Regularization methods in multiple regression

Malgorzata Bogdan

University of Wroclaw

March 13, 2023

High dimensional regression

$$Y_{nx1} = X_{nxp}\beta_{px1} + z_{nx1}, \ z \sim N(0, \sigma^2 I)$$

High dimensional regression

$$Y_{nx1}=X_{nxp}\beta_{px1}+z_{nx1},\ z\sim N(0,\sigma^2I)$$
 $Y=(Y_1,\ldots,Y_n)^T$ - wektor of trait values for n individuals

High dimensional regression

$$Y_{nx1}=X_{nxp}\beta_{px1}+z_{nx1},\ z\sim N(0,\sigma^2I)$$

$$Y=(Y_1,\ldots,Y_n)^T \text{ - wektor of trait values for }n\text{ individuals}$$
 $X_{n\times p}$ - matrix of regressors

When n>p but p is large (say n/2) the variance of LS estimates may be very large

When n>p but p is large (say n/2) the variance of LS estimates may be very large

When p>n the matrix X'X is singular and the LS estimate of β does not exist

When n>p but p is large (say n/2) the variance of LS estimates may be very large

When p>n the matrix X'X is singular and the LS estimate of β does not exist

Ridge regression:

$$\hat{\beta} = argmin_{\beta \in R^p} L(b)$$
 ,where $L(b) = ||Y - Xb||^2 + \gamma ||b||^2$

When n>p but p is large (say n/2) the variance of LS estimates may be very large

When p>n the matrix X'X is singular and the LS estimate of β does not exist

Ridge regression:

$$\hat{\beta} = argmin_{\beta \in R^p} L(b)$$
 , where $L(b) = ||Y - Xb||^2 + \gamma ||b||^2$

$$\frac{\partial L(b)}{\partial b} = -2X'(Y - Xb) + 2\gamma b = 0$$

When n>p but p is large (say n/2) the variance of LS estimates may be very large

When p>n the matrix X'X is singular and the LS estimate of β does not exist

Ridge regression:

$$\hat{\beta} = argmin_{\beta \in R^p} L(b)$$
 ,where $L(b) = ||Y - Xb||^2 + \gamma ||b||^2$

$$\frac{\partial L(b)}{\partial b} = -2X'(Y - Xb) + 2\gamma b = 0$$

$$-X'Y + (X'X + \gamma I)b = 0 \Leftrightarrow b = (X'X + \gamma I)^{-1}X'Y$$

$$\hat{\beta} = (X'X + \gamma I)^{-1}X'Y, \ \ \text{where} \ \ \gamma > 0$$

$$\hat{\beta} = (X'X + \gamma I)^{-1}X'Y, \ \ \text{where} \ \ \gamma > 0$$

$$\label{eq:equation:equation:equation} \hat{Y} = X \hat{\beta} = MY, \text{ with } M = X(X'X + \gamma I)^{-1}X'$$

$$\hat{\beta} = (X'X + \gamma I)^{-1}X'Y, \ \text{where} \ \gamma > 0$$

$$\label{eq:equation:equation:equation} \hat{Y} = X \hat{\beta} = MY, \text{ with } M = X(X'X + \gamma I)^{-1}X'$$

$$Tr[M] = Tr \left[(X'X + \gamma I)^{-1}X'X \right]$$

$$\hat{\beta} = (X'X + \gamma I)^{-1}X'Y, \ \ \text{where} \ \ \gamma > 0$$

$$\label{eq:equation:equation:equation} \hat{Y} = X \hat{\beta} = MY, \text{ with } M = X(X'X + \gamma I)^{-1}X'$$

$$Tr[M] = Tr[(X'X + \gamma I)^{-1}X'X]$$

$$Tr[M] = \sum_{i=1}^p \lambda_i(M), \text{ where } \lambda_1(M), \ldots, \lambda_n(M) \text{ are eigenvalues of } M$$

$$X'Xu = \lambda u$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$
$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$
$$\hat{P}E = RSS + 2\sigma^2 \sum_{i=1}^{p} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$
$$= \frac{\gamma^2}{(1+\gamma)^2}\beta_i^2 + \frac{\sigma^2}{(1+\gamma)^2}$$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$
$$= \frac{\gamma^2}{(1+\gamma)^2}\beta_i^2 + \frac{\sigma^2}{(1+\gamma)^2}$$

$$E||\hat{\beta} - \beta||^2 = \frac{\gamma^2}{(1+\gamma)^2}||\beta||^2 + \frac{p\sigma^2}{(1+\gamma)^2}$$

When rigde is better than LS ?

