Phys 443 Computational Physics

Regression Analysis

The Chi-square test statistic is:

$$\chi^2 = \sum_{all \text{ cells}} \frac{(Obs - Exp)^2}{Exp}$$

where:

Obs = observed frequency

Exp= expected frequency if H_0 is true

The expected frequency i is np_i

- •Large values of χ^2 are evidence against H_0 because they say the observed counts are far from what we would expect if H_0 were true.
- Chi-Square tests are one-side (even though H_A is many-sided)

o The $χ^2$ test statistic approximately follows a chi-squared distribution with k-1 degrees of freedom, where k is the number of categories.

Decision Rule: If $\chi^2 > \chi^2_{.05}$, reject H_0 , otherwise, do not reject H_0 .

1 0,0158 0,4549 1,0742 1,6424 2,7055 B,841 5 5,4119 6,63	
	04 13,8150
2 0,2107 1,3863 2,4079 3,2189 4,6052 5 ,991 6 7,8241 9,21	
3 0,5844 2,3660 3,6649 4,6416 6,2514 7 ,814 7 9,8374 11,34	49 16,2660
4 1,0636 3,3567 4,8784 5,9886 7,7794 9,4877 11,6678 13,27	•
5 1,6103 4,3515 6,0644 7,2893 9,2363 11,070 5 13,3882 15,08	
6 2,2041 5,3481 7,2311 8,5581 10,6446 12,5916 15,0332 16,81	19 22,4575
7 2,8331 6,3458 8,3834 9,8032 12,0170 14,0671 16,6224 18,47	53 24,3213
8 3,4895 7,3441 9,5245 11,0301 13,3616 15,5073 18,1682 20,09	02 26,1239
9 4,1682 8,3428 10,6564 12,2421 14,6837 16,9190 19,6790 21,68	•
10 4,8652 9,3418 11,7807 13,4420 15,9872 18,3070 21,1608 23,20	
- 11 5,5778 10,3410 12,8987 14,6314 17,2750 19,6752 22,6179 24,72	50 31,2635
12 6,3038 11,3403 14,0111 15,8120 18,5493 21,0261 24,0539 26,21	70 32,9092
- 13 - 7,0415 - 12,3398 - 15,1187 - 16,9848 - 19,8119 22,3620 25,4715 - 27,68	34,5274
- 14 - 7,7895 - 13,3393 - 16,2221 - 18,1508 - 21,0641 23,6848 26,8727 - 29,14	
- 15 8,5468 14,3389 17,3217 19,3107 22,3071 24,9958 28,2595 30,57	•
16 9,3122 15,3385 18,4179 20,4651 23,5418 26,2962 29,6332 31,99	
17 10,0852 16,3382 19,5110 21,6146 24,7690 27,5871 30,9950 33,40	
18 10,8649 17,3379 20,6014 22,7595 25,9894 28,8693 32,3462 34,80	
. 19 11,6509 18,3376 21,6891 23,9004 27,2036 30,1435 33,6874 36,19	
20 12,4426 19,3374 22,7745 25,0375 28,4120 31,4104 35,0196 37,58	•
21 13,2396 20,3372 23,8578 26,1711 29,6151 32,6706 36,3434 38,93	•
22 14,0415 21,3370 24,9390 27,3015 30,8133 33,9245 37,6595 40,28	94 48,2676
23 14,8480 22,3369 26,0184 28,4288 32,0069 <mark>35,1725</mark> 38,9683 41,63	
24 15,6587 23,3367 27,0960 29,5533 33,1962 <mark>36,4150</mark> 40,2703 42,97	•
25 16,4734 24,3366 28,1719 30,6752 34,3816 <mark>37,6525</mark> 41,5660 44,31	
26 17,2919 25,3365 29,2463 31,7946 35,5632 88,8851 42,8558 45,64	•
- 27 18,1139 26,3363 30,3193 32,9117 36,7412 4 0,113 β 44,1399 46,96	
28 18,9392 27,3362 31,3909 34,0266 37,9159 4 1,337 <mark>/</mark> 2 45,4188 48,27	
_29	
<u>30 20,5992 29,3360 33,5302 36,2502 40,2560 43,77/30 47,9618 50,89</u>	22 59,7022

