CS 3000 - Operating systems

C S21B2011

G. Hemanth

Question 1:

Step-1

⇒According to the Web portal /present voll list.
GURRAM HEMANTH

→ Brust time:
GURRAM HEMA

Ly ASCII Values corresponding to above letters. 71, 85,82,82,65,77,72,69,77,65

=> After subtracting each value with minus 60.

BT:- 11, 25, 22, 22, 5, 17, 12, 9, 17, 5

Pid	P _i	٩	P3	P4	P5	PG	P ₇	P8	Pq	Pio
AT	0	2	4	5	7	7	12	14	14	17
вТ	[]	25	22	22	5	17	12	9	17	5

Page no 2 CS 2182011 G. Hemanth

=>	Gantl	chast
=	gant	<u>Chast</u>

0	P ₂	1	3	P,	P4	5	P6	P2	P ₇	P ₃	18	Pq	Pı	Pio	P	P ₅
4		8	12	16	20	214	18	3.	2 3	6 40) 4	+ 4	8 5	5 5	5 5	9
0 0		_	^	0	0	0	0	^		p P ₃			_			-

1	4	P6	P2	P ₃	Pa	P4	P
134	135	139	139	141	142	!44	145

Job/	A·T	В.Т	F.T	T·A·T	W.T	R.T
Pr	0	[]	51	51	40	0
P.	2	25	145	143	118	2
P ₃	4	22	141	3 7	115	4
P4	5	22	144	139	117	п
P5	7	5	60	53	48	13
Ps	7	17	135	128	[[]	17
Pa	(2	12	101	89	77	20
P8	14	9	106	92	83	26
Pq	14	17	142	128	[[]	30
Pio	17	5	85	68	63	34

Page. No:-3 CS21B2011 G. Hemanth

⇒ Average completion Time = 1110/10 = 111

⇒ Average Turn Around Time = 1028/10 = 102.8

> Average waiting Time = 883/10 = 88.3

 \Rightarrow Average Response Time = 157/10 = 15.7

Page. No:-4 CS21B2011 G. Hemanth

Question-2

⇒ calculation of "MAX" Matrix.

GURRAM HEMANT

LASCII values corresponding to above letters. 71,85,82,82,65, 77, 72,69,77,65,78,84

Pid	Α	В	C
Po	[]	25	22
P,	22	5	17
Pe	12	q	17
ρ ₃	5	18	24

Page No: 5 CS21B2011 G. Hemanth

Pid	Α	В	С
Po	8	20	18
P,	18	2_	14
P2	9	5	14
P3	0	14	19

Operations: calculating the Need Matrix....

Need [n][n] = Max[n][n] - Allocation[n][n]

Need [0] [0] = 11-3=8 Need[0][1] = 25-5=20 Need[0][2] = 21-4 Need [1][2] = 17-3=14

Need[1][1]=5-3=2 Need [1][0] = 22-4=18

Need[2][1]=9-4=5

Need [2][0]=12-3=9 Need [3][0] =5-5=0

Need [3][1] = 18-4=14

Need [2] [2]=17-3=14

Need[4][0] = 0-0=0

Need [3] [2] = 24-5=19

Need[4][1]=0-0=0

Need [4][2] = 0-0=0

1 Initial Value of Resources A=35, B=35, C=35

> Total Allocated Resources A=15, B=16, C=15

Available Resources, A=20, B=19, C=20

Operations: calculating the Final order.....

Step 1: Available Matrix = 20, 19, 20 As Need 1 = (18,2,14) ~ Available = (20, 19,20) => process p, is selected.

-> New Available Matrix is (20, 19, 20) + (4, 3, 3) =(24,22,23)

Step 2: Available Matrix = 24, 22, 23

AS Need [3] = (9,5,14) < Available = (24, 22,23) => process p2 is selected.

→ New Available Matrix is (24, +22,23) + (3,4,3)

Page. No: 7 CS21B2011 G. Hemanth

Step 3% Available Matrix = 27,26,26

AS Need[3] = (0,14,19) < Available = (27,26,26)

⇒process P3 is selected.

