Detecting and Characterizing Events: Appendices

Allison J. B. Chaney Princeton University

achaney@cs.princeton.edu

Matthew Connelly Columbia University mjc96@columbia.edu

Hanna Wallach Microsoft Research

wallach@microsoft.com

David M. Blei

Columbia University david.blei@columbia.edu

Inference

In this appendix, we describe the details of the approximate inference algorithm for Capsule.

Conditioned on the observed term counts— n_{dv} for vocabulary term v in message d; collectively N—our goal is to learn the posterior distribution of the latent variables. Each message is associated with an author entity a_d and a time interval t_d within which that messages was sent. The latent variables are the general topics β_1, \ldots, β_K , the entity topics η_1, \ldots, η_A , and the event topics $\gamma_1, \ldots, \gamma_T$, as well as the message-specific strengths $\theta_1, \dots, \theta_D, \zeta_1, \dots, \zeta_D$, and $\epsilon_1, \dots, \epsilon_D$, the entity-specific strengths ϕ_1, \dots, ϕ_A and ξ_1, \dots, ξ_A , and the event strengths ψ_1, \ldots, ψ_T . See figures 3 and 4 for the graphical model and generative process.

As for many Bayesian models, the posterior distribution is not tractable to compute; we must instead approximate it. We therefore introduce an approximate inference algorithm for Capsule, based on variational methods (Jordan et al., 1999; Wainwright and Jordan, 2008). Variational methods approximate the true posterior distribution p with a (simpler) variational distribution q. Inference then consists of minimizing the KL divergence from q to p. This is equivalent to maximizing the evidence lower bound (ELBO):

$$\mathcal{L}(q) = \mathbb{E}_q \left[\log p(\mathbf{N}, \boldsymbol{\beta}, \boldsymbol{\eta}, \boldsymbol{\gamma}, \boldsymbol{\theta}, \boldsymbol{\zeta}, \boldsymbol{\epsilon}, \boldsymbol{\phi}, \boldsymbol{\xi}, \boldsymbol{\psi}) - \log q(\boldsymbol{\beta}, \boldsymbol{\eta}, \boldsymbol{\gamma}, \boldsymbol{\theta}, \boldsymbol{\zeta}, \boldsymbol{\epsilon}, \boldsymbol{\phi}, \boldsymbol{\xi}, \boldsymbol{\psi}) \right]. \tag{6}$$

We define q using the mean field assumption:

$$q(\boldsymbol{\beta}, \boldsymbol{\eta}, \boldsymbol{\gamma}, \boldsymbol{\theta}, \boldsymbol{\xi}, \boldsymbol{\epsilon}, \boldsymbol{\phi}, \boldsymbol{\xi}, \boldsymbol{\psi}) = \prod_{d=1}^{D} \left(q(\xi_{d} \mid \lambda_{d}) \prod_{k=1}^{K} q(\theta_{dk} \mid \lambda_{dk}^{\theta}) \prod_{t=1}^{T} q(\epsilon_{dt} \mid \lambda_{dt}^{\epsilon}) \right) \times \prod_{k=1}^{K} \left(q(\boldsymbol{\beta}_{k} \mid \lambda_{k}^{\beta}) \prod_{a=1}^{A} q(\phi_{ak} \mid \lambda_{ak}^{\phi}) \right) \prod_{a=1}^{A} \left(q(\boldsymbol{\eta}_{a} \mid \lambda_{a}^{\eta}) q(\xi_{a} \mid \lambda_{a}^{\xi}) \right) \prod_{t=1}^{T} \left(q(\boldsymbol{\gamma}_{t} \mid \lambda_{t}^{\gamma}) q(\psi_{t} \mid \lambda_{t}^{\gamma}) \right)$$
(7)

The variational distributions for the topics $q(\beta_k)$, $q(\eta_a)$, and $q(\gamma_t)$ are all Dirichlet distributions with free variational parameters λ_k^{β} , λ_a^{η} , and λ_t^{γ} , respectively. The variational distributions for the strengths $q(\theta_{dk})$, $q(\xi_d), q(\epsilon_{dt}), q(\phi_{ak}), q(\xi_a),$ and $q(\psi_t)$ are all gamma distributions with free variational parameters λ_{dk}^{θ} , λ_d^{ξ} , λ_{ak}^{ϵ} , λ_{ak}^{ϕ} , λ_a^{ξ} , and λ_t^{ψ} , respectively. Each of these parameters has two components: shape s and rate r.

