Notas de Álgebra Linear

Carla Mendes

2022/2023

2. Sistemas de Equações Lineares

2.1 Conceitos básicos

São frequentes os problemas cuja resolução envolve sistemas de equações lineares. Embora alguns destes sistemas sejam simples de resolver, outros há que, devido às suas dimensões e complexidade, requerem métodos sistemáticos para a sua resolução. Neste capítulo iremos estudar um desses métodos.

Tal como no capítulo anterior, representamos por \mathbb{K} o conjunto \mathbb{R} ou o conjunto \mathbb{C} .

Definição 2.1.1. Sejam $n \in \mathbb{N}$. Uma **equação linear** nas incógnitas x_1, x_2, \ldots, x_n , sobre \mathbb{K} , é uma equação do tipo

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b,$$

 $com \ a_1, a_2, \ldots, a_n, b \in \mathbb{K}.$

Os elementos a_i ($i \in \{1, 2, ..., n\}$) designam-se por **coeficientes** da equação e o elemento b designa-se por **termo independente** da equação.

Definição 2.1.2. Sejam $n, m \in \mathbb{N}$. Dá-se o nome de **sistema de m equações** lineares em n incógnitas $x_1, x_2, ..., x_n$, sobre \mathbb{K} , a uma coleção de equações lineares

(S)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases},$$

onde $a_{ij}, b_i \in \mathbb{K}$, para todo $i \in \{1, 2, ..., m\}$ $e j \in \{1, 2, ..., n\}$.

O sistema (S) diz-se **homogéneo** se $b_1 = b_2 = \ldots = b_m = 0$, i.e., se os termos independentes de (S) são todos nulos.

Chama-se **solução de** (S) a qualquer n-uplo $(\alpha_1, \alpha_2, ..., \alpha_n)$ de \mathbb{K}^n tal que, para todo $i \in \{1, ..., m\}$, $a_{i1}\alpha_1 + a_{i2}\alpha_2 + ... + a_{in}\alpha_n = b_i$.

Representa-se por $Sol_{(S)}$ o conjunto de soluções de (S), i.e.,

$$Sol_{(S)} = \{(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{K}^n : a_{i1}\alpha_1 + a_{i2}\alpha_2 + ... + a_{in}\alpha_n = b_i, \forall i \in \{1, ..., m\}\}.$$

Definição 2.1.3. Se (S) e (S') são sistemas de equações lineares sobre \mathbb{K} com o mesmo conjunto de soluções, diz-se que (S) e (S') são **equivalentes**.

Definição 2.1.4. Um sistema (S) de m equações lineares em n incógnitas e de coeficientes em \mathbb{K} diz-se:

- impossível se não tem solução i.e., se $Sol_{(S)} = \emptyset$;
- **possível** se tem, pelo menos, uma solução, i.e., se $Sol_{(S)} \neq \emptyset$;
- possível determinado se o sistema tem uma única solução;
- possível indeterminado caso o sistema tenha mais do que uma solução.

Observação: Um sistema (S) de m equações lineares em n incógnitas que seja homogéneo é sempre possível, uma vez que $(0,0,...,0) \in \mathbb{K}^n$ é solução de (S); a esta solução dá-se a designação de **solução trivial**.

Dado um sistema (S) de equações lineares entende-se por:

- $discutir \ o \ sistema$, verificar se (S) é possível e, neste caso, se é determinado ou indeterminado;
- resolver o sistema, determinar o conjunto de soluções do sistema.

Exemplo 2.1.5. A equação

$$x_1 + x_2 - 8x_3 = 0$$

é equivalente a

$$x_1 = -x_2 + 8x_3.$$

Uma vez que x_2 e x_3 são arbitrários, este sistema é possível e indeterminado. Para obtermos uma solução diferente da trivial podemos considerar, por exemplo, $x_2 = 1$ e $x_3 = 1$, donde resulta $x_1 = 7$.

Exemplo 2.1.6. Consideremos o seguinte sistema de 3 equações lineares em 3 incógnitas:

$$\begin{cases}
-x - 5y - 2z = 2 & (i) \\
2x - 2y + z = 0 & (ii) \\
3x + 3y + 3z = -1 & (iii).
\end{cases}$$

Se adicionarmos (i) e (iii), obtemos obtemos a equação

$$2x - 2y + z = 1,$$

o que não é consistente com a equação (ii), pelo que o sistema não admite nenhuma solução, i.e., é um sistema impossível.

Exemplo 2.1.7. Dado o sistema de 3 equações lineares em 3 incógnitas

$$\begin{cases} 0x_1 + 1x_2 - 8x_3 = -17 & (i) \\ 1x_1 + 0x_2 + 1x_3 = 10 & (ii) \\ 1x_1 - 1x_2 + 0x_3 = 0 & (iii) \end{cases}$$

vamos determinar o seu conjunto de soluções.

Se trocarmos a equação (i) com a equação (ii), obtemos

$$\begin{cases} 1x_1 + 0x_2 + 1x_3 = 10 & (i) \\ 0x_1 + 1x_2 - 8x_3 = -17 & (ii) \\ 1x_1 - 1x_2 + 0x_3 = 0 & (iii) \end{cases}$$

Agora, se substituirmos a equação (iii) por (iii)-(i) ficamos com

$$\begin{cases} 1x_1 + 0x_2 + 1x_3 = 10 & (i) \\ 0x_1 + 1x_2 - 8x_3 = -17 & (ii) \\ 0x_1 - 1x_2 - 1x_3 = -10 & (iii) \end{cases}$$

Substituindo a equação (iii) por (iii)+(ii) tem-se

$$\begin{cases} 1x_1 + 0x_2 + 1x_3 = 10 & (i) \\ 0x_1 + 1x_2 - 8x_3 = -17 & (ii) \\ 0x_1 + 0x_2 - 9x_3 = -27 & (iii) \end{cases}$$

Finalmente, se multiplicarmos a equação (iii) por -1/9, obtém-se

$$\begin{cases} 1x_1 + 0x_2 + 1x_3 = 10 & (i) \\ 0x_1 + 1x_2 - 8x_3 = -17 & (ii) \\ 0x_1 + 0x_2 + 1x_3 = 3 & (iii) \end{cases}$$

O último sistema é de resolução mais simples do que o sistema inicial: substituindo x_3 por 3 em (ii) obtém-se $x_2 = 7$ e da equação (i), por substituição de x_3 e x_2 , resulta que $x_1 = 7$. Assim, uma vez que o sistema admite solução e que esta é única, concluímos que o sistema é possível e determinado.

Em cada um dos exemplos anteriores, o sistema inicial foi sucessivamente transformado noutros sistemas efectuando apenas as seguintes operações sobre equações:

- 1) troca da equação i com a equação j;
- 2) multiplicação da equação i por $\alpha \in \mathbb{K} \setminus \{0\}$;
- 3) substituição da equação i pela sua soma com a equação j multiplicada por $\beta \in \mathbb{K}$, com $i \neq j$.

