

เรื่อง การศึกษาการปนเปื้อนของไมโครพลาสติกในเนื้อเยื่อระบบทางเดินอาหารของ ปลาในแม่น้ำปิง จ.เชียงใหม่

(The study of microplastics contamination in various fish species in Ping river, Chiang Mai.)

โดย นางสาวอณัญญา ศรีทอง โรงเรียนยุพราชวิทยาลัย

รายงานฉบับนี้เป็นส่วนประกอบของโครงงานวิทยาศาสตร์ ระดับมัธยมศึกษาตอนปลาย ในงานเวทีวิชาการนวัตกรรมสะเต็มศึกษาขั้นพื้นฐานแห่งชาติ ครั้งที่ (ออนไลน์)

The 1st National Basic STEM Innovation E-Forum 2021

วันที่ 18 - 19 กันยายน พ.ศ. 2564

เรื่อง การศึกษาการปนเปื้อนของไมโครพลาสติกในเนื้อเยื่อระบบทางเดินอาหารของ ปลาในแม่น้ำปิง จ.เชียงใหม่
(The study of microplastics contamination in various fish species in Ping river, Chiang Mai.)
โดย นางสาวอณัญญา ศรีทอง
อาจารย์ที่ปรึกษา นายมงคล ปัญญารัตน์

ชื่อโครงงาน การศึกษาการปนเปื้อนของไมโครพลาสติกในเนื้อเยื่อระบบทางเดินอาหารของ

ปลาในแม่น้ำปิง จ.เชียงใหม่

ชื่อนักเรียน นางสาวอณัญญา ศรีทอง ชื่ออาจารย์ที่ปรึกษา นายมงคล ปัญญารัตน์

โรงเรียน ยุพราชวิทยาลัย

ที่อยู่ 238 ถนนพระปกเกล้า ตำบลศรีภูมิ อำเภอเมืองเชียงใหม่ จังหวัดเชียงใหม่ 50200

โทรศัพท์ 053-418673-5 โทรสาร 053-241213

ระยะเวลาทำโครงงาน ตั้งแต่ วันที่ 1 พฤศจิกายน 2563 - วันที่ 30 มิถุนายน 2564

บทคัดย่อ

โครงงานเรื่องการศึกษาการปนเปื้อนของไมโครพลาสติกในเนื้อเยื่อระบบทางเดินอาหารของปลาใน แม่น้ำปิง จ.เชียงใหม่ มีจุดประสงค์เพื่อวิเคราะห์หาการปนเปื้อนของไมโครพลาสติกในปลาสายพันธุ์ต่างๆของ แม่น้ำปิงและหาความสัมพันธ์ระหว่างปริมาณของไมโครพลาสติกกับจุดต่างๆที่เก็บตัวอย่าง ทำการทดลองโดย กำหนดจดศึกษาในแม่น้ำปิงในจังหวัดเชียงใหม่ 3 จด ได้แก่ ตำบลป่าตัน ตำบลช้างม่อย และตำบลป่าแดด ทั้งนี้ พันธุ์ปลาที่นำมาศึกษา คือ Henicorhynchus siamensis, Channa striata, และ Clarias batrachus จากการวิเคราะห์ หาไมโครพลาสติกโดยแช่ตัวอย่างกระเพาะอาหารในภาชนะที่มีสารละลายไฮโครเจนเปอร์ออกไซค์เข้มข้น 50% (v/v) แล้วทำการอบในเตาอบที่อุณหภูมิ 75 องศาเซลเซียสเป็นเวลา 5 ชั่วโมง ทำการตรวจหา ใมโครพลาสติกภายใต้กล้องจุลทรรศน์ใช้แสงที่กำลังขยาย 1200X และทำการวิเคราะห์คุณภาพน้ำ โดยหาค่า DO และ BOD พบว่ามีการปนเปื้อนของไมโครพลาสติกในเนื้อเยื่อระบบทางเดินอาหารของปลาทุกชนิดในทุก จุดศึกษาคือ จุดที่ 1 ตำบลป่าตันพบไมโครพลาสติกใน Clarias batrachus 16.25 pieces/fish, Channa striata 12.00 pieces/fish, Henicorhynchus siamensis 5.50 pieces/fish จุดที่2 ตำบลช้างม่อยพบใมโครพลาสติกใน Clarias batrachus 1 4. 3 4 pieces/fish, Channa striata 10.00 pieces/fish, Henicorhynchus siamensis 4.00 pieces/fish จุดที่3 ตำบลป่าแคคพบไมโครพลาสติกใน Clarias batrachus 16.00 pieces/fish, Channa striata 12.67 pieces/fish, Henicorhynchus siamensis 5.75 pieces/fish จากการเปรียบเทียบสายพันธุ์ปลาพบว่า Clarias batrachus มีการสะสมของไมโครพลาสติกในเนื้อเยื่อระบบทางเดินอาหารมากที่สุด รองลงมาคือ Channa striata และ Henicorhynchus siamensis ตามลำคับ ทั้งนี้เมื่อวิเคราะห์ค่า DO และ BOD เพื่อศึกษาความสัมพันธ์ ระหว่างค่าคุณภาพน้ำกับปริมาณไมโครพลาสติกที่ปนเปื้อนในเนื้อเยื่อระบบทางเดินอาหารของปลา ได้ข้อสรุป ว่าค่า DO และค่า BOD ทั้ง 3 จุดมีค่าปานกลางเหมือนกัน และ ไม่มีผลสัมพันธ์กับการพบไมโครพลาสติกที่ ้ปนเปื้อนในเนื้อเยื่อระบบทางเดินอาหารของปลา จากข้อมูลการสำรวจทำให้ตระหนักได้ถึงการปนเปื้อนของ ไมโครพลาสติกในเนื้อเยื่อปลาซึ่งเป็นอาหารของมนุษย์