The expectations under q, which we need to maximize the ELBO, have closed analytic forms. We therefore update each free variational parameter in turn, following a standard coordinate-ascent approach.

To obtain update equations for the free variational parameters, we introduce auxiliary latent variables:

$$z_{dkv}^{\mathcal{K}} \sim \text{Poisson}\left(\theta_{dk}\beta_{kv}\right)$$
 (8)

$$z_{dv}^{\mathcal{A}} \sim \text{Poisson}\left(\zeta_d \eta_{a_d v}\right)$$
 (9)

$$z_{dtv}^{\mathcal{T}} \sim \text{Poisson}\left(f(t_d, t) \,\epsilon_{dt} \gamma_{tv}\right),$$
 (10)

where the superscripts \mathcal{K} , \mathcal{A} , and \mathcal{T} indicate the general, entity, and event topics, respectively. When marginalized out, these variables leave the original model specification intact. Because the Poisson distribution has an additive property, the value of n_{dv} is completely determined by the values of these variables:

$$n_{dv} = \sum_{k=1}^{K} z_{dkv}^{\mathcal{K}} + z_{dv}^{\mathcal{A}} + \sum_{t=1}^{T} z_{dtv}^{\mathcal{T}}.$$
 (11)

Coordinate-ascent variational inference depends on the conditional distribution of each latent variable given the values of the other latent variables and the data. We use D(a) to denote the set of messages sent by entity a and D(t) to denote the set of messages potentially affected by event t (e.g., all messages sent after time interval t, in the case of an exponential decay function). The conditional distributions are:

$$(\beta_k \mid \mathbf{N}, \beta, \eta, \gamma, \theta, \zeta, \epsilon, \phi, \xi, \psi) \sim \text{Dirichlet}_V(\alpha +, \dots, \alpha + \dots)$$
 (12)

(13)

 $N, \beta, \eta, \gamma, \theta, \zeta, \epsilon, \phi, \xi, \psi$

$$\mathbf{\gamma}_{t} \mid \mathbf{N}, \boldsymbol{\psi}, \boldsymbol{\phi}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \boldsymbol{\zeta}, \mathbf{z} \sim \text{Dirichlet}_{V} \left(\alpha + \sum_{d=1}^{D} z_{d1t}^{\mathcal{T}}, \dots, \alpha + \sum_{d=1}^{D} z_{dVt}^{\mathcal{T}} \right)$$
(14)

$$\eta_n \mid \mathbf{N}, \boldsymbol{\psi}, \boldsymbol{\gamma}, \boldsymbol{\phi}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \boldsymbol{\zeta}, \mathbf{z} \sim \text{Dirichlet}_V \left(\alpha + \sum_{d \in D(n)} z_{dv}^{\mathcal{A}}, \dots, \alpha + \sum_{d \in D(n)} z_{dv}^{\mathcal{A}} \right)$$
(15)

$$\boldsymbol{\beta}_{k} \mid \mathbf{N}, \boldsymbol{\psi}, \boldsymbol{\gamma}, \boldsymbol{\phi}, \boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \boldsymbol{\zeta}, \mathbf{z} \sim \text{Dirichlet}_{V} \left(\alpha + \sum_{d=1}^{D} z_{d1k}^{\mathcal{K}}, \dots, \alpha + \sum_{d=1}^{D} z_{dVk}^{\mathcal{K}} \right)$$
 (16)

$$\psi_t \mid \mathbf{N}, \boldsymbol{\gamma}, \boldsymbol{\phi}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \boldsymbol{\zeta}, \mathbf{z} \sim \text{Gamma}\left(s + |D(t)|s, r + \sum_{d \in D(t)} \epsilon_{dt}\right)$$
 (17)

$$\xi_n \mid \mathbf{N}, \psi, \gamma, \phi, \beta, \eta, \theta, \epsilon, \zeta, \mathbf{z} \sim \text{Gamma}\left(s + |D(n)|s, r + \sum_{d \in D(n)} \zeta_d\right)$$
 (18)

$$\phi_{nk} \mid \mathbf{N}, \boldsymbol{\psi}, \boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \boldsymbol{\zeta}, \mathbf{z} \sim \text{Gamma}\left(s + |D(n)|s, r + \sum_{d \in D(n)} \theta_{dk}\right)$$
 (19)

