

Computação Natural

Aula 1

Apresentação da Disciplina

&

Conceitos Básicos

Prof. Dr. Eurico L. P. Ruivo II/2023

Apresentação da Disciplina

PLANO DE AULAS

PLANO DE AULAS

Aula	Conteúdo
1	Apresentação da disciplina/Conceitos básicos
2	Computação Evolutiva/Algoritmos Genéticos
3	Redes Neurais Artificiais
4	Inteligência de Enxame
5	Computação Imunológica
6	Análise paramétrica e avaliação de resultados
7	Fractais/Vida Artificial/Autômatos Celulares
8	Prévia dos projetos e orientações
9	Computação quântica
10	Prova
11	Apresentação dos Seminários/Entrega dos artigos
12	Apresentação dos Seminários

LIVRO-TEXTO

Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications
Leandro Nunes de Castro
Chapman & Hall/CRC
1ª Edição
(disponível na biblioteca)

LEITURA COMPLEMENTAR

Computação Natural: uma jornada ilustrada

Leandro Nunes de Castro Livraria da Física 1ª Edição (disponível na biblioteca)

CRITÉRIO DE AVALIAÇÃO

E: Exercícios;

A: Artigo

A: Seminário

P: Prova

$$\frac{3 \cdot A + 3 \cdot S + 3 \cdot P}{10} + E$$

$$\det 0.0 \text{ a } 1.0$$

Conceito	Faixa de notas
A (Excelente)	[9;11]
B (Bom)	[8;9,0[
C (Regular)	[7;8,0[
R (Reprovado)	[0;6,9[

DINÂMICA DAS AULAS

1ª Parte: apresentação da teoria envolvida e exemplos computacionais

2ª Parte: proposta de exercícios e/ou projetos a serem desenvolvidos e entregues até aula posterior

Conceitos Básicos (Cap. 2 do livro-texto)

Modelos

- Simplificações de fenômenos reais;
- Auxiliam na predição de comportamentos;
- Facilitam a obtenção/recuperação de informações em um experimento;
- Auxiliam na criação, teste e validação de hipóteses referentes ao fenômeno modelado;
- Fornecem informações quantitativas a respeito do sistema modelado;

Exemplo: Modelo predador×presa (Lotka-Volterra)

- Na ausência de predadores, a população de presas aumenta proporcionalmente a seu tamanho atual;
- Na ausência de presas, a população de predadores diminui proporcionalmente a seu tamanho atual;
- A frequência de encontros entre predadores e presas é proporcional ao produto dos tamanhos das populações;
- Há um decréscimo da população de presas proporcional à frequência de encontros (mortalidade por predação)
- Há um aumento da população de predadores proporcional à frequência de encontros (crescimento por predação)

Exemplo: Modelo predador×presa (Lotka-Volterra)

t: instante do sistema modelado (em alguma unidade)

x(t): quantidade de presas no instante t

y(t): quantidade de predadores no instante t

$$\begin{cases} x'(t) = \alpha x(t) - \gamma x(t)y(t) \\ y'(t) = -\beta y(t) + \delta x(t)y(t) \end{cases} \Rightarrow \begin{cases} x'(t) = (\alpha - \gamma y(t))x(t) \\ y'(t) = (\delta x(t) - \beta)y(t) \end{cases}$$

(verifique https://teaching.smp.uq.edu.au/scims/Appl_analysis/Lotka_Volterra.html)

Metáforas

- Abstração ou inspiração baseada em observações empíricas utilizadas para o desenvolvimento de um sistema que usa mecanismos análogos aos observados.

Exemplo: Neo-darwinismo × computação evolutiva

INDIVÍDUOS/ENTIDADES/AGENTES

Palavras utilizadas para definir elementos que interagem entre si e com o ambiente, seguindo determinadas regras e que podem gerar o aparecimento de fenômenos emergentes

Exemplos:

- Pássaros em uma revoada;
- Modelos de neurônios em uma Rede Neural Artificial;
- Carros percorrendo uma rodovia;
- Robôs-aspiradores limpando um ambiente.

Paralelismo e Distributividade

Os sistemas estudados pela CN geralmente apresentam propriedades que permitem o processamento e armazenamento paralelo e distribuído das informações.

Exemplos:

- Nosso sistema nervoso processa informações sensoriais de maneira paralela e armazena o aprendizado de forma distribuída;
- Uma colônia de formigas busca a menor rota entre dois pontos por meio dos processos individuais de cada formiga e armazena essa informação da mesma forma.

Paralelismo e Distributividade

Benefícios:

- Robustez: maior tolerância a falhas;
- Velocidade (do ponto de vista computacional);
- Maior capacidade de exploração do espaço.

