Алгебра. Задачи 4

Арунова Анастасия

Содержание

Іинейные операторы	3
Задача 1	ę
Задача 2	٢
Задача 3	۶
Задача 4	6
Задача 5	7
Задача 6	ć
Разложения матриц	10
Задача 7	10
Задача 8	12
Задача 9	15
Тинейные преобразования евклидовых векторных пространств	18
Задача 10	15
Задача 10	10
Задача 11	
	19
Задача 11	19 20
Задача 11	19 20 20
Задача 11 Задача 12 Задача 13*	19 20 20
Задача 11 Задача 12 Задача 13* Задача 14*	19 20 20 21 23
Задача 11 Задача 12 Задача 13* Задача 14* Іреобразования матриц	19 20 20 21 23 23
Задача 11	19 20 20 21 23 23 25
Задача 11	19 20 20 21 23 25 28

Подпространства, проекция, ортогональная составляющая	34
Задача 20	34
Задача 21	36
Кривые и поверхности второго порядка	39
Задача 22	39
Задача 23	41
Задача 24	43
Залача 25	45

Линейные операторы

Задача 1

- (а) Найти собственные векторы и собственные значения линейного оператора, заданного в некотором базисе матрицей $A=\begin{pmatrix} 4 & -3 \\ 12 & -8 \end{pmatrix}$. Можно ли привести ее к диагональному виду, перейдя к подходящему базису?
- (b) Вычислить матрицу A^n , $n \in \mathbb{N}$.

Решение:

(a) Найдём с помощью характеристического многочлена собственные значения линейного оператора, задаваемого матрицей A:

$$\chi_A(\lambda) = \det(A - \lambda E) = \begin{vmatrix} 4 - \lambda & -3 \\ 12 & -8 - \lambda \end{vmatrix} = \lambda^2 + 4\lambda + 4 = (\lambda + 2)^2$$

Найдём λ при которых $\chi_A(\lambda) = 0$:

$$\chi_A(\lambda) = (\lambda + 2)^2 \Leftrightarrow \lambda = -2$$

Нашли собственное значение линейного оператора $\lambda = -2$, его алгебраическая кратность равна $a_{-2} = 2$ (других собственных значений нет).

Найдём ФСР системы $(A - \lambda E)x = 0$ при $\lambda = -2$:

$$\begin{pmatrix} 4 - \lambda & -3 & 0 \\ 12 & -8 - \lambda & 0 \end{pmatrix} = \begin{pmatrix} 6 & -3 & 0 \\ 12 & -6 & 0 \end{pmatrix} \xrightarrow{\text{II}-2\text{I}\to \text{II}} \begin{pmatrix} 6 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow x_1 = \frac{x_2}{2} \Rightarrow \Phi\text{CP: } e_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Вектор e_1 является собственным вектором линейного оператора (все с.в. задаются как $\alpha \cdot e_1$, $\alpha \neq 0$).

Так как ФСР состоит из 1 столбца, геометрическая кратность собственного значения $\lambda = -2$ будет равна $g_{-2} = 1$. Геометрическая кратность не равна алгебраической кратности собственного значения, значит, матрицу нельзя привести к диагональному виду.

(b) Для вычисления A^n найдём J – ЖНФ матрицы A и C – матрицу перехода от базиса, в котором находится матрица A, к базису, в котором она имеет ЖНФ.

Так собственное значение всего одно, ЖНФ будет состоять всего из одной жордановой клетки.

$$J = \begin{pmatrix} -2 & 1\\ 0 & -2 \end{pmatrix}$$

Размер жордановой клетки 2, значит, ей соответствуют 2 базисных вектора. Обозначим их e_1 и e_2 . Вектор e_1 был найден в пункте (а). Все следующие базисные векторы находятся при помощи уравнения:

$$(A - \lambda E)e_k = e_{k-1} \quad \stackrel{k=2}{\underset{\lambda = -2}{\Rightarrow}} \quad (A + 2E)e_2 = \begin{pmatrix} 1\\2 \end{pmatrix}$$

Решим уравнение для e_2 :

$$\begin{pmatrix} 6 & -3 & 1 \\ 12 & -6 & 2 \end{pmatrix} \xrightarrow{\text{II}-2\text{I}\to\text{II}} \begin{pmatrix} 6 & -3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow x_1 = \frac{1}{6} + \frac{x_2}{2} \stackrel{x_2=0}{\Rightarrow} e_2 = \begin{pmatrix} \frac{1}{6} \\ 0 \end{pmatrix}$$

Таким образом, жорданов базис равен:

$$e_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, e_2 = \begin{pmatrix} \frac{1}{6} \\ 0 \end{pmatrix}$$

Значит, матрица перехода от базиса, в котором находится A, к базису, в котором находится J, равна:

$$C = \begin{pmatrix} 1 & \frac{1}{6} \\ 2 & 0 \end{pmatrix}$$

Найдём A^n :

$$A = CJC^{-1} \Leftrightarrow A^n = (CJC^{-1})^n = CJ\underbrace{C^{-1}C}_EJ\underbrace{C^{-1}}_E \dots \underbrace{C}_EJ\underbrace{C^{-1}C}_EJC^{-1} = CJ^nC^{-1}$$

Обратная к C будет равна:

$$C^{-1} = \frac{1}{-\frac{1}{3}} \begin{pmatrix} 0 & -\frac{1}{6} \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} \\ 6 & -3 \end{pmatrix}$$

Тогда

$$A^{n} = CJ^{n}C^{-1} = \begin{pmatrix} 1 & \frac{1}{6} \\ 2 & 0 \end{pmatrix} \begin{pmatrix} (-2)^{n} & n(-2)^{n-1} \\ 0 & (-2)^{n} \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{2} \\ 6 & -3 \end{pmatrix} = \begin{pmatrix} (1-3n)(-2)^{n-1} & -3n(-2)^{n-1} \\ -6n(-2)^{n} & (3n+1)(-2)^{n} \end{pmatrix}$$

Ответ: (a) с.з.
$$\lambda = -2$$
, с.в. αe_1 , $\alpha \neq 0$; (b) $\begin{pmatrix} (1-3n)(-2)^{n-1} & -3n(-2)^{n-1} \\ -6n(-2)^n & (3n+1)(-2)^n \end{pmatrix}$.

Найти матрицу линейного оператора, переводящего векторы $a_1 = (2,5)^T$, $a_2 = (1,3)^T$, соответственно в векторы $b_1 = (7,-4)^T$, $b_2 = (2,-1)^T$ в базисе, в котором даны координаты векторов.

Решение:

Пусть φ — линейный оператор переводящий векторы a_1 , a_2 в векторы b_1 , b_2 , соответственно. Пусть A — искомая матрица линейного оператора. Т.к. линейное отображение полностью задаётся матрицей перехода, для каждого столбца координат a_i (i=1,2) в некотором базисе e будет верно $b_i^e = (\varphi(a_i))^e = A_e \cdot a_i^e$.

Тогда можем составить векторное уравнение:

$$AX = Y$$

где X — матрица, столбцами которой являются векторы a_1, a_2, Y — матрица, в столбцах которой записаны векторы b_1, b_2 .

$$A \cdot \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ -4 & -1 \end{pmatrix} \Leftrightarrow A = \begin{pmatrix} 7 & 2 \\ -4 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 11 & -3 \\ -7 & 2 \end{pmatrix}$$

Otbet: $\begin{pmatrix} 11 & -3 \\ -7 & 2 \end{pmatrix}$.

Задача 3

В базисе $e_1=\begin{pmatrix}1\\3\end{pmatrix},\ e_2=\begin{pmatrix}2\\-1\end{pmatrix}$ линейный оператор ϕ имеет матрицу $A=\begin{pmatrix}-1&1\\-3&4\end{pmatrix}$. Найти матрицу оператора ϕ в базисе $\hat{e}_1=\begin{pmatrix}4\\3\end{pmatrix},\ \hat{e}_2=\begin{pmatrix}1\\1\end{pmatrix}$.

Решение:

Найдём матрицу перехода от базиса e к базису \hat{e} по формуле: $T_{e \to \hat{e}} = e^{-1} \cdot \hat{e}$. Для этого необходимо найти e^{-1} :

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{7} & \frac{2}{7} \\ 0 & 1 & \frac{3}{7} & -\frac{1}{7} \end{pmatrix} \Rightarrow e^{-1} = \begin{pmatrix} \frac{1}{7} & \frac{2}{7} \\ \frac{3}{7} & -\frac{1}{7} \end{pmatrix}$$

Тогда

$$T_{e \to \hat{e}} = e^{-1} \cdot \hat{e} = \begin{pmatrix} \frac{1}{7} & \frac{2}{7} \\ \frac{3}{7} & -\frac{1}{7} \end{pmatrix} \cdot \begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} \frac{10}{7} & \frac{3}{7} \\ \frac{9}{7} & \frac{2}{7} \end{pmatrix}$$

Теперь можно найти матрицу A в базисе \hat{e} по формуле:

$$A_{\hat{e}} = T^{-1} A_e T = \begin{pmatrix} \frac{10}{7} & \frac{3}{7} \\ \frac{9}{7} & \frac{2}{7} \end{pmatrix}^{-1} \cdot \begin{pmatrix} -1 & 1 \\ -3 & 4 \end{pmatrix} \cdot \begin{pmatrix} \frac{10}{7} & \frac{3}{7} \\ \frac{9}{7} & \frac{2}{7} \end{pmatrix} = \begin{pmatrix} \frac{20}{7} & -\frac{1}{7} \\ -\frac{69}{7} & \frac{1}{7} \end{pmatrix}$$

Ответ:
$$A_{\hat{e}} = \begin{pmatrix} \frac{20}{7} & -\frac{1}{7} \\ -\frac{69}{7} & \frac{1}{7} \end{pmatrix}$$

Задача 4

Можно ли найти базис из собственных векторов для матрицы A? В случае положительного ответа найти этот базис, в случае отрицательного, объяснить почему это невозможно.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

Решение:

Так как матрица симметрична, базис в котором она диагональна, существует. Найдём этот базис.

Найдём с помощью характеристического многочлена собственные значения линейного оператора, задаваемого матрицей A:

$$\chi_A(\lambda) = \det(A - \lambda E) = \begin{vmatrix} 2 - \lambda & -1 & 1 \\ -1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{vmatrix} = -\lambda^3 + 6\lambda^2 - 9\lambda + 4 = (\lambda - 1)^2(\lambda - 4)$$

Найдём λ при которых $\chi_A(\lambda)=0$:

$$\chi_A(\lambda) = (\lambda - 1)^2 (\lambda - 4) \Leftrightarrow \begin{bmatrix} \lambda = 1 \\ \lambda = 4 \end{bmatrix}$$

Нашли собственные значения линейного оператора $\lambda = 1, 4.$

Найдём ФСР системы $(A - \lambda E)x = 0$:

• $\lambda = 1$:

$$A - E = \begin{pmatrix} 1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow x_1 = x_2 - x_3 \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

• $\lambda = 4$:

$$A - 4E = \begin{pmatrix} -2 & -1 & 1 & 0 \\ -1 & -2 & -1 & 0 \\ 1 & -1 & -2 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = x_3 \\ x_2 = -x_3 \end{cases} \Rightarrow \Phi \text{CP: } e_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Таким образом, базисом будет набор e_1, e_2, e_3 .

Otbet:
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
.

Задача 5

Линейный оператор переводит вектор $a_1 = (-1,0)^T$ в вектор $b_1 = (5,5)^T$, а вектор $a_2 = (1,1)^T$ в вектор $b_1 = (-2,-3)^T$.

- 1) В какое множество перейдет прямая, заданная уравнение $2x_1 x_2 = -2$?
- 2) Какое множество переходит в эту прямую?
- 3) Написать уравнения тех прямых, которые переходят сами в себя.

