

# "Modelling Warfare using Lanchester's equations"

Matthew Pinkerton B00652097

BSc Hons Mathematics with Computing

MAT501 Project

May 2017

Supervisor: Dr Mark McCartney

| I declare that this is all my own work and does not contain unreferenced material copied    |
|---------------------------------------------------------------------------------------------|
| from any other source. I have read the University's policy on plagiarism and understand     |
| the definition of plagiarism. If it is shown that material has been plagiarised, or I have  |
| otherwise attempted to obtain an unfair advantage for myself or others, I understand that I |
| may face sanctions in accordance with the policies and procedures of the University. A      |
| mark of zero may be awarded and the reason for that mark will be recorded on my file.       |

# **Acknowledgements:**

I would like to thank my family, friends and supervisor, Dr Mark McCartney, for support while I have completed my project.

# **Contents**

| Introduction                                | 3  |
|---------------------------------------------|----|
| Literature Review:                          | 5  |
| Chapter 1: The Ardennes Battle Data         | 7  |
| 1.1 DMSI                                    | 7  |
| 1.2 Bracken Data                            | 7  |
| 1.3 Fricker Air Data                        | 8  |
| Chapter 2: Fitting the Lanchester Equations | 14 |
| 2.1 Aggregated Forces                       | 14 |
| 2.2 Bracken approach                        | 15 |
| 2.3 Linear Regression                       | 15 |
| 2.4 Lanchester Equations in general form    | 16 |
| Chapter 3: Optimization Techniques          | 17 |
| 3.1 Splitting the data                      | 18 |
| 3.2 Equipment Weighting                     | 18 |
| 3.3 Resource subdivisions                   | 18 |
| 3.4 Reformatted resources subdivisions      | 19 |
| 3.5 Logistics & support data                | 20 |
| Chapter 4: Analysis & Results               | 21 |
| 4.1 Splitting the data                      | 22 |
| 4.2 Equipment Weightings                    | 24 |
| 4.3 Subdivisions of forces                  | 25 |
| 4.4 Alternative model                       | 28 |
| 4.5 Combined Model                          | 29 |
| 4.6 General Lanchester form                 | 32 |
| Critical Evaluation                         | 33 |
| Conclusions                                 | 37 |
| Appendices                                  | 38 |
| Poforoncos                                  | 90 |

# Introduction

Brief project description and overview of project aims:

Lanchester's equations are a pair of differential equations which can be used to model attrition rates in a battle. Using military data from the WWII Battle of Ardennes, this project will use Lanchester's equations to model the battle. The equations themselves are relatively straightforward, with the project focusing on how best to fit the model to the data.

## **Objectives:**

- 1. Fit the Lanchester Equations to the Ardennes battle data
- 2. Improve the fit by splitting the battle into 2 battles
- 3. Improve the fit to the data by varying equipment weightings
- 4. Improve the fit to the data by varying subdivision resources weightings
- 5. Identify best fitting models as Lanchester linear or Lanchester square or Lanchester logarithmic

Modelling warfare has very practical applications and uses. If the results of a battle could be accurately predicted beforehand, this knowledge could be used in the decision of whether to engage in battle at all, or in changing tactics. The most important battle predictions would be the attrition rates of both sides and therefore the resulting winning side.

In 1916, Frederick Lanchester [6] proposed a set of differential equations as a model of warfare. These differential equations are capable of modelling attrition rates by describing the time dependence of the strength of 2 opposing armies in battle, Red (R) and Blue (B), as a function of time with the function dependent only on A and B.[5] [6]

A generalisation of the model is;

$$\dot{\mathbf{B}}(\mathbf{t}) = \mathbf{a}\mathbf{R}(\mathbf{t})^{\mathbf{p}}\mathbf{B}(\mathbf{t})^{\mathbf{q}} \tag{1}$$

$$\dot{R}(t) = bB(t)^{p}R(t)^{q} \qquad (2)$$

## Where;

 $\dot{B}(t)$ : Blue forces killed at time t

 $\dot{R}(t)$ : Red forces killed at time t

B(t): Strength of army force B at time t

R(t): Strength of army force R at time t

a: Attrition parameter for Red

b: Attrition parameter for Blue

p: Exponent parameter of the attacking force

q: Exponent parameter of the defending force

Lanchester identified distinct interpretations of his equations based on different p and q values, known as Lanchester's Laws.

Lanchester's linear law: When p = q = 1, thus force ratios remain equal if aR = bB. This model is theorised as collections of small engagements e.g. ancient warfare or unaimed fire at enemy-occupied areas. The larger force will always win. [4]

Lanchester's square law: When p = 1, q = 0, and the force ratios remain equal when  $aR^2 = bB^2$ . This model is theorised to fit modern warfare in which both sides are able to concentrate forces or when engaging in aimed fire. [4]

Lanchester's logarithmic law: When p = 0, q = 1. [4]

Hartley's homogeneous, mixed, linear-logarithmic law: When p = 0.4, q = 0.75. He proposed these parameter values based on an analysis of numerous historical battles. [4]

Bracken introduced a tactical parameter to the standard Lanchester equations, to consider when which side is attacking and defending if this switches throughout the battle. [1]

As can be seen, many versions of Lanchester's equations have been proposed attempting to produce a universally applicable model. But it is difficult to validate these as there is a lack of empirical evidence and applications have given inconclusive and conflicting

results. There is a lack of battle data, and what little data there is, is often inconsistent with other reported data.

Despite the lack of validation, Lanchester's equations are used extensively in modelling warfare. They can be used to model some battle data, but a universally applicable version does not yet exist. Manipulation of the Lanchester equations may still be able to produce this. This may be possible by introducing more parameters. But with battle data, it must be remembered that not all parameter input values may be available, thus giving the model limited application if there are too many parameters. It is important to maintain the simplicity of the Lanchester equations to an extent.

Lanchester's equations are similar to the more recent salvo combat model, which is a specific mathematical representation of anti-ship missile battles between modern warships. The difference is that Lanchester equations form a continuous time model, whereas the salvo combat model forms a discrete time model. Also, Lanchester equations only consider offensive firepower, whereas the salvo combat model considers offensive and defensive firepower.

Agent models also exist, considering the individual difference of each unit in warfare. These models are extremely accurate but are complex models requiring long computation and would have very long runtimes for large numbers of units at once.

Lanchester equations remain a useful model for its simplicity. I will attempt to implement changes to the Lanchester equations and create my own version of the equations that accurately fits battle data and may have widespread applicability.

#### **Literature Review**

On 16<sup>th</sup> December 1994, the Germans launched their final offensive of World War II, The Ardennes Campaign, which later came to be known as "the Battle of the Bulge." The German offensive consisted of three armies – the fifth Panzer (Armoured), Sixth Panzer, and Seventh Panzer. The campaign is outlined briefly by *DMSI* [2] and in detail by *Hitler's Last Gamble* [3].

The Germans had identified the Ardennes as a thinly defended section of the Allied front line held by the United States forces. This rugged, wooded terrain was near the

intersection of the borders of Germany, Belgium and Luxembourg. They over ambitiously planned to break through the Allied front line at the Ardennes and swiftly advance north across Belgium to the port city of Antwerp. This would have split the U.S. and British forces, and given the Germans a tactical position in being able to attack all the Allied armies.

Due to Allied overconfidence that the Germans lacked the material and personnel resources to launch a major attack on the Western Front, they were caught completely off guard. The Germans managed to amass a large force secretly. However, the German force amassed consisted of low quality personnel, transportation networks were inadequate, and the German air force was far inferior to the Allied air force. They launched their attack under cover of poor weather conditions that kept the far superior Allied air forces grounded, also preventing Allied aerial reconnaissance detecting German approach.

The German forces penetrated through the Allied front line, but did not advance as far as planned because of hard fought U.S. defensives on key routes to the north. The U.S. forces were reinforced by units of the U.S. First and Third Armies and the British XXX Corps. Over several days they rallied to slow the German advance. By 23<sup>rd</sup> December the skies had cleared up, and with the support of the Allied air force the German advance was halted on 24<sup>th</sup> December. Allied counter offensives began on 25<sup>th</sup> December.

On 1<sup>st</sup> January, the German's launched two final air offensive operations but as they had lost the initiative and had a far inferior air force, ultimately suffered greater casualties than the allies over the course of these operations. The Allied forces pushed back the Germans and the front line was restored to how it was on December 16<sup>th</sup> 1994 by January 16<sup>th</sup> 1995.

# **Chapter 1: The Ardennes Battle Data**

This chapter introduces the battle data used by Bracken [1] and the data added to this by Fricker [4]. The data included in both studies were taken from the Ardennes Campaign Simulation Data Base (ACSDB) compiled by Data Memory Systems, Inc. (DSMI) [2] under contract to the U.S. Army Concepts Analysis Agency.

#### **1.1 DMSI**

DMSI obtained primary source records from the U.S., Great Britain and Germany as well as many other secondary source records. "The mass of records assembled by DMSI researchers was catalogued and then analyzed to compile the detailed data required for the campaign-level data base. Of necessity, much data was interpolated, extrapolated, or otherwise derived from the various sources acquired from the research facilities" [2, p. I-7].

As is common with battle data a lot of the records are contradictory or inconsistent in reporting format making it difficult for comparison, and some are incomplete, particularly the German data. "Due to various reasons, including the poor record keeping practices maintained by the German Army in the last six months of World War II and the destruction of many reports, there is a notable paucity of daily battle casualty statistics for German units at any level of aggregation during the Ardennes period. Therefore, it was determined that the estimation of lacking battle casualty data was necessary" [2, p. II-G-l-1]. Many other German resources required estimation techniques to be included in the DMSI database. German data tended to be recorded periodically for multiple days rather than daily. Of note for the Bracken data, "personnel and equipment inventory data was estimated for the service support elements of German Army Group B" [2, p. II-G-8-1].

#### 1.2 Bracken Data

The Bracken data (Table 1 & 2) consists of daily tallies of manpower (Mp), tanks (T), Armoured Personnel Carriers (APC)s, and artillery (Art) available and killed for both the Allied and German forces over 32 days of battle, 16<sup>th</sup> December 1944 – 16<sup>th</sup> January

1945. Data is also included for 15<sup>th</sup> December 1944, but most of the data for the Germans is incomplete and can't be included in the model. This day is denoted as "day 0". Bracken chose to exclude the equipment resource data for AT/Mortars.

Labelling U.S. forces blue and German forces red, Bracken considered manpower as either combat manpower or total manpower. Combat manpower consists of the infantry, armour, and artillery personnel. Total manpower consists of all personnel; the combat personnel as well as logistics and support personnel.

In terms of manpower, "killed" is defined as personnel killed or wounded, and does not include personnel captured/missing in action (MIA) or those incapacitated by disease and nonbattle injuries. In terms of equipment, "killed" is defined as any equipment destroyed or too damaged to be used, and does not include abandoned equipment.

Fricker [4] explains, Bracken theorised each day of the Ardennes Campaign as an independent battle, an independent observation of Lanchester equations with fixed attrition and exponent parameters for the duration of the Ardennes Campaign. This is a reasonable approach as Lanchester equations reflect fixed capabilities of forces [6]. "The idea would be that casualties occur according to the fixed Lanchester equations using the previous day's force size, but the overall force size for the current day also depends on the transfer of troops in or out of the fighting force" [4, p. 4]. This is an appropriate approach to modelling the data structure in Table 1 & Table 2 as these tables do not consider the transfer of troops in and out of battle between days. By considering each day independently, initial force sizes for each observation included the transfer of troops in and out of battle for the duration of the observation (one day).

#### 1.3 Fricker Air Data

Fricker [4] added a new resource (Table 3) to the Bracken data from the DMSI database: air sorties (As). With the overwhelmingly superior Allied air force being a major factor contributing to the turning point in the battle as the skies cleared, it is reasonable to include this resource in the model. Unfortunately, air sorties weren't recorded in as much detail and the only information included is number of air sorties flown for Allied and German forces. Again, the exactness of German data is questionable. "Data on Allied (US and British) air sorties was taken directly from daily operations reports, while Luftwaffe

 Table 1: Ardennes battle manpower data for the Allied (Blue) and German (Red) forces

|     | Manpower |          |         |       |         |           |           |       |  |  |  |  |
|-----|----------|----------|---------|-------|---------|-----------|-----------|-------|--|--|--|--|
|     |          | Blu      | ıe      |       |         | Red       | d         |       |  |  |  |  |
| Day | Availabl | e: Mb(i) | Killed: | Mb(i) | Availab | le: Mr(i) | Killed: 1 | Mr(i) |  |  |  |  |
| (i) | Combat   | Total    | Combat  | Total | Combat  | Total     | Combat    | Total |  |  |  |  |
| 0   | 351005   | 632105   | 458     | 1468  | 0       | 0         | 0         | 0     |  |  |  |  |
| 1   | 349247   | 630557   | 1589    | 3062  | 360716  | 575838    | 2191      | 5590  |  |  |  |  |
| 2   | 347915   | 628985   | 2383    | 5712  | 356818  | 571301    | 2423      | 5559  |  |  |  |  |
| 3   | 358321   | 640969   | 2085    | 5093  | 353529  | 568508    | 2015      | 4711  |  |  |  |  |
| 4   | 366495   | 807140   | 2175    | 12101 | 350750  | 565173    | 1993      | 4332  |  |  |  |  |
| 5   | 387342   | 834136   | 1389    | 5334  | 356278  | 572181    | 1985      | 4351  |  |  |  |  |
| 6   | 403289   | 859906   | 1174    | 3197  | 354297  | 570711    | 2084      | 4582  |  |  |  |  |
| 7   | 410817   | 874600   | 1905    | 4815  | 361684  | 581177    | 2046      | 4531  |  |  |  |  |
| 8   | 412811   | 877247   | 1548    | 3730  | 359353  | 579660    | 2468      | 5351  |  |  |  |  |
| 9   | 426360   | 895976   | 1608    | 3857  | 362904  | 584610    | 2685      | 5609  |  |  |  |  |
| 10  | 432094   | 907490   | 1527    | 3635  | 359750  | 580731    | 2538      | 5563  |  |  |  |  |
| 11  | 451316   | 933045   | 2320    | 5411  | 362611  | 584551    | 2504      | 5526  |  |  |  |  |
| 12  | 451724   | 948024   | 1376    | 3596  | 361023  | 583610    | 2544      | 5751  |  |  |  |  |
| 13  | 451291   | 928230   | 1277    | 3435  | 356892  | 578737    | 2121      | 4511  |  |  |  |  |
| 14  | 461189   | 941188   | 1005    | 2934  | 349900  | 568768    | 1682      | 3900  |  |  |  |  |
| 15  | 465334   | 946424   | 1042    | 2743  | 346100  | 564548    | 1844      | 4076  |  |  |  |  |
| 16  | 467620   | 948226   | 1159    | 3022  | 343134  | 560993    | 1550      | 3635  |  |  |  |  |
| 17  | 467801   | 948379   | 1004    | 2773  | 340875  | 558214    | 1788      | 3898  |  |  |  |  |
| 18  | 474562   | 956144   | 832     | 2631  | 338278  | 555741    | 1724      | 3821  |  |  |  |  |
| 19  | 474192   | 955821   | 1831    | 3580  | 334356  | 550854    | 1752      | 3892  |  |  |  |  |
| 20  | 481704   | 965135   | 2259    | 4899  | 328069  | 544031    | 2054      | 4283  |  |  |  |  |
| 21  | 480952   | 964928   | 1639    | 4093  | 321195  | 534885    | 1709      | 3767  |  |  |  |  |
| 22  | 478593   | 962193   | 1228    | 3388  | 322830  | 536481    | 1946      | 4169  |  |  |  |  |
| 23  | 475732   | 959776   | 1868    | 4627  | 324376  | 540896    | 1865      | 4076  |  |  |  |  |
| 24  | 475685   | 959011   | 1276    | 3928  | 322337  | 538328    | 1676      | 3756  |  |  |  |  |
| 25  | 475155   | 958799   | 1379    | 3725  | 320612  | 536719    | 1434      | 3466  |  |  |  |  |
| 26  | 472749   | 956330   | 1643    | 4002  | 319143  | 534764    | 1696      | 3732  |  |  |  |  |
| 27  | 472535   | 956090   | 1281    | 3502  | 319259  | 533256    | 1536      | 3967  |  |  |  |  |
| 28  | 468127   | 952030   | 1083    | 3590  | 317406  | 530919    | 1167      | 3199  |  |  |  |  |
| 29  | 467646   | 952210   | 1681    | 4189  | 316217  | 528237    | 1579      | 4026  |  |  |  |  |
| 30  | 466072   | 950879   | 1597    | 4277  | 314858  | 526387    | 1504      | 3866  |  |  |  |  |
| 31  | 464643   | 949508   | 2098    | 4477  | 313074  | 524150    | 1425      | 3744  |  |  |  |  |
| 32  | 455218   | 937500   | 1483    | 3600  | 310347  | 521038    | 1213      | 3219  |  |  |  |  |

**Table 2.** Ardennes battle equipment data for tanks, APCs, and artillery of the Allied (Blue) and German (Red) forces

| Gern | Equipment |                  |                  |                  |        |      |          |           |                  |                  |              |      |
|------|-----------|------------------|------------------|------------------|--------|------|----------|-----------|------------------|------------------|--------------|------|
|      |           |                  | Bl               | lue              |        |      | Red      |           |                  |                  |              |      |
|      |           | Availabl         | e                |                  | Killed |      | A        | Availabl  | e                | Killed           |              |      |
| Day  | Tank      | APC              | Art              | Tank             | APC    | Art  | Tank     | APC       | Art              | Tank             | APC          | Art  |
| (i)  | $T_B(i)$  | <sub>B</sub> (i) | <sub>B</sub> (i) | $T_{\dot{B}}(i)$ | ġ(i)   | ġ(i) | $T_R(i)$ | $_{R}(i)$ | <sub>R</sub> (i) | $T_{\dot{R}}(i)$ | $\dot{R}(i)$ | ġ(i) |
| 0    | 2853      | 6103             | 3006             | 1                | 0      | 0    | 0        | 0         | 36               | 0                | 0            | 0    |
| 1    | 2863      | 6019             | 2972             | 12               | 33     | 15   | 747      | 2046      | 4789             | 10               | 5            | 6    |
| 2    | 2867      | 5970             | 2963             | 43               | 46     | 9    | 663      | 2041      | 4791             | 7                | 20           | 41   |
| 3    | 2840      | 5908             | 2950             | 60               | 18     | 6    | 639      | 2021      | 4768             | 13               | 12           | 27   |
| 4    | 2808      | 6004             | 3103             | 64               | 37     | 14   | 669      | 2009      | 4727             | 21               | 18           | 19   |
| 5    | 3965      | 7274             | 3531             | 33               | 11     | 33   | 619      | 1984      | 4786             | 11               | 22           | 24   |
| 6    | 4082      | 7295             | 3609             | 10               | 6      | 10   | 595      | 1952      | 4773             | 21               | 19           | 30   |
| 7    | 4109      | 7507             | 3772             | 15               | 13     | 2    | 615      | 2065      | 4858             | 5                | 16           | 16   |
| 8    | 4086      | 7533             | 3772             | 36               | 6      | 10   | 645      | 2034      | 4845             | 24               | 34           | 35   |
| 9    | 4062      | 7486             | 3847             | 48               | 18     | 5    | 596      | 1970      | 4885             | 22               | 20           | 94   |
| 10   | 4265      | 8105             | 3931             | 24               | 2      | 4    | 544      | 1875      | 4750             | 28               | 36           | 59   |
| 11   | 4520      | 8552             | 4063             | 20               | 2      | 4    | 483      | 1800      | 4779             | 14               | 31           | 34   |
| 12   | 4511      | 8629             | 4093             | 19               | 3      | 3    | 466      | 1731      | 4661             | 13               | 31           | 23   |
| 13   | 4526      | 8536             | 4004             | 18               | 3      | 2    | 450      | 1659      | 4638             | 7                | 22           | 31   |
| 14   | 4541      | 8552             | 4065             | 16               | 2      | 0    | 433      | 1595      | 4415             | 7                | 15           | 19   |
| 15   | 4516      | 8565             | 4087             | 20               | 0      | 0    | 428      | 1542      | 4321             | 21               | 7            | 26   |
| 16   | 4610      | 8554             | 4086             | 10               | 2      | 1    | 403      | 1532      | 4314             | 5                | 14           | 17   |
| 17   | 4695      | 8615             | 4077             | 14               | 0      | 0    | 413      | 1523      | 4283             | 9                | 8            | 36   |
| 18   | 4701      | 8593             | 4087             | 24               | 0      | 0    | 419      | 1516      | 4246             | 6                | 10           | 14   |
| 19   | 4710      | 8462             | 4088             | 26               | 0      | 1    | 431      | 1451      | 4242             | 2                | 10           | 35   |
| 20   | 4728      | 8578             | 4150             | 22               | 0      | 3    | 428      | 1441      | 4110             | 12               | 12           | 28   |
| 21   | 4686      | 8564             | 4153             | 13               | 2      | 0    | 394      | 1419      | 4016             | 2                | 6            | 22   |
| 22   | 4719      | 8502             | 4144             | 13               | 0      | 0    | 396      | 1409      | 4014             | 2                | 5            | 23   |
| 23   | 4684      | 8375             | 4133             | 12               | 0      | 1    | 400      | 1403      | 3981             | 8                | 16           | 26   |
| 24   | 4703      | 8418             | 4131             | 9                | 0      | 0    | 407      | 1364      | 3971             | 0                | 2            | 23   |
| 25   | 4743      | 8446             | 4128             | 7                | 0      | 0    | 398      | 1360      | 3944             | 7                | 3            | 21   |
| 26   | 4761      | 8476             | 4131             | 5                | 0      | 0    | 407      | 1358      | 3925             | 2                | 9            | 33   |
| 27   | 4745      | 8348             | 4090             | 7                | 1      | 0    | 407      | 1349      | 3916             | 2                | 8            | 32   |
| 28   | 4717      | 8459             | 4108             | 2                | 1      | 0    | 393      | 1341      | 3895             | 0                | 3            | 13   |
| 29   | 4699      | 8454             | 4106             | 6                | 0      | 0    | 418      | 1335      | 3854             | 13               | 17           | 20   |
| 30   | 4678      | 8374             | 4081             | 16               | 0      | 2    | 410      | 1322      | 3867             | 5                | 6            | 19   |
| 31   | 4662      | 8436             | 4092             | 11               | 0      | 0    | 434      | 1318      | 3856             | 3                | 4            | 14   |
| 32   | 4628      | 8363             | 4080             | 20               | 0      | 9    | 432      | 1309      | 3824             | 2                | 3            | 7    |

**Table 3.** Sorties flown by Red and Blue in direct support of ground forces

|     |                      |             | Air Sorties |                     |           |
|-----|----------------------|-------------|-------------|---------------------|-----------|
| Day | Blue                 | Red         | Day         | Blue                | Red       |
| (i) | $As_{\mathbf{B}}(i)$ | $As_{R}(i)$ | (i)         | As <sub>B</sub> (i) | $As_R(i)$ |
| 0   | 15                   | 0           | 17          | 1295                | 8         |
| 1   | 48                   | 108         | 18          | 1195                | 188       |
| 2   | 760                  | 249         | 19          | 971                 | 0         |
| 3   | 1341                 | 195         | 20          | 24                  | 100       |
| 4   | 477                  | 225         | 21          | 1507                | 47        |
| 5   | 0                    | 0           | 22          | 463                 | 0         |
| 6   | 64                   | 19          | 23          | 456                 | 0         |
| 7   | 119                  | 32          | 24          | 576                 | 45        |
| 8   | 1413                 | 234         | 25          | 0                   | 0         |
| 9   | 2143                 | 254         | 26          | 257                 | 77        |
| 10  | 1754                 | 129         | 27          | 153                 | 0         |
| 11  | 1686                 | 203         | 28          | 47                  | 0         |
| 12  | 886                  | 178         | 29          | 707                 | 65        |
| 13  | 727                  | 15          | 30          | 617                 | 155       |
| 14  | 831                  | 95          | 31          | 210                 | 0         |
| 15  | 952                  | 19          | 32          | 394                 | 29        |
| 16  | 718                  | 175         |             |                     |           |

data, for which primary source records are nearly non-existent, was almost completely estimated" [2, p. V-1]. The DMSI database did not include the significant Allied air operations of a strategic nature against industrial targets and railroad transportation networks. However, all estimated daily German air data is included and Fricker noted that this might mean German air operations are overcounted in relation to the Allies air operations.

