0/2		
FORM PTO-1449	Atty. Docket No.: 1100.1114101 (H16-26549)	Serial No.: 09/751,423
	Applicant: Robert A. Morg	an et al.
LIST OF PATENTS AND PUBLICATIONS FOR APPLICANT'S INFORMATION		
DISCLOSURE STATEMENT	Filing Date	Group Art:
	December 29, 2000	2872

FOREIGN PATENT DOCUMENTS

		Document No.	Date	Country	Class	Sub Class	Translation Yes No
Su	ÁA	DE 4 240 706 A	06/09/1994	Germany			
/ -	AB	EP 0 288 184 A	10/26/1988	Europe			
	AC	EP 0 776 076 A	05/28/1997	Europe			
5	AD	JP 60-123084 A	07/01/1985	Japan			Yes (Abstract only)
5 "	AE	JP 02-054981 A	02/23/1990	Japan			Yes (Abstract only)

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

DAei-	AF	Guenter et al., "Reliability of Proton-Implanted VCSELs for Data Communications", Invited paper, SPIE, Vol. 2683, OE LASE 96; Photonics West: Fabrication, Testing and Reliability of Semiconductor Lasers, (SPIE, Bellingham, WA 1996).
	AG	Hibbs-Brenner et al., "Performance, Uniformity and Yield of 850nm VCSELs Deposited by MOVPE", IEEE Phot. Tech. Lett., Vol. 8, No. 1, pp. 7-9, January 1996.
	АН	Hornak et al., "Low-Termperature (10K-300K) Characterization of MOVPE-Grown Vertical-Cavity Surface-Emitting Lasers", <u>Photon. Tech. Lett.</u> , Vol. 7, No. 10, pp. 1110-1112, October 1995.
<i>\\</i>	ΑI	Huffaker et al., "Lasing Characteristics of Low Threshold Microcavity Layers Using Half-Wave Spacer Layers and Lateral Index Confinement", <u>Appl. Phys. Lett.</u> , Vol. 66, No. 14, pp.1723-1725, April 3, 1995.
7 Pur	28 €	Lear et al., "Selectively Oxidized Vertical Cavity Surface-Emitting Lasers with 50% Power Conversion Efficiency", Elec. Lett., Vol. 31, No. 3 pp. 208-209, February 2, 1995.
DAu	AK	Lehman et al., "High Frequency Modulation Characteristics of Hybrid Dielectric/AlGaAs Mirror Singlemode VCSELs", Electronic Letters, vol. 31, No. 15, July 20, 1995, pp. 1251-1252.
9 -	AL	Magnusson, "Integration of Guided-Mode Resonance Filters and VCSELs", Electo-Optics Research Center, Department of Electrical Engineering, University of Texas at Arlington, May 6, 1997.
Jon	-AM	Morgan et al., "Hybrid Dielectric/AlGaAs Mirror Spatially-Filtered Vertical Top-Surface Emitting Laser", Appl. Phys. Lett., Vol. 60, No. 8, pp. 921-923, February 24, 1992.
DAW	AN	Morgan et al., "One Watt Vertical Cavity Surface Emitting Laser", <u>Electron. Lett.</u> , Vol. 29, No. 2, pp. 206-207, January 21, 1993

EXAMINER: DATE CONSIDERED: 22 duy 07

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

010		T	
FORM PTO-1449	Atty. Docket No.: 1100.1114101 (H16-26549)	Serial No.: 09/751,423	
LIST F PATENTS AND PUBLICATIONS FOR APPLICANT'S INFORMATION	Applicant: Robert A. Morgan et al.		
DISCLOSURE STATEMENT	Filing Date	Group Art:	
	December 29, 2000	2872	