Решение:

1) Найдём матрицу линейного оператора:

$$A = \begin{pmatrix} b_1 & b_2 \end{pmatrix} \begin{pmatrix} a_1 & a_2 \end{pmatrix}^{-1} = \begin{pmatrix} 5 & -2 \\ 5 & -3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 3 \\ -5 & 2 \end{pmatrix}$$

Любая прямая задаётся точкой (или радиус-вектором данной точки), которая принадлежит прямой, и направляющим вектором прямой. Для того, чтобы найти направляющий вектор \vec{s} и точку M на прямой запишем каноническое уравнение прямой:

$$\frac{x_1}{1} = \frac{x_2 - 2}{2} \Rightarrow \vec{s} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, M(0, 2)$$

Радиус-вектор точки M обозначим $\vec{r} = (0, 2)^T$.

Чтобы понять, в какое множество перейдёт прямая, надо применить к ней линейный оператор:

$$\vec{s'} = A\vec{s} = \begin{pmatrix} -5 & 3 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
$$\vec{r'} = A\vec{r} = \begin{pmatrix} -5 & 3 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

Таким образом, прямая под действием линейного оператора перейдёт в прямую:

$$\frac{x_1 - 6}{1} = \frac{x_2 - 4}{-1}$$

2) Чтобы понять, какое множество переходит в данную прямую, нужно решить следующую систему:

$$\begin{cases} \vec{s} = A\vec{s'} \\ \vec{r} = A\vec{r'} \end{cases} \Leftrightarrow \begin{cases} \vec{s'} = A^{-1}\vec{s} \\ \vec{r'} = A^{-1}\vec{r} \end{cases}$$

Найдём обратную к A:

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 2 & -3 \\ 5 & -5 \end{pmatrix}$$

Тогда

$$\vec{s'} = \frac{1}{5} \begin{pmatrix} 2 & -3 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -\frac{4}{5} \\ -1 \end{pmatrix}$$
$$\vec{r'} = \frac{1}{5} \begin{pmatrix} 2 & -3 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -\frac{6}{5} \\ -1 \end{pmatrix}$$

Таким образом, множество, переходящее по действием линейного оператора в исходную прямую, будет прямой:

$$\frac{x_1 + \frac{6}{5}}{-\frac{4}{5}} = \frac{x_2 + 1}{-1}$$

3) Пусть \vec{s} – направляющий вектор прямой, которая под действием линейного оператора переходит в саму себя (причём $\vec{s} \neq 0$, иначе прямая вырождается в точку). Тогда для него выполняется:

$$A\vec{s} = \vec{s} \Leftrightarrow (A - E)\vec{s} = 0 \Leftrightarrow \det(A - E) = 0$$
$$\det(A - E) = \begin{vmatrix} -5 - 1 & 3 \\ -5 & 2 - 1 \end{vmatrix} = \begin{vmatrix} -6 & 3 \\ -5 & 1 \end{vmatrix} = 9 \neq 0$$

Так как $\det(A-E) \neq 0$, решений у уравнения нет, а, значит, прямых, преходящих в самих себя под действием A, нет.

Ответ: 1) $x_1 + x_2 = 10$; 2) $5x_1 - 4x_2 = -2$; 3) нет.

Найти базис ядра и базис образа линейного отображения $\phi: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$ заданного матрицей

$$A_{\phi} = \begin{pmatrix} 1 & -1 & 2 & 4 & -2 \\ 3 & 9 & -14 & 2 & 1 \\ 3 & 6 & -9 & 1 & 1 \end{pmatrix}$$

Является ли отображение сюръективным?

Решение:

Ядро линейного отображения – это множество $\ker \phi = \{x \in \mathbb{R}^5 \mid \phi(x) = 0\}$. Поэтому для того, чтобы найти базис ядра, нужно найти Φ CP системы $\phi(x) = A_{\phi}x = 0$:

$$\begin{cases} x_1 - x_2 + 2x_3 + 4x_4 - 2x_5 = 0 \\ 3x_1 + 9x_2 - 14x_3 + 2x_4 - x_5 = 0 \\ 3x_1 + 6x_2 - 9x_3 + x_4 + x_5 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 = -\frac{1}{3}x_3 - \frac{1}{6}x_5 \\ x_2 = \frac{5}{3}x_3 - \frac{1}{6}x_5 \\ x_4 = \frac{1}{2}x_5 \end{cases} \Leftrightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} -1 \\ 5 \\ 3 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} -1 \\ -1 \\ 0 \\ 3 \\ 6 \end{pmatrix}$$

Получаем e_1, e_2 – базис ядра линейного отображения.

Найдём базис образа линейного отображения ${\rm Im}\,\phi=\{y\in\mathbb{R}^3\,|\,\exists x\in\mathbb{R}^5:\phi(x)=y\}.$ Чтобы найти базис ${\rm Im}\,\phi$ надо привести матрицу A_ϕ^T к ступенчатому виду и взять после этого ненулевые строки.

$$\begin{pmatrix} 1 & 3 & 3 \\ -1 & 9 & 6 \\ 2 & -14 & -9 \\ 4 & 2 & 1 \\ -2 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 3 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow f_1 = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}, f_2 = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}, f_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Получаем f_1, f_2, f_3 — базис образа линейного отображения. Значит, dim Im $\phi = 3$. Так как dim Im $\phi = 3 = \dim \mathbb{R}^3$, отображение сюръективно.

Ответ: 1) Базис ядра: $e_1 = \begin{pmatrix} -1 & 5 & 3 & 0 & 0 \end{pmatrix}^T, e_2 = \begin{pmatrix} -1 & -1 & 0 & 3 & 6 \end{pmatrix}^T$

- 2) Базис образа: $f_1 = \begin{pmatrix} 1 & 3 & 3 \end{pmatrix}^T, f_2 = \begin{pmatrix} 0 & 4 & 3 \end{pmatrix}^T, f_3 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^T$
- 3) Отображение сюръективно.

Разложения матриц

Задача 7

Представить невырожденную матрицу

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 4 & -1 \\ -1 & 2 & 3 \end{pmatrix}$$

в виде произведения ортогональной матрицы Q на верхнетреугольную матрицу R.

Решение:

Обозначим столбцы матрицы A как:

$$a_1 = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, a_2 = \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix}, a_3 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix},$$

Построим из векторов a_1, a_2, a_3 ортогональные векторы $f_1, f_2, f_3,$ методом Грама-Шмидта. Пусть

$$f_1 = a_1 = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$

Тогда f_2 будет равно:

$$f_2 = a_2 - \frac{(a_2, f_1)}{(f_1, f_1)} f_1 = \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -\frac{4}{3} \\ \frac{8}{3} \\ \frac{8}{3} \end{pmatrix} \stackrel{\cdot \frac{3}{4}}{\sim} \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$$
$$\frac{(a_2, f_1)}{(f_1, f_1)} = \frac{2 \cdot 0 + 2 \cdot 4 + (-1) \cdot 2}{2^2 + 2^2 + (-1)^2} = \frac{2}{3}$$

Вектор f_3 будет равен:

$$f_2 = a_3 - \frac{(a_3, f_2)}{(f_2, f_2)} f_2 - \frac{(a_3, f_1)}{(f_1, f_1)} f_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$
$$\frac{(a_3, f_2)}{(f_2, f_2)} = \frac{(-1) \cdot 1 + 2 \cdot (-1) + 2 \cdot 3}{(-1)^2 + 2^2 + 2^2} = \frac{1}{3}$$

$$\frac{(a_3, f_1)}{(f_1, f_1)} = \frac{2 \cdot 1 + 2 \cdot (-1) + (-1) \cdot 3}{2^2 + 2^2 + (-1)^2} = -\frac{1}{3}$$

Нормируем векторы f_1, f_2, f_3 :

$$e_{1} = \frac{f_{1}}{\|f_{1}\|} = \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} e_{2} = \frac{f_{2}}{\|f_{2}\|} = \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} e_{3} = \frac{f_{3}}{\|f_{3}\|} = \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$$
$$\|f_{1}\| = \sqrt{2^{2} + 2^{2} + (-1)^{2}} = 3$$
$$\|f_{2}\| = \sqrt{(-1)^{2} + 2^{2} + 2^{2}} = 3$$
$$\|f_{3}\| = \sqrt{2^{2} + (-1)^{2} + 2^{2}} = 3$$

Из полученных векторов e_1 , e_2 , e_3 , составим матрицу Q. Её столбцы – данные векторы:

$$Q = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$$

Найдём обратную к Q матрицу. Так как она ортогональная $Q^{-1} = Q^T$.

$$Q^{T} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}^{T} = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{-1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} = Q^{-1}$$

Так как A = QR, можем найти матрицу R, домножив данное выражение слева на Q^{-1} :

$$R = Q^{-1}A = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 2 & 4 & -1 \\ -1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 2 & -1 \\ 0 & 4 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

Ответ:
$$A = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 3 & 2 & -1 \\ 0 & 4 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

Найти сингулярное разложение для матрицы:

$$\begin{pmatrix}
8 & 5 & 1 \\
8 & 5 & 1 \\
4 & 7 & 5 \\
-4 & -7 & -5
\end{pmatrix}$$

Решение:

Рассмотрим линейный оператор, задаваемый матрицей:

$$AA^{T} = \begin{pmatrix} 8 & 5 & 1 \\ 8 & 5 & 1 \\ 4 & 7 & 5 \\ -4 & -7 & -5 \end{pmatrix} \begin{pmatrix} 8 & 8 & 4 & -4 \\ 5 & 5 & 7 & -7 \\ 1 & 1 & 5 & -5 \end{pmatrix} = \begin{pmatrix} 90 & 90 & 72 & -72 \\ 90 & 90 & 72 & -72 \\ 72 & 72 & 90 & -90 \\ -72 & -72 & -90 & 90 \end{pmatrix}$$

Найдём его с.з. и соответствующие им с.в.:

$$\det(A - \lambda E) = \begin{vmatrix} 90 - \lambda & 90 & 72 & -72 \\ 90 & 90 - \lambda & 72 & -72 \\ 72 & 72 & 90 - \lambda & -90 \\ -72 & -72 & -90 & 90 - \lambda \end{vmatrix} = \lambda^{2} (\lambda - 36)(\lambda - 324)$$

Корни характеристического многочлена будут с.з. Тогда $\lambda_1=324$ и $\lambda_2=36,\ \lambda_3=0$ (кратности равной 2). Обозначим $\sigma_1=\sqrt{\lambda_1}=18,\ \sigma_2=\sqrt{\lambda_2}=6,\ \sigma_3=\sqrt{\lambda_3}=0.$

Найдём собственные векторы для каждого из с.з., решив уравнение $(A - \lambda E)v = 0$, где v - c.в.:

• $\lambda_1 = 324$

$$\begin{pmatrix} 90 - \lambda & 90 & 72 & -72 & 0 \\ 90 & 90 - \lambda & 72 & -72 & 0 \\ 72 & 72 & 90 - \lambda & -90 & 0 \\ -72 & -72 & -90 - \lambda & 90 & 0 \end{pmatrix} = \begin{pmatrix} -234 & 90 & 72 & -72 & 0 \\ 90 & -234 & 72 & -72 & 0 \\ 72 & 72 & -234 & -90 & 0 \\ -72 & -72 & -90 & -234 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 = -x_4 \\ x_2 = -x_4 \\ x_3 = -x_4 \end{cases} \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