กิตติกรรมประกาศ

รายงานการวิจัยเรื่องการศึกษาการปนเปื้อนของไมโครพลาสติกในเนื้อเยื่อระบบทางเดินอาหารของ ปลาใน แม่น้ำปิง จ.เชียงใหม่ สำเร็จได้เนื่องจากบุคคลหลายท่าน และหน่วยงานที่ได้กรุณาช่วยเหลือให้ข้อมูล ข้อเสนอแนะ คำปรึกษา ให้ความคิดเห็น และกำลังใจ ผู้เขียนขอกราบขอบพระคุณ คุณครูที่ปรึกษาที่มอบความ ไว้วางใจ ขอบพระคุณครูนัดดา สุธรรมมิกรที่เชื่อมั่นในตัวผู้ทำโครงงาน ตลอดจนการให้กำลังใจแก่ผู้ทำวิจัย ตลอดมา ทำให้ดำเนินงานวิจัยประสบความสำเร็จไปด้วยดี ขอขอบคุณผู้เกี่ยวข้อง ที่ให้ข้อมูลในด้านต่างๆ เกี่ยวกับพื้นที่ และเอื้อเฟื้อสถานที่ในการคำเนินงานทำให้การศึกษาในงานวิจัยสำเร็จลุล่วง

สุดท้ายนี้ขอกราบขอบพระกุณบิดา มารดา และขอขอบกุณ พี่ และน้องที่ได้ช่วยส่งเสริมสนับสนุน และ เป็นกำลังใจทำให้ผู้จัดทำรายงานได้คำเนินการวิจัยจนสำเร็จได้ด้วยดี

ผู้จัดทำ

สารบัญ

บทกัดย่อ	ก
กิตติกรรมประกาศ	ข
บทที่ 1 บทนำ	1
ที่มาและความสำคัญ	1
วัตถุประสงค์ของโครงงาน	2
สมมติฐานและแนวคิดทางวิทยาศาสตร์ที่นำมาใช้	2
นิยามเชิงปฏิบัติการ/นิยามศัพท์เฉพาะ	3
ขอบเขตของการศึกษา	3
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง	4
บทที่ 3 วัสคุอุปกรณ์และวิธีการ	6
วัสคุอุปกรณ์	6
วิธีการ	6
บทที่ 4 ผลการทคลอง	8
การศึกษาปริมาณไมโครพลาสติกในปลาสายพันธุ์ต่างๆในแม่น้ำปิง	9
การศึกษาความสัมพันธ์ของคุณภาพน้ำกับไมโครพลาสติกที่พบ	10
บทที่ 5 อภิปรายและสรุปผล	11
อภิปรายผล	11
สรุปผล	11
ข้อเสนอแนะ	11
บรรณานุกรม	12

