Report 11491 June 1999

AEROJET

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Performance Verification Report

METSAT (S/N 109) AMSU-A1 Receiver Assemblies

P/N 1356429-1 S/N F06 and P/N 1356409-1 S/N F06

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

Aerojet

)
)
)

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Performance Verification Report

METSAT (S/N 109) AMSU-A1 Receiver Assemblies

P/N 1356429-1 S/N F06 and P/N 1356409-1 S/N F06

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

			~
		ii	

PERFORMANCE VERIFICATION TEST REPORT METSAT (S/N: 109) AMSU-A1 RECEIVER ASSEMBLIES FOR INTEGRATED ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A)

CONTRACT NO. NAS5-32314 CDRL PAR 3.3.2.1

JUNE 1999

SUBMITTED TO

NATIONAL AERONAUTICS AND SPACE ADMINISTERATION GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771

SUBMITTED BY

AEROJET ELECTRONIC SYSTEMS PLANT 1100 WST HOLLYVALE STREET AZUSA, CALIFORNIA 91702

		_
		_
		d d

AMSU-A RECEIVER VERIFICATION TEST REPORT

LEVEL OF ASSEMBLY:

SUBASSEMBLY

TEST ITEM:

AMSU-A1 RECEIVER ASSEMBLY

P/N: 1356429-1, S/N: F06 P/N: 1356409-1, S/N: F06

TYPE OF HARDWARE:

METSAT FLIGHT MODEL (FM)

TYPE OF TEST:

FUNCTIONAL PERFORMANCE

VERIFICATION TEST PROCEDURE: AE-26002/6A

TEST FACILITY LOCATION:

AESP

AZUSA, CALIFORNIA

SIGNATURE:

TEST ENGINEER: 6/11/1999

			<u> </u>
		3	

TABLE OF CONTENTS

SECTION		PAGE
1.0	INTRODUCTION	1
2.0	REASON FOR TEST	1
3.0	ACCEPTANCE TEST	4
4.0	ORGANIZATION OF TEST DATA	5
5.0	SUMMARY AND RECOMMENDATIONS	6
6.0	TEST DATA	6
7.0	ASSEMBLY INSTALLATION AND REPLACEMENT LOG	

		<u> </u>
		_
		<u>u</u>

1.0 INTRODUCTION

The AMSU-A receiver subsystem comprises two separated receiver assemblies; AMSU-A1 and AMSU-A2 (P/N 1356441-1). The AMSU-A1 receiver contains 13 channels and the AMSU-A2 receiver 2 channels. The AMSU-A1 receiver assembly is further divided into two parts; AMSU-A1-1 (P/N 1356429-1) and AMSU-A1-2 (P/N 1356409-1), which contain 9 and 4 channels, respectively. Figures 1 and 2 illustrate the functional block diagrams of the AMSU-A1 and AMSU-A2 receivers.

The AMSU-A receiver subsystem is located in between the antenna and signal processing subsystems of the AMSU-A instrument and comprises the RF and IF components from isolators to attenuators as shown in Figures 1 and 2. It receives the RF signals from the antenna subsystem, down-converts the RF signals to IF signals, amplifies and defines the IF signals to proper power level and frequency bandwidth as specified for each channel, and inputs the IF signals to the signal processing subsystem.

The test reports for the METSAT AMSU-A receiver subsystem are prepared separately for A1 and A2 receivers so that each receiver stands alone during integration of instruments into the spacecraft. This test report presents the test data of the METSAT AMSU-A1 Flight Model No. 6 (FM-6) receiver subsystem. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, most subsystem-level tests are conducted at ambient temperature. The receiver performances were then verified over the operating temperature range by measuring a couple of key receiver performance parameters (bandpass characteristics and noise figure) at extended temperature extremes (-20°C and +50°C) as well as room ambient temperature during two cycles of thermal cycling test. The receiver tests are performed per the Acceptance Test Procedure (ATP) for the AMSU-A Receiver Subsystem, AE-26002/6A.

2.0 REASON FOR TEST

The ATP for the AMSU-A Receiver Subsystem, AE-26002/6A, is prepared to describe in detail the configuration of the test setups and the procedures of tests to verify that the receiver subsystem meets the specifications as required either in the AMSU-A Instrument Performance and Operation Specification, S-480-80, supplied by the customer or in AMSU-A Receiver Subsystem Specification, AE-26608, derived by the Aerojet System Engineering. Test results that verify the conformance to the specifications demonstrate the acceptability of that particular receiver subsystem.

)
		<u> </u>

Figure 1. AMSU-Al Receiver Functional Block Diagram

		<u> </u>
		,
		<u> </u>

Figure 2. AMSU-A2 Receiver Functional Block Diagram'

			J
			<u> </u>
		É	

3.0 ACCEPTANCE TEST

The acceptance tests for the AMSU-A receiver subsystem are performed either at the component or subsystem level. The component-level tests are conducted per the ATP of each component at supplier's facilities. The subsystem-level tests are conducted per the ATP, AE-26002/6A at Aerojet Azusa facility.

The component-level tests include the center frequency, center frequency stability, bandpass characteristics, gain stability, and gain compression. Although the bandpass characteristics can change slightly in subsystem level, these performances are mainly dependent on the component characteristics. The subsystem-level tests include the center frequency, IF output power, bandpass characteristics, noise figure, noise power stability, and the tunable short test.

The subsystem-level tests are performed on AMSU-A1 receivers: AMSU-A1-1 and AMSU-A1-2. However, since the multiplexers of the AMSU-A1 system are integrated to the receivers, the acceptance tests are conducted with the feedhorns directly connected to respective multiplexers that precede the receiver subsystem.

Wire connections between the D-sub connectors and platinum resistance temperature (PRT) sensors and thermistors, D-sub connector and PLO lock detection terminals, and D-sub connector and survival heaters through the thermal switches are verified by measuring either the resistances between the respective two pins or the voltages across the respective two pins. The component bias voltages are verified by measuring the voltages across the two respective banana jacks of the breakout box that are connected to corresponding pins of the D-sub connector.

The receiver tests actually consist of three different tests: engineering evaluation tests, thermal cycling tests and acceptance tests. The engineering evaluation tests were conducted on temporarily mounted receivers prior to the acceptance tests. The tests included the bandpass characteristics, noise figure and noise power stability. The receivers were then subjected to two cycles of thermal cycling test between -20°C and +50°C. During thermal cycling, the bandpass characteristics and noise figures of the channels were measured at two temperature extremes of -20°C and +50°C as well as at room ambient temperature. Operation of the thermal switches was also verified during the thermal cycling test. The acceptance tests were performed per the ATP, AE-26002/6A, at room ambient temperature. Only the acceptance test results are included in this test report.

During the engineering evaluation tests of the AMSU-A1-2 receiver, higher noise power stabilities than the specified were measured for channels 3, 5, and 8. The measured noise power stabilities were ~0.2K against the specifications of 0.12K for channel 3 and ~0.1K and ~0.2K against the specifications of 0.08K for channels 5 and 8.

			•
			<u>)</u>
		¥	

The bandpass characteristics of the channel 8 also showed badly distorted configuration with a peak (~5dB) at lower end the passband.

The noise power stability of the channel 3 could not be improved to an acceptable level by replacing the receiver components and/or optimizing the LO power level of the DRO. The problem was finally resolved by inserting a tuning shim between the isolator and mixer in addition to replacing the original isolator (P/N: 1356680-1, S/N: 12), mixer/IF amplifier (P/N: 1331562-13, S/N: 7A63) and DRO (P/N: 1356610-3, S/N: 85095) by another units (S/N: 06, S/N: 7A23 and 85097) and lowering the LO power level to +6dBm. The receiver performances were verified over the LO power range of +6dBm +/-1.5dB. The high noise power stability of the channel 5 was improved to an acceptable level by replacing the isolator (P/N: 1356680-6, S/N: 10) and DRO (P/N: 1356610-5, S/N: 85033) by another pair (S/N: 11 and S/N: 85035). The problem of the channel 8 was resolved by replacing the isolator (P/N: 1356680-3, S/N: 09) and mixer/IF amplifier (P/N: 1331562-18, S/N: 7A58) by another (S/N: 11 and S/N: 85095) and adjusting the LO power level at +8.4dBm. Then, the receiver successfully passed both the thermal cycling and acceptance tests.

During the acceptance tests for the A1-1 receiver, high noise power stability of 0.245K was measured against the specification of 0.15K at the LO power level of 7.0dBm. The noise power stability was lowered to an acceptable level by replacing the mixer/ IF amplifier (P/N: 1331562-20, S/N: 7A70) and GDO (P/N: 1336610-10, S/N: FM3) by another set (S/N: 7A60 and S/N: FM2). The bandpass characteristics of the channel 11 showed larger gain difference between the average gains of two passbands comparing to those of previous units. Other than that, no problem/anomaly was encountered in ensuing thermal cycling and acceptance tests for the A1-1 receiver.

4.0 ORGANIZATION OF TEST DATA

The test data are organized in the following formats. The test data obtained at the component level are first summarized for each category for all applicable receiver channels. The bandpass characteristics of the filters are summarized only for the data measured at mid-temperature. Supporting component test data over the operating temperature range then follow the summaries. The test data for the channel 7 DRO (P/N: 1336610-7, S/N: 85017) were those for the reworked unit.

The subsystem-level test data are organized for each receiver (A1-1 and A1-2), but not necessarily in sequential order of tests performed. The test data recorded in the test sheet as prepared in the ATP and related data plots are included in this test report. For the Test Data Sheet 1, different DC power requirements should be applied as two different PLOs are mounted on the AMSIJ-A1-1 receiver.

		•
		H

5.0 SUMMARY AND RECOMMENDATIONS

The METSAT AMSU-A1 FM-6 receiver subsystem successfully passed all performance requirements and is delivered to System Engineering for system integration and test. The test data, in most cases, indicated adequate margins for key performance specifications.

During engineering evaluation tests of the AMSU-A1 receiver, higher noise power stabilities were measured for four different receiver channels. The corresponding mixer/IF amplifiers, however, showed acceptable noise power stabilities at component-level tests. These problems were similar to those experienced in previous receiver tests. Most of the problems were resolved by adjusting the LO power level and/or replacing the receiver components (isolator, mixer/IF amplifier and DRO or GDO). In rare occasions like the channel 3 of this A1-1 receiver, a tuning shim was required between the isolator and mixer to improve the receiver performances to acceptable levels.

The engineering evaluation and thermal cycling tests incorporated prior to the acceptance tests indeed helped the receiver subsystem tests. If these problems encountered in the engineering evaluation tests were occurred during acceptance tests, it would have taken much longer time to correct them as we have to go through the lengthy processes involved with disassembling and reassembling the completely assembled receiver hardware and associated document preparations.

6.0 TEST DATA

In the following, the component and subsystem-level test data are organized as delineated in Paragraph 4.0.

		_
		·
		_
		ii

CENTER FREQUENCY AND FREQUENCY STABILITY

FOR

LOCAL OSCILLATORS (LOs) (DROs, PLOs, & GDO)

		•
)
		ii

FREQUENCY STABILITY OF LOS

Channel No.	3	4	5	9	7	8	9-14 *	15
Short-Term Specification (+/-MHz)	8	3	3	æ	6	œ	980:0	08
Setting Accuracy (+/-MHz)	2	-	-	-		2		30
W/ Temp. & Voltage (+/-MHz)	9	2	2	2	2	9		50
Measured (MHz) Total	+3.46,	+0.21,	+1.37,	+1.47,	+.25	+0.33,	+0.007,	+15.,
							+0.016,	
Long-Term Specification (+/-MHz)	2	2	2	2	2	2	0.114	50
By Design or Analysis ** (+/-MHz)	0.1	0.1	0.1	0.1	0.1	0.1	0.115	76

* Measured for PLO No. 1 and No. 2.
 ** Based on accelerated life-test data for DROs.
 Note: Additional +/-0.1MHz frequency stability reserved for safety margin for channels 11-14.

CENTER FREQUENCY OF LOS

Channel No.	3	4	5	9	7	8	9-14 *	15
Specification (GHz)	50.3	52.8	53.596	54.4	54.94	55.5	57.290344	0.68
Setting Accuracy (+/-GHz)	0.002	0.001	0:001	0.001	0.001	0.002	0.000086	0.03
Measured (GHz)	50.30054	52.80020	53.59646	54.40007	54.94028	55.50030	57.290342	89.008
							57.290328	

* Measured for PLO No. 1 and No. 2.

COMPONENT-LEVEL TEST DATA

		•
		· mark
		D. D

Channel 3 LO

DRO (P/N: 1336610-3, S/N: 85097)

			<u> </u>
			<u> </u>
		11	

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

i .		
LITTON TYPE LS E 9036 AM	_ /	AESD 13366103
SERIAL NUMBER: 85 097	QUAL TEST N/A	ACCEPT TEST
Basic Electrical Test; Ref. Test Para. 5.2.2		
SPECIFICATION	MEASUREMENT AT Trom ±	°C LIMIT
Measurement at Vop=10 VDC		
Temperature	22 °C	Table HID
Input Voltage	lo VDC	Table IIIB 10.0 ± 0.2 VDC
Input Current	187 mA	Table IIIB
Input Power, P _{diss}	1.87 W DC	P _{diss} max
Frequency, f _{Tnom}	50-30054 GHz	Table IIIB
RF Output Power, P _{Tnom}	12.5 dBm	12 to 17 dBm
Frequency Setting Accuracy,	0-54 MHz	12 to 17 dBii
$\Delta f_{S} (= f_{Tnom} - F_{o})$		
Frequency and RF Output Power Variation W Measurement at 9.5 VDC or at9.5 VDC	C	
Temperature	<u>32</u> °C	Table IIIB
Input Voltage	9.5VDC	9.5 VDC or Para. 5.2.3.2
Input Current	185mA	Table IIIB
requency, f _{meas}	50.30054 GHz	Table IIIB
RF Output Power, P _{meas}	12.5dBm	12 to 17 dBm
Measurement at 10.5 VDC or at 10.5 VI	OC .	
Temperature	22°C	Table IIIB
Input Voltage	10.5 VDC	10.5 VDC or Para, 5.2.3.3
Input Current	186 mA	Table IIIB
Frequency, f _{meas}	50.30055 GHz	Table IIIB
RF Output Power, P _{meas}	2.5 dBm	12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_T$	nom	
Δf_V at 9.5 VDC or at 9.5 VDC	= <u>Ø</u> MHz	
Δf _V at 10.5 VDC or at 10.5 VDC		
Calculate RF Output Power Variation, $\Delta P_V = 1$	P _{meas} - P _{Tnom} ,	•
ΔP_V at 9.5 VDC or at $\frac{9.5}{\sqrt{9.5}}$ VDC		
ΔP_{V} at 10.5 VDC or at	= <u>d</u> dB	
Ac	cept Reject	
rest Performed by itton QA	Date $\frac{7 - 18 - 98}{7 - 20 - 98}$	

			SHEET 38 OF 68
56348 A	1300823	B3	

TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS

11	NITIAL DATA SET	[N/A _	FINAL DATA	SET	
LITTON TYPE LS <u>E</u> SERIAL NUMBER:	9036 AM 85097	QUAL TEST	N/A	AESD 13366 ACCEPT TES	10- <u>3</u> ST
Temperature Testing at	T=10°C, Ref. Test	Para. 5.2.5.1			
SPECIFICATION	MEA:	SUREMENT A	<u> T=10° ±1°C</u>	LIMIT	:
Measurement at Vop=10 Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{10°C} RF Output Power, P _{10°C}) VDC	10 187 187 50. 29917 12.5	°C VDC mA W DC GHz dBm	Table I Pdiss r Table I	0.2 VDC IIIB nax
Frequency and RF Outpoon Measurement at 9.5 VDo Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	ut Power Variation C or at <u>9.5</u> V	With Voltage, R DC 10 9.5 185 50.29912 12.5	ef. Test Para 5. °C VDC mA GHz dBm	Table l	PC or Para. 5.2.3.2 IIB IIB
Measurement at 10.5 VI Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}		VDC 10.5 186 50.29910 12.5	°C VDC mA GHz dBm	Table I 10.5 VI Table I Table I 12 to 1	DC·or Para. 5.2.3.3 IIB IIB
Δf_V at 9.5 VDC or at Δf_V at 10.5 VDC or at Δf_V at 10.0 VDC (= $f_{10^{\circ}C}$	<u>9.5 </u>	= <u>-0</u> = <u>-0</u>	.05 MHz .17 MHz 37 MHz		
Calculate RF Output Pow Ω_V at 9.5 VDC or at	9.5 VDC = 10.5 VDC =	=	Ø dB Ø dB		
Test Performed by	VN (UTTON	1	Accept 7-18-9 7-20-98	Reject &	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 39 OF 68
56348	À	1300823	B3	

TEST DATA SHEET 7.4 FUNCTIONAL PERFORMANCE TESTS FINAL DATA SET AND FINAL DATA SET

INITIAL DATA S	SET <u>N/A</u> FINAL DATA SET	
LITTON TYPE LS E 9036 AN SERIAL NUMBER: 85097	1 QUAL TEST N/A AC	ESD 1336610- 3 CCEPT TEST
Temperature Extreme Testing at Tmin,	Ref. Test Para. 5.2.5.2	
SPECIFICATION	MEASUREMENT AT Tmin ±1°	C LIMIT
Measurement at Vop=10 VDC		
Temperature	°C	Table IIIB
Input Voltage	10 VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	186 mA .	Table IIIB
Input Power, P _{diss}	1.86 W DC	Pdiss max
Frequency, f _{Tmin}	50.29770 GHz	Table IIIB
RF Output Power, P _{Tmin}	12.5 dBm	
Ta Output I Ower, I Tmin	12.5 dbm	12 to 17 dBm
Frequency and RF Output Power Variat	ion With Voltage, Ref. Test Para 5.2.	5.2
Measurement at 9.5 VDC or at 9.5	_VDC	
Temperature	°C	Table IIIB
Input Voltage	9.5 VDC	9.5 VDC or Para 5.2.3.2
'aput Current	184 mA	Table IIIB
requency, f _{meas}	50.29768 GHz	Table IIIB
RF Output Power, P _{meas}	12.5 dBm	12 to 17 dBm
meas	12.5	12 to 17 dBIII
Measurement at 10.5 VDC or at 10.5	VDC	
Temperature	-1 °C	Table IIIB
Input Voltage	10.5 VDC	10.5 VDC or Para 5.2.3.3
Input Current	185 mA	Table IIIB
Frequency, f _{meas}	50.29763 GHz	
PE Output Power D		Table IIIB
RF Output Power, P _{meas}	<u> 2.5</u> dBm	12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{me}$	f _T :	
Δf_V at 9.5 VDC or at _ 9.5 VD	C = -0.02 MH	7
	$C = \frac{-0.67}{\text{MH}}$	
Δf_T at 10.0 VDC (= f_{Tmin} - f_{Tnom})	-2.84 MH	
Trin Triom	IVIII	Z
Calculate RF Output Power Variation, Δ	$P_{\cdot,\cdot} = P - P_{-\cdot} \cdot$	
	$OC = \emptyset$ dB	
	OC =	
		
ΔP_{T} at 10.0 VDC (= P_{Tmin} - P_{Tnom})	= dB	1
→ Ac	cept Reject	
Tost Domformed by	Date $7 - 18 - 98$	
itton Q.A.	Date 7-20-98	
	Date	
CODE IDENT NO. SIZE	NUMBER REV	SHEET 40 OF 68
56348 A	1300823 B3	
LITTON / SOLID STATE DI	VISION / 3251 OLCOTT ST / SANT	A CLARA, CA 95054

TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

		
LITTON TYPE LS E 9036 AM		AESD 1336610- 3
SERIAL NUMBER: 85097	QUAL TEST N/A	ACCEPT TEST
Temperature Testing at T=30°C, Ref. Test I	Para. 5.2.5.3	
SPECIFICATION	MEASUREMENT AT T=30°	±1°C LIMIT
Measurement at Vop=10 VDC		
Temperature	3o	30° ± 1°C
Input Voltage	lo VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	188 mA	Table IIIB
Input Power, P _{diss}	1.88 W DC	Pdiss max
Frequency, f _{30°C}	50.30147 GHz	Table IIIB
RF Output Power, P _{30°C}	2.5 dBm	12 to 17 dBm
, - 30 C	w.m	12 to 17 dBm
Frequency and RF Output Power Variation	With Voltage, Ref. Test Para 5.	2.5.3
Measurement at 9.5 VDC or at 9.5 V	DC	
Temperature	3o°C	Table IIIB
Input Voltage	9.5VDC	9.5 VDC or Para. 5.2.3.2
Input Current	186 mA	Table IIIB
Frequency, f _{meas}	50.30149 GHz	Table IIIB
RF Output Power, P _{meas}	12.5 dBm	12 to 17 dBm
Measurement at 10.5 VDC or at 10.5 V	/DC	
Temperature	30 °C	T.I. III
Input Voltage	10.5 VDC	Table IIIB
Input Current	187 mA	10.5 VDC or Para. 5.2.3.3
Frequency, f _{meas}	5030151 GHz	Table IIIB
RF Output Power, P _{meas}	2.5 dBm	Table IIIB
		12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{meas}$: :an•c:	
Δf_V at 9.5 VDC or at <u>9.5</u> VDC =	0.02MHz	
Δf_V at 10.5 VDC or at 10.5 VDC =		
Δf_T at 10.0 VDC (= $f_{30^{\circ}\text{C}} - f_{\text{Tnom}}$)	A 0.3	
Calculate RF Output Power Variation, ΔP _v =	- D D .	
ΔP_{V} at 9.5 VDC or at $\frac{9}{1}$ VDC =		
ΔP_{V} at 10.5 VDC or at 10.5 VDC =		
ΔP_T at 10.0 VDC (= $P_{30^{\circ}C}$ - P_{Tnom}) =	dB dB	
	A ac	Datas
Test Performed by VN		Reject
	Date $\frac{7 - 18 - 98}{7 \cdot 20 - 97}$	•
Litton Q.A.	Date	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 41 OF 68
56348	A	1300823	B3	
7.7000000000000000000000000000000000000				<u> </u>

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

INTIAL DATA SE	1 N/A THATE BRITINGET	
LITTON TYPE LSE 9036 AM		SD 1336610- 3
SERIAL NUMBER: 85.097	QUAL TEST N/A AC	CEPT TEST
Temperature Extreme Testing at Tmax, Ref.	Test Para. 5.2.5.4	
SPECIFICATION	MEASUREMENT AT Tmax ±1°	C LIMIT
Measurement at Vop=10 VDC	_	
Temperature	44 °C	Table IIIB
Input Voltage	lo VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	189 mA	Table IIIB
Input Power, P _{diss}	1.89 WDC	Pdiss max
Frequency, f _{Tmax}	50.30314 GHz	Table IIIB
RF Output Power, P _{Tmax}	124 dBm	12 to 17 dBm
Tel Output Tower, T Tmax	dbin	12 to 17 dbiii
Frequency and RF Output Power Variation	With Voltage, Ref. Test Para 5.2.5	.4
Measurement at 9.5 VDC or at 9.5 V		
Temperature	44 °C	Table IIIB
Input Voltage	9.5 VDC	9.5 VDC or Para 5.2.3.2
Input Current	186 mA	Table IIIB
equency, f _{meas}	50.30318 GHz	Table IIIB
F Output Power, P _{meas}	12.4 dBm	12 to 17 dBm
The state of the s		12 to 17 dBm
Measurement at 10.5 VDC or at 10.5 V	VDC	
Temperature	44 °C	Table IIIB
Input Voltage	10.5 VDC	10.5 VDC or Para 5.2.3.3
Input Current	188 mA	Table IIIB
Frequency, f _{meas}	50.30320 GHz	Table IIIB
RF Output Power, P _{meas}	12.4 dBm	12 to 17 dBm
Ta Satpat I Swor, I meas	12.7 dDin	12 to 17 dBM
Calculate Frequency Variation, $\Delta f_V = f_{meas}$ -	fr:	
$\Delta f_{\rm V}$ at 9.5 VDC or at 9.5 VDC =		
Δf_V at 10.5 VDC or at 10.5 VDC =		
AC 110 077 / C C)	= 2.6 MHz	
Trans Trom		
Calculate RF Output Power Variation, ΔP _V	= P _{mass} - P _{Trom} :	
ΔP_{V} at 9.5 VDC or at 9.5 VDC =		
ΔP_V at 10.5 VDC or at 10.5 VDC =		
ΔP_T at 10.0 VDC (= P_{Tmax} - P_{Tnom})	= <u>- 0.i</u> dB	
- I max * Inom	ab	
Acce	pt Reject	
Test Performed by VN (%)	Date 7-18-98	
itton Q.A.	Date 7-20-98	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 42 OF 68
56348	A	1300823	B3	

INITIAL DATA SET <u>U/A</u> FINAL DATA SET								
LITTON TYPE LS E 90 SERIAL NUMBER: 85	<u>36AM</u> 097 QU	JAL TEST NA ACCEPT	AESD 1336610 TEST	3				
Power Supply Immunity. Ref. Test Para, 5.2.4								
SPECIFICATION		MEASUREMENT AT Trior	m ±1°C	LIMIT				
Initial Measurement								
Temperature		22 °C		Table IIIB				
Input Voltage		lo VDC		10.0 ± 0.2 VDC				
Input Current		187mA		Table IIIB				
Input Power				Pdiss max				
Frequency (f _{Taom})		50.30052 GHz		Table IIIB				
RF Output Power		12.5 dBm	_	12 to 17 dBm				
Frequency Setting Accuracy, Δf _S	$(= f_{Tacm} - F_c)$	0.52MHz						
Performance After Short Circuit on Power Supply: Ref Test Para 5.2.4.2								
Input Voltage	•	O VDC		10.0 ± 0.2 VDC	,			
Input Current		188 mA		Table IIIB	•			
Input Power		<u> 88 </u> W DC		Pdiss max				
Frequency		50.30054 GHz		Table IIIB				
RF Output Power				12 to 17 dBm				
Over Voltage: Ref Test Para 5.2.4	<u>.3</u>							
Overvoltage Input Voltage		28 _{VDC}		+28V				
Performance After Input Overvolt	age							
Input Voltage		10 VDC		10.0 ± 0.2 VDC				
Input Current		188mA	•	Table IIIB				
Input Power		1.88 WDC		Pdiss max				
Frequency		50 300 49 GHz		Table IIIB				
RF Output Power	•.	12.5dBm		12 to 17 dBm				
Reverse Polarity: Ref Test Para 5	2.4.4							
Reverse Input Voltage		lo_vdc		-10.0 ± 0.2 VDC				
Performance After Reverse Input	<u>Voltage</u>							
Input Voltage		lo vdc		10.0 ± 0.2 VDC				
Input Current		188 mA		Table IIIB				
Input Power		1.88 W DC		Pdiss max				
Frequency, f _{Tnom}		50.30049 GHz		Table IIIB				
RF Output Power		12.5 dBm		12 to 17 dBm				
Frequency Setting Accuracy, Δf _s ($(=f_{T_{nom}}-F_o)$	0.49 MHz						
		Accept Reject						
Test Performed by ✓ ✓	(2)	Date 7-18-98	_					
Litton Q.A.	(4,1)	Date 7-20-98	-					
CODEVE			- 					
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 43 OF 68				
56348	A	1300823	B3					

TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS NITIAL DATA SET _______ FINAL DATA SET _______

	INITIA	IT DATA SE	$\frac{N/A}{N}$	AL DAIA	<i></i>	<u> </u>	
LITTON TYP SERIAL NUM		36 AM	QUAL TEST	N/A		AESD 1336610- 3 ACCEPT TEST	-
Frequency and	d Power Hystere	esis: Ref Test	Para. 5.8				
TEST DESCR	RIPTION			í.	LIMIT	S	
1.	Initial Perform	ance at Tnom	±1°C				
Temperature Frequency, f_T RF Output Po Input Voltage Input Current Frequency Se Δf_S (= f_{Trom} -F	ower, P _{Tnom} s, V _B , I _B tting Accuracy,	22 50.3005° (2.5 10 187 0.54	°C GHz dBm VDC mA MHz	÷.	Tnom: Table I 12 to 1 10 ± 0. Table I	IIB 7 dBm 2 VDC	
2.	Performance a	t Tnom ± 1°C	after +60°C soak	•			
Temperature Frequency of AF Output Colors Input Curr	ower, P _{meas}	22 50.30079 12.5 10 188	_°C _GHz _dBm _VDC _mA	•		IIIB 7 dBm 005 VDC	
3.	Performance a	at Tnom ± 1°C	Cafter -30°C soak.				
Temperata: Frequence: RF Output Input Volt Input Cue	wer, P _{meas}	72 50.30032 12.5 10 187	_°C _GHz _dBm _VDC _mA			IIIB 17 dBm 005 VDC	
Calculate \(\Delta f_H \) after \(\Delta f_H \) after	lency variation soak = soak =	$f_{\rm H} = f_{\rm meas}$	0.25 N	ЛНz ЛНz		•	
Talculate $P_H = aft$ $P_H = aft$	output power v C soak = C soak =	variation, ΔP _H		IB IB			
est Perf tton Q	i by	VN		Accept Date	1-18- 1-20-0	Reject 98 18	
)DE II	NO. 48	SIZE A	NUMBER 1300823		REV B3	SHEET 58 OF 68	
-	TON / SOLII	STATE DIV	/ISION / 3251 OL	COTT ST /	SANTA	CLARA, CA 95054	

TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET ___ N/A __ FINAL DATA SET

INITIAL DA	TA SET NA FINAL DATAS	SET			
LITTON TYPE LS E 90.36 - SERIAL NUMBER: 8509	AESD 1336610- 3 ACCEPT TEST				
Frequency Pulling and Load VSWR	2.5:1 max. all phases. Ref Test Para.	5.9			
TEST DESCRIPTION		LIMITS			
Initial Measurement. Ref Test Par. 5 Temperature Frequency RF Output Power Input Voltage Input Current	5.9.1	24°C ± 5°C Table IIIB 12 to 17 dBm 10 ± 0.2 VDC Table IIIB			
Reference test. Ref. Test Para. 5.9.3					
Frequency, f _{Ref} RF Output Power, P _{Ref}	50.30088 GHz -4.6 dBm	Table IIIB			
Load Pulling Test. Ref. Test Para. 5	.9.4				
Maximum Frequency, f _{meas} Minimum Frequency, f _{meas} Maximum RF Output Power P _{meas} Minimum RF Output Power, P _{meas}	50.30089 GHz 50.30087 GHz -4.3 dBm -4.6 dBm	Table IIIB Table IIIB			
Calculate maximum positive (f_{meas} is $\Delta f_L = f_{meas} - f_{Ref}$:	Calculate maximum positive (f_{meas} is greater than f_{Ref}) and negative (f_{meas} is less than f_{Ref}) frequency variation, $\Delta f_L = f_{meas} - f_{Ref}$.				
Maximum Positive $\Delta f_L =$ Maximum Negative $\Delta f_L =$	0.01 MHz - 0.01 MHz				
Calculate maximum positive (P_{meas}): Variation, $\Delta P_L = P_{meas} - P_{Ref}$:	is greater than P_{Ref}) and negative (P_{meas}	is less than P _{Ref}) RF Output Power			
Maximum Positive $\Delta P_L =$ Maximum Negative $\Delta P_L =$	$\frac{6.3}{-0.3} dB$				
	Accept Reject				
Test Performed by Litton Q.A.		20-98 20-98			
CODE IDENT NO. SIZE	NUMBER RE	SHEET 60 OF 68			

TIMMONIA	0.00			
56348	Ą	1300823	B3	
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 60 OF 68

TEST DATA SHEET 7.23B FUNCTIONAL PERFORMANCE TESTS

INITIAL DATA SET N/A FINAL DATA SET					
LITTON TYPE LS 6 SERIAL NUMBER:	9036 AM 85097	QUAL TEST _	N/A		AESD 1336610- 3 ACCEPT TEST
Frequency Pulling and Load VSWR 2.5:1 max. all phases. Ref Test Para. 5.9					
TEST DESCRIPTION				LIMI	<u>IS</u>
Output Open and Short. Ref	Test Para. 5.9	.5			
Temperature Frequency: RF Output Power: Input Voltage Input Current: Results:	22 50.30080 12.6 10 188	dBm VDC mA Acceptable		10 ± 0 Table No Da	IIIB 17 dBm 0.2 VDC
Calculate maximum Frequent $\Delta f_{acc} = \Delta f_{S}$ (Use worst-case		•			Δf _L (from 7.23A):
Maximum $\Delta f_{acc} =$	0.90	MHz (Positive) MHz (Negative)	Table Table	
Calculate maximum Short-to $\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use wor				negative),	
Maximum $\Delta f_{V+T} =$			Table Table		
Calculate maximum overall RF Output Power Stability (both positive and negative), $\Delta P_{OV} = \Delta P_V + \Delta P_T$ (Use worst-case ΔP_V and ΔP_T from 7.2 thru 7.6) + ΔP_H (from 7.22A) + ΔP_L (from 7.23A):					
Maximum $\Delta P_{OV} =$	0-3 - 0.4	_ dB (Positive) _ dB (Negative)		1.0 dB -1.0 d	
Accept Reject					
Test Performed by	VN	1	ate	7-20	_98
itton Q.A.		(30 Oz)	Date	7-20-	98
CODE IDENT NO. 56348	SIZE	NUMBER 1300823		REV B3	SHEET 61 OF 68
		1200022			1

		1		SINDEL OF OF	
56348	A	1300823	B3		
LITTON / SOLII	CTATED	IVISION / 3251 OF COTT	ST / SANTA	CLADA CA 05054	•

.

Channel 4 LO

DRO (P/N: 1336610-4, S/N: 85042)

)
			<u> </u>
			·
		E	

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET ______ FINAL DATA SET ______

LITTON TYPE LSE 9036 AF/A		AESD 1336610
SERIAL NUMBER: 85042	QUAL TEST NA	ACCEPT TEST
Basic Electrical Test: Ref. Test Para. 5.2.2	÷	
SPECIFICATION	MEASUREMENT AT Tnom	±1°C LIMIT
Measurement at Vop=10 VDC		
Temperature	°С	Table IIIB
Input Voltage	10VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	206 mA	Table IIIB
Input Power, P _{diss}	2.06 W DC	P _{diss} max
Frequency, f _{Tnom}	52.80020 GHz	Table IIIB
RF Output Power, P _{Tnom}	14.1 dBm	12 to 17 dBm
Frequency Setting Accuracy,	MHz	
$\Delta f_{\rm S} (= f_{\rm Tnom} - F_{\rm o})$		
Frequency and RF Output Power Variation V	With Voltage, Ref. Test Para 5.2.3	
Measurement at 9.5 VDC or at 9.5 VI		
Temperature	22 °C	Table IIIB
Input Voltage	9.5 VDC	9.5 VDC or Para, 5.2.3.2
nput Current	mA	Table IIIB
Frequency, f _{meas}	52.80020GHz	Table IIIB
RF Output Power, P _{meas}	14.1 dBm	12 to 17 dBm
Tel Output l'Ower, i mess		,
Measurement at 10.5 VDC or at	'DC	
Temperature	22 ℃	Table IIIB
Input Voltage	10.5 VDC	10.5 VDC or Para. 5.2.3.3
Input Current		Table IIIB
Frequency, f _{meas}	52.80020 GHz	Table IIIB
RF Output Power, P _{meas}		12 to 17 dBm
Rr Output rower, r meas	<u> Lt.l</u> dBm	12 to 17 do
Calculate Frequency Variation, $\Delta f_V = f_{meas}$	f _{Tnom} ,	
Afv at 9.5 VDC or at 9.5 VD	C =MHz	:
$\Delta f_{\rm V}$ at 10.5 VDC or at 10.5 VD		
Calculate RF Output Power Variation. ΔP _V =	= P P	•
V	· meas	:
ΔP_V at 9.5 VDC or at <u>9.5</u> VD		
ΔP _V at 10.5 VDC or at <u>10.5</u> VD	C =dB	
A	Accept Reject	
T . D . C	D	
Test Performed by	Date <u>5-18-98</u>	
Litton QA	Date 1UN 1 2 1998	
(2)(1)	·	
CODE IDENT NO. SIZE	NUMBER F	REV SHEET 38 OF 68
56348 A	1300823	B3

TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS

INITI	AL DATA S	SET NA FINAL DA	TA SET
LITTON TYPE LS £ 90	36AF/A	·	AESD 1336610- <u>4</u>
	5042	QUAL TEST N/A	ACCEPT TEST
Temperature Testing at T=1	0°C, Ref. T	est Para. 5.2.5.1	
SPECIFICATION	М	EASUREMENT AT T=10° ±	I°C LIMIT
Measurement at Vop=10 VI	OC .		
Temperature		°C	$10^{\circ} \pm 1^{\circ}C$
Input Voltage		VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current		203 mA	Table IIIB
Input Power, P _{diss}		2.03 W DC	Pdiss max
Frequency, f _{10°C}		52.79998 GHz	Table IIIB
RF Output Power, P _{10°C}			
id Odipat Fower, F 10°C		<u>14.2</u> dBm	12 to 17 dBm
Frequency and RF Output P	ower Variati	on With Voltage, Ref. Test Pa	ara 5.2.5.1
Measurement at 9.5 VDC or	at <u>9.5</u>		
Temperature		<u> </u>	Table IIIB
Input Voltage		9.5VDC	9.5 VDC or Para. 5.2.3.2
Input Current		mA	Table IIIB
Frequency, f _{meas}		52.79998 GHz	Table IIIB
RF Output Power, Pmeas		14.2 dBm	12 to 17 dBm
r			12 to 17 tibili
Measurement at 10.5 VDC	or at 10.5	VDC	
Temperature		°C	Table IIIB
Input Voltage		10.5 VDC	10.5 VDC or Para. 5.2.3.3
Input Current		202 mA	Table IIIB
Frequency, f _{meas}		52.79998 GHz	Table IIIB
RF Output Power, P _{meas}		175	12 to 17 dBm
rd Odipat rower, 1 meas		14.2 dBm	12 to 17 dBii
Calculate Frequency Variati	on, $\Delta f_V = f_{me}$	=== - f _{10°C} :	
Δf_V at 9.5 VDC or at q	<u> </u>	OC = M	Hz
Δf_V at 10.5 VDC or at $t \odot$.		OC =O M	Hz
Δf_T at 10.0 VDC (= $f_{10^{\circ}C}$ - f_{Tn}	om)	= <u>-0.22</u> M	Hz
Calculate RF Output Power	Variation A	$P_{ij} = P_{ij} - P_{ij}$	
ΔP_V at 9.5 VDC or at9.5		\alpha	3
ΔP_V at 10.5 VDC or at $\frac{100}{100}$)C = dE	
ΔP_{T} at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{T}	[nom)	= <u>0.1</u> dE	3
		Accept	Reject
Test Performed by	ર્જ્ય 👝	Date 5-18-9	
Litton Q.A.	122	Date JUN 1 2	
	(0,0)		
CODE IDENT NO.	SIZE	NUMBER	REV SHEET 39 OF 68
56348	A .	1300823	В3

TEST DATA SHEET 7.4 FUNCTIONAL PERFORMANCE TESTS

n	NITIAL DATA SET	N/A	FINAL DATA	SET _	<u> </u>
LITTON TYPE LS <u>E</u> SERIAL NUMBER: _	9036 AF/A 850 42	QUAL TEST	I N/A		1336610- <u>4</u> PT TEST
Temperature Extreme T	esting at Tmin, Re	f. Test Para. 5.1	2.5.2		
SPECIFICATION		MEASUREN	MENT AT Tmin	ı <u>±l°C</u>	LIMIT
Measurement at Vop=1	0 VDC				
Temperature			°C		Table IIIB
Input Voltage		10_	VDC		$10.0 \pm 0.2 \text{ VDC}$
Input Current		203	m.A		Table IIIB
Input Power, P _{diss}		2.03	W DC		Pdiss max
Frequency, f _{Tmin}		52.7998	a GHz		Table IIIB
RF Output Power, P _{Tmir}		14.3	dBm		12 to 17 dBm
rd Odipat Tower, I Tmir	1	14.5	_ dbiii		12 to 17 dbiii
Frequency and RF Outp			, Ref. Test Para	5.2.5.2	
Measurement at 9.5 VD	OC or at <u>4.5</u> V	DC .			
Temperature		0	°C		Table IIIB
Input Voltage		9.5	VDC		9.5 VDC or Para 5.2.3.2
iput Current		201	mA		Table IIIB
Frequency, f _{meas}		52.79983	3 GHz		Table IIIB
RF Output Power, Pmeas	5	14.3	dBm		12 to 17 dBm
Measurement at 10.5 V	DC or at	VDC			
Temperature	De 01 dt10.5_	0	°C		Table IIIB
Input Voltage		10.5	VDC		10.5 VDC or Para 5.2.3.3
Input Current			mA		Table IIIB
•		202			Table IIIB
Frequency, f _{meas}		52.79983	-		
RF Output Power. P _{meas}	i	14.3	dBm		12 to 17 dBm
Calculate Frequency Va	ariation, $\Delta f_V = f_{meas}$	- f _{Tmin} :			
Δf_V at 9.5 VDC or at	9.5 VDC		0	MHz	
Δf_V at 10.5 VDC or at		=	0	MHz	
Δf_T at 10.0 VDC (= f_{Tmin}			-0.37	MHz	
Coloulate DE Output De	owa Variation AD	_ D D :			
Calculate RF Output Po ΔP _v at 9.5 VDC or at			•	dB	
· · · · · · · · · · · · · · · · · · ·					•
ΔP_V at 10.5 VDC or at				_dB	
ΔP_T at 10.0 VDC (= P_{Tm}	in -P _{Tnom})	=	02	_dB	
	Acce	pt <u> </u>	eject	_	
est Performed by	On	Date	5-18-98		
Litton Q.A.	(21,60)	Date	<u>।।।।: 1 2 19</u> 9		
CODE IDENT NO.	SIZE	NUMBE	R Dr	EV	SHEET 40 OF 68
56348	i i	1300823	į.	33	SHELL TO OF OR
20240	A	1700973	, 1 -	ر ,	

TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET _____ FINAL DATA SET _____

LITTON TYPE LS E 9036AF/A SERIAL NUMBER: 25042	QUAL TEST		D 1336610- 4 EPT TEST		
Temperature Testing at T=30°C, Ref. Test Para. 5.2.5.3					
SPECIFICATION	MEASUREMENT A	Γ T=30° ±1°C	LIMIT		
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{30°C} RF Output Power, P _{30°C}	30°C 10VDC 205mA 2.05WDC 52.800 1 GHz 14.1dBm		30° ± 1°C 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm		
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at 9.5 VT Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power. P _{meas}	With Voltage, Ref. Tes DC30°C9.5VDC203mA52.80011_GHz14.1dBm	t Para 5.2.5.3	Table IIIB 9.5 VDC or Para. 5.2.3.2 Table IIIB Table IIIB 12 to 17 dBm		
Measurement at 10.5 VDC or at 10.5 V	30 °C 10.5 VDC 203 mA 52.8∞11 GHz 14.1 dBm		Table IIIB 10.5 VDC or Para. 5.2.3.3 Table IIIB Table IIIB 12 to 17 dBm		
Calculate Frequency Variation, $\Delta f_V = f_{meas} - \Delta f_V$ at 9.5 VDC or at 9.5 VDC = Δf_V at 10.5 VDC or at 10.5 VDC = Δf_T at 10.0 VDC (= $f_{30^{\circ}\text{C}} - f_{Tnom}$)	<u> </u>	MHz MHz MHz			
Calculate RF Output Power Variation, $\Delta P_V = \Delta P_V$ at 9.5 VDC or at $\underline{9.5}$ VDC = ΔP_V at 10.5 VDC or at $\underline{10.5}$ VDC = ΔP_T at 10.0 VDC (= $P_{30^{\circ}C}$ - $P_{T_{nom}}$)	- <u> </u>	dB dB dB			
Test Performed by Litton Q.A.	Date <u>"III. 1</u>	६-१४	t		
CODE IDENT NO. SIZE 56348 A	NUMBER 1300823	REV B3	SHEET 41 OF 68		

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET FINAL DATA SET

INITIAL DATAS	SEI NA PINAL DATA	
LITTON TYPE LS <u>E 9036AF/A</u> SERIAL NUMBER: <u>8504</u> 2	QUAL TEST NA	AESD 1336610- 4 ACCEPT TEST
Temperature Extreme Testing at Tmax, R	ef. Test Para. 5.2.5.4	
<u>SPECIFICATION</u>	MEASUREMENT AT Tmax	±1°C LIMIT
Measurement at Vop=10 VDC		
Temperature	<u> </u>	Table IIIB
Input Voltage	VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	206 mA	Table IIIB
Input Power, P _{diss}	W DC	Pdiss max
Frequency, f _{Tmax}	52-80003 GHz	Table IIIB
RF Output Power, P _{Tmax}	<u>13.9</u> dBm	12 to 17 dBm
Frequency and RF Output Power Variatio		.2.5.4
Measurement at 9.5 VDC or at		
Temperature	<u> </u>	Table IIIB
Input Voltage	<u> </u>	9.5 VDC or Para 5.2.3.2
'nput Current	204 mA	Table IIIB
requency, f _{meas}	<u>52.8თ იპ</u> GHz	Table IIIB
RF Output Power, P _{meas}	13.9dBm	12 to 17 dBm
Measurement at 10.5 VDC or at 10.5	_ VDC	
Temperature	<u>43</u> °C	Table IIIB
Input Voltage	los VDC	10.5 VDC or Para 5.2.3.3
Input Current	204 mA	Table IIIB
Frequency, f _{meas}	52.8∞ 03 GHz	Table IIIB
RF Output Power, P _{meas}	13.9 dBm	12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{mea}$	s - f _{Tmax} :	
Δf _V at 9.5 VDC or at 9.5 VDC		
Δf _V at 10.5 VDC or at 10.5 VDC	$C = \frac{MHz}{}$	
Δf_T at 10.0V (= f_{Tmax} - f_{Tnom})	= MHz	
Calculate RF Output Power Variation, ΔP	$P_{V} = P_{meas} - P_{Tnom}$	
ΔP _v at 9.5 VDC or at 9.5 VDC		
$\Delta P_{\rm V}$ at 10.5 VDC or at 10.5 VDC		
ΔP_T at 10.0 VDC (= P_{Tmax} - P_{Tnom})	= dB	
Ac	cept Reject	
Test Performed by	Date 5-18-98	
itton () A	Date JUN 1 2 1998	
MOLLY (NOLLY)	<u> </u>	
CODE IDENT NO. SIZE	NUMBER RE	I
56348 A	1300823 B	3

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

TEST DATA SHEET 7.7 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET ______ FINAL DATA SET ______

LITTON TYPE LS E 9036 AF/A SERIAL NUMBER: 85042 QUAL	AESD 1336610 TEST P/A ACCEPT TEST	
Power Supply Immunity, Ref. Test Para, 5,2,4		
SPECIFICATION	MEASUREMENT AT Tnom ±1°C	LIMIT
Initial Measurement Temperature Input Voltage Input Current Input Power Frequency (f_{Tnom}) RF Output Power Frequency Setting Accuracy, Δf_S (= f_{Tnom} - F_o) Performance After Short Circuit on Power Supply: R	22 °C	Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm
Input Voltage Input Current Input Power Frequency RF Output Power	22 VDC 206 mA 206 W DC 52.80009 GHz 14.1 dBm	10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm
Over Voltage: Ref Test Para 5.2.4.3		
Overvoltage Input Voltage	<u> 2용</u> VDC	+28V
Performance After Input Overvoltage		
Input Voltage Input Current Input Power Frequency RF Output Power	O VDC 206 mA 2.06 W DC 52-80008 GHz 14.1 dBm	10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm
Reverse Polarity: Ref Test Para 5.2.4.4		
Reverse Input Voltage	VDC	-10.0 ± 0.2 VDC
Performance After Reverse Input Voltage		•
Input Voltage Input Current Input Power Frequency, f_{Fnom} RF Output Power Frequency Setting Accuracy, Δf_{S} (= f_{Tnom} - F_{o})	10 VDC 206 mA 2.06 W DC 52.800 10 GHz 114.1 dBm 0.10 MHz	10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm
Test Performed by Litton Q.A. (09)(1)	Date 5-18-98 Date 19 1008	1
CODE IDENT NO. SIZE 56348 A	NUMBER REV 1300823 B3	SHEET 43 OF 68
LITTON / SOLID STATE DIVIS	SION / 3251 OLCOTT ST / SANTA (CLARA, CA 95054

TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET FINAL DATA SET

***	12 2					
LITTON TYPE LSE 9036 SERIAL NUMBER: 8		OUAL TEST	N/A		AESD 1336610- \(\frac{1}{2}\) ACCEPT TEST	
SERIAL HOMBER. 8	5042	_ QOME TEST _	~ ///			
Frequency and Power Hyster	esis: Ref Tes	st Para. 5.8				
TEST DESCRIPTION			•	LIMIT	<u>'S</u>	
1. Initial Perform	nance at Tnor	n ± 1°C				
Temperature Frequency, f_{Tnom} RF Output Power, P_{Tnom} Input Voltage, V_B Input Current, I_B Frequency Setting Accuracy, $\Delta f_S = f_{Tnom} - F_o$	22 52.800 14.1 10 205	dBm VDC			IIIB 7 dBm .2 VDC	
2. Performance	at Tnom ± 1°	C after +60°C soal	:.			
Temperature Frequency, f _{meas} Output Power, P _{meas} Input Voltage Input Current	22 52.7997 14.0 10	10			IIIB 17 dBm 005 VDC	·
3. Performance	at Tnom ± 1°	C after -30°C soak	•			
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	22 52.7997 14.2 10 205	dBm VDC			IIIB 17 dBm 005 VDC	
Calculate frequency variatio Δf_H after 60°C soak = Δf_H after -30°C soak =	$n, \Delta f_H = f_{meas}$	0.46	MHz MHz			
Calculate RF output power ΔP_H = after 60°C soak = ΔP_H = after -30°C soak =	variation, ΔP _I	0.20	iB iB			
Test Performed byton Q.A	(151)		Accep Date _ Date _	t		
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823		REV B3	SHEET 58 OF 68	

TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET NAL DATA SET

			
LITTON TYPE LS <u>9036AF/</u> SERIAL NUMBER: <u>85042</u>	QUAL TEST	AESD 1336610- <u>4</u> ACCEPT TEST	
Frequency Pulling and Load VSWR	2.5:1 max. all phases. Ref	Test Para. 5.9	
TEST DESCRIPTION		LIMITS	
Initial Measurement. Ref Test Par. 5 Temperature Frequency RF Output Power Input Voltage Input Current Reference test. Ref. Test Para. 5.9.3	.9.1°CGHz	24°C ± 5°C Table IIIB 12 to 17 dBm 10 ± 0.2 VDC Table IIIB	
Frequency, f _{Ref} RF Output Power, P _{Ref} Load Pulling Test. Ref. Test Para. 5.	<u>52.79984</u> GHz dBm 9.4	Table IIIB	
Maximum Frequency, f _{meas} Minimum Frequency, f _{meas} Maximum RF Output Power P _{meas} Minimum RF Output Power, P _{meas}	52.79985 GHz 52.79983 GHz -0.9 dBm -11.6 dBm	Table IIIB Table IIIB	
Calculate maximum positive (f_{meas} is $\Delta f_L = f_{meas} - f_{Ref}$:	greater than f_{Ref}) and negat	tive (f_{meas} is less than f_{Ref}) frequency variation	1.
Maximum Positive $\Delta f_L =$ Maximum Negative $\Delta f_L =$	MHz 0.01 MHz		
Calculate maximum positive (P_{meas} is Variation. $\Delta P_L = P_{meas} - P_{Ref}$:	s greater than P _{Ref}) and nega	ative (P_{meas} is less than P_{Ref}) RF Output Powe	r
Maximum Positive $\Delta P_L =$ Maximum Negative $\Delta P_L =$	<u>0.5</u> dB dB		
Test Performed by Litton Q.A. CODE IDENT NO. 56348 A	<i>"')</i>	II IN 1 0 1000	

TEST DATA SHEET 7.23B FUNCTIONAL PERFORMANCE TESTS NITIAL DATA SET ... & FINAL DATA SET

INIT		FINAL E		<u></u>
LITTON TYPE LS <u>E 903</u> SERIAL NUMBER: <u>85</u> 2	6AF/A	QUAL TEST NZ	/A	AESD 1336610- 4 ACCEPT TEST
Frequency Pulling and Load	VSWR 2.5:1	max. all phases. Ref Tes	st Para. 5.9	
TEST DESCRIPTION			LIMI	<u>rs</u>
Output Open and Short. Ref	Test Para. 5.9).5		
Temperature Frequency: RF Output Power: Input Voltage Input Current: Results:	23 52.799 80 14.2 12.4 10 20.5	PdBm VDC mA Acceptable	10 ± 0 Table No Da	IIIB 17 dBm 1.2 VDC
Calculate maximum Frequer $\Delta f_{acc} = \Delta f_S$ (Use worst-case	•	· -	•	Δf_L (from 7.23A):
Maximum $\Delta f_{acc} =$	O.21 O.47	MHz (Positive) MHz (Negative)	Table Table	
Calculate maximum Short-to $\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use work	•	- · · · ·	and negative).	
Maximum $\Delta f_{V+T} =$	- 0.37	MHz (Positive) MHz (Negative)	Table Table	
Calculate maximum overall $\Delta P_{OV} = \Delta P_{V} + \Delta P_{T}$ (Use wo				/e), 7.22A) + ΔP _{I.} (from 7.23A):
Maximum $\Delta P_{OV} =$		dB (Positive) dB (Negative)	1.0 dB -1.0 dl	,
	Acc	ept Reject		
Test Performed by	094	Date	5_21_98	
Litton Q.A.	EJ EJ	Date	JUN 12	1998
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 61 OF 68

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

Channel 5 LO

DRO (P/N: 1336610-5, S/N: 85036)

.

.

TEST DATA SHEET 7.28 MECHANICAL MEASUREMENTS FINAL DATA SET

LITTON TYPE LS E 9036 AG/A SERIAL NUMBER: 85036 QUAL TEST N/A	AESD 1336610- 5 ACCEPT TEST
Weight Ref. Test Para. 6.1.	
SPECIFICATION MEASUREMENT	<u>LIMIT</u>
Weight:	1.5 pounds max.
Inspection Performed By: Accept Reject Date: JUL 3 Date: JUL 3	0 1998 0 1998
Outline and Marking	
Ref. Test Para. 6.2, Inspection to Outline drawing, Litton 1300316	
· · · · · · · · · · · · · · · · · · ·	
Accept Reject	
inspection renormed by 1	3 0 1998
Litton Q.A. Date JUL 3	0 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 66 OF 68	
56348	A	1300823	С		
		TTOOLS AREA OF COTT	CT / CANTON	OT A D.A. C.A. OSOSA	

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

LITTON TYPE LSE 9036 AG/A SERIAL NUMBER: 85036	QUAL TEST N/A	AESD 1336610- 5 ACCEPT TEST
Basic Electrical Test; Ref. Test Para. 5.2.2	•	
SPECIFICATION	MEASUREMENT AT Tnom ±1	°C LIMIT
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P_{diss} Frequency, f_{Tnom} RF Output Power, P_{Tnom} Frequency Setting Accuracy, $\Delta f_S (= f_{Tnom} - F_o)$	22 °C O VDC Bo mA 1.80 W DC 53.59646 GHz 12.2 dBm 0.46 MHz	Table IIIB 10.0 ± 0.2 VDC Table IIIB P _{diss} max Table IIIB 11.5 to 17 dBm
Frequency and RF Output Power Variation With Measurement at 9.5 VDC or at	1 Voltage, Ref. Test Para 5.2.3 22 °C 10 VDC 178 mA 53.596 46 GHz 12.2 dBm	Table IIIB 9.5 VDC or Para. 5.2.3.2 Table IIIB Table IIIB 11.5 to 17 dBm
Measurement at 10.5 VDC or at 10.5 VDC Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	22 °C 10 VDC 179 mA 53.59646 GHz 12-2 dBm	Table IIIB 10.5 VDC or Para. 5.2.3.3 Table IIIB Table IIIB 11.5 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tnor}$ Δf_V at 9.5 VDC or at $\frac{4.5}{10.5}$ VDC = $\frac{10.5}{10.5}$ VDC = $\frac{10.5}{10.5}$ VDC =	øMHz MHz	
Calculate RF Output Power Variation, $\Delta P_V = P_m$ ΔP_V at 9.5 VDC or at 9.5 VDC = ΔP_V at 10.5 VDC or at 10.5 VDC = Acce	dB dB	
Test Performed by	Date 7-29-98 Date JUL 3 0 1998	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68
56348	A	1300823	C	

A.

Solid State

TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET ______ FINAL DATA SET ______

LITTON TYPE LS &	9036 AG/A		,	AESD 1336610	5
SERIAL NUMBER:	85036	QUAL TEST _	N/A	ACCEPT TEST _	

Temperature Testing at T=10°C, Ref. Test Para. 5.2.5.

Temperature Testing at T=10°C, Ref. Test Para. 5.2.5.1						
SPECIFICATION	MEASUREMENT AT T=10° ±1°C	<u>LIMIT</u>				
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{10°C} RF Output Power, P _{10°C}		10° ± 1°C 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm				
Frequency and RF Output Power V Measurement at 9.5 VDC or at Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	Variation With Voltage, Ref. Test Para 5.2.5.1 10	Table IIIB 9.5 VDC or Para. 5.2.3.2 Table IIIB Table IIIB 11.5 to 17 dBm				
Measurement at 10.5 VDC or at	10.5 VDC 10.5 VDC 178 mA 53.59702 GHz 12.2 dBm	Table IIIB 10.5 VDC or Para. 5.2.3.3 Table IIIB Table IIIB 11.5 to 17 dBm				
Calculate Frequency Variation, Δf_V at 9.5 VDC or at 9.5 Δf_V at 10.5 VDC or at 10.5 Δf_T at 10.0 VDC (= $f_{10^{\circ}C}$ - $f_{T_{nom}}$)	$V = f_{meas} - f_{10°C}:$ $VDC = $					
Calculate RF Output Power Variat ΔP_V at 9.5 VDC or at $9.5 \times \Delta P_V$ at 10.5 VDC or at $10.5 \times \Delta P_T$ at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{Tnom})	tion, $\Delta P_V = P_{\text{meas}} - P_{10^{\circ}\text{C}}$: $VDC = $					
Test Performed by Litton Q.A.	Date 7-29-98 Date JUL 3 0 1998	eject				

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 39 OF 68
56348	A	1300823	С	
		TITOTONI / 2251 OI COTT	CT / CANITA	CLADA CA 05054

TEST DATA SHEET 7.4

	ONAL PERFORMANCE TES 	
LITTON TYPE LSE 9036 AG/A SERIAL NUMBER: 85036	QUAL TEST W/A	AESD 1336610- 5 ACCEPT TEST
Temperature Extreme Testing at Tmin, Ref	Test Para. 5.2.5.2	
SPECIFICATION	MEASUREMENT AT Tmin :	±1°C LIMIT
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmin} RF Output Power, P _{Tmin}		Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at 9.5 VDC or at 1.5	With Voltage, Ref. Test Para 5 DC °C VDC 178	Table IIIB 9.5 VDC or Para 5.2.3.2 Table IIIB Table IIIB 11.5 to 17 dBm
Measurement at 10.5 VDC or at 10.5 V Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	/DC °C VDC 178	Table IIIB 10.5 VDC or Para 5.2.3.3 Table IIIB Table IIIB 11.5 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas}$ - Δf_V at 9.5 VDC or at $\underline{9}$ $\underline{\checkmark}$ VDC = Δf_V at 10.5 VDC or at $\underline{i \ 0.5}$ VDC = Δf_T at 10.0 VDC (= f_{Tmin} - f_{Tnom})	=	IHz IHz IHz
Calculate RF Output Power Variation, $\Delta P_V = \Delta P_V$ at 9.5 VDC or at $\underline{9.5}$ VDC = ΔP_V at 10.5 VDC or at $\underline{10.5}$ VDC = ΔP_T at 10.0 VDC (= P_{Tmin} - P_{Tnom})	$\frac{\phi}{\phi}$	iB iB iB
Test Performed by Litton Q.A. Accept	Reject Date 7-29-98 Date JUL 3 0 1998	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 40 OF 68
56348	Α	1300823	C	

TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

114	TIME DITITION	-			
LITTON TYPE LSE	1036 AG/A		,	AESD	1336610- <u>5</u>
SERIAL NUMBER:	1036 AG/A 85036	QUAL TEST	N/A	ACCE	PT TEST
Temperature Testing at T=		Para. 5.2.5.3	ŕ		
SPECIFICATION		MEASUREM	ENT AT T	=30° ±1°C	<u>LIMIT</u>
Measurement at Vop=10	VDC	_			
Temperature		30	_°C		30° ± 1°C
Input Voltage			VDC		$10.0 \pm 0.2 \text{ VDC}$
Input Current		180	_mA		Table IIIB
Input Power, Pdiss		1.80	_ W DC		Pdiss max
Frequency, f _{30°C}	4 (53.59624	GHz	•	Table IIIB
RF Output Power, P _{30°C}		12.2	_dBm		11.5 to 17 dBm
Frequency and RF Output Measurement at 9.5 VDC	Power Variation or at 9.5 V	With Voltage, I DC 30	Ref. Test P	ara 5.2.5.3	Table IIIB
Temperature		9.5	VDC		9.5 VDC or Para. 5.2.3.2
Input Voltage		178	_ vbc _mA	•	Table IIIB
Input Current		53.59624	- IIIA GHz		Table IIIB
Frequency, f _{meas}	;	12.2	_dBm		11.5 to 17 dBm
RF Output Power, P _{meas}		[2.2			11.5 to 17 dbm
Measurement at 10.5 VD Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	C or at <u>[0.5]</u>	VDC	_°C _VDC _mA _GHz _dBm		Table IIIB 10.5 VDC or Para. 5.2.3.3 Table IIIB Table IIIB 11.5 to 17 dBm
Calculate Frequency Vari Δf_V at 9.5 VDC or at Δf_V at 10.5 VDC or at Δf_T at 10.0 VDC (= $f_{30^{\circ}C}$ -	95 VDC	=	d N	IHz IHz IHz	
Calculate RF Output Pow ΔP_V at 9.5 VDC or at ΔP_V at 10.5 VDC or at ΔP_T at 10.0 VDC (= $P_{30^{\circ}C}$	<u>95 </u>	=	<u>ø</u> d	B B	
Test Performed by	VI	A Date Date	7-29- JUL 3 0		
CODE IDENT NO.	SIZE	NUMBER	₹	REV	SHEET 41 OF 68
56348	A	1300823		С	
ו ודדחא / פח	LID STATE DIV	ISION / 3251 O	LCOTT ST	Γ/SANTA	CLARA, CA 95054

LITTON Solid State

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET NA FINAL DATA SET

INITIAL DATA SE	<u> </u>	
LITTON TYPE LS E 9036 AG/A SERIAL NUMBER: 85036		1336610- <u>5</u> EPT TEST <u>/</u>
Temperature Extreme Testing at Tmax, Ref.	. Test Para. 5.2.5.4	
<u>SPECIFICATION</u>	MEASUREMENT AT Tmax ±1°C	<u>LIMIT</u>
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmax} RF Output Power, P _{Tmax}	44 °C 10 VDC 181 mA 1.81 W DC 53.59481 GHz 12.1 dBm	Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at 9.5 VTemperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	With Voltage, Ref. Test Para 5.2.5.4 DC	Table IIIB 9.5 VDC or Para 5.2.3.2 Table IIIB Table IIIB 11.5 to 17 dBm
Measurement at 10.5 VDC or at 10.5 Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	VDC 44 °C 10.5 VDC 179 mA 53.59481 GHz 12.1 dBm	Table IIIB 10.5 VDC or Para 5.2.3.3 Table IIIB Table IIIB 11.5 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas} - \Delta f_V = f_{v} = 0.5$ VDC or at $\frac{9.5}{VDC} = 0.5$ VDC $\Delta f_V = 0.5$	= <u>& MHz</u>	
Calculate RF Output Power Variation, ΔP_V ΔP_V at 9.5 VDC or at 9.5 VDC or at 10.5 VDC ΔP_V at 10.0 VDC (= P_{Tmax} - P_{Tnom})	= <u>&</u> dB	
Test Performed by Litton Q.A.	Pept Reject Date 7-29-98 Date JUI 3 0 1998	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 42 OF 68
56348	A	1300823	С	

TEST DATA SHEET 7.7 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET NA FINAL DATA SET

INITIAL DATA		
ITTON TYPE LS E 9036 AGA	AESD 133661	10- 5
SERIAL NUMBER: 85036 QUAI	LIEST 10/71 ACCEPT TEST	
Ower Supply Immunity, Ref. Test Para. 5.2.4		
SPECIFICATION	MEASUREMENT AT Tnom ±1°C	LIMIT
initial Measurement	22 °c	Table IIIB
Temperature		10.0 ± 0.2 VDC
Input Voltage	OVDC	
Input Current	180mA	Table IIIB
Input Power	W DC	Pdiss max
Frequency (f _{Tnorm})	53.596.58 GHz	Table IIIB
RF Qutput Power	12.2 dBm	11.5 to 17 dBm
Frequency Setting Accuracy, $\Delta f_c (= f_{res} - F_c)$	VN 0.58 MHz	
Performance After Short Circuit on Power Supply		
	•	10.0 ± 0.2 VDC
Input Voltage		Table IIIB
Input Current	180mA	
Input Power	WDC	Pdiss max
Frequency	53.59649 GHz	Table IIIB
RF Output Power	dBm	11.5 to 17 dBm
Over Voltage: Ref Test Para 5.2.4.3		
Overvoltage Input Voltage	<u>28</u> vdc	+28V
Performance After Input Overvoltage		
	lo VDC	10.0 ± 0.2 VDC
Input Voltage	180 mA	Table IIIB
Input Current		Pdiss max
Input Power		Table IIIB
Frequency	53.59657GHz 12.2 dBm	11.5 to 17 dBm
RF Output Power		
Reverse Polarity: Ref Test Para 5.2.4.4		
Reverse Input Voltage		-10.0 ± 0.2 VDC
Performance After Reverse Input Voltage		
Input Voltage		10.0 ± 0.2 VDC
Input Current	180mA	Table IIIB
Input Power	W DC	Pdiss max
Frequency, f _{Tnom}	53.51657 GHz	Table IIIB
RF Output Power	12.2 dBm	11.5 to 17 dBm
	0.43 MHz	
Frequency Setting Accuracy, $\Delta f_S = f_{T_{nom}} - F_o$		
	Accept Reject	
Test Performed by Dat (LITTO*)	Date 7-29-98	
Litton Q.A.	Date JUL 3 0 1998	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 43 OF 68
56348	A	1300823	C	
		TITOTONI (2251 OF COTT	CT / CANITA	CLADA CA 95054

TEST DATA SHEET 7.8 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

MITAL DATE OF		
LITTON TYPE LS E 9036 AG/A SERIAL NUMBER: 85036		1336610- <u>5</u>
Maximum Instantaneous Current, Ref. Test		
SPECIFICATION	MEASUREMENT AT Tnom ±1°C	LIMIT
Temperature: Input Voltage: Maximum Instantaneous Current:	22°C 15VDC 264mA	Tnom \pm 1°C 10.0 \pm 0.2 VDC Table IIIB
`		
Attach photograph		
5/N: 85035	7-29-98	A C
	200mV 20mS TPOS 1 200mV 20mS VZR-0.12 7= 528-0mV T= 20.6mS	
	Accept Rejec	

Test Performed by

Date 7-29-98

Litton Q.A.

LITTON Date JUL 3 0 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 44 OF 68
56348	A	1300823	С	

•

Solid State

TEST DATA SHEET 7.9 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET ~/A FINAL DATA SET ~/

LITTON TYPE LS E	9036 AG/A			AESD 1336610-	5	
SERIAL NUMBER:	85036	QUAL TEST	N/A	ACCEPT TEST		_

Start up at Survival Temperature Extremes, Ref. Test Para. 5.4

Turn-On Characteristics at $-30^{\circ} \pm 1^{\circ}$ C Ref. Test Para. 5.4.3

Temp	Vop	Iop	Freq.	Pout
°C	VDC	mA	GHz	dBm
-30	10	178	53.59869	11.5

Turn-On Characteristics at $+60^{\circ} \pm 1^{\circ}$ C Ref. Test Para. 5.4.5

Temp	Vop	Iop	Freq.	Pout
°C	VDC	mA	GHz	dBm
60	10	181	53.59313	12.0

Test Performed by

Litton Q.A.

(UTTC)

Date 7-29-98

DateJUL 3 0 1998

			<u> </u>			
	CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 45 OF 68	
i	56348	A	1300823	C		

LITTON Solid State

TEST DATA SHEET 7.10 FUNCTIONAL PERFORMANCE TESTS

LITTON TYPE LS &SERIAL NUMBER:	9036 AG/A 85036 QUAL TEST N/A	AESD 1336610- 5 ACCEPT TEST
Spurious Outputs: Ref. Te	est Para. 5.5.2	
TEST DESCRIPTION		<u>LIMITS</u>
Temperature Spurious Outputs Peaks ob	22 °C pserved:YES	Tnom ± 1°C NO
Value of peaks observed, is	f any:	-90 dBc min
	• •	
	· · · · · · · · · · · · · · · · · · ·	
Attach Spurious Signals plo	ots from Spectrum Analyzer	
	Devical I Mary 201.	
	·	
	Accept Reject	
· · · · · · · · · · · · · · · · · · ·	Accept Reject	7-29-98
	Accept Reject Date 7	7-29-98 .nu 3 0 1998

		ſ	 · 		1					-	N
	۲		3.m		The second secon			_			O. OMHA Bosec
****			12.2 dB	g					Phin bundliff		. 🛛
	m m	N	ti t	por		·					50 13 13
		V C I N	\$	ale		·					σ
	•	377	ş		Ì			_	alus arys	i .	N N N N N N N N N N N N N N N N N N N
,		(I) (I)	J +	sunds					la Professional		Ω Π
	Σ Χ Ω	ທ ທ	nesta	orie C							
	Σ	ហ	<- Fundamental	عام					utto-bel-ten		N T O
			1			·					D X
- NO.	: 	10dB/									8
SPOR CAS				-				_			N T ≥
·		П							offening All	nation de la la contraction de	
								-		a lindatura	
·.		_		I U	E				adattet setat	الداد الدلادالد	ω ω *
	m	m F			E M U				A Partie	tatelakeletata	M N U I
				5377	(n) (0)				Anterial de la constant de la consta		Y
		-7.		m In	00				athulling.		
				Σ N	(1) (3)						F Z 3
). 3 Er 8 P.	L U _K	T L		Σ'n	l i		-				TUENTER TOENTER TOENTER
22°C 5/N: 2 136 7-29-98	8	ш,			Ŋ						*
(1 R),											

TEST DATA SHEET 7.13 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

LITTON TYPE LS = 9036 AG/A SERIAL NUMBER: 85036 QUAL TEST N/A	AESD 1336610- 5 ACCEPT TEST
FM Noise: Ref. Test Para. 5.6.1	
TEST DESCRIPTION	<u>LIMITS</u>
FM noise (Attach plot):	
Temperature <u>92</u> °C	Tnom ± 1°C
Measured = $\angle -115$ dBc/Hz 1 MHz to 40 MHz Measured = $\angle -120$ dBc/Hz 40 MHz to 400 MHz	-100 dBc/Hz max. -100 dBc/Hz max.

