

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Week 5: Diodes Part 2

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Half-Wave Rectifiers

Introduce diode half-wave rectifiers

Lesson Objectives

- Introduce half-wave rectifiers
- Examine their behavior for sinusoidal inputs
- Analyze a diode rectifier circuit

Rectifier

 A non-linear device that modifies an input voltage such that the output voltage is greater than or less than a threshold value

Sinusoidal Input Voltages

Half-Wave Rectifier

Diode Rectifier Circuit

Positive Half-Wave Rectifier

Non-Ideal Diode

- How does a non-ideal diode change the behavior of the circuit?
- Include the forward voltage drop V_f by modeling the diode as an ideal diode in series with a voltage source

Non-Ideal Diode Circuit

Measured Output

Other Possible Circuits

 Four different rectifiers can be constructed using a resistor and a diode.

Other Possible Circuits

- Can you determine the equation for V_{out} in terms of V_{in} for each of the possible circuits assuming both ideal and non-ideal diodes?
- How does the output of each circuit change if it is taken across element 1 rather than element 2?

Summary

- Rectification
- Half-Wave Rectifiers

Full-Wave Rectifiers

Introduce diode full-wave rectifiers

Lesson Objectives

- Introduce full-wave rectifiers
- Examine their behavior for sinusoidal inputs
- Analyze diode full-wave rectifier circuit

Rectifier

 A non-linear device that modifies an input voltage such that the output voltage is greater than or less than a threshold value

Sinusoidal Input Voltages

Full-Wave Rectifier

Full-Wave Rectifier Circuit

V_{out} Equation

 A full-wave rectifier is also known as an absolute value circuit

$$V_{out} = |V_{in}|$$

Non-Ideal Diode

- How does a non-ideal diode change the behavior of the circuit?
- Include the forward voltage drop V_f by modeling the diode as an ideal diode in series with a voltage source

Non-Ideal Diode Circuit

Circuit for D₁ and D₂ On

$$V_{in} > 2V_f$$

Circuit for D₃ and D₄ On

$$V_{in} < -2V_{f}$$

V_{out} Equation

$$V_{out} = \begin{cases} V_{in} - 2V_f & V_{in} > 2V_f \\ -V_{in} - 2V_f & V_{in} < -2V_f \\ 0 & Otherwise \end{cases}$$

Other Possible Configurations

- How does the output voltage change if the directions of all diodes are reversed?
- How does the output voltage change if the direction of any one diode is reversed?

Summary

Full-Wave Rectifiers

Voltage Transfer Characteristics

Introduce voltage transfer characteristics

Lesson Objectives

- Introduce voltage transfer characteristics (VTCs)
- Use VTC to determine output for given input
- Determine VTC from given input and output plots

Voltage Transfer Characteristic (VTC)

- A graphical description of the behavior of a nonlinear circuit
- A plot of output voltage versus input voltage

Positive Half-Wave Rectifier

$$V_{out} = \begin{cases} V_{in} & V_{in} > 0 \\ 0 & V_{in} \le 0 \end{cases}$$

Example VTC

Positive Full-Wave Rectifier

VTC from Input and Output Waveforms

Designing with a VTC

Summary

- Voltage transfer characteristics are plots of output voltage versus input voltage
- VTCs quickly indicate a circuit's behavior

AC to DC Conversion

Introduce ac to dc conversion

Lesson Objectives

- Introduce ac to dc conversion
- Examine circuits that perform this conversion

AC to DC Conversion

- AC used in power transmission
- DC used to power electronics
- Diode rectifiers are used in converting an alternating current to a direct current

Sinusoidal Input Voltage

DC Power Supply Components

Bipolar DC Power Supply Schematic

Example DC Power Supplies

Example DC Power Supplies

Rectifier with Filter Capacitor

Circuit Voltages

Varying Capacitor Values

- Larger time constant = slower discharge
- Smaller time constant = faster discharge

Output Voltage Level

For a sine wave:
$$V_{\text{peak}} = V_{\text{rms}} * \sqrt{2}$$

$$V_{DC} = V_{peak} - 2V_f$$

Two diode voltage drops are lost in the full-wave rectifier

$$V_{DC} = V_{rms} * \sqrt{2} - 2V_f$$

$$V_{DC} = 120*\sqrt{2} - 2(0.65) = 168.4 \text{ V}$$

Summary

- AC to DC conversion is performed using a transformer, a rectifier, and a filter capacitor
- Larger filter capacitors result in a smoother output voltage

Limiters

Introduce diode limiters

Lesson Objectives

- Introduce limiters
- Examine their behavior for sinusoidal inputs
- Analyze limiter circuits

Limiter (or Clipper)

 A non-linear device that limits the output voltage to a particular level

Sinusoidal Input Voltages

Limiter

Voltage Transfer Characteristic

Positive Limiter Circuit

Ideal Diode

Positive and Negative Limiter Circuit

Ideal Diodes

$$V_1 > V_2$$

Voltage Transfer Characteristic

Half-Wave Rectifier

A special case of a limiter

Summary

- Limiter operation
- Limiter circuits

Voltage Regulators

Introduce diode voltage regulators

Lesson Objectives

- Introduce voltage regulation
- Examine diode regulator circuits

Ideal DC Voltage Regulator

 A device that maintains a constant dc output voltage regardless of variations in input voltage or load

DC Regulator

Line Regulation = $\Delta V_{out} / \Delta V_{in}$

Load Regulation = $\Delta V_{out} / \Delta I_{L}$

Ideal and Real Voltage Sources

Ideal Voltage Source

Real Voltage Source

Diode I-V Curve

Diode Regulator

Output Voltage vs. Load Resistance

Output Voltage vs. Input Voltage

Higher Output Voltage

• How can the output voltage be increased?

Component of DC Power Supply

Summary

- Introduced voltage regulation
- Examined diode regulator circuit

Envelope Detector Demonstration

Demonstrate demodulation of an amplitude modulated waveform

Lesson Objectives

- Introduce amplitude modulation and demodulation
- Introduce envelope detector circuit

Amplitude Modulation (AM)

 Modification of the amplitude of a waveform by variation of a second waveform

$$c(t)=A\cos(\omega_c t)$$
 carrier $m(t)=k\cos(\omega_m t)$ message $s(t)=[1+k\cos(\omega_m t)]\,A\cos(\omega_c t)$ signal

Waveforms

AM Uses

- Transmitting information (AM Radio)
- Creating sound effects

Envelope Detector (AM Demodulator)

Envelope Detector (AM Demodulator)

AC to DC Conversion

Summary

- Introduced amplitude modulation and demodulation
- Examined diode envelope detector circuit