ گھومتے کچھے کا برقی رو $i_{arz}(t)$ مساوات 7.13 دیتی ہوتی رو $i_{arz}(t)$ مساوات 7.13 دیتی ہے۔

¹⁰ ہ لفظ ساکن کے س کو ظاہر کرتا ہے، ۳ لفظ روال کے رکو ظاہر کرتا ہے اور 2 لفظ اشافی کے مش کو ظاہر کرتا ہے۔ 21 arz شن دور 2 ہے۔ گھوستے کچھ کو 17 ورانسانی کو تھ ظاہر کرتا ہے۔

¹¹ یبان 7 گلومتے کچھے کو ظاہر کرتا ہے اور 2 اس بات کی یاد دھیائی کرتا ہے کہ اس بر تی رو کا تعدد ،اضا فی اتعد دے۔ 13 فرانسفار مرکی اصطلاح میں نانو کی کچھے کو زیر نوشت میں 2 سے ظاہر کرتے ہیں۔ یبال اے ۲ سے ظاہر کیا جاتا ہے۔

$$Z_r = R_r + jsX_r$$

$$+$$

$$e_{arz}$$

$$-$$

$$\hat{I}_{arz} = \frac{\hat{E}_{arz}}{Z_r}$$

$$i_{arz}(t) = \frac{sE_r}{|Z|}\cos(s\omega_e t + 90^\circ - \phi_z)$$
$$= I_{0r}\cos(s\omega_e t + 90^\circ - \phi_z)$$

شكل 7.2: گھومتے لچھا كامساوي دوراوراس ميں اضافي تعد د كارو_

شکل 7.2 بالکل شکل 1.15 کی طرح ہے لہذا مساوات 1.50 سے برتی رو حاصل کیے جا سکتے ہیں:

$$(7.16)$$

$$i_{arz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t + 90^\circ - \phi_z) = I_{0r} \cos(s\omega_e t + \theta_0)$$

$$i_{brz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t - 30^\circ - \phi_z) = I_{0r} \cos(s\omega_e t - 120^\circ + \theta_0)$$

$$i_{crz}(t) = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}} \cos(s\omega_e t + 210^\circ - \phi_z) = I_{0r} \cos(s\omega_e t + 120^\circ + \theta_0)$$

یہ تین دوری برقی رو ہیں جو آپس میں °120 زاویہ رکھتے ہیں۔ یہاں ϕ_z رکاوٹ کا زاویہ 14 ہے۔امید کی جاتی ہے کہ اسے آپ مقناطیسی بہاو نہیں سمجھیں گے۔درج بالا مساوات میں درج ذیل ہوں گے۔

(7.17)
$$\theta_0 = 90 - \phi_z$$

$$I_{0r} = \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}}$$
شکل 7.2 سے واضح ہے کہ ایک گھومتے کچھے کی مزاحمت میں

$$(7.18) p_r = I_{or}^2 R_r$$

برقی طاقت کا ضیاع ہو گا۔ یہ طاقت حرارت میں تبدیل ہو کر مزاحت کو گرم کرے گا۔

ہے۔ یہاں بہی کیا گیا ہے۔ ϕ استعال ہوتا ہے۔ یہاں بہی کیا گیا ہے۔ ϕ 12 کیا گیا ہے۔

7.5 گھومتے کیچھوں کی گھومتے مقناطیسی دباو کی موج

ہم جانتے ہیں کہ ساکن تین دوری کچھوں میں f_e تعدد کے برقی رو گھومتے مقناطیسی دباو کی موج پیدا کرتے ہیں جو sf_e ساکن کچھے کے حوالے سے f_e معاصر زاویائی رفتار سے گھومتی ہے۔ اس طرح گھومتے تین دوری کچھوں میں sf_e تعدد کے برقی رو ایک گھومتے مقناطیسی دباو کی موج τ_{rz}^+ پیدا کرتے ہیں جو گھومتے کچھے کے حوالے سے sf_e زاویائی رفتار سے گھومتی ہے۔

(7.19)
$$\tau_{rz}^{+}(\theta, t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - s\omega_e t - \theta_0)$$

یہاں I_{0r} اور θ_0 مساوات 7.17 میں دیے گئے ہیں۔ گھومتا لچھا از خود f زاویائی رفتار سے گھوم رہا ہو گا للذا اس کی پیدا کردہ موج خلائی درز میں $(f+sf_e)$ زاویائی رفتار سے گھومے گی۔ اس رفتار کو مساوات 7.3 کی مدد سے درج ذیل کھھا جا سکتا ہے۔

$$(7.20) f + sf_e = f_e(1-s) + sf_e = f_e$$

یوں گھومتے کچھوں کے مقناطیسی دباو کی موج کو ساکن کچھوں کے حوالے درج ذیل لکھا جا سکتا ہے۔

(7.21)
$$\tau_{r,s}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

 $\tau_{r,s}^+$ میں $\tau_{r,s}^+$ اس بات کی وضاحت $\tau_{r,s}^+$ میں $\tau_{r,s}^+$ اس بات کی وضاحت $\tau_{r,s}^+$ کرتا ہے کہ یہ موج گھومتے کچھوں کی وجہ سے وجود میں آیا ہے مگر اسے ساکن کچھوں کے حوالے سے دیکھا جا رہا ہے۔

یہاں ذرا رک کر غور کرتے ہیں۔ مساوات 7.21 کے مطابق گھومتا کچھا خود جس رفتار سے بھی گھوم رہا ہو، اس کی پیدا کردہ موج ساکن کچھے کی پیدا کردہ موج کی رفتار سے ہی گھومے گی۔ یوں مشین میں دو امواج ایک ہی معاصر رفتار سے گھوم رہی ہوں گی۔ مساوات 5.91 کہتی ہے کہ دو مقناطیسی دباو کی موجیں قوت مروڑ پیدا کرتی ہیں جو امواج کی چوٹیوں اور ان کے بھی زاویہ پر منحصر ہو گی۔امالی مشین میں موجود دو مقناطیسی امواج قوت مروڑ پیدا کرتی ہیں جس کی قیمت ان امواج کی چوٹیوں اور ان کے بھی زاویہ پر منحصر ہو گی۔امالی موٹر، لدے بوجھ کے مطابق امواج کی بین جس کی قیمت ان امواج کی دوڑ پیدا کرتی ہے۔

بابــ7. امالي شين

شكل 7.3: گھومتے کچھوں كى جَلَّه فرضى ساكن کچھے كادور۔

7.6 گھومتے کچھوں کے مساوی فرضی ساکن کچھے

اب دوبارہ اصل موضوع پر آتے ہیں۔اگر گھومتے کچھوں کی جگہ N_r چکر کے تین دوری فرضی ساکن کچھے ہوں تب مساوات 7.7 کی طرح ان میں امالی برقی دیاو بیدا ہوں گے:

(7.22)
$$e_{afs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t - 90^\circ) = E_r \cos(\omega_e t - 90^\circ)$$

$$e_{bfs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t - 30^\circ) = E_r \cos(\omega_e t - 30^\circ)$$

$$e_{cfs}(t) = \omega_e N_r \phi_0 \cos(\omega_e t + 210^\circ) = E_r \cos(\omega_e t + 210^\circ)$$

$$(7.23)$$
 : اور متعاملیت jX_r بین: ان فرضی ساکن کچھوں کی مزاحمت $\frac{R_r}{s}$ اور متعاملیت $Z_{fs}=rac{R_r}{s}+jX_r$

اگران فرضی ساکن کچھوں پر مساوات 7.22 کے برقی دباو لا گو کیے جائیں جیسا شکل 7.3 میں دکھایا گیا ہے تب ان

میں درج ذیل برقی رو ہوں گے۔

$$(7.24) i_{afs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t + 90^\circ - \phi_Z) = I_{or} \cos(\omega_e t + \theta_0)$$

$$i_{bfs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t - 0^\circ - \phi_Z) = I_{or} \cos(\omega_e t - 120^\circ + \theta_0)$$

$$i_{cfs}(t) = \frac{E_r}{\sqrt{\left(\frac{R_r}{s}\right)^2 + X_r^2}} \cos(\omega_e t + 210^\circ - \phi_Z) = I_{or} \cos(\omega_e t + 120^\circ + \theta_0)$$

یہاں مساوات 7.17 استعال کی گئی ہے۔دھیان رہے کہ ان مساوات میں رکاوٹ کا زاویہ ϕ_{fZ} وہی ہے جو گھومتے لیجھے کا تھا:

(7.25)
$$\phi_{fZ} = \tan^{-1} \frac{X}{\left(\frac{R}{s}\right)} = \tan^{-1} \frac{sX}{R} = \phi_Z$$

ان رو کا تعدد ω_e اور پیدا کردہ گھومتا مقناطیسی موج درج ذیل ہو گا جو ہو بہو گھومتے کچھے کی موج $au_{r,s}^+(heta,t)$ ہے۔

(7.26)
$$\tau_{fs,s}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_r I_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

7.7 امالي موٹر کامساوي برقی دور

ہم ٹرانسفار مر کے ابتدائی کچھے کا برتی دور پہلے بنا چکے ہیں جہاں کچھے کی مزاحمت R_1 اور رستا متعاملیت i کھی۔ ٹرانسفار مر کے قالب میں وقت کے ساتھ بدلتا مقناطیسی بہاو اس کچھے میں امالی برتی دباو \hat{E}_1 پیدا کرتا ہے۔ یوں $\hat{V}_1 = \hat{I}_1 (R_1 + iX_1) + \hat{E}_1$

کھا جا سکتا ہے جہاں اُن ابتدائی کچھے پر لا گو بیرونی برقی دباو ہے۔ہم دیکھیں گے کہ امالی موٹر کے ساکن کچھے کے لئے بھی میں مساوات حاصل ہو گی۔

leakage reactance¹⁶

شکل7.4:امالی موٹر کے ساکن کچھوں کامساوی برقی دور۔

نصور کریں کہ مشین کے گھومتے کچھے کھلا دور ہیں اور ساکن کچھوں پر تین دوری برقی دباو لا گو ہے۔ ساکن کچھوں کے برقی رو گھومتے مقناطیسی دباو کی ایک موح $au_s^+(\theta,t)$ پیدا کریں گے جو مساوات 7.1 میں دی گئی ہے۔

اس حصہ میں ہم مشین کے ایک دور، مثلاً دور a، پر نظر رکھیں گے۔ یہاں شکل 7.4 سے رجوع کریں۔اگر ساکن کچھ کی مزاحمت R_s اور متعاملیت jX_s ہو اور اس پر لاگو بیرونی برتی دباو $v_s(t)$ ہو تب کر نوف j کے برتی دباو کے قانون کے تحت درج ذیل ہو گا

$$(7.28) v_s(t) = i_s R_s + L_s \frac{\mathrm{d}i_s}{\mathrm{d}t} + e_s(t)$$

جہال ($e_s(t)$ مساوات 7.7 میں دی گئی، اس موج کی ساکن کچھ میں پیدا امالی برقی دباو ہے ۔اس کو دوری سمتیہ کی صورت میں کھتے ہیں۔

(7.29)
$$\hat{V}_{s} = \hat{I}_{s} (R_{s} + jX_{s}) + \hat{E}_{s}$$

ٹرانسفار مرکی مثال آگے بڑھاتے ہیں۔ اگر موٹر کا گھومتا لچھا کھلا دور 18 رکھا جائے تب قالب میں ایک ہی گھومتے مقاطیسی دباو کی موج au^+_s ہو گی۔ صرف ساکن لچھے میں برقی رو (\hat{I}_{φ}) ہو گا جو قالب میں مقناطیسی بہاو ہو مقناطیسی دباو کی مدد سے اس کے بنیادی اور ہار مونی اجزاء دریافت پیدا کرے گا۔ یہ برقی رو \hat{I}_{φ} غیر سائن نما ہو گا۔ فوریئر تسلسل 19 کی مدد سے اس کے بنیادی اور ہار مونی اجزاء دریافت کئے جا سکتے ہیں۔ اس کے بنیادی جزو کے دو جھے ہوں گے۔ ایک حصہ \hat{I}_c ، لاگو بیرونی برقی دباو \hat{V}_s جم قدم اور قالب میں طاقت کے ضاع کو ظاہر کرے گا جبکہ دوسرا حصہ \hat{V}_s سے نوے درجہ تاخیری زاوبہ پر ہو گا۔ \hat{I}_{α} میں سے قالب میں طاقت کے ضاع کو ظاہر کرے گا جبکہ دوسرا حصہ جو گیسے نوے درجہ تاخیری زاوبہ پر ہو گا۔ \hat{I}_{α} میں سے

Kirchoff's voltage law¹⁷ open circuited¹⁸

Fourier series¹⁹

منفی کر کے مقناطیری جرو حاصل ہو گا جس کو \hat{I}_m سے ظاہر کیا جاتا ہے۔ بنیادی جرو کے لحاظ سے مقناطیسی جرو تاخیری اور باقی سارے ہارمونی اجزاء کا مجموعہ ہو گا۔یہ قالب میں مقناطیسی بہاو φ_s پیدا کرتا ہے۔

$$\hat{I}_{\varphi} = \hat{I}_c + \hat{I}_m$$

امالی موٹر کے مساوی دور میں \hat{I}_c کو مزاحمت R_c سے اور \hat{I}_m کو \hat{J}_c سے یوں ظاہر کیا جاتا ہے کہ چلتی موٹر میں، متوقع برقی تعدد اور امالی برقی دباو \hat{E}_s پر، R_c میں R_c اور X_m میں I_m برقی رو حاصل ہو:

(7.31)
$$R_c = \frac{\hat{E}_s}{\hat{I}_c} = \frac{E_s}{I_c}$$

$$X_{\varphi} = \frac{\left|\hat{E}_s\right|}{\left|\hat{I}_m\right|} = \frac{E_s}{I_m}$$

مقناطیسی دباوکی موج $\tau_s^+(\theta,t)$ گھومتے کچھ میں بھی امالی برتی دباو پیدا کرے گی۔ مساوات 7.29 میں اگر رکاوٹ میں برتی دباو کے گھٹے کو نظر انداز کیا جائے تب لاگو بیرونی برتی دباو اور کچھے کا اندرونی امالی برتی دباو ہر حالت میں ایک دوسرے کے برابر ہوں گے۔اب تصور کریں کہ گھومتے کچھے کسر دور کر دیے جاتے ہیں۔ ایسا کرتے ہی ان میں برتی روگر زنے لگے گیں جو مقناطیسی دباوکی موج $\tau_{r,s}^+(\theta,t)$ ، جو مساوات 7.21 میں دی گئی ہے، پیدا کریں گے۔ اس موج سے ساکن کچھے میں امالی برتی دباو \hat{E}_s تبدیل ہو گا للذا امالی برتی دباو اور لاگو برتی دباو ایک دوسرے کے برابر نہیں رہیں گے۔ یہ ایک نا مکنہ صورت حال ہے۔

ساکن کچھ میں امالی برتی دباو، لاگو برتی دباو کے برابر تب رہے گا جب قالب میں مقناطیسی دباو تبدیل نہ ہو۔ مثین کے قالب میں مقناطیسی دباو برقرار یوں رہتا ہے کہ ساکن کچھے، مقناطیسی دباو برتہ ہوہ کہ متناطیسی دباو کی ایک موج پیدا کرتے ہیں جو $\tau_{r,s}^+(\theta,t)$ کے اثر کو مکمل طور پر ختم کر دیتی ہے۔ یہ موج پیدا کرنے کے لئے ساکن کچھوں میں برتی رو $\hat{I}_{r,s}(\theta,t)$ ہو جاتی ہے جہاں اضافی برتی رو درج ذبل ہو گا۔

(7.32)
$$i'_{ar}(t) = I'_{or}\cos(\omega_e t + \theta_0) i'_{br}(t) = I'_{or}\cos(\omega_e t - 120^\circ + \theta_0) i'_{cr}(t) = I'_{or}\cos(\omega_e t + 120^\circ + \theta_0)$$

یہ اضافی برقی رو درج ذیل موج پیدا کرتے ہیں۔

(7.33)
$$\tau_{(r)}^{+}(\theta,t) = k_w \frac{4}{\pi} \frac{N_s I'_{0r}}{2} \cos(\theta - \omega_e t - \theta_0)$$

