ECE 100 (Spring 2021) - Homework #5 (not graded)

This will serve as Midterm Exam preparation questions.

Due Date: Not graded

Problem 1: Solve following circuit 3 different ways

- (a) Solve using KCL/KVL
- (b) Solve using Source Transformations
- (c) Solve using Superposition

Problem 2: Superposition

Use superposition to find node voltage, $v_{_{_{\boldsymbol{v}}}}$.

Problem 3: Superposition

Use superposition to find current, i_o .

Problem 4: Superposition

Use superposition to find current, i

Problem 5: Mutual Inductance

Hint: Coupling, with mutual inductance M=2H, is shown between 5H & 2H inductors. There is no coupling to any of the other branches.

- (a) Find the equivalent inductance, L_{eq} , seen between terminals V_1 and V_2 .
- (b) Find the equivalent inductance, Leq, seen between terminals V1 and V2 if nodes B & C are connected together.

Problem 6

P4.13. Derive an expression for $v_C(t)$ in the circuit of **Figure P4.13** \square and sketch $v_C(t)$ to scale versus time.

Problem 7

P4.18. Consider the circuit shown in Figure P4.18 \square . Prior to $t=0,\ v_1=100\ {
m V}$, and $v_2=0$.

- a. Immediately after the switch is closed, what is the value of the current [i.e., what is the value of i(0+)]?
- b. Write the KVL equation for the circuit in terms of the current and initial voltages. Take the derivative to obtain a differential equation.
- c. What is the value of the time constant in this circuit?
- d. Find an expression for the current as a function of time.
- e. Find the value that v_2 approaches as t becomes very large.

Figure P4.18

Problem 8

P4.24. The circuit shown in Figure P4.24 \square has been set up for a long time prior to t=0 with the switch closed. Find the value of v_C prior to t=0. Find the steady-state value of v_C after the switch has been opened for a long time.

Problem 9

P4.38. For the circuit shown in **Figure P4.38** \square , find an expression for the current $i_L(t)$ and sketch it to scale versus time. Also, find an expression for $v_L(t)$ and sketch it to scale versus time.

Problem 10

P4.39. The circuit shown in Figure P4.39 \square is operating in steady state with the switch closed prior to t=0. Find expressions for $i_L(t)$ for t<0 and for $t\geq 0$. Sketch $i_L(t)$ to scale versus time.

Problem 11 (Note: includes Problems 4.61-4.63)

Hint: See provided notes on 2nd order differential equations

*P4.61. A dc source is connected to a series *RLC* circuit by a switch that closes at t=0, as shown in Figure P4.61 \square . The initial conditions are i(0+)=0 and $v_C(0+)=0$. Write the differential equation for $v_C(t)$. Solve for $v_C(t)$, if $R=80\ \Omega$.

Figure P4.61

*P4.62. Repeat Problem P4.61 \square for $R=40~\Omega$.

*P4.63. Repeat Problem P4.61 \square for $R=20~\Omega$.

Problem 12

P4.64. Consider the circuit shown in Figure P4.64 \square in which the switch has been open for a long time prior to t=0 and we are given $R=25~\Omega$.

- a. Compute the undamped resonant frequency, the damping coefficient, and the damping ratio of the circuit after the switch closes.
- b. Assume that the capacitor is initially charged by a 25-V dc source not shown in the figure, so we have v(0+)=25 V. Determine the values of $i_L(0+)$ and v'(0+).
- c. Find the particular solution for v(t).
- d. Find the general solution for v(t), including the numerical values of all parameters.

Figure P4.64

Problem 13

Refer to Figure 1 below. The inductor has no initial energy (Hint: $i_L(0^+) = 0A$)

Figure 1.

- **a.** Derive the differential equation that governs the current i(t) for time $t \ge 0$.
- **b.** What is the characteristic equation that governs the behavior of this circuit? For the following assume $R_1 = 5 \text{ k}\Omega$, $R_2 = 16 \Omega$, L = 400 nH, C = 4 nF, and $V_0 = 10 \text{ Volts}$.
- c. Derive an expression for the voltage across the capacitor, $V_C(t)$ for $t \ge 0$. Assume that the circuit achieved steady state before t = 0 i.e. assume that the circuit came into being at $t = -\infty$.
- d. Draw a rough sketch of the waveform.

Problem 14

Refer to Figure 2 below. Both switches changed from their position $1\rightarrow 2$, respectively, at time t=0, after the circuits having already achieved steady state.

Figure 2.

For parts (a) through (d), express your answers in terms of V_B, I_S, R, L, and C.

- **a.** Derive a differential equation in terms of $v_0(t)$ that characterizes circuit behavior for $t \ge 0$.
- **b.** What is the characteristic equation of this circuit for time $t \ge 0$?
- **c.** Determine the value of $v_0(t)$ just after t = 0.
- **d.** Determine the value of $\frac{dv_o(t)}{dt}\Big|_{t=0+}$.

For the rest, use $V_B = 2V$, $I_S = 0.6$ mA, C = 1nF, L = 64nH, and R = 5 Ohms.

- e. Calculate the damping factor of the circuit. What kind of damping is this?
- **f.** Derive an expression for the complete solution of $v_O(t)$ in this circuit.
- **g.** Derive an expression for the current, $i_L(t)$ in this circuit.
- **h.** Draw a rough sketch of the solution, $v_O(t)$. Do not forget to show the initial and final values of $v_O(t)$. If $v_O(t)$ shows some ringing, mark the period and the time constant of the envelope as well.
- i. What will happen if R were infinitely large? Derive an expression for $v_0(t)$ and sketch it.