CURSO PRE CONGRESO R for Data Science Parte 2

Instructores:

Pedro Rau Fiorella Castrillón Lorena Dueñas

Agenda

- 1.- Presentación de paquetes
 - 2.-Objetos vectoriales
 - 3.-Objetos Raster

Compatibilidad de Paquetes

Ejercicios

1.-Presentación de Paquetes

"Raster"

 Análisis de Rasters (datos en pixeles): Imágenes, DEMs, etc

"stars"

 Se centra en datos multidimensionales y series temporales espaciales.

"terra"

 Alternativa reciente a Raster. Útil para trabajar con datos de alta resolución.

"sp"

 (Spatial) uno de los paquetes más antiguos, trabaja con datos geográficos.

"sf"

 (Simple feature) procesamiento de datos vectoriales: puntos, líneas, polígonos.

"rgdal" y "qdoc"

1.1¿Dónde aprender más?

https://geocompr.robinlovelace.net/

https://github.com/Robinlovelace/geocompr

Spatial Data Science

- Edzer Pebesma & Roger Bivand
- https://keen-swartz-3146c4.netlify.app.

Introduction to Spatial Data Programming with R

- Michael Dorman
- http://132.72.155.230:3838/r/index.html

An Introduction to Spatial Data Analysis and Statistics: A Course in R

- Antonio Paez
- https://www.spatial-analysis-r.org/ https://github.com/paezha/spatial-analysis-r

2.-Objetos Vectoriales

install.packages(c("sf","spData","spDataLarge","GADMTools"))

2.-Objetos Vectoriales : sf

Geometrías

Los objetos sfg representan solo geometrías, no contienen información de atributos ni del sistema de referencia de coordenadas

Creación de geometrías (sfg):

- st_point()
- st_multipoint()
- st_linestring()
- st_multilinestring()
- st_polygon()
- st_multipolygon()
- st_geometrycollection()

2.-Objetos Vectoriales: sf

Listas columnas

Los objetos sfc representan representa un conjunto de geometrías sfg con un sistema de referencia de coordenadas (CRS) común

Creación de lista columna (sfc):

```
st_sfc(..., crs = código_o_texto)

geometrías
```

Sistema de referencia de coordenadas (CRS):

Se puede especificar con:

- Un código EPSG Ejm: 4326

- Un texto PROJ4

Ejm:

"+proj=longlat +datum=WGS84 +no_defs"

 - Un objeto crs, como el que se crea con la función st_crs()

Objetos vectoriales: 2.1 Lectura y escritura

Lectura:

st_read(ruta_de archivo)

Se debe especificar la ruta, lee múltiples formatos

Escritura:

st_write(ruta_de_archivo)

Se debe especificar la ruta. Permite exportar en varios formatos.

```
> library(sf)
```

- > library(tidyverse)
- > sf_world <- st_read("data/raw_data/shp/world.shp")</p>

Extra:

Para crear un sf de puntos desde un data frame (que puede leerse de un archivo de texto)

data_frame %>%
st_as_sf(coords = c("name_x","name_y"), crs = 4326)

Coors, geográficas

EPSG (por ejemplo, EPSG:4326 para WGS 84)

p.e Datum: WGS 84 (utilizado por el sistema de posicionamiento global, GPS) y NAD 83 (utilizado en América del Norte).

Objetos vectoriales: 2.2 Manejo como data frames

Se puede considerar los objetos sf como un data frame con componentes espaciales.

Los objetos sf son compatibles con las operaciones de data frame y con el paquete tidyverse

Selección de atributos (columnas):

objeto_sf["nombres_atributos"] objeto_sf[vector_numérico] objeto_sf[vector_lógico] objeto_sf[,"nombres_atributos"]

año	Рр	Х	у
01/01/2022	350		
01/01/2023	500		

Selección de elementos (filas):

objeto_sf["nombres_de_elementos",] objeto_sf[vector_numérico,] objeto_sf[vector_lógico,]

Objetos vectoriales: 2.3 Operaciones con atributos

Obtención de solo data

st_drop_geometry()

Filtrar elementos

filter() slice()

Seleccionar atributos

select()

Agrupar según un atributo

group_by()

Realiza cálculos a partir de

summarise()

varios elementos

mutate()

ORdne asegún un atributo

Crea un nuevo atributo

arrange()

> sf_world %>% slice(1:5)

Simple feature collection with 5 features and 10 fields Geometry type: MULTIPOLYGON

i

Operar con atributos y elementos de un objeto sf es como operar con un data frame!

Otras operaciones (~todas) de **tydiverse** también aplican

Objetos vectoriales: 2.3 Operaciones espaciales

Filtrado espacial objeto_sf_1[objeto_sf_2,]

Unión espacial st_join()

Relaciones topológicas

Intersección st_intersects()

Sin intersección st_disjoint()

Está dentro st_within()

En el borde st_touches()

En una distancia st_is_within_distance()

rbind() permite también unir dos objetos espaciales con atributos similares

Todas estas funciones deben tener como argumentos dos objetos espaciales. El filtrado y la unión espacial por defecto trabajan con la relación topológica st_intersects, pero se pueden usar otras con el argumento op Las relaciones topológicas comparan cada elemento del primer objeto con cada elemento del segundo objeto

Objetos vectoriales: 2.3 Operaciones espaciales

Reproyección

st_transform()

Obtiene límites

st_bbox()

Obtiene sfc

st_geometry()

Simplifica formas

st_simplify()

Centroides

st_centroid()

Buffer

st_buffer()

Medidas geométricas

Matriz de distancias

st_distance()

Longitud

st_length()

Área

st_area()

Para transformar entre geometrías (puntos, líneas, etc): st_cast() Para obtener solo la data del obeto sf: st_drop_geometry()

Objetos vectoriales: 2.3 Operaciones espaciales

Operaciones geométricas

Combina geometrías

st_combine()

Combina geometrías y disuelve bordes

st_union()

Intersección

st_intersection()

Diferencia

st_difference()

Diferencia simétrica

st_sym_difference()

Todas estas funciones deben tener como argumentos dos objetos espaciales.

2.-Objetos Raster

install.packages(c("terra", "elevatr"))

Se usa para representar datos em forma de pixeles.

Características:

- Regilla regular
- Georefenciación
- Valores numéricos o categóricos
- Proyecciones y transformaciones

VI CONGRESO NACIONAL DEL AGUA

6 AL 10 DE NOVIEMBRE DE 2023

"CIENCIA E INGENIERÍA DEL AGUA **EN UN ENTORNO CAMBIANTE"**

ORGANIZADO POR:

