Copia della traccia da conservare a cura dello studente

POLITECNICO DI BARI

Corso di Laurea in Ing. Elettronica e delle Telecomunicazioni (DM 270) Fondamenti dei Sistemi Operativi (6 CFU)

Corso di Laurea in Ing. delle Telecomunicazioni (DM 509)
Sistemi Operativi (6 CFU)

Corso di Laurea in Ing. Elettronica e delle Telecomunicazioni (DM 270) Sistemi Operativi (9 oppure 12 CFU -> orale integrativo)

Tempo totale a disposizione: 60 minuti.

QUESITI & ESERCIZI (max 26 punti)

max 2 punti/quesito/esercizio salvo altrimenti specificato

IMPORTANTE

I partecipanti a questa prova scritta sono invitati, <u>nell'elaborato da consegnare</u>, a **specificare** le informazioni richieste <u>relative</u> all'esame previsto dal proprio corso di studi.

RACCOMANDAZIONI

- curare la correttezza e l'appropriatezza del linguaggio e della grafia adoperati;
- evitare inutili e non richieste lungaggini delle risposte, formulando <u>risposte comprensibili, concise e compendiose</u>;
- giustificare il <u>perché delle asserzioni formulate</u>;
- <u>attenersi rigorosamente a quanto richiesto;</u>
- non trascurare di dare risposta ad <u>eventuali richieste multiple</u> contenute nei quesiti/esercizi;
- Scrivere un comando che inserisca in append al file date_esami la riga:

Appello 30 apr 2013

- 2) Nella current working directory è contenuto il file fileA con ACL: -rwxr--r-. Scrivere un comando per creare nella cwd un hard link di nome fileAlink al file fileA e descrivere la relativa ACL. Si scriva infine un comando per rinominare il file fileA in fileA rn.
- 3) Il file di testo **text.txt** contiene le seguenti parole:

casa

cane

gatto

volpe

Indicare l'output del seguente comando

tail -n +2 text.txt| grep 'a'| sort -r

- 7) Come è possibile proteggere il sistema operativo e i singoli programmi da un programma che commette errori e cosa implica dal punto di vista dell'hardware di un computer?
- 8) Perché è importante separare la politica dal meccanismo. Qual è l'architettura di SO che porta all'estremo tale separazione e perchè? (4 punti)
- 9) Qual è la differenza tra "link simbolico" e "hard link"? E cosa comporta un hard link?
- 4) Scrivere un comando UNIX per visualizzare in ordine alfabetico i file contenuti nella directory corrente e produrre il risultato nel file di nome fileA nella root directory.
- 5) Si scriva cosa si intende per *runlevel*, un comando per visualizzare il valore del *runlevel* corrente e un comando per riavviare il sistema.
- 6) Specificare qual è la caratteristica di una linea di interrupt "mascherabile" e quale dispositivo può disabilitarla?
- 10) Si consideri un file system UNIX-like. Si supponga che esso allochi 16 cluster per volta. Si determini da quanti cluster sarà composto in totale il file dopo aver effettuato Y0000 operazioni di scrittura, assumendo che i singoli cluster di indirezione vengano allocati solo all'occorrenza.
- 11) Si consideri un disco fisso costituito da 2S0 cilindri, 40 tracce per cilindro e 50 blocchi per traccia. Quali saranno le coordinate fisiche dell'elemento che occupa la posizione 2T000 della *linked list*?

12) Considerato il seguente sistema, si determini la matrice Need. Se il processo P3 richiede 2 risorse di tipo C, il sistema transiterà in uno stato sicuro? Spiegare perché.

Alloc.	Max	Available
A B CD	ABCD	ABCD
$P_0 \ 0 \ 0 \ 0 \ 2$	0 0 1 2	1 5 2 0
$P_1 \ 1 \ 1 \ 0 \ 0$	1 7 5 0	
P ₂ 1 3 2 4	23 Y 6	
$P_3 \ 0 \ 3 \ 2 \ 2$	0 X 4 2	
P ₄ 0 0 1 4	06 56	

13) Si assuma che lo scheduling della CPU avvenga secondo il merito e che, al termine di un intervallo ΔT , i processi abbiano i seguenti valori di merito:

$$\begin{array}{llll} P1=0.X4 & P2=0.7S & P3=0.66 & P4=0.54 & P5=0.33 \\ P6=0.S7 & P7=0.59 & P8=0.Y8 & P9=0.91 & P10=0.63 \\ Quale sarà, in ordine crescente di priorità, la successione dei processi nella coda? \end{array}$$

14) In cosa consiste il modello ISO/OSI di riferimento dei protocolli di rete, quali sono i suoi componenti e quale, <u>in breve</u>, la funzione principale di ciascun componente?

