Genomic Prediction

An application of gradient boosting

Some Context

What is genomic prediction anyway?

Biologist collects data of a trait

The statistician's view of the problem

How to build $\hat{f}(x)$?

Biologist:

Me who have taken statistical learning:

How to build $\hat{f}(x)$?

10 Fold Cross Validation

Hyperparameter Tuning

Some Results

GBM: Basic Gradient
Boosting

GEBV: Linear model

Linear Booster

Weak learner

General Boosting Procedure: $f_m(x) = f_{m-1}(x) + f(x)$

A linear model seems to be more suitable for

Why not use linear regression as weak learner in the boosting?

Linear Booster Results

Higher is better

GBM: Basic Gradient
Boosting

GEBV: Linear model

Conclusion

Boosting is a real alternative to linear models in genomic prediction

Body mass: Complex trait

⇒ Tree boosting works well

Tarsus: Less complex trait

⇒ Linear model more suitable

The underlying structure of the data matters the most!