

Lecture 3: Model-free Prediction & Control

Recap

- Last lecture:
 - MDP
 - policy evaluation
 - policy iteration and value iteration for solving a known MDP
- This lecture:
 - Model-free prediction: Estimate value function of an unknown MDP
 - Model-free control: Optimize value function of an unknown MDP

RL with knowing how the world works

■ Both of the policy iteration and value iteration assume the direct access to the dynamics and rewards of the environment

- ☐ In a lot of real-world problems, MDP model is either unknown or known by too big or too complex to use
 - ☐ Atari Game, Game of Go, Helicopter, Portfolio management, etc

Model-free RL: Learning by interaction

■ Model-free RL can solve the problems through interaction with the environment

- No more direct access to the known transition dynamics and reward function
- ☐ Trajectories/episodes are collected by the agent's interaction with the environment
- \square Each trajectory/episode contains $\{S_1, A_1, R_1, S_2, A_2, R_2, ..., S_T, A_T, R_T\}$

Model-free prediction

- Model-free prediction: policy evaluation without the access to the model
- Estimating the expected return of a particular policy if we don't have access to the MDP models
 - Monte Carlo policy evaluation
 - ☐ Temporal Difference (TD) learning

Monte-Carlo Policy Evaluation

- □ Return: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ...$
- $\square v^{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s]$ thus expectation over trajectories τ generated by following π
- MC simulation: we can simply sample a lot of trajectories, compute the actual returns for all the trajectories, then average them
- MC policy evaluation uses empirical mean return instead of expected return
- ☐ MC does not require MDP dynamics/rewards, no bootstrapping, and does not assume state is Markov.
- ☐ Only applied to episodic MDPs (each episode terminates)

Monte-Carlo Policy Evaluation

- \square To evaluate state v(s)
 - Every time-step t that state s is visited in an episode,
 - 2 Increment counter $N(s) \leftarrow N(s) + 1$
 - **3** Increment total return $S(s) \leftarrow S(s) + G_t$
 - 4 Value is estimated by mean return v(s) = S(s)/N(s)
- By law of large numbers, $v(s) \rightarrow v^{\pi}(s)$ as $N(s) \rightarrow \infty$

Incremental MC Updates

 \blacksquare Mean from the average of samples $x_1, x_2,...$

- \square Collect one episode $(S_1, A_1, R_1, ..., S_t)$
- \square For each state s_t with computed return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

 $v(S_t) \leftarrow v(S_t) + \frac{1}{N(S_t)}(G_t - v(S_t))$

$$\mu_{t} = \frac{1}{t} \sum_{j=1}^{t} x_{j}$$

$$= \frac{1}{t} \left(x_{t} + \sum_{j=1}^{t-1} x_{j} \right)$$

$$= \frac{1}{t} (x_{t} + (t-1)\mu_{t-1})$$

$$= \mu_{t-1} + \frac{1}{t} (x_{t} - \mu_{t-1})$$

☐ Or use a running mean (old episodes are forgotten). Good for non-stationary problems.

$$v(S_t) \leftarrow v(S_t) + \alpha(G_t - v(S_t))$$

Difference between DP and MC

- Dynamic Programming (DP) computes v_i by bootstrapping the rest of the expected return by the value estimate v_{i-1}
- ☐ Iteration on Bellman expectation backup:

$$v_i(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \Big(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) v_{i-1}(s') \Big)$$

■ MC updates the empirical mean return with one sampled episode

$$v(S_t) \leftarrow v(S_t) + \alpha(G_{i,t} - v(S_t))$$

= Expectation
T = Terminal state

= Expectation

= Terminal state

Advantages of MC over DP

- ☐ MC works when the environment is unknown
- Working with sample episodes has a huge advantage, even when one has complete knowledge of the environment's dynamics, for example, transition probability is complex to compute
- ☐ Cost of estimating a single state's value is independent of the total number of states. So you can sample episodes starting from the states of interest then average returns

Temporal-Difference (TD) Learning

- ☐ TD methods learn directly from episodes of experience
- ☐ TD is model-free: no knowledge of MDP transitions/rewards
- ☐ TD learns from incomplete episodes, by bootstrapping
- \square Objective: learn v_{π} online from experience under policy π
- ☐ Simplest TD algorithm: TD(0)
 - **1** Update $v(S_t)$ toward estimated return $R_{t+1} + \gamma v(S_{t+1})$

$$v(S_t) \leftarrow v(S_t) + \alpha (R_{t+1} + \gamma v(S_{t+1}) - v(S_t))$$

$$\delta_t = R_{t+1} + \gamma v(S_{t+1}) - v(S_t) \Longrightarrow TD \text{ error}$$
 TD target