> New Available Matrix is (27, 26, 26) + (5,4,5) = (32, 30, 31)

Step 4: Available Matrix = 32,30,31

AS Need[0] = (8,20,18) < Available = (32,30,31)

>process po is selected

→ New Available Matrix is (32, 30, 31)+(3,5,4)

= (35, 35, 35)

: The sequence is safe

: safe sequence: P, P2 P3 Po

CS21B2011

G. Hemanth

→ TRUE,

→ check if request (P1) = Available

-> NOW,

$$=(18,2,14)-(0,2,2)$$

-> updated Need Matoix ?

-	_		
	Α	В	C
Po	8	20	18
Ρ,	18	0	12
P,	9	5	14
P3	0	14	19

=) operations: calculating the Final order...

Step 1: - Wailable Matrix = 20, 17, 18

AS Need[1] = (18,0,12) < Available = (20,17,18)

⇒ process Pi is selected.

-> New Available Matrix is (20,17,18)+(4,5,5) = (24,23,23)

Step 2: Available matisix = 24, 22,23

AS Need[2] = (9,5,14) ZAVa1lable = (24,22,23)

-> process Pazis selected

7 New Available matrix 18 (24, 12, 23)+(3, 4,3)=(27, 26, 26)

Step 3% Available matrix = 97, 26, 26

AS Need [3] = (0,14,19) < Available = (27,26,26)

=> Process Pr is selected.

Page No:-10 CS21B2011 G. Hemanth

→New Available mattix is (27,26,26) +(5,4,5) = (32,30,81)

Step 4: Available matrix = 32,30,31

AS Need [0] = (8,20,18) \angle Available = (32,30,31) \Rightarrow Process po is selected \Rightarrow New Available matrix is (32,30,31) + (3,5,4) $=(35,35,35)_{6}$

⇒ <u>updated</u> <u>Allocation</u>:-

P:A	Α	В	С
Po	3	5	4
Ρ,	4	5	5
Pe	3	4	3
P ₃	5	4	5

 \Rightarrow the Available resources are (A,B,c)=(20,17,18)

Request from
$$P_2 = (3,0,3)$$

 $\Rightarrow \text{check if request } (P_2) Z = \text{Need } (P_2)$
 $(3,0,3) Z = (9,5,14)$

→"TRUE"

$$\rightarrow$$
 Now check if request $(P_2) \angle = A \text{ Vailable}$
 $(3,0,3) \angle = (20,17,18)$

→ TRUE,

$$= (20,17,18) - (3,0,3)$$

Available = (17, 17, 15)

(ii) Allocation(
$$P_2$$
) = Allocation CP_2) + Request(P_2) = (3,4,3)+(3,0,3)

Allocation (P2) = (6,4,6)

CS21B2011 G.Hemanth

⇒updated Need Matrix

D I			
Pial	Α	В	C .
Po	8	20	18
۴,	18	0	12
P2	6	5	[]
P ₃	O	14	19

Operations: - calculating the Need Matrix.....

Need[n][n] = max[n][n] -Allocation[n][n]

Need[0][2]=22-4=18 Need [0] [0] =11-3=8 Need [0][1] = 25-5=20

Need [][0] = 22-4=18 Need[][]=5-5=0

Heed [1][2] =17-5=12

Need[2][0]=12-6=6 Need[2][1]=9-4=5

Need [2][2] =17-6= 11

Need [3] [0] = 5-5=0 Need [3] [1] = 18-4=14

Need [3][2] = 24-5=19

Operations: - calculating the final order ...

Step 1: Available Matrix = 17, 17, 15

AS Need [2] =(6,5,11) < Available =(17,17,15)

⇒ process P2 is selected.

> New Available matrix is (17, 17, 15) + (6,4,6) = (23,21,21)

Step 2 : Available Matrix = 23,21,21

AS Need [3] = (0, 14,19) < Available = (23,21,21)

=>processp3 is selected.

Page no:13 (S21B2011 G. Hernanth

= (31,30,30) Step 4: Available Matrix = 31,30,30

-7 New Available matrix is (31, 30, 30) + (4,5,5)

@ updated Allocation:

Pid	Α	В	С
Po	3	5	4
ρ,	4	5	5
P2	6	4	6
ρ ₃	5	4	5