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญ

ในปัจจุบัน ปัญหาขยะเป็นปัญหาสิ่งแวคล้อมที่สำคัญของประชาคมโลก โดยเฉพาะขยะประเภท พลาสติก พลาสติกเป็นวัสคุที่มีคุณสมบัติทนทานต่อสภาพแวคล้อมและย่อยสลายยาก ทำให้พลาสติกถูกนำมาใช้ ประโยชน์ในการผลิตสินค้าอุปโภคบริโภคมากมาย ตั้งแต่เป็นส่วนประกอบของสินค้าจนถึงเป็นบรรจุภัณฑ์ โทษของพลาสติกก็เป็นผลมาจากความทนทานของพลาสติกเช่นกัน พลาสติกมีอายุขัยตั้งแต่หลายร้อยปีถึงหลาย พันปี ขึ้นอยู่กับชนิดของพลาสติก เนื่องจากพลาสติกนั้นมีราคาถูกเมื่อเทียบกับการจัดการอย่างถูกต้องคือ การรีไซเคิล การจัดการกับขยะพลาสติกใช้แล้วส่วนใหญ่จึงเป็นการฝังกลบ โดยเฉพาะการส่งออกขยะไปยัง ประเทศด้อยพัฒนา ซึ่งเป็นการแก้ปัญหาที่มักง่าย และ ได้ผลในระยะสั้นเท่านั้นนำมาสู่ปัญหาการปนเปื้อนของ พลาสติกในสิ่งแวคล้อมอย่างหลีกเลี่ยงไม่ได้ ส่งผลกระทบต่อสิ่งมีชีวิตทุกชนิดในระบบนิเวศรวมถึงมนุษย์ด้วย แม้จะมีความพยายามในการพัฒนาพลาสติกที่สามารถย่อยสลายได้เองในเวลาสั้นๆ แต่เทคโนโลยีดังกล่าวยังอยู่ ในการพัฒนาและมีราคาสูง ในขณะที่ปัญหาการปนเปื้อนของพลาสติกในสิ่งแวคล้อมนั้นเกิดขึ้นตั้งแต่การคิดค้น พลาสติกขึ้น และยังคงคำเนินไปเรื่อยๆ ในปีพ.ศ.2560 มีพลาสติกเพียงประมาณ 8.7% เท่านั้นที่ถูกนำไปผ่าน กระบวนการรี ไซเคิล กระบวนการรี ไซเคิลทำให้ ได้มาซึ่งเม็ดพลาสติกจากพลาสติกที่ใช้แล้ว และลดผลกระทบ จากการปนเปื้อนของพลาสติกในสิ่งแวคล้อม อย่างไรก็ตาม กระบวนการรี ไซเคิลเป็นกระบวนการที่ใช้พลังงาน มาก ทำให้ได้มาซึ่งเม็ดพลาสติกที่คุณภาพลดลง และมีราคาสูงเมื่อเทียบกับการซื้อเม็ดพลาสติกใหม่ ร่วมกับ กฎหมายสิ่งแวคล้อมที่ไม่เข้มงวด พลาสติกอีกมากถึง 91% ที่เหลือนั้นถูกนำไปจัดการด้วยวิธีการต่างๆ ที่ไม่เหมาะสม ได้แก่ การเผาเพื่อผลิตกระแสไฟฟ้า การหมัก และโดยเฉพาะการฝังกลบทั้งบนดินและในน้ำ (USEPA, n.d.) ซึ่งการทิ้งขยะพลาสติกในน้ำนั้น นำมาสู่ปัญหาการปนเปื้อนและการสะสมของพลาสติกใน ้ สิ่งแวคล้อม เนื่องจากพลาสติกขนาดเล็กไม่สามารถถูกย่อยสลายได้ พลาสติกที่ถูกสัตว์น้ำเหล่านี้กินเข้าไปใน ระบบทางเดินอาหาร (gastrointestinal tract) บางส่วนตกค้างในทางเดินอาหาร บางส่วนมีการคูคซึมและสะสม ในเนื้อเยื่อของสิ่งมีชีวิตทะเล เช่น หอย ปลา ส่งผลต่อความหลากหลายทางชีวภาพในแหล่งน้ำต่างๆ นอกจากนี้ เมื่อสิ่งมีชีวิตเหล่านี้ถูกกินไปตามสายใยอาหาร ก็จะเกิดการถ่ายทอดไมโครพลาสติกต่อไป โดยปริมาณ ใมโครพลาสติกที่สะสมจะเพิ่มขึ้นสำหรับสิ่งมีชีวิตที่มีอันดับสูงกว่าในสายใยอาหาร จากปรากฏการณ์ Biomagnification เมื่อมนุษย์อยู่บนจุดสูงสุดของทุกห่วงโซ่อาหาร ก็ย่อมได้รับและมีการสะสมใมโครพลาสติก ในร่างกายในสัคส่วนที่สูงสุดตามไปด้วย แม้ในปัจจุบันจะยังไม่มีงานวิจัยที่แน่ชัคถึงผลกระทบของ ไมโครพลาสติกต่อสุขภาพของมนุษย์ แต่ผลการศึกษาวิจัย พบว่าไมโครพลาสติกมีผลกระทบต่อระบบ ต่อมไร้ท่อของสัตว์น้ำ โดยมีสมบัติเป็นสารรบกวนการทำงานของต่อมไร้ท่อ(EDCs) (Martina Capriotti, 2020) การศึกษาเรื่องไมโครพลาสติก หรือแม้กระทั่งนาโนพลาสติก ถือเป็นประเด็นที่ค่อนข้างใหม่สำหรับการศึกษา ในสาขาวิทยาศาสตร์สิ่งแวดล้อม ทำให้ในปัจจุบันยังไม่มีกระบวนการเก็บตัวอย่างเพื่อนำมาวิเคราะห์หาปริมาณ ไมโครพลาสติกที่สะสมในสิ่งแวดล้อมที่เป็นมาตรฐานและทราบกันโดยทั่วไปชัดเจนนัก ไม่ว่าจะเป็นในสัตว์น้ำ หรือในดินตะกอน หากแต่มีความพยายามที่จะหาวิธีการที่ดีที่สุดในการเก็บตัวอย่างเพื่อนำมาทำการวิเคราะห์ การปนเปื้อนของไมโครพลาสติก ในกระบวนการย่อยสารอินทรีย์ด้วยสารละลายต่างกัน ที่มีตัวเร่งปฏิกิริยา ต่างกัน ทำในอุณหภูมิและระยะเวลาที่ต่างกัน

จากข้อมูลที่กล่าวมาข้างต้น ทางคณะผู้วิจัยจึงมีแนวคิดที่จะศึกษาเปรียบเทียบปริมาณไมโครพลาสติกที่ ปนเปื้อนในปลาท้องถิ่นต่างชนิด และดินตะกอน ณ แม่น้ำในจังหวัดเชียงใหม่ โดยทางคณะผู้วิจัยคาดหวังว่าผล การศึกษาที่ได้ จะสามารถเป็นเครื่องบ่งชี้ความสำคัญและความรุนแรงของปัญหาการปนเปื้อนของพลาสติก ในสิ่งแวดล้อม นำไปสู่การรับรู้และตระหนักในปัญหา และความร่วมมือของทุกภาคส่วนในการแก้ไขปัญหา ต่อไป เนื่องจากสิ่งแวดล้อมไม่ใช่ความรับผิดชอบของบุคคล หรือองค์กรใดองค์กรหนึ่ง หากแต่เป็นความรับผิดชอบและหน้าที่ร่วมกันของทุกคน การแก้ปัญหาขยะพลาสติกจำเป็นต้องได้รับความร่วมมือทั้งจาก ประชาชน ภาครัฐและภาคเอกชน ทั้งจากกฎหมายที่เข้มงวดและการบังคับใช้กฎหมาย การคิดค้นกระบวนการที่ สะอาดและเป็นมิตรกับสิ่งแวดล้อม หรือแม้กระทั่งการรณรงค์ลดการใช้ถุงพลาสติก

