

CONFIGURAÇÃO DE ROTEADORES CISCO

Prof. Dr. Kelvin Lopes Dias Msc. Eng. Diego dos Passos Silva

ROTEADOR

Roteador CISCO 2600:

INTERFACES DE UM ROTEADOR

- Interface p/ WAN
- Interface p/ LAN
- Interface p/ Console

INTERFACE SERIAL

Cabo Serial:

INTERFACE CONSOLE

Sequência de cores:

l - Branco La	ranja 1 - Marrom
2 - Laranja	2 - Branco Marrom
3 - Branco Vo	erde 3 - Verde
4 - Azul	4 - Branco Azul
5 - Branco 🗛	ad 5 - Azul
6 - Verde	6 - Branco Verde
7 - Branco M	arrom 7 - Laranha
8 - Marrom	8 - Branco Laranja

Modos de Roteador

 Modo EXEC de Usuário: Verificar status do roteador Representado pelo caractere " > "

2) Modo EXEC Privilegiado: Verificar status do roteador e alterar as configurações do roteador

Representado pelo caractere "#"

Modos de Roteador (Cont.)

Obs: Para acessar o modo Privilegiado, digitar no modo Usuário o comando: **enable**

Modo de configuração global

 A configuração é feita através de linha de comando e sempre a partir do Modo de configuração global

•O modo de configuração global é o principal modo de configuração (Para Acessar é necessário está logado no modo Privilegiado)

 A partir do modo de configuração global é possível acessar os sub-modos de Configuração: de Interface, de Sub-Interface

Modo de configuração global (Cont)

Comando: configure terminal

Router ConO is now available

Press RETURN to get started!

Router>enable
Router#configure terminal
Enter configuration commands, one per line.
Router(config)#

Configurando Interface Serial

Sintaxe do comando:

ip address endereço máscara

```
Router configure terminal
Enter configuration commands, one per line. End with CNTL/Z
Router (config) # interface serial 0/0
Router (config-if) # ip address 192.168.1.18 255.255.255.240
Router (config-if) # no shutdow
14:30:14 % LINK-3-UPDOWN: Interface Serial 0/0, changed state to up
14:30:14 % LINEPROTO-5-UPDOWN: Line protocol on Interface Serial 0/0,
```

Router(config-if)#exit
Router(config)#__

CONFIGURANDO INTERFACE FASTETHERNET

Sintaxe do comando:

Router(config)#

ip address endereço máscara

```
Router*configure terminal

Enter configuration commands, one per line. End with CNTL/Z

Router(config)#interface fastethernet 0/0

Router(config-if)#ip address 172.16.2.2 255.255.255.0

Router(config-if)#no shutdown

14:44:21 %LINK-3-UPDOWN: Interface Fastethernet0/0, changed state to up

14:44:21 %LINEPROTO-5-UPDOWN: Line protocol on Interface Fastethernet0/0,

Router(config-if)#exit
```

ATIVANDO PROTOCOLO DE ROTEAMENTO

* Sintaxe:

Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z
Router(config)#router nome do protocolo
Router(config-router)#network endereço de rede
Router(config-router)#exit
Router(config)#

SALVANDO AS CONFIGURAÇÕES

•As configurações são salvas no modo EXEC Privilegiado, com o comando: copy running-config startup-config

```
Router>enable
Router#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
Router#
```


ROTEAMENTO

Roteamento = Processo do roteador encaminhar pacotes para a rede de destino. O roteador efetua as suas decisões baseados no endereço IP de destino.

Roteamento estático = Rota inserida manualmente pelo administrador de rede

Roteamento dinâmico = Rotas aprendidas através de outros roteadores.

ROTEAMENTO ESTÁTICO

- 1) O Administrador insere manualmente a rota para uma rede.
- 2) O Roteador instala essa rota na sua tabela de roteamento

3) Os pacotes são roteados de acordo com a rota estática.

ROTEAMENTO ESTÁTICO

Comando: ip route rede de destino máscara gateway

Hoboken (config) #ip route 172.16.1.0 255.255.255.0 s1
comando destino rede sub-máscara gateway

Hoboken (config) #ip route 172.16.5.0 255.255.255.0 s0
comando destino rede sub-máscara gateway

ROTAS DEFAULT

 Rotas Default: São usadas para rotear pacotes com destinos que não estão presentes na tabela de roteamento

Rotas default é uma rota estática especial

OBS: Pois é praticamente impossível estabelecer rotas para todos os destinos da rede.

ROTAS DEFAULT

Comando: ip route 0.0.0.0 0.0.0.0

Wayeross (config) #ip route 0.0.0.0 0.0.0.0 S1
Esse comando aponta para todas as redes não diretamente
conectadas

ROTEAMENTO DINÂMICO

- * O protocolo de roteamento dinâmico permite que um roteador compartilhe informações com os outros roteadores da rede.
- * As informações obtidas dos outros roteadores são usadas para construir a Tabela de roteamento.

Ex: RIP (Routing Information Protocol);

IGRP (Interior Gateway Routing Protocol);

EIGRP (Enhanced Interior Gateway Routing Protocol);

OSPF (Open Shortest Path First).

ROTEAMENTO DINÂMICO

Os Protocolos de roteamento são usados nos Sistemas Autonomos.

Roteadores sob administração comum.

ROTEAMENTO DINÂMICO

Os protocolos de roteamento dividem-se em dois grupos:

- 1) Protocolos de Roteamento de Vetor da Distância
- 2) Protocolos de Roteamento por Link State (Estado do Enlaçe)

PROTOCOLOS DE ROTEAMENTO

Vetor da Distância

ROTEAMENTO POR VETOR DA DISTÂNCIA

 Os protocolos de vetor da distância transmitem cópias periódicas da tabela de roteamento de um roteador para o outro

• Um roteador recebe a tabela de roteamento dos roteadores vizinhos conectados diretamente

Cada roteador "vê" apenas os roteadores que são seus vizinhos.

