PROOF OF CALIBRATION

File: https://www.kaggle.com/datasets/mehmetisik/advertisingcsv/data

Best Linear Unbiased Estimator (BLUE)

1. Normality

One-Sample Kolmogorov-Smirnov Test

Unstandardiz ed Residual

N			200
Normal Parameters a,b Mean			.0000000
	Std. Deviation		1.67275727
Most Extreme Differences	Absolute		.132
	Positive		.062
	Negative		132
Test Statistic			.132
Asymp. Sig. (2-tailed) ^c			<,001
Monte Carlo Sig. (2-tailed) ^d	Sig.		.000
	99% Confidence Interval	Lower Bound	.000
		Upper Bound	.000

- a. Test distribution is Normal.
- b. Calculated from data.
- c. Lilliefors Significance Correction.
- d. Lilliefors' method based on 10000 Monte Carlo samples with starting seed 2000000.

IBM SPSS Statistics 27

2. Multicollinearity

Coefficients^a

Collinearity Statistics

Mode	el	Tolerance	VIF
1	TV	.995	1.005
	radio	.873	1.145
	newspaper	.873	1.145

a. Dependent Variable: sales

IBM SPSS Statistics 27

3. Heteroskedasticity

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	10.76320	Prob. F(9,190)	0.0000
Obs*R-squared	67.53524	Prob. Chi-Square(9)	0.0000

EViews 13

4. Autocorrelation

Model Summary^b

Model	Durbin- Watson		
1	2.084ª		
5			

- a. Predictors: (Constant), newspaper, TV, radio
- b. Dependent Variable: sales

IBM SPSS Statistics 27

Model Fit

Dependent Variable: SALES Method: Least Squares Date: 11/14/24 Time: 21:17

Sample: 1200

Included observations: 200

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2.938889	0.311908	9.422288	0.0000
TV	0.045765	0.001395	32.80862	
RADIO	0.188530	0.008611	21.89350	0.0000
NEWSPAPER	-0.001037	0.005871	-0.176715	0.8599

EViews 13