Bayesian Learning

Lecture 7 - Gibbs sampling

Department of Statistics Stockholm University

Lecture overview

- Monte Carlo simulation
- **■** Gibbs sampling
- Data augmentation
 - Mixture models
 - Probit regression
- **■** Regularized regression

Monte Carlo sampling

If $\theta^{(1)}, ..., \theta^{(N)}$ is an iid sequence from $p(\theta)$, then

$$\bar{\theta} = \frac{1}{N} \sum_{t=1}^{N} \theta^{(t)} \rightarrow E(\theta)$$

$$\bar{g}(\theta) = \frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) \rightarrow E[g(\theta)]$$

for some function $g(\theta)$ of interest.

Central limit theorem. As $N \to \infty$

$$\bar{\theta}_{1:N} \stackrel{\text{appr}}{\sim} N\left(E(\theta), \frac{V(\theta)}{N}\right)$$

Easy to compute **tail probabilities** $Pr(\theta \le c)$ by letting

$$g(\theta) = I(\theta \le c)$$

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) = \frac{\# \theta \text{-draws smaller than } c}{N}$$

Monte Carlo sampling - convergence

Direct sampling by the inverse CDF method

- Let F(x) be the CDF of X. Inverse CDF method:
 - **1** Generate u from the uniform distribution on [0,1].
 - **2** Compute $x = F^{-1}(u)$.
- **Exponential distribution:**

$$u = F(x) = 1 - \exp(-\lambda x)$$

Inverting gives

$$x = -\ln(1 - u)/\lambda$$

So, if $u \sim U(0,1)$ then

$$x = -\ln(1 - u)/\lambda \sim Expon(\lambda)$$

Inverse CDF method, discrete case

Gibbs sampling

- Easily implemented methods for sampling from multivariate distributions, $p(\theta_1, ..., \theta_k)$
- Typically conditioned on some observed data, $p(heta_1,\dots, heta_k|y)$
- Requirements: Easily sampled full conditional distributions:

 - $ightharpoonup p(\theta_k|\theta_1,\theta_2,...,\theta_{k-1}) \text{ or } p(\theta_k|\theta_1,...,\theta_{k-1},y)$
- Gibbs sampling is a special case of Metropolis-Hastings (see Lecture 8).
- Metropolis-Hastings is a Markov Chain Monte Carlo (MCMC) algorithm.

The Gibbs sampling algorithm

- Choose initial values $\theta_2^{(0)}, \theta_3^{(0)}, ..., \theta_k^{(0)}$.
- Repeat for j = 1, ..., N:
 - $\blacktriangleright \ \, \mathsf{Draw} \,\, \theta_1^{(j)} \,\, \mathsf{from} \,\, p(\theta_1|\theta_2^{(j-1)},\theta_3^{(j-1)},...,\theta_k^{(j-1)})$
 - ▶ Draw $\theta_2^{(j)}$ from $p(\theta_2|\theta_1^{(j)}, \theta_3^{(j-1)}, ..., \theta_k^{(j-1)})$
 - :
 - ▶ Draw $\theta_k^{(j)}$ from $p(\theta_k|\theta_1^{(j)},\theta_2^{(j)},...,\theta_{k-1}^{(j)})$
- Return draws: $\theta^{(1)},...,\theta^{(N)}$, where $\theta^{(j)}=(\theta_1^{(j)},...,\theta_k^{(j)})$.

Gibbs sampling, cont.

Gibbs draws $\theta^{(1)},...,\theta^{(N)}$ are dependent, but

$$\bar{\theta} = \frac{1}{N} \sum_{t=1}^{N} \theta_j^{(t)} \rightarrow E(\theta_j)$$
$$\bar{g}(\theta) = \frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) \rightarrow E[g(\theta)]$$

- \blacksquare $\theta^{(1)},....,\theta^{(N)}$ converges in distribution to the target $p(\theta)$.
- $m{\theta}_j^{(1)},...,m{\theta}_j^{(N)}$ converges to the marginal distribution of $m{\theta}_j$.
- Dependent draws → less efficient than iid sampling.
- **IID** samples: $\theta^{(1)},, \theta^{(N)}$: $Var(\bar{\theta}) = \frac{\sigma^2}{N}$.
- Autocorrelated samples: $Var(\bar{\theta}) = \frac{\sigma^2}{N} (1 + 2 \sum_{k=1}^{\infty} \rho_k)$, where ρ_k is the autocorrelation at lag k.
- Inefficiency factor: $1+2\sum_{k=1}^{\infty}\rho_k$.

Convergence of autocorrelated processes, Ex.

