Chronic Kidney Disease Prediction

Project Description

This project uses machine learning to predict the likelihood of **chronic kidney disease** from patient medical data. By applying multiple classification algorithms to a clinical dataset, the model assists healthcare professionals with early identification and better decision-making.

Dataset

- **Source**: The dataset was sourced from the <u>Kaggle Chronic Kidney Disease Dataset</u>.
- Contents: It includes 400 patient records with 25 features and 1 target

Programming Language & Libraries

This project was built using **Python** with the following key libraries:

Library	Purpose		
pandas	Data manipulation and preprocessing		
numpy	Numerical operations		
matplotlib and seaborn	Data visualization		
Scikit-learn (sklearn)	Model training and evaluation		

Dataset Overview

- **Features**: 25 input features covering various clinical measurements.
- Target Variable: The class variable, where 1 = CKD and 0 = Not CKD.

Key Feature Categories:

- Numerical: age, blood_pressure, blood_urea, serum_creatinine, sodium, potassium, haemoglobin, etc.
- Categorical: red_blood_cells, pus_cell, pus_cell_clumps, bacteria, appetite, hypertension, diabetes_mellitus, coronary_artery_disease, pedal_edema, anemia.

Data Preprocessing Steps

The raw data was cleaned and prepared through these steps:

- 1. The id column was dropped.
- 2. Missing numerical values were filled with the **mean**, and missing categorical values were filled with the **mode**.
- 3. Inconsistent labels (e.g., \tyes, ckd\t) were cleaned and mapped to a consistent format.
- 4. String-based numeric columns were converted to a proper float data type.
- 5. A correlation analysis was performed to understand feature relationships.

Machine Learning Algorithms & Evaluation

All models were trained on a 75% training and 25% test split of the dataset.

Algorithm	Accuracy	Precision	Recall	F1 Score	Confusion Matrix
Random Forest	98.0%	0.969	1.000	0.984	[[35, 2], [0, 63]]
Decision Tree	97.0%	0.969	0.984	0.976	[[35, 2], [1, 62]]
Support Vector Machine	95.0%	0.953	0.968	0.961	[[34, 3], [2, 61]]
Gaussian Naive Bayes	95.0%	1.000	0.921	0.959	[[37, 0], [5, 58]]
K-Nearest Neighbors	76.0%	0.882	0.714	0.789	[[31, 6], [18, 45]]

Best Model: Random Forest Classifier

The Random Forest model achieved the highest accuracy and a perfect recall score, which is critical for medical diagnosis to minimize **false negatives**.

Submitted by:

Hari prasath K Deepakumar M