Table 15 | Tables presents the downstream evaluation results on Mistral 7B for MatQuant loss reweighting when applied to OmniQuant. Weightings: $(x, y, z) \rightarrow (\lambda_8, \lambda_4, \lambda_2)$ (from Equation 7).

					Mistral 7	Έ		
Data type	Weightings	ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Average
	(1, 1, 1)	48.04	73.44	84.13	79.37	81.12	74.66	73.46
	$(1\sqrt{2},\sqrt{2})$	48.46	73.19	84.28	79.19	81.12	74.74	73.5
	$(\sqrt{2},1,\sqrt{2})$	47.95	73.4	84.46	79.11	81.34	74.51	73.46
int8	$(1, 1\sqrt{2})$	48.21	73.02	84.34	79.03	81.28	74.59	73.41
IIICO	(2, 2, 1)	49.06	73.48	84.74	79.73	81.56	74.35	73.82
	$(\sqrt{2}, 2, 1)$	49.06	73.57	84.56	79.64	81.39	74.27	73.75
	$(2, \sqrt{2}, 1)$	48.98	73.95	84.50	79.60	81.61	74.90	73.92
	$(\sqrt{2},\sqrt{2},1)$	48.98	73.86	84.56	79.55	81.23	74.74	73.82
	(1, 1, 1)	48.21	72.69	83.49	78.82	81.12	74.43	73.13
	$(1\sqrt{2},\sqrt{2})$	49.15	72.81	83.39	78.71	80.79	74.66	73.25
	$(\sqrt{2},1,\sqrt{2})$	47.95	72.43	83.43	79.24	81.01	74.03	73.01
int4	$(1, 1\sqrt{2})$	48.46	73.44	84.07	78.9	81.01	73.88	73.29
1110 ((2, 2, 1)	49.15	72.81	83.88	79.8	81.88	73.48	73.5
	$(\sqrt{2}, 2, 1)$	48.89	72.69	82.72	79.53	81.66	73.88	73.23
	$(2, \sqrt{2}, 1)$	47.87	72.05	83	79.56	81.23	74.27	73
	$(\sqrt{2},\sqrt{2},1)$	48.29	72.47	82.84	79.52	81.07	73.64	72.97
	(1, 1, 1)	41.38	67.42	71.62	71.98	77.86	65.67	65.99
	$(1\sqrt{2},\sqrt{2})$	40.78	66.2	73.61	72.68	77.75	67.4	66.4
	$(\sqrt{2},1,\sqrt{2})$	40.36	67.09	75.35	72.46	77.48	65.9	66.44
int2	$(1, 1\sqrt{2})$	40.36	67.17	74.83	71.64	77.53	66.14	66.28
	(2, 2, 1)	37.2	62.46	67.74	70.29	76.55	66.69	63.49
	$(\sqrt{2}, 2, 1)$	37.29	64.35	61.1	68.88	74.86	65.19	61.94
	$(2,\sqrt{2},1)$	39.68	65.24	68.93	66.64	75.19	64.09	63.29
	$(\sqrt{2},\sqrt{2},1)$	34.56	61.24	60.61	58.07	72.63	59.98	57.85
	(1, 1, 1)	48.46	72.98	84.07	79.64	81.18	75.22	73.59
	$(1\sqrt{2},\sqrt{2})$	49.06	73.44	84.59	79.51	81.28	74.74	73.77
	$(\sqrt{2},1,\sqrt{2})$	47.95	73.48	84.43	79.28	81.45	75.14	73.62
int6	$(1, 1\sqrt{2})$	48.38	72.94	84.34	79.15	81.18	74.59	73.43
11110	(2, 2, 1)	48.46	72.94	84.13	79.89	81.5	74.9	73.64
	$(\sqrt{2},2,1)$	48.81	73.48	84.34	79.67	81.34	74.9	73.76
	$(2, \sqrt{2}, 1)$	49.4	73.65	84.4	79.68	81.28	74.74	73.86
	$(\sqrt{2},\sqrt{2},1)$	49.23	73.57	84.43	79.55	81.12	74.66	73.76
	(1, 1, 1)	45.65	71.21	80.43	78.31	81.07	72.61	71.55
	$(1\sqrt{2}, \sqrt{2})$	47.7	72.05	82.81	78.74	81.12	72.77	72.53
	$(\sqrt{2},1,\sqrt{2})$	46.33	72.43	81.8	79.03	82.1	73.4	72.51
int3	$(1,1\sqrt{2})$	45.99	71.09	80.73	78.77	80.85	72.53	71.66
· -	(2, 2, 1)	47.95	73.36	82.57	79.31	81.39	74.9	73.25
	$(\sqrt{2}, 2, 1)$	44.45	69.7	82.11	77.68	80.2	71.74	70.98
	$(2, \sqrt{2}, 1)$	46.84	72.73	80.95	78.79	81.56	73.01	72.31
	$(\sqrt{2}, \sqrt{2}, 1)$	47.01	71.59	81.96	78.89	81.39	72.45	72.22

