ANÁLISIS DE SERIES DE TIEMPO. MODELOS DE REGRESIÓN DE ERRORES ESTRUCTURALES ARMA(p, q) ES-TACIONARIOS

Curso: Ma – Ju, Horario: 10:00 – 12.00

Sofía Cuartas García¹, Simón Cuartas Rendón², Deivid Zhang Figueroa³ *Fecha de entrega: 03-06-2022*

1. INTRODUCCIÓN

El Departamento Administrativo Nacional de Estadística, DANE, es el ente público nacional encargado de la planeación, procesamiento, análisis y difusión de las estadísticas oficiales de Colombia, dentro de las cuales se contempla la *Encuesta Mensual Manufacturera con Enfoque Territorial, EMMET*, que es una investigación mediante la que se obtiene información de evaluación de las principales variables económicas del sector fabril colombiano como producción, ventas, empleo, sueldos y horas trabajadas en el corto plazo, las cuales permiten al DANE generar **índices, variaciones** y **contribuciones**, como es el caso del **índice de producción industrial** *manufacturera, IPIM*, la cual permite conocer la estructura y evolución del sector manufacturero del país. Además, esta es una herramienta importante para la elaboración de estimaciones del producto interno bruto, PIB, del sector industrial, entendiendo por *industria* al "*conjunto de unidades de producción que se dedican a actividades económicas productivas similares o iguales*", y las cuales son agrupadas conforme a la *Clasificación Industrial Internacional Uniforme*, la cual es "la clasificación internacional de referencia de las actividades productivas", y se tiene que su objetivo es "proporcional un conjunto de categorías de actividades que puedan utilizarse para la recopilación y presentación de informes estadísticos de acuerdo con esas actividades", categorías que son establecidas mediante 21 secciones, 99 divisiones, 249 grupos y dentro de cada grupo puede existir uno o varios tipos de clases, dentro de las cuales se halla la industria manufacturera, y cuyas unidades se caracterizan por la transformación de materiales en nuevos productos.

De igual forma, el EMMET se enfoca en los establecimientos industriales manufactureros en el país que ocupan diez o más personas y que en conjunto produjeron el 80 % de la producción industrial reportada por la Encuesta Anual Manufacturera del 2017 y concentran el 65 % de los empleos totales de cada dominio de estudio publicado [1], entiendo por dominio a las 39 actividades industriales que son representadas por la muestra y que son establecidas por la Clasificación Industrial Internacional Uniforme, CIIU, las cuales son: coquización, refinación de petróleo y mezcla de combustibles; confección de prendas de vestir; fabricación de jabones y detergentes, perfumes y preparados de tocador; elaboración de otros productos alimenticios no clasificados previamente (n.c.p.); fabricación de maquinaria y equipo n.c.p.; otras industrias manufactureras; trilla de café; fabricación de vidrio y productos de vidrio; elaboración de azúcar y panela; transformación de la madera y sus productos; elaboración de productos lácteos; fabricación de calzado; fabricación de carrocerías para vehículos automotores, remolques; actividades de impresión; elaboración de productos de panadería; procesamiento y conservación de carne, pescado, crustáceos y moluscos; fabricación de productos de caucho; fabricación de muebles, colchones y somieres; industrias básicas de metales preciosos y no ferrosos; curtido y recurtido de cueros, recurtido y teñido de pieles; fabricación de artículos de viaje, bolsos de mano y artículos similares en cuero; industrias básicas de hierro y de acero; elaboración de alimentos preparados para animales; hilatura, tejeduría y acabado de productos textiles; elaboración de cacao, chocolate y producción de confitería; fabricación de otros productos químicos; fabricación de productos elaborados de metal; elaboración de productos de molinería, almidones y sus derivados; fabricación de partes, piezas (autopartes) y accesorios (lujos) para vehículos; fabricación de productos de plástico; fabricación de sustancias químicas básicas y sus productos; fabricación de productos minerales no metálicos n.c.p.; fabricación de otros tipos de equipo de transporte; fabricación de aparatos y equipo eléctrico; fabricación de aceites y gradas de origen vegetal y animal; fabricación de vehículos automotores y sus motores; fabricación de papel, cartón y sus productos; fabricación de productos farmacéuticos, sustancias químicas medicinales; y por último, la elaboración de bebidas.

Ahora bien, es importante tener presente que el DANE define la *producción nominal* como "valor de los productos elaborados y los subproductos y desechos que resultan de la producción y que se destinan a la venta, valor de productos manufacturados para terceros que entregan materia prima, valor de los ingresos por servicios industriales, valorados a precio promedio de venta en fábrica y sin incluir los impuestos directos (IVA, consumo, etc.)" y a las ventas nominales como "el valor de los productos y subproductos elaborados por el establecimiento y vendidos durante el mes de referencia a precio de venta en fábrica y sin incluir los impuestos indirectos", toda vez que la *producción real* es definida como "valor nominal de la producción deflactada por el índice de precios al productos según clase industrial". De acuerdo con lo anterior, se puede establecer que la diferencia entre ambos términos es que, en el caso de una venta o producción real, el valor puede ser afectado por algún tipo de depreciación, logrando así que pueda llegar a ser igual, mayor o menos que el valor en una venda o producción nominal [2].

De igual manera, se debe considerar que un *número índice* es una medida estadística con la que puede analizar y estudiar los cambios que se dan en cierta magnitud que bien podría ser simple o compleja con respecto al tiempo o al espacio [3], y que además "constituyen el instrumento básico para sintetizar las estadísticas económicos de modo que las fórmulas utilizadas permitan expresar

¹ Estudiante de Estadística, Universidad Nacional de Colombia, Sede Medellín

² Estudiante de Estadística, Universidad Nacional de Colombia, Sede Medellín

³ Estudiante de Estadística, Universidad Nacional de Colombia, Sede Medellín

y describir, por ejemplo, el crecimiento económico de un país o la tasa de inflación de una economía, y también para realizar comparaciones internacionales" [4]. Así pues, estos se pueden clasificar como números índice simples, que son aquellos que se refieren a un solo producto o concepto, y 'números índices complejos, que son los que se asocian a varios conceptos o productos, y que pueden ser de dos tipos: ponderados y no ponderados [5].

Entonces, retornando al contexto colombiano, es precioso mencionar que el DANE reporta con periodicidad mensual el Índice de Producción de Ventas Manufactureras para el cálculo de la producción nominal, real y las ventas reales y nominales mediante la selección e una muestra aleatoria de establecimientos comprendidos en los 39 dominios industriales considerados para la obtención de este índice, y cuyo cálculo se realiza apelando a la siguiente ecuación:

$$IPIM^{t} = \frac{\sum_{j=1}^{m} \sum_{r=1}^{n} \sum_{e=1}^{l} V P_{ejr}^{t} \times w_{jr}}{\frac{\sum_{t=1}^{12} A_{2018}^{t}}{12}}$$

Donde VP_{ejr}^t es el valor total de la producción para el establecimiento e en el dominio j en la región r para el periodo de referencia t, W_{jr} es el ponderador del dominio j en la región r y A_{2018}^t es la estimación del valor de la producción total ponderada para el mes t del año 2018, calculado para t = 1, 2, ..., 12, siento entonces t un identificador para los doce meses del año. De este modo, si para tres meses consecutivos se tiene que los índices de ventas nominales fueron de 125.91, 104.49 y 107.87 en ese orden, entonces resulta interesante notar que para el segundo mes de dicho listado se dio una contracción en las ventas nominales estimadas respecto al primer mes, puesto que el índice se redujo en más de veinte puntos, mientras que para el tercer mes hubo una pequeña expansión en tanto el índice tuvo un incremento de algo más de tres puntos respecto a segundo mes.

Ahora bien, con el objetivo de estimar el índice para periodos futuros en el tiempo, se propusieron cuatro modelos de regresión que no modelaban los errores estructurales, y de los cuales dos modelos eran globales y los otros dos locales, y los cuales se pueden observar en la *tabla 1*.

Tabla 1. Ecuaciones de los cuatro primeros modelos propuestos para modelar el índice de ventas nominales.

Modelo 1. Logoolinomial de grado seis estacional con funciones trigonométricas en cinco frecuencias $F_j = \frac{1}{12}$, j = 1, 2, 3, 4, 5. $log(Y_t) = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{6}\pi t\right) + \gamma_1 cos\left(\frac{1}{6}\pi t\right) + \alpha_2 sin\left(\frac{1}{3}\pi t\right) + \gamma_2 cos\left(\frac{1}{3}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \gamma_3 cos\left(\frac{1}{2}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \gamma_4 cos\left(\frac{2}{3}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \alpha_5 sin\left(\frac{1}{2}\pi t\right) + \alpha$

$$\alpha_5 sin\left(\frac{5}{7}\pi t\right) + \gamma_5 cos\left(\frac{5}{7}\pi t\right) + E_i, \qquad E_i \sim i.i.d.N(0, \sigma^2)$$

 $\alpha_5 sin\left(\frac{5}{6}\pi t\right) + \gamma_5 cos\left(\frac{5}{6}\pi t\right) + E_i, \qquad E_i \sim i.i.d. \ N(0, \sigma^2)$ $\mathbf{Modelo 2.} \ \text{Exponencial polinomial de grado seis estacional con funciones trigonométricas en cinco frecuencias } F_j = \frac{j}{12}, j = 1, 2, 3, 4, 5.$ $Y_t = exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{6}\pi t\right) + \gamma_1 cos\left(\frac{1}{6}\pi t\right) + \alpha_2 sin\left(\frac{1}{3}\pi t\right) + \gamma_2 cos\left(\frac{1}{3}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \gamma_3 cos\left(\frac{1}{2}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \gamma_4 cos\left(\frac{2}{3}\pi t\right)$ $+ \left. \alpha_5 sin\left(\frac{5}{6}\pi t\right) + \gamma_5 cos\left(\frac{5}{6}\pi t\right) \right] + E_i, \qquad E_i {\sim} i.i.d.N(0, \, \sigma^2)$

 $Y_{t+h} = \left(\beta_{0,t} + \beta_{1,t}h\right) \times \sum_{i=1}^{12} \delta_{i,t} I_{i,t+h} + E_{t+h} \text{ con } \sum_{i=1}^{12} \delta_{i,t} = 12, \ \beta_{0,t}, \ \beta_{1,t} \text{ y los } \delta_{i,t}, \text{ nivel pendiente y efectos estacionales en } t, \text{ respectivamente, evolucionan lentamente en el tiempo y } \\ E_t \sim i.i.d. \ N(0, \sigma^2).$ $\mathbf{Modelo 4.} \text{ Descomposición multiplicativa y loess lineal.}$ En la vecindad de t_k donde se quiere el ajuste de $Y_t = \left(\beta_{0,k} + \beta_{1,k}h\right) \times \sum_{i=1}^{12} \delta_{i} I_{i,t} + E_t \text{ con } \sum_{i=1}^{12} \delta_{i} = 12 \text{ y } \beta_{0,k} \text{ y } \beta_{1,k} \text{ parámetros de la recta en la vecindad con centro en } t_k \text{ y con } t_k \text{ y$

 $E_t \sim i.i.d. N(0, \sigma^2)$

Y en el ajuste, verificación de supuestos y planteamiento de los pronósticos para los últimos doce meses de la serie, definidos como meses del periodo ex post, se encontró que el mejor modelo global fue el cuatro, que es la descomposición multiplicativa y loess lineal, ya que se logró verificar en este que este, además de tener unas medidas de ajuste como AIC y BIC bajas en comparación con los otros modelos, al igual que para los pronósticos, cumplía con el supuesto de media cero y homocedasticidad de los errores, verificado mediante los residuales, y de la misma forma, se encontró que este modelo lograba describir de forma aceptable los ciclos de la serie. No obstante, si se excluyen a los modelos locales, se encuentra que el mejor entre los dos modelos globales fue el modelo dos, pues tuvo medidas de error en los pronósticos y en el ajuste bajas y ligeramente superiores a las del modelo **cuatro**, si bien al observar la gráfica de su ajuste se observa que no logra seguir de forma adecuada todos los ciclos de la serie temporal.

1. ANÁLISIS DESCRIPTIVO

A continuación se realizará un estudio de la serie de tiempo de ventas nominales que es publicada con periodicidad mensual por el DANE iniciando en enero de 2001 y concluyendo, de momento, en noviembre de 2021, para lo cual se tendrá en cuenta no solo las componentes de la tendencia y la estacionalidad, sino también el error estructural, de tal forma que se logre mejorar el ajuste que se realizaría a partir un modelo global únicamente que ignore tal componente del error estructural, y que por tanto no tenga en consideración a la componente cíclica que, como se verá enseguida, es relevante para esta serie temporal. Dicho esto, es importante tener presente que esta serie cuenta con N=251 registros hasta el momento, y entonces, para poder entender mejor esta serie de tiempo, se debe comenzar observando la figura 1.

Figura 1. Gráficos descriptivos asociados a la serie temporal del índice de ventas nominales mensuales entre enero de 2001 y noviembre de 2021 calculado y publicado por el *Departamento Administrativo Nacional de Estadística, DANE* de Colombia con modificaciones para los meses abarcados por la pandemia de la COVID-19. (a) Índice de ventas nominales contra el tiempo. Nótese que la escala del índice nominal de ventas está en escala original, mientras que el tiempo es presentado en años calendario. En esta gráfica se nota que hay un aumento en la variabilidad de este índice conforme avanza el tiempo. (b) Índice de ventas nominales contra el tiempo. En este caso el índice de ventas nominales se encuentra en escala logarítmica y puede evidenciarse que se ha estabilizado la variabilidad que se da alrededor de la tendencia en la figura (a) con la escala original. (c) Gráfica de la función de autocorrelación del logaritmo del índice de ventas nominales mensuales, la cual refleja la presencia de la componente estacional en la serie

Con ayuda de la figura 1 se puede realizar un análisis descriptivo de esta serie temporal. Así pues, se debe comenzar en la *figura 1 (a)*, en la cual se refleja que la tendencia de la serie es creciente en tanto el índice de ventas nominales en Colombia tiende a aumentar con el tiempo, y se tiene también que la serie es multiplicativa, ya que la variabilidad alrededor del valor medio de este índice incrementa con el tiempo; además, es posible advertir la presencia de un comportamiento estacional, dado que hay un patrón repetitivo anualmente.

De igual forma, al observar la *figura 1* (b) que realiza una transformación logarítmica a la escala original del índice de ventas nominales, se confirma que la tendencia es creciente y es claro igualmente que esta es determinística, ya que es posible identificar la presencia de efectos permanentes en las componentes estructurales de la serie temporal, y es destacable el hecho que en el rango histórico de la serie la tendencia aparenta ser global, de manera que si se define a $Y_t^* = log(Y_t)$ como el logaritmo del índice de ventas nominales mensuales de Colombia en un tiempo t, entonces pueda ser modelada en la escala logarítmica como $Y_t^* = T_t^* + S_t^* + E_t$, donde los asteriscos indican que se asocian a una transformación logarítmica, donde T_t^* y S_t^* serán descritos a continuación.

Es así que resulta posible hacer una representación de la tendencia mediante una curva suave de la forma $T_t^* = \beta_0 + \sum_{j=1}^p \beta_j t^j$, donde t representa el tiempo de cada uno de los periodos de esta serie (por ejemplo, enero de 2001 está asociado a t=1), T_t^* es el valor del componente de la tendencia en la escala logarítmica del índice de ventas nominales para un tiempo t y p es el grado más alto del polinomio que define a la tendencia; además, a partir de la forma que muestra la tendencia, es razonable plantear que $p \ge 3$ y que es impar, ya que un modelo cuadrático o par mostrará que en algún punto la tendencia comenzará a decrecer, lo cual no se corresponde con lo que se advierte en esta figura. Adicional a lo anterior, es importante tener presente que las cualidades determinística y global de la tendencia son posibles gracias que han sido imputados los índices realmente observados entre marzo de 2020 y noviembre de 2021 por los efectos que tuvo la pandemia de COVID-19 en la economía y por tanto en índices económicos como este; asimismo, esta representación podría tener dificultades por la presencia de ciclos en algunos periodos, fundamentalmente entre los años 2007 y 2015, lo que abre la puerta al planteamiento de modelos locales.

Ahora bien, respecto a la estacionalidad, como se puede ver en las *figuras 1* (a) y 1 (b), existe un comportamiento repetitivo en el índice de ventas nominales dentro de un año calendario, teniendo un aumento progresivo a lo largo del año con algunos picos dentro de cada año, y con esto es posible para los modelos globales considerar funciones trigonométricas, y a través de un periodograma es posible mostrar que esta para la escala logarítmica puede ser modelada como $S_t^* = \sum_{j=1}^5 \left[\alpha_j \sin(2\pi F_j t) + \gamma_j \cos(2\pi F_j t) \right]$, para $F_j = \frac{j}{12}$, j = 1,2,3,4,5, de manera que en la escala original se obtendría que $S_t = e^{\sum_{j=1}^5 \left[\alpha_j \sin(2\pi F_j t) + \gamma_j \cos(2\pi F_j t)\right]}$ para los F_j antes mencionados. Además, al analizar la *figura 1* (c), se corrobora la presencia de la componente estacional, puesto que para observaciones rezagadas k = sw, s = 12, w = 1,2,3,4,5 periodos en el tiempo hay una interrupción en el decrecimiento de los valores estimados de la ACF para tener un aumento ligero. Además, nótese que en general se tiene un patrón cola de decaimiento lento, asociado con la presencia de la componente estacional en esta serie temporal, lo cual implica que el índice de ventas nominales no se asocia con un proceso ergódico. Por otro lado, es destacable que $\rho(1) = Corr(Y_t^*, Y_{t+1}^*) > 0$, lo cual se debe a la presencia de ciclos en la serie como se describió antes.

A continuación, es posible determinar si esta serie es estacionaria o no, y rápidamente es posible descartar esta posibilidad, puesto que una serie estacionaria demanda que se tenga varianza y media constantes, y si bien la variabilidad se logra estabilizar con la transformación logarítmica de la escala original del índice de ventas nominales, dado a que esta tiene tendencia, se tiene que la media no es constante. Adicional a esto, teniendo la ACF se pueden realizar *tests* para si el logaritmo del índice de ventas nominales es ruido blanco, para lo que se plantean las siguientes hipótesis para cada k = 1, 2, ..., 60:

$$H_0: \rho(k) = Corr(logY_t, log\ Y_{t+k})0 \ \ vs. \ \ H_1: \rho(k) = Corr(logY_t, log\ Y_{t+k}) \neq 0$$

Y para los cuales el estadístico de prueba es tal que $\hat{\rho}(k) \sim aprox$. $N(0, 1/n) \forall k$ y para un $\alpha \approx 5$ % se rechaza H_0 si $|\hat{\rho}(k)| \ge 2/\sqrt{n}$, y observando la *figura 1 (c)*, la cual demanda que ninguna de las barras verticales supere a las franjas rojas que demarcan los valores de $2/\sqrt{n}$, se concluye que la función de autocorrelación es significativa para k = 1, 2, 3, ..., 18, 19, 20, lo que implica que la serie no corresponda a un ruido blanco.

Luego, teniendo presente que es posible hacer un ajuste global a esta serie temporal, se va a proceder con esto tomando un modelo exponencial polinomial estacional de grado seis estacional con funciones trigonométricas en cinco frecuencias $F_j = \frac{j}{12}$, j = 1,2,3,4,5, cuya ecuación es la (1):

$$Y_{t} = exp\left[\beta_{0} + \beta_{1}t + \beta_{2}t^{2} + \beta_{3}t^{3} + \beta_{4}t^{4} + \beta_{5}t^{5} + \beta_{6}t^{6} + \alpha_{1}sin\left(\frac{1}{6}\pi t\right) + \gamma_{1}cos\left(\frac{1}{6}\pi t\right) + \alpha_{2}sin\left(\frac{1}{3}\pi t\right) + \gamma_{2}cos\left(\frac{1}{3}\pi t\right) + \alpha_{3}sin\left(\frac{1}{2}\pi t\right) + \gamma_{3}cos\left(\frac{1}{2}\pi t\right) + \alpha_{4}sin\left(\frac{2}{3}\pi t\right) + \gamma_{4}cos\left(\frac{2}{3}\pi t\right) + \alpha_{5}sin\left(\frac{5}{6}\pi t\right) + \gamma_{5}cos\left(\frac{5}{6}\pi t\right)\right] + E_{t}, \{E_{t}\}_{t \in \mathbb{Z}^{+}} un R.B. \sim N(0, \sigma^{2})$$
(1)

Para el ajuste de este modelo solo van a ser consideradas las primeras n=239 observaciones, dejando las últimas doce como parte del periodo *ex post* para poder hacer validación cruzada del ajuste realizado, y con ayuda de R se realiza el ajuste de esta serie, cuyos coeficientes estimados, así como sus errores estándar y los valores del estadístico calculado y el valor p asociados a la prueba de significancia de cada uno de estos se presenta en la *tabla 1*.

Tabla 1. Parámetros estimados para el modelo global: exponencial polinomial estacional de grado seis estacional con funciones trigonométricas en cinco frecuencias

$F_j = {}^{j}/_{12}, j = 1,2,3,4,5$					
Parámetros	Estimación	Error estándar	T_0	$P(t_{222} > T_0)$	
β_0	3.55	3.637×10 ⁻²	97.608	< 2×10 ⁻¹⁶	
eta_1	2.182×10 ⁻³	3.478×10 ⁻³	0.627	0.531009	
β_2	-2.801×10 ⁻⁴	1.107×10^{-4}	2.530	0.012113	
β_3	-4.481×10 ⁻⁶	1.576×10 ⁻⁶	-2.844	0.004876	
β_4	2.919×10 ⁻⁸	1.111×10^{-8}	2.628	0.009183	
β_5	-8.674×10^{-11}	3.794×10^{-11}	-2.286	0.023192	
β_6	9.781×10^{-14}	5.011×10^{-14}	1.952	0.052203	
α_1	-4.125×10 ⁻²	3.581×10 ⁻³	-11.519	$< 2 \times 10^{-16}$	
γ_1	1.473×10 ⁻²	3.527×10 ⁻³	4.176	4.27×10 ⁻⁵	
α_2	-2.968×10 ⁻²	3.581×10 ⁻³	-8.289	1.09×10 ⁻¹⁴	
γ_2	1.357×10 ⁻²	3.506×10^{-3}	3.871	0.000143	
α_3	-1.925×10 ⁻²	3.533×10 ⁻³	-5.448	1.35×10 ⁻⁷	
γ ₃	2.035×10 ⁻²	3.550×10^{-3}	5.732	3.22×10 ⁻⁸	
α_4	-1.534×10 ⁻²	3.572×10 ⁻³	-4.295	2.61×10 ⁻⁵	
γ ₄	2.346×10 ⁻²	3.508×10^{-3}	6.688	1.81×10 ⁻¹⁰	
α_5	4.155×10 ⁻³	3.542×10^{-3}	1.173	0.242005	
γ_5	2.378×10 ⁻²	3.530×10 ⁻³	6.735	1.38×10 ⁻¹⁰	
$exp(C_n^*(p))$: AIC=9.9001224,	BIC=11.52640			

Y así se llega a que la ecuación de ajuste para este modelo es la siguiente:

$$\begin{split} \widehat{Y_t} &= \exp\left[3.55 + 2.182 \times 10^{-3}t - 2.801 \times 10^{-4}t^2 - 4.481 \times 10^{-6}t^3 + 2.919 \times 10^{-8}t^4 - 8.674 \times 10^{-11}t^5 + 9.781 \times 10^{-14}t^6 - 4.125 \times 10^{-2}\sin\left(\frac{1}{6}\pi t\right) \right. \\ &+ 1.473 \times 10^{-2}\cos\left(\frac{1}{6}\pi t\right) - 2.968 \times 10^{-2}\sin\left(\frac{1}{3}\pi t\right) + 1.357 \times 10^{-2}\cos\left(\frac{1}{3}\pi t\right) - 1.925 \times 10^{-2}\sin\left(\frac{1}{2}\pi t\right) + 2.035 \times 10^{-2}\cos\left(\frac{1}{2}\pi t\right) \\ &- 1.534 \times 10^{-2}\sin\left(\frac{2}{3}\pi t\right) + 2.346 \times 10^{-2}\cos\left(\frac{2}{3}\pi t\right) + 4.155 \times 10^{-3}\sin\left(\frac{5}{6}\pi t\right) + 2.378 \times 10^{-2}\cos\left(\frac{5}{6}\pi t\right) \end{split}$$

En la figura 2 se presenta un gráfico en el que se contrasta la serie ajustada, en rojo, con la serie original, en negro.

Figura 2. Contraste de la serie de tiempo del índice de ventas nominales mensuales de Colombia entre enero de 2001 y noviembre de 2021 en negro y la serie ajustada con un modelo exponencial polinomial de grado seis estacional con funciones trigonométricas en las frecuencias $F_j = \frac{j}{12}$, j = 1,2,3,4,5 en rojo.

De la *figura 2* es claro que el modelo logra captar de forma adecuada la tendencia y la estacionalidad de la serie; empero, esta no logra ajustar los ciclos de esta, lo cual se evidencia en una disparidad entre la serie real y la serie ajustada en algunos periodos, siendo esto especialmente evidente en los periodos de los años 2008 y 2009, donde la serie ajustada sigue la tendencia creciente, mientras que los datos reales reflejan una contracción (coincidiendo con la crisis económica mundial de dichos años), si bien es esperable que esto sucediese teniendo presente que la componente cíclica no fue modelada en el modelo global ajustado. Por último, respecto al ajuste es reseñable que la raíz cuadrada del error cuadrático medio es 2.899, el criterio de información de Akaike equivale a 9.9001224 y el criterio de información bayesiano es igual a 11.52640 aproximadamente.

Ahora bien, a la hora de hacer pronósticos luego del periodo n=239 se apela a la siguiente ecuación:

$$\begin{split} \widehat{Y_t} &= \exp\left[3.55 + 2.182 \times 10^{-3}(239 + L) - 2.801 \times 10^{-4}(239 + L)^2 - 4.481 \times 10^{-6}(239 + L)^3 + 2.919 \times 10^{-8}(239 + L)^4 - 8.674 \times 10^{-11}(239 + L)^5 \right. \\ &\quad + 9.781 \times 10^{-14}(239 + L)^6 - 4.125 \times 10^{-2} sin\left(\frac{1}{6}\pi(239 + L)\right) + 1.473 \times 10^{-2} cos\left(\frac{1}{6}\pi(239 + L)\right) \\ &\quad - 2.968 \times 10^{-2} sin\left(\frac{1}{3}\pi(239 + L)\right) + 1.357 \times 10^{-2} cos\left(\frac{1}{3}\pi(239 + L)\right) - 1.925 \times 10^{-2} sin\left(\frac{1}{2}\pi(239 + L)\right) \\ &\quad + 2.035 \times 10^{-2} cos\left(\frac{1}{2}\pi(239 + L)\right) - 1.534 \times 10^{-2} sin\left(\frac{2}{3}\pi(239 + L)\right) + 2.346 \times 10^{-2} cos\left(\frac{2}{3}\pi(239 + L)\right) \\ &\quad + 4.155 \times 10^{-3} sin\left(\frac{5}{6}\pi(239 + L)\right) + 2.378 \times 10^{-2} cos\left(\frac{5}{6}\pi(239 + L)\right) \end{split}$$

Y a partir de esta ecuación se puede construir la tabla de pronósticos para los meses del periodo *ex post*, que se observa en la *tabla 2*.

Tabla 2. Pronósticos	para el periodo	ex post del modelo e	exponencial pol	linomial de grado seis.
----------------------	-----------------	----------------------	-----------------	-------------------------

Periodo	L	Real	Pronóstico
2020 Dic	1	125.95	125.6811
2021 Ene	2	104.49	104.9223
2021 Feb	3	107.87	107.3833
2021 Mar	4	114.16	114.9873
2021 Abr	5	112.05	111.4442
2021 May	6	116.74	117.5733
2021 Jun	7	115.32	155.1623
2021 Jul	8	116.86	118.5237
2021 Ago	9	120.13	120.0877
2021 Sep	10	121.77	122.9627
2021 Oct	11	123.64	124.1830
2021 Nov	12	127.70	128.9216

Nótese que por ser el modelo global exponencial, entonces no es posible obtener para las estimaciones intervalos de predicción. Con esto presente, se tiene por ejemplo que en agosto de 2021, L = 9, el índice de ventas nominales pronosticado fue de 120.0877 puntos, toda vez que en este periodo se tuvo que el índice real fue de 120.13 puntos. De forma adicional, como se conocen los valores reales de los índices de ventas nominales para los meses del periodo *ex post*, entonces se pueden calcular medidas de error como el MAE, el MAPE y el RMSE, las cuales son presentadas en la *tabla 3*.

Tabla 3. Precisión de los pronósticos puntuales.

Medida	Valor				
RMSE *	0.8279634				
MAE *	0.6862845				
MAPE (%)	0.5830712				
* Unidades en puntos del índice de ventas nominales.					

De la *tabla tres* se concluye que el modelo global se equivocó en promedio en cada pronóstico del periodo *ex post* en 0.8279634 puntos del índice de ventas nominales, mientras que el MAE señala una equivocación en promedio de 0.6862845 puntos; por último, del MAPE se concluye que el modelo global se ha equivocado en promedio para cada pronóstico un 0.4439505 % respecto a cada valor real. De estas métricas pues se puede concluir que se está logrando un ajuste bueno de la serie en tanto los errores cometidos, de acuerdo con estos valores, son pequeños, y como se pudo evidenciar en la figura *figura 2* que estos errores se dan fundamentalmente no haber incorporado la componente cíclica en este modelo. Con esto, vale la pena finalizar esta sección con la *figura 3*.

Entonces, se puede validar gráficamente con ayuda de *figura 3* y con los valores de la *tabla 2* que este modelo global realiza un ajuste decuado para esta serie, aunque se debe tener en consideración que esto está siendo posible gracias a que en los meses del periodo *ex post* se está siguiendo la tendencia y la estacionalidad de la serie sin afectaciones por comportamientos cíclicos. Sin embargo, si algunos de estos periodos fuesen abarcados algún ciclo, se evidenciaría como los pronósticos no serían muy buenos.

Figura 3. Pronósticos de la serie de tiempo de ventas nominales mensuales de Colombia a partir de un modelo exponencial cúbico con funciones trigonométricas en las frecuencias $F_j = {}^j/_{12}$, j = 1,2,3,4,5. (a). Modificación de la *figura 2* para mostrar también el pronóstico realizado. (b) Enfoque en los periodos *ex post* para validar gráficamente la calidad los pronósticos realizados, en azul, en contraste con los valores realmente observados, en negro.

VALIDACIÓN DE SUPUESTOS SOBRE EL ERROR ESTRUCTURAL EN EL MODELO GLOBAL

En la *ecuación* (1) se observa al final que el modelo global planteado incluye un supuesto muy importante sobre los errores estructurales y es que estos son un ruido blanco, lo cual resulta importante ya que con esto se construyen las herramientas que permiten realizar inferencia con el modelo construido. Así pues, se tiene que la suposición de que los errores son ruido blanco implica que estos se distribuyan idénticamente como una normal con media cero y varianza constante para cualquier tiempo t, y que hay incorrelación entre cualquier par de observaciones sin importar su rezago en el tiempo, lo que en otras palabras significa que los datos del pasado no proporcionan información sobre los errores del futuro.

De este modo, para poder hacer esta evaluación, se van a considerar los residuales del modelo y se va a iniciar chequeando que estos tengan media cero, varianza constante e independencia, lo cual es posible los gráficos de estos residuales que se ilustran en la *figura 4*.

Figura 4. Gráficos para los residuales del modelo exponencial polinomial de grado seis con trigonométricas en en las frecuencias $F_j = {}^j/_{12}$, j = 1,2,3,4,5. (a) Serie de los residuales del ajuste del modelo. (b) Gráfico de dispersión de los residuales de ajuste contra los valores ajustados del modelo.

A partir de las *figuras 4 (a) y 4 (b)* se puede determinar que no existe evidencia en contra de que la media de los errores sea diferente de cero, pues la serie de los residuales se da alrededor de cero y los residuales contra el índice de ventas nominales ajustado están dispersos alrededor de cero. Ahora bien, con la varianza se comienzan a tener inconvenientes y esto es especialmente evidente en el gráfico de dispersión de la *figura 4 (b)* dado que se observa que los residuales cuentan con mayor varianza hacia índices ajustados alrededor de ochenta puntos, y menor varianza hacia los menores y los mayores índices de ventas nominales ajustados, por lo que no resulta razonable plantear que los errores poseen varianza constante, y por tanto los errores no se distribuyen de manera idéntica gracias a su varianza. Además, en la *figura 4 (a)* se evidencia varios ciclos en los residuales, fundamentalmente a partir del periodo cincuenta y hasta el periodo 175 aproximadamente, lo cual implica que existe una correlación positiva entre errores rezagados un periodo en el tiempo; esto es, $\rho(1) = Corr(E_t, E_{t+1}) > 0$, por lo que no se cumple el supuesto de independencia de los errores, y por tanto no se puede evaluar su normalidad. De esta manera, se concluye que los errores del modelo no son un proceso de ruido blanco, y a continuación se procede a verificar esta conclusión con ayuda de las pruebas de incorrelación de *Ljung-Box, Durbin-Watson* y los gráficos de las funciones de autocorrelación y autocorrelación parcial con bandas de Bartlett. Entonces, comenzando con los análisis gráficos se tiene a la *figura 5*.

Estas gráficas van a ser útiles para evaluar si el error estructural es un ruido blanco, y en particular, con la ACF es posible contrastar siguientes hipótesis:

$$H_0: \rho(k) = Corr(E_t, E_{t+k}) = 0 \quad \forall k = 1, 2, ..., 36$$
 $vs.$
 $H_1: \exists k: \ \rho(k) = Corr(E_t, E_{t+k}) \neq 0, k = 1, 2, ..., 36$

PACF del modelo global

Figura 5. (a). Función de autocorrelación (ACF) muestral con los residuos del modelo global. (b) Función de autocorrelación parcial (PACF) muestral con los residuos del modelo global.

La cual tiene como estadístico de prueba a $\widehat{\rho(k)} = \widehat{Corr}(E_t, E_{t+1}) = \frac{\sum_{t=1}^{239-k} \widehat{E_t}\widehat{E_{t+k}}}{\sum_{t=1}^{239}\widehat{E_t^2}} \sim aprox. N\left(0, \frac{1}{239}\right)$ y que con una significancia de aproximadamente $\alpha \approx 0.05$ rechaza la hipótesis nula si $|\widehat{\rho(k)}| \ge 2/\sqrt{239}$. Y a partir de la *figura 5 (a)* anterior se evidencia que este test se rechaza para k = 1, 2, 3, 4, 5, 6, 8, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, por lo que se rechaza la hipótesisnula y se concluye que los errores estructurales no son ruido blanco. De igual forma, para la PACF se tienen las siguientes hipótesis:

$$H_0: \Phi_{kk} = Corr(E_t, E_{t+k} | E_{t+1}, \dots, E_{t+k-1}) = 0 \quad \forall k = 1, 2, \dots, 36$$
 $vs.$
 $H_1: \exists k: \Phi_{kk} = Corr(E_t, E_{t+k} | E_{t+1}, \dots, E_{t+k-1}) \neq 0, k = 1, 2, \dots, 36$

 $H_1: \exists k: \ \phi_{kk} = Corr(E_t, E_{t+k} | E_{t+1}, \dots, E_{t+k-1}) \neq 0, k = 1, 2, \dots, 36$ Y en este caso el estadístico de prueba es $\widehat{\phi_{kk}} = \widehat{Corr}(E_t, E_{t+k} | E_{t+1}, \dots, E_{t+k-1}) \sim aprox. N\left(0, \frac{1}{239}\right)$ y que con una significancia de aproximadamente $\alpha \approx 0.05$ rechaza la hipótesis nula si $|\widehat{\rho(k)}| \ge 2/\sqrt{239}$. Luego, con ayuda de la *figura 5 (b)* se rechaza la hipótesis nula ya que se cumple que la función de autocorrelación parcial es mayor a cero de forma significativa para k=11, 2, 3, 13, 19, 33, lo cual corrobora que los errores estructurales del modelo de regresión global no son un ruido blanco.

Ahora se va a analizar qué resulta de los tests matemáticos que, a diferencia de los tests previos que realizan varias pruebas individuales, en este caso lo hacen de forma conjunta. De esta manera, comenzando con el test Ljung-Box se tiene que las hipótesis son:

$$H_0: \rho(1) = \rho(2) = \cdots \rho(m) = 0$$

 $vs.$
 $H_1: \exists k: \rho(k) \neq 0, k = 1, 2, ..., m$

vs. $H_1: \exists k: \rho(k) \neq 0, k = 1, 2, ..., m$ Y se tiene que el estadístico de prueba es $Q_{LB} = 239 \times 241 \sum_{k=1}^{m} \frac{[\hat{\rho}(k)]^2}{239-k} \sim \chi_m^2$ y que tiene como criterio de rechazo que el valor p $V_p = P(\chi_m^2 \ge Q_{LB})$ sea pequeño. Con esto claro, se debe tener presente que se va a realizar seis veces este test conjunto para m =6, 12, 18, 24, 30, 36, y con ayuda de R se obtienen los resultados para este test que se presentan en la tabla 4.

Tabla 4. Test de Ljung-Box para los errores estructurales E_t del modelo global.

m	Q_{LB}	Grados de libertad	$P(\chi_m^2 \geq Q_{LB})$
6	300.3857	6.00	0
12	359.7171	12.00	0
18	390.5907	18.00	0
24	570.0018	24.00	0
30	803.6548	30.00	0
36	956.0069	36.00	0

Y como se puede observar, se obtiene que para los seis tests de Ljung-Box realizados se obtiene un valor p pequeño, lo cual implica que en todos ellos debe ser rechazada la hipótesis nula, lo que implica que existe evidencia muestral suficiente para sugerir que los errores estructurales no están incorrelacionados, y por tanto se llegando una vez más a la conclusión de que estos errores estructurales no son un ruido blanco.

Ahora bien, en cuanto al test de *Durbin-Watson*, que de forma similar del test de *Ljung-Box* lleva a cabo un solo test conjunto, este solo puede ser aplicado en modelos que son lineales en sus parámetros, y teniendo en cuenta que el modelo global considerado es exponencial, no es posible usar este test. Pero, de todos modos, se debe notar que las pruebas anteriores son consistentes al señalar que el error estructural no es un ruido blanco.

Por último, se concluye que estos errores estacionarios no son un proceso estacionario, ya que como se vio con los residuales en los gráficos de la *figura 4*, si bien no existe evidencia en contra de que la media de los errores es nula, sí existe evidencia en contra de que los errores tienen varianza constante. Además, a partir de la gráfica de la ACF en la figura *figura 5 (a)* se podría pensar que estos errores estructurales no son ergódicos ya que parece no haber una convergencia rápida a cero.

Luego, se debe notar que los errores de este modelo no cumplen con el supuesto de ruido blanco, por lo que se procede con el planteamiento de modelos *ARMA* con el objeto de satisfacer estos supuestos y así poder realizar inferencia con este modelo de regresión.

Así, en primer lugar, se debe llamar a las gráficas ACF y PACF de la *figura 5*, en los que se debe notar que la ACF parece tener un patrón cola exponencial sinusoidal, mientras que la PACF muestra un patrón tipo corte con p=19 o p=33, por lo que se podría plantear un modelo AR(19) o un modelo AR(33), donde resulta razonable darle prioridad al primero por ser más parsimonioso y porque la ACF pierde potencia a medida que aumentar el valor de k, de tal suerte que aumenta la probabilidad de cometer un error tipo I al evaluar la significancia estadística de $\rho(33)$ para los errores estructurales. De acuerdo con esto, se tiene que el modelo de regresión estaría dado por:

$$\begin{split} Y_t &= \exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 \sin\left(\frac{1}{6}\pi t\right) + \gamma_1 \cos\left(\frac{1}{6}\pi t\right) + \alpha_2 \sin\left(\frac{1}{3}\pi t\right) + \gamma_2 \cos\left(\frac{1}{3}\pi t\right) + \alpha_3 \sin\left(\frac{1}{2}\pi t\right) + \gamma_3 \cos\left(\frac{1}{2}\pi t\right) + \alpha_4 \sin\left(\frac{2}{3}\pi t\right) + \gamma_4 \cos\left(\frac{2}{3}\pi t\right) + \alpha_5 \sin\left(\frac{5}{6}\pi t\right) + \gamma_5 \cos\left(\frac{5}{6}\pi t\right)\right] + E_t, \text{ donde } \\ E_t &= \phi_1 E_{t-1} + \phi_2 E_{t-2} + \phi_3 E_{t-3} + \phi_4 E_{t-4} + \phi_5 E_{t-5} + \phi_6 E_{t-6} + \phi_7 E_{t-7} + \phi_8 E_{t-8} + \phi_9 E_{t-9} + \phi_{10} E_{t-10} \\ &+ \phi_{11} E_{t-11} + \phi_{12} E_{t-12} + \phi_{13} E_{t-13} + \phi_{14} E_{t-14} + \phi_{15} E_{t-15} + \phi_{16} E_{t-16} + \phi_{17} E_{t-17} + \phi_{18} E_{t-18} + \phi_{19} E_{t-19} + a_t, \\ \cos\left\{a_t\right\}_{t \in \mathbb{Z}^+} un \ R. \ B. \sim N(0, \sigma^2). \end{split}$$

Donde p = 19 si se trata de un AR(19), o bien, p = 33 si se trata de un AR(33).

Luego, con la EACF, cuyo código y salida de **R** se puede observar en la **figura 6**, se obtiene que el modelo más adecuado es un **ARMA(7, 11)**.

Figura 6. Código y salida en R del EACF para el modelo de regresión global planteado. Nótese que a partir de este se sugiere tomar a los errores estructurales como un

ARMA(7, 11).

Y se tendría entonces que el modelo de regresión estaría dado por: $Y_t = exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{6}\pi t\right) + \gamma_1 cos\left(\frac{1}{6}\pi t\right) + \alpha_2 sin\left(\frac{1}{3}\pi t\right) + \gamma_2 cos\left(\frac{1}{3}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \gamma_3 cos\left(\frac{1}{2}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \gamma_4 cos\left(\frac{2}{3}\pi t\right) + \alpha_5 sin\left(\frac{5}{6}\pi t\right) + \gamma_5 cos\left(\frac{5}{6}\pi t\right)\right] + E_t, \text{ donde}$

 $E_{t} = \sum_{i=1}^{7} \phi_{i} E_{t-i} + a_{t} + \sum_{i=1}^{11} \theta_{i} a_{t-i}, \cos \{a_{t}\}_{t \in \mathbb{Z}^{+}} un \ R. \ B. \sim N(0, \sigma^{2}).$

Luego, con ayuda de la función SelectModelo() de la librería FitAR, con la cual se pueden encontrar modelos AR(p), se encuentra que según el criterio AIC, cuyo código y salida en R se puede ver en la figura 7 (a) es un AR(22), ya que si bien obtiene el mayor AIC exacto y aproximado, no tiene una diferencia considerable con los otros valores y resulta siente el más parsimonioso. Por otro lado, usando al criterio de información bayesiano, BIC, para el cual se presenta la figura 7 (b), se llega a que se puede ajustar un modelo AR(3).

```
> SelectModel(residuals(modelo_global),lag.max=36,
                                                      > SelectModel(residuals(modelo_global),lag.max=36,
Criterion="AIC", ARModel="AR")
                                                      Criterion="BIC", ARModel="AR")
   p AIC-Exact AIC-Approx
                                                        p BIC-Exact BIC-Approx
 23
      364.3485
               -129.8790
                                                           384.7547 -102.99179
 24
      365.2689
                -130.6130
                                                      2 4
                                                           389.0837
                                                                      -97.70645
                                                           394.3735
                                                                      -93.19015
                         (a)
                                                                               (b)
```

Figura 7. Código y salidas R de la función SelectModelo() de la librería FitAR para hallar el orden p adecuado para modelos AR(p) usando los criterios de información: (a) de Akaike (AIC) y (b) bayesiano (BIC).

