Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Representaciones numéricas parte 2: Números Racionales

Profesor: Hans Löbel

¿Cómo podemos escribir números racionales posicionalmente?

Podemos expandir usando exponentes negativos:

$$123,45 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2}$$

• En binario, ¿es lo mismo?

$$101,01 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 5,25$$

¿Cómo hacemos ahora para pasar de decimal a binario?

Necesitamos obtener el valor de una división en binario

Por ejemplo

$$10^{-1} = 0, 1 = \frac{1}{10} = \frac{(1)_2}{(1010)_2}$$

- Y el resultado de esa división es: 0,00011
- Decimal finito pasa a ser infinito en binario = Pésimo
- Todo depende de la base elegida (ej. 1/3 en ternario)

Veamos un ejemplo

```
d1 = 0.1
d2 = 0.2
print(d1+d2)
```

```
t = 0
while(t != 100):
    print("Valor actual: " + str(t))
    t += 0.1
```

¿Significa esto que no podemos representar de manera exacta 0,1 con una representación binaria en un computador?

El secreto oscuro de la computación científica

Los resultados de los ejemplos son inesperados

¿Por qué pasa esto?

- Estos números usan memoria finita para manejar rangos muy grandes y densos.
- Luego, existe un trade-off entre rango y precisión.

Caso real: Misil Patriot¹

- 28 personas murieron en 1991, debido al mal funcionamiento de un misil Patriot.
- El Patriot es un sistema defensivo para interceptar objetivo aéreos, que utiliza misiles.
- Error fue ocasionado por aproximación de un decimal finito mediante un número binario infinito.
- Debido al error, el sistema no siguió correctamente al objetivo y el misil nunca fue disparado.

Representación de punto fijo

- Dados *n* dígitos (bits), estos se dividen de manera fija para representar signo, parte entera y parte fraccional.
- Pro: simple y rápido
- Contra: rango pequeño (¿qué pasa con la multiplicación?)
- Idea: mover (flotar) la coma (punto)

Representación de punto flotante

- Basada en notación científica normalizada
- Dos elementos centrales: significante y exponente
- Codifica la posición del punto
- Pro: gran rango
- Contra: pérdida de precisión (¿qué pasa con la suma?)

IEEE754, el formato más usado para números de punto flotante

float (32 bits):

- 1 bit de signo, 8 bit exponente, 23 bit significante
- Significante normalizado
- Exponente desfasado en 127
- 0: exponente = 0, significante = 0
- $\pm \infty$: exponente = 11111..., significante = 0
- *NaN*: exponente = 11111..., significante ≠ 0

double: 64 bits, reglas similares

```
X = (-1)^{signo} \cdot 1.significante \cdot 2^{exponente-127}
```

```
0.00101b = ?
signo = ?
significante = ?
exponente = ?
```

$$X = (-1)^{signo} \cdot 1.significante \cdot 2^{exponente-127}$$

$$0.00101b = (1.01 \cdot 10^{-11})_2 = 1 \cdot 2^{-3} + 1 \cdot 2^{-5} = 0.15625$$

signo = ? significante = ? exponente = 124 = 01111100

Veamos otro ejemplo

```
from decimal import Decimal
D1 = Decimal("0.1")
D2 = Decimal("0.2")
print(D1+D2)
```

Representaciones Alternativas

Decimales como números enteros

- Se utiliza como unidad el menor valor decimal requerido
- Elimina problemas de aproximación, pero tiene poco rango

Punto flotante con base decimal

- Se cambia la base de 2 a 10
- o Elimina problemas de aproximación, pero resulta muy lento
- o Ideal para cálculos "humanos"

Punto flotante con base decimal y precisión arbitraria

- Tamaño asignado a significante y exponente se aumenta de acuerdo a las necesidades
- Lentísimo, pero el más adecuado para cálculos "humanos"

Uso de números de punto flotante debe ser cuidadoso

- Problemas de aproximación con fracciones binarias
 - Racionales infinitos son muy comunes en cálculos humanos
- Representación de punto flotante
 - Precisión vs rango
 - o Importante, nunca comparar con "=="
- Alternativas
 - Enteros: poco prácticos
 - Punto flotante con base decimal: lento pero seguro

Algunos ejemplos de pruebas pasadas

Demuestre que los números de punto flotante del tipo float del estándar IEEE754 no cumplen el principio de asociatividad de la suma, i.e., x + (y + z) = (x + y) + z. (3 ptos.)

Explique por qué el número $2^{50} + 5$ no puede representarse de manera exacta usando el tipo de dato float de 32 bits. (1 pto.)

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Representaciones numéricas parte 2: Números Racionales

Profesor: Hans Löbel