컴파일러: 2장

국민대학교 소프트웨어학부 강 승 식

제2장 언어와 문법

- 문법이란?
 - 문장들의 집합을 기술
 - 형식 언어에서 '문장'은 '스트링(string)'이라고 함
- 예1) 언어 L₁ = { 00, 01, 10, 11 }에 대한 문법

$$S \rightarrow 00 \mid 01 \mid 10 \mid 11$$

 $S \rightarrow 00$

 $S \rightarrow 01$

 $S \rightarrow 10$

 $S \rightarrow 11$

• 예2) 언어 L₂ = { a, b, aa, ab, ba, bb }에 대한 문법 S → a | b | aa | ab | ba | bb

• 예3) 예2와 동일한 언어를 기술하는 문법

$$S \rightarrow a \mid b \mid aX \mid bX$$

 $X \rightarrow a \mid b$

• 예4) 예2, 예3과 동일한 언어를 기술하는 문법

$$S \rightarrow XY \mid X$$

 $X \rightarrow a \mid b$
 $Y \rightarrow a \mid b$

• 예5) 언어 L₃ = { 0, 1, 00, 01, 10, 11, 000, 001, ... }

$$S \rightarrow XS \mid 0 \mid 1$$
$$X \rightarrow 0 \mid 1$$

• 예6) 잘못된 문법의 예

$$S \rightarrow XS$$

 $X \rightarrow a \mid b$

문법의 정의

- 문법의 4가지 구성 요소
 G = (T, N, P, S)
 - T: 터미널(terminal) 집합
 - 예: { a, b }
 - N: 논터미널(non-terminal) 집합
 - 예: { S, X, Y }
 - P: 생성 규칙(production rule) 집합
 - 예: { S → XY | X, X → a | b, Y → a | b }
 - S: 시작 기호(start symbol)
 - 논터미널 기호 중 하나(첫번째 생성규칙에 있는 것)

정규 문법

• 모든 생성규칙의 LHS(Left-Hand Side)는 논터미널 1개

• 모든 생성규칙의 RHS(Right-Hand Side)는 터미널 스트링으로만 구성되거나 또는 논 터미널 1개가 터미널 스트링 끝에 오른쪽 (혹은 왼쪽) 끝에 올 수 있음

정규 문법의 두 가지 유형

- t_s = t₁t₂,...t_n, n≥0인 터미널 스트링이라 할 때
- 우선형 문법(Right-Linear Grammar)

$$A \rightarrow t_s B$$

 $A \rightarrow t_s$

좌선형 문법(Left-Linear Grammar)

$$A \rightarrow Bt_s$$

 $A \rightarrow t_s$

- 예1, 예2, 예3은 정규 문법
- 예4, 예5는 정규 문법이 아님

정규 문법의 정의를 단순화

• 터미널 스트링을 터미널 1개로 제한

우선형 문법: A → aB | b

좌선형 문법: A → Ba | b

A → t₁t₂,...t_nB 유형은 아래와 같이 변환

$$\begin{array}{l} \mathsf{A} \rightarrow \mathsf{t}_1 \mathsf{A}^1 \\ \mathsf{A}^1 \rightarrow \mathsf{t}_2 \mathsf{A}^2 \\ \mathsf{A}^2 \rightarrow \mathsf{t}_3 \mathsf{A}^3 \\ \mathsf{A}^{\mathsf{n}\text{-}1} \rightarrow \mathsf{t}_\mathsf{n} \mathsf{B} \end{array}$$

- 문맥자유 문법(CFG)
 - 모든 생성규칙이 A → α 유형
 - α는 터미널 또는 논터미널로 구성된 스트링, |α|≥0
- 문맥의존 문법(CSG)
 - 모든 생성규칙이 α → β 유형이고, $|\alpha| \le |\beta|$
 - α, β는 터미널 또는 논터미널로 구성된 스트링, |α|≥1
- 무제한 문법(UG)
 - 모든 생성규칙이 α → β 유형
 - α, β는 터미널 또는 논터미널로 구성된 스트링, |α|≥1

문법 기술 방법

- 유한 언어: 스트링 개수가 유한 개
 - 모든 스트링을 나열하는 것이 가능함
 - 예1, 예2
- 무한 언어: 스트링 개수가 무한 개
 - 모든 스트링을 나열할 수 없음
 - 순환 규칙(recursive rule)으로 기술
 - 예3