Fricker included air sortie categories: attack armed reconnaissance, bombing, patrol, immediate support, support. Fricker excluded air sortie categories: aerial resupply, escort, pathfinding, para-drop, photo recon, scramble, and weather recon.

Fricker modelled the Ardennes Campaign from start to finish as one battle by estimating "initial force sizes that reflect all of the troops that eventually fought in the campaign and then subtract[ing] the casualty attrition from this total on a daily basis" [4, p. 4]. Fricker developed an algorithm that estimated each initial battle resource size "by sequentially stepping through each resource from day 0 to day 32, accounting for any local reserves

**Table 4.** The reformatted Ardennes battle manpower data for the Allied (Blue) and German (Red) forces

|     | Reformatted Manpower |                         |           |                     |           |                        |           |                     |  |  |  |  |  |
|-----|----------------------|-------------------------|-----------|---------------------|-----------|------------------------|-----------|---------------------|--|--|--|--|--|
|     |                      | Blu                     | e         |                     |           | Red                    | d         |                     |  |  |  |  |  |
| Day | Availab              | le: Mp <sub>B</sub> (i) | Killed: I | Mp <sub>B</sub> (i) | Available | e: Mp <sub>R</sub> (i) | Killed: N | Ир <sub>В</sub> (i) |  |  |  |  |  |
| (i) | Combat               | Total                   | Combat    | Total               | Combat    | Total                  | Combat    | Total               |  |  |  |  |  |
| 0   | 513514               | 1075857                 | 458       | 1468                | 385955    | 656278                 | 0         | 0                   |  |  |  |  |  |
| 1   | 513056               | 1074389                 | 1589      | 3062                | 385955    | 656278                 | 2191      | 5590                |  |  |  |  |  |
| 2   | 511467               | 1071327                 | 2383      | 5712                | 383764    | 650688                 | 2423      | 5559                |  |  |  |  |  |
| 3   | 509084               | 1065615                 | 2085      | 5093                | 381341    | 645129                 | 2015      | 4711                |  |  |  |  |  |
| 4   | 506999               | 1060522                 | 2175      | 12101               | 379326    | 640418                 | 1993      | 4332                |  |  |  |  |  |
| 5   | 504824               | 1048421                 | 1389      | 5334                | 377333    | 636086                 | 1985      | 4351                |  |  |  |  |  |
| 6   | 503435               | 1043087                 | 1174      | 3197                | 375348    | 631735                 | 2084      | 4582                |  |  |  |  |  |
| 7   | 502261               | 1039890                 | 1905      | 4815                | 373264    | 627153                 | 2046      | 4531                |  |  |  |  |  |
| 8   | 500356               | 1035075                 | 1548      | 3730                | 371218    | 622622                 | 2468      | 5351                |  |  |  |  |  |
| 9   | 498808               | 1031345                 | 1608      | 3857                | 368750    | 617271                 | 2685      | 5609                |  |  |  |  |  |
| 10  | 497200               | 1027488                 | 1527      | 3635                | 366065    | 611662                 | 2538      | 5563                |  |  |  |  |  |
| 11  | 495673               | 1023853                 | 2320      | 5411                | 363527    | 606099                 | 2504      | 5526                |  |  |  |  |  |
| 12  | 493353               | 1018442                 | 1376      | 3596                | 361023    | 600573                 | 2544      | 5751                |  |  |  |  |  |
| 13  | 491977               | 1014846                 | 1277      | 3435                | 358479    | 594822                 | 2121      | 4511                |  |  |  |  |  |
| 14  | 490700               | 1011411                 | 1005      | 2934                | 356358    | 590311                 | 1682      | 3900                |  |  |  |  |  |
| 15  | 489695               | 1008477                 | 1042      | 2743                | 354676    | 586411                 | 1844      | 4076                |  |  |  |  |  |
| 16  | 488653               | 1005734                 | 1159      | 3022                | 352832    | 582335                 | 1550      | 3635                |  |  |  |  |  |
| 17  | 487494               | 1002712                 | 1004      | 2773                | 351282    | 578700                 | 1788      | 3898                |  |  |  |  |  |
| 18  | 486490               | 999939                  | 832       | 2631                | 349494    | 574802                 | 1724      | 3821                |  |  |  |  |  |
| 19  | 485658               | 997308                  | 1831      | 3580                | 347770    | 570981                 | 1752      | 3892                |  |  |  |  |  |
| 20  | 483827               | 993728                  | 2259      | 4899                | 346018    | 567089                 | 2054      | 4283                |  |  |  |  |  |
| 21  | 481568               | 988829                  | 1639      | 4093                | 343964    | 562806                 | 1709      | 3767                |  |  |  |  |  |
| 22  | 479929               | 984736                  | 1228      | 3388                | 342255    | 559039                 | 1946      | 4169                |  |  |  |  |  |
| 23  | 478701               | 981348                  | 1868      | 4627                | 340309    | 554870                 | 1865      | 4076                |  |  |  |  |  |
| 24  | 476833               | 976721                  | 1276      | 3928                | 338444    | 550794                 | 1676      | 3756                |  |  |  |  |  |
| 25  | 475557               | 972793                  | 1379      | 3725                | 336768    | 547038                 | 1434      | 3466                |  |  |  |  |  |
| 26  | 474178               | 969068                  | 1643      | 4002                | 335334    | 543572                 | 1696      | 3732                |  |  |  |  |  |
| 27  | 472535               | 965066                  | 1281      | 3502                | 333638    | 539840                 | 1536      | 3967                |  |  |  |  |  |
| 28  | 471254               | 961564                  | 1083      | 3590                | 332102    | 535873                 | 1167      | 3199                |  |  |  |  |  |
| 29  | 470171               | 957974                  | 1681      | 4189                | 330935    | 532674                 | 1579      | 4026                |  |  |  |  |  |
| 30  | 468490               | 953785                  | 1597      | 4277                | 329356    | 528648                 | 1504      | 3866                |  |  |  |  |  |
| 31  | 466893               | 949508                  | 2098      | 4477                | 327852    | 524782                 | 1425      | 3744                |  |  |  |  |  |
| 32  | 464795               | 945031                  | 1483      | 3600                | 326427    | 521038                 | 1213      | 3219                |  |  |  |  |  |

**Table 5.** The reformatted Ardennes battle equipment data for tanks, APCs, and artillery of the Allied (Blue) and German (Red) forces

|     | Reformatted Equipment |                  |                  |                  |        |      |          |           |           |                  |              |      |
|-----|-----------------------|------------------|------------------|------------------|--------|------|----------|-----------|-----------|------------------|--------------|------|
|     | Blue                  |                  |                  |                  |        |      |          | Red       |           |                  |              |      |
|     | 1                     | Availabl         | e                |                  | Killed |      | A        | Availabl  | e         |                  | Killed       |      |
| Day | Tank                  | APC              | Art              | Tank             | APC    | Art  | Tank     | APC       | Art.      | Tank             | APC          | Art  |
| (i) | $T_B(i)$              | <sub>B</sub> (i) | <sub>B</sub> (i) | $T_{\dot{B}}(i)$ | ġ(i)   | ġ(i) | $T_R(i)$ | $_{R}(i)$ | $_{R}(i)$ | $T_{\dot{R}}(i)$ | $\dot{R}(i)$ | ġ(i) |
| 0   | 5350                  | 8821             | 4275             | 1                | 0      | 0    | 747      | 2161      | 5130      | 0                | 0            | 0    |
| 1   | 5349                  | 8821             | 4275             | 12               | 33     | 15   | 747      | 2161      | 5130      | 10               | 5            | 6    |
| 2   | 5337                  | 8788             | 4260             | 43               | 46     | 9    | 737      | 2156      | 5124      | 7                | 20           | 41   |
| 3   | 5294                  | 8742             | 4251             | 60               | 18     | 6    | 730      | 2136      | 5083      | 13               | 12           | 27   |
| 4   | 5234                  | 8724             | 4245             | 64               | 37     | 14   | 717      | 2124      | 5056      | 21               | 18           | 19   |
| 5   | 5170                  | 8687             | 4231             | 33               | 11     | 33   | 696      | 2106      | 5037      | 11               | 22           | 24   |
| 6   | 5137                  | 8676             | 4198             | 10               | 6      | 10   | 685      | 2084      | 5013      | 21               | 19           | 30   |
| 7   | 5127                  | 8670             | 4188             | 15               | 13     | 2    | 664      | 2065      | 4983      | 5                | 16           | 16   |
| 8   | 5112                  | 8657             | 4186             | 36               | 6      | 10   | 659      | 2049      | 4967      | 24               | 34           | 35   |
| 9   | 5076                  | 8651             | 4176             | 48               | 18     | 5    | 635      | 2015      | 4932      | 22               | 20           | 94   |
| 10  | 5028                  | 8633             | 4171             | 24               | 2      | 4    | 613      | 1995      | 4838      | 28               | 36           | 59   |
| 11  | 5004                  | 8631             | 4167             | 20               | 2      | 4    | 585      | 1959      | 4779      | 14               | 31           | 34   |
| 12  | 4984                  | 8629             | 4163             | 19               | 3      | 3    | 571      | 1928      | 4745      | 13               | 31           | 23   |
| 13  | 4965                  | 8626             | 4160             | 18               | 3      | 2    | 558      | 1897      | 4722      | 7                | 22           | 31   |
| 14  | 4947                  | 8623             | 4158             | 16               | 2      | 0    | 551      | 1875      | 4691      | 7                | 15           | 19   |
| 15  | 4931                  | 8621             | 4158             | 20               | 0      | 0    | 544      | 1860      | 4672      | 21               | 7            | 26   |
| 16  | 4911                  | 8621             | 4158             | 10               | 2      | 1    | 523      | 1853      | 4646      | 5                | 14           | 17   |
| 17  | 4901                  | 8619             | 4157             | 14               | 0      | 0    | 518      | 1839      | 4629      | 9                | 8            | 36   |
| 18  | 4887                  | 8619             | 4157             | 24               | 0      | 0    | 509      | 1831      | 4593      | 6                | 10           | 14   |
| 19  | 4863                  | 8619             | 4157             | 26               | 0      | 1    | 503      | 1821      | 4579      | 2                | 10           | 35   |
| 20  | 4837                  | 8619             | 4156             | 22               | 0      | 3    | 501      | 1811      | 4544      | 12               | 12           | 28   |
| 21  | 4815                  | 8619             | 4153             | 13               | 2      | 0    | 489      | 1799      | 4516      | 2                | 6            | 22   |
| 22  | 4802                  | 8617             | 4153             | 13               | 0      | 0    | 487      | 1793      | 4494      | 2                | 5            | 23   |
| 23  | 4789                  | 8617             | 4153             | 12               | 0      | 1    | 485      | 1788      | 4471      | 8                | 16           | 26   |
| 24  | 4777                  | 8617             | 4152             | 9                | 0      | 0    | 477      | 1772      | 4445      | 0                | 2            | 23   |
| 25  | 4768                  | 8617             | 4152             | 7                | 0      | 0    | 477      | 1770      | 4422      | 7                | 3            | 21   |
| 26  | 4761                  | 8617             | 4152             | 5                | 0      | 0    | 470      | 1767      | 4401      | 2                | 9            | 33   |
| 27  | 4756                  | 8617             | 4152             | 7                | 1      | 0    | 468      | 1758      | 4368      | 2                | 8            | 32   |
| 28  | 4749                  | 8616             | 4152             | 2                | 1      | 0    | 466      | 1750      | 4336      | 0                | 3            | 13   |
| 29  | 4747                  | 8615             | 4152             | 6                | 0      | 0    | 466      | 1747      | 4323      | 13               | 17           | 20   |
| 30  | 4741                  | 8615             | 4152             | 16               | 0      | 2    | 453      | 1730      | 4303      | 5                | 6            | 19   |
| 31  | 4725                  | 8615             | 4150             | 11               | 0      | 0    | 448      | 1724      | 4284      | 3                | 4            | 14   |
| 32  | 4714                  | 8615             | 4150             | 20               | 0      | 9    | 445      | 1720      | 4270      | 2                | 3            | 7    |

 $(X_{lr})$  or the addition of reinforcements  $(X_r)$  as they may result, while first using local reserves for any force increase before assuming that reinforcements were added" [4, p. 6]. Fricker reflected this reformatted data in Tables 4 and 5.

This chapter presented Tables 1-5 which include all the data sourced for this analysis.

# **Chapter 2: Fitting the Lanchester Equations**

This chapter will cover how to fit the Ardennes battle data to the Lanchester equations. Considering the Lanchester equations in general form (equations 1&2), the resources data must be expressed as single forces and losses of red and blue.

## 2.1 Aggregated Forces

It must be identified how much each resource influences overall force. For example, one tank will not be equivalent in force to one personnel of manpower. Bracken [1] assigned each resource an effectiveness weighting to estimate their contribution to overall forces. These weights were derived from standard U.S. Army Concepts Analysis Agency practices.

| Table | 6. | Brac | ken W | /eig | htings |
|-------|----|------|-------|------|--------|
|-------|----|------|-------|------|--------|

| <u> </u>              |    |
|-----------------------|----|
| Manpower Weighting    | 1  |
| Tank Weighting        | 20 |
| APC Weighting         | 5  |
| Art Weighting         | 40 |
| Air Sorties Weighting | 0  |

By aggregating resource forces, Bracken formed homogenous equations that represent overall forces for Blue and Red. Overall force losses can be aggregated similarly, aggregating resource force losses instead of resource forces.

Aggregated overall forces are considered both including and excluding air force:

Force = 
$$(Mp*MpW) + (T*TW) + (APC*APCW) + (Art*ArtW) [+(As*AsW)]$$
 (3)

Where MpW is manpower weighting, TW is tank weighting, APCW is APC weighting, ArtW is artillery weighting, and AsW is air sorties weighting.

Manpower, tank, APC, artillery and air sortie inputs can either all be "available" or all be "killed" to calculate either force or force loss respectively.

# 2.2 Bracken approach

Bracken [1] calculated these aggregated forces for combat manpower and total manpower, and applied the general form of lanchester equations as well as his own version including a tactical parameter d which considers the impact of whether a force is attacking or defending. By searching over a grid in the {a,b,p,q,d} space for the minimum sum of square residuals (SSR), the best model parameters could be found. Bracken specified search ranges for each parameter, limiting the model. "However, it does guarantee that the identified parameters are optimal over the options made available" [1, p. 9].

## 2.3 Linear Regression

Similar to Fricker [4], this analysis more accurately estimates the model parameters by using linear regression on logarithmically transformed Lanchester equations. The Lanchester equations are originally in a nonlinear format. Willard [9] logarithmically transformed equations (1) & (2) by estimating  $\alpha$  and  $\beta$  parameters:

$$\dot{B} = a R^{p} B^{q}$$

$$\dot{R} = b B^{p} R^{q}$$

$$\frac{\dot{B}}{\dot{R}} = \left(\frac{a}{b}\right) \frac{R^{p-q}}{B^{p-q}}$$

$$\alpha = \frac{a}{b}$$

$$\beta = p - q$$

$$\frac{\dot{B}}{\dot{R}} = \alpha \left(\frac{R}{B}\right)^{\beta}$$

$$\log\left(\frac{\dot{B}}{\dot{R}}\right) = \beta \log\left(\frac{R}{B}\right) + \log(\alpha) \qquad (4)$$

Equation (4) is in a linear form that can be solved by linear regression. Using linear regression to solve these equations can minimise the sum of square residuals better than Bracken's brute force approach as it does not require search restrictions. Also, there are many statistical techniques that can only be used when analysing linear models to assess the significance of parameter results, making linear models preferable.

## 2.4 Lanchester Equations in general form

 $\alpha$  and  $\beta$  are not found in the general form of the Lanchester equations. The parameters that need to be found are p, q, a, and b. To extract these parameter values from  $\alpha$  and  $\beta$ , a second equation must be solved by logarithmic transformation as well:

$$\dot{B}\dot{R} = ab(BR)^{p+q}$$

$$\gamma = ab$$

$$\delta = p + q$$

$$\dot{B}\dot{R} = \gamma(BR)^{\delta}$$

$$\log(\dot{B}\dot{R}) = \delta \log(BR) + \log(\gamma) \quad (5)$$

From  $\delta$  and  $\beta$ ;

$$p = \frac{1}{2} (\delta + \beta)$$

$$q = \frac{1}{2} \left( \delta - \beta \right)$$

From  $\alpha$  and  $\gamma$ ;

$$a = \sqrt{\alpha \gamma}$$

$$b = \sqrt{\frac{\gamma}{\alpha}}$$

By solving equations (4) and (5) by linear regression; a, b, p, and q can be calculated and a general form of Lanchester equations can be found. The Lanchester equations can then be used to find estimated  $\dot{B}(t)$  and  $\dot{R}(t)$  values with known B(t) and R(t) values. These can then be compared to the actual  $\dot{B}(t)$  and  $\dot{R}(t)$  values from the Ardennes battle data, and by considering the residual data, the degree of error can be critically evaluated.

The linear regression techniques outlined in this chapter will be used in this analysis to fit the Lanchester equations.

# **Chapter 3: Optimization Techniques**

This chapter will discuss some optimisation techniques that could be used to improve the fit of the Lanchester Equations and how they may be implemented.

#### 3.1 Splitting the data

Bracken modelled only the first ten days of the Ardennes Campaign. Fricker reformatted the data and modelled the Campaign from start to finish. This analysis will split the Ardennes campaign in to two battles, split at the turning point of the battle.

The Germans attacked days 0-5 and the Allies attacked days 6-32, with the Germans launching an attack on day 17 but having lost the initiative by this stage. Day 0 data for the Germans is incomplete and can't be included in the model.

It is identified that on day 8 the skies cleared and the Allies gained the advantage of being able to use their superior air force. On day 9 the German advance was halted. On day 10 Allied counter offensives began.

Ultimately the turning point of the battle was day 10 when the Allies began pushing back the Germans. Therefore, the two splits analysed will be day 1-10 / day 11-32.

# 3.2 Equipment Weighting

These weightings are considered fixed values by Bracken and Fricker. This analysis will consider searching over a range for the weightings that improve the fit of the Lanchester equations. The influence individual resources will have on force will be battle specific. It can be assumed that the weightings derived from standard U.S. Army Concepts Analysis Agency practices provide a reasonably good estimate for the Ardennes battle data, and that the search range for better weightings can be centred around these weightings. Manpower weighting will remain 1, and other weightings will be optimised around this. An appropriate range must be used to allow significant changes without allowing unrealistic weightings with poor physical interpretation.

