設計製図Ⅱ 計算書

九州工業大学 機械知能工学科 機械知能コース 3 年 学籍番号:13104069 坂本悠作

平成 27 年 9 月 14 日

第1章 歯車設計編

1.1 設計条件

表 1.1: デー	タ
入力動力 (kw)	17
回転数 (rpm)	1300
速度伝達比	12
ねじれ角 (deg)	21

1.2 手順 A: 歯数仮定 $Z_1Z_2Z_3Z_4$

以下の式より $,u_1,u_2$ を算出する.

$$u_i = 1.15\sqrt{i} \approx 3.9837$$

 $u_2 = 0.87\sqrt{i} \approx 3.0137$

歯数を仮定する。ピニオン (小歯車) の歯数の範囲は, $21\sim25$ の範囲で定めることとする。ここでは、以下のように仮定した.

表 1.2: 歯数の仮定

$$egin{array}{|c|c|c|c|c|} \hline Z_1 & 23 \\ Z_2 & 91 \\ Z_3 & 24 \\ Z_4 & 73 \\ \hline \end{array}$$

1.3 手順 B: モジュールの選定

モジュールの仮定は、以下のように定めた

1.4 手順 C: 歯幅 b の仮定

 $1.3 \times 1.25\pi m_t/tan\beta \ge b \ge 1.25\pi m_t/tan\beta$

表 1.3: モジュールの仮定

歯車の組み合わせ	モジュール
$Z_1 \succeq Z_2$	4
$Z_3 \succeq Z_4$	5

表 1.4: b の仮定

歯車の組み合わせ	モジュール	b の値	b の最大許容値	b の最小許容範囲			
Z_1 $\succeq Z_2$	4	45	53.197	40.920			
Z_3 $\succeq Z_4$	5	65	66.496	51.151			

モジュールが決定したので,以下のものが決定される

表 1.5: $d_{a,b}$ の算出 [mm]

歯車番号	ピッチ円筒直径 (d)	歯先円直径 (d_a)	基礎円直径 (d_b)
1	98.545	106.545	91.814
2	389.897	399.897	363.266
3	128.537	138.537	119.758
4	390.968	400.968	364.264

1.5 手順 $\mathbf{D}:\sigma_F$ の算出

歯元曲げ応力の式を以下に示す.

$$\sigma_F = F_W / (bm\cos\alpha_t) Y Y_{\epsilon} K_{\delta} K_A K_V K_{\beta}$$

ここで,L=17(kw), n_1 =1300(rpm), r_1 =44.988 より,

$$F_{W12} = 9.74 \times 10^5 L/(r_1 n_1)$$

$$= 283.117668[kgf]$$

$$F_{W34} = 9.74 \times 10^5 L/(r_3 n_3)$$

$$= 897.223143[kgf]$$

- $\alpha_t = 0.371738799[radian]$
- Y = 2.56
- $Y_{\epsilon} = 1.0$
- $K_A = 1.25$

- $K_{\delta} = 1.0$
- $K_V = 1.2$
- $K_{\beta} = 1.5$

上の条件により,

 $\sigma_{F1} = 283.11766/(41 \times 4 \times \cos 0.371738799)2.56 \times 1.0 \times 1.0 \times 1.25 \times 1.2 \times 1.5$ = 10.8393741[kgfmm]

同様の計算により、以下の値が算出される.

表 1.6: σ_F の算出 [kgfmm]

歯車 No.	σ_F	安全率 S_F
1	89.788	2.402
2	71.422	2.883
3	145.130	1.791
4	121.132	2.105

 $S_F = rac{\sigma_{Flim}}{\sigma_F}...$ 曲げ強さに対する安全係数

1.6 手順 G: 歯車材選定

1.6.1 歯車1の材料

炭素鋼 (焼入焼戻し)

- 硬さ $H_B = 240, H_V = 252$
- 引っ張り強さ (下限)755.1[N/mm²]
- 曲げ強さ $\sigma_{Flim} = 215.7[N/mm^2]$
- 歯面強さ $\sigma_{Hlim} = 544.1[N/mm^2]$

1.6.2 歯車2の材料

炭素鋼 (焼入焼戻し)

- 硬さ $H_B = 220, H_V = 231$
- 引っ張り強さ (下限)696.3[N/mm²]
- 曲げ強さ $\sigma_{Flim} = 205.9[N/mm^2]$
- 歯面強さ $\sigma_{Hlim} = 529.6[N/mm^2]$

1.6.3 歯車3の材料

炭素鋼 (焼入焼戻し)

- 硬さ $H_B = 290, H_V = 305$
- 引っ張り強さ (下限)912.0[N/mm²]
- 曲げ強さ $\sigma_{Flim} = 255.9[N/mm^2]$
- 歯面強さ $\sigma_{Hlim}6686.5[N/mm^2]$

1.6.4 歯車4の材料

炭素鋼 (焼入焼戻し)

- 硬さ $H_B = 270, H_V = 284$
- 引っ張り強さ (下限)853.2[N/mm²]
- 曲げ強さ $\sigma_{Flim} = 255.0[N/mm^2]$
- \bullet 歯面強さ $\sigma_{Hlim}657.0[N/mm^2]$

を仮定する.

1.7 手順 $\mathbf{E}:\sigma_H$ の算出

 σ_H を算出するには、以下の式を用いる.

$$\sigma_H = \sqrt{K} Z_{HH} Z_E \sqrt{K}_A \sqrt{K}_V \sqrt{K}_B$$

これを計算するためには、 \sqrt{K} 、 Z_{HH} 、 Z_E の値を計算する.

$$K = \frac{F_W}{bd_1} \frac{u+1}{u}$$

$$Z_{HH} = 2\sqrt{\cos\beta_b}/\sqrt{\epsilon_a \sin 2_{\alpha_i}}$$

$$Z_E = \sqrt{0.35E_1E_2/(E_1 + E_2)}$$

表 1.7: σ_H の算出 [kgfmm]

歯車 No.	$\sigma_H[N/mm^2]$	安全率 S_H
1	383.7211	1.444
2	383.7211	1.380
3	532.7872	1.289
4	532.7872	1.233

 $S_H = rac{\sigma_{Hlim}}{\sigma_H}...$ 歯面強さに対する安全係数

1.8 手順 N

1.8.1 バックラッシの計算

汎用減速機の歯車には通常歯車精度等級に $3 \sim 4$ 級が使用される. よって, ここでは 3 級として計算をしていく. バックラッシの計算は、次式で求まる.

最大値
$$j_{t(max)}=35.5\omega[\mu m]$$

最小値 $j_{t(min)}=10\omega[\mu m]$
ただしここでは、 $\omega=d^{1/3}+0.65m_t$

この計算式によって計算すると、次の計算結果が算出される.

表 1.8: バックラッシの計算結果

De and the property makes						
歯車番号	最大値 (μm)	最小値 (μm)	合計値 (max)	合計値 (min)	ω	
1	252.560	71.144	598.331	168.544	7.114	
2	345.771	97.400			9.740	
3	290.476	81.824	659.554	185.790	8.182	
4	369.078	103.966			10.397	

1.8.2 中心間距離寸法公差の計算

中心距離寸法公差等級は H7 として計算する.H7 の中心距離寸法公差は以下のとおりである.

$$\Delta a = 16\omega_c \tag{1.1}$$

ここで, $\omega_c = 0.45a^{1/4} + 0.001a(a: 中心距離)$ である.

表 1.9: 中心間距離寸法公差の計算結果

段	$\omega_c(\mu m)$	$\Delta a(\mu m)$
12(1 段目)	3.057	48.912
34(2 段目)	3.131	50.095

1.8.3 歯厚寸法差

次に示すのは、歯厚寸法差 $\Delta s(\mu m)$ の計算式である.

$$\Delta s_1 = \Delta s_2 = (-j_t + 2\Delta a \tan \alpha_n)/2$$

 Δs はバックラッシと中心距離寸法公差の組み合わせで最大、最小の値を計算すると、次のようになる.

表 1.10: 歯厚の寸法差の計算結果

段	$\Delta s_{max}(\mu m)$	$\Delta s_{min}(\mu m)$
12	-281.363	-66.469
34	-311.543	-74.662

1.8.4 またぎ歯厚

またぎ歯厚W(mm)は次式で計算する.

