1 General Definitions and Tools

NOTATIONS AND CONVENTIONS 1.1

1.1.1 Metric etc.

 $: \eta^{\mu\nu} := \operatorname{diag}(+, -, -, -); \quad \epsilon_{0123}^{0123} := \pm 1$ Minkowski Metric

Coordinates

: $x^{\mu} := (t, x, y, z);$ therefore $\partial_{\mu} = \left(\frac{\partial}{\partial t}, \nabla\right).$: $\{\gamma^{\mu}, \gamma^{\nu}\} := 2\eta^{\mu\nu};$ $\gamma_5 := i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \frac{-i}{4!} \epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$ Gamma Matrices

: therefore $\{\gamma^{\mu}, \gamma_5\} = 0, (\gamma_5)^2 = 1.$

Gamma Combinations : $1, \{\gamma^{\mu}\}, \{\sigma^{\mu\nu}\}, \{\gamma^{\mu}\gamma_5\}, \gamma_5; \quad \sigma^{\mu\nu} := \frac{i}{2}[\gamma^{\mu}, \gamma^{\nu}] = 0/i\gamma^{\mu}\gamma^{\nu}$

Spinor ϵ and σ matrices : $\epsilon^{12} = \epsilon^{\dot{1}\dot{2}} = \epsilon_{21} = \epsilon_{\dot{2}\dot{1}} = 1$

 $: \quad (\sigma^\mu)_{\alpha\dot\beta} := (1, \pmb\sigma)_{\alpha\dot\beta}, \quad (\bar\sigma^\mu)^{\dot\alpha\alpha} := \epsilon^{\dot\alpha\dot\beta} \epsilon^{\alpha\beta} (\sigma^\mu)_{\beta\dot\beta} = (1, -\pmb\sigma)^{\dot\alpha\beta}.$

Pauli Matrices : $\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, : $\sigma_+ = \frac{1}{2}(\sigma_1 + i\sigma_2) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\sigma_- = \frac{1}{2}(\sigma_1 - i\sigma_2) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, : $\sigma^{\mu} := (1, \boldsymbol{\sigma})$, $\bar{\sigma}^{\mu} := (1, -\boldsymbol{\sigma})$.

Fourier Transformation : $\widetilde{f}(k) := \int d^4x \ e^{ikx} f(x); \qquad f(x) = \int \frac{d^4k}{(2\pi)^4} \ e^{-ikx} \widetilde{f}(k).$

1.1.2 Fields

Scalar: $(\partial^2 + m^2)\phi = 0$; $\phi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[a_{\mathbf{p}} \mathrm{e}^{-\mathrm{i}px} + b_{\mathbf{p}}^{\dagger} \mathrm{e}^{\mathrm{i}px} \right]$

Dirac : $(i\partial \!\!\!/ - m)\psi = 0;$ $\psi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\boldsymbol{p}}}} \sum_{s=1,2} \left[a_{\boldsymbol{p}}^s u^s(p) \mathrm{e}^{-\mathrm{i}px} + b_{\boldsymbol{p}}^{s\dagger} v^s(p) \mathrm{e}^{\mathrm{i}px} \right]$

Vector: $\partial^2 A^{\mu} = 0;$ $A^{\mu}(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\boldsymbol{p}}}} \sum_{r=0,2} \left[a_{\boldsymbol{p}}^r \epsilon^r(p) \mathrm{e}^{-\mathrm{i}px} + a_{\boldsymbol{p}}^{r\dagger} \epsilon^{r*}(p) \mathrm{e}^{\mathrm{i}px} \right]$

TODO: 南部-Goldstone; Gravitino

1.1.3 Electromagnetism

Electromagnetic Fields: $A^{\mu}=(\phi, \mathbf{A})$ [We can invert the signs, but cannot lower the index.]

: $F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}; \qquad \epsilon^{\mu\nu\rho\sigma}\partial_{\nu}F_{\rho\sigma} = 0, \quad \partial_{\mu}F^{\mu\nu} = ej^{\nu}$ Maxwell Equations

Our Old Language

: $\nabla \cdot \boldsymbol{B} = 0$, $\nabla \times \boldsymbol{E} + \frac{\partial}{\partial t} \boldsymbol{B} = 0$; $\nabla \cdot \boldsymbol{E} = ej^{0}$, $(\nabla \times \boldsymbol{B})_{i} - \frac{\partial}{\partial t} E_{i} = ej^{i}$. : $F_{\mu\nu} = \begin{pmatrix} 0 & \boldsymbol{E} \\ 0 & -B_{3} & B_{2} \\ -\boldsymbol{E} & B_{3} & 0 & -B_{1} \end{pmatrix}$; $F_{\mu\nu}F^{\mu\nu} = -2\left(\|\boldsymbol{E}\|^{2} - \|\boldsymbol{B}\|^{2}\right)$

Spinor Fields 1.2

 $\begin{array}{lll} : & \xi_{\alpha}, & \xi^{\alpha} := \epsilon^{\alpha\beta}\xi_{\beta}; & \text{Lorentz tr.} : & \xi_{\alpha} \mapsto \Lambda_{\alpha}{}^{\beta}\xi_{\beta}, & \xi^{\alpha} \mapsto \xi^{\beta}\Lambda^{-1}{}_{\beta}{}^{\alpha}; \\ : & \bar{\eta}^{\dot{\alpha}} := (\eta^{\alpha})^{*} & \bar{\eta}_{\dot{\alpha}} := (\eta_{\alpha})^{*} & : & \bar{\eta}^{\dot{\alpha}} \mapsto \Lambda^{\dagger - 1\dot{\alpha}}{}_{\dot{\beta}}\bar{\eta}^{\dot{\beta}}, & \bar{\eta}_{\dot{\alpha}} \mapsto \bar{\eta}_{\dot{\beta}}\Lambda^{\dagger\dot{\beta}}{}_{\dot{\alpha}}. \end{array}$

Kinetic term : $i\bar{\xi}\bar{\sigma}^{\mu}\partial_{\mu}\xi$ (= $i\eta\sigma^{\mu}\partial_{\mu}\bar{\eta}$)

Mass term : [Majorana] $-\frac{1}{2}(m_{\rm M}\xi\xi + m_{\rm M}^*\bar{\xi}\bar{\xi})$ [Dirac] $-(m_{\rm D}\xi\eta + m_{\rm D}^*\bar{\xi}\bar{\eta})$

 $: \mathcal{L}_{Dirac} = i \bar{\xi} \bar{\sigma}^{\mu} \partial_{\mu} \xi + i \eta \sigma^{\mu} \partial_{\mu} \bar{\eta} - m(\xi \eta + \bar{\xi} \bar{\eta}) = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi$

Majorana fermion : $\mathcal{L}_{\text{Majorana}} = i \bar{\xi} \bar{\sigma}^{\mu} \partial_{\mu} \xi - \frac{m}{2} (\xi \xi + \bar{\xi} \bar{\xi}) = \frac{1}{2} \overline{\psi}_{\text{M}} (i \gamma^{\mu} \partial_{\mu} - m) \psi_{\text{M}}$

Charge conjugate: $\psi^{C} := C(\overline{\psi})^{T} [(\psi_{M})^{C} = \psi_{M}]$

1.2.1Chiral Notation (Peskin)

Gamma Matrices: $\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix}, \quad \gamma_5 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}; \quad P_{\rm L}^{\rm R} = \frac{1 \pm \gamma_5}{2}.$

 $: \quad \psi = \begin{pmatrix} \xi_{\alpha} \\ \bar{\eta}^{\dot{\alpha}} \end{pmatrix} = \begin{pmatrix} \psi_{L} \\ \psi_{R} \end{pmatrix}; \quad \overline{\psi} = \psi^{\dagger} \gamma^{0} = \begin{pmatrix} \eta^{\alpha} & \bar{\xi}_{\dot{\alpha}} \end{pmatrix} = \begin{pmatrix} \psi_{R}^{\dagger} & \psi_{L}^{\dagger} \end{pmatrix}; \quad \psi_{M} = \begin{pmatrix} \xi_{\alpha} \\ \bar{\xi}^{\dot{\alpha}} \end{pmatrix}.$ Fields

 $: u^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} \xi^{s} \\ \sqrt{p \cdot \overline{\sigma}} \xi^{s} \end{pmatrix}; v^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} \eta^{s} \\ -\sqrt{p \cdot \overline{\sigma}} \eta^{s} \end{pmatrix}$

: $[\eta^s = \xi^{-s} := -i\sigma^2(\xi^s)^* = (\xi^2, -\xi^1)]$

: $C := -i\gamma^2 \gamma^0 = \begin{pmatrix} \epsilon_{\alpha\beta} & 0 \\ 0 & \epsilon^{\dot{\alpha}\dot{\beta}} \end{pmatrix}$ $\begin{cases} -C = C^{-1} = C^{\dagger} = C^{\mathrm{T}} \\ C = C^* \end{cases}$, $C^{-1}\gamma^{\mu}C = -\gamma^{\mu\mathrm{T}}$.

 $: \quad \psi^{\mathbf{C}} = C(\overline{\psi})^{\mathsf{T}} = -\mathrm{i}\gamma^2 \psi^* = \begin{pmatrix} \eta_{\alpha} \\ \bar{\epsilon}^{\dot{\alpha}} \end{pmatrix}, \quad \overline{\psi}^{\mathbf{C}} = \psi^{\mathsf{T}} C = \mathrm{i}\overline{\psi}^* \gamma^2$

Weyl Equations: $i\bar{\sigma} \cdot \partial \psi_{\rm L} = m\psi_{\rm R}$; $i\sigma \cdot \partial \psi_{\rm R} = m\psi_{\rm L}$

: Halt: $u^s = \sqrt{m} \begin{pmatrix} \xi^s \\ \xi^s \end{pmatrix}$, $v^s = \sqrt{m} \begin{pmatrix} \eta^s \\ -\eta^s \end{pmatrix}$;

: Slow: $\sqrt{p \cdot \sigma} \simeq \sqrt{m}(1 - \boldsymbol{v} \cdot \boldsymbol{\sigma}/2), \sqrt{p \cdot \bar{\sigma}} \simeq \sqrt{m}(1 + \boldsymbol{v} \cdot \boldsymbol{\sigma}/2);$

 $: \text{ Extreme: } u^s = \sqrt{2E} \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \xi^s \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xi^s \end{pmatrix}, v^s = \sqrt{2E} \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \eta^s \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \eta^s \end{pmatrix}.$

1.2.2Dirac Notation

Gamma Matrices: $\hat{\gamma}^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\hat{\gamma}^i = \begin{pmatrix} 0 & \boldsymbol{\sigma} \\ -\boldsymbol{\sigma} & 0 \end{pmatrix}$, $\hat{\gamma}_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; $\hat{P}_L^R = \frac{1 \pm \gamma_5}{2}$.

 $: \hat{\sigma}^{0i} = \begin{pmatrix} 0 & \sigma^i \\ \sigma^i & 0 \end{pmatrix}, \quad \hat{\sigma}^{ij} = \epsilon^{ijk} \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix}.$

 $: \quad \hat{\psi} = \begin{pmatrix} \psi_{\mathrm{A}} \\ \psi_{\mathrm{R}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \psi = \frac{1}{\sqrt{2}} \begin{pmatrix} \psi_{\mathrm{L}} + \psi_{\mathrm{R}} \\ -\psi_{\mathrm{L}} + \psi_{\mathrm{R}} \end{pmatrix}; \quad \hat{\psi}_{\mathrm{M}} = \begin{pmatrix} \psi_{\mathrm{A}} \\ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \psi_{\mathrm{A}}^* \end{pmatrix}.$ Fields

 $: \hat{\overline{\psi}} = \hat{\psi}^{\dagger} \gamma^{0} = \begin{pmatrix} \psi_{\mathbf{A}}^{\dagger} & -\psi_{\mathbf{B}}^{\dagger} \end{pmatrix}$ $: \hat{u}^{s}(p) = \begin{pmatrix} \sqrt{p^{0} + m} \, \xi^{s} \\ \frac{\mathbf{p} \cdot \mathbf{\sigma}}{\sqrt{p^{0} + m}} \xi^{s} \end{pmatrix}; \hat{v}^{s}(p) = \begin{pmatrix} -\frac{\mathbf{p} \cdot \mathbf{\sigma}}{\sqrt{p^{0} + m}} \eta^{s} \\ -\sqrt{p^{0} + m} \, \eta^{s} \end{pmatrix}$

Charge conj. :
$$\hat{C} = -i\hat{\gamma}^2\hat{\gamma}^0 = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$
 with $C = -C^{-1} = -C^{\dagger}$, $C^{-1}\gamma^{\mu}C = -\gamma^{\mu^{\mathrm{T}}}$. z-boost limit : Halt: $\hat{u}^s = \sqrt{2m} \begin{pmatrix} \xi^s \\ 0 \end{pmatrix}, \hat{v}^s = -\sqrt{2m} \begin{pmatrix} 0 \\ \eta^s \end{pmatrix};$: Slow: $\sqrt{p^0 + m} \simeq \sqrt{2m}(1 + \frac{v^2}{8}), \frac{\mathbf{p} \cdot \boldsymbol{\sigma}}{\sqrt{p^0 + m}} \simeq \sqrt{\frac{m}{2}}(\boldsymbol{v} \cdot \boldsymbol{\sigma});$: Extreme: $\hat{u}^s = \sqrt{E} \begin{pmatrix} \xi^s \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xi^s \end{pmatrix}, \hat{v}^s = -\sqrt{E} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \eta^s \\ n^s \end{pmatrix}$

1.2.3 **CPT** transformations

[Note that these expressions are valid under the above frameworks.]

In the following, CP means "P, then C" in algebraic sense. Be careful to the order.

$$\psi(t, \boldsymbol{x}) \xrightarrow{P} \eta_{P} \gamma^{0} \psi(t, -\boldsymbol{x}) \qquad \overline{\psi} \xrightarrow{P} \eta_{P}^{*} \overline{\psi} \gamma^{0}$$

$$\psi(t, \boldsymbol{x}) \xrightarrow{T} \eta_{T} C \gamma_{5} \psi(-t, \boldsymbol{x}) \qquad \overline{\psi} \xrightarrow{T} -\eta_{T}^{*} \overline{\psi} C \gamma_{5}$$

$$\psi(t, \boldsymbol{x}) \xrightarrow{C} \eta_{C} C \overline{\psi}^{\mathrm{T}}(t, \boldsymbol{x}) = C \gamma^{0} \psi^{*} \qquad \overline{\psi} \xrightarrow{C} \eta_{C}^{*} \overline{\psi}^{*} \gamma^{0} C = -\eta_{C}^{*} (C \psi)^{\mathrm{T}}$$

$$\psi(t, \boldsymbol{x}) \xrightarrow{CP} \eta_{CP} (\overline{\psi} \gamma^{0} C)^{\mathrm{T}} \qquad \overline{\psi} \xrightarrow{CPP} \eta_{CP}^{*} (C \gamma^{0} \psi)^{\mathrm{T}}$$

$$\psi(t, \boldsymbol{x}) \xrightarrow{CPT} (\overline{\psi} \gamma^{0} \gamma_{5})^{\mathrm{T}} \qquad \overline{\psi} \xrightarrow{CPT} (\gamma^{0} \gamma_{5} \psi)^{\mathrm{T}}$$

Note that T-transformation is anti-unitary, and $\eta_{CPT} = 1$. Especially, photon is (P, T, C) = (-, +, -).

1.2.4 Noether current

Infinitesimal transformation : $\phi(x) \mapsto \phi'(x) := \phi(x) + \alpha \Delta \phi(x)$ Correspondent transformation : $\alpha \Delta \mathcal{L} = \alpha \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \Delta \phi \right) + \alpha \left[\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \right] \Delta \phi$

: $j^{\mu}(x) := \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \Delta \phi - \mathcal{J}^{\mu}; \quad \partial_{\mu} j^{\mu}(x) = 0$ Noether current

: $Q := \int j^0 \mathrm{d}^3 x$ Noether charge

: $T^{\mu}_{\nu} = \partial_{\mu} \mathcal{L}(\partial_{\mu} \phi) \partial_{\nu} \phi - \mathcal{L} \delta^{\mu}_{\nu}$; $\mathcal{H} = T^{00}$, $\mathcal{P}^{i} = T^{0i}$. Energy-momentum tensor

: T^{μ}_{ν} is the variation along μ in respect to the modification a^{ν} .

1.3 FEYNMAN RULES

Scalar Boson

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2$$

$$\stackrel{\square}{\phi} \phi = = \frac{\mathrm{i}}{p^2 - m^2 + \mathrm{i}\epsilon}$$

$$\mathcal{L} \supset \left| \partial_{\mu} \phi \right|^{2} - m^{2} \left| \phi \right|^{2}$$

$$\phi^{*} \phi = \frac{\mathrm{i}}{n^{2} - m^{2} + \mathrm{i} \epsilon}$$

(External lines equal to 1 in both cases.)

Dirac Fermion

$$\mathcal{L} \supset \overline{\psi}(\mathrm{i}\partial \!\!\!/ - m)\psi$$
$$= \mathrm{i}\bar{\xi}\bar{\sigma}^{\mu}\partial_{\mu}\xi + \mathrm{i}\bar{\chi}\bar{\sigma}^{\mu}\partial_{\mu}\chi - m(\xi\chi + \bar{\xi}\bar{\chi})$$

Initial state

$$\overline{\overline{\psi} \mid \boldsymbol{p}, s \rangle} = \boldsymbol{\bigcirc} \qquad \stackrel{\longleftarrow}{\longleftarrow} p = \overline{v}^s(p)$$

Final state

$$\langle \overline{p}, \overline{s} | \overline{\psi} = \overline{u}^s(p)$$

$$\langle \boldsymbol{p}, s | \psi =$$
 $= \boldsymbol{v}^s(p)$

Propagator

Majorana Fermion

$$\mathcal{L} \supset \frac{1}{2} \overline{\psi} (i \partial \!\!\!/ - m) \psi$$
$$= i \bar{\lambda} \bar{\sigma}^{\mu} \partial_{\mu} \lambda - \frac{m}{2} (\lambda \lambda + \bar{\lambda} \bar{\lambda})$$

Initial state

Abelian Gauge Theory (Photon)

(Momentum must be taken along the arrow)

Non-Abelian Gauge Theory (Gluon)

(Momentum are in incoming directions)

$$\begin{split} -\frac{1}{4}g^2(f^{abe}A^a_\mu A^b_\nu)(f^{cde}A^c_\rho A^d_\sigma) = \\ a;\mu & \qquad \qquad c;\rho \\ & = -\mathrm{i}g^2 \big[\\ & \qquad \qquad f^{abe}f^{cde}(\eta^{\mu\rho}\eta^{\nu\sigma} - \eta^{\mu\sigma}\eta^{\nu\rho}) \\ b;\nu & \qquad \qquad d;\sigma + f^{ade}f^{bde}(\eta^{\mu\nu}\eta^{\rho\sigma} - \eta^{\mu\rho}\eta^{\nu\sigma}) \big] \end{split}$$

 $\underline{\text{TODO}}$: vertex は lagrangian の (n!)i 倍)

FIELD CALCULATION TECHNIQUES

1.4.1 Dirac Field Techniques

Dirac Equations : $(\not p - m)u^s(p) = 0$; $(\not p + m)v^s(p) = 0$

: $\bar{u}^s(p)(p-m) = 0$; $\bar{v}^s(p)(p+m) = 0$

Dirac Components: $u^{r\dagger}(p)u^{s}(p) = 2E_{n}\delta^{rs}$; $v^{r\dagger}(p)v^{s}(p) = 2E_{n}\delta^{rs}$

 $: \ \, \bar{u}^r(p)u^s(p) = 2m\delta^{rs}; \quad \bar{v}^r(p)v^s(p) = -2m\delta^{rs}; \quad \bar{u}^r(p)v^s(p) = \bar{v}^r(p)u^s(p) = 0$

Spin Sums

 $\begin{array}{ll} : & \sum_{\rm spin} u^s(p) \bar{u}^s(p) = \not\!\!p + m; & \sum_{\rm spin} v^s(p) \bar{v}^s(p) = \not\!\!p - m \\ \\ : & -C = C^{-1} = C^\dagger = C^{\rm\scriptscriptstyle T}, & C^{-1} \gamma^\mu C = -C \gamma^\mu C = -\gamma^{\mu {\rm\scriptscriptstyle T}}, & C^{-1} \gamma^0 C = -\gamma^0 \end{array}$ Chage Conj.

: $C = C^* \qquad \qquad , \quad \psi^{\rm C} = C(\overline{\psi})^{\scriptscriptstyle {\rm T}}, \quad \overline{\psi}^{\rm C} = \psi^{\scriptscriptstyle {\rm T}} C$

 $: u^* = -i\gamma^2 v, \quad v^{\mathsf{T}} = -iu^{\dagger}\gamma^2 = \overline{u}C^{-1}, \quad v = C\overline{u}^{\mathsf{T}}; \qquad \overline{u}_{\mathsf{A}}P_{\mathsf{H}}u_{\mathsf{B}} = -\overline{v}_{\mathsf{B}}P_{\mathsf{H}}v_{\mathsf{A}}$ $: v^* = -i\gamma^2 u, \quad u^{\mathsf{T}} = -iv^{\dagger}\gamma^2 = \overline{v}C^{-1}, \quad u = C\overline{v}^{\mathsf{T}}; \qquad \overline{v}_{\mathsf{A}}P_{\mathsf{H}}u_{\mathsf{B}} = -\overline{v}_{\mathsf{B}}P_{\mathsf{H}}u_{\mathsf{A}}$ u & v

Polarization Sum

Single photon case $M = \epsilon_{\mu}^*(k) M^{\mu}$

When Ward identity $k_{\mu}M^{\mu} = 0$ is valid,

$$\sum_{\text{pol.}} |M|^2 = \sum_{\text{pol.}} \epsilon_{\mu}^*(k) \epsilon_{\nu}(k) M^{\mu} M^{\nu*} = \eta_{\mu\nu} M^{\mu} M^{\nu*}.$$
 (1.1)

Double photons case $M = \epsilon_{\mu}^*(k)\epsilon_{\nu}'^*(k')M^{\mu\nu}$

When $k_{\mu}M^{\mu\nu} = k'_{\nu}M^{\mu\nu} = 0$ is valid,

$$\sum_{\text{pol.}} |M|^2 = \sum_{\text{pol.}} \epsilon_{\mu}^*(k) \epsilon_{\rho}(k) \epsilon_{\nu}'^*(k') \epsilon_{\sigma}'(k') M^{\mu\nu} M^{\rho\sigma*} = \eta_{\mu\rho} \eta_{\nu\sigma} M^{\mu\nu} M^{\rho\sigma*}.$$
(1.2)

[See Sec. ?? for verbose information.]

