Resumen segunda filmina Discreta 2

Lautaro Bachmann

Contents

Cotas para Greedy
Teorema de Brooks
Propiedad
VIT
Very Important Theorem
Corolario
Consecuencia
Grafos bipartitos
El problema 2COLOR
Teorema
Algoritmo 2COLOR para G conexo
Complejidad
Corolario 3

Cotas para Greedy

$$\chi(G) \Delta + 1$$

Teorema de Brooks

Si G es conexo, entonces $\chi(G)$ Δ , a menos que G sea un ciclo impar o un grafo completo.

Propiedad

Si G es conexo, entonces existe un ordenamiento de los vértices tal que Greedy colorea todos los vértices, salvo uno, con Δ colores o menos.

VIT

Very Important Theorem

Sea G = (V, E) un grafo cuyos vértices estan coloreados con un coloreo propio c con r colores 1, ..., r Sea π una permutación de los números 0, 1, ..., r 1, es decir, π : 1, ..., r 1, ..., r es una biyección. Sea Vi = V : c(x) = i = 0, 1, ..., r 1. Ordenemos los vértices poniendo primero los vértices de $V\pi(0)$, luego los de $V\pi(1)$, etc, hasta (el orden interno de los vértices dentro de cada $V\pi(i)$ es irrelevante)

Entonces Greedy en ese orden coloreará G con r colores o menos.

Corolario

Existe un ordenamiento de los vértices de G tal que Greedy colorea G con $\chi(G)$ colores.

Consecuencia

si no podemos obtener $\chi(G)$ polinomialmente, usaremos el VIT para tratar de obtener una aproximación a $\chi(G)$.

No siempre se puede, pero en la practica suele funcionar bastante bien, dependiendo de cuales permutaciones π se usen.

Grafos bipartitos

Un grafo se dice bipartito si $\chi(G) = 2$.

Es decir, si G = (V, E) entonces existen X, Y V tales que:

$$1 V = X Y. 2 X Y =$$

El problema 2COLOR

Dado un grafo G, ¿es $\chi(G)$ 2?

Teorema

2COLOR es polinomial

Algoritmo 2COLOR para G conexo.

Elegir un vértice x cualquiera.

Correr BFS(x), creando un arbol.

Para cada vértice z, sea N(z) el nivel de z en el arbol BFS(x).

Colorear $c(z) = (N(z) \mod 2)$.

Chequear si el colorario dado en [4] es propio.

Si lo es, retornar " $\chi(G)$ 2"

Si no lo es, retornar " $\chi(G) > 2$ "

Complejidad

la complejidad total es O(m) + O(m) = O(m).

Corolario

Sea G un grafo con $\chi(G)$ 3.

Como $\chi(G)$ 3, el coloreo de 2 colores dado en el algoritmo no puede ser propio.

Conclusión:

 $\chi(G)$ 3 si y solo si existe un ciclo impar en G.