When rigde is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

When rigde is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$

When rigde is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$

Otherwise, when

$$|||\beta||^2 < \frac{\gamma + 2}{\gamma} p\sigma^2$$

When rigde is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$

$$|||\beta||^2 < \frac{\gamma + 2}{\gamma} p\sigma^2$$

$$\gamma < \frac{2p\sigma^2}{||\beta||^2 - p\sigma^2}$$

$$Y=X\beta$$

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is *identifiable* with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is *identifiable* with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$k = ||\beta||_0 = \#\{i : \beta_i \neq 0\}$$

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is *identifiable* with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$k = ||\beta||_0 = \#\{i: \beta_i \neq 0\}$$

Basis Pursuit can recover β if k is small enough.

Transition curve (Donoho and Tanner, 2005)

Let's assume than $p \to \infty$, $n/p \to \delta$ and $k/n \to \epsilon$.

If X_{ij} are iid $N(0, \tau^2)$ then the probability that BP recovers β converges to 1 if $\epsilon < \rho(\delta)$ and to 0 if $\epsilon > \rho(\delta)$, where $\rho(\delta)$ is the transition curve.

Transition curve (2)

Phase Transition: (l_1, l_0) equivalence

Victoria Stodden

Department of Statistics, Stanford University

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Convex program: Minimize $||b||_1$ subject to $||Y-Xb||_2^2 \leq \epsilon$

Or alternatively: $\min_{b \in R^p} ||y - Xb||_2^2 + \lambda ||b||_1$

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Convex program: Minimize $||b||_1$ subject to $||Y-Xb||_2^2 \leq \epsilon$

Or alternatively: $\min_{b \in R^p} ||y - Xb||_2^2 + \lambda ||b||_1$

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)

$$\hat{\beta}_L = argmin_{b \in R^p} ||y - Xb||_2^2 + \lambda ||b||_1$$

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)

$$\hat{\beta}_L = argmin_{b \in R^p} ||y - Xb||_2^2 + \lambda ||b||_1$$

For a convex function $f:R^p o R$ we define the subdifferential as

$$\partial_f(b) = \{ v \in \mathbb{R}^p : f(z) - f(b) \ge v'(z - b) \ \forall z \in \mathbb{R}^p \}.$$

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)

$$\hat{\beta}_L = argmin_{b \in R^p} ||y - Xb||_2^2 + \lambda ||b||_1$$

For a convex function $f:R^p o R$ we define the subdifferential as

$$\partial_f(b) = \{ v \in \mathbb{R}^p : f(z) - f(b) \ge v'(z - b) \ \forall z \in \mathbb{R}^p \}.$$

The convex function f(x) attains a minimum at x_0 if and only if $0 \in \partial_f(x_0)$.

LASSO for the orthogonal design X'X = I

$$\beta^{LS} = Y'X, \quad ||Y - Xb||^2 + \lambda ||b||_1 = Y'Y + \sum_{i=1}^p f_i(b_i)$$
$$f_i(x) = x^2 - 2\beta_i^{LS} x + \lambda |x|$$

LASSO for the orthogonal design X'X = I

$$\beta^{LS} = Y'X, \quad ||Y - Xb||^2 + \lambda ||b||_1 = Y'Y + \sum_{i=1}^p f_i(b_i)$$
$$f_i(x) = x^2 - 2\beta_i^{LS} x + \lambda |x|$$
$$\partial_{f_i}(x_0) = 2x_0 - 2\beta_i^{LS} + \lambda \partial_{|x|}(x_0)$$

