## Deep learning: an introduction

#### Deep learning in a nutshell

- Deep learning is a machine learning methodology that aims at solving (modeling) problems by building layer-wise models with several (many) levels of increasing abstraction
- Layers of these models capture discriminative/descriptive information from raw data
- Can be used for: supervised/unsupervised learning, reinforcement learning, feature extraction, ...
- Examples: multi-layer perceptrons, deep neural networks, convolutional neural networks, deep belief nets, auto encoders, etc.

#### Deep neural networks

- Deep feedforward networks are the ``essential" deep learning models
- Conventionally, a neural network is said to be deep if it has at least 2 hidden layers
- Hence, feedforward neural networks comprise the fundamentals of deep learning
- How much do you know about NNs?

#### Neural networks – recap.

- A feedforward neural network is a model:
  - That approximates functions of the form  $y = f(x, \Theta)$
  - Is formed by multiple (nonlinear) functions arranged in layers
  - Layers form a network
  - In which information flows in a single (forward) direction



An example of a Feed-forward Neural Network with one hidden layer ( with 3 neurons )

#### Neural networks – recap.

Neuron analogy



- In general neural networks are built of units that resemble the perceptron (linear units activated by a differentiable function)
- **Perceptron** A simple, linear classifier that can solve linearly separable classification (grandparent of NNs and the SVM) problems, learnable weights





- How to determine the weights w?
- The Perceptron learning algorithm
  - **1.**  $\mathbf{w} \leftarrow \text{randomly initialize weights}$
  - 2. Repeat until stop criterion meet

```
I. For each \mathbf{x}_i \in D

a) o_i \leftarrow \mathbf{w} \mathbf{x}_i + b // estimate perceptron's prediction
b) \Delta \mathbf{w} \leftarrow \eta(y_i - o_i) // estimate the rate of change
c) \mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w} //Update \mathbf{w}
```

3. Return w

Convergence guaranteed (linearly separable problems)

What if the problem is non linearly separable?

- For non-linearly separable problems, weights for a similar unit can be optimized with gradient descent
- Suppose we want to learn weights for a perceptron without threshold
  - $f(\mathbf{x}) = (\mathbf{w}\mathbf{x} + b)$ , with  $\mathbf{w} \in \mathbb{R}^d$
  - $f(\mathbf{x}) = (\mathbf{w}\mathbf{x})$ , if we augment the input space with a 1, and include b into w
- And suppose we want to minimize:

• 
$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - o_i)^2$$

- How to learn these weights?
- perceptron은 0, +1의 출력을 가지는데 반해 Adaline은 -1 +1의 bipolar 출력을 가진다.
- adaptive signal processing





- Problem:
  - Minimize  $E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i o_i)^2$  w.r.t **w**
- Idea: to explore the space of possible values that w can take. Starting with an initial w and updating it in the direction that decreases the error



• The math:

$$W \leftarrow W + \Delta W$$

$$\Delta W = -\alpha \nabla E$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 
= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x}_d) 
= \sum_{d \in D} (t_d - o_d) (-x_{i,d})$$

$$\Delta w_i = \alpha \sum_{d \in D} (t_d - o_d) x_{i,d}$$

- The delta rule learning algorithm (gradient descend)
- **1.**  $\mathbf{w} \leftarrow \text{randomly initialize weights}$
- 2. Repeat until stop criterion meet

```
I. \Delta \mathbf{w} \leftarrow \text{initialize to } 0
```

II. For each  $\mathbf{x}_i \in D$ 

a) 
$$o_i \leftarrow \mathbf{w} \mathbf{x}_i + b$$

b) For each weight j estimate

1. 
$$\Delta \mathbf{w}_j \leftarrow \Delta \mathbf{w}_j + \eta (y_i - o_i) x_{i,j}$$

III. 
$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

3. Return w

```
// estimate perceptron's prediction
// estimate the rate of change
//Update w
```

- SGD: in practice, a stochastic version of the algorithm is used, in which weights are updated after processing each input (\*batch)
- **1. w** ← randomly initialize weights
- 2. Repeat until stop criterion meet
  - I.  $\Delta \mathbf{w} \leftarrow \text{initialize to } 0$
  - II. For each  $\mathbf{x}_i \in D$ 
    - a)  $o_i \leftarrow \mathbf{w} \mathbf{x}_i + b$
    - b) For each weight j estimate

1. 
$$\Delta \mathbf{w}_j \leftarrow \Delta \mathbf{w}_j + \eta (y_i - o_i) x_{i,j}$$

- c)  $\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$
- 3. Return w

// estimate perceptron's prediction

// estimate the rate of change //Update w

Stochastic Gradient Descent



**Gradient Descent** 



• The problem with perceptrons et al.: They can only learn linear functions. When the data is not linearly separable the best one can do is to expect to have a *good fit* 



#### Solutions?

- To map the data into a non linear feature space in which the problem can become linearly separable
  - How?



- What about stacking multiple layers of linear units?
  - Still will produce only linear functions
- Idea: stacking multiple layers of linear units activated with non linear functions



Introducing non linearities in units



Slide from I. Guyon

Introducing non linearities in units

#### **Activation Functions**

# Sigmoid $\sigma(x) = \frac{1}{1+e^{-x}}$ tanh $\tanh(x)$ represents the second stank $\tan h(x)$ rep



Introducing non linearities in units









Input units































- As other learning algorithms, NNs aim to learn a function mapping inputs to outputs
- Training a NN reduces to learning the weights in the network that minimize an error estimate
  - How many parameters?
  - How to adjust/determine their values?
  - What criterion to adopt?

