Chapitre 8 : Rappels sur les variables aléatoires discrètes

1 Variables aléatoires discrètes

Définition 1 (Variable aléatoire réelle)

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

• On appelle **variable aléatoire réelle** sur (Ω, \mathcal{A}, P) toute application $X : \Omega \longrightarrow \mathbb{R}$ telle que, pour tout $x \in \mathbb{R}$

$$[X \leqslant x] \in \mathcal{A}$$

où $[X \le x]$ désigne l'ensemble $\{\omega \in \Omega \mid X(\omega) \le x\}$.

• Une variable aléatoire réelle X est appelée une **variable aléatoire discrète** si $X(\Omega)$ peut s'écrire sous la forme $X(\Omega) = \{x_i, i \in I\}$ où I est une partie de \mathbb{N} (ou de \mathbb{Z}).

Remarque 1

- 1. Soient X une variable aléatoire réelle et I une partie de \mathbb{R} . On note $[X \in I]$ l'ensemble $\{\omega \in \Omega \mid X(\omega) \in I\}$. De même, pour $x \in \mathbb{R}$, on note [X = x] l'ensemble $\{\omega \in \Omega \mid X(\omega) = x\}$.
- 2. On distingue deux types de variables aléatoires discrètes :
 - les variables aléatoires discrètes à support fini lorsque $X(\Omega) = \{x_1, ..., x_n\}$ (où $n \in \mathbb{N}$),
 - les variables aléatoires discrètes à support infini lorsque X(Ω) = {x_i, i ∈ I} où I est une partie infinie de N (ou de Z).

Définition 2 (Fonction de répartition)

Soient (Ω, \mathcal{A}, P) un espace probabilisé et X une variable aléatoire réelle sur (Ω, \mathcal{A}, P) . On appelle **fonction de répartition** de X la fonction notée F_X définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad F_X(x) = P([X \leq x]).$$

Proposition 1

Soit X une variable aléatoire réelle définie sur un espace probabilisé (Ω, \mathcal{A}, P) . Alors :

- 1. F_X est croissante,
- 2. F_X est continue à droite en tout point,
- 3. $\lim_{x \to -\infty} F_X(x) = 0$ et $\lim_{x \to +\infty} F_X(x) = 1$,
- 4. Si $X(\Omega) \subset \mathbb{Z}$, $P(X = k) = F_X(k) F_X(k-1)$.

Définition 3 (Loi d'une variable aléatoire)

Soit X une variable aléatoire réelle définie sur un espace probabilisé (Ω, \mathcal{A}, P) .

On appelle **loi** de X la donnée de toutes les probabilités $P(X \in A)$ où A est une réunion au plus dénombrable d'intervalles de \mathbb{R} .

Proposition 2 (Caractérisation de la loi)

- 1. La fonction de répartition caractérise la loi : si X et Y sont deux variables aléatoires réelles définies sur un espace probabilisé, elles ont la même loi si et seulement si $F_X = F_Y$.
- 2. La loi d'une variable aléatoire discrète X est caractérisée par la donnée des valeurs P(X = x) pour $x \in X(\Omega)$.

Exemple 1

	Pour tout $k \ge 1$, déterminer $P(X = k)$.
0	
2.	Montrer que la série $\sum_{k\geqslant 1} P(X=k)$ converge et que sa somme vaut 1.
3.	En déduire $P(X = 0)$.
mple	2
	<u>~</u> X une variable aléatoire à valeurs dans N* telle que
0011	
	$\forall k \in \mathbb{N}^*, P(X = k) = a3^{-k}.$
1.	Déterminer a pour que l'on définisse bien une loi de probabilité.
2.	La variable X a-t-elle plus de chance de prendre des valeurs paires ou impaires?

Une urne contient au départ une boule blanche et une boule noire. On effectue des tirages d'une boule avec remise en rajoutant à chaque tirage une boule blanche supplémentaire. On note X la variable aléatoire correspondant au

Définition 4

Soit X une **variable aléatoire discrète** définie sur un espace probabilisé (Ω, \mathcal{A}, P) et soit g une fonction définie sur $X(\Omega)$. On note g(X) la composée $g \circ X$.

