

Deep Learning Multinomial Classification

11.03.2020

Aya Ashraf Saber Mohamed

Fully Connected Layer

Comparison

Observation the test dataset accuracy and train dataset accuracy are almost the same

#	Optimizer	Learning Rate	Test Accuracy
1	ADAM	0.01	&95.91
2		0.5	%10.09
3	SGD	.01	%94.62
4		0.5	%96.58
5	RMSprop	.01	%93.76
6		.5	%0.975
7	Adamax	.01	%97 . 72
8		.5	%53.92
9	Adagrad	.01	%95.69
10		.5	%11.35

Evaluation

Test Accuracy

CNN

Running Time , # Multiplication

Architecture 1

Model: "sequential_4"

Output	Shape	Param #
(None,	26, 26, 24)	240
(None,	13, 13, 24)	0
(None,	11, 11, 36)	7812
(None,	5, 5, 36)	0
(None,	900)	0
(None,	128)	115328
(None,	10)	1290
	(None, (None, (None, (None, (None,	Output Shape (None, 26, 26, 24) (None, 13, 13, 24) (None, 11, 11, 36) (None, 5, 5, 36) (None, 900) (None, 128) (None, 10)

Total params: 124,670 Trainable params: 124,670 Non-trainable params: 0

Epochs = 10

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [
     Epoch 2/10
60000/60000 [
        Epoch 3/10
Epoch 4/10
        60000/60000 [
Epoch 5/10
        ===========] - 36s 602us/sample - loss: 1.8183 - accuracy: 0.6769 - val_loss: 1.7453 - val_accuracy: 0.7018
60000/60000 [
Epoch 6/10
         ========] - 36s 605us/sample - loss: 1.6785 - accuracy: 0.7167 - val loss: 1.5990 - val accuracy: 0.7366
60000/60000 [
60000/60000 [=============] - 36s 602us/sample - loss: 1.5325 - accuracy: 0.7407 - val_loss: 1.4503 - val_accuracy: 0.7585
Epoch 8/10
       60000/60000 [=
Epoch 9/10
60000/60000 [=
     Epoch 10/10
Test accuracy: 0.8004
```

Architecture 2

Model: "sequential_5"

Layer (type)	Output	Shape	Param #
conv2d_8 (Conv2D)	(None,	26, 26, 32)	320
conv2d_9 (Conv2D)	(None,	24, 24, 64)	18496
max_pooling2d_7 (MaxPooling2	(None,	12, 12, 64)	0
dropout_2 (Dropout)	(None,	12, 12, 64)	0
flatten_5 (Flatten)	(None,	9216)	0
dense_11 (Dense)	(None,	128)	1179776
dropout_3 (Dropout)	(None,	128)	0
dense 12 (Dense)	(None,	10)	1290

Total params: 1,199,882 Trainable params: 1,199,882 Non-trainable params: 0

·

Epochs = 10

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [============] - 148s 2ms/sample - loss: 2.1752 - accuracy: 0.3410 - val_loss: 2.0913 - val_accuracy: 0.5646
Epoch 3/10
Epoch 4/10
Epoch 5/10
60000/60000 [=========] - 147s 2ms/sample - loss: 1.5680 - accuracy: 0.6087 - val_loss: 1.3128 - val_accuracy: 0.7947
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
    60000/60000 [
Epoch 10/10
Test accuracy: 0.8652
```

Comparison between CNN and Fully Connected Layer:

Given number of Epochs = 5

Comparison	CNN	Fully Connected Layer
Training Accuracy	%62.33	897.16
Test Accuracy	%77.76	%97.16

Relu and Tanh activation Function: Epoch = 5

Comparison	CNN	Fully Connected Layer
Training Accuracy (Relu)	%62.33	%97.16
Test Accuracy (Relu)	%77.76	897.16
Training Accuracy (Tanh)	%64.09	897.42
Test Accuracy (Tanh)	%66.52	897.42

Hyper Parameter

Filter Size	Test Accuracy
32	%77.76
16	%68.01
8	%53.05

Stride Length	Test Accuracy
1	%77.76
2	%70.56
3	%65.50

Pool layers	Test Accuracy
-------------	---------------

1	%80.04
2	%86.52

CNN Model Prediction:

1- Model structure in the Assignment

```
[0.08887121 0.04857256 0.08950614 0.06493146 0.11228155 0.0801947 0.06087552 0.23661964 0.09799125 0.12015595]
arg max 7
7
0
5
10
15
20
25
0 5 10 15 20 25
```

2- Update CNN Architecture with # Epoch = 5

Architecture:

[0.04406603 0.01642291 0.02297809 0.03457483 0.06798876 0.0291586 0.02277647 0.6455393 0.03967604 0.07681904] arg max 7

Resources:-

Google Colab code