# Acquiring the Latin Past Participles

**Synchronic and Diachronic Implications** 

Jordan Kodner University of Pennsylvania

> LSA, Jan 3, 2020 New Orleans

#### **Outline**

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

## Classical Latin Principal Parts and Conjugations

- Traditionally classified into 4.5 conjugations distinguished by 4 principal parts
- Conjugations correspond to theme vowels, principal parts to stems

## **Principal parts**

- 1. present active indicative 1sg
- 2. present active infinitive
- 3. perfect active indicative 1sg
- 4. past participle (or supine)

| Conj.   | ThV | 1st PP | 2nd PP  | 3rd PP  | 4th PP  | Meaning  |
|---------|-----|--------|---------|---------|---------|----------|
|         |     | preser | it stem | perfect | pptc    |          |
| 1st     | ā   | amō    | amāre   | amāvī   | amātus  | 'love'   |
| 2nd     | ē   | moneō  | monēre  | monuī   | monitus | 'warn'   |
| 3rd     | е   | legō   | lēgere  | lēgī    | lēctus  | 'choose' |
| 3rd -iō | i   | саріō  | capere  | сёрі    | captus  | 'take'   |
| 4th     | ī   | audiō  | audīre  | audīvī  | audītus | 'hear'   |

# The Principal Parts and Conjugations

 Stems are not reliably derivable from one another

| 1st PP | 2nd PP  | 3rd PP | 4th PP  |
|--------|---------|--------|---------|
| amō    | amāre   | amāvī  | amātus  |
| sonō   | sonāre  | sonuī  | sonitus |
| moneō  | monēre  | monuī  | monitus |
| maneō  | manēre  | mānsī  | mānsus  |
| teneō  | tenēre  | tenuī  | tentus  |
| audiō  | audīre  | audīvī | auditus |
| pellō  | pellere | pepulī | pulsus  |
| capiō  | capere  | сёрі   | captus  |
| ferō   | ferre   | tulī   | lātus   |

# The Principal Parts and Conjugations

 Stems are not reliably derivable from one another

Verbs with similar stems in one column may not have similar stems in the others

| 1st PP | 2nd PP  | 3rd PP | 4th PP  |
|--------|---------|--------|---------|
| amō    | amāre   | amāvī  | amātus  |
| sonō   | sonāre  | sonuī  | sonitus |
| moneō  | monēre  | monuī  | monitus |
| maneō  | manēre  | mānsī  | mānsus  |
| teneō  | tenēre  | tenuī  | tentus  |
| audiō  | audīre  | audīvī | auditus |
| pellō  | pellere | pepulī | pulsus  |
| capiō  | capere  | cēpī   | captus  |
| ferō   | ferre   | tulī   | lātus   |

# "Regularity" of the Conjugations

- Many past participles are not predictably derivable from the present stem
- Traditionally noted that 1st is overwhelmingly regular, 2nd and 4th are mostly regular, 3rd is not<sup>1</sup>

| Conjugation <sup>1</sup> | # Verbs | # "Regular" | % "Regular" | Form       |
|--------------------------|---------|-------------|-------------|------------|
| 1st                      | 360     | 345         | 96%         | -ātus      |
| 2nd                      | 120     | 90          | 75%         | -itus/-tus |
| 3rd                      | 170     | 60          | 35%         | -itus      |
| 4th                      | 60      | 40          | 67%         | -ītus      |

<sup>&</sup>lt;sup>1</sup> eg Aronoff 1994, <sup>2</sup> Table from Laurent 2003 expanded from Aronoff 1994

# "Regularity" of the Conjugations

- Many past participles are not predictably derivable from the present stem
- Traditionally noted that 1st is overwhelmingly regular, 2nd and 4th are mostly regular, 3rd is not<sup>1</sup>

What counts as regular?

| Conjugation <sup>1</sup> | # Verbs | # "Regular" | % "Regular" | Form       |
|--------------------------|---------|-------------|-------------|------------|
| 1st                      | 360     | 345         | 96%         | -ātus      |
| 2nd                      | 120     | 90          | <b>75</b> % | -itus/-tus |
| 3rd                      | 170     | 60          | 35%         | -itus      |
| 4th                      | 60      | 40          | 67%         | -ītus      |

<sup>&</sup>lt;sup>1</sup> eg Aronoff 1994, <sup>2</sup> Table from Laurent 2003 expanded from Aronoff 1994

#### The Elsewhere Condition

## **Listing vs Derivations**

- A common trade-off in theoretical morphology
- "Regular" patterns are derived, "irregulars" are listed exceptions

#### The Elsewhere Condition

## **Listing vs Derivations**

- A common trade-off in theoretical morphology
- "Regular" patterns are derived, "irregulars" are listed exceptions

## **Applied to the Classical Latin PPtcs,**

- Which pptcs really are productively derived?
- Is the pptc derived from the present, perfect, or neither?
- What other than the theme vowel cues speakers?

