Ma/CS 6a

Class 17: More Permutations

By Adam Sheffer

Reminder: The Permutation Set S_n

- S_n The set of permutations of $N_n = \{1,2,3,...,n\}$.
- The set S_3 :

1	2	3	1	2	3	1	2	3
\downarrow								
1	2	3	1	3	2	2	1	3
4	_	_	4	_	_	4	_	_
1	2	3	1	2	3	1	2	3
	2 ↓			2 ↓			2 ↓	

1

Reminder: Cycle Notation

 We can consider a permutation as a set of cycles.

• We write this permutation as (15)(264)(3).

Reminder: Classification of Permutations

- Both (1 2 4)(3 5) and (1 2 3)(4 5) are of the same type: one cycle of length 3 and one of length 2.
 - We denote this type as [2 3]
- In general, we write a type as $[1^{\alpha_1}2^{\alpha_2}3^{\alpha_3}4^{\alpha_4}...]$.

The 15 Puzzle and Permutations

- How a configuration of the puzzle can be described as a permutation?
 - Denote the missing tile as 16.
 - The board below corresponds to the permutation

1 16 3 4 6 2 11 10 5 8 7 9 14 12 15 13

The 15 Puzzle Revisited

- What kind of permutations describe a move in the 15 Puzzle?
 - Permutations that switch 16 with an element that was adjacent to it.

Transpositions

- Transposition: a permutation that interchanges two elements and leaves the rest unchanged.
 - · (1)(3)(5)(2 4)

Decomposing a Cycle

• **Problem.** Write the cycle (1 2 3) as a composition of transpositions.

$$(123) = (13)(12)$$

Decomposing a Cycle (2)

• **Problem.** Write the cycle $(x_1 \ x_2 \ ... \ x_k)$ as a composition of transpositions.

$$(x_{1} x_{2}) \bigvee (x_{1} x_{2}) x_{3} \dots x_{k}$$

$$(x_{1} x_{2}) \bigvee (x_{1} x_{3}) \dots x_{k}$$

$$(x_{1} x_{3}) \bigvee (x_{1} x_{3}) \dots x_{k}$$

$$(x_{1} x_{2} \dots x_{k}) = (x_{1} x_{k})(x_{1} x_{k-1}) \dots (x_{1} x_{2})$$

$$x_{2} x_{3} x_{4} \dots x_{1}$$

Decomposing a Permutation

- Problem. Can every permutation be written as a composition of transpositions?
- Yes! Write the permutation in its cycle notation and decompose each cycle.

$$(1 3 6)(2 4 5 7)$$

= $(1 6)(1 3)(2 7)(2 5)(2 4)$

Unique Representation?

- Problem. Does every permutation have a unique decomposition into transpositions (up to their order)?
- (1 2 3)(4 5 6):
 - · (13)(12)(46)(45).
 - · (14)(16)(15)(34)(24)(14).
 - No. But the different decompositions of a permutation have a common property.

Composing a Permutation with a Transposition

- Problem.
 - α a permutation of S_n that consists of c cycles in its cycle notation.
 - τ a transposition of S_n .
 - What can we say about the number of cycles in $\tau \alpha$? And of $\alpha \tau$?

Solution: Case 1

- Write $\tau = (a \ b)$.
- First, assume that α , b are in the same cycle of α .
 - Write the cycle as $(a x_1 x_2 \dots x_r b y_1 y_2 \dots y_s).$
 - \circ Then $\tau \alpha$ contains the cycles $(a \ x_1 \ x_2 \ ... \ x_r)$ and $(b \ y_1 \ y_2 \ ... \ y_s)$ (and similarly for $\alpha \tau$).

Solution: Case 1

- Write $\tau = (a \ b)$.
- First, assume that a, b are in the same cycle of α .
 - Write the cycle as $(a x_1 x_2 \dots x_r b y_1 y_2 \dots y_s).$
 - Then $\tau \alpha$ contains the cycles $(a x_1 x_2 \dots x_r)$ and $(b y_1 y_2 \dots y_s)$ (and similarly for $\alpha \tau$).

