CLAIMS

We claim:

A compound represented by the formula I:

wherein:

5

10

15

Y is -NH-, -O-, -S-, or -CH₂-;

Z is -O-, -S-, or -N-;

 R^{14} is a C_1 - C_6 alkyl, C_1 - C_6 alkylamino, C_1 - C_6 alkylhydroxy, C_3 - C_{10} cycloalkylamino, or methylureido group;

 R^{15} and R^{17} are independently H, halo, or a C_1 - C_6 alkyl group unsubstituted or substituted by one or more R^5 groups;

 R^{16} is H or a C_1 - C_6 alkyl group when Z is N, and R^{16} is absent when Z is -O- or -S-; R^{11} is H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, $-C(O)NR^{12}R^{13}$, $-C(O)(C_6$ - C_{10} aryl), $-(CH_2)_t(S$ to 10 membered heterocyclic), $-(CH_2)_tNR^{12}R^{13}$, $-SO_2NR^{12}R^{13}$ or $-CO_2R^{12}$, wherein said C_1 - C_6 alkyl, $-C(O)(C_6$ - C_{10} aryl), $-(CH_2)_t(C_6$ - C_{10} aryl), and $-(CH_2)_t(S$ to 10 membered heterocyclic) moieties of the said R^{11} groups are unsubstituted or substituted by one or more R^5 groups;

each R5 is independently selected from halo, cyano, nitro, trifluoromethoxy, trifluoromethyl, azido, -C(O)R⁸, -C(O)OR⁸, -OC(O)R⁸, -OC(O)OR⁸, -NR⁶C(O)R⁷, 20 -C(O)NR⁶R⁷, -NR⁶R⁷, -OR⁹, -SO₂NR⁶R⁷, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkylamino, $-(CH_2)_iO(CH_2)_aNR^6R^7, -(CH_2)_iO(CH_2)_qOR^9, -(CH_2)_iOR^9, -S(O)_i(C_1-C_6 \text{ alkyl}), -(CH_2)_i(C_6-C_{10})_i(C_1-C_6 \text{ alkyl}), -(CH_2)_iO(C_1-C_6)_i(C_1$ aryl), -(CH₂)₁(5 to 10 membered heterocyclic), -C(O)(CH₂)₁(C₆-C₁₀ aryl), -(CH₂)₁O(CH₂)₁(C₆-C₁₀ aryl), -(CH₂)₁O(CH₂)_q(5 to 10 membered heterocyclic), -C(O)(CH₂)₁(5 to 10 membered heterocyclic), $-(CH_2)_iNR^7(CH_2)_qNR^6R^7$, $-(CH_2)_iNR^7CH_2C(O)NR^6R^7$, 25 $-(CH_2)_iNR^7(CH_2)_qNR^9C(O)R^8, (CH_2)_iNR^7(CH_2)_tO(CH_2)_qOR^9, -(CH_2)_iNR^7(CH_2)_qS(O)_i(C_1-C_6)_qC(C_1$ alkyl), $-(CH_2)_iNR^7(CH_2)_tR^6$, $-SO_2(CH_2)_t(C_6-C_{10} \text{ aryl})$, and $-SO_2(CH_2)_t(5 \text{ to } 10 \text{ membered})$ heterocyclic), the -(CH₂)q- and -(CH₂)t- moieties of the said R⁵ groups optionally include a carbon-carbon double or triple bond, and the alkyl, aryl and heterocyclic moieties of the said R⁵ groups are unsubstituted or substituted with one or more substituents independently 30 selected from halo, cyano, nitro, trifluoromethyl, azido, -OH, -C(O)R⁸, -C(O)OR⁸, -OC(O)R⁸,

-OC(O)OR⁸, -NR⁶C(O)R⁷, -C(O)NR⁶R⁷, -(CH₂)₁NR⁶R⁷, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, -(CH₂)₁(C₆-C₁₀ aryl), -(CH₂)₁(5 to 10 membered heterocyclic), -(CH₂)₁O(CH₂)_qOR⁹, and -(CH₂)₁OR⁹;