Fierz transformations

For Dirac spinors a, b, c, d,

 $S(a,b;c,d) := (\bar{a}b)(\bar{c}d);$

$$\begin{split} V(a,b;c,d) &:= (\bar{a}\gamma^{\mu}b)(\bar{c}\gamma_{\mu}d); \\ T(a,b;c,d) &:= \frac{1}{2}(\bar{a}\sigma^{\mu\nu}b)(\bar{c}\sigma_{\mu\nu}d); \\ A(a,b;c,d) &:= (\bar{a}\gamma^{\mu}\gamma_5b)(\bar{c}\gamma_{\mu}\gamma_5d); \\ P(a,b;c,d) &:= (\bar{a}\gamma_5b)(\bar{c}\gamma_5d); \end{split} \\ \begin{pmatrix} S(a,b;c,d) \\ V(a,b;c,d) \\ T(a,b;c,d) \\ A(a,b;c,d) \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & -1 & -1 \\ 4 & -2 & 0 & -2 & 4 \\ 6 & 0 & -2 & 0 & -6 \\ -4 & -2 & 0 & -2 & -4 \\ -1 & 1 & -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} S(a,d;c,b) \\ V(a,d;c,b) \\ T(a,d;c,b) \\ A(a,d;c,b) \\ P(a,d;c,b) \end{pmatrix} \end{split}$$

Also defining $V_{LR}(a, b; c, d) := (\bar{a}\gamma^{\mu}P_{L}b)(\bar{c}\gamma_{\mu}P_{R}d)$ and so on,

$$V_{\rm LL}(a,b;c,d) = -V_{\rm LL}(a,d;c,b) \qquad S_{\rm RL}(a,b;c,d) = \frac{1}{4} \left[V_{\rm LR}(a,d;b,c) - A_{\rm LR}(a,d;b,c) \right]$$
(1.3)

$$V_{\rm RR}(a,b;c,d) = -V_{\rm RR}(a,d;c,b) \qquad S_{\rm LR}(a,b;c,d) = \frac{1}{4} \left[V_{\rm RL}(a,d;b,c) - A_{\rm RL}(a,d;b,c) \right]$$
(1.4)

Here we can create another equations using

$$(\sigma^{\mu})_{\alpha\beta}(\sigma_{\mu})_{\gamma\delta} = 2\epsilon_{\alpha\gamma}\epsilon_{\beta\delta}; \qquad (\bar{\sigma}^{\mu})_{\alpha\beta}(\bar{\sigma}_{\mu})_{\gamma\delta} = 2\epsilon_{\alpha\gamma}\epsilon_{\beta\delta}. \tag{1.5}$$

1.4.4 Gordon identity

For P := p' + p and q := p' - p,

$$\bar{u}(p')\gamma^{\mu}u(p) = \bar{u}(p')\left[\frac{P^{\mu} + i\sigma^{\mu\nu}q_{\nu}}{2m}\right]u(p) \qquad \bar{u}(p')\gamma^{\mu}v(p) = \bar{u}(p')\left[\frac{q^{\mu} + i\sigma^{\mu\nu}P_{\nu}}{2m}\right]v(p) \qquad (1.6)$$

$$\bar{v}(p')\gamma^{\mu}v(p) = -\bar{v}(p')\left[\frac{P^{\mu} + i\sigma^{\mu\nu}q_{\nu}}{2m}\right]v(p) \qquad \bar{v}(p')\gamma^{\mu}u(p) = -\bar{v}(p')\left[\frac{q^{\mu} + i\sigma^{\mu\nu}P_{\nu}}{2m}\right]u(p) \qquad (1.7)$$

1.4.5 Color Sum

(Here T^a is 3 of SU(3). For other representations or gauge groups, see Sec. 1.9.)

$$\operatorname{Tr}(T^a T^b) := \frac{1}{2} \delta^{ab}$$
 (That is, T^a 's are $\frac{1}{2} \times \operatorname{Gell-Mann}$ matrices.) (1.8)

$$\sum_{a} T^{a} T^{a} = \frac{4}{3} \cdot \mathbf{1}, \qquad \sum_{c,d} f^{acd} f^{bcd} = 3\delta^{ab} \qquad \sum_{a} T^{a}_{ij} T^{a}_{kl} = \frac{1}{2} \delta_{il} \delta_{kj} - \frac{1}{6} \delta_{ij} \delta_{kl}$$
 (1.9)

$$\sum_{a} T^{a} T^{b} T^{a} = -\frac{1}{6} T^{b} \qquad \sum_{b,c} f^{abc} T^{b} T^{c} = \frac{3\mathrm{i}}{2} T^{a} \qquad f^{Dab} f^{EDc} + f^{Dca} f^{EDb} + f^{Dbc} f^{EDa} = 0 \qquad (1.10)$$

1.5 MISCELLANEOUS TECHNIQUES

$$\begin{split} &(p\cdot\sigma)(p\cdot\bar{\sigma})=p^2\\ &\epsilon^{ab}\epsilon^{cd}=\delta^{ac}\delta^{bd}-\delta^{ad}\delta^{bc}\\ &\sqrt{p_{\mu}\sigma^{\mu}}=\frac{p_{\mu}\sigma^{\mu}+m}{\sqrt{2(m+p^0)}}\\ &\sigma^i\sigma^j=\delta_{ij}\sigma^0+\mathrm{i}\epsilon_{ijk}\sigma^k\\ &\sigma^{\mu}\sigma^{\nu}=\mathrm{i}\epsilon^{0\mu\nu\rho}\sigma^{\rho}+\delta^{\mu}_0\sigma^{\nu}+\delta^{\nu}_0\sigma^{\mu}-\eta^{\mu\nu}\sigma^0\\ &[\sigma^i,\sigma^j]=2\mathrm{i}\epsilon_{ijk}\sigma^k\\ &\sigma^i,\sigma^j=2\delta_{ij} \end{split}$$

TODO: TODO:

- Majorana Ferminos
- Feynman Rules(A.1)

1.6 Dirac's Gamma Algebras

1.6.1 Traces

$$Tr(\text{any odd } \# \text{ of } \gamma' s) = 0 \tag{1.11}$$

$$Tr(\gamma^{\mu}\gamma^{\nu}) = 4\eta^{\mu\nu} \tag{1.12}$$

$$Tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4(\eta^{\mu\nu}\eta^{\rho\sigma} - \eta^{\mu\rho}\eta^{\nu\sigma} + \eta^{\mu\sigma}\eta^{\nu\rho})$$
(1.13)

$$Tr(\gamma_5 \text{ and any odd } \# \text{ of } \gamma's) = 0$$
 (1.14)

$$Tr(\gamma^{\mu}\gamma^{\nu}\gamma_5) = 0 \tag{1.15}$$

$$Tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{5}) = -4i\epsilon^{\mu\nu\rho\sigma} \tag{1.16}$$

Generally, for some γ -matrices A, B, C, \ldots ,

$$\operatorname{Tr}(ABCDEF\cdots) = \eta^{AB}\operatorname{Tr}(CDEF\cdots) - \eta^{AC}\operatorname{Tr}(BDEF\cdots) + \eta^{AD}\operatorname{Tr}(BCEF\cdots) - \eta^{AE}\operatorname{Tr}(BCDF\cdots) + \cdots, \qquad (1.17)$$

$$\operatorname{Tr}(ABCDEF \cdots \gamma_5) =$$
Not Established. (1.18)

To prove the second equation, we use following technique:

$$\operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\cdots) = \operatorname{Tr}(\cdots\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu}\gamma^{\mu}); \qquad \operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\cdots\gamma_{5}) = \operatorname{Tr}(\gamma_{5}\cdots\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu}\gamma^{\mu}). \tag{1.19}$$

1.6.2 Contractions

$$\gamma^{\mu}\gamma_{\mu} = 4 \tag{1.20}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma_{\mu} = -2\gamma^{\nu} \tag{1.21}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{\mu} = 4\eta^{\nu\rho} \tag{1.22}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{\mu} = -2\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu} \tag{1.23}$$

Generally, for some γ -matrices A, B, C, \ldots ,

ODD #:
$$\gamma^{\mu}ABC\cdots\gamma_{\mu} = -2(\cdots CBA),$$
 (1.24)

EVEN #:
$$\gamma^{\mu}ABC\cdots\gamma_{\mu} = \text{Tr}(ABC\cdots) - \text{Tr}(ABC\cdots\gamma_{5})\cdot\gamma_{5}.$$
 (1.25)

Contractions in d-dimension

$$\gamma^{\mu}\gamma_{\mu} = d \tag{1.26}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma_{\mu} = -(d-2)\gamma^{\nu} \tag{1.27}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{\mu} = 4\eta^{\nu\rho} - (4-d)\gamma^{\nu}\gamma^{\rho} \tag{1.28}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{\mu} = -2\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu} + (4-d)\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}$$
(1.29)

Contractions of ϵ 's

$$\epsilon^{\alpha\beta\gamma\delta}\epsilon_{\alpha\beta\gamma\delta} = -24; \quad \epsilon^{\alpha\beta\gamma\mu}\epsilon_{\alpha\beta\gamma\nu} = -6\delta^{\mu}_{\nu}; \quad \epsilon^{\alpha\beta\mu\nu}\epsilon_{\alpha\beta\rho\sigma} = -2(\delta^{\mu}_{\rho}\delta^{\nu}_{\sigma} - \delta^{\mu}_{\sigma}\delta^{\nu}_{\rho}) \tag{1.30}$$

$$\epsilon^{\mu\alpha\beta\gamma}\epsilon_{\mu\alpha'\beta'\gamma'} = -\left(\delta^{\alpha}_{\alpha'}\delta^{\beta}_{\beta'}\delta^{\gamma}_{\gamma'} + \delta^{\alpha}_{\beta'}\delta^{\beta}_{\gamma'}\delta^{\gamma}_{\alpha'} + \delta^{\alpha}_{\gamma'}\delta^{\beta}_{\alpha'}\delta^{\gamma}_{\alpha'} - \delta^{\alpha}_{\alpha'}\delta^{\beta}_{\beta'}\delta^{\gamma}_{\gamma'} - \delta^{\alpha}_{\beta'}\delta^{\beta}_{\alpha'}\delta^{\gamma}_{\gamma'} - \delta^{\alpha}_{\gamma'}\delta^{\beta}_{\beta'}\delta^{\gamma}_{\alpha'}\right) \tag{1.31}$$

1.7 Loop Integrals and Dimensional Regularization

1.7.1 Feynman Parameters

$$\frac{1}{A_1 A_2 \cdots A_n} = \int_0^1 dx_1 \cdots x_n \, \delta\left(\sum x_i - 1\right) \frac{(n-1)!}{[x_1 A_1 + x_2 A_2 + \dots + x_n A_n]^n}$$
(1.32)

$$\frac{1}{A_1 A_2} = \int_0^1 \mathrm{d}x \frac{1}{[x A_1 + (1 - x) A_2]^2} \tag{1.33}$$

1.7.2 d-dimensional integrals in Minkowski space

$$\int \frac{\mathrm{d}^d l}{(2\pi)^d} \frac{1}{(l^2 - \Delta)^n} = \frac{(-1)^n \mathrm{i}}{(4\pi)^{d/2}} \frac{\Gamma(n - \frac{d}{2})}{\Gamma(n)} \left(\frac{1}{\Delta}\right)^{n - \frac{d}{2}} \tag{1.34}$$

$$\int \frac{\mathrm{d}^d l}{(2\pi)^d} \frac{l^2}{(l^2 - \Delta)^n} = \frac{(-1)^{n-1} \mathrm{i}}{(4\pi)^{d/2}} \frac{d}{2} \frac{\Gamma(n - \frac{d}{2} - 1)}{\Gamma(n)} \left(\frac{1}{\Delta}\right)^{n - \frac{d}{2} - 1} \tag{1.35}$$

$$\int \frac{\mathrm{d}^d l}{(2\pi)^d} \frac{l^\mu l^\nu}{(l^2 - \Delta)^n} = \frac{(-1)^{n-1} \mathrm{i}}{(4\pi)^{d/2}} \frac{\eta^{\mu\nu}}{2} \frac{\Gamma(n - \frac{d}{2} - 1)}{\Gamma(n)} \left(\frac{1}{\Delta}\right)^{n - \frac{d}{2} - 1}$$
(1.36)

$$\int \frac{\mathrm{d}^d l}{(2\pi)^d} \frac{(l^2)^2}{(l^2 - \Delta)^n} = \frac{(-1)^n \mathrm{i}}{(4\pi)^{d/2}} \frac{d(d+2)}{4} \frac{\Gamma(n - \frac{d}{2} - 2)}{\Gamma(n)} \left(\frac{1}{\Delta}\right)^{n - \frac{d}{2} - 2}$$
(1.37)

$$\int \frac{\mathrm{d}^{d}l}{(2\pi)^{d}} \frac{l^{\mu}l^{\nu}l^{\rho}l^{\sigma}}{(l^{2} - \Delta)^{n}} = \frac{(-1)^{n}i}{(4\pi)^{d/2}} \frac{\Gamma(n - \frac{d}{2} - 2)}{\Gamma(n)} \left(\frac{1}{\Delta}\right)^{n - \frac{d}{2} - 2} \frac{\eta^{\mu\nu}\eta^{\rho\sigma} + \eta^{\mu\rho}\eta^{\nu\sigma} + \eta^{\mu\sigma}\eta^{\nu\rho}}{4}$$
(1.38)

Here we can use following expansions: $(\gamma \simeq 0.5772)$

$$\left(\frac{1}{\Delta}\right)^{2-\frac{d}{2}} = 1 - (d-4)\frac{\log \Delta}{2} + O\left((d-4)^2\right) \quad \text{around } d = 4,$$
(1.39)

$$\Gamma(x) = \frac{1}{x} - \gamma + \mathcal{O}(x) \quad \text{around } x = 0, \tag{1.40}$$

$$\Gamma(x) = \frac{(-1)^n}{n!} \left[\frac{1}{x+n} - \gamma + \sum_{k=1}^n \frac{1}{k} + O(x+n) \right] \quad \text{around } x = -n.$$
 (1.41)

and we get following expansion:

$$\frac{\Gamma(2 - \frac{d}{2})}{(4\pi)^{d/2}} \left(\frac{1}{\Delta}\right)^{2 - \frac{d}{2}} = \frac{1}{(4\pi)^2} \left[\left(\frac{2}{4 - d} - \gamma + \log 4\pi\right) - \log \Delta + \mathcal{O}(4 - d) \right]. \tag{1.42}$$

Usually this Δ is positive, but when Δ contains some timelike momenta, it becomes negative. Then these integrals acquire imaginary parts, which give the discontinuities of S-matrix elements. To compute the S-matrix in a physical region choose the correct branch

$$\left(\frac{1}{\Delta}\right)^{n-\frac{d}{2}} \to \left(\frac{1}{\Delta - i\epsilon}\right)^{n-\frac{d}{2}}.$$
(1.43)

1.8 Cross Sections and Decay Rates

General expression (The mass dimension of \mathcal{M} is $2 - N_f$ for $d\sigma$ and $3 - N_f$ for $d\Gamma$.)

$$d\sigma = \frac{1}{2E_A 2E_B |v_A - v_B|} \left[\prod_f \frac{d^3 p_f}{(2\pi)^3} \frac{1}{2E_f} \right] \left| \mathcal{M}(p_A, p_B \to \{p_f\}) \right|^2 (2\pi)^4 \delta^{(4)} \left(p_A + p_B - \{p_f\} \right)$$
(1.44)

$$d\Gamma = \frac{1}{2m_A} \left[\prod_f \frac{d^3 p_f}{(2\pi)^3} \frac{1}{2E_f} \right] \left| \mathcal{M}(m_A \to \{p_f\}) \right|^2 (2\pi)^4 \delta^{(4)} \left(m_A - \{p_f\} \right) \quad \text{(in A-rest frame.)}$$
 (1.45)

2-body phase space in center-of-mass frame

$$\int \Pi_2 := \int \frac{\mathrm{d}^3 p_1}{(2\pi)^3} \int \frac{\mathrm{d}^3 p_2}{(2\pi)^3} \frac{1}{2E_1} \frac{1}{2E_2} (2\pi)^4 \delta^{(4)} \left(E_{\mathrm{cm}} - (p_1 + p_2) \right) \qquad \text{(in center-of-mass frame)}$$
 (1.46)

$$= \int \frac{\mathrm{d}\Omega}{4\pi} \frac{1}{8\pi} \frac{2 \|\boldsymbol{p_1}\|}{F_{\mathrm{cm}}} \tag{1.47}$$

$$= \frac{1}{8\pi} \sqrt{1 - \frac{2(m_1^2 + m_2^2)}{E_{\rm cm}^2} + \frac{(m_1^2 - m_2^2)^2}{E_{\rm cm}^4}} \xrightarrow{m_2 = 0} \frac{1}{8\pi} \left(1 - \frac{m_1^2}{E_{\rm cm}^2}\right)$$
(1.48)

Kinematics of Decay

$$K \to p_1 + p_2 \quad \text{or} \quad \binom{M}{\mathbf{0}} \to \binom{\sqrt{p^2 + m_1^2}}{\mathbf{p}} + \binom{\sqrt{p^2 + m_2^2}}{-\mathbf{p}};$$

$$\|\mathbf{p}\|^2 = \frac{1}{4} \left[M^2 - 2 \left(m_1^2 + m_2^2 \right) + \frac{\left(m_1^2 - m_2^2 \right)^2}{M^2} \right] \approx \left(\frac{M^2 - m_1^2}{2M} \right)^2$$

$$E_1 = \frac{M^2 + m_1^2 - m_2^2}{2M}, \qquad E_2 = \frac{M^2 + m_2^2 - m_1^2}{2M};$$

$$K \cdot p_1 = \frac{M^2 + m_1^2 - m_2^2}{2}, \qquad p_1 \cdot p_2 = \frac{M^2 - \left(m_1^2 + m_2^2 \right)}{2}.$$

$$(1.49)$$

Mandelstam Variables

For
$$p_1 + p_2 \to k_1 + k_2$$
 collision,
$$s = (p_1 + p_2)^2 = (k_1 + k_2)^2,$$

$$t = (p_1 - k_1)^2 = (p_2 - k_2)^2,$$

$$u = (p_1 - k_2)^2 = (p_2 - k_1)^2,$$
 and
$$s + t + u = p_1^2 + p_2^2 + k_1^2 + k_2^2 = \sum m^2.$$

Kinematics of Collision (Same Mass)

$$(E, \mathbf{p}) \qquad (E, \mathbf{k}) = k_1 \qquad B \qquad \|\mathbf{p}\|^2 = E^2 - m_A^2 \qquad \mathbf{p} \cdot \mathbf{k} = \|\mathbf{p}\| \|\mathbf{k}\| \cos \theta$$

$$\|\mathbf{k}\|^2 = E^2 - m_B^2 \qquad p_1 \cdot k_1 = p_2 \cdot k_2 = \frac{1}{2}(m_A^2 + m_B^2 - t);$$

$$(E, -\mathbf{p}) \qquad (E, -\mathbf{p}) \qquad k_1 \cdot k_2 = s/2 - m_B^2 \qquad p_1 \cdot k_2 = p_1 \cdot k_2 = \frac{1}{2}(m_A^2 + m_B^2 - u);$$

$$s = 4E^2, \qquad s = 4E^2,$$

$$(p_1 - p_2)^2 = -4(E^2 - m_A^2) \qquad t = -(2E^2 - m_A^2 - m_B^2) + 2\mathbf{p} \cdot \mathbf{k}$$

$$(k_1 - k_2)^2 = -4(E^2 - m_B^2) \qquad u = -(2E^2 - m_A^2 - m_B^2) - 2\mathbf{p} \cdot \mathbf{k}$$

1.9 楊-MILLS THEORY

(See App. ?? for verbose notes.)

