

Cole McGinn Jakob Roberts Jordan Vlieg

Ramunas Wierzbicki

James Woo

Outline

Project Motivation

Data Source Acquisition

Analysis Approach

Results

Motivation

Ashley Can we try and make sure that before expanding the ridership with near free memberships that we try and make the system work for the existing membership? About 1/3rd of my attempts to use bikeshare end in failure (no bikes or full stations).

Like · Reply · October 25 at 7:29am

Bay Area Bike Share Hi Ashley, really sorry to hear this. Please email us so that we can hear more about your experience and try to help. We are at: support@bayareabikeshare.com.

Like · Reply · October 25 at 11:26am

- Real customer complaints
- Ensure customers can dock or rent bikes
- Need to Predict load balancing of bikes between stations

Data Source

- http://www.bayareabikeshare.com/open-data
- 3 years of data
- Status data
- Station information
- Trip data
- Weather data

Status Data

station_id	bikes_available	docks_available	time

station_id: station ID number

bikes_available: number of bikes currently in a station

docks_available: number of open docks in a station

time: date & time, PST

>35,000,000 entries; 1 entry per minute per station

Station Information

station_id	name	lat	long	dockcount	landmark	installation	
------------	------	-----	------	-----------	----------	--------------	--

station_id: station ID number

name: name of station

lat: latitude

long: longitude

dockcount: number of total docks at station (Min = 11, Max = 35)

landmark: city

installation: original date that station was installed.

Trip Data

trip_id start_date	start_ terminal	end_date	end_ terminal	bike_id
--------------------	-----------------	----------	---------------	---------

trip_id:numeric ID of bike trip
start_date:start date of trip with date and time, in PST
start_terminal:numeric reference for start station
end_date:end date of trip with date and time, in PST
end_terminal:numeric reference for end station
bike_id:ID of bike used

Weather Data

date	mean_temperature	events
------	------------------	--------

date: date of measurement

mean_temperature: mean temperature of day in Bay Area

events: nothing, rain, or fog

Approach: Predicting Days in Advance

Status	Measurement Criteria			
Rideability	Time of day and weather - Month, day of week, hour, mean temperature, rain			
Threshold for count	T = 4, based on station capacities			
Station status	"Empty" indicates # of bikes < T			
classification	"Full" indicates # of docks available < T			
(based on threshold)	None			
Predict station status	Empty indicates need for more bikes			
given rideability	Full indicates need for removal of bikes			

Results (All Stations)

Algorithm	Station Status (T=3)			Station Status (T=4)			Station Status (T=5)		
	F1 Empty	F1 Full	Accuracy (%)	F1 Empty	F1 Full	Accuracy (%)	F1 Empty	F1 Full	Accuracy (%)
Gaussian Naive Bayes	N/A	N/A	N/A	0.023	0.008	79.8	N/A	N/A	N/A
Decision Tree	0.133	0.110	86.5	0.157	0.212	75.3	0.301	0.228	61.2
Random Forest	0.090	0.109	88.0	0.126	0.115	78.1	0.226	0.170	62.8
Random Classifier	0.175	0.096	33.3	0.175	0.096	33.3	0.175	0.096	33.3

Results (Individual Stations)

Algorithm	Station 45 (T=4)					Station 11 (T=4)				
	P Empty	R Empty	P Full	R Full	Accuracy (%)	P Empty	R Empty	P Full	R Full	Accuracy (%)
Decision Tree	0.457	0.338	0.203	0.156	49.2	0.003	0.014	0.003	0.007	82.9
Random Forest	0.506	0.326	0.201	0.081	52.7	0.006	0.009	0.14	0.007	91.2
Random Classifier	0.119	0.33	0.056	0.33	33.3	0.119	0.33	0.056	0.33	33.3

P = Precision, R = Recall

Future Work

- Once docks are rebalanced, can't use data for future training
- Model that will work with live data for load balancing
- Take large events into account for rebalancing
- Simplifying attributes
- Short term prediction

