Session 4: Norms, Inner Products and Orthogonality

Optimization and Computational Linear Algebra for Data Science

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Norms
 - 1.1 Euclidian norm
 - 1.2 General norms
- 2. Inner products
 - 2.1 Euclidian dot products
 - 2.2 Inner Products
 - 2.3 Norm induced
 - 2.4 Cauchy-Schwartz Inequality
 - 2.5 Applications in data science
- 3. Orthogonality
 - 3.1 Definitions
 - 3.2 Pythagorean Theorem
 - 3.3 Orthogonal Projections
 - 3.4 Orthogonal Complement
- 4. Orthogonal matrices (Preview)

1. Norms

1. Norms 3/31

1.1 Introduction: the Euclidean norm

Definition

We define the Euclidean norm of $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ as:

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}.$$

1.1 Introduction: the Euclidean norm

Definition

We define the Euclidean norm of $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ as:

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}.$$

Observations.

1.2 General norms

Let V be a vector space.

Definition

A norm $\|\cdot\|$ on V is a function from V to $\mathbb{R}_{\geq 0}$ that verifies:

- 1. Homogeneity: $\|\alpha v\| = |\alpha| \times \|v\|$ for all $\alpha \in \mathbb{R}$ and $v \in V$.
- 2. Positive definiteness: if ||v|| = 0 for some $v \in V$, then v = 0.
- 3. Triangular inequality: $||u+v|| \le ||u|| + ||v||$ for all $u, v \in V$.

1. Norms 1.2 General norms 5/31

Other examples

ightharpoonup The ℓ_1 norm

$$||x||_1 \stackrel{\text{def}}{=} \sum_{i=1}^n |x_i| = |x_1| + \dots + |x_n|.$$

1. Norms 1.2 General norms

Other examples

The infinity-norm

$$||x||_{\infty} \stackrel{\text{def}}{=} \max(|x_1|, \dots, |x_n|).$$

1. Norms 1.2 General norms

Exercise: Balls drawing

For each of the norms $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_\infty$, draw the «ball»:

$$B = \{ x \in \mathbb{R}^2 \, | \, ||x|| \le 1 \}.$$

Exercise: Balls drawing

For each of the norms $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_\infty$, draw the «ball»:

$$B = \{ x \in \mathbb{R}^2 \, | \, ||x|| \le 1 \}.$$

Exercise: Balls drawing

For each of the norms $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_\infty$, draw the «ball»:

$$B = \{ x \in \mathbb{R}^2 \, | \, ||x|| \le 1 \}.$$

2. Inner products

2. Inner products 9/31

2.1 The Euclidean dot product

Definition

We define the Euclidean dot product of two vectors x and y of \mathbb{R}^n as:

$$x \cdot y = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + \dots + x_n y_n.$$

2.2 Inner product

Let V be a vector space.

Definition

An inner product on V is a function $\langle \cdot, \cdot \rangle$ from $V \times V$ to $\mathbb R$ that verifies the following points:

- 1. Symmetry: $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$.
- 2. Linearity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ and $\langle \alpha v,w\rangle=\alpha\langle v,w\rangle$ for all $u,v,w\in V$ and $\alpha\in\mathbb{R}$.
- 3. Positive definiteness: $\langle v, v \rangle \geq 0$ with equality if and only if v=0.

Other example

If V is the set of all random variables (on a probability space Ω) that have a finite second moment, then

$$\langle X, Y \rangle \stackrel{\text{def}}{=} \mathbb{E}[XY]$$

is an inner product on V.

2.3 Norm induced by an inner

Proposition

If $\langle \cdot, \cdot \rangle$ is an inner product on V then

$$||v|| \stackrel{\text{def}}{=} \sqrt{\langle v, v \rangle}$$

is a norm on V. We say that the norm $\|\cdot\|$ is induced by the inner product $\langle\cdot,\cdot\rangle$.

Example

Consider again the set V of all random variables (on a probability space Ω) that have a finite second moment, with the inner product:

$$\langle X, Y \rangle \stackrel{\text{def}}{=} \mathbb{E}[XY].$$

2.4 Cauchy-Schwarz inequality

Theorem (Cauchy-Schwarz inequality)

Let $\|\cdot\|$ be the norm induced by the inner product $\langle\cdot,\cdot\rangle$ on the vector space V. Then for all $x,y\in V$:

$$|\langle x, y \rangle| \le ||x|| \, ||y||. \tag{1}$$

Moreover, there is equality in (1) if and only if x and y are linearly dependent, i.e. $x = \alpha y$ or $y = \alpha x$ for some $\alpha \in \mathbb{R}$.

Examples

For random variable, with the inner product $\langle X, Y \rangle = \mathbb{E}[XY]$:

2.5 Applications in data science

Measure distances / strengths

e.g. Nearest neighbors

e.g. Regularization

Measure angles / correlations

3. Orthogonality

3. Orthogonality

3.1 Definitions: Orthogonality

Let V be a vector space, and $\langle \cdot, \cdot \rangle$ be an inner product on V. Definition

- We say that vectors x and y are orthogonal if $\langle x, y \rangle = 0$. We write then $x \perp y$.
- We say that a vector x is orthogonal to a set of vectors A if x is orthogonal to all the vectors in A. We write then $x \perp A$.