1.2 วัตถุประสงค์ของโครงงาน

- 1. เพื่อวิเคราะห์หาการปนเปื้อนของไมโครพลาสติกในปลาสายพันธุ์ต่างๆของแม่น้ำปิง
- 2. เพื่อวิเคราะห์หาความสัมพันธ์ระหว่างปริมาณของไมโครพลาสติกกับจุดต่างๆที่เก็บตัวอย่าง

1.3 สมมติฐานและแนวคิดทางวิทยาศาสตร์ที่นำมาใช้

- 1. ปริมาณการปนเปื้อนของไมโครพลาสติกในปลาจะแตกต่างกันตามสายพันธุ์และพฤติกรรมการกินของปลา
- 2. ปริมาณการปนเปื้อนของไมโครพลาสติกในปลาจะแตกต่างกันตามจุดต่างๆที่เก็บตัวอย่างปลา

1.4 นิยามเชิงปฏิบัติการ/นิยามศัพท์เฉพาะ

- 1.4.1 ไมโครพลาสติก คือ พลาสติกหรือเศษพลาสติกที่มีขนาดเส้นผ่านศูนย์กลางน้อยกว่าหรือเท่ากับ 5 มิลลิเมตร (องค์การพิพิธภัณฑ์วิทยาศาสตร์แห่งชาติ, n.d.)
- 1.4.2 ความต้องการออกซิเจนทางชีวเคมี(BOD) คือ ปริมาณออกซิเจนที่จุลินทรีย์ต้องการใช้ในการย่อย สลายสารอินทรีย์ในน้ำ น้ำที่มีคุณภาพดี ควรมีค่าบีโอดี ไม่เกิน 6 มิลลิกรัมต่อลิตร ถ้าค่าบีโอดีสูงแสดงว่าน้ำ นั้นเป็นน้ำเสีย (มหาวิทยาลัยมหิดล, n.d.)
- 1.4.3 ปริมาณออกซิเจนที่ละลายในน้ำ(DO) คือ ความต้องการออกซิเจนของแบคทีเรียองการออกซิเจน (aerobic bacteria)ในน้ำความต้องการออกซิเจนของแบคทีเรียนี้จะทำให้จะทำให้ปริมาณออกซิเจนที่ ละลายในน้ำลดลง ดังนั้นในน้ำที่สะอาดจะมีค่า DO สูง และน้ำเสียจะมีค่า DO ต่ำ (มหาวิทยาลัยมหิดล, n.d.)
- 1.4.4 แม่น้ำปิง คือ แม่น้ำในจังหวัดเชียงใหม่ซึ่งมีต้นน้ำพาดผ่าน ตำบลป่าตัน ตำบลช้างม่อย ตำบลป่า แคด

1.5 ขอบเขตของการศึกษา

1.5.1 ด้านเนื้อหา

- 1. ศึกษาเปรียบเทียบปริมาณใมโครพลาสติกที่ปนเปื้อนใน Henicorhynchus siamensis, Channa striata, และ Clarias batrachus ในจุดต่างๆของแม่น้ำปัง จังหวัดเชียงใหม่
- 2. วิเคราะห์คุณภาพน้ำจากค่า DO และ BOD

1.5.2 ด้านสถานที่

- 1. แม่น้ำปังบริเวณ ต.ป่าตัน อ.เมือง จ.เชียงใหม่
- 2. แม่น้ำปังบริเวณ ต.ช้างม่อย อ.เมือง จ.เชียงใหม่
- 3. แม่น้ำปังบริเวณ ต.ปาแคค อ.เมือง จ.เชียงใหม่
- 4. ห้องปฏิบัติการชีววิทยา โรงเรียนยุพราชวิทยาลัย เชียงใหม่

1.5.3 ด้านเวลา

วันที่ 1 พฤศจิกายน 2563 - วันที่ 30 มิถุนายน 2564

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 รายงานข้อเท็จจริงและตัวเลขเกี่ยวกับวัสดุขยะและการรีไซเกิล

(USEPA, n.d.) ในแต่ละปี กระบวนการจัดการขยะพลาสติกด้วยการฝังกลบ ทั้งบนบกและในน้ำ คิดเป็น สัดส่วนร้อยละที่สูงที่สุด ในขณะที่กระบวนการรีไซเกิล กิดเป็นสัดส่วนร้อยละที่น้อยที่สุด ดังแสดง

รูปที่ 1 ตารางและกราฟแสดงสัดส่วนวิธีการกำจัดขยะพลาสติก ตั้งแต่ค.ศ.1960 ถึง ค.ศ.2018

2.2 ปลาสายพันธุ์ต่างๆ

ปลาสร้อยขาว เป็นปลากินพืช และสัตว์ ชอบอาศัยรวมกันเป็นฝูง มีอาหารหลักเป็นแพลงก์ตอนพืช และ สาหร่ายชนิดต่างๆ อาทิ สาหร่ายสีเขียวแกมน้ำเงิน นอกจากนั้น ยังพบการกินอาหารชนิดอื่น อาทิ ซากอินทรีย์ พืชน้ำ และแมลงน้ำ(วุฒิชัย อุดมวงษ์, 2538)

ลักษณะทั่วไปของปลาดุก คือ เป็นปลาไม่มีเกล็ด ตัวยาวเรียว ครีบหลังยาวไม่มีกระ โดง ครีบท้องยาวเกือบ ถึงโคนหาง มีอวัยวะช่วยในการหายใจ ซึ่งช่วยให้ปลาดุกมีความอดทนสามารถในสภาพน้ำที่ไม่เหมาะสม หรือ อยู่พ้นน้ำได้นาน ชอบกินอาหารจำพวกเนื้อสัตว์ (เบทาโกร จำกัด(มหาชน), n.d.)

