Studienfächer

Bachelorstudium - Informatik

1. Semester

Algebra

 Polynomen, lineare Gleichungssysteme, Vektoren, Matrizen, Modulararithmetik, Komplexe Zahlen

Informatik 1

- Java
- Klassen, Atributen, Konstruktoren, Variablen, Konstanten,
 Methoden, Schleifen, Kommunikation zwischen Objekten Assoziation, Aggregation, Komposition, Containers, OOP Prinzip
 Encapsulation

Mathematik für Informatiker

- Java, Excel
- Kombinatorik, Endlicher Automat, logische Operationen, , numerische Mengen, Reihen, mathematische Beweise

Einleitung ins Studium

 Rechtliche und etische Prinzipen in Informatik, Nutzen und Missnutzen der Informationstechnologien, Vorbereitung für ECDL Zertifikation

Grundlagen ökonomischer Theorie

Ökonomische systeme, Markt, Anfrage und Angebot,
 Arbeitsmarkt, Arbeitslosigkeit, Währungen, Marktsubjekte,
 Indikatoren von Wirtschaftlichen Leistungsfähigkeit

2. Semester

Algorithmische Graphentheorie

- Java
- Graphdurchlaufsalgoritmen, kürzester Weg, Bäume,
 Spannbaum, Problem des Handlungsreisenden,
 Briefträgerproblem

Diskrete Wahrscheinlichkeit

- Java, Excel
- Kombinatorik, Ereignisseunabhängigkeit, Bedingte
 Wahrscheinlichkeit, PDF, CDF, Chi-Quadrat, Streuung einer zufälligen Variable

Informatik 2

- Tava
- OOP Prinzipen Erben und Polymorphismus, Interface, Ausnahmenbehebung, Tests, Eingaben und Ausgaben -Dateiarbeit

Kommunikationstechnologien

 ISO/OSI Modell - Schichten und ihre Aufgaben, Encapsulation, End- und Zwischengeräte, Typen von Netzwerktopologien, IPund Telefonnetze, Draht- und Drahtlose Netze, IPv4, IPv6, Switching und Routing, Transportprotokollen - TCP/UDP, Anwendungsschichtprotokollen - HTTP, DNS, DHCP, Klient-Server und P2P Architektur, Sicherheitsgrundlagen

3. Semester Informatik 3

- C++
- Anwendungsstruktur in C++, Syntax, Schlüsselwörter,
 Deklarationen, Operatoren, Objekte, Pointers, Referenzen,
 abstrakte Datentypen, Klassen, Modifikatoren, Scope,
 Objektencontainer, Konstruktor/Destruktor, Inline Funktionen,
 Assoziation, Aggregation und Komposition der Objekte,
 Ausnahmenbehebung, Dateiarbeit

Logische Systeme

 Bool-Algebra, Multiplexor und Demultiplexor, Bausteine von logischen Systemen, Logikgatter, Modellierung eines logischen System, Microcontroller

Mathematische Analyse 1

• Functionen, Relationen, Derivationen, Integralrechnung

Computernetzwerke 1

CCNA 1 und 2 Kurse, Routing Prinzipen und Protokolle, RIP,
 RIPng, Switching Prinzipen, VLAN, VTP, DTP, L3 Switching,
 Schleifen im Netz, STP, Default Gateway Redundanz, FHRP, ACL,
 DHCP, NAT, Netzmanagement und -überwachung

Maschinenorientierte Sprachen

• Assembler Grundlagen

4. Semester

Numerische Computer

- Assembler
- von Neumann Computerarchitektur, Bus-Kommunikation,
 Peripheriegeräte, Erweiterungskarten, Schnittstellen und
 Konektoren, Serien- und Parallelkommunikation, synchrone und
 asynchrone Kommunikation, Funktionieren von Speichergeräte Lesen und Schreiben auf Festplatten, Flash-Speicher (USB
 Schlüssel), SSD und optische Medien (CD, DVD)

Grundlagen der Datenbankensysteme

- Oracle SQL
- ERA Modellierung, DDL Operationen, Normalisation 3.
 normale Form und Boyce-Codd Form, DML Operationen:
 SELECT, INSERT, DELETE, UPDATE, Trigger, Funktionen

Diskrete Optimierung

Java

• Optimierungaufgaben, Lineare optimalisation, Simplex-Verfahren, Heuristiken

Computernetzwerke 2

EIGRP, OSPFv2, OSPFv3, OSPF Multi-area, WAN Protokolle,
 HDLC, PPP, PPPoE, VPN, GRE, eBGP, QoS

Datenstrukturen 1

- Java
- Speicherverwaltung, Rekursion, Menge, Array, Liste, Stack,
 Front, Priority Front, Bäume, Graphen, Tabellen implicite und explicite Implementationen, Sortierverfahren

5. Semester

Modellierung und Simulation

- Anylogic
- Monte-Carlo-Verfahren, dynamische Simulation,
 Eingabedatensammlung und -modellierung, Suchen und Testen von Wahrscheinlichkeitsverteilungsfunktionen für eingesammelte Daten, Analyse und Erstellung eines Models,
 Validation des Simulationsmodells

