Zadanie: POP

Poprawne nawiasowania

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 9. Dostępna pamięć: 128 MB.

09.12.2017

Dany jest ciąg s_1, s_2, \dots, s_n nawiasów (oraz). Dostajesz też zapytania o przedziały [a, b]. Dla każdego zapytania chcesz znaleźć długość najdłuższego podciągu (niekoniecznie spójnego) tego przedziału (tj. ciągu $s_a, s_{a+1}, \dots, s_{b-1}, s_b$), który jest poprawnym wyrażeniem nawiasowym.

- 1. Puste wyrażenie jest poprawne.
- 2. Jeśli A oraz B są poprawnymi wyrażeniami nawiasowymi, również AB (sklejenie) jest poprawne.
- 3. Jeśli A jest poprawne, również (A) jest poprawne.

Wejście

W pierwszym wierszu wejścia znajduje się napis składający się ze znaków (oraz) o długości n ($1 \le n \le 10^6$). W drugim wierszu znajduje się jedna liczba całkowita m ($1 \le m \le 10^5$), oznaczająca liczbe zapytań.

W każdym z kolejnych m wierszy znajdują się dwie liczby całkowite a i b $(1 \le a \le b \le n)$, oznaczające przedział danego zapytania.

Wyjście

Na wyjściu powinno znaleźć się m wierszy. W każdym z nich powinna znaleźć się jedna liczba będąca odpowiedzią na kolejne zapytanie – długość najdłuższego podciągu danego przedziału ciągu wejściowego będącego poprawnym wyrażeniem nawiasowym.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
())(())(())(0
7	0
1 1	2
2 3	10
1 2	4
1 12	6
8 12	6
5 11	
2 10	

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \cdot m \le 10^6$	30
2	brak dodatkowych założeń	70

