기계학습 (Machine Learning)

L07

- Multiclass Classification

한밭대학교

정보통신공학과

최 해 철

ToC

- **♦** Activation Functions
- ◆ Multiclass Classification
- ◆ Softmax Classification

Activation Function

오일석, 기계학습, 3.3.2 활성함수

Linear Classification

Perceptron with Step Function

Logistic Regression with Logistic Sigmoid Function

Logistic regression은 추후 학습 예정

$$h_{\mathbf{\theta}}(\mathbf{x}) = \tau(w_1 x_1 \dots + w_d x_d + b)$$
$$= \tau(\mathbf{w}^T \mathbf{x} + b) = \hat{y} = o$$

$$\tau(z) = \frac{1}{1 + e^{-z}}$$

+

56

231

24

b

-96.8

 9.12×10^{-43}

 $y \in (0, 1)$

Activation Functions

$$h_{\mathbf{\theta}}(\mathbf{x}) = \tau(w_1 x_1 \dots + w_d x_d + b)$$
$$= \tau(\mathbf{w}^T \mathbf{x} + b) = \hat{y} = o$$

그림 3-13 퍼셉트론의 공간 분할 유형

(a) 계단함수의 딱딱한 공간 분할

수 (b) 로지스틱 시그모이드

(b) 로지스틱 시그모이드의 부드러운 공간 분할

Perceptron

Logistic regression

Activation Functions

- ◆ 딱딱한hard 공간 분할과 공간 분할
 - 계단함수는 딱딱한 의사결정(영역을 점으로 변환). 나머지 활성함수는 부드러운 의사결정(영역을 영역으로 변환)

그림 3-12 신경망이 사용하는 활성함수

Activation Function

- ◆ 신경망이 사용하는 다양한 활성함수
 - 로지스틱 시그모이드와 하이퍼볼릭 탄젠트는 s가 커질수록 계단함수에 가까워짐
 - 모두 1차 도함수 계산이 빠름 (특히 ReLU는 비교 연산 한 번)
 - 퍼셉트론은 계단함수, 다층 퍼셉트론은 로지스틱 시그모이드와 하이퍼볼릭 탄젠트, 딥러닝은 ReLU를 사용

표 3-1 활성함수로 사용되는 여러 함수

함수 이름	함수	1차 도함수	범위
계단	$\tau(s) = \begin{cases} 1 & s \ge 0 \\ -1 & s < 0 \end{cases}$	$\tau'(s) = \begin{cases} 0 & s \neq 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-1과 1
로지스틱 시그모이드	$\tau(s) = \frac{1}{1 + e^{-as}}$	$\tau'(s) = a\tau(s)\big(1 - \tau(s)\big)$	(0,1)
하이퍼볼릭 탄젠트	$\tau(s) = \frac{2}{1 + e^{-as}} - 1$	$\tau'(s) = \frac{a}{2}(1 - \tau(s)^2)$	(-1,1)
소프트플러스	$\tau(s) = \log_e(1 + e^s)$	$\tau'(s) = \frac{1}{1 + e^{-s}}$	(0, ∞)
렉티파이어(ReLU)	$\tau(s) = \max(0, s)$	$\tau'(s) = \begin{cases} 0 & s < 0 \\ 1 & s > 0 \\ $	[0, ∞)

Multiclass Classification

Binary Classification vs. Multiclass Classification

Binary Classification

훈련 집합: $\{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), ..., (\mathbf{x}^{(n)}, y^{(n)})\}$

$$\mathbf{x}^{(i)} =$$

Multiclass Classification

훈련 집합:
$$\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}$$

$$\mathbf{x}^{(i)} = \begin{bmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \dots \\ x_d^{(i)} \end{bmatrix} \quad \mathbf{y}^{(i)} = \begin{bmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \dots \\ x_d^{(i)} \end{bmatrix}$$