Lo que implica que la ecuación del modelo de regresión que debería considerar según el criterio de información de Akaike es:

$$\begin{split} Y_t &= \exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 \sin\left(\frac{1}{6}\pi t\right) + \gamma_1 \cos\left(\frac{1}{6}\pi t\right) + \alpha_2 \sin\left(\frac{1}{3}\pi t\right) + \gamma_2 \cos\left(\frac{1}{3}\pi t\right) + \alpha_3 \sin\left(\frac{1}{2}\pi t\right) + \gamma_3 \cos\left(\frac{1}{2}\pi t\right) + \alpha_4 \sin\left(\frac{2}{3}\pi t\right) + \gamma_4 \cos\left(\frac{2}{3}\pi t\right) + \alpha_5 \sin\left(\frac{5}{6}\pi t\right) + \gamma_5 \cos\left(\frac{5}{6}\pi t\right)\right] + E_t, \text{ donde} \\ E_t &= \sum_{j=1}^{22} \phi_j E_{t-j} + a_t, \\ &\cos\left\{a_t\right\}_{t \in \mathbb{Z}^+} un \ R. \ B. \sim N(0, \sigma^2). \end{split}$$

Mientras que, según el criterio de información bayesiano, debería ser:

$$\begin{split} Y_t &= exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{6}\pi t\right) + \gamma_1 cos\left(\frac{1}{6}\pi t\right) + \alpha_2 sin\left(\frac{1}{3}\pi t\right) + \gamma_2 cos\left(\frac{1}{3}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \gamma_3 cos\left(\frac{1}{2}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \gamma_4 cos\left(\frac{2}{3}\pi t\right) + \alpha_5 sin\left(\frac{5}{6}\pi t\right) + \gamma_5 cos\left(\frac{5}{6}\pi t\right)\right] + E_t, \, \text{donde} \\ E_t &= \phi_1 E_{t-1} + \phi_2 E_{t-2} + \phi_3 E_{t-3} + a_t, \\ &\quad con\left\{a_t\right\}_{t \in \mathbb{Z}^+} un \, R. \, B. \sim N(0, \sigma^2). \end{split}$$

Asimismo, se va a realizar la tarea de identificar modelos *ARMA* pero usando ahora la función auto.arima() de la librería forecast, cuyos códigos y salidas se observan en la *figura 8*.

```
> auto.arima(serie_et,ic="aic")
                                                      > auto.arima(serie_et,ic="bic")
Series: serie_et
                                                      Series: serie_et
ARIMA(1,0,2)(0,0,2)[12] with zero mean
                                                      ARIMA(1,0,2) with zero mean
                                                      Coefficients:
Coefficients:
         ar1
                                  sma1
                                           sma2
                                                                ar1
                                                                                 ma2
                                                                              0.2879
                       0.2642
                                                            0.8469
      0.8204
                                0.1241
                                        -0.1534
                                                                     -0.6822
                                0.0651
sigma^2 = 4.519: log likelihood = -517.61
                                                      sigma^2 = 4.666: log likelihood = -522.1
AIC=1047.23
              AICc=1047.59
                             BIC=1068.09
                                                      AIC=1052.21
                                                                     AICc=1052.38
```

Figura 8. Código y salidas R de la función auto.arima() de la librería forecast para hallar los órdenes p y q adecuados para modelos ARMA(p, q) usando los criterios de información: (a) de Akaike (AIC) y (b) bayesiano (BIC).

De esta forma, se tendría que el modelo de regresión a plantear de acuerdo con el criterio de información de Akaike es: $Y_t = exp \left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin \left(\frac{1}{6} \pi t \right) + \gamma_1 cos \left(\frac{1}{6} \pi t \right) + \alpha_2 sin \left(\frac{1}{3} \pi t \right) + \gamma_2 cos \left(\frac{1}{3} \pi t \right) + \alpha_3 sin \left(\frac{1}{2} \pi t \right) + \gamma_3 cos \left(\frac{1}{2} \pi t \right) + \alpha_4 sin \left(\frac{2}{3} \pi t \right) + \gamma_4 cos \left(\frac{2}{3} \pi t \right) + \alpha_5 sin \left(\frac{5}{6} \pi t \right) + \gamma_5 cos \left(\frac{5}{6} \pi t \right) \right] + E_t, \text{ donde}$ $E_t = \phi_1 E_{t-1} + a_t + \theta_1 a_{t-1} + \theta_2 a_{t-2} + \theta_1 a_{t-12} + \theta_1 \theta_1 a_{t-13} + \theta_1 \theta_2 a_{t-25} + \theta_2 a_{t-2} + \theta_2 \theta_2 a_{t-14} + \theta_2 \theta_2 a_{t-26},$ $con \{a_t\}_{t \in \mathbb{Z}^+} un \ R. \ B. \sim N(0, \sigma^2).$

Mientras que el modelo que se debería considerar de conformidad con el modelo de regresión bayesiano es:
$$Y_t = exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{6}\pi t\right) + \gamma_1 cos\left(\frac{1}{6}\pi t\right) + \alpha_2 sin\left(\frac{1}{3}\pi t\right) + \gamma_2 cos\left(\frac{1}{3}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \gamma_3 cos\left(\frac{1}{2}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \gamma_4 cos\left(\frac{2}{3}\pi t\right) + \alpha_5 sin\left(\frac{5}{6}\pi t\right) + \gamma_5 cos\left(\frac{5}{6}\pi t\right)\right] + E_t, \text{ donde } \\ E_t = \phi_1 E_{t-1} + a_t + \theta_1 a_{t-1} + \theta_2 a_{t-2}, \\ \text{con } \{a_t\}_{t \in \mathbb{Z}^+} un \ R. \ B. \sim N(0, \sigma^2).$$

Y se puede observar pues que usando el criterio de información de Akaike (AIC) en la *figura 8 (a)* que un modelo adecuado para este caso es ARIMA(1, 0, 2)(0, 0, 2)[12], lo cual equivale a un proceso estacionario ARMA(1, 2)(0, 2)[12], el cual no tiene mucho sentido teniendo en cuenta que, como se vio en la *figura 5 (a)* la ACF tiene un patrón cola exponencial sinusoidal, lo cual obliga a que $p \ge 2$. Por otro lado, con el criterio de información bayesiano (BIC), cuyo código y salida en R se refleja en la *figura 8*, se obtiene que un modelo adecuado es ARIMA(1, 0, 2), el cual equivale a un proceso estacionario ARMA(1, 2), el cual presenta el mismo inconveniente

que el modelo sugerido por auto. arima() usando el AIC, pues se tiene que p=1<2, lo cual no tiene sentido a la luz de lo identificado para la ACF.

Por último, dentro de la colección de funciones de identificación de modelos **ARMA** dispuestos por R, se va a proceder ahora con la función armasubsets() del paquete TSA. En la *figura 9* se observa el diagrama que resulta de esta función.

Figura 9. Resultado de la función $\underline{\text{armasubsets}}$ de la librería $\underline{\text{TSA}}$ sobre los residuales \widehat{E}_t y usando como p y q máximos a doce para ambos. La línea de código empleada para obtener este resultado es: plot($\underline{\text{armasubsets}}$ (residuals($\underline{\text{modelo_global}}$), $\underline{\text{nar}} = 12$, $\underline{\text{nma}} = 12$, $\underline{\text{y.name}} = \underline{\text{AR'}}$, $\underline{\text{ar.method}} = \underline{\text{moleo}}$

A partir del resultado que se visualiza en el primer renglón, se tiene que el modelo a plantear debe ser, según esta función, un ARMA(12, 9) con parámetros θ_i , i = 1,2,3,5,6,7,8,10,11 fijos en cero, por lo que los errores estructurales estarían siendo modelados como $E_t = \phi_1 E_{t-1} + \phi_2 E_{t-2} + \phi_3 E_{t-3} + \phi_{12} E_{t-12} + a_t + \theta_4 a_{t-4} + \theta_9 a_{t-9}$, con $\{a_t\}_{t \in \mathbb{Z}^+}$ $un\ R.\ B. \sim N(0, \sigma^2)$. No obstante, si se tiene en cuenta a ϕ_7 y a θ_{10} , lo cual replantea el modelo a un ARMA(12, 10), se tiene que el modelo de regresión estaría dado por:

$$\begin{split} Y_t &= exp \left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin \left(\frac{1}{6} \pi t \right) + \gamma_1 cos \left(\frac{1}{6} \pi t \right) + \alpha_2 sin \left(\frac{1}{3} \pi t \right) + \gamma_2 cos \left(\frac{1}{3} \pi t \right) + \alpha_3 sin \left(\frac{1}{2} \pi t \right) + \gamma_3 cos \left(\frac{1}{2} \pi t \right) + \alpha_4 sin \left(\frac{2}{3} \pi t \right) + \gamma_4 cos \left(\frac{2}{3} \pi t \right) + \alpha_5 sin \left(\frac{5}{6} \pi t \right) + \gamma_5 cos \left(\frac{5}{6} \pi t \right) \right] + E_t, \, \text{donde} \\ E_t &= \phi_1 E_{t-1} + \phi_2 E_{t-2} + \phi_3 E_{t-3} + \phi_7 E_{t-7} + \phi_{12} E_{t-12} + a_t + \theta_4 a_{t-4} + \theta_9 a_{t-9} + \theta_{10} a_{t-10}, \\ &\quad con \left\{ a_t \right\}_{t \in \mathbb{Z}^+} un \, R. \, B. \sim N(0, \sigma^2). \end{split}$$

4. MODELOS DE REGRESIÓN CON ERRORES ESTRUCTURALES E, ARMA

Se considerarán cuatro modelos de regresión con error estructural ARMA: **AR(19)**, **ARMA(7,11)**, **ARMA(3,9)(1,0)[12]** y un **ARMA(12, 10)** incluyendo solo los parámetros ϕ_1 , ϕ_2 , ϕ_3 , ϕ_7 , ϕ_{12} para la parte autorregresiva de los errores estructurales y θ_4 , θ_9 , θ_{10} para la parte de medias móviles de las innovaciones del modelo. Así, para poder realizar el ajuste de los cuatro modelos anteriores van a ser consideradas las primeras n=239 observaciones mensuales, de manera que las últimas m=12 van a ser consideradas para el periodo *ex post* para poder realizar validación cruzada de los ajustes realizados y poder apoyar el proceso de selección del mejor modelo. En este sentido, primeramente, se presentan la ecuación de los modelos propuestos en la *tabla 6*.

```
Tabla 6. Ecuaciones de los modelos propuestos.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Modelo 1. Modelos de regresión con error estructural ARMA: AR(19)
  Y_t = exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{6}\pi t\right) + \gamma_1 cos\left(\frac{1}{6}\pi t\right) + \alpha_2 sin\left(\frac{1}{3}\pi t\right) + \gamma_2 cos\left(\frac{1}{3}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \gamma_3 cos\left(\frac{1}{2}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \gamma_4 cos\left(\frac{2}{3}\pi t\right) + \alpha_4 sin\left(\frac{1}{3}\pi t\right) + \alpha_5 sin\left(\frac{1}{3}\pi t\right) + \alpha
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \alpha_5 \sin\left(\frac{5}{\epsilon}\pi t\right) + \gamma_5 \cos\left(\frac{5}{\epsilon}\pi t\right) + E_t, donde
                             E_{t} = \phi_{1} E_{t-1} + \phi_{2} E_{t-2} + \phi_{3} E_{t-3} + \phi_{4} E_{t-4} + \phi_{5} E_{t-5} + \phi_{6} E_{t-6} + \phi_{7} E_{t-7} + \phi_{8} E_{t-8} + \phi_{9} E_{t-9} + \phi_{10} E_{t-10} + \phi_{11} E_{t-11} + \phi_{12} E_{t-12} + \phi_{13} E_{t-13} + \phi_{14} E_{t-14} + \phi_{15} E_{t-15} + \phi_{16} E_{t-16} + \phi_{17} E_{t-17} + \phi_{18} E_{t-18} + \phi_{16} E_{t-16} + \phi_{17} E_{t-17} + \phi_{18} E_{t-18} + \phi_{16} E_{t-16} + \phi_{17} E_{t-17} + \phi_{18} E_{t-18} + \phi_{16} E_{t-18} + \phi_
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \{a_t\}_{t \in \mathbb{Z}^+} \text{ un } RB \sim N(0, \sigma_a^2) 
Modelo 2. Modelos de regresión con error estructural ARMA: ARMA(7,11)
  Y_t = exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{\epsilon}\pi t\right) + \gamma_1 cos\left(\frac{1}{\epsilon}\pi t\right) + \alpha_2 sin\left(\frac{1}{\epsilon}\pi t\right) + \gamma_2 cos\left(\frac{1}{\epsilon}\pi t\right) + \alpha_3 sin\left(\frac{1}{\epsilon}\pi t\right) + \gamma_3 cos\left(\frac{1}{\epsilon}\pi t\right) + \alpha_4 sin\left(\frac{2}{\epsilon}\pi t\right) + \gamma_4 cos\left(\frac{2}{\epsilon}\pi t\right) + \alpha_5 sin\left(\frac{1}{\epsilon}\pi t\right) + \alpha
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \alpha_5 sin\left(\frac{5}{6}\pi t\right) + \gamma_5 cos\left(\frac{5}{6}\pi t\right) + E_t, donde
                                                                                              E_{t} = \phi_{1} E_{t-1} + \phi_{2} E_{t-2} + \phi_{3} E_{t-3} + \phi_{4} E_{t-4} + \phi_{5} E_{t-5} + \phi_{6} E_{t-6} + \phi_{7} E_{t-7} + a_{t} + \theta_{1} a_{t-1} + \theta_{2} a_{t-2} + \theta_{3} a_{t-3} + \theta_{4} a_{t-4} + \theta_{5} a_{t-5} + \theta_{6} a_{t-6} + \theta_{7} a_{t-7} + \theta_{8} a_{t-8} + \theta_{9} a_{t-9} + \theta_{10} a_{t-10} + \theta_{11} a_{t-11}, \text{ con } b_{11} e_{t-11} + \theta_{11} e_{t-11} + \theta_{12} e_{t-12} + \theta_{13} e_{t-13} + \theta_{14} e_{t-14} + \theta_{15} e_{t-15} + 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \{a_t\}_{t\in Z^+} un RB \sim N(0, \sigma_a^2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Modelo 3. Modelos de regresión con error estructural ARMA: ARMA(3,9)(1,0)[12].
  Y_t = exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{6}\pi t\right) + \gamma_1 cos\left(\frac{1}{6}\pi t\right) + \alpha_2 sin\left(\frac{1}{3}\pi t\right) + \gamma_2 cos\left(\frac{1}{3}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \gamma_3 cos\left(\frac{1}{2}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \gamma_4 cos\left(\frac{2}{3}\pi t\right) + \alpha_4 sin\left(\frac{1}{3}\pi t\right) + \alpha_5 sin\left(\frac{1}{3}\pi t\right) + \alpha
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \alpha_5 \sin\left(\frac{5}{6}\pi t\right) + \gamma_5 \cos\left(\frac{5}{6}\pi t\right) + E_t, donde
                                                                                                                                                                                                              E_{t} = \phi_{1} E_{t-1} + \phi_{2} E_{t-2} + \phi_{3} E_{t-3} + \phi_{1} \Phi_{1} E_{t-13} + \phi_{2} \Phi_{1} E_{t-14} + \phi_{3} \Phi_{1} E_{t-15} + a_{t} + \theta_{1} a_{t-1} + \theta_{2} a_{t-2} + \theta_{3} a_{t-3} + \theta_{4} a_{t-4} + \theta_{5} a_{t-5} + \theta_{6} a_{t-6} + \theta_{7} a_{t-7} + \theta_{8} a_{t-8} + \theta_{9} a_{t-9},
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \{a_t\}_{t\in Z^+} \ un \ RB \sim N(0, \sigma_a^2) \{a_t\}_{t\in Z^+} \ un \ RB \sim N(0, \sigma_a^2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Modelo 4. Modelos de regresión con error estructural ARMA: ARMA(12,10) con \phi_7 y \theta_{10}.
Y_t = exp\left[\beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \beta_5 t^5 + \beta_6 t^6 + \alpha_1 sin\left(\frac{1}{6}\pi t\right) + \gamma_1 cos\left(\frac{1}{6}\pi t\right) + \alpha_2 sin\left(\frac{1}{3}\pi t\right) + \gamma_2 cos\left(\frac{1}{3}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \alpha_3 sin\left(\frac{1}{2}\pi t\right) + \alpha_4 sin\left(\frac{2}{3}\pi t\right) + \gamma_4 cos\left(\frac{2}{3}\pi t\right) + \alpha_4 sin\left(\frac{1}{3}\pi t\right) + \alpha_5 sin\left(\frac{1}{3}\pi t\right) + \alpha
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \alpha_5 sin\left(\frac{5}{6}\pi t\right) + \gamma_5 cos\left(\frac{5}{6}\pi t\right) + E_t, donde
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E_{t=}\phi_{1}E_{t-1}+\phi_{2}E_{t-2}+\phi_{3}E_{t-3}+\phi_{7}E_{t-7}+\phi_{12}E_{t-12}+a_{t}+\theta_{4}a_{t-4}+\theta_{9}a_{t-9}+\theta_{10}a_{t-10},\\ \{a_{t}\}_{t\in\mathbb{Z}^{+}}un\ RB\sim N(0,\sigma_{a}^{2})
```

```
> modelo2 = regexpo.ErrorARMA(respuesta=yt,names.param=param2
+ data=X1,newdata=X1nuevo,
+ order=c(7,0,11),method="ML")
                                                                                                                                      Estimate
                                                                                                                                                    Std. Error
          1.387662e-01 6.308629e-02
3.364239e-01 6.356109e-02
                                            2.19962619
5.29292267
                                                                                                                                 4.892166e-01
2.351110e-01
4.662929e-01
1.174053e-01
                                                                                                                                                 7.246369e-02
6.746952e-02
6.924108e-02
5.502015e-02
             765654e-01 6.694652e-02
                                            4.13113874
                                                              . 274759e-05
. 771192e-01
          -3.853654e-02 6.900018e-02
         -1.405333e-02
                          6.892447e-02
                                            -0.20389462
                                                              635561e-01
                                                                                                                                                                   17.2524270
                                                                                                                                 9.492311e-01
         -1 258328e-01
                                            -1 86811035
                                            -1.86811035
1.22221856
1.48372642
1.75673596
0.23945108
0.70992760
-2.96562868
-1.18719176
                                                                                                                                -8.042922e-01
                                                                                                                                                  5.652851e-02 -14.2280821
            .240800e-02
.008078e-01
.187291e-01
.618325e-02
.780159e-02
                                                                                                                                -8.087215e-01
                                                                                                                                -2.640142e-01
1.568038e-01
                                                                                                                                                  1.011601e-01
                                                                                                                                                  1.0674356-01 1.4689087
1.025136e-01 2.7440602
1.047652e-01 -1.6085111
6.084343e-02 -15.5433586
            984978e-01
                                                              382632e-03
                                                                                                                                 -9.457112e-01
         -8.139387e-02
                                                                                                                                 6.806825e-01
                                                                                                                                                  1.112895e-01
                                                                                                                                                                    6.1163221
            469566e-03
                                                                                                                                 -9.844120e-02
                                                                                                                                                  1.018134e-01
                                                                                                                                                                   -0.9668783
                                                                                                                                                                                  3.347497e-01
                                                                                                                                 1.191803e-01
                                                                                                                                                  9.941799e-02
                                               08412550
                                                                                                                                                  9.021265e-02
3.636561e-02
3.477993e-03
1.107419e-04
                                                                                                                                                                       5296161
                                                                                                                       beta3
                                                                                                                                -4.481422e-06
                                                                                                                                                                   -2.8437057
                                                                                                                                                                                   4.913115e-03
                                                                                                                                 2.919309e-08
                                                                                                                                                  1.110756e-08
                                                                                                                                                                       6282176
            919309e-08
                                             2.62821765
                                                                                                                                                     794288e-11
beta5
            674080e-11
                             794288e-11
                                                                                                                                                     7942886-11 -2.2860888
011157e-14 1.9519396
580978e-03 -11.5188814
527395e-03 4.1757613
580860e-03 -8.2886446
          9.781477e-14
                           5.011157e-14
                                            1.95193964
                                                              954348e-24
                          3.527395e-03
3.580860e-03
3.506297e-03
3.533041e-03
3.550391e-03
3.571520e-03
         -2.968048e-02
1.357253e-02
-1.924711e-02
2.034908e-02
-1.534032e-02
2.346319e-02
                                           -8.28864463
3.87090019
-5.44774799
5.73150440
-4.29517789
6.68837561
                                                           1.551151e-14
1.461392e-04
1.467420e-07
3.562471e-08
2.704904e-05
2.145040e-10
                                                                                                                                 1.357253e-02
-1.924711e-02
                                                                                                                                                  3.506297e-03
3.533041e-03
                                                                                                                                                  3.550391e-03
                                                                                                                                                                     5.7315044
                                                                                                                       gamma3
alfa4
gamma3
alfa4
                                                                                                                                                                    -4.2951779
6.6883756
1.1731196
                                                                                                                                 -1 534032e-02
                                                                                                                                 -1.534032e-02 3.571520e-03
2.346319e-02 3.508056e-03
4.155386e-03 3.542167e-03
2.377807e-02 3.530355e-03
 alfa5
                                                                                                                                                                     6.7353206
αamma5 2.377807e-02 3.530355e-03
                                                                                                                                                                                  1.632200e-10
                                    (a)
  > modelo4 = regexpo.ErrorARMA(respuesta=yt,names.param=param2
                                                                                                                                                         data=X1,
newdata=X1nuevo,order=c(12,0,10)
                                         order=c(3.0.9)
                                                                                                                                                          fixed= c(NA,NA,NA,rep(0,3),NA,rep(0,4),
NA,rep(0,3),NA,rep(0,4),NA,NA)
                                        method="ML")
> coef(modelo3)
                                                                                                                                                         method="ML")
          Estimate Std. Error 5.103660e-01 1.939748e-01 8.647654e-01 5.851095e-02
                                               2.6310940
14.7795485
                                                                                                              Warning message
                                                                                                              In sgrt(diag(se)) : NaNs produced
                                                                2.597356e-34
         -5.913026e-01 1.712669e-01
                                                -3.4525213
                                                                6.721165e-04
         -3.426672e-01 1.953564e-01
-5.804156e-01 8.823191e-02
                                                                                                                                Estimate
                                                                                                                                               Std. Error
                                                                                                                          1.411021e-01 6.977113e-03 20.2235656 1.483092e-51
           6.975854e-01 1
                              .221268e-01
                                                   7119759
                                                                                                                          3.407267e-01
                                                                                                                                                                          NaN
                                                -1.8845916
0.2672957
                                                                6.087289e-⊎∠
7.895050e-01
                                                                                                                          3 128627e-01
                                                                                                                                                         NaN
                                                                                                                                                                           NaN
                                                                                                                                                                                               NaN
           2.498174e-02 9.346104e-02
                                                                                                                             785836e-01
           1.192725e-01 9.222999e-02
                                                                1 973668e-01
                                                                                                                        8.857359e-02 9.110500e-03
                                                                                                                                                                  9.7221431
                                                                                                                                                                                 9.763691e-19
          -2.113339e-01 7.680277e-02
1.771182e-01 7.890656e-02
                                                   .7516446
                                                                                                                          4.232216e-02 6.736438e-02
                                                                2.583781e-02
                                                                                                                          1.737598e-01 2.553486e-02
                                                                                                                                                                                  9.997280e-11
                                                                                                              ma9
                                                                                                                                                                  6.8048065
           2.367893e-01 8.041070e-02
                                                   9447484
                                                                3.598147e-03
                                                                                                                                                                     8654443
                                                                                                                                                                97.6084126 2.054850e-179
                                                                                                              beta0
                                                                                                                         3.549589e+00 3.636561e-02
beta0
           3.549589e+00 3.636561e-02
                                                   .6084126 2.592133e-176
                                                                                                                                                                                  5.310077e-01
                                                                                                              beta1
                                                                                                                          2 182U03e-03 3
                                                                                                                                               Д77993₽-03
                                                                                                                                                                     6274890
                                                                5.310237e-01
beta1
           2.182U03e-03.3.U77993e-03
                                                 0.6274890
                                                                                                                                                                                  1.213885e-02
                              ..107419e-04
..575909e-06
                                                   .5296161
                                                                                                              beta2
                                                                                                                          2.801344e-04 1.107419e-04
                                                                                                                                                                     .5296161
                                                                                                              beta3
                                                                                                                         -4.481422e-06 1
                                                                                                                                               .575909e-06
                                                                                                                                                                 -2.8437057
                                                                                                                                                                                  4.891428e-03
beta3
beta4
           2.919309e-08
                               .110756e-08
                                                   .6282176
                                                                9.220350e-03
             .674080e-11 3.794288e-11
.781477e-14 5.011157e-14
                                                                                                              beta5
                                                                                                                         -8.674080e-11 3
                                                                                                                                               794288e-11
                                                                                                                                                                     2860888
                                                                                                                                                                                  2.322790e-02
                                                                                                                             781477e-14
                                                                                                                                                                      9519396
                                                   . 9519396
alfa1
          -4.124886e-02 3.580978e-03 -11.5188814
                                                                4.315128e-24
                                                                                                              alfa1
                                                                                                                         -4.124886e-02 3.580978e-03
                                                                                                                                                                     .5188814
                                                                                                                                                                                  3.333272e-24
                                                4.1757613
-8.2886446
          1.472956e-02 3.527395e-03
                                                                4.359843e-05
                                                                                                                          1.472956e-02 3
                                                                                                                                               .527395e-03
                                                                                                              alfa2
                                                                                                                         -2.968048e-02 3.580860e-03
                                                                                                                                                                 -8.2886446
                                                                                                                                                                                  1.257468e-14
gamma2
             357253e-02
                                                                                                               gamma2
                             3.506297e-03
                                                 3.8709002
                                                                1.449471e-04
                                                                                                                             357253e-02 3
                                                                                                                                               .506297e-03
                                                                                                                                                                     8709002
                                                                                                                                                                                     <u>ииоо</u>95е-ои
alfa3
             924711e-02
                               533041e-03
                                                                  .427183e-07
                                                                                                                             924711e-02
                                                                                                              gamma3
                                                                                                                          2.034908e-02 3
                                                                                                                                               .550391e-03
                                                                                                                                                                  5.7315044
                                                                                                                                                                                  3.356106e-08
             .534032e-02 3.571520e-03
alfa4
                                                -4.2951779
                                                                2.672905e-05
                                                 6.6883756
          2.346319e-02 3.508056e-03
                                                                2.026412e-10
                                                                                                              gamma4
                                                                                                                         2.346319e-02 3.508056e-03
                                                                                                                                                                  6.6883756
                                                                                                                                                                                  1.936753e-10
          4.155386e-03 3.542167e-03 2.377807e-02 3.530355e-03
                                                                                                               alfa5
                                                                                                                             155386e-03
                                                                                                                                               .542167e-03
gamma5
                                                 6.7353206
                                                                1.555158e-10
                                                                                                              gamma5
                                                                                                                         2.377807e-02 3.530355e-03
                                                                                                                                                                  6.7353206
                                                                                                                                                                                  1.484712e-10
```

