

A33

System Configuration 说明书

文档履历

版本号	日期	制/修订人	制/修订记录
V1.0	2013-04-03		初始版本
V2.0	2014-05-30		update
V3.0	2014-10-09		1. 更新 thermal 模块说明
V4.0	2014-12-15		更新 hp androidL 方案相关项: audio, target,
V 4.0	2014-12-13		dram_scene_table, wifi/bt

目录

A33	
1. 系统	6
1.1. [product]	6
1.2. [platform]	6
1.3. [target]	6
1.4. [charging type]	6
1.5. [key detect en]	
1.6. [power sply]	
1.7. [card boot]	
1.8. [card0_boot_para]	7
1.9. [card2 boot para]	
1.10. [twi para]	
1.11. [uart_para]	
1.12. [force_uart_para]	
1.13. [jtag_para]	
1.14. [clock]	
1.15. [pm_para]	
	11
2.1. [dram_para]	
3. [wakeup_src_para]	
4. I2C 总线	
4.1. [twi0_para]	
4.2. [twi1_para]	
4.3. [twi2_para]	
5. 串口(UART)	
5.1. [uart0]	
5.2. [uart1]	
5.3. [uart2]	
5.4. [uart3]	
5.5. [uart4]	
6. SPI 总线	
6.1. [spi0]	
6.2. [spi1]	
6.3. [spi_devices]	
6.4. [spi board0]	
	19
7.1. [ctp_para]	
8. 触摸屏自动扫描配置	
8.1. [ctp_list_para]	
9. 马达	
9.1. [motor para]	
10. thermal configuration.	
_	

第 4 页 共 62 页

11.	cooler_table	.22
12.	闪存	23
	12.1. [nand0_para]	. 23
13.	显示	24
	13.1. [disp_init]	. 24
14.	LCD 屏 0	26
	14.1. [lcd0_para]	. 26
15.	摄像头(CSI)	28
	15.1. [csi0_para]	29
16.	SD / MMC	32
	16.1. [mmc0_para]	. 32
	16.2. [mmc1_para]	. 33
	16.3. [mmc2_para]	. 34
17.	SIM 卡	35
	17.1. [smc_para]	35
18.	USB 控制标志	.36
	18.1. [usbc0]	36
	18.2. [usbc1]	37
19.	USB Device	38
	19.1. [usb_feature]	. 38
	19.2. [msc_feature]	. 39
20.	serial_feature	.39
21.	重力感应(G Sensor)	
	21.1. [gsensor_para]	.39
22.	重力感应(G Sensor)自动扫描配置	. 40
	22.1. [gsensor_list_para]	.40
23.	WiFi	42
	23.1. [rf_para]	. 42
	23.2. [wifi_para]	
24.	蓝牙(blueteeth)	. 43
	24.1. [bt_para]	.43
25.	光感(light sensor)	. 44
	25.1. [ls_para]	. 44
26.	罗盘 Compass	.44
	26.1. [compass_para]	. 44
27.	蓝牙(blueteeth)	. 45
	27.1. [bt_para]	. 45
28.	数字音频总线(I2S)	. 45
	28.1. [i2s0]	. 45
29.	数字音频总线(pcm)	. 47
	29.1. [pcm_para]	. 47
30.	内置音频 codec	
	30.1. [audio_para]	. 48
31	PMU电源	49

第 5 页 共 62 页

49
55
56
56
56
58
58
58
59
59
60
61
62
62

1. 系统

1.1.[product]

配置项	配置项含义
Version = "100"	配置的版本号
machine = "evb"	方案名字

配置举例:

[product]

version = "100"

machine = "evb"

1.2. [platform]

配置项	配置项含义
eraseflag=1	量产时是否擦除。0:不擦,1:擦除(仅
	仅对量产工具,升级工具无效)
next_work = 2	PhoenixUSBPro 量产: 1-不做任何动作,
	2-重启, 3-关机, 4-量产, 5-正常启动,
	6-量产结束进入关机关机充电

配置举例:

[platform]

eraseflag = 1

next_work =3

1.3. [target]

配置项	配置项含义
boot_clock=xx	启动频率(A7启动频率); xx 表示多少
	MHZ
storage_type = -1	启动介质选择 0 : nand, 1: card0,2:
	card2,-1 (defualt) 自动扫描启动介质:
burn_key = 1	支持 DragonSN_V2.0 烧录 sn 号

配置举例:

[target]

boot_clock = 1008 storage_type = -1 burn_key = 1

1.4. [charging_type]

配置项	配置项含义

charging_type = 1	为 1,才能进入安卓关机充电模式;为
	0 是进入 boot standby 进行充电。

注: 如果想进入安卓关机充电功能,应该务必加上以上内容。

1.5. [key_detect_en]

配置项	配置项含义
keyen_flag = 1	当 keyen_flag = 1 时,支持按键检测;
	当 keyen_flag = 0 时,不支持按键检测

1.6. [power_sply]

配置项	配置项含义
$dcdc1_vol = 3000$	dcdc1 的输出电压,mV
$dcdc2_vol = 1100$	dcdc2 的输出电压,mV
$dcdc3_vol = 1200$	dcdc3 的输出电压,mV,
$dcdc4_vol = 0$	dcdc4 的输出电压,mV
$dcdc5_vol = 1500$	dcdc5)的输出电压,mV
aldo2_vol = 2500	aldo2 的输出电压,mV
aldo3_vol = 3000	aldo3 的输出电压,mV

配置举例:

[power_sply]

dcdc1_vol = 3000 dcdc2_vol = 1100 dcdc3_vol = 1200 dcdc4_vol = 0 dcdc5_vol = 1500 aldo2_vol = 2500 aldo3_vol = 3000

1.7. [card_boot]

配置项	配置项含义
logical_start = 40960	启动卡逻辑起始扇区
sprite_gpio0 =	卡量产 gpio led 灯配置
next_work = 2	卡量产完成后: 1-不做任何动作, 2-重 启, 3-关机, 4-量产, 5-正常启动

举例配置:

[card_boot]

 $logical_start = 40960$

sprite_gpio0 = next_work = 2

1.8. [card0_boot_para]

配置项	配置項含♡

card_ctrl=0	卡量产相关的控制器选择 0
card_high_speed=xx	速度模式 0 为低速, 1 为高速
card_line=4	代表 4 线卡
sdc_d1=xx	sdc 卡数据 1 线信号的 GPIO 配置
sdc_d0=xx	sdc 卡数据 0 线信号的 GPIO 配置
sdc_clk=xx	sdc 卡时钟信号的 GPIO 配置
sdc_cmd=xx	sdc 命令信号的 GPIO 配置
sdc_d3=xx	sdc 卡数据 3 线信号的 GPIO 配置
sdc_d2=xx	sdc 卡数据 2 线信号的 GPIO 配置

[card0_boot_para] card ctrl card_high_speed = 1 card line sdc d1 = port:PF0<2><1><2><default> sdc d0 = port:PF1<2><1><2><default> sdc_clk = port:PF2<2><1><2><default> = port:PF3<2><1><2><default> sdc_cmd sdc d3 = port:PF4<2><1><2><default> = port:PF5<2><1><2><default> sdc_d2

1.9. [card2_boot_para]

配置项	配置项含义
card_ctrl=2	卡启动控制器选择 2
card_high_speed=xx	速度模式 0 为低速, 1 为高速
card_line=4	4线卡
sdc_cmd =xx	sdc 命令信号的 GPIO 配置
sdc_clk =xx	sdc 卡时钟信号的 GPIO 配置
$sdc_d0 = xx$	sdc 卡数据 0 线信号的 GPIO 配置
$sdc_d1 = xx$	sdc 卡数据 1 线信号的 GPIO 配置
sdc_d3=xx	sdc 卡数据 3 线信号的 GPIO 配置
sdc_d2=xx	sdc 卡数据 2 线信号的 GPIO 配置

配置举例:

[card2_boot_para]
card_ctrl = 2
card_high_speed = 1
card_line = 4
sdc_clk = port:PC05<3><1><2><default>
sdc_cmd = port:PC06<3><1><2><default>
sdc_d0 = port:PC08<3><1><2><default>
sdc_d1 = port:PC09<3><1><2><default>
sdc_d2 = port:PC09<3><1><2><default>

```
sdc d3
                = port:PC11<3><1><2><default>
sdc ex dly used
                 = 1
sdc_odly_400K
                  =0
sdc odly 25M
                =3
sdc odly 50M
sdc_odly_50MDDR
sdc odly 50MDDR 8BIT =
sdc odly 100M
sdc odly 200M
sdc_sdly_400K
sdc sdly 25M
                =4
sdc sdly 50M
                = 7
sdc_sdly_50MDDR
sdc_sdly_50MDDR_8BIT =
sdc_sdly_100M
sdc sdly 200M
```

1.10. **[twi_para]**

配置项	配置项含义
twi_port= xx	Boot 的 twi 控制器编号
twi_scl=xx	Boot 的 twi 的时钟的 GPIO 配置
twi_sda=xx	Boot 的 twi 的数据的 GPIO 配置

配置举例:

[twi para]

 $twi_port = 0$

twi_scl = port:PH02<2><default><default><default> twi_sda = port:PH03<2><default><default><default>

1.11. [uart_para]

配置项	配置项含义
uart_debug_port=xx	Boot 串口控制器编号
uart_debug_tx=xx	Boot 串口发送的 GPIO 配置
uart_debug_rx=xx	Boot 串口接收的 GPIO 配置

配置举例:

[uart_para]

uart debug port = 0

uart_debug_tx = port:PF02<3><1><default><default>
uart_debug_rx = port:PF04<3><1><default><default>

1.12. [force_uart_para]

配置项	配置项含义
force_uart_port=xx	强制 debug 模式 Boot 串口控制器编号

force_uart_tx=xx	强制 debug 模式 Boot 串口发送的 GPIO
	配置
force_uart_rx=xx	强制 debug 模式 Boot 串口接收的 GPIO
	配置

force_uart_port = 0

force_uart_tx = port:PF02<3><1><default><default> force_uart_rx = port:PF04<3><1><default><default>

1.13. [jtag_para]

配置项	配置项含义
jtag_enable=xx	JTAG 使能
jtag_ms=xx	测试模式选择输入(TMS) 的 GPIO 配置
jtag_ck=xx	测试时钟输入(TMS) 的 GPIO 配置
jtag_do=xx	测试数据输出(TDO) 的 GPIO 配置
jtag_di=xx	测试数据输入(TDI)的 GPIO 配置

配置举例:

[jtag_para]

jtag_enable = 1

jtag_ms = port:PF00<3><default><default><default> jtag_ck = port:PF05<3><default><default><default> jtag_do = port:PF03<3><default><default><default> jtag_di = port:PF01<3><default><default><default>

1.14. [clock]

配置项	配置项含义
Pl13 =297	Video0 时钟频率
Pll4 =300	Ve 时钟频率
Pll6 =600	Peripherals 时钟频率
Pl18 =408	GPU(通信)时钟频率
P119 =480	GPU(运算)时钟频率
Pll10=468	De 时钟频率
pll_cpupat = 0	PLL_CPU pattern 参数,请勿随意修改
pll_gpupat = 0xc440e666	PLL_GPU pattern 参数,请勿随意修改
pll_videopat = 0	PLL_VIDEO pattern 参数,请勿随意修
	改
pll_vepat = 0	PLL_VE pattern 参数,请勿随意修改
pll_hsicpat = 0	PLL_HSI pattern 参数,请勿随意修改
pll_depat = 0	PLL_DE pattern 参数,请勿随意修改
pll_mipipat = 0	PLL_MIPI pattern 参数,请勿随意修改
pll_mipitun = 0x8a002008	PLL_MIPI pattern 参数,请勿随意修改
pll_mipibias= 0xf8100400	PLL_MIPI bias 参数,请勿随意修改

[clock]

pll3 = 297 pll4 = 300 pll6 = 600 pll8 = 408 pll9 = 480 pll10 = 297 pll_cpupat = 0

pll_gpupat = 0xc440e666

pll_videopat = 0
pll_vepat = 0
pll_hsicpat = 0
pll_depat = 0
pll_mipipat = 0
pll_mipitun = 0x8a002008
pll_mipibias= 0xf8100400

1.15. [pm_para]

配置项		配置项含义
standby_mode = x	510	if 1 == standby_mode, then support super standby;else, support normal standby.