1.9.1 Non-Abelian gauge theory

$$\begin{split} [T^a,T^b] &= \mathrm{i} f^{ab}{}_c T^c, \qquad 0 = f^D{}_{ab} f^E{}_{Dc} + f^D{}_{ca} f^E{}_{Db} + f^D{}_{bc} f^E{}_{Da}, \qquad \mathrm{D}_\mu = \partial_\mu - \mathrm{i} g A_\mu \\ \mathrm{Tr} \, T^a T^b &= \frac{1}{2} \delta^{ab}, \qquad [\widetilde{T}^a]_i{}^j := T^{\mathrm{ad}}{}^a{}_i{}^j := -\mathrm{i} f^{aij} \qquad [\widetilde{\mathrm{D}}_\mu]_i{}^j := \delta^j_i \partial_\mu + g f^{iaj} A^a_\mu \\ F_{\mu\nu} &= \frac{\mathrm{i}}{g} \left[\mathrm{D}_\mu, \mathrm{D}_\nu \right] \qquad \qquad \mathrm{D}_\mu \phi = \partial_\mu \phi - \mathrm{i} g A^a_\mu (T^a_\phi \phi) \\ &= \partial_\mu A_\nu - \partial_\nu A_\mu + \frac{g}{\mathrm{i}} \left[A_\mu, A_\nu \right] \qquad \qquad \mathrm{D}_\mu F_{\mu\nu}{}^a = \partial_\mu F^a_{\mu\nu} + g f^{abc} A^b_\mu F^c_{\mu\nu}, \\ &= \left[\partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu \right] T^a \qquad \left(\mathrm{D}_\mu F_{\nu\rho} = \partial_\mu \lambda - \mathrm{i} g [A_\mu, F_{\nu\rho}] \right).^{*1} \\ \phi \mapsto V \phi := \mathrm{e}^{\mathrm{i} g \theta} \phi \qquad A_\mu \mapsto V \left(A_\mu + \frac{\mathrm{i}}{g} \partial_\mu \right) V^{-1} \qquad F_{\mu\nu} \mapsto V F_{\mu\nu} V^{-1} \\ \phi^{a\prime} \simeq \phi + \mathrm{i} g \theta^a T^a \phi \qquad A^{a\prime}_\mu \simeq A^a_\mu + \partial_\mu \theta^a + g f^{abc} A^b_\mu \theta^c \qquad F^{a\prime}_{\mu\nu} \simeq F^a_{\mu\nu} + g f^{abc} F^b_{\mu\nu} \theta^c \\ \epsilon^{\mu\nu\rho\sigma} \left[\mathrm{D}_\nu, \left[\mathrm{D}_\rho, \mathrm{D}_\sigma \right] \right] = \epsilon^{\mu\nu\rho\sigma} \mathrm{D}_\nu F_{\rho\sigma} = 0. \end{split}$$

Killing and Casimir Here we have two constants which depend on representation r.

$$\operatorname{Tr}(T^aT^b) =: C(r)\delta^{ab} \quad \text{(Killing form)}, \qquad T^aT^a =: C_2(r) \cdot \mathbf{1} \quad \text{(quadratic Casimir operator)}, \tag{1.50}$$

which satisfy

$$C(r) = \frac{d(r)}{d(\text{ad})}C_2(r), T^a T^b T^a = \left[C_2(r) - \frac{1}{2}C_2(\text{ad})\right]T^b, (1.51)$$

$$f^{acd}f^{bcd} = C_2(\mathrm{ad})\delta^{ab}, \qquad f^{abc}T^bT^c = \frac{\mathrm{i}}{2}C_2(\mathrm{ad})T^a. \tag{1.52}$$

For SU(N) For its fundamental representation N with definition $C(N) := \frac{1}{2}$, we have

$$C(N) := \frac{1}{2}, \quad C_2(N) = \frac{N^2 - 1}{2N}, \quad C(\text{ad}) = C_2(\text{ad}) = N; \quad (T^a)_{ij}(T^a)_{kl} = \frac{1}{2} \left(\delta_{il} \delta_{kj} - \frac{\delta_{ij} \delta_{kl}}{N} \right).$$

1.9.2 Abelian gauge theory

In Abelian gauge theory, V and fields are always commutative, and thus we have charge freedom (Q).

$$D_{\mu}\phi = (\partial_{\mu} - igA_{\mu}Q)\phi \qquad \phi \mapsto e^{igQ\theta}\phi \qquad F_{\mu\nu} = \frac{i}{g}[D_{\mu}, D_{\nu}] = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$D_{\mu}\lambda^{a} = \partial_{\mu}\lambda^{a} \qquad A_{\mu} \mapsto A_{\mu} + \partial_{\mu}\theta \qquad F_{\mu\nu} \mapsto F_{\mu\nu}$$

1.9.3 Lagrangian Block

$$\mathcal{L} \ni |\mathcal{D}_{\mu}\phi|^{2} - m^{2}|\phi|^{2}, \quad \overline{\psi}(i\not\!\!D - m)\psi, \quad -\frac{1}{4}F_{a}^{\mu\nu}F_{\mu\nu}^{a} \left(= -\frac{1}{2}\operatorname{Tr}F^{\mu\nu}F_{\mu\nu}\right), \quad \theta\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}^{a}F_{\rho\sigma}^{a}$$
 (1.53)

$$-\frac{1}{4}F_{a}^{\mu\nu}F_{\mu\nu}^{a} = -\frac{1}{2}\left[(\partial_{\mu}A_{\nu}^{a})^{2} + A_{\mu}^{a}\partial^{\mu}\partial^{\nu}A_{\nu}^{a}\right] - gf^{abc}A_{\mu}^{a}A_{\nu}^{b}\partial^{\mu}A^{c\nu} - \frac{g^{2}}{4}f^{abc}f^{ade}A_{\mu}^{b}A_{\nu}^{c}A^{d\mu}A^{e\nu} \qquad (1.54)$$

^{*1} Note that we can use any representation T^a but must the same ones for $A^a_\mu T^a$ and $\lambda^a T^a$.

(2.6)

2 Standard Model

Any representations assumed to be normalized Hermitian. Note that the SU(2) 2 representation is

$$T^{a} = \frac{1}{2}\sigma^{a}; \qquad [T^{a}, T^{b}] = i\epsilon^{abc}T^{c}; \qquad T^{\pm} := T^{1} \pm iT^{2}.$$
 (2.1)

We use the following abridged notations:

$$(\partial A)_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, \qquad F^{a}_{\mu\nu} := \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu}. \tag{2.2}$$

2.1 Symmetries and Fields

	$SU(3)_{strong}$	$SU(2)_{weak}$	$\mathrm{U}(1)_Y$			
Matter Fields (Fermionic / Lorentz Spinor)						
$P_{\rm L}Q_i$: Left-handed quarks	Q_i : Left-handed quarks $f 3$ $f 2$ $f 1$		1/6			
$P_{\rm L}U_i$: Right-handed up-type quarks 3		1	2/3			
$P_{\rm R}D_i$: Right-handed down-type quarks	3	1	-1/3			
$P_{\rm R}L_i$: Left-handed leptons	1	2	-1/2			
$P_{\rm R}E_i$: Right-handed leptons	1	1	-1			
Higgs Field (Bosonic / Lorentz Scalar)						
H: Higgs	1	2	1/2			
Gauge Fields (Bosonic / Lorentz Vector)						
G: Gluons	8	1	0			
W: Weak bosons	1	3	0			
B : B boson	1	1	0			

Full Lagrangian $\mathcal{L} = \mathcal{L}_{\mathrm{gauge}} + \mathcal{L}_{\mathrm{Higgs}} + \mathcal{L}_{\mathrm{matter}} + \mathcal{L}_{\climate{BIII}}$

where
$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}B^{\mu\nu}B_{\mu\nu} - \frac{1}{4}W^{a\mu\nu}W^{a}_{\mu\nu} - \frac{1}{4}G^{a\mu\nu}G^{a}_{\mu\nu}$$
 (2.3)

$$\mathcal{L}_{\text{Higgs}} = \left| \left(\partial_{\mu} - ig_{2}W_{\mu} - \frac{1}{2}ig_{1}B_{\mu} \right) H \right|^{2} - V(H), \qquad (2.4)$$

$$\mathcal{L}_{\text{matter}} = \overline{Q}_{i}i\gamma^{\mu} \left(\partial_{\mu} - ig_{3}G_{\mu} - ig_{2}W_{\mu} - \frac{1}{6}ig_{1}B_{\mu} \right) P_{L}Q_{i}$$

$$+ \overline{U}_{i}i\gamma^{\mu} \left(\partial_{\mu} - ig_{3}G_{\mu} - \frac{2}{3}ig_{1}B_{\mu} \right) P_{R}U_{i}$$

$$+ \overline{D}_{i}i\gamma^{\mu} \left(\partial_{\mu} - ig_{3}G_{\mu} + \frac{1}{3}ig_{1}B_{\mu} \right) P_{R}D_{i}$$

$$+ \overline{L}_{i}i\gamma^{\mu} \left(\partial_{\mu} - ig_{2}W_{\mu} + \frac{1}{2}ig_{1}B_{\mu} \right) P_{L}L_{i}$$

$$+ \overline{E}_{i}i\gamma^{\mu} \left(\partial_{\mu} + ig_{1}B_{\mu} \right) P_{R}E_{i},$$

$$\mathcal{L}_{\|H|} = \overline{U}_{i}(y_{u})_{ij}HP_{L}Q_{j} - \overline{D}_{i}(y_{d})_{ij}H^{\dagger}P_{L}Q_{j} - \overline{E}_{i}(y_{e})_{ij}H^{\dagger}P_{L}L_{j} + \text{H.c.} \qquad (2.6)$$

We have no freedom to add other terms into this Lagrangian of the gauge theory. See Appendix ??.

Gauge Kinetic Terms

the gauge kinetic terms can be expanded as

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}(\partial B)(\partial B)
-\frac{1}{4}(\partial W^{a})(\partial W^{a}) - g_{2}\epsilon^{abc}(\partial_{\mu}W_{\nu}^{a})W^{\mu b}W^{\nu c} - \frac{g_{2}^{2}}{4}\left(\epsilon^{eab}W_{\mu}^{a}W_{\nu}^{b}\right)\left(\epsilon^{ecd}W^{c\mu}W^{d\nu}\right)
-\frac{1}{4}(\partial G^{a})(\partial G^{a}) - g_{3}f^{abc}(\partial_{\mu}G_{\nu}^{a})G^{\mu b}G^{\nu c} - \frac{g_{3}^{2}}{4}\left(f^{eab}G_{\mu}^{a}G_{\nu}^{b}\right)\left(f^{ecd}G^{c\mu}G^{d\nu}\right).$$
(2.7)

2.2 Higgs Mechanism

Higgs Potential

The (renormalizable) Higgs potential must be

$$V(H) = -\mu^2(H^{\dagger}H) + \lambda \left(H^{\dagger}H\right)^2. \tag{2.8}$$

for the SU(2), and $\lambda > 0$ in order not to run away the VEVs, while μ^2 is positive for the EWSB.

To discuss this clearly, let us redefine the Higgs field as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ v + (h + i\phi_3) \end{pmatrix}, \quad \text{where} \quad v = \sqrt{\frac{\mu^2}{\lambda}}.$$
 (2.9)

Here h is the "Higgs boson," and ϕ_i are 南部–Goldstone bosons.

The Higgs potential becomes

$$V(h) = \frac{\mu^2}{4v^2}h^4 + \frac{\mu^2}{v}h^3 + \mu^2h^2, \tag{2.10}$$

and now we know the Higgs boson has acquired mass $m_h = \sqrt{2}\mu$. Also

$$\mathcal{L}_{\text{Higgs}} = \left| \left(\partial_{\mu} - ig_2 W_{\mu} - \frac{1}{2} ig_1 B_{\mu} \right) H \right|^2 \tag{2.11}$$

$$= \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{(v+h)^{2}}{8} \left[g_{2}^{2} W_{1}^{2} + g_{2}^{2} W_{2}^{2} + (g_{1} B - g_{2} W_{3})^{2} \right]. \tag{2.12}$$

Redefining the gauge fields (with concerning the norms) as

$$W_{\mu}^{\pm} := \frac{1}{\sqrt{2}} (W_{\mu}^{1} \mp iW_{\mu}^{2}), \qquad \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} := \begin{pmatrix} \cos \theta_{w} & -\sin \theta_{w} \\ \sin \theta_{w} & \cos \theta_{w} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}, \qquad (2.13)$$

where

$$\tan \theta_{\mathbf{w}} := \frac{g_1}{g_2}, \qquad e := -\frac{g_1 g_2}{\sqrt{g_1^2 + g_2^2}}; \qquad g_Z := \sqrt{g_1^2 + g_2^2}; \qquad (2.14)$$

$$g_1 = \frac{|e|}{\cos \theta_{\rm w}} = g_Z \sin \theta_{\rm w}, \qquad g_2 = \frac{|e|}{\sin \theta_{\rm w}} = g_Z \cos \theta_{\rm w}.$$
 (2.15)

We obtain the following terms in \mathcal{L}_{Higgs} :

$$\mathcal{L}_{\text{Higgs}} \supset \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{(v+h)^{2}}{4} \left[g_{2}^{2} W^{+\mu} W_{\mu}^{-} + \frac{g_{Z}^{2}}{2} Z^{\mu} Z_{\mu} \right]. \tag{2.16}$$

Here we have omitted the 南部-Goldstone bosons.

Here we present another form:

$$g_1 B_\mu = |e| A_\mu - \tan \theta_w Z_\mu, \tag{2.17}$$

$$g_2 W_\mu = \frac{g_2}{\sqrt{2}} \left(W_\mu^+ T^+ + W_\mu^- T^- \right) + \left(\frac{|e|}{\tan \theta_w} Z_\mu + |e| A_\mu \right) T^3,$$
 (2.18)

$$Z_{\mu}^{0} := \frac{1}{\sqrt{g_{1}^{2} + g_{2}^{2}}} (g_{2}W_{\mu}^{3} - g_{1}B_{\mu}), \quad A_{\mu} := \frac{1}{\sqrt{g_{1}^{2} + g_{2}^{2}}} (g_{1}W_{\mu}^{3} + g_{2}B_{\mu})$$
 (2.19)

You can see the gauge bosons have acquired the masses

$$m_A = 0, \quad m_W := \frac{g_2}{2}v, \quad m_Z := \frac{g_Z}{2}v.$$
 (2.20)

Gauge Term The SU(2) gauge term is converted into

$$\begin{split} W^{a\mu\nu}W^{a}_{\mu\nu} &= (\partial W^{3})(\partial W^{3}) + 2(\partial W^{+})(\partial W^{-}) \\ &- 4\mathrm{i}g\left[(\partial W^{3})^{\mu\nu}W^{+}_{\mu}W^{-}_{\nu} + (\partial W^{+})^{\mu\nu}W^{-}_{\mu}W^{3}_{\nu} + (\partial W^{-})^{\mu\nu}W^{3}_{\mu}W^{+}_{\nu}\right] \\ &- 2g^{2}(\eta^{\mu\nu}\eta^{\rho\sigma} - \eta^{\mu\rho}\eta^{\nu\sigma})\left(W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\rho}W^{-}_{\sigma} - 2W^{3}_{\mu}W^{3}_{\nu}W^{+}_{\rho}W^{-}_{\sigma}\right), \end{split}$$

and therefore the final expression is

$$\mathcal{L}_{\text{gauge}} := -\frac{1}{4} \left[G^{a\mu\nu} G^{a}_{\mu\nu} + (\partial Z)^{\mu\nu} (\partial Z)_{\mu\nu} + (\partial A)^{\mu\nu} (\partial A)_{\mu\nu} + 2(\partial W^{+})^{\mu\nu} (\partial W^{-})_{\mu\nu} \right]
+ \frac{\mathrm{i}|e|}{\tan \theta_{\mathrm{w}}} \left[(\partial W^{+})^{\mu\nu} W^{-}_{\mu} Z_{\nu} + (\partial W^{-})^{\mu\nu} Z_{\mu} W^{+}_{\nu} + (\partial Z)^{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} \right]
+ \mathrm{i}|e| \left[(\partial W^{+})^{\mu\nu} W^{-}_{\mu} A_{\nu} + (\partial W^{-})^{\mu\nu} A_{\mu} W^{+}_{\nu} + (\partial A)^{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} \right]
+ (\eta^{\mu\nu} \eta^{\rho\sigma} - \eta^{\mu\rho} \eta^{\nu\sigma}) \left[\frac{|e|^{2}}{2 \sin^{2} \theta_{\mathrm{w}}} W^{+}_{\mu} W^{+}_{\nu} W^{-}_{\rho} W^{-}_{\sigma} + \frac{|e|^{2}}{\tan^{2} \theta_{\mathrm{w}}} W^{+}_{\mu} Z_{\nu} W^{-}_{\rho} Z_{\sigma} \right]
+ \frac{|e|^{2}}{\tan \theta_{\mathrm{w}}} \left(W^{+}_{\mu} Z_{\nu} W^{-}_{\rho} A_{\sigma} + W^{+}_{\mu} A_{\nu} W^{-}_{\rho} Z_{\sigma} \right) + |e|^{2} W^{+}_{\mu} A_{\nu} W^{-}_{\rho} A_{\sigma} \right].$$

湯川 Term

$$\mathcal{L}_{\text{MJII}} = \overline{U} y_u H P_{\text{L}} Q - \overline{D} y_d H^{\dagger} P_{\text{L}} Q - \overline{E} y_e H^{\dagger} P_{\text{L}} L + \text{H.c.}
= \overline{U} y_u \epsilon^{\alpha \beta} H^{\alpha} P_{\text{L}} Q^{\beta} - \overline{D} y_d H^{\dagger \alpha} P_{\text{L}} Q^{\alpha} - \overline{E} y_e H^{\dagger \alpha} P_{\text{L}} L^{\alpha} + \text{H.c.}
= -\frac{v+h}{\sqrt{2}} \left(\overline{U} y_u P_{\text{L}} Q^1 + \overline{D} y_d P_{\text{L}} Q^2 + \overline{E} y_e P_{\text{L}} L^2 \right) + \text{H.c.}$$
(2.22)

2.3 Full Lagrangian After Higgs Mechanism

Now we have the following Lagrangian (with omitting $P_{\rm L}$ etc.):

$$\mathcal{L} = \mathcal{L}_{\text{gauge}} + m_W^2 W^+ W^- + \frac{m_Z^2}{2} Z^2$$

$$[\text{Higgs}] + \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - \sqrt{\frac{\lambda}{2}} m_h h^3 - \frac{1}{4} \lambda h^4$$

$$+ \frac{vg_2^2}{4} W^+ W^- h + \frac{v(g_1^2 + g_2^2)}{8} Z^2 h$$

$$+ \frac{g_2^2}{4} W^+ W^- h^2 + \frac{g_1^2 + g_2^2}{8} Z^2 h^2$$

$$- \left(\frac{1}{\sqrt{2}} h \bar{U} y_u Q^1 + \frac{1}{\sqrt{2}} h \bar{D} y_d Q^2 + \frac{1}{\sqrt{2}} h \bar{E} y_e L^2 + \text{H.c.} \right)$$

$$[\text{SU(3)}] + \bar{Q} \left(i \partial \!\!\!/ + g_3 \mathcal{C} \right) Q + \bar{U} \left(i \partial \!\!\!/ + g_3 \mathcal{C} \right) U + \bar{D} \left(i \partial \!\!\!/ + g_3 \mathcal{C} \right) D + \bar{L} \left(i \partial \!\!\!/ \right) L + \bar{E} \left(i \partial \!\!\!/ \right) E$$

$$[W] + \bar{Q} \frac{g_2}{\sqrt{2}} \left(W^+ T^+ + W^- T^- \right) Q + \bar{L} \frac{g_2}{\sqrt{2}} \left(W^+ T^+ + W^- T^- \right) L$$

$$[A\&Z^0] + \bar{Q} \left[\left(T^3 + \frac{1}{6} \right) |e| \mathcal{A} + \left(\frac{|e|c}{s} T^3 - \frac{|e|s}{6c} \right) \mathcal{Z}^0 \right] Q$$

$$+ \bar{U} \left(\frac{2}{3} |e| \mathcal{A} - \frac{2|e|s}{3c} \mathcal{Z} \right) U$$

$$+ \bar{D} \left(-\frac{1}{3} |e| \mathcal{A} + \frac{|e|s}{3c} \mathcal{Z} \right) D$$

$$+ \bar{L} \left[\left(T^3 - \frac{1}{2} \right) |e| \mathcal{A} + \left(\frac{|e|c}{s} T^3 + \frac{|e|s}{2c} \right) \mathcal{Z}^0 \right] L$$

$$+ \bar{E} \left(-|e| \mathcal{A} + \frac{|e|s}{c} \mathcal{Z} \right) E$$

$$[\text{SUIDE}] - \left(\frac{1}{\sqrt{2}} v \bar{U} y_u Q^1 + \frac{1}{\sqrt{2}} v \bar{D} y_d Q^2 + \frac{1}{\sqrt{2}} v \bar{E} y_e L^2 + \text{H.c.} \right)$$

$$(2.23)$$

2.4 Mass Eigenstates

Here we will obtain the mass eigenstates of the fermions, by diagonalizing the 湯川 matrices.

We use the singular value decomposition method to mass matrices $Y_{\bullet} := vy_{\bullet}/\sqrt{2}$. Generally, any matrices can be transformed with two unitary matrices Ψ and Φ as

$$Y = \Phi^{\dagger} \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix} \Psi =: \Phi^{\dagger} M \Psi \qquad (m_i \ge 0).$$
 (2.24)

Using this Ψ and Φ , we can rotate the basis as

$$Q^1 \mapsto \Psi_u^\dagger Q^1, \quad Q^2 \mapsto \Psi_d^\dagger Q^2, \quad L \mapsto \Psi_e^\dagger L, \qquad \qquad U \mapsto \Phi_u^\dagger U, \quad D \mapsto \Phi_d^\dagger D, \quad E \mapsto \Phi_e^\dagger E, \qquad (2.25)$$

and now we have the 湯川 terms in mass eigenstates as

$$\mathcal{L}_{\text{BJII}} = -\left(1 + \frac{1}{v}h\right)\left[(m_u)_i\overline{U}_iP_LQ_i^1 + (m_d)_i\overline{D}_iP_LQ_i^2 + (m_e)_i\overline{E}_iP_LL_i^2 + \text{H.c.}\right]. \tag{2.26}$$

In the transformation from the gauge eigenstates to the mass eigenstates, almost all the terms in the Lagrangian are not modified. However, only the terms of quark–quark–W interactions do change drastically, as

$$\mathcal{L} \supset \overline{Q} i \gamma^{\mu} \left(-i g_2 W_{\mu} - \frac{1}{6} i g_1 B_{\mu} \right) P_{L} Q \tag{2.27}$$

$$= \overline{Q} \frac{g_2}{\sqrt{2}} \left(W^+ T^+ + W^- T^- \right) P_L Q + \text{ (interaction terms with } Z \text{ and } A)$$
 (2.28)

$$\mapsto \frac{g_2}{\sqrt{2}} \left(\overline{Q}^1 \Psi_u \quad \overline{Q}^2 \Psi_d \right) \begin{pmatrix} 0 & W^+ \\ W^- & 0 \end{pmatrix} P_{\mathcal{L}} \begin{pmatrix} \Psi_u^{\dagger} Q^1 \\ \Psi_d^{\dagger} Q^2 \end{pmatrix} + (\cdots)$$
 (2.29)

$$= \frac{g_2}{\sqrt{2}} \left[\overline{Q}^2 W^- X P_{\rm L} Q^1 + \overline{Q}^1 W^+ X^{\dagger} P_{\rm L} Q^2 \right] + (\cdots), \qquad (2.30)$$

where $X := \Psi_d \Psi_u^{\dagger}$ is a matrix, so-called the Cabbibo-小林-益川 (CKM) matrix, which is *not* diagonal, and *not* real, generally. These terms violate the flavor symmetry of quarks, and even the CP-symmetry.

