

FCC SAR TEST REPORT

APPLICANT

GLOFONE UK LIMITED

PRODUCT NAME

CHILDREN GSM GPS WRIST DEVICE

MODEL NAME

Brillar 001-050

TRADE NAME

: BRILLAR

BRAND NAME

glo glu

FCC ID

2ADXJBRILLAR001-050

STANDARD(S)

47CFR 2.1093

IEEE 1528-2013

ISSUE DATE

2015-03-19

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

TEST REPORT DE	CLARATION						····· 4
1. TECHNICAL INFORI	MATION		<u> </u>				5
1.1 IDENTIFICATION	OF APPLICANT ···					<u> </u>	5
1.2 IDENTIFICATION	OF MANUFACTUR	RER					5
1.3 EQUIPMENT UND							
1.3.1 PHOTOGRAPHS	S OF THE EUT						5
1.3.2 IDENTIFICATION	N OF ALL USED E	UTs					5
1.4 APPLIED REFERE	ENCE DOCUMENT	rs					6
1.5 DEVICE CATEGO	RY AND SAR LIN	MITS	·····				6
2. SPECIFIC ABSORPT	ION RATE (SAR) ·				<u> </u>	0	7
ORL	.6	LAB ORL	MOL	*Q W.	LAB	ORLA	
2.1 INTRODUCTION ··							7
2.2 SAR DEFINITION	·····		•				7
ALAE ORLA	MORE						OR!
3. SAR MEASUREMEN	NT SETLIP			s.	<u> </u>	o***	8
5. SAN WEASONEWE	VI SEIGI	LAB ORL	MOR	0 10	LAB	ORLAN	
3.1 THE MEASUREM	ENT SVETEM		100				0
3.2 PROBE	ENI SISIEM		O ^N				,g
3.3 PROBE CALIBRA	TION PROCESS	W.					10
3.3.1 DOSIMETRIC A	SSESSMENT PRO	OCEDLIRE	40.			082	10
3.3.2 FREE SPACE A							
3.3.3 TEMPERATURE							
3.4 PHANTOM							11
3.5 DEVICE HOLDER							
ORL							MO.
4. TISSUE SIMULATIN	IG LIQUIDS		Ø	× (0			12
4. HISSOL SINIOLATIN	A LIQUIDS	West West	A 40	2LAE	ORLE	More	.0
5. UNCERTAINTY ASS	ECCMENIT	TLAE .	ORLA	MOL	, Mr. olp	B ORI	14
5. UNCERTAINTY ASS	ESSIVIEIVI	W. Co	ALAD	70 ⁸	410	.0	14
E 4 LINGERTAINTY	CEVAL HATION	FOR HANDS	CAD TES	- 6 M			NOE.
5.1 UNCERTAINTY					·····		··· 14
5.2 UNCERTAINTY	FUK SYSTEM	PERFURMANO	SE CHECK				··· 15

6. SAR MEASUREMENT EVALUATION	
6.1 SYSTEM SETUP	17
6.2 VALIDATION RESULTS	
7. OPERATIONAL CONDITIONS DURING TEST	19
7.1 BODY-WORN CONFIGURATIONS	19
7.2 MEASUREMENT PROCEDURE	19
7.1 BODY-WORN CONFIGURATIONS	IEME 20
8. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER ·	21
9. TEST RESULTS LIST	22
ANNEX A GRAPH TEST RESULTS	24
ANNEX B GENERAL INFORMATION	45

	Change History					
Issue	Issue Date Reason for change					
1.0	2015-03-19	First edition				
S W	LAB	ORLAND HOLD IN THE ORLAND HOLD IN				

TEST REPORT DECLARATION

Applicant	GLOFONE UK LIMITED			
Applicant Address	STRATTON HOUSE, 5 STRATTON STREET, LONDON, W1J 8LA, UK			
Manufacturer	GATOR G	ROUP CO., LTD		
Manufacturer Address	5 Floor, TGK NO. 11 Building, Yangtian Road, the 72nd Zone of Bao'an, Shenzhen, China			
Product Name	CHILDRE	N GSM GPS WRIST [DEVICE	
Model Name	Brillar 001-050			
Brand Name	glo glu			
HW Version	G35_MB_V1.0_20140903			
SW Version	G35_V1.0_2014.12.04_18.24.45			
Test Standards	47CFR 2.1093; IEEE 1528-2013			
Test Date	2014-12-24			
The Highest Reported SAR(W/Kg)	Wrist	1.318W/Kg(10g)	Limit(W/kg): 4.0W/Kg	
	Head	0.264W/Kg(1g)	Limit(W/kg): 1.6W/Kg	

Tested by	4	Cao Bohano
		Cao Bohao
Reviewed by	: <u> </u>	Jeg An
		Peng Huarui
Approved by		Zeng Dexin
		Zera Dexin

1. TECHNICAL INFORMATION

Note: the following data is based on the information by the applicant.