配置举例:

[pm_para]

standby_mode

2. SDRAM

2.1.[dram_para]

配置项	配置项含义
dram_clk =xx	DRAM 的时钟频率,单位为 MHz;它为
	24 的整数倍,最低不得低于 120,
dram_type =xx	DRAM 类型:
	2 为 DDR2
	3 为 DDR3
dram_zq=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_odt_en=xx	ODT 是否需要使能

	0: 不使能
	, , , , , , , , , , , , , , , , , , , ,
	1: 使能
1 1	一般情况下,为了省电,此项为 0
dram_para1=xx	DRAM 控制器内部参数,由原厂来进
_	行调节,请勿修改
dram_para2 =xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_mr0 =xx	DRAM CAS 值,可为 6,7,8,9; 具体需
	根据 DRAM 的规格书和速度来确定
dram_mr1 =xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_mr2 =xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_mr3 =xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr0=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram tpr1=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram tpr2=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr3=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram_tpr4=xx	DRAM 控制器内部参数,由原厂来进
-1	行调节,请勿修改
dram tpr5=xx	DRAM 控制器内部参数,由原厂来进
- T	行调节,请勿修改
dram_tpr6=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram tpr7=xx	DRAM 控制器内部参数,由原厂来进
	行调节,请勿修改
dram tpr8=xx	DRAM 控制器内部参数,由原厂来进
didin_tpiini	行调节,请勿修改
dram tpr9=xx	DRAM 控制器内部参数,由原厂来进
didii_tpi> xx	行调节,请勿修改
dram tpr10=xx	DRAM 控制器内部参数,由原厂来进
drain_tpi 10 XX	行调节,请勿修改
dram tpr11=xx	DRAM 控制器内部参数,由原厂来进
arum_upi i AA	行调节,请勿修改
dram tpr12=xx	DRAM 控制器内部参数,由原厂来进
drain_tp112=xx	行调节,请勿修改
dram turi 2-yy	DRAM 控制器内部参数,由原厂来进
dram_tpr13=xx	
	行调节,请勿修改

[dram para]

 $dram_zq = 0x3bbb$

 $dram_odt_en = 1$

 $dram_para1 = 0x10F20200$

dram_para2 = 0x00 dram_mr0 = 0x1840 dram_mr1 = 0x40 dram_mr2 = 0x8 dram_mr3 = 0

= 0x0dram tpr3 dram tpr4 = 0x0dram tpr5 = 0x0dram_tpr6 = 0x0dram_tpr7 = 0x0dram tpr8 = 0x0= 0x0dram_tpr9 dram tpr10 = 0x0dram_tpr11 =0x0dram tpr12 = 168dram_tpr13 = 0x900

3. [wakeup_src_para]

配置项	配置项含义
cpu_en	power on or off.
	; 1: mean power on
	; 0: mean power off
cpu_freq	indicating lowest freq. unit is Mhz;
pll_ratio	Indicating cpu:apb:ahb frequency ratio.
dram	selfresh or not.
selfresh_en	; 1: enable enter selfresh
	; 0: disable enter selfresh
dram_pll	if not enter selfresh, indicating lowest freq. unit is Mhz;
wakeup_src	1. to make the scenario work, the wakeup src is needed.
	2. The name is insensitive;
	3. The module which need the wakeup src need to config the
	wakeup_src.

```
[wakeup_src_para]
cpu_en = 0
cpu_freq = 48
; (cpu:apb:ahb)
pll_ratio= 0x111
dram_selfresh_en= 1
dram_freq = 36
wakeup_src_wl = port:PL07<4><default><default><0>
wakeup_src_bt = port:PL09<4><default><default><0>
;bb wake ap = port:PL02<4><default><default><0>
```

4. I2C 总线

主控有 4 个 I2C (twi) 控制器

4.1.[twi0_para]

配置项	配置项含义
twi0_used =xx	TWI 使用控制: 1 使用, 0 不用
twi0_scl =xx	TWI SCK 的 GPIO 配置
twi0_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[twi0]

twi used = 1

twi_scl = port:PH02<2><default><default><default> twi_sda = port:PH03<2><default><default><default>

4.2. [twi1_para]

配置项	配置项含义
twi1_used =xx	TWI 使用控制: 1 使用, 0 不用
twi1_scl =xx	TWI SCK 的 GPIO 配置
twi1_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[tw1_para]

twi used = 1

twi_scl = port:PH04<2><default><default><default> twi_sda = port:PH05<2><default><default><default>

4.3. [twi2_para]

配置项	配置项含义
twi2_used =xx	TWI 使用控制: 1 使用, 0 不用
twi2_scl =xx	TWI SCK 的 GPIO 配置
twi2_sda=xx	TWI SDA 的 GPIO 配置

配置举例:

[twi2_para]

 $twi_used = 1$

twi_scl = port:PE12<3><default><default><default> twi_sda = port:PE13<3><default><default><default>

5. 串口(UART)

主控有 5 路 uart 接口, 5 路支持 4 线或者 2 线通讯(但十分不建议用 uart0 作为控制台以外的用途),实例中,有些路仅仅写出 2 路的配置形式,但实际使用时只要将其按照 4 路的格式补全,也能支持 4 线通讯

5.1. [uart0]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type = xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置

配置举例:

[uart0]

uart_used = 1 uart_port = 0 uart_type = 2

uart_tx = port:PF02<3><1><default><default> uart_rx = port:PF04<3><1><default><default>

5.2. [uart1]

配置项	配置项含义
uart_used	UART 使用控制: 1 使用, 0 不用
uart_port	UART 端口号
uart_type	UART 类型
uart_tx	UART TX 的 GPIO 配置
uart_rx	UART RX 的 GPIO 配置

uart_rts	UART RTS 的 GPIO 配置
uart_cts	UART CTS 的 GPIO 配置

[uart1]

uart_used = 1 uart_type = 4

uart_tx = port:PG06<2><1><default><default>
uart_rx = port:PG07<2><1><default><default>
uart_rts = port:PG08<2><1><default><default><default>
uart_cts = port:PG09<2><1><default><default>

5.3. [uart2]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置
uart_rts=xx	UART RTS 的 GPIO 配置
uart_cts=xx	UART CTS 的 GPIO 配置

配置举例:

[uart_para2]

uart_used = 0 uart_type = 4

uart_tx = port:PB00<2><1><default><default>
uart_rx = port:PB01<2><1><default><default><default>
uart_rts = port:PB02<2><1><default><default><default>
uart_cts = port:PB03<2><1><default><default>

5.4. [uart3]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart_tx =xx	UART TX 的 GPIO 配置
uart_rx=xx	UART RX 的 GPIO 配置
uart_rts=xx	UART RTS 的 GPIO 配置
uart_cts=xx	UART CTS 的 GPIO 配置

配置举例:

uart_used = 0 uart_type = 4 uart_tx = port:PH06<3><1><default><default>
uart_rx = port:PH07<3><1><default><default>
uart_rts = port:PH08<3><1><default><default><default>
uart_cts = port:PH09<3><1><default><default></default>

5.5. [uart4]

配置项	配置项含义
uart_used =xx	UART 使用控制: 1 使用, 0 不用
uart_port =xx	UART 端口号
uart_type =xx	UART 类型
uart4_tx =xx	UART TX 的 GPIO 配置
uart4_rx=xx	UART RX 的 GPIO 配置

配置举例:

[uart4]

uart_used= 0uart_port= 4uart_type= 4

uart_tx= port:PG12<2><1><default><default>uart_rx= port:PG13<2><1><default><default>uart_rts= port:PG14<2><1><default><default>uart_cts= port:PG15<2><1><default><default>

6.SPI 总线

6.1.[spi0]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs_bitmap =xx	由于 SPI 控制器支持多个 CS,这一个
	参数表示 CS 的掩码;
spi_cs0 =xx	SPI CS0 的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi=xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

[spi0]

spi_used = 0 spi_cs_bitmap = 1

spi_mosi = port:PC00<3><default><default><default> spi_miso = port:PC01<3><default><default><default> spi_sclk = port:PC02<3><default><default><default> spi_cs0 = port:PC03<3><1><default><default>

6.2.[spi1]

配置项	配置项含义
spi_used =xx	SPI 使用控制: 1 使用, 0 不用
spi_cs_bitmap =xx	由于 SPI 控制器支持多个 CS,这一个
	参数表示 CS 的掩码;
spi_cs0 =xx	SPI CS0 的 GPIO 配置
spi_sclk =xx	SPI CLK 的 GPIO 配置
spi_mosi=xx	SPI MOSI 的 GPIO 配置
spi_miso=xx	SPI MISO 的 GPIO 配置

配置举例:

[spi1]

spi_used = 0 spi_cs_bitmap = 1

spi_cs0 = port:PA00<2><1><default><default>

spi_sclk = port:PA01<2><default><default><default> spi_mosi = port:PA02<2><default><default><default> spi_miso = port:PA03<2><default><default><default>

6.3. [spi_devices]

配置项	配置项含义
spi_dev_num=xx	该项目直接和下面的[spi_board0]相关,
	它指定主板连接 spi 设备的数目,假如
	有 N 个 SPI 设备那么[spi_devices]中就
	要有 N 个([spi_board0]到[spi_board
	(N-1)]) 配置

配置举例:

[spi_devices]

 $spi_dev_num = 1$

6.4. [spi_board0]

配置项	配置项含义
modalias=xx	Spi 设备名字,
max_speed_hz =xx	最大传输速度(HZ)
bus_num =xx	Spi 设备控制器序号
chip_select=xx	理论上可以选 0, 1, 2, 3, 目前只支持
	1,2(芯片没引出接口)
mode = xx	SPI MOSI 的 GPIO 配置可选值 0-3

[spi_board0]

modalias = "at25df641" max_speed_hz = 50000000

 $\begin{array}{ll} bus_num & = 0 \\ chip_select & = 0 \\ mode & = 0 \end{array}$

7. 电容屏

7.1. [ctp_para]

配置项	配置项含义
ctp used	该选项为是否开启电容触摸, 支持的话
	置 1, 反之置 0
ctp_name	tp的 name,必须配,与驱动保持一致
ctp_twi_id	用于选择 i2c adapter, 可选 1, 2
ctp_twi_addr	指明 i2c 设备地址,与具体硬件相关
ctp_screen_max_x	触摸板的x轴最大坐标
ctp_screen_max_y	触摸板的y轴最大坐标
ctp_revert_x_flag	是否需要翻转 x 坐标,需要则置 1,反
	之置 0
ctp_revert_y_flag	是否需要翻转 y 坐标, 需要则置 1, 反
	之置 0
ctp_exchange_x_y_flag	是否需要 x 轴 y 轴坐标对换
ctp_int_port	电容屏中断信号的 GPIO 配置
ctp_wakeup	电容屏唤醒信号的 GPIO 配置
ctp_power_ldo	电容屏供电 ldo
ctp_power_ldo_vol	电容屏供电 ldo 电压
ctp_power_io	电容屏供电 gpio

配置举例:

[ctp_para]

 $ctp_used = 1$

ctp_name = "ft5x_ts"

 $\begin{array}{ll} ctp_twi_id & = 0 \\ ctp_twi_addr & = 0x38 \\ ctp_screen_max_x & = 768 \\ ctp_screen_max_y & = 1024 \end{array}$

ctp_revert_x_flag = 0 ctp_revert_y_flag = 0 ctp_exchange_x_y_flag = 0 ctp_int_port = port:PB05<4><default><default><default><default><ctp_wakeup = port:PH01<1><default><default><1> = "axp22_eldo1" = 3000 ctp_power_io = 0000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 =

8. 触摸屏自动扫描配置

8.1. [ctp_list_para]

配置项	配置项含义
ctp_det_used	0 or 1,是否使用自动检测功能
ft5x_ts	0 or 1, 检测时是否扫描此类触屏
gt82x	0 or 1, 检测时是否扫描此类触屏
gslX680	0 or 1, 检测时是否扫描此类触屏
gt9xx_ts	0 or 1, 检测时是否扫描此类触屏
gt811	0 or 1, 检测时是否扫描此类触屏
zet622x	0 or 1, 检测时是否扫描此类触屏
aw5306_ts	0 or 1, 检测时是否扫描此类触屏

配置举例:

[ctp_list_para] ctp det used ft5x_ts gt82x gslX680 gslX680new =0gt9xx ts = 1gt9xxf_ts = 0tu ts =0gt818_ts = 1zet622x = 1aw5306 ts = 1=0icn83xx_ts

9. 马达

9.1. [motor_para]

配置项	配置项含义
-----	-------

motor_used =xx	是否启用马达,启用置1,反之置0
motor_shake=xx	马达使用的 GPIO 配置
motor_ldo = xx	指明马达由 axp 哪一路电压供电
motor_ldo_voltage = xx	Axp 供电的该路电压为 xx mv

[motor_para]

motor used = 0

motor_shake = port:power3<1><default><1>

motor_ldo = "" motor_ldo_voltage = 3300

注意事项:

motor shake = port:power3<1><default><default><1>

默认 io 口的输出应该为 1,这样就不会初始化之后就开始震动了●

假设 $motor_shake = 0$,说明没有指定 gpio 引脚,那么就会设置 axp 的引脚为马达供电,优先考虑 gpio 配置。

10. thermal configuration

配置项	配置项含义
ths_used = 1	温控总开关。0:关闭温控;1:打开温控
ths_trend = 0	Thermal 趋势判断功能,默认关闭
ths_trip_count = 3	温控功能的温度触发点数目(此数目需等于下面的
	ths_trip1_N(N=0、1、2)的个数)
ths_trip1_0 = 75	第 0 个温控触发点为 75 摄氏度
ths_trip1_1 = 90	第1个温控触发点为90摄氏度
ths_trip1_2 = 110	第2个温控触发点为110摄氏度。注意,当前CPU
	温度超过此最后一个温控触发点会强制关机
$ths_trip1_0_min = 0$	和上面的 ths_trip1_N(N=0、1、2)相对应
ths_trip1_0_max = 1	1. 等号右边的 0、1、3 对应 cooler_table 中
ths_trip1_1_min = 1	cooler0、cooler1、cooler3 配置
$ths_trip1_1_max = 3$	2. 具体含义:
ths_trip1_2_min = 0	第1行: 温度低于 ths_trip1_0 时, 最大 CPU 频率
$ths_trip1_2_max = 0$	和核心数对应 cooler0 配置
	第 2 行:温度大于等于 ths_trip1_0,且小于
	ths_trip1_1 时,最大 CPU 频率和核心数对应
	cooler1 配置
	第 3 行: 同上
	第 4 行:温度大于等于 ths_trip1_1,且小于
	ths_trip1_2 时,最大 CPU 频率和核心数对应

cooler3 配置
第 5、6 行:温度大于等于 ths_trip1_2,做强制关
机,等号右边写0即可
3. 注意必须 trip1_0_max == trip1_1_min ,后面
以此类推

[ths_para]

ths_used = 1=3ths_trip1_count = 75ths_trip1_0 = 90ths_trip1_1 = 110ths trip1 2 ths_trip1_0_min =0ths_trip1_0_max = 1ths_trip1_1_min = 1ths_trip1_1_max =3= 0ths_trip1_2_min ths_trip1_2_max =0

配置项	配置项含义
cooler_count = 4	表示允许设置的最大 CPU 频率和核心数参数档位的
	个数。如 cooler_count 配置成 5,则下面须有
	cooler0~cooler4 个参数档位
cooler0 = "1344000 4 4294967295 0"	每个 coolerN 代表一个最大 CPU 频率和核心数档位
cooler1 = "1200000 4 4294967295 0"	等号右边用空格分隔成了4个参数,具体表示:
cooler2 = "1008000 4 4294967295 0"	允许 cpu 的最大频率、允许 cpu 的最大核心数、保
cooler3 = "648000 4 4294967295 0"	留做其它用途、保留做其它用途(A33 平台)
	4294967295 十六进制为 0xffffffff , 用来区分正常
	频率

配置举例:

[cooler_table]

 $cooler_count = 4$

cooler0 = "1344000 4 4294967295 0"

cooler1 = "1200000 4 4294967295 0"

cooler2 = "1008000 4 4294967295 0"

cooler3 = "648000 4 4294967295 0"

12. 闪存

12.1. [nand0_para]

