SESTET 121	CAD/CA VOLUME SCIENC DAAG29	M HANDI II(U) E CENTI	BOOK FO ROCKWE ER D H	R POLYM LL INTE KAELBL	ER COMP RNATION E MAR 8	OSITE R AL THOU 3 SC529	ELIABIL SAND OA 1.7FR-V F/G	ITY KS CA OL-2 11/4	1/	3	× -3i	
र्श												
				,								
		-										
					,				,			

Mic Remover Resolution Text HART MATERIA HOLD IN AN ALL HOLD

~

Copy No. ____

VOLUME II

CAD/CAM HANDBOOK FOR POLYMER COMPOSITE RELIABILITY

FINAL REPORT FOR THE PERIOD November 1, 1980 through October 31, 1982

CONTRACT NO. DAAG29-80-C-0137

Prepared for

U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 22709

> D.H. Kaelble **Principal Investigator**

> > **MARCH 1983**

Approved for public release; distribution unlimited

FILE COPY

Q

~

~

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Rockwell International Science Center

CAD/CAM HANDBOOK FOR POLYMER COMPOSITE RELIABILITY

VOLUME II FIGURES AND TABLES

LIST OF TABLES

Table		Page
	Chapter 1	
1-1	The Deacon's Masterpiece: Or the Wonderful "One-Hoss-Shay." A Logical Story	1
1-2	Interaction Matrix Between Molecular Property and Mechanical Requirement; 3 = Strong Interaction, 2 = Medium, 1 = Negligible, 0 - Unknown, Σ = Sum of Interactions	2
1-3	Nomenclature of Polymer Reliability Relations	3
1-4	Weibull Strength Distributions	4
1-5	Co-reactants for Three-dimensional Epoxy-nitrile Rubber Block Copolymers	5
1-6	Chemical Characterization of Graphite-Epoxy Prepreg Materials	6
1-7	Metal Joint Reliability Studies	7
	Chapter 2	
2-1	Detailed Listing of Characterization Methods	9
2-2	Standard Units and Conversion Factors	13
2-3	Detailed Listing of Characterized Properties	14
2-4	Classification of Chromatographic Methods	15
2-5	Decision Matrix of Characterization Methods for Reinforcing Fiber Coatings (35 to 70 nm thickness)	16
2-6	Decision Matrix Between Nondestructive Evaluation (NDE) and Built-in Defects in Laminate Panels	17
2-7	Decision Matrix Between Nondestructive Evaluation (NDE) and Defects in Honeycomb Structures	18

LIST OF TABLES

Table	Chapter 3	Page
3-1	Properties of the Elements	19
3-2	Comparison of Single Bond Energies	21
3-3	Lattice Types and Packing Factors	21
3-4	Calculation of Heat of Formation for BeO, ${\rm TiO_2}$ and ${\rm Al_2O_3}$	22
3-5	Comparison of Calculated and Experimental Heats of Formation of Oxides	23
3-6	Comparison of Calculated and Experimental Heats of Formation for Chlorides	24
3-7	Calculation of the Oxidation Dilation Factor ϕ for Metals	25
3-8	Correlation Between Metal Oxidation State and IEPs	25
3-9	Coulomb Bond Energies Between Water and Various Oxides	26
3-10	Coulomb Bond Energies Between Ammonia and Various Oxides	27
3-11	Coulomb Bond Energies Between Chromium Trioxide and Various Oxides	28
3-12	Coulomb Bond Energies Between R-CH ₂ -Si(OH) ₃ and Various Oxides	29
3-13	Bond Properties for Adsorbates and Substrate Oxides	30
3-14	Comparison of Revised (Ref. 1 = X) and Pauling (Ref. 2 = X_p) Values of Elemental Electronegativity	31
	Chapter 4	
4-1	Functional Group Properties for Polymers	33
4-2	Sample Computations for Methacrylates (Upper Case) and Butadiene-Styrene Copolymers (Lower Case)	34
4-3	Comparison of Calculated and Experimental T_{q} (Ref. 2, 41)	35

1v C4659A/jbs

LIST OF TABLES

Table		Page
4-4	Calculated and Experimental Values of Me	36
4-5	Relation of Stress-Strain Curve Number to Test Temperature	37
4-6	Functional Group Properties for Polymers	38
4-7	Computed Estimates of ATS Physical Properties from Chemical Structure	39
4-8	Relation of Stress-Strain Curve Number to Test Temperature at Constant Time t = 1.0 s	40
	<u>Chapter 5</u>	
5-1	Properties of Commercial Reinforcing Fibers (from Ref. 5, p. 47)	41
5-2	Estimated Elemental Properties of Carbon	42
5-3	Estimated Intramolecular Properties of Silica	43
5-4	Estimated Intramolecular Properties of Aramid	44
5-5	Calculated Specific Bond Energy (Chemical Energy/ Unit Mass) for Fibers	45
5-6	Estimated Physical Properties of Equimolar TGMDA and DDS Linear Polymer (see Fig. 5-3)	46
5-7	Estimated Physical Properties for 2 Moles of TGMDA and 1 Mole DDS Linear Polymer (see Fig. 5-4)	47
5-8	Estimated Physical Properties of TGMDA Linear Homo-polymer (see Fig. 5-5)	48
5-9	First Estimate of the Physical Properties of Equimolar Isoamyl-Neopentyl Acrylate Copolymer	49
5-10	Second Estimate of the Physical Properties of Equimolar Isoamyl-Neopentyl Acrylate Copolymer	50
5-11	Relations Between Polymer Chemistry and Physical Properties	51

V C4659A/jbs

LIST OF TABLES

Table		Page
5-12	Summed Properties of Functional Groups	52
5-13	Polymerized Silane Chemistry and Surface Properties	53
5-14	Reactive Silane Monomers	54
5-15	Linear Hydroxy Polymers of Reactive Silane Primers	55
5-16	Summed Values of Monomer Group Properties for Linear Hydroxy Polymers of Reactive Silane Primers	56
5-17	Calculated Properties of Linear Hydroxy Polymers of Reactive Silanes at T_g	57
5-18	Correlation Between Crosslink Density (ρ/M_C) and Maximum Network Extensibility $\lambda_b(\max) = K(M_C/\rho)^{1/2}$	58
5-19	Correlation Between Entanglement Crosslink Density (ρ/M_e) and Maximum Craze Extensibility $\lambda_c = K_c(M_e/\rho)^{1/2}$	59
5-20	Correlation of Polymer Cohesive Energy δ_p^2 Density and Maximum Tensile Strength (σ_{11}) _b at 80K to 130K	60
5-21	Estimated Cure Path Properties of Equimolar TGMDA andd DDS (see Table 5-6)	61
5-22	Estimated Cure Path Properties of 2 Moles of TGMDA and 1 Mole DDS (see Table 5-7)	62
5-23	Estimated Cure Path for TGMDA Homopolymer (see Table 5-8)	63
5-24	Estimated Polymerization Path for Equimolar Isoamyl- Neopentyl Acrylate Copolymer (see Table 5-9)	64
5-25	Estimated Polymerization Path for Polystyrene	65

LIST OF TABLES

Table		Page
	Chapter 6	
6-1	Chemical Structure and Thermal Transitions of Six Film Forming Polymers	67
6-2	Input Format for Chemical-Mechanical Property Program (upper symbols found in Ref. 1 and lower symbols in Table 6-3)	68
6-3	Input Nomenclature for Chemical-Mechanical Program	69
6-4	Nomenclature of Intermediate Results in Chemical-Mechanical Program	70
6-5	Estimated Mechanical Properties of an Acrylate Copolymer	71
6-6	Calculated Effects of Isochronal Loading Time t Upon the Shear and Tensile Failure Properties of Equimolar Isoamyl-Neopentyl Acrylate Linear Polymer (Mn = 1.06E6) at T = 296K with Hookian Response	72
6-7	Estimated Effects of Low Moisture (0-2 wt%) on Cured Epoxy Thermoset	73
6-8	Estimated Effects of Medium Moisture (4-6 % by Wt) on Cured Epoxy Thermoset	74
6-9	Estimated Effects of High Moisture (8-10 % by Wt) on Cured Epoxy Thermoset	75
6-10	Second Estimated Effects of Low Moisture (0-2 wt%) on Cured Epoxy Thermoset	76
6-11	Second Estimated Effects of Medium Moisture (4-6 wt%) on Cured Epoxy Thermoset	77
6-12	Second Estimated Effects of High Moisture (8-10 wt%) on Cured Epoxy Thermoset	78
6-13	Calculated Mechanical Response of Cured TGMDA/DDS Epoxy (0 wt% H_2O , T_g = 483K, t = 1 s)	79
6-14	Calculated Mechanical Response of 2 wt% Moisture in Cured Epoxy (T _a = 449.6K, t = 1 s)	80

v11 C4659A/jbs

LIST OF TABLES

<u>Table</u>		<u>Page</u>
6-15	Calculated Mechanical Response of 4 wt% Moisture in Cured Epoxy ($T_g = 422K$, $t = 1 s$)	81
6-16	Calculated Mechanical Response of 6 wt% Moisture in Cured Epoxy (T_g = 399K, t = 1 s)	82
6-17	Calculated Mechanical Response of 8 wt% Moisture in Cure Epoxy ($T_g = 380K$, $t = 1 s$)	83
6-18	Calculated Mechanical Response of 10 wt% Moisture in Cured Epoxy ($T_g = 363K$, $t = 1 s$)	84
6-19	Relations Between English and SI Units in the Composite Fracture Energy and Strength Model	85
6-20	First Estimate of Composite Fracture Energy and Strength (English Units, LB = 5000 psi, LF = 500 psi)	86
6-21	Second Estimate of Composite Fracture Energy and Strength (English Units, LB = 5000 psi, LF = 5000 psi)	87
6-22	Relations Between English and SI Units in the Peel Mechanics Model	88
6-23	First Estimate of Laminate Peel and Shear Properties (Flexible Adherend Tensile Modulus = 1E4 psi, English Units)	89
6-24	Second Estimate of Laminate Peel and Shear Properties (Flexible Adherend Tensile Modulus = 5E4 psi, English Units)	90
6-25	Third Estimate of Laminate Peel and Shear Properties (Flexible Adherend Tensile Modulus = 2.5E5 psi, English Units)	91

LIST OF FIGURES

Figure	<u>Chapter 1</u>	Page
1-1	Failure rate criteria for reliability	93
1-2	Applied and allowable stress distribution analysis of reliability	94
1-3	Fracture mechanics criteria for structure reliability	95
1-4	Weibull criteria for structure reliability	96
1-5	Preferred dual path for correlating environmental aging with macroscopic strength	97
1-6	Technical approach to polymer composite reliability	9 8
1-7	Calculated function of M_i and R_i for $M_{\infty}=20,000$ kg/cm ² , $M_{\infty}=2.0$ kg/cm ² , $\tau=100$ s, $R_{\infty}=0$, $\tau_0=10^4$ s, $m=1.0$	99
1-8	Illustrative relations between tensile stress σ and time shift factor log (t/a_T)	100
1-9	Calculated tensile creep stress $\sigma(t)$ vs strain $\varepsilon(t)$ (solid curves) and reliability $R_i(t)$ reduced stress $R_i(t)*\sigma_i(t)$ vs strain $\varepsilon(t)$ (dashed curves) at $t=1$ s (upper view) and $t=20$ yr (lower view)	101
1-10	 (a) The temperature and composition dependence of the tensile strength for a rubber modified epoxy. (b) The stress dependence of the survival probability for rubber modified epoxy at -150°C and 100°C 	102
1-11	DSC thermograms for curing reactions of commercial epoxy matrix materials extracted from prepreg (DSC scan rate $\phi = 20$ °C/min)	103
1-12	Rheovibron thermal scans for flexural damping in cured re- inforced graphite-epoxy composite in the dry unaged condition	104
1-13	Rheovibron thermal scans for flexural damping in cured uni- axial reinforced graphite-epoxy composite in the wet- aged condition	105

LIST OF FIGURES

Figure		<u>Page</u>
1-14	Cumulative distribution function of survival probability	106
1-15	Dispersion (α) and polar (β) components of the solid-vapor surface tension $\gamma_{SV} = \alpha^2 + \beta^2$ for HT424 primer (Phase 1) and Al 2024-T3 adherend (Phase 3)	107
1-16	Dependence of interfacial work of adhesion W13 (upper curve) and lap shear bond strength σ_D (lower curve) at varied SET	108
1-17	Modified Griffith analysis of the effect of H ₂ O immersion in reducing the critical interfacial stress σ_I for interfacial failure between HT424 and etched Al 2024–T3 (ϕ_I = 1 - ϕ_C = 1.0)	109
1-18	SET and BET response surface for lap shear bond strength for Al 2024-T3 - HT424	110
1-19	Modified Griffith analysis of the effect of H $_2$ O immersion in reducing critical failure stress $\sigma_{\rm I}$ for interfacial failure between HT424 and phosphate-fluoride treated Ti~6Al-4V ($\phi_{\rm I}$ = 1 - $\phi_{\rm C}$ = 1.0)	111
1-20	SET vs BET response surface for lap shear bond strength for Ti-6Al-4V - HT424	112
1-21	Comparison of Weibull shear strength distributions for aluminum (upper view) and titanium (lower view) adherends	113
1-22	Chemical analysis flow chart	114
1-23	Physical and mechanical analysis flow chart	115
	Chapter 2	
2-1	Logic flow chart for predictive design methodology	117
2-2	(Upper): Change in molecular weight distribution and sol-gel state with decree of cure (idealized). (L.:er): The lifect of degree of cure upon glass transition temperature Γ_{α} and melt temperature T_{m} for liquid flow	
	(idea .zed)	118

এক ভা<mark>ৰতি কৰিছে ত</mark>

LIST OF FIGURES

Figure		Page
2-3	Idealized isothermal dynamic mechanical monitoring of degree of cure in terms of shear storage modulus G' (upper view) and loss tangent tan δ (lower view)	119
2-4	Thermal scanning of fully cured matrix for tensile modulus (upper view) and stress-temperature response (lower view) at constant time of loading (idealized)	120
2-5	Characteristic tensile stress-strain and fracture response (upper view) and temperature profile of unnotched tensile fracture energy (lower view)	121
2-6	Conversion of measured stress-strain to elastic-plastic analog (I) and introduction into fracture mechanics (II) and stress analysis (III) predictive models	122
2-7	General laminate life prediction program	123
	<u>Chapter 3</u>	
3-1	Covalent bond energy D _{AA} and electronegativity X for the elements	125
3-2	The maximum valence to atomic radius ratio, MV/R vs electronegativity	126
3-3	Acidity index pH = 16 - 3S vs atomic number	127
3-4	pH vs (MV/R) for acids and bases	128
3-5	Acid dissociation index pK_A vs (V/R) for miscellaneous acids and bases at varied valence	129
3-6	Acid dissociation index pK_A vs apparent cation valence V and V/R	130
3-7	Calculated maximum Coulomb energy $\mathbf{U}_{\mathbf{m}}$ between adsorbate and substrate oxides	131
3-8	Calculated nominal Coulomb energy U _N between absorbate and substrate oxides	132

LIST OF FIGURES

Figure		Page
	Chapter 4	
4-1	Central role of manufacturing science in the product life cycle	133
4-2	Illustrative computer aided manufacture-service-repair cycle	134
4-3	Calculated shear modulus G vs reduced relaxation time t/a_T (upper curve) and stress-temperature functions for yield and fracture (lower curves)	135
4-4	Computed estimates of nominal tensile stress vs strain response and failure (indicated by X in upper curves) and fracture energy (lower curve) of linear polyvinyl chloride ($T_g = 348 \text{ K}, M_n = 8.53\text{E5 gm/mole}$)	136
4-5	Experimental values of nominal tensile strength S_b vs extensibility ϵ_b for polyvinyl chloride film (T_g = 346 K, M_w = 1.16E6 gm/mole)	137
4-6	Experimental reliability distribution $R(\sigma)$ for true tensile strength $(\lambda S)_b$ of polyvinyl chloride below T_g	138
4-7	Computed estimates of nominal tensile stress vs strain response (upper curves) and fracture energy (lower curve) for crosslinked PVC	139
4-8	Model ATS oligomer structure	140
4-9	Experimental and theoretical (solid curves) values of $T_{\rm g}$ for ATS as a function of cure path	141
4-10	Calculated curves of nominal tensile stress vs strain for linear ATS polymer with T_g = 267°C and M_p = 2.26E5 gm/mole (see Table 4-8 for temperatures)	142
4-11	Calculated temperature dependence of tensile fracture energy W_{T} per unit volume of unnotched linear ATS polymer	143
4-12	Calculated curves of nominal tensile stress vs strain for crosslinked ATS with T_g = 344°C and M_p = 2.26E5 and M_c = 1817 gm/mole (see Table 4-8 for temperatures)	144
4-13	Calculated temperature dependence of tensile fracture energy W_{T} per unit volume of unnotched crosslinked ATS polymer	145

xii C4659A/jbs

LIST OF FIGURES

Figure		Page
4-14	Comparison of experimental notched fracture energy (γ) with unnotched fracture energy W _T from 25°C to 375°C	146
4-15	Comparison of standard (dashed) and revised (solid curve) forms of WLF equations. (For summary of experimental time-temperature shift factors a _T , see Ref. 31,32)	147
	<u>Chapter 5</u>	
5-1	Composition and suggested curing mechanisms for 177°C (350°F) service temperature epoxy resins	149
5-2	Repeat structure for 50:50 mole % isoamyl acrylate = neopentyl acrylate of number average molecular weight $\rm M_n$ = 1.03E6 g/mol, $\rm V_p$ (230K) = 1.01 cc/gm, $\rm T_g$ = 230K, and $\rm M_e$ = 21,000 gm/mole	150
5-3	Molecular structure of equimolar amounts of TGMDA and (37 wt%) DDS polymerized by chain extension	151
5-4	Molecular structure of 2 moles TGMDA and 1 mole (22.7 wt%) DDS polymerized by chain extension	152
5-5	Molecular structure of chain extended TGMDA homopolymer	153
5-6	Comparison of calculated and experimental density of solid polymers at 298K (data from Ref. 5)	154
5-7	Comparison of calculated and experimental solubility parameter (data from Refs. 9, 10)	155
5-8	Comparison of calculated and experimental glass temperatures for polyacrylates (upper curve) and butadiene-styrene copolymers (Refs. 11, 12)	156
5-9	M_n vs T_g for atactic polystyrene (data from Refs. 13, 14)	157
5-10	M_n vs T_g for atactic polystyrene (data from Refs. 15, 16)	158
5-11	Comparison of calculated and experimental entanglement molecular weight (data from Ref. 17)	159
5-12	Comparison of calculated and experimental entanglement molecular weight (data from Ref. 18)	160

xiii C4659A/jbs

LIST OF FIGURES

Figure		Page
5-13	Correlation between entanglement density (ρ/M_e) or chemical crosslink density (ρ/M_c) and maximum extension ratio λ_b or maximum craze extensibility λ_{craze}	161
5-14	Comparison of computed T_g and T_m curves for nonstoichiometric TGMDA/DDS (see Table 5-22) and measured T_g (X's) for Hercules 3501-5 epoxy resin (see Table 1-6 and Ref. 44)	162
	<u>Chapter 6</u>	
6-1	Tensile response of C ₂ F ₄ homopolymer (lower view) and (C ₂ F ₄) _{1,0} (C ₃ F ₆) _{0,14} copolymer (upper view) films	163
6-2	Tensile response of (CF2CFCL)1.0 (CF2CH2)0.03 copolymer (upper view) and polybisphenol-A carbonate (lower view) films	164
6-3	Tensile response of polyethyleneterephthalate film	165
6-4	Tensile response of (N(CO) ₂ C ₆ H ₂ (CO) ₂ NC ₆ H ₄ OC ₆ H ₄) polyimide film.	166
6-5	Calculated shear stress vs strain response for equimolar isoamyl-neopentyl acrylate copolymer ($M_n = 1.03E6 \text{ g/mol}$, $T_g = 230\text{K}$)	167
6-6	Calculated tensile stress vs strain response for equimolar isoamyl-neopentyl acrylate copolymer ($M_n = 1.03E6 \text{ g/mol}$, $T_g = 230K$)	168
6-7	Calculated shear (upper view) and tensile (lower view) works of deformation per unit volume	169
6-8	Calculated shear stress vs strain response for equimolar isoamyl-neopentyl acrylate copolymer ($M_{\rm R}=1.03E6$ g/mol, $T_{\rm g}=230{\rm K}$) with light crosslinking ($M_{\rm C}=3.42E4$ g/mol)	170
6-9	Calculated tensile stress vs strain response for equimolar isoamyl-neopentyl copolymer ($M_n=1.06E6~g/mol$), $T_g=230K$) and light crosslinking ($M_c=3.42E4~g/mol$)	171
6-10	Calculated shear (upper view) and tensile (lower view) works of deformation per unit volume	172

xiv C4659A/jbs

LIST OF FIGURES

Figure		<u>Page</u>
6-11	Calculated shear stress vs strain (solid curves) response (see Fig. 6-8) and elastic-plastic analogs (dashed curves) for lightly crosslinked equimolar isoamyl-neopentyl acrylate copolymer	173
6-12	Calculated (X) and experiment (+) effects of moisture on T_g of six cured epoxy resins (3501-5, 3501-6, 5208, 934, 3502, and NMD 2373); (for data see Ref. 6, 36)	174
6-13	Calculated engineering shear modulus (upper) and tensile modulus (lower curves) for cured epoxy with varied wt% moisture	175
6-14	Calculated shear strength (upper) and shear extensibility (lower curves) for cured epoxy with varied wt% moisture	176
6-15	Calculated specific fracture energy in shear (upper) and tension (lower curves) for cured epoxy with varied wt% moisture	177
6-16	Calculated failure envelopes in shear (upper) and tension (lower curves) for cured epoxy with varied wt% moisture	178
6-17	Unidirectional reinforced composite	179
6-18	Packing geometries for regular uniaxial fiber arrays	180
6-19	Frictional (λ_F) and bonded (λ_S) interfacial shear stresses during fiber pull-out	181
6-20	Schematic showing the observed variation in failure mode and fracture stress σ_{D} with crack length c in damage tolerant composites	182
6-21	Calculated curves of composite strength maximum $\sigma_b(\max)$ and minimum $\sigma_b(\min)$ vs crack length c	183
6-22	Peel mechanics (upper and left views) and failure criteria	184
6-23	Calculated curves of peel force P vs peel angle W for three values of flexible adherend tensile modulus E	185

Table 1-1

THE DEACON'S MASTERPIECE:

Or the Wonderful "One-Hoss-Shay."*
A Logical Story

Have you heard of the wonderful one-hoss-shay, That was built in such a logical way It ran a hundred years to a day, And the, of a sudden - ah, but stay, I'll tell you what happened without delay.

At age one hundred years to the day
There are traces of age in a one-hoss-shay
A general flavor of mild decay
But nothing local, as one may say.
There couldn't be, - for the Deacon's art
Had made it so like in very part
That there wasn't a chance for one to start.
And yet, as a whole, it is past a doubt
In another hour it will be worn out!

This morning the parson takes a drive. All at once the horse stood still, Close by the meet'n'-house on the hill. -First a shiver, and then a thrill, Then something decidedly like a spill, - And the parson was sitting upon a rock,

-What do you think the parson found, When he got up and stared around? The poor old chaise in a heap or mound, You see, of course, if you're not a dunce, How it went to pieces at once, - All at once, and nothing first, - Just as bubbles do when they burst.

*Exerpts from a poem by Oliver Wendell Holmes, in "The Autocrat of the Breakfast Table," pp. 252-256, The Riverside Press, Cambridge, Mass. (1895) relating to "Structural design for reliability."

Table 1-2 Interaction Matrix Between Molecular Property and Mechanical Requirement; 3 = Strong Interaction, 2 = Medium, 1 = Negligible, - = Unknown, Σ - Sum of Interactions

		Mec	hanical	Requirem	ent	
Molecular Property	T _g	Еe	٥٢	n	Eg	Σ
Volume Fraction Plasticizer	3	3	3	1	1	11
Volume Fraction Filler	2	3	2	3	1	11
Degree of Crystallinity	1	3	3	3	1	11
Molecular Weight	3	3	1	1	1	9
Crosslink Density	1	3	1	2	1	8
Chain Stiffness	3	1	0	2	1	7
Monomeric Friction Coefficient	3	1	3	0	0	7
Heterogeneity Index	2	1	2	1	1	7
Entanglement Molecular Wt	1	3	1	1	1	7
Solubility Parameter	3	1	0	0	2	6
Σ	22	22	16	14	10	

^{*}T_g = glass temp; Modulus (E) vs time (t) = E(t) = E_e + [E_g - E_e] [1 + t/τ_0]⁻ⁿ where E_e = elastomeric modulus, E_g = glass modulus, τ_0 = glass to rubber relaxation time, n = exponent.

