

Pró-Reitoria de Graduação

End: Av Antônio Carlos, 6627 – Reitoria – 6° andar

CEP: 31270-901 - Belo Horizonte - MG

Fone: 3409-4056 / 4057 - E-mail: diretoriaacademica@prograd.ufmg.br

PLANO DE ENSINO - ENSINO REMOTO EMERGENCIAL

TEANO DE ENSINO TENOTO	LIVILINGLING	AL		
DEPARTAMENTO: Engenharia Eletrônica				
TÍTULO DA ATIVIDADE ACADÊMICA CURRICULAR	CÓDIGO:		CARGA HO	DRÁRIA
Planejamento de Movimento de Robôs	ELT124	Teórica	Prática	Total
		60	0	60
NATUREZA () OBRIGATÓRIA (X) OPTATIVA	NÚMERO I	DE VAGAS:	20	
PROFESSOR(A): Luciano Cunha de Araújo Pimenta				
EMENTA				
Algoritmos de navegação simplificados, Espaço de Configurações, Planejamento de Móveis, Campos de Potencial, Algoritmos Baseados em Busca em Grafos, Mapas de em Amostragem.	-			
OBJETIVOS				
Devem ser indicados para cada unidade/tópico/módulo, informado no item Cont quais são os conhecimentos e competências indispensáveis à formação do estudant	_	tico. Ao def	inir os obje	etivos considerar
CONTEÚDO PROGRAMÁTICO				
Os conteúdos devem ser organizados por unidades, tópicos ou por módulos que, po didáticas e a bibliografia recomendada.	r sua vez, deven	n apresentar	os objetivo	os, as estratégias
Unidade 1: Introdução ao formato do curso, conceitos iniciais e algoritmos BUG (ser	manas 1 e 2)			
• Objetivos	nunus 1 e 2)			
Apresentar o formato do curso				
Apresentar os conceitos iniciais				6h
■ Algoritmos Bug				
■ Introdução ao ROS (Robot Operating System)				
● Conteúdo				
Conceitos iniciais de planejamento de movimento, algoritmos: Bug 1, Bug 2 e Tang	gent Bug. Impler	mentação en	n ROS.	
• Estratégias de ensino-aprendizagem				
■ Leitura: 3h				
Aula expositiva síncrona: 3 horas (21/10/2021)				
Bibliografia Básica				
■ Howie Choset et.al., Principles of Robot Motion: Theory, Algorithms, and Impleme		los 1 e 2).		
■ Arthur H. D. Nunes, The Turtles: o guia prático e introdutório de simulações em rol	bótica com ROS			
Bibliografia Complementar				
■ N/A				
Unidade 2: Espaço de Configurações, Funções de Potencial e Robôs móveis com acid	onamento difere	ncial (semai	na 3)	
• Objetivos				
 Apresentar os conceitos relacionados ao Espaço de Configurações 				
 Apresentar as técnicas baseadas em Funções de Potencial Disputir a producto a control o despet ê profusion por prior producto diferencial 				<i>e</i> h
Discutir o modelo e controle de robôs móveis com acionamento diferencial				6h

Pró-Reitoria de Graduação

End: Av Antônio Carlos, 6627 – Reitoria – 6° andar CEP: 31270-901 – Belo Horizonte – MG