Table 16 \mid Table presents the downstream evaluation and perplexity results for our MatQuant codistillation experiments on Gemma-2 9B with OmniQuant.

	OmniQuant				Gemma-2	2 9B			
Data type	Config.	ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Average	log pplx.
	$[8, 4, 8 \rightarrow 2]$	57.59	77.27	81.83	75.48	81.01	67.25	73.4	2.467
int8	$[8, 4, 2, 8 \rightarrow 2]$	57.17	77.36	82.2	75.82	80.96	67.25	73.46	2.466
	$[8, 4, 2, 8 \rightarrow 4; 2]$	56.4	77.82	82.32	75.02	80.63	67.72	73.32	2.466
	$[8, 4, 8 \rightarrow 2]$	57.68	78.45	82.97	75.5	80.85	67.56	73.84	2.488
int4	$[8, 4, 2, 8 \rightarrow 2]$	57.51	77.61	80.46	74.74	81.12	66.61	73.01	2.495
	$[8, 4, 2, 8 \rightarrow 4; 2]$	56.57	77.99	82.54	74.77	80.58	66.3	73.12	2.518
	$[8, 4, 8 \rightarrow 2]$	48.81	74.03	81.65	68.1	77.48	65.11	69.2	2.796
int2	$[8, 4, 2, 8 \rightarrow 2]$	49.15	75.34	83.12	68.79	77.64	67.01	70.17	2.778
	$[8, 4, 2, 8 \rightarrow 4; 2]$	49.83	75.04	79.79	68.38	77.86	67.4	69.72	2.804
	$[8, 4, 8 \rightarrow 2]$	57.42	77.19	81.87	75.42	81.01	67.8	73.45	2.468
int6	$[8, 4, 2, 8 \rightarrow 2]$	57.51	77.48	82.32	75.88	81.07	66.61	73.48	2.467
	$[8, 4, 2, 8 \rightarrow 4; 2]$	56.4	78.03	82.63	75.14	80.79	67.4	73.4	2.498
	$[8, 4, 8 \rightarrow 2]$	55.63	75.88	80.12	74.01	80.36	67.96	72.33	2.549
int3	$[8, 4, 2, 8 \rightarrow 2]$	54.35	76.85	79.33	74.6	80.47	67.4	72.17	2.543
	$[8, 4, 2, 8 \rightarrow 4; 2]$	55.2	76.98	82.45	73.59	80.41	68.43	72.84	2.58

Table 17 | Table presents the downstream evaluation and perplexity results for our MatQuant codistillation experiments on Gemma-2 9B with QAT.

	QAT				Gemma-2	2 9B			
Data type	Config.	ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Average	log pplx.
	$[8, 4, 8 \rightarrow 2]$	58.11	76.43	81.25	79.12	82.05	71.35	74.72	2.298
int8	$[8, 4, 2, 8 \rightarrow 2]$	57.51	76.43	81.53	78.95	82.1	71.19	74.62	2.299
	$[8, 4, 2, 8 \rightarrow 4; 2]$	58.11	76.14	81.68	79.12	82.26	71.51	74.8	2.302
	$[8, 4, 8 \rightarrow 2]$	57.42	76.35	77.55	78.06	81.61	71.59	73.76	2.328
int4	$[8, 4, 2, 8 \rightarrow 2]$	56.91	75.8	78.44	77.76	81.39	72.38	73.78	2.329
	$[8, 4, 2, 8 \rightarrow 4; 2]$	57.51	75.76	75.96	77.96	81.72	71.98	73.48	2.33
	$[8, 4, 8 \rightarrow 2]$	39.51	65.03	66.88	63.37	75.08	61.01	61.81	2.74
int2	$[8, 4, 2, 8 \rightarrow 2]$	40.78	66.5	67.55	63.67	75.95	60.62	62.51	2.746
	$[8, 4, 2, 8 \rightarrow 4; 2]$	40.19	65.7	65.57	63.83	75.3	62.12	62.12	2.746
	$[8, 4, 8 \rightarrow 2]$	57.85	76.09	81.47	78.98	81.88	71.27	74.59	2.301
int6	$[8, 4, 2, 8 \rightarrow 2]$	57.17	75.97	82.2	79	81.83	71.9	74.68	2.302
	$[8, 4, 2, 8 \rightarrow 4; 2]$	57.42	76.09	82.29	78.95	82.10	71.27	74.69	2.305
	$[8, 4, 8 \rightarrow 2]$	51.96	71.55	78.07	73.17	79.43	66.93	70.18	2.485
int3	$[8, 4, 2, 8 \rightarrow 2]$	50.94	71.76	78.78	73.09	79.05	66.77	70.06	2.486
	$[8, 4, 2, 8 \rightarrow 4; 2]$	51.45	72.39	78.84	73.46	79.6	67.96	70.62	2.731

