Przedmiot: Sterowanie Procesami Dyskretnymi - laboratorium

Imię i nazwisko: Igor Jewiarz 263478

Termin zajęć: środa 18:55 Data oddania: 21.03.2023

Projekt 2: Problem WiTi dla jednej maszyny

1 Opis problemu

Problem $w_i t_i$ można przedstawić za pomocą wyrażenia $1||\Sigma f_i|$. Dostępna jest jedna maszyna, która musi wykonać wszystkie zadania ze zbioru. Zadania muszą zostać wykonywane nieprzerwanie. Dla każdego zadania określa się trzy parametry:

- p_i czas trwania zadania
- w_i waga
- ullet t_i żądany termin zakończenia zadania

Kara jest naliczana w przypadku, gdy termin skończenia zadania będzie większy niż jego żądany termin zakończenia. Kara jest proporcjonalna do spóźnienia:

$$f_i(C_i) = \max\{(C_i - t_i)w_i, 0\}$$
(1)

Rozwiązywanie opisanego problemu polega na minimalizacji sumy kar:

$$f(S) = \sum_{i=1}^{n} \max\{(C_i - t_i)w_i, 0\}$$
 (2)

2 Programowanie dynamiczne

2.1 Opis algorytmu

Programowanie dynamiczne polega na rozbicie problemu na zależne od siebie mniejsze problemy. Rekurencyjnie tworzy się podzbiory pomniejszone o kolejne zadania, aż do momentu otrzymania pustego zbioru. Dla każdego podzbioru określa się minimalną sumę $w_i t_i$ i na jej podstawie określa się optymalny harmonogram. Przykładowo dla czterech zadań:

$$F(\{1,2,3,4\}) = min \begin{cases} F(\{2,3,4\}) + K_1(c) \\ F(\{1,3,4\}) + K_2(c) \\ F(\{1,2,4\}) + K_3(c) \\ F(\{1,2,3\}) + K_4(c) \end{cases}$$
(3)

gdzie $c = \sum_{i=1}^{n} p_i$ oraz $K_i(c) = (c - t_i)w_i$. Algorytm ma złożoność obliczeniową $O(n2^n)$ oraz pamięciową $O(2^n)$.

```
1: procedure PD(n, P, W, T)
                 \mathcal{I} \leftarrow \mathcal{N}
                 for i = 1 to n do
  3:
                         v(\mathcal{I}^i) \leftarrow \arg\min_{j \in \mathcal{I}^i} \left\{ F\left(\mathcal{I}^{L\left(\mathcal{I}^i \setminus \{j\}\right)}\right) + f_j(p(\mathcal{I}^i)) \right\}
                         F(\mathcal{I}^i) \leftarrow F\left(\mathcal{I}^{L\left(\mathcal{I}^i \setminus \left\{v(\mathcal{I}^i)\right\}\right)}\right) + f_{v(\mathcal{I}^i)}(p(\mathcal{I}^i))
  5:
                 end for
  6:
                 for i = n to 1 do
  7:
                         \pi(i) \leftarrow v(\mathcal{I})
  8:
                         \mathcal{I} \leftarrow \mathcal{I} \setminus \{v(\mathcal{I})\}
  9:
                 end for
10:
11: end procedure
```

Rysunek 1: pseudokod programowania dynamicznego

3 Wnioski

- 1. Algorytm posiada dużą złożoność obliczeniową przez co nawet pojedyncze zmiany w liczbie zadań skutkują dużą różnicą w czasie wykonywania programu.
- 2. Problem $1||\sum w_i t_i|$ może posiadać wiele rozwiązań optymalnych o tej samej wartości optymalnej sumy $w_i t_i$.

4 Źródła

- http://andrzej.gnatowski.staff.iiar.pwr.wroc.pl/SterowanieProcesamiDyskretnymi/lab04_witi/instrukcja/lab04.pdf
- http://mariusz.makuchowski.staff.iiar.pwr.wroc.pl/download/courses/sterowanie.procesami.dyskretnymi/lab.instrukcje/lab02.witi/witi.literatura/SPD_w01_WiTi.pdf
- Algorytmy szeregowania zadań, C. Smutnicki