DAE AO	Morgan et al., "Producible GaAs-based MOVPE-Grown Vertical-Cavity Top-Surface Emitting Lasers with Record Performance", Elec. Lett., Vol. 31, No. 6, pp. 462-464, March 16, 1995.
mo PARD	Morgan et al., "Spatial-Filtered Vertical-Cavity Top Surface-Emitting Lasers", CLEO, 1993, pp. 138-139.
MerAQ	Morgan et al., "Vertical Cavity Surface Emitting Laser Arrays: Come of Age,", Invited paper, <u>SPIE</u> , Vol. 2683-04, OE LASE 96; Photonics West: Frabrication, Testing and Reliablity of Semiconductor Lasers, (SPIE< Bellingham, WA, 1996).
AR	S.S. Wang and R. Magnusson, "Multilayer Waveguide-Grating Filters", Appl. Opt., Vol. 34, No. 14, pp. 2414-20, 1995.
AS	S.S. Wang and R. Magnusson, "Theory and Applications of Guided-Mode Resonance Filters", Appl. Opt., Vol. 32, No. 14, pp. 2606-13, 1993.
AT	Schubert, "Resonant Cavity Light-Emitting Diode", <u>Appl. Phys. Lett.</u> , Vol. 60, No. 8, pp. 921-923, February 24, 1992.
AU	Y. M. Yang et al., "Ultralow Threshold Current Vertical Cavity Surface Emitting Lasers Obtained with Selective Oxidation", Elect. Lett., Vol. 31, No. 11, pp. 886-888, May 25, 1995.
AV	Yablonovitch et al., "Photonic Bandgap Structures", <u>J. Opt. Soc. Am. B.</u> , Vol. 10, No. 2, pp. 283-295, February 1993.
AW	Young et al., "Enhanced Performance of Offset-Gain High Barrier Vertical-Cavity Surface- Emitting Lasers", IEEE J. Quantum Electron., Vol. 29, No. 6, pp. 2013-2022, June 1993.
AX	Smith, R.E. et al., "Polarization-Sensitive Subwavelength Antireflection Surfaces on a Semiconductor for 975 NM, Optics Letters, Vol. 21, No. 15, August 1, 1996, pp. 1201-1203.
AY	Suning Tang et al., "Design Limitations of Highly Parallel Free-Space Optical Interconnects Based on Arrays of Vertical Cavity Surface-Emitting Laser Diodes, Microlenses, and Photodetectors", Journal of Lightwave Technology, Vol. 12, No. 11, November 1, 1994, pp. 1971-1975.
AZ	Cox, J. A., et al., "Guided Mode Grating Resonant Filters for VCSEL Applications", <u>Proceedings of the SPIE</u> , The International Society for Optical Engineering, Diffractive and Holographic Device Technologies and Applications V, San Jose, California, January 28-29, 1998, Vol. 3291, pages 70-71.
provided BA	Martinsson et al., "Transverse Mode Selection in Large-Area Oxide-Confined Vertical-Cavity Surface-Emitting Lasers Using a Shallow Surface Relief", IEEE Photon. Technol. Lett., 11(12), 1536-1538 (1999).

EXAMINER: DATE CONSIDERED: 22 Chay 0.7

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

OIP		
FORM PT (1449	Atty. Docket No.: 1100.1114101 (H16-26549)	Serial No.: 09/751,423
LIST OF PATENTS AND PUBLICATIONS FOR	Applicant: Robert A. Morg	an et al.
APPLICANT'S INFORMATION DISCLOSURE STATEMENT	Filing Date	Group Art:
	December 29, 2000	2872

		. Dei
Med	BB	Choquette et al., "Lithographically-Defined Gain Apertures Within Selectively Oxidized VCSELs", paper CtuL6, Conference on Lasers and Electro-Optics, San Francisco, California (2000).
Dhe.	ВС	Oh, T. H. et al., "Single-Mode Operation in Antiguided Vertical-Cavity Surface-Emitting Laser Using a Low-Temperature Grown AlGaAs Dielectric Aperture", <u>IEEE Photon. Technol. Lett.</u> 10(8), 1064-1066 (1998).
not f	BO	Surface-Emitting Microlasers for Photonic Switching and Interchip Connections", Optical Engineering, 29, pp. 210-214, March 1990.
Mec.	BE	G. Shtengel et al., "High-Speed Vertical-Cavity Surface-Emitting Lasers", <u>Photon. Tech. Lett.</u> , Vol. 5, No. 12, pp. 1359-1361 (December 1993).

