Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов

Направление подготовки 18.03.01 «Химическая технология», профиль «Химическая технология подготовки и переработки нефти и газа»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

Название работы			
Идентификация кинетических параметров при моделировании химических реакций			
Вариант			
Вариант XX			
По дисциплине			
Системный анализ процессов химической технологии			

Студент

Группа	ФИО	Подпись	Дата
			19.03.2021

Руководитель

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Доцент	Чузлов В.А	к.т.н.		

Цель работы:

- **1.** Составьте кинетическую модель в соответствии с представленной схемой превращений.
- 2. Решить полученную кинетическую модель на заданном интервале по времени при заданных начальных концентрациях компонентов, участвующих в химических превращениях, методом Рунге-Кутты.
- 3. Определить кинетические параметры химических превращений, используя генетический алгоритм и данные по наблюдаемым концентрациям химических веществ, участвующих в реакциях, при различном времени процесса.
- 4. Построить зависимости изменения концентраций химических веществ от времени протекания реакций по исходным данных и результатам расчета.

Исходные данные:

Схема превращений:

$$C_{11}H_{24} = C_{11}H_{22} + H_2$$

 $C_{11}H_{22} = C_{11}H_{20} + H_2$

Время процесса – 4,0 сек.

Таблица 1 – Начальные концентрации

$C_{11}H_{24}$	$C_{11}H_{22}$	$C_{11}H_{20}$	H_2
0,8	0,1	0,1	0,0

Таблица 2 – Значение исходной концентрации во времени

Время, сек.	$C_{11}H_{24}$	$C_{11}H_{22}$	$C_{11}H_{20}$	H_2
0,0	0,800000	0,100000	0,100000	0,000000
0,4	0,592651	0,233285	0,174063	0,281412
0,8	0,439050	0,277354	0,283596	0,544545
1,2	0,325249	0,274252	0,400500	0,775251
1,6	0,240959	0,248230	0,510811	0,969852
2,0	0,178496	0,213638	0,607866	1,129369
2,4	0,132246	0,177654	0,690099	1,257853

2,8	0,097956	0,144498	0,757546	1,359590
3,2	0,072582	0,115378	0,812039	1,439457
3,6	0,053772	0,090998	0,855230	1,501459
4,0	0,039836	0,071047	0,889116	1,549280

Теоретическая часть:

Генетический алгоритм— это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе.

Является разновидностью эволюционных вычислений, с помощью которых решаются оптимизационные задачи с использованием методов естественной эволюции, таких как отбор, мутация и скрещивание.

Отличительной особенностью генетического алгоритма является акцент на использовании оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.

Описание генетического алгоритма:

- 1. Случайным образом задается начальной множество генотипов Они «функции популяции. оцениваются использованием приспособленности», результате каждый фенотип получает В собственное значение приспособленности, определяющее насколько хорошо он описывает поставленную задачу;
- 2. Из полученного множества решений выбираются лучшие (по значению приспособленности);
- 3. К выбранным решениям применяются генетические операции мутации и скрещивания. В результате получают новые решения. Для них также вычисляется значение приспособленности и производится селекция лучших решений, которые попадают в следующее поколение;

4. Пункты 2 — 3 повторяются итеративно до достижения заданного критерия остановки алгоритма.

Критерии остановки алгоритма:

- Нахождение глобального или субоптимального решения;
- Исчерпание числа поколений, отпущенных на эволюцию.

Метод Рунге-Кутте:

Большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем:

