Assignment 7 of MATP6610/4820

(Due on April-12-2019 in class)

Problem 1

Consider the Least Absolute Deviation (LAD) problem:

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1 \tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ are given. In class, we showed that the LAD problem is equivalent to

$$\underset{\mathbf{x} \in \mathbb{R}^n, \mathbf{z} \in \mathbb{R}^m}{\text{minimize}} \|\mathbf{z}\|_1, \text{subject to } \mathbf{A}\mathbf{x} - \mathbf{z} - \mathbf{b} = \mathbf{0}.$$
 (2)

The augmented Lagrangian function of (2) is

$$\mathcal{L}_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = \|\mathbf{z}\|_{1} + \mathbf{y}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{z} - \mathbf{b}) + \frac{\rho}{2}\|\mathbf{A}\mathbf{x} - \mathbf{z} - \mathbf{b}\|^{2},$$

where $\rho > 0$ is the penalty parameter, and $\mathbf{y} \in \mathbb{R}^m$ is the multiplier vector. The iterative update schemes of ADMM on solving (2) is

$$\mathbf{x}^{k+1} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}_{\rho}(\mathbf{x}, \mathbf{z}^k, \mathbf{y}^k), \tag{3a}$$

$$\mathbf{z}^{k+1} = \underset{\mathbf{z} \in \mathbb{R}^m}{\operatorname{arg \, min}} \, \mathcal{L}_{\rho}(\mathbf{x}^{k+1}, \mathbf{z}, \mathbf{y}^k), \tag{3b}$$

$$\mathbf{y}^{k+1} = \mathbf{y}^k + \rho(\mathbf{A}\mathbf{x}^{k+1} - \mathbf{z}^{k+1} - \mathbf{b})$$
 (3c)

- 1. Assume **A** has column full rank, i.e., $\mathbf{A}^{\top}\mathbf{A}$ is nonsingular. Give the closed-form solution of \mathbf{x}^{k+1} in the update (3a). The solution should involve the inverse of $\mathbf{A}^{\top}\mathbf{A}$.
- 2. Recall that we have derived the proximal mapping of $\lambda \| \cdot \|_1$ for any $\lambda > 0$ in class. Let's denote it as $\mathbf{prox}_{\lambda \| \cdot \|_1}$. Use the proximal mapping to derive a closed form solution of \mathbf{z}^{k+1} in the update (3b). In the solution, λ should be $1/\rho$.
- 3. Suppose $(\mathbf{x}^{k+1}, \mathbf{z}^{k+1}, \mathbf{y}^{k+1})$ is the output. At this point, give the violation of primal and dual feasibility.

4. Use the instructor's provided file ADMM_LAD.m to write a Matlab function ADMM_LAD with input \mathbf{A} , \mathbf{b} , initial vector $\mathbf{x}0$, stopping tolerance \mathbf{tol} , maximum number of iterations \mathtt{maxit} , and penalty parameter $\rho > 0$. Also test your function by running the provided test file $\mathtt{test_ADMM_LAD.m}$ and compare to the instructor's function. Print your code and the results you get.