Información General

Curso : Cómputo Evolutivo

Semestre : 2025 - 2

Profesores : Katya Rodríguez Vázquez

: Augusto César Poot Hernández

Entrega : Febrero 28 de 2025

Alumno : Pablo Uriel Benítez Ramírez, 418003561

Índice

1.	Esfe				2
	1.1.	Elitismo (n=2)	 		2
		1.1.1. Ruleta	 		3
		1.1.2. SUS	 		4
		1.1.3. Torneo binario	 		5
		1.1.4. Vasconcelos	 		6
	1.2.	Elitismo (n=5)	 		6
		1.2.1. Ruleta			7
		1.2.2. SUS			8
		1.2.3. Torneo binario			9
		1.2.4. Vasconcelos			10
2.	Ros	enbrock			11
	2.1.	Elitismo (n=2)	 		11
		2.1.1. Ruleta	 		12
		2.1.2. SUS	 		13
		2.1.3. Torneo binario	 		14
		2.1.4. Vasconcelos	 		15
	2.2.	Elitismo (n=5)	 		15
		2.2.1. Ruleta	 		16
		2.2.2. SUS	 		17
		2.2.3. Torneo binario	 		18
		2.2.4. Vasconcelos	 		19
3.		nmenblau			2 0
	3.1.	Elitismo			20
		3.1.1. Ruleta			21
		3.1.2. SUS	 		23
		3.1.3. Torneo binario			25
		3.1.4. Vasconcelos	 		26
	-	1 11			•
4.		holder			28
	4.1.	Elitismo			28
		4.1.1. Ruleta			29
		4.1.2. SUS			30
		4.1.3. Torneo binario			31
		4.1.4 Vasconcelos			32

1. Esfera

$$f(x) = \sum_{i=1}^{n} x_i^2 \qquad -10 \le x \le 10$$

$$f(x_1, \dots, x_n) = f(0, \dots, 0) = 0$$

1.1. Elitismo (n=2)

Elitismo del $20\,\%$

Parámetros

m = 15# longitud del genotipo $pob_size = 50$ # tamaño de la población a = -10# valor mínimo de x b = 10# valor máximo de x decimales=3 # número de decimales # variables a considerar n = 2# total de bits t = m * nepsilon = 1e-6# cota de selección proba_cruza = 0.8 # probabilidad de cruza proba_muta = 1/t # probabilidad de mutación generaciones = 50 # número de generaciones etapas = 5# número de etapas

1.1.1. Ruleta

Iteración 1

Total de generaciones: 250

Mejor genotipo: [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Mejor fenotipo (x1,...,xn): [-0. 0.] Mejor evaluación f(x1,...,xn): 0.0

Figura 1: Ruleta

1.1.2. SUS

Iteración 1

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [0. -0.] Mejor evaluación f(x1,...,xn): 0.0

Figura 2: SUS

1.1.3. Torneo binario

Iteración 1

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [-0. -0.] Mejor evaluación f(x1,...,xn): 0.0

Figura 3: Torneo

1.1.4. Vasconcelos

Iteración 1

```
Total de generaciones: 250
```

Mejor fenotipo (x1,...,xn): [-0. 0.] Mejor evaluación f(x1,...,xn): 0.0

Figura 4: Vasconcelos

1.2. Elitismo (n=5)

Elitismo del $20\,\%$

Parámetros

```
# longitud del genotipo
m = 15
pob\_size = 50
                   # tamaño de la población
a = -10
                   # valor mínimo de x
b = 10
                   # valor máximo de x
decimales=3
                   # número de decimales
                   # variables a considerar
n = 5
t = m * n
                   # total de bits
                   # cota de selección
epsilon = 1e-6
proba_cruza = 0.8 # probabilidad de cruza
                   # probabilidad de mutación
proba_muta = 1/t
generaciones = 50 # número de generaciones
etapas = 5
                  # número de etapas
```

1.2.1. Ruleta

```
Iteración 1
```

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [-0. -0. -0. -0.]

Figura 5: Ruleta

1.2.2. SUS

```
Iteración 1
```

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [-0. -0. -0. -0. 0.]

