4.3. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА ЛИНДЕБЕРГА — ФЕЛЛЕРА

4.3.1. Основные определения и формулы

Пусть на вероятностном пространстве (Ω, \mathcal{F}, P) определена последовательность независимых в совокупности случайных величин $\{\xi_k\}$, имеющих функции распределения $\{F_k(x)\}$, конечные математические ожидания

$$\{a_k\}$$
 и конечные дисперсии $\{\sigma_k^2\}$. Положим $S_n = \sum_{k=1}^n \xi_k$, $A_n = \mathrm{E}\{S_n\} = \sum_{k=1}^n a_k$,

$$B_n^2 = D\{S_n\} = \sum_{k=1}^n \sigma_k^2, n = 1, 2, \dots$$

Определение 1. Функцией Линдеберга для суммы S_n вышеопределенных случайных величин $\xi_1, \xi_2, ..., \xi_n$ называется функция двух переменных

$$L = L(n, \tau) = \frac{1}{B_n^2} \sum_{k=1}^n \int_{|y-a_k| > \tau B_n} (y - a_k)^2 dF_k(y),$$

где $n \in \mathbb{N}$, $\tau \ge 0$.

Определение 2. Говорят, что случайная последовательность $\{\xi_k\}$ удовлетворяет условию Линдеберга, если для любого $\tau > 0$ выполняется равенство

$$\lim_{\tau \to \infty} L(n, \tau) = 0. \tag{4.5}$$

 $\lim_{n \to \infty} L(n, \tau) = 0.$ (4.5) Центральная предельная теорема Линдеберга. Пусть на вероятностном пространстве определена последовательность независимых в совокупности случайных величин $\{\xi_k\}$, имеющих конечные математические ожидания $\{a_k\}$ и дисперсии $\{\sigma_k^2\}$. Тогда если выполняется условие Линдеберга (4.5), то при $n \to \infty$ выполняется условие равномерной малости дисперсий

$$\max_{1 \le k \le n} \frac{\sigma_k^2}{B_n^2} \to 0,\tag{4.6}$$

и последовательность функций распределения нормированных сумм

$$S_n^0 = \frac{S_n - A_n}{B_n}$$

случайных величин сходится для любого $x \in \mathbb{R}$ к функции распределения стандартного нормального закона

$$F_{S_n^0}(x) = P\{S_n^0 < x\} \to \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dz.$$
 (4.7)

Центральная предельная теорема Феллера. Пусть на вероятностном пространстве (Ω, \mathcal{F}, P) определена последовательность независимых в совокупности случайных величин $\{\xi_k\}$, имеющих конечные математические ожидания $\{a_k\}$ и дисперсии $\{\sigma_k^2\}$. Тогда при $n \to \infty$, если выполнено условие равномерной малости дисперсий (4.6) и имеет место сходимость последовательности функций распределения нормированных сумм S_n^0 к стандартному нормальному закону (4.7), то выполняется условие Линдеберга (4.5).

Теорема Ляпунова. Пусть на вероятностном пространстве (Ω, \mathcal{F}, P) определена последовательность независимых в совокупности случайных величин $\{\xi_k\}$, имеющих конечные математические ожидания $\{a_k\}$ и дисперсии $\{\sigma_k^2\}$; для некоторого $\delta>0$ существуют конечные абсолютные моменты порядка $(2+\delta)$ $c_k^{2+\delta}=\mathrm{E}\{|\xi_k-\alpha_k|^{2+\delta}\}$ и определены суммы моментов $B_n^2=\sum_{k=1}^n\sigma_k^2,$ $C_n^{2+\delta}=\sum_{k=1}^nc_k^{2+\delta}$. Тогда если при $n\to\infty$ выполнено *условие*

Ляпунова

$$\frac{C_n}{B_n} \to 0$$
,

то последовательность сумм $\{S_n\}$ распределена асимптотически нормально с математическим ожиданием A_n и дисперсией B_n^2 :

$$F_{S_n^0}(x) = \mathbf{P}\left\{\frac{S_n - A_n}{B_n} < x\right\} \to \Phi(x), x \in \mathbb{R}.$$

4.3.2. Примеры решенных задач

Пример 1. Доказать, что для последовательности $\{\xi_k\}$ независимых, одинаково распределенных случайных величин с конечной дисперсией выполняется условие Линдеберга $(F(x) = F_k(x) - \varphi$ ункция распределения случайных величин).

Решение. Положим $a = E\{\xi_k\}, \, \sigma^2 = D\{\xi_k\}, \, k = 1, 2, \dots$ Тогда

$$B_n^2 = \sum_{k=1}^n \sigma_k^2 = n\sigma^2$$

И

$$L = L(n, \tau) = \frac{1}{n\sigma^2} \sum_{k=1}^{n} \int_{|y-a_k| > \tau\sigma\sqrt{n}} (y-a)^2 dF(y) = \frac{1}{\sigma^2} \int_{|y-a_k| > \tau\sigma\sqrt{n}} (y-a)^2 dF(y) \to 0$$

при $n \to \infty$ для любого $\tau > 0$.

Пример 2. Пусть для независимых случайных величин $\xi_1, \xi_2, ...,$ имеющих нулевое математическое ожидание, дисперсию σ_k^2 ($0 < \sigma_k^2 < \infty$) и $E\{|\xi_k|^3\} < \infty$ (k = 1, 2, ...), выполняется условие Ляпунова при $\delta = 1$, т. е.

$$\lim_{n \to \infty} \frac{1}{B_n^3} \sum_{k=1}^n \mathbb{E}\{|\xi_k|^3\} = 0.$$

Показать, что для $\xi_1, \xi_2, ...$ выполняется центральная предельная теорема.

Решение. Согласно неравенству Ляпунова, для математического ожидания

$$(E\{|\xi_k|^s\})^{\frac{1}{s}} \le (E\{|\xi_k|^q\})^{\frac{1}{q}},$$

0 < s < q, можно записать, что

$$\sigma_k^3 = (E\{\xi_k^2\})^{\frac{3}{2}} \le E\{|\xi_k|^3\}.$$

Значит, при $n \rightarrow \infty$ выполняется

$$\frac{1}{B_n^3} \max_{k \le n} \sigma_k^3 \le \frac{1}{B_n^3} \sum_{k=1}^n \sigma_k^3 \to 0.$$

Так как $\sigma_k < B_n, k = 1, 2, ...,$ то

$$\lim_{n\to\infty}\frac{1}{B_n^2}\max_{k\leq n}\sigma_k^2=0,$$

и, следовательно, выполняется условие Линдеберга, т. е. справедлива центральная предельная теорема.

