Jan Jędrzejewski Jakub Niezabitowski 22.01.2022r

WSI - zadanie 5

Sztuczne sieci neuronowe Perceptrony wielowarstwowe

Treść zadania:

Zaimplementuj perceptron wielowarstwowy, który posłuży do aproksymacji zadanej funkcji f(x). Zbadaj wpływ liczby neuronów w warstwie na jakość uzyskanej aproksymacji.

Rozwiązanie biblioteki sklearn - model sieci MLPRegressor W pliku plot.py przygotowaliśmy funkcję rysującą wykresy i dodatkowo zbadaliśmy wpływ parametrów na przybliżenia funkcji przez model sieci neuronowej z biblioteki sklearn.

Za pomocą tego modelu najlepsze wyniki otrzymano dla poniższych parametrów. Na następnej stronie znajduje się zestawienie aproksymacji funkcji dla różnej liczby perceptronów w warstwie ukrytej. I dla stałej wartości pozostałych parametrów.

Neurony=30, epoki=5000, mini_bath=100, learning_rate=0.001, random_state=5, funkcja aktywacji=sigmoidalna, solver=SGD

Następnych stronach aproksymacja funkcji względem liczby neuronów:

Badanie pozostałych parametrów

Stworzyliśmy kilka modeli dla różnych wartości parametru random_state odpowiedzialnego za początkowe wylosowane wartości wag i biasów dla warstwy ukrytej. Nie miało to większego wpływu na wyniki, ale najlepsze przybliżenie dostaliśmy dla wartości 5, dlatego jej używamy w pozostałych doświadczeniach.

Parameter learning rate należało dostosować do rozmiaru zbioru testującego. Dla 40 000 próbek, najlepiej sprawdzała się wartość 0,001, co demonstrują poniższe wykresy.

Learning rate

Nasze rozwiązanie

Analiza naszego rozwiązania

Zaimplementowany przez nas algorytm algorytm jest niestabilny, nie zawsze dobrze aproksymuje zadaną funkcję. Na wykresie z 15 neuronami niebieska linia przypomina funkcję o przeciwnych wartościach do danej. Dodatkowo większa liczba epok wcale nie wpływała na poprawę aproksymacji. Algorytm najlepiej zachowywał się dla 10-15 neuronów. Dlatego przeprowadziliśmy dodatkowe badanie w tym zakresie. Oto najepsze przybliżenie jakie otrzymaliśmy, dla 12 neuronów:

