Regular Expressions

Narges Khakpour

Department of Computer Science, Linnaeus University

- Proving Irregularity
- 2 Language Operations
- Regular Expressions
- 4 Algebraic Laws for Regular Expressions
- 5 Equivalence of Regular Expressions and NFAs
 - Regular Expressions to ϵ -NFAs
 - NFA to Regular Expressions
- 6 Conclusions

Table of Content

- Proving Irregularity
- 2 Language Operations
- Regular Expressions
- 4 Algebraic Laws for Regular Expressions
- 5 Equivalence of Regular Expressions and NFAs
 - Regular Expressions to ϵ -NFAs
 - NFA to Regular Expressions
- Conclusions

Proving Irregularity

- To show a language is regular, we should find an automaton that accepts it.
- How to show that a language is NOT regular? Use pumping lemma
- Pumping lemma is usually used for infinite languages

Pumping Lemma

- Any string with a length greater than a threshold, can be divided into three parts: x, v and y
- If we pump (repeat) v any number of times, the result is still in L

Theorem

For any regular language L, there exists an integer n, such that for all $x \in L$ with $|x| \ge n$, there exist $u, v, w \in \Sigma^*$, such that

- C1 x = uvw
- C2 $|uv| \leq n$
- C3 $|v| \ge 1$
- C4 for all i > 0: $uv^i w \in L$

Pumping Lemma

- L is regular ⇒ it satisfies conditions,
- If *L* satisfies the conditions, we **CANNOT** always conclude that *L* is regular,
- If L does not satisfy conditions \Rightarrow L is NOT regular
- To prove that a languages is not regular, we should prove that the conditions holds for NO n.

Proof Sketch

- Let A be a DFA that is equivalent to L and has n-1 states.
- For all strings x with $|x| \ge n$, there is at least one state that is visited twice, because A has only n-1 states.

We can see that all the conditions in the theorem hold.

Example

Prove that $a^n b^{2n}$ is not regular.

We should show that there is NO integer *n* such that the lemma's conditions hold, i.e. for all n, lemma's conditions do NOT hold.

Let $x = a^n b^{2n}$ (|x| > n) and such n exist.

If (C1-C3) hold, then x = uvw, $|uv| \le n$ and $|v| \ge 1$.

Then, $u = a^j$, $v = a^k$ and $w = a^m b^{2n}$ where $j + k \le n$ and j + k + m = n. For C4 to hold, $a^{j}(a^{k})^{i}a^{m}b^{2n} = a^{j+ki+m}b^{2n}$ should belong to L which does

not hold because $j + ki + m \neq n$ for any arbitrary i (Observe that $k \geq 1$ according to C3).

Table of Content

- Proving Irregularity
- 2 Language Operations
- Regular Expressions
- 4 Algebraic Laws for Regular Expressions
- 5 Equivalence of Regular Expressions and NFAs
 - Regular Expressions to ϵ -NFAs
 - NFA to Regular Expressions
- Conclusions

Language Operations

Let L_1 and L_2 be two languages defined over an alphabet Σ .

Union

$$L_1 \cup L_2 = \{w | w \in L_1 \lor w \in L_2\}$$

Example

 L_1 is the set of all number dividable by 5. L_2 is the set of all number dividable by 2. $L_1 \cup L_2$ is the set of all numbers either dividable by 2 or 5.

Concatenation

$$L_1.L_2 = \{w_1w_2 | w_1 \in L_1 \land w_2 \in L_2\}$$

Example

If L_1 is the set of all 2-bit binary numbers and L_2 is the set of all 3-bit binary numbers. L_1L_2 is the set of all 5-bit binary numbers.

Language Operations

Power

$$L^0 = \{\epsilon\}, \ L^1 = L \ , \ L^{k+1} = L^k.L$$

Example

Let
$$L_1 = \{a, b\}$$
. $L_1^2 = \{aa, ab, ba, bb\}$, $L_1^3 = \{aaa, aba, baa, bba, aab, abb, bab, bbb\}$

Kleene Closure

$$L^* = \bigcup_{0 \le k} L^k$$

Example

If $L_1=\{0,1\}$, then L_1^* is the set of all binary numbers including $\epsilon.$

Is L* always infinite?

Table of Content

- Proving Irregularity
- 2 Language Operations
- Regular Expressions
- 4 Algebraic Laws for Regular Expressions
- 5 Equivalence of Regular Expressions and NFAs
 - Regular Expressions to ϵ -NFAs
 - NFA to Regular Expressions
- Conclusions

Regular Expressions

- An algebraic way to describe languages.
- ullet A RE is defined over an alphabet Σ
- The language that an expression E expresses is denoted by L(E).
- Definition is recursive.

Regular Expressions

Definition

Base Cases

- For any symbol $a \in \Sigma$, a is a regular expression and $L(a) = \{a\}$
- ϵ is a regular expression and $L(\epsilon) = \{\epsilon\}$
- \emptyset is a regular expression and $L(\emptyset) = \emptyset$

Induction Steps

- Union(denoted by + or |) If E_1 and E_2 are two regular expressions, then $E_1 + E_2$ is a regular expression too and $L(E_1 + E_2) = L(E_1) \cup L(E_2)$
- Concatenation If E_1 and E_2 are two regular expressions, then E_1E_2 is a regular expression and $L(E_1E_2) = L(E_1).L(E_2)$
- Closure If E is a regular expressions, then E^* is a regular expression and $L(E^*) = L(E)^*$

Precedence of Operators

- Order of precedence is * (highest), then concatenation, and finally +(|) (lowest).
- Use parenthesis wherever needed.

