# Динамическое программирование. Задача о рюкзаке

## Условие задачи о рюкзаке

- Есть набор товаров (n штук), каждый из которых характеризуется весом  $q_i$  и стоимостью  $p_i$ .
  - (6, 9.5), (4, 6), (4, 6), (3, 4)
- Рюкзак, загрузка которого не должна превышать  $Q_{max}$ 
  - 12
- Необходимо выбрать такой набор вещей, которые максимизируют стоимость при условии выполнения требования по максимальной загрузке

## Перебор (в том числе, полный)

16 вариантов

- Перебрать все варианты:  $O(2^n)$ 
  - {} -> (0, 0)
  - {1} -> (6, 9.5)
  - {2} -> (4, 6)
  - {3} -> (4, 6)
  - {1,2,3} -> (**14**, 21.5)
  - ...
  - {2,3,4} -> (11, 16)
- Улучшение:
  - Поиск с возвратами
  - Метод ветвей и границ
  - (\*) вернуться к этому позже

|           | _  |     |
|-----------|----|-----|
| 1         | 6  | 9.5 |
| 2         | 4  | 6   |
| 3         | 4  | 6   |
| 4         | 3  | 4   |
| $Q_{max}$ | 12 |     |

### «Жадные» эвристики

- «Жадный» алгоритм принятие локально-оптимальных решений на каждом шаге...
- Эвристика (эвристический алгоритм) алгоритм, не  $Q_{max}$  являющийся гарантированно точным или оптимальным (как правило, построенный в соответствии со «здравым смыслом»)

#### • Варианты:

- Берем самый дорогой из тех, что можем: 1, 2 -> 15.5
- Берем с наибольшим удельным весом: 1, 2 -> 15.5
- Быстро  $O(n^2)$  или даже  $O(n\log n)$ , но не находит максимума
- NP-трудная

| i         | q  | p   |
|-----------|----|-----|
| 1         | 6  | 9.5 |
| 2         | 4  | 6   |
| 3         | 4  | 6   |
| 4         | 3  | 4   |
| $Q_{max}$ | 12 |     |

## Динамическое программирование

- Принцип ДП (принцип Беллмана):
  - Каково бы ни было состояние системы в результате какого-то числа шагов, мы должны выбирать управление на ближайшем шаге так, чтобы оно, в совокупности с оптимальным управлением на всех последующих шагах, приводило к максимальному выигрышу на всех оставшихся шагах, включая данный.

$$W_i(S_i) = \max_{u_i \in U_i(S_i)} \{ w_i(S_i, u_i) + W_{i+1}(\varphi_i(S_i, u_i)) \}$$

- $W_i(S_i)$  условный оптимальный выигрыш на всех шагах от i-того и до последнего;
- $u_i(S_i)$  управление на i-том шаге. То управление, при котором  $W_i(S_i)$  максимально условно-оптимальное управление.

## Динамическое программирование



## Динамическое программирование



- Координаты и скорость объекта
- Располагаемая сумма
- Сложная задача (декомпозируемая на простые)

## Динамическое программирование. Алгоритм (1)

- Шаг 1: Выбрать способ описания процесса.
  - Этапы предметы в некотором порядке (фиксированном)
    - (6, 9.5), (4, 6), (4, 6), (3, 4)
  - Выигрыш это стоимость предметов в рюкзаке.
  - Управление это то, что мы можем контролировать. В данном случае положить предмет или не положить предмет. Но управляем мы в разных точках (их 4) поэтому  $u_i$ ,  $i \in \{1..4\}$ .
  - Состояние. Неформально это можно определить как все характеристики системы, важные с точки зрения решаемой задачи. В задачах распределения ресурсов для идентификации параметров состояния может быть важным анализ того, что именно ограничивает управление. В данном случае, это вместимость рюкзака.
    - Сначала (в первой точке) это  $Q_{max}$ . Потом неясно.

## Динамическое программирование. Алгоритм (2)

• Шаг 2: Записать выигрыш на *i*-том шаге в зависимости от состояния системы и управления.