5

10

15

20

25

30

35

each R^6 and R^7 is independently selected from H, OH, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, -(CH_2)₁(C_6 - C_{10} aryl), -(CH_2)₁(5 to 10 membered heterocyclic), -(CH_2)₁O(CH_2)₁O(CH_2)₁OR⁹, -(CH_2)₁CN(CH_2)₁CN(CH_2)₁R⁹ and -(CH_2)₁OR⁹, and the alkyl, aryl and heterocyclic moieties of the said R^6 and R^7 groups are unsubstituted or substituted with one or more substituents independently selected from hydroxy, halo, cyano, nitro, trifluoromethyl, azido, -C(O)R⁸, -C(O)OR⁸, -CO(O)R⁸, -OC(O)OR⁸, -NR⁹C(O)R¹⁰, -C(O)NR⁹R¹⁰, -NR⁹R¹⁰, C₁-C₆ alkyl, -(CH_2)₁(C_6 - C_{10} aryl), -(CH_2)₁(5 to 10 membered heterocyclic), -(CH_2)₁O(CH_2)₂OR⁹, and -(CH_2)₁OR⁹, where when R^6 and R^7 are both attached to the same nitrogen, then R^6 and R^7 are not both bonded to the nitrogen directly through an oxygen;

each R^8 is independently selected from H, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, -(CH₂)₁(C_6 - C_{10} aryl), and -(CH₂)₁(5 to 10 membered heterocyclic);

t is an integer from 0 to 6; j is an integer from 0 to 2; q is an integer from 2 to 6; each R⁹ and R¹⁰ is independently selected from H, -OR⁶, C₁-C₆ alkyl, and C₃-C₁₀ cycloalkyl; and

each R^{12} and R^{13} is independently selected from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, -(CH_2)₁(C_3 - C_{10} cycloalkyl), -(CH_2)₁(C_6 - C_{10} aryl), -(CH_2)₁(5 to 10 membered heterocyclic), -(CH_2)₁O(CH_2)₂O(CH_2)₂O(CH_2)₃O(CH_2)₄O(CH_2)₄O(CH_2)₅O(CH_2)₆O(CH_2)₆O(CH_2)₇O(CH_2)₈ and the alkyl, aryl and heterocyclic moieties of the said R^{12} and R^{13} groups are unsubstituted or substituted with one or more substituents independently selected from R^5 , or R^{12} and R^{13} are taken together with the nitrogen to which they are attached to form a C_5 - C_9 azabicyclic, aziridinyl, azetidinyl, azetidinyl, pyrrolidinyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, isoquinolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, isoquinolinyl, or dihydroisoquinolinyl rings are unsubstituted or substituted with one or more R^5 substituents, where R^{12} and R^{13} are not both bonded to the nitrogen directly through an oxygen;

or prodrugs or metabolites thereof, or pharmaceutically acceptable salts or solvates of said compounds and said prodrugs and said metabolites.

- 2. A compound, prodrug, metabolite, salt, or solvate according to claim 1, wherein R¹¹ is -(CH₂)_t(5 to 10 membered heterocyclic), -C(O)NR¹²R¹³, -(CH₂)_tNR¹²R¹³, -SO₂NR¹²R¹³ or -CO₂R¹².
- 3. A compound of claim 2, wherein R^{11} is $-(CH_2)_1(5$ to 10 membered heterocyclic), $-C(O)NR^{12}R^{13}$, $-SO_2NR^{12}R^{13}$ or $-CO_2R^{12}$.
- 4. A compound of claim 3, wherein R^{11} is -(CH₂)₁(5 to 10 membered heterocyclic) or -C(O)NR¹²R¹³.

