A Functional Proof Pearl: Inverting the Ackermann Hierarchy

Aquinas Hobor Anshuman Mohan Linh Tran

National University of Singapore

July 18, 2019

Abstract

We implement in Gallina a hierarchy of functions that calculate the upper inverses to the hyperoperation/Ackermann hierarchy. Our functions run in $\Theta(b)$ for inputs expressed in unary, and $O(b^2)$ for inputs expressed in binary (b= bitlength). We use our inverses to define linear-time functions— $\Theta(b)$ for both unary- and binary-represented inputs—that compute the upper inverse of the diagonal Ackermann function $\mathcal{A}(n)$ and show that these functions are consistent with the usual definition of the inverse Ackermann function $\alpha(n)$.

The Ackermann and Inverse Ackermann functions

The Ackermann-Péter function (hereafter just "the" Ackermann function) is written $A: \mathbb{N}^2 \to \mathbb{N}$ and defined as follows:

$$A(n,m) \triangleq egin{cases} m+1 & \text{when } n=0 \ A(n-1,1) & \text{when } n>0, m=0 \ A(n-1,A(n,m-1)) & \text{otherwise} \end{cases}$$

The one-variable *diagonal* Ackermann function $\mathcal{A}: \mathbb{N} \to \mathbb{N}$ is defined as $\mathcal{A}(n) \triangleq A(n, n)$.

The inverse Ackermann function $\alpha(n)$ is the smallest k for which $n \leq \mathcal{A}(k)$, i.e.

$$\alpha(n) \triangleq \min \{ k \in \mathbb{N} : n \leq \mathcal{A}(k) \}$$

Initial values for A(n) and $\alpha(n)$

TODO: Value table for A(n) Grows astronomically fast!

TODO: Value table for $\alpha(n)$ Grows astronomically slow!

Computing $\alpha(n)$

Despite growing extremely slow, $\alpha(n)$ is difficult to compute for large n due to the explosive growth of $\mathcal{A}(k)$.

The Naive Approach: start at k = 0, calculate A(k), compare it to n, and increment k until $n \le A(k)$.

Time complexity: $\Omega(\mathcal{A}(\alpha(n)))$, so *e.g.* computing $\alpha(100) \mapsto^* 4$ in this way requires $\mathcal{A}(4) = 2^{2^{2^{65536}}} - 3$ steps!

The hierarchy of Ackermann levels

The Ackermann function is easy to define, but hard to understand. We see it as a sequence of *n*-indexed functions $\mathcal{A}_n \triangleq \lambda b. A(n,b)$, where for each n > 0, \mathcal{A}_n is the result of applying the previous \mathcal{A}_{n-1} b times, with a kludge.

To better understand the Ackermann function as a hierarchy and this kludge, we explore the closely-related hyperoperations.

The Ackermann hierarchy and hyperoperations

TODO: Polish, add names of levels to this table without overflowing the page

The kludge: $A_n(b) = 2[n](b+3) - 3$ and $\alpha_n(b) = 2\langle n \rangle (b+3) - 3$.

Roadmap

Goal. Inverting A - without computing A.

Step 1. Explore the hyperoperations/Ackermann function hierarchical structure: Connect consecutive levels with **Repeater**.

Step 2. Invert each level in both hierarchies:

- What is inverse? Upper inverse and increasing functions.
- Can Repeater preserve Invertibility? Repeatable functions.
- Computing inverse with inverse: Contractions and Countdown.
- Invert each level in hyperoperations/Ackermann hierarchies.

Step 3. Implement the Inverse Ackermann function via the inverse Ackermann hierarchy.

Step 4. Optimize its time complexity.

Roadmap

Goal. Inverting A - without computing A.

Step 1. Explore the hyperoperations/Ackermann function hierarchical structure: Connect consecutive levels with **Repeater**.

Step 2. Invert each level in both hierarchies:

- What is inverse? Upper inverse and increasing functions.
- Can Repeater preserve Invertibility? Repeatable functions.
- Computing inverse with inverse: Contractions and Countdown.
- Invert each level in hyperoperations/Ackermann hierarchies.