EX: RIP, IGRP

Roteamento por vetor da distância

Passar cópias periódicas de uma tabela de roteamento a roteadores vizinhos e acumular vetores da distância

RIP

* É um protocolo de roteamento de vetor de distância

* A contagem de saltos é usada como métrica para a seleção dos caminhos

* Caso a contagem de salto seja maior que 15 saltos, o pacote será descartado

* As atualizações são enviadas em broadcast, a cada 30 segundos

CONFIGURANDO RIP


```
BHM(config) #router rip
BHM(config-router) #network 10.0.0.0
BHM(config-router) #network 192.168.13.0
```

```
GAD(config) #router rip
GAD(config-router) #network 192.168.14.0
GAD(config-router) #network 192.168.13.0
```

```
BOAZ (config) #router rip
BOAZ (config-router) #network 192.168.14.0
BOAZ (config-router) #network 172.31.0.0
```

RIP VERSÃO 2

- * Suporta a utilização de roteamendo classless
- •Envia informações sobre máscara de sub-rede com as atualizações de roteamento.

* Suporta roteamento de prefixos com VLSM (variable length subnet masking)

* Proporciona autenticação nas atualizações.

Configurando RIP versão 2

Acionado pelo comando: version 2

Kuala Lumpur(config) #router rip

Ruala Lumpur (config-router) # version 2

Kuala Lumpur (config-router) *network 150.100.0.0 | Bangkok (config-router) *network 150.100.0.0

Bangkok (config) frouter rip

Bangkok (config-router) *version 2

IGRP

- * O IGRP envia atualizações em um intervalo de 90 segundos
- * Escalabilidade para funcionamento em redes muito grandes
- * Versatilidade para manipular em redes complexas

- •Utiliza métrica composta:
 - -Largura de Banda (Ativado por padrão)
 - Atraso (Ativado por padrão)
 - Carga
 - -Confiabilidade

CONFIGURANDO IGRP

```
Entered on Router A
RouterA#configure terminal
RouterA(config) #router igrp 101
RouterA (config-router) #network 192.168.1.0
RouterA (config-router) #network 192.168.2.0
Entered on Router B
RouterB#configure terminal
RouterB(config) #router iqrp 101
RouterB (config-router) #network 192.168.2.0
RouterB (config-router) #network 192.168.3.0
```


LINK STATE

- * As atualizações são acionadas por eventos (Consumindo menos largura De banda.
- Possui visão geral da rede através de pacotes LSA (link state advertisement)
- * O pacote Hello permite identificar os vizinhos
- * Mantêm um bando de dados complexo sobre a topologia

Ex: OSPF, EIGRP

VETOR DE DISTÂNCIA X LINK STATE

Distance Vector	Link-State
Visualiza a topologia da rede sob a	 Obtém uma visão geral de toda a
perspectiva de um roteador vizinho	topologia da rede
 Acrescenta vetores de distância de um 	 Calcula o caminho mais curto para outros
roteador a outro	roteadores
 Possui atualizações freqüentes e 	 Possui atualizações acionadas por
periódicas e convergência lenta	eventos com convergência mais rápida
 Passa cópias de tabelas de roteamentos a 	 Passa atualizações de roteamento link
roteadores vizinhos	state a outros roteadores

OSPF

- * Protocolo de roteamento de Link State
- * Para Grandes Redes, o OSPF usam projeto hierárquico.

OSPF

*O OSPF possui três tipos de banco de dados:

1) Banco de dados de adjacência: Lista todos os roteadores vizinhos ao qual está conectado fisicamente. (Pacotes Hello).

2) Banco de Dados Topológico: Lista todos os roteadores que pertencem a mesma área. (Pacotes LSA)

3) Tabela de roteamento ou banco de dados forwarding: Armazena o melhor caminho para cada roteador da rede.

OSPF

Há dois tipos de pacotes:

- 1) Hello
- 2) LSA

- •Em uma rede OSPF, são eleitos dois roteadores:
- 1) Roteador designado (DR)
- 2) Roteador de backup (BDR)

CONFIGURANDO OSPF

 Para garantir a estabilidade do protocolo, é necessário configurar uma interface *loopback*

```
! Create the loopback 0 interface
Sydney3(config) #interface loopback 0
Sydney3(config-if) #ip address 192.168.31.33
255.255.255
Sydney3(config-if) #exit
!

Sydney3(config) #
01:47:27: %LINK-5-CHANGED: Interface Loopback0, changed state to administratively down
```

CONFIGURANDO OSPF

Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z
Router(config)#router ospf l
Router(config-router)#network 10.2.1.0 0.0.0.3 area 0
Router(config-router)#network 10.64.0.0 0.0.0.255 area 0
Router(config-router)#

- Convergência rápida
- Suporte para VLSM
- Trocam pacotes hello a cada 5 segundos
- O EIGRP envia atualizações parciais e limitadas
- •Para garantir a entrega dos pacotes EIGRP, utiliza o protocolo RTP na camada de transporte

* O EIGRP pode interagir com o IGRP (desde que seja o mesmo AS)


```
RTB(config) #router igrp 2446

RTB(config-router) #network 192.168.1.0

RTB(config) #router eigrp 2446

RTB(config-router) #network 10.1.1.0

RTB(config-router) #network 172.16.1.0
```

EIGRP e IGRP redistribuem automaticamente as rotas entre sistemas autônomos com o mesmo número.

Tipos de pacotes:

- 1) Hello
- 2) ACK
- 3) UpDate
- 4) Query
- 5) Reply

* Configurando EIGRP:

