Automatic Eforensic Analysis System

User Manual & Technical Documentation

Contents

Contents	1
Introduction to AEAS	
Installation of AEAS	
Starting an analysis	
Analysis options	
Starting the Analysis	
Viewing the report	
Exporting the Report	
Advanced: CLI usage	. 16
Common Errors	. 17

Introduction to AEAS

The Automatic Eforensic Analysis System (AEAS) provides a collection of eForensic scanning features requiring minimal configuration, and a scriptable interface to reduce the repetitive manual labour of eForensic analysis.

AEAS will interrogate a disk image to find:

- Image hash
- Partition information
- Deleted files
- Renamed files
- Carved files
- Files containing keywords
- A timeline of file timestamps

This document contains the information needed to install and operate AEAS on your Debian 12 system.

Installation of AEAS

Before you install AEAS, ensure that your target machine is running Debian 12. For your convenience it is also recommended to use a desktop environment that you are comfortable with, as AEAS should work on all popular desktop environments.

AEAS is provided with a convenient installation script (install.sh) that will pull in all necessary dependencies and install AEAS on your system. To begin the installation process, extract the provided ZIP file. Ensure to take note of where you extract these files.

Next, open a command-line terminal to the folder where the files were extracted – in most desktop environments, this can be done by right clicking inside the folder within the file manager, and selecting the option like "open a terminal here"

Within the terminal window ensure that the "install.sh" script is marked as executable. This can be done by running the command "chmod +x install.sh". After this you should be able to run the script with the command "./install.sh". Installation of AEAS will require superuser privileges, so enter your password when asked to do so.

This process may take some time as the script will install all of the dependencies required for AEAS to function correctly, this is usually around 5 minutes. When the process is complete, you will receive a message stating that this is the case, and the terminal will have returned to the usual command-line prompt.

We recommend rebooting your system at this stage as the operating system may not update the start menu correctly, making the program inaccessible.

You may now start the program from either the start menu, or command line interface as shown in the screenshots below.

Starting an analysis

To start an analysis of a support disk image, you may either manually enter a path to the image in the text box or use the button to the right of the box to browse for a path. Using the file browser is the recommended way of doing this however it may be easier to manually enter the path to the image if you are working on the same file repeatedly or it is otherwise stored in a path that is more difficult to reach with a file browser.

Select Image	9	
	Select Image]
enter image path at	oove	
Data Collect	ion Options	
☐ Partition Details ☐ Deleted Files ☐ Renamed Files ☐ Carved Files ☐ File Modification ☐ Keep Keyword F Keyword List		

The message below the prompt to select an image will alert you if the disk image is a supported format. AEAS supports the following disk image formats:

Image Format	Extension	Notes
Encase Image File Format /	.E01	
Expert Witness Format		
Raw	.dd .img	Raw image formats can have a variety of extensions. AEAS will detect these based on support of the underlying library, so the extension matching is not critical.
ZIP	.zip	ZIP files are supported if they contain a valid forensic image. AEAS will automatically extract this compressed image and perform a normal check and analysis against it

It is generally recommended to use raw disk images where possible as these will reduce the amount of preprocessing, and often hold a complete bit-for-bit copy of the entire disk, which will lead to a more complete analysis.

Analysis options

The checkboxes on the first screen can be used to control what information will be included in the final report. Additionally, a short summary of what each checkbox does is included down the bottom of the window whenever an option is hovered over with the mouse. A summary of these is included below.

Select Image	
Sel	ect Image
enter image path above	
Data Collection Op	tions
□ Partition Details □ Deleted Files □ Renamed Files □ Carved Files □ File Modification Timeline □ Keep Keyword Files Keyword List	

The report will include details of disk partitions in the image including the size and type of the partition.

Option	Description
Partition Details	This will include a table showing all disk partitions
	found on the disk image, including their size and
	type
Deleted Files	This will include a summary of files that have
	been marked as deleted on the disk image, as
	well as some information about the file.
Renamed Files	This will include a summary of files whose
	extension does not match the expected file type
	 a technique often used to hide files. This will
	show the extension present on disk as well as
	what the extension should be based on the files'
	content.
Carved Files	This will include files that were detected without
	proper meta data structures on disk, requiring
	carving techniques to be used to locate them.
File Modification Timeline	This will include a timeline of files whose
	modification history can be traced via shell
	history files. Note: This will only work on
	operating system disk images extracted from
	Linux hosts.
Keep Keyword Files	This option is slightly different in that it does not
	modify the output of the report, but instead
	decides whether AEAS should keep a copy of files
	found on the disk with keyword matches.