		Accept Reject
Test Performed by	M	Date 7-29-98
Litton Q.A.	(UTTON)	Date JUL 3 0 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 49 OF 68
56348	Α	1300823	С	

क्र

TEST DATA SHEET 7.16 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET NA FINAL DATA SET

1	IMITAL DATA 3.	LI <u>IC/A</u> INVAL B		<u>-</u>
LITTON TYPE LS		- OHAL TEST ANA		AESD 1336610- 5
SERIAL NUMBER:	85036	QUAL TEST N/A	<u>t </u>	ACCEPT TEST
AM Noise: Ref. Test	Para. 5.6.2	4		
TEST DESCRIPTION	<u>N</u>		LIMIT	<u>'S</u>
AM noise (Attach plo	ot):			
Temperature	<u>22</u> ℃		Tnom	± 1°C
Measured =	-135 <- 140 84 dBc/Hz :	kHz to 10 kHz	-135 di	Bc/Hz max.
Measured =		0 kHz to 100 kHz		Bc/Hz max.
Measured =		at 100 kHz to 40 MHz		Bc/Hz max.
ivicasured	2-160 abc/112	IL TOO KITZ TO 40 IVITIZ	-150 th	BC/112 max.
RF Power Input, Mix	er (Nominal),	_		
P _{mixer}		7	dBm	0 to 7 dBm
RF Voltage, Termina	tion (Nominal),	**		
${ m V_{carrier}}$		•083	V	
RF Voltage, Termina	tion (attn5dB),			
V_{5dB}		095	\mathbf{v}_{-}	
RF Voltage, Termina	tion (attn +.5dB),			
$V_{+.5dB}$.074	V	
Calculate mixer carrie	er nower P · . = V^2	/ 50:		
P _{carrier} =	or power, I carrier		dBm	
	~ ***	. —	dDin	
Calculate5dB carrie	er power, $P_{5dB} = V^{-}$	/ 50:	-	
$P_{5dB} =$. •		dB	
Calculate +.5dB carri	er power, $P_{+.5dB} = V$	/ 50 :		
$P_{+5dB} =$		-9.61	dBm	
Calculate Mixer Tran	sfer Correction Factor	.5dB)r.		
	_B P _{+.5dB} - 1 dB :	•	*	
$CF_{mixer} =5d$	B/~_1 +.308	1.17	dB	
Noise (spectrum anal	vzer) I meas		dB	
Total Gain, LNA, G			dB	
			ш)	
Calculate Noise of U	UI, Lf - Lmeas - Fcami		dBc/Hz	150 dDa/Ua may
$L_f =$				-150 dBc/Hz max
		at 40 MHz to 4	UU MIAZ	
	٨٥	ept Reject		
·.	Au	.ерг Кејсег		
Test Derfares - 11 -		Data	- 00 -	. .
Test Performed by		Date .	7-29-9	[8
		(1920,1)		4009
Litton Q.A.		Date .	<u>, un 3 0</u>	1990
		\sim .		
CODE IDENTING	CYCE	ATD (DCD	DEV.	CHEET 62 OF 60
CODE IDENT NO.	SIZE	NUMBER		SHEET 52 OF 68
56348	1 A 1	1300823	\sim 1	

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA CA 95054

		_
		<u>)</u>
)

TEST DATA SHEET 7.19 FUNCTIONAL PERFORMANCE TESTS

INITIAL DATA SET N/A FINAL DATA	SET
LITTON TYPE LS E 9036 A G/A SERIAL NUMBER: 85036 QUAL TEST N/A	AESD 1336610- 5 ACCEPT TEST
Harmonics Tests: Ref. Test Para. 5.7	
TEST DESCRIPTION	<u>LIMITS</u>
Temperature Frequency, per 5.7.1 RF Output Power, per 5.7.1 Harmonics: 22 °C 53.54646 GHz 12.2 dBm	Tnom ± 1°C Table IIIB 11.5 to 17 dBm
Level of second Harmonic dBm Difference (2nd Harmonic) dB	-30 dBc min
Subharmonics: Level of Subharmonic dBm Difference (Subharmonic) dB	-90 dBc min
7	
(ITTON)	
CODE IDENT NO SIZE NUMBER I	REV SHEET 55 OF 68

		<u> </u>
		_
		<u></u>
		-

TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

LITTON TYPE LS E 90 SERIAL NUMBER: 8	36 AG/A 5036	QUAL TEST _	N/A	1	AESD 1336610-5	
Frequency and Power Hyste		••				
TEST DESCRIPTION				LIMI	<u>TS</u>	
1. Initial Perfor	mance at Tnom ±	: 1°C				
Temperature Frequency, f_{Tnom} RF, Output Power, P_{Tnom} Input Voltage, V_B Input Current, I_B Frequency Setting Accuracy Δf_S (= f_{Tnom} - F_o)	122 10 180	°C GHz dBm VDC mA MHz		Table 11.5 t	o 17 dBm 0.2 VDC	
2. Performance	at Tnom ± 1°C a	fter +60°C soak	ζ.			
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	53.59614 (12.3 (PC GHz iBm VDC nA		Table	o 17 dBm .005 VDC	
3. Performance	at Tnom ± 1°C a	fter -30°C soak				
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	53.59661 (12.2 (PC GHz iBm VDC nA		Table 11.5 t	o 17 dBm :005 VDC	
Calculate frequency variation Δf_H after 60°C soak = Δf_H after -30°C soak =	on, $\Delta f_H = f_{\text{meas}} - f_T$	<u>-0.32</u> N	ИНz ИНz			
Calculate RF output power $\Delta P_H = \text{after } 60^{\circ}\text{C soak} = \Delta P_H = \text{after } -30^{\circ}\text{C soak} = 0$	variation, $\Delta P_H = 1$	<u>0.1</u> d	B B			
Test Performed by Litton Q.A.	Р		Acce _l Date Date	ot] 	Reject	
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	0077	REV C	SHEET 58 OF 68 CLARA, CA 95054	

TEST DATA SHEET 7.22B FUNCTIONAL PERFORMANCE TESTS NITIAL DATA SET N/A FINAL DATA SET

IN	IITIAL DATA SE	Γ <u>N/A</u> FII	NAL DATA S	SET
LITTON TYPE LS E SERIAL NUMBER:	9036 AG/A 85036	QUAL TEST _	N/A	AESD 1336610- 5 ACCEPT TEST
Frequency and Power Hy	steresis: Ref Test	Para. 5.8		
TEST DESCRIPTION				LIMITS
4. Performan	ce at Tnom ± 1°C	at Ambient Press	sure	
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage, V _B Input Current		dBm VDC mA	٠.	Tnom \pm 1°C Table IIIB 11.5 to 17 dBm $V_B \pm .0005 VDC$ Table IIIB
Calculate frequency varia		Tnom:		
$\Delta f_p = \underline{}$	_ 0.ll MHz			
Calculate RF output power	er variation, $\Delta P_p =$	P _{meas} - P _{Tnom} :	•	
$\Delta P_p = 0.1$	dB			
· T	Accep	ot Reje	ct	
Test Performed by Litton Q.A	VN (0-98

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 59 OF 68
56348	A	1300823	C	
				

TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS

INITI	AL DATA	SET N/A FI	NAL D	ATA SET	<u>v</u>
LITTON TYPE LS E 90	36 A G/A	•			AESD 1336610- 5
	35036	QUAL TEST _	N/A	<u> </u>	ACCEPT TEST
Frequency Pulling and Load	VSWR 2.5:	l max. all phases.	Ref Tes	t Para. 5.9	
TEST DESCRIPTION				LIMIT	<u>rs</u>
Initial Measurement. Ref Te	st Par. 5.9.1				
Temperature		<u>12</u> °C		24°C :	
Frequency	<u>53</u>	.59635 GHz		Table	
RF, Output Power		(2.3dBm			o 17 dBm
Input Voltage		<u>10</u> VDC			2.2 VDC
Input Current	·* .	180mA		Table	IIIB
Reference test. Ref. Test Par	a. 5.9.3				
Frequency, f _{Ref}	5	3.59635 GHz		Table	IIIB
RF Output Power, P _{Ref}	<u></u>	_4.0 dBm			
id Odipat I owor, I Rei					
Load Pulling Test. Ref. Test	Para. 5.9.4			•	
Maximum Frequency, f _{meas}	5	3.59636 GHz		Table	IIIB
Minimum Frequency, f _{meas}		3.59634 GHz		Table	IIIB
Maximum RF Output Power		- 3.4 dBm			
Minimum RF Output Power		- 4.3 dBm			
_					
Calculate maximum positive $\Delta f_L = f_{meas} - f_{Ref}$:	e (f _{meas} is gre	eater than f _{Ref}) and n	egative	(f _{meas} is less t	han f _{Ref}) frequency variation,
Manimum Basiting Af-	•	0.01 MHz			
Maximum Positive $\Delta f_L =$		0.6 MHz			
Maximum Negative $\Delta f_L =$		O.O IVIIIZ			
Calculate maximum positive Variation, $\Delta P_L = P_{meas} - P_{Ref}$		eater than P _{Ref}) and	negativ	e (P _{meas} is less	than P _{Ref}) RF Output Power
		n il in			
Maximum Positive $\Delta P_L =$		0.4 dB			
Maximum Negative $\Delta P_L =$	_	<u>- 0.3</u> dB			
·.	A	ccept Re	ject		
Test Performed by	VN		Date	7-30-	98
Litton Q.A.		/ ITTOM	Date	JUL 3 0 199	<u></u>
		\\\ \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \			
	0.00) TRACTED		DEV	SHEET 60 OF 68
CODE IDENT NO.	SIZE	NUMBER 1300823	:	REV C	SHEEL OU OF UO
56348	A	1300023			

LITTON Solid State

TE	ST DATA	SHEET 7.23B	
FUNCTIO	NAL PERI	FORMANCE TESTS	
NITIAL DATA SET	N/A	FINAL DATA SET	•

IN	ITIAL DATA SET NA FINAL DA	TA SET
LITTON TYPE LS ESERIAL NUMBER:	9036 AG/A 85036 QUAL TEST N/A	AESD 1336610- 5 ACCEPT TEST
Frequency Pulling and Lo	oad VSWR 2.5:1 max. all phases. Ref Test I	Para. 5.9
TEST DESCRIPTION		LIMITS
Output Open and Short. R	Lef. Test Para. 5.9.5	
Temperature Frequency: RF Output Power: Input Voltage Input Current: Results:	22 °C 5359636 GHz 123 dBm 10 VDC 180 mA Acceptable	24°C ± 5°C Table IIIB 11.5 to 17 dBm 10 ± 0.2 VDC Table IIIB No Damage or Degradation
-	Hency Accuracy (both positive and negative) ase Δf_S from 7.2, 7.7, and 7.22A) + Δf_H (from	# -
Maximum $\Delta f_{acc} =$	0.74 MHz (Positive) -0.33 MHz (Negative)	Table IIIB Table IIIB
	e-term Frequency Stability (both positive and orst-case Δf_V and Δf_T from 7.2 thru 7.6):	d negative),
Maximum $\Delta f_{V+T} =$	1.37 MHz (Positive) -1.66 MHz (Negative)	Table IIIB Table IIIB
· · · · · · · · · · · · · · · · · · ·	all RF Output Power Stability (both positive worst-case ΔP_V and ΔP_T from 7.2 thru 7.6) +	— · · · · · · · · · · · · · · · · · · ·
Maximum ΔP _{OV} =	<u>0.5</u> dB (Positive) <u>-0.中</u> dB (Negative)	1.0 dB -1.0 dB
	Accept Reject	
Test Performed by	VN Date	7-30-98
Litton Q.A.	Date	JUL 3 0 1998

	CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 61 OF 68
	56348	A	1300823	C	
•	LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA CA 05054				

56348

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS

INITIAL DATA	SET NA FINAL DA	ATA SET	<u> </u>
LITTON TYPE LS E 9036 AG/A	,	AESD	13366105
SERIAL NUMBER: 85035	QUAL TEST N/A	ACCE	PT TEST /
Basic Electrical Test; Ref. Test Para. 5.2.2	\$		
SPECIFICATION	MEASUREMENT AT T	nom ±1°C	LIMIT
Measurement at Vop=10 VDC	90		
Temperature	<u>22</u> °C		Table IIIB
Input Voltage	lo_vdc		$10.0 \pm 0.2 \text{ VDC}$
Input Current	183 mA		Table IIIB
Input Power, P _{diss}	1.83 W DC		P _{diss} max
Frequency, f _{Tnom}	53.59594 GHz		Table IIIB
RF Output Power, P _{Tnom}	11.6dBm		11.5 to 17 dBm
Frequency Setting Accuracy,	0.06 MHz		
$\Delta f_{S} (= f_{Tnom} - F_{o})$			
Frequency and RF Output Power Variation Wit		5.2.3	
Measurement at 9.5 VDC or at 9.5 VDC	6 9		
Temperature	<u>22</u> °C		Table IIIB
Input Voltage	9.5 VDC		9.5 VDC or Para. 5.2.3.2
iput Current	180 mA		Table IIIB
Frequency, f _{meas}	53.59594 GHz		Table IIIB
RF Output Power, P _{meas}	({. CdBm		11.5 to 17 dBm
Measurement at 10.5 VDC or at 10.5 VD	C .		
Temperature	22 °C		Table IIIB
Input Voltage	10.5 VDC		10.5 VDC or Para. 5.2.3.3
Input Current	181 mA		Table IIIB
Frequency, f _{meas}	53.59594 GHz		Table IIIB
RF Output Power, P _{meas}			11.5 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tn}$	om,		
Δf_V at 9.5 VDC or at 9.5 VDC =	= d	MHz	
Δf_V at 10.5 VDC or at 10.5 VDC =		MHz	
Calculate RF Output Power Variation, $\Delta P_V = P$	meas - P _{Tnom} ,		
ΔP_V at 9.5 VDC or at 9.5 VDC =	= ¢	dB	
			
ΔP_V at 10.5 VDC or at 10.5 VDC =	<u> </u>	dB	
Acc	cept Reject		
Test Performed by	Date 7-28-98	,	
itton QA	Date JUL 3 0 1998		
- (UITOM)			
M Co			
CODE IDENT NO. SIZE	NUMBER	REV	SHEET 38 OF 68
56348 A	1300823	С	

TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

IIIIIAL DA	TA SET N/A TIMAL DATA	SEI
LITTON TYPE LS = 9036 A SERIAL NUMBER: 8503	G/A 5 QUAL TEST N/A	AESD 1336610- 5 ACCEPT TEST /
Temperature Testing at T=10°C, R	ef. Test Para. 5.2.5.1	
SPECIFICATION	MEASUREMENT AT T=10° ±1°C	LIMIT
Measurement at Vop=10 VDC		
Temperature	(<u>0</u> °C	10° ± 1°C
Input Voltage	VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	182 mA	Table IIIB
Input Power, P _{diss}	1-82 W DC	Pdiss max
Frequency, f _{10°C}	53.59599 GHz	Table IIIB
RF Output Power, P _{10°C}	ll. 6 dBm	11.5 to 17 dBm
Frequency and RF Output Power Va Measurement at 9.5 VDC or at9	ariation With Voltage, Ref. Test Para 5	5.2.5.1
Temperature		Table IIIB
Input Voltage	9.5 VDC	9.5 VDC or Para. 5.2.3.2
Input Current	180 mA	Table IIIB
Frequency, f _{meas}	53.59599 GHz	Table IIIB
RF Output Power, P _{meas}		11.5 to 17 dBm
Measurement at 10.5 VDC or at	0.5 VDC .	
Temperature	lo °C	Table IIIB
Input Voltage	(0.5 VDC	10.5 VDC or Para. 5.2.3.3
Input Current	180 mA	Table IIIB
Frequency, f _{meas}	53.59600 GHz	Table IIIB
RF Output Power, P _{meas}		11.5 to 17 dBm
Calculate Frequency Variation, Δf_V	= f _{meas} - f _{10°C} :	
Δf_V at 9.5 VDC or at 9.5	VDC = ϕ MHz	
Δf_V at 10.5 VDC or at 10-5	VDC =	
Δf_T at 10.0 VDC (= $f_{10^{\circ}C}$ - f_{Tnom})	= 0.05 MHz	
Calculate RF Output Power Variatio	on, $\Delta P_V = P_{meas} - P_{10^{\circ}C}$:	
$\Delta P_{\rm V}$ at 9.5 VDC or at 9.5	VDC = dB	
ΔP_{V} at 10.5 VDC or at 10.5	VDC =	
ΔP_T at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{Tnom})	$= \frac{d}{d} dB$	

Test Performed by
Litton Q.A.

	Accept Reject	
Date	7-28-98	
Date	.111 3 0 1998	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 39 OF 68
56348	Α	1300823	С	

(.

Solid State

TEST DATA SHEET 7.4 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

LITTON TYPE LS E 9036 A G/A

SERIAL NUMBER: 85035 QUAL TEST N/A ACCEPT TEST //A

Temperature Extreme Testing at Tmin, Ref. Test Para. 5.2.5.2

MEASUREMENT AT Tmin ±1°C LIMIT **SPECIFICATION** Measurement at Vop=10 VDC Table IIIB °C Temperature **VDC** $10.0 \pm 0.2 \text{ VDC}$ Input Voltage 10 Table IIIB Input Current 182 mA Pdiss max W DC Input Power, Pdiss GHz Table IIIB 53.5956 Frequency, f_{Tmin} RF Output Power, P_{Tmin} dBm 11.5 to 17 dBm

Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.5.2

Measurement at 9.5 VDC or at 9.5 VDC

Measurement at 9.5 VDC or at VL	C ~	
Temperature	°C	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para 5.2.3.2
Input Current	<u> 180</u> mA	Table IIIB
Frequency, f _{meas}	53.5956 GHz	Table IIIB
RF Output Power, P _{meas}	(.5dBm	11.5 to 17 dBm

Measurement at 10.5 VDC or at	VDC ,	
Temperature	°C	Table IIIB
Input Voltage	10.5 VDC	10.5 VDC or Para 5.2.3.3
Input Current	180 mA	Table IIIB
Frequency, f _{meas}	53.59561 GHz	Table IIIB
RF Output Power, P _{meas}		11.5 to 17 dBm

Calculate Frequency Variation, 2	$\Delta f_{V} = f_{meas} - f_{Tmin}$:	
$\Delta f_{\rm V}$ at 9.5 VDC or at9.5	VDC =	≠ MHz
Δf_V at 10.5 VDC or at 10.5	VDC =	∳ MHz
Δf_T at 10.0 VDC (= f_{Tmin} - f_{Tnom})	- 0.33	_ -0.33 MHz Vん

Calculate RF Output Power Variat	ion, $\Delta P_V = P_{meas} - P_{Tmin}$:	
$\Delta P_{\rm V}$ at 9.5 VDC or at 9.5	VDC =	ϕ dB
ΔP_V at 10.5 VDC or at 10.5	VDC =	dB
ΔP_T at 10.0 VDC (= P_{Tmin} - P_{Tnom})	=	$\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$ dB

Test Performed by	Accept	
Litton Q.A.	LITTON M 60	Date JUL 3 0 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 40 OF 68
56348	A	1300823	С	

TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET <u>N/A</u> FINAL DATA SET ____

INITIAL DATA S	ET <u> </u>	
LITTON TYPE LS E 9036 A G/A SERIAL NUMBER: 85035	_ , ,	D 1336610- 5 EPT TEST
Temperature Testing at T=30°C, Ref. Test	Para. 5.2.5.3	
SPECIFICATION	MEASUREMENT AT T=30° ±1°C	<u>LIMIT</u>
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{30°C} RF Output Power, P _{30°C}	30 °C 10 VDC 184 mA 1.84 W DC 53.595 95 GHz 	30° ± 1°C 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at 9.5 V Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	With Voltage, Ref. Test Para 5.2.5.3 DC 30 °C 9.5 VDC 182 mA 53.59595 GHz 11.7 dBm	Table IIIB 9.5 VDC or Para. 5.2.3.2 Table IIIB Table IIIB 11.5 to 17 dBm
Measurement at 10.5 VDC or at 10.5 Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	VDC	Table IIIB 10.5 VDC or Para. 5.2.3.3 Table IIIB Table IIIB 11.5 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas} - \Delta f_V$ at 9.5 VDC or at 9.5 VDC = Δf_V at 10.5 VDC or at 10.5 VDC = Δf_T at 10.0 VDC (= $f_{30^{\circ}\text{C}} - f_{Tnom}$)	= <u>Ø</u> MHz	
Calculate RF Output Power Variation, $\Delta P_V = \Delta P_V$ at 9.5 VDC or at $AP_V = AP_V$ at 10.5 VDC or at $AP_V = AP_V$ at 10.0 VDC (= $P_{30^{\circ}\text{C}} - P_{\text{Tnom}}$)	= <u>\$\phi\$</u> dB = \$\phi\$ dB	
Test Performed by Litton Q.A.	Accept Reject Date 7-28-98 Date JUI 3 0 1998	·

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 41 OF 68
56348	A	1300823	С	

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS NITIAL DATA SET AVA FINAL DATA SET

INITIAL DATA SE	TN/A_ FINAL DATA SET	·
LITTON TYPE LS E 9036 A G/A SERIAL NUMBER: 85035	QUAL TEST N/A AC	ESD 1336610- 5 CCEPT TEST
Temperature Extreme Testing at Tmax, Ref.	Test Para. 5.2.5.4	
<u>SPECIFICATION</u>	MEASUREMENT AT Tmax ±1	<u>°C LIMIT</u>
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmax} RF Output Power, P _{Tmax}		Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at 9.5 VTemperature Input Voltage Input Current requency, f _{meas} RF Output Power, P _{meas}	With Voltage, Ref. Test Para 5.2.5 DC 44 °C 9.5 VDC 183 mA 53.59.572 GHz 11.8 dBm	Table IIIB 9.5 VDC or Para 5.2.3.2 Table IIIB Table IIIB 11.5 to 17 dBm
Measurement at 10.5 VDC or at 10.5 V	VDC 	Table IIIB 10.5 VDC or Para 5.2.3.3 Table IIIB Table IIIB 11.5 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas} - \Delta f_V$ at 9.5 VDC or at $Q.S$ VDC = Δf_V at 10.5 VDC or at $Q.S$ VDC = Δf_T at 10.0V (= f_{Tmax} - f_{Tnom})	= <u>0.02</u> MHz	
Calculate RF Output Power Variation, $\Delta P_V = \Delta P_V$ at 9.5 VDC or at 9.5 VDC = ΔP_V at 10.5 VDC or at 10.5 VDC = ΔP_T at 10.0 VDC (= P_{Tmax} - P_{Tnom})	=	
Test Performed by itton Q.A. Acce	Post Reject	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 42 OF 68
56348	Α	1300823	C	

LITTON Solid State

	TEST DATA SHEET 7.7 CTIONAL PERFORMANCE TESTS SET_N/A_FINAL DATA SET_	_
LITTON TYPE LS E 9036 A G/A SERIAL NUMBER: 85035 QUAL	TEST N/A ACCEPT TEST	5
Power Supply Immunity, Ref. Test Para. 5.2.4	5	
SPECIFICATION	MEASUREMENT AT Tnom ±1°C	LIMIT
Initial Measurement Temperature Input Voltage Input Current Input Power Frequency (f_{Tnom}) RF Output Power Frequency Setting Accuracy, Δf_S (= f_{Tnom} - F_o)	22 °C VDC 182 mA 1.82 W DC 53.59601 GHz 11.6 dBm 0.01 MHz	Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm
Performance After Short Circuit on Power Supply: I	Ref Test Para 5.2.4.2	
Input Voltage Input Current Input Power Frequency RF Output Power	0 VDC 182 MA 1.82 W DC 53.54600 GHz 11.6 dBm	10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm
Over Voltage: Ref Test Para 5.2.4.3	•	
Overvoltage Input Voltage	28vdc	+28V
Performance After Input Overvoltage		
Input Voltage Input Current Input Power Frequency RF Output Power	10 VDC 182 mA 1.82 W DC 53.59601 GHz 11.6 dBm	10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm
Reverse Polarity: Ref Test Para 5.2.4.4		
Reverse Input Voltage	[0VDC	-10.0 ± 0.2 VDC
Performance After Reverse Input Voltage		
Input Voltage Input Current Input Power Frequency, f_{Tnom} RF Output Power Frequency Setting Accuracy, Δf_S (= f_{Tnom} -F _o)	0 VDC mA 1-82 W DC 53.59602 GHz (1-6 dBm 0.02 MHz (1-6 dBm 0.03 MHz (1-6 dBm (1-6	10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 11.5 to 17 dBm
Test Performed by Litton Q.A. (ITTO:: At 60	Reject Reject	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 43 OF 68
56348	A	1300823	C	
LITTON / SOI	ID STATE DIV	ISION / 3251 OI COTT	ST/SANT	CLADA CA 05054

TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET NA FINAL DATA SET

INIT	IAL DATA SE	r NA FIN	NAL DATA	SET	<u>/</u>
LITTON TYPE LS E 9 SERIAL NUMBER:	036AG/A 85035	QUAL TEST _	N/A		AESD 1336610- 5 ACCEPT TEST
Frequency and Power Hyste	eresis: Ref Test	Para. 5.8	;		
TEST DESCRIPTION				LIMIT	<u>rs</u>
1. Initial Perfor	mance at Tnom	± 1°C			
Temperature Frequency, f_{Tnom} RF Output Power, P_{Tnom} Input Voltage, V_B Input Current, I_B Frequency Setting Accuracy $\Delta f_S (= f_{Tnom} - F_o)$	22 53.59594 11.6 10 183 -0.06	_°C _ GHz _ dBm _ VDC _ mA _ MHz			IIIB o 17 dBm .2 VDC
2. Performance	at Tnom ± 1 °C	after +60°C soak			
Temperature equency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	22 53.59593 11.7 10 183	°C GHz dBm VDC mA			IIIB o 17 dBm 005 VDC
3. Performance	at Tnom ± 1°C	after -30°C soak.			
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	22 53.59601 11.6 10 182	°C GHz dBm VDC mA			IIIB o 17 dBm 005 VDC
Calculate frequency variation Δf_H after 60°C soak = Δf_H after -30°C soak =	on, $\Delta f_{H} = f_{\text{meas}} - f_{\text{meas}}$	$\frac{-0.01}{M}$	IHz IHz		
Calculate RF output power ΔP_H = after 60°C soak = ΔP_H = after -30°C soak =	variation, $\Delta P_H =$	$P_{\text{meas}} - P_{\text{Tnom}}$:			
est Performed by	VN		Accept	V R	eject
Litton Q.A.	(STON)		· · · - ·	UL 3 0 19	998
CODE IDENT NO.	SIZE	NUMBER 1300823	I	REV C	SHEET 58 OF 68

TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS NITIAL DATA SET ____N/A__ FINAL DATA SET __

	ATA SET <u>NA</u> FINAL DATA	
LITTON TYPE LSE 9036 A SERIAL NUMBER: 850	-G/A 35 QUAL TEST N/A	AESD 1336610- 5 ACCEPT TEST
Frequency Pulling and Load VSW	R 2.5:1 max. all phases. Ref Test Para	a. 5.9
TEST DESCRIPTION		<u>LIMITS</u>
Initial Measurement. Ref Test Par. Temperature Frequency RF Output Power Input Voltage Input Current	5.9.1 22 °C 53.59609 GHz 11.7 dBm 10 VDC 183 mA	24°C ± 5°C Table IIIB 11.5 to 17 dBm 10 ± 0.2 VDC Table IIIB
Reference test. Ref. Test Para. 5.9.	3	
Frequency, f _{Ref} RF Output Power, P _{Ref}	53.59609 GHz -3.2 dBm	Table IIIB
Load Pulling Test. Ref. Test Para.	5.9.4	
Maximum Frequency, f_{meas} Minimum Frequency, f_{meas} Maximum RF Output Power P_{meas} Minimum RF Output Power, P_{meas}	53.59610 GHz 53.59608 GHz -2.9 dBm -3.5 dBm	Table IIIB Table IIIB
Calculate maximum positive (f_{meas} $\Delta f_L = f_{meas} - f_{Ref}$:	is greater than f_{Ref}) and negative (f_{meas}	is less than f_{Ref}) frequency variation.
Maximum Positive $\Delta f_L =$ Maximum Negative $\Delta f_L =$	O.O MHz O.O MHz	
Calculate maximum positive (P_{meas}) Variation, $\Delta P_L = P_{meas} - P_{Ref}$:	is greater than P_{Ref}) and negative (P_{me}	as is less than P _{Ref}) RF Output Power
Maximum Positive $\Delta P_L =$ Maximum Negative $\Delta P_L =$	$\frac{0.3}{-0.3} \text{ dB}$	
	Accept Reject	
Test Performed by Litton Q.A.	Date 7-	29_98 JUL 30 1998
CODE IDENT NO. SIZ	E NUMBER R	EV SHEET 60 OF 68

		ONAL PERFORMAL		
ÍNI		NA FINAL		
LITTON TYPE LS E				AESD 1336610- 5
SERIAL NUMBER:	85035	QUAL TEST	/A	ACCEPT TEST
Frequency Pulling and Lo		‡		
TEST DESCRIPTION			LIMI	<u>TS</u>
Output Open and Short. R	ef. Test Para. 5.9.5	5		
Temperature	22	°C	24°C	± 5°C
Frequency:	53.59608	-	Table	
RF Output Power:		dBm		to 17 dBm
Input Voltage		VDC		0.2 VDC
Input Current:		mA	Table	
Results:		Acceptable	No D	amage or Degradation
Calculate maximum Frequence $\Delta f_{acc} = \Delta f_S$ (Use worst-ca	use Δf_S from 7.2, 7	.7, and 7.22A) + Δf_{H}	(from 7.22A) + -	
Λ aximum $\Delta f_{acc} =$	$\frac{0.09}{-0.13}$	_ MHz (Positive) _MHz (Negative)	Table Table	
Calculate maximum Short $\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use w	•	- · · · -		,
Maximum $\Delta f_{V+T} =$	0.06	_ MHz (Positive) _ MHz (Negative)	Table Table	
Calculate maximum overa $\Delta P_{OV} = \Delta P_{V} + \Delta P_{T} \text{ (Use Verico of the context)}$	•	• • •		ve), n 7.22A) + ΔP _L (from 7.23A):
Maximum $\Delta P_{OV} =$	6.6 - 0.4	_ dB (Positive) _ dB (Negative)	1.0 d -1.0 d	
	Acce	pt Reject _		
Test Performed by	VN	Date	7-29-	98
Litton Q.A.	(<u>u</u>	Date	JUL 3 (1998
	,	160		

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 61 OF 68
56348	A	1300823	С	

Channel 6 LO

DRO (P/N: 1336610-6, S/N: 85026)

_	 	
		\sim

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET // FINAL DATA SET

INTIAL DATA	SEI NA PINAL DA		
LITTON TYPE LSE 9036 AH /A	_	AESD 1336610	
SERIAL NUMBER: 85026	QUAL TEST NA	_ ACCEPT TEST	
Basic Electrical Test; Ref. Test Para. 5.2.2			
SPECIFICATION	MEASUREMENT AT To	nom ±1℃ LIMIT	
Measurement at Vop=10 VDC			
Temperature	°C	Table IIIB	
Input Voltage		10.0 ± 0.2 VDC	
Input Current		Table IIIB	
Input Power, P _{diss}	/. <i>§04</i> W DC	P _{diss} max	
Frequency, f _{Tnom}	54.40007 GHz	Table IIIB	
RF Output Power, P _{Tnom}	<u>(2-3</u> dBm	12 to 17 dBm	
Frequency Setting Accuracy,	<u>07</u> MHz		_
$\Delta f_{S} (= f_{Tnom} - F_{o})$	•		:
C Inom 07		5	
Frequency and RF Output Power Variation Wi	th Voltage, Ref. Test Para 5	5.2.3	
Measurement at 9.5 VDC or at 9.5 VDC		•	
Temperature	2 2•C	Table IIIB	
put Voltage	?- 5 VDC	9.5 VDC or Para. 5.2.3.2	
nput Current	178.3 mA	Table IIIB	
Frequency, f _{mess}	54.4002/ GHz	Table IIIB	
RF Output Power, P _{meas}	(2.3 dBm	12 to 17 dBm	
Kr Output Power, Pmess		12 13 11 12 11	
Measurement at 10.5 VDC or at 10.5 VD	C		
Temperature	22 °C	Table IIIB	
Input Voltage	10.5 VDC	10.5 VDC or Para. 5.2.3.3	
Input Current	179.4 mA	Table IIIB	
Frequency, f _{meas}	54.400 16 GHz	Table IIIB	
• • •	/2·3 dBm	12 to 17 dBm	
RF Output Power, P _{meas}		12 10 17 12 111	
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tr}$	10M2		
Δf _V at 9.5 VDC or at 9.5 VDC	= ./4	MHz	
Δf_V at 10.5 VDC or at 10.5 VDC		MHz	
Any at 10.3 V DC of at			
Calculate RF Output Power Variation, $\Delta P_V = I$	P _{meas} - P _{Tnom}		
ΔP_V at 9.5 VDC or at 9.5 VDC	_	dB	
ΔP_V at 10.5 VDC or at $\frac{7.5}{0.5}$ VDC		dB	
ΔP _V at 10.5 VDC of at 78.5		•	
Ac	cept Reject		
. D. C	Date 6-3-98	ç	
est Performed by	Date TIN 1 & 100	•	
Litton QA	Date JUN 13 1880		
(83)	•		
CODE IDENT NO. SIZE	NUMBER	REV SHEET 38 OF 68	
56348 A	1300823	В3	
		ST/SANTA CLARA, CA 95054	
PITION ACTIO STATE DIA		· - · - · - · · · · · · · · · · ·	

TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET // FINAL DATA SET //

LITTON TYPE LSE 9036 AH /A		AESD 1336610- C
LITTON TYPE LS E GO36 AH /A SERIAL NUMBER: 550 26	QUAL TEST N/A	_ ACCEPT TEST
Temperature Testing at T=10°C, Ref. Tes	st Para. 5.2.5.1	
-	- ··- ·· - · - · - · - · - · - · - · -	
SPECIFICATION ME	ASUREMENT AT T=10°:	±1°C LIMIT
Measurement at Vop=10 VDC		
Temperature	<u>°</u> ℃	10° ± 1°C
Input Voltage		$10.0 \pm 0.2 \mathrm{VDC}$
Input Current	177.9 mA	Table IIIB
Input Power, P _{diss}	1.799 WDC	Pdiss max
Frequency, f _{10°C}	54.39964 GHz	Table IIIB
RF Output Power, P _{10°C}	/2.3 dBm	12 to 17 dBm
_		. •
Frequency and RF Output Power Variation		Para 5.2.5.1
Measurement at 9.5 VDC or at 9.5		<u>.</u>
Temperature	<u>°</u> ℃	Table IIIB
Input Voltage	<u>9,5</u> VDC	9.5 VDC or Para. 5.2.3.2
Input Current	<i>/77.8</i> mA	Table IIIB
Frequency, f _{meas}	<u>54.39964</u> GHz	Table IIIB
RF Output Power, P _{meas}		12 to 17 dBm
Measurement at 10.5 VDC or at	VDC	
Temperature		77-1.1. TITD
Input Voltage		Table IIIB
Input Current	/0.5 VDC	10.5 VDC or Para. 5.2.3.3
Frequency, f _{mess}	179.2 mA	Table IIIB
RF Output Power, P _{meas}	54.39967 GHz	Table IIIB
Ki Output Fower, F _{meas}	/2.3dBm	12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas}$	- fine:	
Δf_V at 9.5 VDC or at 9.5 VDC		МНz
Δf _V at 10.5 VDC or at 10.5 VDC		MHz
Δf_T at 10.0 VDC (= $f_{10^{\bullet}C}$ - f_{Tnom})		MHz .
1 - 10 C - Thomp	- 43 pm	•
Calculate RF Output Power Variation, ΔP_{ν}	$P_{\text{meas}} - P_{10^{\circ}\text{C}}$:	
ΔP_V at 9.5 VDC or at 9.5 VDC		IB .
ΔP_V at 10.5 VDC or at 10.5 VDC	= <u> </u>	IB .
ΔP_T at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{Tnom})	= <u> </u>	IB .
T D. 4	_ Accept _	
Test Performed by	Date L-3-	
Litton Q.A.	Date JUN 15	1998
(89)		
CODE IDENT NO. SIZE	NUMBER	REV SHEET 39 OF 68
56348 A	1300823	B3
LITTON / SOLID STATE DIV	ISION / 3251 OLCOTT ST	T/SANTA CLARA, CA 95054

56348

TEST DATA SHEET 7.4 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET W/B FINAL DATA SET W

., 1141147	L DAIA SI	THAIL	DAIN GET _	
LITTON TYPE LS £ 9 03	YAH/A	_ .		1336610- 6
SERIAL NUMBER: 85		_ QUAL TEST <u>~/A</u>	ACCE	PT TEST
Temperature Extreme Testin	g at Tmin, R	ef. Test Para. 5.2.5.2		
SPECIFICATION		MEASUREMENT A	T Tmin ±1°C	LIMIT
Measurement at Vop=10 VD	C			
Temperature		<u>-/</u> °C		Table IIIB
Input Voltage		/oVDC		$10.0 \pm 0.2 \text{ VDC}$
Input Current				Table IIIB
Input Power, P _{diss}		· 1.792 WD	С	Pdiss max
Frequency, f _{Tmin}		54. 39839 GHz		Table IIIB
RF Output Power, P _{Tmin}				12 to 17 dBm
Frequency and RF Output P	ower Variation	on With Voltage, Ref. To	est Para 5.2.5.2	<u>.</u>
Measurement at 9.5 VDC or				
Temperature		°℃		Table IIIB
nput Voltage		/o VDC	}	9.5 VDC or Para 5.2.3.2
Input Current		177. / mA		Table IIIB
Frequency, f _{meas}		54.39841 GHz		Table IIIB
RF Output Power, P _{meas}		<u>12.4</u> dBm		12 to 17 dBm
Measurement at 10.5 VDC of	r at 10.5	VDC		
Temperature	 ;	°C		Table IIIB
Input Voltage		10.5 VDC		10.5 VDC or Para 5.2.3.3
Input Current		179,0 mA		Table IIIB
Frequency, f _{meas}		54,39840 GHz		Table IIIB
RF Output Power, P _{meas}	.	dBm		12 to 17 dBm
Calculate Frequency Variation	on. Δf _v = f	- f _{T-in} :		
Δf_V at 9.5 VDC or at 9.5			。oと MHz	
Δf_V at 10.5 VDC or at $/ \bullet /$			o/ MHz	
Δf_T at 10.0 VDC (= f_{Tmin} - f_{Tno}			7. 68 MHz	
Calculate RF Output Power	Variation, ΔI	$P_V = P_{meas} - P_{Tmin}$:		
ΔP _V at 9.5 VDC or at 9.5			<u>√⇔</u> dB	
ΔP_{v} at 10.5 VDC or at $\frac{1}{\sqrt{6}}$		C = .	<u>-⇔</u> dB	
ΔP_T at 10.0 VDC (= P_{Tmin} - P_T		**	•/dB	•
	· Ac	cept Reject		
fest Performed by	5635		3 - 98	
Litton Q.A.	(88)		1 5 1998	
CODE IDENT NO	SIZE	NUMBER	REV	SHEET 40 OF 68
56348	A	1300823	B3	

TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS

INI	TIAL DATA	SET WA FIN	IAL DATA S	SET	
LITTON TYPE LSE 903	GAH/A			AESD 1336610-	(
SERIAL NUMBER:	5026	QUAL TEST _^	1/A_	ACCEPT TEST	
Temperature Testing at T=	30°C, Ref. T	est Para. 5.2.5.3			
SPECIFICATION		MEASUREMEN	VT AT T=30	°±1°C L	MIT
Measurement at Vop=10 V	DC				
Temperature		30 °	С	30° ± 1°C	•
Input Voltage			DC	10.0 ± 0.2	
Input Current			ıA	Table IIII	
Input Power, P _{diss}			V DC	Pdiss may	
Frequency, f _{30°C}		54.40013		Table IIII	-
RF Output Power, P _{30°C}			Bm	12 to 17 d	
Frequency and RF Output F	ower Variat	ion With Voltage, Ref	. Test Para 5	.2.5.3	٠
Measurement at 9.5 VDC o	r at <u>9.5</u>	_VDC			
Temperature		<u> 30</u> °	C	Table IIII	,
Input Voltage		<u> </u>	TDC .	9.5 VDC	or Para. 5.2.3.2
Input Current		<u></u>	ıA	Table IIIE	}
Frequency, f _{meas}		54.40021	Hz	Table IIIE	}
RF Output Power, P _{meas}		<u> (2.4</u> d	Bm	12 to 17 d	Bm
Measurement at 10.5 VDC	orat /o C	· VDC			
Temperature	o. u. <u>70.3</u>	_	~	Table IIIB	•
Input Voltage	,		DC ·		or Para. 5.2.3.3
Input Current			A.	Table IIIB	
Frequency, f _{meas}		54,40019 G		Table IIIB	
RF Output Power, P _{meas}			Bm	12 to 17 d	
	5 a			12 to 17 ti	Dill
Calculate Frequency Variati	ion, $\Delta f_V = f_{min}$				
Δf_V at 9.5 VDC or at 9.5		C = 72	MHz		
Δf_V at 10.5 VDC or at $\sqrt{6.9}$)C =06	MHz		
Δf_T at 10.0 VDC (= $f_{30^{\circ}C}$ - f_{Tn}	om)	= .00	MHz		
Calculate RF Output Power	Variation A	P., = P - P.,			
ΔP_V at 9.5 VDC or at 9.5		$C = \frac{130^{\circ}C}{4}$	} _dB		
ΔP_V at 10.5 VDC or at $_{6}$)C =	dB		
ΔP_T at 10.0 VDC (= $P_{30^{\circ}C}$ - P_T		=			
	l nom/		w		•
		Acce	pt	Reject	
Test Performed by	uriok)	Date	6-4-98	-	
Litton Q.A.	M 60	Date	JUN 1 5 1998	<u> </u>	
CODE IDENT NO.	SIZE	NUMBER	DE	V CIERT 4	OF 69
56348	A	1300823	RE B3	1	1 Or 00

B3

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET \sqrt{R} FINAL DATA SET \sqrt{R}

LITTON TYPE LS E 9036 AH/A	,	AESD 13366106
SERIAL NUMBER: 85026	QUAL TEST N/A	ACCEPT TEST
Temperature Extreme Testing at Tmax, Ref	Test Para. 5.2.5.4	
SPECIFICATION	MEASUREMENT AT Tm	ax ±1°C LIMIT
Measurement at Vop=10 VDC		·
Temperature	<u> </u>	Table IIIB
Input Voltage	/OVDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	<u>/8/.o</u> mA	Table IIIB
Input Power, P _{diss}	<u>/. 8/0</u> W DC	Pdiss max
Frequency, f _{Tmax}	54.40127 GHz	Table IIIB
RF Output Power, P _{Tmax}	/2./ dBm	12 to 17 dBm
-		;
Frequency and RF Output Power Variation	With Voltage, Ref. Test Par	
Measurement at 9.5 VDC or at V		
Temperature	<u> </u>	Table IIIB
Input Voltage	<u>9.5</u> VDC	9.5 VDC or Para 5.2.3.2
nput Current	/79.0 mA	Table IIIB
requency, f _{meas}	54. 40/25 GHz	Table IIIB
RF Output Power, P _{meas}	/2. / dBm	12 to 17 dBm
•		
Measurement at 10.5 VDC or at	VDC	
Temperature	<i>44</i> °C	Table IIIB
Input Voltage	10.5 VDC	10.5 VDC or Para 5.2.3.3
Input Current	179. 6 mA	Table IIIB
Frequency, f _{meas}	54, 401 27 GHz	Table IIIB
RF Output Power, P _{meas}	/2./ dBm	12 to 17 dBm
Id Output I Ower, I meas		
Calculate Frequency Variation, $\Delta f_V = f_{meas}$	- f _{Tmax} :	
Δf _v at 9.5 VDC or at 9.5 VDC	1.77	Iz
Δf _V at 10.5 VDC or at 10.5 VDC		Iz
Δf_T at 10.0V (= f_{Tmax} - f_{Tnom})	= /.2 MI	
Zur at 10.0 v ('I'max 'Inom')		•
Calculate RF Output Power Variation, ΔP _V	$= P_{meas} - P_{Tnom}$:	
ΔP _v at 9.5 VDC or at <u>9.5</u> VDC		
ΔP _V at 10.5 VDC or at <u>ro.5</u> VDC		
ΔP_T at 10.0 VDC (= P_{Tmax} - P_{Tnom})	=Z dB	
ALT at 10.0 VDC (-1 Tmax 1 Tnom)		•
Acc	ept Reject	
Test Performed by <u>58</u>	Date 6-3-92	
itton Q.A.	Date JUN 1 5 1	
LITTON)		
M 60	1	
CODE IDENT NO. SIZE	NUMBER	REV SHEET 42 OF 68
56348 A	1300823	B3
LITTON / SOLID STATE DIV	ISION / 3251 OLCOTT ST /	SANTA CLARA, CA 95054

TEST DATA SHEET 7.7 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET A FINAL DATA SET

INITIAL	DATA SET //A FINAL DATA SET	
LITTON TYPE LS E 9036 AH/A SERIAL NUMBER: 85026	QUAL TEST // A ACCEPT TEST _	36610- 6
Power Supply Immunity, Ref. Test Para, 5.2	.4	
SPECIFICATION	MEASUREMENT AT Tnom ±1℃	LIMIT
Initial Measurement		
Temperature	22. ℃	Table IIIB
Input Voltage	70 VDC	10.0 ± 0.2 VDC
Input Current	180.4 mA	Table IIIB
Input Power	1.804 WDC	Pdiss max
Frequency (f _{Tnom})	54. 39994 GHz	Table IIIB
RF Output Power	12.나 dBm	12 to 17 dBm
Frequency Setting Accuracy, Δf_s (= f_{Taom} - F_c) MHz	
Performance After Short Circuit on Power S	Supply: Ref Test Para 5.2.4.2	
Input Voltage	/o VDC	10.0 ± 0.2 VDC
Input Current	180.5 mA	Table IIIB
Input Power	1. 805 WDC	Pdiss max
Frequency	54.400 03 GHz	Table IIIB
RF Output Power	/2.4 dBm	12 to 17 dBm
Over Voltage: Ref Test Para 5.2.4.3		
Overvoltage Input Voltage	2 8 VDC	+28V
Performance After Input Overvoltage		
Input Voltage	· /o VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	/80.2 mA	Table IIIB
Input Power	/.802 W DC	Pdiss max
Frequency	54.3999 GHz	Table IIIB
RF Output Power		12 to 17 dBm
Reverse Polarity: Ref Test Para 5.2.4.4		
Reverse Input Voltage	VDC	$-10.0 \pm 0.2 \text{ VDC}$
Performance After Reverse Input Voltage		
Input Voltage	/ <i>o</i> VDC	10.0 ± 0.2 VDC
Input Current	/80.4 mA	Table IIIB
Input Power	1.804 WDC	Pdiss max
Frequency, f _{Taom}	54.39995 GHz	Table IIIB
RF Output Power		12 to 17 dBm
Frequency Setting Accuracy, Δf_S (= f_{Taom} - F_c) + .05 MHz	
	Accept Reject	
Test Performed by S3 UTTOA	Date <u>6-5-98</u>	
Litton Q.A. M 60	DateUN 1 5 1998	
CODE IDENT NO. SIZE	NUMBER REV	V SHEET 43 OF 68
56348 A	1300823 B3	
	E DIVISION / 3251 OLCOTT ST / SA	NTA CLARA, CA 95054

TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET A/A FINAL DATA SET

INI	HAL DATA SET N/A	_ FINAL DATA SET _	
LITTON TYPE LS <u>E 90</u> SERIAL NUMBER:	36 AH/A QUAL TE	st NA	AESD 1336610- C. ACCEPT TEST
Frequency and Power Hyst	teresis: Ref Test Para. 5.8		
TEST DESCRIPTION		LIMI	TS
1. Initial Perfo	rmance at Tnom ± 1°C		·
Temperature Frequency, f_{Tnom} RF Output Power, P_{Tnom} Input Voltage, V_B Input Current, I_B Frequency Setting Accuracy $\Delta f_S (= f_{Tnom} - F_o)$	22 °C 54.40°07 GHz 72.3 dBm 70 VDC 780.4 mA 69, 07 MHz	Table 12 to	17 dBm 0.2 VDC
2. Performance	e at Tnom ± 1°C after +60°C	C soak.	÷
Temperature Arequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	22 °C 54.3999 GHz 12.4 dBm 10 VDC 180.6 mA	Table 12 to V _B ±	a ± 1°C IIIB 17 dBm .005 VDC IIIB
3. Performanc	e at Tnom ± 1°C after -30°C	soak.	
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	22 °C · 54\$600/2 GHz /2.3 dBm /0 VDC /80./ mA	Table 12 to V _B ±	n±1°C HIIB 17 dBm .005 VDC
Calculate frequency variate Δf_H after 60°C soak = Δf_H after -30°C soak =	ion, $\Delta f_H = f_{\text{meas}} - f_{\text{Tnom}}$:		•
Calculate RF output power $\Delta P_H = \text{after } 60^{\circ}\text{C soak} = \Delta P_H = \text{after } -30^{\circ}\text{C soak} = 0$	r variation, $\Delta P_H = P_{meas} - P_{Tree}$	dB dB	
Test Performed by Litton Q.A	83 (Internal of the second of	Date	Reject S SS8
CODE IDENT NO. 56348	SIZE NUMI A 1300	!	SHEET 58 OF 68
	ID STATE DIVISION / 325	·	CLARA, CA 95054

56348

TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET // A FINAL DATA SET //

INITIAL DA	ATA SET N/A FINAL DATA	A SET						
LITTON TYPE LS E 9036 AC SERIAL NUMBER: 85026	H/A QUAL TEST N/A	AESD 1336610- 6 ACCEPT TEST						
Frequency Pulling and Load VSWR 2.5:1 max. all phases. Ref Test Para. 5.9								
TEST DESCRIPTION		LIMITS						
Initial Measurement. Ref Test Par.: Temperature Frequency RF Output Power Input Voltage Input Current Reference test. Ref. Test Para. 5.9.3	22 °C 54.40.74 GHz /2.2 dBm /0 VDC /80.3 mA	24°C ± 5°C Table IIIB 12 to 17 dBm 10 ± 0.2 VDC Table IIIB						
Frequency, f _{Ref} RF Output Power, P _{Ref}	54.40083GHz -6.8 dBm	Table IIIB						
Load Pulling Test. Ref. Test Para. 5	5.9.4							
	54.40084 GHz 54.40082 GHz -6.7 dBm -7.3 dBm	Table IIIB Table IIIB						
Calculate maximum positive (f_{meas} i $\Delta f_L = f_{meas} - f_{Ref}$:	s greater than f_{Ref}) and negative (f_{mea}	s is less than f _{Ref}) frequency variation,						
Maximum Positive $\Delta f_L =$ Maximum Negative $\Delta f_L =$								
Calculate maximum positive (P_{meas} Variation, $\Delta P_L = P_{meas} - P_{Ref}$:	is greater than P_{Ref}) and negative (P_{m}	ess is less than P _{Ref}) RF Output Power						
Maximum Positive $\Delta P_L =$ Maximum Negative $\Delta P_L =$	dB dB							
	Accept Reject							
Test Performed by Litton Q.A.		- 5 - 9 8 UN 15 1998						
CODE IDENT NO. SIZI	E NUMBER I	REV SHEET 60 OF 68						

B3

1300823

TEST DATA SHEET 7.23B FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET

IN	VITIAL DATA SET NA FINAL I	
LITTON TYPE LS <u>E 9</u> SERIAL NUMBER: <u>\$</u>	036 AH /A POD 26 QUAL TEST N/	AESD 1336610- C ACCEPT TEST
Frequency Pulling and L	oad VSWR 2.5:1 max. all phases. Ref Te	st Para. 5.9
TEST DESCRIPTION		LIMITS
Output Open and Short.	Ref. Test Para. 5.9.5	
Temperature Frequency: RF Output Power: Input Voltage Input Current: Results:	22 °C 54,40079 GHz /2.2 dBm /0 VDC /80.3 mA Acceptable	24°C ± 5°C Table IIIB 12 to 17 dBm 10 ± 0.2 VDC Table IIIB No Damage or Degradation
	quency Accuracy (both positive and negations Δf_S from 7.2, 7.7, and 7.22A) + Δf_H (f	-
Maximum $\Delta f_{acc} =$	0.(6 MHz (Positive) - 0.06 MHz (Negative)	Table IIIB Table IIIB
	ort-term Frequency Stability (both positive worst-case Δf_V and Δf_T from 7.2 thru 7.6):	- ·
Maximum $\Delta f_{V+T} =$		Table IIIB Table IIIB
Coloulate maximum over	erall RF Output Power Stability (both posit	in and manatival
		6) + ΔP_H (from 7.22A) + ΔP_L (from 7.23A):
$\Delta P_{OV} = \Delta P_{V} + \Delta P_{T}$ (Use	e worst-case ΔP_V and ΔP_T from 7.2 thru 7.0 O-3 dB (Positive)	6) + ΔP_H (from 7.22A) + ΔP_L (from 7.23A): 1.0 dB
$\Delta P_{OV} = \Delta P_{V} + \Delta P_{T}$ (Use	e worst-case ΔP_V and ΔP_T from 7.2 thru 7.0 $\frac{0.3}{-0.7} \text{ dB (Positive)}$ $\frac{0.3}{-0.7} \text{ dB (Negative)}$	6) + ΔP _H (from 7.22A) + ΔP _L (from 7.23A): 1.0 dB -1.0 dB
$\Delta P_{OV} = \Delta P_{V} + \Delta P_{T} $ (Use Maximum $\Delta P_{OV} =$	e worst-case ΔP_V and ΔP_T from 7.2 thru 7.0 $\frac{0.3}{-0.7}$ dB (Positive) Accept Reject Date	6) + ΔP _H (from 7.22A) + ΔP _L (from 7.23A): 1.0 dB -1.0 dB
$\Delta P_{OV} = \Delta P_{V} + \Delta P_{T}$ (Use Maximum $\Delta P_{OV} =$	e worst-case ΔP_V and ΔP_T from 7.2 thru 7.0 $\frac{0.3}{-0.7}$ dB (Positive) Accept $\underline{\hspace{1cm}}$ Reject $\underline{\hspace{1cm}}$ Date	6) + ΔP _H (from 7.22A) + ΔP _L (from 7.23A): 1.0 dB -1.0 dB

		<u> </u>
		<u> </u>

Channel 7 LO

DRO (P/N: 1336610-7, S/N: 85017)

			•
)
			_
		i	

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET _____ FINAL DATA SET ____

LETTON TIME LOK GOT AT A	
LITTON TYPE LS <u>E-9076 AU 1A</u> AESD 1336610-7	
SERIAL NUMBER: 85019 QUAL TEST ACCEPT TEST V	
Basic Electrical Test; Ref. Test Para. 5.2.2	
SPECIFICATION MEASUREMENT AT Tnom ±1°C LIMIT	
Measurement at Vop=10 VDC Temperature 23 °C Table IIIB	
Tomporatato Table MD	
Input Voltage $\frac{10}{10.0 \pm 0.2}$ VDC 10.0 ± 0.2 VDC	
Input Current mA Table IIIB	
Input Power, P _{diss} max	
Frequency, f _{Tnom}	
RF Output Power, P _{Tnom} 11.5 to 17 dBm	
Frequency Setting Accuracy, .17 MHz	
$\Delta f_s = f_{Taom} - F_o$	
Frequency and RF Output Power Variation With Voltage, Ref. Test Para 5.2.3 Measurement at 9.5 VDC or at VDC Temperature 23_ °C	2
Measurement at 10.5 VDC or atVDC Temperature°C	.3
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tnom}$,	
Δf_V at 9.5 VDC or at VDC = MHz	
Δf_V at 10.5 VDC or at VDC = MHz	
Calculate RF Output Power Variation, $\Delta P_V = P_{meas} - P_{Tnorm}$	
ΔP_{V} at 9.5 VDC or at VDC = dB	
ΔP_{V} at 10.5 VDC or at VDC = dB	
Fest Performed by Litton QA Accept Reject Date Accept Reject Date	
Miles In the second	

1	CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68	
	56348	Α	1300823	C		
•						

TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS

INITI	IAL DATA SET	FINAL FINAL	L DATA SET	V	,
LITTON TYPE LS E - 90 SERIAL NUMBER: VSC	036 AJ/A	QUAL TEST	AES	SD 1336610- 7 CEPT TEST	,
Temperature Testing at T=1	0°C, Ref. Test	Para. 5.2.5.1			
SPECIFICATION	MEA:	SUREMENT AT T=1	0° ±1°C	<u>LIMIT</u>	
Measurement at Vop=10 VI	OC.				
Temperature		11 °C		10° ± 1°C	
Input Voltage		10.0 VD0	-		
Input Current		175 mA	-	10.0 ± 0.2 VDC	
Input Power, P _{diss}		1,75 WD	·C	Table IIIB	
Frequency, f _{10-C}				Pdiss max	
				Table IIIB	
RF Output Power, P _{10-C}		1Z.(1dBm	ı	11.5 to 17 dBm-	
Frequency and RF Output Po Measurement at 9.5 VDC or	ower Variation at V	With Voltage, Ref. Te	est Para 5.2.5.1		
Temperature		i°C		Table IIIB	
Input Voltage		9.5 VDC	•	9.5 VDC or Para. 5.2.3.2	
ut Current		173 mA		Table IIIB	
riequency, f _{meas}		54.93994 GHz		Table IIIB	
RF Output Power, Pmeas		121\ dBm		11.5 to 17 dBm	_
Measurement at 10.5 VDC o	rat	/DC			
Temperature		ll °C		Table IIIB	
Input Voltage		/0,5 VDC		10.5 VDC or Para. 5.2.3.3	2
Input Current				Table IIIB	,
Frequency, f _{meas}		54.93594 GHz		Table IIIB	
RF Output Power, Pmeas	•	1Z.1 dBm		11.5 to 17 dBm	
Calculate Frequency Variation	on. Afv = f			77.5 to 17 dbiii	
Δf _V at 9.5 VDC or at	VDC =	<i>r</i> n	MHz		
Δf _V at 10.5 VDC or at					
Δf_T at 10.0 VDC (= $f_{10^{\circ}\text{C}}$ - f_{Tnor}		- 73	_ MHz _ MHz		
Calculate RF Output Power \	Variation AP _V =	: P - P _{10.0} ·			
ΔP_V at 9.5 VDC or at	VDC =		dB	`	
			_		
ΔP _V at 10.5 VDC or at	VDC =		_ dB		
ΔP_T at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{Tn}	om) =		_ dB	•	
		Accep	/ .	•	
It Performed by D. WI	LLIAMS	Date $4/2$	6/59 Re	eject	
Litton O A	35		2 9 1999		,
	N18)	Date Fix	- 0 1003		
CODE IDENT NO.	SIZE	NUMBER	DEV	CULTE CO OF CO	 -7
56348	A	1300823	REV	SHEET 39 OF 68	

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

TEST DATA SHEET 7.4

INIT		CTIONAL PERFORMAN SET FINAL 1		V
LITTON TYPE LS <u>E -903</u>	,			D 1336610- 7
SERIAL NUMBER:&	5017	QUAL TEST		EPT TEST V
Temperature Extreme Testin	ng at Tmin,	Ref. Test Para. 5.2.5.2		
SPECIFICATION		MEASUREMENT A	Γ Tmin ±1°C	<u>LIMIT</u>
Measurement at Vop=10 VI	OC .			
Temperature		-/ °C		Table IIIB
Input Voltage		10.0 VDC		10.0 ± 0.2 VDC
Input Current		174 mA		Table IIIB
Input Power, P _{diss}		1,74 W DC	1	Pdiss max
Frequency, f _{Tmin}		54.93971 GHz	•	Table IIIB
PE Output Power P		1(, 5 dBm		
RF Output Power, P _{Tmin}		(DIII		11.5 to 17 dBm
Frequency and RF Output I	Power Variat	tion With Voltage, Ref. Tes	st Para 5.2.5.2	
Measurement at 9.5 VDC or				
Temperature		-1 °C		Table IIIB
Input Voltage		9.5 VDC		9.5 VDC or Para 5.2.3.2
Input Current		171 mA		Table IIIB
quency, f _{meas}		54.93971 GHz		Table IIIB
KF Output Power, P _{meas}		11.5 dBm		
rd Output Fower, F meas		dbiii		11.5 to 17 dBm
Measurement at 10.5 VDC	or at —	VDC		
Temperature	J. u	1 °c		Table IIIB
Input Voltage		10.5 VDC		10.5 VDC or Para 5.2.3.3
Input Current		172 mA		
		0.0		Table IIIB
Frequency, f _{meas}		- OII2		Table IIIB
RF Output Power, P _{meas}		11. SdBm		11.5 to 17 dBm
Calculate Frequency Variati	on Af — f	f	•	
			6	
Δf _V at 9.5 VDC or at		OC =	MHz	
Δf_V at 10.5 VDC or at		DC =	∅ MHz	
Δf_T at 10.0 VDC (= f_{Tmin} - f_{Tn}	om)	<u> </u>	46_ MHz	
Calculate RF Output Power		$P_V = P_{meas} - P_{Tmin}$:	A	
ΔP_V at 9.5 VDC or at		OC =	\mathcal{L} dB	
ΔP_V at 10.5 VDC or at	\ VI	OC =	Ø dB	
ΔP_T at 10.0 VDC (= P_{Tmin} - P_T		= -	.7 dB	
	noin)		<u> </u>	
	Ad	ccept Reject	.	
t Performed by D.W	ILLIAMS	Date 4/	26/99	
icton Q.A.	FSS	D .	9 1099	
	W18	- 		
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 40 OF 68
56348	Α	1300823	С	

TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS

	ET FINAL D	_	_
LITTON TYPE LS &-9036 AU/A		AESD 1336610-	
SERIAL NUMBER: 8507	QUAL TEST		-
Temperature Testing at T=30°C, Ref. Test	Para. 5.2.5.3		•
SPECIFICATION	MEASUREMENT AT	`T=30° ±1°C	
Measurement at Vop=10 VDC			
Temperature	31 ℃	200 - 100	
Input Voltage	/0.0 VDC	30° ± 1°C	
Input Current		10.0 ± 0.2 VDC	
		Table IIIB	
Input Power, P _{diss}		Pdiss max	
Frequency, f _{30-C}	54,94020 GHz	Table IIIB	
RF Output Power P _{30-C}	12.3_dBm	11.5 to $17 \mathrm{dBm}$	
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at	With Voltage, Ref. Test	Para 5.2.5.3	
Temperature	31 °C	Table IIIB	
Input Voltage	$\frac{9.5}{\text{VDC}}$	9.5 VDC or Para. 5.2.3.2	1
Input Current	175 mA	Table IIIB	٤
Frequency, f _{meas}	54,94020 GHz	Table IIIB	
RF Output Power, P _{meas}	12.3 dBm		_
Ta Gatpat I Gwol, I meas		11.5 to 17 dBm	
Measurement at 10.5 VDC or at	VDC		
Temperature	31 ℃	Table IIIB	
Input Voltage	/0.5 VDC	10.5 VDC or Para. 5.2.3	3
Input Current	175 mA	Table IIIB	.5
Frequency, f _{meas}	54.94020 GHz	Table IIIB	
RF Output Power, P _{meas}	12.3 dBm	11.5 to 17 dBm	
Calculate Frequency Variation, $\Delta f_V = f_{meas}$	4		
Afv at 9.5 VDC or at VDC	= 0	MHz -	
\(\DC \) or at \(\bullet \) VDC	=	MHz	
Δf_T at 10.0 VDC (= $f_{30^{\circ}C}$ - f_{Tnom})	= 4,63	MHz	
Coloulese REO	n n		
Calculate RF Output Power Variation, ΔP_V			
AP _v at 9.5 VDC or at VDC	= 10	dB	
ΔP _V at 10.5 VDC or at VDC	=	dB	
ΔP_T at 10.0 VDC (= $P_{30^{\circ}C}$ - P_{Tnom})	= -1.1	dB	
Test Performed by Cost I Ams Litton Q.A.	Accept Date 4/26 Date APR 25	Reject	
CODE IDENT NO. SIZE	NUMBER	REV SHEET 41 OF 68	
56348 SIZE	NUMBER	REV SHEET 41 OF 68	

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET ______ FINAL DATA SET _____

				
LITTON TYPE LS <u>E - 90</u> 3		·		D 1336610-7
SERIAL NUMBER: 850	017	QUAL TEST	ACC	EPT TEST
Temperature Extreme Testin	ng at Tmax,	Ref. Test Para. 5.2.5.4		
<u>SPECIFICATION</u>		MEASUREMENT A	Γ Tmax ±1°C	<u>LIMIT</u>
Measurement at Vop=10 VI	DC			
Temperature		<u>43</u> ℃		Table IIIB
Input Voltage				10.0 ± 0.2 VDC
Input Current		<u>/77</u> mA		Table IIIB
Input Power, Pdiss		1,77 W DC	1	Pdiss max
Frequency, f _{Tmax}		54.94040 GHz		Table IIIB
RF Output Power, Prmax		12. Z dBm		11.5 to 17 dBm
Frequency and RF Output P	ower Variati	ion With Voltage, Ref. Test	t Para 5.2.5.4	
Measurement at 9.5 VDC or				•
Temperature		- 1/3°C		Table IIIB
Input Voltage		9.5 VDC		9.5 VDC or Para 5.2.3.2
it Current				Table IIIB
requency, f _{meas}		54.94040 GHz		Table IIIB
RF Output Power, P _{meas}		/2. 2_ dBm		11.5 to 17 dBm
ra output rower, r meas				11.5 to 17 dBM
Measurement at 10.5 VDC	or at	VDC		
Temperature		<u>43_</u> ℃		Table IIIB
Input Voltage		/0,5VDC		10.5 VDC or Para 5.2.3.3
Input Current		176 mA		Table IIIB
Frequency, f _{meas}		54,94040 GHz		Table IIIB
RF Output Power, Pmeas		12.2 dBm		11.5 to 17 dBm
Calculate Frequency Varioti	on Af — f	f.		
Calculate Frequency Variati Δf _V at 9.5 VDC or at	$1011, 2210 = 1_{m_0}$	//)	MII.	
		OC =	MHz	
Δf_V at 10.5 VDC or at		$C = \frac{\varphi}{1 + \frac{\varphi}{2}}$	MHz	
Δf_T at 10.0V (= f_{Tmax} - f_{Tnom})		= 4,23	_ MHz	
Calculate RF Output Power	Variation A	D. = D . D		. •
		/	dЪ	
ΔP_V at 9.5 VDC or at		OC =	. dB	
ΔP_V at 10.5 VDC or at		OC =	dB	
ΔP_T at 10.0 VDC (= P_{Tmax} -P	T _{nom})	=	dB	•
	A	ccept Reject		
β Performed by β .	WILLI AMS		199	
Litton Q.A.				
LIMOR Q.A.	M18)	Date App 2	9 1000	
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 42 OF 68
56348	A	1300823	C	
300.0	L)	100020		

TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS

INI	FUNCTI TIAL DATA SET	ONAL PERF			/		
LITTON TYPE LS 6 - 90 SERIAL NUMBER: \$5	736 AS)A	QUAL TES		- -	AESD 133661 ACCEPT TES		_
Frequency and Power Hys	teresis: Ref Test	Para. 5.8					-
TEST DESCRIPTION				LIM	<u>TTS</u>		
1. Initial Perfo	ormance at Tnom:	± 1°C					
Temperature Frequency, f_{Tnom} RF Output Power, P_{Tnom} Input Voltage, V_B Input Current, I_B Frequency Setting-Accuracy $\Delta f_S (= f_{Tnom}-F_o)$	23 54,94027 12,1 10, 176,5	- °C _GHz _dBm _ VDC _ mA _MHz		Table	to 17 dBm 0.2 VDC		
2. Performance	e at Tnom ± 1°C a	after +60°C so	oak.				
Temperature ! quency, f _{meas} Rr Output Power, P _{meas} Input Voltage Input Current	54.94030 12.11 10.00	°C GHz dBm VDC mA		Table 11.5 (to 17 dBm .005 VDC)
3. Performance	e at Tnom ± 1°C a	after -30°C so	ak.				
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	54.94024 12.1 10.00	°C GHz dBm VDC mA		Table 11.5 t	o 17 dBm .005 VDC		
Calculate frequency variation Δf _H after 60°C soak = Δf _H after -30°C soak =	on, $\Delta f_{H} = f_{meas} - f_{T}$	+ .03	MHz MHz	٠			
Calculate RF output power $\Delta P_H = \text{after } 60^{\circ}\text{C soak} = \Delta P_H = \text{after } -30^{\circ}\text{C soak} = 0$	variation, $\Delta P_H = I$	P _{meas} - P _{Tnom} :	_dB _dB				
Litton Q.A.	NILLIAMS		Accept	4/28/59 APR 29	Reject - 1999 		_
CODE IDENT NO. 56348	SIZEW18	NUMBER 1300823		REV C	SHEET 58 OF	68	

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS

	INITIAL DATA	SET FIN.	IAL DATA SET
LITTON TYPE LS E SERIAL NUMBER:		QUAL TEST	AESD 1336610-7 ACCEPT TEST
Frequency Pulling and	i Load VSWR 2.5	:1 max. all phases. Re	ef Test Para. 5.9
TEST DESCRIPTION	<u>1</u>		<u>LIMITS</u>
Initial Measurement. In Temperature Frequency RF Output Power Input Voltage Input Current Reference test. Ref. To Frequency, fref RF Output Power, Preduction of Preducti	est Para. 5.9.3 54.94015 54.94018	22 °C 4.94015 GHz 12.0 dBm 10.0 VDC 177 mA	24°C ± 5°C Table IIIB 11.5 to 17 dBm 10 ± 0.2 VDC Table IIIB
Maximum Frequency, Minimum Frequency, Maximum RF Output Minimum RF Output	f _{meas} 54. f _{meas} 54. Power P _{meas} Power, P _{meas}	940/82 GHz 940/67 GHz -12. L dBm -13. O dBm	Table IIIB Table IIIB gative (f_{meas} is less than f_{Ref}) frequency variation,
	$f_L = \mathcal{L}$ ositive (P_{meas} is gr	$032 \bigcirc 000$ MHz $032 \bigcirc 000$ MHz 0000 MHz eater than P_{Ref}) and neg	egative (P_{meas} is less than P_{Ref}) RF Output Power
Variation, $\Delta P_L = P_{meas}$ Maximum Positive ΔP_{meas} Maximum Negative ΔP_{meas}	P _L =	+,7 dB -,2 dB	
_sst Performed by	P.WILLIA		Pate 4/26/99
Litton Q.A. CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV SHEET 60 OF 68

TEST DATA SHEET 7.23B

		SET FINAL		
LITTON TYPE LS E-SERIAL NUMBER:		QUAL TEST		AESD 1336610-7 ACCEPT TEST
Frequency Pulling and I	oad VSWR 2.5	:1 max. all phases. Ref To	est Para. 5.9	
TEST DESCRIPTION			LIM	<u>ITS</u>
Output Open and Short.	Ref. Test Para.	5.9.5		
Temperature Frequency: RF Output Power: Input Voltage Input Current: Results:	22 54.940 1 12.0 177	dBm	Table 11.5 10 ± Table	C±5°C e IIIB to 17 dBm 0.2 VDC e IIIB Damage or Degradation
		by (both positive and negation 2, 7.7, and 7.22A) + Δf_H (1)		- Δf _L (from 7.23A):
Maximum $\Delta f_{acc} =$	<u>+.33</u>		Table Table	·
		acy Stability (both positive and Δf_T from 7.2 thru 7.6):		,
Maximum $\Delta f_{V+T} =$	-,4	MHz (Positive) MHz (Negative)	Table Table	
		Power Stability (both posity and ΔP_T from 7.2 thru 7.6		ve), n 7.22A) + ΔP _L (from 7.23A):
Maximum $\Delta P_{OV} =$	9	dB (Positive) dB (Negative)	1.0 dI -1.0 d	
	A	ccept Reject		
est Performed by	. WILLIAM	Date	4/22/19	9
Litton Q.A.	F3S M/18	Date	APR 2 9	1999-
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV C	SHEET 61 OF 68

Channel 8 LO

DRO (P/N: 1336610-8, S/N: 85074)

~	-
_	
<u> </u>	_
55	

TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET ______ FINAL DATA SET ______

LITTON TYPE LSE 4036 AK	A	AESD 13366108
SERIAL NUMBER: 850 74	QUAL TEST \checkmark	ACCEPT TEST NA
Basic Electrical Test; Ref. Test Para. 5.2.2	2	
SPECIFICATION	MEASUREMENT AT I	nom ±1°C LIMIT
Measurement at Vop=10 VDC		
Temperature	°C	Table IIIB
Input Voltage	VDC VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	189_ mA	Table IIIB
Input Power, P _{diss}	W DC	P _{diss} max
Frequency, f _{Tnom}	55.50036 GHz	Table IIIB
RF Output Power, P _{Tnom}	12.66 dBm	12 to 17 dBm
Frequency Setting Accuracy,	0.36 MHz	
$\Delta f_S = f_{Tnom} - F_o$		
Δ15 (- 1Tnom-1 o)		
Frequency and RF Output Power Variation	n With Voltage, Ref. Test Para	5.2.3
Measurement at 9.5 VDC or at 9.5		
Temperature	22 °C	Table IIIB
Input Voltage	9.5 VDC	9.5 VDC or Para. 5.2.3.2
put Current		Table IIIB
•		Table IIIB
Frequency, f _{meas}	55.50036 GHz	12 to 17 dBm
RF Output Power, P _{meas}	12.66 dBm	12 to 17 dbiii
Management at 10.5 VDC and	VDC	
Measurement at 10.5 VDC or at 10.5	-	Table IIIB
Temperature		
Input Voltage	VDC	10.5 VDC or Para. 5.2.3.3
Input Current	<u>188</u> mA	Table IIIB
Frequency, f _{meas}	<u>53.50036</u> GHz	Table IIIB
RF Output Power, P _{meas}	<u>12.66</u> dBm	12 to 17 dBm
Calculate Francisco Variation A6 m6	c	
Calculate Frequency Variation, $\Delta f_V = f_{mea}$	s - ITnom	
$\Delta f_{\rm V}$ at 9.5 VDC or at 9.5V	/DC =	_MHz
	/DC =	MHz
210 at 10.5 VDC of at 10.50	/ DC =	
Calculate RF Output Power Variation, ΔF	$P_{V} = P_{\text{meas}} - P_{\text{Tnom}}$	
ΔP _V at 9.5 VDC or at 9.5 V	/DC =	_dB
-	VDC =	_dB
2. V 4. (V.) V 50 0. 21 <u>170 10 0</u>		-
	Accept Reject	
est Performed by	Date 4-17-98	
citton QA	Date APR 2 4 1998	
	Date MIN 2 1 1000	
(2)		DD1/ 01 02 07 02
CODE IDENT NO. SIZE	NUMBER	REV SHEET 38 OF 68
56240 A	1300823	R3

TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS

INITIAL DA	TA SET N/A FINAL DATA	SET
LITTON TYPE LS £ 9036 A SERIAL NUMBER: 85074	V/A QUAL TEST	AESD 1336610- 8 ACCEPT TEST WA
Temperature Testing at T=10°C, Re	ef. Test Para. 5.2.5.1	
SPECIFICATION	MEASUREMENT AT T=10° ±1°C	LIMIT
Measurement at 9.5 VDC or at		10° ± 1°C 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm 5.2.5.1 Table IIIB 9.5 VDC or Para. 5.2.3.2 Table IIIB Table IIIB
RF Output Power, P _{meas} Measurement at 10.5 VDC or at		Table IIIB 10.5 VDC or Para. 5.2.3.3 Table IIIB Table IIIB 12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = \Delta f_V = 0.5$ VDC or at $\Delta f_V = 0.5$ Calculate Frequency Variation, Δ	$= f_{\text{meas}} - f_{10^{\circ}\text{C}}:$ $VDC = $	

Calculate RF Output Power Variation. $\Delta P_V = P_{\text{meas}} - P_{10^{\circ}\text{C}}$:

 ΔP_V at 9.5 VDC or at $\underline{9.5}v$ VDC = ΔP_V at 10.5 VDC or at 10.5 ν

dBdB0 VDC =

 ΔP_T at 10.0 VDC (= $P_{10^{\circ}C}$ - P_{Tnom})

<u>0.14</u> dB

Test Performed by Litton Q.A.