# **Leveraging Child Language Acquisition**

- Determination of productive patterns is a central question in acquisition
- Exemplified by the English "Past Tense Debate"
  - Output Description of the Property of the P
  - How are developmental trajectories explained?

# **Leveraging Child Language Acquisition**

- Determination of productive patterns is a central question in acquisition
- Exemplified by the English "Past Tense Debate" 1
  - How are patterns and exceptions learned?
  - How are developmental trajectories explained?

## Virtually everyone agrees:

it isn't just token frequency (and derived measures)!<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>Rumelhart & McClelland 1986, Pinker & Prince 1988, Pinker 1994, Albright & Hayes 2006, Yang 2005, and many more

<sup>&</sup>lt;sup>2</sup> Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016

# **Leveraging Child Language Acquisition**

- Determination of productive patterns is a central question in acquisition
- Exemplified by the English "Past Tense Debate" 1
  - Output Description 
    Output
  - How are developmental trajectories explained?

## Virtually everyone agrees:

it isn't just token frequency (and derived measures)!2

- → Quantitative corpus analysis alone won't cut it
- → Should work through the implications of some concrete learning mechanism

<sup>&</sup>lt;sup>1</sup>Rumelhart & McClelland 1986, Pinker & Prince 1988, Pinker 1994, Albright & Hayes 2006, Yang 2005, and many more

<sup>&</sup>lt;sup>2</sup> Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016

#### **Outline**

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

# The Tolerance Principle<sup>1</sup>

- A concrete model for the acquisition of linguistic generalization
- Developed in the context of the Past Tense Debate

## **Example Applications**

- Is +ed the default past for English verbs?
- Is vowel mutation as in sing~sang productive among similar verbs?

# The Tolerance Principle

- An evaluation metric<sup>1</sup> over linguistic hypotheses
- Is derived from
  - an Elsewhere Condition for 'rules' and 'exceptions'2
  - frequency-rank correlated lexical access<sup>3</sup>
  - Generally **Zipfian** input distributions
- Received psychological backing from artificial language learning experiments<sup>4</sup>

## The Tolerance Principle

Given a hypothesized generalization *R* operating over a class *C*, quantitatively define the number of exceptions below which the generalization is tenable

# **The Tolerance Principle**

Given a hypothesized generalization *R* operating over a class *C*, quantitatively define the number of exceptions below which the generalization is tenable

- N = number of types that should obey the generalization
- e = number of types that do not obey the generalization

**Exceptions are tolerable if** 



$$\theta = N / \ln N$$

## N and e Vary over Individual Development

- N and e are properties of each individual
- N is the number of class members a child has learned so far
- N and e grow as the learner's vocabulary grows
- Can learn generalizations over small N not possible over large N

N = types it should apply to
 e = types that are exceptions
 θ = tolerance threshold



e falls in [0,N] and may be less than or greater than  $\theta$ 

N = types it should apply to
 e = types that are exceptions
 θ = tolerance threshold



If e is below  $\theta$ , acquire generalization

N = types it should apply to
 e = types that are exceptions
 θ = tolerance threshold



If e is below θ, acquire generalization
Otherwise, do not generalize

Otherwise, do not generalize

N = types it should apply to e = types that are exceptions  $\theta = \text{tolerance threshold}$ If  $e \text{ is below } \theta$ ,
acquire generalization

• N grows over an individual's development,  $\theta$  grows more slowly

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold

If e is below θ,
acquire generalization

Otherwise, do not generalize

- N grows over an individual's development,  $\theta$  grows more slowly
- If  $\theta$  grows faster than e, a generalization may fall into productivity

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold

If e is below θ,
acquire generalization

Otherwise, do not generalize

- N grows over an individual's development,  $\theta$  grows more slowly
- If  $\theta$  grows faster than e, a generalization may fall into productivity
- If e grows faster than  $\theta$ , a generalization may fall out of productivity

# **Child Lexical Knowledge**

- Learners' vocabularies grow over the course of development
- There is significant individual variation, but consistent trends
- Only on the order of 10<sup>2</sup> for English and German learners by around age 3
- Children have the foundations for language-specific grammars by this point

A roughly 1 per million frequency cutoff applied to the larger CHILDES corpora yields lexicons like these<sup>1</sup>

| Language                      | Estimated  Vocab          |
|-------------------------------|---------------------------|
| English 2;10-3;0 <sup>2</sup> | 525-1,116                 |
| German 2;6 <sup>3</sup>       | $\mu = 429, \sigma > 100$ |

