Devoir commun n°1

(Calculatrice autorisée)

Cette évaluation est composée de 4 exercices indépendants.

Exercice 1

Démontrer par récurrence que, pour tout entier $n \ge 1$, on a :

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Exercice 2

Une entreprise de sécurité lance un nouveau système d'alarme. Initialement, 2000 unités sont produites. La production augmente ensuite de 10% chaque semaine.

On désigne par a_n le nombre de systèmes d'alarmes fabriqués à la n-ième semaine, et on pose $a_0 = 2000$.

On arrondira, au besoin, les résultats à l'unité.

- 1. Calculer a_1 et a_2 puis interpréter les résultats obtenus dans le contexte de l'exercice.
- 2. Montrer que (a_n) est une suite géométrique dont on précisera la raison.
- 3. En déduire une expression de a_n pour tout entier naturel n.
- 4. Quel est le nombre de systèmes d'alarmes fabriqués au bout de 20 semaines?

Exercice 3

Exercice 3
On considère la suite
$$(w_n)_{n\geq 0}$$
 définie par
$$\begin{cases} w_0 = 2500 \\ w_{n+1} = 0, 8u_n + 400 \end{cases}$$

Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, on a : $2000 \le w_{n+1} \le w_n$.

Exercice 4

Soit (u_n) une suite géométrique de raison 1,1 et de premier terme $u_0 = 3$.

1. Calculer la somme
$$\sum_{k=1}^{20} u_k = u_5 + u_6 + \cdots + u_{20}$$
.

2. Donner, pour
$$n \in \mathbb{N}$$
, une expression de $\sum_{k=0}^{n} u_k = u_0 + u_1 + \cdots + u_n$