Accept ____ Reject _ Date 4-17-98 Date APR 2 / 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 39 OF 68
56348	A	1300823	B3	

TEST DATA SHEET 7.4 FUNCTIONAL PERFORMANCE TESTS SHITTAL DATA SET 1.24 FINAL DATA SET

INITIAL DATA SET	<u> </u>	INAL L	AIASEI _		
LITTON TYPE LSE 9036AL/A SERIAL NUMBER: 85074	QUAL TEST			0 1336610- 😵 EPT TEST	N/A
Temperature Extreme Testing at Tmin, Ref	Test Para. 5.2.	5.2			
SPECIFICATION	MEASUREM	ENT AI	Tmin ±1°C	LIMIT	
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmin}	_2 	°C VDC mA W DC GHz		Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB	2
RF Output Power, P _{Tmin}	12.86	dBm		12 to 17 dBm	
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at V Temperature 'nput Voltage	_	Ref. Tes .°C VDC	t Para 5.2.5.2	Table IIIB 9.5 VDC or Par	ra 5.2.3.2
nput Current	186	mA		Table IIIB	
Frequency, f _{meas}	55.49754	GHz		Table IIIB	
RF Output Power, P _{meas}	12.86	dBm		12 to 17 dBm	
Measurement at 10.5 VDC or at 10.5	VDC				
Temperature		.°C		Table IIIB	
Input Voltage	10.5	VDC		10.5 VDC or Pa	ara 5.2.3.3
Input Current	186	mA		Table IIIB	
Frequency, f _{meas}	<u>55.49754</u>	GHZ		Table IIIB	
RF Output Power, P _{meas}	12.86	gBm		12 to 17 dBm	
Calculate Frequency Variation, $\Delta f_V = f_{meas} - \Delta f_V$ at 9.5 VDC or at 9.5 VDC		0	MHz		
Δf_V at 10.5 VDC or at 10.5 VDC	=		MHz		
Δf_T at 10.0 VDC (= f_{Tmin} - f_{Tnom})		- 2.9	R2 MHz	•	
Calculate RF Output Power Variation, $\Delta P_V = \Delta P_V = 0.5$ VDC or at $\underline{Q} = 0.5$ VDC or $\Delta P_V = 0.5$ VDC or at $\underline{Q} = 0.5$ VDC $\Delta P_T = 0.0$ VDC $\Delta P_T $	=				
Tmin T Tnom			<u> </u>		
Accept sest Performed by Litton Q.A.	Date Date		7-98 4 1998		
CODE IDENT NO. SIZE	NUMBER		REV	SHEET 40 OF	68
56348 A	1300823		B3		

TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET _____ FINAL DATA SET _____

LITTON TYPE LSE 9036 AK/A SERIAL NUMBER: 85074	QUAL TEST	ACCEPT TEST
Temperature Testing at T=30°C, Ref. Test	Para. 5.2.5.3	
SPECIFICATION	MEASUREMENT AT T	=30° ±1°C LIMIT
Measurement at Vop=10 VDC		
Temperature	<u>3o_</u> ℃	$30^{\circ} \pm 1^{\circ}C$
Input Voltage	VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	190 mA	Table IIIB
Input Power, P _{diss}	W DC	Pdiss max
Frequency, f _{30°C}	55.50109 GHz	Table IIIB
RF Output Power, P _{30°C}	12.46 dBm	12 to 17 dBm
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at	With Voltage, Ref. Test Pa	ra 5.2.5.3
Temperature	- 00	Table HID
Input Voltage		Table IIIB
Input Current		9.5 VDC or Para. 5.2.3.2
Frequency, f _{meas}	IRE MA	Table IIIB
RF Output Power, P _{meas}	55.50109 GHz	Table IIIB
R. Output Power, Pmeas	<u>12.46</u> dBm	12 to 17 dBm
Measurement at 10.5 VDC or at 10.5	VDC	
Temperature	<u></u> °C	Table IIIB
Input Voltage	VDC	10.5 VDC or Para. 5.2.3.3
Input Current		Table IIIB
Frequency, f _{meas}	55.50109 GHz	Table IIIB
RF Output Power, P _{meas}	<u>19.46</u> dBm	12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas}$	f _{30°C} :	
Δf_V at 9.5 VDC or at $\underline{q.5}$ VDC =		I z
Δf_V at 10.5 VDC or at 10.5 VDC =	MI	l z
Δf_T at 10.0 VDC (= $f_{30^{\circ}C}$ - f_{Tnom})	<u> </u>	łz
Calculate RF Output Power Variation, ΔP _V	= P	
ΔP_v at 9.5 VDC or at 9.5 VDC =		
ΔP_V at 10.5 VDC or at 10.5 VDC =		
ΔP_T at 10.0 VDC (= $P_{30^{\circ}C}$ - P_{Tnom}) =		
21 dc 10.0 v 20 (130°C -1 Tnom)	<u>-0.2</u> dB	
_	Accept	Reject
Test Performed by	Date <u>H-17-</u>	7.8
Litton Q.A.	Date APR 2 4 19	90
82		
CODE IDENT NO. SIZE	NUMBER	REV SHEET 41 OF 68

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET A FINAL DATA SET

INITIAL DATA	A SEI NA TINAL DATA	
LITTON TYPE LS £ 9036 AK/ SERIAL NUMBER: 85074	QUAL TEST	AESD 1336610- 8 ACCEPT TEST NA
Temperature Extreme Testing at Tmax,	Ref. Test Para. 5.2.5.4	
<u>SPECIFICATION</u>	MEASUREMENT AT Tma	ax ±1℃ LIMIT
Measurement at Vop=10 VDC		
Temperature	<u>цз</u> °С	Table IIIB
Input Voltage	VDC	$10.0 \pm 0.2 \text{ VDC}$
Input Current	mA	Table IIIB
Input Power, P _{diss}	1.91 W DC	Pdiss max ·
Frequency, f _{Tmax}	55.50095 GHz	Table IIIB
RF Output Power, P _{Tmax}	12.26 dBm	12 to 17 dBm
Frequency and RF Output Power Varia	tion With Voltage, Ref. Test Para	5.2.5.4
Measurement at 9.5 VDC or at 9.5		
Temperature	<u>u</u> 4 °C	Table IIIB
Input Voltage	#4.5 VDC	9.5 VDC or Para 5.2.3.2
¹nput Current		Table IIIB
requency, f _{meas}	55.50094 GHz	Table IIIB
RF Output Power, P _{meas}	12.26 dBm	12 to 17 dBm
Measurement at 10.5 VDC or at 10.5	5 VDC	
Temperature	<u>44</u> °C	Table IIIB
Input Voltage	VDC	10.5 VDC or Para 5.2.3.3
Input Current	189mA	Table IIIB
Frequency, f _{meas}	55.50093 GHz	Table IIIB
RF Output Power, P _{meas}	12.26 dBm	12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_V$	meas - f _{Tmax} .	
$\Delta f_{\rm V}$ at 9.5 VDC or at 9.5 V	DC =	z
$\Delta f_{\rm V}$ at 10.5 VDC or at 10.5 V	DC = MH	z
Δf_T at 10.0V (= f_{Tmax} - f_{Tnom})	= 0.60 MH	Z
Calculate RF Output Power Variation,	$\Delta P_V = P_{\text{meas}} - P_{\text{Tnom}}$:	
ΔP _V at 9.5 VDC or at 9.5 V	DC =	
· · · · · · · · · · · · · · · · · · ·	DC =	
ΔP_T at 10.0 VDC (= P_{Tmax} - P_{Tnom})	=	
	Accept Reject	_
Test Performed by	Date 4-17-6	T.S.
itton Q.A.	Date APR 2 4 199	B
2	NUMBER	DEV CHEET 42 OF 69
CODE IDENT NO. SIZE	NUMBER	REV SHEET 42 OF 68

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

TEST DATA SHEET 7.7 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET PINAL DATA SET

LITTON TYPE LS <u>E 9036</u> SERIAL NUMBER: <u>8507</u>	AL/A 4 QI	UAL TEST ACCEPT	AESD 1336610 TESTA	0- <u>8</u>	
Power Supply Immunity, Ref. To	est Para. 5.2.4				
SPECIFICATION		MEASUREMENT AT Troo	m ±1°C	LIMIT	
Initial Measurement					
Temperature		عا ℃		Table IIIB	
Input Voltage		VDC		10.0 ± 0.2 VDC	
Input Current		189 mA		Table IIIB	
Input Power		W DC		Pdiss max	
Frequency (f _{Tnom})		55.50010 GHz		Table IIIB	
RF Output Power	•	12.66 dBm		12 to 17 dBm	
Frequency Setting Accuracy, Δf _S	$(=f_{Tnom}-F_o)$	O,10MHz		•	
Performance After Short Circuit	on Power Supr	oly: Ref Test Para 5.2.4.2			
Input Voltage		VDC		10.0 ± 0.2 VDC	
Input Current				Table IIIB	
Input Power				Pdiss max	
Frequency		<u>£5.€0013</u> GHz		Table IIIB	
RF Output Power				12 to 17 dBm	٠,
Over Voltage: Ref Test Para 5,2,4	<u>4.3</u>				,
Overvoltage Input Voltage		28VDC		+28V	
Performance After Input Overvol	tage				
Input Voltage) O VDC		10.0 ± 0.2 VDC	
Input Current		<u>189</u> mA		Table IIIB	
Input Power		1.89 W DC		Pdiss max	
Frequency		55.50015GHz		Table IIIB	
RF Output Power		12.66 dBm		12 to 17 dBm	
Reverse Polarity: Ref Test Para	5.2.4.4				
Reverse Input Voltage		VDC		-10.0 ± 0.2 VDC	
Performance After Reverse Input	Voltage				
Input Voltage		10 VDC		10.0 ± 0.2 VDC	
Input Current		VDC 190 mA		Table IIIB	
Input Power		W DC		Pdiss max	
Frequency, f _{Tnom}		55.50012 GHz		Table IIIB	
RF Output Power		15.66 qBm		12 to 17 dBm	
Frequency Setting Accuracy, Δf_s	$(=f_{T_{nom}}-F_o)$	0.15 MHz			
	_	Accept Reject			
Test Performed by		Date 4-17-98			`
Litton Q.A.		Date APR 2 4 1998	•		
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 43 OF 68	
		I I	B3	STILLET 43 OF 00	!
56348	A	1300823	נט		

TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET FINAL DATA SET

	in in Diriting				_	
LITTON TYPE LS E 90	36 AL/A			AES	D 1336610- &	
	<i>5</i> 074	QUAL TEST _		_ ACC	EPT TEST	J/A
Frequency and Power Hyste	eresis: Ref Tes	st Para. 5.8				
TEST DESCRIPTION				LIMITS		
1. Initial Perfor	mance at Tnor	m ± 1°C				
Temperature	22	°C		Tnom ± 1°C		
Frequency, f _{Tnom}	<u>55.500</u>			Table IIIB		
RF Output Power, P _{Tnom}	12.66 189	dBm		12 to 17 dBr	n .	
Input Voltage, V _B	10	VDC		$10 \pm 0.2 \text{ VD}$	C	
Input Current, IB		mA		Table IIIB		
Frequency Setting Accuracy	y, <u>0.18</u>	MHz				
$\Delta f_{S} (= f_{Tnom} - F_{o})$						
2. Performance	at Tnom ± 1°	C after +60°C soak.				
Temperature	22.	_°C		Tnom ± 1°C		
Frequency, f _{meas}	55 500 30	GHz		Table IIIB		
RF Output Power, Pmeas	12.6	dBm		12 to 17 dBr	n	
Input Voltage	10	VDC		$V_{B} \pm .005 \text{ V}$	DC	
Input Current	189	_ mA		Table IIIB		
3. Performance	at Tnom ± 1°	C after -30°C soak.				
Temperature	22	°C		Tnom ± 1°C		
Frequency, f _{meas}	55.50031	 GHz		Table IIIB		
RF Output Power, P _{meas}	12-6	dBm		12 to 17 dBn	n	
Input Voltage	10	VDC		$V_{B} \pm .005 \text{ V}$	DC	
Input Current		mA		Table IIIB		
Calculate frequency variation	on, $\Delta f_H = f_{meas}$	- f _{Tnom} :				
Δf_H after 60°C soak =			Hz			
Δf_H after -30°C soak =			Hz			
Calculate RF output power	variation, ΔP _H	$= P_{\text{meas}} - P_{\text{Tnom}}$:				
$\Delta P_H = after 60^{\circ}C soak =$		dI	3			
ΔP_{H} = after -30°C soak =		o6 dI	3			
			Accept	Reject		
Test Performed by	m			-20 -98		
Litton Q.A.	(NC TL)		ate API	R 2 4 1998		
CODE IDENT NO.	SIZE	NUMBER	l F	REV SHEE	ET 58 OF 68	
56348	A	1300823		B3		

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS NITIAL DATA SET

INITIA	L DATA	SEI NA	_ FINAL I	DATA SET _	
LITTON TYPE LSE 9036 SERIAL NUMBER: 85		QUAL TE	ST		AESD 1336610- 8 ACCEPT TEST NA
Frequency Pulling and Load V	SWR 2.5:	l max. all phas	es. Ref Te	est Para. 5.9	
TEST DESCRIPTION	^			LIM	ITS
Initial Measurement. Ref Test	Par. 5.9.1				
Temperature	<u>55 22</u> ℃			24°C	± 5°C
Frequency	5	5 <u>50035</u> GH	łz	Table	e IIIB
RF Output Power		12.8 dB	m	12 to	17 dBm
Input Voltage		10 VE	C	10 ±	0.2 VDC
Input Current		189m	.	Table	e IIIB
Reference test. Ref. Test Para.	5.9.3				
Frequency, f _{Ref}	.5	5.50035 GHz	•	Table	·IIIR
RF Output Power, P _{Ref}		_13.4 dBm		14010	
Load Pulling Test. Ref. Test Pa	ıra. 5.9.4				
Maximum Frequency, f _{meas}	ļ	55.50040 GHz	•	Table	IIIB
Minimum Frequency, f _{meas}		5550035 GHz		Table	
Maximum RF Output Power P	meas -	13-0 dBm			
Minimum RF Output Power, P	meas	<u>13.7</u> dВm			
Calculate maximum positive (f $\Delta f_L = f_{meas} - f_{Ref}$:	meas is grea	ater than f _{Ref}) an	d negative	(f _{meas} is less t	than f _{Ref}) frequency variation.
Maximum Positive $\Delta f_1 =$		0.05 MH	İ z		
Maximum Negative $\Delta f_L =$		<u> </u>			
Calculate maximum positive (F Variation, $\Delta P_L = P_{meas} - P_{Ref}$:	meas is grea	ater than P _{Ref}) a	nd negativ	e (P _{meas} is less	s than P _{Ref}) RF Output Power
Maximum Positive $\Delta P_L =$		<u>· 4</u> dB			
Maximum Negative $\Delta P_L =$		<u>る</u> dB			
	Ac	ccept	Reject		
Test Performed by	DAY (1)		Date	4-20-5	7 %
Litton Q.A.	(4	(N)	Date		2 4 1998
CODE IDENTALO	CIZE	<u> </u>	3 D	DEV.	CUIDED (C. O.E. C.)
CODE IDENT NO. 56348	SIZE	NUMBE 130082		REV B3	SHEET 60 OF 68
LITTON / SOLID S	A TATE DIV				CLARA CA 05054
					OPITION, CIT 12021

TEST DATA SHEET 7.23B FUNCTIONAL PERFORMANCE TESTS NITIAL DATA SET

INITIAL DATA SET FINAL DATA SET						
LITTON TYPE LS <u>E</u> 90 SERIAL NUMBER: <u>8</u> 2	36 AL/A 5074	QUAL TEST		AESD 1336610- & ACCEPT TEST ~/A		
Frequency Pulling and Load	VSWR 2.5:1	max. all phases. Ref Te	st Para. 5.9			
TEST DESCRIPTION			LIMI	TS		
Output Open and Short. Ref.	Test Para. 5.9	9.5				
Temperature Frequency: RF Output Power: Input Voltage Input Current: Results: Calculate maximum Frequence	-	· -	Table 12 to 10 ± (Table No Da ve),	17 dBm 0.2 VDC IIIB amage or Degradation		
$_{1}f_{acc} = \Delta f_{S}$ (Use worst-case	_			-		
Maximum $\Delta f_{acc} =$	<u>0.54</u> 0	MHz (Positive) MHz (Negative)	Table Table			
Calculate maximum Short-te $\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use wors		-	_			
Maximum $\Delta f_{V+T} =$	<u>0.73</u> - 2.87	MHz (Positive) MHz (Negative)	Table Table			
Calculate maximum overall l $\Delta P_{OV} = \Delta P_{V} + \Delta P_{T}$ (Use wo	-		_	ve), 17.22A) + ΔP _L (from 7.23A):		
Maximum $\Delta P_{OV} =$		dB (Positive) dB (Negative)	1.0 dE -1.0 d			
Accept Reject						
Test Performed by	DOH	Date	4-21-98			
LIT ON WEST)	Date	APR	2 4 1998		
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 61 OF 68		

		•
		<u> </u>

Channels 9-14 LOs

PLO No. 1 (P/N: 1348360-4, S/N: F14)

PLO No. 2 (P/N: 1348360-3, S/N: F01)

	·
)
	•
	$\overline{}$
•	
	a de la companya de

Summary of Test Results for AMSU-A Phase Locked Oscillator Testing Serial Numbers F12 and F14

Paragraph	Description	Requirements	F12	F14
3.2.1.1	Input Voltage and	600 mA max, +15V	506 mA for	524 mA for
	Current	100 mA max, -15V	+15V, 65 mA	+15V, 68 mA
		·	for -15V	for -15V
3.2.1.2	Operating Temperature	+1°C to 44°C	-25°C to	-30°C to 60°C
í			+60°C	
3.2.1.3	Start-up	All loads, +60°C and -	Verified at	Verified at
	-	30°C; in vacuum	+60 and -	+60 and -
			30°C, ambient	30°C, ambient
3.2.1.4 &	Frequency Stability	±200 kHz	+21 kHz, -0	+5 kHz to -17
3.2.1.5	from 57.290344 GHz		kHz	kHz
3.2.1.6	RF Output Power	17 to 20 dBm	18.5 dBm	19.4 dBm
3.2.1.7	Output Power Stability	<1.5 dB	0.8 dB	0.9 dB
3.2.1.8	Load VSWR	2.01:1 or less	Verified	Verified
3.2.1.9	AM Noise	<-130 dBc/Hz @ 1 MHz	-134 dBc/Hz	-146 dBc/Hz
			@ 1MHz	@ 1Mhz
3.2.1.10	FM Noise	<-100 dBc/Hz @ 1 MHz	-103 dBc/Hz	<-109 dBc/Hz
			@ 1 MHz	@1 MHz
3.2.1.11	Spurious and Sub-	<-90 dBc	<-92 dBc	<-91dBc
	Harmonic Signals			
			50 10	-50 dBc
3.2.1.12	Harmonics	<30 dBc	-59 dBc	-20 aBc
	777 Tr		Verified	Verified
3.2.1.14	Warm-up Time	< 30 minutes	venned	Verified
3.2.1.15	Grounding and		By Design	By Design
3.2.1.15	Shielding		by Design	By Design
	Smerding			
3.2.1.16	Input Voltage Protection		By Design	By Design
3.2.1.10	input voluge riotection		, D. J.	
3.2.1.17	Reverse Polarity		By Design	By Design
J.2.1.17	Protection		-,	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1	
Environmental			1	
Testing				
		AE-26633	TCXO Test	TCXO Test
Testing		AE-26633 AE-26633	TCXO Test By Analysis	TCXO Test By Analysis
Testing Microphonics				
Testing Microphonics Radiation				
Testing Microphonics Radiation Hardness		AE-26633	By Analysis	By Analysis Not Required Acceptance
Testing Microphonics Radiation Hardness EMI/RFI		AE-26633 AE-26633	By Analysis Not Required Acceptance Level	By Analysis Not Required Acceptance Level
Testing Microphonics Radiation Hardness EMI/RFI		AE-26633 AE-26633	By Analysis Not Required Acceptance	By Analysis Not Required Acceptance
Testing Microphonics Radiation Hardness EMI/RFI Vibration		AE-26633 AE-26633 AE-26633	By Analysis Not Required Acceptance Level Verified at Ambient	By Analysis Not Required Acceptance Level Verified at Ambient
Testing Microphonics Radiation Hardness EMI/RFI Vibration Thermal		AE-26633 AE-26633 AE-26633	By Analysis Not Required Acceptance Level Verified at	By Analysis Not Required Acceptance Level Verified at

TEST DATA SHEET 6C (Sheet 1 of 4) Functional Testing (Paragraph 4.2.1)

Post-Thermal Cycling CPT

Paragraph 4 2 1 3 Functional Testing

Test Setup Verified

Step	Test	Expected	Measured	Pass/ Fail		
1	Potential Difference from ±	15 V RTN to:	<u> </u>	Fair		
	PLO Base Plate	<1.0 Vac	0.D	Page		
	Spectrum Analyzer	< 1.0 Vac	0,0	Page		
	Frequency Counter Chassis	< 1.0 Vac	6.0	Ass		
•	Power Meter Chassis	< 1.0 Vac	<i>f</i> , 0	Pass		
4	Evacuate vacuum chamber and record pressure	<10 ⁻² torr	Pressure =torr	*		
5	Thermal couple readings	TC1 = 22 ± 2 °C	TC1 = 23,7 °C	Pas		
			TC2 = 23, / °C	N/A		
			TC3 = 23.5 °C	N/A		
6	DRO L/A	0 to 1V	DRO L/A = 62 m V	Pag		
	PLO L/A	S/N: F06, F08 = 14.6 ± 0.4V S/N: F07 = 0 to 1V S/N: F05, F09 - F14 = 4.3 to 4.7V	PLO L/A = _ 4 V	Per		
	Is PLO locked?	Yes	Yes No	Aso		
7	PLO Frequency	57.290344 ± .0002 GHz	Freq. = 57, 2603 417 GHz	Day		
	PLO Power	17 to 20 dBm	P = /4,2/ dBm	Pas		
8	Input Voltage and Current					
	VM1 Voltage	+15 ± 0.1 V	VM1 = <u>(5.0</u> V	Pag		
	VM2 Voltage	-15 ± 0.1 V	VM2 = V	Prec		
I	IM1 Current	600 mA max.	IM1 = mA	Pass		
	IM2 Current	100 mA max.	IM2 = <u>69</u> mA	Pos		
[DRO L/A Voltage	0 to 1V	DRO L/A = 62 m V	Pag		
	PLO L/A Voltage	S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7 V	PLO L/A =4,5 V	Pres		
12	RF Output Power and	17 to 20 dBm	P= <u>/44</u> dBm	Pass		
	Frequency	57.290344 ± .0002 GHz	Freq. = 57, 2463417 GHz	Pass		
ſ	Baseplate Temp. (TC1)	TC1 = 22 ±2°C	TC1 = <u>23.6</u> °C	Pass		

^{*}Record data only if performing test under vacuum

TEST DATA SHEET 6C (Sheet 2 of 4) Functional Testing (Paragraph 4.2.1)

araora	ph 4.2.1.3 (Cont):	Post-Thermal Cycling CPT				
Step	Test	Expected	Measured	Pas Fa		
13	Frequency vs. Voltage					
	± 15 V Supplies	+15.2 ± 0.05 V	+Voltage = 15.20 V	Pag		
		-15.2 ± 0.05 V	-Voltage = _ ~ 5.20V	Pag		
		57.290344 ± .0002 GHz	Freq. = 57,2403418 GHz	Pas		
		17 to 20 dBm	P =/9,2/dBm	Dass		
14	Frequency vs. Voltage		¬ / ;			
•	± 15 V Supplies	+14.8 ± 0.05 V	+Voltage = _14,50 4	Pro		
		-14.8 ± 0.05 V	-Voltage =V	Pag		
		57.290344 ± .0002 GHz	Freq. = 57,24034/8 GHz	Pag		
		17 to 20 dBm	P = 17.74 dBm -	25		
15	Spurious and Sub	-200 to -90 dBc	Sie Plots - 596dRm	As		
16	Power level of 114.58 GHz signal	<-10 dBm	dBm	Ro		
17	Load VSWR and Frequency Pulling					
	2:1 mismatch over 1λ	N/A	Worst Case Freq = 7 Hz	N/.		
	2:1 mismatch over 1λ	N/A	Worst Case Power = dB Peak	N/.		
18	Operating Temperature	TC1 = 1 ±2°C	TC1 = 0.1	Pa		
	@ 1°C baseplate		TC2 = 0.3	N/		
			TC3 = -0.2	N/		
		0 - 1V	DRO L/A = 47 mV	Pa		
		S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7 V	PLO L/A = <u>u. <</u> V	Pag		
19	Input Voltage and Current					
	VM1 Voltage	+15 ± 0.1 V	$VM1 = \underbrace{15.0}_{}V.$	Pag		
	VM2 Voltage	-15 ± 0.1 V	VM2 = -15.0 V	P		
	IM1 Current	600 mA max.	IM1 = <u>510</u> mA	ρ.		
	IM2 Current	100 mA max.	$IM2 = \underline{66} mA$	Pm		
	DRO L/A Voltage	0 to 1V	DRO L/A =V	Pa		
	PLO L/A Voltage	S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7 V	PLO L/A = <u>4.5</u> V	Pa		
	RF Output Power	17 to 20 dBm	Power = 19.7 dBm	Pa		
	Frequency	57,290344 ± .0002 GHz	Freq. = 57, 250 326 5 GHz	Pas		

TEST DATA SHEET 6C (Sheet 3 of 4) Functional Testing (Paragraph 4.2.1)

-		Functional Testing (Paragraph 4.2	2.1)	
Paragra	aph 4.2.1.3 (Cont):	Post-Thermal Cycling CPT		
Step	Test	Expected	Measured	Pass Fail
19	Frequency vs. Voltage			1 ****
(Cont)	± 15 V Supplies	+15.2 ± 0.05 V	+Voltage = /5.20 V	0
-		-15.2 ± 0.05 V	-Voltage = /5.20 V	Pass
		57.290344 ± .0002 GHz	Freq. = 57,200 3265 GHz	_
		17 to 20 dBm	Power = 19. > dBm	Pers
	Frequency vs. Voltage			Res
	± 15 V Supplies	+14.8 ± 0.05 V	$+$ Voltage = 161_{6} \vee V	Pag
		-14.8 ± 0.05 V	-Voltage = _~~V V	Pag
		57.290344 ± .0002 GHz	Freq. = 5> 290 326 = GHz	Pag
	* *	17 to 20 dBm	Power = 177 dBm	Pars
	Spurious and Sub	-200 to -90 dBc	See Mets	Ass
	Power level of 114.58 GHz signal	<-10 dBm	dBm	Pag
	Load VSWR and Frequency	Pulling	1	L
	2:1 mismatch over 1λ	N/A	Worst Case Freq =	N/A
	2:1 mismatch over 1λ	N/A	Worst Case Power = dB flack	N/A
21	Operating Temperature	TC1 = 44 ±2°C	TC1 = yu, > PASS	Pt3
	@ +44°C Baseplate		TC2 = 44.5	N/A
		·	TC3 = UU, U	N/A
•		0 - 1V	DRO L/A = <u>47 m</u> V	Pass
		S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7 V	PLO L/A =4/5V	Pass
22	Input Voltage and Current			
ĺ	VM1 Voltage	+15 ± 0.1 V	VM1 = <u>'\$.0</u> V	he
ļ	VM2 Voltage	-15 ± 0.1 V	VM2 =5.0 V	Poss
	IM1 Current	600 mA max.	IM1 =	Pass
	IM2 Current	100 mA max.	IM2 = <u>69</u> mA	Page
	DRO L/A Voltage	0 to 1V	DRO L/A = 97 wV	Pag
	PLO L'A Voltage	S/N: F06, F07, F08 = 14.6 ± 0.4 V S/N: F05, F09 - F14 = 4.3 to 4.7 V	PLO L/A = <u>u.5</u> V	Pas
	RF Output Power and	17 to 20 dBm	Power = $/\mathcal{E}_{\ell}\mathcal{I}$ dBm	Pay
ſ	Frequency	57.290344 ± .0002 GHz	Freq. = 5> 290 342 3 GHz	Pass

A-22

TEST DATA SHEET 6C (Sheet 4 of 4)

Functional Testing (Paragraph 4.2.1)

		Post-Thermal Cycling C	PT			
Paragra	ph 4.2.1.3 (Cont):					
Step	Test	Expected	. Measured	Pass/Fail		
22	Frequency vs. Voltage					
(Cont)	\± 15 V Supplies	+15.2 ± 0.05 V	+Voltage = /5.20 V	Proc		
		-15.2 ± 0.05 V	-Voltage =(Size) V	Pass		
		57.290344 ± .0002 GHz	Freq. = 5> 200342 > GHz	Pres		
		17 to 20 dBm	Power =/8.8 dBm	Pen		
	Frequency vs. Voltage	•				
	± 15 V Supplies	+14.8 ± 0.05 V	+Voltage = (U.SO_V	Poss		
·		-14.8 ± 0.05 V	-Voltage =44.80 V	Ausz		
i	·	57.290344 ± .0002 GHz	Freq. = 37.280342 3 GHz	Pin		
		17 to 20 dBm	Power = 18.5 dBm	Pass		
-	Spurious and Sub	-200 to -90 dBc	See Oluts	Pass		
	Power level of 114.58 GHz signal	<-10 dBm	<u>~5/</u> dBm	Pass		
i	Load VSWR and Frequency P	ulling		· · · · · · · · · · · · · · · · · · ·		
	2:1 mismatch over 1λ	N/A	Worst Case Freq =	N/A		
	2:1 mismatch over 1λ	N/A	Worst Case Power =dB flack	N/A		

Shop Order No.: 627678

Operation: 0170

Unit Serial No.: F19

Date: 4/16/99

Test Engineer:

Quality Control:

Govt. Rep.:

4/19/99

4-20-99

62 Feb 99

TEST DATA SHEET 7 (Sheet 1 of 3) Temperature Cycling (Paragraph 4.2.2)

Test Setup Verified: Mak OL Signature

·				•
Temperature Cycle	Cycle 1	Cycle 2	Cycle 3	Cycle 4
Frequency 57.290344 GHz ±200 kHz	57.240 3341	57.29 <i>034</i> 32	57.2903432	57.2903441
Output Power 17 to 20 dBm	19.12	19.12	19.22	19.38
Frequency 57.290344 GHz ±200 kHz	57.2903373	57.2403374	57,2903349	(%)
Output Power 17 to 20 dBm	19,42	Ä.44	19,40	(

22 4/19/99

Cycle 5

NIA

Cycle 6

NA

Shop Order No.: 622628

Operation: 0170

Unit Serial No.: F14

Date: 4/16/99

Quality Control: 200 An/19

Govt. Rep.: 4-20-99

			•
			<u> </u>
	•	ti.	

AEA CO1 (... Page 80 SN: OO1

PCO A

V-Band PLO Form, alilication Tests

MSO NO: 41/6/2000/0 PIN: 857270

			Limits	8				Formal	Formal Qualification	-		
							Thermal	Thermal Vacuum		Thermal	nal Qual.	
AE-26660 Reference Paragraph Number	Paramoter	<u> </u>	<u> </u>	Max	Full Functional Qual Tests (Amb.)	Post-Vib/Pre-Thermal Vac. (Amb.)	IsuO JoH - muuseV ismedī	Thermal Vacuum - Cold Qual.	Post Thermal Vacuum	10Нlaual Ноt	Thermal Qual Cold	Final Functional Qual.
				To the second		F13	F14	F15	F16	414	F18	F19
3.2.1.4 - 3.2.1.5.1-4 Oscillator Freq., Freq. vs. Temp., Freq. vs. Volt, Freq. vs. Volt, Hysteresis	Oscillator Frequency © Nominal Input Voltage = 415.0 - 15.0 - 15.0	÷ i	57.290144	<u> </u>	85.0885	51390325	81.8068.53 9.8068.5		57.770339	4808.13	87. 8034 St. 383/8 57.3838	57.370328
	Oscillator Frequency © Minimum Input Voltage = +14.7, -14.25	끃	1	I .	87.390328			10.49		47.29032H	57.290348 81.295.45 HGE09.54.2	57390329
	Oscillator Frequency © Maximum Input Voltage = +15.3, -15.75	报	57.290144	57.290544	880688					57.390334	58.29653458.378518 57.398.339	57.39.339
3.2.1.5 - Frequency Stability	Delta Frequency - Calculate the maximum detta from the nominal output frequency at amblent (22 degrees C)	MHz	-0.2	0.2	N/A					0.015	0.031	1100
				Test Tech:	14//	108511	86023	0584//	114850	117850	114850	1/4850
						2115	00/11/2	86/11/2	00/26/2	21,2/01	20/2012	イタオクエ

alification Tests V-Band PLO Forma.

P/N: 857270

MSO NO: ALFIZO0010

0

19 5.

PCO A. AEA-0(

Page 100

20.20 σ 1327 S/N:00 Cycle 6 (cold) 676. 40 8759 57.290 O 19.0% 675. Cycle 6 (Hot) 52390 6.88.3 20.19 30 696. Cycle 5 (cold) 3/7 8 189 57.790 57.390 66.7 Cycle 5 (Hot) 200 6.989 88.8 Thermal Vacuum 20.21 Chcle ← (cold) 13/ 654.8 675.7 52290 52290 19.07 8.99 330 Cycle 4 (Hot) 58 200 696.3 20,20 0 888 Cycle 3 (cold) 12% ~ 697.0 675.7 57.390 57.390 1808 655.0 66.7 329 Cycle 3 (Hot) 28 20.23 -30 Cycle 2 (cold) 6% 1.89 675.4 655.7 57.290 57.290 57.290 144 544 329 14:11 14850 8.99 58 Cycle 2 (Hot) 860 Max 20.7 95 ₹ 95 Limits Fest Tech: 돌 17 ž Units deg. C Ψ Ę dBm Ę Ψ Operating Current @ Qual survival temp survival temp. Temperature Frequency @ Nominal Input Voltage. **Output Power** Parameter Operating Current @ Corrected RF Operating Current © Survival & O Nominal Start-up Voltage Qual. temp. Oscillator +15V Operating Current @ lemp. +15V Reference Paragraph 3.2.1.3 -Survival & AE-26660 Start-up Number 3.2.1.5.1-4 Oscillator RF Output 3.2.1.6 3.2.1.2 Current 3.2.1.1 Freq.

ŧ

120/24 12/2018 13/80/5/

8/2 1/C

Date:

Channel 15 LO

GDO (P/N: 1336610-10, S/N: FM2)

		•
		•
)

AMSU-A GDO Data Sheet 1

Sequence Descriptio Millitech Part Numbe Aerojet Part Number	er 905016000	1; Serial Numl	ber <u>F/M3</u>	Date: 4- Operator: _ QC Verify S	77 et-up:	Aurc Au
A. Output Powe Output Powe	er direct: <u>/ぶ</u> er Delta: <u>み.</u> 3	7∦ dBm; Outp ∮ dB	out Power in	test set-up:	<u>/3,34</u> dBm	2 € 1
B. Unit Tempera	ature: <u>20.5</u> °C	; Va	acuum level	: <u>/</u> 5mTor	r	
C. Baseline Mea		1	1 12		· · · · · · · · · · · · · · · · · · ·	
Vb (volts)	15.0	14.25	15.75	min limit	max limit	Pass/Fail
Vb meas. (Volts)	15.0	14,26	15.76	05	+.05	P
lb (mA)	156	156	156		230	Р
fo (GHz)	84.008	81.008	89 008			
Po (dBm, meas)	13.55	13.53	13.53	12		
Po (dBm, corr)	15.94	15.42	15.42	13	17	P
D. Frequency Po	ulling, Vb = 1	5.0 volts; mea	asured <u>15.0</u>	<u> </u>		
Fref (GHz)	84,008			min limit	max limit	Pass/Fail
Fmax (GHz)	81.008	+Δ (MHz)	10		+ 5 MHz	Р
Fmin (GHz)	94.003	- Δ (MHz)	O)	-5 MHz		P
Pref (dBm) Pmax (dBm) Pmin (dBm)	-6.44 -6.54 -6.34	+Δ (dB) - Δ (dB)	0.10 -0.10	min limit -0.2 dB	max limit + 0.2dB	Pass/Fail P
E Turn on our	nn+					
F. Turn-on curre Vb (volts)	15	.0 min l	imit max	limit Pass	/Fail	
Measured Vb	N/			1	11/1	
Turn-on current (mA			34	45 A//	Ä	
time to peak (ms)	N/A					
time to settle (ms)		IA MA				
G. Unit Tempera	ature: <u>205</u> °0	C Va	acuum level	: <u>/5</u> _mTo	rr	
	HEET ACCEP					
Acce	pt MTC	Rej		a=t A/=		
	•	lest F	Failure Repo			
		L	керо	rt Date		
			1 1	CAGE CODE	DWG. NO.	
			Α	8V456	<u> </u>	01600-2
			SCALE	REV.	LTR.	SHEE 29 0

AMSU-A GDO Data Sheet 1

Sequence Description: Comprehenge Test - 2°C Millitech Part Number 9050180001; Serial Number Fm J Aerojet Part Number 1336610-10	Date: 4-14-49 Operator: 77 OC Verify Set-up: 44
--	---

Output Power direct: $\frac{\sqrt{5.73}}{\sqrt{3.34}}$ dBm; Output Power in test set-up: $\frac{\sqrt{3.34}}{\sqrt{3.34}}$ dBm Output Power Delta: $\frac{\sqrt{3.34}}{\sqrt{3.34}}$ dBm A.

Unit Temperature: 1,3 °C; Vacuum level: __/5 mTorr В.

C. **Baseline Measurements**

Vb (volts)	15.0	14.25	15.75	min limit	max limit	Pass/Fail
Vb meas. (Volts)	15.0	14,25	15.75	05	+.05	D
Ib (mA)	151	151	151		230	P
fo (GHz)	84,015	84,015	84.015			
Po (dBm, meas)	13,69	17,69	13,69			
Po (dBm, corr)	16,08	16,08	16.08	13	17	Р

Frequency Pulling, Vb = 15.0 volts; measured 150 V D.

Fref (GHz)	84,06			min limit	max limit	Pass/Fail
Fmax (GHz)	84.019	+Δ (MHz)	3		+ 5 MHz	P
Fmin (GHz)	84.014	- Δ (MHz)	3	-5 MHz		P

Power Pulling

Pref (dBm)	-645			min limit	max limit	Pass/Fail
Pmax (dBm)	-6,33	+∆ (dB)	+0.30		+0.2dB	P
Pmin (dBm)	-5.44	- Δ (dB)	0,19	-0.2 dB		P

F. Turn-on current

Vb (volts)	15.0	min limit	max limit	Pass/Fail
Measured Vb	NIA	_	_	NIA
Turn-on current (mA)	NIA		345	NA
time to peak (ms)	NIA			
time to settle (ms)	NIA			

Unit Temperature: 20 C Vacuum level: 20 mTorr G.

DATA SHEET ACCEPT/REJECT

Accept	(RC)	Reject	
		Test Failure Report No.	
		Report Date	

SIZE	CAGE CODE		DWG. NO.	
A	8V456		TP501600-	2
SCALE		REV.	LTR.	SHEET
	1		A00	29 OF 41

AMSU-A GDO Data Sheet 1

Sequence Description: (prachenice Test +43°C Millitech Part Number 9050160001; Serial Number F77 Aerojet Part Number 1336610-10	Date: 4-/4-44 Operator: QC Verify Set-up:	(MIC)

Output Power direct: 15.78 dBm; Output Power in test set-up: 13.34 dBm Output Power Delta: 2134 dB A.

Unit Temperature: 436°C; Vacuum level: 20 mTorr В.

Baseline Measurements C.

Vb (volts)	15.0	14.25	15.75	min limit	max limit	Pass/Fail
Vb meas. (Volts)	15.0	14,25	15,74	05	+.05	P
Ib (mA)	161	161	161		230	P
fo (GHz)	85.447	85.997	88.447			
Po (dBm, meas)	13,06	13,0%	13.06			
Po (dBm, corr)	15.45	15.45	15.45	13	17	P

Frequency Pulling, Vb = 15.0 volts; measured 15.0 V D.

Fref (GHz)	88.947			min limit	max limit	Pass/Fail
Fmax (GHz)	89.00	+∆ (MHz)	3	•	+ 5 MHz	P
Fmin (GHz)	89,945	- Δ (MHz)	3	-5 MHz		P

Power Pulling

Pref (dBm)	-6,72		LANC STORE ST	min limit	max limit	Pass/Fail
Pmax (dBm)	-6.62	+∆ (dB)	1.1.0		+0.2dB	D
Pmin (dBm)	-6,83	- Δ (dB)	10	-0.2 dB		P

F. Turn-on current

Vb (volts)	15.0	min limit	max limit	Pass/Fail
Measured Vb	NIA		_	NA
Turn-on current (mA)	NIA		345	WIA
time to peak (ms)	NIA			
time to settle (ms)	NIA			E CONSIDER OF THE

Unit Temperature: 43,4 °C Vacuum level: 20 mTorr G.

DATA SHEET ACCEPT/REJECT

DATA SHEE	DATA SHEET ACCEPT/RESECT					
Accept	(MTC)	Reject				
		Test Failure Report No.				
		Report Date				

SIZE	CAGE CODE	E .	DWG. NO.		
Α	8V456		TP50160	00-2	2
SCALE		REV.	LTR. A00		SHEET 29 OF 41

AMSU-A GDO Data Calculation Sheet 8

Sequence Description: Frequency Accuracy & Stability Calculations	Date: 4-15-41
	Operator: TP
Aerojet Part Number 1336610-10	

A. Frequency Accuracy from Thermal Vacuum, CPT and Final LPT Data

	Parameter, Vb = 15.0 volts	Data Sheet, Section	Date, mm/dd/yy	Measurement
1	+Δ, pulling, +20.5°C, MHz	1, D	4-8-49	()
2	- Δ, pulling, + 20.5°C, MHz	1, D	4-8-44	0
3	+Δ,pulling, +43°C	1, D	4-14-94	3
4	-Δ, pulling, +43°C	1, D	4-14-00	- み
5	+Δ, pulling, -2°C	1, D	4-14-19	3
6	-Δ, pulling, -2°C	1, D	4-14-91	-2
7	Set point w / max Hysteresis, GHz	6, E	3-3-89	8.9.008
8	Set point w / min Hysteresis, GHz	6, E	3-3-19	84.006
9	(Maximum of lines 1, 3, and 5) +7	89	011	GHz
10	(Maximum of lines 2, 4, and 6) +8	84.	004	GHz

B. Frequency Accuracy Result

	Result	min limit	max limit	Pass/Fail
A9, GHz	89,011		89.030	P
A10, GHz	84,004	88.970		P

CONTINUED, GO TO NEXT PAGE

SIZE	CAGE CODE 8V456	DWG. NO. TP5016	00-2
SCALE	RE	V. LTR.	SHEET 36 OF 41

AMSU-A GDO Data Calculation Sheet 8, continued

Sequence Description: Frequency Accuracy & Stability Calculations Date: 4-15-44

Millitech Part Number 9050160001; Serial Number 5/12 Operator: 7/2

Aerojet Part Number 1336610-10

C. Frequency Stability from Comprehensive Performance Test Data

	Bias Voltage, volts	Data Sheet, Section	Date, mm/dd/yy	Tcase, °C	Measurement, GHz
1	14.25	1, C	4-8-49	+ 20.5	84.008
2	15.0	1, C	-11	+ 20.5	84.008
3	15.75	1, C	7	+ 20.5	84.008
4	14.25	1, C	4-14-60	-2	84.015
5	15.0	1, C	11	-2	89.015
6	15.75	1, C	11	-2	84.015
7	14.25	1, C	P1	+43	88.417
8	15.0	1, C	1	+43	88.997
9	15.75	1, C	i)	+43	88.447
10	((Maximum of 1 the	rough 9) -C2)	* 1000 MHz		フ MHz
11	((Minimum of 1 thr	ough 9) -C2)	* 1000 MH	z	-// MHz

D. Frequency Stability Result

	Result	min limit	max limit	Pass/Fail
C10, MHz	フ		+50	P
C11, MHz	-11	-50		P

DATA SHEET ACCEPT/REJECT

Accept	(MTC)	Reject	
	(Par)	Test Failure Report No.	
	ĺ	Report Date	

SIZE	CAGE COD 8V456	_	DWG. NO. TP501600-	1600-2	
SCALE		REV.	LTR.	SHEET 37 OF 41	

			<u> </u>
			<u> </u>
			•
		ai.	

Report No. 11491 June 1999

FREQUENCY STABILITY OF SAW FILTERS

Channel No.	11	12	13	14
Specification (+/-MHz)	6.0	6.0	0.2	0.2
Short-Term Measured (MHz)	+0.734, -0.441	+0.204, -0.226	+0.019, -0.058	+0.088, -0.00
Long-Term By Analysis (+/-MHz)	+0.02	+0.02	+0.02	+0.02
Total	+0.754, -0.441	+0.224, -0.226	+0.039, -0.058	+0.108, -0.00

Note: Additional +/-0.1 MHz frequency stability reserved for safety margin for channels 11-14.

		_
		$\overline{}$
		\sim

REFER TO TEST DATA OF SAW FILTERS PREPARED IN THE SECTION OF BANDPASS CHARACTERISTICS

		_
		$\overline{}$

BANDPASS CHARACTERISTICS FOR IF FILTERS AND SAW FILTERS

		•
		<u> </u>

Report No. 11491 June 1999

3 dB BANDWIDTH OF IF FILTERS

·				
15	0009	1020	490-1510	996.90 492.08- 1488.98
10	78	78	178-256	76.33 179.01- 255.34
6	591	157	8-165	155.04 9.11- 164.15
8	591	157	8-165	154.88 9.14- 164.02
7	200	192	8-200	190.09 9.10- 199.19
9	200	192	8-200	190.18 9.15- 199.33
5	170	170	30-200	167.48 31.38- 198.86
4	200	192	8-200	190.04 9.12- 199.16
6	06	82	06-8	80.10 8.90- 89.00
Channel No.	Specification (MHz)	3 dB bandwidth (MHz) *	f _L - f _H (MHz)	Measured (MHz) 3 dB bandwidth (MHz) f _L - f _H (MHz)

* Actual specifications for IF filters.

Report No. 11491 June 1999

3 dB BANDWIDTH FOR SAW FILTERS

Channel No.	11	12	13	14
Specification				
3 dB Bandwidth (MHz)	72	32	16	. 9
f _{L1} - f _{H1} (MHz)	256.2-292.2	292.2-308.2	308.2-316.2	316.2-319.2
f _{L2} - f _{H2} (MHz)	352.2-388.2	336.2-352.2	328.2-336.2	325.2-328.2
Measured				
3 dB Bandwidth (MHz)	70.226	30.928	15.707	5.874
$f_{L_1} - f_{H_1}$ (MHz)	256.806-291.663	292.552-307.980	308.288-316.135	316.321-319.254
f _{L2} - f _{H2} (MHz)	352.663-388.032	336.329-351.829	328.226-336.086	325.312-328.254

Channel 3 Bandpass Filter

IF Filter (S/N: 1331559-3, S/N: P229-011)

		<u> </u>
)
		,
		ri

APPENDIX C	CCEPTAN	ICE TEST REPOR	RI	
BANDPASS FILTER MODEL HL50- AEROJET 1331559-3 REV.		S/N <u>P229-</u> 01	1	
3.0 dB BANDWIDTH ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.3	Ξ ,	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE		89.11 MHz (88.0-90.0)	89.00 Mhz (88.0-90.0)	<u> წგ. გგ</u> MHz (88.0-90.0)
(8) LOWER 3.0 dB BANDEDGE		8.91 MHz (8.0-10.0)	<u>8.9</u> Mhz (8.0-10.0)	<u> </u>
(9) 3.0 dB RELATIVE BANDWIDTH		<u>80.20</u> MHz (78.0-82.0)	<u>名の.10</u> Mhz (78.0-82.0)	<i>7<u>9,99</u> MHz</i> (78.0-82.0)
{10} ADD {7} AND {8} ÷ 2 =		4 <u>9.01</u> MHz (50.0 NOM)	4 <u>8,95</u> MHz (50.0 NOM)	<u>48.89 Mhz</u> (50.0 NOM)
(10a) RECORD MEASURED TEMP	ERATURE		+ <u>16.3</u> °C (12.5 TO 17.5)	+ <u>43.3</u> °C (40.0 TO 45.0)
(6) ATTACH TRANSMISSION LOS: PERFORMANCE X-Y PLOT	S	(√)	<u> </u>	<u>(</u> 1)
PASSBAND RIPPLE ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.4	Ē	-10°C	+15°C	+40°C
(11a) MIN INSERTION LOSS FREG	Q	23,86 MHz	23.86 Mhz	23.86 MHz
MIN INSERTION LOSS PER	FORMANC	E <u>-0.16</u> dB	- <u>0.17</u> dB	- <u>0.17</u> dB
{11b} 75% BW LOWER BANDEDG	E FREQ	10,99 MHz	1 <u>0.87</u> Mhz	1 <u>0.80</u> MHz
75% BW LOWER BANDEDG	SE I.L. PER	F - <u>0.39</u> dB	- <u>0.41</u> dB	- <u>0.43</u> dB
(11c) 75% BW UPPER BANDEDGE	FREQ	70.99 MHz	70.87 Mhz	7 <u>0.80</u> mHz
75% BW UPPER BANDEDG	E I.L. PERI	= - <u>0.39</u> dB	-0.41 dB	- <u>0.43</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})		<u>0,23</u> dB	<u>0.24</u> dB	<u>0.76</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})		<u>0.23</u> dB	<u>0.24</u> dB	<u>().2C</u> dB
Proposed in apportunity Mill STD 400				
Prepared in accordance with MIL-STD-100 CONTRACT NO.	SIZE	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.
				

FILE: ACAD/63/0502APCJ.DOC

SHEET

13

DADEN-ANTHONY ASSOCIATES INC.

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P229-011

-10C DATA

MARKER PARAME. OPR: R. HOGGATT DATE DEC 18 1996

MARKER 1	14.000000 MHz OFF	50.000000 MHz 2347 dB
MARKER 2	86.000000 MHz OFF	49.013252 MHz OFF
MARKER 3	20.000000 MH≥ OFF	8.914066 MHz -3.2347 dB
MARKER 4	80.000000 MHz OFF	89.112439 MHz -3.2347 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P229-011

+15C DATA

OPR: R. HOGGATT DATE DEC 1 8 1996

MARKER PARAMETERS	SHUMBE I	channel 2
MARKER 1	14.000000 MHz OFF	50.000000 MHz 2499 dB
MARKER 2	86.000000 MHz ÚFF	48.951901 MHz OFF
MARKER 3	20.000000 MHz OFF	8.900751 MHz -3.2489 dB
MARKER 4	80.000000 MHz OFF	89.003052 MHz -3.2489 dB
MKR STIMULUS OFFSET	0 4B 0 000000 MHz	89.425802 MHz -3.2342 dB
PLACEMENT MARKER SEARCH	OFF CONTINUOUS OFF -14 dB -3 dB OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF
MARKER TRACKING	őFF	OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P229-011

+40C DATA

OPR: R. HOGGATT DATE DEC 1 8 1996

MARKER PARAMETER	J. G.	Countriel 2
MARKER 1	14.000000 MHz OFF	50.000000 MHz 2812 dB
MARKER 2	86.000000 MHz OFF	48.883037 MHz OFF
MARKER 3	20.000000 MHz OFF	8.885575 MHz -3.2613 dB
MARKER 4	80,000000 MHz OFF	88.880499 MHz -3.2613 dB
MKR STIMULUS OFFSET	0.000000 MHz	89.425802 MHz -3.2342 dB
MARKER SEARCH	OFF CONTINUOUS OFF -14 45 -3 dB OFF OFF	OFF CONTINUOUS OFF -3 UB -3 dB OFF OFF

À

APPENDIX C

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL50-80-10SS1 S/N P229-OIL AEROJET 1331559-3 REV.

PASSBAND RIPPLE (CON'T)

{11f} RECORD PASS/FAIL (0.5 dB MAX)

(PASS/FAIL

(11g) ATTACH PASSBAND RIPPLE

PERFORMANCE X-Y PLOT(S)

OUT-OF-BAND REJECTION

ACCEPTANCE TEST PROCEDURE

-10°C

+15°C

+40°C

63-0005-02 PARA 4.5.5

Fc=50.0 MHz.

REF (5A) FOR INSERTION LOSS @ Fc

{12} WORST CASE REJECTION FROM 0.300 MHz TO 1.0 MHz

7100 dB (40.0 dB MIN) >100 dB (40.0 dB MIN) 7100 dB (40.0 dB MIN)

{13a} WORST CASE REJECTION FROM 102.0 MHz TO 1000.0 MHz

-57.2 dB (40.0 dB MIN) -<u>58.1</u>dB (40.0 dB MIN) -59.0 dB (40.0 dB MIN)

{13c} RECORD MEASURED TEMPERATURE - 12.4 °C

(-15.0 TO -10.0) (12.5 TO 17.5)

+16.2°C

+43,3℃ (40.0 TO 45.0)

{14} ATTACH REJECTION PERFORMANCE

X-Y PLOT(S)

TEST PERFORMED BY 16. HOGGATT

Not witnessed NOTE IF TEST WITNESSED BY AESD: _ this time. DLD

***** END OF FUNCTIONAL PERFORMANCE TEST ****

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT

DIMENSION AND TOLERANCE

ACTUAL

OVER ALL LENGTH

 $3.50 \pm .03$

MEASUREMENT 3.501

MOUNTING HOLE CENTER

 $0.125 \pm .010$

0.126

BETWEEN UPPER MOUNTING HOLES

3.250

3.248

BETWEEN LOWER MOUNTING HOLES

3.250

3.250

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APCJ.DOC	SHEET	14

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P229-011

-10C DATA

MARKER PARAMETERS OPR: R. HOGGATT DATE DEC 18 1996

MARKER 1	1.000000 MHz OFF	50.000000 MHz 8 dB
MARKER 2	5.000000 MHz OFF	102.000000 MHz -57.153 dB
MARKER 3	5.000000 MHz OFF	102.000000 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF OFF

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P229-011

+15C DATA

MARKER PARAMETERS OPR: R. HOGGATT DATE DEC 1 8 1996

MARKER 1	1.000000 MHz OFF	50.000000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	102.000000 MHz -58.065 dB
MARKER 3	5.000000 MHz OFF	102.000000 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0 4B 0 000000 MHz
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -3 dB -3 dB	MARKER 1 CONTINUOUS OFF -3 dB -3 dB

OFF

OFF

MARKER TRACKING

OFF

OFF

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P229-011

OPR: R. HOGGATT DATE DEC 1 8 1996

Tunnel 2

OFF

-3 4B

OFF

OFF

+40C DATA

MARKER PARAMETLING

MARKER SEARCH

MARKER TRACKING

TARGET VALUE MHRKER WIHTH VHLUE

MARKER 1	1.000000 MHz OFF	50.000000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	102.000000 MHz -58.97 dB
MARKER 3	5.000000 MHz OFF	119.694690 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	ଥି.ଥିଥିଥିଥିଥି MHz ଫ dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT	OFF CONTINUOUS	MARKER 1 CONTINUOUS

OFF

4B 6-3 4B

OFF

OFF

APPENDIX C

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL50-80-10SS1 S/N PZZ9 - OII
AEROJET 1331559-3 REV.

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. +22.2 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

____(\forall)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE		REF	FREQ	UNIT	VALUE
F1	0.5	MHz	-106.6 dB		F11	(*) 60.0	MHz	-0.31 dB
F2	1.0	MHz	-96.3 dB		F12	(*) 70.0	MHz	<u>- 0,40 dB</u>
F3	5.0	MHz	<u>~ 31.0 dB</u>		F13	80.0	MHz	<u>- 0.64 </u> dB
F4	7.5	MHz	- 10.3 dB		F14	85.0	MHz	<u>-0.85</u> dB
F5	10.0	MHz	-1.34 dB		F15	90.0	MHz	<u>- 6.62 dB</u>
F6	15.0	MHz	- 0.77 dB		F16	100.0	MHz	<u>-46.6</u> dB
F7	20.0	MHz	-0.14 dB		F17	200.0	MHz	<u>- 81.0 </u> dB
F8	(*) 30.0	MHz	-0.18 dB		F18	300.0	MHz	<u>- 102.9</u> dB
F9	(*) 40.0	MHz	- 0.23 dB		F19	500.0	MHz	<u>- 99.9</u> dB
F10	50.0	MHz	-0.25 dB		F20	1000.0	MHz	- <u>101.7</u> dB

TEST PERFORMED BY: R. HOGGATE DATE 12/18/90

NOTE IF TEST WITNESSED BY AESD Not witnessed this time. DLD _____

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX C PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

	Prepared in accordance with MIL-STD-100				
1	CONTRACT NO.	SIZE	CAGE CODE	DWG. NO.	REV.
		Α	57032	63-0005-02	J
	DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APCJ.DOC	SHEET	11

POST THERMAL CYCLE PASSBAND CHARACTERISTICS SERIAL NO. P229-011 AMBIENT

MARKER PARAMETERS OPR: R. HOGGATT DATE DEC 1 8 1996

MARKER 1	30.000000 MHz OFF	30.000000 MHz - 1807 dB
MARKER 2	40.000000 MHz OFF	40.000000 MHz 2263 dB
MARKER 3	60.000000 MHz OFF	60.000000 MH≥ 3126 dB
MARKER 4	70.000000 MHz OFF	70.000000 MHz 3963 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

Channel 4 Bandpass Filter

IF Filter (S/N: 1331559-2, S/N: P228-022)

		_
		_
		$\overline{}$
		<u>,</u>
		ý
)
		ď
		ď
)
		ď
		ď

APPENDIX B	ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL105-190-10SS1 S/N P228-022 AEROJET 1331559-2 REV.

3.0 dB BANDWIDTH ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.3	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE	<u>99.49</u> MHz (198.0-200.0)	1 <u>99,16</u> Mhz (198.0-200.0)	1 <u>98.83</u> MHz (1480.01500.0)
{8} LOWER 3.0 dB BANDEDGE	9.13 MHz (8.0-10.0)	<u>9.12</u> Mhz (8.0-10.0)	<u>9.11</u> MHz (8.0-10.0)
{9} 3.0 dB RELATIVE BANDWIDTH	1 <u>90.36</u> MHz (188.0-192.0)	1 <u>90.04</u> Mhz (188.0-192.0)	1 <u>89.72</u> MHz (188.0-192.0)
{10} ADD {7} AND {8} ÷ 2 =	(04.3) MHz (105.0 NOM)	[<u></u>	1 <u>03.97</u> Mhz (105.0 NOM)
{10a} RECORD MEASURED TEMPERATURE	- <u>12.5</u> °C (-15.0 TO -10.0)		+ <u>43 O</u> °C (40.0 TO 45.0)
(6) ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT	<u>(</u> \(\forall)	(\forall)	<u>/</u> (\forall)
PASSBAND RIPPLE ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.4	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FREQ	18.72 MHz	19.91 Mhz	20.50MHz
MIN INSERTION LOSS PERFORMANC	E - <u>0.08</u> dB	- <u>0,08</u> dB	- <u>0.08</u> dB
{11b} 75% BW LOWER BANDEDGE FREQ	13.77 MHz	13.70 Mhz	3.57 MHz
75% BW LOWER BANDEDGE I.L. PER	F - <u>0.27</u> dB	- <u>0.29</u> dB	- <u>0,30</u> dB
{11c} 75% BW UPPER BANDEDGE FREQ	156.27 MHz	156.20Mhz	15 <u>6.07</u> mHz
75% BW UPPER BANDEDGE I.L. PERI	- <u>0.27</u> dB	- <u>0.29</u> dB	- <u>O3O</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>0.19</u> dB	<u>0.21</u> dB	<u>O. 22</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	0.19 dB	0.21 dB	<u>0.22_dB</u>

-1	Prepared in accordance with MIL-STD-100					
	CONTRACT NO.	SIZE	CAGE CODE	DWG. NO.	REV.	
		Α	57032	63-0005-02	J	
	DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APBJ.DOC	SHEET	13	

			\ \times \ \times \ \times \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				-3. 2! 9. 1	99 dF 95 MHz 96 MHz 79 MHz	Q
			→ ▽	•		4:	.		1
						4	.		!
							4	B7 MHz	
							A		
							A		
							4		
							4	ļ	
								ı	1
				+	11				
		_							1
		İ							
				,					
	1		+				_		$\frac{1}{2}$
ı							1		
									1
RT	300 0					238.6			
PARAME	1 S	RANSMI SERIAL 10C DA	SSION NO. P	LOSS 228-02	ERFORM 2 ATE DEC		annel	2	
1			OFF	.9.5000	300 MH:	z – .	105.0 2092	00000 dB	MH
2			19 OFF	90.5000	300 MH:		104.3		MH
3				33.7500	300 MHz			25411	MH
4					300 MHz				
			OFF	0.200	JCO 11112	-3	2093	dB	1 11 1
	OFFSET		Ø d	0.000(B	000 MH≥	: -3	89.4 .2342	258Ø2 dB	МН
MULUS	RKER		CONT OFF -14	INUOUS	5	0 -3 C0	NTINU FF dB	ous	
M	E MAR	E MARKER T EARCH	T EARCH ALUF	E MARKER OFF T CONT EARCH OFF ALUE -14	E MARKER OFF T CONTINUOUS EARCH OFF ALUE -14 AR	E MARKER OFF T CONTINUOUS EARCH OFF ALUE -14 AR	E MARKER OFF OFF T CONTINUOUS COTEARCH OFF OFF	E MARKER OFF OFF T CONTINUOUS CONTINU EARCH OFF OFF	E MARKER OFF OFF T CONTINUOUS CONTINUOUS EARCH OFF OFF ALUE -14 dR -2 dR

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P228-022

+15C DATA

MARKER PARAMET OPR: R. HOGGATT DATE DEC 3 0 1996 annel 2

	105.000000 MHz 2241 dB
190.500000 MHz	104.141138 MHz
OFF	OFF
33.750000 MHz	9.122618 MHz
OFF	-3.2242 dB
176.250000 MHz	199.159658 MHz
OFF	-3.2242 dB
0.000000 MHz	89.42 5802 M Hz
0 dB	-3.2342 dB
OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF
	OFF 190.500000 MHz OFF 33.750000 MHz OFF 176.250000 MHz OFF 0.000000 MHz 0 dB OFF CONTINUOUS OFF -14 dB -3 dB OFF

APPENDIX B

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL105-190-10SS1 S/N PZZ8-02Z AEROJET 1331559-2 REV. F.

PASSBAND RIPPLE (CON'T)

/11B	RECORD PASS	/FAIL (0.5	5 dB MAX)
1111	INECOND I MOO	(0.0	J J .,

(11g) ATTACH PASSBAND RIPPLE

PERFORMANCE X-Y PLOT(S)

OUT-OF-BAND REJECTION

ACCEPTANCE TEST PROCEDURE

-10°C

+15°C

+40°C

63-0005-02 PARA 4.5.5

Fc=105.0 MHz.

REF (5A) FOR INSERTION LOSS @ Fc

{12} WORST CASE REJECTION FROM 0.300 MHz TO 1.0 MHz

-59.2 dB (40.0 dB MIN) -<u>59.2</u> dB (40.0 dB MIN) -59.2 dB (40.0 dB MIN)

{13a} WORST CASE REJECTION FROM 228.5 MHz TO 1000.0 MHz

-42.5 dB (40.0 dB MIN)

-<u>42.6</u> dB (40.0 dB MIN)

-42.6 dB (40.0 dB MIN)

{13c} RECORD MEASURED TEMPERATURE

-12.5 °C

+15.0℃ (-15.0 TO -10.0) (12.5 TO 17.5) (40.0 TO 45.0)

+43.0°C

{14} ATTACH REJECTION PERFORMANCE

X-Y PLOT(S)

TEST PERFORMED BY K

NOTE IF TEST WITNESSED BY AESD:

Not witnessed this time. DLD

***** END OF FUNCTIONAL PERFORMANCE TEST ****

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT OVER ALL LENGTH DIMENSION AND TOLERANCE

ACTUAL MEASUREMENT

 $3.50 \pm .03$

3.500

MOUNTING HOLE CENTER

 $0.125 \pm .010$

O.127

BETWEEN UPPER MOUNTING HOLES

3.250

3.251

BETWEEN LOWER MOUNTING HOLES

3.250

3.252

pared in accordance with Mil -STD-100

_	CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.	
	DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APBJ.DOC	SHEET	14	

% L

CH2	521	log	MAG	10	dB/	REF Ø	d₿	1	: -6-	d E	¦ -
ł		1 A						Ø.	000 0	00 MHz	
ŀ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7			 		-	 		AREF=1	
•								2	1	44 dE 5 MHz	1
	-		 	·	-	<u> </u>		3	77.6	<u>801 db</u> 83 MHz	
						,					
			·								
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
Cor											
Ĥvg											
25			4			+					
Hld							1	M. vondy			
CH2	START	=	00 000		L		STOP 1	900	900 00	10 MHz	
			FIN REJ	ECTIO	NCTION PER	ONAL PI	ERFORM NCE	ANCE			
			SER		O. P2	228-02					
MARKI	ER PAR	AME1	OPR	: R.	HOGG!	ATT DA	ATE DEC	3 O 199 6	annel	2	
	ER 1				OFF	1.0000	100 MH:	z Ø	105.0 dB	00000	MHz
MARKE					OFF	5.0000	00 MH:	-6 ¹	228.5 5.44	00 000 dB	MHz
MARKE	ER 3				OFF !	5.0000	00 MH:	-4;	282.6 2.6 01	83742 dB	MHz
MARKE					UFF			: OFI	F	000 0 M	
MKR S	STIMUL	JS OF	FSET		0 d]	3.0000 3	00 MH:	: 0	Ø. Ø(dB	300 O O	MHz
IT LL HU.F	RENCE I				OFF	r Nu io i io			RKER .		
MARKE	IR SEAR	₹СН			OFF			COI Of	YTINU(FF	DUS	
MARKE	T VALU	JE [H VAI	LUE		-3 dH -3 dH	3 3		-3 -3			
MARKE	R TRAC	CKING			OFF OFF	-		O F	F		
	, , . , , ,				OFF			OF			

APPENDIX B

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL105-190-10SS1 S/N P228 - OZZ AEROJET 1331559-2 REV.

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. +22.4 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

/ (1)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	- %3.1 dB	F11	(*) 130.0	MHz	-0.21 dB
F2	1.0	MHz	- 66.8 dB	F12	(*) 150.0	MHz	-0.27 dB
F3	5.0	MHz	-17.7 dB	F13	180.0	MHz	<u>- 0.43 dB</u>
F4	7.5	MHz	-7.34 dB	F14	190.0	MHz	-0.63 dB
F5	10.0	MHz	- ۱، <u> ان</u> dB	F15	200.0	MHz	<u>- 4.08</u> dB
F6	20.0	MHz	-0.0% dB	F16	250.0	MHz	<u>-48.८ dB</u>
F7	40.0	MHz	-0.10 dB	F17	300.0	MHz	<u>-५3.5</u> dB
F8	(*) 60.0	MHz	-0.16 dB	F18	400.0	MHz	- <u>52.7</u> dB
F9	(*) 80.0	MHz	-0.19 dB	F19	500.0	MHz	- <u>62.7</u> dB
F10	105.0	MHz	-0.22 dB . DA	F20	1000.0	MHz	<u>-69.1</u> dB

TEST PERFORMED BY: TZ HOGGAT DATE 12/27/96

NOTE IF TEST WITNESSED BY AESD_

Not witnessed this time. DLD _____

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE
63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX B PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

Prepared in accordance with MIL-STD-100				
CONTRACT NO.	SIZE	CAGE CODE	DWG. NO.	REV.
	Α	57032	63-0005-02	J
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	:AD/63/0502APBJ.DOC	SHEET	11

Channel 5 Bandpass Filter

IF Filter (S/N: 1331559-5, S/N: P231-007)

		•
		<u> </u>
		п

	APPENDIX E	ACCEPTANO	CE TEST REPOR	T		
	BANDPASS FILTER MODEL HL17 AEROJET 1331559-5 REV.	15-170-10SS 	1 S/N <u>P231-</u> 0	67		
	3.0 dB BANDWIDTH ACCEPTANCE TEST PROCEDUR 63-0005-010 PARA 4.5.3	RE ,	-10°C	+15°C		+40°C
	{7} UPPER 3.0 dB BANDEDGE		1 <u>99.19 </u> MHz (198.0-200.0)	<u>198.86।</u> (198.0-2		1 <u>98.54 </u> MHz 198.0-200.0)
	(8) LOWER 3.0 dB BANDEDGE		<u>31.45</u> MHz (30.0-32.0)	<u>31.38</u> (30.0-32		<u>31.33</u> MHz 30.0-32.0)
	(9) 3.0 dB RELATIVE BANDWIDTI	Н	1 <u>67.74</u> MHz (166.0-170.0)	1 <u>67.48</u> 1 (166.0-1		1 <u>67.21 MHz</u> 166.0-170.0)
	{10} ADD {7} AND {8} ÷ 2 =		1 <u>15.32</u> MHz (115.0 NOM)	1 <u>15.12</u> (115.0 N		1 <u>1 4.94</u> Mhz (115.0 NOM)
	{10a} RECORD MEASURED TEM	PERATURE	- <u>17.○</u> °C (-15.0 TO -10.0)	+ <u> 6 </u> 00 (12.5 TO 17		+ <u>43.</u> 0°C).0 TO 45.0)
	(6) ATTACH TRANSMISSION LOS PERFORMANCE X-Y PLOT	SS	(1)	(√)	(\lambda)
	PASSBAND RIPPLE ACCEPTANCE TEST PROCEDUR 63-0005-010 PARA 4.5.4	RE	-10°C	+15°C		+40°C
	{11a} MIN INSERTION LOSS FRI	EQ	88.62 MHz	79.44	Mhz 7	9.44 MHz
	MIN INSERTION LOSS PE	RFORMANC	E -0.23 dB	-0.25	dB - <u>(</u>	<u>0.26</u> dB
	{11b} 75% BW LOWER BANDED	GE FREQ	34.57 MHz	34.42	Mhz 3	4.32MHz
	75% BW LOWER BANDED	GE I.L. PER	F - <u>0.42</u> dB	-0.45	dB - <u>(</u>).47_dB
	{11c} 75% BW UPPER BANDEDO	GE FREQ	162.07 MHz	1 <u>61.92</u> M	hz ال <u>-</u>	<u>l.&Z</u> MHz
	75% BW UPPER BANDED	GE I.L. PERF	= - <u>0.42</u> dB	-0.45	dB - <u>(</u>	O.47 dB
	{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a}))	<u>0.19</u> dB	0.20	dB <u></u>	<u>0.21</u> dB
	{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a};)	<u>0.19</u> dB	0.20	dB <u>(</u>	0.21_dB
Pre	Pared in accordance with MIL-STD-100 ONTRACT NO.	SIZE	CAGE CODE	DWG. N	10	REV.
		A	57032	63-000		J J
D.	ADEN-ANTHONY ASSOCIATES	I.VC FILE: ACA	AD/63/0502APEJ.DOC		SHEET	13

?

-

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P231-007

+15C DATA

RKER PARAMET OPR: R. HOGGATT DATE DEC 27 1996 annel 2

RKER 1	38.500000 MHz OFF	115.000000 MHz 3066 dB
RKER 2	191.500000 MHz OFF	115.123629 MHz OFF
RKER 3	51.250000 MHz OFF	31.383397 MHz -3.3067 dB
RKER 4	178.750000 MHz OFF	198.863861 MHz -3.3067 dB
R STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
FERENCE MARKER ACEMENT RKER SEARCH RGET VALUE RKER WIDTH VALUE RKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF . CONTINUOUS OFF -3 dB -3 dB OFF OFF
Pro-Civillon IIIO	VFF	UFF

ACCEPTANCE TEST REPORT APPENDIX E BANDPASS FILTER MODEL HL115-170-10SS1 S/N_P231-GG7 AEROJET 1331559-5 REV. 6 PASSBAND RIPPLE (CON'T) (PASS)FAIL (PASS/FAIL {11f} RECORD PASS/FAIL (0.5 dB MAX) (PASS/FAIL (11g) ATTACH PASSBAND RIPPLE PERFORMANCE X-Y PLOT(S) **OUT-OF-BAND REJECTION** +40°C +15°C -10°C ACCEPTANCE TEST PROCEDURE 63-0005-010 PARA 4.5.5 Fc=115.0 MHz REF (5A) FOR INSERTION LOSS @ Fc >90_dB 790 dB >90 dB {12} WORST CASE REJECTION FROM (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) 0.300 MHz TO 4.5 MHz -62.9 dB -61.9 dB -60.8 dB (13a) WORST CASE REJECTION FROM (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) 225.5 MHz TO 1000.0 MHz +16.1 °C +42.8 °C {13c} RECORD MEASURED TEMPERATURE -11.8 °C (-15.0 TO -10.0) (12.5 TO 17.5) (40.0 TO 45.0) (14) ATTACH REJECTION PERFORMANCE X-Y PLOT(S) DATE 12/27/96 TEST PERFORMED BY 12. Not witnessed NOTE IF TEST WITNESSED BY AESD: _____ GSI: this time. DLD ***** END OF FUNCTIONAL PERFORMANCE TEST **** **OUTLINE AND MOUNTING DIMENSIONS VERIFICATION {16} REFERENCE CUSTOMER DRAWING 1331559 ACTUAL DIMENSION AND DESCRIPTION OF MEASUREMENT** TOLERANCE **MEASUREMENT** 3,500 $3.50 \pm .03$ **OVER ALL LENGTH** 0.126 $0.125 \pm .010$ MOUNTING HOLE CENTER S.250 3.250 BETWEEN UPPER MOUNTING HOLES 3.250 3.250 BETWEEN LOWER MOUNTING HOLES

CAGE CODE

FILE: ACAD/63/0502APEJ.DOC

57032

SIZE

REV.

14

DWG, NO.

63-0005-02

SHEET

Prepared in accordance with MIL-STD-100

DADEN-ANTHONY ASSOCIATES INC.

CONTRACT NO.

H2 5 ₂₁	log 1	1AG	10 0	dB/ F	REF Ø	dB	1	0		dB
							0.	900	000 M	l l
1		1					2	-99 -11	4REF 907 0.5 M	
			-				1	1	902 0.5 M	1
									0.10 11	
					<u> </u>		-			
		-								
or										
g		♣								
5										
.			1						_	
d			N.							
d <u>≨</u> TAR	RT . :=	an an		NCTIO	NAT. PE	STOP 1	000 (300 I	000 MI	-lz
	RT .=	FII RES	NAL FU JECTIO	N PER	NAL PE FORMAN	RFORM. ICE	000 (ANCE	300 (000 MI	-lz
₹TAR		FII RES SEI	NAL FU JECTIO RIAL N	N PER	NAL PE FORMAN 31-007	RFORM. ICE	ANCE			-lz
₹TAR	PARAMET	FII RES SEI	NAL FU JECTIO RIAL N	N PER	NAL PE FORMAN 31-007	RFORM. ICE	27 1996			Hz
₹TAR	PARAME"	FII RES SEI	NAL FU JECTIO RIAL N	N PER O. P2 A HOGGA 1006 OFF	NAL PE FORMAN 31-007 TT DA	ERFORM. ICE TE DEC	ANCE 27 1996	anne	el 2	
∰TAR	PARAME ⁻	FII RES SEI	NAL FU JECTIO RIAL N	N PER O. P2 A HOGGA 1006 OFF	NAL PE FORMAN 31-007 TT DA	ERFORM. ICE TE DEC	ANCE 27 1996 z	anne 115. dB 4.	el 2	10 MH
ETAR	PARAMET	FII RES SEI	NAL FU JECTIO RIAL N	N PER O. P2 A HOGGA 1000 OFF	NAL PE FORMAN 31-007 TT DA	TE DEC	ANCE 27 1996 z -9 z	anne 115. dB 4. 9.50	1 2 00000 50000	10 MH
ETAR RKER P RKER 1	PARAMET	FII RES SEI	NAL FU JECTIO RIAL N	N PER O. P2 A HOGGA OFF 1000 OFF	NAL PE FORMAN 31-007 TT DA 3.0000	TE DEC OO MH:	ANCE 27 1996 z -9 z	anne 115. dB 4. 9.50 225. 1.90	1 2 00000 50000 7 dB 50000	10 MH 10 MH
ETAR BRKER P BRKER 1 BRKER 2 BRKER 3	PARAMET	FII RES SEI +1! OPI	NAL FU JECTIO RIAL N	N PER O. P2 A HOGGA' 1006 OFF 1006 OFF	NAL PE FORMAN 31-007 TT DA 3.0000 0.0000	TE DEC ØØ MH: ØØ MH:	ANCE 27 1996 2 -9 2 -6 2 0F	anne 115. dB 4. 9.50 225. 1.90	1 2 00000 50000 7 dB 50000 02 dB	10 MH 10 MH
TAR TAR TARKER P TARKER 1 TARKER 2 TARKER 3 TARKER 3	PARAMET ULUS OF E MARKE T EARCH	FII RES SEI +15 OPI	NAL FU JECTIO RIAL N 5C DAT R: R.	N PER O. P2 A HOGGA' 1000 OFF 1000 OFF 1000 OFF	NAL PE FORMAN 31-007 TT DA 3.0000 0.0000 0.0000	TE DEC OO MH: OO MH:	ANCE 27 1996 Z -9 Z -6 Z 0 MA CO O	anne 115 dB 4.0 9.5 1.90 dB RKEN FF	1 2 00000 50000 7 dB 50000 00000	10 MH 10 MH
TAR TAR TARKER P TARKER 1 TARKER 2 TARKER 3 TARKER 4	PARAMET ULUS OF E MARKE T EARCH	FII RES SEI +1! OPI	NAL FU JECTIO RIAL N 5C DAT R: R.	N PER O. P2 A HOGGA' 1000 OFF 1000 OFF 1000 OFF	NAL PE FORMAN 31-007 TT DA 3.0000 0.0000 0.0000	TE DEC OO MH: OO MH:	ANCE 27 1996 2 -9 2 -6 2 0F 2 0F 3 0F	anne 115. 118 9.5. 1.90 6. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	1 2 00000 50000 50000 50000 00000	10 MH 10 MH

сна	521	log M	1AG	10	dB/	REF (∂ dB		1: (3	d B
i								(3.001	3 00	0 MHz
	 	1		 							REF=1
									2: -9	99 . 110.	06 dB 5 MHz
		 		 -	 				3: -6	32 <u> </u>	82 dB 5 MHz
						İ				110.	5 MHz
					ļ						
						İ					
	 		ļ		ļ						
			4								
	-		↓						Ì		
			}								
	1		1				İ				
			}						1		
Cor											
Avg 25			\$\frac{1}{2}							1	ļ
HId				_		 	+		-		
		İ		L.							
4	START	. 30	10 000			1	CTOR	1 885			
•	,		FI	NAL FU	JNCTI	ONAL F	SIUP	1 000 RMANCE	. 000	000	0 MHz
			RE.	TECLI(ON PE	RFORM <i>i</i>	INCE				
			SE	RIAL N	10. P	231-00	7				

+40C DATA
MARKER PARAMET OPR: R. HOGGATT DATE DEC 27 1996 Januari 2

MARKER 1 1000.000000 MHz 115.000000 MHz OFF Ø dB MARKER 2 1000.000000 MHz 4.500000 MHz OFF -99.806 dB MARKER 3 1000.000000 MHz 225 500000 MHz OFF -62.882 dB MARKER 4 1000 000000 MHz 1000.000000 MHz OFF OFF MKR STIMULUS OFFSET 0.000000 MHz 0.000000 MHz 0 dB 0 dB OFF MARKER 1 CONTINUOUS

REFERENCE MARKER PLACEMENT CONTINUOUS MARKER SEARCH OFF OFF TARGET VALUE -3 dB MARKER WIDTH VALUE -3 dB -3 dB -3 dB OFF OFF ARKER TRACKING OFF OFF

APPENDIX E

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL115-170-10SS1 S/N P231-067 **AEROJET 133**1559-5 REV. F.

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. + 22.0 °C (+19°C TO +29.0°C)

(15) ATTACH PASSBAND PERFORMANCE X-Y PLOT

{24} TEST POINT MATRIX

REF	FREC	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	- 105.7 dB	F11	(*) 130.0	MHz	<u>- 0.31</u> dB
F2	1.0	MHz	-105.0dB	F12	(*) 155.0	MHz	<u>-0.45</u> dB
F3	10.0	MHz	-85.8 dB	F13	180.0	MHz	<u>-೧.५५ dB</u>
F4	20.0	MHz	- 40.6 dB	F14	190.0	MHz	<u>-८.४८</u> dB
F 5	30.0	MHz	-6.94 dB	F15	200.0	MHz	<u>-4.90_</u> dB
F6	40.0	MHz	-0.30_dB	F16	210.0	MHz	<u>-26.2</u> dB
F7	50.0	MHz	-0.26 dB	F17	300.0	MHz	<u>-71.1</u> dB
F8	(*) 75.0	MHz	-0.76 dB	F18	400.0	MHz	-90.6 dB
F9	(*) 100.0	MHz	-0.27 dB	F19	500.0	MHz	<u>-97.3</u> dB
F10	115.0		-0.30 dB	F20	1000.0	MHz	<u>-1∞.1</u> dB

TEST PERFORMED BY: 12 HOGGATT DATE 12/21/96

NOTE IF TEST WITNESSED BY AESD_____GSI_ this time. DLD

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE 63-0005-010 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX E PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- a.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APEJ.DOC	SHEET	11

Channel 6 Bandpass Filter

IF Filter (S/N: 1331559-2, S/N: P228-011)

	_
	•
	<u> </u>

APPENDIX B							
	Δ	P	PE	N	D	IX	В

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL105-190-10SS1 S/N_P228-011 AEROJET 1331559-2 REV.

