Name:	F Матнемат	CICS AND STA			
MATH3411 IN			.nd Ciphei		
2014 S2 • Time Allowed: 45		TEST 1		V	ERSION A
For multiple choice each multiple choice For written answers Staple all papers	ce questions, cice question is	s worth 1 ma use extra pa	ırk.	er;	
1. You are given	the following	7-bit ASCII o	codewords:		
	0 0110000	1 0110001	2 0110010	3 0110011	
	4 0110100		6 0110110	7 0110111	
to the 9-chard. The message (single error. What is the domain (a) 127 For the next	110011 1011 1100Sid d 1100Sid d 1100 1100 1100 1100 1100 1100 1100 1	ho 0010 001101 $ ho 001101$	11 10110100 der.co (d) 327 DOWC	is received Om (e) None of the code with che	but contains a of these.
Assume that the		`	/		d 7.
2. The codeword					
(a) 0111101	(b) 10111	01 (c) 11	.01101 (d	l) 1101011	(e) 1101101
3. A generator m	atrix G corres	ponding to the	he check matr	$\operatorname{rix} H$ for the	$\operatorname{code} C$ has size
(a) 4×7	(b) 3×7	(c) 4×3	3 (d) 3 ×	4 (e) No	one of these
4. The minimum	distance $d(C)$	of the code	C is		
	(a) 0	(b) 1 (c) 2 (d) 3	(e) 4	

5.	Consider a binary channel with bit-error probability p , where errors in different po-
	sitions are independent. Suppose that a codeword \mathbf{x} is sent from a binary repetition
	code with codewords of length 4. The probability that one or more errors occur and
	are detected but cannot be corrected is

(a)
$$4p^3(1-p)$$
 (b) $6p^2(1-p)^2$ (c) p^4 (d) $4p^3(1-p)+p^4$ (e) $6p^2(1-p)^2+p^4$

- **6.** Let C be the binary linear code with basis $\{0101100, 1001010, 1011001\}$. How many codewords are there in C?
 - (a) 3 (b) 4 (c) 8 (d) 16 (e) 128
- 7. The message $s_2s_4s_2s_1$ was encoded using a comma code of length 4. The encoded message is
 - (a) 010001011 (b) 101110100 (c) 110111111100 (d) 0100010101 (e) 101110110
- **8.** A binary UD-code has codewords lengths (not necessarily in order) 1, 2, 3, 5, ℓ . What is the smallest value of ℓ for which the code exists?

Assignment Project Exam Help 5

9. Consider a compression code with codewords $\mathbf{c}_1 = 1$, $\mathbf{c}_2 = 01$, $\mathbf{c}_3 = 100$, $\mathbf{c}_4 = ?$, where \mathbf{c}_4 is the tipes from the theorem of the code with codewords $\mathbf{c}_1 = 1$, $\mathbf{c}_2 = 01$, $\mathbf{c}_3 = 100$, $\mathbf{c}_4 = ?$, where \mathbf{c}_4 is the tipes of the codewords \mathbf{c}_4 is the codewords \mathbf{c}_4 in the codewords \mathbf{c}_4 is the codewords \mathbf{c}_4 in the codewords \mathbf{c}_4 is the codewords \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 in the codeword \mathbf{c}_4 is the codeword $\mathbf{$

(a) $c_4 = 0$ A(dd=WeChat0powcoder) None of these

- 10. Let $S = \{s_1, s_2\}$ be a source with probabilities $p_1 = \frac{1}{5}$ and $p_2 = \frac{4}{5}$. The average length per original symbol of a **radix 3** Huffman code for the **second** extension S^2 of this source (constructed with the usual strategies) is
 - (a) $\frac{3}{5}$ (b) $\frac{39}{50}$ (c) $\frac{34}{25}$ (d) $\frac{34}{50}$ (e) $\frac{6}{5}$

11. [5 marks]

- (a) Show that there is no uniquely decodable **ternary** (i.e. radix 3) code with codeword lengths 1, 2, 2, 2, 2, 2, 2, 3, respectively.
- (b) The symbol s_1 of the source $S = \{s_1, s_2\}$ occurs with probability 5/7 and symbol s_2 occurs with probability 2/7. Find a uniquely decodable binary code of minimal average length for S^2 , assuming that successive symbols occur independently, and state the average length per original source symbol of the code.