1.1 Identification of Applicant

Company Name:	GLOFONE UK LIMITED
Address:	STRATTON HOUSE, 5 STRATTON STREET, LONDON, W1J 8LA,
E ME CLAE OFLA	UK 400 MONTH AND

1.2 Identification of Manufacturer

Company Name:	GATOR GROUP CO., LTD
Address:	5 Floor, TGK NO. 11 Building, Yangtian Road, the 72nd Zone of
MOL E IN STATE	Bao'an, Shenzhen, China

1.3 Equipment Under Test (EUT)

Model Name:	Brillar 001-050
Trade Name:	BRILLAR
Brand Name:	glo glu
Hardware Version:	G35_MB_V1.0_20140903
Software Version:	G35_V1.0_2014.12.04_18.24.45
Tx Frequency Bands:	GSM850MHz/1900MHz
Uplink Modulation	GSM/GPRS:GMSK
Antenna type:	Fixed Internal Antenna
Development Stage:	Identical prototype
Hotspot function:	Not Support

1.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT

1.3.2 Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version Software Version	
1#	G35_MB_V1.0_20140903	G35_V1.0_2014.12.04_18.24.45

1.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title	
1 _B	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices	
2	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	
3	KDB 447498 D01v05r02	General RF Exposure Guidance	
4	KDB 865664 D01v01r02	SAR Measurement 100 MHz to 6 GHz	
5	KDB 865664 D02v01r01	SAR Reporting	

1.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2. SPECIFIC ABSORPTION RATE (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

(p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

3. SAR MEASUREMENT SETUP

3.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm

- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

Probe linearity: <0.25 dBAxial Isotropy: <0.25 dB

- Spherical Isotropy: <0.25 dB

- Calibration range: 835 to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annexe technique using reference guide at the five frequencies.

 $SAR = \frac{4(P_{fw} - P_{bw})}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$

Where:

Pfw = Forward Power

Pbw = Backward Power

a and b = Waveguide dimensions

skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/VIin(N)$$

(N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

 $Vlin(N)=V(N)^*(1+V(N)/DCP(N))$ (N=1,2,3)

where DCP is the diode compression point in mV.

3.3 Probe Calibration Process

3.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

3.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

3.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)}$

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

C = heat capacity of tissue (brain or muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

 σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

3.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

Device holder

System Material	Permittivity	Loss Tangent	
Delrin	3.7	0.005	

4. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Frequency Band (MHz)	83	35.00	190	00.00
Tissue Type	Head	Body	Head	Body
Ingredients (% by w	eight)	Mo all	RLAR	MORL
Deionised Water	50.36	50.20	54.90	40.40
Salt(NaCl)	1.25	0.90	0.18	0.50
Sugar	0.00	48.50	0.00	58.00
Tween 20	48.39	0.00	0.00	0.00
HEC	0.00	0.20	0.00	1.00
Bactericide	0.00	0.20	0.00	0.10
Triton X-100	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	44.92.	0.00
Diethylenglycol monohexylether	0.00	0.00	0.00	0.00
Measured dielectric	parameters	TLAB OFLI	MOF	W. SLAB
Dielectric Constant	41.50	56.10	39.90	53.30
Conductivity (S/m)	0.90	0.95	1.42	1.52

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Tissue Simulating Liquid

Temperature	e: 22.0~23.8°C	C, humidity: 54~60%.		illo.	لاء في	AP ORL
Date	Freq.(MHz)	Liquid Parameters	Meas.	Target	Delta(%)	Limit±(%)
LAB	Lload OOF	Relative Permittivity(cr):	41.37	41.50	-0.31	5
2014 12 24	Head 835	Conductivity(σ):	0.91	0.90	1.11	5
2014-12-24	014-12-24	Relative Permittivity(cr):	56.12	56.10	0.04	5 5
B	Body 835	Conductivity(σ):	0.93	0.95	-2.11	5
RLA	Hand 1000	Relative Permittivity(cr):	39.87	39.90	-0.08	5
2011 12 21	Head 1900	Conductivity(σ):	1.43	1.42	0.70	5
2014-12-24	Dody 1000	Relative Permittivity(cr):	53.31	53.30	0.02	5
RLA	Body 1900	Conductivity(σ):	1.50	1.52	-1.32	5