- 5. A compound of claim 4, wherein R^{11} is $-C(O)NR^{12}R^{13}$, wherein R^{12} and R^{13} are independently selected from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, $-(CH_2)_1(C_3$ - C_{10} aryl), $-(CH_2)_1(S_1)_1(S_2)_2(S_3)_2(S_4)_3(S_4)_3(S_4)_3(S_5$
- 6. A compound of claim 5, wherein R^{11} is $-C(O)NR^{12}R^{13}$, and wherein R^{12} and R^{13} are taken together with the nitrogen to which they are attached to form a C_5 - C_9 azabicyclic, aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, isoquinolinyl, or dihydroisoquinolinyl ring, wherein said C_5 - C_9 azabicyclic, aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, isoquinolinyl, or dihydroisoquinolinyl ring is unsubstituted or substituted by 1 to 5 R^5 substituents.

10

15

25

- 7. A compound of claim 6, wherein R¹² and R¹³ are taken together with the nitrogen to which they are attached to form a pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, isoquinolinyl, or dihydroisoquinolinyl ring, wherein said pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, isoquinolinyl, or dihydroisoquinolinyl ring is unsubstituted or substituted with 1 to 5 R⁵ substituents.
- 8. A compound of claim 7, wherein R¹² and R¹³ are taken together with the nitrogen to which they are attached to form a pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, or thiomorpholinyl ring, wherein said pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, or thiomorpholinyl ring is unsubstituted or substituted with 1 to 5 R⁵ substituents.
- 20 9. A compound of claim 8, wherein R¹² and R¹³ are taken together with the nitrogen to which they are attached to form a pyrrolidinyl or piperidinyl ring, wherein said pyrrolidinyl or piperidinyl ring is unsubstituted or substituted with 1 to 5 R⁵ substituents.
 - 10. A compound of claim 9, wherein R^{12} and R^{13} are taken together with the nitrogen to which they are attached to form a pyrrolidinyl ring, wherein said pyrrolidinyl is unsubstituted or substituted with 1 to 5 R^5 substituents.
 - 11. A compound of claim 10, wherein R¹² and R¹³ are taken together with the nitrogen to which they are attached to form a pyrrolidin-1-yl ring, wherein said pyrrolidin-1-yl ring is unsubstituted or substituted with 1 to 5 R⁵ substituents.
 - 12. A compound of claim 4, wherein R¹¹ is a -(CH₂)₁(5 to 10 membered heterocyclic) group unsubstituted or substituted with 1 to 5 R⁵ groups.
 - 13. A compound of claim 12, wherein R^{11} is a -(CH₂)_t(5-8 membered heterocyclic) group unsubstituted or substituted with 1 to 5 R^5 groups.
 - 14. A compound of claim 13, wherein R^{11} is a -(CH₂)₁(5 or 6 membered heterocyclic) group is unsubstituted or substituted with 1 to 5 R^5 groups.
- 35 15. A compound of claim 14, wherein R¹¹ is a -(CH₂)₁(5 membered heterocyclic) group unsubstituted or substituted with 1 to 5 R⁵ groups.

16. A compound of claim 15, wherein R¹¹ is a thiazolyl, unsubstituted or substituted by 1 to 5 R⁵ groups.

17. A compound of claim 15, wherein R¹¹ is an imidazolyl, unsubstituted or substituted by 1 to 5 R⁵ groups.

- 18. A compound of claim 1, wherein R¹⁶ is a C₁-C₆ alkyl group.
 - 19. A compound of claim 18, wherein R¹⁶ is methyl.
 - 20. A compound of claim 1, wherein R¹⁴ is methyl.
 - 21. A compound represented by the formula II:

10 wherein:

5

15

20

25

30

Z is -O-, -S-, or -N-;

R¹⁴ is a C₁-C₆ alkyl, C₁-C₆ alkylamino, C₁-C₆ alkylhydroxy, C₃-C₁₀ cycloalkylamino, or methylureido group;

R¹⁵ and R¹⁷ are independently H, halo, or a C₁-C₆ alkyl group;

R¹⁶ is H or a C₁-C₆ alkyl group when Z is -N- and R¹⁶ is absent when Z is -O- or -S-;