#### **Outline**

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

- 1. All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

<sup>&</sup>lt;sup>1</sup>Labov 1972, <sup>2</sup>Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016, <sup>3</sup>Goodman 2008,

<sup>&</sup>lt;sup>4</sup> Hart & Risley 1995, 2003, Szagun et al. 2006

- 1. All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

<sup>&</sup>lt;sup>1</sup>Labov 1972, <sup>2</sup>Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016, <sup>3</sup>Goodman 2008,

<sup>&</sup>lt;sup>4</sup> Hart & Risley 1995, 2003, Szagun et al. 2006

- 1. All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

<sup>&</sup>lt;sup>1</sup>Labov 1972, <sup>2</sup>Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016, <sup>3</sup>Goodman 2008,

<sup>&</sup>lt;sup>4</sup> Hart & Risley 1995, 2003, Szagun et al. 2006

- 1. All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

<sup>&</sup>lt;sup>1</sup>Labov 1972, <sup>2</sup>Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016, <sup>3</sup>Goodman 2008,

<sup>&</sup>lt;sup>4</sup> Hart & Risley 1995, 2003, Szagun et al. 2006

- 1. All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

## As a result,

- Applying a frequency cutoff to lemmas in CDS approximates a "typical" child
- Insight taken by type frequency-based models of acquisition<sup>5</sup>

<sup>&</sup>lt;sup>1</sup>Labov 1972, <sup>2</sup>Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016, <sup>3</sup>Goodman 2008,

<sup>&</sup>lt;sup>4</sup> Hart & Risley 1995, 2003, Szagun et al. 2006, <sup>5</sup> Nagy & Anderson 1984, Yang 2016

# **Acquisition in the Past**

- Children in the past must have acquired language in the same way that modern children do this is straightforward uniformitarianism<sup>1</sup>
- We can reason about acquisition in the past in the same way we do now

Can non-CDS be substituted for CDS to study the relevant problem?

# **Acquisition in the Past**

- Children in the past must have acquired language in the same way that modern children do this is straightforward uniformitarianism<sup>1</sup>
- We can reason about acquisition in the past in the same way we do now

Can non-CDS be substituted for CDS to study the relevant problem? Yes, for the purposes of lexical acquisition<sup>2</sup>

#### **Data Set**

#### **Perseus Corpus**

- Scraped all Old and Classical Latin texts from website HTML
  - o 3rd BC AD 2nd inclusive
  - ~3.5mil tokens
- More than available by download undocumented "feature" :-\

## Largest plain text OL/CL corpus?

#### **Data Set**

#### **Perseus Corpus**

- Scraped all Old and Classical Latin texts from website HTML
  - o 3rd BC AD 2nd inclusive
  - ~3.5mil tokens
- More than available by download

## **Post-Processing**

- POS-tagged and lemmatized with modified CLTK library
  - 1,292 unique verb lemmas when derivational prefixes removed
- Scraped Latin Wiktionary verbs to match lemmas to principal parts

#### **Data Set**

#### **Perseus Corpus**

- Scraped all Old and Classical Latin texts from website HTML
  - 3rd BC AD 2nd inclusive
  - ~3.5mil tokens
- More than available by download

## **Post-Processing**

- POS-tagged and lemmatized with modified CLTK library
  - 1,292 unique verb lemmas when derivational prefixes removed
- Scraped Latin Wiktionary verbs to match lemmas to principal parts
- Manually compared ~100 principal parts to Oxford Latin Dictionary

## Latin Wiktionary is surprisingly accurate!

#### **Outline**

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

## **Applying the Tolerance Principle**

#### Over several possible generalizations

- Theme vowels → pptc forms
- Other present generalizations → pptc forms
- Perfect generalizations → pptc forms
- Present + perfect → pptc form

## **Applying the Tolerance Principle**

#### Over several possible generalizations

- Theme vowels → pptc forms
- Other present generalizations → pptc forms
- Perfect generalizations → pptc forms
- Present + perfect → pptc form

#### Theory independent interpretation

- Generalizations over surface phonotactics "rightmost vowel is /a:/"
- Or generalizations over morphemes "ThV is -ā-"

## **Applying the Tolerance Principle**

#### Over several possible generalizations

- Theme vowels → pptc forms
- Other present generalizations → pptc forms
- Perfect generalizations → pptc forms
- Present + perfect → pptc form

#### Theory independent interpretation

- Generalizations over surface phonotactics "rightmost vowel is /a:/"
- Or generalizations over morphemes "ThV is -ā-"

#### Modeling early and late learners

- Multiple frequency cutoffs
- Verbal vocab sizes n = 100, 500, 1000

Is  $-\bar{a}tus$  the productive pptc derivation for verbs with ThV  $\bar{a}$ ?

