Started on	Friday, 17 November 2023, 14:31
State	Finished
Completed on	Friday, 17 November 2023, 14:33
Time taken	1 min 18 secs
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 1.00 out of 1.00

Quelle est l'expression de l'énergie magnétique dans une bobine ?

$$igcup$$
 a. $W_{mag}=LI^2$

$$\bigcirc$$
 b. $W_{mag}=LI$

$$lacksquare$$
 c. $W_{mag}=rac{1}{2}LI^2$ \checkmark

$$\bigcirc$$
 d. $W_{mag}=rac{1}{2}LI$

Question 2

Correct

Mark 1.00 out of 1.00

Quelle est l'expression de la puissance électrique d'une bobine ?

$$\bigcirc$$
 a. $P_{el}=Ri^2$

$$\bigcirc$$
 b. $P_{el}=Ri^2+Lrac{di}{dt}$

$$\bigcirc$$
 c. $P_{el}=Ri^2+irac{di}{dt}$

$$lacksquare$$
 d. $P_{el}=Ri^2+Lirac{di}{dt}$ $ightharpoonup$

Question $\bf 3$

Correct

Mark 1.00 out of 1.00

La puissance réactive d'une inductance correspond à des pertes Joule.

True

● False ✓

Question 4

Correct

Mark 1.00 out of 1.00

Quelle est l'expression de l'énergie magnétique pour un volume infinitésimal ?

$$\bigcirc$$
 a. $dW_{mag}=\int_{0}^{H}HdBdV$

$$\bigcirc$$
 b. $dW_{mag}=\int_{0}^{B}BdHdV$

$$lacksquare$$
 c. $dW_{mag}=\int_0^B HdBdV$ 🗸

$$\bigcirc$$
 d. $dW_{mag} = \int_0^H BdHdV$

Question 5

Correct

Mark 1.00 out of 1.00

Quelle est l'expression de la coénergie magnétique pour un volume infinitésimal ?

$$\bigcirc$$
 a. $dW'_{mag} = \int_0^H H dB dV$

$$\bigcirc$$
 b. $dW'_{mag}=\int_0^B BdHdV$

$$\bigcirc$$
 C. $dW'_{mag}=\int_0^B HdBdV$

$$lacksquare$$
 d. $dW'_{mag}=\int_0^H BdHdV$ 🗸

Question 6

Correct

Mark 1.00 out of 1.00

La coénergie magnétique :

- ☑ a. est égale à l'énergie magnétique lorsque le système n'est pas saturé ✔
- ☐ b. sa dérivée en fonction du déplacement est toujours positive
- 🗹 c. sa dérivée en fonction du déplacement est de signe opposé à celui de la dérivée de l'énergie magnétique 🗸
- ☑ d. n'a aucune signification physique
 ✓
- $\ \square$ e. est l'intégrale au-dessus de la courbe du flux totalisé en fonction du courant

Question 7

Correct

Mark 1.00 out of 1.00

Une bobine de lissage d'inductance L = 1 mH (N = 100, I_{max} = 4 A) est réalisée au moyen d'un tore de section carrée en ferrite (B_{max} = 0.4 T).

Quelle est l'épaisseur "a" de la section carrée du tore ?

- O a. 5 mm
- b. 10 mm ✓
- O c. 12 mm
- O d. 15 mm

Question 8

Correct

Mark 1.00 out of 1.00

Le courant dans la bobine de la question précédente oscille de 3 à 4 A à 20 kHz, quelle est la puissance (variation d'énergie magnétique) convertie par la bobine ?

- O a. 0.7 W
- O b. 7 W
- ⊙ c. 70 W ✓
- O d. 700 W

Question 9

Correct

Mark 1.00 out of 1.00

Dans un système électromécanique, le flux totalisé d'un circuit est la somme des flux totalisés créés par les autres circuits.

- True
- False ✓

Contact EPFL CH-1015 Lausanne +41 21 693 11 11

Follow the pulses of EPFL on social networks

Mark 1.00 out of 1.0	Mark	1.00	out	of	1.	.00
----------------------	------	------	-----	----	----	-----

Dans un système électromécanique, les circuits électriques peuvent être couplés magnétiquement				
⊚ True ✓				
○ False				
¬ Transformateur monophasé				
Jump to				

Energie magnétique (cours sans notes) -