A estas operações damos a designação de *operações elementares sobre equações*. É simples de verificar que se (S') for um sistema obtido a partir de um sistema (S) efectuando uma operação elementar sobre as equações de (S), então os dois sistemas são equivalentes.

Um sistema (S) de equações lineares e de coeficientes em \mathbb{K}

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

pode ser representado pela equação matricial

$$Ax = b$$

onde

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \vdots & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

As matrizes A, x e b designam-se, respetivamente, por **matriz simples de** (S), **matriz incógnita de** (S) e **matriz dos termos independentes de** (S). Tendo em conta que as incógnitas têm um papel secundário na resolução de um sistema e que as operações elementares sobre as equações envolvem apenas os coeficientes e os termos independentes, o sistema (S) pode ainda ser representado, de uma forma mais abreviada, pela matriz

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

à qual se dá a designação de matriz ampliada de (S) e que se representa por $[A \mid b]$. O sistema (S) fica completamente representado por esta matriz, uma vez que cada linha da matriz representa uma equação de (S).

Exemplo 2.1.8. Se consideramos o sistema (S) apresentado no exemplo 2.1.7, a matriz simples, a matriz incógnita e a matriz dos termos independentes deste sistema são, respetivamente,

$$A = \begin{bmatrix} 0 & 1 & -8 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad e \qquad b = \begin{bmatrix} -17 \\ 10 \\ 0 \end{bmatrix}.$$

A matriz ampliada associada ao sistema é a matriz

$$A = \left[\begin{array}{ccc|c} 0 & 1 & -8 & -17 \\ 1 & 0 & 1 & 10 \\ 1 & -1 & 0 & 0 \end{array} \right].$$

Dado um sistema (S) de m equações lineares em n incógnitas e de coeficientes em \mathbb{K} , o seu conjunto de soluções pode ser determinado através da resolução da equação matricial Ax = b que lhe está associada. De facto, $(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{K}^n$ é solução de (S) se e só se

$$A \left[\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{array} \right] = b.$$

Nos exemplos 2.1.5, 2.1.6 e 2.1.7, os sistemas foram resolvidos recorrendo apenas a operações elementares sobre equações. Efectuar uma destas operações sobre as equações de um sistema (S) corresponde, em termos matriciais, a efectuar operações análogas sobre as linhas da matriz ampliada $[A \mid b]$ associada ao sistema. Mais precisamente:

• trocar a equação i com a equação j no sistema (S) corresponde a trocar a linha i com a linha j da matriz $[A \mid b]$;

- multiplicar a equação i do sistema (S) por $\alpha \in \mathbb{K} \setminus \{0\}$ corresponde a multiplicar a linha i da matriz $[A \mid b]$ por α ;
- substituir a equação i do sistema (S) pela sua soma com a equação j multiplicada por $\beta \in \mathbb{K}$ corresponde a substituir a linha i da matriz $[A \mid b]$ pela sua soma com a linha j multiplicada por $\beta \in \mathbb{K}$, com $i \neq j$.

Definição 2.1.9. Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m,n}(\mathbb{K})$. Definem-se como operações elementares sobre linhas da matriz A as seguintes operações:

- 1) troca da linha i com a linha j;
- 2) multiplicação da linha i por $\alpha \in \mathbb{K} \setminus \{0\}$;
- 3) substituição da linha i pela sua soma com a linha j multiplicada por $\beta \in \mathbb{K}$, com $i \neq j$,

Analogamente, define-se **operação elementar sobre as colunas** de uma matriz, bastando substituir "linha" por "coluna" na definição anterior.

Ao longo do texto adotaremos as seguintes notações para as operações elementares sobre linhas:

- $A \xrightarrow[l_i \leftrightarrow l_j]{} B$: para indicar que a matriz B é obtida da matriz A efetuando a troca das suas linhas $i \in j$;
- $A \underset{l_i \to \alpha l_i}{\longrightarrow} B$: para indicar que a matriz B é obtida de A multiplicando a linha i da matriz A por $\alpha \in \mathbb{K} \setminus \{0\}$;
- $A \xrightarrow[l_i \to l_i + \beta l_j]{} B$: para indicar que a matriz B é obtida de A substituindo a linha i da matriz A pela sua soma com a linha j multiplicada por $\beta \in \mathbb{K}$.

Para representar as operações elementares por colunas adota-se notação semelhante à anterior, mas escreve-se c_i para indicar a coluna i.

Teorema 2.1.10. Sejam $m, n \in \mathbb{N}$ e $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Se a matriz $B \in \mathcal{M}_{m \times n}(\mathbb{K})$ pode ser obtida da matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ efetuando uma operação elementar sobre linhas (respetivamente, colunas), então a matriz A também pode ser obtida de B efetuando uma operação elementar sobre linhas (respetivamente, colunas).

Demonstração. No caso das operações elementares por linhas, basta ter em conta que:

• se
$$A \longrightarrow_{l_i \leftrightarrow l_j} B$$
, então $B \longrightarrow_{l_j \leftrightarrow l_i} A$;

- se $A \underset{l_i \to \alpha l_i}{\longrightarrow} B$, com $\alpha \neq 0$, então $B \underset{l_i \to \frac{1}{\alpha} l_i}{\longrightarrow} A$;
- se $A \xrightarrow[l_i \to l_i + \beta l_j]{} B$, então $B \xrightarrow[l_i \to l_i \beta l_j]{} A$.

De forma análoga, justifica-se o resultado para o caso das operações elementares por colunas. \Box

Definição 2.1.11. Sejam $m, n \in \mathbb{N}$ e $A, B \in \mathcal{M}_{m,n}(\mathbb{K})$. Diz-se que A é equivalente por linhas (respetivamente, por colunas) a B se B pode ser obtida a partir de A efetuando um número finito de operações elementares sobre as linhas (respetivamente, colunas) de A.

Com base no Teorema 2.1.10 é fácil concluir que se $A \in \mathcal{M}(\mathbb{K})$ é equivalente por linhas (respetivamente, colunas) a $B \in \mathcal{M}(\mathbb{K})$, então B é equivalente por linhas (respetivamente, colunas) a A e, por isso, podemos dizer apenas que A e B são equivalentes.

O resultado seguinte mostra-nos que podemos efetuar uma operação elementar sobre as linhas de uma matriz premultiplicando A (ou seja, multiplicando A à esquerda) por uma matriz adequada.

Teorema 2.1.12. Sejam $n, m \in \mathbb{N}, \alpha, \beta \in \mathbb{K} \ e \ A \in \mathcal{M}_{m,n}(\mathbb{K})$. Então:

- 1) Se E é a matriz quadrada de ordem m obtida da matriz identidade I_m trocando as suas linhas i e j, então a matriz EA é obtida da matriz A trocando as suas linhas i e j.
- 2) Se E é a matriz de ordem m obtida da matriz identidade I_m multiplicando a linha i por $\alpha \in \mathbb{K} \setminus \{0\}$, então EA é a matriz obtida de A multiplicando a linha i por α .
- 3) Se E é a matriz quadrada de ordem m obtida da matriz identidade I_m substituindo a linha na posição i pela sua soma com β vezes a linha na posição j, então EA é a matriz obtida da matriz A substituindo a linha na posição i pela sua soma com β vezes a linha na posição j, $i \neq j$.

