## Chapter 14

# Exercises for the Second Part

As its title may suggest, this chapter contains exercises on the second part (of this book).

### 14.1 Exercises on Chapter 5

**Exercise 1.** Let E be a symplectic vector space of dimension 2n. If F is a subset of E, then we let  $F^{\circ}$  denote the orthogonal vector subspace for the symplectic form, which consists of all vectors x such that  $\omega(x,y) = 0$  for every  $y \in F$ .

For a subspace F of E, show that

$$\dim F + \dim F^{\circ} = \dim E.$$

We call F isotropic if the form  $\omega$  is zero on F, that is, if  $F \subset F^{\circ}$ . What can we say about the dimension of F? We call F Lagrangian if F is isotropic and  $\dim F = n$ .

Let F be a "co-isotropic" subspace (that is, one whose orthogonal is isotropic). Show that  $\omega$  induces a symplectic form on the quotient vector space  $F/F^{\circ}$ . Let L be a Lagrangian subspace of E such that L+F=E. Show that the composition

$$L \cap F \subset F \longrightarrow F/F^{\circ}$$

is the injection of a Lagrangian subspace.

**Exercise 2.** Let V be a manifold and let  $\eta$  be a 1-form on V. We can view  $\eta$  as a section

$$\eta: V \longrightarrow T^{\star}V$$

M. Audin, M. Damian, Morse Theory and Floer Homology, Universitext, DOI 10.1007/978-1-4471-5496-9\_14, of the cotangent bundle. If  $\lambda$  denotes the Liouville form on  $T^*V$ , then what is the form  $\eta^*\lambda$  on V?

Exercise 3 (Lagrangian submanifolds). If  $(W, \omega)$  is a symplectic manifold of dimension 2n, then we call a submanifold  $j : L \subset W$  Lagrangian if  $\dim L = n$  and  $j^*\omega = 0$ .

- (1) Prove that in a symplectic surface, all curves are Lagrangian.
- (2) Prove that if  $L_1$  is Lagrangian in  $W_1$  and  $L_2$  is Lagrangian in  $W_2$ , then  $L_1 \times L_2$  is Lagrangian in  $W_1 \times W_2$ . Construct a Lagrangian torus  $T^n$  in  $\mathbf{R}^{2n}$ . Prove that every symplectic manifold contains Lagrangian tori.
- (3) Let  $\eta$  be a 1-form on a manifold V. We view  $\eta$  as a section of  $T^*V$  (as in Exercise 2 on p. 515). Prove that the image of  $\eta$  is a Lagrangian submanifold if and only if the form  $\eta$  is closed.
- (4) Let f be a  $\mathcal{C}^{\infty}$  function on a compact manifold V. By the above, the 1-form df defines a Lagrangian submanifold of  $T^{\star}V$ . Prove that it meets the zero section.
- (5) Consider the product manifold  $W \times W$  endowed with the symplectic form  $\omega \oplus (-\omega)$ . Prove that the diagonal is a Lagrangian submanifold. Let  $\varphi$  be a diffeomorphism from W into itself. Under what condition on  $\varphi$  is the graph of  $\varphi$  a Lagrangian submanifold of  $W \times W$ ?

**Exercise 4.** Let w be a  $\mathbb{C}^{\infty}$  map from the sphere  $S^2$  to the cotangent space  $T^*V$  of a manifold V. Show that

$$\int_{S^2} w^* \omega = 0.$$

**Exercise 5.** Let  $\omega$  be a symplectic form on a compact surface  $\Sigma$ . Prove that  $\Sigma$  is oriented, and then that

$$\int_{\Sigma} \omega \neq 0.$$

Consider the inclusion  $\mathbf{P}^1(\mathbf{C}) \subset \mathbf{P}^n(\mathbf{C})$  induced by the inclusion  $\mathbf{C}^2 \subset \mathbf{C}^{n+1}$ . Prove that it is a symplectic submanifold. Deduce that there exists a  $\mathcal{C}^{\infty}$  map

$$w: S^2 \longrightarrow \mathbf{P}^n(\mathbf{C})$$

such that if  $\omega$  now denotes the symplectic form of  $\mathbf{P}^n(\mathbf{C})$ , then

$$\int_{S^2} w^* \omega \neq 0.$$

**Exercise 6.** Let  $\varphi^1$  be a Hamiltonian diffeomorphism of W. Show that the graph of  $\varphi^1$  is transversal to the diagonal of  $W \times W$  at (x, x) if and only if the trajectory of x is nondegenerate.

Exercise 7 (The Group of Hamiltonian Diffeomorphisms). In this exercise we consider a compact manifold W endowed with a symplectic form  $\omega$ . Let  $\operatorname{Ham}(W)$  denote the set of diffeomorphisms of W that are Hamiltonian flows at time 1.

(1) Suppose that the Hamiltonian  $H_t$  generates the isotopy  $\varphi_t$  and that the Hamiltonian  $K_t$  generates  $\psi_t$ . Let

$$G_t = H_t + K_t \circ \varphi_t^{-1}.$$

Show that

$$X_{G_t}(x) = X_{H_t}(x) + (T_{\varphi_*^{-1}(x)}\varphi_t)(X_{K_t} \circ \varphi_t^{-1}(x)).$$

Deduce from this that  $\varphi_t \circ \psi_t$  is the Hamiltonian isotopy generated by the Hamiltonian<sup>1</sup>  $H_t + K_t \circ \varphi_t^{-1}$ .

- (2) Describe the Hamiltonian isotopy generated by  $-H_t \circ \varphi_t$ .
- (3) Show that the set  $\operatorname{Ham}(W)$  is a subgroup of the group of symplectic diffeomorphisms of W.
- (4) Let  $\Phi$  be a symplectic diffeomorphism of W. Describe the Hamiltonian isotopy generated by the Hamiltonian  $H_t \circ \Phi$ . Prove that the subgroup  $\operatorname{Ham}(W)$  is a normal subgroup of the group of all symplectic diffeomorphisms of W.

**Exercise 8.** Let x be a nondegenerate critical point of an autonomous Hamiltonian H on  $\mathbb{R}^{2n}$ . We let  $\varphi^t$  denote the flow of  $X_H$ . Express  $X_H$  in the coordinates  $(p_i, q_i)$ . Show that the Jacobian matrix of  $\varphi^t$  satisfies

$$\frac{d}{dt} \left( \operatorname{Jac}_x \varphi^t \right) = \left( J_0 \operatorname{Hess}_x(H) \right) \cdot \operatorname{Jac}_x \varphi^t$$

and that consequently

$$\operatorname{Jac}_x \varphi^t = e^{tJ_0 \operatorname{Hess}_x(H)}.$$

Let x be a critical point of an autonomous Hamiltonian H on a symplectic manifold W. Prove that if x is nondegenerate as a periodic trajectory, then it is nondegenerate as a critical point of H.

 $<sup>^{1}</sup>$  Even if H and K are autonomous, the composed Hamiltonian isotopy does not (in general) come from an autonomous Hamiltonian. Bonus question: When is it the case?

Exercise 9 (Harmonic Oscillator). On the symplectic manifold  $\mathbb{R}^{2n}$ , we consider the Hamiltonian

$$H(q,p) = \frac{1}{2} \sum \alpha_i (p_i^2 + q_i^2),$$

where the  $\alpha_i$  are positive real numbers, say  $0 < \alpha_1 \le \alpha_2 \le \cdots \le \alpha_n$ .

- (1) Write down the corresponding Hamiltonian system and solve it.
- (2) We suppose that all  $\alpha_i/\alpha_j$  are irrational. Show that the system has exactly n families of periodic solutions, each contained in a plane. We fix a solution contained in the plane with equation  $(q_j = p_j = 0)_{j \neq i}$ . What are the Floquet multipliers of this solution? Is it nondegenerate?
- (3) We suppose that all  $\alpha_i$  are equal. What can you say about the periodic solutions?

**Exercise 10.** Let E be a vector space endowed with a symplectic form  $\omega$  and an almost complex structure J calibrated by  $\omega$ ; we let  $\bot$  denote orthogonality for the inner product  $\omega(\cdot, J\cdot)$ . Show that a subspace L is Lagrangian if and only if  $L^{\perp} = JL$ .

**Exercise 11.** Let  $(W, \omega)$  be a symplectic manifold and let J be an almost complex structure calibrated by  $\omega$ . Let  $V \subset W$  be a complex submanifold, that is, one that is stable under J:

$$\forall x \in V, \quad J_x(T_xV) \subset T_xV.$$

Verify that  $\omega$  defines a nondegenerate form on V.

Exercise 12 (Complex, but not Symplectic). Consider the map

$$f: \mathbf{C}^2 \longrightarrow \mathbf{C}^2$$
  
 $(z_1, z_2) \longmapsto (2z_1, 2z_2)$ 

and the quotient  $\mathcal{H}$  ("Hopf surface") of  $\mathbf{C}^2 - \{0\}$  for the action of  $\mathbf{Z}$  given by

$$n \cdot (z_1, z_2) = f^n(z_1, z_2).$$

Show that the quotient is a complex manifold (that is, with complex analytic transition maps) that is diffeomorphic to  $S^3 \times S^1$ . Consequently, its second de Rham cohomology group is zero. Deduce that  $\mathcal{H}$  does not have any symplectic structure.<sup>2</sup>

 $<sup>^2</sup>$  In [18], you can find examples of manifolds that are symplectic but not complex.

