```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler,PolynomialFeatures
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
%matplotlib inline

from google.colab import files
uploaded=files.upload()
```


Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving kc house data csy to kc house data (3) csy

df=pd.read_csv('kc_house_data.csv')
df.head()

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080
4							•

df.dtypes

id	int64
date	object
price	float64
bedrooms	int64
bathrooms	float64
sqft_living	int64
sqft_lot	int64
floors	float64
waterfront	int64
view	int64
condition	int64
grade	int64
sqft_above	int64
sqft_basement	int64
yr_built	int64

yr_renovated int64
zipcode int64
lat float64
long float64
sqft_living15 int64
sqft_lot15 int64
dtype: object

df.drop(["id","Unnamed: 0"] , axis = 1, inplace = True)
df.describe()

	id	price	bedrooms	bathrooms	sqft_living	sqft_
count	2.161300e+04	2.161300e+04	21613.000000	21613.000000	21613.000000	2.161300e-
mean	4.580302e+09	5.400881e+05	3.370842	2.114757	2079.899736	1.510697e-
std	2.876566e+09	3.671272e+05	0.930062	0.770163	918.440897	4.142051e-
min	1.000102e+06	7.500000e+04	0.000000	0.000000	290.000000	5.200000e-
25%	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e-
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e-
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e-
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e-

df["floors"].value_counts().to_frame()

	floors
1.0	10680
2.0	8241
1.5	1910
3.0	613
2.5	161
3.5	8

sns.boxplot(x="waterfront", y="price", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f30e07ec610>

sns.regplot(x="sqft_above", y="price", data=df, ci = None)

<matplotlib.axes._subplots.AxesSubplot at 0x7f30e06cc350>


```
X1 = df[['sqft_living']]
Y1 = df['price']
lm = LinearRegression()
lm
lm.fit(X1,Y1)
lm.score(X1, Y1)

0.4928532179037931
```

```
features =["floors", "waterfront","lat" ,"bedrooms" ,"sqft_basement" ,"view" ,"bathrooms",
X = df[features]
Y = df['price']
lm.fit(X,Y)
lm.score(X,Y)
```

0.6577027577865877

```
Input=[('scale',StandardScaler()),('polynomial', PolynomialFeatures(include_bias=False)),(
pipe=Pipeline(Input)
pipe
pipe.fit(X,Y)
pipe.score(X,Y)
features =["floors", "waterfront","lat" ,"bedrooms" ,"sqft_basement" ,"view" ,"bathrooms",
```

```
X = df[features ]
Y = df['price']
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.15, random_state=1)
print("number of test samples :", x_test.shape[0])
print("number of training samples:",x_train.shape[0])
     number of test samples : 3242
     number of training samples: 18371
RigeModel = Ridge(alpha=0.1)
RigeModel.fit(x_train, y_train)
RigeModel.score(x_test, y_test)
     0.6480374087702245
pr=PolynomialFeatures(degree=2)
x_train_pr=pr.fit_transform(x_train[features])
x_test_pr=pr.fit_transform(x_test[features])
RigeModel = Ridge(alpha=0.1)
RigeModel.fit(x_train_pr, y_train)
RigeModel.score(x_test_pr, y_test)
     0.7004432058878023
```

• ×