Gibbs sampling bivariate normal

Joint distribution

$$\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right) \sim \textit{N}_2\left[\left(\begin{array}{c}\mu_1\\\mu_2\end{array}\right), \left(\begin{array}{cc}1&\rho\\\rho&1\end{array}\right)\right]$$

- Ignore that we can sample directly from the bivariate normal
- **■** Full conditional posteriors

$$\theta_1 | \theta_2 \sim N[\mu_1 + \rho(\theta_2 - \mu_2), 1 - \rho^2]$$

 $\theta_2 | \theta_1 \sim N[\mu_2 + \rho(\theta_1 - \mu_1), 1 - \rho^2]$

Gibbs sampling - Bivariate normal

Gibbs sampling - Bivariate normal

Gibbs sampling - Bivariate normal

Direct sampling vs Gibbs sampling

Estimating $Pr(\theta_1 > 0, \theta_2 > 0)$

Joint probability by counting:

$$\Pr(\theta_1 > 0, \theta_2 > 0) \approx \mathit{N}^{-1} \sum_{i=1}^{\mathit{N}} 1(\theta_1^{(i)} > 0, \theta_2^{(i)} > 0)$$

.

Normal model with conditionally conjugate prior

Normal model with conditionally conjugate prior

$$\mu \sim \textit{N}(\mu_0, au_o^2)$$
 $\sigma^2 \sim \textit{Inv} - \chi^2(\nu_0, \sigma_0^2)$

■ Full conditional posteriors

$$\mu|\sigma^2, x \sim N\left(\mu_n, \tau_n^2\right)$$

$$\sigma^2|\mu, x \sim Inv - \chi^2\left(\nu_n, \frac{\nu_0\sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{n + \nu_0}\right)$$

with μ_n and τ_n^2 defined the same as when σ^2 is known.

Gibbs sampling for AR processes

 \blacksquare AR(p) process

$$\mathbf{x}_{t} = \mu + \phi_{1}(\mathbf{x}_{t-1} - \mu) + \dots + \phi_{p}(\mathbf{x}_{t-p} - \mu) + \varepsilon_{t}, \quad \varepsilon_{t} \stackrel{\textit{iid}}{\sim} \mathsf{N}(0, \sigma^{2}).$$

- Let $\phi = (\phi_1, ..., \phi_p)'$.
- Prior:
 - \blacktriangleright $\mu \sim Normal$
 - $ightharpoonup \phi \sim$ Multivariate Normal
 - $ightharpoonup \sigma^2 \sim Scaled Inverse <math>\chi^2$.
- The posterior can be simulated by Gibbs sampling¹:
 - $\mu | \phi, \sigma^2, x \sim \text{Normal}$
 - $ightharpoonup \phi | \mu, \sigma^2, x \sim \text{Multivariate Normal}$
 - $ightharpoonup \sigma^2 | \mu, \phi, x \sim \text{Scaled Inverse } \chi^2$

¹Villani (2009). Steady State Priors for Vector Autoregressions. *Journal of Applied Econometrics*.

Data augmentation - Mixture distributions

- Let $\phi(x|\mu, \sigma^2)$ denote the **PDF** of $x \sim N(\mu, \sigma^2)$.
- Two-component mixture of normals [MN(2)]

$$p(x) = \pi \cdot \phi(x|\mu_1, \sigma_1^2) + (1 - \pi) \cdot \phi(x|\mu_2, \sigma_2^2)$$

- Simulate from a MN(2):
 - ▶ Simulate a membership indicator $I \in \{1, 2\}$: $I \sim Bern(\pi)$.
 - ▶ If I = 1, simulate x from $N(\mu_1, \sigma_1^2)$
 - ▶ If I = 2, simulate x from $N(\mu_2, \sigma_2^2)$.

Illustration of mixture distributions

Mattias Villani

Gibbs sampling

Mixture distributions, cont.

- The likelihood is a product of sums. Messy to work with.
- Assume that we know where each observation comes from

$$I_i = \left\{ egin{array}{ll} 1 & \mbox{if } x_i \ \mbox{came from Density 1} \\ 2 & \mbox{if } x_i \ \mbox{came from Density 2} \end{array}
ight. .$$

- Given $I_1, ..., I_n$ it is easy to estimate π , $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ by separating the sample according to the I's.
- But we do **not** know $I_1, ..., I_n!$
- **Data augmentation**: add $I_1, ..., I_n$ as unknown parameters.
- Gibbs sampling:
 - Sample π , $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ given $I_1, ..., I_n$
 - ► Sample $I_1, ..., I_n$ given π , $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$

Gibbs sampling for mixture distributions

- Prior: $\pi \sim Beta(\alpha_1, \alpha_2)$. Conjugate prior for (μ_j, σ_j^2) .
- Define: $n_1 = \sum_{i=1}^{n} (I_i = 1)$ and $n_2 = n n_1$.
- **Gibbs sampling:**
 - $ightharpoonup \pi \mid \mathbf{I}, \mathbf{x} \sim \textit{Beta}(\alpha_1 + \textit{n}_1, \alpha_2 + \textit{n}_2)$

