$\begin{array}{c} \mathrm{MTH}\ 470/570\\ \mathrm{Winter}\ 2021\\ \mathrm{Assignment}\ 7 \end{array}$

This assignment is due before class on Tuesday, April 6.

Please submit your solutions via Blackboard. Solutions are required – answers must be justified.

p.123, #8.5. Find the terms through third order and the radius of convergence of the power series for each of the following functions, centered at z_0 . (Do not find the general form for the coefficients.)

(c)
$$f(z) = (1+z)^{1/2}$$
, $z_0 = 0$. (d) $f(z) = \exp(z^2)$, $z_0 = i$.

#8.22.

- (a) Find the power series representation for $\exp(az)$ centered at 0, where $a \in \mathbb{C}$ is any constant. (Hint: Substitution!)
 - (b) Show that $\exp(z)\cos(z) = \frac{1}{2}(\exp((1+i)z) + \exp((1-i)z))$.
- (c) Find the power series expansion for $\exp(z)\cos(z)$ centered at 0. (The complete expansion, that is, not just the first few terms.)
- #8.32. Find the three Laurent series of $f(z) = \frac{3}{(1-z)(z+2)}$, centered at 0, defined on the three regions |z| < 1, 1 < |z| < 2, and 2 < |z|, respectively. (Hint: Use a partial fraction decomposition.)

Problem H: Find the Laurent series for the function $g(z) = \frac{1}{1 - \cos z}$ about 0, up through the term $c_6 z^6$. (Hint: This is similar to Example 8.23 in the textbook, which we did by another method in class. Choose your favorite method.)

#8.20. Find the terms $c_n z^n$ in the Laurent series for $\frac{1}{\sin^2(z)}$ centered at z = 0, for $-4 \le n \le 4$. (Same hint as for the previous problem.)