$$\iint_{\mathbb{R}} (1-x^2-y^2) dS, \, \Re I(t) \, \text{$t>0$ } \text{L in \mathbb{R}}.$$

总习题 12

1. 计算下列第一型曲线积分.

(1) $\int_{L} xyz \, ds$. 其中 L 为曲线 x = t, $y = \frac{2\sqrt{2t^3}}{3}$, $z = \frac{1}{2}t^2$ 上相应于 t 从 0 变到 1 的一段弧;

- (2) $\int x^2 ds$, 其中 L 为球面 $x^2 + y^2 + z^2 = a^2$ 和平面 x + y + z = 0 的交线
- (3) $\int |y| ds$,其中 L 为双紐线 $(x^2 + y^2)^2 = a^2(x^2 + y^2)$ 的弧.
- (4) 设曲线 $C: x^2 + xy + y^2 = a^2$ 的长度为 l, 计算 $\int \frac{a \operatorname{sine}^x + b \operatorname{sine}^y}{\operatorname{sine}^x + \operatorname{sine}^y} ds$.
- 2. 求曲面 $z = \sqrt{x^2 + y^2}$ 包含在圆柱面 $x^2 + y^2 = 2x$ 内的那一部分面积.
 - 3. 求平面x+y=1上被坐标面与曲面z=xy截下的在第一卦限部分的面积
- 4. 求曲线 $x = a(t \sin t), y = a(1 \cos t)(0 \le t \le 2\pi), (1)$ 绕 x 轴; (2) 绕 y
- 轴;(3) 绕直线 y=2a 旋转所成旋转曲面的面积,其中 a>0.
 - 5. 求平面曲线 $x^2 + (y-b)^2 = a^2(b \ge a)$ 绕 x 轴所构成的环(轮)面的面积
 - 6. 设 Σ 为椭球面 $\frac{x^2}{2}+\frac{y^2}{2}+z^2=1$ 的上半部,点 $p(x,y,z)\in\Sigma$, π 为 Σ 在点 p(x,y,z)

处的切平面, $\rho(x,y,z)$ 为点 O(0,0,0) 到平面 π 的距离,求 $\int_{\mathbb{Z}} \frac{z}{\rho(x,y,z)} \mathrm{d}S$.

7. 计算第一型曲面积分
$$I = \iint_{S} \frac{1}{\sqrt{x^2 + y^2 + (z - \frac{a}{2})^2}} dS$$
, 其中 $S: x^2 + y^2 + z^2 = 1$

 $a^2, a > 0.$

3.
$$\frac{4}{3}\pi\rho_0 a^4$$
.

4.
$$\frac{2\pi(1+6\sqrt{3})}{15}$$
.

5. (1)
$$\left(\frac{4a}{3\pi}, \frac{4a}{3\pi}, \frac{4a}{3\pi}\right)$$
; (2) $\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)$.

6.
$$I_{\text{max}}(t) = I(1) = \frac{2}{15} [(8\sqrt{2} - 7)\pi].$$

总习题 12 答案与提示

1. (1)
$$\frac{16\sqrt{2}}{143}$$
; (2) $\frac{2}{3}\pi a^3$; (3) $2a^2(2-\sqrt{2})$; (4) $\frac{1}{2}(a+b)l$.

$$2.\sqrt{2}\pi$$
.

$$3.\frac{\sqrt{2}}{6}$$
.

4. (1)
$$\frac{64}{3}\pi a^2$$
; (2) $16\pi^2 a^2$; (3) $\frac{32}{3}\pi a^2$.

5.
$$4\pi^2 ab$$
.

6.
$$\frac{3\pi}{2}$$
.

7.
$$I = 4\pi a$$
.

习题 13.1 答案与提示

(A)

1. (1)
$$-\frac{56}{15}$$
; (2) $a^2\pi$; (3) $-\frac{\pi}{2}a^3$; (4) 0; (5) $\frac{1}{2}$; (6) 13.

2. (1)
$$\frac{34}{3}$$
; (2) 11; (3) 14; (4) $\frac{32}{3}$.

3.
$$\vec{F} = k \sqrt{x^2 + y^2} \left(\frac{-x}{\sqrt{x^2 + y^2}}, \frac{-y}{\sqrt{x^2 + y^2}} \right) = (-kx, -ky)(k > 0), \quad W = \frac{k}{2} (a^2 - b^2).$$

4. 力的三个分力为
$$P = -\frac{k}{z} \frac{x}{r}$$
 , $Q = -\frac{k}{z} \frac{y}{r}$, $R = -\frac{k}{z} \frac{z}{r}$. $W = \frac{-k}{c} \sqrt{a^2 + b^2 + c^2} \ln 2$.

1. (1)
$$\frac{\sqrt{2}}{16}\pi$$
; (2) -4.

3.
$$\xi = \frac{a}{\sqrt{3}}, \eta = \frac{b}{\sqrt{3}}, \zeta = \frac{c}{\sqrt{3}}$$