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2) \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2) \end{cases}; \\ y_1|_{x=x_0} = y_{10}; \\ y_2|_{x=x_0} = y_{20}; \\ \begin{cases} y_{1,i+1} = y_{1,i} + (k_{11} + 2 \cdot k_{12} + 2 \cdot k_{13} + k_{14}) \cdot h / 6 \\ y_{2,i+1} = y_{2,i} + (k_{21} + 2 \cdot k_{22} + 2 \cdot k_{23} + k_{24}) \cdot h / 6 \end{cases}; \\ k_{11} = f_1(x, y_1, y_2); \\ k_{12} = f_1(x + h/2, y_1 + k_{11} \cdot h/2, y_2 + k_{21} \cdot h/2); \\ k_{13} = f_1(x + h/2, y_1 + k_{12} \cdot h/2, y_2 + k_{22} \cdot h/2); \\ k_{14} = f_1(x + h, y_1 + k_{13} \cdot h, y_2 + k_{23} \cdot h); \\ k_{21} = f_2(x, y_1, y_2) \end{cases}$$

$$k_{22} = f_2(x + h/2, y_1 + k_{11} \cdot h/2, y_2 + k_{21} \cdot h/2); \\ k_{23} = f_2(x + h/2, y_1 + k_{11} \cdot h/2, y_2 + k_{22} \cdot h/2) \\ k_{24} = f_2(x + h, y_1 + k_{13} \cdot h, y_2 + k_{23} \cdot h); \end{cases}$$

где:h — шаг вычисления;

f(x, y)— правая часть дифференциального уравнения.

Практическая часть:

1. Для идентификаций кинетических параметров была составлена кинетическая модель, которая имеет вид:

$$\begin{split} \frac{dC_{C_{11}H_{24}}}{dt} &= -k_1 \cdot C_{C_{11}H_{24}};\\ \frac{dC_{C_{11}H_{22}}}{dt} &= k_1 \cdot C_{C_{11}H_{24}} - k_2 C_{C_{11}H_{22}};\\ \frac{dC_{H_2}}{dt} &= k_1 \cdot C_{C_{11}H_{24}} + k_2 \cdot C_{C_{11}H_{22}};\\ \frac{dC_{C_{11}H_{20}}}{dt} &= k_2 \cdot C_{C_{11}H_{22}}. \end{split}$$

- 2. Для решения данной модели была составлена программа в среде PascalABC с применением метода многомерной оптимизаций генетический алгоритм. Решение данной модели производилось методом Рунге-Кутте на заданном интервале по времени при заданных начальных концентрациях реагентов. Программа расчета представлена в Приложении А.
- 3. В результате расчета программы были получены данные, приведенные в таблицах 3 и 4.

Таблица 3 – Полученные значения концентрации

Время, сек.	$C_{11}H_{24}$	$C_{11}H_{22}$	$C_{11}H_{20}$	H_2
0	0,8	0,1	0,1	0
0,4	0,679406625	0,143847223	0,076746152	0,297339527
0,8	0,576991703	0,154171403	0,168836893	0,49184519
1,2	0,490014983	0,148319073	0,261665945	0,671650962
1,6	0,416149282	0,135406765	0,348443953	0,832294671
2,0	0,353418224	0,120126444	0,426455332	0,973037107
2,39	0,300143354	0,104805768	0,495050878	1,094907524
2,79	0,254899229	0,090521365	0,554579406	1,199680177
3,19	0,216475281	0,077698579	0,60582614	1,289350859
3,59	0,183843425	0,066433002	0,649723572	1,365880147
3,99	0,156130552	0,056661515	0,687207933	1,431077382

Таблица 4 – Полученные значения констант скорости и функции приспособленности

Параметр	Значение
k_1, e^{-1}	6,520892
k ₂ , c ⁻¹	1,525549
Функция приспособленности	0,408479

4. По полученным результатам и исходным данным (Таблица 2) построили зависимость изменения концентрации химических веществ от времени протекания реакций по исходным данным, представленные на рисунке 1 – 4.

Рисунок 1 — Зависимость изменения исходной и расчетной концентрации $C_{11}H_{24}$ от времени протекания процесса

Рисунок 2 — Зависимость изменения исходной и расчетной концентрации $C_{11}H_{22}$ от времени протекания процесса

Рисунок 3 — Зависимость изменения исходной и расчетной концентрации $C_{11}H_{20}\,\text{от времени протекания процесса}$

Рисунок 4 — Зависимость изменения исходной и расчетной концентрации H_2 от времени протекания процесса

Вывод:

В ходе лабораторной работы была составлена кинетическая модель в соответствии с представленной схемой превращения, на основе которой была написана программа в среде PascalABC для решения данной системы с помощью метода Рунге-Кутте.

