CANS2D モデルパッケージ md_mhdkh

磁気 Kelvin-Helmholtz 不安定性

2006. 1. 12.

1 はじめに

このモデルパッケージは磁気 Kelvin-Helmholtz 不安定性をシミュレーションするためのものである。磁場は 3 成分を考慮する。

2 仮定と基礎方程式

流体は非粘性・圧縮性・磁気拡散なし磁気流体とする。計算領域は 2 次元デカルト座標(xy 平面)で $\partial/\partial z=0$ と仮定する。解くのは、 密度 ρ 、圧力 p、速度 V_x 、 V_y 、 V_z 磁場 B_x 、 B_y 、 B_z についての 2 次元 MHD 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}\left(\rho V_x^2 + p + \frac{B^2}{8\pi} - \frac{B_x^2}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) = 0 \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_y^2 + p + \frac{B^2}{8\pi} - \frac{B_y^2}{4\pi}\right) = 0 \tag{3}$$

$$\frac{\partial}{\partial t}(\rho V_z) + \frac{\partial}{\partial x}\left(\rho V_x V_z - \frac{B_x B_z}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_y V_z - \frac{B_y B_z}{4\pi}\right) = 0 \tag{4}$$

$$\frac{\partial}{\partial t}(B_x) + \frac{\partial}{\partial y}(cE_z) = 0 \tag{5}$$

$$\frac{\partial}{\partial t}(B_y) - \frac{\partial}{\partial x}(cE_z) = 0 \tag{6}$$

$$\frac{\partial}{\partial t}(B_z) + \frac{\partial}{\partial x}(cE_y) - \frac{\partial}{\partial y}(cE_x) = 0$$
 (7)

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 + \frac{B^2}{8\pi} \right) + \frac{\partial}{\partial x} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_x + c \frac{B_z E_y - B_y E_z}{4\pi} \right) + \frac{\partial}{\partial y} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_y + c \frac{B_x E_z - B_z E_x}{4\pi} \right) = 0$$
(8)

$$cE_x = -V_y B_z + V_z B_y, \quad cE_y = -V_z B_x + V_x B_z, \quad cE_z = -V_x B_y + V_y B_x$$
 (9)

である。ここで、 γ は比熱比。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 $C_{\rm S0}$ 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は計算領域の大きさ、 $C_{\rm S0}$ は下半分領域(y<0)初期状態の音速。密度は下半分領域初期状態の値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位	
x, y	L_0	
V_x, V_y, V_z	$C_{ m S0}$	
t	$L_0/C_{\rm S0}$	
ho	$ ho_0$	
p	$ ho_0 C_{\mathrm{S}0}^2$	
B_x, B_y, B_z	$\sqrt{\rho_0 C_{\mathrm{S}0}^2}$	

表 1: 変数と規格化単位

4 パラメータ・初期条件・計算条件・境界条件

 $|x| < X_{\rm bnd}$ 、 $|y| < Y_{\rm bnd}$ の領域を解く。初期条件はサブルーチン model で設定する。y=0 の面を境に密度や速度が不連続であるとする。(数値上の安定性のために実際は \tanh 関数で接続している。)また磁場は、x 方向一様であるとする。y<0 の領域では、

$$\rho = 1$$

$$p = 1/\gamma$$

$$V_x = 0$$

$$V_y = 0$$

$$B_x = B_0$$

$$B_y = 0$$

$$B_z = 0$$

とし、y > 0 の領域では、

$$\rho = \rho_1$$

$$p = 1/\gamma$$

$$V_x = V_1$$

$$V_y = 0$$

$$B_x = B_0$$

$$B_y = 0$$

$$B_z = 0$$

とする。これに、ゆらぎ (振幅 a、波数 k) を速度・圧力に加える。ただしゆらぎの空間分布は、「非圧縮非磁気流体の場合の」線形解析の固有関数 (Chandrasekhar 1961) を与えている。この初期揺らぎとして乱数擾乱を与えることもできる。

パラメータ	値	コード中での変数名	設定サブルーチン名
比熱比 γ	5/3	gm	model
初期プラズマベータの逆数	0.01	betai	model
上半分領域の密度 $ ho_1$	0.25	ro1	model
上半分領域の速度 V_1	0.5	u1	model
上下領域境界の幅	0.01	wtr	model
擾乱の振幅 a	0.1	amp	model
擾乱の波長 λ	1/2	rlambda	model

表 2: おもなパラメータ

境界条件として、x 方向は周期境界とし、y 方向は対称境界とする。サブルーチン bnd で設定する。計算パラメータは以下の通り(表 3 参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
境界の位置 x 方向 X_{bnd}	1/2	_	model
境界の位置 x 方向 $Y_{ m bnd}$	1/2	_	model
グリッド数 x 方向	103	ix	main
グリッド数 y 方向	102	jx	main
マージン	4	margin	main
終了時刻	10	tend	main
出力時間間隔	1	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。

5 参考文献

Chandrasekhar, 1961, "Hydrodynamic and Hydromagnetic Stability"