#### 3.3 Resource subdivisions

Fricker doesn't use the calculated reinforcements and local reserves for each resource in his analysis other than to calculate initial resource size for the campaign. By implementing Fricker's algorithm, a MATLAB programme was developed to replicate

the reinforcements and local reserves for each resource for each day of the Ardennes Campaign (see Appendix 1). With this data, resources in Table 1 & 2 can be divided into reinforcements (REINF), local reserves (LRes) and surviving (Surv) resources for each day, and each resource can be expressed as the sum of these subdivisions (see Appendices 2-11 for subdivisions of each resource). The Bracken data for each resource consisted of the sum of surviving and reinforcement resources, and did not consider local reserves. The Bracken data can be described as the "used" resources each day, whereas the sum of surviving, reinforcements and local reserves can be described as the "available" resources each day.

But each of these subdivisions will not have the same influence on the force of the resource. Local reserves may only participate in battle for part of a day or not at all that day. The surviving resources may be fatigued /injured/damaged from previous days of battle whilst still being able to participate in battle, whereas reinforcements are new resources that will not suffer from any fatigue/injury/damage. This logic identifies ranked weightings as;

LRes Weighting < Surv Weighting < REINF Weighting

If surviving resources, local reserves and reinforcements weightings could vary freely, some unrealistic weightings might be observed that lack physical interpretation.

Therefore, surviving resources is assigned a weighting of 1 and the weightings of local reserves and reinforcements can vary within predefined search ranges around this for each resource to optimise the fit of the Lanchester equations within the search ranges. It is assumed that any killed will first be decreased from surviving resources.

## 3.4 Reformatted resources subdivisions

A similar process can be implemented for Fricker's reformatted data. For each day, a reformatted resource can be divided into surviving resources, reinforcements, local reserves, and nonlocal reserves (Res) and expressed as its sum of these subdivisions (see Appendices 2-11 for subdivisions of each resource). These external reserves will have an

even lower weighting than local reserves as they are yet to join the battle and are further away from the locus of the battle, not readily available to contribute to battle that day.

This logic identifies ranked weightings as;

Res Weighting < LRes Weighting < Surv Weighting < REINF Weighting

Similarly, assigning surviving resources a weighting of 1 for consistency; reserves, local reserves and reinforcements can vary freely within defined search ranges around this for each resource to optimise the fit of the Lanchester equations within the search ranges.

## 3.5 Logistics & support data

By considering total manpower and combat manpower, support manpower can be reasonably deducted by subtracting combat manpower from total manpower. It can be seen from this that the Blue manpower have a larger proportion of their manpower consisting of support personnel than Red manpower. As support forces increase the effectiveness of combat forces [8], this larger proportion of support personnel in the Blue army makes their combat effectiveness higher than that of the Red army. With the large number of Blue APCs engaging during the Ardennes Campaign, if APCs are included as support forces despite having combat capabilities, the support to combat ratio of Blue increases even higher above Red forces.

However, when this analysis calculated local reserves and reinforcement resources for non-combat manpower, some negative values were produced (see Appendices 12 & 13). This identifies possible weakness in the algorithm used to estimate local reserves and reinforcements. Assumptions are made that any force increase uses local reserves before adding reinforcements. There can also be contradiction and inconsistency in records and reports about which personnel count as combat manpower, and this can lead to overcounting of combat or total manpower. It is illogical to include these negative support data values in this analysis.

To optimise the fit of the Lanchester equations, this analysis will test splitting the data, varying equipment weightings and varying subdivision weightings as outlined in this chapter.

# **Chapter 4: Analysis & Results**

This chapter will include an outline of forces data and analysis of the results of applying the optimisation techniques outlined in the previous chapter to the modelling process.

## **Analysis of Data**

Figure 1 outlines combat forces for modelling Lanchester equations before considering any optimisation techniques.

Figure 1:



Figure 2 outlines total forces for modelling Lanchester equations before considering any optimisation techniques.

Figure 2:



# 4.1 Splitting the data

Fricker modelled the Ardennes Campaign from start to finish, day 1-32. Day 0 couldn't be included because of the missing German data. This section will compare the results from modelling day 1-32 with the results from modelling the campaign as two battles split at the turning point of the battle; day 1-10 and day 11-32.

This comparison will be analysed using the Bracken & Fricker data considering combat, total, reformatted combat and reformatted total force, each considered including and excluding air force. This will identify how well the Lanchester equations fits to each of these conditions to analyse variation in fits and identify which fit is best.

Before considering any other optimisation techniques, the aggregation of forces (equation 3) can be carried out with Bracken's fixed weightings and not considering subdivisions of resources using a MATLAB code that was developed (see Appendix 14). Linear regression is used to solve equation (4) and to calculate values for  $\alpha$  and  $\beta$ , and find the variance of the model to assess how well it fits the data.

**Table 7.** Comparison of Lanchester equations fit including and excluding Air Force (6 s.f.)

|             |       | Exc       | luding Air l | Force      | Inc       | luding Air l | Force      |
|-------------|-------|-----------|--------------|------------|-----------|--------------|------------|
|             | Day   | alpha     | beta         | Variance   | alpha     | beta         | Variance   |
|             | 1-32  | 0.450544  | 0.652411     | 0.121636   | 0.470210  | 0.733204     | 0.149430   |
| Combat      | 1-10  | 0.545500  | 2.53337      | 0.485355   | 0.571645  | 2.32539      | 0.522395   |
|             | 11-32 | 0.184829  | -1.53405     | 0.149637   | 0.169175  | -1.66186     | 0.137399   |
|             | 1-32  | 0.911344  | 0.246170     | 0.0142401  | 0.947410  | 0.321135     | 0.0237491  |
| Total       | 1-10  | 1.09638   | 0.895519     | 0.0670789  | 1.15725   | 1.03180      | 0.0932888  |
|             | 11-32 | 0.177591  | -2.76280     | 0.412511   | 0.158803  | -2.89816     | 0.372433   |
| Reformatted | 1-32  | 0.641071  | 1.57346      | 0.0285523  | 1.09458   | 2.91337      | 0.113690   |
| Combat      | 1-10  | 12703.6   | 33.0712      | 0.497327   | 4.16251   | 6.83623      | 0.344360   |
|             | 11-32 | 0.0374867 | -5.97728     | 0.221984   | 0.0432757 | -5.28583     | 0.124230   |
| Reformatted | 1-32  | 0.621036  | -0.532960    | 0.00367991 | 1.19447   | 0.733209     | 0.00704552 |
| Total       | 1-10  | 216588    | 26.7907      | 0.179452   | 217.850   | 11.6014      | 0.261115   |
|             | 11-32 | 0.0246498 | -6.47466     | 0.517825   | 0.0181501 | -6.96298     | 0.423276   |
| Mean        |       |           |              | 0.224940   |           |              | 0.214368   |

It can be seen from Table 7 that in all cases for day 1-32, the variances are weak and therefore these models don't fit the data well. The models for day 1-10 and day 11-32 generally have better variances, but still don't fit the data overly well with the best variances being around 0.5 and "total" day 1-10 being particularly weak (0.0670789).

Excluding air force, the best fit to the data was "reformatted total" day 11-32 with a variance of 0.517825. Including air force, the best fit to the data was "combat" day 1-10 with a variance of 0.522395. The mean variance is slightly better when excluding air force, indicating that generally the models perform slightly better excluding air force. However, it is a small difference and more importantly it can be seen that models for day 1-32 and day 1-10 improve when air force is included except for "reformatted combat" day 1-10, and models of day 11-32 consistently weaken when air force is included. Air force is a stronger variable in the early days of the Campaign and a weaker variable towards the end of the Campaign.

Based on the information in table 7, the rest of this analysis will not consider models of day 1-32, and will instead focus on improving the models for day 1-10 and day 11-32.

## 4.2 Equipment Weightings

This section will analyse the improvement of the models when allowing the equipment weightings to vary.

Better equipment weightings that improve the fit of the model were searched for within an appropriate range with reasonable minimum and maximum values so that any results would have a physical interpretation (see appendix 15). With manpower weighting being fixed as 1, it would be hard to justify a tank having a weighting of 1, or an APC having a weighting of 100 or more. Tank weighting, artillery weighting and air sortic weighting were all allowed to vary between ten either side of Bracken's respective weightings. As it is hard to justify weighting an APC equivalent to one manpower, APC was only allowed to vary as low as 2. APC could vary as high as 20 to give a similar search range as the other resources.

It can be seen from Tables 8 and 9 that all variances have improved. "Reformatted combat" day 1-10 gives the best variance excluding air force (0.678354), and "combat" day 1-10 gives the best variance including air force (0.716455). From the mean, models including air force have improved better than models excluding air force as they have an extra variable varying.

An important thing to note is how almost all optimal equipment weightings within the search ranges are found at the very edges of the ranges. This suggests that the global minima of the equipment weightings are found outside of the search ranges. This is surprising because finding minima much further outside of the search range would lack physical interpretation, suggesting inappropriate equipment weightings. Appendices 16 and 17 investigated the results when allowing the model to vary all the equipment weightings between 0 and 100 in increments of 5. Very surprisingly, most of the optimal weightings were still found at the edges of the search ranges, suggesting global minima further outside of this range. Some models were fitting best assigning all equipment resources a weighting of 100, greatly reducing the influence manpower has on the model. Other models were fitting best setting 1 or even 2 equipment resources to 0, suggesting that those resources had no effect at all on the model. Suggesting for example, it didn't matter whether a force had 1 tank or 1000000 tanks, this would not affect the outcome of the battle in any way. Clearly this model lacks physical interpretation.

The models reflected in tables 8 and 9 identify realistic equipment weighting variables with a physical interpretation and can be considered an improvement on models with fixed Bracken equipment weightings.

Table 8. Lanchester equations fit with equipment weighted

|             |       | <b>Equipment Weightings</b> |               |                |           | Results  |          |
|-------------|-------|-----------------------------|---------------|----------------|-----------|----------|----------|
|             | Day   | TW (10:1:30)                | APCW (2:1:20) | ArtW (30:1:50) | alpha     | beta     | Variance |
| Combat      | 1-10  | 10                          | 20            | 30             | 0.736836  | 3.02674  | 0.642301 |
| Combat      | 11-32 | 10                          | 20            | 30             | 0.117405  | -2.02678 | 0.235629 |
| Total       | 1-10  | 30                          | 20            | 50             | 1.36299   | 1.41458  | 0.157499 |
| Total       | 11-32 | 10                          | 20            | 30             | 0.113119  | -3.19866 | 0.493732 |
| Reformatted | 1-10  | 10                          | 20            | 50             | 120027    | 37.9632  | 0.678354 |
| Combat      | 11-32 | 10                          | 20            | 30             | 0.0146629 | -6.69666 | 0.303929 |
| Reformatted | 1-10  | 17                          | 20            | 50             | 480877    | 32.2201  | 0.292193 |
| Total       | 11-32 | 10                          | 20            | 30             | 0.0150425 | -6.70054 | 0.579521 |
| Mean        |       |                             |               |                |           |          | 0.422895 |

Table 9. Lanchester equations fit with equipment weighted, including air force

|             |       |                 | Equipment     | Weightings     |               | Results    |          |          |  |  |
|-------------|-------|-----------------|---------------|----------------|---------------|------------|----------|----------|--|--|
|             | Day   | TW<br>(10:1:30) | APCW (2:1:20) | ArtW (30:1:50) | AsW (20:1:40) | alpha      | beta     | Variance |  |  |
| Combat      | 1-10  | 10              | 20            | 50             | 40            | 0.658104   | 3.01481  | 0.716455 |  |  |
| Combat      | 11-32 | 10              | 20            | 30             | 20            | 0.107345   | -2.14570 | 0.223310 |  |  |
| Total       | 1-10  | 30              | 20            | 50             | 40            | 1.46483    | 1.54681  | 0.200257 |  |  |
| Total       | 11-32 | 10              | 20            | 30             | 20            | 0.101451   | -3.33150 | 0.467535 |  |  |
| Reformatted | 1-10  | 10              | 20            | 50             | 20            | 58.7082    | 14.4419  | 0.605424 |  |  |
| Combat      | 11-32 | 10              | 20            | 35             | 20            | 0.0110404  | -7.33626 | 0.250235 |  |  |
| Reformatted | 1-10  | 10              | 20            | 50             | 40            | 321.085    | 12.4246  | 0.381297 |  |  |
| Total       | 11-32 | 10              | 20            | 30             | 20            | 0.00999109 | -7.29246 | 0.536734 |  |  |
| Mean        |       |                 |               |                |               |            |          | 0.422656 |  |  |

## 4.3 Subdivisions of forces

This section will analyse the improvement of the models when allowing the weightings for subdivisions of resources to vary.

Reinforcements, local reserves and reserves will not have the same contribution to the force of the resource. Appropriate weightings have been identified as;

Res Weighting < LRes Weighting < Surv Weighting < REINF Weighting

Where reserves are included when considering Fricker's reformatted data and excluded when considering Bracken's original data, and surviving resources are assigned a weighting of 1.

Weightings were found under the search operations that reinforcements weighting must be at least 1 and at most 3, and that local reserves and reserves can have a weighting of 0 and at most 0.9. Because of the amount of iterations required to search through subdivisions for each resource, small increments are not used. REINF increments in 0.4s, LReserves increments in 0.3s. This decreases the computation runtime massively compared to searching in increments of 0.1s, while still searching over the same range.

Table 10. Lanchester equations fit with subdivisions weighted

|          |       |           |           | Weig            | htings                | Results  |           |           |           |  |
|----------|-------|-----------|-----------|-----------------|-----------------------|----------|-----------|-----------|-----------|--|
|          | Day   | Resources | Surviving | REINF (1:0.4:3) | Lreserves (0:0.3:0.9) | Reserves | alpha     | beta      | variance  |  |
|          |       | Manpower  | 1         | 1               | 0.9                   | 0        |           |           |           |  |
|          | 1-10  | Tank      | 1         | 1               | 0.9                   | 0        | 107126000 | 196251000 | 0.501572  |  |
|          | 1-10  | APC       | 1         | 1               | 0.9                   | 0        | 10/120000 | 190231000 | 0.301372  |  |
| Combat   |       | Artillery | 1         | 1               | 0.9                   | 0        |           |           |           |  |
| Combat ' |       | Manpower  | 1         | 3               | 0.9                   | 0        |           | -3.42772  |           |  |
|          | 11-32 | Tank      | 1         | 3               | 0.9                   | 0        | 0.0983257 |           | 0.271406  |  |
|          | 11-32 | APC       | 1         | 3               | 0.9                   | 0        | 0.0963237 |           |           |  |
|          |       | Artillery | 1         | 3               | 0.9                   | 0        |           |           |           |  |
|          |       | Manpower  | 1         | 1               | 0.9                   | 0        |           | 0.907362  | 0.0680541 |  |
|          | 1-10  | Tank      | 1         | 1               | 0.9                   | 0        | 1.09876   |           |           |  |
|          | 1-10  | APC       | 1         | 1               | 0                     | 0        | 1.09870   |           |           |  |
| Total •  |       | Artillery | 1         | 1               | 0.9                   | 0        |           |           |           |  |
| Totai    |       | Manpower  | 1         | 2.2             | 0.9                   | 0        |           |           |           |  |
|          | 11-32 | Tank      | 1         | 3               | 0.9                   | 0        | 0.0972551 | -4.01067  | 0.523632  |  |
|          | 11-32 | APC       | 1         | 3               | 0.9                   | 0        | 0.0972331 | -4.0100/  | 0.323032  |  |
|          |       | Artillery | 1         | 3               | 0.9                   | 0        |           |           |           |  |
| Mean     |       |           |           |                 |                       |          |           |           | 0.341166  |  |

Tables 10 and 11 do not include reformatted models as this would involve 12 for loops and MATLAB did not have the memory to produce matrices of the required size.

As expected from previous analysis, including air force improved models of day 1-10 best, and excluding air force improved models of day 11-32 best. Other cases did not improve models much.

Like equipment, the optimal weightings are found at the edges of search ranges suggesting that global minima are found outside the search range. Appendices 18 and 19 investigated the results when allowing the model to vary all the subdivision weightings between 0 and 5. Similar unusual results are observed with many optimal weightings still being at the edges of the search range suggesting a global minimum further still outside of this search range. It would lack physical interpretation to consider these weightings, with some models suggesting high local reserves weightings and low reinforcements weightings.

Table 11. Lanchester equations fit with subdivisions weighted, including air force

|        |       |           |           | Weig            | ghtings               |          | Results   |          |           |  |
|--------|-------|-----------|-----------|-----------------|-----------------------|----------|-----------|----------|-----------|--|
|        | Day   | Resources | Surviving | REINF (1:0.4:3) | Lreserves (0:0.3:0.9) | Reserves | alpha     | beta     | variance  |  |
|        |       | Manpower  | 1         | 1               | 0.9                   | 0        |           |          |           |  |
|        | 1-10  | Tank      | 1         | 1               | 0.9                   | 0        | 0.572837  | 2.38535  | 0.538861  |  |
|        | 1-10  | APC       | 1         | 1               | 0.9                   | 0        | 0.372637  | 2.36333  | 0.556601  |  |
| Combat |       | Artillery | 1         | 1               | 0.9                   | 0        |           |          |           |  |
| Combat |       | Manpower  | 1         | 3               | 0.9                   | 0        |           | -3.90031 | 0.250868  |  |
|        | 11-32 | Tank      | 1         | 3               | 0.9                   | 0        | 0.0760007 |          |           |  |
|        | 11-32 | APC       | 1         | 3               | 0.9                   | 0        | 0.0700007 |          |           |  |
|        |       | Artillery | 1         | 3               | 0.9                   | 0        |           |          |           |  |
|        |       | Manpower  | 1         | 1               | 0.9                   | 0        |           | 1.04499  | 0.0945866 |  |
|        | 1-10  | Tank      | 1         | 1               | 0.9                   | 0        | 1.16026   |          |           |  |
|        | 1-10  | APC       | 1         | 1               | 0                     | 0        | 1.10020   |          |           |  |
| Total  |       | Artillery | 1         | 1               | 0.9                   | 0        |           |          |           |  |
| Total  |       | Manpower  | 1         | 1.4             | 0.9                   | 0        |           |          |           |  |
|        | 11-32 | Tank      | 1         | 3               | 0.9                   | 0        | 0.0840531 | -4.19910 | 0.483459  |  |
|        | 11-32 | APC       | 1         | 3               | 0.9                   | 0        | 0.0040331 | -4.19910 | 0.40545   |  |
|        |       | Artillery | 1         | 3               | 0.9                   | 0        |           |          |           |  |
| Mean   |       |           |           |                 |                       |          |           |          | 0.341944  |  |

The models reflected in tables 10 and 11 all showed improvement, but generally not as much as in the previous section with equipment weightings suggesting that varying equipment weightings has a stronger impact on the fit of the Lanchester equations than varying the subdivisions of resources.

#### 4.4 Alternative model

This section considers an alternative way of aggregating forces.

Reserves can be allowed to vary by considering an alternative model. Instead of calculating overall force as an aggregation of each resource (3), an alternative method would be to calculate overall force as an aggregation of overall subdivisions of forces. This can be done by calculating an overall Surviving, REINF, LReserves and reserves from the resources:

$$Surviving = Mp Surviving + T Surviving + APC Surviving + Art Surviving$$
 (6)

$$REINF = Mp REINF + T REINF + APC REINF + Art REINF$$
 (7)

Reserves = 
$$Mp$$
 Reserves +  $T$  Reserves +  $APC$  Reserves +  $Art$  Reserves (9)

Where each individual subdivision is already weighted as a force using Bracken's weightings.

And the equations for overall forces would be:

A MATLAB programme was developed to model this (see appendix 20).

This model generalises resources rather than considering subdivisions for resources individually, and so the variances for models excluding reserves are at most the same or slightly weaker than the previous subdivisions models. However, with this model requiring less computation this enables it to handle varying reserves as well to give reformatted models as well. And by varying reserves from 0-0.9, results no longer need to be reformatted or non-reformatted as reserves can be excluded by having a weighting of zero, or included if a higher weighting improves the variance.

Table 12. Lanchester equations fit with alternative model

|        |       |           | Weig            | ghtings               | Results              |           |          |             |  |
|--------|-------|-----------|-----------------|-----------------------|----------------------|-----------|----------|-------------|--|
|        | Day   | Surviving | REINF (1:0.4:3) | Lreserves (0:0.3:0.9) | Reserves (0:0.3:0.9) | alpha     | beta     | variance    |  |
| Combat | 1-10  | 1         | 1               | 0.9                   | 0.8                  | 13.6630   | 12.6438  | 0.536278    |  |
| Combat | 11-32 | 1         | 3               | 0.9                   | 0.9                  | 0.0150309 | -8.16466 | 0.343748628 |  |
| T-4-1  | 1-10  | 1         | 3               | 0.9                   | 0.9                  | 0.482595  | -1.29147 | 0.184928    |  |
| Total  | 11-32 | 1         | 2.6             | 0.9                   | 0.9                  | 0.0148090 | -7.42724 | 0.561583    |  |
| Mean   |       |           |                 |                       |                      |           |          | 0.406634    |  |

**Table 13.** Lanchester equations fit with alternative model, including air force

|        |       |           | Weig               | ghtings               | Results              |           |          |          |
|--------|-------|-----------|--------------------|-----------------------|----------------------|-----------|----------|----------|
|        | Day   | Surviving | REINF<br>(1:0.4:3) | Lreserves (0:0.3:0.9) | Reserves (0:0.3:0.9) | alpha     | beta     | variance |
| Combat | 1-10  | 1         | 1                  | 0.9                   | 0.3                  | 0.821777  | 3.36847  | 0.544834 |
| Combat | 11-32 | 1         | 3                  | 0.9                   | 0.2                  | 0.0595030 | -4.48690 | 0.252154 |
| Tatal  | 1-10  | 1         | 1                  | 0.9                   | 0.9                  | 51.1605   | 8.85291  | 0.245431 |
| Total  | 11-32 | 1         | 2.6                | 0.9                   | 0.1                  | 0.0657590 | -4.62522 | 0.471296 |
| Mean   |       |           |                    |                       |                      |           |          | 0.378429 |

This alternative model improves on the subdivision models.