配置项	配置项含义
nand_support_2ch	nand0 是否使能双通道
nand0_used =xx	nand0 模块使能标志
nand0_we =xx	nand0 写时钟信号的 GPIO 配置
nand0_ale =xx	nand0 地址使能信号的 GPIO 配置
nand0_cle =xx	nand0 命令使能信号的 GPIO 配置
nand0_ce1 =xx	nand0 片选 1 信号的 GPIO 配置
nand0_ce0 =xx	nand0 片选 0 信号的 GPIO 配置
nand0_nre =xx	nand0 读时钟信号的 GPIO 配置
nand0_rb0=xx	nand0 Read/Busy 1 信号的 GPIO 配置
nand0_rb1 =xx	nand0 Read/Busy 0 信号的 GPIO 配置
nand0_d0=xx	nand0 数据总线信号的 GPIO 配置
nand0_d1=xx	
nand0_d2=xx	/
nand0_d3=xx	
nand0_d4=xx	
nand0_d5=xx	
nand0_d6=xx	/
nand0_d7=xx	1
nand0_ce2=xx	nand0 片选 2 信号的 GPIO 配置
nand0_ce3=xx	nand0 片选 3 信号的 GPIO 配置
nand0_ndqs=xx	nand0 ddr 时钟信号的 GPIO 配置

配置举例:

[nand0 para]

 $nand_support_2ch = 0$

nand0 used = 1nand0 we = port:PC00<2><default><default><default> nand0 ale = port:PC01<2><default><default> nand0 cle = port:PC02<2><default><default><default> $nand0_ce1$ = port:PC03<2><default><default><default> nand0 ce0 = port:PC04<2><default><default> nand0 nre = port:PC05<2><default><default> nand0 rb0 = port:PC06<2><default><default> $nand0_rb1$ = port:PC07<2><default><default><default> nand0 d0 = port:PC08<2><default><default> nand0 d1 = port:PC09<2><default><default>

nand0_d2	= port:PC10<2> <default><default><default></default></default></default>
nand0_d3	= port:PC11<2> <default><default></default></default>
nand0_d4	= port:PC12<2> <default><default><default></default></default></default>
nand0_d5	= port:PC13<2> <default><default><default></default></default></default>
nand0_d6	= port:PC14<2> <default><default><default></default></default></default>
nand0_d7	= port:PC15<2> <default><default></default></default>
nand0_ndqs	= port:PC16<2> <default><default></default></default>
nand0_ce2	= port:PC17<2> <default><default></default></default>
nand0_ce3	= port:PC18<2> <default><default><default></default></default></default>

13. 显示

13.1. [disp_init]

· •	
配置项	配置项含义
disp_init_enable=xx	是否进行显示的初始化设置
disp_mode =xx	显示模式:
	0:screen0 <screen0,fb0></screen0,fb0>
screen0_output_type=xx	屏 0 输 出 类 型 (0:none; 1:lcd; 2:tv;
	3:hdmi; 4:vga)
screen0_output_mode =xx	屏 0 输出模式(used for tv/hdmi output,
	0:480i 1:576i 2:480p 3:576p 4:720p50
	5:720p60 6:1080i50 7:1080i60
	8:1080p24 9:1080p50 10:1080p60 11:pal
	14:ntsc)
screen1_output_type=xx	屏 1 输 出 类 型 (0:none; 1:lcd; 2:tv;
	3:hdmi; 4:vga)
screen1_output_mode=xx	屏 1 输出模式(used for tv/hdmi output,
	0:480i 1:576i 2:480p 3:576p 4:720p50
	5:720p60 6:1080i50 7:1080i60
	8:1080p24 9:1080p50 10:1080p60 11:pal
	14:ntsc)
fb0_format=xx	fb0 的格式 (4:RGB655 5:RGB565
	6:RGB556 7:ARGB1555 8:RGBA5551
	9:RGB888 10:ARGB8888
	12:ARGB4444)
fb0_pixel_sequence=xx	fb0 的 pixel sequence(0:ARGB 1:BGRA
	2:ABGR 3:RGBA)
fb0_scaler_mode_enable=xx	fb0 是否使用 scaler mode,即使用 FE
fb0_width=xx	fb0 的宽度,为 0 时将按照输出设备的分
	辨率
fb0_height=xx	fb0 的高度,为 0 时将按照输出设备的

第 25 页 共 62 页

	分辨率
fb1 format=xx	fb1 的 格 式 (4:RGB655 5:RGB565
	6:RGB556 7:ARGB1555 8:RGBA5551
	9:RGB888 10:ARGB8888
	12:ARGB4444)
fb1_pixel_sequence=xx	fb1 的 pixel sequence(0:ARGB 1:BGRA
	2:ABGR 3:RGBA)
fb1_scaler_mode_enable=xx	fb1 是否使用 scaler mode,即使用 FE
fb1_width=xx	Fb1的宽度,为0时将按照输出设备的分
	辨率
fb1_height=xx	Fb1 的高度,为 0 时将按照输出设备的
	分辨率
lcd0_backlight	Lcd0 的背光初始值, 0~255
lcd1_backlight	Lcd1 的背光初始值, 0~255
lcd0_bright	Lcd0 的亮度值,0~100
lcd0_contrast	Lcd0 的对比度,0~100
lcd0_saturation	Lcd0 的饱和度,0~100
lcd0_hue	Lcd0 的色度,0~100
lcd1_bright	Lcd1 的亮度值,0~100
lcd1_contrast	Lcd1 的对比度,0~100
lcd1_saturation	Lcd1 的饱和度,0~100
lcd1_hue	Lcd1 的色度,0~100

配置举例:

[disp_init]
disp_init_enable
disp_mode = 1
screen0_output_type = 1

screen1_output_type = 1 screen1_output_mode = 4

screen0_output_mode

 $fb0_format & = 10 \\ fb0_pixel_sequence & = 0 \\ fb0_scaler_mode_enable & = 0 \\ fb0_width & = 0 \\ fb0_height & = 0 \\$

 $fb1_format$ = 10 $fb1_pixel_sequence$ = 0 $fb1_scaler_mode_enable$ = 0 $fb1_width$ = 0

fb1_height	= 0
lcd0_backlight	= 50
lcd1_backlight	= 50
lcd0_bright	= 50
lcd0_contrast	= 50
lcd0_saturation	= 57
lcd0_hue	= 50
lcd1_bright	= 50
lcd1_contrast	= 50
lcd1_saturation	= 57
lcd1 hue	= 50

14. LCD 屏 0

14.1. [lcd0_para]

配置项	配置项含义
lcd_used=xx	是否使用 lcd0
lcd_driver_name = "xx"	定义驱动名称
lcd_if =xx	lcd 接口(0:hv(sync+de); 1:8080; 2:ttl;
	3:lvds, 4:dsi; 5:edp)
lcd_x=xx	Lcd 分辨率 x
lcd_y =xx	Lcd 分辨率 y
lcd_width = xx	Lcd 屏宽度
lcd_height = xx	Lcd 屏高度
lcd_dclk_freq = xx	Lcd 频率
lcd_pwm_used =	Pwm 是否使用
lcd_pwm_ch =	Pwm 通道
lcd_pwm_freq=xx	Pwm 频率
lcd_pwm_pol =xx	pwm 属性, 0:positive; 1:negative
lcd_hbp=xx	Lcd 行后沿时间
lcd_ht=xx	Lcd 行时间
$lcd_hspw = xx$	Lcd 行同步脉宽
lcd_vbp=xx	Lcd 场后沿时间
lcd_vt=xx	Lcd 场时间
lcd_vspw=xx	Lcd 场同步脉宽
lcd_lvds_if=xx	Lcd lvds 接口, 0:single link; 1:dual link
lcd_lvds_colordepth =xx	Lcd lvds 颜色深度 0:8bit; 1:6bit
lcd_lvds_mode=xx	Lcd lvds 模式, 0:NS mode; 1:JEIDA

	mode
lcd_frm=xx	Lcd 格式, 0:disable; 1:enable rgb666
_	dither; 2:enable rgb656 dither
lcd_hv_clk_phase	Lcd hv 时钟 相位 0:noraml; 1:intert
	phase(0~3bit: vsync phase;4~7bit:hsync
	phase; 8~11bit:dclk
	phase; 12~15bit:de phase)
lcd_hv_sync_polarity	Lcd io 属性,0:not invert; 1:invert
lcd_gamma_en=xx	Lcdgamma 校正使能
lcd_bright_curve_en=xx	Lcd 亮度曲线校正使能
lcd_cmap_en=xx	Lcd 调色板函数使能
deu_mode=xx	Deu 模式 0:smoll lcd screen; 1:large lcd
	screen(larger than 10inch)
lcdgamma4iep=xx	只能背光参数, lcd gamma
	vale*10;decrease it while lcd is not bright
	enough; increase while lcd is too bright
smart_color=xx	丽色系统,90:normal lcd screen
	65:retina lcd screen(9,7inch)
lcd_bl_en=xx	背光使能的 GPIO 配置
lcd_power=xx	Lcd 电源
lcdd0=xx	Lcd 数据 0 线信号的 GPIO 配置
Lcdd1=xx	Lcd 数据 1 线信号的 GPIO 配置
Lcdd2=xx	Lcd 数据 2 线信号的 GPIO 配置
Lcdd3=xx	Lcd 数据 3 线信号的 GPIO 配置
Lcdd4=xx	Lcd 数据 4 线信号的 GPIO 配置
Lcdd5=xx	Lcd 数据 5 线信号的 GPIO 配置
Lcdd6=xx	Lcd 数据 6 线信号的 GPIO 配置
Lcdd7 = xx	Lcd 数据 7 线信号的 GPIO 配置

[lcd0_para]

lcd_used = 1

lcd_driver_name = "starry768x1024"

lcd if =3lcd_x = 768lcd_y = 1024lcd_width = 120lcd_height = 160lcd_dclk_freq = 60 lcd_pwm_used = 1lcd_pwm_ch =0lcd_pwm_freq =50000lcd_pwm_pol = 1

```
lcd hbp
                     = 80
lcd ht
                     = 928
lcd hspw
                      = 10
lcd vbp
                     = 23
                     = 1065
lcd vt
lcd vspw
                      =3
lcd lvds if
                    = 0
lcd lvds colordepth = 0
lcd lvds mode
                     = 0
lcd frm
                     = 1
lcd gamma en
                      = 0
lcd bright curve en = 0
lcd cmap en
                      =0
deu mode
                      =0
lcdgamma4iep
                      = 22
smart color
                   = 90
lcd bl en
                     = port:PH06<1><0><default><1>
lcd power
                     = port:power2<1><0><default><1>
lcd gpio 0
                     = port:PH07<1><0><default><1>
                           = port:PL04<1><0><default><0>
lcd gpio 1
                         = port:PL11<1><0><default><1>
lcd gpio 2
lcdd0
                     = port:PD18<3><0><default><default>
lcdd1
                     = port:PD19<3><0><default><default>
                      = port:PD20<3><0><default><default>
lcdd2
                      = port:PD21<3><0><default><default>
lcdd3
lcdd4
                      = port:PD22<3><0><default><default>
lcdd5
                      = port:PD23<3><0><default><default>
                     = port:PD24<3><0><default><default>
lcdd6
lcdd7
                     = port:PD25<3><0><default><default>
lcdd8
                     = port:PD26<3><0><default><default>
lcdd9
                     = port:PD27<3><0><default><default>
```

15. 摄像头(CSI)

A33 CSI 的 sysconfig 部分对应的字段为: [csi0]。

下面举例说明在实际使用中应该如何配置:需要配置[csi0]的公用部分和[csi0]的vip_dev(x)部分。

15.1. [csi0_para]

配置项	配置项含义
vip_used	使用 mipi 接口的 sensor 请填 1。
vip_mode	一般填 0。
vip_dev_qty	mipi 接口暂时不支持复用,填 1。
vip_define_sensor_list	如 果 配 置 了
	system/etc/hawkview/sensor_list_ cfg.ini
	文件,填1,默认填0。
vip_csi_mck	Mipi mclk 信号的 GPIO 配置。
vip_csi_sck	CSI0 CCI 时钟信号的 GPIO 配置。
	如果使用 CSIO 内部 CCI 需要配置该项
vip_csi_sda	CSI0 CCI 数据信号的 GPIO 配置。
	如果使用 CSIO 内部 CCI 需要配置该项
vip_dev0_mname	设置 sensor 0 名称,如 "ov5648 "。
vip_dev0_pos	摄像头位置前置填"front",后置填
	"rear"。
vip_dev0_lane	请参考实际模组的 lane 数目填写。
vip_dev0_twi_id	CSI 使用的 IIC 通道序号,查看具体方
	案原理图,使用 twi0 填 0,如果使用
	CSI 内部 CCI 接口则可以不填
vip_dev0_twi_addr	请参考实际模组的 8bit ID 填写,如
	0x6c.
vip_dev0_isp_used	如果是 RAW sensor 必须填 1, YUV 填
	0.
vip_dev0_fmt	如果是 RAW 格式填 1, YUV 填 0。
vip_dev0_stby_mode	填 0。
vip_dev0_vflip	Sensor 图像垂直翻转。
vip_dev0_hflip	Sensor 图像水平翻转。
vip_dev0_iovdd	IOVDD 配置,请参考实际原理图填写。
vip_dev0_iovdd_vol	IOVDD 电压值一般为 2.8V(2800000)。
vip_dev0_avdd	AVDD 配置,如"axp15_aldo2"。
vip_dev0_avdd_vol	AVDD 电压值,一般为 2.8V(2800000)。
vip_dev0_dvdd	DVDD 配置,如"axp22_eldo1"。
vip_dev0_dvdd_vol	DVDD 电压值参考 datasheet ,
	1.2/1.5/1.8V。
vip_dev0_afvdd	VCM 电源配置一般不用配置。
vip_dev0_afvdd_vol	VCM 电压值为 2.8V。
vip_dev0_power_en	Sensor power enable 引脚 GPIO 配置。
vip_dev0_reset	Sensor reset 引脚 GPIO 配置。
vip_dev0_pwdn	Sensor power down 引脚 GPIO 配置。
vip_dev0_flash_en	闪光灯 enable 引脚 GPIO 配置。
vip_dev0_flash_mode	闪光灯 flash mode 引脚 GPIO 配置。
_ +	

