

Tiempo Comprometido

Ing. Silvia Quiroga Ing. Rubén Flecha

Sistema con un puesto de atención.

Los clientes llegan al sistema con una frecuencia que responde a una función de densidad de probabilidad (f.d.p.) equiprobable entre 5 y 20 minutos.

El tiempo de atención se conoce desde la llegada del cliente al sistema y responde a una función normal de Gauss, entre 10 y 20 minutos.

- a) Clasificar Variables
- b) Diagrama de flujo

Sistema con un puesto de atención, con su correspondiente cola.

Los clientes llegan al sistema con una frecuencia que responde a una función de densidad de probabilidad (f.d.p.) equiprobable entre 5 y 20 minutos.

El tiempo de atención se conoce desde la llegada del cliente al sistema y responde a una función normal de Gauss, entre 10 y 20 minutos.

- a) Clasificar Variables
- b) Diagrama de flujo

1. ANÁLISIS PREVIO

- A. Metodología: Evento a Evento
- B. Clasificación de las variables.
 - V. Exógenas No Controlables (Datos):
 IA(minutos)
 TA(minutos)
 - V. Exógenas de Control: (Implícita)
 - V. Endógenas de Resultado:
 Porcentaje de Tiempo Ocioso PTO
 Promedio de Espera, PE
 - V. Endógenas de Estado: Tiempo Comprometido(TC)

LLAMADA	Hora LLAMADA (T)	Duración Viaje (TA)	тс	TC (Actualizado)	
LLAMADA 1	9:00	20'	-	9:20	
LLAMADA 2	9:10	30'	9:20	9:50	
LLAMADA 3	9:30	10'	9:50	10:00	T≤TC →
LLAMADA 4	9:40	30'	10:00	10:30	
LLAMADA 5	11:00	10'	10:30	11:10	} T>TC → {

1. ANÁLISIS PREVIO

C. Clasificación de Eventos

TEI:

EVENTO	EFNC	EFC	CONDICIÓN
LLEGADA	LLEGADA	-	-

TEF:

TPLL

Sistema con DOS puesto de atención.

Los clientes llegan al sistema con una frecuencia que responde a una función de densidad de probabilidad (f.d.p.) equiprobable entre 5 y 20 minutos.

El tiempo de atención se conoce desde la llegada del cliente al sistema y responde a una función normal de Gauss, entre 10 y 20 minutos.

El cliente se queda en el puesto en el que tenga que esperar menos.

- a) Clasificar Variables
- b) Diagrama de flujo

Sistema con DOS puesto de atención.

Los clientes llegan al sistema con una frecuencia que responde a una función de densidad de probabilidad (f.d.p.) equiprobable entre 5 y 20 minutos.

El tiempo de atención se conoce desde la llegada del cliente al sistema y responde a una función normal de Gauss, entre 10 y 20 minutos.

El cliente se queda en el puesto en el que tenga que esperar menos.

- a) Clasificar Variables
- b) Diagrama de flujo

1. ANÁLISIS PREVIO

- A. Metodología: Evento a Evento
- B. Clasificación de las variables.
 - V. Exógenas No Controlables (Datos):
 - V. Exógenas de Control: implicita
 - V. Endógenas de Resultado:

 ♦ Porcentaje de Tiempo Ocioso PTO

 ♦ Promedio de Espera, PE

IA(minutos)TA(minutos)

V. Endógenas de Estado: Tiempo Comprometido1 Tiempo Comprometido2

1. ANÁLISIS PREVIO

C. Clasificación de Eventos

TEI:

EVENTO	EFNC	EFC	CONDICIÓN
LLEGADA	LLEGADA	-	-

TEF:

TPLL

Sistema con N puesto de atención.

Los clientes llegan al sistema con una frecuencia que responde a una función de densidad de probabilidad (f.d.p.) equiprobable entre 5 y 20 minutos.

El tiempo de atención se conoce desde la llegada del cliente al sistema y responde a una función normal de Gauss, entre 10 y 20 minutos.

El cliente se queda en el puesto en el que tenga que esperar menos.

- a) Clasificar Variables
- b) Diagrama de flujo

Sistema con N puesto de atención.

Los clientes llegan al sistema con una frecuencia que responde a una función de densidad de probabilidad (f.d.p.) equiprobable entre 5 y 20 minutos.

El tiempo de atención se conoce desde la llegada del cliente al sistema y responde a una función normal de Gauss, entre 10 y 20 minutos.

El cliente se queda en el puesto en el que tenga que esperar menos.

- a) Clasificar Variables
- b) Diagrama de flujo

1. ANÁLISIS PREVIO

- A. Metodología: Evento a Evento
- B. Clasificación de las variables.
 - V. Exógenas No Controlables (Datos):

 IA(minutos)

 TA(minutos)
 - V. Exógenas de Control: N (Cantidad de puestos de atención)
 - V. Endógenas de Resultado:
 Porcentaje de Tiempo Ocioso PTO
 Promedio de Espera, PE
 - V. Endógenas de Estado: Tiempo Comprometido(i)

1. ANÁLISIS PREVIO

C. Clasificación de Eventos

TEI:

EVENTO	EFNC	EFC	CONDICIÓN
LLEGADA	LLEGADA	-	-

TEF:

TPLL

