QCM n° 11

Un peu de calcul.

Calculer les dérivées successives de la fonction $x \mapsto \frac{1}{1-x^2}$. Échauffement n°1

Donner une primitive **réelle** de $x \mapsto \frac{x^3 - 1}{(x^2 + 1)x}$. Échauffement n°2

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1 Soit A un polynôme.

- \square Si r_1, \dots, r_n sont les racines de P, et qu'elles sont de multiplicité m_1, \dots, m_n , alors deg P=
- \square Si λ est une racine de P de multiplicité m, alors λ est une racine de P' de multiplicité m-1.
- \square Si λ est une racine de P' de multiplicité m, alors λ est une racine de P de multiplicité m+1.

Soit f une fonction définie sur \mathbb{R} par $\forall x \leq a, f(x) = f_1(x)$ et $\forall x > a, f(x) = f_2(x)$. Question n°2

- \square Si $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$, alors f est continue sur \mathbb{R} . \square Si f est continue sur \mathbb{R} , dérivable sur $\mathbb{R}\setminus\{a\}$ et $\lim_{x\to a^+} f_2'(x) = \lim_{x\to a^-} f_1'(x)$, alors f est de classe
- \square Si f est de classe \mathscr{C}^1 sur $\mathbb{R}\setminus\{a\}$ et $\lim_{x\to a^+}f_2'(x)=\lim_{x\to a^-}f_1'(x)$, alors f est de classe \mathscr{C}^1 sur \mathbb{R} . \square Si f_1 est croissante sur $]-\infty,a]$ et f_2 est croissante sur $]a,+\infty[$, alors f est croissante sur
- $\mathbb{R}\setminus\{a\}.$

Question n°3 Soit $A, B \in \mathbb{K}[X]$ tels que $B \neq 0$, et soit la fraction rationnelle $R = \frac{A}{B}$. $\Box \deg R' = \deg R - 1 ;$ $\Box \deg R' \leqslant \deg R - 1 ;$ $\Box \text{ Les pôles de } R \text{ sont les racines de } B ;$ $\Box \text{ La partie entière de } R \text{ est nulle si et seulement si deg } R < 0 ;$ $\Box xR(x) \xrightarrow[x \to +\infty]{} 0 \text{ si et seulement si deg } R < 0 ;$ $\Box xR(x) \text{ a une limite finie en } +\infty \text{ si et seulement si deg } R < 0.$
Question $n^{\circ}4$ Soit E un \mathbb{K} -ev et F et G deux sev de E .
\Box F et G sont en somme directe ssi \forall $x \in E$, $\exists ! (f,g) \in F \times G$, $x = f + g$; \Box F et G sont en somme directe ssi \forall $(f,g) \in F \times G$, $f + g = 0 \Rightarrow f = g = 0$;
\Box F et G sont en somme directe ssi \forall $f,f'\in F$, $g,g'\in G,f+g=f'+g'\Rightarrowf=f'$ et
g=g'; \Box F et G sont en somme directe ssi $F \cap G = \emptyset$.
Question n°5 \square Pour tout réal a positif $1 - 2 \binom{1}{2}$
\square Pour tout réel x positif, $\frac{1}{x + e^t} = o\left(\frac{1}{t^2}\right)$.
$\square \text{ Pour tout entier } k, (\ln x)^k e^{-x} = o\left(\frac{1}{x^2}\right).$
□ Pour tout entier k , $(\ln x)^k e^{-x} = o\left(\frac{1}{x^2}\right)$. □ Pour tout réel x positif, $\frac{1}{(x+e^t)^2} \sim e^{-t^2}$.
\square Pour tout réel x positif, $\frac{1}{(x+e^t)^2} \underset{t \to +\infty}{\sim} e^{-t^2}$.
Ougation age I a forestion as a full
Question n°6 La fonction $x \mapsto \sqrt{ x }$. \Box f est définie et continue sur \mathbb{R} .
\Box f admet un développement limité en 0 d'ordre 2. \Box f est une fonction paire.
\Box $\forall x \in \mathbb{R}, f(x^2) = x$
Question n°7 Soit $f : \mathbb{R} \to \mathbb{R}$ et $a \in \mathbb{R}$. \square f est continue en a si et seulement si f admet un DL en a à l'ordre 0 ;
\Box f est de classe \mathscr{C}^0 en a si et seulement si f admet un DL en a à l'ordre 0 ;
\Box f est dérivable en a si et seulement si f admet un DL en a à l'ordre 1; \Box f est de classe \mathscr{C}^1 en a si et seulement si f admet un DL en a à l'ordre 1;
\Box f est deux fois dérivable en a si et seulement si f admet un DL en a à l'ordre 2.