Assignment - 30 - MACHINE LEARNING - 10

By Prakash Ghosh

Problem Statement: Transform iris data into 3 dimensions and plot a 3d ¶

• Chart with transformed dimensions and color each data point with specific class.

from sklearn.decomposition import PCA

- Hint:
- · import numpy as np
- · import matplotlib.pyplot as plt
- from mpl_toolkits.mplot3d import Axes3D
- from sklearn import decomposition
- from sklearn import datasets

```
In [1]: # Loading Libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from mpl toolkits.mplot3d import Axes3D
        from sklearn import decomposition, datasets
        from sklearn.preprocessing import StandardScaler
```

Load Data

In [2]: # Load IRIS Dataset URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" df = pd.read_csv(URL)

In [5]: df.head(10)

Out[5]:

	sepal_length	sepal_width	petal_length	petal_width	target
0	4.9	3.0	1.4	0.2	Iris-setosa
1	4.7	3.2	1.3	0.2	Iris-setosa
2	4.6	3.1	1.5	0.2	Iris-setosa
3	5.0	3.6	1.4	0.2	Iris-setosa
4	5.4	3.9	1.7	0.4	Iris-setosa
5	4.6	3.4	1.4	0.3	Iris-setosa
6	5.0	3.4	1.5	0.2	Iris-setosa
7	4.4	2.9	1.4	0.2	Iris-setosa
8	4.9	3.1	1.5	0.1	Iris-setosa
9	5.4	3.7	1.5	0.2	Iris-setosa

```
In [6]: col_names=['sepal_length','sepal_width','petal_length','petal_width','target']
        df.columns=col_names
        df.head(10)
```

Out[6]:

	sepal_length	sepal_width	petal_length	petal_width	target
0	4.9	3.0	1.4	0.2	Iris-setosa
1	4.7	3.2	1.3	0.2	Iris-setosa
2	4.6	3.1	1.5	0.2	Iris-setosa
3	5.0	3.6	1.4	0.2	Iris-setosa
4	5.4	3.9	1.7	0.4	Iris-setosa
5	4.6	3.4	1.4	0.3	Iris-setosa
6	5.0	3.4	1.5	0.2	Iris-setosa
7	4.4	2.9	1.4	0.2	Iris-setosa
8	4.9	3.1	1.5	0.1	Iris-setosa
9	5.4	3.7	1.5	0.2	Iris-setosa

Analyze Data

In [8]: df.describe()

Out[8]:

	sepal_length	sepal_width	petal_length	petal_width
count	149.000000	149.000000	149.000000	149.000000
mean	5.848322	3.051007	3.774497	1.205369
std	0.828594	0.433499	1.759651	0.761292
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

3-D Analysis

```
In [9]: features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
In [14]: # Separating out the target and Standardizing
         x = df.loc[:, features].values
         y = df.loc[:,['target']].values
         x = StandardScaler().fit_transform(x)
```

```
In [18]: # PCA Analysis
         pca = PCA(n_components=3)
         pc = pca.fit_transform(x)
         pc_Df = pd.DataFrame(data = pc, columns = ['PC_1', 'PC_2', 'PC_3'])
         pc_Df.head(10)
```

Out[18]:

	PC_1	PC_2	PC_3
0	-2.107950	-0.644276	-0.228768
1	-2.387971	-0.305833	0.049672
2	-2.324879	-0.562923	0.097142
3	-2.405086	0.687591	0.018819
4	-2.083204	1.530252	0.027757
5	-2.463685	0.087954	0.340195
6	-2.251750	0.259644	-0.084873
7	-2.364581	-1.082557	0.152275
8	-2.209463	-0.437077	-0.248514
9	-2.178620	1.082210	-0.266889

In [20]: # target df adding target variable
target_df = pd.concat([pc_Df, df[['target']]], axis = 1) target_df.head(5)

Out[20]:

	PC_1	PC_2	PC_3	target
0	-2.107950	-0.644276	-0.228768	Iris-setosa
1	-2.387971	-0.305833	0.049672	Iris-setosa
2	-2.324879	-0.562923	0.097142	Iris-setosa
3	-2.405086	0.687591	0.018819	Iris-setosa
4	-2.083204	1.530252	0.027757	Iris-setosa

```
In [23]: # 3D Data with Plot
         #Set the 3d Plot
         fig = plt.figure()
         ax = fig.add_subplot(211, projection='3d')
         fig.add subplot(211, projection='3d')
         ax = Axes3D(fig)
         #Set the Label
         ax.set xlabel('Principal Component 1', fontsize = 12)
         ax.set ylabel('Principal Component 2', fontsize = 12)
         ax.set zlabel('Principal Component 3', fontsize = 12)
         ax.set title('3-D Plot', fontsize = 20)
         #Set the Color of 3D
         targets = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
         colors = ['r', 'g', 'b']
         #Loop through and Plot 3D
         for target, color in zip(targets,colors):
             indicesToKeep = target_df['target'] == target
             ax.scatter3D(target df.loc[indicesToKeep, 'PC 1']
                        ,target df.loc[indicesToKeep, 'PC 2']
                        ,target_df.loc[indicesToKeep, 'PC_3']
                        , c = color
                         , s = 50
         ax.legend(targets) # Legend
         ax.grid()
                             # Grid
```