4.3.3. Тестовые задания

- **1.** Условие Линдеберга выполняется для случайных величин $\xi_1, \, \xi_2, \, ..., \,$ если:
 - а) $\xi_1, \xi_2, ...$ независимы;
 - б) $\xi_1, \, \xi_2, \dots$ одинаково распределены;
 - B) $D\{\xi_k\} \le c < \infty, k = 1, 2, ...;$
- г) ξ_1, ξ_2, \dots независимы, одинаково распределены, $\mathrm{E}\,\{\xi_k\} = a\,$ и имеют конечную отличную от нуля дисперсию $\mathrm{D}\,\{\xi_k\} = \sigma^2 < \infty, \, k=1,2,\dots$

Укажите верное утверждение.

2. Пусть для последовательности независимых случайных величин $\xi_1, \, \xi_2, \dots$ можно подобрать такое $\delta > 0$, что

$$\lim_{n \to \infty} \frac{1}{B_n^{2+\delta}} \sum_{k=1}^n \mathbb{E} \{ |\xi_k - \mathbb{E} \{ \xi_k \} |^{2+\delta} \} = 0.$$

Тогда для $\{\xi_k\}$:

- а) выполняется условие Линдеберга;
- б) справедлива центральная предельная теорема;
- в) $\lim_{n\to\infty} \ln f_n(t) = -\frac{t^2}{2}$, где $f_n(t)$ характеристическая функция суммы

$$\frac{1}{B_n} \sum_{k=1}^{n} (\xi_k - E\{\xi_k\});$$

г) условие Линдеберга не выполняется.

Укажите неправильное утверждение.

- **3.** Вероятность выхода из строя изделия за время испытания на надежность равна 0,05. Вероятность того, что за время испытаний 100 изделий выйдут из строя от 5 до 20 изделий, равна:
 - a) 0; 6) 1; B) ≈ 0.33 ; Γ) ≈ 0.489 .

Укажите правильный ответ.

- 4. Частными случаями центральной предельной теоремы является:
- а) теорема Муавра Лапласа;
- б) законы больших чисел;
- в) критерии сходимости случайных последовательностей.

Укажите правильный ответ.

4.3.4. Упражнения

1. Пусть $\{\xi_k\}$ — последовательность независимых, одинаково распределенных случайных величин с нулевыми математическими ожиданиями и единичными дисперсиями. Доказать, что величины

$$\eta_{n} = \sqrt{n} \frac{\xi_{1} + \xi_{2} + \dots + \xi_{n}}{\xi_{1}^{2} + \xi_{2}^{2} + \dots + \xi_{n}^{2}}$$

асимптотически нормально распределены при $n \to \infty$.

2. Пусть $\{\xi_k\}$ – последовательность независимых, одинаково распределенных случайных величин с нулевыми математическими ожиданиями и единичными дисперсиями. Доказать, что величины

$$\eta_n = \sqrt{n} \frac{\xi_1 + \xi_2 + \dots + \xi_n}{\sqrt{\xi_1^2 + \xi_2^2 + \dots + \xi_n^2}}$$

асимптотически нормально распределены при $n \to \infty$.

3.* Пусть случайные величины $\xi_1, \xi_2, ...$ независимы и имеют стандартное нормальное распределение. Распределение случайной величины

$$\chi_n^2 = \xi_1^2 + \xi_2^2 + ... + \xi_n^2$$

называется распределением χ^2 с n степенями свободы. Найти

$$\lim_{n\to\infty} \mathbf{P}\left\{\frac{\chi_n^2 - \mathbf{E}\left\{\chi_n^2\right\}}{\sqrt{\mathbf{D}\left\{\chi_n^2\right\}}} \le x\right\}, x \in \mathbb{R}.$$

4.* Пусть случайные величины $\xi_0, \xi_1, \xi_2, ...$ независимы и имеют стандартное нормальное распределение. Распределение случайной величины

$$\tau_n = \frac{\xi_0}{\sqrt{\frac{1}{n}(\xi_1^2 + \xi_2^2 + \dots + \xi_n^2)}}$$

называется распределением Стьюдента с n степенями свободы. Найти $\lim_{n\to\infty} P\{\tau_n \leq x\}, x\in \mathbb{R}.$

5. Пусть $\xi_{n,i}$ — число появления исхода A_i в n независимых испытаниях с $A_1, A_2, ..., A_N$ несовместными исходами, причем $P\{A_i\} = p_i \ (i=1,2,...,N)$ и $\sum_{i=1}^N p_i = 1; a_1, a_2, ..., a_N$ — действительные числа. Найти предельное распре-

деление случайной величины $\frac{\eta_n - \mathrm{E}\left\{\eta_n\right\}}{\sqrt{\mathrm{D}\left\{\eta_n\right\}}}$, где $\eta_n = \sum_{i=1}^n a_i \xi_{n,i}$.

- **6.** Пусть $\{\xi_k\}$ последовательность независимых случайных величин, распределенных по закону Пуассона соответственно с параметрами $\{k\}$. Доказать, что $\lim_{k\to\infty} P\bigg\{\frac{\xi_k-k}{\sqrt{k}}\leq x\bigg\} = \Phi(x)$.
- 7.* Случайные величины $\xi_1, \xi_2, ...$ независимы, одинаково распределены и имеют характеристическую функцию f(t), которая для некоторого c>0 и $0<\alpha\le 2$ может быть представлена в виде $f(t)=1-c|t|^{\alpha}(1+o(1))$, $t\to 0$. Доказать, что при $n\to\infty$ существует предельное распределение случайных величин

$$\eta_n = \frac{1}{n^{1/\alpha}} (\xi_1 + \xi_2 + \dots + \xi_n).$$

Найти его характеристическую функцию.