 - $\qquad \qquad \boldsymbol{\sigma}_2^2 \mid \mathbf{I}, \mathbf{x} \sim \mathit{Inv-}\chi^2(\nu_{n_2}, \sigma_{n_2}^2) \text{ and } \mu_2 | \mathbf{I}, \sigma_2^2, \mathbf{x} \sim \mathit{N}\left(\mu_{n_2}, \frac{\sigma_2^2}{\kappa_{n_2}}\right)$
 - ▶ $I_i \mid \pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \mathbf{x} \sim Bern(\theta_i), i = 1, ..., n,$

$$\theta_i = \frac{(1-\pi)\phi(x_i; \mu_2, \sigma_2^2)}{\pi\phi(x_i; \mu_1, \sigma_1^2) + (1-\pi)\phi(x_i; \mu_2, \sigma_2^2)}.$$

Gibbs sampling for mixture distributions

K-component mixture of normals

$$p(x) = \sum_{k=1}^{K} \pi_k \phi(x; \mu_k, \sigma_k^2)$$

- **Multi-class indicators**: $I_i = k$ if x_i comes from component k.
- Gibbs sampling
 - $(\pi_1,...,\pi_K) \mid \mathbf{I},\mathbf{x} \sim \mathsf{Dirichlet}(\alpha_1 + \mathsf{n}_1,\alpha_2 + \mathsf{n}_2,...,\alpha_K + \mathsf{n}_K)$
 - $ightharpoonup \sigma_k^2 \mid \mathbf{I}, \mathbf{x} \sim \mathit{Inv} \cdot \chi^2 \text{ and } \mu_k \mid \mathbf{I}, \sigma_k^2, \mathbf{x} \sim \mathit{Normal}, \quad \mathit{for } k = 1, ..., K,$
 - ▶ $I_i \mid \pi, \mu, \sigma^2, \mathbf{x} \sim Multinomial(\theta_{i1}, ..., \theta_{iK})$, for i = 1, ..., n,

$$\theta_{ij} = \frac{\pi_j \phi(x_i; \mu_j, \sigma_j^2)}{\sum_{r=1}^k \pi_r \phi(x_i; \mu_r, \sigma_r^2)}.$$

- Gibbs sampling is very powerful for missing data problems.
- Semi-supervised learning.

Data augmentation - Probit regression

Probit regression:

$$\Pr(y_i = 1 \mid x_i) = \Phi(x_i^T \beta)$$

Random utility formulation:

$$u_i \sim N(x_i^T \beta, 1)$$

 $y_i = \begin{cases} 1 & \text{if } u_i > 0 \\ 0 & \text{if } u_i \leq 0 \end{cases}$

- Check: $\Pr(y_i = 1 \mid x_i) = \Pr(u_i > 0) = 1 \Pr(u_i \le 0) = 1 \Pr(u_i x_i^T \beta) < -x_i^T \beta > 1 \Phi(-x_i^T \beta) = \Phi(x_i^T \beta).$
- Given $u = (u_1, ..., u_n)$, β can be analyzed by linear regression.
- \blacksquare u is **not observed**. Gibbs sampling to the rescue!²

² Albert and Chib (1993). Bayesian Analysis of Binary and Polychotomous Response Data. *JASA*.

Gibbs sampling for the Probit regression

- Simulate from **joint posterior** $p(u, \beta|y)$ by iterating between
 - \triangleright $p(\beta|u,y)$ is multivariate normal (linear regression)
 - $ightharpoonup p(u_i|\beta, y), i = 1, ..., n.$
- The full conditional posterior distribution of u_i

$$\begin{split} p(u_i|\beta,y) &\propto p(y_i|\beta,u_i)p(u_i|\beta) \\ &= \begin{cases} \textit{N}(u_i|x_i'\beta,1) & \text{truncated to } u_i \in (-\infty,0] \text{ if } y_i = 0 \\ \textit{N}(u_i|x_i'\beta,1) & \text{truncated to } u_i \in (0,\infty) \text{ if } y_i = 1 \end{cases} \end{split}$$

 \blacksquare Histogram of $\beta\text{-draws}$ approximates the marginal posterior of β

$$p(\beta|y) = \int p(u,\beta|y)du$$

Gibbs sampling for Regularized regression

lacksquare Recap: The joint posterior of eta, σ^2 and λ is

$$\begin{split} \beta | \sigma^2, \lambda, \mathbf{y}, \mathbf{X} &\sim \mathcal{N} \left(\mu_n, \Omega_n^{-1} \right) \\ \sigma^2 | \lambda, \mathbf{y}, \mathbf{X} &\sim \mathit{Inv} - \chi^2 \left(\nu_n, \sigma_n^2 \right) \\ \rho(\lambda | \mathbf{y}, \mathbf{X}) &\propto \sqrt{\frac{|\Omega_0|}{|X'X + \Omega_0|}} \left(\frac{\nu_n \sigma_n^2}{2} \right)^{-\nu_n/2} \cdot \rho(\lambda) \end{split}$$