またぐ歯数
$$Z_m = Z(\alpha_t/180 + \tan \alpha_t \tan^2 \beta_b/\pi) + 0.5$$
(最も近い整数値) (1.2)

$$inv(\alpha_t) = \tan \alpha_t - \alpha_t$$
 (1.3)

$$W = m \cos \alpha_n (\pi (Z_m - 0.5) + Zinv(\alpha_t)) - |\Delta s| \cos \alpha_n \cos \beta$$
 (1.4)

表 1.11: またぎ歯厚計算結果

歯車番号	Z	Zm	m	W(min)[mm]	W(max)[mm]
1	23	4	4	42.650	42.839
2	91	13	4	153.560	153.748
3	24	4	5	53.459	53.648
4	73	10	5	149.196	149.385

1.9 簡易平面図

図 1.1: 簡易平面図

第2章 軸設計編

2.1**歯車周速**

ピッチ円周上における歯車の速度を以下のようにして求めた.

$$v_{12} = \frac{\pi d_1 n_1}{1000} \times \frac{1}{60} = \frac{\pi \times 98.5453 \times 1300}{1000} \times \frac{1}{60} = 6.7077[m/s]$$
 (2.1)

$$v_{12} = \frac{\pi d_1 n_1}{1000} \times \frac{1}{60} = \frac{\pi \times 98.5453 \times 1300}{1000} \times \frac{1}{60} = 6.7077[m/s]$$

$$v_{34} = \frac{\pi d_3 n_3}{1000} \times \frac{1}{60} = \frac{\pi \times 128.537 \times 328.5714}{1000} \times \frac{1}{60} = 2.2113[m/s]$$
(2.1)

動力と接線力の関係 2.2

動力と接線力には次の関係が有る.

$$T[N \cdot m] = F[N]r[m] \tag{2.3}$$

$$T[N \cdot m] = F[N]r[m]$$

$$P[kW] = \frac{2\pi T[N \cdot m]n[rpm]}{60}w$$

$$(2.3)$$

以上より、接線力は以下のように算出できる.

$$P[W] = \frac{\pi F[N]d[m]n[rpm]}{60} = F[N]v[N \cdot m] \, \& \, \mathcal{I},$$

$$F_{12} = \frac{60P}{\pi d[m]n[rpm]} = \frac{60 \times 17000}{\pi \times 0.098545 \times 1300} = 2534.4008[N]$$

$$F_{34} = \frac{60P}{\pi d[m]n[rpm]} = \frac{60 \times 17000}{\pi \times 0.128537 \times 328.5714} = 7687.6284[N]$$
(2.5)

$$F_{34} = \frac{60P}{\pi d[m]n[rpm]} = \frac{60 \times 17000}{\pi \times 0.128537 \times 328.5714} = 7687.6284[N]$$
 (2.6)

2.3スラスト荷重とラジアル荷重の算出

軸に加えられる力を、軸に対して直角に作用するラジアル荷重と、軸方向に作用するスラスト荷 重に分類分けをする、こうすることでかかる力とモーメントの関係をそれぞれ算出し、後で合成す ることで計算ができる.

歯車の形状から、ラジアル荷重 P_r とスラスト荷重 P_t は以下のように計算される. ここに、正面圧 力角 (歯車を正面から見た時のピッチ円周上の歯の角度) $lpha_t = 21.2991[degree]$, ピッチ円筒ねじれ 角 $\beta = 21[degree]$ とする

$$P_r = F \tan(\alpha) \tag{2.7}$$

$$P_t = F \tan(\beta) \tag{2.8}$$

よって,

$$P_{r1} = P_{r2} = F \tan(\alpha) = 2534.4008 \times \tan(21.2991) = 988.08[N]$$
 (2.9)

$$P_{r3} = P_{r4} = F \tan(\alpha) = 7687.6284 \times \tan(21.2991) = 2997.14[N]$$
 (2.10)

$$P_{t1} = P_{t2} = F \tan(\beta) = 2534.4008 \times \tan(21) = 972.87[N]$$
 (2.11)

$$P_{t3} = P_{t4} = F \tan(\beta) = 7687.6284 \times \tan(21) = 2951[N]$$
 (2.12)

2.4 スパンの決定

2.4.1 湯浴式潤滑法

湯浴式の潤滑法とは、歯末部分が潤滑油に浸されており、歯車の回転運動の遠心力により潤滑油が飛沫 (ひまつ) して軸受けなど各部へ供給される方法である。この方法は歯車の周速が $3\sim 13m/s$ であるものが適している。理由としては、飛び散らせるための力として 3m/s 以上が好ましいということと、速すぎると潤滑油が必要以上に飛ばされるため、十分な油膜の形成に影響が出て、かつ動力損失を増してしまうため、13m/s 以下が好ましいことが挙げられる。同様な理由により、ギヤボックスと歯車の間隔にも制約が入る。しかし、間隔が開きすぎると材料にかかる応力が大きくなるので、ここでは以下の式を用いて最大値と最小値を求める。ここに、C をギヤボックスと車軸の間隔とすると、

$$C = (2 \sim 3)v + 10 + \alpha \tag{2.13}$$

2.4.2 最大値と最小値の計算

この式を用いて最大値と最小値を計算する

$$C_{1max} = 3v + 10 = 3 \times 6.7077 + 10 + \alpha = 30.1231 + \alpha \tag{2.14}$$

$$C_{1min} = 2v + 10 = 2 \times 6.7077 + 10 + \alpha = 23.4154 + \alpha \tag{2.15}$$

ここで第3歯車を固定し、相対的な速度が潤滑に影響するパラメータであると考えると、次のようになる.

$$C_{2max} = 3v + 10 = 3 \times (6.7077 - 2.2113) + 10 + \alpha = 23.4892 + \alpha$$
 (2.16)

$$C_{2min} = 2v + 10 = 2 \times (6.7077 - 2.2113) + 10 + \alpha = 18.9928 + \alpha$$
 (2.17)

$$C_{3max} = 3v + 10 = 3 \times 2.2113 + 10 + \alpha = 16.6339 + \alpha$$
 (2.18)

$$C_{3min} = 2v + 10 = 2 \times 2.2113 + 10 + \alpha = 14.4226 + \alpha \tag{2.19}$$

2.4.3 スパンの決定

先ほどの計算から、きりのいい整数値で決定すると、

$$C_1 = 27, C_2 = 21, C_3 = 16$$

ここでギヤボックスの幅を 40mm とすると、軸の長さが計算できる.

軸長 =
$$C_1 + C_2 + C_3 + b_{12} + b_{34} + 40 \times 2$$
 (2.20)

$$= 27 + 21 + 16 + 45 + 65 + 40 \times 2 \tag{2.21}$$

$$= 254 \tag{2.22}$$

よって、スパン長が決定する.

$$a_1 = 40 + 16 + \frac{65}{2} = 88.5$$
 (2.23)

$$a_2 = \frac{65}{2} + 21 + \frac{45}{2} = 76$$
 (2.24)

$$a_3 = \frac{45}{2} + 27 + 40 = 89.5$$
 (2.25)

2.5 軸に作用する力の算出

2.5.1 入力軸

図 2.1 と図 2.2 は入力軸に作用する力をモデル化したものである. このモデルに対して, 材力の公式を用いて力の分析をする.

図 2.1: 入力軸モデル (xz 成分)

正回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $P_{r1} - R_{1x} - R_{2x} = 0$ (2.26)

$$y$$
 成分 : $Fw_{12} - R_{1y} - R_{2y} = 0$ (2.27)

$$z$$
 成分 : $-P_{t1} + R_{2z} = 0$ (2.28)

$$y$$
軸, R_1 回りのモーメント : $(a_1+a_2)P_{r1}+\frac{d_1}{2}P_{t1}-(a_1+a_2+a_3)R_{2x}=0$ (2.29)

$$x$$
軸, R_1 回りのモーメント : $(a_1 + a_2)Fw_{12} - (a_1 + a_2 + a_3)R_{2y} = 0$ (2.30)

図 2.2: 入力軸モデル (y 成分)

この方程式を解くことで、次の結果を得る.

• $R_{1x} = -159.44$

• $R_{1y} = -893.03$

• $R_{2x} = -828.64$

• $R_{2y} = -1641.3708$

• $R_{2z} = -972.87$

上の結果から、軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_1 = \sqrt{R_{1x}^2 + R_{1y}^2} = 907.151 \tag{2.31}$$

$$R_2 = \sqrt{R_{2x}^2 + R_{2y}^2} = 1838.68 \tag{2.32}$$

(2.33)

次に、この軸にかかるモーメントを求め、BMD に示す. 歯車が有る点を中心に考えると、軸受けのラジアルカによって軸にかかるモーメントは次のように求めることができる.