11

R11 is a heteroaryl group unsubstituted or substituted by one or more halo, cyano, nitro, trifluoromethoxy, trifluoromethyl, azido, -C(O)R8, -C(O)OR8, $-OC(O)R^{8},\ -OC(O)OR^{8},\ -NR^{6}C(O)R^{7},\ -C(O)NR^{6}R^{7},\ -NR^{6}R^{7},\ -OR^{9},\ -SO_{2}NR^{6}R^{7},\ C_{1}-C_{6}\ alkyl,\ C_{3}-C_{1}-C_{1}-C_{2}-C_{2}-C_{2}-C_{3}-C_{4}-C_{4}-C_{5}-C_$ $C_{10} \text{ cycloalkyl}, \quad -(CH_2)_i O(CH_2)_q NR^6R^7, \quad -(CH_2)_t O(CH_2)_q OR^9, \quad -(CH_2)_t OR^9, \quad -S(O)_i (C_1 - C_6 \text{ alkyl}), \quad -(CH_2)_q OR^9, \quad (CH_2)_t(C_6-C_{10} \text{ aryl}), -(CH_2)_t(5 \text{ to } 10 \text{ membered heterocyclic}), -C(O)(CH_2)_t(C_6-C_{10} \text{ aryl}),$ $-(CH_2)_1O(CH_2)_1(C_6-C_{10} \text{ aryl}), -(CH_2)_1O(CH_2)_0(5 \text{ to } 10 \text{ membered heterocyclic}), -C(O)(CH_2)_1(5 \text{ to } 10 \text{ membered heterocyclic}), -C(O)(CH_2)_1(5 \text{ to } 10 \text{ membered heterocyclic}), -C(O)(CH_2)_1(C_6-C_{10} \text{ aryl}), -(CH_2)_1(C_6-C_{10} \text{ aryl}), -(CH_$ -(CH₂)_iNR⁷CH₂C(O)NR⁶R⁷, -(CH₂)_iNR⁷(CH₂)₀NR⁶R⁷, membered heterocyclic), $-(CH_2)_iNR^7(CH_2)_qNR^9C(O)R^8, \quad -(CH_2)_iNR^7(CH_2)_qOR^9, \quad -(CH_2)_iNR^7(CH_2)_qS(O)_i(C_1-C_6)_qR^2(CH_2)_qOR^2, \quad -(CH_2)_qOR^2($ alkyl), $-(CH_2)_1NR^7$ $-(CH_2)_1R^6$, $-SO_2(CH_2)_1(C_6-C_{10} \text{ aryl})$, and $-SO_2(CH_2)_1(5 \text{ to } 10 \text{ membered})$ heterocyclic), the -(CH2)q- and -(CH2)t- moieties of the said R5 groups optionally include a carbon-carbon double or triple bond, and the alkyl, aryl and heterocyclic moieties of the said R⁵ groups are unsubstituted or substituted with one or more substituents independently selected from halo, cyano, nitro, trifluoromethyl, azido, -OH, -C(O)R8, -C(O)OR8, -OC(O)R8, $-OC(O)OR^8, -NR^8C(O)R^7, -C(O)NR^6R^7, -(CH_2)_1NR^6R^7, C_1-C_6 \quad alkyl, \quad C_3-C_{10} \quad cycloalkyl,$ $-(CH_2)_1(C_6-C_{10} \text{ aryl}), -(CH_2)_1(5 \text{ to } 10 \text{ membered heterocyclic}), -(CH_2)_1O(CH_2)_2OR^9$, and -(CH₂)_tOR⁹;