Proposition 3

Soit X une **variable aléatoire discrète** définie sur un espace probabilisé (Ω, \mathcal{A}, P) et soit g une fonction définie sur $X(\Omega)$. La variable aléatoire g(X) est discrète et sa loi est donnée par

- 1. $g(X)(\Omega) = \{g(x), x \in X(\Omega)\},\$
- 2. pour tout $y \in g(X)(\Omega)$ on a

$$P(g(X) = y) = \sum_{x \in X(\Omega) \text{ tel que } g(x) = y} P(X = x).$$

Exemple 3

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, \mathcal{A}, P) telle que :

$$X(\Omega) = \{-1, 0, 1\}$$
 et $P(X = -1) = P(X = 0) = P(X = 1) = \frac{1}{3}$.

Déterminer la loi de X^2 .

2 Moments

2.1 Espérance

Définition 5 (Espérance)

Soit X une variable aléatoire discrète définie sur un espace probabilisé (Ω, \mathcal{A}, P) .

• Si X est discrète à support fini, on appelle **espérance** de X et on note E(X), le nombre défini par

$$\mathrm{E}(\mathrm{X}) = \sum_{x \in \mathrm{X}(\Omega)} x \mathrm{P}(\mathrm{X} = x).$$

• Si X est discrète à support infini, on dit que X **admet une espérance** si la série $\sum_{x \in X(\Omega)} x P(X = x)$ est absolument convergente. Dans ce cas, l'**espérance** de X, notée E(X) est la somme de cette série :

$$\mathrm{E}(\mathrm{X}) = \sum_{x \in \mathrm{X}(\Omega)} x \mathrm{P}(\mathrm{X} = x).$$

Remarque 2

- 1. Une variable aléatoire discrète à support fini possède donc toujours une espérance.
- 2. Une variable aléatoire discrète **à support infini** ne possède pas nécessairement une espérance : l'hypothèse de convergence absolue est fondamentale.

3

Exemple 4

Dans le cas où $X(\Omega) = \{x_i, i \in \mathbb{N}\}$, X possède une espérance si et seulement si la série $\sum_{k \ge 0} x_k P(X = x_k)$ est absolument convergente.

Exemple 5

On considère la variable aléatoire X de l'exemple 2. Montrer que X possède une espérance et déterminer la.

Proposition 4

Soient X et Y deux variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) et admettant une espérance.

- 1. Linéarité: pour tout $(a, b) \in \mathbb{R}^2$, aX + bY possède une espérance et E(aX + bY) = aE(X) + bE(Y).
- 2. *Positivité* : si $X \ge 0$ alors $E(X) \ge 0$.

Théorème 1 (Transfert)

Soit X une variable aléatoire discrète définie sur un espace probabilisé (Ω, \mathcal{A}, P) . Soit g une fonction définie sur $X(\Omega)$. Alors la variable aléatoire g(X) possède une espérance si et seulement si la série $\sum_{x \in X(\Omega)} g(x)P(X=x) \text{ est absolument convergente. Dans ce cas,}$

$$E(g(X)) = \sum_{x \in X(\Omega)} g(x)P(X = x).$$

Remarque 3

Si X est **à support fini** alors g(X) possède toujours une espérance.

Exemple 6

Soit X la variable aléatoire du test 2. Montrer que E(X(X — 1)) existe et calculer la.

2.2 Moments

Définition 6 (Moments d'ordre *r*)

Soient $r \in \mathbb{N}$ et X une variable aléatoire discrète. On dit que X possède un **moment d'ordre** r si X^r possède une espérance. On note alors

$$m_r(X) = E(X^r).$$

Si X est à support fini alors X possède des moments de tout ordre.

Définition 7 (Variance)

Soit X une variable aléatoire discrète. Sous réserve d'existence :

- la **variance** de X, notée V(X), est le réel défini par : $V(X) = E((X E(X))^2)$;
- l' écart-type de X, notée $\sigma(X)$, est le réel défini par : $\sigma(X) = \sqrt{V(X)}$.

Proposition 5 (Formule de Koenig-Huygens)

Une variable aléatoire discrète X possède une variance si et seulement si X admet un moment d'ordre 2. Dans ce cas :

$$V(X) = E(X^2) - E(X)^2$$
.