In our notation, CP-transformation of a spinor is described as

$$\mathscr{C}\mathscr{P}(\psi) = -i\eta^*(\overline{\psi}\gamma^2)^T, \quad \mathscr{C}\mathscr{P}(\overline{\psi}) = i\eta(\gamma^2\psi)^T,$$
 (2.31)

where η is a complex phase ($|\eta| = 1$). Under this transformation, those terms are transformed as, e.g.,

$$\mathscr{CP}\left(\overline{Q}^{2}W^{-}XP_{L}Q^{1}\right) = (\gamma^{2}Q^{2})^{\mathrm{T}}\mathscr{P}(-W^{+})XP_{L}(\overline{Q}^{1}\gamma^{2})^{\mathrm{T}}$$

$$= -W_{\mu}^{+P}(\gamma^{2}Q^{2})^{\mathrm{T}}(\overline{Q}^{1}X^{\mathrm{T}}\gamma^{2}P_{L}\gamma^{\mu\mathrm{T}})^{\mathrm{T}}$$

$$= (\overline{Q}^{1}W^{+}X^{\mathrm{T}}P_{L}Q^{2}).$$
(2.32)

Therefore, we can see that the CP-symmetry is maintained if and only if $X^{T} = X^{\dagger}$, that is, if and only if X is a real matrix.

以上より,標準模型の Lagrangian は

$$\mathcal{L} = \mathcal{L}_{\text{gauge}}$$
【質量項】 + $m_W^2 W^+ W^- + \frac{m_Z^2}{2} Z^2$

$$- (\bar{U} M_u P_{\rm L} Q^1 + \bar{D} M_d P_{\rm L} Q^2 + \bar{E} M_e P_{\rm L} L^2 + \text{H.c.})$$
【Higgs Field】 + $\frac{1}{2} (\partial_\mu h)^2 - \frac{1}{2} m_h^2 h^2 - \sqrt{\frac{\lambda}{2}} m_h h^3 - \frac{1}{4} \lambda h^4$
【Higgs との総合】 + $\frac{vg_2^2}{4} W^+ W^- h$ + $\frac{v(g_1^2 + g_2^2)}{8} Z^2 h$ + $\frac{g_2^2}{4} W^+ W^- h^2$ + $\frac{g_1^2 + g_2^2}{8} Z^2 h^2$ - $\left(\frac{1}{v} \bar{U} M_u P_{\rm L} Q^1 h + \frac{1}{v} \bar{D} M_d P_{\rm L} Q^2 h + \frac{1}{v} \bar{E} M_e P_{\rm L} L^2 h + \text{H.c.} \right)$
【SU(3) および微分項】 + $\bar{Q} (i \partial\!\!/ + g_3 \partial\!\!\!/) P_{\rm L} Q + \bar{U} (i \partial\!\!/ + g_3 \partial\!\!/) P_{\rm R} U + \bar{D} (i \partial\!\!/ + g_3 \partial\!\!/) P_{\rm R} D$ + $\bar{L} (i \partial\!\!/) P_{\rm L} L + \bar{E} (i \partial\!\!/) P_{\rm E} E$
【W boson】 + $\frac{g_2}{\sqrt{2}} \left[\bar{Q}^2 W^- X P_{\rm L} Q^1 + \bar{Q}^1 W^+ X^\dagger P_{\rm L} Q^2 \right]$ 【 CP and flavor violating!】 + $\bar{L} \frac{g_2}{\sqrt{2}} \left(W^+ T^+ + W^- T^- \right) P_{\rm L} L$ 【A&Z⁰ boson】 + $\bar{Q} \left[\left(T^3 + \frac{1}{6} \right) |e| A + \left(\frac{|e|c}{s} T^3 - \frac{|e|s}{6c} \right) Z^0 \right] P_{\rm L} Q$ + $\bar{U} \left(\frac{2}{3} |e| A - \frac{2|e|s}{3c} Z \right) P_{\rm R} U$ + $\bar{D} \left(-\frac{1}{3} |e| A + \frac{|e|s}{3c} Z \right) P_{\rm R} D$ + $\bar{L} \left[\left(T^3 - \frac{1}{2} \right) |e| A + \left(\frac{|e|c}{s} T^3 + \frac{|e|s}{2c} \right) Z^0 \right] P_{\rm L} L$ + $\bar{E} \left(-|e| A + \frac{|e|s}{c} Z \right) P_{\rm R} E$ (2.33)

となる。

2.5 Chiral Notation

以上の Lagrangian を chiral 表示で表すと, まず最初は

$$\mathcal{L} = (\text{Higgs terms}) + (\text{Gauge fields strength})$$

$$+ Q_{L}^{\dagger} i \bar{\sigma}^{\mu} \left(\partial_{\mu} - i g_{3} G_{\mu} - i g_{2} W_{\mu} - \frac{1}{6} i g_{1} B_{\mu} \right) Q_{L}$$

$$+ U_{R}^{\dagger} i \sigma^{\mu} \left(\partial_{\mu} - i g_{3} G_{\mu} - \frac{2}{3} i g_{1} B_{\mu} \right) U_{R}$$

$$+ D_{R}^{\dagger} i \sigma^{\mu} \left(\partial_{\mu} - i g_{3} G_{\mu} + \frac{1}{3} i g_{1} B_{\mu} \right) D_{R}$$

$$+ L_{L}^{\dagger} i \bar{\sigma}^{\mu} \left(\partial_{\mu} - i g_{2} W_{\mu} + \frac{1}{2} i g_{1} B_{\mu} \right) L_{L}$$

$$+ E_{R}^{\dagger} i \sigma^{\mu} \left(\partial_{\mu} + i g_{1} B_{\mu} \right) E_{R}$$

$$- \left(U_{R}^{\dagger} y_{u} H Q_{L} + D_{R}^{\dagger} y_{d} H^{\dagger} Q_{L} + E_{R}^{\dagger} y_{e} H^{\dagger} L_{L} + \text{H.c.} \right)$$

$$= (\text{Higgs terms}) + (\text{Gauge fields strength})$$

$$+ i Q_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} Q_{L} + i U_{R} \bar{\sigma}^{\mu} \partial_{\mu} U_{R}^{\dagger} + i D_{R} \bar{\sigma}^{\mu} \partial_{\mu} D_{R}^{\dagger} + i L_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} L_{L} + i E_{R} \bar{\sigma}^{\mu} \partial_{\mu} E_{R}^{\dagger}$$

$$+ g_{3} \left(Q_{L}^{\dagger} \bar{\sigma}^{\mu} G_{\mu} Q_{L} + U_{R}^{\dagger} \bar{\sigma}^{\mu} G_{\mu} U_{R} + D_{R}^{\dagger} \bar{\sigma}^{\mu} G_{\mu} D_{R} \right)$$

$$+ g_{2} \left(Q_{L}^{\dagger} \bar{\sigma}^{\mu} W_{\mu} Q_{L} + L_{L}^{\dagger} \bar{\sigma}^{\mu} W_{\mu} L_{L} \right)$$

$$+ g_{1} \left(\frac{1}{6} Q_{L}^{\dagger} \bar{\sigma}^{\mu} B_{\mu} Q_{L} + \frac{2}{3} U_{R}^{\dagger} \bar{\sigma}^{\mu} B_{\mu} U_{R} - \frac{1}{3} D_{R}^{\dagger} \bar{\sigma}^{\mu} B_{\mu} D_{R} - \frac{1}{2} L_{L}^{\dagger} \bar{\sigma}^{\mu} B_{\mu} L_{L} - E_{R}^{\dagger} \bar{\sigma}^{\mu} B_{\mu} E_{R} \right)$$

$$- \left(U_{R}^{\dagger} y_{u} H Q_{L} + D_{R}^{\dagger} y_{d} H^{\dagger} Q_{L} + E_{R}^{\dagger} y_{e} H^{\dagger} L_{L} + \text{H.c.} \right)$$

$$(2.34)$$

であり,そして最終的には

$$\mathcal{L} = (\text{Gauge bosons and Higgs})$$

$$+ \mathrm{i} Q_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} Q_{\mathrm{L}} + \mathrm{i} U_{\mathrm{R}} \bar{\sigma}^{\mu} \partial_{\mu} U_{\mathrm{R}}^{\dagger} + \mathrm{i} D_{\mathrm{R}} \bar{\sigma}^{\mu} \partial_{\mu} D_{\mathrm{R}}^{\dagger} + \mathrm{i} L_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} L_{\mathrm{L}} + \mathrm{i} E_{\mathrm{R}} \bar{\sigma}^{\mu} \partial_{\mu} E_{\mathrm{R}}^{\dagger}$$

$$+ g_{3} \left(Q_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} G_{\mu} Q_{\mathrm{L}} + U_{\mathrm{R}}^{\dagger} \bar{\sigma}^{\mu} G_{\mu} U_{\mathrm{R}} + D_{\mathrm{R}}^{\dagger} \bar{\sigma}^{\mu} G_{\mu} D_{\mathrm{R}} \right)$$

$$- m_{u} (u_{\mathrm{R}}^{\dagger} u_{\mathrm{L}} + u_{\mathrm{L}}^{\dagger} u_{\mathrm{R}}) - (\mathrm{quarks}) - m_{e} (e_{\mathrm{R}}^{\dagger} e_{\mathrm{L}} + e_{\mathrm{L}}^{\dagger} e_{\mathrm{R}}) - (\mathrm{leptons})$$

$$- \frac{m_{u}}{v} (u_{\mathrm{R}}^{\dagger} u_{\mathrm{L}} + u_{\mathrm{L}}^{\dagger} u_{\mathrm{R}}) h - (\mathrm{quarks}) - \frac{m_{e}}{v} (e_{\mathrm{R}}^{\dagger} e_{\mathrm{L}} + e_{\mathrm{L}}^{\dagger} e_{\mathrm{R}}) h - (\mathrm{leptons})$$

$$+ \frac{g_{2}}{\sqrt{2}} \left[\left(d_{\mathrm{L}}^{\dagger} s_{\mathrm{L}}^{\dagger} b_{\mathrm{L}}^{\dagger} \right) \bar{\sigma}^{\mu} W_{\mu}^{-} X \left(u_{\mathrm{L}} \right) + \left(u_{\mathrm{L}}^{\dagger} c_{\mathrm{L}}^{\dagger} t_{\mathrm{L}}^{\dagger} \right) \bar{\sigma}^{\mu} W_{\mu}^{+} X^{\dagger} \left(d_{\mathrm{L}} \right) \right]$$

$$+ \frac{g_{2}}{\sqrt{2}} \left[\nu_{e}^{\dagger} \bar{\sigma}^{\mu} W_{\mu}^{+} e_{\mathrm{L}} + e_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} W_{\mu}^{-} \nu_{e} \right]$$

$$+ |e| \left[\frac{2}{3} u_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} A_{\mu} u_{\mathrm{L}} - \frac{1}{3} d_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} A_{\mu} d_{\mathrm{L}} + \frac{2}{3} u_{\mathrm{R}}^{\dagger} \sigma^{\mu} A_{\mu} u_{\mathrm{R}} - \frac{1}{3} d_{\mathrm{R}}^{\dagger} \sigma^{\mu} A_{\mu} d_{\mathrm{R}} + (\mathrm{quarks})$$

$$- e_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} A_{\mu} e_{\mathrm{L}} - e_{\mathrm{R}}^{\dagger} \sigma^{\mu} A_{\mu} e_{\mathrm{R}} + (\mathrm{leptons}) \right]$$

$$+ \frac{|e|s}{c} \left[\left(\frac{c^{2}}{2s^{2}} - \frac{1}{6} \right) u_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} Z_{\mu} u_{\mathrm{L}} - \left(\frac{c^{2}}{2s^{2}} + \frac{1}{6} \right) d_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} Z_{\mu} d_{\mathrm{L}} - \frac{2}{3} u_{\mathrm{R}}^{\dagger} \sigma^{\mu} Z_{\mu} u_{\mathrm{R}} + \frac{1}{3} d_{\mathrm{R}}^{\dagger} \sigma^{\mu} Z_{\mu} d_{\mathrm{R}} \right]$$

$$+ \left(\frac{c^{2}}{2s^{2}} + \frac{1}{2} \right) \nu_{e}^{\dagger} \bar{\sigma}^{\mu} Z_{\mu} \nu_{e} - \left(\frac{c^{2}}{2s^{2}} - \frac{1}{2} \right) e_{\mathrm{L}}^{\dagger} \bar{\sigma}^{\mu} Z_{\mu} e_{\mathrm{L}} + e_{\mathrm{R}}^{\dagger} \sigma^{\mu} Z_{\mu} e_{\mathrm{R}} + (\text{others}) \right]$$

$$+ (2.35)$$

となる。

2.6 VALUES OF SM PARAMETERS (Extracted from PDG 2010)

2.6.1 Experimental Values

Low energy values

$$\alpha_{\rm EM} = 1/137.035999679(94)$$
 $G_{\rm F} = \frac{g_2^2}{4\sqrt{2}m_W^2} = \frac{1}{\sqrt{2}v^2} = 1.16637(1) \times 10^{-5} \,\text{GeV}^{-2}$

Electroweak scale [These values are all in MS scheme.]

$$\begin{split} \alpha_{\rm EM}^{-1}(m_Z) &= 127.925(16) & m_W(m_W) &= 80.399(23) \, {\rm GeV} \\ \alpha_{\rm EM}^{-1}(m_\tau) &= 133.452(16) & m_Z(m_Z) &= 91.1876(21) \, {\rm GeV} \\ \alpha_{\rm s}(m_Z) &= 0.1183(15) & \sin^2\theta_{\rm W}(m_Z) &= 0.23116(13) \\ \Gamma_{l^+l^-} &= 83.984(86) \, {\rm MeV} & \sin^2\theta_{\rm eff} &= 0.23146(12) \end{split}$$

Fundamental masses

 $\begin{array}{lll} e: 0.510998910(13)\,\mathrm{MeV} & u: 1.7 \;\mathrm{to}\; 3.3\,\mathrm{MeV} & d: 4.1 \;\mathrm{to}\; 5.8\,\mathrm{MeV} \\ \mu: 105.658367(4)\,\mathrm{MeV} & c: 1.27^{+0.07}_{-0.09}\,\mathrm{GeV} & s: 101^{+29}_{-21}\,\mathrm{MeV} \\ \tau: 1.77682(16)\,\mathrm{GeV} & t: 172.0_{\pm 2.2}\,\mathrm{GeV} & b: 4.19^{+0.18}_{-0.06}\,\mathrm{GeV} \end{array}$

 $\pi^{\pm}: 139.57018(35)\,\mathrm{MeV} \qquad \qquad K^{\pm}: 493.677(16)\,\mathrm{MeV} \qquad \qquad p: 938.27203(8)\,\mathrm{MeV} \\ \pi^{0}: 134.9766(6)\,\mathrm{MeV} \qquad \qquad K^{0}: 497.614(24)\,\mathrm{MeV} \qquad \qquad n: 939.565346(23)\,\mathrm{MeV}$

Fundamental Lifetime (also $c\tau$ for some particles)

 $\mu : 2.197034(21) \, \mu \mathrm{s} \quad (659 \, \mathrm{m}) \qquad \qquad \pi^{\pm} : 2.6033(5) \times 10^{-8} \, \mathrm{s} \qquad \qquad K^{\pm} : 1.2380(21) \times 10^{-8} \, \mathrm{s} \\ \tau : 2.906(10) \times 10^{-13} \, \mathrm{s} \quad (87 \, \mu \mathrm{m}) \qquad \qquad \pi^{0} : 8.4(5) \times 10^{-17} \, \mathrm{s} \qquad \qquad K_{\mathrm{S}}^{0} : 8.953(5) \times 10^{-11} \, \mathrm{s} \\ \qquad \qquad K_{\mathrm{I}}^{0} : 5.116(20) \times 10^{-8} \, \mathrm{s}$

CKM matrix

$$V_{\text{CKM}} = \begin{pmatrix} 0.97428(15) & 0.2253(7) & 0.00347(16) \\ 0.2252(7) & 0.97345(16) & 0.0410(11) \\ 0.00862(26) & 0.0403(11) & 0.999152(45) \end{pmatrix} \sim \begin{pmatrix} 1 - \epsilon^2 & \epsilon & \epsilon^4 \\ \epsilon & 1 - \epsilon^2 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 - \epsilon^4 \end{pmatrix} \quad \text{for } \epsilon \sim 0.23$$

$$(2.36)$$

2.6.2 Estimation of SM Parameters

For EW scale, we can estimate the values as

$$e \sim 0.313, \qquad g_1 \sim 0.358, \qquad g_2 \sim 0.651, \qquad g_Z \sim 0.743; \qquad v = \sqrt{\frac{\mu^2}{\lambda}} \sim 246 \,\text{GeV}$$
 (2.37)

Therefore 湯川 matrices are (after diagonalization), since $vy/\sqrt{2}=M,$

$$y_u \sim \begin{pmatrix} 10^{-5} & 0 & 0 \\ 0 & 0.007 & 0 \\ 0 & 0 & 0.98 \end{pmatrix}, \quad y_d \sim \begin{pmatrix} 3 \times 10^{-5} & 0 & 0 \\ 0 & 0.0006 & 0 \\ 0 & 0 & 0.02 \end{pmatrix}, \quad y_e \sim \begin{pmatrix} 3 \times 10^{-6} & 0 & 0 \\ 0 & 0.0006 & 0 \\ 0 & 0 & 0.01 \end{pmatrix}. \tag{2.38}$$

Also, for $m_h \sim 120 \, {\rm GeV}$, we can estimate the Higgs potential as $\mu \sim 85 \, {\rm GeV}$ and $\lambda \sim 0.12$.

3 Supersymmetry for $\eta = diag(+, -, -, -)$

3.1 Spinor Convention

(See App. ?? for a verbose explanation.)

 $\epsilon \text{ tensor}$: $\epsilon^{12} = \epsilon^{\dot{1}\dot{2}} = \epsilon_{21} = \epsilon_{\dot{2}\dot{1}} = 1$ (definition)

Sum Rule : $^{\alpha}_{\alpha}$ and $^{\dot{\alpha}}_{\dot{\alpha}}$, except for $\xi_{\alpha} = \epsilon_{\alpha\beta}\xi^{\beta}$, $\xi^{\alpha} = \epsilon^{\alpha\beta}\xi_{\beta}$, $\xi_{\dot{\alpha}} = \epsilon_{\dot{\alpha}\dot{\beta}}\xi^{\dot{\beta}}$, $\xi^{\dot{\alpha}} = \epsilon^{\dot{\alpha}\dot{\beta}}\xi_{\dot{\beta}}$.

Lorentz **変換**: $\psi'_{\alpha} = \Lambda_{\alpha}{}^{\beta}\psi_{\beta}$, $\bar{\psi}'_{\dot{\alpha}} = \bar{\psi}_{\dot{\beta}}\Lambda^{\dagger\dot{\beta}}{}_{\dot{\alpha}}$, $\psi'^{\alpha} = \psi^{\beta}\Lambda^{-1}{}_{\beta}{}^{\alpha}$, $\bar{\psi}'^{\dot{\alpha}} = (\Lambda^{-1})^{\dagger\dot{\alpha}}{}_{\dot{\beta}}\bar{\psi}'^{\dot{\beta}}$.