Step 3. Implement the Inverse Ackermann function via the inverse Ackermann hierarchy.

Step 4. Optimize its time complexity.

Step 1: Hyperoperations and Ackermann via Repeater

Repeated Application

Let X be any set and $f: X \to X$ be a function on X. Define the notation:

$$f^{(k)}(u) \triangleq (f \circ f \circ \cdots \circ f)(u),$$

which denotes k compositional applications of a function f to an input u.

The following recursive rule applies:

- If $f^{(0)}(u) = u$ (i.e. applying 0 times yields the identity).
- $f^{(k+1)}(u) = f(f^{(k)}(u)).$

Repeated application plays a vital role in both hyperoperations and Ackermann hierarchy.

The hyperoperation formal definition

1.
$$0^{th}$$
 level: $a[0]b \triangleq b+1$
2. Initial values: $a[n+1]0 \triangleq \begin{cases} a \text{ when } n=0\\ 0 \text{ when } n=1\\ 1 \text{ otherwise} \end{cases}$
3. Recursive rule: $a[n+1](b+1) \triangleq a[n](a[n+1]b)$

Via the recursive rule:

$$a[n+1]b = a[n](a[n+1](b-1)) = a[n](a[n](a[n+1](b-2)))$$

$$= \underbrace{(a[n] \circ a[n] \circ \cdots \circ a[n])}_{b \text{ times}} (a[n+1]0) = (a[n])^{(b)} \underbrace{(a[n+1]0)}_{\text{init value}}$$

The Ackermann hierarchy formal definition

Via the recursive rule:

$$\begin{array}{lll} \mathcal{A}_{n+1}(b) & = & \mathcal{A}_{n}\big(\mathcal{A}_{n+1}(b-1)\big) \ = & \mathcal{A}_{n}\big(\mathcal{A}_{n}\big(\mathcal{A}_{n+1}(b-2)\big)\big) \\ & = & \underbrace{\big(\mathcal{A}_{n} \circ \mathcal{A}_{n} \circ \cdots \circ \mathcal{A}_{n}\big)}_{b \text{ times}} \big(\mathcal{A}_{n+1}(0)\big) \ = \ \big(\mathcal{A}_{n}\big)^{(b)} \underbrace{\big(\mathcal{A}_{n+1}(0)\big)}_{\text{init value}} \end{array}$$

From repeated application to Repeater

The next level in the hyperoperations/Ackermann hierarchy is the result of b compositional applications of the current level to an initial value.

We can abstract the concept of repeated application in a higher-order function called repeater.

 $\forall a \in \mathbb{N}, f : \mathbb{N} \to \mathbb{N}$, the *repeater from a* of f, denoted by $f_{\cdot}^{\mathcal{R}}$, is a function $\mathbb{N} \to \mathbb{N}$ such that $f_{a}^{\mathcal{R}}(n) = f^{(n)}(a)$.

Fixpoint repeater_from (f : nat -> nat) (a n : nat) : nat := match n with 0 => a | S n' => f (repeater_from f a n') end.

Functional-to-function recursive rule:
$$\begin{cases} a[n+1] &= (a[n])_{a[n+1]0}^{\mathcal{R}}, \\ \mathcal{A}_{n+1} &= (\mathcal{A}_n)_{\mathcal{A}_{n+1}(0)}^{\mathcal{R}}. \end{cases}$$

— The repeater operation

Hyperoperations Coq definitions

Without Repeater (via double recursion):

With Repeater:

```
Fixpoint hyperop (a n b : nat) : nat :=
  match n with
  | 0 => 1 + b
  | S n' => repeater_from (hyperop a n') (hyperop_init a n') b
  end.
```

— The repeater operation

Ackermann hierarchy Coq definitions

Without Repeater (via double recursion):

With Repeater:

```
Fixpoint ackermann (n m : nat) : nat :=
  match n with
  | 0 => S m
  | S n' => repeater_from (ackermann n') (ackermann n' 1) m
  end.
```

Roadmap

Goal. Inverting A - without computing A.

Step 1. Explore the hyperoperations/Ackermann function hierarchical structure: Connect consecutive levels with **Repeater**.

