SVKM'S NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING

Academic Year: 2022-2023

Program: B Tech / MBA Tech

Year: II Semester: IV

Streams: Computer Engineering /CS

Subject: Design and Analysis of Algorithms

Time:3hrs (10:00amto 01:00pm)

Date: 30/June/ 2023

No. of Pages:3

Marks: 100

Re-Examination (2021-22/2022-23)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) Question No. _1__ is compulsory.
- 2) Out of the remaining questions, attempt any __4__ questions.
- 3) In all ___5_ questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right-hand side indicate full marks.
- 7) Assume Suitable data if necessary.

Q1		Answer briefly:	[20]
CO-1; SO- 1; BL-1	a.	What is an algorithm? Explain any three needs of an algorithm.	5
CO-1; SO-1; BL-2	b.	Compare the growth of functions: $f(n) = n^2 \log n$ and $g(n) = n(\log n)^{10}$	5
CO-2; SO- 6; BO-3	c.	Illustrate the efficiency analysis of the Divide & Conquer strategy.	5
CO-3; SO- 2; BL-2	d.	Discuss the difference between a feasible solution and an optimal solution in the greedy method with an example. Can more than one optimal solution is possible, if yes, then justify your answer?	5
Q2 CO-1; SO- 1; BL-2 CO-4; SO- 6,7; BL-2,4	a. b.	Discuss any four types of algorithms with an example Explain in detail the subset sum problem using Exhaustive Search Algorithm and backtracking with an example. Discuss its time complexity.	[10]
Q3 CO-1; SO-1; BL-2	a.	Discuss all the cases of the Master theorem. Solve the following recurrence relation using Master's theorem- $T(n) = 2T(n/2) + n\log n$ $T(n) = 3T(n/3) + n/2$	[10]
CO-3; SO- 2; BL-3	b.	Discuss the algorithm of optimal storage on tapes and also find the optimal ordering of the program if the total number of programs $(n) = 3$, and the length of each program $(11, 12, 13) = (8, 12, 2)$. respectively. Then	[10]

	,	determine the optimal ordering of the program on tape in the order the retrieval time is minimized. Also, explain its time complexity.		
Q4 CO-2; SO- 6; BL-5	a.	Compare the divide & conquer approach of the Min-Max algorithm over the Naiive method in terms of time complexity analysis. Also, identify the number of comparisons required for 400 elements for both methods.	[10]	
CO-4; SO- 1; BL3	b.	Find the optimal solution for following the 0/1 knapsack problem using dynamic programming. Capacity: 6, Weights: (1,2,4) Profits: (10, 12, 28) Interpret its algorithm and time complexity.	[10]	
Q5 CO-3; SO- 2; BL3 CO-4; SO-	a.	Discuss the algorithm of Job sequencing with deadline using the greedy method and also Solve the following instance of the "Job scheduling with deadlines" problem: $n = 5$, profits $(p1, p2, p3, p4, p5) = (3, 5, 15, 16, 1)$ and deadlines $(d1, d2, d3, d4, d5) = (1, 3, 4, 3, 2)$. Schedule the jobs in such a way as to get maximum profit. Explain its time complexity.	[10]	
1; BL2 CO-4; SO-	b.	Explain the control abstraction of Dynamic Programming. How it is different from the greedy approach	[5]	
6,7; BL-2,4	c.	What is the difference between Backtracking and Recursion?	[5]	
Q6 CO-1; SO-1; BL-2	a.	What do you understand by recurrence relation? Explain with an example. Solve the following recurrence relation using the recursion tree method- $T(n) = 2T(n/2) + n$ when $n > 1$	[10]	
CO-4; SO- 1; BL3	b.	Apply dynamic programming to find all pair shortest paths from source 1. Interpret its algorithm, and complexity.	[10]	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Q7 CO-4; SO-1; BL3	a.	Find the Longest Common Subsequence for the following strings: X = ABCDBACDF Y = CBAF Interpret its algorithm and time complexity.	[10]
CO-1; SO- 1; BL-1	b.	Explain P and NP problems	[5]
CO-2; SO- 6; BO-4	c.	Differentiate Quicksort and Mergesort in terms of time complexity analysis.	[5]

a Mary Literate programme and a second