$$\theta_{dk} \mid \mathbf{N}, \boldsymbol{\psi}, \boldsymbol{\gamma}, \boldsymbol{\phi}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\epsilon}, \boldsymbol{\zeta}, \mathbf{z} \sim \operatorname{Gamma} \left(s + \sum_{v=1}^{V} z_{dvk}^{\mathcal{K}}, \phi_{a_dk} + \sum_{v=1}^{V} \beta_{kv} \right)$$
 (20)

$$\epsilon_{dt} \mid \mathbf{N}, \boldsymbol{\psi}, \boldsymbol{\gamma}, \boldsymbol{\phi}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\theta}, \boldsymbol{\zeta}, \mathbf{z} \sim \text{Gamma}\left(s + \sum_{v=1}^{V} z_{dvt}^{\mathcal{T}}, \psi_t + f(t_d, t) \sum_{v=1}^{V} \gamma_{tv}\right)$$
 (21)

$$\zeta_d \mid \psi, \gamma, \phi, \beta, \xi, \eta, \theta, \epsilon, \mathbf{z} \sim \text{Gamma}\left(s + \sum_{v=1}^{V} z_{dv}^{\mathcal{A}}, \xi_{a_d} + \sum_{v=1}^{V} \eta_{a_d v}\right)$$
 (22)

The complete conditional for the auxiliary variables has the form

$$\mathbf{z}_{dv} \mid \mathbf{N}, \boldsymbol{\psi}, \boldsymbol{\gamma}, \boldsymbol{\phi}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \boldsymbol{\zeta} \sim \text{Mult}(n_{dv}, \boldsymbol{\omega}_{dv}),$$

where

$$\boldsymbol{\omega}_{dv} \propto \langle \theta_{d1} \beta_{1v}, \dots, \theta_{dK} \beta_{Kv}, \zeta_{d} \eta_{a_{d}v}, f(t_{d}, 1) \epsilon_{d1} \gamma_{1v}, \dots, f(t_{d}, T) \epsilon_{dT} \gamma_{Tv} \rangle. \tag{23}$$

Intuitively, these variables allocate the data to one of the entity concerns or events, and thus can be used to explore the data.

Given these conditionals, the algorithm sets each parameter to the expected conditional parameter under the variational distribution. The mean field assumption guarantees that this expectation will not involve the parameter being updated. Algorithm 1 shows our variational inference algorithm.

This algorithm uses the notation λ to refer to the set of variational parameters,

$$\boldsymbol{\lambda} = \{\lambda^{\gamma}, \lambda^{\eta}, \lambda^{\beta}, \lambda^{\psi}, \lambda^{\zeta}, \lambda^{\phi}, \lambda^{\theta}, \lambda^{\epsilon}, \lambda^{\xi}\}.$$

The notation V(d) is the set of vocabulary indices for the collection of words in document d. We could also iterate over all V, but as zero word counts give $\mathbb{E}[\mathbf{z}_{dv}] = 0 \ \forall v \notin V(d)$, the two are equivalent.

This algorithm produces a fitted variational distribution which can then be used as a proxy for the true posterior, allowing us to explore a collection of documents with Capsule. Source code is available at https://github.com/ajbc/capsule.

B Additional Results

In this appendix, we present non-crucial experimental results for Capsule.

Table 6 lists top documents for an event described in Section 5. Table 7 shows a selection of general topics and Table 8 shows a selection of entity topics.

Model Sensitivity. We assessed the sensitivity of our model to three different decay functions f: exponential, linear, and step functions. We simulated data for each function and then fit Capsule using every permutation of f and multiple settings for event decay duration. We considered a step function,

$$f(t_d, t) = \begin{cases} 1, & \text{if } t \le t_d < t + \tau \\ 0, & \text{otherwise,} \end{cases}$$
 (24)

as well as linear decay,

$$f(t_d, t) = \begin{cases} 1 - \frac{t_d - t}{\tau}, & \text{if } t \le t_d < t + \tau \\ 0, & \text{otherwise.} \end{cases}$$
 (25)

and an exponential decay function:

$$f(t_d, t) = \begin{cases} 0, & \text{if } t \le t_d < t + \tau \\ \exp\left\{\frac{-(t_d - t)}{\tau/5}\right\}, & \text{otherwise.}^2 \end{cases}$$
(26)

We used duration $\tau = 3$ and simulated ten data sets for each of the three functions f. In fitting the models, we also considered all three functions f and varied the decay duration τ from 1 to 5. Figure 6 shows the results of these experiments, using both event detection and document recovery metrics discussed previously.