#### 4.5 Combined Model

Equipment and subdivision weightings can be combined using the alternative model.

The alternative model considers subdivisions of forces with considerably less computation. Therefore, this model can be used to combine subdivision weightings with equipment weightings. Equipment weightings can be used to calculate force for each of the individual subdivisions before they are aggregated for overall subdivision force (see appendix 20).

Table 14. Lanchester equations fit with combined model

|        |       |              |               | Wei            | Results         |                       |                      |            |          |          |
|--------|-------|--------------|---------------|----------------|-----------------|-----------------------|----------------------|------------|----------|----------|
|        | Day   | TW (10:2:30) | APCW (2:2:20) | ArtW (30:2:50) | REINF (1:0.4:3) | Lreserves (0:0.3:0.9) | Reserves (0:0.3:0.9) | alpha      | beta     | variance |
| Combat | 1-10  | 10           | 20            | 46             | 1               | 0.9                   | 0.9                  | 541.065    | 22.0326  | 0.695175 |
|        | 11-32 | 10           | 20            | 30             | 3               | 0.9                   | 0.9                  | 0.00474560 | -8.89461 | 0.429911 |
| Та4а1  | 1-10  | 10           | 2             | 30             | 3               | 0.9                   | 0.9                  | 0.388086   | -1.79931 | 0.284505 |
| Total  | 11-32 | 10           | 20            | 30             | 2.6             | 0.9                   | 0.9                  | 0.00777751 | -7.73690 | 0.626707 |
| Mean   |       |              |               |                |                 |                       |                      |            |          | 0.509075 |

**Table 15.** Lanchester equations fit with combined model, including air force

|        |       |              |               | Results        |               |                 |                       |                      |           |          |          |
|--------|-------|--------------|---------------|----------------|---------------|-----------------|-----------------------|----------------------|-----------|----------|----------|
|        | Day   | TW (10:2:30) | APCW (2:2:20) | ArtW (30:2:50) | AsW (20:2:40) | REINF (1:0.4:3) | Lreserves (0:0.3:0.9) | Reserves (0:0.3:0.9) | alpha     | beta     | variance |
| Combat | 1-10  | 10           | 20            | 50             | 24            | 1               | 0.9                   | 0.6                  | 2.98118   | 7.25182  | 0.748726 |
| Combat | 11-32 | 10           | 20            | 30             | 20            | 3               | 0.9                   | 0.3                  | 0.0192984 | -5.89993 | 0.361445 |
| Total  | 1-10  | 10           | 20            | 50             | 40            | 1               | 0.9                   | 0.9                  | 91.1903   | 10.1284  | 0.377727 |
| Total  | 11-32 | 14           | 20            | 30             | 20            | 2.6             | 0.9                   | 0.6                  | 0.0127571 | -6.73520 | 0.572618 |
| Mean   |       |              |               |                |               |                 |                       |                      |           |          | 0.515129 |

#### 4.6 General Lanchester form

This section will find the general form of Lanchester equations with the best fitting results.

The best fitting results for modelling the Ardennes Campaign for both day 1-10 or day 11-32 were using the combined model. Varying equipment and subdivision weightings within reasonable ranges, day 1-10 was best modelled with combat manpower and including air force, producing a variance of 0.748726. Day 11-32 was best modelled with total manpower and excluding air force, producing a variance of 0.626707.

From MATLAB programme (Appendix 20); p, q, a and b are calculated for these two models. From (equations 1&2), this gives general form equations of:

Day 1-10:

$$\dot{B}(t) = (0.000098) R(t)^{(4.30)} B(t)^{(-2.95)}$$

$$\dot{R}(t) = (0.000033) B(t)^{(4.30)} R(t)^{(-2.95)}$$

considering combat manpower and including air force,

with equipment and subdivision weighted as shown in table 15.

Figure 3:



Day 11-32:

$$\dot{B}(t) = (0.0000000094) R(t)^{(-2.98)} B(t)^{(4.75)}$$

$$\dot{R}(t) = (0.0000012) B(t)^{(-2.98)} R(t)^{(4.75)}$$

considering total manpower and excluding air force,

with equipment and subdivision weighted as shown in table 14.

Figure 4:



The different gradients and positive/negative p and q are indicative of Red forces being more effective day 1-10, and Blue forces being more effective day 11-32.

# **Critical Evaluation**

Chapter 1 introduced the source data for this analysis.

Chapter 2 covered how the data can be fit to the Lanchester equations.

Chapter 3 outlined optimisation techniques that could be implemented to improve the fit to the data by applying Lanchester equations.

Chapter 4 detailed the analysis and findings, displaying results and finding the optimal weightings that improved the fit of the Lanchester equations.

This section will review the project objectives and how well they have been completed.

#### **Objective 1:** "Fit the Lanchester Equations to the Ardennes battle data"

Chapter 2 covered how to fit the Lanchester Equations to the Ardennes battle data. The Lanchester equations required that Blue and Red resources be represented as single forces. To do this, section 2.1 explains how the resources were assigned weightings that indicated their influence on overall force. The resource forces could then be aggregated to represent overall force. Section 2.3 explains how linear regression is used to estimate  $\alpha$  and  $\beta$  parameters, and section 2.4 explains how to derive the Lanchester equations parameters; p, q, a, and b from this.

Section 4.6 finally fits the Lanchester Equations to the Ardennes battle data after implementing optimisation techniques.

#### **Objective 2:** "Improve the fit by splitting the battle into 2 battles"

It was identified in section 3.1 that the turning point of the battle was day 10. The skies had cleared allowing the Allies to fully utilise their superior air force, the German's had lost the initiative by this stage and the Allies started pushing the Germans back.

Within Chapter 4 the battle data was split into "day 1-10" and "day 11-32." It was found that splitting the battle data at the turning point of the battle was effective in improving the fit to the model. The 2 different splits produced opposite gradients indicating that Red forces were winning day 1-10, but ultimately Blue forces won day 11-32, which matches the literature review.

Including air force improved the fit of the model for day 1-10 better than day 11-32, possibly indicating the importance of air force on days 8-10 as the skies cleared in turning the battle around.

**Objective 3:** "Improve the fit to the data by varying equipment weightings"

Section 3.2 briefly mentions how equipment weightings will be varied to improve fit of the Lanchester equations. The weighting ranges were subjectively decided to be as wide a range as possible while maintaining a physical interpretation. This was carried out in section 4.2.

The optimal weightings found within search ranges were almost always at the edges of the search range, suggesting global minima outside of the range even when the range is very large. This was true even when allowing the programme to search over a larger range that lacked physical interpretation. Models with wide search ranges for weightings produce good models, with variances as strong as 0.899901 in the case of "combat" day 1-10. But the weightings found have no physical interpretation with some equipment weightings of 0 and some of 100. This unusual behaviour might be explained by the model missing a variable that has more importance than the variables currently included, but it is difficult to imagine what this might be with the current variables already included. Including air force in the model did nothing to change this unusual behaviour. Another explanation is that the Lanchester equations are simply not an appropriate way of modelling this data. The Lanchester equations are a very simple form of modelling, which is the reason for an interest in testing their capabilities.

**Objective 4:** "Improve the fit to the data by varying subdivision resources weightings" Sections 3.3 and 3.4 outline the procedure of splitting resources into subdivisions of reinforcements, local reserves, reserves and surviving resources. Logic was used to infer how resources should be weighted. Assigning surviving resources a weighting of 1, reinforcements would have a weighting higher than 1 with no fatigue / injury / damage. Local reserves and reserves that may or may not even be used in battle that day were weighted lower than surviving resources.

With the amount of resources subdivisions to search over, computation times were longer for finding subdivision weightings. Section 4.3 searched for subdivision weightings that optimised the fit of the model, but search increments had to be kept small. Even still, it was not possible for MATLAB to create the matrices required for models including reserves requiring 12 for loops. MATLAB did not have the memory required to store the size of the matrices required by the programme.

An alternative model was considered in section 4.4 that could include reserves data. This model calculated overall force as an aggregation of overall subdivisions of forces instead of an aggregation of resource forces.

It was found that varying equipment weightings improved the fit of the model better than varying subdivision weightings, but varying both sets of weightings together using the alternative model in section 4.5 gave the best fits to the model.

**Objective 5:** "Identify best fitting models as Lanchester linear or Lanchester square"

Section 4.6 modelled the best fitting Lanchester equations to the data. Day 1-10 had p and q parameters 4.3 and -2.95 respectively. Day 11-32 had p and q parameters -2.98 and 4.75 respectively.

These parameters do not fit the conditions of Lanchester linear (q - p = 0) or Lanchester square (p - q = 1) or Lanchester logarithmic (q - p = 1). For both equations, as one number is negative, one take away the other results in a number further away from 0 or 1.

In all cases, for models day 1-10 and day 11-32, the result of p and q is plus or minus a number between 6 and 7. Clearly this does not fit the other conditions. This might be because the Ardennes campaign is a mixture of small engagements and concentrated forces.

The models fit the data well enough to recognise a general trend in the data but without much precise predictive power. As the Lanchester equations don't fit any of the lanchester conditions, the results conclude the Ardennes campaign is neither lanchester linear, lanchester square, or lanchester logarithmic.

### **Conclusions**

This analysis found the optimal fit to the data using Lanchester equations over the options available. This study does not suggest that these new-found weightings are an optimal fit for lanchester models of war. It suggests that the weightings of these resources in a lanchester model will vary depending on the campaign. Instead of modelling around fixed weightings, Lanchester models will fit data best when considering an appropriate range of weighting for each resource.

With more time, validation could have been given to the best fitting models. The error could have been analysed in detail through the residual data. This could have revealed the difference between the model's estimated losses and actual losses in terms of force. A mean difference and standard deviation could be found, like Bracken [1] and a significance test carried out on the difference between actual and estimated losses.

Other validation techniques could have been used such as splitting the data into a training set and a validation set by using the holdout method, periodically leaving out daily tallies and analysing how the fit on the training set fits the validation set. The data set of 32 days might be too short for this method to work well. The final models have only been fitted on the Ardennes battle data, but no testing has been done for other battle data. The great tank battle of Kursk has similar battle data available in daily tallies [7]. The Lanchester models found in this analysis could be applied directly to Kursk battle data to see how well it fits other data as means of validation.

Additional parameters could be considered that increase the effectiveness of one forces resources but not the other forces making the equations heterogenous. One side might have an advantage in battle through a resource e.g. it might be found that the Allied air sorties had increased effectiveness over the Germans because of the large allied air force and the German's inability to fully engage them. Or German APCs might influence German forces more than Allied forces as transportation was essential if the Germans were to succeed.

More research could have been done into the ratios of support to combat forces, with [8] identifying an Allied ratio of 0.8 compared to a German ratio of 0.5.

# **Appendices**

| Appendix 1  | 39 |
|-------------|----|
| Appendix 2  | 40 |
| Appendix 3  | 41 |
| Appendix 4  | 42 |
| Appendix 5  | 43 |
| Appendix 6  | 44 |
| Appendix 7  | 45 |
| Appendix 8  | 46 |
| Appendix 9  | 47 |
| Appendix 10 | 48 |
| Appendix 11 | 49 |
| Appendix 12 | 50 |
| Appendix 13 | 51 |
| Appendix 14 | 52 |
| Appendix 15 | 53 |
| Appendix 16 | 67 |
| Appendix 17 | 68 |
| Appendix 18 | 69 |
| Appendix 19 | 70 |
| Appendix 20 | 71 |

```
clear all;
close all;
clc;
resourceAvailable = xlsread('Table1Manpower.xlsx',
'B8:B17');
resourceKilled = xlsread('Table1Manpower.xlsx',
'D8:D17');
X = resourceAvailable;
x = resourceKilled;
xr = 0;
xlr = 0;
for t = 1: numel(X)-1
    if and (X(t+1) >= (X(t) - x(t)), xlr(t) == 0)
        xr(t+1) = X(t+1) - X(t) + x(t);
        xlr(t+1) = xlr(t);
    else
        if and (X(t+1) >= (X(t)-x(t)), xlr(t) >=
(X(t+1)-X(t)+x(t))
            xlr(t+1) = xlr(t) - (X(t+1)-X(t)+x(t));
            xr(t+1) = 0;
        else
            if and (X(t+1) >= (X(t)-x(t)), 0 < xlr(t) <
(X(t+1)-X(t)+x(t))
                xr(t+1) = xr(t) + (X(t+1)-X(t)+x(t)) -
xlr(t);
                xlr(t+1) = 0;
            else
                if X(t+1) < (X(t)-x(t))
                    xlr(t+1) = xlr(t) + (X(t)-x(t)-
X(t+1));
                    xr(t+1) = 0;
                end
            end
        end
    end
end
output = [X, x, xr', xlr']
```

Appendix 2

Table. Blue Combat Manpower divided into surviving, reinforcements, local reserves (& reserves)

| 1401 | e. Blue Combat              | wanpo wer a      |                  | lue Combat M  |                  | itis, rocur reser           | , es (es reser   | , , ,            |
|------|-----------------------------|------------------|------------------|---------------|------------------|-----------------------------|------------------|------------------|
| Day  | Reformatted                 | Available        | Used             | Surviving     | REINF            | LReserves                   | Reserves         | Killed           |
| (i)  | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | <sub>B</sub> (i) | $_{\rm B}(i)$ | <sub>B</sub> (i) | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | <sub>b</sub> (i) |
| 0    | 513514                      | 351005           | 351005           | 351005        | 0                | 0                           | 162509           | 458              |
| 1    | 513056                      | 350547           | 349247           | 349247        | 0                | 1300                        | 162509           | 1589             |
| 2    | 511467                      | 348958           | 347915           | 347915        | 0                | 1043                        | 162509           | 2383             |
| 3    | 509084                      | 358321           | 358321           | 346575        | 11746            | 0                           | 150763           | 2085             |
| 4    | 506999                      | 366495           | 366495           | 356236        | 10259            | 0                           | 140504           | 2175             |
| 5    | 504824                      | 387342           | 387342           | 364320        | 23022            | 0                           | 117482           | 1389             |
| 6    | 503435                      | 403289           | 403289           | 385953        | 17336            | 0                           | 100146           | 1174             |
| 7    | 502261                      | 410817           | 410817           | 402115        | 8702             | 0                           | 91444            | 1905             |
| 8    | 500356                      | 412811           | 412811           | 408912        | 3899             | 0                           | 87545            | 1548             |
| 9    | 498808                      | 426360           | 426360           | 411263        | 15097            | 0                           | 72448            | 1608             |
| 10   | 497200                      | 432094           | 432094           | 424752        | 7342             | 0                           | 65106            | 1527             |
| 11   | 495673                      | 451316           | 451316           | 430567        | 20749            | 0                           | 44357            | 2320             |
| 12   | 493353                      | 451724           | 451724           | 448996        | 2728             | 0                           | 41629            | 1376             |
| 13   | 491977                      | 451291           | 451291           | 450348        | 943              | 0                           | 40686            | 1277             |
| 14   | 490700                      | 461189           | 461189           | 450014        | 11175            | 0                           | 29511            | 1005             |
| 15   | 489695                      | 465334           | 465334           | 460184        | 5150             | 0                           | 24361            | 1042             |
| 16   | 488653                      | 467620           | 467620           | 464292        | 3328             | 0                           | 21033            | 1159             |
| 17   | 487494                      | 467801           | 467801           | 466461        | 1340             | 0                           | 19693            | 1004             |
| 18   | 486490                      | 474562           | 474562           | 466797        | 7765             | 0                           | 11928            | 832              |
| 19   | 485658                      | 474192           | 474192           | 473730        | 462              | 0                           | 11466            | 1831             |
| 20   | 483827                      | 481704           | 481704           | 472361        | 9343             | 0                           | 2123             | 2259             |
| 21   | 481568                      | 480952           | 480952           | 479445        | 1507             | 0                           | 616              | 1639             |
| 22   | 479929                      | 479313           | 478593           | 478593        | 0                | 720                         | 616              | 1228             |
| 23   | 478701                      | 478085           | 475732           | 475732        | 0                | 2353                        | 616              | 1868             |
| 24   | 476833                      | 476217           | 475685           | 475685        | 0                | 532                         | 616              | 1276             |
| 25   | 475557                      | 475155           | 475155           | 474941        | 214              | 0                           | 402              | 1379             |
| 26   | 474178                      | 473776           | 472749           | 472749        | 0                | 1027                        | 402              | 1643             |
| 27   | 472535                      | 472535           | 472535           | 472133        | 402              | 0                           | 0                | 1281             |
| 28   | 471254                      | 471254           | 468127           | 468127        | 0                | 3127                        | 0                | 1083             |
| 29   | 470171                      | 470171           | 467646           | 467646        | 0                | 2525                        | 0                | 1681             |
| 30   | 468490                      | 468490           | 466072           | 466072        | 0                | 2418                        | 0                | 1597             |
| 31   | 466893                      | 466893           | 464643           | 464643        | 0                | 2250                        | 0                | 2098             |
| 32   | 464795                      | 464795           | 455218           | 455218        | 0                | 9577                        | 0                | 1483             |

Table. Red Combat Manpower divided into surviving, reinforcements, local reserves (& reserves)

| 1401 | e. Red Combat r | ·ianpower ar |           | ed Combat M |           | its, focul reserv | ves (ce reserv | (65)      |
|------|-----------------|--------------|-----------|-------------|-----------|-------------------|----------------|-----------|
| Day  | Reformatted     | Available    | Used      | Surviving   | REINF     | LReserves         | Reserves       | Killed    |
| (i)  | $_{R}(i)$       | $_{R}(i)$    | $_{R}(i)$ | $_{R}(i)$   | $_{R}(i)$ | $_{R}(i)$         | $_{R}(i)$      | $_{r}(i)$ |
| 0    | 385955          | 0            | 0         | 0           | 0         | 0                 | 385955         | 0         |
| 1    | 385955          | 360716       | 360716    | 360716      | 0         | 0                 | 25239          | 2191      |
| 2    | 383764          | 358525       | 356818    | 356818      | 0         | 1707              | 25239          | 2423      |
| 3    | 381341          | 356102       | 353529    | 353529      | 0         | 2573              | 25239          | 2015      |
| 4    | 379326          | 354087       | 350750    | 350750      | 0         | 3337              | 25239          | 1993      |
| 5    | 377333          | 356278       | 356278    | 352094      | 4184      | 0                 | 21055          | 1985      |
| 6    | 375348          | 354297       | 354297    | 354293      | 4         | 0                 | 21051          | 2084      |
| 7    | 373264          | 361684       | 361684    | 352213      | 9471      | 0                 | 11580          | 2046      |
| 8    | 371218          | 359638       | 359353    | 359353      | 0         | 285               | 11580          | 2468      |
| 9    | 368750          | 362904       | 362904    | 357170      | 5734      | 0                 | 5846           | 2685      |
| 10   | 366065          | 360219       | 359750    | 359750      | 0         | 469               | 5846           | 2538      |
| 11   | 363527          | 362611       | 362611    | 357681      | 4930      | 0                 | 916            | 2504      |
| 12   | 361023          | 361023       | 361023    | 360107      | 916       | 0                 | 0              | 2544      |
| 13   | 358479          | 358479       | 356892    | 356892      | 0         | 1587              | 0              | 2121      |
| 14   | 356358          | 356358       | 349900    | 349900      | 0         | 6458              | 0              | 1682      |
| 15   | 354676          | 354676       | 346100    | 346100      | 0         | 8576              | 0              | 1844      |
| 16   | 352832          | 352832       | 343134    | 343134      | 0         | 9698              | 0              | 1550      |
| 17   | 351282          | 351282       | 340875    | 340875      | 0         | 10407             | 0              | 1788      |
| 18   | 349494          | 349494       | 338278    | 338278      | 0         | 11216             | 0              | 1724      |
| 19   | 347770          | 347770       | 334356    | 334356      | 0         | 13414             | 0              | 1752      |
| 20   | 346018          | 346018       | 328069    | 328069      | 0         | 17949             | 0              | 2054      |
| 21   | 343964          | 343964       | 321195    | 321195      | 0         | 22769             | 0              | 1709      |
| 22   | 342255          | 342255       | 322830    | 322830      | 0         | 19425             | 0              | 1946      |
| 23   | 340309          | 340309       | 324376    | 324376      | 0         | 15933             | 0              | 1865      |
| 24   | 338444          | 338444       | 322337    | 322337      | 0         | 16107             | 0              | 1676      |
| 25   | 336768          | 336768       | 320612    | 320612      | 0         | 16156             | 0              | 1434      |
| 26   | 335334          | 335334       | 319143    | 319143      | 0         | 16191             | 0              | 1696      |
| 27   | 333638          | 333638       | 319259    | 319259      | 0         | 14379             | 0              | 1536      |
| 28   | 332102          | 332102       | 317406    | 317406      | 0         | 14696             | 0              | 1167      |
| 29   | 330935          | 330935       | 316217    | 316217      | 0         | 14718             | 0              | 1579      |
| 30   | 329356          | 329356       | 314858    | 314858      | 0         | 14498             | 0              | 1504      |
| 31   | 327852          | 327852       | 313074    | 313074      | 0         | 14778             | 0              | 1425      |
| 32   | 326427          | 326427       | 310347    | 310347      | 0         | 16080             | 0              | 1213      |