#### Is $-\bar{a}tus$ the productive pptc derivation for verbs with ThV $\bar{a}$ ?

A typical child who knows *n*=500 verbs knows

- N=221 \(\bar{a}\) verbs
- e=13 \(\bar{a}\) verbs with non -\(\bar{a}tus\) pptcs

#### Is $-\bar{a}tus$ the productive pptc derivation for verbs with ThV $\bar{a}$ ?

A typical child who knows *n*=500 verbs knows

- N=221 ā verbs
- $e=13 \bar{a}$  verbs with non  $-\bar{a}tus$  pptcs

**Exceptions are tolerable if** 



$$\theta = N / \ln N$$

#### Is $-\bar{a}tus$ the productive pptc derivation for verbs with ThV $\bar{a}$ ?

A typical child who knows *n*=500 verbs knows

- $N=221 \bar{a}$  verbs
- $e=13 \bar{a}$  verbs with non  $-\bar{a}tus$  pptcs
- θ=40.94 tolerance threshold

#### **Exceptions are tolerable if**

- $\bar{a}$ tus is productive for  $\bar{a}$  verbs at n=500

## **Productive Present → PPtc by Theme Vowel**

| Theme Vowel                 | PPtc  | Example             | At <i>n</i> =100? | At 500?               | At 1,000? |
|-----------------------------|-------|---------------------|-------------------|-----------------------|-----------|
| ā (1st)                     | -ātus | vocāre ~ vocātus    | YES               | YES                   | YES       |
| ē (2nd)                     | -ĭtus | habēre ~ habitus    | no                | no                    | no        |
| ē (2nd)                     | -tus  | docēre ~ doctus     | no                | no                    | no        |
| e (3rd non-iō)              | -ĭtus | reddere ~ redditus  | no                | no                    | no        |
| e (3rd non-iō)              | -tus  | scribere ~ scriptus | no                | no                    | no        |
| <i>i</i> (3rd - <i>iō</i> ) | -tus  | capiō ~ captus      | YES               | YES                   | YES       |
| e or <i>i</i> (all 3rd)     | -ĭtus | <i>'' ∼ ''</i>      | no                | no                    | no        |
| e or <i>i</i> (all 3rd)     | -tus  | <i>'' ∼ ''</i>      | no                | no                    | no        |
| ī (4th)                     | -ītus | audīre ~ audītus    | YES               | marginal <sup>*</sup> | no        |
| ī (4th)                     | -tus  | venīre ~ ventus     | YES               | no                    | no        |

**Individual Development** 



## **Productive Present → PPtc more Narrowly**

| Present                | PPtc        | Example             | At <i>n</i> =100? | At 500?   | At 1,000? |
|------------------------|-------------|---------------------|-------------------|-----------|-----------|
| -[a, o]veō             | -[au, ō]tus | faveō ~ fautus      | -                 | YES       | YES       |
| -[Velar] <i>eō</i>     | -tus        | doceō ~ doctus      | -                 | no        | no        |
| -[not Velar] <i>eō</i> | -itus       | debeō ~ debitus     | marginal*         | no        | no        |
| -[not Velar] <i>eō</i> | -tus        | teneō ~ tentus      | no                | no        | no        |
| -vere                  | -ūtus       | solvere ~ solūtus   | YES               | marginal* | marginal* |
| -[ll, rr]ere           | -[l,r]sus   | currō ~ cursus      | -                 | marginal* | no        |
| other 3rd              | -ĭtus       | reddere ~ redditus  | no                | no        | no        |
| other 3rd              | -tus        | scribere ~ scriptus | no                | no        | no        |

**Individual Development** 

\* within 1 of threshold

### **Productive Perfect → PPtc**

| Perfect                 | PPtc  | Example            | At <i>n</i> =100? | At 500? | At 1,000? |
|-------------------------|-------|--------------------|-------------------|---------|-----------|
| -āv-                    | -ātus | amāvī ~ amātus     | YES               | YES     | YES       |
| -īv-                    | -ītus | dormīvī ~ dormītus | YES               | YES     | YES       |
| -ēv-                    | -ētus | flēvī ~ flētus     | YES               | YES     | marginal* |
| -u-                     | -ĭtus | valuī ~ valitus    | no                | no      | no        |
| -u-                     | -tus  | tenuī ~ tentus     | no                | no      | no        |
| -[Velar] <i>u</i> -     | -tus  | līquī ~ līctus     | -                 | no      | no        |
| -[not Velar] <i>u</i> - | -ĭtus | dēbuī ~ dēbitus    | no                | no      | no        |
| -[not Velar] <i>u-</i>  | -tus  | peruī ~ pertus     | no                | no      | no        |
| -S-                     | -tus  | scripsī ~ scriptus | no                | no      | no        |
| -Cs-                    | -tus  | iūnxī ~ iūnctus    | YES               | YES     | YES       |
| bare or stem change     | -ĭtus | lēgī ~ lēctus      | no                | no      | no        |