Exercise 13 (Cayley Numbers and Almost Complex Structures). Recall that the algebra of *Cayley numbers* or *octaves* is a real vector space **O** of dimension 8, endowed with a basis that we denote by

$$(1, i, j, k, \ell, \ell i, \ell j, \ell k)$$

and with multiplication (that is right and left distributive over addition) defined by

$$i^2 = j^2 = k^2 = \ell^2 = ijk = jki = kij = -1, \quad i\ell = -\ell i, \text{ etc.}$$

Recall that this multiplication is neither commutative nor associative (because  $(ij)\ell = -i(j\ell)$ ), but that it does satisfy (ab)b = a(bb) for all a and b.

Consider the Euclidean space  $\mathbf{R}^7$  of imaginary octaves, that is, the subspace generated by  $(i, j, k, \ell i, \ell j, \ell k)$ . Let  $V \subset \mathbf{R}^7$  be an oriented submanifold of dimension 6. For any point x of V, we let n(x) denote the unitary normal vector (defined by the orientations of V and  $\mathbf{R}^7$ ) and we define

$$J_x:T_xV\longrightarrow \mathbf{R}^7$$

by setting  $J_x(u) = n(x) \cdot u$  (multiplication in the sense of octaves). Show that  $J_x$  has values in  $T_xV$  and that the endomorphisms  $J_x$  define an almost complex structure J on V. In this way, all hypersurfaces of  $\mathbf{R}^7$  are almost complex.<sup>3</sup>

**Exercise 14.** We write the matrices with 2n lines and 2n columns as block matrices

$$A = \begin{pmatrix} X & Y \\ Z & T \end{pmatrix}, \quad X, Y, Z, T \in M_n(\mathbf{R}).$$

Under which conditions on the matrices X, Y, Z and T is the matrix A an element of the group  $Sp(2n; \mathbf{R})$ ?

**Exercise 15.** Let S be a real symmetric matrix. Show that

$$\exp(J_0S) \in \operatorname{Sp}(2n; \mathbf{R}).$$

Conversely, suppose that the matrix S is such that

$$\forall t, \quad \exp(tJ_0S) \in \operatorname{Sp}(2n; \mathbf{R});$$

what can you say about S?

<sup>&</sup>lt;sup>3</sup> Replacing **O** by **H** and 7 by 3 would be an analogous (but more complicated) way in which to show that every oriented surface embedded in  $\mathbb{R}^3$  admits an almost complex structure.

**Exercise 16.** Use Corollary 5.6.7 to prove that the determinant of a symplectic matrix is 1.

Exercise 17 (Symplectization of a Contact Manifold). Let V be a manifold endowed with a 1-form  $\alpha$  that is nonsingular (that is, such that  $\alpha_x \neq 0$  for every  $x \in V$ ) and such that

 $\forall x \in V$ ,  $(d\alpha)_x|_{\operatorname{Ker} \alpha_x}$  is a nondegenerate bilinear form.

We call  $\alpha$  a contact form on V. The dimension of V must be odd; we write it as 2n + 1.

- (1) Show that  $\alpha \wedge (d\alpha)^{\wedge n}$  is a volume form on V.
- (2) Show that there exists a unique vector field X on V such that

$$i_X \alpha \equiv 1$$
 and  $i_X(d\alpha) = 0$ 

(we call X the Reeb vector field of  $\alpha$ ).

(3) Consider  $W = V \times \mathbf{R}$  endowed with the 2-form  $\omega$  defined by

$$\omega_{(x,\sigma)} = d(e^{\sigma}\alpha).$$

Show that  $(W, \omega)$  is a symplectic manifold (called the *symplectization* of the contact manifold  $(V, \alpha)$ ).

(4) Determine the Hamiltonian vector field of the function  $H(x,\sigma) = \sigma$ .

Example.

Let  $V = S^{2n+1} \subset \mathbf{C}^{n+1}$  be the unit sphere ( $\mathbf{C}^{n+1}$  is endowed with coordinates  $(q_1 + ip_1, \dots, q_{n+1} + ip_{n+1})$ ) and consider the 1-form

$$\alpha = \frac{1}{2} \sum (p_i dq_i - q_i dp_i).$$

Prove that  $\alpha$  is a contact form. Determine  $\operatorname{Ker} \alpha$  and the Reeb vector field X of  $\alpha$ . Prove that the symplectization of  $(S^{2n+1}, \alpha)$  is symplectomorphic to  $\mathbb{C}^{n+1} - \{0\}$  endowed with its standard symplectic form.

**Exercise 18.** We call a function H on a symplectic manifold a *periodic* Hamiltonian<sup>4</sup> if there exists a circle action

$$S^1\times W\longrightarrow W$$

<sup>&</sup>lt;sup>4</sup> For this notion, basic results, and more, see for example [5].

such that

$$\frac{d}{dt} \left( \exp(2i\pi t) \cdot x \right) |_{t=0} = X_H(x)$$

for every  $x \in W$ .

