CS515 - Algorithms & Data Structures Practice Assignment 1

Vy Bui - 934370552

Instructor: Professor Glencora Borradaile

A fixed point of an array A[1..n] is an index i such that A[i] = i. Given a sorted array of distinct integers A[1..n] as input, give a divide-and-conquer algorithm to determine if A has a fixed point that runs in time O(logn).

Description Let FP(i, j) be the function that checks if there exists a fixed point in A[i,j]. Observe that if there exists a fixed point k A[i,j], then k must be either in the left half or the right half of A[i,j]. Instead of checking the entire array, we can check its two halves and then combine the results.

Recurrence

$$FP(i,j) = \begin{cases} \begin{cases} True & A[i] = i \\ False & otherwise \end{cases} & i = j \\ \begin{cases} FP(i,\frac{i+j}{2}) \vee FP(\frac{i+j}{2}+1,j) & otherwise \end{cases} \end{cases}$$

Pseudocode

Algorithm 1 FP(i, j)

Proof of Correctness

Base Case: when A has only one element, it is obvious that

 $-\frac{i+j}{2}$ return $FP(i,m) \vee FP(m+1,j)$

Inductive Hypothesis: assume that we know the results of FP(i,m) and FP(m+1,j), with $m=\frac{i+j}{2}$.

Inductive Step: It is trivial that if at least one of FP(i, m) and FP(m+1, j) is true, then FP(i, j) is true because they use the same indices and values of A.

Runing Time Analysis

The algorithm splits the problem into two roughly equal halves and merge the results in constant time. Therefore, the running time of this algorithm is $T(n) = 2T(\frac{n}{2}) + O(1) = O(n)$

For a sequence of n numbers $a_1, ..., a_n$, a significant inversion is a pair (a_i, a_j) such that i < j and $a_i > 2a_j$. Assuming each of the numbers a_i is distinct, give an O(nlogn) time algorithm to count the number of significant inversions in a sequence. (Hint: modify merge sort.)

Description Let FP(i, j) be the function that checks if there exists a fixed point in A[i,j]. Observe that if there exists a fixed point k A[i,j], then k must be either in the left half or the right half of A[i,j]. Instead of checking the entire array, we can check its two halves and then combine the results.

Recurrence

$$FP(i,j) = \begin{cases} \begin{cases} True & A[i] = i \\ False & otherwise \end{cases} & i = j \\ \begin{cases} FP(i,\frac{i+j}{2}) \vee FP(\frac{i+j}{2}+1,j) & otherwise \end{cases} \end{cases}$$

Pseudocode

$\overline{\textbf{Algorithm 2} FP(i,j)}$

```
\begin{array}{l} \textbf{if } i == j \textbf{ then} \\ \textbf{if } A[i] == i \textbf{ then} \\ \textbf{return True} \\ \textbf{else} \\ \textbf{return False} \\ \textbf{end if} \\ \textbf{end if} \\ m \leftarrow \frac{i+j}{2} \\ \textbf{return } FP(i,m) \vee FP(m+1,j) \end{array}
```

Proof of Correctness

Base Case Inductive Hypothesis Inductive Step

Runing Time Analysis

You are given two sorted arrays of size m and n. Give an O(log m + log n) time algorithm for computing the k-th smallest element in the union of the two arrays.

Description Let FP(i, j) be the function that checks if there exists a fixed point in A[i,j]. Observe that if there exists a fixed point k A[i,j], then k must be either in the left half or the right half of A[i,j]. Instead of checking the entire array, we can check its two halves and then combine the results.

Recurrence

$$FP(i,j) = \begin{cases} \begin{cases} True & A[i] = i \\ False & otherwise \end{cases} & i = j \\ \begin{cases} FP(i, \frac{i+j}{2}) \vee FP(\frac{i+j}{2} + 1, j) & otherwise \end{cases} \end{cases}$$

Pseudocode

```
Algorithm 3 FP(i,j)

if i == j then
   if A[i] == i then
   return True
   else
   return False
   end if
end if
m \leftarrow \frac{i+j}{2}
   return FP(i,m) \vee FP(m+1,j)
```

Proof of Correctness

Base Case Inductive Hypothesis Inductive Step

Runing Time Analysis

You are given an $n \times n$ matrix A[1..n, 1..n] where all elements are distinct. We say that an element A[x] is a *local minimum* if it is less than its (at most) four neighbors, i.e. its up, down, left and right neighbors. Give an O(n) time algorithm to find a local minimum of A.

Description Let FP(i, j) be the function that checks if there exists a fixed point in A[i,j]. Observe that if there exists a fixed point k A[i,j], then k must be either in the left half or the right half of A[i,j]. Instead of checking the entire array, we can check its two halves and then combine the results.

Recurrence

$$FP(i,j) = \begin{cases} \begin{cases} True & A[i] = i \\ False & otherwise \end{cases} & i = j \\ \begin{cases} FP(i,\frac{i+j}{2}) \vee FP(\frac{i+j}{2}+1,j) & otherwise \end{cases} \end{cases}$$

Pseudocode

Algorithm 4 FP(i, j)

```
\begin{array}{l} \textbf{if } i == j \textbf{ then} \\ \textbf{if } A[i] == i \textbf{ then} \\ \textbf{return True} \\ \textbf{else} \\ \textbf{return False} \\ \textbf{end if} \\ \textbf{end if} \\ m \leftarrow \frac{i+j}{2} \\ \textbf{return } FP(i,m) \vee FP(m+1,j) \end{array}
```

Proof of Correctness

Base Case Inductive Hypothesis Inductive Step

Runing Time Analysis