

A Low-Cost **Education Platform** for Teaching Autonomous Physical Science

Logan Saar

Senior - Materials Science and Engineering, UMD (Isaar@umd.edu)

Ichiro Takeuchi, Gilad Kusne, Austin McDannald University of Maryland & NIST

CAMEO: Closed-Loop Autonomous Materials Exploration and Optimization

18 NYLAND 56

Discovered: New best-inclass phase change memory material

ScientificAI: built in phase map and XRD physics

10x acceleration over off-theshelf methods

Run at: SLAC

A mobile robotic chemist

Burger et al., Nature 583, 237 (2020)

Beyond Ternary OPV: High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems

- Blending/mixing or polymers/organic molecules
- Number of experiments can be significantly reduced

Burger, B., Maffettone, P.M., Gusev, V.V. et al. A mobile robotic chemist. Nature 583, 237–241 (2020)

Other Works

Stach, E., DeCost, B., Kusne, A. G., Hattrick-Simpers, J., Brown, K. A., Reyes, K. G., Schrier, J., Billinge, S., Buonassisi, T., Foster, I., Gomes, C. P. Gregoire, J. M., Mehta, A., Montoya, J., Olivetti, E., Park, C., Rotenberg, E., Saikin, S. K., Smullin, S., ... Maruyama, B. (2021). Autonomous experimentation systems for materials development: A community perspective. Matter, 4(9), 2702-2726. https://doi.org/10.1016/j.matt.2021.06.036

Low Cost Autonomous Physical Science System

Construction

Lego Mindstorm Components

Aluminum Frame

Synthesis Capabilities

X - Y - Z mobility

Syringe for sample collection / deposition

Measurement Capabilities

Arduino electrochemical pH probe (voltage readings)

\$30

Setup and Control

Python Script

Arduino pH meter/USB

PC/Robot BT connection

Exploring pH of Buffer Solutions

Composition Space

Weak Acid - Acetic Acid - 1 M Conjugate Base - Sodium Acetate Solution - 1 M

Goal

Recover Henderson-Hasselbalch Equation.

Henderson-Hasselbalch (HH) Equation:

Response Variable (measured)

Dissociation Constant (unknown to robot)

Active Learning Closed Loop System

https://www.youtube.com/watch?v=UI9sx29vAXE&t=1s

Educational Application (Fall 2021 ENMA 437/637)

UMD Machine Learning for Materials Science Course

- 3 working systems
- Teams of 5 students
- Buffer Solution pH
 - Gaussian Process
 - Explore pH as f(composition)
- Iodine Clock

Model Determination

Can the Robot Determine the Physical Law by Itself?

- 1. Fit multiple functional forms to the data ("Candidates")
- (sinusoidal, power function, logarithmic, exponential, quadratic, etc.)
- Non-linear least squares regression

$$x = [Acid]/[Base]$$

What is the correct form?

Alter parameters to get best fit

2. Create PDF for each candidate at every composition

- (std. of PDF given by std. of residuals)
- Better models have narrow distributions, Worse are broad

3. Rank the likelihood that each candidate model produced the data

Performance Metric for each candidate is the sum of log(likelihood) along every collected data point

Yes, it did!

4. Determine which composition to measure next

- Look for composition where candidate predictions differ the most
- Weight "better" candidates more (Entropy of Cumulative Dist.)

After 5 measurements:

Top Ranked Model pH = 4.753 + 1.02 * log [A/B]

Acetic Acid HH Equation: pH = 4.756 + 1.00 * log [A/B]

Summary

Closed Loop Autonomous Science System

- → Educational Tool
- → Low-cost
- → Modular
- → Materials Exploration

Used Gaussian Processes to explore pH as function of composition

- → Flexible model
- → Explore other active learning methods ...

Acknowledgments

Dr. Ichiro Takeuchi, PhD - UMD

Dr. Gilad Kusne, PhD - NIST

Dr. Austin McDannald, PhD - NIST

Alex Wang - UMD

Haotong Liang – UMD

SURF Program – NIST

MRS

Email - Isaar@umd.edu

References

Burger, B., Maffettone, P.M., Gusev, V.V. *et al.* A mobile robotic chemist. *Nature* 583, 237–241 (2020). https://doi.org/10.1038/s41586-020-2442-2

De Levie, R. (2003). The Henderson-hasselbalch equation: Its history and limitations. Journal of Chemical Education, 80(2), 146. https://doi.org/10.1021/ed080p146

Gerber, L. C., Calasanz-Kaiser, A., Hyman, L., Voitiuk, K., Patil, U., & Riedel-Kruse, I. H. (2017). Liquid-handling Lego robots and experiments for STEM education and research. PLOS Biology, 15(3), e2001413. https://doi.org/10.1371/journal.pbio.2001413

Questions

Appendix

- 4. Calculate the Entropy of the GMM at every composition
- probability = (area under GMM likelihood curve)

Entropy (S) =
$$-\sum_{pH_2} (p \log p)$$

Probability (p) = $\int_{pH_1} (GMM)d(pH)$

4. Create a cumulative distribution of all PDFs at each composition

Normal distribution of predicted pH for each potential % Acid composition

Active Learning:

- → Acquisition Function
- → argmax (variance)
- → Optimization initiative
- → Scheduling of initiatives

GP flexibility - (Gaussian Process)

HH equation relies on assumptions

- → No self-ionization of water
- → Valid only in certain composition range
- → Our pKa ~ 4.7

GP flexibility - (Gaussian Process)

↑↑ % error in HH simplification ...

HH equation relies on assumptions

- → No self-ionization of water
- → Valid only in certain composition range
- → pKa ~ 4.7

Bayesian Inference

Parameter Refinement

Brief Overview - Bayesian Machine Learning

Probabilistic interpretation ... quantifying **uncertainty** (how confident are we?)

Bayes Theorem P (model | data) = $P(\text{data} \mid \text{model}) P(\text{model})$ P(data)

Brief Overview - Bayesian Machine Learning

Probabilistic interpretation ... quantifying **uncertainty** (how confident are we?)

Bayes Theorem

Our confidence in this model being "correct" given the data (what we want to know) Our confidence in this model being "correct" before getting data (assumption)

Prior: Assume model has logarithmic form (pH = A + B*log(C*x))

→ A, B, C are our model parameters

Posterior: Probability of this model and its model parameters given the data

Assume the model has a certain form

Create parametric model with **model parameters** ... (ex: model = A + B * x)

Problem: How to identify combination of parameters where posterior probability for model is greatest (i.e. best model?)

Solution: Sample posterior distribution in parameter space using Markov Chain Monte Carlo (**MCMC**) method

MCMC samples parameter space to find maxima in posterior (best model)

Autonomous Results - (Bayesian Inference)

Autonomous Results - (Bayesian Inference)

The Next Steps:

For pH Measurement Setup

- → Parameter Refinement
- → Hypothesis Testing
 - → Bayesian methods
 - → Filter between candidate functions

Other Applications (Educational Tool)

- → Camera attachment
 - Learn color mixing trends

Brief Overview - Bayesian Machine Learning

New data alters our prior beliefs → posterior beliefs

Produces **posterior distributions** for each **model parameter**

Example:

Represent confidence in parameter values

Active learning: [Parameter Refinement] → argmax (variance in model)