EXAMINER: Out DATE CONSIDERED: 22 Aug oz EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449.

LIST OF PATENTS A ICATIONS FOR APPLICANT'S INFORMATION DISCLOSURE STATEMENT

Atty. Docket No.: 1100.1114101 (H16-26549)	Serial No.: 09/751,423
Applicant: Robert A. Morgan	et al.

Filing Date	Group Art:
December 29, 2000	2872

Exam . Init		Document No.	Date	Name	Class	Sub Class	Filing Date If Appropriate
Dre	BY	5,778,018	07/07/1998	Yoshikawa et al.	372	45	
	BZ	5,818,066	10/06/1998	Duboz	257	21	
	CA	5,903,590	05/11/1999	Hadley et al.	372	96	* *
	СВ	5,940,422	08/17/1999	Johnson	372	45	w ^t
	СС	5,978,401	11/02/1999	Morgan	372	50	
	CD	6,055,262	04/25/2000	Cox et al.	372	96	

FOREIGN PATENT DOCUMENTS

		Document No.	Date	Country	Class	Sub Class	Translation (1)
	СЕ	JP 5-299779	11/12/1993	Japan			Yes B
not	Prove	See OTHER AR	T (Including A	uthor, Title, Date, Perti	nent Pages,	Etc.)	0080

MO,	1	
poter	CF	Banwell et al., "VCSE Laser Transmitters for Parallel Data Links", IEEE Journal of Quantum Electronics, Vol. 29, No. 2, February 1993, pp. 635-644.
Her	CG	Catchmark et al., "High Temperature CW Operation of Vertical Cavity Top Surface-Emitting Lasers", CLEO 1993, p. 138.
Dec	СН	Chemla et al., "Nonlinear Optical Properties of Semiconductor Quantum Wells", Optical Nonlinearities and Instabilities in Semiconductors, Academic-Press, Inc., Copyright 1988, pp. 83-120.
Ale		Choa et al., "High-Speed Modulation of Vertical-Cavity Surface-Emitting Lasers", <u>IEEE Photonics</u> Technology Letter, Vol. 3, No. 8, August 1991, pp. 697-699.
Afre	CJ	G. G. Ortiz, et al., "Monolithic Integration of In0.2 GA0.8As Vertical Cavity Surface-Emitting Lasers with Resonance-Enhanced Quantum Well Photodetectors", Electronics Letters, Vol. 32, No. 13, June 20, 1996, pp. 1205-1207.
A.	CK	Graf, Rudolph, Modern Dictionary of Electronics, 6 th ed., Indiana: Howard W. Sams & Company, 1984, p. 694.
Sto	CL	Jewell et al., "Surface Emitting Microlasers for Photonic Switching & Intership Connections", Optical Engineering, Vol. 29, No. 3, pp. 210-214, March 1990.

EXAMINER: Description with MREP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449

Atty. Docket No.: 1100.1114101 (H16-26549)

Serial No.: 09/751,423

, |

Applicant: Robert A. Morgan et al.

LIST OF PATENTS AND PUBLICATIONS FOR APPLICANT'S INFORMATION DISCLOSURE STATEMENT

Filing Date Group Art:

December 29, 2000 2872

not provided

		7/00
oftw	DB	Morgan et al., "Transverse Mode Control of Vertical-Cavity Top-Surface Emitting Lasers", <u>IEEE Photonics Technology Letters</u> , Vol. 4, No. 4, April 1993, pp. 374-377.
•	DC	Morgan et al., "Vertical Cavity Surface Emitting Laser Arrays: Come of Age,", Invited paper, <u>SPIE</u> , Vol. 2683-04, OE LASE 96; Photonics West: Frabrication, Testing and Reliablity of Semiconductor Lasers, (SPIE< Bellingham, WA, 1996).
Stre	DD.	Morgan et al., "Vertical-Cavity Surface-Emitting Laser Arrays" SPIE, Vol. 2398, February 1995, pp. 65-93.
Dfu	_DE-	Morgan, "High-Performance, Producible Vertical Cavity Lasers for Optical Interconnects", <u>High Speed Electronics and Systems</u> , Vol. 5, No. 4, December 1994, pp. 65-95.
	DE	Morgan, "Transverse Mode Control of Vertical-Cavity Top-Surface Emitting Lasers", <u>IEEE Phot.</u> <u>Tech. Lett.</u> , Vol. 4, No. 4., p. 374, April 1993.
DAW	DG	Nugent et al., "Self-Pulsations in Vertical-Cavity Surface-Emitting Lasers", Electronic Letters, Vol. 31, No. 1, January 5, 1995, pp. 43-44.
	DH	U.S. Patent Application Serial No. 09/751,422, filed December 29, 2000, entitled "Resonant Reflector for Use with Optoelectronic Devices".

RECEIVED
MAY 31 2001
TECHNOLOGY CENTER 2800

EXAMINER:

Doyles Untle

DATE CONSIDERED:

27 dug 02

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

		PE JC189						
FORM	1 PTC	0-1449 . O 1417 29 7017 EE	Atty. Docket No.: 1100.1114101 (H16-26549)	Serial No.: 09/751,423				
L	IST O	F PATENTS AND PUBLICATIONS FOR APPLICANT'S INFORMATION	Applicant: Robert A. Morga	an et al.				
		DISCLOSURE STATEMENT	Filing Date	Group Art:				
		mo Provided	December 29, 2000	2872				
	· · · · · · · · · · · · · · · · · · ·	T ****						
Xu	_CM_	Jewell et al., "Surface-Emitting Microlasers for Optical Engineering, Vol. 29, No. 3, March 199		chip Connections",				
\leftarrow	CN	Kishino et al., "Resonant Cavity-Enhanced (RC Electronics, Vol. 27, No. 8, pp. 2025-2034.	CE) Photodetectors", <u>IEEE Jou</u>	rnal of Quantum				
	СО	Kuchibhotla et al., "Low-Voltage High Gain Re Phototonics Technology Letters, Vol. 3, No. 4,		otodiode", <u>IEEE</u>				
	СР	Lai et al., "Design of a Tunable GaAs/AlGaAs Photodetector", IEEE Journal of Quantum Electrical Photography (1998)						
	CQ	Lee et al., "Top-Surface Emitting GaAs Four-Q Electronics Letters, Vol. 24, No. 11, May 24, 19		at 0-85 um",				
	CR	Lehman et al., "High Frequency Modulation Characteristics Singlemode VCSELs", Electronic Letters, vol.	naracteristics of Hybrid Dielec					
7	CS	Miller et al., "Optical Bistability Due to Increas 1984, pp. 162-164.	sing Absorption", Optics Lette	ers, Vol. 9, No. 5, May				
$\overline{}$	СТ	Morgan et al., "200 C, 96-nm Wavelength Range, Continuous-Wave Lasing from Unbonded Gal-MOVPE-Grown Vertical-Cavity Surface-Emitting Lasers", IEEE Photonics Technology Letters, Vol. 7, No. 5, May 1995, pp. 441-443.						
4	CU	Jiang et al., "High-Frequency Polarization Self- Lasers", Appl. Phys. Letters, Vol. 63, No. 26, D						
F	CV	Morgan et al., "High-Power Coherently Couple Array", Appl. Phys Letters, Vol 61, No. 10, Sep						
1	CW	Morgan et al., "Hybrid Dielectric/AlGaAs Mirro Emitting Laser", Appl. Phys. Letters, Vol. 66, N						

Morgan et al., "Progress and Properties of High-Power Coherent Vertical Cavity Surface Emitting Laser Arrays", SPIE, Vo. 1850, January 1993, pp. 100-108.

CZ Morgan et al., "Progress-in Planarized Vertical Cavity Surface Emitting Laser Devices and Arrays", SPIE, Vol. 1562, July 1991, pp. 149-159.

Morgan et al., "Submilliamp, Low-Resistance, Continuous-Wave, Single-Mode GaAs Planar Vertical-Cavity Surface Emitting Lasers", Honeywell Technology Center, June 6, 1995.

Record Low Voltage", 2 pages, dated prior to December 29, 2000.

Morgan et al., "Novel Hibrid-DBR Single-Mode Controlled GaAs Top-Emitting VCSEL with

EXAMINER:

DATE CONSIDERED: 27

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line

through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449

LIST OF PATENTS AND PUBLICATIONS FOR APPLICANT'S INFORMATION DISCLOSURE STATEMENT Atty. Docket No.: 1100.1114101 (H16-26549)

Serial No.: 09/751,423

Applicant: Robert A. Morgan et al.

Filing Date Group Art:

December 29, 2000 2872

U.S. PATENT DOCUMENTS

Examiner Initial		Document No.	Date	Name	Class	Sub Class	Filing Date If Appropriate
osw	AA	4,317,085	02/23/1982	Brunham et al.	372	50	
7	7 AB 4,466,694		08/21/1984	MacDonald	385	37	
	AC	4,660,207	04/21/1987	Svilans	372	45	
	AD	4,784,722	11/15/1988	Liau et al.	156	649	
	AE	4,885,592	12/05/1989	Kofol et al.	343	753	
7	AF	4,901,327	02/13/1990	Bradley	372	45	
	AG	4,943,970	07/24/1990	Bradley	372	45	
	АН	4,956,844	09/11/1990	Goodhue et al.	372	44	
1	AI	5,031,187	07/09/1991	Orenstein et al.	372	50	
1	AJ 5,052,016		09/24/1991	Mahbobzadeh	372	96	
1	AK	5,056,098	10/08/1991	Anthony et al.	372	45	
	AL	5,062,115	10/29/1991	Thornton	372	50	
7	AM	5,068,869	11/26/1991	Wang et al.	372	45	
1	AN	5,115,442	05/19/1992	Lee et al.	372	45	
	AO	5,140,605	08/18/1992	Paoli et al.	372	50	REC MAY
	AP	5,158,908	10/27/1992	Blonder et al.	437	129	No - I
\top	AQ	5,216,263	06/01/1993	Paoli	257	88	TIMY S
	AR	5,216,680	06/01/1993	Magnusson et al.	372	20	
	AS	5,237,581	08/17/1993	Asada et al.	372	45	20 F
	AT	5,245,622	09/14/1993	Jewell et al.	372	45	2200
-	AU	5,258,990	11/02/1993	Olbright et al.	372	46	8
	AV	5,285,466	02/08/1994	Tabatabaie	372	92	
	AW	5,293,392	03/08/1994	Shieh et al.	372	45	
	AX	5,317,170	05/31/1994	Paoli	257	88	
	AY	5,317,587	05/31/1994	Ackley et al.	372	45	

EXAMINER: Joursa Will DATE CONSIDERED: 22 line o 7

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

FORM PTO-1449.

Atty. Docket No.: 1100.1114101 (H16-26549) Serial No.: 09/751,423

Applicant: Robert A. Morgan et al.

