subgrupos

conceitos básicos

Definição. Seja G um grupo. Um seu subconjunto não vazio H diz-se um subgrupo de G se H for grupo para a operação de G restringida a H. Neste caso escrevemos H < G.

Observação. Um grupo G, identificam-se sempre os subgrupos: $\{1_G\}$ (subgrupo trivial) e G (subgrupo impróprio).

Proposição. Sejam G um grupo e H < G. Então:

- 1. O elemento neutro de H, 1_H , é o mesmo que o elemento neutro de G, 1_G ;
- 2. Para cada $h \in H$, o inverso de h em H é o mesmo que o inverso de h em G.

Demonstração.

- 1. Por um lado, porque 1_H é elemento neutro de H, temos que $1_H1_H=1_H$; por outro lado, como 1_G é elemento neutro de G e $1_H\in G$, temos que $1_H1_G=1_H$. Logo, $1_H1_H=1_H1_G$, pelo que, pela lei do corte, $1_H=1_G$.
- 2. Sejam $h\in H,\ h^{-1}$ o inverso de h em G e h' o inverso de h em H. Então, $hh'=1_H=1_G=hh^{-1}.$

Logo, pela lei do corte, $h' = h^{-1}$.

Exemplo 12. O grupóide $(\mathbb{Q}\setminus\{0\},\cdot)$ é subgrupo de $(\mathbb{R}\setminus\{0\},\cdot)$.

Exemplo 13. Seja $G = \{e, a, b, c\}$ o grupo de *4-Klein*, i.e., o grupo cuja operação é definida pela tabela anexa.

Os seus subgrupos são:

$$\{e, a, b, c\}, \{e\}, \{e, a\}, \{e, b\} \in \{e, c\}.$$

Exemplo 14. Seja $\mathbb{Z}_4=\left\{\bar{0},\bar{1},\bar{2},\bar{3}\right\}$ o conjunto das classes módulo-4 algebrizado com a adição usual de classes.

Então, $(\mathbb{Z}_4,+)$ é grupo e os seus subgrupos são: $\{\bar{0},\bar{1},\bar{2},\bar{3}\}$, $\{\bar{0}\}$ e $\{\bar{0},\bar{2}\}$.

+	ō	ī	2	3	
Ō	Ō	ī	2	3	
ī	ī	2	2 3 0	0 1	
0 1 2 3	0 1 2 3	2 3	ō	$\bar{1}$	
3	3	Ō	1	2	

critérios de subgrupo

Proposição. Sejam G um grupo e $H \subseteq G$. Então, H < G se e só se são satisfeitas as seguintes condições:

- 1. $H \neq \emptyset$;
- 2. $x, y \in H \Rightarrow xy \in H$;
- 3. $x \in H \Rightarrow x^{-1} \in H$.

Demonstração. Suponhamos que H < G. Então:

- 1. $H \neq \emptyset$, pois $1_G \in H$;
- 2. dados $x, y \in H$, como H é um grupóide, $xy \in H$;
- 3. dado $x \in H$, como todo o elemento de H admite inverso em H e este é igual ao inverso em G, então $x^{-1} \in H$.

Reciprocamente, suponhamos que $H\subseteq G$ satisfaz as condições 1, 2 e 3. Então

- (a) H é grupóide por 2;
- (b) dado $x \in H$ (este elemento existe por 1), $x^{-1} \in H$ (por 3), pelo que $1_G = xx^{-1} \in H$ (por 2);
- (c) qualquer elemento de H admite inverso em H (por 3).

Como a operação é associativa em G, também o é obviamente em H e, portanto, concluímos que H < G.

Proposição. Sejam G um grupo e $H \subseteq G$. Então, H < G se e só se são satisfeitas as seguintes condições:

- 1. $H \neq \emptyset$;
- $2. \ x,y \in H \Rightarrow xy^{-1} \in H.$

Observação. As duas últimas proposições são habitualmente referidas como critérios de subgrupo. São equivalentes e, por isso, a escolha de qual usar para provar que um subconjunto de um determinado grupo é ou não subgrupo deste depende do gosto e destreza de quem está a realizar a prova.

subgrupos especiais

centralizador de um elemento

Definição. Sejam G um grupo e $a \in G$. Chama-se centralizador de a ao conjunto $C(a) = \{x \in G \mid ax = xa\}$.