図 2.3: 入力軸モデル (x 成分 BMD)

図 2.4: 入力軸モデル (y 成分 BMD)

$$M_{1x} = R_{1x} \times (a_1 + a_2) = 26227.88$$
 (2.34)

$$M_{2x} = R_{2x} \times a_3 = 74163.28 \tag{2.35}$$

$$M_{1y} = R_{1y} \times (a_1 + a_2) = 146903.435$$
 (2.36)

$$M_{2y} = R_{2y} \times a_3 = 146902.69 \tag{2.37}$$

最大曲げモーメントを算出する.

$$M_{1max} = \sqrt{M_{1x}^2 + M_{1y}^2} = 149226.41$$
 (2.38)

$$M_{2max} = \sqrt{M_{2x}^2 + M_{2y}^2} = 164561.82$$
 (2.39)

軸に作用するねじりモーメントを求める

$$T_1 = 0 (2.40)$$

$$T_2 = \frac{d_1}{2} \times Fw_{12} \tag{2.41}$$

$$T_2 = \frac{d_1}{2} \times Fw_{12}$$
 (2.41)
= $\frac{98.545}{2} \times 2534.4008 = 124877.531$ (2.42)

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z1} = 0 (2.43)$$

$$T_{z2} = R_{2z} = P_{t1} = 972.870 (2.44)$$

逆回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $P_{r1} - R_{1x} - R_{2x} = 0$ (2.45)

$$y$$
 成分 : $Fw_{12} - R_{1y} - R_{2y} = 0$ (2.46)

$$z$$
 成分 : $P_{t1} - R_{2z} = 0$ (2.47)

$$y$$
軸, R_1 回りのモーメント : $(a_1 + a_2)P_{r1} - \frac{d_1}{2}P_{t1} - (a_1 + a_2 + a_3)R_{2x}$ (2.48)

$$x$$
軸, R_1 回りのモーメント : $(a_1 + a_2)Fw_{12} - (a_1 + a_2 + a_3)R_{2y}$ (2.49)

この方程式を解くことで、次の結果を得る.

- $R_{1x} = -536.89$
- $R_{1y} = 893.03$
- $R_{2x} = -451.19$
- $R_{2y} = 1641.3708$
- $R_{2z} = 972.87$

上の結果から、軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_1 = \sqrt{R_{1x}^2 + R_{1y}^2} = 1041.99 (2.50)$$

$$R_2 = \sqrt{R_{2x}^2 + R_{2y}^2} = 1702.25 \tag{2.51}$$

(2.52)

次に、この軸にかかるモーメントを求め、BMD に示す. 歯車が有る点を中心に考えると、軸受けのラジアルカによって軸にかかるモーメントは次のように求めることができる.

図 2.5: 入力軸モデル (x 成分 BMD)

図 2.6: 入力軸モデル (y 成分 BMD)

$$M_{1x} = R_{1x} \times (a_1 + a_2) = 88318$$
 (2.53)

$$M_{2x} = R_{2x} \times a_3 = 40381 \tag{2.54}$$

$$M_{1y} = R_{1y} \times (a_1 + a_2) = 146903$$
 (2.55)

$$M_{2y} = R_{2y} \times a_3 = 146903 \tag{2.56}$$

最大曲げモーメントを算出する.

$$M_{1max} = \sqrt{M_{1x}^2 + M_{1y}^2} = 171407 \tag{2.57}$$

$$M_{2max} = \sqrt{M_{2x}^2 + M_{2y}^2} = 152351$$
 (2.58)

軸に作用するねじりモーメントを求める

$$T_1 = 0 (2.59)$$

$$T_2 = \frac{d_1}{2} \times Fw_{12} \tag{2.60}$$

$$= \frac{98.545}{2} \times 2534.4008 = 124877.531 \tag{2.61}$$

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z1} = 0 (2.62)$$

$$T_{z2} = R_{2z} = P_{t1} = 972.870$$
 (2.63)

図 2.7: 中間軸モデル

2.5.2 中間軸

正回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $P_{r3} - P_{r2} + R_{3x} - R_{4x} = 0$ (2.64)

$$y$$
 成分 : $-Fw_{12} - Fw_{34} + R_{3y} + R_{4y} = 0$ (2.65)

$$z$$
 成分 : $-P_{t2} + P_{t3} + R_{4z} = 0$ (2.66)

$$y$$
軸, R_3 回りのモーメント : $a_1P_{r3} - (a_1 + a_2)P_{r2} - (a_1 + a_2 + a_3)R_{4x} - \frac{d_3}{2}P_{t3} - \frac{d_2}{2}P_{t2}$ (2.67)

$$x$$
軸, R_3 回りのモーメント : $-a_1Fw_{34} - (a_1 + a_2)Fw_{12} + (a_1 + a_2 + a_3)F_{4y}$ (2.68)

この方程式を解くことで、次の結果を得る.

- $R_{3x} = -111.33$
- $R_{3y} = 5902.09$
- $R_{4x} = -1897.73$
- $R_{4y} = 4319.9392$
- $R_{4z} = -1978.13$

上の結果から,軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_3 = \sqrt{R_{3x}^2 + R_{3y}^2} = 5903 \tag{2.69}$$

$$R_4 = \sqrt{R_{4x}^2 + R_{4y}^2} = 4718.4 \tag{2.70}$$

(2.71)

図 2.8: 中間軸 y 軸基準

図 2.9: 中間軸 x 軸基準

次に、この軸にかかるモーメントを求め、BMD に示す. 歯車が有る点を中心に考えると、軸受けのラジアルカによって軸にかかるモーメントは次のように求めることができる.

$$M_{3y} = R_{3y} \times a_1 = 522334 \tag{2.72}$$

$$M_{4y} = R_{4y} \times a_3 = 386634 \tag{2.73}$$

$$M_{31x} = R_{3x} \times a_1 = 9853 \tag{2.74}$$

$$M_{32x} = M_{31x} + P_t \frac{d_3}{2} = 199510$$
 (2.75)

$$M_{21x} = M_{22x} + P_t \frac{d_2}{2} = 19812$$
 (2.76)

$$M_{22x} = R_{4x} \times a_3 = 169846 \tag{2.77}$$

(2.78)

以上より、最大モーメントの組み合わせは、

$$\sqrt{M_{3y}^2 + M_{32x}^2} = 559139 \tag{2.79}$$

$$\sqrt{M_{3y}^2 + M_{21x}^2} = 422296 \tag{2.80}$$

軸に作用するねじりモーメントを求める

$$T_3 = 0 (2.81)$$

$$T_4 = \frac{d_3}{2} \times Fw_{34} \tag{2.82}$$

$$= \frac{128.5374}{2} \times 7687.628 = 494073.883 \tag{2.83}$$

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z3} = -1978.130 (2.84)$$

$$T_{z4} = R_{4z} = 1978.130$$
 (2.85)

逆回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $P_{r3} - P_{r2} + R_{3x} - R_{4x} = 0$ (2.86)

$$y$$
 成分 : $-Fw_{12} - Fw_{34} + R_{3y} + R_{4y} = 0$ (2.87)

$$z$$
 成分 : $P_{t2} - P_{t3} + R_{4z} = 0$ (2.88)

$$y$$
軸, R_3 回りのモーメント : $a_1P_{r3} - (a_1 + a_2)P_{r2} + (a_1 + a_2 + a_3)R_{4x} + \frac{d_3}{2}P_{t3} + \frac{d_2}{2}P_{t2}$ (2.89)

$$x$$
軸, R_3 回りのモーメント : $a_1Fw_{34} + (a_1 + a_2)Fw_{12} - (a_1 + a_2 + a_3)F_{4y}$ (2.90)

この方程式を解くことで、次の結果を得る.

• $R_{3x} = -3098.07$

図 2.10: 中間軸モデル

- $R_{3y} = -5902.09$
- $R_{4x} = 1089.01$
- $R_{4y} = -4319.9392$
- $R_{4z} = 1978.13$

上の結果から, 軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_3 = \sqrt{R_{3x}^2 + R_{3y}^2} = 6665.79 \tag{2.91}$$

$$R_4 = \sqrt{R_{4x}^2 + R_{4y}^2} = 4455.10 \tag{2.92}$$

(2.93)

次に、この軸にかかるモーメントを求め、BMD に示す. 歯車が有る点を中心に考えると、軸受けのラジアル力によって軸にかかるモーメントは次のように求めることができる.

$$M_{3y} = R_{3y} \times a_1 = 522335 \tag{2.94}$$

$$M_{4u} = R_{4u} \times a_3 = 386634 \tag{2.95}$$

$$M_{31x} = R_{3x} \times a_1 = -274179 \tag{2.96}$$

$$M_{32x} = M_{31x} + P_t \frac{d_3}{2} = -84522 (2.97)$$

$$M_{21x} = M_{22x} + P_t \frac{d_2}{2} = -92193.173$$
 (2.98)

$$M_{22x} = R_{4x} \times a_3 = 97466.276 \tag{2.99}$$

(2.100)

以上より、最大モーメントの組み合わせは、

$$\sqrt{M_{3y}^2 + M_{31x}^2} = 589921 \tag{2.101}$$

$$\sqrt{M_{3y}^2 + M_{21x}^2} = 398730 \tag{2.102}$$

図 2.11: 中間軸 y 軸基準

図 2.12: 中間軸 x 軸基準

軸に作用するねじりモーメントを求める

$$T_3 = 0 (2.103)$$

$$T_4 = \frac{d_3}{2} \times Fw_{34} \tag{2.104}$$

$$T_4 = \frac{d_3}{2} \times Fw_{34}$$
 (2.104)
= $\frac{128.5374}{2} \times 7687.628 = 494073.883$ (2.105)

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z3} = -1978.130 (2.106)$$

$$T_{z4} = R_{4z} = 1978.130 (2.107)$$

出力軸 2.5.3

図 2.13: 出力軸モデル (xz 成分)

図 2.14: 出力軸モデル (y 成分)

正回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $-P_{r3} + R_{5x} + R_{6x} = 0$ (2.108)

$$y$$
 成分 : $Fw_{34} - R_{5y} - R_{6y} = 0$ (2.109)

$$z$$
 成分 : $-P_{t3} + R_{6z} = 0$ (2.110)

$$y$$
軸, R_5 回りのモーメント : $-a_1P_{r3} + \frac{d_4}{2}P_{t3} + (a_1 + a_2 + a_3)R_{6x}$ (2.111)

$$x$$
軸, R_5 回りのモーメント : $a_1Fw_{34} - (a_1 + a_2 + a_3)R_{6y}$ (2.112)

この方程式を解くことで、次の結果を得る.

