霍尔效应实验报告

崔士强 PB22151743

2023年10月24日

1 实验目的

本实验的目的是通过用霍尔元件测量磁场,判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,以及了解霍尔效应测试中的各种副效应及消除方法.

2 实验原理

2.1 霍尔系数的测量

图 1: 实验原理

如图所示,半导体片与电路连接,当 y 方向有电流 I_S 时,半导体片中的载流子受洛伦兹力 F_B 作用,向 x 方向偏移. 设载流子运动速度为 u,则有:

$$F_B = quB$$

随着电荷累积,薄片 B, B' 两侧产生电场 E, 设电场力为 F_E , 则有:

$$F_E = \frac{qV_{BB'}}{b}$$

平衡时有 $F_E = F_B$, 即:

$$quB = \frac{qV_{BB'}}{b}$$

3 实验仪器 2

设载流子浓度为n,有:

$$I_S = bdnqu$$

从而得到

$$V_{BB'} = \frac{1}{nq} \frac{I_S B}{d}$$

令霍尔系数 $R_H = \frac{1}{nq}$, 则:

$$V_{BB'} = R_H \frac{I_S B}{d}$$

已知磁铁线圈参数为: $\frac{B}{I_M}=3600\mathrm{Gs/A}=0.36\mathrm{T/A}$,则可以通过 I_S 或 I_M 与 $V_{BB'}$ 的关系来测量 R_H . 在本实验中,为了减少副效应,采取对称测量法,即对于每一组 I_S 和 I_M 的值,分别换向从而测得四组电压值,取其平均值.

2.2 电导率的测量

沿电流方向测量一段距离 L 两端的电压,则有:

$$\frac{V}{I_S} = \rho \frac{L}{bd}$$

即可计算出电导率. 已知电导率与载流子浓度 n, 迁移率 μ 之间的关系:

$$\sigma = ne\mu$$

则可以计算出载流子浓度 n 以及迁移率 μ .

2.3 载流子类型的确定

无论是正电荷还是负电荷,其偏转方向是一致的,因此测量半导体 x 方向两端电压即可得知载流子类型.

3 实验仪器

恒流源,电磁铁,霍尔样品和样品架,锑化铟片,换向开关和接线柱,数字万用表,小磁针.

4 测量记录 3

测量记录

4.1 测量六角霍尔片的霍尔系数

Τ (see Λ)	$I_M(A)$		
$I_S(\mathrm{mA})$	+0.45	-0.45	
+1.00	2.100	1.984	
-1.00	2.096	1.983	
+1.50	3.146	2.957	
-1.50	3.143	2.958	
+2.00	4.178	3.929	
-2.00	4.177	3.930	
+2.50	5.170	4.864	
-2.50	5.165	4.865	
+3.00	6.207	5.839	
-3.00	6.202	5.840	
+3.50	7.241	6.814	
-3.50	7.225	6.816	
+4.00	8.278	7.791	
-4.00	8.271	7.792	
+4.50	9.316	8.764	
-4.50	9.314	8.766	

$I_M(A)$	$I_S(\mathrm{mA})$		
	+4.5	-4.5	
+0.100	2.141	2.151	
-0.100	1.606	1.605	
+0.150	3.060	3.097	
-0.150	2.548	2.546	
+0.200	4.020	4.070	
-0.200	3.519	3.520	
+0.250	5.007	5.076	
-0.250	4.531	4.529	
+0.300	6.018	6.130	
-0.300	5.582	5.581	
+0.350	7.095	7.172	
-0.350	6.620	6.617	
+0.400	8.142	8.224	
-0.400	7.672	7.667	
+0.450	9.209	9.307	
-0.450	8.756	8.755	

表 1: 固定 I_M 所得电压 $V_{BB'}$ 表 2: 固定 I_S 所得电压 $V_{BB'}$

4.2 测量六角霍尔片的电导率

在零磁场下,取 $I_S=1.00 \mathrm{mA}$,测得 $V_{B'A'}=-60 \mathrm{mV}$.