5. UNCERTAINTY ASSESSMENT

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

5.1 UNCERTAINTY EVALUATION FOR HANDSET SAR TEST

a morting more orthograph	b	С	d	e= f(d,k)	f ORLAS	g	h= c*f/e	i= c*g/	k
Mole. B Me	AB	ORLAN	11/1	JR. G	Me	AB	ORLAN	е	ORE
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci 🐠	Ci	1g Ui	10g	Vi
	OPLA	(+-		3 Miles	(1g)	(10g)	(+-%)	Ui	6 4
	in ORI	%)	Dist.	VE MO	ZLA!	, 40	RLAB	(+- %)	
Measurement System	OB W	PLAR	-11	ORLA	Mor	oB an	QLAS	- 1	ORL
Probe calibration	E.2.1	4.76	N	1 PLAT	1 ,,,	1	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1000	1 1	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	21 ¹²²	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1 2LA	0.58	0.5	∞ (
Readout Electronics	E.2.6	0.02	Nala	108	1	1	0.02	0.0	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1,81,00	1 10	1.73	1.7	∞
Integration Time	E.2.8	2.0	R 🐠	$\sqrt{3}$	1	10.E	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1 1	1	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1,000	1.15	1.1	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1 HILL	0.03	0.0	8
Extrapolation,	E.5.2	5.0	R	$\sqrt{3}$	1 110	1	2.89	2.8	∞
interpolation and	ORL	MO.	. 03	, ,	AR	MORLE	MOL	9	3
integration Algoritms for Max. SAR Evaluation	MORI	All A	MORL	AB MO	RLAF	200	RLAB	MORL	0
Test sample Related	A.B	OPLAN	anc	Jer a	Me	AB	RLAR	-1/2	ORL
Test sample positioning	E.4.2.	0.03	N	1 ORLAN	1 110	1	0.03	0.0	N-
Dr. Mr. AB	1	MOR		lu.	AB	*ORLA"	WOL.	3	1
Device Holder Uncertainty	E.4.1.	5.00	N	1 1101	1	1	5.00	5.0	N-
	1 0		100	NB.	alika	.,0		0	1

Output power Power drift - SAR drift measurement	6.6.2	4.04	R	$\sqrt{3}$	1	1,11010	2.33	2.3	8
Phantom and Tissue Para	meters	LAB		RLAD	MORE	S W	I AB		ORLA
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1 ME	1 In ORLA	0.03	0.0	80
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	8
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N III	1 NORLES	0.64	0.43	3.20	2.1 5	М
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	∞
Liquid permittivity - measurement uncertainty	E.3.3	10.0	N	1.00	0.6	0.49	6.00	4.9 0	М
Combined Standard Uncertainty	OPLAE	MO	RSS	MORL	LAE ME	OPLA	11.55	10. 67	e m
Expanded Uncertainty (95% Confidence interval)	MORI	A.C	K=2	TLAE MO	OPLAS	W.	23.11	21. 33	-LA

5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

a alle more	b	С	d	e=	f	g	h=	i=	k
	,ORI		More	f(d,k)	SLAF	, AQ	c*f/e	c*g/	_
3 ORLAN MOIN	a M	AB		RLA	Mole	S W	AB	е	RLA
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
	, AB	(+-	LAL	MOKE	(1g)	(10g)	(+-%)	Ui	120
	ORI	%)	Dist.		LAB	MORL	Mo	(+-	3
	-61	Alle	MORI	"IIIO"	Q.P.		2LAB	%)	
Measurement System	Mo	0.B		RLAB	MORIL	MC	0.B		QLA.
Probe calibration	E.2.1	4.76	N m	1 00	1	21 ¹	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1 PLAT	1 0	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1,0	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1 1110	1 3	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1	1	1000	0.02	0.0	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1 1	1	1.73	1.7	∞

