Devoir surveillé n°1

samedi 14 septembre 2018 Durée : 2 heures

♦ Le candidat peut admettre le résultat d'une question et l'utiliser dans la suite à condition de l'écrire clairement sur sa copie.

♦ Si le candidat repère ce qu'il croit être une erreur d'énoncé, il l'indique sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Exercice 1

Étant donné P,Q et R trois propositions. À l'aide d'un tableau de vérité, montrer que

$$P \text{ ou } (Q \text{ et } R) \Leftrightarrow (P \text{ ou } Q) \text{ et } (P \text{ ou } R).$$

Exercice 2

Le plan complexe est rapporté à un repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$. À tout point M d'affixe z on associe le point M' d'affixe

$$z' = -z^2 + 2z.$$

1. Résoudre dans $\mathbb C$ l'équation

$$-z^2 + 2z - 2 = 0$$
.

- 2. Déterminer tous les points M d'affixe $z \in \mathbb{C}$ tels que son image M' est le point d'affixe 2.
- 3. Soit M un point d'affixe z. Soit M' l'image de M d'affixe $z' = -z^2 + 2z$. On note N le point d'affixe $z_N = z^2$. Montrer que M est le milieu de [NM'].
- 4. Dans cette question, on suppose que M est situé sur le cercle de centre O et de rayon 1. On note θ un argument de z.
 - (a) Déterminer le module de z et écrire z_N sous forme exponentielle.
 - (b) Soit A le point d'affixe 1. Quelle est la nature du triangle AMM'.

Problème 1

Pour tout entier naturel $n \geq 2$, on considère l'équation

$$z^n + z + 1 = 0. (E_n)$$

- 1. Dans cette question n=2.
 - (a) Déterminer les solutions de l'équation (E_2) dans \mathbb{C} .
 - (b) Écrire sous forme exponentielle les solutions de l'équation (E_2) .
- 2. Dans cette question n=3
 - (a) On note $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par l'expression $f(t) = t^3 + t + 1$, pour tout nombre réel $t \in \mathbb{R}$. Étudier les variations de la fonction f.
 - (b) Montrer que : (E_3) admet une unique solution réelle noté r et que $r \in]-1, -\frac{1}{2}[$. Soit $P(X) = X^3 + X + 1$ un polynome. On peut montrer qu'il existe deux nombres complexes notés z_1 et z_2 tels que

$$P(X) = (X - r)(X - z_1)(X - z_2).$$

- (c) Montrer que : $z_1 + z_2 = -r$ et que $z_1 z_2 = \frac{-1}{r}$.
- (d) Montrer que : $\frac{1}{2} < |z_1 + z_2| < 1$.
- (e) Donner un encadrement de $|z_1z_2|$.
- (f) Montrer que : $|z_1| \geq 2 \Rightarrow |z_1| < 1 + |z_2|$. En déduire que $|z_1| < 2$.
- (g) Montrer que toute solution de (E_3) est de module strictement inférieur à 2.
- 3. Localisation des solutions en général.
 - (a) Soit $n \ge 2$ un entier naturel. Étudier les variations de

$$\varphi_n: \left\{ \begin{array}{ccc} [2,+\infty[& \to & \mathbb{R} \\ t & \mapsto & t^n-t-1 \end{array} \right. .$$

(b) Montrer que:

$$\forall z \in \mathbb{C}, \ \forall n \ge 2, \ (z^n + z + 1 = 0) \Rightarrow (|z| < 2).$$

(c) Que penser de l'implication réciproque?

FIN.