6- AMALIY MASHG'ULOT. Guruhlash, o'rinlashtirish, o'rin almashtirish formulalarini qo'llab misollar yechish

Reja

- 1. Oʻrin almashtirish, joylashtirish va guruhlashlarni hisoblash formulalari
- 2. Mustaqil bajarish uchun masala va topshiriqlar
 - 2.1. Guruhlash, o'rinlashtirish, o'rin almashtirish formulalarini qo'llab yechishga doir topshiriqlar.

1.O'rin almashtirish, joylashtirish va guruhlashlarni hisoblash formulalari Takrorlanmaydigan joylashtirishlar

Avvalo barcha mumkin bo`lgan A_n^k joylashtirishlarni topib olamiz. Bu masalani yechish uchun ko`paytma qoidasidan foydalanamiz.

n ta elementi bo`lgan S toʻplamda birinchi elementni tanlash uchun n ta imkoniyat bor, ikkinchi elementni tanlash uchun esa n-1 ta imkoniyat qoladi. Joylashtirish takrorlanmaydigan bo`lgani uchun tanlab olingan element keyingi tanlanmalarda ishtirok etmaydi. Shuning uchun k - elementni tanlash uchun n-(k-1)=n-k+1 imkoniyat qoladi. U holda barcha takrorlanmaydigan joylashtirishlar soni:

$$A_n^k = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)$$

ga teng bo`ladi.

Bu formulani boshqacha ko`rinishda yozish mumkin:

$$A_n^k = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) =$$

$$= n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) \cdot \frac{(n-k) \cdot (n-k-1) \cdot \dots \cdot 2 \cdot 1}{(n-k) \cdot (n-k-1) \cdot \dots \cdot 2 \cdot 1} =$$

$$=\frac{n\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot(n-(k-1))\cdot(n-k)\cdot\ldots\cdot2\cdot1}{(n-k)\cdot\ldots\cdot2\cdot1}=\frac{n!}{(n-k)!}$$

Bu yerda "!" belgisi faktorial deb o`qiladi.

1 dan n gacha bo`lgan barcha natural sonlar ko`paytmasi n! ga teng. Faktorialni hisoblashda 0!=1 va 1!=1 deb qabul qilingan.

6.1-Teorema. n elementga ega bo`lgan S to`plamning k elementli tartiblangan takrorlanmaydigan qism to`plamlari soni

$$A_n^k = \frac{n!}{(n-k)!}$$

ga teng.

6.1-Misol. 7 kishidan iborat nazorat guruhini 4 nafar a`zosi bo`lgan nechta kichik guruhlarga ajratish mumkin?

Izlanayotgan usullar soni 7 ta elementdan 4 tadan joylashtirishlar soniga teng, ya`ni

$$A_7^4 = \frac{7!}{(7-4)!} = \frac{7!}{3!} = \frac{3! \cdot 4 \cdot 5 \cdot 6 \cdot 7}{3!} = 840$$

6.2-Misol. Talaba 3 ta imtixonni bir hafta davomida topshirishi kerak. Bu harakatni necha xil usulda amalga oshirish mumkin?

Javob:
$$A_6^3 = 120$$

Shu oʻrinda eslatib oʻtamiz, tadqiqotlarda joylashtirishlar sonini hisoblashga toʻgʻri kelsa, unda Excel dasturlar paketidagi **TEPECT** komandasidan foydalanish mumkin, masalan $A_{22}^7 = 859541760$ ni hisoblang:

Berilgan to'plamning o'rin almashtirishlari soni.

Avval aytganimizdek, o'rin almashtirish joylashtirishning xususiy xolidan iborat, shuning uchun ham o'rin almashtirishni n ta elementdan n dan joylashtirish deb qarash mumkin:

$$P_n = A_n^n = \frac{n!}{(n-n)!} = n!$$

Bu son *n* elementli qism to'plamni tartiblash usullari soniga teng bo'ladi.