- ☐ Comparison: Incremental Monte-Carlo
 - 1 Update $v(S_t)$ toward actual return G_t given an episode i

$$v(S_t) \leftarrow v(S_t) + \alpha(G_{i,t} - v(S_t))$$

Advantages of TD over MC

= Expectation

□ = Terminal state

Comparison of TD and MC

- ☐ TD can learn online after every step
- ☐ MC must wait until end of episode before return is known
- ☐ TD can learn from incomplete sequences
- ☐ MC can only learn from complete sequences
- □ TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments
- ☐ TD exploits Markov property, more efficient in Markov environments
- MC does not exploit Markov property, more effective in non-Markov environments

Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on *one* random action, transition, reward

Comparison of TD and MC

- ☐ MC has high variance, zero bias
 - ☐ Good convergence properties
 - ☐ (even with function approximation)
 - Not very sensitive to initial value
 - ☐ Very simple to understand and use
- ☐ TD has low variance, some bias
 - ☐ Usually more efficient than MC
 - \square TD(0) converges to $V_{\pi}(s)$
 - ☐ (but not always with function approximation)
 - More sensitive to initial value

Batch MC and TD

- MC and TD converge: $V(s) o v_{\pi}(s)$ as experience $o \infty$
- But what about batch solution for finite experience?

$$s_1^1, a_1^1, r_2^1, ..., s_{T_1}^1$$

$$\vdots$$

$$s_1^K, a_1^K, r_2^K, ..., s_{T_K}^K$$

- e.g. Repeatedly sample episode $k \in [1, K]$
- \blacksquare Apply MC or TD(0) to episode k

Certainty Equivalence

- MC converges to solution with minimum mean-squared error
 - Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (G_t^k - V(s_t^k))^2$$

- TD(0) converges to solution of max likelihood Markov model
 - Solution to the MDP $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma \rangle$ that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{\mathcal{R}}_s^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k = s, a) r_t^k$$

Bootstrapping and Sampling for DP, MC, and TD

- Bootstrapping: update involves an estimate
 - ☐ MC does not bootstrap
 - ☐ DP bootstraps
 - ☐ TD bootstraps
- ☐ Sampling: update samples an expectation
 - MC samples
 - ☐ DP does not sample
 - ☐ TD samples

Unified View

Dynamic Programming Backup

$$v(S_t) \leftarrow v(S_t) + \alpha(G_t - v(S_t))$$

Monte-Carlo Backup

$$TD(0): v(S_t) \leftarrow v(S_t) + \alpha(R_{t+1} + \gamma v(S_{t+1}) - v(S_t))$$

Temporal-Difference Backup

Unified View of RL

n-step TD

- □ n-step TD methods that generalize both one-step TD and MC.
- We can shift from one to the other smoothly as needed to meet the demands of a particular task.

n-step TD prediction

 \square Consider the following n-step returns for $n = 1,2,\infty$

$$n = 1(TD) \quad G_t^{(1)} = R_{t+1} + \gamma v(S_{t+1})$$

$$n = 2 \qquad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 v(S_{t+2})$$

$$\vdots$$

$$n = \infty(MC) \quad G_t^{\infty} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

☐ Thus the n-step return is defined as

$$G_t^n = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n v(S_{t+n})$$

■ n-step TD:
$$v(S_t) \leftarrow v(S_t) + \alpha \left(G_t^n - v(S_t) \right)$$

$\lambda - reutrn$

Weight

 λ^{T-t-1}

- \square The λ return G_t^{λ} combines all n-step returns G_t^n
- \square Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1-\lambda)\sum_{n=1}^{\infty} \lambda^{n-1}G_t^{(n)}$$

 \square Forward-view TD(λ)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$$

Model-free Control

- Model-Free Reinforcement Learning
 - Model-free prediction
 - Estimate the value function of an unknown MDP
 - Model-free control
 - Monte-Carlo control
 - ☐ Temporal Difference (TD) control
 - □ Off-Policy Learning
 - ☐ Optimise the value function of an unknown MDP

Uses of Model-Free Control

Some example problems that can be modelled as MDPs

- Elevator
- Parallel Parking
- Ship Steering
- Bioreactor
- Helicopter
- Aeroplane Logistics

- Robocup Soccer
- Quake
- Portfolio management
- Protein Folding
- Robot walking
- Game of Go

For most of these problems, either:

- MDP model is unknown, but experience can be sampled
- MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

Policy Iteration

- ☐ Iteration through the two steps
 - \blacksquare Evaluate the policy π (computing ν given current π)
 - lacksquare Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \operatorname{greedy}(v_{\pi})$$

Policy Iteration for a Known MDP

 \square Compute the state-action value of a policy π :

$$q_{\pi_i}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) v_{\pi_i}(s')$$

 \square Compute new policy π_{i+1} for all $s \in S$ following

$$\pi_{i+1}(s) = \operatorname*{arg\,max}_{a} q_{\pi_i}(s,a)$$

□ Problem: what to do if there is neither R(s, a) nor P(s'|s, a) known/available

General PI With Monte-Carlo Evaluation

Policy evaluation Monte-Carlo policy evaluation, $V = v_{\pi}$? Policy improvement Greedy policy improvement?