Appendix 4

**Table.** Blue Total Manpower divided into surviving, reinforcements, local reserves (& reserves)

|     | c. Dide Total Wi | <u>F</u>         |                  | Blue Total Ma    |               | ,                           | (00 -00 -00      | /                |
|-----|------------------|------------------|------------------|------------------|---------------|-----------------------------|------------------|------------------|
| Day | Reformatted      | Available        | Used             | Surviving        | REINF         | LReserves                   | Reserves         | Killed           |
| (i) | <sub>B</sub> (i) | <sub>B</sub> (i) | <sub>B</sub> (i) | <sub>B</sub> (i) | $_{\rm B}(i)$ | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | <sub>b</sub> (i) |
| 0   | 1075857          | 632105           | 632105           | 632105           | 0             | 0                           | 443752           | 1468             |
| 1   | 1074389          | 630637           | 630557           | 630557           | 0             | 80                          | 443752           | 3062             |
| 2   | 1071327          | 628985           | 628985           | 627575           | 1410          | 0                           | 442342           | 5712             |
| 3   | 1065615          | 640969           | 640969           | 623273           | 17696         | 0                           | 424646           | 5093             |
| 4   | 1060522          | 807140           | 807140           | 635876           | 171264        | 0                           | 253382           | 12101            |
| 5   | 1048421          | 834136           | 834136           | 795039           | 39097         | 0                           | 214285           | 5334             |
| 6   | 1043087          | 859906           | 859906           | 828802           | 31104         | 0                           | 183181           | 3197             |
| 7   | 1039890          | 874600           | 874600           | 856709           | 17891         | 0                           | 165290           | 4815             |
| 8   | 1035075          | 877247           | 877247           | 869785           | 7462          | 0                           | 157828           | 3730             |
| 9   | 1031345          | 895976           | 895976           | 873517           | 22459         | 0                           | 135369           | 3857             |
| 10  | 1027488          | 907490           | 907490           | 892119           | 15371         | 0                           | 119998           | 3635             |
| 11  | 1023853          | 933045           | 933045           | 903855           | 29190         | 0                           | 90808            | 5411             |
| 12  | 1018442          | 948024           | 948024           | 927634           | 20390         | 0                           | 70418            | 3596             |
| 13  | 1014846          | 944428           | 928230           | 928230           | 0             | 16198                       | 70418            | 3435             |
| 14  | 1011411          | 941188           | 941188           | 940993           | 195           | 0                           | 70223            | 2934             |
| 15  | 1008477          | 946424           | 946424           | 938254           | 8170          | 0                           | 62053            | 2743             |
| 16  | 1005734          | 948226           | 948226           | 943681           | 4545          | 0                           | 57508            | 3022             |
| 17  | 1002712          | 948379           | 948379           | 945204           | 3175          | 0                           | 54333            | 2773             |
| 18  | 999939           | 956144           | 956144           | 945606           | 10538         | 0                           | 43795            | 2631             |
| 19  | 997308           | 955821           | 955821           | 953513           | 2308          | 0                           | 41487            | 3580             |
| 20  | 993728           | 965135           | 965135           | 952241           | 12894         | 0                           | 28593            | 4899             |
| 21  | 988829           | 964928           | 964928           | 960236           | 4692          | 0                           | 23901            | 4093             |
| 22  | 984736           | 962193           | 962193           | 960835           | 1358          | 0                           | 22543            | 3388             |
| 23  | 981348           | 959776           | 959776           | 958805           | 971           | 0                           | 21572            | 4627             |
| 24  | 976721           | 959011           | 959011           | 955149           | 3862          | 0                           | 17710            | 3928             |
| 25  | 972793           | 958799           | 958799           | 955083           | 3716          | 0                           | 13994            | 3725             |
| 26  | 969068           | 956330           | 956330           | 955074           | 1256          | 0                           | 12738            | 4002             |
| 27  | 965066           | 956090           | 956090           | 952328           | 3762          | 0                           | 8976             | 3502             |
| 28  | 961564           | 952588           | 952030           | 952030           | 0             | 558                         | 8976             | 3590             |
| 29  | 957974           | 952210           | 952210           | 948998           | 3212          | 0                           | 5764             | 4189             |
| 30  | 953785           | 950879           | 950879           | 948021           | 2858          | 0                           | 2906             | 4277             |
| 31  | 949508           | 949508           | 949508           | 946602           | 2906          | 0                           | 0                | 4477             |
| 32  | 945031           | 945031           | 937500           | 937500           | 0             | 7531                        | 0                | 3600             |

Appendix 5

**Table.** Red Combat Manpower divided into surviving, reinforcements, local reserves (& reserves)

|     | Red Combat I | 1         |                  | Red Total Ma |           | ,         |           |        |
|-----|--------------|-----------|------------------|--------------|-----------|-----------|-----------|--------|
| Day | Reformatted  | Available | Used             | Surviving    | REINF     | LReserves | Reserves  | Killed |
| (i) | $_{R}(i)$    | $_{R}(i)$ | <sub>R</sub> (i) | $_{R}(i)$    | $_{R}(i)$ | $_{R}(i)$ | $_{R}(i)$ | r(i)   |
| 0   | 656278       | 0         | 0                | 0            | 0         | 0         | 656278    | 0      |
| 1   | 656278       | 575838    | 575838           | 575838       | 0         | 0         | 80440     | 5590   |
| 2   | 650688       | 571301    | 571301           | 570248       | 1053      | 0         | 79387     | 5559   |
| 3   | 645129       | 568508    | 568508           | 565742       | 2766      | 0         | 76621     | 4711   |
| 4   | 640418       | 565173    | 565173           | 563797       | 1376      | 0         | 75245     | 4332   |
| 5   | 636086       | 572181    | 572181           | 560841       | 11340     | 0         | 63905     | 4351   |
| 6   | 631735       | 570711    | 570711           | 567830       | 2881      | 0         | 61024     | 4582   |
| 7   | 627153       | 581177    | 581177           | 566129       | 15048     | 0         | 45976     | 4531   |
| 8   | 622622       | 579660    | 579660           | 576646       | 3014      | 0         | 42962     | 5351   |
| 9   | 617271       | 584610    | 584610           | 574309       | 10301     | 0         | 32661     | 5609   |
| 10  | 611662       | 580731    | 580731           | 579001       | 1730      | 0         | 30931     | 5563   |
| 11  | 606099       | 584551    | 584551           | 575168       | 9383      | 0         | 21548     | 5526   |
| 12  | 600573       | 583610    | 583610           | 579025       | 4585      | 0         | 16963     | 5751   |
| 13  | 594822       | 578737    | 578737           | 577859       | 878       | 0         | 16085     | 4511   |
| 14  | 590311       | 574226    | 568768           | 568768       | 0         | 5458      | 16085     | 3900   |
| 15  | 586411       | 570326    | 564548           | 564548       | 0         | 5778      | 16085     | 4076   |
| 16  | 582335       | 566250    | 560993           | 560993       | 0         | 5257      | 16085     | 3635   |
| 17  | 578700       | 562615    | 558214           | 558214       | 0         | 4401      | 16085     | 3898   |
| 18  | 574802       | 558717    | 555741           | 555741       | 0         | 2976      | 16085     | 3821   |
| 19  | 570981       | 554896    | 550854           | 550854       | 0         | 4042      | 16085     | 3892   |
| 20  | 567089       | 551004    | 544031           | 544031       | 0         | 6973      | 16085     | 4283   |
| 21  | 562806       | 546721    | 534885           | 534885       | 0         | 11836     | 16085     | 3767   |
| 22  | 559039       | 542954    | 536481           | 536481       | 0         | 6473      | 16085     | 4169   |
| 23  | 554870       | 540896    | 540896           | 538785       | 2111      | 0         | 13974     | 4076   |
| 24  | 550794       | 538328    | 538328           | 536820       | 1508      | 0         | 12466     | 3756   |
| 25  | 547038       | 536719    | 536719           | 534572       | 2147      | 0         | 10319     | 3466   |
| 26  | 543572       | 534764    | 534764           | 533253       | 1511      | 0         | 8808      | 3732   |
| 27  | 539840       | 533256    | 533256           | 531032       | 2224      | 0         | 6584      | 3967   |
| 28  | 535873       | 530919    | 530919           | 529289       | 1630      | 0         | 4954      | 3199   |
| 29  | 532674       | 528237    | 528237           | 527720       | 517       | 0         | 4437      | 4026   |
| 30  | 528648       | 526387    | 526387           | 524211       | 2176      | 0         | 2261      | 3866   |
| 31  | 524782       | 524150    | 524150           | 522521       | 1629      | 0         | 632       | 3744   |
| 32  | 521038       | 521038    | 521038           | 520406       | 632       | 0         | 0         | 3219   |

Appendix 6

**Table.** Blue Tanks divided into surviving, reinforcements, local reserves (& reserves)

| 1401 | e. Diue Taliks ui           | viaca into se |           | Blue Ta                     |               |                             | <u> </u>         |                  |
|------|-----------------------------|---------------|-----------|-----------------------------|---------------|-----------------------------|------------------|------------------|
| Day  | Reformatted                 | Available     | Used      | Surviving                   | REINF         | LReserves                   | Reserves         | Killed           |
| (i)  | $_{\mathrm{B}}(\mathrm{i})$ | $_{\rm B}(i)$ | $_{B}(i)$ | $_{\mathrm{B}}(\mathrm{i})$ | $_{\rm B}(i)$ | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | <sub>b</sub> (i) |
| 0    | 5350                        | 2853          | 2853      | 2853                        | 0             | 0                           | 2497             | 1                |
| 1    | 5349                        | 2863          | 2863      | 2852                        | 11            | 0                           | 2486             | 12               |
| 2    | 5337                        | 2867          | 2867      | 2851                        | 16            | 0                           | 2470             | 43               |
| 3    | 5294                        | 2840          | 2840      | 2824                        | 16            | 0                           | 2454             | 60               |
| 4    | 5234                        | 2808          | 2808      | 2780                        | 28            | 0                           | 2426             | 64               |
| 5    | 5170                        | 3965          | 3965      | 2744                        | 1221          | 0                           | 1205             | 33               |
| 6    | 5137                        | 4082          | 4082      | 3932                        | 150           | 0                           | 1055             | 10               |
| 7    | 5127                        | 4109          | 4109      | 4072                        | 37            | 0                           | 1018             | 15               |
| 8    | 5112                        | 4094          | 4086      | 4086                        | 0             | 8                           | 1018             | 36               |
| 9    | 5076                        | 4062          | 4062      | 4058                        | 4             | 0                           | 1014             | 48               |
| 10   | 5028                        | 4265          | 4265      | 4014                        | 251           | 0                           | 763              | 24               |
| 11   | 5004                        | 4520          | 4520      | 4241                        | 279           | 0                           | 484              | 20               |
| 12   | 4984                        | 4511          | 4511      | 4500                        | 11            | 0                           | 473              | 19               |
| 13   | 4965                        | 4526          | 4526      | 4492                        | 34            | 0                           | 439              | 18               |
| 14   | 4947                        | 4541          | 4541      | 4508                        | 33            | 0                           | 406              | 16               |
| 15   | 4931                        | 4525          | 4516      | 4516                        | 0             | 9                           | 406              | 20               |
| 16   | 4911                        | 4610          | 4610      | 4505                        | 105           | 0                           | 301              | 10               |
| 17   | 4901                        | 4695          | 4695      | 4600                        | 95            | 0                           | 206              | 14               |
| 18   | 4887                        | 4701          | 4701      | 4681                        | 20            | 0                           | 186              | 24               |
| 19   | 4863                        | 4710          | 4710      | 4677                        | 33            | 0                           | 153              | 26               |
| 20   | 4837                        | 4728          | 4728      | 4684                        | 44            | 0                           | 109              | 22               |
| 21   | 4815                        | 4706          | 4686      | 4686                        | 0             | 20                          | 109              | 13               |
| 22   | 4802                        | 4719          | 4719      | 4693                        | 26            | 0                           | 83               | 13               |
| 23   | 4789                        | 4706          | 4684      | 4684                        | 0             | 22                          | 83               | 12               |
| 24   | 4777                        | 4703          | 4703      | 4694                        | 9             | 0                           | 74               | 9                |
| 25   | 4768                        | 4743          | 4743      | 4694                        | 49            | 0                           | 25               | 7                |
| 26   | 4761                        | 4761          | 4761      | 4736                        | 25            | 0                           | 0                | 5                |
| 27   | 4756                        | 4756          | 4745      | 4745                        | 0             | 11                          | 0                | 7                |
| 28   | 4749                        | 4749          | 4717      | 4717                        | 0             | 32                          | 0                | 2                |
| 29   | 4747                        | 4747          | 4699      | 4699                        | 0             | 48                          | 0                | 6                |
| 30   | 4741                        | 4741          | 4678      | 4678                        | 0             | 63                          | 0                | 16               |
| 31   | 4725                        | 4725          | 4662      | 4662                        | 0             | 63                          | 0                | 11               |
| 32   | 4714                        | 4714          | 4628      | 4628                        | 0             | 86                          | 0                | 20               |

Appendix 7

**Table.** Red Tanks divided into surviving, reinforcements, local reserves (& reserves)

|     | e. Red Taliks div | Turbu III. |           | Red Ta    |           | .501 ( 05 1050 | 2.00)     |           |
|-----|-------------------|------------|-----------|-----------|-----------|----------------|-----------|-----------|
| Day | Reformatted       | Available  | Used      | Surviving | REINF     | LReserves      | Reserves  | Killed    |
| (i) | $_{R}(i)$         | $_{R}(i)$  | $_{R}(i)$ | $_{R}(i)$ | $_{R}(i)$ | $_{R}(i)$      | $_{R}(i)$ | $_{r}(i)$ |
| 0   | 747               | 0          | 0         | 0         | 0         | 0              | 747       | 0         |
| 1   | 747               | 747        | 747       | 0         | 747       | 0              | 0         | 10        |
| 2   | 737               | 737        | 663       | 663       | 0         | 74             | 0         | 7         |
| 3   | 730               | 730        | 639       | 639       | 0         | 91             | 0         | 13        |
| 4   | 717               | 717        | 669       | 669       | 0         | 48             | 0         | 21        |
| 5   | 696               | 696        | 619       | 619       | 0         | 77             | 0         | 11        |
| 6   | 685               | 685        | 595       | 595       | 0         | 90             | 0         | 21        |
| 7   | 664               | 664        | 615       | 615       | 0         | 49             | 0         | 5         |
| 8   | 659               | 659        | 645       | 645       | 0         | 14             | 0         | 24        |
| 9   | 635               | 635        | 596       | 596       | 0         | 39             | 0         | 22        |
| 10  | 613               | 613        | 544       | 544       | 0         | 69             | 0         | 28        |
| 11  | 585               | 585        | 483       | 483       | 0         | 102            | 0         | 14        |
| 12  | 571               | 571        | 466       | 466       | 0         | 105            | 0         | 13        |
| 13  | 558               | 558        | 450       | 450       | 0         | 108            | 0         | 7         |
| 14  | 551               | 551        | 433       | 433       | 0         | 118            | 0         | 7         |
| 15  | 544               | 544        | 428       | 428       | 0         | 116            | 0         | 21        |
| 16  | 523               | 523        | 403       | 403       | 0         | 120            | 0         | 5         |
| 17  | 518               | 518        | 413       | 413       | 0         | 105            | 0         | 9         |
| 18  | 509               | 509        | 419       | 419       | 0         | 90             | 0         | 6         |
| 19  | 503               | 503        | 431       | 431       | 0         | 72             | 0         | 2         |
| 20  | 501               | 501        | 428       | 428       | 0         | 73             | 0         | 12        |
| 21  | 489               | 489        | 394       | 394       | 0         | 95             | 0         | 2         |
| 22  | 487               | 487        | 396       | 396       | 0         | 91             | 0         | 2         |
| 23  | 485               | 485        | 400       | 400       | 0         | 85             | 0         | 8         |
| 24  | 477               | 477        | 407       | 407       | 0         | 70             | 0         | 0         |
| 25  | 477               | 477        | 398       | 398       | 0         | 79             | 0         | 7         |
| 26  | 470               | 470        | 407       | 407       | 0         | 63             | 0         | 2         |
| 27  | 468               | 468        | 407       | 407       | 0         | 61             | 0         | 2         |
| 28  | 466               | 466        | 393       | 393       | 0         | 73             | 0         | 0         |
| 29  | 466               | 466        | 418       | 418       | 0         | 48             | 0         | 13        |
| 30  | 453               | 453        | 410       | 410       | 0         | 43             | 0         | 5         |
| 31  | 448               | 448        | 434       | 434       | 0         | 14             | 0         | 3         |
| 32  | 445               | 445        | 432       | 432       | 0         | 13             | 0         | 2         |

Appendix 8

**Table.** Blue APCs divided into surviving, reinforcements, local reserves (& reserves)

|     | e. Diue APCS ui             | , 1 <b>404</b> 11100 50 | <u> </u>  | Blue A                      |               | berves (ee res              |                  |                  |
|-----|-----------------------------|-------------------------|-----------|-----------------------------|---------------|-----------------------------|------------------|------------------|
| Day | Reformatted                 | Available               | Used      | Surviving                   | REINF         | LReserves                   | Reserves         | Killed           |
| (i) | $_{\mathrm{B}}(\mathrm{i})$ | $_{\rm B}(i)$           | $_{B}(i)$ | $_{\mathrm{B}}(\mathrm{i})$ | $_{\rm B}(i)$ | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | <sub>b</sub> (i) |
| 0   | 8821                        | 6103                    | 6103      | 6103                        | 0             | 0                           | 2718             | 0                |
| 1   | 8821                        | 6103                    | 6019      | 6019                        | 0             | 84                          | 2718             | 33               |
| 2   | 8788                        | 6070                    | 5970      | 5970                        | 0             | 100                         | 2718             | 46               |
| 3   | 8742                        | 6024                    | 5908      | 5908                        | 0             | 116                         | 2718             | 18               |
| 4   | 8724                        | 6006                    | 6004      | 6004                        | 0             | 2                           | 2718             | 37               |
| 5   | 8687                        | 7274                    | 7274      | 5969                        | 1305          | 0                           | 1413             | 11               |
| 6   | 8676                        | 7295                    | 7295      | 7263                        | 32            | 0                           | 1381             | 6                |
| 7   | 8670                        | 7507                    | 7507      | 7289                        | 218           | 0                           | 1163             | 13               |
| 8   | 8657                        | 7533                    | 7533      | 7494                        | 39            | 0                           | 1124             | 6                |
| 9   | 8651                        | 7527                    | 7486      | 7486                        | 0             | 41                          | 1124             | 18               |
| 10  | 8633                        | 8105                    | 8105      | 7509                        | 596           | 0                           | 528              | 2                |
| 11  | 8631                        | 8552                    | 8552      | 8103                        | 449           | 0                           | 79               | 2                |
| 12  | 8629                        | 8629                    | 8629      | 8550                        | 79            | 0                           | 0                | 3                |
| 13  | 8626                        | 8626                    | 8536      | 8536                        | 0             | 90                          | 0                | 3                |
| 14  | 8623                        | 8623                    | 8552      | 8552                        | 0             | 71                          | 0                | 2                |
| 15  | 8621                        | 8621                    | 8565      | 8565                        | 0             | 56                          | 0                | 0                |
| 16  | 8621                        | 8621                    | 8554      | 8554                        | 0             | 67                          | 0                | 2                |
| 17  | 8619                        | 8619                    | 8615      | 8615                        | 0             | 4                           | 0                | 0                |
| 18  | 8619                        | 8619                    | 8593      | 8593                        | 0             | 26                          | 0                | 0                |
| 19  | 8619                        | 8619                    | 8462      | 8462                        | 0             | 157                         | 0                | 0                |
| 20  | 8619                        | 8619                    | 8578      | 8578                        | 0             | 41                          | 0                | 0                |
| 21  | 8619                        | 8619                    | 8564      | 8564                        | 0             | 55                          | 0                | 2                |
| 22  | 8617                        | 8617                    | 8502      | 8502                        | 0             | 115                         | 0                | 0                |
| 23  | 8617                        | 8617                    | 8375      | 8375                        | 0             | 242                         | 0                | 0                |
| 24  | 8617                        | 8617                    | 8418      | 8418                        | 0             | 199                         | 0                | 0                |
| 25  | 8617                        | 8617                    | 8446      | 8446                        | 0             | 171                         | 0                | 0                |
| 26  | 8617                        | 8617                    | 8476      | 8476                        | 0             | 141                         | 0                | 0                |
| 27  | 8617                        | 8617                    | 8348      | 8348                        | 0             | 269                         | 0                | 1                |
| 28  | 8616                        | 8616                    | 8459      | 8459                        | 0             | 157                         | 0                | 1                |
| 29  | 8615                        | 8615                    | 8454      | 8454                        | 0             | 161                         | 0                | 0                |
| 30  | 8615                        | 8615                    | 8374      | 8374                        | 0             | 241                         | 0                | 0                |
| 31  | 8615                        | 8615                    | 8436      | 8436                        | 0             | 179                         | 0                | 0                |
| 32  | 8615                        | 8615                    | 8363      | 8363                        | 0             | 252                         | 0                | 0                |