3.0 dB BANDWIDTH ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.3	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE	199.70MHz (198.0-200.0)	1 <u>99.33</u> Mhz (198.0-200.0)	1 <u>98.98</u> MHz (1480.01500.0)
(8) LOWER 3.0 dB BANDEDGE	9.16 MHz (8.0-10.0)	9.15 Mhz (8.0-10.0)	<u>9.14 </u> MHz (8.0-10.0)
(9) 3.0 dB RELATIVE BANDWIDTH	1 <u>90.54</u> MHz (188.0-192.0)	1 <u>90.18</u> Mhz (188.0-192.0)	18 <u>9,84 </u> MHz (188.0-192.0)
{10} ADD {7} AND {8} ÷ 2 =	1 <u>04.43</u> mHz (105.0 NOM)	1 <u>04.24</u> MHz (105.0 NOM)	ነ <u>ርነዛ.ሪ</u> ራMhz (105.0 NOM)
{10a} RECORD MEASURED TEMPERATURE	- <u>14.3</u> °C (-15.0 TO -10.0)	+ <u>15.9</u> °C (12.5 TO 17.5)	4 <u>43,2 °</u> C (40.0 TO 45.0)
(6) ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT	<u> </u>	<u>/</u> (1)	(1)
PASSBAND RIPPLE ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.4	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FREQ	19.9 LMHz	19.91 Mhz	<u>20.50</u> MHz
MIN INSERTION LOSS PERFORMANC	E - <u>0.08</u> dB	- <u>0.08</u> dB	- <u>0.08</u> dB
{11b} 75% BW LOWER BANDEDGE FREQ	14.02 MHz	13.94 Mhz	13.83MHz
75% BW LOWER BANDEDGE I.L. PER	F - <u>0.26</u> dB	- <u>0.27</u> dB	- <u>0.29</u> dB
{11c} 75% BW UPPER BANDEDGE FREQ	1 <u>56.52</u> mHz	1 <u>56.44</u> Mhz	1 <u>56.33</u> MHz
75% BW UPPER BANDEDGE I.L. PERI	F - <u>0,26</u> dB	- <u>0.27</u> dB	- <u>0.29</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>0.18</u> dB	<u>0.19</u> dB	<u>0.21</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	<u>0.18</u> dB	0.19 dB	<u>0.21</u> dB

Prepared in accordance with MIL-STD-100 CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APBJ.DOC	SHEET	13

TRANSMISSION LOSS SERIAL NO. P228-011

-10C DATA

ARKER TRACKING

MARKER PARAMET OPR: R. HOGGATT DATE DEC 28 1996 annel 2

MARKER 1	19.500000 MHz OFF	105.000000 MHz 2418 dB
1ARKER 2	190.500000 MHz OFF	104.429771 MHz OFF
1ARKER 3	33.750000 MHz OFF	9.163214 MHz -3.2418 dB
IARKER 4	176.250000 MHz OFF	199.696328 MHz -3.2418 dB
KR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
EFERENCE MARKER LACEMENT ARKER SEARCH ARGET VALUE ARKER WIDTH VALUE	OFF CONTINUOUS OFF -14 dB -3 dB	OFF CONTINUOUS OFF -3 dB -3 dB

OFF

OFF

OFF

OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P228-011

+15C DATA

ARKER PARAMET OPR: R. HOGGATT DATE DEC 28 1996 annel 2

ARKER 1	19.500000 MHz OFF	105.000000 MHz 2489 dB
ARKER 2	190.500000 MHz OFF	104.241274 MHz OFF
ARKER 3	33.750000 MHz OFF	9.154504 MHz -3.2489 dB
ARKER 4		199.328045 MHz -3.2489 dB
KR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
LACEMENT ARKER SEARCH ARGET VALUE	OFF -14 dB	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

TRANSMISSION LOSS SERIAL NO. P228-011

+40C DATA

MARKER PARAMET OPR: R. HOGGATT DATE DEC 28 896 annel 2

ARKER 1	19.500000 MHz OFF	105.000000 MHz 2614 dB
ARKER 2	190.500000 MHz OFF	104.056431 MHz OFF
ARKER 3	33.750000 MHz OFF	9.137068 MHz -3.2614 dB
ARKER 4	176.250000 MHz OFF	198.975794 MHz -3.2614 dB
KR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
EFERENCE MARKER LACEMENT ARKER SEARCH ARGET VALUE ARKER WIDTH VALUE ARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

ACCEPTANCE TEST REPORT RANDPASS FILTER MODEL HL105-190-10SS1 S/N P228-01

BANDPASS FILTER MODEL HL105-190-10SS1 S/N P228-OI I AEROJET 1331559-2 REV.

PASSBAND RIPPLE (CON'T)

{11f} RECORD PASS/FAIL (0.5 dB MAX)	PASSIFAIL	PASSIFAIL	(PASS)FAIL
THE COURT OF THE C	/11	/11/	V (N)

(11g) ATTACH PASSBAND RIPPLE PERFORMANCE X-Y PLOT(S)

OUT-OF-BAND REJECTION

ACCEPTANCE TEST PROCEDURE -10°C +15°C +40°C

63-0005-02 PARA 4.5.5

Fc=105.0 MHz.

REF (5A) FOR INSERTION LOSS @ Fc

{14} ATTACH REJECTION PERFORMANCE
$$(\checkmark)$$
 (\checkmark) (\checkmark) (\checkmark) (\checkmark)

TEST PERFORMED BY R. HOGGATT DATE 12/27/96

NOTE IF TEST WITNESSED BY AESD: _____ GSI: _ this time. DLD

***** END OF FUNCTIONAL PERFORMANCE TEST ****

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT	DIMENSION AND TOLERANCE	ACTUAL MEASUREMENT
OVER ALL LENGTH	3.50 ± .03	3.501
MOUNTING HOLE CENTER	0.125 <u>+</u> .010	0.126
BETWEEN UPPER MOUNTING HOLES	3.250	3.250
BETWEEN LOWER MOUNTING HOLES	3.250	3.250_

Γ	Prepared in accordance with MIL-STD-100 CONTRACT NO.	SIZE CAGE CODE		DWG. NO. 63-0005-02	REV.	REV.	
ı	DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APBJ.DOC	SHEET	14		

REJECTION PERFORMANCE SERIAL NO. P228-011

+40C DATA

MARKER PARAME OPR: R. HOGGATT DATE DEC 28 1996 annel 2

1ARKER 1	1.000000 MHz OFF	105.000000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	228.500000 MHz -71.503 dB
1ARKER 3	5.000000 MHz OFF	280.284462 MHz -41.173 dB
1ARKER 4	5.000000 MHz OFF	.300000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER LACEMENT LACEMENT LARKER SEARCH LARGET VALUE LARKER WIDTH VALUE ARKER TRACKING	OFF CONTINUOUS OFF -3 dB -3 dB OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF
ARKER TRACKING	OFF	OFF

APPENDIX B

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL105-190-10SS1 S/N PZ28-011 AEROJET 1331559-2 REV.

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. +22H °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

∠(√)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	- 82.8 dB	F11	(*) 130.0	MHz	-0.24 dB
F2	1.0	MHz	-66.3 dB	F12	(*) 150.0	MHz	<u>-0.25</u> dB
F3	5.0	MHz	-17.8 dB	F13	180.0	MHz	<u>-043</u> dB
F4	7.5	MHz	- 7.44 dB	F14	190.0	MHz	-0.62 dB
F5	10.0	MHz	-1.84 dB	F15	200.0	MHz	<u>-3.97</u> dB
F6	20.0	MHz	-0.08 dB	F16	250.0	MHz	<u>- 45.9 </u> dB
F7	40.0	MHz	-0.11 dB	F17	300.0	MHz	<u>-42.1</u> dB
F8	(*) 60.0	MHz	-0.18 dB	F18	400.0	MHz	<u>-51.5</u> dB
F9	(*) 80.0	MHz	-0.24 dB	F19	500.0	MHz	<u>-61.3</u> dB
F10	105.0	MHz	- 0.75 dB	(A) F20	1000.0	MHz	<u>-88.6</u> dB
, , ,					1 1		

TEST PERFORMED BY: 12 HOGGAT DATE 12 27 90

NOTE IF TEST WITNESSED BY AESD GSI this time. DLD

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX B PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- a.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

 Tepared in accordance with MIL-STD-100

 CONTRACT NO.
 SIZE A ST032
 DWG. NO. G3-0005-02
 REV. G3-0005-02
 J

 DADEN-ANTHONY ASSOCIATES INC.
 FILE: ACAD/63/0502APBJ.DOC
 SHEET
 11

PASSBAND CHARACTERISTICS SERIAL NO. P228-011 AMBIENT

MARKER PARAME OPR: R. HOGGATT DATE DEC 27 1996 Januari 2

OFF

17.750000 MHz	60.000000 MHz
OFF	- 1811 dB
157.250000 MHz	80.000000 MHz
OFF	2355 dB
29.375000 MHz	130.000000 MHz
OFF	2433 dB
145.625000 MHz	150.000000 MHz
OFF	2488 dB
0.000000 MHz	89.4 2580 2 MHz
0 dB	-3.2342 dB
OFF CONTINUOUS OFF -14 dB -3 dB OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF
	157.250000 MHz OFF 29.375000 MHz OFF 145.625000 MHz OFF 0.000000 MHz 0 dB OFF CONTINUOUS OFF -14 dB -3 dB

Channel 7 Bandpass Filter

IF Filter (S/N: 1331559-2, S/N: P228-019)

		<u> </u>
)
		<u> </u>

APPENDIX B ACCEPTANCE	E TEST REPORT		
BANDPASS FILTER MODEL HL105-190-10SS AEROJET 1331559-2 REV. E	1 S/N <u>P228</u> -0	19	
3.0 dB BANDWIDTH ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.3	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE	1 <u>99.56</u> MHz (198.0-200.0)	1 <u>99.19</u> Mhz (198.0-200.0)	9 <u>5.83</u> MHz (1480.01500.0)
{8} LOWER 3.0 dB BANDEDGE	<u>9.11</u> MHz (8.0-10.0)	9.10 Mhz (8.0-10.0)	<u>9.09</u> MHz (8.0-10.0)
{9} 3.0 dB RELATIVE BANDWIDTH	1 <u>90.45</u> MHz (188.0-192.0)	1 <u>90.09</u> Mhz (188.0-192.0)	18 <u>9.74 </u> MHz (188.0-192.0)
{10} ADD {7} AND {8} ÷ 2 =	1 <u>04.34</u> mHz (105.0 NOM)	1 <u>04.15</u> MHz (105.0 NOM)	1 <i>0</i> 3.96Mhz (105.0 NOM)
{10a} RECORD MEASURED TEMPERATURE	- <u>13.6</u> °C (-15.0 TO -10.0)	+ <u>15.5</u> °C (12.5 TO 17.5)	+ <u>44.5</u> °C (40.0 TO 45.0)
(6) ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT	(1)	(\forall)	<u>/</u> (\(\forall \)
PASSBAND RIPPLE ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.4	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FREQ	19.32MHz	18.13 Mhz	19.32 MHz
MIN INSERTION LOSS PERFORMANO	E -0.07 dB	- <u>0.08</u> dB	- <u>0.08</u> dB
{11b} 75% BW LOWER BANDEDGE FREQ	13.80 MHz	13.67 Mhz	3.51_MHz
75% BW LOWER BANDEDGE I.L. PER	F - <u>0.27</u> dB	- <u>0.28</u> dB	- <u>0,30</u> dB
{11c} 75% BW UPPER BANDEDGE FREQ	1 <u>56.30</u> MHz	15 <u>6.17</u> Mhz	156.01 MHz
75% BW UPPER BANDEDGE I.L. PER	F - <u>0.27</u> dB	- <u>0.28</u> dB	- <u>0.30_</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>O.2O</u> dB	<u>0.20</u> dB	<u>0.22</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	<u>0.20</u> dB	<u>0.20</u> dB	<u>022</u> dB
Prepared in accordance with MIL-STD-100 CONTRACT NO. SIZE	CAGE CODE	DWG. NO.	REV.

FILE: ACAD/63/0502APBJ.DOC

57032

Α

63-0005-02

SHEET

13

DADEN-ANTHONY ASSOCIATES INC.

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P228-019 +40C DATA

ARKER PARAMET OPR: R. HOGGATT DATE DEC 3 0 1996 annel 2

ARKER 1	19.500000 MHz OFF	105.000000 MHz - 2450 dB
RKER 2	190.500000 MHz OFF	103.959350 MHz OFF
ARKER 3	33.750000 MHz OFF	9.090897 MHz -3.245 dB
RKER 4	176.250000 MHz OFF	198.827804 MHz -3.245 dB
R STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
ACEMENT RKER SEARCH RGET VALUE	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF
		911

ACCEPTANCE TEST REPORT APPENDIX B BANDPASS FILTER MODEL HL105-190-10SS1 S/N PZZ8-O19 AEROJET 1331559-2 REV. _______ PASSBAND RIPPLE (CON'T) (PASS)FAIL {11f} RECORD PASS/FAIL (0.5 dB MAX) (PASSIFAIL (11g) ATTACH PASSBAND RIPPLE PERFORMANCE X-Y PLOT(S) **OUT-OF-BAND REJECTION** +40°C +15°C -10°C ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.5 Fc=105.0 MHz. REF (5A) FOR INSERTION LOSS @ Fc -59.0 dB - 59.1 dB -59.1 dB {12} WORST CASE REJECTION FROM (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) 0.300 MHz TO 1.0 MHz -42.1 dB 42.1 dB {13a} WORST CASE REJECTION FROM -42.1 dB (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) 228.5 MHz TO 1000.0 MHz +44.4 °C -<u>13.5</u> ℃ +15.4 °C {13c} RECORD MEASURED TEMPERATURE (-15.0 TO -10.0) (12.5 TO 17.5) (40.0 TO 45.0) **{14} ATTACH REJECTION PERFORMANCE** X-Y PLOT(S) DATE 12/30/4C - OGGATT Not witnessed NOTE IF TEST WITNESSED BY AESD: _____ GSI: _ this time. DLD ***** END OF FUNCTIONAL PERFORMANCE TEST **** **OUTLINE AND MOUNTING DIMENSIONS VERIFICATION** {16} REFERENCE CUSTOMER DRAWING 1331559 ACTUAL DIMENSION AND **DESCRIPTION OF** MEASUREMENT TOLERANCE **MEASUREMENT** 3.501 $3.50 \pm .03$ **OVER ALL LENGTH** 0.126 0.125 <u>+</u> .010 **MOUNTING HOLE CENTER** 3.251 3.250 BETWEEN UPPER MOUNTING HOLES 3.250 3.250 BETWEEN LOWER MOUNTING HOLES

1	Prepared in accordance with MIL-STD-100					
-	CONTRACT NO.	SIZE	CAGE CODE	DWG. NO.	REV.	- 1
		Α	57032	63-0005-02	j	
	DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APBJ.DOC	SHEET	14	

EFERENCE MARKER OFF MARKER 1 * LACEMENT CONTINUOUS CONTINUOUS ARKER SEARCH OFF OFF ARGET VALUE -3 dB -3 dB ARKER WIDTH VALUE -3 dB -3 dB OFF OFF ARKER TRACKING OFF OFF

	12	S ₂₁		log	M	AG		1	0 0	B/	R	EF	0	dΒ			1:	Ø -			dΒ	-
																	0.0	100	00	0 M	Hz	
				Z								<u> </u>		ļ			<u>م.</u>	_6/		REF		1
					١												2:		,	36 5 M		
		-						<u> </u>	.,					-			3:	-42 79.	88 88	95 3 M	d B Hz	
						}																
						}							;	-						***	\dashv	
											·											
						-								-							_	
							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\															
	r					₩		-													\dashv	
	9		ļ			4																
					_	4				ļ				<u> </u>	-	٠.					-	
	d					1										200	wy					
	2	STA	RT		. 3	ЯЙ	ดด											000	00	0 M	Hz	
													. PE RMAN		ORMA	ANCI	Š					
								RIA 5C			P22	28-	-019)								
	RK	ER	PAR	:AME	· -						GA'	T	DA	TE.	tec a	0 1	996	ann	el	2		
																			_			
	RK	ER	1							OF		. 0	000	100	MH	2		105 dB		3 0 01	30	MHz
	RK	ER	2								=	ิด	ดดด	เดด	MH-			228	50	ลดดเ	a 0	MHz
			_							OF		. •				-	-6	4.3	36	dB		
	RК	ER	3									. Ø	000	100	MH	z						MHz
										OF	-							2.0				
	RK	ER.	4							OF		. 0	000	100	MH	7	OF	F.	30(200i	∂ M	Hz
	R	STI	MUL	.US	OF	FSI	ΞT				0	. Ø	000	00	MH:	ż		Ø	. 01	a001	00	MHz
										Ø	dΒ						0	dB				
	ŀΕ	REN	CE	MAR	KF	R				O!	-F						MA	RKE	R	1		
	RC.	EME	NT	ıRCH							1TP		ious	,			CO	NTI FF				
	RG	ET	VAL	.UE			_			-3	dΒ						-3	dB				
_	1			TH			_				-F							; dB FF				
	RK	ER	TRA	CKI	ΝG					01	F						С	FF				

2 S ₂₁ log MAG 10	dB/ REF Ø dB	1 0- dB
		0.000 000 MHz AREF=1
		2: -66.254 dB 123.5 MHz
		3:-42 142 dB 177.583 MHz
	1	
3		
		May 1
REJECTI SERIAL +40C DA	UNCTIONAL PERFORMANG ON PERFORMANCE NO. P228-019	
KER 1	1.000000 MHz OFF	105.000000 MHz 0 dB
KER 2	5.000000 MHz OFF	228.500000 MHz -66.254 dB
KER 3	5.000000 MHz OFF	282.583772 MHz -42.142 dB
KER 4	5.000000 MHz OFF	.300000 MHz OFF
STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
KER SEARCH	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF OFF
		~ , ,

APPENDIX B

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL105-190-10SS1 S/N_ P228-019
AEROJET 1331559-2 REV._____

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. +22.1 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

 $\sqrt{(1)}$

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE		REF	FREQ	UNIT	VALUE
F1	0.5	MHz	-82.6 dB		F11	(*) 130.0	MHz	-0.23dB
F2	1.0	MHz	-66.2 dB		F12	(*) 150.0	MHz	-0.27 dB
F3	5.0	MHz	-17.6 dB		F13	180.0	MHz	<u>- ८.५८ </u> dB
F4	7.5	MHz	-7.31 dB		F14	190.0	MHz	<u>-0,65</u> dB
F5	10.0	MHz	-1.76 dB		F15	200.0	MHz	- <u>4.10</u> dB
F6	20.0	MHz	-0,0% dB		F16	250.0	MHz	<u>-५७.७</u> dB
F7	40.0	MHz	-0.11 dB		F17	300.0	MHz	<u>- 42.9 dB</u>
F8	(*) 60.0	MHz	<u>-0.17_dB</u>		F18	400.0	MHz	<u>-52.0_dB</u>
F9	(*) 80.0	MHz	-0.20 dB		F19	500.0	MHz	<u>-62.0</u> dB
F10	105.0	MHz	-0.23 dB	(M)	F20	1000.0	MHz	<u>-76.6</u> dB
				\ \$ /				

TEST PERFORMED BY: 12 HOGGATT DATE 12 27 96

NOTE IF TEST WITNESSED BY AESD GSI hot witnessed this time. DLD

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX B PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

_	Prepared in accordance with MIL-STD-100				
	CONTRACT NO.	SIZE	CAGE CODE	DWG. NO.	REV.
		Α	57032	63-0005-02	J
	DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APBJ.DOC	SHEET	11

Channel 8 Bandpass Filter

IF Filter (S/N: 1331559-4, S/N: P230-014)

APPENDIX D ACC	CEPTANCE	TEST REPORT	•		
BANDPASS FILTER MODEL HL87.5- AEROJET 1331559-4 REV.	155-10SS1	s/n <u>P230-</u> 0	14		
3.0 dB BANDWIDTH ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.3		-10°C	+15°C		+40°C
{7} UPPER 3.0 dB BANDEDGE		1 <u>64.29 M</u> Hz 163.0-165.0)	1 <u>64.02</u> Mhz (163.0-165.0		<u>3.75</u> MHz 63.0-165.0)
{8} LOWER 3.0 dB BANDEDGE	. (8	<u>9.15</u> MHz 3.0-10.0)	9.14 Mhz (8.0-10.0)		<u>9.12 MHz</u> 0-10.0)
(9) 3.0 dB RELATIVE BANDWIDTH		1 <u>55. 4</u> MHz 153.0-157.0)	1 <u>54.88</u> Mhz (153.0-157.0		<u>54.63 MHz</u> 53.0-157.0)
{10} ADD {7} AND {8} ÷ 2 =	3)	<u>86.72 </u> MHz 87.5 NOM)	<u>%6.5%</u> MHz (87.5 NOM)		ર્ <u>હિ.મેન</u> Mhz (87.5 NOM)
{10a} RECORD MEASURED TEMPE		- <u> 2.5</u> ℃ -15.0 TO -10.0)			+ <u>42.5</u> °C 0 TO 45.0)
(6) ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT		<u> </u>	(1)		(\forall)
			•		
PASSBAND RIPPLE ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.4		-10°C	+15°C		+40°C
{11a} MIN INSERTION LOSS FREQ		19.27 MHz	21.26 Mhz	<u> 19</u>	<u>. רר.</u> MHz
MIN INSERTION LOSS PERF	ORMANCE	-0.10 dB	- <u>0.10</u> dB	- <u>O</u>	.11_dB
{11b} 75% BW LOWER BANDEDGE	FREQ	13.29 MHz	13.15 Mhz	13	.05_MHz
75% BW LOWER BANDEDGE	E I.L. PERF	- <u>0,35</u> dB	- <u>0.37</u> dB	- <u>O</u>	.39_dB
{11c} 75% BW UPPER BANDEDGE	FREQ	1 <u>29.54 </u> MHz	17 <u>9,40</u> Mhz	129.	<u>30</u> MHz
75% BW UPPER BANDEDGE	I.L. PERF	- <u>0.35</u> dB	- <u>0.37</u> dB	- <u>C</u>	0.39 dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})		<u>0.25</u> dB	0.27 dB	<u>0</u>	. <u>78</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})		0.25 _{dB}	<u>0.27</u> dB	<u>o</u>	.28_dB
Prepared in accordance with MIL-STD-100					
CONTRACT NO.	SIZE	CAGE CODE 57032	DWG. NO. 63-0005-0 2	2	REV.
DADEN-ANTHONY ASSOCIATES IN		0/63/0502APDJ.DOC		EET	12
	- 7		L		

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P230-014

-10C DATA

MARKER PARAMET OPR: R. HOGGATT DATE DEC 2 0 1996 annel 2

MARKER 1	17.750000 MHz OFF	87.500000 MHz 2195 dB
MARKER 2	157.250000 MHz OFF	86.720252 MHz OFF
MARKER 3	29.375000 MHz OFF	9.154920 MHz -3.2196 dB
MARKER 4	145.625000 MHz OFF	164.285585 MHz -3.2196 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

TRANSMISSION LOSS SERIAL NO. P230-014

+15C DATA

MARKER PARAMEI OPR: R. HOGGATT DATE DEC 2 0 1996 annel 2

MARKER 1	17.750000 MHz OFF	87.500000 MHz 2318 dB
MARKER 2	157.250000 MHz OFF	86.576516 MHz OFF
MARKER 3	29.375000 MHz OFF	9.137909 MHz -3.2319 dB
MARKER 4	145.625000 MHz OFF	164.015124 MHz -3.2319 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P230-014

+40C DATA

MARKER PARAME OPR: R. HOGGATT DATE DEC 2 0 1998 annel 2

MARKER 1	17.750000 MHz OFF	87.500000 MHz 2418 dB
MARKER 2	157.250000 MHz OFF	86.435518 MHz OFF
MARKER 3	29.375000 MHz OFF	9.124221 MHz -3.2418 dB
MARKER 4	145.625000 MHz OFF	163.746815 MHz -3.2418 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

APPENDIX D

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL87.5-155-10SS1 S/N P230-014 AEROJET 1331559-4 REV. €

PASSBAND RIPPLE (CON'T)

{11f} RECORD PASS/FAIL (0.5 dB MAX)

(PASS)FAIL

(11g) ATTACH PASSBAND RIPPLE

PERFORMANCE X-Y PLOT(S)

OUT-OF-BAND REJECTION

ACCEPTANCE TEST PROCEDURE

-10°C

+15°C

+40°C

63-0005-02 PARA 4.5.5

Fc=87.5 MHz.

REF (5A) FOR INSERTION LOSS @ Fc

{12} WORST CASE REJECTION FROM 0.300 MHz TO 1.0 MHz

-60.5 dB (40.0 dB MIN) -60.4 dB (40.0 dB MIN)

-60.4 dB (40.0 dB MIN)

{13a} WORST CASE REJECTION FROM **188.25** MHz TO 1000.0 MHz

-62.1 dB (40.0 dB MIN) -<u>63,1 d</u>B (40.0 dB MIN) -64.1 dB (40.0 dB MIN)

{13c} RECORD MEASURED TEMPERATURE

-12.5 °C (-15.0 TO -10.0) (12.5 TO 17.5)

+<u>15</u>.1 °C

+42.7 °C (40.0 TO 45.0)

{14} ATTACH REJECTION PERFORMANCE

X-Y PLOT(S)

TEST PERFORMED BY 12. HOGGATI DATE 12

NOTE IF TEST WITNESSED BY AESD: __

Not witnessed

***** END OF FUNCTIONAL PERFORMANCE TEST ****

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT

DIMENSION AND TOLERANCE

ACTUAL MEASUREMENT

OVER ALL LENGTH

 $3.50 \pm .03$

3.501

MOUNTING HOLE CENTER

 $0.125 \pm .010$

0.125

BETWEEN UPPER MOUNTING HOLES

3.250

3.251

BETWEEN LOWER MOUNTING HOLES

3.250

3.251

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APDJ.DOC	SHEET	13

MARKER PARAMET OPR: R. HOGGATT DATE DEC 2 0 1996 annel 2

MARKER 1	1.000000 MHz OFF	87.500000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	188.250000 MHz -62.088 dB
MARKER 3	5.000000 MHz OFF	188.250000 MHz OFF
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF
	VII	OFF

CH2	S ₂₁	log	MAG	.10 c	B/ F	REF Ø	dB	1:	0_	dВ	
	١,							0.6	99 9	Ø MHZ	
	ļ,	,						2.		REF=1	a
		}						2:	100:	7 dB 5 MHz	
	 					<u> </u>				ļ	
	Ĭ		•								
						ļ <u>.</u>	ļ		 		
	ľ	\									
						† 					
											
									<u> </u>		
				 					<u> </u>		
			 								
Cor			<u> </u>								
Av g 25		4	4								
25											
HId			1								
CHS	START		300 00	M MHz			TOP 1	000	300 0] 30 MHz	
CHZ	SINKI	٠	FI	NAL FU		NAL PE	RFORM	ANCE	ים ספנ	מחניו שמ	
						FORMAN 30-014					
MODIZ	בם חסי	OME:	+1	5C DAT	Α			O 1008		<u> </u>	-
MHKK	ER PAF	KHIL	OF	λ. κ.	NUGGA	TT DA	TEDEC Z		annei	2	
MARK	ER 1					L . 0000	00 MH:	z	87.5	00000	MHz
					OFF				dB	,00000	
MARK	ER 2					5.0000	00 MH:			50000	MHz
					OFF			-6	3.07	dB	
MARK	ER 3				OFF (5.0000	00 MH:	z OF		50000	MHz
MODIA											
MARK	ER 4				OFF	5.0000	00 MH:	z 1 OF		100000	MHz
MKR	STIMUL	us o	FFSFT		ú	a. 0000	00 MLI-	7	9 9	100000	MHz
			.,		0 qj		00 11112		dB	,00000	
D===											
PLAC	RENCE EMENT				OFF CONT	NUOUS			RKER NTINL		
MARK	ER SEA ET VAL	RCH			OFF -3 dI			0	FF		
MARK	ER WII	TH V	ALUE		-3 dI			-3	dB dB		
MARK	ER TRA	ACKIN	G		OFF OFF				FF		
								·			

-3 dB

OFF

OFF

-3 dB

-3 dB

-3 dB

OFF

OFF

MARKER TRACKING

APPENDIX D

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL87.5-155-10SS1 S/N P23G-014 AEROJET 1331559-4 REV.

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. +23.1 °C (+19°C TO +29.0°C)

(15) ATTACH PASSBAND PERFORMANCE X-Y PLOT

V (1)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	-84.3 dB	F11	(*) 100.0	MHz	<u>-0.27</u> dB
F2	1.0	MHz	-67.7 dB	F12	(*) 125.0	MHz	<u>-0.33</u> dB
F3	5.0	MHz	- 18.6_dB	F13	150.0	MHz	<u>- 0.60</u> dB
F4	7.5	MHz	- 7.63 dB	F14	160.0	MHz	<u>- 1.08_</u> dB
F5	10.0	MHz	-1.80 dB	F15	165.0	MHz	<u>-4.63</u> dB
F6	15.0	MHz	-0.22 dB	F16	170.0	MHz	<u>-الد. ا</u> dB
F7	25.0	MHz	-0.12 dB	F17	200.0	MHz	<u>- &3.C_</u> dB
F8	(*) 50.0	MHz	-0.16 dB	F18	300.0	MHz	<u>-86.3</u> dB
F9	(*) 75.0	MHz	-0.70 dB	F19	500.0	MHz	<u>-109.0 dB</u>
F10	87.5	MHz	-0.23 dB	F20	1000.0	MHz	<u>-108.8</u> dB
	,			DA			

TEST PERFORMED BY: 12 HOGGAT DATE 12/20/96

NOTE IF TEST WITNESSED BY AESD_

Not witnessed this time. DLD

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX D PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- b.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- c.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.
- d) INSERTION LOSS PER ATP PARA 4.5.2
- e) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) VSWR PER ATP PARA 4.5.1.

Prepared in accordance with MIL-STD-100 CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV. J
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APDJ.DOC	SHEET	10

POST THERMAL CYCLE
PASSBAND CHARACTERISTICS
SERIAL NO. P230-014
AMBIENT

MARKER PARAMET OPR: R. HOGGATT DATE DEC 2 0 1996 annel 2

MARKER 1	17.750000 MHz OFF	50.000000 MHz 1591 dB
MARKER 2	157.250000 MHz OFF	75 000000 MHz - 2018 dB
MARKER 3	29.375000 MHz OFF	100.000000 MHz - 2691 dB
MARKER 4	145.625000 MHz OFF	125.000000 MHz 3339 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

Channel 9 Bandpass Filter

IF Filter (S/N: 1331559-4, S/N: P230-015)

	•	

APPEN	DIX D AC	CEPTANC	E TEST REPORT	I			
	ASS FILTER MODEL HL87.5 ET 1331559-4 REV.	-155-10SS ⁻	1 S/N <u>P230-</u> C)15			
ACCEP	BANDWIDTH PTANCE TEST PROCEDURE 5-02 PARA 4.5.3		-10°C	+15	S°C		+40°C
{7} UPF	PER 3.0 dB BANDEDGE	(1 <u>64.37</u> MHz (163.0-165.0)		15 Mhz .0-165.0)		3.93 MHz 63.0-165.0)
{8} LOV	VER 3.0 dB BANDEDGE	,	9.12 MHz (8.0-10.0)		1 Mhz 10.0)		<u>9.10</u> MHz 0-10.0)
{9} 3.0	dB RELATIVE BANDWIDTH	(l <u>55.25</u> MHz (153.0-157.0)		<u>.O-I</u> Mhz .0-157.0)		ว <u>ี4.83</u> MHz 53.0-157.0)
{10} Al	DD {7} AND {8} ÷ 2 =		<u>86.75</u> MHz (87.5 NOM)		(3 MHz NOM)		8 <u>6.52</u> Mhz (87.5 NOM)
{10a} F	RECORD MEASURED TEMPE	ERATURE	- <u> 12.0</u> °C (-15.0 TO -10.0)	+ <u>16.7</u> (12.5 To	2_°C O 17.5)		+ <u>47.८</u> °C 0 TO 45.0)
	TACH TRANSMISSION LOSS DRMANCE X-Y PLOT	3	<u>(</u> \(\forall)		<u>(</u> 1)		(√)
_				•	• .		
ACCE	BAND RIPPLE PTANCE TEST PROCEDURE 15-02 PARA 4.5.4	i.	-10°C	+1	5°C		+40°C
{11a}	MIN INSERTION LOSS FREC	Q.	20.77MHz	<u>19.</u>	27 Mhz	19	.27 MHz
	MIN INSERTION LOSS PER	FORMANC	E - <u>0.10</u> dB	<u>-0.</u>	<u>IO</u> dB	- <u>O</u>	.11_dB
{11b}	75% BW LOWER BANDEDG	E FREQ	13.28 MHz	13.	14_Mhz	13	<u>,04</u> MHz
	75% BW LOWER BANDEDG	E I.L. PERI	F - <u>0.35</u> dB	- <u>03</u>	38_dB	<u>-0</u>	.40 dB
{11c}	75% BW UPPER BANDEDGE	E FREQ	129.53 MHz	12 <u>9.3</u>	39 Mhz	129	.29 MHz
	75% BW UPPER BANDEDG	E I.L. PERF	- <u>0.35</u> dB	- <u>O.</u>	<u>38</u> dB	<u>. c</u>	0.4 <u>0</u> 4B
{11d}	PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})		<u>O.25</u> dB	<u>O.</u>	<u>28</u> dB	<u>0</u>	.79 dB
{11e}	PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})		<u>0.25</u> dB	0.	28_dB	<u>C</u>	0.29 dB
Brance die	econdance with RAU -CTD 100						
CONTRAC	ccordance with MIL-STD-100 T NO.	SIZE	CAGE CODE 57032		VG. NO. - 0005-02		REV. J
DADEN-	ANTIIONY ASSOCIATES II		AD/63/0502APDJ.DOC		SHEE	T	12

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P230-015 +15C DATA

MARKER PARAMET OPR: R. HOGGATT DATE DEC 21 1996 innel 2

MARKER 1	17.750000 MHz OFF	87.500000 MHz 2481 dB
MARKER 2	157.250000 MHz OFF	86.627848 MHz OFF
MARKER 3	29.375000 MHz OFF	9.109523 MHz -3.2482 dB
MARKER 4	145.625000 MHz OFF	164.146173 MHz -3.2482 dB
MKR STIMULUS OFFSET	0 000000 MHz 0 dB	89.425802 MHz -3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

SERIAL NO. P230-015 +40C DATA

MARKER PARAMET

MARKER TRACKING

OPR: R. HOGGATT DATE DEC 2 1 1996 annel 2

OFF

OFF

ł			
ı	MARKER 1	17 750000 MHz OFF	87.500000 MHz 2565 dB
•	MARKER 2	157.250000 MHz OFF	86.513946 MHz OFF
•	MARKER 3	29.375000 MHz OFF	9.096180 MHz -3.2566 dB
	MARKER 4	145.625000 MHz OFF	163.931712 MHz -3.2566 dB
	MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
	REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -14 dB -3 dB	OFF CONTINUOUS OFF -3 dB -3 dB

OFF

OFF

APPENDIX D

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL87.5-155-10SS1 S/N P230-015 AEROJET 1331559-4 REV. 七

PASSBAND RIPPLE (CON'T)

		,
{11f}	RECORD PASS/FAIL	(0.5 dB MAX)

(PASS)FAIL

(PASS)FAIL

(PASS)FAIL

(11g) ATTACH PASSBAND RIPPLE

PERFORMANCE X-Y PLOT(S)

OUT-OF-BAND REJECTION

ACCEPTANCE TEST PROCEDURE

-10°C

+15°C

+40°C

63-0005-02 PARA 4.5.5

Fc=87.5 MHz.

REF (5A) FOR INSERTION LOSS @ Fc

{12} WORST CASE REJECTION FROM 0.300 MHz TO 1.0 MHz

-<u>60.5</u>dB (40.0 dB MIN)

-60.5 dB (40.0 dB MIN) (40.0 dB MIN)

 $-60.4 \, dB$

{13a} WORST CASE REJECTION FROM 188.25 MHz TO 1000.0 MHz

-70,7 dB (40.0 dB MIN)

-70.6 dB (40.0 dB MIN) (40.0 dB MIN)

-70,8 dB

{13c} RECORD MEASURED TEMPERATURE -12.1 °C

+16.1 °C (-15.0 TO -10.0) (12.5 TO 17.5)

142.8°C (40.0 TO 45.0)

{14} ATTACH REJECTION PERFORMANCE

X-Y PLOT(S)

DATE 12/21/96 Not witnessed

NOTE IF TEST WITNESSED BY AESD: this time. DLD

***** END OF FUNCTIONAL PERFORMANCE TEST ****

OUTLINE AND MOUNTING DIMENSIONS VERIFICATION

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT

DIMENSION AND TOLERANCE

ACTUAL

MEASUREMENT 3.502 *f*c

OVER ALL LENGTH

 $3.50 \pm .03$

15000000B

MOUNTING HOLE CENTER

 $0.125 \pm .010$

0.125

BETWEEN UPPER MOUNTING HOLES

3.250

3.249

BETWEEN LOWER MOUNTING HOLES

3.250

3,240

red in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	RE\	V .
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APDJ.DOC	SHEET	13	

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P230-015

+15C DATA

MARKER PARAMETI OPR: R. HOGGATT DATE DEC 2 1 1996 innel 2

MARKER 1	1.000000 MHz OFF	87.500000 MHz 0 dB
MARKER 2	5.000000 MHz OFF	188.250000 MHz -73.819 dB
MARKER 3	5.000000 MHz OFF	217.741146 MHz -70.55 dB
MARKER 4	5.000000 MHz OFF	1000.000000 MHz OFF
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -3 dB -3 dB OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF
MARKER TRACKING	OFF	OFF

CH2	S ₂₁	loq	Mf	ag	10 d	B/	RE	F 0	dВ		1	: 0		d B	
										Ţ		4 00 (3 00	MHz	
	$\frac{1}{2}$	Δ												EF=1	a
											2	100	渇	7 dB MHz	
			\downarrow				_ _		<u> </u>		3	-70 27.	79	6 dB	
		1	ļ									121.	֓֓֓֟֟ <u>֟</u>	(",2	
			\dashv				+		 			 	-		
														ļ	
	-	- '	Н				+					 	+		
] '								Ì					
			\prod				1								
			Ш												
			П		_										
Cor		ļ	\prod				_		-	\dashv		ļ	-		
Avg															
25			╫				\dashv		╂-			-	+		
			Y	3/											
HId			7	_			\neg	-	1		-	1			
	İ		U	•											
CH2	START	-	. 3		Ø MHz							000	000	MHz	
		•			NAL FU JECTIO					JKMA	NCE				•
				SE	RIAL N	10. P								•	
MARK	ER PAI	RAME	1	+4 OP	OC DAT	ra Hoge	AT	T D	ATE[EC 2	1 1996	anne	<u>.</u> l	2	
										. <u> </u>	-				
MARK	ER 1					055	1	. 0000	900	MHz			50	0000	MHz
						OFF						0 dB			
MARK	ER 2					OFF	5	. 0000	900	MHz		. 188 74. 9		0000 dB	MHz
Mon						0, ,	_	0000		MII					MU.
MARK	KER 3					OFF		. שטשני	טטנ	MHZ		-215. 70.79		1900 dB	rinz
MARK	ER 4						5	. 0000	aaa	MHz		1 000	ดด	0000	MHz
						OFF	J	. 0000		11112		FF			
MKR	STIMU	LUS	OF	FSET			Ø	. 0000	900	MHz	:	0	. 00	0000	MHz
						0	dΒ					Ø dB			
pcr-	******	=		_			_				.	0045	, .		
PLAC	RENCE			.K			TI	NUOUS	5		C	ARKEI ONTII			
MARK	KER SE SET VA	ARCH				0F -3						OFF 3 dB			
MARK	ER WI	DTH	VA	LUE		-3	dΒ				-	3 dB			
MARK	ER TR	ACKI	NG	;		OF OF						OFF OFF			
			. 🕶												

		<u> </u>
		4. L
)
•		

APPENDIX D

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL87.5-155-10SS1 S/N_PZ30-015 AEROJET 1331559-4 REV. 5

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. + 23.2 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

1 (1)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	0.5	MHz	-83.9 dB	F11	(*) 100.0	MHz	<u>-0.24</u> dB
F2	1.0	MHz	-67.5 dB	F12	(*) 125.0	MHz	-0.34 dB
F3	5.0	MHz	- 18.6 dB	F13	150.0	MHz	<u>-0.59</u> dB
F4	7.5	MHz	- 7,58 dB	F14	160.0	MHz	<u>- 1.04_dB</u>
F5	10.0	MHz	-1.77 dB	F15	165.0	MHz	<u>-4.72 dB</u>
F6	15.0	MHz	-0.22 dB	F16	170.0	MHz	dB <u>م ۱۲. و</u>
F7	25.0	MHz	-0.12 dB	F17	200.0	MHz	<u>-79,8</u> dB
F8	(*) 50.0	MHz	-0.17 dB	F18	300.0	MHz	<u>-88.4</u> dB
F9	(*) 75.0	MHz	-0.24 dB	F19	500.0	MHz	<u>- 1∞.0</u> dB
F10	87.5	MHz	-0.25 dB	F20	1000.0	MHz	-103.6 dB

TEST PERFORMED BY: R. 1-1066ATT DATE 12/21/96

NOTE IF TEST WITNESSED BY AESD this time. DLD

Not witnessed

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX D PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- b.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- c.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.
- d) INSERTION LOSS PER ATP PARA 4.5.2
- e) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- a.) VSWR PER ATP PARA 4.5.1.

	Prepared in accordance with MIL-STD-100 CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.
Ì	DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APDJ.DOC	SHEET	10

PASSBAND CHARACTERISTICS SERIAL NO. P230-015 AMBIENT

MARKER PARAME1 OPR: R. HOGGATT DATE DEC 2 1 1996 annel 2

MARKER 1	17.750000 MHz OFF	50.000000 MHz 1659 dB
MARKER 2	157.250000 MHz OFF	75.000000 MHz 2403 dB
MARKER 3	29.375000 MHz OFF	100.000000 MHz 2392 dB
MARKER 4	145 625000 MHz OFF	125.000000 MHz 3367 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	B9.4258Ø2 MHz −3.2342 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE	OFF CONTINUOUS OFF -14 dB	OFF CONTINUOUS OFF -3 dB
MARKER WIDTH VALUE MARKER TRACKING	-3 dB OFF OFF	-3 dB OFF OFF

Channel 10 Bandpass Filter

IF Filter (S/N: 1331559-7, S/N: P233-009)

	-

APPENDIX G AC	CEPTANCE TEST REPOR	Τ		
BANDPASS FILTER MODEL FX217- AEROJET 1331559-7 REV.	78-10551 S/N <u>f 233-0</u> 09			
3.0 dB PANDWIDTH ACCEPTANCE TEST PROCEDURE 63-0005-32 PARA 4.5.3	-10°C	+15°C	+40°C	
{7} UPPER 3.0 dB BANDEDGE	Z <u>55.74</u> MHz (254.0 -256.0)	2 <u>55.34</u> Mhz (254.0-256.0)	2 <u>54.95</u> MHz (254.0-256.0)	
(8) LOWER 3.0 dB BANDEDGE	1 <u>79.19 </u> MHz (178.0- 180.0)	1 <u>79.01</u> Mhz (178.0-180.0)	7 <u>8.84_</u> MHz (178.0-180.0)	
(9) 3.0 dB RELATIVE BANDWIDTH	7 <u>6.55</u> MHz (74.0- 78.0)	<u>76.33</u> Mhz (74.0-78.0)	7 <u>6.11</u> MHz (74.0-78.0)	
{10} ADD (7) AND (8) → 2 =	Z <u>17.47</u> MHz (217.0 NOM)	217.15 MHz (217.0 NOM)	2 <u>16.90</u> Mhz (217.0 NOM)	
{10a} RECORD MEASURED TEMPE	(-15.0 TO -10.0)	+ <u>15.9</u> °C (12.5 TO 17.5)	+ <u>41.</u> & °C (40.0 TO 45.0)	
(6) ATTACH TRANSMISSION LOSS PERFORMALICE X-Y PLOT	(\dagger)	(\forall)	(\lambda)	
PASSBAND RIPPLE ACCEPTANCE TEST PROCEDURE 63-0005-00 PARA 4.5 4	-10°C	+15°C	+40°C	
(11a) M. AMSERTIC V LOSS FREQ	2 <u>14.55</u> MHz	2 <u>15.25</u> Mhz	2 <u>15,60</u> mHz	
MIN INSERTION LOSS PERF	FORMANCE - <u>0.57</u> dB	- 0.61 dB	<u>-0.65</u> dв	
{11b} 75% BW LOWER BANDEDGE	E FREQ 186.27 MHz	186.05 Mhz	1 <u>85.88</u> MHz	
75% BW LOWER BANDEDG	E I.L. PERF - <u>0.98</u> dB	-1.05_dB	- <u> , </u> dB	
(11c) 75% BW UPPER BANDEDGE	FREQ 2 <u>44.77</u> MHz	2 <u>44.55</u> Mhz	2 <u>14.38</u> MHz	
75% BW UPPER BANDEDGE	E I.L. PERF - <u>0.98</u> dB	- <u>1.05</u> dB	- <u> . </u> dB	
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>O.41</u> dB	<u>O.44</u> dB	0.46 dB	
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	<u>G.41</u> dB	O.44 dB	<u>0.46</u> dB	
Prepared in accompance with MIL-STO-100				
CONTRACT NO.	SIZE CAGE CODE A 57032	DWG. NO. 63-0005-02	REV.	
DADEN-ANTHONY ASSOCIATES IN	FILE: ACAD/63/0502APGJ.DOC	SHEE	Т 12	

f

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P233-009

-10C DATA

ARKER PARAMET OPR: R. HOGGATT DATE JAN 3 1 1997 annel 2

1		
ARKER 1	181.900000 MHz OFF	217.000000 MHz - 5724 dB
ARKER 2	252.100000 MHz OFF	217.462525 MHz OFF
ARK <i>E</i> R 3		179.185203 MHz -3.5724 dB
ARKER 4	246.250000 MHz OFF	255.739847 MHz -3.5724 dB
KR STIMULUS OFFSET		89.425802 MHz -3.2342 dB
ARGET VALUE ARKER WIDTH VALUE	-3 dB OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF
ARKER TRACKING	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P233-009

+15C DATA

MARKER PARAMET OPR: R. HOGGATT DATE JAN 3 1 1997 Innel 2

MARKER 1	181.900000 MHz OFF	217.000000 MHz 6158 dB
MARKER 2	252.100000 MHz OFF	217.174116 MHz OFF
MARKER 3	187.750000 MHz OFF	179.005817 MHz -3.6159 dB
MARKER 4	246.250000 MHz OFF	255.342415 MHz -3.6159 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	89.425802 MHz -3.2342 dB
MARKER SEARCH	OFF CONTINUOUS OFF -14 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P233-009

MARKER PARAMET +40C DATA
OPR: R. HOGGATT DATE JAN 3 1 1997 annel 2

181.900000 MHz	217.000000 MHz
OFF	6552 dB
252.100000 MHz	216.893288 MHz
OFF	OFF
187.750000 MHz	178.836288 MHz
OFF	-3.6552 dB
246.250000 MHz	254.950289 MHz
OFF	-3.6552 dB
0.000000 MHz	89.425802 MHz
0 dB	-3.2342 dB
OFF	OFF
CONTINUOUS	CONTINUOUS
OFF	OFF
-14 dB	-3 dB
-3 dB	-3 dB
OFF	OFF
OFF	OFF
	OFF 252.100000 MHz OFF 187.750000 MHz OFF 246.250000 MHz OFF 0.000000 MHz 0 dB OFF CONTINUOUS OFF -14 dB -3 dB OFF

APPENDIX G ACCEPTANCE TEST REPORT BANDPASS FILTER MODEL FX217-78-10SS1 S/N 233-009 AEROJET 1331559-7 REV.

BANDPASS FILTER MODEL FX217-78-10SS1 REPOJET 1331559-7 REV.	s/n <u>1′233-0</u> 0′)		
PASSBAND RIPPLE (CON'T)			
{11f} RECORD PASS/FAIL (0.7 dB MAX)	PASS/FAIL	PASS)FAIL	PASSIFAIL
(11g) ATTACH PASSBAND RIPPLE PERFORMANCE X-Y PLOT(S)	(1)	(\forall)	<u> </u>
OUT-OF-BAND REJECTION ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.5 Fc=217.0 MHz. REF {5A} FOR INSERTION LOSS @ Fc	-10°C	+15°C	+40°C
{12} WORST CASE REJECTION FROM 0.300 MHz TO 166.3 MHz	- <u>43.8</u> dB (40.0 dB MIN)	- <u>43.9</u> dB (40.0 dB MIN)	- <u>44.2</u> dB (40.0 dB MIN)
(13a) WORST CASE REJECTION FROM 267.7 MHz TO 1000.0 MHz	- <u>42.1</u> dB (40.0 dB MIN)	- <u>42.3</u> dB (40.0 dB MIN)	- <u>42.2</u> dB (40.0 dB MIN)
(13c) RECORD MEASURED TEMPERATURE	- <u>۲۲: م</u> °C (-13:0 TO -10:0)	<u>+ I5.9</u> °C (12.5 TO 17.5)	+ <u>47.0</u> °C (40.0 TO 45.0)
(14) ATTACH REJECTION PERFORMANCE X-Y PLCT S	<u>/</u> (1)	(1)	(1)
TEST PERFORMED BY 12. HOGGATE D	DATE 1/31/97 (DA 5	
NOTE IF TEST WITNESSED BY AESD:	GSI:	Not Witnesse this time. D	d LD
***** END OF FUNCTIONAL PERFORMANCE	TEST ****		
OUTLINE AND MOUNTING DIMENSIONS VE			

{16} REFERENCE CUSTOMER DRAWING 1331559

DESCRIPTION OF MEASUREMENT	DIMENSION AND TOLERANCE	ACTUAL MEASUREMENT
OVER ALL LENGTH	5.50 ± .03	5.505
MOUNTING HOLE CENTER	0.125 <u>+</u> .010	1/24
BETWEEN UPPER MOUNTING HOLES	5.250	<u>5,250</u>
BETWEEN LOWER MOUNTING HOLES	5.250	5, 248

Prepared in accordance with MIL-STD-100 CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.	
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/63/0502APGJ.DOC	SHEET	13	

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P233-009 ÷40C DATA

MARKER PARAMET

OPR: R. HOGGATT DATE JAN 3 1 1997 Innel 2

		
MARKER 1	1000.000000 MHz OFF	217.000000 MHz 0 dB
MARKER 2	1000.000000 MHz OFF	166.300000 MHz -46.264 dB
1ARKER 3	1000.000000 MHz OFF	267.700000 MHz -46.819 dB
IARKER 4	1000.000000 MHz OFF	370.189049 MHz -42.243 dB
1KR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
LACEMENT JARKER SEARCH APGET VALUE	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF OFF

-3 dB OFF OFF

- ~--

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P233-009 +15C DATA

MARKER PARAMET

OPR: R. HOGGATT DATE JAN 3 1 1997 Innel 2

i i		
MARKER 1	1000.000000 MHz OFF	217.000000 MHz 0 dB
MARKER 2	1000.000000 MHz OFF	166.300000 MHz ~45.712 dB
MARKEŔ 3	1000.000000 MHz OFF	267.700000 MHz -47.802 dB
MARKER 4	1000.000000 MHz OFF	370.189064 MHz -42.292 dB
1KR STIMULUS OFFSET	0.300000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH ARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF OFF

. . ___

AF	P	E	N	D١	X	G

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL FX217-78-10SS1 S/N <u>P233 - 009</u> AEROJET 1331559-7 REV. F.

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE. + 24.2 °C (+19°C TO +29.0°C)

(15) ATTACH PASSBAND PERFORMANCE X-Y PLOT

 (\forall)

{24} TEST POINT MATRIX

REF	FREQ	TINU	VALUE	REF	FREQ	UNIT	VALUE
F1	1.0	MHz	- <u>105.5</u> dB	F11	217.0	MHz	<u>- ഗ.60 dB</u>
F2	10.0	MHz	- <u>106.8</u> dB	F12	(*) 224.0	MHz	- <u>0.64</u> dB
F3	100.0	MHz	<u>-61.8</u> dB	F13	(*) 230.0	MHz	<u>-0.69</u> dB
F4	150.0	MHz	<u>-67.4</u> dB	F14	240.0	MHz	d <u>B ما8 . 0 -</u>
F5	170.0	MHz	<u>-42.0</u> dB	F15	250.0	MHz	<u> 1،56 </u> dB
F6	178.0	MHz	<u>-6.32</u> dB	F16	256.0	MHz	<u>-5.71</u> dB
F 7	184.0	MHz	-1.30 dB	F17	264.0	MHz	- <u>38.4</u> dB
F8	194.0	MHz	<u>-0.79 dB</u>	F18	300.0	MHz	<u>-50.%</u> dB
F9	(*) 204.0	MHz	- <u>0.65</u> dB	F19	500.0	MHz	<u>-62.8</u> dB
F10	(*) 210.0	MHz	- <u>0.61</u> dB	F20	1000.0	MHz	-82,3 dB
TEST	PERFORM	IED SY:	- 12. 1-loggaTT	DATI	E13197	DA DA	

NOTE IF TEST WITNESSED BY AESD______ GSI _____

Not Witnessed this time. DLD

***** END OF BANDPASS CHARACTERISTICS TEST *****

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX G PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

Prepared in accordance with MIL-STD-100

CONTRACT NO.	SIZE A	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.
DADEN-ANTHONY ASSOCIATES INC.	FILE: AC	AD/62/0502APGJ.DOC	SHEET	10

POST THERMAL CYCLE PASSBAND CHARACTERISTICS SERIAL NO. P233-009

AMBIENT MARKER PARAMET

OPR: R. HOGGATT DATE JAN 3 1 1997 Innel 2

OFF

MARKER 1	1000.000000 MHz OFF	204.000000 MHz - 6455 dB
1ARKER 2	1000.000000 MHz OFF	210.000000 MHz 6092 dB
MARKER 3	1000.000000 MHz OFF	224.000000 MHz 6367 dB
IARKER 4	1000.000000 MHz OFF	230.000000 MHz 6865 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE MARKER TRACKING	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF

Channel 11 Bandpass Filter

SAW Filter (S/N: 1331576-1, S/N: B04)

)
			_
			<u> </u>
		н	

 			AL WEST
CCTRICOL	11551	nera	SHEEL

	ELE	ECTRICAL TEST DATA SHEET		
AEROJET PA	RT: 1331	1576-1 PHONON PART: 10083	SERIAL: E04	
TESTED BY:	fia	1576-1 PHONON PART: 10083 TITLE: Test tech Date:	3/3/98 TIME: 5:00 pm	
TEST: FINA	L FUNCT	I ONAL'		
EQUIPMENT:	HP 8753	3D SERIAL:3410A07982	CAL DUE: <u>2/10/98</u>	
	HP 3478	BA SERIAL: 2136A03127	CAL DUE: 7/7/98	
		;		- 45
PARAGRA	PH I	REQUIREMENT TITLE	DATA	P/F
REQ.	Q/ATP			_
3.2.1.1	5.2.1	OPERATING TEMPERATURE	<u>-4.9</u> C	<u>_p</u>
3.2.1.3	5.2.3	CENTER FREQUENCY &		
3.2.1.4	1	CENTER FREQUENCY STABILITY		_
		LO: 273.335/275.065 MHz	274.672 MHz	p p
		HI: 369.335/371.065 MHz	370.934 MHz	<u> </u>
3.2.1.5	5.2.4	3 dB BANDWIDTH:		_
		LO: 34/36 MHz	34.911 MHz	P
		HI: 34/35 MHz	<u>35.422</u> MHz	<u> </u>
3, 2, 1, 6	5.2.5	PASSBAND SYMMETRY		
		LO: /0.5 dB	<u>0.3</u> dB	<u>p</u>
		HI: /0.5 dB	<u>0.4</u> dB	<u> </u>
7.2.1.7		PASSBAND RIPPLE		
		260.7-287.7 MHz: /1.0 dB	<u>0.4</u> dB <u>0.7</u> dB	P P
		356.7-383.7 MHz: /1.0 dB	<u>0.7</u> dB	<u> </u>
3, 2, 1, 8	5.2.7	INSERTION LOSS		
		LD: 27.8/30.2 dB	<u>28.5</u> dB	<u>р</u>
		HI: 27.8/30.2 dB	<u>28.5</u> dB	<u> </u>
3, 2, 1, 9	5.2.8	INSERTION LOSS VARIATION		
2.2	21212	LO: -0.4/0.4 dB	<u>-0.1</u> dB	P
		HI: -0.4/0.4 dB	0.1 dB	<u> P</u>
3. 2. 1. 10	5.2.9	AMPLITUDE BALANCE		
2.2		LO,HI: /0.5 dB	<u>0.1</u> dB	<u> </u>
3.2.1.11	5.2.10	OUT-OF-BAND REJECTION		
		Band	PEAK(dB) WIDTH(MHz)	
		WIDE: 1-225, 420-1000 MHz:	43.0 0.000	
		DUAL: 225.000-249.935,		
		298. 465-345. 935,		
		394.465-420.00 MHz:	42.7 0.000	_
		PEAK: 35.0/ dB	42.7 dB	<u>P</u>
		WIDTH: /7.2 MHz	0.000 MH	z <u>p</u>
3.2.1.12	5.2.11	SHAPE FACTOR		_
		LO: /1.30 Unitless	1.29 Unitless	P_
		HI: /1.30 Unitless	1.26 Unitless	<u>P</u> _
3.2.1.14	5. 2. 12	yswr (return Loss)		
		260.7-287.7,356.7-383.7 K	Hz	
		DUAL S11: 7.5/ dB	12.1 dB	<u> </u>
		DUAL S22: 7.5/ dB	<u>10.2</u> dB	
4.8.2	5. 2. 14	LIMITED FUNCTIONAL TESTS	~	0
		CENTER FREQUENCY: -0.2/0.		7
		3 dB BANDWIDTH: -0.72/0.7		₩.
		INSERTION LOSS: -0.5/0.5	dB dB	1
IONE	5.2.15	5 DATA SHEET SUMMARY	0 (00)	
		(PASS/FAIL)		

PHONON CORPORATION 7 HERMAN DRIVE SIMSBURY, CT 06070 CAGE: 6Y858 TEL: 203-651-0211 FAX: 203-651-8618

FILE=1AC8B04B. DAT 09:19:36 02-04-1998 PN_100828_823 FINAL_FUNCTIONAL TEMP:C FLIGHT4_FUNCT3 /N DUAL_SXX 02-03-1998 HP8753, SSCF, SSFFIX, SSREF FREQUENCY (MHZ): CENTER= 274.2 WIDTH= 100 INCR. = .4 SYSTEM BANDWIDTH= 27 REFERENCES: LOSS(DB) = 28.51665 PHASE (DEG) = -55510.85 DELAY (US) = 0 SLOPE (US/MHZ) = 0 RMS ERRORS: LOSS(DB) = .1367906 PHASE (DEG) = 1172.853 PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FREQ 10 MHZ/DIV LOSS, 18, DB/DIA LOSS-1-DB/BIU FREG 18 MHZ/DIU PEAK: LEVEL (DB) = 28.11388 FREQ (MHZ) = 288.1927 DELAY (US) =-.4189385 SIDELOBE (DB) =-47.775 ENERGY: LEVEL (DB) = 28.67966 CENTER (MHZ) = 274.8599 WIDTH (MHZ) = 36.52169 SKEW (MHZ) = -. 3051229 L(DB) LO (MHZ) HI (NHZ) CTR (MHZ) WID (MHZ) AV-CTR (MHZ) AV-WID (MHZ) AV-SL (DB) LOX (MHZ) HIX (MHZ) -0.40 288.19269 288. 19269 288, 19269 0.00000 288, 19269 8.00000 0.00 288, 19269 288, 19269 0.50 259.18888 290.73605 274.96207 31.54797 275.17184 31,69683 -12.96 259, 18888 299.73605 1.00 258, 55649 291.09097 274.82373 32.53448 274,99683 32.68880 -14.36258.55549 291.09097 2.00 257, 78033 291,72867 274.75452 33.94833 274.86093 33.52577 -16.65 257, 78833 291, 72867 3.00 257, 21689 292.12759 274.67224 34.91071 274.87078 33.98675 -17.41257, 21689 292, 12759 4.00 256.80521 292.47931 274.64227 35.67410 274.87396 34.35870 -18,99 256.88521 292, 47931 5.00 256, 45691 232.76016 274.68852 36, 30325 274.87454 34.64421 -20.81 256, 45691 292,76016 6.00 256. 16583 293, 01962 274.59271 36.85379 274.87247 34.85022 -22, 90 256, 16583 293.01962 10.00 255, 29851 293.82416 274.56134 38.52565 274.86642 35.07542 -27.88 255, 29851 293, 82416 20.00 253.85397 295, 17218 274.51306 41.31821 274.86108 35, 16635 -37.73 253.85397 295, 17218 30.00 252.93407 274.54971 296. 16537 43.23131 274, 85980 35, 17529 -47, 45 252, 93407 296, 16537 49.88 252, 12337 297.08932 274.69635 44.96596 274.B5882 35, 17604 -53, 00 252, 12337 297.08932 BAND (MHZ) 260.700 287.700 LMIN(DB) -0.30 LMAX (DB) 0.24 LDEL (DB) 0.53 PMIN(DEG) -1998.78 PMAX (DEG) 1998.54 PDEL (DEG) 3997.31

PHONON CORPORATION

File: 1AC8B04B.DAT Passband Symmetry = 0.3 dB

```
FILE=1CC8B04B.DAT 03:19:51 02-04-1938
PN_100828_823 FINAL_FUNCTIONAL TEMP:C FLIGHT4 FUNCT3 /N DUAL SXX
02-03-1998 HP8753, SSCF, SSFFIX, SSREF
FREQUENCY (MHZ): CENTER= 378.2 WIDTH= 100 INCR. = .4 SYSTEM BANDWIDTH= 27
REFERENCES: LOSS(DB) = 28.46074 PHASE(DEG) = -63172, 89 DELAY(US) = 0 SLOPE(US/MHZ) = 0
RMS ERRORS: LOSS(DB) = .2227819
                                  PHASE (DEG) = 1128.857
PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FREQ 10 MHZ/DIV
LOSS TO DB/DIV
LOSS-1-DB/BIU-
FREQ 18 MIZ/DIV
PEAK: LEVEL(DB)= 27.76714 FRED(MHZ)= 383.9135 DELAY(US)=-.4067777 SIDELOBE(DB)=-45.7598
ENERGY: LEVEL (DB) = 28.56613 CENTER (MHZ) = 371.4095 WIDTH (MHZ) = 36.05668 SKEW (MHZ) = -,7471973
 L(DB)
          LO (KHZ)
                      HI (MHZ)
                                  CTR (MHZ)
                                              WID (MHZ) AV-CTR (MHZ) AV-WID (MHZ) AV-SL (DB) LOX (MHZ)
                                                                                                         HIX (MHZ)
 -0.69
         383, 91348
                     383.91348
                                  383.91348
                                                9.99999
                                                          383.91348
                                                                         0.00000
                                                                                     0.00
                                                                                            383.91348
                                                                                                         383.91348
  0.50
         354.89474
                     387.31635
                                  371.10553
                                               32, 42160
                                                          371.49695
                                                                        32,72547
                                                                                   -13.21
                                                                                            354, 89474
                                                                                                         387, 31535
  1.00
         354, 22583
                     387.71292
                                  370, 96936
                                               33, 48709
                                                          371.49084
                                                                        33.41605
                                                                                   -14.18
                                                                                            354, 22583
                                                                                                         387.71292
  2.00
         353, 58951
                     388, 19568
                                  370.94250
                                               34.50616
                                                          371.34057
                                                                        34.30483
                                                                                   -15.97
                                                                                            353.68951
                                                                                                         388.19568
                                                                                   -18.16
  3.00
         353, 22305
                                  370.93396
                     388.64487
                                               35.42181
                                                          371.45030
                                                                        34.98146
                                                                                            353.22305
                                                                                                         388.64487
  4.80
         352, 86035
                     389.02725
                                  370.94379
                                                          371.43948
                                                                        35. 32071
                                               36, 16690
                                                                                   -19.93
                                                                                            352.86835
                                                                                                         389. 02725
  5.00
         352.55511
                     389.32272
                                  370.93890
                                               36.76761
                                                          371.36969
                                                                        35.45204
                                                                                   -20.87
                                                                                            352, 55511
                                                                                                         389.32272
  6.00
         352, 29889
                     389.58713
                                  370.94299
                                               37.28824
                                                          371.43005
                                                                        35.57113
                                                                                   -21.96
                                                                                            352, 29889
                                                                                                         389, 58713
 10.00
         351.52225
                     390.35187
                                  370.93707
                                               38.82962
                                                          371.41669
                                                                        35.85169
                                                                                   -27.05
                                                                                            351.52225
                                                                                                         390, 35187
 20.00
         350, 24393
                                  370, 98010
                     331.71628
                                               41.47235
                                                          371.40976
                                                                        35.95122
                                                                                   -36, 93
                                                                                            350.24393
                                                                                                         391.71628
 30.00
         349.27267
                     392.64169
                                  370.95718
                                               43.36902
                                                          371.40936
                                                                                                         392.64169
                                                                        35.97219
                                                                                   -48.34
                                                                                            349.27267
         348, 57257
 40.00
                     393.25552
                                  370.91406
                                               44.68295 371.40930
                                                                        35. 97252
                                                                                   -50, 44
                                                                                            348. 57257
                                                                                                         393, 25552
BAND (MHZ)
            356.700
                      383, 700
LMIN(DB)
                  -0.47
LMAX (DB)
                   0.37
LDEL (DB)
                   0.84
PKIN (DEG)
               -1928.59
PMAX (DEG)
                1920,71
```

File: 1CC8B04B.DAT Passband Symmetry = 0.4 dB

3849.30

PDEL (DEG)

ELECTRICAL TEST DATA SHEET

EROJET	PART: 1	331576-	ical test data 1 Phonon par	T: 1008	93 SER	DI : BOA		
TESTED I	BY:	· T	ITLE: lest tect	DATE:	2/3/94	TIME	: 5'.00 pm	
	INAL FUN NT: HP 8			07000	, col t	ur. 0.4	0.400	
EGOIFINE			SERIAL:34104 SERIAL:21364	107982 103127	CAL I)UE: <u>2/1</u>)UE: <u>7/7</u>	<u>0/98</u> /98	
						<u></u>	, ,,,,	
REQ.	Q/ATP		REMENT TITLE	<i>\$</i>		DATA		P/F
3. 2. 1. 1	5. 2. 1	OPERA	TING TEMPERATU	RE	_1	5. 0	С	Þ
			R FREQUENCY &					
3.2.1.4			R FREQUENCY ST					
		LO: 2	73.335/275.065	MHz	<u>27</u>	4.235	MHz	P
		HI: 3	69.335/371.065	MHz	37	0.348	MHz	<u> P</u>
3.2.1.5	5. 2. 4	3 dB 1	BANDWIDTH:					
		LO: 3	4/36 MHz		3	4.857	MHz	P
			4/36 MHz			5.369		P P
3.2.1.6	5. 2. 5	PASSB	AND SYMMETRY					
		LO: /0	0.5 dB			0.3	dB	p
			0.5 dB			0.4		<u>p</u>
3.2.1.7	5.2.6	PASSB	AND RIPPLE					
		260.7-	-287.7 MHz: /1	.0 dB		0.4	ďВ	P
		356.7	-383.7 MHz: /1	.0 dB		₹.7		p
3.2.1.8	5.2.7	INSERT	TION LOSS		****			
		LO: 27	7.8/30.2 dB		2	8.6	dB	P
		HI: 27	7.8/30.2 dB			9. 4		P
3.2.1.9	5.2.8	INSERT	TION LOSS VARIA	ATION				
			0.4/0.4 dB			a. a	dВ	P
		HI: -0	3.4/0.4 dB			0.0	dB	<u>р</u>
3.2.1.10	5.2.9	AMPLIT	TUDE BALANCE					
		LO, HI:	:/0.5 dB		1	3.3	dВ	p
3. 2. 1. 11	5. 2. 10	OUT-OF	-BAND REJECTIO	M				<u> </u>
			BAND		PEAK (dB)	W1	DTH (MHz)	
		WIDE:	1-225, 420-1000	MHz:	43.2		0.000	
		DUAL:	225.000-249.93	35,				
			298.465-345.93	5,				
			394.465-420.00	MHz:	45.0		0.000	
		PEAK:	35.0/ dB	_	43.2	dB		Р
			/7.2 MHz	-			0.000 MHz	P
3.2.1.12	5. 2. 11					_		<u> </u>
		LO:	/1.30 Unitles	S	1	. 29	Unitless	P
		HI:	/1.30 Unitles	S			Unitless	P
3. 2. 1. 14	5. 2. 12		RETURN LOSS)					
			287. 7, 356. 7-38	3.7 MHz				
			11: 7.5/ dB		_12	. 3	dВ	Р
			22: 7.5/ dB		10	.5	dB	P
4.8.2	5. 2. 14		D FUNCTIONAL T					
			FREQUENCY: -0)22	MHz	P
			ANDWIDTH: -0.7		Hz <u>+ 0</u>	015	MHz	P
	_		ION LOSS: -0.5	/0.5 dB			dB	०
NONE	5. 2. 15		HEET SUMMARY			^	$\widehat{}$	
		(PASS/F	FAIL)			<u>Ľ(</u>	09)	
	********						·	
PHONON CO	KHURATTA	IN				CA	C. EVOED	

PHONON CORPORATION 7 HERMAN DRIVE SIMSBURY, CT 06070

CAGE: 6Y858

TEL: 203-651-0211 FAX: 203-651-8618

```
PHUNUM LURPORATION
  FILE=1889248, DAT 09:33:45 02-04-1998
  PN_103988_823 FINAL_FUNCTIONAL TEMP:R FLIGHT4_FUNCT3 /N DUAL_SXX
  02-03-1998 HPE753, SSCF, SSFFIX, SSREF
  FREQUENCY (MCC): CENTER= 274.2 WIDTH= 108 INCR. = .4 SYSTEM PANDWIDTH= 27
  REFERENCES: LOSS(DS)= 28.63675
                                PHASE (DEC) =-45008.55 DELAY (NE) = 0 SLOPE (NE/MHZ) = 0
  RMS ERRORS: LOSS (DB) = .1309959 PHRSE (DES) = 1174.65
  PLST SCRIET: LOSS 10 DP/DIV LOSS 1 DP/DIV VS. FRED 13 MHZ/DIV
  MOSS. IC. BB/DIA.
  3.000 4 DB/810 --
 iner in kurzaie i
FERM: LEVEL (DB) = 28.27281 FRED (MHZ) = 288.6936 DELAY (UE) =-.4158692 SIDELCES (DB) =-47.71727
EMERGY: LEVEL (DP) = 28.80742 CENTER (MHZ) = 274.3897 WIDTH (MHZ) = 36.4824 SMEH (MHZ) = -.2483866
        LO(MHZ) HI(MHZ) STR(MHZ) WID(MHZ) AV-CTR(MHZ) AV-WID(MHZ) AV-SL(DP) LOX(MHZ)
 L(DB)
                                                                                                HIX (MHZ)
 -2.38 269.65363
                    288.69360
                                          e. 00000 288. 59350
                              288, 59350
                                                                   3.03032
                                                                           0.00 288.69360 288.69360
  8.58 258.7853E
                    298,26523 274,51526
                                                    274.72916
                                           31,49985
                                                                            -13.02 258.76535
                                                                  21.54064
                                                                                                293, 25528
  1.00 258.13861
                    298.61826 274.37842
                                           32.47964
                                                    274, 55342
                                                                  32,62825
                                                                           -14.43 258.13851
                                                                                                293,61825
  2.00 257.36865 291.24731
                                          23.87866
                              274.30798
                                                     274.41113
                                                                  33,45882
                                                                            -18. 15
                                                                                     257, 25855
                                                                                                291.24731
  3.00
        256, 80636
                    291.65315
                               274.23462
                                                     274.41581
                                           34, 25733
                                                                  33,91450
                                                                            -17.E1
                                                                                     255, 98695
                                                                                                271,66715
  4.00
                    232,61829
        256. 3965B
                               274.20743
                                           35, 62178
                                                    274.41541
                                                                  34, 27983
                                                                            -13.18
                                                                                     256, 39658
                                                                                                292, 21828
  5.00
        255.04819
                               274.17539
                    232, 38457
                                           35, 25638 274, 41357
                                                                  34, 55976
                                                                            -20.94
                                                                                     255.04819
                                                                                                292.38457
  6.00
        255,75825
                    232,56015
                                           35.80190 274.35775
                              274, 15921
                                                                  34,56381
                                                                            -21.68
                                                                                     255, 75826
                                                                                                232,56815
 10.00
        254, 59292
                    293, 35703 274, 12997
                                           29.47411 274.37784
                                                                  34.94120
                                                                            -26.61
                                                                                     254, 89292
                                                                                                293.3E783
 20.00
        253, 44992
                    294.71739 274.02398
                                         41.25821 274.39117
                                                                  35.06694
                                                                            -37.92
                                                                                     253, 44932
                                                                                                234, 71799
 30.00
        252, 53148
                    295.71701
                                         43, 18553 274, 38965
                              274.12424
                                                                            -47.73 252.53148
                                                                  35.07552
                                                                                                235,71701
        251.76845
 40.80
                   298.84450 274.17548 44.93505 274.38983
                                                                  35.07521 -53.10 251.70845 295.54450
EAND (MHZ)
           260,700 287,700
LMIN(DE)
                -8.27
LMGX (DE)
                 6.25
LDEL (DB)
                 0.52
PMIN(DEE)
              -2000.12
PMAX (DES)
               2023, 42
POEL (DES)
               4003.55
```

File: 1AR8B04B.DAT Passband Sysmetry = 0.3 dB

```
PHONON CORPORATION
FILE=10F8904B.DRT 03:34:35 02-04-1998
PM 100828 823 FINAL FUNCTIONAL TEMP:R FLISHTA_FUNCTS /N DUAL_SXX
22-27-1990 HP27E3, 980F, 99FF1Y, 99FFF
FREQUENCY (MICH: CENTER= 372.2 | WIDTH= 122 | INCR. = .4 | SYSTEM BRNOWIDTH= 27
REFERENCES: LCSS(EB) = 29.27927
                              PHRSE (DES) =-EES87. 1 DELAY (US) = 3 SLOPE (US/M-Z) = 0
RMS ERRORS: LOSS(DS) = .2155543 PHASE(DE3) = 1130.729
PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FRED 10 MYI/DIV
                                                               - 1
                       :
MARINA AND
                 A 41 1 1 1 1
FERK: LEVEL(58) = 27.77778 FREG(MHZ) = 383.2744 DELAY(UE) =-.4052972 SIDELO3E(DB) =-42.02257
EMERGY: LEVEL (DB) = 83.51653 | CENTER (MHZ) = 370.7654 | NIDTH (MHZ) = 35.65106 | SKEW (MHZ) = -.6503871
                                             WIE (MHZ) EV-SIR (MHZ) EV-WIE (MHZ) EV-SL (D2) LCX (MHZ)
                                                                                                     HIX (MHI)
 L(DB)
          LD (MHZ)
                     HI (MHZ)
                                 CTR (MHZ)
         383.37435
                                                                     8, 23833
                                                                                 8.03
                                                                                         383.37435
                                                                                                      383,37436
                                                        323, 27435
 -0.50
                     383, 27436
                                 393,37435
                                              6.66368
                                                                                 -13.23 354.35938
         354, 35938
                                 372, 49825
                                              72, 24175
                                                         271.00270
                                                                      33,51122
                                                                                                     385, 58114
  2,50
                    386, 50114
                                                                                 -14.85 353.70398
                                                                                                     387. 36837
         353,70398
                    387.06097
                                 376.38248
                                              33.35699
                                                       370.82159
                                                                      33.51261
  1.00
                                                                                 -1E. 27
                                                                                          353, 13742
                                                                                                      387, 57382
         353.13742
                     387.57382
                                 370.35562
                                              34, 43540
                                                         370.88927
                                                                      34, 27432
  2. 22
                                                                      34.53583
                                                                                 -17.45
                                                                                        352, 56339
                                                                                                      382,03217
  3.03
         352,66339
                    358.83217
                                 370.34773
                                              35.36877
                                                         370.79332
         352, 23437
                     322,41915
                                 378.35575
                                              35, 12479
                                                         372.78849
                                                                      34,91220
                                                                                 -19, 13
                                                                                          352, 29437
                                                                                                      388, 41916
  4.00
                                                                                         352.01047
  5.00
         352, 01347
                    388.72757
                                 370.35922
                                              25.71718
                                                         370.72076
                                                                      35, 20074
                                                                                 -21.82
                                                                                                      398, 72757
                                                                                         351.74582
         351.74582
                    388, 98782
                                 370.35582
                                              37.24203
                                                         370.72334
                                                                      35, 30648
                                                                                 -22, 81
                                                                                                      388, 38782
  5.00
         350,96405
                     389.76270
                                 378.36337
                                              39,79855
                                                         370,74728
                                                                      35,58310
                                                                                 -27.09
                                                                                          252, 95405
                                                                                                      389.76278
 10.02
                                                                                          349.53284
                     391, 12509
                                 378,48897
                                              41.43225
                                                         272.75511
                                                                      35.69643
                                                                                 -39.89
                                                                                                      291, 12589
 20.00
         349, 53284
                                                                      35,70259
 30.08
         348.71505
                     392.05704
                                 370.39654
                                             43, 34097
                                                         370.76520
                                                                                 -4E. S4
                                                                                          348.71606
                                                                                                      392.05704
                                                                                          348.00574
 43,82
         348.03574
                     332, 68957
                                 370, 34772
                                              44,62393
                                                        370.78514
                                                                      35.70325
                                                                                 -50.57
                                                                                                      392, 68567
BAND (MHZ) 356.700 382.700
LMIN(DB)
                  -0.50
LMAX (DB)
                   2.35
LDEL (DB)
                   2.95
PKIN(DES)
               -1931.55
PMAX (DEG)
                1926, 29
                3857.84
PDEL (DES)
File: 1CR8B04B.DAT Passband Symmetry = 0.4 dB
```

```
FILE=1ER88849.DAT 09:35:25 02-04-1998
PM 100823_823 FINPL_FUNCTIONAL TEMP:R FLIGHT4_FUNCTS /M WIDE_S21
22-03-1938 MP8753, SEREF, SEREF
NOSS IN EBADIA
 PEAK: LEVEL(DB)= 87.97175 FREG(MMZ)= 382.3516 DELAY(US)=-.3010743 SIDELOBE(DB)=-42.03808
 ENERGY: LEVEL (DE) = 28,76319 | DENTER (MHZ) = 323,3655 | WIDTH (MHZ) = 73,34539 | SMEW (MHZ) = 3,683157
                                 HI (MHZ) CTR (MHZ) WID (MHZ) AV-CTR (MHZ) AV-WID (MHZ) AV-SL (DB) LOX (MHZ)
                                                                                                                                                                          HIX (MHZ)
                 LO(MHZ)
                                                                           e.00020 383.35156 2.00000 2.02 383.35158
                                                                                                                                                                          383, 35156
  -2.54
               383, 35156 383, 35156 383, 35156
                                                                                                                                                                          755, 51321
                                                                                                                                     -14.12 253.92194
                                                     370.45907 32.04843 370.94569
                                                                                                                      21.66585
    0.53
            354.46467 386.51331

      370, 48927
      32, 04842
      370, 94869
      21, 68505
      -14, 12
      252, 92134
      755, 51321

      370, 37885
      33, 29449
      370, 75541
      32, 71973
      -14, 23
      258, 29974
      387, 02629

      370, 35358
      34, 36598
      370, 82135
      33, 46701
      -14, 32
      257, 44571
      387, 53702

      370, 34473
      35, 29608
      370, 75043
      34, 25052
      -14, 39
      256, 86461
      387, 99277

      272, 35152
      36, 07404
      270, 74980
      34, 41317
      -14, 43
      256, 28993
      388, 73071

      370, 36511
      37, 20452
      370, 75021
      34, 55921
      -14, 44
      256, 28993
      388, 73071

      370, 36511
      37, 20452
      370, 75021
      34, 73590
      -14, 48
      255, 79147
      288, 96759

      270, 36188
      28, 77722
      270, 75574
      34, 99379
      -14, 49
      254, 21478
      389, 75119

      370, 36298
      41, 41614
      270, 76105
      25, 10233
      -14, 49
      253, 46500
      291, 11386

      370, 38943
      43, 33185
      370, 76074
      35, 10322
      -14, 48
      252, 53792
      392, 65536

      370, 32988
      44, 62724
      270,
    1.00
               353.73150 397.02509
               353,17014
                                 387.53702
    2.38
               352, 59669
                                 287.99277
    3.00
               352.31476
                                   388, 38918
    4.00
    5.00
               352, 32243
                                   388, 70071
  5.00 351.76266 388.96759 370.36511
12.00 250.97297 389.75119 270.36558
20.00 249.69772 391.11286 370.40579
  30.00 343.72351 392.05536 370.38943
  40.03 349.01022 392.54745 370.32885
 BAND (MHZ)
                        1.000 225.000 422.000 1020.000
LMIN(DB)
                           49. 64 -5. 54 43. 15
                                           58, 35
                                                              53, 58
LMAX (DB)
                            115, 94
                                            88.89
LDEL(DB)
                            66.91
                                                              10.37
                           3734.97 -3911.95 -3387.35
PMIN(DEE)
                           7504.01 7968.56 7857.52
PMAX (DES)
                           3763.04 11860.53 11254.97
PDEL (DEG)
FILE: 1EREB04B, DAT Out-of-band Rejection: PERK= 43.2 dB WIDTH= 0.000 MHz
```

