1. Consider the Vandermonde matrix V, i.e.,

$$V = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$

Rollnumber: PH15M015

- Show that det(V) is a polynomial in the variables $x_0, x_1, ..., x_n$ with degree $\frac{n(n+1)}{2}$
- Show that if $x_i = x_j$ for $i \neq j$, then det(V) = 0
- Conclude that $(x_i x_j)$ is a factor of det(V)
- Conclude that $det(V) = C\left(\prod_{0 \le j < i \le n} (x_i x_j)\right)$, where C is a constant
- \bullet Compare the coefficient of $x_1 \; x_2^2 \; x_3^3 \; ... \; x_n^n$ to obtain the value of C

2. Monic Legendre polynomials on [-1,1] are defined as follows:

$$q_0(x) = 1$$

$$q_1(x) = x$$

and $q_n(x)$ is a monic polynomial of degree n such that $\int_{-1}^1 q_n(x)q_m(x)dx = 0$ for all $m \neq n$.

• Show that these orthogonal polynomials satisfy

$$q_{n+1}(x) = xq_n(x) - \left(\frac{n^2}{4n^2 - 1}\right)q_{n-1}(x)$$

- Prove that if p(x) is a monic polynomial of degree n minimizing $||p(x)||_2$, then $p(x) = q_n(x)$
- Conclude that the Legendre nodes (i.e., the roots of the Legendre polynomial) minimize $\int_{-1}^{1} \left(\prod_{k=0}^{n} (x-xk) \right)^{2} dx$

3. The Chebyshev polynomials of the first kind are defined as

$$T_n(x) = cos(narccos(x))$$

• Show that the Chebyshev polynomials satisfy the orthogonality condition

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = 0$$

• Show that the Chebyshev polynomials of the first kind satisfy the recurrence:

$$T_{n+1} = 2xT_n - T_{n-1}$$

with
$$T_n(x) = 1$$
 and $T_1(x) = 1$.

- Show that $T_n(x)$ is a polynomial of degree n with leading coefficient as 2^{n-1} for $n \ge 1$
- All zeros of $T_{n+1}(x)$ are in the interval [-1,1] and given by $x_k = cos\left(\frac{2k+1}{2n+2}\pi\right)$, where $k \in \{0,1,2,...,n\}$
- Conclude that $T_n(x)$ alternates between +1 and -1 exactly n+1 times

• Show that

$$\left| \prod_{k=0}^{n} (x - x_k) \right| \le \frac{1}{2^n}$$

for all $x \in [-1, 1]$

• For any choice of nodes $y_k {n \atop k=0}$, consider the polynomial $P_{n+1}(x) = \prod_{k=0}^n (x-y_k)$ and look at $F(x) = P_{n+1}(x) - \frac{T_{n+1}(x)}{2^n}$ If $|P_{n+1}(x)| \leq \frac{1}{2^n}|$, show that F(x) alternates in sign n+2 times on the interval [-1,1]. Hence, conclude that F(x) has to be identically zero and therfore conclude that Chebyshev nodes of the first kind minimizes $\max x \in [-1,1] \left| \prod_{k=0}^n (x-x_k) \right|$