- Setting: We have several data sets (for example results of applying several different treatments.)
- Homogeneity (the null hypothesis) means that the data sets are all drawn from the same distribution: that all the treatments are equally effective.
- Three treatments for a covid-19 are compared in a clinical trial, yielding the following data:

	Treatment 1	Treatment 2	Treatment 3
Cured	50	30	12
Not cured	100	80	18

Use a chi-square test to compare the cure rates for the three treatments, i.e., to test if all three cure rates are the same.

- H_0 = all three treatments have the same cure rate.
- H_A = the three treatments have different cure rates.
- Expected counts:

Under H_0 the cure rate is (total cured)/(total treated) = 92/290 = 0.317

- This gives the following table of observed and expected counts (observed in black, expected in blue).
- We include the marginal values (in red). These were used to compute the expected counts.

	Treatment 1	Treatment 2	Treatment 3	
Cured	50, 47.6	30, 34.9	12, 9.5	92
Not cured	100, 102.4	80, 75.1	18, 20.5	198
	150	110	30	290

Likelihood ratio statistic:
$$G = 2 \sum_{i=1}^{n} O_i \ln(O_i/E_i) = 2.12$$

Pearson's chi-square statistic:
$$X^2 = \sum \frac{(O_i - E_i)^2}{E_i} = 2.13$$

Degrees of freedom means how many choices describe the data.

Formula: degrees of freedom df = (2 - 1)(3 - 1) = 2.

p-value =
$$0.346$$
, $\alpha = 0.005$

$$p > \alpha$$

The data does not support rejecting H_0 . We do not conclude that the treatments have different efficiency

XX is thinking of buying a restaurant and asks about the distribution of lunch customers. The owner provides row one below. XX records the data in row two himself one week.

	М	Т	W	R	F	S
Owner's distribution	.1	.1	.15	.2	.3	.15
Observed $\#$ of cust.	30	14	34	45	57	20

Run a chi-square goodness-of-fit test on the null hypotheses:

 H_0 : the owner's distribution is correct.

 H_A : the owner's distribution is not correct.

Compute X².

The total number of observed customers is 200. The expected counts (under H_0) are 20 20 30 40 60 30

$$X^2 = \sum \frac{(O_i - E_i)^2|}{E_i} = 11.44$$

df = 6 - 1 = 5 (6 cells, compute 1 value -the total count- from the data) p = 0.043.

So, at a significance level of 0.05 we reject the null hypothesis in favor of the alternative that the owner's distribution is wrong.

Table 2 (cont'd). One-sided *P*-values from $\chi^2(\nu)$ distribution: $P[\chi^2(\nu) > c]$.

