

# **Problem Statement**

The *Poets & Writers Magazine* publishes creative writing contests in their magazines each year.

Writing contest:

Write a short story that adds to the story of either Harry Potter, or the Lord of the Rings.

As students begin to submit their short stories online, there is a malfunction with the submissions, and the titles of each story are missing.

How will Poets & Writers Magazine sort the stories and categorize them as part of the Harry Potter series or the Lord of the Rings?

## Strategy: Collect Data From Subreddits

Operating as a hired Data Scientist for Poets & Writers Magazine:

- 1. Collect 10,000 posts from two different subreddits
- **2. Posts** were scraped from these two subreddits using the Pushshift API.
- 3. Total: roughly 20,000 posts

#### harrypotter:

"The place where fans from around the world can meet and discuss everything in the Harry Potter universe!"





#### tolkienfans:

"This subreddit is a space for the Tolkien nerds of reddit to debate and discuss the whole Tolkien mythos. We emphasize serious discussion here over jokey/meme-based posts."



- Removed moderator's '[removed]' and '[deleted]' text
- Combined the title and selftext columns
- Dropped any NA observations
- Removed special characters and created a Word Count column
- Dropped observations that had less than 10 words

- Dropped duplicates
- Created a stemmed text column
- Created a lemmatized text column
- Dropped any observations after stemming/lemmatizing that had less than 10 words.

## **Exploratory Data Analysis**

Distribution of word count in posts



## **Exploratory Data Analysis**

#### CountVectorized and Stemmed

Top 20 most common stemmed words



#### CountVectorized and Lemmatized

Top 20 most common lemmatized words



01

#### **Multinomial Naive Bayes**

- CountVectorized, Stemmed: GridSearch
- CountVectorized, Lemmatized: GridSearch
- TfidfVectorized, Stemmed: GridSearch
- TfidfVectorized, Lemmatized: GridSearch

02

#### Logistic Regression

- CountVectorized, Stemmed: GridSearch
- CountVectorized, Lemmatized: GridSearch
- TfidfVectorized, Stemmed: GridSearch
- TfidfVectorized, Lemmatized: GridSearch

03

#### AdaBoost - Base: Decision Trees

- CountVectorized, Stemmed: GridSearch
- CountVectorized, Lemmatized: GridSearch
- TfidfVectorized, Stemmed: GridSearch
- TfidfVectorized, Lemmatized: GridSearch

04

#### **Random Forest**

- CountVectorized, Stemmed: GridSearch
- CountVectorized, Lemmatized: GridSearch
- TfidfVectorized, Stemmed: GridSearch
- TfidfVectorized, Lemmatized: GridSearch

Evaluation Metric: AUC, Optimized Accuracy  $\rightarrow$  Neither predicting LOTR or Harry Potter correctly was more important than the other.

|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0.986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0.954227  | 0.947645 | 0.988122 |





|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0.986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0.954227  | 0.947645 | 0.988122 |





|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0.986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0,954227  | 0.947645 | 0.988122 |





|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0.986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0,954227  | 0.947645 | 0.988122 |





|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0,986331  | 0.972456 | 0,996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0.954227  | 0.947645 | 0.988122 |







|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0.986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0.954227  | 0.947645 | 0.988122 |

#### **Observations:**

- Stemming slightly better than Lemmatizing
- Best parameters for MultinomialNB:
  - CountVectorizer
    - $Max_df = 0.9$
    - Max\_features = 5,000
    - Min\_df = 2
    - Ngram\_range = (1, 2)
  - TfidfVectorizer
    - $Max_df = 0.8$
    - Max\_features = 5,000
    - Min\_df = 1
    - Ngram\_range = (1, 2)

|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0,975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0,986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0,954227  | 0.947645 | 0.988122 |



|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0,975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0,986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0,979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0.954227  | 0.947645 | 0.988122 |

| features       | coefs      | 2   |
|----------------|------------|-----|
| 1st place      | -13.065787 | 29  |
| 3rd place      | -13.065787 | 59  |
| accio          | -13.065787 | 93  |
| action tv      | -13.065787 | 107 |
| alan rickman   | -13.065787 | 159 |
| albu           | -13.065787 | 161 |
| albu dumbledor | -13.065787 | 162 |
| amp auto       | -13.065787 | 224 |
| andromeda      | -13.065787 | 240 |
| animagu        | -13.065787 | 250 |
|                |            |     |

Smallest values

|      | coefs     | features |
|------|-----------|----------|
| 4427 | -4.518841 | tolkien  |
| 4877 | -4.677564 | would    |
| 3670 | -4.745826 | ring     |
| 3485 | -4.855662 | read     |
| 2514 | -4.923723 | like     |
| 3056 | -4.989271 | one      |
| 551  | -5.117048 | book     |
| 2394 | -5.118815 | know     |
| 3769 | -5.186874 | sauron   |
| 4325 | -5.290931 | think    |

Largest values

|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0.986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0.954227  | 0.947645 | 0.988122 |





|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0.986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0.954227  | 0.947645 | 0.988122 |

|      | coefs     | features     | e^coef   |
|------|-----------|--------------|----------|
| 1985 | -8.551078 | harri        | 0.000193 |
| 2098 | -5.434038 | hogwart      | 0.004365 |
| 3306 | -5.078030 | potter       | 0.006232 |
| 4679 | -4.703263 | voldemort    | 0.009066 |
| 1239 | -4.497534 | dumbledor    | 0.011136 |
| 4011 | -4.462378 | snape        | 0.011535 |
| 2140 | -4.162239 | hp           | 0.015573 |
| 2049 | -4.000079 | hermion      | 0.018314 |
| 2001 | -3.669953 | harri potter | 0.025478 |
| 4833 | -3.660520 | wizard       | 0.025719 |