8.* Пусть $\{\xi_k\}$ – последовательность независимых, одинаково распределенных случайных величин таких, что $E\{\xi_1\} = \mu$, $D\{\xi_1\} = \sigma^2 < \infty$. Положим

$$\eta_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{\xi_k - \mu}{\sigma},$$

 $\sigma > 0, n = 1, 2,$ Показать, что не существует такой случайной величины η , имеющей стандартное нормальное распределение, чтобы случайная последовательность $\{\eta_n\}$ при $n \to \infty$ сходилась бы в среднем квадратичном к η .

9.* Пусть $S_n = \sum_{k=1}^{\nu_n} \xi_k$, где ν_n , ξ_1 , ξ_2 , ... — независимые случайные величины, причем $|\xi_k| < c$, $E\{\xi_k\} = a$, $D\{\xi_k\} = \sigma^2$ (k = 1, 2, ...), а ν_n — целочисленная неотрицательная случайная величина с $E\{\nu_n\} = n$, $D\{\nu_n\} \le n^{1-\varepsilon}$, где $\varepsilon > 0$. Доказать, что стандартное нормальное распределение является предельным распределением случайных величин $\frac{S_n - na}{\sigma \sqrt{n}}$ при $n \to \infty$.

10. Пусть $\{\xi_k\}$ — последовательность независимых, одинаково распределенных случайных величин с $\mathbf{E}\{\xi_1^2\}<\infty$. Показать, что при $k\to\infty$

$$\frac{\max\{|\xi_1|,|\xi_2|,...,|\xi_k|\}}{\sqrt{k}} \xrightarrow{D} 0.$$

11. Пусть $\{\xi_k\}$ — последовательность независимых, одинаково распределенных случайных величин с $\mathrm{E}\,\{\xi_1\}=0$ и $\mathrm{E}\,\{\xi_1^2\}=1;\ d_1,d_2,\ldots$ — неотрицательные константы такие, что $d_n=o(\mathrm{D}_n)$, где $\mathrm{D}_n^2=\sum_{k=1}^n d_k^2;\ n=1,2,\ldots$ Доказать, что последовательность случайных величин $\{\eta_k\}$, где $\eta_k=d_k\xi_k$ $(k=1,2,\ldots)$, удовлетворяет центральной предельной теореме.

12. Пусть $\{\xi_k\}$ — последовательность независимых, одинаково распределенных случайных величин с $E\{\xi_1\}=0$ и $E\{\xi_1^2\}=1$. Положим $S_n=\xi_1+\xi_2+...+\xi_n$ и $\eta_n=\max_{1\leq m\leq n}S_m,\,n=1,2,....$ Доказать, что для x>0 при $n\to\infty$

$$P\left\{\frac{1}{\sqrt{n}}\eta_n \le x\right\} \to \sqrt{\frac{2}{\pi}} \int_0^x e^{-\frac{y^2}{2}} dy.$$

13. Пусть $\{\xi_k\}$ — последовательность независимых, одинаково распределенных случайных величин таких, что $P\{\omega: \xi_1(\omega) > x\} = P\{\omega: \xi_1(\omega) < -x\}, x \in \mathbb{R}$, и $P\{\omega: |\xi_1(\omega)| > x\} = x^{-2}, x \ge 1$. Доказать, что при $n \to \infty$

$$P\bigg\{\omega: \frac{1}{\sqrt{n\ln n}}\sum_{k=1}^n \xi_k(\omega) \le x\bigg\} \to \Phi(x), \ x \in \mathbb{R}.$$

14. Пусть $\{\xi_k\}$ — последовательность независимых, одинаково распределенных случайных величин с абсолютно интегрируемой характеристической функцией, $E\{\xi_1\}=0$, $E\{\xi_1^2\}=1$. Обозначим: $p_n(x)$ — плотность распределения случайной величины $\eta_n=\frac{1}{\sqrt{n}}\sum_{k=1}^n\xi_k$. Доказать, что равномерно по x

$$\lim_{n \to \infty} p_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

15.* Пусть $\{\xi_k\}$ — последовательность независимых случайных величин, имеющих одинаковое равномерное распределение на отрезке [-a,a], $F_n(x)$ — функция распределения нормированной суммы $S_n = \frac{1}{\sqrt{n \, \mathrm{D}\{\xi_1\}}} \sum_{k=1}^n \xi_k$, $n=1,2,\dots$ Доказать, что

$$\sup_{x} \left| F_{n}(x) - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^{2}}{2}} du \right| \le \frac{1}{4\pi n} \left(1 + \frac{4}{n-1} \right).$$

16.* Пусть $\{\xi_k\}$ — последовательность взаимно независимых и одинаково распределенных случайных величин таких, что $P\{\omega: 0 \le \xi_k(\omega) < 1\} = 1$, $k=1,2,\ldots$ Положим $\eta_n = S_n - [S_n]$, где $S_n = \sum_{k=1}^n \xi_k$, а [x] — целая часть числа x. Доказать, что если при $t \ne 0$

$$\lim_{n\to\infty} \mathbb{E}\left\{\exp(2\pi it\eta_n)\right\} = 0,$$

то при любых α и β таких, что $0 \le \alpha < \beta < 1$, выполняется равенство

$$\lim_{n\to\infty} P\{\omega : \alpha \le \eta_n(\omega) < \beta\} = \beta - \alpha.$$

4.3.5. Задачи

- **1.** Пусть $\{\xi_k\}$ последовательность независимых случайных величин, причем $\mathcal{L}\{\xi_k\}=N\,(0,\sigma_k^2)$, где $\sigma_1^2=1$, $\sigma_k^2=2^{k-1}\,(k=1,2,...)$. Показать, что условие Линдеберга не выполнено, но тем не менее центральная предельная теорема имеет место.
- **2.*** Пусть $\{\xi_k\}$ последовательность независимых, одинаково распределенных случайных величин с $\mathbf{E}\{\xi_1\}=0$ и $\mathbf{E}\{\xi_1^2\}=1$.