- $R_{5x} = 4224.02$
- $R_{5y} = -5009.06$
- $R_{5z} = 2951$
- $R_{6x} = 1226.88$
- $R_{6y} = -2678.5684$

上の結果から,軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_5 = \sqrt{R_{5x}^2 + R_{5y}^2} = 6552.32$$
 (2.113)

$$R_6 = \sqrt{R_{6x}^2 + R_{6y}^2} = 3195.88$$
 (2.114)

(2.115)

次に、この軸にかかるモーメントを求め、BMD に示す. 歯車が有る点を中心に考えると、軸受けのラジアルカによって軸にかかるモーメントは次のように求めることができる.

$$M_{5x} = R_{5x} \times a_1 = -373824.548 \tag{2.116}$$

$$M_{6x} = R_{6x} \times a_3 = 203048.589 \tag{2.117}$$

$$M_{5y} = R_{5y} \times a_1 = 443302.249 \tag{2.118}$$

$$M_{6y} = R_{6y} \times a_3 = 443302.249$$
 (2.119)

(2.120)

最大曲げモーメントを算出する.

$$M_{1max} = \sqrt{M_{5x}^2 + M_{5y}^2} = 579881$$
 (2.121)

$$M_{2max} = \sqrt{M_{6x}^2 + M_{6y}^2} = 487592$$
 (2.122)

(2.123)

軸に作用するねじりモーメントを求める

$$T_1 = 0 (2.124)$$

$$T_2 = \frac{d_4}{2} \times Fw_{34} \tag{2.125}$$

$$= \frac{390.9679}{2} \times 7687.628 = 1502807.966 \tag{2.126}$$

図 2.15: 入力軸モデル (x 成分 BMD)

図 2.16: 入力軸モデル (y 成分 BMD)

軸に作用する荷重(軸力:スラスト力)を求める.

$$T_{z1} = 0 ag{2.127}$$

$$T_{z2} = R_{6z} = P_{t3} = 2951.000$$
 (2.128)

逆回転の場合

釣り合いの式を以下に示す.

$$x$$
 成分 : $-P_{r3} + R_{5x} + R_{6x} = 0$ (2.129)

$$y$$
 成分 : $Fw_{34} - R_{5y} - R_{6y} = 0$ (2.130)

$$z$$
 成分 : $-P_{t3} + R_{5z} = 0$ (2.131)

$$y$$
軸, R_5 回りのモーメント : $-a_1P_{r3} + \frac{d_4}{2}P_{t3} + (a_1 + a_2 + a_3)R_{6x}$ (2.132)

$$x$$
軸, R_5 回りのモーメント : $a_1 F w_{34} - (a_1 + a_2 + a_3) R_{6y}$ (2.133)

この方程式を解くことで、次の結果を得る.

- $R_{5x} = -318.29$
- $R_{5u} = 5009.06$
- $R_{5z} = -2951.000$
- $R_{6x} = 3315.43$
- $R_{6u} = 2678.5684$

上の結果から、軸受けにかかるラジアル荷重の大きさが以下のように算出できる.

$$R_5 = \sqrt{R_{5x}^2 + R_{5y}^2} = 3330.67 \tag{2.134}$$

$$R_6 = \sqrt{R_{6x}^2 + R_{6y}^2} = 5680.26 (2.135)$$

(2.136)

次に、この軸にかかるモーメントを求め、BMD に示す. 歯車が有る点を中心に考えると、軸受けのラジアル力によって軸にかかるモーメントは次のように求めることができる.

$$M_{5x} = R_{5x} \times a_1 = -281670 \tag{2.137}$$

$$M_{6x} = R_{6x} \times a_3 = -548703 \tag{2.138}$$

$$M_{5y} = R_{5y} \times a_1 = -443302 \tag{2.139}$$

$$M_{6y} = R_{6y} \times a_3 = -443302 \tag{2.140}$$

最大曲げモーメントを算出する.

$$M_{1max} = \sqrt{M_{5x}^2 + M_{5y}^2} = 444196 (2.141)$$

$$M_{2max} = \sqrt{M_{6x}^2 + M_{6y}^2} = 705402 (2.142)$$

(2.143)

図 2.17: 入力軸モデル (x 成分 BMD)

図 2.18: 入力軸モデル (y 成分 BMD)

軸に作用するねじりモーメントを求める

$$T_1 = 0 (2.144)$$

$$T_1 = 0$$
 (2.144)
 $T_2 = \frac{d_4}{2} \times Fw_{34}$ (2.145)
 $= \frac{390.9679}{2} \times 7687.628 = 1502807.966$ (2.146)

$$= \frac{390.9679}{2} \times 7687.628 = 1502807.966 \tag{2.146}$$

軸に作用する荷重 (軸力:スラスト力) を求める.

$$T_{z1} = 0 (2.147)$$

$$T_{z2} = R_{6z} = P_{t3} = 2951.000 (2.148)$$

2.6 軸の最小径の決定

2.6.1 計算手順

まず次の計算を行い、最小軸径をそれぞれ求める.

1. 破壊条件に基づく軸径

軸に生じる最大応力が、軸の許容応力よりも大きくなければならないという条件から、軸の最小径を求めていく、ここで用いる軸は丸棒であるので、軸の径が小さいほど許容せん断応力は小さくなる、よって、軸の直径 d を小さくしていき、許容せん断応力と最大せん断応力が等しくなる d を算出すればよい.

2. 座屈条件に基づく軸径

座屈荷重による強度は、最小断面2次モーメントに依存する.これにより、耐えられる座屈荷重が決定するので、最小軸径も決定する.

3. ねじり剛性に基づく軸径

一般的に,1m の軸に対して 0.25[degree] というのが目安になる. 軸系を大きくするとねじられにくさが向上するので、最小軸系も決定する.

それぞれ算出した軸径以上の軸径を選択する。また、入力軸の材料は第1 歯車と一体化しなければならないので、第1 歯車と同素材を用いる。よって軸の許容応力は以下のように定まる。キー溝が有る場合は、次の値に更に 0.75 倍したものを採用する。

最大せん断応力の場合
$$\tau_{al} = 0.18 \times \sigma_{UTS}$$
 (2.149)

$$= 0.18 \times 755.1 = 135.92[MPa] \tag{2.150}$$

最大主応力の場合
$$\tau_{al} = 0.36 \times \sigma_{UTS}$$
 (2.151)

$$= 0.36 \times 755.1 = 271.84[MPa] \tag{2.152}$$

動的効果係数

実際の軸にはどう荷重が作用する、この影響を考えるために、動的効果の係数を導入する。この係数は3 段階に分類分けされているが、ここでは軽い変動荷重が作用するとして、ねじりの動的効果の係数を $k_t=1.0, k_b=1.5$ として計算をする。

2.6.2 破壊条件に基づく軸径

軸受け1にかかる許容せん断応力 au_{al} は、ねじりが作用しないので、次の式で算出する.

$$\tau_{al} = \frac{16}{\pi d^3} \sqrt{(M + \frac{d}{8}P)^2 + T^2}$$
 (2.153)

軸径 d について解くと.

$$d_{min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{(M + \frac{d}{8}P)^2 + T^2}}$$
(2.154)

動的効果の係数に直すと、

$$d_{min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}}$$
 (2.155)

軸受け1側の軸(正回転)

軸受け 1 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する、ここで P=0, T=0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}} \tag{2.156}$$

$$= \sqrt[3]{\frac{16}{\pi 135.92} \sqrt{(1.5 \times 149226)^2}}$$
 (2.157)

$$= 20.32[mm] (2.158)$$

軸受け1側の軸(逆回転)

軸受け 1 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する. ここで P=0, T=0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$
 (2.159)

$$= \sqrt[3]{\frac{16}{\pi 135.92} \sqrt{(1.5 \times 171407)^2}}$$
 (2.160)

$$= 21.28[mm] (2.161)$$

軸受け2側の軸(正回転)

軸受け 2 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する。ここで P=-972.87, T=124877.53, M=164561.82 を代入した。この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する。初期値 20[mm] とする。

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}$$

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{(1.5 \times 164561.82 + \frac{20}{8} \times -972.87)^2 + (1.0 \times 164561.82)^2}$$
(2.163)
$$= 21.75$$
(2.164)
$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{(1.5 \times 164561.82 + \frac{21.75}{8} \times -972.87)^2 + (1.0 \times 164561.82)^2}$$
(2.165)
$$= 21.74 [mm] (以束確認)$$
(2.166)

軸受け2側の軸(逆回転)

軸受け 2 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する、ここで P=972.87, T=124877.53, M=152351 を代入した。この計算では $\mathrm{d}($ 直径) の値がわかっ

ていないので、繰り返し計算で算出する. 初期値 20[mm] とする.