LIST OF PATENTS AND PUBLICATIONS FOR APPLICANT'S INFORMATION DISCLOSURE STATEMENT

Group Art: Filing Date 2872 December 29, 2000

Examiner . Initial		Document No.	Date	Name	Class	Sub Class	Filing Date If Appropriate
DAIR	AZ	5,325,386	06/28/1994	Jewell et al.	372	50	
1	BA 5,331,654 07/19/1994		Jewell et al.	372	45		
	BB	5,337,074	08/09/1994	Thornton	346	107R	
	ВС	5,349,599	09/20/1994	Larkins	372	50	
	BD	5,351,256	09/27/1994	Schneider et al.	372	45	\$
	BE	5,359,447	10/25/1994	Hahn et al.	359	154	
	BF	5,359,618	10/25/1994	Lebby et al.	372	45	ý
	BG	5,363,397	11/08/1994	Collins et al.	372	92	
	BH 5,373,520 12/13/1 BI 5,404,373 04/04/1		12/13/1994	Shoji et al.	372	45	TE D
\neg			04/04/1995	Cheng	372	50	是三
			05/16/1995	Chino et al.	437	129	TEGHNOLOGY C
	BK	5,428,634	06/27/1995	Bryan et al.	372	45	G T
	BL	5,446,754	08/29/1995	Jewell et al.	372	50	7 3 0
	BM 5,475,701		12/12/1995	Hibbs-Brenner	372	50	NED POINTER 2800
	BN	5,513,202	04/30/1996	Kobayashi et al.	372	96	8
	ВО	5,530,715	06/25/1996	Shieh et al.	372	96	
	BP	5,555,255	09/10/1996	Kock et al.	372	96	
	BQ	5,557,626	09/17/1996	Grodinski et al.	372	45	
	BR	5,561,683	10/01/1996	Kwon	372	96	
	BS	5,568,499	10/22/1996	Lear	372	45 .	
	ВТ	5,598,300	01/28/1997	Magnusson et al.	359	566	
(BU	5,606,572	02/25/1997	Swirhun et al.	372	96	
	BV	5,642,376	06/24/1997	Olbright et al.	372	45	
	BW	5,727,013	03/10/198	Botez et al.	372	96	
	BX	5,774,487	06/30/1998	Morgan	372	45	

EXAMINER: DATE CONSIDERED: 27 Clug 07

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

#6

FORM 1449	April 1 Page	· 🚵	
PE PHEORMA	TION DIS IN AN A	CLOS PPLIC	SURE STATEMENT

Jse several sheets if necessary)

Docket Number:

Application Number:

1100.1114101

09/751,423

Applicant: Robert A. Morgan et al.

Filing Date: December 29, 2000

Group Art Unit: 2872

U.S. Patent Documents							
Examiner Initial	DOCUMENT NO.	DATE	NAME	CLASS	SUBCLASS		
DSW	5,838,715	June 20, 1996	Corzine et al.	667	259		
			· SAFE COM				
					TWO IN		
			The total of the t				
		FO	REIGN PATENT DOCUMENTS				
	(v)						
	2 · · · · · · · · · · · · · · · · · · ·		· ·				
	ОТ	HER DOCUMEN	TS (Including Author, Title, Date, Pertine	nt Pages, Etc.)	I		
		. ,					
	_	. 100 00 00 00 00 00 00					

EXAMINER:	dugla	e and	DATE CONSIDERED:	27 aug 0	7

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form for next communication to the Applicant.

FORM 144	•			Docket Number: H16-26549	Applica	Application Number:			
014	FORMATION DISCLO	SURE STATEM	1ENT	(1100.1114101)					
	IN AN APPLI	CATION		Applicant: Robert A. Morgan et al.					
· • • • • • • • • • • • • • • • • • • •	Use several sheets	if necessary)		Filing Date: December	Art Unit: 2814				
P 784DEMAS									
AADEMA			U.S. Pa	tent Documents					
Examiner Initial	DOCUMENT NO.	DATE		NAME	CI	LASS	SUBCLASS		
Ofu	5,574,738	11/1996	Morgan						
	6,078,601	06/2000	Smith				· · · · · · · · · · · · · · · · · · ·		
)	6,144,682	11/2000	Sun						
	6,185,241	02/2001	Sun	A-1			- v		
7	6,238,944	05/2001	Floyd						
\rightarrow	6,411,638	06/2002	Johnson,	et al.					
						-	- 1-1 W19		
							Ħ		
·							REO FEB		
			OREIGN PA	TENT DOCUMENTS					
			OKEIGNTA	TENT DOCUMENTS			RECEI FEB I 3		
							D)		
							2800		
	0	THER DOCUM	IENTS (Includi	ng Author, Title, Date, Pertinen	nt Pages, Etc.)				
						-			

EXAMINER:	-A	Deepte		Wille	DATE CONSIDERED:	22	fule	, 0	 3
EXAMINER:	Initial if refe	erence/consid	ered v	whether or not citation is	in conformance with MPED 600:	draw line	hrough/	altation.	:5

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form for next communication to the Applicant.