Nonlinear Dynamics

Samuel Lindskog

February 7, 2025

Contents

1	Section 1	1
	1.1 Subsection 1	1

1 Flows on the line

1.1 Introduction

Definition 1.1 (Fixed points). A fixed point on a phase diagram is a point in which there is no flow, i.e. x' = 0. Fixed points represent equilibrium solutions.

Definition 1.2 (Phase point). A phase point is an imaginary particle placed at a point x_0 from which we can observe how it is carried along with the "flow". As time increases, the phase point moves along the x-axis according to some function x(t). x(t) is called the trajectory based at x_0 .

Theorem 1.3. Consider the IVP

$$x' = f(x),$$

$$x(0) = x_0.$$

If f(x) and f'(x) are continuous on an open interval R of the x-axis, and $x_0 \in R$, then the initial value problem has a unique solution on some time interval $-\tau, \tau$ about t = 0.