CS 202: Advanced Operating Systems, Spring 2022

Midterm Exam

Name & UCR Login ID:

I. True and False (2 points each)

- 1. (\mathcal{T}/F) OS has exclusive access to hardware.
- 2. (T / F) Processes in the user space can execute halt instructions directly.
- 3. (T / Some interrupt handlers can be implemented in the user space. F
- 4. (T/F) To issue a system call in xv6, a user-level process passes the function pointer of the corresponding kernel function to the kernel.
- 5. (T/F) xv6 is considered a library OS. F
- 6. (T / xv6 implements priority-based scheduling by default. F
- (T/F) Only one thread or process can be in the RUNNING state on a single CPU.
 - F) Context switching between the threads of the same process does **not** need to save and restore machine states such as register values.

 need to save and restore Stack and register value
 - 9. (F) In UNIX-like systems, fork() is a system call to create a new process.
 - 10. (T / F) All threads in the same process share the same program counter.
 - 11. (\mathcal{F} / F) User-level threads maintain thread control blocks in the user space. User-level threads, the thread control block (TCB) is maintained in user space and not in kernel space
 - 12. (F) With virtual memory, instructions executed by the CPU use virtual addresses to locate data in physical memory.
 - 13. () F) MMU is a must requirement for modern virtual memory subsystems.
 - 14. (F) Paging-based virtual memory helps mitigate external fragmentation.
 - The solution to external fragmentation is compaction and paging.

 15. (T / F) Preemptive scheduling is always better than non-preemptive scheduling.
 - 16. (T / F) User-level threads cannot implement preemptive scheduling.

preemptive scheduling by using a timer interrupt mechanism or by yielding control to another thread voluntarily.

II. Single choice (3 points each)

Which of the following is correct about virtual memory with paging?

- A. Solves the internal fragmentation problem paging solves external fragmentation and best-fit solves internal
- B. Makes sharing of data between different processes harder
- C. Offers protection domains each process is isolated in its own virtual address space
- D. Improves cache hit ratio
- None of the above
- 18. Consider a system using 32-bit address space, 1MB (=2^20 bytes) page size. Page table entry (PTE) is 4 bytes each. If single-level paging is used, what is the size of the page table for each process?
 - A. 4096 bytes (= 2^12)
- B. 16384 bytes (= 2^14)
 - C. 262144 bytes (= 2^18)
- D. 1048576 bytes (= 2^20)
- E. 16777216 bytes (= 2^24)
- 19. Which of the following is correct about the Translation Lookaside Buffer (TLB)?
 - A. Delays large copies of memory as long as possible in fork()
 - B. Effective for write memory requests but not for reads
 - C. Performance is worse than caching PTEs in L1 cache
 - D. TLB typically has a high hit ratio due to locality
 - E. TLB often is the largest cache in the system
 - 20. Which of the following is correct about OS extensibility and protection?
 - A. DOS-like OSs provide good protection
 - B. DOS-like OSs have more border crossings than monolithic kernels
 - C. Monolithic kernels have more border crossings than microkernels
 - D. Monolithic kernels are bad at extensibility
 - E. Microkernels are bad at extensibility
 - 21. Which of the following is NOT correct about priority-based scheduling?
 - Need to know CPU burst time in advance -
 - B. Priority assignment schemes are often ad hoc
 - C. Hard to achieve fair-share scheduling ?
 - D. Subject to the priority inversion problem
 - E. Effective in favoring important tasks over others

2. Which of the following is correct about multiprocessor scheduling?

- A. Partitioned scheduling (aka. single queue multiprocessor scheduling) causes higher task migration overhead than global scheduling (aka. multiprocessor sched.)
 - B. Partitioned scheduling is better at reclaiming unused processor time γ
 - C. Global scheduling tends to achieve better cache affinity \times
 - D. Push migration and pull migration cannot be used together in the same OS imes
 - None of the above

III. Single choice/short answers (4 points each) 20.

- 23. Which of the following apply to the SPIN operating system?
 - A. No longer relies on virtual memory to enforce protection
 - B. Extensions are written in Modula-3
 - C. Capabilities are implemented directly through the use of pointers
 - D. Garbage collection may occur at runtime
 - E All apply to SPIN
 - 24. Which of the following apply to the Exokernel?
 - A. Exokernel runs library OSs in the kernel space
 - B. Downloaded code can reduce border crossings
 - C. Visible resource revocation gives better efficiency as revocations happen more frequently
 - D. No intervention from Exokernel is needed when traps, faults, or interrupts occur
 - E. All apply to Exokernel
- 25. Which of the following is NOT L4 microkernel's claim?
 - A. L4 Microkernel refutes the argument that "Microkernels are inherently slow".
 - B. The high overhead of previous microkernels (e.g., Mach) is an implementation issue
 - S. As a microkernel is made more portable, its efficiency is likely to be improved. -
 - D. Major performance issues like switching overhead can be greatly reduced if the implementation considers architecture-specific features
 - E. All are correct.
- 26. Which of the following is correct about the lottery scheduler?
 - A. Deterministically fair scheduling X
 - B. Good at achieving short-term fairness
 - C. Scheduler overhead is high
 - Provides mechanisms to address the priority inversion problem
 - E. Ticket inflation leads to starvation

27. Which of the following is NOT correct abo	out the Linux CFS sch	eduler?
---	-----------------------	---------

- A. Considers target latency to ensure response time
- B. Considers minimum granularity to mitigate overhead
- C. Makes a scheduling decision based on virtual time instead of physical time
- Uses a random function to achieve probabilistic-fair scheduling
 - E. All above are incorrect

IV. Short answers (5 points each) - Don't write long; one or two sentences should be enough.

28. Why the fork() system call is said to return "twice"? Explain briefly.

fork returns "twice" It returns chie's PID to parent and
D to the child.

29. What is the head-of-line blocking problem under FCFS scheduling? (CEP question) & Head of the long blocking - 18 when long process can impede short process.

Eg'- CPU bound process followed by 1/0 bound processes.

30. What is the head-of-line blocking problem of FCFS scheduling? (CEP question)

Same as 29

31. Briefly compare main design differences between SPIN and Exokernel. One sentence for each should suffice. (CEP question)

SPIN - adds application specific functionality en kennel. Exokuna - make one barrier as low as possible.

bunel exokerels.

32. Consider a system running the following three processes:

Process	Burst Time	Arrival Time	
P1	5 5	0	
P2	4	1	
P3	3	2	

4

Compute the average turnaround time under (i) Non-preemptive Shortest Job First (SJF) and (ii) Preemptive SJF (PSJF) scheduling. Note: turnaround time = Completion time - Arrival time.

Process	Arrival Time	Tickets
P1	0	5
P2	0	3
P3	0	2

Fill in the following table to show the scheduling decisions by Stride Scheduling. Assume 30 as the large constant (i.e., stride = 30 / number of tickets)

			9000	
	Pass	Pass values after selection		
Selected process	P1	P2	P3	
N/A	6	10	15	
PI	12	10	15	
P2	12	20	15	
PI	18	20	15.	
Р3	B	20	30	
P)	20	20	30	
. P2	24	30	30	
	P1 P2 P1 P3 P1	Selected process P1	Selected process P1	