Положим $\eta_n = \max\left\{\frac{|\xi_1|}{\sqrt{n}}, \frac{|\xi_2|}{\sqrt{n}}, ..., \frac{|\xi_n|}{\sqrt{n}}\right\}, \ n=1,2,....$ Показать, что при $n\to\infty$ $\eta_n \xrightarrow{D} 0$.

- **3.** Суммируются 10^4 чисел, округленных с точностью до 10^{-m} . Предполагая, что ошибки округления независимы и равномерно распределены в интервале $]-0.5\cdot 10^{-m}, 0.5\cdot 10^{-m}[$, найти пределы, в которых с вероятностью, не меньшей 0,99, будет лежать суммарная ошибка.
- **4.** Пусть $\{\xi_k\}$ последовательность независимых, одинаково распределенных случайных величин таких, что $\mathrm{E}\,\{\xi_k\}=a,\ \mathrm{D}\,\{\xi_k\}=b^2,\ k=1,2,\ldots$ Положим $\eta_k=\xi_k+\xi_{k+1}+\xi_{k+2}, k=1,2,\ldots$ Найти $\mathrm{E}\,\{\eta_k\},\mathrm{Cov}\,\{\eta_k,\eta_l\}\,(k\neq l),$ $\mathrm{D}\,\{\eta_k\}$ и

$$\lim_{n\to\infty} \mathbf{P}\bigg\{\omega: \frac{\eta_1(\omega) + \eta_2(\omega) + \dots + \eta_n(\omega) - 3na}{b\sqrt{3n}} \le x\bigg\}.$$

5. Пусть случайные величины $\xi_1, \, \xi_2, \ldots$ независимы и $P\{\omega : \xi_k(\omega) = 1\} = \frac{1}{k},$ $P\{\omega : \xi_k(\omega) = 0\} = \frac{k-1}{k}, \ k = 1, 2, \ldots$ Найти предельное распределение при $n \to \infty$ случайных величин $\eta_n = \frac{S_n - E\{S_n\}}{\sqrt{D\{S_n\}}},$ где $S_n = \sum_{k=1}^n \xi_k$.

Установить, будет ли выполняться центральная предельная теорема для случайных последовательностей, определенных в задачах 6–8.

6.
$$P\{\omega : \xi_k(\omega) = \pm 2^k\} = \frac{1}{2}$$
.

7.
$$P\{\omega : \xi_k(\omega) = \pm 2^k\} = 2^{(2k+1)}, P\{\omega : \xi_k(\omega) = 0\} = 1 - 2^{-2k}.$$

8.
$$P\{\omega : \xi_k(\omega) = \pm k\} = \frac{1}{2\sqrt{k}}, \ P\{\omega : \xi_k(\omega) = 0\} = 1 - \frac{1}{\sqrt{k}}.$$

9.* В киоске продаются лотерейные билеты. Предположим, что каждый из проходящих мимо киоска людей покупает билет с вероятностью $\frac{1}{3}$.

Пусть ξ — число людей, прошедших мимо киоска за время, пока были проданы первые 100 билетов. Найти распределение ξ .

10. Пусть $\{\xi_k\}$ – последовательность независимых, одинаково распределенных случайных величин с конечными дисперсиями. Найти

$$\lim_{n\to\infty} \mathbf{P}\bigg\{\omega: a \leq \sum_{k=1}^n \xi_k(\omega) \leq b\bigg\}, \, \text{где } a, \, b \in \mathbb{R}.$$

- **11.** Пусть $\{\xi_k\}$ последовательность независимых, одинаково распределенных случайных величин таких, что $\mathbf{E}\,\{\xi_1\} = \mu < \infty, \, \mathbf{D}\,\{\xi_1\} = \sigma^2, \, (0 < \sigma^2 < \infty).$ Найти $\lim_{n \to \infty} \mathbf{P} \bigg\{ \omega : \sum_{k=1}^n \xi_k(\omega) < x \bigg\}$ и указать условия, при которых этот предел равен 0, либо 1, либо $\frac{1}{2}$.
- **12.** Пусть $\{\xi_k\}$ последовательность независимых, одинаково распределенных случайных величин с нулевыми математическими ожиданиями и конечными дисперсиями. Найти предел $\lim_{n\to\infty} P\bigg\{\omega: \frac{1}{n^\alpha} \left| \sum_{k=1}^n \xi_k(\omega) \right| \le x\bigg\}$, где $x>0, \ \alpha\neq\frac{1}{2}$.
- **13.** Пусть $\{\xi_k\}$ последовательность независимых, одинаково распределенных случайных величин такая, что $\mathrm{E}\,\{\xi_1\}=0,\ \mathrm{D}\,\{\xi_1\}=\sigma^2<\infty$ и $\lim_{n\to\infty}\mathrm{P}\bigg\{\omega:\frac{1}{\sqrt{n}}\sum_{k=1}^n\xi_k(\omega)>1\bigg\}=\frac{1}{3}.$ Найти $\sigma^2.$
- **14.** Пусть случайные величины ξ_k равномерно распределены на отрезках $[a_k-1,a_k+1](k=1,2,...)$ соответственно, где $\sum_{k=1}^{\infty}a_k=A<\infty$. Найти $\lim_{n\to\infty} \mathbf{P}\bigg\{\omega:0<\frac{1}{\sqrt{n}}\sum_{k=1}^n\xi_k(\omega)<1\bigg\}.$
- **15.** Пусть $\{\xi_k\}$ последовательность независимых, одинаково распределенных случайных величин, для которых $\lim_{n\to\infty} P\bigg\{\omega: \frac{1}{\sqrt{n}} \left| \sum_{k=1}^n \xi_k(\omega) \right| < a\bigg\} = b,$ 0 < b < 1. Вычислить $\lim_{n\to\infty} P\bigg\{\omega: \frac{1}{\sqrt{n}} \left| \sum_{k=1}^n \xi_k(\omega) \right| < 2a\bigg\}.$
- **16.** Пусть $\{\xi_k\}$ последовательность независимых случайных величин таких, что

$$P\{\omega : \xi_k(\omega) = \pm k^{\alpha}\} = \frac{1}{2k^{\beta}}, \ P\{\omega : \xi_k(\omega) = 0\} = -\frac{1}{k^{\beta}},$$

где $2\alpha > \beta - 1; k = 1, 2,$ При каком условии выполнено условие Линдеберга?

