1H45

Examen de Rattrapage

Exercice 1 (6 pts):

On munit l'espace $E = C_b(\]0,1[\)$ des normes $\|.\|_1$ et $\|.\|_{\infty}$ et on pose $E_1 = (C_b(\]0,1[\), \ \|.\|_1)$ et $E_{\infty} = (C_b(\]0,1[\), \ \|.\|_{\infty}).$

Montrer que l'application $I: E_1 \to E_\infty$ définie par I(u) = u n'est pas continue.

Exercice 2 (7 pts):

Soit E un espace de Banach et F un espace normé.

Soit $(A_n)_{n\geq 1}\subset \mathcal{L}(E,\ F)$ une suite qui converge simplement vers A.

- Montrer que $(A_n)_{n\geq 1}$ est bornée.
- Montrer que $||A|| \leq \underline{\lim}_{n \to +\infty} A_n$.

Exercice 3 (7 pts):

Soit E et F deux espaces vectoriels normés, et A une application linéaire continue de E dans F i.e. $A \in \mathcal{L}(E, F)$. On définit l'application TA comme suit :

$${}^{T}A: F' \to E'$$
 $L \mapsto {}^{T}A(L): E \to \mathbb{R}$
 $x \mapsto {}^{T}A(L)(x) = L(Ax)$

E' (resp. F') est l'espace dual de E (resp. F). On posera $L(Ax) = \langle L, Ax \rangle$. Montrer que ^TA est une application linéaire continue. L'application ^TA s'appelle la transposée de A.

Exercice 4(7 pts):

Soit E un espace préhilbertien et A: $E \to E$ un opérateur symétrique. Montrer que si A est continu alors il existe une suite (u_n) de E telle que,

$$||u_n|| = 1$$
, $||Au_n - \lambda_1 u_n|| \to 0$, $||A||_{\mathcal{L}(E)} = |\lambda_1|$.

Ind. : Considérer une suite maximisante normalisée de $||A||_{\mathcal{L}(E)}$.

N. B.: Les exercices 3 et 4 sont au choix.

Examen de Rattrapage

Corrigé

Exercice 1 (6 pts):

On munit l'espace $E=C_b(\]0,1[\)$ des normes $\ \|.\|_1$ et $\ \|.\|_\infty$ et on pose

$$E_1 = (C_b(]0,1[), \|.\|_1) \text{ et } E_\infty = (C_b(]0,1[), \|.\|_\infty).$$

Montrons que l'application $I: E_1 \to E_\infty$ définie par I(u) = u n'est pas continue.

- 1. L'application I est évidemment linéaire. (2 pts)
- 2. I est continue si et seulement si,

$$\exists C > 0, \forall u \in E_1, \|I(u)\|_{\infty} \le C \|u\|_1.$$
 (p)

Nous voulons démontrer que I n'est pas continue, il suffit donc de trouver une fonction ou une suite de fonctions ne vérifiant pas (p).

Considérons la suite de fonctions $(u_n(x))_{n\in\mathbb{N}^*} \subset E$ définie par $u_n(x) = x^n$.

On a

$$||u_n||_1 = \int_0^1 |u_n(x)| \, dx = \int_0^1 x^n \, dx = \frac{1}{n+1}$$

et

$$||u_n||_{\infty} = \sup_{0 \le x \le 1} |u_n(x)| = \sup_{0 \le x \le 1} |x^n| = 1.$$

Nous avons bien, $||I(u_n)||_{\infty} = ||u_n||_{\infty} > ||u_n||_{1}$.

Et par suite l'application I n'est pas continue. (4 pts)

Remarque: Les fonctions u et v telles que $u(x) = e^x$, $v(x) = \cos(\pi x)$ sont aussi de bons contre-exemples.

Exercice 2 (7 pts):

Soit E un espace de Banach et F un espace normé.

Soit $(A_n)_{n\geq 1}\subset \mathcal{L}(E,\ F)$ une suite qui converge simplement vers A.

1. Montrons que $(A_n)_{n\geq 1}$ est bornée.

Pour tout $x \in E$, la suite $(A_n x)$ est convergente dans F vers Ax.

a. La suite $(A_n x)$ étant convergente, donc elle est bornée et d'après le théorème de Banach-Steinhauss $S \coloneqq \sup_{n>1} ||A_n|| < \infty$. (2 pts)

Examen de Rattrapage

1Н45

b. Montrons que A est linéaire.

Pour tous $\alpha \in \mathbb{R}$, $x, y \in E$ *nous avons*

$$A(x + \alpha y) = \lim_{n \to +\infty} A_n(x + \alpha y) = \lim_{n \to +\infty} (A_n x + \alpha A_n y)$$

D'où

$$A(x + \alpha y) = \lim_{n \to +\infty} A_n x + \lim_{n \to +\infty} \alpha A_n y$$
$$= \lim_{n \to +\infty} A_n x + \alpha \lim_{n \to +\infty} A_n y$$

et finalement

$$A(x + \alpha y) = Ax + \alpha Ay$$
, (1 pt)

A est donc linéaire.

c. Montrons que A est bornée (i.e. continue car linéaire).

