September 14, 2022 11:15 AM

CALC1100 Module 2.2 Fall 2022

Basic Rules of Differentiation Module 2.2 Class Notes

Assume that all given functions are functions of a single variable and differentiate with respect to this variable.

1. Constant Rule	EXAMPLE 1
The derivative of a constant is 0. For any constant <i>C</i> :	a. $y = 0.0071$, then $y' = \frac{dy}{dx} = 0$
$\frac{d}{dx}[C] = 0$	b. $s(t) = Ke^{-0.025}$, where K is constant, then $s' = \frac{ds}{dt} = 0$,

EXAMPLE 2. (Self-check)

a)
$$y = 15$$
, then $y' =$

d)
$$u(x) = 10^{-5}, \quad u' = \frac{du}{dx} =$$

b)
$$y = -\sqrt{12}$$
, then $y' =$

e)
$$s(t)=V\sin\frac{\pi}{6}\omega, \ \ \mbox{Assume that} \ V,\omega \ \mbox{are constants}.$$

$$s'=\frac{ds}{dt}=$$

$$s' = \frac{ds}{dt}$$

c)
$$\theta(t) = \frac{\pi}{2}$$
; then $\theta'(t) = \frac{d\theta}{dt}$

2. Power Rule	EXAMPLE 3
For any real number n , $\frac{d}{dx}[x^n] = nx^{n-1}$	a. $y = x^2$, then $y' = 2x^{2-1} = 2x^1 = 2x$
Verbally : To differentiate the power function with respect to the <i>input</i> , place the constant exponent in front of the expression and multiply by the <i>input</i> raised to the exponent reduced by 1. Those steps(operations) produce the derivative. Note : this rule is valid for the general power function: x^r , where $r \in \mathbb{R}$	b. $y = x^{-\frac{1}{2}}$, $y' = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}}$ $= -\frac{1}{2x^{\frac{3}{2}}}$ c. $\frac{d}{dt} \left[t^{\sqrt{2}} \right] = \sqrt{2}t^{\sqrt{2}-1}$

3. Constant times a function rule	EXAMPLE 4
The derivative of a constant times a function is the constant times the derivative of the function. If C is a constant, then for any function $u(x)$ $\frac{d}{dx}[Cu(x)] = C\frac{d}{dx}[u(x)]$	a. $y = 4x^3$, then $y' = 4\frac{d}{dx}[x^3] = 4(3x^2) = 12x^2$ b. $s(t) = -\frac{3}{4}t^{-4}$, then $s' = \frac{ds}{dt}$ $= -\frac{3}{4}\frac{d}{dt}[t^{-4}] = -\frac{3}{4}(-4t^{-5}) = 3t^{-5} = \frac{3}{t^5}$

EXAMPLE 5. (Self-check)

a)
$$y = 6x^{\frac{1}{3}}$$
, then $y' =$

e)
$$y = 0.025t^{-0.4}$$
, then $y' = \frac{dy}{dt} =$

b)
$$y = 5\sqrt{x}, y' =$$

f)
$$u = 5x$$
, then $u' =$

c)
$$y = \frac{1}{2x^2}$$
 , then $y' =$

d)
$$y = \frac{1}{7\sqrt[3]{x}}$$
; then $y' =$

4. Sum and difference rules	EXAMPLE 6
If $u \& v$ are functions of x , then $\frac{d}{dx}[u \pm v] = \frac{d}{dx}[u] \pm \frac{d}{dx}[v]$ or $[u \pm v]' = u' \pm v$ Verbally: the derivative of the sum(difference) of the functions is the sum(difference) of the	Differentiate the polynomial function: $y=5x^3-4x^2+12x-8.$ The rule can be extended to any number of functions combined by addition and subtraction.
derivatives of the addends.	$y' = 15x^2 - 8x + 12$

EXAMPLE 7. (Self-check) Combine the rules to find the derivatives.

a) Find
$$\frac{d}{dx}[x^{-2} + 6x^3 + 7] =$$

b) Find
$$\frac{d}{dx} [2x^5 - 3x^{-7} + x + 2\sqrt{x}] =$$

EXAMPLE 8. Calculate derivatives.

a)
$$y = \frac{x^3 + 1}{x}$$
 b) $f(x) = \frac{x^4 + 3\sqrt{x}}{x}$

Hint. It is often useful to manipulate an expression algebraically prior to differentiation. In this case divide the numerator through by the denominator and reduce the resulting fractions.

a)
$$y = \frac{x^3}{x} + \frac{1}{x} = x^2 + x^{-1} \rightarrow y' = 2x - x^{-2}$$

b)

$$f(x) = \frac{x^4 + 3\sqrt{x}}{x} = \frac{x^4}{x} + \frac{3\sqrt{x}}{x} = x^3 + 3x^{-\frac{1}{2}}$$
Then, $f'(x) = 3x^2 - \frac{3}{2}x^{-\frac{3}{2}}$

EXAMPLE 9. Evaluating derivatives at the given values: If $f(x) = 7 - 4x^2$, find f'(1) and f'(-3)

Find the derivative first: f'(x) = -8x. Treat the derivative as a function of x to be evaluated for the given values

For
$$x = 1$$
 $f'(1) = -8(1) = -8$; and for $x = -3$ $f'(-3) = -8(-3) = 24$

Note,

- The derivative of a function is a function. Differentiation results in a function.
- Alternative notations may be used in applications: for any $x=x_0$: $f'(x_0)=\frac{df}{dx}\Big|_{x=x_0}$

EXAMPLE 10. Find an equation to the tangent line to the curve $y = \frac{2}{x}$ at the point (2,1) on this curve.

Hint. Equation of the tangent line T to the curve at the point $P(x_0, f(x_0))$ in the *point* –*slope form*:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

or in the slope-intercept form: y = mx + b

Answers to Self-Check Examples

2. all 0; **5**. a.
$$2x^{-\frac{2}{3}}$$
; b. $2.5x^{-\frac{1}{2}}$; c. $-x^{-3}$; d. $-\frac{1}{21}x^{-\frac{4}{3}}$; e. $0.01t^{-1.4}$; f. 5;

7. a.
$$-2x^{-3} + 18x^2$$
; b. $10x^4 + 21x^{-8} + 1 + x^{-\frac{1}{2}}$;

10.
$$y = -\frac{1}{2}x + 2$$