- **6.3-Misol.** 2.1. paragrafdagi 26 kishini kassada navbatga necha xil usulda joylashtirish mumkin degan savolga endi javob berish mumkin: $P_n = 26!$
- **6.4-Misol.** Uchta elementdan iborat $A=\{a, b, c\}$ to plamning elementlaridan tuzilgan oʻrin almashtirishlar soni 6 ga teng:

$$(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a).$$

- **6.2-Teorema.** n elementga ega bo`lgan S to`plamning barcha o`rin almashtirishlari soni $P_n = n!$ ga teng.
- **6.4-Misol.** Javonga 5 ta kitobni necha xil usulda joylashtirish mumkin.

$$P_5 = 5! = 120$$

Tadqiqotlarda oʻrin almashtirishlarni hisoblashga toʻgʻri kelsa, unda Excel dasturlar paketidagi **ΦΑΚΤΡ** komandasidan foydalanish mumkin, masalan 10! ni hisoblash uchun quyidagicha ish tutiladi:

6.5-Misol. $\{1, 2, 3, \dots, 2n\}$ to plam elementlarini juft sonlari juft oʻrinlarda keladigan qilib necha xil usulda tartiblashtirish mumkin?

Yechilishi:

Juft sonlarni juft nomerli oʻrinlarga (bunday joylar n ta) n! ta usulda qoʻyib chiqish mumkin, bu usullarning har biriga toq sonlarni toq nomerli oʻrinlarga n! ta usulda qoʻyib chiqish mos keladi. Shuning uchun ham koʻpaytirish qoidasiga koʻra barcha oʻrniga qoʻyishlar soni

$$n! \cdot n! = (n!)^2$$

ga teng boʻladi.

6.5-Misol. *n* ta elementdan berilgan ikkita elementi yonma-yon turmaydigan nechta oʻrin almashtirish bajarish mumkin.

Yechilishi:

a va b elementlar berilgan boʻlsin. Bu elementlar yonma-yon turgan oʻrin almashtirishlar sonini aniqlaymiz.

Birinchi hol a element b elementdan oldin kelishi mumkin, bunda a birinchi oʻrinda, ikkinchi oʻrinda, va hokazo (n-1)- oʻrinda turishi mumkin.

Ikkinchi hol b element a elementdan oldin kelishi mumkin, bunday holatlar ham (n-1) ta boʻladi. Shunday qilib, a va b elementlar yonma-yon keladigan holatlar soni $2 \cdot (n-1)$ ta boʻladi. Bu usullarning har biriga qolgan (n-2) ta elementning (n-2)! ta oʻrin almashtirishi mos keladi. Demak, a va b elementlar yonma - yon keladigan barcha oʻrin almashtirishlar soni $2 \cdot (n-1) \cdot (n-2)! = 2(n-1)!$ ta boʻladi. Shuning uchun ham yonma-yon turmaydigan oʻrin almashtirishlar soni

$$n!-2(n-1)!=(n-1)!(n-2)$$

ga teng bo`ladi.

Oʻrin almashtirishlar. Berilgan toʻplamning tartiblashtirilgan toʻplam ostilari (joylashtirish)

Teorema. *n* ta elementdan iborat A toʻplam uchun Faqat elementlar tartibi bilan farq qiladigan turli tartiblashtirilgan turli toʻplamlar ushbu toʻplamninig *oʻrin almashtirishi* deyiladi va

$$P_n = n!$$

boʻladi.

6.3-Teorema. n ta elementdan iborat toʻplamning tartiblashtirilgan k – elementli toʻplam ostilari soni

$$A_n^k = k! * C_n^k = \frac{n!}{(n-k)!} = n * (n-1) * (n-2) * * (n-(k-1))$$

ta bo'ladi. n elementli to'plamning tartiblashtirilgan k-elementli to'plam ostilari n ta elementdan k tadan joylashtirish deyiladi.

Takrorlanmaydigan guruhlashlar.

Bizga tartiblanmagan takrorlanmaydigan n ta elementi bo`lgan S toʻplam berilgan bo`lsin. C_n^k bilan A_n^k ni taqqoslaymiz. Bilamizki, k ta elementni k! ta usulda tartiblash mumkin, ya` ni

$$k!\cdot C_n^k = A_n^k$$

bo`ladi. Bundan

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

kelib chiqadi.

6.6-Misol. Har uchtasi bir to'g'ri chiziqda yotmagan n ta nuqta berilgan. Nuqtalarni ikkitalab tutashtirish natijasida nechta kesma o'tkazish mumkin?

Yechilishi: masala shartiga ko'ra chizmada qavariq n burchak hosil bo'ladi. U holda 1-nuqta (n-1) ta nuqta bilan, 2-nuqta (n-2) ta nuqta bilan va h.k., (n-1) — nuqta 1 ta nuqta bilan tutashtiriladi/ Bunda hosil bo'lgan to'g'ri chiziqlar soni

$$(n-1)+(n-2)+(n-3)+...+2+1=\frac{1+(n-1)}{2}(n-1)=\frac{n(n-1)}{2}=C_n^2$$

ga teng bo'ladi.