Multiclass Classification

- ◆ Multiclass (Multinomial) Classification
 - 세 개 이상의 클래스로 분류하는 문제
 - 출력이 범주형(categorical)
 - 라벨은 더 이상 binary가 아니며, 다중 명목형(Multinomial)이다.: e.g. *y* ∈ _______
 - Nominal data: 범주 간에 순서나 순위가 없음. 범주 간 동등 관계 (L05에서 다룸)

1/	O	1	44	0	00	77	3	5	3
	_							77	
8	6	22	Ø	22	3	6	99	99	77
8	99	H	99	2	ا۱	3 3	I_1	1/	4
${}_{9}\mathcal{I}$	1	4	4	2	66	33	7	7	44
77	5	₁ l	99	0	2	2	3	99	1
								1	
								44	
								9	
35	6	44	6	a	97	1/	2	0	5

	color	size	price	classlabel
0	green	2	10.1	class1
1	red	3	13.5	class2
2	blue	5	15.3	class1

Review L05) One-Hot Encoding

One-Hot Encoding

♦ One-Hot Encoding in ML

- \bullet k 번째 class의 target vector를 k 번째 자리는 1, 나머지는 0이 되도록 설정
- <u>cross entropy</u> 계산에 적합해 짐 (추후 cross entropy 학습 예정)
 - Target *y*의 원소들의 합이 1이 되므로 각 원소를 그 class의 정답<u>확</u> 로 볼 수 있다.

Index	Job		One hot encoded data							
1	Police]	1	0	0	0	0]	
2	Doctor		[0	1	0	0	0]	
3	Student		[0	0	1	0	0]	
4	Teacher		[0	0	0	1	0]	
5	Driver		[0	0	0	0	1]	

- ◆ One-versus-Rest (One-versus-All) Method
 - ullet 이진 분류기 c 개를 독립적으로 사용하여 class k와 나머지 c-1 개 class를 분류 ______
 - ullet Class k에 대한 이진 분류기를 h_k 라 하면, $h_k(\mathbf{x})$ 가 가장 큰 값을 갖는 k로 분류함

- ◆ One-versus-Rest (One-versus-All) Method
 - 이진 분류기 c 개를 독립적으로 사용하여 class k와 나머지 c-1 개 class를 분류 (1:c-1)
 - ullet Class k에 대한 이진 분류기를 h_k 라 하면, $h_k(\mathbf{x})$ 가 가장 큰 값을 갖는 k로 분류함

- ◆ One-versus-Rest (One-versus-All) Method
 - 이진 분류기 c 개를 독립적으로 사용하여 class k와 나머지 c-1 개 class를 분류 (1:c-1)
 - ullet Class k에 대한 이진 분류기를 h_k 라 하면, $h_k(\mathbf{x})$ 가 가장 큰 값을 갖는 k로 분류함

- ◆ One-versus-Rest (One-versus-All) Method
 - 필요한 이진 분류기의 개수: *c* 개
 - 각 이진 분류기에 대해 <u>현리합의 불교형</u>을 일으킴 (class k 샘플수 ≪ 나머지 샘플수)

$$\hat{k} = \arg\max_{k} h_k(\mathbf{x})$$

- ◆ One-versus-One Method
 - ullet 이진 분류기 $\mathbf{C}(c,2)$ 개를 독립적으로 사용하여 class k 와 class l 을 분류 $\frac{1:1}{l}$

$$C(c,2) = \frac{c!}{(c-2)! \, 2!} = c(c-1)/2$$

● 가장 많은 이진 분류기가 선택(투표)한 class를 최종 결과로 결정

 $h_{(k,l)}(\mathbf{x})$: Class k와 l을 비교하는 이진 분류기

$$h_{(1,2)}(\mathbf{x}) = \mathbf{2}$$
 voting $h_{(1,3)}(\mathbf{x}) = \mathbf{3}$ $\mathbf{2}$ $h_{(2,3)}(\mathbf{x}) = \mathbf{2}$

- ◆ One-versus-One Method
 - 이진 분류기 C(c,2)개를 독립적으로 사용하여 class k 와 class l 을 분류 (1 : 1)