- (1) Show that the fixed points of the circle action are the critical points of H.
- (2) Show that all (periodic) orbits of H are degenerate.

**Exercise 19.** We let the circle  $S^1$  act on the complex projective space  $P^n(C)$  by

$$u \cdot [z_0, \dots, z_n] = [u^{m_0} z_0, \dots, u^{m_n} z_n], \quad m_i \in \mathbf{Z}.$$

Show that the function

$$H([z_0, \dots, z_n]) = \frac{1}{2} \frac{\sum m_i |z_i^2|}{\sum |z_i|^2}$$

is a periodic Hamiltonian associated with this action.

Under what condition (on the  $m_i$ ) is this Hamiltonian a Morse function? What are then the indices of its critical points?

**Exercise 20.** We return to the quadric Q of Exercise 8 on p. 19. Consider the functions g and h that are restrictions to Q of the functions on  $\mathbf{P}^3(\mathbf{C})$  defined by

$$g([z]) = \frac{\operatorname{Im}(z_1\overline{z}_0)}{\sum_i |z_i|^2}$$
 and  $h([z]) = \frac{\operatorname{Im}(z_3\overline{z}_2)}{\sum_i |z_i|^2}$ .

Show that g and h are periodic Hamiltonians on Q.

As in Exercise 8, we fix real numbers  $\lambda$  and  $\mu$  such that  $0 < \lambda < \mu$  and we consider the function f that is the restriction to Q of

$$f([z]) = \frac{\lambda \operatorname{Im}(z_1 \overline{z}_0) + \mu \operatorname{Im}(z_3 \overline{z}_2)}{\sum |z_i|^2}.$$

Express the Hamiltonian vector field  $X_f$  of f using those of g and h. Deduce the critical points of f. What are their indices (this question can be answered without any computations by using Exercises 18 and 21)?

**Exercise 21 (Difficult).** Consider a periodic Hamiltonian H on a compact symplectic manifold W. Let x be a critical point of H.

(1) Using an equivariant version of Darboux's theorem, show that there exist an almost complex structure and local coordinates in the neighborhood of x such that:

• The linearization of the action of  $S^1$  on the complex vector space  $T_xW$  is of the form

$$t \cdot (z_1, \dots, z_n) = (t^{\alpha_1} z_1, \dots, t^{\alpha_n} z_n).$$

• The Hamiltonian can be written as

$$H(x_1, \dots, x_n, y_1, \dots, y_n) = \frac{1}{2} \sum_i \alpha_i (x_i^2 + y_i^2).$$

- (2) Suppose that the critical point x is *isolated*. Show that it is nondegenerate and of even index.
- (3) Show that a connected symplectic manifold endowed with a periodic Hamiltonian whose critical points are isolated is simply connected.
- (4) Show that a periodic Hamiltonian on a compact connected symplectic manifold whose critical points are all isolated has a local minimum and a local maximum.

### 14.2 Exercises on Chapter 6

Exercise 22. Verify that the quotient of the map

$$\mathbf{R}^2 \longrightarrow \mathbf{R}^2$$
$$(p,q) \longmapsto (p,q+1/2)$$

on the torus  $T^2 = \mathbf{R}^2/\mathbf{Z}^2$  is a diffeomorphism  $\varphi$  that preserves the symplectic form  $(\varphi^*\omega = \omega)$  but does not have any fixed points. Show that there exists a vector field X on  $T^2$  such that

$$\varphi = \varphi_X^1$$

but that X is not a Hamiltonian vector field.

**Exercise 23.** Let W be a symplectic manifold endowed with a circle action that preserves the symplectic form. Suppose that W is simply connected. Prove that the action is associated with a periodic Hamiltonian  $H: W \to \mathbf{R}$  (in the sense of Exercise 18 on p. 520). Let  $\zeta \in S^1$  and let  $\varphi$  be the diffeomorphism defined by  $\varphi(x) = \zeta \cdot x$ . Prove that  $\varphi$  is a Hamiltonian diffeomorphism and that it has at least  $\sum \dim HM_i(W; \mathbf{Z}/2)$  fixed points.

**Exercise 24.** Let  $x \in \mathcal{L}W$ , and let u be a curve in  $\mathcal{L}W$  that passes through x, that is, a map

$$u: \mathbf{R} \times S^1 \longrightarrow W$$

with u(0,t) = x(t). Let Y be the vector tangent to  $\mathcal{L}W$  defined by u. For a function  $f: \mathcal{L}W \to \mathbf{R}$ , we set

$$Y(x) \cdot f = \frac{\partial}{\partial s} f \circ u(s, t)|_{s=0}.$$

Show that this formula defines something and that this something is a derivation on the functions.