6.7-Misol. Restoranida 7 ta asosiy taomdan 3 tasini tanlash imkoniyati berilsa, nechta usulda buyurtma qilish mumkin?

Yechilishi: Bu misolda takrorlanmaydigan 7 ta elementdan 3 tadan guruhlashni topish kerak:

$$C_7^3 = \frac{7!}{(7-3)!3!} = \frac{7!}{4!3!} = \frac{4!5 \cdot 6 \cdot 7}{4!1 \cdot 2 \cdot 3} = 35.$$

6.8-Misol. Sportloto lotareya o'yinida 36 ta natural sondan 6 tasini topgan kishi asosiy yutuqqa ega bo'ladi. Asosiy yutuqni olish imkoniyati qanday?

Yechilishi: Yutuq raqamlar oltitaligi 36 tadan 6 ta takrorlanmaydigan guruhlashga teng:

$$C_{36}^6 = \frac{36!}{(36-6)!6!} = \frac{36!}{30!6!} = \frac{31 \cdot 32 \cdot 33 \cdot 34 \cdot 35 \cdot 36}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} = 1947792.$$

Misolning javobidan ko'rinadiki, asosiy yutiqni olish imkoniyati judayam kam, ya'ni 1 947 792 tadan 1 taga teng.

5, 4, va 3 ta raqamni topgan kishilarga ham yutuq beriladi, lekin bu yutuq shi kishilar o'rtasida teng taqsimlanadi. Bu holda 2 xil guruhlash mavjud, biri C_6^3 omadli tanlov va ikkinchisi C_{30}^3 omadsiz tanlov. U holda 3 ta raqamni topgan yutuq egalari imkoniyati:

$$C_{30}^3 \cdot C_6^3 = \frac{30!}{27! \cdot 3!} \cdot \frac{6!}{3! \cdot 3!} = \frac{28 \cdot 29 \cdot 30}{1 \cdot 2 \cdot 3} \cdot 4 \cdot 5 = 81200.$$

Yutuqli bo'lish ehtimoli $\frac{81200}{1947792} \approx 0.042$ ga teng.

6.4-Teorema. n ta elementi bo`lgan S toʻplamning barcha tartiblanmagan k elementli qism toʻplamlari soni

$$C_n^k = \frac{n!}{k!(n-k)!}$$

ga teng.

Ushbu teoremani umumlashtiramiz:

n ta elementi bo`lgan S toʻplamni k ta qism toʻplamlar yigʻindisi koʻrinishida necha xil usulda yoyish mumkin degan savolni qoʻyamiz. Buning uchun S to`plamni $S = A_1 \cup A_2 \cup ... \cup A_m$ o`zaro kesishmaydigan k ta qism toʻplamlarga ajratish mumkin bo`lsin. Bunda ularning elementlari soni mos ravishda

$$N(A_1)=k_1, N(A_2)=k_2, ..., N(A_m)=k_m$$

bo'lib, $k_1, k_2, ..., k_m$ berilgan sonlar uchun

$$k_i \ge 0$$
, $k_1 + k_2 + ... + k_m = n$

shartlar bajariladi. $A_1, A_2, ..., A_m$ to'plamlar umumiy elementga ega emas.

S to 'plamning k_1 elementli A_1 qism to 'plamini $C_n^{k_1}$ usulda tanlash mumkin, qolgan n- k_1 element ichidan k_2 elementli A_2 qism to 'plamini $C_{n-k_1}^{k_2}$ usulda tanlash mumkin va hokazo. Turli xil $A_1, A_2, ..., A_m$ qism to 'plamlarni tanlash usullari ko 'paytirish qoidasiga ko 'ra

$$C_n^{k_1} \cdot C_{n-k_1}^{k_2} \cdot C_{n-k_1-k_2}^{k_3} \cdot \dots \cdot C_{n-k_1-k_2-\dots-k_{m-1}}^{k_m} =$$

$$= \frac{n!}{k_{1}!(n-k_{1})!} \cdot \frac{(n-k_{1})!}{k_{2}!(n-k_{1}-k_{2})!} \cdot \frac{(n-k_{1}-k_{2})!}{k_{3}! \cdot (n-k_{1}-k_{2}-k_{3})!} \cdot \dots \cdot \frac{(n-k_{1}-k_{2}-\dots-k_{m-1})!}{k_{m}!(n-k_{1}-k_{2}-\dots-k_{m})!} = \frac{n!}{k_{1}! \cdot k_{2}! \cdot \dots \cdot k_{m}!}$$

Demak, quyidagi teorema isbotlandi.