Figura 10. Planteamiento de los diferentes modelos de regresión en **R** con la salida de los diferentes coeficientes estimados, así como sus errores estándar y el valor del estadístico de prueba T y su valor p asociado para las pruebas de significancia de cada parámetro. (a) modelo uno: AR(19), (b) modelo dos: ARMA(7, 11), (c) modelo tres: ARMA(3, 9)(1, 0)₁₂ y (d) modelo cuatro: ARMA(12, 10)

De esta forma, estas salidas pueden ser formateadas como se presenta en las subtablas asociadas a cada modelo de la *tabla 7*, presentada de forma íntegra en la siguiente página. Con todo esto, se llega a la *tabla 8*, en la cual se puede visualizar la ecuación ajustada para el modelo 3.

Asimismo, es importante realizar varias pruebas de hipótesis para poder verificar la significancia estadística de varios parámetros importantes ajustados para cada uno de los modelos, para lo cual es útil valerse de la *tabla 9*, presentada dos páginas después.

rámetros	Estimación	Error estándar	T_0	$P(t_{203} > T_0)$	Parámetros	Estimación	Error estándar	T_0	$P(t_{204} >$
ϕ_1	1.387662×10 ⁻¹	6.308629×10 ⁻²	2.19962619	2.896224×10 ⁻²	ϕ_1	8.963682×10 ⁻¹	6.109229×10 ⁻²	14.6723625	9.471314×
ϕ_2	3.364239×10 ⁻¹	6.356109×10 ⁻²	5.29292267	3.111356×10 ⁻⁷	ϕ_2	4.892166×10 ⁻¹	5.273085×10 ⁻²	9.2776165	2.581680×
ϕ_3	2.765654×10 ⁻¹	6.694652×10 ⁻²	4.13113874	5.274759×10 ⁻⁵	ϕ_3	-2.351110×10 ⁻¹	7.246369×10 ⁻²	-3.2445356	1.374743
ϕ_4	-3.853654×10 ⁻²	6.900018×10 ⁻²	-0.55849904	5.771192×10 ⁻¹	ϕ_4	-4.662929×10 ⁻¹	6.746952×10 ⁻²	-6.9111649	6.023468>
ϕ_5	-1.405333×10 ⁻²	6.892447×10 ⁻²	-0.20389462	8.386401×10 ⁻¹	ϕ_5	1.174053×10 ⁻¹	6.924108×10 ⁻²	1.6956024	9.148681
ϕ_6	-1.182494×10 ⁻²	6.872281×10 ⁻²	-0.17206720	8.635561×10 ⁻¹	ϕ_6	9.492311×10 ⁻¹	5.502015×10 ⁻²	17.2524270	1.000539>
	-1.258328×10 ⁻¹	6.735836×10 ⁻²	-1.86811035	6.318758×10 ⁻²	ϕ_7	-8.042922×10 ⁻¹	9.208329×10 ⁻²	-14.2280821	2.294390
ϕ_7	8.240800×10 ⁻²	6.742493×10 ⁻²	1.22221856	2.230422×10 ⁻¹		-8.087215×10 ⁻¹	9.208329×10 ⁻²	-8.7824995	6.537360
ϕ_8	1.008078×10 ⁻¹	6.794228×10 ⁻²	1.48372642	1.394325×10 ⁻¹	θ_1	-2.640142×10 ⁻¹	1.011601×10 ⁻¹	-2.6098645	9.729344
ϕ_9	1.187291×10 ⁻¹	6.758507×10 ⁻²	1.75673596	8.047054×10 ⁻²	θ_2	1.568038×10 ⁻¹	1.067485×10 ⁻¹	1.4689087	1.433979
ϕ_{10}					θ_3				
ϕ_{11}	1.618325×10 ⁻²	6.758477×10 ⁻²	0.23945108	8.109974×10 ⁻¹	θ_4	2.813034×10 ⁻¹	1.025136×10 ⁻¹	2.7440602	6.60934
ϕ_{12}	4.780159×10 ⁻²	6.733304×10 ⁻²	0.70992760	4.785637×10 ⁻¹	θ_5	-1.685159×10 ⁻¹	1.047652×10 ⁻¹	-1.6085111	1.092693
ϕ_{13}	-1.984978×10 ⁻¹	6.693280×10 ⁻²	-2.96562868	3.382632×10 ⁻³	θ_6	-9.457112×10 ⁻¹	6.084343×10 ⁻²	-15.5433586	1.853628
ϕ_{14}	-8.139387×10 ⁻²	6.856000×10 ⁻²	-1.18719176	2.365394×10 ⁻¹	θ_7	6.806825×10 ⁻¹	1.112895×10 ⁻¹	6.1163221	4.808449
ϕ_{15}	2.469566×10 ⁻³	6.917152×10 ⁻²	0.03570206	9.715550×10 ⁻¹	θ_8	-9.844120×10 ⁻²	1.018134×10 ⁻¹	-0.9668783	3.34749
ϕ_{16}	5.836709×10 ⁻²	6.951161×10 ⁻²	0.83967404	4.020790×10 ⁻¹	θ_9	1.191803×10 ⁻¹	9.941799×10 ⁻²	1.1987800	2.32004
Ψ16 Φ	7.306084×10 ⁻²	6.739150×10 ⁻²	1.08412550	2.795951×10 ⁻¹	θ_{10}	1.015972×10 ⁻¹	1.009136×10 ⁻¹	1.0067736	3.15236
ϕ_{17}	-6.216473×10 ⁻²	6.381904×10 ⁻²	-0.97407799	3.311771×10 ⁻¹		-5.391192×10 ⁻²	9.021265×10 ⁻²	-0.5976094	5.50763
ϕ_{18}	-1.955277×10 ⁻¹	6.303154×10 ⁻²	-3.10206170	2.195290×10 ⁻³	θ_{11}	3.549589	3.636561×10 ⁻²	97.6084126	3.463634>
ϕ_{19}	3.549589	3.636561×10 ⁻²	97.60841259	1.471508×10 ⁻¹⁷²	β_0				
β_0					β_1	2.182403×10 ⁻³	3.477993×10 ⁻³	0.6274890	5.31040
β_1	2.182403×10 ⁻³	3.477993×10 ⁻³	0.62748904	5.310439×10 ⁻¹	β_2	2.801344×10 ⁻⁴	1.107419×10 ⁻⁴	2.5296161	1.21745
β_2	2.801344×10 ⁻⁴	1.107419×10 ⁻⁴	2.52961609	1.217836×10 ⁻²	β_3	-4.481422×10 ⁻⁶	1.575909×10 ⁻⁶	-2.8437057	4.91311
	-4.481422×10 ⁻⁶	1.575909×10-6	-2.84370573	4.915403×10 ⁻¹³	β_4	2.919309×10-8	1.110756×10-8	2.6282176	9.23620
β_{Λ}	2.919309×10-8	1.110756×10-8	2.62821765	9.239469×10 ⁻³	β_5	-8.674080×10 ⁻¹¹	3.794288×10 ⁻¹¹	-2.2860888	2.32762
β_3 β_4 β_5	-8.674080×10 ⁻¹¹	3.794288×10 ⁻¹¹	-2.28608878	2.328129×10 ⁻²	β_6	9.781477×10 ⁻¹⁴	5.011157×10 ⁻¹⁴	1.9519396	5.23140
β_6	9.781477×10 ⁻¹⁴	5.011157×10 ⁻¹⁴	1.95193964	5.232075×10 ⁻²	α_1	-4.124886×10 ⁻²	3.580978×10 ⁻³	-11.5188814	5.637830
	-4.124886×10 ⁻²	3.580978×10 ⁻³	-11.51888142	5.954348×10 ⁻²⁴		1.472956×10 ⁻²	3.527395×10 ⁻³	4.1757613	4.39890
α_1					γ_1				
γ_1	1.472956×10 ⁻²	3.527395×10 ⁻³	4.17576133	4.406985×10 ⁻⁵	α_2	-2.968048×10 ⁻²	3.580860×10 ⁻³	-8.2886446	1.520653
α_2	-2.968048×10 ⁻²	3.580860×10 ⁻³	-8.28864463	1.551151×10 ⁻¹⁴	γ ₂	1.357253×10 ⁻²	3.506297×10 ⁻³	3.8709002	1.45935
γ_2	1.357253×10 ⁻²	3.506297×10 ⁻³	3.87090019	1.461392×10 ⁻⁴	α_3	-1.924711×10 ⁻²	3.533041×10 ⁻³	-5.4477480	1.46048
α_3	-1.924711×10 ⁻²	3.533041×10 ⁻³	-5.44774799	1.467420×10 ⁻⁷	γ ₃	2.034908×10 ⁻²	3.550391×10 ⁻³	5.7315044	3.54234
γ_3	2.034908×10 ⁻²	3.550391×10 ⁻³	5.73150440	3.562471×10 ⁻⁸	α_4	-1.534032×10 ⁻²	3.571520×10 ⁻³	-4.2951779	2.69942
α_4	-1.534032×10 ⁻²	3.571520×10 ⁻³	-4.29517789	2.704904×10 ⁻⁵	γ ₄	2.346319×10 ⁻²	3.508056×10 ⁻³	6.6883756	2.124363
γ ₄	2.346319×10 ⁻²	3.508056×10 ⁻³	6.68837561	2.145040×10 ⁻¹⁰	α_5	4.155386×10 ⁻³	3.542167×10 ⁻³	1.1731196	2.42115
α_5									
	4 155386×10 ⁻³	3 542167×10 ⁻³	1 17311965	2 421225×10 ⁻¹					
γ ₅	4.155386×10 ⁻³ 2.377807×10 ⁻²	3.542167×10 ⁻³ 3.530355×10 ⁻³	1.17311965 6.73532056	2.421225×10 ⁻¹ 1.648473×10 ⁻¹⁰	γ ₅	2.377807×10 ⁻²	3.530355×10 ⁻³	6.7353206	1.632200
			6.73532056					6.7353206	1.632200 BIC=7.292597
γ ₅		3.530355×10^{-3} AIC = 5.1840 los para el modelo	6.73532056 053 BIC=	1.648473×10 ⁻¹⁰ =8.751618	Ϋ́s		3.530355×10^{-3} AIC = 4.38 nados para el mod	6.7353206 83091 B	1.632200 BIC=7.292597
γ ₅ abla 7c. I	2.377807×10 ⁻²	3.530355×10 ⁻³ AIC= 5.1840	6.73532056 053 BIC=	1.648473×10 ⁻¹⁰ =8.751618	Ϋ́s	2.377807×10 ⁻²	3.530355×10^{-3} $AIC = 4.38$	6.7353206 83091 B	1.632200 BIC=7.292597
γ ₅ Tabla 7c. If the fametros	2.377807×10 ⁻² Parámetros estimad	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error	6.73532056 053 BIC= 0 tres: ARMA(1.648473×10 ⁻¹⁰ =8.751618 (3, 9)(1, 0)[12]	Tabla 7 Parámetros	2.377807×10 ⁻² d. Parámetros estin	3.530355×10 ⁻³ AIC = 4.38 nados para el mod Error	6.7353206 83091 B delo cuatro: A T ₀	1.632200 $RIC = 7.292597$ $RMA(12, 1)$ $P(t_{214} > $
γ_5 abla 7c. I rámetros ϕ_1	2.377807×10 ⁻² Parámetros estimación 5.103660×10 ⁻¹	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹	6.73532056 0.53 BIC= 0.55 To 2.6310940	$ \begin{array}{c} 1.648473 \times 10^{-10} \\ = 8.751618 \\ \hline{(3, 9)(1, 0)[12]} \\ P(t_{209} > T_0) \\ \hline{9.145203 \times 10^{-3}} \end{array} $	γ_{5} Tabla 7. Parámetros ϕ_{1}	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹	3.530355×10 ⁻³ AIC = 4.38 nados para el mod Error estándar 6.977113×10 ⁻³	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656	1.632200 $RIC = 7.292597$ $RMA(12, 1)$ $P(t_{214} > $
γ_5 Tabla 7c. I Table 7c. If Table 7c.	2.377807×10 ⁻² Parámetros estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻²	6.73532056 0.53 BIC= 0. tres: ARMA(T ₀ 2.6310940 14.7795485	1.648473×10^{-10} =8.751618 $(3, 9)(1, 0)[12]$ $P(t_{209} > T_0)$ 9.145203×10^{-3} 2.597356×10^{-34}	γ_{5} Tabla 7. Parámetros ϕ_{1} ϕ_{2}	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹	3.530355×10 ⁻³ AIC = 4.38 nados para el mod Error estándar 6.977113×10 ⁻³ NaN	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN	1.632200 $RIC = 7.292597$ $RMA(12, 1)$ $P(t_{214} > $
γ_5 Tabla 7c. In the same tropic ϕ_1 ϕ_2 ϕ_3	2.377807×10 ⁻² Parámetros estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹	6.73532056 0.53 BIC= 0. tres: ARMA(T ₀ 2.6310940 14.7795485 -3.4525213	$ \begin{array}{c c} 1.648473\times10^{-10} \\ \hline =8.751618 \\ \hline (3, 9)(1, 0)[12] \\ P(t_{209} > T_0) \\ 9.145203\times10^{-3} \\ 2.597356\times10^{-34} \\ 6.721165\times10^{-4} \end{array} $		2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹	3.530355×10 ⁻³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ⁻³ NaN NaN	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN	1.632200 $RIC = 7.292597$ $RMA(12, 1)$ $P(t_{214} > $
Ys Tabla 7c. If Tametros ϕ_1 ϕ_2 ϕ_3 θ_1	2.377807×10 ⁻² Parámetros estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.71269°×10 ⁻¹ 1.953564×10 ⁻¹	6.73532056 0.53 BIC= 0. tres: ARMA(T ₀ 2.6310940 14.7795485 -3.4525213 -1.7540618	1.648473×10 ⁻¹⁰ =8.751618 (3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻²		2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN NaN	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN NaN	1.632200 $RIC = 7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092)$
Ys Tabla 7c. If Tametros ϕ_1 ϕ_2 ϕ_3 θ_1 θ_2	2.377807×10 ⁻² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -5.804156×10 ⁻¹	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻²	6.73532056 Dires: ARMA(T ₀ 2.6310940 14.7795485 -3.4525213 -1.7540618 -6.5782962	1.648473×10 ⁻¹⁰ =8.751618 3, 9)(1, 0)[12] $P(t_{200} > T_0)$ 9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰	$ \begin{array}{c c} & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & \\ & & & \\ $	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836x10 ⁻¹ 8.857359×10 ⁻²	3.530355×10 ⁻³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ⁻³ NaN NaN NaN NaN 9.110500×10 ⁻³	6.7353206 83091 B lelo cuatro: A T ₀ 20.2235656 NaN NaN NaN NaN 9.7221431	1.632200 $RIC = 7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691
$\begin{array}{c} \gamma_5 \\ \hline \textbf{abla 7c. I} \\ \hline \textbf{ametros} \\ \hline \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \end{array}$	2.377807×10 ⁻² Parámetros estimación Estimación 5.103660×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ 6.975854×10 ⁻¹	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹	6.73532056 0.53 BIC= 0.553 BIC= 0.553 DIC= 0.55310940 14.7795485 -3.4525213 -1.7540618 -6.5782962 5.7119759	1.648473×10 ⁻¹⁰ =8.751618 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸	$ \begin{array}{c c} & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻²	3.530355×10 ⁻³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ⁻³ NaN NaN NaN 9.110500×10 ⁻³ 6.736438×10 ⁻²	6.7353206 83091 Blelo cuatro: A T ₀ 20.2235656 NaN NaN NaN 9.7221431 0.6282572	1.632200 RIC=7.292597 RMA(12, 1 $P(t_{214} > 1.483092$ 9.763691 5.30505
γ_5 abla 7c. If ϕ_1 ϕ_2 ϕ_3 θ_1 θ_2 θ_3 θ_4	2.377807×10 ² Parámetros estimación Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -5.894156×10 ⁻¹ -6.975854×10 ⁻¹ -2.050398×10 ⁻¹	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712699×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹	6.73532056 2.6 tres: ARMA(T ₀ 2.6310940 14.7795485 -3.4525213 -1.7540618 -6.5782962 5.7119759 -1.8845916	1.648473×10 ⁻¹⁰ =8.751618 (3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻²	$ \begin{array}{c c} & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & \\ \hline \textbf{Parámetros} \\ \hline & & & \\ \phi_1 \\ & & \phi_2 \\ & \phi_3 \\ & \phi_7 \\ & \phi_{12} \\ & \theta_4 \\ & \theta_9 \\ \end{array} $	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ²	6.7353206 83091 Belo cuatro: A T ₀ 20.2235656 NaN NaN NaN 9.7221431 0.6282572 6.8048065	1.632200 RMA(12, 1 $P(t_{214} > 1.483092$ 9.763691 5.30505 9.99728(
γ_5 abla 7c. I abla 7c. I	2.377807×10 ⁻² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ 6.975854×10 ⁻¹ -2.050398×10 ⁻¹ -2.498174×10 ⁻²	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻²	6.73532056 Description of the state of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{200} > T_0)$ 9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹	$ \begin{array}{c c} & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ 8.857359×10 ² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ²	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443	1.632200 $P(C=7.292597)$ RMA(12, 1 $P(t_{214} > 1.483092)$ 9.763691 5.30505 9.997280 4.57952
γ_5 abla 7c. If ametros ϕ_1 ϕ_2 ϕ_3 θ_1 θ_2 θ_3 θ_4	2.377807×10 ⁻² Parámetros estimación Estimación 5.103660×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -6.975854×10 ⁻¹ -2.050398×10 ⁻¹ -2.498174×10 ⁻² -1.192725×10 ⁻¹	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 1.8823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻²	6.73532056 2.53 BIC= 0 tres: ARMA(T ₀ 2.6310940 14.7795485 -3.4525213 -1.7540618 -6.5782962 5.7119759 -1.8845916 0.2672957 1.2932078	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹	$ \begin{array}{c c} & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & \\ \hline \textbf{Parámetros} \\ \hline & & & \\ \phi_1 \\ & & \phi_2 \\ & \phi_3 \\ & \phi_7 \\ & \phi_{12} \\ & \theta_4 \\ & \theta_9 \\ \end{array} $	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ² 3.636561×10 ²	6.7353206 83091 Belo cuatro: A T ₀ 20.2235656 NaN NaN NaN 9.7221431 0.6282572 6.8048065	1.632200 $BIC = 7.292597$ RMA(12, 1 $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997280 4.57952
γ_5 Tabla 7c. If ϕ_1 ϕ_2 ϕ_3 θ_1 θ_2 θ_3 θ_4 θ_5 θ_6	2.377807×10 ² Parámetros estimación Estimación 5.103660×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -2.050398×10 ⁻¹ -2.498174×10 ⁻² -1.192725×10 ⁻¹ -2.113339×10 ⁻¹	3.530355×10 ⁻³ AIC = 5.184t(los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.93556×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻²	6.73532056 2.63 BIC= 1.7540618 -6.5782962 -1.8845916 0.2672957 1.2932078 -2.7516446	1.648473×10^{-10} =8.751618 (3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³	$ \begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ 8.857359×10 ² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ²	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443	1.632200 $P(C=7.292597)$ RMA(12, 1 $P(t_{214} > 1.483092)$ 9.763691 5.30505 9.997280 4.57952 2.054850:
$\begin{array}{c} \gamma_5 \\ \hline \textbf{abla 7c. I} \\ \hline \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \end{array}$	2.377807×10 ⁻² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -5.804156×10 ⁻¹ -2.950398×10 ⁻¹ -2.050398×10 ⁻¹ -2.192725×10 ⁻¹ -2.113339×10 ⁻¹ -1.771182×10 ⁻¹	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 1.8823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻²	6.73532056 2.53 BIC= 0 tres: ARMA(T ₀ 2.6310940 14.7795485 -3.4525213 -1.7540618 -6.5782962 5.7119759 -1.8845916 0.2672957 1.2932078	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹	$ \begin{array}{c c} & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & \\ \hline \textbf{Parámetros} \\ \hline & & & & \\ \hline & & & \\ \phi_1 \\ & & & \\ \phi_2 \\ & & & \\ \phi_3 \\ & & \\ \phi_7 \\ & & \\ \phi_1 \\ & & \\ \theta_9 \\ & & \\ \theta_1 \\ & & \\ \theta_0 \\ & \\ \beta_1 \\ \end{array} $	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 4.8857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ² 3.636561×10 ²	6.7353206 83091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126	1.632200 $RIC=7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997280 4.57952 2.054850 5.31007
$\begin{array}{l} \gamma_5 \\ \hline \text{abla 7c. I} \\ \hline \text{cámetros} \\ \begin{array}{l} \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_6 \\ \theta_7 \\ \theta_8 \end{array}$	2.377807×10 ² Parámetros estimación Estimación 5.103660×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -2.050398×10 ⁻¹ -2.498174×10 ⁻² -1.192725×10 ⁻¹ -2.113339×10 ⁻¹	3.530355×10 ⁻³ AIC = 5.184t(los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.93556×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻²	6.73532056 2.63 BIC= 1.7540618 -6.5782962 -1.8845916 0.2672957 1.2932078 -2.7516446	1.648473×10^{-10} =8.751618 (3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³	$ \begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴	6.7353206 83091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161	1.632200 RMA(12, I $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997286 4.57952 2.0548500 5.31007 1.21388
$\begin{array}{c} \gamma_5 \\ \hline \textbf{abla 7c. I} \\ \hline \textbf{abla 7c. I} \\ \hline \textbf{ametros} \\ \hline \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_9 \\ \end{array}$	2.377807×10 ⁻² Parámetros estimación Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -5.804156×10 ⁻¹ -2.050398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ 1.771182×10 ⁻¹ -2.171182×10 ⁻¹ -2.367893×10 ⁻¹	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻²	6.73532056 Description of the street of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.583781×10 ⁻² 3.598147×10 ⁻³	$ \begin{array}{c c} & \gamma_5 \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ $	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 3.636561×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴	6.7353206 83091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057	1.632200 $P(C=7.292597)$ RMA(12, 1 $P(t_{214} > 1.483092)$ 9.763691 5.30505 9.997280 4.57952 2.054850: 5.31007 1.21388 4.89142
$\begin{array}{c} \gamma_5 \\ \hline {\bf abla~7c.~I} \\ $	2.377807×10 ² Parámetros estimacio Estimación 5.103660×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -2.050398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -1.1771182×10 ⁻¹ -2.367893×10 ⁻¹ 9.205783×10 ⁻²	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 8.041070×10 ⁻² 8.041070×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻²	6.73532056 Description of the state of the	1.648473×10^{-10} =8.751618 (3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 2.597356×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.583781×10 ⁻² 3.598147×10 ⁻³ 2.422484×10 ⁻¹	$ \begin{array}{c c} & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & \\ \hline \textbf{Parámetros} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹ -1.785836×10 ⁻¹ -1.857359×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ -3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ -2.919309×10 ⁻⁸	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸	6.7353206 33091 Belo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 2.6282176	1.632200 $RIC=7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997280 4.57952 2.054850 5.31007 1.21388 4.89142 9.20524