**Exercise 25.** On the torus  $\mathbf{T}^2 = \mathbf{R}/\mathbf{Z} \times \mathbf{R}/\mathbf{Z}$ , we consider the symplectic form  $\omega = dy \wedge dx$ . Let H and K be the functions from  $\mathbf{R}^2$  to  $\mathbf{R}$  defined by

$$H(x,y) = \frac{1}{2\pi}\cos(2\pi x), \quad K(x,y) = \frac{1}{2\pi}\sin(2\pi y).$$

Show that H and K define (autonomous) Hamiltonians on  $\mathbf{T}^2$  and determine the associated Hamiltonian vector fields  $X_H$  and  $H_K$ .

Determine the flows  $\varphi_t$  of  $X_H$  and  $\psi_t$  of  $X_K$  as well as the periodic orbits of period 1 of  $X_H$  and  $X_K$ . Are the Hamiltonians H and K nondegenerate?

Compute the composition  $\sigma_t = \psi_t \circ \varphi_t$ . Determine the Hamiltonian  $F_t$  that generates the Hamiltonian isotopy  $\sigma_t$  (see Exercise 7 on p. 517). Determine the periodic orbits of period 1 of  $X_{F_t}$  and indicate which are contractible. Show that  $F_t$  is nondegenerate.

**Exercise 26.** On the space  $\mathcal{L}W$ , consider the action form

$$(\alpha_H)_x(Y) = \int_0^1 \omega(\dot{x}(t) - X_t(x(t)), Y(t)) dt.$$

Let  $x_0 \in \mathcal{L}W$  be a fixed loop. We fix an extension  $u_0$  of  $x_0$  to the disk  $D^2$ . Show that  $x_0$  has a neighborhood U in  $\mathcal{L}W$  such that every loop  $x \in U$  admits an extension  $u_x$  to the disk  $D^2$ , so that

$$\mathcal{A}_H(x) = -\int_D u_x^* \omega + \int_0^1 H_t(x(t)) dt$$

defines a  $\mathcal{C}^{\infty}$  function on U. Deduce that the form  $\alpha_H$  is closed.

Exercise 27. Let  $\alpha$  be a closed form on a manifold V and let X be a pseudo-gradient field adapted to  $\alpha$ . We define the energy of a trajectory  $\gamma$  of the vector field X to be

$$E(\gamma) = \int_{-\infty}^{+\infty} -\alpha(\dot{\gamma}(s)) \, ds.$$

Show that if the energy of  $\gamma$  is finite, then  $\gamma$  connects two zeros of  $\alpha$ .

Exercise 28 (Naturality of the Floer Equation). Let  $u : \mathbf{R} \times S^1$  be a solution of the Floer equation

$$\frac{\partial u}{\partial s} + J(u)\frac{\partial u}{\partial t} + \operatorname{grad} H_t(u) = 0.$$

We are given a time-dependent Hamiltonian  $K_t$  with  $K_{t+1} = K_t$  and the flow of symplectic diffeomorphisms  $\psi^t$  that it generates. Prove that the map  $\widetilde{u}$  defined by

$$\widetilde{u}(s,t) = (\psi^t)^{-1}(u(s,t))$$

satisfies

$$\frac{\partial \widetilde{u}}{\partial s} + \widetilde{J}(\widetilde{u}) \frac{\partial \widetilde{u}}{\partial t} + \operatorname{grad} \widetilde{H}_t(\widetilde{u}) = 0$$

for almost complex structures  $\widetilde{J}$ , and a Hamiltonian  $\widetilde{H}_t$  that needs to be determined.

**Exercise 29.** Let V be a compact manifold endowed with a Riemannian metric and let f be a Morse function on V. Consider the functional

$$\gamma \longmapsto E(\gamma) = \frac{1}{2} \int_{\mathbb{R}} \left( \left\| \frac{d\gamma}{ds} \right\|^2 + \left\| \operatorname{grad}_{\gamma(s)} f \right\|^2 \right) ds.$$

Let a and b be two critical points of f and let  $\gamma: \mathbf{R} \to V$  be such that

$$\lim_{s \to -\infty} \gamma(s) = a, \quad \lim_{s \to +\infty} \gamma(s) = b.$$

Show that

$$E(\gamma) = \frac{1}{2} \int_{\mathbf{R}} \left\| \frac{d\gamma}{ds} + \operatorname{grad}_{\gamma(s)} f \right\|^2 ds + f(a) - f(b).$$

Determine the extrema of E on the curves  $\gamma$  connecting a to b.

**Exercise 30.** Prove that the set of critical points of  $\mathcal{A}_H$  (without a nondegeneracy assumption) is compact (this is a consequence of the Arzelà–Ascoli theorem).

