Planejamento de Experimentos

Vimos que!

Tratamentos { qualitativos. Exemplos: Variedades de milho, clones de eucalípto, raça, etc. Exemplos: Nível de adubação, época de semeadura, quantidade

época de semeadura, quantidade de água,

teor de nutriente no solo, etc.

Exemplo:

Ragazzi (1979) utilizou um experimento inteiramente casualizado com quatro repetições para estudar o efeito de 7 doses de gesso: 0, 50, 100, 150, 200, 250 e 300 kg/ha sobre diversas características do feijoeiro. Para a característica peso de 1000 sementes, obteve os resultados apresentados na Tabela.

Tabela: Peso de 1000 sementes de feijão, em g, em função da dose de gesso, em kg/ha

Dose	Peso d	e 1000 s	sementes	, em g
0	134,8	139,7	147,6	132,3
50	161,7	157,7	150,3	144,7
100	160,7	172,7	163,4	161,3
150	169,8	168,2	160,7	161,0
200	165,7	160,0	158,2	151,0
250	171,8	157,3	150,4	160,4
300	154,5	160,4	148,8	154,0

Exemplo:

Figura: Peso de 1000 sementes de feijão, em g, em função da dose de gesso, em kg/ha

Exemplo:

 $H_0: \mu_{D0} = \mu_{D1} = \mu_{D2} = \ldots = \mu_{D6}$

 H_1 : pelo menos duas médias diferem entre si.

Tabela: Quadro da análise da variância

Fonte de Variação	gl	SQ	QM	F	Pr>Fc
Doses	6	1941,83	323,64	7,67	0,00018763
Resíduo	21	886,34	42,21		
Total	27	2828,17			

Há efeito de Dose

Relação funcional:

Fatores quantitativos \Rightarrow Relação funcional entre a variável resposta (y) e os níveis desses fatores (x).

Modelo:

$$y = f(x) + \epsilon$$
,

em que f(x) é uma função desconhecida.

Objetivos:

- Obter uma função que represente f(x) aproximadamente;
- Obter o nível de x que leva à máxima/mínima resposta;
- ...

Função Polinomial de grau "p":

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_p x^p + \epsilon$$

Características:

- Fácil ajuste;
- Interpretação limitada ao intervalo de estudo;

Falta de ajuste:

Mais de uma observação da variável resposta por nível do fator

Verificação da Falta de Ajuste

Falta de Ajuste = Desvios de Regressão

Polinômio:

Se I é o número de níveis do fator quantitativo

Ajuste de um polinômio de no máximo grau (I-1)

No exemplo

I = 7 doses de gesso, 0, 50, 100, 150, 200, 250 e 300. Logo podemos ajustar um polinômio de grau no máximo 6.

Polinômio: Possíveis ajustes

Não há efeito de dose!

Polinômio: Possíveis ajustes

$$\underline{\beta_0 + \beta_1 x} + \underline{\beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}$$

modelo ajustado termos que podemos adicionar no modelo

Polinômio: Possíveis ajustes

Hipóteses:

• Regressão Linear

$$H_0: \beta_1 = 0 | \beta_0$$
 está no modelo $H_1: \beta_1 \neq 0 | \beta_0$ está no modelo

• Desvios de Regressão

$$H_0: \beta_2, \beta_3, \beta_4, \beta_5, \beta_6 = 0 | \beta_0, \beta_1$$
 estão no modelo $H_1: \beta_k \neq 0 | \beta_0, \beta_1$ estão no modelo, para algum $k = 2, \dots, 6$

$$\underline{\beta_0 + \beta_1 x} + \underline{\beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}$$

RL Desvios de Regressão

Causas de Variação		
Doses	6	
Regressão Linear		1
Desvios de Regressão		5
Resíduo	21	
Total	27	

Polinômio: Possíveis ajustes

$$\underline{\beta_0 + \beta_1 x + \beta_2 x^2} + \underline{\beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}$$

modelo ajustado termos que podemos adicionar no modelo

Polinômio: Possíveis ajustes

Hipóteses:

Regressão Quadrática

 $H_0: \beta_2 = 0 | \beta_0, \beta_1$ estão no modelo

 $H_1: \beta_2 \neq 0 | \beta_0, \beta_1$ estão no modelo

Desvios de Regressão

 $H_0: \beta_3, \beta_4, \beta_5, \beta_6 = 0 | \beta_0, \beta_1, \beta_2$ estão no modelo

 $H_1: \beta_k \neq 0 | \beta_0, \beta_1, \beta_2$ estão no modelo, para algum

$$k = 3, ..., 6$$

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2}_{} + \underbrace{\beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{}$$

modelo quadrático desvios de regressão

Causas de Variação		
Doses	6	
Regressão Linear		1
Regressão Quadrática		1
Desvios de Regressão		4
Resíduo	21	
Total	27	

Polinômio: Possíveis ajustes

Procedimento...

