Семинар 4. Тема семинара: "Построение частотных характеристик RL и RC цепей первого порядка".

Цель семинара: изучить методику получения математических выражений частотных характеристик (АФЧХ, АЧХ, ФЧХ действительной и мнимой частотных характеристик); их взаимосвязь и графическое представление.

Занятие проводится на схемах с самой простой структурой (Г - образных схемах).

Если семинар проводится после прочтения лекции по данной теме, то следует провести опрос и убедиться в понимании формулировок и определения частотных характеристик: для какого аргумента записываются частотные характеристики, практическое использование характеристик, общий вид формул. При опережении семинаром лекции следует провести объяснение в течение 0.5 часа

Передаточная функция является комплекснозначной функцией и определяется отношением изображения по Лапласу выходной переменной к изображению по Лапласу соответствующей входной переменной при нулевых начальных условиях.

$$W_{\nu}(S) = U_{\text{BMY}}(S)/U_{\text{RY}}(S), \tag{1}$$

где $U_{\text{вых}}(S)$ изображение по Лапласу функции-оригинала $u_{\text{вых}}(t)$ выходной переменной (реакции), а $U_{\text{вх}}(S)$ - изображение функции-оригинала $u_{\text{вх}}(t)$ входной переменной (сигнала).

Для практических расчетов удобно использовать частотную передаточную функцию $W(j\omega)$, которая является частным случаем передаточной функции W(S) при $C_0=0$, $S=j\omega$. В этом случае переходят от изображений переменных по Лапласу к изображениям по Фурье:

$$W_{\mu}(j\omega) = U_{\text{BMX}}(j\omega)/U_{\text{BX}}(j\omega), \qquad (2)$$

где $U_{\text{вых}}(j\omega) = U_{m\text{вых}} e^{j(\omega t + \psi_{\text{вых}})} = U_{m\text{вых}} e^{j\psi_{\text{вых}}} \cdot e^{j\omega t}$ - изображение выходной переменной по Фурье, а $U_{\text{вх}}(j\omega) = U_{m\text{вх}} e^{j\psi_{\text{вх}}} \cdot e^{j\omega t}$ - изображение по Фурье входной переменной.

Вполне очевидно, что при использовании частотной передаточной функции достаточно оперировать только с комплексными амплитудами переменных $\dot{U}_{m{\rm Bыx}} = U_{m{\rm Bыx}} e^{j\psi_{{\rm Bix}}} \ {\rm id} \ \dot{U}_{m{\rm Bx}} = U_{m{\rm Bx}} e^{j\psi_{{\rm Bx}}} \, .$

$$W_u(j\omega) = \dot{U}_{mBLIX} / \dot{U}_{mBX} . \tag{3}$$

Функция $W(j\omega)$ может быть представлена в трех формах: показательной, алгебраической и тригонометрической.

Показательная форма представления:

$$W(j\omega) = |W(j\omega)| \cdot e^{j\varphi(\omega)}, \tag{4}$$

где $|W(j\omega)|$ - модуль, определяемый отношением модулей комплексных амплитуд выходной переменной и входной переменной для каждого значения частоты ω ; $\phi(\omega) = \arg\{W(j\omega)\}$ - аргумент, определяемый разностью начальных фаз выходной переменной и входной переменной для каждого значения частоты ω , т. е. $\phi(\omega) = \psi_{\text{вых}} - \psi_{\text{вх}}$.

Функцию $W(j\omega)$ можно представить как годограф вектора $W(j\omega)$ на комплексной плоскости при изменении частоты $0 \le \omega \le \infty$. Этот годограф принято называть амплитудно-фазочастотной характеристикой (АФЧХ).

Модуль $|W(j\omega)|$ является функцией частоты ω и называется амплитудно-частотной характеристикой (AЧX), которая представлена в декартовых координатах в заданном диапазоне изменения ω (в общем случае $\omega = 0,...,\infty$).

Аргумент $\phi(\omega)$ также является функцией частоты ω , называется фазо-частотной характеристикой (ФЧХ) и строится в декартовых координатах в заданном диапазоне изменения ω .

По существу, AЧX и ФЧX являются детализацией характеристики AФЧX и более удобны в практических расчетах.

Алгебраическая форма представления:

$$W(j\omega) = \operatorname{Re}\{W(j\omega)\} + j\operatorname{Im}\{W(j\omega)\} = U(\omega) + jV(\omega). \tag{5}$$

В выражении (6.5): $U(\omega) = \text{Re}\{W(j\omega)\}$ - вещественная часть функции $W(j\omega)$, называется вещественной частотной характеристикой (ВЧХ);

 $V(\omega) = \text{Im}\{W(j\omega)\}$ - мнимая часть функции $W(j\omega)$, называется мнимой частотной характеристикой (МЧХ).

Затем рассматривается пример вывода частотных характеристик и графического построения.

Пример расчета

В качестве примера рассмотрим простейшую резистивно-емкостную цепь, схема которой приведена на рис.1.

В цепи действует источник синусоидального сигнала $u_{_{\mathrm{BX}}}(t)$.

Рис.1. Схемы цепи: a – исходная; δ – расчетная схема для комплексных амплитуд

Входом цепи являются полюсы (узлы) 0-1. Пусть в данном случае выходом цепи будут полюсы 2-0. Входной переменной (сигналом) будет напряжение источника $u_{\rm BX}(t)$, а выходной переменной (реакцией) — напряжение на емкости $u_C(t)=u_{\rm BMX}(t)$. Необходимо построить при заданных параметрах R и C частотные характеристики цепи относительно выбранной выходной и заданной входной переменных.

