Assignment

Find the component form of the resultant vector.

1)
$$\vec{u} = \langle 20, -21 \rangle$$

Find: $-3\vec{u}$

2) Given:
$$P = (0, -4)$$
 $Q = (-1, 9)$
Find: $8\overrightarrow{PQ}$

3)
$$\vec{u} = \langle 3, 3 \rangle$$

 $\vec{v} = \langle 11, 8 \rangle$
Find: $\vec{u} + \vec{v}$

4) Given:
$$P = (-7, -6)$$
 $Q = (6, 10)$

$$R = (-3, -9)$$
 $S = (-3, 7)$
Find: $\overrightarrow{PQ} + \overrightarrow{RS}$

5)
$$\overrightarrow{f} = \langle 12, 2 \rangle$$

 $\overrightarrow{v} = \langle 2, \underline{4} \rangle$
Find: $4\overrightarrow{f} - 6\overrightarrow{v}$

6) Given:
$$T = (-3, 8) \ X = (3, 10)$$

 $Y = (-4, -7) \ Z = (-8, -10)$
Find: $4\overrightarrow{TX} + \overrightarrow{YZ}$

7) Given: A = (4, 0) B = (-6, 10)Unit vector in the direction of \overrightarrow{AB} 8) Given: P = (-10, -8) Q = (-4, -3)Find the vector opposite \overrightarrow{PQ}

-1-

Find the magnitude and direction angle of the resultant vector.

9)
$$\vec{a} = \langle 6, -10 \rangle$$

 $\vec{g} = \langle -3, 11 \rangle$
Find: $\vec{a} + \vec{g}$

10) Given:
$$T = (10, -4) \ X = (0, -1)$$

 $Y = (0, -6) \ Z = (-1, 5)$
Find: $-\overrightarrow{TX} - \overrightarrow{YZ}$

11)
$$\vec{u} = \langle 12, 16 \rangle$$

Find: $-5\vec{u}$

12) Given:
$$P = (-4, 3)$$
 $Q = (6, -9)$
Find: $9\overrightarrow{PQ}$

13)
$$\vec{a} = \langle -3, -12 \rangle$$

 $\vec{b} = \langle 4, 9 \rangle$
Find: $-3\vec{a} - 7\vec{b}$

14) Given:
$$A = (10, 0)$$
 $B = (3, -1)$

$$C = (-5, 7)$$
 $D = (-2, 9)$
Find: $-3\overrightarrow{AB} + 2\overrightarrow{CD}$

Draw a vector diagram to find the resultant of each pair of vectors using the triangle method. Then state the magnitude and direction angle of the resultant.

15)
$$\overrightarrow{m} = \langle -7, 1 \rangle \overrightarrow{n} = \langle 12, -16 \rangle$$

Assignment

Find the component form of the resultant vector.

1)
$$\vec{u} = \langle 20, -21 \rangle$$

Find: $-3\vec{u}$
 $\langle -60, 63 \rangle$

2) Given:
$$P = (0, -4)$$
 $Q = (-1, 9)$
Find: $8\overrightarrow{PQ}$
 $\langle -8, 104 \rangle$

3)
$$\vec{u} = \langle 3, 3 \rangle$$

 $\vec{v} = \langle 11, 8 \rangle$
Find: $\vec{u} + \vec{v}$
 $\langle 14, 11 \rangle$

4) Given:
$$P = (-7, -6)$$
 $Q = (6, 10)$

$$R = (-3, -9)$$
 $S = (-3, 7)$
Find: $\overrightarrow{PQ} + \overrightarrow{RS}$

5)
$$\overrightarrow{f} = \langle 12, 2 \rangle$$

 $\overrightarrow{v} = \langle 2, 4 \rangle$
Find: $4\overrightarrow{f} - 6\overrightarrow{v}$
 $\langle 36, -16 \rangle$

6) Given:
$$T = (-3, 8) \ X = (3, 10)$$

$$Y = (-4, -7) \ Z = (-8, -10)$$
Find: $4\overrightarrow{TX} + \overrightarrow{YZ}$

$$(20, 5)$$

7) Given:
$$A = (4, 0)$$
 $B = (-6, 10)$
Unit vector in the direction of \overrightarrow{AB}

$$\left\langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$$

8) Given:
$$P = (-10, -8)$$
 $Q = (-4, -3)$
Find the vector opposite \overrightarrow{PQ}
 $\langle -6, -5 \rangle$

-1-

Find the magnitude and direction angle of the resultant vector.

9)
$$\vec{a} = \langle 6, -10 \rangle$$

 $\vec{g} = \langle -3, 11 \rangle$
Find: $\vec{a} + \vec{g}$

$$\sqrt{10} \approx 3.162; 18.43^{\circ}$$

10) Given:
$$T = (10, -4) \ X = (0, -1)$$

 $Y = (0, -6) \ Z = (-1, 5)$
Find: $-\overrightarrow{TX} - \overrightarrow{YZ}$

$$\sqrt{317} \approx 17.804; 308.16^{\circ}$$

11)
$$\vec{u} = \langle 12, 16 \rangle$$

Find: $-5\vec{u}$

100; 233.13°

12) Given:
$$P = (-4, 3)$$
 $Q = (6, -9)$
Find: $9\overrightarrow{PQ}$

$$18\sqrt{61} \approx 140.584; 309.81^{\circ}$$

13)
$$\vec{a} = \langle -3, -12 \rangle$$

 $\vec{b} = \langle 4, 9 \rangle$
Find: $-3\vec{a} - 7\vec{b}$

 $\sqrt{1090} \approx 33.015; 234.87^{\circ}$

14) Given:
$$A = (10, 0)$$
 $B = (3, -1)$

$$C = (-5, 7)$$
 $D = (-2, 9)$
Find: $-3\overrightarrow{AB} + 2\overrightarrow{CD}$

$$\sqrt{778} \approx 27.893; 14.53^{\circ}$$

Draw a vector diagram to find the resultant of each pair of vectors using the triangle method. Then state the magnitude and direction angle of the resultant.

15)
$$\overrightarrow{m} = \langle -7, 1 \rangle \overrightarrow{n} = \langle 12, -16 \rangle$$

15.81; 288.43°

Create your own worksheets like this one with Infinite Precalculus. Free trial available at KutaSoftware.com