Table 1-3
Nomenclature for Polymer Reliability Relations

Symbol	Meaning
Т _ф	Reference glass transition defined by monomer composition.
1	Summation of molecular molar cohesion.
ΣU _C	
Σh	Summation of molecular degrees of freedom.
C(t)	Time scale correction factor C(t) = 25°C.
^Т g	Nominal T_g as affected by mechanical (tensile) stress σ , moisture concentration C_{H_20} , and U.V. radiation effects on polymer reciprocal molecular weight (M ⁻¹ , number average.
a _T	Time shift factor for rheological response.
Т	Test temperature.
Mi	Time dependent modulus.
∫ M _o	Glass (solid) state modulus.
M.	Rubbery state modulus.
t,n	Test time and exponent.
τ ₁	Relaxation time for glass to rubber transition.
τ2	Terminal time for rubber to flow transition.
R _f	Reliability (= survival probability).
R.	Residual reliability at infinite time.
то	Relaxation time for Weibull failure process.
σo	Stress (tensile) for Weibull failure process.
ε _O	Strain (tensile) for Weibull failure process.
m(t), m(σ), m(ε)	Weibull distribution shape factors for time (t), stress (σ), and strain (ε) dominated failure.

Table 1-4 Weibull Strength Distributions

Composite Polym	er	Test	Strengt Distribut R = exp -(o _b	4.44
EPON 828/CTBN % CTBN	T(°C)	Tensile	(Kg/cm)	m (σ)
0	-150	N = 15	812	7.64
17	-150	14	679	9.78
50	-150	14	1274	15.5
0	100	15	95.6	6.82
17	100	15	42.1	8.33
50	100	15	26.6	5.44
Uniaxial Graphite/Epoxy		Interlaminar		
Herc. AS/3501-5		Shear	$\sigma_0(Kg/cm^2)$	m(a)
23°C air + 232°C spike		N = 18	1054	7.60
100°C water + 232°C spike		16	601	2.20
Metal-Adhesive Joint		Single		
A12024T3-HT424 Epoxy		Lap	4 2.	
SET (hr)	BET (hr)	Shear	$\sigma_0(Kg/cm^2)$	m(o)
0	0	N = 12	232	14.5
0	165, 449	12	184	15.4
0	808, 1023	12	165	10.0
21	0	12	208	15.0
20	669, 983	12	160	18.1
11-6A1-4V-HT424 Epoxy			_	
SET (hr)	BET (hr)		σ _o (Kg/cm²)	m(o)
0	0	N = 12	270	7.65
Ŏ	(670, 1016)	12	182	6.22
21	0	12	272	7.65
21	(591, 997)	12	202	5.35

SET = surface exposure time BET = bond exposure time at 54°C and 195% relative humidity.

Table 1-5 Co-reactants for Three-Dimensional Epoxy-Nitrile Rubber Block Copolymers

1. Epoxy: DGEBA (Epon 828, Shell Chemical Company), 100 pbw (parts by weight), $M_n \approx 380$ gm/mole.

- 2. Catalyst: Piperidine 5 pbw
- 3. Carboxy terminated nitrile rubber (HYCAR CTBN, B.F. Goodrich Chemical Company) 0, 17, 29, 39, 50% by weight based on 100 pbw Epoxy + 5 pbw piperidine.

HOOC —
$$\left[(CH_2 - CH = CH - CH_2)_5 - (CH_2 - CH) \right]_{10}$$
 — COOH

 $M_n = 3300 - 3500 \text{ gm/mole}$

4. Mix items (1), (2), (3), above, degas, and cure for 16 hours at 120° C under dry N_2 .

Table 1-6
Chemical Characterization of Graphite-Epoxy Prepreg Materials

		This	Study	Reference System
1)	Epoxy Marix	Hercules 3501-5	Fiberite 934	NARMCO 5208
2)	Graphite Fiber	Hercules Type AS	U. Carbide T300	U. Carbide T300
3)	% Total DDS Curative by IR Spectroscopy	29.2	27.8	22.1
4)	% Free DDS Curative by Liquid Chromatography	18.1	14.5	17.8
5)	Epoxide Equivalent	205	227	173
6)	Wt% BF ₃ Type Boron	0.047	0.022	0.0005
7)	Relative Degree of Cure by Liquid Chromatography	22	27	6.9
8)	Heat of Polymerization by DSC (cal/g polymer)	107	107	140

Table 1-7 Metal Joint Reliability Studies

- 1. Metal Adherends: Unclad 2024-T3 aluminum alloy surface treated by standard FPL sulfuric chromate etch and T8-6Al-4Y titanium alloy treated by standard phosphate fluoride cleaning process. Coupon size 0.063 in. thick, 1 in. wide, and 4 in. long.
- 2. Adhesive: HT 424 epoxy-phenolic film adhesive (from American Cyanamid) with glass fiber carrier and standard weight 0.0135 ± 0.005 lb/sq. ft. Unfilled HT 424 primer with parts A and B used with adhesive.
- 3. Bonding Process: Treated metal coupons spray primed with 0.001 in. thickness HT 424 primer solution using clean dry argon carrier gas. Primer layers dried 30 min ambient 23°C and 60 min at 66°C. An adhesive film is placed in the 1.000 in. × 0.500 in. overlap between two meal adherends. Six such joints are aligned in a bonding jig with the glass carrier acting to provide constant glue line thickness 0.008 in. Cure cycles with 60 min temperature rise to 171°C and 60 min cure cycle at 171° followed by cooling to room temperature.
- 4. Tensile Lap Shear Testing: 1.5 in. \times 1.0 in. \times 0.063 in. aluminum alignment shims bonded to eliminate offset. Tests at 23°C using 0.01 in./min Instron crosshead rate and 4.5 in. jaw separation.

Table 2-1 Detailed Listing of Characterization Methods (Sheet 1 of 4)

Chemical Quality Assurance

- HPLC (high performance liquid chromatography)
- GC/MS (gas chromatography/mass spectroscopy)
- 3. FTIR (Fourier transform infrared spectroscopy)
- 4. NMR (nuclear magnetic resonance spectroscopy)
- 5. Elemental Analysis
- 6. Surface Analysis

2. Processability Testing

- DSC (differential scanning calorimetry)
- TMA (thermal mechanical analysis)
- 3. DMA (dynamic mechanical analysis)
- 4. TGA (thermal gravimetric analysis)
- SEA (surface energy analysis)

3. Cure Monitoring and Management

- 1. Temperature/Pressure/Vacuum
- 2. AC Dielectrometry
- 3. DC Conductivity
- Acoustic Emission

4. Non-destructive Evaluation

- 1. US (ultrasonic) immersion C-scan reflector plate
- US immersion C-scan through transmission
 US contact through transmission
- 4. US contact pulse-echo
- 5. Fokker bond tester
- 6. 210 sonic bond tester
- 7. Sondicator
- 8. Harmonic bond tester
- 9. Neutron radiography
- 10. Low KV x-ray
- 11. Coin tap test
- 12. Acoustic emission
- 13. Thermography

5. Surface NDE

- 1. Ellipsometry
- Surface Potential Difference (SPD)
 Photoelectron Emission (PEE)
- Surface Remission Photometry (SRP)

Table 2-1 (Sheet 2 of 4)

6. Performance and Proof Testing

The following presents a listing of the properties of plastics reported in this book, the ASTM test numbers and the equivalent DIN test:

ASTM-DIN Test Equivalents

	Uni	ts of Measure		1	est
	English	Metric	sı .	ASTM	DIN
Processing					
1. Processing Methods	•F	•c			
2. Comp'n Molding Temp) •F	•č	i	i	
3. Inject Stock Melt Temp	•F	•c •c	ſ	Í	
4. Extrusion Temp	∮ •F	•č	ł	1	
5. Bulk Factor		•	1	D1895	D[53466]
6. Linear Mold Shrinkage	10./10.			D955	D[53464]
7. Helt Flow		g/10 min	i	D1238	D[53735]
8. Melting Point	•F1 _	•r	ſ	"""	5[50,50]
9. Density	1b/ft ³	g/çm³	Mg/m ³	D792	D[53479]
10. Specific Volume	1n.3/1b	cm ³ /g	N ³ /Mg	0792	D[53479]
Mechanical Properties				į	
11. Tensile Str. yield	1031b/1n.2	10 ² kg/cm ² 10 ² kg/cm ² 10 ² kg/cm ² 10 ² kg/cm ²	MPa	0638	
12. Tensile Str. Break	10 ³ 1b/1n. ²	10 ² kg/cm ²	MPa	D638	D[53455]
13. Tensile Str. low temp	10 ² 1b/1n. ²	10 ² kg/cm ²	MPa	D638	D[53455]
14. Tensile Str. high temp	10 ³ 1b/in. ² 10 ² 1b/in. ² 10 ³ 1b/in. ²	10 ² kg/cm ²	MPa	D638	D[53455]
15. Elongation %, yield			1	D638	D[53455]
16. Elongation %, break	1 <u>-</u> -		í	0638	D[53455]
17. Tensile Modulus	10 ⁵ 1b/1n. ²	10 ⁴ kg/cm ² 10 ² kg/cm ²	GPa	D638	D[53457]
18. Flexural Str. yield	10 ³ 1b/1n. ²	10 ² kg/cm ²	MPa	0790	D[53452]
19. Flexural Modulus	1051b/in.2	104kg/cm ²	GPa	0790	D[53457]
20. Stiffness in Flex.	10 ³ 1b/1n.2 10 ⁵ 1b/1n.2 10 ⁵ 1b/1n.2	10°kg/cm²	GPa	D747	
21. Compressive Str.	10 ³ 1b/1n. ²	10 ² kg/cm ²	MPa	D695	D[53454]
22. Izod. notched R.T.	ft 1b/in.	Kg cm/cm	kJ/m	D256	
23. Izod. low temp	ft 1b/in.	Kg cm/cm	kJ/m	D256	
24. Hardness	(test)	-		1	

Table 2-1 ASTM-DIN Test Equivalents (Sheet 3 of 4)

		(Sheet S				
		Units o	f Measure		1	est
		English	Metric	S1	ASTM	DIN
The	mal Properties					
25.	Thermal Conductivity	BTU in./hr ft ² °F	10 ⁻⁴ cal/sec cm ² *C/cm	W/Km	C177	0[52612]
30. 31. 32.	Linear Therm. Expan Vicat Soft Point Brittle Temp Continuous Svc Temp Defl Temp 264 lb/in. ² , Defl Temp 66 lb/in. ² ,	BTU in./hr ft ² 10 ⁶ in./in.°F °F °F °F °F 18.5 kg/cm ² °F 4.6 kg/cm ²	cal/g°C 10-5 mm/mm °C °C °C 1.81 MPa °C 0.45 MPa	kJ/kg K K	C351 D696 D1525 D746 D648	D[52328] D[53460] D[53461] D[53461]
	trical Properties		*C/mm			
36. 37. 38. 39. 40. 41. 42.	Surface Resistivity Insulation Resistance Dielectric Strength Dielectric Constant Dielectric Constant Dielectric Constant	V/10 ⁻³ in. 50-100 Hz 10 ² Hz 10 ⁴ Hz 50 ₃ 100 Hz 10 ³ Hz 10 ⁴ Hz	Ohm Cn Ohm kY/mm	MV/m	D257 D257 D257 D149 D150 D150 D150 D150 D150 D150	D[53482] D[53482] D[53482] D[53481] D[53483] D[53483] D[53483] D[53483]
44.					D542	D[53491]
	ronmental Properties					
	Water Absorp. %, 24 hr Equil. Water Content %]			0570 0570	D[53473] D[53473]

Table 2-1 (Sheet 4 of 4)

- 7. Durability Analysis and Service Life Prediction (Some Current Programs)
 - 1. U.S. Army Composite Materials Research Program (AMMRC).
 - 2. AFML, "Processing Science of Epoxy Resin Composites, Contract No. F33615-80-C-5021.
 - 3. AFML/ARPA, "Quantitative NDE, Contract No. F33615-74-C-5180.
 - 4. AFML, "Integrated Methodology for Adhesive Bonded Joint Life Predictions," Contract No. F-33615-79-C-5088.

Standard Units and Conversion Factors

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	To Consert	- 1	To Convert				To Convert		To Consect	
10 mg	Peltiply Dr	2								
		=	Meltiply Re	English Units	Property	\$1 Units	Maltiply By	[nglish Units	Pultiply Ry	Metric
\$ \$ \$.	=	- Jay	9.6.6	19/11	Dens 12 y	, a/La	87.5	14/11	910.0	(W3/6
70		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.006	18/14	Tensile Strength	May OF MP.	14.93	14/14	0.003	191/10
•	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0069	16/142	Tensile Antuins	MINT OF NE	144.43	16/14	0.003	491/12
7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0069	18/1n ²	Flexural Strength	HAY AT THE	144.43	12/14	0.000	# 0 / C m
7		. 1	900	7h/1n2	flegure! Strength	M / 10 M 18	144.93	16/112	0.000	491/50
			900	/*·!»	Commercial Strength		144, 93	18/1"	0.0103	496/50
1		3	7		Lynd	#/P	18, 73	ft 1b/1n	÷.	14 04/0
	<u> </u>	7	20.0	fe 1h/1n ²	Charge impact	,1/m	41.62	ft 16/1n2	2.141	has calcal
			144	BTU to/be ft? F	Thermal Conductivity	- 1/2	6. 94.	BTU In/hr ft? F	3.45x10-4	E3 / Nec CB
		****	£ 187		Specific Heat	13/14	0.236	87U/16 F		2 6/102
				10/10 6	Linear Financion	* * *	0.555	In/In F) e1/83
	<u>:</u> :	a/ AE	0.034	V/10-3 in	Dielectric Strength	u / Æ	75. 381	V/10-3 in	0.03%	*/ *
P. 10 10 10 10 10 10 10 10 10 10 10 10 10			Į	Synthol		Factor		Prefix		Symposium of the state of the s
() () ()			}			#1U1				_
researcy			ī	2 :		Ş. 0.		: i		
ì			ret t	>	_	: :		Ē.		•
electrical/mastateme	ngs 1 St gote		į	a	-	201		ter.		- (
electricel/petential	materal for		Yole	-	-	, <u>'</u>		3		: و
, de la composition della comp			Z Z	=	-	اں،		ì		7
			Pascal	2	-	[OI		0 1		•
	_		Jan Je	-	-	ام.		Preto		•
	•		ì	•	-	101		į		ŧ
			111000	*	~	101		Ę.		•
			1	•	-	اں.ہ		com i		·
1	•	,				10.3				•
		ŧ		•	-	01. و		el cro		•
					-	10 3		25		•
					-	10 t?		pira		•
						اه ا ؟		į		•

Table 2-3 Detailed Listing of Characterized Properties

1. Chemical Quality Assurance

- Chemical composition
- Degree of cure
 Molecular weight distribution
- 4. Number average molecular weight
- 5. Weight average molecular weight
- 6. Entanglement molecular weight

2. Processability

- 1. Gel point
- 2. Gel faction
- 3. Crosslink molecular weight
- 4. Glass temperature
- Melt (flow) temperature
 Dynamic storage modulus
- 7. Dynamic loss modulus

3. Cure Monitoring

- 1. Temperature/pressure/vacuum
- 2. Dynamic dielectric constant
- 3. Dielectric loss factor
- DC conductivity

4. Nondestructive Evaluation

- 1. Internal stress distributions
- 2. Damage zone size
- 3. Crack growth rate

5. Performance and Proof Testing

- 1. Stress and environment dependent T_g 2. Stress and environment dependent T_m 3. Isothermal stress-strain-time-response
- 4. Strength distribution
- 5. Extensibility distribution
- 6. Fracture energy distribution

6. Combined Bonding and Failure Testing

- 1. Surface energy
- Surface chemistry
 Surface morphology
- 4. Surface roughness

Table 2-4 Classification of Chromatographic Methods

- I. Gas Chromatography (GC)
 Gas liquid (GLC)
 Gas solid (GSC)
- II. High Performance Liquid Chromatography (HPLC)
 - A. Planar Chromatography Thin layer (TLC) Paper (PC)
 - B. Column Chromatography
 Exclusion (EC)
 Gel Permeation (GPC)
 Gel filtration (GFC)
 Liquid-solid or adsorption (LSC)
 Liquid-liquid or partition (LLC)
 Bonded phase (BPC)
 Ion exchange (IEC)

From: H.M. McNair, American Laboratory, May 1980, pp. 33-44.

Table 2-5

Decision Matrix of Surface Characterization Methods for Reinforcing Fiber Coatings (35 to 70 nm thickness)

<pre>4 = Excellent 3 = Acceptable 2 = Marginal 1 = Unacceptable 0 = No Information</pre>	Coating Durability	Molecular Orientations	Surface Concentration of Components	Surface Coatage Uniformity	Fiber Curvatures	Adhesion Strength	cknes	Average Coating Thickness	Row Ave.
Surface Energy Analysis	3	4	3	4	4	2	1	1	2.75
Scanning Elect. Mic. + EDAX	4	1	1	4	4	1	4	1	2.5
Electron Spect. for Chem. Anal.	4`	4	4	1	1	1	1	1	2.13
ASTM Adhesion Test	4	1	1	1	1	4	1	1	1.75
Fourier Transform IR	2	2	3	1	1	1	1	1	1.50
Optical Microscopy	1	1	1	1	1	1	1	1	1.0
Secondary Ion Mass Spec.	1	1	1	1	1	1	1	1	1.0
Laser Microprobe Mass Analyser	1	1	1	1	1	1	1	1	1.0
Raman Microspectroscopy	1	1	1	1	1	1	1	1	1.0
Co J	2.33	1.78	1.78	1.67	1.67	2.1	1.33	1.8	

Table 2-6

Decision Matrix Between Nondestructive Evaluation (NDE) Built-In Defects in Laminate Panels

	•				floads	Rondest ruct for	F .	Inst (MI	(MIT) Pet	Pethod	1			
	Direction of Decreasing Corelation: D - Defect Not Detected; 1 - Partial Detection; 2 - Detected	nsochon C-Scan Reflector Plate	(a) \$10 Sonic Bond	(2) "mmersion C-Scan "hrough" ransmission	(a) Fokker Bondseser	nguear" dasanci (9) ngrasimanan nguear" dasanci (9)	0403- 8 5,0c	یم: ۵۶-۶۵۹۵ (۵) (منهدوری و-۱۹۶۶	(H) Sonicator	nesse" bnoë pinomsH (i)	Addangoibs a mondus (()	350; de_ 6105 (H)	(1) FOR KA X-rey	F 5
	(1) Vold	~	~	~	~	~	~	~	~	~	~	_	•	۲.
	(2) Void (C-14 repoir)	~	~	~	~	~	~	~	~	2	~	_	e	7.7
	(3) Void (9309 repair)	~	~	~	~	~	~	~	~	~	~	_	0	ر. الا
	(4) Corroled Rond	~	~	~	~	~	2	_			~	_	~ •	1.67
	(5) Lack of Rand (skin to adhesive)	~	2	~	~	~	~	~	~	~		_	•	% :
	(6) Parous Affective	~	~	~	c	~	~	~	0	~	~	0	~	3.
	(7) Namelacturer's Separator Sheet	2	-	~	~	_	c	~	2	-	_	0	•	 8
		~	2	~	~	~	~	_	0		c	0	0	<u>.</u>
	(9) Thick Adhesive (1, 2, 3 ply)	~	~	_	~	6	6	6	0	6	6	6	•	8
	Col. Ave.	2.00	<u>-</u>	£	£ -	1.67	۶.	9	1.2	1.2	1.2	ç	9.0	
•														

Table 2-7

Decision Matrix Between Nondestructive Evaluation (NDE) Defects in Honeycomb Structures

				F. F.	Mondestructive Test (MOT) Method	1 on 1	est (M	07) 75	thod				
Direction of Decressing Correlation: N - Defect Red Detected; 1 - Partially Detected; 2 - Detected	Yeus ron Pari agraphy	ges" qs" nto) (Contact Through	0-50-0 (-50-60) - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	neb22-0 notenment (Fokker Bond'ester	COM KA K-1992	Hamonic Bond Fester) 5:0 20w1c	40382,pu05 (Contact Page 23-asing	Contact Shear Maye	9 8
	(♥)	(4)	(2)	(P)	(⊕;	ا :م)	(6)	w	(+)	([)	(4)	(1)	
(1) Void (Foum to Closure)	2	~	~	~	~	~	~	~	~	~	~	c	=
(2) Void (Adhesive to Skin)	~	~	~	~	~	~	~	~	~	~	. •	•	1.67
(3) Inadequate Tie-in of Foam to Core	~	~	~	· Æ	~	~	2	~	~	~	0	0	 8.
(4) Void (Adhesive to Core)	~	~	~	~	~	0	~	~	0	•	0	0	1.33
(5) Separator Sheet (Skin to Atherive	~	~	~	~	~	c	0	_	0	0	-	0	8
(6) Mater Intruston	2	~	~	0	~	c	~	0	0	0	•	0	0. 83
(7) Crushed Core (After Bonding)		~	_	_	_	_	~	_	c	0	c	0	8
(8) Inadequate foun Depth At Closure	~	-	0	c	c	~	~	•	-	~	0	•	58.0
(9) Separator Sheet (Adhesive to Core)	~	~	0	~	_	c	•	0	0	0	~	•	2 %
(10) Chem-Mill Step Void	~	c	0	c	c	0	0	0	0	•	0	0	۵ ت
- 1	!			2	5	9	<u>ا</u>	8	å	;		-	
Col. Aw.	F .	<u> </u>	Ē	<u>-</u>	<u>?</u>	<u> </u>		3	3	•	3	٠	_

18 C4659A/jbs

Table 3-1
Properties of the Elements
(Sheet 1 of 2)

Code No.	Z	SY	W G/Mole	10 ⁵ J/Mole	X	10 ⁻¹⁰ m	٧	MY	S
1	1	Н	1.008	4.35	2.20	0.32	1	1	3.13
2	3	LĪ	6.941	1.11	0.98	1.23	1	1	0.81
3	3	BE	9.012	(2.28)	1.57	0.90	2	2	2.22
4	5 6	В	10.81	(2.53)	2.04	0.82	3	3	3.66
5	6	C	12.01	3.48	2.55	0.77	4	4	5.19
6	7	N	14.01	1.61	3.04	0.75	3	5	6.67
7	8	0	16.00	1.39	3.44	0.73	2	2	2.74
8	9	F	19.00	1.53	3.98	0.72	1	1	1.39
9	11	NA	22.99	0.753	0.93	1.54	1	1	0.65
10	12	MG	24.31	(0.971)	1.31	1.36	2 3	2 3	1.47
11	13	AL	26.9 8	(2.06)	1.61	1.18	3		2.54
12	14	SI	28.09	1.77	1.90	1.11	4	4	3.60
13	15	P	30.9 7	2.15	2.19	1.06	5	5	4.72
14	16	S	32.06	2.13	2.58	1.02	6	6	5.88
15	17	CF	35.45	2.43	3.16	0.99	1	7	7.07
16	19	K	39.09	0.552	0.82	2.03	1	1	0.49
17	20	CA	40.08	(1.15)	1.00	1.74	2 3 4	2 3	1.15
18	21	SC	44.96	(2.58)	1.36	1.44	3	3	2.08
19	22	TI	47.90	(2.64)	1.54	1.32	4	4	3.03
20	23	٧	50.94	(3.36)	1.63	1.22	5	5	4.10
21	24	CR	52.00	(2.38)	1.66	1.18	3	6	5.08
22	25	MN	54.94	(1.43)	1.55	1.17	3 2 3 2 2 2 2 2 2	7	5.98
23	26	FE	55.85	(2.03)	1.83	1.17	3	3 3	2.56
24	27	CO	58.93	(2.20)	1.88	1.16	2	3	2.59
25 26	28	NI	58.70	(2.12)	1.91	1.15	2	3	2.61
20 27	29 30	CU	63.55	(1.72)	1.90	1.17	2	2	1.71
		ZN	65.38	(0.653)	1.65	1.25	2	2	1.60
28 29	31 32	GA GE	69.72 72.59	(1.36)	1.81	1.26	3	3	2.38
29 30	32 33	AS	74.92	1.57	2.01	1.22	4	4 5	3.28
30 31	33 34	AS SE	7 4.9 2 78.96	1.34 1.84	2.18	1.20 1.16	4	6	4.17
32	3 4 35	SE BR	79.90	1.93	2.96	1.10	1	7	5.17
33	35 37	RB	79.90 85.47	0.519					6.14
34	37 38	SR	87.62	(1.05)	0.82 0.95	2.16 1.91	1 2	1 2	0.46
3 4 35	39	y Y	88.91	(2.74)			3	3	1.05
36	40	Y ZR	91.22	(3.45)	1.22	1.62 1.45	4	4	1.85 2.76
30 37	41	ZR NB	92.91	(4.85)	1.60	1.45	5	5	
31	71	MD	76.71	(4.03)	1.00	1.34	J	7	3.73

