SIEMENS

Special Economic Hall-Effect IC for Low-Cost Magnetic Field Applications

TLE 4905 TLE 4935

Preliminary Data

Bipolar-IC

Features

- Low price
- Digital output signal
- For unipolar and alternating magnetic fields
- Large temperature range
- Protection against reversed polarity
- Output protection against electrical disturbances

Туре		Ordering Code	Package		
▼	TLE 4905 L	Q67006-A9120	P-SSO-3-2		
•	TLE 4935 L/LS	Q67006-A9112	P-SSO-3-2/3-3		

▼ = New type

TLE 4904 F (Unipolar/Bipolar Magnetic Fields Switches) have been designed specifically for low cost automotive and industrial applications which do not require overvoltage protection. reverse polarity protection is included on-chip as is output protection against negative voltage transients.

These devices are ideal for systems where low cost and high reliability are the key factors.

Typical applications are position/proximity indicators, brushless DC motor commutation, rotational indexing etc.

Pin Configuration

Pin Definitions and Funtions

Pin	Symbol	Function
1	$V_{\mathtt{S}}$	Supply voltage
2	GND	Ground
3	Q	Output

Circuit Description

The circuit includes Hall generator, amplifier and Schmitt-Trigger on one chip. The internal reference provides the supply voltage for the components. A magnetic field perpendicular to the chip surface induces a voltage at the hall probe. This voltage is amplified and switches a Schmitt-trigger with open-collector output. A protection diode against reverse power supply is integrated. The output is protected against electrical disturbances.

For critical applications requiring higher switching accuracy, fully protected Hall ICs the Siemens TLE 4904 (switch) and TLE 4934/44 (latch/switch) are recommended.

Figure 1 Block Diagram

Absolute Maximum Ratings

 $T_{\rm A} = -40$ to 125 °C

Parameter	Symbol	Limit	Values	Unit	Remarks
	-	min.	max.		
Supply voltage	$V_{\mathtt{S}}$	- 40	28	V	_
Output voltage	V_{Q}	_	28	V	_
Output current	I_{Q}	_	50	mA	-
Output reverse current	$-I_{Q}$	-	50	mA	_
Junction temperature	T_{j}	- 40	150	°C	_
Junction temperature	T_{j}	-	170	°C	1000 h
Junction temperature	T_{j}	_	210	°C	40 h
Storage temperature	$T_{ m stg}$	- 50	150	°C	_
Thermal resistance	R_{thJA}	_	240	K/W	_

Operating Range

Supply voltage	$V_{\mathbb{S}}$	3.5	24	٧	_
Junction temperature	$T_{\rm j}$	- 40	150	°C	_
Junction temperature	$T_{\rm j}$	- 40	170	°C	1000 h
Junction temperature	T_{j}	- 40	210	°C	40 h

AC/DC Characteristics

 $3.5 \text{ V} \le V_{\text{S}} \le 24 \text{ V}; -40 \text{ °C} \le T_{\text{i}} \le 150 \text{ °C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	Test
		min.	typ.	max.			Circuit
Supply current	I_{SHigh}	_	3	7	mA	$B < B_{RP}$	1
	$I_{\sf SLow}$	_	4	8	mA	$B > B_{OP}$	1
Output saturation voltage	V_{QSat}	_	0.25	0.5	V	$I_{\rm Q}$ = 40 mA	1
Output leakage current	I_{QL}	_	_	10	μΑ	V _Q = 24 V	1
Rise/fall time	$t_{\rm r}/t_{\rm f}$	_	_	1	μs	$R_{\rm L}$ = 1,2 k Ω	1
						$C_{L} \leq 33 \; pF$	
Magnetic Parameters TLE 4905 L							
Turn-ON induction	B_{OP}	_	_	20	mT	_	1
Turn-OFF induction	B_{RP}	5	_	-	mT	_	1
Hysteresis (B_{OP} - B_{RP})	ΔB_{Hy}	2	3	_	mT	-	1
TLE 4935 L							
Turn-ON induction	B_{OP}	10	_	20	mT	_	1
Turn-OFF induction	B_{RP}	- 20	_	- 10	mT	_	1
Hysteresis (B_{OP} - B_{RP})	ΔB_{Hy}	20	30		mT	_	1

Test Circuit 1

Application Circuit

Quiescent Current versus Supply Voltage

Quiescent Current Difference versus Temperature

Quiescent Current versus Junction Temperature

Saturation Voltage versus Output Current