Betriebssysteme

- Bash, C
- Betriebssystemarchitektur, Speicherverwaltung, Paging,
 virtueller Speicher, parallele Prozesse, Peripherieverwaltung,

Softwareengineering

- Enterprise Architect
- UML, Lebenszyklus eines Softwareprojektes, RUP,
 Domäneanalysierung, Bedürfnisespezifikation, Bussines Modellierung, Diagramme Use-Case, Sequenz, Klassen,
 Paketen, Methoden für Entwurf der Klassen, Implementierung
 und Bereitstellung eines Softwaresystems, Tests, Agile
 Methoden: Scrum, TDD

6. Semester

Prozessenanalyse

- Matlab
- Vektoren, Vektorraum, Skalaren, Skalarmultiplikation, Trent,
 Zufallsprozesse, lineare Regression

Wahrscheinlichteit und Statistik

Zufall, Zufallsvariable, PDF, CDF,
 Wahrscheinlichkeitsverteilungen, Kovarianz, Erwartungswert,
 Streuung, Hypotese-Testen, Chi-Quadrat Test

Bachelorsprojekt

• Android Anwendung für die Positionierung mobiler Geräte

Ingenieurstudium - Applied Network Engineering

1. Semester

Zugangsnetze

 Metall- Optisch- und Drahtlosnetze, Signal-Kodierung und Transformation, Signal to Noise ratio, Link encoding, Modulationen, ISDN, xDSL, DOCSIS, GPON, Ethernet

Programmiersprachen für eingebaute Systeme

- C
- Funktionen, Variablen-Scope, Modulärprogrammierung, Einund Ausgabe, Pointers, Arrays, Strings, benutzerdefinierte
 Datentypen, Speicherverwaltung

Netzwerkbetriebssysteme

- Linux (Debian), Windows Server 2016
- Bereitstellung von Servern: Web (Apache), Email (Postfix),
 DHCP, DNS (bind), NTP, Firewall (iptables); gleiche
 Dienstleistungen auch auf Windows Server ausführen

Kommunikationstheorie

- Matlab
- Funktion der Transportschicht in Informationsnetze, linearer

Kanal, lineare Transformationen von Signal, Fehlerkorrekturen, Frequenzübertragung im Kanal

Projekt 1

- Erstellung eines virtuelles Netzwerklaboratoriums für die Abteilung der Informationsnetzwerke
- EVE-ng Linux (Ubuntu Server)

2. Semester

Netzwerkalgorithmen

- C
- L2 Socket Ethernet, L3 Socket TCP/UDP, Empfang von Paketen eines Routingprotokolles, Algorithmen und Datenstrukturen in Switch und Router, CAM-Tabelle, Routing-Tabelle

UNIX-Implementationen - Linux

- Linux (Debian)
- Linux-System Installierung und Konfigurierung, Boot-Prozess,
 Prozessenverwaltung, Peripherieverwaltung, Paketenverwaltung
 (apt), Conainers Docker Grundlagen

Netzwerkenprojektierung 1

 Routing-Protokolle: OSPF (Multi-area), IS-IS (Multi-area), BGP (e/iBGP), MPLS, IGMP, PIM, Multicast-Prinzipen, VPN - L2/L3
 VPN

Informationsnetzwerkentheorie

- Linux, Matlab
- Netzwerkverkehrmodelle in Aloha und Ethernet, Effective
 Bandwidth, QoS Implementationen, Front-Typen (FIFO, PQ, RR,
 WRR, CQ), Prävention gegen Kanalüberlastung,
 Netzwerkverbindungsmonitorierung

Projekt 2

• Fortfahren im Projekt 1

3. Semester

Kryptographie

- Java
- Mono- und Polyalphabetischeziffer, Stromziffer, DES, Diffie-Hellman Schlüsselaustausch, RSA, Hash-Verfahren, digitaler Unterschrift, SSL

Netzwerkenprojektierung 2

 Zugangsnetze EPON/GPON, Übergang auf IPv6,
 Mobiltechnologien: GSM, 3G, LTE und ihre Implementationen im Bahnverkehr, Software Defined Networking, Network Function Virtualisation, Juniper Implementation von multicast Topologie

Projekt 3

• Fortfahren im Projekt 2 - das Projekt wurde meine Diplomarbeit

Praxis

• Lösung von Aufgaben im Rahmen der Diplomarbeit

4. Semester

Netzwerkenintegration

- Python
- Cloud Computing, virtuelle Netze, Dienstleistungsverwaltung in OpenStack, Orchestration - automatisierte Erstellung und Konfigurierung von Instanzen, git VCS Grundlagen (BitBucket), SDN Grundlagen, SDN Controller (POX), Open vSwitch, GRE, VXLAN, Network Function Virtualisation

Englisch Prüfung Diplomarbeit

• Fortfahren im Projekt 3

Staatsprüfung