Amogh Kulkarni

CONTACT Information Arizona State University Michigan, USA amogh-kulkarni.github.io akulka39@asu.edu

EDUCATIONAL QUALIFICATIONS

Arizona State University, Arizona, USA

Master of Science Aerospace Engineering

Specialization: Aerodynamics

Relevant Courses: Advanced Aerodynamics, Computational Fluid Dynamics, Machine Learning,

Modern Manufacturing

GPA: **3.47/4**

University of Petroleum and Energy Studies, Dehradun, India

(Aug '15 - May '19)

(Jan '22 - Dec '23)

Bachelor of Technology Automotive Design Engineering

Specialization: Vehicle Dynamics

Relevant Courses: Automotive Chassis Component Design, Applied Fluid Mechanics, Heat Transfer

GPA: **7.44/10**

RWTH Aachen University, Aachen, Germany

(June '17 - July '17)

Automotive and Mobility Studies Summer Program

Grade: A

Publications / Conferences

Amogh Kulkarni, Timothy Takahashi, On the Design Implications of Elliptical and Bell-Shaped Lift Distributions, 2025 AIAA SciTech, Orlando, USA, January **2025** (Currently under review)

- ullet Designed 6 concept wings for elliptical and select non-elliptical lift distribution using potential flow code, VORLAX
- Leveraged the iterative Excel VBA workflow developed by me to control spanwise twist and design suitable wings with desired transverse loading
- Developed database of solution iterations and analyzed select VORLAX wings, in Ansys Fluent CFD within an HPC environment to understand span load, lift, drag and leading-edge suction as a function of angle-of-attack.

Lt Cdr Ashok Anand, **Amogh Kulkarni**, Dr Ganapati Joshi, *Effect of trailing edge serrations on-wing performance with and without tubercles* 48th National Conference on Fluid Mechanics and Fluid Power (FMFP), BITS Pilani, India December **2021** (Proceedings published in FMFP Vol. 3, LNME, Springer)

- Designed asymmetric wings with trailing edge serrations based on bio inspiration from owls.
- Investigated aerodynamic loads on the modified wing at higher AoA in the stall regime.
- \bullet Streamlined the CFD workflow for grid independence and employed advanced meshing strategies reducing computational time by 40%
- \bullet The developed trailing edge serrations configuration augmented lift by 15% at higher angles of attack as compared to baseline

Sqn Ldr Akshay Joshi, **Amogh Kulkarni**, Ganapati Joshi, *Computational Study of Leading edge tubercles on propeller performance* International Conference on Recent Advances in Computational Techniques (IC-RACT), **2020**, IIT Guwahati, India (Proceedings published in SSRN, Elsevier)

- Designed a parametric 3D model of small baseline 10"x4.7" APC slow flyer propeller & modified propeller with leading edge tubercles with constant wavelength and amplitude .
- Modeled the MRF rotating domain in Ansys Fluent and calculated Thrust and torque of the propellers for specific RPM and advanced ratio
- 3D printed the propellers and built a strain gauge test rig to assess propeller performance by measuring thrust, monitoring motor power feed and prop RPM
- \bullet Modified propeller used 21% less power at 5% thrust penalty at lower RPMs in static thrust Wind Tunnel experiements

C. Dinesh Prabhu, Ganapati Joshi, Ajay Mishra, **Amogh Kulkarni**, Numerical Analysis of Wave Drag reduction in Cascade Fins by Altering Leading Edge Shape International Conference on Recent Advances in Computational Techniques (IC-RACT), **2020**, IIT Guwahati, India

- Conducted trade studies on the leading edge shape of 3 element novel cascade fins in supersonic regime, with **15 deg** leading edge displaying overall best wave drag performance
- Designed 7 parametric geometries in CATIA V5 and verified and validated the CFD model with established literature
- Implemented Ansys Fluent scripting, streamlining the workflow to reduce postprocessing time

Amogh Kulkarni, Dhruv Joshi, Adaptive Resonator for Acoustic Supercharging SAE International Powertrain, Fuels and Lubricants Meeting 2019, Texas, USA.