Demonstração. Exercício.

Analogamente ao que acontece com as operações elementares sobre linhas, uma operação elementar sobre as colunas de uma matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ pode ser obtida posmultiplicando A (ou seja, multiplicando A à direita) por uma matriz obtida da matriz I_n efetuando nas suas colunas a mesma operação elementar que se pretende efetuar na matriz A.

Definição 2.1.13. Seja $n \in \mathbb{N}$. Chamamos matriz elementar sobre linhas (respetivamente, colunas) de $\mathcal{M}_n(\mathbb{K})$ a toda a matriz que pode ser obtida da matriz identidade I_n por aplicação de uma operação elementar sobre as suas linhas (respetivamente, colunas).

Teorema 2.1.14. Toda a matriz elementar sobre linhas (respetivamente, colunas) é também uma matriz elementar sobre colunas (respetivamente, linhas).

Demonstração. Facilmente se prova o resultado enunciado. De facto, tem-se:

- $I_n \xrightarrow[l_i \leftrightarrow l_j]{} E$ se e só se $I_n \xrightarrow[c_i \leftrightarrow c_j]{} E$;
- $I_n \xrightarrow[l_i \to \alpha l_i]{} E$ se e só se $I_n \xrightarrow[c_i \to \alpha c_i]{} E$;
- $I_n \xrightarrow[l_i \to l_i + \beta l_j]{E}$ se e só se $I_n \xrightarrow[c_i \to c_i + \beta c_j]{E}$;

A respeito de matrizes elementares é também conveniente observar que toda a matriz elementar sobre linhas (respetivamente, colunas) é uma matriz invertível.

Teorema 2.1.15. Seja $n \in \mathbb{N}$. Toda a matriz elementar $E \in \mathcal{M}_n(\mathbb{K})$ é invertível e, para quaisquer $i, j \in \{1, ..., n\}$, tem-se:

1) Se
$$i \neq j$$
 e $I_n \xrightarrow[l_i \leftrightarrow l_j]{} E$, então $I_n \xrightarrow[l_i \leftrightarrow l_j]{} E^{-1}$;

2) Se
$$\alpha \in \mathbb{K} \setminus \{0\}$$
 e $I_n \xrightarrow[l_i \to \alpha l_i]{} E$, então $I_n \xrightarrow[l_i \to \frac{1}{\alpha} l_i]{} E^{-1}$;

3) Se
$$i \neq j$$
, $\beta \in \mathbb{K}$ e $I_n \xrightarrow[l_i \to l_i + \beta l_j]{} E$, então $I_n \xrightarrow[l_i \to l_i + (-\beta) l_j]{} E^{-1}$

Demonstração. Exercício.

Regressando aos sistemas de equações lineares, e tendo em atenção as observações feitas anteriormente, é fácil verificar que, da mesma forma que as operações elementares sobre as equações de um sistema não alteram o seu conjunto de soluções, as operações elementares sobre as linhas da sua matriz ampliada também não alteram a solução da equação matricial associada ao sistema.

Teorema 2.1.16. Sejam $m, n \in \mathbb{N}$ e Ax = b a equação matricial de um sistema de m equações lineares em n incógnitas, sobre \mathbb{K} . Se a matriz $[A' \mid b']$ é obtida de $[A \mid b]$ efectuando uma operação elementar sobre as linhas, então A'x = b' e Ax = b têm o mesmo conjunto de soluções.

Demonstração. Cada operação elementar sobre as linhas da matriz ampliada $[A \mid b]$ corresponde a multiplicar (à esquerda) ambos os membros da equação Ax = b por uma matriz elementar Q. Assim, tendo em conta que A' = QA, b' = Qb e que as matrizes elementares são invertíveis, o resultado é imediato. De facto, dado $c \in \mathcal{M}_{n \times 1}(\mathbb{K})$,

$$Ac = b \Rightarrow QAc = Qb \Rightarrow A'c = b'$$

е

$$A'c = b' \Rightarrow QAc = Qb \Rightarrow Q^{-1}QAc = Q^{-1}Qb \Rightarrow Ac = b.$$

Observação: Como já observámos anteriormente, toda a matriz que é equivalente por linhas a uma matriz A também é equivalente por colunas à matriz A. Porém, o resultado anterior não é válido para todas as operações elementares por colunas. Com efeito, quando se aplicam operações elementares sobre matrizes tendo por objetivo a resolução de sistemas, a única operação sobre colunas que pode ser aplicada é a troca de colunas, sendo que neste caso tem de se proceder a uma troca de incógnitas no sistema final que seja coerente com a troca de colunas efetuada. Por este motivo, na resolução de sistemas optaremos por recorrer apenas a operações elementares sobre linhas.

2.2 Discussão e resolução de sistemas

Nesta secção descrevemos um método que permite sistematizar o processo de resolução e discussão de sistemas: o método de eliminação de Gauss. Com este método o sistema inicial é transformado num outro sistema que lhe é equivalente mas de mais fácil resolução.

No exemplo 2.1.7 o sistema

$$\begin{cases} 0x_1 + 1x_2 - 8x_3 = -17 \\ 1x_1 + 0x_2 + 1x_3 = 10 \\ 1x_1 - 1x_2 + 0x_3 = 0 \end{cases}$$

foi sucessivamente transformado, efectuando operações elementares sobre equações, até obtermos o sistema

$$\begin{cases} 1x_1 + 0x_2 + 1x_3 = 10 \\ 0x_1 + 1x_2 - 8x_3 = -17 \\ 0x_1 + 0x_2 + 1x_3 = 3 \end{cases}$$

o qual é de resolução bastante mais simples. Considerando a representação do sistema em termos de matrizes, esta transformação corresponde a efectuar sucessivas operações elementares sobre as linhas da matriz ampliada do sistema

$$\left[\begin{array}{ccc|c}
0 & 1 & -8 & -17 \\
1 & 0 & 1 & 10 \\
1 & -1 & 0 & 0
\end{array} \right]$$

até obtermos a matriz

$$\left[\begin{array}{cc|cc|c} 1 & 0 & 1 & 10 \\ 0 & 1 & -8 & -17 \\ 0 & 0 & 1 & 3 \end{array}\right].$$

Esta última matriz tem a particularidade de ter um formato que satisfaz as condições da definição seguinte.

Definição 2.2.1. Sejam $m, n \in \mathbb{N}$. Uma matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ diz-se uma matriz em escada se satisfaz as seguintes condições

- se o primeiro elemento não nulo numa linha está na coluna j, então a linha seguinte começa com pelo menos j elementos nulos;
- se houver linhas totalmente constituídas por zeros, elas aparecem depois das outras.

Exemplo 2.2.2.

- 1. As matrizes $\mathbf{0}_{m \times n}$ e I_n são matrizes em forma de escada.
- 2. A matriz

$$\left[\begin{array}{cccccc}
1 & 0 & 0 & 2 & 1 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

está em forma de escada.

