

Karl Leswing

karl.leswing@gmail.com

FB/Insta/Twitter/Github: lilleswing

October 2018

Grab Today's Code

https://github.com/lilleswing/future_of_care

What Is Machine Learning

Supervised Learning

Generate Functions From Data

Deep Learning

 Deep learning methods are becoming very popular in image recognition, game playing, and question and answer systems.

ECFP4

Decision Trees

- Based on the data "split" on a cut off of a single feature
- Can use the most informative feature of all the samples
- Leaf nodes hold predicted values

High Variance Low Bias

 Standard decision trees are prone to overfitting

 When there is "noise" in the response with respect to the input we need a more general model

Bootstrap Aggregating (Bagging)

- Make many decision trees!
 - Each one on a subset of the training data, selected uniformly random WITH replacement
- Average results from all decision trees

More robust to outliers

Feature Bagging (Random Forests)

 Many of the trees can be very similar

- E.X if one feature is very predictive all trees use this feature
 - No longer have good ensembling to lower variance

 Solution: At each split only select from a random subset of features

Interpolation

Deep Learning

- Lots of excitement to try to use these methods in other contexts
- Should deep learning be used in materials?
- Where does it provide the greatest benefit?

Artificial Neural Network Overview

- Collection of units called neurons (Circles Here)
- Each neuron computes a function over its inputs (real numbers)
- Each neuron and can be connected to multiple outputs
- Trained using back propagation

Universal Function Approximation Theorem

- Artificial Neural Networks can represent ANY function
- This does not pan out in practice
 - Limited data and compute power
- Requires us to create data and compute efficient models.

Deep Neural Network Image Classification

ImageNet Large Scale Visual Recognition Challenge Model Accuracy

As of 2015, a 27 layer DNN was more accurate than a human (Stanford student) at sorting 100,000 images into 1,000 different pre-specified categories

Deep Neural Network Image Classification

The ImageNet classification challenge is very difficult:

Convolutional Neural Networks

Convolution Layer

Slide a learnable mask across the image.

Deep Neural Network Image Classification

 A unique aspect of Deep Learning is the ability learn new features as the network is trained:

AutoQSAR w/ DeepChem Feature Generation

2D Graphic description of molecules

- Each node represents an atom
- Each edge represents a bond
- Atom features include atoms-type, valences, formal charges, and hybridization

Graph Convolution

- Automatically learn new local features that suit the endpoint
- These new features are then converted to molecular feature which is feed to dense neural network for model building

Graph Convolutions

Can We Detect Bad/Interesting Labels In Chemical Data?

Bootstrapping Interesting Datapoint Identification

- Repeatedly train a model on a random 80% of the data
- Predict on remaining 20%
- Find samples whose predictions are farthest from labels

Models

- Classification Model Descriptors.MolLogP(m) > 0
- We will randomly incorrectly label x% [0,10,20,50] of compounds and see if we can find the molecules we incorrectly labeled

No Flips

No Flips

Errored Holdout

Errored Holdout

Errored Holdout

50% flips

Interested in Learning More?

- Book is in pre-release looking for feedback!
- https://www.facebook.com/groups/136291662
 7160962/
 - Facebook Group

https://gitter.im/deepchem/Lobby