Step 2. Invert each level in both hierarchies:

- What is inverse? Upper inverse and increasing functions.
- Can Repeater preserve Invertibility? Repeatable functions.
- Computing inverse with inverse: Contractions and Countdown.
- Invert each level in hyperoperations/Ackermann hierarchies.

Step 3. Implement the Inverse Ackermann function via the inverse Ackermann hierarchy.

Step 4. Optimize its time complexity.

Roadmap

Goal. Inverting A - without computing A.

Step 1. Explore the hyperoperations/Ackermann function hierarchical structure: Connect consecutive levels with **Repeater**.

Step 2. Invert each level in both hierarchies:

- What is inverse? Upper inverse and increasing functions.
- Can Repeater preserve Invertibility? Repeatable functions.
- **Computing inverse with inverse:** Contractions and **Countdown**.
- Invert each level in hyperoperations/Ackermann hierarchies.

Step 3. Implement the Inverse Ackermann function via the inverse Ackermann hierarchy.

Step 4. Optimize its time complexity.

Step 2: Inverting the hyperoperations/Ackermman hierarchies via Countdown

Step 2: Inverting the hierarchies via countdown Roadmap

- 1 What is inverse? Upper inverse and increasing functions.
- 2 Can Repeater preserve Invertibility? Repeatable functions.
- 3 Computing inverse with inverse: Contractions and Countdown.
- 4 Invert each level in hyperoperations/Ackermann hierarchies.

Step 2: Inverting the hierarchies via countdown Roadmap

- 1 What is inverse? Upper inverse and increasing functions.
- 2 Can Repeater preserve Invertibility? Repeatable functions.
- 3 Computing inverse with inverse: Contractions and Countdown.
- 4 Invert each level in hyperoperations/Ackermann hierarchies.

Upper inverses of increasing, unbounded functions

The *upper inverse* of F, written F^{-1} , is λn . min $\{m : F(m) \ge n\}$. Note that F^{-1} is a total function when F is unbounded.

Analogue of inverse of injections: The *upper inverse* makes sense for *strictly increasing* (hereafter referred to simply as *increasing*). Increasingness parallels injectivity.

Note: Increasing functions are trivially unbounded.

Logical equivalence (more useful): \mathbb{A} If $F : \mathbb{N} \to \mathbb{N}$ is increasing, then f is the upper inverse of F if and only if $\forall n, m.$ $f(n) \leq m \Leftrightarrow n \leq F(m)$.

Step 2: Inverting the hierarchies via countdown Roadmap

- 1 What is inverse? Upper inverse and increasing functions.
- 2 Can Repeater preserve Invertibility? Repeatable functions.
- 3 Computing inverse with inverse: Contractions and Countdown.
- 4 Invert each level in hyperoperations/Ackermann hierarchies.

Step 2: Inverting the hierarchies via countdown Roadmap

- 1 What is inverse? Upper inverse and increasing functions.
- 2 Can Repeater preserve Invertibility? Repeatable functions.
- **3** Computing inverse with inverse: Contractions and **Countdown**.
- 4 Invert each level in hyperoperations/Ackermann hierarchies.

Expansions and Repeatable functions 1

Observation: Every function in the hyperoperations (when $a \ge 2$) and the Ackermann hierarchy is increasing. How do they become that?

Generalization: What properties ensure increasing-ness is preserved by Repeater?

Repeatability: a property that encompasses increasing-ness that is preserved through Repeater.

$$Repeatable = Increasing + Strict Expanding$$

Expansions: A function $F: \mathbb{N} \to \mathbb{N}$ is an *expansion* if $\forall n$. $F(n) \ge n$. Further, for $a \in \mathbb{N}$, an expansion F is *strict from a* if $\forall n \ge a$. F(n) > n.

Expansion and Repeatable functions 2

Repeatability: An increasing function f is *repeatable* from a if f is also an expansion that is strict from a.

The set of functions repeatable from a is denoted by REPT_a.

Observation. If $a \leq b$, REPT_a \subseteq REPT_b.

Repeatability Preservation Theorem. $\forall a \geq 1$, if $f \in \text{REPT}_a$, then $f_a^{\mathcal{R}} \in \text{REPT}_0$, meaning $f_a^{\mathcal{R}}$ is repeatable from any b.

Every level in the hyperoperations (when $a \ge 2$) and Ackermann hierarchies are repeatable from their respective initial values.

⇒ All invertible.

Step 2: Inverting the hierarchies via countdown Roadmap

- 1 What is inverse? Upper inverse and increasing functions.
- 2 Can Repeater preserve Invertibility? Repeatable functions.
- **3** Computing inverse with inverse: Contractions and **Countdown**.
- 4 Invert each level in hyperoperations/Ackermann hierarchies.

Step 2: Inverting the hierarchies via countdown Roadmap

- 1 What is inverse? Upper inverse and increasing functions.
- 2 Can Repeater preserve Invertibility? Repeatable functions.
- 3 Computing inverse with inverse: Contractions and Countdown.
- 4 Invert each level in hyperoperations/Ackermann hierarchies.

Definitions

Contractions. A function $f : \mathbb{N} \to \mathbb{N}$ is a *contraction* if $\forall n$. $f(n) \le n$. Given an $a \ge 1$, a contraction f is *strict above* a if $\forall n > a$. n > f(n).

Notations. Set of contractions: CONT. Set of contractions strict above a: CONT $_a$.

Observations. Analogously to Expansions and Repeatable functions, $\forall s \leq t$. $\text{CONT}_s \subseteq \text{CONT}_t$.

Countdown. Let $f \in \text{CONT}_a$. The countdown to a of f, written $f_a^{\mathcal{C}}(n)$, is the smallest number of times f needs to be applied to n for the answer to equal or go below a. i.e.,

$$f_a^{\mathcal{C}}(n) \triangleq \min\{m : f^{(m)}(n) \leq a\}.$$

The importance of Countdown

Theorem. $\forall a, \forall F \in \text{REPT}_a$, define $f \triangleq F^{-1}$. Then $f \in \text{CONT}_a$ and $f_a^{\mathcal{C}} = (F_a^{\mathcal{R}})^{-1}$.

Proof. Step 1. $f \in CONT_a$:

Since F is an expansion, $n \le F(n) \Rightarrow f(n) \le n$. Take n > a, Since F is strict from a, $n-1 < F(n-1) \Rightarrow n \ge F(n-1)$ $\Rightarrow f(n) < n-1 \Rightarrow f(n) < n$.

Step 2.
$$f_a^{\mathcal{C}} = (F_a^{\mathcal{R}})^{-1}$$
. We have
$$f_a^{\mathcal{C}}(n) \le m \Leftrightarrow f^{(m)}(n) \le a \Leftrightarrow f^{(m-1)}(n) \le F(a) \Leftrightarrow \dots$$
$$\Leftrightarrow f(n) < F^{(m-1)}(a) \Leftrightarrow n < F^{(m)}(a) \Leftrightarrow n < F_a^{\mathcal{C}}(m)$$

Thus the proof is complete.

A Countdown computation in Coq type nat

Idea. To compute $f_a^{\mathcal{C}}(n)$, starting from n, repeatedly apply f to get the chain $\{n, f(n), f^{(2)}(n), \ldots\}$. Stops when $f^{(k)}(n) \leq a$. Returns k.

Key issue. Coq needs a known terminating point, i.e. an explicit decreasing argument. How to know when to terminate beforehand?

The worker function. A worker function takes f, a, n and a budget b and compute the chain $\{n, f(n), \ldots, f^{(b)}(n)\}$. It stops before reaching b if $f^{(k)}(n) \leq a$.

Step 2: Inverting the hyperoperations/Ackernman hierarchies via Countdown
Contractions and the countdown operation

Step 2: Inverting the hyperoperations/Ackernman hierarchies via Countdown
Contractions and the countdown operation

Inverting Hyperoperations and Ackermann

Time Bound of Our Inverses in Unary Encoding

Time Bound of Our Inverses in Unary Encoding

Performance Improvement With Binary Encoding

Further Discussion