#### Smallest coefficients

|      |           | 7            |               |  |
|------|-----------|--------------|---------------|--|
|      | coefs     | features     | e^coef        |  |
| 1424 | 12.481889 | tolkien      | 263521.093484 |  |
| 2088 | 6.996582  | hobbit       | 1092.891788   |  |
| 2606 | 6,917830  | lotr         | 1010.125899   |  |
| 3669 | 6.413539  | ring         | 610.048982    |  |
| 3948 | 5.666969  | silmarillion | 289.156808    |  |
| 3768 | 5.182288  | sauron       | 178.089904    |  |
| 1338 | 4.452551  | elv          | 85.845660     |  |
| 1282 | 3.966184  | earth        | 52.782748     |  |
| 2787 | 3.777674  | middl earth  | 43.714237     |  |
| 2851 | 3.589088  | morgoth      | 36.201061     |  |
|      |           |              |               |  |

Largest coefficients







|    | Model          | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|----|----------------|-----------------|----------------|-----------|----------|----------|
| 0  | Multinomial NB | CountVectorizer | Stemmed        | 0.971961  | 0.971194 | 0.997536 |
| 1  | Multinomial NB | CountVectorizer | Lemmatized     | 0.967475  | 0.966779 | 0.997227 |
| 2  | Multinomial NB | TFIDF           | Stemmed        | 0.975606  | 0.970353 | 0.997294 |
| 3  | Multinomial NB | TFIDF           | Lemmatized     | 0.975606  | 0.967830 | 0.997025 |
| 4  | Logistic       | CountVectorizer | Stemmed        | 0.990397  | 0.968461 | 0.995426 |
| 5  | Logistic       | CountVectorizer | Lemmatized     | 0.991588  | 0.966358 | 0.995728 |
| 6  | Logistic       | TFIDF           | Stemmed        | 0.985139  | 0.972876 | 0.996521 |
| 7  | Logistic       | TFIDF           | Lemmatized     | 0.986331  | 0.972456 | 0.996698 |
| 8  | RandomForest   | CountVectorizer | Stemmed        | 0.935791  | 0.927881 | 0.986320 |
| 9  | RandomForest   | CountVectorizer | Lemmatized     | 0.975957  | 0.958999 | 0.992629 |
| 10 | RandomForest   | TFIDF           | Stemmed        | 0.979532  | 0.959420 | 0.992220 |
| 11 | RandomForest   | TFIDF           | Lemmatized     | 0.937824  | 0.936712 | 0.986401 |
| 12 | AdaBoost       | CountVect       | Stemmed        | 0.976237  | 0.960261 | 0.993695 |
| 13 | AdaBoost       | CountVect       | Lemmatized     | 0.975466  | 0.961102 | 0.993525 |
| 14 | AdaBoost       | TFIDF           | Stemmed        | 0.972873  | 0.953532 | 0.991864 |
| 15 | AdaBoost       | TFIDF           | Lemmatized     | 0.954227  | 0.947645 | 0.988122 |



Feature Importances

## Conclusions/Recommendations

- To the Poets & Writers Magazine, use the Multinomial Naive Bayes model to predict whether the story is a Harry Potter series story or a Lord of the Rings story.
- 2. Words that are the most predictive include: "dumbledore, tolkien, ring, hobbit, sauron, harry, hogwart" -- Flag these words
- 3. Harry Potter predictive words tended to lean towards names, whereas the predictive words for LOTR were more content based.

# Thanks



### Sources

#### **Reddits**

- Tolkien: https://www.reddit.com/r/tolkienfans/
- Harry Potter:
  <a href="https://www.reddit.com/r/harrypotter/">https://www.reddit.com/r/harrypotter/</a>

#### API

• <a href="https://github.com/pushshift/api">https://github.com/pushshift/api</a>

# **Appendix**



## **Custom Stopwords**







# No Names Models

|   | Model         | Transformer     | Stemmed/Lemmed | Train_acc | Test_acc | AUC      |
|---|---------------|-----------------|----------------|-----------|----------|----------|
| 0 | MultinomialNB | CountVectorizer | Stemmed        | 0.952381  | 0.950615 | 0.991785 |
| 1 | Logistic      | TFIDF           | Stemmed        | 0.971174  | 0.955702 | 0.992427 |
| 2 | RandomForest  | TFIDF           | Stemmed        | 0.965381  | 0.932175 | 0.982628 |
| 3 | AdaBoost      | CountVect       | Stemmed        | 0.949484  | 0.938745 | 0.986431 |

#### Logistic: Smallest coefficients

|      | coefs     | features  |
|------|-----------|-----------|
| 2094 | -5.994882 | hogwart   |
| 4678 | -5.421240 | voldemort |
| 1242 | -5.043886 | dumbledor |
| 4023 | -4.740321 | snape     |
| 2046 | -4.672461 | hermion   |
| 4832 | -4.224682 | wizard    |
| 4696 | -3.617568 | wand      |
| 3983 | -3.520462 | siriu     |
| 3730 | -3.452524 | ron       |
| 3873 | -3.303405 | seri      |

| features     | coefs    |      |
|--------------|----------|------|
| hobbit       | 8.181247 | 2083 |
| ring         | 6.871067 | 3681 |
| silmarillion | 6.327872 | 3960 |
| sauron       | 5.335286 | 3781 |
| elv          | 4.790458 | 1339 |
| earth        | 4.500190 | 1284 |
| middl earth  | 4.261726 | 2792 |
| morgoth      | 3.848599 | 2857 |
| frodo        | 3.828539 | 1748 |
| middl        | 3.806508 | 2791 |