vip_dev0_act_used 模组包含 VCM driver 时候填1。 vip_dev0_act_name VCM driver 名字,如"ad5820_act "。 vip_dev0_act_slave VCM driver slave 地址。 vip_dev1_mname 设置 sensor 1 名称,如"ov5648 "。 vip_dev1_pos 摄像头位置前置填"front",后置填 "rear"。 vip_dev1_lane 请参考实际模组的 lane 数目填写。 vip_dev1_twi_id CSI 使用的 IIC 通道序号,查看具体方案原理图,使用 twi0 填0,如果使用 CSI 内部 CCI 接口则可以不填。 vip_dev1_twi_addr 请参考实际模组的 8bit ID 填写,如 0x6c。 vip_dev1_isp_used 如果是 RAW sensor 必须填1,YUV 填0。 vip_dev1_fmt 如果是 RAW 格式填1,YUV 填0。 vip_dev1_stby_mode 填0。 vip_dev1_fmt 如果是 RAW 格式填1,YUV 填2。 vip_dev1_	vip_dev0_af_pwdn	VCM driver power down 引脚 GPIO 配
vip_dev0_act_name VCM driver 名字, 如 "ad5820_act "。 vip_dev0_act_slave VCM driver slave 地址。 vip_dev1_mname 设置 sensor 1 名称, 如 "ov5648 "。 vip_dev1_pos 摄像头位置前置填"front", 后置填"rear"。 vip_dev1_lane 请参考实际模组的 lane 数目填写。 vip_dev1_twi_id CSI 使用的 IIC 通道序号, 查看具体方案原理图,使用 twi0 填 0, 如果使用 CSI 内部 CCI 接口则可以不填。 vip_dev1_twi_addr 请参考实际模组的 8bit ID 填写,如 0x6c。 vip_dev1_isp_used 如果是 RAW sensor 必须填 1, YUV 填 0。 vip_dev1_isp_used 如果是 RAW 格式填 1, YUV 填 0。 vip_dev1_stby_mode 填 0。 vip_dev1_stby_mode 填 0。 vip_dev1 stby_mode 填 0。 vip_dev1 lovdd IOVDD 配置, 请参考实际原理图填写。 vip_dev1_iovdd IOVDD 配置, 请参考实际原理图填写。 vip_dev1_iovdd IOVDD 配置, 请参考实际原理图填写。 vip_dev1_iovdd IOVDD 配置, 请参考实际原理图填写。 vip_dev1_iovdd IOVDD 配置, 排分考实际原理图填写。 vip_dev1_iovdd AVDD 配置, 排分考实际原理图填写。 vip_dev1_avdd AVDD 电压值, 一般为 2.8V(2800000)。 vip_dev1_dvdd DVDD 电压值参考 datasheet , 1.2/1.5/1.8V。 vip_dev1_afvdd VCM 电源配置 — 般示 是有的的的的的的的的的的的的的的的的的的的的的的的的的的的的的的的的的的的的		置。
vip_dev0_act_slave VCM driver slave 地址。 vip_dev1_mname 设置 sensor 1 名称,如 "ov5648 "。 vip_dev1_pos 摄像头位置前置填"front",后置填"rear"。 vip_dev1_lane 请参考实际模组的 lane 数目填写。 vip_dev1_twi_id CSI 使用的 IIC 通道序号,查看具体方案原理图,使用 twi0 填 0,如果使用 CSI 内部 CCI 接口则可以不填。 vip_dev1_twi_addr 请参考实际模组的 8bit ID 填写,如 0x6c。 vip_dev1_isp_used 如果是 RAW sensor 必须填 1, YUV 填 0。 vip_dev1_fimt 如果是 RAW 格式填 1, YUV 填 0。 vip_dev1_stby_mode 均 0。 vip_dev1_stby_mode 以Pax(2800000)	vip_dev0_act_used	
vip_dev1_mname	vip_dev0_act_name	VCM driver 名字,如 "ad5820_act "。
vip_devl_pos 据像头位置前置填"front",后置填 "rear"。 vip_devl_lane vip_devl_twi_id CSI 使用的 IIC 通道序号,查看具体方 案原理图,使用 twi0 填 0,如果使用 CSI 内部 CCI 接口则可以不填。 vip_devl_twi_addr vip_devl_twi_addr vip_devl_isp_used vip_devl_fmt vip_devl_fmt vip_devl_stby_mode vip_devl_vflip vip_devl_vflip vip_devl_iovdd if vip_devl_iovdd if vip_devl_iovdd vip_devl_avdd vip_devl_avdd vip_devl_avdd vip_devl_dvdd vip_devl_afvdd vip_devl_afvdd vip_devl_pwdn vip_devl_pwdn vip_devl_pwdn vip_devl_pwdn vip_devl_pwdn vip_devl_pwdn vip_devl_pwdn vip_devl_flash_en vip_devl_flash_en vip_devl_af_pwdn VCM driver power down 引脚 GPIO 配置。 vip_devl_af_pwdn VCM driver ver ver ver ver ver ver ver ver ver	vip_dev0_act_slave	VCM driver slave 地址。
rear"。 vip_dev1_lane vip_dev1_twi_id cSI 使用的 IIC 通道序号,查看具体方案原理图,使用 twi0 填 0,如果使用 CSI 内部 CCI 接口则可以不填。 vip_dev1_twi_addr vip_dev1_twi_addr vip_dev1_isp_used vip_dev1_fmt vip_dev1_stby_mode vip_dev1_yflip vip_dev1_iovdd vip_dev1_iovdd vip_dev1_iovdd vip_dev1_avdd vip_dev1_avdd vip_dev1_avdd vip_dev1_avdd vip_dev1_afvdd vip_dev1_dvdd vip_dev1_dvdd vip_dev1_dvdd vip_dev1_afvdd vip_dev1_power en vip_dev1_power en vip_dev1_flash_en vip_dev1_flash_mode vip_dev1_af_pwdn vip_dev1_af_pwdn VCM driver power down 引脚 GPIO 配置。 vip_dev1_af_pwdn VCM driver power down 引牌 GPIO 配置。 vip_dev1_af_pwdn	vip_dev1_mname	设置 sensor 1 名称,如 "ov5648 "。
vip_dev1_twi_id vip_dev1_twi_id CSI 使用的 IIC 通道序号,查看具体方案原理图,使用 twi0 填 0,如果使用 CSI 内部 CCI 接口则可以不填。 请参考实际模组的 8bit ID 填写,如 0x6c。 vip_dev1_twi_addr vip_dev1_isp_used 如果是 RAW sensor 必须填 1,YUV 填 0。 vip_dev1_stby_mode vip_dev1_vflip vip_dev1_bflip vip_dev1_iovdd Vip_dev1_iovdd Vip_dev1_iovdd Vip_dev1_iovdd Vip_dev1_iovdd Vip_dev1_avdd Vip_dev1_avdd Vip_dev1_avdd Vip_dev1_dvdd Vip_dev1_dvdd Vip_dev1_dvdd Vip_dev1_dvdd Vip_dev1_dvdd Vip_dev1_dvdd Vip_dev1_dvdd Vip_dev1_dvdd Vip_dev1_dvdd Vip_dev1_afvdd Vip_dev1_afvdd Vip_dev1_afvdd Vip_dev1_power_en Vip_dev1_power_en Vip_dev1_fash_en Vip_dev1_fash_mode Vip_dev1_fash_mode Vip_dev1_fash_mode Vip_dev1_af_pwdn VCM driver power down 引脚 GPIO 配置。 Vip_dev1_af_pwdn VCM driver power down 引牌 GPIO 配置。 Vip_dev1_act_used VCM driver ASP, ym "ad5820_act "。	vip_dev1_pos	摄像头位置前置填"front",后置填
Vip_dev1_twi_id		"rear"。
案原理图,使用 twi0 填 0,如果使用 CSI 内部 CCI 接口则可以不填。 vip_devl_twi_addr	vip_dev1_lane	请参考实际模组的 lane 数目填写。
CSI 内部 CCI 接口则可以不填。 vip_dev1_twi_addr	vip_dev1_twi_id	CSI 使用的 IIC 通道序号,查看具体方
vip_dev1_twi_addr vip_dev1_isp_used vip_dev1_isp_used vip_dev1_fint vip_dev1_fint vip_dev1_stby_mode vip_dev1_vflip vip_dev1_hflip vip_dev1_iovdd vip_dev1_iovdd vip_dev1_iovdd vip_dev1_avdd vip_dev1_afvdd vip_dev1_dfvdd vip_dev1_afvdd vip_dev1_afvdd vip_dev1_afvdd vip_dev1_afvdd vip_dev1_afvdd vip_dev1_pwdn vip_dev1_pwdn vip_dev1_pwdn vip_dev1_flash_en vip_dev1_aft_aft_aft_aft_aft_aft_aft_aft_aft_aft		案原理图,使用 twi0 填 0,如果使用
vip_devl_isp_used		CSI 内部 CCI 接口则可以不填。
wip_devl_isp_used wip_devl_fmt 如果是 RAW 格式填 1, YUV 填 0。 wip_devl_stby_mode vip_devl_vflip Sensor 图像垂直翻转。 wip_devl_hflip Sensor 图像水平翻转。 IOVDD 配置,请参考实际原理图填写。 wip_devl_iovdd Vip_devl_iovdd Vip_devl_avdd Vip_devl_avdd AVDD 配置,如"axpl5_aldo2"。 vip_devl_avdd vip_devl_dvdd DVDD 配置,如"axp15_aldo2"。 Vip_devl_dvdd DVDD 配置,如"axp22_eldo1"。 DVDD 电压值,一般为 2.8V(2800000)。 vip_devl_dvdd Vip_devl_dvdd VCM 电源配置一般不用配置。 VCM 电源配置一般不用配置。 VCM 电上值为 2.8V。 Sensor power enable 引脚 GPIO 配置。 vip_devl_pwdn Vip_devl_pwdn Sensor power down 引脚 GPIO 配置。 vip_devl_flash_en Vip_devl_afpwdn VCM driver power down 引脚 GPIO 配置。 vip_devl_af_pwdn VCM driver power down 引脚 GPIO 配置。 Vip_devl_act_name VCM driver 时候填 1。 VCM driver 时候填 1。 VCM driver 日候填 1。 VCM driver 名字,如 "ad5820_act "。	vip_dev1_twi_addr	请参考实际模组的 8bit ID 填写,如
vip_dev1_fmt vip_dev1_stby_mode vip_dev1_stby_mode vip_dev1_vflip Sensor 图像垂直翻转。 vip_dev1_hflip Sensor 图像水平翻转。 vip_dev1_iovdd Vip_dev1_iovdd Vip_dev1_iovdd Vip_dev1_avdd AVDD 配置,请参考实际原理图填写。 vip_dev1_avdd AVDD 配置,如"axp15_aldo2"。 vip_dev1_avdd DVDD 配置,如"axp25_eldo1"。 Vip_dev1_dvdd DVDD 配置,如"axp22_eldo1"。 Vip_dev1_dvdd VCM 电源配置一般不用配置。 Vip_dev1_afvdd VCM 电源配置一般不用配置。 vip_dev1_power_en Sensor power enable 引脚 GPIO 配置。 vip_dev1_pwdn Sensor power down 引脚 GPIO 配置。 vip_dev1_flash_en Vip_dev1_af pwdn VCM driver power down 引脚 GPIO 配置。 vip_dev1_af pwdn VCM driver power down 引脚 GPIO 配置。 Vip_dev1_af pwdn VCM driver power down 引脚 GPIO 配置。 Vip_dev1_af pwdn VCM driver power down 引脚 GPIO 配置。 Vip_dev1_af pwdn VCM driver power down 引脚 GPIO 配置。 Vip_dev1_act_used Vip_dev1_act_used VCM driver Pf候填 1。 VCM driver Pf候填 1。 VCM driver Pf候填 1。 VCM driver Pf候填 1。 VCM driver Af S820_act "。		0x6c.
vip_dev1_fmt如果是 RAW 格式填 1, YUV 填 0。vip_dev1_stby_mode填 0。vip_dev1_vflipSensor 图像垂直翻转。vip_dev1_hflipSensor 图像水平翻转。vip_dev1_iovddIOVDD 配置, 请参考实际原理图填写。vip_dev1_iovdd_volIOVDD 电压值一般为 2.8V(2800000)。vip_dev1_avddAVDD 配置, 如"axp15_aldo2"。vip_dev1_avdd_volAVDD 电压值, 一般为 2.8V(2800000)。vip_dev1_dvddDVDD 配置, 如"axp22_eldo1"。vip_dev1_dvdd_volDVDD 电压值参考 datasheet ,vip_dev1_afvddVCM 电源配置一般不用配置。vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_isp_used	如果是 RAW sensor 必须填 1, YUV 填
vip_dev1_stby_mode		0.
vip_dev1_vflipSensor 图像垂直翻转。vip_dev1_hflipSensor 图像水平翻转。vip_dev1_iovddIOVDD 配置,请参考实际原理图填写。vip_dev1_iovdd_volIOVDD 电压值一般为 2.8V(2800000)。vip_dev1_avddAVDD 配置,如"axp15_aldo2"。vip_dev1_avdd_volAVDD 电压值,一般为 2.8V(2800000)。vip_dev1_dvddDVDD 配置,如"axp22_eldo1"。vip_dev1_dvdd_volDVDD 电压值 参考 datasheet,1.2/1.5/1.8V。vip_dev1_afvddVCM 电源配置一般不用配置。vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填1。vip_dev1_act_used校组包含 VCM driver 时候填1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_fmt	如果是 RAW 格式填 1, YUV 填 0。
vip_dev1_hflipSensor 图像水平翻转。vip_dev1_iovddIOVDD 配置,请参考实际原理图填写。vip_dev1_iovdd_volIOVDD 电压值一般为 2.8V(2800000)。vip_dev1_avddAVDD 配置,如"axp15_aldo2"。vip_dev1_avdd_volAVDD 电压值,一般为 2.8V(2800000)。vip_dev1_dvddDVDD 配置,如"axp22_eldo1"。vip_dev1_dvdd_volDVDD 电压值参考 datasheet,1.2/1.5/1.8V。vip_dev1_afvddVCM 电源配置一般不用配置。vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_pwdnSensor reset 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填1。vip_dev1_act_used模组包含 VCM driver 时候填1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_stby_mode	填 0。
rip_devl_iovdd rol rip_devl_iovdd_vol rip_devl_avdd rol rip_devl_avdd rol rip_devl_avdd rol rip_devl_avdd rol rip_devl_avdd rol rip_devl_avdd_vol rip_devl_dvdd rol rip_devl_dvdd rol rip_devl_dvdd rol rip_devl_dvdd rol rip_devl_afvdd rol rip_devl_afvdd rol rip_devl_afvdd rol rip_devl_afvdd rol rip_devl_afvdd rol rip_devl_afvdd rol reset rol rip_devl_pwdn rol reset rol rip_devl_pwdn rol rip_devl_flash_en rol rip_devl_af_pwdn rol rip_devl_act_used rol rip_devl_act_used rol rip_devl_act_used rol rip_devl_act_name rol r	vip_dev1_vflip	Sensor 图像垂直翻转。
vip_devl_iovdd_vol vip_devl_avdd AVDD 配置,如"axp15_aldo2"。 AVDD 电压值,一般为 2.8V(2800000)。 vip_devl_avdd_vol vip_devl_dvdd DVDD 配置,如"axp22_eldo1"。 DVDD 电压值,一般为 2.8V(2800000)。 DVDD 配置,如"axp22_eldo1"。 DVDD 电压值参考 datasheet, 1.2/1.5/1.8V。 vip_devl_afvdd VCM 电源配置一般不用配置。 vip_devl_afvdd_vol vip_devl_power_en Sensor power enable 引脚 GPIO 配置。 vip_devl_pwdn Sensor power down 引脚 GPIO 配置。 vip_devl_flash_en Vip_devl_flash_mode VCM driver power down 引脚 GPIO 配置。 vip_devl_af_pwdn VCM driver power down 引脚 GPIO 配置。 vip_devl_act_used VCM driver 日候填1。 vip_devl_act_used VCM driver 名字,如 "ad5820_act "。	vip_dev1_hflip	Sensor 图像水平翻转。
vip_dev1_avddAVDD 配置,如"axp15_aldo2"。vip_dev1_avdd_volAVDD 电压值,一般为 2.8V(2800000)。vip_dev1_dvddDVDD 配置,如"axp22_eldo1"。vip_dev1_dvdd_volDVDD 电压值参考 datasheet,1.2/1.5/1.8V。vip_dev1_afvddVCM 电源配置一般不用配置。vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_pextSensor reset 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_iovdd	IOVDD 配置,请参考实际原理图填写。
vip_dev1_avdd_volAVDD 电压值,一般为 2.8V(2800000)。vip_dev1_dvddDVDD 配置,如"axp22_eldo1"。vip_dev1_dvdd_volDVDD 电压值参考 datasheet,1.2/1.5/1.8V。vip_dev1_afvddVCM 电源配置一般不用配置。vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_resetSensor reset 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_iovdd_vol	IOVDD 电压值一般为 2.8V(2800000)。
vip_dev1_dvddDVDD 配置,如"axp22_eldo1"。vip_dev1_dvdd_volDVDD 电压值参考 datasheet,1.2/1.5/1.8V。vip_dev1_afvddVCM 电源配置一般不用配置。vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_resetSensor reset 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填1。vip_dev1_act_used模组包含 VCM driver 时候填1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_avdd	AVDD 配置,如"axp15_aldo2"。
vip_dev1_dvdd_volDVDD 电压值参考 datasheet , 1.2/1.5/1.8V。vip_dev1_afvddVCM 电源配置一般不用配置。vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_pwdnSensor reset 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_usedVCM driver 名字,如 "ad5820_act "。	vip_dev1_avdd_vol	AVDD 电压值,一般为 2.8V(2800000)。
1.2/1.5/1.8V。 vip_dev1_afvdd	vip_dev1_dvdd	DVDD 配置,如"axp22_eldo1"。
vip_dev1_afvddVCM 电源配置一般不用配置。vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_resetSensor reset 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_dvdd_vol	DVDD 电压值参考 datasheet,
vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_resetSensor reset 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。		1.2/1.5/1.8V。
vip_dev1_afvdd_volVCM 电压值为 2.8V。vip_dev1_power_enSensor power enable 引脚 GPIO 配置。vip_dev1_resetSensor reset 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_afvdd	VCM 电源配置一般不用配置。
vip_dev1_resetSensor reset 引脚 GPIO 配置。vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_afvdd_vol	VCM 电压值为 2.8V。
vip_dev1_pwdnSensor power down 引脚 GPIO 配置。vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_power_en	Sensor power enable 引脚 GPIO 配置。
vip_dev1_flash_en闪光灯 enable 引脚 GPIO 配置。vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_reset	Sensor reset 引脚 GPIO 配置。
vip_dev1_flash_mode闪光灯 flash mode 引脚 GPIO 配置。vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_pwdn	Sensor power down 引脚 GPIO 配置。
vip_dev1_af_pwdnVCM driver power down 引脚 GPIO 配置。vip_dev1_act_used模组包含 VCM driver 时候填 1。vip_dev1_act_nameVCM driver 名字,如 "ad5820_act "。	vip_dev1_flash_en	闪光灯 enable 引脚 GPIO 配置。
置。 vip_dev1_act_used 模组包含 VCM driver 时候填 1。 vip_dev1_act_name VCM driver 名字,如"ad5820_act"。	vip_dev1_flash_mode	闪光灯 flash mode 引脚 GPIO 配置。
置。 vip_dev1_act_used 模组包含 VCM driver 时候填 1。 vip_dev1_act_name VCM driver 名字,如"ad5820_act"。	vip_dev1_af_pwdn	VCM driver power down 引脚 GPIO 配
vip_dev1_act_name VCM driver 名字,如 "ad5820_act "。		置。
vip_dev1_act_name VCM driver 名字,如 "ad5820_act "。	vip_dev1_act_used	模组包含 VCM driver 时候填 1。
1		
vip_dovi_dot_bidvo v Civi diivoi bidvo Alailo	vip_dev1_act_slave	VCM driver slave 地址。