6.5-Teorema. Aytaylik k_1 , k_2 ,..., k_m butun nomanfiy sonlar boʻlib, $k_1 + k_2 + ... + k_m = n$ va S toʻplam n ta elementdan iborat boʻlsin. S ni

elementlari mos ravishda k_1 , k_2 ,..., k_m ta boʻlgan A_1 , A_2 ,..., A_m m ta qism toʻplamlar yigindisi koʻrinishida ifodalash usullari soni

$$C_n(k_1,...,k_m) = \frac{n!}{k_1! k_2! ... k_m!}$$

ta boʻladi.

 $C_n(k_1,...,k_m)$ sonlarga **polinomial koeffitsiyentlar** deyiladi.

6.9-Misol. "Baraban" soʻzidagi harflarni qatnashtirib, nechta soʻz (ma`nosi bo`lishi shart emas!) yasash mumkin?

Yechilishi: "b" harfi $k_1=2$ ta, "a" harfi $k_2=3$ ta, "r" harfi $k_3=1$ ta,

"n" harfi $k_4=1$ ta, jami harflar soni n=7 ta, demak,

$$C_7(2,3,1,1) = \frac{7!}{2! 3! 1! \cdot 1!} = 420.$$

6.10-Misol. "Lola" so'zidagi harflardan nechta so'z yasash mukin?

$$C_4(2,1,1) = \frac{4!}{2!1!1!} = 12.$$

6.6-Teorema. Elementlarining k_1 tasi 1- tipda, k_2 tasi 2-tipda, va hokazo k_m tasi m-tipda boʻlgan n elementli toʻplamning barcha oʻrin almashtirishlar soni

$$C_n(k_1,...,k_m) = \frac{n!}{k_1! k_2! ... k_m!}$$

ta boʻladi.

Tadqiqotlarda koʻp miqdordagi takrorlanuvchi oʻrin almashtirishlarni hisoblashga toʻgʻri kelsa, unda Excel dasturlar paketidagi **МУЛЬТИНОМ** komandasidan foydalanish mumkin, masalan

$$C_{10}(1,2,4,3) = \frac{10!}{1! \cdot 2! \cdot 4! \cdot 3!} = 12600$$

ekanligini tezlik bilan hisoblash hech qanday qiyinchilik tugʻdirmaydi.

Аргументы функции					U
_мультином-				6	a .
Число1	1	=	1		
Число2	2	<u> </u>	2		7
Число3	4	<u> - </u>	4		П
Число4	3	1 =	3		П
Число5		K. =		E	
= 12600 Возвращает мултиномиальный коэффициент множества чисел.					
Число4 .					
<u> </u>					
Справка по этой функции Значен	ие: 12600		ок	Отмена	

Guruhlashning xossalari

$$_{1^{0}}$$
. $C_{n+m}^{n} = C_{n+m}^{m}$

$$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

$$C_{2n}^{0} = (C_{n}^{0})^{2} + (C_{n}^{1})^{2} + ... + (C_{n}^{n})^{2}$$

Ushbu xossalarni isbotlash uchun kombinatsiyalarni faktorial ko'rinishida yozib chiqish va hisoblash yetarli.

6.7-Teorema. n elementli toʻplamning barcha qism toʻplamari soni 2^n ga teng va quyidagi tenglik oʻrinli:

$$\sum_{k=0}^{n} C_n^k = 2^k.$$

Haqiqatdan ham, C_n^k - n elementli toʻplamning barcha k elementli toʻplam ostilari soni boʻlgani uchun, tushunarliki barcha toʻplam ostilar soni

$$C_n^0 + C_n^1 + ... + C_n^n$$

yigʻindiga teng boʻlib, ularning yigʻindisi 2^n ga teng boʻladi.

6.11-Misol. 30 ta talabadan 20 tasi oʻgʻil bolalar, tavakkaliga jurnaldagi roʻyhat boʻyicha 5 talaba chaqirildi, ularning ichida koʻpi bilan 3 tasi oʻgʻil bola boʻladigan qilib necha xil usulda tanlash mumkin?

