Power electronics for control of AC machines

- 1. Introduction
- 2. Basic understanding of a power converter
- 3. Analysis of a 3-phase power converter
- 4. Space Vector modulation technique

Introduction

- Recall from the 1st mini module:
 - we want to control e.g. ? $_1$, U_1 by means of a static power electronic converter

Fig. 11.1. General scheme of AC motor control

• In this lecture we mainly study the machine-side converter

Fig. 11.2. Controlled AC-drive with DC-link converter

Converters	DC link converters				Cycloconverters
	Voltage-source converters		Current-source converters		
	Transistor	Thyristor	Force-	Naturally-	(with line
	inverters (IGBT)	inverters (GTO)	commutated	commutated	commutation)
			thyristor inverters	thyristor inverters	· .
Machines			(GTO)		
Synchronous	Low power	Medium power			
motor with	(10 kW)	(1 MW),			
permanent	very good dynamic	high power density			
magnet excitation	performance				
	(servo drives)				
Reluctance motor		Low to medium			
		power (100 kW)			
Squirrel-cage	Low to medium	Medium to high	Medium to high		High power
induction motor	power	power	power		(7,5 MW)
	(500 kW),	(2 MW)	(4 MW),		low speed,
	high speed, very	good dynamic	high speed		very good dynamic
	good dynamic	performance			performance
	performance	(Traction drives)			
	(spindle and servo				
	drives)				
Doubly fed		Shaft generators		High power	High power
slip-ring inducti-		on ships (2 MW)		(20 MW),	(100 MW)
on motor				subsynchronous	limited speed
				operation	control range
Synchronous				High power	High power
motor with field				(40 MW),	(5 MW),
and damper				high speed	low speed,
windings					good dynamic
					performance

Voltage-source inverters

- Widely used in drive applications
- The input is a "stiff" dc link voltage
- Typically, the front-end is a diode-bridge rectifier (uni-directional power flow)
- Some applications, however, may require bi-directional power flow (thyristor/transistorised rectifier)

Basic understanding of a power converter

 Any time, only one switch on each bridge can be switched on

We may introduce a variable D

$$V_A = V_{dc} D_A$$
 $D_A = 0 \ {
m or} \ 1$ Switching status

Voltage is always a relative value! Where we are referring to when we use the above equation?

If referring to the negative DC bus, $V_{AN} = V_{dc}D_A$

We may set the rule (for our understanding): for a converter, we always start from considerations on the line-to-line output voltage!

Instantaneous meaning!

Basic understanding of a power converter

Example 1. bipolar voltage switching

 $D_A=1$, is always coupled with $D_B=0$

 $D_A=0$, is always coupled with $D_B=1$

$$V_{AB} = V_{AN} - V_{BN} = D_A V_d - D_B V_d = D_A V_d - (1 - D_A) V_d = (2D_A - 1) V_d$$

Average DC voltage during one switching period

$$V_{AB,Ts} = V_{AN,Ts} - V_{BN,Ts} = \frac{D_1 T_s V_d + (1 - D_1) T_s 0}{T_s} - \frac{D_2 T_s V_d}{T_s} = (D_1 - D_2) V_d$$

$$Duty \ ratio \ of \ bridge \ A \qquad Duty \ ratio \ of \ bridge \ B$$

$$= (2D_1 - 1) V_d$$

$$0 \le D_{1,2} \le 1$$

Basic understanding of a power converter

Example 1. bipolar voltage switching

 $D_A=1$, is always coupled with $D_B=0$

 $D_A=0$, is always coupled with $D_B=1$

$$V_{ref}$$
> V_{tri} , TA+ on and TB- on, V_{AB} = V_{d}

 $V_{ref} < V_{tri}$, TA- on and TB+ on, $V_{AB} = -V_{d}$

$$\frac{H+C}{2C} = \frac{w}{T_s} = D_1 \implies m_a \stackrel{def}{=} \frac{V_{ref}}{V_{tri,pk}} = \frac{H}{C} = 2D_1 - 1$$

$$V_o = V_{AB,Ts} = \frac{V_d}{V_{tri,pk}} V_{ref} = kV_{ref}$$

$$\frac{V_{AB,Ts}}{V_d} = 2D_1 - 1$$

This is why a sinusoidal reference voltage will result in a sinusoidal output voltage. (not continuous - constituted from a lot of different DC values!)

Basic understanding of a power converter

$$\frac{2H + (C - H)}{2C} = \frac{w/2}{T_s/2} = D_1 = 1 - D_2$$

$$V_o = V_{AB,Ts} = \frac{V_d}{V_{tri,pk}} V_{ref} = kV_{ref}$$

The same average DC value per switching period!

(d)

RMS value? Harmonics?