15) Ipotizzando un algoritmo di disk scheduling di tipo LOOK per un HD costituito da 300 cilindri e supponendo che le testine siano posizionate sul cilindro 1XY, che il verso di spostamento sia verso cilindri "alti" e che si abbia una coda di richieste per i seguenti cilindri:

si determini la successione di servizio delle richieste e si stabilisca il tempo di seek complessivo sapendo che il tempo minimo di seek è di 0,1 msec.

- 16) Qual è lo scopo della Remote Procedure Call e qual è lo schema di funzionamento relativo?
- 17) Se il PAGE file o SWAP file di un sistema a memoria virtuale è costituito al massimo da 1T Gb, quanti saranno i bit di un indirizzo virtuale?
- 18) Perché, oltre al semaforo, si rende necessario prevedere il monitor come meccanismo di sincronizzazione?

AFFERMAZIONI (max 4 punti)

Si considerino le seguenti affermazioni.

Si barri la casella "Sicuramente Vera" (SV), se si è sicuri che l'affermazione è vera.

Si barri, invece, la casella "Sicuramente Falsa" (SF), se si è sicuri che l'affermazione è falsa.

Per ogni risposta corretta 1 punto. Per ogni risposta errata -1 punto. Le affermazioni senza risposta comportano 0 punti.

	Affermazione	
1.	La cache è un esempio di memoria non volatile.	
2.	Un calcolatore condivide la memoria tramite un bus comune.	
3.	La durata dei burst di CPU è caratterizzata da una curva di tipo logaritmico.	
4.	Il numero di operazioni per decidere se uno stato è sicuro è dell'ordine di m*n² se m è il numero dei tipi di risorse e n il numero dei processi.	
5.	Un ciclo in un grafo di allocazione risorse è condizione necessaria ma non sufficiente per un deadlock nel caso che ogni risorsa abbia più di una istanza.	
6.	Uno stato non sicuro non è necessariamente uno stato esente da deadlock.	

Elaborato da consegnare al termine della prova

PO	POLITECNICO DI BARI Specificare: Corso di Laurea in		rea in	DM CFU _	
(Cognome:	; Nome:		; matricola:	
		Quesiti	ed Esei	<u>rcizi</u>	
Dov	vunque appaiano, utilizzare i seguenti	valori delle variabili ir	ndicate neg	ili esercizi.	
Y = Z = W = S =	(numero di lettere che compongono i (numero di lettere che compongono i 1 se X è pari; Z = 0 se X è dispari; = 1 se Y è pari; W = 0 se Y è dispari (penultima cifra del numero di Matricola (ultima cifra del numero di Matricola	1 1° Nome) - 2.	Z = W = 0	(max 9); ; ; ; ;	
1)	Scrivere un comando che inserisca	n append	7)	Come è possibile proteggere	
<i>2) 3)</i>	Nella current working directory è co		8)	Perché è importante separare	
			9)	Qual è la differenza tra "link simbolico" .	
4)	Scrivere un comando UNIX				
5)	Si scriva cosa si intende per runleve	1	10)	Si consideri un file system UNIX-like	
6)	Specificare qual è la caratteristica d	i	11)	Si consideri un disco fisso costituito	

12)	Considerato il seguente sistema,	15)	Ipotizzando un algoritmo di disk scheduling
10)		16)	Qual è lo scopo della Remote Procedure Call
13)	Si assuma che lo scheduling		
		17)	G TRACE CL. GWAR CL
		1/)	Se il PAGE file o SWAP file
14)	In cosa consiste il modello ISO/OSI		
		18)	Perché, oltre al semaforo, si rende necessario

Affermazioni

Si considerino le seguenti affermazioni.

Si barri la casella "Sicuramente Vera" (SV), se si è sicuri che l'affermazione è vera.

Si barri, invece, la casella "Sicuramente Falsa" (SF), se si è sicuri che l'affermazione è falsa.

Per ogni risposta corretta 1 punto. Per ogni risposta errata -1 punto. Le affermazioni senza risposta comportano 0 punti.

	Affermazione	SV	SF
1.	La cache è un esempio di memoria non volatile.		
2.	Un calcolatore condivide la memoria tramite un bus comune.		
3.	La durata dei burst di CPU è caratterizzata da una curva di tipo logaritmico.		
4.	Il numero di operazioni per decidere se uno stato è sicuro è dell'ordine di m*n² se m è il numero dei tipi di risorse e n il numero dei processi.		
5.	Un ciclo in un grafo di allocazione risorse è condizione necessaria ma non sufficiente per un deadlock nel caso che ogni risorsa abbia più di una istanza.		
6.	Uno stato non sicuro non è necessariamente uno stato esente da deadlock.		