- Se Desvios de Regressão for não significativo ⇒ verificar a significância da Regressão Quadrática;
- Se Desvios de Regressão for significativo ⇒ continuar "procurando" o modelo.

Polinômio: Possíveis ajustes

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3}_{} + \underbrace{\beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{}$$

ajustado termos que podemos adicionar no modelo

Polinômio: Possíveis ajustes

Hipóteses:

Regressão Cúbica

$$H_0: \beta_3 = 0 | \beta_0, \beta_1, \beta_2$$
 estão no modelo $H_1: \beta_3 \neq 0 | \beta_0, \beta_1, \beta_2$ estão no modelo

• Desvios de Regressão

$$H_0: eta_4, eta_5, eta_6 = 0 | eta_0, eta_1, eta_2, eta_3$$
 estão no modelo $H_1: eta_k
eq 0 | eta_0, eta_1, eta_2, eta_3$ estão no modelo, para algum $k = 4, 5, 6$

$$\underline{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3} + \underline{\beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}$$
modelo cúbico desvios de regressão

Causas de Variação		
Doses	6	
Regressão Linear		1
Regressão Quadrática		1
Regressão Cúbica		1
Desvios de Regressão		3
Resíduo	21	
Total	27	

Polinômio: Possíveis ajustes

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4}_{\text{ajustado}} + \underbrace{\beta_5 x^5 + \beta_6 x^6}_{\text{podemos adicionar}}$$

Polinômio: Possíveis ajustes

$$\underline{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5} + \underline{\beta_6 x^6}$$
 ajustado podemos adicionar

Polinômio: Possíveis ajustes

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{\text{ajustado}}$$

Falta de ajuste: generalizado

Hipóteses:

 $\begin{cases} H_0 : \text{Não há falta de ajuste no modelo} \\ H_1 : \text{Há falta de ajuste no modelo} \\ H_0 : \beta_1 = 0 | \beta_0 \text{ está no modelo} \\ H_1 : \beta_1 \neq 0 | \beta_0 \text{ está no modelo} \end{cases}$

Fontes de Variação	gl
Tratamentos	I-1
Regressão linear $(eta_1 eta_0)$	1
Falta de Ajuste $(\beta_2, \ldots, \beta_{I-1} \beta_0, \beta_1)$	I-2
Resíduo	I(J-1)
Total	IJ-1

Falta de ajuste: generalizado

Hipóteses:

 H_0 : Não há falta de ajuste no modelo H_1 : Há falta de ajuste no modelo

 $\begin{cases} H_0: \beta_2 = 0 | \beta_0, \beta_1 \text{ estão no modelo} \\ H_1: \beta_2 \neq 0 | \beta_0, \beta_1 \text{ estão no modelo} \end{cases}$

Fontes de Variação	gl
Tratamentos	I-1
Regressão linear $(eta_1 eta_0)$	1
Regressão quadrática $(eta_2 eta_0,eta_1)$	1
Falta de Ajuste $(\beta_3, \ldots, \beta_{l-1} \beta_0, \beta_1, \beta_2)$	I-3
Resíduo	I(J-1)
Total	IJ-1

Falta de ajuste: generalizado

Hipóteses:

 $\begin{cases} H_0 : Não há falta de ajuste no modelo \\ H_1 : Há falta de ajuste no modelo \end{cases}$

 $\begin{cases} H_0: \beta_3 = 0 | \beta_0, \beta_1, \beta_2 \text{ estão no modelo} \\ H_1: \beta_3 \neq 0 | \beta_0, \beta_1, \beta_2 \text{ estão no modelo} \end{cases}$

Fontes de Variação	gl
Tratamentos	I-1
Regressão linear $(eta_1 eta_0)$	1
Regressão quadrática $(eta_2 eta_0,eta_1)$	1
Regressão cúbica $(\beta_3 \beta_0,\beta_1,\beta_2)$	1
Falta de Ajuste $(\beta_4, \ldots, \beta_{I-1} \beta_0, \beta_1, \beta_2, \beta_3)$	I-4
Resíduo	I(J-1)
Total	IJ-1

Falta de ajuste: generalizado

Observação

Aumentamos progressivamente o grau do polinômio ajustado (p) até que a **falta de ajuste** do modelo seja **não significativa** e que a conclusão do teste da hipótese:

$$\begin{cases} H_0: \beta_p = 0 | \beta_0, \beta_1, \dots, \beta_{p-1} \text{ estão no modelo} \\ H_1: \beta_p \neq 0 | \beta_0, \beta_1, \dots, \beta_{p-1} \text{ estão no modelo} \end{cases}$$

seja pela rejeição de H_0 .

Obrigado!

Jalmar M F Carrasco carrascojalmar@gmail.com