PHONON CORPORATION

```
PHONON CORPORATION
FILE=1FRSB04B.DAT 09:35:51 02-04-1998
PN 188828_823 FINAL_FUNCTIONAL TEMP:R FLIGHT4_FUNCT3 /N DUAL_SXX
26-23-1998 HP8757, GEREF, SCREF
FREQUENCY (MHZ): CENTER= 388.2
                                                      SSS =HTGINGASE METEYS - 4. = JPGMI 888 =HTGIN
EMS ERRORS: LDSS(DB)= 25.42777 PHRSE(DES)= 924.9724
SERT GOOLES! LOSE 12 PE/SIN NO. FREE SE WAT /DIN
HOSE TE TE TEVE
   وتحريقون
April approximate
                                                              The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
PERK: LEVEL(DB) = 27.77775 | FREG(MHZ) = 380.3744 | DELAY(US) = 5.827819E-02 | SIDELDEE(DB) =-42.02057
HI (MHZ)
                                                      CTR(MHZ) WID(MHZ) EV-CTR(MHZ) AV-WID(MHZ) EV-SL(DB) LEX(MHZ)
 L(DB)
               LO (MHZ)
                                                                                                                                                                                   יציאי עדט
                                   322, 37435
  -2.73
               382, 37435
                                                       383. 37435
                                                                               0.00023 393.37435
                                                                                                                          0. 88388
                                                                                                                                                3. 68 333, 37435
                                                                                                                                                                                 393, 37435
                                   355.74771
                                                                                                                                                                                 355.7477
   2.52
               354, 18193
                                                        172,46481
                                                                                 72,5558
                                                                                                                                                -6.57 258.93622
                                                                                                    370,83121
                                                                                                                           23.84582
   1.83
                                                      378.37451
               353, 61751
                                   387, 13133
                                                                                 33.51375
                                                                                                    370.82159
                                                                                                                                                -6.62 258.28821
                                                                                                                           34.52088
                                                                                                                                                                                   387.13133
   2.00
               353, 37562
                                   387.63272 378.35413
                                                                                 34.55710
                                                                                                    372.68327
                                                                                                                           35, 89949
                                                                                                                                                -5.67
                                                                                                                                                             257, 45647
                                                                                                                                                                                   397.63272
                                   388.08893 378.34543
                                                                                                                                                                                  383. 03893
   3, 20
               352.60989
                                                                                 35, 47923
                                                                                                    378.79822
                                                                                                                           35.57489
                                                                                                                                                -5.70 255.87109
   4.00
               352, 25299
                                   388.48259 372.35773
                                                                                                                           35,96258
                                                                                 38, 20963
                                                                                                    370,78648
                                                                                                                                                -5.73 256,44412
                                                                                                                                                                                  750,45059
                                    388, 76340 370, 35951
   5.00
               251, 97565
                                                                                 35.78775
                                                                                                                           35, 25981
                                                                                                                                                -5.75 256.09932 388.75340
                                                                                                    270, 78079
                                    389.01855 370.36664
   €.03
               351.71475
                                                                                 37.30390
                                                                                                                           35.47102
                                                                                                                                                -6.78 255.73297 389.01855
                                                                                                    273, 77521
                                     209, 70503 270, 36484
 12.00
               350, 34454
                                                                                                                           36, 55365
                                                                                                                                                -5.75 254,91572
                                                                                 38,84033
                                                                                                    378, 74731
                                                                                                                                                                                   389, 72563
 26.35
               349, 57923
                                   391.14065
                                                        272,42994
                                                                               41.46143
                                                                                                    370.76514
                                                                                                                           3E. 77044
                                                                                                                                                -5.69 253.45451
                                                                                                                                                                                 351.14856
                                                        370.38552
 30.03
               249, 70520 392, 06501
                                                                                 43, 36081
                                                                                                    378.76523
                                                                                                                           38.77674
                                                                                                                                                -6.64 252.54117 392.06601
                                                                                                                           35.77743
 40.00
               347.93814 332.70343
                                                       370.35877
                                                                                 44,73529
                                                                                                    378,76517
                                                                                                                                               -6.60 251.72620 392.70343
BAND (MHZ) 252,788 257,728 355,788 383,788
LMIN(DE)
                               -0.14
                                                -2.23
                                                                  -0.73
LYEX (DP)
                                                 65.51
                                                                    €. 23
                                 8.38
LDEL (DB)
                                 6.52
                                                57.84
                                                                     6.95
PMIN(DES)
                            -891.33 -1725.98 -454.48
PMAX (DEE)
                             899.29 1813.77 1190.47
                            1790.55 3539.75 1544.95
PDEL (DES)
FILE: IFR8BC4B.DRT Out-of-band Rejection: PERK= 45.0 dB WIDTH= 0.000 MHz
```

PHONON CORPORATION
FILE: 1FR8B04B.DAT (+990F)
PN_180S28_923 FINAL_FUNCTIONAL TEMP:R FLIGHT4_FUNCT3 /N DUPL_SXX
02-02-1998 HP0753,EEREF,SSREF,SSCF
REFERENCES: LOSS(08)= 20.50801 FMASE(050)= -52084.69
DELAY(US)= .2228772 SLOPE(WS/MHZ)= 0

EANDPRES CHARACTERISTICS MERSUREMENT

FREQUENCY (MHZ)	FGB2 (BB)	PHASE (EEB)
243.603 249.752	54,59	722, 43
248, 752	54.78	1293.86
256.920	2, 91	1169.02
265, 088	შ. შგ	£23. B5
272, 240	2.19	55, 50
281, 400	2, 25	-488.15
229, 540	e. 13	-1274.13
297, 728	43.71	-1555, 90
305.853	54.53	-1433.78
314, 848 200, 200	59.78	-619.36
322. 20 0	54, 53 55, 38 50, 50	-182.55
239. 358	55. 38	485 . 98 .
339,520	53,50	1197.96
348.888	52.65	1213, 48
354, 840	2, 22	: 115, 47
353, 838	2, 23	219,25
271,122	-7.11	בז רור
574 (29 574 (29 574 (30)	-2,42	707,55 -170,55
207.400	1,55	-207.05
195, 540	45. <u>96</u>	-929. 31
482, 582	49.12	-124,78
700,000	77.16	7224.70

ELECTRICAL TEST DATA SHEET

EROJET I	DART. 13	LECTRICAL TEST DATA SHEET 31576-1 PHONON PART: 1008	23 SERIAL: B04	
TESTED B	Y: <u>MAR</u>	TITLE: Test fech DATE:	3/3/98 TIME: 5:00pm	
TEST: FI	NAL FUNC	TIONAL		
EQUIPMENT	T: HP 87	53D SERIAL: 3410A07982	CAL DUE: 2/10/98	
	HP 34	78A SERIAL: 2136A03127	CAL DUE: 7/7/98	
	RAPH	REQUIREMENT TITLE	DATA	P/F
REQ.				
		OPERATING TEMPERATURE	<u>35,3 </u>	p
		CENTER FREQUENCY &		
3.2.1.4		CENTER FREQUENCY STABILITY		
		LO: 273.335/275.055 MHz	273.814 MHz	P P
		HI: 369.335/371.065 MHz	<u>369.759</u> MHz	<u> P</u>
3.2.1.5	5. 2. 4	3 dB BANDWIDTH:		
		LO: 34/35 MHz	<u>34.802</u> MHz	P
		HI: 34/36 MHz	<u>35.300</u> MHz	Р
3.2.1.6	5.2.5	PASSBAND SYMMETRY		
		LO: /0.5 dB	<u>0.2</u> dB	p p
		HI: /0.5 dB	<u>0.3</u> dB	<u> </u>
3.2.1.7	5. 2. 6	PASSBAND RIPPLE		
		250.7-267.7 MHz: /1.0 dB		P P
		356.7-383.7 MHz: /1.0 dB	<u>0.7</u> dB	<u> </u>
3.2.1.8	5.2.7	INSERTION LOSS		
		LO: 27.8/30.2 dB	<u>28.8</u> dB	P P
		HI: 27.8/30.2 dB	<u>28.3</u> dB	Þ
`.2.1.9	5.2.8	INSERTION LOSS VARIATION		
		LO: -0.4/0.4 dB	dB	<u>p</u>
		HI: -0.4/0.4 dB	_0.0 dB	P
3.2.1.10	5.2.9	AMPLITUDE BALANCE		
		LO, HI: /0.5 dB	0.4 dB	<u> P</u>
3.2.1.11	5. 2. 10	OUT-OF-BAND REJECTION		
			PEAK(dB) WIDTH(MHz)	
		WIDE: 1-225, 420-1000 MHz:	43.7 0.000	
		DUAL: 225.000-249.935,		
		298. 465-345. 935,		
		394.465-420.00 MHz:	44.9 0.000	_
		PEAK: 35.0/ dB	43.7 dB	<u> P</u>
3 2 4 42		WIDTH: /7.2 MHz	<u>0.000</u> MHz	P
3. 2. 1. 12	5. 2. 11	SHAPE FACTOR		_
		LO: /1.30 Unitless	1.29 Unitless	P P
3 6 4 44		HI: /1.30 Unitless	1.27 Unitless	<u> P</u>
J. C. 1. 14	5.2.12	VSWR (RETURN LOSS)		
		260.7-287.7, 356.7-383.7 MH		_
		DUAL S11: 7.5/ dB	<u>12.5</u> dB	<u> </u>
	F 0 44	DUAL S22: 7.5/ dB	<u>10.4</u> dB	P
4.8.2	5, 2, 14	LIMITED FUNCTIONAL TESTS		0
		CENTER FREQUENCY: -0.2/0.2		₩
		3 dB BANDWIDTH: -0.72/0.72		PP PP
NONE	F A 1~	INSERTION LOSS: -0.5/0.5 di	B dB	1
NONE	5. 2. 15	DATA SHEET SUMMARY	ρ $(\rho \rho)$	•
		(PASS/FAIL)	<u> </u>	
PHONON C			CAGE: 6Y858	
FIDRUIT L	OKPUKH I II	UN .	LHUE: 51838	

PHONON CORPORATION 7 HERMAN DRIVE SIMSBURY, CT 06070

CAGE: 6Y858 TEL: 203-651-0211 FAX: 203-651-8618

```
PHONON CORPORATION
FILE=18888248.DAT 09:48:88 08-84-1998
PRI 100522 ESC FINAL FINOTIONAL TEMPRH FLIGHTA FUNCTS /N DURLENX
22-23-1998 HRETEZ, 280F, BEFFIY, BEREF
FORDING (MEDIA DENTER = 874.5 | MIDTH = 100 | IMDEL = 14 | EMETEM BANGWIDTH = 27 | REFERENCES: LOSS (DB) = 28.77777 | PAPSE (DES) = -49501.48 | DELAY (US) = 0 | ELOFE (US/MAZ) = 0 | RMS ERRORS: LOSS (DB) = .1874073 | PARSE (DES) = 1178.48
PLOT SON ED, 1088 10 DE/DIV LOSS 1 DE/DIV VO. FREC 12 MAZ/EDV
· 7 m
PERK: LEVEL(DB) = 28.43666 FRES(MHZ) = 288.250 DELRY(UB) =-.4176336 SIDELGSE(CB) =-47.42802
EMERGY: LEVEL (DE) = 28.95568 CENTER (MHZ) = 272.9335 HIDTH (MHZ) = 38.44315 SKEN (MHZ) =-.1922157
         LO (MHZ) HI (MHZ) CTR (MHZ) WID (MHZ) AV-CTR (MHZ) AV-WID (MHZ) AV-SL (DB) LDX (MHZ)
                                                                                                               HIX (MHZ)
 L (DE)
 -2.34 288.25264 288.25264 288.25264 2.00002 288.25274 2.00002 C.00 288.25204 288.25204
                                                                                      -13.00 258.35767
                                                                            21.58583
                                                                                                              229, 82478
  2.50
         252, 35757
                      289.80438 274.08102
                                               31.44572 274.28842
                                                                                                              290, 15729
                                                                          32,25579
                                                                                      -13.98
                                                                                                 257,73535
          257,73535
                       296.15723
                                                 32,42134 273,95878
  1.00
                                   273.94532
          255.97269
                                                                          33. 33513 -15. 24
                                                                                                  255, 97269
                                    273, 88397
                                                  33.82254
                                                              273, 95542
                                                                                                               298, 79523
                       292, 79523
  2.00
                       291.21472
                                                  24,80015
                                                              273.96982
                                                                           33.84155 -17.52
                                                                                                  255, 41257
                                                                                                               231, 21472
  2.00
          256.41257
                                    273.81366
                                                34.80215 273.96582 33.84135 -17.52 256.41627

35.55934 273.56725 34.20388 -19.22 256.00052

36.90602 272.95649 34.47509 -21.35 255.65321

36.74870 273.93682 34.57874 -22.03 255.26353

38.42529 273.92395 34.84794 -26.80 254.49960

41.22041 273.93515 34.96640 -36.12 253.05921

42.14591 273.93552 34.97661 -47.93 252.13555
                                                                                                               291, 57215
                      291,57815
                                    273,73549
  4.20
         258,00082
                      251.85124
                                                                                                               221.86124
  5.03
         255, 55321
                                    273, 75723
                                                                                                               292, 11234
  6.83
         255.36363
                     292.11234 273.73798
                                                                                                               292, 92498
 10.00
         254,49960
                     292,92492 273,71225
                                                                                                             294, 27853
                     294.27863 273.66843
 20.23
         253, 05201
 22.02 252.13559
                                                                                                             235, 26250
                     295.28250 273.70905
 40.00 251.30055 295.21259 273.75725 44.31254 273.32359 34.37725 -53.20 251.30035 256.21359
BAND(MHZ) 260.700 287.700
LMIN(DE)
              -8.29
LMGX (DB)
                     €. 27
יובר ובכן
                   C. 55
PMIN (DEB)
                -2003, 21
PMAX (DES)
                 2307.00
PDEL (DES)
                4010.21
```

```
PHONON CORPORATION
FILE=10HE0043.DAT 09:49:58 02-04-1958
 PN 100828_E23 FINAL_FUNCTIONAL TEMPON FLISHTA_FUNCTS (N DURL_EXX
PLOT SCRIES: 1088 10 DE/DIV 1088 1 DB/DIV VS. FRED 13 YUD/DIV
PERM: LEVEL (DB) = 27.84558 | FOED (MMZ) = 200.7443 | DELAY (UB) = -.4071825 | SIDELTEE (DB) = -45.57803
EMERCY: LEVEL (DB) = 29,49757 | CENTER (MHZ) = 370,122 | WIDTH (MHZ) = 36,83555 | SMEN(MHZ) = -,5507682
 [ (33)
        10'YHZ)
                  HI (HHZ) - CIR (HHZ) - WID (HHZ) RV-CIR (MHZ) RV-WID (MHZ) - AV-SL (DB) - LOX (MHZ) - HIX (MHZ)
 -2,49
        382.74432
                   382.74432
                             392,74472
                                        8.00000 382.74432
                                                              0.00000 0.00 352.74432 382.74432
  3.53
        353, 21927
                   325, 92235
                            759, 67692
                                         32,10323 372,35547
                                                               21, 99553
                                                                                 353,81927 | 385,99235
                                                                        -12, 21
  1.22
        257, 12258
                   385, 42075
                             369,77213
                                        33.29724 370.1652
                                                               32, 22717
                                                                        -14.35 353.12350
                                                                                           795,42075
  2.00
        352, 58127
                   206, 94350
                             359, 76544
                                       24, 26822
                                                 772, 22733
                                                               23, 28523
                                                                        -15,14
                                                                                 252, 58127
                                                                                            325, 94959
                                                 379, 13757
370, 13115
370, 13116
370, 12711
  3.32
                             359,75873
                                       35. 20005
35. 05641
        352,10270
                   387, 48875
                                                               24.54434
                                                                        -15.37
                                                                                 352, 10870
                                                                                            257.48875
  4. 22
        351.74237
                  387.80878
                             369,77557
                                         35.05841
                                                               34.87125
                                                                        -- 9. . .
                                                                                 351.74237
                                                                                            387,80878
  5.02
        351.44913
                   358.11215
                             389,78384
                                                                                 351.44913
                                         35.55382
                                                               34, 87125
                                                                        -22.12
                                                                                            385.11215
  5.03
        351.18802
                                        37.19841
39.74753
                   252, 35443
                             269.78622
                                                               25, 11138
                                                                         -22, 21
                                                                                 351.18822
                                                                                            388, 33443
                                                 370. 12265
 10.03
        352.41458
                   365, 16851
                                                                        -27.27
                              359.78976
                                                               ZE. 27835
                                                                                 250,41499
        243, 12937
 22.00
                  393, 53323
                             359, 23615
                                        41.23417
                                                  370, 12127
                                                               25, 48349
                                                                        -37.33
                                                                                 349, 13987
        348, 16269
 32. OC
                  391.46799
                             369, 81534
                                        43.30530
                                                  370, 12150
                                                               25,49352
                                                                        -43.71
                                                                                 348.15269
                                                                                           201,46700
48.38
       347.44330 392.12165
                             359,77245 44,65826
                                                  372, 12177
                                                               25,49388 -53,42
                                                                                 347, 44338
                                                                                           292, 13155
BAND (MHZ) 255,700 383,700
LMIN(DB)
            -3, 45
LMGX (DB)
               6.35
EDEL (DB)
               0. B3
PMIN (DES)
             -1932.14
PMAX (DEE)
             1929, 94
PDEL (DEG)
              3861.88
```

Channel 12 Bandpass Filter

SAW Filter (S/N: 1331576-2, S/N: B06)

		•
		<u> </u>
		H

ELECTRICAL TEST DATA SHEET

aerojet	PART: 13	31576-2 P	ILCAL TEST DATA HONON PART: 100	824 SERTAL	B 0 6	
TESTED E	9: <u>210</u>	TITLE:	Jest leck DATE	: 5/2/98	IME: HEGA	•
15011	TANK I DISK	TOIT			——————————————————————————————————————	-
EQUIPMEN			IAL: <u>3410A04374</u>	Cal due:		
	HP 34	78A SER	IAL: <u>2136A03127</u>	Cal due:	7/7/98	
DADAG	יוסטטי	DCD::7DC	MOIT TIME		_	
REQ.	raph Q/atp	KERNIKE	MENT TITLE	DAT	A	P/
		DOCUMENT	TEMPERATURE			
7217	527	CENTER FRE			C	<u>p</u>
3.2.1.4	2, 5, 3	CENTER FRE	BLENCY STABILIT	u		
U. L. 11 T			5/301.065 MHz		184 MHz	п
			5/345.065 MHz		121 MHz	<u>р</u> Р
3.2.1.5	5.24	3 dB BANDW		344.0	ZI MNZ	<u> </u>
VI C. 1. U	U. C. 1	LO: 15/16		15 4	74 Mile	
		HI: 15/16			34 MHz	<u>р</u>
7216	525	PASSBAND S		15,5	10 MHz	<u> </u>
J. L. 1. U	J. C. J	LD: /0.5 di		۸.	45	_
		HI: /0.5 d		<u>0.1</u>	dB	<u>р</u>
2217	500	PASSBAND R		0.3	dB	<u> </u>
3. C. 1. /	J. C. D		1991E 2 MHz: /1.0 dB		un.	_
						<u>p</u>
7210	5 07	338, C-330, (2 MHz: /1.0 dB	0.6	dB	<u>p</u>
9. C. 1. 0	J. C. /	INSERTION I				_
		LO: 27.8/30		28.3	d <u>B</u>	<u>р</u>
7 2 1 0	E 2 0		9.2 dB	28.8	dB	<u> </u>
3. 2. 1. 3	3.2.8		OSS VARIATION			_
		LO: -0.4/0.		<u>-0.2</u>		<u>р</u> Р
7 2 1 10	E 0 0	HI: -0.4/8	4 dB	<u>0.0</u>	dB	<u> </u>
3. 2. 1. 10	5.2.9	AMPLITUDE I				
7 0 4 44	F 0 40	LO, HI: /0.5	dB	<u>0.5</u>	dB	p
3. C. I. II	5.2.10	OUT-OF-BANG				
			AND	PEAK (dB)	WIDTH (MHz)	
			,359-1000 MHz:	44.1	0.000	
			99 -288. 935,			
			65-332.935,			
			65-359.00 MHz:		<u> 9. 900</u>	
		PEAK: 35.0/		_44.1 dB		<u> P</u>
2 2 4 12	F 0 44	WIDTH:	3.2 HHz		<u>0.000</u> MHz	: <u>P</u>
3. 2. 1. 12	5. 2. 11	SHAPE FACTO				_
			8 Unitless	1.20		P
2 2 1 14	E 0 10		8 Unitless	_1.3	<u>U</u> nitless	<u> P</u>
S. C. 1. 14	5. 2. 12	VSWR (RETUR				
			,338.2-350.2 MH			
		DUAL 511: 7		<u> 17.5</u>	dB	<u> </u>
		Dual S22: 7		9.0	dB	<u> </u>
4.8.2	5.2.14		CTIONAL TESTS	6		Ω
			UENCY: -0.2/0.2		MHz	
			DTH: -0.32/0.32		MHz	<u>K</u>
NAME.	E ^ 45		OSS: -0.5/0.5 d	B <u>0</u>	dB	P
IONE	5, 2, 15	DATA SHEET	SUMMARY	06	$\tilde{\alpha}$,
		(PASS/FAIL)		XU	1 4/	
HONON CO	DODDATIO			-	DODE	
THURION LU HERMAN		N			CAGE: 6Y858	
IMSBURY,		a			TEL: 203-651	
TATIONUS I 4	U: 0000/	v			FAX: 203-651	-HF1H

SIMSBURY, CT 06070

FAX: 203-651-8618

```
PHONON CORPORATION
 FILE=20C8806A.DAT 14:29:17 05-12-1998
 PN 100830_824 FINAL_FUNCTIONAL TEMP:C FLIGHT6_3FUNCT /N DUAL_SXX
 65-12-1998 HP8753, SSCF, SSFFIX, SSREF
 FREQUENCY (NHZ): CENTER= 388.2 WIDTH= 39.84 INCR.= .12 SYSTEM BANDWIDTH= 12
 REFERENCES: LOSS (DB) = 28.34716 PHASE (DE6) = -38888.7 DELAY (US) = 8 SLOPE (US/MHZ) = 8
 RMS ERRORS: LOSS(DB) = 9.174050E-02 PHASE(DEG) = 1736.986
 PLOT SCRLES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS.
                                                   FRED 3.984 MHZ/DIV
 FORE, 18, DB/DIA
 LOSS-1-DB/BIU-
FREQ 3.984 MHZ/DIU
PERK: LEVEL(DB) = 28.01208 FREQ(NHZ) = 306.6893 DELAY(US) =-1.385006 SIDELOBE(DB) =-50.76113
ENERGY: LEVEL (DB) = 28.52174 CENTER (NHZ) = 300.4377 WIDTH (NHZ) = 16.13811 SKEW (NHZ) = -2.644642E-82
 L(DB)
          LO(MHZ)
                       HI (MHZ)
                                  CTR(MHZ)
                                               MID(MIZ) AV-CTR(MIZ) AV-WID(MIZ)
                                                                                  AV-SL (DB) LOX (MHZ)
                                                                                                          HIX (MHZ)
 -0.34
         386.68927
                      386.68927
                                   396.68927
                                                 0.00000
                                                           386.68927
                                                                          6.00008
                                                                                      8.88
                                                                                             386.68927
                                                                                                          386, 68927
  8.58
         293.57147
                      307.47729
                                  300, 52438
                                                13.90582
                                                           398, 52411
                                                                         13.93194
                                                                                    -12.20
                                                                                             293.57147
                                                                                                          387.47729
  1.00
         293, 26883
                      307.65585
                                   300, 45834
                                                14.39582
                                                           380, 52277
                                                                         14.33450
                                                                                    -13.40
                                                                                             293.26083
                                                                                                          307.65585
  2.00
         292, 98564
                      387, 92114
                                  388, 41339
                                                15.01550
                                                           300.47345
                                                                         14.76601
                                                                                    -15.30
                                                                                             292.98564
                                                                                                          387.92114
  3.88
         292.68719
                      398, 12097
                                  300.40408
                                                15.43378
                                                           380.46799
                                                                         15.03521
                                                                                    -17.20
                                                                                             292,68719
                                                                                                          388, 12097
         292,51169
  4.88
                      308, 27469
                                  300.39319
                                                15,76399
                                                           300.43924
                                                                         15.19091
                                                                                    -18, 91
                                                                                             292.51169
                                                                                                          388, 27469
  5.00
         292, 37042
                      308, 40570
                                  300.38806
                                                16.03528
                                                           300, 43961
                                                                         15.27214
                                                                                    -20.17
                                                                                             292.37042
                                                                                                          388, 40570
  6.00
         292, 25118
                      308.51767
                                  300.38440
                                                16, 26657
                                                           300.43976
                                                                        15.33696
                                                                                    -21.56
                                                                                             292, 25110
                                                                                                          388, 51767
 10.00
         291.87485
                      388.87378
                                  380, 37433
                                                16.99893
                                                           300.43921
                                                                         15.45112
                                                                                    -26.52
                                                                                             291.87485
                                                                                                          388.87378
 20.80
         291.26844
                      309, 46613
                                  300.36328
                                                18.20569
                                                           300, 43882
                                                                        15.49878
                                                                                    -38.00
                                                                                             291, 26844
                                                                                                          309, 46613
 30.00
         290, 81491
                      309, 87326
                                  300.34409
                                                19.05835
                                                           300.43771
                                                                         15.50194
                                                                                    -48.48
                                                                                             290.81491
                                                                                                          389,87326
 48.88
         290.41357
                      318.14786
                                  300.28070
                                                19.73428
                                                           300.43771
                                                                        15.50218
                                                                                    -55, 38
                                                                                             290.41357
                                                                                                          310.14786
BAND (MHZ)
            294, 200
                      386,200
LMIN(DB)
                  -8.18
LMAX (DB)
                   8.21
LDEL (DB)
                   0.39
PMIN(DEG)
               -2976.61
PMAX (DEG)
                2981.73
                5958.34
PDEL (DEG)
File: 2AC8B06A, DAT
```

Passband Symmetry = 0.1 dB

```
PHONON CORPORATION
FILE=2008886A.DAT 14:38:11 85-12-1998
PN 188838_824 FINAL_FUNCTIONAL TEMP:C FLIGHT6_3FUNCT /N DUAL_SXX
05-12-1998 HP8753, SSCF, SSFF1X, SSREF
FREDUENCY (NHZ): CENTER= 344.2
                                                                 WIDTH= 39.84 INCR.= .12 SYSTEM BANDWIDTH= 12
REFERENCES: LOSS (DB) = 28.82521
                                                                   PHASE (DEG) =-51947.43 DELAY (US) = 0 SLOPE (US/NHZ) = 8
RMS ERRORS: LOSS(DB)= .201766
                                                                 PHASE (DEG) = 1714.693
PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FRED 3.984 MHZ/DIV
LOSS TO DB/DTV
                                                                     White was the same with the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the sam
LOSS-1-DB/BIV
FREQ 3.984 MHZ/DHU
PEAK: LEVEL(DB) = 28.39035 FREQ(MHZ) = 339.8784 DELAY(US) =-1.379629 SIDELOBE(DB) =-46.89098
ENERGY: LEVEL (DB) = 29.84133 CENTER (NHZ) = 344.0763 WIDTH (NHZ) = 16.26221 SKEW (NHZ) = .2621273
  L(DB)
                    LB(MHZ)
                                             HI (MHZ)
                                                                    CTR(MHZ)
                                                                                            WID (MHZ) AV-CTR (MHZ) AV-WID (MHZ) AV-SL (DB) LOX (MHZ)
                                                                                                                                                                                                                 HIX (MHZ)
                  339,87839
  -0.43
                                           339, 87839
                                                                    339, 87839
                                                                                                8,99998
                                                                                                                     339, 87839
                                                                                                                                                 8.99998
                                                                                                                                                                                        339,87839
                                                                                                                                                                                                                 339,87839
                                                                                                                                                                          8.80
    0.50
                  337.24796
                                           350, 97290
                                                                                              13,72495
                                                                                                                     343, 99216
                                                                                                                                                                                        337, 24796
                                                                                                                                                                                                                 350, 97290
                                                                    344, 11041
                                                                                                                                                13, 61276
                                                                                                                                                                     -11.49
                  336.98633
                                          351.33887
    1.00
                                                                                               14.35254
                                                                                                                     343, 99866
                                                                    344, 16260
                                                                                                                                                14.21640
                                                                                                                                                                     -13.09
                                                                                                                                                                                        336, 98633
                                                                                                                                                                                                                 351.33887
                  336,68854
                                           351.73486
    2.00
                                                                    344, 21170
                                                                                              15, 84633
                                                                                                                     344, 04987
                                                                                                                                                14,64575
                                                                                                                                                                      -14.79
                                                                                                                                                                                         336, 68854
                                                                                                                                                                                                                 351.73486
    3.00
                  336.46558
                                           351.97588
                                                                    344, 22070
                                                                                              15.51022
                                                                                                                     344.05310
                                                                                                                                                14.92313
                                                                                                                                                                                         336.46558
                                                                                                                                                                                                                 351.97580
                                                                                                                                                                      -16, 48
                                                                                                                                                                                        336.28558
    4.00
                  336, 28558
                                           352.15637
                                                                    344.22098
                                                                                              15.87079
                                                                                                                     344.08289
                                                                                                                                                15.08725
                                                                                                                                                                      -17.96
                                                                                                                                                                                                                 352, 15637
    5.00
                  336, 13940
                                           352.31924
                                                                    344,22931
                                                                                               16.17984
                                                                                                                     344.06076
                                                                                                                                                15, 21656
                                                                                                                                                                      -19.68
                                                                                                                                                                                         336.13940
                                                                                                                                                                                                                 352, 31924
                  336.02045
                                                                    344, 23596
    6.00
                                           352, 45151
                                                                                              16.43106
                                                                                                                     344.06366
                                                                                                                                                15.28355
                                                                                                                                                                      -20, 95
                                                                                                                                                                                        336.02045
                                                                                                                                                                                                                 352, 45151
  10.00
                  335.63983
                                                                                                                     344.07761
                                           352.84988
                                                                    344.24836
                                                                                               17.21906
                                                                                                                                                15.42000
                                                                                                                                                                      -26.35
                                                                                                                                                                                         335.63883
                                                                                                                                                                                                                  352.84988
  28.99
                  335,99183
                                           353, 47656
                                                                    344, 23920
                                                                                              18, 47473
                                                                                                                     344.07654
                                                                                                                                                15, 46854
                                                                                                                                                                      -37.10
                                                                                                                                                                                         335, 90183
                                                                                                                                                                                                                 353, 47656
                                                                    344.21631
                                                                                              19.39795
  30.00
                   334.51733
                                           353.91528
                                                                                                                     344.07620
                                                                                                                                                15.47220
                                                                                                                                                                      -45.89
                                                                                                                                                                                         334.51733
                                                                                                                                                                                                                 353, 91528
  40.00
                  334, 09418
                                           354, 22858
                                                                   344.16138
                                                                                              20.13440
                                                                                                                     344.07620
                                                                                                                                                15, 47255
                                                                                                                                                                      -50.39
                                                                                                                                                                                        334.09418
                                                                                                                                                                                                                 354.22858
BAND (MHZ)
                        338,200
                                          356, 266
                                     -0.43
LMIN(DB)
LMAX (DB)
                                       8.38
LDEL (DB)
                                       0.81
PMIN(DEG)
                               -2937.43
                                2942.64
PMAX (DEG)
```

PDEL (DEG)

File: 2CC8B06A.DAT

5886.07

Passband Symmetry = 0.3 dB

ELECTRICAL TEST DATA SHEET

AEDA IET	DART 4	ELECTRICAL TEST DATA S		
HEKUJE!	₩HKI:] 1V• 21	331576-2 PHONON PART: 1006	SERIAL: BOG	
TEST: FI	NAL FIN	331576-2 PHONON PART: 1886 O TITLE: <u>Kij/ te-} l-,</u> (DATE: CTIONAL	1116: 11:00 AM	`
EQUIPMEN	П: HP 8	753D SERIAL: 3410004374	CAL DUE: 1/29/99	
	HP 3		CAL DUE: 7/7/98	
	RAPH	REQUIREMENT TITLE	DATA	P/F
REQ.				
3. C. l. l	5.2.1	OPERATING TEMPERATURE	<u>14.9</u> C	P
3.2.1.4	5. 2. 3	CENTER FREQUENCY &		
3. 5. 1. 4		CENTER FREQUENCY STABILITY LD: 299.335/301.065 NHz		_
		HI: 343.335/345.065 MHz	390.266 MHz	<u>p</u>
3.2.1.5	5, 2, 4	3 dB BANDWIDTH:	344.079 MHz	<u>p</u>
		LO: 15/16 MHz	15.428 MHz	n
		HI: 15/16 MHz	15.500 MHz	<u>p</u>
3.2.1.6	5.2.5	PASSBAND SYMMETRY	101000	<u>-</u>
		LO: /0.5 dB	<u>0.1</u> dB	p
		HI: /0.5 dB	0.2 dB	<u>p</u>
3.2.1.7	5.2.6	PASSBAND RIPPLE		
		294.2-306.2 MHz: /1.0 dB	6.4 dB	<u>р</u>
2010	F 0 7	338.2-350.2 MHz: /1.0 dB	0.6 dB	P
3.2.1.8	5.2.7	INSERTION LOSS		
		LO: 27.8/30.2 dB HI: 27.8/30.2 dB	_28.6 dB	<u>Р</u>
3.2.1.9	528	INSERTION LOSS VARIATION	<u>28.8</u> dB	<u>p</u>
0	J. C. 0	LO: -0.4/8.4 dB	0.0 45	_
		HI: -0.4/0.4 dB	0.0 dB 0.0 dB	<u>р</u>
3.2.1.10	5.2.9	AMPLITUDE BALANCE		<u> </u>
		LO, HI: /0.5 dB	0. 3 dB	_ p _
3.2.1.11	5.2.10	OUT-OF-BAND REJECTION		<u>-</u>
		Band	PEAK (dB) WIDTH (MHz)	
		WIDE: 1-286,359-1000 MHz:	44.8 0.000	
		DUAL: 286.000-288.935,		
		311.465-332.935,		
		355.465-359.00 NHz:	46.8 0.000	
		PEAK: 35.0/ dB WIDTH: /3.2 MHz	44.8 dB	<u>p</u>
3.2.1.12	5 2 11	SHAPE FACTOR	0.000 MHz	<u>p</u>
01 L1 11 1L	U. L. 11	LD: /1.30 Unitless	1.28 Unitless	D
		HI: /1.30 Unitless	1.30 Unitless	<u>р</u>
3.2.1.14	5.2.12	VSWR (RETURN LOSS)	Unitiess	<u></u>
		294.2-386.2,338.2-350.2 MHz		
		DUAL S11: 7.5/ dB	_16.9 dB	Р
		DUAL \$22: 7.5/ dB	8.5 dB	
4.8.2	5. 2. 14	LIMITED FUNCTIONAL TESTS		_
		CENTER FREQUENCY: -0.2/0.2	HHz -0.016 MHz	2
		3 dB BANDWIDTH: -0.32/0.32	MHz 70.003 MHz	μ.
NONE	5 2 15	INSERTION LOSS: -0.5/0.5 dB DATA SHEET SUMMARY	+011 de	4
	D. C. 13	(PASS/FAIL)	D (00)	
PHONON COR		IN .	CAGE: 6Y858	
7 HERMAN I	DRIVE .		TEL: 203-651-00	211
SIMSBURY,	CT 0607	0	FAX: 203-651-86	

PHONON CORPORATION FILE=29R8B06A.DAT 14:44:03 05-12-1998 PN 100830_824 FINAL_FUNCTIONAL TEMP:R FLIGHT6_3FUNCT /N DUAL_SXX 65-12-1998 HP8753, SSCF, SSFFIX, SSREF FREQUENCY (NHZ): CENTER= 306.2 WIDTH= 39.84 INCR. = .12 SYSTEM BANDWIDTH= 12 REFERENCES: LOSS(DB) = 28,56445 PHASE (DEG) = 40447, 72 DELAY (US) = 0 SLOPE (US/MHZ) = 0 RMS ERRORS: LOSS(DB) = 9.621572E-02 PHASE(DEG) = 1737.785 PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FREQ 3.984 MHZ/DIV MINIORS IN DEVDIN LOSS-1-DB/BIU FREG 3.984 NHZ/DIU PEAK: LEVEL(DB) = 28.26605 FREQ(MHZ) = 306.5536 DELAY(US) =-1.386202 SIDELOBE(DB) =-51.5357 ENERGY: LEVEL (DB) = 28.74206 CENTER (MHZ) = 380.2793 WIDTH (MHZ) = 16.13214 SKEW (MHZ) = 1.021874E-82 L(DB) LD (MHZ) HI (MHZ) CTR (MHZ) WID (MHZ) AV-CTR (MHZ) AV-WID (MHZ) AV-SL (DB) LOX (MHZ) HIX (MHZ) -0.30 306.55359 306, 55359 386, 55359 8.00000 306.55359 8. 99999 0.00 386.55359 306, 55359 293, 42686 0.50 307.33371 300.37988 13.90765 300.37955 13.92111 -12.21 293, 42606 307.33371 293.11984 1.00 307.51514 300.31750 14.39529 300.28076 14.32294 293, 11984 -13.42307.51514 2.00 292.76855 387.77968 300, 27408 388.32455 292,76855 15.01105 14.75382 -15.33307.77960 3.00 292.55176 307.97964 307.97964 300.26569 15, 42789 300.28671 14.96347 -16.72292.55176 4.00 292, 38862 308.13348 300.25705 15.75287 300.28644 292.38862 15.17791 -18.96 388, 13348 5.00 292, 23944 308.26541 300, 25244 16.02597 388, 28583 15, 25842 292, 23944 -20.22 398, 26541 6.08 292.11850 388.37827 300.28500 292.11850 300.24838 16, 25977 15.32257 -21.62 388, 37827 16,60 291.74420 308.73499 388.23959 16.99078 300.28232 15.43543 -26.60 291.74420 388, 73499 29.00 291.13049 309, 32541 300.22797 18, 19492 300.27979 15, 48234 -38.11 291.13949 389, 32541 30.00 298.67957 309, 72711 300, 20334 19.04755 300, 27933 15.48542 -48.67298, 67957 389, 72711 40, 80 296, 26865 310.01599 300.14233 19.74734 300.27930 15.48565 -55.81 298, 26865 310.01599 BAND (MHZ) 294, 200 306.200 LMIN(DB) -0.22 LMAX (DB) 0.23 LDEL (DB) 0.45

5961.17 File: 2AR8B06A.DAT Passband Symmetry = 0.1 dB

-2978.17

2983.00

PMIN(DEG)

PMAX (DEG)

PDEL (DEG)

```
PHONON CORPORATION
  FILE=2CR8886A. DAT 14:45:86 85-12-1998
   PN 188838_824 FINAL_FUNCTIONAL TEMP:R FLIGHT6_3FUNCT /N DUAL_SXX
   05-12-1998 HP8753, SSCF, SSFFIX, SSREF
  FREQUENCY (NHZ): CENTER= 344.2 WIDTH= 39.84 INCR.= .12 SYSTEM BANDWIDTH= 12
  REFERENCES: LOSS (DB) = 28.82098
                                                                     PHASE (DEG) = 19301.39 DELAY (US) = 0 SLOPE (US/MHZ) = 0
  RMS ERRORS: LOSS(DB) = .2053686
                                                                      PHRSE (DEG) = 1715.642
  PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FREQ 3.984 MHZ/DIV
  LOSS TO DB/DTU
                                                                     which the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of
  LOSS-1-DB/BIU
 FREQ 3.984 MHZ/DIU
 PEAK: LEVEL(DB)= 28.39487 FREQ(NHZ)= 339.725 DELAY(US)=-1.37586 SIDELOBE(DB)=-46.69956
ENERGY: LEVEL (DB) = 29.03154 CENTER (NHZ) = 343.938 WIDTH (NHZ) = 16.25291 SKEW (NHZ) = .2569103
  L(DB)
                    LO(MIZ)
                                             HI (MHZ)
                                                                     CTR (MHZ)
                                                                                             WID (MHZ) AV-CTR (MHZ) AV-WID (MHZ) AV-SL (DB) LDX (MHZ)
                                                                                                                                                                                                                   HIX (MHZ)
  -8.43
                   339,72584
                                            339,72504
                                                                     339, 72504
                                                                                                 0.00000
                                                                                                                      339, 72504
                                                                                                                                                   8.00000
                                                                                                                                                                           9.00
                                                                                                                                                                                          339.72504
                                                                                                                                                                                                                   339.72504
    0.50
                   337.10318
                                           358.84775
                                                                                                                      343.81967
                                                                     343, 97546
                                                                                               13, 74457
                                                                                                                                                 13.73567
                                                                                                                                                                       -11.76
                                                                                                                                                                                          337.10318
                                                                                                                                                                                                                   350.84775
    1.00
                   336.87363
                                           351.29682
                                                                     344.84822
                                                                                               14.33319
                                                                                                                      343, 87872
                                                                                                                                                 14, 23350
                                                                                                                                                                       -13.12
                                                                                                                                                                                          336.87363
                                                                                                                                                                                                                   351,29682
    2.00
                   336.55560
                                           351.59006
                                                                     344.07281
                                                                                               15.03445
                                                                                                                      343, 92664
                                                                                                                                                14.66385
                                                                                                                                                                       -14.83
                                                                                                                                                                                          336, 55560
                                                                                                                                                                                                                   351.59006
    3.00
                   336.32895
                                           351.82904
                                                                     344.07898
                                                                                               15,50009
                                                                                                                      343, 92884
                                                                                                                                                14.93976
                                                                                                                                                                       -16.53
                                                                                                                                                                                          336.32895
                                                                                                                                                                                                                  351.82904
    4.00
                   336, 15289
                                           352.00793
                                                                    344.88938
                                                                                               15.85513
                                                                                                                      343, 93836
                                                                                                                                                15, 14960
                                                                                                                                                                       -18.58
                                                                                                                                                                                          336, 15280
                                                                                                                                                                                                                  352.00793
                   336,08211
    5.00
                                           352, 17117
                                                                     344.08664
                                                                                               16, 16907
                                                                                                                      343, 93130
                                                                                                                                                15.23122
                                                                                                                                                                      -19.74
                                                                                                                                                                                          336.00211
                                                                                                                                                                                                                  352, 17117
    6.00
                  335.88156
                                           352.30002
                                                                                                                     343.93265
                                                                    344.09079
                                                                                               16, 41846
                                                                                                                                                                      -21.82
                                                                                                                                                15.29779
                                                                                                                                                                                         335.88156
                                                                                                                                                                                                                  352.30002
  10.00
                   335, 48999
                                           352.69896
                                                                    344.09402
                                                                                               17, 20897
                                                                                                                      343, 93567
                                                                                                                                                                      -25.53
                                                                                                                                                15.42003
                                                                                                                                                                                          335, 48999
                                                                                                                                                                                                                  352,69886
  20.00
                  334.85846
                                           353.32346
                                                                    344, 09094
                                                                                               18, 46500
                                                                                                                     343.93857
                                                                                                                                                15, 47947
                                                                                                                                                                      -37.03
                                                                                                                                                                                          334.85846
                                                                                                                                                                                                                  353, 32346
  30.00
                  334.36130
                                           353, 76096
                                                                    344.06113
                                                                                               19.39966
                                                                                                                      343. 93796
                                                                                                                                                15.48317
                                                                                                                                                                       -45.70
                                                                                                                                                                                          334.36130
                                                                                                                                                                                                                  353, 76096
  48.88
                  333. 92886
                                           354.13693
                                                                    344.03290
                                                                                               20, 20887
                                                                                                                     343.93793
                                                                                                                                                15, 48352
                                                                                                                                                                      -49.80
                                                                                                                                                                                         333, 92886
                                                                                                                                                                                                                  354.13693
BAND (MHZ)
                        338, 200
                                             350.200
LMIN(DB)
                                     -0.41
LMAX (DB)
                                       0.39
LDEL (DB)
                                       0.80
PMIN(DEG)
                               -2938.74
PMAX (DEG)
                                2945.54
PDEL (DEG)
                                5884.29
```

File: 2CR8B86A.DAT

Passband Symmetry = 0.2 dB

PHONON CORPORATION

FILE=2ER8B06A.DAT 14:46:02 05-12-1998

PN_100830_824 FINAL_FUNCTIONAL TEMP:R FLIGHT6_3FUNCT /N WIDE_S21

05-12-1998 HP8753, SSREF, SSREF

FREQUENCY (NHZ): CENTER= 500.5 WIDTH= 999 INCR. = .208125 SYSTEM BANDWIDTH= 999

REFERENCES: LOSS(DB) = 28.69271 PHASE(DEG) = -10711.06 DELAY (US) = .1180667 SLOPE (US/NHZ) = 0

RMS ERRORS: LOSS(DB) = 13.09459 PHASE(DEG) = 10518.33

PLOT SCALES: LOSS 10 DB/DIV VS. FREQ 99.9 NHZ/DIV

OT SCALES: LO	SS 10 DB/D1	V V5.	- FREI	2 99.9 NH	71014				
SS. 10. DB/D1/	V :					•			•
:	:	44 (1 :			:			:
:	:	11 1	1			:		•	:
		-{:}-}-	}····:			•			• • • • • • • • • • •
:	:		1 :	:		:		:	:
:	:		:	•				•	•
:	:		} :					:	:
:	:	1:1-1	\	· · · · · · · · · · · · · · · · · · ·			: • • • • • • • • • • • • • • • • • • •		:
:	:	甘土	1 :			:			: :
:	:		:	:		:	•	• :	· :
		444	 :		·				:
:	:] :			:		:	:
<u>:</u>	:	1:1	1	:		:	•	• •	:
:	:		1 :	:		:	:	:	:
•	:	1:1:1:	 	•					
:	:] :	:		:		:	:
•	:			:		سميد الأطبي		-	-
·				.	-				:
:			" " "	MANAGE PAR		:		•	:
			1			:		•	:
	or Hall		ſ :			:			:
: , 610									
			• • • • • • •	• • • • • • • • • • • • • • • • • • • •		:			.
						· ·			· · · · · · · · · · · · · · · · · · ·
			:		:				· · · · · · · · · · · · · · · · · · ·
					······································				

PEAK: LEVEL (DB) = 28.24958 FREQ (MHZ) = 306.5353 DELAY (US) =-1.144218 SIDELOBE (DB) =-45.25919 ENERGY: LEVEL(DB) = 28.88329 CENTER(MHZ) = 321.5948 WIDTH(MHZ) = 32.36942 SKEW(MHZ) = 78.47802

L(DB)	LO(MHZ)	HI (MHZ)	CTR (MHZ)	WID(MHZ) P	AV-CTR(MHZ)	AV-NID (MHZ)	AV-SL(DB)	LOX (MHZ)	HIX(MHZ)
-0 . 44	386. 53528	306.53528	386. 53528	8. 98900	396.53528	0.90000	8. 90	386.53528	306. 53528
0.50	293, 34024	307.39410	300.36719	14.05386	398, 38647	14.56427	-17.78	293.34824	350.586 27
1.98	293. 0720 2	387.56 699	300.31952	14. 49496	300.300 72	14.74036	-17.83	293.07202	351.12366
2.00	292.74561	307.81180	300.27869	15.06619	300.30231	15,33827	-17.99	292.74561	351.55368
3.00	292.53058	388. 0044 6	300.26752	15. 47388	300.30035	15.55697	-18 . 0 5	292.53058	351.79633
4.00	292.36240	308.15228	300.25732	15.78989	300, 25757	15.64144	-18.07	292, 36248	351.98782
5. 0 0	292.22559	388.2844 2	300.25500	16. 05884	300.29684	15.71927	-18 . 0 9	292, 22559	352.15002
6.90	292. 10 736	388.3 9725	300.25232	16.28989	300.26648	15.77819	-18.11	292.10736	352.28711
10.00	291.73688	388.74857	300. 24274	17.01169	388.27817	15.92036	-18.14	291.73688	352.68976
20.00	291.12555	309. 33 514	300.23035	18.20959	388. 28311	15.96728	-18.15	291.12555	353.31863
38. 88	290.6 7816	309.73465	300, 20642	19.05649	300, 28342	15.96985	-18. 15	290.57816	353.76273
40.00	290.26697	310.01794	300.14246	19.75098	300, 28336	15.97003	-18.15	298. 26697	354.16827

BAND (NHZ) 1.000 286.000 359.000 1000.000

LMIN(DB) 56.15 -0.44 44.82 LMAX (DB) 103.20 81.43 52.27 LDEL (DB) 7.45 53.05 81.87 PMIN(DEG) 9999.00 -9659.89 -9412.14 PMAX (DEG) 9999.00 9999.00 9999.00

0.00 19658.89 19411.14 PDEL (DEG)

FILE: 2ER8B06A.DAT Out-of-band Rejection: PEAK= 44.8 dB WIDTH= 0.000 MHz

PHONON CORPORATION FILE=2FR8B06A.DAT 14:46:28 85-12-1998 PN 100830_824 FINAL_FUNCTIONAL TEMP:R FLIGHT6_3FUNCT /N DUAL_SXX 65-12-1998 HP8753, SSREF, SSREF FREQUENCY (MHZ): CENTER= 322.2 WIDTH= 84.96 INCR. = .12 SYSTEM BANDWIDTH= 85 REFERENCES: LOSS(DB) = 28.69271 PHASE (DEG) = 29108.03 DELAY (US) = 1.268048 SLOPE (US/MHZ) = 0 RMS ERRORS: LOSS(DB) = 26.89448 PHRSE (DEG) = 1123.676 PLOT SCALES: LOSS 10 DB/DIV VS. FREQ 8.496 MHZ/DIV LOSS TO DB/DFV FREQ. 8 . 496 MHZ/DJU PEAK: LEVEL(DB) = 28.26507 FREQ(NHZ) = 396.561 DELAY(US) = 1.14987 SIDELOBE(DB) =-47.20171 ENERGY: LEVEL(DB) = 28.87959 CENTER(MHZ) = 321.4634 WIDTH(MHZ) = 32.34644 SKEN(MHZ) = 1.242795 L(DB) LO(MHZ) HI (MHZ) CTR(MHZ) WID(MHZ) AV-CTR(MHZ) AV-WID(MHZ) AV-SL(DB) LOX(MHZ) HIX (MHZ) -8.43 386.56897 306.56097 306.56097 8.00000 306.56097 9.00000 8.00 386.56897 306.56097 0.50 293, 34921 307.38181 300.36551 14.03259 300, 36203 14.44706 293.34921 -6.33 350.78140 1.00 293.96491 307.55942 300.31216 14.49451 300.31271 14.75362 -6.38 293.06491 351.15607 2.00 292, 73987 307.80563 300.27277 15.06577 300.31055 15, 27299 -6.49 292.73987 351.55652 307.99905 3.80 292.52786 300.26346 15.47119 300.27682 15.47390 -6.52 292,52786 351.88392 4.00 292.36215 398.15057 398, 25635 15.78842 300.27817 15,58457 -6.53 292, 36215 351.98584 5.00 292, 22437 16.05679 388, 28116 300.25275 300.29846 15.71450 -6.55 292.22437 352, 15335 6.98 292.10379 308.39233 300,24805 16.28854 300.27975 15.75887 -6.55 292.18379 352, 28491 10.00 291,73380 388.74469 300.23926 17.01089 300.28030 15.88574 -6.54 291.73380 **352.687**59 20.00 291.12338 309.33038 300.22687 18.20700 300.27957 15, 94522 -6.48 291.12338 353, 31689 38,00 290, 67389 309.73117 300.20251 19**. 6**5728 300.27933 15.94961 -6.43 298.67389 353.75867 40.00 290, 26294 310.01898 300.14096 19.75684 390.27927 15.94987 -6.38 290, 26294 354, 11469 BAND (MHZ) 294, 200 306.200 338, 200 350, 200 LMIN(DB) -0.32 -8.42 -0.35LMAX (DB) 0.10 78.46 8.53 LDEL (DB) 8.42 78.88 0.88 PHIN (DEG) 1061.07 -1126.46 37.45 PMAX (DEG) 1538.97 1055.85 439.13 PDEL (DEG) 477.91 2182, 31 401.69

FILE: 2FR8B06A.DAT Out-of-band Rejection: PEAK= 46.8 dB WIDTH= 0.000 MHz

PHONON CORPORATION

FILE: 2FR8B06A.DAT (+SSCF)

PN_100830_824 FINAL_FUNCTIONAL TEMP:R FLIGHT6_3FUNCT /N DUAL_SXX

05-12-1998 HP8753, SSREF, SSREF, SSCF REFERENCES: LOSS(DB) = 28.69271 PHASE(DE6) = 29108.03 DELAY(US) = 1.268048 SLOPE(US/MHZ) = 0

BANDPASS CHARACTERISTICS MEASUREMENT

FREQUENCY (MHZ)	LOSS (DB)	PHASE (DEG)
285.490	59.62	697.84
289 . 0 80	66 . 0 8	1555.35
292.760	1.98	1597.53
296.448	-0 .21	1448, 64
300.120	−0. 12	1299, 97
303. 80 0	0.6 8	1152, 43
307.4 80	0. 78	1005, 08
311.160	68. 8 2	566. 91
314.840	55. 13	-17.88
318.520	58. 75	-516, 65
322.200	63.42	-970.99
325, 880	60.76	-524.88
329.560	56.11	-180, 27
333. 240	53, 72	654.13
336.920	1.10	483, 79
340.600	0.03	358.53
344.280	0.20	234, 13
347.960	0.46	108.57
351.640	2.34	-10.44
355. 320	47.68	-56.83
359.000	48.99	1614.60

EST: <u>Fii</u> Duipmen		CTIONAL	. / /	,	_,		
ISU I PREM	HP 3		CAL DUE: <u>1</u> CAL DUE: <u>7</u>				
Paragi EQ.		REQUIREMENT TITLE	DATA	ş	P/F		
. 2. 1. 1	Q/ATP 5.2.1	OPERATING TEMPERATURE	<u>35.</u> 5	r	n		
		CENTER FREQUENCY &	30.0	_ ·	<u>P</u>		
. 2. 1. 4		CENTER FREQUENCY STABILITY					
		LD: 299.335/301.065 MHz	300. 16	2 MHz	P		
		HI: 343.335/345.065 MHz	343.97		<u> P</u>		
.2.1.5	5. 2. 4	3 dB BANDWIDTH:					
		LO: 15/16 MHz		<u>P</u> MHz	<u>p</u>		
215	E 2 E	HI: 15/16 MHz	<u> 15. 49</u>	5 MHz	<u> </u>		
.2.1.6	3. 2. 3	PASSBAND SYMMETRY		.=			
		LO: /0.5 dB HI: /0.5 dB		_ d <u>B</u>	<u>p</u>		
2.1.7	526	PASSBAND RIPPLE	0.2	_ dB	<u> </u>		
	5. 2. 0	294.2-306.2 MHz: /1.0 dB	0.4	dB	n		
		338.2-350.2 MHz: /1.0 dB	0.6	− dB	p		
2.1.8	5.2.7	INSERTION LOSS		00	<u>-</u>		
		LO: 27.8/38.2 dB	28.8	dB	D		
		HI: 27.8/30.2 dB	28.9	_ dB	<u>p</u>		
2.1.9	5.2.8	INSERTION LOSS VARIATION					
		LO: -0.4/0.4 dB	<u>0.3</u>	dB	р		
		HI: -0.4/0.4 dB	0.1	_ dB	<u>p</u>		
2.1.10	5.2.9	AMPLITUDE BALANCE		_			
.	E 0 10	LO, HI: /0.5 dB	0. 1	_ dB	<u> </u>		
2.1.11	5. 2. 10	DUT-OF-BAND REJECTION					
		BAND UTDE: 1-200 750 1000 MIL.		WIDTH(MHz)			
		WIDE: 1-286, 359-1000 MHz: DUAL: 286.000-288.935,	44.1	0.000			0
		311.465-332.935,				PASS PE PASS PE AE-24937E CAMS ECN CAMS	TK.
		355.465-359.00 MHz:	46.3	8.000		مرح لاو	•
		PEAK: 35.0/ dB	44.1 dB	0.000	D	0A>2	,
		WIDTH: /3.2 MHz		0.000 MHz		7	
2.1.12	5.2.11	SHAPE FACTOR				12116	′ \5 > ¯
		LO: /1.30 Unitless	1.28	Unitless	P /	7143	ゾ ー \
		HI: /1.30 Unitless	1.31	Unitless	$\frac{P}{F}$	VI-CL VW?	•
2.1.14	5. 2. 12	VSWR (RETURN LOSS)	*****	-	_	He (th	^
		294. 2-306. 2, 338. 2-350. 2 MHz	!			'AN	AP /
		DUAL S11: 7.5/ dB	16.6		<u> P</u>	EC. ST	140 °
8. 2	E 2 14	DUAL 522: 7.5/ dB	<u>8.3</u>	_ dB	<u>p</u>	, pu	٠, ۲,
D, C	3. 2. 14	LIMITED FUNCTIONAL TESTS	MIL &		O	(E) ~	
		CENTER FREQUENCY: -0.2/0.2 3 db Bandwidth: -0.32/0.32	MHZ ()	_ MHz	[(K) (K)	J.
		INSERTION LOSS: -0.5/0.5 de		_ MHz · dB		AE-ZY93 AMS ECN CAMS SEE PLOT PROCEET	
NE	5.2.15	DATA SHEET SUMMARY		~""	¥	() (20	
_		(PASS/FAIL)	<i>D('</i> ((P)		1	
			-+ \+	4 /			

```
PHONON CORPORATION FILE=20H8B866A.DAT 14:59:26 65-12-1998
```

PN_100830_824 FINAL_FUNCTIONAL TEMP:H FLIGHT6_3FUNCT /N DUAL_SXX

85-12-1998 HP8753, SSCF, SSFFIX, SSREF

FREQUENCY (NHZ): CENTER= 300.2 WIDTH= 39.84 INCR. = .12 SYSTEM BANDWIDTH= 12

REFERENCES: LOSS(DB) = 28.82026 PHASE(DEG) = 56442.55 DELAY(US) = 0 SLOPE(US/NHZ) = 0

RMS ERRORS: LOSS(DB)= .1012031 PHASE(DE6)= 1738.342

PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FRED 3.984 MHZ/DIV

PEAK: LEVEL (DB) = 28.54959 FREQ (NHZ) = 306.4375 DELAY (US) =-1.387307 SIDELOBE (DB) =-51.36027 ENERGY: LEVEL (DB) = 28.99814 CENTER (NHZ) = 300.1562 WIDTH (NHZ) = 16.12538 SKEW (NHZ) = .0426966

L(DB)	LO(MHZ)	HI (MHZ)	CTR (MHZ)	WID (MHZ)	AV-CTR(MHZ)	AV-WID(MHZ)	AV-SL (DB)	LOX (MHZ)	HIX (MHZ)
-8 .27	386.43747	306.43747	306.43747	0.00000	386.4 3747	0.99999	0.00	386.43747	386. 43747
0.50	293. 38 658	307.22101	300.26379	13, 91443	300.24069	13.91884	-12.23	293, 30658	307.22101
1.00	293.00742	387.40 643	300.20691	14.39902	300.23895	14.32063	-13.44	293.00742	387.48 643
2.00	292.6 6727	307.67416	300.17072	15.00690	300.18954	14.75184	-15.36	292.66727	307.6 7416
3.00	292.45071	307.87256	300.16162	15. 42184	300.15 375	14.95993	-16.75	292.45071	307.8 7256
4.00	292.27933	308. 0 2713	300.15323	15.74780	300.15619	15.17362	-19.00	292.27933	388. 6 2713
5.00	292.14120	308.15930	300.15027	16.01810	300.15693	15, 25364	-20.28	292,14120	308. 15930
6.00	292.020 26	308.27167	300.14597	16, 25140	386. 15738	15.31737	-21.68	292.02026	388. 27167
10.00	291.64603	388. 62616	300.13611	16.98013	300. 15741	15, 42989	-26.70	291.64603	388.6 2616
20.00	291. 83125	309.21466	300.12296	18. 18341	300. 15646	15.47500	-38.27	291.03125	309.21466
30.00	290.58182	309.61691	300.09937	19.03510	300.15616	15.47795	-48.65	290.5 81 8 2	30 9.61691
40.00	290. 15765	309.89984	300.02875	19.74219	300.15 616	15.47818	-55. 38	290.15765	309.899 84

BAND (MHZ) 294, 200 306, 200

LMIN(DB) -0.22 LMAX(DB) 0.23 LDEL(DB) 0.45 PMIN(DEG) -2979.12 PMAX(DEG) 2983.63 PDEL(DEG) 5962.95

File: 2AH8B06A.DAT Passband Symmetry = 0.0 dB

```
FILE=2CH8B06A.DAT 15:00:20 05-12-1998
  PN_100830_824 FINAL_FUNCTIONAL TEMP:H FLIGHT6_3FUNCT /N DUAL_SXX
  05-12-1998 HP8753, SSCF, SSFFIX, SSREF
  FREQUENCY (NHZ): CENTER= 344.2 WIDTH= 39.84 INCR.= .12 SYSTEM BANDWIDTH= 12
  REFERENCES: LOSS(DB) = 28.88186 PHRSE(DE6) = 37448.92 DELAY(US) = 0 SLOPE(US/NHZ) = 0
  RMS ERRORS: LOSS(DB) = .2053115 PHASE(DEG) = 1716.353
  PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FREQ 3.984 MHZ/DIV
  LOSS TO DB/DTU
                                LOSS 1 DB/BIU
 FREG 3.984 MHZ/DIU
PEAK: LEVEL (DB) = 28.45248 FREQ (NHZ) = 339.5984 DELAY (US) =-1.375526 SIDELOBE (DB) =-45.74779
L(DB)
          LO(MIZ)
                     HI (MHZ)
                                           WID (MHZ) AV-CTR (MHZ) AV-WID (MHZ) AV-SL (DB) LOX (MHZ)
                                CTR(MHZ)
                                                                                                  HIX (MH
  -0.43
         339.59839
                    339.59839
                                339.59839
                                             0.00000
                                                       339.59839
                                                                    0.00000
                                                                                       339, 59839
                                                                                0.00
                                                                                                  339.59
  8.50
         336. 99670
                    350.75658
                                343, 87366
                                            13.75388
                                                       343.70544
                                                                    13.75845
                                                                              -11.76
                                                                                       336, 99670
                                                                                                  350.75
  1.00
         336.78433
                    351.10410
                                343.94421
                                            14.31976
                                                       343.81372
                                                                    14.15593
                                                                              -12.82
                                                                                       336.78433
                                                                                                  351.10
  2.00
         336.45379
                    351, 48340
                               343.96857
                                            15.02969
                                                       343.81763
                                                                   14.68211
                                                                              -14.86
                                                                                       336.45378
                                                                                                  351.48
  3.00
         336.22696
                    351.72150
                               343.97424
                                            15.49454
                                                       343.82117
                                                                   14.95707
                                                                              -16.57
                                                                                       336, 226%
                                                                                                  351.72
  4.00
         336.05148
                    351.89841
                               343.97495
                                                       343.84955
                                            15.84692
                                                                   15. 11874
                                                                              -18.05
                                                                                       336.05148
                                                                                                  351.89
  5.98
         335.89752
                    352.06119
                               343.97937
                                            16.16367
                                                       343.82715
                                                                   15.24694
                                                                              -19.80
                                                                                       335.89752
                                                                                                  352.06
  6.00
         335,77689
                    352.18628
                               343.98157
                                            16.40939
                                                       343, 82919
                                                                   15.31299
                                                                              -21.09
                                                                                       335, 77689
                                                                                                  352.18
 10.00
         335.38702
                    352,58292
                               343.98499
                                            17.19589
                                                       343.83374
                                                                   15, 43369
                                                                             -25,60
                                                                                       335.38702
                                                                                                  352.58
 20.00
         334.75281
                    353, 20782
                               343.98832
                                            18.45502
                                                       343.83755
                                                                   15.49223
                                                                             -37.13
                                                                                       334.75281
                                                                                                  353, 20
 39.00
        334.24854
                    353, 63867
                               343.94360
                                            19.39014
                                                       343.83707
                                                                   15.49584
                                                                             -45.66
                                                                                       334.24854
                                                                                                  353.63
 40.00
        333, 83890
                    354.08450
                               343.96170
                                            20.24561
                                                      343, 83701
                                                                   15.49619
                                                                             -49.79
                                                                                      333, 83890
                                                                                                  354.08
BAND (MHZ)
           338, 200
                     350.200
LMIN(DB)
                 -0.41
LMAX (DB)
                  0.37
LDEL (DB)
                  0.79
PMIN(DEG)
               -2939, 24
PMAX (DEG)
               2946.08
PDEL (DEG)
               5885.32
File: 2CH8B06A.DAT
```

Passband Symmetry = 0.2 dB

PHONON CORPORATION

Channel 13 Bandpass Filter

SAW Filter (S/N: 1331576-3, S/N: B07)

		<u> </u>
		<u> </u>
		<u> </u>

ELECTRICAL TEST BATA SHEET EROJET PORT: 1331576-3 PHONEN PART: 198825 SERIAL: 867 TESTED BY: 210 TITLE: Ta=1 1/2 DATE: 6/13/94 TBE: 1/2-30 Am									
TEST: FIN	L FUEL	TOWA	7-7-						
FIRMPHENT	IP 87	330 SERIAL: 3418494374	CAL INE:	/29/99					
	HP 347	78A SERIAL:2136A83127	CAL NE:	1/7/98					
			•••						
		REQUIREMENT TITLE	DATA	1	P/F				
REIL.				_	_				
		OPERATING TEMPERATURE	-4.6	c	P				
		CENTER FREIBLENCY &							
3.2.1.4		CENTER FREDUENCY STABILLITY			_				
		LD: 312.835/312.355 MHz	312.19	<u>5</u> Mz	<u>p</u>				
		HI: 332.035/332.365 M/z	332.14	12 M/s	<u>P</u>				
3.2.1.5	5.2.4	3 db bandwiibtht;	_		_				
		LD: 7.6/8.0 Miz HI: 7.8/8.6 Miz	7.8	16 Miz 61 Miz	<u>p</u>				
			<u> 7.8</u>	<u>51</u> MHz	<u>P</u>				
3.2.1.6		PRSSBAND SYMETRY			_				
		LO: ∕8L5 dB	<u>_8.1</u>	48	P				
		HI: /9.5 dB	8.1	&B &B	p				
3.2.1.7		PASSBAND RIPPLE		_	p				
		329.2-315.2 Mk: /1.0 dB	6.2	_ ds ds	<u>p</u>				
		329.2-335,2 Hiz: /1.8 dB	<u>_ 6.5</u>	68	<u> </u>				
3.2.1.8		INSERTION LOSS		_	<u>p</u>				
		LO: 27.8/38.2 dB	28.6	&8 &8	<u>P</u>				
		HI: 27.8/39.2 68	<u> 28.5</u>	68	<u>p</u>				
1.2.1.9		INSERTION LOSS VARIATION			_				
		LD: -0.4/6.4 dB HI: -0.4/6.4 dB	-6.2	@ #	P				
		HI: -0.4/8.4 dB	_4.2	&	<u>P</u>				
3.2.1.18	5.2.9	AMPLITUDE BALANCE			_				
		APPLITAGE BALANCE LO, HI: /8.5 dB		®	<u>p</u>				
3.2.1.11	5.2.18	COLL-CE-BUND REJECTION							
				WIDINGS (2)					
		MIDE: 1-383,342-1999 Miz:	44.2	<u>8.888</u>					
		DUAL: 383.000-386.835,							
		317.565-326.835,		0.000					
		337.555-342.00 Miz:	48.4	<u> 6.006</u>					
		·	44.2_ dB	0.000 ML	P				
30440	- - - - - - - - - -	WIDTH: 1.6 Mbz		<u>0.000</u> MHz	<u> </u>				
3-2-1-12		SHOPE FACTUR		2 16:41	0				
		AG: /1.38 Unitless	1.2	/_ Unitless . /_ Unitless	-				
2214	E 9 49			OR CLESS					
3.67114		USUR (RETURN LASS)							
		389.2-315.2,329.2-335.2 Mtz JUNL S11: 7.5/ dB		dB	ь				
		DUAL 522: 7.5/ dB	10.6		<u>P</u>				
4.8.2		LINITED FUNCTIONAL TESTS	10.0	us	<u>-</u>				
7.0.5		CERTER FREQUENCY: -0.1/0.1	W - 0	MHz	₽				
		3 dB BANDNIDTH: -0.16/0.16		M2	₩				
		INSERTION LOSS: -0.5/8.5 dB		1872) dB	10 24 PH				
HEHE		DATA SPEET SUPPARY			+				
		(PASS/FAIL)	P	(OP)					
				-					
PHONON COR		į į		CREE: 6Y858					
7 HERMAN I		; <u>i</u>		TEL: 283-651-					
SIMBBLRY,	CT 8687	78 :		FRX: 283-651-	6616				

```
05/28/99
                     14:47
 PROPERTY CONTRACTION LAND
FILE=30CAMP/ALDAT 18:23:56 86-16-1998
PH_18882_625 FINAL FLACTIONS, TEMPIC FLESHIT_SPIRIT AN INVALSES
86-15-1996 HP6/33, SSOT, SSFTIX, SSRET
FREELENCY ONLY: CENTER= 312.2 NOTH= 29 NCR.= .1 STSREN ENVIRONTH= 6
REFERENCES: LESS (188) = 28.57795 PARSE (1889 = 5354.252 18.047 (185) = 8 9.0FE (1874/12) = 8
RMS ERRORS: LIES (08) = 4.692336E-62 PRASE (0E5) = 1647.157
PLET STALES: USS 18 DB/DIV LOSS 1 DB/DIV VS. FRED 2.9 MEZ/MIV
 TOSS. IS. DB/DIA.
LOSS 4 DB/DIV ..
FRED 2.9 NHZ/51U-
PERC LENG (188) - 23,47152 FROM (1870 - 315, 1225 DEL MI (15) =-2,489473 STREAM (188) =-59,3559
ENERGY: LENE DNA 28.7592 CHIER OND = 312.2896 METHORS = 8.22356 SECTION > -2.478655-62
                                          MID ONED AN-CIRCULA AN-MID ONED AN-91 CORD LIKE CORD
 HI CHED
                               CROO
          LOCKED
                                                                                               HIX ONED
  411
         315,12247
                    315, 12247
                               315, 12247
                                                     315,12247
                                                                                    315_12247
                                                                              315, 12247
                                            7.023
         321.66943
                    315,7224
                                                                   7-00014
                               312,21582
                                                     312.2165
                                                                            -14.46. 384.66943
                                                                                               AST YES
         38.5HB9
                                                                                    38.5489
                    315.66734
                               312.21612
                                                    312_21692
  1.00
                                            7.325
                                                                   7.2375
                                                                            -15.47
                                                                                               315,86734
         38.3713
                    316_81481
  2.00
                               312.19617
                                            7.6371
                                                     312.216
                                                                  7.5336
                                                                            -18.87
                                                                                    36.3753
                                                                                               ME BIAN
                                                                            -19,69
  1.00
         31.27237
                    316.11653
                               312_19543
                                            7.84616
                                                     312,215
                                                                                    34.2727
                                                                                               316.11653
                                                                  7.63374
  LE
        398_1A619
                    316.7833
                               315 13-KI
                                            LHESS
                                                     312,21423
                                                                  7.7244
                                                                            -21.57
                                                                                    381.1619
                                                                                               TL MES
  5.00
         388,11343
                    316.255
                                            F1225
                                                     312.21423
                               312.19898
                                                                  7.7214
                                                                            -21.54
                                                                                    JUL 11343
                                                                                               MLX45
         ELHER.
                    314.32825
                               312.18842
                                            L27966
                                                     312,21316
                                                                  7.7795
                                                                            -23.72
                                                                                    384,MSB
                                                                                               311.2825
                               312.1996
 11.00
         37.6315
                    316.5323
                                            A.66537
                                                     312,21189
                                                                  7.8433
                                                                           -25.13
                                                                                    307.45315
                                                                                               37 223
        307.54453
                               312,185
                                                     312.28999
                                                                  7.86658
                    316,82941
                                            9.25488
                                                                           -48.52
                                                                                    387.5H53
                                                                                               316.82941
                                                                  7.86883
                               312 18146
        307.33258
                    317,83939
                                                                            -49_34
                                            9.69772
                                                     312, 28987
                                                                                    37.323
                                                                                               317.83830
        367.16A33
                    317.1728
                               312.17017
                                           18.58366
                                                     312,28964
                                                                  7.86816
                                                                           -52.68
                                                                                    387.16A33
                                                                                               317.17232
BOOCHES
           389,288
                    315,299
LIEN COM
                 -6. ir
LINKY (DE)
                  Q. 12
LIEL COS)
                 8.22
PHO (DES)
              -286.3
PHIX (DED)
              20E.16
PREL COEE)
               5796.54
File: 30000079_DAT
                     Passband Symmetry = 8.1 dB
```

```
05/28/99
                   14:48
HAMILIANIA PORCA
FILE=302887A_BAT 10:24:37 BG-16-1978
PH_188632_A25 FINAL_FUNCTIONAL TEMP:C FLESHT7_SFUNCT_AND DUAL_SIX
86-15-1996 HP1753,5507,55FT1X,55PG _
FREDLENCY DREED : CENTER= 332.2 | NIDTH= 29 | BACR.= .1 | SYSTEM BANDATOTH= 6
REFERENCES: LESS 080 = 28.53174 PARE (RED = 4679.653 DELAY (RES) = 8 SLIPE (RES/HZ) = 8
RMS ERRORS: LASS (080) = 6-564653E-82 PHRSE (066) = 1626.992
PLOT SCRES: LOSS 18 MB/DTV LASS 1 MB/DTV VS. FRED 2.9 MBP/DTV
COSS. 16. AB\DIA.
LOSS 1 DB/BIV ·
                                                                 My Minney worth
 FREE 2.9 MRZ/DIU
DESCT: LEVEL (08) = 24.71895 (2)6922 (04/2) = 322.1551 (407H)0422 = 4.224445 (95E4082) >-.8289154
                                        4円の420 RP-CR 64420 RP-4円の4220 RP-5Lの390 LDX 65420
                                                                                          HIX (HZ)
         10047
                    HI OHD
                              CROSCO
 LOSS)
                                                                         LE ZASSE
                                                                                          337 3338
                                                   27 2332
                                                               Land
        324,93936
                   20193K
                              321.935
  -£13
                                                               7.655
                                                                                21.335
                                                                                          335_69736
                                          7.13141
                                                   322.11485
                                                                        -14.41
        321.333
                   335,69736
                             JP_13165
  LS
                                                               7.34862
                                                                        -16_83
                                                                                37 GR3
                                                                                          335,61271
                                                   332, 15680
                                          7.35348
                   335.81271
  1.00
        321.45M3
                             32,13577
                                                               7.49278
                                                                        -17.31
                                                                                33.3(4)
                                          7.64694
                                                   12.554
        328.3148
                   335,96%
                              332,13745.
  2.00
                                                               7.61279
                                                                        -11.62
                                                                                32L21/7
                                                                                          331.07265
                                                   322.1533
        321,21173
                   336.07265
                             332,14233
                                          7. 医15
  3.88
                                                               7.79823
                                                                        -22.61
                                                                                331, 13163
                                                                                          335_15791
                                          L. Elis
                                                   37.535
        324_13943
                   336, 15991
                             32.1459
  七田
                                                               7.77864
                                                                                321-86965
                                                                                          ZK_72888
                                                                        -22.68
                   336,22888
                             32,1435
                                          L 15963
                                                   II. 1524
  5.88
        328.B505
                                                                                328_81863
                                                                                          334,29163
                                                                        -22.46
  6.8
        Z2L01863
                   336,29163
                              322.151四
                                          1.28279
                                                   332,529
                                                               7.77864
                                                                                          334.448
                                                                        -27.美
                                                                                327.12718
                                                               7.45769
  111.02
        27.627VA
                   336.4888
                              332,15799
                                          P. R. 185
                                                   32,134
                                                               7.68894
                                                                                327.52199
                                                                                          335,79654
                                                                        -31.73
  28.00
        27.5299
                   336.77654
                             332_16278
                                          9.375
                                                   II2.15475
                                                                                          337.82482
                                                               7.89138
                                                                        -19.73
                                                                                327.34399
                                          9.66483
                                                   372.155%
  31.02
        327.34399
                   337.88882
                             322.1739
                                                                        -22.84
                                                                               327.17374
                                                                                          337.13425
                                                               7.89147
                                          9,96851
                                                   332,15583
        327.17374 337.13425 332.15399
  48.89
 BOND CHIZO
           321.200 335.200
 LITTH CORD
                 -B.11
 LINUX (BB)
                 2.11
                 0.23
 -277L23
 PHIN (DEE)
               2866.78
 PHAX (DES)
               5638.E2
 PBEL (DES)
 File: 3020874 DAT
                     Passband Sympetry = 8.1 dB
```

