UK Patent Application (19) GB (11) 2 166 975 A

(43) Application published 21 May 1986

(21)	Application No 8429076	(51)	INT CL ⁴ B05D 3/06 G02B 1/10
(22)	Date of filing 16 Nov 1984	(52)	Domestic classification
(30)	Priority data		B2E 1100 1108 1302 1726 FA U1S 1915 B2E
		(56)	Documents cited None
(71)	Applicant		
	STC plc (United Kingdom),	(58)	Field of search
	190 Strand, London WC2R 1DU	l ·	B2E
(72)	Inventor Kevin Christopher Byron		▲ 公式 要[©]
(74)	Agent and/or address for service M. C. Dennis, STC Patents Department, Edinburgh Way, Harlow, Essex CM20 2SH .		

(54) Optical fibres

- 27.6

(57) In order to achieve curing of u.v. curable primary coating material applied to an optical fibre, such as directly after pulling from a preform, the output from a u.v. laser is directed axially into the preform and stripped from the fibre at the point of application of the primary coating material, which stripped radiation thus causes curing.

SPECIFICATION Optical Fibres

This invention relates to optical fibres and in particular to the curing of primary coatings applied to optical fibres.

Primary coatings are applied to optical fibres directly after their manufacture, which generally involves pulling from a preform. The primary coating materials employed may be heat or u.v.

10 light curable and may be applied in various ways, for example extrusion or solution coating. U.V. light curing currently involves passing the just-coated fibre through the beam of one or more u.v. lamps in order that sufficient u.v. light to cause curing is

15 incident on the coated fibre, the speed of fibre drawing and coating also being relevant factors.

According to the present invention there is provided a method of curing u.v. curable primary coating material applied to an optical fibre including 20 the steps of directing u.v. radiation axially into the fibre and stripping it from the fibre at the point of application of the primary coating material.

Embodiments of the invention will now be described with reference to the accompanying drawings, in which:

Fig. 1 illustrates, schematically, u.v. curing in-line with fibre drawing and coating, and

Fig. 2 illustrates a detail of Fig. 1 on an enlarged scale.

30 Instead of passing a primary coated optical fibre through the beam of a u.v. lamp in order to cure a u.v. curable primary coating, the present proposal involves directing u.v. radiation axially into a preform 1 from which a fibre 2 is being drawn in a 35 conventional manner.

As illustrated in Fig. 1, the output from an 'ultra-violet laser 3, for example an Excimer laser or a He-Cd laser, is directed axially into the preform 1 via a beam expander 4. The u.v. light propagates in the cladding 5 of the preform, two cladding modes 6 being shown in Fig. 2. When the primary coating material is applied, as illustrated schematically at 7 and for example by dip coating the u.v. radiation cladding modes are stripped from the cladding at 45 the point of application 8 of the liquid primary

coating material and thus curing is achieved.

Provided the refractive index of the coating material is greater than the refractive index of the cladding the coating material will itself strip the cladding modes therefrom. If this is not the case then a glass bead 9 whose refractive index is greater than the refractive index of the cladding material may be disposed just prior to the point of application 8 of the primary coatings, with the fibre passing there-through in order to achieve the cladding mode stripping. The bead 9 may even be just immersed in the liquid coating material to ensure maximum effectiveness of the mode stripping.

Using such an in-line method of application of u.v. 60 radiation means that there will be uniform illumination at the point of curing. Curing will also be rapid since the power applied is much higher than can be achieved with lamps.

CLAIMS

- 1. A method of curing u.v. curable primary coating material applied to an optical fibre including the steps of directing u.v. radiation axially into the fibre and stripping it from the fibre at the point of application of the primary coating material.
- 70 2. A method as claimed in claim 1 wherein the coating material is applied to the optical fibre directly after pulling thereof from one end of an optical fibre preform, the u.v. radiation being directed axially into the other end of the preform.
- 75 3. A method as claimed in claim 1 or claim 2 wherein the u.v. radiation is stripped from a cladding layer of the fibre.
- A method as claimed in claim 3 wherein the u.v. radiation is stripped from the cladding layer by a
 bead of higher refractive index than the cladding layer and through which the fibre is passed.
 - 5. A method as claimed in any one of the preceding claims wherein the u.v. radiation is provided by a u.v. laser.
- 85 6. A method of curing u.v. curable primary coating material applied to an optical fibre substantially as herein described with reference to the accompanying drawings.
- An optical fibre having a u.v. cured primary
 coating cured by a method as claimed in any one of the preceding claims.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

64-087536

(43)Date of publication of application: 31.03.1989

51)Int.CI.

CO3C 25/02

B05D 3/06

6/44 GO2B

21)Application number : 62-245044

(71)Applicant : SUMITOMO ELECTRIC IND LTD

22)Date of filing:

29.09.1987

(72)Inventor: OSHIMA TOSHIO

KUWATA YUJI

HATTORI TOMOYUKI MATSUDA HIROO

54) METHOD FOR CURING RESIN COATING OPTICAL FIBER

57)Abstract:

PURPOSE: To allow narrow-diameter optical fiber to be efficiently radiated with ultraviolet rays which are excellent in directional property and are high in density and energy and to contrive both remote rrangement of a curing oven main body and miniaturization of the curing even by permitting the outer periphery of optical fiber formed by wirelrawing to be applied with ultraviolet curing-type resin and thereafter ising ultraviolet laser beams to cure it.

CONSTITUTION: The outer periphery of optical fiber 30 formed by wire-Irawing an optical fiber preform 1 in a wire drawing furnace 2 is applied vith ultraviolet curing type resin via an application die 4 therefor and ptical fiber 31 applied with ultraviolet curing type resin is obtained. Then his optical fiber 31 is irradiated with ultraviolet laser beams 51 emitted rom an ultraviolet laser beam source 5 while converging them with a lens i e.g. via a light guide or an optical fiber bundle 70, light guides/optical ibers 71W74 and an irradiation part 8, etc., in accordance with necessity and resin is cured.

EGAL STATUS

Date of request for examination]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted egistration]

Date of final disposal for application]

Patent number]

Date of registration]

Number of appeal against examiner's decision of ejection]

Date of requesting appeal against examiner's decision of rejection]

Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office