Exemplo 15.

Seja $G = \{e, p, q, a, b, c\}$ o grupo cuja operação é dada pela tabela anexa. Então,

$$C(e) = G$$
, $C(p) = C(q) = \{e, p, q\}$,
 $C(a) = \{e, a\}$, $C(b) = \{e, b\}$
 $C(c) = \{e, c\}$.

	е	р	q	а	b	С	
е	е	р	q	а	b	С	
p	р	q	е	С	a	Ь	
q	q	е	p	a c b e q	С	а	
a	а	Ь	С	е	p	q	
Ь	Ь	С	а	q	е	p	
С	С	а	b	p	q	е	

Proposição. Seja G um grupo. Então, para todo $a \in G$, C(a) < G.

Demonstração. Seja $a \in G$. Então,

- 1. $C(a) \neq \emptyset$, pois $1_G \in G$ é tal que $1_G a = a 1_G$ e, portanto, $1_G \in C(a)$;
- 2. dados $x, y \in C(a)$, temos que $xy \in G$ e

$$a(xy) = (ax) y = (xa) y = x (ay) = x (ya) = (xy) a,$$

pelo que $xy \in C(a)$;

3. dado $x \in C(a)$, temos que $x^{-1} \in G$ e

$$\begin{aligned} \mathsf{a} \mathsf{x} &= \mathsf{x} \mathsf{a} & \Rightarrow & \mathsf{x}^{-1} \left(\mathsf{a} \mathsf{x} \right) \mathsf{x}^{-1} &= \mathsf{x}^{-1} \left(\mathsf{x} \mathsf{a} \right) \mathsf{x}^{-1} \\ & \Leftrightarrow & \left(\mathsf{x}^{-1} \mathsf{a} \right) \left(\mathsf{x} \mathsf{x}^{-1} \right) &= \left(\mathsf{x}^{-1} \mathsf{x} \right) \left(\mathsf{a} \mathsf{x}^{-1} \right) \\ & \Leftrightarrow & \left(\mathsf{x}^{-1} \mathsf{a} \right) \mathbf{1}_{\mathsf{G}} &= \mathbf{1}_{\mathsf{G}} \left(\mathsf{a} \mathsf{x}^{-1} \right) \Leftrightarrow \mathsf{x}^{-1} \mathsf{a} &= \mathsf{a} \mathsf{x}^{-1}, \end{aligned}$$

pelo que $x^{-1} \in C(a)$.

Logo,
$$C(a) < G$$
.

centro de um grupo

Definição. Seja G um grupo. Chama-se centro de G ao conjunto

$$Z(G) = \{x \in G \mid \forall a \in G, \quad ax = xa\}.$$

Exemplo 16. Se G é o grupo do exemplo 15, então, $Z(G) = \{e\}$.

Exemplo 17. Se G é um grupo abeliano, então, Z(G) = G.

Observação. É consequência imediata das definições de centro de um grupo e de centralizador de um elemento desse grupo que

$$Z(G) = \bigcap_{a \in G} C(a).$$

Proposição. Seja G um grupo. Então, Z(G) < G.

Demonstração. Seja G um grupo. Então,

- $1. \ \ Z\left(G\right) \neq \emptyset, \ \mathsf{pois} \ 1_{G} \in G \ \mathsf{\acute{e}} \ \mathsf{tal} \ \mathsf{que}, \ \mathsf{para} \ \mathsf{todo} \ a \in G, \quad 1_{G} a = a1_{G} \ \mathsf{e}, \ \mathsf{portanto}, \ 1_{G} \in Z\left(G\right);$
- 2. dados $x, y \in Z(G)$, temos que $xy \in G$ e, para todo $a \in G$,

$$a(xy) = (ax) y = (xa) y = x (ay) = x (ya) = (xy) a,$$

pelo que $xy \in Z(G)$;

3. dado $x \in Z(G)$, temos que $x^{-1} \in G$ e, para todo $a \in G$,

$$x^{-1}a = (x^{-1}a)e = (x^{-1}a)(x^{-1}x) = (x^{-1}ax^{-1})x =$$

= $x(x^{-1}ax) = (xx^{-1})(ax^{-1}) = 1_G(ax^{-1}) = ax^{-1},$

pelo que $x^{-1} \in Z(G)$.