4.4. СХЕМА СЕРИЙ. ПРИМЕНЕНИЕ ПРЕДЕЛЬНЫХ ТЕОРЕМ

4.4.1. Основные определения и формулы

Принято говорить, что множество случайных величин $\Xi = \{\xi_{kn}: k=1,...,n;\ n=1,2,...\}$ задано в схеме серий, если это множество построено следующим образом:

первая серия:
$$\xi_{11}$$
;
вторая серия: ξ_{12} , ξ_{22} ;
 \vdots
 n -я серия: ξ_{1n} , ξ_{2n} , ..., ξ_{nn} ,

причем внутри каждой серии случайные величины независимы в совокупности и одинаково распределены.

Теорема Пуассона. Пусть $\Xi = \{\xi_{kn}\}$ – схема серий случайных величин Бернулли, определенная следующим образом: $\xi_{kn} \in \{0,1\}$,

$$P\{\omega : \xi_{kn}(\omega) = 1\} = p_n, \ P\{\omega : \xi_{kn}(\omega) = 0\} = 1 - p_n, \tag{4.8}$$

где вероятность успеха

$$p_n = \frac{\lambda}{n} + o\left(\frac{1}{n}\right),$$

 $k=1,\,2,\,...,\,n;\,n=1,\,2,\,...;\,0<\lambda<\infty$. Тогда при $n\to\infty$ распределение вероятностей сумм $S_n=\sum_{k=1}^n\xi_{nk}$ сходится к распределению Пуассона $\Pi(\lambda)$ с пара-

метром λ:

$$F_{S_n}(x) = P\{S_n < x\} \to F_{\Pi}(x; \lambda) = \sum_{k=0}^{x-1} \frac{\lambda^k e^{-\lambda}}{k!}, x \in \mathbb{N}.$$
 (4.9)

Говорят, что случайная величина ξ имеет *безгранично делимый закон распределения вероятностей*, если для любого $n \in \mathbb{N}$ найдется разложение такое, что «по распределению» справедливо разложение

$$\xi = \xi_{1n} + \dots + \xi_{nn}, \tag{4.10}$$

причем все слагаемые независимы в совокупности и имеют общий закон распределения того же типа, что и ξ , отличающийся лишь значением параметра.

Центральная предельная теорема для случайных векторов. Пусть $X_1, X_2, ... \in \mathbb{R}^N$ — определенные на вероятностном пространстве (Ω, \mathcal{F}, P) ,

независимые в совокупности N-векторы, одинаково распределенные и имеющие математическое ожидание $\mathrm{E}\,\{X_k\} = \mu \in \mathbb{R}^N$ и невырожденную ковариационную $(N \times N)$ -матрицу Σ . Тогда случайный N-вектор

$$\frac{1}{n} \sum_{k=1}^{-\frac{1}{2}} \sum_{k=1}^{n} (X_k - \mu)$$

при $n \to \infty$ распределен асимптотически нормально по N-мерному стандартному нормальному закону $N_N(0, I_N)$.

4.4.2. Примеры решенных задач

Пример 1. Показать, что у-распределение с плотностью

$$p(x) = \begin{cases} \frac{x^{\alpha} e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$
(4.11)

является безгранично делимым распределением.

Решение. Пусть случайная величина ξ имеет γ -распределение с плотностью, определенной в (4.11). Тогда ее характеристическая функция равна

$$f_{\xi}(t) = \frac{1}{(1-i\beta t)^{\alpha}}.$$

Покажем, что для любого $n \ge 1$ можно найти такие характеристические функции $f_n(t)$, что

$$f_{\xi}(t) = [f_n(t)]^n.$$

Действительно, пусть $f_n(t) = \frac{1}{(1-i\beta t)^{\alpha/n}}$, n=1,2,... Нетрудно дока-

зать, что для любого n функция $f_n(t)$ является характеристической функцией некоторых случайных величин ξ_{kn} , где k=1,2,...,n; n=1,2,.... Очевидно, что $f_{\xi}(t) = [f_n(t)]^n$. Следовательно, для ξ можно записать разложение (4.10). А это значит, что γ -распределение безгранично делимо.

Пример 2. В урне находятся шары белого и черного цветов. Известно, что доля белых шаров равна либо 0,5, либо 0,4. Из урны извлечено с возвращением 100 шаров, среди которых белых шаров оказалось больше, чем черных. На основании этого был сделан вывод, что доля белых шаров в урне равна 0,5. Найти вероятность того, что этот вывод ошибочен.

Решение. Если в действительности доля белых шаров равна 0,4, то вероятность извлечения белого шара из урны в каждом из 100 извлечений по принятой схеме равна 0,4. Пусть S — число белых шаров в выборке из извлеченных 100 шаров. Так как решение о том, что доля белых шаров в урне равна 0,5, было принято на основании того, что в выборке оказалось белых шаров больше, чем черных, то вероятность ошибки равна вероятности того, что S превосходит 50, т. е.

$$P$$
{вывод ошибочен} = P { S ≥ 50}.

Согласно условию задачи и предположению, n = 100, p = 0.4. Значит,

$$P\{$$
вывод ошибочен $\} = P\left\{ \frac{S - np}{\sqrt{np(1-p)}} \ge \frac{51 - np}{\sqrt{np(1-p)}} \right\} =$

$$= P\left\{ \frac{S - np}{\sqrt{np(1-p)}} \ge 2,25 \right\} \approx 0,012.$$

4.4.3. Тестовые задания

- **1.** Множество случайных величин $\Xi = \{\xi_{kn} : k = 1, ..., n; n = 1, 2, ...\}$ задано в схеме серий, если: а) случайные величины одинаково распределены; б) случайные величины $\{\xi_{kn} : k = 1, ..., n\}$ одинаково распределены; в) случайные величины независимы в совокупности; г) внутри каждой серии случайные величины независимы в совокупности и одинаково распределены. Укажите правильный ответ.
- **2.** Пусть $\{\xi_{kn}: \hat{k}=1,...,n;\ n=1,2,...\}$ случайные величины Бернулли: $\xi_{kn}\in\{0,1\},\ P\left\{\omega:\xi_{kn}(\omega)=1\right\}=1-P\left\{\omega:\xi_{kn}(\omega)=0\right\}=p=\mathrm{const},\ k=1,2,....$ Обозначим $S_n=\sum_{k=1}^n\xi_{nk}.$ Тогда:

a)
$$P\left\{\frac{S_n - np}{\sqrt{np(1-p)}} < x\right\} \xrightarrow[n \to \infty]{} \Phi(x), x \in \mathbb{R};$$