[csi0]

vip_used

```
vip mode
                          = 0
vip dev qty
                         = 2
vip define sensor list
                        =0
vip csi pck
                         = port:PE00<2><default><default>
vip csi mck
                         = port:PE01<2><default><default><default>
vip csi hsync
                        = port:PE02<2><default><default><default>
vip csi vsync
                        = port:PE03<2><default><default>
                         = port:PE04<2><default><default>
vip csi d0
                         = port:PE05<2><default><default>
vip csi d1
                         = port:PE06<2><default><default>
vip csi d2
                         = port:PE07<2><default><default>
vip csi d3
                         = port:PE08<2><default><default>
vip csi d4
vip csi d5
                         = port:PE09<2><default><default>
vip csi d6
                         = port:PE10<2><default><default>
vip csi d7
                         = port:PE11<2><default><default>
vip dev0 mname
                          = "gc2035"
vip dev0 pos
                         = "rear"
vip dev0 lane
                         = 1
vip dev0 twi id
                        =2
vip dev0 twi addr
                        = 0x78
vip dev0 isp used
                        =0
vip dev0 fmt
                         = 0
vip dev0 stby mode
vip dev0 vflip
vip dev0 hflip
                          = "axp22 dldo3"
vip dev0 iovdd
                        =2800000
vip dev0 iovdd vol
vip dev0 avdd
                         = "axp22 dldo3"
vip dev0 avdd vol
                         =2800000
vip dev0 dvdd
                         = "axp22 eldo2"
vip_dev0_dvdd_vol
                         = 1800000
vip dev0 afvdd
                         = "axp22 dldo3"
vip dev0 afvdd vol
                        = 2800000
vip dev0 power en
vip dev0 reset
                        = port:PE14<1><default><default><0>
vip dev0 pwdn
                          = port:PE17<1><default><default><1>
vip dev0_flash_en
vip dev0 flash mode
vip dev0 af pwdn
vip dev1 mname
                          = "gc0328"
vip dev1 pos
                         = "front"
```

vip dev1 lane = 1vip dev1 twi id =2vip_dev1_twi_addr = 0x42vip dev1 isp used =0vip dev1 fmt =0vip_dev1_stby_mode =0vip dev1 vflip = 1vip dev1 hflip = 1vip dev1 iovdd = "axp22 dldo3" vip_dev1_iovdd_vol = 2800000vip dev1 avdd = "axp22 dldo3" vip dev1 avdd vol =2800000vip dev1 dvdd = "axp22_eldo2" vip dev1 dvdd vol = 1800000vip_dev1_afvdd = "axp22 dldo3" vip dev1 afvdd vol = 2800000vip_dev1_power_en = port:PE14<1><default><default><0> vip dev1 reset = port:PE15<1><default><default><1> vip_dev1_pwdn vip_dev1_flash_en vip dev1 flash mode vip_dev1_af_pwdn

16. SD / MMC

16.1. [mmc0_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 轮询检测, 2-gpio 中
	断检测,3-卡常在(不可拔插),4 - manual
	mode(from proc file system node),
	5-DAT3 检测
Sdc_buswidth=xx	位宽: 1-1bit, 4-4bit
sdc_d1=xx	SDC DATA1 的 GPIO 配置
sdc_d0=xx	SDC DATA0 的 GPIO 配置
sdc_clk=xx	SDC CLK 的 GPIO 配置
sdc_cmd=xx	SDC CMD 的 GPIO 配置
sdc_d3=xx	SDC DATA3 的 GPIO 配置
sdc_d2=xx	SDC DATA2 的 GPIO 配置
sdc_det=xx	SDC DET 的 GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用

sdc_wp=xx	SDC WP 的 GPIO 配置
sdc_power_supply=xx	SDC 模块的供电电压
sdc_isio=xx	是否是 sdio card,0:不是,1: 是
sdc_regulator=xx	假如过卡支持 SD3.0 或者 emmc4.5 的
	UHS-I/DDR、HS200,这里就要写成
	sdc_regulator = "axp22_eldo2"(原理图
	上对应的 PMU 供电输出)

[mmc0_para]

 sdc_used = 1=2sdc_detmode sdc buswidth =4

sdc d1 = port:PF00<2><1><2><default> sdc_d0 = port:PF01<2><1><2><default> = port:PF02<2><1><2><default> sdc_clk sdc_cmd = port:PF03<2><1><2><default> = port:PF04<2><1><2><default> sdc_d3 = port:PF05<2><1><2><default> sdc_d2 = port:PB04<4><1><2><default> sdc det

sdc_use_wp sdc_wp sdc_isio = 0sdc_regulator = "none"

sdc_power_supply = "axp22_dcdc1"

16.2. [mmc1_para]

配置项	配置项含义
sdc_used=xx	SDC 使用控制: 1 使用, 0 不用
sdc_detmode=xx	检测模式: 1-gpio 轮询检测, 2-gpio 中
	断检测, 3-卡常在(不可拔插), 4 - manual
	mode(from proc file system node),
	5-DAT3 检测
bus_width=xx	位宽: 1-1bit, 4-4bit
sdc_d1=xx	SDC DATA1 GPIO 配置
$sdc_d0=xx$	SDC DATA0 GPIO 配置
sdc_clk=xx	SDC CLK GPIO 配置
sdc_cmd=xx	SDC CMD GPIO 配置
sdc_d3=xx	SDC DATA3 GPIO 配置
sdc_d2=xx	SDC DATA2 GPIO 配置
sdc_det=xx	SDC DET GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用
sdc_wp=xx	SDC WP GPIO 配置
sdc_isio =xx	是否是 sdio card,0:不是, 1: 是

sdc_regulator =xx	假如过卡支持 SD3.0 或者 emmc4.5 的
	UHS-I/DDR、HS200,这里就要写成
	sdc_regulator = "axp22_eldo2"(原理图
	上对应的 PMU 供电输出)

[mmc1_para]

 $sdc_used = 1$ $sdc_detmode = 4$ $sdc_buswidth = 4$

 sdc_clk
 = port:PG00<2><1><1><default>

 sdc_cmd
 = port:PG01<2><1><1><default>

 sdc_d0
 = port:PG02<2><1><1><default>

 sdc_d1
 = port:PG03<2><1><1><default>

 sdc_d2
 = port:PG04<2><1><1><default>

 sdc_d3
 = port:PG05<2><1><1><default>

 sdc_det
 =

 sdc_use_wp
 = 0

 sdc_wp
 =

 sdc_isio
 = 1

 sdc_regulator
 = "none"

16.3. [mmc2_para]

配置项	配置项含义
sdc used=xx	SDC 使用控制: 1 使用, 0 不用
sdc detmode=xx	检测模式: 1-gpio 轮询检测, 2-gpio 中
bac_actinode AA	断检测,3-卡常在(不可拔插),4-manual
	mode(from proc file system node),
	5-DAT3 检测
Sdc bus width=xx	位宽: 1-1bit, 4-4bit, 8-8bit
Sdc 2xmode=xx	2x 采样模式, 1: 开启, 0: 关闭, 默认
Suc_ZAMouc AA	开启
sdc d1=xx	SDC DATA1 GPIO 配置
sdc_d1=xx sdc_d0=xx	SDC DATA1 GFIO 配置
sdc_clk=xx	SDC CLK GPIO 配置
sdc_cmd=xx	SDC CMD GPIO 配置
sdc_d3=xx	SDC DATA3 GPIO 配置
sdc_d2=xx	SDC DATA2 GPIO 配置
$sdc_d4 = xx$	SDC DATA4GPIO 配置
$sdc_d5 = xx$	SDC DATA5 GPIO 配置
$sdc_d6 = xx$	SDC DATA6 GPIO 配置
$sdc_d7 = xx$	SDC DATA7 GPIO 配置
sdc_det=xx	SDC DET GPIO 配置
sdc_use_wp=xx	SDC 写保护配置: 1 使用, 0 不用

sdc_wp=xx	SDC WP GPIO 配置
sdc_power_supply	SDC 模块的供电电压
$emmc_rst = xx$	Emmc 的 reset 管脚
sdc_isio=xx	是否是 sdio card,0:不是,1:是
sdc_regulator=xx	假如过卡支持 SD3.0 或者 emmc4.5 的
	UHS-I/DDR、HS200,这里就要写成
	sdc_regulator = "axp22_eldo2"

```
[mmc2_para]
                   =0
sdc used
sdc detmode
                   =3
                  = 8
sdc buswidth
sdc_2xmode
sdc_clk
                  = port:PC05<3><1><2><default>
                   = port:PC06<3><1><2><default>
sdc cmd
sdc_d0
                   = port:PC08<3><1><2><default>
                   = port:PC09<3><1><2><default>
sdc d1
sdc_d2
                   = port:PC10<3><1><2><default>
                   = port:PC11<3><1><2><default>
sdc_d3
sdc_d4
                   = port:PC12<3><1><2><default>
sdc d5
                   = port:PC13<3><1><2><default>
                   = port:PC14<3><1><2><default>
sdc d6
                   = port:PC15<3><1><2><default>
sdc_d7
                   = port:PC16<3><1><2><default>
emmc rst
                  = "axp22_dcdc1"
sdc_power_supply
sdc det
sdc_use_wp
sdc_wp
sdc isio
                   "none"
sdc_regulator
```