each R^6 and R^7 is independently selected from H, OH, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, -(CH₂)₁(C₆- C_{10} aryl), -(CH₂)₁(5 to 10 membered heterocyclic), -(CH₂)₁O(CH₂)₁O(CH₂)₁OR⁹, -(CH₂)₁CN(CH₂)₁R⁹ and -(CH₂)₁OR⁹, and the alkyl, aryl and heterocyclic moieties of the said R^6 and R^7 groups are unsubstituted or substituted with one or more substituents independently selected from hydroxy, halo, cyano, nitro, trifluoromethyl, azido, -C(O)R⁸, -C(O)OR⁸, -CO(O)R⁸, -OC(O)OR⁸, -NR⁹C(O)R¹⁰, -C(O)NR⁹R¹⁰, -NR⁹R¹⁰, C₁-C₆ alkyl, -(CH₂)₁(C₆-C₁₀ aryl), -(CH₂)₁(5 to 10 membered heterocyclic), -(CH₂)₁O(CH₂)₄OR⁹, and -(CH₂)₁OR⁹, where when R^6 and R^7 are both attached to the same nitrogen, then R^6 and R^7 are not both bonded to the nitrogen directly through an oxygen;

each R^8 is independently selected from H, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, -(CH₂)₁(C₆-C₁₀ aryl), and -(CH₂)₁(5 to 10 membered heterocyclic);

each R⁹ and R¹⁰ is independently selected from H, C₁-C₆ alkyl, and C₃-C₁₀ cycloalkyl; t is an integer from 0 to 6; j is an integer from 0 to 2; q is an integer from 2 to 6; or prodrugs or metabolites thereof, pharmaceutically acceptable salts or solvates of said compounds, said prodrugs, or said metabolites.

- 22. A compound of claim 21, R16 is a C1-C6 alkyl group.
- 23. A compound of claim 22, R¹⁶ is methyl.
- 24. A compound of claim 21, wherein R¹⁴ is methyl.
- 25. A compound represented by the formula III:

20

5

10

15

wherein

 R^{14} is a C_1 - C_6 alkyl, C_1 - C_6 alkylamino, C_1 - C_6 alkylhydroxy, C_3 - C_{10} cycloalkylamino, or methylureido group;

Ш

R¹⁵ and R¹⁷ are independently H, halo, or a C₁-C₆ alkyl group; and
R¹¹ is a heterocyclic or a heteroaryl group unsubstituted or substituted by one or more groups selected from -C(O)OR⁸, C₁-C₆ alkyl, and -(CH₂)₁OR⁹;
each R⁸ is independently selected from H, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl,
-(CH₂)₁(C₆-C₁₀ aryl), and -(CH₂)₁(5 to 10 membered heterocyclic);
each R⁹ is independently selected from H, C₁-C₆ alkyl, and C₃-C₁₀ cycloalkyl; and
t is an integer from 0 to 6; j is an integer from 0 to 2; q is an integer from 2 to 6;
or prodrugs or metabolites thereof, pharmaceutically acceptable salts or solvates of said compounds, said prodrugs, and said metabolites.

- 26. A compound of claim 25, wherein R¹⁴ is methyl.
- 27. A compound represented by the formula IV:

wherein:

5

15

20

R¹⁴ is a C₁-C₆ alkyl, C₁-C₆ alkylamino, C₁-C₆ alkylhydroxy, C₃-C₁₀ cycloalkylamino, or methylureido group;

R¹⁵ and R¹⁷ are independently H, halo, or a C₁-C₆ alkyl group;

R¹¹ is a heterocyclic or a heteroaryl group unsubstituted or substituted by one or more groups selected from -C(O)OR⁸, C₁-C₆ alkyl, and -(CH₂)₁OR⁹;

each R⁸ is independently selected from H, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl,

-(CH₂)₁(C₆-C₁₀ aryl), and -(CH₂)₁(5 to 10 membered heterocyclic);

each R9 is independently selected from H, C1-C6 alkyl, and C3-C10 cycloalkyl; and

t is an integer from 0 to 6; j is an integer from 0 to 2; q is an integer from 2 to 6;

or prodrugs or metabolites thereof, pharmaceutically acceptable salts or solvates of said compounds, said prodrugs, and said metabolites.

- 28. A compound of claim 27, wherein R¹⁴ is methyl.
- 29. A compound of claim 1 wherein said compound is selected from the group consisting of:

IV

or prodrugs or metabolites thereof, or pharmaceutically acceptable salts or solvates of said compounds, said prodrugs, and said metabolites.