Starting the Analysis

Once you are happy with your selection options, you only need to click the "Go" button in the top right-hand corner of the window to start the analysis. If the button is greyed out, the provided disk image may require some pre-processing. Once this is complete the button will become active again, and the analysis can begin. The status of the analysis is shown in the bottom left-hand corner. When the analysis is complete, the report will be automatically displayed on the window.

Viewing the report

Once the disk has been analysed, you will be shown a report that includes the items that were selected on the previous screen. It is important to note that the report will change depending on which items you select to include, however below is an example of a complete report with an explanation of all items that are included.

AEAS Generated Report

Image:

This is the path to the image that you specified on the previous screen, if the image was extracted from a ZIP file this will be the path to the automatically extracted image, and not the path to the ZIP file itself

Timezone: If the disk image was taken from the system drive of a Linux-based operating system, the timezone will show up automatically here.

Image Hash

File	This is the same path as shown above		
MD5 Hash	These are the hashes that were computed for the		
SHA1 Hash	file. These are used to verify the integrity of the		
	evidence (a hash is usually provided with the		
	evidence), as well as to ensure that no changes		
	are made during the analysis		

Image Hash Post Analysis

File	This should be exactly the same as the table		
	above		
MD5 Hash	These are the hashes computed after the analysis		
SHA1 Hash	has finished, if they have changed in any way it		
	indicates that the disk image has been changed in		
	some way during the AEAS' analysis		

The result of the comparison between the hashes before and after analysis will be shown here for your convenience.

File Info

Partition Table

Table Type: This is the partition table format used on the disk. The most common two are MBR (DOS) and GPT, with MBR being used by older operating systems and GPT being used by more modern ones

Sector Size: This is the size of each sector on the disk. A sector is the smallest physical storage unit on the disk. For a forensic analysis, sector size is used to get data from an arbitrary position on disk (rather than the byte offset). This is relevant to you if you wish to perform further analysis with traditional forensic tools

Start	End	Length
ectors (not bytes!). perform a manual footherwise they may gor what partitions ar	This is also useful if the rensic analysis against give an indication of the likely to contain user	h partition in user wishes to the disk, e size of the disk
t or	nes describe the state ectors (not bytes!). erform a manual fo therwise they may a what partitions ar	nes describe the start, end and size of each ectors (not bytes!). This is also useful if the erform a manual forensic analysis against therwise they may give an indication of the what partitions are likely to contain user potloader or recovery environment data.

Keyword Matched Files

These are files that were found to contain one or more of the keywords specified by the user.

iNode	File Path	Matched	Match	Match	Size	MAC	Hash
		Keyword		Offset		Date	
				From			
				Beginning			
				of Disk			
This is the	This is the	This is the	This is the				
metadata	path to	specific	portion of	location	file's size	modified	SHA1 hash
address of	the file on	keyword	text that	on the	in bytes	accessed	of the file.
the file.	the	that was	matched	disk		and	The hash
This is	filesystem	found	with the	where the		created	can be
how the	. It is how	within the	previous	keyword		times for	used to
file can be	the file	file. Can	keyword	was		the file.	compare
accessed	would be	be used to		found. It is		Some	two files
using	accessed	differentia		important		filesystem	found
forensic	if the disk	te which		to note		s do not	within the
tools	were to	files		that this		store one	report or
	be	contain		offset is		or more	against the
	mounted	which		relative to		of these	hash of a
	and	keyword		the start		dates,	known file
	browsed			of the disk		and thus	of interest
	with a file			image,		may show	
	explorer			rather		"Invalid	
				than the		Date" in	
				start of		some	
				the		fields	
				partition			

Renamed Files

These are files whose extension does not match the content of the file. This is a technique commonly used to hide files "in plain sight" (for example renaming a .zip file to .jpg to make it appear less suspicious)

iNode	File Path	True Ext.	Size	MAC Date	Hash
This is the	This is the	This is the	This is the	This is the	This is the
metadata	path to the file	actual filetype	file's size in	modified	SHA1 hash of
address of the	on the	that has been	bytes	accessed and	the file. The
file. This is	filesystem. It	detected		created times	hash can be
how the file	also shows the	based on the		for the file.	used to
can be	file extension	file's signature		Some	compare two
accessed using	that the file is	– which is		filesystems do	files found
forensic tools	reporting to	computed		not store one	within the
	have	from its		or more of	report or
		content		these dates,	against the
				and thus may	hash of a
				show "Invalid	known file of
				Date" in some	interest
				fields	