Appendix 9

 Table. Red APCs divided into surviving, reinforcements, local reserves (& reserves)

|     | c. Red III es div |           | <u>U</u> , | Red Al    |           | `         |           |           |
|-----|-------------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|
| Day | Reformatted       | Available | Used       | Surviving | REINF     | LReserves | Reserves  | Killed    |
| (i) | $_{R}(i)$         | $_{R}(i)$ | $_{R}(i)$  | $_{R}(i)$ | $_{R}(i)$ | $_{R}(i)$ | $_{R}(i)$ | $_{r}(i)$ |
| 0   | 2161              | 0         | 0          | 0         | 0         | 0         | 2161      | 0         |
| 1   | 2161              | 2046      | 2046       | 0         | 2046      | 0         | 115       | 5         |
| 2   | 2156              | 2041      | 2041       | 2041      | 0         | 0         | 115       | 20        |
| 3   | 2136              | 2021      | 2021       | 2021      | 0         | 0         | 115       | 12        |
| 4   | 2124              | 2009      | 2009       | 2009      | 0         | 0         | 115       | 18        |
| 5   | 2106              | 1991      | 1984       | 1984      | 0         | 7         | 115       | 22        |
| 6   | 2084              | 1969      | 1952       | 1952      | 0         | 17        | 115       | 19        |
| 7   | 2065              | 2065      | 2065       | 1950      | 115       | 0         | 0         | 16        |
| 8   | 2049              | 2049      | 2034       | 2034      | 0         | 15        | 0         | 34        |
| 9   | 2015              | 2015      | 1970       | 1970      | 0         | 45        | 0         | 20        |
| 10  | 1995              | 1995      | 1875       | 1875      | 0         | 120       | 0         | 36        |
| 11  | 1959              | 1959      | 1800       | 1800      | 0         | 159       | 0         | 31        |
| 12  | 1928              | 1928      | 1731       | 1731      | 0         | 197       | 0         | 31        |
| 13  | 1897              | 1897      | 1659       | 1659      | 0         | 238       | 0         | 22        |
| 14  | 1875              | 1875      | 1595       | 1595      | 0         | 280       | 0         | 15        |
| 15  | 1860              | 1860      | 1542       | 1542      | 0         | 318       | 0         | 7         |
| 16  | 1853              | 1853      | 1532       | 1532      | 0         | 321       | 0         | 14        |
| 17  | 1839              | 1839      | 1523       | 1523      | 0         | 316       | 0         | 8         |
| 18  | 1831              | 1831      | 1516       | 1516      | 0         | 315       | 0         | 10        |
| 19  | 1821              | 1821      | 1451       | 1451      | 0         | 370       | 0         | 10        |
| 20  | 1811              | 1811      | 1441       | 1441      | 0         | 370       | 0         | 12        |
| 21  | 1799              | 1799      | 1419       | 1419      | 0         | 380       | 0         | 6         |
| 22  | 1793              | 1793      | 1409       | 1409      | 0         | 384       | 0         | 5         |
| 23  | 1788              | 1788      | 1403       | 1403      | 0         | 385       | 0         | 16        |
| 24  | 1772              | 1772      | 1364       | 1364      | 0         | 408       | 0         | 2         |
| 25  | 1770              | 1770      | 1360       | 1360      | 0         | 410       | 0         | 3         |
| 26  | 1767              | 1767      | 1358       | 1358      | 0         | 409       | 0         | 9         |
| 27  | 1758              | 1758      | 1349       | 1349      | 0         | 409       | 0         | 8         |
| 28  | 1750              | 1750      | 1341       | 1341      | 0         | 409       | 0         | 3         |
| 29  | 1747              | 1747      | 1335       | 1335      | 0         | 412       | 0         | 17        |
| 30  | 1730              | 1730      | 1322       | 1322      | 0         | 408       | 0         | 6         |
| 31  | 1724              | 1724      | 1318       | 1318      | 0         | 406       | 0         | 4         |
| 32  | 1720              | 1720      | 1309       | 1309      | 0         | 411       | 0         | 3         |

Appendix 10

**Table.** Blue Artillery divided into surviving, reinforcements, local reserves (& reserves)

|     | e. Blue Artillery           |                  |           | Blue Art         |                  |                             | ,                |                  |
|-----|-----------------------------|------------------|-----------|------------------|------------------|-----------------------------|------------------|------------------|
| Day | Reformatted                 | Available        | Used      | Surviving        | REINF            | LReserves                   | Reserves         | Killed           |
| (i) | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | $_{B}(i)$ | <sub>B</sub> (i) | <sub>B</sub> (i) | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | <sub>b</sub> (i) |
| 0   | 4275                        | 3006             | 3006      | 3006             | 0                | 0                           | 1269             | 0                |
| 1   | 4275                        | 3006             | 2972      | 2972             | 0                | 34                          | 1269             | 15               |
| 2   | 4260                        | 2991             | 2963      | 2963             | 0                | 28                          | 1269             | 9                |
| 3   | 4251                        | 2982             | 2950      | 2950             | 0                | 32                          | 1269             | 6                |
| 4   | 4245                        | 3103             | 3103      | 2976             | 127              | 0                           | 1142             | 14               |
| 5   | 4231                        | 3531             | 3531      | 3089             | 442              | 0                           | 700              | 33               |
| 6   | 4198                        | 3609             | 3609      | 3498             | 111              | 0                           | 589              | 10               |
| 7   | 4188                        | 3772             | 3772      | 3599             | 173              | 0                           | 416              | 2                |
| 8   | 4186                        | 3772             | 3772      | 3770             | 2                | 0                           | 414              | 10               |
| 9   | 4176                        | 3847             | 3847      | 3762             | 85               | 0                           | 329              | 5                |
| 10  | 4171                        | 3931             | 3931      | 3842             | 89               | 0                           | 240              | 4                |
| 11  | 4167                        | 4063             | 4063      | 3927             | 136              | 0                           | 104              | 4                |
| 12  | 4163                        | 4093             | 4093      | 4059             | 34               | 0                           | 70               | 3                |
| 13  | 4160                        | 4090             | 4004      | 4004             | 0                | 86                          | 70               | 2                |
| 14  | 4158                        | 4088             | 4065      | 4065             | 0                | 23                          | 70               | 0                |
| 15  | 4158                        | 4088             | 4087      | 4087             | 0                | 1                           | 70               | 0                |
| 16  | 4158                        | 4088             | 4086      | 4086             | 0                | 2                           | 70               | 1                |
| 17  | 4157                        | 4087             | 4077      | 4077             | 0                | 10                          | 70               | 0                |
| 18  | 4157                        | 4087             | 4087      | 4087             | 0                | 0                           | 70               | 0                |
| 19  | 4157                        | 4088             | 4088      | 4087             | 1                | 0                           | 69               | 1                |
| 20  | 4156                        | 4150             | 4150      | 4087             | 63               | 0                           | 6                | 3                |
| 21  | 4153                        | 4153             | 4153      | 4147             | 6                | 0                           | 0                | 0                |
| 22  | 4153                        | 4153             | 4144      | 4144             | 0                | 9                           | 0                | 0                |
| 23  | 4153                        | 4153             | 4133      | 4133             | 0                | 20                          | 0                | 1                |
| 24  | 4152                        | 4152             | 4131      | 4131             | 0                | 21                          | 0                | 0                |
| 25  | 4152                        | 4152             | 4128      | 4128             | 0                | 24                          | 0                | 0                |
| 26  | 4152                        | 4152             | 4131      | 4131             | 0                | 21                          | 0                | 0                |
| 27  | 4152                        | 4152             | 4090      | 4090             | 0                | 62                          | 0                | 0                |
| 28  | 4152                        | 4152             | 4108      | 4108             | 0                | 44                          | 0                | 0                |
| 29  | 4152                        | 4152             | 4106      | 4106             | 0                | 46                          | 0                | 0                |
| 30  | 4152                        | 4152             | 4081      | 4081             | 0                | 71                          | 0                | 2                |
| 31  | 4150                        | 4150             | 4092      | 4092             | 0                | 58                          | 0                | 0                |
| 32  | 4150                        | 4150             | 4080      | 4080             | 0                | 70                          | 0                | 9                |

Appendix 11

**Table.** Red Artillery divided into surviving, reinforcements, local reserves (& reserves)

| Tubi | e. Red Artillery | divided into | Sul VIVII | Red Art   |           | Teserves (acr | eser ves) |        |
|------|------------------|--------------|-----------|-----------|-----------|---------------|-----------|--------|
| Day  | Reformatted      | Available    | Used      | Surviving | REINF     | LReserves     | Reserves  | Killed |
| (i)  | $_{R}(i)$        | $_{R}(i)$    | $_{R}(i)$ | $_{R}(i)$ | $_{R}(i)$ | $_{R}(i)$     | $_{R}(i)$ | r(i)   |
| 0    | 5130             | 36           | 36        | 36        | 0         | 0             | 5094      | 0      |
| 1    | 5130             | 4789         | 4789      | 36        | 4753      | 0             | 341       | 6      |
| 2    | 5124             | 4791         | 4791      | 4783      | 8         | 0             | 333       | 41     |
| 3    | 5083             | 4768         | 4768      | 4750      | 18        | 0             | 315       | 27     |
| 4    | 5056             | 4741         | 4727      | 4727      | 0         | 14            | 315       | 19     |
| 5    | 5037             | 4786         | 4786      | 4722      | 64        | 0             | 251       | 24     |
| 6    | 5013             | 4773         | 4773      | 4762      | 11        | 0             | 240       | 30     |
| 7    | 4983             | 4858         | 4858      | 4743      | 115       | 0             | 125       | 16     |
| 8    | 4967             | 4845         | 4845      | 4842      | 3         | 0             | 122       | 35     |
| 9    | 4932             | 4885         | 4885      | 4810      | 75        | 0             | 47        | 94     |
| 10   | 4838             | 4791         | 4750      | 4750      | 0         | 41            | 47        | 59     |
| 11   | 4779             | 4779         | 4779      | 4732      | 47        | 0             | 0         | 34     |
| 12   | 4745             | 4745         | 4661      | 4661      | 0         | 84            | 0         | 23     |
| 13   | 4722             | 4722         | 4638      | 4638      | 0         | 84            | 0         | 31     |
| 14   | 4691             | 4691         | 4415      | 4415      | 0         | 276           | 0         | 19     |
| 15   | 4672             | 4672         | 4321      | 4321      | 0         | 351           | 0         | 26     |
| 16   | 4646             | 4646         | 4314      | 4314      | 0         | 332           | 0         | 17     |
| 17   | 4629             | 4629         | 4283      | 4283      | 0         | 346           | 0         | 36     |
| 18   | 4593             | 4593         | 4246      | 4246      | 0         | 347           | 0         | 14     |
| 19   | 4579             | 4579         | 4242      | 4242      | 0         | 337           | 0         | 35     |
| 20   | 4544             | 4544         | 4110      | 4110      | 0         | 434           | 0         | 28     |
| 21   | 4516             | 4516         | 4016      | 4016      | 0         | 500           | 0         | 22     |
| 22   | 4494             | 4494         | 4014      | 4014      | 0         | 480           | 0         | 23     |
| 23   | 4471             | 4471         | 3981      | 3981      | 0         | 490           | 0         | 26     |
| 24   | 4445             | 4445         | 3971      | 3971      | 0         | 474           | 0         | 23     |
| 25   | 4422             | 4422         | 3944      | 3944      | 0         | 478           | 0         | 21     |
| 26   | 4401             | 4401         | 3925      | 3925      | 0         | 476           | 0         | 33     |
| 27   | 4368             | 4368         | 3916      | 3916      | 0         | 452           | 0         | 32     |
| 28   | 4336             | 4336         | 3895      | 3895      | 0         | 441           | 0         | 13     |
| 29   | 4323             | 4323         | 3854      | 3854      | 0         | 469           | 0         | 20     |
| 30   | 4303             | 4303         | 3867      | 3867      | 0         | 436           | 0         | 19     |
| 31   | 4284             | 4284         | 3856      | 3856      | 0         | 428           | 0         | 14     |
| 32   | 4270             | 4270         | 3824      | 3824      | 0         | 446           | 0         | 7      |

Appendix 12

**Table.** Blue Support Manpower divided into surviving, reinforcements, local reserves (& reserves)

| Table | e. Blue Support             | wanpower di      |                  | ie Support M  |           | itts, focal resc            | ives (& rese     | arves)           |
|-------|-----------------------------|------------------|------------------|---------------|-----------|-----------------------------|------------------|------------------|
| Day   | Reformatted                 | Available        | Used             | Surviving     | REINF     | LReserves                   | Reserves         | Killed           |
| (i)   | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | <sub>B</sub> (i) | $_{\rm B}(i)$ | $_{B}(i)$ | $_{\mathrm{B}}(\mathrm{i})$ | <sub>B</sub> (i) | <sub>b</sub> (i) |
| 0     | 562343                      | 281100           | 281100           | 281100        | 0         | 0                           | 281243           | 1010             |
| 1     | 561333                      | 280090           | 281310           | 281310        | 0         | -1220                       | 281243           | 1473             |
| 2     | 559860                      | 278617           | 279660           | 278250        | 1410      | -1043                       | 281243           | 3329             |
| 3     | 556531                      | 276698           | 276698           | 270748        | 5950      | 0                           | 279833           | 3008             |
| 4     | 553523                      | 279640           | 279640           | 118635        | 161005    | 0                           | 273883           | 9926             |
| 5     | 543597                      | 430719           | 430719           | 414644        | 16075     | 0                           | 112878           | 3945             |
| 6     | 539652                      | 442849           | 442849           | 429081        | 13768     | 0                           | 96803            | 2023             |
| 7     | 537629                      | 454594           | 454594           | 445405        | 9189      | 0                           | 83035            | 2910             |
| 8     | 534719                      | 460873           | 460873           | 457310        | 3563      | 0                           | 73846            | 2182             |
| 9     | 532537                      | 462254           | 462254           | 454892        | 7362      | 0                           | 70283            | 2249             |
| 10    | 530288                      | 467367           | 467367           | 459338        | 8029      | 0                           | 62921            | 2108             |
| 11    | 528180                      | 473288           | 473288           | 464847        | 8441      | 0                           | 54892            | 3091             |
| 12    | 525089                      | 478638           | 478638           | 460976        | 17662     | 0                           | 46451            | 2220             |
| 13    | 522869                      | 494080           | 477882           | 478825        | -943      | 16198                       | 28789            | 2158             |
| 14    | 520711                      | 490979           | 490979           | 501959        | -10980    | 0                           | 29732            | 1929             |
| 15    | 518782                      | 478070           | 478070           | 475050        | 3020      | 0                           | 40712            | 1701             |
| 16    | 517081                      | 479389           | 479389           | 478172        | 1217      | 0                           | 37692            | 1863             |
| 17    | 515218                      | 478743           | 478743           | 476908        | 1835      | 0                           | 36475            | 1769             |
| 18    | 513449                      | 478809           | 478809           | 476036        | 2773      | 0                           | 34640            | 1799             |
| 19    | 511650                      | 479783           | 479783           | 477937        | 1846      | 0                           | 31867            | 1749             |
| 20    | 509901                      | 479880           | 479880           | 476329        | 3551      | 0                           | 30021            | 2640             |
| 21    | 507261                      | 480791           | 480791           | 477606        | 3185      | 0                           | 26470            | 2454             |
| 22    | 504807                      | 481522           | 482242           | 480884        | 1358      | -720                        | 23285            | 2160             |
| 23    | 502647                      | 480720           | 483073           | 482102        | 971       | -2353                       | 21927            | 2759             |
| 24    | 499888                      | 478932           | 479464           | 475602        | 3862      | -532                        | 20956            | 2652             |
| 25    | 497236                      | 480142           | 480142           | 476640        | 3502      | 0                           | 17094            | 2346             |
| 26    | 494890                      | 481298           | 482325           | 481069        | 1256      | -1027                       | 13592            | 2359             |
| 27    | 492531                      | 480195           | 480195           | 476835        | 3360      | 0                           | 12336            | 2221             |
| 28    | 490310                      | 481334           | 483903           | 483903        | 0         | -2569                       | 8976             | 2507             |
| 29    | 487803                      | 478827           | 481352           | 478140        | 3212      | -2525                       | 8976             | 2508             |
| 30    | 485295                      | 479531           | 481949           | 479091        | 2858      | -2418                       | 5764             | 2680             |
| 31    | 482615                      | 479709           | 481959           | 479053        | 2906      | -2250                       | 2906             | 2379             |
| 32    | 480236                      | 480236           | 482282           | 482282        | 0         | -2046                       | 0                | 2117             |

