

1 of 69 Page:

FCC Radio Test Report FCC ID: 2AAZR-HSD8033A-1

Original Grant

TB-FCC165699 Report No.

SHENZHEN HIGHSTAR ELECTRICAL CO..LTD **Applicant**

Equipment Under Test (EUT)

EUT Name MINI BLUETOOTH SPEAKER WITH FAN

Model No. HSD8033A

N/A Series Model No.

Brand Name

2019-02-28 **Receipt Date**

2019-03-01 to 2019-05-05 **Test Date**

2019-05-06 **Issue Date**

FCC Part 15, Subpart C (15.247:2019) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Jason Xu

: INAN SU : fugla. **Engineer Supervisor**

Ivan Su

Engineer Manager

Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

COI	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	16
	5.5 Test Data	16
6.	RESTRICTED BANDS AND BAND-EDGE TEST	17
	6.1 Test Standard and Limit	17
	6.2 Test Setup	17
	6.3 Test Procedure	17
	6.4 EUT Operating Condition	18
	6.5 Test Data	18
7.	NUMBER OF HOPPING CHANNEL	19
	7.1 Test Standard and Limit	19
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	AVERAGE TIME OF OCCUPANCY	
	8.1 Test Standard and Limit	20
	8.2 Test Setup	

Report No.: TB-FCC165699
Page: 3 of 69

	8.3 Test Procedure	20
	8.4 EUT Operating Condition	20
	8.5 Test Data	20
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	21
	9.3 Test Procedure	
	9.4 EUT Operating Condition	21
	9.5 Test Data	
10.	PEAK OUTPUT POWER TEST	22
	10.1 Test Standard and Limit	22
	10.2 Test Setup	22
	10.3 Test Procedure	22
	10.4 EUT Operating Condition	22
	10.5 Test Data	22
11.	ANTENNA REQUIREMENT	23
	11.1 Standard Requirement	23
	11.2 Antenna Connected Construction	
	11.3 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
	ACHMENT B RADIATED EMISSION TEST DATA	
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	41
ATT	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	53
ATT	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	54
ATT	ACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA	58
ATT	ACHMENT G PEAK OUTPUT POWER TEST DATA	66

Page: 4 of 69

Revision History

Report No.	Version	Description	Issued Date
TB-FCC165699	Rev.01	Initial issue of report	2019-05-06
	W (1)	TO THE PARTY OF	A COLOR
3 6	100	LODGE THE PARTY OF	
min 33			WORL WORL
		THE PARTY OF THE P	
THE STATE OF THE S	4000	THE STATE OF THE S	MODY
	0000		
1000			13
	000		6033
TO THE		TODAY.	The state of the s
0	3		TI OB
The same of the sa	1	UBI COUNTY	

Page: 5 of 69

1. General Information about EUT

1.1 Client Information

Applicant		SHENZHEN HIGHSTAR ELECTRICAL CO.,LTD		
Address : 2 A		2F,4&5F,Building6,Ya Lian Highstar Industrial Zone, 5022 Wuhe Avenue,Bantian Street,Longgang District, Shenzhen, China		
Manufacturer		SHENZHEN HIGHSTAR ELECTRICAL CO.,LTD		
Address		2F,4&5F,Building6,Ya Lian Highstar Industrial Zone, 5022 Wuhe Avenue,Bantian Street,Longgang District, Shenzhen, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name		MINI BLUETOOTH SPEAKER WITH FAN			
Models No.	:	HSD8033A	HSD8033A		
Model Difference	:	N/A			
		Operation Frequency:	Bluetooth V4.2: 2402~2480 MHz		
		Number of Channel:	Bluetooth: 79 Channels see Note 2		
Product		Max Peak Output Power:	Bluetooth: -2.799dBm(Pi/4-DQPSK)		
Description		Antenna Gain:	-0.68dBi PCB Antenna		
	Q	Modulation Type:	GFSK (1 Mbps) Pi/4-DQPSK (2 Mbps)		
Power Supply	ė	DC Voltage Supply from ADC Voltage supplied by Li-			
Power Rating		Iutput: DC 5.0V 1.5A by adapter DC 3.7V by 2200mAh Li-ion battery			
Software Version		N/A			
Hardware Version	9	N/A			
Connecting I/O Port(S)	:	Please refer to the User's Manual			

Note:

⁽¹⁾ For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 69

(2) Channel List:

Bluetooth Channel List								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
00	2402	27	2429	54	2456			
01	2403	28	2430	55	2457			
02	2404	29	2431	56	2458			
03	2405	30	2432	57	2459			
04	2406	31	2433	58	2460			
05	2407	32	2434	59	2461			
06	2408	33	2435	60	2462			
07	2409	34	2436	61	2463			
08	2410	35	2437	62	2464			
09	2411	36	2438	63	2465			
10	2412	37	2439	64	2466			
11	2413	38	2440	65	2467			
12	2414	39	2441	66	2468			
13	2415	40	2442	67	2469			
14	2416	41	2443	68	2470			
15	2417	42	2444	69	2471			
16	2418	43	2445	70	2472			
17	2419	44	2446	71	2473			
18	2420	45	2447	72	2474			
19	2421	46	2448	73	2475			
20	2422	47	2449	74	2476			
21	2423	48	2450	75	2477			
22	2424	49	2451	76	2478			
23	2425	50	2452	77	2479			
24	2426	51	2453	78	2480			
25	2427	52	2454					
26	2428	53	2455					

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

Page: 7 of 69

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test							
Final Test Mode	Description						
Mode 1	Normal Working+ TX Mode						

For Radiated Test					
Final Test Mode Description					
Mode 1	TX GFSK Mode				
Mode 2	TX Mode(GFSK) Channel 00/39/78				
Mode 3	TX Mode(Pi/4-DQPSK) Channel 00/39/78				
Mode 4	Hopping Mode(GFSK)				
Mode 5	Hopping Mode(Pi/4-DQPSK)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode:Pi/4-DQPSK (2 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 69

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version		FCCAssist_2.4.exe	
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
Pi/4-DQPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 69

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 69

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2						
Standard S	ection	Tool House	l l			
FCC	IC	Test Item	Judgment	Remark		
15.203	ر و	Antenna Requirement	PASS	N/A		
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A		
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A		
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A		
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A		
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A		
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A		
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A		
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A		
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW: GFSK: 816.99kHz Pi/4-DQPSK: 1157.4kHz		

Page: 11 of 69

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	Laplace instrument	RF300	0701	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.03, 2019	Mar. 02, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
33	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
200	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

Page: 12 of 69

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguonov	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 69

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 69

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 15 of 69

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 69

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 17 of 69

6. Restricted Bands and Band-edge test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance N	leters(at 3m)
Band (MHz)	Peak	Average
310 ~2390	74	54
2483.5 ~2500	74	54

Note: All restriction bands have been tested, only the worst case is reported.

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC165699 Page: 18 of 69

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Please refer to the Attachment C.

Page: 19 of 69

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Please refer to the Attachment D.

Page: 20 of 69

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)	Average Time of Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2, 3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

8.5 Test Data

Please refer to the Attachment E.

Page: 21 of 69

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

9.5 Test Data

Please refer to the Attachment F.

Page: 22 of 69

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

10.5 Test Data

Please refer to the Attachment G.

Page: 23 of 69

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The gains of the antenna used for transmitting is -0.68dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type					
The state of the s	⊠Permanent attached antenna	GO.			
a Turn	Unique connector antenna				
	Professional installation antenna	D.			

Page: 24 of 69

Attachment A-- Conducted Emission Test Data

25 of 69 Page:

Report No.: TB-FCC165699
Page: 26 of 69

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Tem	nperatu	ıre:	25℃			Relative	Humidity:	55%	
Tes	t Volta	ge:	DC	3.7V by 2	200mAh Li-ior	battery	6.30		13
Ant	. Pol.		Hori	zontal		CAN DO		fills	
Tes	t Mode):	TX (GFSK Mo	de 2402MHz				CIII.
Ren	nark:		Only	worse ca	ase is reported			THE	
80.0	dBu∀/π	1							
30	My	m	ha want	and word	1 2 × × ×	3	4 5 × ×	5C 3M Radiatio Margin -I	
-20 30	.000 4	0 50	60 7	70	(MHz)	30	0 400 5	00 600 700	1000.000
N	o. Mk	. Fr	eq.	Readin Level	g Correct Factor	Measure- ment	Limit	Over	
		М	Hz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	149.4	4857	53.47	-21.49	31.98	43.50	-11.52	QP
2		181.9	9202	47.72	-20.10	27.62	43.50	-15.88	QP
3		229.2	2931	45.36	-18.33	27.03	46.00	-18.97	QP
4		321.0	0608	47.33	-15.52	31.81	46.00	-14.19	QP
5		482.2	2156	43.20	-11.10	32.10	46.00	-13.90	QP
6		562.6	6624	43.31	-8.96	34.35	46.00	-11.65	QP
	aximum o		Over limi		rgin Correct Factor	r			