Fone: 3409-4056 / 4057 - E-mail: diretoriaacademica@prograd.ufmg.br

Fone: 3409-4056 / 4057 - E-mail: diretoriaacademica@prograd.ufmg.br	
 Conteúdo ■ Espaço de configurações, Funções de Potencial (métodos clássicos, funções de navegação, métodos discretos). Modelo e controle de robôs móveis com acionamento diferencial. ● Estratégias de ensino-aprendizagem ■ Leitura: 3h ■ Aula expositiva síncrona: 3h (28/10/2021) ● Bibliografia Básica ■ Howie Choset et.al., Principles of Robot Motion: Theory, Algorithms, and Implementations (Capítulos 3, 4 e Apêndice H- sem D*). ● Bibliografia Complementar ■ N/A 	
 Unidade 3: Grafos, Planejamento de Trajetórias (semanas 4 e 5) Objetivos Apresentar as representações baseadas em grafos e algoritmos de busca Apresentar técnicas de planejamento de trajetórias Conteúdo Grafos e busca em grafos, DFS, BFS, Dijkstra e A*. Cálculo de trajetórias utilizando polinômios. Estratégias de ensino-aprendizagem Leitura: 3h Aula expositiva síncrona: 3 h (11/11/2021) Bibliografia Básica Howie Choset et.al., Principles of Robot Motion: Theory, Algorithms, and Implementations (Apêndice H- sem D*). Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2020). Robot modeling and control. Hoboken, NJ: John Wiley & Sons.(Capítulo 7.5) Bibliografia Complementar N/A 	6h
Unidade 4: Roadmaps e Decomposição em Células (semanas 6 e 7) ● Objetivos ■ Apresentar os conceitos relacionados aos roadmaps (mapas de rotas) ■ Apresentar os métodos de decomposição em células ● Conteúdo ■ Roadmaps: Grafo de visibilidade e Diagramas de Voronoi. Decomposição em células, decomposição aproximada e exata. Decomposição trapezoidal e decomposição Morse. . ● Estratégias de ensino-aprendizagem ■ Leitura: 3h ■ Aula expositiva síncrona: 3h (25/11/2021)	6h
 Bibliografia Básica Howie Choset et.al., Principles of Robot Motion: Theory, Algorithms, and Implementations (Capítulos 5.1 e 5.2, 6.1 e 6.2) 	

Pró-Reitoria de Graduação
End: Av Antônio Carlos, 6627 – Reitoria – 6° andar
CEP: 31270-901 – Belo Horizonte – MG
Fone: 3409-4056 / 4057 - E-mail: diretoriaacademica@prograd.ufmg.br

Folie: 3403-4030 / 4037 - E-mail: diretoriaacademica@prograd.umig.bi	
Bibliografia Complementar	
■ N/A	
Unidade 5: Trabalho Prático 1 (semana 8)	
• Objetivos	
■ Implementar algoritmos estudados nas unidades anteriores utilizando ROS+simuladores.	
● Conteúdo	
■ Implementação de algoritmos estudados nas unidades anteriores utilizando ROS+simuladores.	10h
• Estratégias de ensino-aprendizagem	
Apresentação do trabalho síncrona: 1h (02/12/2021)	
■ Trabalho de Implementação: 9h (Data de entrega: até 23:55 de 05/12/2021)	
Bibliografia Básica	
■ Howie Choset et.al., Principles of Robot Motion: Theory, Algorithms, and Implementations ■ Arthur I.I. P. Nunes, The Turtley a guid prétine a introdutérie de simulações em rehética com ROS	
■ Arthur H. D. Nunes, The Turtles: o guia prático e introdutório de simulações em robótica com ROS	
 ■ Bibliografia Complementar ■ N/A 	
- N/A	
Unidade 6: Algoritmos baseados em Amostragem (semana 9)	
• Objetivos	
 Apresentar algoritmos de planejamento baseados em amostragem 	
● Conteúdo	
■ Algoritmos baseados em amostragem: PRM, EST e RRT.	6h
• Estratégias de ensino-aprendizagem	
Leitura: 3h	
Aula expositiva síncrona: 3h (09/12/2021)	
• Bibliografia Básica	
 Howie Choset et.al., Principles of Robot Motion: Theory, Algorithms, and Implementations (7.1,7.2 e 7.3) 	
Bibliografia Complementar	
■ <i>N/A</i>	
Unidade 7: Trabalho Prático 2 (semanas 10, 11 e 12)	
• Objetivos	
■ Implementar algoritmos estudados nas unidades anteriores utilizando ROS+simuladores.	10h
● Conteúdo	
■ Implementação de algoritmos estudados nas unidades anteriores utilizando ROS+simuladores.	
 Estratégias de ensino-aprendizagem 	
Apresentação do trabalho síncrona: 1h (27/01/2022)	
■ Trabalho de Implementação: 9h (Data de entrega: até 23:55 de 27/01/2022)	

