2. Вектори

Дефиниция 1: Насочена от отсечка \overrightarrow{AB} наричаме наредена двойка точки A,B. A наричаме начало, B - край на насочената отсечка. Ако A съвпада с B, насочената отсечка \overrightarrow{AB} наричаме nynesa.

Дефиниция 2: Насочените отсечки \overrightarrow{AB} , \overrightarrow{CD} наричаме колинеарни (пишем $\overrightarrow{AB} \| \overrightarrow{CD}$), ако правите и CD са успоредни или съвпадат.

 $\overrightarrow{AB} \uparrow \overrightarrow{CD}$), ако те са колинеарни и точките B и D лежат от една и съща страна на правата AC, или ако правите AB и CD се сливат, посоките от A към B и от C към D съвпадат.

Въвеждаме релацията равенство на насовени отсечки:

Дефиниция 4: Насочените отсечки $\overrightarrow{AB}, \overrightarrow{CD}$ са равни (пишем $\overrightarrow{AB} = \overrightarrow{CD}$), ако са изшълнени условията:

- а) отсечките AB и CD имат равни дължини;
- б) \overrightarrow{AB} и \overrightarrow{CD} са еднопосочно колинеарни.

Равенството на насочени отсечки е релация на еквивалентност, т.е.

- 1) Всяка насочена отсечка е равна на себе си: $\overrightarrow{AB} = \overrightarrow{AB}$;
- 2) Ако $\overrightarrow{AB} = \overrightarrow{CD}$, то $\overrightarrow{CD} = \overrightarrow{AB}$;
- 3) Ako $\overrightarrow{AB} = \overrightarrow{CD}$, $\overrightarrow{CD} = \overrightarrow{EF}$, To $\overrightarrow{AB} = \overrightarrow{EF}$.

 \overrightarrow{AC} и \overrightarrow{BD} са равни ($\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \overrightarrow{AC} = \overrightarrow{BD}$).

Доказателство:

Достатъчно е да докажем само едната посока.

Нека $\overrightarrow{AB} = \overrightarrow{CD}$.

1 сл.
$$A = B \Rightarrow \overrightarrow{AB} = \overrightarrow{AA}$$
.

Следователно CD се състои също от една точка, т.е. $C \equiv D$ или $\overrightarrow{AC} = \overrightarrow{BD}$.

2 сл.
$$A \neq B \Rightarrow C \neq D$$
. $\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow AB \cong CD$ и $\overrightarrow{AB} \uparrow \overrightarrow{CD}$.

2.1. сл. Правите AB и CD съвпадат, то имаме две възможности или $A\equiv C$, или $A\neq C$.

Ако $A \equiv C$, то $\overrightarrow{AB} = \overrightarrow{CD}$, $D \in \overrightarrow{CD} = \overrightarrow{AB}$ и $AB \cong CD \Rightarrow B \equiv D$. Следователно $\overrightarrow{AC} = \overrightarrow{AA}$ е нулев и $\overrightarrow{BD} = \overrightarrow{BB}$ е нулев и следоватлно $\overrightarrow{AA} = \overrightarrow{BB}$, т.е. $\overrightarrow{AC} = \overrightarrow{BD}$.

Ако $A \neq C$, то отново имаме две възможности, т.B е между т.A и т.C или т.C е между т.A и т.B.

Нека означим |AB| = |CD| = x и |BC = y|.

За първата възможност следва $|AC|=x+y=|BD|\Rightarrow AC\cong BD$, също така $\overrightarrow{AC} \uparrow \uparrow \overrightarrow{CD}$, следователно $\overrightarrow{AC}=\overrightarrow{BD}$.

За другата възможност следва:|AC|=x-y=|BD| \therefore $AC\cong BD$, $\overrightarrow{AC} \uparrow \uparrow \overrightarrow{BD}$. Следователно $\overrightarrow{AC}=\overrightarrow{BD}$.

2.2. сл. Правите AB и CD са различни:

от $AB \parallel CD$ и $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$ следва, че B и D са от една и съща страна на правата AC. $AB \cong CD \Rightarrow ABCD$ е успоредник. Следователно $\overrightarrow{AC} \cong BD$, C и D са от една и съща страна на $AB \Rightarrow \overrightarrow{AC} \uparrow \uparrow \overrightarrow{BD}$. Следователно $\overrightarrow{AC} = \overrightarrow{BD}$.

Множеството на всички равни помежду си насочени отсечки, наричаме свободен вектор. Друга еквивалентна дефиниця е: класовете на еквивалентност относно релацията равенство на насочени отсечки се наричат свободен вектор. Един свободен вектор \mathbf{a} се определя с кой да е свой елемент \overrightarrow{AB} . От тази дефиниция следва, че нулевите насочени отсечки са равни помежду си и образуват един клас на еквивалентност. Той се означава с $\mathbf{0}$ и се нарича нулев свободен вектор.