Proposition 6

Soit X une variable aléatoire discrète possédant une variance. Alors :

- 1. $V(X) \ge 0$,
- 2. pour tout $(a, b) \in \mathbb{R}^2$, V(aX + b) existe et $V(aX + b) = a^2V(X)$.

3 Lois usuelles

3.1 Lois certaines

Loi certaine

• On dit qu'une variable aléatoire X suit une loi certaine si elle ne prend qu'une seule valeur $a \in \mathbb{R}$:

$$X(\Omega) = \{a\}$$
 et $P(X = a) = 1$.

• Si X suit une loi certaine avec $X(\Omega) = \{a\}$ alors

$$E(X) = a$$
 et $V(X) = 0$.

• Une variable aléatoire X suit une loi certaine si et seulement si V(X) = 0.

3.2 Lois de Bernoulli

Lois de Bernoulli

Soit $p \in]0,1[$.

- On dit qu'une variable aléatoire X suit la loi de Bernoulli de paramètre p, et on note $X \hookrightarrow \mathcal{B}(p)$ si :
 - i) $X(\Omega) = \{0, 1\},\$
 - ii) P(X = 1) = p et P(X = 0) = 1 p.
- Si $X \hookrightarrow \mathcal{B}(p)$ alors

$$E(X) = p$$
 et $V(X) = p(1-p)$.

Exemple 7 (Expérience de référence)

On considère une expérience aléatoire possédant deux issues. L'une de ces issues est nommée « succès » et se produit avec probabilité $p \in]0,1[$; l'autre est nommée « échec » et se produit avec probabilité 1-p (une telle expérience est appelée une épreuve de Bernoulli).

5

La variable aléatoire X égale à 1 en cas de succès et à 0 en cas d'échec suit une loi $\mathcal{B}(p)$.

Exemple 8

On lance une pièce ayant probabilité $p \in]0,1[$ de tomber sur Pile et 1-p de tomber sur Face. On note X la variable aléatoire égale à 1 si on obtient Pile et à 0 si on obtient Face . Alors

- $X(\Omega) =$
- P(X = 0) =
- P(X = 1) =

 $Donc X \hookrightarrow$

3.3 Lois binomiales

Lois binomiales

Soient $p \in]0,1[$ et $n \in \mathbb{N}^*$.

- On dit qu'une variable aléatoire X suit la loi de binomiale de paramètres n et p, et on note $X \hookrightarrow \mathcal{B}(n,p)$ si :
 - i) $X(\Omega) = \{0, 1, ..., n\},\$
 - ii) $\forall k \in \{0, 1, ..., n\}, P(X = k) = \binom{n}{k} p^k (1 p)^{n k}.$
- Si $X \hookrightarrow \mathcal{B}(n, p)$ alors

$$E(X) = np$$
 et $V(X) = np(1-p)$.

Exemple 9 (Expérience de référence)

On considère une expérience aléatoire qui consiste à répéter n épreuves de Bernoulli indépendantes de paramètre $p \in]0,1[$.

La variable aléatoire X égale au nombre de succès suit une loi $\mathcal{B}(n, p)$.

Exemple 10

On considère une pièce ayant probabilité p de tomber sur Pile et 1-p de tomber sur Face. On lance n fois consécutives cette pièce et on note X la variable aléatoire égale au nombre de Piles obtenus . Alors

- $\Omega = \{Pile, Face\}^n$,
- $X(\Omega) =$
- pour tout $k \in \{0, 1, ..., n\}$
 - i) le nombre d'issues réalisant [X = k] est
 - ii) la probabilité pour qu'une des issues ci-dessus arrive est
 - iii) donc P(X = k) =

 $Donc X \hookrightarrow$

Exemple 11

Soient $n \in \mathbb{N}^*$ et $p \in]0, 1[$. On considère une équipe de n tireurs à la carabine qui cherchent à atteindre une cible éloignée. Chaque tireur tire deux fois. Pour un tireur donné, la probabilité de toucher la cible au premier tir est p et celle de toucher la cible au second tir est aussi égale à p. On suppose qu'il existe un espace probabilisé (Ω, \mathcal{A}, P) qui modélise cette expérience de sorte que les tireurs et les lancers sont indépendants. On note A la variable aléatoire

qui donne le nombre de joueurs qui touchent la cible au premier et au deuxième coup et B la variable aléatoire qui donne le nombre de joueurs qui touchent la cible lors d'un seul des deux tirs.

