SHORTEST PATH

Shortest Path Algorithms

Algorithm	Use Case	Graph Type	Time Complexity	Notes
BFS	When all edges have equal weight	Unweighted / same-weighted edges	O(V + E)	Simplest and fastest when all weights are equal.
Dijkstra	When edge weights are non-negative	Weighted, no negative weights	O((V + E) log V) with heap	Greedy, efficient for SSSP (Single Source Shortest Path).
Bellman-Ford	When edge weights can be negative	Weighted, allows negative weights	O(V * E)	Slower, but handles negative weights and detects negative cycles.
Floyd-Warshall	For all-pairs shortest paths	Dense graphs, small number of nodes	O(V ³)	Easy to implement; handles negative weights (but not negative cycles).
A* Search	For shortest path with a goal node and heuristic	Weighted, heuristic needed	Depends on heuristic quality	Often used in pathfinding (e.g. maps, games); faster than Dijkstra if heuristic is good.
Johnson's Algorithm	All-pairs shortest paths in sparse graphs with negative weights	Weighted, allows negative weights	$O(V^2 \log V + V * E)$	Reweights graph with Bellman-Ford, then runs Dijkstra from each node.
SPFA	Practical variant of Bellman-Ford, often faster	Weighted, allows negative weights	Avg: O(E), Worst: O(VE)	Queue-based; faster in practice, not guaranteed. Handles negative weights.
Bidirectional Search	When you know start and target , speeds up search in undirected graphs	Unweighted or uniformly weighted	O(b^(d/2)) in best case	Runs two simultaneous searches (from start and end); fast when goal is known.

leetcode.com/problems/network-delay-time

Problem

- You are given a network of nodes n with destination and time to reach that node
- \blacksquare You are given a starting node **k** and the number of nodes in the network **n**
- \blacksquare A signal is sent from node **k** to all nodes in the network
- Find the minimum time required for all nodes to receive the signal from \mathbf{k}
- Example:

$$k = 2 \quad n = 4$$

Output: 3


```
LeetCode
```

leetcode.com/problems/network-delay-time

Solution

- This is solved using Djikstra algorithm
- Build the graph by storing in the destination node and the time from a source node:

```
graph[node] = [[node, distance]]
graph[2] = [[1,1], [2,3]]
```

- Set up a min-heap for Djikstra (priority_queue) with distance and node
- Perform Djikstra algorithm and store the shortest paths
- Check if all nodes were reached
- Return the longest distance among shortest paths

Code – 743. Network Delay Time

leetcode.com/problems/network-delay-time

Code

Time: O((n + e) log n) Space: O(n + e) where n is the number of nodes and e the number of edges

```
int networkDelayTime(vector<vector<int>>& times, int n, int k) {
   // node => (destination, distance)
   unordered map<int, vector<pair<int, int>>> graph;
    for (const auto& time : times) {
       // time[0] = source node, time[1] = dest node, time[2] = time
        graph[time[0]].emplace back(time[1], time[2]);
   // min heap: distance from the origin 'k' to 'node'
    priority queue<pair<int, int>, vector<pair<int, int>>, greater<>> minHeap;
    minHeap.emplace(0, k); // distance, starting node
    // shortest path from each node to the origin 'k' (node, distance)
    unordered map<int, int> dist;
   // we start exploring the nodes from the minimum
   // distance to the origin 'k'
    while (!minHeap.empty()) {
        auto [distance, node] = minHeap.top();
        minHeap.pop();
        // already visited, skip
        if (dist.count(node)) continue;
        // set the distance
        dist[node] = distance;
        // look at the connections
       for (const auto& [n, d] : graph[node]) {
           // n[node, distance]
           // quick optimization, not necessary
           if (dist.count(n)) continue;
           // add the distance since we want
           // the distance from the origin
            minHeap.emplace(distance + d, n);
   }
```

```
// check if all nodes were visited
if (dist.size() != n) return -1;

// all the minimum distances are calculated
// find the max one since we want to reach
// all nodes
int minTime = 0;
for (const auto& [n, d] : dist) {
    minTime = max(minTime, d);
}

return minTime;
```