ELECTRICAL TEST BATA SHEET EROJET PORT: 1331576-3 PHONEN APRT: 188825 SERIAL: BET TESTED BY: 210 TITLE: 1851 Jah DATE: 6/15/14 TIBE: 4:35/14								
TEST: FD	D FINE	TITALES TEST TREET WHIEL BY	10/74 IBE: 4. 3 For	•				
		530 SERIAL:3418494374	ORL DUE:1/29/99					
		78A SERIAL:2136A63127						
			A					
REG.	Q/ATP		DATA	P/F				
3.2.1.1	5.2.1	OPERATING TEMPERATURE	<u>14.6</u> C	P				
		CENTER FREELENCY &						
3.2.1.4		CENTER FREILENCY STABILITY	345 345 Min	ъ				
		HD: 312.835/312.365 Mbz HI: 332.835/332.365 Mbz	312.212 #Hz	P				
7915	5 2 4	:3 dB BANDNIBTH:	332.156 MHz	<u>-</u>				
3.5.1.0	3.6.7	LO: 7.8/8.8 1912	7.AAR MA	D				
		HI: 7.6/8.9 NHz	7.848 Miz 7.868 Miz	P				
3.2.1.6	5.2.5	PASSBAND SYMPETRY		<u> </u>				
		LD: /8.5 @	_8.2 dB	P				
		HI: /9.5 dB	<u>8.2</u> dB <u>8.1</u> dB	P				
3.2.1.7		PRISERAD REPPLE						
		389.2-315.2 Mb: /1.8 dB	8.2 dB	P P				
		329.2-335.2 Mk: /1.0 @	<u>B.2</u> dB	<u> </u>				
3.2.1.8	5.2.7	Insertion loss Lo: 27.8/38.2 dB	A4 3 45	_				
		HI: 27.8/38.2 dB	<u>28.7</u> 49	P				
3.2.1.9		INSERTION LOSS VARIATION	<u>28.7</u> æ	<u> </u>				
J. L. J.		LD: -8.4/8.4 dB	_ 8.8 dB	Ð				
		HI: -8.4/8.4 dB	<u> </u>	P				
3.2.1.18	5.2.9	APLITURE BALANCE						
		LO,HI: /6.5 dB		p				
3.2.1.11,	5.2.10	CUT-OF-BAND REJECTION						
			(個) (四)路(地)					
		VIDE: 1-303,342-1968 Miz: 43.	<u> </u>					
	:	DIAL: 383.000-386.835,						
		317.565-326.435, 337.565-342.00 Mz: 47.	è a ma					
	i	337.565-342.00 Htz: <u>47.</u> PERK: 35.07	8 <u>8.988</u> 7	Ð				
	•	WIDTH: /1.6 Mz	8.899 Htz	<u> </u>				
3.2.1.12	5.2.11	SHAPE FACTOR						
		LO: /1.38 Haitless	_1.27 Unitless	P				
	:	MI: /1.30 Unitless	1.27 Unitless	<u>p</u>				
3.2.1.14		VSMR (REPURN LIBSS)	—					
		309.2-315.2,329.2-335.2 Mtz		_				
		DUAL 511: 7.5/ dB	<u>8.9</u> dB	<u>P</u>				
4.4.2		DUAL S22: 7,5/ 68 LINITED RUCTIONAL TESTS	16.8 dB	<u> </u>				
40 AP E		CENTER FREINDEY: -8.1/8.1 Mb	F0.003 left	P				
		3 dB DANGEDTH: -0.16/0.16 Mtz	10.00 Bit	<u>an</u> 9.34				
	į	INSERTION LOSS: -8.5/8.5 dB	Oe C dB	P				
NDE		data sheet summary	0					
	3 ()	(PASS/FAIL)	LIPY)					
PHONON CON		<u> </u>						
7 HERMAN 1		N	UHSE≥ 51836 TEL: 283-651-6	23t 1				
SIMBBURY,		Ð	FAX: 283-651-4					

```
PHONON CORPORATION
FILE=388887A.DAT 18:35:24 $6-16-1998
PN 199832_825 FINAL PONCTIONAL TOP-IR FLIGHT? STUNCT AN BURL SIX
66-15-1996 HP8753, SSTF, SSFFDX, SSREF
FREBLENCY (RAZO): CENTER= 312.2 MIDTH= 29 INCR.= .1 SYSTEM BRIGHTDTH= 6
REFERENCES: LOSS (BE) = 28.73848 PARSE (BEE) = 5371.646 DELAY (BE) = 8 SLEPE (LE/REZ) = 8
RMS EDROPS: LOSS (08) = .0486599 PHYSE (066) = 1647.067
PLUT SCALES: LIES 18 DB/DIV LOSS 1 PB/DIV VS. FRED 2.9 MD/DIV
MOSS, 16, EBADIA,
1.055 4 DB/91U --
 Mary mille might may be made to the
FREQ 2.9 MHZ/DIU
PENK: LENE (08)= 21.6354 FRED (NAT)= 315.329 DELAY (NE)=-2.697751 SIDE (08)=-49.5553
DEDGY: LEVEL (108) = 22, 92948 (12)(12)(16)(12) = 312, 2243 (10)(14)(16)(2) = 8, 223533 (3)(16)(16) = -2, 399447; -12
                               CTRONED . MEDINED AN-CTRONED AN-SLOW LIXONED
                                                                                                 HIXOHO
 L(DB)
         LDCHZD
                     HI OHZ
                                             £.99929
                                                      315.32981
                                                                               315,32981
                                                                                                 315, 32981
                                                                    1.22
         315.32981
                    315.32901
                                315,32901
  -E.18
                                             7.86685
                                                      312,21786
                                                                    7.8552
                                                                             -14.46
                                                                                      ECC LACE
                                                                                                 315,77637
  9.58
         386.68531
                    315.77637
                                312,23294
                                                                                                 315,88576
                                                                    7.23W
                                             7,3363
                                                      312,21967
                                                                             -15.47
                                                                                      391.55M4
                                312.22345
  1.88 391.55314
                    315.88576
                                                                                      34.327
                                                                             -11.47
                                                                                                 316.83889
                                             7,63739
                                                      312,222
                                                                    7.53417
        384.39278
                    316.83383
                                312,2114
  2.00
                                                                             -19.68
                                                                                      381_26772
                                                                                                 316, 1333
                                             7,44763 312_2239
        385.28772
                    316 1355
                                312.21155
                                                                    7.5485
  3.80
                                                                    7.64258
                                                                                      391.28251
                                                                              #23
                                                                                                 316.21771
         391.38251
                    316.21771
                                312,21811
                                             L.01539
                                                      312_2(527
  4.89
                                                                                      38.1221
                                                                             -21.54
                                                                    7.722
                                312.29779
                                             8.15717
                                                      312.25455
  5.68
         388.12321
                    316-53639
                                                                                      388,86512
                                                                                                 315.34473
                                                                    7.78879
                                                                             -23.73
                               312.23493
                                             8.27968
                                                      312,22525
         304_06512
                    316.34473
  6.80
                                                                                                 316.54881
         357.87458
                                             8.66541
                                                                    7_84482
                                                                             -25,13
                                                                                      387.87450
                                312.28731
                                                      312_225%
                    316-54001
  10.00
                                                                                                 315-84681
                                                                             -48.57
         397.35135
                                                      312,22623
                                                                    7.16725
                                                                                      37.5155
                                312,20348
                                             9.28445
 21.2
                    316.84691
                                                                                                 317.84715
                                                                                      307,34799
                                                                             -49.36
         327.34799
                                312,19757
                                             9.69916
                                                      312,2829
                                                                    7.8576
  32.88
                    317.84715
                                                                    7.85888
                                                                            -£.5
                                                                                      367.18463
                                                                                                 317.18216
                                                      312,288
         397.18463
                    317.18216
                                312.18341
                                             9.99753
 48.88
           329.288 315.239
BAND (PNZ)
LHEDH (DB)
                 -8.19
LIMPX (DB)
                  6.12
TET (OB)
                  8.21
PREH (BES)
              -28EC-14
PMIX (DEE)
               2901.97
PREL (DES)
               5788_11
                   Passband Symmetry = 0.2 dB
File: 39R8997ALDRT
```

```
PHONON CORPORATION
FILE=3763679, pat 19:36:12 66-16-1998
PH_188632_A25 FINAL_FENCTIONAL FEBP-IR FLIGHT?_SFUNCT AN DURL_SXX
85-15-1996 IPEFS3, SSEF, SSFFTX, SSEEF
FREELENCY ONLD : CENTER = 332.2 VEDTH= 29 INCR. = .1 SYSTEM BROWNINTH= 6
REFERENCES: LESS (DB) = 20.68343 PHRSE (DEE) =-4851.86 DELAY (DE) = 0 SLEPE (DE/MYZ) = 0
RMS ETROPS: LOSS (BB) = .8641226 PHRE (DES) = 1626.529
PLOT SCREEN: LIES 18 DRADIV LIES 1 DRADIV VS. FRED 2.9 MEZADIV
TOSE IS DEVOID....
LOSS 4 DB/BIU ...
                                                                   HAMARINAMIA
 FREQ 2.9 HHZ/DIU-
PDK: LPLE (100)= 26. TER (110) = 26. TER (110) = 2. CEA SUBSEC (100) = 47. TER (1
 CTRONED AUTOMED AN-CTRONED AN-UTBONED AN-SLOWD LIXONED
                                                                                        HIXOND
                   HI (HZ)
        TO GHO
                                                             1.43333
                                                                        8.20
                                                                             321,99699 321,99899
  -£12
       324,99699 328,99899 324,99699
                                         A. B. 321.79199
                                                             7.1624
                                                                             33L57431
                                                                                       335.787K1
                                                                      -14.93
        29A-57431 335_78761 332.14896
                                         7,1333 332,15297
  13
                                                                             321_47241
                                                                                        335.82783
                                                             7.34994
                                                                      -1<u>LB</u>
                  335.4278 332.14572
                                        7.35461
                                                 372,1583
        328, 47241
                                        7.64725 332.15857
                                                                             34.35.17
                                                                                        355.97412
                                                                      -17.31
                  335.97412 322.15831
                                                             7.49331
  2.8
        32L3647
                                                             7.61319
                                                                      -14.E2 324.22513
                                                                                        3X. 8X83
                                                 332,15869
        321, 22583
                  335, MKER 332, 15594
                                         7.6553
                                                             7.79834
                                                                                        336,17368
                  335.17368 332.16269
                                         A. 82157
                                                 32,1594
                                                                      -28.68
                                                                             24.15178
        32A_15178
  4.00
                                                             7.7786
                                                                             33F 5425
        321 04322
                  336.24521
                             332,16443
                                         8_161<del>579</del>
                                                 332.16187
                                                                      -22.57
  5.8
                                                             7.88443
                                                                             21.23
                                                                                        3K.35M
                                                                      北方
        324 623%
                  334.38588
                             32.144
                                         上独里
                                                 332,17474
                                                                      -29,39
                                                                             37.M33
                                                                                        33K_59159
                             332,17242
                                                              7.86792
                  334.52152
                                         LESKII
                                                 332,16953
        327.M338
                                                             7.89831
                                                                             27.54199
                                                                                        335.88954
                                                 332_16745
                                                                      -45.84
        327.54199
                                         9.86755
                  334.8854
                             12-17578
                                                 332.16739
                                                              7.89173 -49.64 327.35645
                                                                                        337.02267
                                         9.66623
                  337.82267
                             135 1835
        27.3545
                                                             7.89182 -51.84 327.17917 337.14651
        327.17917 337.14651 332.16284
                                         9,96735 332,15727
 48.20
BAND (14Z) 329.298 335.298
LICEN (CRE)
                -6.11
LIMAX (GB)
                 8.11
LBEL (OB)
                 L22
PITH (TES)
             -277L16
             2866.71
PAX (DE)
PAEL (BEE)
              5637.87
File: 32/18/ALDII
                  Passband Symmetry = 8-1 dB
```

```
PHONON CORPORATION
FILE-3ER4867A DAT 18:36:56 86-16-1998
PH 18842 825 FINAL FLACTIONAL TEXPOR PLICHT? STUNCT /H WIDE $21
86-15-1996 (P8752, SSREF, SSREF
FRENIENCY (NFZ): CENTER= 588.5 | NIDTN= 999 | DIOR, = .280125 | SYSTEM RANGEDTN= 999
REPERENCES: LBSS (GB) = 28.71895 PHRSE (BED) = 3686.941 BELAY (LS) = 4.767715 SLEPE (LS/M-IZ) = 8
RMS ERRORS: LBSS (DR) = 9.783694 PHASE (DEE) = 51ABL 623
PLOT SCALES: LOSS 18 DB/DIV VS. FRED 99.9 NAZ/BIV
LOSS IS DEVOTO
PERK LEVEL CORD = 24.5635 PRED ONED = 324.599 DELAY (US) = 6.674722 SIDELERE (OR) = 43.67663
PERSY: U.R.D. (1981) = 28,89551 (1987) (1987) | 222-2559 | WITHORD = 16,459 | SEE 6807 = 296,6757
                    HIGHOU CTROND EDDOND AN-CTROND AN-VIDERD AN-SIGN LIXING
                                                                                             HIX (NO.)
         LIGHZ
 L(DB)
                                                                           8.90 328.999%
                                                                                             328,998%
                                                                 8. SEE .
        24,993 21,985 21,985 LBBB 32,985
  -8.15
                                                                 7,39285 -28,69 388,69644
                                                                                             335, 78929
  L3
        328,56168 335,78929 332,13576
                                         7,14761 332,13943
                                                                 7,38285 -32,69
                                                                                  388,56348
                                                                                             335.83313
        328,46814 335,83313 332,14664
                                         7.37299 332.13943
                                                               7.68579 -28.84 388.39545
                                                                                             335, 98218
                                         7.6575 32.1465
        321.7483 335.96218 372.15859
  2.00
                                                                 7.71182 -28.99
                                                                                  321,28929
                                                                                             336,88786
                                         7.6525 32L1986
        321.2761
                  ILEAN ILISA
                                                                7.86175 -29.95 398.28444
                                                                                             336, 17383
        328.14636
                                         8.12747 332.15<del>2</del>87
                    336_17383 332_16868
   4.00
                                                                7.80175 -23.95 38A.13141
        324.67898
                    336.24535 332.16278
                                         A.16757 332.15287
                                                                 7.85886 -28.98 3BA_86635
                                                                                             336.3864
                                          A. 25618 332. 15178
        371 888X
                    336.38844 332.16437
  6.88
                                                                 7.92996 -21.81 327.67365
                                                                                             334.5225
                                           4.65121 332.17172
                    38,525
                             32.17676
        327,85114
  12.22
                                                                 7.93942 -21.82 387.55878
                                                                                             33K-81976
                                           9.27573 332.15681
        327,54383
                    336.81976 332.18148
 进出
                                                                7.94822 -21.62 367.35266
7.94842 -21.62 367.1953
                                                                                             337.6338
                    337.08336
                                           9,64468 332,16738
        ¥7. $867
                             332,18163
        327.17767 337.16882 332.17325 9.5
1.888 383.888 342.888 1828,888
                                                                                             337.16AA2
                                           9,99115 332,16724
  48.68
MAD (HZ)
                          -1.15
                                 43.73
LITH (BE)
                 39.98
LHAX (DB)
                 75.34
                          58.35
                                   62.83
                          2.2
LBEL (DB)
                 24.35
                                  17.18
             -8689.22 -8784.83 -7861.16
PATTH (DEE)
            : -4419.96 6267.67 6365.65
PHAX (BEE)
PARL COEED
               4149.25 15871.90 13246.21
FILE: BERESETA DAY Out-of-band Rejections PENE 43.7 dB MIDTH: 8.888 Mtz
```

```
PHONON CORPORATION
FILE=3FN4967A_DAT 19:37:15 66-16-1998
PH_199832_825 FINAL PLACTIONAL TEMP:R FLIGHTY_STUNCT AN DUAL_SXX
86-15-1996 (P$753, SSREF, SSREF
FRETRIBLES ONLY: CENTER= 322.2 KIDTH= 69 DICR.= .1 SYSTEM DROWIDTH= 68
REFERENCES: LISS (UR) = 28.71895 PARSE (UEE) = 49.68936 DB.AY (US) = 1.219755 SLIPE (US/MVZ) = 8
RMS ERRORS: LBSS (DB) = 23.46685 PMFRE (DBS) = 1781.628
PLOT SCREES: LOSS 18 DE/DIV VS. FREE 6 HYZ/DIV
LOSS IB DBYDTV
erer a Mizally
PENK: LENG. COM: 28.53892 FREDOND: 328.999 MELTINGS:-.218889 STREETE COM:-47.86564
DERGY: LEVEL TIME 28. NSSK CONTROLOUS 322.2746 NOT MONDS 16.447 SECRETO > .1454319
                  KTONED CROSED KIDONED AV-CROSED AV-SLOSS LEXCHED
 LOSO
       LDOMES
                                                          Lance
                                                                    8.68 325.79899 328.79899
 7.23892
                                                                   -7.93 BAL69861 335.71579
      321,5654 335,7579 32,14215 7,14725 332,15897
  6.5
                                                                    -4.59 384,5463
  1.00 324,4675 335,43246 332,14964 7,3550 332,15963
                                                           7.33597
                                                                                    TZ-93542
                                       7,45387 332,15857
                                                                   -1.65 3E-3553
                                                                                    35.97%
      324.32373 335.97760 332.15867
                                                           7.54894
  2.00
                                                          7.66159
                                                                   -A.09 325.2928
      32A.22342 33K.86871 33P.15687
                                       7.86538 322.15869
                                                                                    136_89471
  3.66
                                                                   -8.13 388.29468 336.17587
      321,14978 336,17587 332,16284
                                       A.02689 332.15948
                                                           7.75/34
  4.8
                                                                   -A.16 388.13118
                                                          7.82811
                                                                                    136_24781
      324.08191 336.24781 332.16446
                                       8,16518 332,16187
  5.00
                                                                   -8.16 388.8KA9
                                       8.28494 332.17474
                                                           7.4545
                                                                                    336_34734
  F-00 33V 55548
                 335.38734 332.16466
                                       8.66828 332.16953
                                                           7.91794
                                                                   -B.17 387.87567
                                                                                    18°25.5
 18.00 227,14235 336,53262 332,17249
 27.54129
                 335.81924 332.17578
                                       9.2695 332.16745
                                                           7,94947
                                                                   -8.13 397.56216
                                                                                    335. A1824
                                                           7.94158 -8.18 397.34568
                                                                                    337.62384
 31.19
       27.3562 337.6234 32.14951
                                       9.66782 332.16738
                                                          7.94199 -8.87 387.18488 337.14682
 48.60 327.17871 337.14682 332.16278
                                       9,96811 332,16727
BACCONTO 329, 250 315, 250 329, 250 335, 250
-EL15
                               -£.14
THAX (BB)
                       68,95
                B.14
                                2.86
LEEL OR)
               8.21
                       61.11
PHINCEED
            -1814.75 -2166.16 -2818.86
PHOX (DEE)
          · 2182.71 2187.86 1829.83
             3117.46 4294.02 3847.11
PREL (DEE)
FILE: 3FRADEFA. INF Date-of-band Rejection: PERK= 47.8 dB WIDTH= 6.608 Wiz
```

PHINON CORPORATION
FILE: JEROBAYLDAY (+SSE)
PH_188632_ASS FINAL PLACTIONAL TEMP+R FLIGHT? JEINET /N BURL_SOX
86-15-1998 MP6753, SSREF, SSREF, SSEF
REFERENCES: LISS (08) = 24.71895 PHASE (0ED) = 49.68936
DELAY (US) = 1.219755 SLEPE (0S/H4Z) = 8

BONDPOSS CHORDE Fredriency (1472)	TERISTICS NERS LOSS (DB)	PHREE COES)
394.689	54.82	2378_92
386.368	52. 85	3151.98
388.128	5.16	रारा ४७
329.888	2.63	175.48
311.648	0. 8 6	866-15
313,480	8.67	-62.64
315.168	-&.65	-933.53
316,929	23.87	-1927.5%
318.689	54.82	-1554,86
329,448	57.19	-699.55
322,299	52.87	-49.61
323,968	53,77	728.88
325,728	2 3° 21	1487.2
327.44	22,78	1924.86
329,248	-8.86	1299.38
331.006	-2.62	99.25
332.768	-0.12	-889.39
334,529	-8.89	-1714. 程
335_289	5.52	-2626.59
338,649	49.77	-252. C
339.866	51.75	-2182 .21
:		

	ELECTRICAL TEST DATA SHEET		
AEROJET PART: 1	131576-3 PHENEN PART: 190825	SERIAL DAY	
TESTED BY: 210	TITLE: jeet le 4 DATE: 6	5/94 THE: 4: 3/00	
TEST: FINAL FUN	TIONAL	AN NIT 4 100 100	
EBLIPHENT: HP &	530 SERIAL: 3419094374	DL WE: 1/23/37	
HP 3	178A SERIAL:2136A63127	DE BUE! // // 98	
		BATA	P/F
	ATILT RECOLLERS	DATA	P/ F
REB. Q/ATP		76 B	ρ
	SPERATING TEMPERATURE	<u>35.6</u> C	
	CENTER FREELENCY &		
3.2.1.4	CENTER FREELENCY STABILITY	242 240 445	Ð
	LO: 312.635/312.365 MHz	312.219 Htz	P
	HI: 332,835/332,365 Mtz	332.161 Htz	 -
3.2.1.5 5.2.4	3 de Bandatoth:	7 848 1814	
	LD: 7.6/6.8 Miz HI: 7.6/6.8 Miz	7.848 1912	P
		7.859 MHz	<u> </u>
3.2.1.6 5.2.5	PASSBAND SYMETRY	A 9 40	
	LO: /8.5 dB	<u>8.2</u> dB	P
	HI: /6.5 dB	6.1 dB	<u> </u>
3.21./ 5.26	PRESERVO REPPLE	<u>8.2</u> dB	В
	389.2-315.2 Mz: /1.0 48	<u>#5</u> 48	P
1214 579	329.2-335.2 Ntz: /L0 dB		_
3.61.9 3.6/	INSERTION LOSS ; LOs 27.4/38.2 (8)	28.9 eB	D
	· HI: 27.8/38.2 dB	28.8 dB	P
2240 624		<u> </u>	<u>-</u>
かたかみ かだゆ	INSERTION LOSS VARIATION LD: -8.4/8.4 db	8.1 dĐ	ō
	: LUS -6.4/6.4 dB : HI: -6.4/6.4 dB	<u>0.1</u> dB	<u>p</u>
2244D E2A		W	<u>~</u>
3.6.1.10 3.6.7	APLITUDE BRLANCE LO, NI: 78.5 db		P
29111 531	OUT-OF-BAND REJECTION		
3-5-1-11 196-1		K (db) Midsheski	
	WIDE: 1-383,342-1989 Mtz: 43		
	JUAL: 383.888-386.835,		
	317.555-35.835,		
	337.565-342.00 Miz: 47	.9 6.886	
		.2 68	Þ
	MINTH: /1.6 HHz	8.000 PS-12	P
3.2.1.12 5.2.1			
	LD: /1.38 Unitless	1.27 Unitless	P
	HI: /1.30 Unitless	1.27 Unitless	P
3.2.1.14 5.2.1	2 VSUR (RETURN LIDSS)		
	399.2-315.2,329.2-335.2 Mtz		
	DURL 511: 7.5/ dB	9.6 dB	P
	DUPL S22: 7.5/ dB	10.9 dB	P
4.8.2 5.2.1	LINGTED FUNCTIONAL TESTS		\overline{c}
	CONTER FREELENCY: -0.1/0.1 Mbz		
	3 db BANDVIDTH: -8.16/8.16 MHz	O Mtz	<u> </u>
	INSERTIEN LOSS: -6.5/0.5 dB		1
NONE 5.2.1	DATA SHEET SHOWRY	$(A \cap A)$	-
, ,	(PASS/FAIL)	7 4	
PARTIE TO THE PA			
PHONON CORPORATI	UN.	CAGE: 67858 Tel: 268-651-	2011
7 HERMAN BRIVE SIMSBURY, CT BG	1798	FAX: 283-651-	
entrances is no one	r P	LHY! COO. OAT.	تتعدب

```
PHONON CORPORATION
FILE=3044807ALDAT 18:47:86 $6-16-1998
PH_198822_625 FINAL_FUNCTIONAL TERP-H FLIGHT?_SFUNCT_AN DUAL_SXX
B6-15-1998 HP6753, SSEF, SSFFTX, SSREF
FREINENCY (MZ): CENTER= 312.2 NOTH= 29 DNCR.= .1 SYSTEM BRADULETH= 6
REFERENCES: LIES (BB) = 28.67527 | PHRSE (BEE) = 5379.575 | DELAY (LS) = 8 | SLEPE (RE/MHZ) = 8
RYS ERRORS: LOSS (DB) = 4.878436E-62 PHRSE (DEB) = 1647.841
PLOT SCREES: LOSS 18 DB/DIV LOSS 1 DB/DIV VS. FRED 2.9 NHZ/DIV
TOSS, 18, DENDLA.
LOSS-1-DBABIU---
 John John John Miller of House
 FREQ 2.9 MHZ/DIU
 PERK: LENGLODD = 28.76936 FREEDINGD = 315.3151 DELAYORS) = 2.697951 STOR ENECORD = 49.67884
 DERGY: LEVEL (DB) = 25.86643 (DHTER (NBZ) = 312.2338 VIDTH(DBZ) = 6.27253 (SKERSFED > 2.53296E-62
                                            KID (N/2) AI-CIR (N/2) AI-TID (N/2) AI-SI (DR) LDX (N/2)
                                                                                                   HIX (HZ)
                                 CTR (MAZ)
                      HICHO
          TO CHO
  L (DB)
                                                                                       315.31512
                                                                                                   315, 31512
                                                                                 LB
                     315.31512
                                 315_31512
                                                        315,31512
                                              6. (HHH)
        315_31512
  -2.11
                                                                                                   315.77753
                                                                                        388.69641
                                                        312,21942
                                                                     7.95983
                                                                               -14.6
                     315,77753
                                              7.08112
         368, 69641
                                 312_2X97
   62
                                                                                        39A_56589
                                                                                                    315.8%79
                                              7.339
                                                        312,22168
                                                                      7.25072
                                                                               -15.46
                                 312.23132
   1.00
         304.5K549
                     315.8%79
                                              7.63864
                                                                                        382.39828
                                                                                                   316_83693
                                                        312,22574
                                                                     7.53427
                                                                               -11.86
         388_39828
                                 312.21759
                     316.63693
   2.88
                                                                                        34.2453
                                                                                                   316.1422
                                              7.84799
                                                                     7,64846
                                                                               -19.68
                                 312.21651
                                                        312,22763
        384_29453
                     316.1422
   3,63
                                                                                                   316-22483
                                                                                        381,21845
                                              A GISA
                                 312_21722
                                                        312,24991
                                                                      7.65354
                                                                               -32.55
        308_21845
                     316-55483
   4.68
                                                                                                    316,23481
                                                                                        398L13589
                                                                     7.7223
                                                                               -21.53
        368,13589
                     316, 29491
                                 312,21497
                                              8.15M1
                                                        312,22961
   5.80
                                                                                                    316-30144
                                                                     7.78114
                                                                                        328.67175
                                                                               -23.73
                                                        312,23182
         391,07175
                     316.35144
                                 312.21161
                                              LZ753
   6.88
                                                                                        397.8以35
                                                                                                    316.54688
                                                                               -23,12
                                                                      7.84437
                                                        312.23Z/A
  18.80
        327.68126
                     316-54688
                                 312.2145
                                              8.655E
                                              9.28403
                                                        312_23367
                                                                               -4722
                                                                                        357.55884
                                                                                                    316.15211
                                                                      7.86767
  26.00
        327,56828
                     316_85211
                                 312,21006
                                                                     7.86918
                                                                                        397.35443
                                                                                                    317.55438
                                                                               -49,22
                                                        312,23389
                                              9,6995
         397.35H3
                     317.65438
                                 312, 28441
  32.00
                                                                                                    317.18599
                                                                     7.4593
                                                                                        397.19977
                                                        312 23349
                                                                               -32.25
                                              9.9924
        387,19877 317,18689
                                 312_18839
  42.99
            329,290 315,299
 DAMO (SHZ)
                  -0.19
 LINION (DB)
 LHAX (DE)
                   2.11
 LBEL (OB)
                   9.21
 PHODE COEEDS
                -2886. BB
                2981. AA
 PHIX (BEE)
 PINEL (DEE)
                5787.%
 File: 30HBBB7ALDAT
                       Passband Symmetry = 8.2 dB
```

```
PHONON CORPORATION
FILE-30/0967A_DAT 18:47:48 66-16-1998
PH 188832 AZS FINAL FUNCTIONAL TEPPON PLIGHTY SPUNCT AN DUAL SIX
06-15-1990 HP6752.5537.553FTX.5586F
FREELINGY ON CONTER= 332.2 WIDTH= 29 INCR.= .1 SYSTEM BORRAIDTH= 6
REFERENCES: LOSSORD = 28.82911 PARSE (DED) = 4854.6 DELAY (NS) = 8 SLOPE (US/HV) = 8
RMS ETROPS: LOSSODD = 6.479035E-02 PAPEE (DED) = 1626.913
PLOT SCREES: LIBSS 18 DB/DIV LIBSS 1 DB/BIV VS. FREE 2.9 MIZ/BIV
LOSS TO DEADIN.
Loss 1 DB/#IU
 FRED 2.9-MHZ/DIU
 PENK: LEAE (BB) = 28.7883 FRESHIND = 29.8871 SELAY (LE) = 2.65774 SIDELBEE (BB) = 48.66557
 DEST: LEE (180) = 25.8865 (2812) (1912) | 332.1731 (1971) (1842) = 8.22377 (1821) (1802) = 2.02335 (1821)
                                                                                                 HIXOHO
                                           HID ONLY AN CROSSO AN HID ONLY AN IS COST LICKONSO
                                CTROSED
          LEGHZ
                     HI (HZ)
  LORD
                                                                                      23.0748
                                                                                                23.66788
                                                                    a.
                                                                               Læ
                                                      329, EU78
                     23.078
                                22.黑形
                                             LOSS
  -£13
         329.00768
                                                                                      PA.57924
                                                                                                 335.78%6
                                                                    7.18476
                                             7.13837
                                                       332,16831
                                                                             -14.93
                                JP_1447
   19
         32,5724
                     335,7836
                                                                                                 35,APS
                                                                                      321.47839
                                                                    7.34678
                                                                             -16.63
                                             7.35464
                                                      372,16852
         Z1 1713
                     335.4325
                                332 1964
                                                                                      EL 3324
                                                                                                 335.97977
                                                                    7.492M
                                                                             -17.31
                                             7.64453
                                                      332,16892
                                32.1575
   2.2
         331.33534
                     35.9777
                                                                                      23.2375
                                                                                                 336,09276
                                             7,85901
                                                                    7.61265
                                                                             -1LE
                                                      332.16171
                     335.098%
                                335.16155
   15
         328,23175
                                                                                      ¥1,15723
                                                                                                 334.1785
                                                                    7.76759
                                                                             -21.68
                                              L 12133
                                                      3216315
                                322_16791
         324, 15723
                     336_17856
   4.89
                                                                                      34, B23
                                                                             -22.67
                                                                                                 33.2503
                                              A. 16898
                                                       322,16531
                                                                    7.77788
                     33.2003
         328,88923
                                32,16962
   5.00
                                                                                                 IK NED
                                                                    7.884%
                                                                             -23.79
                                                                                      26.E33
                                32,16974
                                              <u>8_28991</u>
                                                       32.17923
         321, 2233
                     336_31621
   L 22
                                                                    7.86723
                                                                                                 IX SEA
                                             6,65710
                                                                             -23.33
                                                                                      27.8475
                                                       332_17458
                     334.585%
         327,84675
                                32,17731
  18.65
                                                                    7.88959
                                                                                                 335_81451
                                                                             -42.91
                                                                                      327.S4721
                                              9.2573
                                                       332,17316
         327.54721
                     33K-81451
                                332,1865
  a.
                                                                                      327.3307
                                                                                                 337.63149
                                                                    7.89298
                                                                             -49.73
         327.3387
                                                       332, 17367
                     337.83148
                                332.19614
                                              9.67653
  3.0
                                                                                                 337.15227
                                                                    7.89899
                                                                                      327.18359
                                                                             -51.95
                                                       332, 17383
                                              9.96657
  48.88
         327.18359
                     337.15927
                                332_16693
            329,238 335,339
 BAID (NEZ)
                   -8.11
 LEDICE)
 THUSK (DB)
                   8.12
 1.23
                <del>-2771</del>, 18
 PRINCED
                2866.71
 PHIX (BES)
                5537.89
 PREL CREEK
 File: 304887/ALDAT
                       Passhand Symmetry = 8.1 dB
```

Channel 14 Bandpass Filter

SAW Filter (S/N: 1331576-4, S/N: B08)

.

ELECTRICAL TEST DATA SHEET

		ELECTRICAL TEST						
ærojet p			: 186826	SERIAL: BO	8			
IESTED BY	: 21	TITLE: <u>Test lach</u>	DATE: <u>6/</u> /	<u>is/%</u> tim	E: <u>4:30pm</u>			
TEST: FIN			,,,,,					
EQUIPMENT				AL DUE: 1/				
	HP 34	78A SERIAL: <u>2136A8</u>	<u>312/</u> L	AL DUE: 7/	//98			
PARAGR	APH	REQUIREMENT TITLE		DATA		P/F		
ÆØ.	Q/ATP				•	•••		
3.2.1.1	5.2.1	OPERATING TEMPERATUR	Ε	-4.6	C	p		
3.2.1.3	5.2.3	CENTER FREQUENCY &			-			
3.2.1.4		CENTER FREQUENCY STA	BILITY					
		LO: 317.535/317.865	MHz	317.777	_ MHz	p		
		HI: 326.535/326.865	MHz	326.776	HHz	<u>p</u>		
3.2.1.5	5.2.4	3 dB BANDWIDTH:		•	_			
		LO: 2.8/3.0 MHz		2.932	_ MHz	<u>p</u>		
		HI: 2.8/3.0 MHz		2.943	HHz	P		
3.2.1.6	5.2.5	Passband Sympletry						
		LO: /0.5 dB		9.2	_ dB	p <u>p</u>		
		HI: /0.5 dB		0.0	_ dB	P		
3.2.1.7	5.2.6	PASSBAND RIPPLE						
		316.575-318.825 MHz:		<u>0.7</u>		<u>p</u>		
		325.575-327.625 NHz:	/1.0 dB	0.6	_ dB	<u>P</u>		
3.2.1.8	5.2.7	INSERTION LOSS				_		
		LO: 27.8/30.2 dB		28.1	-	<u>p</u>		•
3040		HI: 27.8/30.2 dB		28.0	_ dB	<u>p</u>		
3.2.1.9	5.2.8	INSERTION LOSS VARIA	TION			_		
		LO: -0.4/0.4 dB		<u>-0.1</u>		<u>P</u> <u>P</u>		
3 0 4 40	F 2 2	HI: -0.4/0.4 dB		-0.2	_ dB	<u> </u>		
3.2.1.10	2.2.7	AMPLITUDE BALANCE			.15	•		
20444	E 0 15	LO,HI: /0.5 dB	41	<u> </u>	_ ar	p		
J. C. I. II	5.2.10	OUT-OF-BAND REJECTIO						
		BAND			WIDTH (MHz)			
		WIDE: 1-313,331-1000 DUAL: 313.000-315.50		<u>y</u> .	9.998			
		319.815-324.58	,					
		328.815-331.9	•	٥	8.004			
		PEAK: 35.0/ dB	39.			D		
		WIDTH: /B.6 MHz	_37.	7 UB	0.004 MHz	<u>P</u>		
3.2.1.12	5.2.11	SHAPE FACTOR			0.007	-		
VI L4 34 3L	012111	LO: /1.30 Unitles	5	1,24	Unitless	P ~ ~		~ ~ ~ ~ ~ ^ ^ ^
		HI: /1.30 Unitles		1.31	Unitless	FPPP	SEE EXP	LANTITO
3.2.1.14	5.2.12	VSWR (RETURN LOSS)	_				Call We	PLANATION ORST 9T +350
		316.575-318.825,325.	575-327.825	i MHz			W.	AT +35
		DUAL S11: 7.5/ dB		10.1	dB	P	CASE	-, , -
		DUAL 522: 7.5/ dB		18.1	_ dB	P P P P		
4.8.2	5.2.14	LINITED FUNCTIONAL T	ESTS		_			
		CENTER FREQUENCY: -8	.1/8.1 MHz	O	Miz	K		
		3 dB BANDWIDTH: -0.0	6/8.96 MHz	0	MHz	7		
		INSERTION LOSS: -8.5	/0.5 dB	0	_ dB	<u>V</u>		
NONE	5.2.15	data sheet summary			- C	•		
		(PASS/FAIL)		<u>Y_</u> 4	(DY)			
nunuosi co	COCOATI	CN		<u></u>	CACE CARE			
Phonon Co 7 Herman		un			CAGE: 6Y858 TEL: 283-651-	2 211		
SIMSBURY,		79			FAX: 283-651-			
VAINDUNI 9	U1 000	10		i	" W" EM_MI_	M10		

FILE=4AC8888A.DAT 10:26:42 86-16-1938 PH_188834_826 FINAL_FUNCTIONAL TEMP:C FLIGHT7_3FUNCT /N DUAL_SXX 06-15-1938 HP8753, SSCF, SSFFIX, SSREF FREQUENCY (NHZ): CENTER= 317.7 WIDTH= 9 INCR.= .05 SYSTEM BRYOWIDTH= 2.25 REFERENCES: LOSS(DB) = 28.86131 PHASE(DEG) = 4188.838 DELAY(US) = 8 SLOPE(US/NHZ) = 8 PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FRED .9 MHZ/DIV FORE LEG SECTION. LOSS-1-DB/BIV -FREQ 9 MHZ/DIU

PEAK: LE	VEL (DB) = 27.	61388 FRED	(MIZ)= 316.53	544 DELAY (U	s)=-3.127655	SIDELORE (DB)=-42.36	793	
ENE TIGY:	LEVEL (DB) = 2	28.23335 CE	NTER (MHZ) = 3	17.74% WID	TH(M-Z)= 3.0	61516 SKEW	(MIZ)= 4.4.	32138E-82	
L (DB)	LO(14Z)	HI (MIZ)	CTR (MHZ)		J-CTR (MHZ) A			LOX (MHZ)	HIX(MHZ)
-8.45	316.55438	316.55438	316.55438	6.99998	316.55438	0.00000		316.55438	316.55438
6.58	316.41478	319.87794	317.74634	2.66324	317.72159	2.64567	-13.33	316.41478	319.07794
1.00	316.38312	319.13919	317.76117	2.75687	317.72272	2.73111	-14.74	316.38312	319.13919
2.00	316.34183	319.29465	317.77325	2.86282	317.74283	2.83578	-17.62	316.34183	313.20465
3.66	316.31100	319.24332	317.77716	2.93231	317.74283	2.83570	-17.58	316.31100	319.24332
4.88	316.28369	319.27631	317.78999	2.99261	317.74387	2.88286	-28.86	316.28369	319.27631
5.80	316.26893	319.38388	317.78235	3.84288	317.75266	2.89922	-21.41	316.26833	319.38388
6.00	316.24118	319.32797	317.78458	3.06679	317.74545	2.91319	-23.07	316.24118	319.32797
18.66	316.17871	319.48173	317.79822	3.22382	317.75000	2.33531	-29.82	316.17871	313.40173
26.88	316.07715	319.51581	317.79648	3.43866	317.74%3	2.94213	-48.6 7	316.07715	319.51581
30.00	316.01199	319.58585	317.73852	3.57366	317.74%8	2.34252	-47.74	316.01199	319.58505
48.88	315,97448	319.61397	317.79373	3.63867	317.74368	2.94257	-58.86	315.97448	319.61307
BAND OHZ		318.825							
LMIN(DB)		.42							
LMAX (DB)	-	.32							
LDEL (DB)		1.74							
PHIN (DEG									
PMAX (DEG									
PDEL (DEG) 2517	.41							

Passband Symmetry = 0.2 dB

File: 4AC8B08A.DAT

FILE=4CC8B88A.DAT 10:27:23 86-16-1998 PN_188834_826 FINAL_FUNCTIONAL TEMP:C FLIGHT7_3FUNCT /N DUAL_SXX 06-15-1998 HP8753, SSCF, SSFF1X, SSREF FREQUENCY (HHZ): CENTER= 326.7 WIDTH= 9 INCR.= .65 SYSTEM BANDWIDTH= 2.25 REFERENCES: LOSS (DB) = 27.96955 PHASE (DEG) =-2229.531 DELAY (US) = 0 SLOPE (US/MHZ) = 0 RMS ERRORS: LOSS(DB)= .1439439 PHASE(DEG)= 742.9979 PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FRED .9 NHZ/DIV LOSS TO DB/DTV LOSS-1-DB/BIU -FREG .9 MHZ/DIU

19303	* 2 - 13(1/4/C/1/1)	<u> </u>	<u> </u>			1.			:
Peak: L	EVEL (DB)= 27	.54622 FRED	(MIZ) = 325.5	599 DELAY(U	S)=-3,239177	SIDE ONE (I	(k)=-36, 970	86	
ENENGY:	LEVEL (DB) =	28.10933 Œ	nter(MHZ)= 3	36.7534 WID	TH(MHZ)= 3.00	EEA18 SKEW	(MHZ) = . 822	A336	
F (DR)	LD (M-IZ)	HI (HZ)	CTR (HHZ)	WID (MIZ) A	V-CTR (MHZ) AX	HVID (HVZ)	AV-SL (DB)	LOX (MHZ)	HIX(MHZ)
-8.42	325.55388	325.55988	325.55988	9.00000	325.55988	8.00000	8.00	325,55988	325.55388
8.58	325.41858	328.12967	326.76563	2.71998	326.75%4	2.78328	-13.87		328.12067
1.90	325.38376	328.16000	326.77188	2.77625	326.75922	2.79335	-15.52	325.38376	328.16999
2.66	325.33841	328.21121	326.77481	2.87288	326.75946	2.86863	-17.55	325.33841	328.21121
3.00	325.38428	328.24787	326. 77563	2.34287	326.75946	2.86863	-17.50	325.38428	328.24787
4.00	325.27539	328.274%	326.77518	2.93357	326.75383	2.98342	-28.85	325.27539	328.274%
5.88	325.25867	328.23846	326. 77 4 57	3.04779	326.75383	2.98342	-28.01	325.25867	328.23846
6.00	325.22325	328.31915	326.77420	3.68730	326.75992	2.34868	-23.19	325,22925	328.31915
10.00	325.16171	328.38333	326.77252	3.22162	326.75983	2.95785	-27.87	325.16171	328.38333
28.86	325.65615	328.48141	326.76880	3.42526	326.75946	2.96839	-37.97	325.85615	328.48141
38.86	324.99939	328.53943	326.76486	3.54913	326.75934	2.96915	-46.84	324.99838	328.53943
48.99	324.93655	328.88325	326.86938	3.86670	326.7 5937	2.36924	-50.23	324.93655	328.88325
BAND (MHZ LMIN (DB)									
LHAX (DB)	_	1.35							
LDEL (DB)	-).21 \ 50							
PMIN (DEG	_). <u>56</u>							
PMAX (DEG									
FIEN LUCU) 1267	. 40							

2518.75

File: 4CC8B08A.DAT Passband Symmetry = 0.8 dB

PDEL (DEG)

ærojet	PART: 1	ELECTRICAL TEST DATA SHE 331576-4 PHONON PART: 100826	SERIAL: BOS	_	_
TESTED I			/15/46 TIME: 4:	<u>30,em</u>	
TEST: FI			601 -2155 4 400 400		
EQUIPMEN	ounine HP3		_ CAL_DUE: 1/29/99	-	
	nP 3	478A SERIAL: <u>2136A83127</u>	_ CAL_DUE: 7/7/98	-	
PARAG	SRAPH	REQUIREMENT TITLE	DATA	P/F	
REQ.	Q/ATP		anin	; •//	
		OPERATING TEMPERATURE	_14.6 C	p	
3.2.1.3	5.2.3	CENTER FREDUENCY &			
3.2.1.4		CENTER FREQUENCY STABILITY			
		LO: 317.535/317.865 MHz	317.787 MHz	P	
		HI: 326.535/326.865 MHz	326.783 MHz	<u>Р</u> Р	,
3.2.1.5	5.2.4	3 dB RONDWIDTH:			
		LD: 2.8/3.0 MHz	_2.932 MHz	<u> P</u>	
		HI: 2.8/3.0 MHz	2.942 MHz	<u>P</u> <u>P</u>	
3.2.1.6	5.2.5	PASSBAND SYMPETRY			
		LO: /0.5 dB	<u>8.2</u> dB	<u>p</u>	
3043		HI: /0.5 dB	<u>0.1</u> dB	<u>p</u>	
3.2.1./	2.5.6	PASSBAND RIPPLE		_	
		316.575-318.825 MHz: /1.0 dB 325.575-327.825 MHz: /1.0 dB	<u>0.7</u> dB	<u>p</u>	
3 2 1 A	527	INSERTION LOSS	<u>0.6</u> dB	<u>p</u>	
J.L.1.0	J.L.	LO: 27.8/38.2 dB	20 2 40	0	
		HI: 27.8/30.2 dB	28.2 dB 28.2 dB	<u>p</u>	•
3.2.1.9	5.2.8	INSERTION LOSS VARIATION	<u>28.2</u> dB	<u> </u>	
012117	01210	LO: -0.4/0.4 dB	0.0 dB	D	
		HI: -0.4/0.4 dB	6.0 qB	<u> p</u>	
3.2.1.10	5.2.9	AMPLITUDE BALANCE		<u>-F</u> _	
		LO,HI: /0.5 dB	0.0 dB	p	
3.2.1.11	5.2.10	OUT-OF-BAND REJECTION		<u></u>	
		BAND PE	AK (db) WIDTH (MH	z)	
		WIDE: 1-313,331-1000 MHz: 4	4.8 0.000		
		DUAL: 313.000-315.585,	<u> </u>	•	
		319.815-324.585,			
			8.5 8.882		
			8.5 dB	<u> </u>	
3 5 4 40		WIDTH: /0.6 MHz	_ 9.882 _	MHz P	
3.2.1.12	5.2.11	SHAPE FACTOR		_	νυ σ α
		LO: /1.30 Unitless	1.24 Unitle	55 <u>P</u> 55 <u>F</u> (Ø	O COT EXPLANATION
2 2 1 14	5 0 10	HI: /1.30 Unitless	1.34 Unitle	55 <u>F</u> (Ø) SEE COLT CASE
3.6.1.17	J. C. 10	316.575-318.825,325.575-327.8	95 MJ-	_	DR WORST CASE AT 435C
		DUAL S11: 7.5/ dB	,	n	250
		DUAL 522: 7.5/ dB	9.8 dB 10.3 dB	<u>p</u>	AT 4'35
4.8.2	5.2.14	LINITED FUNCTIONAL TESTS	10.3 UD		1.
	A	CENTER FREQUENCY: -0.1/8.1 NH	z O MHz	P D	
		3 dB BANDWIDTH: -0.06/0.06 MH		፟	
		INSERTION LOSS: -0.5/8.5 dB	A TATAL ME	b -	
HONE	5.2.15	DATA SHEET SUMMARY		+-	
		(PASS/FAIL)	V (06)		
					_
PHONON CO		ON	CAGE: 6Y	858	

7 HERMAN DRIVE SIMSBURY, CT 06070

TEL: 203-651-0211 FAX: 293-651-8618

FILE=4AR8B08A.DAT 10:38:17 06-16-1938

PN_188834_826 FINAL_FUNCTIONAL TEMP:R FLIGHT7_3FUNCT /N DUAL_SXX

86-15-1938 HP8753,SSCF,SSFFIX,SSREF

FREQUENCY (MHZ): CENTER= 317.7 WIDTH= 9 INCR.= .85 SYSTEM BANDWIDTH= 2.25

REFERENCES: LOSS (DB) = 28.28965 PHRSE (DEG) = 4171.411 DELAY (US) = 0 SLOFE (US/VHZ) = 0

PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FREQ .9 MHZ/DIV

PEAK: LEVEL (DB) = 27.75493 FRED (MHZ) = 316.56 DELAY (US) =-3.134322 SIDELOBE (DB) =-42.74291 ENERGY: LEVEL (DB) = 28.38442 CENTER (MHZ) = 317.7532 WIDTH (MHZ) = 3.861187 SKEN (MHZ) = .8441462

				22111776					
F (DB)	LO(M-Z)	HI (MHZ)	CTR (MHZ)	WID(MHZ) A	W-CTR (MHZ) (AV-WID (MHZ)	AV-SL (DB)	LOX (MHZ)	HIX(MHZ)
-0.45	316.56683	316.56883	316.56883	8.99998	316.56003	0.00388	6.68	316.56883	316.56883
9.58	316.42404	319.08683	317.75584	2,66133	317.72269	2.64358	-13.34	316.42484	313.98683
1.99	316.33163	319, 14648	317.76310	2.75479	317.72479	2.72841	-14.74	316.39169	313.14648
2.00	316.35010	319.21219	317.78113	2.86293	317.76257	2.89148	-16.58	316.35010	319.21219
3.89	316.32117	319.25366	317.78741	2, 93250	317.76835	2.85868	-18.77	316.32117	319.25366
4.86	316, 29349	319.28571	317,78361	2,93222	317,74368	2.87385	-20.63	316.29349	319.28571
5.00	316.27078	319, 31385	317.79193	3.84227	317.75986	2.89756	-21.51	316.27078	319.31365
6.08	316.25895	319.33731	317.79413		317.75986	2.83756	-21.48	316.25835	319.33731
10.00	316.18887	319.41886	317.79387		317.75873	2.93285	-23.14	316.18887	319.41886
20.00	316.08798	319.52515	317.89658		317.75989		-40.72	316.88738	319,52515
39.00	316.02975		317.88682		317.75916		-47.64	316.02075	319.53293
48.88	315.93183		317.88762		317.75916		-58.71	315.99183	313.62424
πυ• 00	A404 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04 / 1 ULTLT	04110010C	~1000					

IAND (MHZ) 316.575 318.825

LMIN(DB) -0.33 LMAX (DB) 0.31 LDEL (DB) 9.78 PMIN(DEG) -1259.86 PMAX (DEG) 1257.62 2517.48 PDEL (DEG)

File: 4AR&B&&A.DAT Passband Symmetry = 0.2 dB

FILE=4CR8B08A.DAT 10:39:05 06-16-1938

PH_188834_826 FINAL_FUNCTIONAL TEMP:R FLIGHT7_3FUNCT /N DUAL SXX

86-15-1998 HP8753, SSCF, SSFF1X, SSREF

FREQUENCY (NHZ): CENTER= 326.7 WIDTH= 9 INCR.= .85 SYSTEM BAHOWIDTH= 2.25

REFERENCES: LOSS(DB) = 28.16384 PHASE(DEG) = -2887.575 DELAY(US) = 8 SLOPE(US/MHZ) = 8

RMS EXRORS: LOSS(DB)= .1462384 PHRSE(DEG)= 743.1583

PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FRED .9 NHZ/DIV

PEAK: LEVEL (DB) = 27.74258 FRED (MHZ) = 325.5691 DELAY (US) =-3.225389 SIDELOBE (DB) =-36.828% ENERGY: LEVEL (DB) = 28.38926 CENTER (NHZ) = 326.766 WIDTH (NHZ) = 3.06682 SKEW (NHZ) = 2.4155876-82

F(DB)	LO(MIZ)	HI (MZ)	CTR(M-Z)	WID (MHZ)	AV-CTR (MHZ)	AV-WID (MHZ)	AV-SL(DB)	LOX (MHZ)	HIX(MHZ)
-8.42	325.56912	325.56912	325.56912	8.999 8	325.56918	2 0.00000	0.00	325.56912	325.56912
8.50	325.41888	328.12634	326.77261	2.79746	326.75922	2.76617	-13,89	325, 41888	328.12634
1.00	325.39108	328.16668	326.77884	2.77551	326.75989	2.78973	-15.54	325, 39168	328.16668
2.08	325.34674	328.21786	326.78223	2.87112	326.76144	2.85658	-17.55	325.34674	328.21786
3.00	325.31195	328.25385	326.78290	2.94189	326,7747	2.88227	-18.68	325.31195	328, 25385
4.86	325.28339	328.28195	326.78265	2.93857	326.76315	2.98514	-29.84	325.28333	328,28135
5.88	325.25879	328.38568	326.78228	3.04681	326.77194	2.32188	-21.43	325, 25879	328.30568
6.00	325.23748	328.32651	326.78195	3.98911	326.76447	2.93632	-23.17	325.23749	328, 32651
18.99	325.16983	328.39117	326.78852	3,22134	326.76532	2.95350	-27.03	325,16383	328, 39117
20.08	325.06381	328, 49109	326.77747	3,42728	326.76590	2.96412	-37.88	325.06381	328, 49109
30.00	324.93658	328.55568	326.77582	3.55858	326.76593	2.96495	-47.13	324.9%58	328.55588
48.86	324.94373	328.88718	326,91547	3.94345	326.765%	2.96582	-51.27	324.34373	328.88718

EAND (MIZ) 325.575 327.825

LMIN(DB) -8.38 LMAX (DB) 0.21 LDEL (DB) 8.59 FMIN(DEG) -1251.23 PNAX (DEG) 1268.12 PDEL (DEG) 2519.35

File: 4CR8B88A.DAT Passband Symmetry = 0.1 dB

FILE=4ER8B88A.DAT 18:39:58 86-16-1998

PM_188834_826 FINAL_FUNCTIONAL TEMP:R FLIGHT7_3FUNCT /N WIDE_S21

96-15-1998 HP8753, SSREF, SSREF

4

FREQUENCY (MHZ): CENTER= 588.5 WIDTH= 939 INCR.= .288125 SYSTEM BANDWIDTH= 939

RMS EXRORS: LOSS (DB) = 6.927536 PHRSE (DEG) = 4334.432

FLOT SCALES	: LOSS 10	DB/DIV VS.	FIXED 99.9	MHZ/DIV					
LOSS TO	PB/ DIA	: :		•				:	
:		:	-	•			•	:	
:	•	: :	ll .	•		•	•	:	
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	:	1		•			: :	
		: :]]	• •	•		• •	:	:
		: :	M ·		•	•	:	:	:
• • • • • • • • • • • • • • • • • • • •		::	.[[]					; • • • • • • • • • • •	: : • • • • • • • • • • • • • • • • • •
:		: :		•	•	•	•	:	
:		: :	H	•		•		:	
		:			: 			:	:
:		: :		• •				:	
:		<u>:</u> :				• •	• •	· •	· .
:		: :		•		•	•	:	:
 :		: :	111				 	:	: :
:		:, :		•	•	•	• • •	· :	· .
:	1		11)		•	•	•	:	•
	ide lichtly	thi Milde				·			
	CONTRACTOR OF SEA	NIN K				•		:	
Men	¶in in in in in in in in in in in in in i	पर पंजा के प्रशासिक संस्था						:	
		THE PARTY OF THE PARTY.					A SHANN	HARRIST	
ויו יאוק.		Bilber Letter (S.)	P 1, 1991		Mark .		· •		THE KITTE
		7,737					•	•	:
	1 1' [¶				} {			:	
1	1				}			•	
1	' !		1 174						
HEU 99,5	1 HU7/NI						•	:	
		19JL.N.:10 18532 FRED(M		178 NO AY				17817	·

FEAK: LEVEL (DB) = 27.48532	FREQ (MHZ) = 316.6178	DELAY (US) = 6.361495	SIDELOBE (DB) =-43.13812
ENERGY - 1 EVEN /7/61 - 24 3/57	2 CCLGCD/ML71- 200 2	200 UTNTU/MIZA (12	OEAC - CKENI/MEIZ\ - 400 OCO4

CACACIT.	TEACT (ND) -	ED.373/3 LE	בוונא(מוע)=	2CC-2C00 #1	7 DIN THE 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10	TOROGE PLEM	(LB/T) = 130	TC1	
F (DB)	LO(NHZ)	HI (M-Z)	CTR (M/Z)	WID (MHZ)	av-ctr(m/z)	AV-WID (MHZ)	AV-SL (DB)	LOX (MHZ)	HIX(MHZ)
-8. 78	316.61788	316.61788	316.61788	9.00000	316.61788	9.999 33	0.08	316.61780	316.61788
0.50	316.41389	319.88430	317.75238	2.66561	317.73471	2,69874	-24.91	316.61788	328.14093
1.00	316.38736	319.15790	317.77264	2.77854	317.73471	2.69974	-24.91	316.61780	328,16925
2.68	316.34641	319.21478	317.78858	2.86838	317.73471	2.69074	-24.91	316-61788	328.21533
3.80	316.31845	319.25513	317.78688	2.93668	317.80678	2.81577	-25.88	316.61788	328.25647
4.00	316.29614	319.2%39	317.79626	3.90624	317.75192	2.91118	-25.21	316.2%14	328.28886
5.00	316.27576	319.32907	317.88243	3.05331	317.75192	2.91110	-25.21	316.27576	328.31268
6.00	316.25687	319.35379	317.88533	3.89692	317.75192	2.31110	-25.21	316.25687	328.33273
10 .0 0	316, 19391	319.41682	317.884%	3.22211	317.75132	2.91110	-25.21	316.19391	328.38687
20.00	316.09852	319.48718	317.78885	3.39667	317.75888	2.92916	-25.24	316.03652	328.46725
30.96	316.82347	319.55228	317.78787	3.52881	317.75888	2.92916	-25.24	316.82347	328.54764
48.00	315.95642	319.61737	317.78690	3.66835	317.75888	2.32316	-25.24	315.95642	328.82886
BAIM INC.									

BAND (MNZ) 1.800 313.800 331.800 1808.800

 LMIN (DB)
 44.88
 -8.34
 46.98

 LMAX (DB)
 91.13
 71.21
 93.33

 LDEL (DB)
 46.33
 71.55
 46.35

 PMIN (DEG)
 -7135.23
 -4334.55
 -7918.18

 PMAX (DEG)
 -2719.99
 -550.77
 3558.71

PDEL (DEG) 4415.24 3783.77 11468.81

FILE: 4ER8B88A.DAT Out-of-band Rejection: FEAK= 44.8 dB WIDTH= 0.000 MHz

FILE=AFR8B88A, DAT 10:40:03 06-16-1938

FN_188834_826 FINAL_FUNCTIONAL TEMP:R FLIGHT7_3FUNCT /N DUAL_SXX

86-15-1998 HP8753, SSREF, SSREF

FREQUENCY (NHZ): CENTER= 322.2 WIDTH= 30 INCR.= .05 SYSTEM BANDWIDTH= 30

RNS EKKORS: LOSS(DB)= 23.66557 PHASE(DEG)= 853.7922 FLOT SCALES: LOSS 18 DB/DIV VS. FRED 3 M4Z/DIV

PLOT SCALES: LOSS 10 DB/DIV VS. FRED	3 MHZ/DIV	
		}
······································		
	M. I	
i allab allab		IN A REPORT OF A COLOR
\$\ldots\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
FREQ 3 MHZ/DJU		
DEAV. LETEL (NO 27 3424 TEER (MCZ) - 22	T PER TO SUMME SERVER OF	·····

PEAK: LEVEL (DB) = 27.7426 FRED (MHZ) = 325.5691 DELAY (US) = .3692106 SIDELOBE (DB) = -36.02895

ENERGY: LEVEL (DB) = 28.34636 CENTER (NHZ) = 322.3852 WIDTH (NHZ) = 6.12676 SXEW (NHZ) =-7.732184E-82 L(DB) LD (MZ) HI (MIZ) CTR (MHZ) WID (NHZ) AV-CTR (NHZ) AV-WID (NHZ) AV-SL (DB) LOX (NHZ) HIX(NHZ) -8.44 325.56983 325.56983 325.56983 **9.99998** 325.56983 0.99998 8.88 325.56383 325.56983 0.50 325.41733 328.12842 326.77289 2.71109 326.75322 2.72029 -9.34 316.425% 328.12842 1.89 325.39885 328.16883 326.77985 -9.44 2.77738 326.75389 2.88423 316.33285 328.16883
 2.90
 325.34586
 328.21881
 326.78235

 3.68
 325.31125
 328.25455
 326.78238
 2.872% 326.76144 2.87148 -9.52 316.35666 328.21881 2.94338 326.77475 2.83731 -9.55 316.32181 328.25455 4.00 325.28281 328.28253 326.78265 2.99973 326.76315 2.92623 -9.57 316.29401 328.28253 5.69 325.25627 328.39689 326.78217 3.04782 326.77134 2.93713 -9.59 316.27127 328.36693 6.60 325.23691 328.32693 326.78192 3.69663 326.76447 2.35164 -9.68 316.25137 328.32693 18.86 325.16953 328.39148 326.78852 3.22195 326.76532 2.96831 -9.61 316.18918 328.39148 28.86 325.86363 328.49124 326.77744 3.42761 326.76599 2.97953 -9.59 316.06817 328, 49124 30.80 324.99646 328.55527 326.77588 3.55881 326.76598 2.98842 -9.57 316.82887 328.55527 48.88 324.94368 328.88785 326.91571 3.94424 326.765% 2.38843 -9.51 315.99106 328.88785

BAHD (NHZ) 316.575 318.825 325.575 327.825

LMIN(DB) -0.37 -0.43 -8.48 LIMAX (DB) 8.33 75.51 0.13 LDEL (DB) 8.79 75.33 8.59 PMIN (DEG) -932.23 -855.66 234.87 FMAX (DEG) 1328.88 571.15 103.66 PDEL (DEG) 1034.01 1426.21 1035.88

FILE: 4FR8B08A.DAT Out-of-bard Rejection: PEAK= 38.5 dB WIDTH= 0.082 MHz

FILE: 4FR8B08A.DAT (+SSCF)

PM_188834_826 FINAL_FUNCTIONAL_TEMP:R_FLIGHT7_3FUNCT_/N_DUAL_SXX 86-15-1938 HP8753,SSREF,SSREF,SSCF REFERENCES: LOSS(DB)= 28.18644 PHASE(DEG)= 476.7845 DELAY(US)= 1.797382 SLOPE(US/NHZ)= 0

BONDERSS CHARACTERISTICS MEASUREMENT

FREQUENCY (PHZ)	LOSS (DB)	PHASE (DEG)
315.000	56.47	1256,74
315.720	52.35	1482.68
316. 448	0.3 5	1405.03
317.160	- 9.9 8	1852.00
317.880	8. 13	693.36
318.689	8.86	334.01
319.329	5.38	-15.37
329.840	42.31	-482.39
320.760	54.77	-758,89
321.480	58.47	-637.45
322.298	48.43	-476.73
322.928	58.87	-123.99
323.640	51.52	436.01
324.368	57.63	453, 82
325.080	18.07	367.85
325.889	-0.16	-1.13
326.529	0.00	-362.70
327.240	0.08	-719.28
327.968	-0.12	-1966.67
328.689	35.74	-1249.88
329.400	45.79	-1687.32

ELECTRICAL TEST DATA SHEET

1651: F	IN-L FUN	D TITLE: Tect tech date CTIONAL 753D SERIAL: 3418084374	CAL DUE	•	•
5 -55		478A SERIAL:2136A83127	CAL DUE:		
	•	out the control of	UNL DUE:	1/1/30	
PARAC	FRAFH	REQUIREMENT TITLE	DAT	ra a	. P/F
REQ.	Q/ATP			•••	, 17,
3.2.1.1	5.2.1	OPERATING TEMPERATURE	35.6	<u> </u>	P
3.2.1.3	5.2.3	CENTER FREQUENCY &			<u> </u>
3.2.1.4		CENTER FREQUENCY STABILITY	1		
		LO: 317.535/317.865 MHz		788 MHz	<u>p</u>
		HI: 326.535/326.865 MHz	326.7	781 MHz	<u>p</u>
3.2.1.5	5.2.4	3 db bandwidth:			
		LO: 2.8/3.0 NHz	2.9	32 MHz	<u>p</u>
		HI: 2.8/3.0 MHz	_ 2.9	139 MHz	<u>p</u>
3.2.1.6	5.2.5	passiand symmetry			
		LO: /0.5 dB	_ 0.2	<u>. </u>	<u>p</u>
		HI: /0.5 dB	0.1	dB	<u>p</u>
3.2.1.7	5.2.6	PASSBAND RIPPLE			
		316.575-318.825 MHz: /1.8		dB	<u>p</u>
2240	E 0.7	325.575-327.825 NHz: /1.0	dB <u>8.6</u>	dB	<u>p</u>
3.2.1.6	5.2.7	INSERTION LOSS			
		LO: 27.8/30.2 dB HI: 27.8/30.2 dB		dB	<u>p</u>
1210	520		28.3	dB	<u>p</u>
1.6.1.7	J. C. 0	INSERTION LOSS VARIATION			_
		LO: -0.4/0.4 dB		dB	P P
7 2 1 10	520	HI: -0.4/0.4 dB AMPLITUDE RALANCE	0.2	dB	<u> </u>
3.6.1.10	J.E. 3	LO, HI: /0.5 dB		46	•
3 2 1 11	5 2 10	OUT-OF-BAND REJECTION	_ 6.6	dB	<u>p</u>
0111111	J. C. 10	BAND	PEAK (dB)	WIDTH (MHz)	
		WIDE: 1-313,331-1000 MHz:	AS D	0.000	
		DUAL: 313.000-315.585,	73.0		
		319.815-324.585,			
		328.815-331.0 MHz:	_39.2	8.100	
		PEAK: 35.0/ dB	39.2 dB		р
		WIDTH: /8.6 MHz		9.100 MHz	P
3.2.1.12	5.2.11	SHAPE FACTOR			
		LO: /1.38 Unitless		4_ Unitless	P (6
3 5 4 44	5 5 4 5	HI: /1.30 Unitless	_1.3	5_ Unitless	<u> </u>
3.2.1.14	5.2.12	VSWR (RETURN LOSS)	-		
		316.575-318.825,325.575-32			_
		DUAL S11: 7.5/ dB	9.6		<u>P</u>
4.8.2	5 2 14	DUAL S22: 7.5/ dB LIMITED FUNCTIONAL TESTS	10.3	q _B	<u>p</u>
7.0.5	J. E. 17	CENTER FREQUENCY: -8.1/0.1	m ia 0	Mari	0
		3 dB BANDWIDTH: -0.06/0.06		MHz	10
		INSERTION LOSS: -8.5/8.5 di		MHz	9 -
NONE	5.2.15	DATA SHEET SUMMARY	, <u> </u>		F
		(PASS/FAIL)	0	(OP)	•
				٧/	
PHONON CO	RPORATIO	DN .		CAGE: 6Y858	
7 HERMAN				TEL: 203-651-	8 211
CTMCD/DV	CT OF D	~			

FAX: 203-651-8618

SIMSBURY, CT 06070

PER AE-24937E

EN CAMSU-1550

SF | 35 dB \leq 1.35

ACMAL DAIA:

SF | 35 dB = 1.23/ P

SF | 40 dB = 1.346 P

SEE PLOT ON PAGE

PROCEEDING PAGE

FILE=4AH8B08A.DAT 10:49:53 86-16-1938

PN_188834_826 FINAL_FUNCTIONAL TEMP:H FLIGHT7_3FUNCT /N DUFL_SXX

06-15-1998 HP8753, SSCF, SSFFIX, SSREF

FREGLENCY (MHZ): CENTER= 317.7 WIDTH= 9 INCR.= .85 SYSTEM BANDWIDTH= 2.25

REFERENCES: LOGS(DB) = 28.36822 PHASE(DEG) = 4573.356 DELAY(US) = 0 SLOPE(US/194Z) = 0

RMS ERRORS: LOSS(DB) = .1659385 PHOSE(DEG) = 743.55

PLOT SCALES: LOSS 10 DB/DIV LOSS 1 DB/DIV VS. FRED .9 MHZ/DIV

PEAK: LEVEL (DB) = 27.98581 FRED (NHZ) = 316.5611 DELAY (US) =-3.135683 SIDELDBE (DB) =-42.82364

	Lat. V 5-25, 1/2 D 7	LUI 00177 G	THE PARTY - DI	TISIOGO MIN	111/18/2/- 040	CONTRACTOR OF THE STATE OF THE	11 B ML/ - 76 LL	MISSIE OL	
L (DB)	LO(MIZ)	HI (MHZ)	CTR (MHZ)	WID (MHZ) A	v-ctr(m/z) a	V-WID (MHZ)	AV-SL (DB)	LOX (MHZ)	HIX (MHZ)
-0.4 5	316.56118	316.56110	316.56110	8.990 38	316.56110	0.06066	9.98	316.56110	316.56110
9.58	316.42484	319.08853	317.75668	2.66378	317.72357	2.64338	-13.34	316.42484	319.68853
1.00	316.33273	319.14713	317.76393	2.75439	317.72588	2.72880	-14.75	316.33273	319.14713
2.98	316.35114	319.21246	317.78188	2.86133	317.76358	2.89138	-16.52	316.35114	319.21246
3.00	316.32227	319.25486	317.78815	2.93179	317.76147	2.85362	-18.79	316.32227	319.25406
4.00	316.23456	319.28592	317.79822	2.99136	317.75885	2.87938	-28.65	316.23456	313.28532
5.00	316.27185	319.31317	317.79251	3.84132	317.76031	2.83771	-21.54	316.27185	319.31317
6.99	316.25198	313.33737	317.79468	3.68533	317.76031	2.83771	-21.51	316.25198	319.33737
19.96	316.18385	319.41083	317.89935	3.22838	317.76807	2.93274	-29.16	316.18385	319.41083
20.00	316.08887	319.52512	317.89658	3.43784	317.76847	2.93933	-40.63	316.08807	319.52512
38.00	316.02148	319.59293	317.88719	3.57144	317.76853	2.93972	-47.48	316.02148	319.59293
40.00	315.38268	319.62347	317.88394	3.64087	317.76856	2.93977	-58.48	315.98260	319.62347

BAND (MHZ) 316.575 318.825

THIN (DB) **-0.37** LINEX (DB) 0.38 LDEL (DB) 0.68 FMIN (DEG) -1259.86 PMAX (DEG) 1257.87 FDEL (DEG) 2517.72

File: 4AH8B88A.DAT Passband Symmetry = 8.2 dB

FILE=4CH8B08A.DAT 10:50:34 06-16-1998

PH_188834_826 FINAL_FUNCTIONAL TEMP:H FLIGHT7_3FUNCT /N DUAL_SXX

66-15-1998 HP8753, SSCF, SSFF IX, SSREF

FREQUENCY (NHZ): CENTER= 326.7 WIDTH= 9 INCR.= .85 SYSTEM BANDWIDTH= 2.25

REFERENCES: LOSS(DB) = 28.33474 PHASE(DEG) = 2485.388 DELAY(UG) = 0 SLOPE(US/MHZ) = 0

RYS ERRORS: LOSS(DB)= .145641 PHRSE(DEG)= 743.2271

PLOT SCALES: LOSS 18 DB/DIV LOSS 1 DB/DIV VS. FRED .9 MHZ/DIV

PERK: LEVEL (DB) = 27.92376 FRED (NHZ) = 325.5679 DELAY (US) =-3.228122 SIDELOBE (DB) =-45.2266 ENERGY: LEVEL (DB) = 28.48287 CENTER (MHZ) = 325.7639 WIDTH (MHZ) = 3.863662 SKEW (MHZ) = 2.4032686-82

L(DB)	LO (MIZ)	HI (MHZ)	CTR (MHZ)	WID(MZ) A	V-CTR(MHZ)	AV-WID (MIZ)	AV-SL (DB)	LOX (MIZ)	HIX (MHZ)
-8.40	325.56787	325.56787	325.56787	9.00000	325.56787	8.8888	8.00	325.56787	325.56787
9.50	325.41879	328.12161	326.77828	2.78282	326, 75312	2.78463	-13.94	325, 41879	328, 12161
1.60	325.39875	328.161%	326.77637	2.77121	326.75349	2.78763	-15.59	325.39975	328.16196
2 .9 8	325.34589	328.21365	326.77979	2.86777	326.76859	2.85381	-17.61	325.34589	328.21365
3.00	325.31197	328.25843	326.78076	2.93936	326.77362	2.87895	-18.72	325.31107	328.25843
4.00	325.28258	328,27866	326.78858	2.93615	326.76190	2.99198	-20.12	325.28258	328,27866
5.00	325.25798	328.38237	326.78915	3.84446	326.77845	2.91818	-21.48	325.25798	328.38237
6.08	325.23648	328.32327	326,77988	3.08679	326.76231	2. 93275	-23,26	325.23648	328.32327
19.69	325.16879	328.38886	326.77844	3.21327	326.76349	2.94%4	-27.13	325.16879	328.38866
20.00	325.06277	328.48818	326.77545	3.42532	326,76382	2.96883	-37.98	325.06277	328.48818
30.00	324.93585	328.55183	326.77344	3.55518	326.76382	2.96883	-47.45	324.93585	328.55103
48.00	324.94370	328.89354	326.32163	3.93584	326.76385	2.96888	-50.65	324.94378	328,83334

EAND (MIZ) 325.575 327.825

LMIN(DB) -0.36 LMAX (DB) 0.22

LDEL (DB) 0.58 FMIN(DEG) -1250.91

FMAX (DEG) 1268, 45 PDEL (DEG) 2519.36

File: 4CH8908A.DAT Passband Symmetry = 0.1 dB

Channel 15 Bandpass Filter

IF Filter (S/N: 1331559-1, S/N: 227-006)

 -

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL1000-1000-10551 S/N_P227-00C AEROJET 1331559-1 REV._E___