Hормируем e_1 :

$$v_1 = \frac{e_1}{\|e_1\|} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

• $\lambda_2 = 36$

$$\begin{pmatrix} 90 - \lambda & 90 & 72 & -72 & 0 \\ 90 & 90 - \lambda & 72 & -72 & 0 \\ 72 & 72 & 90 - \lambda & -90 & 0 \\ -72 & -72 & -90 - \lambda & 90 & 0 \end{pmatrix} = \begin{pmatrix} 54 & 90 & 72 & -72 & 0 \\ 90 & 54 & 72 & -72 & 0 \\ 72 & 72 & 54 & -90 & 0 \\ -72 & -72 & -90 & 54 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\begin{cases} x_1 = x_4 \\ x_2 = x_4 \\ x_3 = -x_4 \end{cases} \Rightarrow \Phi \text{CP: } e_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$

Hормируем e_2 :

$$v_2 = \frac{e_2}{\|e_2\|} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

 $\bullet \ \lambda_3 = 0$

Нормируем e_3 и e_4 :

$$v_3 = \frac{e_3}{\|e_3\|} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, \ v_4 = \frac{e_4}{\|e_4\|} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Найдём вектор u_1 , выражающийся через v_1 следующим образом:

$$u_1 = \frac{A^T v_1}{\sigma_1} = \frac{1}{18} \cdot \begin{pmatrix} -12 \\ -12 \\ -6 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix}$$

Аналогично найдём u_2 :

$$u_2 = \frac{A^T v_2}{\sigma_1} = \frac{1}{6} \cdot \begin{pmatrix} 4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ -\frac{2}{3} \end{pmatrix}$$

Векторы u_1 и u_2 нормированы и ортогональны. Дополним их до ОНБ в \mathbb{R}^3 , составив матрицу из строк векторов u_1 и u_2 , приведя её к ступенчатому виду и найдя не ведущие элементы:

$$B = \begin{pmatrix} -\frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \end{pmatrix} \xrightarrow{\text{II}+\text{I}\to\text{II}} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ 0 & -1 & -1 \end{pmatrix}$$

Столбец с номером 3 не содержит ведущих элементов. Значит, вектор

$$f_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

являются дополнением векторов u_1 и u_2 до базиса в \mathbb{R}^3 (их $3 = \dim \mathbb{R}^3$ и они л.н.з., т.к., если в B добавить строку вектора f_1 , получим матрицу B' ранга 3, что равно количеству строк в B').

Ортогонализуем f_1 :

$$f_1' = f_1 - \frac{(f_1, u_1)}{(u_1, u_1)} u_1 - \frac{(f_1, u_2)}{(u_2, u_2)} u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} + \frac{2}{3} \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{2}{9} \\ -\frac{4}{9} \\ \frac{4}{9} \end{pmatrix}$$

Нормируем f_1' :

$$u_3 = \frac{f_1'}{\|f_1'\|} = \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$

Составим матрицы:

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 18 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 \mid v_2 \mid v_3 \mid v_4 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$U = \begin{pmatrix} u_1 \mid u_2 \mid u_3 \mid u_4 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}$$

$$Othet: A = V \Sigma U^T = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 18 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}^T.$$

Задача 9

Следующую матрицу представить в виде произведения симметрической матрицы с положительными характеристическими числами на ортогональную матрицу.

$$A = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}$$

Решение:

При помощи сингулярного разложения найдём полярное:

$$A = V\Sigma U^T = V\Sigma (V^TV)U^T = \underbrace{(V\Sigma V^T)}_{S}\underbrace{(VU^T)}_{O} = SO$$

Рассмотрим линейный оператор, задаваемый матрицей:

$$AA^{T} = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$$

Найдём его с.з. и соответствующие им с.в.:

$$\det(A - \lambda E) = \begin{vmatrix} 5 - \lambda & 3 \\ 3 & 5 - \lambda \end{vmatrix} = (\lambda - 2)(\lambda - 8)$$

Корни характеристического многочлена будут с.з. Тогда $\lambda_1=8$ и $\lambda_2=2$. Обозначим $\sigma_1=\sqrt{\lambda_1}=2\sqrt{2},\ \sigma_2=\sqrt{\lambda_2}=\sqrt{2}.$

Найдём собственные векторы для каждого из с.з., решив уравнение $(A - \lambda E)v = 0$, где v – с.в.:

• $\lambda_1 = 8$

$$\begin{pmatrix} 5 - \lambda & 3 & 0 \\ 3 & 5 - \lambda & 0 \end{pmatrix} = \begin{pmatrix} -3 & 3 & 0 \\ 3 & -3 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = x_2 \\ x_2 \in \mathbb{R} \end{cases} \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Hормируем e_1 :

$$v_1 = \frac{e_1}{\|e_1\|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

• $\lambda_2 = 2$

$$\begin{pmatrix} 5 - \lambda & 3 & 0 \\ 3 & 5 - \lambda & 0 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 0 \\ 3 & 3 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = -x_2 \\ x_2 \in \mathbb{R} \end{cases} \Rightarrow \Phi \text{CP: } e_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Hормируем e_2 :

$$v_2 = \frac{e_2}{\|e_2\|} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Найдём вектор u_1 , выражающийся через v_1 следующим образом:

$$u_1 = \frac{A^T v_1}{\sigma_1} = \frac{1}{2\sqrt{2}} \cdot \begin{pmatrix} 2\sqrt{2} \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Аналогично найдём u_2 :

$$u_2 = \frac{A^T v_2}{\sigma_1} = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 0 \\ \sqrt{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Векторы u_1 и u_2 нормированы и ортогональны, их количество равно размерности пространства. Составим матрицы:

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix} = \begin{pmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 \mid v_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$U = \begin{pmatrix} u_1 \mid u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Найдём симметрическую матрицу:

$$S = V \Sigma V^T = \begin{pmatrix} \frac{3\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{3\sqrt{2}}{2} \end{pmatrix}$$

Найдём ортогональную матрицу:

$$O = VU^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Ответ:
$$A = SO = \begin{pmatrix} \frac{3\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{3\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Линейные преобразования евклидовых векторных пространств

Задача 10

Пусть в некотором ортонормированном базисе трёхмерного евклидова пространства заданы векторы $e_1=(0,1,1)^T,\ e_2=(-1,-1,1)^T,\ e_3=(1,0,1)^T.$ Пусть оператор f задан матрицей $A_f=\begin{pmatrix} 3 & 1 & 1 \\ 1 & 5 & 0 \\ -3 & 2 & 7 \end{pmatrix}$ в базисе $e_1,\ e_2,\ e_3.$ Найти матрицу A_{f^*} сопряженного оператора f^* в том

Решение:

Найдём матрицу Грама для данного базиса, записав векторы e_1 , e_2 , e_3 в строки матрицы, и перемножив данную матрицу на транспонированную к ней:

$$\Gamma = \begin{pmatrix} (e_1, e_1) & (e_1, e_2) & (e_1, e_3) \\ (e_2, e_1) & (e_2, e_2) & (e_2, e_3) \\ (e_3, e_1) & (e_3, e_2) & (e_3, e_3) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

Найти матрицу сопряжённого оператора можно по формуле:

$$A_{f^*} = \Gamma^{-1} A^T \Gamma = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 5 & 0 \\ -3 & 2 & 7 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -7 \\ \frac{4}{3} & 5 & \frac{5}{3} \\ 5 & -1 & 11 \end{pmatrix}$$

Ответ:
$$A_{f^*} = \begin{pmatrix} -1 & 2 & -7 \\ \frac{4}{3} & 5 & \frac{5}{3} \\ 5 & -1 & 11 \end{pmatrix}$$

Линейное преобразование φ евклидова пространства в базисе векторов

$$f_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, f_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, f_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

задано матрицей

$$A_{\varphi} = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 5 & -1 \\ 2 & 7 & -3 \end{pmatrix}$$

Найти матрицу сопряженного преобразования φ^* в том же базисе, считая, что координаты векторов базиса даны в некотором ОНБ.

Решение:

Найдём матрицу Грама для базиса f:

$$\Gamma = \begin{pmatrix} f_1 \mid f_2 \mid f_3 \end{pmatrix}^T \begin{pmatrix} f_1 \mid f_2 \mid f_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}^T \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 5 & 3 \\ 5 & 6 & 2 \\ 3 & 2 & 2 \end{pmatrix}$$

Тогда по формуле можно найти матрицу сопряжённого оператора в том же базисе:

$$A_{\varphi^*} = \Gamma^{-1} A_{\varphi}^T \Gamma = \begin{pmatrix} 6 & 5 & 3 \\ 5 & 6 & 2 \\ 3 & 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 3 \\ 0 & 5 & -1 \\ 2 & 7 & -3 \end{pmatrix} \begin{pmatrix} 6 & 5 & 3 \\ 5 & 6 & 2 \\ 3 & 2 & 2 \end{pmatrix} = \begin{pmatrix} -36 & -37 & -15 \\ 30 & 30 & 14 \\ 26 & 27 & 9 \end{pmatrix}$$

Ответ:
$$\begin{pmatrix} -36 & -37 & -15 \\ 30 & 30 & 14 \\ 26 & 27 & 9 \end{pmatrix}$$

Пусть матрица Γ — матрица Γ рама некоторого базиса и A_{φ} — матрица линейного преобразования φ . Найти матрицу A_{φ^*} сопряжённого линейного оператора φ^* в том же базисе.

$$\Gamma = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}, \ A_{\varphi} = \begin{pmatrix} 1 & 2 & -3 \\ 2 & -3 & 1 \\ 3 & 2 & -1 \end{pmatrix}$$

Решение:

По формуле можно найти матрицу сопряжённого оператора в том же базисе:

$$A_{\varphi^*} = \Gamma^{-1} A_{\varphi}^T \Gamma = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & -3 \\ 2 & -3 & 1 \\ 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -4 & 4 \\ 0 & -8 & 7 \\ -7 & -2 & 5 \end{pmatrix}$$

Ответ: $\begin{pmatrix} 0 & -4 & 4 \\ 0 & -8 & 7 \\ -7 & -2 & 5 \end{pmatrix}$

Задача 13*

В трехмерном евклидовом пространстве ϵ базис s имеет матрицу Грама

$$\Gamma = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

Векторы базиса e заданы своими координатами в базисе s

$$[e_1]_s = \begin{pmatrix} 1 & 2 & -1 \end{pmatrix}^T, [e_2]_s = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T, [e_3]_s = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$$

Найти биортогональный к базису e базис f, записав его координаты в базисе s.

Решение:

Составим матрицу A из столбцов векторов базиса e:

$$A = \left(\begin{array}{c|c} [e_1]_s & [e_2]_s & [e_3]_s \end{array} \right) = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 2 & 1 & 1 \\ -1 & 0 & 0 \end{array} \right)$$

Тогда матрица F столбцов векторов базиса f может быть найдена по следующей формуле:

$$F^{T}\Gamma A = E \Leftrightarrow F = (A^{-1} \cdot \Gamma^{-1})^{T} = \begin{pmatrix} -1 & 3 & -4 \\ 2 & -5 & 7 \\ -1 & 2 & -2 \end{pmatrix}$$

Значит, базис f задаётся следующими векторами:

$$[f_1]_s = \begin{pmatrix} -1\\2\\-1 \end{pmatrix}, [f_2]_s = \begin{pmatrix} 3\\-5\\2 \end{pmatrix}, [f_3]_s = \begin{pmatrix} -4\\7\\-2 \end{pmatrix}$$

Ответ: $[f_1]_s = (-1, 2, -1)^T$, $[f_2]_s = (3, -5, 2)^T$, $[f_3]_s = (-4, 7, -2)^T$.

Задача 14*

Пусть e_1, e_2, e_3 — базис пространства $V, \epsilon^1, \epsilon^2, \epsilon^3$ — двойственный ему базис пространства V^* .

- а) Найдите базис V^* , двойственный к базису $2e_1 + e_3$, $e_1 + e_2 + e_3$, e_2 пространства V.
- b) Найдите базис V, для которого базис $2\epsilon^1+\epsilon^2,\,\epsilon^1+\epsilon^2+\epsilon^3,\,\epsilon^2$ двойственный.

