

ZIENTZIA
ETA TEKNOLOGIA
FAKULTATEA
FACULTAD
DE CIENCIA
Y TECNOLOGÍA

5. Iterative methods for the resolution of linear systems.

Jon Asier Bárcena-Petisco (University of the Basque Country UPV/EHU) - Numerical Methods I (2023/24)

Contents on this chapter

- Iterative methods.
- Jacobi iterative method.
- Gauss-Seidel iterative method (as an exercise).

Jacobi

Occidentative method

5.1. Jacobi iterative method.

Iterative methods

Definition

In Numerical Methods, an *iterative method* is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the *n*-th approximation is derived from the previous ones.

We are going to consider iterative methods for the following problem: finding \overline{x} such that $F(\overline{x}) = b$, for $F : \mathbb{R}^n \to \mathbb{R}^n$ and $b \in \mathbb{R}^n$. An iterative method here is the construction of a function G and an initial value x_0 such that:

$$\lim_{k\to\infty}G^k(x_0)=\overline{x}.$$

Jacobi iterative method (i)

Let $A \in \mathbb{R}^{n \times n}$. We define the matrices $L_A, D_A, U_A \in \mathbb{R}^{n \times n}$ given by:

$$L_{A}(i,j) = \begin{cases} A(i,j), & i > j \\ 0 & i \leq j, \end{cases},$$

$$D_{A}(i,j) = \begin{cases} A(i,j), & i = j \\ 0 & i \neq j, \end{cases},$$

$$U_{A}(i,j) = \begin{cases} A(i,j), & i < j \\ 0 & i \geq j, \end{cases},$$

Then, $A = L_A + D_A + U_A$.

Remark

This has nothing to do with the LUP decomposition. Do not mistake different methods, even if they partially share notation.

Jacobi iterative method (ii)

We are going to solve Ax = b, for $b \in \mathbb{R}^n$ and A a non-singular matrix. This is equivalent to:

$$D_A x = b - L_A x - U_A x.$$

If A has a diagonal with non-null entries, this is equivalent to:

$$x = D_A^{-1}(b - L_A x - U_A x).$$

With this in mind, we may define Jacobi iterative method:

Definition

Let $A \in \mathbb{R}^{n \times n}$ a non-singular matrix with a diagonal with non-null entries and $b \in \mathbb{R}^n$. Then, Jacobi iterative method consists on defining a sequence given by $x_0 \in \mathbb{R}^n$ and

$$x_{k+1} = D_A^{-1}(b - L_A x_k - U_A x_k).$$

Jacobi method's convergence

Theorem (Jacobi Method's Convergence Theorem)

Let $(\mathbb{R}^n, \|\cdot\|)$ be a normed space and let us consider $\mathbb{R}^{n\times n}$ with the matrix induced norm. Let $A \in \mathbb{R}^{n\times n}$ be a matrix with a diagonal with non-null entries, $b \in \mathbb{R}^n$ and $\overline{x} = A^{-1}b$. Then, if x_k is a sequence defined with the Jacobi method:

$$||x_k - \overline{x}|| \le ||D_A^{-1}(L_A + U_A)||^k ||x_0 - \overline{x}||.$$
 (†)

In particular, if $||D_A^{-1}(L_A + U_A)|| < 1$, $x_k \to \overline{x}$.

Remark

When programming a computer to apply Jacobi's method, if $||D_A^{-1}(L_A + U_A)|| < 1$, we can initiate in $x_0 = 0$.

Exercise

Prove that the hypothesis are satisfied if A is a matrix with a dominant diagonal.

Proof of Jacobi method's convergence

Clearly, it suffices to prove (†), as in that case, it is straightforward to see that $x_k \to \overline{x}$ if $\|D_A^{-1}(L_A + U_A)\| < 1$. The proof of (†) is done by induction. The base case, k=0 is trivial. Let us supposed it is true for k and prove it for k+1. Since $A\overline{x}=b$, then:

$$\overline{x} = D_A^{-1}(b - L_A \overline{x} - U_A \overline{x}).$$

Consequently, using that $\|\cdot\|$ is a matrix induced norm and the inductive hypothesis:

$$||x_{k+1} - \overline{x}|| = ||D_A^{-1}(b - L_A x_k - U_A x_k) - D_A^{-1}(b - L_A \overline{x} - U_A \overline{x})||$$

$$= || - D_A^{-1}(L_A + U_A)(x_k - \overline{x})||$$

$$\leq ||D_A^{-1}(L_A + U_A)||||x_k - \overline{x}||$$

$$\leq ||D_A^{-1}(L_A + U_A)||^{k+1}||x_0 - \overline{x}||.\Box$$

Jacobi and Frobenius norm

As we have seen in Exercise 3.10, the Frobenius norm is larger than the norm induced by the Euclidean norm. In particular, if for a given matrix A we have that $\|D_A^{-1}(L_A + U_A)\|_F < 1$, then Jacobi method converges to the solution of the linear system.

An example in which Jacobi method does not converge

Let us consider:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix},$$

and b = 0. Then, for all $x \in \mathbb{R}^2$:

$$D_A^{-1}(b-L_A-U_A)(x)=(-2x(2),-2x(1)).$$

Thus, if $x_0 = (1,1)$, $x_k = ((-1)^k 2^k, (-1)^k 2^k)$, so the Jacobi method diverges in this specific example.

Remark

The non-convergence case illustrated in this example is very common whenever the terms of the diagonal are small in comparison with the other terms of the matrix. Obviously, the non-convergence may depend on the initial value (in particular, if we start on the solution, it converges).

Some remarks on Jacobi's method

- Unlike LUP or Cholesky, it is used to obtain approximations of the solutions of linear systems.
- Getting a good approximation can be with appropriate matrix faster than LUP or Cholesky, as the convergence is exponentially fast. This is true specially in high dimensions.