MATH 45000 - Exam I September 20, 2024

Instructor: Linquan Ma

NAME:	Solution	
PUID:		

- (1) No textbook or notes.
- (2) No calculators or portable electronic devices.
- (3) You must show your work to all problems.
- (4) There are six questions.
- (5) The total score of this exam is 100.

- 1. (20 points)
 - (a) Prove that for any integer $n, n^3 \equiv n \mod 6$.
 - (b) Prove that for any integer n, 2n + 3 and 3n + 5 are relatively prime.
- (a) We work mod 6, it is enough to show $n^3 \equiv n \mod 6$ when n = 0, 1, 2, 3, 4, 5 $n^3 \equiv n \mod 6$ when n = 0, 1, 2, 3, 4, 5 $n^3 \equiv n \mod 6$ $n \equiv 0, 1, 2, 3, 4, 5$ $n^3 \equiv n \mod 6$ $n^3 \equiv n \mod 6$

alternatively, $n^3-n=(n-1)n(n+1)$ is a product of 3 consecutive integers, at least one is even and at least one is even and at least one is a multiple of 3. So n^3-n is divisible by 2 and 3 so n^3-n is divisible by 6

(6)
$$2(3n+5) - 3(2n+3) = 6n+10 - (6n+9) = 1$$

=) $9rd(2n+3, 3n+5) = 1$

- 2. (20 points)
 - (a) Find all subgroups of \mathbb{Z}_{18} .
 - (b) Show that U(14) is a cyclic group, and find one generator.

(a) All divisors of (8 are: 1.2.3.6.9.18
$$\langle 0 \rangle = \{ 0 \}$$

 $\langle 0 \rangle = \{ 0 \}$
 $\langle 9 \rangle = \{ 0.9 \}$
 $\langle 6 \rangle = \{ 0.6, 12 \}$
 $\langle 3 \rangle = \{ 0.3.6.9.12.15 \}$
 $\langle 2 \rangle = \{ 0.2, --- 16 \}$
 $\langle 1 \rangle = \mathbb{Z}_{18}$

(b)
$$U(14) = \{1, 3, 5, 9, 11, 13\}$$

 3 is a generator: $3^2 = 9$ $3^3 = 27 = 13$ mod 14
 $3^4 = 13 \times 3 = 39 = 11$ mod 14
 $3^5 = 11 \times 3 = 33 = 5$ mod 14

 $3^{6} = 5 \times 3 = 15 = 1 \mod 14$

(the other generator is 5)

- 3. (20 points)
 - (a) Prove that D_6 has no element of order 4.
 - (b) Find a subgroup of D_6 of order 4.
- (a) all reflections have order 2

 the rotations form a cyclic subgp of order 6

 =) no rotation could have order 4 since 4 f 6

 (you can also just compute the order of each rotation)
 - (b) {Ro RT. Lo LI] is a subgp of order 4
 To check this is a subgp.
 - · can write down explizit Caylay table
 - · use the fact that R_{π} . Lo both have order 2 and R_{π} Lo = Lo R_{π} = $L_{\frac{\pi}{2}}$

(note: you can use any reflection L, not necessarily Lo. then {Ro. Rn. L. RnoL} is a subgp.

by the second method)

4. (20 points) Define an operation on \mathbb{Z} by

$$x * y = x + y + 4$$

for any $x, y \in \mathbb{Z}$. Prove that $(\mathbb{Z}, *)$ is a group. What is the identity element and what is the inverse of x?

Associativity:
$$(x * y) * 2 = (x * y * 4) * 2$$

$$= x * y * 4 * 2 * 4$$

$$= x * y * 2 * 8$$

$$= x * (y * 2) = x * (y * 2 * 4)$$

$$= x * (y * 2) = x * (y * 2 * 4)$$

$$= x * (y * 2 * 4) * 2 * 4$$

$$x*(y*z) = x*(y*z*4)$$

= x+y+z+4+4
= x+y+z+8

Identity is -4:
$$\chi * (-4) = (-4) * \chi = \chi - 4 + 4 = \chi$$

$$\chi * (-8-x) = (-8-x) * \chi = \chi - 8-x + 4$$

$$= -4 \quad \text{identify}.$$

5. (10 points) In S_7 , write the element (12)(423157)(64) as a product of disjoint cycles and compute its order.

$$(12)(423157)(64) = (15746)(23)$$

order = $(cm(5,2) = 10)$

- 6. (10 points) Let G be a group with identity element e. Suppose $a, b \in G$ such that $aba^{-1} = b^{-1}$.
 - (1) Prove that $ab^{-1}a^{-1} = b$.
 - (2) Suppose in addition $a^3 = e$. Prove that $b^2 = e$.

(1)
$$aba^{-1} = b^{-1}$$

 $(aba^{-1})^{-1} = (b^{-1})^{-1} = b$
 $(aba^{-1})^{-1} = (a^{-1})^{-1}b^{-1}a^{-1} = ab^{-1}a^{-1}$
 $\Rightarrow ab^{-1}a^{-1} = b$

(2)
$$aba^{7} = b^{-1}$$

 $Aba^{2} = ab^{3}a^{4} = b^{-1}$
 $Aba^{3}ba^{-3} = aba^{-1} = b^{-1}$

(