`		$df = \nu$								
<u></u>	1	2	3	4	5	6	7	8	9	10
8.5	0.004	0.014	0.037	0.075	0.131	0.204	0.291	0.386	0.485	0.580
8.6	0.003	0.014	0.035	0.072	0.126	0.197	0.283	0.377	0.475	0.570
8.7	0.003	0.013	0.034	0.069	0.122	0.191	0.275	0.368	0.465	0.561
8.8	0.003	0.012	0.032	0.066	0.117	0.185	0.267	0.359	0.456	0.551
8.9	0.003	0.012	0.031	0.064	0.113	0.179	0.260	0.351	0.447	0.542
9.0	0.003	0.011	0.029	0.061	0.109	0.174	0.253	0.342	0.437	0.532
9.2	0.002	0.010	0.027	0.056	0.101	0.163	0.239	0.326	0.419	0.513
9.4	0.002	0.009	0.024	0.052	0.094	0.152	0.225	0.310	0.401	0.495
9.6	0.002	0.008	0.022	0.048	0.087	0.143	0.212	0.294	0.384	0.476
9.8	0.002	0.007	0.020	0.044	0.081	0.133	0.200	0.279	0.367	0.458
10.0	0.002	0.007	0.019	0.040	0.075	0.125	0.189	0.265	0.350	0.440
10.2	0.001	0.006	0.017	0.037	0.070	0.116	0.178	0.251	0.335	0.423
10.4	0.001	0.006	0.015	0.034	0.065	0.109	0.167	0.238	0.319	0.406
10.6	0.001	0.005	0.014	0.031	0.060	0.102	0.157	0.225	0.304	0.390
10.8	0.001	0.005	0.013	0.029	0.055	0.095	0.148	0.213	0.290	0.373
11.0	<.001	0.004	0.012	0.027	0.051	0.088	0.139	0.202	0.276	0.358
11.2	<.001	0.004	0.011	0.024	0.048	0.082	0.130	0.191	0.262	0.342
11.4	<.001	0.003	0.010	0.022	0.044	0.077	0.122	0.180	0.249	0.327
11.6	<.001	0.003	0.009	0.021	0.041	0.072	0.115	0.170	0.237	0.313
11.8	<.001	0.003	0.008	0.019	0.038	0.067	0.107	0.160	0.225	0.299

Consider the following table of counts

Use a chi-square test with significance level 0.01 to test the hypothesis that the number of marriages and education level are independent.

Education	Married once	Married multiple times	Total
College	550	61	611
No college	681	144	825
Total	1231	205	1436

The null hypothesis is that the cell probabilities are the product of the marginal probabilities. Assuming the null hypothesis we estimate the marginal probabilities in red and multiply them to get the cell probabilities in blue.

Education	Married once	Married multiple times	Total
College	0.365	0.061	611/1436
No college	0.492	0.082	825/1436
Total	1231/1436	205/1436	1

We then get expected counts by multiplying the cell probabilities by the total number of women surveyed (1436). The table shows the observed, expected counts:

Education	Married once	Married multiple times
College	550, 523.8	61, 87.2
No college	681, 707.2	144, 117.8

We then have G = 16.55 and $X^2 = 16.01$

The number of degrees of freedom is (2 - 1)(2 - 1) = 1. We could count this: we needed the marginal probabilities to compute the expected counts. Now setting any one of the cell counts determines all the rest because they need to be consistent with the marginal probabilities. We get p = 0.000047

Therefore we reject the null hypothesis in favor of the alternate hypothesis that number of marriages and education level are not independent

Regression Analysis

Basic idea:

 Use data to identify relationships among variables and use these relationships to make predictions.

Data

Data

 $s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n - 1}$

Information

Data Points:

X	У
1	6
2	1
3	9
4	5
5	17
6	12

$$s_x^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}$$

$$b_1 = \frac{s_{xy}}{s_x^2}$$

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} \qquad \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

Example 17.1

$$\hat{y} = .934 + 2.114x$$

Linear regression

- Linear dependence: constant rate of increase of one variable with respect to another (as opposed to, e.g., diminishing returns).
- Regression analysis describes the relationship between two (or more) variables.
- Example
 - For a conductor : Voltage versus Current

Velocity versus time

Steps in Regression Analysis

When you perform simple regression analysis, use a step-by step approach:

- 1. Fit the model to data estimate parameters.
- 2. Determine how well the model fits the data.
- 3. Proceed to estimate or predict the quantity of interest

The Method of Least Squares

■ The equation of the best-fitting line is calculated using *n* pairs

of data (x_i, y_i) .

• We choose our estimates $\hat{\alpha}$ and β to estimate α and β so that the vertical distances of the points from the line, are minimized.