Table 3-1
Properties of the Elements
(Sheet 2 of 2)

rada	Z	SY	W			n		MV	<u> </u>
Code No.	<u></u>	3 1	G/Mole	10 ⁵ J/Mole	X	10 ⁻¹⁰ m		MY	٥
38	42	MO	95.94	(4.30)	2.16	1.30	6	6	4.62
39	43	TC	98.0	(3.35)	1.90	1.27	7	7	5.51
40	44	RU	101.07	(3.35)	2.20	1.25	3	8	6.40
41	45	RH	102.91	(3.24)	2.28	1.25	7 3 3 2 1 2 3 4 3	4	3.20
42	46	PD	106.4	(1.93)	2.20	1.28	2	4	3.13
43	47	AG	107.87	(1.44)	1.93	1.34	1	1 2	0.75
44	48	CD	112.41	(0.552)	1.69	1.48	2	2	1.35
45	49	IN	114.82	(1.18)	1.78	1.44	3	3	2.08
46	50	SN	118.69	1.43	1.96	1.41	4	4	2.84
47	51	SB	121.75	1.26	2.05	1.40	3	5 6	3.57
48	52	TE	127.60	1.38	2.10	1.36	4	6	4.41
49	53	I	126.90	1.51	2.66	1.33	1	7	5.26
50	55	CS	132.91	0.448	0.79	2.35	1	1	0.43
51	56	BA	137.33	(1.12)	0.89	1.98	2	2	1.01
52	57	LA	138.91	(2.48)	1.10	1.69	3 4 5 6	3	1.78
53	72	HF	178.49	(4.72)	1.30	1.44	4	4	2.78
54	73	TA	180.95	(5.56)	1.50	1.34	5	5 6	3.73
55	74	W	183.85	(5.61)	2.36	1.30			4.62
56	75	RE	186.21	(3.97)	1.90	1.28	7	7	5.47
57	76	OS	190.2	(3.64)	2.20	1.26	4	8	6.35
58	77	IR	192.22	(3.48)	2.20	1.27	4	6	4.72
59	78	PT	195.09	(2.79)	2.28	1.30	4	4	3.08
60	79	AU	196.97	(1.86)	2.54	1.34	4 3 2	3 2	2.24
61	80	HG	200.59	(0.301)	2.00	1.49		2	1.34
62	81	TL	204.37	(0.866)	2.04	1.48	1	3	2.03
63	82	PB	207.2	(0.992)	2.33	1.47	2	4	2.72
64	83	BI	209.0	(1.03)	2.02	1.46	3	5	3.42
65	90	TH	232.04	(3.42)	1.30	1.65	4	4	2.42
66	92	U	238.03	(3.56)	1.38	1.42	6	6	4.22
67	94	PU	244.0	(2.29)	1.28	1.21	4	6	4.96
68	7	(N2)/2	14.01	4.73	3.04	0.55	3	5	6.67
69	8	(02)/2	16.00	2.01	3.44	0.62	2	2	2.74

20 **C4659A/jbs**

Table 3-2 Comparison of Single Bond Energies

		Single Bond	Energy	(kcal/mol)
Element	Group	Ref. 2	Eq. (2) (C.N.=12)	Ratio
Lithium	IA	25.6	6.3	4.06
Sodium	IA	18	4.3	4.19
Potassium	IA	13.2	3.3	4.00
Rubidium	IA	12.4	3.4	3.65
Cesium	IA	10.7	3.0	$\frac{3.57}{3.89 \pm 0.27}$
Boron	IIIB	25.0	15.1	1.66
Germanium	IVB	37.6	13.2	2.85
Arsenic	VB	32.1	9.5	3.38
Tin	IVB	34.2	11.4	3.00
Antimony	VB	30.2	10.6	$\frac{2.85}{2.75 \pm 0.65}$

Table 3-3 Lattice Types and Packing Factors

Lattice Type	Coordination Number	Packing Factor (C)	
Face centered cubic	12	1.414	
Body centered cubic	8	1.299	
Simple cubic	6	1.000	
Tetrahedral	4	0.650	

Table 3-4 Calculation of Heat of Formation for BeO, TiO, and Al $_2$ O $_3$

Z, SY, W, D/1E 4 BE 9.012 2 8 0 16 1.3 To continue p		2 7		
Chemical Anal	ysis:			
Bonding Elements A B BE BE (02)/2(02)/2 BE 0 Total To continue pr	Bond Energy (J/mole) 228000 201000 520951 612902	% Ionic Energy 0 0 64.776	Bond Length (M*1E-10) 1.8 1.24 1.4617	-1 -1 2 0
22 TI 47.0 2		2 4 7		
Bonding Elements A B TI TI (02)/2(02)/2 TI 0 Total To continue pr	Bond Energy (J/mole) 264000 201000 549865 1.26946E+06 ess ENTER	% Ionic Energy 0 0 63.3547	Bond Length (M*1E-10) 2.64 1.24 1.879	Moles -2 -2 4 0
13 AL 26.98		18 3 7		
Bonding Elements A B AL AL (02)/2(02)/2 AL 0 Total To continue pr	Bond Energy (J/mole) 206000 201000 495669 1.75301E+06	% Ionic Energy 0 0 65.1986	Bond Length (M*1E-10) 2.36 1.24 1.7453	-3 -3 6 0

Table 3-5

Comparison of Calculated and Experimental Heats of Formation for Oxides

Compound	$-\Delta H_f(calc.)$ (10 ⁵ J/mole)		Difference (10 ⁵ J/mole)
A1203	17.5	16.3	1.20
Fe ₂ 0 ₃	13.1	11.2	1.90
T102	12.7	9.11	3.59
Mg0	8.13	5.20	2.93
SiO ₂	7.91	8.56	-0.65
BeO	6.13	6.10	0.03
Mo0 ₂	5.08	5.43	-0.35
w0 ₂	3.26	5.70	-2.44
Au ₂ 0 ₃	2.83	-0.80	3.63
Se ⁰ 2	1.82	2.29	-0.47
		Sum	ı: 0 .94
		Std. Dev	: ± 2.04

Table 3-6
Comparison of Calculated and Experimental Heats of Formation for Chlorides

Compound	-ΔH _f (calc.)	-ΔH _f (Ref. 7) (10 ⁵ J/mole)	Difference
A1C13	6.95	6.95	0.0
FeC13	5.12	4.05	1.07
Ticl4	10.1	7.50	2.60
MgC1	3.30	6.41	-3.11
SiC14	6.12	6.10	0.02
BeC1 ₂	4.87	5.11	-0.24
MoC14	3.86	3.30	0.56
AuC13	1.11	1.18	-0.07
		Sum:	0.10
		Std. Dev:	± 1.60

	Calcul	ated (for Z =	12)	Exper. (7,8)		
0xide	V(Me) (CC)	V(MeO _x) (CC)	ф	V(MeO _x) (CC)	ф	
K ₂ 0	57.02	20.55	0.36	40.6	0.45	
Ba0	26.45	13.00	0.49	26.8	0.67	
Mg0	8.57	6.34	0.74	11.3	0.81	
A1 ₂ 0 ₃	11.19	11.32	1.01	25.7	1.28	
T102	7.84	8.48	1.08	18.7	1.78	
Fe ₂ 0 ₃	10.92	11.52	1.05	30.5	2.14	
Ta_20_5	16.40	20.31	1.24	53.9	2.50	
Nb ₂ 0 ₅	16.40	20.60	1.26	59.5	2.68	
Mo03	7.49	11.96	1.60	30.7	3.30	
WO3	7.49	12.30	1.64	32.4	3.35	

molecular volume of metal compound MeX_X
atomic volume of equal moles of metal Me

Table 3-8
Correlation Between Metal Oxidation State and IEPS

Oxide	IEPS Range (pH Units)	Acid-Base Character
M ₂ 0	pH > 11.5	strong base
МО	8.5 < pH < 12.5	intermediate base
M ₂ O ₃	6.5 < pH < 10.4	weak base
MO ₂	0 < pH < 7.5	intermediate acid
M_2O_5, MO_3	pH < 0.5	strong acid

Table 3-9
Coulomb Bond Energies Between Water and Various Oxides

Adsorbate:NH ₃	Monoba	cic		Diacie
Substrate Oxide	U _M (kJ/mole)	u _N	ប _M	u _N
Ag ₂ 0	17.5	2.0	46.5	9.6
Cu0	38.1	4.3	46.5	9.5
Fe_20_3	57.2	6.4	46.5	9.3
SiO ₂	78.7	8.8	46.5	9.3
Cr0 ₃	113.8	13.4	46.5	9.2

Table 3-11
Coulomb Bond Energies Between Chromium Trioxide and Various Oxides

RCH ₂ H ₀	St OH	RCH	20-Si = 0 H H
(Ag ₂ 0) 0 Åg	0 Åg 0 Åg 0	Ag O Ag O Ag	O Ag O Ag O
RCH ₂	OH S1 H	RCH ₂ -	0-Si < 0H H H
(cuo) o ću	0 ću 0 cu 0	Cu O Cu O Cu	O Cu O Cu O
RCH ₂ H ₀ S	V		0-s1-0 H H
(Fe ₂ 0 ₃) 0 Fe	0 Fe 0 Fe 0	Fe 0 Fe 0 Fe	O Fe O Fe O
RCH ₂ H ₀ S	.i С Н 0	RCH	2 0 - Si - OH H H
(\$10 ₂) 0 \$1	0 Ši 0 Si 0	Si O Si O Si	0 S1 0 S1 0
RCH ₂ H ₀ S	i Coh	RCH	2 0-Si < 0H H H
(cr0 ₃) 0 cr	0 cr 0 cr 0	Cr O Cr O Cr	ó cró cro
Adsorbate:R _S i(OH ₂ Substrate Oxide) Dibasic U _M (kJ/mole)	D U _N U _M	facid U _N
Ag ₂ 0	23.6	6.63 45.6	16.4
Cu0 Fe ₂ 0 ₃	51. 4 77.0	14.6 45.6 21.8 45.6	16.1 15.9
S10 ₂	106.0	30.0 45.6	15.9
CrO ₃	153.2	45.6 45.6	16.7

Table 3-13
Bond Properties for Adsorbates and Substrate Oxides

Bond +	D _{AB}	\$1	LAB	μ (debye)	RA	RB
H - 0	435	34.1	0.94	1.54	0.32	0.73
H - N	366	18.6	0.99	0.88	0.32	0.75
Cr = 0	1051	58.2	1.64	4.58	1.18	0.62
Ag - 0	362	60.9	1.93	5.64	1.34	0.73
Cu - 0	384	59.5	1.76	5.03	1.17	0.73
Fe - 0	421	59.4	1.76	4.56	1.17	0.73
Si - 0	387	59.1	1.70	4.82	1.11	0.73
Cr - 0	494	61.9	1.75	5.20	1.18	0.73
Si - C	303	13.4	1.82	1.17	1.11	0.77

Table 3-14 Comparison of Revised (Ref. 1 = X) and Pauling (Ref. 2 = X_p) Values of Elemental Electronegativity

AT. No.	SY	X	Хp	X-X _p	AT. No.	SY	X	Х _р	x-x _p
1	Н	2.20	2.1	0.10	37 38	RB SR	0.82 0.95	0.8	0.02 -0.05
3	LI	0.98	1.0	-0.02	38	Y	1.22	1.2	0.02
4	BE	1.57	1.5	0.07	40	ZR	1.33	1.4	-0.07
5 6	В	2.04	2.0	0.04	41	NB	1.60	1.6	0.0
6	С	2.55	2.5	0.05	42	MO	2.16	1.8	0.36
7	N	3.04	3.0	0.04	43	TC	1.90	1.9	0.0
8	0	3.44	3.5	-0.06	44	RU	2.20	2.2	0.0
9	F	3.98	4.0	-0.02	45	RH	2.28	2.2	0.08
					46	PD	2.20	2.2	0.0
11	NA	0.93	0.9	0.03	47	AG	1.93	1.9	0.03
12	MG	1.31	1.2	0.11	48	CD	1.69	1.7	-0.01
13	AL	1.61	1.5	0.11	49	IN	1.78	1.7	0.08
14	SI	1.90	1.8	0.10	50	SN	1.96	1.8	0.16
15	P	2.19	2.1	0.19	51	SB	2.05	1.9	0.15
16	S	2.58	2.5	0.08	52 53	TE	2.10	2.1	0.0
17	CL	3.16	3.0	0.16	53	I	2.66	2.5	0.16
19	K	0.82	0.8	0.02	5 5	CS	0.79	0.7	0.09
20	CA	1.00	1.0	0.0	56	BA	0.89	0.9	-0.01
21	SC	1.36	1.3	0.06	57	LA	1.10	1.1	0.0
22	ΤI	1.54	1.5	0.04	72	HF	1.30	1.3	0.0
23	V	1.63	1.6	0.03	73	TA	1.50	1.5	0.0
24	CR	1.66	1.6	0.06	74	W	2.36	1.7	0.66
25	MN	1.55	1.5	0.05	75	RE	1.90	1.9	0.0
26	FE	1.83	1.8	0.03	76	OS	2.20	2.2	0.0
27	CO	1.88	1.8	0.08	77	IR	2.20	2.2	0.0
28	NI	1.91	1.8	0.11	78	PT	2.28	2.2	0.08
29	CU	1.90	1.9	0.0	79	AU	2.54	2.4	0.14
30	ZN	1.65	1.6	0.05	80	HG	2.00	1.9	0.10
31	GA	1.81	1.6	0.21	81	TL	2.04	1.8	0.24
32	GE	2.01	1.8	0.21	82	PB	2.33	1.8	0.53
33	AS	2.18	2.0	0.18	83	BI	2.02	1.9	0.12
34	SE	2.55	2.4	0.15	•••	- 11			
35	BR	2.96	2.8	0.16	90	TH	1.30	1.3	0.0
					92	U	1.38	1.7	-0.3 2
					94	PU	1.28	-	-

Table 4-1
Functional Group Properties for Polymers

Vait Wo.	(R = 8.314 J/K*mole) Structure Group	(J/mole)	•	•	(m ³ /mole)	M (kg/mole)	Polymer Unit
1	-CB2-	4-1423		1	2.221-5	1.42-2	ethylene
2	-CE (CE3)-	1.2024	11	1	4.442-5	2.8E-2	propylese
3	-C((CH3)2)-	1.1924	14	1	6.64E-5	4. 五-2	isobutylene
4	-CE(C684)-	3.0124	15	1	1.112-4	9.02-2	styrene
5	-P-C네4-	2. 3年4	5	4	8. 842 - 5	7. 42- 2	terephthlate
6	-K-C684-	2.58E4	10	3	8.862-5	7.6E-2	isophthalate
7	-C (CR3)CB-	1.1524	11	2	5.92E-5	4. Œ-2	Looptone
	-CHCR-	7.49E3		2	3.702-5	2.62-2	1,4-butadiene
•	-CE (CLC12)-	1.2924	11	ı	5.90E-5	4. Œ -2	1, 2-butediese
10	-CE(C6R11)-	2.5624	21	1	1.482-4	9-6E-2	vinyl cyclobezane
11	-CE(C(0)0CE3)-	2. 81E4	23	1	7.572-5	7. 22 - 2	methectylate
12	-C(CE3)(C(0)0CE3)-	4.60E4	26	1	9.792-5	8.6Z-2	mothylmethecrylate
13	-CE (CR3)0-	1.3924	17	2	5.542-5	4.42-2	propylene ozide
14	-C(0)0-	1.4124	12	2	3.322-5	4.4E-2	ethylene adipate
15	-CE (OC (O) CE3)-	3. 1724	23	1	7.572-5	7.22-2	vimyl acetate
16	-C(0)-	7.32E3	6	1	2.222-5	2.8E-2	ket one
17	-CH (C(0)0H)-	3. 5124	20	1	5.642-5	5. EZ-2	acrylic acid
18	-CR (OR)-	2.6624	14	1	4.902-5	3-02-2	winyl alcohol
19	-CH (OCH (O))-	2. B6E 4	20	1	5.542-5	5. EZ-2	vinyl formate
20	-0-	6.82E3	6	1	1.06E-5	1.6E-2	ether
21	-# SC (D) -	4.4424	13	2	3.7完-5	4. 宝-2	ami de
22	-#HC(0)0-	2.6X4	19	3	4.892-5	5.9E-2	urethane
23	-CE (Ct)-	2.4124		1	4.8完-5	3. 92-2	acrylomitrile
24	-CE (CL)-	1.7524	•	1	4.07E-5	4.85E-2	vinyl chloride
25	-C (CL)CB-	1.2624	8	2	5.55E-5	6.05E-2	Beop reme
26	-C((CL)2)-	1.1324		ı	5.922-5	8.30E-2	vinylidene chloride
27	-C72-	4. 81E3		1	3. 4配-5	5. Œ-2	tetrafluoroethylene
28	-CH2C72-	1.48E4	16	2	5.702-5	6.42-2	winylidene fluoride
29	-CF(CF3)-	1. 84E4	13	1	6.96z-5	1. CE-1	perfluoropropylene
30	-\$1((CB3)2)0-	1.7224	30	2	8.622-5	7.4E-2	dimethylsilomane
31	-# ((C(0))2)C682((C(0))2)#-	1.10E5	62	7	2.01E-4	2.142-1	imi de
32	-6-	6.26E3		ı	2.56E-5	3. 22-2	oulfide
33	-6 ((0)2)	4.5484	23	1	4.042-5	6.40E-2	sulfone

PRODUCED PACE BLANK-NOT FILMED

Table 4-2
Sample Computations for Methacrylates (Upper Case) and
Butadiene-Styrene Copolymers (Lower Case)

Unit No.	Moles	Structure Unit	Polymer Reference
		I. Main Chain Units	
1	1	-CH2-	ethlyene
12	1	-C(CH3)(C(0))CH3)-	methyl methacrylate
		II. Side Chain Units	•
1	11	-CH2-	ethylene
Glass S	pec. Vol. (M*	M*M/kg = 9.89634E-04 (C)	
		M) = 3.7802E+08 (CAL/CC	
) - 90.3904
		0.007 (C) = -59.1928	
		= 88.7177 (g/mole) = 8	8717 .7
		= 88.7177 (g/mole) = 8	
Entang.	MÅ (kg/mole) 0.87	= 88.7177 (g/mole) = 8I. Main Chain Units-CH2-	ethylene
Entang.	MÅ (kg/mole) 0.87 0.87	= 88.7177 (g/mole) = 8I. Main Chain Units-CH2-	ethylene 1,4-butadiene
Entang. 1 8 1	0.87 0.87 0.87 0.87	<pre>1 = 88.7177 (g/mole) = 8 2. Main Chain Units -CH2CHCHCH2-</pre>	ethylene 1,4-butadiene ethylene
Entang. 1 8 1	0.87 0.87 0.87 0.87 0.13	<pre>1 = 88.7177 (g/mole) = 8 1. Main Chain Units -CH2CHCHCH2CH2CH2-</pre>	ethylene 1,4-butadiene ethylene ethylene
Entang. 1	0.87 0.87 0.87 0.87 0.13	<pre>1 = 88.7177 (g/mole) = 8 1. Main Chain Units -CH2CHCHCH2CH2CH2CH(C6H5)-</pre>	ethylene 1,4-butadiene ethylene ethylene styrene
Entang. 1 8 1 4 Glass S	0.87 0.87 0.87 0.13 0.13 pec. Vol. (M*	I. Main Chain Units -CH2CHCHCH2CH2CH2CH2CH2CH2CH(C6H5)CH*M/kg) = 1.00516E-03 (ethylene 1,4-butadiene ethylene ethylene styrene CC/G) = 1.00516
Entang. 1 8 1 1 4 Glass S Glass C	0.87 0.87 0.87 0.13 0.13 pec. Vol. (M*	I = 88.7177 (g/mole) = 8 I. Main Chain Units -CH2CHCHCH2CH2CH(C6H5)CH*M/kg) = 1.00516E-03 (PM) = 2.96893E + 8 (CAL/	ethylene 1,4-butadiene ethylene ethylene styrene CC/G) = 1.00516
Entang. 1 8 1 1 4 Glass S Glass C Glass T	0.87 0.87 0.87 0.13 0.13 pec. Vol. (M* E.D. (J/M*M* emp (K) = 208	I. Main Chain Units -CH2CHCHCH2CH2CH2CH2CH2CH2CH(C6H5)CH*M/kg) = 1.00516E-03 (ethylene 1,4-butadiene ethylene ethylene styrene CC/G) = 1.00516 CC) = 70.9575

Methacrylates		Ψ _p (g/cc)	6 ² (cal/cc)	T _g (C)	M _e (kg/mole)	T _g (exp)
meth	vl	0.829	144	107	18.2	105
ethy	_	0.861	131	63	23.1	61
prop		0.886	122	33	28.4	31
buty	-	0.907	115	12	34.0	12
hexy		0.938	105	-17	46.1	-19
octy		0.989	90	-36	59.3	-38
dode		0.989	90	-59	88.7	-62
Mole (B)	Styrene Cop Mole (S)	01,2010				
Mole (B)	Mole (S)	-	4 0	110	20. 2	100
Mole (B) 0	Mole (S)	0.883	8 8 8 6	110 69	20.2 12.8	100
Mole (B) 0 0.2	Mole (S) 1 0.8	0.883 0.902	8 6	69	12.8	100
Mole (B) 0 0.2 0.4	Hole (S) 1 0.8 0.6	0.883 0.902 0.923	8 6 8 2	69 28	12.8 8.2	-
Mole (B) 0 0.2 0.4 0.61	Hole (S) 1 0.8 0.6 0.39	0.883 0.902 0.923 0.954	86 82 77	69	12.8	- -12
Mole (B) 0 0.2 0.4 0.61 0.64	Hole (S) 1 0.8 0.6	0.883 0.902 0.923	8 6 8 2	69 28 -14	12.8 8.2 5.0	-
Mole (B) 0 0.2 0.4 0.61 0.64 0.72	Hole (S) 1 0.8 0.6 0.39 0.36 0.28	0.883 0.902 0.923 0.954 0.959 0.973	86 82 77 77	69 28 -14 -20	12.8 8.2 5.0 4.7	-12 -13
Mole (B) 0 0.2 0.4 0.61 0.64 0.72 0.77	Hole (S) 1 0.8 0.6 0.39 0.36	0.883 0.902 0.923 0.954 0.959	86 82 77 77 75	69 28 -14 -20 -35	12.8 8.2 5.0 4.7 3.9	-12 -13 -34 -37
Mole (B) 0 0.2 0.4 0.61 0.64 0.72	Hole (S) 1 0.8 0.6 0.39 0.36 0.28 0.23	0.883 0.902 0.923 0.954 0.959 0.973 0.983	86 82 77 77 75 74	69 28 -14 -20 -35 -45	12.8 8.2 5.0 4.7 3.9 3.4	-12 -13 -34
Mole (B) 0 0.2 0.4 0.61 0.64 0.72 0.77 0.87	Hole (S) 1 0.8 0.6 0.39 0.36 0.28 0.23 0.13	0.883 0.902 0.923 0.954 0.959 0.973 0.983	86 82 77 77 75 74 71	69 28 -14 -20 -35 -45 -64	12.8 8.2 5.0 4.7 3.9 3.4 2.6	-12 -13 -34 -37 -51,-60