1. Donner la loi de A.

2. Donner la loi de B.

3.4 Lois uniformes

(Lois uniformes)

Soit $n \in \mathbb{N}^*$.

• On dit qu'une variable aléatoire X suit la loi de uniforme sur $[\![1,n]\!]$, et on note X $\hookrightarrow \mathcal{U}([\![1,n]\!])$ si :

i)
$$X(\Omega) = [1, n],$$

ii)
$$\forall k \in [1, n], P(X = k) = \frac{1}{n}$$
.

• Si $X \hookrightarrow \mathcal{U}([1, n])$ alors

$$E(X) = \frac{n+1}{2}$$
 et $V(X) = \frac{n^2 - 1}{12}$.

Exemple 12 (Expérience de référence)

On considère une expérience aléatoire qui possède n issues différentes numérotées de 1 à n qui sont équiprobables.

La variable aléatoire X égale à i si l'issue i est obtenue suit une loi $\mathcal{U}(\llbracket 1,n \rrbracket)$.

Remarque 5

Soit $(a, b) \in (\mathbb{N}^*)^2$ avec a < b.

• On dit qu'une variable aléatoire X suit la loi de uniforme sur $[\![a,b]\!]$, et on note $X\hookrightarrow \mathcal{U}([\![a,b]\!])$ si :

i)
$$X(\Omega) = [a, b]$$
,

ii)
$$\forall k \in [a, b]$$
, $P(X = k) = \frac{1}{b-a+1}$.

• $SiX \hookrightarrow \mathcal{U}([a,b])$ alors

$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a)(b-a+2)}{12}$.

3.5 Lois géométriques

Lois géométriques

Soit *p* ∈]0,1[.

- On dit qu'une variable aléatoire X suit la loi de géométrique de paramètre p, et on note X $\hookrightarrow \mathcal{G}(p)$ si :
 - i) $X(\Omega) = \mathbb{N}^*$,
 - ii) $\forall k \in \mathbb{N}^*$, $P(X = k) = p(1 p)^{k-1}$.
- Si $X \hookrightarrow \mathcal{G}(p)$ alors

$$E(X) = \frac{1}{p}$$
 et $V(X) = \frac{1-p}{p^2}$.

Exemple 13 (Expérience de référence)

On considère une expérience aléatoire qui consiste en une succession infinie d'épreuves de Bernoulli indépendantes de même paramètre p.

La variable aléatoire X donnant le rang du premier succès obtenu suit une loi $\mathcal{G}(p)$.

Exemple 14

On considère une pièce ayant probabilité p de tomber sur Pile et 1-p de tomber sur Face. On lance la pièce une infinité de fois consécutives et note X la variable égale au rang de la première apparition d'un Pile. Alors

- $\Omega = \{Pile, Face\}^{\mathbb{N}^*}$,
- $X(\Omega) =$
- i) Pour tout $k \in \mathbb{N}^*$ on a

$$[X = k] =$$

où F_i = « obtenir Face au i-ème lancer » et P_i = « obtenir Pile au i-ème lancer ».

ii) Par indépendance des lancers

$$P(X = k) =$$

 $Donc X \hookrightarrow$

3.6 Lois de Poisson

Lois de Poisson

Soit $\lambda > 0$.

- On dit qu'une variable aléatoire X suit la loi de Poisson de paramètre λ , et on note X $\hookrightarrow \mathscr{P}(\lambda)$ si :
 - i) $X(\Omega) = \mathbb{N}$,
 - ii) $\forall k \in \mathbb{N}$, $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$.
- Si $X \hookrightarrow \mathcal{P}(\lambda)$ alors

$$E(X) = \lambda$$
 et $V(X) = \lambda$.

Test 1 (Voir solution.)

Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$. Calculer, si elles existent, $E(e^{-X})$ et $V(e^{-X})$.

8

4 Objectifs

- 1. Connaître par coeur les lois usuelles : loi, espérance, variance.
- 2. Savoir reconnaître les lois usuelles d'après leur loi ou par l'expérience de référence.
- 3. Savoir déterminer la loi d'une variable aléatoire discrète donnée.
- 4. Savoir justifier l'existence de l'espérance, la variance d'une variable donnée.
- 5. Savoir utiliser le théorème de transfert.