ساکن کچھوں میں اضافی برقی رونے ہر لمحہ گھومتے کچھوں کے برقی رو کے اثر کو ختم کرنا ہے للذا یہ دونوں برقی رو ہم قدم²⁰ ہوں گے۔چونکہ درج بالا مساوات اور مساوات 7.21 برابر ہیں للذا درج ذیل ہو گا۔

$$(7.34) N_s I'_{0r} = N_r I_{0r}$$

مساوات 7.17 استعال كرتے ہوئے يوں درج ذيل ہو گا۔

(7.35)
$$I'_{0r} = \left(\frac{N_r}{N_s}\right) I_{0r} = \left(\frac{N_r}{N_s}\right) \frac{sE_r}{\sqrt{R_r^2 + s^2 X_r^2}}$$

آپ نے دیکھا کہ گھومتے کچھے مقناطیس دباو کی موج پیدا کرتے ہیں جن کے ذریعہ ساکن کچھوں کو معلوم ہوتا ہے کہ موٹر پر بوجھ لدا ہے اور وہ اس کے مطابق لا گو برتی دباو سے برتی رو لیتی ہیں۔ یہاں تک امالی موٹر کا مساوی برتی دور شکل 7.5 میں دکھایا گیا ہے۔ یہاں ذرہ شکل 7.6 سے رجوع کریں جہاں

(7.36)
$$R'_r = \left(\frac{N_s}{N_r}\right)^2 R_r$$
$$X'_r = \left(\frac{N_s}{N_r}\right)^2 X_r$$

7.7. امالي موٹر کامپ وي بر تي دور

$$\hat{I}'_{r} \xrightarrow{S'_{r}} jX'_{r} \\
+ \\
\hat{E}_{s} \\
- \\
\circ$$

$$jX'_{r} \\
K'_{r} = \left(\frac{N_{s}}{N_{r}}\right)^{2} R_{r} \\
X'_{r} = \left(\frac{N_{s}}{N_{r}}\right)^{2} X_{r}$$

$$i_a'(t) = \frac{sE_s}{\sqrt{R_r'^2 + s^2 X_r'^2}} \cos(s\omega_e t - \theta_0 - \phi_z)$$

شكل 7.6: گھومتے لچھے كاايك مساوى دور۔

یر ساکن کچھوں کا امالی برقی دباو \hat{E}_s لاگو ہے للذا برقی رو درج ذیل ہوں گے۔

(7.37)
$$i'_{a}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t + 90^{\circ} - \phi_{Z})$$
$$i'_{b}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t - 30^{\circ} - \phi_{Z})$$
$$i'_{c}(t) = \frac{sE_{s}}{\sqrt{R'_{r}^{2} + s^{2}X'_{r}^{2}}} \cos(\omega_{e}t + 210^{\circ} - \phi_{Z})$$

ان سب کے حیطے ایک دوسرے کے برابر ہیں۔اس حیطہ کو

$$(7.38) \qquad \frac{sE_s}{\sqrt{R_r'^2 + s^2 X_r'^2}} = \frac{s\omega_e N_s \phi_0}{\sqrt{\left(\frac{N_s}{N_r}\right)^2 \left(R_r^2 + s^2 X_r^2\right)}} = \left(\frac{N_r}{N_s}\right) I_{0r} = I_{0r}'$$

لکھ کر مساوات 7.37 کو درج ذیل صورت میں لکھا جا سکتا ہے۔

(7.39)
$$i'_{a}(t) = I'_{0r}\cos(\omega_{e}t + 90^{\circ} - \phi_{Z})$$
$$i'_{b}(t) = I'_{0r}\cos(\omega_{e}t - 30^{\circ} - \phi_{Z})$$
$$i'_{c}(t) = I'_{0r}\cos(\omega_{e}t + 210^{\circ} - \phi_{Z})$$

یہ مساوات بالکل مساوات 7.32 کی طرح ہے جہاں $\phi_Z=0$ ہو گا۔ یوں شکل 7.5 میں ساکن کچھوں کے امالی برقی دیاو \hat{E}_s کے متوازی شکل 7.6 جوڑنے سے ساکن کچھوں میں اضافی برقی رواتنا ہی ہو گا جتنا اصل موٹر میں گھوٹے کچھوں کی بنا ہو گا۔ شکل 7.7 میں ایسا کرتے ہوئے امالی موٹر کا مساوی برقی دور حاصل کیا گیا ہے جو امالی موٹر کی صحیح عکائی کرتا ہے۔

7.8 مساوی برقی دوریر غور

ایک گھومتے کچھے میں برقی طاقت کے ضیاع کو مساوات 7.18 ظاہر کرتی ہے۔مساوات 7.36 اور 7.38 کی مدد سے اسے درج ذیل لکھا جا سکتا ہے۔

$$(7.40) p_{\text{ij}} = I_{0r}^2 R_r = \left(\frac{N_s^2}{N_r^2} I_{0r}'^2\right) \left(\frac{N_r^2}{N_s^2} R_r'\right) = I_{0r}'^2 R_r'$$

شكل 7.7 كے گھومتے لچھے كو كل

$$(7.41) p_r = I_{0r}^{\prime 2} \frac{R_r'}{s}$$

برقی طاقت دی جاتی ہے جس میں سے $p_{t,t}$ گھومتے کچھے کی مزاحمت میں ضائع ہو جاتی ہے اور باقی بطور میکانی طاقت مثین کے دھرے پر دستیاب ہوتی ہے:

(7.42)
$$p = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} - I_{0r}^{\prime 2} R_r^{\prime} = I_{0r}^{\prime 2} \frac{R_r^{\prime}}{s} (1 - s) = p_r (1 - s)$$

تین دوری مشین جس میں تین کھے ہوتے ہیں تین گنا میکانی طاقت فراہم کرے گی:

$$(7.43) p_{\dot{\mathbf{y}}_{0r}} = 3I_{0r}^{\prime 2} \frac{R_r'}{s} (1-s) = 3p_r (1-s)$$

مساوات 7.43 کہتی ہے کہ ساکن موٹر، جس کا سرکاو اکائی ہو گا، کوئی میکانی طاقت فراہم نہیں کرتی ہے بلکہ وہ تمام برقی توانائی جو گھومتے حصہ کو ملتی ہے ضائع ہو کر اس حصہ کو گرم کرتی ہے جس سے موٹر جلنے کا امکان ہوتا ہے۔

آپ اس مساوات سے دیکھ سکتے ہیں کہ امالی موٹر کا سرکاو صفر کے قریب رہنا چاہئے ورنہ یہ ناقابل قبول (اور ناقابل برداشت) حد تک برتی توانائی ضائع کرے گی۔ ہم امالی موٹر کی مساوی برتی دور کو شکل 7.8 کی طرح بھی تشکیل دے سکتے ہیں جس میں شکل 7.7 کی مزاحمت $\frac{R'_r}{s}$ کو دو حصوں میں تقسیم کیا گیا ہے:

$$\frac{R_r'}{s} = R_r' + R_r' \left(\frac{1-s}{s}\right)$$

یوں شکل 7.7 میں مزاحمت R'_r میں برتی طاقت کا ضیاع $I'^2_{0r}R'_r$ گھومتے کچھے کا ضیاع جبکہ مزاحمت R'_r میں برتی طاقت کا ضیاع $I'^2_{0r}R'_r$ دراصل میکانی طاقت ہو گا۔ یاد رہے کہ تین دوری مشین کے لئے ان نتائج کو تین سے ضرب دینا ہو گا۔

7.3 میکانی طاقت سے مراد قوت مروڑ ضرب میکانی زاویائی رفتار ہے۔ امالی موٹر کی میکانی زاویائی رفتار مساوات ω_{sm} دیتی ہے جبکہ مساوات 5.53 میں میکانی معاصر رفتار ω_{sm} دیتی ہے۔یوں میکانی طاقت

(7.44)
$$p = T_m \omega = T_m \times 2\pi f = T_m \times 2\pi (1 - s) f_s = T_m (1 - s) \omega_{sm}$$

اور قوت مروڑ درج ذیل ہو گی۔

(7.45)
$$T_m = \frac{p}{(1-s)\omega_{sm}} = \frac{3I_{0r}^{\prime 2}}{\omega_{sm}} \frac{R_r^{\prime}}{s}$$

اصل موٹر میں رگڑ، قالبی ضیاع، لچھوں میں ضیاع اور دیگر وجوہات کی بنا، دھرے پر طاقت یا قوت مروڑ ان سے کم ہو گی۔

شکل 7.9: امالی موٹر کاسادہ دور۔ قالبی ضیاع کو نظر انداز کیا گیاہے۔

ر انسفار مرکے سادہ ترین مساوی دور میں R_c اور R_c کو نظرانداز کیا گیا تھا۔ امالی موٹر میں ایسا کرنا ممکن نہیں ہوتا چونکہ موٹروں میں خلائی درز ہوتی ہے جس میں مقناطیسی بہاو پیدا کرنے کے لئے بہت زیادہ مقناطیسی دباو در کار ہوتی ہے۔ بے بوجھ امالی موٹر کو بناوٹی برقی رو کا تمیں سے پچاس فی صد برقی رو، قالب کو بیجان کرنے کے لئے در کار ہوتا ہے۔ مزید، خلائی درز کی وجہ سے اس کی رستا امالہ بھی زیادہ ہوتا ہے اور اسے نظر انداز کرنا ممکن نہیں ہوتا۔ البت مساوی دور میں R_c کو نظر انداز کیا جا سکتا ہے جیسے شکل R_c میں کیا گیا ہے۔ اس شکل میں نقطہ دار کلیر کی بائیں مادی تھونن دور بنایا جا سکتا ہے۔ ایسا کرنے سے امالی موٹر پر غور کرنا آسان ہو جاتا ہے۔ اب ہم ایسا ہی کرتے ہیں۔

مثال 7.2: ستارہ، چیر قطبی، بچپاس ہر ٹز اور 415 وولٹ پر چلنے والی 15 کلو واٹ امالی موٹر کے مساوی دور کے ا اجزاء درج ذیل ہیں۔

$$R_s = 0.5 \,\Omega, \quad R'_r = 0.31 \,\Omega, \quad X_s = 0.9 \,\Omega, \quad X'_r = 0.34 \,\Omega, \quad X_m = 0.22 \,\Omega$$

موٹر میں رگڑ سے طاقت کا ضیاع 600 واٹ ہے۔ قالبی ضیاع کو اس کا حصہ تصور کیا گیا ہے۔ اس کو اٹل تصور کیا جائے۔ یہ موٹر درکار وولٹ اور تعداد پر دو فی صد سرکاو پر چل رہی ہے۔اس حالت میں موٹر کی رفتار، اس کے دھرے پر پیدا قوت مروڑ اور طاقت، اس کے ساکن کچھے کا برتی رو اور اس کی فی صد کار گزاری حاصل کریں۔

 $f_m = \frac{2}{6} \times 50 = 16.66 \times 60 = 1000$ چگر نے سکینڈ یا $f_m = \frac{2}{6} \times 50 = 16.66 \times 60 = 1000$ کی منٹ ہو گی۔دو فی صد سرکاو پر موٹر کی رفتار 16.33 = 16.66 \times (1 \times 0.02) = 16.33 \times وقت سکینڈ یا $f = 16.33 \times 60 = 979.8$

شكل 7.9 مين دائين جانب

$$jX_r' + R_r' + R_r' \frac{1-s}{s} = jX_r' + \frac{R_r'}{s} = j0.34 + \frac{0.31}{0.02} = j0.34 + 15.5$$

7.8 مساوي پر تن دور پر غور

اور jX_m متوازی جڑے ہیں جن کی مساوی رکاوٹ درج ذیل ہو گی۔

$$\begin{split} \frac{1}{Z} &= \frac{1}{15.5 + j0.34} + \frac{1}{j22} \\ Z &= 10.147 + j7.375 = R + jX \end{split}$$

موٹر پر لا گو یک دوری برقی دباو $\frac{415}{\sqrt{3}} = 239.6$ وولٹ ہے۔ یوں ساکن کچھے کا برقی رو درج ذیل ہو گا۔

$$\begin{split} \hat{I}_s &= \frac{\hat{V}_s}{R_s + jX_s + Z} \\ &= \frac{239.6}{0.5 + j0.99 + 10.147 + j7.375} \\ &= 17.6956 /\!\!\!-\!38.155^{\circ} \end{split}$$

اس موٹر کے گھومتے حصہ کو وہی طاقت منتقل ہو گی جو رکاوٹ Z کو منتقل ہو گی۔یوں مساوات 7.41 درج ذیل لکھی جا سکتی ہے۔

$$p = I_{or}^{\prime 2} \frac{R_r^{\prime}}{s} = I_s^2 R = 17.6956^2 \times 10.147 = 3177.37 \,\text{W}$$

تین دور کے لئے 3177.37 \times واٹ ہو گی۔مساوات 7.43 موٹر کی اندرونی میکانی طاقت دیتی ہے:

$$p_{\dot{b}} = 9532 \times (1 - 0.02) = 9341 \,\mathrm{W}$$

اس سے طاقت کا ضیاع منفی کرنے سے موٹر کے دھرے پر میکانی طاقت 8741 = 600 – 9341 واٹ حاصل ہوتی ہے لہذا دھرے پر قوت مروڑ درج ذیل ہوگی۔

$$T = \frac{8741}{2 \times \pi \times 16.33} = 85.1 \,\mathrm{Nm}$$

موٹر کو کل مہیا برقی طاقت $\sqrt{3} \times 415 \times 17.6956 \times \cos(-38.155) = 10001.97$ واٹ ہو گا۔ $\sqrt{3} \times 415 \times 17.6956 \times \cos(-38.155) = 10001.97$ یوں اس موٹر کی کار گزاری $\sqrt{3} \times 87.39 \times 100 = 87.39$ ہو گا۔

ياب. امالي شين

شکل 7.10: تھونن ر کاوٹ اور تھونن برقی د باوحاصل کرنے کے ادوار۔

7.9 امالي موٹر کامساوي تھونن دوريار باضي نمونه

مسئلہ تھون نے ²¹ کے مطابق کسی بھی سادہ خطی برتی دور²² کو اس کے دو برتی سروں کے مابین ایک رکاوٹ اور ایک برقی دباو کی مساوی سلسلہ وار دور سے ظاہر کیا جا سکتا ہے۔اس مساوی دور کو مساوی تھونن دور کہتے ہیں جبکہ اس مساوی تھونن دور کی رکاوٹ کو تھونن رکاوٹ اور برتی دباو کو تھونن برتی دباو کہتے ہیں۔

برتی دور کے دو برتی سروں کے نیج تھونن رکاوٹ حاصل کرنے کے لئے برتی دور کے تمام اندرونی برتی دباو کسر دور کر کے ان دو برتی سروں کے نیج رکاوٹ معلوم کی جاتی ہے۔ یہی رکاوٹ، تھونن رکاوٹ ہو گی۔ انہیں برتی سروں پر تھونن برقی دباو حاصل کرنے کے لئے دیے گئے برتی دور کے تمام اندرونی برتی دباو برقرار رکھ کر ان دو سروں پر برتی دباو معلوم کیا جاتا ہے۔ یہی برتی دباو در حقیقت تھونن برتی دباو ہو گا۔ بعض او قات ہم ایک برتی دور کے ایک خاص حصے کا مساوی تھونن دور بنانا چاہتے ہیں۔ایسا کرتے وقت باتی برتی دور کو اس حصے سے مکمل طور پر منقطع کر کے درکار حصہ کا تھونن مساوی دور حاصل کیا جاتا ہے۔ شکل 7.10 سے ااور ب کے نیج مساوی تھونن رکاوٹ 2 در کار حصہ کا حونن مساوی دور حاصل کیا جاتا ہے۔ شکل 2 درکار حصہ کا تھونن برتی دباو 3 درج ذیل حاصل ہوتے ہیں۔

(7.46)
$$Z_{t} = \frac{(R_{s} + jX_{s}) jX_{m}}{R_{s} + jX_{s} + jX_{m}} = R_{t} + jX_{t}$$

$$\hat{V}_{t} = \frac{jX_{m}\hat{V}_{s}}{R_{s} + jX_{s} + jX_{m}} = V_{t}/\underline{\theta_{t}}$$

کسی بھی مخلوط عدد 23 کی طرح Z_t کو ایک حقیقی عدد R_t اور ایک فرضی عدد jX_t کا مجموعہ ککھا جا سکتا ہے۔ یہی اس

Thevenin theorem²¹ linear circuit²²

شکل 7.11: تھونن دوراستعال کرنے کے بعد امالی موٹر کا مساوی دور۔

مساوات میں کیا گیا ہے۔

ہم یوں امالی موٹر کے مساوی برقی دور کو شکل 7.11 کی طرح بنا سکتے ہیں جہاں سے دوری سمتیہ کی استعال سے مندرجہ ذیل برقی رو \hat{I}'_r عاصل ہوتا ہے۔