Page: 27 of 69

Temperature:	25 ℃	4	Relative F	lumidity:	55%					
Test Voltage:	DC 3.7V by	2200mAh Li-ion	battery	132	1	MIL.				
Ant. Pol.	Vertical									
Test Mode:	TX GFSK M	TX GFSK Mode 2402MHz								
Remark:	Only worse	Only worse case is reported								
80.0 dBuV/m										
				(RF)FCC 15	C 3M Radiation					
					Margin -E	o dB				
1 3		3 4		5 X	X .					
30	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
1000	YM.	Why		Men.	Jankon.	marka				
	The same of the sa	√	hamman	Mary Mary						
20 20 30.000 40 50	60 70	(MHz)	300	400 50	0 600 700	1000.00				
30.000 40 30	60 70	(MNZ)	300	400 30	JU 600 700	1000.00				
	Read		Measure-	1::4	0					
No. Mk. Fr	eq. Lev	el Factor	ment	Limit	Over					
MI	Hz dBı	ıV dB/m	dBuV/m	dBuV/m	dB	Detector				
1 32.1	795 47.	36 -14.64	32.72	40.00	-7.28	QP				
2 * 49.0	145 57.	35 -22.92	34.43	40.00	-5.57	QP				
3 122.8	3340 56.	98 -22.34	34.64	43.50	-8.86	QP				
4 146.3	3735 55.	87 -21.81	34.06	43.50	-9.44	QP				
5 482.2			37.42	46.00	-8.58	QP				
6 562.6			38.02	46.00	-7.98	QP				
0 302.0	JUZT 40.	-0.80	30.02	40.00	-1.30	Q(I				
*:Maximum data x:	Over limit !:over	margin								
uninimini data A.	:.UVE	margin								

Page: 28 of 69

Above 1GHz (Only worse case is reported)

Temperature:	25℃	- GN	Relative I	Humidity:	55%	
Test Voltage:	DC 3.7V by 2200	0mAh Li-ion	battery			ALI .
Ant. Pol.	Horizontal				1.373	
Test Mode:	TX GFSK Mode	2402MHz		J MA		
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
No. Mk. Fre	Reading q. Level	Correct Factor	Measure- ment	Limit	Over	
MH	z dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 4804.0	030 44.81	14.43	59.24	74.00	-14.76	peak
2 * 4804.0	030 32.25	14.43	46.68	54.00	-7.32	AVG
Emission Level=	Read Level+ Cor	rect Factor	r			

Page: 29 of 69

Temperature:	25 ℃	_ <u></u> I	Relative Hum	idity:	55%			
Test Voltage:	DC 3.7V by 2200n	nAh Li-ion	battery	100	-	MAG		
Ant. Pol.	Vertical	Vertical						
Test Mode:	Mode: TX GFSK Mode 2402MHz							
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					المعتقل		
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over			
MH	lz dBuV	dB/m	dBuV/m	dBuV/m	n dB	Detector		
1 4804.	534 42.27	14.44	56.71	74.00	-17.29	peak		
2 * 4804.	648 29.54	14.44	43.98	54.00	-10.02	AVG		
Emission Level=	Emission Level= Read Level+ Correct Factor							

Report No.: TB-FCC165699
Page: 30 of 69

Temperature:	25℃	0	Relative Hun	nidity:	55%		
Test Voltage:	DC 3.7V by 2200	mAh Li-ior	battery	133		Milion	
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX GFSK Mode 2	TX GFSK Mode 2441MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over		
MH	z dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1 4881.3	334 42.74	14.91	57.65	74.00	-16.35	peak	
2 * 4881.3	334 28.14	14.91	43.05	54.00	-10.95	AVG	
Emission Level= Read Level+ Correct Factor							