**Table .** Red Support Manpower divided into surviving, reinforcements, local reserves (& reserves)

| 1 401 | e . Red Support | wanpower di |           | d Support Ma |           | itts, iocai resc | ives (& rese | arves) |
|-------|-----------------|-------------|-----------|--------------|-----------|------------------|--------------|--------|
| Day   | Reformatted     | Available   | Used      | Surviving    | REINF     | LReserves        | Reserves     | Killed |
| (i)   | $_{R}(i)$       | $_{R}(i)$   | $_{R}(i)$ | $_{R}(i)$    | $_{R}(i)$ | $_{R}(i)$        | $_{R}(i)$    | r(i)   |
| 0     | 270323          | 0           | 0         | 0            | 0         | 0                | 270323       | 0      |
| 1     | 270323          | 215122      | 215122    | 215122       | 0         | 0                | 55201        | 3399   |
| 2     | 266924          | 212776      | 214483    | 213430       | 1053      | -1707            | 54148        | 3136   |
| 3     | 263788          | 212406      | 214979    | 212213       | 2766      | -2573            | 51382        | 2696   |
| 4     | 261092          | 211086      | 214423    | 213047       | 1376      | -3337            | 50006        | 2339   |
| 5     | 258753          | 220087      | 220087    | 212931       | 7156      | 0                | 38666        | 2366   |
| 6     | 256387          | 216418      | 216418    | 213541       | 2877      | 0                | 39969        | 2498   |
| 7     | 253889          | 228964      | 228964    | 223387       | 5577      | 0                | 24925        | 2485   |
| 8     | 251404          | 220022      | 220307    | 217293       | 3014      | -285             | 31382        | 2883   |
| 9     | 248521          | 227440      | 227440    | 222873       | 4567      | 0                | 21081        | 2924   |
| 10    | 245597          | 220512      | 220981    | 219251       | 1730      | -469             | 25085        | 3025   |
| 11    | 242572          | 226870      | 226870    | 222417       | 4453      | 0                | 15702        | 3022   |
| 12    | 239550          | 223503      | 223503    | 219834       | 3669      | 0                | 16047        | 3207   |
| 13    | 236343          | 220258      | 221845    | 220967       | 878       | -1587            | 16085        | 2390   |
| 14    | 233953          | 217868      | 218868    | 218868       | 0         | -1000            | 16085        | 2218   |
| 15    | 231735          | 215650      | 218448    | 218448       | 0         | -2798            | 16085        | 2232   |
| 16    | 229503          | 213418      | 217859    | 217859       | 0         | -4441            | 16085        | 2085   |
| 17    | 227418          | 211333      | 217339    | 217339       | 0         | -6006            | 16085        | 2110   |
| 18    | 225308          | 209223      | 217463    | 217463       | 0         | -8240            | 16085        | 2097   |
| 19    | 223211          | 207126      | 216498    | 216498       | 0         | -9372            | 16085        | 2140   |
| 20    | 221071          | 204986      | 215962    | 215962       | 0         | -10976           | 16085        | 2229   |
| 21    | 218842          | 202757      | 213690    | 213690       | 0         | -10933           | 16085        | 2058   |
| 22    | 216784          | 200699      | 213651    | 213651       | 0         | -12952           | 16085        | 2223   |
| 23    | 214561          | 200587      | 216520    | 214409       | 2111      | -15933           | 13974        | 2211   |
| 24    | 212350          | 199884      | 215991    | 214483       | 1508      | -16107           | 12466        | 2080   |
| 25    | 210270          | 199951      | 216107    | 213960       | 2147      | -16156           | 10319        | 2032   |
| 26    | 208238          | 199430      | 215621    | 214110       | 1511      | -16191           | 8808         | 2036   |
| 27    | 206202          | 199618      | 213997    | 211773       | 2224      | -14379           | 6584         | 2431   |
| 28    | 203771          | 198817      | 213513    | 211883       | 1630      | -14696           | 4954         | 2032   |
| 29    | 201739          | 197302      | 212020    | 211503       | 517       | -14718           | 4437         | 2447   |
| 30    | 199292          | 197031      | 211529    | 209353       | 2176      | -14498           | 2261         | 2362   |
| 31    | 196930          | 196298      | 211076    | 209447       | 1629      | -14778           | 632          | 2319   |
| 32    | 194611          | 194611      | 210691    | 210059       | 632       | -16080           | 0            | 2006   |

```
clear all;
close all;
clc;
B = xlsread('Table6Combat&TotalForces.xlsx', 'H6:H15');
b = xlsread('Table6Combat&TotalForces.xlsx',
'H90:H99');
R = xlsread('Table6Combat&TotalForces.xlsx', 'Q6:Q15');
r = xlsread('Table6Combat&TotalForces.xlsx',
'090:099');
for t = 1: numel(B);
    x(t) = (R(t)/B(t));
    y(t) = (b(t)/r(t));
    logx(t) = log(x(t));
    logy(t) = log(y(t));
end
scatter(logx,logy);
polycoefficients = polyfit(logx,logy,1);
linearbestfit =
polycoefficients(1)*logx+polycoefficients(2);
hold on;
plot(logx,linearbestfit);
beta = polycoefficients(1);
alpha = exp(polycoefficients(2));
residuals = (logy - linearbestfit)';
variance = 1-(sum(residuals.^2)/sum((logy-
mean(logy)).^2);
output = [alpha, beta, variance]
```

```
clear all;
close all;
clc;
ManpowerBsurviving =
xlsread('Table7ManpowerWeightings.xlsx', 'D6:D15');
ManpowerBREINF =
xlsread('Table7ManpowerWeightings.xlsx', 'E6:E15');
ManpowerBLreserves =
xlsread('Table7ManpowerWeightings.xlsx', 'F6:F15');
ManpowerBreserves =
xlsread('Table7ManpowerWeightings.xlsx', 'G6:G15');
TankBsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'D6:D15');
TankBREINF = xlsread('Table9EquipmentWeightings.xlsx',
'E6:E15');
TankBLreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'F6:F15');
TankBreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'G6:G15');
APCBsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'D48:D57');
APCBREINF = xlsread('Table9EquipmentWeightings.xlsx',
'E48:E57');
APCBLreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'F48:F57');
APCBreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'G48:G57');
ArtBsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'D90:D99');
ArtBREINF = xlsread('Table9EquipmentWeightings.xlsx',
'E90:E99');
ArtBLreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'F90:F99');
ArtBreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'G90:G99');
SortiesB = xlsread('Table6Combat&TotalForces.xlsx',
'G6:G15');
```

```
Manpowerb = xlsread('Table6Combat&TotalForces.xlsx',
'B90:B99');
Tankb = xlsread('Table6Combat&TotalForces.xlsx',
'D90:D99');
APCb = xlsread('Table6Combat&TotalForces.xlsx',
'E90:E99');
Artb = xlsread('Table6Combat&TotalForces.xlsx',
'F90:F99');
ManpowerRsurviving =
xlsread('Table7ManpowerWeightings.xlsx', 'M6:M15');
ManpowerRREINF =
xlsread('Table7ManpowerWeightings.xlsx', 'N6:N15');
ManpowerRLreserves =
xlsread('Table7ManpowerWeightings.xlsx', '06:015');
ManpowerRreserves =
xlsread('Table7ManpowerWeightings.xlsx', 'P6:P15');
TankRsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'M6:M15');
TankRREINF = xlsread('Table9EquipmentWeightings.xlsx',
'N6:N15');
TankRLreserves =
xlsread('Table9EquipmentWeightings.xlsx', '06:015');
TankRreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'P6:P15');
APCRsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'M48:M57');
APCRREINF = xlsread('Table9EquipmentWeightings.xlsx',
'N48:N57');
APCRLreserves =
xlsread('Table9EquipmentWeightings.xlsx', '048:057');
APCRreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'P48:P57');
ArtRsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'M90:M99');
ArtRREINF = xlsread('Table9EquipmentWeightings.xlsx',
'N90:N99');
ArtRLreserves =
xlsread('Table9EquipmentWeightings.xlsx', '090:099');
ArtRreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'P90:P99');
```

```
SortiesR = xlsread('Table6Combat&TotalForces.xlsx',
'P6:P15');
Manpowerr = xlsread('Table6Combat&TotalForces.xlsx',
'K90:K99');
Tankr = xlsread('Table6Combat&TotalForces.xlsx',
'M90:M99');
APCr = xlsread('Table6Combat&TotalForces.xlsx',
'N90:N99');
Artr = xlsread('Table6Combat&TotalForces.xlsx',
'090:099');
Manpowersurvivingweighting = 1;
ManpowerREINFweighting = [1:0.4:3];
ManpowerLreservesweighting = [0:0.3:0.9];
Manpowerreservesweighting = 0;
ManpowerWeighting = 1;
Tanksurvivingweighting = 1;
TankREINFweighting = [1:0.4:3];
TankLreservesweighting = [0:0.3:0.9];;
Tankreservesweighting = 0;
TankWeighting = 20;
APCsurvivingweighting = 1;
APCREINFweighting = [1:0.4:3];
APCLreservesweighting = [0:0.3:0.9];
APCreservesweighting = 0;
APCWeighting = 5;
Artsurvivingweighting = 1;
ArtREINFweighting = [1:0.4:3];
ArtLreservesweighting = [0:0.3:0.9];
Artreservesweighting = 0;
ArtWeighting = 40;
SortiesWeighting = 30;
for i = 1: numel(ManpowerBsurviving)
    for mprw = 1: numel(ManpowerREINFweighting)
        for mplrw = 1:
numel(ManpowerLreservesweighting)
            for mpresw =
1: numel (Manpowerreservesweighting)
                for trw = 1:numel(TankREINFweighting)
                    for tlrw =
1: numel (TankLreservesweighting)
```

```
for tresw =
1:numel(Tankreservesweighting)
                             for tw =
1:numel(TankWeighting)
                                 for apcrw =
1:numel(APCREINFweighting)
                                      for apclrw =
1: numel (APCLreservesweighting)
                                          for apcresw =
1:numel(APCreservesweighting)
                                              for apcw =
1:numel(APCWeighting)
                                                   for
artrw = 1:numel(ArtREINFweighting)
                                                       for
artlrw = 1:numel(ArtLreservesweighting)
for artresw = 1:numel(Artreservesweighting)
for artw = 1:numel(ArtWeighting)
for asw = 1:numel(SortiesWeighting)
Bmatrix (mprw, mplrw, mpresw, trw, tlrw, tresw, tw, apcrw, apclr
w,apcresw,apcw,artrw,artlrw,artresw,artw,asw,i) =
(((ManpowerBsurviving(i)*Manpowersurvivingweighting)+(M
anpowerBREINF(i) *ManpowerREINFweighting(mprw)) + (Manpowe
rBLreserves(i) *ManpowerLreservesweighting(mplrw)) + (Manp
owerBreserves(i) *Manpowerreservesweighting(mpresw))) *Ma
npowerWeighting) + (((TankBsurviving(i) *Tanksurvivingweig
hting) + (TankBREINF(i) *TankREINFweighting(trw)) + (TankBLr
eserves(i) *TankLreservesweighting(tlrw)) + (TankBreserves
(i) *Tankreservesweighting(tresw))) *TankWeighting(tw))+(
((APCBsurviving(i) *APCsurvivingweighting) + (APCBREINF(i)
*APCREINFweighting(apcrw))+(APCBLreserves(i)*APCLreserv
esweighting(apclrw)) + (APCBreserves(i) *APCreservesweight
ing(apcresw))) *APCWeighting(apcw))+(((ArtBsurviving(i)*
Artsurvivingweighting) + (ArtBREINF(i) *ArtREINFweighting(
artrw)) + (ArtBLreserves(i) *ArtLreservesweighting(artlrw)
) + (ArtBreserves (i) *Artreservesweighting (artresw))) *ArtW
eighting(artw)) + (SortiesB(i) *SortiesWeighting(asw));
Rmatrix (mprw, mplrw, mpresw, trw, tlrw, tresw, tw, apcrw, apclr
w,apcresw,apcw,artrw,artlrw,artresw,artw,asw,i) =
(((ManpowerRsurviving(i)*Manpowersurvivingweighting)+(M
anpowerRREINF(i) *ManpowerREINFweighting(mprw)) + (Manpowe
rRLreserves(i) *ManpowerLreservesweighting(mplrw)) + (Manp
```

```
owerRreserves(i) *Manpowerreservesweighting(mpresw))) *Ma
npowerWeighting) + (((TankRsurviving(i) *Tanksurvivingweig
hting) + (TankRREINF(i) *TankREINFweighting(trw)) + (TankRLr
eserves(i) *TankLreservesweighting(tlrw)) + (TankRreserves
(i) *Tankreservesweighting(tresw))) *TankWeighting(tw))+(
((APCRsurviving(i) *APCsurvivingweighting) + (APCRREINF(i)
*APCREINFweighting(apcrw))+(APCRLreserves(i)*APCLreserv
esweighting(apclrw))+(APCRreserves(i)*APCreservesweight
ing(apcresw))) *APCWeighting(apcw)) + (((ArtRsurviving(i) *
Artsurvivingweighting) + (ArtRREINF(i) *ArtREINFweighting(
artrw))+(ArtRLreserves(i)*ArtLreservesweighting(artlrw)
) + (ArtRreserves (i) *Artreservesweighting (artresw))) *ArtW
eighting(artw))+(SortiesR(i)*SortiesWeighting(asw));
bmatrix(mprw,mplrw,mpresw,trw,tlrw,tresw,tw,apcrw,apclr
w,apcresw,apcw,artrw,artlrw,artresw,artw,asw,i) =
((Manpowerb(i) *Manpowersurvivingweighting) *ManpowerWeig
hting) + ((Tankb(i) *Tanksurvivingweighting) *TankWeighting
(tw))+((APCb(i)*APCsurvivingweighting)*APCWeighting(apc
w))+((Artb(i)*Artsurvivingweighting)*ArtWeighting(artw)
);
rmatrix (mprw, mplrw, mpresw, trw, tlrw, tresw, tw, apcrw, apclr
w,apcresw,apcw,artrw,artlrw,artresw,artw,asw,i) =
((Manpowerr(i) *Manpowersurvivingweighting) *ManpowerWeig
hting) + ((Tankr(i) *Tanksurvivingweighting) *TankWeighting
(tw))+((APCr(i)*APCsurvivingweighting)*APCWeighting(apc
w))+((Artr(i)*Artsurvivingweighting)*ArtWeighting(artw)
);
end
end
end
                                                       end
                                                  end
                                              end
                                          end
                                     end
                                 end
                             end
                         end
                     end
                end
            end
        end
```

```
end
end
for MPRW = 1:mprw
    for MPLRW = 1:mplrw
        for MPRESW = 1:mpresw
             for TRW = 1:trw
                 for TLRW = 1:tlrw
                      for TRESW = 1:tresw
                          for TW = 1:tw
                               for APCRW = 1:apcrw
                                   for APCLRW = 1:apclrw
                                       for APCRESW =
1:apcresw
                                            for APCW =
1:apcw
                                                for ARTRW =
1:artrw
                                                     for
ARTLRW = 1:artlrw
                                                         for
ARTRESW = 1:artresw
for ARTW = 1:artw
for ASW = 1:asw
for I = 1:i
LinearIndexing (I, ASW, ARTW, ARTRESW, ARTLRW, ARTRW, APCW, APC
RESW, APCLRW, APCRW, TW, TRESW, TLRW, TRW, MPRESW, MPLRW, MPRW)
sub2ind(size(Bmatrix), MPRW, MPLRW, MPRESW, TRW, TLRW, TRESW,
TW, APCRW, APCLRW, APCRESW, APCW, ARTRW, ARTLRW, ARTRESW, ARTW,
ASW, I);
end
end
end
                                                         end
                                                    end
                                                end
                                            end
                                       end
                                   end
```

```
end
                        end
                    end
                end
            end
        end
    end
end
Bmatrixsorted = Bmatrix(LinearIndexing);
Rmatrixsorted = Rmatrix(LinearIndexing);
bmatrixsorted = bmatrix(LinearIndexing);
rmatrixsorted = rmatrix(LinearIndexing);
Bmatrix2D =
reshape(Bmatrixsorted,i,mprw*mplrw*mpresw*trw*tlrw*tres
w*tw*apcrw*apclrw*apcresw*apcw*artrw*artlrw*artresw*art
w*asw);
Rmatrix2D =
reshape(Rmatrixsorted,i,mprw*mplrw*mpresw*trw*tlrw*tres
w*tw*apcrw*apclrw*apcresw*apcw*artrw*artlrw*artresw*art
w*asw);
bmatrix2D =
reshape(bmatrixsorted,i,mprw*mplrw*mpresw*trw*tlrw*tres
w*tw*apcrw*apclrw*apcresw*apcw*artrw*artlrw*artresw*art
w*asw);
rmatrix2D =
reshape(rmatrixsorted,i,mprw*mplrw*mpresw*trw*tlrw*tres
w*tw*apcrw*apclrw*apcresw*apcw*artrw*artlrw*artresw*art
w*asw);
v = 0;
for m =
1: (mprw*mplrw*mpresw*trw*tlrw*tresw*tw*apcrw*apclrw*apc
resw*apcw*artrw*artlrw*artresw*artw*asw)
    B = Bmatrix2D(:, m);
    R = Rmatrix2D(:, m);
    b = bmatrix2D(:, m);
    r = rmatrix2D(:, m);
        for t = 1:i
            x(t) = (R(t)/B(t));
            y(t) = (b(t)/r(t));
            logx(t) = log(x(t));
            logy(t) = log(y(t));
        end
```

```
polycoefficients = polyfit(logx,logy,1);
        linearbestfit =
polycoefficients(1)*logx+polycoefficients(2);
        residuals = (logy - linearbestfit)';
        variance(m) = 1-(sum(residuals.^2)/sum((logy-
mean(logy)).^2);
        if variance(m) > v
        v = variance(m);
        M = m;
        end
end
myB = Bmatrix2D(:, M);
myR = Rmatrix2D(:, M);
myb = bmatrix2D(:, M);
myr = rmatrix2D(:, M);
for t = 1:i
    x(t) = (myR(t)/myB(t));
    y(t) = (myb(t)/myr(t));
    logx(t) = log(x(t));
    logy(t) = log(y(t));
    X(t) = (myB(t) * myR(t));
    Y(t) = (myb(t)*myr(t));
    logX(t) = log(X(t));
    logY(t) = log(Y(t));
end
scatter(logx, logy);
polycoefficients = polyfit(logx,logy,1);
linearbestfit =
polycoefficients(1)*logx+polycoefficients(2);
residuals = (logy - linearbestfit)';
hold on;
plot(logx, linearbestfit);
beta = polycoefficients(1);
alpha = exp(polycoefficients(2));
myVariance = v;
polycoefficients2 = polyfit(logX, logY, 1);
delta = polycoefficients2(1);
gamma = exp(polycoefficients2(2));
p = (delta+beta)/2;
```

```
q = (delta-beta)/2;
a = sqrt(alpha*gamma);
bee = sqrt(gamma/alpha);
ManpowerREINFweighting =
ManpowerREINFweighting(ceil(M/(asw*artw*artresw*artlrw*
artrw*apcw*apcresw*apclrw*apcrw*tw*tresw*tlrw*trw*mpres
w*mplrw)));
if mplrw == 0
    ManpowerLreservesweighting = 0;
else
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw*apcres
w*apclrw*apcrw*tw*tresw*tlrw*trw*mpresw))), mplrw) == 0
        ManpowerLreservesweighting =
ManpowerLreservesweighting (mplrw);
    else
        ManpowerLreservesweighting =
ManpowerLreservesweighting(mod(ceil(M/(asw*artw*artresw
*artlrw*artrw*apcw*apcresw*apclrw*apcrw*tw*tresw*tlrw*t
rw*mpresw)), mplrw));
    end
end
if mpresw == 0
    Manpowerreservesweighting = 0;
else
    i.f
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw*apcres
w*apclrw*apcrw*tw*tresw*tlrw*trw))), mpresw) == 0
        Manpowerreservesweighting =
Manpowerreservesweighting (mpresw);
        Manpowerreservesweighting =
Manpowerreservesweighting (mod (ceil (M/(asw*artw*artresw*
artlrw*artrw*apcw*apcresw*apclrw*apcrw*tw*tresw*tlrw*tr
w)), mpresw));
    end
end
if trw == 0
    TankREINFweighting = 0;
else
```

```
if
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw*apcres
w*apclrw*apcrw*tw*tresw*tlrw))),trw) == 0
        TankREINFweighting = TankREINFweighting(trw);
    else
        TankREINFweighting =
TankREINFweighting(mod(ceil(M/(asw*artw*artresw*artlrw*
artrw*apcw*apcresw*apclrw*apcrw*tw*tresw*tlrw)),trw));
    end
end
if tlrw == 0
    TankLreservesweighting = 0;
else
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw*apcres
w*apclrw*apcrw*tw*tresw)))),tlrw) == 0
        TankLreservesweighting =
TankLreservesweighting(tlrw);
    else
        TankLreservesweighting =
TankLreservesweighting (mod (ceil (M/(asw*artw*artresw*art
lrw*artrw*apcw*apcresw*apclrw*apcrw*tw*tresw)),tlrw));
    end
end
if tresw == 0
    Tankreservesweighting = 0;
else
    if
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw*apcres
w*apclrw*apcrw*tw)))),tresw) == 0
        Tankreservesweighting =
Tankreservesweighting(tresw);
    else
        Tankreservesweighting =
Tankreservesweighting (mod (ceil (M/ (asw*artw*artresw*artl
rw*artrw*apcw*apcresw*apclrw*apcrw*tw)), tresw));
end
if tw == 0
    TankWeighting = 0;
else
    if
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw*apcres
w*apclrw*apcrw)))),tw) == 0
```

```
TankWeighting = TankWeighting(tw);
    else
        TankWeighting =
TankWeighting(mod(ceil(M/(asw*artw*artresw*artlrw*artrw
*apcw*apcresw*apclrw*apcrw)),tw));
    end
end
if apcrw == 0
    APCREINFweighting = 0;
else
    if
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw*apcres
w*apclrw)))),apcrw) == 0
        APCREINFweighting = APCREINFweighting(apcrw);
    else
        APCREINFweighting =
APCREINFweighting (mod (ceil (M/(asw*artw*artresw*artlrw*a
rtrw*apcw*apcresw*apclrw)),apcrw));
    end
end
if apclrw == 0
    APCLreservesweighting = 0;
else
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw*apcres
w)))),apclrw) == 0
        APCLreservesweighting =
APCLreservesweighting (apclrw);
    else
        APCLreservesweighting =
APCLreservesweighting (mod (ceil (M/ (asw*artw*artresw*artl
rw*artrw*apcw*apcresw)),apclrw));
    end
end
if apcresw == 0
    APCreservesweighting = 0;
else
mod((ceil((M/(asw*artw*artresw*artlrw*artrw*apcw)))),ap
cresw) == 0
        APCreservesweighting =
APCreservesweighting (apcresw);
    else
```

```
APCreservesweighting =
APCreservesweighting(mod(ceil(M/(asw*artw*artresw*artlr
w*artrw*apcw)),apcresw));
end
if apcw == 0
    APCWeighting = 0;
else
    if
mod((ceil((M/(asw*artw*artresw*artlrw*artrw)))),apcw)
        APCWeighting = APCWeighting(apcw);
    else
        APCWeighting =
APCWeighting (mod (ceil (M/(asw*artw*artresw*artlrw*artrw))
),apcw));
    end
end
if artrw == 0
    ArtREINFweighting = 0;
    if mod((ceil((M/(asw*artw*artresw*artlrw)))),artrw)
== 0
        ArtREINFweighting = ArtREINFweighting(artrw);
    else
        ArtREINFweighting =
ArtREINFweighting(mod(ceil(M/(asw*artw*artresw*artlrw))
,artrw));
    end
end
if artlrw == 0
    ArtLreservesweighting = 0;
else
    if mod((ceil((M/(asw*artw*artresw)))),artlrw) == 0
        ArtLreservesweighting =
ArtLreservesweighting(artlrw);
    else
        ArtLreservesweighting =
ArtLreservesweighting (mod (ceil (M/(asw*artw*artresw)), ar
tlrw));
    end
end
if artresw == 0
```

```
Artreservesweighting = 0;
else
    if mod((ceil((M/(asw*artw)))),artresw) == 0
        Artreservesweighting =
Artreservesweighting (artresw);
    else
        Artreservesweighting =
Artreservesweighting (mod (ceil (M/(asw*artw)), artresw));
    end
end
if artw == 0
    ArtWeighting = 0;
else
    if mod(ceil(M/asw),artw) == 0
        ArtWeighting = ArtWeighting(artw);
    else
        ArtWeighting =
ArtWeighting(mod(ceil(M/asw),artw));
    end
end
if asw == 0
    SortiesWeighting = 0;
else
    if mod(M,asw) == 0
        SortiesWeighting = SortiesWeighting(asw);
    else
        SortiesWeighting =
SortiesWeighting(mod(M,asw));
    end
end
parameters = ["alpha", "beta", "delta", "gamma", "p",
"q", "a", "b"]';
parametervalues = [alpha, beta, delta, gamma, p, q, a,
parametersoutput = [cellstr(parameters),
num2cell(parametervalues)]
weightings = ["surviving manpower weighting", "manpower
reinforcements weighting", "manpower local reserves
weighting", "manpower reserves weighting", "manpower
weighting", "surviving tank weighting", "tank
reinforcements weighting", "tank local reserves
weighting", "tank reserves weighting", "tank
```

weighting", "surviving APC weighting", "APC reinforcements weighting", "APC local reserves weighting", "APC reserves weighting", "APC weighting", "surviving artillery weighting", "arterilly reinforcements weighting", "artillery local reserves weighting", "artillery reserves weighting", "artillery weighting", "air sorties weighting", "Variance"]'; weightingvalues = [Manpowersurvivingweighting, ManpowerREINFweighting, ManpowerLreservesweighting, Manpowerreservesweighting, ManpowerWeighting, Tanksurvivingweighting, TankREINFweighting, TankLreservesweighting, Tankreservesweighting, TankWeighting, APCsurvivingweighting, APCREINFweighting, APCLreservesweighting, APCreservesweighting, APCWeighting, Artsurvivingweighting, ArtREINFweighting, ArtLreservesweighting, Artreservesweighting, ArtWeighting, SortiesWeighting, myVariance]'; weightingsoutput = [cellstr(weightings), num2cell(weightingvalues)]

