ZESTAW ZADAŃ I

Zadanie 1 Rozwiąż nierówności:

(a)
$$x^2 - 2x \ge 0$$
, (b) $9 - 4x^2 \le 0$, (c) $x^2 + 1 > 0$, (d) $-2x^2 - x + 3 \ge 0$, (e) $x^4 + 3x^3 + 2x^2 > 0$, (f) $x^3 + 2x^2 - x - 2 \ge 0$, (g) $x^4 - 5x^2 + 4 > 0$.

(e)
$$x^4 + 3x^3 + 2x^2 > 0$$
, (f) $x^3 + 2x^2 - x - 2 \ge 0$, (g) $x^4 - 5x^2 + 4 > 0$.

Zadanie 2

- (a) Dla jakich x wyrażenie $\frac{2}{x-1} \frac{3}{2x} + \frac{4}{x^2-x}$ ma sens? Zapisz je w postaci jednego ułamka nieskracalnego. (b) Skróć ułamki $\frac{x^2-x}{x^3-3x^2}$, $\frac{x^2-4}{x^2+4x+4}$, $\frac{x^2-2x-3}{x^2-x-6}$.
- (c) Wyznacz wskazaną niewiadomą z równań: $\frac{ab}{c} = d$, a = ?; ab + c = bd + e, b = ?; $\frac{a}{3c+2} = b$, c = ?.

Zadanie 3 Rozwiąż nierówności:

(a)
$$\frac{x-1}{x^2-2x} \geqslant 0$$
, (b) $\frac{2}{2x+3} \leqslant 2$, (c) $\frac{2x}{x+1} \leqslant \frac{3x+2}{x+4}$.

Zadanie 4

- (a) stosując definicję funkcji trygonometrycznych dowolnego kąta oblicz (o ile to możliwe) wartości funkcji sinus, kosinus, tangens i kotangens dla kątów: 0°, 90°, 180°, 270°, 135° i 225°,
- (b) stosując wzory redukcyjne oblicz wartości funkcji trygonometrycznych sinus i kosinus dla kątów: 120°, $240^{\circ}, \frac{5\pi}{4}, \frac{5\pi}{3}.$

Zadanie 5

- (a) Zapisz wyrażenia w postaci 2^{α} , gdzie α pewna liczba wymierna: $\sqrt{2\sqrt[3]{4}}$, $\frac{\sqrt[3]{2}\sqrt[4]{8}}{(\sqrt[5]{16})^3}$.
- **(b)** Rozwiąż równania $4^{x^2} 8^x = 0$, $3^{\frac{1}{x}} = 3^{2x}$.
- (c) Rozwiąż nierówności $\left(\frac{1}{2}\right)^{x^2} \frac{1}{16} \le 0, \ 2^{2x} 5 \cdot 2^x \le 4.$

Zadanie 6

- (a) Oblicz: $\log_2 \sqrt[3]{32}$, $\log \sqrt{0,0001}$, $\ln \frac{1}{\sqrt[5]{e^3}}$, $\log_{\sqrt{2}} \frac{1}{16}$
- (b) Oblicz $\log 0.2 \log 2$, $\log_2 \sqrt[3]{6} \frac{1}{3} \log_2 3$, $16^{1 \log_4 3} + 2 \cdot 5^{- \log_5 9}$, $\log_9 5 \cdot \log_{25} 27$ (c) Rozwiąż równania i nierówności: $\log_2 (\log_3 (\log_4 x)) = 0$, $\log_{\frac{1}{2}} (2x 5) < -4$, $\log_{\frac{1}{3}} (\log_4 (x^2 5)) > 0$