Report No.: TB-FCC165699
Page: 31 of 69

Tempe	ratu	re:	25℃		- 01	Relative H	lumidity:	55%	1	
Test Vo	Test Voltage: DC 3.7V by 2200mAh Li-io					battery				
Ant. Pol. Vertical										
Test Mode: TX GFSK Mode 2441MHz					177					
Remark: No report for the emission which more than 10 dB below the prescribed limit.					المعتقل					
No.	Mk.	Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1		4882.	732	40.67	14.91	55.58	74.00	-18.42	peak	
2	*	4882.	732	28.59	14.91	43.50	54.00	-10.50	AVG	
Emissi	Emission Level= Read Level+ Correct Factor									

Report No.: TB-FCC165699
Page: 32 of 69

Temperatur	e:	25 ℃	1977	- 64	Relative H	Relative Humidity: 55		
Test Voltage	e:	DC 3	3.7V BY 220	OMAH LI-IO	ON BATTERY	130	1	MAIN
Ant. Pol.		Horiz	Horizontal					
Test Mode:		TX	TX GFSK Mode 2480MHz					
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.							
No. Mk.	Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 4	4959.4	178	43.02	15.39	58.41	74.00	-15.59	peak
2 * 4	4960.9	924	28.45	15.40	43.85	54.00	-10.15	AVG
Emission Level= Read Level+ Correct Factor								

Report No.: TB-FCC165699
Page: 33 of 69

Temperature:	25℃	33	- GV	Relative Hu	midity:	55%	
Test Voltage:	DC 3.	C 3.7V BY 2200MAH LI-ION BATTERY					
Ant. Pol.	Vertic	Vertical					
Test Mode:	TX GI	TX GFSK Mode 2480MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					المعتدلا	
No. Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
N	ИHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 496	0.720	42.52	15.40	57.92	74.00	-16.08	peak
2 * 496	1.200	28.62	15.40	44.02	54.00	-9.98	AVG
Emission Level= Read Level+ Correct Factor							

Report No.: TB-FCC165699
Page: 34 of 69

Temperature:	25 ℃	Relative H	Relative Humidity:			
Test Voltage:	age: DC 3.7V BY 2200MAH LI-ION BATTERY					
Ant. Pol.	Horizontal					
Test Mode: TXPi/4-DQPSK Mode 2402MHz						
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.					
No. Mk. Fre	3	rrect Measure- actor ment	Limit	Over		
MH	z dBuV _{dE}	3/m dBuV/m	dBuV/m	dB	Detector	
1 4804.0	054 43.49 14	.43 57.92	74.00	-16.08	peak	
2 * 4804.0	054 30.68 14	.43 45.11	54.00	-8.89	AVG	
Emission Level= Read Level+ Correct Factor						

Page: 35 of 69

Temperature:	25 ℃	Relative Humidity:		55%				
Test Voltage:	e: DC 3.7V BY 2200MAH LI-ION BATTERY							
Ant. Pol.	Vertical							
Test Mode: TXPi/4-DQPSK Mode 2402MHz								
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
No. Mk. Free	Reading Level	Correct Factor	Measure- ment	Limit	Over			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1 * 4804.0	12 31.41	14.43	45.84	54.00	-8.16	AVG		
2 4804.3	43.93	14.43	58.36	74.00	-15.64	peak		
Emission Level=	Emission Level= Read Level+ Correct Factor							

Report No.: TB-FCC165699
Page: 36 of 69

Temperature:	25 ℃	- 6A	Relative Hu	midity:	55%			
Test Voltage:	DC 3.7V BY 220	DC 3.7V BY 2200MAH LI-ION BATTERY						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	le: TXPi/4-DQPSK Mode 2441MHz							
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					المعتقل		
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over			
MH	Iz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1 4883.	176 42.93	14.91	57.84	74.00	-16.16	peak		
2 * 4883.	224 28.36	14.91	43.27	54.00	-10.73	AVG		
Emission Level=	Emission Level= Read Level+ Correct Factor							

Page: 37 of 69

Temperature:	25℃	- CA	Relative Hu	ımidity:	55%	
Test Voltage:	DC 3.7V BY 220	OMAH LI-IO	ON BATTERY		- 1	MAG
Ant. Pol.	Vertical			6.00	139	
Test Mode: TXPi/4-DQPSK Mode 2441MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.						
No. Mk. Fre	Reading q. Level	Correct Factor	Measure- ment	Limit	Over	
MH	z dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 * 4882.3	348 28.41	14.91	43.32	54.00	-10.68	AVG
2 4882.3	390 40.41	14.91	55.32	74.00	-18.68	peak
Emission Level=	Read Level+ Cor	rect Facto	r			