Best fitting line:
$$\hat{y} = \hat{\alpha} + \hat{\beta}x$$

Choose $\hat{\alpha}$ and $\hat{\beta}$ to minimize

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$

Sum of Squares of Error(SSE)

Least Squares Estimators

Compute
$$\bar{x} = \frac{\sum x_i}{n}$$
, $\bar{y} = \frac{\sum y_i}{n}$, $S_{xx} = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$, $S_{yy} = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$, $S_{xy} = \sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$. Then $\hat{\beta} = \text{point estimator of } \beta = \frac{S_{xy}}{S_{xx}}$ $\hat{\alpha} = \text{point estimator of } \alpha = \bar{y} - \hat{\beta} \bar{x}$

The following data was collected in a study of age and fatness in humans.

Age % Fat	23	23	27	27	39	41	45	49	50
% Fat	9.5	27.9	7.8	17.8	31.4	25.9	27.4	25.2	31.1
Age % Fat	53	53	54	56	57	58	58	60	61
% Fat	34.7	42	29.1	32.5	30.3	33	33.8	41.1	34.5

One of the questions was, "What is the relationship between age and fatness?"

Age (x)	% Fat y	x ²	ху
23	9.5	529	218.5
23	27.9	529	641.7
27	7.8	729	210.6
27	17.8	729	480.6
39	31.4	1521	1224.6
41	25.9	1681	1061.9
45	27.4	2025	1233
49	25.2	2401	1234.8
50	31.1	2500	1555
53	34.7	2809	1839.1
53	42	2809	2226
54	29.1	2916	1571.4
56	32.5	3136	1820
57	30.3	3249	1727.1
58	33	3364	1914
58	33.8	3364	1960.4
60	41.1	3600	2466
61	34.5	3721	2104.5
834	515	41612	25489.2

n = 18

$$\sum X = 834$$

$$\sum y = 515$$

$$\sum X^{2} = 41612$$

$$\sum XY = 25489.2$$

n = 18,
$$\sum x = 834$$
, $\sum y = 515$
 $\sum x^2 = 41612$, $\sum xy = 25489.2$
 $S_{xx} = \sum x^2 - \frac{(\sum x)^2}{n}$
= $41612 - \frac{834^2}{18} = 2970$
 $S_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n}$
= $25489.2 - \frac{(834)(515)}{18} = 1627.53$

$$\hat{\beta} = \frac{S_{xy}}{S_{xx}}
= \frac{1627.53}{2970}
= .55
\hat{\alpha} = \bar{y} - \hat{\beta} \bar{x}
= \frac{515}{18} - .55 \frac{834}{18}
= 3.22
\hat{y} = 3.22 + .55x$$

F-Test

Notation: F_{a,b}, a and b degrees of freedom

Derived from normal data

Range: $[0,\infty)$

Table 4

Table 4

t Table											
cum. prob	t _{.50}	t.75	t _{.80}	t _{.85}	t .90	t.95	t.975	t .99	t _{.995}	t.999	t.9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896 0.889	1.119	1.415	1.895	2.365 2.306	2.998 2.896	3.499 3.355	4.785 4.501	5.408
8 9	0.000	0.706 0.703	0.883	1.108 1.100	1.397 1.383	1.860 1.833	2.306	2.821	3.250	4.297	5.041 4.781
10	0.000	0.703	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.781
11	0.000	0.697	0.876	1.088	1.363	1.796	2.220	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.896	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28 29	0.000	0.683	0.855 0.854	1.056 1.055	1.313	1.701	2.048	2.467	2.763 2.756	3.408	3.674
30	0.000	0.683 0.683	0.854	1.055	1.311 1.310	1.699 1.697	2.045 2.042	2.462 2.457	2.756	3.396 3.385	3.659 3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.042	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.030	1.296	1.671	2.000	2.423	2.704	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.043	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	dence Le					

26

The Analysis of Variance

• The total variation in the experiment is measured by the **total sum of squares**:

TotalSS =
$$S_{yy} = \sum_{yy} (y - \overline{y})^2$$

- The Total SS is divided into two parts:
- ✓SSR (sum of squares for regression): measures the variation explained by including the independent variable x in the model.
- ✓SSE (sum of squares for error): measures the leftover variation not explained by x.

$$SSR = \frac{(S_{xy})^2}{S_{xx}}$$

The ANOVA Table

Total
$$df = n-1$$

Regression df = 1

Error
$$df = n-1-1 = n-2$$

Mean Squares

MSR = SSR/1

MSE = SSE/(n-2)

Source	df	SS	MS	F
Regression	1	SSR	MSR	MSR/MSE
Error	n - 2	SSE	MSE	
Total	n - 1	Total SS		

The F Test

We can test the overall usefulness of the linear model using an F test. If the model is useful, MSR will be large compared to the unexplained variation, MSE.

H₀:
$$\beta = 0$$
 vs H_a: $\beta \neq 0$
Test Statistic : $F = \frac{MSR}{MSE}$
Reject H₀ if $F > F_{\alpha}$ with 1 and $n - 2$ df.

The table shows recovery time in days for three medical treatments.

- 1. Set up and run an F-test testing if the average recovery time is the same for all three treatments.
- 2. Based on the test, what might you conclude about the treatments?

T_1	T_2	T_3
6	8	13
8	12	9
4	9	11
5	11	8
3	6	7
4	8	12

For α = 0.05, the critical value of $F_{2,15}$ is 3.68.

 H_0 is that the means of the 3 treatments are the same. H_A is that they are not.

Our test statistic w is computed following the procedure from a previous slide. We get that the test statistic w is approximately 9.25. The p-value is approximately 0.0024. We reject H_0 in favor of the hypothesis that the means of three treatments are not the same.

Coefficient of Determination

The coefficient of determination is defined as

$$r^{2} = \frac{SSR}{Total SS} = 1 - \frac{SSE}{Total SS}$$

- r² is the square of correlation coefficient
- r² is a number between zero and one and a value close to zero suggests a poor model.
- It gives the proportion of variation in y that can be attributed to an approximate linear relationship between x and y.
- A very high value of r² can arise even though the relationship between the two variables is non-linear. The fit of a model should never simply be judged from the r² value alone.

Estimate of σ

An estimator of the variance σ^2 is

$$\hat{\sigma}^2 = \frac{SSE}{n-2} = MSE$$

Thus, an estimator of the standard deviation σ is

$$\hat{\sigma} = \sqrt{\frac{\text{SSE}}{\text{n-2}}} = \sqrt{\text{MSE}}$$

Total SS =
$$\sum y^2 - \frac{(\sum y)^2}{n} = 16156.3 - \frac{515^2}{18} = 1421.58$$

SSR = $\frac{(S_{xy})^2}{S_{xx}} = \frac{1627.53^2}{2970} = 891.27$
SSE = Total SS - SSR = 1421.58 - 891.27 = 529.71
 $r^2 = 1 - \frac{SSE}{Total SS} = 1 - \frac{529.71}{1421.58} = .627$
 $\hat{\sigma}^2 = \frac{SSE}{n-2} = \frac{529.71}{18-2} = 33.11$
 $\hat{\sigma} = \sqrt{33.11} = 5.75$

An analysis of variance (ANOVA) Table

Source	df	SS	MS	F
Regression	1	891.27	891.27	26.94
Error	16	529.71	33.11	
Total	17	1421.58		

- With r²=0.627 or 62.7%, we can say that 62.7% of the observed variation in %Fat can be explained by your regression model with human age.
- The magnitude of a typical sample deviation from the least squares line is about 5.75(%) which is reasonably large compared to the y values themselves.
- This would suggest that the model is only useful in the sense of provide a rough estimates for %Fat for humans based on age.