3. A matriz

$$\left[\begin{array}{cccccc}
1 & 0 & 1 & 2 & 1 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right],$$

embora muito parecida com a matriz anterior, não está em forma de escada (o primeiro elemento não nulo na linha 3 está na coluna 4 e a linha 4 não começa com 4 elementos nulos).

4. A matriz

$$\left[\begin{array}{cccccc}
0 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

não está em forma de escada (o primeiro elemento não nulo na linha 1 está na coluna 3 e a linha 2 não começa com 3 elementos nulos).

O processo que foi adoptado na resolução do sistema do exemplo 2.1.7, e que permitiu reduzir a matriz ampliada do sistema a uma matriz em escada, é um exemplo de aplicação do método usado na demonstração do resultado seguinte.

Teorema 2.2.3. Sejam $m, n \in \mathbb{N}$. Toda a matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é equivalente por linhas a uma matriz em escada.

Demonstração. Sejam $m, n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$. Então a matriz A pode ser reduzida a uma matriz em escada, efectuando operações elementares sobre as suas linhas, de acordo com o seguinte processo.

Para k de 1 até m:

- i) Procurar a primeira coluna com elementos não nulos na linha k ou abaixo desta.
- ii) Se não existir a coluna indicada em i), dá-se o processo por terminado.
- iii) Caso exista a coluna referida em i) e se j_k é essa coluna, $j_k \in \{1, ..., n\}$, assegura-se que o elemento na linha k desta coluna é não nulo, trocando, se necessário, a linha k com alguma linha que esteja abaixo; representemos por $a_{kj_k}^{(k)}$ esse elemento.
- iv) Para cada $i \in \{k+1,...,m\}$, adiciona-se à linha i a linha k multiplicada por $-\frac{a_{ijk}^{(k)}}{a_{kj_k}^{(k)}}$, onde $a_{ij_k}^{(k)}$ representa o elemento na linha i e coluna j_k da matriz que foi obtida após a aplicação dos passos anteriores.

Terminado o processo a matriz que se obtém é uma matriz em escada.

Ao processo descrito na demonstração anterior, que permite transformar uma matriz numa matriz em escada, dá-se a designação de $m\'etodo\ de\ eliminação\ de\ Gauss$. Os elementos $a_{1j_1}^{(1)}, a_{2j_2}^{(2)}, \dots$ designam-se por $pivots\ da\ eliminação$.

Exemplo 2.2.4. Consideremos a matriz

$$A = \left[\begin{array}{rrrr} 0 & 1 & 2 & 2 \\ 1 & 1 & 0 & 0 \\ 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{array} \right].$$

Aplicando o método de eliminação de Gauss a esta matriz, temos

$$\begin{bmatrix}
0 & 1 & 2 & 2 \\
1 & 1 & 0 & 0 \\
3 & 1 & 1 & 1 \\
1 & 3 & 1 & 1
\end{bmatrix}
\xrightarrow{l_1 \leftrightarrow l_4}
\begin{bmatrix}
1 & 3 & 1 & 1 \\
1 & 1 & 0 & 0 \\
3 & 1 & 1 & 1 \\
0 & 1 & 2 & 2
\end{bmatrix}
\xrightarrow{}$$

$$\frac{l_2 \to l_2 - l_1}{l_3 \to l_3 - 3l_1}
\begin{bmatrix}
1 & 3 & 1 & 1 \\
0 & -2 & -1 & -1 \\
0 & -8 & -2 & -2 \\
0 & 1 & 2 & 2
\end{bmatrix}
\xrightarrow{}
\frac{l_3 \to l_3 - 4l_2}{l_4 \to l_4 + \frac{1}{2}l_2}
\begin{bmatrix}
1 & 3 & 1 & 1 \\
0 & -2 & -1 & -1 \\
0 & 0 & 2 & 2 \\
0 & 0 & \frac{3}{2} & \frac{3}{2}
\end{bmatrix}
\xrightarrow{}$$

$$\frac{l_4 \to l_4 - \frac{3}{4}l_3}{l_4 \to l_4 - \frac{3}{4}l_3}
\begin{bmatrix}
1 & 3 & 1 & 1 \\
0 & -2 & -1 & -1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0
\end{bmatrix}.$$

A última matriz obtida é uma matriz em forma de escada e equivalente por linhas à matriz A.

Observação: Toda a transformação que pode ser feita numa matriz por meio de operações elementares sobre linhas também pode ser realizada por meio de operações elementares sobre colunas. Por conseguinte, toda a matriz pode ser transformada numa matriz em escada por meio de operações elementares sobre colunas. Porém, tal como já observámos anteriormente, a única operação sobre colunas que pode ser aplicada na resolução de sistemas é a troca de colunas (não esquecendo de efetuar no sistema final a troca de incógnitas coerente com a troca de colunas que foi efetuada).

O método de eliminação de Gauss, quando aplicado a uma matriz A, permite obter uma matriz em escada equivalente por linhas à matriz inicial. Porém, a matriz em escada que é obtida no final do processo pode não ser sempre a mesma, uma vez que que há alguma flexibilidade na escolha das transformações elementares a efetuar sobre a matriz A (nomeadamente, na escolha das linhas que se trocam para colocar um elemento na posição de pivot). No entanto, embora não seja possível garantir a unicidade da matriz em escada que é obtida por aplicação do método de eliminação de Gauss, prova-se que o número de pivots usados no método de eliminação de Gauss, que é igual ao número de linhas não nulas da matriz em escada obtida de

A, é univocamente determinado pelas entradas da matriz A. Com efeito, quaisquer matrizes em escada equivalentes por linhas a uma matriz A têm o mesmo número de linhas não nulas, pelo que faz sentido considerar a definição seguinte.

Definição 2.2.5. Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m,n}(\mathbb{K})$. Designa-se por característica da matriz A, e representa-se por car(A), o número de linhas não nulas de qualquer matriz em forma de escada que seja equivalente por linhas a A.

Exemplo 2.2.6. Como vimos no exemplo anterior, a matriz

$$A = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 1 & 1 & 0 & 0 \\ 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{bmatrix}$$

é equivalente por linhas à seguinte matriz em forma de escada

$$U = \left[\begin{array}{cccc} 1 & 3 & 1 & 1 \\ 0 & -2 & -1 & -1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Então, como U tem 3 linhas não nulas, temos car(A) = 3.

O método de eliminação de Gauss pode ser utilizado na resolução de sistemas de equações lineares. Um passo elementar deste método, quando aplicado à matriz ampliada [A|b] de um sistema Ax = b, consiste em adicionar a uma certa equação um múltiplo de outra, de forma a que na equação obtida seja nulo o coeficiente de certa incógnita. Diz-se que se eliminou essa incógnita da equação. Os passos elementares são conduzidos de maneira a eliminar a incógnita x_1 de todas as equações a partir da $2^{\underline{a}}$ equação, depois eliminar a incógnita x_2 de todas as equações a partir da 3^a equação, etc. Quando termina o método de eliminação de Gauss, obtemos uma matriz em escada [U|c]. O sistema correspondente a esta matriz, Ux = c, é de resolução mais simples e há a garantia de ser equivalente ao sistema Ax = b, uma vez que [U|c] é obtida de [A|b] efectuando apenas operações elementares sobre linhas. Quando se obtém o sistema correspondente à matriz [U|c], é fácil verificar se o sistema é possível ou impossível: se $U = \mathbf{0}_{m \times n}$ e $c \neq 0$, podemos concluir de imediato que o sistema é impossível. Se o sistema for possível, resolve-se de baixo para cima, escrevendo, se necessário, as incógnitas básicas (as que estão a multiplicar pelos pivots) em função das *livres* (as restantes variáveis).