Polymer	Me	Me (exp)
	(kg/mole)	(kg/mole)
poly-n-octylmethacrylate	59.3	87
poly-n-hexylmethacrylate	46.1	33.9
polymethylmethacrylate	18.2	4.7-10.0
polystyrene	20.2	17.3-18.1
styrene-butadiene copolymer (0.87 mole St, o.13 mole Bd)	2.6	3.0
poly-1,4-polybutadiene	1.7	1.7-2.9

Table 4-5
Relation of Stress-Strain Curve Number to Test Temperature

Curve No.	Temp	Curve No.	Temp (K)	Curve No.	Temp (K)
1	180	8	285	15	390
2	195	9	30 0	16	405
3	210	10	315	17	420
4	225	11	33 0	18	435
5	240	12	345	19	450
6	255	13	360	20	465
7	270	14	375	21	480

Table 4-6
Functional Group Properties for Polymers

Structure Group	U (J/mole)	R	N	(m ³ /mole)	M (kg/mole)	Reference Polymer
-H-C6H4-	2.58E4 -	10	3	8.86E-5	7.6E-2	isophthalate
-P-C6R4-	2.38E4	5	4	8.86E-5	7.6E-2	terepthalate
-0-	6.82E3	6	1	1.06E-5	1.6E-2	ether
-CHCH-	7.49E3	8	2	3.70E-5	2.6E-2	1, 4-butadiene
-s((0)2)-	4.54E4	23	1	4.04E-5	6.4E-2	sulfone

Table 4-7
Computed Estimates of ATS Physical Properties from Chemical Structure

Unit No.	Moles	Structures Unit	Polymer Reference
6	2	-M-C6H4	Isophthalate
5	2	-P-C6H4	Terephthalate
20	2	-0-	Ether
8	2	-CHCH-	1-4-Butadiene
3 3	1	- \$((0)2)-	Sulfone

Glass Spec. Vol (M*M*M/KG) = 7 48009E-04 (CC/G) = .748009 Glass C.E.O. (J/M*M*M) = 5.09055E+08 (CAL/CC) = 121.664 Glass Temp. (K) 540.383 (C) = 267.183 Entang. M: (KG/Mole) = 3.39525 (G/MOLE) = 3395.25 U,H,V,M,N 173220 81 4.9E-04 452 21 (Summed Values)

Table 4-8 Relation of Stress-Strain Curve Number to Test Temperature at Constant Time t=1.0 s

	Tenpe	rature		Temperature		
Curve No.	•c	K	Curve No.	•c	K	
1	-5 0	223	11	200	473	
2	-25	248	12	225	498	
3	0	273	13	25 0	5 23	
4	25	248	14	275	548	
5	5 0	3 23	15	30 0	573	
6	75	348	16	3 25	59 8	
7	100	3 73	17	35 0	623	
8	125	39 8	18	3 75	648	
9	150	423	19	400	673	
10	175	448				

Table 5-1
Properties of Commercial Reinforcing Fibers
(from Ref. 5, p. 47)

	Cara		Tensile F	ropertie	S
Fiber	Spec. Vol. (cc/g)	E (GPa)	Sp (GPa)	(2)	Wha)
Graphite (UHM-S)	0.510	500	1.86	0.37	3.44
(HM-S)	0.523	360	2.34	0.65	7.60
(HT-S)	0.565	244	2.82	1.16	16.36
(A-S)	0.571	208	2.82	1.36	19.18
Boron (W-core)	0.377	386	3.41	0.88	15.00
Aramid-49	0.690	138	2.76	2.00	27.60
E-glass	0.394	72.5	3.44	4.74	81.53

Table 5-2
Estimated Elemental Properties of Carbon

```
HOW MANY ELEMENTS? 1
ELEMENT CODE NO =? 5
MOLES OF ELEMENT =? 2
NUMBER OF CHEMICAL BOND TYPES=> 1
FOR A-B BOND, ELEMENT A CODE NO = 2 5
ELEMENT B CODE NO = 2 5
MOLES OF A-B BOHDS#? 4_
ELEMENTARY PROPERTIES
2, 8Y, N, 0/165, X, R/16-10, V PH = 6 0 18.01 3.48 8.55 77 4 5
TO CONTINUE PRESS ENTER
CHEMICAL ANALYSIS.
SPICHOS
                  BUND
                             % 10410
                                      BOND
                                                   MOLES
                  ENERGY
                                       LENGTH
ELEMENTS
                             EHERRY
A
     5
                  (J/MOLE)
                                       : M*1E-10)
C
                   348030
                              8
                                         1.54
 TOTAL
                   1 3925+06
                                                    4
 TO CONTINUE PRESS ENTER
 PHYSICAL ANALYS(S:
 ELEMENTS
                  MOLES
 C
                   2
 MOLECULAR WT. (KG/MULE)= .02402
                     10LE)= 24 02
 SPECIF: VOLUM
                     ことなり、日
 (2=12)
                    ?=8)
                                                    . Z=4)
                                    (2=6)
                    140348
   129547
                                      18313
                                                       .232413
 TO CONTINUE T
                   RUN AND PRESS ENTER
 READY
 >_
```


Table 5-3 Estimated Intramolecular Properties of Silica

```
HOW MANY ELEMENTS? 2
ELEMENT CODE NO => 12
MOLES OF ELEMENT=? 1
ELEMENT CODE NO =2 7
MOLES OF ELEMENT=? 2
NUMBER OF CHEMICAL BOND TYPES=? 1
FOR A-8 BOND, ELEMENT A CODE NO =? 12
ELEMENT & CODE NO. = 7 7
MOLES OF A-B BONDS=? 4_
ELEMENTARY PROPERTIES
2, SY, W, D/1E5, X, R/1E-10, V, PH =
 14 SI 29 89 : 1.77 1 9 1 11 4 7 8 0 16 1 39 3 44 73 2 2
TO CONTINUE PRESS ENTER
CHEMICAL ANALYSIS:
                            2 IDMIC
SHICKOB
                  BOND
                                       BOND
                                                  MOLES
ELEMENTS
                  ENERGY
                            ENERGY
                                       LENGTH
a
      8
                  (J/MOLE)
                                       (M*1E-10)
                                        1.7814
      0
                  386968
                             59.1583
SI
TOTAL
                  1.54744E+86
TO CONTINUE PRESS ENTER
PHYSICAL AMALYSIS:
                  MOLES
ELEMENTS
51
                   1
 MOLECULAR MT. (KG/NOLE)= .06009
                 (G/MOLE >= 60.89
SPECIFIC WOLUME (CC/G) :
                  (2=8)
                                                   (Z=4)
                                   (Z=6)
 (Z=12) ·
                    113966
                                                      . 228352
   184749
                                     .148114
 TO CONTINUE TYPE RUN AND PRESS ENTER
 READY
 >_
```

Table 5-4 Estimated Intramolecular Properties of Aramid

```
HOW MANY ELEMENTS? 4
ELEMENT CODE NO. =? 1
MOLES OF ELEMENT=? 5
ELEMENT CODE NO =? 5
MOLES OF ELEMENT=? 7
ELEMENT CODE NO. =? 6
MOLES OF ELEMENT=? 1
ELEMENT CODE NO. = 7 7
MOLES OF ELEMENT = ? 1
NUMBER OF CHEMICAL BOND TYPES=> 2
FOR A-B BOND, ELEMENT A CODE NO. = ? 5
ELEMENT & CODE NO. =? 5
 MOLES OF 9-8 BONDS=7 10
 FOR A-B BOND, ELEMENT A CODE NO. = 9 6
 ELEMENT 3 CODE NO =9 5
 MOLES OF A-B BONDS=? 2_
 1 H 1,009 4,35 2,2 .32 1 2
 6 C 12 01 3 48 2 55 .77
7 N 14 01 1 61 3 04 75
8 0 16 1 39 3 44 .73 2
                               3
TO CONTINUE PRESS ENTER
CHEMICAL ANALYSIS:
                                                  MOLES
                             % IONIC
                                       BOND
                  BOND
DHICHOS
                                        LENGT4
                             ENERGY
                  ENERGY
ELEMENTS
                                        (M#1E-10)
      5
                  ( J/MOLE)
 Ĥ
                                                    10
                                         1.54
 C
       C
                   348080
                              8.34433
                                         1,4759
                                                    5
                 . 277670
 N
                                                    12
                   4.83534E+06
 TOTAL
 TO CONTINUE PRESS ENTER
 FHYSICAL ANALYSIS:
                  MOLES
 ELEMENTS
                    5
 C
 N
 MOLECULAR MT. (KG/MOLE)= .11912
                  (G/MOLE)= 119 12
 SPECIFIC VOLUME (CC/G) :
                                                     (2=4)
                                    (2*6)
 (2=12) -
                   (Z=3)
                   . 1 34979
                                                        398675
                                       253402
    179289
  TO CONTINUE TYPE RUN AND PRESS ENTER
  READY 1
          .
  >_
                                 44
```


Table 5-5
Calculated Specific Bond Energy for Fibers
(Chemical energy/unit mass)

Fibers	Molar Composition	Molar of Bonds	Total Bond Energy (J/mol)	Mol. Wt. (g/mol)	Spec. Bond Energy (J/g)
Commercial					
Carbon	(C ₂)	4	1.39E6	24.02	5.7984
Boron	(B ₂)	3	7.59E6	21.62	3.51E4
Aramid-49	_	12	4.04E6	119.1	3.39E4
Alumina	(A1 ₂ 0 ₃)	6	2.97E6	102.0	2.91E4
Silica	(S10 ₂)	4	1.55E6	60.1	2.58E4
Al umi num	(A1 ₂)	3	6.18E5	53.96	1.15E4
Titanium	(Ti) ₂	4	1.06E6	95.8	1.11E4
Iron	(Fe ₂)	3	6.09E5	111.7	5.45E3
Candidates					
Boron Nitride	(B ₁₂ N ₅)	3	9.11E5	24.82	3.67E4
Silicon Carbide	(SiC)	4	1.21E6	40.1	3.02E4
Polyethylene	(-CH ₂ -)	1	3.48E5	14.0	2. 4 8E4
Carbon Precursor					
PAN	[CH2-CH(CN)]	2	6.96E5	51.1	1.36E4

Table 5-6

Estimated Physical Properties of Equimolar TGMDA and DDS Linear Polymer (see Fig. 5-3)

```
MONOMER-POLYMER PREDICTION PART-1, D. H. KAELBLE MH", 81
HOW MANY MAIN CHAIN UNITS?? 6
STRUCTURE UNIT NO =? 5
MOLES OF STRUCTURE UNIT=9 4
STRUCTURE UNIT HO +9 33
MULES OF STRUCTURE UNIT=? 1
STRUCTURE UNIT NO =? 1
MOLES OF STRUCTURE UNIT#9 5
STRUCTURE UNIT NO. = 2 18
MOLES OF STRUCTURE UNIT=> 2
STRUCTURE UNIT NO =? 21
HOLES OF STRUCTURE UNITER 4
STRUCTURE UNIT NO =? 16
MOLES OF STRUCTURE UNIT=> -4
HOW MANY SIDE GROUPS? (NOVE=8): 3
I CH. CH TINU BRUTDURTE
S CETINL BALTSURTE TO RELIGH
STRUCTURE UNIT NO. = 7 8
MOLES OF STRUCTURE UNITER 2
STRUCTURE UNIT NO =? 28
MOLES OF STRUCTURE UNIT=> 2.
```

```
1 MAIN CHAIN UNITS
UNIT NO. MOLES STRUCTURE
                                              POLYMER
               UNIT
                                              REFERENCE
               -P-C6H4-
                                              TEREPHTHALATE
 33
               -$((0)2)-
                                              SULFONE
 1
          5
               -CH2-
                                              ETHYLENE
 18
          5
               -CH(OH)-
                                              YINYL ALCOHOL
 51
          4
               -NHC() --
                                              AMIDE
 16
               -C(G)-
                                              KETONE
II SIDE CHAIN UNITS.
 1
          2
               -CH3-
                                              ETHYLENE
          2
               -CHCH-
                                              1-4-BUTADIENE
               -0-
GLASS SPEC. FOL (M4M4M/KG)= 8.382662-04 (CC/G)= 839266
GLASS C E.D. (J/#####)= 7.13963E+69 (CAL/CC)= 178.637
GLASS TEXP. (K)= $51.407 (C)= 273 207
ENTANG. MW. (KG/MOLE)= 4.33352 (3/MOLE)= 4833 52
U.H. V.M.N 399720 183 8 852E-84 67 28
TO CONFINUE TYPE RUN AND PRESS ENTER
READY
>_
```

SC5291.7FR

Table 5-7

Estimated Physical Properties of 2 Moles of TGMDA and 1 Mole of DDS Linear Polymer (see Fig. 5-4)

MONOMER-POLYMER PREDICTION PART-1, D H. KAELBLE MAY, 91 HOW MANY MAIN CHAIN UNITSP? 6 STRUCTURE UNIT NO => 5 MOLES OF STRUCTURE UNIT=? 6 STRUCTURE UNIT NO. = ? 33 MOLES OF STRUCTURE UNIT=? 1 STRUCTURE UNIT NO. =? 1 MOLES OF STRUCTURE UNIT=? 10 STRUCTURE UNIT NO. =? 19 MOLES OF STRUCTURE UNIT=> 4 STRUCTURE UNIT NO. #7 21 MOLES OF STRUCTURE UNITE > 6 STRUCTURE UNIT 40 = ? 16 MOLES OF STRUCTURE UNITED -5 T CCB=3NON) CROUCRD 3CI2 YARM WCH STRUCTURE UNIT NO. +> 1 MOLES OF STRUCTURE UNITER 4 STRUCTURE UNIT NO = ? 8 MOLES OF STRUCTURE UNIT=> 4 STRUCTURE UNIT NO =? 20 MULES OF STRUCTURE UNIT=> 4_

I. MAIN CHAIN UNITS UNIT NO. MOLES STRUCTURE POLYME? UNIT REFERENCE . 6 -P-C6H4-TEREPHTHALATE 33 . 1 -8((0)2)-SULFONE 1 10 -CHS-ETHYLENE 18 -CH(0H >-4 VINYL ALCOHOL 21 ö -NHC(0)-AMIDE 16 -6 -C(0)-KETONE II. SIDE CHAIN UNITS: 1 -CHE-ETHYLENE -CHCH-1-4-BUTADTENE -0-50 ETHER GLASS C.E.D. (J/M#M#M/KG)= 8.59914E-84 (CC/G)= .859914 GLASS C.E.D. (J/M#M#M)= 6.67803E+88 (CAL/CC)= 159 605 GLASS TEMP. (4)= 582,673 (C)= 229 479 ENTANG, My. (KG/MOLE)= 5 15813 (G/MOLE)= 5168 13 U.H. V. A.N 632268 319 1 3634E-83 1.894 45 TO CONTINUE TYPE RUN AND PRESS ENTER READY >_

Table 5-8 Estimated Physical Properties of TGMDA Linear Homopolymer (see Fig. 5-5)

MONOMER-POLYMER PREDICTION PART-1 D.H.KAELBLE MAY, 8. HOW MANY MAIN CHAIN UNITS?? 5 STRUCTURE UNIT HO #7 5 HOLES OF STRUCTURE UNIT=> 2 STRUCTURE UNIT HO. =? 1 MOLES OF STRUCTURE UNIT=7 5 STRUCTURE UNIT NO =? 8 MOLES OF STRUCTURE UNIT=? 1 STRUCTURE UNIT NO. #? 21 MOLES OF STRUCTURE UNIT=? 2 STRUCTURE UNIT NO. #? 16 MOLES OF STRUCTURE UNIT#? -2 HOW MANY SIDE GROUPS? (NONE =0) ? 3 STRUCTURE UNIT NO =? 28 MOLES OF STRUCTURE UNIT=? 4 STRUCTURE UNIT NO #? 1 MOLES OF STRUCTURE UNIT#7 2 STRUCTURE UNIT NO. .. ? & MOLES OF STRUCTURE UNIT=? 2_

```
1. MAIN CHAIN UNITS:
                                                     POLYMER
UNIT NO. MOLES STRUCTURE
                                                      REFERENCE
                 TINU
                                                      TEREPHTHALATE
                  -P-C6H4-
 5
            2
                  -CHS-
 1
                                                      ETHYLENE
                                                      1-4-BUTADIENE
                  -CHCH-
 A
            1
 21
            2
                  -NHC(0)-
                                                      AMIDE
           -2
                  ~C(0)~
                                                      KETÜNE
 16
II. SIDE CHAIN UNITS: -
                                                      ETHER
 29
                  -0-
                  -CN2-
                                                      ETHYLENE
 1
                                                      1-4-BUTADIENE
                  -CHCH- .
GLASS SPEC. VOL. (MRMRM/KG)= 8.45986E-84 (CC/G)= .945986
GLASS C.E.O. (J/MRMRM)= 5.57993E+88 (CAL/CC)= 133.36
GLASS TEMP. (K)= 402.405 (C)= 129 295
ENTANG MU. (KG/HOLE)= 5.38848 (G/MOLE)= 5300.42
U.H.V.M.H 288498 128 5.174E-84 .422 17
 TO CONTINUE TYPE RUN AND PRESS ENTER
 READY
 >_
```


10.12

Table 5-9

First Estimate of the Physical Properties of Equimolar Isoamyl-Neopentyl Acrylate Copolymer

MDNOMER-POLYMER PREDICTION PART-1.D.H.KHELBLE MAY.81
HOW MANY MAIN CHAIN UNITS?? 1
STRUCTURE UNIT NO.=? 1
HOW MANY SIDE GROUPS? (NONE=8)? 4
STRUCTURE UNIT NO.=? 14
HOLES OF STRUCTURE WHIT=? 2
STRUCTURE UNIT NO.=? 1
HOLES OF STRUCTURE UNIT=? 5
STRUCTURE UNIT NO.=? 2
HOLES OF STRUCTURE UNIT=? 1
STRUCTURE UNIT NO.=? 3
HOLES OF STRUCTURE UNIT=? 1

PULYMER UNIT NO. MOLES STRUCTURE REFFRENCE UNIT ETHYLENE -CH2-II. SIDE CHAIN UNITS: ETHYLENE ADIPATE -C(0)0-14 ETHYLENE 1 5 -CH2-PROPILENE -CH: CH3 >-5 ISOBUTYLENE -C((CH3)2)-3 GLASS SPEC. MOL. (M#M#M/KG)= 9.16437E-04 (CC/G)= .916437 GLASS C.E D. (J/M*M*M)= 3.44195E+88 (CAL/CC)= 82.2626 GLASS TEMP. (K)= 284.575 (C)=-68.6251 ENTANG. MU. (KG/MOLE)= 34.185 (G/MOLE)= 34185 U.H. V.M.N 90160 121 3.778E-04 284 4 TO CONTINUE TYPE RUN AND PRESS ENTER YCPBR >_

Table 5-10

Second Estimate of the Physical Properties of Equimolar Isoamyl-Neopentyl Acrylate Copolymer

MONOMER-POLYMER PREDICTION PART-1,D H KHELBLE MAY.81
HOW MANY MAIN CHAIN UNITS?? 2
STRUCTURE UNIT NO *? 1
MOLES OF STRUCTURE UNIT=? 2
STRUCTURE UNIT NO *? 2
MOLES OF STRUCTURE UNIT=? 2
HOW MANY SIDE GROUPS? (NONE=0)? 4
STRUCTURE UNIT NO *? 14
MOLES OF STRUCTURE UNIT=? 2
STRUCTURE UNIT NO *? 1
MOLES OF STRUCTURE UNIT=? 3
STRUCTURE UNIT NO *? 2
MOLES OF STRUCTURE UNIT=? 1
STRUCTURE UNIT NO *? 3
MOLES OF STRUCTURE UNIT=? 1.

```
I. MAIN CHAIN UNITS:
UNIT NO. MOLES STRUCTURE
                                                        POLYMER
                  UNIT
                                                        REFERENCE
                  -CH2-
                                                        ETHYLENE
 2
            2
                  -CH( CH3 )-
                                                        PROFYLENE
II. SIDE CHAIN UNITS:
 14
            2
                  -C(0)0-
                                                        ETHYLENE ADIPATE
            3
                  -CH2-
                                                        ETHYLENE
 5
                   -CH(CH3)-
                                                        PROPYLENE
                   ~C((CH3)2)-
                                                        ISOBUTYLENE
GLASS SPEC. VOL. (M#M#M/KG)= 9 16437E-04 (CC/G)= 916437
GLASS C.E.D. (J/M#M#M)# 3 78786E+08 (CAL/CC)= 93 5109
GLASS TEMP. (K)= 248 38 (C)=-32.8198
ENTANG NW. (KG/MOLE)= 34.185 (G/MOLE)= 34183
U.H.V.N.N 99286 111 3.772E-04 284
TO CONTINUE TYPE RUN AND PRESS ENTER
                                        284
READY
>_
```


Table 5-11
Relations Between Polymer Chemistry and Physical Properties

			Calc	:.		Exp.(18
		٧s	δ ²	T_{g}	Me	Me
Polymer Number	Polymer	$(\frac{cc}{g})$	$(\frac{cal}{cc})$	(K)	$\left(\frac{kg}{mol}\right)$	$\left(\frac{kg}{mol}\right)$
1	p-dimethyl siloxane	0.81	68.7	163	10.6	12.2
2	p-isobutylene	1.09	62.1	201	8.2	8.0
3	p-cisisoprene	1.05	65.7	201	3.1	3.8
3 4 5 6 7	p-cis-transbutadiene	1.04	66.7	183	1.7	2.2
5	p-cisbutadiene	1.04	66.7	183	1.7	3.0
6	p-ethylene	1.09	64.2	150	2.1	2.5
7	p-propylene	1.09	87.5	240	4.9	3.5
8	p-styrene	0.88	88.5	384	20.2	17.5
9	p-a-methyl styrene	0.91	90.3	434	25.2	20.4
10	p-ethyleneoxide	0.86	94.5	190	1.5	3.0
11	p-propyleneoxide	0.92	105.9	254	3.5	3.9
12	p-tetramethylene oxide	0.95	81.0	173	1.8	1.3
13	p-methylacrylate	0.79	113.3	276	13.6	12.1
14	p-methylmethacrylate	0.83	143.7	380	18.1	15.8
15	p-n-butylmethacrylate	0.83	115.3	285	34.0	30.2
16	p-n-buty imethacry late p-n-hexylmethacry late	0.94	105.4	256	46.1	45.9
	p-n-octylmethacrylate	0.96	98.8	237	59.3	57.0
17 18				288		
	p-2 ethylbutylmethacrylate	0.94	112.2 125.9		46.1	21.4
19	p-vinylacetate	0.79		304	13.6	12.3
20	p-vinylalchohol	1.12	148.6	362	5.4	3.8
21	p-vinylchloride	0.69	118.4	351	6.9	3.2
22	p-decamethyleneadipate	0.92	78.6	177	2.1	2.2
23	p-decamethylenesebecate	0.95	75.8	172	2.1	2.4
24	p-decamethylenesuccinate	0.90	80.5	181	2.1	2.3
25	p-ethyleneterephthalate	0.72	104.0	348	2.4	1.7
26	p-ethylenelsophthalate	0.72	104.0	348	2.4	1.7
27	p-bisphenol-A-carbonate	0.70	96.4	400	3.5	2.5
28	p-bisphenol-A-diphenyl-					
	sulfone	0.75	118.4	533	3.6	3.6
29	p-2-methyl-6 phenyl-1,4-					
	phenylene oxide	0.80	96.0	613	10.3	1.7
30	p-2, 6-dimethy1-1, 4-					
	phenylene oxide	0.83	93.2	501	4.8	1.7
31	p-caprolactam	0.91	150.5	321	2.2	2.5
32	p-propylene sulfide	0.87	93.1	250	5.4	10.0
33	p-acrylic acid	0.75	171.8	363	9.6	2.4
34	p-acrylonitrile	0.93	136.7	450	6.5	0.65
35	p-tetrafluoroethylene	0.48	47.6	169	12.0	6.6
36	p-acrylamide	0.80	220.3	46.3	9.8	4.6
37 37	p-phenyleneterephthalamide	0.73	185.5	938	2.7	0.6
38	p-benzami de	0.73	185.5	938	2.7	0.4
39	p-n-hexylisocyanate	0.93	139.2	299	28.8	3.7
40	p-n-butylisocyanate	0.88	165.5	351	18.6	0.35