Для построения характеристик используем расчетную схему для комплексных амплитуд (рис. $1,\delta$).

- Частотная передаточная функция по напряжению определяется согласно выражению (3):

$$W_u(j\omega) = \dot{U}_{m\text{BMX}} / \dot{U}_{m\text{BX}} . \tag{6}$$

Комплексная амплитуда выходного напряжения:

$$\dot{U}_{m\text{BMX}} = \dot{U}_{mc} = (1/j\omega C)\dot{I}_{m} = -j(1/\omega C)\dot{I}_{m}$$
 (7)

Комплексная амплитуда входного напряжения определяется из контурного уравнения:

$$\dot{U}_{mBX} = \dot{U}_{mR} + \dot{U}_{mC} = R\dot{I}_m - j(1/\omega C)\dot{I}_m = [R - j(1/\omega C)]\dot{I}_m. \tag{8}$$

Выражение (6.9) с учетом (6.10) и (6.11) имеет вид:

$$W_{u}(j\omega) = -j(1/\omega C)\dot{I}_{m} / \left[R - j(1/\omega C)\right]\dot{I}_{m} = -j(1/\omega C) / \left[R - j(1/\omega C)\right] =$$

$$= (1 - j\omega RC) / \left[R^{2} + (\omega RC)^{2}\right].$$
(9)

Обозначим $\tau = RC$, где τ – постоянная времени цепи в секундах.

Окончательно выражение (9) имеет вид:

$$W_{u}(j\omega) = \left[1/(1+\omega^{2}\tau^{2})\right] - j\omega\tau/(1+\omega^{2}\tau^{2}). \tag{10}$$

Выражение (10) является алгебраической формой представления функции $W(j\omega)$. Вещественная и мнимая частотные характеристики из (10):

BYX-
$$U(\omega) = 1/(1 + \omega^2 \tau^2)$$
; MYX- $V(\omega) = -\omega \tau/(1 + \omega^2 \tau^2)$. (11)

Амплитудно-частотная характеристика (АЧХ):

$$|W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)} = 1/\sqrt{1 + \omega^2 \tau^2}.$$
 (12)

Фазо-частотная характеристика (ФЧХ):

$$\varphi(\omega) = \arctan[V(\omega)/U(\omega)] = \arctan(-\omega\tau) . \tag{13}$$

Логарифмическая амплитудно-частотная характеристика (ЛАЧХ):

$$L(\omega) = 20\lg|W(j\omega)| = 20\lg(1/\sqrt{1+\omega^2\tau^2}) = -10\lg(1+\omega^2\tau^2).$$
 (14)

Графическое построение характеристик проводится на основе выражений $(10)\dots(14)$.

При известных параметрах R и C вычисляется значение τ и задается последовательный ряд значений частоты $\omega=\omega_{\rm нач.},...,\omega_{\rm кон.}$ или $f=f_{\rm нач.},...,f_{\rm кон.}$, где $f=\omega/2\pi$, Γ ц. Определяются предельные точки характеристик для значений $\omega=0$ и $\omega=\infty$.

При построении характеристик в общем виде, не используя численных значений R и C , можно оперировать с относительной частотой $\upsilon=\omega/\omega_{\rm cn}$, где $\omega_{\rm cn}=1/\tau$ - частота сопряжения, принимаемая за базисную.

Результаты такого расчета для исследуемой цепи (рис.1) приведены в табл.1.

Таблица 1

Частотные характеристики *RC*- цепи

ω, рад/с	0	$0,1/\tau$	$0,5/\tau$	$0.8/\tau$	1/τ	10/τ	8
ν	0	0,1	0,5	0,8	1	10	8
$ W(j\omega) $	1	0,995	0,894	0,781	0,707	0,099	0
$\phi(\omega)$,град.	0	$-5,7^{\circ}$	$-26,6^{\circ}$	-38,6°	-45°	$-84,3^{\circ}$	-90°
$L(\omega)$, дБ	-	-0,043	-0,973	-2,147	-3,01	-20,043	-

Характеристики, построенные по данным табл.1, представлены на рис.2.

Асимптотическая ЛАЧХ данной цепи в диапазоне частот $\omega=0...\omega_{\rm cn.}$ представляет собой отрезок прямой $L_{\rm ac.}(\omega)=0$, совпадающий с осью абсцисс. В этой полосе частот модуль передаточной функции $|W(j\omega)|\cong 1$. В полосе частот $\omega>\omega_{\rm cn.}$ характеристика $L_{\rm ac.}(\omega)$ представляет собой отрезок прямой с постоянным наклоном. Если на этом отрезке выбрать две точки с частотами ω_1 и ω_2 , отличающимися в 10 раз (говорят на декаду), т.е. $(\omega_2/\omega_1)=10$, то приращение $\Delta L_{\rm ac.}(\omega)=-20\lg(\omega_2/\omega_1)=-20$ дБ/декада. Это означает, что при значениях $\omega>\omega_{\rm cn.}$

изменение частоты на декаду приводит к уменьшению значения ЛАЧХ на 20 дБ или снижению модуля частотной передаточной функции в 10 раз.

Рис.2. . Частотные характеристики RC - цепи: а – АФЧХ; б – АЧХ и ФЧХ; в –ЛАЧХ