RE Examples

Example

• The set of all even decimal numbers

$$(0|1|2....|9)^*(0|2|4|6|8)$$

.

• The set of all strings over $\Sigma = \{a, b, c\}$ where each a is followed by at least one b:

$$(((c|b)^*ab)^*|(c|b)^*)^*$$

.

• Strings over $\Sigma = \{a, b\}$ where the number of a's is divisible by 3?

Regular Languages

Definition

A language ℓ defined over Σ is regular, if there is a regular expression E that can express ℓ , i.e. $L(E) = \ell$.

Example

Which one(s) of the following languages defined over $\{a,b\}$ are regular? Why?

- All strings over $\{a, b\}$ where the sum of a's and b's is odd.
- All hexadecimal even numbers.
- All strings of the form $a^n b^{2n}$

Table of Content

- Proving Irregularity
- 2 Language Operations
- Regular Expressions
- 4 Algebraic Laws for Regular Expressions
- 5 Equivalence of Regular Expressions and NFAs
 - Regular Expressions to ϵ -NFAs
 - NFA to Regular Expressions
- Conclusions

- Union and concatenation behave kind of like addition and multiplication.
- Union is commutative and associative, i.e. $E_1 + E_2 = E_2 + E_1$ and $(E_1 + E_2) + E_3 = E_1 + (E_2 + E_3)$
- Concatenation is associative but not commutative, i.e. $E_1E_2 \neq E_2E_1$ and $(E_1E_2)E_3 = E_1(E_2E_3)$.
- Concatenation distributes over +, i.e. $E_1(E_2 + E_3) = E_1E_2 + E_1E_3$.

- \emptyset is the identity for +, i.e. $E + \emptyset = E$.
- \bullet ϵ is the identity for concatenation, i.e.
 - $\epsilon E = E \epsilon = E$ and
- ullet \emptyset is the annihilator for concatenation, i.e.

$$\emptyset R = R\emptyset = \emptyset$$

- $E^*E^* = E^*$
- $\emptyset^* = \epsilon$
- \bullet $\epsilon^* = \epsilon$
- $(E^*)^* = E^*$
- $EE^* = E^+$
- $(E_1 + E_2)^* = (E_1^* E_2^*)^*$

BonusPoint

Which one(s) is correct, if any? Prove it.

$$\epsilon + E.E^* = (\epsilon + E)^*$$

 $(\epsilon + E)^* = E^*$
 $(E^+ + E)^* = E^+$

- E + E = E
- $\epsilon + E.E^* = E^*$
- $(\epsilon + E)^* = E^*$

Table of Content

- Proving Irregularity
- 2 Language Operations
- Regular Expressions
- 4 Algebraic Laws for Regular Expressions
- 5 Equivalence of Regular Expressions and NFAs
 - Regular Expressions to ϵ -NFAs
 - NFA to Regular Expressions
- Conclusions

Equivalence of Regular Expressions and NFAs

- We already showed that NFAs, ϵ -NFAs and DFAs are equivalent.
- RE and NFAs are equivalent. We should prove that
 - (i) For each regular expression E, there is an ϵ -NFA A where L(A) = L(E), and
 - (ii) For each NFA A, there is a regular expression E where L(A) = L(E)

- To prove the existential goal (i), we first define a candidate procedure that we think produces the automaton with the language L(E)
- Then, we prove that the language of the produced automaton is L(E) by induction on the number of operators
- That's a recursive procedure
- Base Cases
 - if the expression is the symbol a, then

ullet if the expression is ϵ , then

• if the expression is \emptyset , then

 ϵ -NFA for E_1+E_2

Example: The regular expression a|(b|ab)

Example: The regular expression a(b|ab)

NFA to Regular Expressions

- Several methods: state-removal, transitive closure method and the Brzozowski algebraic method
- We focus on the state-removal method

Generalized NFA

- A Generalized NFA is an NFA whose labels are regular expressions
- An edge can be taken, if a prefix of the unread input matches the RE of the edge
- We transform an NFA to a GNFA that includes only initial and final states!

NFA to GNFA

Step 1- Choose an intermediate node (a node that is neither initial nor final state), .e.g q_2

NFA to GNFA

Step 2- Change the transitions through q_2 into direct transitions, i.e. for each pair of transitions $\langle q_1, a, q_2 \rangle$ and $\langle q_2, c, q_3 \rangle$, add a new transition $\langle q_1, a(b)^*c, q_3 \rangle$.

NFA to GNFA

• Step 3- Remove the node q_2

• Repeat Step 1-3 for all intermediate nodes

NFA to Regular Expressions

- Add a special initial state q_0' that is connected to the old initial state via an ϵ -transition
- Add a special final state q_f , such that all the final states are connected to q_f via and ϵ -transition
- Convert the NFA to a GNFA
- Output is the label on the (single) transition left in the GNFA.

Add initial and final states

Remove q_1

Remove q_1

Remove q_3

The corresponding regular expression is (0+1(1)*0)(0+1)*.

Table of Content

- Proving Irregularity
- 2 Language Operations
- Regular Expressions
- 4 Algebraic Laws for Regular Expressions
- 5 Equivalence of Regular Expressions and NFAs
 - Regular Expressions to ϵ -NFAs
 - NFA to Regular Expressions
- 6 Conclusions

Summary

- Languages Operations
- Regular expressions and their algebraic laws
- Equivalence of REs and NFAs
- Pumping Lemma
- Next lecture is on context-free grammars