

Accelerating Scientific Discovery via In Situ Computation of Merge Trees

Dmitriy Morozov, Data Analytics and Visualization, CRD

(too much communication)

(one large tree in one place)

Difficult to post-process

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the grants "Scalable Data-Computing Convergence and Scientic Knowledge Discovery," "Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge Discovery," and RAPIDS SciDAC Institute; and by the use of resources of the National Energy Research Scientific Computing Center (NERSC).

Efficient Merge Tree Computation

Merge trees have applications in Cosmology, Neuroscience, Materials Science, Combustion, Climate, Biochemistry, among many others, for clustering, threshold selection, distribution and stability

Henson: Cooperative Multitasking for In Situ Processing

(+ Z. Lukić)

Problem

- Simulations are getting larger.
- High cost of I/O (growing with every new system).
- \bullet No disk space to store simulation results. (A single Nyx snapshot is ~ 56 TB; scratch space at NERSC is 20 TB.)
- Queue wait times favor large jobs (penalizes ensembles of smaller runs, e.g., for exploring the parameter space).

Consequences:

- Can't analyze every time step of the simulation (⇒ can't augment the simulation with analysis).
- Difficult to couple simulations together.
- Complicated to do surrogate modeling (difficulty coordinating individual runs).
- Tight coupling of codes requires complicated maintenance, coordination between many parties, lots of wasted programmer time.

Solution

Main ingredients:

- Position-independent executables = code is an executable and a shared library
 (⇒ can be opened via dlopen)
- Coroutines = codes cooperatively switch execution (e.g., a simulation yields after each time step)

Henson:

- Codes are loaded into the **same address space** without having to modify their memory management.
- Codes can exchange data (including pointers to their internal arrays) via a shared table.
- User specifies as a script how execution is to alternate between the codes.
- Using PMPI wrappers restrict codes to subsets of the full MPI job:
- in transit analysis (including M:N)
- dynamically scheduled ensembles of simulations (e.g., guided by a surrogate model)

Computational Research Division