문법 기술할 때 주의 사항

- 완전성(completeness)
 - 언어에 속하는 "모든 스트링을 생성"할 수 있어야 함
 - 즉, 1개라도 생성하지 못하는 스트링이 있으면 안됨
- 건전성(soundness)
 - "그 언어에 속하는 스트링만 생성"해야 함
 - 즉, 언어에 속하지 않은 스트링을 1개라도 생성할 수 있으면 안됨

순환 규칙(recursive rule)

우순환 규칙(right recursive rule)

```
A \rightarrow aA \mid b

a^*b = \{ b, a^1b, a^2b, ..., a^nb, ... \}
```

좌순환 규칙(left recursive rule)

$$A \rightarrow Aa \mid b$$

 $ba^* = \{ b, ba^1, ba^2, ..., ba^n, ... \}$

• 순환 규칙의 예

1)
$$A \rightarrow aA \mid \epsilon$$

2)
$$A \rightarrow Aa \mid \epsilon$$

언어 L₄ = { aⁿbⁿ | n ≥ 1 } 에 대한 순환 규칙

$$A \rightarrow aAb \mid ab$$

• L₅ = { a^lb^mcⁿ | I, m, n ≥ 1 } 에 대한 정규 문법은?

• L₆ = { a^lb^mcⁿ | I, m, n ≥ 0 } 에 대한 정규 문법은?

• 덧셈 언어 $L_5 = \{ a, a+a, a+a+a, ... \}$

$$A \rightarrow a+A \mid a$$

• 문장 언어 L₆ = { s; , s;s; , s;s;s; , ... }

$$A \rightarrow s; A \mid s;$$

• 괄호 언어

$$L_7 = \{ (a), ((a)), ..., (a)(a), (a)((a)), ..., ((a)), ((a))(a), ... \}$$

$$A \rightarrow AA \mid (A) \mid (a)$$

• 사칙연산 수식

$$E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid a$$

• C 언어의 복문 { s; s; ...; s; }을 기술하는 문법은?

$$B \rightarrow \{A\}$$

 $A \rightarrow s;A \mid s;$

- 중첩된 if문을 기술하는 문법은?
 - 조건식을 e, 문장을 s라고 함

$$C \rightarrow \text{if (e) S | if (e) S else S}$$

 $S \rightarrow C \mid B \mid s$;
 $B \rightarrow \{A\}$
 $A \rightarrow s$; $A \mid s$;

유도(derivation)

- 유도(derivation)
 - -시작기호로부터 터미널 스트링 생성 과정

• 예제

$$A \rightarrow aA \mid b$$

$$A \Rightarrow aA \Rightarrow aaA \Rightarrow aaaA \Rightarrow aaab$$

문법 예제

• $G_1 = (\{O, E\}, \{a,b\}, P, O)$

P:
$$O \rightarrow a \mid bE$$

 $E \rightarrow aO$

• $G_2 = (\{S, A, B, C\}, \{a, b, c, d\}, P, S),$

P:
$$S \rightarrow aA$$

 $A \rightarrow aA \mid bB$
 $B \rightarrow bB \mid cC$
 $C \rightarrow cC \mid d$

문법 예제

•
$$G_3 = (\{S, A\}, \{a, b, c\}, P, S)$$

P:
$$S \rightarrow bA \mid c$$

 $A \rightarrow aA \mid b$

•
$$G_4 = (\{S, A\}, \{a, b, c\}, P, S)$$

P:
$$S \rightarrow aSbA \mid c$$

 $A \rightarrow aAa \mid b$

•
$$G_5 = (\{S, A\}, \{a, b\}, P, S)$$

P:
$$S \rightarrow aAb$$

 $A \rightarrow aS$
 $A \rightarrow b$

형식 언어 예제

- $L = \{a^m b^n \mid m, n \ge 0\} : RG$
- $L_m = \{a^n b^n \mid n \ge 0\} : CFG$
- $L_{dm} = \{a^nb^nc^n \mid n \ge 0\} : CSG$
- $L_{mi} = \{ \omega \omega^R \mid \omega \in V_T^* \} : 거울 언어(mirror language)$
- L_r = { ω | ω = ω^R} : 회문 언어(palindrome)
- L_p = { ω | ω는 balanced parenthesis로 구성} : 괄호 언어