Deleted Files

These are files that have been removed from the filesystem, but still have metadata present on the disk.

iNode	File Path	Size	MAC Date	Hash
This is the	This is the path to	This is the file's	This is the	This is the SHA1
metadata address	the file on the	size in bytes	modified accessed	hash of the file.
of the file. This is	filesystem. As the		and created times	The hash can be
how the file can	file does not exist		for the file. Some	used to compare
be accessed using	on the filesystem		filesystems do not	two files found
forensic tools	anymore this is		store one or more	within the report
	usually		of these dates,	or against the
	inaccessible by		and thus may	hash of a known
	traditional means		show "Invalid	file of interest
			Date" in some	
			fields	

Carved Files

These are files that no longer have metadata present on the disk and require carving techniques to access.

File Name	Size	Sector	Modified Date	File Type
This is an automatically computed file name. Because the file no longer has any metadata	This is the file size in bytes	This is the sector in which the file was found. Can be used to carve the file out of the disk for later analysis.	This is the date that the file was last modified, if it can be detected	This is the suspected file type based on the same signature algorithm as for renamed files
present on disk, the file extension is computed based on the file type				

Timeline

This is a timeline of all suspicious files that have been detected in the previous tables. On supported Linux operating system disk images, the timeline will also show the user and operation (command) that was likely responsible for the change to the suspicious file.

Date	iNode	File Name	User	Operation
This is the date	This is the iNode	This is the name	This is the user	This is the
that the file was	number that the	of the file on the	that is likely to	command/s that
last modified	file is located at	filesystem	have modified the	were run that
			file	were likely to
				modify the file

Exporting the Report

There are several formats that are supported to export the report to. JSON is a format used to store objects in a text-based format. This can be used by other programs to view the output of AEAS and parse them for further analysis. CSV is similar in this sense; however, it requires less computation to process and may be more applicable for simple scripts to perform additional analysis. Finally, PDF is a human readable format and can be used by other forensic analysts to visually see a summary of all of the findings generated by AEAS.

Advanced: CLI usage

AEAS also provides a command-line interface to allow the output to be scripted into other tools, as well as for use on headless systems. This CLI can be accessed through your terminal with the command "AEAS". The command "AEAS --help" will show an overview of all the commands that are available

```
jeff@debian:~$ AEAS --help
Options:
      --help
                                     Show help
                                                                           [boolean]
      --version
                                     Show version number
                                                                           [boolean]
      --imagePath
                                                                            [string]
                                                                            [string]
      --out
      --report
                                                                            [string]
      --keywords
                                                                            [string]
  -p, --showPartitions
                                                                           [boolean]
  -d, --includeDeletedFiles
                                                                           [boolean]
  -r, --includeRenamedFil<u>es</u>
                                                                           [boolean]
  -c, --includeCarvedFiles
                                                                           [boolean]
  -k, --includeKeywordSearchFiles
                                                                           [boolean]
  -t, --showTimeline
                                                                            [boolean]
  -s, --keepKeywordFiles
                                                                           [boolean]
jeff@debian:~$
```

An image can be passed to the command-line with the option --imagePath <path to your image>. Additionally, the format of the report can be selected with the argument --report <csv,json,pdf>. The folder where this report will be sent to is specified with --out, otherwise the report will be printed to stdout and can be processed by other scripts. It important to note that this is folder where the report will be located, and not the file name for the specific report.

Common Errors

The most common error to occur is that the image does not exist or is an incorrect format.

Select Image

/home/jeff/Downloads/alpinelir | Select Image

image couldn't be found or is not a supported file type

The easiest way to fix this is to convert the image to a format that is supported, and check that the file you have selected is correct.

Another rarer error is an error with a backend tool. These may occur if the image is corrupted. You can try restarting the application and running the analysis again with different options, however the best solution is to contact the software provider for additional support.

AEAS Generated Report

Command failed: icat -o 128 /home/jeff/Downloads/dfr-05-ntfs.dd 71 > .71 Invalid API argument (ntfs_load_attrs: attributes are NULL)