

2013 年全国硕士研究生入学统一考试

数学三试题

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

- (1) 当 $x \rightarrow 0$ 时,用o(x)表示比x高阶的无穷小,则下列式子中错误的是()
- (A) $x \cdot o(x^2) = o(x^3)$
- (B) $o(x) \cdot o(x^2) = o(x^3)$
- (C) $o(x^2) + o(x^2) = o(x^2)$
- (D) $o(x) + o(x^2) = o(x^2)$
- (2) 函数 $f(x) = \frac{|x|^x 1}{x(x+1)\ln|x|}$ 的可去间断点的个数为(
- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (3) 设 D_k 是圆域 $D = \{(x, y) | x^2 + y^2 \le 1\}$ 位于第k象限的部分,记 $I_k = \iint_{D_k} (y x) dx dy (k = 1, 2, 3, 4)$,

则()

- (A) $I_1 > 0$
- (B) $I_2 > 0$
- (C) $I_3 > 0$
- (D) $I_4 > 0$
- (4) 设 $\{a_n\}$ 为正项数列,下列选项正确的是()
- (A) 若 $a_n > a_{n+1}$,则 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛
- (B) 若 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛,则 $a_n > a_{n+1}$
- (C) 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则存在常数P > 1,使 $\lim_{n \to \infty} n^P a_n$ 存在

- (D) 若存在常数 P > 1,使 $\lim_{n \to \infty} n^P a_n$ 存在,则 $\sum_{n=1}^{\infty} a_n$ 收敛
- ((5) 设矩阵 A,B,C 均为 n 阶矩阵, 若 AB=C,且 B 可逆,则
- (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价
- (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价
- (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价
- (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价
- (6) 矩阵 $\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为
- (A) a = 0, b = 2
- (B) a=0,b为任意常数
- (C) a = 2, b = 0
- (D) a = 2, b为任意常数
- (7) 设 X_1 , X_2 , X_3 是随机变量,且 X_1 ~N(0,1), X_2 ~ $N(0,2^2)$, X_3 ~ $N(5,3^2)$,
- $P_j = P\{-2 \le X_j \le 2\} (j = 1, 2, 3), \text{ }$
- (A) $P_1 > P_2 > P_3$
- (B) $P_2 > P_1 > P_3$
- (C) $P_3 > P_1 > P_2$
- (D) $P_1 > P_3 > P_2$
- (8) 设随机变量 X 和 Y 相互独立,则 X 和 Y 的概率分布分别为,

X	0	1	2	3	Y	-1	0	1
P	$\frac{1}{2}$	$\frac{1}{4}$	1 8	1 8	P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

则
$$P{X+Y=2}=$$
 ()

- (A) $\frac{1}{12}$
- (B) $\frac{1}{8}$
- (C) $\frac{1}{6}$

(D) $\frac{1}{2}$

二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9) 设曲线
$$y = f(x)$$
 和 $y = x^2 - x$ 在点(1,0)处有公共的切线,则 $\lim_{n \to \infty} nf\left(\frac{n}{n+2}\right) = \underline{\qquad}$

(10) 设函数
$$z = z(x, y)$$
 由方程 $(z + y)^x = xy$ 确定,则 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = ______$ 。

$$(11) \ \ \vec{\Re} \int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} dx \underline{\hspace{1cm}}_{\circ}$$

(12) 微分方程
$$y'' - y' + \frac{1}{4}y = 0$$
 通解为 $y = _____$ 。

(13)设
$$A = (a_{ij})$$
 是三阶非零矩阵, $|A|$ 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式,若
$$a_{ij} + A_{ij} = 0 \\ (i,j=1,2,3),则 \\ |A| = \underline{\hspace{1cm}}$$

(14) 设随机变量 X 服从标准正态分布 $X \sim N(0,1)$,则 $E(Xe^{2X}) =$ _____。

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x = ax^n$ 为等价无穷小,求n = a的值。

(16) (本题满分10分)

设D是由曲线 $y=x^3$,直线x=a(a>0)及x轴所围成的平面图形, V_x , V_y 分别是D绕x轴,y轴旋转一周所得旋转体的体积,若 $V_y=10V_x$,求a的值。

(17) (本题满分 10 分)

设平面区域D由直线x=3y,y=3x及x+y=8围成.计算 $\iint_D x^2 dx dy$ 。

(18) (本题满分10分)

设生产某产品的固定成本为 60000 元,可变成本为 20 元/件,价格函数为 $P=60-\frac{Q}{1000}$,(P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求:

- (1) 该商品的边际利润。
- (2) 当 P=50 时的边际利润,并解释其经济意义。
- (3) 使得利润最大的定价 P。

设函数 f(x) 在 $[0,+\infty)$ 上可导, f(0) = 0且 $\lim_{x \to +\infty} f(x) = 2$,证明

- (1) 存在a > 0, 使得f(a) = 1
- (2) 对 (1) 中的 a , 存在 $\xi \in (0, a)$, 使得 $f'(\xi) = \frac{1}{a}$.

(20)(本题满分11分)

设 $A = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 a,b 为何值时,存在矩阵 C 使得 AC - CA = B,并求所有矩阵 C 。

(21)(本题满分11分)

设二次型
$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$$
, 记 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ 。

- (I) 证明二次型 f 对应的矩阵为 $2\alpha\alpha^T + \beta\beta^T$;
- (II) 若 α, β 正交且均为单位向量,证明二次型f 在正交变化下的标准形为二次型 $2y_1^2+y_2^2$ 。

(22) (本题满分 11 分)

设(X,Y)是二维随机变量,X的边缘概率密度为 $f_X(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, &$ 其他. ,在给定X = x(0 < x < 1)的

条件下, Y 的条件概率密度 $f_{Y|X}(y|x) = \begin{cases} \frac{3y^2}{x^3}, & 0 < y < x, \\ 0, & 其他. \end{cases}$

- (1) $\chi(X,Y)$ 的概率密度 f(x,y);
- (2) Y 的边缘概率密度 $f_Y(y)$.
- $(3) \quad _{\overrightarrow{X}} P\{X > 2Y\}$

(23) (本题满分 11 分)

设总体 X 的概率密度为 $f(x) = \begin{cases} \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}}, & x > 0, \\ 0, &$ 其中 θ 为未知参数且大于零, $X_1, X_2, \cdots X_N$ 为来自总体

X 的简单随机样本.

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的最大似然估计量