²Unlike the linear and step functions, the exponential function could be evaluated for any time interval t after a document's appearance at t_d ; the function is truncated for computational reasons. The mean lifetime of this exponential decay is the duration τ is divided by 5—this ensures that 99.3% of the area under the curve is reached before the function is truncated at duration τ .

Algorithm 1: Variational Inference for Capsule

```
Input: word counts w
Output: approximate posterior of latent parameters in terms of variational parameters \lambda
Initialize \mathbb{E}[\boldsymbol{\beta}_k] to slightly random around uniform for each k
Initialize E[all other parameters] to uniform
for iteration m = 1, dots, M do
             set all \lambda to respective priors, excluding \lambda^{\theta,rate}, \lambda^{\zeta,rate}, and \lambda^{\epsilon,rate}, which are set to 0
            update \lambda_{dk}^{\theta,rate} += \sum_{V} \mathbb{E}[\boldsymbol{\beta}_{kv}] for all messages d and topics k for each message d=1,\ldots,D do
                            for each term v \in V(d)^1 do
                                         set (K+T+1)-vector \boldsymbol{\omega}_{dv} as shown in equation (22), using \mathbb{E} of parameters
                                         set (K + T)-vector \mathbb{E}[\mathbf{z}_{dv}] = n_{dv} * \boldsymbol{\omega}_{dv}
                                       update \lambda_{dk}^{\theta,shape} += \mathbb{E}[z_{dvk}^{\mathcal{K}}] for all k [equation (19)]

update \lambda_{dt}^{\epsilon,shape} += \mathbb{E}[z_{dvt}^{\mathcal{K}}] for all t [equation (20)]

update \lambda_{d}^{\xi,shape} += \mathbb{E}[z_{dv}^{\mathcal{K}}] [equation (21)]
                                        update \lambda_{kv}^{\beta} += \mathbb{E}[z_{dvk}^{\mathcal{K}}] for all k [equation (15)] 

update \lambda_{tv}^{\gamma} += \mathbb{E}[z_{dvt}^{\mathcal{T}}] for all t [equation (13)] 

update \lambda_{a_dv}^{\eta} += \mathbb{E}[z_{dv}^{\mathcal{A}}] [equation (14)]
                        end

set \lambda_{dk}^{\theta,rate} = \mathbb{E}[\phi_{a_dk}] + \sum_v \mathbb{E}[\beta_{kv}] for all k [equation (19)]

set \lambda_{dt}^{\epsilon,rate} = \mathbb{E}[\psi_t] + f \sum_v \mathbb{E}[\gamma_{tv}] for all t [equation (20)]

set \lambda_d^{\xi,rate} = \mathbb{E}[\xi_{a_d}] + \sum_v \mathbb{E}[\eta_{a_dv}] [equation (21)]

set \mathbb{E}[\theta_{dk}] = \lambda_{dk}^{\theta,shape}/\lambda_{dk}^{\theta,rate} for all k

set \mathbb{E}[\epsilon_{dt}] = \lambda_{dt}^{\epsilon,shape}/\lambda_{dt}^{\epsilon,rate} for all t

set \mathbb{E}[\zeta_d] = \lambda_d^{\xi,shape}/\lambda_d^{\xi,rate}

update \lambda_{a_dk}^{\theta,shape} + = s for all k [equation (18)]

update \lambda_{dk}^{\psi,shape} + = s \forall t : f(t_d,t) \neq 0 [equation (16)]
                          update \lambda_{t}^{\xi,shape} += s [equation (17)]

update \lambda_{a_{d}}^{\phi,rate} += \theta_{dk} for all k [equation (18)]

update \lambda_{t}^{\psi,rate} += \epsilon_{dt} for all t [equation (16)]
                           update \lambda_{a_d}^{\xi,rate} += \zeta_d [equation (17)]
              end
           set \mathbb{E}[\phi_{ak}] = \lambda_{ak}^{\phi,shape}/\lambda_{ak}^{\phi,rate} for all a and k set \mathbb{E}[\beta_k] = \lambda_k^{\beta}/\sum_v \lambda_{kv}^{\beta} for all k set \mathbb{E}[\xi_d] = \lambda_d^{\xi,shape}/\lambda_d^{\xi,rate} for all d set \mathbb{E}[\eta_a] = \lambda_a^{\eta}/\sum_v \lambda_{nv}^{\eta} for all a set \mathbb{E}[\psi_a] = \lambda_a^{\psi,shape}/\lambda_a^{\psi,rate} for all a set \mathbb{E}[\psi_t] = \lambda_t^{\gamma}/\sum_v \lambda_{tv}^{\gamma} for all t
end
return λ
```

