

TD GENERALITES SUR LES TORSEURS

EXERCICE 1

On considère dans le repère orthonormé direct $R(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ un vecteur $\vec{V} = -\vec{e}_x + 2\vec{e}_y$ et deux points \vec{A} et \vec{B} de coordonnées A(0,5,2) et B(3,1,4).

- 1. Calculer $\vec{M}_B(\vec{V})$, le moment d'un glisseur (A, \vec{V}) au point B;
- **2.** Calculer $M_{\Delta}(\vec{V})$, le moment de (A, \vec{V}) par rapport à l'axe Δ passant par B et parallèle au vecteur \vec{W} de composantes (-1,2,2) dans R.

EXERCICE 2

Soient les trois vecteurs $\vec{V_1} = \vec{j} + \vec{k}$, $\vec{V_2} = \vec{i} + \vec{k}$, $\vec{V_3} = \alpha \vec{i} + \beta \vec{j} - 2 \vec{k}$, relativement à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, liés respectivement aux points $A\left(-\frac{1}{2}, 1, 0\right)$, $B\left(0, 0, -\frac{1}{2}\right)$, $C\left(-\frac{1}{2}, 0, -1\right)$. α , β sont des nombres réels.

- 1. Construire le torseur $\{T\}$ au point de réduction O associé au système des vecteurs $\vec{V}_1, \vec{V}_2, \vec{V}_3$;
- **2.** Montrer que $\forall \alpha$, β le torseur est un glisseur;
- 3. Trouver les coordonnées des points P où $\vec{M}_P = \vec{0}$;
- **4.** Pour quelles valeurs de α et β le torseur est- il nul ? Vérifier pour ces valeurs que les trois vecteurs sont coplanaires.

EXERCICE 3

Soit le torseur $\{T_1\}$ au point de réduction O, défini par les trois vecteurs $\vec{V}_1 = -2\vec{i} + 3\vec{j} - 7\vec{k}$, $\vec{V}_2 = 3\vec{i} - \vec{j} - \vec{k}$, $\vec{V}_3 = -\vec{i} - 2\vec{j} + 8\vec{k}$ définis dans un repère orthonormé $R\left(O, \vec{i}, \vec{j}, \vec{k}\right)$ respectivement aux points $P_1\left(1,0,0\right)$, $P_2\left(0,1,0\right)$, $P_3\left(0,0,1\right)$; et le torseur $\{T_2\}$ au même point de réduction O tel que : $\{T_2\} = \left\{\begin{matrix} \vec{R}_2 \\ \vec{M}_2\left(O\right) \end{matrix}\right\}$ où $\vec{R}_2 = 2\vec{i} + \vec{j} + 3\vec{k}$ et $\vec{M}_2\left(O\right) = -3\vec{i} + 2\vec{j} - 7\vec{k}$

- 1. Déterminer les éléments de réduction du torseur $\{T_i\}$ au point de réduction O, conclure;
- **2.** Déterminer le pas et l'axe central du torseur $\{T_2\}$ au point de réduction O;
- 3. Calculer la somme et le produit des deux torseurs ;
- **4.** Calculer l'automoment du torseur somme.

EXERCICE 4

Les coordonnées (éléments de réduction) d'un torseur sont $\vec{R} = (10,6,4)$, $\vec{M}_o = (6,3,-6)$ dans un repère orthonormé $R(O,\vec{i},\vec{j},\vec{k})$.

Déterminer le point I ou l'axe central (Δ) rencontre le plan (O, \vec{i}, \vec{k}) .

EXERCICE 5:

Dans un repère $R(O,\vec{i},\vec{j},\vec{k})$ orthonormé et direct, on considère les torseurs $\{T_i\}_O$ et $\{T_2\}_O$ dont

les éléments de réduction au point O sont respectivement $\left\{ \frac{\vec{R}_1}{\vec{M}_1(O)} \right\}$ et $\left\{ \frac{\vec{R}_2}{\vec{M}_2(O)} \right\}$ définis

par:

$$\left\{T_{1}\right\}_{O} = \begin{cases} \overrightarrow{R}_{1} = \cos\alpha \vec{i} - \sin\alpha \vec{j} \\ \overrightarrow{M}_{1}(O) = -a\sin\alpha \vec{i} - a\cos\alpha \vec{j} \end{cases} \qquad \left\{T_{2}\right\}_{O} = \begin{cases} \overrightarrow{R}_{2} = \cos\alpha \vec{i} + \sin\alpha \vec{j} \\ \overrightarrow{M}_{2}(O) = -a\sin\alpha \vec{i} + a\cos\alpha \vec{j} \end{cases}$$

Où a et α sont des constantes réelles non nulles.

- 1. Calculer les invariants scalaires des torseurs $\{T_1\}_{o}$, $\{T_2\}_{o}$ et déduire leur(s) nature(s).
- **2.** Calculer $\overline{M}_1(O')$ pour un point O' de coordonnées (0, 1, 1).
- 3. Déterminer l'équation de l'axe central de $\{T_2\}_o$ et calculer le moment $\overline{M}_2(P)$ en un point P de cet axe.
- **4.** Déterminer les valeurs de α pour lesquelles le torseur $\{T_3\}_o = \{T_1\}_o + \{T_2\}_o$ est un glisseur.

EXERCICE 6:

Soit $R(O,\vec{i},\vec{j},\vec{k})$ un repère orthonormé direct et soit \overrightarrow{M} le champ de vecteurs défini par :

$$\overline{M}(P) = \begin{pmatrix} a - \beta^2 y + \beta z \\ b + x - 3z \\ c - \beta x + 3y \end{pmatrix}$$

où (x, y, z) sont les coordonnées du point P dans (R), a, b, c sont des constantes données et β un paramètre réel.

2

Déterminer les valeurs de β pour que le champ \overline{M} soit un torseur dont on précisera la résultante.