 $\sigma \text{ matrices} : (\sigma^{\mu})_{\alpha\dot{\beta}} := (1, \boldsymbol{\sigma})_{\alpha\dot{\beta}}, \quad (\bar{\sigma}^{\mu})^{\dot{\alpha}\alpha} := \epsilon^{\dot{\alpha}\dot{\beta}} \epsilon^{\alpha\beta} (\sigma^{\mu})_{\beta\dot{\beta}} = (1, -\boldsymbol{\sigma})^{\dot{\alpha}\beta}.$

3.2 Spinor Calculation Cheatsheet

$$\eta = (+, -, -, -), \qquad \epsilon^{0123} = -\epsilon_{0123} = 1; \qquad \textbf{Left Differential};$$

$$\epsilon^{12} = \epsilon_{21} = \epsilon^{\dot{1}\dot{2}} = \epsilon_{\dot{2}\dot{1}} = 1, \quad \xi^{\alpha} := \epsilon^{\alpha\beta}\xi_{\beta}, \quad \xi_{\alpha} = \epsilon_{\alpha\beta}\xi^{\beta}, \quad \bar{\xi}^{\dot{\alpha}} := \epsilon^{\dot{\alpha}\dot{\beta}}\bar{\xi}_{\dot{\beta}}, \quad \bar{\xi}_{\dot{\alpha}} = \epsilon_{\dot{\alpha}\dot{\beta}}\bar{\xi}^{\dot{\beta}}$$

$$\bar{\sigma}^{\mu\dot{\alpha}\alpha} := \epsilon^{\alpha\beta}\epsilon^{\dot{\alpha}\dot{\beta}}\sigma^{\mu}_{\beta\dot{\beta}} \qquad \sigma^{\mu}_{\alpha\dot{\alpha}} = \epsilon_{\alpha\beta}\epsilon_{\dot{\alpha}\dot{\beta}}\bar{\sigma}^{\mu\dot{\beta}\beta}, \qquad \sigma^{\mu} := (1, \boldsymbol{\sigma}), \quad \bar{\sigma}^{\mu} := (1, -\boldsymbol{\sigma})$$

$$(\sigma^{\mu\nu})_{\alpha}{}^{\beta} := \frac{1}{4}\left(\sigma^{\mu}\bar{\sigma}^{\nu} - \sigma^{\nu}\bar{\sigma}^{\mu}\right)_{\alpha}{}^{\beta}, \quad (\bar{\sigma}^{\mu\nu})^{\dot{\alpha}}{}_{\dot{\beta}} := \frac{1}{4}\left(\bar{\sigma}^{\mu}\sigma^{\nu} - \bar{\sigma}^{\nu}\sigma^{\mu}\right)^{\dot{\alpha}}{}_{\dot{\beta}} = (\sigma^{\nu\mu})^{\dagger\dot{\alpha}}{}_{\dot{\beta}}.$$

$$\begin{array}{lll} \theta^{\alpha}\theta^{\beta} = -\frac{1}{2}\epsilon^{\alpha\beta}\theta\theta & \bar{\theta}^{\dot{\alpha}}\bar{\theta}^{\dot{\beta}} = \frac{1}{2}\epsilon^{\dot{\alpha}\dot{\beta}}\bar{\theta}\bar{\theta} & (\theta\phi)(\theta\psi) = -\frac{1}{2}(\psi\phi)(\theta\theta) & (\theta\sigma^{\nu}\bar{\theta})\theta^{\alpha} = \frac{1}{2}\theta\theta(\bar{\theta}\bar{\sigma}^{\nu})^{\alpha} \\ \theta_{\alpha}\theta_{\beta} = \frac{1}{2}\epsilon_{\alpha\beta}\theta\theta & \bar{\theta}_{\dot{\alpha}}\bar{\theta}_{\dot{\beta}} = -\frac{1}{2}\epsilon_{\dot{\alpha}\dot{\beta}}\bar{\theta}\bar{\theta} & (\bar{\theta}\bar{\phi})(\bar{\theta}\bar{\psi}) = -\frac{1}{2}(\bar{\psi}\bar{\phi})(\bar{\theta}\bar{\theta}) & (\theta\sigma^{\nu}\bar{\theta})\bar{\theta}_{\dot{\alpha}} = -\frac{1}{2}\bar{\theta}\bar{\theta}(\theta\sigma^{\mu})_{\dot{\alpha}} \\ \theta^{\alpha}\theta_{\beta} = \frac{1}{2}\delta^{\alpha}_{\beta}\theta\theta & \bar{\theta}_{\dot{\alpha}}\bar{\theta}^{\dot{\beta}} = \frac{1}{2}\delta^{\dot{\beta}}_{\dot{\alpha}}\bar{\theta}\bar{\theta} & (\theta\sigma^{\mu}\bar{\theta})(\theta\sigma^{\nu}\bar{\theta}) = \frac{1}{2}\theta\theta\bar{\theta}\bar{\theta}\eta^{\mu\nu} & (\sigma^{\mu}\bar{\theta})_{\alpha}(\theta\sigma^{\nu}\bar{\theta}) = \frac{1}{2}(\sigma^{\mu}\bar{\sigma}^{\nu}\theta)_{\alpha}\bar{\theta}\bar{\theta} \\ \theta\sigma^{\mu}\bar{\sigma}^{\nu}\theta = \eta^{\mu\nu}\theta\theta & \bar{\theta}\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\theta} = \eta^{\mu\nu}\bar{\theta}\bar{\theta} & (\theta\sigma^{\mu}\bar{\theta})(\theta\sigma^{\nu}\bar{\theta}) = \frac{1}{2}\theta\theta\bar{\theta}\bar{\theta}\eta^{\mu\nu} & (\theta\sigma^{\nu}\bar{\theta})(\theta\sigma^{\nu}\bar{\theta}) = \frac{1}{2}(\sigma^{\mu}\bar{\sigma}^{\nu}\theta)_{\alpha}\bar{\theta}\bar{\theta} \end{array}$$

$$\begin{split} \sigma^{\mu}\bar{\sigma}^{\nu} &= \eta^{\mu\nu} + 2\sigma^{\mu\nu} & \sigma^{\mu}\bar{\sigma}^{\rho}\sigma^{\nu} + \sigma^{\nu}\bar{\sigma}^{\rho}\sigma^{\mu} = 2\left(\eta^{\mu\rho}\sigma^{\nu} + \eta^{\nu\rho}\sigma^{\mu} - \eta^{\mu\nu}\sigma^{\rho}\right) \\ \bar{\sigma}^{\mu}\sigma^{\nu} &= \eta^{\mu\nu} + 2\bar{\sigma}^{\mu\nu} & \bar{\sigma}^{\mu}\sigma^{\rho}\bar{\sigma}^{\nu} + \bar{\sigma}^{\nu}\sigma^{\rho}\bar{\sigma}^{\mu} = 2\left(\eta^{\mu\rho}\bar{\sigma}^{\nu} + \eta^{\nu\rho}\bar{\sigma}^{\mu} - \eta^{\mu\nu}\bar{\sigma}^{\rho}\right) \\ \sigma^{\mu}\sigma^{\nu} &= -\sigma^{\nu\mu} & \sigma^{\mu}\bar{\sigma}^{\nu}\sigma^{\rho} - \sigma^{\rho}\bar{\sigma}^{\nu}\sigma^{\mu} = 2\mathrm{i}\epsilon^{\mu\nu\rho\sigma}\sigma_{\sigma} \\ \bar{\sigma}^{\mu\nu} &= -\bar{\sigma}^{\nu\mu} & \bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} - \bar{\sigma}^{\rho}\sigma^{\nu}\bar{\sigma}^{\mu} = -2\mathrm{i}\epsilon^{\mu\nu\rho\sigma}\bar{\sigma}_{\sigma} \\ \mathrm{Tr}\,\bar{\sigma}^{\mu}\sigma^{\nu} &= \mathrm{Tr}\,\sigma^{\mu}\bar{\sigma}^{\nu} = 2\eta^{\mu\nu} & \mathrm{Tr}\,\sigma^{\mu\nu}\sigma^{\rho\sigma} = -\frac{1}{2}\left(\eta^{\mu\rho}\eta^{\nu\sigma} - \eta^{\mu\sigma}\eta^{\nu\rho}\right) + \frac{\mathrm{i}}{2}\epsilon^{\mu\nu\rho\sigma} \\ \mathrm{Tr}\,\bar{\sigma}^{\mu\nu} &= \mathrm{Tr}\,\bar{\sigma}^{\mu\nu} &= 0 & \mathrm{Tr}\,\bar{\sigma}^{\mu\nu}\bar{\sigma}^{\rho\sigma} = -\frac{1}{2}\left(\eta^{\mu\rho}\eta^{\nu\sigma} - \eta^{\mu\sigma}\eta^{\nu\rho}\right) - \frac{\mathrm{i}}{2}\epsilon^{\mu\nu\rho\sigma} \\ \sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\sigma}^{\dot{\beta}\beta}_{\dot{\beta}} &= 2\delta^{\beta}_{\alpha}\delta^{\dot{\beta}}_{\dot{\alpha}} & \sigma^{\mu}_{\alpha\dot{\alpha}}\sigma^{\nu}_{\beta\dot{\beta}} - \sigma^{\nu}_{\alpha\dot{\alpha}}\sigma^{\mu}_{\beta\dot{\beta}} = 2\left[\left(\sigma^{\mu\nu}\epsilon\right)_{\alpha\beta}\epsilon_{\dot{\alpha}\dot{\beta}} + \left(\epsilon\bar{\sigma}^{\mu\nu}\right)_{\dot{\alpha}\dot{\beta}}\epsilon_{\alpha\beta}\right] \\ \bar{\sigma}^{\mu}_{\alpha\dot{\alpha}}\sigma_{\mu\dot{\beta}\dot{\beta}} &= 2\epsilon_{\alpha\beta}\epsilon_{\dot{\alpha}\dot{\beta}} & \sigma^{\mu}_{\alpha\dot{\alpha}}\sigma^{\nu}_{\beta\dot{\beta}} + \sigma^{\nu}_{\alpha\dot{\alpha}}\sigma^{\mu}_{\beta\dot{\beta}} = \eta^{\mu\nu}\epsilon_{\alpha\beta}\epsilon_{\dot{\alpha}\dot{\beta}} - 4\eta_{\rho\sigma}(\sigma^{\rho\mu}\epsilon)_{\alpha\beta}(\epsilon\bar{\sigma}^{\sigma\nu})_{\dot{\alpha}\dot{\beta}} \\ \bar{\sigma}^{\mu\dot{\alpha}\alpha}\bar{\sigma}^{\dot{\beta}\beta}_{\dot{\beta}} &= 2\epsilon^{\alpha\beta}\epsilon^{\dot{\alpha}\dot{\beta}} & \epsilon_{\dot{\beta}\dot{\alpha}}\bar{\sigma}^{\mu\dot{\alpha}\alpha} = \epsilon^{\alpha\beta}\sigma^{\mu}_{\dot{\beta}\dot{\beta}} & \epsilon^{\mu\nu\rho\sigma}\bar{\sigma}_{\rho\sigma} = 2\mathrm{i}\bar{\sigma}^{\mu\nu} \\ \bar{\epsilon}\bar{\sigma}^{\mu}\chi &= -\chi\sigma^{\mu}\bar{\xi} = (\bar{\chi}\bar{\sigma}^{\mu}\xi)^{*} = -(\xi\sigma^{\mu}\bar{\chi})^{*} & (\psi\phi)\chi_{\alpha} = -(\phi\chi)\psi_{\alpha} - (\chi\psi)\phi_{\alpha} \\ \xi\sigma^{\mu}\bar{\sigma}^{\nu}\chi &= \chi\sigma^{\nu}\bar{\sigma}^{\mu}\xi = (\bar{\chi}\bar{\sigma}^{\nu}\sigma^{\mu}\bar{\xi})^{*} = (\bar{\xi}\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\chi})^{*} & (\psi\phi)\bar{\chi}_{\dot{\alpha}} = \frac{1}{2}(\phi\sigma^{\mu}\bar{\chi})(\psi\sigma_{\mu})_{\dot{\alpha}} \end{cases}$$

$$\begin{split} \epsilon^{\alpha\beta}\frac{\partial}{\partial\theta^{\beta}} &= -\frac{\partial}{\partial\theta_{\alpha}} & \frac{\partial}{\partial\theta^{\alpha}}\theta\theta = 2\theta_{\alpha} & \epsilon^{\alpha\beta}\frac{\partial}{\partial\theta^{\alpha}}\frac{\partial}{\partial\theta^{\beta}}\theta\theta = \frac{\partial}{\partial\theta_{\alpha}}\frac{\partial}{\partial\theta^{\alpha}}\theta\theta = 4 \\ \epsilon_{\alpha\beta}\frac{\partial}{\partial\theta_{\beta}} &= -\frac{\partial}{\partial\theta^{\alpha}} & \frac{\partial}{\partial\theta_{\alpha}}\theta\theta = -2\theta^{\alpha} & \epsilon_{\alpha\beta}\frac{\partial}{\partial\theta_{\alpha}}\frac{\partial}{\partial\theta_{\beta}}\theta\theta = \frac{\partial}{\partial\theta^{\alpha}}\frac{\partial}{\partial\theta_{\alpha}}\theta\theta = -4 \\ \epsilon^{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\bar{\theta}\dot{\beta}} &= -\frac{\partial}{\partial\bar{\theta}\dot{\alpha}} & \frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\bar{\theta}\bar{\theta} = -2\bar{\theta}\dot{\alpha} & \epsilon^{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\frac{\partial}{\partial\bar{\theta}\dot{\beta}}\bar{\theta}\bar{\theta} = \frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\bar{\theta}\bar{\theta} = 4 \\ \epsilon_{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\bar{\theta}\dot{\beta}} &= -\frac{\partial}{\partial\bar{\theta}\dot{\alpha}} & \frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\bar{\theta}\bar{\theta} = 2\bar{\theta}\dot{\alpha} & \epsilon^{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\frac{\partial}{\partial\bar{\theta}\dot{\beta}}\bar{\theta}\bar{\theta} = \frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\frac{\partial}{\partial\bar{\theta}\dot{\alpha}}\bar{\theta}\bar{\theta} = -4 \end{split}$$

General Relations (Note: $P_{\mu} = i\partial_{\mu}$ in our convention.)

$$Q_{\alpha} := \frac{\partial}{\partial \theta^{\alpha}} + i(\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu}, \qquad D_{\alpha} := \frac{\partial}{\partial \theta^{\alpha}} - i(\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu}, \qquad y := x - i\theta\sigma\bar{\theta},$$

$$\bar{Q}_{\dot{\alpha}} = -\frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}} - i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}, \qquad \bar{D}_{\dot{\alpha}} = -\frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}} + i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}, \qquad y^{\dagger} = x + i\theta\sigma\bar{\theta}$$

$$\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = -2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}, \qquad \{D_{\alpha}, \bar{D}_{\dot{\alpha}}\} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}, \qquad (\text{others}) = 0.$$

$$\langle x\text{-basis} \rangle \qquad \langle y\text{-basis} \rangle \qquad \langle y^{\dagger}\text{-basis} \rangle$$

$$D_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} - i(\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu} \qquad = \frac{\partial}{\partial \theta^{\alpha}} - 2i(\sigma^{\mu}\bar{\theta})_{\alpha}\frac{\partial}{\partial y^{\mu}} \qquad = \frac{\partial}{\partial \theta^{\alpha}} \qquad (3.1)$$

$$\bar{D}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} + i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu} \qquad = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} \qquad = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} + 2i(\theta\sigma^{\mu})_{\dot{\alpha}}\frac{\partial}{\partial (y^{\dagger})^{\mu}} \qquad (3.2)$$

$$\bar{D}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} + i(\theta \sigma^{\mu})_{\dot{\alpha}} \partial_{\mu} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} + 2i(\theta \sigma^{\mu})_{\dot{\alpha}} \frac{\partial}{\partial (y^{\dagger})^{\mu}}$$
(3.2)

$$D^{\alpha} = -\frac{\partial}{\partial \theta_{\alpha}} + i(\bar{\theta}\bar{\sigma}^{\mu})^{\alpha}\partial_{\mu} = -\frac{\partial}{\partial \theta_{\alpha}} + 2i(\bar{\theta}\bar{\sigma}^{\mu})^{\alpha}\frac{\partial}{\partial y^{\mu}} = -\frac{\partial}{\partial \theta_{\alpha}}$$
(3.3)

$$\bar{D}^{\dot{\alpha}} = \frac{\partial}{\partial \bar{\theta}_{\dot{\alpha}}} - i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu} = \frac{\partial}{\partial \bar{\theta}_{\dot{\alpha}}} = \frac{\partial}{\partial \bar{\theta}_{\dot{\alpha}}} - 2i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\frac{\partial}{\partial (y^{\dagger})^{\mu}}$$
(3.4)

$$\phi(y) = \phi(x) - i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(x) - \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(x) = \phi(y^{\dagger}) - 2i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(y^{\dagger}) - \theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(y^{\dagger})$$
(3.5)

$$\phi(y^{\dagger}) = \phi(x) + i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(x) - \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(x) = \phi(y) + 2i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(y) - \theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(y)$$
 (3.6)

$$\phi(x) = \phi(y) + i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(y) - \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(y) = \phi(y^{\dagger}) - i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(y^{\dagger}) - \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(y^{\dagger})$$
(3.7)

3.4 Chiral Superfields : $\bar{D}_{\dot{\alpha}}\Phi = 0$

Explicit Expression

$$\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y) \tag{3.8}$$

$$= \phi(x) - i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(x) - \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(x) + \sqrt{2}\theta\psi(x) - \frac{i}{\sqrt{2}}\theta\theta\bar{\theta}\bar{\sigma}^{\mu}\partial_{\mu}\psi(x) + \theta\theta F(x)$$
(3.9)

$$= \phi(y^{\dagger}) - 2i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi(y^{\dagger}) - \theta\theta\bar{\theta}\bar{\theta}\partial^{2}\phi(y^{\dagger}) + \sqrt{2}\theta\psi(y^{\dagger}) - \sqrt{2}i\theta\theta\bar{\theta}\bar{\sigma}^{\mu}\partial_{\mu}\psi(y^{\dagger}) + \theta\theta F(y^{\dagger})$$
(3.10)

$$\Phi^{\dagger} = \phi^*(y^{\dagger}) + \sqrt{2}\bar{\theta}\bar{\psi}(y^{\dagger}) + \bar{\theta}\bar{\theta}F^*(y^{\dagger}) \tag{3.11}$$

$$= \phi^*(x) + i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi^*(x) - \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial^2\phi^*(x) + \sqrt{2}\bar{\theta}\bar{\psi}(x) - \frac{i}{\sqrt{2}}\bar{\theta}\bar{\theta}\theta\sigma^{\mu}\partial_{\mu}\bar{\psi}(x) + \bar{\theta}\bar{\theta}F^*(x)$$
(3.12)

$$= \phi^*(y) + 2i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\phi^*(y) - \theta\theta\bar{\theta}\bar{\theta}\partial^2\phi^*(y) + \sqrt{2}\bar{\theta}\bar{\psi}(y) - \sqrt{2}i\bar{\theta}\bar{\theta}\theta\sigma^{\mu}\partial_{\mu}\bar{\psi}(y) + \bar{\theta}\bar{\theta}F^*(y)$$
(3.13)

Product of Chiral Superfields

$$\begin{split} \Phi_i^\dagger \Phi_j(x,\theta,\bar{\theta}) &= \phi_i^* \phi_j + \sqrt{2} \phi_i^* \theta \psi_j + \sqrt{2} \bar{\theta} \bar{\psi}_i \phi_j + \theta \theta \phi_i^* F_j + \bar{\theta} \bar{\theta} F_i^* \phi_j \\ &- \mathrm{i} \theta \sigma^\mu \bar{\theta} \left(\phi_i^* \partial_\mu \phi_j - \partial_\mu \phi_i^* \phi_j \right) + 2 \bar{\theta} \bar{\psi}_i \theta \psi_j \\ &+ \frac{\mathrm{i}}{\sqrt{2}} \theta \theta \left(\phi_i^* \partial_\mu \psi_j - \partial_\mu \phi_i^* \psi_j \right) \sigma^\mu \bar{\theta} + \sqrt{2} \theta \theta \bar{\theta} \bar{\psi}_i F_j \\ &- \frac{\mathrm{i}}{\sqrt{2}} \bar{\theta} \bar{\theta} \bar{\theta} \sigma^\mu \left(\partial_\mu \bar{\psi}_i \phi_j - \bar{\psi}_i \partial_\mu \phi_j \right) + \sqrt{2} \bar{\theta} \bar{\theta} F_i^* \theta \psi_j \\ &+ \theta \theta \bar{\theta} \bar{\theta} \left[F_i^* F_j - \frac{1}{4} \phi_i^* \partial^2 \phi_j - \frac{1}{4} \partial^2 \phi_i^* \phi_j + \frac{1}{2} \partial_\mu \phi_i^* \partial_\mu \phi_j - \frac{\mathrm{i}}{2} \partial_\mu \bar{\psi}_i \bar{\sigma}^\mu \psi_j + \frac{\mathrm{i}}{2} \bar{\psi}_i \bar{\sigma}^\mu \partial_\mu \psi_j \right] \\ &\sim \phi_i^* \phi_j + \sqrt{2} \phi_i^* \theta \psi_j + \sqrt{2} \bar{\theta} \bar{\psi}_i \phi_j + \theta \theta \phi_i^* F_j + \bar{\theta} \bar{\theta} F_i^* \phi_j \\ &- 2\mathrm{i} (\theta \sigma^\mu \bar{\theta}) (\phi_i^* \partial_\mu \phi_j) + \sqrt{2} \mathrm{i} \theta \theta (\partial_\mu \phi_i^*) \bar{\theta} \bar{\sigma}^\mu \psi_j + \sqrt{2} \mathrm{i} \bar{\theta} \bar{\theta} \theta \sigma^\mu \bar{\psi}_i \partial_\mu \phi_j \\ &+ 2 \bar{\theta} \bar{\psi}_i \theta \psi_j + \sqrt{2} \theta \theta \bar{\theta} \bar{\psi}_i F_j + \sqrt{2} \bar{\theta} \bar{\theta} F_i^* \theta \psi_j \\ &+ \theta \theta \bar{\theta} \bar{\theta} \left[F_i^* F_j + \partial^\mu \phi_i^* \partial_\mu \phi_j + \mathrm{i} \bar{\psi}_i \bar{\sigma}^\mu \partial_\mu \psi_j \right] \end{split} \tag{3.15}$$

$$\Phi_i \Phi_j(\text{in } y\text{-basis}) = \phi_i \phi_j + \sqrt{2}\theta \left[\psi_i \phi_j + \phi_i \psi_j\right] + \theta\theta \left[\phi_i F_j + F_i \phi_j - \psi_i \psi_j\right]$$
(3.16)

$$\Phi_i \Phi_j \Phi_k (\text{in } y\text{-basis}) = \phi_i \phi_j \phi_k + \sqrt{2} \theta \left[\psi_i \phi_j \phi_k + \phi_i \psi_j \phi_k + \phi_i \phi_j \psi_k \right]
+ \theta \theta \left[F_i \phi_j \phi_k + \phi_i F_j \phi_k + \phi_i \phi_j F_k - \psi_i \psi_j \phi_k - \psi_i \phi_j \psi_k - \phi_i \psi_j \psi_k \right]$$
(3.17)

(Products of chiral superfields are still chiral superfields.) $\,$

$$e^{ik\Phi} = e^{ik\phi(y)} \left[1 + ik \left(\sqrt{2}\theta\psi(y) + \theta\theta F(y) \right) + \frac{k^2}{2}\theta\theta\psi(y)\psi(y) \right]$$
 (3.18)

Lagrangian Blocks

$$\mathcal{L}_{\text{kin.}} = \Phi_i^{\dagger} \Phi_j \Big|_{\theta \theta \bar{\theta} \bar{\theta}} \leadsto F_i^* F_j + \partial^{\mu} \phi_i^* \partial_{\mu} \phi_j + i \bar{\psi}_i \bar{\sigma}^{\mu} \partial_{\mu} \psi_j \tag{3.19}$$

$$\mathcal{L}_{\text{super}} = W \Big|_{\theta\theta} + W^* \Big|_{\bar{\theta}\bar{\theta}} = \int d^2\theta \left[\lambda_i \Phi_i + m_{ij} \Phi_i \Phi_j + y_{ijk} \Phi_i \Phi_j \Phi_k \right] + \text{H.c.}$$

$$= \lambda_i F_i + m_{ij} \left(\phi_i F_j + F_i \phi_j - \psi_i \psi_j \right) + y_{ijk} \left[\left(F_i \phi_j \phi_k - \psi_i \psi_j \phi_k \right) + \left(jki \text{ and } kij \text{ terms} \right) \right]$$
(3.20)