Example 2. unipolar voltage switching

$$\begin{split} V_{AB} &= V_{AN} - V_{BN} \\ V_{BC} &= V_{BN} - V_{CN} \\ V_{CA} &= V_{CN} - V_{AN} \\ V_{AN} &+ V_{BN} + V_{CN} = 0 \end{split}$$

$$\begin{bmatrix} V_{AN} \\ V_{BN} \\ V_{CN} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix}$$

$$V_{AB} = (D_1 - D_2)V_d$$

$$V_{BC} = (D_2 - D_3)V_d$$

$$V_{CA} = (D_3 - D_1)V_d$$

$$V_{AN} = \frac{1}{3} (2D_1 - D_2 - D_3) V_d^{def} = V_1 \cos \omega t = V_1 \cos \theta$$

$$V_{BN} = V_1 \cos \left(\theta - \frac{2\pi}{3}\right)$$

$$V_{CN} \stackrel{def}{=} V_1 \cos \left(\theta + \frac{2\pi}{3}\right)$$

$$\frac{H+C}{2C} = \frac{w}{T_s} = D_1$$

$$\frac{V_{ref}}{V_{tri}} = \frac{H}{C} = 2D_1 - 1$$

$$\begin{split} V_{AN} &= \frac{1}{3} (2D_1 - D_2 - D_3) V_d = \frac{V_d}{3V_{tri,pk}} \Bigg[V_{ref1} + V_{tri,pk} - \left(\frac{V_{ref2}}{2} + \frac{V_{tri,pk}}{2} \right) - \left(\frac{V_{ref3}}{2} + \frac{V_{tri,pk}}{2} \right) \Bigg] \\ & \qquad \qquad \qquad \\ V_{ref1,2,3} &= V_{ref,pk} \cos \left(\theta + \phi_{1,2,3} \right) \\ V_{AN} &= \frac{V_d}{3V_{tri,pk}} \Bigg[V_{ref1} - \frac{V_{ref2}}{2} - \frac{V_{ref3}}{2} \Bigg] = \frac{V_d V_{ref,pk}}{3V_{tri,pk}} \Bigg[\cos \left(\theta + \phi_1 \right) - \frac{1}{2} \cos \left(\theta + \phi_2 \right) - \frac{1}{2} \cos \left(\theta + \phi_3 \right) \Bigg] \\ &= \frac{V_d V_{ref,pk}}{3V_{tri,pk}} \Bigg[\cos \left(\theta + \phi_1 \right) - \cos \left(\theta + \frac{\phi_2 + \phi_3}{2} \right) \cos \left(\frac{\phi_2 - \phi_3}{2} \right) \Bigg] \quad \stackrel{def}{=} V_1 \cos \theta \end{split}$$

Let
$$\phi_1 = 0$$
, $\phi_2 = -\frac{2\pi}{3}$, $\phi_3 = +\frac{2\pi}{3}$

$$V_{AN} = \frac{V_d V_{ref,pk}}{3V_{tri,pk}} \left[\cos(\theta) + \frac{1}{2} \cos(\theta) \right] = \left(\frac{V_{ref,pk}}{V_{tri,pk}} \right) \cdot \frac{V_d}{2} \cos(\theta) = m_a \frac{V_d}{2} \cos(\theta)$$

Example: A 3-phase inverter controlling a 2-phase motor

Requirement: V_{BC} lagging V_{AB} By 90 degrees

$$V_{AB} = V_1 \cos(\theta + \phi_0)$$
 $V_{BC} = V_1 \cos\left(\theta - \frac{\pi}{2} + \phi_0\right)$

$$V_{ref,1,2} = V_{ref,pk} \cos(\theta + \phi_{1,2})$$

$$V_{AB} = (D_1 - D_2)V_d = \frac{V_d}{2} \frac{V_{ref,pk}}{V_{tri,pk}} \left[\cos(\theta + \phi_1) - \cos(\theta + \phi_2) \right] = V_d \frac{V_{ref,pk}}{V_{tri,pk}} \sin\left(\theta + \frac{\phi_1 + \phi_2}{2}\right) \sin\left(\frac{\phi_2 - \phi_1}{2}\right)$$

$$V_{BC} = (D_2 - D_3)V_d = \frac{V_d}{2} \frac{V_{ref,pk}}{V_{tri,pk}} \left[\cos(\theta + \phi_2) - \cos(\theta + \phi_3) \right] = V_d \frac{V_{ref,pk}}{V_{tri,pk}} \sin\left(\theta + \frac{\phi_2 + \phi_3}{2}\right) \sin\left(\frac{\phi_3 - \phi_2}{2}\right)$$

$$\phi_{3} - \phi_{2} = \phi_{2} - \phi_{1}$$

$$\phi_{1} + \phi_{2} = \phi_{2} + \phi_{3} - \pi$$

$$V_1 = m_a \frac{\sqrt{2}V_d}{2}$$

Injection with 3rd harmonic [Ref-1]

Better utilization of the DC linkage voltage

- The output peak voltage is limited by the DC-link voltage
- Can we reduce the peak voltage while maintain the required fundamental voltage component?