Pour tout $x \in E$,

$$||Ax|| = \lim_{n \to +\infty} ||A_n x|| \le \underline{\lim_{n \to +\infty}} ||A_n|| \, ||x|| \le S||x||.$$
 (*)

Donc A est bornée (2 pts)

2. Montrer que $||A|| \leq \underline{\lim}_{n \to +\infty} A_n$.

D'après (*), il existe une constante $C = \underline{\lim}_{n \to +\infty} ||A_n|| < \infty$ telle que,

$$\forall x \in E \quad ||Ax|| \le C||x||$$

Donc $||A|| \le C = \lim_{n \to +\infty} ||A_n||$. D'où le résultat. (2 pts)

Exercice 3 (7 pts):

Soit E et F deux espaces vectoriels normés, et A une application linéaire continue de E dans F i.e. $A \in \mathcal{L}(E, F)$. On définit l'application TA comme suit :

$${}^{T}A: F' \to E'$$
 $L \mapsto {}^{T}A(L): E \to \mathbb{R}$
 $x \mapsto {}^{T}A(L)(x) = L(Ax)$

E' (resp. F') est l'espace dual de E (resp. F). On posera $L(Ax) = \langle L, Ax \rangle$.

1. Montrons que ${}^{T}A$ est une application linéaire (2 pts)

Soit $\alpha \in \mathbb{R}$, $L,J \in F'$. Pour tout $x \in E$, nous avons

$${}^{T}A(L + \alpha J)(x) = (L + \alpha J)(Ax) = L(Ax) + \alpha J(Ax)$$
$$= {}^{T}A(L)(x) + \alpha {}^{T}A(J)(x)$$

Donc ${}^{T}A(L + \alpha J) = {}^{T}A(L) + \alpha {}^{T}A(J)$, ${}^{T}A$ est linéaire.

Examen de Rattrapage

2. Montrons que ^TA est continue

Pour tous $L \in F'$, $x \in E$

$$\left| {^{T}A(L)(x)} \right| = |L(Ax)| \le ||L||_{F'} ||Ax||_{F} \le ||L||_{F'} ||A||_{\mathcal{L}(E,F)} ||x||_{E} \quad \textbf{(2 pts)}$$
 D'où

$$||TA(L)||_{F'} \le ||L||_{F'} ||A||_{\mathcal{L}(E,F)}$$
 (2 pts)

Par conséquent ^TA est continue et

$$\| TA \|_{\mathcal{L}(F',E')} \le \|A\|_{\mathcal{L}(E,F)}.$$
 (1 pt)

Exercice 4(7 pts):

Soit E un espace préhilbertien et $A: E \to E$ un opérateur symétrique. Montrons que si A est continu alors il existe une suite (u_n) de E telle que,

$$||u_n|| = 1$$
, $||Au_n - \lambda_1 u_n|| \to 0$, $||A||_{\mathcal{L}(E)} = |\lambda_1|$.

Puisque A est symétrique et continu alors

$$||A||_{\mathcal{L}(E)} = \sup\{|\langle Au, u \rangle|; u \in E, ||u|| = 1\}$$
 (1 pt)

Soit alors (u_n) une suite normalisée maximisante i.e.

$$||u_n|| = 1$$
 et $|\langle Au_n, u_n \rangle| \rightarrow ||A||_{\mathcal{L}(E)}$

On peut supposer que $\langle Au_n, u_n \rangle \to \lambda_1$ avec $||A||_{\mathcal{L}(E)} = |\lambda_1|$, (1 **pt**) (sinon pour une sous – suite de (u_n)).

Nous avons, puisque est symétrique,

$$||Au_n - \lambda_1 u_n||^2 = ||Au_n||^2 - 2\lambda_1 \langle Au_n, u_n \rangle + \lambda_1^2 ||u_n||^2$$
. (1 pt)

D'où

$$||Au_{n} - \lambda_{1}u_{n}||^{2} \leq ||A||_{\mathcal{L}(E)}^{2} ||u_{n}||^{2} - 2\lambda_{1} \langle Au_{n}, u_{n} \rangle + \lambda_{1}^{2} ||u_{n}||^{2} (2 pts)$$

$$= \lambda_{1}^{2} ||u_{n}||^{2} - 2\lambda_{1} \langle Au_{n}, u_{n} \rangle + \lambda_{1}^{2} ||u_{n}||^{2}$$

$$= 2\lambda_{1}^{2} - 2\lambda_{1} \langle Au_{n}, u_{n} \rangle \to 0, \qquad n \to \infty. \qquad (2 pts)$$

 $Donc \|Au_n - \lambda_1 u_n\| \to 0.$