Московский авиационный институт (Национальный исследовательский университет)

Факультет прикладной математики и физики

Курсовой проект

по курсу

«Фундаментальная информатика»

І семестр

Задание 3

Студентка: Соломатина С.

Группа: М8О-113Б-21

Руководители: Довженко А.

Оценка:

Дата:

Москва

2021г.

Задание

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a,b] на n равных частей, находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon * k$, где ε - машинное эпсилон, аппаратно реализованного вещественного типа для данной ЭВМ, а k - экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 8

$$\Phi$$
ункция: $\frac{1}{2x-5}$

Отрезок: [0,0; 2,0]

Ряд:
$$-\frac{1}{5} - \frac{2x}{5^2} - \frac{4x^2}{5^3} - \dots - \frac{2^{n-1}x^{n-1}}{5^n}$$

Решение

Всё решение сводится к тому, чтобы записать на языке Си две функции и вывести их значения на заданном отрезке. Функция, реализующая вычисление с помощью ряда Тейлора, представляет собой итерационный процесс, в ходе которого последовательно вычисляется сумма членов ряда. Ряд Тейлора для функции f(x) в окрестности точки a выглядит следующим образом:

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

Основной вопрос заключается в точности вычислений. Дело в том, что точность каких-либо алгоритмов в ЭВМ ограничена. Отсюда и возникает понятие

«машинного эпсилон». От машинного эпсилон зависит, насколько точно можно посчитать значение функции по ряду Тейлора.

Машинное эпсилон — это максимальная относительная погрешность для конкретной процедуры округления, это такое числовое значение, меньше которого любого невозможно задавать относительную точность ДЛЯ алгоритма, возвращающего вещественные числа. Его можно представить как $1.0 + \varepsilon \neq 1.0$. Чем меньше его значение, тем выше точность вычисления. Практическая важность машинного эпсилон связана с тем, что два числа являются одинаковыми с точки зрения машинной арифметики, если их относительная разность по модулю меньше эпсилон. Необходимо сказать об округлении чисел: правило округления в стандарте ІЕЕЕ754 говорит о том, что результат любой арифметической операции должен быть таким, как если бы он был выполнен над точными значениями и округлен до ближайшего числа, представимого в этом формате. Округление до ближайшего в стандарте сделано не так как мы привыкли. Математически показано, что если 0,5 округлять до 1 (в большую сторону), то существует набор операций, при которых ошибка округления будет возрастать до бесконечности. Поэтому в IEEE754 применяется правило округления до четного.

Способы вычисления машинного эпсилон:

- 1. Подключить библиотеку limits.h и использовать константу DBL EPSILON
- 2. Делить 1.0 пополам пока не получится так, что мы не можем отличить одно от другого. Если так случилось, значит, разница на предыдущем шаге и есть машинное эпсилон.

```
double eps = 1.0;
while (1.0 + (eps / 2.0) > 1.0) { eps /= 2.0;
```

3. Нужно найти число, у которого мантисса «сдвинута» на единицу левее другого числа. Эти числа 7/3 и 4/3:

```
7/3 = 10.010101010101...
```

```
4/3 = 1.0101010101010\dots
```

Запишем числа в формате IEEE-734:

При вычитании все биты, кроме последнего, зануляются:

Выполнение итерации в функции ряда Тейлора включает вычисление значения очередного члена ряда, для получения которого необходим подсчёт значений степенной функции. Можно заметить, что каждый последующий член ряда может быть получен быстрее и с меньшими затратами при учёте имеющихся значений предыдущих элементов. Для данной функции рекуррентная формула имеет вид $\frac{2x}{5}$.