17. SIM 卡

17.1. [smc_para]

配置项	配置项含义
smc_used =xx	
smc_rst=xx	
smc_vppen=xx	
smc_vppp=xx	

smc_det=xx	
smc_vccen=xx	
smc_sck=xx	
smc sda=xx	

18. USB 控制标志

18.1. [usbc0]

配置项	配置项含义
usb_used =xx	USB 使能标志(xx=1 or 0)。置 1,表示
	系统中 USB 模块可用,置 0,则表示系
	统 USB 禁用。此标志只对具体的 USB
	控制器模块有效。
usb_port_type =xx	USB 端口的使用情况。(xx=0/1/2)
	0: device only 1: host only 2: OTG
usb_detect_type=xx	USB 端口的检查方式。
	0: 无检查方式 1: vbus/id 检查
usb_id_gpio=xx	USB ID pin 脚配置。具体请参考 gpio
	配置说明。《配置与 GPIO 管理.doc》
usb_det_vbus_gpio=xx	USB DET_VBUS pin 脚配置。如果
	GPIO 提供 pin,请参考 gpio 配置说明
	《配置与 GPIO 管理.doc》。如果的 AXP
	提供 pin,则配置为: "axp_ctrl"。
usb_drv_vbus_gpio=xx	USB DRY_VBUS pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管
	理.doc》
usb_restrict_gpio=xx	USB 限流控制 pin 脚
	USB RESTRICT_GPIO pin 脚配置。具
	体请参考 gpio 配置说明。《配置与 GPIO
	管理.doc》
usb_host_init_state=xx	host only 模式下,Host 端口初始化状
	态。
	0:初始化后 USB 不工作
	后 USB 工作
usb_restric_flag=xx	Usb 限流标志位
	0: 不使能限流功能 1: 使能限流功能
usb_restric_voltage=xx	限流开启的条件
	电压值小于设置值,则开启限流
usb_restric_capacity=xx	限流开启的条件

电量值小于设置值,则开启限流

配置举例:

[usbc0]

usb_used = 1 usb_port_type = 2 usb_detect_type = 1

usb_id_gpio = port:PH08<0><1><default><default>

usb det vbus gpio = "axp ctrl"

usb_drv_vbus_gpio = port:power4<1><0><default><0>

usb_restrict_gpio =
usb_host_init_state = 0
usb_restric_flag = 0
usb_restric_voltage = 3550000
usb_restric_capacity= 5

[usbc1]

usb_used = 1
usb_port_type = 1
usb_detect_type = 0
usb_id_gpio =
usb_det_vbus_gpio =
usb_drv_vbus_gpio =
usb_restrict_gpio =
usb_host_init_state = 1
usb_restric_flag = 0

18.2. [usbc1]

配置项	配置项含义
usb_used =xx	USB 使能标志(xx=1 or 0)。置 1,表示
	系统中 USB 模块可用,置 0,则表示系
	统 USB 禁用。此标志只对具体的 USB
	控制器模块有效。
usb_port_type =xx	USB 端口的使用情况。(xx=0/1/2)
	0: device only 1: host only 2: OTG
usb_detect_type=xx	USB 端口的检查方式。
	0: 无检查方式 1: vbus/id 检查
usb_det_vbus_gpio=xx	USB DET_VBUS pin 脚配置。具体请参
	考 gpio 配置说明。《配置与 GPIO 管
	理.doc》
usb_restrict_gpio=xx	USB 限流控制 pin 脚
	USB RESTRICT_GPIO pin 脚配置。具
	体请参考 gpio 配置说明。《配置与 GPIO
	管理.doc》

usb_host_init_state=xx	host only 模式下,Host 端口初始化状
	态。
	0: 初始化后 USB 不工作 1: 初始化
	后 USB 工作
usb_restric_flag=xx	Usb 限流标志位
	0: 表不设限流,1开启限流

配置举例:

[usbc1]

usb_used = 1
usb_port_type = 1
usb_detect_type = 0
usb_id_gpio =
usb_det_vbus_gpio =
usb_drv_vbus_gpio =
usb_restrict_gpio =
usb_host_init_state = 1
usb_restric_flag = 0

19. USB Device

19.1. [usb_feature]

配置项	配置项含义
vendor_id=xx	USB 厂商 ID
mass_storage_id =xx	U 盘 ID
adb_id =xx	USB 调试桥 ID
manufacturer_name=xx	USB 厂商名
product_name=xx	USB 产品名
serial_number=xx	USB 序列号

配置举例:

[usb_feature]

 $\begin{array}{ll} vendor_id & = 0x1F3A \\ mass_storage_id & = 0x1000 \\ adb_id & = 0x1001 \end{array}$

manufacturer_name = "USB Developer"

product_name = "Android" serial_number = "20080411"

19.2. [msc_feature]

配置项	配置项含义
vendor_name=xx	U盘 厂商名
product_name=xx	U盘产品名
release=xx	发布版本
luns=xx	U 盘逻辑单元的个数(PC 可以看到的 U
	盘盘符的个数)

配置举例:

[msc_feature]

vendor name = "USB 2.0"

product_name = "USB Flash Driver"

release = 100 luns = 3

20. serial_feature

配置项	配置项含义
serial_unique	usb 序列号开关, 0: 不用, 1: 用

配置举例:

[serial_feature]

serial_unique

21. 重力感应(G Sensor)

21.1. [gsensor_para]

配置项	配置项含义
gsensor_used=xx	是否支持 gsensor
gsensor_twi_id =xx	I2C 的 BUS 控制选择, 0:
	TWI0;1:TWI1;2:TWI2
gsensor_twi_addr=xx	芯片的 I2C 地址
gsensor_int1=xx	中断 1 的 GPIO 配置
gsensor_int2=xx	中断 2 的 GPIO 配置

配置举例:

[gsensor_para]

gsensor_used = 1

gsensor_twi_id = 1 gsensor_twi_addr = 0x18

gsensor_int1 = port:PB06<4><1><default><default>

gsensor_int2 =

22. 重力感应(G Sensor)自动扫描配置

注:目前方案中支持 gsensor 的类型有以下列表,作为自动检测加载的时候使用,为'1'时检测加载,为'0'时不检测。

22.1. [gsensor_list_para]

配置项	配置项含义
gsensor_det_used	0 or 1,是否使用自动检测功能
bma250	0 or 1, 检测时是否扫描此类触屏
mma8452	0 or 1, 检测时是否扫描此类触屏
mma7660	0 or 1, 检测时是否扫描此类触屏
mma865x	0 or 1, 检测时是否扫描此类触屏
afa750	0 or 1, 检测时是否扫描此类触屏
lis3de_acc	0 or 1, 检测时是否扫描此类触屏
lis3dh_acc	0 or 1, 检测时是否扫描此类触屏
kxtik	0 or 1, 检测时是否扫描此类触屏
dmard10	0 or 1, 检测时是否扫描此类触屏
dmard06	0 or 1, 检测时是否扫描此类触屏
mxc622x	0 or 1, 检测时是否扫描此类触屏
fxos8700	0 or 1, 检测时是否扫描此类触屏
lsm303d	0 or 1, 检测时是否扫描此类触屏

配署举例.

[gsensor_list_para]

gsensor_det_used	= 1
bma250	= 1
mma8452	= 1
mma7660	= 1
mma865x	= 1
afa750	= 1
lis3de_acc	= 1
lis3dh_acc	= 1
kxtik	= 1
dmard10	=0
dmard06	= 1
mxc622x	= 1

fxos 8700 = 1 lsm 303d = 1

23. WiFi

23.1. [rf_para]

配置项	配置项含义
和.且.7火	
	选择的模组:
	0- none
	1- ap6181(wifi)
	2- ap6210(wifi+bt)
	3- rt18188eu(wifi)
module_num	4- rt18723au(wifi+bt)
	5- rt18723bs(wifi+bt)
	6- esp8089(wifi)
	7- ap6476(wifi+bt+fm+gps)
	8- ap6330(wifi+bt+fm)
	9- gb9663(wifi+bt+fm)
module_power1	模组供电1,请参考 PMU 使用文档
module_power1_vol	模组供电1电压
module_power2	模组供电2,请参考 PMU 使用文档
module_power2_vol	模组供电2电压
module_power3	模组供电3,请参考 PMU 使用文档
module_power3_vol	模组供电3电压
power_switch	
chip_en	WiFi、BT 功能总使能脚
lpo_use_apclk	模组使用的系统32k 时钟

配置举例:

[rf_para]

module_num = 7

module_power1 = "axp22_dldo2"

module_power1_vol = 1800000

module_power2 = "axp22_aldo1"

module_power2_vol = 3000000

module_power3 = ""
module_power3_vol =
power_switch =
chip_en =

lpo_use_apclk = "losc_out"

23.2. [wifi_para]

配置项	配置项含义
wifi_used	是否使用 WiFi
wifi_sdc_id	WiFi 使用的 sdio 接口编号

wifi_usbc_id	WiFi 使用的 USB 接口编号
	WiFi 使用的 USB 控制器类型
wifi_usbc_type	1- EHCI (speed 2.0)
	2- OHCI(speed 1.0)
wl_reg_on	WiFi 功能使能 GPIO
wl_host_wake	WiFi 唤醒主控 GPIO
wl_host_wake_invert	wl_host_wake 是否接反相器

说明: [wifi para]下的配置项是 usb 和 sdio 接口 wifi 共用的。

配置举例:

[wifi_para]

wifi_used = 1 wifi_sdc_id = 1 wifi_usbc_id = 1 wifi_usbc_type = 1

wl_reg_on = port:PL06<1><default><0> wl_host_wake = port:PL07<4><default><0>

wl_host_wake_invert = 0

24. 蓝牙(blueteeth)

24.1. [bt para]

配置项	配置项含义
bt_used	是否使用 BT
bt_uart_id	BT 连接的 UART 接口编号
bt_rst_n	BT_RESET 脚
bt_wake	BT_WAKE_AP 脚
bt_host_wake	AP_WAKE_BT 脚
bt_wake_invert	bt_wake 是否接反相器
bt_host_wake_invert	bt_host_wake 是否接反相器
ls_int	uart 电平转换芯片使能脚
pcm_ch	Pcm 电平转换芯片使能脚

配置举例:

 $bt_used = 1$ $bt_uart id = 1$

bt_rst_n = port:PL08<1><default><0> bt_wake = port:PL10<1><default><default><0> bt host wake = port:PL09<4><default><default><0>

bt_wake_invert = 0 bt host wake invert = 0 ls_int = port:PB07<1><default><0>
pcm_ch = port:PB05<1><default><default><0>

25. 光感(light sensor)

25.1. [ls_para]

配置项	配置项含义
ls_used =xx	是否支持 ls
ls_twi_id=xx	I2C 的 BUS 控制选择, 0:
	TWI0;1:TWI1;2:TWI2
ls_twi_addr =xx	芯片的 I2C 地址
ls int=xx	中断的 GPIO 配置

配置举例:

[ls_para]

 $\begin{array}{ll} ls_used & = 0 \\ ls_twi_id & = 1 \\ ls_twi_addr & = 0x23 \end{array}$

ls_int = port:PB07<4><1><default><default>

26. 罗盘 Compass

26.1. [compass_para]

配置项	配置项含义
compass_used=xx	是否支持 compass
compass_twi_id=xx	I2C 的 BUS 控制选择, 0:
	TWI0;1:TWI1;2:TWI2
compass_twi_addr =xx	芯片的 I2C 地址
compass_int =xx	中断的 GPIO 配置

配置举例:

[compass_para]

 $\begin{array}{lll} compass_used & = 0 \\ compass_twi_id & = 1 \\ compass_twi_addr & = 0x0d \\ compass_int & = \end{array}$

27. 蓝牙(blueteeth)

27.1. [bt_para]

配置项	配置项含义
bt_used=xx	BLUETOOTH 使用控制: 1 使用, 0 不
	用
bt_uart_id=xx	BLUETOOTH 使用的 UART 控制器号

配置举例:

[bt_para]

bt_used = 1 bt_uart_id = 1

28. 数字音频总线 (I2S)

28.1. [i2s0]

配置项	配置项含义
i2s used	使能配置
i2s channel	通道数配置
_	
i2s_master	主从模式配置,1: 主模式,0: 从模式
i2s_select	I2S、PCM 选择,1: I2S 模式,0: PCM 模式
audio_format	1:SND_SOC_DAIFMT_I2S(standard i2s format).
	2:SND_SOC_DAIFMT_RIGHT_J(right justfied format).
	3:SND_SOC_DAIFMT_LEFT_J(left justfied format)
	4:SND_SOC_DAIFMT_DSP_A(pcm. MSB is available on
	2nd BCLK rising edge after LRC rising edge).
	5:SND_SOC_DAIFMT_DSP_B(pcm. MSB is available on
	1nd BCLK rising edge after LRC
signal_inversion	1:SND_SOC_DAIFMT_NB_NF(normal bit clock + frame)
	2:SND_SOC_DAIFMT_NB_IF(normal BCLK + inv FRM)
	3:SND_SOC_DAIFMT_IB_NF(invert BCLK + nor FRM)
	4:SND_SOC_DAIFMT_IB_IF(invert BCLK + FRM)
over_sample_rate	过采样率,128fs/192fs/256fs/384fs/512fs/768fs
sample_resolution	采样精度,16bits/20bits/24bit
word_select_size	
pcm_sync_period	同步周期,16/32/64/128/256
msb_lsb_first	0: msb first; 1: lsb first
sign_extend	信号扩展,0: zero pending; 1: sign extend

slot_index	slot 标签, 0: the 1st slot - 3: the 4th slot
slot_width	slot 位宽,8 bit width / 16 bit width
frame_width	帧模式, 0: long frame = 2 clock width; 1: short frame
tx_data_mode	发送模式: 0: 16bit linear PCM; 1: 8bit linear PCM; 2: 8bit
	u-law; 3: 8bit a-law
rx_data_mode	接收模式: 0: 16bit linear PCM; 1: 8bit linear PCM; 2: 8bit
	u-law; 3: 8bit a-law
i2s_mclk	IO 信号定义
i2s_bclk	IO 信号定义
i2s_lrclk	IO 信号定义
i2s_dout0	IO 信号定义
i2s_dout1	IO 信号定义
i2s_dout2	IO 信号定义
i2s_dout3	IO 信号定义
i2s_din	IO 信号定义

