EXAM 2

February 19, 2021

Do All Problems – Show All Work This exam is open notes and open book.

You have 24 hours to complete all problems.

Student Printed Name:	
Student I Inited Name.	
Student Signature:	

Student ID:

ID: _____

1.) (30 pts) Please find the free response y(t) of the following differential equation using Laplace transform. Initial conditions are y(0) = 1, $\dot{y}(0) = -2$.

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 1y = u(t)$$

Can you imagine a mechanical or electrical system that would have a differential equation model of this form? What does the free response found above represent based on this physical analogy?

ID: _____

2.) (20 pts) If the response of a system with zero initial conditions to a unit impulse input (i.e. $u(t) = \delta(t)$) is given as:

$$y(t) = 3te^{-2t} - 2e^{-3t}, \qquad t > 0$$

Please determine the system transfer function G(s) = Y(s)/U(s).

ID: _____

3.) (20 pts) Please determine the Inverse Laplace Transform for the systems listed below:

$$\mathcal{L}^{-1}\left\{\frac{5}{s^2+16}\right\} =$$

$$\mathcal{L}^{-1}\left\{\frac{5}{s^2-16}\right\} =$$

$$\mathcal{L}^{-1}\left\{\frac{5}{s^2 + 4s + 13}\right\} =$$

ID: _____

4.) (30 pts) Please consider the electrical system shown in the figure below for $R_2 = 3$, $L_2 = 0.8$, $R_1 = 1$, $L_1 = 0.2$. Initial conditions are $V_{out}(0) = 0$, $\dot{V}_{out}(0) = 0$. If $V_{in}(t) = 5e^{-5t}$, $V_{out}(t) = ?$

Name: _____

ID: _____

Time Function	LaPlace Transform		
Unit Impulse, $\delta(t)$	1		
Unit step, $u_s(t)$	<u>1</u> s		
t	$\frac{1}{s^2}$		
$\frac{t^2}{2}$	1 s ³		
\frac{t^n}{n!}	$\frac{1}{s^{n+1}}$		
e ^{-at}	$\frac{1}{s+\alpha}$		
te ^{-a}	$\frac{1}{(s+\alpha)^2}$		
$1-e^{-\alpha t}$	$\frac{\alpha}{s(s+\alpha)}$		
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$		
$e^{-\alpha t}\sin(\alpha t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$		
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$		
$e^{-\alpha t}\cos(\alpha t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$		

ES3011 - Control Engineering			20210
Name:		ID:	
	Extra Page		