Pró-Reitoria de Graduação

End: Av Antônio Carlos, 6627 - Reitoria - 6° andar

CEP: 31270-901 - Belo Horizonte - MG

Fone: 3409-4056 / 4057 - E-mail: diretoriaacademica@prograd.ufmg.br

- Bibliografia Básica
- Howie Choset et.al., Principles of Robot Motion: Theory, Algorithms, and Implementations
- Arthur H. D. Nunes, The Turtles: o quia prático e introdutório de simulações em robótica com ROS
- Bibliografia Complementar
- N/A

Unidade 8: Trabalho Final (semanas 13, 14 e 15)

- Obietivos
- Desenvolver um trabalho de implementação utilizando os conceitos desenvolvidos no curso.
- Conteúdo
- Estratégias de ensino-aprendizagem
- Trabalho de Implementação: 10h (Data de entrega do relatório: até 23:55 de 16/02/2022)

■ Desenvolvimento de implementação de estratégias de planejamento de movimento.

- Vídeo gravado com apresentação dos trabalhos até 10 minutos. (Data de entrega: até 23:55 de 16/02/2022)
- Bibliografia Básica
- Artigos científicos.
- Bibliografia Complementar
- N/A

METODOLOGIA

- Os alunos lerão os capítulos dos livros adotados como bibliografia básica.
- Os alunos realizarão 2 trabalhos de implementação utilizando ROS. Os trabalhos serão em grupos de até 2 alunos.
- Serão agendadas aulas síncronas ao longo do semestre para discussão dos tópicos do curso, solução de dúvidas dos alunos e apresentação de trabalhos.
- Ao fim do semestre, haverá um trabalho final individual de implementação a ser definido pelo aluno.

ESTRATÉGIAS E PROCEDIMENTOS DE AVALIAÇÃO

- Dois trabalhos de implementação em grupos de até 2 alunos no valor de 30 pontos cada. Para cada trabalho, os alunos deverão entregar um relatório sobre os resultados e também os códigos desenvolvidos. Além disso, deverão realizar uma apresentação de 15 minutos em data agendada. Total: 2x30 = 60 pontos.
- Trabalho final de implementação a ser realizado individualmente. A escolha do tema do trabalho é livre. Os alunos deverão entregar um relatório com os resultados e um vídeo de até 10 minutos mostrando os resultados do trabalho. Total: 40 pontos.
- Todas as entregas serão feitas via Moodle.

TECNOLOGIAS DIGITAIS UTILIZADAS

As tecnologias digitais a serem utilizadas no curso são o Moodle/UFMG, o Youtube, o Microsoft Teams e ferramentas de desenvolvimento para programação e simulação de robôs baseadas em ROS. O Moodle será utilizado para comunicação com os alunos, disponibilização de material de suporte e publicação de tarefas. O Moodle será utilizado também para entrega de todas as tarefas desenvolvidas pelos alunos. O Microsoft Teams será usado para os encontros síncronos com os alunos.

BIBLIOGRAFIA

■ Howie Choset et.al., Principles of Robot Motion: Theory, Algorithms, and Implementations.

10h

Pró-Reitoria de Graduação
End: Av Antônio Carlos, 6627 – Reitoria – 6° andar
CEP: 31270-901 – Belo Horizonte – MG
Fone: 3409-4056 / 4057 - E-mail: diretoriaacademica@prograd.ufmg.br

REFERENDADO EM/2020 pelo Colegiado do curso de Graduação em, conforme determina c inciso II, art. 4º da Resolução CEPE № 02/2020, de 9 de julho de 2020.
* Artigos científicos
■ Arthur H. D. Nunes, The Turtles: o guia prático e introdutório de simulações em robótica com ROS
Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2020). Robot modeling and control. Hoboken, NJ: John Wiley & Sons.