17) 60% decline over 12 ym.

$$0.40 = 1(1+r)^{12}$$
 $1.6 = b^{12}$
 $(0.40)^{1/2} = (+r)$
 $(0.40)^{1/2} = r$

comparded guarterals $IJJ = 850 \left(1 + \frac{\zeta}{4} \right)$ $\frac{100}{85} = \left(1 + \frac{\zeta}{4} \right)$ $\left(\frac{20}{17} \right) = \left(1 + \frac{\zeta}{4} \right)$ $\left(\frac{70}{17} \right) - 1 = \zeta$ $\frac{\zeta}{17} = \zeta$ $4\left(\frac{20}{17}\right)^{49}-1$ = -1 .016285 \approx -1

. Introduce the number e. ex start with \$1 # grows 4+ 100%.

Granually for one year. $\frac{1}{2}$ compared it aboutly = 1(1+1) = 2 $\frac{1}{2}$ compared $\frac{1}{2} = 2.44 = (1+\frac{1}{4})$ $\frac{1}{2}$ viewly = $(1+\frac{1}{5})^{52} \approx 2.6925$ $\frac{1}{2}$ viewly = $(1+\frac{1}{3})^{35} \approx 2.7146$ $\frac{1}{2}$ daily $\frac{1}{2}$ (1+ $\frac{1}{3}$) $\frac{1}{2}$ $\frac{$ as $n \rightarrow \infty$ $(1+\frac{1}{n}) \rightarrow e$ sompounded $f(x) = (1 + \frac{1}{x})^{x} \frac{continumsly}{}$ e= 1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{120}

Before:
$$f(x) = A_0 b^x$$

Continuors

Granh/desay: $f(x) = A_0 e^x$

Q: what is the purpose of k? $f(x) = A_0 b^{x} \qquad f(x) = A_0 e^{x}$ $= f(e^{x})^{x}$ $= f(e^{x})^{x}$ = f

f(x)=20p20 continios growth vature 15%. $f(x)=Ab^{x}$ $f(x)=20b^{x}$ b=e f(x)=20(1.1618) f(x)=20(1.1618)arriel growth of 16.18?

$$\frac{c \times}{f(x)} = 10e^{-0.20x} \quad continuous$$

$$\frac{f(x)}{f(x)} = 10b^{x} - 3b = e^{-0.20}$$

$$\frac{f(x)}{f(x)} = 10(1+\frac{c}{4}) + \frac{c}{4} = 0.8187$$

$$\frac{c \times}{f(x)} = 10b^{x} - 3b = e^{-0.20}$$

$$f(x) = |000e | gin |5% of |0.15x | Gostinos | 0.15x | Gostinos |$$