6)
$$P\{S_n < x\} \underset{n \to \infty}{\to} \sum_{k=0}^{x-1} \frac{\lambda^k e^{-\lambda}}{k!}, x \in \mathbb{N};$$

- в) распределение вероятностей сумм S_n при $n \to \infty$ сходится к распределению Бернулли;
- г) распределение вероятностей сумм S_n при $n \to \infty$ сходится к закону Пуассона.

Укажите правильный ответ.

3. Пусть
$$\{\xi_{kn}: k=1,...,n;\ n=1,2,...\}$$
 — случайные величины Бернулли: $\xi_{kn}\in\{0,1\},\ P\{\omega:\xi_{kn}(\omega)=1\}=1-P\{\omega:\xi_{kn}(\omega)=0\}=p_n\ (k=1,2,...,n),$ причем $p_n=\frac{\lambda}{n}+o\bigg(\frac{1}{n}\bigg),$ где $0<\lambda<\infty.$ Обозначим $S_n=\sum_{k=1}^n\xi_{nk}.$ Тогда:

a)
$$P\{S_n < x\} \underset{n \to \infty}{\longrightarrow} \Phi(x), x \in \mathbb{R};$$

$$\text{6) P}\{S_n < x\} \to \sum_{n \to \infty}^{x-1} \frac{\lambda^k e^{-\lambda}}{k!}, x \in \mathbb{N};$$

- в) распределение вероятностей сумм S_n при $n \to \infty$ сходится к закону Гаусса;
- г) распределение вероятностей сумм S_n при $n \to \infty$ сходится к распределению Бернулли.

Укажите правильный ответ.

4. Пусть множество случайных величин $\{\xi_{kn}: k=1,...,n; n=1,2,...\}$ задано в схеме серий. Обозначим $S_n=\sum_{k=1}^n\xi_{nk}, n=1,2,...$ Тогда: а) сущест-

вует предельное распределение $\mathcal{L}\{S_n\}$, $n\to\infty$; б) предельным распределением $\mathcal{L}\{S_n\}$, $n\to\infty$, является закон Гаусса; в) предельным распределением $\mathcal{L}\{S_n\}$, $n\to\infty$, является закон Пуассона; г) если предельное распределение $\mathcal{L}\{S_n\}$, $n\to\infty$, существует, то оно относится к классу безгранично делимых законов распределения вероятностей. Укажите правильный ответ.

- **5.** Пусть случайная величина ξ имеет безгранично делимый закон распределения. Тогда:
- а) для любого $n \in \mathbb{N}$ найдется разложение случайной величины ξ в виде $\xi = \xi_{1n} + ... + \xi_{nn}$, где все слагаемые одинаково распределены;
- б) для любого $n \in \mathbb{N}$ найдется разложение случайной величины ξ в виде $\xi = \xi_{1n} + ... + \xi_{nn}$, где все слагаемые независимы и имеют произвольные распределения;
- в) для любого $n \in \mathbb{N}$ найдется разложение случайной величины ξ в виде $\xi = \xi_{1n} + ... + \xi_{nn}$, где все слагаемые независимы и имеют одинаковый закон распределения;
- г) для любого $n \in \mathbb{N}$ найдется разложение случайной величины ξ в виде $\xi = \xi_{1n} + ... + \xi_{nn}$, где все слагаемые независимы и имеют одинаковый закон распределения того же типа, что и ξ , отличающийся лишь значением параметра.

Указать корректное утверждение.

4.4.4. Упражнения

1. Пусть случайные величины $\{\xi_{kn}: k=1,2,...,n;\ n=1,2,...\}$ таковы, что $\mathbf{E}\,\{\xi_{kn}\}=0,\ k=1,2,...,n$ и $\lim_{n\to\infty}\frac{1}{B_n^2}\sum_{k=1}^n\mathbf{E}\,\{|\,\xi_{kn}|^2\}=0,$ где $B_n^2=\sum_{k=1}^n\mathbf{D}\,\{\xi_{kn}\}<\infty,$ n=1,2,.... Обозначим $S_n=\sum_{k=1}^n\xi_{kn}.$ Доказать, что распределения случайных

величин $\frac{S_n}{B_n^2}$ при $n \to \infty$ сходятся к стандартному нормальному распреде-

лению.

2. Пусть для каждого $n=1,\,2,\,...$ случайные величины $\{\xi_{kn}: k=1,\,2,\,...,\,n\}$ независимы и одинаково распределены: $P\{\omega:\xi_{kn}(\omega)=0\}=1-\frac{1}{\sqrt[3]{n}},$

$$P\left\{\omega: \xi_{kn}(\omega) = \sqrt[3]{n}\right\} = P\left\{\omega: \xi_{kn}(\omega) = -\sqrt[3]{n}\right\} = \frac{1}{2\sqrt[3]{n}} \quad \text{при любом } k = 1, 2, ..., n.$$

Доказать, что распределения случайных величин $\eta_n = \frac{\xi_{1n} + \xi_{2n} + \ldots + \xi_{nn}}{\sqrt{n \mathrm{D}\{\xi_{1n}\}}}$

при $n \to \infty$ сходятся к стандартному нормальному распределению.