Exemplo 2.2.7. Consideremos o seguinte sistema de 4 equações lineares em 4 incógnitas:

$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 = 2 \\ 2x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 + 2x_3 + x_4 = 2 \end{cases}.$$

Aplicando o método de eliminação de Gauss à matriz ampliada do sistema, temos

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 2 \\ 2 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2 \end{bmatrix} \xrightarrow{l_2 \to l_2 - l_1} \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 & 1 \\ 0 & -3 & -1 & -1 & -1 \\ 0 & 1 & 2 & 1 & 2 \end{bmatrix} \xrightarrow{l_3 \to l_3 - 3l_2} \xrightarrow{l_4 \to l_4 + l_2}$$

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 & 1 \\ 0 & 0 & 2 & 2 & -4 \\ 0 & 0 & 1 & 0 & 3 \end{bmatrix} \xrightarrow{l_4 \to l_4 - \frac{1}{2}l_3} \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 & 1 \\ 0 & 0 & 2 & 2 & -4 \\ 0 & 0 & 0 & -1 & 5 \end{bmatrix}.$$

Desta forma obtém-se o sistema

$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 = 1 \\ -x_2 - x_3 - x_4 = 1 \\ 2x_3 + 2x_4 = -4 \\ - x_4 = 5 \end{cases}$$

equivalente ao inicial, mas de mais fácil resolução. Da última equação obtém-se $x_4 = -5$, substituindo x_4 na 3^a equação temos $x_3 = 3$, donde $x_2 = 1$ e $x_1 = 1$.

Como vimos no exemplo anterior, quando se aplica o método de eliminação de Gauss na resolução de um sistema de equações lineares, a matriz ampliada do sistema é transformada, por meio de operações elementares sobre linhas, numa matriz em forma de escada. Mas, como iremos ver, o processo descrito no método de eliminação de Gauss pode ser complementado com outras operações elementares de forma a que a matriz ampliada do sistema seja transformada até se obter uma matriz em forma de escada reduzida, sendo que o sistema associado a esta matriz terá uma resolução mais simplificada.

Definição 2.2.8. Sejam $m, n \in \mathbb{K}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Diz-se que A é uma matriz em escada reduzida ou que está em forma de escada reduzida se satisfaz as seguintes condições:

- A é uma matriz em escada;

- se uma linha tem elementos não nulos, então o primeiro elemento não nulo da linha é igual a 1;
- se o primeiro elemento não nulo de uma linha i está na coluna j, então todos os elementos da coluna j, com excepção do elemento que está na linha i, são iguais a zero.

Exemplo 2.2.9.

- 1. As matrizes $0_{m \times n}$ e I_n são matrizes em forma de escada reduzida.
- 2. A matriz

$$\left[\begin{array}{cccccc}
1 & 0 & 0 & 2 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

está em forma de escada reduzida.

3. A matriz

$$\left[\begin{array}{cccccc}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],$$

embora muito parecida com a matriz anterior, não está em forma de escada reduzida.

4. A matriz
$$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$$
 não está em forma de escada reduzida.

Teorema 2.2.10. Sejam $m, n \in \mathbb{N}$. Toda a matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é equivalente por linhas a uma matriz em forma de escada reduzida.

Demonstração. Sejam $m, n \in \mathbb{N}$ e $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Se A é a matriz nula, então a matriz já está na forma de escada reduzida. Caso A não seja a matriz nula, então A pode ser transformada numa matriz em escada reduzida, efectuando operações elementares sobre as suas linhas, de acordo com o seguinte processo: aplicando o método descrito no Teorema 2.2.3 à matriz A obtemos uma matriz em escada A' equivalente a A. Uma vez obtida a matriz em escada A', anulam-se todos os elementos não nulos que estejam acima dos pivots $a_{kj_k}^{(k)}$ da matriz A'; para tal, para cada $i \in \{1, \ldots, k-1\}$, adiciona-se à linha i da matriz A' a linha k multiplicada por $-\frac{a_{ij_k}^{(k)}}{a_{kj_k}^{(k)}}$. Finalmente, multiplica-se cada linha não nula da matriz pelo inverso do pivot dessa linha. Terminado o processo, obtém-se uma matriz em escada reduzida e equivalente por linhas à matriz A.

Ao processo de transformar uma dada matriz numa matriz em escada reduzida dá-se a designação de *condensação* da matriz.

É conveniente observar que uma matriz A é equivalente por linhas a uma única matriz em forma de escada reduzida - a esta matriz em escada reduzida dá-se a designação de **forma de Hermite** de A.

Exemplo 2.2.11. Consideremos a matriz a seguir indicada

$$A = \begin{bmatrix} 0 & 1 & 2 & 2 & 0 & 2 \\ 0 & 1 & 2 & -2 & 0 & 1 \\ 0 & 3 & 6 & 2 & 1 & -1 \\ 0 & 0 & 0 & 2 & 0 & 1 \end{bmatrix}.$$

Aplicando o método descrito anteriormente de forma a transformar a matriz A numa matriz em forma de escada reduzida, obtemos

$$\begin{bmatrix} 0 & 1 & 2 & 2 & 0 & 2 \\ 0 & 1 & 2 & -2 & 0 & 1 \\ 0 & 3 & 6 & 2 & 1 & -1 \\ 0 & 0 & 0 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{l_2 \to l_2 - l_1} \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 2 \\ 0 & 0 & 0 & -4 & 0 & -1 \\ 0 & 0 & 0 & -4 & 1 & -7 \\ 0 & 0 & 0 & 2 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 2 \\ 0 & 0 & 0 & -4 & 1 & -7 \\ 0 & 0 & 0 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{l_3 \to l_3 + 12l_4} \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \xrightarrow{l_3 \to l_3 + 12l_4} \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \to \begin{bmatrix} 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \xrightarrow{l_2 \to -\frac{1}{4}l_2} \begin{bmatrix} 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

A última matriz obtida é a forma de Hermite de A.

Observação: Pela Proposição 2.1.14, é fácil perceber que a transformação de uma matriz A numa matriz em forma de escada reduzida também pode ser obtida por meio de operações elementares sobre colunas, mas voltamos a recordar que nem todas as operações elementares sobre colunas podem ser aplicadas na resolução de um sistema de equações lineares.