配置举例:

```
[i2s0]
```

 i2s0_used
 = 0

 i2s0_channel
 = 2

 i2s0_master
 = 4

 i2s0_select
 = 1

 audio_format
 = 1

 signal_inversion
 = 1

 over_sample_rate
 = 512

sample_resolution = 16 word_select_size = 32 pcm_sync_period = 256 msb_lsb_first = 0 sign_extend = 0

slot_index = 0
slot_width = 16
frame_width = 1
tx_data_mode = 1
rx_data_mode = 1
i2s0 mclk =

i2s0_bclk = port:PB04<2><1><default><default> i2s0_lrclk = port:PB05<2><1><default><default> i2s0_dout0 = port:PB06<2><1><default><default>

i2s0_dout1 = i2s0_dout2 = i2s0_dout3 =

i2s0_din = port:PB07<2><1><default><default>

29. 数字音频总线(pcm)

29.1. [pcm_para]

配置项	配置项含义
pcm_used	使能配置
pcm_channel	通道数配置
pcm_master	主从模式配置,1: 主模式,0: 从模式
pcm_select	I2S、PCM 选择,1: I2S 模式,0: PCM 模式
audio_format	1:SND_SOC_DAIFMT_I2S(standard i2s format).
	2:SND_SOC_DAIFMT_RIGHT_J(right justfied format).
	3:SND_SOC_DAIFMT_LEFT_J(left justfied format)
	4:SND_SOC_DAIFMT_DSP_A(pcm. MSB is available on
	2nd BCLK rising edge after LRC rising edge).
	5:SND_SOC_DAIFMT_DSP_B(pcm. MSB is available on 1nd
	BCLK rising edge after LRC
signal_inversion	1:SND_SOC_DAIFMT_NB_NF(normal bit clock + frame)
	2:SND_SOC_DAIFMT_NB_IF(normal BCLK + inv FRM)
	3:SND_SOC_DAIFMT_IB_NF(invert BCLK + nor FRM)
	4:SND_SOC_DAIFMT_IB_IF(invert BCLK + FRM)
over_sample_rate	过采样率,128fs/192fs/256fs/384fs/512fs/768fs
sample_resolution	采样精度,16bits/20bits/24bit
word_select_size	
pcm_sync_period	同步周期,16/32/64/128/256
msb_lsb_first	0: msb first; 1: lsb first
sign_extend	信号扩展,0: zero pending; 1: sign extend
slot_index	slot 标签,0: the 1st slot - 3: the 4th slot
slot_width	slot 位宽,8 bit width / 16 bit width
frame_width	帧模式, 0: long frame = 2 clock width; 1: short frame
tx_data_mode	发送模式: 0: 16bit linear PCM; 1: 8bit linear PCM; 2: 8bit
	u-law; 3: 8bit a-law
rx_data_mode	接收模式: 0: 16bit linear PCM; 1: 8bit linear PCM; 2: 8bit
	u-law; 3: 8bit a-law
i2s_mclk	IO 信号定义
i2s_bclk	IO 信号定义
i2s_lrclk	IO 信号定义
i2s_dout0	IO 信号定义
i2s_din	IO 信号定义

配置举例:

[i2s1]

 $i2s1_used = 0$

i2s1 channel = 2i2s1 master =4= 1i2s1_select audio format = 1signal_inversion = 1 over_sample_rate = 512sample resolution = 16 word select size = 32pcm_sync_period = 64=0msb_lsb_first sign extend =0=0slot index = 16slot_width frame_width = 1= 0tx_data_mode =0rx data mode i2s1_mclk = port:PG11<2><1><default><default> $i2s1_bclk$ = port:PG10<2><1><default><default> i2s1_lrclk $i2s1_dout$ = port:PG12<2><1><default><default> i2s1_din = port:PG13<2><1><default><default>

30. 内置音频 codec

30.1. [audio_para]

配置项	配置项含义
audio_used	Audiocodec 是否使用,
	1: 打开(默认) 0: 关闭
audio_hp_ldo	独立电源控制
headphone_vol	耳机音量大小
cap_vol	录音音量大小
pa_single_vol	喇叭音量大小 (硬件只有一个喇叭)
pa_double_used	硬件是否支持双喇叭配置
pa_double_vol	双喇叭音量大小(如果只有一个喇叭, 这个可以不配置)
headphone_direct_us	耳机的直驱交驱选择(建议 3g-phone 方案选择交驱, pad
ed	方案选择直驱)
audio_pa_ctrl	喇叭的 gpio 口控制。
headphone_mute_us	耳机静音设置
ed	
headset_mic_vol	耳机 mic 增益
main_mic_vol	主 mic 增益

aif2_used	BB 接口
aif3_used	BT 接口
DAC_VOL_CTRL_	喇叭数字增益
SPK	
DAC_VOL_CTRL_	耳机数字增益
HEADPHONE	
agc_used	硬件 agc 使能标志
drc_used	硬件 drc 使能标志

配置举例:

[audio0]

audio_used = 1 headphone_vol = 0x3b

 $earpiece_vol = 0x3b$

cap_vol = 0x5
pa_single_vol = 0x3e
pa_double_used = 0
pa_double_vol = 0x1f
headphone_direct_used = 1

 $headset_mic_vol = 0x6$

main_mic_vol = 0x6 audio_hp_ldo =none

audio_pa_ctrl = port:PH09<1><default><default><0>
;audio_pa_ctrl = port:PA18<1><default><0>

 $aif2_used = 0$ $aif3_used = 0$

headphone mute used = 0

DAC_VOL_CTRL_SPK = 0x9e9e DAC_VOL_CTRL_HEADPHONE = 0xa0a0

;main_mic_vol = 6

31. PMU 电源

31.1. [pmu1_para]

配置项	相关说明
pmu_used	是否使用 AXPxx: 0:不使用,1:使用
pmu_twi_addr	AXPxx 通信 I2C 地址
pmu_twi_id	AXPxx 挂接在主控的哪个 I2C 控制口(0, 1, 2)
pmu_irq_id	irq 号 (0 irq0,1 irq1,······)
pmu_battery_rdc	电池通路内阻,单位 mΩ
pmu_battery_cap	电池容量,单位 mAh, 如果配置改值, 计量方式为库仑

第 50 页 共 62 页

	计方式,否则为电压方式
pmu batdeten	电池检查使能控制: 0:使能 1:使能
pmu_runtime_chgcur	设置开机时充电电流大小,单位 mA, 仅支
	持:300/450/600/750
	/900/1050/1200/1350/1500/1650/1800/1950/2100
pmu_earlysuspend_chgcu	设置关屏时充电电流大小,单位 mA,仅支持:
r	300/4500/600/750/900/1050/1200/1350/1500/1650/1800/
	1950/
	2100
pmu_suspend_chgcur	设置待机时充电电流大小,单位 mA,仅支持:
	300/4500/600/750
	/900/1050/1200/1350/1500/1650/1800/1950/2100
pmu_shutdown_chgcur	设置关机时充电电流大小,单位 mA, 仅支持:
	300/4500/600/750
	/900/1050/1200/1350/1500/1650/1800/1950/2100
pmu_init_chgvol	设置充电完成时电池目标电压,仅支持:
	4100/4200/4220/4240mV
pmu_init_chgend_rate	设置充电结束时电流占恒流值的百分比: 10/15
pmu_init_chg_enabled	开机后充电使能初始值: 0: 不开充电, 1: 开充电
pmu_init_adc_freq	ADC 采样频率设定值: 100/200/400/800 Hz
pmu_init_adcts_freq	TS ADC 采样频率设定值: 100/200/400/800 Hz
pmu_init_chg_pretime	涓流充电超时时间: 40/50/60/70 分钟
pmu_init_chg_csttime	恒流超时时间: 360/480/600/720 分钟
pmu_batt_cap_correct	满足电池容量校正条件后是否校正电池容量控制 0:
	不校正 1:校正
pmu_bat_regu_en	充电结束时,充电开关是否关闭: 0: 关闭 1: 不关闭
pmu_bat_para1	电池空载电压为 3.13V 对应的电量值
pmu_bat_para2	电池空载电压为 3.27V 对应的电量值
pmu_bat_para3	电池空载电压为 3.34V 对应的电量值
pmu_bat_para4	电池空载电压为 3.41V 对应的电量值
pmu_bat_para5	电池空载电压为 3.58V 对应的电量值
pmu_bat_para6	电池空载电压为 3.52V 对应的电量值
pmu_bat_para7	电池空载电压为 3.55V 对应的电量值
pmu_bat_para8	电池空载电压为 3.57V 对应的电量值
pmu_bat_para9	电池空载电压为 3.59V 对应的电量值
pmu_bat_para10	电池空载电压为 3.61V 对应的电量值
pmu_bat_para11	电池空载电压为 3.63V 对应的电量值
pmu_bat_para12	电池空载电压为 3.64V 对应的电量值
pmu_bat_para13	电池空载电压为 3.66V 对应的电量值
pmu_bat_para14	电池空载电压为 3.7V 对应的电量值
pmu_bat_para15	电池空载电压为 3.73V 对应的电量值
pmu_bat_para16	电池空载电压为 3.77V 对应的电量值

第 51 页 共 62 页

pmu bat para17	电池空载电压为 3.78V 对应的电量值
pmu bat para18	电池空载电压为 3.8V 对应的电量值
pmu bat para19	电池空载电压为 3.82V 对应的电量值
pmu bat para20	电池空载电压为 3.84V 对应的电量值
pmu bat para21	电池空载电压为 3.85V 对应的电量值
pmu bat para22	电池空载电压为 3.87V 对应的电量值
pmu bat para23	电池空载电压为 3.91V 对应的电量值
pmu_bat_para24	电池空载电压为 3.94V 对应的电量值
pmu_bat_para25	电池空载电压为 3.98V 对应的电量值
pmu_bat_para26	电池空载电压为 4.01V 对应的电量值
pmu_bat_para27	电池空载电压为 4.05V 对应的电量值
pmu_bat_para28	电池空载电压为 4.08V 对应的电量值
pmu_bat_para29	电池空载电压为 4.1V 对应的电量值
pmu_bat_para30	电池空载电压为 4.12V 对应的电量值
pmu_bat_para31	电池空载电压为 4.14V 对应的电量值
pmu_bat_para32	电池空载电压为 4.15V 对应的电量值
pmu_usbvol_limit	USB 适配器限压功能控制 0: 不使能 1: 使能
pmu_usbcur_limit	USB 适配器限流功能控制 0: 不使能 1: 使能
pmu_usbvol	设置 USB 适配器 限压值:
	4000/4100/4200/4300/4400/4500/4600
	4700 mV, 0-不限压
pmu_usbcur	设置 USB 适配器限流值: 500/900mA, 0-不限流
pmu_usbvol_pc	设 置 USB 连 接 PC 时 限 压 值 :
	4000/4100/4200/4300/4400/4500
	4600/4700 mV,0-不限压
pmu_usbcur_pc	设置 USB 连接 PC 时限流值: 500/900mA, 0-不限流
pmu_pwroff_vol	PMU 关机时, 硬件低电保护电压设置值:
	2600/2700/2800/2900
	/3000/3100/3200/3300 mV
pmu_pwron_vol	PMU 开机后, 硬件低电保护电压设置值:
	2600/2700/2800/2900 /2000/2100/2200/2200
	/3000/3100/3200/3300 mV 以於妹子和叶河乃思佑。4000/0000/9000/10000 ···-
pmu_pekoff_time	长按键关机时间设置值: 4000/6000/8000/10000 ms
pmu_pekoff_func	长按键功能配置项: 0: 长按键后关机 1: 长按键后重 启
nmu nakoff an	/
pmu_pekoff_en	长按键关机激活时间设置, 0/10/20/30/40/50/60/70 秒
pmu_pekoff_delay_time pmu peklong time	报长按键消息时间设定值: 1000/1500/2000/2500 ms
pmu pekon time	关机情况下按键多长时间后启动设置:
pinu_pekon_ume	大机闸机下按键多长时间后后幼伎直: 128/1000/2000/3000 ms
pmu pwrok time	PWROK 启动延时时间设置值: 8/16/32/64 ms
pmu pwrok shutdown e	长按 PWROK 键 6s 是否关机,使能位
n	以及ITTKOK 灰 05 足自八卯6, 民能也
11	

pmu battery warning lev	低电报警门限 level 1 设置值百分比: 5~20,每步设置
el1	1%
pmu battery warning lev	低电报警门限 level 2 设置值百分比: 0~15,每步设置
el2	1%
pmu restvol time	电池电量更新时间设置值: 30/60/120 s
pmu_ocv_cou_adjust_tim	根据 OCV 校正电池电量更新时间值: 30/60/120 s
e e	
pmu_chgled_func	CHGLED 功能控制: 0: 马达驱动 1: 充电状态指示
pmu_chgled_type	CHGLED 作为充电状态指示时指示功能控制: 0: 方
	式 A 1: 方式 B
pmu_vbusen_func	N_VBUSEN 工作方式控制: 0: 作为输入脚 1: 作为
	输出脚
pmu_reset	长按键 16s 后 PMU 是否重启控制: 0: 不重启 1: 重
	启
pmu_IRQ_wakeup	在关机和休眠状态下 IRQ 为低电平时是否触发开机和
	唤醒控制 0: 不开机或不唤醒 1: 开机或唤醒
pmu_hot_shutdowm	PMU 过温后是否关机 0:不关机 1:关机
pmu_inshort	是否手动设置 ACIN/VBUS 短路控制 0: PMU 自动检
	测 1: 手动设置 ACIN 和 VBUS 为短路
power_start	火牛开机选择
	0: 不允许插火牛直接开机,必须通过判断: 满足以
	下条件可以直接开机:长按 power 按键,前次是系统
	状态,如果电池电量过低,则不允许开机
	1: 任意状态下,允许插火牛直接开机,同时要求电
	池电量足够高
	2: 不允许插火牛直接开机,必须通过判断: 满足以一下条件可以直接开机: 长按 power 按键,前次是系统
	状态,不要求电池电量
	3: 任意状态下,允许插火牛直接开机,不要求电池
	电量
pmu_temp_enable	电池温度检测使能控制: 0: disable 1: enable
pmu charge ltf	充电下限电池温度对应的电压
pmu charge htf	充电上限电池温度对应的电压
pmu_discharge_ltf	关机下限电池温度对应的电压
pmu discharge htf	关机上限电池温度对应的电压
pmu_temp_para1	电池温度-25 度对应的电压
pmu_temp_para2	电池温度-15 度对应的电压
pmu_temp_para3	电池温度-10度对应的电压
pmu temp para4	电池温度-5 度对应的电压
pmu_temp_para5	电池温度 0 度对应的电压
pmu_temp_para6	电池温度 5 度对应的电压
pmu_temp_para7	电池温度 10 度对应的电压
pmu_temp_para8	电池温度 20 度对应的电压
pmu_temp_para9	电池温度 30 度对应的电压

