Théorème 16.66 - polynôme d'interpolation de Lagrange

Soit \mathbb{K} , $n \in \mathbb{N}^*$, x_0, \ldots, x_n distincts dans \mathbb{K} et y_0, \ldots, y_n dans \mathbb{K} . Il existe un unique $P \in \mathbb{K}_n[X]$ tel que pour tout $i \in]0, n[, P(x_i) = y_i$. Ce polynôme est alors :

$$P = \sum_{i=0}^{n} y_i L_i = \sum_{i=0}^{n} y_i \prod_{0 < j \neq i < n} \frac{X - x_j}{x_i - x_j}$$

En particulier, si f est une fonction définie sur un intervalle I contenant les x_i , le polynôme interpolateur de f associé à la famille (x_i) est l'unique polynôme $P_f \in \mathbb{K}_n[X]$ coïncidant avec f sur les x_i , à savoir :

$$P_f = \sum_{i=0}^{n} f(x_i) L_i = \sum_{i=0}^{n} f(x_i) \prod_{0 \le j \ne i \le n} \frac{X - x_j}{x_i - x_j}$$

Le polynôme L_i est alors l'unique polynôme de $\mathbb{K}_n[X]$ tel que pour tout $j \in [0, n], L_i(x_j) = \delta_{ij}$

$$(y_i)_{\llbracket 0,n\rrbracket}$$