D. 10									
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1,10	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1 21.0	1	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1 _R E	1.15	1.1 5	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	16	1 NORLA	0.03	0.0	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	Rate in	$\sqrt{3}$	1 MORLA	1 m	2.89	2.8	8
Dipole	MORE	Me	0	.6	al Al	MORE	HIC	. 1	B
Dipole axis to liquid Distance	8,E.4. 2	1.00	N	$\sqrt{3}$	1 NORLA	9 1	0.58	0.5 8	8
Input power and SAR drift measurement	8,6.6. 2	4.04	R	$\sqrt{3}$	1	2100	2.33	2.3	∞
Phantom and Tissue Para	meters	Mo		3	2LAB	MORL	110		B
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1 MORLA	TAE IN	0.03	0.0	8
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1 3	8
Liquid conductivity - measurement uncertainty	E.3.3	5.00	Neth	$\sqrt{3}$	0.64	0.43	1.85	1.2	М
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	∞
Liquid permittivity - measurement uncertainty	E.3.3	10.0	N	$\sqrt{3}$	0.6	0.49	3.46	2.8	М
Combined Standard Uncertainty	AE MOR	RLAB	RSS	RLAE	MORLA	AE MC	8.83	8.3 7	ORLE
Expanded Uncertainty (95% Confidence interval)	-QLAE	MO MOI	K=2	MORLAR	OE HI	JAL BLAS	17.66	16. 73	41

6. SAR MEASUREMENT EVALUATION

6.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting

the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

6.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	835MHz(H)	835MHz(B)	1900MHz(H)	1900MHz(B)
Target value (1g)	9.680 W/Kg	10.040 W/Kg	39.360 W/Kg	42.360 W/Kg
Test value (1g 250 mW input)	2.446 W/Kg (12.24)	2.489 W/Kg (12.24)	9.653 W/Kg (12.24)	9.921 W/Kg (12.24)
Normalized value (1g)	9.784 W/Kg	9.956 W/Kg	38.612 W/Kg	39.684 W/Kg

Note: System checks the specific test data please see 37-44.

7. OPERATIONAL CONDITIONS DURING TEST

7.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration. The depth of the body tissue was 15.1cm.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Position

7.2 Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.3 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

8. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER

1. GSM Conducted peak output power

D I	Observation	Frequency	Output Power
Band	Channel	(MHz)	(dBm)
COM	128	824.2	34.67
GSM	190	836.6	34.60
850	251	848.8	34.41
DOG	512	1850.2	30.27
PCS	661	1880.0	30.39
1900	810	1909.8	30.18

2. GPRS Mode

		Frequency	Output Power(dBm)						
Band	Channel	(MHz)	•		Slot 3	Slot 4			
CCM	128	824.2	33.09	32.00	31.02	30.20			
GSM 850	190	836.6	33.12	32.09	31.18	30.36			
000	251	848.8	33.04	32.02	31.10	30.27			
DCC	512	1850.2	28.95	27.89	26.95	26.07			
PCS	661	1880.0	29.14	28.09	27.18	26.31			
1900	810	1909.8	29.13	28.12	27.18	26.29			

GPRS Mode Time-based Average Power

		3			A	100		
		Frequency	Output Power(dBm)					
Band	Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4		
CCM	128	824.2	24.06	25.97	26.76	27.19		
GSM	190	836.6	24.09	26.07	26.92	27.35		
850	251	848.8	24.01	26.00	26.84	27.26		
DCC	512	1850.2	19.92	21.87	22.69	23.06		
PCS	661	1880.0	20.11	22.07	22.92	23.30		
1900	810	1909.8	20.1	22.10	22.92	23.28		

9. TEST RESULTS LIST

Summary of Measurement Results (GSM 850MHz Band)

Temperature: 21.0~23 Phantom Configur	MOR	Device Test Positions	Device Test channel	SAR(W/ Kg), Peak	Scaling Factor	Scaled SAR (W/Kg)
Body (15mm Separation)	GSM	Hold to face	128	0.245	1.079	0.264
Body	GSM	Body-worn	128	0.625		0.674
(0mm Separation)	GPRS	Body-worn	190	1.276	1.033	1.318

Summary of Measurement Results (GSM 1900MHz Band)

Temperature: 21.0~23.	.8°C, hun	nidity: 54~60%	AB	RLAL	NO PL	O.B	
Phantom Configurations		Device Test Positions	Device Test channel	SAR(W/ Kg), Peak	Scaling Factor	Scaled SAR (W/Kg)	
Body (15mm Separation)	GSM	Hold to face	661	0.002	1.026	0.002	
Body	GSM	Body-worn	661	0.068	LAB	0.070	
(0mm Separation)	GPRS	Body-worn	661	0.339	1.045	0.354	

Note:

1. GPRS test Scenario(Based on the Max. Time-based Average Power)

Band	Channel	Slots	Power level	Duty Cycle
GPRS850	128	4 1,100	5 110	1:2
GPRS1900	661	4	0	1:2

Note:

- When the 1-g SAR for the mid-band channel or the channel with the Highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05r01)
 - ≤ 0.8 W/kg and transmission band ≤ 100 MHz
 - ≤ 0.6 W/kg and, 100 MHz < transmission bandwidth ≤ 200 MHz
 - ≤ 0.4 W/kg and transmission band > 200 MHz

2. Scaling Factor calculation

Band	Tune-up power tolerance (dBm)	SAR test channel Power (dBm)	Scaling Factor
GSM 850	PCL = 5, PWR = 34.5+-0.5	34.67	1.079
GPRS 850	PCL = 5, PWR = 30+-0.5(4 slots)	30.36	1.033
PCS 1900	PCL = 0, PWR =30+-0.5	30.39	1.026
GPRS 1900	PCL=0, PWR= 26 +-0.5(4 slots)	26.31	1.045

ANNEX A GRAPH TEST RESULTS

BAND	PARAMETERS
ORLAS S HORL	Measurement 1: Flat with Body device position on Low Channel in GSM mode
GSM850	Measurement 2: Flat with Body device position on Low Channel in GSM mode
AE MORL RIAE	Measurement 3: Flat with Body device position on Middle Channel in GPRS mode
OFFICELAR INC.	Measurement 4: Flat with Body device position on Middle Channel in GSM mode
GSM1900	Measurement 5: Flat with Body device position on Middle Channel in GSM mode
	Measurement 6: Flat with Body device position on Middle Channel in GPRS mode

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Flat 10 TLAN	
Device Position	Body	
Band	GSM850	
Channels	Low	
Signal	GSM	

B. SAR Measurement Results

Low Band SAR (Channel 128):

Frequency (MHz)	824.200000
Relative permittivity (real part)	41.371485
Conductivity (S/m)	0.907374
Power drift (%)	1.850000
Ambient Temperature:	22.8°C
Liquid Temperature:	22.7°C
ConvF:	6.11
Crest factor:	1:8

Maximum location: X=-8.00, Y=-24.00 SAR Peak: 2.50 W/kg

SAR 10g (W/Kg)	0.625062
SAR 1g (W/Kg)	1.281484

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Flat 10 TLAN	
Device Position	Body	
Band	GSM850	
Channels	Low	
Signal	GSM	

B. SAR Measurement Results

Low Band SAR (Channel 128):

Frequency (MHz)	824.200000
Relative permittivity (real part)	41.371485
Conductivity (S/m)	0.907374
Power drift (%)	1.850000
Ambient Temperature:	22.8°C
Liquid Temperature:	22.7°C
ConvF:	6.11
Crest factor:	1:8

Maximum location: X=-6.00, Y=12.00 SAR Peak: 0.37 W/kg

SAR 10g (W/Kg)	0.151763
SAR 1g (W/Kg)	0.244966

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 9 minutes 33 seconds

A. Experimental conditions.

Aperimental conditions:		
surf_sam_plan.txt		
Flat to the state of the state		
Body		
GSM850		
Middle		
GPRS		

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976
Relative permittivity (real part)	41.371485
Conductivity (S/m)	0.907374
Power drift (%)	-2.520000
Ambient Temperature:	22.8°C
Liquid Temperature:	22.7°C
ConvF:	6.11
Crest factor:	1:2

Maximum location: X=7.00, Y=22.00 SAR Peak: 4.70 W/kg

SAR 10g (W/Kg)	1.275731
SAR 1g (W/Kg)	2.533924

MEASUREMENT 4

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 9 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Flat	
Device Position	Body	
Band	GSM1900	
Channels	Middle	
Signal	GSM	

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000 39.874286 1.432495				
Relative permittivity (real part)					
Conductivity (S/m)					
Power drift (%)	0.860000				
Ambient Temperature:	22.2°C				
Liquid Temperature:	22.6°C				
ConvF:	5.42 1:8				
Crest factor:					

Maximum location: X=8.00, Y=-8.00 SAR Peak: 0.23 W/kg

SAR 10g (W/Kg)	0.068145		
SAR 1g (W/Kg)	0.134244		

MEASUREMENT 5

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 9 minutes 29 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat 50			
Device Position	Body GSM1900 Middle GSM			
Band				
Channels				
Signal				

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000				
Relative permittivity (real part)	39.874286				
Conductivity (S/m)	1.432495				
Power drift (%)	-0.470000				
Ambient Temperature:	22.2°C				
Liquid Temperature:	22.6°C 5.42 1:8				
ConvF:					
Crest factor:					