Report No.: TB-FCC165699
Page: 38 of 69

Temperature:	25℃	- GAI	Relative H	umidity:	55%		
Test Voltage:	DC 3.7V BY 2200	OMAH LI-IO	BATTERY	13.3	- N	Millia	
Ant. Pol.	Horizontal				100		
Test Mode: TXPi/4-DQPSK Mode 2480MHz							
Remark: No report for the emission which more than 10 dB below the prescribed limit.							
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over		
MH	łz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1 4960.	228 42.40	15.39	57.79	74.00	-16.21	peak	
2 * 4960.	228 28.41	15.39	43.80	54.00	-10.20	AVG	
Emission Level=	Read Level+ Corr	ect Factor					

Report No.: TB-FCC165699
Page: 39 of 69

Page:

Temperature:	25℃	~ CAL	Relative H	lumidity:	55%	1		
Test Voltage:	DC 3.7V BY 220	0MAH LI-IO	N BATTERY	1323	- N	Millia		
Ant. Pol.	Vertical	/ertical						
Test Mode:	e: TXPi/4-DQPSK Mode 2480MHz							
Remark: No report for the emission which more than 10 dB below the prescribed limit.								
No. Mk. Fr	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over			
MI	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1 4959	.676 42.77	15.39	58.16	74.00	-15.84	peak		
2 * 4959	.676 28.52	15.39	43.91	54.00	-10.09	AVG		
Emission Level=	Read Level+ Cor	rect Factor						

Page: 40 of 69

Conducted Emission Test Data

Page: 41 of 69

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

Page: 42 of 69

Emission Level= Read Level+ Correct Factor

Page: 43 of 69

	2							(RF)	FCC F	PART 15C (I	EAK)
	Λ										
	$f \setminus$							(BE	F) FCC	PART 15C	(AVG)
0		3 X									
	/ \	4									
		X							-		
ŀ											
-											
0											

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2480.000	80.81	3.38	84.19	Fundamental	Frequency	peak
2	*	2480.000	70.69	3.38	74.07	Fundamental	Frequency	AVG
3		2483.500	44.03	3.41	47.44	74.00	-26.56	peak
4		2483.500	34.41	3.41	37.82	54.00	-16.18	AVG

Emission Level= Read Level+ Correct Factor

Page: 44 of 69

Page: 45 of 69

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V BY 2200MAH LI-ION BATTERY						
Ant. Pol.	Horizontal						
Test Mode:	TXPi/4-DQPSK Mode 2402MHz						
Remark:	Only worse case is reported						

			Dooding	Correct	Measure-			
No.	Mk.	Freq.	Reading Level	Correct Factor	ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.91	2.82	45.73	74.00	-28.27	peak
2		2390.000	32.47	2.82	35.29	54.00	-38.71	AVG
3	Χ	2402.200	74.21	2.87	77.08	Fundamenta	I Frequency	AVG
4	*	2402.400	86.18	2.87	89.05	Fundamenta	l Frequency	peak

Emission Level= Read Level+ Correct Factor

Page: 46 of 69

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	41.94	2.82	44.76	74.00	-29.24	peak
2		2390.000	31.79	2.82	34.61	54.00	-19.39	AVG
3	X	2402.000	77.00	2.87	79.87	Fundamental	Frequency	peak
4	*	2402.000	65.14	2.87	68.01	Fundamental	Frequency	AVG

Emission Level= Read Level+ Correct Factor

4

2483.500

34.33

Emission Level= Read Level+ Correct Factor

3.41

37.74

54.00

-16.26

AVG

Report No.: TB-FCC165699

Page: 47 of 69

Page: 48 of 69

Emission Level= Read Level+ Correct Factor

Report No.: TB-FCC165699 49 of 69 Page:

(2) Conducted Band Edge Test

Page: 53 of 69

Attachment D-- Number of Hopping Channel Test Data

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V BY 2200N	MAH LI-ION BATTERY	30
Test Mode:	Hopping Mode		
Frequency Rang	ge Test Mode	Quantity of Hopping Channel	Limit
2402MHz~2480M	GFSK	79	>15
Z4UZIVIF1Z~Z40UIVI	Pi/4-DQPSK	79	>15

GFSK Mode

Pi/4-DQPSK Mode

Page: 54 of 69

Attachment E-- Average Time of Occupancy Test Data

Temper	ature:	25°	C	ative Humidity:	55%			
Test Vo	ltage:	DC	3.7V BY 2200	MAH LI-ION I	BATT	ΓERY	100	
Test Mode: Hopping Mode (GFSK)							U.	
Test	Channel		Pulse	Total of Dwo	ell	Period Time	Limit	Result
Mode	(MH	z)	Time (ms)	(ms)		(s)	(ms)	Result
1DH1	244	1	0.408	130.56		31.60	400	PASS
1DH3	244	1	1.664	266.24		31.60	400	PASS
1DH5	244	1	2.912	310.61		31.60	400	PASS

1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

GFSK Hopping Mode 1DH1

GFSK Hopping Mode 1DH5

Page: 56 of 69

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V BY 2200MAH LI-ION BATTERY						
Test Mode:	Hopping Mode (Pi/4-DQPSK)		19.0				

		1 0 1				
Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
2DH1	2441	0.373	119.36	31.60	400	PASS
2DH3	2441	1.626	260.16	31.60	400	PASS
2DH5	2441	2.873	306.45	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

Pi/4-DQPSK Hopping Mode 2DH1

Report No.: TB-FCC165699 57 of 69 Page:

Pi/4-DQPSK Hopping Mode 2DH5

Page: 58 of 69

Attachment F-- Channel Separation and Bandwidth Test Data

Bandwidth Test Data:

Temperature:	Temperature: 25°C		Relative Humidity:	55%
Test Voltage:	DC	3.7V BY 2200MAH LI-IOI	N BATTERY	3
Test Mode:	TXI	Mode (GFSK)		
Channel frequency (MHz)		99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402		815.36	788.5	
2441		810.66	826.9	
2480		816.99	839.7	

GFSK TX Mode

2480

Report No.: TB-FCC165699

804.00

Page: 60 of 69

Temperature:	25℃		Relative Humidity:	55%		
Test Voltage:	DC	3.7V BY 2200MAH LI-IOI	N BATTERY			
Test Mode:	est Mode: TX Mode (Pi/4-DQPSK)					
Channel frequency (MHz)		99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)		
2402		1157.2	1191	794.00		
2441		1157.4	1208	805.33		

Pi/4-DQPSK TX Mode

1206

1155.7

Page: 61 of 69

Pi/4-DQPSK TX Mode

Page: 62 of 69

Channel Separation Test data:

Temperature:	25℃	10	Relative Hu	ımidity:	55%
Test Voltage:	DC 3.7V BY 2200MAH LI-ION BATTERY				
Test Mode: Hopping Mode (GFSK)				6.33	
Channel fraguency		Sanaration Da	ad Valua	Son	orotion Limit

111 3		
Channel frequency	Separation Read Value	Separation Limit
(MHz)	(kHz)	(kHz)
2402	980	788.5
2441	990	826.9
2480	1140	839.7

GFSK Hopping Mode

Report No.: TB-FCC165699 63 of 69 Page:

GFSK Hopping Mode

64 of 69 Page:

Temperature: 25°C			Relative Humidity:		55%
Test Voltage:	DC 3.7V	BY 2200MAH LI-ION BATTERY			
Test Mode:	Hopping Mode (Pi/4-DQPSK)				
Channel freq	uency	Separation Re	ad Value	Separation Limit	
(MHz)		(kHz)		(kHz)	
2402		990	794.00		794.00
2441		1000	805.33		805.33
2480		1160	804.00		804.00
Pi/4-DQPSK Hopping Mode					

Page: 65 of 69

Attachment G-- Peak Output Power Test Data

Temperature:	25 ℃		Relative Humidity:	55%	
Test Voltage:	DC 3.7V BY 2200MAH LI-ION BATTERY				
Test Mode:	TX Mode (GFSK)				
Channel frequen	cy (MHz)	Test Result	(dBm) L	Limit (dBm)	
2402		-3.985			
2441		-3.947		30	
2480		-4.958			
GFSK TX Mode					

Page: 67 of 69

Page: 68 of 69

Temperature:	25℃	Relative Humidity:		55%		
Test Voltage:	DC 3.7V BY 2200MAH LI-ION BATTERY					
Test Mode:	TX Mode	(Pi/4-DQPSK)	Y CO	133		
Channel frequency (MHz)		Test Result (dBm) Limit (dB		mit (dBm)		
2402 2441 2480		-2.925				
		-2.799	21			
		-3.775				

Pi/4-DQPSK TX Mode

----END OF REPORT----