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}$$

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{(1.5 \times 152351 + \frac{20}{8} \times 972.87)^2 + (1.0 \times 124877.53)^2}$$

$$= 21.43$$

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{(1.5 \times 152351 + \frac{21.43}{8} \times 972.87)^2 + (1.0 \times 124877.53)^2}$$

$$= 21.43 [mm] (収束確認)$$

$$= 21.43 [mm] (収束確認)$$

$$= (2.171)$$

軸受け3側の軸(正回転)

軸受け33側にかかる許容せん断応力 au_{al} は $_{i}$ ねじりと軸力が作用しないので $_{i}$ 次の式で算出する $_{i}$ ここで P = 0, T = 0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$

$$= \sqrt[3]{\frac{16}{\pi 135.92} \sqrt{1.5 \times 559139^2}}$$
(2.172)

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{1.5 \times 559139^2} \tag{2.173}$$

$$= 31.56[mm] (2.174)$$

軸受け3側の軸(逆回転)

軸受け3側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する. ここで P = 0, T = 0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$
 (2.175)

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{1.5 \times 589921^2} \tag{2.176}$$

$$= 32.13[mm] (2.177)$$

第3歯車と第4歯車の間の軸(正回転)

軸受け3側にかかる許容せん断応力 au_{al} は、ねじりと軸力が作用しないので、次の式で算出する. また、キー溝があるので、 au_{al} の値を 0.75 倍にした。 ここで P=2951, T=494074, M=559139 を代 入した. この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する. 初期値 20[mm]

とする.

第3 歯車と第4 歯車の間の軸(逆回転)

軸受け 3 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する。また、キー溝があるので、 τ_{al} の値を 0.75 倍にした。ここで P=2951, T=494074, M=589921 を代入した。この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する。初期値 20[mm] とする。

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 530408 + \frac{20}{8} \times 2951)^2 + (1.0 \times 494074)^2}$$

$$= 36.11$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 530408 + \frac{36.11}{8} \times 2951)^2 + (1.0 \times 494074)^2}$$

$$= 36.17 [mm] (以東確認)$$
(2.184)

第4歯車側の軸(正回転)

軸受け 4 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する。また、キー溝があるので、 τ_{al} の値を 0.75 倍にした。ここで P=-1978.13、M=422296 を代入した。この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する。初期値 20[mm] と

する.

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}}$$

$$= \sqrt[3]{\frac{16}{\pi \times 135.92} \sqrt{(1.5 \times 422296 + \frac{20}{8} \times -1978.13)^2}}$$
(2.185)

$$= 28.66$$
 (2.187)

$$= \sqrt[3]{\frac{16}{\pi \times 135.92}}\sqrt{(1.5 \times 422296 + \frac{28.66}{8} \times -1978.13)^2}$$

(2.188)

$$= 28.63[mm](\mathbf{V}$$
束確認) (2.189)

第4歯車側の軸(逆回転)

軸受け 4 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する。また、キー溝があるので、 τ_{al} の値を 0.75 倍にした。ここで P=1978.13、M=398730 を代入した。この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する。初期値 20[mm] とする。

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{(k_b M + \frac{d}{8}P)^2}}$$

$$= \sqrt[3]{\frac{16}{\pi \times 135.92} \sqrt{(1.5 \times 398730 + \frac{20}{8} \times 1978.13)^2}}$$

$$= 28.27$$
(2.190)
$$(2.191)$$

$$= 28.27$$

$$= \sqrt[3]{\frac{16}{\pi \times 135.92}}\sqrt{(1.5 \times 398730 + \frac{28.27}{8} \times 1978.13)^2}$$

(2.193)

$$= 28.31[mm](\mathbf{U} \mathbf{\bar{r}} \mathbf{\bar{m}} \mathbf{\bar{n}})$$
 (2.194)

第5歯車側の軸(正回転)

軸受け 3 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する。また、キー溝があるので、 τ_{al} の値を 0.75 倍にした。ここで P=2951, T=1502808, M=579881 を代入した。この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する。初期値

20[mm] とする.

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 579881 + \frac{20}{8} \times 2951)^2 + (1.0 \times 1502808)^2}$$

$$= 44.30$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 579881 + \frac{44.30}{8} \times 2951)^2 + (1.0 \times 1502808)^2}$$

$$= 44.34 [mm] (収束確認)$$

$$(2.198)$$

$$= 44.34 [mm] (収束確認)$$

$$(2.199)$$

第5歯車側の軸(逆回転)

軸受け 3 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する。また、キー溝があるので、 τ_{al} の値を 0.75 倍にした。ここで P=-2951, T=1502808, M=444196 を代入した。この計算では d(直径) の値がわかっていないので、繰り返し計算で算出する。初期値 $20 [\mathrm{mm}]$ とする。

$$d_{12min} = \sqrt[3]{\frac{16}{\pi \tau_{al}}} \sqrt{(k_b M + \frac{d}{8}P)^2 + k_t T^2}$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 444196 + \frac{20}{8} \times -2951)^2 + (1.0 \times 1502808)^2}$$

$$= 43.41$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 444196 + \frac{43.49}{8} \times -2951)^2 + (1.0 \times 1502808)^2}$$

$$= \sqrt[3]{\frac{16}{\pi \times 0.75 \times 135.92}} \sqrt{(1.5 \times 444196 + \frac{43.49}{8} \times -2951)^2 + (1.0 \times 1502808)^2}$$

$$= 43.41 [mm] (以束確認)$$

$$= 2.204)$$

軸受け6側の軸(正回転)

軸受け 6 側にかかる許容せん断応力 τ_{al} は、ねじりと軸力が作用しないので、次の式で算出する. ここで P=0, T=0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}} \tag{2.206}$$

$$= \sqrt[3]{\frac{16}{\pi 135.92}}\sqrt{1.5 \times 487592^2} \tag{2.207}$$

$$= 30.15[mm] (2.208)$$

軸受け6側の軸(逆回転)

軸受け6側にかかる許容せん断応力 au_{al} は、ねじりと軸力が作用しないので、次の式で算出する. ここで P = 0, T = 0 を代入した.

$$d_{11min} = \sqrt[3]{\frac{16}{\pi \tau_{al}} \sqrt{k_b M^2}}$$
 (2.209)

$$= \sqrt[3]{\frac{16}{\pi 135.92}} \sqrt{1.5 \times 705402^2} \tag{2.210}$$

$$= 34.10[mm] (2.211)$$

座屈条件に基づく軸径 2.6.3

原理

炭素鋼には、軟鋼と硬鋼があり、それぞれさらに特別極軟鋼、極軟鋼、軟鋼、半軟鋼、半硬鋼、硬鋼、 最硬鋼と分類される. 今回軸として採用した軸の材料はs53c(炭素量が0.53%)であるので、最硬鋼 に分類される. 硬鋼の場合は、細長比が $85\sqrt{n}$ よりも小さければ、座屈で計算する.n は端末係数で ある.

ここで、細長比 λ は次のように算出する.

$$\lambda = \frac{L}{r}$$
 (2.212) ここに、 $L:$ 部材の長さ、 $r:$ 断面回転半径 (2.213)

ここに,
$$L$$
: 部材の長さ, r : 断面回転半径 (2.213)

$$r = \sqrt{\frac{I}{A}} \tag{2.214}$$

ここに,
$$A$$
: 断面積, I : 断面 2 次モーメントとする.以上より, (2.215)

$$\lambda = \frac{L\sqrt{A}}{\sqrt{I}} \tag{2.216}$$

座屈で計算する場合は、以下のオイラーの座屈公式を用いる.

$$P_k = C \frac{\pi^2}{l^2} EI \tag{2.217}$$

$$I = \frac{\pi d^4}{64} \tag{2.218}$$

$$I = \frac{\pi d^4}{64}$$

$$d = \sqrt[4]{P_k \frac{64l^2[mm^2]}{\pi^3 CE[N/mm^2]}}$$
(2.218)

第2軸受け側の軸

$$d = \sqrt[4]{P_k \frac{64l^2[mm^2]}{\pi^3 CE[N/mm^2]}}$$

$$= \sqrt[4]{972.87 \times \frac{64 \times 89.5^2}{\pi^3 \times 206[N/mm^2]}}$$
(2.221)

$$= \sqrt[4]{972.87 \times \frac{64 \times 89.5^2}{\pi^3 \times 206[N/mm^2]}}$$
 (2.221)

$$= 16.72[mm]$$
 (2.222)

