

Adversarial Attack Generation Empowered by Min-Max Optimization

MIT-IBM Watson AI Lab

Jingkang Wang*, Tianyun Zhang*, Sijia Liu, Pin-Yu Chen, Jiacen Xu, Makan Fardad, Bo Li

Motivation: can min-max do beyond AT? • Neural networks are susceptible to adversarial attacks $+.007 \times \\ +.007 \times \\ +.007 \times \\ +.007 \times \\ -.007 \times$

Min-Max Across Domains

 Robust optimization over K risk domains (optimize the worst-case performance):

- One hot representation reduces the generalizability to other domains and induces instability of the learning procedure
- Regularized Formulation (strike a balance between the average and the worst-case performance):

Min-Max Power in Attack Design

• We can design the unified min-max framework actually fits into various attack settings!

Setting 1: Ensemble attack over multiple models

• Consider K ML/DL models $\{\mathcal{M}_i\}_{i=1}^K$, the goal is to find robust adversarial examples that can fool all K models simultaneously

 $\underset{\boldsymbol{\delta} \in \mathcal{X}}{\text{minimize}} \ \underset{\mathbf{w} \in \mathcal{P}}{\text{maximize}} \ \sum_{i=1}^K w_i f(\boldsymbol{\delta}; \mathbf{x}_0, y_0, \mathcal{M}_i) - \frac{\gamma}{2} \|\mathbf{w} - \mathbf{1}/K\|_2^2$

ullet w encodes the difficulty level of attacking each model

Setting 2: Universal perturbation over multiple examples

• Consider K natural examples $\{(\mathbf{x}_i,y_i)\}_{i=1}^K$ and a single model $\mathcal M$ the goal is to find the universal perturbation δ so that all the corrupted K examples can fool

$$\underset{\boldsymbol{\delta} \in \mathcal{X}}{\text{minimize}} \ \underset{\mathbf{w} \in \mathcal{P}}{\text{maximize}} \ \sum_{i=1}^K w_i f(\boldsymbol{\delta}; \mathbf{x}_i, y_i, \mathcal{M}) - \frac{\gamma}{2} \|\mathbf{w} - \mathbf{1}/K\|_2^2$$

 \bullet $\ensuremath{\mathbf{w}}$ encodes the difficulty level of attacking each image

Setting 3: Robust attack over data transformations

• Consider K categories of data transformation $\{p_i\}$ e.g., rotation, lightening, and translation. The goal to find the adversarial attack that is robust to data transformations

$$\underset{\boldsymbol{\delta} \in \mathcal{X}}{\text{minimize maximize}} \ \underset{\mathbf{w} \in \mathcal{P}}{\text{maximize}} \ \sum_{i=1}^{K} w_i \mathbb{E}_{t \sim p_i}[f(t(\mathbf{x}_0 + \boldsymbol{\delta}); y_0, \mathcal{M})] - \frac{\gamma}{2} \|\mathbf{w} - \mathbf{1}/K\|_2^2$$

• w encodes the difficulty level of attacking each type of transformed examples

We produce more robust adversarial attacks • Significant improvements over average strategy on three robust

 Significant improvements over average strategy on three robust adversarial attacks

· Outperforms heuristic strategies in an affordable way!

· A holistic tool to interpret the risk of different domain sources

Conclusion

Results

- We revisit the strength of min-max optimization in the context of adversarial attack generation.
- Beyond AT, we show that many attack generation or defense problems can be re-formulated in our unified min-max framework
- problems can be re-formulated in our unified min-max framework
 Our approach results in superior performance and interpretability
- Code is publicly available: github.com/wangiksjtu/minmax-adv

Selection	Prediction (meanADE) ↓				Downstream Planning				
	Straight (m)	Left (m)	Right (m)	Stationary (m)	Collision ↓ (%)	L2 ↓ (m)	Lat. acc. ↓ (m/s²)	Jerk ↓ (m / s ³)	Progress †
Random Scenes	2.89	5.31	5.68	0.22	5.02	5.89	2.80	2.67	33.5
Random Regions	2.46	4.82	4.96	0.20	5.07	5.71	2.70	2.47	33.6
Core-Set	2.45	4.71	5.01	0.21	5.14	5.72	2.65	2.45	33.6
LearnLoss	2.46	4.74	4.99	0.21	5.15	5.74	2.68	2.47	33.6
Coarse-Grained	2.44	4.79	5.03	0.22	5.17	5.71	2.67	2.44	33.8
Fine-Grained	2.29	4.52	4.91	0.21	4.63	5.56	2.62	2.38	33.7