Table 5-12
Summed Properties of Functional Groups

			·			·	
						$-(\frac{\partial \sigma_{12}}{\partial T_g})$	Shear Yield
•	U	н	٧	М	N	9	σ ₁₂
Polymer						.	(at 293K)
Number	$(\frac{J}{mol})$		$(\frac{cc}{mol})$	$\left(\frac{g}{mol}\right)$		$(\frac{bar}{deg})$	bar
	· mo i ·		, MO I ,	`MO '		`aeg/	
1	17200	30	86.2	74	2	9.9	0
2	16040	22	88.8	56	2	7.0	Ö
<u>3</u>	19780	27	103.6	68	4	7.4	Ō
1 2 3 4 5 6 7 8	15770	24	81.4	54	4	8.3	0
5	15770	24	81.4	54	4	8.3	0
6	4140	8	22.2	14	1	10.2	0
7	16940	19	66.6	42	2	8.0	0
	34240	23	133.0	104	2 2 2 3 3 5 2 2 2 2 2	4.9	446
9	40740	24	155.0	118	2	5.7	804
10	15100	22	55.0	44	3	11.3	0
11	23760	25	77.2	53	3	9.1	0
12	23380	30	99.4	72	5	11.1	0
13	32240	31	97.9	86	2	8.9	0
14	50140	34	120.1	100	2	8.0	696
15	62560	58	186.7	142	2	8.8	0
16	70840	74	231.1	170	2	9.1	0 0
17 18	79120 75260	90 60	275.5 231.1	198 170	2	9.2	0
19	75360 35840	31	97.9	86	2	8.4 8.9	98
20	30740	22	71.2	44	2 2 2	8.7	600
21	21640	16	62.9	62.5	2	7.2	418
22	86160	136	377.2	284	18	10.2	0
23	102720	168	466.0	340	22	10.2	ŏ
24	77280	120	332.8	256	16	10.2	Ŏ
25	60280	45	199.4	192	10	6.4	352
26	62280	50	199.4	192	9	7.1	227
27	80980	52	287.2	254	12	5.1	546
28	166660	79	482.6	442	20	4.6	1104
29	58560	24	210.0	182	5	3.3	947
30	43420	22	143.6	120	5	5.3	1102
31	65100	53	148.9	113	7	10.1	283
32	25200	27	93.1	74	3	8.2	0
33	39240	28	78.6	72	2	9.7	679
34	28240	16	71.1	53	2 1	6.4	1005
35	4810	8	34.8	50	1	9.9	0
36	52680	29	82.3	71	2	6.5	1105
37	68200	18	126.5	119	6	4.03	2599
38	68200	18	126.5	119	6 2	4.03	2599
39	69240	61	171.1	127	2	10.1	61
40	60960	45	126.7	99	2	8.5	493

Test Liquid Υ _{ίψ} (dyn/cm) Ζα _ί (dyn/cm) ^{1/2} βί/αί					64.0 12.16 0.94	Eth. Glycol 48.3 10.70 0.81	PG E-200 43.5 10.62 0.74	PG 15-200 36.6 10.20 0.64	PB 1200 31.3 9.90 0.53
R-Structure	Source	YSYd dyn/cm	YSYP dyn/cm			WSL/ZaL	(dyn/cm) ^{1/2}	!	
H2N(CH2)2NH(CH2)3-	DC Z-6020	30.0	4.6		7.54	7.21	6.99	6.92	
CH ₃ 0 CH ₂ =C-C-O-(CH ₂) ₃₋	DC Z-6030	8.4	41.7		9.08	8.03	7.41	7.42	6.21
CH ₂ -CH-CH ₂ O(CH ₂) ₃ (catalyzed)	DC Z-6040	10.2	43.6	13.23	9.69	8.57	8.13	7.12	
CH2-CH-CH2-0-(CH2)3_ (noncatalyzed)	DC Z-6040	17.6	25.4	11.94	9.01	8.29	7.87		
Ce-(CH ₂)3-	DC XZ-8-0999	36.5	3.8	9.09	7.80	7.21	7.90		
NH2-(CH2-)3	UC A-1100	17.9	19.8	11.35	7.63	7.76	7.41	7.63	
HS-(CH ₂₋) ₃	DC XZ-8-0951	67.4	0.0		8.06	8.33	8.02		
CH2=CH-		28.5	2.1	7.72	6.25	6.35	6.56	6.81	5.90

Analysis of vapor-liquid-solid interactions for polymerized coatings of reactive silene coupling agents with structure $R-S_1(OCH_3)_3$.

Table 5-14
Reactive Silane Monomers 19,20

Number	Reactive Silane				
41	(dimethyl)(dimethoxy)silane - model compound				
42	tetraethoxy silane				
43	(vinyl)(triethoxy)silane				
44	(y-chloropropyl)(trimethoxy)silane				
45	(y-mercaptogropyl)(trimethoxy)silane				
46	(methacryloxypropyl)(trimethoxy)silane				
47	(y-glycidoxypropyl)(trimethoxy)silane				
48	(8-3, 4-epoxycyclohexylethyl)(trimethoxy)silane				
49	(y-aminopropyl)(trimethoxy)silane				
5 0	(y-aminopropyl)(trimethoxy)silane				
51	N-β-aminoethyl-γ-aminopropyl(trimethoxy)silane				
52	(4-styryl-methylene-β-aminoethyl-γ-aminopropyl)(trimethoxy)silane				

Table 5-15
Linear Hydroxy Polymers of Reactive Silane Primers

Number	Linear Polymer					
41	(dimethyl)siloxane					
42	(dihydroxy)siloxane					
43	(vinyl)(hydroxy)siloxane					
44	(y-chloropropyl)(hydroxy)siloxane					
45	(y-mercaptogropyl)(hydroxy)siloxane					
46	(methacryloxypropyl)(hydroxy)siloxane					
47	(y-glycidoxypropyl)(hydroxy)siloxane					
48	(8-3, 4-epoxycyclohexylethyl)(hydroxy)siloxane					
49	(y-aminopropyl)(hydroxy)siloxane					
50	(y-aminopropyl)(hydroxy)siloxane					
51	N-β-aminoethyl-γ-aminopropyl(hydroxy)siloxane					
52	$(4-styryl-methylene-\beta-aminoethyl-\gamma-aminopropyl)(hydroxy)siloxane$					

Table 5-16 SC5291.7FR

Summed Values of Monomer Group Properties for Lienar
Hydroxy Polymers of Reactive Silane Primers

Number	U J/mole	н	Y (cc/mole)	М	N
41	17200	30	86.2	74	2
42	44800	36	95.4	78	2
43	34350	33	105.6	88	2
44	5264 0	49	153.7	138.5	2
45	47540	57	161.7	136	2
46	66280	72	227.4	188	2
47	64550	77	215.6	176	2
48	62630	52	242	186	2
49	76360	56	151	119	2
50	76360	. 56	151	119	2
51	121720	79	211	162	2
52	157150	100	359	278	2

	g					
Number	Y _s (cc/g)	6 ² (cal/cc)	T _g (K)	M _e (kg/mole)		
41	0.80	69	163	10.6		
42	0.84	162	325	12.1		
43	0.83	112	276	14.6		
44	0.77	118	284	29.4		
45	0.82	101	226	29.8		
46	0.83	100	246	50.5		
47	0.85	103	227	45.8		
48	0.90	89	315	51.8		
49	0.87	174	354	25.0		
50	0.87	174	354	25.0		
51	0.90	198	396	41.7		
52	0.89	151	404	96.3		

Polymer	T _g (°C)	$(M_c/\rho)^{1/2}$ $(cc/mole)^{1/2}$	λ _b (max)	K	Ref
Silicone elastomer	-123	153	6.85	0.045	28
SBR elastomer	-61	113	7.20	0.064	28
Polybutadiene	-86	112	5.09	0.045	28
EPR elastomer	-55	105	6.85	0.065	28
Butyl elastomer	-70	104	6.17	0.059	28
Viton - b elastomer		93	5.19	0.056	28
Butyl elastomer	-70	92	7.20	0.078	28
Epoxy thermosett	115	31	1.59	0 051	28
Epoxy thermosett	72	23.2	1.27	0.055	29
Epoxy - polyamide	45	34.6	1.46	0.042	29
Epoxy - polyamide	20	56.4	1.95	0.035	29
Epoxy - polyamide	6	72	2.50	0.035	29
Viton - B elastomer		466	19.10	0.041	30
Viton - B elastomer		245	15.5	0.063	3 0
Viton - B elastomer		187	12.6	0.067	3 0
Viton - B elastomer		143	8.9	0.062	30
Viton - B elastomer		128	7.9	0.062	30
Viton - B elastomer		92	5.7	0.062	3 0
Epoxy - CTBN (50%)	-50	52.4	2.78	0.053	31
Epoxy - CTBN (39%)		47.0	2.41	0.051	31
Epoxy - CTBN (29%)		34.6	1.56	0.045	31
Epoxy - CTBN (17%)		30.6	1.32	0.044	31
Ероху	100	29.2	1.35	0.046	31
			Ave. =	0.0515	
			Std. dev. =	±0.0150	

Table 5-19 Correlation Between Entanglement Crosslink Density (ρ/M_e) and Maximum Craze Extensibility $\lambda_C = K_C \cdot (M_e/\rho)^{1/2}$

Polymer	M _e (gm/mole)	(M _e /p) ^{1/2}	λ _c	К _с
p-tertbutylstyrene	4.3E4	203	7.2	0.035
p-para vinyltoluene	2.5E4	151	4.5	0.030
p-styrene	1.9E4	129	3.8	0.029
p-styrene-maleicanhydride (9 wt%)	1.9E4	128	4.2	0.033
p-styrene-acrylonitrile (24 wt%)	1.2E4	103	2.7	0.026
p-methylmethacrylate	9.2E3	87	2.0	0.023
p-styrene-methylmethacrylate (65 wt%)	9.0E3	87	2.0	0.023
p-styrene-acrylonitrile (66 wt%)	6.4E3	76	2.0	0.026
p-2,6 dimethyl-1,4-phenylene oxide (-E)	4.3E3	60	2.6	0.043
p-2,6 dimethyl-1,4-phenylene oxide (-M)	7.4E3	78	2.6	0.033
p-bisphenol-A carbonate	2.5E3	42	2.0	0.048
			Ave. =	0.032
		Std.	Dev. =	±0.008

Note: Me and λ_C data generated by experiments of Donald and Kramer (Ref. 7) and ρ is calculated from molecular structure.

SC5291.7FR Table 5-20 Correlation of Polymer Cohesive Energy δ_{11}^2 Density and Maximum Tensile Strength $(\sigma_{11})_b$ at 88 to 130K

	-				
	Chemical Composition	Calc. 62 p (bar)	Meas. (o ₁₁)b (bar)	(σ ₁₁) _b /δ ² p	
1)	Fluorocopolymer (C ₂ F ₄) _{1.0} (C ₃ F ₆) _{0.136}	1667	980	0.59	
2)	C ₂ F ₄ Homopolymer	1735	794	0.46	
3)	Fluorocopolymer (CF ₂ CFC1) _{1.0} (CF ₂ CH ₂) _{0.031}	2608	1147	0.44	
4)	Bisphenol-A Carbonate (OC ₆ H ₄ C(CH ₃) ₂ C ₆ H ₄ OC(O))	4088	1333	0.33	
5	Polyethylene Terephthalate	5225	2108	0.40	
6	Polyimide (N(CO) ₂ C ₆ H ₂ (CO ₂)NC ₆ H ₄ OC ₆ H ₄)	6186	2157	0.35	
	Average Standard dev. 1			0.43 0.09	

SC5291.7FR

Table 5-21

Estimated Cure Path Properties of Equimolar TGMDA and DDS (see Table 5-6)

```
A AND 8 COREACTION-NOL. WT. DIST -THERMAL TRANS.-D H.KHELBLE-OCT
 27,1982
IF MONSTOICHIDMETRIC REACTION HAVE MOLES OF B IN EXCESS
MOLES OF TYPE A (MOLE)=> 1
TYPE A FUNTIONALITY(=>2)=? 4
MOL UT. OF TYPE A (G/MOLE)=9 248
MOLES OF TYPE B (MOLE)=? 1
TYPE B FUNCTIONALITY ( =>2>=? 4
MOL. UT. OF TYPE B (G/MOLE)=? 422
FRACTION OF MOLECULES OF FUNCTIONALITY >2=7 1
NUMBER OF A AND B MAIN CHAIN ATOMS (AL A2)=7 11 17
MOL MT. BETWEEN ENTANGLEMENTS (G/MOLE)=? 4833
GLASS COORDINATION NUMBER (8(2(18)=> 18
MOHOMER AND LINEAR POLYMER GLASS TEMPERATURES ("1, "2) IN DEG. K=
? 269,551
GEL POINT (% A REACTED)= $3.3333
JEL POINT (% 8 REACTED)= 33.3333
INITIAL NUM AVE DEG OF POLYMERIZATION= 2 23368
TO ANALYSE POLYMERIZATION PRESS ENTER?
% Q
           BRANCH
                     NUM, AVE. WT AVE
                                          GLASS
                                                     FLOW
PEACTED
           COEF
                     MUTGINOL > MUTGINOL > TEMPTK)
                                                     TEMP(K)
                       335
                                 335
                                           260
                                                      267,823
 3 32667
             3333667
                      358 $77
                                 384 519
                                           269 469
                                                      277 773
  6 65334
             9655334
                                            279 653
                       38€ 42
                                 446.388
                                                      283 48
  9 98091
                                 525.882
             3999001
                       418 541
                                            290.638
                                                      300 049
  13 3057
             133367
                                            302 52
                                                      312 533
                       455 486
                                 631 787
  16 6333
             166333
                       581 998
                                 779.384
                                            3:5 416
                                                      326 23
  19.96
                       557 59
             1995
                                 1031.66
                                            329 46
                                                      341 283
  23 2857
             232267
                                 1370.31
                       527.029
                                            344 313
                                                      357 83
             266134
  26.6:34
                       716 221
                                 2163.95
                                                      376 516
                                            361.567
  29.94
             2994
                       934.995
                                  4276.86
                                                      398 276
                                            380 253
  33.2657
             332667
                       1001
                                 223324
                                            466 353
                                                      491 121
 TO ANALYSE CROSSLINKING PRESS ENTER? -
```

KA	BRANCH	UT. FR.	NUM AVE	X-LINK MU	GLASS
REACTED	COEF	GEL	MU(G/MOL)		TEMPCKE
33 4169	334169	. 91 99991	1918.07	2 67126E+07	
34.2995	.342996	. 109	1066.85	212041	497 83
35.2344	352344	208	1139.02	54751 8	415 919
36.4317	. 364317	. 387	1234.5	23479 1	423 796
37.7555	377555	496	1367.92	12439 1	434 764
39.3337	. 393337	383	1578 37	7370 28	443 917
41 2786	412786	684	1920 57	4653 28	468 049
43 7981	437981	783		3035 26	495.843
47,8477	473477	- /892	6315.3	1987 84	541 671
53 317	.53317	. 901	3 35E+00		598 897
98 987	38087	\mathcal{L}_{1}	3 355+08		727 735
T B REACT	ED≈ 98.687	TO CONT		RUN AND PRESS	

Estimated Cure Path Properties of 2 Moles of TGMDA and 1 Mole of DDS (see Table 5-7)

```
A AND B COREACTION-MOL. WT. DIST. -THERMAL TRANS. -D.H KHELBLE-OCT
  27.1982
IF NONSTOICHIGHETRIC REACTION HAVE MOLES OF B IN EXCESS
MOLES OF TYPE A (MOLE) = ? 1
TYPE A FUNTIONALITY(=>2)=> 4
     WT..OF TYPE A (G/MOLE)=? 248
MOLES OF TYPE B (MOLE)=? 2
TYPE 8 FUNCTIONALITY (=>2)=? 4
     WT. OF TYPE 8 (G/MQLE)=? 422
MOL
FRACTION OF MOLECULES OF FUNCTIONALITY >2=> 1
NUMBER OF A AND B MAIN CHAIN ATOMS (A1,42)=? .1,.7
         BETWEEN ENTANGLEMENTS (G/MOLE)49 5169
GLASS COORDINATION NUMBER (842410)#? 10
MONOMER AND LINEAR POLYMER GLASS TEMPERATURES (T., T2) IN DEG
 268,593
 GEL POINT (% A REACTED)= 66.6657
 GEL POINT (% 8 REACTED)= 33 3333
 .NI" IAL NUM AVE DEG
                        JF POLYMERIZATION= 2 6749
TO ANALYSE POLYHERIZA" ION PRESS ENTER?
% A
           BRANCH
                      NUM AVE
                                SYA TE
                                           GLASS
                                                      FLOW
           COEF.
REAUTED
                      MUKG/MOL > MUKG/MOL > TEMP(K)
                                                      TEMPLトラ
                       364
                                  354
                                             260
                                                       263 065
                                                       277 179
  € 55334
             . 4332662
                       389 344
                                  417.886
                                             268 535
                                  485.93
  13 3057
             0665334
                       419 871
                                             277 362
                                                        286 934
                                             287 747
  13 96
                       454 773
             399889
                                  571 497
                                                        297 407
                       496 903
  26 6134
             . . 33867
                                  698 473
                                             298 36
                                                        308 694
  33 2667
              :66733
                       545 455
                                  847.337
                                             389 736
                                                        320 913
                                  1003 37
  39
    92
             .: 936
                       685 859
                                             322 123
                                                        334 215
  46
     5734
             . 232867
                        681 303
                                  1488.93
                                             333 492
                                                        349 829
  53 2257
                        778 222
                                  2286.88
             . ≥66:34
                                             349.933
                                                        365 143
  59 8831
                       307 279
                                             365 327
             2934
                                  4645.22
                                                        384 175
  66 5334
              332667
                        1892.63
                                  242657
                                             393 135
                                                        475 197
 TO AMALYSE CROSSLINKING PRESS ENTER?
 ۲A
            BRANCH
                       UT. FR.
                                NUM AVE
                                                          GLASS
                                            X-LINK WW
 REACTED
            COEF.
                       GEL
                                  MU(G/NOL) (G/NOL)
                                                          TEMPCKO
   66.8339
                       ... 0100001
             . 334169
                                   1097.51
                                              2.90251E+07
                                                            383 978
   68.5993
             . 342996
                        . 109
                                   1159.21
                                              230396
                                                           388 993
   78.5838
             352944
                         . 208
                                   1237.62
                                              59491 5
                                                           395 32
   72 0634
              :364317
                         387
                                   1341.36
                                              25511 6
                                                           482 383
   75.5111
              .377555
                         . 496
                                   1436.39
                                              13515.9
                                                           411.572
   78.5674
              .393337
                         595
                                   1786 31
                                              8008 31
                                                           423 39E
   82 5573
             .412786
                         . 684
                                   2086 83
                                              5856 65
                                                           439 291
              437981
   87. 3962
                         . 233
                                   2934.59
                                              3298 55
                                                           462 172
              473477
   94 6954
                         . 892
                                   6861 99
                                              2159.85
                                                           499 291
   93 9268
                          85348
                                   435168
                                              1789 73
                                                           538 892
  % B_REACTED= 49 9632
                         . TO CONTINUE TYPE RUN AND PRESS ENTER
  READY
  >_
```


Table 5-23

SC5291.7FR

Estimated Cure Path for TGMDA Homopolymer (see Table 5-8)

```
A AND B COREACTION-MOLICHT. DIST -THERMAL TRANS -D H.KHELBLE-OCT
    27,1982
  IF NONSTOTCHIONETRIC REACTION HAVE MOLES OF B IN EXCESS
  MOLES OF TYPE 4 (NOLE)
  TYPE A FUNTIONALITY (4) 2) = 7 4
MOL. WT. FOF TYPE A (G-MOLE) = 7 422
  MOLES OF TYPE & (MOLE)-? 1
c. TYPE B FUNCTIONALITY (=>2)4? 4
  MOL. WT. OF TYRE'S (G/MOLE)=? 422
  FRACTION OF MOLECULES OF FUNCTIONALITY >2=? 1
  NUMBER OF A AND B MAIN CHAIN ATOMS (A1, A2)=? 17,17
  MOL. MT. BETWEEN ENTANGLEMENTS (G/MOLE)=? 5300
   GLASS COORDINATION NUMBER ( & CZ (10)=? 10
   MONOMER AND LINEAR POLYMER GLASS TEMPERATURES (T1.T2) IN DEG. K=
   ? 260,40<u>2</u>
   GEL POINT (2 & REACTED)= 33 3333
   GEL POINT (% B REACTED)= 33.3333
  INITIAL NUM AVE DEG OF POLYMERIZATION= 4.59747 TO ANALYSE POLYMERIZATION PRESS ENTER?
   & A
              BRANCH
                         NUM. AVE. UT. AVE.
                                                GLASS
                                                           FLOW
   REACTED
              COEF.
                         MU(G/NOL) MU(G/NOL) TEMP(K)
                                                           TEMP(K)
                           422
                                      422
                                                 569
                                                            268 5
    3.32667
                          452.878
               . 9332667
                                      484.38
                                                 266 258
                                                            275 243
    6.65334
                0665334
                          486 773
                                      562.315
                                                 272 824
                                                            282 344
    9 38881
               . 0998901
                           527.237
                                      662.455
                                                 279 722
                                                            283 84
    13.3067
                133067
                         - 575, 837
                                      795.863
                                                 286 978
                                                             297 73
    16.6333
               : 166333
                           632 368
                                      982.422
                                                 294 621
                                                             306 236
    19 95
                1935
                           702.397
                                      1261.79
                                                 382 681
                                                             315 253
    23 2867
                . 232967
                           789 888
                                      1726 18
                                                 311.196
                                                             325 057
                         1951 224
1951 35
    26.6134
                . 266134
                                      2550 35
                                                 350 203
                                                             335 392
    29.94
               .2994
                                      5386.56
                                                 329 747
                                                             348 693
    33.2667
                . 332667
                           1268.96
                                      281322
                                                 339.877
                                                             437 852
   TO ANALYSE CROSSLINKING PRESS ENTER? _
   5 A
```

44	SKANCH	WT. PR.	NUM AVE	X-LINK MU	GLASS
REACTED	COEF.	GEL	. NW(G/MOL)	(G/MOL)	TEMPCKY
33 4169	. 334169	. 0100001	1272 38	3 365E+87	340 351
34 2996	. 342996	. 109	1343 92	267198	343 267
35.2944	.352944	. 208	1434 83	68978 9	346 821
36.4317	. 364317	4 .387	1555.1	29576 7	351 202
37 . 7555	. 377555	495	1723 23	15669 5	356 595
39.3337	. 393337	505	1978 19	9284 36	333 753
41 2736	412786	684	2419.35	5862 38	373 :66
43.7981	. 437981	783	3482 19	3824 16	336 481
47.3477	.473477		7955.39	2583 87	402 368
53 31 7	7:33317	6:301	4 22E+08	1562 5	431 188
98 98 ?	. 20087	/ '	4 22E+88	434 467	530 321
T B REACT	red= 38 .00%	TO CONT	INUE TYPE	RUN AND PRES	SENTER
READY	• • •				
>_	•		•		

63 C4659A/Jbs

Estimated Polymerization Path for Equimolar Isoamyl-Neopentyl Acrylate Copolymer (see Table 5-9)

```
A AND B COREACTION-MOL. WT. DIST -THERMAL TRANS.-D H.KAELBLE-OCT
 27,1982
IF NONSTOICHIOMETRIC REACTION HAVE MOLES OF B IN EXCESS
MOLES OF TYPE A (MOLE)=> 1
TYPE A FUNTIONALITY(=>2>=? 2
MOL UT OF TYPE A (G/MOLE)=? 142
MOLES OF TYPE B (MOLE)=? 1
TYPE B FUNCTIONALITY (=>2)=? 2
MOL. MT. OF TYPE 8 (G/MOLE)=? 142
FRACTION OF HOLECULES OF FUNCTIONALITY >2=? 0
NUMBER OF A AND B MAIN CHAIN ATOMS (A1,A2)=? 2,2
MOL WT. BETWEEN ENTANGLEMENTS (G/MOLE)=? 34185
GLASS COORDINATION NUMBER :8(Z(10)=2 10
MONOMER AND LINEAR POLYMER GLASS TEMPERATURES (T1/T2) IN DEG. K=
2 63,248
SEL POINT (% A REACTED)= 100
GEL POINT (% B REACTED)= 103
INITIAL NUM AVE. DEG OF POLYMERIZATION= 1 03927
 TO ANALYSE POLYMERIZATION PRESS ENTER?
```