第 53 页 共 62 页

pmu_temp_para10	电池温度 40 度对应的电压
pmu_temp_para11	电池温度 45 度对应的电压
pmu_temp_para12	电池温度 50 度对应的电压
pmu_temp_para13	电池温度 55 度对应的电压
pmu_temp_para14	电池温度 60 度对应的电压
pmu_temp_para15	电池温度 70 度对应的电压
pmu_temp_para16	电池温度 80 度对应的电压

配置举例:	
[pmu1_para]	
pmu_used	= 1
pmu_twi_addr	= 0x34
pmu_twi_id	= 1
pmu_irq_id	=0
pmu_battery_rdc	= 100
pmu_battery_cap	=0
pmu_batdeten	= 1
pmu_runtime_chgcur	= 900
pmu_earlysuspend_chgcur	= 1200
pmu_suspend_chgcur	= 1500
pmu_shutdown_chgcur	= 1500
pmu_init_chgvol	= 4200
pmu_init_chgend_rate	= 15
pmu_init_chg_enabled	= 1.
pmu_init_adc_freq	= 800
pmu_init_adcts_freq	= 800
pmu_init_chg_pretime	= 70
pmu_init_chg_csttime	= 720

pmu_bat_para1	=0
pmu_bat_para2	=0
pmu_bat_para3	=0
pmu_bat_para4	=0
pmu_bat_para5	=0
pmu_bat_para6	=0
pmu_bat_para7	=0
pmu_bat_para8	=0
pmu_bat_para9	= 5
pmu_bat_para10	= 8
pmu_bat_para11	= 9
pmu_bat_para12	= 10
pmu_bat_para13	= 13

= 1

=0

pmu_batt_cap_correct

pmu_bat_regu_en

pmu_bat_para14	= 16
pmu_bat_para15	= 20
pmu_bat_para16	= 33
pmu_bat_para17	= 41
pmu_bat_para18	= 46
pmu_bat_para19	= 50
pmu_bat_para20	= 53
pmu_bat_para21	= 57
pmu_bat_para22	= 61
pmu_bat_para23	= 67
pmu_bat_para24	= 73
pmu_bat_para25	= 78
pmu_bat_para26	= 84
pmu_bat_para27	= 88
pmu_bat_para28	= 92
pmu_bat_para29	= 93
pmu_bat_para30	= 94
pmu_bat_para31	= 95
pmu_bat_para32	= 100
pmu_usbvol_limit	=0
pmu_usbcur_limit	=0
pmu_usbvol	= 4000
pmu_usbcur	= 0
pmu_usbvol_pc	= 4400
pmu_usbcur_pc	= 500
pmu_pwroff_vol	= 3300
pmu_pwron_vol	= 2600
pmu_pekoff_time	=6000
pmu_pekoff_func	= 1
pmu_pekoff_en	= 1
pmu_peklong_time	= 1500
pmu_pekon_time	= 1000
pmu_pwrok_time	= 64
pmu_battery_warning_level1 =	= 15
pmu_battery_warning_level2 =	
	= 60
pmu_ocv_cou_adjust_time	= 60
pmu_chgled_func	=0
pmu_chgled_type	=0
pmu_vbusen_func	= 1
pmu_reset	= 0
pmu_IRQ_wakeup	=0
pmu_hot_shutdowm	= 1

pmu_inshort	= 0
power_start	=0
pmu_temp_enable	= 1
pmu_charge_ltf	= 2261
pmu_charge_htf	= 388
pmu_discharge_ltf	= 3200
pmu_discharge_htf	= 237
pmu_temp_para1	= 7466
pmu_temp_para2	= 4480
pmu_temp_para3	= 3518
pmu_temp_para4	= 2786
pmu_temp_para5	= 2223
pmu_temp_para6	= 1788
pmu_temp_para7	= 1448
pmu_temp_para8	= 969
pmu_temp_para9	= 664
pmu_temp_para10	= 466
pmu_temp_para11	= 393
pmu_temp_para12	= 333
pmu_temp_para13	= 283
pmu_temp_para14	= 242
pmu_temp_para15	=179

[pmu2_para]
pmu_used = 0
pmu_twi_addr
pmu_twi_id = 1
pmu_irq_id = 0

31.2. [pmu2_para]

pmu_temp_para16

pmu_used=xx	Pmu 使能标志(xx=1 or 0),
	0: 不使用, 1: 使用
pmu_twi_addr=xx	Pmu 设备地址
pmu_twi_id=xx	Pmu 挂载的 i2c 控制器号,
	0: twi0, 1: twi1, 2: twi2
pmu_irq_id=xx	Pmu 中断号, 0: NMI,
	1: 1 号中断 2: 2 号中断

= 1

配置举例:

[pmu2_para]

pmu_used

 $\begin{array}{ll} pmu_twi_addr & = 0x34 \\ pmu_twi_id & = 1 \\ pmu_irq_id & = 0 \end{array}$

32. Recovery 键配置

key_min	= 3	作为 recovery 功能的按键的键值范围下限
key_max	= 5	作为 recovery 功能的按键的键值范围上限

配置举例:

[recovery_key]

key_min = 3 key_max = 5

说明:

通常情况下,一块方案板上的按键个数不同,或者排列不同,这都导致了方案商在选择作为开机阶段 recovery 功能的按键有所不同。该键值配置用于作为 recovery 功能的按键的键值范围落在 key_min 到 key_max 之间。

33. DVFS

33.1. CPU DVFS

配置项	配置项含义
extremity_freq	极限超频模式频率上限
max_freq	最大运行频率
min_freq	最小运行频率
LV_count	VF 表项数
LV1_freq	LV1 对应频率段分界上限, 0 表示结束符
LV1_volt	LV1 频率段的电压值,表示(LV2_freq,LV1_freq]范围类电压
	设置
LV2_freq	LV2 对应频率段分界上限, 0 表示结束符
LV2_volt	LV2 频率段的电压值,表示(LV3freq,LV2_freq]范围类电压
	设置
LV3_freq	LV3 对应频率段分界上限, 0 表示结束符
LV3_volt	LV3 频率段的电压值,表示(LV2_freq,LV1_freq]范围类电压
	设置

第 57 页 共 62 页

LV4_freq	LV4 对应频率段分界上限, 0 表示结束符
LV4_volt	LV4 频率段的电压值,表示(LV2_freq,LV1_freq]范围类电压
_	设置
LV5_freq	LV5 对应频率段分界上限, 0 表示结束符
LV5_volt	LV5 频率段的电压值,表示(LV2_freq,LV1_freq]范围类电压
	设置
LV6_freq	LV6 对应频率段分界上限, 0 表示结束符
LV6_volt	LV6 频率段的电压值,表示(LV2_freq,LV1_freq]范围类电压
	设置
LV7_freq	LV7 对应频率段分界上限, 0 表示结束符
LV7_volt	LV7 频率段的电压值,表示(LV2_freq,LV1_freq]范围类电压
	设置
LV8_freq	LV8 对应频率段分界上限, 0 表示结束符
LV8_volt	LV8 频率段的电压值,表示(LV2_freq,LV1_freq]范围类电压
	设置

配置举例:

[dvfs_table]

extremity_freq = 1536000000

 $max_freq = 1200000000$

 $min_freq = 60000000$

LV_count = 8

LV1_freq = 1536000000

 $LV1_volt = 1500$

LV2_freq = 1344000000

LV2 volt = 1460

LV3_freq = 1200000000

 $LV3_volt = 1320$

LV4_freq = 1008000000

 $LV4_volt = 1200$

LV5_freq = 816000000

 $LV5_volt = 1100$

LV6_freq = 648000000 LV6_volt = 1040

LV7_freq = 0 LV7_volt = 1040

 $LV8_freq = 0$ $LV8_volt = 1040$

34. Pinctrl 测试

配置项	配置项含义
Vdevice_used	作为 pinctrl test 的虚拟设备,为 1 使能
Vdevice_0	虚拟设备的 gpio0 脚设置
Vdevice_1	虚拟设备的 gpio1 脚设置

配置举例:

[Vdevice]

Vdevice used = 1

Vdevice_0 = port:PA01<5><1><2><default> Vdevice_1 = port:PA02<5><1><2><default>

35. [s_uart0]

配置项	配置项含义
s_uart_used	使能 cpus 的 uart,为 1 使能,为 0 关闭
s_uart_tx	Uart 口发送引脚配置
s_uart_rx	Uart 接收引脚配置

配置举例:

[s_uart0]

 $s_uart_used = 1$

s_uart_tx = port:PL00<3><default><default><default> s_uart_rx = port:PL01<3><default><default><default>

36. [s_rsb0]

配置项	配置项含义
-----	-------

s_rsb_used	使能 cpus 使用 rsb 总线,为 1 使能,为
	0 关闭
s_rsb_sck	Rsb 时钟引脚设置
s_rsb_sda	Rsb 数据引脚设置

配置举例:

 $[s_rsb0]$

 $s_uart_used = 0$

s_uart_tx = port:PL02<2><default><default><default> s_uart_rx = port:PL03<2><default><default><default>

37. [s_jtag0]

配置项	配置项含义
s_jtag_used=xx	JTAG 使能
s_jtag_tms=xx	测试模式选择输入(TMS) 的 GPIO 配置
s_jtag_tck=xx	测试时钟输入(TMS) 的 GPIO 配置
s_jtag_tdo=xx	测试数据输出(TDO) 的 GPIO 配置
s_jtag_tdi=xx	测试数据输入(TDI)的 GPIO 配置

配置举例:

[s jtag0]

s_jtag_used = 0

38. [s_powchk]

配置项	配置项含义
s_powchk_used= 0x80000000	是否打开这个功能,如果 bit31 为 1 则
	使用这个功能,bit0 和 bit1 为 1 分别代
	表当电源状态和功耗异常时唤醒系统
s_power_reg=0x02309621	电源状态的描述,一般为1代表,这里
	电在休眠时是打开的状态,bit 的具体定
	义要看 aw_pm.h 里的定义
s_system_power=50	是休眠是允许的最大功耗是 50mW,如
	果大于此数,代表异常

配置举例:

- ;s powchk cpus power check
- ;s_powchk_used --power check whether used for arise in super standby
- bit31:enable power updat, bit1:wakeup when power state exception
- bit0:wakeup when power consumption exception
- ;s power reg the expected regs stand for power on/off state
- ;s system power the limit maxmum power consumption when super standby (unit: mw)

[s powchk]

s powchk used =0x80000000s_power reg = 0x00008061

s system power = 50

39. [dram_dvfs_table]

配置项	配置项含义
LV_count = 3	LV 数目
LV1_freq = 552000000	LV1 对应的频率
LV1_volt = 1100	LV1 对应的 core 电压
LV2_freq = 360000000	LV2 对应的频率
LV2_volt = 1000	LV2 对应的 core 电压
LV3_freq = 0	LV3 对应的频率
LV3_volt = 1000	LV3 对应的 core 电压

配置举例:

LV2 freq = 360000000

LV2 volt = 1000

```
; dram dvfs voltage-frequency table configuration
; LV_count: count of LV_freq/LV_volt
; LV1: core vdd is 0.9v if dram frequency is (360Mhz, 672Mhz)
; LV2: core vdd is 0.8v if dram frequency is ( 0Mhz, 168Mhz]
; LV3: core vdd is 0.8v if dram frequency is ( 0Mhz, 168Mhz]
[dram dvfs table]
LV_{count} = 3
LV1 freq = 552000000
LV1 volt = 1100
```

```
LV3_freq = 0
LV3_volt = 1000
```

40. [dram_scene_table]

配置项	配置项含义
LV_count = 2	不同应用场景下 dram 频率等级数目
LV1_scene = 1	场景 1(home)对应的 index
LV1_freq = 360000000	场景1对应的 dram 频率。支持
	360MHz/dram_clk
LV2_scene = 2	场景 2 (video play) 对应的 index
LV2_freq = 240000000	场景2对应的dram频率。支持
	240MHz/360MHz/dram_clk

```
配置举例:
; dram scene frequency table configuration
; LV_count: count of LV_scene/LV_freq
; LV1: dram frequency default is 360MHz in home, supported for 360MHz/552MHz
                           default is
   LV2: dram frequency
                                      240MHz in video play, supported
240MHz/360MHz/552MHz
[dram_scene_table]
LV_{count} = 3
LV1 scene = 1
LV1\_freq = 360000000
LV2 scene = 2
LV2_freq = 240000000
LV3_scene = 3
LV3 freq = 168000000
```

41. [charging_type]

配置项	配置项含义
charging_type = 1	为 1, 才能进入安卓关机充电模式; 为
	0 是进入 boot standby 进行充电。

配置举例:

[charging_type] charging_type = 1

注: 如果想进入安卓关机充电功能,应该务必加上以上内容。

42. Declaration

This document is the original work and copyrighted property of Allwinner Technology ("Allwinner"). Reproduction in whole or in part must obtain the written approval of Allwinner and give clear acknowledgement to the copyright owner.

The information furnished by Allwinner is believed to be accurate and reliable. Allwinner reserves the right to make changes in circuit design and/or specifications at any time without notice. Allwinner does not assume any responsibility and liability for its use. Nor for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Allwinner. This datasheet neither states nor implies warranty of any kind, including fitness for any particular application.