**Individual Development** 

<sup>\*</sup> within 1 of threshold

#### Productive Perfect + Present → PPtc

| Perfect     | PPtc  | Example                   | At <i>n</i> =100? | At 500? | At 1,000? |
|-------------|-------|---------------------------|-------------------|---------|-----------|
| -vere + -u- | -ūtus | volvere ~ voluī ~ volūtus | YES               | YES     | YES       |

**Individual Development** 

- Only makes a difference for once class, but it is \*-utu
- Only an option when a learner happens to know both stems

#### If derivations are only possible from the present,

- Productive pptc derivation for 1st (-ātus), 3rd-iō (-tus)
- Marginal for faveō-type (-autus/-ōtus) and solvō-type (-ūtus)

#### If derivations are only possible from the present,

- Productive pptc derivation for 1st (-ātus), 3rd-iō (-tus)
- Marginal for faveō-type (-autus/-ōtus) and solvō-type (-ūtus)
- No productive pptc derivation for 2nd, 3rd-ō, 4th
- No broadly productive -itus or -tus

#### If derivations are only possible from the present,

- Productive pptc derivation for 1st (-ātus), 3rd-iō (-tus)
- Marginal for faveō-type (-autus/-ōtus) and solvō-type (-ūtus)
- No productive pptc derivation for 2nd, 3rd-ō, 4th
- No broadly productive -itus or -tus

#### If derivations is possible from the perfect,

- The above + productive deriv for -īvī (most of 4th; -ītus), -ēvī (-ētus), -Csī (-tus)
- Solidly productive <u>-ūtus</u> for solvō-types

#### If derivations are only possible from the present,

- Productive pptc derivation for 1st (-ātus), 3rd-iō (-tus)
- Marginal for faveō-type (-autus/-ōtus) and solvō-type (-ūtus)
- No productive pptc derivation for 2nd, 3rd-ō, 4th
- No broadly productive -itus or -tus

#### If derivations is possible from the perfect,

- The above + productive deriv for -īvī (most of 4th; -ītus), -ēvī (-ētus), -Csī (-tus)
- Solidly productive -ūtus for solvō-types
- No broadly productive pptc derivation for *-uī*-perfect verbs
- Still no broadly productive -ĭtus or -tus

#### **Outline**

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

## **The System from Latin to Proto-Romance**

#### Varied across the Latin-speaking world, but in general...

- Novel verbs tended to have regular pptcs<sup>1</sup>
- "Regular" \*-atu, \*-itu, \*-utu < -ātus, -ītus (not -ĭtus), -ūtus expanded at the expense of -itus, -tus, and others<sup>2</sup>
- The rise of \*-utu is mysterious given that it is rare in CL
- Perfects (→ preterites) were often regularized, often in \*-ui < -uī<sup>3</sup>

### Reflexes of -ūtus and -ĭtus in Attested Romance<sup>1</sup>

- Reflexives of -ūtus constitute the default for at least some class in most Romance languages
  - They are present but apparently non-productive in Surselvan (Rhaeto-Romance; Switzerland)
- Reflexes are attested in Old Spanish and Portuguese but have been lost
  - Their only reflexes are in adjectives eg, agudo, menudo



### Reflexes of -ūtus and -ĭtus in Attested Romance<sup>1</sup>

- Reflexives of -ūtus constitute the default for at least some class in most Romance languages
  - They are present but apparently non-productive in Surselvan (Rhaeto-Romance; Switzerland)
- Reflexes are attested in Old Spanish and Portuguese but have been lost
  - Their only reflexes are in adjectives eg, agudo, menudo
- -ĭtus remains productive in Apulian and Sardinian
  - /i/ merged with /i:/ in
     Sardinian, causing -ĭtus
     to fall together with -ītus



## **Diachronic Implications**

#### **Developments in Late Latin**

- Three productive LL pptcs: \*-atu < -ātus, \*-itu < -ītus, \*-utu < -ūtus</li>
- -*itus* and -*tus* were unproductive in CL and reduced to irregulars
- -ūtus was productive for a small class
- But the only productive option for -uī perfects!
- It spread first among -uī perfects
- No competition, "a big fish in a small pond"

### **Implications**

#### **Listing and Rules**

- An externally motivated model guides theoretical analysis
- Predicts much more listing than a linguist relying on intuitions might

## **Implications**

#### **Listing and Rules**

- An externally motivated model guides theoretical analysis
- Predicts much more listing than a linguist relying on intuitions might