第3軸受けと第4軸受けの間の軸

$$d = \sqrt[4]{P_k \frac{64l^2[mm^2]}{\pi^3 CE[N/mm^2]}}$$

$$= \sqrt[4]{2951 \times \frac{64 \times 76^2}{\pi^3 \times 206[N/mm^2]}}$$
(2.223)

$$= \sqrt[4]{2951 \times \frac{64 \times 76^2}{\pi^3 \times 206[N/mm^2]}} \tag{2.224}$$

$$= 20.33[mm]$$
 (2.225)

第4軸受け側の軸

$$d = \sqrt[4]{P_k \frac{64l^2[mm^2]}{\pi^3 CE[N/mm^2]}}$$

$$= \sqrt[4]{1978.13 \times \frac{64 \times 89.5^2}{\pi^3 \times 206[N/mm^2]}}$$
(2.226)

$$= \sqrt[4]{1978.13 \times \frac{64 \times 89.5^2}{\pi^3 \times 206[N/mm^2]}}$$
 (2.227)

$$= 19.96[mm]$$
 (2.228)

第5軸受け側の軸

$$d = \sqrt[4]{P_k \frac{64l^2[mm^2]}{\pi^3 CE[N/mm^2]}}$$

$$= \sqrt[4]{2951 \times \frac{64 \times 88.5^2}{\pi^3 \times 206[N/mm^2]}}$$
(2.229)

$$= \sqrt[4]{2951 \times \frac{64 \times 88.5^2}{\pi^3 \times 206[N/mm^2]}}$$
 (2.230)

$$= 21.94[mm] (2.231)$$

2.6.4 ねじり剛性に基づく軸径

計算原理

上で述べたとおり、一般的な比ねじれ角の目安である $\bar{\theta}=0.25\pi/180[radian/m]$ を採用して、次 の計算をする.

$$\bar{\theta} = \frac{T}{GI} \tag{2.232}$$

ここで,
$$J$$
: 断面 2 次極モーメント, G : 縦弾性係数 (2.233)

$$J = \frac{\pi d^4}{32} \tag{2.234}$$

$$\bar{\theta} = \frac{T}{GJ}$$
 (2.232) ここで、 $J:$ 断面 2 次極モーメント、 $G:$ 縦弾性係数 (2.233)
$$J = \frac{\pi d^4}{32}$$
 (2.234)
$$d[mm] = \sqrt[4]{\frac{32T[N\cdot mm]}{\pi \bar{\theta}/1000[radian/mm]G[N/mm^2]}}$$
 (2.235)

以下の計算では, $G = 79500[N/mm^2]$ を用いて計算をする.

軸受け2側の軸

$$d[mm] = \sqrt[4]{\frac{32T[N \cdot mm]}{\pi^2/180\bar{\theta}/1000[radian/mm]G[N/mm^2]}}$$

$$= \sqrt[4]{\frac{32 \times 124877}{\pi^2/180 \times 0.25/1000 \times 79500}}$$
(2.236)

$$= \sqrt[4]{\frac{32 \times 124877}{\pi^2 / 180 \times 0.25 / 1000 \times 79500}}$$
 (2.237)

$$= 43.76[mm]$$
 (2.238)

第2歯車と第3歯車の間の軸

$$d[mm] = \sqrt[4]{\frac{32T[N \cdot mm]}{\pi^2/180\bar{\theta}/1000[radian/mm]G[N/mm^2]}}$$

$$= \sqrt[4]{\frac{32 \times 494073.883}{\pi^2/180 \times 0.25/1000 \times 79500}}$$
(2.239)

$$= \sqrt[4]{\frac{32 \times 494073.883}{\pi^2/180 \times 0.25/1000 \times 79500}} \tag{2.240}$$

$$= 61.72[mm] (2.241)$$

軸受け5側の軸

$$d[mm] = \sqrt[4]{\frac{32T[N \cdot mm]}{\pi^2/180\bar{\theta}/1000[radian/mm]G[N/mm^2]}}$$

$$= \sqrt[4]{\frac{32 \times 1502807.966}{\pi^2/180 \times 0.25/1000 \times 79500}}$$
(2.242)

$$= \sqrt[4]{\frac{32 \times 1502807.966}{\pi^2/180 \times 0.25/1000 \times 79500}}$$
 (2.243)

$$= 81.5[mm]$$
 (2.244)

2.7 最小軸径のまとめ

表 2.1・最小軸径のまとめ

軸の名称	軸の最小径 [mm]	軸の径 [mm]
d11	21.28	22
d12	43.76	44
d21	32.13	33
d22	61.72	62
d23	28.63	29
d31	81.5	82
d32	34.1	35

2.8 キーの設計

2.8.1 キーの許容圧縮応力と許容せん断応力

キーに使う材料は,s45c(機械構造用炭素鋼鋼材)とし、端部は角型とする。安全率は4とする。キー の許容圧縮応力と許容せん断応力の計算を以下に示す.

$$(s45c$$
 の引っ張り強さ) = $690[N/mm^2]$ (2.245)

キーの許容圧縮応力:
$$\sigma_{al} = \frac{690}{4} = 172.5[N/mm^2]$$
 (2.246)

許容せん断応力:
$$\tau_{al} = \frac{\sigma_{al}}{2} = 86.25[N/mm^2]$$
 (2.247)

次の関係式を満たすようにキーを設計する。

$$\sigma_{al} \ge \frac{2T}{dlt_1} \tag{2.248}$$

$$\tau_{al} \ge \frac{2T}{dlb} \tag{2.249}$$

2.8.2 第2歯車のキー

d=62.b=18.h=11.l=50 と仮定すると、

$$\sigma_{al} \geq \frac{2T}{dlt_1}$$
 (2.250)
(右辺) = $\frac{2 \times 494074[N \cdot mm]}{62[mm] \times 50[mm] \times 11/2[mm]}$ (2.251)

(右辺) =
$$\frac{2 \times 494074[N \cdot mm]}{62[mm] \times 50[mm] \times 11/2[mm]}$$
(2.251)

$$\approx 57.956[N \cdot m] \tag{2.252}$$

$$\leq 172.5 \tag{2.253}$$

$$\tau_{al} \geq \frac{2T}{dlb} \tag{2.253}$$

(右辺) =
$$\frac{2 \times 494077.63[N \cdot mm]}{62[mm] \times 50[mm] \times 18[mm]}$$
 (2.255)

$$= 17.70 (2.256)$$

$$\leq 86.25[N \cdot m] \tag{2.257}$$

よって、仮定値を採用する

2.8.3 第3歯車のキー

d=62,b=18,h=11,l=50 と仮定すると、

$$\sigma_{al} \geq \frac{2T}{dlt_1} \tag{2.258}$$

(右辺) =
$$\frac{2 \times 494077.63[N \cdot mm]}{62[mm] \times 50[mm] \times 11/2[mm]}$$
(2.259)

$$\approx 57.956[N \cdot m] \tag{2.260}$$

$$\leq 172.5$$
 (2.261)

$$\tau_{al} \geq \frac{2T}{dlb} \tag{2.262}$$

(右辺) =
$$\frac{2 \times 494077.63[N \cdot mm]}{62[mm] \times 50[mm] \times 18[mm]}$$
 (2.263)

$$= 17.70 (2.264)$$

$$\leq 86.25[N \cdot m] \tag{2.265}$$

よって、仮定値を採用する

2.8.4 第4歯車のキー

d=82,b=22,h=14,l=70 と仮定すると、

$$\sigma_{al} \geq \frac{2T}{dlt_1} \tag{2.266}$$

(右辺) =
$$\frac{2 \times 1502808.35[N \cdot mm]}{82[mm] \times 70[mm] \times 14/2[mm]}$$
(2.267)

$$\approx 74.804[N \cdot m] \tag{2.268}$$

$$\leq 172.5$$
 (2.269)

$$\tau_{al} \geq \frac{2T}{dlb} \tag{2.270}$$

(右辺) =
$$\frac{2 \times 1502808.35[N \cdot mm]}{82[mm] \times 70[mm] \times 22[mm]}$$
 (2.271)

$$= 23.801 (2.272)$$

$$\leq 86.25[N \cdot m] \tag{2.273}$$

よって、仮定値を採用する v

第3章 軸受け

3.1 軸受けにかかる力のまとめ

表 3.1: 表題

軸受け番号	最小軸径 [mm]	ラジアル荷重 Fr[N]	スラスト荷重 Fa[N]	回転数 [rpm]
1	22	1042	0	1300
2	44	1838.68	972.87	1300
3	33	6665.79	0	328.5714
4	29	4718.4	1978.13	328.5714
5	82	6552.33	2951	108.0235
6	35	4262.25	0	108.0235

3.2 軸受け計算

3.2.1 軸受け1の選定

軸受け1データ

表 3.2: 軸受け 1 データ

	3.2: 軸文1) 1	<i>y</i> – <i>y</i>
名称	記号	値
ラジアル荷重	F_r	1042[N]
スラスト荷重	F_a	0
回転数	n	$1300[\mathrm{rpm}]$
定格寿命	L_h	20000以上 [hour]
最小軸径	α	22 [mm]
軸受け種類	p(玉軸受け)	$3[\cdot]$

表 3.3: NSK60/28

5. 0.0. 1.01100/ =		
名称	記号	値
内径	d	$28 [\mathrm{mm}]$
外径	D	$52 [\mathrm{mm}]$
基本動定格荷重	C_r	12500
基本静定格荷重	C_{0r}	7400
軸受各部の形状および適用する	f_0	14.5
応力水準によって定まる係数		

軸受け1検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.1)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 1300}\right)^{1/3} = 0.29488$$
 (3.2)

$$\frac{F_a}{F_r} = \frac{0}{1042} = 0 ag{3.3}$$

$$f_0 \frac{F_a}{C_{0r}} = 14.5 \times \frac{0}{7400} = 0 \tag{3.4}$$

アキシアル荷重が働いていないので、自動的に X=1,Y=0 とする。

$$P = XF_r + YF_a = 1042 (3.5)$$

$$C = \frac{f_h}{f_n} \times P = 12085[N] \tag{3.6}$$

軸受け1再検討

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.7)

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.7)
= $500 \times \frac{100}{3 \times 1300} \times (12500/1042)^3$ (3.8)

$$= 22133 \ge 20000 \tag{3.9}$$

(3.10)

$$0.6F_r + 0.5F_a = 0.6 \times 1042 + 0.5 \times 0 = 625.2 \le F_r \tag{3.11}$$

よって、静等価荷重
$$P_0=F_r=1042$$
 (3.12)

$$f_s = \frac{C_{0r}}{P_0} = \frac{7400}{1042} = 7.102 \ge 1 \tag{3.13}$$

3.2.2 軸受け2の選定

軸受け 2 データ

表 3.4: 軸受け 2 データ

12	农 5.4. 籼支17 Z 7 一 9			
名称	記号	值		
ラジアル荷重	F_r	1838.68[N]		
スラスト荷重	F_a	972.87[N]		
回転数	n	$328.5714 [\mathrm{rpm}]$		
定格寿命	L_h	20000 以上 [hour]		
最小軸径	α	44 [mm]		
軸受け種類	p(玉軸受け)	$3[\cdot]$		

表 3.5: NSK6012

1 0.0. INDIXUUL	1 5.5. NOROU12		
名称	記号	値	
内径	d	60 [mm]	
外径	D	95 [mm]	
基本動定格荷重	C_r	29500	
基本静定格荷重	C_{0r}	23200	
軸受各部の形状および適用する	f_0	15.6	
応力水準によって定まる係数			

軸受け2検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.14)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 1300}\right)^{1/3} = 0.29488$$
 (3.15)

$$\frac{F_a}{F_r} = \frac{972.87}{1838.68} = 0.529 (\ge 0.44) \tag{3.16}$$

$$f_0 \frac{F_a}{C_{0r}} = 15.6 \times \frac{972.87}{23200} = 0.654$$
 (3.17)

X=0.56,Y=1.00 とする.

$$P = XF_r + YF_a = 0.56 \times 1838.68 + 1.00 \times 972.87 = 2002.53$$
 (3.18)

$$C = \frac{f_h}{f_n} \times P = 11.60 \times 2002.53 = 23225.22[N]$$
 (3.19)

軸受け2再検討

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.20)

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.20)
= $500 \times \frac{100}{3 \times 1300} \times (29500/2002.53)^3$ (3.21)

$$= 40986 \ge 20000 \tag{3.22}$$

$$P_0 = 0.6F_r + 0.5F_a (3.23)$$

$$= 0.6 \times 1838.68 + 0.5 \times 972.87 = 1589.64 \le F_r$$
 (3.24)

よって、静等価荷重
$$P_0 = F_r = 1838.68$$
 (3.25)

$$f_s = \frac{C_{0r}}{P_0} = \frac{29500}{1838.68} = \ge 1 \tag{3.26}$$

3.2.3 軸受け3の選定

軸受け3データ

表 3 6・軸受け 3 データ

名称	記号	值	
ラジアル荷重	F_r	6665.79[N]	
スラスト荷重	F_a	0	
回転数	n	$328.5714 [\mathrm{rpm}]$	
定格寿命	L_h	20000 以上 [hour]	
最小軸径	α	33 [mm]	
軸受け種類	p(玉軸受け)	$3[\cdot]$	

表 3.7: NSK6309

P , 000	-	
名称	記号	値
内径	d	$45 [\mathrm{mm}]$
外径	D	$100 [\mathrm{mm}]$
基本動定格荷重	C_r	53000
基本静定格荷重	C_{0r}	32000
軸受各部の形状および適用する	f_0	13.1
応力水準によって定まる係数		

軸受け3検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.27)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 328.5714}\right)^{1/3} = 0.4664$$
 (3.28)

$$\frac{F_a}{F_r} = \frac{0}{6665.79} = 0 (\le e) \tag{3.29}$$

$$\frac{F_a}{F_r} = \frac{0}{6665.79} = 0 \le e$$

$$f_0 \frac{F_a}{C_{0r}} = 13.1 \times \frac{0}{32000} = 0$$
(3.29)

X=1.00,Y=0 とする.

$$P = XF_r + YF_a = 6665.79 (3.31)$$

$$C = \frac{f_h}{f_n} \times P = 51115.654[N] \tag{3.32}$$

軸受け3再検討

アキシアル荷重が働いていないので、自動的に X=1,Y=0 とする。

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.33)

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.33)
= $500 \times \frac{100}{3 \times 328.5714} \times (53000/6665.79)^3$ (3.34)

$$= 25497 \ge 20000 \tag{3.35}$$

(3.36)

$$0.6F_r + 0.5F_a = 0.6 \times 6665.79 + 0.5 \times 0 = 3999.474 \le F_r \tag{3.37}$$

よって、静等価荷重
$$P_0=F_r=6665.79$$
 (3.38)

$$f_s = \frac{C_{0r}}{P_0} = \frac{53000}{6665.79} \ge 1 \tag{3.39}$$

3.2.4 軸受け4の選定

軸受け4データ

表 3.8: 軸受け 4 データ 名称 記号 ラジアル荷重 F_r 4718.4[N] スラスト荷重 F_{a} 1978.13[N] 328.5714[rpm] 回転数 n

 $3[\cdot]$

20000 以上 [hour] 定格寿命 L_h 最小軸径 29 [mm]

p(玉軸受け)

軸受け種類

表 3.9: 1	NSK6309
----------	---------

名称	記号	値
内径	d	$45 [\mathrm{mm}]$
外径	D	$100 [\mathrm{mm}]$
基本動定格荷重	C_r	53000
基本静定格荷重	C_{0r}	32000
軸受各部の形状および適用する	f_0	13.1
応力水準によって定まる係数		

軸受け4検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.40)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 328.5714}\right)^{1/3} = 0.4664$$
 (3.41)

$$\frac{F_a}{F_r} = \frac{1978.13}{4718.4} = 0.419 (\le 0.44) \tag{3.42}$$

$$\frac{F_a}{F_r} = \frac{1978.13}{4718.4} = 0.419 (\le 0.44)$$

$$f_0 \frac{F_a}{C_{0r}} = 13.1 \times \frac{1978.13}{32000} = 0.810$$

$$e = \frac{0.810 - 0.689}{1.03 - 0.689} * 0.02 + 0.26 = 0.267$$
(3.42)

$$e = \frac{0.810 - 0.689}{1.03 - 0.689} * 0.02 + 0.26 = 0.267 \tag{3.44}$$

X=0.56,Y= 1.653 とする.

$$P = XF_r + YF_a = 0.56 \times 4718.4 + 1.653 \times 1978.13 = 5912$$
 (3.45)

$$C = \frac{f_h}{f_n} \times P = 7.33276 \times 5912 = 43351[N] \tag{3.46}$$

軸受け4再検討

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.47)

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.47)
= $500 \times \frac{100}{3 \times 328.5714} \times (53000/5912)^3$ (3.48)

$$= 36546 \ge 20000 \tag{3.49}$$

$$P_0 = 0.6F_r + 0.5F_a (3.50)$$

$$= 0.6 \times 4718.4 + 0.5 \times 1978.13 = 3820 \le F_r \tag{3.51}$$

よって、静等価荷重
$$P_0 = F_r = 4718.4$$
 (3.52)

$$f_s = \frac{C_{0r}}{P_0} = \frac{32000}{4718.4} = 6.782 \ge 1$$
 (3.53)

3.2.5 軸受け5の選定

軸受け5データ

表 3.10: 軸受け 5 データ

名称	<u>0:10: </u>	<u>· </u>
ラジアル荷重	F_r	6552.33[N]
スラスト荷重	F_a	2951[N]
回転数	n	$108.0235 [\mathrm{rpm}]$
定格寿命	L_h	20000 以上 [hour]
最小軸径	α	82 [mm]
軸受け種類	p(玉軸受け)	$3[\cdot]$

