PROGRAMACIÓN I TALLER DE EXPRESIONES

Problemas 1. Dada una cantidad en dólares obtener el equivalente en pesos.

Problema 2 Realizar funciones que me permiten la conversión de temperatura a grados Celsius, Fahrenheit y kelvin (6 funciones con argumentos).

	° C	° F	K
°C		$F = \frac{9}{5}C + 32$	K = C + 273.15
۰F	$C = \frac{5}{9} \left(F - 32 \right)$		$K = \frac{5}{9} \left(F + 459.67 \right)$
K	C = K - 273.15	$F = \frac{9}{5}K - 459.67$	

Problema 3. El supermercado "El Ahorrito" necesita un programa que calcule el valor de una bolsa de monedas. Defina un programa que reciba el número de monedas de: \$20, \$50, \$100, \$200 y \$500 que hay en la bolsa y devolver la cantidad de dinero que hay en ella. (Asumir que el primer parámetro corresponde a la cantidad de monedas de \$20, el segundo a las de \$50, y así sucesivamente)

Problema 4. Se desea hacer un programa que calcule las ganancias de un teatro para una presentación. Cada cliente paga \$10.000 por entrada y cada función le cuesta al teatro \$300.000 por la atención prestada y por cada cliente que entre, el teatro debe pagar un costo de \$2.000 por aseo. Desarrolle un programa que reciba el número de clientes de una función y devuelve el valor de las ganancias obtenidas.

Programa 5. Una empresa que fabrica vajillas desechables tiene costos fijos de US \$3.000 mensuales, y el costo de la mano de obra y del material es de US \$50 por vajilla. Determinar la función de costos, es decir el costo total como una función del número de vajillas producidas. ¿Cuál es el costo de producir 22 vajillas?

Programa 6. Suponga que se espera que un objeto de arte adquirido por \$50.000 aumenten su valor a una razón constante de \$500 por año durante los próximos 40 años.

- a) Escriba la función que prediga el valor de la obra de arte en los próximos cuarenta años.
- b) ¿Cuál será su valor 31 años después de la fecha de adquisición?
- c) ¿Cuántos años transcurren para que la obra de arte tenga un valor de \$55.500?

Programa 7. Una planta tiene la capacidad para producir desde 0 a 100 computadoras por día. El costo fijo diario de la planta son 5.000 dólares, y el costo variable (mano de obra y materiales) para producir un computador es 805 dólares.

- a) Escriba la función de costo total de producir x computadores en un día.
- b) Escriba la función de costo unitario (costo promedio por computador) en un día.

Problema 8. El crecimiento de un feto de más de 12 semanas de gestación se calcula mediante la función $L(t) = 1,53 \times t - 6,7$, donde L es la longitud (en cm) y t es el tiempo (en semanas). Calcula la edad de un feto cuya longitud es 28 centímetros.

Problema 9. Admitamos que el costo de producción de un número x de periódicos es: C(x) = 200.000 + 400x pesos

- a) ¿Cuál es el costo de producir 30.000 periódicos?
- b) ¿Cuántos periódicos se han producido si el costo total fue de \$520.000?

Problema 10. Un proyectil se lanza directamente hacia arriba desde el suelo. Después de transcurridos t segundos su distancia en metros por encima del suelo está dada por la función $d(t) = 144t - 16t^2$.

- a) ¿Después de cuántos segundos estará el proyectil a 128 metros del suelo?
- b) ¿En qué momento toca el suelo el objeto?

Problema 11. Un fabricante determina que el ingreso R obtenido por la producción y venta de x artículos está dado por la función: $R = 350x - 0.25x^2$

- a) Calcule el ingreso cuando se venden 100 artículos.
- b) Si el ingreso obtenido es 120.000, determine la cantidad de artículos vendidos.

Problema 12. Escribir una función que calcule el número de horas, minutos y segundos que hay en N segundos.

Ejemplos En 3601 segundos equivale 1 hora 0 minuto 1 segundo

Problema 13. Un alumno desea saber cuál será su promedio general en las tres materias más difíciles que cursa y cuál será el promedio que obtendrá en cada una de ellas. Estas materias se evalúan como se muestra a continuación:

La calificación de matemáticas se obtiene de la siguiente manera:

Examen 90%. Promedio de las tares 10%; En esta materia se pidió un total de tres tareas.

La calificación de física se obtiene de la siguiente manera: examen 80%. Promedio de tares 20%; En esta materia se pidió un total de dos tareas.

La calificación de química se obtiene de la siguiente manera:

Examen 85%. Promedio de tareas 15%; En esta materia se pidió un total de tres tareas.

Problema 14. El dueño de una tienda compra un artículo a un precio determinado. Obtener el precio en lo que debe vender para obtener una ganancia del 30%

Problemas 15. En un hospital existen tres áreas; Ginecología, Pediatría, traumatología. El presupuesto anual del hospital se reparte conforme a la siguiente tabla.

Area	Porcentaje	
	del presupuesto	
Ginecología	40%	
Traumatología	30%	
Pediatría	30%	