(7.47)
$$\hat{I}'_r = \frac{\hat{V}_t}{R_t + jX_t + \frac{R'_r}{s} + jX'_r} \left| \hat{I}'_r \right| = I'_r = \frac{V_t}{\sqrt{\left(R_t + \frac{R'_r}{s}\right)^2 + \left(X_t + X'_r\right)^2}}$$

چونکہ V_t کی قیمت پر \hat{V}_t کے زاویے کا کوئی اثر نہیں للذا مساوی تھونن دور میں \hat{V}_t کی جگہ V_t استعال کیا جا سکتا ہے۔اس کتاب میں ایبا ہی کیا جائے گا۔

مساوات 7.45 اور مساوات 7.47 سے تین دوری مشین کی قوت مروڑ حاصل کرتے ہیں۔

(7.48)
$$T = \frac{1}{\omega_{sm}} \frac{3V_t^2 \left(\frac{R_r'}{s}\right)}{\left(R_t + \frac{R_r'}{s}\right)^2 + \left(X_t + X_r'\right)^2}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_t^2 \left(\frac{R_r'}{s}\right)}{\frac{R_r'^2}{s^2} + 2R_t \frac{R_r'}{s} + R_t^2 + \left(X_t + X_r'\right)^2}$$

complex number²³

شكل 7.12: امالي موٹر كي قوت مر وڙ بالقابل سر كاو_

اس مساوات کو شکل 7.12 میں و کھایا گیا ہے جہاں موٹر کی رفتار کو معاصر رفتار کی نسبت سے و کھایا گیا ہے۔موٹر ازخود گھومتے مے اور اس کی رفتار معاصر رفتار سے کم رہتی ہے۔زیادہ سرکاو پر موٹر کی کار گزاری خراب ہو جاتی ہے۔ اس لئے لگاتار استعال میں موٹر تقریباً پانچ فی صد سے کم سرکاو پر چلائی جاتی ہے بلکہ ان کی بناوٹ ہے کہ امالی موٹر اپنی بناوٹی طاقت تقریباً پانچ فی صد سے کم سرکاو پر مہیا کرتی ہو۔

اگر موٹر کو زبردستی ساکن کچھوں کے گھومتے مقناطیسی موج کے رخ معاصر رفتار سے زیادہ رفتار پر گھمایا جائے تو یہ ایک جزیٹر کے طور پر کام کرنے شروع ہو جائے گی۔اییا کرنے کے لئے بیرونی میکانی طاقت درکار ہو گی ۔اگرچہ امالی مثین عام طور پر بطور جزیٹر استعال نہیں ہوتی البتہ ہوا سے برقی طاقت کی پیداوار میں انہیں بطور جزیٹر استعال کیا جانے لگا ہے۔

شکل 7.12 میں منفی رفتار بھی دکھائی گئی ہے جہاں سرکاوکی قیمت اکائی سے زیادہ ہے۔ موٹر کو ساکن کچھوں کے گھومتی مقناطیسی دباوکی موج کے مخالف رخ گھمانے سے ایسا ہو گا۔ چلتی موٹر کو جلد ساکن کرنے کے لئے ایسا کیا جاتا ہے۔ تین دوری موٹر پر لا گو کسی دو برقی دباوکو آپس میں تبدیل کرنے سے موٹر کے ساکن کچھوں کے گھومتی معناطیسی موج بیدم مخالف رخ گھومنا شروع ہو جاتی ہے جبکہ موٹر ابھی پہلے رخ گھوم رہی ہوتی ہے۔اس طرح موٹر جلد آہتہ ہوتی ہے اور جیسے ہی موٹر رک کر دوسرے رخ گھومنا چاہتی ہے اس پر لا گو برقی دباو منقطع کر دیا جاتا ہے۔الی موٹر یوں ریل گاڑی میں عموماً بطور روکے (بریک) استعال کی جاتی ہے۔

امالی مشین s < 0 کی صورت میں بطور جزیٹر، s < 1 کی صورت میں بطور موٹر اور s < 1 کی صورت میں بطور روک کام کرتی ہے۔

 brake^{24}

امالی موٹر کی زیادہ سے زیادہ قوت مروڑ مساوات 7.48 سے حاصل کی جا سکتی ہے۔ قوت مروڑ اس لحمہ زیادہ سے زیادہ ہو گی جب گھومتے جھے کو زیادہ سے زیادہ طاقت میسر ہو۔ زیادہ سے زیادہ طاقت منتقل کرنے کے مسئلہ $\frac{25}{s}$ مطابق مزاحمت $\frac{R'}{s}$ میں طاقت کا ضیاع اس صورت زیادہ سے زیادہ ہو گا جب (شکل 7.11 میں) اس کی قیمت باقی سلسلہ وار جڑی اجزاء کی قیمت کے برابر ہو:

(7.49)
$$\frac{R'_r}{s} = \left| R_t + jX_t + jX'_r \right| = \sqrt{R_t^2 + (X_t + X'_r)^2}$$

اس مساوات سے زیادہ سے زیادہ طاقت پر سرکاو s_z حاصل ہو گا۔

(7.50)
$$s_z = \frac{R'_r}{\sqrt{R_t^2 + (X_t + X'_r)^2}}$$

مساوات 7.48 کی نسب نما میں $R_t^2 + (X_t + X_r')^2$ کی جگہ مساوات 7.49 کا مربع استعال کرتے ہوئے زیادہ سے زیادہ قوت مروڑ T_z حاصل ہو گی:

(7.51)
$$T_{z} = \frac{1}{\omega_{sm}} \frac{3V_{t}^{2} \left(\frac{R'_{r}}{s}\right)}{\frac{R'_{r}^{2}}{s^{2}} + 2R_{t} \frac{R'_{r}}{s} + \frac{R'_{r}^{2}}{s^{2}}}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_{t}^{2}}{2\left(R_{t} + \frac{R'_{r}}{s}\right)}$$

$$= \frac{1}{\omega_{sm}} \frac{3V_{t}^{2}}{2\left(R_{t} + \sqrt{R_{t}^{2} + (X_{t} + X'_{r})^{2}}\right)}$$

درج بالا کے حصول میں آخری قدم پر مساوات 7.49 کا استعال دوبارہ کیا گیا۔

اس مساوات کے مطابق امالی موٹر کی زیادہ سے زیادہ قوت مروڑ اس کے گھومتے کچھوں کی مزاحمت پر مخصر نہیں ہوگا۔ یہ ایک اہم معلومات ہے جسے استعال کر کے امالی موٹر کی زیادہ سے زیادہ قوت مروڑ درکار رفتار پر حاصل کی جا گئی دیکھتے ہیں کہ ایساکس طرح کیا جاتا ہے۔

امالی موٹر کے گھومتے لیجھوں کے برتی سروں کو سرکے چھلوں 26 کے ذریعہ باہر نکالا جاتا ہے 27 جہاں ان کے ساتھ سلسلہ وار بیرونی مزاحمت جوڑی جاتی ہے۔اس طرح گھومتے لیجھوں کی کل مزاحمت بڑھ کر ب_{یرون}ی جاتی ہو جاتی

maximum power theorem²⁵ slip rings²⁶ ت²⁶کل کے نمونے پر۔

شکل 7.13: بیر ونی مزاحمت کا قوت مر وڑ بالمقابل سر کاوکے خطوط پراثرات۔

ہے۔ ایبا کرنے سے مساوات 7.49 کے مطابق زیادہ سے زیادہ قوت مروڑ نسبتاً زیادہ سرکاہ یعنی کم زاویائی رفتار پر حاصل ہو گی۔ شکل 7.13 کے مطابق مزاحمت $R_{r,\xi}$ استعال کرتے ہوئے ساکن موٹر چالو ہوتے وقت زیادہ سے زیادہ قوت مروڑ دے گی۔اس طرح بوجھ بردار موٹر ساکن حالت سے ہی زیادہ بوجھ اٹھانے کے قابل ہو گی۔ بیرونی مزاحمت استعال کے بغیر یا کم بیرونی مزاحمت، مثلاً $R_{r,j}$ ، استعال کرتے ہوئے ساکن موٹی کی قوت مروڑ نسبتاً بہت کم ہو گی۔ چونکہ زیادہ سرکاو پر موٹر کی کار گزاری خراب ہوتی ہے للذا اس طرح موٹر کو زیادہ دیر نہیں چایا جاتا اور جیسے ہی اس کی رفتار بڑھ جاتی ہے، اس سے بیرونی مزاحمتیں منقطع کر کے گھومتے کچھوں کے برقی سرے کسر دور کر دیے جاتے ہیں۔

مثال 7.3: صفحہ 228 پر مثال 7.2 میں دی گئی امالی موٹر استعال کریں اور رگڑ سے طاقت کے ضیاع کو نظر انداز کریں۔

- اگر موٹر درکار وولٹ اور تعداد پر تین فی صد سرکاو پر چل رہی ہو تب ساکن کیھے میں گھومتے کیھے کے حصہ کا برقی رو ''I اور مشین کی اندرونی میکانی طاقت اور قوت مروڑ حاصل کریں۔
 - موٹر کی زیادہ سے زیادہ اندرونی پیدا قوت مروڑ اور اس قوت مروڑ پر موٹر کی رفتار حاصل کریں۔
 - موٹر جالو ہونے کے لمحہ پر قوت مروڑ اور اس لمحہ پر I'_{r} حاصل کریں۔

عل:

 \bullet کے دوری برتی دباو $\frac{415}{\sqrt{3}}=239.6$ استعال کرتے ہوئے مساوات 7.46 کی مدد سے درج ذیل ہو گا۔

$$Z_t = \frac{(0.5 + j0.99) j22}{0.5 + j0.99 + j22} = 0.4576 + j0.9573$$

$$\hat{V}_t = \frac{j22 \times 239.6 / 0^{\circ}}{0.5 + j0.99 + j22} = 229.2 / 1.246^{\circ}$$

مساوات 7.47 میں تین فی صد سر کاو پر $rac{R'_r}{s}=10.3333$ استعال کرتے ہوئے درج ذیل ہو گا۔

$$\begin{split} \hat{I}'_r &= \frac{229.2 / 1.246^\circ}{0.4576 + j0.9573 + 10.3333 + j0.34} = 21.1 / -5.6^\circ\\ I'_r &= \left| \hat{I}'_r \right| = 21.1\,\mathrm{A} \end{split}$$

یہاں رک کر تسلی کر لیں کہ مندرجہ بالا مساوات میں 229.2/1.246 کی جگہ 229.2/0 استعال کرنے I'_r کی قیمت تبدیل نہیں ہوتی ہے۔

مساوات 7.43 اور 7.44 کی مدد سے طاقت اور قوت مروڑ حاصل کرتے ہیں۔

$$p_m = \frac{3 \times 21.1^2 \times 0.31}{0.03} \times (1 - 0.03) = 13\,387.46\,\mathrm{W}$$

$$T = \frac{13387.46}{(1 - 0.03) \times 2 \times \pi \times 16.66} = 131.83\,\mathrm{N\,m}$$

• مساوات 7.50 زیادہ سے زیادہ طاقت پر سر کاو درج ذیل دیتی ہے۔

$$s_z = \frac{0.31}{\sqrt{0.4576^2 + (0.9573 + 0.34)^2}} = 0.1638$$

يوں موٹر کی رفتار $836.2 = 836.2 \times (1-0.1638) = 836.2$ چکر نی منٹ ہو گی۔

• چالو کرتے کھے پر سرکاو اکائی ہو گا لہذا $\frac{R_r'}{s}=0.31$ اور یوں درج ذیل ہو گا۔

$$\hat{I}'_r = \frac{229.2 / 1.246^\circ}{0.4576 + j 0.9573 + 0.31 + j 0.34} = 152.07 / -58.14^\circ$$
 $I'_r = 152\,\mathrm{A}$

اس لمحه قوت مروره درج ذیل ہو گ۔

$$T = \frac{3 \times 152.07^2 \times 0.31}{2 \times \pi \times 16.66} = 205 \,\mathrm{N\,m}$$

مثال 7.4: وو قطب، ستارہ، پیچاس ہر ٹز پر چلنے والی تین دوری امالی موٹر 2975 چکر فی منٹ کی رفتار پر بارہ کلوواٹ کی میکانی بوجھ سے لدی ہے۔موٹر کا سر کاو اور دھرے پر قوت مروڑ حاصل کریں۔

7.10 پنجره نماامالی موٹر

گھومتے لچھوں کی ساخت پر ذرا غور کرتے ہیں۔ گھومتے لچھوں کے N_r چکر ہوتے ہیں جہاں N_r کوئی بھی عدد ہو سکتا ہے۔ سادہ ترین صورت میں N_r ایک کے برابر ہو سکتا ہے لینی ایک ہی چکر کا گھومتا لچھا۔ اب بجائے اس کے کہ قالب میں لچھوں کے لئے شگاف بنائے جائیں اور ہر شگاف میں تانبے کی تار کا ایک چکر لپٹا جائے ہم یوں بھی کر سکتے ہیں کہ ہر شگاف میں سیدھا تانبے کا ایک سلاخ رکھ دیں اور اس طرح کے سب سلاخوں کی ایک جانب کے سروں کو تانبے کی ایک دائرہ نما سلاخ سے کسر دور کر دیں اور اسی طرح دوسری جانب کے تمام سروں کو بھی ایک تانبے کی دائرہ نما سلاخ سے کسر دور کر دیں۔ یوں تانبے کی سلاخوں کا پنجرہ عاصل ہو گا۔ اسی لئے ایسی امالی موٹر کو پنجرہ نما امالی موٹر گھ

حقیقت میں شگافوں میں پگھلا تانبا یا سلور ²⁹ ڈالا جاتا ہے جو ٹھنڈا ہو کر ٹھوس ہو جاتا ہے اور قالب کو جھکڑ لیتا ہے۔ دونوں اطراف کے دائرہ نما کسر دور کرنے والے چھلے بھی اسی طرح اور اسی وقت ڈھالے جاتے ہیں۔ یوں ایک مضبوط گھومتا حصہ حاصل ہوتا ہے۔ اسی مضبوطی کی وجہ سے پنجرہ نما امالی موٹر بہت مقبول ہوئی ہے۔ اسی موٹریں سالوں تک بغیر دیکھے بھال کام کرتی ہیں اور روز مرہ زندگی میں ہر جگہ پائی جاتی ہیں۔ گھروں میں پانی کے پہپ اور پنگھے انہیں سے چلتے ہیں۔

squirrel cage²⁸ copper, aluminium²⁹

7.11 بي بوجھ موٹراور جامد موٹر کے معائنہ

امالی موٹر کی کارکردگی دو معائنوں سے معلوم کی جاتی ہے جن سے موٹر کے مساوی دور کے اجزاء بھی حاصل کئے جاتے ہیں۔ جاتے ہیں۔ جاتے ہیں۔

7.11.1 ي بوجھ موٹر كامعائنہ

یہ معائنہ بالکل ٹرانسفار مر کے بے بوجھ معائنہ کی طرح ہے۔اس میں موٹر کے ہیجان انگیز برقی رو اور بے بوجھ موٹر میں طاقت کے ضیاع کی معلومات حاصل ہوتی ہیں۔

اس میں بے بوجھ امالی موٹر پر کیساں تین دوری برقی د ہاوہ V_{bb} لاگو کر کے بے بوجھ موٹر کی برقی طاقت کا ضیاع p_{bb} اور اس کے ساکن کچھے کا بیجان انگیز برقی رو $I_{s,bb}$ ناپا جاتا ہے۔ یہ معائنہ امالی موٹر کے بناوٹی برقی د باو اور برقی تعدد پر سرانجام دیا جاتا ہے۔

ہو۔اتی تو جو امالی موٹر صرف اتی توت مروڑ پیدا کرتی ہے جتنی رگڑ اور دیگر ضیاع طاقت کی وجہ سے درکار ہو۔اتی کم ہو کہ توت مروڑ بہت کم سرکاو پر I'_r بھی نہایت کم ہو گوت مروڑ بہت کم سرکاو پر حاصل ہو گی۔مساوات 7.47 سے ظاہر ہے کہ بہت کم سرکاو پر شکل 7.7 کی گا اور اس سے گھومتے کچھوں میں برقی طاقت کا ضیاع قابل نظر انداز ہو گا۔ اسی بات کو صفحہ 226 پر شکل 7.7 کی مدد سے بھی سمجھا جا سکتا ہے جہاں واضح ہے کہ بہت کم سرکاو پر مزاحمت $\frac{R'_r}{s}$ کی قیمت بہت زیادہ ہو گی اور اس کو کھلا دور سمجھا جا سکتا ہے۔ایسا کرنے سے شکل 7.14 ملتی ہے۔

-7.14 کی جگرہ اور R_c اور R_c اور R_c کی جگہ مساوی سلسلہ وار جڑے اجزاء پر کرنے سے شکل 14.7- اے متوازی اجزاء R_c کی قبت سے بہت زیادہ ہوتی ہے۔ متوازی دور کی بہ حاصل ہو گی۔ کسی بھی امالی موٹر کی R_c کی قبت اس کی R_c کی قبت سے بہت زیادہ ہوتی ہے۔ متوازی دور کی

کے نام کیا گیاہے۔ bb کا کھتے ہوئے لفظ ہے ہو جھ کے پہلے حروف باور ب کوزیر نوشت میں V_{bb} کا گیاہے۔

شكل 7.14: بي بوجھ امالي موٹر كامعا ئند۔

ر کاوٹ Z_m سے مساوی سلسلہ وار رکاوٹ Z_s حاصل کرتے ہیں:

(7.52)
$$Z_{m} = \frac{R_{c}jX_{m}}{R_{c} + jX_{m}}$$

$$= \frac{R_{c}jX_{m}}{R_{c} + jX_{m}} \frac{R_{c} - jX_{m}}{R_{c} - jX_{m}}$$

$$= \frac{jR_{c}^{2}X_{m} + R_{c}X_{m}^{2}}{R_{c}^{2} + X_{m}^{2}}$$

$$\approx \frac{jR_{c}^{2}X_{m} + R_{c}X_{m}^{2}}{R_{c}^{2}} \qquad \text{if } R_{c} \gg X_{m}$$

$$= jX_{m} + \frac{X_{m}^{2}}{R_{c}} = jX_{m} + R_{c}^{*} = Z_{s}$$

بے بوجھ ٹرانسفار مروں میں ابتدائی کچھوں کی برقی طاقت کے ضیاع کو بھی نظر انداز کیا جاتا ہے۔ بے بوجھ امالی موٹروں کا بیجان انگیز برقی رو کافی زیادہ ہوتا ہے لہذا ان کے ساکن کچھوں کی برقی طاقت کے ضیاع کو نظر انداز نہیں کیا جا سکتا۔ بے بوجھ امالی موٹر کی ج_{bb} سے تین ساکن کچھوں کا برقی ضیاع منفی کر کے میکانی ضیاع طاقت حاصل ہو گا:

$$p_{bb} = p_{bb} - 3I_{s,bb}^2 R_s$$

میکانی طاقت کا ضیاع بے بوجھ اور بوجھ بردار موٹر کے لئے ایک جیسا تصور کیا جاتا ہے۔

شكل 7.14-ب سے ہم درج ذيل لكھ سكتے ہيں۔

(7.54)
$$R_{bb} = \frac{p_{bb}}{3I_{s,bb}^2}$$

$$Z_{bb} = \frac{V_{bb}}{I_{s,bb}}$$

$$X_{bb} = \sqrt{|Z_{bb}|^2 - R_{bb}^2}$$

$$X_{bb} = X_s + X_m$$

 X_s عالیت X_{bb} عاصل ہوتی ہے۔ اگر کسی طرح ساکن کچھے کی متعاملیت X_{bb} معائنہ سے موٹر کی بے بوجھ متعاملیت X_{bb} معائنہ میں ہم X_{bb} کا اندازہ لگا سکیں گے۔ معائنہ میں ہم X_{bb} کا اندازہ لگا سکیں گے۔

7.11.2 جامد موٹر کامعائنہ

یہ معائد ٹرانسفار مر کے کسر دور معائد کی طرح ہے۔ اس میں مشین کے رستا امالوں کی معلومات حاصل ہوتی ہے۔ البتہ امالی موٹر کا مسئلہ ذرا زیادہ پیچیدہ ہے۔ امالی موٹر کے رستا امالہ گھومتے کچھوں میں برقی تعدد اور قالب کے سیر اب ہونے پر مخصر ہوتے ہیں۔

اس معائنہ میں امالی موٹر کے گھومتے حصہ کو حرکت کرنے سے زبرد سی روک دیا جاتا ہے جبکہ ساکن کچھوں پر بیرونی برقی دباو V_{rk} لا گو کر کے برقی طاقت p_{rk} اور ساکن کچھوں کے برقی رو V_{rk} ناپے جاتے ہیں۔ اصولی طور پر بیہ معائنہ ان حالات کو مد نظر رکھ کر کیا جاتا ہے جن پر موٹر کی معلومات درکار ہوں۔

 f_e ساکن موٹر چالو کرنے کے لمحہ پر موٹر کا سرکاو اکائی ہوتا ہے اور اس کے گھومتے کچھوں میں روز مرہ تعدد، $I_{t=0}$ ہوں جب برقی رو $I_{t=0}$ ہوں گے۔ المذا اگر اس لمحہ کے نتائج درکار ہوں تب موٹر کے ساکن کچھوں پر روز مرہ تعدد، f_e کا اتنا برقی دباو لا گو کیا جائے گا جتنے سے اس کے گھومتے کچھوں میں برقی رو $I_{t=0}$ پیدا ہو۔ اس طرح اگر برقرار چالو حالت میں بوجھ بردار موٹر کے نتائج درکار ہوں جب موٹر کا سرکاو s اور اس کے گھومتے کچھوں میں برقی رو $I_{t=0}$ ہوتے ہیں تب معائنہ میں sf_e تعدد کے برقی دباو استعال کیے جائیں گے اور اس کی قیمت اتنی رکھی جائے گی جتنی سے گھومتے کچھوں میں میں $I_{t=0}$ برقی رو وجود میں آئے۔ تقریباً $I_{t=0}$ کا فراند از ہوتے ہیں لہٰذا ان کا معائنہ f_e تعدد کے برقی دباو پر ہی کیا جاتا ہے۔

t=0اس لمحہ کے برتی رو کو چھوٹی ککھائی میں وقت صفر سے منسلک کیا گیاہے یعنیt=0

نے کہ موٹر کا فی خوار میں کے سے اس بات کو ظاہر کر تی ہے کہ موٹر کا فی دیرسے چالوہ اور بیا یک بر قرار رفتار تک پھنٹے گئی ہے۔ 32

شکل 7.15:رکے امالی موٹر کا معائنہ۔

یہاں صفحہ 226 کے شکل 7.7 کو رکے (ساکن) موٹر کے معائنہ کے نقطہ نظر سے دوبارہ دیکھتے ہیں۔رکے (ساکن) موٹر کا سرکاو اکائی ہوتا ہے۔مزید، اس معائنہ میں لاگو برقی دباو بر قرار چالو موٹر پر لاگو برقی دباو سے خاصا کم ہوتا ہے۔اتنے کم لاگو برقی دباو پر قالبی ضیاع کو نظرانداز کیا جا سکتا ہے۔شکل میں R_c کو کھلے دور کرنا قالبی ضیاع کو نظرانداز کیا جا سکتا ہے۔شکل میں R_c کے مترادف ہے۔ایبا کرنے سے شکل 7.15-ا ملتا ہے۔چونکہ R_c ہے لہذا اس شکل میں میں R_c کو لیا گیا ہے۔

شکل 7.15-ا میں jX_m اور $(R'_r+jX'_r)$ متوازی جڑے ہیں جن کی جگہ ان کی مساوی سلسلہ وار رکاوٹ پر کرنے ہیں: Z_s حاصل کرتے ہیں:

$$Z_{m} = \frac{jX_{m}(R'_{r} + jX'_{r})}{R'_{r} + j(X_{m} + X'_{r})}$$

$$= \left(\frac{jX_{m}R'_{r} - X_{m}X'_{r}}{R'_{r} + j(X_{m} + X'_{r})}\right) \left(\frac{R'_{r} - j(X_{m} + X'_{r})}{R'_{r} - j(X_{m} + X'_{r})}\right)$$

$$= \frac{jX_{m}R'_{r}^{2} + X_{m}R'_{r}(X_{m} + X'_{r}) - X_{m}X'_{r}R'_{r} + jX_{m}X'_{r}(X_{m} + X'_{r})}{R'_{r}^{2} + (X_{m} + X'_{r})^{2}}$$

$$= \frac{X_{m}^{2}R'_{r}}{R'_{r}^{2} + (X_{m} + X'_{r})^{2}} + \frac{j(X_{m}R'_{r}^{2} + X_{m}^{2}X'_{r} + X_{m}X'_{r}^{2})}{R'_{r}^{2} + (X_{m} + X'_{r})^{2}}$$

$$= R_{s}^{*} + jX_{s}^{*} = Z_{s}$$

ان مساوات میں $X_m\gg X_r'$ اور $X_m\gg X_r'$ اور $X_m\gg X_r'$ اور مساوات میں ہو گا۔

$$(7.56) R_s^* \approx R_r' \left(\frac{X_m}{X_m + X_r'}\right)^2$$

(7.57)
$$X_s^* = \approx \frac{X_m R_r'^2}{X_m^2} + \frac{X_m^2 X_r'}{X_m^2} + \frac{X_m X_r'^2}{X_m^2} \approx X_r'$$

اس معائنہ میں پیائش کی گئی قیمتوں اور شکل 7.15-ب سے درج ذیل حاصل ہو گا۔

(7.58)
$$Z_{rk} = \frac{V_{rk}}{I_{s,rk}}$$

$$R_{rk} = \frac{p_{rk}}{3I_{s,rk}^2}$$

$$X_{rk} = \sqrt{|Z_{rk}|^2 - R_{rk}^2}$$

اس مساوات کے پہلے جزو میں پیائٹی برقی دباو اور برقی رو سے رکاوٹ حاصل کی گئی ہے۔ اس طرح دوسرے جزو میں مزاحمت اور تیسرے میں متعاملیت کا حساب لگایا گیا ہے۔

شكل 7.15-ب سے درج ذيل واضح ہے۔

$$(7.59) X_{rk} = X_s + X_r'$$

امالی مشین مختلف خواص کے بنائے جاتے ہیں۔ عام آدمی کی آسانی کے لئے ایسی مشینوں کی درجہ بندی کی جاتی A,B,C,D اور ایسی مشین جن کا گھومتا حصہ کچھے پر مشمل ہو، کی رستا متعاملیت X_{rk} کو ساکن اور گھومتے کچھوں میں تقسیم کرنا دکھایا گیا ہے۔ اس جدول کے مطابق، گھومتے کچھوں میں تقسیم کرنا دکھایا گیا ہے۔ اس جدول کے مطابق، گھومتے کچھوں میں تقسیم کرنا دکھایا گیا ہے۔ اس جدول کے مطابق، گھومتے ہوں کہ دور میرے کے برابر ہوتی ہیں۔ شکل 7.15 - ب میں مخاملیت ایک دوسرے کے برابر ہوتی ہیں۔ شکل 7.15 - ب میں مزاحمت ہیں X_{rk} کی مدد سے ناپ کر درج ذیل عاصل کیا جا سکتا ہے۔

$$(7.60) R^* = R_{rk} - R_s$$

اب R'_r کو مساوات 7.56 سے حاصل کیا جا سکتا ہے جہاں X_m بوجھ امالی موٹر کے معائنہ میں حاصل کی جاتی ہے۔

مزاحمت پیا کی مدد سے ساکن کچھے کی مزاحمت ناپتے وقت یہ جاننا ضروری ہے کہ موٹر ستارہ یا تکونی بڑی ہے۔ شکل 7.16 میں کچھے کو دونوں طرح بڑا دکھایا گیا ہے۔ اگر یک دوری مزاحمت R_s ہو تب ستارہ بڑی موٹر کے لئے مزاحمت $2R_s$ مزاحمت دے گا جبکہ تکونی بڑی موٹر کے لئے یہ $2R_s$ مزاحمت دے گا۔

 $\rm Ohm\ meter^{33}$

X'_r	X_s	غاصيت	گھومتاحصہ
0.537	0.5.17	i a (an ll	(
$0.5X_{rk}$	$0.5X_{rk}$	کار کردگی گھومتے ھے کی مزاحمت پر منحصر	ليثاهوا
$0.5X_{rk}$	$0.5X_{rk}$	عمومی ابتدائی قوت مروڑ، عمومی ابتدائی رو	Aبناو
$0.6X_{rk}$	$0.4X_{rk}$	عمومی ابتدائی قوت مر وڑ، کم ابتدائی رو	B بناو ${f d}$
$0.7X_{rk}$	$0.3X_{rk}$	زیادها بتدائی قوت مر وژ، کم ابتدائی رو	Cبناوك
$0.5X_{rk}$	$0.5X_{rk}$	زیادها بتدائی قوت مر وژ،زیاده سر کاو	Dبناوك,
""			
حدول 7.1: متعاملت کی ساکن اور گھومتے حصوں میں تقسیم۔			

شکل 7.16: شارہ اور تکونی بڑی موٹروں کی ساکن کچھوں کی مزاحمت کامزاحمت پیا کی مدد سے حصول۔

مثال 7.5: ستارہ، چار قطب، پچاس ہر ٹز اور 415 وولٹ پر چلنے والی موٹر کے معائنے کئے جاتے ہیں۔ موٹر کی بناوٹ درجہ بندی A کے مطابق ہے۔ مزاحمت پیا کسی بھی دو برتی سروں کے پی 5.50 اوہم جواب دیتا ہے۔ بوجھ معائنہ D 50 اور 415 کو طاقت کا ضیاع W 906 ناپا جاتا ہے۔ جامد موٹر معائنہ Hz داور V 50 پر کرتے ہوئے برتی رو A 1.9 اور طاقت کا ضیاع W 850 ناپا جاتا ہے۔ اس موٹر کا مساوی برتی دو بر بنائیں اور پانچ فی صد سرکاو پر اس کی اندرونی میکانی طاقت حاصل کریں۔

 $R_s = \frac{0.55}{2} = 0.275\,\Omega$ حاصل کے جواب سے ستارہ موٹر کے ساکن کچھے کی مزاحمت $R_s = \frac{0.55}{2} = 0.275\,\Omega$ حاصل ہوتے ہیں۔ ہوتی ہے۔ بے بوجھ معائنہ میں یک دوری برقی دباوV دباوری برقی دباوری ہوتے ہیں۔

$$R_{bb} = \frac{906}{3 \times 4.1^2} = 17.965 \,\Omega$$
$$|Z_B| = \frac{239.6}{4.1} = 58.439 \,\Omega$$

 $X_{bb} = \sqrt{58.439^2 - 17.965^2} = 55.609\,\Omega = X_s + X_m$

رکے موٹر معائنہ کے نتائج سے X_s حاصل کرنے کے بعد X_m حاصل ہو گی۔

ساکن کچھے کی مزاحمت میں اس برقی رو پر کل

 $3I_{bb}^2R_s = 3 \times 4.1^2 \times 0.275 = 13.87 \,\mathrm{W}$

برتی طاقت کا ضیاع ہو گا لہذا رگڑ اور دیگر ضیاع طاقت 892 = 13.86 - 906 واٹ ہو گا۔

رکے موٹر معائنہ میں یک دوری برقی دباو $\frac{50}{\sqrt{3}}=28.9$ وولٹ ہیں۔ یوں درج ذیل حاصل ہوں گے۔

$$R_{rk} = \frac{850}{3 \times 13.91^2} = 1.464 \,\Omega$$
$$|Z_{rk}| = \frac{28.9}{13.91} = 2.07 \,\Omega$$
$$X_{rk,15} = \sqrt{2.07^2 - 1.464^2} = 1.46 \,\Omega$$