ลูกปลาช่อนจะกินอาหารจำพวกแพลงค์ตอนพืช แพลงค์ตอนสัตว์ สาหร่าย และสัตว์น้ำ หรือแมลงขนาดเล็ก เป็นอาหาร ส่วนปลาช่อนที่เติบโตแล้วจะมีอาหารหลัก ได้แก่ ปลาขนาดเล็ก กุ้ง ปู กบ ไส้เดือน แมลง และซาก เน่าเปื่อยต่างๆ แต่อาหารหลักจะเป็นปลาขนาดเล็ก(กองโภชนาการ, 2544)

2.3 งานวิจัยที่เกี่ยวข้อง

Al-Azzawi และคณะ (2020) ได้ทำการตรวจสอบวิธีการเตรียมตัวอย่างสำหรับการศึกษาปริมาณ ไมโครพลาสติก พบว่าหนึ่งในวิธีการที่ได้ผลลัพธ์ดีที่สุดสำหรับการเตรียมตัวอย่างเพื่อศึกษาปริมาณ ไมโครพลา สติก คือการเตรียมตัวอย่างด้วยสารละลายไฮโดรเจนเปอร์ออกไซค์($\mathbf{H}_2\mathbf{O}_2$)เข้มข้น เพื่อย่อยสลายสารอินทรีย์ใน ตัวอย่าง โดยที่ไม่ทำปฏิกิริยาหรือทำปฏิกิริยาน้อยมากกับไมโครพลาสติกที่ต้องการศึกษา ในขณะที่สารละลาย โพแทสเซียมไฮดรอกไซค์ทำปฏิกิริยากับไมโครพลาสติกประเภทพอลิแลคติคแอซิค(PLA) และพอลิเอทิลีน

เทเรฟทาเลต(PET) ผลของการสลายสารอินทรีย์ขึ้นอยู่กับปัจจัยต่างๆ ได้แก่ ความเข้มข้นของสารละลายที่ใช้ อุณหภูมิ และระยะเวลาที่ใช้ แล้วนำไปผ่านกระบวนการแยกสารด้วยความหนาแน่น

Thushari และคณะ (2017) ได้ทำการศึกษาผลกระทบของไมโครพลาสติกในสัตว์ไม่มีกระดูกสันหลัง บริเวณชายหาดของจังหวัดชนบุรี พบว่ามีการสะสมของไมโครพลาสติกอย่างมีนัยสำคัญทางสถิติ ในอัตรา 0.2-0.6 ชิ้นต่อกรัม ชี้ให้เห็นถึงปัญหามลภาวะบริเวณชายหาด โดยที่ Filter Feeding Organism เช่นหอยสองฝา หอยฝาเดียว และเพรียง จะมีการสะสมของไมโครพลาสติกที่สูงกว่าสิ่งมีชีวิตประเภทอื่น นำมาสู่ความเสี่ยงของ ผู้รับประทานอาหารทะเล ดังนั้น สามารถใช้การสะสมของไมโครพลาสติกในสิ่งมีชีวิตเหล่านี้เป็นตัวบ่งชี้ความ ปนเปื้อนของไมโครพลาสติกในพื้นที่ได้ และจำเป็นต้องมีมาตรการในควบคุมมลภาวะพลาสติกในบริเวณ ชายหาดของประเทศไทย

Masura และคณะ (2015) ได้ทำการศึกษาแนวทางการเก็บและวิเคราะห์ตัวอย่างไมโครพลาสติกในแหล่งน้ำ โดยมีขั้นตอนดังนี้

- ทำการกรองสารด้วยตัวกรองขนาด 0.335 มม. แล้วนำสารที่ติดตัวกรองไปกรองผ่านตัวกรองขนาด
 0.5 มม. เพื่อให้ได้มาซึ่งสารที่มีขนาดระหว่าง 0.335 มม.และ 0.5 มม.
- 2. นำสารที่ได้ไปผ่านกระบวนการ Wet Peroxide Oxidation (สารละลายไฮโครเจนเปอร์ออกไซด์) โดยมี Fe(II) เป็นตัวเร่งปฏิกิริยา เพื่อย่อยสารอินทรีย์
- 3. ใช้การแยกสารด้วยความหนาแน่นในสารละลาย NaCl เพื่อนำไมโครพลาสติกที่ลอยอยู่บนผิวของ สารละลายไปทำการอบให้แห้ง
- 4. นำไปทำการศึกษาต่อใต้กล้องจุลทรรศน์ใช้แสงเพื่อยืนยันผล

Cole et al. (20 13) รายงานผลของไมโครพลาสติกชนิด PS ต่อแพลงก์ตอนสัตว์ 2 ชนิด ได้แก่ Centropages typicus และ Calanus helgolandicus พบว่ามีการสะสมไมโครพลาสติกในเนื้อเยื่อของแพลงก์ตอนสัตว์ (ซึ่งอาจ ส่งผลต่อการถ่ายทอดในห่วงโซ่อาหาร) และพบว่าแพลงก์ตอนสัตว์ทั้ง 2 ชนิดมีอัตราการสืบพันธุ์ลดลง ไข่มี ขนาดเล็กลง มีอัตราการฟักเป็นตัวต่ำ และมีอัตราการตายที่สูงขึ้น Gliwicz & Siedlar(1980) Besseling et al. (2014) และ Ogonowski, SchUrr, Jarsen & Gorokhova (2016) รายงานถึงกลกо - PS ที่มีผลกระทบต่อการเจริญที่ ผิดปกติของตัวอ่อน อัตราการรอดชีวิต ของแพลงก์ตอนสัตว์ (Daphniamagna) Browne, Dissanayake & Galloway (2008) รายงานการอักเสบใน Mytilus edulis เป็นผลมาจากไมโครพลาสติกชนิด PS นอกจากนี้ Rist, Assidqi & Zamani (2016) พบว่า PVC ขนาด 1-50 ไมโครเมตรส่งผลกระทบต่อการหายใจ การกรองอาหาร การ สร้างสารเมือก และเพิ่มอัตราการตายของหอยแมลงภู่(Perna viridis: green mussel) (สุกฤตา ปุณยอุปพัทธ์, และ ประสงค์สม ปุณยอุปพัทธ์, 2562)