Logo,
$$Z(G) < G$$
.

intersecção de subgrupos

Proposição. Sejam G um grupo e H, K < G. Então, $H \cap K < G$.

Demonstração. Sejam G um grupo e H, K < G. Então,

- 1. $H \cap K \neq \emptyset$, pois $1_G \in H$ e $1_G \in K$, pelo que $1_G \in H \cap K$;
- 2. dados $x,y\in H\cap K$, temos que $x,y\in H$ e $x,y\in K$, pelo que $xy\in H$ e $xy\in K$. Logo, $xy\in H\cap K$.
- 3. dado $x \in H \cap K$, temos que $x \in H$ e $x \in K$, pelo que $x^{-1} \in H$ e $x^{-1} \in K$ e, portanto, $x^{-1} \in H \cap K$.

Logo, $H \cap K < G$.

Corolário. Seja G um grupo. Então, a intersecção de uma família não vazia de subgrupos de G é ainda um subgrupo de G.

subgrupo gerado

Proposição. Sejam G um grupo e $\varnothing \neq X \subseteq G$. Consideremos o conjunto $\mathcal H$ de todos os subgrupos de G que contêm X. Então, $\bigcap_{H \in \mathcal H} H$ é o menor subgrupo de G que contém X.

Demonstração. Sejam G um grupo e $\mathcal{H} = \{ H \subseteq G \mid H < G \text{ e } X \subseteq H \}$. Então, como $\mathcal{H} \neq \emptyset$ (porque $G \in \mathcal{H}$), pelo corolário da proposição anterior, $\bigcap_{H \in \mathcal{H}} H < G$.

Mais ainda, pela definição de \mathcal{H} , temos que, $X\subseteq\bigcap_{H\in\mathcal{H}}H.$

Finalmente, seja K < G tal que $X \subseteq K$. Então, $K \in \mathcal{H}$ e, portanto, $\bigcap_{H \in \mathcal{H}} H \subseteq K$.

Concluímos então que $\bigcap_{H \in \mathcal{H}} H$ é o menor subgrupo que contém X.

Definição. Sejam G um grupo e $\varnothing \neq X \subseteq G$. Chama-se subgrupo de G gerado por X, e representa-se por $\langle X \rangle$, ao menor subgrupo que contém X. Se $X = \{a\}$, então escrevemos $\langle a \rangle$ para representar $\langle X \rangle$ e falamos no subgrupo de G gerado por a.

Observação. Pela última proposição, temos que $\langle X \rangle$ é a intersecção de todos os subgrupos de G que contêm X.

Exemplo 18. Se $G = \{e, a, b, c\}$ é o grupo 4-Klein, cujos subgrupos são $\{e, a, b, c\}$, $\{e\}$, $\{e, a\}$, $\{e, b\}$ e $\{e, c\}$ (Exemplo 13.), então, $<a>=\{e, a\}$ e $<\{a, b\}>=G$.

Proposição. Sejam G um grupo e $a \in G$. Então, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$.

Demonstração. Seja $B = \{a^n \mid n \in \mathbb{Z}\}$. Então,

1. $B \neq \emptyset$, pois $1_G = a^0$ e, portanto, $1_G \in B$;

Dados $x, y \in B$, sabemos que existem $n, m \in \mathbb{Z}$ tais que $x = a^n$ e $y = a^m$ e, por isso,

$$xy^{-1} = a^n (a^m)^{-1} = a^n a^{-m} = a^{n-m}.$$

Como $n - m \in \mathbb{Z}$, temos que $xy^{-1} \in B$. Logo, B < G.

