Seminar course Modern Data Center Systems

(aka "sys-seminar")
Preliminary meeting
https://dse.in.tum.de/

Dr. Atsushi Koshiba

Prof. Pramod Bhatotia

Course instructors

Chair of Decentralized Systems Engineering

https://dse.in.tum.de/team/

Dr. Atsushi Koshiba Postdoc

Prof. Pramod Bhatotia
Professor

Three important trends

Data-driven intelligent applications

Intelligent applications

Consumer devices

Manufacturing

Healthcare

Logistics

Transportation

Defense

System design

Need high-performance computing infrastructure

System stack

Design, build & deploy

Applications

Application programmer

Distributed systems, data analytics, databases, KV stores

Middleware, compiler and run-time system

Filesystem

I/O stack (network + storage)

Operating system

Virtualization

Data center systems

100s-1000s of machines

The computing landscape

- Core data centers
- Edge Points of Presence (PoPs)
- Edge caching and services nodes (Google Global Cache, or GGC)

Source: https://peering.google.com/#/

System stack

Applications

Distributed systems, data analytics, databases, KV stores

Compiler, middleware, run-time system

Filesystem

I/O stack (network + storage)

Operating system

Virtualization

Data center systems

Scalability
Performance
Reliability
Security

Tentative topics

Papers from top systems conferences: ASPLOS, NSDI, OSDI, USENIX ATC/FAST, EuroSys, and SOSP

Tentative topics
Distributed systems
Data analytics/ML systems
Operating systems and virtualization
Storage systems
Networked systems
Systems security
Multicores/accelerators, parallelism, and synchronization
Systems reliability

Bird's eyes view

Team (2 students per team)

Research papers
(Top systems conferences)

Understand

Research ideas

1 presentation

1 short report

Peer-reviewing

Overview

Phase I

Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design Implement (Bonus)

Report Peer-review

Phase I: Kick-off meeting

Format and motivation (all participants meeting)

2

Team formation (2 students per team)

Paper selection (Top systems conferences)

The first week

NOTE

- 1. A list of papers will be provided for FCFS bidding
- 2. Paper presentation guidelines will be provided for the next phase

Phase II: Understand & explore

Understand the paper(s)

Focus

- Understand the paper and related work
- 2. Also **explore** a "laundry list" of research ideas/directions

Paper presentation

Focus

- Explain the work/related work ("why?" and "how?")
- 2. Explain and discuss all possible research directions
- 3. Pick a research direction

Phase III: Research

Research work

Focus:

Indepth research work to nail-down the problem and detailed approach to solve it!

Research prototype

Bonus:

(Optional)

"Build the system to solve it!" and show us the working idea and associated results

Phase IV: Report & review

Focus

Prepare a single "short & sweet" report summarizing

- (a) Paper
- (b) Research work

Peer-review

Focus

Give constructive (positive and critical) feedback for

- (a) Paper summary
- (b) Research work

END.

Overall timeline

Phase I Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design

Implement (optional)

Report

Peer-review

1

3 weeks

2 weeks

Milestone #2:

Paper

presentations

3 weeks

2 weeks

Meeting

Meeting

Milestone #4:
Report
submission

Milestone #5: Peer-reviewing

Organization

- Format
 - Team-based seminar course (2 students per team)
- Communication
 - Slack for announcements and information sharing
 - Hotcrp for report submission and peer-reviewing
- Meetings
 - **Meeting #1:** Kick-off
 - **Meeting #2:** Paper presentation

Learning goals

- Learn about the cutting-edge research in computer systems
- Promote critical thinking
- Cultivate an environment for innovation
 - To push the boundaries by advancing the state-of-the-art
- Improve scientific skills
 - Presentation
 - Writing
 - Communication: discussion and arguing
 - Mentorship: giving feedback and moderating discussion
- Encourage system building and evaluation
 - Learn by building, breaking, and benchmarking systems
- Importantly, to have fun!

Interested?

Sign up on the TUM matching platform

Contacts

- Dr. Atsushi Koshiba
 - atsushi.koshiba@tum.de
- All seminar-related info: https://github.com/TUM-DSE/seminars

Workspace: http://ls1-courses-tum.slack.com/

Channel: #ss-23-sys-seminar

Join us with TUM email address (@tum.de)