

Module 3

Decision Structures and Boolean Logic

Instructor: Jonny C.H Yu

ALL programs can be written using three forms of control:

Sequential structure (we have learned)

```
[ ]: celsius = float(input("What is the Celsius temperature?"))
[ ]: fahrenheit = (9 / 5) * celsius + 32
[ ]: print("The temperature is ", fahrenheit, " degrees Fahrenheit.")
[ ]: print("The temperature is ", format(fahrenheit, '.2f'), " degrees Fahrenheit.")
```

- Decision structure (aka, Selection structure) (this module)
- Repetition structure (next module)

Decision Structure

if a <b:

The if Statement

- In flowchart, diamond represents true/false condition that must be tested.
- Actions can be conditionally executed.
 - Performed only when a condition is true.
- Single alternative decision structure: provides only one alternative path of execution
 - If condition is not true, exit the structure

The if Statement (cont'd.)

• Python syntax:

if condition:
 Statement
 Statement

- First line known as the if clause.
 - Includes the keyword if followed by condition.
 - The condition can be true or false.
 - When the if statement executes, the condition is tested, and if it is true the block statements are executed. Otherwise, block statements are skipped.

Boolean Expressions and Relational Operators

Boolean expression: expression tested by if statement to determine if it is true or false

- Example: a > b
- true if a is greater than b; false otherwise

Relational operator: determines whether a specific relationship exists between two values

• Example: greater than (>)

Examples

• Ask the user to enter current temperature in C and give a cold warning when it is below 15 C.

```
[1]: #
# An if Example: Cold Weather Warning
#

[2]: celsius = float(input("What is the Celsius temperature?"))
What is the Celsius temperature? 14.5

[3]: if celsius < 15:
    print ("A cold warning")
A cold warning</pre>
```

Let us try it! Download Codes_Module04.zip, upzip and run M4_ColdWarning.ipynb
What happens if you enter 14 for the temperature?
What happens if you enter 15 for the temperature?

Exercise

• Ask the user to enter three testing scores (0-100). Find the average. Print the average up to two significant digits and congratulate the user if the average is equal or higher than 90.

Program Output (with input shown in **bold**)

Enter the first score: **90**

Enter the second score: **92**

Enter the third score: 94.5

The average score is 92.17

Congratulations!

This is a great average.

Program Output (with input shown in **bold**)

Enter the first score: **90**

Enter the second score: 85

Enter the third score: 92

The average score is 89.00

Exercise (Answer)

• Ask the user to enter three testing scores (0-100). Find the average. Print the average up to two significant digits and congratulate the user if the average is equal or higher than 90.

```
[1]: test1 = float(input('Enter the first score: '))
     test2 = float(input('Enter the second score: '))
     test3 = float(input('Enter the third score: '))
     Enter the first score: 90
     Enter the second score: 92
     Enter the third score: 94.5
[2]: average = (test1 + test2 + test3) / 3
[3]: print('The average score is', format(average,'.2f'))
     The average score is 92.17
[4]: if (average >= 90):
         print('Congratulations!')
         print('This is a great average.')
     Congratulations!
     This is a great average.
```

Decision Structure

if a <b:

else:

The if-else Statement

- <u>Dual alternative decision structure</u>: two possible paths of execution.
 - One is taken if the condition is true, and the other if the condition is false.
 - Syntax: if condition:

 statements
 else:

other statements

- if clause and else clause must be aligned
- Statements must be consistently indented

Exercise

• Ask the user to enter current temperature in C. If temperature ≥ 15 C, print "Nice weather we are having". Otherwise print "A little cold, isn't it?"

```
[ ]: #
# An if-else Example: Nice or Cold
#

[ ]: celsius = float(input("What is the Celsius temperature?"))

[ ]: if celsius >= 15:
        print ("Nice weather we are having")
else:
        print ("A little cold, isn't it?")
```

Let us try it! (M4_ColdNice.ipynb)

- 1. What happens if you enter 14 for the temperature?
- 2. What happens if you enter 15 for the temperature?

• Ask the user to enter three testing scores (0-100). Find the average. Print the average up to two significant digits. Congratulate the user if the average is equal or higher than 90; otherwise say some encouraging words.