X A	BRANCH	HUM. A	YE I	HT. AVE	GLASS	FLOW
REACTED	COEF	MMCG/M	IOL > I	MUKGIMOLO	TEMP. K)	TEMP(K)
0	0	142		142	69	20.8494
9 98981	9 960 0 6E-	-83 14	3 42	9 144.85	69.4932	21.3922
19 96	0399402	147.8		153.784	71 0159	73.0965
29.94	. 0896485	155 5	82	169 955	73 7876	76 0586
3 9. 92	. 159361	168 9	19	195 833	77 9391	165 08
49.9	. 249081	189.	988	236 163	83 8818	87 1751
59 8801	358562	221 :	379	300 255	92 6266	96 5839
69 8601	488843	277.	367	412 734	195 785	119 753
73 8401	. 537444	391.	663	641 327	126 415	132 734
83 8 281	. 806765	734.	855	1327.71	162 234	171 119
93.8001	395386	3555	2.9	78963.8	237.548	264 313
% B REACT READY	19.806 × 09.806	1 70	CONT	JAKE TANI		RESS ENTER

Table 5-25

Estimated Polymerization Path for Polystyrene

H AND B COREACTION-MOL. WT. DIST.-THERMHL TRANS.-D H.KAELBLE-OCT 27,1982 IF NONSTOICHIOMETRIC PEACTION HAVE MOLES OF B IN EXCESS MOLES OF TYPE A (MOLE)=7 1 TYPE -A FUNTIQNALITY(=>2)=? 2 MOL. UT. OF TYPE A (G/MOLE)=? 184 MOLES OF TYPE B (MOLE)=? 1 TYPE B FUNCTIONALITY (=>2)=? 2 MOL. WT. OF TYPE 8 (G/MOLE)=? 184 FRACTION OF MOLECULES OF FUNCTIONALITY >2= > 0 NUMBER OF A AND B MAIN CHAIN ATOMS (ALJAZ)=? 2,2 MOL. WT. BETWEEN ENTANGLEMENTS (G'MOLE)=? 20200 GLASS COORDINATION NUMBER (8(Z(10)=? 19 MONOMER AND LINEAR POLYMER GLASS TEMPERATURES (TIVES) IN DEG. KE 3 110,384 GEL POINT (% A REACTED)= 103 GEL POINT (% B REACTED)= 100 INITIAL NUM. AVE. DEG. OF POLYMERIZATION= 1 08365 TO ANALYSE POLYMERIZATION PRESS ENTER? _

* A	BRANCH	NUM. AVE	MT. AVE	GLASS	FLOW
PEACTED	COEF.	(JCH\D)WM	MU(G/MOL)	TEMP(K)	TEMP(K)
8	8	104	104	110	111 843
9 98001	9.96006E-	83 185.84	16 186 893	110 787	112 692
19.95	. 0398402	100.315	112 631	113 219	115 239
29.94	. 8896485	114.241	124 481	117 517	119 863
39. 9 2	. 159361	123.715	143 431	124 113	126 866
49.9	. 243001	138.492	172 965	133 767	137 06
59.8881	. 359562	162.136	152 052	147 919	151 827
69.8681	.488243	203.142	302 234	158 774	173 744
79 8401	. 637444	286 852	469 784	291.777	208 145
89. 9 201	. 386765	538 204	972 408	259 226	268 861
99.8001	996006	26030.7	51973 5	380 217	407 773
" B REACT READY	'ED= 99.300	1 70 COM	TINUE TYPE	RUN AND P	RESS ENTER

Table 6-1 Chemical Structure and Thermal Transitions of Six Film Forming Polymers

			Thermal insition	(K)
No.	Repeat Unit Structure	τ _Υ	Тg	T _c
1	$\left\{ CF_2 - CF_2 \right\}_{x} \left[CF_2 - CF \right]_{0.14x}^{0}$	177	358	555
2	-CF ₂ -CF ₂ -	177	40 0	600
3	$\left\{ CF_{s} - CF \right\}_{x} \left[CF_{2} - CH_{2} \right]_{0.03x}$	273	323	493
4	{c-o-○	176	423	538
5	0-CH2-CH2-0-C-0-C	243	350	536
6	$\left\{ N, C \right\} \\ \left\{ $	180	530	-

 T_{λ} is an amorphous transition below T_{g} involving local motion of 2-4 atoms. T_{g} is the amorphous glass transition involving cooperative motion of 20-40 atoms in chain segments.

 $T_{\rm c}$ is the crystalline phase melting temperature involving cooperative motion of the entire polymer molecule.

67 C4659A/jbs

Table 6-2 SC5291.7FR
Input Format for Chemical-Mechanical Property Program
(Upper symbols found in Ref. 1 and lower symbols in Table 6-3)

	R1	Polymer or Experiment Name					
	KI	AOS					
	R2	M _p (g/mol)	X _p (mole)	Σhp	^ρ p (g/cc)	^{(T} gAR ⁾ P (K)	
		AA	AB	AC	AD	AE	
Polymer	R3	ZgP	y ^O gP (cc/mol)	q _{LP}	δ _p (cal/cc) ^{1/2}	AR _P (S ⁻¹)	
Properties)	AF	AG	AH	AI	AJ	
	R4	M _o (g/mol)	M _c (g/mol)	M _e (g/mol)	τ g (S)	•	
1	\	AK	AL	AM	AN	AP	
{	R5	M _D (g/mol)	X _D	ΣhD	^ρ D (g/cc)	(T _{gAR}) _D	
Diluent)	AQ	AR	AS	AT	AU	
Properties	R6	Z _{gD}	VO GD (cc/mol)	q LD	⁶ D (cal/cc) ^{1/2}	AR _O	
	\	AV	AH	AX	AY	AZ	
Use	(۸,	t _I	T	ΔΤ	NT	
Condition	\R7	(S ⁻¹)	(S)	(K)	(K)	DC	
	1	BA	BB	BC	BD	BE	
		C1	C2	C3	C4	C5	

68 C4659A/jbs

Table 6-3
Input Nomenclature for Chemical-Mechanical Program

Row	Symbol	Meaning
2	M	Polymer molecular weight (number ave.)
	AB	Moles polymer
	AC	Polymer repeat unit rotational degrees of freedom
	AD A	Polymer density
	AE	Polymer glass temperature at reference strain rate AJ
3	AF	Total adjacent lattice (Z) sites for glass (nominally = 10)
	AG	Polymer glass repeat unit molar volume
	AH	<pre>Intermolecular lattice sites in polymer liquid (nominally = 9)</pre>
	AI	polymer solubility parameter
	AJ	Strain (or thermal scan) rate for reference polymer glass temperature (nominally = 1.0)
4	AK	Polymer repeat unit molecular weight
	AL	Molecular weight between crosslinks (number ave.)
	MA	Molecular weight between entanglements (number ave.)
	AN	Relaxation time at T_{q} (nominally ≈ 1.0)
	AP	Polymer-diluent interaction parameters (nominally = 1.0)
5	AQ	Diluent molecular weight
	AR	Moles diluent
	AS AT	Diluent molecular rotational degrees of freedom
	A I	Diluent density Diluent glass temperature at reference rate AZ
		•
6	AV	Total adjacent lattice (Z) sites of diluent glass (nominally = 10)
	AH	Diluent glass molar volume
	AX	<pre>Intermolecular lattice (q) sites of diluent liquid (nominally = 9)</pre>
	AY	Diluent solubility parameter
	AZ	Strain (or thermal scan) rate for diluent reference glass temperature (nominally = 1.0)
7	BA	Mechanical (or thermal scan) strain rate (nominally = 1.0)
	88	Constant time for isochronal stress-strain response (nominally = 1.0)
	BC	Starting temperature for family of stress-strain curves
	BD	Temperature increment
	BE	Number of temperatures

Table 6-4 Nomenclature for Intermediate Results in Chemical-Mechanical Program

Line No.	Symbol	Meaning
1	BF BG BH	Wood constant in T _g calculation Rate ratio in polymer T _g calculation Log BG
	BI BJ	Polymer T _g at rate BA (K) Polymer T _g change with shear stress (K/bar)
2	BK BL BM BN	Rate ratio in diluent T_g calculation Log BK Diluent T_g at rate BA (K) Diluent T_g change with shear stress (K/bar)
3	TG UR	$T_{f q}$ of polymer-diluent at zero stress (K) Polymer-diluent $T_{f q}$ change with shear stress (K/bar)
4	BO BQ BR	Volume fraction polymer Volume fraction diluent Cohesive energy of polymer-diluent solution (cal/cc)
5	BS BT	Fraction of effective crosslinked segments Fraction of effective entangled segments
6	BU BV BX BY BZ	Glass state shear modulus (bar) Rubber state shear modulus at τ_g (bar) Rubber state shear modulus at τ_l (bar) Rubber state shear modulus at τ_m (bar) Crosslink network shear modulus (bar)
7	SB TL TM NH	Brittle shear strength (bar) Log $_{10}^{(\tau_m/\tau_g)}$ Melt (or flow) temperature (K) Fraction Neohookian versus Hookian tensile response
8	T SM SS	Current temperature (K) Flow shear strength (bar) Current shear strength (bar)

Table 6-5 Estimated Mechanical Properties of an Acrylate Copolymer

```
POLYMER-DILUENT-EQUIMOLAR ISOAMYL-HEOPENTYL ACRYLATE
POLYMER PROPERTIES
AA, AB, AC, AD, AE= 1 03E+06 1 121
                                   1 09 230
AF, AG, AH, AI, AJ= 18 260 9 9.07 1
HK, AL, AM, AN, AP= 284
                      1 03E+06 34200
DILUENT PROPERTIES
AQ,AR,AS,AT,AU= 284
                     9
                         121 1.09 59
AV. AU. AX. AY. AZ= 10 260 9 9.07 1
TEST CONDITIONS:
BA, BB, BC, BD, BE= 1
                       199 25 15
FRACTION NEOHOOKIAN TENSILE RESPONSE= 0
PRESS ENTER TO CONTINUE
INTERMEDIATE RESULTS:
8F, BG, BH, BI, BJ= 1 1 8 230
BK, BL, BM, BN= 1 8 59 ,114381
                                  114881
TG/UR= 230 114991
EO, BQ, BR= 1 0 82
                  82.2649
35.87= 0 .933592
SU.SV.6X.BY.SZ= 27547.9 27547.9
                                     609377
                                              .152335
SB, TL, TM, NH= 960 491 12 1372 349 882 8
T.SM.88= 100 2167.48 860.491
SHEAR AND TENSION ANALYSIS.
INPUT NUMBER OF STRESS INCREMENTS? 12-
INPUT NUMBER OF STRESS INCREMENTS? 12
SHEHR
             SHEAR
                          SHEAR
                                       TENSILE
                                                    TENSILE
MODULUS
             STRESS
                          STRAIN
                                       STRESS
                                                    STRAIN
(BAR)
             (BAR)
                                       (BAR)
 27547.9
              71.7076
                           2 60361E-03
                                         143 413
                                                     1.73534E-03
  27547.9
               143.415
                            5.20503E-03
                                         286.83
                                                     3.47869E-03
  27547 9
              215.123
                           7.88904E-03
                                         430.245
                                                     5.206035-03
  27547.9
               286.83
                            .0104121
                                        573.551
                                                     6.941375-03
  27547.9
               358.538
                            .0130151
                                        717.826
                                                     8 67672E-83
  27547.9
               430.245
                            . 3156181
                                        859.491
                                                      . 91 94 121
  27547 9
               501.953
                            . 1182211
                                         1033.91
                                                      . 0121474
  27547.9
               573.661
                            .0208241
                                         1147.32
                                                      . 2138882
  27547.9
               645.368
                            .6234271
                                        1298.74
                                                      .0156181
              717.876
  27547.9
                            .0260301
                                        1434.15
                                                      .0173534
  27547.9
               788.783
                            .9286332
                                        1577.57
                                                      .0190888
  .7547 9
               860.491
                            .6312362
 SHEAR FAILURE PROPERTIES:
 STRESS(BAR)= 860 491 STRAIN= .0312362
                                            ENERGY/VOL(EAR)=
  11.2927
 E-MODULUS(BAR)= 23147.9
                                 E-WORK(BAR)= 11,2927
 E-STRAIN= .0312362
                                 P-WORK(BAR)= 0
 TENSILE FAILURE PROPERTIES:
 STRESS(BAR)= 1636.56 STRAIN= .0204074
                                            ENERGY/VOL(BAR)=
  17.2091
 E-MODULUS(BAR)= 82543.7
                                 E-WORK(BAR)= 17.2091
 E-3TRAIN= .0204074
                                 P-WORK(BAR)= 0
 PRESS ENTSR TO CONTINUE ?
```

Table 6-6 Calculated Effects of Isochronal Loading Time t Upon the Shear and Tensile Failure Properties of Equimolar Isoamyl-Neopentyl Acrylate Linear Polymer (M_{Π} = 1.06 E6) at T = 296K with Hookian Response

		Shear		Tension		
t (S)	ob (bar)	Yb	WS (bar)	S _b (bar)	εb	(bar)
2 E2	9.6	55	243	2.82	5.8	8.19
1E2	52.4	334	8.3E3	7.37	13.2	48.7
1E1	224	1200	1.35E5	19.3	22.2	215
1	461	2156	5.2E5	34.5	25.8	444
1E-2	86 0	2310	1.13E6	107	15.1	806
1E-4	86 0	582	3.08E5	278	5.2	814
1E-5	86 0	186	9.88E4	441	3.2	791
1E -6	860	58	3.1E4	582	1.96	72 6
1E-8	86 0	5.9	3.1E3	1010	0.70	491
1E-10	86 0	0.58	312	1449	0.18	196
1E-12	86 0	0.067	32	1664	0.033	35.9
1E-14	860	0.034	13.5	1686	0.020	17.2

Table 6-7 Estimated Effects of Low Moisture (0 - 2 Wt%) on Cured Epoxy Thermoset

. [

POLYMER-DILUENT=TOMDA/DD8 EPOXY+0% H20 FOLYMER PROPERTIES AA,AB,AC,AD,AE= 495000 1 319 1.16 483 HF, AG, AH, AI, AJ= 10 943 9 12 6 AK, AL, AM, AN, AP= 1094 1709 5168 1 32 DILUENT PROPERTIES AQ,AR,AS,AT.AU= 18 0 20 1 137 44,AW,AX,AY,AZ= 10 13 11 23 2 1 TEST CONDITIONS: 300 25 15 BA, BB, BC, BD, BE= 1 1 FRACTION NEOHOOKIAN TENSILE RESPONSE= 0 PPESS ENTER TO CONTINUE INTERMEDIATE RESULTS: 6F,8G,8H,81,8J= 3.81052 1 0 483 .158045 BK, BL, BM, BN= 1 0 137 .0393688 TG,UR= 483 158045 BO,BQ,BR= 1 0 158.26 BS, BT= 993095 .979119 BU, BV, BX, BY, BZ= 53163.7 53163 7 9.0124 1.30231 35.8285 SB,TL,TM,NH= 1660.63 11 5743 585.517 0 T,SM,SS= 300 1806 56 1660.63 SHEAR AND TENSION ANALYSIS: INPUT NUMBER OF STRESS INCREMENTS? _ POLYMER-DILUENT=TGMDA/DDS EPOXY+2% H20 POLYMER PROPERTIES AA,AB,AC,AD,AE= 495000 1 319 1.16 483 AF, AG, AH, AI, AJ= 10 943 9 12.6 1 AK,AL,AM,AN,AP= 1094 1709 5168 1 DILUENT PROPERTIES: AQ,AR,AS,AT,AU≠ 18 550 20 1 AV, AW, AX, AY, AZ= 10 18 11 23.2 1 TEST CONDITIONS: 8A,88,8C,8D,8E= 1 1 300 25 15 FRACTION NEOHOOKIAN TENSILE RESPONSE* 0 PRESS ENTER TO CONTINUE. INTERMEDIATE RESULTS: BF,BG,BH,BI,BJ= 3.81052 -1 0 483 .159045 BK,BL,BM,BN=71 0, 137 0393688 TG,UR= 458.498 .149641 B0,BQ,BR= .977326 :028674 156.065 .978635 BS. ET= 1993095 'BU, By, BX, BY, BZ= 52261 1 51958 2 8.36124 1.22215 33.2358 SB: TL, TM, NH= 1632.44 11.5956 561.582 0 T.SM.85=,300. 1748.86 1632.44 SHEAR AND TENSION ANALYSIS INPUT ATUMBER OF STRESS INCREMENTS? _

> 73 C4659A/jbs

Estimated Effects of Medium Moisture (4 - 6 Wt%) on Cured Epoxy Thermoset

FOLYMER-DILUENT=TGMDA/DDS EPOXY+4% H20
POLYMER PROPERTIES

AA.AB.AC.AD.AE= 495000 1 319 1 16 483

AF.AG.AH.AI.AJ= 10 943 9 12 6 1

AK.AL.AM.AN.AP= 1094 1709 5168 1 32

DILUENT PROPERTIES:

AQ.AR.AS.AT.AU= 18 1100 80 1 137

AY.AW.AX.AY.AZ= 10 13 11 23 2 1

TEST CONDITIONS:

BA.BB.BC.BD.BE= 1 1 303 25 15

FRACTION NEOHOOKIAN TENSILE RESPONSE= 0

PRESS ENTER TO CONTINUE

INTERMEDIATE RESULTS: BF.BG,8H,BI,BJ= 3.81052 1 0 482 158045 BK, BL, BM, EN= 1 0 132 . 0393658 TG. UR= 437.238 .142349 153.973 80,80,8R= 955658 0443425 BS.BT= .993095 .97815 BU.BY,BX,8Y,BZ= 51562 6 50806 3 7.79674 1 15249 30 9882 SB,TL,TM,NH= 1610.62 11.6135 548 799 0 T.SM.SS= 300 1691.61 1510.62 SHEAR AND TENSION ANALYSIS: INPUT NUMBER OF STRESS INCREMENTS? _

POLYMER-DILUENT=TGMDA/DDS EPOXY+6% H20
POLYMER PROPERTIES:
AA,AB,AC,AD,AE= 495800 1 319 1 16 483
AF,AG,AH,AI,AJ= 10 943 9 12.6 1
AK,AL,AM,AN,AP= 1094 1709 5168 1 32
DILUENT PROPERTIES:
AQ,AR,AS,AT,AU= 18 1650 20 1 137
AV,AW,AX,AY,AZ= 10 18 11 23.2 1
TEST CONDITIONS:
BA,BB,BC,BD,BE= 1 1 300 25 15
FRACTION NEOHOOKIAN TENSILE RESPONSE= 0
PRESS ENTER TO CONTINUE

INTERMEDIATE RESULTS:
BF.BG,BH,BI,BJ= 3.81052 1 0 483 158045
BK,BL,BM,BN= 1 8 137 0393688
TG,UR= 418.614 1.25961
BO,BQ,BR= .934929 0650711 152.432
BS,BT= .993095 977666
RU,BY,BX,BY,BZ= 51044.5 -49704.3 7.30274 1.09137 29.0213
SB,TL,TM,NH= 1594.43 11.6204 522.577 0
T,SM,BS= 300 1637.07 1594.43
SHEAR AND TENSION ANALYSIS:
IMPUT,NUMBER OF STRESS INCREMENTS? __

Estimated Effects of High Moisture (8 - 10 Wt%) on Cured Epoxy Thermoset

POLYMER-DILUENT=TMDA/DDS EPOXY+8% H20
FOLYMER PROPERTIES
AA,AB,AC,AD,AE= 495000 1 319 1 16 483
AF,AG,AH,AI,AJ= 10 943 9 12 5 1
AK,AL,AM.AN,AP= 1054 1709 5168 1 32
DILUENT PROPERTIES
AQ,AR,AS,AT,AU= 18 2000 20 1 137
AY,AW,AX,AY,AZ= 10 18 11 23 2 1
TEST CONDITIONS
BA,BB,BC,BD,BE= 1 1 300 25 15
FRACTION NEOHOOKIAH TENSILE RESPONSE= 8
PRESS ENTER TD CONTINUE

INTERMEDIATE RESULTS: BF, BG, EH, BI, BJ= 3.81052 1 0 483 .158045 BK, BL, BM, BN= 1 0 137 8393688 TG.UR= 402.166 130319 151.361 BO.BQ. BR= .915001 8849195 927182 BS.BT= 993895 48649 6.86686 1.0323 27.2858 BU. BY. BX. BY. BZ= 50685 3 SE, TL, TN, NH= 1583 23 11 6409 T, SM, SE= 360 1584 3 1583 23 596.465 9 SHEAR AND TENSION ANALYSIS: INPUT NUMBER OF STRESS INCREMENTS? _

POLYMER-DILUENT=TGMDA/DDS EPOXY+10% H20
POLYMER PROPERTIES:
AA,AB,AC,AD,AE= 495000 1 319 1.16 483
AF,AG,AH,AI,AJ= 10 943 9 12.6 1
AK,AL,AM,AN,AP= 1094 1709 5168 1 32
DILUENT PROPERTIES:
AQ,AR,AS,AT,AU= 18 2250 20 1 137
AY,AW,AX,AY,AZ= 10 18 11 23.2 1
TEST CONDITIONS:
BA,BB,BC,BD,BE= 1 1 300 25 15
FRACTION NEOHOOKIAN TENSILE RESPONSE= 0
PRESS ENTER TO CONTINUE

INTERMEDIATE RESULTS:

BF,BG,BH,BI,BJ=3.61852 1 8 483 .158645

BK,BL,BM,BN= 1 0 137 .9393688

TG;UR= 387.534 .125361

BO,BQ,BR= .896857 .103943 150.711

B3,BF= .993095 .976697

BU,BY,BX,BY,8Z= 50468.4 .47637.7 6.47946 .989109 25.7433

SB,TL,TM,NH= 1576.44 11.8512 492.112 8

T,SM,SS= 380 .1333.21 .1633.21

SHEAR .ND TENSION ANALYSIS:

INPUT_NUMBER OF STRESS INCREMENTS? ...

Second Estimated Effects of Low Moisture (0 - 2 Wt%) on Cured Epoxy Thermoset

POLYMER-DILUENT=TGMDA/ODS EPOXY+0% H20
FOLYMER PROPERTIES
AA:AB:AC;AD;AE= 495888 1 319 1:16 483
HF;AG;AH;AI;AJ= 10 943 9 12:6 1
AK;AL;AM;AN;AP= 1894 1709 5168 1 32
DILUENT PROPERTIES:
AQ;AR;AS;AT;AU= 18 0 28 1 137
AY;AW:AX;AY;AZ= 10 18 11 23:2 1
TEST CONDITIONS
EA:BB;BC;BD;BE= 1 1 220 48 15
FRACTION NEOHOOKIAN TENSILE RESPONSE= 0
PRESS ENTER TO CONTINUE

INTERMEDIATE RESULTS: BF, EG, BH, BI, BJ= 5,33473 1 9 483 158045 BK, PL, BM, BN= 1 0 137 . 6281206 158845 TG, UR= 483 158.76 BS.ET= .993095 . 979119 53163 7 9.0124 1.30231 35.8285 BU, BY, EX, BY, 82= 53163 7 SB, TL, TM, NH= 1660.63 11.5743 585.517 T.SM.SS= 220 2312 74 1660.63 SHEAR AND TENSION ANALYSIS: INPUT NUMBER OF STRESS INCREMENTS? _

POLYMER-DILUENT=TGMDA/DDS EPOXY+2% H20
POLYMER PROPERTIES:
AA,AB,AC,AD,AE= 495000 1 319 1 16 483
AF,AG,AH,AI,AJ= 10 943 9 12.6 1
AK,AL,AM,AN,AP= 1094 1729 5168 1 32
DILUENT PROPERTIES:
AQ,AR,AS,AT,AU= 18 550 28 1 137
AY,AW,AX,AY,AZ= 18 18 11 23.2 1
TEST CONDITIONS:
BA,SB,BC,BD,BE= 1 1 229 40 15
FRACTION NEOHOOKIAN TENSILE RESPONSE= 0
PRESS ENTER TD CONTINUE

INTERMEDIATE RESULTS:

BF, BG, BH, BI, BJ= 5.33473 1 0 483 .158045

BK, BL, BN, BN= 1 0 137 .0281206

TG, UR= 449 .643 .145519

B0, 60, 8R= .977326 .022674 156.065

- B8, BT= .993095 ..978635

BU, BY, BX, BY, BZ= 52261 1 51959 2 8.19975 1.19854 32.5939

SB, TL, TN, NH= 1632.44 11.6126 553.179 0

T, SM, SS= 220 .8289.59 1632.44

SMEAR-AND TENSION AMALYSIS:
IMPUT NUMBER OF STRESS INCREMENTS?

