高斯牛顿法与 LM 算法极值求解

一、一元函数二阶泰勒展开

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2$$

令x看成 $x + \Delta$,则有

$$f(x + \Delta) \approx f(x) + f'(x)\Delta + \frac{1}{2!}f''(x)\Delta^2$$

我们要要求f(x)函数最小值时x的值,即

$$x = \arg\min f(x)$$

利用数学定理的方法则是先求f'(x) = 0时x的值,然后判断 $f''(x) \le 0$,若是,则所得x的值对应的f(x)最小。

二、高斯牛顿法

现有函数 $f(x) = x^2$, 求出函数f(x)最小值时x的值。即

$$x = \arg\min f(x)$$
$$f'(x) = 2x$$

 ϕx_n 为高斯牛顿法第n次的迭代解,有如下迭代公式:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

以上x是一维的,但实际中遇到的都是多维的,这时可以用雅克比、海赛矩阵之类的来表示高维求导函数。

雅可比矩阵:

$$J_f = \begin{bmatrix} \frac{\partial f}{\partial x_0} & \cdots & \frac{\partial f}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_0} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

海赛矩阵:

$$H_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{0}^{2}} & \frac{\partial^{2} f}{\partial x_{0} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{0} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{0}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

所以高维牛顿法解最优化问题又可写成:

$$X_{n+1} = X_n - H_f(X_n)^{-1} \nabla f(X_n)$$

在这里,梯度代替了低维情况中的一阶导,海赛矩阵代替了二阶导,求逆代替了除法。

例:不妨设目标函数为

$$s(x) = \sum_{i=0}^{n} f^2(x_i)$$

所以梯度向量在方向上的分量:

$$g_j = 2\sum_{i=0}^n f(x_i) \cdot \frac{\partial f(x_i)}{\partial x_j}$$

海赛矩阵的元素则直接在梯度向量的基础上求导:

$$H_{jk} = 2\sum_{i=0}^{n} \left(\frac{\partial f(x_i)}{\partial x_j} \cdot \frac{\partial f(x_i)}{\partial x_k} + f(x_i) \cdot \frac{\partial f(x_i)}{\partial x_j \partial x_k} \right)$$

高斯牛顿法的一个技巧是,将二次偏导省略,于是:

$$H_{jk} \approx \sum_{i=0}^{n} J_{ij} J_{ik}$$

其中 J_{ij} 为雅可比矩阵中底i行j列元素。

改写成矩阵形式有:

$$g = 2J_j^T \cdot f$$
$$H \approx 2J_f^T J_f$$

代入牛顿法高维迭代方程的基本形式,得到高斯牛顿法迭代方程:

$$X^{s+1} = X^s - (J_f^T J_f)^{-1} J_f^T f$$

三、Levenberg-Marquardt 算法

莱文贝格一马夸特方法(Levenberg-Marquardt algorithm)能提供数非 线性最小化(局部最小)的数值解。此算法能借由执行时修改参数达到结合高 斯-牛顿算法以及梯度下降法的优点,并对两者之不足作改善(比如高斯-牛顿算法之反矩阵不存在或是初始值离局部极小值太远^[1]。

与高斯牛顿法相比,LM 算法的迭代公式如下:

$$X^{s+1} = X^s - (J_f^T J_f + \lambda I)^{-1} J_f^T f$$

其中λ为可变参数, / 为单位矩阵。

- 如果下降太快,则使用较小的λ,使步长缩短,这样更接近高斯牛顿法;
- 如果下降太慢,则使用较大的λ,使步长增大,这样更接近梯度下降法。

四、求函数最小值

Question 1: 求函数 $f(x) = x^2$ 的最小值时x的取值

$$J_f = 2x$$
$$H_f = 2$$

则 LM 算法的更新公式为:

 $x_{n+1} = x_n - (J_f^T J_f + \lambda I)^{-1} J_f^T f = x_n - [(2x_n)^T 2x_n + \lambda I]^{-1} \cdot (2x_n)^T \cdot x_n^2$ 由于是一维的x,因此I为1×1的单位矩阵,化简为:

$$x_{n+1} = x_n - \frac{2x_n^3}{4x_n^2 + \lambda}$$

取初值 $x_0 = 10$, 初始 $\lambda = 1$, 对上式进行 10 次迭代:

iter	x	f	λ	梯度∇
0	10	100	1	4. 987531172
1	5. 012468828	25. 12484375	1	2. 481542297
2	2. 530926531	6. 405589104	1	1. 217929409
3	1. 312997122	1. 723961442	1	0. 573353755
4	0. 739643366	0. 547072309	1	0. 253827915
5	0. 485815452	0. 236016653	1	0. 117959473
6	0. 367855978	0. 135318021	1	0.064592804
7	0. 303263174	0. 091968553	1	0. 040779591
8	0. 262483583	0.068897632	1	0. 028354706
9	0. 234128877	0. 054816331	1	0. 021052163
10	0. 213076714	0.045401686	1	0. 016374385

实际上,在算法运行时为了减小迭代次数,让算法尽快收敛,λ是可变的。变化规则如下:

while:

$$J_f^T J_f + \lambda I$$
为非正定的时候, $\lambda \coloneqq 4\lambda$
计算步长 $(J_f^T J_f + \lambda I)^{-1} J_f^T f$,
if $0 < (J_f^T J_f + \lambda I)^{-1} J_f^T f < 0.25$:
在下一步迭代时增大步长, $\lambda \coloneqq 4\lambda$

if
$$0.25 \le (J_f^T J_f + \lambda I)^{-1} J_f^T f \le 0.75$$
: 步长合适,在下一步迭代时 λ 不变, $\lambda \coloneqq \lambda$

if
$$(J_f^T J_f + \lambda I)^{-1} J_f^T f > 0.75$$
:
在下一步迭代时缩短步长以避免越过最优点, $\lambda \coloneqq \lambda/2$

除此外,还需要设定算法停止的规则:

if
$$(J_f^T J_f + \lambda I)^{-1} J_f^T f < 0$$
:

break,算法停止,函数值是向着上升而非下降的趋势变化了(与最优化的目标相反),说明已经越过最优点了。

if
$$|x_{n+1} - x_n| < error$$
:

break,已经达到相应的误差精度,算法收敛,没必要继续跌倒。其中 error 为自定义参数。

Question 2: 求函数 $f(x,y) = (1-x)^2 + 100(y-x^2)^2$ 的最小值时x,y的取值雅可比矩阵:

$$J_f = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} = [2(x-1) - 400x(y-x^2) & 200(y-x^2)]$$

海赛矩阵:

$$H_f = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} \approx J_f^T J_f$$

$$= \begin{bmatrix} [2(x-1)-400x(y-x^2)]^2 & [2(x-1)-400x(y-x^2)] \cdot 200(y-x^2) \\ [2(x-1)-400x(y-x^2)] \cdot 200(y-x^2) & [200(y-x^2)]^2 \end{bmatrix}$$

迭代公式为:

$$[x_{n+1}, y_{n+1}] = [x_n, y_n] - (J_f^T J_f + \lambda I)^{-1} J_f^T f$$

取初值 $x_0 = 5$, $y_0 = 5$, 初始 $\lambda = 1$, 对上式进行 10 次迭代:

iter	x	у	f
0	5	5	40016
1	4. 009699092	5. 099010305	12062. 19206
2	3. 335389268	5. 183066412	3535. 899476
3	2. 899393254	5. 248387015	1000. 96361
4	2. 6342536	5. 294062941	273. 3486603
5	2. 482324615	5. 322845872	72. 60442607
6	2. 39885261	5. 33959953	19. 17051773
7	2. 352999249	5. 349090187	5. 346804986
8	2. 324414316	5. 355072611	1. 982837507
9	2. 284015946	5. 363274105	3. 796248366
10	2. 311551756	5. 357128285	1. 739368996

理论上f(x,y)最小值时,(x,y) = (1,1)。从上面迭代结果只是刚开始的迭代时,y值不降反增,但随着迭代次数的不断增大,y也会逐渐降低并收敛到 1。

Note: LM 算法是在回归中参数拟合的常用方法之一,其目标函数一半为误差 损失最小:

$$\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{m} (y_i - f(x_i; \theta))^2$$

其中, θ 为需要拟合到参数;

m为样本数量;

 y_i 为第 i个样本的期望输出;

 x_i 为第 i个样本的输入;

 $f(x_i;\theta)$ 为模型函数。

参考文献

[1] https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
[2] http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf