PROCESSAMENTO DE LINGUAGEM NATURAL:

BAG OF WORDS, TF-IDF & WORD EMBEDDING

POR QUE TRATAR LINGUAGEM NATURAL É IMPORTANTE?

- Produção de informação não estruturada, escrita e falada
- Tarefas automatizadas de classificação, clusterização etc.
- Aplicações: search engines, sentiment analysis, classificação automática de notícias, emails, artigos, reclamações, bots, reconhecimento de voz, tradução automática etc.

POR QUE REPRESENTAMOS DOCUMENTOS POR VETORES?

- Precisamos de uma representação estruturada para manipular e processar as informações
- **Luhn** argumentou que as palavras muito frequentes e as pouco frequentes não colaboram para discriminação e similaridade entre documentos.
- Frequencia dos termos = sentido dos documentos
- Fácil manipulação = funções de similaridade

PRINCIPAIS FORMAS DE REPRESENTAÇÃO

- BOW bag of words
- TF IDF term frequency-inverse document frequency
- Word Embedding (2013, Tomas Mikolov at Google)
- Bert (2018, Bidirectional Encoder Representations from Transformers, Google)

https://blog.research.google/2018/11/open-sourcing-bert-state-of-art-pre.html

- Um documento é representado por um vetor com a frequencia dos termos
- Simples
- Alta dimensionalidade
- Não leva em consideração a frequencia de termos total da coleção

- d1 Human machine interface for ABC computer application.
- d2. A survey of user opinion of computer system response time.
- d3 The EPS user interface management system.
- d4 System and human system engineering testing in EPS.
- d5 Relation to user perceived response time to error measurement.
- d6. The generation of random, binary, ordered trees.
- d? The intersection graph of paths in trees.
- d8 Graph minors IV: Widths of trees and well-quasi-ordering.
- d3 Graph minors: A survey.

terms in at least two documents

	_	1	2	3	4	5	6	7	8	Э	10	11	12
	$\mathfrak{tf}(i,j)$	system	user	graph	trees	response	EPS r	iterface	human s	urvey	computer	minors	time
1	d 1	0	0	0	0	0	0	1	1	0	1	0	0
2	d2	1	1	0	0	1	0	0	0	1	1	0	1
3	d3	1	1	0	0	0	1	1	0	0	0	0	0
4	d4	2	0	0	0	0	1	0	1	0	0	0	0
5	d5	0	1	Ō	0	1	0	0	0	0	0	0	1
6	d6	0	O	0	1	Ō	0	0	0	O	0	0	0
7	d7	0	O	1	1	Ō	0	0	0	O	0	0	0
8	d8	0	O	1	1	Ō	0	0	0	O	0	1	0
Э	d3	0	0	1	0	0	0	0	0	1	0	1	0_
	df(j)	3	3	3	3	2	2	2	2	2	2	2	2
	idf(j)	1,10	1,10	1,10	1,10	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
invert	ed index	d2	d2	d 7	d 6	d2	d3	d 1	d1	d2	d1	d8	d2
		d 3	d3	d8	d7	d5	d4	d 3	d4	dЭ	d2	d9	d5
		d4	d 5	d9	48								

similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

terms in at least two documents

		1	2	3	4	5	6	7	8	9	10	11	12
	tf(i,j)	system	user	graph	trees	response	EPS i	nterface	human s	survey	computer	minors	time
1 d1		0	0	0	0	0	0	1	1	0	1	0	0
2 d2		1	1	0	0	1	0	0	0	1	1	0	1
3 d3		1	1	0	0	0	1	1	0	0	0	0	0
4 d4		2	0	0	0	0	1	0	1	0	0	0	0
5 d5		0	1	0	0	1	0	0	0	0	0	0	1
6 d6		0	0	0	1	0	0	0	0	0	0	0	0
7 d7		0	0	1	1	0	0	0	0	0	0	0	0
8 d8		0	0	1	1	0	0	0	0	0	0	1	0
9 d9		0	0	1	0	0	0	0	0	1	0	1	0
df(j)	3	3	3	3	2	2	2	2	2	2	2	2
idf	(j)	1,10	1,10	1,10	1,10	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50

|d3| = 2,0

|d4| = 2,4

sim(d3, d4) = 0.6

angle(d3,d4) = 0,9 radians

52,2 degrees

igualmente pode ser aplicado ao TF IDF

TF IDF

- Um documento é representado por um vetor com a frequencia dos termos combinado com o inverso da frequencia do termo na coleção
- Ainda Simples
- Alta dimensionalidade
- Não leva em consideração o contexto dos termos

TF IDF

d1 Human machine interface for ABC computer application.

d2. A survey of user opinion of computer system response time.

d3 The EPS user interface management system.

d4 System and human system engineering testing in EPS.

d5 Relation to user perceived response time to error measurement.

d6 The generation of random, binary, ordered trees.

d7 The intersection graph of paths in trees.

d8 Graph minors IV: Widths of trees and well-quasi-ordering.

terms in at least two documents

d9 Graph minors: A survey.

notice natural log, any log will do

stop words:	words in only	one docum	nent	
for	machine	ABC	application	
A, of	opinion			
The	managemen	nt		
and, in	engineering	testing		
to	Relation	perceived	error	measurement
	generation	random	binary	ordered
	intersection	pathts		
	IV.	Width	mell-quasi-c	orderina

141	_+f	∨ loo	N_{\perp}
$w_{i,j}$	$-y_{i}$	$_{j}\times\log$	$\frac{1}{df}$
			\mathbf{u}_{i}

 tf_{ij} = number of occurrences of i in jdf = number of documents containing i N = total number of documents