3.5 Vector Superfields and Gauge Theory : $V=V^\dagger$

3.5.1 Abelian Case — Field Construction

Explicit Expression

$$\begin{split} V &= C(x) + \mathrm{i}\theta\chi(x) - \mathrm{i}\bar{\theta}\bar{\chi}(x) \\ &+ \frac{\mathrm{i}}{2}\theta\theta\left[M(x) + \mathrm{i}N(x)\right] - \frac{\mathrm{i}}{2}\bar{\theta}\bar{\theta}\left[M(x) - \mathrm{i}N(x)\right] - \theta\sigma^{\mu}\bar{\theta}A_{\mu}(x) \\ &+ \theta\theta\bar{\theta}\left[\bar{\lambda}(x) + \frac{1}{2}\bar{\sigma}^{\mu}\partial_{\mu}\chi(x)\right] + \bar{\theta}\bar{\theta}\theta\left[\lambda(x) - \frac{1}{2}\sigma^{\mu}\partial_{\mu}\bar{\chi}(x)\right] + \frac{1}{2}\theta\theta\bar{\theta}\bar{\theta}\left[D(x) - \frac{1}{2}\partial^{2}C(x)\right] \\ &= C(y) + \mathrm{i}\theta\chi(y) - \mathrm{i}\bar{\theta}\bar{\chi}(y) \\ &+ \frac{\mathrm{i}}{2}\theta\theta\left[M(y) + \mathrm{i}N(y)\right] - \frac{\mathrm{i}}{2}\bar{\theta}\bar{\theta}\left[M(y) - \mathrm{i}N(y)\right] - \theta\sigma^{\mu}\bar{\theta}\left[A_{\mu}(y) - \mathrm{i}\partial_{\mu}C(y)\right] \\ &+ \theta\theta\bar{\theta}\bar{\lambda}(y) + \bar{\theta}\bar{\theta}\theta\left[\lambda(y) - \sigma^{\mu}\partial_{\mu}\bar{\chi}(y)\right] + \frac{1}{2}\theta\theta\bar{\theta}\bar{\theta}\left[D(y) - \partial^{2}C(y) - \mathrm{i}\partial_{\mu}A^{\mu}(y)\right] \\ &= C(y^{\dagger}) + \mathrm{i}\theta\chi(y^{\dagger}) - \mathrm{i}\bar{\theta}\bar{\chi}(y^{\dagger}) \\ &+ \frac{\mathrm{i}}{2}\theta\theta\left[M(y^{\dagger}) + \mathrm{i}N(y^{\dagger})\right] - \frac{\mathrm{i}}{2}\bar{\theta}\bar{\theta}\left[M(y^{\dagger}) - \mathrm{i}N(y^{\dagger})\right] - \theta\sigma^{\mu}\bar{\theta}\left[A_{\mu}(y^{\dagger}) + \mathrm{i}\partial_{\mu}C(y^{\dagger})\right] \\ &+ \theta\theta\bar{\theta}\left[\bar{\lambda}(y^{\dagger}) + \bar{\sigma}^{\mu}\partial_{\mu}\chi(y^{\dagger})\right] + \bar{\theta}\bar{\theta}\theta\lambda(y^{\dagger}) + \frac{1}{2}\theta\theta\bar{\theta}\bar{\theta}\left[D(y^{\dagger}) - \partial^{2}C(y^{\dagger}) + \mathrm{i}\partial_{\mu}A^{\mu}(y^{\dagger})\right] \end{aligned} \tag{3.23}$$

Supersymmetric Gauge Transformation : $V o V + \Phi + \Phi^\dagger$

$$C \mapsto C + (\phi + \phi^*) \qquad A_{\mu} \mapsto A_{\mu} + i\partial_{\mu}(\phi - \phi^*)$$

$$\chi \mapsto \chi - i\sqrt{2}\psi \qquad \lambda \mapsto \lambda \qquad (3.24)$$

$$M + iN \mapsto M + iN - 2iF \qquad D \mapsto D$$

Wess-Zumino Gauge $\ C=\chi=M=N=0$

Fixing this gauge breaks SUSY, but still allows the usual gauge transformation

$$A_{\mu} \mapsto A_{\mu} + \partial_{\mu} \alpha, \quad \lambda \mapsto \lambda, \quad D \mapsto D.$$
 (3.25)

$$\begin{split} V &= -\theta \sigma^{\mu} \bar{\theta} A_{\mu}(x) + \theta \theta \bar{\theta} \bar{\lambda}(x) + \bar{\theta} \bar{\theta} \theta \lambda(x) + \frac{1}{2} \theta \theta \bar{\theta} \bar{\theta} D(x) \\ &= -\theta \sigma^{\mu} \bar{\theta} A_{\mu}(y) + \theta \theta \bar{\theta} \bar{\lambda}(y) + \bar{\theta} \bar{\theta} \theta \lambda(y) + \frac{1}{2} \theta \theta \bar{\theta} \bar{\theta} \left[D(y) - \mathrm{i} \partial_{\mu} A^{\mu}(y) \right] \\ &= -\theta \sigma^{\mu} \bar{\theta} A_{\mu}(y^{\dagger}) + \theta \theta \bar{\theta} \bar{\lambda}(y^{\dagger}) + \bar{\theta} \bar{\theta} \theta \lambda(y^{\dagger}) + \frac{1}{2} \theta \theta \bar{\theta} \bar{\theta} \left[D(y^{\dagger}) + \mathrm{i} \partial_{\mu} A^{\mu}(y^{\dagger}) \right] \\ &= e^{kV} = 1 - k \theta \sigma^{\mu} \bar{\theta} A_{\mu}(x) + k \theta \theta \bar{\theta} \bar{\lambda} + k \bar{\theta} \bar{\theta} \theta \lambda + \theta \theta \bar{\theta} \bar{\theta} \left[\frac{k}{2} D + \frac{k^2}{4} A_{\mu} A^{\mu} \right] \end{split}$$

Field Strength

$$W_{\alpha} = -\frac{1}{4}\bar{D}\bar{D}D_{\alpha}V, \quad \bar{W}_{\dot{\alpha}} = -\frac{1}{4}DD\bar{D}_{\dot{\alpha}}V; \qquad W_{\alpha} \mapsto W_{\alpha} \quad \text{(gauge invariant)}$$
 (3.26)

$$\bar{D}_{\dot{\beta}}W_{\alpha} = D_{\beta}\bar{W}_{\dot{\alpha}} = 0; \qquad D^{\alpha}W_{\alpha} = \bar{D}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}}$$
(3.27)

$$W_{\alpha} = \lambda_{\alpha}(y) + \theta_{\alpha}D(y) + i(\sigma^{\mu\nu}\theta)_{\alpha}F_{\mu\nu}(y) + i\theta\theta \left[\sigma^{\mu}\partial_{\mu}\bar{\lambda}(y)\right]_{\alpha}$$
(3.28)

$$\bar{W}_{\dot{\alpha}} = \bar{\lambda}_{\dot{\alpha}}(y^{\dagger}) + \bar{\theta}_{\dot{\alpha}}D(y^{\dagger}) + i(\bar{\theta}\bar{\sigma}^{\mu\nu})_{\dot{\alpha}}F_{\mu\nu}(y^{\dagger}) - i\bar{\theta}\bar{\theta}\left[\partial_{\mu}\lambda(y^{\dagger})\sigma^{\mu}\right]. \tag{3.29}$$

$$W^{\alpha}W_{\alpha}\big|_{\theta\theta} = -\frac{1}{4}\bar{D}\bar{D}W^{\alpha}D_{\alpha}V \leadsto -\frac{1}{2}F^{\mu\nu}F_{\mu\nu} + \frac{\mathrm{i}}{4}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma} + 2\mathrm{i}\lambda\sigma^{\mu}\partial_{\mu}\bar{\lambda} + D^{2}$$
 (3.30)

 $(\mathcal{L}_{\rm inv}$ is SUSY- and gauge-invariant, while $\mathcal{L}_{\rm mass}$ is not gauge-invariant.)

3.5.2 Abelian Case — Gauge Theory

Here we turn on the coupling constant g. When $\Lambda = i\lambda(y) + \sqrt{2}\theta\xi(y) + \theta\theta K(y)$,

$$\mathcal{L} \ni \Phi^{\dagger} e^{2gqV} \Phi; \qquad \Phi \mapsto e^{iqg\Lambda} \Phi, \quad \Phi^{\dagger} \mapsto \Phi^{\dagger} e^{-iqg\Lambda^{\dagger}}; \qquad 2V \mapsto 2V - i(\Lambda - \Lambda^{\dagger})$$
 (3.33)

$$\begin{split} \phi &\mapsto \mathrm{e}^{-qg\lambda} \phi & C \mapsto C + \mathrm{Re} \, \lambda & M + \mathrm{i} N \mapsto M + \mathrm{i} N - K \\ \psi &\mapsto \mathrm{e}^{-qg\lambda} \left(\psi + \mathrm{i} q g \phi \cdot \xi \right) & \chi \mapsto \chi - \frac{1}{\sqrt{2}} \xi & A_{\mu} \mapsto A_{\mu} - \partial_{\mu} (\mathrm{Im} \, \lambda) \\ F &\mapsto \mathrm{e}^{-qg\lambda} \left(F + \mathrm{i} q g \phi K - \mathrm{i} q g \xi \psi + \frac{(qg)^2}{2} \xi \xi \phi \right) & \lambda \mapsto \lambda & D \mapsto D \\ & (\text{Very similar to the gauge transformations in Sec. 1.9.2.}) \end{split}$$

Lagrangian block

$$\mathcal{L}_{\text{gauge}} = \frac{1}{4} W^{\alpha} W_{\alpha} \Big|_{\theta\theta} + \text{H.c.} \qquad \leadsto -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + i\lambda \sigma^{\mu} \partial_{\mu} \bar{\lambda} + \frac{1}{2} D^{2}$$

$$\mathcal{L}_{\text{chiral}} = \Phi^{\dagger} e^{2gqV} \Phi \Big|_{\theta\theta\bar{\theta}\bar{\theta}} \qquad \leadsto F^{*} F + D_{\mu} \phi^{*} D^{\mu} \phi + i\bar{\psi}\bar{\sigma}^{\mu} D_{\mu} \psi + qgD\phi^{*} \phi - \sqrt{2}gq \left(\phi^{*} \lambda \psi + \phi\bar{\lambda}\bar{\psi}\right)$$

$$\mathcal{L}_{\mathcal{CP}} = \frac{i\theta}{32\pi^{2}} W^{\alpha} W_{\alpha} \Big|_{\theta\theta} + \text{H.c.} \qquad \leadsto -\frac{\theta}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$
with $D_{\mu}[\phi, \psi] = (\partial_{\mu} - igqA_{\mu})[\phi, \psi], \quad D_{\mu} \lambda = \partial_{\mu} \lambda,$

3.5.3 Non-Abelian Case

$$T^a$$
: generators (Hermitian);

$${\rm Tr}\, T^a T^b = K \delta^{ab} \ (K>0), \qquad [T^a,T^b] = {\rm i} f^{abc} T^c \ (f \ {\rm is \ anti-symmetric})$$

Explicit Expression Same as the Abelian case.

Supersymmetric Gauge Transformation

$$\mathcal{L} \ni \Phi^{\dagger} e^{2g\widetilde{V}} \Phi; \qquad \Phi \mapsto e^{ig\widetilde{\Lambda}} \Phi, \quad \Phi^{\dagger} \mapsto \Phi^{\dagger} e^{-ig\widetilde{\Lambda}^{\dagger}}; \qquad e^{2g\widetilde{V}} \mapsto e^{ig\widetilde{\Lambda}^{\dagger}} e^{2g\widetilde{V}} e^{-ig\widetilde{\Lambda}}$$

$$\text{with } \widetilde{V} := V^{a} T^{a}, \quad \widetilde{\Lambda} := \Lambda^{a} T^{a}, \quad \widetilde{\Lambda}^{\dagger} := (\Lambda^{a})^{\dagger} T^{a}$$

$$(3.34)$$

$$2\widetilde{V} \mapsto 2\widetilde{V} - i(\widetilde{\Lambda} - \widetilde{\Lambda}^{\dagger}) - \frac{g}{2} \left([\widetilde{\Lambda}, \widetilde{\Lambda}^{\dagger}] + i[2\widetilde{V}, \widetilde{\Lambda} + \widetilde{\Lambda}^{\dagger}] \right) + \cdots$$
(3.35)

$$= \left[2V^a - i(\Lambda^a - \Lambda^{\dagger a}) + \frac{g}{2} \left(-i\Lambda^b \Lambda^{\dagger c} + 2V^b (\Lambda^c + \Lambda^{\dagger c}) \right) f^{abc} + \cdots \right] T^a$$
 (3.36)

We do not present the transformations of the components; note that λ and D are transformed in non-Abelian theories.

Wess-Zumino Gauge

$$V^{a} = -\theta \sigma^{\mu} \bar{\theta} A^{a}_{\mu}(x) + \theta \theta \bar{\theta} \bar{\lambda}^{a}(x) + \bar{\theta} \bar{\theta} \theta \lambda^{a}(x) + \frac{1}{2} \theta \theta \bar{\theta} \bar{\theta} D^{a}(x)$$
(3.37)

$$e^{kV^{a}T^{a}} = 1 + kV^{a}T^{a} + \frac{k^{2}}{4}\theta\theta\bar{\theta}\bar{\theta}A^{a}_{\mu}A^{b\mu}T^{a}T^{b}$$
(3.38)

Note that the lowest order term of the gauge transformation is independent of V, which guarantees that we can still take the Wess-Zumino gauge. The gauge transformation is restricted as $e^{ig\tilde{\Lambda}}$, where $\Lambda^a = \xi^a(y) = \xi^a(x) - i\theta\sigma^\mu\bar{\theta}\partial_\mu\xi^a(x) - \frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\partial^2\xi^a(x)$: $\xi \in \mathbb{R}$.

$$2V^{e} \mapsto 2\left(V^{e} - gf^{eab}\xi^{a}V^{b} + 6g^{2}f^{abc}f^{ade}V^{b}\xi^{c}\xi^{d}\right) + \theta\sigma^{\mu}\bar{\theta}\left(-2\partial_{\mu}\xi^{e} + gf^{eab}\xi^{a}\partial_{\mu}\xi^{b} + 4g^{2}f^{acd}f^{abe}\xi^{b}\xi^{c}\partial_{\mu}\xi^{d}\right) + \cdots$$
(3.39)

$$\begin{split} A_{\mu}^{e} &\mapsto A_{\mu}^{e} + g f^{eab} A_{\mu}^{a} \xi^{b} + 6 g^{2} f^{abc} f^{ade} A_{\mu}^{b} \xi^{c} \xi^{d} \\ &\quad + \left(\partial_{\mu} \xi^{e} - \frac{g}{2} f^{eab} \xi^{a} \partial_{\mu} \xi^{b} - 2 g^{2} f^{acd} f^{abe} \xi^{b} \xi^{c} \partial_{\mu} \xi^{d} \right) + \cdots \end{split} \tag{3.40}$$

$$\lambda^e \mapsto \lambda^e + g f^{eab} \lambda^a \xi^b + 6g^2 f^{abc} f^{ade} \lambda^b \xi^c \xi^d + \cdots$$
(3.41)

$$D^e \mapsto D^e + g f^{eab} D^a \xi^b + 6g^2 f^{abc} f^{ade} D^b \xi^c \xi^d + \cdots$$
(3.42)

Note that C, χ, M and N are kept invariant automatically, for now we are under Wess-Zumino gauge. Field Strength *2

$$\widetilde{W}_{\alpha} = -\frac{1}{8q} \bar{D} \bar{D} e^{-2g\widetilde{V}} D_{\alpha} e^{2g\widetilde{V}} \qquad \qquad \bar{D}_{\dot{\beta}} W_{\alpha} = 0 \qquad \qquad W_{\alpha} \mapsto e^{ig\widetilde{\Lambda}} W_{\alpha} e^{-ig\Lambda^{\dagger}}$$
(3.43)

$$W_{\alpha}^{a} = \lambda_{\alpha}^{a}(y) + \theta_{\alpha}D^{a}(y) + i(\sigma^{\mu\nu}\theta)_{\alpha}F_{\mu\nu}^{a}(y) + i\theta\theta(\sigma^{\mu}D_{\mu}\bar{\lambda}^{a}(y))_{\alpha}$$
(3.44)

$$\operatorname{Tr} \widetilde{W}^{\alpha} \widetilde{W}_{\alpha} \Big|_{\theta\theta} = \operatorname{Tr} \left[DD + i\lambda \sigma^{\mu} D_{\mu} \bar{\lambda} + i D_{\mu} \bar{\lambda} \bar{\sigma}^{\mu} \lambda - \frac{1}{2} F^{\mu\nu} F_{\mu\nu} + \frac{i}{4} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \right]$$
(3.45)

$$= K \left[D^a D^a + i \lambda^a \sigma^\mu D_\mu \bar{\lambda}^a + i D_\mu \bar{\lambda}^a \bar{\sigma}^\mu \lambda^a - \frac{1}{2} F^{\mu\nu a} F^a_{\mu\nu} + \frac{i}{4} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma} \right]$$
(3.46)

Lagrangian Block

$$\mathcal{L}_{\text{gauge}} = \frac{1}{4K} \operatorname{Tr} \widetilde{W}^{\alpha} \widetilde{W}_{\alpha} \Big|_{\theta\theta} + \text{H.c.} \qquad \leadsto -\frac{1}{4} F^{\mu\nu \, a} F^{a}_{\mu\nu} + i \bar{\lambda}^{a} \bar{\sigma}^{\mu} D_{\mu} \lambda^{a} + \frac{1}{2} D^{a} D^{a}$$
(3.47)

$$\mathcal{L}_{\mathcal{OP}} = \frac{\mathrm{i}}{32K\pi^2} \operatorname{Tr} \widetilde{W}^{\alpha} \widetilde{W}_{\alpha} \Big|_{\theta\theta} + \text{H.c.} \qquad \leadsto -\frac{1}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma}$$
(3.48)

$$\mathcal{L}_{\text{matter}} = \Phi_i^{\dagger} [e^{2gV^a T^a}]_{ij} \Phi_j \Big|_{\theta\theta\bar{\theta}\bar{\theta}} \qquad \qquad \rightsquigarrow D^{\mu} \phi_i^* D_{\mu} \phi_i + i \bar{\psi}_i \bar{\sigma}^{\mu} D_{\mu} \psi_i + F_i^* F_i$$

$$+ gD^{a}(\phi^{*}T^{a}\phi) - \sqrt{2}g\left(\phi^{*}T^{a}\psi\lambda + \bar{\psi}\bar{\lambda}T^{a}\phi\right) \qquad (3.49)$$

$$\begin{split} \mathbf{D}_{\mu}\phi_{i} &= \partial_{\mu}\phi - \mathrm{i}gA_{\mu}^{a}(T^{a}\phi)_{i} & F_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - \mathrm{i}g[A_{\mu},A_{\nu}], \\ \mathbf{D}_{\mu}\phi_{i}^{*} &= \partial_{\mu}\phi + \mathrm{i}gA_{\mu}^{a}(\phi^{*}T^{a})_{i} & \mathbf{D}_{\mu}\lambda^{a} &= \partial_{\mu}\lambda^{a} + gf^{abc}A_{\mu}^{b}\lambda^{c}, \\ \mathbf{D}_{\mu}\psi_{i} &= \partial_{\mu}\psi - \mathrm{i}gA_{\mu}^{a}(T^{a}\psi)_{i} & \mathbf{D}_{\mu}\bar{\lambda}^{a} &= \partial_{\mu}\bar{\lambda}^{a} + gf^{abc}A_{\mu}^{b}\bar{\lambda}^{c}, \end{split}$$

^{*2} Note the signs. $\bar{D}\bar{D}\mathrm{e}^{2gV}D_{\alpha}\mathrm{e}^{-2gV}$ is not gauge invariant! Also the curvature tensor and the covariant derivative is well-known ones: $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - \mathrm{i}g[A_{\mu}, A_{\nu}]$, and $D_{\mu}\bar{\lambda} = \partial_{\mu}\bar{\lambda} - \mathrm{i}g[A_{\mu}, \bar{\lambda}] = \partial_{\mu}\bar{\lambda} + gf^{abc}A^{b}_{\mu}\bar{\lambda}^{c}T^{a}$.

