CSE 417T Introduction to Machine Learning

Lecture 15

Instructor: Chien-Ju (CJ) Ho

Logistics

Homework 4 is due November 14 (Monday)

- Keep track of your own late days
 - Gradescope doesn't allow separate deadlines
 - Your submissions won't be graded if you exceed the late-day limit

Logistics: E-Chapters of LFD

- The textbook offers a set of e-chapters
 - Chap 6: Similarity-Based Methods
 - Chap 7: Neural Networks
 - Chap 8: Support Vector Machines
 - Chap 9: Learning Aides
 - Appendix B: Linear Algebra
 - Appendix C: The E-M Algorithm
- How to access e-chapters
 - http://amlbook.com/eChapters.html
 - "To access the e-Chapters, please download the PDFs and open them with the first word of Chapter 4 as the password."

Exam 1 Discussion

I plan to grade the exam myself, hopefully in around a week but no more than 2 weeks.

Recap

Ensemble Learning

Goal: Utilize a set of weak learners to obtain a strong learner.

- Format of ensemble learning
 - Construct many diverse weak learners
 - Aggregate the weak learners

Bagging:

- Construct diverse weak learners
 - (Simultaneously) bootstrapping datasets
 - Train weak learners on them
- Aggregate the weak learners
 - Uniform aggregation

Boosting

- Construct diverse weak learners
 - Adaptively generating datasets
 - Train weak learners on them
- Aggregate the weak learners
 - Weighted aggregation

Bagging and Random Forest

- Construct many random trees
 - Bootstrapping datasets (sample with replacement from D)
 - Learn a max-depth tree for each of them
 - Other randomizations (not required in HW4)
 - When choosing split features, choose from a random subset (instead of all features)
 - Randomly project features (similar to non-linear transformation) for each tree
- Aggregate the random trees
 - Classification: Majority vote $\bar{g}(\vec{x}) = sign\left(\frac{1}{M}\sum_{m=1}^{M}g_m(\vec{x})\right)$
 - Regression: Average $\bar{g}(\vec{x}) = \frac{1}{M} \sum_{m=1}^{M} g_m(\vec{x})$

Note for HW4:

Recommend to transform the labels to +1/-1 for the convenience of aggregation.

Outline of a Boosting Algorithm

- Initialize D_1 (usually the same as the initial dataset D)
- For t = 1 to T
 - Learn g_t from D_t
 - Reweight the distribution and obtain D_{t+1} based on g_t and D_t
- Output weighted-aggregate($g_1, ..., g_T$)
 - Classification: $G(\vec{x}) = \bar{g}(\vec{x}) = sign\left(\frac{1}{T}\sum_{t=1}^{T}\alpha_{t}g_{t}(\vec{x})\right)$

Questions

How to learn g_t from D_t How to reweight the distribution and obtain D_{t+1} How to perform weighted aggregation

AdaBoost Algorithm

How to learn g_t from D_t

- Decision stump

How to reweight D_{t+1}

- Make $E_{in}^{(D_{t+1})}(g_t) = 0.5$
- So g_t and g_{t+1} are "diverse"

How to weighted aggregation

- More weights on better g_t
- Lower ϵ_t : proxy for better g_t

- Given $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
- Initialize $D_1(n) = 1/N$ for all n = 1, ..., N
- For t = 1, ..., T
 - Learn g_t from D_t (using decision stumps)
 - Calculate $\epsilon_t = E_{in}^{(D_t)}(g_t)$
 - Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
 - Update $D_{t+1}(n) = \frac{1}{Z_t} D_t(n) e^{-\alpha_t y_n g_t(\vec{x}_n)}$
- Output $G(\vec{x}) = sign(\sum_{t=1}^{T} \alpha_t g_t(\vec{x}))$

Theoretical Properties of AdaBoost

See <u>Freund & Schapire's Tutorial</u> for more discussion

- The training error of AdaBoost converges fast
 - Let $\gamma_t = \frac{1}{2} \epsilon_t$ (how good each weak learner is better than random guessing)
 - $E_{in} \leq e^{-2\sum_{t=1}^{T} \gamma_t^2}$
- Generalization error
 - VC analysis gives us $E_{out} \leq E_{in} + \tilde{O}\left(\sqrt{\frac{Td_{vc}}{m}}\right)$

 d_{vc} is the VC dimension of the weak learner

- It seems as T goes large, overfitting could happen
- Empirically, AdaBoost is relatively robust to overfitting
- There are some more delicate analysis using the idea of margins to explain why