3.0 dB BANDWIDTH ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.3	-10°C	+15°C	+40°C
{7} UPPER 3.0 dB BANDEDGE	1 <u>490.4</u> MHz (1480.0-1500.0)	1 <u>4% %.୩%</u> Mhz (1480.0-1500.0)	14 <u>87.51</u> MHz (1480.01500.0)
{8} LOWER 3.0 dB BANDEDGE	<u>492.92</u> мнz (480.0-500.0)	<u>492.08</u> Mhz (480.0-500.0)	<u> </u>
{9} 3.0 dB RELATIVE BANDWIDTH	997.49 MHz (980.0-1020.0)	<u>996.90</u> Mhz (980.0-1020.0)	9 <u>96.73</u> MHz (980.0-1020.0)
{10} ADD {7} AND {8} ÷ 2 =	9 <u>91.67</u> MHz (1000.0 NOM)	9 <u>90.53</u> MHz (1000.0 NOM)	9 <u>89.15</u> Mhz (1000.0 NOM)
{10a} RECORD MEASURED TEMPERATURE	(-15.0 TO -10.0)	+ <u> (6.0</u> °C (12.5 TO 17.5)	+ <u>Ч1 7 °</u> C (40.0 TO 45.0)
(6) ATTACH TRANSMISSION LOSS PERFORMANCE X-Y PLOT	<u> </u>	(1)	(\lambda)
PASSBAND RIPPLE ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.4	-10°C	+15°C	+40°C
{11a} MIN INSERTION LOSS FREQ	940,02MHz	6 <u>95.69</u> Mhz	940.02MHz
MIN INSERTION LOSS PERFORMANO	CE - <u>0.38</u> dB	<u>0.42</u> dB	- <u>0.43</u> dB
{11b} 75% BW LOWER BANDEDGE FREQ	535.8CMHz	532.87Mhz	5 <u>31.09</u> MHz
75% BW LOWER BANDEDGE I.L. PEF	RF - <u>U.W</u> dB	- <u>0.66</u> dB	- <u>0.70</u> dB
{11c} 75% BW UPPER BANDEDGE FREQ	12 <u>85.80</u> mHz	12 <u>82.87</u> Mhz	12 <u>81.09</u> MHz
75% BW UPPER BANDEDGE I.L. PER	RF - <u>0.60</u> dB	- <u>0.66</u> dB	- <u>0.70</u> dB
{11d} PERFORMANCE DELTA (I.L. @ {11b} - I.L. @ {11a})	<u>0.22</u> dB	<u>0.24</u> dB	<u>0.27</u> dB
{11e} PERFORMANCE DELTA (I.L. @ {11c} - I.L. @ {11a})	<u>0.22</u> dB	<u>0.24</u> ав	0.27 dB

Prepared in accordance with MIL-STD-100 CONTRACT NO.	SIZE	CAGE CODE 57032	DWG. NO. 63-0005-02	REV.
DADEN ANTHONY ASSOCIATES INC	EN E: AC	AD/63/0502APA LDOC	SHEET	13

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P227-006

-10C DATA

MARKER PARAMET

OPR: R. HOGGATT DATE FEB 04 1997 annel 2

MARKER 1	550.000000 MHz OFF	1000.000000 MHz 418 dB
MARKER 2	1450.000000 MHz OFF	991.666303 MHz OFF
MARKER 3	625.000000 MHz OFF	492.920566 MHz -3.418 dB
MARKER 4		1490.412040 MHz -3.418 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -3 dB -3 dB OFF	OFF CONTINUOUS OFF -3 dB -3 dB
MARKER TRACKING	OFF	OFF OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P227-006

+15C DATA

MARKER PARAMET OPR: R. HOGGATT DATE FEB 04 1997 annel 2

MARKER 1	550.000000 MHz OFF	1000.000000 MHz 4585 dB
MARKER 2	1450.000000 MHz . OFF	990.530655 MHz OFF
MARKER 3	625.000000 MHz OFF	492.080780 MHz -3.4586 dB
MARKER 4	1375.000000 MHz OFF	1488.980531 MHz -3.4586 d B
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
I MARIZES SELECT	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF

FINAL FUNCTIONAL PERFORMANCE TRANSMISSION LOSS SERIAL NO. P227-006

+40C DATA

MARKER PARAMET OPR: R. HOGGATT DATE FEB 04 1997 annel 2

· •						
M	ARKER	1	550.0000 OFF	300 MHz	1000.000000 4830 dB) MHz
ida	ARKER	2	1450.0000 OFF	000 MHz	989.147792 OFF	MHz
e Mi	ARKER	3	625.0000 OFF)00 MHz	490.782359 -3.483 dB	MHz
Mf	ARKER •	4	1375.0000 OFF	100 MHz	1487.513225 -3.483 dB	MHz
MF	KR STI	MULUS OFFSET	0.0000 0 dB	100 MHz	0.000000 0 dB	MHz
MA TA MA	-ACEME ARKER ARGET ARKER	SEARCH VALUE	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF		OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	

ACCEPTANCE TEST REPORT APPENDIX A BANDPASS FILTER MODEL HL1000-1000-10SS1 S/N PZZ7-006 AEROJET 1331559-1 REV. し PASSBAND RIPPLE (CON'T) {11f} RECORD PASS/FAIL (0.5 dB MAX) (PASS)FAIL (11g) ATTACH PASSBAND RIPPLE PERFORMANCE X-Y PLOT(S) **OUT-OF-BAND REJECTION** +40°C +15°C -10°C ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.5.5 Fc=1000.0 MHz. REF (5A) FOR INSERTION LOSS @ Fc -65.8 dB -66.0 dB -65.5 dB **{12} WORST CASE REJECTION FROM** (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) 0.300 MHz TO 350.0 MHz -60.8 dB dB کا ، (0) -60.2 dB {13a} WORST CASE REJECTION FROM (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) 1650.0 MHz TO 3000.0 MHz -<u>51.2</u> dB -<u>50.7</u>dB -50.<u>4</u> dB {13b} WORST CASE REJECTION FROM (40.0 dB MIN) (40.0 dB MIN) (40.0 dB MIN) 3000.0 MHz TO 8000.0 MHz 441.7 °C +16.0 °C {13c} RECORD MEASURED TEMPERATURE -12.5 °C (-15.0 TO -10.0) (12.5 TO 17.5) (40.0 TO 45.0) **{14} ATTACH REJECTION PERFORMANCE** X-Y PLOT(S) TEST PERFORMED BY 12. NOTE IF TEST WITNESSED BY AESD: ____ GSI: ___ Not Witnessed this time. DLD ***** END OF FUNCTIONAL PERFORMANCE TEST **** **OUTLINE AND MOUNTING DIMENSIONS VERIFICATION {16} REFERENCE CUSTOMER DRAWING 1331559 DIMENSION AND** ACTUAL **DESCRIPTION OF MEASUREMENT** TOLERANCE **MEASUREMENT** 3.FD() $3.50 \pm .03$ **OVER ALL LENGTH** $0.125 \pm .010$ MOUNTING HOLE CENTER 3,24% 3.250 BETWEEN UPPER MOUNTING HOLES 3.2461 3.250 BETWEEN LOWER MOUNTING HOLES Prepared in accordance with MIL-STD-100 REV. CAGE CODE DWG. NO. SIZE CONTRACT NO. 63-0005-02 57032 14 SHEET DADEN-ANTHONY ASSOCIATES INC. FILE: ACAD/63/0502APAJ.DOC

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P227-006 -10C DATA

MARKER PARAMET! OPR:	R.	HOGGATT	DATE FEB	0 4 1997	innel	2

MARKER 1	1000.000000 MHz OFF	1000.000000 MHz 0 dB
MARKER 2	1000.000000 MHz OFF	350.000000 MHz -71.706 dB
MARKER 3	1000.000000 MHz OFF	1650.000000 MHz -60.157 dB
MARKER 4	1000.000000 MHz OFF	5549.957067 MHz -50.377 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIDTH VALUE	OFF CONTINUOUS OFF -3 dB -3 dB OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF
MARKER TRACKING	OFF	OFF

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P227-006 +15C DATA

MARKER PARAMET

TARGET VALUE

MARKER TRACKING

MARKER WIDTH VALUE

OPR: R. HOGGATT DATE FEB 04 1997 annel 2

-3 dB

-3 dB

OFF

OFF

MARKER 1	1000.000000 MHz OFF	z 1000.000000 Ni 0 dB	Ηz
MARKER 2	1000.000000 MHz OFF	z 350.000000 M −71.428 dB	Hz
MARKER 3	1000.000000 MHz OFF	z 1650.000000 MI -60.567 dB	Hz
MARKER 4	1000.000000 MHz OFF	z 5557.756706 M -50.725 dB	Hz
MKR STIMULUS OFFSET	0.600000 MHz 0 dB	z 0.000000 MI 0 dB	Hz
	OFF CONTINUOUS OFF	MARKER 1 CONTINUOUS OFF	

-3 dB

-3 dB

ÚFF

OFF

FINAL FUNCTIONAL PERFORMANCE REJECTION PERFORMANCE SERIAL NO. P227-006 +40C DATA

MARKER PARAMET

OPR: R. HOGGATT DATE FEB 04 1997 annel 2

MARKER 1	1000.000000 MHz OFF	1000.000000 NHz 0 dB
MARKER 2	1000.000000 MHz OFF	350.000000 NHz -71.308 dB
MARKER 3	1000.000000 MHz OFF	1650.000000 MHz -60.805 dB
MARKER 4	1000.000000 MHz OFF	5572.755973 MHz -51.244 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MH≥ 0 dB
REFERENCE MARKER PLACEMENT MARKER SEARCH TARGET VALUE MARKER WIBTH VALUE MARKER WIBTH VALUE	OFF CONTINUOUS OFF -3 dB -3 dB OFF OFF	MARKER 1 CONTINUOUS OFF -3 dB -3 dB OFF OFF

APPENDIX A

ACCEPTANCE TEST REPORT

BANDPASS FILTER MODEL HL1000-1000-10SS1 S/N P277-006 AEROJET 1331559-1 REV. ►

BANDPASS CHARACTERISTICS MEASUREMENT

PER ATP PARA 4.6

(REF: AE-24687, PARA 4.8.2)

RECORD THE AMBIENT ROOM TEMPERATURE.+22.0 °C (+19°C TO +29.0°C)

{15} ATTACH PASSBAND PERFORMANCE X-Y PLOT

V(1)

{24} TEST POINT MATRIX

REF	FREQ	UNIT	VALUE	REF	FREQ	UNIT	VALUE
F1	1.0	MHz	- <u>80.6</u> dB	F11	1000.0	MHz	<u>- 0,53 dB</u>
F2	10.0	MHz	<u>-88.2</u> dB	F12	(*) 1100.0	MHz	- <u> </u>
F3	100.0	MHz	<u>-92.2</u> dB	F13	(*) 1200.0	MHz	- <u>0.67</u> dB
F4	300.0	MHz	<u>-68.1 dB</u>	F14	1300.0	MHz	<u>-0.78</u> dB
F5	400.0	MHz	-37.6 dB	F15	1400.0	MHz	-1.06 dB
F6	500.0	MHz	-2.28 dB	F16	1500.0	MHz	<u>-5.92</u> dB
F7	600.0	MHz	-0.54 dB	F17	1600.0	MHz	<u>-40,7 dB</u>
F8	700.0	MHz	<u>-0.50 dB</u>	F18	1700.0	MHz	<u>-84.2</u> dB
F9	(*) 800.0	MHz	<u>-0.53</u> dB	F19	2000.0	MHz	<u>- 66.6_</u> dB
F10	(*) 900.0	MHz	-0.52 dB	F20	5000.0	MHz	-87.6 dB
TEST	TEST PERFORMED BY: 12 1-666 ATT DATE 2/4/97 (4)						

乀5 ノ

NOTE IF TEST WITNESSED BY AESD_____ GSI_

Not Witnessed

***** END OF BANDPASS CHARACTERISTICS TEST *****

this time. DLD

FUNCTIONAL PERFORMANCE TEST

ACCEPTANCE TEST PROCEDURE 63-0005-02 PARA 4.1

BRIEF TEST DESCRIPTION: THE TESTS DESCRIBED IN APPENDIX A PAGE 10 THRU PAGE 13 ARE PERFORMED TO DOCUMENT THE FUNCTIONAL PERFORMANCE OF THE UNIT AT THE CONCLUSION OF ALL ENVIRONMENTAL TESTING. THE TESTS ARE AS FOLLOWS AND IN ANY SEQUENCE:

- a.) VSWR PER ATP PARA 4.5.1.
- b.) INSERTION LOSS PER ATP PARA 4.5.2
- c.) INSERTION LOSS VS TEMPERATURE PER ATP PARA 4.5.6.
- d.) 3.0 dB BANDWIDTH PER ATP PARA 4.5.3.
- e.) CENTER FREQUENCY (fc) PER ATP PARA 4.5.7 (PART OF 3.0 dB B/W TEST)
- f.) PASSBAND RIPPLE PER ATP PARA 4.5.4 (PART OF INSERTION LOSS TEST).
- g.) OUT-OF-BAND REJECTION PER ATP PARA 4.5.5.

Prepared in accordance with MIL-STD-100 REV. CONTRACT NO. SIZE DWG. NO. CAGE CODE 63-0005-02 J Α 57032 DADEN-ANTHONY ASSOCIATES INC. FILE: ACAD/63/0502APAJ.DOC SHEET 11

POST THERMAL CYCLE PASSBAND CHARACTERISTICS SERIAL NO. P227-006 AMBIENT

MARKER TRACKING

MARKER PARAMET OPR: R. HOGGATT DATE FEB 04 1997 annel 2

OFF

OFF

MARKER 1	1000.000000 MHz OFF	800.000000 MHz - 5308 dB
MARKER 2	1000.000000 MHz OFF	900.000000 MHz 5203 dB
MARKER 3	1000.000000 MHz OFF	1100.000000 MHz 6020 dB
MARKER 4	1000.000000 MHz OFF	1200.000000 MHz 6732 dB
MKR STIMULUS OFFSET	0.000000 MHz 0 dB	0.000000 MHz 0 dB
MARKER SEARCH	CONTINUOUS OFF	OFF CONTINUOUS OFF -3 dB -3 dB

OFF

OFF

GAIN STABILITY AND GAIN COMPRESSION FOR MIXER/AMPLIFIERS AND IF AMPLIFIERS

			•
)
		H	

Report No. 11491 June 1999

GAIN-TEMPERATURE SENSITIVITY FOR MIXER/AMPLIFIERS AND IF AMPLIFIERS

15	0.02	-0.017			-0.017
	o o	-			- -
14	90.0	-0.020	+0.005	-0.020	+0.005,
13	90.0	-0.020	+0.005	+0.010	+0.015,
12	0.06	-0.020	+0.005	-0.010	+0.005,
11	90.0	-0.020	+0.005	-0.014	+0.005,
10	0.04	-0.020	+0.005		+0.005,
6	0.04	-0.020	+0.005		+0.005,
8	0.05	-0.017			-0.017
7	0.02	-0.015			-0.015
9	0.02	-0.017			-0.017
5	0.02	-0.015			-0.015
4	0.02	-0.017			-0.017
3	0.02	-0.015			-0.015
Channel No.	Specification (+/-dB/°C)	Measured (dB/°C)			Total (dB/°C)

		_
)

Channel 3 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-13, S/N: 7A23)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN FLATNESS TEST:	ATP PARAGRAPH 5.1.3
OTHER PROPERTY OF THE PROPERTY	1121 211111

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

(dB)ppK

0.30

REJ

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER VOLTAGE

GAIN

READING (dBm)

 $\Delta G/\Delta V$

SPEC.

 $\Delta G/\Delta V$

ACC REJ

9.96

1.875

2.0

10,00

DATE ACC REJ

PART NO. 1331562-136

SPACEK QA

SER NO.

TEST FAILURE:

TESTED BY:

FAILURE ANALYSIS NO.

END DATE:

END TIME: 1600

Spacek Labs, Inc. 212 E. Gutierrez St.

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nomina (°C)	I Temperature	Relative Gain	ΔG/ΔΤ	SPEC	ACC	REJ
T1	-6	GT1 71,62				
			. 0.012	0.035dB/°C	AQ N	1
T2	+8	GT2 71,45			1	V
			* 0.023	0.020dB/°C	OA	1
Т3	+28	GT3 71.00			1	.]
			* 0.023	0.035dB/°C	TOA	7
T4	+40	GT4 70,72			1	1//

* Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = G_{Ti} - G_{Ti+1}$$

$$\Delta G/\Delta T = G_{Ti} - G_{Ti+1}$$

$$T_{i} - T_{i+1}$$

$$i = 1,2,3,4$$

$$\Delta G_{T} = G_{Ti} - G_{Ti}$$

 $\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \frac{1.45}{6} dB$ Spec 1.4dB ACC_

ACC____REU_1

ECN CAMSU-135Z

PART NO. <u>1331562÷ /3</u>-

SPACEK QA

6-29-98

SER NO. <u>7A23</u>

TEST FAILURE:

TESTED BY: 771

FAILURE ANALYSIS NO.

END DATE: 6-5-98

END TIME: 1600 Spacek Labs, Inc. 212 E. Gutierrez St.

Santa Barbara, CA, 93101

·

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

D	A	S	_	#

		P2	OUTPUT	SPEC.	
11 12 13 14 15 16 17 18 19 20	FREQ.	COMP	COMP.	COMP.	
	(MHz)	(dBm)	at+10(dBm)	PT.(dBm)	ACC REJ
X X X X X X X X	_ 10	-2.6	0.4	1.0	(3 ~)
X	20				
хх	50	-2,6	0.4	1.0	8-
X X X X X X X X	_ 100	- 2,6	0.4	1.0	8-
X	150				<u> </u>
X X X X X X	200				
X	400				
X	500				
X	1000	•			
X	1500				

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: 23

AMPLIFIER
OUTPUT
OUTPUT
POWER
OWER
AMBIENT (dBm)
-24.1
-27.7

AMPLIFIER
AMPLIFIER
OUTPUT
(dBm)
(-77 K)(dBm)
(dB)
FIGURE (dB)

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. <u>133</u>	31562-13 <i>G</i>	SPA	ACEK QA	6-29-78 REJ
SER NO.	7A23	TE	ST FAILURE:	
TESTED BY:	777	FAILU	RE ANALYSI	S NO
END DATE:	6-5-98			
END TIME:	1600		Spacek Labs, 212 E. Gutier	rrez St.
			Santa Barbar	a,CA,33101

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 6 - 24-98 AMBIENT ROOM TEMPERATURE °C: +2/

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	ACC	REJ
-6	43.0	-2310	-25,20	2,1	2.9	3.8	04	
+8	43,1	-23,30	-25,30	2.0	<u> </u>	3.5	and the second	
+28	43.2	-23.50	-25,50	7.10	_3.1	3.8		
+40	43.3	-23.8	- 25,80	2.0	311	3.8	OF	
Noise figure change O, 2 dB Spec is .5dB peak to peak on -20 ACC REJ NOTE: Above data to be taken with the Daden filter, except on the -19 unit.								

NEΔT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 6-23-98 Ambient Room Temperature °C: 25

Attach computer generated NEAT spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0,063

Record Nps(K) O.O. for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

ACE

	ACC REJ
	DATE ACC. REJ
PART NO. <u>1331562-13</u> F	SPACEK QA 6 29-98
SER NO. <u>7A23</u>	TEST FAILURE:
TESTED BY: 797	FAILURE ANALYSIS NO
END DATE: 6-24-78	
END TIME: 1600	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

Channel 4 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-14, S/N: 7A64)

		<u> </u>
)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

END TIME: 1600

GAIN FLATNE	SS TEST: ATP PA	RAGRAPH	<u>5.1.3</u>	•
GAIN FLATNES (dB)ppK 	SS SPEC. GAIN (dB)ppK	FLATNESS	ACC R	EJ
	<i>VOLTAGE SENS</i> GAIN	SITIVITY TE	ST: ATP P. SPEC.	ARAGRAPH 5.1.4
VOLTAGE	READING (dBm)	$\Delta G/\Delta V$	$\Delta G/\Delta V$	ACC REJ
9.96 10.00 10.04 $\Delta Gv = $	71,24 71,30 71,37 0:13 dB	1.63	<u>2.0</u>	QA
				DATE ACC RE
PART NO.	1331562- <u> 4</u> F	_ SPA	CEK QA	10.28-98. 1
SER NO.	7A64	TEST	FAILURE:	
TESTED B	Y: 77# E: 6-5-98	FAILUR	E ANALYSI	S NO
END DATI	E: 6-5-98			
		_	Spacek La	bs, Inc.

212 E. Gutierrez St. Santa Barbara, CA, 93101

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nomin	al Temperature	Relat	ive Gain	Δ G /ΔΤ	SPEC	ACC	REJ
T1	-6	GT1	71.95			QA	
	3			* 0.019	0.035dB/°C	1	7
T2	48	GT2	71.69				
				* 0-025	0.020dB/°C		/ QA
T3	+28	Gтз	71.19				1
					0.035dB/°C	OA	1
T4	440	GT4	70.80			i	∤

*Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{Ti} - G_{Ti+1}}{T_i - T_{i+1}}$$

$$\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \cancel{\cancel{1.68}} \, dB \text{ Spec 1.4dB} \qquad ACC \qquad REJ \qquad 1$$

PART NO. 1331562-146 SPACEK QA 10-28-98 ON PARA. 3.2.1.15.1

SER NO. 7464 TEST FAILURE:

TESTED BY: FAILURE ANALYSIS NO. ______

END DATE: 6 · 5 · 98

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

_		~-~	
1)	А	SH	#

11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP. PT.(dBm)	ACC REJ
X X X X X X X X	10	- 2,2	0.8	1.0	((3~
X	20				
X X	50				<u> </u>
X X X X X X X X X	_ 100	- 2,4	0.6	1.0	&
X	150				
X X X X X X	200	-2,3	0.7	1.0	8-
X	400	<u></u>			
X	500	<u> </u>			
X	1000				
X	1500				

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-5-9 AMBIENT ROOM TEMPERATURE °C: 23°C

AMPLIFIER	AMPLIFIER		
OUTPUT	OUTPUT		AMPLIFIER
POWER	POWER	Y FACTOR	NOISE
AMBIENT (dBm)	(-77 K)(dBm)	(dB)	FIGURE (dB)
_ 20.2	-23.9	3.7	1.1/

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. <u>1331562-146</u>	SPACEK QA 10-28-98
SER NO	TEST FAILURE:
TESTED BY: 77/	FAILURE ANALYSIS NO.
END DATE: 6-5-98	
END TIME: 1600	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 11-18-98 AMBIENT ROOM TEMPERATURE °C: +21

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	Ae6	REJ	
-6	43.0	-18.70	-20,65	1.95	3.2	3-8	QA 1) 	
<u>+8</u>	42.1	-19.00	-20,90	1.90	3.3	3.8	1		
<u>+28</u>	43.2	-19.30	-21,20	1.90	3.3	3.8	QA		
+40	43.3	-19.50	-21,40	1.90	3.3	3.8	QA \\ _1		
Noise figure change O, dB Spec is .5dB peak to peak on -20 ACC REJ NOTE: Above data to be taken with the Daden filter, except on the -19 unit.									
NTD AT N	TEAT MOTER DOMER OF A DATA MAY MODE A TOTAL OF A TOTAL								

NEAT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 11-24-98 Ambient Room Temperature °C: 24

Attach computer generated NEAT spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.048

Record Nps(K) 6.08 for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

	DATE ACC REJ
PART NO. <u>1331562- 14 F</u>	SPACEK QA //- ZS-78
SER NO. 7464	TEST FAILURE:
TESTED BY: 777	FAILURE ANALYSIS NO
END DATE: 11-25-78	
END TIME: <u>1600</u>	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

Channel 5 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-15, S/N: 7A65)

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN.	FLATI	VESS	TEST:	ATP	PARA	GRAPH	<i>5.1.3</i>

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

(dB)ppK

1600

END TIME:

70,40

ACC REJ

(0A)

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER	GAIN		SPEC.		.
VOLTAGE	READING (dBm)	$\Delta G/\Delta V$	∆G/∆V	ACC REL ENGINE	RING DATA
9.96	70.99	2.25	2.0	ONLY. S	EE AEZ4869C 1.2.1.15.2
16,04	フルフッ・				1h
$\Delta G_{V} =$	0,18 dB			DATE ACC REJ	
				Qu as	ceptable
PART NO	O. <u>1331562-/5<i>F</i></u>	_ SPA	CEK QA	10-28-98	
SER NO.	7A65	TES	T FAILURE:	·	
TESTED	BY: 77/	_ FAILUR	E ANALYSIS	NO	
END DA	TE: 6-5-98	_			
			Spacek Lab	s, Inc.	

212 E. Gutierrez St. Santa Barbara, CA, 93101

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Temperature (°C)	Relat	ive Gain	ΔG/ΔΤ	SPEC	ACC	REJ
T1 -6	G _{T1}	71,62			//	
				0.035dB/°C	Q A	
T2 +8	GT2	71.39			1	1
			* 0.024	0.020dB/°C		AO
T3 + Z8	Gтз	70.91				1
			* 0.022	0.035dB/°C	(nA	V = -
T4 +40	GT4	70.65				1

*Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{Ti} - G_{Ti+1}}{T_i - T_{i+1}}$$

$$i = 1,2,3,4$$

$$\Delta G_{T} = \frac{0.97}{dB}$$

$$\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \frac{1.55}{dB} \text{ Spec 1.4dB} \qquad ACC_{\underline{}}$$

DATE ACC REJ ENGINEERING DA.

ONLY. SEG RE24869

PARA, 3.2.1.15.1

SER NO. 7A65

TEST FAILURE:

TESTED BY: 77/ FAILURE ANALYSIS NO. ______

END DATE: 6-5-98

END TIME: 1600 Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

\mathbf{r}	•	CTT	ш
1)	А	\mathbf{n}	#

11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP. PT.(dBm)	ACC REJ
X X X X X X X X X	10		•		
X	20	-2.4	0.6	1.0	(<u>8-</u>
X X	50				<u> </u>
$X \times X \times X \times X \times X$	100	-2.3	0.7	1.0	&
X	150				
<u> </u>	200	- 2, 2	0.8	1.0	<u>8~)</u>
X	400				<u> </u>
X	500				
X	1000				
X	1500				

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6 -5-98 AMBIENT ROOM TEMPERATURE °C: 23°C

AMPLIFIER	AMPLIFIER		
OUTPUT	OUTPUT		AMPLIFIER
POWER	POWER	Y FACTOR	NOISE
AMBIENT (dBm)	(-77 K)(dBm)	(dB)	FIGURE (dB)
. 5		_	1.27
-21.3	-24.8	3,5	1.6/

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. <u>133</u>	1562-15F	SPACEK QA	10-28-78 QA
SER NO.	7A65	TEST FAILURE:	
TESTED BY:	777	FAILURE ANALYSI	S NO
END DATE:	6-5-98		
END TIME:	1600	Spacek Labs 212 E. Gutie	
		Santa Barba	ra,CA,93101

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 11-18-98 AMBIENT ROOM TEMPERATURE °C: +21

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	ACC	REJ
-6	43.2	-19.90	-21.80	1.90	3.3	3-8	(I	
<u>+8</u>	43.3	- 20:10	-2200	1.90	3.3	3-8	(QA	
+28	43.4	-20,40	-22,30	1.90	3.3	3-8	0A 1	
+40	47.5	-20,60	- 22,45	1.85	3.4	3.8	QA 1	
	Noise figure change							
NEAT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9								

Date: <u>11-25-98</u> Ambient Room Temperature °C: <u>24</u>

Attach computer generated $NE \Delta T$ spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.045

Record Nps(K) O.08 for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

	AQC REJ
PART NO. <u>1331562- 15 F</u>	SPACEK QA DATE ACC REJ 1/-25-97 1
SER NO	TEST FAILURE:
TESTED BY:	FAILURE ANALYSIS NO.
END DATE: 11-25-98	
END TIME: 1600	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

Channel 6 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-16, S/N: 7A66)

		<u> </u>
		<u> </u>

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

	GAIN FLATI	VESS TEST:	ATP PARAGRAPH	5.1.3
--	------------	-------------------	---------------	-------

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

(dB)ppK

ACC REJ

0,50

0.50

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER VOLTAGE

GAIN

READING (dBm)

 $\Delta G/\Delta V$

SPEC.

 $\Delta G/\Delta V$

ACC RE

ENGINEERING DATA ONLY, SEF AF 24869C

PARA. 3.2.1.15.2

70.99 9,96 10.00

71117 ... 10.04 0.18 $\Delta G_V =$

2.0 2.25

PART NO. <u>1331562</u>- 165

SPACEK QA

DATE ACC REJ

TEST FAILURE:

TESTED BY:

FAILURE ANALYSIS NO.

END DATE: 6-5-98

END TIME: 1600

Spacek Labs, Inc. 212 E. Gutierrez St.

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Temperatu	ıre Rel	ative Ga	ain	ΔG/ΔT	SPEC	ACC	REJ
T1 -6	G _T	71,	73			11	1
				* 0.022	0.035dB/°C	Or	
T2 +8	GT:	2 71.	42			翼 / ノ	AO
				* 0.022	0.020dB/°C		1
T3 + Z8	GT:	3 70.	98				
					0.035dB/°C	100	V
T4 +40	GT-	4 70.5	58				<i>)</i>)

*Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = G_{Ti} - G_{Ti+1}$$

$$\Delta G/\Delta T = I_{1,2,3,4}$$

$$\Delta G_{T} = I_{1,2,3,4}$$

$$\Delta G_{T} = I_{1,2,3,4}$$

 $\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \frac{1.23}{2} dB$ Spec 1.4dB

	(QA
ACC	REJ 1

PART NO. <u>1331562-165</u>

SPACEK QA

DATE ACC REJ ENGINEERING DATA

SER NO. 7A66

TEST FAILURE:

TESTED BY: 77

FAILURE ANALYSIS NO.

END DATE: 6-5-98

Spacek Labs, Inc. 212 E. Gutierrez St.

END TIME: 1600

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

\mathbf{r}	A	CII	11
-1)	А	SH	#

11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP. PT.(dBm)	AÉC∾REJ
X X X X X X X X X	10	- 2,6	0.4	1.0	<u>5-1</u>
X	20				
X X	50				
X X X X X X X X X	100	-Z.7	0.3	1.0	<u> </u>
X	150				
<u> </u>	200	-2.7	0.3	1-0	<u>(동~)</u>
X	400				<u>``</u>
X	500				
X	1000				
X	1500				

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: 23°C

AMPLIFIER AMPLIFIER OUTPUT OUTPUT **AMPLIFIER** POWER POWER Y FACTOR NOISE FIGURE (dB) AMBIENT (dBm) (-77 K)(dBm) (dB) 3.7 -20.4 -24.1 1.//

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. <u>1331</u>	1562- <i>16 F</i>	SPACEK QA	DATE ACC REJ
SER NO.	7A66	TEST FAILURE:	
TESTED BY:	771	FAILURE ANALYSI	S NO
END DATE: _	6.5-98		
END TIME: _	1600	Spacek Labs, 212 E. Gutier Santa Barbar	rrez St.

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 11-19-98AMBIENT ROOM TEMPERATURE °C: +2 /

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	AGC	REJ
-6	43.0	-19.30	-21.50	2,20	2,8	3.8	QA 1	
+8	43.1	-19.50	-21.65	2.15	219	3.8	1	
+28	43.2	-19.80	-21.95	2.15.	2.9	3.8	UA 1	
+40	43.3	-20,10	-22.25	2.15	2.9	3.8	1	
Noise figure change O dB Spec is .5dB peak to peak on -20 ACC 1 REJ NOTE: Above data to be taken with the Daden filter, except on the -19 unit.								

NEAT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 11-29-98 Ambient Room Temperature °C: 25

Attach computer generated NEAT spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.034

Record Nps(K) 0.0 for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

	REJ REJ
PART NO. <u>1331562-16</u>	SPACEK QA //- 25-98 1
SER NO. 7A66	TEST FAILURE:
TESTED BY: 777	FAILURE ANALYSIS NO
END DATE: 1/- 25-98	
END TIME:	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

Channel 7 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-17, S/N: 7A57)

			<u> </u>
			; •
		_	

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

CAIN I	TI.ATNI	SS TEST	: ATP PA.	RAGRAPH 5	.1.3

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

(dB)ppK

ACC REJ

0.36

0.50

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER

GAIN

VOLTAGE

READING (dBm)

 $\Delta G/\Delta V$

SPEC. ΔG/ΔV

ACC RE

2.25

2.0

DATE ACC REJ ENGINERING DATA

ONLY, SEE AEX4869C

PART NO. 1331562-175

SPACEK QA

SER NO.

7A57

TEST FAILURE:

TESTED BY:

FAILURE ANALYSIS NO.

END DATE: 6-5-98

Spacek Labs, Inc. 212 E. Gutierrez St.

END TIME:

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Tem	perature	Relat	ive Gain	ΔG/ΔΊ	•	SPEC	ACC	REJ
T1 _	6	GT1	71.79					1
					.018	0.035dB/°C	1 01	0)
T2 4	8	GT2	- 1 -1	Commenter of the				4
				* 0	1120	0.020dB/°C	0.	
T3 +2	28	Gтз	71.04					1
	-			* 0.	027	0.035dB/°C	OA	
T4 + 1	10	GT4	70.72				i j	1

• Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{Ti} - G_{Ti+1}}{I = 1,2,3,4} \qquad \Delta G_{T} = \frac{1.07}{dB}$$

$$T_{i} - T_{i+1}$$

$$\Delta G_{TOTAL} = \Delta G_{V} + \Delta G_{T} + 0.4 = \frac{1.65}{1} dB \text{ Spec 1.4dB} \qquad ACC \underline{\qquad} REJ \underline{\qquad} 1$$

DATE ACC REJ EVGINGERING DATA
OVCY. SEE A62486

PARA 3.2.1.15.1
SER NO. 7A57
TEST FAILURE:

TESTED BY: FAILURE ANALYSIS NO.

END DATE: 6-5-98

END TIME: 1600

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA,93101

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

DASH#

11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP. PT.(dBm)	∕ÁĈ& REJ
X X X X X X X X	10	-2,3	0.7	1.0	£_
X	20				
X X	50				
<u> </u>	100	-2.4	0.6	1.0	8
X	150				
X X X X X X	_ 200	- 2.4	0.6	1.0	8-
X	400				
X	500				
X	1000				
X	1500				

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: 23°C

AMPLIFIER OUTPUT POWER AMBIENT (dBm)	AMPLIFIER OUTPUT POWER (-77 K)(dBm)	Y FACTOR (dB)	AMPLIFIER NOISE FIGURE (dB)
-20,2	- 23.8	3.6	1.19

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. <u>1331562-17</u> 6	SPACEK QA	DATE ACC REJ
SER NO. 7457	TEST FAILURE:	
TESTED BY:	FAILURE ANALYSIS	NO
END DATE: 6-5-98		
END TIME: (600	Spacek Labs, 212 E. Gutier Santa Barbar	rez St.

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE:	DATE: 11-19-98 AMBIENT ROOM TEMPERATURE °C: 421								
UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	ACC.	REJ	
<u>-6</u>	43.1	-19.20	-21,35	2.15	2,8	3.8	1		
<u>+8</u> _	43,2	-19:40	-21,50	2.10	7,9	3.8	QA.		
+28	43.3	-19.70	-21.80	2.10.	2.9	3.8	1 OA		
<u>+40</u>	43.4	-19.8	-22,00	2,10	2,9	3.2	. <u>i</u>		
			ec is .5dB peak the Daden filte			20 1	REJ		
ΝΕΔΤ-Ν	OISE POWE	R STABILITY	Y TEST: ATP I	PARAGRAPH	<u>5.4.9</u>				
Date: //	-2 <i>4-98</i> Amb	ient Room Ten	nperature °C:_2	25					
Attach c	omputer gene	erated <i>NE</i> \(T \) sp	oreadsheet to th	is test data she	et.				
Record t	the calculated	Nps(K) from	spreadsheet dat	a: 0.05/					
-	Record Nps(K) 0.09 for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.								

		ACC	REJ
		(- 4.	
PART NO. <u>1331562- 17 G</u>	SPACEK QA	<u>DATE</u> 1/-2 <u>5-98</u> (ACC REJ
SER NO. 7A57	TEST FAILURE	l:	
TESTED BY:	AILURE ANALYS	SIS NO	
END DATE: 11-25-98			-
END TIME:	Spacek Lab 212 E. Guti Santa Barb		01

Channel 8 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-18, S/N: 7A68)

			_
			<u> </u>
		ij	

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN FLATNESS TEST: ATP PARAGRAPH 5.1.3

GAIN FLATNI (dB)ppK	SPEC. GAIN (dB)ppK		ACC RE		SDAR# 35 141/98
GAIN VERSU	S VOLTAGE SENS	SITIVITY TE	ST: ATP PA	RAGRAPH 5 1 A	
			<u> </u>	20101011111 0.1.4	
AMPLIFIER	GAIN		SPEC.		ENGINEERING DATA
VOLTAGE	READING (dBm)	ΔG/ΔV	ΔG/ΔV	ACC REL.	ENGINEERING 24869
9.96	70.11	2.75	7 0	(,94))	ONLY. SEE AE 24869 PARA. 3.2.1. 15.2
10.00	70.20	2.25	2.0		1 AND 3. C. (1) -
10.04	70.29				Λ.
ΔGv =	0-18 dB				
_				DATE ACC REJ	acceptable
ከለ ውም እነረ). <u>1331562</u> - 1 86	CD A C		e e	1
PARTINO	. <u>1331302- 18 G</u>	SPAC	EK QA	10-28-98	/
SER NO.	-7A68	TEST	FAILURE:		
	آ المسر		·		
TESTED	BY: <u>777</u>	FAILURE	ANALYSIS	NO	
END DAT	TE: <u>6-6-98</u>				
			Spacek Lab	s, Inc.	
END TIM	E: <u>1600</u>	•	212 E. Guti		
		•	Santa Barba	ra,CA,93101	

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nominal Temperatu	re Relative Gain	ΔG/ΔΤ	SPEC	ACC	REJ
T1 -6	GT1 71,84				
		* 0.014	0.035dB/°C	0	1
T2 + 8	GT2 71.65			J.	Fi
		* 0.025	0.020dB/°C		()
T3 +28	GT3 71,15			"	
		* 0.023	0.035dB/°C		1
T4 + 40	GT4 70,88			Ob))
. 10				No.	/

• Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{Ti} - G_{Ti+1}}{T_i - T_{i+1}}$$

$$\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \cancel{\cancel{-}54} dB \text{ Spec 1.4dB} \qquad ACC \underline{\qquad} RE.$$

PART NO. 1331562-185 SPACEK QA 10-28-98 PARA, 3.2.1.15. 1

SER NO. 7A68 TEST FAILURE:

TESTED BY: 777 FAILURE ANALYSIS NO. _____

Santa Barbara, CA, 93101

END DATE: 6-5-98 Spacek Labs, Inc.
END TIME: 1600 212 E. Gutierrez St.

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

\mathbf{D}	Δ	G.	н	#

11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP. PT.(dBm) ACC REJ
XXXXXXXX	10	-2.5	0,5	1.0 8-
X	20	•		
X X	50			
X X X X X X X X	100	-2,6	0.4	1.0 8-
X	150			
X X X X X X	200	-2.6	0.4	1.0 8-
X	400		· · · · · · · · · · · · · · ·	
X	500			
X	1000			
X	1500			

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-6-98 AMBIENT ROOM TEMPERATURE °C: 23°C

-20.1	_ 23,7	3.6	1,19
POWER AMBIENT (dBm)	POWER (-77 K)(dBm)	Y FACTOR (dB)	NOISE FIGURE (dB)
OUTPUT	OUTPUT		AMPLIFIER
AMPLIFIER	AMPLIFIER		

Above data taken with Daden filter attached (except -19) .

Intermediate test results for information only

PART NO. <u>13</u>	31562- 8 F	SPACEK QA	DATE ACC REJ
SER NO.	7A68	TEST FAILURE:	
TESTED BY:	277	FAILURE ANALYSI	S NO
END DATE:	6-5-98		
END TIME:	1600	Spacek Labs 212 E. Gutie Santa Barba	rrez St.

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 11-19-98 AMBIENT ROOM TEMPERATURE °C: +2/

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	_AGC	REJ
<u> 6</u>	43,3	-18,50	-20,30	1.80	3.5	3.8	QA 1	
<u>+8</u>	43.4	-18.80	- 20.60	1.86	3.5	3.8	QA	
+28	43.5	-19.10	-20,90	1.80	_3.5	3.8	QA 1	
+40	43.6	-19.30	-21,10	1.80	3.5	3	QA 1	
_		o be taken with	_	_		CC 1	REJ	

NEAT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 11-24-98 Ambient Room Temperature °C: 24

Attach computer generated $NE \Delta T$ spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0,039

Record Nps(K) O. OS for dash number from Aerojet specification AE-24869, Table II.

Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

		QA REJ
PART NO. <u>1331562- 186</u>	SPACEK QA	DATE ACC REJ
SER NO	TEST FAILURE:	
TESTED BY:	FAILURE ANALYSIS	S NO
END DATE: 1/-25-98		·
END TIME: 1600	Spacek Labs, 212 E. Gutier Santa Barbar	rez St.

Channels 9-14 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-19, S/N: 7A59)

		<u> </u>
		a.

TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN FLATNESS TEST: ATP PARAGRAPH 5.1.3

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

(dB)ppK

ACC

SDAR#35 12/1/98

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER

GAIN

READING (dBm) **VOLTAGE**

 $\Delta G/\Delta V$

SPEC. $\Delta G/\Delta V$

ACC REJ

ENGINEERING DATA

2.38

2.0

ONLY, SEE AFZ4869C

DATE ACC REJ

PART NO. <u>1331562-</u> 196

SPACEK QA

SER NO.

TEST FAILURE:

TESTED BY:

FAILURE ANALYSIS NO. _

END DATE:

Spacek Labs, Inc.

END TIME:

212 E. Gutierrez St.

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

Nominal Temperature (°C)	Relative Gain	ΔG/ΔΤ	SPEC	ACC	REJ
T1 - 6	GT1 61.67				
		* 0.030	0.035dB/°C	QA)
T2 + 8	GT2 61.25			1	
		* 0.041	0.020dB/°C	./	QA
T3 + 28	GT3 60.43			1	1- >
		* 6.046	0.035dB/°C		QA
T4 +40	GT4 59.88		1000		1

* Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G_{Ti} - G_{Ti+1}}{G_{Ti} - T_{i+1}}$$

$$i = 1,2,3,4$$

$$\Delta G_{T} = \frac{1,79}{dB}$$

 $\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = 2.38 \text{ dB Spec 1.4dB}$ ACC_

		DATE ACC REJ ENGINEERING DATA
PART NO. <u>1331562-/9</u> F	SPACEK QA	10.28-98 OA PARA. 3.2.1.15.1
SER NO <i>7A59</i>	TEST FAILURE:	acceptable.
TESTED BY:	FAILURE ANALYSIS	NO

END DATE: 6-5-98
END TIME: 1600 Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara, CA, 93101

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

_	•	~ TT	
-1)	А	SH	#

11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP. PT.(dBm) ACC REJ
X X X X X X X X	10	-2.5	0.5	1.0 5~
X	20			
X X	50			
X X X X X X X X	100			
X	150			
X X X X X X	200	-2.5	0.5	1.0
X	400	-2,3	0.7	1.0 8-
X	500			
X	1000			
X	1500			<u> </u>

AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-5-9 AMBIENT ROOM TEMPERATURE °C: 23°C

AMPLIFIER	AMPLIFIER		
OUTPUT	OUTPUT		AMPLIFIER
POWER	POWER	Y FACTOR	NOISE
AMBIENT (dBm)	(-77 K)(dBm)	(dB)	FIGURE (dB)
- 4 7		_	, , , ,
-26.2	-29,7	3.5	1.27

Above data taken with Daden filter attached (except -19).

Intermediate test results for information only

PART NO. <u>1331562- 19 F</u>	SPACEK QA	DATE ACC REJ
SER NO. <u>7A 59</u>	TEST FAILURE:	
TESTED BY:	FAILURE ANALYSI	S NO
END DATE: 6 - 5-98		
END TIME: 1600	Spacek Labs, 212 E. Gutie Santa Barbai	rrez St.

TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 11-19-98AMBIENT ROOM TEMPERATURE °C: +21

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB) ACC	REJ			
<u>-¢</u>	50,7	-25,40	-27. <i>30</i>	1.90	3,3	3.5				
<u>+8</u>	50.7	-25,70	-27.55	_1.85	3.4	3.5 QA				
+28	50.8	-26.10	-27.95	1.85	3.4	3.5 QA	<u> </u>			
+40	50.9	-26.30	-28,15	1.85	9,4	3.5 QA				
Noise figure change O, dB Spec is .5dB peak to peak on -20 ACC 1 REJ_NOTE: Above data to be taken with the Daden filter, except on the -19 unit.										

NEAT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 11-24-98 Ambient Room Temperature °C: 24

Attach computer generated $NE \Delta T$ spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.034

Record Nps(K) 0.07 for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

	AQC REJ
PART NO. <u>1331562- / 9/</u> F	SPACEK QA //-25-98 QA
SER NO	TEST FAILURE:
TESTED BY:	FAILURE ANALYSIS NO
END DATE: //-25-98	
END TIME: 1600	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

Channel 9 Amplifier

IF Amplifier (P/N:1331579-8, S/N: 110)

•

APPENDIX C ATP1772 DATA SHEET MODEL NUMBER VD722301 AEROJET P/N 1331579-8

s/N____10_

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.1.1	Examination of Product		Accept_X Reject	-	·	4-16-57
4.2.2	* Current Limiting Electrical	200 mA maximum Reg. VOLTAGE= NA VDC Total R= NA ohm max. current draw =	_ <i>N</i> /4_mA			<u>4-16-5</u> 7
2.2	Test					
4.4.1	* Polarity Reversal	No Damage	Current NA mA			
	Protection		Accept N/A Reject			4-16-57
	Short Open Protection	No Damage	Accept X Reject			4-16-57
	Output Coupling	Output shall be AC coupled	Accept X Reject			4-16-57
4.4.2	Gain vs. Freq. 5 MHz to 200 MHz	14.5dB Min., 15.5dB Max. -4°C to +40°C Attach x-y plot	Max 5.17 dB Min 5.07 dB Accept x Reject	Max 15.10 dB Min 15.01 dB Accept X Reject	Max [5.3] dB Min [5.13 dB Accept_ K Reject	4 <u>-16-57</u>
į.	Gain Flatness	.5 dB Maximum Worse Case	Accept X Reject O.20 dB	Accept X Reject O/19 dB	Accept X Reject O.18 dB	4-16-47
	Gain Temp. Sensitivity	+.22 dB from -4°C to +40°C Worse Case	Accept K Reject	Accept K Reject	Accept K Reject 0108 dB	<u>4-16-97</u>
4.4.3	Gain-Voltage Sensitivity	<pre><.5dB/v Worse Case</pre>		0,03 _{dB} 29,8 mA 30,5 mA	0,02 dB 34.6 mA 35.3 mA	
-	Input Currents	Attach X-Y Plot	33,5 mA Accept X Reject	Accept X Reject	Accept X Reject	4-16-5

NOTE: * TEST REQUIRED ON PROTOFLIGHT UNIT ONLY

0	Amplica, Inc.	1						
N	lewbury Park, CA 91320	SIZE	FSCM NO			ATP1	772	REV
DRA	AWN	A	510	25				<u> 1</u>
ISS	UED	SCAL	£		SI	HEET 34	OF 38	

APPENDIX C ATP1772 DATA SHEET MODEL NUMBER VD722301 AEROJET P/N 1331579-8

S/N_ 110

PARA	TEST	SPECIFICATION	+18°C	-4°C		
4.4.7	Compression	1 dB maximum Compression AT +10 dBm Output Power	Accept X Reject	-4-0	+40°C	DATE
		5 MHz 102.5 MHz 200 MHz	0,60 dB 0,60 dB 0,40 dB	0.40 dB 0.35 dB 0.20 dB	0.25 dB 0.25 dB 0.20dB	4-16-97
4.4.8	Stability	Stable with the input terminated into a 2.5:1 mismatch and the output at all impedance's.	Accept_X Reject		·	4-16-57
4.4.9	Start-up	Capable of starting operation at -30°C and +60°C with a maximum current draw of 45 mA	Accept X Reject			
		Maximum Current	375 _{ma}			4 <u>-17-9</u> 7

NOTE: Review all recorded data and signify acceptance below	ow.
(541)	
Technician Shoff	Date: 4-17-97
Quality Assurance time func	Date: 4-21-9)
CSI: Ml (176)	Date: 4-22-57
GSI:	Date: 4/17/97

Amplica, Inc.	7				
Newbury Park, CA 91320	SIZE	FSCM NO).		REV
DRAWN	A	510	25	ATP1772	
ISSUED	SCA	LE		SHEET 36 OF 3	88

Channel 10 Amplifier

IF Amplifier (P/N:1331579-9, S/N: 109)

•

APPENDIX C ATP1773 DATA SHEET MODEL NUMBER VD622301 AEROJET P/N 1331579-9

s/N_109_

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.1.1	Examination of Product		Accept X Reject			3 <u>-12-97</u>
4.2.2	* Current Limiting	200 mA maximum Reg. VOLTAGE= WA VDC Total R= WA ohm max. current draw =	_ <i>U/A</i> _mA			3-12-57
4.4	Electrical Test					
4.4.1	* Polarity Reversal Protection	No Damage	Current N/A mA Accept N/A Reject		٠.	<u>3-12-97</u>
	Short Open Protection	No Damage	Accept X Reject			3-12-97
	Output Coupling	Output shall be AC coupled	Accept X Reject			3-12-97
4.4.2	Gain vs. Freq. 150 MHz to 300 MHz	17.5dB Min., 18.5dB Max. -4°C to +40°C Attach x-y plot	Max 18.0/dB Min 17.82dB Accept K Reject	Max 17.93 dB Min 17.78 dB Accept X Reject	Max (8.03 dB Min 17.82 dB Accept x Reject	<u>3-12-9</u> 7
	Gain Flatness	.5 dB Maximum Worse Case	Accept X Reject 0.9 dB	Accept × Reject	Accept X Reject 0,2 dB	3-12-97
	Gain Temp. Sensitivity	+.22 dB from -4°C to +40°C Worse Case	Accept_X Reject	Accept X Reject 0.08 dB	Accept X Reject 0,03 dB	3 <i>-12-57</i>
4.4.3	Gain-Voltage Sensitivity Input Currents	<pre></pre>	35.0 mA 35.7 mA	0.02 dB 3.4 mA 32.2 mA 32.7 mA Accept_x	0,02 dB 36,9 mA 37,7 mA 38.3 mA Accept	
		Attach X-Y Plot	Reject	Reject	Reject	3-12-9

NOTE: * TEST REQUIRED ON PROTOFLIGHT UNIT ONLY

Amplica, Inc.	1					
Newbury Park, CA 91320	SIZE	FSCM NO				REV
DRAWN	A	510	25	ATP:	L773	
ISSUED	SCAL	E		SHEET 34	OF	38

APPENDIX C ATP1773 DATA SHEET MODEL NUMBER VD622301 AEROJET P/N 1331579-9

s/N 109

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.4.7	Compression	1 dB maximum Compression AT +10 dBm Output Power 150 MHz 225 MHz 300 MHz	Accept X Reject	0,40 dB 0,40 dB 0,35 dB	0,20 dB 0,25 dB 0,35 dB	3-12-97
4.4.8	Stability	Stable with the input terminated into a 2.5:1 mismatch and the output at all impedance's.	Accept_X Reject		·	3-12-57
4.4.9	Start-up	Capable of starting operation at -30°C and +60°C with a maximum current draw of 45 mA Maximum Current	Accept_X Reject			<u>3-13-97</u>

Technician	Stoffme (9711)		Date:_	3-/3-97
Quality Assurance_	June Juna		Date:_	3-17-97
CSI:	<u>'</u>		Date:_	
GSI:		(38.9)	Date:_	3/12/97

NOTE: Review all recorded data and signify acceptance below.

©Amplica,Inc.	7			<u> </u>
Newbury Park, CA 91320	SIZE	FSCM NO.		RE
DRAWN	A	51025	ATP1773	
	1 ~			

FREG, (MHZ)

CHIN(9B)

Cain (4B)

FREG. (MHZ)

Channels 11-14 Amplifier

IF Amplifier (P/N:1331579-7, S/N: 106)

		1
		_

APPENDIX C ATP1771 DATA SHEET MODEL NUMBER UD122301 AEROJET P/N 1331579-7

s/N 106

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.1.1	Examination of Product	,	Accept / Reject			12/4/96
4.2.2	* Current Limiting Electrical	200 mA maximum Reg. VOLTAGE= NA VDC Total R= NA ohm max. current draw =	H/A mA			N/A
4.4	Test					
4.4.1	* Polarity Reversal Protection	No Damage	Current N/A mA Accept_N/A Reject			<u>H/A</u>
	Short Open Protection	No Damage	Accept Reject			12-696
	Output Coupling	Output shall be AC coupled	Accept Reject			12.6-96
4.4.2	Gain vs. Freq. 255 MHz to 390 MHz	14.5dB Min., 15.5dB Max. -4°C to +40°C Attach x-y plot	Max 15,21dB Min 14,86dB Accept × Reject	Max 5,15 dB Min 14.02 dB Accept × Reject	Max 15,10dB Min 14,15dB Accept X Reject	12-10-90
	Gain Flatness	.5 dB Maximum Worse Case	Accept X Reject 0.35 dB	Accept × Reject 0.33 dB	Accept X Reject 0.45 dB	12-694
	Gain Temp. Sensitivity	+.22 dB from -4°C to +40°C Worse Case	Accept × Reject	Accept × Reject 0.00 dB	Accept X Reject O.12 dB	12-6-96
4.4.3	Gain-Voltage Sensitivity Input Currents	<pre><.5dB/v Worse Case</pre>	35,9 mA 36,6 mA	0.01 dB 31.0 mA 31.8 mA 32.3 mA Accept ×	0,0/ dB 38.6mA 39.3mA 39.9 mA Accept ×	
		Attach X-Y Plot	Accept_X Reject	Reject	Reject	12-4-90

NOTE: * TEST REQUIRED ON PROTOFLIGHT UNIT ONLY

©Amplica,Inc.					lasv.
Newbury Park, CA 91320	SIZE	FSCM NO			REV.
DRAWN	A	510	25	ATP1771	10
ISSUED	SCAL	.E		SHEET 35 OF 39	

APPENDIX C ATP1771 DATA SHEET MODEL NUMBER UD122301 AEROJET P/N 1331579-7

s/n 106

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.4.7	Compression	1 dB maximum Compression AT +10 dBm Output Power	Accept / Reject			
		255 MHz 322.5 MHz 390 MHz	./5 dB -20 dB -20 dB	.25 dB	.20 dB .20 dB .30 dB	12/5/96
4.4.8	Stability	Stable with the input terminated into a 2.5:1 mismatch and the output at all impedance's.	Accept_X Reject			12-6-96
4.4.9	Start-up	Capable of starting operation at -30°C and +60°C with a maximum current draw of 45 mA	Accept X Reject			
		Maximum Current	42.5 _{mA}			12-6-96

Technician Stoff (2711)

Quality Assurance Mine June Date: 12-6-96

CSI: Date: 2/10/97

NOTE: Review all recorded data and signify acceptance below.

Amplica , Inc.					
Newbury Park, CA 91320	SIZE	FSCM NO).		REV.
DRAWN	A	510	25	ATP1771	B
ISSUED	SCAL	.E		SHEET 37 OF	39

VERTICAL CALIBRATION .5 dB INCH MODEL UDIZZZOI S/N 106 GAIN VS FREQUENCY TECH SEPTIMENS NOTED DEG.C. 390 ٠+ الله و FREQ. (mHZ) 7-9731551 NA 255 (SD)WIH-155

GRIN-VOLTAGE SENSITIVITY VS. FREE.
VERTICAL CALIBRATION 0.5 dB INCH
TEMPERATURE 45 NOTE DEG.C.
TECH SALL DATE 12.6-9C.

--

Channel 11 Amplifier

IF Amplifier (P/N:1331579-10, S/N: 110)

			$\overline{}$
			_
			$\mathbf{\mathcal{L}}$
		ht.	

APPENDIX C ATP1774 DATA SHEET MODEL NUMBER UD114302 AEROJET P/N 1331579-10

s/N 110

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.1.1	Examination of Product		Accept X Reject		·	4-17-57
4.2.2	* Current Limiting	200 mA maximum Reg. VOLTAGE= NA VDC Total R= NA ohm max. current draw =				44747
4.4	Electrical Test					
4.4.1	* Polarity Reversal Protection	No Damage	Current N/A mA Accept N/A Reject		•	417.52
	Short Open Protection	No Damage	Accept_x Reject			4-17-97
	Output Coupling	Output shall be AC coupled	Accept_8 Reject			4-17-17
4.4.2	Gain vs. Freq. 255 MHz to 390 MHz	38.5dB Min., 39.5dB Max. -4°C to +40°C Attach x-y plot	Max 39.34 dB Min 39.96 dB Accept × Reject	Max 39.48 dB Min 39.09 dB Accept Reject	Max 39.06dB Min 30.64dB Accept_X Reject	4-17-97
	Gain Flatness	.5 dB Maximum Worse Case	Accept X Reject 0.38 dB	Accept X Reject 0.39 dB	Accept X Reject O.41 dB	4-1747
	Gain Temp. Sensitivity	+.44 dB from -4°C to +40°C Worse Case	Accept_X Reject	Accept X Reject O.15 dB	Accept X Reject 0.32 dB	4-17-97
4.4.3	Gain-Voltage Sensitivity Input Currents	<pre><.5dB/v Worse Case + .2dB for</pre>	38.6 mA	0.03 dB 36.8 mA 37.5 mA 38.1 mA	0,03 dB 38,9 mA 39,5 mA 40,2 mA	
	Input Garrane	Attach X-Y Plot	Accept X Reject	Accept_	Accept X	4-17-57

NOTE: * TEST REQUIRED ON PROTOFLIGHT UNIT ONLY

® Amplica,Inc.	7							IREV
Newbury Park, CA 91320	SIZE	SIZE FSCM NO.		ATP1774			1,,,,,	
DRAWN	A	510	25					
ISSUED	SCA	LE			SHEET	35	OF	39

APPENDIX C ATP1774 DATA SHEET MODEL NUMBER UD114302 AEROJET P/N 1331579-10

s/N_ 110

PARA	TEST	SPECIFICATION	+18°C	-4°C		
4.4.7	Compression	1 dB maximum Compression AT +10 dBm Output Power	Accept × Reject	<u></u>	+40°C	DATE
		255 MHz 322.5 MHz 390 MHz	0.60 dB 0.55 dB 0.75 dB	0.80 dB 0.60 dB 0.85 dB	0.60 dB 0.50 dB 0.70 dB	4-17-97
4.4.8	Stability	Unconditionally Stable	Accept_X Reject			4-17-97
4.4.9	Start-up	Capable of starting operation at -30°C and +60°C with a maximum current draw of 50 mA Maximum Current	Accept X Reject Y0/8 _{mA}		:	4-17-97

NOTE: Review all recorded data and sig	mify acceptance below.	
Technician c	Moffm (2711) Date:	4-17-97
Quality Assurance hine fun CSI: Melle Gine	Date:	4-21-9)
CSI: Welle Cim	Date:	4-22-57
GSI:	Date:	4/17/97
		•

Amplica, Inc.	1			
Newbury Park, CA 91320	SIZE	FSCM NO.	ATP1774	REV
DRAWN		51025	VILI14	
ISSUED	SCAL	E	SHEET 27 OF	39

Ghin (dB)

FREG, (MHZ)

MODEL UDIIH302 S/N 110
GRIN-VOLTRGE SENSITIVITY VS. FREG.

FREG. (mHZ)

ChIN(4B)

FREG. (MHZ)

Channel 12 Amplifier

IF Amplifier (P/N:1331579-11, S/N: 109)

			<u> </u>
			<u> </u>
)
		u.	

APPENDIX C ATP1775 DATA SHEET MODEL NUMBER UD415301 AEROJET P/N 1331579-11

s/N 109

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.1.1	Examination of Product		Accept X Reject			3-12-57
4.2.2	* Current Limiting	200 mA maximum Reg. VOLTAGE= //A VDC Total R= //A ohm max. current draw =	N/A ma			3-12-57
4.4	Electrical Test					3-10-1)
4.4.1	* Polarity Reversal Protection	No Damage	Current //A mA Accept //A Reject			3 <i>-12:57</i>
	Short Open Protection	No Damage	Accept X Reject			3-12-97
	Output Coupling	Output shall be AC coupled	Accept X Reject			3-12-47
4.4.2	Gain vs. Freq. 290 MHz to 355 MHz	42.5dB Min., 43.5dB Max. -4°C to +40°C Attach x-y plot	Max 43,23dB Min 42.77dB Accept X Reject	Max 43.25 dB Min42.99 dB Accept X Reject	Max 43.03dB Min 42.77dB Accept Reject	3-129
	Gain Flatness	.5 dB Maximum Worse Case	Accept X Reject O.26 dB	Accept × Reject dB	Accept_X RejectO.2(dB	3-12-97
	Gain Temp. Sensitivity	+.44 dB from -4°C to +40°C Worse Case	Accept X Reject	Accept X Reject 0.05 dB	Accept X Reject 0.20 dB	3-125
4.4.3	Gain-Voltage Sensitivity	<pre> <.5dB/v Worse Case</pre>	0,03 dB	0,03 dB 40,3 mA	0.01 dB 42.7 mA	
	Input Currents	7.6 to 8.4 Vdc 8.0v 50ma MAX. 8.4v Attach X-Y Plot	42.5 mA 42.9 mA Accept X Reject	HI.O MA HI.L MA Accept X Reject	43.4 mA 44.0 mA Accept × Reject	3-12-97

NOTE: * TEST REQUIRED ON PROTOFLIGHT UNIT ONLY

	Amplica, Inc.					
	Newbury Park, CA 91320 DRAWN		FSCM NO).		RE
			510	25	ATP1775	
	ISSUED	SCAL	Æ		SHEET 35 C	F 39

APPENDIX C ATP1775 DATA SHEET MODEL NUMBER UD415301 AEROJET P/N 1331579-11

S/N_109_

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	
4.4.7	Compression	1 dB maximum Compression AT +10 dBm Output Power	Accept X Reject		+40°C	DATE
		290 MHz 322.5 MHz 355 MHz	0.40 dB 0.55 dB	0.45 dB 0.50 dB 0.60 dB	<u>0,40</u> dB <u>0,50</u> dB	<u>3-12-57</u>
4.4.8	Stability	Unconditionally Stable	Accept_X Reject			<u>3-12-5</u> 7
4.4.9	Start-up	Capable of starting operation at -30°C and +60°C with a maximum current draw of 55 mA	Accept X Reject		·	
		Maximum Current	<u>44,3</u> ma			<u>3-13-1</u> 7

NOTE: Review all recorded data and signify acceptance bel	ow.
Technician Stoothman (2711)	Date: 3-/3-97
Quality Assurance there flero	Date: 3-17-97
CSI:	Date:
GSI:	Date: 3/13/47

Amplica, Inc.					1
Newbury Park, CA 91320	SIZE	FSCM NO		ATP1775	REV.
DRAWN	Α	510	1	AIF1//5	
ISSUED	SCAL	.ε		SHEET 37 OF 39	,

Crin(db)

FREG, (MHZ)

CHIN(9B)

CHIN(9B)

FREG. (MHZ)

Channel 13 Amplifier

IF Amplifier (P/N:1331579-12, S/N: 110)

		_
		•
		•

APPENDIX C ATP1776 DATA SHEET MODEL NUMBER UD315301 AEROJET P/N 1331579-12

s/N____110

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.1.1	Examination of Product		Accept_X Reject			4-17-57
4.2.2	* Current Limiting	200 mA maximum	:	ļ -		
	nimiteing	Reg. VOLTAGE= V/A VDC Total R= V/A ohm max. current draw =				
4.4	Electrical Test					4 <u>-17-9</u> 7
4.4.1	* Polarity Reversal	No Damage	Current			
	Protection		Accept A/A Reject			<u>4-17-9</u> 7
	Short Open Protection	No Damage	Accept x Reject			<u> 4-17-6</u> 7
	Output Coupling	Output shall be AC coupled	Accept_X Reject			4-17-57
4.4.2	Gain vs. Freq. 305 MHz to 340 MHz	44.5dB Min., 45.5dB Max. -4°C to +40°C Attach x-y plot	Max 45,24 dB Min 44,97 dB Accept × Reject	Max45,07dB Min 44,82dB Accept × Reject	Max 45.20 dB Min 44.91 dB Accept Reject	<i>4-17-</i> 97
	Gain Flatness	.5"dB Maximum Worse Case	Accept X Reject	Accept X	Accept K	,,,-,-
	Gain Temp.	+.44 dB from -4°C to	O.27 dB	O.25 dB	O.27 dB	<u>4-17-5</u> 7
	Sensitivity	+40°C Worse Case	Reject	Reject O/2 dB	Reject 0.08 dB	4-17-17
4.4.3	Gain-Voltage Sensitivity	<pre><.5dB/v Worse Case + .2dB for 7.6v</pre>	0.04 dB		0,04 dB 42.5 mA	
	Input Currents	7.6 to 8.4 Vdc 8.0v 50ma MAX. 8.4v Attach X-Y Plot	<u>42.1 mA</u> <u>42.7 mA</u> Accept ×		43.2 mA 43.8 mA Accept ×	., . 7
		ON PROTOFLIGHT UNIT ONL	Reject	Reject	Reject	<u>4-1 7-57</u>

HOTE: * TEST REQUIRED ON PROTOFLIGHT UNIT ONLY

©Amplica, Inc.	<u> </u>				
Newbury Park, CA 91320	SIZE	FSCM NO.	ATP1776		REV.
DRAWN	A	51025	11111770		
ISSUED	SCAL	E	SHEET	35 OF	39

APPENDIX C ATP1776 DATA SHEET MODEL NUMBER UD315301 AEROJET P/N 1331579-12

S/N_110

PARA	TEST	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.4.7	Compression	1 dB maximum Compression AT +10 dBm Output Power	Accept × Reject		1400	DATE
		305 MHz 322.5 MHz 340 MHz	0.40 dB 0.45 dB	0.45 dB 0.45 dB 0.45 dB	0,40 dB 0,40 dB	4-17-57
4.4.8	Stability	Unconditionally Stable	Accept X			9 4-17-54
4.4.9	Start-up	Capable of starting operation at -30°C and +60°C with a maximum current draw of 55 mA	Accept X Reject		· .	
		Maximum Current	<u> 44,5_{mA}</u>			4-17-85

NOTE: Review all recorded data and signify acceptance be	elow.
Technician S Whi (EVI).)	Date: 4-17-97
Quality Assurance The Juna	Date: 4-21-97
CSI: Mile line (176)	Date: 4- 22-97
GSI:	Date: 4/17/97

®Amplica,Inc.]					<u>_</u>
Newbury Park, CA 91320 DRAWN	SIZE	FSCM NO	Ì	ATP1776	R	EV.
ISSUED	SCA	LE	T T	SHEET	17 OF 39	_

CHIN(qB)

FREG, (MHZ)

FREG. (MHZ)

Chiu(dB)

Channel 14 Amplifier

IF Amplifier (P/N:1331579-13, S/N: 109)

		<u> </u>

APPENDIX C ATP1777 DATA SHEET MODEL NUMBER UD315302 AEROJET P/N 1331579-13

s/N 109

PARA	Test	SPECIFICATION	+18°C	-4°C	+40°C	DATE
4.1.1	Examination of Product		Accept X Reject			<u>3-13·9</u> 7
4.2.2	* Current Limiting	200 mA maximum Reg. VOLTAGE= V/A VDC Total R= V/A ohm max. current draw =				3 <u>-/3-</u> 9;
4.4	Rlectrical Test					
4.4.1	* Polarity Reversal Protection	No Damage	Current //A mA Accept //A Reject			3 <i>·13·\$</i> 7
	Short Open Protection	No Damage	Accept X Reject			<u>3-/3-6</u> /
	Output Coupling	Output shall be AC coupled	Accept X Reject			3-13-57
4.4.2	Gain vs. Freq. 315 MHz to 330 MHz	48.5dB Min., 49.5dB Max. -4°C to +40°C Attach x-y plot	Max 49.09 dB Min 48.9 dB Accept Y Reject	Max <u>45.2</u> 7dB Min <u>49.74</u> dB Accept × Reject	Max 48,76dB Minug,54 dB Accept x Reject	3-13-57
	Gain Flatness	.5 dB Maximum Worse Case	Accept K Reject O.18 dB	Accept X Reject 0.13 dB	Accept X Reject O.22 dB	3-13-9
	Gain Temp. Sensitivity	+.44 dB from -4°C to +40°C Worse Case	Accept X Reject	Accept × Reject 0.23 dB	Accept X Reject	3-13-5
4.4.3	Sensitivity	<pre><.5dB/v Worse Case</pre>	46.9 mA	0.05 dB 44,6 mA 45,3 mA	0.04 dB 47.5 mA 48.2 mA	
	Input Currents	55ma MAX. 8.4v Attach X-Y Plot	H7.6 mA Accept x Reject	45.9 mA Accept x Reject	48,5 mA Accept × Reject	3-13-9

HOTE: * TEST REQUIRED ON PROTOFLIGHT UNIT ONLY

Amplica , Inc.								lor
Newbury Park, CA 91320	SIZE	FSCM NO		λT	P1777			RE
DRAWN	Α	510	25	KI				
ISSUED	SCAL	E			SHEET	35	OF	39

APPENDIX C ATP1777 DATA SHEET MODEL NUMBER UD315302 AEROJET P/N 1331579-13

S/N 109

PARA	TEST	SPECIFICATION	+18°C			_
4.4.7	Compression	1 dB maximum Compression AT +10 dBm Output Power	Accept X Reject	-4°C	+40°C	DATE
		315 MHz 322.5 MHz 330 MHz	0.60 dB 0.65 dB	0.65 dB 0.65 dB 0.70 dB	0.60 dB 0.60 dB 0.65 dB	3-13-57
4.4.8	Stability	Unconditionally Stable	Accept_X Reject			3-13-57
4.4.9	Start-up	Capable of starting operation at -30°C and +60°C with a maximum current draw of 60 mA	Accept_X Reject		·	
		Maximum Current	49,6 ma			3 <u>-13-5</u> 7

NOTE: Review all recorded data and signify acceptance below.

Technician Shoffma (Etl)	Date:3~/3-67
Quality aggreen -	Date: 3-(7-9)
CSI:	Date:
GSI:	Date: 3-13-97

Mamplica, Inc.	1			\ \ \
Newbury Park. CA 91320 DRAWN	SIZE	FSCM NO 510	ATP1777	REV.
ISSUED	SCAL	.E	 SHEET 37 OF 3	9

CHIN (9B)

FREG, (MHZ)

FREG. (MHZ)

CHIN(9B)

FREG. (MHZ)

Channel 15 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-20, S/N: 7A60)

		<u> </u>
		J
		_

TEST DATA SHEET NO. 6. AMPLIFIER

GAIN FLATNESS TEST:	ATP PARAGRAPH 5.1.3

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

1.13

(dB)ppK

1.00

ACC REJ

SPAR# 35 12/1/98

GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER VOLTAGE

GAIN

READING (dBm)

SPEC. ΔG/ΔV

ACC REJ

59.80

1.25

ΔG/ΔV

2.0

59.85 59,90 0.10 dB

DATE ACC REJ

PART NO. 1331562- 20 6

SPACEK QA

10-28-98

SER NO. 7A60

TEST FAILURE:

TESTED BY: $\frac{7}{7}$

FAILURE ANALYSIS NO.

END DATE:

END TIME:

Spacek Labs, Inc. 212 E. Gutierrez St.

