HW #6 Due: 5/24/2023

1. We mentioned in the lecture that the perceptron (pp. 8 of back propagation) with a loss function of $J(\mathbf{w}) = |z_k d_k| - z_k d_k$ can be trained with the following updating rule:

$$w(k+1) = w(k) + \begin{cases} 0, & \text{if } z_k d_k > 0 \\ \eta x_k d_k, & \text{otherwise} \end{cases}$$

Show that this algorithm is directly derived from the stochastic gradient descent algorithm.

2. For the neural network given below, let $w_1 = 2.0$, w_2 to w_8 be 1.0, $d_1 = 1.0$, $d_2 = 0.0$, $\eta = 0.1$, $x_1 = 1.0$, and $x_2 = -1.0$. The activation function from q_1 to h_1 and q_2 to h_2 is ReLU, the activation function at the output nodes is linear (i.e., y = z), and the cost function is

$$J = \frac{1}{2} \sum_{i=1}^{2} (y_i - d_i)^2.$$

- (i) Find y_1 and y_2 (forward computation).
- (ii) Find the value of $\Delta w_1 = \eta \frac{\partial J}{\partial w_1}$ by using the BP algorithm.

3. Prove the following statement: The derivative of the softmax activation function has the following form

$$\frac{\partial}{\partial z_i} y_{\ell} = \begin{cases} y_{\ell} (1 - y_{\ell}), & \text{if } i = \ell \\ -y_{\ell} y_i, & \text{if } i \neq \ell \end{cases}$$

4. Reproduce the MSE plot on pp. 9 of the 23_Cost functions. The input is 1.0, initial weight w = 2.0, bias b = 2.0, $\eta = 0.15$, and desired output is 0.0. Because this problem is simple, you can manually compute the updating equations for w(k+1) and b(k+1), and write a hard-coded program without using a library, such as Keras.

5. Implement a perceptron with the learning rule given in Problem 1 to classify the classes of virginica and Versicolor in the Iris dataset. Use a bias term in the perceptron to make it a linear binary classifier. As usual, take 70% of the samples as the training set and then report the average accuracy after 10 trials. You need to determine a suitable value of η and the number of training epochs.