3. Случайные величины $\{\xi_{kn}: k=1,2,...,n;\ n=1,2,...\}$ независимы и $P\{\omega:\xi_{kn}(\omega)=1\}=1-P\{\omega:\xi_{kn}(\omega)=0\}=p_{kn},\ k=1,2,...,n.$ Известно, что $\lim_{n\to\infty}\max_{1\le k\le n}p_{kn}=0$ и $\lim_{n\to\infty}\sum_{k=1}^np_{kn}=\lambda,\,0<\lambda<\infty$. Доказать, что

$$\lim_{k\to\infty} P\bigg\{\omega: \sum_{k=1}^n \xi_{kn}(\omega) = m\bigg\} = \frac{\lambda^m}{m!} e^{-\lambda},$$

 $m = 0, 1, \dots$

4. Случайные величины $\xi_1, \xi_2, ..., \xi_n$ независимы, неотрицательны и одинаково распределены: $P\{\omega: \xi_1(\omega) \geq 0\} = 1, \ E\{\xi_1\} = \mu > 0, \ D\{\xi_1\} = \sigma^2, \ 0 < \sigma^2 < \infty$. Пусть

$$N_t = \begin{cases} \max{\{n \geq 0 : \xi_1 + \xi_2 + \ldots + \xi_n \leq t\}}, \text{ если } \xi_1 \leq t, \\ 0, \text{ если } \xi_1 \leq t, \end{cases}$$

 $t \ge 0$.

Показать, что для любого $x \in \mathbb{R}$

$$\lim_{t\to\infty} \mathbf{P}\bigg\{N_t < \frac{t}{\mu} + \frac{x\sigma}{\mu}\sqrt{\frac{t}{\mu}}\bigg\} = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-u^2/2}du.$$

5.* Случайные величины $\xi_1, \, \xi_2, \, ..., \, \xi_n$ независимы и имеют показательное распределение с параметром α : $P\left\{\omega: \xi_k(\omega) \leq x\right\} = 1 - e^{-\alpha x}, \, x \geq 0,$ $k=1,\,2,\,...,\,n$. Пусть $\xi_{(1)} \leq \xi_{(2)} \leq ... \leq \xi_{(n)}$ — значения $\xi_1,\,\xi_2,\,...,\,\xi_n$, расположенные в порядке неубывания. Показать, что если $n,\,m \to \infty$ и $n-m \to \infty$, то

$$E\left\{\xi_{(m)}\right\} = \frac{1 + o(1)}{\alpha} \ln \frac{n}{n - m},$$

$$D\left\{\xi_{(m)}\right\} = \frac{1 + o(1)}{\alpha} \ln \frac{n}{n(n - m)},$$

$$P\left\{\omega : \frac{\xi_{(m)}(\omega) - E\left\{\xi_{(m)}\right\}}{\sqrt{D\left\{\xi_{(m)}\right\}}} \le x\right\} \to \Phi(x),$$

 $x \in \mathbb{R}$.

6.* Случайные величины $\xi_1, \xi_2, ..., \xi_n$ независимы и одинаково распределены: $P\{\omega: \xi_k(\omega) \leq x\} = F(x), k=1,2,...,n,$ а $\xi_{(1)} \leq \xi_{(2)} \leq ... \leq \xi_{(n)}$ — значения $\xi_1, \xi_2, ..., \xi_n$, расположенные в порядке неубывания. Доказать, что если в некоторой окрестности точки $x=x_0$ существует непрерывная производ-

ная
$$F'(x) = p(x) > 0$$
, то при $\frac{m}{n} \to F(x_0)$, $n \to \infty$,

$$P\left\{\omega: \frac{\xi_{(m)}(\omega) - x_0}{\sqrt{F(x_0)(1 - F(x_0))}} p(x_0) \le x\right\} \to \Phi(x).$$

7. Вероятность $P\{C\} = P\{A + B\}$, где $P\{B \mid \overline{A}\}$ известна, определяется двумя способами: а) приближенное значение $P\{C\}$ определяется как частота появления события C в ряду из n независимых опытов; б) определяется частота $\frac{m}{n}$ появления события A в ряду из n независимых опытов, а приближенное значение $P\{C\}$ вычисляется по формуле

$$P\{C\} \approx P_n\{C\} = \frac{m}{n} + \left(1 - \frac{m}{n}\right)P\{B \mid \overline{A}\}.$$

Доказать, что оба способа ведут к правильному результату.

8. Случайные величины ξ_1, ξ_2, \dots независимы и имеют одно и то же распределение с характеристической функцией f(t):

$$f(t) = 1 - C|t|^{\alpha} (1 + o(1)),$$

где $C>0,\,0<\alpha<2,\,t\to\infty$. Доказать, что при $n\to\infty$ существует предельное распределение случайных величин $\eta_n=\frac{1}{n^{1/\alpha}}\sum_{k=1}^n\xi_k$. Найти характеристическую функцию этого распределения.

- **9.** Случайная величина подчиняется закону распределения $\chi^2(n)$, n=1,2,... Доказать, что случайная величина $\eta_n = \frac{\xi_n n}{\sqrt{2n}}, \ n=1,2,...$, асимптотически распределена по закону N(0,1).
- **10.*** Случайная величина ξ имеет распределение Стьюдента с $n \in \mathbb{N}$ степенями свободы. Доказать, что при $n \to \infty$ плотность распределения вероятностей случайной величины ξ сходится при любом значении аргумента x к плотности распределения стандартного нормального закона при том же значении x.
- **11.** Случайные величины ξ_1, ξ_2, \dots независимы, имеют одно и то же невырожденное распределение и $\mathrm{D}\{\xi_k\}<\infty,\ k=1,2,\dots$ Доказать, что для любых a и b $(a,b\in\mathbb{R})$

$$\lim_{n\to\infty} \mathbf{P}\bigg\{\omega: a\leq \sum_{k=1}^n \xi_k(\omega)\leq b\bigg\}=0.$$

Найти
$$\lim_{n\to\infty} P\bigg\{\omega: \sum_{k=1}^n \xi_k(\omega) < x\bigg\}.$$

4.4.5. Задачи

1.* Пусть для каждого n=1,2,... случайные величины $\{\xi_{kn}: k=1,2,...,n\}$ независимы и одинаково распределены: $P\{\omega:\xi_{kn}(\omega)=\sqrt{n}\}=P\{\omega:\xi_{kn}(\omega)=-\sqrt{n}\}=\frac{1}{2n},\ P\{\omega:\xi_{kn}(\omega)=0\}=\frac{n-1}{n}$ при любом k=1,2,...,n. Найти предельное распределение случайной величины

$$\eta_n = \frac{\xi_{1n} + \xi_{2n} + \dots + \xi_{nn}}{\sqrt{nD\{\xi_{1n}\}}}$$

при $n \to \infty$.