Lecture Notes Today

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Brief Discussion on Gradient Boosting

Gradient boosting is safe to skip for Exam 2

Look at the AdaBoost Algorithm Again

```
Given D = \{(\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N)\}
Initialize D_1(n) = 1/N for all n = 1, \dots, N
For t = 1, \dots, T
Learn g_t from D_t (using decision stumps)
Calculate \epsilon_t = E_{in}^{(D_t)}(g_t)
Set \alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right)
Update D_{t+1}(n) = \frac{1}{Z_t} D_t(n) e^{-\alpha_t y_n g_t(\vec{x}_n)}
Output G(\vec{x}) = sign(\sum_{t=1}^T \alpha_t g_t(\vec{x}))
```

- The format is similar to gradient descent!
 - If we consider the space of the weak learners (i.e., $g_t(\vec{x})$) as the space of "weights"
 - This observation leads to a general class of boosting algorithms: gradient boosting
 - XGBoost is one implementation of gradient boosting that is popular in practice
 - See CASI 17.4 and the reference in CASI P.350 for more discussion

[Safe to Skip]

Gradient Boosting

```
Initialize G(\vec{x}) = 0

For t = 1, ..., T

G(\vec{x}) \leftarrow G(\vec{x}) + \alpha_t g_T(\vec{x})

Output sign(G(\vec{x}))
```

- AdaBoost is a special case of Gradient Boosting
 - minimizing the exponential loss $(e_{\exp}(h(\vec{x}), y) = e^{-yh(\vec{x})})$
 - using decision stump as the weak learners

- e_{exp} is a surrogate loss function of the binary classification error we care about
 - Minimizing an alternative error (loss function) is a common trick in ML, especially when the target loss function is hard to optimize.
 - There are some theoretical discussions on when doing this makes sense ("calibration": whether minimizing the surrogate is consistent with minimizing the original loss).

[Safe to Skip]

Similarity-Based Method: Nearest Neighbor

Movie Rating Prediction

• Below is the historical movie ratings from users (5 is the highest)

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6
Alice	5	4	3	1	5	2
Bob	4	5	3	2	5	
Charlie	1	2	4	4	2	3
David	2	3	2	4	4	4

- What do you think Bob's rating will be for Movie 6?
 - Maybe 2, since Bob's taste seems to be similar with Alice's

Movie Recommendation

• Below is the historical movie ratings from users (5 is the highest)

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6
Alice	5	4		1		
Bob	4			2	5	
Charlie	1		4		2	
David		3	2			4

- Which movie will you recommend to Alice, why?
 - Maybe Movie 5, since Bob's taste seems to be similar with Alice's

Nearest Neighbor

- Predict the label of \vec{x} according to its nearest neighbor in D
 - Given $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_N, y_N)\}; y_n \in \{+1, -1\}$
 - Let $\vec{x}_{[1]}$ be \vec{x}' s nearest neighbor in D, i.e., the closest point to \vec{x} in D
 - Similarly, let $\vec{x}_{[i]}$ be the ith closest point to \vec{x} in D
 - With some distance measure $d(\vec{x}, \vec{x}')$

•
$$d(\vec{x}, \vec{x}_{[1]}) \le d(\vec{x}, \vec{x}_{[2]}) \le \dots \le d(\vec{x}, \vec{x}_{[N]})$$

- Let $y_{[i]}(\vec{x})$ or $y_{[i]}$ be the label of $\vec{x}_{[i]}$
- Nearest neighbor hypothesis

$$g(\vec{x}) = y_{[1]}(\vec{x})$$

Common distance measures:

- Euclidean distance: $d(\vec{x}, \vec{x}') = ||\vec{x} \vec{x}'||$
- Cosine similarity: $d(\vec{x}, \vec{x}') = \frac{\vec{x} \cdot \vec{x}'}{\|\vec{x}\| \|\vec{x}'\|}$
- And others...

