THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

EXAMINATION

Course : MScIT (61030/88004) / MScST (61030/88004) / Research Student

Subject : COMP5121 Data Mining And Data Warehousing Applications

Group : 201,2011/202,2021/205/2888

Session: 2005 / 2006 Semester II

Date : 10 May 2006

Time: 18:30-20:30

Time Allowed: 2 Hours Subject Lecturer: Korris Chung

This question paper has _____7 ___ pages (cover included).

Instructions to Candidates:

Open-book examination.

Answer any **FOUR** questions. Each question carries equal marks. Show all your steps and write down any assumption(s) you made.

Do not turn this page until you are told to do so!

Answer ANY FOUR questions. Each question carries 25 marks.

1. Suppose you are asked to provide data mining consulting services to an Internet DVD shop. After interviewing the shop's manager and the database administrator, the following information about the customer database and the movie database are collected.

Customer Database

Customer ID	Transaction Date	Movie Rent (Movie ID)	Rating (5-star scheme)
00001	02-01-2003	3997 (Spiderman II)	4 stars
00001	12-11-2003	0553 (Finding Nemo)	3.5 stars
00001	15-05-2006	0150 (Cinderella Man)	4 stars
00002	12-01-2003	1011 (Poltergeist)	4 Stars
00002	112-10-2004	0150 (Cinderella Man)	3 stars
00002	10-06-2005	3996 (Spiderman)	3.5 stars
00003	07-03-2005	0013 (Batman Begins)	3.5 stars
00003	16-03-2006	0001 (A Beautiful Mind)	2 stars
00004	07-03-2005	4490 (The Fly)	3.5 Stars
00004	17-03-2006	0909 (King Kong)	5 stars
00004	18-03-2006	0013 (Batman Begins)	4 stars

Movie Database

Movie ID	Movie Name	Types
0001	A Beautiful Mind	Drama, Mystery, Romance
0012	Batman	Action, Crime, Thriller
0013	Batman Begins	Action, Crime, Thriller
0150	Cinderella Man	Drama, Romance
0553	Finding Nemo	Animation, Comedy
1011	Poltergeist	Horror, Thriller
3996	Spiderman	Action, Crime, Sci-Fiction
3997	Spiderman II	Action, Crime, Sci-Fiction
4490	The Fly	Drama, Horror, Sci-Fiction
0909	King Kong	Action, Thriller, Horror, Sci-Fiction

If the clustering technology is adopted, describe how you formulate and solve the problem as follows.

a) Compute the similarities between the five customers so that they can be effectively clustered according to their movie preferences. You are expected to take into considerations of the customer's rating and movie types in your formulation.

(10 marks)

b) Based on the results in part (a), cluster the data records using the single linkage agglomerative hierarchical clustering algorithm. Draw the dendrogram found.

(7 marks)

c) Your client would like to know the movie preferences of the atypical customers. Discuss how the dendrogram found by the agglomerative hierarchical clustering algorithm can help to identify such kind of customers, i.e. the outliers.

(5 marks)

d) Knowing that the agglomerative hierarchical clustering is computationally expensive, propose a method to speed up the algorithm.

(3 marks)

2. Consider the following stock price movement data:

Stock Price Database

Stock			Price	Movemen	t from 13	March -	24 March,	2006		
Stock	13/3	14/3	15/3	16/3	17/3	20/3	21/3	22/3	23/3	24/3
PCCW	Up	Up	Level	Down	Level	Up	Up	Down	Level	Up
HSBC	Down	Down	Down	Up	Level	Level	Down	Up	Up	Down
CTI	Level	Level	Up	Up	Level	Down	Level	Level	Level	Up

where the movement labels *Up*, *Down & Level* denote the stock price going up, down and level respectively in the corresponding trading day.

a) Carry out an association analysis of the data below extracted from the stock price database above.