THE THE STATE OF THE STATE OF

Second Estimated Effects of Medium Moisture (4 - 6 Wt%) on Cured Epoxy Thermoset

POLYMER-DILUENT=TGMDA/DDS EPOXY+4% H20
POLYMER PROPERTIES:

AA,AB,AC,AD,AE= 495000 1 319 1 16 463
AF,AG,AH,AI,AJ= 10 943 9 12 6 1

AK,AL,AM,AN,AP= 1094 1709 5168 1 32

CILUENT PROPERTIES:

AQ,AR,AS,AT,AU= 18 1100 26 1 137

AV,AM,AX,AY,AZ= 10 18 11 23 2 1

TEST CONDITIONS:

BA,BB,BC,BD,BE= 1 1 220 40 15

FRACTION NEOHOOKIAN TENSILE RESPONSE= 0

PRESS ENTER TO CONTINUE

INTERMEDIATE RESULTS:
BF,BG,BH,BI,BJ= 5.33473 1 0 403 158045
BK,BL,BM,BN= 1 0 137 : 0201206
TG,UR= 422.152 .135196
BO,BQ:BR= .955658 .0443425 153.979
BS,BT= .993095 .97815
BU,BV,BX,BY,BZ= 51562.6 50806 3 7.52773 1.11272 29 919
SB,TL,TM,NH= 1610.62 11.644 526 535 0
T,SM,SS= 220 2267 33 1610.62
SHEAR AND TENSION ANALYSIS:
INPUT NUMBER OF STRESS INCREMENTS? _

POLYMER-DILUENT=TGMDA/DDS EPOXY+6% H20
POLYMER PROPERTIES:
AA,AB,AC,AD,AE= 495800 1 319 1.16 483
AF,AG,AH,AI,AJ= 10 943 9 12.6 1
AK,AL,AM,AN,AP= 1894 1789 5168 1 32
DILUENT PROPERTIES:
AQ,AR,AS,AT,AU= 18 1650 28 1 137
AV,AW,AX,AY,AZ= 18 18 11 23.2 1
TEST CONDITIONS:
BA,BB,BC,BD,BE= 1 1 220 40 15
FRACTION NEOHOOKIAN TENSILE RESPONSE= 0
PRESS ENTER TO CONTINUE

INTERMEDIATE RESULTS:

BF, BG, BH, BI, BJ = 5.33473 1 0 483 .158045

BK, BL, BM, BN = 1 0 137 .9281206

TG, UR = 399.185 .126542

BO, BQ, BR = .934929 .0650711 152.432

BS, BT = .993095 .977666

BU, BV, BX, BY, BZ = 51044.5 49704.3 6.9624 1.0405 27.6687

SB, TL, TM, NH = 1594.43 11.6699 504.193 0

T, SM, BS = 220 2245.84 1594.43

SHEAR AND TENSION ANALYSIS:
INPUT NUMBER OF STRESS INCREMENTS? __

Second Estimated Effects of High Moisture (8 - 10 Wt%) on Cured Epoxy Thermoset

POLYMER-DILUENT=TGMDA/DDS EPOXY+8% H20
PULYMER PROPERTIES
AA,AB,AC,AO,AE= 495880 1 319 1 16 483
AF,AG,AH,AI,AJ= 10 943 9 12 6 1
AK,AL,AM,AN,AP= 1094 1709 5168 1 32
DILUENT PROPERTIES
AQ,AR,AS,AT,AU= 18 2200 20 1 137
AY,AU,AK,AY,AZ= 10 18 11 23 2 1
TEST CONDITIONS
BA,BB,SC,BD,BE= 1 1 220 40 15
FRACTION NEDHOOKIAN TENSILE RESPONSE= 0

POLYMER-DILUENT=TGMDA/DDS EPOXY+10% H20
POLYMER PROPERTIES
AA, AB, AC, AD, AE= 495000 1 319 1 16 483
AF, AG, AH, AI, AJ= 10 943 9 12 6 1
AK, AL, AM, AN, AP= 1094 1709 5168 1 32
DILUENT PROPERTIES:
AQ, AR, AS, AT, AU= 18 2750 28 1 137
AV, AU, AX, AY, AZ= 10 18 11 23 2 1
TEST CONDITIONS
BA, BB, BC, BD, BE= 1 1 220 40 15
FRACTION NEOHOOKIAN TENSILE RESPONSE= 0
PRESS ENTER TO CONTINUE

INTERMEDIATE RESULTS:

BF,BG,BH,BI,BJ= 5.33473 1 0 483 158045

BK,BL,BM,BN= 1 0 137 .0201206

TG,UR= 362.632 .112046

BO,BQ,BR= :896057 .103943 150.711

BS,BT= :993095 .976697

BU,BY,BX,BY,BZ= 50468.4 47637.7 6.0631 925551 24.0891

SB,TL,TM,NH= 1576.44 11 7089 468.793 0

T,SM,SS= 220 2204.71 1576.44

BHEAR AND TENSION ANALYSIS:
INPUT NUMBER OF STRE6S INCREMENTS?

and the contract of the

Table 6-13 Calculated Mechanical Response of Cured TGMDA/DDS Epoxy (0 Wt% $\rm H_2O$, $\rm T_g$ = 483K, t = 1 s)

T (K)	σ _b (bar)	Υb	W _S (bar)	W _E (bar)	W _p (bar)	G _E (bar)	ΥE
220	1.66E3	2.24E-2	1.85E1	1.85E1	0	7.39E4	2.34E-2
26 0	1.66E3	2.24E-2	1.85E1	1.85E1	0	7.39E4	2.34E-2
300	1.66E3	3.22E-2	3.42E1	1.92E1	1.50E1	7.17E4	2.32E-2
340	1.55E3	1.31E-1	1.77E2	2.81E1	1.49E2	4.30E4	3.61E-2
380	1.30E3	2.30E-1	2.56E2	4.29E1	2.13E2	1.97E4	6.59E-2
420	1.05E3	3.61E-1	3.02E2	7.55E1	2.26E2	7.27E3	1.44E-1
460	7.94E2	5.94E-1	3.25E2	1.46E2	1.78E2	2.15E3	3.70E-1
500	5.41E2	9.27E-1	2.01E2	2.01E2	0	4.67E2	9.27E-1
540	2.88E2	1.08	7.80E1	7.80E1	0	1.35E2	1.08
580	3.49E1	4.84E-1	7.46	7.46	0	6.36E1	4.84E-1
585	0	0	0	0	0	0	0

T (K)	S _b (bar)	εb	W _T (bar)	W _E (bar)	W _p (bar)	E _E (bar)	εE
220	3.27E3	1.47E-2	2.40E1	2.40E1	0	2.22E5	1.47E-2
260	3.27E3	1.47E-2	2.40E1	2.40E1	0	2.22E5	1.47E-2
300	3.26E3	1.94E-2	3.89E1	2.44E1	1.45E1	2.18E5	1.49E-2
340	2.94E3	5.64E-2	1.40E2	2.56E1	1.14E2	1.69E5	1.74E-2
380	2.37E3	9.66E-2	2.01E2	2.80E1	1.73E2	1.00E5	2.36E-2
420	1.80E3	1.61E-1	2.48E2	4.24E1	2.05E2	3.85E4	4.70E-2
460	1.25E3	2.71E-1	2.55E2	8.29E1	1.73E2	9.42E3	1.33E-1
500	7.20E2	5.03E-1	1.64E2	1.64E2	0	1.30E3	5.03E-1
540	3.53E2	6.30E-1	6.39E1	6.39E1	0	3.22E2	6.30E-1
580	5.49E1	2.72E-1	6.76	6.76	0	1.83E2	2.71E-1
585	0	0	0	0	0	0	0

Table 6-14 Calculated Mechanical Response of 2 Wt% Moisture in Cured Epoxy $\{T_g = 449.6K, t = 1 s\}$

T (K)	σ _b (bar)	YЬ	W _S (bar)	W _E (bar)	W _p (bar)	G _E (bar)	ΥE
220	1.63E3	2.23E-2	1.82E1	1.82E1	0	7.26E4	2.24E-2
260	1.63E3	2.23E-2	1.82E1	1.82E1	0	7.26E4	2.24E-2
300	1.63E3	8.79E-2	1.21E2	2.26E1	9.03E1	5.89E4	2.77E-2
340	1.46E3	1.85E-1	2.29E2	4.24E1	1.87E1	2.53E4	5.79E-2
380	1.19E3	3.43E-1	3.30E2	7.76E1	2.53E2	9.12E3	1.30E-1
420	9.15E2	3.36E-1	1.90E2	1.18E2	7.18E1	3.56E3	2.57E-1
460	6.40E2	8.26E-1	2.25E2	2.25E2	0	6.61E2	8.26E-1
500	3.65E2	1.18	9.28E1	9.28E1	0	1.34E2	1.18
540	9.05E1	8.49E-1	2.76E1	2.76E1	0	7.66E1	8.49E-1
553	0	0	0	0	0	0	0

T (K)	S _b (bar)	€b	W _T (bar)	W _E (bar)	Wp (bar)	E _E (bar)	εE
220	3.22E3	1.47E-2	2.36E1	2.36E1	0	2.18E5	1.47E-2
260	3.22E3	1.47E-2	2.36E1	2.36E1	0	2.18E5	1.47E-2
300	3.15E3	3.69E-2	9.16E1	2.46E1	6.70E1	2.02E5	1.56E-2
340	2.71E3	8.29E-2	1.91E2	3.36E1	1.58E2	1.10E5	2.47E-2
380	2.08E3	1.45E-1	2.54E2	4.71E1	2.08E2	4.59E4	4.53E-2
420	1.53E3	1.95E-1	2.04E2	9.44E1	1.10E2	1.24E4	1.23E-1
460	8.72E2	4.69E-1	2.12E2	1.96E2	1.61E1	1.94E3	4.50E-1
500	4.27E2	7.13E-1	8.40E1	8.40E1	0	3.30E2	7.13E-1
540	1.23E2	4.74E-1	2.30E1	2.30E1	0	2.05E2	4.74E-1
553	0	0	0	0	0	0	0

Table 6-15 Calculated Mechanical Response of 4 Wt3 Moisture in Cured Epoxy (T_g = 422K, t = 1 s)

T (K)	ob (bar)	Ϋ́b	W _S (bar)	W _E (bar)	W _p (bar)	G _E (bar)	ΥE
220	1.61E3	2.24E-2	1.80E1	1.80E1	0	7.17E4	2.24E-2
260	1.61E3	2.24E-2	1.80E1	1.80E1	0	7.17E4	2.24E-2
300	1.61E3	1.72E-1	2.36E2	4.08E1	1.95E2	3.18E4	5.06E-2
340	1.38E3	3.20E-1	3.65E2	7.75E1	2.87E2	1.23E4	1.12E-1
380	1.08E3	5.21E-1	4.24E2	1.40E2	2.84E2	4.19E3	2.59E-1
420	7.88E2	7.41E-1	3.06E2	2.78E2	2.75E1	1.12E3	7.06E-1
460	4.92E2	1.15	1.04E2	1.04E2	0	1.58E2	1.15
500	1.96E2	1.09	5.75E1	5.75E1	0	9.72E1	1.09
527	0	0	0	0	0	0	0

T (K)	S _b (bar)	€b	W _T (bar)	W _E (bar)	W _p (bar)	E _E (bar)	εE
220	3.17E3	1.47E-2	2.33E1	2.33E1	0	2.15E5	1.47E-2
260	3.17E3	1.47E-2	2.33E1	2.33E1	0	2.15E5	1.47E-2
300	2.99E3	7.61E-2	1.95E2	3.26E1	1.63E2	1.37E5	2.18E-2
340	2.43E3	1.35E-1	2.84E2	4.43E1	2.40E2	6.67E4	3.65E-2
380	1.78E3	2.20E-1	3.14E2	7.61E1	2.38E2	2.07E4	8.57E-2
420	1.13E3	3.96E-1	2.85E2	1.62E2	1.23E2	3.94E3	2.87E-1
460	5.77E?	7.04E-1	9.07E1	9.07E1	0	3.66E2	7.04E-1
500	2.39E2	6.39E-1	4.99E1	4.99E1	0	2.44E2	6.39E-1
527	0	0	0	0	0	0	0

Table 6-16 Calculated Mechanical Response of 6 Wt% Moisture in Cured Epoxy (T_g = 399K, t = 1 s)

T (K)	σ _b (bar)	ΥЪ	W _S (bar)	W _E (bar)	W _p (bar)	G _E (bar)	ΥE
220	1.59E3	2.24E-2	1.78E1	1.78E1	0	7.09E4	2.24E-2
260	1.59E3	3.32E-2	3.28E1	1.85E1	1.44E1	6.88E4	2.32E-2
300	1.59E3	1.15E-1	1.34E2	4.85E1	8.57E1	2.62E4	6.08E-2
340	1.30E3	4.35E-1	4.45E2	1.20E2	3.25E2	7.04E3	1.84E-1
380	9.81E2	6.71E-1	4.33E2	2.26E2	2.06E2	2.13E3	4.61E-1
420	6.65E2	1.02	2.11E2	2.11E2	0	4.04E2	1.02
460	3.49E2	1.13	6.77E1	6.7751	0	1.07E2	1.13
500	3.31E1	5.56E-1	7.89	7.89	0	5.11E1	5.56E-1
504	0	0	0	0	0	0	0

T (K)	S _b (bar)	εþ	W _T (bar)	W _E (bar)	W _p (bar)	E _E (bar)	εĘ
220	3.14E3	1.47E-2	2.30E1	2.30E1	0	2.13E5	1.47E-2
260	3.13E3	1.94E-2	3.74E1	2.34E1	1.40E1	2.09E5	1.50E-2
300	2.98E3	7.17E-2	1.65E2	4.89E1	1.15E2	9.06E4	3.28E-2
340	2.20E3	1.81E-1	3.31E2	6.60E1	2.64E2	3.66E4	6.01E-2
380	1.50E3	3.06E-1	3.32E2	1.28E2	2.03E2	8.80E3	1.71E-1
420	8.29E2	6.05E-1	2.05E2	2.06E2	0	1.12E3	6.05E-1
460	4.03E2	7.35E-1	8.15E1	8.15E1	0	3.02E2	7.35E-1
500	5.06E1	3.09E-1	6.96	6.96	0	1.46E2	3.09E-1
504	0	0	0	0	0	0	0

Table 6-17 Calculated Mechanical Response of 8 Wt% Moisture in Cured Epoxy ($T_g = 380K$, t = 1 s)

T (K)	σ _b (bar)	Ϋ́b	W _S (bar)	W _E (bar)	W _p (bar)	G _E (bar)	ΥE
220	1.58E3	2.24E-2	1.77E1	1.77E1	0	7.04E4	2.24E-2
260	1.58E3	7.64E-2	9.99E1	2.11E1	7.88E1	5.94E4	2.66E-2
300	1.55E3	3.49E-1	4.42E2	1.01E2	3.41E2	1.20E4	1.30E-1
340	1.22E3	3.79E-1	3.21E2	1.40E2	1.81E2	5.32E3	2.29E-1
380	8.82E2	4.59E-1	1.56E2	1.56E2	0	1.48E3	4.59E-1
420	5.47E2	1.19	8.62E1	8.62E1	0	1.22E2	1.19
460	2.11E2	1.14	5.80E1	5.80E1	0	9.00E1	1.14
485	0	0	0	0	0	0	0

T (K)	S _b (bar)	٤b	W _T (bar)	W _E (bar)	W _p (bar)	E _E (bar)	εĘ
220	3.12E3	1.47E-2	2.29E1	2.29E1	0	2.11E5	1.47E-2
260	3.06E3	3.42E-2	8.09E1	2.37El	5.72E1	1.98E5	1.55E-2
300	2.71E3	1.45E-1	3.33E2	5.99E1	2.74E2	6.15E4	4.41E-2
340	2.05E3	1.88E-1	2.84E2	1.01E2	1.82E2	2.07E4	9.89E-2
380	1.38E3	2.81E-1	1.70E2	1.70E2	0	4.29E3	2.81E-1
420	6.14E2	7.81E-1	1.08E2	1.08E2	0	3.52E2	7.81E-1
460	2.52E2	6.76E-1	5.09E1	5.09E1	0	2.23E2	6.76E-1
485	0	0	0	0	0	0	0

Table 6-18 Calculated Mechanical Response of 10 Wt% Moisture in Cured Epoxy ($T_g = 363K$, t = 1 s)

T (K)	σ _b (bar)	YЬ	W _S (par)	W _E (bar)	W _p (bar)	G _E (bar)	ΥE
220	1.58E3	2.24E-2	1.76E1	1.76E1	0	7.01E4	2.24E-2
260	1.58E3	1.02E-1	1.33E2	2.85E1	1.05E2	4.37E4	3.61E-2
300	1.50E3	4.33E-1	5.11E2	1.37E2	3.74E2	8.16E3	1.83E-1
340	1.14E3	6.78E-1	5.14E2	2.60E2	2.54E2	2.51E3	4.55E-1
380	7.87E2	1.05	2.98E2	2.98E2	0	5.38E2	1.05
420	4.32E2	1.24	8.89E1	8.89E1	0	1.16E2	1.24
460	7.79E1	9.04E-1	2.41E1	2.41E1	0	5.89El	9.04E-1
468	0	0	0	0	0	0	0

T (K)	S _b (bar)	εb	W _T (bar)	W _E (bar)	Wp (bar)	E _E (bar)	εE
220	3.11E3	1.47E-2	2.28E1	2.28E1	0	2.10E5	1.47E-2
260	3.05E3	4.92E-2	1.19E2	2.93E1	8.94E1	1.54E5	1.95E-2
300	2.54E3	1.79E-1	3.79E2	7.62E1	3.03E2	4.22E4	6.01E-2
340	1.74E3	3.15E-1	4.10E2	1.36E2	2.74E2	1.10E4	1.57E-1
380	9.93E2	5.85E-1	2.48E2	2.48E2	0	1.45E3	5.85E-1
420	4.87E2	7.74E-1	8.53E1	8.53E1	0	2.84E2	7.74E-1
460	1.03E2	5.08E-1	2.01E1	2.01E1	0	1.56E2	5.095-1
468	0	0	0	0	0	0	0

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Table 6-19
Relations Between English and SI Units in The Composite Fracture Energy and Strength Model

Input Variable	English Units	SI Units	
D, V	2E-4 in, 0.5	5.08E-6m, 0.5	
E, S	1E7 psi, 4E5 psi	6.89E10 N/m ² , 2.76E9N/m ²	
G, L	SE5 psi, SE3 psi	3.44E9N/m ² , 3.44E7N/m ²	
Υ, ΥΥ	1E6 psi, 1E4 psi	6.89E9N/m ² , 6.89E7N/m ²	
LB, LF	5E3 psi, 5E2 psi	3.44E7N/m ² , 3.44E6N/m ²	
Output (1)			
Inter-fiber Spacing	(in.) = 1.7E-4	(m) = 4.30E-6	
Shear Stress Conc.	$(in.)^{-1} = 4360$	$(m)^{-1} = 1.71E5$	
Max. F-M Bond St.	(psi) = 8.7E5	$(N/m^2) = 6.01E8$	
F-M Debond Length	(in.) = 3.7E-3	(m) = 9.61E-4	
Inter. Shear St.	(psi) = 5000	$(N/m^2) = 3.44E7$	
Comp. Tens. Mod.	(psi) = 5.5E6	$(N/m^2) = 3.79E10$	
Comp. Tens. St.	(psi) = 1.04E5	$(N/m^2) = 7.18E8$	
Crit. Crack Length	(in.) = 7.5E-3	(m) = 1.92E-3	
Output (2)			
Unflawed St. (min)	(psi) = 6.11E4	$(N/m^2) = 4.2E8$	
Unflawed St. (max)	(psi) = 1.76E4	$(N/m^2) = 1.22E9$	
Crit. Stress Int (min)	$(1b^2/in.^3)^{1/2} = 9406$	$(N^2/m^3)^{1/2} = 3.27E7$	
Crit. Stress Int (max)	$(1b^2/in.^3)^{1/2} = 2.7E4$	$(N^2/m^3)^{1/2} = 9.47E7$	
Output (3)			
F-M Bond Stress	(psi) = 5000	$(N/m^2) = 3.44E7$	
Fiber (W _{Fb} /A)	(1b/in.) = 1.67	(N/m) = 2.95E3	
Matrix (W _{Sb} /A)	(1b/in.) = 14.4	(N/m) = 2.53E4	
Frict. (W _{Fb} /A)	(1b/fn.) = 118	(N/m) = 2.08E5	
Tot. (W _b /A)	(1b/in.) = 134	(N/m) = 2.36E5	
Crit. Length (L _C)	(in.) = 7.54E-3	(m) = 1.92E-3	

First Estimate of Composite Fracture Energy and Strength (English Units, LB = 5000 psi, LF = 500 psi)

FIBER DIAMETER(D), YOLUME FRACTION(V)= 2E-04 .5
FIBER TENSILE MODULUS(E), STRENGTH(S)= 1E+07 400000
MATRIX SHEAR MODULUS(G), STRENGTH(L)= 500000 5000
MATRIX TENSILE(Y), STRENGTH(YY)= 1E+06 10000
F-M BOND STRENGTH(LB), FRICT, STRENGTH(LF)= 5000 500

INTER-FIBER SPACING(R1)= 1.69212E-04
SHEAR STRESS CONC.(A)= 4360.29
MAX. F-M BOND STRENGTH(LM)= B2205.7
F-M DEBOND LENGTH(BL)= .0377066
INTERLAM. SHEAR STRENGTH(IL)= 5000
COMPOSITE TENSILE MODULUS= 5.5E+06
COMPOSITE CONTINUUM TENSILE STRENGTH= 104055
CRITICAL CRACK LENGTH= .0754131
TO CONTINUE PRESS ENTER?

FRACTURE MECHANICS ANALYSIS UNFLAWED STRENGTH (MIN.)= 61114.4 (MAX.)= 176749 CRIT. STRESS INTENSITY (MIN.)= 29746.9 (MAX.)= 86031.3 CRACK LENGTH FLAU SIZE MIN. STRENGTH MAX STRENGTH 4.21332E-03 .0753959 126769 61121.3 .0752844 9.42654E-03 61166.6 176900 177780 . 8745363 .0189533 61472.8 .0709825 .0377065 8.56659 182182 61114.4 .0754131 .0754131 126749 150926 .150801 124991 43218 .301652 .301652 30557.2 38374.6 . 683384 ,603304 21607.2 62490.3 15278.6 1.20661 1.20661 44187 3 2.41322 2.41322 10803.6 31245.2 TO CONTINUE PRESS ENTER? _

	FRACTURE	WORK PER U	HIT CROSSE	CTION AREA	
F-M BOND	FIBER:		FRICT.	TOTAL	CRIT.FIBER
	WORK		WORK	WORK	LENGTH
5000	16.7585	. 144.129	1184.82	1345.71	.0754131
PRESS ENT	ER TO CON	TINUE?	•		
. 0	17,7778		1333.33	1351.11	. 08
9689 53	15 8825	263.374	1853.5	1332.67	.0711111
19379.1	13.8272	460905	806.584	1281.32	. 0622222
29068.6	11.8519	592 (593	592.593	1197.04	. 0533333
38758.1	9.87654	658.436	ag 411.523	1079.84	. 0444444
48447.5	7,90124	658.436	263.375	929.712	. 0355556
- 58137.2		592.393		746.667	. 0 26 66 67
67 826.7		460,905		530.7	. 0177778
77516.2	: 1:97531	263:374	16.4609	281.811	8.88889E-03
~ 87285.7	8	8 `	.8	· B	0
PRESE EN	TER TO CON	TINUE? _			

86 C4659A/jbs

the second second second

Second Estimate of Composite Fracture Energy and Strength (English Units, LB = 5000 psi, LF = 5000 psi)

FIBER DIAMETER(D). VOLUME FRACTION(V)= 2E-04 .5
FIBER TENSILE MODULUS(E), STRENGTH(S)= 1E+07 400000
MATRIX SHEAR MODULUS(G), STRENGTH(L)= 500000 5000
MATRIX TENSILE(Y), STRENGTH(YY)= 1E+06 10000
F-M BOND STRENGTH(LB), FRICT STRENGTH(LF)= 5000 5000

INTER-FIBER SPACING(RI)= 1.69212E-04
SHEAR STRESS CONC.(A)= 4360.29
MAX. F-M BOND STRENGTH(LM)= 82205.7
F-M DEBOND LENGTH(BL)= 3.72066E-03
INTERLAM. SHEAR STRENGTH(IL)= 5000
COMPOSITE PENSILE MODULUS= 5.5E+06
COMPOSITE CONTINUUM TENSILE STRENGTH= 104055
CRITICAL GRACK LENGTH= 2.54131E-03
TO CONTINUE PRESS ENTER?