This is the conditional-marginal decomposition

$$\rho(\beta, \sigma^2, \lambda | \mathbf{y}, \mathbf{X}) = \rho(\beta | \sigma^2, \lambda, \mathbf{y}, \mathbf{X}) \rho(\sigma^2 | \lambda, \mathbf{y}, \mathbf{X}) \rho(\lambda | \mathbf{y}, \mathbf{X})$$

- Gibbs sampling can instead be used:
 - ▶ Sample $\beta[\sigma^2, \lambda, \mathbf{y}, \mathbf{X}]$ from Normal
 - ▶ Sample $\sigma^2 | \beta, \lambda, \mathbf{y}, \mathbf{X}$ from Inv- χ^2
 - ightharpoonup Sample $\lambda|eta,\sigma^2,\mathbf{y},\mathbf{X}$ from Gamma
- lacksquare λ is easy to simulate conditional on eta and σ^2 .

Gibbs sampling for Regularized regression

lacksquare Assume a Gamma prior for λ (same as $\lambda^{-1} \sim {
m Inv} - \chi^2$)

$$\lambda \sim \mathsf{Gamma}\left(rac{\eta_0}{2},rac{\eta_0}{2\lambda_0}
ight).$$

- $\blacksquare \mathbb{E}(\lambda) = \frac{\eta_0/2}{\eta_0/(2\lambda_0)} = \lambda_0 \text{ and } \mathbb{V}(\lambda) = \frac{\eta_0/2}{(\eta_0/(2\lambda_0))^2} = \frac{1}{2\eta_0\lambda_0^2}.$
- Using Bayes' theorem twice:

$$\rho\left(\lambda|\beta,\sigma^{2},\mathbf{y}\right) \propto \rho\left(\mathbf{y}|\beta,\sigma^{2},\lambda\right) \rho\left(\lambda|\beta,\sigma^{2}\right) \\
\propto \rho\left(\beta|\sigma^{2},\lambda\right) \rho\left(\lambda|\sigma^{2}\right) \\
\propto \rho\left(\beta|\sigma^{2},\lambda\right) \rho\left(\lambda\right)$$

- Note:
 - likelihood $p(\mathbf{y}|\beta, \sigma^2, \lambda)$ does not depend on λ .
 - ightharpoonup prior $p\left(\lambda|\sigma^2\right)$ is assumed to not depend on σ^2 .

Gibbs sampling for Regularized regression

■ Full conditional posterior

$$\begin{split} & \rho\left(\lambda|\beta,\sigma^2,\mathbf{y}\right) \propto \rho\left(\beta|\sigma^2,\lambda\right)\rho\left(\lambda\right) \\ & \propto \prod_{i=1}^m \frac{1}{\sqrt{2\pi\sigma^2/\lambda}} \exp\left(-\frac{\beta_i^2}{2\sigma^2/\lambda}\right) \cdot \lambda^{\eta_0/2-1} \exp\left(-\lambda\frac{\eta_0}{2\lambda_0}\right) \\ & \propto \lambda^{m/2} \exp\left(-\frac{\lambda}{2\sigma^2} \sum_{i=1}^m \beta_i^2\right) \cdot \lambda^{\eta_0/2-1} \exp\left(-\lambda\frac{\eta_0}{2\lambda_0}\right) \\ & \propto \lambda^{(m+\eta_0)/2-1} \exp\left(-\lambda\left(\frac{\sigma^{-2} \sum_{i=1}^m \beta_i^2 + \eta_0/\lambda_0}{2}\right)\right) \end{split}$$

This shows that

$$\lambda | \beta, \sigma^2, \mathbf{y} \sim \mathsf{Gamma}\left(\frac{m + \eta_0}{2}, \frac{\sigma^{-2} \sum_{i=1}^m \beta_i^2 + \eta_0 / \lambda_0}{2}\right).$$

■ $\mathbb{E}(\lambda|\beta,\sigma^2,\mathbf{y}) = \frac{m+\eta_0}{\sigma^{-2}\sum_{i=1}^m \beta_i^2 + \eta_0/\lambda_0}$, so λ is learned from variability of the β_i . Large m helps!

Improving the efficiency of the Gibbs sampler

Efficient blocking. Correlated parameters should ideally be included in the same updating block.

Reparametrization. Convergence can improve dramatically in alternative parametrizations.

- Data augmentation.
 - Augment with latent variables to make full conditional posteriors more easily sampled (Probit, Mixture models).
 - ▶ But typically increases the autocorrelation between draws.