O processo descrito no Teorema 2.2.10, por ser uma extensão do método de eliminação de Gauss, é designado por *método de eliminação de Gauss-Jordan* e também pode ser aplicado na resolução de sistemas de equações lineares. Aplicando este método à matriz ampliada de um dado sistema de equações lineares, esta matriz

é transformada até que se obtenha uma matriz equivalente por linhas e em forma de escada reduzida; o sistema de equações correspondente a esta última matriz (equivalente ao sistema inicial) é, em princípio, de resolução mais simples.

Exemplo 2.2.12. Consideremos de novo o sistema indicado no exemplo 2.2.7.

$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 = 2 \\ 2x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 + 2x_3 + x_4 = 2 \end{cases}$$

Nesse mesmo exemplo vimos que aplicando o método de eliminação de Gauss à matriz ampliada deste sistema é possível obter a matriz em escada

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 1 \\
0 & -1 & -1 & -1 & 1 \\
0 & 0 & 2 & 2 & -4 \\
0 & 0 & 0 & -1 & 5
\end{bmatrix}$$

Partindo desta última matriz e seguindo o processo descrito no Teorema 1.6.9 temos

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 & 1 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & -1 & 5 \end{bmatrix} \xrightarrow{l_3 \to l_3 + 2l_4} \begin{bmatrix} 1 & 2 & 1 & 0 & 6 \\ 0 & -1 & -1 & 0 & -4 \\ l_2 \to l_2 - l_4 & 0 & 0 & 2 & 0 & 6 \\ l_1 \to l_1 + l_4 & 0 & 0 & 0 & -1 & 5 \end{bmatrix} \xrightarrow{l_2 \to l_2 + \frac{1}{2}l_3} \xrightarrow{l_1 \to l_1 - \frac{1}{2}l_3}$$

$$\begin{bmatrix} 1 & 2 & 0 & 0 & 3 \\ 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 2 & 0 & 6 \\ 0 & 0 & 0 & -1 & 5 \end{bmatrix} \xrightarrow{l_1 \to l_1 + 2l_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & -1 & -1 \\ 0 & 0 & 2 & 0 & 6 \\ 0 & 0 & 0 & -1 & 5 \end{bmatrix} \xrightarrow{l_2 \to -l_2} \xrightarrow{l_3 \to \frac{1}{2}l_3} \xrightarrow{l_4 \to -l_4}$$

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \end{array}\right].$$

A última matriz obtida, em forma de escada reduzida, é equivalente por linhas à matriz [A | b]. Por consequinte, o sistema inicial (S) é equivalente ao sistema

$$\begin{cases} x_1 &= 1 \\ x_2 &= 1 \\ x_3 &= 3 \\ x_4 &= -5 \end{cases}$$

donde obtemos $Sol_{(S)} = \{(1, 1, 3, -5)\}.$

Seguidamente debruçamo-nos sobre um outro tipo de problema que também já foi referido no início do capítulo - a discussão de sistemas de equações lineares. Como iremos ver, a discussão de um sistema de equações lineares pode ser feita recorrendo à característica da sua matriz simples e da sua matriz ampliada, sem que seja necessário determinar o seu conjunto de soluções. Aplicando o método de eliminação de Gauss à matriz ampliada do sistema, representada por $[A \mid b]$, podemos determinar a característica dessa matriz e a característica da matriz simples do sistema, ou seja, da matriz A. Sendo [U|c] a matriz em escada obtida a partir de [A|b] por aplicação do método de eliminação de Gauss, então $\mathrm{car}([A|b])$ é o número de linhas não nulas de [U|c] e $\mathrm{car}(A)$ é o número de linhas não nulas de U. Note-se que se tem sempre $\mathrm{car}(A) \leq \mathrm{car}([A|b])$.

Designando por r a característica de A, tem-se um dos seguintes casos:

- r = m = n;
- r = m < n;
- *r* < *m*

No primeiro caso, a matriz $[U \mid c]$ tem a forma

$$[U \mid c] = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} & c_1 \\ 0 & u_{22} & \dots & u_{2n} & c_2 \\ 0 & 0 & \dots & u_{3n} & c_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & u_{nn} & c_n \end{bmatrix}$$

que corresponde ao sistema

$$\begin{cases} u_{11}x_1 + u_{12}x_2 + \dots + u_{1n}x_n = c_1 \\ u_{22}x_2 + \dots + u_{2n}x_n = c_2 \\ \vdots \\ u_{nn}x_n = c_n \end{cases}$$

em que $u_{ii} \neq 0$, para todo $i \in \{1, ..., n\}$.

A partir da última equação deste sistema obtemos $x_n = \frac{c_n}{u_{nn}}$ e, por substituição inversa nas equações anteriores, obtemos sucessivamente $x_{n-1}, x_{n-2}, ..., x_1$. Neste caso o sistema é determinado.

No segundo caso, em que temos r = m < n, a matriz $[U \mid c]$ será da forma

onde, para todo $k \in \{1, ...m\}$, $u_{kj_k} \neq 0$ e, para todo $j < j_k$, $u_{kj} = 0$.

No sistema correspondente a $[U \mid c]$ são livres as incógnitas x_j , com $j \in \{1, ..., n\} \setminus \{j_1, j_2, ..., j_m\}$, e obtemos as restantes incógnitas em função destas. Desta forma, o sistema é indeterminado.

No caso em que r < m, temos

$$[U \mid c] = \begin{bmatrix} 0 & \dots & u_{1j_1} & \dots & u_{1j_2} & \dots & u_{1j_3} & \dots & u_{1j_m} & \dots & u_{1n} & c_1 \\ 0 & \dots & 0 & \dots & u_{2j_2} & \dots & u_{2j_3} & \dots & u_{2j_m} & \dots & u_{2n} & c_2 \\ 0 & \dots & 0 & \dots & 0 & \dots & u_{3j_3} & \dots & u_{3j_m} & \dots & u_{3n} & c_3 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 & \dots & u_{rj_r} & \dots & u_{rn} & c_r \\ 0 & \dots & 0 & c_{r+1} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & c_m \end{bmatrix}$$

Se $c_i \neq 0$, para algum $i \in \{r+1,...,m\}$, o sistema é obviamente impossível.

Se $c_{r+1} = \cdots = c_m = 0$, então as últimas m-r equações do sistema correspondente à matriz [U|c] são identidades, e o sistema é equivalente ao das r primeiras equações. Este sistema está num dos casos estudados antes; de facto, se r = n, o sistema enquadra-se no primeiro caso, e se r < n, temos um sistema do tipo que foi estudado no segundo caso.

Do que foi observado conclui-se o seguinte:

Teorema 2.2.13. Sejam $m, n \in \mathbb{N}$ e Ax = b um sistema de equações lineares, com $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Então

- o sistema é possível se e só se car(A) = car([A|b]);
- o sistema é possível determinado se e só se car(A) = car([A|b]) = n;
- o sistema é possível indeterminado se e só se car(A) = car([A|b]) < n.

