Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE : Première
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ: □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 (5 points)

Ce QCM comprend 5 questions indépendantes. Pour chacune d'elles, une seule des réponses proposées est exacte.

Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n'apporte ni ne retire de point.

1. Si $\sin x = \frac{1}{3}$ alors

a)
$$\sin(x+\pi) = -\frac{1}{3}$$

$$b) \sin(x - \pi) = \frac{1}{3}$$

c)
$$\cos(x) = \frac{2}{3}$$

a)
$$\sin(x + \pi) = -\frac{1}{3}$$
 b) $\sin(x - \pi) = \frac{1}{3}$ c) $\cos(x) = \frac{2}{3}$ d) $\sin(x + 15\pi) = \frac{1}{3}$

2. Parmi les paraboles ci-dessous laquelle représente une fonction qui n'admet aucune racine?

3. Soit la fonction f définie sur l'intervalle $]0; +\infty[$ par $f(x)=2x-\frac{1}{x}$ Le coefficient directeur de la tangente à la courbe représentative de f au point d'abscisse 1 est:

a) 1 b) 3 c) -1d) 0

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
	(Les nu	uméros	figure	nt sur	la con	vocatio	n.)											
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/												1.1

4. Dans le plan muni d'un repère orthonormé, l'ensemble des points M(x;y) tels que $x^2-2x+y^2+6y+2=0$ est :

a) une parabole	b) le cercle de centre Ω de	c) le cercle de centre Ω de	d) une droite
	coordonnées $(-1;3)$ et de	coordonnées $(1; -3)$ et	
	rayon 8.	de rayon $2\sqrt{2}$.	

5. La loi de probabilité d'une variable aléatoire X donnant le gain en euros, d'un joueur, à un jeu, est donnée par le tableau suivant :

x_i	-10	6	10
$P(X=x_i)$	$\frac{1}{4}$	3 8	3 8

Sur un grand nombre de parties, le gain moyen que peut espérer le joueur est :

a) 3,5 euros	b) 4 euros	c) 2 euros	d) 6 euros

Exercice 2 (5 points)

Le directeur d'une maternité en milieu rural a enregistré 900 accouchements entre le 1^{er} janvier 2019 et le 31 décembre 2019.

Depuis déjà 10 ans, il constate que le nombre d'accouchements baisse d'environ 4 % chaque année par rapport à l'année précédente.

En supposant que cette diminution se poursuive avec ce même taux les prochaines années, il modélise le nombre d'accouchements de cette maternité pour l'année 2019 + n à l'aide du n-ième terme d'une suite (u_n) . Il a ainsi $u_0 = 900$.

- 1. Montrer que la suite (u_n) est une suite géométrique dont on précisera la raison.
- 2. On considère la fonction Suite définie ci-dessous en langage Python.

Quelle sera la valeur obtenue pour Suite(5)?

- 3. Pour tout entier naturel n, exprimer u_n en fonction de n.
- 4. Le directeur sait que la maternité devra fermer dès le nombre d'accouchements deviendra inférieur à 600.

Avec ce modèle, la maternité sera-t-elle fermée en 2030 ? Justifier.

5. Selon ce modèle, en quelle année la maternité fermera-t-elle ses portes ?

Modèle CCYC : ©DNE																			
Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)	느	느	느	<u></u>	<u></u>			<u> </u>	<u></u>	<u>_</u>									닏
Prénom(s) :																			
N° candidat :												N° (d'ins	scrip	otio	n :			
Liberté Égalité - Fraternité Péministre Beancaise Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)]	-								1.1

Exercice 3 (5 points)

Soit la fonction f définie sur [0 ;3] par $f(x) = 4xe^{-x}$.

1. On a tracé ci-dessous la courbe représentative de la fonction f dans un repère orthonormé d'origine 0.

Conjecturer une valeur approchée du maximum de f sur [0;3].

- 2. La fonction f est dérivable sur [0;3]. Montrer que pour tout réel x de l'intervalle [0;3], $f'(x) = 4(1-x)e^{-x}$.
- 3. En déduire le tableau de signes de f'(x) sur [0;3].
- 4. En déduire le tableau des variations de f sur [0;3] puis la valeur exacte du maximum de f sur [0;3].
- 5. Soit A le point d'abscisse 1 de C_f et soit t la tangente à C_f au point d'abscisse 0,5. Qui, de la droite (A0) ou de la droite t , a le plus grand coefficient directeur ? Justifier.

Exercice 4 (5 points)

150 élèves d'un établissement sont inscrits aux activités du midi :

- 30 sont inscrits en musique.
- 45 sont inscrits en sport.
- 75 sont inscrits en cinéma.

Chaque élève pratique une et une seule activité.

Parmi les élèves inscrits en musique, 30 % sont des filles.

Parmi les élèves inscrits en sport, 60 % sont des filles.

Parmi les élèves inscrits en cinéma, 72 % sont des filles.

On choisit au hasard un élève inscrit aux activités du midi.

On note: F l'événement : « l'élève choisi est une fille »,

M l'événement : « l'élève choisi est inscrit en musique », *S* l'événement : « l'élève choisi est inscrit en sport », *C* l'événement : « l'élève choisi est inscrit en cinéma ».

1. Recopier et compléter l'arbre pondéré représentant la situation.

- 2. Calculer la probabilité que l'élève choisi soit une fille inscrite en musique.
- 3. Montrer que la probabilité que l'élève choisi soit une fille est égale à 0,6.
- 4. Les évènements M et F sont-ils indépendants ?
- 5. Sachant que l'élève choisi est un garçon, calculer la probabilité qu'il soit inscrit en cinéma.