Jan - Séance 3 du 15.01. - Méthode des moindres carrés

III. Ajustement affine

III.1. Au « jugé »

⊞ Méthode - Propriété

On peut tracer, au **jugé** une droite qui passe « au plus près » des points du nuage. On démontre que les « meilleures » droites d'ajustement sont celles qui passent par le point moyen du nuage.

Exemple

On place une droite en visant "au plus proche" du nuage Puis on détermine une équation de la droite à partir de Deux points de cette droite.

Par exemple ici : A(16; 375) et B(36; 100).

Une équation d'une droite (non verticale) s'écrit : y = ax + b

- On obtient a avec : $a = \frac{y_B y_A}{x_B x_A} = \frac{100 375}{36 16} = \frac{-275}{20} = -13,75$ Donc, une équation de la droite (AB): $y = -13,75 \times + b$
- Pour déterminer *b*, on utilise un point de la droite : Par exemple, avec *A*(16; 375) :

 $375 = -13,75 \times 16 + b$

375 = -220 + b

b = 375 + 220 = 595

• Finalement, une équation de la droite (AB) est : y = -13,75 x + 595

Ainsi, à l'aide de cette équation, on peut estimer une valeur inconnue, par exemple pour x=22:

 $y = -13,75 \times 22 + 595 = 292,5$

III.2. Par la méthode des moindres carrés

≅ Méthode - Propriété

On utilise la calculatrice ou un logiciel qui donne :

- le coefficient de corrélation r qui permet de contrôler la validité de l'ajustement qui (|r| « proche » de 1);
- l'équation réduite de la droite de régression de y en x sous la forme y = ax + b.

On vérifie que le point moyen est bien sur la droite d'ajustement.

Reprenons l'exemple ci-dessus :

II. Tableaux de données, nuages de points

II.1. Exemples

> Exemple 1

Une société a mis au point un nouveau matériel destiné aux PME de logistique et mène un enquête dans la région de Provence-Alpes-Côte d'Azur auprès de 500 entreprises aptes à recevoir ce matériel, pour déterminer à quel prix chacune de ces entreprises accepterait d'acquérir ce nouveau matériel :

Prix proposé en milliers d'euros x_i	40	36	32	28	24	20	16	12	10	8
Nb d'entreprises disposées à acheter à ce prix y_i	60	70	130	210	240	340	390	420	440	500

On place dans un repère les points $M_i(x_i; y_i)$; le graphique obtenu est appelé nuage de points de la série statistique (on ne doit pas relier ces points!).

La calculatrice donne:

TI: STATS - CALC -: LINREG(ax+b)

RégLin

y=ax+b a=-14.1499472 b=599.7888068 r²=0.9858368761 r=-0.9928931846

L'équation de la droite est : y = -14,15 x + 600

Estimation pour x = 22:

 $y = -14,15 \times 22 + 600 \approx 289$

III.3. Utilisation de l'ajustement

On peut utiliser l'ajustement pour faire des prévisions (« futur ») ou faire de l'interpolation (« passé »),

Application 1 (Feuille exercices)

UF2/DOC 04

Stats à deux variables - Exercices

Exercice 1

Lors d'une enquête réalisée auprès de 500 personnes, on a estimé le nombre de personnes prêtes à acheter un nouveau produit en fonction du prix de ce produit :

Prix proposé en euros (x_i)	52	47	44	38,5	35,5	32	31	28
Nombre d'acheteurs potentiels (y_i)	80	125	145	200	225	250	265	280

1. Représenter le nuage de points $(x_i; y_i)$ en prenant 1 cm pour 5 euros en abscisse (de 15 à 60) et 1 cm pour 50 personnes en ordonnée (de 0 à 400).

- 2. Déterminer l'équation de la droite de régression de y en x sous la forme y = ax + b en arrondissant a à 2 décimales et b à l'entier, ainsi que le coefficient de corrélation associé arrondi à 4 décimales.
- Cet ajustement linéaire vous parait-il raisonnable? • La calculatrice donne : y = -8,53x + 525 et $r \approx -0,9986$
 - 3. Tracer cette droite sur le graphique et placer le point moyen de ce nuage.
- On utilise G(38,5; 196,25) et A(60; 13,3)

Pour $x = 60 : y = -8,53 \times 60 + 525 = 13,2$

- 4. En utilisant cet ajustement :
 - Quel prix maximal doit-on proposer pour que plus de 60 % des personnes interrogées soit prêtes à l'acheter?
 - Au-delà de quel prix le taux d'acheteurs potentiels tombe-t-il sous les 10 %?
- Déterminons le nombre d'acheteurs potentiels : $500 \times 0.6 = 300$ personnes Déterminons le prix correspondant à 300 personnes

300 = -8.53x + 525300 - 525 = -8,53x-225

 $= x d'où x \approx 26,38$ -8.53

Le prix maximal à proposer pour que plus de 60 % des personnes soient prêtes à acheter est d'environ 26,38 €.

Déterminons le nombre d'acheteurs potentiels : $500 \times 0.1 = 50$ personnes Déterminons le prix correspondant à 50 personnes

50 = -8.53x + 52550 - 525 = -8,53x

-475

 $\frac{7}{-8,53} = x \, d' \, \text{où} \, x \approx 55,69$

Le prix minimal à proposer pour que moins de 10 % des personnes soient prêtes à acheter est d'environ 55,69 €.

Exercice 2.

Le tableau ci-dessous donne les quantités de marchandises transportées dans le monde par voie maritime entre 2000 et 2017, exprimées en millions de tonnes.

Année	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017
Rang de l'année : x _i	0	5	10	11	12	13	14	15	16	17
Quantité de marchandises en mil- lions de tonnes <i>y</i> _i	5984	7109	8409	8784	9197	9548	9842	10024	10289	10702

Source: Nations Unies, (UNCTAD)

Le nuage de points de coordonnées $(x_i; y_i)$ est donné ci-dessous :

1. Expliquer pourquoi ce nuage de points permet d'envisager un ajustement affine.

 $r \approx 0.99$ très proche de 1, donc, un ajustement affine est justifié.

2. Déterminer à l'aide de la calculatrice l'équation réduite de la droite d'ajustement de y en x obtenue par la méthode des moindres carrés. On arrondira les coefficients au dixième.

y = 281 x + 5813,9

3. On décide de modéliser la quantité de marchandises y en fonction du rang de l'année x par l'expression y = 280x + 5800

Tracer la droite D d'équation y = 280x + 5800 dans le repère donné précédemment.

On utilise deux points : *A*(5; 7200) et *B*(20; 11400)

4. Estimer, selon le modèle de la question 3., la quantité de marchandises transportées par voie maritime en 2025, en expliquant la démarche suivie.

En 2025, x = 25 et $y = 280 \times 25 + 5800 = 12800$

En 2025, on estime la quantité de marchandises transportées à 12800 millions de tonnes.