Edwin George

email: edwingeorgep5@gmail.com | phone: +919769649801 | LinkedIn: https://www.linkedin.com/in/edwinxgeorge

SUMMARY

Researcher specializing in **computational fluid dynamics** (CFD), with expertise in developing solvers and conducting large-scale, high-fidelity simulations. Skilled at integrating advanced physics models into simulations, ensuring validation for accurate results, and effectively communicating technical findings.

EXPERIENCE

Virginia Tech

Blacksburg, United States

April 2024 – December 2024

Research Assistant

- o Contributed to a research initiative aimed at developing a general-purpose cavitation model.
- o Investigated the effects of **turbulence modeling** on the accuracy of cavitation simulations.
- Collaborated on integrating computational methods, machine learning, and experimental data to enhance model fidelity.
- Documented research methodologies and findings, creating detailed resources to support incoming researchers and ensure continuity in the project.

Hardwin Fasteners Pvt. Ltd.

Mumbai, India

Junior Engineer Intern

May 2019 – March 2020

- Managed customer inquiries and leveraged engineering knowledge to provide recommendations on material selection and product grades for large-sized nuts and bolts used in industrial applications such as pumps and compressors, and civil applications such as bridges and buildings.
- o Facilitated communication between clients and teams to ensure customer requirements were met.
- Collaborated with the production team to troubleshoot and resolve issues with manufacturing machines to minimize downtime.

THESIS

Development of an OpenFOAM Solver for Hydroacoustic Simulations: An Application for Acoustic Fish Deterrence November 2022 – Feb 2024

- o Facilitated development of an underwater **acoustic** fish deterrence system targeting invasive carp in the Upper Mississippi River for the U.S. Army Engineer Research and Development Center (ERDC).
- Designed and implemented multiple computational models, including the acoustic wave equation, a transfer function-based method, and the Helmholtz formulation, in open-source computational fluid dynamics (CFD) C++ toolbox OpenFOAM.
- o Conducted high-fidelity simulations on Virginia Tech's **High-Performance Computing (HPC)** resources.
- Addressed computational challenges, including mesh resolution and non-reflecting boundary conditions, using Fourier analysis.
- o Presented findings at the APS Division of Fluid Dynamics (DFD) Annual Conference in 2023
- o Authored detailed **documentation** to support future research initiatives.

SKILLS

Research & Development:

Computational Fluid Dynamics, Multiphase Flows, High-Performance Computing (HPC), 3D Modelling, Software Development, Computer-Aided Design (CAD), Technical Documentation

Computational Tools & Software:

OpenFOAM, Ansys (Fluent & CFX), SolidWorks, Blender, ParaView, Slurm, Linux, Git

Programming:

Python, C++, MATLAB, HTML+CSS

PROJECTS

Computational Fluid Dynamics package for Python

May 2022 - August 2022

- o Developed a **Python** package for solving Navier-Stokes equations using the finite difference method, demonstrating functional excellence in scientific programming and data analysis.
- o Produced clear documentation to explain the implementation and support usage of the package.

Axial Turbine Vane Analysis and Design

February 2022 – May 2022

- o Determined optimum 3D vane geometry for highest turbine efficiency for a given 2D vane profile.
- o Designed the vane with preferred loading characteristics to give best aerodynamic performance.
- o Performed iterative simulations in Ansys CFX to make and verify improvements.

EDUCATION

Virginia Tech
Master of Science, Mechanical Engineering
University of Mumbai
Bachelor of Engineering, Mechanical Engineering

Blacksburg, United States
January 2022 – February 2024
Mumbai, India
August 2017 – May 2021

COURSEWORK

- o Fluid Mechanics
- o Thermodynamics
- o OpenFOAM Advanced Course
- o Numerical Methods for CFD
- o Turbomachinery and Gas Turbines
- Heat and Mass Transfer