A Template Problem in Spatio-temporal Modeling and Data Mining

Adway Mitra

4 January 2021

Notations

- ightharpoonup Consider S locations in a region
- ▶ A geo-physical variable, say X may be measured at every location
- Readings are taken at regular time intervals, say hourly/daily
- ▶ Denote the readings by X_{dh}^s (s: location, d: day, h: hour)
- ightharpoonup Or maybe, X^s_{ymd} (y: year, m: month, d: day)
- Observations are available at only a subset of the locations!!

Template Setting

Figure: 15 locations: observations available in blue locations, not in orange locations

Template Problems

- ► Estimate the values of *X* at the locations which have no observations
- Predict future values at all locations
- Identify spatial relationships between locations
- ▶ Identify trends and periodic/seasonal behavior
- ▶ Identify "anomalies" or unusual events

Probabilistic Modeling

- Consider {X} as random variables, whose values are sometimes known
- ► Each of them can be considered as separate R.V. (not useful)
- ► Each of them can be considered as a realization of the same R.V. (may not make sense physically)
- ► We can divide them into groups all values in same group are realizations of one R.V.?
- ► How to define such groups?

Probabilistic Modeling

- ▶ Let us consider X^s_h as a R.V. (value at location s at hour h) (Total 24S variables)
- lts realizations are available for each day: $\{x_{dh}^s\}$
- We utilize the property of periodicity (values at same location, same hour likely to be similar on different days)
- Similarly, we can define X^s_m as a R.V. (value at location s for month m) (Total 12S variables)
- Its realizations are available for each year and each day: $\{x_{ymd}^s\}$

Probabilistic Modeling

- ▶ What sort of R.V. is X_h^s or X_m^s ?
- Continuous or discrete?
 - Decide based on the nature of the data
- ► Follows which distribution?
 - Decide based on the histogram of the data
- Parameters of the distribution?
 - Parameter Estimation techniques!