Formularium Wiskunde

Ian Claesen

Contents

1	Algebra	2
	1.1 Volgorde van Bewerking	
	1.2 Absolute Waarde	
	1.3 Machten met Gehele Exponenten	
	1.4 Machtswortels	2
2	Veeltermen	3
_	2.1 Vierkantsvergelijking	
	2.2 Merkwaardige Producten en Ontbinding in Factoren	
	2.3 Euclidische Deling	
3	Complexe getallen	4
J	3.1 Rechthoekige coordinaten	
	3.2 Poolcoördinaten	
4	Gomometrie	5
	4.1 De Goniometrische Cirkel	
	4.2	5
5	Meetkunde	5
	5.1 De Cirkel	5
	5.2 De Parabool	5
6	Analyse	5
Ū	6.1 Limieten van Functies	
	6.2 Afgeleiden	
_		_
7	1,14011000	5
	7.1 Rekenregels	5
8	Combinatieleer	6
	8.1 Keuzes zonder Herhaling	6
9	Kansrekening	6
-	9.1 Voorwaardelijke Kans	

10	Statistiek	6
	10.1 Normaalverdeling	6
	Diversen 11.1 Wiskundige Symbolen	6

1 Algebra

1.1 Volgorde van Bewerking

Haakjes wegwerken, machtsverheffen, worteltrekken, vermenigvuldigen en delen, optellen en aftrekken. Om deze volgorde te onthouden, gebruik de ezelsbrug: *Heel Mooie Witte Vaatwassers Doen Onze Afwas*.

1.2 Absolute Waarde

De absolute waarde van een getal a wordt genoteerd als |a| en is altijd positief.

1.3 Machten met Gehele Exponenten

Voor machten met gehele exponenten geldt:

$$a^m \cdot a^n = a^{m+n}$$

1.4 Machtswortels

Vierkantswortel: \sqrt{a} N-de machtswortel: $\sqrt[n]{a}$

2 Veeltermen

2.1 Vierkantsvergelijking

Een vierkantsvergelijking is van de vorm: $ax^2 + bx + c = 0$, $met D = b^2 - 4ac$

$x \in \mathbb{R}$	$x \in \mathbb{C}$
$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$	$x_{1,2} = \frac{-b \pm i\sqrt{-D}}{2a}$
$P = \frac{c}{a} = x_1 \cdot x_2 , S = -\frac{b}{a} = x_1 + x_2$	
$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x^{2} - Sx + P)$	

2.2 Merkwaardige Producten en Ontbinding in Factoren

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

2.3 Euclidische Deling

Schema van Horner

$$\frac{(3x^3 - 5x^2 + 10x - 52)}{(x-2)}$$

3 Complexe getallen

3.1 Rechthoekige coordinaten

Bewerking	Formule
Optelling/Aftrekking	$(a+j.b) \pm (c+j.d) = (a+c) \pm j(b+d)$
Vermenigvuldiging	$(a+j.b) \cdot (c+j.d) = (ac-bd) + j(ad+bc)$
Deling	$\frac{(a+j.b)}{(c+j.d)} = \frac{(a+j.b)\cdot(c-j.d)}{(c+j.d)\cdot(c-j.d)} = \left(\frac{ac+bd}{c^2+d^2}\right) + j\left(\frac{bc-ad}{c^2+d^2}\right)$
Toegevoegde van	$\overline{(a+j.b)} = (a-j.b)$
	$\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}, \overline{Z_1 \cdot Z_2} = \overline{Z_1} \cdot \overline{Z_2}$
Inverse	$z = a + bi \implies z^{-1} = \frac{a - bi}{a^2 + b^2}$
Wortel	$\sqrt{a} \wedge a < 0 \implies \sqrt{a} = \pm i\sqrt{-a}$
	$\sqrt{a+bi} = x+yi \iff (x+yi)^2 = a+bi$
Macht	$(a+bi)^0 = 1 \forall n \in \mathbb{N}_0 :$
	$(a+bi)^n = (a+bi) \cdot (a+bi) \cdots (a+bi)$
Machten of i	$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$

3.2 Poolcoördinaten

$$z = a + i.b = r\left(\cos(\varphi) + i.\sin(\varphi)\right) = r\angle\varphi, \quad \tan(\varphi) = \frac{b}{a}, \quad r = \sqrt{a^2 + b^2}$$

Bewerking	Formule	
Vermenigvuldiging	$z_1 \cdot z_2 = r_1 \cdot r_2 \angle \varphi_1 + \varphi_2$	
Deling	$\frac{z_1}{z_2} = \frac{r_1 \angle \varphi_1}{r_2 \angle \varphi_2} = \frac{r_1}{r_2} \angle \varphi_1 - \varphi_2$	
Inverse	$z^{-1} = \frac{1}{r} \angle - \varphi$	
Macht	$z^n = r^n \left[\cos (n \cdot \varphi) + i \sin (n \cdot \varphi) \right] n \in \mathbb{N}$	
Wortel	$\sqrt{r(\cos\varphi + i\sin\varphi)} = \pm\sqrt{r}\left(\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right)$	
$\sqrt[n]{r\left(\cos\varphi + i\sin\varphi\right)} = \sqrt[n]{r}\left(\cos\frac{\varphi + k\cdot 2\pi}{n} + i\sin\frac{\varphi + k\cdot 2\pi}{n}\right) \wedge k = 0, 1, \dots, n - 1$		

4 Goniometrie

4.1 De Goniometrische Cirkel

De goniometrische cirkel wordt gebruikt om de waarden van de sinus, cosinus en tangens te bepalen voor verschillende hoeken.

4.2

$$\sin^{2}(\theta) + \cos^{2}(\theta) = 1$$
$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

5 Meetkunde

5.1 De Cirkel

De vergelijking van een cirkel met middelpunt (a, b) en straal r is:

$$(x-a)^2 + (y-b)^2 = r^2$$

5.2 De Parabool

De standaardvergelijking van een parabool met top in de oorsprong is:

$$y = ax^2$$

6 Analyse

6.1 Limieten van Functies

De limiet van een functie f(x) als x nadert tot a wordt genoteerd als:

$$\lim_{x \to a} f(x)$$

6.2 Afgeleiden

De afgeleide van een functie f(x) wordt gegeven door:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

7 Matrices

7.1 Rekenregels

Voor matrices A, B en C gelden de volgende eigenschappen:

- Commutativiteit van optelling: A + B = B + A
- Associativiteit van optelling: A + (B + C) = (A + B) + C
- Distributiviteit: A(B+C) = AB + AC

8 Combinatieleer

8.1 Keuzes zonder Herhaling

Variaties: Geordende keuze van p elementen uit n elementen. Permutaties: Het rangschikken van n verschillende elementen.

9 Kansrekening

9.1 Voorwaardelijke Kans

De voorwaardelijke kans van A gegeven B is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

10 Statistiek

10.1 Normaalverdeling

De normaalverdeling wordt gegeven door de dichtheidsfunctie:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

11 Diversen

11.1 Wiskundige Symbolen

- \bullet \in : is een element van
- \bullet \forall : voor alle
- \bullet \exists : er bestaat