Inference Concerning the Slope β

- Do the data present sufficient evidence to indicate that y increases (or decreases) linearly as x increases?
- Is the independent variable x useful in predicting y?
- A no answer to above questions means that y does not change, regardless of the value of x. This implies that the slope of the line, β , is zero.

Sampling Distribution

When the four basic assumptions of the simple linear regression model are satisfied, the following are true:

- 1. The mean value of $\hat{\beta}$ is β . That is, $\hat{\beta}$ is unbiased
- 2. The standard deviation of the statistic $\hat{\beta}$ is $\frac{\sigma}{\sqrt{S_{xx}}}$
- 3. $\hat{\beta}$ has a normal distribution (a consequence of the error e being normally distributed)
- 4. The probability distribution of the standardized variable $\hat{\beta}$

$$t = \frac{\hat{\beta}}{\hat{\sigma} / \sqrt{S_{xx}}}$$

has the t distribution with df=n-2

Confidence Interval for \(\beta \)

When then four basic assumptions of the simple linear regression model are satisfied, a $(1-\alpha)100\%$ confidence interval for β is

$$\hat{\beta} \pm t_{\alpha/2} \, \hat{\sigma} / \sqrt{S_{xx}}$$

where the t critical value is based on df = n - 2.

A 95% confidence interval for β is $\hat{\beta} \pm t_{\alpha/2} \hat{\sigma} / \sqrt{S_{xx}} = .55 \pm 2.12 \times 5.75 / \sqrt{2970} = .55 \pm .22$ or (.33, .77)

Based on sample data, the %Fat increases .55% on average with one year of age, and we are 95% confident that the true increase per year is between 0.33% and 0.77%.

Hypothesis Tests Concerning β

Step 1: Specify the null and alternative hypothesis

-
$$\mathbf{H_0}$$
: $\beta = \beta_0$ versus $\mathbf{H_a}$: $\beta \neq \beta_0$ (two-sided test)

-
$$\mathbf{H_0}$$
: $\beta = \beta_0$ versus $\mathbf{H_a}$: $\beta > \beta_0$ (one-sided test)

-
$$\mathbf{H_0}$$
: $\beta = \beta_0$ versus $\mathbf{H_a}$: $\beta < \beta_0$ (one-sided test)

Step 2: Test statistic

$$t = \frac{\hat{\beta} - \beta_0}{\hat{\sigma} / \sqrt{S_{xx}}}$$

Step 3: When four basic assumptions of the simple linear regression model are satisfied, under H_0 , the sampling distribution of t has a Student's t distribution with n-2 degrees of freedom

Hypothesis Tests Concerning β

Step 3: Find p-value. Compute sample statistic

$$t^* = \frac{\hat{\beta} - \beta_0}{\hat{\sigma} / \sqrt{S_{xx}}}$$

 $-H_a$: $\beta \neq \beta_0$ (two-sided test)

$$p - v a lu e = 2 P (t > |t^*|)$$

- H_a : $\beta > \beta_0$ (one-sided test)

$$p - value = P(t > t^*)$$

- H_a : $\beta < \beta_0$ (one-sided test)

$$p - value = P(t < t^*)$$

 $P(t>|t^*|)$, $P(t>t^*)$ and $P(t<t^*)$ can be found from the t table

1.
$$H_0: \beta = 0$$
, $H_a: \beta \neq 0$

2.
$$t^* = \frac{\hat{\beta} - 0}{\hat{\sigma} / \sqrt{S_{xx}}} = \frac{.55}{5.75 / \sqrt{2970}} = 5.21$$

$$df = n - 2 = 16$$

- 3. p value < .005
- 4. reject H₀
- 5. There is a significant linear relationsh ip between age and fatness.

In Class Exercise

Writing a python code

- -Make scattering plot of first and second columns
- -Make a linear fit ($y=\alpha+\beta x$) to scattering plot and find α and β values and save it in *pdf* format.
- -Make Regression Analysis by making ANOVA (An analysis of variance) table for first and second columns.