UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

FACET

Cálculo Vetorial

Lista 01

26 de Dezembro de 2015

(1) Calcule as integrais duplas:

a)
$$\iint_R xe^{xy} dxdy \text{ onde } R = [1, 3] \times [0, 1].$$

b)
$$\iint_R y \ln x dx dy \text{ onde } R = [2, 3] \times [1, 2].$$

c)
$$\iint_R \frac{x}{1+xy} dx dy \text{ onde } R = [0,1] \times [0,1].$$

d)
$$\int_0^2 \int_0^{\pi} r \operatorname{sen}^2 \theta d\theta dr$$
.

e)
$$\int_0^{\ln 2} \int_0^1 xy e^{y^2 x} dy dx$$
.

f)
$$\int_{\pi/2}^{\pi} \int_{1}^{2} x \cos(xy) dy dx.$$

g)
$$\iint_R (2x+y)dxdy$$
 onde R é a região delimitada por $x=y^2-1, x=5, y=-1$ e $y=2$.

g)
$$\iint_R x dx dy$$
 onde R é a região delimitada por $y = -x$, $y = 4x$ e $y = \frac{3x}{2} + \frac{5}{2}$.

(1) Calcule as integrais triplas:

a)
$$\iiint_B xyz^2 dx dy dz \text{ onde } B = [0,1] \times [0,2] \times [1,3].$$

b)
$$\iiint_B 2y \operatorname{sen}(yz) dx dy dz$$
 onde B é o paralelepípedo limitado por $x = \pi$, $y = \frac{\pi}{2}$, $z = \frac{\pi}{3}$ e os planos coordenados.

c)
$$\int_1^3 \int_x^{x^2} \int_0^{\ln z} x e^y dy dz dx.$$

d)
$$\int_{1/3}^{1/2} \int_{0}^{\pi} \int_{0}^{1} zx \operatorname{sen}(xy) dz dy dx$$
.

e) $\iiint_B xydxdydz$ onde B é o sólido limitado pelos cilindros parabólicos $x=y^2$ e $y=x^2$ e pelos planos z=0 e z=x+y.

Bons estudos!

Bibliografia:

Stewart, J. - Cálculo Vol ${\rm II}$

Flemming, D. - Cálculo B

Howard, A. - Cálculo Vol II.