Extracted Stock Price Database for Association Analysis

	Price Movement of PCCW for						
Today is	2 Trading Day before	1 Trading Day before	Today	Next Trading Day			
15 Mar.	Up	Up	Level	Down			
16 Mar.	Up	Level	Down	Level			
17 Mar.	Level	Down	Level	Up			
20 Mar.	Down	Level	Up	Up			
21 Mar.	Level	Up	Up	Down			
22 Mar.	Up	Up	Down	Level			
23 Mar.	Up	Down	Level	Up			

By setting the minimum support to 25% and the minimum confidence to 50%, mine all strong association rules satisfying

- * → Next Trading Day=Up
- or * → Next Trading Day=Down
- or * → Next Trading Day=Level

where * denotes a wild card. Note here that you are NOT required to apply the Apriori algorithm to generate the solution (otherwise you will use up your time).

(10 marks)

- b) You are further asked to use the rules mined in (a) to predict next trading day's price movement.
 - i) Describe how you solve this problem and show how the last three records above are classified, i.e., "Today is 21 Mar.", "Today is 22 Mar.", and "Today is 23 Mar.".

(6 marks)

ii) Show how the following data should be classified.

	Today is	2 Trading Day	1 Trading Day	Today
		before	before	louay
	23 Dec	Down	Level	unknown

(2 marks)

c) Formulate the problem for mining association rules like

R1: {2 Trading Day before of HSBC is Up}, {Today of CTI is Level} \rightarrow {Next Trading Day of PCCW is Down}

R2: {1 Trading Day before of PCCW is Up}, {Today of PCCW is Down} \rightarrow {Next Trading Day of PCCW is Down}.

Show your formulation by writing down the database attributes you will design and give the attribute values of a few sample database records.

(7 marks)

3. Suppose you are asked by the Octopus Card Company to analyze the following Card Database.

Octopus Card Database								
Octopus ID	Day of the Week	From	To	Transportation Taken				
1	Mon-Thurs	HK	HK	MTR				
2	Mon-Thurs	Kln	Kln	Bus				
3	Mon-Thurs	NT	Kln	Bus				
4	Fri-Sun	HK	HK	MTR				
5	Mon-Thurs	Kln	Kln	MTR				
6	Mon-Thurs	NT	NT	Bus				
7	Mon-Thurs	HK	HK	Bus				
8	Fri-Sun	Kln	Kln	MTR				
9	Mon-Thurs	Kln	Kln	Bus				
10	Mon-Thurs	HK	HK	Bus				
11	Fri-Sun	HK	HK	MTR				
12	Mon-Thurs	Kln	Kln	Bus				
13	Mon-Thurs	HK	HK	Bus				
14	Mon-Thurs	Kln	Kln	MTR				
15	Fri-Sun	HK	NT	MTR				
16	Mon-Thurs	NT	Kln	Bus				
17	Mon-Thurs	HK	NT	Bus				
18	Mon-Thurs	Kln	HK	MTR				
19	Fri-Sun	HK	NT	MTR				
20	Mon-Thurs	HK	HK	MTR				
21	A Constitution of the second	er and a company		Les Bis 34				
22	ALL TOPS OF SERVICES		<u>推图建</u> 图以起源	MIR at				
(2)				Break Section				
24.5				English Bills Colors				
1. 25 (2.1)		中国。第四日(L)。西海军等		ACMATER				

Your project team member tried to construct a decision tree for the first 20 records above and obtained the result as follows.

- a) Write down the classification rules that can be extracted from the decision tree above.

 (3 marks)
- b) Show how the 24th record (Octopus ID=24) should be classified.

(3 marks)

c) Classify the following two records with missing attribute values (denoted *unknown* below).

Octopus ID	Day of the Week	From	То	Transportation Taken
100	Unknown	HK	HK	?
101	Mon-Thurs	Unknown	NT	?

(4 marks)

d) Another project team member commented that the constructed decision tree above is too deep. If the two "To" nodes are pruned, what will be the classification rate on the first 20 records of the Octopus Card Database?

(4 marks)

e) If the Octopus Card Company is looking for the most compact set of classification rules, i.e., the smallest decision tree generating the best classification rate, for the training data (the first 20 records), what will the rules be? You may stick with the decision tree provided.

(5 marks)

f) If some more card records are available to update the decision tree above, describe how you carry out the task. You are expected to discuss when reconstruction/update is needed and how reconstruction/update is carried out by giving some typical examples.