FRACTURE MECHANICS ANALYSIS UNFLAWED STRENGTH (MIN.)= 61114.4 (MAX)= 176749 CRIT. STRESS INTENSITY (MIN.)= 9406 81 (MAX. >= 27205.5 LAW SIZE CRACK LENGTH MIN STRENGTH 7.53959E-03 4.71332E-04 61121 4 7.52844E-03 9.42664E-04 61166 6 FLAW SIZE MAX. STRENGTH 126728 126900 7.45363E-03 -1.88533E-03 61472 8 122786 62992 8 7.09825E-03 3.77065E-03 7.54131E-03 7.54131E-83 /.54131E . .0150801 0150826 7.54131E-83 61114 4 176749 124991 43219 0301652 0301652 30557 2 0603304 0603304 21607 2 120661 120661 15278 6 241322 241322 10803 6 88374.7 62498.4 44187.4 31245.2 TO CONTINUE PRESS ENTER?

•	FRACTURE	WORK PER U	NIT CROSSE	CTION AREA	
F-M BOND	FIBER	MATRIX	FRICT.	TOTAL	CRIT.FIBER
STRESS	WORK	HORK	WORK	WORK	LENGTH
.5000	1.67585	14.4129	118.482	134.571	7.54131E-03
PRESS ENT	ER TO CON'	TINUE?		_	
0	1.77778	8	133.333	135.111	8E-03
9689.53	1.58925	26.3375	105.35	133,267	7.11111E-03
19379	38272	46.9905	80.6584	128.132	6.2222E-03
29068.6	1.18519	59.2593	59.2593	119.784	5.33333E-03
38758.1	. 987654	65,8436	41.1523	107.984	4.4444E-03
48447.6	. 790124	65.8436	26.3375	92.9712	3.55556E-03
38137,2	. 592593	39.2592	- 14.8148	74.6662	2.66667E-03
67826.7	. 395862	46.0905	6 58437	53.07	1.77778E-03
77516.2	. 197531	26.3374	1.64609	28.1811	8.88889E-04
87205 7	8	` 0	0	0	0
PRESS EN	TER TO-CON	TINUE? _	معنا	_	-
	والمحافظ والمراز المريد		07	•	

Table 6-22
Relations Between English and SI Units in the Peel Mechanics Model

Input Variable	English Units	SI Units	
H, A	1E-3 in., 8E-3 in.	2.54E-5m, 2.03E-4m	
8, E	1.0 in., 1E4 psi	2.54E-2m, 6.89E7 N/m ²	
Y, SA	5E4 psi, 2E4 psi	3.45E8m, 1.38E8N/m ²	
G, LA	1.67E4 psi, 6.67E3 psi	1.15E8N/m ² , 4.60E7 N/m ²	
Output (1)			
Cleavage Stress Conc.	$(in.^{-1}) = 6.95E2$	$(m^{-1}) = 2.74E4$	
Shear Stress Conc.	$(in.^{-1}) = 3.23E2$	$(m^{-1}) = 1.27E4$	
180 Deg. Radius of Curv.	(in.) = 3.22E-4	(m) = 8.209E-6	
O Deg. Peel Force	(1b) = 20.6	(N) = 91.8	
180 Deg. Peel Force	(1b) = 16.0	(N) = 71.2	
Output (2)			
Peel Angle	(deg) = 177.9	(deg) = 177.9	
Peel Work	(1b/in.) = 35.2	(N/m) = 6.16E3	
Peel Force	(1b) = 14.8	(N) = 65.8	
K	.963	.963	
Tensile Stress	(psi) = 2E4	$(N/m^2) = 1.38E8$	
Shear Stress	(psi) = -4.79E3	$(N/m^2) = -3.30E7$	

77

Table 6-23
First Estimate of Laminate Peel and Shear Properties
(Flexible Adherend Tensile Modulus = 1E4 psi, English Units)

RIBBON HALF THICKNESS(H), ADHESIVE THICKNESS(A)2 .001, .008 BOND WIDTH(B), RIBBON TENSILE MODULUS(E)? 1, (E4) ADHESIVE TENSILE MODULUS(Y), STRENGTH(SA)? 5E4, 2E4 ADHESIVE SHEAR MOBULUS(Q), STRENGTH(LA)? 1.6764,6.6763 CLEAVAGE STRESS CONC. (BA)= 695.789 SHEAR STRESS CONC.(GA)= 323.071 -189 DEG. RAD. OF CURV.(R)= 3.22749E-04 0 DEG. PEEL FORCE(#\$ >= 20.6456 180 DEG * PEEL FORCE(PC)= 16 PEEL -PEEL PEEL TENSILE SHEAR A WORK RANGLE --FORCE STRESS STRESS 177 943 7 35 1268 14 8403 962936 -4791.38 - 20**0**00 17:0924 147.943 8.31579 .692902 20000 -2276.95 117 944 11.5577 7.02883 .567962 20000 -1064.12 7.58096 87.9443 · 8.67872 .476341 56000 87.2691 77.9462 8.86533 8.11386 .447893 547.412 80000 67.9481 7.65196 9.00554 .419243 50000 1092.33 57.95 ~7.53574 10 35 389619 80008 1774.4 47.9519 2.96186 .358076 12.424 50000 2688.27 37.9538 9.59627 15.8136 323688 80008 4028 4 3 11.4109 18 3874 14.6422 21 9796 32.9542 .304058 20000 4984.55 ·· 27.9546 . 283097 80006 6272.44 22.955 14:3437 22 4215 . 279083 16881.5 6620 17,9553 12.9328 - 21 7933 -.288759 12948.7 6678 12.9557 14.7599 21 1855 7.9561 11.9648 20 8462 . 281979 9210.26 6670 5598.38 .282874 6670 de la companya della companya de la companya della companya della

Table 6-24

Second Estimate of Laminate Peel and Shear Properties (Flexible Adherend Tensile Modulus = 5E4 psi, English Units)

RIBBON HALF THICKNESS(H), ADHESIVE THICKNESS(A)? .. 801, 308 BOND WIDTH(B), RIBBON TENSILE MODULUS(E)? 1,364 ADHESIVE TENSILE MODULUS(Y), STRENGTH(SA)? 5E4, 3E4 ADHESIVE SHEAR MODULUS(G), STRENGTH(LA)? 1 67E4,6 57E3 CLEAVAGE STRESS CONC.(BA)= 465.303 SHEAR STRESS CONC.(GA) 144.482 180 DEG. RAD, OF CURV (R)= 7.21688E-84 8 DEG. PEEL FORCE(PS)= 46.165 180 DEG PEEL FORCE(PC)= 16 PEEL PEEL PEEL **TENSILE** SHEAR ANGLE FORCE STRESS STRES 3 - WORK 177.943 31.5538 15.2039 147.943 18.7644 9.89172 .974686 60063 -2195.27 -12! 84 .755712 20803 117.944 13.3668 8.83588 . 6368 29899 -598 87.9443 9.94176 9.81231 . 543725 20000 50 35L 77.9462 9:82199 - 10.6922 :513914 20080 322 30 8.19742 67.9481 11.9768 .483483 20000 649 68 57.95 J. 49303 - 13.9851 .451604 20000 1065.11 47.9519 .417214 6.99257 16.8666 1632 14 20000 37.9538 6.94726 21,7879 3787フフ 20000 2473 07 32.9542 7.38912 25.3918 .357308 28000 3023 33 27.9546 B. 22931 .. 38.3457 . 333734 3899.35 20000 22 955 10.307 38.1692 . 387336 5073 06 20000 14.1301 - 49.5277 17.9553 . 286889 19354.7 6670 12.9557 47.3715 12.4262 . 282006 13769 4 667A 7.9361 41.3131 46.6142 .282796 8377 6670

Third Estimate of Laminate Peel and Shear Properties (Flexible Adherend Tensile Modulus = 2.5E5 psi, English Units)

PIBBON HALF THICKNESS(H), ADHESIVE THICKNESS(A)2_801, 008 BOND WIDTH(B), RIBBON TENSILE MODULUS(E)? 1.(2.5E5) ADHESIVE TENSILE MODULUS(Y). STRENGTH(SA)? 564.264 ABHESIVE SHEAR MODULUS(G), STRENGTH(LA)? 1.6764,6.6763 CLEAVAGE STRESS CONC.(BA)= 311.166 SHEAR STRESS CONC. (GA)# 64.6142 180 DEG. RAD. DF CURY (R)= 1.61374E-03 8 DEG. PEEL FORCE(PS)= 183.228 180 DEG. PEEL FORCE(PC)= 16 PEEL PEEL PEEL TENSILE SHEAR ANGLE HORK FORCE STRESS STRESS 177.943 31,1472 15.4591 . 982733 20006 -998,235 147.943 21.2076 11.4085 .811585 20000 -624.753 117.944 15.9552 10.7849 . 203537 29999 -326.554 87.9443 12.1653 12.4569 .612631 20000 28.8703 77.9462 11.0442 13.7214 . 582451 20000 185 146 67.9481 9.96251 15.5635 .551143 20000 372.556 57.95 8.91483 18.2822 .517826 20000 626.859 7.91789 47.9519 22.4474 .481313 20000 971.426 37.9538 7.84729 29.2785 .439834 20000 1491.29 32.9542 6.73652 34.4802 .416371 20000 1869.45 27.9546 6.62322 41,7936 2385.37 . 390373 20000 22.**95**5 6.94244 32.6562 .360978 20000 3132.91 17.9553 8.34284 78.178 . 326816 4313.65 20000 12.9557 13.8984 : 1**9**2.425 .285449 20000 6449.67 7.9561 -11.8676 184,232 . 282823 12523.8 6670

....

SC5291.7FR

SC78-3047

Fig. 1-1 Failure rate criteria for reliability.

PROPERTY PAGE BLANK-HOP PLUCE

Fig. 1-2 Applied and allowable stress distribution analysis of reliability.

The state of the s

4. 55

Fig. 1-3 Fracture mechanics criteria for structure reliability.

1-4 Weibull criteria for structure reliability.

SC78-3051

Fig. 1-5 Preferred dual path for correlating environmental aging with macroscopic strength.

Fig. 1-6 Technical approach to polymer composite reliability.

Fig. 1-7 Calculated function of M_1 and R_1 for M_2 = 20,000 kg/cm², M_2 = 2.0 kg/cm², τ = 100 s, R_2 = 0, τ = 10⁴ s, m = 1.0.

Fig. 1-8 Illustrative relations between tensile stress σ and time shift factor log (t/a_T).

Light to the same of a

Fig. 1-9 Calculated tensile creep stress $\sigma(t)$ vs strain $\varepsilon(t)$ (solid curves) and reliability $R_i(t)$ reduced stress $R_i(t)^*\sigma_i(t)$ vs strain $\varepsilon(t)$ (dashed curves) at t=1 s (upper view) and t=20 yr (lower view).

Fig. 1-10

(a) The temperature and composition dependence of the tensile strength for a rubber modified epoxy.

(b) The stress dependence of the survival probability for rubber modified epoxy at -150°C and 100°C.

and the state of t

DSC thermograms for curing reactions of commercial epoxy matrix materials extracted from prepreg (DSC scan rate ϕ = 20°C/min). F19. 1-11

Fig. 1-12 Rheovibron thermal scans for flexural damping in cured reinforced graphite-epoxy composite in the dry unaged condition.

A STATE OF THE STA

Fig. 1-13 Rheovibron thermal scans for flexural damping in cured uniaxial reinforced graphite-epoxy composite in the wetaged condition.

Fig. 1-14 Cumulative distribution function of survival probability.

Fig. 1-15 Dispersion (α) and polar (β) components of the solid-vapor surface tension $\gamma_{SV}=\alpha^2+\beta^2$ for HT424 primer (Phase 1) and Al 2024-T3 adherend (Phase 3).

Fig. 1-16 Dependence of interfacial work of adhesion W_{13} (upper curve) and lap shear bond strength σ_{b} (lower curve) at varied SET.

109

Fig. 1-18 SET and BET response surface for lap shear bond strength for Al 2024-T3 - HT424.

Modified Griffith analysis of the effect of $\rm H_2O$ immersion in reducing critical failure stress σ_1 for interfacial failure between HT424 and phosphate-fluoride treated Ti-6Al-4V (ϕ_1 = 1 - ϕ_c = 1.0). F1g. 1-19

Fig. 1-20 SET vs BET response surface for lap shear bond strength for Ti-6Al-4V - HT424.

Fig. 1-21 Comparison of Weibull shear strength distributions for aluminum (upper view) and titanium (lower view) adherends.

Fig. 1-22 Chemical analysis flow chart.

CORRELATION OF MOLECULAR STRUCTURE AND ADHESION/COHESION

Fig. 1-23 Physical and mechanical analysis flow chart.

Fig. 2-2 (Upper): Change in molecular weight distribution and sol-gel state with degree of cure (idealized). (Lower): The effect of degree upon glass transition temperature $T_{\rm g}$ and melt temperature $T_{\rm m}$ for liquid flow (idealized).

Salar Salar Salar

Fig. 2-3 Idealized isothermal dynamic mechanical monitoring of degree of cure in terms of shear storage modulus G' (upper view) and loss tangent tan δ (lower view).

Fig. 2-4 Thermal scanning of fully cured matrix for tensile modulus (upper view) and stress-temperature response (lower view) at constant time of loading (idealized).

Fig. 2-5 Characteristic tensile stress-strain and fracture response (upper view) and temperature profile of unnotched tensile fracture energy (lower view).

SC81-12674

I. ELASTIC-PLASTIC ANALOG STRESS-STRAIN CURVE

II. FRACTURE MECHANICS (DUGDALE MODEL)

III. STRESS ANALYSIS (HART-SMITH MODEL)

Fig. 2-6 Conversion of measured stress-strain to elastic-plastic analog (I) and introduction into fracture mechanics (II) and stress analysis (III) predictive models.

SC81-13600

Fig. 2-7 General laminate life prediction program.

WHOSENG PAGE BLANK-NOT FILMS

The maximum valence to atomic radius ratio, MV/R vs electronegativity.

F1g. 3-2

127

Fig. 3-4 pH vs (MV/R) for acids and bases.

Fig. 3-5 Acid dissociation index pK_A vs (V/R) for miscellaneous acids and bases at varied valence.

Fig. 3-6 Acid dissociation index pK_A vs apparent cation valence V and V/R.

Fig. 3-7 Calculated maximum Coulomb energy $\mathbf{U}_{\mathbf{m}}$ between adsorbate and substrate oxides.

Fig. 3-8 Calculated nominal Coulomb energy \mathbf{U}_{N} between absorbate and substrate oxides.

Fig. 4-1 Central role of manufacturing science in the product life cycle.

Illustrative computer aided manufacture-service-repair cycle. F19. 4-2

Service and the service of the

Fig. 4-3 Calculated shear modulus G vs reduced relaxation time t/a_T (upper curve) and stress-temperature functions for yield and fracture (lower curves).

Fig. 4-4 Computed estimates of nominal tensile stress vs strain response and failure (indicated by X in upper curves) and fracture energy (lower curve) of linear polyvinyl chloride ($T_g = 348 \text{ K}, M_n = 8.53E5 \text{ gm/mole}$).

A King Street Comment

Fig. 4-5 Experimental values of nominal tensile stress S_b vs extensibility ε_b for polyvinyl chloride film (T_g = 346 K, M_w = 1.16E6 gm/mole).

Fig. 4-6 Experimental reliability distribution R(σ) for true tensile strength (λ S)_b of polyvinyl chloride below T_g.

Fig. 4-7 Computed estimates of nominal tensile stress vs strain response (upper curves) and fracture energy (lower curve) for crosslinked PVC.

SC81-15146

$$HC \equiv C \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow C \equiv CH$$

Fig. 4-8 Model ATS oligomer structure.

Fir 4-9 Experimental and theoretical (solid curves) values of T_g for ATS as a function of cure path.

Fig. 4-10 Calculated curves of nominal tensile stress vs strain for linear ATS polymer with $T_g=267^{\circ}\text{C}$ and $M_p=2.26\text{E5}$ gm/mole (see Table 4-8 for temperatures).

WORK vs TEMP - TENSILE - FIXED T = 1.00 sec

Fig. 4-11 Calculated temperature dependence of tensile fracture energy \mathbf{W}_{T} per unit volume of unnotched linear ATS polymer.

Fig. 4-12 Calculated curves of nominal tensile stress vs strain for crosslinked ATS with $T_g=344\,^\circ\text{C}$ and $M_p=2.26E5$ and $M_c=1817$ gm/mole (see Table 4-8 for temperatures).

1

WORK vs TEMP - TENSILE, ENHANCED - FIXED T = 1.00 sec

Fig. 4-13 Calculated temperature dependence of tensile fracture energy W_{T} per unit volume of unnotched crosslinked ATS polymer.

Fig. 4-14 Comparison of experimental notched fracture energy (γ) with unnotched fracture energy W_T from 25°C to 375°C.

Fig. 4-15 Comparison of standard (dashed) and revised (solid curve) forms of WLF equations. (For summary of experimental time-temperature shift factors $\mathbf{a_T}$, see Ref. 31, 32).

SC5291.7FR

EPOXY (E): TETRAGLYCIDYL METHYLENE DIANILINE (TGMDA);
M. W. ≥ 422 gm/MOLE

8CB2-20340

CURATIVE (C): DIAMINODIPHENYLSULFONE (DDS);
M. W. = 248 GM/MOLE

CROSSLINK REACTION 1: (100% BY WEIGHT E)

CROSSLINK REACTION 2: (63% BY WEIGHT E + 37% BY WEIGHT C)

Fig. 5-1 Composition and suggested curing mechanisms for 177°C (350°F) service temperature epoxy resins.

149

The state of the s

MARIE BACK BLACK-MOR FILLIGH

SC82-20342

Fig. 5-2 Repeat structure for 50:50 mole % isoamyl acrylate = Neopentyl acrylate of number average molecular weight M_n = 1.03E6 g/mol, V, (230K) = 1.01 cc/gm, T_g = 230K, and M_e = 21,000 gm/mole.

Fig. 5-3 Molecular structure of equimolar amounts of TGMDA and (37 wt%) DDS polymerized by chain extension.

Molecular structure of 2 moles TGMDA and 1 mole (22.7 wt%) DDS polymerized by chain extension. F1g. 5-4

Fig. 5-5 Molecular structure of chain extended TGMDA homopolymer.

Fig. 5-6 Comparison of calculated and experimental density of solid polymers at 298K (data from Ref. 5).

Fig. 5-7 Comparison of calculated and experimental solubility parameter (data from Refs. 9, 10).

Fig. 5-8 Comparison of calculated and experimental glass temperatures for polyacrylates (upper curve) and butadiene-styrene copolymers (Refs. 11, 12).

0.5

0.1

0.2

 M_n vs T_g for atactic polystyrene (data from Refs. 13, 14). Fig. 5-9

 $10^3/\overline{\mathrm{M}}_{\mathrm{n}}~\mathrm{(MOL/gm)}$

Fig. 5-10 M_n vs T_g for atactic polystyrene (data from Refs. 15, 16).

SC5291.7FR

Fig. 5-11 Comparison of calculated and experimental entanglement molecular weight (data from Ref. 17).

Fig. 5-12 Comparison of calculated and experimental entanglement molecular weight (data from Ref. 18).

part of the second of the second

Fig. 5-13 Correlation between entanglement density (ρ/M_e) or chemical crosslink density (ρ/M_c) and maximum extension ratio λ_b or maximum craze extensibility λ_{craze} .

Fig. 5-14 Comparison of computed T_g and T_m curves for nonstoichiometric TGMDA/DDS (see Table 5-22) and measured T_g (X's) for Hercules 3501-5 epoxy resin (see Table 1-6 and Ref. 44).

可用的 被解除的^{10年} 4

Fig. 6-1 Tensile response of C_2F_4 homopolymer (lower view) and $(C_2F_4)_{1.0}$ $(C_3F_6)_{0.14}$ copolymer (upper view) films.

Fig. 6-2 Tensile response of $(CF_2CFCL)_{1.0}$ $(CF_2CH_2)_{0.03}$ copolymer (upper view) and polybisphenol-A carbonate (lower view) films.

and the same of the same of

SC5291.7FR

Fig. 6-3 Tensile response of polyethyleneterephthalate film.

के भी १४ वस्त्रीकृष्ट सुर्वा के व

Fig. 6-4 Tensile response of $(N(CO)_2 C_6H_2(CO)_2NC_6H_4OC_6H_4)$ polyimide film.

Fig. 6-5 Calculated shear stress vs strain response for equimolar isoamyl-neopentyl acrylate copolymer (M $_{\rm n}$ = 1.03E6 g/mol, T $_{\rm g}$ = 230K).

Fig. 6-6 Calculated tensile stress vs strain response for equimolar isoamyl-neopentyl acrylate copolymer ($M_{\rm n}$ = 1.03E6 g/mol, $T_{\rm g}$ = 230K).

多不供 · 经被收款 · · ·

Fig. 6-7 Calculated shear (upper view) and tensile (lower view) works of deformation per unit volume.

Fig. 6-8 Calculated shear stress vs strain response for equimolar isoamyl-neopentyl acrylate copolymer (M_D = 1.03E6 g/mol, T_g = 230K) with light crosslinking (M_C = 3.42E4 g/mol).

Fig. 6-9 Calculated tensile stress vs strain response for equimolar isoamyl-neopentyl copolymer ($M_{\rm n}$ = 1.06E6 g/mol, $T_{\rm g}$ = 230K) and light crosslinking ($M_{\rm c}$ = 3.42E4 g/mol).

Fig. 6-10 Calculated shear (upper view) and tensile (lower view) works of deformation per unit volume.

Fig. 6-11 Calculated shear stress vs strain (solid curves) response (see Fig. 6-8) and elastic-plastic analogs (dashed curves) for lightly crosslinked equimolar isoamyl-neopentyl acrylate copolymer.

Fig. 6-12 Calculated (X) and experiment (\cdot) effects of moisture on T_g of six cured epoxy resins (3501-5, 3501-6, 5208, 934, 3502, and NMD 2373); (for data see Ref. 6, 36).

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW

Salar Salar

Fig. 6-13 Calculated engineering shear modulus (upper) and tensile modulus (lower curves) for cured epoxy with varied wt% moisture.

Fig. 6-14 Calculated shear strength (upper) and shear extensibility (lower curves) for cured epoxy with varied wt% moisture.

· 新加州 (1984年)

SC5291.7FR

Fig. 6-15 Calculated specific fracture energy in shear (upper) and tension (lower curves) for cured epoxy with varied wt% moisture.

STORWARD TO

Fig. 6-16 Calculated failure envelopes in shear (upper) and tension (lower curves) for cured epoxy with varied wt% moisture.

Fig. 6-17 Unidirectional reinforced composite.

SC83-20660

Fig. 6-18 Packing geometries for regular uniaxial fiber arrays.

SC5291.7FR

SC83-20658

Fig. 6-19 Frictional (λ_F) and bonded (λ_S) interfacial shear stresses during fiber pull-out.

Fig. 6-20 Schematic showing the observed variation in failure mode and fracture stress $\sigma_{\hat{b}}$ with crack length c in damage tolerant composites.

Same was to be a

Fig. 6-21 Calculated curves of composite strength maximum $\sigma_b(\text{max})$ and minimum $\sigma_b(\text{min})$ vs crack length c.

Fig. 6-22 Peel mechanics (upper and left views) and failure criteria.

AD-A127 721 CAD/CAM HANDBOOK FOR POLYMER COMPOSITE RELIABILITY VOLUME II(U) ROCKWELL INTERNATIONAL THOUSAND OAKS CA SCIENCE CENTER D H KAELBLE MAR 83 SC5291.7FR-VOL-2 DAAG29-80-C-0137 F/G 11/4 NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

SC5291.7FR

Fig. 6-23 Calculated curves of peel force P vs peel angle W for three values of flexible adherend tensile modulus E.