LASSO for the orthogonal design X'X = I

$$\beta^{LS} = Y'X, \quad ||Y - Xb||^2 + \lambda ||b||_1 = Y'Y + \sum_{i=1}^p f_i(b_i)$$

$$f_i(x) = x^2 - 2\beta_i^{LS} x + \lambda |x|$$

$$\partial_{f_i}(x_0) = 2x_0 - 2\beta_i^{LS} + \lambda \partial_{|x|}(x_0)$$

$$\lambda \partial_{|x|}(x_0) = \begin{cases} \lambda & \text{for } x_0 > 0 \\ -\lambda & \text{for } x_0 < 0 \\ < -\lambda, \lambda > & \text{for } x_0 = 0 \end{cases}$$

LASSO for the orthogonal design

$$\hat{\beta}_i^L = \left\{ \begin{array}{ll} \beta^{LS} - \lambda/2 & \text{when} & \beta_i^{LS} > \lambda/2 \\ \\ -\beta_i^{LS} + \lambda/2 & \text{when} & \beta_i^{LS} < -\lambda/2 \\ \\ 0 & \text{when} & |\beta_i^{LS}| < \lambda/2 \end{array} \right.$$

Regularized estimators vs OLS

Regularized estimators vs OLS

Selection of the tuning parameter for LASSO

- General rule: the reduction of λ_L results in identification of more elements from the true support (true discoveries) but at the same time it produces more falsely identified variables (false discoveries)
- ullet The choice of λ_L is challenging- e.g. crossvalidation typically leads to many false discoveries
- ullet When $X^TX=I$ Lasso selects X_j iff $|\hat{eta}_j^{LS}|>\lambda$
- Selection $\lambda = \sigma \Phi^{-1}(1 \alpha/(2p)) \approx \sigma \sqrt{2\log p}$ corresponds to Bonferroni correction and controls FWER.

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \ldots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$ Let $I := \{i \in \{1, \ldots, p\} \mid \beta_i \neq 0\}$, and let $X_I, X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i \in I}$ and $(X_i)_{i \notin I}$.

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}, \ S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$ Let $I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}$, and let $X_I, X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i \in I}$ and $(X_i)_{i \notin I}$.

Irrepresentable condition:

$$||X_{\overline{I}}'X_I(X_I'X_I)^{-1}S(\beta_I)||_{\infty} \le 1$$

The sign vector of β is defined as

$$S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$$
, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$

Let $I:=\{i\in\{1,\ldots,p\}\mid \beta_i\neq 0\}$, and let $X_I,X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i\in I}$ and $(X_i)_{i\notin I}$.

Irrepresentable condition:

$$||X_{\overline{I}}'X_I(X_I'X_I)^{-1}S(\beta_I)||_{\infty} \le 1$$

When

$$||X_{\overline{I}}'X_I(X_I'X_I)^{-1}S(\beta_I)||_{\infty} > 1$$

then probability of the support recovery by LASSO is smaller than 0.5 (Wainwright, 2009).

Irrepresentability and identifiability curves

n=100, p=300, elements of X were generated as iid N(0,1)

identifiability and irrepresentability curves

Identifiability condition

Definition (Identifiability)

Let X be a $n \times p$ matrix. The vector $\beta \in R^p$ is said to be identifiable with respect to the l^1 norm if the following implication holds

$$X\gamma = X\beta \text{ and } \gamma \neq \beta \Rightarrow \|\gamma\|_1 > \|\beta\|_1.$$
 (1)

Theorem (Tardivel, Bogdan, 2019)

For any $\lambda>0$ LASSO can separate well the causal and null features if and only if vector β is identifiable with respect to l_1 norm and $min_{i\in I}|\beta_i|$ is sufficiently large.

Modifications of LASSO

Corollary

Appropriately thresholded LASSO can properly identify the sign of sufficiently large β if and only if β is identifiable with respect to l_1 norm.

Conjecture

Adaptive (reweighted) LASSO can properly identify the sign of sufficiently large β if and only if β is identifiable with respect to l_1 norm.

Adaptive LASSO

Adaptive LASSO [Zou, JASA 2006], [Candès, Wakin and Boyd, J. Fourier Anal. Appl. 2008]

$$\beta_{aL} = argmin_b \left\{ \frac{1}{2} \|y - Xb\|_2^2 + \lambda \sum_{i=1}^p w_i |b|_i \right\},$$
 (2)

where $w_i=rac{1}{\hat{eta}_i}$, and \hat{eta}_i is some consistent estimator of eta_i .