#### The relationship between stems

- If pptcs are derived from perfects
  - More can be derived by rule
  - Accounts for diachronic leveling of the perfect and pptc
- To do so, either perfect stems exist as representational objects or multiple step root → perfect "stem" → pptc derivations are required

# End.

## With support from







## Thank you

- Charles Yang
- Mitch Marcus
- Don Ringe
- Rolf Noyer
- Rebecca Starr Lurie
- Mitcho Erlewine

### How are past particples derived?

- Are regular pptcs influenced by the present or perfect, or all memorized?
- Diachronic evidence for both

present → pptc: nasal infix spread

perfect → pptc: perfect analogies

#### The Nasal Infix

- Inherited from PIE, inserted into present stems
- Some continue to work like this in Latin<sup>1</sup>
- But some have analogized to the perfect and pptc

| Туре       | Present              | Perfect              | PPtc                   |
|------------|----------------------|----------------------|------------------------|
| Inherited  | fu <mark>n</mark> dō | fūdī                 | fūsus                  |
| Pres, Perf | fi <mark>n</mark> gō | fīnxī                | fictus <sup>2</sup>    |
| All        | iu <mark>n</mark> gō | iu <mark>n</mark> xī | iū <mark>n</mark> ctus |
| Pres, PPtc | pungō                | pupugī               | pūnctus                |

#### The Nasal Infix

- Inherited from PIE, inserted into present stems
- Some continue to work like this in Latin<sup>1</sup>
- But some have analogized to the perfect and pptc
- Only evidence for present → pptc derivation if absent in the perfect
  - At most two examples of this...
  - Otherwise, can present → perfect → pptc

| Туре       | Present              | Perfect              | PPtc                   |
|------------|----------------------|----------------------|------------------------|
| Inherited  | fu <mark>n</mark> dō | fūdī                 | fūsus                  |
| Pres, Perf | fi <mark>n</mark> gō | fīnxī                | fictus <sup>2</sup>    |
| All        | iu <mark>n</mark> gō | iu <mark>n</mark> xī | iū <mark>n</mark> ctus |
| Dros DDts  | pungō                | pupugī               | pū <mark>n</mark> ctus |
| Pres, PPtc | tundō                | tutudī               | tū(n)sus               |

## **Perfect Analogies**

Some pptcs have clearly been reworked on the basis of the perfect<sup>1</sup>

```
cernō crēvī crētus (expected certus retained as adj)
sternō strāvī strātus
sonāre sonuī sonitus
```

Continues into Late Latin: eg \*-utu pptcs typically correspond to \*-ui perfects

## **The System from Proto-Romance to Romance**

### Spanish, for example, shows the most regularization<sup>1</sup>

- Regularization continued
  - o -ado, -ido, and -udo existed in Old Spanish
  - Only -ado, -ido remain productive
- A handful of irregular pptcs remain, many relegated to adjectival meaning
  - hecho, puesto, suelto, visto, vuelto, etc, not all inherited
  - teñir~teñido 'dyed' but adj tinto 'dyed red' < tinctus, etc</li>
  - OS had more eg querer~quisto, prender~preso < prehensus</li>

<sup>1</sup> Laurent 2003 ch. 4.7

65

## **Past Participle Gaps and Meanings**

- Past participles are typically passive
- But not all verbs have past participles<sup>1</sup>
  - Sometimes due to semantics (eg, statives have no pptcs)
  - Sometimes they're more properly paradigmatic gaps

eg bibō, but pōtus not \*bibitus, feriō, but percussus not \*ferītus

- Some pptcs are active rather than passive<sup>2</sup>
  - Expected for deponents
  - But applies to some non-deponents as well

eg locūtus (deponent) 'having spoken,' iūrātus 'having sworn'

## **Cross-Language Lexical Comparisons**

- Compared lexical composition of modern CDS and historical corpora
- Calculated number of verb types across corpora with similar meanings

```
For corpus-derived lexicons A and B where A and B are unordered sets, similarity = |A \cap B| / min(|A|, |B|)
```

### **Cross-Language Corpora**

- English CDS verb lemmas in CHILDES Brown (and Brent for comparison)
- Spanish CDS verb lemmas in combined CHILDES FernAguado, Hess, OreaPine,
   Remedi, Romero, SerraSole
- Classical Latin verb lemmas in all Perseus online 3rd BC 2nd AD (inclusive)

| Corpus            | Freq Cutoff | Lexicon size ( <i>n</i> ) |
|-------------------|-------------|---------------------------|
| English CDS Brown | < 17        | 260                       |
| English CDS Brent | < 17        | 257                       |
| Spanish CDS       | < 11        | 263                       |
| Latin             | < 666       | 260                       |

