Advanced Graph

Homer Lee 2013/10/31

Reference

Slides from Prof. Ya-Yunn Su's and Prof. Hsueh-I Lu's course

Today's goal

- Flow networks
- Ford-Fulkerson (and Edmonds-Karp)
- Bipartite matching

Flow networks

Network

- A directed graph G, each of whose edges has a capacity
- Two nodes s and t of G

Denoted as (G,s,t)

Flow

→ A flow of network (G,s,t) is (weighted) subgraph of G satisfying the capacity constraint and the conservation law

Capacity constraint

- Given capacity constraint function c, for all $u, v \in V$, $0 \le f(u,v) \le c(u,v)$
- ●流過edge的flow大小要小於流量限制
- ■常表示為圖的edge的weight

Conservation Law

- For all $u \in V \{s, t\}$, $\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$
- ▶ 換句話說,流進來的等於流出去的

- ►上面的sigma是對所有的v,那假如u,v沒有接在一起 怎麼辦?
- \longrightarrow => If $(\cup,\vee)\notin E$, $f(\cup,\vee)=0$

What's maximum flow problem?

- The value of a flow is denoted as |f|
- $|f| = \sum_{v \in V} f(s, v) \sum_{v \in V} f(v, s)$

- Given flow network (G,s,t)
- => Find a flow of maximum value

A famous theorem

■ Maximum flow ← → Minimum cut

How to solve the problem?

Ford-Fulkerson

Idea: Iteratively increase the value of the flow

- Start with f(u,v) = 0
- In each iteration
 - Find an augmenting path in the residual network G_f
 - Until no more augmenting paths exist

Residual Network

- What if we choose the wrong path?
- Just give it a second chance!!
- For each edge (u,v) in G, construct G_f
 - If f(u,v) > 0, G_f has an edge (v,u) with weight f(u,v)
 - If $c(u,v) \ge f(u,v)$ G_f has an edge (u,v) with weight c(u,v) f(u,v)

illustration

Some notes

- Why adding an edge if $c(u,v) \ge f(u,v)$?
 - ➡讓他有回頭的機會
- \blacksquare $|E_f| \le 2 |E|$, Why?
 - Residual Networks上的edges會是原本Flow network 有的edge (with different weight) 或反方向
 - You can try to prove it by simply using case analysis.

How can residual network help us?

- Lemma: Let G = (V,E) be a flow network, and let f be a flow in G. Let G_f be the residual network of G induced by f. Let g be a flow in G_f . Then f+g=is a valid flow in G.
- Idea: capacity constraint and flow conservation still holds.

Augmenting paths

lacktriangle Given a flow network G and a flow f, an augmenting path is a simple path from s to t in the residual network G_f

●簡單的來說,就是在residual network上找一條可以 走的路

How can Augmenting paths help us?

- There exists an augmenting path
- => there exist some potential flow in the path
- => By the capacity constraint, trivially the maximum flow in the path
 - = $\min\{C_f(u,v) \mid (u,v) \text{ is on augmenting path}\}$

How do we know when we have found maximum flow?

- From the maximum-flow-minimum-cut theorem, we stop when its residual graph contains no augmenting graph
- → 2 equivalent things:
- 1. f is a maximum flow in G
- lacktriangleright 2. The residual network G_f contains no augmenting path

Let's prove it!

- f is a maximum flow in G => The residual network G_f contains no augmenting path
- => is simple, use contradiction.
- If G_f still contains augmenting paths, then we can still find f_p to add to f. Then result in bigger flow $|f| + |f_p| > |f|$

Let's prove it!!

- Goal: f is a maximum flow in $G \le$ The residual network G_f contains no augmenting path
- Equivalent statement: f is **not** a maximum flow in $G \Rightarrow$ The residual network G_f contains **some** augmenting path
- If h is a flow whose value larger than that of f, then g = h f has to be a positive flow in G_f

Let's prove it!!!

- Goal: f is **not** a maximum flow in $G \le$ The residual network G_f contains **some** augmenting path
- Here provides a sketch of the proof
- If h is a flow whose value larger than that of f, then g = h f has to be a positive flow in G_f
 - Then why g has to be a positive flow in G_f ?
 - Do the remaining job by yourself!

Pseudo code

Example:

Running time analysis

- Initializing part: O(E)
- How to find a path in residual network?
 - ■BFS or DFS
 - What time complexity does it take?
 - $\blacksquare | E_f | \leq 2 | E |$
 - It takes $O(V+E_f) = O(E)$ times

Running time analysis

- If the edge capacity are integer, and f be the maximum flow of the network
- The for-loop may be executed at most f times (increment by 1 unit at a time)
- Each time takes O(E) times
- Totally O(E)+O(E)*O(f) = O(Ef)
- => This depends on f, not a good idea

Issues

What is C is not an integer? (each time the amount that the augmenting path adding has no lower-bound)

How can we improve this bound? (Edmonds-Karp)

To improve the time complexity

- A key observation: Let P be a shortest path from s to t in the residual network G_f . Let g be the flow corresponding to P.
- Then, the distance of any nodes v from s in G_{f+g} is no less than that in G_f
- IDEA: If the above thing holds, it seems that the update times will be bounded

Proof of the monotonically increased distance

- Assume for contradiction that there is **a** node v whose distance $d^*(v)$ in G_{f+g} is less than its distance d(v) in G_f
- Let Q be a shortest path from s to v in G_{f+g}
- There has to be some node u on Q such that $d^*(u) \ge d(u)$.(s is such a u.)
- So we can assume $Q = s \sim u > v$, so $d^*(v) = d^*(u) + 1$ and $(u,v) \in G_{f+g}$ such u exists.

That's what we said last page Note: $d^*(u) \le d(u)$

Proof-contd.

- Claim: (u,v) cannot be an edge in G_f since the following contradiction:
 - $d(v) \le d(u)+1 \le d^*(u)+1 = d^*(v)$
- Since (u,v) belongs to G_{f+g} but not G_f , we know g goes from v to u, but still reach the following contradiction:
 - \rightarrow d(v) = d(u)-1 \leq d*(u)-1 = d*(v)-2