

Fundamentals

Lesson Preview

- Knowledge representations

- Semantic networks
- Problem-solving with semantic networks

- Represent & Reason

The relationships between the pieces and the transformations between the frames.

Structure of Semantic Networks

Lexically: nodes

Structurally: directional links

 Semantically: applicationspecific labels

Characteristics of Good Representations

Transparent, concise, complete, fast, computable

Expose natural constraints

Exclude extraneous details

Bring objects and relations together

- Make relationships explicit

Guards & Prisoners Problem

Originally appeared in the 1200-year-old text

Used by throughout AI for problem representation.

Propositiones ad Acuendos Juvenes.

- Also known by other names (cannibals and missionaries, jealous husbands, brothers and sisters).

Guards & Prisoners Problem

Three guards and three prisoners must cross river.

though prisoners may be alone on either coast).

- Boat may take only one or two people at a time.
- Prisoners may never outnumber guards on either coast,

Is this the right answer to the problem? o Yes o No

Is this the right answer to the problem? • Yes

Transformation #1

Similarity Weights

5 points Unchanged

4 points Reflected

2 points Scaled

1 points Deleted

Shape 0 points Changed Transformation #2

Similarity: 3 points

Similarity Weights

5 points Unchanged

4 points | Reflected

3 points | Rotated

2 points | Scaled

1 points | Deleted

0 points | Shape Changed

Assignment

How would you use semantic networks to design an agent

that can answer Raven's Progressive Matrices?

To recap...

- Representations
- Semantic networks
- Represent & Reason
- Weights with Represent & Reason

What is the answer to this problem?

What is the answer to this problem?

$$9 - \frac{rotated}{cost: 2} \rightarrow 9$$

Horizontal Reflection

180° Rotation

$$9 - \frac{rotated}{cost: 2} \rightarrow 9$$

What would the answer be? • 2

