

Algorithmes de simulation

Rejection sampling

Algorithme de rejet:

- 1. Sample $x \sim q$
- 2. Sample $y \sim \mathcal{U}([0, M_{\mathbf{g}}(x)])$
- 3. If $y \leq f(x)$: Accept x else Reject x.

Quelles sont les limites de cette méthode?

1. On souhaite simuler à partir d'une densité f.

Il faut connaître la densité f normalisée!

2. En grande dimension, la zone de rejet explose

Solution: Les méthodes MCMC

2. On cherche une densité g selon à laquelle on sait générer des échantillons.

3. Il faut dominer f par g en trouvant M > 0 tel que: $f \leq Mg$ partout.

4. La probabilité d'acceptation est donnée par $\frac{1}{M}$: on veut le plus petit M possible (borne serrée)

5. On itère par la suite l'algorithme:

Algorithme de rejet:

- 1. On souhaite simuler à partir d'une densité f.
- 2. On cherche une densité g selon à laquelle on sait générer des échantillons.
- 3. Il faut dominer f par g en trouvant M > 0 tel que: $f \leq Mg$ partout.
- 4. La probabilité d'acceptation est donnée par $\frac{1}{M}$: on veut le plus petit M possible (borne serrée)
- 5. On itère par la suite l'algorithme:
 - 1. Sample $x \sim g$
 - 2. Sample $y \sim \mathcal{U}([0, Mg(x)])$
 - 3. If $y \leq f(x)$: Accept x else Reject x.

Quelles sont les limites de cette méthode?

- 1. Il faut connaître la densité f normalisée!
- 2. En grande dimension, la zone de rejet explose

Solution: Les méthodes MCMC

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Il Méthodes de Monte-Carlo

- 1. Introduction
- 2. Markov Chain Monte-Carlo (MCMC)
- 3. Algorithmes MCMC avancés