Figura 6: SUS

1.2.3. Torneo binario

```
Iteración 1
Total de generaciones: 250
```

Mejor fenotipo (x1,...,xn): [-0. -0. -0. -0.]

Figura 7: Torneo

1.2.4. Vasconcelos

Iteración 2

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [$0.011 \ 0.005 \ -0.007 \ -0.002 \ -0.012$]

Figura 8: Vasconcelos

2. Rosenbrock

$$f(\mathbf{x}) = \sum_{i=1}^{n-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + (1 - x_i)^2 \right]$$
$$-10 \le x \le 10$$

Min =
$$\begin{cases} n = 2 & \to & f(1,1) = 0, \\ n = 3 & \to & f(1,1,1) = 0, \\ n > 3 & \to & f(\underbrace{1, \dots, 1}_{n \text{ times}}) = 0 \end{cases}$$

2.1. Elitismo (n=2)

Elitismo del $20\,\%$

Parámetros

```
m = 15
                   # longitud del genotipo
pob\_size = 50
                   # tamaño de la población
a = -10
                   # valor mínimo de x
b = 10
                   # valor máximo de x
decimales=3
                   # número de decimales
n = 2
                   # variables a considerar
t = m * n
                   # total de bits
                   # cota de selección
epsilon = 1e-6
proba_cruza = 0.8 # probabilidad de cruza
                   # probabilidad de mutación
proba_muta = 1/t
generaciones = 50 # número de generaciones
etapas = 5
                  # número de etapas
```

2.1.1. Ruleta

Iteración 3

Total de generaciones: 250

Mejor genotipo: [1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0]

Mejor fenotipo (x1,...,xn): [1.008 1.016]

Figura 9: Ruleta

2.1.2. SUS

Iteración 5

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [1.261 1.596] Mejor evaluación f(x1,...,xn): 0.072

Figura 10: SUS

2.1.3. Torneo binario

Iteración 3

Total de generaciones: 250

Mejor genotipo: [1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0]

Mejor fenotipo (x1,...,xn): [0.996 0.992]

Figura 11: Torneo

2.1.4. Vasconcelos

```
Iteración 2
```

Total de generaciones: 250

Mejor genotipo: [1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0]

Mejor fenotipo (x1,...,xn): [0.964 0.929] Mejor evaluación f(x1,...,xn): 0.001

Figura 12: Vasconcelos

2.2. Elitismo (n=5)

Elitismo del $20\,\%$

Parámetros

```
# longitud del genotipo
m = 15
pob\_size = 50
                   # tamaño de la población
a = -10
                   # valor minimo de x
b = 10
                   # valor máximo de x
decimales=3
                   # número de decimales
                   # variables a considerar
n = 5
t = m * n
                   # total de bits
epsilon = 1e-6
                   # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
                   # probabilidad de mutación
proba_muta = 1/t
generaciones = 50 # número de generaciones
                  # número de etapas
etapas = 5
```

2.2.1. Ruleta

Iteración 4

Total de generaciones: 250

0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

Mejor fenotipo (x1,...,xn): [1.113 1.25 1.596 2.561 6.563]

Figura 13: Ruleta

2.2.2. SUS

```
Iteración 5
```

Total de generaciones: 250

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Mejor fenotipo (x1,...,xn): [0.156 -0. -0. 0.009 0.]

Figura 14: SUS

2.2.3. Torneo binario

```
Iteración 4
```

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [0.673 0.451 0.196 -0. -0.]

Figura 15: Torneo

2.2.4. Vasconcelos

Cambio de parámetros

```
etapas = 8  # número de etapas
```

Iteración 1

Total de generaciones: 400

Mejor fenotipo (x1,...,xn): [0.781 0.645 0.428 0.196 0.039]

Figura 16: Vasconcelos

3. Himmenblau

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2.$$

-5 \le x, y \le 5

$$\operatorname{Min} = \begin{cases} f\left(3,0,2,0\right) &= 0,0 \\ f\left(-2,805118,3,131312\right) &= 0,0 \\ f\left(-3,779310,-3,283186\right) &= 0,0 \\ f\left(3,584428,-1,848126\right) &= 0,0 \end{cases}$$

3.1. Elitismo

Elitismo del $20\,\%$

Parámetros

m = 14# longitud del genotipo $pob_size = 50$ # tamaño de la población a = -5# valor mínimo de x b = 5# valor máximo de x decimales=3 # número de decimales # variables a considerar n = 2# total de bits t = m * n# cota de selección epsilon = 1e-6 proba_cruza = 0.8 # probabilidad de cruza proba_muta = 1/t # probabilidad de mutación generaciones = 50 # número de generaciones etapas = 5# número de etapas

3.1.1. Ruleta

Iteración 1

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [3.584 -1.848]

Mejor evaluación f(x1,...,xn): 0.0

Figura 17: Ruleta

Iteración 3

Total de generaciones: 250

Mejor genotipo: [1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0]

Mejor fenotipo (x1,...,xn): [3. 2.] Mejor evaluación f(x1,...,xn): 0.0

Figura 18: Ruleta

3.1.2. SUS

Iteración 2

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [3.584 -1.849]

Figura 19: SUS

Iteración 5

Total de generaciones: 250

Mejor genotipo: [1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0]

Mejor fenotipo (x1,...,xn): [3. 2.001]

Figura 20: SUS

3.1.3. Torneo binario

Iteración 4

Total de generaciones: 250

Mejor fenotipo (x1,...,xn): [3. 2.] Mejor evaluación f(x1,...,xn): 0.0

Figura 21: Torneo

3.1.4. Vasconcelos

Iteración 3

Total de generaciones: 250

Mejor genotipo: [1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0]

Mejor fenotipo (x1,...,xn): [3. 2.] Mejor evaluación f(x1,...,xn): 0.0

Figura 22: Vasconcelos

Iteración 4

Total de generaciones: 250

 ${\tt Mejor\ genotipo:\ [1\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 0]}$

Mejor fenotipo (x1,...,xn): [3.584 -1.848]

Figura 23: Vasconcelos

4. Eggholder

$$f(x,y) = -(y+47)\sin\sqrt{\left|\frac{x}{2} + (y+47)\right|} - x\sin\sqrt{|x-(y+47)|}$$
$$-512 \le x, y \le 512$$

$$f(512, 404, 2319) = -959, 6407$$

4.1. Elitismo

Elitismo del 10%Parámetros

```
m = 20
                   # longitud del genotipo
pob\_size = 50
                   # tamaño de la población
a = -512
                    # valor mínimo de x
b = 512
                    # valor máximo de x
decimales=3
                   # número de decimales
n = 2
                   # variables a considerar
t = m * n
                   # total de bits
                   # cota de selección
epsilon = 1e-6
```

proba_cruza = 0.8 # probabilidad de cruza proba_muta = 1/t # probabilidad de mutación generaciones = 50 # número de generaciones target = 0 # objetivo de minimización

etapas = 5 # número de etapas

4.1.1. Ruleta

Iteración 5

Total de generaciones: 250

0 0 0]

Mejor fenotipo (x1,...,xn): [487.25 442.751]

Figura 24: Ruleta

4.1.2. SUS

Cambio de parámetros

generaciones = 100 # número de generaciones

Iteración 3

Total de generaciones: 500

 $\texttt{Mejor genotipo:} \ [1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1$

0 0 0]

Mejor fenotipo (x1,...,xn): [452.939 464.259]

Figura 25: SUS

4.1.3. Torneo binario

Cambio de parámetros: elitismo $20\,\%$

Iteración 5

Total de generaciones: 250

1 1 1]

Mejor fenotipo (x1,...,xn): [479.981 430.5] Mejor evaluación f(x1,...,xn): -955.853

Figura 26: Torneo Binario

4.1.4. Vasconcelos

Iteración 3

Total de generaciones: 250

1 0 0]

Mejor fenotipo (x1,...,xn): [511.985 403.981] Mejor evaluación f(x1,...,xn): -959.526

Figura 27: Vasconcelos