

Genetic Algorithms

Evolutionary Algorithms

- Variants of stochastic beam search that are motivated by the metaphor of natural selection in biology
 - there is a population of individuals (states)

---**----**

the fittest (highest value) individuals produce offspring (successor states)
that populate the next generation, a process called recombination

Genetic Algorithms

- Each individual is a string over a finite alphabet
- Example
 - $\Sigma = \{0, 1\}$
 - $x_i = 01000111001001$

8-queens

- Goal
 - Place 8 queens on a chess board so that no queen attacks another
- State
 - One queen per column
- String representation
 - Use row letters indicating the queen location in each column as a string
 - Example
 - $\Sigma = \{A, B, C, D, E, F, G, H\}$

.........

• $x_i = HCGDBEAF$

Figure 1. The 8-queens problem.

Genetic Algorithms

- Create an initial population with **N** random individuals $\mathbf{X} = \{x_1, x_2, ..., x_N\}$
- Then repeat the following steps until convergence

- Selection
- Recombination
- Mutation

Selection

- Process of selecting the individuals who will become the parents of the next generation
- Example

.........

 Select from all individuals with probability proportional to their objective (fitness) function score

Selection

Initial population	Fitness	Probability	Selection	Recombination	Mutation
неннвенс	11	0.104	BEDAHHCA		
DHHBGHHB	9	0.155	неннвенс		
BEDFHBGB	7	0.254	/ BEDFHBGB		
ВЕДАННСА	5	0.488	→ BEDAHHCA		

Table 1. Selection.

$$p_i = g(x_i) / \Sigma_j g(x_j)$$
$$g(x_i) = 1 / (1 + f(x_i)^2)$$

.........

 $f(x_i)$ = number of queen pairs attacking each other

Recombination

Process of combining selected individuals to form offspring

- Example
 - Randomly select a crossover point to split each of the parent strings, and recombine the parts to form two children

Recombination

Initial population	Fitness	Probability	Selection	Recombination	Mutation
НЕННВЕНС	11	0.104	BEDAHHCA	BED <mark>HBEHC</mark>	
DHHBGHHB	9	0.155	HEHHBEHC	HEH <mark>AHHCA</mark>	
BEDFHBGB	7	0.254 —	→ BEDFHBGB	BEDFHHCA	
ВЕДАННСА	5	0.488	→ BEDAHHCA	BEDA <mark>HBGB</mark>	

Table 2. Recombination.

Mutation

Process of randomly modifying the offspring

- Example
 - Using a mutation rate, which determines how often offspring have random mutations to their representation
 - A random mutation is the exchange of one symbol in the string by a random symbol in the alphabet

Mutation

Initial population	Fitness	Probability	Selection	Recombination	Mutation
НЕННВЕНС	11	0.104	BEDAHHCA	BEDHBEHC	BE <mark>B</mark> HBEHC
DHHBGHHB	9	0.155	HEHHBEHC	<mark>HEH</mark> AHHCA	НЕНАННСА
BEDFHBGB	7	0.254	→ BEDFHBGB	BEDFHHCA	BEDFH <mark>G</mark> CA
BEDAHHCA	5	0.488	→ BEDAHHCA	BEDA <mark>HBGB</mark>	BEDAHBGB

Table 3. Mutation.

Mutation rate = 0.5

Knowledge Check 1

If the probability of an offspring having a random mutation follows a mutation rate $\mathbf{r}=\mathbf{0.5}$, what is the probability of an entire population of \mathbf{N} individuals being affected by mutations?

Optimizations

Elitism

........

Keep a few top-scoring parents for the next generation

Initial population	Fitness	Probability	Selection	Recombination	Mutation
НЕННВЕНС	11	0.104	BEDAHHCA	BED <mark>HBEHC</mark>	BE <mark>B</mark> HBEHC
DHHBGHHB	9	0.155	HEHHBEHC .	<mark>HEH</mark> AHHCA	НЕНАННСА
BEDFHBGB	7	0.254			→ BEDFH <mark>G</mark> GB
ВЕДАННСА	5	0.488			→ BEDAHHCA

Table 4. Optimizations.

Optimizations

- Culling
 - Discard offspring below a threshold

- Keep generation individuals until the target population size is reached
- Threshold can change over time

Knowledge Check 2

When comparing Hill-climbing, Local Beam Search, and Genetic Algorithms, which method is:

- (I) the fastest?
- (II) less susceptible to finding a local minima?

You have reached the end of the lecture.

Image/Figure References

- Figure 1. The 8-queens problem. Source: Russell & Norvig, Artificial Intelligence: A Modern Approach, 4th edition, Pearson, 2021.
- Table 1. Selection. Source: Russell & Norvig, Artificial Intelligence: A Modern Approach, 4th edition, Pearson, 2021.
- Table 2. Recombination. Source: Russell & Norvig, Artificial Intelligence: A Modern Approach, 4th edition, Pearson, 2021.
- Table 3. Mutation. Source: Russell & Norvig, Artificial Intelligence: A Modern Approach, 4th edition, Pearson, 2021.
- Table 4. Optimizations. Source: Russell & Norvig, Artificial Intelligence: A Modern Approach, 4th edition, Pearson, 2021.