$\begin{array}{c} \gamma_5 \\ \hline \\ \textbf{Y}_5 \\ \hline \\ \textbf{Y}_6 \\ \textbf{Y}_7 \\ \textbf{Y}_8 \\ \textbf{Y}_9 \\ Y$	2.377807×10 ⁻² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -5.804156×10 ⁻¹ -2.953398×10 ⁻¹ 2.498174×10 ⁻² 2.113339×10 ⁻¹ 1.771182×10 ⁻¹ 2.367893×10 ⁻¹ 9.205738×10 ⁻² 3.549589	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 3.636561×10 ⁻² 3.636561×10 ⁻²	6.73532056 Discontinuous BIC = 10 tres: ARMA(To	$\begin{array}{c} 1.648473\times 10^{-10} \\ = 8.751618 \\ \hline {\bf 3,9}({\bf 1,0})[{\bf 12}] \\ P(t_{200} > T_0) \\ 9.145203\times 10^3 \\ 2.597356\times 10^{34} \\ 6.721165\times 10^4 \\ 8.088559\times 10^2 \\ 3.752777\times 10^{-10} \\ 3.805971\times 10^8 \\ 6.087289\times 10^2 \\ 7.895050\times 10^{-1} \\ 1.973668\times 10^{-1} \\ 6.450625\times 10^3 \\ 2.583781\times 10^2 \\ 3.598147\times 10^3 \\ 2.422484\times 10^{-1} \\ 2.592133\times 10^{-176} \end{array}$	$ \begin{array}{c c} \gamma_5 \\ \hline \\ $	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ -4.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 -2.6282176 -2.2860888	1.632200 $RIC=7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691 5.30505 9.97280 4.57952 2.054850 5.31007 1.21388 4.89142 9.20524 2.32279
$\begin{array}{c} \gamma_5 \\ \hline \textbf{YS} \\ \hline \textbf{YS} \\ \hline \\ \textbf{YS} \\ \hline \\ \textbf{YS} \\ \textbf{YS} \\ \hline \\ \textbf{YS} \\ \textbf$	2.377807×10 ⁻² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -5.804156×10 ⁻¹ 6.975854×10 ⁻¹ -2.050398×10 ⁻¹ -2.498174×10 ⁻² 1.192725×10 ⁻¹ -2.113339×10 ⁻¹ 1.771182×10 ⁻¹ 2.367893×10 ⁻¹ 9.205783×10 ⁻² 9.205783×10 ⁻² 3.549589 2.182403×10 ⁻³	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³	6.73532056 Description of the street of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.422484×10 ⁻¹ 2.592133×10 ⁻¹⁷⁶ 5.310237×10 ⁻¹	$ \begin{array}{c c} \gamma_5 \\ \hline \\ $	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ 4.1785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ 8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴	6.7353206 83091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 2.6282176 -2.2860888 1.9519396	$\begin{array}{c} 1.632200 \\ RC = 7.292597 \\ \hline RMA(12,1) \\ P(t_{214} > \\ 1.483092 \\ \hline \\ 9.763691 \\ 5.30505 \\ 9.997280 \\ 4.57952 \\ 2.054850 \\ 5.31007 \\ 1.21388 \\ 4.89142 \\ 9.20524 \\ 2.32279 \\ 5.22499 \\ 5.22499 \\ \end{array}$
$\begin{array}{c} \gamma_5 \\ \hline \textbf{Y}_5 \\ \hline \textbf{Y}_5 \\ \hline \textbf{Y}_6 \\ \hline \textbf{Y}_7 \\ \hline \textbf{Y}_8 $	2.377807×10 ² Parámetros estimación Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -3.426672×10 ⁻¹ -2.050398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ 9.205783×10 ⁻²	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 1.8823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 1.087980×10 ⁻¹ 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁴	6.73532056 2.6310940 14.7795485 -3.4525213 -1.7540618 -6.5782962 -5.7119759 -1.8845916 0.2672957 1.2932078 -2.7516446 2.2446574 2.9447484 1.1727064 97.6084126 0.6274890 2.5296161	1.648473×10^{-10} $= 8.751618$ 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10^{-3} 6.721165×10^{-4} 6.8088559×10^{-2} 3.752777×10^{-10} 3.805971×10^{-8} 6.087289×10^{-2} 7.895050×10^{-1} 6.450625×10^{-3} 2.583781×10^{-2} 3.598147×10^{-3} 2.422484×10^{-1} $2.592133 \times 10^{-176}$ 5.310237×10^{-1} 1.215629×10^{-2}	$ \begin{array}{c c} \gamma_5 \\ \hline \\ $	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹ -1.785836×10 ⁻¹ -1.8857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 1.915163×10 ⁻¹ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ -9.781477×10 ⁻¹⁴ -4.124886×10 ⁻²	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³	6.7353206 33091 Belo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 2.2860888 1.9519396 -11.5188814	1.632200 $RIC=7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997280 4.57952 2.054850 5.31007 1.21388 4.89142 9.20524 2.32279 5.22499 3.333272
$\begin{array}{c} \gamma_5 \\ \hline \textbf{YS} \\ \hline \textbf{YS} \\ \hline \\ \textbf{YS} \\ \hline \\ \textbf{YS} \\ \textbf{YS} \\ \hline \\ \textbf{YS} \\ \textbf$	2.377807×10 ² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -5.804156×10 ⁻¹ -2.953398×10 ⁻¹ 2.498174×10 ⁻² -2.113339×10 ⁻¹ 1.771182×10 ⁻¹ -2.367893×10 ⁻¹ 9.205738×10 ⁻² 9.205738×10 ⁻² 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶	3.530355×10 ⁻³ AIC= 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³	6.73532056 Description of the street of the	$\begin{array}{c} 1.648473\times 10^{-10} \\ = 8.751618 \\ \hline {\bf 3,9}({\bf 1,0})[{\bf 12}] \\ P(t_{200} > T_0) \\ = 9.145203\times 10^3 \\ 2.597356\times 10^{34} \\ 6.721165\times 10^4 \\ 8.088559\times 10^{-2} \\ 3.752777\times 10^{-10} \\ 3.805971\times 10^8 \\ 6.087289\times 10^2 \\ 7.895050\times 10^{-1} \\ 1.973668\times 10^{-1} \\ 6.450625\times 10^{-3} \\ 2.583781\times 10^{-2} \\ 3.598147\times 10^{-3} \\ 2.422484\times 10^{-1} \\ 2.592133\times 10^{-16} \\ 5.310237\times 10^{-1} \\ 1.215629\times 10^{-2} \\ 4.902006\times 10^{-3} \\ \end{array}$	$ \begin{array}{c c} \gamma_5 \\ \hline \\ $	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ 4.1785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ 8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴	6.7353206 83091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 2.6282176 -2.2860888 1.9519396	1.632200 $RIC=7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997280 4.57952 2.054850 5.31007 1.21388 4.89142 9.20524 2.32279 5.22499 3.333272 4.32283
$\begin{array}{c} \gamma_5 \\ \hline \text{Fabla 7c. 1c.} \\ \hline \text{Fametros} \\ \hline \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_9 \\ \theta_1 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{array}$	2.377807×10 ² Parámetros estimación Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -3.426672×10 ⁻¹ -2.050398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ 9.205783×10 ⁻²	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 1.8823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 1.087980×10 ⁻¹ 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁴	6.73532056 2.6310940 14.7795485 -3.4525213 -1.7540618 -6.5782962 -5.7119759 -1.8845916 0.2672957 1.2932078 -2.7516446 2.2446574 2.9447484 1.1727064 97.6084126 0.6274890 2.5296161	1.648473×10^{-10} $= 8.751618$ 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10^{-3} 6.721165×10^{-4} 6.8088559×10^{-2} 3.752777×10^{-10} 3.805971×10^{-8} 6.087289×10^{-2} 7.895050×10^{-1} 6.450625×10^{-3} 2.583781×10^{-2} 3.598147×10^{-3} 2.422484×10^{-1} $2.592133 \times 10^{-176}$ 5.310237×10^{-1} 1.215629×10^{-2}	$\begin{array}{c c} & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & \\ \hline \textbf{Parámetros} \\ \hline & \phi_1 \\ & \phi_2 \\ & \phi_3 \\ & \phi_7 \\ & \phi_{12} \\ & \theta_4 \\ & \theta_9 \\ & \theta_{10} \\ & \theta_0 \\ & \theta_1 \\ & \theta_0 \\ & \theta_1 \\ & \theta_2 \\ & \theta_3 \\ & \theta_4 \\ & \theta_5 \\ & \theta_6 \\ & \alpha_1 \\ & \gamma_1 \\ \end{array}$	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹ -1.785836×10 ⁻¹ -1.8857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 1.915163×10 ⁻¹ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ -9.781477×10 ⁻¹⁴ -4.124886×10 ⁻²	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³	6.7353206 33091 Belo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 2.2860888 1.9519396 -11.5188814	1.632200 $RIC=7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997280 4.57952 2.054850 5.31007 1.21388 4.89142 9.20524 2.32279 5.22499 3.333272 4.32283
$\begin{array}{c} \gamma_5 \\ \hline \textbf{Fabla 7c. I} \\ \hline \boldsymbol{\phi}_1 \\ \boldsymbol{\phi}_2 \\ \boldsymbol{\phi}_3 \\ \boldsymbol{\theta}_1 \\ \boldsymbol{\theta}_2 \\ \boldsymbol{\theta}_3 \\ \boldsymbol{\theta}_4 \\ \boldsymbol{\theta}_5 \\ \boldsymbol{\theta}_5 \\ \boldsymbol{\theta}_6 \\ \boldsymbol{\theta}_7 \\ \boldsymbol{\theta}_9 \\ \boldsymbol{\theta}_9 \\ \boldsymbol{\theta}_1 \\ \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{\beta}_3 \\ \boldsymbol{\beta}_4 \end{array}$	2.377807×10 ² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -5.804156×10 ⁻¹ -2.953398×10 ⁻¹ 2.498174×10 ⁻² -2.113339×10 ⁻¹ 1.771182×10 ⁻¹ -2.367893×10 ⁻¹ 9.205738×10 ⁻² 9.205738×10 ⁻² 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁶	6.73532056 Discontinuous and the second and the se	$\begin{array}{c} 1.648473\times 10^{-10} \\ = 8.751618 \\ \hline {\bf 3,9}({\bf 1,0})[{\bf 12}] \\ P(t_{200} > T_0) \\ = 9.145203\times 10^3 \\ 2.597356\times 10^{34} \\ 6.721165\times 10^4 \\ 8.088559\times 10^{-2} \\ 3.752777\times 10^{-10} \\ 3.805971\times 10^8 \\ 6.087289\times 10^2 \\ 7.895050\times 10^{-1} \\ 1.973668\times 10^{-1} \\ 6.450625\times 10^{-3} \\ 2.583781\times 10^{-2} \\ 3.598147\times 10^{-3} \\ 2.422484\times 10^{-1} \\ 2.592133\times 10^{-16} \\ 5.310237\times 10^{-1} \\ 1.215629\times 10^{-2} \\ 4.902006\times 10^{-3} \\ \end{array}$	$ \begin{array}{c c} & & & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & & & \\ \hline \textbf{Parámetros} \\ \hline & & & & & \\ \hline & & & & \\ \phi_1 & & & & \\ \phi_2 & & & & \\ \phi_3 & & & & \\ \phi_7 & & & & \\ \phi_1 & & & & \\ \phi_9 & & & & \\ \theta_9 & & & & \\ \theta_1 & & & & \\ \theta_0 & & & & \\ \beta_1 & & & & \\ \beta_2 & & & & \\ \beta_3 & & & & \\ \beta_5 & & & & \\ \beta_5 & & & & \\ \beta_5 & & & & \\ \alpha_1 & & & & \\ Y_1 & & & \\ \alpha_2 & & & \\ \end{array} $	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.472956×10 ⁻²	3.530355×10 ³ AIC= 4.38 Error Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.636561×10 ² 1.107419×10 ⁴ 1.575909×10 ⁵ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.527395×10 ³	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 -2.6282176 -2.2860888 1.9519396 -11.5188814 4.1757613	1.632200 $RC = 7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997286 4.57952 2.054850 5.31007 1.21388 4.89142 9.20524 2.32279 5.22499 3.333272 4.32283 4.32283 4.32283
$\begin{array}{c} \gamma_5 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\$	2.377807×10 ⁻² Parámetros estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.904156×10 ⁻¹ -5.904156×10 ⁻¹ -2.050398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ 9.205783×10 ⁻² -3.649803×10 ⁻¹ -4.481422×10 ⁻⁶ -8.674080×10 ⁻¹¹	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻³ 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻⁶ 1.110756×10 ⁻⁸ 3.794288×10 ⁻¹¹	6.73532056 Description of the state of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.583781×10 ⁻² 2.592133×10 ⁻¹⁷⁶ 5.310237×10 ⁻¹ 1.215629×10 ⁻² 4.902006×10 ⁻³ 9.220350×10 ⁻³ 2.325146×10 ⁻²	$ \begin{array}{c c} & & & & & & & \\ \hline \textbf{Tabla 7} \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	2.377807×10 ⁻² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹ -1.785836×10 ⁻¹ -1.8857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 1.915163×10 ⁻¹ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ -9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.472956×10 ⁻² -2.968048×10 ⁻² 1.357253×10 ⁻²	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.527395×10 ³ 3.580860×10 ³ 3.580860×10 ³ 3.580860×10 ³ 3.508690×10 ³	6.7353206 33091 Belo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 2.8437057 2.2860888 1.9519396 -11.5188814 4.1757613 -8.2886446 3.8709002	1.632200 $RIC=7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 1.483092 1.483092 1.483092 1.483092 1.483092 1.483092 1.483092 1.483092 1.483092 1.21388 1.89142 1.21388 1.257468 1.4809 1.4809 1.4809
$\begin{array}{c} \gamma_5 \\ \hline \text{Cabla 7c. 1} \\ \hline \text{rámetros} \\ \hline \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \end{array}$	2.377807×10 ⁻² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -2.950398×10 ⁻¹ 2.498174×10 ⁻² 2.192725×10 ⁻¹ 2.113339×10 ⁻¹ 1.771182×10 ⁻¹ 2.367893×10 ⁻² 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.81422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻⁶ 1.110756×10 ⁻⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴	6.73532056 Discontinuous and the second and the se	$\begin{array}{c} 1.648473\times10^{-10} \\ = 8.751618 \\ \hline {\bf 3,9}({\bf 1,0})[{\bf 12}] \\ P(t_{209} > T_0) \\ 9.145203\times10^{-3} \\ 2.597356\times10^{-34} \\ 6.721165\times10^{-4} \\ 8.088559\times10^{-2} \\ 3.752777\times10^{-10} \\ 3.805971\times10^{-8} \\ 6.087289\times10^{-2} \\ 7.895050\times10^{-1} \\ 1.973668\times10^{-1} \\ 6.450625\times10^{-3} \\ 2.583781\times10^{-2} \\ 3.598147\times10^{-3} \\ 2.452484\times10^{-1} \\ 2.592133\times10^{-176} \\ 5.310237\times10^{-1} \\ 1.215629\times10^{-2} \\ 4.902006\times10^{-3} \\ 9.20350\times10^{-3} \\ 2.325146\times10^{-2} \\ 5.228120\times10^{-2} \\ \end{array}$	$ \begin{array}{c c} \gamma_5 \\ \hline \\ $	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124866×10 ⁻² 1.472956×10 ⁻² -2.968048×10 ⁻² -2.968048×10 ⁻² -1.357253×10 ⁻² -1.964711×10 ⁻²	3.530355×10 ³ AIC= 4.38 Error Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.636561×10 ² 3.107419×10 ⁴ 1.575909×10 ⁵ 3.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.580860×10 ³ 3.596297×10 ³ 3.533041×10 ³	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 -2.2860888 1.9519396 1.15.188814 4.1757613 -8.2886446 3.8709002 -5.4477480	$\begin{array}{c} 1.632200\\ RIC=7.292597\\ \hline RMA(12,1)\\ \hline P(t_{214} >\\ 1.483092\\ \hline 9.763691\\ 5.30505\\ 9.997280\\ 4.57952\\ 2.054850\\ 5.31007\\ 1.21388\\ 4.89142\\ 9.20524\\ 2.32279\\ 5.22499\\ 3.333272\\ 4.32283\\ 1.257468\\ 1.44009\\ 1.39602\\ 1.39602\\ \end{array}$
$\begin{array}{c} \gamma_5 \\ \hline {\bf Fabla~7c.~I} \\ \hline {\bf Fabla~7c.~I} \\ \hline {\bf Fametros} \\ \hline \\ \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_1 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_1 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_1 \\ \theta_5 \\ \theta_8 \\ \theta_9 \\ \theta_1 \\ \theta_5 \\ \theta_6 \\ \alpha_1 \\ \end{array}$	2.377807×10 ⁻² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -2.950398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.357893×10 ⁻¹ -2.357893×10 ⁻¹ -2.3549589 2.182403×10 ⁻³ -2.801344×10 ⁻⁴ -4.481422·10 ⁻⁶ -2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ -9.781477×10 ⁻¹⁴ -4.124886×10 ⁻²	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.935564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087908×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻⁶ 5.1110756×10 ⁻⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 5.5150978×10 ⁻³	6.73532056 Description of the state of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.583781×10 ⁻² 3.598147×10 ⁻³ 2.592133×10 ⁻¹⁷⁶ 5.310237×10 ⁻¹ 1.215629×10 ⁻² 4.902006×10 ⁻³ 9.220350×10 ⁻³ 2.325146×10 ⁻² 5.228120×10 ⁻² 4.315128×10 ⁻²⁴	$ \begin{array}{c c} & & & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & & & \\ \hline \textbf{Parámetros} \\ \hline & & & & & \\ \hline & & & & \\ \phi_1 & & & & \\ \phi_2 & & & & \\ \phi_3 & & & & \\ \phi_7 & & & & \\ \phi_1 & & & & \\ \phi_9 & & & & \\ \theta_9 & & & & \\ \theta_9 & & & \\ \theta_{10} & & & \\ \beta_0 & & & \\ \beta_1 & & & \\ \beta_2 & & & \\ \beta_3 & & & \\ \beta_5 & & & \\ \beta_5 & & & \\ \beta_5 & & & \\ \alpha_1 & & & \\ Y_1 & & & \\ \alpha_2 & & & \\ Y_2 & & \\ \alpha_3 & & & \\ Y_3 & & & \\ \end{array} $	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ 8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.472956×10 ⁻² -2.968048×10 ⁻² -1.964711×10 ⁻² -1.964711×10 ⁻² -2.034908×10 ⁻²	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ³ 3.594288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.527395×10 ³ 3.523041×10 ³ 3.533041×10 ³ 3.553991×10 ³	6.7353206 83091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 2.68048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 2.6282176 -2.2860888 1.9519396 -11.5188814 4.1757613 -8.2886446 3.8709002 -5.4477480 5.7315044	$\begin{array}{c} 1.632200\\ RC=7.292597\\ \hline RMA(12,1)\\ \hline P(t_{214} >\\ 1.483092\\ \hline 9.763691\\ 5.30505\\ 9.99728\\ 4.57952\\ 2.054850\\ 5.31007\\ 1.21388\\ 4.89142\\ 9.20524\\ 2.32279\\ 5.22499\\ 3.333272\\ 4.32283\\ 1.257468\\ 1.44009\\ 1.39602\\ 3.35610\\ \hline \end{array}$
$\begin{array}{c} \gamma_5 \\ \hline \\ $	2.377807×10 ² Parámetros estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -5.904156×10 ⁻¹ -2.050398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -1.171182×10 ⁻¹ -2.367893×10 ⁻¹ 9.205783×10 ⁻² -3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ -2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.472956×10 ⁻²	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ⁻³ 3.527395×10 ⁻³	6.73532056 Description of the state of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{209} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.422484×10 ⁻¹ 2.592133×10 ⁻¹⁶ 5.310237×10 ⁻¹ 1.215629×10 ⁻² 4.902006×10 ⁻³ 9.220350×10 ⁻³ 2.325146×10 ⁻² 5.228120×10 ⁻² 4.315128×10 ⁻²⁴ 4.359843×10 ⁻⁵	Y5 Tabla 7 Parámetros φ1 φ2 φ3 φ7 φ12 θ4 θ9 θ10 β0 β1 β2 β2 β3 β4 β5 β5 β4 β5 β5 β4 β4 β5 β4 β5 β4 β4 β5 β4 β5 β4	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ -1.785836×10 ⁻¹ -1.785836×10 ⁻¹ -1.8857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 2.915163×10 ⁻¹ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.472956×10 ⁻² -2.968048×10 ⁻² -1.964711×10 ⁻² -1.964711×10 ⁻² -1.954932×10 ⁻² -1.954932×10 ⁻²	3.530355×10 ³ AIC= 4.38 AIC= 4.38 Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 2.553486×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.527395×10 ³ 3.53080(10 ³ 3.53080(10 ³ 3.530341×10 ³ 3.550391×10 ³ 3.550391×10 ³	6.7353206 33091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 2.8437057 2.2860888 1.9519396 -11.5188814 4.1757613 8.2886436 8.2886436 8.2886444 4.2951779	$ 1.632200 $ $ RMA(12, 1) $ $ P(t_{214} > 1.483092 $ $ 1.483092 $ $ 1.483092 $ $ 1.483092 $ $ 1.483092 $ $ 1.483092 $ $ 1.483092 $ $ 1.39505 $ $ 1.39505 $ $ 1.3950$
$\begin{array}{c} \gamma_5 \\ \hline \textbf{Fabla 7c. 1} \\ \hline \textbf{rámetros} \\ \hline \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_0 \\ \theta_1 \\ \beta_6 \\ \beta_6 \\ \beta_1 \\ \beta_6 \\ \beta_5 \\ \beta_6 \\ \alpha_1 \\ \gamma_1 \\ \alpha_2 \\ \end{array}$	2.377807×10 ⁻² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -2.956398×10 ⁻¹ 2.498174×10 ⁻² 2.1193739×10 ⁻¹ 1.771182×10 ⁻¹ 1.2367893×10 ⁻¹ 2.367893×10 ⁻² 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ -9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.472956×10 ⁻² -2.968048×10 ⁻²	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻⁶ 1.110756×10 ⁻⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ⁻³ 3.527395×10 ⁻³ 3.527395×10 ⁻³	6.73532056 Dires: ARMA(T ₀ 2.6310940 14.7795485 -3.4525213 -1.7540618 -6.5782962 5.7119759 1.8845916 0.2672957 1.2932078 2.27516446 2.2446574 2.9447484 1.1727064 97.6084126 0.6274890 0.5274890 2.5296161 -2.8437057 2.6282176 -2.2860888 1.9519396 -11.5188814 4.1757613 8.2886446	$\begin{array}{c} 1.648473\times10^{-10} \\ = 8.751618 \\ \hline {\bf 3,9}({\bf 1,0})[{\bf 12}] \\ P(t_{209} > T_0) \\ 9.145203\times10^{-3} \\ 2.597356\times10^{-34} \\ 6.721165\times10^{-4} \\ 8.088559\times10^{-2} \\ 3.752777\times10^{-10} \\ 3.805971\times10^{-8} \\ 6.087289\times10^{-2} \\ 7.895050\times10^{-1} \\ 1.973668\times10^{-1} \\ 6.450625\times10^{-3} \\ 2.583781\times10^{-2} \\ 3.598147\times10^{-3} \\ 2.452484\times10^{-1} \\ 2.592133\times10^{-176} \\ 5.310237\times10^{-1} \\ 1.215629\times10^{-2} \\ 4.902006\times10^{-3} \\ 9.220350\times10^{-3} \\ 2.325146\times10^{-2} \\ 4.315128\times10^{-24} \\ 4.359843\times10^{-5} \\ 1.380199\times10^{-14} \end{array}$	$ \begin{array}{c c} & & & & & \\ \hline \textbf{Tabla 7}. \\ \hline \textbf{Parámetros} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \phi_1 & & & & \\ \phi_2 & & & & \\ \phi_3 & & & & \\ \phi_7 & & & & \\ \phi_1 & & & & \\ \phi_9 & & & & \\ \theta_1 & & & & \\ \theta_9 & & & & \\ \theta_1 & & & & \\ \theta_0 & & & & \\ \theta_1 & & & & \\ \theta_2 & & & & \\ \theta_3 & & & & \\ \theta_5 & & & & \\ \theta_6 & & & & \\ \alpha_1 & & & & \\ Y_1 & & & & \\ \alpha_2 & & & & \\ Y_2 & & & \\ \alpha_3 & & & & \\ Y_3 & & & & \\ \alpha_4 & & & & \\ Y_4 & & & \\ \end{array} $	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 1.915163×10 ⁻¹ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.12486×10 ⁻² -1.472956×10 ⁻² -2.968048×10 ⁻² -1.537253×10 ⁻² -1.54032×10 ⁻² -1.534032×10 ⁻² -1.534032×10 ⁻² -2.346319×10 ⁻²	3.530355×10 ³ AIC= 4.38 Paragraph of the property of the pr	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 -2.2860888 1.9519396 -11.5188814 4.1757613 -8.2886446 3.8709002 -5.4477480 5.7315044 -4.2951749 6.6883756	$\begin{array}{c} 1.632200\\ RIC=7.292597\\ \hline RMA(12,1)\\ \hline P(t_{214} >\\ \hline 1.483092\\ \hline 9.763691\\ 5.30505\\ 9.997280\\ 4.57952\\ 2.0544850\\ 5.31007\\ 1.21388\\ 4.89142\\ 9.20524\\ 2.32279\\ 5.22499\\ 5.22499\\ 1.257468\\ 1.257468\\ 1.44009\\ 1.39602\\ 3.35610\\ 2.64780\\ 1.936753\\ \end{array}$
$\begin{array}{c} \gamma_5 \\ \hline \begin{array}{c} \hline \text{Fabla 7c. I} \\ \hline \end{array} \\ \hline \begin{array}{c} \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_1 \\ \beta_6 \\ \beta_6 \\ \beta_6 \\ \alpha_1 \\ \gamma_1 \\ \alpha_2 \\ \gamma_2 \end{array}$	2.377807×10 ² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -5.804156×10 ⁻¹ -2.950398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.357893×10 ⁻¹ 9.205783×10 ⁻¹ 9.205783×10 ⁻² -3.549589 2.182403×10 ⁻³ -4.81422×10 ⁻⁶ -4.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² -1.472956×10 ⁻² -2.968048×10 ⁻² -1.537253×10 ⁻²	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻⁶ 5.011157×10 ⁻¹⁴ 5.511157×10 ⁻¹⁴ 5.511157×10 ⁻¹⁴ 5.580978×10 ⁻³ 3.580860×10 ⁻³ 3.580860×10 ⁻³ 3.580860×10 ⁻³ 3.506297×10 ⁻³	6.73532056 Description of the street of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{200} > T_0)$ =9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.583781×10 ⁻² 3.598147×10 ⁻³ 2.422484×10 ⁻¹ 2.592133×10 ⁻¹⁷⁶ 5.310237×10 ⁻¹ 1.215629×10 ⁻² 4.902006×10 ⁻³ 9.220350×10 ⁻³ 2.325146×10 ⁻² 5.228120×10 ⁻² 4.315128×10 ⁻²⁴ 4.359843×10 ⁻⁵ 1.380199×10 ⁻¹⁴ 1.449471×10 ⁻⁴	Y5 Tabla 7 Parámetros φ1 φ2 φ3 φ7 φ12 θ4 θ9 θ10 β0 β1 β2 β2 β3 β4 β5 β5 β4 β5 β5 β4 β4 β5 β4 β5 β4 β4 β5 β4 β5 β4	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ 8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.357253×10 ⁻² -1.964711×10 ⁻² -2.968048×10 ⁻² -1.954711×10 ⁻² -2.034908×10 ⁻² -1.554032×10 ⁻² -2.346319×10 ⁻² 4.155386×10 ⁻³	3.530355×10 ³ AIC= 4.38 Error Error estandar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.580860×10 ³ 3.506297×10 ³ 3.550391×10 ³ 3.571520×10 ³ 3.571520×10 ³ 3.508056×10 ³ 3.508056×10 ³	6.7353206 83091 B delo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 -2.6282176 -2.2860888 1.9519396 -11.5188814 4.1757613 -8.2886446 3.8709002 -5.4477480 5.7315044 -4.2951779 6.6883756 1.1731196	1.632200 $RC=7.292597$ $RMA(12, 1)$ $P(t_{214} > 1.483092$ 9.763691 5.30505 9.997280 4.57952 2.054850 5.31007 1.21388 4.89142 9.20524 4.232279 5.22499 3.333272 4.32283 1.257468 1.44009 1.39602 3.35610 2.64780 1.936753 2.42051
$\begin{array}{c} \gamma_5 \\ \hline \text{Cabla 7c. 1} \\ \hline \text{rámetros} \\ \hline \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_9 \\ \theta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_6 \\ \beta_6 \\ \alpha_1 \\ \gamma_1 \\ \alpha_2 \\ \end{array}$	2.377807×10 ² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -5.904156×10 ⁻¹ -2.95398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -1.171182×10 ⁻¹ 2.367893×10 ⁻¹ 9.205783×10 ⁻² -3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ -2.919399×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² -1.472956×10 ⁻² -2.968048×10 ⁻² -1.957253×10 ⁻² -1.957253×10 ⁻² -1.924711×10 ⁻²	3.530355×10 ³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 9.3451040×10 ⁻² 1.107756×10 ⁻³ 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻³ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ⁻³ 3.580860×10 ⁻³ 3.580860×10 ⁻³ 3.530341×10 ⁻³	6.73532056 Description of the state of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{200} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.422484×10 ⁻¹ 2.592133×10 ⁻¹⁶ 5.310237×10 ⁻¹ 1.215629×10 ⁻² 4.902006×10 ⁻³ 9.220350×10 ⁻³ 2.325146×10 ⁻² 4.315128×10 ⁻²⁴ 4.315128×10 ⁻²⁴ 4.315128×10 ⁻²⁴ 1.34810 ⁻²⁵ 1.380199×10 ⁻¹⁴ 1.449471×10 ⁻⁴ 1.427183×10 ⁻⁷	$ \begin{array}{c c} & & & & & \\ \hline \textbf{Tabla 7}. \\ \hline \textbf{Parámetros} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \phi_1 & & & & \\ \phi_2 & & & & \\ \phi_3 & & & & \\ \phi_7 & & & & \\ \phi_1 & & & & \\ \phi_9 & & & & \\ \theta_1 & & & & \\ \theta_9 & & & & \\ \theta_1 & & & & \\ \theta_0 & & & & \\ \theta_1 & & & & \\ \theta_2 & & & & \\ \theta_3 & & & & \\ \theta_5 & & & & \\ \theta_6 & & & & \\ \alpha_1 & & & & \\ Y_1 & & & & \\ \alpha_2 & & & & \\ Y_2 & & & \\ \alpha_3 & & & & \\ Y_3 & & & & \\ \alpha_4 & & & & \\ Y_4 & & & \\ \end{array} $	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 1.915163×10 ⁻¹ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.12486×10 ⁻² -1.472956×10 ⁻² -2.968048×10 ⁻² -1.537253×10 ⁻² -1.54032×10 ⁻² -1.534032×10 ⁻² -1.534032×10 ⁻² -2.346319×10 ⁻²	3.530355×10 ³ AIC= 4.38 Paragraph of the property of the pr	6.7353206 83091 B delo cuatro: A T ₀ 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 -2.2860888 1.9519396 -11.5188814 4.1757613 -8.2886446 3.8709002 -5.4477480 5.7315044 -4.2951749 6.6883756	$\begin{array}{c} 1.632200\\ RIC=7.292597\\ \hline RMA(12,1)\\ \hline P(t_{214} >\\ \hline 1.483092\\ \hline 9.763691\\ 5.30505\\ 9.997280\\ 4.57952\\ 2.0544850\\ 5.31007\\ 1.21388\\ 4.89142\\ 9.20524\\ 2.32279\\ 5.22499\\ 5.22499\\ 1.257468\\ 1.257468\\ 1.44009\\ 1.39602\\ 3.35610\\ 2.64780\\ 1.936753\\ \end{array}$
$\begin{array}{c} \gamma_5 \\ \hline \textbf{YS} \\ \textbf{YS} \\ \hline \textbf{YS} \\ \textbf{YS} \\ \hline \textbf{YS}$	2.377807×10 ² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -5.804156×10 ⁻¹ -2.950398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.113339×10 ⁻¹ -2.357893×10 ⁻¹ 9.205783×10 ⁻¹ 9.205783×10 ⁻² -3.549589 2.182403×10 ⁻³ -4.81422×10 ⁻⁶ -4.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² -1.472956×10 ⁻² -2.968048×10 ⁻² -1.537253×10 ⁻²	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.850033×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻⁶ 5.011157×10 ⁻¹⁴ 5.511157×10 ⁻¹⁴ 5.511157×10 ⁻¹⁴ 5.580978×10 ⁻³ 3.580860×10 ⁻³ 3.580860×10 ⁻³ 3.580860×10 ⁻³ 3.506297×10 ⁻³	6.73532056 Description of the street of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{200} > T_0)$ =9.145203×10 ⁻³ 2.597356×10 ⁻³⁴ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.583781×10 ⁻² 3.598147×10 ⁻³ 2.422484×10 ⁻¹ 2.592133×10 ⁻¹⁷⁶ 5.310237×10 ⁻¹ 1.215629×10 ⁻² 4.902006×10 ⁻³ 9.220350×10 ⁻³ 2.325146×10 ⁻² 5.228120×10 ⁻² 4.315128×10 ⁻²⁴ 4.359843×10 ⁻⁵ 1.380199×10 ⁻¹⁴ 1.449471×10 ⁻⁴	$ \begin{array}{c c} & & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & & \\ \hline \textbf{Parámetros} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ 8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.357253×10 ⁻² -1.964711×10 ⁻² -2.968048×10 ⁻² -1.954711×10 ⁻² -2.034908×10 ⁻² -1.554032×10 ⁻² -2.346319×10 ⁻² 4.155386×10 ⁻³	3.530355×10 ³ AIC= 4.38 Error Error estandar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.580860×10 ³ 3.506297×10 ³ 3.550391×10 ³ 3.571520×10 ³ 3.571520×10 ³ 3.508056×10 ³ 3.508056×10 ³	6.7353206 83091 B delo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 -2.6282176 -2.2860888 1.9519396 -11.5188814 4.1757613 -8.2886446 3.8709002 -5.4477480 5.7315044 -4.2951779 6.6883756 1.1731196	$\begin{array}{c} 1.632200\\ RC=7.292597\\ \hline RMA(12,1)\\ \hline P(t_{214} >\\ 1.483092\\ \hline 9.763691\\ 5.30505\\ 9.99728\\ 4.57952\\ 2.054850\\ 5.31007\\ 1.21388\\ 4.89142\\ 9.20524\\ 4.232279\\ 5.22499\\ 3.333272\\ 4.32283\\ 1.257468\\ 1.44009\\ 1.39602\\ 3.35610\\ 2.64780\\ 1.936753\\ 2.42051\\ \end{array}$
$\begin{array}{c} \gamma_5 \\ \hline \text{Fabla 7c. 1} \\ \hline \text{Ametros} \\ \hline \phi_1 \\ \phi_2 \\ \phi_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \\ \theta_9 \\ \theta_1 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \alpha_1 \\ \gamma_1 \\ \alpha_2 \\ \gamma_2 \\ \gamma_2 \\ \alpha_3 \\ \gamma_3 \\ \end{array}$	2.377807×10 ² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -3.426672×10 ⁻¹ -5.904156×10 ⁻¹ -2.95398×10 ⁻¹ -2.050398×10 ⁻¹ -2.113339×10 ⁻¹ -1.171182×10 ⁻¹ 2.367893×10 ⁻¹ 9.205783×10 ⁻² -3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ -2.919399×10 ⁻⁸ -8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² -1.472956×10 ⁻² -2.968048×10 ⁻² -1.957253×10 ⁻² -1.957253×10 ⁻² -1.924711×10 ⁻²	3.530355×10 ³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.680277×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 9.3451040×10 ⁻² 1.107756×10 ⁻³ 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻³ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ⁻³ 3.580860×10 ⁻³ 3.580860×10 ⁻³ 3.530341×10 ⁻³	6.73532056 Description of the state of the	1.648473×10^{-10} =8.751618 3, 9)(1, 0)[12] $P(t_{200} > T_0)$ 9.145203×10 ⁻³ 6.721165×10 ⁻⁴ 8.088559×10 ⁻² 3.752777×10 ⁻¹⁰ 3.805971×10 ⁻⁸ 6.087289×10 ⁻² 7.895050×10 ⁻¹ 1.973668×10 ⁻¹ 6.450625×10 ⁻³ 2.422484×10 ⁻¹ 2.592133×10 ⁻¹⁶ 5.310237×10 ⁻¹ 1.215629×10 ⁻² 4.902006×10 ⁻³ 9.220350×10 ⁻³ 2.325146×10 ⁻² 4.315128×10 ⁻²⁴ 4.315128×10 ⁻²⁴ 4.315128×10 ⁻²⁴ 1.34810 ⁻²⁵ 1.380199×10 ⁻¹⁴ 1.449471×10 ⁻⁴ 1.427183×10 ⁻⁷	$ \begin{array}{c c} & & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & & \\ \hline \textbf{Parámetros} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ 8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.357253×10 ⁻² -1.964711×10 ⁻² -2.968048×10 ⁻² -1.954711×10 ⁻² -2.034908×10 ⁻² -1.554032×10 ⁻² -2.346319×10 ⁻² 4.155386×10 ⁻³	3.530355×10 ³ AIC= 4.38 Error Error estandar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 6.683651×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ⁶ 1.110756×10 ⁸ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.580860×10 ³ 3.506297×10 ³ 3.550391×10 ³ 3.571520×10 ³ 3.571520×10 ³ 3.508056×10 ³ 3.508056×10 ³	6.7353206 33091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 2.6282176 -2.2860888 1.9519396 1.15.188814 4.1757613 -8.2886446 5.7315044 4.2951779 6.6883756 1.1731196 6.7353206	$\begin{array}{c} 1.632200\\ RIC=7.292597\\ \hline RMA(12,1)\\ \hline P(t_{214} >\\ \hline 1.483092\\ \hline 9.763691\\ 5.30505\\ 9.997280\\ 4.57952\\ 2.054850:\\ 5.31007\\ 1.21388\\ 4.89142\\ 9.20524\\ 2.32279\\ 5.22499\\ 5.22499\\ 1.3332272\\ 4.32283\\ 1.257468\\ 1.24769\\ 1.39602\\ 3.35610\\ 2.64780\\ 1.936753\\ 2.42051\\ 1.484712\\ \hline \end{array}$
$\begin{array}{c} \gamma_5 \\ \hline \textbf{Fabla 7c. I} \\ \hline \textbf{Abla 7c. I} \\ \hline \boldsymbol{\phi}_1 \\ \boldsymbol{\phi}_2 \\ \boldsymbol{\phi}_3 \\ \boldsymbol{\theta}_4 \\ \boldsymbol{\theta}_5 \\ \boldsymbol{\theta}_6 \\ \boldsymbol{\theta}_7 \\ \boldsymbol{\theta}_9 \\ \boldsymbol{\theta}_9 \\ \boldsymbol{\theta}_1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{\beta}_3 \\ \boldsymbol{\beta}_4 \\ \boldsymbol{\beta}_5 \\ \boldsymbol{\beta}_6 \\ \boldsymbol{\alpha}_1 \\ \boldsymbol{\gamma}_1 \\ \boldsymbol{\alpha}_2 \\ \boldsymbol{\gamma}_2 \\ \boldsymbol{\alpha}_3 \end{array}$	2.377807×10 ² Parámetros estimac Estimación 5.103660×10 ⁻¹ 8.647654×10 ⁻¹ -5.913026×10 ⁻¹ -5.913026×10 ⁻¹ -5.804156×10 ⁻¹ -2.950398×10 ⁻¹ 2.498174×10 ⁻² 2.192725×10 ⁻¹ 2.113339×10 ⁻¹ 1.771182×10 ⁻¹ 2.367893×10 ⁻² 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ -8.674080×10 ⁻¹¹ -9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.472956×10 ⁻² -2.968048×10 ⁻² -1.537253×10 ⁻² -1.924711×10 ⁻² -1.924711×10 ⁻² -1.937753×10 ⁻² -1.924711×10 ⁻² -1.937908×10 ⁻²	3.530355×10 ⁻³ AIC = 5.1840 los para el modelo Error estándar 1.939748×10 ⁻¹ 5.851095×10 ⁻² 1.712669×10 ⁻¹ 1.953564×10 ⁻¹ 8.823191×10 ⁻² 1.221268×10 ⁻¹ 1.087980×10 ⁻¹ 9.346104×10 ⁻² 9.222999×10 ⁻² 7.890656×10 ⁻² 8.041070×10 ⁻² 7.890656×10 ⁻² 3.636561×10 ⁻² 3.477993×10 ⁻³ 1.107419×10 ⁻⁴ 1.575909×10 ⁻⁶ 1.110756×10 ⁻⁸ 3.794288×10 ⁻¹¹ 3.580978×10 ⁻³ 3.527395×10 ⁻³ 3.523395×10 ⁻³ 3.533041×10 ⁻³ 3.553391×10 ⁻³	6.73532056 Dires: ARMA(T ₀ 2.6310940 14.7795485 -3.4525213 -1.7540618 -6.5782962 5.7119759 1.8845916 0.2672957 1.2932078 2.27516446 2.2446574 2.9447484 1.1727064 97.6084126 0.6274890 2.5296161 -2.8437057 2.6282176 -2.2860888 1.9519396 -11.5188814 4.1757613 8.2886446 3.8709002 5.4477480 5.7315044	$\begin{array}{c} 1.648473\times10^{-10} \\ = 8.751618 \\ \hline {\bf 3,9}({\bf 1,0})[{\bf 12}] \\ P(t_{209} > T_0) \\ = 9.145203\times10^{-3} \\ 2.597356\times10^{-34} \\ 6.721165\times10^{-4} \\ 8.088559\times10^{-2} \\ 3.752777\times10^{-10} \\ 3.805971\times10^{-8} \\ 6.087289\times10^{-2} \\ 7.895050\times10^{-1} \\ 1.973668\times10^{-1} \\ 6.450625\times10^{-3} \\ 2.583781\times10^{-2} \\ 2.592133\times10^{-176} \\ 5.310237\times10^{-1} \\ 1.215629\times10^{-2} \\ 4.902006\times10^{-3} \\ 9.220350\times10^{-3} \\ 2.325146\times10^{-2} \\ 4.315128\times10^{-24} \\ 4.359843\times10^{-5} \\ 1.380199\times10^{-14} \\ 1.449471\times10^{-8} \\ 1.44971\times10^{-8} \end{array}$	$ \begin{array}{c c} & & & & & \\ \hline \textbf{Tabla 7}. \\ \hline & & & & \\ \hline \textbf{Parámetros} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	2.377807×10 ² d. Parámetros estin Estimación 1.411021×10 ⁻¹ 3.407267×10 ⁻¹ 3.128627×10 ⁻¹ -1.785836×10 ⁻¹ 8.857359×10 ⁻² 4.232216×10 ⁻² 1.737598×10 ⁻¹ 1.915163×10 ⁻¹ 3.549589 2.182403×10 ⁻³ 2.801344×10 ⁻⁴ -4.481422×10 ⁻⁶ 2.919309×10 ⁻⁸ 8.674080×10 ⁻¹¹ 9.781477×10 ⁻¹⁴ -4.124886×10 ⁻² 1.357253×10 ⁻² -1.964711×10 ⁻² -2.968048×10 ⁻² -1.954711×10 ⁻² -2.034908×10 ⁻² -1.554032×10 ⁻² -2.346319×10 ⁻² 4.155386×10 ⁻³	3.530355×10 ³ AIC= 4.38 nados para el mod Error estándar 6.977113×10 ³ NaN NaN 9.110500×10 ³ 6.736438×10 ² 2.553486×10 ² 3.636561×10 ² 3.636561×10 ² 3.477993×10 ³ 1.107419×10 ⁴ 1.575909×10 ³ 3.794288×10 ⁻¹¹ 5.011157×10 ⁻¹⁴ 3.580978×10 ³ 3.580860×10 ³ 3.53031×10 ³ 3.550391×10 ³ 3.571520×10 ³ 3.571520×10 ³ 3.571520×10 ³ 3.571520×10 ³ 3.530355×10 ³	6.7353206 33091 Belo cuatro: A To 20.2235656 NaN NaN 9.7221431 0.6282572 6.8048065 2.8654443 97.6084126 0.6274890 2.5296161 -2.8437057 2.6282176 -2.2860888 1.9519396 1.15.188814 4.1757613 -8.2886446 5.7315044 4.2951779 6.6883756 1.1731196 6.7353206	$\begin{array}{c} 1.632200\\ RC=7.292597\\ \hline RMA(12,1)\\ \hline P(t_{214} >\\ 1.483092\\ \hline 9.763691\\ 5.30505\\ 9.99728\\ 4.57952\\ 2.054850\\ 5.31007\\ 1.21388\\ 4.89142\\ 9.20524\\ 4.232279\\ 5.22499\\ 3.333272\\ 4.32283\\ 1.257468\\ 1.44009\\ 1.39602\\ 3.35610\\ 2.64780\\ 1.936753\\ 2.42051\\ \end{array}$