Exercise 31 ("Removable" Singularities—difficult). Let  $(W, \omega)$  be a compact symplectic manifold and let J be an almost complex structure calibrated by  $\omega$ . Let  $u: \mathbf{C} \to W$  be a J-holomorphic curve, that is, in coordinates  $s+it \in \mathbf{C}$ , a curve such that

$$\frac{\partial u}{\partial s} + J(u)\frac{\partial u}{\partial t} = 0.$$

Show that if u has finite energy, then it extends to a J-holomorphic map

$$\mathbf{P}^1(\mathbf{C}) = \mathbf{C} \cup \{\infty\} \longrightarrow W.$$

**Exercise 32.** Consider the map  $z \mapsto z^n$  from **C** to **C**. Let A(r) be the area of the image of the disk of center 0 with radius r and let  $\ell(r)$  be its circumference. Compute A(r) and  $\ell(r)$ . Can the inequality

$$\ell(r)^2 \le 2\pi r A'(r)$$

obtained in the proof of Proposition 6.6.2 be improved?

**Exercise 33.** Consider the complex curve  $C_1$  with equation

$$y^2 = 4x^3 - x - 1$$

and the map

$$u_{\alpha}: C_1 \longrightarrow \mathbf{C}^2$$

defined by  $(x, y) \mapsto (\alpha^2 x, \alpha^3 y)$ . We complete the curve  $C_1$  to obtain a curve in  $\mathbf{P}^2(\mathbf{C})$  and extend  $u_{\alpha}$  to a map

$$u_{\alpha}: C_1 \longrightarrow \mathbf{P}^2(\mathbf{C}).$$

Study the limit of  $u_{\alpha}$  when  $\alpha$  tends to 0 (Figure 14.1).



Fig. 14.1

Exercise 34 (Forms with Integral Periods). Let  $\alpha$  be a closed 1-form on a manifold V. Suppose that  $\alpha$  has "integral periods", 5 that is, with the notation of Section 6.7.a, that the image of  $\varphi_{\alpha}$  is contained in  $\mathbf{Z} \subset \mathbf{R}$ . Show that the formula

$$f(x) = \int_{x_0}^x \alpha$$

defines a map  $f: V \to \mathbf{R}/\mathbf{Z}$  and that

$$f^{\star} d\theta = 2\pi\alpha.$$

<sup>&</sup>lt;sup>5</sup> This means that the de Rham cohomology class of  $\alpha$  is contained in the image of  $H^1(V; \mathbf{Z}) \to H^1(V; \mathbf{R})$ .



Fig. 14.2

Show that the integration cover  $\pi:\widetilde{V}\to V$  is the pullback of the cover in the diagram



or in Figure 14.2 and that it is cyclic. Next consider the action form  $\alpha_H$  (as in Section 6.7.b) on the projective space  $\mathbf{P}^n(\mathbf{C})$ . Verify that we still have

$$\int_{S^2} w^* \omega \in \mathbf{Z}.$$

Deduce that there exists an infinite cyclic cover of  $\mathcal{L}\mathbf{P}^n(\mathbf{C})$  on which  $\alpha_H$  has a primitive  $\widetilde{f}_H$ .

## 14.3 Exercises on Chapter 7

**Exercise 35.** What does the relation  ${}^tAJA = J$  imply for the determinant of a symplectic matrix A?

To prove that this determinant is +1, we can proceed as in Section 5.6.d. Another method consists in showing that the symplectic group is generated by the maps

$$x \longmapsto x + \lambda \omega(x, a)a$$

(symplectic transvections). This is what we ask you to do in this exercise.

**Exercise 36.** Let T be a symplectic transvection (Exercise 35). Compute  $\rho(T)$ . Does the map  $\rho$  satisfy

$$\rho(AB) = \rho(A)\rho(B)$$
?

Exercise 37 (Fundamental Group of U(n)). The group SU(n) acts on the unit sphere  $S^{2n-1} \subset \mathbb{C}^n$  in such a way that the stabilizer the last vector of the canonical basis can be identified with SU(n-1). Deduce that SU(n) is simply connected.

Show that the map

$$U(n) \xrightarrow{\det} S^1$$

induces an isomorphism of the fundamental groups.

Exercise 38. Consider the matrix

$$A(t) = \begin{pmatrix} 1 + 4\pi^2 t^2 \ 2\pi t \\ 2\pi t & 1 \end{pmatrix} \quad \text{for } t \in [0,1].$$

Verify that the path  $t \mapsto A(t)$  is in S (defined in Section 7.1.a) and compute its Maslov index.