Name:		St	udent ID:				
UNSW SCHO	OOL OF M	[ATHEMAT]	ICS AND	STATISTIC	CS .		
MATH341	1 Info	RMATION	Codes	AND C	IPHERS		
2014 S2		r -	rest 1	L		\mathbf{V}	ERSION B
• Time Allowe	ed: 45 mi	nutes					
For multiple each multip For written Staple all pa	le choice answer qu	question is uestions, u	worth 1 : se extra	mark.	answer;		
	ay be an e ect check	error in the	check di	git in the	ISBN nun	nber 0-19-0)61133-X.
	(a) 2	(b) 4	(c) 6	(d) 8	(e) N	one of the	se.
	that the c	ment H ps://pheck bits c	orrespond	l to colum	ns 1, 2, 3,	and 7.	lp
				_			(e) 1111010
3. A genera	tor matri	х G corresp	onding to	o the chec	k matrix <i>l</i>	H for the o	$\operatorname{code} C$ has size
(a) 3	3×7	(b) 4×7	(c) 4	$\times 3$ (d) 3×4	(e) Noi	ne of these
4. The min	imum dist	sance $d(C)$	of the co	de C is			
		(a) 0	(b) 1	(c) 2	(d) 3	(e) 4	
		1-error cor The maxi	_			on bits, m	= 3 check bits
		(a) 1	(b) 2	(c) 3	(d) 4	(e) 5	

6.	Let C be the code consisting of all vectors $\mathbf{x} = x_1 x_2 x_3 x_4 \in \mathbb{Z}_5^4$ satisfying the check
	equations

Which, if any, of the following is a valid code word?

(a) 1122

(b) 2121

(c) 4341

(d) 3344

(e) None of these

7. The message $s_2s_1s_4s_3$ was encoded using a comma code of length 4. The encoded message is

(a) 1011110110

(b) 1011111110 (c) 1101011110 (d) 0111110010

(e) 1001110110

8. A binary UD-code with minimal average codeword length has codeword lengths (not necessarily in order) 2, 2, 3, 3, 4, 4, ℓ . What is the value of ℓ ?

(a) $\ell = 1$ (b) $\ell = 2$ (c) $\ell = 3$ (d) $\ell = 4$ (e) None of these

9. Consider a binary Huffman code for a source with 8 symbols $S = \{s_1, \ldots, s_8\}$, where the aux symbol same in hunting early in hunting early in the codeword for symbol s_7 is $\mathbf{c}_7 = 1100$. Then the codeword for symbol s_8 is

$\begin{tabular}{ll} \begin{tabular}{ll} \beg$

10. Let $S = \{s_1, s_2, s_3, s_4, s_5\}$ be a source with probabilities $p_1 = \frac{2}{5}$, $p_2 = \frac{1}{5}$, $p_3 = \frac{1}{5}$, $p_4 = \frac{2}{15}$, $p_5 = \frac{1}{15}$. The average length of a radix 3 Huffman code for this source (using the usual telegraphic Chat powcoder)

(a) $\frac{13}{15}$ (b) $\frac{14}{15}$ (c) $\frac{6}{5}$ (d) $\frac{22}{15}$ (e) $\frac{7}{5}$

11. [5 marks]

(a) Find an instantaneous **ternary** (i.e. radix 3) UD-code for the source

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$$

with codeword lengths 1, 2, 2, 2, 2, 3, 3, 4, respectively.

(b) The symbol s_1 of the source $S = \{s_1, s_2\}$ occurs with probability 3/5 and s_2 occurs with probability 2/5. Find a binary UD-code of minimal average length for S^2 , assuming that successive symbols occur independently, and state the average length per original source symbol of the code.