

Capitulo 5 Memoria Interna

Figure 5.1 Memory Cell Operation

M emory Type	Category	Erasure	Write Mechanism	Volatility	
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile	
Read-only memory (ROM)	Read-only	Not possible	Masks		
Programmable ROM (PROM)	memory	Tvot possible			
Erasable PROM (EPROM)		UV light, chip- level		Nonvolatile	
Electrically Erasable PROM (EEPROM)	Read-mostly memory	Electrically, byte-level	Electrically		
Flash memory		Electrically, block-level			

Table 5.1 Semiconductor Memory Types

Dynamic RAM (DRAM)

- La tecnología RAM se divide en dos tecnologías:
 - RAM dinámica (DRAM)
 - RAM estática (SRAM)
- DRAM
 - Hecho con celdas que almacenan datos como carga en capacitores.
 - La presencia o ausencia de carga en un condensador se interpreta como un binario 1 o 0
 - Requiere actualización periódica de la carga para mantener el almacenamiento de datos
 - El término dinámico se refiere a la tendencia de la carga almacenada a filtrarse, incluso con potencia aplicada continuamente

Figure 5.2 Typical Memory Cell Structures

Static RAM (SRAM)

- Dispositivo digital que utiliza los mismos elementos lógicos utilizados en el procesador.
- Los valores binarios se almacenan utilizando las configuraciones tradicionales de compuerta lógica de flip-flop
- Mantendrá sus datos siempre que se le suministre energía.

SRAM versus DRAM

- Ambos volátiles
 - La alimentación debe suministrarse continuamente a la memoria para conservar los valores de bit
- Celda dinámica
 - Más fácil de construir, más pequeño
 - Más denso (células más pequeñas = más células por unidad de área)
 - Menos costosa
 - Requiere un circuito de actualización de soporte
 - Tienden a ser favorecidos por grandes requerimientos de memoria
 - Utilizada para la memoria principal
- Estático
 - Más rápida
 - Se utiliza para la memoria caché (tanto dentro como fuera del chip)

SRAM

Read Only Memory (ROM)

- Contiene un patrón permanente de datos que no se puede cambiar o agregar a
- No se requiere una fuente de alimentación para mantener los valores de bits en la memoria
- Los datos o el programa están permanentemente en la memoria principal y nunca deben cargarse desde un dispositivo de almacenamiento secundario
- Los datos están conectados al chip como parte del proceso de fabricación.
 - Desventajas de esto:
 - No hay lugar para el error, si un bit es incorrecto, todo el lote de ROM debe ser descartado
 - El paso de inserción de datos incluye un costo fijo relativamente grande

Programmable ROM (PROM)

- Alternativa menos costosa
- No volátil y puede ser escrito en una sola vez
- El proceso de escritura se realiza eléctricamente y puede ser realizado por el proveedor o cliente en un momento posterior a la fabricación original del chip.
- Se requiere equipo especial para el proceso de escritura.
- Proporciona flexibilidad y conveniencia.
- Atractivo para series de producción de alto volumen.

Read-Mostly Memory

27-06-2019

Inc presentación de condicione de proyecto final

EPROM

Erasable programmable read-only memory

Erasure process can be performed repeatedly

More expensive than PROM but it has the advantage of the multiple update capability

EEPROM

Electrically erasable programmable read-only memory

Can be written into at any time without erasing prior contents

Combines the advantage of non-volatility with the flexibility of being updatable in place

More expensive than EPROM

Flash Memory

Intermediate between EPROM and EEPROM in both cost and functionality

Uses an electrical erasing technology, does not provide byte-level erasure

Microchip is organized so that a section of memory cells are erased in a single action or "flash"

Figure 5.3 Typical 16 Megabit DRAM $(4M \times 4)$

(a) 8 Mbit EPROM

Para 1M palabras, se requieren 20 pines (A0–A19) $(2^{20} = 1M)$.

(b) 16 Mbit DRAM

Se accede a la DRAM por fila – columna La dirección es multiplexada, solo se necesitan 11 pines de dirección para especificar las combinaciones de fila / columna de 4M $(2^{11} * 2^{11} = 2^{22} = 4M)$.

Figure 5.4 Typical Memory Package Pins and Signals

Si un chip de RAM contiene solo 1 bit por palabra, necesitaremos al menos un número de chips igual al número de bits por palabra.