• 
$$w_i(S_i, u_i) = p_i^* u_i$$

• Шаг 3: Записать для i-того шага функцию, выражающую изменения состояния системы под влиянием управления  $u_i$ :

• 
$$\varphi_i(S_i, u_i) = S_i - q_i * u_i$$

• Шаг 4: Записать **основное функциональное уравнение**, включающее функцию  $W_i(S_i)$  через  $W_{i+1}(S_i)$ :

$$W_i(S_i) = \max_{u_i \in \{u \mid u \in \{0,1\}, uq_i \le S_i\}} \{p_i u_i + W_{i+1}(S_i - q_i u_i)\}$$

## Динамическое программирование. Алгоритм (3)

• Шаг 5: Найти функцию условного оптимального выигрыша для последнего этапа:

$$W_i(S_i) = \max_{u_i \in \{u \mid u \in \{0,1\}, uq_i \le S_i\}} \{p_i u_i\}$$

• Шаг 6: Вычислить  $W_i(S_i)$ , зная  $W_{i+1}(S_i)$ .

• Шаг 7: Зная  $W_1(Q_{max})$  и оптимальное управление  $u_1^* = u_1^*(Q_{max})$ , определить  $u_2^* = Q_{max} - u_1^* q_i$  и далее остальные  $u_i^*$ 

## Динамическое программирование. Пример вычислений. Этап 4

$$W_4(S_4) = \max_{u_i \in \{u \mid u \in \{0,1\}, uq_i \le S_i\}} \{p_i u_i\}$$

#### Этап (предмет) 4

Bec: 3

Стоимость: 4

| S <sub>4</sub> | $W_4(S_4)$ | $U_4(S_4)$ |
|----------------|------------|------------|
| 0              |            |            |
| 1              |            |            |
| 2              |            |            |
| 3              |            |            |
| 4              |            |            |
| 5              |            |            |
| 6              |            |            |
| 7              |            |            |
| 8              |            |            |
| 9              |            |            |
| 10             |            |            |
| 11             |            |            |
| 12             |            |            |

| i         | q  | p   |
|-----------|----|-----|
| 1         | 6  | 9.5 |
| 2         | 4  | 6   |
| 3         | 4  | 6   |
| 4         | 3  | 4   |
| $Q_{max}$ | 12 |     |

## Динамическое программирование. Пример вычислений. Этап 3

$$W_3(S_3) = \max\{p_3u_3 + W_4(S_3 - q_3u_3)\}\$$

#### Этап (предмет) 3

Bec: 4

Стоимость: 6

| S <sub>3</sub> | $W_3(S_4)$ | $U_3(S_3)$ |
|----------------|------------|------------|
| 0              |            |            |
| 1              |            |            |
| 2              |            |            |
| 3              |            |            |
| 4              |            |            |
| 5              |            |            |
| 6              |            |            |
| 7              |            |            |
| 8              |            |            |
| 9              |            |            |
| 10             |            |            |
| 11             |            |            |
| 12             |            |            |

#### Этап (предмет) 4

Bec: 3

Стоимость: 4

| S <sub>4</sub> | $W_4(S_4)$ | $U_4(S_4)$ |
|----------------|------------|------------|
| 0              | 0          | 0          |
| 1              | 0          | 0          |
| 2              | 0          | 0          |
| 3              | 4          | 1          |
| 4              | 4          | 1          |
| 5              | 4          | 1          |
| 6              | 4          | 1          |
| 7              | 4          | 1          |
| 8              | 4          | 1          |
| 9              | 4          | 1          |
| 10             | 4          | 1          |
| 11             | 4          | 1          |
| 12             | 4          | 1          |

| i                | q  | p   |
|------------------|----|-----|
| 1                | 6  | 9.5 |
| 2                | 4  | 6   |
| 3                | 4  | 6   |
| 4                | 3  | 4   |
| Q <sub>max</sub> | 12 |     |

## Динамическое программирование. Пример вычислений. Этап 1

#### Этап (предмет) 1

Bec: 6

Стоимость: 9.5

| $S_1$ | $W_1(S_1)$ | $U_1(S_1)$ |
|-------|------------|------------|
| 12    |            |            |

 $U_1$ =0: 0 +  $W_2$ (12) = 16

 $U_1$ =1:

 $9.5 + W_2(6) = 15.5$ 

#### Этап (предмет) 2

Bec: 4

Стоимость: 6

| S <sub>2</sub> | $W_2(S_2)$ | $U_2(S_2)$ |
|----------------|------------|------------|
| 0              | 0          | 0          |
| 1              | 0          | 0          |
| 2              | 0          | 0          |
| 3              | 4          | 0          |
| 4              | 6          | 1          |
| 5              | 6          | 1          |
| 6              | 6          | 1          |
| 7              | 10         | 1          |
| 8              | 10         | 1          |
| 9              | 10         | 1          |
| 10             | 10         | 1          |
| 11             | 16         | 1          |
| 12             | 16         | 1          |

#### Этап (предмет) 3

Bec: 4

Стоимость: 6

| S <sub>3</sub> | $W_3(S_3)$ | $U_3(S_3)$ |
|----------------|------------|------------|
| 0              | 0          | 0          |
| 1              | 0          | 0          |
| 2              | 0          | 0          |
| 3              | 4          | 0          |
| 4              | 6          | 1          |
| 5              | 6          | 1          |
| 6              | 6          | 1          |
| 7              | 10         | 1          |
| 8              | 10         | 1          |
| 9              | 10         | 1          |
| 10             | 10         | 1          |
| 11             | 10         | 1          |
| 12             | 10         | 1          |

#### Этап (предмет) 4

Bec: 3

Стоимость: 4

| S <sub>4</sub> | $W_4(S_4)$ | $U_4(S_4)$ |
|----------------|------------|------------|
| 0              | 0          | 0          |
| 1              | 0          | 0          |
| 2              | 0          | 0          |
| 3              | 4          | 1          |
| 4              | 4          | 1          |
| 5              | 4          | 1          |
| 6              | 4          | 1          |
| 7              | 4          | 1          |
| 8              | 4          | 1          |
| 9              | 4          | 1          |
| 10             | 4          | 1          |
| 11             | 4          | 1          |
| 12             | 4          | 1          |

| i                | q  | p   |
|------------------|----|-----|
| 1                | 6  | 9.5 |
| 2                | 4  | 6   |
| 3                | 4  | 6   |
| 4                | 3  | 4   |
| Q <sub>max</sub> | 12 |     |

Сложность точных алгоритмов для задачи о рюкзаке

• Перебор: *O*(2<sup>n</sup>)

• Псевдополиномиальный алгоритм (динамическое программирование):  $O(n * Q_{max})$ 

## (Собирались вернуться позже)

$$\sum_{i=1}^{4} u_i p_i \to \max$$

$$\sum_{i=1}^{4} u_i q_i \le Q_{max}$$

$$u_i \in \{0,1\}$$

### Ha GMPL

```
param p\{i in 1...4\} >= 0;
param q\{i in 1...4\} >= 0;
param Qmax >= 0;
                                                            u_i \in \{0,1\}
var u{i in 1..4} binary;
maximize profit: sum {i in 1..4} u[i]*p[i];
s.t. weight: sum {i in 1..4} u[i]*q[i] \leftarrow Qmax;
solve;
```

## Время решения

- Тестовые задачи:
  - Количество объектов: 2000
  - Вес и стоимость: равномерно случайно распределены на [50; 1000]
  - Размер рюкзака изменяется от 10 до 1000000
- Время решения:



## Время решения

- Тестовые задачи:
  - Количество объектов: 2000
  - Вес и стоимость: равномерно случайно распределены на [50; 1000]
  - Размер рюкзака изменяется от 10 до 1000000

#### • Время решения:



## Промежуточное резюме

- Динамическое программирование метод, позволяющий конструировать псевдополиномиальные алгоритмы для сложных задач комбинаторной оптимизации
- Несмотря на экспоненциальную сложность некоторых задач (целочисленного линейного программирования в общем), конкретные экземпляры задач комбинаторной оптимизации могут быть достаточно «простыми» для решателей
  - Поэтому всегда имеет смысл моделировать задачу и пытаться решить ее стандартным решателем
  - Только если это не приводит к желаемому результату, начинать разработку специфической процедуры решения точной или приближенной