Wait.... in the practice question of exam 1

- Machine Leaning Whiz Kid (MLWK) proposes the learning algorithm
 - Given D, define the learned hypothesis g as follows

$$g(\vec{x}) = \begin{cases} y_n & \text{if } x \text{ is equal to some } \vec{x}_n \in D \\ 1 & \text{otherwise} \end{cases}$$

- In our discussion earlier, MLWK leads to
 - $E_{in} = 0$, infinite VC dimension, bad generalization
- Why nearest neighbor might be a good model?

Nearest Neighbor

Decision boundary of $g(\vec{x})$

- Properties of Nearest Neighbor (NN)
 - No training is needed
 - Good interpretability
 - In-sample error $E_{in} = 0$
 - VC dimension is ∞
- This seems to imply bad learning models from what we talked about so far? Why we care?
- What we really care about is E_{out}
 - VC analysis: $E_{out} \leq E_{in}$ + Generalization error
 - We can infer E_{out} through E_{in} and model complexity
 - NN has nice guarantees outside of VC analysis

Nearest Neighbor is 2-Optimal

• Given mild conditions, for nearest neighbor, when $N \to \infty$, with high probability,

$$E_{out} \leq 2E_{out}^*$$

• That is, we can not infer E_{out} from E_{in} , but we know that it cannot be much worse than the best anyone can do.

Proof Sketch of 2-Optimality $(E_{out} \leq 2E_{out}^*)$

- Setup
 - The target function is noisy: $\pi(\vec{x}) = \Pr[y = +1|\vec{x}]$
 - The noisy target π is continuous in \vec{x}
 - Similar \vec{x} should have similar label distributions
 - It is the underlying assumption for nearest neighbor to work
- Let $g^*(\vec{x})$ be the optimal hypothesis (output a binary prediction)

•
$$g^*(\vec{x}) = \begin{cases} +1 & \text{if } \pi(\vec{x}) \ge \frac{1}{2} \\ -1 & \text{otherwise} \end{cases}$$

• Pointwise-error $e(g^*(\vec{x}), y) = \min\{\pi(\vec{x}), 1 - \pi(x)\}$

•
$$E_{out}^* = \mathbb{E}_{\vec{x}}[e(g^*(\vec{x}), y)] = \mathbb{E}_{\vec{x}}[\min\{\pi(\vec{x}), 1 - \pi(x)\}]$$

Proof Sketch of 2-Optimality

•
$$E_{out}^* = \mathbb{E}_{\vec{x}}[e(g^*(\vec{x}), y)] = \mathbb{E}_{\vec{x}}[\min\{\pi(\vec{x}), 1 - \pi(x)\}]$$

- Proof sketch:
 - For a new point (\vec{x}, y) , let $(\vec{x}_{[1]}, y_{[1]})$ be its nearest neighbor in D
 - Consider the case when $N \to \infty$
 - A new point is "very close" to its nearest neighbor in D
 - $\pi(\vec{x}) \approx \pi(\vec{x}_{[1]})$
 - The error of nearest neighbor hypothesis on a new point is

Proof Sketch of 2-Optimality

•
$$E_{out}^* = \mathbb{E}_{\vec{x}}[e(g^*(\vec{x}), y)] = \mathbb{E}_{\vec{x}}[\min\{\pi(\vec{x}), 1 - \pi(x)\}]$$

- Proof sketch:
 - For a new point (\vec{x}, y) , let $(\vec{x}_{[1]}, y_{[1]})$ be its nearest neighbor in D
 - Consider the case when $N \to \infty$
 - A new point is "very close" to its nearest neighbor in D
 - $\pi(\vec{x}) \approx \pi(\vec{x}_{[1]})$
 - The error of nearest neighbor hypothesis on a new point is

$$\Pr[y \neq y_{[1]}] = \Pr[y = +1, y_{[1]} = -1] + \Pr[y = -1, y_{[1]} = +1]$$

$$= \pi(\vec{x}) \left(1 - \pi(\vec{x}_{[1]})\right) + \left(1 - \pi(\vec{x})\right) \pi(\vec{x}_{[1]})$$

$$\approx 2 \pi(\vec{x}) \left(1 - \pi(\vec{x})\right)$$

$$\leq 2 \min\{\pi(\vec{x}), 1 - \pi(\vec{x})\}$$
Informal in Assumption • Target • That is the following properties of the properties o