Figure 5.5 256-KByte Memory Organization

Figure 5.6 1-Mbyte Memory Organization

Memoria intercalada (Interleaved)

Corrección de errores

■ Hard Failure

- Defecto físico permanente
- La celda de la memoria o las celdas afectadas no pueden almacenar datos de manera confiable, pero se atascan en 0 o 1 o cambian erráticamente entre 0 y 1
- Puede ser causado por:
 - Abuso ambiental severo
 - Defectos de fabricación

■ Soft Error

- Evento aleatorio, no destructivo que altera el contenido de una o más celdas de memoria
- Ningún daño permanente a la memoria
- Puede ser causado por:
 - Problemas de alimentación
 - Partículas alfa

Figure 5.7 Error-Correcting Code Function

Figure 5.8 Hamming Error-Correcting Code

Aumento de la longitud de la palabra con corrección de errores

	Single-Erro	r Correction	Single-Error Correction/ Double-Error Detection			
Data Bits	Check Bits	% Increase	Check Bits	% Increase		
8	4	50	5	62.5		
16	5	31.25	6	37.5		
32	6	18.75	7	21.875		
64	7	10.94	8	12.5		
128	8	6.25	9	7.03		
256	9	3.52	10	3.91		

Bit Position	12	11	10	9	8	7	6	5	4	3	2	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data Bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check Bit					C8				C4		C2	C1

Figure 5.9 Layout of Data Bits and Check Bits

Bit position	12	11	10	9	8	7	6	5	4	3	2	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check bit					C8				C4		C2	C1
Word stored as	0	0	1	1	0	1	0	0	1	1	1	1
Word fetched as	0	0	1	1	0	1	1	0	1	1	- 1	1.
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Check Bit					0				0		0	1

Figure 5.10 Check Bit Calculation

Figure 5.11 Hamming SEC-DED Code

Organización DRAM avanzada

- Uno de los cuellos de botella más críticos del sistema cuando se utilizan procesadores de alto rendimiento es la interfaz con la memoria interna principal
- El chip DRAM tradicional está limitado tanto por su arquitectura interna como por su interfaz con el bus de memoria del procesador
- Se han explorado varias mejoras a la arquitectura básica de DRAM
 - Los esquemas que actualmente dominan el mercado son SDRAM y DDR-DRAM.

SDRAM

DDR-DRAM

RDRAM

DRAM sincrónica(SDRAM)

Una de las formas más utilizadas de DRAM.

Intercambia datos con el procesador, sincronizado a una señal de reloj externa y ejecutándose a la velocidad máxima del bus de procesador/memoria sin imponer estados de espera

Con el acceso sincrónico, la DRAM mueve los datos dentro y fuera, bajo el control del reloj del sistema.

- El procesador u otro maestro emite la instrucción y la información de dirección que está bloqueada por la DRAM
- La DRAM responde luego de un número determinado de ciclos de reloj
- Mientras tanto, el maestro puede realizar otras tareas de forma segura mientras se procesa la SDRAM

Figure 5.12 256-Mb Synchronous Dynamic RAM (SDRAM)

A0 to A12	Address inputs
BA0, BA1	Bank address lines
CLK	Clock input
CKE	Clock enable
CS	Chip select
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable
DQ0 to DQ15	Data input/output
DQM	Data mask

Tabla 5.3 Pines de la SDRAM

Figure 5.13 SDRAM Read Timing (Burst Length = 4, \overline{CAS} latency = 2)

SDRAM de doble velocidad de datos (DDR SDRAM)

- DDR logra tasas de datos más altas de tres maneras:
 - Primero, la transferencia de datos se sincroniza con el flanco ascendente y descendente del reloj, en lugar de solo con el flanco ascendente
 - En segundo lugar, DDR utiliza una velocidad de reloj más alta en el bus para aumentar la velocidad de transferencia
 - En tercer lugar, se utiliza un esquema de almacenamiento en búfer

3.0	DDR1	DDR2	DDR3	DDR4
Prefetch buffer (bits)	2	4	8	8
Voltage level (V)	2.5	1.8	1.5	1.2
Front side bus data rates (Mbps)	200—400	400—1066	800—2133	2133—4266

Tabla 5.4 Características de DDR

Figure 5.14 DDR Generations

Memoria flash

- Se utiliza tanto para la memoria interna como para las aplicaciones de memoria externa.
- Presentado por primera vez a mediados de la década de 1980.
- Es un intermedio entre EPROM y EEPROM tanto en costo como en funcionalidad.
- Utiliza una tecnología de borrado eléctrico como EEPROM.
- Es posible borrar solo bloques de memoria en lugar de un chip completo
- Obtiene su nombre porque el microchip está organizado de manera que una sección de las celdas de memoria se borran en una sola acción
- No proporciona borrado de nivel de byte
- Utiliza solo un transistor por bit para lograr la alta densidad de EPROM

Figure 5.17 Kiviat Graphs for Flash Memory

Figure 5.18 Nonvolatile RAM within the Memory Hierarchy

⁺ Resumen

Capítulo 5

- Memoria principal de semiconductores
 - Organización
 - DRAM y SRAM
 - Tipos de ROM
 - Lógica de chip
 - Embalaje de chips
 - Módulo de organización
 - Memoria intercalada
- Error de corrección

Memoria Interna

- DDR DRAM
 - RAM Sincrona
 - DDR SDRAM
- Memoria Flash
 - Operación
 - Memoria flash NOR y NAND
- Nuevas tecnologías de memoria de estado sólido no volátil