CSE 604 Artificial Intelligence

Chapter 8: First Order Logic

Adapted from slides available in Russell & Norvig's textbook webpage

Dr. Ahmedul Kabir

Outline

- Why FOL?
- Syntax and semantics of FOL
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL

Pros and cons of propositional logic

- © Propositional logic is declarative
 - Pieces of syntax correspond to fact
 - © Propositional logic allows partial/disjunctive/negated information
 - (unlike most data structures and databases)
- © Propositional logic is compositional:
 - meaning of $B_{\rm 1,1} \wedge P_{\rm 1,2}$ is derived from meaning of $B_{\rm 1,1}$ and of $P_{\rm 1,2}$
- Meaning in propositional logic is context-independent
 - (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares"
 - except by writing one sentence for each square

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Models for FOL: Example

Syntax of FOL: Basic elements

- Constants KingJohn, 2, IIT,...
- Predicates Brother, King, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives \neg , \Rightarrow , \land , \lor , \Leftrightarrow
- Equality =
- Quantifiers \forall , \exists

Atomic sentences

Atomic sentence =
$$predicate (term_1, ..., term_n)$$

or $term_1 = term_2$

Term =
$$function (term_1, ..., term_n)$$
 or $constant$ or $variable$

- E.g., Brother(KingJohn, RichardTheLionheart)
- > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

 Complex sentences are made from atomic sentences using connectives

$$\neg S, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \Leftrightarrow S_2$$

E.g. Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) $>(1,2) \lor \leq (1,2) > (1,2) \land \neg >(1,2)$

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for constant symbols → objects

```
predicate symbols → relations
```

function symbols → functional relations

• An atomic sentence *predicate(term₁,...,term_n)* is true iff the objects referred to by *term₁,...,term_n* are in the relation referred to by *predicate*

Universal quantification

• \forall < variables > < sentence >

Everyone at IIT is smart:

$$\forall x At(x, IIT) \Rightarrow Smart(x)$$

- $\forall x P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

```
At(KingJohn,IIT) \Rightarrow Smart(KingJohn)

\land At(Richard,IIT) \Rightarrow Smart(Richard)

\land At(Pikachu,IIT) \Rightarrow Smart(Pikachu)

\land ...
```

A common mistake to avoid

• Typically, \Rightarrow is the main connective with \forall

• Common mistake: using \land as the main connective with \forall :

 \forall x At(x, IIT) \land Smart(x)

means "Everyone is at IIT and everyone is smart"!

Existential quantification

- ∃ < variables > < sentence >
- Someone at CSE is smart:

```
\exists x \operatorname{At}(x, CSE) \land \operatorname{Smart}(x)
```

- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

```
At(KingJohn,CSE) ∧ Smart(KingJohn)

∨ At(Richard, CSE) ∧ Smart(Richard)

∨ At(Pikachu, CSE) ∧ Smart(Pikachu)

∨ ...
```

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \operatorname{At}(x, \operatorname{IIT}) \Rightarrow \operatorname{Smart}(x)$$

is true if there is anyone who is not at IIT!

Properties of quantifiers

- $\forall x \ \forall y \text{ is the same as } \forall y \ \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
- $\exists x \forall y \text{ Loves}(x,y)$
 - "There is a person who loves everyone in the world"
- $\forall y \exists x \text{ Loves}(x,y)$
 - "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- \forall x Likes(x,IceCream) $\neg \exists$ x \neg Likes(x,IceCream)
- $\exists x \text{ Likes}(x, \text{Broccoli})$ $\neg \forall x \neg \text{Likes}(x, \text{Broccoli})$

Fun with sentences

Brothers are siblings

$$\forall x,y \; Brother(x,y) \Rightarrow Sibling(x,y)$$

"Sibling" is symmetric

$$\forall x,y \ Sibling(x,y) \Leftrightarrow Sibling(y,x)$$

One's mother is one's female parent

$$\forall$$
 m,c $Mother(c) = m \Leftrightarrow (Female(m) \land Parent(m,c))$

First cousin is a child of a parent's sibling

 \forall x, y FirstCousin(x, y) $\Leftrightarrow \exists$ p, ps Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)