Maximum location: X=23.00, Y=-61.00 SAR Peak: 0.01 W/kg

SAR 10g (W/Kg)	0.000540		
SAR 1g (W/Kg)	0.001771		

MEASUREMENT 6

T Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 9 minutes 33 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat			
Device Position	Body GSM1900 Middle GPRS			
Band				
Channels				
Signal				

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000 39.874286 1.432495				
Relative permittivity (real part)					
Conductivity (S/m)					
Power drift (%)	-4.000000				
Ambient Temperature:	22.2°C				
Liquid Temperature:	22.6°C				
ConvF:	5.42				
Crest factor:					

Maximum location: X=-12.00, Y=7.00 SAR Peak: 1.13 W/kg

SAR 10g (W/Kg)	0.339101		
SAR 1g (W/Kg)	0.688332		

System Performance Check Data(Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	AE RIAL HORLE MO			
Band	835MHz			
Channels	STAF MORE MO NE			
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	826.400000 41.371485 0.907374				
Relative permittivity (real part)					
Conductivity (S/m)					
Power drift (%)	-0.310000				
Ambient Temperature:	22.9°C 22.1°C				
Liquid Temperature:					
ConvF:	6.73 1:1				
Crest factor:					

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.556481		
SAR 1g (W/Kg)	2.446424		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5209	1.6629	1.1437	0.8075	0.5889	0.4143
(W/Kg)	Me	68	QL.A.b	"OBT"	Wo.	.0	2LAB

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	AB RLAE MORLE MO			
Band	835MHz			
Channels	GLAN HORE HIC NE			
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	826.400000			
Relative permittivity (real part)	56.123528			
Conductivity (S/m)	0.931684			
Power drift (%)	-1.430000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	6.99			
Crest factor:	0RL 1101:1			

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.514694		
SAR 1g (W/Kg)	2.488727		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5209	1.6629	1.1437	0.8075	0.5889	0.4143
(W/Kg)	Me	.0	al.Ab	, ORL	Wo.	.0	2LAB

System Performance Check Data(Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	AB SLAE MORE MO			
Band	1900MHz			
Channels	CLAR MORE MO AE			
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1900.000000			
Relative permittivity (real part)	39.874286			
Conductivity (S/m)	1.432495			
Power drift (%)	-1.290000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	6.00			
Crest factor:	ORLA MOTAL MARKET			

Maximum location: X=6.00, Y=0.00

SAR 10g (W/Kg)	6.312481		
SAR 1g (W/Kg)	9.653057		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.6419	6.0043	3.7297	2.2606	1.5119	0.9792
(W/Kg)	Mo	OB.	RLAB	MORL	Mo	OB.	QLAB

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.24

Measurement duration: 13 minutes 26 seconds

A. Experimental conditions.

-Aperimental conditions.	
Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	AB GLAD HORL HO
Band	1900MHz
Channels	CLAS HORE HO AE
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1900.000000 53.314962			
Relative permittivity (real part)				
Conductivity (S/m)	1.496849			
Power drift (%)	-0.920000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	6.17			
Crest factor:	ORL MOT:1			

Maximum location: X=7.00, Y=1.00

SAR 10g (W/Kg)	6.474628		
SAR 1g (W/Kg)	9.920623		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.2075	7.3996	5.4654	4.1101	3.1286	2.4128
(W/Kg)	Mo	68	QLAD.	MORL	Mo		3LAB

ANNEX B GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China		
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. List of Test Equipments

List of Test Equipments		10.		
No.	Instrument	Туре	Cal. Date	Cal. Due
AE 1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Agilent(8960, SN:10752)	2014-2-21	1year
3	Voltmeter	Keithley (2000, SN:1000572)	2014-8-24	1year
4	Synthetizer	Rohde&Schwarz (SML_03, SN:101868)	2014-8-24	1year
5	Amplifier	Nucl udes (ALB216, SN:10800)	2014-8-24	1year
6	Power Meter	Rohde&Schwarz (NRVD, SN:101066)	2014-8-24	1year
7	Probe	Satimo (SN:SN 37/08 EP80)	2014-9-22	1year
8	Phantom	Satimo (SN:SN_36_08_SAM62)	2014-8-24	1year
9	Liquid	Satimo (Last Calibration: 2014-12-24)	N/A	N/A
10	Dipole 835MHz	Satimo (SN 20/08 DIPC 99)	2014-9-22	1year
11	Dipole 1900MHz	Satimo (SN 30/13 DIP1G900-261)	2014-9-22	1year

**** END OF REPORT ****