Solution: Case 2

- Write $\tau = (a \ b)$.
- Assume that a and b are in different cycles of α.
 - \circ Write the cycles as $(a \ x_1 \ x_2 \ \dots \ x_r)$ and $(b \ y_1 \ y_2 \ \dots y_s)$.
 - $^{\circ}$ Then aulpha contains the cycle

$$(a x_1 x_2 \dots x_r b y_1 y_2 \dots y_s).$$

Solution

- α a permutation of S_n that consists of c cycles in its cycle notation.
- τ a transposition of S_n .
- The number of cycles in $\tau \alpha$ (or $\alpha \tau$) is either c+1 or c-1.

Parity of a Permutation

- **Theorem.** Consider a permutation $\alpha \in S_n$. Then
 - Either every decomposition of α into transpos. consists of an **even** number of elements,
 - or every such decomposition consists of an odd number of elements.
- (1 2 3)(4 5 6):
 - · (13)(12)(46)(45).
 - · (14)(16)(15)(34)(24)(14).

Proof

- c the number of cycles in α .
- (WLOG) Assume that n is even.
- Consider a decomposition $\alpha = \tau_1 \tau_2 \cdots \tau_k$.
 - The number of cycles in the cycle structure of τ_k is n-1.
 - \circ The number of cycles in $au_{k-1} au_k$ is even.
 - The number of cycles in $\tau_{k-2}\tau_{k-1}\tau_k$ is odd.
 - 0
 - The number of cycles in $\tau_1 \tau_2 \cdots \tau_k$ is c.
- Thus, k has the same parity as c.

Even and Odd Permutations

 We say that a permutation is even or odd according to the parity of the number of transpositions in its decompositions.

Finding the Parity

What is the parity of

- Cycle notation: (1 2 3 4 5 6 7 8 9).
- We saw that a cycle of length k can be expressed as composition of k-1 transpositions.
 - 8 transpositions = even.

Parity of Inverse

- **Problem.** Prove that any permutation $\alpha \in S_n$ has the same parity as its inverse α^{-1} .
- Proof.
 - Decompose α into transpositions $\tau_1 \tau_2 \cdots \tau_k$.
 - We have $\alpha^{-1} = \tau_k \cdots \tau_2 \tau_1$, since the product of these two permutation is obviously id.

The 15 Puzzle

 Problem. Start with the configuration on the left and move the tiles to obtain the configuration on the right.

Solution (Finally!)

 1
 2
 3
 4

 5
 6
 7
 8

 9
 10
 11
 12

 13
 15
 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Even permutation

12345678910111213151416 *Odd permutation*

- The number of moves is even since
 - For every time that we move the empty tile left/up, we must move it back right/down.

Solution (Finally!)

Even permutation

Odd permutation

- The number of moves/ transpositions is even.
- To move from an even transposition to an odd one, there must be an odd number of transpositions.

Even and Odd Permutations of S_5

Туре	Example	Number	
[1 ⁵]	id	1	Even
$[1^32]$	(12)(3)(4)(5)	10	Odd
$[1^23]$	(123)(4)(5)	20	Even
$[12^2]$	(12)(34)(5)	15	Even
[14]	(1234)(5)	30	Odd
[23]	(123)(45)	20	Odd
[5]	(1 2 3 4 5)	24	Even

Even: 60 Odd: 60

Even and Odd Permutations of S_n

• Theorem. For any integer $n \ge 2$, half of the permutations of S_n are even and half are odd.

Proof

- τ an arbitrary transposition of S_n .
- If $\alpha \in S_n$ is even, then $\tau \alpha$ is odd.
- If $\alpha \in S_n$ is odd, then $\tau \alpha$ is even.
- For any $\alpha \in S_n$, we have $\tau \tau \alpha = \alpha$.
- τ defines a *bijection* between the set of even permutations of S_n and the set of odd permutations of S_n .
 - Thus, the two sets are of the same size.

Example: The Bijection in S_3

• Let $\tau = (1 \ 2) \in S_3$.

Even Odd

$$(1)(2)(3) \leftrightarrow (12)(3)$$

 $(123) \longleftrightarrow (1)(23)$
 $(321) \longleftrightarrow (13)(2)$

$$(12)(13) = (123)$$

The End: The First Math Theorem Proved in a TV Script?

- The 10th episode of 6th season of the TV show *Futurama* is about people switching bodies.
- This is a permutation of people, and a property of the permutations is used as a *plot twist*!
- You can also see a complete mathematical proof for a second.