表 3.11: NSK6020

記号	値
d	$100 [\mathrm{mm}]$
D	$150 [\mathrm{mm}]$
C_r	60000
C_{0r}	54000
f_0	15.9
	d D C_r C_{0r}

軸受け5検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.54)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 108.0235}\right)^{1/3} = 0.67575$$
 (3.55)

$$\frac{F_a}{F_r} = \frac{2951}{6552.33} = 0.450 (\ge 0.44) \tag{3.56}$$

$$f_0 \frac{F_a}{C_{0r}} = 15.9 \times \frac{2951}{54000} = 0.869$$
 (3.57)

(3.58)

X=0.56, Y=1.00 とする.

$$P = XF_r + YF_a = 0.56 \times 6552.33 + 1.00 \times 2951 = 6620.3 \tag{3.59}$$

$$C = \frac{f_h}{f_n} \times P = 5.0610 \times 6620.3 = 33505.3[N] \tag{3.60}$$

軸受け5再検討

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.61)

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.61)

$$= 500 \times \frac{100}{3 \times 108.0235} \times (60000/6620.3)^3$$
 (3.62)

$$= 114855 \ge 20000$$
 (3.63)

$$= 114855 \ge 20000 \tag{3.63}$$

$$P_0 = 0.6F_r + 0.5F_a (3.64)$$

$$= 0.6 \times 6552.33 + 0.5 \times 2951 = 5406.9 \le F_r \tag{3.65}$$

よって、静等価荷重
$$P_0 = F_r = 6552.40$$
 (3.66)

$$f_s = \frac{C_{0r}}{P_0} = \frac{54000}{6552.40} = 8.24 \ge 1$$
 (3.67)

3.2.6 軸受け6の選定

軸受け 6 データ

表 3 19: 軸受け 6 データ

1 3.12. 神文17 0 7 7			
名称	記号	值	
ラジアル荷重	F_r	4262.25[N]	
スラスト荷重	F_a	0	
回転数	n	$108.0235 [\mathrm{rpm}]$	
定格寿命	L_h	20000 以上 [hour]	
最小軸径	α	35 [mm]	
軸受け種類	p(玉軸受け)	$3[\cdot]$	

表 3.13: NSK6208

	記号	 値
石柳	記与	JE .
内径	d	$40 [\mathrm{mm}]$
外径	D	80 [mm]
基本動定格荷重	C_r	29100
基本静定格荷重	C_{0r}	17900
軸受各部の形状および適用する	f_0	14.0
応力水準によって定まる係数		

軸受け6検討

寿命係数
$$f_h = \left(\frac{L_h}{500}\right)^{1/p} = \left(\frac{20000}{500}\right)^{1/3} = 3.420$$
 (3.68)

速度係数
$$f_n = \left(\frac{100}{3n}\right)^{1/p} = \left(\frac{100}{3 \times 108.0235}\right)^{1/3} = 0.67575$$
 (3.69)

$$\frac{F_a}{F_r} = \frac{0}{4262.25} = 0 (\le e) \tag{3.70}$$

$$\frac{F_a}{F_r} = \frac{0}{4262.25} = 0 \le e)$$

$$f_0 \frac{F_a}{C_{0r}} = 14.0 \times \frac{0}{24000} = 0$$
(3.70)

X=1.00,Y=0 とする.

$$P = XF_r + YF_a = 4262.25 (3.72)$$

$$C = \frac{f_h}{f_n} \times P = 21571.4[N] \tag{3.73}$$

軸受け6再検討

寿命時間
$$L_h = 500 f_n^p (C_r/P)^p$$
 (3.74)

寿命時間
$$L_h$$
 = $500 f_n^p (C_r/P)^p$ (3.74)
= $500 \times \frac{100}{3 \times 108.0235} \times (29100/4262.25)^3$ (3.75)
= $49101 \ge 20000$ (3.76)

$$= 49101 \ge 20000 \tag{3.76}$$

(3.77)

静荷重の確認

$$0.6F_r + 0.5F_a = 0.6 \times 4479.24 + 0.5 \times 0 = 2687.544 \le F_r \tag{3.78}$$

よって、静等価荷重
$$P_0=F_r=4479.24$$
 (3.79)

$$f_s = \frac{C_{0r}}{P_0} = \frac{17900}{4262.25} = 4.20 \ge 1 \tag{3.80}$$

3.3 オイルシールの選定

3.3.1 軸受け2側オイルシール

表 3.14: 商品コード:AD3193F0

メーカー	NOK
型式	TB
内径	60
外形	75
厚さ	9
材質	ニトリルゴム

3.3.2 軸受け5側オイルシール

表 3.15: 商品コード: AD4063A0

メーカー	NOK
型式	TB
内径 (mm)	100
外径 (mm)	125
厚さ (mm)	13
材質	ニトリルゴム

第4章 その他

4.1 歯車箱の厚さ

歯車の厚さは、次の式で決定した。ここで $\mathrm{CL}=$ 最終段中心距離= $259.753[\mathrm{mm}]$ となる。

下部ケース :
$$0.025CL + 3[mm] = 9.494 \approx 10[mm]$$
 (4.1)

上部ケース :
$$0.02CL + 3[mm] = 8.195 \approx 9[mm]$$
 (4.2)

4.2 歯車とケース内壁との最小間隔

次の式で算出する。vは歯車収束である。

第1段 :
$$C = 2.5v + 10[mm] = 2.5 \times 6.7077 + 10 = 26.769[mm] \approx 27[mm]$$
 (4.3)

第 2 段 :
$$C = 2.5v + 10[mm] = 2.5 \times 2.2113 + 10 = 15.528[mm] \approx 16[mm]$$
 (4.4)

4.3 歯車箱の放熱面積の決定

4.3.1 参考

- 1. 馬力 [HP],1[HP]=735.5[W]
- 2. 1[kcal/h]=1.163[W]
- 3. 1[inch] = 0.0254[m]
- 4. 1[mm] = 0.03937[inch]

4.3.2 BS(British Standards) 規格

1. Δt :許容温度と周囲温度の温度差

$$\Delta t$$
 = 許容温度 $-$ 周囲温度 (4.5)

$$=82$$
 - 周囲温度 (4.6)

2. Q:歯車箱内での発熱量 [kcal/h]

$$Q = 632(1 - \eta)N \tag{4.7}$$

3. η:歯車装置の効率

- 4. N:歯車装置に与えられる馬力 [HP]
- 5. A:歯車箱の放熱面積 (底面を除く)[m²]
- 6. K:熱通過係数 $(kcal/(m^2hK))$

BS 規格では、放熱面積と歯車箱に加えられる馬力の間に次の関係がある。また、ここでは $\eta=0.98, \Delta t_{max}=28, N=17000/735.5$ とすると、次のようになる。

$$A = \frac{Q}{K\Delta t_{max}} \tag{4.8}$$

$$= \frac{632(1-\eta)N}{K\Delta t_{max}} \tag{4.9}$$

$$= \frac{632 \times (1 - 0.98) \times 17000/735.5}{10 \times 28} \tag{4.10}$$

$$= 1.0434[m^2] (4.11)$$

4.3.3 AGMA(American Gear Manufacturers Association) 規格

図 4.1: AGMA

AGMA の規格によれば、

$$A = 43.2C_L^{1.7} (4.12)$$

である。ここで、 $C_L(inch^2)=$ 最終段中心距離である。 $\mathrm{CL}=$ 最終段中心距離= $259.753[\mathrm{mm}]$ であるので、

$$A = 43.2 \times (259.753 \times 0.03937)^{1.7} = 2249.147[inch^{2}]$$
 (4.13)

$$= 1.451[m^2] (4.14)$$

4.4 油面の高さの決定

はねかけ式潤滑法では、油面の高さは中間軸の大歯車の最下位の歯丈の $2\sim3$ 倍程度にする. また、油面計をつける必要がある。

4.5 重量計算

4.6 歯車箱への装着物

- 1. 点検窓
- 2. 注油窓
- 3. 空気抜け (内圧上昇の防止, 防塵防水に対する配慮)
- 4. 油面計 http://www.monotaro.com/g/00007421/
- 5. 排油口
- 6. 吊り金具
- 7. ノックピン (組み立て用)

4.7 仕上げ記号、はめあい記号の決定

4.8 参考文献

- 1. http://www.juntsu.co.jp/qa/qa2119.html
- 2. http://www.superior-inc.com/有限会社スピリアの構造変更情報館へようこそ!/構造変更一般/基本事項/強度検討書等を作成するための考察/圧縮(座屈)に付いて/
- 3. http://www.toishi.info/metal/hard_metal.html
- 4. http://kikakurui.com/b0/B0903-2001-01.html

第5章 設計Tips

軸の段差のR及びCについて なぜこんなにも段差にRとCが多用されているのだろうか

応力の集中を阻止するため?

- 斜線を引いている部品があるけど、具体的にはどんな部品に引いているの? 斜線は断面図を表す製図の規則なので、適当につけているわけじゃないんだ。
- カバーにつける六角については、半ボルトを用いる