บทที่ 3 วัสดุอุปกรณ์และวิธีการ

3.1 วัสดุอุปกรณ์

- 1. เครื่องวัดค่าออกซิเจนละลายในน้ำ (DO)
- 2. เครื่องวิเคราะห์ค่าคุณภาพน้ำ (BOD)
- 3. เตาอบลมร้อนขนาดใหญ่
- 4. กล้องจุลทรรศน์ใช้แสง
- 5. แผ่นสแตนเลสขนาครู 5 มิลลิเมตร
- 6. ไฮโครเจนเปอร์ออกไซค์เข้มข้น 50% (v/v)
- 7. หลอดทดลอง

- 8. หลอดหยดสาร
- 9. สไลค์และกระจกปิดสไลค์
- 10. มีคผ่าตัด
- 11. ฟอร์เซป
- 12. เครื่องชั่งคิจิตอล
- 13. คาลิเปอร์ดิจิตัลอิเล็กทรอนิกส์แสตนเลส

3.2 วิธีการ

ตอนที่ 1 ทำการกำหนดจุดศึกษาในแม่น้ำปิง โดยทำการลงพื้นที่สำรวจ และได้เลือก

1.1 ตำบลป่าตัน (18.8376717, 98.9901849) – ใต้สะพานบริเวณถนนโชตนา 22

รูปที่ 2 จุคศึกษาตำบลป่าตัน

1.2 ตำบลช้างม่อย (18.7846030, 99.0049069) – ติคถนนเชียงใหม่-ลำพูน

รูปที่ 3 จุคศึกษาตำบลช้างม่อย

1.3 ตำบลป่าแคค (18.719853, 98.986777) – ใต้สะพานป่าแคค

รูปที่ 4 จุคศึกษาตำบลป่าแคค

ตอนที่ 2 การเก็บตัวอย่าง

2.1 ติดต่อจ้างชาวประมงในพื้นที่ โดยกำหนดน้ำหนักและขนาดปลาในแต่ละสายพันธุ์ ได้แก่ Henicorhynchus siamensis(ปลาสร้อยขาว), Channa striata(ปลาช่อน), และ Clarias batrachus (ปลาดุก)

รูปที่ 5 ตัวอย่างการตรวจสอบน้ำหนักและขนาดปลา 2.2 เก็บตัวอย่างน้ำบริเวณลุ่มแม่น้ำที่จับปลาที่ความลึก 30 เซนติเมตร ปริมาตร 1.5 ลิตร

รูปที่ 6 การเก็บตัวอย่างน้ำ

ตอนที่ 3 การวิเคราะห์หาไมโครพลาสติก

- 3.1 แช่ตัวอย่างกระเพาะอาหารในภาชนะที่มีสารละลายไฮโครเจนเปอร์ออกไซค์เข้มข้น $50\%~({
 m v/v})$
- 3.2 อบในเตาอบที่ 75 องศาเซลเซียสเป็นเวลา 5 ชั่วโมง
- 3.3 ทำการวิเคราะห์หาไมโครพลาสติกใต้กล้องจุลทรรศน์ใช้แสงที่กำลังขยาย 1200X ตอนที่ 4 ทำการวิเคราะห์คุณภาพน้ำ โดยหาค่า DO และ BOD ตอนที่ 5 อภิปรายและสรุปผล

รูปที่ 7 การศึกษาปรมาณใมโครพลาสติก

บทที่ 4 ผลการทดลอง

4.1 การศึกษาปริมาณไมโครพลาสติกในปลาสายพันธุ์ต่างๆในแม่น้ำปิง

ทำการศึกษา โดยกำหนดจุดทั้งหมด 3 จุดของแม่น้ำปิงคือ ตำบลป่าตัน ตำบลช้างม่อย ตำบลป่าแดด จากนั้น ทำการเก็บตัวอย่างปลาจำนวน 3 ชนิด คือ Henicorhynchus siamensis, Channa striata, และ Clarias batrachus นำส่วน ที่เป็นกระเพาะอาหารของปลามาแช่ในภาชนะที่มีสารละลายไฮโดรเจนเปอร์ออกไซด์เข้มข้น 50% (v/v) และอบใน เตาอบที่ 75 องศาเซลเซียสเป็นเวลา 5 ชั่วโมง ท้ายที่สุดทำการวิเคราะห์หาไมโครพลาสติกใต้กล้องจุลทรรศน์ใช้แสงที่ กำลังขยาย 1200X จากการเก็บตัวอย่างพบไมโครพลาสติกดังตาราง 4.1