Exemplo 2.2.14. Consideremos o sistema de 4 equações lineares em 4 incógnitas

$$\begin{cases} + 2x_2 - x_3 & = 1 \\ x_1 + x_2 & = 2 \\ -x_1 + x_2 + x_3 + x_4 & = 1 \\ 2x_2 + x_3 + x_4 & = 2 \end{cases}$$

Aplicando o método de eliminação de Gauss à matriz ampliada do sistema, temos

$$\begin{bmatrix} 0 & 2 & -1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 2 \\ -1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 2 \end{bmatrix} \xrightarrow{l_1 \leftrightarrow l_2} \begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 2 & -1 & 0 & 1 \\ -1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 2 \end{bmatrix} \xrightarrow{l_3 \to l_3 + l_1}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 2 & -1 & 0 & 1 \\ 0 & 2 & 1 & 1 & 3 \\ 0 & 2 & 1 & 1 & 2 \end{bmatrix} \xrightarrow{l_3 \to l_3 - l_2} \begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 2 & -1 & 0 & 1 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 1 & 1 \end{bmatrix} \xrightarrow{l_4 \to l_4 - l_3}.$$

$$\left[\begin{array}{ccc|ccc|c}
1 & 1 & 0 & 0 & 2 \\
0 & 2 & -1 & 0 & 1 \\
0 & 0 & 2 & 1 & 2 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]$$

O sistema correspondente à última matriz, e equivalente ao inicial, é o sistema

$$\begin{cases} x_1 + x_2 & = 2 \\ + 2x_2 - x_3 & = 1 \\ 2x_3 + x_4 & = 2 \\ 0 & = -1 \end{cases}$$

que obviamente é impossível.

Exemplo 2.2.15. Consideremos o sistema do exemplo 2.2.7. Aplicando o método de eliminação de Gauss à matriz ampliada deste sistema obtemos a matriz

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 1 \\
0 & -1 & -1 & -1 & 1 \\
0 & 0 & 2 & 2 & -4 \\
0 & 0 & 0 & -1 & 5
\end{bmatrix}$$

à qual corresponde o sistema

$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 = 1 \\ -x_2 - x_3 - x_4 = 1 \\ 2x_3 + 2x_4 = -4 \\ - x_4 = 5 \end{cases}$$

Uma vez que car(A) = car(A|b) = 4, o sistema é possível e determinado. De facto, da última equação resulta que $x_4 = -5$ e substituindo sucessivamente nas equações anteriores, obtemos $x_3 = 3$, $x_2 = 1$, $x_1 = 1$.

Exemplo 2.2.16. Consideremos o sistema (S) de 3 equações lineares em 3 incógnitas:

$$\begin{cases} x_1 - 3x_2 + 2x_3 = 1 \\ 2x_1 + 4x_3 = 8 \\ -x_1 + 4x_2 - 2x_3 = 0 \end{cases}$$

Como

$$\begin{bmatrix} 1 & -3 & 2 & 1 \\ 2 & 0 & 4 & 8 \\ -1 & 4 & -2 & 0 \end{bmatrix} \xrightarrow{l_2 \to l_2 - 2l_1} \begin{bmatrix} 1 & -3 & 2 & 1 \\ 0 & 6 & 0 & 6 \\ l_3 \to l_3 + l_1 \end{bmatrix} \xrightarrow{l_3 \to l_3 - \frac{1}{6}l_2} \begin{bmatrix} 1 & -3 & 2 & 1 \\ 0 & 6 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

concluímos que c(A) = c(A|b) = 2 < 3, pelo que o sistema é possível indeterminado. O sistema correspondente à última matriz é dado por

$$\begin{cases} x_1 - 3x_2 + 2x_3 = 1 \\ 6x_2 = 6 \end{cases}$$

onde

$$x_3$$
 é arbitrário,
 $x_2 = 1$,
 $x_1 = 4 - 2x_3$.

Assim, $Sol_{(S)} = \{(4 - 2a, 1, a) \in \mathbb{R}^3 : a \in \mathbb{R}\}.$

No caso particular dos sistemas homogéneos, já havíamos observado que estes sistemas são sempre possíveis. Agora, com base no teorema anterior, sabe-se também que o sistema Ax = 0, com $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, é determinado se e só car(A) = n.

Definição 2.2.17. Sejam $m, n \in \mathbb{N}$ e Ax = b, com $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, um sistema de equações lineares. Dá-se a designação de **sistema homogéneo associado a** Ax = b ao sistema Ax = 0.

O conjunto de soluções de um sistema e do sistema homogéneo associado estão relacionados de acordo com o estabelecido no teorema seguinte.

Teorema 2.2.18. Sejam $m, n \in \mathbb{N}$, Ax = b um sistema de equações lineares, com $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, $e \ y \in \mathcal{M}_{n \times 1}(\mathbb{K})$ uma solução do sistema. Então $w \in \mathcal{M}_{n \times 1}(\mathbb{K})$ é solução de Ax = b se e só se w = y + z, onde $z \in \mathcal{M}_{n \times 1}(\mathbb{K})$ é solução de Ax = 0.

Demonstração. Seja $y \in \mathcal{M}_{n \times 1}(\mathbb{K})$ uma solução de Ax = b. Suponhamos que $z \in \mathcal{M}_{n \times 1}(\mathbb{K})$ é uma solução do sistema homogéneo Ax = 0. Então

$$A(y + z) = Ay + Az = b + 0 = b,$$

pelo que w = y + z é solução de Ax = b.

Reciprocamente, suponhamos que w é solução de Ax = b. Então

$$A(w - y) = Aw - Ay = b - b = 0,$$

pelo que w = y + (w - y) onde w - y é solução de Ax = 0.

Do teorema anterior segue de imediato o resultado seguinte.

Corolário 2.2.19. Sejam $m, n \in \mathbb{N}$ e Ax = b um sistema de equações lineares, com $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Então, se for possível, o sistema Ax = b é determinado se e só se o sistema homogéneo associado é determinado (i.e., admite como única solução $0_{n \times 1}$).

2.3 Inversão de matrizes

O método de eliminação de Gauss-Jordan, para além de nos facultar um algoritmo para a resolução de sistemas, dá-nos também um processo para decidir sobre a existência da inversa de uma matriz e para a calcular.

Antes de vermos de que forma o método de eliminação de Gauss-Jordan pode ser aplicado no cálculo da inversa de uma matriz, apresentamos uma caracterização de matrizes invertíveis que nos permite decidir sobre a invertibilidade de uma matriz através do cálculo da sua característica.

Teorema 2.3.1. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Então A é invertível se e só se car(A) = n.

Demonstração. Suponha-se que A é invertível. Então

$$Ax = 0 \Rightarrow A^{-1}(Ax) = 0 \Rightarrow (A^{-1}A)x = 0 \Rightarrow x = 0$$

Logo, como o sistema Ax = 0 é determinado, temos car(A) = n.