3.6 Minimal Supersymmetric Standard Model

3.6.1 Definitions

Gauge Group and Superfields *3

 $SU(3)_{color} \times SU(2)_{weak} \times U(1)_{Y} \quad (\times \mathbb{Z}_{2R} : R\text{-parity});$ (3.50)

Field	SU(3)	SU(2)	U(1)	В	L
Q_i	3	2	1/6	1/3	
L_i		2	-1/2		1
\bar{U}_i	$\bar{3}$		-2/3	-1/3	
\bar{D}_i	$\bar{3}$		1/3	-1/3	
\bar{E}_i			1		-1
$H_{ m u}$		2	1/2		
$H_{ m d}$		2	-1/2		

Field	SU(3)	SU(2)	U(1)
g	8		
W		3	
В			

Superpotential and SUSY-terms

$$W_{\text{RPC}} = \mu H_{\text{u}} H_{\text{d}} - y_{\text{u}ij} \bar{U}_i H_{\text{u}} Q_j + y_{\text{d}ij} \bar{D}_i H_{\text{d}} Q_j + y_{\text{e}ij} \bar{E}_i H_{\text{d}} L_j$$
(3.51)

$$W_{\text{RPV}} = \mu_i H_{\text{u}} L_i + \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$
 (3.52)

$$\mathcal{L}_{\text{SUSY}} = -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{w} \widetilde{w} + M_1 \widetilde{b} \widetilde{b} + \text{H.c.} \right) - V_{\text{SUSY}}; \tag{3.53}$$

$$\begin{split} V_{\text{SUSY}}^{\text{RPC}} &= \left(\widetilde{q}^* m_Q^2 \widetilde{q} + \widetilde{l}^* m_L^2 \widetilde{l} + \widetilde{u}_{\text{R}} m_{\widetilde{U}}^2 \widetilde{u}_{\text{R}}^* + \widetilde{d}_{\text{R}} m_{\widetilde{D}}^2 \widetilde{d}_{\text{R}}^* + \widetilde{e}_{\text{R}} m_{\widetilde{E}}^2 \widetilde{e}_{\text{R}}^* + m_{H_{\text{u}}}^2 |H_{\text{u}}|^2 + m_{H_{\text{d}}}^2 |H_{\text{d}}|^2 \right) \\ &+ \left(-\widetilde{u}_{\text{R}}^* H_{\text{u}} A^u \widetilde{q} + \widetilde{d}_{\text{R}}^* H_{\text{d}} A^d \widetilde{q} + \widetilde{e}_{\text{R}}^* H_{\text{d}} A^e \widetilde{l} + b H_{\text{u}} H_{\text{d}} + \text{H.c.} \right) m \\ &+ \left(-\widetilde{u}_{\text{R}}^* H_{\text{d}}^* C^u \widetilde{q} + \widetilde{d}_{\text{R}}^* H_{\text{u}}^* C^d \widetilde{q} + \widetilde{e}_{\text{R}}^* H_{\text{u}}^* C^e \widetilde{l} + \text{H.c.} \right) \end{split} \tag{3.54}$$

$$V_{\text{SUSY}}^{\text{RPV}} = \left(b_i H_{\text{u}} \widetilde{l}_i + \frac{1}{2} A_{ijk} \widetilde{l}_i \widetilde{l}_j \widetilde{e}_{\text{R}k}^* + A'_{ijk} \widetilde{l}_i \widetilde{q}_j \widetilde{d}_{\text{R}k}^* + \frac{1}{2} A''_{ijk} \widetilde{u}_{\text{R}i}^* \widetilde{d}_{\text{R}j}^* \widetilde{d}_{\text{R}k}^* + M_{Li}^2 H_{\text{d}}^* \widetilde{l}_i + \text{H.c.}\right)$$
(3.55)

$$+ \left(C_{ijk}^{1} \widetilde{l}_{i}^{*} \widetilde{q}_{j} \widetilde{u}_{Rk}^{*} + C_{i}^{2} H_{u}^{*} H_{d} \widetilde{e}_{Ri}^{*} + C_{ijk}^{3} \widetilde{d}_{Ri} \widetilde{u}_{Rj}^{*} \widetilde{e}_{Rk}^{*} + \frac{1}{2} C_{ijk}^{4} \widetilde{d}_{Ri} \widetilde{q}_{j} \widetilde{q}_{k} + \text{H.c.} \right), \tag{3.56}$$

where we define
$$\lambda_{ijk}=-\lambda_{jik},\,\lambda_{ijk}''=-\lambda_{ikj}'',$$
 and $C_{ijk}^4=C_{ikj}^4$

For right-handed fermions such as \bar{U} , the superfield will be written as \bar{U} . Its scalar component is written as (or, in other words, equivalent to) $\tilde{u}_{\rm R}^*$, and its fermionic one is $U_{\alpha}^{\rm c}$. c is just a label; does not mean charge or complex conjugation. Their complex conjugates are $\tilde{u}_{\rm R}$ and $\bar{U}_{\dot{\alpha}}^{\rm c}$.

They form a Dirac fermion as
$$U = \begin{pmatrix} u_{\alpha} \\ \bar{U}^{c\dot{\alpha}} \end{pmatrix} =: \begin{pmatrix} U_{\rm L} \\ U_{\rm R} \end{pmatrix}$$
; its *charge* conjugate is $U^{\rm C} = \begin{pmatrix} U_{\alpha}^{\rm C} \\ \bar{u}^{\dot{\alpha}} \end{pmatrix}$. Majorana fermions are written as, e.g., $\tilde{b} = \tilde{b}^{\rm C} = \begin{pmatrix} \tilde{b}_{\alpha} \\ \bar{b}^{\dot{\alpha}} \end{pmatrix}$. Here $\tilde{b}_{\dot{\alpha}}$ is the complex conjugate of \tilde{b}_{α} .

$$\begin{split} \text{scalars}: \ &\widetilde{q}\left(\widetilde{u}_{\text{L}},\widetilde{d}_{\text{L}}^{*}\right), \widetilde{u}_{\text{R}}^{*}, \widetilde{d}_{\text{R}}^{*}, \widetilde{l}\left(\widetilde{e}_{\text{L}},\widetilde{\nu}\right), \widetilde{e}_{\text{R}}^{*}, H_{\text{u}}\left(H_{\text{u}}^{+}, H_{\text{u}}^{0}\right), H_{\text{d}}\left(H_{\text{d}}^{0}, H_{\text{d}}^{-}\right) \\ &\widetilde{q}^{*}\left(\widetilde{u}_{\text{L}}^{*}, \widetilde{d}_{\text{L}}^{*}\right), \widetilde{u}_{\text{R}}, \widetilde{d}_{\text{R}}, \widetilde{l}^{*}\left(\widetilde{e}_{\text{L}}^{*}, \widetilde{\nu}^{*}\right), \widetilde{e}_{\text{R}}, H_{\text{u}}^{*}, H_{\text{d}}^{*} \\ \end{split} & \qquad \qquad \qquad \\ \bar{Q}\left(\bar{u}, \bar{d}\right), \bar{U}^{c}, \bar{D}^{c}, \bar{L}\left(\bar{\nu}, \bar{e}\right), \bar{E}^{c} \\ \widetilde{h}_{\text{u}}\left(\widetilde{h}_{\text{u}}^{+}, \widetilde{h}_{\text{u}}^{0}\right), D\left(D_{\text{L}}, D_{\text{R}}\right), E\left(E_{\text{L}}, E_{\text{R}}\right), \nu \\ &\widetilde{h}_{\text{u}}\left(\widetilde{h}_{\text{u}}^{+}, \widetilde{h}_{\text{u}}^{0}\right), \widetilde{h}_{\text{d}}\left(\widetilde{h}_{\text{d}}^{0}, \widetilde{h}_{\text{d}}^{-}\right), \widetilde{b}, \widetilde{w}, \widetilde{g} \\ \widetilde{h}_{\text{u}}\left(\widetilde{h}_{\text{u}}^{+}, \widetilde{h}_{\text{u}}^{0}\right), \widetilde{h}_{\text{d}}\left(\widetilde{h}_{\text{d}}^{0}, \widetilde{h}_{\text{d}}^{-}\right), \widetilde{b}, \widetilde{w}, \widetilde{g} \\ \end{split}$$

^{*3} For left-handed fermions, the superfield will be written as, e.g., Q, and it contains a scalar component \tilde{q} and a chiral fermion Q_{α} . Their complex conjugates will be shown as \tilde{q}^* and $\bar{Q}_{\dot{\alpha}}$ as is done in the previous section.

3.6.2 Lagrangian Build Block

$$\mathcal{L}_{K;CP} = -\frac{1}{4} F^{\mu\nu a} F^{a}_{\mu\nu} + D^{\mu} \phi^{*}_{i} D_{\mu} \phi_{i} + i \bar{\psi}_{i} \bar{\sigma}^{\mu} D_{\mu} \psi_{i} + i \bar{\lambda}^{a} \bar{\sigma}^{\mu} D_{\mu} \lambda^{a} - \sqrt{2} g \left(\phi^{*} T^{a} \psi \lambda + \bar{\psi} \bar{\lambda} T^{a} \phi \right)$$
(3.57)

$$\mathcal{L}_{\text{gaugino}}^{\text{SUSY}} = -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{w} \widetilde{w} + M_1 \widetilde{b} \widetilde{b} + \text{H.c.} \right)$$
(3.58)

$$\mathcal{L}_{\text{scalar}} = -\left(\sum V^F + \sum V^D + \sum V_{SUSY}\right) \tag{3.59}$$

$$\mathcal{L}_{S; \text{ fermi}}^{RPC} = -\left(\mu \tilde{h}_{u} \tilde{h}_{d} - y_{u_{ij}} U_{i}^{c} H_{u} Q_{j} + y_{d_{ij}} D_{i}^{c} H_{d} Q_{j} + y_{e_{ij}} E_{i}^{c} H_{d} L_{j} + \dots + \text{H.c.}\right)$$

$$(3.60)$$

$$\mathcal{L}_{S; \text{fermi}}^{RPV} = -\left(\mu_i \widetilde{h}_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c + \dots + \text{H.c.}\right)$$
(3.61)

$$\mathcal{L}_{K;\mathcal{L}F} = -\frac{1}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma} \tag{3.62}$$

The scalar potential is decomposed as

$$-F_{H_{u}}^{a*} = \epsilon^{ab} \left(\mu H_{d}^{b} - y_{u_{ij}} \bar{U}_{i}^{x} Q_{j}^{bx} + \mu_{i} L_{i}^{b} \right)$$
(3.63)

$$-F_{H_d}^{a*} = \epsilon^{ab} \left(-\mu H_u^b + y_{dij} \bar{D}_i^x Q_i^{bx} + y_{eij} \bar{E}_i L_i^b \right)$$
 (3.64)

$$-F_{Q_{i}^{ax*}} = \epsilon^{ab} \left(y_{u_{ii}} H_{u}^{b} \bar{U}_{i}^{x} - y_{d_{ii}} H_{d}^{b} \bar{D}_{i}^{x} - \lambda'_{jik} L_{i}^{b} \bar{D}_{i}^{x} \right)$$
(3.65)

$$-F_{Li}^{a*} = \epsilon^{ab} \left(-\mu_i H_u^b - y_{eji} H_d^b \bar{E}_j + \lambda_{ijk} L_j^b \bar{E}_k + \lambda'_{ijk} Q_j^{bx} \bar{D}_k^x \right)$$
(3.66)

$$-F_{\bar{U}_i}^{x*} = \left(-\epsilon^{ab}y_{\mathbf{u}ij}H_{\mathbf{u}}^aQ_j^{bx} + \frac{1}{2}\epsilon^{xyz}\lambda_{ijk}^{"}\bar{D}_j^y\bar{D}_k^z\right)$$
(3.67)

$$-F_{\bar{D}_i}^{x*} = \left(\epsilon^{ab} y_{\mathrm{d}_{ij}} H_{\mathrm{d}}^a Q_i^{bx} + \epsilon^{ab} \lambda'_{jki} L_i^a Q_k^{bx} + \epsilon^{yzx} \lambda''_{iki} \bar{U}_i^y \bar{D}_k^z\right)$$
(3.68)

$$-F_{\bar{E}i}^* = \left(\epsilon^{ab} y_{eij} H_d^a L_j^b + \frac{1}{2} \epsilon^{ab} \lambda_{jki} L_j^a L_k^b\right)$$
(3.69)

and

$$D_g^{\alpha} = -g_3 \sum_{i=1}^{3} \left[\sum_{a=1,2} Q_i^{ax*} (T^{\alpha})_{xy} Q_i^{ay} - \bar{U}_i^{x*} (T^{\alpha})_{xy} \bar{U}_i^y - \bar{D}_i^{x*} (T^{\alpha})_{xy} \bar{D}_i^y \right]$$
(3.70)

$$D_W^{\alpha} = -g_2 \left[\sum_{i=1}^3 \sum_{x=1}^3 Q_i^{ax*}(T^{\alpha})_{ab} Q_i^{by} + \sum_{i=1}^3 L_i^{a*}(T^{\alpha})_{ab} L_i^b + H_{\mathbf{u}}^{a*}(T^{\alpha})_{ab} H_{\mathbf{u}}^b + H_{\mathbf{d}}^{a*}(T^{\alpha})_{ab} H_{\mathbf{d}}^b \right]$$
(3.71)

$$D_B = -g_1 \left[\frac{1}{6} |Q_i^{ax}|^2 - \frac{1}{2} |L_i^a|^2 - \frac{2}{3} |\bar{U}_i^x|^2 + \frac{1}{3} |\bar{D}_i^x|^2 + |\bar{E}_i|^2 + \frac{1}{2} |H_u^a|^2 - \frac{1}{2} |H_d^a|^2 \right]. \tag{3.72}$$

Here we use the superfield notation for simple appearance.

3.6.3 Scalar Potential (Verbose)

(with the superfield notation)

$$V_{H_{u}}^{F} = |\mu|^{2} |H_{d}|^{2} + \sum_{a} \left(|\bar{U}y^{u}Q^{a}|^{2} + |\mu_{i}L_{i}^{a}|^{2} \right)$$

$$+ \left[\mu^{*}\mu_{i}H_{d}^{*}L_{i} - \mu^{*}H_{d}^{*}\bar{U}y^{u}Q - \mu_{i}^{*}L_{i}^{*}\bar{U}y^{u}Q + \text{H.c.} \right]$$
(3.73)

$$V_{H_{d}}^{F} = |\mu|^{2} |H_{u}|^{2} + \sum_{a} \left(|\bar{D}y^{d}Q^{a}|^{2} + |\bar{E}y^{e}L^{a}|^{2} \right)$$

$$+ \left[-\mu^{*} H_{u}^{*} \bar{D}y^{d}Q - \mu^{*} H_{u}^{*} \bar{E}y^{e}L + (\bar{D}y^{d}Q)^{*} (\bar{E}y^{e}L) + \text{H.c.} \right]$$
(3.74)

$$V_{Q}^{F} = |H_{u}|^{2} |\bar{U}_{i}y_{ij}^{u}|^{2} + |H_{d}|^{2} |\bar{D}_{i}y_{ij}^{d}|^{2} + \lambda_{jik}^{\prime*} \lambda_{lim}^{\prime} L_{j}^{*} L_{l} \bar{D}_{k}^{*} \bar{D}_{m}$$

$$+ \left[-y_{ji}^{u*} y_{ki}^{d} H_{u}^{*} H_{d} \bar{U}_{j}^{*} \bar{D}_{k} - y_{ji}^{u*} \lambda_{lim}^{\prime} H_{u}^{*} L_{l} \bar{U}_{j}^{*} \bar{D}_{m} + y_{ji}^{d*} \lambda_{lim}^{\prime} H_{d}^{*} L_{l} \bar{D}_{j}^{*} \bar{D}_{m} + \text{H.c.} \right]$$

$$(3.75)$$

$$V_{L}^{F} = |\mu_{i}|^{2} |H_{u}|^{2} + |H_{d}|^{2} (\bar{E}y^{e}y^{e\dagger}\bar{E}^{*}) + \lambda'_{ijk}\lambda'_{ilm}(Q_{j}^{*}\bar{D}_{k}^{*})Q_{l}\bar{D}_{m} + \lambda^{*}_{ijk}\lambda_{ilm}L_{j}^{*}L_{l}\bar{E}_{k}^{*}\bar{E}_{m}$$

$$+ \left[\mu_{i}^{*}y_{ji}^{e}\bar{E}_{j}H_{u}^{*}H_{d} - \mu_{i}^{*}\lambda'_{ijk}H_{u}^{*}Q_{j}\bar{D}_{k} - \mu_{i}^{*}\lambda_{ijk}H_{u}^{*}L_{j}\bar{E}_{k} \right]$$

$$-y_{ji}^{e*}\lambda'_{ilm}\bar{E}_{j}^{*}H_{d}^{*}Q_{l}\bar{D}_{m} - y_{ji}^{e*}\lambda_{ilm}\bar{E}_{j}^{*}H_{d}^{*}L_{l}\bar{E}_{m} + \lambda'^{*}_{ijk}\lambda_{ilm}\bar{D}_{k}^{*}Q_{j}^{*}L_{l}\bar{E}_{m} + \text{H.c.}$$
(3.76)

$$V_{\bar{U}}^{F} = y_{ij}^{u*} y_{ik}^{u} \epsilon^{ab} \epsilon^{cd} H_{\mathbf{u}}^{a*} H_{\mathbf{u}}^{c} Q_{j}^{b*} Q_{k}^{d} + \frac{1}{2} \lambda_{ijk}^{\prime\prime\prime*} \lambda_{ilm}^{\prime\prime} (\bar{D}_{j}^{*} \bar{D}_{l}) (\bar{D}_{k}^{*} \bar{D}_{m}) - \left[y_{il}^{u*} \lambda_{ijk}^{\prime\prime} H_{\mathbf{u}}^{*} Q_{l}^{*} \bar{D}_{j} \bar{D}_{k} + \text{H.c.} \right]$$
(3.77)

$$V_{\bar{D}}^{F} = \epsilon^{ab} \epsilon^{cd} \left(y_{ij}^{d} H_{d}^{a} + \lambda'_{kji} L_{k}^{a} \right)^{*} \left(y_{il}^{d} H_{d}^{c} + \lambda'_{mli} L_{m}^{c} \right) Q_{j}^{b*} Q_{l}^{d} + \lambda''_{jki} \lambda''_{lmi} \left(\bar{U}_{j}^{*} \bar{U}_{l} \ \bar{D}_{k}^{*} \bar{D}_{m} - \bar{U}_{j}^{*} \bar{D}_{m} \ \bar{D}_{k}^{*} \bar{U}_{l} \right) + \left[\lambda''_{lmi} (y_{ij}^{d*} H_{d}^{*} + \lambda'_{kji} L_{k}^{*}) Q_{j}^{*} \bar{U}_{l} \bar{D}_{m} + \text{H.c.} \right]$$

$$(3.78)$$

$$V_{\bar{E}}^{F} = \epsilon^{ab} \epsilon^{cd} \left(y_{ij}^{e} H_{d}^{a} + \frac{1}{2} \lambda_{kji} L_{k}^{a} \right)^{*} L_{j}^{*b} \left(y_{il}^{e} H_{d}^{c} + \frac{1}{2} \lambda_{mli} L_{m}^{c} \right) L_{l}^{d}$$
(3.79)

$$V_g^D = \frac{g_3^2}{2} \left\{ \sum_{\alpha=1}^8 \sum_{i=1}^3 \left[\sum_{\alpha=1,2} Q_i^{a*}(t^{\alpha}) Q_i^a - \bar{U}_i^*(t^{\alpha}) \bar{U}_i - \bar{D}_i^*(t^{\alpha}) \bar{D}_i \right] \right\}^2$$
(3.80)

$$V_W^D = \frac{g_2^2}{2} \left[\sum_{i=1}^3 \sum_{x=1}^3 Q_i^{x*}(T^\alpha) Q_i^x + \sum_{i=1}^3 L_i^*(T^\alpha) L_i + H_{\mathrm{u}}^*(T^\alpha) H_{\mathrm{u}} + H_{\mathrm{d}}^*(T^\alpha) H_{\mathrm{d}} \right]^2$$
(3.81)

$$V_B^D = \frac{g_1^2}{2} \left[\sum_i \left(\frac{1}{6} |Q_i|^2 - \frac{1}{2} |L_i|^2 - \frac{2}{3} |\bar{U}_i|^2 + \frac{1}{3} |\bar{D}_i|^2 + |\bar{E}_i|^2 \right) + \frac{1}{2} |H_{\rm u}|^2 - \frac{1}{2} |H_{\rm d}|^2 \right]^2$$
(3.82)

$$V_{\text{SUSY}}^{\text{RPC}} = \left(Q^* m_Q^2 Q + L^* m_L^2 L + \bar{U}^* m_{\bar{U}}^2 \bar{U} + \bar{D}^* m_{\bar{D}}^2 \bar{D} + \bar{E}^* m_{\bar{E}}^2 \bar{E} + m_{H_{\text{u}}}^2 |H_{\text{u}}|^2 + m_{H_{\text{d}}}^2 |H_{\text{d}}|^2 \right)$$

$$+ \left(-\bar{U} H_{\text{u}} A^u Q + \bar{D} H_{\text{d}} A^d Q + \bar{E} H_{\text{d}} A^e L + B H_{\text{u}} H_{\text{d}} + \text{H.c.} \right)$$

$$+ \left(-\bar{U} H_{\text{d}}^* C^u Q + \bar{D} H_{\text{u}}^* C^d Q + \bar{E} H_{\text{u}}^* C^e L + \text{H.c.} \right)$$

$$(3.83)$$

$$V_{\text{SUSY}}^{\text{RPV}} = \left(B_i H_{\text{u}} L_i + \frac{1}{2} A_{ijk} L_i L_j \bar{E}_k + A'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} A''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \text{H.c.} \right)$$

$$+ \left(C_{ijk}^1 L_i^* Q_j \bar{U}_k + C_i^2 H_{\text{u}}^* H_{\text{d}} \bar{E}_i + C_{ijk}^3 \bar{D}_i^* \bar{U}_j \bar{E}_k + \frac{1}{2} C_{ijk}^4 \bar{D}_i^* Q_j Q_k + \text{H.c.} \right)$$

$$+ \left(M_{Li}^2 H_{\text{d}}^* L_i + \text{H.c.} \right)$$

$$(3.84)$$

With R-parity

$$\begin{split} V_{\text{full}}^{\text{RPC}} &= \left(Q^* m_Q^2 Q + L^* m_L^2 L + \bar{U}^* m_{\bar{U}}^2 \bar{U} + \bar{D}^* m_D^2 \bar{D} + \bar{E}^* m_{\bar{E}}^2 \bar{E}\right) \\ &+ \left(|\mu|^2 + m_{H_0}^2\right) |H_{\text{u}}|^2 + \left(|\mu|^2 + m_{H_d}^2\right) |H_{\text{d}}|^2 + (BH_{\text{u}}H_{\text{d}} + \text{H.c.}) \\ &+ \left[\left(-\mu^* y^u H_{\text{d}}^* - A^u H_{\text{u}} - C^u H_{\text{d}}^*\right)_{ij} \bar{U}_i Q_j + \text{H.c.}\right] \\ &+ \left[\left(-\mu^* y^d H_{\text{u}}^* + A^d H_{\text{d}} + C^d H_{\text{u}}^*\right)_{ij} \bar{D}_i Q_j + \text{H.c.}\right] \\ &+ \left[\left(-\mu^* y^e H_{\text{u}}^* + A^e H_{\text{d}} + C^e H_{\text{u}}^*\right)_{ij} \bar{E}_i L_j + \text{H.c.}\right] \\ &+ \left[\left(-\mu^* y^e H_{\text{u}}^* + A^e H_{\text{d}} + C^e H_{\text{u}}^*\right)_{ij} \bar{E}_i L_j + \text{H.c.}\right] \\ &+ \left[\left(-\mu^* y^e H_{\text{u}}^* + A^e H_{\text{d}} + C^e H_{\text{u}}^*\right)_{ij} \bar{E}_i E_j e^{|2} + |H_{\text{u}}|^2 |y^u Q|^2 + |H_{\text{d}}|^2 |y^d Q|^2 + |H_{\text{d}}|^2 |y^e L|^2 \right. \\ &+ \left.\left[\left(\bar{D}y^u Q^a\right)^2 + |\bar{D}y^d Q^a|^2 + |\bar{E}y^e L^a|^2\right) \\ &+ \left[\left(\bar{D}y^d Q\right)^* (\bar{E}y^e L) - y_{ji}^{u*} y_{ki}^d H_{\text{u}}^* H_{\text{d}} \bar{U}_j^* \bar{D}_k + \text{H.c.}\right] \\ &- \left[y_{ki}^{u*} y_{kj}^u (H_{\text{u}}^u Q_j) (Q_i^* H_{\text{u}}) + y_{ki}^{d*} y_{kj}^d (H_{\text{d}}^* Q_j) (Q_i^* H_{\text{d}}) + y_{ki}^{e*} y_{kj}^e (H_{\text{d}}^* L_j) (L_i^* H_{\text{d}})\right] \\ &+ \frac{g_3^2}{2} \left\{\sum_{\alpha=1}^3 \sum_{i=1}^3 \left[\sum_{a=1,2} Q_i^{a*} (t^\alpha) Q_i^a - \bar{U}_i^* (t^\alpha) \bar{U}_i - \bar{D}_i^* (t^\alpha) \bar{D}_i\right]\right\}^2 \\ &+ \frac{g_2^2}{2} \left[\sum_{i=1}^3 \sum_{x=1}^3 \left(\frac{1}{6} |Q_i|^2 - \frac{1}{2} |L_i|^2 - \frac{2}{3} |\bar{U}_i|^2 + \frac{1}{3} |\bar{D}_i|^2 + |\bar{E}_i|^2\right) + \frac{1}{2} |H_{\text{u}}|^2 - \frac{1}{2} |H_{\text{d}}|^2\right]^2 \right]^2 \end{split}$$