20		น้ำหนัก	ความยาว	Sample	ไมโครพลา	ค่าเฉลี่ยไมโครพลา
จุด ศึกษา	สายพันธุ์ปลา	ปลา	ปลา	size (n)	สติก	สติกที่พบ
HIIBI		(g)	(mm)			(ชิ้น/ปลา)
	xx · 1 1	85.3	205			
	Henicorhynchus siamensis (ปลาสร้อย	61.7	157	4	22	5.50
	รเลmensis (บลาสรัชย์ ขาว)	59.5	162			
		47.6	176			
		177.5	287			
		254.4	293			
ป่าตัน	Channa striata (ปลา	203.7	278			
אואו ח	ช่อน)	188.6	284	6	72	12.00
		224.2	318			
		195.1	294			
		163.8	215			
	Clarias batrachus	152.5	212	4	65	16.25
	(ปลาคุก)	180.9	233			
		169.4	225			
ช้าง		80.4	184			
ม่อย		60.8	165	4	16	4.00

	Henicorhynchus	82.5	194			
	siamensis (ปลาสร้อย					
	ขาว)	55.7	175			
		160.8	276			
	Channa striata (ปลา	212.9	284	4	40	10.00
	ช่อน)	187.4	302			
		188.9	289			
จุค	สายพันธุ์ปลา	น้ำหนัก	ความยาว	Sample	ใมโครพลา	ค่าเฉลี่ยไมโครพลา
ศึกษา		ปลา	ปลา	size (n)	สติก	สติกที่พบ
		(g)	(mm)			(ชิ้น/ปลา)
		154.7	195			
		201.5	253			
	Clarias batrachus	175.6	225	6	86	14.33
	(ปลาดุก)	198.5	241			
		157.3	205			
		160.4	197			
		74.5	196			
	Henicorhynchus	84.8	183	4	23	5.75
	siamensis (ปลาสร้อย	63.4	176			
	ขาว)	50.6	177			
		193.9	298			
ป่า	Channa striata (ปลา	184.1	305	3	38	12.67
แคค	ช่อน)	210.4	289			
		176.8	184			
	Clarias batrachus	210.4	210	4	64	16.00
	(ปลาคุก)	189.4	224			
		.195.7	241			

รูปที่ 8 ปริมาณไมโครพลาสติกในปลาสายพันธุ์ต่างๆ

จากการสำรวจไมโครพลาสติกพบว่าค่าเฉลี่ย จุดที่ 1 ตำบลป่าตันพบไมโครพลาสติกใน Clarias batrachus 16.25 pieces/fish, Channa striata 12.00 pieces/fish, Henicorhynchus siamensis 5.50 pieces/fish จุด ที่ 2 ตำบลช้างม่อยพบไมโครพลาสติกใน Clarias batrachus 14.34 pieces/fish, Channa striata 10.00 pieces/fish, Henicorhynchus siamensis 4.00 pieces/fish จุดที่ 3 ตำบลป่าแคดพบไมโครพลาสติกใน Clarias batrachus 16.00 pieces/fish, Channa striata 12.67 pieces/fish, Henicorhynchus siamensis 5.75 pieces/fish เมื่อพิจารณาแล้ว พบว่า Clarias batrachus พบไมโครพลาสติกค่อนข้างสูงกว่าปลาสายพันธุ์อื่น

4.2 การศึกษาความสัมพันธ์ของคุณภาพน้ำกับไมโครพลาสติกที่พบ

ทำการเก็บตัวอย่างน้ำทั้ง3จุคคือ บริเวณตำบลป่าตัน ตำบลช้าม่อย ตำบลป่าแคคที่ความลึก30เซนติเมตร ปริมาตร 1.5 ลิตร แสคงข้อมูลดังตาราง

ตารางที่ 4.2 เปรียบเทียบค่า DO และ BOD กับปริมาณ ไม โครพลาสติกที่พบ

จุคศึกษา	DO (mg/L)	BOD (mg/L)	ค่าเฉลี่ยไมโครพลาสติก ที่พบในปลาสร้อยขาว (ชิ้น/ปลา)	ค่าเฉลี่ยไมโครพลาสติก ที่พบในปลาช่อน(ชิ้น/ ปลา)	ค่าเฉลี่ยไมโครพลาสติก ที่พบในปลาดุก(ชิ้น/ ปลา)
ป่าตัน	7	11	5.50	12.00	16.25
ช้างม่อย	12	9.5	4.00	10.00	14.34
ป่าแคค	9	5.2	5.75	12.67	16.00

จากตารางพบว่าทั้ง 3 บริเวณ ตำบลป่าตัน ตำบลช้างม่อย ตำบลป่าแคค พบไมโครพลาสติกในปริมาณที่ ใกล้เคียงกันเมื่อเฉลี่ยจากปลาทั้ง 3 ชนิคและเมื่อเปรียบเทียบความสัมพันธ์กับ DO และ BOD พบว่าทั้งสาม บริเวณมีค่าDOและBODแตกต่างกัน ซึ่งไม่เป็นผลสัมพันธ์กับปริมาณไมโครพลาสติกที่พบ

บทที่ 5

5.1 อภิปรายผล

จากการวิเคราะห์หาการปนเปื้อนของไมโครพลาสติกในปลาสายพันธุ์ต่างๆของแม่น้ำปิง พบว่ามีการ ปนเปื้อนของไมโครพลาสติกในเนื้อเยื่อ ระบบทางเคินอาหารของปลาทุกชนิคในทุกจุคศึกษาคือ จุดที่ 1 ตำบล ป่าตัน พบไมโครพลาสติกใน Clarias batrachus 16.25 pieces/fish, Channa striata 12.00 pieces/fish, Henicorhynchus siamensis 5.50 pieces/fish จุดที่ 2 ตำบลช้างม่อย พบไมโครพลาสติกใน Clarias batrachus 14.34 pieces/fish, Channa striata 10.00 pieces/fish, Henicorhynchus siamensis 4.00 pieces/fish และจุดที่ 3 ตำบลป่าแคด พบไมโครพลาสติกใน Clarias batrachus 16.00 pieces/fish, Channa striata 12.67 pieces/fish, Henicorhynchus siamensis 5.75 pieces/fish