Tabla 9. Pruebas de hipó	tesis para los modelos	s de regresión con erro	estructural E_t ARMA.

	Para los modelos uno, dos, tres y cuatro.					
	Pruebas de hipótesis para la tendencia					
Modelo	Tests de hipótesis	Estadístico de prueba y su distribución	Criterio de decisión			
Uno	H_0 : $\beta_6 = 0$ contra H_1 : $\beta_6 \neq 0$	$T_0 = \frac{\widehat{\beta_6}}{se(\widehat{\beta_6})} \sim t_{203}$	Rechazar H_0 si $P(t_{203} > T_0)$ es pequeño			
Dos	H_0 : $\beta_6 = 0$ contra H_1 : $\beta_6 \neq 0$	$T_0 = \frac{\widehat{\beta_6}}{se(\widehat{\beta_6})} \sim t_{204}$	Rechazar H_0 si $P(t_{204} > T_0)$ es pequeño			
Tres	H_0 : $\beta_6 = 0$ contra H_1 : $\beta_6 \neq 0$	$T_0 = \frac{\widehat{\beta_6}}{se(\widehat{\beta_6})} \sim t_{209}$	Rechazar H_0 si $P(t_{209} > T_0)$ es pequeño			

Cuatro	H_0 : $\beta_6 = 0$ contra H_1 : $\beta_6 \neq 0$	$T_0 = \frac{\widehat{\beta_6}}{se(\widehat{\beta_6})} \sim t_{214}$	Rechazar H_0 si $P(t_{214} > T_0)$ es pequeño
]	Pruebas de hipótesis para la estacionalida Para cada par (α_i, γ_i) con $i = 1, 2, 3, 4, 5$	
Modelo	Tests de hipótesis	Estadístico de prueba y su distribución	Criterio de decisión
Uno	H_0 : $\alpha_i = 0$ contra H_1 : $\alpha_i \neq 0$	$T_0 = \frac{\widehat{\alpha}_t}{se(\widehat{\alpha}_t)} \sim t_{203}$	Rechazar H_0 si $P(t_{203} > T_0)$ es pequeño
Cilo	$H_0: \gamma_i = 0$ contra $H_1: \gamma_i \neq 0$	$T_0 = \frac{\widehat{\gamma}_l}{se(\widehat{\gamma}_l)} \sim t_{203}$	Rechazar H_0 si $P(t_{203} > T_0)$ es pequeño
Dos	H_0 : $\alpha_i = 0$ contra H_1 : $\alpha_i \neq 0$	$T_0 = \frac{\widehat{\alpha}_t}{se(\widehat{\alpha}_t)} \sim t_{204}$	Rechazar H_0 si $P(t_{204} > T_0)$ es pequeño
Dos	$H_0: \gamma_i = 0$ contra $H_1: \gamma_i \neq 0$	$T_0 = \frac{\widehat{h}}{se(\widehat{\gamma_i})} \sim t_{204}$	Rechazar H_0 si $P(t_{204} > T_0)$ es pequeño
Tres	H_0 : $\alpha_i = 0$ contra H_1 : $\alpha_i \neq 0$	$T_0 = \frac{\widehat{\alpha}_t}{se(\widehat{\alpha}_t)} \sim t_{209}$	Rechazar H_0 si $P(t_{209} > T_0)$ es pequeño
nes	$H_0: \gamma_i = 0$ contra $H_1: \gamma_i \neq 0$	$T_0 = \frac{\widehat{Y}_i}{se(\widehat{Y}_i)} \sim t_{209}$	Rechazar H_0 si $P(t_{209} > T_0)$ es pequeño
Cuatro	H_0 : $\alpha_i = 0$ contra H_1 : $\alpha_i \neq 0$	$T_0 = \frac{\widehat{\alpha}_t}{se(\widehat{\alpha}_t)} \sim t_{214}$	Rechazar H_0 si $P(t_{214} > T_0)$ es pequeño
Cuatro	$H_0: \gamma_i = 0$ contra $H_1: \gamma_i \neq 0$	$T_0 = \frac{\widehat{Y}_l}{se(\widehat{Y}_l)} \sim t_{214}$	Rechazar H_0 si $P(t_{214} > T_0)$ es pequeño
	Pruebas o	le hipótesis para los parámetros de error	estructural
Modelo	Tests de hipótesis	Estadístico de prueba y su distribución	Criterio de decisión
	$H_0: \phi_j = 0$ contra $H_1: \phi_j \neq 0$	$T_0 = \frac{\widehat{\emptyset_j}}{se(\widehat{\emptyset_j})} \sim t_{203}$	Rechazar H_0 si $P(t_{203} > T_0)$ es pequeño
Uno	$H_0: \theta_i = 0$ contra $H_1: \theta_i \neq 0$	$T_0 = \frac{\widehat{\theta}_t}{se(\widehat{\theta}_t)} \sim t_{203}$	Rechazar H_0 si $P(t_{203} > T_0)$ es pequeño
	$H_0: \emptyset_j = 0$ contra $H_1: \emptyset_j \neq 0$	$T_0 = \frac{\widehat{\theta_j}}{\operatorname{se}(\widehat{\theta_j})} \sim t_{204}$	Rechazar H_0 si $P(t_{204} > T_0)$ es pequeño
Dos	$H_0: \theta_i = 0$ contra $H_1: \theta_i \neq 0$	$T_0 = \frac{\widehat{\theta_i}}{se(\widehat{\theta_i})} \sim t_{204}$	Rechazar H_0 si $P(t_{204} > T_0)$ es pequeño
Tres	$H_0: \phi_j = 0$ contra $H_1: \phi_j \neq 0$	$T_0 = \frac{\widehat{\emptyset_j}}{se(\widehat{\emptyset_j})} \sim t_{209}$	Rechazar H_0 si $P(t_{209} > T_0)$ es pequeño
	$H_0: \theta_i = 0$ $contra$ $H_1: \theta_i \neq 0$	$T_0 = rac{\widehat{ heta}_t}{se(\widehat{ heta}_t)} \sim t_{209}$	Rechazar H_0 si $P(t_{209} > T_0)$ es pequeño
Cunter	$H_0: \phi_j = 0$ contra $H_1: \phi_j \neq 0$	$T_0 = \frac{\widehat{\emptyset_j}}{se(\widehat{\emptyset_j})} \sim t_{214}$	$ \begin{array}{c} \operatorname{Rechazar} H_0 \text{ si } P(t_{214} > T_0) \\ \text{es pequeño} \end{array} $
Cuatro	H_0 : $\theta_i = 0$ contra H_1 : $\theta_i \neq 0$	$T_0 = \frac{\widehat{\theta}_t}{se(\widehat{\theta}_t)} \sim t_{214}$	$ \begin{array}{c} \operatorname{Rechazar} H_0 \text{ si } P(t_{214} > T_0) \\ \text{es pequeño} \end{array} $
	i		Ì

Entonces, teniendo en cuenta las pruebas de hipótesis recién presentadas en la tabla 9 y los valores *p* mostrados en quinta columna de las tablas 7a, 7b, 7c y 7d, se puede determinar la significancia estadística de cada uno de los parámetros de interés. Así pues, en el caso de la tendencia, interesa que el parámetro asociado al término de mayor grado de cada polinomio, que para todos los modelos

es de grado seis, sea estadísticamente significativo, y si se asumen un nivel de significancia de $\alpha = 0.05$, se tiene que todos los modelos se cumple que $P(|t_{239-k}| > |T_0|) < 0.05 = \alpha$, por lo que se rechaza la hipótesis nula y se concluye que existe evidencia muestral suficiente para sugerir que la tendencia es estadísticamente significativa, por lo que se puede afirmar que sí es de grado seis significativamente.

En el caso de la estacionalidad, interesa que al menos uno de los componentes sea significativo, de esta forma, asumiendo un nivel de significancia de $\alpha=0.05$, se tiene que todos los modelos, en todas sus frecuencias, al menos uno de los componentes es significativo, ya que $P(|t_{239-k}|>|T_0|)<0.05=\alpha$. Por otro lado, en el caso de error estructural, se tiene que para el modelo 1, solo los parámetros ϕ_{13} y ϕ_{19} , son estadísticamente significativo asumiendo un nivel de significancia de 0.05, ya que $P(|t_{204}|>|T_0|)<0.05=\alpha$; en el modelo 2, todos los parámetros son significativos excepto ϕ_5 , θ_k , con k = 3, 5, 8, ..., 11; en el modelo 3, todos los parámetros son significativos excepto, \emptyset_1 , θ_4 , θ_5 , θ_6 , ϕ_1 ; por último, en el modelo 4, todos los parámetros son significativos excepto θ_4 .

Por otro lado, vale la pena observar la *figura 11*, presentada de forma íntegra en la siguiente página, en la cual se observa cómo es el ajuste de cada uno de los modelos comparado con la serie temporal. De las gráficas de ajuste se observa que al modelar la componente de error estructural E_t se logra seguir la componente cíclica en todos los modelos ARMA considerados, gráficamente no se logra identificar cuál modelo tiene mejor ajuste porque todas parecen tener el mismo patrón, además se puede observar la presencia de datos atípicos que no se logran explicar por ningún modelo, esto debido que son observaciones que se comportan diferente, sin embargo, según las medidas de ajuste AIC y BIC, los modelos con mejor ajuste son el modelo exponencial polinomial de grado seis estacional con variables trigonométricas con errores estructurales ARMA(7,11) y el modelo exponencial polinomial de grado seis estacional con variables trigonométricas con errores estructurales ARMA(12,10) incluyendo ϕ_7 y θ_{10} , siendo mejor el primero.

Figura 11. Graficas con ayuda de *R* de la serie original (en negro) y la serie ajustada (en rojo) para cada uno de los modelos, a saber: (a) modelo uno: AR(19), (b) modelo dos: ARMA(7, 11), (c) modelo tres: ARMA(3, 9)(1, 0)₁₂ y (d) modelo cuatro: ARMA(12, 10)

5. ANÁLISIS DE RESIDUALES Y VALIDACIÓN DE SUPUESTOS

Ahora bien, se debe tener en cuenta que para el planteamiento de cada uno de los modelos se partieron de varios supuestos sobre los errores de ajuste a_t implícitos al suponer que estos son un ruido blanco, los cuales son: media cero, varianza constante y ausencia de patrones contrarios a la independencia y la distribución normal. No obstante, teniendo en cuenta que estos errores no son conocidos, para poder validar los supuestos se va a realizar esta revisión mediante los residuales, que son los estimadores de estos errores de ajuste, para lo cual se tiene la *figura 12*, en la que se pueden visualizar a los residuales contra el tiempo, y en la *figura 13*, los residuales contra los valores ajustados de cada modelo.

Así pues, vale la pena comenzar evaluando si se cumple el supuesto de media cero y varianza constante para cada modelo, y al revisar cada uno de los gráficos se valida que ninguna aporta evidencia en contra de los supuestos de homocedasticidad y media constante

en cero, y tampoco se detecta que hayan patrones contrarios a la independencia mediante estos gráficos como ciclos o rachas de signos positivos y negativos.

Figura 12. Graficas hechas con ayuda de **R** de los residuales contra el tiempo para cada modelo, a saber: (a) modelo uno: AR(19), (b) modelo dos: ARMA(7, 11), (c) modelo tres: ARMA(3, 9)(1, 0)₁₂ y (d) modelo cuatro: ARMA(12, 10). Nótese las líneas rojas horizontales presentes en cada modelo. En el medio se marca el residual nulo y las otras dos correspondes a las delimitaciones del positivo y el negativo del doble de la varianza de los residuales asociados con cada modelo.

Figura 13. Graficas hechas con ayuda de \mathbf{R} de los residuales contra el índice nominal de ventas para cada modelo, a saber: (a) modelo uno: AR(19), (b) modelo dos: ARMA(7, 11), (c) modelo tres: ARMA(3, 9)(1, 0)₁₂ y (d) modelo cuatro: ARMA(12, 10). Nótese las líneas rojas horizontales presentes en cada modelo. En el medio se marca el residual nulo y las otras dos correspondes a las delimitaciones del positivo y el negativo del doble de la varianza de los residuales asociados con cada modelo.

Asimismo, es necesario evaluar las gráficas del ACF y PACF para cada uno de los modelos en la *figura 14*, donde las hipótesis a contrastar en la **ACF** son:

$$H_0: \rho(k) = Corr(a_t, a_{t+k}) = 0 \quad \forall k = 1, 2, ..., 36$$
 $vs.$
 $H_1: \exists k: \ \rho(k) = Corr(a_t, a_{t+k}) \neq 0, k = 1, 2, ..., 36$

Figura 14. Graficas hechas con ayuda de **R** de las funciones de autocorrelación, **ACF**, estimadas para cada modelo, a saber: (a) modelo uno: AR(19), (b) modelo dos: ARMA(7, 11), (c) modelo tres: ARMA(3, 9)(1, 0)₁₂ y (d) modelo cuatro: ARMA(12, 10). Nótese las líneas rojas horizontales presentes en cada modelo, las cuales corresponden a los límites de *Bartlett* para evaluar gráficamente la significancia de la ACF para cada rezago (graficados en el eje de las abscisas).

Y de igual forma, se presentan las gráficas de autocorrelación parcial, PACF, de cada uno de los modelos en la *figura 15*, mientras que las hipótesis a contrastar en la **PACF** es:

$$\begin{array}{l} H_0 \colon \varphi_{kk} = Corr(a_t, a_{t+k} | a_{t+1}, \ldots, a_{t+k-1}) = 0 \quad \forall k = 1, 2, \ldots, 36 \\ vs. \\ H_1 \colon \exists k \colon \varphi_{kk} = Corr(a_t, a_{t+k} | a_{t+1}, \ldots, a_{t+k-1}) \neq 0, k = 1, 2, \ldots, 36 \end{array}$$

Figura 15. Graficas hechas con ayuda de R de las funciones de autocorrelación parciales, PACF, estimadas para cada modelo, a saber: (a) modelo uno: AR(19), (b) modelo dos: ARMA(7, 11), (c) modelo tres: ARMA(3, 9)(1, 0)₁₂ y (d) modelo cuatro: ARMA(12, 10). Nótese las líneas rojas horizontales presentes en cada modelo, las cuales corresponden a los límites de Bartlett para evaluar gráficamente la significancia de la PACF para cada rezago (graficados en el eje de las abscisas).

De las anteriores gráficas de ACF y PACF, se puede observar que en ninguno de los modelos se rechaza el supuesto de ruido blanco sobre el proceso asociado al error de ajuste $\{a_t\}_{t\in\mathbb{Z}^+}$ de cada uno de los cuatro modelos planteados, ya que ninguno supera las líneas rojas, que son los límites de Bartlett para rezagos pequeños, para valores pequeños de rezagos, si bien esto sí sucede para rezagos mayores, pero que pueden ser descartados teniendo presente que la probabilidad de cometer error tipo I aumenta con el valor del rezago.

