Memory Organization

Homogeneous Multiceres

U				
	proc	proc		level 1 instr- Sprate level 1 data Sprate
,				level 1 data 5
1-4 cycle latery >	L1-I L1-D	L1-I	L1-0	
1-4 cycle latery > 8-64 KiB	1 -1-0	2-1	C3-9	
(4-12)-way set assoc.	12		2	-unified (instr. + data)
/ ,		_	2	private
	,	2		12-14 cycle lateray
shared >	L->			256-512 KiB
26-64 cycle latera	0		Day	8-way set assuc.
4-8 Mib/core.	(ga) = 0		2144.1	
(16-24)-way set ass	or.	m e-a		
	men memory (BRAM)			\rightarrow 100-300 cycle
	Cult	v4m()		→100-300 cycle latercy

(doubling cache size typically reduces Zomiss by VZ)

Inclusivity Options
(1) inclusive Li C Liti Li A Lite = Ø (2) exclusive Li 1 Litt # Ø (3) non-inclusive Inclusive Caches - make cache techerency easier inner eaches (e.g. LI + LZ) then only outer cache need participate in the coherency pretycol (such MESI) - the 13 would still communicate invalidates to the inner - inclusive caches reduce total starage due to displication Intel: L2 non-inclusive, L3 inclusive AMD: L2 inclusive, L3 non-inclusive Lockys-free - when a request misses, it is added to a Miss Status Holding Register (MSHR) and the request is forwarded to the next text - the # MSHR entres determines max outstanding requests
- lockys-free behaviour is important for out-of-order

processors and for shared caches

Increasing Cache Bardwidth	
1) pipelined operations: TLB check, tag read, tag tag compare, data read - latera may be 4+ cycles but throughput is 1 reque	
- latera may be 4+ cycles but throughput is 1 reque	3t/
2) clock cache faster than core - only for slow cores	7
(3) for instructions had multiple hytes/instr. per ac	wes.
(3) for instructions wad multiple hytes/instr. per access e.g. x86 fetches 16-32 B of instr. per access (instructions are 1-15 B)	
(4) multiported cache - dual connectorus to each bit cell	
- cells increases from 6T/cell to 8T/cell - latercy also increases	
- Latercy 13 okay for an FPGA ()	
inglementation since the clark request > resp	wrse
(3) duplicated cache storage	3
- increases size but not write -	
- only good for small read - copy 2 - caches	
caches	

Itents VS Banks - consider C cores and N banks or parts
- assume round-robin access to memories and heavy C1 C2 C3 C4 C1 C2 C3 C4 men access Rim

Ca C2 C3 C4 C1 C2 C3 C4 men accesses from

Care 4

Laterry = C

Same bank

-multiported (multiple accesses to same memory) $N \ge C, \text{ latercy } = 1$ $N \angle C, \text{ latercy } = C/N$

- multibanked

- also assume requests are uniformly and
independently distributed*

- probability of a conflict for a pair of
requests = 1/N

- arg latercy = 1 + (C-1)N I fin 1 core's conflocts with other request cloves' requests

C/N < I + C+1
multiparted multiparted

better performance from multipertury except that it alds latera to every requests

DRAM

- main memory - dynamic RAM - large and slow - has been multibanked since 1st gen. DDR

- Hardouts > dram Handout

256 Mib: 8192 rows × 8192 b/ron (w24 8-54 col/row)

- Operation: (within a bank).

Activate: opens a row
Read write: dolumns in the open row
Pretharge: closes the open row and pre-charges the
bit lines to Vdd/2 to prepare for next Activate

- DDR3: precharge + activate takes 30-40 ydes, column read/writes take ~ 4 cycles - performance/throughput 13 affected by the # of open/dose eperatrons

DRAM Configurations

1) Interleaved: each 1E spreads its data across all banks

con	Bank 1	Bank 2	Bank 3	Bank 4
0	0-1999	2000-38fff	4000 - 58ff	6000-7FFF
12	8000-9 AA			
2				P.

(assume 8 KiB/row)

- see Bank Configuration & handout

(7)

Micron 256Mb DDR Datasheet

Bank Configuration

Interleaved

Partitioned

	-	Bank 1	Bank 2	Bank 3	Bank 4
PE#1 data	5				
data					
.					
PE#2	}				
	1				

- Interleaved: PES accessing different rows in the same banks will cause excessive open close operations

(2) Partitioned

-see hardont

- Pach PE has fewer open rows (had optim for a single come PE) - limits parallelism around available to a single PE but reduces conflicts between PEs

Study: Impact of Bank Partitioning
Hardauts > drambandout - second page
- study performed with SPEC2006 benchmark programs
- total banks = 16
- Buddy = Linux VM memory allocator
- IPC = instructions per cycle (performance)

- Solo Application
 per formance impact of partitioning was mostly
 small (normalized speedup ~ 0.6 to 1)
 depends on the clustering/spread of accesses
 - Co-run Applications
 PB + PC = partitioned mem. hants + partitioned cache
 greater impact on performance (speedup ~ 1-1.6)

Impact of Bank Partitioning on a Solo Application on 1 Core of a 4-Core Xeon (other cores idle)

Impact of Bank Partitioning on Co-run Applications with other 3 cores running 470.lbm

Scratchpad Memory

- an alternative to eache memory
- explicitly mamaged local (on-chip) SRAM memory
- mapped to a region of the address space
- PE's DMA data to/from scratchpad memories
- run a task using I scratchpad while PMAmy data to
prepare other scratchpad for next task

- pros:
- predictable access times
- energy efficient - no tag memory

- harder to use - exposed to the programmer - moving linked data structures to from scratchpad is more work