# Neural networks – recap. (from perceptrons to DNNs)



### Neural networks - Backpropagation(BP) 신경망

- 지도학습(supervised learning) 패턴의 대표적인 신 경망 모델
- 오차 역전(error back propagation)기법을 processing unit에 적용한 것
- 각 processing unit 간의 연결강도(weights)를 수정함으로써 다음 학습 시 목표 값에 더욱 접근된 출력 값을 갖게 한다.
- 출력값이 목표값과 유사하게 될 때까지 학습을 반 복하게 되며, 학습이 끝나면 학습한대로 출력을 하 게 된다.

#### Backpropagation 신경망 구조



- BP 신경망의 3 단계 학습
- 1. 제 1 단계(전방향 단계) : 입력층에서 입력을 받아 출력층으로 출력하는 과정 활성값(activations)이 출력됨
- 2. 제 2 단계 : 오차를 구하는 단계 오차 - 목표값과 활성값과의 차 목표값 - 출력층의 각 신경세포들에게 학습을 위해 미리 설정한 값
- 3. 제 3 단계 : 오차를 이용하여 오차신호를 계산하여 은 닉층과 입력층에 역방향으로 되돌리면서 신경세포들 간 의 연결강도들(weights)을 조율

## 신경세포 i와 j 간 연결강도 $(w_{ij})$ 변화

- ◆ 목표값과 활성값과의 차인 오차를 구하여 오차신호를 계산
- ◆ 은닉층과 입력층에 역방향으로 되돌리면 서 신경세포 i와 j 간의 연결강도(wij) 변화
- ◈ η: 학습률(learn rate, 0.1로 가정)
- ◈ δ*j*: 신경세포 *j*의 오차신호(error signal)
- ◈ Yi: 신경세포 i의 Sigmoid 활성값

$$\Delta w_{ij} = \eta \delta_j y_i$$



## \* 출력층의 오차신호 $\delta_i$

◈ 출력층의 오차 값에 y;의 미분값을 곱

## \* 은닉층 $y_i$ 에 대한 오차신호 $(\delta_i)$

◈ 은닉층의 오차 값에 *yj*의 미분 값을 곱

$$\delta_{j} = y_{j}' \sum_{i} \delta_{k} w_{jk} = y_{j} (1 - y_{j}) \sum_{i} \delta_{k} w_{jk}$$

$$i \qquad W_{ij} \qquad i \qquad W_{j1} \qquad i \qquad W_{j2} \qquad i \qquad W_{j1} \qquad i \qquad W_{j2} \qquad i \qquad W_{j3} \qquad i \qquad W_{j4} \qquad i \qquad W_$$

## \* n+1번째 학습 시 연결강도 변화

- ◈ 현재 연결강도의 변화량을 구한 후
- ◈ 바로 전 단계 학습 시 연결강도의 변화량에 타성(momentum) α를 곱한 값을 더해 준다.

$$\Delta w_{ij}(n+1) = \eta \delta_j y_i + \alpha \Delta w_{ij}(n)$$

- The ventral (recognition) pathway in the visual cortex has multiple stages
- Retina LGN V1 V2 V4 PIT AIT ....
- Lots of intermediate representations



- Type of neural network for processing data having grid-like topology
  - Time series (1D grid)
  - Images (2D grid)
  - Video (3D grid)
- Components: convolutional layers, activation of units, pooling layers,
- Weights are learned with backpropagation



• Convolution : 신호와 필터간의 element-wise 곱 연산 후 더함

| 2  | 2        | 2  |    | 0           | 0     | 0                             |                                                                                    |
|----|----------|----|----|-------------|-------|-------------------------------|------------------------------------------------------------------------------------|
| 10 | 10       | 10 | •  | 1           | 1     | 1                             | = 30                                                                               |
| 2  | 2        | 2  |    | 0           | 0     | 0                             | $= 2 \times 0 + 2 \times 0 + 2 \times 0 + 10 \times 1 + 10 \times 1 + 10 \times 1$ |
| 신호 |          |    | 필터 |             |       | $+2\times0+2\times0+2\times0$ |                                                                                    |
|    |          |    |    |             |       |                               |                                                                                    |
| 2  | 10       | 2  |    | 0           | 0     | 0                             |                                                                                    |
| 2  | 10<br>10 | 2  |    | 0           | 0     | 0                             | = 14                                                                               |
| _  |          |    | •  | 0<br>1<br>0 | 0 1 0 |                               | = 14 = 2×0+10×0+2×0+2×1+10×1+2×1                                                   |

• Pooling : 신호의 크기를 축소시키는 (Subsampling) 연산

| 0 | 1 | 2 | 4 |
|---|---|---|---|
| 5 | 6 | 6 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |

신호



필터 종류 : average pooling

필터 크기: 2×2

Stride: 2

| 3 | 5 |
|---|---|
| 2 | 2 |

- Stride: 필터 연산의 수행간격
  - 예) stride 2



- Stride: 필터 연산의 수행간격
  - 예) stride 2



- Stride: 필터 연산의 수행간격
  - 예) stride 2



- Stride: 필터 연산의 수행간격
  - 예) stride 2





How do the filters look like?



