Содержание

1	Метод главных компонент	3
2	Метод опорных векторов	4
3	Алгоритм Виолы-Джонсона	5
4	Метод гибкого сравнения на графах	6
Cı	тисок используемых источников	9

1 Метод главных компонент

2 Метод опорных векторов

3 Алгоритм Виолы-Джонсона

4 Метод гибкого сравнения на графах

Метод гибкого сравнения на графах – метод обработки изображений и распознавания образов, который используется для нахождения соответствия между двумя изображениями, учитывая возможные искажения, изменение масштаба и повороты [1].

Данный метод является одним из способов распознования лиц. Лица представлены в виде графов со взвешенными вершинами и ребрами[2]. Во время распознавания один из графов — константный(эталонный), в то время как другой изменяется(деформируется) с целью наилучшей подгонки к первому.

В данном методе графы могут представлять собой как прямоугольную решетку (рис. 4.1.а), так и структуру, образованную антропометрическими точками лица(рис. 4.1.б).

Рисунок 4.1 – Пример структуры графа для распознования лиц а)Регулярная решетка; б)Граф на основе антропометрических точек лица.

Частотное содержимое — характеристика, показывающая насколько быстро меняется яркость или цвет в различных частях изображения.

Фильтр Габора — фильтр, который анализирует, присутствует ли какое-либо конкретное частотное содержимое в изображении в различных направлениях в области вокруг точки или области анализа. Данный фильтр представляет собой синусоидальную плоскую волну(рис. 4.2).[3]

Рисунок 4.2 – Пример синусоидальной плоской волны.

Свертка – операция вычисления нового значения интенсивности, степени яркости светлых пикселей по сравнению с более темными тонами, заданного пикселя, при котором учитываются значения окружающих его соседних пикселей.

В некоторой локальной области вершины графа вычисляют значения путем свертки значений яркости пикселей с набором(рис. 4.3) фильтров Габора(рис. 4.4).

Рисунок 4.3 – Набор фильтров Габора.

Рисунок 4.4 – Пример свертки изображения лица с фильтрами Габора.

Алгоритм распознования лица:

- 1) Происходит деформация графа путем смещения каждой из его вершин на некоторое расстояние в различных направлениях относительно его исходного местоположения (рис. 4.5).
- 2) Выбирается такая позиция, при которой разница между значениями в вершине деформируемого графа и соответствующей ей вершине эталонного графа будет минимальной.
- 3) Данная операция выполняется поочердено для всех вершин графа, пока не будет достигнуто наименьшее суммарное различие между признаками этих графов.
- 4) Данная процедура деформации должна выполняться для всех эталонных лиц, заложенных в базу данных системы. Результат распознавания эталон с наименьшим суммарным различием.

Рисунок 4.5 – Пример деформации графа.

Список используемых источников

- 1. L. Wiskott JM. Fellous N. Kruger. Intelligent Biometric Techniques in Fingerprint and Face Recognition. 1999. C. 355–396.
- 2. WenYi Zh, Rama Chellap Imagebased Face Recognition. Режим доступа: http://www.face-rec.org/interesting-papers/general/chapter_figure.pdf.
- 3. Учебное пособие по фильтрам Габора. Режим доступа: https://web.archive.org/web/20090419123314/http://mplab.ucsd.edu/tutorials/gabor.pdf.