

Classe: TOP 1

Date: Octobre 2019

DST Mathématiques

Durée: 50 min

Présentation et orthographe seront pris en compte dans le barème de notation. Les calculatrices graphiques sont autorisées pour ce sujet.

EXERCICE 1 : Second degré et tableau de signe (14 points)

Résoudre les inéquations

1.
$$12+2x^2-11x \le 0$$
 (2 points)

2.
$$(1-2x)(-2x^2+4x-2) \le 0$$
 (3 points)

3.
$$\frac{2}{x-1} \ge 2x-5$$
 (4 points)

4.
$$\frac{4x^2 - 64x + 256}{(x-1)^2(-2x+4)} < 0$$
 (5 points)

EXERCICE 2 : Polynômes et factorisation (3 points)

Factoriser le polynôme suivant puis étudier son signe

$$P(x) = -4x^3 + 8x^2 - 9x + 18$$

EXERCICE 3: (3 points)

Étudier le signe de l'expression

$$E(x)=3x+\frac{1}{2x}-\frac{5}{2}$$

Exercice 1:

1.
$$12 + 2x^2 - 11 \times 60$$

$$\Delta = (-11)^2 - 4 \times 2 \times 12 = 25$$

$$x_1 = \frac{11-5}{4} = \frac{3}{2}$$

$$x_2 = \frac{11+5}{4} = 4$$

$$S = \left[\frac{3}{2}; 4\right]$$

2.
$$(1-2x)(-2x^2+4x-2) \leq 0$$

$$1-2x>0$$

$$-2x>-1$$

$$\Delta = 4^{2} - 4^{2}(-2) \times (-2) = 0$$

$$x_4 = \frac{-4}{-4} = 1$$

×	-00	1/2		1		+00
1-2x	+	þ	Signer.		_	
-2x2+hx-2	_		-	0		
Pr	-	9	+	þ	+	

3.
$$\frac{2}{x-1} \ge 2x-5$$

$$\frac{2}{x-1} - 2x+5 \ge 0$$

$$\frac{2}{x-1} + (-2x+5)(x-1) \ge 0$$

$$\frac{2}{x-1} = \frac{2}{x-1} + \frac{2}{x-1} = \frac{2}{x-1} =$$

$$2 + (-2x+5)(x-1) > 0$$

$$\lambda + (-2x^{2} + 2x + 5x - 5) > 0$$

$$2 + 7x - 2x^{2} - 5 > 0$$

$$-2x^{2} + 7x - 3 > 0$$

$$\Delta = 7^{2} - 4 \times (-2) \times (-3) = 25$$

$$x_{1} = \frac{-7 - 5}{-4} = 3$$

$$x_{2} = \frac{-7 + 5}{-4} = \frac{1}{2} = 2 \implies \frac{1}{2} \le x \le 3$$

2	- 00	12	1	1 3	+00
-2x2+7x-3		9	+	+ 0	-
x-1	-		_	+	+
Pr	+	•		1 +	9 -

$$= 7 S =]-\infty; [2] \cup]1;3]$$

4.
$$\frac{4x^2 - 64x + 256}{(x-1)^2(-2x+4)} < 0$$

$$4x^{2}-64x+256>0$$
 $(x-1)^{2}>0$ $-2x+4>0$
 $\Delta=t64)^{2}-4x4x256=0$ Toujaurs saut pour $x=1$ $x \le 2$
 $x = \frac{64}{8} = 8$

x I	- 20 1	2	8	+ 00
4x2-64x+256	+	+	+ 0	7 +
$(x-1)^2$	+ - *		+	+
-2x+4	+	+	-	_
Pr	+	+	_	o –

Exercice 2:

$$P(x) = -4x^{3} + 8x^{2} - 9x + 18 =$$

$$= -4x^{2}(x-2) - 9(x-2) =$$

$$= (x-2)(-4x^{2}-9)$$

$$P(x)>0 \Rightarrow (x-2)(-4x^{2}-9)>0$$

$$x-2>0 \qquad -4x^{2}-9>0$$

$$x>2 \qquad \Delta = -4x(-4)x(-9) = -144$$

$$R = -4x(-4)x(-9) = -144$$

$$R = -4x(-4)x(-9) = -144$$

P(x) est positif pour
$$x \in]-\infty; 2[$$

=> P(x) est zero pour $x = 2$

P(x) est regatif pour $x \in]2; +\infty[$

Exercice 3:

$$E(x) = 3x + \frac{4}{2x} - \frac{5}{2}$$

$$E(x) > 0 \qquad \frac{6x^2 + 1 - 5x}{2x} > 0$$

$$6x^2 - 5x + 4 > 0 \qquad 2x > 0$$

$$\Delta = (-5)^2 - 4x + 6x = 1$$

$$x_1 = \frac{5 + 4}{12} = \frac{1}{2}$$

$$x_2 = \frac{5 - 1}{12} = \frac{1}{3}$$

$$x < \frac{1}{3} = \frac{1}{2}$$

$$x < \frac{1}{3} = \frac{1}{2}$$

×	- 10	0	13	1/2	+00
6x2-5x+1	+		+ 0	- 0	+
ZX	4-		+	+	+
Pr	_		+ 0	- 0	P+

$$E(x) \text{ est positif pour } x \in]0; \frac{1}{3}[U]_{2;+\infty}^{1}$$