Решение данной модели основано на методе многомерной оптимизации – генетический алгоритм и определено в интервале времени от 0 до 4,0 с при заданных начальных концентрациях веществ, участвующих в реакциях.

результате решения программы были определены кинетические параметры, как константы скорости реакций (k_1 =6,52 c^{-1} , k_2 = 1,53 с⁻¹), концентрации веществ при заданном времени с шагом 0,4 с (Таблица 3). На основе полученных данных построили зависимости изменения концентрации химических веществ от времени протекания реакций по исходным данным и результатам расчета (Рисунок 1 – 4). Согласно полученным зависимостям, ОНЖОМ заметить значительное расхождение исходных концентраций от расчетных (Рисунок 1, 2, 3), для зависимости, представленной на рисунке 4 расхождение меньше.

Расхождение исходных и расчетных концентраций свидетельствует о рассчитанной также в ходе решения модели функции приспособленности, значение которой составляет — 0,408479. Данное значение показывает суммарное квадратичное отклонение и является достаточно большим. Уменьшить данную величину, и, соответственно, погрешность расчета можно варьированием параметров генетического алгоритма (количество поколений, размер популяции и т.д).

приложение а

Программа расчета

```
usesUGeneticAlgorithm;
functionkin scheme (time: real; c, k: array of real): array of real;
begin
SetLength (result, c.Length);
result[0] := -k[0]*c[0];
result[1] := k[0]*c[0]-k[1]*c[1];
result[2] := k[0]*c[0]+k[1]*c[1];
result[3] := k[1]*c[1];
end;
functionrunge kutt (
func: function(time: real; c, k: array of real): array of real;
c, k: array of real; start, stop: real;
h: real := 0.01): array of array of real;
functionsum(arr1, arr2: array of real; a: real): array of real;
SetLength(result, arr1.Length);
forvari := 0 to result.Highdo
result[i] := arr1[i]+a*arr2[i];
end;
begin
vark1 := ArrFill(c.Length, 0.0);
vark2 := ArrFill(c.Length, 0.0);
vark3 := ArrFill(c.Length, 0.0);
vark4 := ArrFill(c.Length, 0.0);
varc := copy(c);
variter := Trunc((stop - start)/h)+1;
vartime := start;
SetLength(result, iter);
forvari := 0 to result.Highdo
SetLength(result[i], c.Length+1);
forvari := 0 to result.Highdo
begin
result[i][0] := time;
forvarj :=0 to c .Highdo
result[i][j+1] := c_[j];
k1 := func(time, c_, k);
k2 := func(time + h / 2, sum(c, k1, h / 2), k);
k3 := func(time + h / 2, sum(c_, k2, h / 2), k);
k4 := func(time + h, sum(c_, k3, h), k);
forvarj := 0 to c .Highdo
c [j] += h / 6 * (k1[j] + 2 * k2[j] + 2 * k3[j] + k4[j]);
time += h
end;
end;
functionobj func(k, act values: array of real):real;
begin
varres := runge kutt(kin scheme, |0.8, 0.1, 0.1, 0.0|, k, 0.0, 4.0);
varres := res[40][1:];
```

Окончание приложения А

```
foreachvariin range(80, res.High, 40) do
res := res + res[i][1:];
forvari := 0 to act values.Highdo
result+= (act_values[i] - res_[i]) ** 2
end;
begin
varact values: array of real;
foreachvar(i, item) in ReadLines ('act values.txt').Numerate do
begin
SetLength(act values, i);
act_values[i-1] := item.ToReal;
vark := genetic_algorithm(||1e-3,10|, |1e-3,1||, obj_func, act_values)[0];
k.Println;
varres := runge_kutt(kin_scheme, |0.8, 0.1, 0.1, 0.0|, k[:^1], 0.0, 4.0);
foreachvariin range(40, res.High, 40) do
res[i].Println;
end.
```