Exercise: If x is orthogonal to v_1, \ldots, v_k then x is orthogonal to any linear combination of these vectors i.e. $x \perp \operatorname{Span}(v_1, \ldots, v_k)$.

Orthogonal & orthonormal families

Definition

We say that a family of vectors (v_1, \ldots, v_k) is:

- orthogonal if the vectors v_1, \ldots, v_n are pairwise orthogonal, i.e. $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.
- orthonormal if it is orthogonal and if all the v_i have unit norm: $||v_1|| = \cdots = ||v_k|| = 1$.

Coordinates in an orthonormal basis

Proposition

A vector space of finite dimension admits an orthonormal basis.

Proposition

Assume that $\dim(V) = n$ and let (v_1, \ldots, v_n) be an **orthonormal** basis of V. Then the coordinates of a vector $x \in V$ in the basis (v_1, \ldots, v_n) are $(\langle v_1, x \rangle, \ldots, \langle v_n, x \rangle)$:

$$x = \langle v_1, x \rangle v_1 + \dots + \langle v_n, x \rangle v_n.$$

Coordinates in an orthonormal basis

Remark. Let x, y in V with coordinates $x = (\alpha_1, \dots, \alpha_n)$ and $y = (\beta_1, \dots, \beta_n)$ in an othononormal basis (v_1, \dots, v_n) .

3.2 Pythagorean Theorem

Theorem (Pythagorean theorem)

Let $\|\cdot\|$ be the norm induced by $\langle\cdot,\cdot\rangle$. For all $x,y\in V$ we have

$$|x \perp y| \iff ||x + y||^2 = ||x||^2 + ||y||^2.$$

Proof.

Application to random variables

For random variables with finite second moment, with the inner product $\langle X,Y\rangle=\mathbb{E}[XY]$:

Picture

3.3 Orthogonal projection

From now, $\langle\cdot,\cdot\rangle$ denotes the Euclidean dot product, and $\|\cdot\|$ the Euclidean norm.

Definition

Let S be a subspace of \mathbb{R}^n . The **orthogonal projection** of a vector x onto S is defined as the vector $P_S(x)$ in S that minimizes the distance to x:

$$P_S(x) \stackrel{\text{def}}{=} \underset{y \in S}{\arg \min} \|x - y\|.$$

The **distance of** x **to the subspace** S is then defined as

$$d(x,S) \stackrel{\text{def}}{=} \min_{y \in S} ||x - y|| = ||x - P_S(x)||.$$

Computing orthogonal projections

Proposition

Let S be a subspace of \mathbb{R}^n and let (v_1,\ldots,v_k) be an **orthonormal** basis of S. Then for all $x\in\mathbb{R}^n$,

$$P_S(x) = \langle v_1, x \rangle v_1 + \dots + \langle v_k, x \rangle v_k.$$

Proof

3. Orthogonality 3.3 Orthogonal projection

28/31

Consequences

Let
$$V = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_k \\ | & & | \end{pmatrix}$$
 gather the orthonormal basis-vectors of the subspace S

Proposition

The orthogonal projection is given by $P_S(x) = VV^{\top}x$.

- $ightharpoonup P_S$ is a linear transform.
- $ightharpoonup VV^{\top}$ is its matrix.

Consequences

Corollary

For all $x \in \mathbb{R}^n$,

- $x P_S(x)$ is orthogonal to S.
- $||P_S(x)|| \le ||x||.$

Prove it in the homework!

3.4 Orthogonal complement

Let S be a subspace of V.

Definition

We define the orthogonal complement of \boldsymbol{S} as

$$S^{\perp} = \{ x \in V \mid x \perp S \}$$

Properties

- $ightharpoonup S^{\perp}$ is a subspace of V.
- $\operatorname{dim}(S^{\perp}) = \operatorname{dim}(V) \operatorname{dim}(S)$

Exercise. Prove it!

Orthogonal matrices

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is called an *orthogonal matrix* if its columns are an orthonormal family.

A proposition

Proposition

Let $A \in \mathbb{R}^{n \times n}$. The following points are equivalent:

- 1. A is orthogonal.
- **2.**A^T A = Id_n.
- $3. AA^{\mathsf{T}} = \mathrm{Id}_n$

Orthogonal matrices & norm

Proposition

Let $A\in\mathbb{R}^{n\times n}$ be an orthogonal matrix. Then A preserves the dot product in the sense that for all $x,y\in\mathbb{R}^n$,

$$\langle Ax, Ay \rangle = \langle x, y \rangle.$$

In particular if we take x=y we see that A preserves the Euclidean norm: $\|Ax\|=\|x\|$.