4.3 确定导电类型

图 2: 示意图

测得 $V_{12} > 0$

4.4 测量锑化铟片的霍尔系数

固定 $I_S = 1$ mA,改变 I_M ,测得 V_H 如下:

$I_M(A)$	$V_H(\mathrm{mV})$
0.00	-60.0
0.05	-20.2
0.10	15.3
0.15	46.9
0.20	73.7
0.22	84.8
0.25	92.3
0.27	98.5
0.30	104.0
0.35	115.5
0.40	124.4
0.45	132.3
0.50	141.3
0.55	150.2
0.60	159.4
0.65	167.9
0.70	177.0
0.75	185.4
0.80	194.3

表 3: 固定 $I_S = 1$ mA 所得电压 V_H

5 分析与讨论

5.1 数据处理

对于 4.1 中的数据, 求两次换向所得四个值的平均值, 并作线性拟合, 结果如下:

		-		
$I_S(\mathrm{mA})$	$V_{BB'}(\mathrm{mV})$	-	$I_M(A)$	$V_{BB'}(\mathrm{mV})$
1.00	2.041		0.100	1.876
1.50	3.051		0.150	2.813
2.00	4.054		0.200	3.782
2.50	5.016		0.250	4.786
3.00	6.022		0.300	5.828
3.50	7.024		0.350	6.876
4.00	8.033		0.400	7.926
4.50	9.040	_	0.450	9.007
		-		

表 4: 固定 $I_M=0.45\mathrm{A}$ 所得电压 $V_{BB'}$ 表 5: 固定 $I_S=4.5\mathrm{mA}$ 所得电压 $V_{BB'}$

图 3: $V_{BB'}$ 与 I_S 的关系

图 4: $V_{BB'}$ 与 I_M 的关系

在图 3 中,由

$$V_{BB'} = k_1 I_S$$

$$k_1 = \frac{R_H I_M}{d} \times 0.36 \mathrm{T/A}$$

得:

$$R_H = 6.306 \times 10^{-3} \text{m}^3/\text{C}$$

在图 4 中,由

$$V_{BB'} = k_2 I_M$$

$$k_2 = \frac{R_H I_S}{d} \times 0.36 \mathrm{T/A}$$

得:

$$R_H = 6.160 \times 10^{-3} \text{m}^3/\text{C}$$

由

$$\frac{V}{I_S} = \frac{L}{\sigma b d}$$

可得:

$$\sigma = 25 \mathrm{S/m}$$

由图 2 可知,洛伦兹力 \overrightarrow{F} 方向向上,因此为 n 型半导体,有:

$$R_H = \frac{1}{ne}$$

$$\sigma = ne\mu$$

取 R_H 为两次测量结果的平均值 $6.223 \times 10^{-3} \text{m}^3/\text{C}$ 可解得:

$$n=1.00\times 10^{21} {\rm m}^{-3}$$

$$\mu = 0.154 \text{m}^2/(\text{Vs})$$

对于锑化铟片,由表3数据绘制散点图:

图 5: 锑化铟片 V_H 与 I_M 关系散点图

可以发现 V_H 与 I_M 大致呈现分段的线性关系,分界点大致在 $I_M=0.22\mathrm{A}$,因此分段进行线性拟合,结果如下:

图 6: $I_M < 0.22A$

由

$$k_3 = \frac{R_{H_1}I_S}{d} \times 0.36\text{T/A}$$

得:

$$R_{H_1} = 0.929 \text{m}^3/\text{C}$$

图 7: $I_M > 0.22A$

由

$$k_4 = \frac{R_{H_2}I_S}{d} \times 0.36 \mathrm{T/A}$$

得:

$$R_{H_2} = 0.256 \text{m}^3/\text{C}$$

5.2 误差分析

本实验的误差主要来源于以下几点:

- 1. 测量时仪器读数不稳定;
- 2. 电极焊接不对称导致的不等位电动势;
- 3. 载流子速度不一致,其横向分布也不一致,同时高速载流子温度较高,从而形成温差电动势 V_E

同时注意到测量锑化铟片霍尔系数时, $I_M=0$ 时测得电压并不为 0(且绝对值并不小),推测其原因可能是上述第 2 点,考虑到本实验主要关心线性拟合的斜率,这对结果无显著影响(希望如此).