Решение:

Обозначим следующие базисы $e = (e_1, e_2, e_3)$ и $e' = (2e_1 + e_3, e_1 + e_2 + e_3, e_2)$, $\epsilon = (\epsilon^1, \epsilon^2, \epsilon^3)$ и $\epsilon' = (2\epsilon^1 + \epsilon^3, \epsilon^1 + \epsilon^2 + \epsilon^3, \epsilon^2)$.

а) Матрица перехода от e к e':

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Найдём двойственный базис по следующей формуле:

$$FA = E \Leftrightarrow F = A^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 0 & 2 \\ 1 & 1 & -2 \end{pmatrix}$$

Получили двойственный к e' базис:

$$f^{1} = (1, 0, -1),$$

$$f^{2} = (-1, 0, 2),$$

$$f^{3} = (1, 1, -2)$$

b) Запишем матрицу F перехода от ϵ к ϵ' :

$$F = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Тогда базис, к которому ϵ' будет двойственным, можно найти по формуле:

$$FA = E \Leftrightarrow A = F^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ -1 & 2 & -2 \end{pmatrix}$$

Значит, искомый базис будет равен:

$$f_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, f_2 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}, f_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

Ответ: a) $f^1 = (1, 0, -1), f^2 = (-1, 0, 2), f^3 = (1, 1, -2)$

b)
$$f_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $f_2 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$, $f_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$

Преобразования матриц

Задача 15

Привести квадратичную форму $k = x_1^2 - 6x_1x_2 - 2x_1x_3 + x_2^2 + 2x_2x_3 + 5x_3^2$ к каноническому виду посредством ортогональной замены координат. Определить ранг и индексы инерции. Указать соответствующее линейное преобразование.

Решение:

Запишем матрицу квадратичной формы:

$$Q = \begin{pmatrix} 1 & -3 & -1 \\ -3 & 1 & 1 \\ -1 & 1 & 5 \end{pmatrix}$$

Найдём собственные значения и собственные векторы:

$$\chi_A(\lambda) = \det(Q - \lambda E) = \begin{vmatrix}
1 - \lambda & -3 & -1 \\
-3 & 1 - \lambda & 1 \\
-1 & 1 & 5 - \lambda
\end{vmatrix} = -(\lambda + 2)(\lambda - 3)(\lambda - 6)$$

Найдём λ при которых $\chi_Q(\lambda)=0$:

$$\chi_Q(\lambda) = -(\lambda+2)(\lambda-3)(\lambda-6) \Leftrightarrow \lambda = \begin{bmatrix} \lambda = -2 \\ \lambda = 3 \\ \lambda = 6 \end{bmatrix}$$

Найдём ФСР системы $(Q - \lambda E)x = 0$:

 $\bullet \ \lambda = -2:$

$$Q + 2E = \begin{pmatrix} 3 & -3 & -1 & 0 \\ -3 & 3 & 1 & 0 \\ -1 & 1 & 7 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = x_2 \\ x_3 = 0 \end{cases} \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

• $\lambda = 3$:

$$Q - 3E = \begin{pmatrix} -2 & -3 & -1 & 0 \\ -3 & -2 & 1 & 0 \\ -1 & 1 & 2 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = x_3 \\ x_2 = -x_3 \end{cases} \Rightarrow \Phi \text{CP: } e_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

• $\lambda = 6$:

$$Q - 6E = \begin{pmatrix} -5 & -3 & -1 & 0 \\ -3 & -5 & 1 & 0 \\ -1 & 1 & -1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = -\frac{1}{2}x_3 \\ x_2 = \frac{1}{2}x_3 \end{cases} \Rightarrow \Phi \text{CP: } e_3 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$

Векторы e_1 , e_2 , e_3 уже ортогональны, так как являются собственными векторами, отвечающими разным с.з., оператора, задаваемого симметричной матрицей. Остаётся нормировать данные векторы:

$$f_1 = \frac{e_1}{\|e_1\|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \ f_2 = \frac{e_2}{\|e_2\|} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \ f_3 = \frac{e_3}{\|e_3\|} = \begin{pmatrix} -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}$$

Канонический вид квадратичной формы:

$$A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

Матрица перехода к каноническому виду:

$$S = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$

$$A = S^T Q S$$

Ранг квадратичной формы равен рангу матрицы квадратичной формы $\operatorname{Rg} Q = 3$. Найдём индексы инерции:

- $i_{+}=2$ (так как 2 члена с положительным коэффициентом)
- $i_{-}=1$ (так как 1 член с отрицательным коэффициентом)

Ответ: 1) Канонический вид: $\begin{pmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$

- 2) Матрица перехода: $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{pmatrix}$
- 3) Индексы инерции: $i_+ = 2, i_- = 1$

Найти ортогональное преобразование, приводящее квадратичную форму к главным осям:

a)
$$6x_1^2 + 5x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_1x_3$$

b)
$$x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

Решение:

а) Запишем матрицу квадратичной формы:

$$Q = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$$

Найдём собственные значения и собственные векторы:

$$\chi_Q(\lambda) = \det(Q - \lambda E) = \begin{vmatrix} 6 - \lambda & -2 & 2 \\ -2 & 5 - \lambda & 0 \\ 2 & 0 & 7 - \lambda \end{vmatrix} = -(\lambda - 3)(\lambda - 6)(\lambda - 9)$$

Найдём λ при которых $\chi_O(\lambda) = 0$:

$$\chi_Q(\lambda) = -(\lambda - 3)(\lambda - 6)(\lambda - 9) \Leftrightarrow \lambda = \begin{bmatrix} \lambda = 3 \\ \lambda = 6 \\ \lambda = 9 \end{bmatrix}$$

Найдём ФСР системы $(A - \lambda E)x = 0$:

 \bullet $\lambda = 3$:

$$Q - 3E = \begin{pmatrix} 3 & -2 & 2 & 0 \\ -2 & 2 & 0 & 0 \\ 2 & 0 & 4 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = -2x_3 \\ x_2 = -2x_3 \end{cases} \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$$

• $\lambda = 6$:

$$Q-6E = \begin{pmatrix} -2 & -3 & -1 & 0 \\ -3 & -2 & 1 & 0 \\ -1 & 1 & 2 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = -\frac{1}{2}x_3 \\ x_2 = x_3 \end{cases} \Rightarrow \Phi\text{CP: } e_3 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ 1 \end{pmatrix}$$

• $\lambda = 9$:

$$Q-9E = \begin{pmatrix} -3 & -2 & 2 & 0 \\ -2 & -4 & 0 & 0 \\ 2 & 0 & -2 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = x_3 \\ x_2 = -\frac{1}{2}x_3 \end{cases} \Rightarrow \Phi\text{CP: } e_3 = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 1 \end{pmatrix}$$

Векторы e_1 , e_2 , e_3 уже ортогональны, так как являются собственными векторами, отвечающими разным с.з., оператора, задаваемого симметричной матрицей. Остаётся нормировать данные векторы:

$$f_1 = \frac{e_1}{\|e_1\|} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix}, \ f_2 = \frac{e_2}{\|e_2\|} = \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}, \ f_3 = \frac{e_3}{\|e_3\|} = \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$$

Канонический вид квадратичной формы:

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

Матрица перехода к каноническому виду:

$$S = \begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$$
$$A = S^{T}QS$$

b) Запишем матрицу квадратичной формы:

$$Q = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

Найдём собственные значения и собственные векторы:

$$\chi_Q(\lambda) = \det(Q - \lambda E) = \begin{vmatrix} 1 - \lambda & 2 & 2 \\ 2 & 1 - \lambda & 2 \\ 2 & 2 & 1 - \lambda \end{vmatrix} = -(\lambda + 1)^2(\lambda - 5)$$

Найдём λ при которых $\chi_Q(\lambda)=0$:

$$\chi_Q(\lambda) = -(\lambda + 1)^2(\lambda - 5) \Leftrightarrow \lambda = \begin{bmatrix} \lambda = -1 \\ \lambda = 5 \end{bmatrix}$$

Найдём ФСР системы $(Q - \lambda E)x = 0$:

• $\lambda = -1$:

$$Q+E = \begin{pmatrix} 2 & 2 & 2 & 0 \\ 2 & 2 & 2 & 0 \\ 2 & 2 & 2 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow x_1 = -x_2 - x_3 \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

• $\lambda = 5$:

$$Q - 5E = \begin{pmatrix} -4 & 2 & 2 & 0 \\ 2 & -4 & 2 & 0 \\ 2 & 2 & -4 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases} \Rightarrow \Phi \text{CP: } e_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Векторы e_1 и e_3 , e_2 и e_3 уже ортогональны, т.к. являются собственными векторами, отвечающими разным с.з., оператора, задаваемого симметричной матрицей. Ортогонализуем e_1 и e_2 :

$$f'_{1} = e_{1}$$

$$f'_{2} = e_{2} - \frac{(e_{2}, f'_{1})}{(f'_{1}, f'_{1})} f'_{1} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}\\-\frac{1}{2}\\1 \end{pmatrix}$$

$$f_{1} = \frac{f'_{1}}{\|f'_{1}\|} = \begin{pmatrix} -\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\0 \end{pmatrix}, f_{2} = \frac{f'_{2}}{\|f'_{2}\|} = \begin{pmatrix} -\frac{1}{\sqrt{6}}\\-\frac{1}{\sqrt{6}}\\\frac{2}{\sqrt{6}} \end{pmatrix}, f_{3} = \frac{e_{3}}{\|e_{3}\|} = \begin{pmatrix} \frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{6}} \end{pmatrix}$$

Канонический вид квадратичной формы:

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

Матрица перехода к каноническому виду:

$$S = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
$$A = S^{T}QS$$

Ответ: а) Канонический вид: $3y_1^2 + 6y_2^2 + 9y_3^2$; Матрица перехода: $\begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$

b) Канонический вид:
$$-y_1^2 - y_2^2 + 5y_3^2$$
; Матрица перехода:
$$\begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

Найти ортонормированный базис собственных векторов и матрицу B в этом базисе для линейного преобразования заданного в некотором ортонормированном базисе A

$$A = \begin{pmatrix} 17 & -8 & 4 \\ -8 & 17 & -4 \\ 4 & -4 & 11 \end{pmatrix}$$

Решение:

Найдём собственные значения и собственные векторы:

$$\chi_A(\lambda) = \det(A - \lambda E) = \begin{vmatrix}
17 - \lambda & -8 & 4 \\
-8 & 17 - \lambda & -4 \\
4 & -4 & 11 - \lambda
\end{vmatrix} = -(\lambda - 27)(\lambda - 9)$$

Найдём λ при которых $\chi_A(\lambda)=0$:

$$\chi_A(\lambda) = -(\lambda - 27)(\lambda - 9) \Leftrightarrow \lambda = \begin{bmatrix} \lambda = 27 \\ \lambda = 9 \end{bmatrix}$$

Найдём ФСР системы $(A - \lambda E)x = 0$:

• $\lambda = 9$:

$$A-9E = \begin{pmatrix} 8 & -8 & 4 & 0 \\ -8 & 8 & -4 & 0 \\ 4 & -4 & 2 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow x_1 = x_2 - \frac{1}{2}x_3 \Rightarrow \Phi \text{CP:} \begin{cases} e_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T \\ e_2 = \begin{pmatrix} -\frac{1}{2} & 0 & 1 \end{pmatrix}^T \end{cases}$$

• $\lambda = 27$:

$$A-27E = \begin{pmatrix} -10 & -8 & 4 & 0 \\ -8 & -10 & -4 & 0 \\ 4 & -4 & -16 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = 2x_3 \\ x_2 = -2x_3 \end{cases} \Rightarrow \Phi \text{CP: } e_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

Векторы e_1 и e_3 , e_2 и e_3 уже ортогональны, т.к. являются собственными векторами, отвечающими разным с.з., оператора, задаваемого симметричной матрицей. Ортогонализуем e_1 и e_2 :

$$f_1' = e_1$$

$$f_2' = e_2 - \frac{(e_2, f_1')}{(f_1', f_1')} f_1' = \begin{pmatrix} -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} \\ \frac{1}{4} \\ 1 \end{pmatrix}$$

$$f_1 = \frac{f_1'}{\|f_1'\|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \ f_2 = \frac{f_2'}{\|f_2'\|} = \begin{pmatrix} -\frac{1}{3\sqrt{2}} \\ \frac{1}{3\sqrt{2}} \\ \frac{4}{3\sqrt{2}} \end{pmatrix}, \ f_3 = \frac{e_3}{\|e_3\|} = \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$$

Канонический вид квадратичной формы:

$$B = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 27 \end{pmatrix}$$

Ответ:
$$B = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 27 \end{pmatrix}$$
, Базис $f_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$, $f_2 = \begin{pmatrix} -\frac{1}{3\sqrt{2}} \\ \frac{1}{3\sqrt{2}} \\ \frac{4}{3\sqrt{2}} \end{pmatrix}$, $f_3 = \begin{pmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$

Задача 18

Для ортогонального преобразования φ , заданного в ортонормированном базисе матрицей A, найти канонический вид матрицы A и матрицу перехода к этому виду. Указать угол и ось поворота.