(6 marks)

4. Given the following sample Web Page Rating Database containing the HTML source of web pages plus the ratings of different users on these web pages. The web pages are on four separate domains, namely, Finance & Investment, Entertainment & Travel, Education & Lifelong Learning, and Health & Product, and users looked at each web page and indicated on a 3-point scale (Hot; Medium; Cold). There are 50 pages per domain and 1000 users recorded. The HTML web page files can be accessed via their file IDs. As a data miner, you are asked to suggest how data mining techniques can be applied to this database and mine useful knowledge.

Web Page Rating Database

User ID	Domain	HTML File ID	Rating
0001	Finance&Investment	0001	Hot
0001	Finance&Investment	0002	Cold
0001	Finance&Investment		
0001	Finance&Investment	0050	Medium
0001	Entertainment&Travel	0051	Hot
0001	Entertainment&Travel	0052	Hot
0001	Entertainment&Travel		
0001	Entertainment&Travel	0100	Medium
0001	Education&LifelongLearning	0101	Medium
0001	Education&LifelongLearning	0102	Hot
0001	Education&LifelongLearning		
0001	Education&LifelongLearning	0150	Cold
0001	Health∏	0151	Hot
0001	Health∏	0152	Hot
0001	Health∏		
0001	Health∏	0200	Medium
0002	Entertainment	0001	Hot
0002	Health∏	0200	Cold
0003	Entertainment	0001	Hot
0003	Health∏	0200	Hot
1000	Health∏	0200	Medium

- a) If the classification technology is adopted, describe how you formulate and solve the problem. You are expected to limit your discussions to the descriptions above and answer the following questions.
 - i) What is the class attribute? What are the ordinary attributes for classification?
 - ii) What classification model(s) will you suggest?
 - iii) How can the classification knowledge be used?

(9 marks)

- b) If the clustering technology is adopted, describe how you formulate and solve the problem. Again, you are expected to limit your discussions to the descriptions above and answer the following questions.
 - i) What database attributes will you use for clustering?
 - ii) What clustering technique(s) will you suggest?
 - iii) How can the clustering knowledge be used?

(8 marks)

c) If the association rule mining is adopted, describe how you formulate and solve the problem. You are expected to limit your discussions to the descriptions above and answer the following questions.

- i) How should a transaction and an item be defined? Give a few examples.
- ii) What association rules do you expect?
- iii) How can the association rules be used?

(8 marks)

5. a) Normalize the following medical time series data so that they can be compared or mined fairly.

Medical Time Series Data

Series					Tir	ne				
Series	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10
#1	5.05	5.0	4.8	4.8	5.05	5.2	5.2	5.2	5.05	5.05
#2	130	130.5	130	131	130.5	133	134	135	134	134
#3	0.8	0.82	0.82	0.81	0.81	0.8	0.8	0.78	0.78	0.78

(5 marks)

b) Suggest an effective method to determine the missing values below. Fill in the missing values accordingly.

				APPENDING TO	- Dississ
9100123	80-120	Male	High	Married	No
9303034	160-200	Female	Medium	Single	Yes
9210126	80-120	Male	Medium	Married	Yes
9142020	120-160	Female	Low	Single	No
9910111	160-200	Male	High	Single	Yes
9576732	80-120	Male	Low	Married	No
9910115		Female	High	Single	Yes
9210120	120-160		Medium		No
9576737	160-200	Female		Married	No

(4 marks)

- c) Suppose you are responsible for designing a data warehouse for the hospital authority (HA) and are given three dimensions: (i) disease, (ii) hospital/clinic, and (iii) time, and two measures: dollar_cost and number_of_case where dollar_cost is the cost of handling such kind of diseases in a hospital/clinic during a period of time and number_of_case is the number of such disease cases in a hospital/clinic during a period of time.
 - i) Design a star schema for the above data warehouse. You may design your own dimension attribute names.

(7 marks)

ii) List 3 questions/hypotheses that can be answered/confirmed by querying your design in part (c-i). Write down the necessary OLAP steps. Make your own assumption(s).

(9 marks)