Table 18 | Table presents the downstream evaluation results for MatQuant FFN + Attention quantization on Gemma-2 9B with QAT.

Data type	Method				Gemma-2	9B		
		ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Average
bfloat16		58.96	77.57	83.33	77.31	81.12	67.96	74.38
in+0	Baseline	58.62	77.02	83.43	79.01	81.34	68.27	74.61
int8	MatQuant	59.04	77.9	84.4	78.76	81.12	69.22	75.07
	Sliced int8	57.42	76.73	81.62	76.02	80.58	68.98	73.56
int4	Baseline	56.06	74.96	79.27	77.83	80.25	69.53	72.98
	MatQuant	57.34	76.77	84.19	77.51	80.74	68.11	74.11
	Sliced int8	24.74	25.63	58.53	25.5	50.71	49.17	39.05
int2	Baseline	-	-	-	-	-	-	-
	S.P. MatQuant	24.91	41.62	62.26	40.87	63.38	53.67	47.78
	MatQuant	28.24	39.23	62.17	39.13	63.49	50.75	47.17
	Sliced int8	58.53	77.15	82.48	79.04	81.5	68.67	74.56
int6	Baseline	58.87	77.06	83.12	78.81	81.23	68.82	74.65
	MatQuant	59.81	77.9	84.8	78.68	81.07	67.96	75.04
	Sliced int8	43.6	64.98	72.66	66	75.95	62.19	64.23
int3	Baseline	-	-	-	-	-	-	-
	S.P. MatQuant	50.85	73.11	71.13	72.01	79.38	65.67	68.69
	MatQuant	45.22	69.32	78.5	68.72	76.01	63.85	66.94

Table 19 | Table presents the downstream evaluation results for MatQuant FFN $\,+\,$ Attention quantization on Mistral 7B with QAT.

Data type	Method				Mistral 7	B		
		ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Average
bfloat16		49.57	73.74	84.4	80.61	81.18	74.43	73.99
in+0	Baseline	49.23	72.9	83.49	80.26	81.28	75.22	73.73
int8	MatQuant	49.32	72.31	83.76	80.2	81.18	74.74	73.58
	Sliced int8	45.99	71.76	81.41	76.95	80.41	71.98	71.42
int4	Baseline	48.04	71.72	78.87	78.93	80.36	73.32	71.87
	MatQuant	47.01	69.95	82.02	76.81	80.25	72.93	71.5
	Sliced int8	22.78	24.03	58.75	24.63	50.54	49.64	38.39
int2	Baseline	-	-	-	-	-	-	-
	S.P. MatQuant	23.21	23.82	37.83	24.67	49.02	49.57	34.69
	MatQuant	22.27	32.49	62.02	32.43	59.3	51.46	43.33
	Sliced int8	49.32	73.53	82.66	80.16	81.12	75.45	73.71
int6	Baseline	49.32	73.4	82.48	80.24	81.28	75.61	73.72
	MatQuant	49.15	71.76	83.73	80.13	81.18	74.19	73.36
	Sliced int8	20.65	31.57	44.34	28.79	59.41	51.38	39.36
int3	Baseline	-	-	-	-	-	-	-
	S.P. MatQuant	41.98	65.53	79.39	74.42	79.22	69.93	68.41
	MatQuant	34.64	55.13	70.43	58.61	73.39	64.48	59.45

Table 20 | Table presents downstream evaluation and perplexity results for Single Precison MatQuant, comparing it with MatQuant and the *Baseline* for int2 quatization of Gemma-2 2B with OmniQuant and QAT.