اس معائنه میں برقی تعدد 15 ہرٹز تھی للذا 50 ہرٹز پر متعاملیت درج ذیل ہو گ۔

$$X_{rk,50} = \frac{50}{15} \times X_{rk,15} \approx 4.9 \,\Omega$$

باب.7. امالي مشين

 $X_s=X_r'=rac{4.9}{2}=2.45$ درجه بندی $X_s=X_r'=rac{4.9}{2}$

يوں درج ذيل ہو گا۔

$$X_m = X_{bb} - X_s = 55.609 - 2.45 = 53\,\Omega$$

چونکہ $R_s=0.275$ اوہم ہے للذا

$$R'_r = R_{rk} - R_s = 1.464 - 0.275 = 1.189 \,\Omega$$

ہو گا۔مساوی برقی دور شکل 7.17 میں دکھایا گیا ہے۔

یا پنچ فی صد سر کاو پر اندرونی میکانی طاقت کی خاطر بائیں جانب کا تھونن مساوی دور استعمال کرتے ہوئے درج ذیل ہو گا۔

$$\begin{split} V_t &= 229 / 0.2833^{\circ} \\ Z_t &= 0.251 + j2.343 \\ \left| \hat{I}'_r \right| &= 11.8 \, \mathrm{A} \\ p_m &= \frac{3 \times 11.8^2 \times 0.974 \times (1 - 0.05)}{0.05} = 7730 \, \mathrm{W} \end{split}$$

باب8

یک سمت رومشین

کے سمتے رومشین یک سمت روا برقی طاقت پیدا کرتی ہیں یا یک سمت رو برقی طاقت سے چلتی ہیں۔ یک سمت رو مرقی طاقت سے قابو موٹروں کی اہمیت بندری کم ہو رہی ہے اور ان کی جگہ امالی موٹر لے رہے ہیں جن کی رفتار قومی برقیائے ² سے قابو کی جاتی ہے۔موجودہ دور میں گاڑیوں کے یک سمت جزیٹر بھی دراصل سادہ بدلتا رو جزیٹر ہوتے ہیں جن کے اندر نسب ڈالوڈ³ بدلتا محرک برقی دباو کو یک سمت محرک برقی دباو میں تبدیل کرتے ہیں۔

اس باب میں دو قطب کے یک سمت مشینوں کا مطالعہ کیا جائے گا۔میکانی سمت کار والے یک سمت مشینوں میں میدانی کچھا ساکن جبکہ قوی کچھا گھومتا ہے۔

8.1 ميكاني سمت كاركى بنيادى كار كردگى

جزیٹر بنیادی طور پر بدلتا برقی دباو پیدا کرتا ہے۔ یک سمت جزیٹر کے اندر نسب میکانی سمھے کار4 میکانی طریقہ سے بدلتا دباو کو یک سمت دباو میں تبدیل کر کے برقی سرول پر فراہم کرتا ہے۔

dc, direct current¹ power electronics² diode³ commutator⁴

شكل 8.1: ميكاني سمت كار

شکل 8.2: آدھے چکر کے بعد بھی بالائی بُش مثبت ہی ہے۔

میکانی سمت کار کو شکل 8.1 میں دکھایا گیا ہے جہاں جزیڑ کے قوی کچھے کو ایک چکر کا دکھایا گیا ہے اگرچہ حقیقت میں ایسا نہیں ہو گا۔ قوی کچھے کے برتی سروں کو د اور ڈ سے ظاہر کیا گیا ہے جو سمت کار کے د اور ڈ حصوں کے ساتھ جڑے ہیں۔ قوی کچھا اور سمت کار ایک ہی دھرے پر نسب ہوتے ہیں للذا دونوں ایک ساتھ حرکت کرتے ہیں۔ تصور کریں کہ دونوں خلاف گھڑی مقاطیسی میدان افقی سطح میں N سے S رخ ہو گا کریں کہ دونوں خلاف گھڑی مقاطیسی میدان میں گھوم رہے ہیں۔ مقاطیسی میدان افقی سطح میں N سے S رخ ہو گا جے نوکدار کیروں سے دکھایا گیا ہے۔ سمت کار کے ساتھ ساکن کاربن بش، اسپر نگ کی مدد سے دبا کر رکھے جاتے ہیں۔ ان کاربن بشوں سے برتی دباو کو جزیئر کے باہر منتقل کیا جاتا ہے۔ بشوں کو مثبت علامت + اور منفی علامت — ظاہر کیا گیا ہے۔

د کھائے گئے لمحہ پر کچھ میں پیدا برتی دباو e کی وجہ سے کچھے کا سر د مثبت اور ڈ منفی ہے۔یوں سمت کار کا حصہ د مثبت اور حصہ ڈ منفی ہوں گے لہذا کاربن کا + علامت والا بش مثبت اور – علامت والا بش منفی ہو گا۔یوں بیرونی بالائی تار مثبت اور کچلی تار منفی ہوں گے۔ آدھا چکر بعد، جیسا شکل 8.2 میں دکھایا گیا ہے، خلائی درز میں کچھا کے د

اور ڈ اطراف آپس میں جگہیں تبدیل کر چکے ہوں گے ۔ لچھا کے د اور ڈ اطراف اب بھی سمت کار کے د اور ڈ حصول کے ساتھ جڑے ہیں۔ یہاں سمت کار کی کار کردگی پر کئی ساتھ جڑے ہیں۔ یہاں سمت کار کی کار کردگی پر نظر رکھیں۔ اب بھی کاربن کا + علامت والا بش مثبت اور – علامت والا بش منفی ہے۔ یوں جزیٹر کے بیرونی برتی سروں پر اب بھی بالائی سر مثبت اور نچلا سر منفی ہے۔ سمت کار کے دانتوں کے مابین برقی دباو ہوتا ہے لہذا ان کو غیر موصل کی مدد سے ایک دوسرے اور دھرے سے دور رکھا جاتا ہے۔

گھومتے وقت ایک ایبا لمحہ آتا ہے جب سمت کار کے دانتوں کو کاربن بش کسر دور کرتے ہیں۔ کاربن بش محیط پر اس طرح رکھے جاتے ہیں کہ جس لمحہ لکھے میں برقی دباو مثبت سے منفی یا منفی سے مثبت ہونا چاہے اس لمحہ کھے میں برقی دباو مفر ہوتا ہے للذا اسے کسر دور کرنے سے کوئی نقصان نہیں ہوتا ہے۔ یوں حاصل برقی دباو شکل 8.3 میں دکھایا گیا ہے۔

یہاں دو دندی سمت کار اور دو مقناطیسی قطب کے درمیان گھومتا ہوا ایک قوی کچھا دکھایا گیا ہے۔ حقیقت میں جزیٹر کے متعدد قطبین ہول گے اور فی قطب سمت کار کے کئی دندے ہوں گے۔ چھوٹی مشینوں میں مقناطیس ہی مقاطیسی میدان فراہم کرتا ہے جبکہ بڑی مشینوں میں مقناطیسی میدان ساکن میدانی کچھے فراہم کرتے ہیں۔ دونوں اتسام کی مشینوں کے کچھے تقسیم شدہ ہوتے ہیں۔

اب ہم زیادہ دندوں کے ایک سمت کار کو دیکھتے ہیں۔

8.1.1 ميكاني ست كاركي تفصيل

پچیلے حصہ میں سمت کار کی بنیادی کار کردگی پر غور کیا گیا۔ اس حصہ میں اس پر تفصیلی بات کی جائے گی۔ شکل 8.4 میں اہل مشین و کھائی گئی ہے۔اس شکل میں اندر کو سمت کار ہے جس کے دندوں کو گنتی لگائی گئی ہے۔سمت کار کی

باب. 8. يك سمت رومشين

شکل 4.8: کاربن بش سمتکار کے دندوں کو کسر دور نہیں کر رہاہے۔

اندر جانب دو عدد کاربن بش ہیں جن سے حاصل ہیرون برقی رو i ہے۔ شگافوں کو بھی گنتی لگائی گئی ہے۔ جزیڑ کے دو قطب اور آٹھ شگاف ہیں۔ اس طرح اگر ایک شگاف ایک قطب کے سامنے ہو تو تین شگاف چھوڑ کر موجود شگاف دوسرے قطب کے سامنے ہو گا۔ ہم کہتے ہیں کہ ایسے دو شگاف "ایک قطب فاصلہ" پر ہیں۔ یوں شگاف 1 اور 5 ایک دوسرے سے ایک قطب کے فاصلے پر ہیں جبکہ شگاف 2 اور 6 ایک دوسرے سے ایک قطب کے فاصلے پر ہیں۔ ہیں۔ ہیں۔

حییا شکل 8.2 میں دکھایا گیا، اگر لیچھے کا ایک طرف شالی قطب کے سامنے ہو تب اس کا دوسرا طرف، ایک قطب فاصلہ پر، جنوبی قطب کے سامنے ہو گا۔ لیچھوں کو شکافوں میں رکھا جاتا ہے۔ یوں شکل 8.4 میں اگر ایک لیچھے قطب فاصلہ پر، شکاف 5 میں ہو گا۔ حقیقت میں ہر کا ایک طرف شکاف 5 میں ہو گا۔ حقیقت میں ہر شکاف میں دو لیچھے رکھے جاتے ہیں۔ ایک لیچھے کو شکاف میں محور کے قریب اور دوسرے کو شکاف میں محور سے دور رکھا جا سامت ہے۔ایسا کرنے کے لئے ہمیں دو مختلف جسامت کے لیچھے تیار کرنے ہوں گے۔ محور کے قریب رکھا گیا لیچھا جسامت میں جھوٹا جبکہ محور سے دور لیچھا بڑا ہو گا۔ لیچھوں کو پہلے تیار کر کے بعد میں شکافوں میں رکھا جاتا ہے۔ ایسا کر جود جو حقیقت میں استعال ہوتی ہے۔

بہتر ترکیب میں ایک کچھے کے ایک طرف کو ایک شگاف میں محور کے قریب اور، ایک قطب فاصلہ پر، دوسرے شگاف میں محور کے دور رکھا جاتا ہے۔ دوسرے کچھے کو انہیں شگافوں میں باقی دو مقامات پر رکھا جاتا ہے۔ یوں دونوں کچھوں کی جسامت ایک دوسرے جیسے ہوگی اور ان میں اتنی ڈھیل ہوگی کہ انہیں شگافوں میں باآسانی رکھا جا سکے۔

شكل 8.5: سمت كارسے جڑے لچھے۔

اب شکل 8.4 کو تفصیل سے سیجھتے ہیں۔ شکافوں میں موجود کچھوں میں برتی رو کے رخ نقطہ اور صلیب سے ظاہر کئے گئے ہیں۔ نقطہ کا نشان، صفحہ سے عمودی باہر رخ رو کو ظاہر کرتا ہے جبکہ صلیب کا نشان اس کے مخالف رخ رو کو ظاہر کرتا ہے جبکہ صلیب کا نشان اس کے مخالف رخ رو کو ظاہر کرتا ہے۔ یوں پہلا (1) شکاف میں برتی رو عمودی صفحہ کے اندر رخ ہے۔

شکل 8.4 میں مشین کا عمودی تراش و کھایا گیا ہے۔ مشین کا محور کتاب کے صفحہ کو عمودی ہو گا۔ ہمیں مشین کا (قریبی، بالائی) "سامنے" طرف کن تاروں کو فقط دار دکھایا گیا ہے۔ ہم شکل دو طرف کی تاروں کو فقط دار دکھایا گیا ہے۔ ہم شکاف میں دو کچھ دکھائے گئے ہیں جن میں سے ایک مشین کی محور کے قریب "اندر" جانب اور دو سرا محور سے دور "باہر" جانب ہے۔ پہلے دانت سے بڑا ہے۔ اس جوڑ کو موٹی کیر ہے۔ پہلے دانت سے بڑا ہے۔ اس جوڑ کو موٹی کیر سے دکھایا گیا ہے۔ شکاف میں "اندر" جانب موجود کچھا شکاف 5 میں "نچلے" طرف سے داخل ہوتا سے دکھایا گیا ہے۔ شکاف 1 کے "نچلے" طرف سے ذکل کر یہ لچھا شکاف 5 میں "نچلے" طرف سے داخل ہوتا ہے۔ اس بات کو نقطہ دار کیر سے دکھایا گیا ہے۔ اس بات ہوتا ہے۔ اس بات ہوتا ہے۔ اس بات ہوتا ہے۔ اس بات کو نقطہ دار کیر سے دکھایا گیا ہے۔ نظلہ دار کیر سے دکھائیا کی ہے۔ بہد دو سرا لچھا دو سرے شکاف میں "باہر" جانب اور چھٹے شکاف کے میں "باہر" جانب ہے جبکہ دو سرا لچھا دو سرے شکاف میں "باہر" جانب اور پہنچ ہیں۔ ان اندر" جانب اور شکاف کے انہیں بنا سکتے ہیں۔ ان طرف شکاف میں "اندر" جانب اور دو سرا گئی ہیں۔ آپ خود باتی شکاف کے انہیں بنا سکتے ہیں۔ ہم کچھے کا ایک طرف شکاف میں "اندر" جانب اور دو سرا کی بیان دور کو کہ کی کہ دو سے مشین میں برتی رو کے رخ سمجھیں اور جانب موجود کچھے سے بھی جڑا ہے۔ آپ یہاں رکھ کر شکل کی گی مدد سے مشین میں برتی رو کے رخ سمجھیں اور جانب موجود کچھے سے بھی جڑا ہے۔ آپ یہاں رکھ کر شکل کی گھوں کو ا، ب، پ، وغیرہ سے ظاہر کیا گیا ہے جبکہ سمت کار کے دندوں کو گنتی لگائی گئی ہے۔ کاربن کے بش پہلے اور پانچویں دانت سے جڑے دکھائے گئے ہیں۔

باب. 8 یک سمت رومشین

شکل 8.8: کاربن بش ست کار کے دندوں کو کسر دور کررہاہے۔

شکل 8.5 میں کاربن بش سے برتی رو سمت کار کے پہلے دانت سے ہوتا ہوا دو برابر حصول میں تقسیم ہو کر دو کیساں متوازی راستوں گزرتا ہے۔ایک راستہ سلسلہ وار جڑے ا، ب، پ اور ت کچھوں سے بنتا ہے جبہہ دوسرا راستہ سلسلہ وار جڑے یہ بیں۔دو عدد سلسلہ وار راستے آپس میں متوازی جڑے ہیں۔برتی رو کے رخ نقطہ دار نوک دار کیبروں سے ظاہر کیے گئے ہیں۔دو متوازی راستوں سے گزرتا برتی رو ایک مر تبہ دوبارہ مل کر ایک ہو جاتا ہے اور سمت کار کے پانچویں دانت سے جڑے کاربن بش کے ذریعہ مشین سے باہر نکل جاتا ہے۔گھومتے حصہ کے شگافوں میں موجود کچھوں کا برتی رو، مقناطیسی دباو پیدا کرے گا جو ساکن مقناطیسی دباو کو عمودی ہو گا جیسا شکل 8.4 میں دکھایا گیا ہے۔گھومتے کچھوں کے مقناطیسی دباو کا رخ جاننے کے لئے شکل 8.4 میں رکھایا گیا ہے۔گھومتے کچھوں کے مقناطیسی دباو کا رخ جاننے کے لئے شکل 8.4 میں و کھایا گیا ہے۔گھوں کے مقاطیسی دباو کا رخ جاننے کے لئے شکل 9.4 میں و صفحہ کے اندر رخ جاننے کے لئے شکل کی جانب چار شگافوں میں رو صفحہ سے باہر جبکہ دائیں جانب چار شگافوں میں رو صفحہ کے اندر رخ ہے۔دائیں ہاتھ کی چار انگلیوں کو انہیں کے رخ گھمانے سے انگو ٹھا میدان کا رخ دے گا۔ آپس میں قائمہ مقناطیسی دباو دھرے پر گھڑی وار قوت مروڑ پیدا کریں گے۔یوں اگر مثین موٹر کے طور پر استعال کی جا رہی ہو تب یہ گھڑی وار گھوے گی اور کاربن بش پر ایبا بیرونی یک سمت برتی دباو لا گو ہو گا جو دکھائے گئے برتی رہی ہو تب یہ گھڑی وار گھوے گی اور کاربن بش پر ایبا بیرونی یک سمت برتی دباو لا گو ہو گا جو دکھائے گئے برتی رہی ہو تب یہ گھڑی وار گھوے گی اور کاربن بش پر ایبا بیرونی یک سمت برتی دباو لا گو ہو گا جو دکھائے گئے برتی رہوں

اب تصور کریں کہ مشین ایک جزیٹر کے طور پر استعال کی جا رہی ہے جس کو خلاف گھڑی بیرونی میکانی طاقت سے گھمایا جا رہا ہے۔ سمت کار کے آدھے دانت کے برابر حرکت کے بعد جزیٹر شکل 8.6 میں دکھائے گئے حالت میں ہو گا جہاں دایاں کاربن بش میت کار کے پہلے اور دوسرے دانت کو کسر دور جبکہ بایاں کاربن بش یانچویں اور