## **Cross-Language Comparisons**

- Baselines: English-English (within-language) English-Spanish (cross-language)
- English-English unsurprisingly has the highest overlap
- Latin comparisons fall in between English-Spanish and English-English

Latin Perseus contains the same kind of high frequency verbs that CDS does

| Comparison         | % Overlap |  |
|--------------------|-----------|--|
| English - EN Brent | 81.71%    |  |
| English - Spanish  | 73.07%    |  |
| English - Latin    | 75.77%    |  |
| Spanish - Latin    | 78.62%    |  |

### **Paradigm Saturation**

- Paradigm Saturation<sup>1</sup> the proportion of a verb's possible inflected forms which are actually attested in a corpus
- A measure of data sparsity
- Mean saturations tend to be low
- Obeys Zipfian distribution

<sup>1</sup>Chan 2008

## **Paradigm Saturation Data**

- All POS-tagged, lemmatized, morpho feature annotated
- CDS English (Brown), Spanish
- and German (CDS Leo¹)
- Modern UD<sup>2</sup> English, Finnish,
   German, Spanish, Turkish
- Historical UD Gothic, Latin
- Order 10<sup>5</sup> verb tokens

| Corpus   | Lang    | # V Tokens | # V Types | Ratio  |
|----------|---------|------------|-----------|--------|
| CDS      | English | 94,768     | 916       | 103.46 |
| CDS      | Spanish | 96,686     | 879       | 110.00 |
| CDS      | German  | 81,351     | 641       | 126.91 |
| Modern   | English | 53,796     | 3,225     | 16.67  |
| Modern   | Spanish | 85,861     | 5,019     | 17.11  |
| Modern   | German  | 21,835     | 2,826     | 7.73   |
| Modern   | Finnish | 63,891     | 3,476     | 18.38  |
| Modern   | Turkish | 12,064     | 968       | 12.46  |
| Historic | Gothic  | 12,749     | 1,172     | 10.88  |
| Historic | Latin   | 99,066     | 2,2833    | 34.97  |

## **Paradigm Saturation Data**

- All POS-tagged, lemmatized, morpho feature annotated
- CDS English (Brown), Spanish
- and German (CDS Leo¹)
- Modern UD<sup>2</sup> English, Finnish,
   German, Spanish, Turkish
- Historical UD Gothic, Latin
- Order 10<sup>5</sup> verb tokens
- CDS token/type ratios are on the order of 10x higher

| Corpus   | Lang    | # V Tokens | # V Types | Ratio  |
|----------|---------|------------|-----------|--------|
| CDS      | English | 94,768     | 916       | 103.46 |
| CDS      | Spanish | 96,686     | 879       | 110.00 |
| CDS      | German  | 81,351     | 641       | 126.91 |
| Modern   | English | 53,796     | 3,225     | 16.67  |
| Modern   | Spanish | 85,861     | 5,019     | 17.11  |
| Modern   | German  | 21,835     | 2,826     | 7.73   |
| Modern   | Finnish | 63,891     | 3,476     | 18.38  |
| Modern   | Turkish | 12,064     | 968       | 12.46  |
| Historic | Gothic  | 12,749     | 1,172     | 10.88  |
| Historic | Latin   | 99,066     | 2,2833    | 34.97  |

# **Paradigm Saturations**

- CDS saturations only slightly higher than modern equivs
- Despite difference in token/type ratios
- Historical corpora similar to modern ones
- Saturation appears related to paradigm size if anything

| Corpus   | Lang    | Paradigm | Max Sat. | Mean Sat. | Med Sat. |
|----------|---------|----------|----------|-----------|----------|
| CDS      | English | 5        | 100%     | 43.23%    | 40.00%   |
| CDS      | Spanish | 29       | 44.83%   | 7.59%     | 6.90%    |
| CDS      | German  | 67       | 52.24%   | 8.31%     | 4.48%    |
| Modern   | English | 5        | 100%     | 42.80%    | 40.00%   |
| Modern   | Spanish | 67       | 43.28%   | 4.91%     | 1.49%    |
| Modern   | German  | 29       | 51.72%   | 5.83%     | 3.45%    |
| Modern   | Finnish | 150      | 27.33%   | 2.46%     | 1.33%    |
| Modern   | Turkish | 120      | 99.17%   | 4.83%     | 1.67%    |
| Historic | Gothic  | 52       | 53.85%   | 6.31%     | 3.85%    |
| Historic | Latin   | 113      | 81.42%   | 5.90%     | 2.65%    |

# **Zipfian Distributions**

#### CHILDES english CHILDES German **English** German Count **CDS CDS** Infl Form Type Пf Ranked Lemmas Ranked Lemmas **UDT** English **UDT German English** German Count Count UD UD Type Infl Form Type Form Iu 1000 1500 2000 2500 3000 Ranked Lemmas Ranked Lemmas