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$

Решение:

По теореме Эйлера любой ортогональный оператор в \mathbb{R}^3 может быть приведён к следующему каноническому виду:

$$A' = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & \pm 1 \end{pmatrix}$$

Значит, одним из собственных значений должно быть 1 или -1. Проверим, является ли $\lambda=1$ с.з., подставив его в характеристический многочлен:

$$\det(A - E) = \begin{vmatrix} \frac{1}{2} - 1 & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} - 1 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 - 1 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -1 \end{vmatrix}^{I = -\text{II}} 0$$

Он равен 0, значит, $\lambda = 1$ – с.з и в правом нижнем углу матрицы A' стоит 1. Найдём для с.з. с.в., решив уравнение $Av = \lambda v \Leftrightarrow (A-E)v = 0$ (по определению с.в.), где v – искомый с.в.

$$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{cases} x_1 - x_2 = 0\\ x_3 = 0 \end{cases}$$

У данной системы две главные переменные – x_1 и x_3 и одна зависимая x_2 . Найдём ФСР, для этого в зависимые переменные подставим наборы, состоящие не из всех нулевых значений. Зависимая переменная одна, поэтому набор будет один, пусть $x_2 = 1$.

$$\begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases} \Rightarrow \Phi \text{CP:} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = v$$

$$x_3 = 0$$

Нормируем вектор v:

$$f_3 = \frac{v}{\|v\|} = \frac{v}{\sqrt{1^2 + 1^2 + 0^2}} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$

Ось поворота – собственное значение, соответствующее данному с.з., т.е. вектор f_3 .

Найдём ОНБ в $\langle f_3 \rangle^{\perp}$. Так как f_3 удовлетворяет $(A-E)f_3=0$, то для всех векторов $u=\alpha_1e_1+\alpha_2e_2$, где $\alpha_1,\alpha_2\in\mathbb{R}$ и e_1,e_2 – базис, состоящий из строк матрицы (A-E), будет выполнено равенство $(u,f_3)=(\alpha_1e_1+\alpha_2e_2,f_3)=\alpha_1(e_1,f_3)+\alpha_2(e_2,f_3)=0+0=0$, т.е. $u\in\langle f_3\rangle^{\perp}$. Значит подпространство $\langle f_3\rangle^{\perp}=L(e_1,e_2)$.

$$e_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Ортогонализуем e_1 и e_2 методом Грама-Шмидта (e_1 и e_2 уже ортогональны с f_3 , т.к. лежат в $\langle f_3 \rangle^{\perp}$):

$$f_1' = e_2$$

$$f_2' = e_1 - \frac{(e_1, f_1')}{(f_1', f_1')} f_1' = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Нормируем f'_1 и f'_2 :

$$f_1 = \frac{f_1'}{\|f_1'\|} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ f_2 = \frac{f_2'}{\|f_2'\|} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}$$

Таким образом, $f = (f_1, f_2, f_3)$ – базис, в котором матрица A имеет канонический вид. Обозначим линейный оператор, данный в задаче, как φ . Тогда

$$\varphi(f_1) = Af_1 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}$$

В базисе f по определению вектор $\varphi(f_1)$ будет равен столбцу матрицы линейного оператора в этом базисе, т.е. первому столбцу из A'. Тогда в исходном базисе:

$$(\varphi(f_1))^f = \cos \alpha \cdot f_1 + \sin \alpha \cdot f_2 + 0 \cdot f_3 = \cos \alpha \cdot f_1 + \sin \alpha \cdot f_2$$

$$(\varphi(f_1), f_1) = (\cos \alpha \cdot f_1, f_1) + (\sin \alpha \cdot f_2, f_1) = \cos \alpha \cdot (f_1, f_1) + \sin \alpha \cdot (f_2, f_1) = \cos \alpha \cdot ||f_1|| = \cos \alpha \cdot (\varphi(f_1), f_2) = (\cos \alpha \cdot f_1, f_2) + (\sin \alpha \cdot f_2, f_2) = \cos \alpha \cdot (f_1, f_2) + \sin \alpha \cdot (f_2, f_2) = \sin \alpha \cdot ||f_2|| = \sin \alpha$$

$$\cos \alpha = (\varphi(f_1), f_1) = -\frac{\sqrt{2}}{2} \cdot 0 + \frac{\sqrt{2}}{2} \cdot 0 + 0 \cdot 1 = 0$$
$$\sin \alpha = (\varphi(f_1), f_2) = -\frac{\sqrt{2}}{2} \cdot \frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{2} \cdot \left(-\frac{1}{\sqrt{2}}\right) + 0 \cdot 0 = -1$$

Найдём угол:

$$\begin{cases} \cos \alpha = 0 \\ \sin \alpha = -1 \end{cases} \Rightarrow \alpha = -\frac{\pi}{2}$$

Канонический вид оператора:

$$A' = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Матрица перехода к каноническому виду:

$$C = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}$$
$$A' = C^{T}AC$$

Ответ: канонический вид:
$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, матрица перехода $\begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}$, ось поворота $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$, угол $-\frac{\pi}{2}$.

Найти геометрический смысл линейного преобразования φ трёхмерного евклидова пространства, заданного в ортонормированном базисе e_1, e_2, e_3 матрицей

$$A = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & \frac{\sqrt{6}}{4} \\ \frac{1}{4} & \frac{3}{4} & -\frac{\sqrt{6}}{4} \\ -\frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} & \frac{1}{2} \end{pmatrix}$$

Решение:

Геометрический смысл линейного оператора можно найти с помощью его канонического вида. По теореме Эйлера любой ортогональный оператор в \mathbb{R}^3 может быть приведён к следующему каноническому виду:

$$A' = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & \pm 1 \end{pmatrix}$$

Значит, одним из собственных значений должно быть 1 или -1. Проверим, является ли $\lambda=1$ с.з., подставив его в характеристический многочлен:

$$\det(A - E) = \begin{vmatrix} \frac{3}{4} - 1 & \frac{1}{4} & \frac{\sqrt{6}}{4} \\ \frac{1}{4} & \frac{3}{4} - 1 & -\frac{\sqrt{6}}{4} \\ -\frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} & \frac{1}{2} - 1 \end{vmatrix} = \begin{vmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{\sqrt{6}}{4} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{\sqrt{6}}{4} \\ -\frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} & -\frac{1}{2} \end{vmatrix}^{I} \stackrel{\text{I}}{=}^{\text{-II}} 0$$

Он равен 0, значит, $\lambda = 1$ – с.з. Найдём для него с.в.:

$$\begin{pmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{\sqrt{6}}{4} & 0 \\ \frac{1}{4} & -\frac{1}{4} & -\frac{\sqrt{6}}{4} & 0 \\ -\frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} & -\frac{1}{2} & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{cases} x_1 = x_2 \\ x_3 = 0 \end{cases} \Rightarrow \Phi \text{CP: } f_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Ось поворота – собственное значение, соответствующее данному с.з., т.е. вектор f_3 .

Найдём ОНБ в $\langle f_3 \rangle^{\perp}$. Так как f_3 удовлетворяет $(A-E)f_3=0$, то для всех векторов $u=\alpha_1e_1+\alpha_2e_2$, где $\alpha_1,\alpha_2\in\mathbb{R}$ и e_1,e_2 – базис, состоящий из строк матрицы (A-E), будет выполнено

равенство $(u, f_3) = (\alpha_1 e_1 + \alpha_2 e_2, f_3) = \alpha_1(e_1, f_3) + \alpha_2(e_2, f_3) = 0 + 0 = 0$, т.е. $u \in \langle f_3 \rangle^{\perp}$. Значит подпространство $\langle f_3 \rangle^{\perp} = L(e_1, e_2)$.

$$e_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Ортогонализуем e_1 и e_2 методом Грама-Шмидта (e_1 и e_2 уже ортогональны с f_3 , т.к. лежат в $\langle f_3 \rangle^{\perp}$):

$$f_1' = e_2$$

$$f_2' = e_1 - \frac{(e_1, f_1')}{(f_1', f_1')} f_1' = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - 0 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Нормируем f'_1 и f'_2 :

$$f_1 = \frac{f_1'}{\|f_1'\|} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ f_2 = \frac{f_2'}{\|f_2'\|} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}$$

Таким образом, $f = (f_1, f_2, f_3)$ – базис, в котором матрица A имеет канонический вид. Обозначим линейный оператор, данный в задаче, как φ . Тогда

$$\varphi(f_1) = Af_1 = \begin{pmatrix} \frac{\sqrt{6}}{4} \\ -\frac{\sqrt{6}}{4} \\ \frac{1}{2} \end{pmatrix}$$

Найдём угол:

$$\begin{cases} \cos \alpha = (\varphi(f_1), f_1) = \frac{\sqrt{6}}{4} \cdot 0 - \frac{\sqrt{6}}{4} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2} \\ \sin \alpha = (\varphi(f_1), f_2) = \frac{\sqrt{6}}{4} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{4} \cdot \left(-\frac{\sqrt{2}}{2}\right) + \frac{1}{2} \cdot 0 = \frac{\sqrt{3}}{2} \end{cases} \Rightarrow \alpha = \frac{\pi}{3}$$

Для определения направления поворота найдём ориентацию базиса f_3, f_1, f_2 . Для этого посчитаем определитель следующей матрицы:

$$\det \left(\begin{array}{c|c} f_3 & f_1 & f_2 \end{array} \right) = \begin{vmatrix} 1 & \frac{\sqrt{2}}{2} & 0 \\ 1 & -\frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{vmatrix} = -\sqrt{2} < 0$$

Определитель меньше нуля, значит, вращение производится в отрицательном направлении. Ответ: поворот вокруг оси $(1,1,0)^T$ на угол $\frac{\pi}{3}$ в отрицательном направлении.

Подпространства, проекция, ортогональная составляющая

Задача 20

Найти ортогональную проекцию y и ортогональную составляющую z вектора x на линейное пространство $L = L(a_1, a_2, a_3)$.

$$x = \begin{pmatrix} 4 \\ -1 \\ -3 \\ 4 \end{pmatrix}, a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, a_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, a_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 3 \end{pmatrix}$$

Решение:

I способ.

Найдём базис L. Оно задана как линейная оболочка векторов a_1, a_2, a_3 , поэтому запишем их в столбцы и приведём к ступенчатому виду, выделив ведущие элементы:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} \boxed{1} & 1 & 1 \\ 0 & \boxed{1} & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow a_1, a_2 - \text{базисныe}$$

Составим матрицу из базисных столбцов:

$$A = \left(\begin{array}{c|c} a_1 & a_2 \end{array}\right) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & -1 \end{pmatrix}$$

Найдём проекцию по формуле:

$$y = \operatorname{pr}_{L} x = A(A^{T} A)^{-1} A^{T} x = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & -1 \end{pmatrix}^{T} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & -1 \end{pmatrix}^{T} \begin{pmatrix} 4 \\ -1 \\ -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 5 \end{pmatrix}$$

Тогда ортогональная проекция будет равна:

$$z = x - y = \begin{pmatrix} 4 \\ -1 \\ -3 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ -1 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ -2 \\ -1 \end{pmatrix}$$

II способ.

Базисные векторы подпространства L найдены в первом способе. Это векторы a_1 и a_2 . Ортогонализуем a_1 и a_2 :

$$e_{1} = a_{1}$$

$$e_{2} = a_{2} - \frac{(a_{2}, e_{1})}{(e_{1}, e_{1})} e_{1} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix} - \frac{1 \cdot 1 + 1 \cdot 2 + 1 \cdot 2 + 1 \cdot (-1)}{1^{2} + 1^{2} + 1^{2}} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ -2 \end{pmatrix}$$

Найдём проекцию вектора x на L по формуле:

$$y = \operatorname{pr}_{L} x = \frac{(e_{1}, x)}{(e_{1}, e_{1})} e_{1} + \frac{(e_{2}, x)}{(e_{2}, e_{2})} e_{2} = \frac{4}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{12}{6} \begin{pmatrix} 0 \\ 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 5 \end{pmatrix}$$

Ортогональная проекция ищется так же как и в первом способе: z = x - y.

III способ.

Найдём базис L^{\perp} . Для этого найдём ФСР системы составленной из столбцов $a_1, a_2, a_3,$ записанных в строки:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 2x_3 - x_4 = 0 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 2 & -1 & 0 \\ 1 & 0 & 0 & 3 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

ФСР данной системы будет равна:

$$e_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} -3 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

Так как e_1 и e_2 базис ортогонального дополнения, а z является ортогональной проекцией, вектор z можно разложит по базису e_1, e_2 :

$$z = \alpha e_1 + \beta e_2$$

Тогда $x = z + y = \alpha e_1 + \beta e_2 + y$. По определению ортогонального дополнения для любого вектора $a \in L$ верно, что если $b \in L^{\perp}$, то (a,b) = 0. Вектор $y \in L$, вектор $z \in L^{\perp}$. Посчитаем следующие скалярные произведения:

$$\begin{cases} (x, e_1) = (\alpha e_1 + \beta e_2 + y, e_1) = \alpha(e_1, e_1) + \beta(e_2, e_1) + (y, e_1) = \alpha(e_1, e_1) + \beta(e_1, e_2) \\ (x, e_2) = (\alpha e_1 + \beta e_2 + y, e_2) = \alpha(e_1, e_2) + \beta(e_2, e_2) + (y, e_2) = \alpha(e_1, e_2) + \beta(e_2, e_2) \end{cases}$$

Векторы x, e_1, e_2 известны, значит, можно посчитать скалярные произведения:

$$\begin{cases}
-2 = 2\alpha - 2\beta \\
-10 = -2\alpha + 14\beta
\end{cases} \Leftrightarrow \begin{cases}
\alpha = -2 \\
\beta = -1
\end{cases}$$

Теперь можно найти z и y:

$$z = -2e_1 - e_2 = \begin{pmatrix} 3 \\ 0 \\ -2 \\ -1 \end{pmatrix}$$
$$y = x - z = \begin{pmatrix} 4 \\ -1 \\ -3 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 5 \end{pmatrix}$$

Ответ:
$$y = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 5 \end{pmatrix}, z = \begin{pmatrix} 3 \\ 0 \\ -2 \\ -1 \end{pmatrix}$$

Задача 21

Найти расстояние от точки, заданной вектором $x = \begin{pmatrix} 4 & 2 & -5 & 1 \end{pmatrix}^T$, до линейного многообразия L, заданного системой:

$$\begin{cases} 2x_1 - 2x_2 + x_3 + 2x_4 = 9\\ 2x_1 - 4x_2 + 2x_3 + 3x_4 = 12 \end{cases}$$

Решение:

Расстояние от вектора x до линейного многообразия L равно длине ортогональной составляющей $\| \operatorname{ort}_L x \|$. Перенесём вектор x и L на вектор x_0 , который является частным решением системы:

$$\begin{pmatrix} 2 & -2 & 1 & 2 & | & 9 \\ 2 & -4 & 2 & 3 & | & 12 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 0 & 0 & 1 & | & 6 \\ 0 & -2 & 1 & 1 & | & 3 \end{pmatrix} \Rightarrow x_0 = \begin{pmatrix} 3 \\ -\frac{3}{2} \\ 0 \\ 0 \end{pmatrix}$$

Тогда получаем новый вектор x' и линейное многообразие U, между которыми будем искать расстояние:

$$x' = x - x_0 = \begin{pmatrix} 4 \\ 2 \\ -5 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ -\frac{3}{2} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{7}{2} \\ -5 \\ 1 \end{pmatrix}, \quad U : \begin{cases} 2x_1 + x_4 = 0 \\ -2x_2 + x_3 + x_4 = 0 \end{cases}$$
$$\|\operatorname{ort}_L x\| = \|\operatorname{ort}_U x'\|$$

Ортогональную составляющую x' на U, можно найти в виде проекции x' на U^{\perp} . В качестве базиса U^{\perp} возьмём строки матрицы задающей систему U, то есть

$$e_1 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \\ 1 \end{pmatrix}$$

Так можно сделать, потому что выполнены следующие условия:

- 1) Векторы e_1 и e_2 л.н.з. и их количество $\dim U^{\perp}$
- 2) $\forall x = (x_1, x_2, x_3, x_4)^T \in U$ для $v = \alpha e_1 + \beta e_2$ из U^{\perp} выполнено:

$$(x,v) = \alpha(x,e_1) + \beta(x,e_2) = \alpha \underbrace{(2x_1 + x_4)}_{=0 \text{ из системы,}} + \beta \underbrace{(-2x_2 + x_3 + x_4)}_{=0 \text{ из системы,}} = \alpha \cdot 0 + \beta \cdot 0 = 0$$

То есть определение оргонального дополнения выполнено.

Остаётся найти $\|\operatorname{pr}_{U^{\perp}} x'\| = \|\operatorname{ort}_{U} x'\|$. Воспользуемся формулой

$$\operatorname{pr}_{L} x = A(A^{T} A)^{-1} A^{T} x' = \begin{pmatrix} 2 & 0 \\ 0 & -2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}^{T} \begin{pmatrix} 2 & 0 \\ 0 & -2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 0 \\ 0 & -2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}^{T} \begin{pmatrix} 1 \\ \frac{7}{2} \\ -5 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -2 \\ -1 \end{pmatrix}$$

Осталось найти длину проекции:

$$\|\operatorname{pr}_L x\| = \sqrt{2^2 + 4^2 + (-2)^2 + (-1)^2} = 5$$

Ответ: 5.

Кривые и поверхности второго порядка

Задача 22

Уравнение $5x^2 + 2y^2 + 4xy + 4\sqrt{5}x + 4\sqrt{5}y - 14 = 0$ линии второго порядка на плоскости привести к каноническому виду с помощью ортогонального преобразования и сдвига, указав:

- а) Одно из преобразований перехода от заданной системы координат к канонической системе координат
- b) Канонический вид уравнения линии
- с) Определить тип кривой. На плоскости построить каноническую систему координат, в которой схематично изобразить кривую.

Решение:

а) Сначала выделим из уравнения и приведём к каноническому виду квадратичную форму:

$$Q(x,y) = 5x^2 + 2y^2 + 4xy \Leftrightarrow Q = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}$$

К каноническому виду приведём при помощи ортогональных преобразований:

$$\chi_Q(\lambda) = \det(Q - \lambda E) = \begin{vmatrix} 5 - \lambda & 2 \\ 2 & 2 - \lambda \end{vmatrix} = (\lambda - 6)(\lambda - 1)$$

Собственные значение будут равны: $\lambda=1,6$. Для каждого найдем соответствующее собственное значение:

• $\lambda = 1$:

$$A - E = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 = -\frac{1}{2}x_2 \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

• $\lambda = 6$:

$$A - E = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -4 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 = 2x_2 \Rightarrow \Phi \text{CP: } e_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Векторы e_1 , e_2 уже ортогональны, так как являются собственными векторами, отвечающими разным с.з., оператора, задаваемого симметричной матрицей. Остаётся нормировать данные векторы:

$$f_1 = \frac{e_1}{\|e_1\|} = \begin{pmatrix} -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}, f_2 = \frac{e_2}{\|e_2\|} = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$

Составим матрицу ортогонального преобразования:

$$S = \begin{pmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

Канонический вид квадратичная формы:

$$Q'(x_1, y_1) = x_1^2 + 6y_2^2$$

Замена от координат x, y к x_1, y_1 :

$$\begin{pmatrix} x \\ y \end{pmatrix} = S \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1 \\ \frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1 \end{pmatrix} \Leftrightarrow \begin{cases} x = -\frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1 \\ y = \frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1 \end{cases}$$

b) Подставим новые координаты в исходное уравнение:

$$5\left(-\frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1\right)^2 + 2\left(\frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1\right)^2 + 4\left(-\frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1\right)\left(\frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1\right) + 4\sqrt{5}\left(-\frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1\right) + 4\sqrt{5}\left(\frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1\right) - 14 = 0$$

$$x_1^2 + 6y_1^2 + 4x_1 + 12y - 14 = 0$$

Выделим полные квадраты:

$$x_1^2 + 6y_1^2 + 4x_1 + 12y - 14 = 0$$
$$(x_1 + 2)^2 + 6(y_1 + 1)^2 = 24$$
$$\frac{(x_1 + 2)^2}{24} + \frac{(y_1 + 1)^2}{4} = 1$$

Сделаем параллельный перенос:

$$\begin{cases} x_1 = x_2 - 2 \\ y_1 = y_2 - 1 \end{cases}$$

Получаем канонический вид кривой:

$$\frac{x_2^2}{24} + \frac{y_2^2}{4} = 1$$

с) Данное уравнение задаёт эллипс с $a = \sqrt{24} = 2\sqrt{6}$, $b = \sqrt{4} = 2$. В канонической системе координат он проходит через точки $(\pm a; 0)$, $(0; \pm b)$.

Ответ: $\frac{x_2^2}{24} + \frac{y_2^2}{4} = 1$

Задача 23

Эллипс проходит через точку $C(0; -1 + \sqrt{20})$, его большая ось оканчивается вершинами A(-2; 5), B(-2; -7). Написать уравнение кривой, указать большую и малую полуоси, найти эксцентриситет и сделать эскиз.

Решение:

Найдём точку — центр эллипса. Так как у вершин A и B, задающих прямую оси, x-координата совпадает, ось эллипса AB параллельна оси O_y . Координата центра $x_0 = -2$, координата центра $y_0 = \frac{-7+5}{2} = -1$. Таким образом, центр в точке O(-2; -1).

Так как оси эллипса параллельны координатным осям, а центр расположен в O(-2;-1), получим следующее уравнение эллипса:

$$\frac{(x+2)^2}{a^2} + \frac{(y+1)^2}{b^2} = 1$$

Подставим точку A в уравнение:

$$\frac{(-2+2)^2}{a^2} + \frac{(5+1)^2}{b^2} = 1 \Leftrightarrow \frac{36}{b^2} = 1 \Rightarrow b = 6$$

Подставим точку C в уравнение:

$$\frac{(0+2)^2}{a^2} + \frac{(-1+\sqrt{20}+1)^2}{36} = 1 \Leftrightarrow \frac{4}{a^2} + \frac{5}{9} = 1 \Leftrightarrow a^2 = 9 \Rightarrow a = 3$$

Таким образом, уравнение кривой:

$$\frac{(x+2)^2}{9} + \frac{(y+1)^2}{36} = 1$$

Малая полуось равна a=3, большая полуось равна b=6. Посчитаем эксцентриситет:

$$\varepsilon = \sqrt{1 - \frac{a^2}{b^2}} = \frac{\sqrt{3}}{2}$$

Ответ: малая полуось равна a=3, большая полуось равна b=6, эксцентриситет $\frac{\sqrt{3}}{2}$.

Задача 24

Используя параллельный перенос, выяснить вид и расположение на координатной плоскости следующих линий второго порядка

a)
$$x^2 + 4y^2 + 4x - 8y - 8 = 0$$

b)
$$x^2 - 4y^2 + 6x + 5 = 0$$

c)
$$3x^2 - 2y^2 + 6x + 4y + 1 = 0$$

d)
$$y^2 - 10x - 2y - 19 = 0$$

Решение:

а) Преобразуем выражение:

$$x^{2} + 4y^{2} + 4x - 8y - 8 = 0$$

$$(x^{2} + 4x + 4) + 4(y^{2} - 2y + 1) - 16 = 0$$

$$(x + 2)^{2} + 4(y - 1)^{2} = 16$$

$$\frac{(x + 2)^{2}}{16} + \frac{(y - 1)^{2}}{4} = 1$$

Сделаем параллельный перенос:

$$\begin{cases} x' = x + 2 \\ y' = y - 1 \end{cases} \Leftrightarrow \begin{cases} x = x' - 2 \\ y = y' + 1 \end{cases}$$

Получаем каноническое уравнение эллипса:

$$\frac{x'^2}{4^2} + \frac{y'^2}{2^2} = 1$$

Значит, исходное уравнение задаёт эллипс с центром в точке O(-2,1), большой полуосью a=4 и малой полуосью b=2.

b) Преобразуем выражение:

$$x^{2} - 4y^{2} + 6x + 5 = 0$$
$$(x^{2} + 6x + 9) - 4y^{2} - 4 = 0$$
$$(x + 3)^{2} - 4y^{2} = 4$$
$$\frac{(x + 3)^{2}}{4} - \frac{y^{2}}{1} = 1$$

Сделаем параллельный перенос:

$$\begin{cases} x' = x + 3 \\ y' = y \end{cases} \Leftrightarrow \begin{cases} x = x' - 3 \\ y = y' \end{cases}$$

Получаем каноническое уравнение гиперболы:

$$\frac{x'^2}{2^2} - \frac{y'^2}{1^2} = 1$$

Значит, исходное уравнение задаёт гиперболу с центром в точке O(-3,0), действительной полуосью a=2 и мнимой полуосью b=1.

с) Преобразуем выражение:

$$3x^{2} - 2y^{2} + 6x + 4y + 1 = 0$$
$$3(x^{2} + 2x + 1) - 2(y^{2} - 2y + 1) = 0$$
$$3(x + 1)^{2} - 2(y - 1)^{2} = 0$$
$$(\sqrt{3}(x + 1) - \sqrt{2}(y - 1))(\sqrt{3}(x + 1) + \sqrt{2}(y - 1)) = 0$$

Сделаем параллельный перенос:

$$\begin{cases} x' = x + 1 \\ y' = y - 1 \end{cases} \Leftrightarrow \begin{cases} x = x' - 1 \\ y = y' + 1 \end{cases}$$

Получаем канонические уравнения двух прямых:

$$\begin{bmatrix}
\sqrt{3}x' - \sqrt{2}y' = 0 \\
\sqrt{3}x' + \sqrt{2}y' = 0
\end{bmatrix}$$

Значит, исходное уравнение задаёт две пересекающиеся прямые в точке O(-1,1).

d) Преобразуем выражение:

$$y^{2} - 10x - 2y - 19 = 0$$
$$(y^{2} - 2x + 1) - 10x - 20 = 0$$
$$(y - 1)^{2} = 10(x + 2)$$

Сделаем параллельный перенос:

$$\begin{cases} x' = x + 2 \\ y' = y - 1 \end{cases} \Leftrightarrow \begin{cases} x = x' - 2 \\ y = y' + 1 \end{cases}$$

Получаем каноническое уравнение параболы:

$$y'^2 = 2 \cdot 5x'$$

Значит, исходное уравнение задаёт параболу с вершиной в точке O(-2,1), p=5. **Ответ:** а) эллипс; b) гипербола; c) пара пересекающихся прямых; d) парабола.

Задача 25

Используя метод вращений, определить форму и расположение на плоскости следующих линий второго порядка:

a)
$$x^2 - 2xy + y^2 - 10x - 6y + 25 = 0$$

b)
$$2x^2 + 4xy + 5y^2 - 6x - 8y - 1 = 0$$

c)
$$6xy - 8y^2 + 12x - 26y - 11 = 0$$

Решение:

а) Выделим из выражения квадратичную форму и приведём её к каноническому виду:

$$Q(x,y) = x^2 - 2xy + y^2 \Leftrightarrow Q = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

К каноническому виду приведём при помощи ортогональных преобразований:

$$\chi_Q(\lambda) = \det(Q - \lambda E) = \begin{vmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda(\lambda - 2)$$

Собственные значение будут равны: $\lambda = 0, 2$. Для каждого найдем соответствующее собственное значение:

 \bullet $\lambda = 0$:

$$A - 0E = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 = x_2 \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• $\lambda = 2$:

$$A - 2E = \begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 = -x_2 \Rightarrow \Phi \text{CP: } e_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Векторы e_1 , e_2 уже ортогональны, так как являются собственными векторами, отвечающими разным с.з., оператора, задаваемого симметричной матрицей. Остаётся нормировать данные векторы:

$$f_1 = \frac{e_1}{\|e_1\|} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \ f_2 = \frac{e_2}{\|e_2\|} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Составим матрицу ортогонального преобразования:

$$S = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Канонический вид квадратичная формы:

$$Q'(x_1, y_1) = 0x_1^2 + 2y_2^2$$

Замена от координат x, y к x_1, y_1 :

$$\begin{pmatrix} x \\ y \end{pmatrix} = S \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}x_1 - \frac{1}{\sqrt{2}}y_1 \\ \frac{1}{\sqrt{2}}x_1 + \frac{1}{\sqrt{2}}y_1 \end{pmatrix} \Leftrightarrow \begin{cases} x = \frac{1}{\sqrt{2}}x_1 - \frac{1}{\sqrt{2}}y_1 \\ y = \frac{1}{\sqrt{2}}x_1 + \frac{1}{\sqrt{2}}y_1 \end{cases}$$

Подставим новые координаты в исходное уравнение:

$$0x_1^2 + 2y_2^2 - 10\left(\frac{1}{\sqrt{2}}x_1 - \frac{1}{\sqrt{2}}y_1\right) - 6\left(\frac{1}{\sqrt{2}}x_1 + \frac{1}{\sqrt{2}}y_1\right) + 25 = 0$$
$$2y_1^2 - 8\sqrt{2}x_1 + 2\sqrt{2}y_1 + 25 = 0$$
$$2\left(y_1 + \frac{\sqrt{2}}{2}\right)^2 - 8\sqrt{2}\left(x_1 - \frac{3}{\sqrt{2}}\right) = 0$$
$$\left(y_1 + \frac{\sqrt{2}}{2}\right)^2 = 4\sqrt{2}\left(x_1 - \frac{3}{\sqrt{2}}\right)$$

Сделаем параллельный перенос:

$$\begin{cases} x_2 = x_1 - \frac{3}{\sqrt{2}} \\ y_2 = y_1 + \frac{\sqrt{2}}{2} \end{cases} \Leftrightarrow \begin{cases} x_1 = x_2 + \frac{3}{\sqrt{2}} \\ y_1 = y_2 - \frac{\sqrt{2}}{2} \end{cases}$$

Получаем канонический вид параболы:

$$y_2^2 = 2 \cdot 2\sqrt{2}x_2$$

Вернёмся к исходным координатам:

$$\begin{cases} x = \frac{1}{\sqrt{2}}x_1 - \frac{1}{\sqrt{2}}y_1 \\ y = \frac{1}{\sqrt{2}}x_1 + \frac{1}{\sqrt{2}}y_1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{\sqrt{2}}\left(x_2 + \frac{3}{\sqrt{2}}\right) - \frac{1}{\sqrt{2}}\left(y_2 - \frac{\sqrt{2}}{2}\right) \\ y = \frac{1}{\sqrt{2}}\left(x_2 + \frac{3}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}}\left(y_2 - \frac{\sqrt{2}}{2}\right) \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{\sqrt{2}}x_2 - \frac{1}{\sqrt{2}}y_2 + 2 \\ y = \frac{1}{\sqrt{2}}x_2 + \frac{1}{\sqrt{2}}y_2 + 1 \end{cases}$$

Вершина параболы в координатах x_2, y_2 находится в точке (0; 0). Тогда в координатах x, y вершина параболы будет находиться в точке $\left(\frac{1}{\sqrt{2}} \cdot 0 - \frac{1}{\sqrt{2}} \cdot 0 + 2; \frac{1}{\sqrt{2}} \cdot 0 + \frac{1}{\sqrt{2}} \cdot 0 + 1\right)$, то есть в точке (2; 1).

Ось параболы в координатах x_2, y_2 равна $y_2 = 0$. Найдём ось параболы в координатах x, y. Вычтем из второго уравнения системы для координат x, y первое:

$$y - x = \frac{1}{\sqrt{2}}x_2 + \frac{1}{\sqrt{2}}y_2 + 1 - \left(\frac{1}{\sqrt{2}}x_2 - \frac{1}{\sqrt{2}}y_2 + 2\right) = \sqrt{2}y_2 - 1 \Leftrightarrow y = x - 1 + \sqrt{2}y_2$$

Подставляя $y_2 = 0$, получаем ось исходной параболы: y = x - 1.