2. Случайная величина ξ_n равна сумме очков, выпавших при n независимых подбрасываниях симметричной игральной кости. Используя центральную предельную теорему, выбрать n так, чтобы

$$P\left\{\omega: \left|\frac{\xi_n(\omega)}{n} - 3.5\right| \ge 0.1\right\} \le 0.1.$$

3.* Найти предел $\lim_{n\to\infty}\sum_{k=0}^n\frac{n^k}{k!}e^{-n}$.

4. Случайные величины ξ_1, ξ_2, \dots независимы и имеют одинаковые плотности распределения вероятностей вида

$$p(x) = \begin{cases} \frac{1}{2a} & \text{при} \quad |x| \le a, \\ 0 & \text{при} \quad |x| > a. \end{cases}$$

Найти предел при $n \to \infty$ характеристической функции $f_{\eta_n}(t)$ случайной величины

$$\eta_n = \frac{\sum_{k=1}^{n} (\xi_k - E\{\xi_k\})}{\sqrt{\sum_{k=1}^{n} D\{\xi_k\}}}.$$

5. Случайные величины $\xi_1,\,\xi_2,\,...$ независимы и имеют одинаковые распределения вида Р $\{\omega:\xi_k(\omega)=m\}=\frac{a^m}{m!}e^{-a},\,m=0,\,1,\,2,\,...$. Найти предел при $n\to\infty$ характеристической функции $f_{\eta_n}(t)$ случайной величины

$$\eta_n = \frac{\sum_{k=1}^{n} (\xi_k - E\{\xi_k\})}{\sqrt{\sum_{k=1}^{n} D\{\xi_k\}}}.$$

6. Случайные величины $\xi_1, \xi_2, ...$ независимы и имеют одинаковые плотности распределения вероятностей вида

$$p(x) = \begin{cases} 0 & \text{при } x < 0, \\ \frac{\beta^{-\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} & \text{при } x \ge 0. \end{cases}$$

Найти предел при $n \to \infty$ характеристической функции $f_{\eta_n}(t)$ случайной величины

$$\eta_n = \frac{\sum_{k=1}^{n} (\xi_k - E\{\xi_k\})}{\sqrt{\sum_{k=1}^{n} D\{\xi_k\}}}.$$

7. Вычисление интеграла $J = \int_{0}^{1} x^{2} dx$ произведено методом Монте-

Карло на основании 1000 независимых опытов. Вычислить вероятность того, что абсолютная погрешность в определении величины J не превзойдет 0.01.

8. Сколько опытов необходимо произвести при вычислении интеграла

$$J = \int_{0}^{\frac{\pi}{2}} \sin x dx$$

методом Монте-Карло для того, чтобы с вероятностью, не меньшей 0,99, можно было бы считать абсолютную погрешность вычисленного значения интеграла не превосходящей 0,1 % от J.

- **9.** Вероятность $P\{C\} = P\{A+B\}$, где $P\{B \mid \overline{A}\} = 0,3$, определяется методом Монте-Карло двумя способами:
- а) приближенное значение $P\{C\}$ определяется как частота появления события C в ряде из n независимых опытов;
- б) определяется частота $\frac{m}{n}$ появления события A в ряде из n независимых опытов, а приближенное значение $P\{C\}$ вычисляется по формуле

$$P\{C\} \approx P_n\{C\} = \frac{m}{n} + \left(1 - \frac{m}{n}\right) P\{B \mid \overline{A}\}.$$

Определить необходимое число опытов в обоих случаях для получения ошибки в оценке $P\{C\}$, не превосходящей 0,01, с вероятностью, не меньшей 0,95, если значение $P\{A\}$ имеет порядок 0,4.

- **10.** Вероятность некоторого события определяется методом Монте-Карло. Определить число независимых опытов, обеспечивающих с вероятностью не менее 0,99 получение искомой вероятности с ошибкой, не превосходящей 0,01. Оценку произвести по теореме Чебышева и теореме Муавра Лапласа, положив pq = 0,25, т. е. считая дисперсию числа появления события максимальной.
- **11.*** При изготовлении отливок получается 20 % дефектных. Сколько нужно запланировать отливок к изготовлению, чтобы с вероятностью не менее 0,95 была обеспечена программа выпуска изделий, для выполнения которой необходимо 50 бездефектных отливок?

12. Случайные величины $\xi_1,\,\xi_2,\,\dots$ независимы и одинаково распределены с Е $\{\xi_k\}=0$ и D $\{\xi_k\}<\infty,\,k=1,2,\dots$

Найти
$$\lim_{n\to\infty} P\bigg\{\omega: \frac{1}{n^{\alpha}} \mid \xi_1(\omega) + \xi_2(\omega) + \ldots + \xi_n(\omega) \mid \leq x\bigg\}$$
, где $x>0, \alpha\in\mathbb{R}$.

13. Случайные величины ξ_1, ξ_2, \dots независимы и одинаково распределены с $\mathrm{E}\,\{\xi_k\}=0$ и $\mathrm{D}\,\{\xi_k\}<\infty,\,k=1,2,\dots$ Найти $\mathrm{D}\,\{\xi_k\},$ если

$$\lim_{n\to\infty} P\bigg\{\omega: \frac{1}{\sqrt{n}}(\xi_1(\omega)+\xi_2(\omega)+\ldots+\xi_n(\omega))>1\bigg\}=\frac{1}{3}.$$

14. Случайные величины $\xi_1,\,\xi_2,\,\dots$ независимы и одинаково распределены с D $\{\xi_k\}=1$ и E $\{[\xi_k]\}=0$, где [x] – целая часть числа $x;\,k=1,2,\dots$ Найти E $\{\xi_k-[\xi_k]\}$, если

$$\lim_{n\to\infty} \mathbf{P}\bigg\{\omega: \frac{1}{\sqrt{n}}(\xi_1(\omega)+\xi_2(\omega)+\ldots+\xi_n(\omega))>1\bigg\}=\frac{1}{2}.$$