Yechilishi: Masala shartida berilgan toʻplamni sodda toʻplamlar yigʻindisi shaklida yozib olamiz:

A={0 tasi o'g'il bola, 5 tasi qiz bola}

B={1 tasi o'g'il bola, 4 tasi qiz bola }

C={2 tasi o'g'il bola, 3 tasi qiz bola }

D={3 tasi o'g'il bola, 2 tasi qiz bola }

 $\{$ Koʻpi bilan 3 tasi oʻgʻil bola $\}$ = $A \cup B \cup C \cup D$ kesidhmaydigan toʻplamlar yigʻindisining quvvati, ushbu toʻplamlar quvvatlari yigʻindisiga teng boʻladi: $n(\{$ koʻpi bilan 3 tasi oʻgʻil bola $\})$ = $n(A \cup B \cup C \cup D)$ =n(A)+n(B)+n(C)+n(D)=

$$= C_{20}^{0} \cdot C_{10}^{5} + C_{20}^{1} \cdot C_{10}^{4} + C_{20}^{2} \cdot C_{10}^{3} + C_{20}^{3} \cdot C_{10}^{2} = 1 \cdot \frac{10!}{5! \cdot 5!} + \frac{20!}{1! \cdot 19!} \cdot \frac{10!}{4! \cdot 6!} + \frac{20!}{2! \cdot 18!} \cdot \frac{10!}{3! \cdot 7!} + \frac{20!}{3! \cdot 17!} \cdot \frac{10!}{2! \cdot 8!} = 504 + 4200 + 190 \cdot 120 + 1140 \cdot 45 = 26478900.$$

Demak, 30 ta talabadan koʻpi bilan 3 tasi oʻgʻil bola boʻladigan 26.478.900 tanlash usuli mavjud.

- 2. Mustaqil bajarish uchun masala va topshiriqlar
- 2.1.Guruhlash, o'rinlashtirish, o'rin almashtirish formulalarini qo'llab yechishga doir topshiriqlar
- 2.1.1. Tokchada 5 ta kitobni necha xil usulda joylashtirish mumkin?
- **2.1.2.** $\{1, 2, 3, ..., 2n\}$ to plam elementlarini juft sonlari juft oʻrinlarda keladigan qilib necha xil usulda tartiblashtirish mumkin?
- 2.1.3. 36 ta karta aralashtirilganda 4 ta "Tuz" bir joyda keladigan variantlar soni nechta?

- **2.1.4.** Shaxmat taxtasida 8 xil rangdagi "Toʻra" ni bir-birini urmaydigan qilib nechta xil usulda oʻrin almashtirish mumkin?
- **2.1.5.** 1, 2, 3 raqamlari qatnashgan nechta uch xonali son mavjud?
- **2.1.6.** 36 ta karta aralashtirilganda 4 ta "Tuz" va 4 ta "Valet" bir joyda keladigan variantlar soni nechta?
- **2.1.7.** 36 ta karta aralashtirilganda necha xil variant mavjud?
- **2.1.8.** "Bum-Bum" qabilasi alifbosida 6 ta harf mavjud. Hech boʻlmaganda 2 ta bir xil harfi bor 6 ta harfdan iborat ketma-ketlikgina soʻz hisoblansa, "Bum-Bum" qabilasi tilida nechta soʻz bor?
- **2.1.9.** 1, 2, 3 raqamlari yonma-yon va oʻsish tartibida keladigan qilib $\{1,2,3,...n\}$ toʻplamni tartiblashtirish mumkin?
- **2.1.10.** Stipendiya uchun 5 ta sardor kassaga necha xil usulda navbatga turishlari mumkin?
- **2.1.11.** Majlisda 4 kishi A, B, C, D lar soʻzga chiqishi lozim. Agar B kishi A soʻzga chiqmasdan oldin soʻzga chiqishi mumkin boʻlmasa, Necha xil usulda notiqlar roʻyxatini tuzish mumkin?
- **2.1.12.** Doira shaklidagi stol atrofiga n ta mehmonni necha xil usulda joylashtirish mumkin?
 - **2.1.13.** Talaba 4 ta imtixonni 7 kun davomida topshirishi kerak. Buni necha xil usulda amalga oshirish mumkin? Agar oxirgi imtixon 7-kun topshirilishi aniq boʻlsachi?
 - **2.1.14.** Futbol chempionatida 16 ta jamoa qatnashadi. Jamoalarning oltin, kumush, bronza medallar va oxirgi ikkita oʻrinni egallaydigan variantlari nechta boʻladi?
 - **2.1.15.** 5 ta talabani 10 ta joyga necha xil usulda joylashtirib chiqish mumkin?
 - **2.1.16.** Ikkinchi kurs talabalari 3-semestrda 10 xil fan oʻtishadi. Dushanba kuni 4 ta har xil fandan darsni necha xil usulda dars jadvaliga qoʻyish mumkin?
 - **2.1.17.** Matbuot do'konida 5xil ko'rinishdagi konvert, 4 xil ko'rinishdagi marka sotilayapti. Necha xil usulda marka va convert sotib olish mumkin?
 - **2.1.18.** Disketalar saqlaydigan quti 12 ta nomerlangan joydan iborat. Talaba 10 ta turli xil disketalarini qutiga necha xil usulda joylashtirishi mumkin? 8 tanichi?
 - **2.1.19.** Futbol jamoasida 11 ta futbolchi ichidan jamoa sardori va sardor oʻrin bosarini necha xil usulda tanlash mumkin?
 - **2.1.20.** Agar oq qogʻoz varrogʻini 180 gradusga burilsa o, 1, 8 raqamalri oʻzgarmaydi, 6 va 9 raqamlari bir-biriga oʻtadi, boshqa raqamlar esa ma'nosini yoʻqotadi. 180 gradusga burilganda miqdori oʻzgarmaydigan nechta 7 xonali son mavjud?
 - **2.1.21.** Futbol boʻyicha Oliy liga Oʻzbekiston chempionatida 16 ta jamoa qatnashadi, oltin, kumush, bronza medallarni va oily ligani tark etuvchi 2 ta jamoani boʻlishi mumkin boʻlgan nazariy variantlari necha xil boʻlishi mumkin?

