

# Explainable Artificial Intelligence Modell-agnostische Erklärungsansätze im Vergleich

Büsra Karaoglan

Fachbereich Mathematik, Naturwissenschaften und Datenverarbeitung Studiengang Business Mathematics

29. September 2020

- 1 Motivation
- 2 Grundlagen der XAI
- 3 Local Interpretable Model-Agnostic Explanations
- 4 Shapley Additive Explanations
- 5 Implementierung und Evaluation

- 1 Motivation
- 2 Grundlagen der XA
- 3 Local Interpretable Model-Agnostic Explanations
- 4 Shapley Additive Explanations
- 5 Implementierung und Evaluation

#### Motivation





Abbildung: Konzept der erklärbaren Künstlichen Intelligenz (HA18)

- Motivation
- 2 Grundlagen der XAI
- 3 Local Interpretable Model-Agnostic Explanations
- 4 Shapley Additive Explanations
- 5 Implementierung und Evaluation

## Grundlagen der XAI



Clever-Hans-Effekt

■ Scheinkausalität

Algorithmischer Voreingenommenheit

- Motivation
- 2 Grundlagen der XA
- 3 Local Interpretable Model-Agnostic Explanations
- 4 Shapley Additive Explanations
- 5 Implementierung und Evaluation

## LIME-Erklärung



$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \ L(f, g, \pi_x(z)) + \Omega(g)$$

- d-dimensionaler Merkmalsraum  $X = \mathbb{R}^d$
- Ausgaberaum  $Y = \mathbb{R}$
- Black-Box-Modell  $f: \mathbb{R}^d \to \mathbb{R}$  mit  $x \in \mathbb{R}^d$
- Interpretierbares Modell  $g: \mathbb{R}^{d'} \to \mathbb{R}$
- Komplexität  $\Omega(g)$
- Transformationsfunktion  $IR : \mathbb{R}^d \to \mathbb{R}^{d'}$  mit  $x' \in \mathbb{R}^{d'}$
- lacksquare Ähnlichkeitsmaßes  $\pi_x(z)$  mit permutierte Instanzen  $z' \in \mathbb{R}^{d'}$
- Verlustfunktionen  $L(f, g, \pi_x(z))$

## LIME-Algorithmus



#### Algorithm 1 Spärliche lineare Erklärungen mit LIME

**Require:** Black-Box Modell f, Stichprobengröße N

**Require:** Instanz x, dazugehörige interpretierbare Darstellung x'

**Require:** Ähnlichkeitsmaß  $\pi_x(z)$ , Länge der Erklärung K

- 1:  $\mathcal{Z} \leftarrow \{\}$
- 2: for  $i \in \{1, 2, 3, ..., N\}$  do
- 3:  $z_i' \leftarrow sample\_around(x')$
- 4:  $\mathcal{Z} \leftarrow \mathcal{Z} \cup \langle z_i', f(z_i), \pi_x(z_i) \rangle$
- 5: end for
- 6:  $w \leftarrow \text{K-LASSO}(\mathcal{Z}, K) \quad \triangleright \text{ mit } z_i' \text{ als Merkmale, } f(z) \text{ als Zielvariable}$
- 7: return w

## LIME-Algorithmus für Tabellendaten





Abbildung: LIME-Algorithmus für tabellarische Daten (MC20)

- Motivation
- 2 Grundlagen der XA
- 3 Local Interpretable Model-Agnostic Explanation:
- 4 Shapley Additive Explanations
- 5 Implementierung und Evaluation

# Shapley-Wert



Shapley-Wert für kooperative Spiele:

$$\phi_j(v) = \sum_{S \subset N \setminus \{j\}} \frac{|S|! (N - |S| - 1)!}{N!} (v(S \cup \{j\}) - v(S))$$

Shapley-Wert für erklärbares maschinelles Lernen:

$$\phi_j = \sum_{S \subseteq N \setminus \{j\}} \frac{|S|! (M - |S| - 1)!}{M!} [f_x(S \cup \{j\}) - f_x(S)]$$

### SHAP-Modell



Additive Merkmalszuordnung:

$$g(z') = \phi_0 + \sum_{j=1}^{M} \phi_j z'_j$$

SHAP-Wert:

$$\phi_j(f, x) = \sum_{z' \in x'} \frac{|z'|! (M - |z'| - 1)!}{M!} [f_x(z') - f_x(z' \setminus j)]$$

#### Kernel SHAP



$$\Omega(g) = 0$$

$$\pi_{x'}(z') = \frac{(M-1)}{\binom{M}{|z'|}|z'|(M-|z'|)}$$

$$L(f, g, \pi_{x'}) = \sum_{z' \in Z} [f(h_x(z')) - g(z')]^2 \pi_{x'}(z')$$



Abbildung: Schematische Darstellung der SHAP-Werte (LL17)

- Motivation
- 2 Grundlagen der XA
- 3 Local Interpretable Model-Agnostic Explanations
- 4 Shapley Additive Explanations
- 5 Implementierung und Evaluation

## Datenbeschreibung



#### Default Of Credit Card Clients Datensatz:

- LIMIT\_BAL
- SEX
- EDUCATION
- MARRIAGE
- PAY\_0 PAY\_6
- BILL\_AMT1 BILL\_AMT6
- PAY\_AMT1 PAY\_AMT6
- default payment next month

## Vergleich von Black-Box Modellen



| Modell         | Precision | Recall-Wert | F1-Wert | Accuracy | ROC  |
|----------------|-----------|-------------|---------|----------|------|
| SVM Classifier | 0.52      | 0.52        | 0.52    | 0.79     | 0.69 |
| RF Classifier  | 0.52      | 0.51        | 0.52    | 0.79     | 0.69 |
| MLP Classifier | 0.42      | 0.63        | 0.53    | 0.73     | 0.70 |

Tabelle: Übersicht der Klassifizierungsmetriken von angewendeten Modellen

## LIME- und Kernel-SHAP-Erklärungen I



Abbildung: LIME-Erklärung zum SVM Classifier für Instanz 1



Abbildung: LIME-Erklärung zum RF Classifier für Instanz 1

# LIME- und Kernel-SHAP-Erklärungen II





Abbildung: LIME-Erklärung zum MLP Classifier für Instanz 1



Abbildung: Kernel-SHAP-Erklärung zum MLP Classifier für Instanz 1

## LIME- und Kernel-SHAP-Erklärungen III





#### Abbildung: SP-LIME-Erklärung zum SVM Classifier



Abbildung: SP-LIME-Erklärung zum RF Classifier

## LIME- und Kernel-SHAP-Erklärungen IV





Abbildung: SP-LIME-Erklärung zum MLP Classifier

#### LIME- und Kernel-SHAP-Erklärungen V



CPU times: user 30min 48s, sys: 18min 35s, total: 49min 23s Wall time: 26min 35s



Abbildung: Globale Kernel-SHAP-Erklärung zum MLP Classifier

#### Literaturverzeichnis



- Holzinger, A. Interpretierbare KI - Neue Methoden zeigen Entscheidungswege künstlicher Intelligenz auf Heise Medien, Heft 22, 2018
- Lundberg, S. M. und Lee, S.-I.
   A unified approach to interpreting model predictions
   In: Advances in Neural Information Processing Systems, 2017
- Molnar, C. Interpretable Machine Learning - A Guide for Making Black Box Models Explainable Abgerufen am 20.08.2020 von https://christophm.github.io/interpretable-ml-book/
- Ribeiro, M. T., Singh, S. und Guestrin, C. "Why Should I Trust You?" - Explaining the Predictions of Any Classifier In: Knowledge Discovery and Data Mining, 2016