شکل 8.7: کاربن بش دودندوں کو کسر دور کررہے ہیں۔

چھٹے دانت کو کسر دور کرتے ہیں۔ یوں پہلے اور پانچویں شگافوں کے کچھے کسر دور ہوں گے جبکہ باقی شگافوں کے کچھوں میں حسب معمول برقی رو ہو گا جو پہلے کی طرح اب بھی ساکن کچھوں کے مقناطیسی دباو کے عمودی مقناطیسی دباو پیدا کریں گے۔ آپ گھومتے کچھوں کے میدان کا رخ دائیں ہاتھ کے قانون سے جان سکتے ہیں۔ بائیں جانب تین شگافوں میں صفحہ کے اندر رخ ہے۔ دائیں ہاتھ کی چار انگلیوں کو انہیں کے میں رو صفحہ سے باہر جبکہ دائیں جانب تین شگافوں میں صفحہ کے اندر رخ ہے۔ دائیں ہاتھ کی چار انگلیوں کو انہیں کے رخ گھمائیں۔ انگوٹھا میدان کا رک دے گا۔ اس لمحہ کی وضاحت شکل 8.7 میں کی گئی ہے۔

مثین جب ست کار کے ایک دانت کے برابر حرکت مکمل کر لے تو کاربن بش دوسرے اور چھٹے دانت سے جڑ جائیں گے۔پہلے اور پانچویں شکافوں میں برتی رو کا رخ پہلے کے مخالف ہو جائے گا جبکہ باتی شکافوں میں برتی رو کے رخ بر قرار رہیں گے۔گھومتے کچھوں کا برتی دباو اب بھی اسی رخ ہو گا۔

جتنے دورانیہ کے لئے کاربن بش دو کچھوں کو کسر دور کرتے ہیں اسنے وقت میں ان کچھوں میں برقی رو کا رخ الف ہو جاتا ہے۔ کو شش کی جاتی ہے کہ اس دوران برقی رو وقت کے ساتھ بتدر تئ تبدیل ہو۔ایسا نہ ہونے سے کاربن بش سے چنگاریاں نکلتی ہیں جن سے بش جلد ناکارہ ہو جاتے ہیں۔ جزیٹر کے کسر دور کچھوں میں پیدا برقی دباو، کسر دور کچھوں میں گومتا ناکارہ برقی رو پیدا کرتا ہے جو ہمارے کسی کام کا نہیں ہوتا ہے۔ کچھے اور کاربن بش کی مزاحمت اس ناکارہ روکی قیت تعین کرتے ہیں۔

حقیقت میں یک سمت جزیر میں فی قطب در جن دانت کا سمت کار استعال ہو گا اور اگر مشین بہت چھوٹی نہ ہو تو اس میں دو سے زیادہ قطب ہول گے۔ با__8. بك سمت رومثين 252

شکل8.8: آ گھ دندی میکانی سبت کارسے جاصل پر قی دیاو۔

8.2 كى ست جزيىر كابر قى د باو

گزشتہ حصہ کے شکل 8.5 میں ا، ب، پ اور ت کھیے سلسلہ وار جڑے ہیں۔ اسی طرح ٹ، ث، ج اور چ کھیے سلسلہ وار جڑے ہیں۔ حصہ 5.3 میں مساوات 5.23 یک کچھی یک سمت جزیٹر کا محرک برقی دباو e_1 دیتی ہے۔ اسے یہاں باد دھیانی کے لئے دوبارہ پیش کرتے ہیں۔

$$(8.1) e_1 = \omega N \phi_m = \omega N A B_m$$

خلائی درز میں کیساں B_m کی صورت میں تمام کیچھوں میں ایک جیسا محرک برقی دیاو پیدا ہو گا۔ یوں شکل 8.4 میں د کھائے لمحہ پر (شکل 8.5 سے رجوع کریں) جزیٹر کا کل محرک برقی دباو e ، ایک کیھے کے محرک برقی دباو کا جار گنا

(8.2)
$$e = e_{l} + e_{\downarrow} + e_{\downarrow} + e_{\downarrow}$$

$$= e_{\downarrow} + e_{\downarrow} + e_{\downarrow} + e_{\downarrow}$$

$$= 4\omega NAB_{m}$$

جبہ شکل 8.6 میں دکھائے گئے لیحہ پر e صرف تین لیچھوں کے محرک برتی دباو کا مجموعہ ہو گا (شکل 8.7 سے رجوع کرس):

(8.3)
$$\begin{aligned} e &= e_{\downarrow} + e_{\downarrow} + e_{\circlearrowleft} \\ &= e_{\dot{c}} + e_{\dot{c}} + e_{\dot{c}} \\ &= 3\omega NAB_m \end{aligned}$$

شکل 8.8 میں آٹھ دندی میکانی سمت کار سے حاصل برقی دباو د کھایا گیا ہے جہاں یک سمت برقی دباویر سوار غیر مطلوبہ لہر نظر آ رہی ہیں۔اگر جزیٹر کے ایک جوڑی قطبین پر n کیجھے ہوں تب شکل 8.5 کی طرح ہے دو $rac{n}{2}$ سلسلہ

وار کچھوں جتنا محرک برقی دباو پیدا کرے گا۔

(8.4)
$$e = -\frac{n}{2}\omega N\phi_m = -\frac{n}{2}\omega NAB_m$$

اس صورت میں غیر مطلوبہ لہر کل یک سمت برقی دباو کی تقریباً

(8.5)
$$\frac{\omega N \phi_m}{\frac{n}{2} \omega N \phi_m} \times 100 = \frac{2}{n} \times 100$$

فی صد ہو گی۔یوں فی قطب دندوں کی تعداد بڑھانے سے زیادہ ہموار برقی دباو حاصل ہو گا اور غیر مطلوبہ لہر قابل نظر انداز ہو گی۔

تصور کریں کہ شکل 8.4 کی مشین کی خلائی درز میں B_m غیر کیسال ہے۔اب کچھوں میں محرک برقی دباو مساوات 8.1 کے تحت مختلف زاویوں پر مختلف ہو گا۔اس طرح مشین سے حاصل کل برقی دباو چار سلسلہ وار کچھوں کے مختلف محرک برقی دباو کا مجموعہ

$$(8.6) e = e_1 + e_2 + e_3 + e_4$$

ہو گا جہاں e_1, e_2, \cdots مختلف کچھوں کے محرک برقی دباوہیں۔

شکل 8.4 میں گھومتے حصہ کو ایک دندان کے برابر حرکت دینے سے دوبارہ یہی شکل حاصل ہو گا لہذا ایک دندان حرکت کے بعد حاصل برقی دباو بھی دوبارہ وہی ہو گا۔میکانی سمت کار کے فی قطب دندوں کی تعداد بڑھانے سے ایک دندان کے برابر حرکت بہت چھوٹی ہو گی لہذا خلائی درز میں ہمواری کے ساتھ تبدیل ہوتے کافت مقناطیسی بہاو کی صورت میں اتنی کم حرکت کے احاطے میں B_m کی قیمت میں تبدیلی قابل نظر انداز ہو گی اور B_m کو کیسال تصور کیا جا سکتا ہے۔یوں اگر پچھا ایک دندان کے احاطے میں حرکت کرے تو اس میں محرک برقی دباو تبدیل نہیں ہو گا۔یعن جس لچھے کا محرک برقی دباو e_1 ہو اس لچھے کا محرک برقی دباو ایک دندان احاطے میں یہی رہے گا۔یوں اگر چہ کا محرک برقی دباو (جو ان مستقل ہو سکتے ہیں لیکن ان میں سے ہر ایک کی ایک مستقل قیمت ہو گی، لہذا مساوات 8.6 میں دیا گیا محرک برقی دباو (جو ان مستقل قیمت کو گا) مجی ایک مستقل ہو گا۔

ہم نے دیکھا کہ خلائی درز میں ہمواری کے ساتھ تبدیل ہوتے B_m کی صورت میں جزیڑ سے معیاری یک سمت مخرک برقی دباو حاصل ہو گا۔ بدلتا رو جزیڑ میں B_m سائن نما رکھنا ضروری ہوتا ہے۔ نہایت چھوٹی یک سمت مشینوں کے خلائی درز میں B_m کیسال رکھا جاتا ہے جبکہ بڑی مشینوں میں اسے ہمواری کے ساتھ تبدیل کیا جاتا ہے۔ جیسا اوپر ذکر ہوا عملاً میکانی سمت کار کے دندوں تک کچھوں کے سروں کی رسائی ممکن تب ہوتی ہے جب ہر شگاف میں دو کچھ

شكل 8.9: آرى دندول نما كثافت مقناطيسي دباويه

رکھے جائیں۔ خلائی درز میں اس طرح رکھے گئے کچھوں کا مقناطیسی دباو آری کے دندوں کی مانند ہوتا ہے، جسے شکل 8.9 میں دکھایا گیا ہے۔

متعدد قطبین مثین میں شالی اور جنوبی قطبین کے ایک جوڑے کا پیدا کردہ یک سمت برتی دباو مساوات 8.4 دے گی جہال n قطبین کے ایک جوڑے پر میکانی سمت کار کے دندوں کی تعداد ہے۔قطبین کے زیادہ جوڑیوں سے حاصل یک سمت برتی دباو کو سلسلہ وار یا متوازی جوڑا جا سکتا ہے۔

8.3 قوت مروڑ

یک سمت مشینوں کا امالی برتی دباو اور قوت مروڑ خلائی درز میں مقناطیسی دباو کی صورت پر منحصر نہیں ہوتا ہے۔اپنی سہولت کے لئے ہم خلائی درز میں مقناطیسی دباو سائن نما تصور کرتے ہیں۔

توی کچھے کے آری دندان نما مقناطیسی دباو (شکل 8.9) کا بنیادی فوریئر جزو⁵ درج ذیل ہو گا۔

$$\tau_q = \frac{8}{\pi^2} \frac{NI}{2}$$

یک ست مثین میں ساکن اور گھومتے کچھوں کے مقناطیسی دباو آپس میں عمودی ہوتے ہیں للذا ان میں قوت مروڑ مساوات 5.103 کی طرح درج ذبل ہو گا۔

$$(8.8) T = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_m \tau_q$$

fundamental Fourier component 5

مثال 8.1: دو قطب، بارہ دندی میکانی سمت کار کے یک سمت جزیٹر میں ہر قوی لچھا ہیں چکر کا ہے۔ایک لچھے سے گزرتا مقناطیسی بہاو 0.0442 ویبر ہے۔ جزیٹر 3600 چکر فی منٹ کی رفتار سے گھوم رہا ہے۔

- جزیر کے یک سمت برقی دباو میں غیر مطلوبہ لہر کل برقی دباو کا کتنا فی صد ہو گا؟
 - یک سمت برقی دباو حاصل کریں۔

حل:

- مساوات $\frac{2}{n} \times 100 = \frac{2}{12} \times 100 = 16.66$ مساوات $\frac{2}{n} \times 100 = 16.66$ مساوات و م
- جزیٹر کی رفتار $60=\frac{12}{2}$ ہر ٹزیے یوں مساوات 8.4 سے یک سمت برقی د باو درج ذیل حاصل ہو گا۔ $e=\frac{12}{2}\times 2\times \pi\times 60\times 20\times 0.0442=1999.82\,\mathrm{V}$

8.4 بير وني هيجان اور خود هيجان يك سمت جزير ا

بیرونی ایجان 6 یک سمت جزیٹر کے میدانی کچھے کو بیرونی یک سمت برتی دباو مہیا کا جاتا ہے جبکہ نود ایجان ⁷ یک سمت جزیٹر کے میدانی کچھے کو جزیٹر کا اپنا محرک برتی دباو مہیا کیا جاتا ہے۔ یک سمت جزیٹر کی کارکردگی اس کو ہیجان کرنے کے طریقے پر منحصر ہوتی ہے۔

شکل 8.10-ا میں قوی کچھے 8 اور میدانی کچھ 9 کو آپس میں عمودی بنایا گیا ہے۔یوں یاد رہنا ہے کہ ان کچھوں کے پیدا کردہ مقناطیسی دباو آپس میں عمودی ہیں۔یہاں قوی کچھے کی صورت میکانی ست کار کی طرح بنائی گئی ہے۔

شكل8.10: بيروني بيجان اورخود بيجان يك سمت جنريثر

میدانی اور قوی لچھوں کے مقناطیسی دباو آپس میں عمودی ہیں جس سے ہم اخذ کر سکتے ہیں کہ ایک لچھے کا برقی دباو دوسرے لچھے کے برقی دباو پر اثر انداز نہیں ہو گا۔یول مقناطیسی قالب کے کسی ایک رخ سیر ابیت، اس رخ کے عمودی دوسرے رخ کی سیر ابیت پر اثر انداز نہیں ہو گی۔

شکل 8.10-ا میں بیرونی بیجان مشین کے میدانی کچھے کو بیرونی یک سمت برقی طاقت میہا کی گئی ہے۔میدانی کچھے کا برقی رو تبدیل کر کے میدانی مقناطیسی وہاو σ میدانی مقناطیسی بہاو σ اور کثافت مقناطیسی بہاو σ تبدیل کے جا سکتے ہیں۔یوں جزیر کا محرک برقی دہاو مساوات 8.1 کے تحت تبدیل کیا جا سکتا ہے یا موٹر کی قوت مروڑ مساوات 8.8 کے تحت تبدیل کیا جا سکتا ہے یا موٹر کی جا سکتی ہے۔

برتی رو کے بڑھنے سے قالب کی سیر ایت شکل 8.11 میں واضح ہے۔ قالبی سیر ایت کی بنا برتی رو بڑھاتے ہوئے ابتدائی طور محرک برتی دباو اور میدانی لیجھے کا برتی رو راست متناسب ہوں گے جبکہ زیادہ برتی رو پر ایسا نہیں ہوگا۔ شکل - ب کی ترسیم مشین کے کھلے سر معائنہ سے حاصل کی جا سکتی ہے۔ شکل - ب میں محرک برتی دباو کو و کی بجائے e_{q0} کھھ کر یاد دھیانی کرائی گئی ہے یہ دباو تو کی لیچھے سے ایک معین رفتار ω پر محرک برتی دباو e_{q} کے حصول کے لئے مساوات 8.4 کی مدد سے

(8.9)
$$\frac{e_q}{e_{q0}} = \frac{\frac{n}{2}\omega NAB_m}{\frac{n}{2}\omega_0 NAB_m} = \frac{\omega}{\omega_0}$$

لکھ کر

$$(8.10) e_q = \frac{\omega}{\omega_0} e_{q0}$$

يا

$$(8.11) e_q = \frac{rpm}{rpm_0} e_{q0}$$

عاصل کیا جا سکتا ہے جہاں رفتار کو چکر فی منٹ 10 میں (بھی) لیا گیا ہے۔یاد رہے کہ یہ مساوات صرف اس صورت درست ہوں گے جب مقناطیسی میدان تبدیل نہ ہو۔

separately excited⁶ self excited⁷

armature coil⁸

field coil⁹

rpm, rounds per minute¹⁰

باب. 8 يك سمت رومشين

شكل8.12: سلسله واراور مركب جرٌاخو د بيجان جزيرً بـ

شکل 8.10-ب میں خود بیجان مشین دکھائی گئی ہے جس کے میدانی اور قوی کیھے متوازی جڑے ہیں۔ اس طرح جڑے جزیئر کو نود بیجائے متوازی جڑا ہے: ہیں۔میدانی کیھے کے ساتھ ایک مزاحمت سلسلہ وار جڑی ہے۔ اس مزاحمت کو تبدیل کر کے میدانی بر تی رو تبدیل کیا جاتا ہے جس سے،بالکل ہیرونی ہیجان مشین کی طرح، جزیئر کا محرک برقی دباو یا موٹر کی قوت مروڑ تبدیل کی جاتی ہے۔ ایک بار ہیجان ہونے کے بعد مقناطیسی قالب میں باقی مقناطیسی بہاو رہتا ہے جیسا شکل 8.11 میں دکھایا گیا ہے۔ یوں میدانی کچھا ہیجان کئے بغیر جزیئر کچھ محرک برقی دباو پیدا کرے گا²²۔ شکل-ب میں صفر میدانی برقی رو پر باقی برقی دباو دکھایا گیا ہے۔

خود بیجان جزیر ساکن حال سے چالو ہو کر ابتدائی طور پر باقی محرک برقی دباہ پیدا کرے گا جو میدانی کچھے میں برقی رو پیدا کر کے مقناطیسی میدان پیدا کرتے ہوئے مشین کو ذرا زیادہ بیجان کرتا ہے۔یوں مشین کا محرک برقی دباہ بھی کچھ بڑھ جائے گا۔اس طرح کرتے کرتے جزیر جلد پورا محرک برقی دباہ پیدا کرنا شروع کرتا ہے۔یہ سب اسی دوران ہوتا ہے جس میں مشین کی رفتار بڑھ رہی ہوتی ہے۔

شکل 8.12 میں خود بیجان جزیئر کے دو مزید اقسام دکھائے گئے ہیں۔ ایک نود بیجائے سلسلہ وار جڑا جزیئر اور دوسرا نود بیجائے مکتب خود بیجائے سلسلہ وار جڑے ہوتے ہیں۔ مرکب جنریئر میں میدانی اور قوی کچھے سلسلہ وار جڑے ہوتے ہیں۔ مرکب جنریئر میں میدانی کچھا دو حصول پر مشتمل ہوتا ہے۔ ایک حصہ قوی کچھ کے متوازی اور دوسرا سلسلہ وار جڑا ہوتا ہے۔ مزید، متوازی حصہ قوی کچھ کے قریب ہو سکتا ہے یا سلسلہ وار کچھے کی دوسری جانب، دور جڑا ہو سکتا ہے۔ پہلی صورت میں اسے قریب جڑا مرکب جزیئر اور دوسری صورت میں دور جڑا مرکب جزیئر اور دوسری صورت میں دور جڑا مرکب جزیئر کہیں گے۔ شکل 8.13 میں مرکب جزیئر کے دونوں اشکال دکھائے گئے ہیں۔

parallel connected¹¹

^{1&}lt;sup>2</sup>آپٹھیک سوچ رہے ہیں۔ جزیٹر بڑانے کے کارخانہ میں قالب کو پہلی مرتبہ مقناطیس بناناپڑ تاہے۔

شكل 8.13: مركب قريب جراااور مركب دور جراخود بيجان جزيئر

یک سمت موٹر بھی اسی طرح پکارے جاتے ہیں۔ یعنی شکل 8.10 کی طرح جڑی دو موٹروں کو بیرونی ہیجان موٹر اور خود ہیجان متوازی جڑی موٹر کہیں گے۔موٹر میں قوی کیچھے کا برقی رو جزیئر کے برقی رو کا مخالف رخ ہو گا۔

تمام اقسام کے یک سمت جزیٹر کا میدانی مقناطیسی دباو، جزیٹر کے میدانی کچھے کے چکر ضرب برقی رو کے برابر وہ گا:

$$\tau = N_m I_m$$

شکل 8.10 میں خود بیجان متوازی بڑے جزیٹر کے میدانی کچھے میں برقی رو، اس کچھے کی مزاحمت اور اس کے ساتھ برگی مزاحمت کے مجموعہ $R=R_m+R'_m$ پر مخصر ہو گا لیعنی $I_m=rac{V}{R}$ لہذا خود بیجان متوازی بڑی جزیٹر کے کئے مساوات R=1 درج ذیل صورت اختیار کرتی ہے۔

$$\tau_{m,m} = \frac{I_m V}{R_m + R'_m}$$

سلسلہ وار جڑا جزیٹر میں میدانی برتی رو جزیٹر کے توی کیھے کا برتی رو ہو گا للذا سلسلہ وار جزیٹر کے لئے مساوات 8.12 درج ذیل صورت اختیار کرتی ہے۔

$$\tau_{m,s} = N_m I_q$$

شکل 8.13 کے مرکب جزیٹر میں میدانی مقناطیسی دباو کے دو جسے ہیں۔اس میں N_{mm} چکر کے متوازی جڑے میدانی کچھے میں برقی رو I_{ms} اور N_{ms} چکر کے سلسلہ وار جڑے میدانی کچھے میں برقی رو I_{ms} ہدیار سلسلہ وار جڑے میدانی کچھے میں برقی رو I_{ms} کے لئے درج ذیل ہوگا۔

(8.15)
$$\tau_{m,mk} = N_{ms}I_{ms} + N_{mm}I_{mm}$$

شکل 8.14: یک ست جزیٹر کی محرک برقی د باوبمقابلہ برقی بوجھ کے خط۔

8.5 کیک سمت مشین کی کار کردگی کے خط

8.5.1 حاصل برقى دباوبالمقابل برقى بوجھ

مختلف اقسام کے یک سمت جزیر وں کے برتی دباو بالمقابل برتی بوجھ خطوط شکل 8.14 میں دکھائے گئے ہیں جہاں مستقل گھومتی رفتار تصور کی گئی ہے۔دھرے پر لاگو بیرونی میکانی طاقت جزیئر کی قوت مروڑ کے خلاف جزیئر کو گھماتی ہے۔

ان خطوط کو سیجھنے کی خاطر پہلے ہیرونی ہیجان جزیٹر پر غور کرتے ہیں جس کا مساوی برقی دور شکل 8.15-1 میں ویا گیا ہے۔ ہیرونی ہیجان جزیٹر پر برقی بوجھ لادنے سے قوی کیجھے کی مزاحمت R_q^{13} میں برقی رو I_q کی بنا اس مزاحمت ویا گیا ہے۔ ہیرونی ہیجان جزیٹر سے حاصل برقی دباو V ، جزیٹر کے اندرونی محرک برقی دباو E_q سے کچھ کم ہوگا: $V=E_q-I_qR_q$

برقی بوجھ I_q بڑھانے سے جزیٹر سے حاصل برقی دباو مزید کم ہو گا۔ بیرونی بیجان جزیٹر کا خط یہی رجمان ظاہر کرتا ہے۔ حقیقت میں دیگر وجوہات بھی اثر انداز ہوتے ہیں جن کی بنا سے خط سیدھا نہیں بلکہ جھکا ہوتا ہے۔

متوازی جڑی جزیر کے خط کا بھی یہی رجمان ہے۔ متوازی جڑی جزیر پر بھی برقی بوجھ لادنے سے قوی کچھے کی مزاحمت میں برقی دباو بھی کم ہو جاتا ہے جس سے میدانی کچھے

شکل 8.15: بیر ونی بیجان، متوازی جڑے جزیٹر کامساوی برقی دور۔

شکل8.16: سلسلہ واراور مرکب جزیٹر کے مساوی برقی دور۔

میں برتی رو گھٹتا ہے۔ اس سے محرک برتی دباو مزید کم ہوتا ہے۔یوں متوازی جڑے جزیٹر کے برتی دباو بالمقابل برتی بوجھ خط کی ڈھلوان بیرونی ہیجان جزیٹر کی خط سے زیادہ ہو گی۔

شکل 8.16 میں سلسلہ وار اور مرکب جزیئر کے مساوی برقی ادوار دکھائے گئے ہیں۔سلسلہ وار جڑے جزیئر کے میدانی کھیے میں لدے بوجھ کا برقی رو گزرتا ہے۔اس طرح بوجھ بڑھانے سے میدانی مقناطیسی دباو بڑھ کر محرک برقی دباو بڑھاتا ہے۔سلسلہ وار جڑے جزیئر عموماً استعال نہیں ہوتے چونکہ ان سے حاصل برقی دباو، بوجھ کے ساتھ بہت زیادہ تبدیل ہوتا ہے۔

مرکب جڑے جزیٹر کی کارکردگی سلسلہ وار اور متوازی جڑا جزیئر کے نیچ ہے۔مرکب جزیئر میں بوجھ بڑھانے سے قوی کچھے کی وجہ سے حاصل برتی دباو میں کمی کو میدانی کچھے کا بڑھتا مقناطیسی دباو پورا کرتا ہے۔یوں مرکب جزیئر سے حاصل برتی دباو، لدے بوجھ کے ساتھ بہت کم تبدیل ہوتا ہے۔

بیرونی بیجان، متوازی اور مرکب جڑے جزیٹر سے حاصل برقی دباو کو متوازی جڑی کچھے کے برقی رو سے وسیع حدوں تک تبدیل کیا جا سکتا ہے۔

قوی لچھا برقی بوجھ کو درکار برقی رو فراہم کرتا ہے للذا یہ موئی موصل تارکا بنا اور عموماً کم چکر کا ہوتا ہے۔سلسلہ وار جزیٹر کے میدانی کچھے سے مثین کا پورا برقی رو گزرتا ہے للذا یہ بھی موٹی موصل تارکا بنا ہوتا ہے۔ ہاتی مثینوں کے میدانی کچھوں میں پورے برقی بوجھ کا چند فی صد برقی رو گزرتا ہے للذا یہ باریک موصل تارکے بنائے اور عموماً زیادہ چکر کے ہوتے ہیں۔

8.5.2 رفتار بالمقابل قوت مرورُ

یہاں بھی شکل 8.15 اور شکل 8.16 سے رجوع کریں البتہ ان اشکال میں برقی رو کے رخ الٹ کر دیں۔ یک سمت موٹر بھی جزیئر کی طرح مختلف طریقوں سے جڑے جاتے ہیں۔موٹر کو معین بیرونی برقی دباو دی جاتی ہے جہاں سے یہ برقی رو حاصل کرتا ہے۔برقی رو باہر سے قوی کچھے میں داخل ہوتا ہے للذا ان کے لئے درج ذیل لکھا جا سکتا ہے۔

$$V = E_q + I_q R_q$$
 (8.17)
$$I_q = \frac{V - E_q}{R_q}$$

13علامتRq کے زیر نوشت میں q لفظ قوی کے پہلی حرف ق کو ظاہر کرتی ہے۔

شکل 8.17: یک ست موٹر کے میکانی بوجھ بالمقابل رفتار خطوط۔

بیرونی بیجان اور متوازی جڑی موٹروں میں میدانی کچھے کو بر قرار معین بیرونی برقی دباو فراہم کیا جاتا ہے للذا میدانی مقاطیسی بہاو پر میکانی بوجھ کا کوئی اثر نہیں ہوتا ہے۔ بڑھتا میکانی بوجھ اٹھانے کی خاطر، مساوات 8.8 کے تحت، قوی کچھے کا مقاطیسی بہاو بڑھنا ہو گا۔ یہ تب ممکن ہو گا جب قوی کچھے میں برقی رو بڑھے۔ مساوات 8.17 سے ہم دیکھتے ہیں کہ قوی کچھے کا محرک برقی دباو E_q گھنے سے ہی ایسا ممکن ہو گا۔ ہو جائے گی۔ یوں جیسا شکل E_q میں یہ دکھایا گیا ہے میکانی بوجھ بڑھانے سے موٹر کی رفتار کم ہوتی ہے۔ کم ہو جائے گی۔ یوں جیسا شکل E_q میں یہ دکھایا گیا ہے میکانی بوجھ بڑھانے سے موٹر کی رفتار کم ہوتی ہے۔

متوازی جڑی یا بیرونی بیجان موٹر تقریباً مستقل رفتار برقرار رکھتی ہے۔اس کی رفتار بے بوجھ حالت سے پوری طرح بوجھ بردار حالت تک تقریباً پانچ فی صد کھٹی ہے۔ان موٹروں کی رفتار نہایت آسانی سے میدانی کچھے کا برقی رو تبدیل کر کے تبدیل کی جاتی ہے۔میدانی کچھے کا برقی رو تبدیل کر کے تبدیل کی جاتی ہے۔میدانی کچھے کا برقی دبو تبدیل کیا جاتا ہے۔یوں ان کی رفتار وسیع حدوں کے بچ تبدیل کرنا ممکن ہوتا ہے۔موٹر پر لاگو بیرونی برقی دباو تبدیل کر کے بھی رفتار قابو کی جاساتھ موٹا قوی برقیات کی مدد سے کیا جاتا ہے۔

ساکن حال سے چالو کرتے ہوئے کھہ کی قوت مروڑ اور زیادہ سے زیادہ قوت مروڑ، ان موٹروں کے قوی کچھے تک برقی رو پہنچانے کی صلاحیت پر منحصر ہوتی ہے جو ازخود میکانی سمت کار پر منحصر ہو گا۔

سلسلہ وار جڑی موٹر پر میکانی بوجھ بڑھانے سے قوی اور میدانی کچھوں میں برتی رو بڑھتا ہے جس کی بنا میدانی مقاطیسی بہاو بڑھے گا اور، مساوات 8.17 کے تحت V اور R_q اٹل ہونے کی بنا، E_q کو کم ہونا ہو گا جو موٹر کی رفتار کافی زیادہ کم ہوتی ہے۔ایسے موٹر ان مقامات پر بہتر ثابت ہوتے ہیں جہال زیادہ قوت مروڑ درکار ہو۔ بڑھتی قوت مروڑ کے ساتھ ان کی رفتار کم ہونے کی وجہ سے درکار برتی طاقت، قوت مروڑ کے ساتھ دیادہ تبدیل نہیں ہوتی۔

یہاں اس بات کا ذکر ضروری ہے کہ بے بوجھ سلسلہ وار جڑی موٹر کی رفتار خطرناک حد تک بڑھ سکتی ہے۔ایسے موٹر کو استعال کرتے وقت اس بات کا خاص خیال رکھنا ضروری ہے کہ موٹر ہر لمحہ بوجھ بردار رہے۔

ساکن موٹر چالو کرتے وقت I_q زیادہ ہو گا المذا زیادہ مقناطیسی بہاو پیدا ہو گا۔یوں چالو کرتے وقت موٹر کی قوت مروڑ خاصی زیادہ ہو گی۔ یہ ایک انچھی خوبی ہے جس کی بنا بوجھ بردار ساکن موٹر کو چالو کرنا آسان ہوتا ہے۔

مرکب موٹروں میں ان دو اقسام کی موٹروں کے خواص پائے جاتے ہیں۔جہاں بوچھ بردار موٹر چالو کرنا ضروری ہو لیکن رفتار میں سلسلہ وار موٹر جتنی تبدیلی منظور نہ ہو وہاں مرکب موٹر کارآمد ثابت ہوتے ہیں۔

مثال 8.2: ایک 75 کلو واٹ، 415 وولٹ اور 1200 چکر فی منٹ کی رفتار سے چلنے والی متوازی بڑی یک سمت موٹر کے قوی کچھے کی مزاحمت 83.2 اوہم ہے۔ بوجھ بردار موٹر 1123 چکر فی منٹ کی رفتار سے چلتے ہوئے 112 ایم پیئر لے رہی ہے۔

- میدانی برتی رو اور توی کیچے کا برتی رو حاصل کریں۔
 - موٹر کی اندرونی پیدا کردہ برقی دباو حاصل کریں۔
- اگر میدانی کچھے کی مزاحت 100.2 اوہم کر دی جائے لیکن قوی کچھے کا برقی رو تبدیل نہ ہو تب موٹر کی رفتار کتنی ہو گی؟ قالب کی سیر ابیت کو نظرانداز کریں۔

حل:

• شكل 8.18 سے رجوع كريں ـ 415 وولٹ پر ميداني ليچے كا برتى رو درج ذيل ہو گا۔

$$I_m = \frac{V}{R_m + R'_m} = \frac{415}{83.2} = 4.988 \,\mathrm{A}$$

يوں قوی کيچھے کا برتی رو $I_q = I_b - I_m = 112 - 4.988 = 107.012\,\mathrm{A}$ ہو گا۔

• یک ست موٹر کا اندرونی پیدا کردہ برقی دباو درج ذیل ہو گا۔

$$E_q = V - I_q R_q = 415 - 107.012 \times 0.072 = 407.295 \,\text{V}$$

• اگر میدانی کیھے کی مزاحمت 100.2 اوہم کر دی جائے تب I_m درج ذیل ہو گا۔

$$I_m = \frac{V}{R_m + R'_m} = \frac{415}{100.2} = 4.1417 \,\text{A}$$

• اگر قوی کچھے کا برقی رو 107.012 ایمبیئر ہی رکھا جائے تب اندرونی دباو درج ذیل ہو گا۔

$$E_q = V - I_q R_q = 415 - 107.012 \times 0.072 = 407.295 \text{ V}$$

• مساوات 8.4 کی مدد سے چونکہ اندرونی پیدا کردہ برقی دباو تبدیل نہیں ہوالیکن مقناطیسی بہاو تبدیل ہوا ہے للذا موٹر کی رفتار تبدیل ہو گی۔ان دو مقناطیسی بہاو اور رفتاروں پر مساوات 8.9 کی طرح درج ذیل لکھا جا سکتا ہے۔

$$\frac{E_{q1}}{E_{q2}} = \frac{\frac{n}{2}\omega_1 N\phi_{m1}}{\frac{n}{2}\omega_2 N\phi_{m2}}$$