2.1.22. Oliy oʻquv yurtining ma'lum bir yoʻnalishiga 10 kishi qabul qilinishi aniq boʻlib, ushbu yoʻnalishga 14 ta abituriyent hujjat topshirgan boʻlsa, oʻqishga kirgan abituriyentlar roʻyxati necha xil boʻlishi mumkin?

Masala: $U=\{a,b,c,d,e\}$ to plamda quyidagicha shartlarni bajaruvchi nechta k ta elementli qism to plam tuzish mumkin?

- **2.1.23.** k=2 elementli takrorlanmaydigan oʻrin almashtirishlar soni?
- **2.1.24.** k=3 elementli takrorlanmaydigan oʻrin almashtirishlar soni?
- **2.1.25.** k=4 elementli takrorlanmaydigan oʻrin almashtirishlar soni?

Guruhlash, o'rinlashtirish, o'rin almashtirish formulalarini qo'llab yechishga doir topshiriq(na'muna)

2.1.0. *n* ta elementdan berilgan ikkita elementi yonma-yon turmaydigan nechta oʻrin almashtirish yasash mumkin.

2.1. Topshiriqni bajarish uchun na'muna

2.1.0. *n* ta elementdan berilgan ikkita elementi yonma-yon turmaydigan nechta oʻrin almashtirish yasash mumkin?

a va b elementlar berilgan boʻlsin. Bu elementlar yonma-yon turgan oʻrin almashtirishlar sonini aniqlaymiz. Bunda birinchi hol a element b elementdan oldin kelishi mumkin, bunda a birinchi oʻrinda, ikkinchi oʻrinda, va hokazo (n-1)- oʻrinda turishi mumkin. Ikkinchi hol b element a elementdan oldin kelishi mumkin, bunday holatlar ham (n-1) ta boʻladi. Shunday qilib a va b elementlar yonma-yon keladigan holatlar soni 2^* (n-1) ta boʻladi. Bu usullarning har biriga qolgan (n-2) ta elementning (n-2)! ta oʻrin almashtirishi mos keladi. Demak a va b elementlar yonma-yon keladigan barcha oʻrin almashtirishlar soni 2^* $(n-1)^*$ (n-2)! $=2^*$ (n-1)! ta boʻladi. Shuning uchun ham izlanayotgan oʻrin almashtirishlar soni

$$n! - 2*(n-1)! = (n-1)!*(n-2)$$

Shu oʻrinda eslatib oʻtamiz BMI, magistrlik dissertatsiyasi yoki ilmiy ishingizda

$$P_n = n!$$
 va A_n^k

koeffitsiyentlarni hisoblashga toʻgʻri kelsa, unda Excel dasturlar paketidagi mos ravishda ΦΑΚΤΡ va ΠΕΡΕCT komandalaridan foydalanishlariz mumkin:

Masalan: $P_{10}=10!=3628800$ va $A_{22}^{7}=859541760$

ekanligini tezlik bilan hisoblash hech qanday qiyinchilik tugʻdirmaydi.