Foundations of Machine Learning Al2000 and Al5000

FoML-27 GMM

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- Intro to ML and Probability refresher
- MLE, MAP, and fully Bayesian treatment
- Supervised learning
 - Linear Regression with basis functions
 - Bias-Variance Decomposition
 - Decision Theory three broad classification strategies
 - Neural Networks
- Unsupervised learning
 - K-Means, Hierarchical clustering

For today

GMM for clustering

Contents are taken from - Andrew Moore, CMU

Hard vs. Soft clustering

- Based on the overlap of clusters
 - Hard clustering no overlap, complete/single assignment
 - o Soft clustering strength of association between element and cluster

Soft Clustering

- Gives probabilities that an instance belongs to each of the cluster centers
- Each instance is assigned a probability distribution across a set of discovered categories/clusters

Gaussian Distribution

$$P(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Mixture of Gaussians

The GMM setting

- There are K components w_i
- ullet Each has associated mean and covariance $\mu_{
 m i}$ and $\Sigma_{
 m i}$

Mixture of Gaussians

The GMM setting

- Each instance is assumed to be generated as follows
 - Pick a Gaussian component at random with a probability ρ(w_i)
 - \circ Sample from it N(u_i , Σ_i)

Mixture Model

• Weighted sum of a number of pdfs where the weights are determined by a distribution π

$$p(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x) + \ldots + \pi_k f_k(x)$$
 where
$$\sum_{i=0}^k \pi_i = 1$$

$$p(x) = \sum_{i=0}^k \pi_i f_i(x)$$

GMM

ullet Weighted sum of a number of Gaussians where the weights are determined by a distribution π

$$p(x) = \pi_0 N(x|\mu_0, \Sigma_0) + \pi_1 N(x|\mu_1, \Sigma_1) + \ldots + \pi_k N(x|\mu_k, \Sigma_k)$$

$$\text{where } \sum_{i=0}^k \pi_i = 1$$

$$p(x) = \sum_{i=0}^k \pi_i N(x|\mu_k, \Sigma_k)$$

$$\text{where } \sum_{i=0}^k \pi_i N(x|\mu_k, \Sigma_k)$$

Dil Data-driven Intelligence & Learning Lab

- Iterate until convergence
 - E-stepM-step

• The E-step

comprete the expected classes clusters

for all the data instances
$$P(w_i|x_k,\lambda_t) = P(\frac{x_i}{w_i},\lambda_t) \cdot P(w_i|\lambda_t)$$

$$P(\frac{x_i}{\lambda_t}) = \frac{P(\frac{x_i}{\lambda_t})}{P(\frac{x_i}{\lambda_t})}$$

The E-step

The E-step

The M-step

compute the maximum likeli Ms and En given our axignments (numbership distributions)

The M-step

compute the maximum likeli Ms and En given our axignments (numbership distributions)

$$\mu_{i}(t+1) = \sum_{k} \frac{P(w_{i}|x_{k},\lambda_{t}) \cdot x_{k}}{P(w_{i}|x_{k},\lambda_{t})}$$

requiralent of
sample mean, but
sample mean, but
with pastial soft
assignments
assignments
assignments
(weighted mean)

The M-step

compute the maximum likeli Ms and En given our axignments (numbership distributions) 5 p [wi | 14, 2+) 21/ E P[Ni] Mr. 34). [MK-Hilton][MK-Hilton]] S Plwildryf)

Dil Data-driven Intelligence & Learning Lab

The M-step

Clear separation between clusters

Increased variance - ambiguous boundary

Further increasing the variance - blurs the boundary

When no clusters are present

Next

UnSupervised Learning - PCA

Rough work

