\mathcal{R} obert \mathcal{S} tańczy

http://www.math.uni.wroc.pl/~stanczr/A/13.pdf

Zadanie 157. Doprowadzić do postaci kanonicznej równania zamieniając zmienne przy pomocy otrzymanych charakterystyk oraz rozwiązać jeśli

a)
$$u_{xx} - (1+y^2)^2 u_{yy} - 2y(1+y^2)u_y = 0$$
,

- b) $u_{xx} 2xu_{xy} = 0$,
- c) $u_{xx} + xyu_{xy} = 0$,
- d) $u_{xy} + 2u_{yy} u_x + 4u_y + u = 0$,
- e) $2u_{xx} + 2u_{xy} + u_{yy} + 4u_x + 4u_y + u = 0$,
- f) $u_{xx} 2u_{xy} + u_{yy} 3u_x + 12u_y + 27u = 0$.

Zadanie 158. Rozważmy równanie

$$a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(x,y)u_{yy} + e(x,y)u_x + f(x,y)u_y + g(x,y)u = h(x,y).$$

Wykazać, że zamiana zmiennych $u(x,y)=v(\xi,\eta)$, gdzie $\xi(x,y)$ jest charakterystyką, a funkcja η jest drugą z charakterystyk w przypadku eliptycznym (dokładniej ξ część rzeczywista charakterystyki zespolonej, a η część urojona) bądź hiperbolicznym oraz dowolną liniowo niezależną funkcją w przypadku prabolicznym, pozwala sprowadzić równanie do postaci kanonicznej. W postaci kanonicznej część główna (z pochodnymi drugiego rzędu) składa się z odpowiednio z laplasjanu, z pochodnej mieszanej, z pochodnej podwójnej, w przypadku odpowiednio równania eliptycznego, hiperbolicznego, parabolicznego.

Zadanie 159. Rozwiązać równanie Laplace'a w prostokącie z podanymi warunkami brzegowymi

- a) $u_{xx} + u_{yy} = 0$, u(0, y) = u(a, y) = 0, u(x, 0) = x(a x), u(x, b) = 0,
- b) $u_{xx} + u_{yy} = 0$, u(0,y) = u(a,y) = 0, u(x,0) = x(a-x), u(x,b) = x(a-x),
- c) $u_{xx} + u_{yy} = 0$, u(0, y) = u(a, y) = 0, u(x, 0) = 0, u(x, b) = x(a x).

Zadanie 160. Rozwiązać niejednorodne równanie przewodnictwa cieplnego

- a) $u_t u_{xx} = \sin(t)$, u(x,0) = x(1-x), u(0,t) = u(1,t) = 0,
- b) $u_t u_{xx} = t$, $u(x,0) = \sin(\pi x)$, u(0,t) = u(1,t) = 0,
- c) $u_t u_{xx} = \sin(t)\sin(x)$, u(x,0) = 0 u(0,t) = u(1,t) = 0,

oraz zbadać zachowanie rozwi.
zań gdy $t \to \infty$.

Zadanie 161. Rozwiązać niejednorodne równanie falowe

- a) $u_{tt} u_{xx} = \sin(x)$, u(x,0) = x(1-x), $u_t(x,0) = 0$ u(0,t) = u(1,t) = 0,
- b) $u_t u_{xx} = t$, u(x,0) = 0, $u_t(x,0) = 0$ u(0,t) = u(1,t) = 0,
- c) $u_t u_{xx} = \sin(t)\sin(x)$, u(x,0) = 0, $u_t(x,0) = 0$.