

Orbital Mechanics: Examples

Daniel Topa daniel.topa@hii-tsd.com

Huntington Ingalls Industries Mission Technologies

October 26, 2024

Overview

- Schaub & Junkins
- Quantity of the contract of
- Backup Slides

Analytical Mechanics of Space Systems

hanspeter2003analytical

Daniel Topa

Analytical Mechanics of Space Systems

hanspeter2003analytical

Goldstein's Proof

APPENDIX A

Proof of Bertrand's Theorem*

The orbit equation under a conservative central force, Eq. (3-34), may be written

$$\frac{d^2u}{d\Omega^2} + u = J(u), (A-1)$$

where

$$J(u) = -\frac{m}{l^2} \frac{d}{du} V\left(\frac{1}{u}\right) = -\frac{m}{l^2 u^2} f\left(\frac{1}{u}\right).$$
 (A-2)

The condition for a circular orbit of radius $r_0 = u_0^{-1}$, Eq. (3–41), now takes the form

$$u_0 = J(u_0).$$
 (A-3)

goldstein2eclassical

Goldstein Errata

- Errata report on Herbert Goldstein's Classical Mechanics 2e¹
- **2** Errata, corrections and comments on Classical Mechanics, $3e^2$
- **3** Errors in Goldstein's Classical Mechanics³

¹osti 6712863

²goldstein3errata

³tiersten2003errors

Professional Societies: Computational Mechanics

Bibliography I

Orbital Mechanics: Examples

Daniel Topa daniel.topa@hii-tsd.com

Huntington Ingalls Industries Mission Technologies

October 26, 2024