# CDS and UD distributions correspond by language





# **Zipfian Distributions**

# Historical distributions look like modern ones



# Language Change by Language Acquisition

- Child language acquisition is one of the primary drivers of language change<sup>1</sup>
- Not a new idea (Schleicher 1861, Paul 1880, etc)
- Children are both innovators and propagators of change

<sup>&</sup>lt;sup>1</sup> Schleicher 1861, Paul 1880, Sweet 1899, Halle 1962, Kiparsky 1965, Andersen 1973, Baron 1977, Lightfoot 1979 et seq, Labov 1989, Niyogi 1996 et seq, Kroch 2005, Yang 2002 et seq, van Gelderen 2011, Cournane 2017, inter alia

# Language Change by Language Acquisition

- Child language acquisition is one of the primary drivers of language change<sup>1</sup>
- Not a new idea (Schleicher 1861, Paul 1880, etc)
- Children are both innovators and propagators of change
- Minor learning "errors" over successive generations → major population-level change

<sup>&</sup>lt;sup>1</sup> Schleicher 1861, Paul 1880, Sweet 1899, Halle 1962, Kiparsky 1965, Andersen 1973, Baron 1977, Lightfoot 1979 et seq, Labov 1989, Niyogi 1996 et seq, Kroch 2005, Yang 2002 et seq, van Gelderen 2011, Cournane 2017, inter alia

# The Paradox of Language Change

- Term coined by Niyogi & Berwick 1997
- As I see it, a central problem in the study of language change

If children are so good at language acquisition, why are they so bad at it?

# Transmission is not strictly linear and generational

- Children mature in communities and receive input from multiple speakers
- Young children learn sociolinguistic variables<sup>1</sup>
- Children attend to input from older children<sup>2</sup> who are not linguistically mature
- Not inconsistent with the adolescent peak<sup>3</sup> of many continuous changes

# Some learning targets are unclear or absent

- One cannot acquire language from input alone due to Poverty of the Stimulus
- UG is proposed to render learning possible in the face of the PoS<sup>1</sup>
- But many language specific patterns must still be acquired from the input<sup>2</sup>

#### Input is both richer and poorer than typically acknowledged

- Evidenced by the successes and failures of modern NLP<sup>3</sup>
- Zipfian and other long-tailed distributions for all manner of linguistic features
  - Most lexical items appear only once even in massive corpora
  - Zipfian distributions mean sparsity is consistently worse than our intuitions about sparsity

# **Abject Poverty**

# Occasionally the PoS is so great that UG cannot ensure that all learners converge on the same grammar

- Forms in even moderately complex paradigms may never appear in the input<sup>1</sup>
- Paradigmatic gaps occur when learners fail to learn a generalization for unattested input<sup>2</sup>
- Some syntactic 'parameters' cannot be set consistently<sup>3</sup>

# **Moving Targets**

#### Variation is a normal and unavoidable part of acquisition

- Even in "monolingual" environments<sup>1</sup>
- Children learn from multiple adults and each other

### Change is formally inevitable<sup>2</sup>

- Given categorical representations<sup>3</sup> and "trivial" variation
- The population composition must change over time

#### What causes innovation?

"Errors" presuppose a target. Innovations need not be due to "errors"

#### What causes innovation?

"Errors" presuppose a target. Innovations need not be due to "errors"

#### **Errors - "Blame the Child"**

- The learner does not act correctly on its input "a buggy algorithm"
- → errors presuppose appropriate evidence and an available target

#### What causes innovation?

"Errors" presuppose a target. Innovations need not be due to "errors"

#### **Errors - "Blame the Child"**

- The learner does not act correctly on its input "a buggy algorithm"
- → errors presuppose appropriate evidence and an available target

#### Non-errors - "Blame the Environment"

- The learner acts correctly but is dealt a bad input sample
- Even for a good algorithm, "garbage in, garbage out"
- Change in the face of even trivial variation

# The Sibling Effect

Why might children not overcome their overgeneralizations?

#### Imagine big sister Alice and little brother Bob

- Alice is currently producing innovative \*ē pasts in Class IV
  - Plausible given how Class IV \*ē is tenable late
  - Bob may hear these forms
- Bob is receiving both adult conservative IV pasts and Alice's
- How does this effect Bob?

# The Sibling Effect

#### Can Bob identify Alice's innovation?

- Bob is likely not hear adult-produced tokens for any given low frequency Class
   IV verb until much later
- Since Alice is mostly consistent with adults, he cannot tell if she is innovating

#### Will Bob adopt Alice's innovation?

- Even young children orient toward peers
- Bob may prefer Alice's forms over his parents
- He may later learn adult forms as sociolinguistic variant doublets