; and

- 30. A pharmaceutical composition for the treatment of a hyperproliferative disorder in a mammal comprising a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1 and a pharmaceutically acceptable carrier.
- 31. The pharmaceutical composition of claim 30, wherein said hyperproliferative disorder is cancer.

10

15

20

- 32. The pharmaceutical composition of claim 31, wherein said cancer is brain, lung, kidney, renal, ovarian, ophthalmic, squamous cell, bladder, gastric, pancreatic, breast, head, neck, oesophageal, gynecological, prostate, colorectal or thyroid cancer.
- 33. The pharmaceutical composition of claim 30, wherein said hyperproliferative disorder is noncancerous.
- 34. The pharmaceutical composition of claim 33, wherein said hyperproliferative disorder is a benign hyperplasia of the skin or prostate.
- 35. A pharmaceutical composition for the treatment of a hyperproliferative disorder in a mammal comprising a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1 in combination with an anti-tumor agent selected from the group consisting of mitotic inhibitors, alkylating agents, anti-metabolites, intercalating antibiotics, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, and anti-androgens, and a pharmaceutically acceptable carrier.
- 36. A pharmaceutical composition for the treatment of pancreatitis or kidney disease in a mammal comprising a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1 and a pharmaceutically acceptable carrier.
 - 37. A pharmaceutical composition for the prevention of blastocyte implantation in a mammal comprising a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1 and a pharmaceutically acceptable carrier.
- 25 38. A pharmaceutical composition for treating a disease related to vasculogenesis or angiogenesis in a mammal comprising a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1 and a pharmaceutically acceptable carrier.
 - 39. The pharmaceutical composition of claim 38 wherein said disease is selected from the group consisting of tumor angiogenesis, chronic inflammatory disease, atherosclerosis, skin diseases, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi's sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer.
- 40. A pharmaceutical composition for treating a disease related to vasculogenesis or angiogenesis in a mammal comprising a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1, a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of an antihypertensive agent, and a pharmaceutically acceptable carrier.

- 41. A method of treating a hyperproliferative disorder in a mammal comprising administering to said mammal a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1.
- 42. The method of claim 41 wherein said hyperproliferative disorder is cancer.
- The method of claim 42 wherein said cancer is brain, lung, ophthalmic, squamous cell, renal, kidney, ovarian, bladder, gastric, pancreatic, breast, head, neck, oesophageal, prostate, colorectal, gynecological or thyroid cancer.
 - 44. The method of claim 41 wherein said hyperproliferative disorder is noncancerous.
 - 45. The method of claim 44 wherein said hyperproliferative disorder is a benign hyperplasia of the skin or prostate.
 - 46. A method for the treatment of a hyperproliferative disorder in a mammal comprising administering to said mammal a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1 in combination with an anti-tumor agent selected from the group consisting of mitotic inhibitors, alkylating agents, anti-metabolites, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, and anti-androgens.
 - 47. A method of treating pancreatitis or kidney disease in a mammal comprising administering to said mammal a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1.
- 20 48. A method of preventing blastocyte implantation in a mammal comprising administering to said mammal a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1.
 - 49. A method for treating a disease related to vasculogenesis or angiogenesis in a mammal comprising administering to said mammal a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1.
 - 50. The method of claim 49 wherein said disease is selected from the group consisting of tumor angiogenesis, chronic inflammatory disease, atherosclerosis, skin diseases, diabetes, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, hemangioma, glioma, melanoma, Kaposi's sarcoma and ovarian, breast, lung, pancreatic, prostate, colon and epidermoid cancer.
 - 51. A method for treating a disease related to vasculogenesis or angiogenesis in a mammal comprising administering to said mammal a therapeutically effective amount of a compound, prodrug, metabolite, salt or solvate of claim 1 in conjunction with a therapeutically effective amount of an anti-hypertensive agent.

10

15