Blockchain Innovation Program Tutorial Framework

POWERED BY

Blockchain Innovation Program Tutorial Framework

The Blockchain Innovation Program is a designed as an intensive 10-week programme which will provide students with educational and entrepreneurial support for them to develop a comprehensive understanding of what's involved in Bitcoin Application Development. The programme will see the students complete the three bitcoin primitive courses Hash Functions, Merkle Trees, and Digital Signatures before they complete the newly refactored Introduction to Bitcoin Development.

Educators from the Bitcoin SV Academy team will prescribe weekly resource and question packs to stimulate the students to develop a deeper consideration for what is involved in creating a scalable Bitcoin application. The students will attend fortnightly tutorials where their answers to the question pack will be evaluated and discussed in greater detail.

Live session #1

Hash Functions	 Hash Functions and Hash Tables Content Addressed Distributed Data Structures
	Efficient Provable Data Possession for Hybrid Clouds

Course pre-requisite: Hash Functions (primitives)

Worksheet to complete prior to the live session: Week 1 – Hash Functions

Live session #2

LIVE SESSION NE	
Merkle Trees	GitHub MerkleDAG
	 ForkBase: Immutable, Tamper-evident Storage
	 Substrate for Branchable Applications
	 Merkle-CRDTs - MerkleDAGs meet CRDTs
	 Merkle²: A Low Latency Transparency Log System
Digital Signatures	Digital Signatures
	 Legitimating Technologies: Digital Signatures Case
	Study.
	Segwit, Mixing and Law
	SigHash Flags

Course pre-requisite: Merkle Trees and Digital Signatures (Primitives)

Worksheet to complete prior to the live session: Week 2 Merkle Trees and Week 3 Digital Signatures.

Live session #3

Data and Databases	What is DBaaS?
	SQL vs NoSQL
	What is Cloud Storage?
	What is Object Storage?
	Block vs File Storage
	What is a Load Balancer?
	Kubernetes vs Docker
API led Event-Driven &	API vs SDK
Microservices Architectures	What is API Management?
	What is a REST API?
	What is an API Gateway?
	What is Event Driven Architecture?
	What are Microservices?
	 Architecting a Cloud Native API Solution.
	Blockchain Enabled Trustless API Marketplace
	Unofficial API and Browser Extension Development
	for Augmenting Student Resources

Course pre-requisite: Bitcoin Development Chapter 1

Worksheet to complete prior to the live session: Week 4 Data and Databases and API led

Event-Driven & Week 5 Microservices Architectures

Live session #4

Debunking the Blockchain	 Myths of Decentralisation On Decentralisation The Wizard of Blockchain Cost Performance Trade-Off Evaluation in
Trilemma, CAP Theorem &	Microservices impacted by the CAP Theorem
Application Scalability	Limitations
Working Blockchain & Overlay Networks	 A Survey and Comparison of P2P Overlay Network Schemes. Virtual Networking Explained What is a Content Delivery Network Mandala Network SPV Working Blockchain

Course pre-requisite: Bitcoin Development Chapter 2&3

Worksheet to complete prior to the live session: Week 6 Debunking the Blockchain Trilemma, CAP Theorem & Week 7 Application Scalability and Working Blockchain & Overlay Networks.

Live session #5

Intro to Git and Github	 Git and GitHub for Beginners Getting Started With OpenSSH Key Management. Setting up an Nx monorepo with Angular Setting up CI/CD with Github Actions and Vercel
Constructing Transactions & Script	 Introduction to Bitcoin Transactions MintBlue API, SDK and Integrations

Course pre-requisite: Bitcoin Development Chapter 4-5

Worksheet to complete prior to the live session: Week 8 Intro to Git and Github and Week 9 Constructing Transactions and Bitcoin Script.

Live session #6

Metanet	Metanet Overlay
	 Dagda
	 The Birth of Ontology & the DAG
	 Tutorial on directed Acyclic Graphs
	A.N.N.E preview.
End of programme	Feedback on project completed by students
	Wrap up of the programme

Course pre-requisite: Bitcoin Development Chapter 6

Worksheet to complete prior to the live session: Week 10 Metanet

Blockchain Innovation Program Worksheets

Week 7: Working Blockchains & Overlay Networks

1. Virtual Networking Explained

- a. Since an overlay model can be thought of like a nested dolls analogy, and a fabric can exist at each level of the overlay networks, how can the bitcoin system be thought of as the fabric for a bitcoin application?
- b. What would be a tunnelling end point for a bitcoin application using bitcoin as fabric?
- c. What could be considered the routers in a bitcoin application overlay?
- d. How could public private key pairs lend themselves to granting permissions or firewalling on a bitcoin based overlay network for an application?

2. A Survey and Comparison of Peer-to-Peer Overlay Network Schemes

https://snap.stanford.edu/class/cs224w-readings/lua04p2p.pdf (Introduction and II (whichever are interesting), III, IV (whichever are interesting), V & Concluding Remarks)

- a. From Figure 1 (pg. 1) Which of the components listed in the figure could be replicated or supplemented by the bitcoin system? How?
- b. What is the difference between structured and unstructured p2p overlay networks?
- c. What data technique do structured p2p overlay networks rely upon and how does that impact scalability?
- d. What data technique to unstructured p2p overlay networks rely upon, and how does that impact scalability?
- e. How could bitcoin improve the latency issues of routing between nodes on the overlay network which are far apart on the physical network infrastructure?
- f. How does having an incentive model prevent a tragedy of the commons in terms of free riding on network resources?

- a. Why would a bitcoin application that performed read and write functions from the bitcoin blockchain suffer with speed performance?
- b. In what respect can the CDN model be replicated for a Bitcoin Application to enhance the delivery of its services?
- c. From last week's reading on microservices discuss the following:

 Thirdly, infrastructure costs for all the systems were only evaluated in terms of the current
 BranchKey deployment, i.e., on AWS cloud platform. There are many cloud service providers
 in the market with competing prices. BranchKey could also deploy their own infrastructure
 over an in-house data center. This research could further be extended to compare the
 infrastructure cost of all such solutions.

4. Small World Mandala Network

a. The Bitcoin network consists of a p2p mining network of tightly connected devices which hold the full blockchain and resembles a near complete graph. Users sit at the periphery and only need to host the block headers and Merkle proofs for their specific transactions. The middle ring of the above network is the SPV layer where large merchants who process transactions from users and reconcile accounts with other large merchants persist their larger subsets of the bitcoin blockchain. How can this view of different working blockchains be related to an overlay or CDN type model for enhancing the performance of a bitcoin application?