Injection with 3rd harmonic [Ref-1]

• In normal condition:

$$\frac{V_{ref}}{V_{tri,pk}} = \frac{H}{C} = 2D_1 - 1$$

$$D_1 = \frac{1}{2} + \frac{1}{2}m\sin\theta$$

$$m = \frac{V_{ref,pk}}{V_{tri,pk}} \subset [-1,1]$$

$$with \text{ harmonic injection}$$

$$D_1 = \frac{1}{2} + \frac{1}{2}\left(m\frac{2}{\sqrt{3}}\left(\sin\theta + \frac{1}{6}\sin 3\theta\right)\right)$$

• For other phases (bridges)

$$\theta \to \theta \pm \frac{2\pi}{3}$$

It may be found that

$$\begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix} = V_D \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} D_A \\ D_B \\ D_c \end{bmatrix}$$

$$\begin{bmatrix} V_{AN} \\ V_{BN} \\ V_{CN} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix} = \frac{V_D}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} D_A \\ D_B \\ D_c \end{bmatrix}$$

where D_A, D_B, D_c are the switch status (value 0 or 1)

There are only 8 possible different output voltage status

Use space vector to describe the balanced 3-ph voltages

$$\overrightarrow{v} = \frac{2}{3} \left(v_a + e^{j\frac{2\pi}{3}} v_b + e^{-j\frac{2\pi}{3}} v_c \right)$$

$$\overrightarrow{v} = \frac{2}{3} \left(v_a + e^{j\frac{2\pi}{3}} v_b + e^{-j\frac{2\pi}{3}} v_c \right)$$

$$v_\alpha + jv_\beta = \frac{2}{3} \left(v_a + e^{j\frac{2\pi}{3}} v_b + e^{-j\frac{2\pi}{3}} v_c \right)$$

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_{a} \\ v_{b} \\ v_{c} \end{bmatrix} \qquad \begin{bmatrix} v_{a} \\ v_{b} \\ v_{c} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix}$$

Each voltage output status may correspond to a space vector

For example: Vector 5 (output switch status 101)

$$\overrightarrow{v}_{5} = v_{\alpha} + jv_{\beta} = \frac{2V_{D}}{3} \left(\frac{1}{2} - j \frac{\sqrt{3}}{2} \right)$$
$$= \frac{2V_{D}}{3} \left(\cos \left(-\frac{\pi}{3} \right) + j \sin \left(-\frac{\pi}{3} \right) \right)$$

Let an arbitrary voltage vector to be constitued from its two neighbouring vectors

Please note that

$$\begin{vmatrix} \rightarrow \\ v_i \end{vmatrix} \le \frac{2V_D}{3}, \quad i = 1,...,6$$

$$\left|d_{x}\right| \leq 1, \quad \left|d_{y}\right| \leq 1$$

Suppose the Re-axis is rotated to be aligned with the starting vector of any sector along the positive rotational angle

$$\overrightarrow{v_o} = d_x v_A + d_y \overrightarrow{v_B} = d_x v_A + d_y v_B e^{j60}$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} = v_o \cos \beta + j v_o \sin \beta = d_x v_A + d_y \left(\frac{1}{2}v_B + j\frac{\sqrt{3}}{2}v_B\right)$$

$$\overrightarrow{v_o} =$$

knowning
$$v_a, v_b, v_c \Longrightarrow \text{knowning} \quad v_o, \beta \Longrightarrow \text{Calculte} \quad d_x, d_y$$

determine the duty cycles for each leg

Example: for sector 1, vector 4, 6 and 0 or 7 can be used. If the output PWM duty cycle starts from the begining of a switching period:

$$\begin{bmatrix} d_0 \\ d_x \\ d_y \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Duty cycles for leg A, B and C

 D_1, D_2, D_3 cannot be calculated from d_x, d_y, d_0 why?

One more constrain to be added

$$D_{v7} = 1 - D_{v0}$$

Example - continoued

$$\begin{bmatrix} 1 \\ d_x \\ d_y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix}$$

$$\begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ d_x \\ d_y \end{bmatrix}$$

Exercise - please find this matrix for the rest of the sectors!

A Simulink model

Exercises

- 1. Finish the IM model model.
- 2. Find the transformation matrix from calculated dx, dy to D1, D2, D3 and finish the provided Simulink model.