จากการเปรียบเทียบสายพันธุ์ปลาพบว่า Clarias batrachus มีการสะสมของไมโครพลาสติกในเนื้อเยื่อ ระบบทางเดินอาหารมากที่สุด รองลงมาคือ Channa striata และ Henicorhynchus siamensis ตามลำดับ ผู้วิจัย กาคว่าการสะสมของไมโครพลาสติกในระบบทางเดินอาหารของปลาสายพันธุ์ต่างๆมีผลสืบเนื่องมาจาก พฤติกรรมและแหล่งที่อยู่อาศัย ปลาที่พบไมโครพลาสติกสะสมมากที่สุดคือ Clarias batrachus ซึ่งหาอาหารจาก หน้าดิน และสามารถอยู่น้ำที่มีปริมาณออกซิเจนต่ำได้นาน พฤติกรรมดังกล่าวมีความสัมพันธ์กับปริมาณ ไมโครพลาสติกที่พบ

ทั้งนี้เมื่อวิเคราะห์ค่า DO และ BOD เพื่อศึกษาความสัมพันธ์ระหว่างค่าคุณภาพน้ำกับปริมาณ ใมโครพลาสติกที่ปนเปื้อนในเนื้อเยื่อระบบทางเดินอาหารของปลา ได้ข้อสรุปว่าค่า DO และค่า BOD ทั้ง 3 จุดมี ค่าปานกลางเหมือนกัน และ ไม่มีผลสัมพันธ์กับการพบไมโครพลาสติกที่ปนเปื้อนในเนื้อเยื่อระบบทางเดิน อาหารของปลา

5.2 สรุปผล

- 1. ปริมาณการปนเปื้อนของไมโครพลาสติกในปลาจะแตกต่างกันตามสายพันธุ์และพฤติกรรมการกินของปลา
- 2. ปริมาณการปนเปื้อนของไมโครพลาสติกในปลาจะแตกต่างกันตามจุคต่างๆที่เก็บตัวอย่างปลา

5.3 ข้อเสนอแนะ

เพิ่มจุดศึกษาและพันธุ์ปลาที่ศึกษา เพื่อให้ได้ผลมากขึ้น ทำให้การวิเคราะห์แม่นยำขึ้น

บรรณานุกรม

- กองโภชนาการ กรมอนามัย กระทรวงสาธารณสุข. (2544). คุณค่าทางโภชนาการของอาหารไทย. สืบค้น 19 กรกฎาคม 2564. จาก https://pasusat.com/ปลาช่อน/
- เบทาโกร จำกัด(มหาชน). (n.d.). คู่มือการเลี้ยงปลาคุก. สืบค้น 25 กรกฎาคม 2564, จาก https://betagrofeed.com/community/wp-content/uploads/2014/12/คู่มือการเลี้ยงปลาคุก.pdf
- ไพบูลย์ รุ่งพิบูลโสภิษฐ์ และธราพันธ์ วัฒนะมหาตม. (2527). การศึกษาชีวประวัติปลาสร้อยขาวใน-. สืบค้น 19 กรกฎาคม 2564. จาก https://pasusat.com/ปลาสร้อย/
- มหาวิทยาลัยมหิดล. สมบัติของน้ำ. สืบค้น 16 มีนาคม 2564, จาก https://il.mahidol.ac.th/e-media/ecology/chapter3/chapter3_water2.htm
- สุกฤตา ปุณยอุปพัทธ์, และประสงค์สม ปุณยอุปพัทธ์. (2562). ไมโครพลาสติก: จุดกำเนิด ผลกระทบต่อ สิ่งแวดล้อม การปนเปื้อนในสิ่งแวดล้อม และวิธีการจัดการ. สืบค้น 19 กรกฎาคม 2564. จาก https://so02.tci-thaijo.org/index.php/JEM/article/download/210049/157206
- องค์การพิพิธภัณฑ์วิทยาศาสตร์แห่งชาติ. เสนอคำศัพท์ว่า ไมโครพลาสติก (*Microplastic*). สืบค้น 10 มีนาคม 2564, จาก https://www.nsm.or.th/other-service/669-online-science/knowledge-inventory/scivocabulary/sci-vocabulary/science-museum/3429-ไมโครพลาสต%20 เก-microplastic.html
- Gajahin Gamage Nadeeka Thushari, Jayan Duminda Mahesh Senevirathna, Amararatne Yakupitiyage, Suchana Chavanich. (2017). Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: An approach to coastal zone conservation. Retrieved 16 March 2021 from https://www.sciencedirect.com/science/article/pii/S0025326X17304903?via%3Dihub
- Julie Masura, Joel Baker, Gregory Foster, and Courtney Arthur. (2015). Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48. Retrieved 13 March 2021 from https://repository.oceanbestpractices.net/bitstream/handle/11329/1076/noaa_microplastics methods manual.pdf?sequence=1&isAllowed=y
- Mohammed S. M. Al-Azzawi, Simone Kefer, Jana Weißer, Julia Reichel, Christoph Schwaller, Karl Glas, Oliver Knoop,* and Jörg E. Drewes. (2020). *Validation of Sample Preparation Methods for Microplastic Analysis in Wastewater Matrices Reproducibility and Standardization*. Retrieved 14 March 2021 from https://www.mdpi.com/2073-4441/12/9/2445/pdf
- United States Environmental Protection Agency. (2018). Facts and Figures about Materials, Waste and Recycling. Retrieved 13 March 2021 from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data