$f * \epsilon$	Date	Entity	Subject
6.86	1976-07-07	Cairo	Possible SC meeting on Israeli rescue operation
6.18	1976-07-10	Kuwait	Media reaction to Bicentennial summary
6.15	1976-07-06	Damascus	Syria condemns Israeli operation to free Air France
5.91	1976-07-08	Tel Aviv	Passengers comment on Air France hijacking
5.89	1976-07-06	Stockholm	Possible SC meeting on Israeli rescue operation
5.38	1976-07-09	Nicosia	Bicentennial activities in Cyprus
5.09	1976-07-11	State	Security Council debate on Entebbe events CONFID
4.77	1976-07-09	State	Travel of Peter M. Storm, House Budget Committee
4.76	1976-07-06	Jidda	Weekly Saudi Editorial Summary (June 30-July 6)
4.68	1976-07-08	Lusaka	SWAPO President seeks assessment of Kissinger-Vor
4.56	1976-07-07	Stockholm	Ugandan role in Air France hijacking
4.45	1976-07-06	Karachi	Transitional quarter funding for RSS travel
4.43	1976-07-06	Athens	Bicentennial anniversary in Greece
4.37	1976-07-08	Damascus	Beirut travel
4.34	1976-07-10	State	Status of Mrs. Bloch
4.17	1976-07-07	Hong Kong	Hong Kong Communist press denounces Israeli resc
4.12	1976-07-08	Dar es Salaam	President Nyerere's fourth of July messages
4.09	1976-07-10	Moscow	Pravda and Krasnaya Zvezda on Entebbe rescue oper

Table 6: Top documents for the week after the US bicentennial celebration and Operation Entebbe. Capsule identifies documents relevant to both these real-world events.

As expected, the model performs best when the model decay function matches the function used to generate the data. For both event detection and document recovery, the exponential decay was least sensitive to the setting of duration τ used in fitting the data; it was also the least sensitive to the function used in simulating the data. In exploring results on the real-world cable data, we found that the exponential decay provided the most interpretable results.

References

Zoubin Ghahramani and Matthew J Beal. 2001. Propagation algorithms for variational bayesian learning. *Advances in Neural Information Processing Systems (NIPS)*, pages 507–513.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. 1999. An introduction to variational methods for graphical models. *Machine Learning*, 37(2):183–233, November.

Martin J. Wainwright and Michael I. Jordan. 2008. Graphical models, exponential families, and variational inference. *Foundations and Trends in Machine Learning*, 1(1-2):1–305, January.

top terms

church, vatican, catholic, bishop, pope, ford, cardinal, ban, religious, archbishop program, university, grant, education, school, post, institute, research, center, american security, council, terrorist, threat, sc, sabotage, protective, herein, unsc, honour visit, hotel, schedule, arrival, arrive, depart, please, meet, day, room labor, union, strike, ilo, employment, federation, afl cio, trade, worker, confederation bank, credit, loan, investment, finance, payment, financial, eximbank, opic, central law, case, court, legal, investigation, arrest, justice, sentence, trial, attorney party, government, election, opposition, national, leader, campaign, vote, support, anti tax, company, pay, lease, compensation, exemption, repatriation, income, taxation, fee oil, petroleum, opec, crude, gulf, price, exploration, refinery, energy, company israel, arab, israeli, middle, egypt, peace, plo, cairo, egyptian, lebanon radio, television, broadcast, allotment, appropriation, obligation, zero, warc, transmitter, network india, indian, pakistan, delhi, goi, ocean, bangladesh, transit, pakistani, afghan turkish, turkey, cyprus, greek, greece, athens, ankara, morocco, cypriot, algeria aid, relief, emergency, usaid, disaster, donor, wfp, sahel, ifad, unicef aircraft, team, flight, clearance, transport, civair, aviation, traffic, charter, cargo soviet, moscow, press, ussr, soviet union, american, one, war, communist, article sea, zone, marine, maritime, fish, coastal, continental, territorial, mile, fishery