Reciprocamente, suponha-se que car(A) = n e mostremos que A é invertível. Por definição, uma matriz $A \in \mathcal{M}_n(\mathbb{K})$ é invertível se existir uma matriz $X = [x_{ij}] \in$

 $\mathcal{M}_n(\mathbb{K})$ tal que $AX = I_n = XA$. A existência de $X \in \mathcal{M}_n(\mathbb{K})$ tal que $AX = I_n$ é equivalente à existência de

$$x_{1} = \begin{bmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{bmatrix}, \quad x_{2} = \begin{bmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{bmatrix}, \quad \dots, \quad x_{n} = \begin{bmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{bmatrix}$$

tais que

$$Ax_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad Ax_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad Ax_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \quad (*)$$

Como car(A) = n, cada um dos sistemas indicado em (*) é possível e determinado, o que significa que existe $X \in \mathcal{M}_n(\mathbb{K})$ tal que $AX = I_n$. Para podermos concluir que X é a inversa de A falta verificar que $XA = I_n$. Para tal, comecemos por mostrar que se $B \in \mathcal{M}_{n \times n}(\mathbb{K})$ é uma matriz tal que AB = 0, então B = 0. De facto, se representarmos por b_i a coluna i de B, $i \in \{1, ..., n\}$, então de AB = 0 segue que, para todo $i \in \{1, ..., n\}$, $Ab_i = 0$. Como car(A) = n, o sistema Ax = 0 é determinado e, portanto, $b_i = 0$, para todo $i \in \{1, ..., n\}$. Logo, B = 0. Assim, de

$$A(XA - I_n) = A(XA) - A = (AX)A - A = I_nA - A = 0,$$

concluímos que $XA - I_n = 0$, i.e., $XA = I_n$. Logo, A é invertível.

Teorema 2.3.2. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Então A é invertível se e só A é equivalente por linhas à matriz I_n .

Demonstração. Seja A uma matriz invertível. Então car(A) = n. Seja F a matriz em forma de escada reduzida equivalente por linhas à matriz A. Como car(A) = n, também se tem car(F) = n. Uma vez que F é uma matriz em forma de escada reduzida e car(F) = n, então F não tem linhas nulas. Considerando que os pivots de F são todos iguais a 1, então $F = I_n$.

Reciprocamente, admitamos que A é equivalente por linhas à matriz I_n . Então

$$A = (E_1 \dots E_s)I_n.$$

onde $E_1, ..., E_s$ são matrizes elementares. Uma vez que $E_1, ..., E_s, I_n$ são matrizes invertíveis e o produto de matrizes invertíveis é uma matriz invertível, então A é invertível.

Teorema 2.3.3. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Então A é invertível se e só A é igual a um produto de matrizes elementares.

Demonstração. Seja A uma matriz invertível. Então A é equivalente por linhas à matriz I_n , pelo que

$$A = (E_1 \dots E_s)I_n = E_1 \dots E_s,$$

onde $E_1, ..., E_s$ são matrizes elementares.

Se a matriz A é igual a um produto de matrizes elementares, então A é uma matriz invertível, uma vez que as matrizes elementares são invertíveis e o produto de matrizes invertíveis é uma matriz invertível.

Já sabemos que se $A, X \in \mathcal{M}_n(\mathbb{K})$ são matrizes tais que A é invertível e $AX = I_n$, então $XA = I_n$. Logo, sendo A uma matriz invertível, para determinarmos a sua inversa basta resolver os sistemas referidos em (*). Além disso, uma vez que a matriz simples destes sistemas é a mesma, podemos optar pela resolução de todos os sistemas em simultâneo. Tal é conseguido aplicando o método de eliminação de Gauss-Jordan à matriz $[A \mid I_n]$; a matriz obtida após a aplicação deste método é a matriz $[I_n \mid A^{-1}]$.

Exemplo 2.3.4. Seja

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 5 & 6 & 14 \end{array} \right].$$

Então, de

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 & 1 & 0 \\ 5 & 6 & 14 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{l_3 \to l_3 - 5l_1} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 & 1 & 0 \\ 0 & -4 & -1 & -5 & 0 & 1 \end{bmatrix} \xrightarrow{l_3 \to l_3 + 2l_2}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 & 1 & 0 \\ 0 & 0 & 3 & -5 & 2 & 1 \end{bmatrix} \xrightarrow{l_1 \to l_1 - l_3} \begin{bmatrix} 1 & 2 & 0 & 6 & -2 & -1 \\ 0 & 2 & 0 & \frac{10}{3} & -\frac{1}{3} & -\frac{2}{3} \\ 0 & 0 & 3 & -5 & 2 & 1 \end{bmatrix}$$

concluímos que a matriz A admite inversa e que

$$A^{-1} = \begin{bmatrix} \frac{18}{3} & -\frac{5}{3} & -\frac{1}{3} \\ \frac{10}{6} & -\frac{1}{6} & -\frac{2}{6} \\ -\frac{5}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

Sejam $A, B \in \mathcal{M}_n(\mathbb{K})$. Já foi estabelecido anteriormente que se A é uma matriz invertível e $AB = I_n$, então $BA = I_n$. O teorema seguinte generaliza este resultado.

Teorema 2.3.5. Sejam $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_n(\mathbb{K})$. Se $AB = I_n$, então A e B são matrizes invertíveis, $B^{-1} = A$ e $BA = I_n$.

Demonstração. Admitamos que AB é invertível. Então

$$Bx = 0 \Rightarrow ABx = 0 \Rightarrow x = 0.$$

Assim, o sistema Bx=0 é possível e determinado, pelo que car(B)=n. Logo, B é invertível. Provemos, agora, que A é invertível. De facto, como $AB=I_n$ e B é invertível, tem-se

$$A = AI_n = A(BB^{-1}) = (AB)B^{-1} = I_nB^{-1} = B^{-1}.$$

Como a matriz B^{-1} é invertível, então A é uma matriz invertível. Considerando que $B^{-1} = A$, também se tem $BA = I_n$.

Teorema 2.3.6. Sejam $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_n(\mathbb{K})$. Então AB é invertível se e só se A e B são invertíveis.

Demonstração. Já tinhamos provado anteriormente que se A e B são invertíveis, então AB é invertível, pelo que resta provar a implicação contrária.

Para provar o resultado recíproco, comecemos por mostar que se AB é invertível, então A é invertível. No sentido de se fazer esta prova por redução ao absurdo, admitamos que AB é invertível e que A não é invertível. Então

$$car(AB) = n e car(A) < n.$$

Sejam A' uma matriz em forma de escada equivalente por linhas à matriz A e E_p, \ldots, E_1 matrizes elementares tais que $A' = E_p \cdots E_1 A$. Logo $A'B = E_p \cdots E_1 AB$, donde segue que

$$car(AB) = car(E_1 \cdots E_p(AB)) = car((E_p \cdots E_1A)B) = car(A'B).$$

Como car(AB) = n, também se tem car(A'B) = n. No entanto, como car(A) < n, a matriz A' tem, pelo menos uma linha nula, pelo que A'B também tem pelo menos uma linha nula e, portanto, car(A'B) < n (contradição).

Mostremos, agora, que se AB é invertível, então B é invertível. De facto, como AB é invertível, existe $X \in \mathcal{M}_n(\mathbb{K})$ tal que $(AB)X = I_n$. Então $A(BX) = I_n$ e do resultado anterior segue que BX é invertível. Consequentemente, pelo que foi provado anteriormente, B é invertível.