Monte Carlo with ϵ – *Greedy* Exploration

- \square ϵ greedy Exploration: Ensuring continual exploration
 - ☐ All actions are tried with non-zero probability
 - \square With probability 1ϵ choose the greedy action
 - \square With probability ϵ choose an action at random

$$\pi(a|s) = egin{cases} \epsilon/|\mathcal{A}| + 1 - \epsilon & ext{if } a^* = rg \max_{a \in \mathcal{A}} Q(s,a) \\ \epsilon/|\mathcal{A}| & ext{otherwise} \end{cases}$$

Monte Carlo with ϵ – *Greedy* Exploration

Policy improvement theorem: For any policy π , the ϵ – greedy policy π' with respect to q_{π} is an improvement, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$\begin{aligned} q_{\pi}(s, \pi'(s)) &= \sum_{a \in \mathcal{A}} \pi'(a|s) q_{\pi}(s, a) \\ &= \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a) \\ &\geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \frac{\epsilon}{|\mathcal{A}|}}{1 - \epsilon} q_{\pi}(s, a) \\ &= \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s, a) = v_{\pi}(s) \end{aligned}$$

Therefore, $v_{\pi'}(s) \ge v_{\pi}(s)$ from the policy improvement theorem

Monte-Carlo Policy Iteration

Policy evaluation Monte-Carlo policy evaluation, $Q=q_{\pi}$ Policy improvement ϵ -greedy policy improvement

GLIE

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

The policy converges on a greedy policy,

$$\lim_{k\to\infty} \pi_k(a|s) = \mathbf{1}(a = \underset{a'\in\mathcal{A}}{\operatorname{argmax}} \ Q_k(s,a'))$$

■ For example, ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k = \frac{1}{k}$

GLIE Monte-Carlo Control

- Sample kth episode using π : $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$
 $\pi \leftarrow \epsilon$ -greedy(Q)

Theorem

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s, a) \rightarrow q_*(s, a)$

MC VS. TD for Prediction and Control

□ Temporal-difference(TD) learning has several advantages over Monte-Carlo(MC)
 □ Lower variance
 □ Online
 □ Incomplete sequences
 □ So we can use TD instead of MC in our control loop
 □ Apply TD to Q(S, A)
 □ Use ε − greedy policy improvement

□ Update every time-step rather than at the end of one episode

On-policy learning and Off-policy learning

- ☐ On-policy learning
 - ☐ Learn on the job
 - \blacksquare Learn about policy π from experience sampled from π
- **□** Off-policy learning
 - ☐ Look over someone's shoulder
 - \blacksquare Learn about policy π from experience sampled from μ

Off-policy learning

 \square Following behavior policy $\mu(a|s)$ to collect data

$$S_1, A_1, R_2, ..., S_T \sim \mu$$

Update π using $S_1, A_1, R_2, ..., S_T$

- ☐ Benefits:
 - Learn about optimal policy while following exploratory policy
 - Learn from observing humans or other agents
 - \square Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$

Sarsa: On-policy TD Control

☐ An episode consists of an alternating sequence of states and stateaction pairs:

$$\cdots$$
 S_t A_t S_{t+1} S_{t+1} A_{t+1} S_{t+2} A_{t+2} A_{t+3} A_{t+3} A_{t+3} A_{t+3}

 \Box ϵ – *Greedy* policy for one step, then bootstrap the action value function:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

- \square The update is done after every transition from a nonterminal state S_t
- $\square \text{ TD target: } \delta_{t} = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

N-step Sarsa

 \square Consider the following *n-step* Q-returns for n=1,2, ∞

$$n = 1(Sarsa)q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$$
 $n = 2$
 $q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2}, A_{t+2})$
 \vdots
 $n = \infty(MC)$
 $q_t^{\infty} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-t-1} R_T$

☐ Thus the n-step Q-return is defined as

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n}, A_{t+n})$$

 \square N-step Sarsa updates Q(s, a) towards the n-step Q-return:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

Off-policy control with Q learning

- We allow both behavior and target policies to improve
- \square The target police π is greedy on Q(s, a)

$$\pi(S_{t+1}) = \argmax_{a'} Q(S_{t+1}, a')$$

- The behavior policy μ could be totally random, but we let it improve following ϵgreedy on Q(s, a)
- ☐ Thus Q-learning target

$$R_{t+1} + \gamma Q(S_{t+1}, A') = R_{t+1} + \gamma Q(S_{t+1}, \arg \max_{a'} Q(S_{t+1}, a'))$$