Do the same (this is more delicate) for the matrix

$$A(t) = \begin{pmatrix} 1 - 4\pi^2 t^2 - 2\pi t \\ 2\pi t & 1 \end{pmatrix} \text{ for } t \in [0, 1].$$

**Exercise 39.** In  $\mathbf{R}^4$  endowed with the coordinates  $(q_1, q_2, p_1, p_2)$ , the symplectic form  $\omega = dp_1 \wedge dq_1 + dp_2 \wedge dq_2$  and the complex structure  $J = \begin{pmatrix} 0 & \mathrm{Id} \\ -\mathrm{Id} & 0 \end{pmatrix}$ , consider the quadratic form

$$H = \frac{1}{2}(p_1^2 + p_2^2) + (q_2p_1 - q_1p_2)$$

and the associated symmetric matrix

$$S = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -\alpha \\ -\alpha & \text{Id} \end{pmatrix} \quad \text{with } \alpha = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Show that

$$A = \exp(tJS) = \begin{pmatrix} \exp(t\alpha) \ t \exp(t\alpha) \\ 0 \ \exp(t\alpha) \end{pmatrix} = \begin{pmatrix} \cos t - \sin t \ t \cos t - t \sin t \\ \sin t \ \cos t \ t \sin t \ t \cos t \\ 0 \ \cos t - \sin t \\ \sin t \ \cos t \end{pmatrix},$$

that this is a symplectic matrix with (double) eigenvalues  $e^{\pm it}$ , that it is not diagonalizable (for  $t \neq 0$ ) and that it is in  $Sp(2n)^+$  (for  $t \neq 0$ ).

Next, compute  $\rho(A)$  (for  $t \in ]0, \pi[$ ):

- (1) Show that  $m_0 = 0$  and that  $\rho(A) = (e^{it})^{\sigma}$ , where  $\sigma$  is the signature of Q on the characteristic space E corresponding to the eigenvalue  $e^{it}$ .
- (2) Show that  $X = (1, -i, 0, 0) \in E$  and that  $\operatorname{Im} \omega(\overline{X}, X) = 0$ . Deduce that  $\sigma = 0$  and that  $\rho(A) = 1$ .

Exercise 40 (Grassmannian of the Lagrangians). Consider the space  $\Lambda_n$  of Lagrangian vector subspaces of  $\mathbf{R}^{2n} = \mathbf{C}^n$ . Prove that the group  $\mathrm{U}(n)$  acts transitively on  $\Lambda_n$  and that the stabilizer of

$$\mathbf{R}^n = \{ X \in \mathbf{C}^n \mid \operatorname{Im}(X) = 0 \}$$

is isomorphic to the orthogonal group O(n). Deduce that  $\Lambda_n$  is a connected compact manifold of dimension n(n+1)/2.

Show that the map

$$\det^2: \mathrm{U}(n) \longrightarrow S^1$$

defines a continuous map from  $\Lambda_n$  to  $S^1$  and that it induces an isomorphism of the fundamental groups.

Exercise 41 (Maslov Class of a Lagrangian Immersion). Let  $f: L \to \mathbf{R}^n$  be an immersion of a manifold of dimension n in  $\mathbf{R}^{2n}$ . Suppose that f is Lagrangian, that is, that  $f^*\omega = 0$  or equivalently that for every x in L,  $T_x f(T_x L)$  is a Lagrangian subspace of  $\mathbf{R}^{2n}$ .

So, sending each point to the tangent space at that point defines a "Gauss" map  $\gamma(f): L \to \Lambda_n$ . The composition

$$\gamma(f)_{\star}:\pi_1(L)\longrightarrow \pi_1(\Lambda_n)=\mathbf{Z}$$

therefore sends each loop in L to an integer: its Maslov class. Determine the Maslov classes of the (Lagrangian) immersions of  $S^1$  in  $\mathbb{R}^2$  defined by the drawings in Figure 14.3. Show that the Maslov class of an embedded circle is  $\pm 2$  (use the "turning tangents" theorem; see [8]).



Fig. 14.3

Exercise 42 (Relative Maslov Index). Let W be a manifold endowed with a symplectic form  $\omega$  and let

$$j: L \hookrightarrow W$$

be a Lagrangian embedding (see Exercise 41). With each disk

$$u:D^2\longrightarrow W$$

with boundary in L, that is, with  $u(\partial D^2) \subset j(L)$ , we can associate an integer  $\mu_L(u)$  as follows: trivialize  $u^*TW$  using a symplectic trivialization

$$\Phi: u^{\star}TW \longrightarrow D^2 \times \mathbf{R}^{2n}$$
:

the class of the loop

$$S^1 \longrightarrow \Lambda_n$$
$$z \longmapsto \Phi(T_{u(z)}L)$$

in  $\pi_1(\Lambda_n) \equiv \mathbf{Z}$  is then the integer  $\mu_L(u)$  in question. Verify that this integer does not depend on the choice of the trivialization  $\Phi$ .

