Data Structure Homework 1 Writen Part

Hongbo Wang hw2570

February 2017

1 Question 2.1

 $\frac{N}{2} < 37 < \sqrt{N} < N < NloglogN < NlogN < Nlog(N^2) < Nlog2N < N^1.5 < N^2 < N^(2)2logN < N^3 < 2^(N/2) < 2^N$

2 Question 2.6

(a): The fine on day N would be:

$$2^{2^{(N-1)}}$$

(b):For reaching D dollars, suppose we need T days, then we have:

$$D = 2^{2^{(T-1)}}$$

Then, take log_2 two times on both sides:

$$log D = 2^{(T-1)}$$

$$loglogD = (T - 1)$$

For Big-Oh, we can remove the constant factor, then we will need $O(\log\log D)$ days.

3 Question 3

a. The outside loop will run 23 times, and for each time the inside the loop, the inner loop will run N times. So totally the running time for the first loop will be:

$$O(23 \times N) = O(N)$$

b. The outside loop will run N times, and for each time, as the outside loop running, running time of the inner loop will decreases 1, which makes the running time for this loop becomes a arithmetic sequence. So the running time will be:

$$O(\frac{(N+1)\times N}{2}) = O(N^2)$$

 ${f c.}$ Since each time, the length N will be divided by k. So the running time for this recursion function will be:

$$O(log_k N)$$

4 Question 2.11

a. $\frac{T}{0.5} = \frac{500}{100}$ T = 2.5

b. $\frac{500log(500)}{100log(100)} = \frac{T}{0.5}$ T = 3.37

c. $\frac{T}{0.5} = (\frac{500}{100})^2$ T = 12.5

d. $\frac{T}{0.5} = (\frac{500}{100})^3$ T = 62.5

5 Question 2.15

For searching a sorted array of integer, we can use binary search.

public static int search(int arr[], int x){
 int start;
 int stop;

 start = 0;
 stop = arr.length - 1;

 int mid;
 while (start <= stop){
 mid = (start + stop) / 2;
 }
}</pre>

The running time for this Binary Seach is $O(log_2N)$.