= $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$

☐ Thus the Q-learning update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Comparison of Sarsa and Q-learning

☐ Sarsa: On-Policy TD control

Choose action A_t from S_t using policy derived from Q with ϵ – greedy Take action A_t , observe R_{t+1} and S_{t+1} Choose action A_{t+1} from S_{t+1} using policy derived from Q with ϵ – greedy $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$

☐ Q-learning: Off-Policy TD control

Choose action A_t from S_t using policy derived from Q with $\epsilon - \operatorname{greedy}$ Take action A_t , observe R_{t+1} and S_{t+1} Then 'imagine' A_{t+1} as argmax $Q(S_{t+1}, a')$ in the update target $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$

Comparison of Sarsa and Q-learning

■ Backup diagram for Sarsa and Q-learning

- \square In Sarsa, A and A' are sampled from the same policy so it is onpolicy
- ☐ In Q-learning, A and A' are from different policies, with A being more exploratory and A' determined directly by the max operator

Comparison of Sarsa and Q-learning

□ Sarsa

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

□ Q learning

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S';
until S is terminal
```

Example on Cliff Walk

Result of Sarsa

Result of Q-Learning

On-line performance of Q-learning is worse than that of Sarsa

Summary of DP and TD

Expected Update (DP)	Sample Update (TD)
Iterative Policy Evaluation	TD Learning
$V(s) \leftarrow \mathbb{E}[R + \gamma V(S') s]$	$V(S) \leftarrow^{\alpha} R + \gamma V(S')$
Q-Policy Iteration	Sarsa
$Q(S,A) \leftarrow \mathbb{E}[R + \gamma Q(S',A') s,a]$	$Q(S,A) \leftarrow^{\alpha} R + \gamma Q(S',A')$
Q-Value Iteration	Q-Learning
$Q(S,A) \leftarrow \mathbb{E}[R + \gamma \max_{a' \in \mathcal{A}} Q(S',A') s,a]$	$Q(S,A) \leftarrow^{\alpha} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$

where $x \leftarrow^{\alpha} y$ is defined as $x \leftarrow x + \alpha(y - x)$

Importance Sampling

■ Estimate the expectation of a function

$$E_{x\sim P}[f(x)] = \int f(x)P(x)dx \approx \frac{1}{n}\sum_{i}f(x_{i})$$

 \square But sometimes it is difficult to sample x from P(x), then we can sample x from another distribution Q(x), then correct the weight

$$\mathbb{E}_{x \sim P}[f(x)] = \int P(x)f(x)dx$$

$$= \int Q(x)\frac{P(x)}{Q(x)}f(x)dx$$

$$= \mathbb{E}_{x \sim Q}\left[\frac{P(x)}{Q(x)}f(x)\right] \approx \frac{1}{n}\sum_{i}\frac{P(x_{i})}{Q(x_{i})}f(x_{i})$$

Importance Sampling for Off-Policy RL

☐ Estimate the expectation of a return using trajectories sampled from another policy (behavior policy)

$$\mathbb{E}_{T \sim \pi}[g(T)] = \int P(T)g(T)dT$$

$$= \int Q(T)\frac{P(T)}{Q(T)}g(T)dT$$

$$= \mathbb{E}_{T \sim \mu}\left[\frac{P(T)}{Q(T)}g(T)\right]$$

$$\approx \frac{1}{n}\sum_{i}\frac{P(T_{i})}{Q(T_{i})}g(T_{i})$$

Importance Sampling for Off-Policy MC

 \blacksquare Generate episode from behavior policy μ and compute the generated return G_t

$$S_1, A_1, R_2, ..., S_T \sim \mu$$

- \square Weight return G_t according to similarity between policies
 - ☐ Multiply importance sampling corrections along whole episode

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} ... \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

☐ Update value towards correct return

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t^{\pi/\mu} - V(S_t))$$

Importance Sampling for Off-Policy TD

- \square Use TD targets generated from μ to evaluate π
- \square Weight TD target $R + \lambda V(S')$ by importance sampling
- ☐ Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \lambda V(S_{t+1})) - V(S_t) \right)$$

☐ Policies only need to be similar over a single step

Importance Sampling on Q-learning

☐ Off-policy TD

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \lambda V(S_{t+1})) - V(S_t) \right)$$

- Why don't use importance sampling on Q-learning?
- ☐ Short answer: because Q-learning does not make expected value estimates over the policy distribution.
- ☐ Remember bellman optimality backup from value iteration

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a'} Q(s',a')$$

Q-learning can be considered as sample-based version of value iteration, except instead of using the expected value over the transition dynamics, we use the sample collected from the environment

$$Q(s,a) = r + \gamma \max_{a'} Q(s',a')$$

☐ Q-learning is over the transition distribution, not over policy distribution thus no need to correct different policy distributions