Adaptive LASSO

Adaptive LASSO [Zou, JASA 2006], [Candès, Wakin and Boyd, J. Fourier Anal. Appl. 2008]

$$\beta_{aL} = argmin_b \left\{ \frac{1}{2} \|y - Xb\|_2^2 + \lambda \sum_{i=1}^p w_i |b|_i \right\},$$
 (2)

where $w_i = \frac{1}{\hat{\beta}_i}$, and $\hat{\beta}_i$ is some consistent estimator of β_i . Reduces bias and improves model selection properties

$$X_{ij} \sim \mathcal{N}(0, 1/n), \ z_i \sim \mathcal{N}(0, \sigma^2)$$

$$X_{ij} \sim \mathcal{N}(0, 1/n), \ z_i \sim \mathcal{N}(0, \sigma^2)$$

 eta_1,\ldots,eta_p : iid, distributed as the random variable $\Pi,$ such that $\mathbb{E}\,\Pi<\infty,\ \mathbb{P}(\Pi
eq0)=\epsilon\in(0,1).$

$$X_{ij} \sim \mathcal{N}(0, 1/n), \ z_i \sim \mathcal{N}(0, \sigma^2)$$

 eta_1,\ldots,eta_p : iid, distributed as the random variable $\Pi,$ such that $\mathbb{E}\,\Pi<\infty,\ \mathbb{P}(\Pi
eq0)=\epsilon\in(0,1).$

$$\tau^{2} = \sigma^{2} + \frac{1}{\delta} \mathbb{E} \left(\eta_{\alpha \tau} (\Pi + \tau Z) - \Pi \right)^{2},$$
$$\lambda = \left(1 - \frac{1}{\delta} \mathbb{P} (|\Pi + \tau Z| > \alpha \tau) \right) \alpha \tau.$$

Theorem

For any pseudo-Lipschitz function φ , the lasso solution $\hat{\beta}$ with fixed λ obeys

$$\frac{1}{p} \sum_{i=1}^{p} \varphi(\hat{\beta}_i, \beta_i) \longrightarrow \mathbb{E} \varphi(\eta_{\alpha \tau}(\Pi + \tau Z), \Pi)$$

AMP formulas for FDR and Power

 $\widehat{\mathcal{S}}$ - set of variables selected by LASSO

$$\begin{aligned} \mathsf{FDP} &\equiv \frac{|\widehat{\mathcal{S}} \cap \mathcal{H}_0|}{|\widehat{\mathcal{S}}|} \\ \mathit{FDR} &= \mathit{E}(\mathit{FDP}) \end{aligned}$$

AMP formulas for FDR and Power

 $\widehat{\mathcal{S}}$ - set of variables selected by LASSO

$$\begin{aligned} \mathsf{FDP} &\equiv \frac{|\widehat{\mathcal{S}} \cap \mathcal{H}_0|}{|\widehat{\mathcal{S}}|} \\ FDR &= E(FDP) \end{aligned}$$

Bogdan, van den Berg, Su and Candés, 2013

$$\begin{split} \text{FDR} & \to \frac{2\mathbb{P}(\Pi=0)\Phi(-\alpha)}{\mathbb{P}(|\Pi+\tau Z|>\alpha\tau)} \enspace, \\ \text{Power} & \to \mathbb{P}(|\Pi+\tau Z|>\alpha\tau|\Pi\neq 0). \end{split}$$

FDR - illustration

Power - illustration

Magnitude of additional noise (1)

Magnitude of additional noise (2)

False Discoveries along the lasso path

Su, Bogdan and Candes, (2017), $\delta=1$, $\epsilon=0.2$

FDP-Power tradeoff

Theorem (Su, Bogdan, Candes, 2017)

Fix $\delta \in (0, \infty)$ and $\epsilon \in (0, 1)$. Then the event

$$\bigcap_{\lambda \ge 0.01} \left\{ FDP(\lambda) \ge q^* \left(TPP(\lambda) \right) - 0.001 \right\} \tag{3}$$

holds with probability tending to one.

FDR-Power trade-off (2)

Magnitude of noise

Thresholded LASSO (1)

Thresholded LASSO (2)

Thresholded LASSO (3)

