Циклические моноиды, свободные моноиды .

Определение 1.1 (Свободный моноид). Свободный моноид - моноид, элементами которого являются конечные последовательности (строки) элементов носителя моноида. Свободный моноид на множестве $A \neq \emptyset$ это $\mathcal{A} = (A^*; \&, \varepsilon), A^*$ - множество всех слов в алфавите A, & - конкатенация, ε - пустое слово.

Теорема 1.2. Любой моноид, порождённый элементами множества, на котором есть свободный моноид, является гомоморфным образом этого моноида

Доказательство. Пусть
$$A \neq \emptyset$$
, $\mathcal{A} = (A^*; \&)$, $\mathcal{B} = (\{t^{\mathcal{B}}(a_1, ..., a_n) : a_1, ..., a_n \in A\}; *)$ и $h : \mathcal{A} \to \mathcal{B}$ - Гомоморфизм

$$h(a_1...a_n) = (a_1, ..., a_n)^{\mathcal{B}}$$

 $h(\varepsilon) = e^{\mathcal{B}}$

Надо доказать свойство гомоморфизма:

$$h(u\&v) = h(u) * h(v)$$

Пусть $u = a_1...a_n$, $v = a'_1...a'_n$, тогда

$$h(u\&v) = h(uv) = h(a_1...a_na'_1...a'_n) = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

$$h(u) * h(v) = h(a_1...a_n) * h(a'_1...a'_n) = (a_1...a_n)^{\mathcal{B}} * (a'_1...a'_n)^{\mathcal{B}} = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

Из этого следует что h(u&v) = h(u) * h(v)

Пример 1.3 (Примеры свободных моноидов и их гомоморфных образов). Пусть дан алфавит $A = \{1\}$, который образует множество слов $A^* = \{\varepsilon, 1, 11, ...\}$ и моноид $\mathcal{A} = (A^*; \&, \varepsilon)$, тогда

- 1. $\mathcal{B}=(\{1\};\cdot,1),\$ порожедённый элементами A является гомоморфным образом $\mathcal{A},\ h:A\to B,\ h(1...1)=1$
- 2. $\mathcal{C}=(\omega;+,0),$ порожедённый элементами A (натуральные числа можно получить сложением единицы) является гомоморфным образом $\mathcal{A},\,h:A\to B,\,h(\underbrace{1...1}_n)=n$

Определение 1.4 (Циклический моноид). Циклический моноид - моноид порождённый одним элементом. < a > - циклический моноид, порождённый элементом a.

$$e,a,a^1,a^2,a^3,\dots$$
 - элементы моноида $< a>$

- 1. $a^i \neq a^j$ при $i \neq j$ $h :< a > \to (\{a\}^*; \&), \ h(a^i) = i$ изоморфизм.
- 2. $a^i=a^j$ при $i\neq j$

$$k = i + (k - i) = i + y(j - i) + r$$

$$r = (k - i)mod(j - i)$$

$$r < j - i$$

тогда

$$\begin{aligned} a^k &= a^i \underbrace{a^{j-i}...a^{j-i}}_{y} a^r = \\ & (a^i a^{j-i}) \underbrace{a^{j-i}...a^{j-i}}_{y-1} a^r \overset{(a^i a^{j-i} = a^{i+j-i} = a^j = a^i)}{=} a^i \underbrace{a^{j-i}...a^{j-i}}_{y-1} a^r = \\ & a^i a^r = a^{i+r} (r < j-i; i+r < j) \end{aligned}$$

к чему весь этот список?

Пример 1.5 (Пример циклического моноида). $< a> = (\{e,a,...\};*)$ Таблица умножения (*) -

	e	a	a^2
e	a	a	a^2
a	a	a^2	a
a^2	a^2	a	a^2

Теорема 1.6. Если j - наименьшее число такое что $a^i = a^j$ для какого-то i < j, то < a > cogepжит ровно j элементов

Доказательство.

$$\underbrace{e,a^1,...,a^{j-1}}_{\text{нет равных}},\underbrace{a^j=a^i,a^{j+1}=a^{i+1},...}_{\text{повоторяющиеся}}$$

если j - номер наименьшего повтора, тогда

$$a^{x} * a^{y} = \begin{cases} a^{x+y}, & \text{если } x + y < j \\ a^{i+(x+y-i)mod(j-i)}, & \text{если } x + y \geq i \end{cases}$$

$$x + y = k, \qquad k = i + (k - i \cdot z + r)$$

$$r = (k - i)mod(j - i)$$

$$a^{k} = a^{i+z}$$

$$a^{x+y} = a^{k} = a^{i+(x+y-i)mod(j-i)}$$

Определение 1.7 (Моноид типа (i,j-i)). Вначале идут i элементов без повтора, потом идёт цикл j-i

Теорема 1.8. В моноиде типа (i, j - i), где i > 0 существует идемпотент $b \neq e$

ДОКАЗАТЕЛЬСТВО. Пусть j-i=m, проверим элемент $a^{i+(m-i) \mod m}$ $(a^{i+(m-i) \mod m})^2 = a^{2i+2(m-i) \mod m} = a^{i+(2i+2(m-i)) \mod m-i) \mod m}$

$$i + (2i + 2(m - i) - i) \mod m - i) \mod m = i + (2i + 2m - 2i - i) \mod m$$

= $i + (2m - i) \mod m$
= $i + (m - i) \mod m$

Следовательно $a^{i+(m-i) \mod m}$ - идемпотент