اب چونکہ $E_{q1}=E_{q2}$ ہے لہذا $\omega_1\phi_{m1}=\omega_2\phi_{m2}$ ہو گا۔ قالبی سیر ابیت نظرانداز کرتے ہوئے متناطیسی بہاو، میدانی دباو پر منحصر ہو گا جو از خود میدانی برقی رو پر منحصر ہو گا البذا درج ذیل ہو گا۔

$$\frac{\omega_1}{\omega_2} = \frac{rpm_1}{rpm_2} = \frac{\phi_{m2}}{\phi_{m1}} = \frac{I_{m2}}{I_{m1}}$$

باب.8. يك سمت رومشين

يوں نئی رفتار

$$rpm_2 = \frac{I_{m1}}{I_{m2}} \times rpm_1 = \frac{4.988}{4.1417} \times 1123 = 1352.47$$

چکر فی منٹ حاصل ہوتی ہے۔اس مثال میں ہم دیکھتے ہیں کہ میدانی برقی رو کم کرنے سے موٹر کی رفتار بڑھتی ہے۔

مثال 8.3: ایک 60 کلو واٹ، 415 وولٹ، 1000 چکر فی منٹ متوازی جڑی یک ست موٹر کی قوی کچھے کی مزاحمت 0.05 وہم اور میدانی کچھے کی 1000 وہم ہے۔بے بوجھ موٹر کی رفتار 1000 چکر فی منٹ ہے۔میدانی کچھا 1000 چکر کا ہے۔

- جب یہ موٹر 70 ایمپیئر لے رہی ہواس وقت اس کی رفتار معلوم کریں۔
 - 140 ایمبیئر پر اس کی رفتار معلوم کریں۔
 - 210 ایمپیئر پر اس کی رفتار معلوم کریں۔
 - اس موٹر کی رفار بالقابل قوت مروڑ ترسیم کریں۔

حل:

شكل8.20: رفتار بالمقابل قوت م وڑ۔

• شکل 8.19 میں موٹر دکھائی گئی ہے۔ متوازی میدانی کچھ کے برتی روپر بوجھ کا کوئی اثر نہیں ہو گا۔ لہذا میدانی مقناطیسی بہاو ہے بوجھ اور بوجھ بردار موٹر میں ایک جیسا ہو گا۔ بباریک سمت موٹر کے قوی کچھے کا برتی روپو I_q قابل نظر انداز ہوتا ہے۔ اس طرح مساوات 8.17 اور مساوات 8.11 سے درج ذیل حاصل ہوں گے۔ I_q قابل نظر انداز ہوتا ہے۔ اس طرح مساوات 3.17 اور مساوات I_q کے۔

$$E_q = V - I_q R_q = 415 - 0 \times R_q = 415 \,\mathrm{V}$$

$$I_m = \frac{V}{R_m} = \frac{415}{60} = 6.916 \,\mathrm{A}$$

يوں 415 وولٹ محرک برقی دباو پر 1000 چکر فی منٹ یا 16.66 چکر فی سینڈ رفتار حاصل ہو گا۔70 ایمپیئر برقی بوجھ پر بھی $I_m=6.916$ ہو گا جبکہ I_q درج ذیل ہو گا۔

$$I_q = I_b - I_m = 70 - 6.916 = 63.086 \,\mathrm{A}$$

مساوات 8.17 سے

$$E_q = V - I_q R_q = 415 - 63.086 \times 0.05 = 411.8458 \,\text{V}$$

اور مساوات 8.11 سے رفتار (چکر فی منٹ) حاصل کرتے ہیں۔

$$rpm = \frac{e_q}{e_{q0}} rpm_0 = \frac{411.8458}{415} \times 1000 = 991.95$$

ان تمام کو $I_b = 140 \, \mathrm{A}$ کے ماصل کریں۔

$$I_q = I_b - I_m = 140 - 6.916 = 133.084 \text{ A}$$

$$E_q = 415 - 133.084 \times 0.05 = 408.3458 \text{ V}$$

$$rpm = \frac{408.3458}{415} \times 1000 = 983.96$$

باب.8. يك سمت رومثين

• یہاں
$$I_b = 210 \, \mathrm{A}$$
 ہوں گے۔

$$I_q = I_b - I_m = 210 - 6.916 = 203.084 \,\text{A}$$

$$E_q = 415 - 203.084 \times 0.05 = 404.8458 \,\text{V}$$

$$rpm = \frac{404.8458}{415} \times 1000 = 975.83$$

• موٹر میں ضیاع طاقت کو نظر انداز کرتے ہوئے میکانی طاقت فراہم کردہ برقی طاقت کے برابر ہو گی:

$$(8.18) e_q I_q = T\omega$$

 $T_0 = 0\,\mathrm{N}\,\mathrm{m}$ یوں پچھلے جزو سے حاصل جوابات کی مدد سے بے بوجھ موٹر کی قوت مروڑ صفر ہو گی لینی عنی جبکہ 70 جبکہ 70 ایمپیئر پر قوت مروڑ کی قیت درج ذیل ہو گی۔

$$T_{70} = \frac{e_q I_q}{\omega} = \frac{411.8458 \times 63.086}{2 \times \pi \times 16.5325} = 250 \, \mathrm{N \, m}$$

يہاں 991.95 چکر فی منٹ کی رفتار کو 16.5325 ہرٹز لکھا گیا ہے۔ اسی طرح درج ذیل ہوں گے۔

$$\begin{split} T_{140} &= \frac{e_q I_q}{\omega} = \frac{408.3458 \times 133.084}{2 \times \pi \times 16.399} = 527 \, \text{N m} \\ T_{210} &= \frac{e_q I_q}{\omega} = \frac{404.8458 \times 203.084}{2 \times \pi \times 16.26} = 805 \, \text{N m} \end{split}$$

يه نتائج شكل 8.20 ميں ترسيم كئے گئے ہيں۔

فرہنگ

earth, 95	ampere-turn, 33
eddy current loss, 62	armature coil, 135, 255
eddy currents, 61, 130	, ,
electric field	capacitor, 199
intensity, 10	carbon bush, 181
electrical rating, 59	cartesian system, 4
electromagnet, 135	charge, 10, 140
electromotive force, 61, 141	circuit breaker, 183
electronics	coercivity, 46
power, 211	coil
emf, 141	high voltage, 56
enamel, 62	low voltage, 56
energy, 44	primary, 55
co, 115	secondary, 55
Euler, 20	commutator, 168, 245
excitation current, 52, 60, 61	conductivity, 25
excitation voltage, 61	conservative field, 111
excite, 61	core, 55, 130
excited coil, 61	core loss, 62
	core loss component, 64
Faraday's law, 38, 129	Coulomb's law, 10
field coil, 135, 255	cross product, 13
flux, 30	cross section, 9
Fourier series, 63, 145	current
frequency, 134	transformation, 66
fundamental, 146	cylindrical coordinates, 5
fundamental component, 64	
	delta connected, 94
generator	differentiation, 18
ac, 163	dot product, 15
ground current, 95	
ground wire, 95	E,I, 62

ئنرہنگ 270

Ohm's law, 26	harmonic, 146	
open circuit test, 87	harmonic components, 64	
orthonormal, 3	Henry, 40	
	hunting, 182	
parallel connected, 258	hysteresis loop, 47	
permeability, 26	1,	
relative, 26	impedance transformation, 71	
phase current, 95	induced voltage, 38, 50, 61	
phase difference, 22	inductance, 40	
phase voltage, 95	leakage, 187	
phasor, 21	induction	
pole	motor, 211	
non-salient, 143	,	
salient, 143	Joule, 44	
power, 44		
power factor, 22	lagging, 22	
lagging, 22	laminations, 31, 62, 130	
leading, 22	leading, 22	
power factor angle, 22	leakage inductance, 79	
power-angle law, 192	leakage reactance, 79	
primary	line current, 95	
side, 55	line voltage, 95	
,	linear circuit, 230	
rating, 97, 98	load, 99	
rectifier, 168	Lorentz law, 140	
relative permeability, 26	Lorenz equation, 104	
relay, 103		
reluctance, 25	magnetic constant, 26	
residual magnetic flux, 46	magnetic core, 31	
resistance, 25	magnetic field	
rms, 19, 50, 168	intensity, 11, 33	
rotor, 37	magnetic flux	
rotor coil, 106	density, 33	
rpm, 159	leakage, 79	
	magnetizing current, 64	
saturation, 47	mmf, 30	
scalar, 1	model, 81, 211	
self excited, 255	mutual flux linkage, 43	
self flux linkage, 43	mutual inductance, 43	
self inductance, 43	•	
separately excited, 255	name plate, 98	
side	non-salient poles, 181	

المرابئات عرابئات عرابات المرابئات ا

transformer air core, 59 communication, 59 ideal, 65 oil, 77	secondary, 55 single phase, 23, 59 slip, 213 slip rings, 180, 233 squirrel cage, 236
transient state, 179	star connected, 94
unit vector, 2	stator, 37 stator coil, 106, 131
VA, 76 vector, 2 volt, 140 volt-ampere, 76 voltage, 140 DC, 168 transformation, 65	steady state, 179 step down transformer, 58 step up transformer, 58 surface density, 11 synchronous, 134 synchronous inductance, 188 synchronous speed, 159, 180
Watt, 44 Weber, 33 winding distributed, 143 winding factor, 151	Tesla, 33 theorem maximum power transfer, 233 Thevenin theorem, 230 three phase, 59, 93 time period, 101, 145 torque, 169, 213 pull out, 182

بھنور نمابر تی رو، 130	ابتدائی
بے بوجھ، 60	جانب، 55
•	لخماء 55
پترى،31،310	ارتباط بهاو، 39
پتریاں،62	اضافي
پیش زاویه،22	زاويا کی رفتار، 216
	اکائی سمتىيە، 2
تاخيري،80	اماليه، 40
تاخيريزاويه،22	رستا،187
تار کابر قي د باو، 95	امالی
تار کا بر تی رو، 95	برتی د باو، 50
تانبا،28	امالى برقى د باو، 38، 61
تبادله ر به -	ایک، تین پتریال، 62
ر کاوٹ، 71	اينمپيئر - چکر ، 33
تختی،98 ته 12.4	
تعدد،134 ت-ت	بر، 140
تعقب،182 تفرق،18	بر قرار چالو، 101، 179
هرن،18 جزوی،18	ېرق گيير،199
برون،18 تکونی جوڙ،94	برقیات
تونی بور،94 توانائی،44	ت وى،211
وانان،44 ہمہ،115	بر تی بار،10،140
ہمہ،113 تین دوری،93،59	بر تی د باو، 140،28
93,39,019,0	تبادله، 65،56
ٹرانسفار مر	محرك، 141
برتی د باووالا، 59	ىيجانى،189
بوجھ بردار،68	يك سمت، 168
نیل،77	بر تی رو، 28
خلائی قالب،59	بھنورنما،130
د باوبره هاتا، 58	تبادله، 66
د باو گھٹاتا،58	هیجان انگیز،52
ذرائع ابلاغ، 59	برقي سکت،59
رووالا،59	برقی میدان،10
كامل،65	شدت،10،28
ٹسلا،33	بش،181
ٹھنڈی تار،95	بناوٹ،87
	بنیادی جزو،64،646
ثانوی جانب،55	بوچه،99
	بھٹی،117
جاول،44	بچنور نما :
97.	بر قی رو، 61
ڪھيلاو، 151	ضياع،62

<u>ــــرہگ</u>ـــــ

زاویه جزوطاقت،22 زمین،95 زمینی برقی رو،95	جزوطاقت،22 چیش،22 تاخیری،22
ريىنى بەر 1950 زىينى تار، 95 ساكن حصە، 37	جزيئر بدلتارو،163
تان کی تصنیہ؟ ساکن کچھا،131،106 ستارہ نماجوڑ،94	جوڑ تکونی،94 ستاره نما،94
ىر كاو، 213 ىرك چىلى، 233،180 سطى ئۇلسەرە.	چکر فی منٹ،130 چوئی،215
سطى كىمل،185 سطى كثافت،11 سكت،98،97	حال
سلسله وار،149 سمت کار،245	عار ضى،179 كيساس،179
بر قباتی،168 میکانی،168 سمتیه،2	خطی برق دور، 230
 معتى ر فتار ،104	خودار تباط بهاو، 43 خود اماله، 43
سیرابیت،47 ضرب	داخلی بیجان سلسله وار ، 258 متوازی، 258
نقطه،15 ضرب صلیبی،13	مر کب،258 دور برام کب،258
طاقت،44 طاقت بالقابل زاويه،192 طول موج،18	دور شکن، 183 دوری سمتیه، 190،21 دوری عرصه، 145،101
عمودی تراش،9 رقبہ،9	رستا اماله، 79 متعامله، 79
غير سمتى،1 غير معاصر،182	رىتامىتعاملىت،221 رىتامىتعاملىت،221 رفتار اضافىزاويائى،216
فوريئر،254 فوريئر تشكسل،145،63 فيراد ك قانون،129،38	اضانی زاویان، 216 روغن، 62 روک ، 232 ریاضی نموننه، 211،81 ریلے ، 103
تاكب،130	زاديائي فرق،22

عنرہنگ

	52 8 1 1 1 1
محد د پر تنسه د	قالبي ضياع،62
كار تيبى،4 نكى،5	جزو،64 قانون
ى،د محرك برتى د باو، 61	قانون او ډم ،26
رک پر ۱۰۶۰ تا	کولمب،10
ريول لمائي،165	وسب،10 لورينز،140
مخلوط عدد ،196	قدامت پیند میدان ، 111 قدامت پیند میدان ، 111
مرکب جزیئر،258	قریب برامر کب، 258
مزاحت،25	ريب. در ب 200 قطب
مزاحت پيا، 241	ابھرے،181،143
مساوات لورينز،104	بموار، 181،143
مئلہ	قوت مر وڑ،213،169
تھونن،230	انتہائی، 182
زیادہ سے زیادہ طاقت کی منتقلی، 233	قوى برقيات، 245
مشتر كه ارتباط اماله ، 43	قوی <u>لچ</u> ے،255
مشتر که اماله، 43	
معاصر،134	كارين بش، 181
مشين،180	کار گزاری،204
معاصراماليه،188	کثاف ت ت
معاصرر فآر،159،180	برقی رو،28
معائنه کھلاد ور، 87 مقناطیس قناطیس	كثافت مقناطيسي بهاو
مقناطيس مقناطيس	بقاي، 46
ب. تى، 135	کسر دور ، 39
بيال كادائره، 47 چال كادائره، 47	05
غاتم شدت،46	گرم تار، 95 گ
مقناطیسی بر قی رو،64	گومتاحصه،37 گستال ۱۹۶۶
مقناطیسی بهاو،30	گھومتالچھا،106
سن به بین	ر .
ر بادر کثافت، 33	لچھا
مقناطيسي چال، 52	ابتدائی، 55 کار 143
مقناطیسی د باو، 30	<u>ئىل</u> ے، 143
رخ،145	ىيچپرار، 41 ثانوي، 55
مقناطیسی قالب، 55،31	رخ،137
مقناطیسی مستقل،170،26	ري. زياده بر تي د باو،56
معنا "بی سی مراد 1/0،26 جزو،31،26	ر ي ره بر ن 106٠
بروه،31،20 مقناطیسی میدان	ت قری،135 قری،135
سن به نامیدان شدت،33،11	کر بر تی د باو،56 کم بر تی د باو،56
مورر مورر	آب ن ا گومتا، 106
رو امالي، 211	ميداني،135
= V *	100 001

ئىرىنگ

پنجره نما،236	بيجان انگيز
وژ،19،19	بر تی د باو، 61
وثرقیت،168	بر تی رو، 61
ىوسىقاكى جزو،64،64	پیجان انگیز برتی رو، 60
وصليت،25	ييجاني برتي د باو، 189
ىيدانى ك <u>چ</u> ھے،255	•
·	يك دوري، 59،23
اك،44	يك دوري بر قي د باو، 95
ولث،140	یک دوری برقی رو، 95
ولٺ-ايمپيئر،76	یک سمت رو
ير، 33	ت مشین، 245
.يېر- چېر، 39	يولر مساوات، 20°
كِلِيابِث،30،25	
، چ.، 10،25،05 پيمان، 61	
بِعِنَ.01 بير وني،255	
- 7	
نود، 255	
لچھا، 61	