	int2								
	Method	ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Task Avg.	log pplx.
OmniQuant	S.P. MatQuant	34.64	64.06	65.69	53.07	69.7	57.14	57.38	3.185
	Baseline	31.31	53.58	62.2	40.78	66.05	54.06	51.33	3.835
	MatQuant	34.39	59.64	62.69	52.11	69.86	55.56	55.71	3.292
QAT	S.P. MatQuant	28.92	53.79	62.84	48.41	69.86	55.25	53.18	3.090
	Baseline	24.66	43.22	62.17	38.39	64.42	53.59	47.74	3.433
	MatQuant	28.24	51.73	64.19	46.76	68.66	55.01	52.43	3.153

Table 21 | Table presents downstream evaluation and perplexity results for Single Precison MatQuant, comparing it with MatQuant and the *Baseline* for int2, int4, int8 quatization of Gemma-2 9B with OmniQuant. Note that the model was trained with Single Precison MatQuant for int2, the int4 and int8 model were sliced post training.

		Gemma-2 9B								
Data type	Method	ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Average	log pplx.	
	S.P. MatQuant	56.48	76.85	73.36	74.87	80.74	66.77	71.51	2.525	
int8	OmniQuant	59.47	77.31	83.94	77.35	81.39	68.11	74.59	2.418	
	MatQuant	58.11	78.03	83.27	76.17	81.18	67.09	73.97	2.451	
	S.P. MatQuant	57.17	77.02	74.28	74.41	80.69	67.56	71.85	2.543	
int4	OmniQuant	58.79	78.37	83.55	76.71	81.45	67.09	74.33	2.451	
	MatQuant	57.25	77.36	84.86	75.52	81.5	66.77	73.88	2.481	
	S.P. MatQuant	49.74	74.66	80.92	66.57	76.06	63.54	68.58	2.857	
int2	OmniQuant	39.16	63.43	72.11	52.24	72.63	61.88	60.24	3.292	
	MatQuant	48.72	72.18	79.2	68.11	76.17	66.77	68.52	2.809	

Table 22 | Table presents downstream evaluation and perplexity results for Single Precison MatQuant, comparing it with MatQuant and the *Baseline* for int2, int4, int8 quatization of Gemma-2 9B with QAT. Note that the model was trained with Single Precison MatQuant for int2, the int4 and int8 model were sliced post training.

		Gemma-2 9B								
Data type	Method	ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Average	log pplx.	
int8	S.P. MatQuant	55.97	76.18	80.09	75.43	80.69	68.9	72.88	2.429	
	QAT	47.78	70.66	75.08	69.92	78.35	65.11	67.82	2.29	
	MatQuant	46.25	71.21	75.6	69.97	78.4	64.64	67.68	2.301	
int4	S.P. MatQuant	55.2	76.01	74.74	74.19	80.41	68.9	71.57	2.429	
	QAT	46.16	71.59	73.73	68.72	78.62	63.38	67.03	2.324	
	MatQuant	44.37	70.45	75.81	68.43	78.35	64.88	67.05	2.332	
int2	S.P. MatQuant	41.21	66.2	65.02	64.31	76.06	62.35	62.53	2.706	
	QAT	33.45	55.43	62.26	54.8	70.51	59.67	56.02	2.923	
	MatQuant	39.85	65.66	65.93	64.08	75.68	62.75	62.32	2.756	

Table 23 | Table presents downstream evaluation and perplexity results for Single Precison MatQuant, comparing it with MatQuant and the *Baseline* for int2 quatization of Mistral 7B with OmniQuant and QAT.

	int2								
	Method	ARC-c	ARC-e	BoolQ	HellaSwag	PIQA	Winogrande	Task Avg.	log pplx.
OmniQuant	S.P. MatQuant	39.93	66.25	76.97	72.99	78.07	69.93	67.36	2.464
	Baseline	36.69	61.36	70.06	57.47	70.67	62.19	59.74	3.931
	MatQuant	41.38	67.42	71.62	71.98	77.86	65.67	65.99	2.569
QAT	S.P. MatQuant	34.64	56.19	70.73	66.77	75.52	65.43	61.55	2.435
	Baseline	29.78	48.23	64.5	55.11	70.84	61.25	54.95	2.694
	MatQuant	34.3	55.09	71.83	65.89	75.52	65.11	61.29	2.474