		1	2	3	4	5	6	7	8	9	10	11	12
tf	f(i,j)	system	user	graph	trees	response	EPSin	iterface	human s	urvey	computer	minors	time
1 d1	\neg	0	0	0	0	0	0	1	1	0	1	0	0
2 d2		1	1	0	0	1	0	0	0	1	1	0	1
3 d3		1	1	0	0	0	1	1	0	0	0	0	0
4 d4		2	0	0	0	0	1	0	1	0	0	0	0
5 d5		0	1	0	0	1	0	0	0	0	0	0	1
6 d6		0	0	0	1	0	0	0	0	0	0	0	0
7 d7		0	0	1	1	0	0	0	0	0	0	0	0
8 d8		0	0	1	1	0	0	0	0	0	0	1	0
9 d9		0	0	1	0	0	0	0	0	1	0	1	0
df(j)	Γ	3	3	3	3	2	2	2	2	2	2	2	2
idf(j)		1,10	1,10	1,10	1,10	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50

tf"idf(j)													
1	2	3		4	5		6	7	8	39	10	11	12
system	user	graph	trees		respons	EPS		interface	human	survey	computi	minors	time
0,00	0,00	0,00		0,00	0,00	- (00,0	1,50	1,50	0,00	1,50	0,00	0,00
1,10	1,10	0,00		0,00	1,50	(00,0	0,00	0,00	1,50	1,50	0,00	1,50
1,10	1,10	0,00		0,00	0,00		1,50	1,50	0,00	0,00	0,00	0,00	0,00
2,20	0,00	0,00		0,00	0,00		1,50	0,00	1,50	0,00	0,00	0,00	0,00
0,00	1,10	0,00		0,00	1,50	(00,0	0,00	0,00	0,00	0,00	0,00	1,50
0,00	0,00	0,00		1,10	0,00	(00,0	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	1,10		1,10	0,00	(00,0	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	1,10		1,10	0,00	(00,0	0,00	0,00	0,00	0,00	1,50	0,00
0,00	0,00	1,10		0,00	0,00	(00,0	0,00	0,00	1,50	0,00	1,50	0,00

similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

O QUE PODEMOS FAZER COM ISSO?

	tf*idf(j)												
	_ 1	. 2	3	4	5	6	7	8	9	10	11	12	
	system	user	graph	trees	response	EPS	interface	human :	survey	computer i	minors t	time	Туре
d1	0,00	0,00	0,00	0,00	0,00	0,00	1,50	1,50	0,00	1,50	0,00	0,00	User
d2	1,10	1,10	0,00	0,00	1,50	0,00	0,00	0,00	1,50	1,50	0,00	1,50	User
d3	1,10	1,10	0,00	0,00	0,00	1,50	1,50	0,00	0,00	0,00	0,00	0,00	User
d4	2,20	0,00	0,00	0,00	0,00	1,50	0,00	1,50	0,00	0,00	0,00	0,00	User
d5	0,00	1,10	0,00	0,00	1,50	0,00	0,00	0,00	0,00	0,00	0,00	1,50	User
d6	0,00	0,00	0,00	1,10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Tech
d7	0,00	0,00	1,10	1,10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Tech
d8	0,00	0,00	1,10	1,10	0,00	0,00	0,00	0,00	0,00	0,00	1,50	0,00	Tech
d9	0,00	0,00	1,10	0,00	0,00	0,00	0,00	0,00	1,50	0,00	1,50	0,00	Tech

- Classificação
- Clusterização
- All Machine Learning

doc_new	2,20	0,00	0,00	0,00	0,00	1,50	0,00	1,50	0,00	0,00	0,00	0,00	?

O QUE PODEMOS FAZER COM ISSO?

- Classificação
- Clusterização
- All Machine Learning

POR QUE PRECISAMOS DE UM OUTRO MODELO?

• Problemas úteis vetores de dimensão de 50K 😕

• Word Embedding, Word2vec 50, 100, ... 500 max ©

WORD EMBEDDING

- Word Embedding, Word2vec 50, 100, ... 500 max ©
- Contexto dos termos N-grams
- EMBEDDING É APENAS UMA TÉCNICA DE FAZER UMA REPRESENTAÇÃO DE ALGO PRESERVANDO AS ESTRUTURAS (INFORMAÇÕES) DE INTERESSE
- DOCUMENTOS → NEURAL NETWORK → VECTOR DOC

N-GRAMS

1Gram	Nem			claro	na	vida	Machado de Assis
2Gram	Nem	tudo	é	claro	na	vida	
2Gram	Nem	tudo	é	claro	na	vida	
2Gram	Nem	tudo	é	claro	na	vida	
2Gram	Nem	tudo	é	claro	na	vida	
2Gram	Nem	tudo	é	claro	na	vida	
2Gram	Nem	tudo	é	claro	na	vida	
3Gram	Nem	tudo	é	claro	na	vida	
3Gram	Nem	tudo	é	claro	na	vida	
3Gram	Nem	tudo	é	claro	na	vida	
3Gram	Nem	tudo	é	claro	na	vida	

NEURAL MODELS

NEURAL MODELS

EMBEDDING WORDS

	claro	0	0	0	1	0	0
--	-------	---	---	---	---	---	---

Nem	tudo	é	claro	na	vida	Machado de Assis
Nem	tudo	é	claro	na	vida	
Nem	tudo	é	claro	na	vida	
Nem	tudo	é	claro	na	vida	
Nem	tudo	é	claro	na	vida	
Nem	tudo	é	claro	na	vida	

EMBEDDING WORDS

Skip-gram

LET'S CODE

- Modelos Tradicionais BOW e TFIDF
- Word Embedding, Word2vec
- Empregando o Corpus de Machado de Assis
- Lab: BERT