Exercise

Program Output (with input shown in **bold**)

Enter the first score: **90**

Enter the second score: 92

Enter the third score: **94.5**

The average score is 92.17

Congratulations!

This is a great average.

Program Output (with input shown in **bold**)

Enter the first score: **90**

Enter the second score: **85**

Enter the third score: 92

The average score is 89.00

Keep going!

You can make it.

Exercise (Answer)

• Ask the user to enter three testing scores (0-100). Find the average. Print the average up to two significant digits and congratulate the user if the average is equal or higher than 90. otherwise say some encouraging words.

```
[ ]: test1 = float(input('Enter the first score: '))
     test2 = float(input('Enter the second score: '))
     test3 = float(input('Enter the third score: '))
[ ]: | average = (test1 + test2 + test3) / 3
print('The average score is', format(average,'.2f'))
[ ]: | if (average >= 90):
         print('Congratulations!')
         print('This is a great average.')
     else:
         print('Kep going!')
         print('You can make it.')
```

The if-else Statement

- <u>if-elif-else statement</u>: special version of a decision structure.
 - Makes logic of nested decision structures simpler to write
 - Can include multiple elif statements
 - Syntax:

The if-else Statement (cont'd)

- Alignment used with if-elif-else statement:
 - if, elif, and else clauses are all aligned
 - Conditionally executed blocks are consistently indented
- if-elif-else statement is never required, but logic easier to follow
 - Can be accomplished by nested if-else
 - Code can become complex, and indentation can cause problematic long lines

Exercise

• NCKU grading system maps your score in number grade (百分數) to that in letter grade (等第). Write a program that allows the user to input a score and display a letter grade. As an exercise for simplicity, let us treat the score below 77 as an invalid input.

Program Output (with input shown in **bold**)

Enter a score: **83.2**

The score 83.2 is A-

Program Output (with input shown in **bold**)

Enter a score: 75

The score 75.0 is an invalid input

百分數		等第
90-100	95	A+
85-89	87	A
80-84	82	A-
77-79	78	B+
73-76	75	В
70-72	70	B-
67-69	68	C+
63-66	65	C
60-62	60	C-
≤ 59	50	F
0	0	X

Exercise (Answer)

• NCKU grading system maps your score in number grade (百分數) to that in letter grade (等第). Write a program that allows the user to input a score and display a letter grade. As an exercise for simplicity, let us treat the score below 77 as an invalid input.

```
[]: score = float(input('Enter a score:'))

if (score >= 90):
    grade = 'A+'
elif (score >= 85):
    grade = 'A'
elif (score >= 80):
    grade = 'A-'
elif (score >= 77):
    grade = 'B+'
else:
    grade = 'an invalid input'
[]: print('The score', score, 'is', grade)
```

百分數		等第
90-100	95	A +
85-89	87	A
80-84	82	A-
77-79	78	B+
73-76	75	В
70-72	70	В-
67-69	68	C+
63-66	65	C
60-62	60	C-
≤ 59	50	F
0	0	X

Logical Operators

- <u>Logical operators</u>: operators that can be used to create complex Boolean expressions.
 - and operator and or operator: binary operators, connect two Boolean expressions into a compound Boolean expression.
 - not operator: unary operator, reverses the truth of its Boolean operand.

Table 3-4 Compound Boolean expressions using logical operators

Expression	Meaning
x > y and $a < b$	Is x greater than y AND is a less than b?
x == y or x == z	Is x equal to y OR is x equal to z?
not (x > y)	Is the expression x > y NOT true?

Exercise

• A bank will grant the loan if one earns 500,000 per year and is employed for 2 years. Write a program to determine whether the user qualifies for a loan.

M4_LoanQualifier.ipynb

Boolean Variables

- Boolean variable: references one of two values, True or False
 - Represented by bool data type

- Commonly used as flags
 - Flag: variable that signals when some condition exists in a program
 - Flag set to False → condition does not exist
 - Flag set to True → condition exists

Summary

- This module covered:
 - Decision structures, including:
 - Single alternative decision structures
 - Dual alternative decision structures
 - Nested decision structures
 - Relational operators and logical operators as used in creating Boolean expressions
 - String comparison as used in creating Boolean expressions
 - Boolean variables

To be continued...