

ESPIS Se former autrement

Date: 30/03/2022 Heure: 15h Durée: 1h

NB: La rédaction et la clarté des résultats seront prises en compte.

Exercice 1:(7 points)

La durée passée, en minutes par un client dans un supermarché peut être modélisée par une variable aléatoire T suivant une loi normale dont la courbe de densité est donnée ci-dessous :

On admet que la probabilité de l'événement $\mathbb{P}(100 \le T \le 200)$ représentée par l'aire hachurée sur le graphique est égale à 0, 8.

- 1. Déterminer graphiquement :
 - a. (1 pt) L'espérance m de cette variable aléatoire.
 - b. (1 pt) La probabilité $\mathbb{P}(T \leq 100)$.
- 2. (2 pts) Montrer que l'écart type $\sigma = 39$
- 3. (1.5 pt) Quelle est la probabilité qu'un client reste plus de 3 heures dans le supermarché?
- 4. (1.5 pt) Quelle est la probabilité qu'un client reste exactement une heure dans le supermarché?

Exercice 2:(13 points)

La durée de vie d'une clé USB, exprimée en mois, est modélisée par une variable aléatoire dont la densité de probabilité est définie par :

$$f(x) = \begin{cases} \frac{3\theta^3}{x^4} & \text{si} & x \ge \theta \\ 0 & \text{sinon.} \end{cases}$$

avec $\theta \ge 1$ un paramètre à estimer.

- 1. (2 pts) Vérifier que f est bien une densité de probabilité.
- 2. (2 pts) Montrer que $\mathbb{E}(X) = \frac{3\theta}{2}$ et $\mathbb{V}(X) = \frac{3\theta^2}{4}$.
- 3. (2 pts) En déduire un estimateur $\hat{\theta}_1$ de θ par la méthode des moments.
- 4. Pour étudier le paramètre θ , on a effectué une suite de n expériences indépendantes qui ont donné les réalisations $(x_1,...,x_n)$ de n v.a. $(X_1,...,X_n)$ i.i.d. de même loi que X tel que $0 \le x_i \le 1$ avec i = 1,...,n.

On pose
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 un estimateur du paramètre θ

- (a) (**2 pts**) Calculer $\mathbb{E}(\overline{X}_n)$ et $\mathbb{V}(\overline{X}_n)$.
- (b) (1 pt) En déduire si \overline{X}_n est un estimateur sans biais de θ ? Justifier votre réponse
- (c) (1 pt) Déterminer le réel α pour que $\hat{\theta}_2 = \alpha \overline{X}_n$ soit un estimateur sans biais de θ
- 5. On pose $Y_n = \frac{1}{2}(X_{n-1} + X_n)$.
 - (a) (1 pt) Montrer que $\hat{\theta}_3 = \alpha Y_n$ est aussi un estimateur sans biais de θ .
 - (b) ($\mathbf{2}$ \mathbf{pts}) Lequel parmi $\hat{\theta}_2$ et $\hat{\theta}_3$ choisierez-vous pour estimer θ ? Justifier votre réponse.

Bon travail.

Loi normale réduite : probabilités unilatérales

Cette table donne p tel que P(Z > a) = p, où Z est la loi normale réduite

а	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,50000	0,49601	0,49202	0,48803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414
0,10		0,45620	0,45224	0,44828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465
0,20	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358		0,38591
0,30	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
0,40	0,34458	0,34090	0,33724	0,33360	0,32997	0,32636	0,32276		0,31561	0,31207
0,50	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
0,60	0,27425	0,27093	0,26763	0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
0,70	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
0,80	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
0,90	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
1,00	0,15866	0,15625	0,15386	0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786
1,10	0,13567	0,13350	0,13136	0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
1,20	0,11507	0,11314	0,11123	0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
1,30	0,09680	0,09510	0,09342	0,09176	0,09012	0,08851	0,08691	0,08534	0,08379	0,08226
1,40	0,08076	0,07927	0,07780	0,07636	0,07493	0,07353	0,07215	0,07078	0,06944	0,06811
1,50	0,06681	0,06552	0,06426	0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592
1,60	0,05480	0,05370	0,05262	0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
1,70	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
1,80	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
1,90	0,02872	0,02807	0,02743	0,02680	0,02619	0,02559	0,02500	0,02442	0,02385	0,02330
2,00	0,02275	0,02222	0,02169	0,02118	0,02068	0,02018		0,01923	0,01876	0,01831
2,10	0,01786	0,01743	0,01700	0,01659	0,01618	0,01578	0,01539	0,01500	0,01463	0,01426
2,20	0,01390	0,01355	0,01321	0,01287	0,01255	0,01222	0,01191	0,01160	0,01130	0,01101
2,30	0,01072	0,01044	0,01017	0,00990	0,00964	0,00939	0,00914	0,00889	0,00866	0,00842
2,40	0,00820	0,00798	0,00776	0,00755	0,00734	0,00714	0,00695	0,00676	0,00657	0,00639
2,50	0,00621	0,00604	0,00587	0,00570	0,00554	0,00539	0,00523	0,00508	0,00494	0,00480
2,60	0,00466	0,00453	0,00440	0,00427	0,00415	0,00402	0,00391	0,00379	0,00368	0,00357
2,70	0,00347	0,00336	0,00326	0,00317	0,00307	0,00298	0,00289	0,00280	0,00272	0,00264
2,80	0,00256	0,00248	0,00240	0,00233	0,00226	0,00219	0,00212	0,00205	0,00199	0,00193
2,90	0,00187	0,00181	0,00175	0,00169	0,00164	0,00159	0,00154	0,00149	0,00144	0,00139
3,00	0,00135	0,00131	0,00126	0,00122	0,00118	0,00114	0,00111	0,00107	0,00104	0,00100
3,10	0,00097	0,00094	0,00090	0,00087	0,00084	0,00082	0,00079	0,00076	0,00074	0,00071
3,20	0,00069	0,00066	0,00064	0,00062	0,00060	0,00058	0,00056	0,00054	0,00052	0,00050
3,30	0,00048	0,00047	0,00045	0,00043	0,00042	0,00040	0,00039	0,00038	0,00036	0,00035
3,40	0,00034	0,00032	0,00031	0,00030	0,00029	0,00028	0,00027	0,00026	0,00025	
3,50	0,00023	0,00022	0,00022	0,00021	0,00020	0,00019	0,00019	0,00018	0,00017	0,00017
3,60	0,00016	0,00015	0,00015	0,00014	0,00014	0,00013	0,00013	0,00012	0,00012	0,00011
3,70	0,00011	0,00010	0,00010	0,00010	0,00009	0,00009	0,00008	0,00008	0,00008	0,00008
3,80	0,00007	0,00007	0,00007	0,00006	0,00006	0,00006	0,00006	0,00005	0,00005	0,00005
3,90	0,00005	0,00005	0,00004	0,00004	0,00004	0,00004	0,00004	0,00004	0,00003	0,00003
4,00	0,00003	0,00003	0,00003	0,00003	0,00003	0,00003	0,00002	0,00002	0,00002	0,00002