Листинг программного кода

```
#include <stdio.h>

#define epsilon (7.0 / 3.0 - 4.0 / 3.0 - 1.0)

#define A 0.0

#define B 2.0

double function(double arg)
{
    return 1 / (2 * arg - 5);
}

double function_taylor(double arg)
{
    double res = - (1.0 / 5), prev = - (1.0 / 5), pres;
    int iter = 0;
```

```
for (; prev < -epsilon && iter <= 100; ++iter) {
                pres = prev *2 * arg / 5;
                res += pres;
                prev = pres;
        }
        iter > 100 ? printf("|n = \%3d\t|\t", iter - 1) : printf("|n = \%3d\t|\t", iter);
        return res;
}
int main(void)
        double d = 0.0;
        scanf("%lf", &d);
        d = 1.0 / (d * 2.0);
        printf("|Итерации | t|Значение x| t|Значение функции | t|Зн-ие по ф-ле Тейлора | \n");
        for (double arg = A; arg \le B; arg += d) {
                printf("|%.21f |\t|%.201f|\t|%.201f|\n", arg, function(arg), function_taylor(arg));
        }
        return 0;
}
```

Результат работы программы

ssolomvi@ssolomvi:~\$ gcc kp3.c -lm -std=c99 ssolomvi@ssolomvi:~\$./a.out 8

Итерации		Значен	ние х	Значение функции		Зн-ие по ф-ле Тейлор	pa
n = 1	0.00		-0.200	00000000000001110	-0.200	00000000000001110	
n = 10	0.06		-0.205	512820512820512109	-0.205	512820512820512109	
n = 12	0.12		-0.210	052631578947367252	-0.210	052631578947375579	
n = 14	0.19		-0.216	521621621621622822	-0.216	521621621621620046	
n = 15	0.25		-0.222	2222222222220989	-0.222	2222222222220989	
n=17	0.31		-0.228	357142857142856429	-0.228	357142857142856429	
n = 19	0.38		-0.235	529411764705882026	-0.235	529411764705884802	
n=20	0.44		-0.242	2424242424243097	-0.242	2424242424243097	
n=22	0.50		-0.250	000000000000000000000000000000000000000	-0.250	000000000000011102	
n=24	0.56		-0.258	806451612903225090	-0.258	306451612903230641	
n = 25	0.62	1	-0.266	66666666666666297	-0.266	66666666666660745	

n=27	0.69	$ \hbox{-}0.27586206896551723755 \ \hbox{-}0.27586206896551723755 $
n=29	0.75	$\left -0.28571428571428569843 \right \left -0.28571428571428564291 \right $
n = 31	0.81	$\left -0.29629629629629627985 \right \left -0.29629629629629627985 \right $
n = 33	0.88	-0.30769230769230770939 -0.30769230769230754285
n = 36	0.94	-0.32000000000000000666 -0.3200000000000011768
n = 38	1.00	-0.333333333333333333333333333333333333
n = 41	1.06	$\left -0.34782608695652172948 \right \left -0.34782608695652167397 \right $
n = 44	1.12	-0.3636363636363636364646 -0.36363636363636359095
n=47	1.19	$\left -0.38095238095238093123 \right \left -0.38095238095238082021 \right $
n = 50	1.25	$\left -0.400000000000000002220 \right \left -0.399999999999999985567 \right $
n = 54	1.31	-0.42105263157894734505 -0.42105263157894706749
n = 58	1.38	-0.444444444444441977 -0.444444444444441977
n = 63	1.44	-0.47058823529411764053 -0.47058823529411741848
n = 68	1.50	$ \hbox{-}0.500000000000000000000000000000000000$
n = 74	1.56	-0.5333333333333333333333333333333333333
n=80	1.62	-0.57142857142857139685 -0.57142857142857117481
n=88	1.69	-0.61538461538461541878 -0.61538461538461486366
n = 97	1.75	$\left -0.666666666666666666666666666666666666$
n = 100	1.81	-0.72727272727272729291 -0.72727272727272285202
n=100	1.88	$\left -0.80000000000000004441 \right \left -0.7999999999985549337 \right $
n=100	1.94	-0.88888888888888888883955 -0.8888888888434225422
n = 100	2.00	-1.00000000000000000000 -0.9999999986962939680

Выводы

После генерации таблицы значений заданной функции можно увидеть, что значения совпадают до 14 знака после запятой. Из-за того, что существует понятие ограниченности разрядной сетки, вещественные числа имеют диапазон представления в памяти компьютера, что неизбежно приводит к тому, что в вычислениях в окрестности границ этого диапазона возникают погрешности.

Вычисление значения функции по ряду Тейлора требует много процессорного времени, что неэффективно в перспективе глобального применения.