Table. Lanchester equations fit with equipment weighted wide ranges

|             |       | Equipment Weightings |                |                | Results     |          |          |  |
|-------------|-------|----------------------|----------------|----------------|-------------|----------|----------|--|
|             | Day   | TW (0:5:100)         | APCW (0:5:100) | ArtW (0:5:100) | alpha       | beta     | Variance |  |
| Combat      | 1-10  | 10                   | 100            | 25             | 6.27915     | 4.56031  | 0.833126 |  |
| Combat      | 11-32 | 0                    | 100            | 0              | 0.0134935   | -3.04806 | 0.434261 |  |
| Total       | 1-10  | 100                  | 100            | 100            | 3.85499     | 2.89850  | 0.522034 |  |
| Total       | 11-32 | 5                    | 100            | 0              | 0.0107884   | -4.41438 | 0.670216 |  |
| Reformatted | 1-10  | 0                    | 100            | 90             | 51382200000 | 48.4286  | 0.813990 |  |
| Combat      | 11-32 | 0                    | 100            | 0              | 0.000409481 | -7.01563 | 0.437989 |  |
| Reformatted | 1-10  | 0                    | 100            | 100            | 51770600000 | 45.0072  | 0.625270 |  |
| Total       | 11-32 | 0                    | 100            | 10             | 0.00144870  | -7.09735 | 0.676760 |  |
| Mean        |       |                      |                |                |             |          | 0.626706 |  |

Table. Lanchester equations fit with equipment weighted wide ranges, including air force

|             |       |              | <b>Equipment Weightings</b> |                |               |             | Results  |          |  |  |
|-------------|-------|--------------|-----------------------------|----------------|---------------|-------------|----------|----------|--|--|
|             | Day   | TW (0:5:100) | APCW (0:5:100)              | ArtW (0:5:100) | AsW (0:5:100) | alpha       | beta     | Variance |  |  |
| Combat      | 1-10  | 0            | 100                         | 70             | 100           | 2.90693     | 4.42112  | 0.899901 |  |  |
| Combat      | 11-32 | 0            | 100                         | 0              | 0             | 0.0134935   | -3.04806 | 0.434261 |  |  |
| Total       | 1-10  | 65           | 100                         | 100            | 100           | 3.67627     | 3.02196  | 0.588407 |  |  |
| Total       | 11-32 | 5            | 100                         | 0              | 0             | 0.0107884   | -4.41438 | 0.670216 |  |  |
| Reformatted | 1-10  | 0            | 90                          | 100            | 10            | 47434600    | 38.9278  | 0.832976 |  |  |
| Combat      | 11-32 | 0            | 100                         | 0              | 0             | 0.000409481 | -7.01563 | 0.437989 |  |  |
| Reformatted | 1-10  | 0            | 100                         | 100            | 25            | 12581200    | 29.6984  | 0.674585 |  |  |
| Total       | 11-32 | 0            | 100                         | 0              | 0             | 0.00144870  | -7.09735 | 0.676760 |  |  |
| Mean        | •     |              |                             |                |               |             |          | 0.651887 |  |  |

Table. Lanchester equations fit with subdivisions weighted wide ranges

|        |          |           |           | Weiş             | ghtings           | Results  |           |          |          |
|--------|----------|-----------|-----------|------------------|-------------------|----------|-----------|----------|----------|
|        | Day      | Resources | Surviving | REINF<br>(0:1:5) | Lreserves (0:1:5) | Reserves | alpha     | beta     | variance |
|        | 1-10     | Manpower  | 1         | 0                | 5                 | 0        | 0.557229  | 3.36473  | 0.707277 |
|        |          | Tank      | 1         | 0                | 0                 | 0        |           |          |          |
|        | 1-10     | APC       | 1         | 0                | 5                 | 0        |           |          |          |
| G 1.4  |          | Artillery | 1         | 1                | 5                 | 0        |           |          |          |
| Combat | 11-32    | Manpower  | 1         | 3                | 0                 | 0        | 0.0528765 | -6.50956 | 0.498049 |
|        |          | Tank      | 1         | 3                | 5                 | 0        |           |          |          |
|        |          | APC       | 1         | 2                | 5                 | 0        |           |          |          |
|        |          | Artillery | 1         | 5                | 4                 | 0        |           |          |          |
|        | 1-10     | Manpower  | 1         | 0                | 0                 | 0        | 1.73596   | 2.62510  | 0.527388 |
|        |          | Tank      | 1         | 0                | 0                 | 0        |           |          |          |
|        |          | APC       | 1         | 0                | 5                 | 0        |           |          |          |
| T-4-1  |          | Artillery | 1         | 0                | 5                 | 0        |           |          |          |
| Total  |          | Manpower  | 1         | 1                | 0                 | 0        |           | -6.83630 | 0.662520 |
|        | 11 22    | Tank      | 1         | 5                | 5                 | 0        | 0.0347945 |          |          |
|        | 11-32    | APC       | 1         | 5                | 2                 | 0        |           |          |          |
|        |          | Artillery | 1         | 5                | 4                 | 0        |           |          |          |
| Mean   | <u> </u> | •         |           | _                |                   |          |           |          | 0.59880  |

Table 27.

|        |       |           | Weightings |                  |                   |          | Results   |          |          |
|--------|-------|-----------|------------|------------------|-------------------|----------|-----------|----------|----------|
|        | Day   | Resources | Surviving  | REINF<br>(0:1:5) | Lreserves (0:1:5) | Reserves | alpha     | beta     | variance |
|        | 1-10  | Manpower  | 1          | 0                | 5                 | 0        | 0.590047  | 2.98613  | 0.729115 |
|        |       | Tank      | 1          | 0                | 0                 | 0        |           |          |          |
|        |       | APC       | 1          | 0                | 5                 | 0        |           |          |          |
| C      |       | Artillery | 1          | 1                | 5                 | 0        |           |          |          |
| Combat | 11-32 | Manpower  | 1          | 3                | 0                 | 0        | 0.0398933 | -7.02511 | 0.435380 |
|        |       | Tank      | 1          | 0                | 5                 | 0        |           |          |          |
|        |       | APC       | 1          | 0                | 5                 | 0        |           |          |          |
|        |       | Artillery | 1          | 5                | 4                 | 0        |           |          |          |
|        | 1-10  | Manpower  | 1          | 0                | 0                 | 0        | 1.91050   | 2.79981  | 0.602853 |
|        |       | Tank      | 1          | 0                | 0                 | 0        |           |          |          |
|        |       | APC       | 1          | 0                | 5                 | 0        |           |          |          |
| Total  |       | Artillery | 1          | 0                | 5                 | 0        |           |          |          |
| Total  |       | Manpower  | 1          | 2                | 2                 | 0        | 0.0518756 | -5.41909 |          |
|        | 11 22 | Tank      | 1          | 5                | 5                 | 0        |           |          | 0.597830 |
|        | 11-32 | APC       | 1          | 5                | 3                 | 0        |           |          |          |
|        |       | Artillery | 1          | 5                | 2                 | 0        |           |          |          |

```
clear all;
close all;
clc;
ManpowerBsurviving =
xlsread('Table7ManpowerWeightings.xlsx', 'D6:D15');
ManpowerBREINF =
xlsread('Table7ManpowerWeightings.xlsx', 'E6:E15');
ManpowerBLreserves =
xlsread('Table7ManpowerWeightings.xlsx', 'F6:F15');
ManpowerBreserves =
xlsread('Table7ManpowerWeightings.xlsx', 'G6:G15');
TankBsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'D6:D15');
TankBREINF = xlsread('Table9EquipmentWeightings.xlsx',
'E6:E15');
TankBLreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'F6:F15');
TankBreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'G6:G15');
APCBsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'D48:D57');
APCBREINF = xlsread('Table9EquipmentWeightings.xlsx',
'E48:E57');
APCBLreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'F48:F57');
APCBreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'G48:G57');
ArtBsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'D90:D99');
ArtBREINF = xlsread('Table9EquipmentWeightings.xlsx',
'E90:E99');
ArtBLreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'F90:F99');
ArtBreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'G90:G99');
SortiesB = xlsread('Table6Combat&TotalForces.xlsx',
'G6:G15');
Manpowerb = xlsread('Table6Combat&TotalForces.xlsx',
'B90:B99');
```

```
Tankb = xlsread('Table6Combat&TotalForces.xlsx',
'D90:D99');
APCb = xlsread('Table6Combat&TotalForces.xlsx',
'E90:E99');
Artb = xlsread('Table6Combat&TotalForces.xlsx',
'F90:F99');
ManpowerRsurviving =
xlsread('Table7ManpowerWeightings.xlsx', 'M6:M15');
ManpowerRREINF =
xlsread('Table7ManpowerWeightings.xlsx', 'N6:N15');
ManpowerRLreserves =
xlsread('Table7ManpowerWeightings.xlsx', '06:015');
ManpowerRreserves =
xlsread('Table7ManpowerWeightings.xlsx', 'P6:P15');
TankRsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'M6:M15');
TankRREINF = xlsread('Table9EquipmentWeightings.xlsx',
'N6:N15');
TankRLreserves =
xlsread('Table9EquipmentWeightings.xlsx', '06:015');
TankRreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'P6:P15');
APCRsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'M48:M57');
APCRREINF = xlsread('Table9EquipmentWeightings.xlsx',
'N48:N57');
APCRLreserves =
xlsread('Table9EquipmentWeightings.xlsx', '048:057');
APCRreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'P48:P57');
ArtRsurviving =
xlsread('Table9EquipmentWeightings.xlsx', 'M90:M99');
ArtRREINF = xlsread('Table9EquipmentWeightings.xlsx',
'N90:N99');
ArtRLreserves =
xlsread('Table9EquipmentWeightings.xlsx', '090:099');
ArtRreserves =
xlsread('Table9EquipmentWeightings.xlsx', 'P90:P99');
SortiesR = xlsread('Table6Combat&TotalForces.xlsx',
'P6:P15');
```

```
Manpowerr = xlsread('Table6Combat&TotalForces.xlsx',
'K90:K99');
Tankr = xlsread('Table6Combat&TotalForces.xlsx',
'M90:M99');
APCr = xlsread('Table6Combat&TotalForces.xlsx',
'N90:N99');
Artr = xlsread('Table6Combat&TotalForces.xlsx',
'090:099');
%Resource weightings
ManpowerWeighting = 1;
TankWeighting = [10:2:30];
APCWeighting = [2:2:20];
ArtWeighting = [30:2:50];
SortieWeighting = [20:2:40];
%subdivision weightings
SurvivingWeighting = 1;
REINFWeighting = [1:0.4:3];
LReservesWeighting = [0:0.3:0.9];
ReservesWeighting = [0:0.3:0.9];
for i = 1:numel(ManpowerBsurviving)
    for tw = 1:numel(TankWeighting)
        for apcw = 1:numel(APCWeighting)
            for artw = 1:numel(ArtWeighting)
                for asw = 1:numel(SortieWeighting)
                    for reinf = 1:numel(REINFWeighting)
                         for lres =
1:numel(LReservesWeighting)
                            for res =
1:numel(ReservesWeighting)
Bmatrix(tw,apcw,artw,asw,reinf,lres,res,i) =
(((ManpowerBsurviving(i) *ManpowerWeighting) +
(TankBsurviving(i)*TankWeighting(tw)) +
(APCBsurviving(i) *APCWeighting(apcw)) +
(ArtBsurviving(i) *ArtWeighting(artw))) *SurvivingWeighti
ng) + (((ManpowerBREINF(i) *ManpowerWeighting) +
(TankBREINF(i) *TankWeighting(tw)) +
(APCBREINF(i) *APCWeighting(apcw)) +
(ArtBREINF(i) *ArtWeighting(artw))) *REINFWeighting(reinf
)) + (((ManpowerBLreserves(i) *ManpowerWeighting) +
(TankBLreserves(i) *TankWeighting(tw)) +
(APCBLreserves(i) *APCWeighting(apcw)) +
(ArtBLreserves(i) *ArtWeighting(artw))) *LReservesWeighti
```

```
ng(lres)) + (((ManpowerBreserves(i)*ManpowerWeighting)
+ (TankBreserves(i) *TankWeighting(tw)) +
(APCBreserves(i) *APCWeighting(apcw)) +
(ArtBreserves(i) *ArtWeighting(artw))) *ReservesWeighting
(res)) + (SortiesB(i) *SortieWeighting(asw));
Rmatrix(tw,apcw,artw,asw,reinf,lres,res,i) =
(((ManpowerRsurviving(i) *ManpowerWeighting) +
(TankRsurviving(i)*TankWeighting(tw)) +
(APCRsurviving(i) *APCWeighting(apcw)) +
(ArtRsurviving(i) *ArtWeighting(artw))) *SurvivingWeighti
ng) + (((ManpowerRREINF(i) *ManpowerWeighting) +
(TankRREINF(i) *TankWeighting(tw)) +
(APCRREINF(i) *APCWeighting(apcw)) +
(ArtRREINF(i) *ArtWeighting(artw))) *REINFWeighting(reinf
)) + (((ManpowerRLreserves(i) *ManpowerWeighting) +
(TankRLreserves(i)*TankWeighting(tw)) +
(APCRLreserves(i) *APCWeighting(apcw)) +
(ArtRLreserves(i) *ArtWeighting(artw))) *LReservesWeighti
ng(lres)) + (((ManpowerRreserves(i)*ManpowerWeighting)
+ (TankRreserves(i) *TankWeighting(tw)) +
(APCRreserves(i) *APCWeighting(apcw)) +
(ArtRreserves(i) *ArtWeighting(artw))) *ReservesWeighting
(res)) + (SortiesR(i) *SortieWeighting(asw));
bmatrix(tw,apcw,artw,asw,reinf,lres,res,i) =
((Manpowerb(i) *SurvivingWeighting) *ManpowerWeighting) + (
(Tankb(i) *SurvivingWeighting) *TankWeighting(tw)) + ((APCb
(i) *SurvivingWeighting) *APCWeighting(apcw))+((Artb(i) *S
urvivingWeighting) *ArtWeighting(artw));
rmatrix(tw,apcw,artw,asw,reinf,lres,res,i) =
((Manpowerr(i) *SurvivingWeighting) *ManpowerWeighting) + (
(Tankr(i) *SurvivingWeighting) *TankWeighting(tw)) + ((APCr
(i) *SurvivingWeighting) *APCWeighting(apcw)) + ((Artr(i) *S
urvivingWeighting) *ArtWeighting(artw));
                             end
                         end
                     end
                end
            end
        end
    end
end
for TW = 1:tw
    for APCW = 1:apcw
```

```
for ARTW = 1:artw
            for ASW = 1:asw
                 for REINF = 1:reinf
                     for LRES = 1:lres
                         for RES = 1:res
                             for I = 1:i
LinearIndexing(I, RES, LRES, REINF, ASW, ARTW, APCW, TW) =
sub2ind(size(Bmatrix), TW, APCW, ARTW, ASW, REINF, LRES, RES, I
);
                             end
                         end
                     end
                end
            end
        end
    end
end
Bmatrixsorted = Bmatrix(LinearIndexing);
Rmatrixsorted = Rmatrix(LinearIndexing);
bmatrixsorted = bmatrix(LinearIndexing);
rmatrixsorted = rmatrix(LinearIndexing);
Bmatrix2D =
reshape (Bmatrixsorted, i, tw*apcw*artw*asw*reinf*lres*res
Rmatrix2D =
reshape(Rmatrixsorted,i,tw*apcw*artw*asw*reinf*lres*res
bmatrix2D =
reshape(bmatrixsorted,i,tw*apcw*artw*asw*reinf*lres*res
rmatrix2D =
reshape(rmatrixsorted,i,tw*apcw*artw*asw*reinf*lres*res
);
v = 0;
for m = 1:(tw*apcw*artw*asw*reinf*lres*res)
    B = Bmatrix2D(:, m);
    R = Rmatrix2D(:, m);
    b = bmatrix2D(:, m);
    r = rmatrix2D(:, m);
        for t = 1:i
            x(t) = (R(t)/B(t));
```

```
y(t) = (b(t)/r(t));
            logx(t) = log(x(t));
            logy(t) = log(y(t));
        end
        polycoefficients = polyfit(logx,logy,1);
        linearbestfit =
polycoefficients(1)*logx+polycoefficients(2);
        residuals = (logy - linearbestfit)';
        variance(m) = 1 - (sum(residuals.^2)/sum((logy-
mean(logy)).^2);
        if variance(m) > v
        v = variance(m);
        M = m;
        end
end
myB = Bmatrix2D(:, M);
myR = Rmatrix2D(:, M);
myb = bmatrix2D(:, M);
myr = rmatrix2D(:, M);
for t = 1:i
    x(t) = (myR(t)/myB(t));
    y(t) = (myb(t)/myr(t));
    logx(t) = log(x(t));
    logy(t) = log(y(t));
    X(t) = (myB(t) * myR(t));
    Y(t) = (myb(t)*myr(t));
    logX(t) = log(X(t));
    logY(t) = log(Y(t));
end
scatter(logx, logy);
polycoefficients = polyfit(logx,logy,1);
linearbestfit =
polycoefficients(1)*logx+polycoefficients(2);
residuals = (logy - linearbestfit)';
hold on;
plot(logx, linearbestfit);
beta = polycoefficients(1);
alpha = exp(polycoefficients(2));
myVariance = v;
polycoefficients2 = polyfit(logX,logY,1);
```

```
delta = polycoefficients2(1);
gamma = exp(polycoefficients2(2));
p = (delta+beta)/2;
q = (delta-beta)/2;
a = sqrt(alpha*gamma);
bee = sqrt(gamma/alpha);
TankWeighting =
TankWeighting(ceil(M/(res*lres*reinf*asw*artw*apcw)));
if apcw == 0
    APCWeighting = 0;
else
    if mod((ceil((M/(res*lres*reinf*asw*artw)))),apcw)
== 0
        APCWeighting = APCWeighting(apcw);
    else
        APCWeighting =
APCWeighting (mod (ceil (M/(res*lres*reinf*asw*artw)), apcw
));
    end
end
if artw == 0
    ArtWeighting = 0;
else
    if mod((ceil((M/(res*lres*reinf*asw)))),artw) == 0
        ArtWeighting = ArtWeighting(artw);
    else
        ArtWeighting =
ArtWeighting(mod(ceil(M/(res*lres*reinf*asw)),artw));
    end
end
if asw == 0
    SortieWeighting = 0;
else
    if mod((ceil((M/(res*lres*reinf)))),asw) == 0
        SortieWeighting = SortieWeighting(asw);
    else
        SortieWeighting =
SortieWeighting(mod(ceil(M/(res*lres*reinf)),asw));
end
if reinf == 0
```

```
REINFWeighting = 0;
else
    if mod((ceil((M/(res*lres)))), reinf) == 0
        REINFWeighting = REINFWeighting(reinf);
    else
        REINFWeighting =
REINFWeighting(mod(ceil(M/(res*lres)), reinf));
    end
end
if lres == 0
    LReservesWeighting = 0;
else
    if mod(ceil(M/res),lres) == 0
        LReservesWeighting = LReservesWeighting(lres);
    else
        LReservesWeighting =
LReservesWeighting (mod (ceil (M/res), lres));
    end
end
if res == 0
    ReservesWeighting = 0;
else
    if mod(M, res) == 0
        ReservesWeighting = ReservesWeighting(res);
    else
        ReservesWeighting =
ReservesWeighting(mod(M, res));
    end
end
parameters = ["alpha", "beta", "delta", "gamma", "p",
"q", "a", "b"]';
parametervalues = [alpha, beta, delta, gamma, p, q, a,
bee]';
parametersoutput = [cellstr(parameters),
num2cell(parametervalues)]
weightings = ["Tank Weighting", "APC Weighting",
"Artillery Weighting", "Air Sortie Weighting",
"surviving weighting", "reinforcements weighting",
"local reserves weighting", "reserves weighting",
"variance"]';
weightingvalues = [TankWeighting, APCWeighting,
ArtWeighting, SortieWeighting, SurvivingWeighting,
```

```
REINFWeighting, LReservesWeighting, ReservesWeighting,
myVariance]';
weightingsoutput = [cellstr(weightings),
num2cell(weightingvalues)]
```

#### References

- [1] Bracken, J., "Lanchester Models of the Ardennes Campaign," *Naval Research Logistics*, **42**, 559-577 (1995).
- [2] Data Memory Systems Inc., The Ardennes Campaign Simulation Data Base (ACSDB), Phase II Final Report, No. AD-A240088, National Technical Information Service, February 1990.
- [3] Dupuy, T.N., Bongard, D.L., and Anderson, R.C., Jr., *Hitler's Last Gamble: The Battle of the Bulge, December 1944-January 1945*, HarperPerennial, New York, 1994.
- [4] Fricker, R.D., "Attrition models of the Ardennes campaign," *Naval Research Logistics*, **45** (1998) 1-22.
- [5] http://www.rand.org/pubs/monograph\_reports/MR638/app.html
- [6] Lanchester F.W., *Mathematics in Warfare* in *The World of Mathematics*, Vol. 4 (1956) Ed. Newman, J.R., Simon and Schuster, 2138–2157
- [7] Lucas, Thomas W., Turker Turkes, "Fitting Lanchester Equations to the Battles of Kursk and Ardennes," Operations Research Department, Naval Postgraduate School, Monterey, California 93943; Turkish Army, Ankara, Turkey, 2003
- [8] MacKay, Niall, "Lanchester combat models," Department of Mathematics, University of York, May 2005
- [9] Willard, D., "Lanchester as Force in History: An Analysis of Land Battles of the Years 1618 1905," DTIC No. AD297275L, Alexandria, VA, 1962