faiii_ha6_julia

June 2, 2016

```
In [15]: using PyPlot

###

Homework Assignment 6

Héctor Andrade Loarca # 375708

Melf Boeckel # 543098

Lets define first the 0-spline as the characteristic function in [0, 1]
```

$$B_0(x) = \chi_{[0,1]}(x)$$

Out[111]: B0 (generic function with 1 method)

The next N-splines are defined as the convolution $B_N(x) = (B_0 * B_{N-1})(x)$, the analytical computation of this is quite costly, the first spline will be:

$$B_1(x) = B_0 * B_0(x) = \int_{\mathbb{R}} \chi_{[0,1]}(y) \chi_{[0,1]}(x-y) dy = \int_{[0,1]} \chi_{[0,1]}(x-y) dy = |[0,1] \cap (x-[0,1])|$$
 (1)

 $B_1(x)$ has as support [0,2] (in general B_N has support [0,N+1] (as it was proven in the third exercise), and is defined as:

$$B_1(x) = \begin{cases} x, & 0 \le x \le 1\\ 2 - x, & 1 < x \le 2\\ 0, & \text{otherwise.} \end{cases}$$

```
In [112]: function B1(x) if 0 \le x \&\& x \le 1 float(x) elseif 1 \le x \&\& x \le 2 float(2-x)
```

```
else
0.0
end
end
```

Out[112]: B1 (generic function with 1 method)

Lets plot this two first splines

0.0.1 B_0


```
Out[174]: (-1,5)
```

0.0.2 B_1

As the other N-splines might be too costly to compute we can use the properties of the fourier transform acting on convolutions, i.e.

$$B_N(x) = \mathcal{F}^{-1}(\mathcal{F}(B_0 * B_{N-1}))(x) = \mathcal{F}^{-1}(\mathcal{F}(B_0)\mathcal{F}(B_{N-1}))(x)$$

As Benchmark we will use the already known $B_1(x)$

0.0.3 B_1 with Fourier convolution

Out [177]: (-1,5)

It is working!, so we will apply to calculate the next 4 N-splines

0.0.4 B_2 with Fourier convolution

Out[185]: (-1,5)

0.0.5 B_3 with Fourier convolution

Out[193]: (-1,5)

0.0.6 B_4 with Fourier convolution

Out[191]: (-1,5)

Finally we can answered the question responding to the questions in the exercise with this observations

- What can you say about the support of B_N for increasing N? It is visible in the plots that the support of B_N is [0,N+1].
- What can you say about the regularity of B_N for increasing N? It is also visible that the regularity increases with N, since B_0 is piecewise continuous, B_1 is continuous but not differentiable, and B_2 , B_3 , B_4 are differentiable.