Recipient of Student Travel Research Fund Award

- Presented a concept to improve the breathing capability of a naturally aspirated engine
- Conceptualized a variable intake resonator which achieves the ram-effect over a wider RPM range facilitating an increase in engine volumetric efficiency, potentially downsizing the engine

RESEARCH EXPERIENCE

Research Assistant

(Aug '19 - Sept '21)

Guide: Dr. Ganapathi Joshi, Defense Institute of Advanced Technology, DIAT, DRDO

- Led and delivered 4+ design and development projects involving CFD analysis, within set timelines and followed a systematic design and simulation process utilizing Ansys Fluent.
- \bullet Generated parametric 3D Surface/CAD development aero geometries using CATIA V5, SpaceClaim for CFD, Wind Tunnel testing and streamlined CFD Workflows with iterative Mesh refinements on Poly-Hex grids, reducing simulation runtimes by 40%.
- Conducted verification and validation of CFD Methods of Baseline models within 5% error margin.
- Documented technical reports about project progress post analysis and suggested suitable design changes for improving aerodynamic performance of propellers, wing trailing edge devices of respective projects.

Research Intern (May '18 - Aug '18)

Guide: Chief Research Scientist Dr. N.K.S. Rajan, Indian Institute of Science (IISc)

- Compiled literature on passive flow control devices, discussing analysis with 2 Aerospace engineering Professors; presented insights on bio inspired (humpback whale) flow control.
- Designed a high camber, baseline wing and a modified wing with inspired leading-edge tubercles in CATIA V5.
- Investigated Aerodynamic loads using Ansys Fluent to compare stall performance of both designs.

Teaching Aide

Aviation Grader, National Aviation Policy

(May '22 - July '23)

Supervisor: Carol Hannah, Dept. of Aviation, ASU

- Prepared written explanations and rubric for assessments on Aviation Policies
- Reviewed and graded student assignments and provided insightful, constructive feedback to ensure learning

Industry Experience

Jr. Project Engineer

(Feb '24 -Present)

Supervisor: Chethan Dsouza, Ford Platform Manager, NYX, Inc, MI, USA

- Created Bill Of Materials for internal usage and planned inventory material requirement flow.
- Reviewed CAD, assembly drawings of hard trim parts to be injection molded for the Ford Program
- \bullet Calculated dimensional tolerance using ASME Y14.5 and verified components using gauge R & R and Autodesk moldflow deflection reports
- Created and tracked Engineering change notices(ECNs) in existing and new products

SKILLS

Technical: Wind Tunnel Testing, CAD Surfacing, CFD, Meshing

Software/Programming : Julia, Python, Excel VBA, MATLAB, C++
CFD Tools : ANSYS Fluent, OpenFOAM, ParaView,

CAD Tools : SpaceClaim, CATIA V5/3DX (GSD), SOLIDWORKS (CSWA)

KEY PROJECTS

Data Driven Prediction of Temperature evolution cases

(May '24 - June '24)

- Built a model based on Linear Regression, Neural Networks to get a correlation of heat transfer coefficient using OpenFOAM generated dataset
- Developed Analytical, Naive Regression, Ranz & Marshal Elaborate model and neural networks to assess the quality and parity of Nu number
- $\bullet\,$ Built a Deep Neural Network to predict temperature evolution in 1D & 2D transient thermal diffusion cases
- Solved the Diffusion Equation using Finite Difference Method and built a fully connected NN with 2 hidden layers with 128 units each and ReLu activation funtion

Advanced Aerodynamics: Wing Design

(Aug '22 - Dec '22)

- Formulated and validated a wing-fuse lage combination using VORLAX for a specified transonic regime and flight condition.
- Developed an agile, iterative workflow using Excel VBA to design, analyze desired wing geometries and parse useful data from generated log file
- Designed swept wing for subcritical flow and performed iterative analysis on wing camber and section geometry to fit transverse elliptical lift distribution
- Developed a MATLAB code to post-process parsed data to visualize pressure distributions and wing design parameters

Applied CFD: Thermal Analysis of Internal Flows

(Aug '22 - Dec '22)

- Performed transient 3D Thermal CFD analysis of internal flow with thermal convection of a prototype heating system to analyze temperature of the outflow
- Designed the system/computational domain in Spaceclaim and imposed buoyancy effect due to fluid density variation.
- Used NIST formula to calculate operating fluid density and thermal expansion coefficient from operating temperature.

CFD: Flow modeling in 2D mixing chamber

(Jan '22 - May '22)

- Developed a program in MATLAB, modeling flow in a 2D mixing chamber using non-dimensional 2D Navier-Stokes Equation and mass fraction equation
- Used the fractional step method with Adams Bashforth/Crank Nicolson with ADI for the momentum equations and the WENO-TVD-RK-3 method for the mass fraction equation
- Generated flow visualizations of mixing fluid at different Reynolds numbers and measured performance of mixing chamber by time averaged value of mixing quantity