Let v be another disk in W with boundary in L. Suppose that u and v are homotopic relative to L, that is, that there exists a homotopy

$$h: D^2 \times [0,1] \longrightarrow W$$

such that

$$\begin{cases} h(\cdot,0) = u \\ h(\cdot,1) = v \\ h(z,t) \in L & \text{if } z \in S^1. \end{cases}$$

Prove that  $\mu_L(u) = \mu_L(v)$ . So  $\mu_L$  defines a map from the group  $\pi_2(W, L)$  of relative homotopy classes to **Z**. Prove that this map is a group homomorphism.

From now on, suppose that  $\pi_2(W) = 0$ . Prove that in this case,  $\mu_L(u)$  depends only on the restriction of u to the boundary and therefore defines a group homomorphism  $\pi_1(L) \to \mathbf{Z}$ .

**Exercise 43.** Let P be a polynomial with complex coefficients and let  $\alpha \in \mathbf{C}$  be a root of P of multiplicity m. We begin by recalling a proof of Rouché's theorem.

(1) Let  $\gamma$  be the circle  $\gamma(t) = \alpha + \varepsilon e^{2i\pi t}$   $(t \in [0,1])$ . Show that if  $\varepsilon$  is sufficiently small so that  $\alpha$  is the unique root of P in the closed disk  $B_{\varepsilon}$  with

boundary  $\gamma$ , then

$$m = \frac{1}{2i\pi} \int_{\gamma} \frac{P'(z)}{P(z)} dz.$$

(2) Let  $\delta = \sup_{z \in \operatorname{Im} \gamma} |P(z)|$ . Let Q be a polynomial with

$$\sup_{z \in B_{\varepsilon}} |P(z) - Q(z)| < \delta.$$

Verify that Q does not have any roots in the circle  $\gamma$ . Prove that the image of  $\gamma$  under h is contained in the open disk of center 1 with radius 1. Deduce that

$$\int_{\gamma} \frac{h'(z)}{h(z)} \, dz = 0.$$

(3) Prove that Q has exactly m roots (counted with multiplicities) in the disk  $B_{\varepsilon}$ . This is Rouché's theorem.

Deduce a proof of Proposition 7.3.6.

### 14.4 Exercises on Chapter 8

**Exercise 44.** Show that the kernel of the operator  $\Gamma$  considered in Proposition 8.1.4 is not finite-dimensional.

Exercise 45 (Another Proof of Theorem 8.6.11). Let  $\Sigma : \mathbf{R} \to \operatorname{End}(\mathbf{R}^{2n})$  be a continuous map such that

$$\Sigma(s) = \pi \operatorname{Id} \text{ for } s < -s_0 \text{ and } \Sigma(s) = 3\pi \operatorname{Id} \text{ for } s > s_0.$$

Show that the operator F defined by

$$F(Y) = \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + \sigma \cdot Y$$

is a Fredholm operator from  $W^{1,p}(\mathbf{R} \times S^1; \mathbf{R}^{2n})$  to  $L^p(\mathbf{R} \times S^1; \mathbf{R}^{2n})$ . Show that

$$\dim \operatorname{Ker} F = 2n \# \left\{ \ell \in \mathbf{Z}^{\star} \mid 1 < 2\ell < 3 \right\} = 2n,$$

and then that dim Ker  $F^* = 0$  and that F is surjective.

### 14.5 Exercises on Chapter 10

Exercise 46. Consider the operator

$$L_0: W^{1,2}(\mathbf{R}; \mathbf{R}^N) \longrightarrow L^2(\mathbf{R}; \mathbf{R}^N)$$
  
 $Y \longmapsto \frac{dY}{ds} + A_0(s),$ 

where  $A_0(s)$  is a diagonal matrix (for every s) that is constant for |s| sufficiently large, and is of the form

$$A = \begin{pmatrix} \operatorname{Id}_{m^+} & 0 \\ 0 & -\operatorname{Id}_{n^+} \end{pmatrix} \text{ for } s \geq M \quad \text{and} \quad \begin{pmatrix} \operatorname{Id}_{m^-} & 0 \\ 0 & -\operatorname{Id}_{n^-} \end{pmatrix} \text{ for } s \leq -M.$$

- (1) Verify that  $L_0$  is a Fredholm operator. Determine its index as a function of  $m^{\pm}$  and  $n^{\pm}$ .
- (2) Taking inspiration from the methods of Section 8.8, deduce another proof of Proposition 10.2.8.

#### 14.6 Exercises on Chapter 11

Exercise 47. We use the notation and results of Exercise 25 on p. 523, where we determined the contractible and periodic solutions of period 1 of a Hamiltonian  $F_t$  on the torus  $\mathbf{T}^2$ . Compute the indices of these trajectories (a computation essentially asked in Exercise 38) and determine the Floer complex for this Hamiltonian (which we assume to be regular).