•
$$C(c,2) = \frac{c!}{(c-2)! \, 2!} = \frac{c(c-1)}{2}$$

- 가장 많은 이진 분류기가 선택(투표)한 class를 최종 결과로 결정
 - Class k와 l 비교하는 이진 분류기를 $h_{(k,l)}(\mathbf{x})$ 라 하자.
 - $h_{(k,l)}(\mathbf{x})$ 가 class $k(\mathfrak{L} = l)$ 를 출력하면, class $k(\mathfrak{L} = l)$ 에 한 표를 추가.
 - C(c, 2)개 이진 분류기에 대해 가장 많은 표를 획득한 class를 최종 결과로 결정
 - ✓ 최대 표의 개수: c-1
 - ✓ 비유) 야구나 축구 리그에서 가장 승리를 많이 한 팀이 우승

- ◆ One-versus-One Method
 - 훈련집합의 불균형을 일으키지않음 _____: class k 샘플수 ≈ class l 샘플수
 - 사용되는 이진 분류기의 개수: c(c-1)/2 → c^2 에 비례: 높은 training/testing 복잡도

 $h_{(k,l)}(\mathbf{x})$: Class k와 l을 비교하는 이진 분류기

$$h_{(1,2)}(\mathbf{x}) = \mathbf{2}$$
 voting $h_{(1,3)}(\mathbf{x}) = \mathbf{3}$ $\mathbf{2}$ $h_{(2,3)}(\mathbf{x}) = \mathbf{2}$

Softmax Classification

Motivation

◆ (-∞, ∞)의 출력값(logit)을 다중 클래스 분류기를 위한 확률로 변환할 수 없을까?

What we want in the output layer
 conditional probabilities

Sigmoid activations in the output layer
: do __Not __ sum up to 1

Motivation

- ◆ (-∞, ∞)의 출력값(logit)을 다중 클래스 분류기를 위한 확률로 변환할 수 없을까?
 - Softmax activations in the output layer
 - **do** sum up to 1
 - Suits well to Cross-Entropy Loss
 - ✓ 출력벡터의 원소들의 합이 1이 되므로 각 원소를 그 class의 확률 추정치로 간주
 - ✓ Cross-Entropy Loss (L08에서 학습 예정)

Softmax Function

- **◆** Softmax Function
 - \bullet K개의 실수 값을 갖는 입력 벡터 s에 대해, K개의 확률을 갖는 확률 분포로 정규화

$$\tau: \mathbb{R}^K \to (0,1)^K$$

$$\tau(s_k) = \frac{e^{s_k}}{\sum_{k=1}^K e^{s_k}}$$

for i = 1, 2, ..., K and $\mathbf{s} = (s_1, s_2, ..., s_K) \in \mathbb{R}^K$

X

출력벡터의 원소들의 합이 이 1인 확률: $\sum au(s_k)=1$

$$\sum_{k=1}^{K} \tau(s_k) = 1$$

 $\tau(\mathbf{s})$ S

문헌에 따라 τ 대신 σ 를 사용

Want to interpret raw classifier scores as **probabilities**

cat

3.2

car

5.1

frog

-1.7

 S_k

Want to interpret raw classifier scores as probabilities

$$o = f(x_i; W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Probabilities must be >= 0

 cat
 3.2
 24.5

 car
 5.1 → 164.0

 frog
 -1.7
 0.18

unnormalized probabilities

$$S_k$$
 e^{S_k}

Want to interpret raw classifier scores as probabilities

$$o = f(x_i; V)$$

Probabilities

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

must be $\geq = 0$

24.5

normalize

Probabilities must sum to 1

cat car frog

3.2 5.1

-1.7

 S_k

exp 164.0

0.18

unnormalized probabilities

 e^{Sk}

0.87

0.13

0.00

probabilities

$$\frac{e^{s_k}}{\sum_{k=1}^K e^{s_k}}$$

감사합니다.