Параметр $p=2\sqrt{2}$. Тогда фокус в координатах x_2,y_2 будет в точке $\left(\frac{p}{2};0\right)$, т.е. $\left(\sqrt{2},0\right)$. Найдём фокус в координатах x,y: $\left(\frac{1}{\sqrt{2}}\cdot\sqrt{2}-\frac{1}{\sqrt{2}}\cdot0+2;\frac{1}{\sqrt{2}}\cdot\sqrt{2}+\frac{1}{\sqrt{2}}\cdot0+1\right)$. Таким образом, фокус в точке (3;2).

b) Выделим из выражения квадратичную форму и приведём её к каноническому виду:

$$Q(x,y) = 2x^2 + 4xy + 5y^2 \Leftrightarrow Q = \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix}$$

К каноническому виду приведём при помощи ортогональных преобразований:

$$\chi_Q(\lambda) = \det(Q - \lambda E) = \begin{vmatrix} 2 - \lambda & 2 \\ 2 & 5 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 6)$$

Собственные значение будут равны: $\lambda = 1, 6$. Для каждого найдем соответствующее собственное значение:

• $\lambda = 1$:

$$A - E = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 = -2x_2 \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

• $\lambda = 6$:

$$A - 6E = \begin{pmatrix} -4 & 2 & 0 \\ 2 & -1 & 0 \end{pmatrix} \leadsto \begin{pmatrix} -2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 = \frac{1}{2}x_2 \Rightarrow \Phi \text{CP: } e_2 = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$$

Векторы e_1 , e_2 уже ортогональны, так как являются собственными векторами, отвечающими разным с.з., оператора, задаваемого симметричной матрицей. Остаётся нормировать данные векторы:

$$f_1 = \frac{e_1}{\|e_1\|} = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}, f_2 = \frac{e_2}{\|e_2\|} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$$

Составим матрицу ортогонального преобразования:

$$S = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$$

Канонический вид квадратичная формы:

$$Q'(x_1, y_1) = x_1^2 + 6y_2^2$$

Замена от координат x, y к x_1, y_1 :

$$\begin{pmatrix} x \\ y \end{pmatrix} = S \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} -\frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1 \\ \frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1 \end{pmatrix} \Leftrightarrow \begin{cases} x = -\frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1 \\ y = \frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1 \end{cases}$$

Подставим новые координаты в исходное уравнение:

$$x_1^2 + 6y_2^2 - 6\left(-\frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1\right) - 8\left(\frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1\right) - 1 = 0$$

$$x_1^2 + 6y_1^2 + \frac{4}{\sqrt{5}}x - \frac{22}{\sqrt{5}}y - 1 = 0$$

$$\left(x_1 + \frac{2}{\sqrt{5}}\right)^2 - \frac{4}{5} + 6\left(y_1 - \frac{11}{6\sqrt{5}}\right)^2 - \frac{121}{30} - 1 = 0$$

$$\left(x_1 + \frac{2}{\sqrt{5}}\right)^2 + 6\left(y_1 - \frac{11}{6\sqrt{5}}\right)^2 = \frac{35}{6}$$

$$\frac{\left(x_1 + \frac{2}{\sqrt{5}}\right)^2}{\frac{35}{6}} + \frac{\left(y_1 - \frac{11}{6\sqrt{5}}\right)^2}{\frac{35}{36}} = 1$$

Сделаем параллельный перенос:

$$\begin{cases} x_2 = x_1 + \frac{2}{\sqrt{5}} \\ y_2 = y_1 - \frac{11}{6\sqrt{5}} \end{cases} \Leftrightarrow \begin{cases} x_1 = x_2 - \frac{2}{\sqrt{5}} \\ y_1 = y_2 + \frac{11}{6\sqrt{5}} \end{cases}$$

Получаем канонический вид эллипса:

$$\frac{x_2^2}{\left(\sqrt{\frac{35}{6}}\right)^2} + \frac{y_2^2}{\left(\frac{\sqrt{35}}{6}\right)^2} = 1$$

Вернёмся к исходным координатам:

$$\begin{cases} x = -\frac{2}{\sqrt{5}}x_1 + \frac{1}{\sqrt{5}}y_1 \\ y = \frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{2}{\sqrt{5}}\left(x_2 - \frac{2}{\sqrt{5}}\right) + \frac{1}{\sqrt{5}}\left(y_2 + \frac{11}{6\sqrt{5}}\right) \\ y = \frac{1}{\sqrt{5}}\left(x_2 - \frac{2}{\sqrt{5}}\right) + \frac{2}{\sqrt{5}}\left(y_2 + \frac{11}{6\sqrt{5}}\right) \end{cases} \Leftrightarrow \begin{cases} x = -\frac{2}{\sqrt{5}}x_2 + \frac{1}{\sqrt{5}}y_2 + \frac{7}{6}y_3 + \frac{1}{2\sqrt{5}}y_4 + \frac{1}{2\sqrt{5}}y_5 + \frac{1}{2\sqrt{5}}y_5$$

Центр эллипса в координатах x_2, y_2 находится в точке (0; 0). Тогда в координатах x, y центр эллипса будет находиться в точке $\left(-\frac{2}{\sqrt{5}}\cdot 0 + \frac{1}{\sqrt{5}}\cdot 0 + \frac{7}{6}; \frac{1}{\sqrt{5}}\cdot 0 + \frac{2}{\sqrt{5}}\cdot 0 + \frac{1}{3}\right)$, то есть в точке $\left(\frac{7}{6}; \frac{1}{3}\right)$.

Большая полуось эллипса равна $a = \frac{\sqrt{35}}{6}$, меньшая – $b = \sqrt{\frac{35}{6}}$.

Большая ось в координатах x_2, y_2 задаётся уравнением $y_2 = 0$. Найдём ось эллипса в координатах x, y. Сложим удвоенное второе уравнение системы для координат x, y и первое:

$$2y + x = \frac{2}{\sqrt{5}}x_2 + \frac{4}{\sqrt{5}}y_2 + \frac{2}{3} - \frac{2}{\sqrt{5}}x_2 + \frac{1}{\sqrt{5}}y_2 + \frac{7}{6} = \sqrt{5}y_2 + \frac{11}{6} \Leftrightarrow 2y + x - \frac{11}{6} = \sqrt{5}y_2$$

Подставляя $y_2 = 0$, получаем большую ось исходного эллипса: $2y + x - \frac{11}{6} = 0$.

с) Выделим из выражения квадратичную форму и приведём её к каноническому виду:

$$Q(x,y) = 0x^{2} + 6xy - 8y^{2} \Leftrightarrow Q = \begin{pmatrix} 0 & 3 \\ 3 & -8 \end{pmatrix}$$

К каноническому виду приведём при помощи ортогональных преобразований:

$$\chi_Q(\lambda) = \det(Q - \lambda E) = \begin{vmatrix} 0 - \lambda & 3 \\ 3 & -8 - \lambda \end{vmatrix} = (\lambda + 1)(\lambda - 9)$$

Собственные значение будут равны: $\lambda = 1, -9$. Для каждого найдем соответствующее собственное значение:

• $\lambda = 1$:

$$A - E = \begin{pmatrix} -1 & 3 & 0 \\ 3 & -9 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -1 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 = 3x_2 \Rightarrow \Phi \text{CP: } e_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

• $\lambda = -9$:

$$A + 9E = \begin{pmatrix} 9 & 3 & 0 \\ 3 & 1 & 0 \end{pmatrix} \leadsto \begin{pmatrix} 3 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 = -\frac{1}{3}x_2 \Rightarrow \Phi \text{CP: } e_2 = \begin{pmatrix} -\frac{1}{3} \\ 1 \end{pmatrix}$$

Векторы e_1 , e_2 уже ортогональны, так как являются собственными векторами, отвечающими разным с.з., оператора, задаваемого симметричной матрицей. Остаётся нормировать данные векторы:

$$f_1 = \frac{e_1}{\|e_1\|} = \begin{pmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{pmatrix}, \ f_2 = \frac{e_2}{\|e_2\|} = \begin{pmatrix} -\frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{pmatrix}$$

Составим матрицу ортогонального преобразования:

$$S = \begin{pmatrix} \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix}$$

Канонический вид квадратичная формы:

$$Q'(x_1, y_1) = x_1^2 - 9y_2^2$$

Замена от координат x, y к x_1, y_1 :

$$\begin{pmatrix} x \\ y \end{pmatrix} = S \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{10}} x_1 - \frac{1}{\sqrt{10}} y_1 \\ \frac{1}{\sqrt{10}} x_1 + \frac{3}{\sqrt{10}} y_1 \end{pmatrix} \Leftrightarrow \begin{cases} x = \frac{3}{\sqrt{10}} x_1 - \frac{1}{\sqrt{10}} y_1 \\ y = \frac{1}{\sqrt{10}} x_1 + \frac{3}{\sqrt{10}} y_1 \end{cases}$$

Подставим новые координаты в исходное уравнение:

$$x_1^2 - 9y_2^2 + 12\left(\frac{3}{\sqrt{10}}x_1 - \frac{1}{\sqrt{10}}y_1\right) - 26\left(\frac{1}{\sqrt{10}}x_1 + \frac{3}{\sqrt{10}}y_1\right) - 11 = 0$$

$$x_1^2 - 9y_1^2 + \sqrt{10}x - 9\sqrt{10}y - 11 = 0$$

$$\left(x_1 + \frac{\sqrt{10}}{2}\right)^2 - \frac{5}{2} - 9\left(y_1 + \frac{\sqrt{10}}{2}\right)^2 + \frac{45}{2} - 11 = 0$$

$$\left(x_1 + \frac{\sqrt{10}}{2}\right)^2 - 9\left(y_1 + \frac{\sqrt{10}}{2}\right)^2 = 9$$

$$\frac{\left(x_1 + \frac{\sqrt{10}}{2}\right)^2}{9} + \frac{\left(y_1 + \frac{\sqrt{10}}{2}\right)^2}{1} = 1$$

Сделаем параллельный перенос:

$$\begin{cases} x_2 = x_1 + \frac{\sqrt{10}}{2} \\ y_2 = y_1 + \frac{\sqrt{10}}{2} \end{cases} \Leftrightarrow \begin{cases} x_1 = x_2 - \frac{\sqrt{10}}{2} \\ y_1 = y_2 - \frac{\sqrt{10}}{2} \end{cases}$$

Получаем канонический вид гиперболы:

$$\frac{x_2^2}{3^2} + \frac{y_2^2}{1^2} = 1$$

Вернёмся к исходным координатам:

$$\begin{cases} x = \frac{3}{\sqrt{10}}x_1 - \frac{1}{\sqrt{10}}y_1 \\ y = \frac{1}{\sqrt{10}}x_1 + \frac{3}{\sqrt{10}}y_1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{3}{\sqrt{10}}\left(x_2 - \frac{\sqrt{10}}{2}\right) - \frac{1}{\sqrt{10}}\left(y_2 - \frac{\sqrt{10}}{2}\right) \\ y = \frac{1}{\sqrt{10}}\left(x_2 - \frac{\sqrt{10}}{2}\right) + \frac{3}{\sqrt{10}}\left(y_2 - \frac{\sqrt{10}}{2}\right) \end{cases} \Leftrightarrow \begin{cases} x = \frac{3}{\sqrt{10}}x_2 - \frac{1}{\sqrt{10}}y_2 - 1 \\ y = \frac{1}{\sqrt{10}}x_2 + \frac{3}{\sqrt{10}}y_2 - 2 \end{cases}$$

Центр гиперболы в координатах x_2, y_2 находится в точке (0;0). Тогда в координатах x, y центр гиперболы будет находиться в точке $\left(\frac{3}{\sqrt{10}}\cdot 0 - \frac{1}{\sqrt{10}}\cdot 0 - 1; \frac{1}{\sqrt{10}}\cdot 0 + \frac{3}{\sqrt{10}}\cdot 0 - 2\right)$, то есть в точке (-1;-2).

Мнимая полуось гиперболы равна b=3, действительная – a=1.

Действительная ось в координатах x_2, y_2 задаётся уравнением $x_2 = 0$. Найдём ось эллипса в координатах x, y. Сложим утроенное первое уравнение системы для координат x, y и второе:

$$y + 3x = \frac{1}{\sqrt{10}}x_2 + \frac{3}{\sqrt{10}}y_2 - 2 + \frac{9}{\sqrt{10}}x_2 - \frac{3}{\sqrt{10}}y_2 - 3 = \sqrt{10}x_2 - 5 \Leftrightarrow y + 3x + 5 = \sqrt{10}x_2$$

Подставляя $x_2 = 0$, получаем большую ось исходного эллипса: y + 3x + 5 = 0.

Ответ: а) Парабола с вершиной (2;1) и фокусом $(3;2), p=2\sqrt{2},$ ось: y=x-1

- b) Эллипс с центром $\left(\frac{7}{6};\frac{1}{3}\right)$, большая полуось $a=\frac{\sqrt{35}}{6}$, меньшая $b=\sqrt{\frac{35}{6}}$, ось: $2y+x-\frac{11}{6}=0$
- b) Гипербола с центром (-1;-2), действительная полуось a=1, мнимая b=3, действительная ось: y+3x+5=0