- 2. Como $1 \in \mathbb{Z}$, temos que $a \in B$.
- 3. Seja H < G tal que $a \in H$. Então,

$$x \in B \Rightarrow (\exists n \in \mathbb{Z}) \quad x = a^n \Rightarrow x \in H(pois H < G)$$

e, portanto $B \subseteq H$.

Logo,
$$\langle a \rangle = B$$
.

ordem de um elemento

conceitos básicos

Dados um grupo G e $a \in G$, vimos que

$$\langle a \rangle = \{ a^n : n \in \mathbb{Z} \}.$$

 $\acute{\sf E}$ óbvio que, no caso de $a=1_{\it G}$, o subgrupo reduz-se ao subgrupo trivial.

Mais ainda, no grupo $(\mathbb{R}\setminus\{0\},\cdot)$, é fácil ver que $\langle -1\rangle=\{-1,1\}$.

Torna-se, portanto, óbvio que, embora o subgrupo gerado esteja definido à custa do conjunto dos inteiros, nem sempre vamos obter um número infinito de elementos.

Definição. Sejam G um grupo e $a \in G$.

- 1. Diz-se que a tem ordem infinita, e escreve-se $o(a) = \infty$, se não existe nenhum $p \in \mathbb{N}$ tal que $a^p = 1_G$.
- 2. Diz-se que a tem ordem k ($k \in \mathbb{N}$), e escreve-se o(a) = k, se
 - (a) $a^k = 1_G$;
 - (b) $p \in \mathbb{N}$ e $a^p = 1_G \Rightarrow k \leq p$.

Exemplo 19. Considerando o conjunto dos números reais:

- Em $(\mathbb{R},+)$, a ordem de qualquer elemento não nulo a é infinita. Por outro lado, o(0)=1.
- Em $(\mathbb{R}\setminus\{0\},\times)$, temos que o(1)=1, o(-1)=2 e se $x\in\mathbb{R}\setminus\{-1,0,1\}$, então $o(x)=\infty$.

Exemplo 20. No grupo 4-Klein $G = \{1_G, a, b, c\}$ temos que:

1.
$$o(1_G) = 1$$
;

2.
$$o(a) = o(b) = o(c) = 2$$
.

Exemplo 21. No grupo $\mathbb{Z}_4 = \left\{\bar{0}, \bar{1}, \bar{2}, \bar{3}\right\}$, temos que:

1.
$$o(\bar{0}) = 1$$
;

$$2. \ o\left(\overline{1}\right)=4, \ \mathsf{pois} \ \overline{1}\neq \overline{0}, \overline{1}+\overline{1}=\overline{2}\neq \overline{0}, \overline{1}+\overline{1}+\overline{1}=\overline{3}\neq \overline{0} \ \mathsf{e} \ \overline{1}+\overline{1}+\overline{1}+\overline{1}=\overline{0};$$

3.
$$o\left(\overline{2}\right)=2$$
, pois $\overline{2}\neq\overline{0}$ e $\overline{2}+\overline{2}=\overline{0}$

$$\text{4. }o\left(\bar{3}\right)=\text{4, pois }\bar{3}\neq\bar{0},\bar{3}+\bar{3}=\bar{2}\neq\bar{0},\bar{3}+\bar{3}+\bar{3}=\bar{1}\neq\bar{0}\text{ e }\bar{3}+\bar{3}+\bar{3}+\bar{3}=\bar{0}.$$

Proposição. Num grupo G o elemento identidade é o único elemento que tem ordem 1.

Demonstração. É óbvio que $o(1_G)=1$. Provemos agora que é único elemento nestas condições. Suponhamos que $a\in G$ é tal que o(a)=1. Então, $a^1=1_G$, i.e., $a=1_G$.

Proposição. Sejam G um grupo e $a \in G$ um elemento com ordem infinita. Então, para $m, n \in \mathbb{Z}$,

$$a^m \neq a^n$$
 se $m \neq n$.