INTERATIVIDADE

INTERATIVIDADE

Exemplo de interação por conectividade:

Neurônios em uma rede neural artificial.

INTERATIVIDADE

Exemplo de interação por estigmergia:

Interação entre formigas por meio de feromônios

Formigas secretam feromônio ao encontrar certo tipo de objeto

Formigas carregando objetos do mesmo tipo tendem a deixa-los na região com maior concentração de feromônios

ADAPTABILIDADE

Capacidade de um sistema de se ajustar de acordo com os estímulos recebidos do ambiente. Os dois principais tipos de adaptabilidade são a **aprendizagem** e a **evolução**.

Aprendizagem: aquisição de conhecimento por meio de estimulação positiva ou negativa e por meio de exemplos;

Evolução: consequência dos processos de reprodução com herança, mutação e seleção.

FEEDBACK (REALIMENTAÇÃO)

Consiste na influência de um estímulo sobre ele próprio.

Positivo: quando a ocorrência do estímulo favorece nova ocorrência dele próprio;

Negativo: quando a ocorrência do estímulo dificulta nova ocorrência dele próprio.

Geralmente, para que um sistema mantenha seu equilíbrio ao longo do tempo, ambos os tipos de *feedback* ocorrem (possivelmente em momentos distintos)

FEEDBACK (REALIMENTAÇÃO)

Exemplo: Imagine o modelo predador-presa em que a população de presas está inicialmente crescendo.

- População de presas cresce, favorecendo o nascimento de mais presas (feedback positivo)
- População de presas cresce, favorecendo a predação e o aumento da população de predadores. Por sua vez, quando a população de predadores aumenta, a predação aumenta, dificultando o crescimento da população de presas (feedback negativo)

Podemos pensar na situação análoga para os predadores.

FEEDBACK (REALIMENTAÇÃO)

Exemplo: Suponha que o modelo predador-presa consiste apenas em presas. Do jeito que ele está modelado, só haveria crescimento da população de presas (apenas feedback positivo) o que, de acordo com o modelo, faria a população de presas crescer indefinidamente.

Essa situação está de acordo com o que seria observado num caso real?

Consiste na formação de padrões em sistemas naturais por meio de um vasto conjunto de processos **exclusivamente internos ao sistema**, isto é, que ocorrem pela interação entre seus agentes e/ou o ambiente, mas que não sofre influências de entidades externas ao sistema.

Exemplo: Colônia de formigas encontrando uma rota mais curta

Inicialmente, a proporção de formigas que segue cada rota tende a ser a mesma. Conforme caminham, as formigas depositam feromônios.

Exemplo: Colônia de formigas encontrando uma rota mais curta

Na rota mais curta, o tempo para concluir o caminho é menor, levando ao tráfego por ela ser mais intenso, aumentando a concentração de feromônios nesse trecho

Exemplo: Colônia de formigas encontrando uma rota mais curta

A maior concentração de feromônios aumenta a probabilidade de que formigas escolham uma certa rota, fazendo com que a mais curta seja a preferida.

SISTEMAS COMPLEXOS

- Formados por diversos agentes que interagem entre si e com o ambiente, geralmente por meio de regras simples;
- O comportamento resultante do sistema é não-linear, isto é, não é somente a "soma das partes";
- Apresenta alta sensibilidade à condição inicial do sistema.

EMERGÊNCIA

Propriedade do todo que não se apresenta nas partes e/ou que não pode ser observada em componentes isolados.

Exemplos:

- A capacidade de uma colônia de formigas resolver um problema de roteamento;
- A consciência, que não é observada em um neurônio isolado;
- Um congestionamento, que não pode ser formado por um único carro.

Top-down: quando o comportamento de um sistema é definido por regras que o incorporam diretamente.

Exemplo: Para cada triângulo preenchido, remova a região interna do triângulo cujos vértices são os pontos médios dos lados do triângulo inicial.

(Fonte: https://commons.wikimedia.org/wiki/File:Sierpinsky_triangle_(evolution).png)

Bottom-up: quando o comportamento de um sistema é emergente da interação entre suas partes

Exemplo: Considere quatro pontos (agentes) iniciais em um sistema. Os pontos A, B e C são fixos e formam um triângulo equilátero. O ponto D é escolhido aleatoriamente no interior do triângulo.

A cada iteração do sistema, escolha aleatoriamente um dos vértices (A, B ou C) e crie um novo ponto interno no ponto médio do segmento entre o vértice escolhido e o último ponto interno criado.

1ª iteração:

1ª iteração:

Com 10 iterações:

Com 100 iterações:

Com 1 000 iterações:

Com 10 000 iterações:

Com 100 000 iterações:

Perguntas?