Table 7: Top vocabulary terms for a selection of general topics, one per row, according to topic distributions β_k . Capsule identifies general diplomatic themes that can be relevant to any entity.

entity	top terms		
Ankara	turkish, turkey, ankara, government, cyprus, greek, party, one, time		
Athens	greek, athens, greece, gog, government, cyprus, turkish, press, minister		
Auckland	new zealand, company, box, trade, contact, opportunity, united states		
Baghdad	iraqi, iraq, goi, arab, state, regime, ministry, government, party		
Berlin	berlin, frg, german, senat, time, bonn, trade, one, agreement		
Bern	swiss, bern, federal, bank, snb, gold, end, interest, national		
Brussels	belgian, belgium, brussels, government, firestone, european, ministry		
Budapest	hungarian, hungary, trade, mudd, one, time, puja, well, policy		
Buenos Aires	argentine, argentina, goa, us, hill, government, one, press, police		
Cairo	egyptian, cairo, egypt, arab, israeli, israel, peace, agreement, president		
Canberra	australian, australia, goa, government, minister, whitlam, end, dfa, time		
Dakar	senegalese, president, african, summary, conference, end, support, one		
Dar es Salaam	tangov, salaam, tanzanian, spain, president, government, african, one		
Guayaquil	ecuador, ecuadorean, port, congen, one, tuna, local, time, boat		
Islamabad	pakistan, gop, government, one, party, minister, general, opposition, ppp		
Paris	paris, france, rush, french, one, government, amconsul, quai, european		
Jerusalem	jerusalem, bank, israeli, us, israel, plo, one, arab, unifil		
Jidda	saudi, jidda, saudi arabia, prince, us, fahd, one, time, government		
Johannesburg	black, africa, african, trade, union, police, labor, one, committee		
Kabul	afghan, government, goa, minister, one, pakistan, regime, time, ministry		
Lima	peru, gop, lima, peruvian, dean, minister, general, marcona, government		
Lisbon	portugal, portuguese, gop, lisbon, government, party, summary, minister		
London	london, british, government, fco, labor, agreement, one, washdc, summary		
Madrid	spanish, spain, madrid, one, govt, general, committee, government, time		
Nairobi	kenya, nairobi, marshall, embassy, kenyan, unep, le, ref, state		
Oslo	norwegian, norway, soviet, government, minister, ministry, policy		
Ottawa	canadian, canada, goc, ottawa, us, extaff, government, minister, federal		
Peking	chinese, peking, uslo, china, people, teng, one, trade, delegation, hong		
Phnom penh	penh, phnom, khmer, rice, fank, enemy, cambodia, government, dean		
Prague	czechoslovak, goc, czech, trade, embassy, one, mfa, time, cssr		
Quito	ecuador, ecuadorean, gulf, government, minister, bloomfield, general, one		
Sao Paulo	paulo, brazil, state, brazilian, president, government, congen, one, do		
Seoul	korea, korean, rok, rokg, seoul, park, government, president, time		
Singapore	singapore, asean, minister, government, one, prime, comment, vietnam		
Sofia	bulgarian, trade, one, agreement, american, visit, committee, party		
Sydney	australia, australian, one, general, american, state, government, post		
Tokyo	japan, japanese, tokyo, fonoff, summary, miti, end, diet, time		
Taipei	taiwan, groc, china, chinese, government, american, one, local, republic		
The Hague	dutch, netherlands, hague, government, minister, party, stoel, mfa, one		
USUN New York	committee, usun, priority, report, draft, resolution, sc, comite, rep, new york		
Vancouver	canada, government, canadian, british, columbia, pipeline, federal, editorial		
Zagreb	yugoslav, yugoslavia, croatian, fair, belgrade, american, one, ina, summary		
Zurich	swiss, congen, consulate, general, american, bern, dollar, shipment		
For your bullery tarms for a soluction of antities according to antity avaluative tonics w. Cancula identifies anti-			

Table 8: Top vocabulary terms for a selection of entities according to entity-exclusive topics η_n . Capsule identifies entity-specific themes and interests.

Figure 6: Assessment of model parameter sensitivity on simulated data—Capsule performs best when the model decay function matches the function used to generate the data. The exponential decay is least sensitive to the setting of duration τ and the true function f.