With Bilinear R-parity Violation

$$V_{H_{u}}^{F} += \sum_{a} |\mu_{i} L_{i}^{a}|^{2} + \left[\mu^{*} \mu_{i} H_{d}^{*} L_{i} - \mu_{i}^{*} L_{i}^{*} \bar{U} y^{u} Q + \text{H.c.} \right]$$
(3.86)

$$V_L^F += |\mu_i|^2 |H_{\mathbf{u}}|^2 + \left[\mu_i^* y_{ji}^e \bar{E}_j H_{\mathbf{u}}^* H_{\mathbf{d}} + \text{H.c.} \right]$$
(3.87)

$$V_{\text{SUSY}}^{\text{RPV}} = \left(B_i H_{\text{u}} L_i + M_{Li}^2 H_{\text{d}}^* L_i + \text{H.c.} \right)$$
 (3.88)

With Trilinear leptonic R-parity Violation

$$V_Q^F += |\lambda'_{jik} L_j \bar{D}_k|^2 + \left[-y_{ji}^{u*} \lambda'_{lim} H_u^* L_l \bar{U}_j^* \bar{D}_m + y_{ji}^{d*} \lambda'_{lim} H_d^* L_l \bar{D}_j^* \bar{D}_m + \text{H.c.} \right]$$
(3.89)

$$V_{L}^{F} += |\lambda'_{ijk}Q_{j}\bar{D}_{k}|^{2} + |\lambda_{ijk}L_{j}\bar{E}_{k}|^{2}$$

$$+ \left[-y_{mi}^{e*}\lambda'_{ijk}\bar{E}_{m}^{*}H_{d}^{*}Q_{j}\bar{D}_{k} - y_{mi}^{e*}\lambda_{ijk}\bar{E}_{m}^{*}H_{d}^{*}L_{j}\bar{E}_{k} + \lambda'_{ijk}^{*}\lambda_{ilm}\bar{D}_{k}^{*}Q_{j}^{*}L_{l}\bar{E}_{m} + \text{H.c.} \right]$$
(3.90)

$$V_{\bar{D}}^{F} += \lambda_{kji}^{\prime *} \lambda_{mli}^{\prime} \left[(L_{k}^{*} L_{m}) (Q_{j}^{*} Q_{l}) - (L_{k}^{*} Q_{l}) (Q_{j}^{*} L_{m}) \right]$$

$$+ \left\{ y_{ij}^{d} * \lambda_{mli}^{\prime} \left[(H_{d}^{*} L_{m}) (Q_{j} Q_{l}) - (H_{d}^{*} Q_{l}) (Q_{j}^{*} L_{m}) \right] + \text{H.c.} \right\}$$
(3.91)

$$V_{\bar{E}}^{F} = \frac{1}{2} \lambda_{kji}^{*} \lambda_{mli} (L_{k}^{*} L_{m}) (L_{j}^{*} L_{l}) + \lambda_{kji}^{*} y_{ilp}^{e} \Big[(L_{k}^{*} H_{d}) (L_{j}^{*} L_{l}) + \text{H.c.} \Big]$$
(3.92)

3.6.4 Full Lagrangian (in Gauge eigenstates)

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}B^{\mu\nu}B_{\mu\nu} - \frac{1}{4}W^{\mu\nu}{}^{a}W^{a}_{\mu\nu} - \frac{1}{4}G^{\mu\nu}{}^{a}G^{a}_{\mu\nu} \quad ^{*4}$$

$$\mathcal{L}_{\text{gaugino}} = -\frac{1}{2}\left(M_{3}\widetilde{g}\widetilde{g} + M_{2}\widetilde{w}\widetilde{w} + M_{1}\widetilde{b}\widetilde{b} + \text{H.c.}\right) + i\tilde{b}^{a}\bar{\sigma}^{\mu}\partial_{\mu}\widetilde{b}^{a} + i\tilde{w}^{a}\bar{\sigma}^{\mu}\partial_{\mu}\widetilde{w}^{a} + i\tilde{g}^{a}\bar{\sigma}^{\mu}\partial_{\mu}\widetilde{g}^{a} + ig_{2}\epsilon^{abc}\bar{w}^{a}\bar{\sigma}^{\mu}W^{b}_{\mu}\widetilde{w}^{c} + ig_{3}f^{abc}\bar{g}^{a}\bar{\sigma}^{\mu}G^{b}_{\mu}\widetilde{g}^{c} \tag{3.94}$$

$$\mathcal{L}_{\mathcal{C}\mathcal{F}} = -\frac{1}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} B_{\mu\nu} B_{\rho\sigma} - \frac{1}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} W_{\mu\nu}^{a} W_{\rho\sigma}^{a} - \frac{1}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^{a} G_{\rho\sigma}^{a} \qquad (3.95)$$

$$\mathcal{L}_{\text{scalar}} = \left[\left(\partial^{\mu} + ig_{3} G^{\mu} + ig_{2} W^{\mu} + \frac{1}{6} ig_{1} B^{\mu} \right) \widetilde{q}_{i}^{*} \right] \left[\left(\partial_{\mu} - ig_{3} G_{\mu} - ig_{2} W_{\mu} - \frac{1}{6} ig_{1} B_{\mu} \right) \widetilde{q}_{i} \right] + \left[\left(\partial^{\mu} + ig_{3} G^{\mu} + \frac{2}{3} ig_{1} B^{\mu} \right) \widetilde{u}_{R_{i}^{*}} \right] \left[\left(\partial_{\mu} - ig_{3} G_{\mu} - \frac{2}{3} ig_{1} B_{\mu} \right) \widetilde{u}_{R_{i}} \right]$$

$$+ \left[(\partial^{\mu} + ig_{3}G^{\mu} + \frac{1}{3}ig_{1}B^{\mu})\tilde{d}_{R_{i}}^{*} \right] \left[(\partial_{\mu} - ig_{3}G_{\mu} + \frac{1}{3}ig_{1}B_{\mu})\tilde{d}_{R_{i}} \right]$$

$$+ \left[(\partial^{\mu} + ig_{3}G^{\mu} - \frac{1}{3}ig_{1}B^{\mu})\tilde{d}_{R_{i}}^{*} \right] \left[(\partial_{\mu} - ig_{3}G_{\mu} + \frac{1}{3}ig_{1}B_{\mu})\tilde{d}_{R_{i}} \right]$$

$$+ \left[(\partial^{\mu} + ig_{2}W^{\mu} - \frac{1}{2}ig_{1}B^{\mu})\tilde{l}_{i}^{*} \right] \left[(\partial_{\mu} - ig_{2}W_{\mu} + \frac{1}{2}ig_{1}B_{\mu})\tilde{l}_{i} \right]$$

$$+ \left[(\partial^{\mu} - ig_{1}B^{\mu})\tilde{e}_{R_{i}}^{*} \right] \left[(\partial_{\mu} + ig_{1}B_{\mu})\tilde{e}_{R_{i}} \right]$$

$$+ \left[(\partial^{\mu} + ig_{2}W^{\mu} + \frac{1}{2}ig_{1}B^{\mu})H_{u}^{*} \right] \left[(\partial_{\mu} - ig_{2}W_{\mu} - \frac{1}{2}ig_{1}B_{\mu})H_{u} \right]$$

$$+ \left[(\partial^{\mu} + ig_{2}W^{\mu} - \frac{1}{2}ig_{1}B^{\mu})H_{d}^{*} \right] \left[(\partial_{\mu} - ig_{2}W_{\mu} + \frac{1}{2}ig_{1}B_{\mu})H_{d} \right],$$

$$(3.96)$$

$$\mathcal{L}_{\text{fermion}} = i\bar{Q}_{i}\bar{\sigma}^{\mu} \left(\partial_{\mu} - ig_{3}G_{\mu} - ig_{2}W_{\mu} - \frac{1}{6}ig_{1}B_{\mu} \right) Q_{i}
+ i\bar{U}_{i}^{c}\bar{\sigma}^{\mu} \left(\partial_{\mu} - ig_{3}[-G_{\mu}^{T}] + \frac{2}{3}ig_{1}B_{\mu} \right) U_{i}^{c} + i\bar{D}_{i}^{c}\bar{\sigma}^{\mu} \left(\partial_{\mu} - ig_{3}[-G_{\mu}^{T}] - \frac{1}{3}ig_{1}B_{\mu} \right) D_{i}^{c}
+ i\bar{L}_{i}\bar{\sigma}^{\mu} \left(\partial_{\mu} - ig_{2}W_{\mu} + \frac{1}{2}ig_{1}B_{\mu} \right) L_{i} + i\bar{E}_{i}^{c}\bar{\sigma}^{\mu} \left(\partial_{\mu} - ig_{1}B_{\mu} \right) E_{i}^{c}
+ i\bar{h}_{u}\bar{\sigma}^{\mu} \left(\partial_{\mu} - ig_{2}W_{\mu} - \frac{1}{2}ig_{1}B_{\mu} \right) \tilde{h}_{u} + i\bar{h}_{d}\bar{\sigma}^{\mu} \left(\partial_{\mu} - ig_{2}W_{\mu} + \frac{1}{2}ig_{1}B_{\mu} \right) \tilde{h}_{d},$$
(3.97)

$$\mathcal{L}_{SFG} = -\sqrt{2}g_{3} \left[\left(\tilde{q}_{i}^{*} \tau^{a} Q_{i} + \tilde{u}_{Ri} \left[-\tau^{aT} \right] U_{i}^{c} + \tilde{d}_{Ri} \left[-\tau^{aT} \right] D_{i}^{c} \right) \tilde{g}^{a} \right. \\
\left. + \tilde{g}^{a} \left(\bar{Q}_{i} \tau^{a} \tilde{q}_{i} + \bar{U}_{i}^{c} \left[-\tau^{aT} \right] \tilde{u}_{Ri}^{*} + \bar{D}_{i}^{c} \left[-\tau^{aT} \right] \tilde{d}_{Ri}^{*} \right) \right] \\
\left. - \sqrt{2}g_{2} \left[\left(\tilde{q}_{i}^{*} T^{a} Q_{i} + \tilde{l}_{i}^{*} T^{a} L_{i} + H_{u}^{*} T^{a} \tilde{h}_{u} + H_{d}^{*} T^{a} \tilde{h}_{d} \right) \tilde{w}^{a} \right. \\
\left. + \tilde{w}^{a} \left(\bar{Q}_{i} T^{a} \tilde{q}_{i} + \bar{L}_{i} T^{a} \tilde{l}_{i} + \tilde{h}_{u} T^{a} H_{u} + \tilde{h}_{d} T^{a} H_{d} \right) \right] \\
\left. - \sqrt{2}g_{1} \left[\left(\frac{1}{6} \tilde{q}_{i}^{*} Q_{i} - \frac{2}{3} \tilde{u}_{Ri} U_{i}^{c} + \frac{1}{3} \tilde{d}_{Ri} D_{i}^{c} - \frac{1}{2} \tilde{l}_{i}^{*} L_{i} + \tilde{e}_{Ri} E_{i}^{c} + \frac{1}{2} H_{u}^{*} \tilde{h}_{u} - \frac{1}{2} H_{d}^{*} \tilde{h}_{d} \right) \tilde{b} \right. \\
\left. + \tilde{b} \left(\frac{1}{2} \bar{Q}_{i} \tilde{q}_{i} - \frac{2}{2} \bar{U}_{i}^{c} \tilde{u}_{Ri}^{*} + \frac{1}{2} \bar{D}_{i}^{c} \tilde{d}_{Ri}^{*} - \frac{1}{2} \bar{L}_{i} \tilde{l}_{i} + \bar{E}_{i}^{c} \tilde{e}_{Ri}^{*} + \frac{1}{2} \tilde{h}_{u} H_{u} - \frac{1}{2} \tilde{h}_{d} H_{d} \right) \right]$$

$$(3.98)$$

$$\mathcal{L}_{\text{super}}^{\text{RPC}} = -\mu \widetilde{h}_{\text{u}} \widetilde{h}_{\text{d}} + y_{\text{u}ij} U_{i}^{\text{c}} H_{\text{u}} Q_{j} - y_{\text{d}ij} D_{i}^{\text{c}} H_{\text{d}} Q_{j} - y_{\text{e}ij} E_{i}^{\text{c}} H_{\text{d}} L_{j}
+ y_{\text{u}ij} U_{i}^{\text{c}} \widetilde{h}_{\text{u}} \widetilde{q}_{j} + y_{\text{u}ij} \widetilde{u}_{\text{R}}^{*} \widetilde{h}_{\text{u}} Q_{j} - y_{\text{d}ij} D_{i}^{\text{c}} \widetilde{h}_{\text{d}} \widetilde{q}_{j} - y_{\text{d}ij} \widetilde{d}_{\text{R}}^{*} \widetilde{h}_{\text{d}} Q_{j}
- y_{\text{e}ij} E_{i}^{\text{c}} \widetilde{h}_{\text{d}} \widetilde{l}_{j} - y_{\text{e}ij} \widetilde{e}_{\text{R}}^{*} \widetilde{h}_{\text{d}} L_{j} + \text{H.c.}$$
(3.99)

$$\mathcal{L}_{\text{pot.}}^{\text{RPC}} = -(3.85) \left[V_{\text{full}}^{\text{RPC}} \right] \tag{3.100}$$

^{*4} Further decomposed results are shown in *Standard Model* section, Eqs. (2.7) and (2.21).

(3.104)

Fermion Composition

$$\begin{split} &\mathcal{L}_{\mathrm{gaugino}} = \frac{1}{2} \tilde{b} \left(\mathrm{i} \partial - M_1 \right) \tilde{b} + \frac{1}{2} \overline{w} \left(\mathrm{i} D - M_2 \right) \tilde{w} + \frac{1}{2} \overline{g} \left(\mathrm{i} D - M_3 \right) \tilde{g} \end{aligned} \tag{3.101} \\ &\mathcal{L}_{\mathrm{fermion}} = (2.5) \left[\mathcal{L}_{\mathrm{matter}}^{\mathrm{Matter}} \right] \\ &- \left(\mu \tilde{h}_{\mathrm{u}} \tilde{h}_{\mathrm{d}} + \mathrm{H.c.} \right) + \mathrm{i} \tilde{h}_{\mathrm{u}} \sigma^{\mu} \left(\partial_{\mu} - \mathrm{i} g_2 W_{\mu} - \frac{1}{2} \mathrm{i} g_1 B_{\mu} \right) \tilde{h}_{\mathrm{u}} + \mathrm{i} \tilde{h}_{\mathrm{d}} \sigma^{\mu} \left(\partial_{\mu} - \mathrm{i} g_2 W_{\mu} + \frac{1}{2} \mathrm{i} g_1 B_{\mu} \right) \tilde{h}_{\mathrm{d}} \\ &= \mathcal{L}_{\mathrm{matter}}^{\mathrm{SM}} - \left[\mu \left(\tilde{h}_{\mathrm{u}}^{+} \tilde{h}_{\mathrm{d}} - \tilde{h}_{\mathrm{u}}^{0} \tilde{h}_{\mathrm{d}}^{0} \right) + \mathrm{H.c.} \right] \\ &+ \mathrm{i} \tilde{h}_{\mathrm{u}}^{+} \tilde{\sigma}^{\mu} \left(\partial_{\mu} - \frac{1}{2} \mathrm{i} g_2 W_{\mu}^{3} - \frac{1}{2} \mathrm{i} g_1 B_{\mu} \right) \tilde{h}_{\mathrm{u}}^{+} + \mathrm{i} \tilde{h}_{\mathrm{d}}^{-} \tilde{\sigma}^{\mu} \left(\partial_{\mu} + \frac{1}{2} \mathrm{i} g_2 W_{\mu}^{3} + \frac{1}{2} \mathrm{i} g_1 B_{\mu} \right) \tilde{h}_{\mathrm{d}}^{-} \\ &+ \mathrm{i} \tilde{h}_{\mathrm{u}}^{0} \tilde{\sigma}^{\mu} \left(\partial_{\mu} + \frac{1}{2} \mathrm{i} g_2 W_{\mu}^{3} - \frac{1}{2} \mathrm{i} g_1 B_{\mu} \right) \tilde{h}_{\mathrm{u}}^{+} + \mathrm{i} \tilde{h}_{\mathrm{d}}^{-} \tilde{\sigma}^{\mu} \left(\partial_{\mu} + \frac{1}{2} \mathrm{i} g_2 W_{\mu}^{3} + \frac{1}{2} \mathrm{i} g_1 B_{\mu} \right) \tilde{h}_{\mathrm{d}}^{-} \\ &+ \mathrm{i} \tilde{h}_{\mathrm{u}}^{0} \tilde{\sigma}^{\mu} \left(\tilde{g}_{\mu} + \frac{1}{2} \mathrm{i} g_2 W_{\mu}^{3} - \frac{1}{2} \mathrm{i} g_1 B_{\mu} \right) \tilde{h}_{\mathrm{u}}^{0} + \mathrm{i} \tilde{h}_{\mathrm{d}}^{0} \tilde{\sigma}^{\mu} \left(\partial_{\mu} + \frac{1}{2} \mathrm{i} g_2 W_{\mu}^{3} + \frac{1}{2} \mathrm{i} g_1 B_{\mu} \right) \tilde{h}_{\mathrm{d}}^{0} \\ &+ \frac{g_2}{\sqrt{2}} \left(\tilde{h}_{\mathrm{u}}^{0} \tilde{\sigma}^{\mu} W_{\mu}^{\mu} \tilde{h}_{\mathrm{u}}^{+} + \tilde{h}_{\mathrm{d}}^{0} \tilde{\sigma}^{\mu} W_{\mu}^{\mu} \tilde{h}_{\mathrm{d}}^{-} + \tilde{h}_{\mathrm{d}}^{+} \tilde{\sigma}^{\mu} W_{\mu}^{\mu} \tilde{h}_{\mathrm{u}}^{0} + \tilde{h}_{\mathrm{d}}^{2} \tilde{\sigma}^{\mu} W_{\mu}^{\mu} \tilde{h}_{\mathrm{d}}^{0} \right) \\ \mathcal{L}_{\mathrm{SFG}} = -\sqrt{2} g_3 \left[\tilde{u}_{\mathrm{L}}^{*} \tilde{\tau}^{*} \left(\tilde{g}^{\mu} P_{\mathrm{L}} U_{\mathrm{l}} \right) + \tilde{d}_{\mathrm{L}}^{*} \tilde{\tau}^{*} \left(\tilde{g}^{\mu} P_{\mathrm{L}} U_{\mathrm{l}} \right) + \tilde{d}_{\mathrm{L}}^{*} \tilde{\tau}^{*} \left(\tilde{g}^{\mu} P_{\mathrm{L}} U_{\mathrm{l}} \right) - \left(\tilde{U}_{\mathrm{l}} P_{\mathrm{L}} \tilde{g}^{\mu} \right) \tilde{\sigma}^{\mu} \tilde{u}_{\mathrm{u}}^{\mu} + H_{\mathrm{d}}^{\mu} \tilde{h}_{\mathrm{d}}^{0} \right) \\ + \left(\tilde{u}_{\mathrm{l}} \tilde{u}_{\mathrm{L}}^{*} + \tilde{u}_{\mathrm{l}}^{*} \tilde{h}_{\mathrm{l}}^{\mu} + \tilde{h}_{\mathrm{d}}^{\mu} H_{\mathrm{d}}^{\mu} \right) + \left(\tilde{u}_{\mathrm{L}} \tilde{u}_{\mathrm{L}} \tilde{u}_{\mathrm{L}}^{\mu} \tilde{u}_{\mathrm{L}}^{\mu} \tilde{h}_{\mathrm{d}}^{\mu} \right) \tilde{u}_{\mathrm{L}}^{\mu} \tilde{u}_{\mathrm{L}}^{\mu} \tilde{u}_{\mathrm{L}}^{\mu} \tilde{u}_{\mathrm{L}}^{\mu} \tilde$$

and the rest part is $\mathcal{L}_{\mathrm{gauge}} + \mathcal{L}_{\mathrm{scalar}} + \mathcal{L}_{\mathrm{pot.}}^{\mathrm{RPC}}$.