De la misma forma, se recurre a las pruebas Ljung-Box, cuyos resultados son presentados en la tabla 10 para evaluar el supuesto de ruido blanco sobre el error de ajuste $\{a_t\}_{t\in\mathbb{Z}^+}$, de manera que, considerando $\rho(k)=Corr(a_t,\,a_{t+k})$, se tiene que las hipótesis son:

$$H_0: \rho(1) = \rho(2) = \cdots \rho(m) = 0$$

 $vs.$
 $H_1: \exists k: \rho(k) \neq 0, k = 1, 2, ..., m$

 $H_0: \rho(1) = \rho(2) = \cdots \rho(m) = 0$ vs. $H_1: \exists k: \rho(k) \neq 0, k = 1, 2, ..., m$ $Y \text{ se tiene que el estadístico de prueba es } Q_{LB} = 239 \times 241 \sum_{k=1}^{m} \frac{|\hat{\rho}(k)|^2}{239-k} \sim \chi_m^2 \text{ y que tiene como criterio de rechazo que el valor}$ p $V_p = P(\chi_m^2 \ge Q_{LB})$ sea pequeño. Con esto claro, se debe tener presente que se va a realizar seis veces este test conjunto para m =6, 12, 18, 24, 30, 36

Así pues, usando un nivel de significancia de 5%, se tiene a la luz de los resultados que en ningún escenario se rechaza la hipótesis nula, por lo que hay evidencia muestral suficiente para sugerir que los errores de ajuste a_t son incorrelacionados.

Tabla 10. Test de *Ljung-Box* para a_t para los modelos uno, dos, tres y cuatro con $\rho(k) = Corr(a_t, a_{t+k})$

r	Habia 10. Test de Ljung-Box para u_t para los moderos uno, dos, des y cuado con $\rho(\kappa) = corr(u_t, u_{t+k})$. $H_0: \rho(1) = \rho(2) = \cdots \rho(m) = 0 vs. H_1: \exists k: \rho(k) \neq 0, k = 1, 2,, m$							
		$H_0: \rho(1) =$	$\rho(2) = \cdots \rho(m) = 0$	vs.	$H_1: \exists k: \rho(k) \neq$	0, k = 1, 2,, m		
	Tabla 10	Oa. Modelo uno.				Tabla 1	0b. Modelo dos.	
m	QlB	Grados de libertad	$P(\chi^2 > Q_{LB})$	11	m	Q_{LB}	Grados de libertad	$P(\chi^2 > Q_{LB})$
6	0.3457743	6	0.9992430	11	6	0.7785545	6	0.9926364
12	1.2240504	12	0.9999567	71	12	4.5812777	12	0.9705249
18	2.9865758	18	0.9999732	11	18	8.3634928	18	0.9727197
24	10.5326155	24	0.9919748	11	24	12.7185469	24	0.9705362
30	15.6225203	30	0.9857176	11	30	18.6034936	30	0.9479235
36	22.4201553	36	0.9625322		36	22.7095125	36	0.9585481
	Tabla 10	Oc. Modelo tres.			Tabla 10d. Modelo cuatro.			
m	QlB	Grados de libertad	$P(\chi^2 > Q_{LB})$	11	m	Q_{LB}	Grados de libertad	$P(\chi^2 > Q_{LB})$
6	0.3176636	6	0.9994069	71	6	0.8775359	6	0.98983181
12	1.6448616	12	0.9997865		12	6.9245801	12	0.86255709
18	5.8031658	18	0.9969313	11	18	12.7071484	18	0.80866839
24	20.3526417	24	0.6765557		24	28.6371281	24	0.23408695
30	27.2910944	30	0.6079480	11	30	38.1831368	30	0.14510388
36	36.3954279	36	0.4502497		36	48.0522881	36	0.08632259

Por último, sobre la normalidad del error de ajuste, donde se quiere contrastar las siguientes hipótesis: $H_0: \{a_t\}_{t \in \mathbb{Z}^+}$ se distribuye normal vs $H_1: a_{t \in \mathbb{Z}^+}$ no se distribuye normal, se puede observar que en los tests de Shapiro-Wilk en la tabla 11, todas las pruebas no rechazan la normalidad usando una significancia de 5%, sin embargo, en los gráficos de normalidad de la figura 16, se puede observar que los residuos de los modelos uno, tres y cuatro se da un alejamiento de las colas, lo que indica que la distribución real de los errores podría ser alguna que tenga mayor probabilidad de valores atípicos en comparación con una distribución normal. Por otro lado, en el modelo dos, se observa que sus residuales presentan un mejor ajuste para su cola inferior pero no tanto para la cola superior, si bien se evidencia un acercamiento luego de alejarse una distancia no significativa, lo cual se le puede atribuir a valores atípicos, teniendo un comportamiento más adecuado, de manera que se concluye que los modelos uno, tres y cuatro tienen errores de ajuste que no se distribuyen normal, mientras que los errores de ajuste del **modelo dos** sí se distribuyen normal.

Figura 16. Tests de Shapiro-Wilks para verificar normalidad de los a_t para los modelos uno, dos, tres y cuatro.

Tabla~11. Tests de Shapiro-Wilks para verificar normalidad de los a_t para los modelos uno, dos, tres y cuatro

Modelo	Errores estructurales	Estadístico W	Valor p	Validez R.B.	Validez normalidad		
Uno	AR(19)	0.99224	0.2414	No	No		
Dos	ARMA(7,11)	0.99104	0.15	Sí	Sí		
Tres	ARMA(3,9)(1,0)[12]	0.98957	0.08255	No	No		
Cuatro	ARMA(12,10) con	0.99167	0.1936	No	No		
	ϕ_7 y θ_{10} .						
NA. No aplica la eva	NA. No aplica la evaluación del test de normalidad por no cumplirse la incorrelación.						

De esta manera, se concluye que el mejor modelo es el dos, dado que cumple con todos los supuestos sobre los errores de ajuste, ya que estos son independientes e idénticamente distribuidos como una normal con media nula y homocedásticos.

6. PRONÓSTICOS PARA EL PERIODO EX POST

Los pronósticos realizados para el periodo ex post, como estrategia de validación cruzada, se harán nuevamente con origen en la observación n = 239. Es preciso recordar que para nuestro modelo no es posible obtener intervalos de pronóstico, en tanto el modelo global del que se parcialmente multiplicativo, y en este sentido, únicamente se presentarán pronósticos puntuales y medidas de error asociados a este tipo de pronósticos (RMSE, MAE y MAPE). Además, se presentará la ecuación de pronósticos para el modelo tres, el cual se refleja en la tabla 12.

Tabla 12. Ecuación de pronósticos para el *modelo tres* con origen en n = 239

```
Modelo 3
           \tilde{\mathbf{Y}}_{239}(L) = exp[3.55 + 2.182 \times 10^{-3}(239 + L) - 2.801 \times 10^{-4}(4239 + L)^2 - 4.481 \times 10^{-6}(239 + L)^3 + 2.919 \times 10^{-8}(239 + L)^4 - 8.674 \times 10^{-11}(239 + L)^5]
+9.781\times10^{-14}(239+L)^{6}-4.125\times10^{-2}sin\left(\frac{\pi}{6}(239+L)\right)+1.473\times10^{-2}cos\left(\frac{\pi}{6}(239+L)\right)-2.968\times10^{-2}sin\left(\frac{\pi}{3}(239+L)\right)+1.357\times10^{-2}cos\left(\frac{\pi}{3}(239+L)\right)
                                                   -1.925 \times 10^{-2} sin \left(\frac{\pi}{2}(239+L)\right) + 2.035 \times 10^{-2} cos \left(\frac{\pi}{2}(239+L)\right) - 1.534 \times 10^{-2} sin \left(\frac{2\pi}{3}(239+L)\right)
                                                 +2.3456\times10^{-2}\cos\left(\frac{2\pi}{3}(239+L)\right)+4.155\times10^{-2}\sin\left(\frac{5\pi}{6}(239+L)\right)+2.378\times10^{-2}\cos\left(\frac{5\pi}{6}(239+L)\right)+\hat{E}_{239}(L)]
   \hat{E}_{239}(L) = 5.10 \times 10^{-1} \hat{E}_{239}(L-1) + 8.65 \times 10^{-1} \hat{E}_{239}(L-2) - 5.91 \times 10^{-1} \hat{E}_{239}(L-3) - 3.423 \times 10^{-1} \hat{a}_{239}(L-1) - 5.80 \times 10^{-1} \hat{a}_{239}(L-2) + 6.98 \times 10^{-1} \hat{a}_{239}(L-3) \\ -3.423 \times 10^{-1} \hat{a}_{239}(L-4) + 2.50 \times 10^{-2} \hat{a}_{239}(L-5) + 1.19 \times 10^{-1} \hat{a}_{239}(L-6) - 2.11 \times 10^{-1} \hat{a}_{239}(L-7) + 1.77 \times 10^{-1} \hat{a}_{239}(L-8) + 2.37 \times 10^{-1} \hat{a}_{239}(L-9) \\ +9.20 \times 10^{-2} \hat{E}_{239}(L-12) + (9.20 \times 10^{-2} \times 5.10 \times 10^{-1}) \hat{E}_{239}(L-13) + (9.20 \times 10^{-2} \times 8.65 \times 10^{-1}) \hat{E}_{239}(L-14) + (9.20 \times 10^{-2} \times -5.91 \times 10^{-1}) \hat{E}_{239}(L-15) 
                                                                                                                                           En las anteriores ecuaciones se tiene que
```

```
\widehat{E}_{239}(L-j) = \begin{cases} \text{Residuo estructural } \widehat{E}_{239+L-j} \text{ si } L-j \leq 0 \\ \text{pronóstico de los ciclo } L-j \text{ períodos después de t} = 239, \quad \text{si} \quad L-j > 0 \\ \widehat{a}_{239}(L-i) = \begin{cases} \text{Residuo de ajuste } \widehat{a}_{239+L-i} \text{ si } \quad L-j \leq 0 \\ 0, \text{si } L-j > 0 \end{cases}
```

Por otro lado, se tiene que las medidas de precisión para los pronósticos puntuales de los cuatros modelos están presentes en la tabla 13.

Tabla 13.	Precisión	de los	Pronósticos	puntuales
-----------	-----------	--------	-------------	-----------

Medidas	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo local de descomposición mul- tiplicativa y <i>loess</i> lineal			
RMSE	0.84	0.79	1.07	0.76	0.67			
MAE	0.73	0.65	0.86	0.66	0.53			
MAPE (%)	0.63	0.56	0.75	0.56	0.44			
Amplitud. Media I.P	NA	NA	NA	NA	NA			
Cobertura (%) I.P	NA	NA	NA	NA	NA			

De la tabla se puede rescatar que los modelos en general presentan resultados aceptables ya que sus medidas de error son bajas, y para cada una de ellas se presentan que el modelo **cuatro** es el que tiene cifras de error más bajas si no tenemos en cuenta las obtenidas por el modelo local, seguidas por el modelo **dos** y el modelo **tres**, en ese orden, y finalmente se tiene al modelo **uno**, que es el que peores indicadores de error presenta. Entonces, tomando al modelo cuatro, que a la luz de estos valores se asume como el mejor modelo, según el RMSE el modelo cuatro se equivocó en promedio en cada pronóstico en 0.76 puntos del índice y según el MAE, se equivoca en promedio en 0.66 puntos del índice de ventas nominales, toda vez que según el MAPE este modelo se equivocó en promedio en cada pronóstico en un 0.56% respecto a cada valor real. Si ponemos a competir al modelo dos con el modelo local en estos términos, el modelo local es el ganador.

Se presenta la *figura 17*, en la cual se compara el pronóstico realizado por cada uno de los modelos presentados y en el que se compara con los valores realmente observados del índice de ventas nominales de los meses del periodo *ex post*. En este es claro que todos los modelos realizan unos pronósticos adecuados para cada mes, pues los valores pronosticados se aproximan de forma aceptable a los índices reales. De esta gráfica se destaca al modelo **cuatro**, la cual está en color cian y se puede evidenciar su proximidad con los índices reales, especialmente para los primeros meses del periodo *ex post*.

Figura 17. Comparación de los pronósticos.

7. COMPARACIÓN DE LOS MODELOS DE REGRESIÓN CON ERRORES ARMA CONTRA UN MODELO LOCAL DE DESCOMPOSICIÓN MULTIPLICATIVA Y *LOESS* LINEAL

Previo al planteamiento de los modelos de regresión con errores estructurales ARMA, se plantearon dos modelos globales y dos locales, siendo uno de ellos *Holt-Winters* y el segundo un modelo local de descomposición multiplicativa y *loess* lineal, donde se encontró que este último conseguía unos ajustes y pronósticos aceptables para la serie temporal del índice de ventas nominal. De esta manera, con el objeto de comparar a los modelos planteados en este documento, se va a traer nuevamente a colación al mejor modelo local antes mencionado y contrastarlo con los modelos ARMA. De esta forma, se presenta inicialmente la *figura 18*, en la cual se puede el ajuste realizado por esta gráfica.

Asimismo, se presenta en la *tabla 14* la compilación de los criterios de información de Akaike (AIC) y Bayesiano (BIC) para los cuatro modelos ajustados y el modelo local que está siendo considerado.

Tabla 14. Valores de los criterios de información AIC y BIC.

Medidas	Modelo local	Modelo 1	Modelo 2	Modelo 3	Modelo 4
AIC	4.24	5.18	4.38	5.29	5.30
BIC	7.27	8.75	7.29	8.19	7.63

Y como se observa, entre los cuatro modelos de regresión con errores ARMA, el modelo **dos** es el que obtiene el menor **AIC** y **BIC**, por lo que se puede considerar al modelo **dos** como el que mejor ajustes realiza; no obstante, si tiene en cuenta también al modelo de descomposición multiplicativa y *loess* lineal, rotulado en la *tabla XXXX5* como "*modelo local*", se advierte que este obtiene valores de AIC y BIC ligeramente inferiores al **modelo dos**, por lo que resulta competitivo en cuanto a ajustes se refiere. No obstante, es importante tener presente que cada uno de estos modelos supone que los errores de ajuste son un ruido blanco, de manera que vale la pena ver la *figura 19*, donde se incluyen los gráficos de los residuales del modelo local:

Figura 18. Gráficas de los ajustes del modelo de descomposición multiplicativa y loess lineal.

Figura 18. Gráficas de los ajustes del modelo de descomposición multiplicativa y loess lineal.

Figura 19: Gráfica Residuales del modelo local. (a) $\hat{E}_t vs t$; (b) $\hat{E}_t vs \hat{Y}$.

Entonces, es posible observar que no existen evidencias gráficas en contra de media constante e igual a cero. De igual forma, tampoco parece que exista evidencia en contra de la homocedasticidad de los errores, y tampoco es evidente a simple vista la existencia de ciclos. Ahora bien, es necesario verificar que los errores estén incorrelacionados mediante sus residuales, y si es el caso, chequear su normalidad. De esta manera, se presenta en la *figura 20* las gráficas de la ACF y la PACF muestrales.

Figura 20. (a) Gráfica ACF sobre residuales de ajuste del modelo local. (b) Gráfica PACF sobre residuales de ajuste del modelo local.

De la *figura 20* se rescata que los patrones de ambas gráficas son tipo corte, lo cual es un aspecto característico de un proceso de ruido blanco, pero se ve en la *figura 20* (a) que no se cumple que $\rho(k) = Corr(E_t, E_{t+k}) = 0$ para k = 1, 4, 6, hecho que no se

puede ignorar ya que se sabe que a los primeros valores de k la prueba es bastante confiable. Similarmente en la *figura 20 (b)*, se evidencia que que $\phi_{kk} = Corr(E_t, E_{t+k}|E_{t+1}, ..., E_{t+k-1}) \neq 0$ para k = 1, 4, 7, 8; esta evidencia es suficiente para rechazar el supuesto de que el error del modelo local es un proceso ruido blanco, y dada la evidencia en contra del supuesto de independencia, no se procede con el test de normalidad para los residuales del modelo local. Es importante tener presente que este hecho hace imposible considerar a este modelo aunque sus medidas de error para los ajustes y los pronósticos sean mejores.

Asimismo, se compararán los pronósticos de los cuatro modelos planteados y el modelo ajustado DLL en la tabla 15.

Tabla 15. Pronósticos puntuales y por I.P del 95% de confianza

											Modelo local de descomposición multi-				
	Modelo 1			Modelo 2		Modelo 3		Modelo 4			plicativa y loess lineal				
Período	Pronós-	Lim.	Lim.	Pronós-	Lim.	Lim.	Pronós-	Lim.	Lim.	Pronós-	Lim.	Lim.	Pronóstico	Lim. Inf	Lim. Sup
	tico	Inf	Sup	tico	Inf	Sup	tico	Inf	Sup	tico	Inf	Sup			
2020 Dic	125.436			126.321			125.399			125.389			124.636		
2021 En	105.037			104.733			104.056			104.652			104.008		
2021 Feb	106.327			107.094			106.760			106.70			107.576		
2021 Mar	114.673			115.413			114.062			114.645			114.089		
2021 Abr	111.147			112.007			111.143			111.319			111.831		
2021 May	116.313			116.233			116.726			117.096			116.674		
2021 Jun	115.431			116.260			114.970			115.030			114.654		
2021 Jul	117.954			117.566			117.924			118.274			117.262		
2021 Ago	119.546			119.848			120.038			119.841			118.653		
2021 Sep	122.980			123.470			122.454			122.772			121.303		
2021 Oct	123.982			124.217			124.312			124.085			123.221		
2021 Nov	128.741			128.107			128.541			128.705			127.196		

De esta manera, vale la pena interpretar el resultado con algún periodo particular, como lo puede ser el mes de agosto de 2021, para el cual el modelo uno pronostica que el índice de ventas nominales será de 119.546 puntos .Por su parte, el modelo dos pronostica que el índice de ventas nominales de agosto de 2021 será de 119.848, mientras que el modelo tres proyecta que será de 120.038 puntos, mientras el modelo cuatro pronostica que el índice de ventas nominales de agosto de 2021 será de 119.841 puntos. Por último, el modelo local proyecta que el índice de ventas nominales de agosto de 2021 será de 118.653 puntos.

7.1. Conclusiones

Se encuentra que para el modelo global no se cumplía el supuesto de que los errores estructurales provenían de un proceso ruido blanco debido a que los residuos estructurales no tenían media constante y además se encontró que no eran incorrelacionados gracias a las pruebas ACF y PACF, y coherente con esto, la prueba Ljung-Box rechazó la hipótesis nula, además, no fue posible realizar la prueba de Durbin-Watson ya que esta solo se aplica a modelos que son lineales en su vector de parámetros, lo cual no se corresponde con el modelo global considerado. Sin embargo, se obtuvo que los errores estructurales eran un proceso estacionario. Por todo lo anterior, se procedió a proponer modelos exponencial polinomial de grado seis con componente estacional representada por funciones trigonométricas con errores ARMA, dado que anteriormente se obtuvo una gráfica con patrón tipo cola exponencial sinusoidal en la ACF, hecho que supone no considerar ningún modelo que proponga p < 2) y tipo corte en la gráfica PACF con últimos dos valores que corta los límites de rechazo en k = 19. Así, se consideró pertinente postular un modelo AR(19) para los errores estructurales debido a la probabilidad de cometer error tipo I a mayor k en dicha prueba. Ahora bien, gracias a los resultados de la gráfica EACF se postuló un modelo ARMA(7,11), luego, se empleó la herramienta de identificación automática con la funcion auto.arima() que arrojó como propuesta un modelo ARMA(1, 2)(0, 2)[12] y otros modelos AR(p), los cuales no fueron tenidos en cuenta debido a la condición que ya se había impuesto respecto a que p debe ser mayor o igual a dos. Más tarde, algo similar sucedió con la función SelectModel(), ya que se prefirió seguir las evidencias gráficas de la PACF para definir p; por tanto el modelo tres se definió tal y como se indica en la guía de trabajo. Por último, se postuló al modelo cuatro como un ARMA(12, 10), donde solo se incluyeron los parámetros ϕ_1 , ϕ_2 , ϕ_3 , ϕ_7 , ϕ_{12} , θ_4 , θ_9 y θ_{10} usando armasubsets().

Hablando en términos de ajuste, el modelo con valores más pequeños en los criterios de información AIC y BIC es el **modelo** dos seguido por el modelo cuatro con el segundo valor más pequeño en BIC; en términos de cumplimiento de supuestos el mejor modelo es el **modelo dos**, siendo lo único reprochable de dicho modelo que en el gráfico Q-Q plot se ve evidencia que hacia el final trata de desviarse un poco de la línea recta pero rápidamente vuelve a direccionarse sobre la recta de cuantiles teóricos, lo que se considera un patrón aceptable, además de algunos datos atípicos para los cuales resulta pertinente ignorar para aceptar el supuesto de que los residuos de ajuste provienen de un R. B ~ N(0, σ_a^2). Adicionalmente, en términos de pronóstico, se halló con ayuda de las medidas de error que los mejores modelos son el **dos** y el **cuatro**, dado que ambos empatan en el MAPE, el dos cuenta con menor MAPE y el cuatro con menor RMSE, si bien las diferencias son de dos y una centésima para cada medida respectivamente.

Después de todos los análisis pertinentes, postula al **modelo dos** como el mejor modelo en general. Ahora bien, resulta interesante comparar este modelo con el mejor modelo local que obtuvo en el trabajo número uno, el cual fue el filtro descomposición combinado con loess lineal, usando criterio GCV para escoger parámetro suavizamiento loess, ya que teniendo las herramientas para identificar la incorrelación de los errores estructurales de dicho modelo, se encuentra que los errores estructurales no son incorrelacionados, y por ello en términos de cumplimiento de supuestos el ganador sigue siendo el modelo **dos**, dejando así en segundo plano que los valores de los criterios de información obtenidos por este modelo lo hacían el mejor en términos de ajuste aunque con una pequeña diferencia, de igual forma que como lo había hecho en términos de predicción obteniendo los menores valores en RMSE, MAE y

MAPE. De este modo, como siempre se tiene como prioridad el cumplimiento de los supuestos, se llega a la conclusión de que el mejor modelo para la serie de tiempo de ventas nominales es un modelo exponencial polinomial de grado seis con componente estacional representada por funciones trigonométricas y errores ARMA(7, 11), el cual tiene la desventaja que no es parsimonioso, en tanto este modelo cuenta con 37 parámetros, de tal suerte que resultaría interesante indagar algún método que permita proponer algún modelo más parsimonioso y cuyos supuestos se cumplan.