Demonstração. Sejam $m, n \in \mathbb{Z}$ tal que $a^m = a^n$. Então,

$$a^{m} = a^{n}$$
 $\Rightarrow a^{m}a^{-n} = a^{n}a^{-m} = 1_{G}$
 $\Rightarrow a^{m-n} = a^{n-m} = 1_{G}$
 $\Rightarrow a^{|m-n|} = 1_{G}$
 $\Rightarrow |m-n| = 0$ $(o(a) = \infty)$
 $\Rightarrow m = n$.

Logo, se $m \neq n$ então $a^m \neq a^n$.

Corolário. Sejam G um grupo e $a \in G$ um elemento com ordem infinita. Então, $\langle a \rangle$ tem um número infinito de elementos.

Corolário. Num grupo finito nenhum elemento tem ordem infinita.

Proposição. Sejam G um grupo, $a \in G$ e $k \in \mathbb{N}$ tal que o(a) = k. Então,

- 1. se um inteiro n tem r como resto na divisão por k então $a^n = a^r$;
- 2. para $n \in \mathbb{Z}$, $a^n = 1_G \Leftrightarrow k \mid n$;
- 3. $\langle a \rangle = \{1_G, a^1, a^2, \dots, a^{k-1}\};$
- 4. $\langle a \rangle$ tem exatamente k elementos.

Demonstração.

1. Sejam $n \in \mathbb{Z}$ e $0 \le r < k$ para os quais existe $q \in \mathbb{Z}$ tal que n = qk + r. Então,

$$a^{n} = a^{qk+r} = a^{qk}a^{r} = \left(a^{k}\right)^{q}a^{r} = 1_{G}^{q}a^{r} = 1_{G}a^{r} = a^{r}.$$

2. Pretendemos provar que $a^m = 1_G \Leftrightarrow k \mid m$, ou seja, que

$$a^m = 1_G \Leftrightarrow m = kp$$
 para algum $p \in \mathbb{Z}$.

Suponhamos primeiro que m=kp para algum $p\in\mathbb{Z}$. Então,

$$a^{m} = a^{kp} = (a^{k})^{p} = 1_{G}^{p} = 1_{G}.$$

Reciprocamente, suponhamos que $a^m=1_G$. Sabemos que, pelo algoritmo da divisão, existem $p\in\mathbb{Z}$ e $0\leq r< k$ tais que m=kp+r e, portanto,

$$1_G = a^m = a^{kp+r} = (a^k)^p a^r = 1_G^p a^r = 1_G a^r = a^r.$$

Como o(a) = k, temos que r = 0 (pois $0 \le r < k$ e $k \le r$ se $r \ge 1$). Logo, m = kp.

3. Sabemos que $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. Obviamente, temos que $\left\{1_G, a, a^2, a^3, \dots, a^{k-1}\right\} \subseteq \langle a \rangle$. Seja $x \in \langle a \rangle$. Então,

$$x = a^p$$
 para algum $p \in \mathbb{Z}$.

Se $p \in \{0,1,2,3,\ldots,k-1\}$ então $x \in \left\{1_G,a,a^2,a^3,\ldots,a^{k-1}\right\}$. Se $p \notin \{0,1,2,3,\ldots,k-1\}$ então sabemos, por 1, que existe $0 \le r \le k-1$ tal que $a^p = a^r$. Logo, $\langle a \rangle \subseteq \left\{e,a,a^2,a^3,\ldots,a^{k-1}\right\}$ e a igualdade verifica-se.

4. Pretendemos provar que, na lista 1_G , a, a^2 , a^3 , ..., a^{k-1} não há repetição de elementos. Suponhamos que sim, i.e., suponhamos que

$$a^p = a^q \qquad \text{com } 0 \le q$$

Então, p-q>0 e

$$a^{p-q} = a^p a^{-q} = a^q a^{-q} = 1_G$$

pelo que $k \leq p-q \leq k-1$, o que é impossível. Logo, não há qualquer repetição e o subgrupo $\langle a \rangle$ tem exatamente k elementos.