Informal intuitions to summarize the proof:

Assumption for nearest neighbor:

- Target function is continuous
- That is, nearby points have similar label distributions

As N goes large, there are "close enough" points for prediction

Nearest Neighbor is Self-Regularizing

- Intuition of regularization:
 - Use simpler hypothesis if we don't have enough data
- Nearest neighbor hypothesis

The complexity of hypothesis grows with the number of data points

k-Nearest Neighbor

"Stabilize" the Hypothesis

- Instead of a "single" nearest neighbor
 - Making predictions according to k nearest neighbors
- k-nearest neighbor (K-NN)
 - $g(\vec{x}) = sign(\sum_{i=1}^k y_{[i]}(\vec{x}))$
 - (k is often chosen to be an odd number for binary classification)

Impacts of k

- k = 1: the nearest neighbor hypothesis
 - many, complicated decision boundaries
 - may overfit
- k = N, g predicts the most common label in the training dataset
 - no decision boundaries
 - may underfit
- *k* controls the complexity of the hypothesis set
 - k affects how well the learned hypothesis will generalize

How to Choose k

- Making the choice of k a function of N, denoted by k(N)
 - Theorem:
 - If $k(N) \to \infty$ as $N \to \infty$ and $\frac{k(N)}{N} \to 0$ as $N \to \infty$
 - Then $E_{in}(g) \to E_{out}(g)$ and $E_{out}(g) \to E_{out}(g^*)$
 - Example: $k(N) = \sqrt{N}$ satisfies the condition
- Practical rule of thumb:
 - k = 3 is often a good enough choice
 - Using validation to choose k

Summary of k-NN So Far

Pros

- Simple algorithm
- Good interpretations
- Nice theoretical guarantee
- Easy to adapt to regression (average of nearest neighbors) and multi-class classification (majority voting)

Cons

- Computational issue
 - each prediction requires O(N) computation
- Curse of dimensionality

Curse of Dimensionality

Generally, higher dimensions implies harder learning (think VC)

- Things are worse with similarity-based methods
 - that rely on assumptions that points close to one another have similar labels
- As the dimension grows, most of the points will not be close to each other...

Illustration of Curse of Dimensionality

• Think about Euclidean distance: $d(\vec{x}, \vec{x}') = ||\vec{x} - \vec{x}'||$

- Illustration
 - Consider the space $[0,1]^d$ (a hypercube with length of each side = 1)
 - What's the side length ℓ of a hypercube that takes up 1% of the space?
 - d = 1: $\ell = 0.01$
 - d = 2: $\ell = 0.1$
 - $\ell^d = 0.01 \Rightarrow d = 100, \ \ell \approx 0.95$

Illustration of Curse of Dimensionality

- Consider the distance to the origin when d=100
 - Consider the case that the value of each dimension is uniformly drawn
 - Only 1% of the points will be in the hypercube $[0,0.95]^{100}$
 - Most of the points will be far away from the origin
 - Most of the points will be far away from each other

- No simple solutions....
 - Dimension reduction techniques are often adopted (see LFD 9.2)

Computational Issues

- k-Nearest Neighbor is computationally demanding
 - Need to store all data points: space complexity O(Nd)
 - For each prediction for \vec{x}
 - Calculate the distance to every point in D
 - Find the *k* closest points
 - Time complexity O(Nd + Nlogk)
- There are still ongoing research to address this issue
- Two general approaches:
 - Reduce the number of data points
 - Store the data in some data structure to speed up searching
 - See LFD 6.2.3 for more discussion

Computational Issues

Reduce the number of data points

• Store the data in some data structure to speed up searching

Computational Issues

Reduce the number of data points

- Intuition: remove points that will not impact the decision boundary.
- Generally a hard problem. But there are some heuristic approaches.
- Store the data in some data structure to speed up searching

- Intuition: Clustering data points
- For a new data point, first find a nearest cluster. Then find the nearest points within that cluster