Santa Barbara, CA, 93101

TEST DATA SHEET NO. 7. AMPLIFIER TESTS

GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nomina (°C)	al Temperature	Relat	ive Gain	ΔG/ΔT	SPEC	ACC	REJ
T1	-6	GT1	61.10				
				* 0.036	0.035dB/°C		04
Γ2	+8	GT2	60.60			1	1
				0,053	0.020dB/°C		1
Г3	+28	Gтз	59.55			·	V
	, 00			* 0.046	0.035dB/°C		19
	140	GT4	59.00			 \	

*Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \frac{G\pi - G\pi + 1}{T_i - T_{i+1}}$$

$$i = 1,2,3,4$$

$$\Delta G\tau = \frac{2.1}{dB}$$

 $\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \frac{2.6}{0.6} \text{ dB Spec 1.4dB} \qquad ACC \underline{\qquad} \text{REJ}$

		DATE ACC REJ ENGINEERING DATA ONLY. SEE AE2486
PART NO. <u>1331562- 20 F</u>	SPACEK QA	11-25-98 PARA. 3.2.1.15.1 acceptable
SER NO. 7A60	TEST FAILURE:	
TESTED BY: 774	FAILURE ANALYSIS	NO

END DATE: 6-5-98

END TIME: 1600

Spacek Labs, Inc.
212 E. Gutierrez St.
Santa Barbara, CA, 93101

TEST DATA SHEET NO. 8. AMPLIFIER TESTS

OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

		~~~	
רד	٨	CLI	#
	~	ידרי	**

· · · · · · · · · · · · · · · · · · ·					
		P2	OUTPUT	SPEC.	
11 12 13 14 15 16 17 18 19 20	FREQ.	COMP	COMP.	COMP.	
	(MHz)	(dBm)	at+10(dBm)	PT.(dBm)	ACC REJ
X X X X X X X X	10		<u> </u>		
X	20				
хх	50				
X X X X X X X X	100				
X	150				
<u> </u>	200				<del></del>
X	400				( <u> </u>
X	500	-2.8	0.2	1.0	(0-1
X	1000	- 2.7	0.3	1.0	<b>3</b>
X	1500	-2.6	0.4	1,0	<u> క</u>

### AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6-5-98 AMBIENT ROOM TEMPERATURE °C: Z 3°

AMPLIFIER	AMPLIFIER		
OUTPUT	OUTPUT		AMPLIFIER
POWER	POWER	Y FACTOR	NOISE
AMBIENT (dBm)	(-77 K)(dBm)	(dB)	FIGURE (dB)
-24.2		<b>~</b> 0	. 05
- 29.0	- 27.1	2. 9	1.83

Above data taken with Daden filter attached (except -19).

### Intermediate test results for information only

PART NO. <u>1331562-</u> 20F	SPACEK QA	DATE ACC REJ
SER NO. 7AGO	TEST FAILURE:	
TESTED BY: 77	FAILURE ANALYSIS	NO
END DATE: 6-5-78		
END TIME: 1600	Spacek Labs, 212 E. Gutier Santa Barbara	rez St.

### TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

# NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE:	11-14	-98AM	BIENT	ROOM	TEMPER	ATURE °	C:	+21	•
DATE:	<u> </u>	<u>- (Obytani</u>	DIEMI.	KOOM	TEMPER	AT UKE	U:	7 41	

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB) ACC	REJ
<u>-6</u>	111.5	-23.00	-24,20	1,20	572	6.5 QA	
+8	111.7	-23,20	-24,35	1.15	571	6.5 ON	
+28	111.9	-23.50	- 24.65	1.15	57/	6.5	
+40	1/2./	- 23.80	-24,95	1.15	571	6.5 QA	
_		O.   dB Spe o be taken with	-	-		CC REJ_	

### NEAT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 11-25-98 Ambient Room Temperature °C: 24

Attach computer generated  $NE \Delta T$  spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.050

Record Nps(K) 0.15 for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

		ACC REJ
		$\begin{pmatrix} QA \\ 1 \end{pmatrix}$
7.77		DATE ACC REJ
PART NO. <u>1331562-</u> 20 F	SPACEK QA	11-25-98 ( 1
SER NO. 7460	TEST FAILURE:	
TESTED BY: 777	FAILURE ANALYSI	S NO
END DATE: 11-25-98		
END TIME: <u>/600</u>	Spacek Labs, 212 E. Gutier Santa Barbar	rrez St.

SUBSYSTEM-LEVEL TEST DATA

		<u> </u>
		¥

Report No. 11491 June 1999

# CENTER FREQUENCY OF LOS

Channel No.	3	4	5	9	7	∞	9-14 ***	15
Specification (GHz) *	50.3	52.8	53.596	54.4	54.94	55.5	57.290344	89.0
Setting Accuracy (+/-GHz)	0.008	0.003	0.003	0.003	0.003	0.008	0.000086	0.08
Measured (GHz) **	50.30088	52.80055	53.59587	54.40085	54.94019	55.50067	50.30088 52.80055 53.59587 54.40085 54.94019 55.50067 57.290323	88.97955
							57.290315	

* Specification in vacuum condition.

^{**} Measured at ambient pressure (standard atmosphere).

^{***} Measured data for PLO No. 1 and No.2.

		<b>.</b>
		_
		<b>)</b>

### **TEST DATA**

### **FOR**

AMSU-A1-2 (P/N: 1356409-1, S/N: F06)

		<u> </u>
		_
		<b>)</b>

# TEST DATA SHEET 1 LO Frequency Test Data (Paragraph 3.5.1) (A1-1)

Test Setup Verified: Qame The Standard	Baseplate Temperature (T _B )_	25	_°C
Signature			

Compo-	CI	nannel	V _b (V)	I _b (mA)		P _{dc} (mW)		f _o (GHz)		
nent		No.			Required (Max)	Measured	Pass/ Fail	Required	Measured	Pass/ Fail
		6	+9.97	180.98	2,700	1804, 37	P	54.400 ± 0.003	54.40084	P
		7	+9.94	17546	2,700	1746.06	P	54.940 ± 0.003	54,94019	P
		9	Posi-		9,000				977	
		10	tive		(13,500)*		!			7
	LO	11	+15.14	5204		7878.86	P	57.290344	57.29052	P
	No.	12	Nega-		1,500			± 0.000086		
LO	1	13	tive							
		14	-i5.14	-67.94		1028.61			1	720
		9	Posi-		9,000					
		10	tive		(13,500)*					
	LO	11	+15.11	691.89		10454.46	P	57.290344	57.29031	P
	No.	12	Nega-		1,500			± 0.000086		
	2	13	tive						<b>12.7</b> §	
		14	-15/4	-47.53		1022.40	P			
		15	+14.89	156.68	3500	2332.97	P	88.980 ± 0.080	88.97918	P
Mixer/ Amps		All	+9.94	248.74	2,550	2472.48				
IF Amps		All	+7.96	213.5	5,500	2097.46				
				Primary	1					
				(LO#1)	(29,010)*	19.360.81	100			
7	OTAL	-	Rec	undancy (LO #2)	24,510 (29,010)*	21930.20				

	(LO#1)	(29,010)*	19.360.81	
TOTAL	Redundancy (LO #2)	24,510 (29,010)*	21930.20	
Indicates required value	ues for the PLO specifie	d in AE-266	60.	Pass = P, Fail = F
5/0# 622627				_O 2 Lock Detect
Part No.: 135642	9-2		Test Engine	er: Mary hounter
Serial No.: FO6				urance: \(\forall 1 \)

			<u> </u>
			<u> </u>
			<u> </u>
		ű	

MIN GHZ dBm Sec 1.00 883 -71.30 SWP 1.00 MKR 50.300 SPAN HARMONIC 14L Chan #3 Center Frequency  $\frac{N}{L}$ 300 ×B× OT N რ დ <del>დ</del> d B m 5/21/99 AI-2 FOL ATP 10 KIN СHи dBa (Z) \$00 \$00 88 MARKER × B 50.300 RES BW 0.0 -71. . 20 HD REF CNVLDSS CENTER 10 dB/ 35.0 g P

FOR REFERENCE ONLY 5/0: 337540







## TEST DATA SHEET 5 IF Output Test Data (Paragraph 3.5.2) (A1-2)

Test Setup Verified:	y. Trink	Baseplate Temperature (T _B )	28.0	_°C
_	Signature			

Compo- nent	Channel	V _b (V)	i _b (mA)	P _o (dBm)	Atten (dB)	P₀(dBm)		
	No.	\ \(\varphi\)				Required	Measured	Pass Fail
LO	3	9.93	187.0	- 25.28	2	-27.0 ± 1.0	-27.18	P
	4	10.02	204.6	-18.98	8	−27.0 ± 1.0	-27.05	P
	5	10.0	184.0	-20.01	7	-27.0 ± 1.0	-27.26	Р
	8	9.99	187.0	-19.77	7	-27.0 ± 1.0	-26.92	P
Mixer/ Amps	All	10.02	173.2	, A				

Pass = P, Fail = F

Part No.: 1356409-1	Test Engineer: Y. Vrink
Serial No.: FOL	Quality Assurance: Rema 19 5-21-99
Serial 140	Date: 5/21/99
	<i>Date</i>

# TEST DATA SHEET 8 (Sheet 1 of 2) Bandpass Characteristics Test Data (Paragraph 3.5.3) (A1-2)

Test Setup Verified: <u>Y. Vrink</u> Signature	Baseplate Temperature (T _B ) <u>28.0</u> °C
------------------------------------------------	--------------------------------------------------------

Compo-	Channel	V _b (V)	I _b (mA)	3 dB BW Frequency (MHz)		3 dB BW Frequency (MHz)		Pass/ Fail
nent	No.		<del> </del> _	Lower	Higher	Required Max.	Measured	1
LO	3	9.93	187.0	8.9	88.5	90	• 19.6	P
	4	10.02	204.6	8.0	198.2	200	190.2	P
	5	10.0	184.0	31.2	199.6	170	168.4	P
	8	9.99	187.0	7.5	162.7	163	155.2	P
Mixer/ Amps	All	10.02	173.2			24. 24.		

Part No.: 1356409-1	Test Engineer Y. Vrink
Serial No.: FD6	Quality Assurance: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Source: Sou
	Date: 5/21/99

# TEST DATA SHEET 8 (Sheet 2 of 2) Bandpass Characteristics Test Data (Paragraph 3.5.3) (A1-2)

Test Setup Verified:	Y. Vinh	Baseplate Temperature (T _B ) 28.0 °C
_	Signature	

Compo-	Channel	nannel V _b (V)	I _b (mA)	40 dB BW Frequency (MHz)		40 dB BW Frequency (MHz) (Ref. Only)		Pass/ Fail	
nent	No.			Lower	Higher	Required Max.	Measured		
LO	3	9.93	137-0	3.5	99.0	234 ′	95.5	P	
	4	lo.02	204.6	2.3	221.0	234	218.7	P	
	5	10.D	184.0	19.0	217.0	221	198	P	
	8	9.99	187.0	2.2	180	429	177.8	P	
Mixer/ Amps	All	10.02	173.2						

Part No.:1356409-1	Test Engineer: Y. Y.
Serial No.: Fo 6	Quality Assurance: Vono 1955-749
	Date: 5/21/99

























		•
		<u>)</u>

TEST DATA SHEET 11 (Sheet 1 of 8)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-2)

Test Setup Verified: Y. Yrinh	Baseplate Temperature (T _B ) <u>28.0</u> °C
Signature	

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	ν _c	(V)
nent	1 1 - 1			Mean	Standard Deviation		Mean	Standard Deviation	
				22.0	0.8916	.000230	-194.0,	0.6373	.000 22
				22.0	0.8916	.000241	-194.0	0.6390	.00026
				22.0	0.8915	.000226	-194.0	0.6402	.000 22
				22.0	0.8916	.000 262	-194.0	0.6420	.000 213
LO 3	3	9.93	9.93 187.0	22.0	0.8917	.000239	-194.0	0.6414	.00022
				22.0	0.8916	.000 240	-194.0	0.6433	.00023
				21.0	0.8916	.000234	-194.0	0.6423	.00022
				22.0	0.8916	.000254	-194.0	0.6413	.000 21
				22.0	0.8916	.000230	-194.0	0.6410	.00024
				22.0	0.8916	.000 245	-194.0	0.6416	.000 26
Mixer/ Amps	All	10.02	173.2						

Part No.: 1356409-1	Test Engineer: Y. Vril
Serial No.: FOL	Quality Assurance: (Con 5) 5-499
	Date: 5/21/99

			, <u> </u>
			•
			<b>)</b>
		u.	

# TEST DATA SHEET 11 (Sheet 5 of 8) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-2)

Test Setup Verified:	7. Vrink	Baseplate Temperature (T _B ) <u>28.0</u> °C
•	Signature	

	NF (dB)				NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
3	•	4.14				0.074			
		4.17				0.041			
		4.19				0.084			
		4.22				0.079			
		4.21				0.052			
		4.24				0.073			
	,	4.23				0.066		報報	
		4.21				0.053			
		4.20				0.075			
		4.21				0.016			
	5.1		4.20	P	0.12		0.061	0.048	P

Pass = P, Fail = F

Part No.: 1356409-1	Test Engineer: 2. Trinh
Serial No.: Fo6	Quality Assurance: \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \Quad \\Quad \Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \\Quad \Q
	Date: 5/21/99

		)
		<u>_</u>

#### AMSU-A TEST FOR REFERENCE ONLY

A1-2 F06 ATP CHANNEL 3.TB 28 5/21/99

een	TEMB TEGT	TEST TEMP	VOLTAGE	STD DEV	NF (dB)	NPS(K)
SEQ	TEMP_TEST	295.15	.89164179	.00022989		
3			.63733199	.00022303	4.13919646	.07445640
2	COLD TEST	79.15			7110010040	
3	WARM TEST	295.15	.89155117	.00024133		A480E450
4	COLD TEST	79.15	.63904046	.00026289	4.16979554	.04085429
5	WARM TEST	295.15	.89154714	.00022556		
5	COLD TEST	79.15	.64016548	.00022146	4.18936985	.08437128
7	WARM TEST	295.15	.89164697	.00026247		
8	COLD TEST	79.15	.64195120	.00021271	4.21928073	.07907347
ÿ	WARM TEST	295.15	.89166293	.00023868		
10	COLD TEST	79.15	.64137602	.00022662	4.20902019	.05153760
11	WARM TEST	295.15	.89155482	.00025975		
12	COLD TEST	79.15	.64325151	.00023470	4.24327826	.07252907
13	WARM TEST	295.15	.89162736	.00023390		
14	COLD TEST	79.15	.64233701	.00022879	4.22628905	.06611414
15	WARM TEST	295.15	.89163382	.00025350		
16	COLD TEST	79.15	.64130398	.00021587	4.20812757	.05269275
17	WARM TEST	295.15	.69160799	.00022993		
18	COLD TEST	79.15	.64100138	.00024346	4.20316961	.07542653
19	WARM TEST	295.15	.89160414	.00024532		
20	COLD TEST		.64162003	.00026197	4.21402479	.01603319

CH. 3 ,79.6 MHz MHz

NOISE FIGURE AVERAGE (d8) = 4.20224674506

NOISE POWER STABILITY (K) = .0513088712732

NOISE POWER STABILITY DELTA (K) = .0583380808979

 $MPS_MAX(K) = .0843712757893$   $MPS_MIN(K) = .0160331948914$ 

INTEGRATION TIME = .165

		_
		_

# TEST DATA SHEET 11 (Sheet 2 of 8) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-2)

Test Setup Verified:	4. Trinh	Baseplate Temperature (T _B ) _28.0 °C
-	Signature	• • • • • • • • • • • • • • • • • • • •

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	v _c	(V)
nent	No.			an .	Mean	Standard Deviation		Mean	Standard Deviation
				22.0	1.365	200225	-194.0	0.9919	.000 338
				22.0	1.366	.000255	-194.0	0.9926	.000 296
				22.0	1.365	.000251	-194.0	0.9915	.000308
				22.0	1.365	.000273	-194.0	0.7919	.000309
LO	4	10.02	204.6	22.0	1.366	000236	-194.0	0.9914	.000313
				22.0	1.366	.000235	-194.0	0.9915	.000273
				22.0	1.365	.000253	-194.0	0.9912	.000330
				22.0	1.365	.000247	-194.0	0.9911	.000302
				22.0	1.366	.000235	-194.0	0.9939	.000311
				22.0	1.366	.000238	-194.0	0.9916	.000299
Mixer/ Amps	All	10.02	173.2						

Part No.: 1356 409-1	Test Engineer: Y. Vinh
Serial No.: FoL	Quality Assurance: \Smo\\\\^2\\\S-\fg
	Date: $\frac{5}{21/99}$

		<u> </u>
		•

### TEST DATA SHEET 11 (Sheet 6 of 8)

easured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
			A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH				
	- COS			0.055			
4.33				0.044			
4.32				0.034			
4.32				0.071			
4.32				0.036			
4.32				0.033			
4.31				0.031			
4.31				0.023			
4.34				0.037			
4.32				0.030			
	4.32	P	0.08		0.041	0.048	Р
		<u> </u>			A	<del></del>	
	4.32 4.32 4.31 4.31 4.34 4.32	4.32 4.32 4.31 4.31 4.34 4.32	4.32 4.32 4.31 4.31 4.34 4.32	4.32 4.32 4.31 4.31 4.34 4.32 0.08	4.32 0.071 4.32 0.036 4.31 0.037 4.31 0.023 4.34 0.037 4.32 0.030	4.32 0.036 0.071 4.32 0.033 0.033 0.024 4.31 0.023 0.023 4.34 0.037 0.037	4.32     0.07/       4.32     0.03\(\omega\)       4.31     0.037/       4.31     0.023       4.34     0.037       4.32     0.030

Date:__

		_

#### AMSU-A TEST FOR REFERENCE ONLY

A1-2 F06 ATP CHANNEL 4: T8 28 5/28/89

SEQ	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.15	1.36538389	00022450		
2	COLD TEST	79.15	,99186660	.00033760	4,32157882	.05487636
3	WARM TEST	295.15	1.36551156	.00025506		
4	COLD TEST	79.15	.99259951	.00029569	4.32907672	.04350990
5	WARM TEST	295.15	1.36532958	.00025076		
Б	COLD TEST	79.15	.99148861	,00030769	4.31761838	.03409498
7	WARM TEST	295.15	1.36532241	.00027320		
B	COLD TEST	79.15	.99189657	.00030868	4.32245237	.07140882
9	WARM TEST	295.15	1.36550962	.00023587		
10	COLD TEST	79.15	.99144616	.00031305	4.31559387	.03550566
11	WARM TEST	295.15	1.36551931	.00023483		
12	COLD TEST	79.15	.99145885	.00027324	4.31565999	.03773120
13	WARM TEST	295.15	1.36531625	.00025275		
14	COLD TEST	79.15	.99117136	.00033007	4.31402326	.03866694
15	WARM TEST	295.15	1.36535305	.00024699		
18	COLD TEST	79.15	.99113879	.00030198	4.31333064	.02311716
17	WARM TEST	295.15	1.36551419	.00023522		222222
18	COLD TEST	79.15	.99391052	.00031104	4.34444927	.03715632
19	WARM TEST	295.15	1.36562428	.00023831		20000074
20	COLD TEST	79.15	.99159807	.00029946	4.31639629	.02962834

CH. 4 190.2 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.3210273587

NOISE POWER STABILITY (K) = .0405696677012

NOISE POWER STABILITY DELTA (K) = .0482916579679

 $NPS_MAX(K) = .0714098170789 NPS_MIN(K) = .023117159111$ 

INTEGRATION TIME = .165

		)
		)
		)

# TEST DATA SHEET 11 (Sheet 3 of 8) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-2)

Test Setup Verified:_	7. Trinh	Baseplate Temperature (T _B ) 28.0 °C
	Signature	• • • • • • • • • • • • • • • • • • • •

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	VH	(V)	T _C (°C)	Vc	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
				22.0	1.302	.000249	-194.0	0.9348	.000235
		••		22.0	1.302	.000 246	-194.0	0.9379	.000310
				22.0	1.303	.000222	-194.0	0.9358	.000337
	5	10.0	184.0	22.0	1.302	.000224	-194.0	0.9340	.00033
LO				22.0	1.303	.000214	-194.0	0.9340	.000 290
				22.0	1.303	.000240	-194.0	0.9343	.00030
				22.0	1.303	.000248	-194.0	0.9355	.00028
				22.0	1.303	.000232	-194.0	0.4342	.00027
				22.0	1.303	.000253	-1940	0.9378	.000242
				22.0	1.303	.000224	-194.0	0.9350	.00029
Mixer/ Amps	Ali	10.02	173.2	物門					

Part No.: 1356409-1	Test Engineer: Y. Vrush
Serial No.: Fob	Quality Assurance: Quality Assurance: ST 5-14-99
	Date: 5/21/99

		_
		)

#### TEST DATA SHEET 11 (Sheet 7 of 8) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-2)

					.,	(Faragraph		<del> </del>		
Test Sett	ip Verified:_	Y. Y. Signa	ature	Baseplat	e Temperatu	re (T _B )28	8.0 °C			
		NF (	(dB)		NPS (K)					
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail	
5		4.19				0.017				
		4.22				0.014				
		4.20				0.063				
		4.17				0.061				
		4.17				0.072				
		4.18				0.035				
		4.19				0.0089				
		4.18				0.049				
		4.22				0.033				
		4.18				0.061				
	5.1		4.19	P	0.08		0.042	0.063	P	
								Pass = P,	Fail = F	
Part No.:	13	56409-	-1		Test Engine	eer:	1. Vrul	9		
Serial No		Fo6		<del></del>	Quality Ass	surance:	7. Vril	/ (,為),	5-21-99	
					Date:	5,	121/19			

		<u> </u>
		<u> </u>
		•

AMSU-A TEST

# A1-2 FOR ATP CHANNEL 5, TB 28 5/21/99 FOR REFERENCE ONLY

SEO	TEMP_	TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
İ	WARM	TEST	295.15	1.30180039	.00024874		
2	COLD	TEST	79.15	.93482949	.00028500	4.19039732	.01745646
3	WARM	TEST	295.15	1.30225958	.00024592		~
4	COLD	TEST	79.15	.93792806	.00031007	4.22349942	.01401925
5	WARM	TEST	295.15	1.30257951	.00022239		
É	COLD	TEST	79.15	.93584964	.00033705	4.19588607	.06345461
7	WARM	TEST	295.15	1.30246583	.00022375		
Ē	COLD	TEST	79.15	.93397190	.00033371	4.17452278	.06144568
9	WARM	TEST	295.15	1.30256202	.00021439		
10	COLD	TEST	79.15	.93379664	.00029024	4.17162583	.07197885
11	WARM	TEST	295.15	1.30252310	.00023997		
12	COLD	TEST	79.15	.93432941	.00030163	4.17827899	.03459162
13	WARM	TEST	295.15	1.30252954	.00024756		
14	COLD	TEST	79.15	.93552448	.00028407	4.19243857	.00885745
15	WARM	TEST	295.15	1.30262326	.00023238		
15	COLD	TEST	79.15	.93424892	.00026968	4.17647047	.04928673
17	WARM	TEST	295.15	1.30262488	.00025344		
18	COLD	TEST	79.15	.93776945	.00024205	4.21844300	.03331024
19	WARM	TEST	295.15	1.30263354	.00022402		
20	COLD	TEST	79.15	.93495216	.00029286	4.18473771	.06128982

CH. 5 :168.4 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.19066336033

NOISE POWER STABILITY (K) = .041568172315 ...

NOISE POWER STABILITY DELTA (K) = .0631213952053

 $MPS_MAX(K) = .071978854047 MPS_MIN(K) = .00885745884163$ 

INTEGRATION TIME - .185

		_

## TEST DATA SHEET 11 (Sheet 4 of 8) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-2)

Test Setup Verified: Y. Vrink	Baseplate Temperature (T _B ) 28.0 °C
Signature	

Compo-	Channel	V _b (V)	l _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	V _c	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
				22.0	1.401	.000278	-194.0	1.0,49	.00026
			,	22.0	1.400	.000308	-194.0	1.042	.000 334
				22.0	1.400	.000269	-194.0	1.038	.000 24
				21.0	1.399	.000320	-194.0	1.034	.000314
LO	8	9.99	187.0	22.0	1.399	.000 295	-194.0	1.037	-000 341
				22.0	1.399	.000309	-194.0	1.034	.000327
				22.0	1.398	.000281	-194.0	1.035	.000 44.
				22.0	1.399	.000284	-194.0	1.034	.000 307
				22.0	1.399	.000285	-194.0	1.034	.000359
				22.0	1.399	200319	-194.0	1.034	.00369
Mixer/ Amps	Ali	10.02	173.2				. Aste		

Part No.:	1356409-1	Test Engineer: N. Vruh
Serial No.:	Fob	Quality Assurance: (57)5-21-99
		Date: 5/21/99

			•
			)
			<i>,</i>
		u u	

# TEST DATA SHEET 11 (Sheet 8 of 8) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-2)

Test Setu	Test Setup Verified: Y. Yrink Signature				e Temperatu	re (T _B ) <u>28</u>	<u>.o</u> .°C		-
		NF (	dB)		NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
8		4.69				0.017			
		4.62				0.082			
		4.57				0.039			
		4.55				0.095			
		4.56				0.062			
		4.53				0.081			
		4.54				0.031			
		4.53				0.044			
		4.53				0.042			
		4.53				0.094			
	5.0		4.57	Р	0.08		0.059	0.073	P
		<u> </u>		•				Pass = P,	Fail = F
Part No.:_	13:	56409-	İ	<del></del>	Test Engine	er:	7. Vru	br	
		FOL			Quality Ass	urance:			
					Date:	5	/21/99	·····	

		_
		i.

#### AMSU-A TEST FOR REFERENCE ONLY

A1-2 F06 ATP CHANNEL 8, TB 28 5/28/99

SEO	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
Ì	WARM TEST	295.15	1.40081908	00027825		
2	COLD TEST	79.15	1.04877835	.00026464	4.69234814	.01727865
3	WARM TEST	295.15	1.40028011	.00030837		
4	COLD TEST	79.15	1.04239357	.00033579	4.61870734	.08214577
5	WARM TEST	295.15	1.39978803	00026870		
6	COLD TEST	79.15	1.03761508	.00024813	4.56514604	.03919094
7	WARM TEST	295.15	1.39943119	.00031970		
Ē	COLD TEST	79.15	1.03611638	.00039374	4.55027598	.09536335
9	WARM TEST	295.15	1.39936886	.00029515		
10	COLD TEST	79.15	1.03704348	.00034117	4.56199846	.06150175
11	WARM TEST	295.15	1.39893405	.00030870		
12	COLD TEST	79.15	1.03439599	.00032669	4.53403442	.08140539
13	WARM TEST	295.15	1.39848400	.00028134		
14	COLD TEST	79.15	1.03468834	.00044234	4.54153724	.03130435
15	WARM TEST	295.15	1.39871334	.00029604		
16	COLD TEST	79.15	1.03380100	.00030702	4.52886029	.04357127
17	WARM TEST	295.15	1.39851146	.00028526		
İĒ	COLD TEST	79.15	1.03378615	.00035903	4.53046990	.04186324
19	WARM TEST	295.15	1.39889425	.00031888		45443750
20	COLD TEST	79.15	1.03366051	.00036931	4.52557814	.09400389

CH. 8 ,155.2 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.56518394874

NOISE POWER STABILITY (K) = .0587628596906

NOISE POWER STABILITY DELTA (K) = .0780847062878

NPS_MAX (K) = .095383352111 NPS_MIN (K) = .0172786458232

INTEGRATION TIME = .185

			<u> </u>
			•
			<u> </u>
		H	

### TEST DATA SHEET 17 Temperature Sensor and Thermistor Test Data (Paragraph 3.6.1) (A1-2)

Test Setup Verified:	7. 2rich	Baseplate Temperature (T _B ) 22.0	_°C
	Signature		

Reference Designation	Specification	Measured Value	Pass/Fail
RT 41	2200 ± 100 Ω	2,177 Ω	P
RT 42	2200 ± 100 Ω	2,175 Ω	P
RT 43	2200 ± 100 Ω	2,170 Ω	P
RT 44	2200 ± 100 Ω	2,175 Ω	P
RT 12	2200 ± 100 Ω	2,176 Ω	P
RT 17	2200 ± 100 Ω	2,176 Ω	P
RT 18	2200 ± 100 Ω	2,175 Ω	Р
RT 19	2200 ± 100 Ω	2,176 Ω	P
RT 22	2200 ± 100 Ω	2,175 Ω	Р
RT 33	2200 ± 100 Ω	2,170 Ω	P
TB 58	3000 ± 100 Ω	2,999 Ω	P
TB 59	3000 ± 100 Ω	3,003 Ω	17
TB 54	4.1 – 4.6 V	4.35 V	P

Pass = P, Fail = F

Part No.:	1356409-1	Test Engineer: Y. Vr. L
Serial No.:	F06	Quality Assurance: Sold Sold Sold Sold Sold Sold Sold Sold
		Date: 5/21/99

			)
			<u> </u>
		н	

#### TEST DATA SHEET 20

Survival Heater and Thermal Switch Test Data (Paragraph 3.6.2) (A1-2)

Test Setup Verified:_	4. Vrubs	Baseplate Temperature (T _B ) 22.0 °C
_	Signature	

	Open Switch		Closed Switch		
Reference Designation	>10 MΩ	Pass/Fail	Specification	Measured Value	Pass/Fail
HR1/TS1	750MD	P		44.37	P
	750 M.A.	Р	40 - 48 Ω	44.70	P
HR2/TS2	750MD	P		44.63	P
	750 Ha	P		44.77	P

Pass = P, Fail = F

Part No.:	1356409-1	Test Engineer: 2 2ruls
Serial No.:	F06	Quality Assurance: (194) 572/90
		Date: 5/21/99

			_
			)
		31	

## TEST DATA SHEET 22 (Sheet 2 of 3) Bias Voltage Verification Test Data (Paragraph 3.6.3) (A1-2)

Test Setup Verified:	7. Vil	Baseplate Temperature (T _B ) 23.0 °C
•	Signature	

Reference Designation	Specification	Measured Value (V)	Pass/Fail
Mixer/IF AMP Ch 3, 4, 5, 8	+10 ±0.1	10.01	P
DRO Ch 5	+10 ±0.1	9.99	P
DRO Ch 4	+10 ±0.1	10.01	P
DRO Ch 3	+10 ±0.1	9.96	P
DRO Ch 8	+10 ±0.1	9.98	P

		ı.	

### **TEST DATA**

### **FOR**

AMSU-A1-1 (P/N: 1356429-1, S/N: F06)

			<u></u>
			<u> </u>
		н	

## TEST DATA SHEET 2 LO Frequency Test Data (Paragraph 3.5.1) (A1-2)

Test Setup Verified:	7. Vinh	Baseplate Temperature (T _B )26.0_ °C
<del>-</del>	Signature	

Compo-	Channel	V _b (V)	I _b (mA)		P _{dc} (mW)		1	o(GHz)	
nent	No.			Required (Max)	Measured	Pass/ Fail	Required	Measured	Pass/ Fail
	3	9.97	186.8	2,700	1862.4	P	50.300 ± 0.008	50.300833	P
LO	4	10.02	204.5	2,700	2049.1	P	52.800 ± 0.003	52.800554	P
	5	10,0	183.8	2,700	1838.0	P	53.596 ± 0.003	53,595868	P
	8	9.99	186.8	2,700	1866.1	P	55.500 ± 0.008	55.500665	P
Mixer/ Amps	All	10.02	173.2	1,800	1735.5				
то	TAL			12,600	9351.1				

Pass = P, Fail = F

Part No.: 1356409-1	Test Engineer: Y. Vrills	
Serial No.: Fo6	Quality Assurance	(3) S/2/99
·	Date: 5/21/79	23501

			_
			<u> </u>
			<u> </u>
		й	

IR's/EQCR's/TAR's/TRR' COMMENTS 80 ٦  $P_{gg}$ RUN TIME SETUP **E 3** INSP 8 611119 STAMP PROD 1356429-3 The condition Fluts fb , verify plo lock voltage only per ae 26002/6 para 3.5.1 STEP PERFORM DELTA TRR PER P.D NO 76A AND ATTACH SIGNED CERT Mult.me PART NUMBER RETURN TO OP. 5031 FOR DOMC INSPECTION SET 1JP TEST EQUIPMENT TO VERIFY A66 PLO LOCK DETECT Receiver Azsy Power Conditioner RECORD PLO 42 LOCK VOLTAGE OPERATION DESCRIPTION SELECTION PLO Reley Feethorn NOTIFY INSPECTION TEST SET-UP IS READY RETURN TO S/O OPER BOTOL OSSS A1-1 RECEIVER ASSEMBLY TEST A NOTIFY INSPECTION OF START OF TEST ATTS ATTACH ENGINEERING DATA IO S/O VOLTAGE PER AE-26002/6, PARA 3.5.1 Current) INSPECT TEST SET UP PER GU TEST Muchimeter 4 (90°) A 24.719 MONITOR TEST OP 8038 PART DESCRIPTION TO S/O SPLIT REFERENCE SHOP ORDERS AMENDMENT# TEST A CENTER WORK TEST 7ATTS INSP 7CISM 7CISM INSP 7ATTS BARCODE OPERATION NUMBER SHOP ORDER NUMBER 732423

	_
	_
	<u> </u>











		<u> </u>
		•

# TEST DATA SHEET 4 IF Output Power Test Data (Paragraph 3.5.2) (A1-1)

Test Setup Verified:	day 2	mile	Baseplate Temperature (T _B )	<u>28</u> °c
, = <u>.</u> ———	Signature			

Compo-	Channel		Channel		Channel		V _b (V)	l _b (mA)	P _o (dBm)	Atten (dB)	Po	(dBm)	
nent		No.					Required	Measured	Pass/ Fail				
		6	9.97	180.9	19.60	7	-27.0 ± 1.0	26.9	P				
		7	9,93	176.9	19.50	7	-27.0 ± 1.0	26.8	P				
		9	Posi-		12.22	5	-27.0 ± 1.0	27.2	P				
		10	tive	15.13	7 23.58	3	-27.0 ± 1.0	267	P				
	LO	11	15.13		21.08	6	-27.0 ± 1.0	27.0	P				
	No.	12	Nega-		21.06	Ġ	-27.0 ± 1.0	27.0	6				
LO	1	13	tive	405/28/A	21.76	5	-27.0 ± 1.0	26.8	P				
		14	-15.13	-68,43	21.98	5	-27.0 ± 1.0	27.0	P				
		9	Posi-				-27.0 ± 1.0	27.2	2				
		10	tive	(00.0			-27.0 ± 1.0	267	6				
	LO	11	15.11	689.8			-27.0 ± 1.0	27.0	P				
	No.	12	Nega-				-27.0 ± 1.0	27.0	6				
	2	13	tive				-27.0 ± 1.0	26.8	٦				
		14	-15.13	-67.4			-27.0 ± 1.0	27.0	P				
		15	14.88	158-3	23.39	4(-8)	-27.0 ± 1.0	27.4	P				
Mixer/ Amps		All	9,93	249.1									
IF Amps		All	7.94	2668				也也是					

Pass = P, Fail = F

50 # 622627 Part No.: 1356429-2	Test Engineer: If any hamburt
Part No.: 1556727-2  Serial No.: F06	Quality Assurance:
	Date: 6/1/99

# TEST DATA SHEET 7 (Sheet 1 of 2) Bandpass Characteristics Test Data (Paragraph 3.5.3) (A1-1)

Test Setup Verified $(T_B)$ Baseplate Temperature $(T_B)$ $(T_B)$ $(T_B)$ $(T_B)$ $(T_B)$	С
-------------------------------------------------------------------------------------------	---

Component		Channel No.	V _b (V)	I _b (mA)		3 dB BW Frequency (MHz)		3 dB BW Frequency (MHz)	
					Lower	Higher	Required MAX	Measured	
LO		6	9.96	181.0	8.0	¥201.0	200	193.0	P'
		7	9.93	1761	8.8	199.2	200	191.2	P .
	LO	9	Positive		8.6	162.6	165	154.0	P
	No.	10		i	134.9	2547	78	34.8	P
					256.5	291.6	36	35.1	P
	1	11	15.13	522,8	353.0	387.3	36	34.3	P
		12	Negative		292.5	308.0	16	15.5	P
					334,2	351.8	16	15.6	P
		13			308,4	316.2	8	7.8	P
		į			328.3	334.2	8	7.9	P
					314.3	319.3	3	3.0	P
		14	-15.13	-68.29	325,3	328.3	3	3.0	P
	LO	9	Positive		8.7	142.7	165	154	P
	No.	10			1798	255 8	78	75.2	P
					254,5	291.6	36	35.1	P
	2	11	15.10	£86.0	<i>3</i> 53.0	387.3	36	34.3	P
		12	Negative		292,5	308.0	16	15.5	P
					334.2	351.7	16	15.5	P
		13			308.3	316.2	8	7.9	P
					328.3	336.2	8	7.9	P
	1	14			316.3	319.3	, 3	30	P
			-15.13	-67.32	325.3	328.3	3	3.0	P
		15	14.88	158.35	498	1446	1000	948	P
Mixer/An	nps	All	a Ha						
IF Amp	s	All				NAME OF			

Part No.: 1354429 - 2	Test Engineer: Name Lambur
Serial No.: FO6	Quality Assurance:
5/0# 622627	Date: 6/1/99

TEST DATA SHEET 7 (Sheet 2 of 2)

Bandpass Characteristics Test Data (Paragraph 3.5.3) (A1-1)	
Test Setup Verified: Ham hamle Baseplate Temperature (TB) 29.0 °C	
Signature	

		Sign	ature						
Compon	Component		V _b (V)	l _b (mA)	40 dB BW Frequency (MHz)		40 dB BW Frequency (MHz)		Pass/Fail
					Lower	Higher	Required MAX (Ref Only)	Measured	
LO		6	9.97	180.98	2.30	220,0	520.	217.7	P
		7	9.93	176.0		220.8	520	218.5	P
	LO	9	Positive	1	769.8	78.4	429	176.4	P
	No.	10	15.13	688.06	169.8	264.6	101	94.8	ρ
	1	11	13.17		NA	U/A	47	NIA	WA
		12	Negative		NIA	NA	21	NIA	Ula
		13		-67.36	NIA	NIA	10	NIA	Ula
		14	-15.13		NIA	NIA	4 5 kgk		wla
	LO .	9	Positive		2.0	178.8	429 💥	W1276-8	
	No.	10	ں خیا	688.4	169,9	264.4	101	94.5	ρ
,	2	11	15.11	MA	NA	NIA	47	NIA	NA
		12	Negative		NIA	Ula	21	N/A	NA
		13		4 > 26	NIA	NIK	10	NA	NIA
		14	-15.13	161.32	NIA	NIA	4	U/A	NA
		15	14.88	158.2	NIA	NIA	7800	NIA	NIA
Mixer/A	mps	All							
IF Am	ps	All							<b>新发生或性</b>

	Test Engineer: Hay hamb
Serial No.:_ FO6	Quality Assurance:
·	Date:5\d8/99

		<u> </u>
		•







































































		)
		<u> </u>

### TEST DATA SHEET 10 (Sheet 1 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified Signature

Baseplate Temperature (T_B) 27.9 °C

Signature

Compo- nent	Channel No.	ν _b (ν)	I _b (mA)	T _H (°C)	V _H Mean	(V) Standard Deviation	T _C (°C)	V _C Mean	(V) Standard Deviation
				22.0		.600178	-194.0	7732	.000202
				22.0	-1.075	.000217	-194.0	-7684	.000222
		9.97	181	22.0	-1.076	.000182	-194.0	- 7453	.000 199
				22.0	-1.677	.000163	-194.0	-7635	.000221
LO	6			27.0	-1.077	.000194	-1940	- 7603	.000220
	. 1			22.0	-1.078	.000221	-194.0	-7577	.00027
				17.0	-1.079	.000201	-194.0	- 7583	.000239
				27.0	-1.079	.000188	-194.0	7574	.000218
				22.0	-1.079	,000208	-194.0	7575	.000258
				220	-1.080	.000195	-194.0	- 7592	.000348
Mixer/ Amps	All	9.9	3 249						
IF Amps	All	7.95	267						

50#622627	
Part No.: 1356429-2	Test Engineer: James Fred Cambles
Serial No.: FO6	Quality Assurance:
	Date: 6/1/99

#### TEST DATA SHEET 10 (Sheet 16 of 30)

<u></u>		Noise Figur	e and Noise	Power Stabi	lity Test Data	a (Paragraph	3.5.4) (A1-I	)	
Test Sett	up Verified:_	y any		Basepla	te Temperatu	are (T _B )	<u>8</u> °C		
		Sign	ature						
	T		<del></del>		Γ	· · · · · · · · · · · · · · · · · · ·			
		NF	(dB)			·	NPS (K)	<del></del>	
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
6		4.21	4			. 049			
		4.13				. 072	-36-36		
		4.08				.039	差别		
		4.05				. 068			
		4.00				. 023			
		3.96				.074			
		3.96				.042			
	·	3.95				-021			
		3,94		1.000 3.000 3.000		.056			
Land Committee and		3.96				.026			
	5.15		4.03	P	.08		.047	.053	Р
							· F	Pass = P,	Fail = F
50# Part No.	62263 13564	27 129-2			Test Enginee	- Jo	ر المارية	amlu	1
	_	<u> </u>				C.	(A)		
Serial No.:	<u> 706</u>				Quality Assu	rance:		<del></del>	
			•	1	Date:	6/	1/99		

### FOR REFERENCE ONLY

AMSU-A TEST

A1-1 F06 ATP: CH6 NF & NPS: TB=28C: 5/28/99

555	TOWN TEST T	reat TEMP	VOLTAGE	STO_DEV	NF (dB)	MPS(K)
1 2	TEMP_TEST T WARM TEST COLD TEST	295.15 79.15	-1.07481264 77319582	.00017753 .00020238	4.21017432	.04940315
3 4	WARM TEST	295.15 79.15	-1.07522558 76841719	.00021553 .00022235	4.13723363	.07255957
5 5	WARM TEST	295.15 79.15	-1.07595592 76527825	.00018207 1.00019937	4.08539978	.03935754
7 8	WARM TEST	295.15 79.15	-1.07661687 76349294	.00016349 .00022090	4.05378618	.06783720
9 10	WARM TEST	295.15 79.15	-1.07727949 76025815	.00019374	4.00237729	.02251118
11	WARM TEST	295.15 79.15	-1.07778360 75768417	.00022052 .00027610	3.96216152	.07438180
13	WARM TEST COLD TEST	295.15 79.15	-1.07852778 75828415	.00020093 .00023888	3.96321061	.04182252
15	WARM TEST	295.15 79.15	-1.07879510 75741341	.00018847 .00021785	3.94877828	.02149874
17	WARM TEST	295.15	-1.07944755 75746203	.00020859 .00025784	3.94321239	.05580475
19 20	WARM TEST	295.15 79.15	-1.07986022 75922541	.00019517 .00034762	3.96327142	.02585336

CH. 6 ,193 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.02783965528

NOISE POWER STABILITY (K) = .0471029799417

NOISE POWER STABILITY DELTA (K) = .05288305\$4374

 $NPS_MAX(K) = .0743817962352$   $NPS_MIN(K) = .0214987367978$ 

INTEGRATION TIME = .165

Slo: 622627 PlN: 1356429-2 TDS 10

### TEST DATA SHEET 10 (Sheet 2 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Compo-	Channel	V _b (V)	l _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	Vc	(V)		
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation		
				22.0	-1.105	.000179	-194.0	7882	.000160		
				22.0	-1./04	.000194	- 194.0	7853	.000465		
				22.0	-1.104	.000199	-194.0	7808	.000218		
		9.93	176	22.0	-1.104	, 000 205	-194.0	-7808	.000415		
LO	7	כר. ד	110	22.0	-1.104	.000220	-194.0	-, 78/4	,000229		
		1		22.0	-1.104	. 000194	-194.0	7789	,000241		
				22.0	-1.105	. 000212	-194.0	7740	.000248		
				22.0	-1.105	. 000192	-194.0	7734	. 606258		
						22.0	-1.105	.000210	-194. C	7749	.000272
				22.0	-1.105	.000193	-194.0	7730	.000232		
Mixer/ Amps	All	9.93	249		, e - 5						
IF Amps	All	7.95	267								

SO# 622627 Part No.: 1356429-2	Test Engineer: James 7 - Hamble
Serial No.: FO6	Quality Assurance: 6 - 1 - 99

### TEST DATA SHEET 10 (Sheet 17 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: J. GamBLES	Baseplate Temperature $(T_B)$ 27 $^{\circ}$ C
Signature	

		NF (	dB)		NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
7		4.12				.055			
		4.09				.077			
		4.03				.019		<b>克斯</b>	
		4.02				- 040			
		4.03				.066			
		4.00				.006			
		3.95				.052			
		392				.029			
		3.94			61	.048			
		3.90		3		.025			
	5.15		4.00	7	.08		.036	. 050	P

Pass = P, Fail = F

S0# 622627 Part No.:_ 1356429-Z	Test Engineer: Yang Round
Serial No.: FOE	Quality Assurance:

#### AMSU-A TEST FOR REFERENCE ONLY

A1-1 F06 ATP, CH. 7 NF & NPS: 5/28/99 : TB=27

SEO i	TEMP_TEST	TEST TEM 295.15	P VOLTAGE	STO_DEV .00017940	NF (dB)	NPS(K)
2	COLD TEST	79.15 295.15	78821093 -1.10360238	.00015028	4.11985284	.05501261
4 5	COLD TEST	79.15	78538660 -1.10383078	.00046469	4.09150657	.02165142
5 6 7	COLD TEST	79.15	78079008	.00019850 .00021795	4.02660045	.01869931
8	WARM TEST	295.15 79.15	-1.10405362 78078842	.00020566 .00041492	4.02444489	.04042475
10	WARM TEST	295.15 79.15	-1.10416250 78141784	.00022000 .00022880	4.03192428	.06609632
11	WARM TEST	295.15 79.15	-1.10441616 77890403	.00019639 .00025095	3.99558646	.00636664
13 14	WARM TEST COLD TEST	295.15 79.15	-1.10489250 77600720	.00021190 .00024837	3.95238114	.05173466
15 16	WARM TEST COLD TEST	295.15 79.15	-1.10504164 77343202	.00019153 .00025831	3.91688787	.02929014
17 18	WARM TEST COLD TEST	295.15 79.15	-1.10499517 77488023	.00020980 .00027216	3.93646436	.04768799
19 20	WARM TEST COLD TEST	295.15 79.15	-1.10520618 77297629	.00019288 .00023177	3.90936481	.02530882

CH. 7 ,191.2 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.0010374828

NOISE POWER STABILITY (K) = .0362272658519 .

NOISE POWER STABILITY DELTA (K) = .0597296810856

INTEGRATION TIME = .165

5/0 622627 P/N 1356429-2 TDS 18

### TEST DATA SHEET 10 (Sheet 3 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Demo-16-16 Baseplate Temperature (T_B) 27.8 °C PLO No. 1 Signature

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	VH	(V)	T _C (°C)	٧c	
nent	No.	- B(°)	5( )		Mean	Standard Deviation		Mean	Standard Deviation
		Posi- tive		22.0	9357	,000177	-194.0.	6927	,000191
	,			22.0	9347	. 000189	-1940	-6917	.000164
				22.0	9344	.000188	-194.0	6891	.00017
		+15.13	523.57	22.0	9341	.000204	-194.0	6906	.000125
LO	9	Nega- tive		22.0	9338	,000238	-194.0	6902	.000350
		-1513	-68.31	22.0	9337	.000172	-194.0	-6881	,000207
				22.0	4338	.000182	-194.0	6884	.000 293
				. 22.ô	9339	.000194	-194.0	-6874	.00017
				22.0	-, 9337	.000183	-194.0	4875	.00028
				22.0	- 9337	.00020	-194.0	-,6873	.000230
Mixer/ Amps	All	9.93	249.2						
IF Amps	Ail	7.95	246.7						

56# 672G27	
56# 622627 Part No.: 1356429-2	Test Engineer: James Lambo
Serial No.: FO6	Quality Assurance:
Serial No.: 108	1 1, 109
	Date: 6 / 1/7/

56#622627 Part No.: 1356429-2

Serial No.: F06

Test Sett	up Verified: <u>'</u>		hannly ature	Basepla	te Temp <b>eratu</b>	re (T _B )	<u>-8</u> •c	PLO No. 1	
		NF	(dB)				NPS (K)		
Channel No.	Required (Max) Measured Average Pass/Fail				Required (Max)	Measured	Average	Delta	Pass/Fai
9		4.55				.050			
		4.54				. 634			
		4.50				P50.			
		9.53				.076			
		4.52				./32			
		4:49				.06(			
		4.49				. 03/			
		4.48				.051			
		4.48				-019			
		4.48				.073			
	4.7		4.51	P	.08		.056	.11	P

Quality Assurance:

Date: 6/1/99

#### AMSU-A TEST FOR REFERENCE ONLY

PLO 4-( A1-1 F06 ATP, CH 9 NF & NPS, TB = 28, 5/28/99

SEO	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.15	93574138	.00017702	:	24222477
2	COLD TEST	79.15	69274923	.00019053	4.54922082	.04956433
3	WARM TEST	295.15	93474459	.00018940		07400070
4	COLD TEST	79.15	69170614	.00016440	4.54373084	.03426935
5	WARM TEST	295.15	93442377	.00018827		
õ	COLD TEST	79.15	68912807	.00017307	4.50182935	.02897541
7	WARM TEST	295.15	93409656	.00020437		
ŝ	COLD TEST	79.15	69059598	.00012518	4.53239828	.07646589
9	WARM TEST	295.15	93380180	<b>.</b> 00023802		
10	COLD TEST	79.15	69021774	.00034985	4.52952110	.13253490
11	WARM TEST	295.15	93365069	.00017192		
17	COLD TEST	79.15	69805954	.00020695	4.49312946	.06061441
13	WARM TEST	295.15	93383597	.00018195		
14	COLD TEST	79.15	68845635	.00029848	4.49758459	.03063203
15	WARM TEST	295.15	93393514	.00019437		
16	COLD TEST	79.15	68740661	.00017766	4.47763345	.05147473
17	WARM TEST	295.15	93372291	.00018392		
18	COLD TEST	79.15	68753025	.00027995	4.48259843	.01928925
19	WARM TEST	295.15	93367749	.00020320		
20	COLD TEST	79.15	68728736	.00022964	4.47888174	.07324890

CH. 9 .154 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.50873128957

NOISE POWER STABILITY (K) = .0557169205816

NOISE POWER STABILITY DELTA (K) = .113245651048

NPS_MAX (K) = .132534897969 NPS_MIN (K) = .0192892469208

INTEGRATION TIME - .165

S/D 622627 P/N 1356429-2 TDS 10

#### TEST DATA SHEET 10 (Sheet 4 of 30)

Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: W hours	Baseplate Temperature (T _B ) 28 °C	PLO No. 1
Signature		

Compo-	Channel No.	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	V _c	
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
		Posi- tive		22.0	<u> </u>	.00274	194. 0	7189 - <del>,6927</del>	.000223 .000191
				22.0	9856 - <del>,9347</del>	.000 304	-194.0	71612 - <del>.6917</del>	,000224 <del>48i050</del> -2
				22-0	98 <i>54</i> - <del>.8979</del>	. 000324 - <del>200776</del> 4	194.0	-7170	.00027/
		15.13	523.57	22.0	- 9853	.000180	-194.0	7142	. 000 z <i>0</i> 8
LO	10	Nega- tive		27.0	- 98 56	. 000317	-194.0	-, 713 <i>9</i> 8	. 0 00224
		1		22.0	9856	. 000314	-194. D	7124	.000195
		-15,13	-68.31	27.0	- 9856	. 000264	-194.0	7133	. 000224
			60.31	22.0	7.9856	. 600263	-194.0	7129	. 000ZIZ
				27.0	7858	. 000291	-194.0	- 7/08	. ०००२५ ७
	·			27.0	9859	.000277	·194.0	7,7113	. 000229
Mixer/ Amps	Ali	9.93	249.2					d so a second	
IF Amps	All	7.95	266.7						

50#622627 Part No.: 1356429-2	Test Engineer: It any hours
Serial No.: FO6	Quality Assurance:
	Date: 6-1-99

TEST DATA SHEET 10 (Sheet 19 of 30)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Aary haml	Baseplate Temperature $(T_B)$ $\frac{\lambda 8}{}$ °C	PLO No. 1
Signature		

		NF (	dB)	ļ	NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
10	(Max)	4.37				.048			
		4.32				-094			
		4.34				-011			
		4.30				.133			
		4.29		16.0		.118			
		4.26				. 110			
		4.28	6.1			.076			
		4.76		12.00		.076			
		4.23				.061			
		4.24			M-193	.634			
	4.7		4. 29	P	0.12		.076	./22	P

Pass = P, Fail = F

50# 622627 Part No.: 1356429 - 2	Test Engineer: Hany Lamba
Part No.:	Quality Assurance: 1A
	Date: 62 / 1 / 49

# FOR REFERENCE ONLY

A1-1 F06 ATP, CH10 NF & NPS, TB = 27: 5/28/99

SEO	TEMP_TEST	TEST TEMP 295.15	VOLTAGE 98591287	STD_DEV 00027441	NF (dB)	NPS(K)
2 3	COLD TEST	79.15 295.15	71893736	.00022310	4.36609813	.04758456
4	COLD TEST	79.15	98566382 71612445	.00030409	4.32321491	.09397330
5	WARM TEST	295.15 79.15	98543101 71702212	.00032581 .00027142	4.34055505	.13337896
7 8	WARM TEST COLD TEST	295.15 79.15	98531129 71423235	.00028010 .00020781	4.29675267	.01146468
9 10	WARM TEST	295.15 79.15	98562767 71398182	.00031741 .00022385	4.28902310	.11804135
11 12	WARM TEST COLD TEST	295.15 79.15	98560483 71245468	.00031359 .00019511	4.26477902	.11079688
13 14	WARM TEST COLD TEST	295.15 79.15	98565588 71329759	.00026358 .00022371	4.27769772	.07524580
15 16	WARM TEST	295.15 79.15	98564157 71249207	.00026348	4.26495254	
17 18	WARM TEST	295.15	98585175	.00029126		.07623503
19	COLD TEST	79.15 295.15	71083718 98586345	.00025718 .00027724	4.23613450	.06126350
20	COLD TEST	79.15	71132332	.00022893	4.24373529	.03419300

CH. 10 ,74.8 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.29047821722

NOISE POWER STABILITY (K) = .0763177054919 .

NOISE POWER STABILITY DELTA (K) = .121914280538

 $NPS_MAX(K) = .133378961532$   $NPS_MIN(K) = .0114646809941$ 

INTEGRATION TIME # .165

S/D 622627 P/N 1356429 TPS 10

## TEST DATA SHEET 10 (Sheet 5 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Hay home	Baseplate Temperature (T _B ) <u>~</u> ℃	PLO No. 1
-------------------------------	----------------------------------------------------	-----------

Compo- nent	Channel No.	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V) Standard	T _C (°C)	V _c	(V) Standard
					Mean	Deviation		Mean	Deviation
		Posi- tive		22.0	-1.0103	. 000313	-194.	7477	8 5 5000
•.				21.0	-1.0104	. 000292	-194	7488	.000278
		15.13	570.4	27.0	-1.0108	.000372	-194	7480	. 000745
				22.0	-1.0114	.000332	-194	-,7460	.000262
LO	11	Nega- tive		27.0	-1.0119	,000299	-194	- 7483	.000262
				22.0	-1.0123	. 000354	-194	- 7479	. 000276
		-15.13	-67.94	22.0	~1.0128	.000289	-194	- 7464	.000743
			-61.77	22.0	-1.0129	. 000353	-194	.7462	. 000188
				22.0	-1.0133	.000297	-194	79 <i>5</i> 8	. 00 0251
				22.0	-1.0136	. 000308	-194	7465	. 000 36 8
Mixer/ Amps	All	9.94	248.7	- Line					
IF Amps	Ali	7.96	263.						

50# 622627	Test Engineer: Namy home
	( <b>4</b> 7)
Senal No.: FO6	Quality Assurance:
	Date: 6-1-99

		<u> </u>
		<u> </u>

# TEST DATA SHEET 10 (Sheet 25 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified Quantal Comment	Baseplate Temperature (T _B ) 28.0 °C	PLO No. 2
Signature		

	NF (dB)			NPS (K)					
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
10	(max)	4.22				.04			
		4.37				.08			
		4.42				. ০১			
		4.43				.07			
		4.45		<b>多数</b>		.09	29		
		4.42				107		100 m	
		4.45	100			.02			
		4.42				.10			
		4.46	2.5			,05			
		4.52				.015			
1	4.7		1-	P	0.12		.044	.09	P

Pass = P, Fail = F

50#622627 Part No.: 1356429-2	The complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete of the complete o
5-4	Test Engineer: 4 camble
Serial No.: PO(o	Quality Assurance:  Date: 6/1/97
	Date

### AMSU-A TEST FOR REFERENCE ONLY

A1-1 F06 ATP, CH 10 NF & NPS, PLO #2, TB = 27, 5/28/99

SEO			VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.15	98465808	.00027363		
2	COLD TEST	79.15	70871191	700342478	4.21605240	.04472320
3	WARM TEST	295.15	98376198	.00029438		
4	COLD TEST	79.15	71760936	.00034842	4.37004550	.07552666
5	WARM TEST	295.15	98360225	.00029705		
5	COLD TEST	79.15	72065408	.00019990	4.42228105	.08323359
7	WARM TEST	295.15	98352808	.00026438		
ខិ	COLD TEST	79.15	72087253	.00031860	4.42681849	.07385378
9	WARM TEST	295.15	98345163	.00030135		
10	COLD TEST	79.15	72201943	.00021255	4.44688321	.09370754
11	WARM TEST	295.15	98352734	.00029402		
12	COLD TEST	79.15	72024364	.00020649	4.41637452	.07557536
13	WARM TEST	295.15	98362830	.00028026		
14	COLD TEST	79.15	72216937	.00027885	4.44722146	·.01972985
15	WARM TEST	295.15	98356996	.00030930		
16	COLD TEST	79.15	72070246	.00021750	4.42347874	.10932635
17	WARM TEST	295.15	98345817	.00028573		
18	COLD TEST	79.15	72268303	.00025490	4.45791069	.05035304
19	WARM TEST	295.15	98339791	.00027859		
20	COLD TEST	79.15	72642016	.00024094	4.52175198	.01525691

CH. 10 ,75.2 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.41553409894

NOISE POWER STABILITY (K) = .0641286277288

NOISE POWER STABILITY DELTA (K) = .0940694363017

 $NPS_MAX(K) = .109326346934$   $NPS_MIN(K) = .0152569106327$ 

INTEGRATION TIME = .165

Sho 622627 PW 1356429-2 TDS D

## TEST DATA SHEET 10 (Sheet 11 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Camera Company	Baseplate Temperature $(T_B)$ $28.0$ $^{\circ}$ C	PLO No. 2
Signature		

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	Vc	(V)
nent	No.		- British		Standard Mean Deviation			Mean	Standard Deviation
		Posi- tive		22.0	-1.007	.000313	-1940.	7184	.000232
				22.0	1.007	. 000299	-194.0	7189	,00025
				22.0	-1.004	.000311	-194.0	7193	,00024
		+15.12	686.62	22.0	-1.004	,000301	-194.0	7188	,00022
LO	11	Nega- tive		22.0	-1.007	,000311	-194.0	7192	,00025
		~15.13	-67.32	22.0	-1.007	.000335	-194.0	7,7192	,00023
				22.0	-1.007	.000287	-194.0	-7208	,00027
				22.0	-1.008	,000271	-194.û	7264	.000252
				22.0	-1.008	.000248	-194.0	7225	.00026
				22.0	-1.007	.000311	-194.0	7243	,00021
Mixer/ Amps	All	9.94	249.2						
IF Amps	All	7.94	264.8				SEPTIME		

So# 622627 Part No.: 1356429 - 2	Test Engineer: Qames Que ambles
<b>.</b>	(ZA)
Serial No.: F06	Quality Assurance: 200
	Date: 6/1/99

#### TEST DATA SHEET 10 (Sheet 20 of 30)

Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)
---------------------------------------------------------------------------

		NF (	(dB)		NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
11		4.5 4				. 076			
		4.56				.052			
		4.54				. 18			
		4.50				.12			
		4.54				.007			
		4.52				.154			
		4.49				.063			
		4.49				٠/5٦			
		4.48				.03/	學是		
		4.48				.060			
	4.7		4.52	P	.12		-089	.175	P
							F	Pass = P,	Fail = F
50#	6226	27 429-2				, <b>y</b>	P	1.	_
	F06				Test Enginee	(7A)	) am		
Jenai 140	, - 0				Quality <b>Assu</b> Date:	ance:	199		

A1-1 F06 ATP, CH 11 NF & NPS, TB = 27: 5/28/99

SEQ	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1 -	WARM TEST		1.01028408	.00031267 .00023858	4.54563226	.07641590
2	COLD TEST	,	74771925	• •	4.54363226	.01041550
3	WARM TEST		1.01035128	.00029190		05400070
4	COLD TEST		74880770	.00027763	4.56295325	.05182639
5	WARM TEST	295.15 -	1.01075665	<b>-</b> 00037191		
6	COLD TEST	79.15	74798849	.00024520	4.54429320	.18214568
7	WARM TEST	295.15 -	1.01138533	.00033153		
8	COLD TEST	79.15	74596879	.00026221	4.50318512	.11675821
9	WARM TEST	1	1.01186288	.00029888		
10	COLD TEST		74829362	.00026211	4.53577066	.00752143
11	WARM TEST		1.01232337	<b>2.0</b> 0035364		
•			74794685	.00027557	4.52439471	.15408499
12	COLD TEST		1.01276134	.0002755		
13	WARM TEST				4.49282611	.06321792
14	COLD TEST		74635297	.00024336		.00321132
15	WARM TEST		1.01289446	<b>.</b> 00035305		
16	COLD TEST	79.15	74615357	.00022828	4.48794897	.15159855
17	WARM TEST	295.15 -	1.01333679	.00029697		
18	COLD TEST	79.15	74581438	.00025052	4.47707090	.03109729
19	WARM TEST		-1.01357944	.00030845		
20	COLD TEST	79.15	74649315	.00036234	4.48524788	.05960622

CH. 11 ,69.4 MHz MHz

NOISE FIGURE AVERAGE (dB) - 4.51602782505

NOISE POWER STABILITY (K) = .0894272565447

NOISE POWER STABILITY DELTA (K) = .174624242902

.182145675757 NPS_MIN (K) = .00752143285519 NPS_MAX (K) =

INTEGRATION TIME - .165

S/0 627627 PW 1356429-L TDS 10

#### TEST DATA SHEET 10 (Sheet 6 of 30)

Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Jan Komhn	Baseplate Temperature $(T_B)$ $\stackrel{\sim}{\sim}$ $\stackrel{\sim}{\sim}$ $\stackrel{\sim}{\sim}$ $\stackrel{\sim}{\sim}$	PLO No. 1
Signature		

Compo-	Channel	V _b (V)	l _b (mA)	T _H (°C)	V _H	(v)	T _C (°C)	Vc	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
·		Posi- tive		22.0	-1.0059	. 000390	194	7396	· 000 868
				22.0	-1.0056	.000447	194	7.7449	. 000465
		15.13	524	22.0	-1.0064	.000431	194	7942	. 000345
				22.0	7.0072	, 000 418	194	7 449	. 000359
LO	12			22.0	-1.0092	.000445	194	7458	. 000337
		Nega- tive		22.0	-1.0 <b>to</b>	. 000447	194	-, 7461	. 000351
			;	22.0	-1.0105	. 000460	194	7467	.000315
		-15.17	-68	22.0	-1.0106	. <del>00043</del> 4	194	7467	.000 420
				27.0	-1.0107	.000468	194	7439	.000336
				22.0	~ J.0109	.000468	194	-7420	.000345
Mixer/ Amps	All	9.93	249						
IF Amps	All	7.95	267						

50# 622627 Part No.: 1356429-2	Test Engineer: Hauf Lambur
Serial No.: FOG	Quality Assurance:  Date: 6 - 1 - 99

		NF (	(dB)				NPS (K)	<del></del>	
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
12	(mus)	4.46		蒙量		.172			
:		4.56				.045			
		4.53				-090			
		4.53				.124			
		4.53				.017			
		4.52				.026		·斯斯	
		4.53				.097			
		4.53				,087			
		4.48				.114			
		4.44				.114			
	4.7		4.51	Ρ	0.18		-088	. 155	P
								Pass = P,	Fail = F
Ent	6226	27				Λ	. 1	1	
30#		6429	_			$\nu_{\wedge}$	Λ 7	V	

# AMSU-A TEST FOR REFERENCE ONLY A1-1 F06 ATP, CH 12 NF & NPS, TB - 28, 5/28/99

SEQ 1	TEMP_TEST	TEST TEM		STD_DEV	NF (dB)	NPS(K)
2	COLD TEST	295.15 79.15	-1.00592178 73961616	.00039020 .00086796	4.45489668	.17193559
3 4	WARM TEST	295.15	-1.00561622	00044728		
5	COLD TEST	79.15 295.15	74492976 -1.00636078	.00046531 .00043057	4.55676969	.04532193
6	COLD TEST	79.15	74423061	.00034498	4.53586915	.09015058
7	WARM TEST	295.15	-1.00716180	00041832		
8 9	COLD TEST	79.15	74491813	.00035890	4.53745435	.12405776
10	WARM TEST	295.15 79.15	-1.00921725 74582639	.00044502 .00033710	4.52728842	01715700
11	WARM TEST	295.15	-1.00999880	.00044704	7.32720042	.01715708
12	COLD TEST	79.15	74605351	.00035098	4.52148208	.02653949
13 14	WARM TEST	295.15 79.15	-1.01051683	.00046009		
15	WARM TEST	295.15	74666477 -1.01063807	.00031541 .00043457	4.52526688	.09222026
16	COLD TEST	79.15	74674149	.00041980	4.52505380	.08262023
17	WARM TEST	295.15	-1.01066144	.00046784		
18 19	COLD TEST	79.15 295.15	74392725	.00033560	4.47841313	.11401377
20	COLD TEST	79.15	-1.01086601 74198344	.00046814 .00034540	4.44423650	.11368272

CH. 12 .31.1 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.51180898626

NOISE POWER STABILITY (K) - .087769941083 .

NOISE POWER STABILITY DELTA (K) = .154778507746

 $NPS_MAX (K) = .171935589508 NPS_MIN (K) = .0171570817615$ 

INTEGRATION TIME - .165

5/0 622627 PIW 1356429 - ~ TOS 6)

## TEST DATA SHEET 10 (Sheet 7 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Way how Baseplate Temperature (TB) 28 °C F	PLO No. 1
-----------------------------------------------------------------	-----------

Compo-	Channel	V _P (Λ)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	Vc	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
		Posi- tive		27,0	-1, 0524	. p.coo63.4	19.4.	7,7760	.600480
				27.0	-1.0502	. 000656	194	7753	· ০০০১।৪
e.		15.13	530	77.0	-1.0496	.600730	194	7.7742	. 000492
				27.0	-1.0493	. 000646	194	- 7718	. ხდა <b>ც</b> გ
LO	13			77-0	-1.0495	.000622	194	7719	.000494
	. 1	Nega- tive		٥. ړح	-1.0493	. 600674	194	-, 7728	.00042
				27.0	-10498	. 000695	194	7742	.00054
		15.13	-65	22.0	-1.0499	.000672	194	7746	. 00046
				22.0	-1.0501	.000673	194	7725	. 000478
				22.0	-1.9504	. 000\$14	194	r. 7727	.00049
Mixer/ Amps	All	9,94	250						
IF Amps	All	7.95	268						

50# 622627	
Part No.: 1356429-2	Test Engineer: Hay Combin
Serial No.: FO6	Quality Assurance:
	Date: 6/1/98

### TEST DATA SHEET 10 (Sheet 22 of 30) and Noise Rower Stability Test Data (Paragraph 3 5 4) (A 1-1)

Test Sett	up Verified:	Hany		Basepla	ite Temperati		0	PLO No. 1	2 ^ <b>1</b>
		NF	(dB)		NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
13		4.50	泛對			.157			
		4.51				.055			
		4.50				- 257			
		4.47				.068			
		4.47				.152			
		4.49				./34			
		4.50				-189			
		4.50				.178			
		4.47				-18			
		4.47				. 276			
	4.7		4.49	P	0.24		.149	-201	Р
						,	F	Pass = P,	Fail = F
50#	62262	27	)			ا	1	1	
	13564			<del></del>	Test Enginee			mli-	
Serial No.:	FOG	· · · · · · · · · · · · · · · · · · ·			Quality Assu	rance:	(2.5		
				;	Date:	4/1/	99		

ριο ει A1-1 F06 ATP, CH 13 NF & NPS, TB = 28 , 5/28/99

eca	TOMO TOOT	TECT TEM	P VOLTAGE	STD_DEV	NF (dB)	NPS(K)
SEU	TEMP_TEST	TEST TEM		.000E8420		
1	WARM TEST	295.15	-1.05245682	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 40000047	+0774107
2	COLD TEST	79.15	77604795	.00047993	4.49980043	.15734187
3	WARM TEST	295.15	-1.05015265	J.00065625		
Ą	COLD TEST	79.15	77529793	.00051826	4.51486372	.05525409
5	WARM TEST	295.15	-1.04957566	.00072955		
5	COLD TEST	79.15	77423482	.00049030	4.50473936	.25661068
7	WARM TEST	295.15	-1.04929558	00064601		
§	COLD TEST	79.15	77182110	.00048788	4.46983691	.06829533
9	WARM TEST	295.15	-1.04948099	00052179		
ΙŌ	COLD TEST	79.15	77187341	.00049475	4.46851312	.15276008
11	WARM TEST	295.15	-1.04934651	.00067418		
12	COLD TEST	79.15	77284674	.00042325	4.48542853	.13407867
13	WARM TEST	295.15	-1.04984640	.00069529		
14	COLD TEST	79.15	77424462	.00054630	4.50172674	.18869198
15	WARM TEST	295.15	-1.04988264	.00067233		
16	COLD TEST	79.15	77445881	.00046091	4.50470035	.12773121
17	WARM TEST	295,15	-1.05012724	.00057274		
18	COLD TEST	79.15	77252840	.00047789	4.47134129	.12757452
19	WARM TEST	295.15	-1.05036229	.00071409		
20	COLD TEST		77269985	.00049030	4.47131819	.22550908
£ 0	0000 ,00,					

CH. 13 ,15.7 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.48925985265

NOISE POWER STABILITY (K) * .149384749025

NOISE POWER STABILITY DELTA (K) - .201356607242

MPS_MAX (K) = .256610684174 NPS_MIN (K) = .0552540769314

INTEGRATION TIME = .165

S/D 622627 P/N 1356429-2 TDS 10

#### TEST DATA SHEET 10 (Sheet 8 of 30)

Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Kauf hamler	Baseplate Temperature (T _B ) 28 °C	PLO No. 1
<b>≸</b> ignature		

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	ν _c	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
		Posi- tive		27.0	9969	.00105	ιવય	- 7 <b>3</b> 53	.000679
				22.0	- 9942	. 000976	194	7.7330	. 000637
		15.13	524	22.0	7,9934	.00101	194	7312	.000767
				22.0	-, 9930	.000994	194	73 <i>1</i> 1	.00852
LO	14			22.0	- 9926	.000986	194	7.7340	. 000 847
		Nega- tive		22.0	- 9929	10100.	194	734 <i>1</i>	. 000840
				27.0	9932	1 PP 000 0	194	~. 7349	. 000669
		-15.13	-68	22.0	-, <b>9</b> 933	.00104	19 Y	733 <i>9</i>	.000691
				27.0	-, 9934	.00100	194	~ 7339	. 000666
				22.0	9933	. ०००१८५	194	7 <i>3</i> 35	· 0 <b>0</b> 0739
Mixer/ Amps	All	9.93	249						
IF Amps	All	7.95	267						

S0# 622627 Part No.: <u>1356429</u> -2	
Part No.: 1356429-2	Test Engineer: Hay Commen
Serial No.:_F06	Quality Assurance:
	Date: 6/1/99

## TEST DATA SHEET 10 (Sheet 23 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified:	Jary Lann Signature	Baseplate Te	mperature (T _B ) 28	_°C	PLO No. 1
----------------------	------------------------	--------------	--------------------------------	-----	-----------

		NF (	dB)		NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
14	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.50				.27			
		4.50				.18			
		4.48				.12			
		4.48				.07			
		4.53				12			
		4.53				.13			
		4.54				-10			
		4.52	是			.24			
	:	4.52				. 09			
		4.51				- 1 ]			
	4.7		4.51	P	0.36		.14	.20	P

50#622627 Part No.: 1356429-2	Test Engineer: I am hamle
Part No.: 1556727 C  Serial No.: F06	Quality Assurance:
	Date: 6/1/99

```
A1-1 F06 ATP, CH 14 NF & NPS. TB = 28.5/28/99
             PLOHI
SEO TEMP_TEST TEST TEMP
                      VOLTAGE
                                   STD DEV
                                                 NF (dB)
                                                             NPS(K)
   WARM TEST 295.15 -.99689887
 1
                                  .00105293
                                               -----
 2 COLD TEST
             79.15
                      -.73532333
                                  .00067899
                                               4.50384235
                                                              .26735294
 3 WARM TEST 295.15
                    -.99418508
                                  .00097572
 4 COLD TEST
             79.15
                    -.73301004
                                 .00063737
                                               4.49862563
                                                              .17806867
 5 WARM TEST 295.15 -.99342646
                                 .00100984
                                                             _____
 6 COLD TEST
             79.15 -.73121745
                                  .00076782
                                               4.47802157
                                                              .12471008
 7 WARM TEST 295.15
                      -.99304421
                                 ..00099454
                                               _____
 8 COLD TEST
             79.15 -.73110415
                                 .00085235
                                               4.48082477
                                                             .06895867
9 WARM TEST 295.15 -.99265006
                                 ..00098634
                                                             _____
10 COLD TEST
             79.15 -.73396269
                                  .00084668
                                               4.53369819
                                                              .12507975
11 WARM TEST 295.15
                    -.99294532
                                  .00101005
                                               _____
12 COLD TEST
             79.15 -.73411194
                                  .00083984
                                               4.53253197
                                                             .13010432
13 WARM TEST 295.15 -.99317247
                                  .00099120
                                               -----
14 COLD TEST
             79.15
                      -.73494736
                                  .00066886
                                               4.54381352
                                                              .09851447
15 WARM TEST
             295.15
                    -.99330843
                                  .00103964
                                               -------
16 COLD TEST
             79.15
                    -.73392949
                                  .00069050
                                               4.52492825
                                                              .24166569
17 WARM TEST 295.15 -.99342833
                                  .00100426
                                               ------
                                                             -----
18 COLD TEST
                    -.73391246
                                 .00066608
             79.15
                                               4.52314921
                                                              .08989609
19 WARM TEST 295.15 -.99330501
                                 .00098912
                                               _____
20 COLD TEST 79.15 -.73354274
                                 .00073949
                                               4.51845944
                                                             .11235292
CH. 14 .6 MHz
                   MHz
NOISE FIGURE AVERAGE (dB) = 4.51384215122
NOISE POWER STABILITY (K) = .143870361061
NOISE POWER STABILITY DELTA (K) =
                                     .198394271938
NPS MAX (K) =
                  .267352944163
                                     NPS_MIN (K) =
                                                      .0689586722245
INTEGRATION TIME - .165
```

5/0 622627 1/W 1356429-2 TOS 10

## TEST DATA SHEET 10 (Sheet 9 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: <u>Camerot Manages</u> Baseplate Temperature (T_B) <u>27.9</u> °C PLO No. 2 Signature

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H _	(V) Standard	T _C (°C)	Vc	(V) Standard
nent	No.				Mean	Deviation		Mean	Deviation
		Posi- tive		22.0	9389	.600183	-194:0.	4708	.000217
				22.0	-, 9376	.000187	-194.0	4716	.000155
				22.0	4370	,000199	-194.0	6722	.000139
		+15.11	686.61	22.0	9343	.000174	-194.0	6731	,00020
LO	9	Nega- tive		22.0	-19360	.000203	-194.0	6729	.000140
	1	-15.13	-67.32	22.0	9352	.000198	-194.0	6727	.000178
				22.0	9348	.000 202	-194.0	6760	.000223
				22.0	9348	.000193	-194.0	6768	,0003/4
				22.0	9345	. 000 205	-194.0	76770	.000174
				22.0	9339	.000191	-194.0	-6772	.000243
Mixer/ Amps	All	9.93	249.1						
IF Amps	All	7.94	266.7						

50 #622627	$\mathcal{X}_{i+1}\mathcal{X}_{i+2}$
50 # 622627 Part No.: 1356429-2	Test Engineer: James of Schools
Serial No.: FO6	Quality Assurance:
	Date: 6/1/99

### TEST DATA SHEET 10 (Sheet 24 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified	The mac	Baseplate Temp	perature (T _B ) <u>28.0</u>	°C	PLO No. 2

Signature

		NF	(dB)		NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
9		4.13				30,			
		4.16				.02			
		4.18				.06			
		4.20				.05			
		4.20				.07			
		4.21				,04			
		4.27	<b>新</b>			.07			
		4.28		調整		.04			
		4.29				, 07			
		4.30				.04			
	. 4.7		4.22	P	.08		.05	,04	P

	•
S0#622627	
SO # 622,627 Part No.: 1356429 - 2	Test Engineer: Camata amila
Serial No.: FO6	Quality Assurance:
	Date: 6/1/99
	Date. Y / 17

A1-1 F06 ATP, CH 9 NF & NPS, PL0#2, TB = 27, 5/29/99

S	ΕŌ	TEMP_	TEST	TEST TEM	P VOLTAGE	STD_DEV	NF (dB)	NPS(K)
	İ	WARM	TEST	295.15	93893120	.00018341		
	2	COLD	TEST	79.15	67084243	.00021709	4.13444271	.02617599
	3	WARM	TEST	295.15	93755849	.00018705		
	4	COLD	TEST	79.15	67155355	.00015453	4.16216590	.01623989
	5	WARM	TEST	295.15	93702201	.00019933		
	5	COLD	TEST	79.15	67215938	.00013864	4.17848039	.05869807
	7	WARM	TEST	295.15	93633844	J.00017350		
	មី	COLD	TEST	79.15	67308718	.00020683	4.20197123	.05444247
	9	WARM	TEST	295.15	93595403	.00020304		
Í	Ø	COLD	TEST	79.15	67285253	.00013966	4.20266388	.06745856
Í	1	WARM	TEST	295.15	93520574	.00019796		
1	2	COLD	TEST	79.15	67268653	.00017832	4.20885421	.05681383
Ť	3	WARM	TEST	295.15	93478983	.00020162		
İ	4	COLD	TEST	79.15	67599743	.00022654	4.26942055	.06605006
1	5	WARM	TEST	295.15	93476971	.00019269		
1	Б	COLD	TEST	79.15	67680330	.00031404	4.28330216	.04382841
Ì	7	WARM	TEST	295.15	93446194	.00020525		
İ	8	COLD	TEST	79.15	67700843	.00017624	4.29056309	.07392629
1	9	WARM	TEST	295.15	93386378	.00019077		
2	Ø	COLD	TEST	79.15	67721826	.00024274	4.30150544	.03831415

CH. 9 ,154 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.2236950359

NOISE POWER STABILITY (K) = .0501947716254

NOISE POWER STABILITY DELTA (K) = .0576864006853

 $NPS_MAX(K) = .0739262859507$   $NPS_MIN(K) = .0162398852654$ 

INTEGRATION TIME = .165

90 622627 PW 1356429-2 TOS 10

## TEST DATA SHEET 10 (Sheet 10 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified Commented and Baseplate Temperature (TB) 27.9 °C	PLO No. 2
Signature	

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	Vc	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
		Posi- tive		22.0	.9847	.000 274	-194.0	7.7087	.00344
				22.0	9838	.00294	-194.0	7174	,000348
				22.0	9834	.000 297	-194.0	-,7206	.000200
		15.11	484.58	22.0	9835	.000264	-194.0	7209	,00031
LO	10	Nega- tive		22.0	9835	.000301	-194.0	7220	,000213
		-15.12	67.30	22.0	-9835	.000294	-194.0	7202	.000204
				22.0	-9834	. 000280	-194.0	7222	,000279
				22.0	9836	.000309	-194.0	7207	.000218
				22.0	-, 9835	.000286	-194.0	-, 7227	,000 255
				22.0	-19834	.000279	-194.0	7264	,000241
Mixer/ Amps	All	9.93	249.2						
IF Amps	All	7.94	244.8						

50# 622627 Part No.: 1356429-2	Test Engineer: James 12 Mande
Serial No.: FOG	Quality Assurance: 200 Date: 199

### TEST DATA SHEET 10 (Sheet 26 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Campic Chamble	Baseplate Temperature (T _B ) 27.9 °C	PLO No. 2
Signature		

					T				
		NF	(dB)		NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
11		4.12				.07			
		4.13				-02			
		4.14				.07			
		4.13				.03			
		4.13				.07			
		4.13				-11			
		4.15				.06	100		
		4.24				.09			
		4.17		<b>新疆</b>		.12			
		4.20				.07			
	4.7		4.15	P	.12		.07	.10	P

50#622627	
SO#622627 Part No.:1356429-2	Test Engineer: James Plante
Serial No.: F06	Quality Assurance:
	Date: 6/1/997

		<u> </u>
		-

A1-1 F06 ATP, CH 11 NF & NPS, PLO # 2 , TB = 27, 5/29/99

SEO	TEMP_TEST	TEST TEMP VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.15 -1.00584978	.00031315	*	
2	COLD TEST	79.1571835987	.00023298	4.11912714	.07311259
3	WARM TEST	295.15 -1.00653461	.00029922		
4	COLD TEST	79.1571893819	.00025563	4.13132228	.02443773
5	WARM TEST	295.15 -1.00657042	.00031102		
6	COLD TEST	79.1571933743	.00026639	4.13700706	.06831935
7	WARM TEST	295.15 -1.00637681	.00030063		
੪	COLD TEST	79.1571875921	.00022560	4.13031455	.03303336
9	WARM TEST	295.15 -1.00667405	.00031133		
10	COLD TEST	79.1571918294	.00025691	4.13352945	.06896634
11	WARM TEST	295.15 -1.00717918	.00033540		
12	COLD TEST	79.1571919331	.00023739	4.12820421	.11596358
13	WARM TEST	295.15 -1.00720852	00028656		
14	COLD TEST	79.1572079403	.00027409	4.15225627	.06057554
15	WARM TEST	295.15 -1.00757064	.00027188		
16	COLD TEST	79.1572648765	.00025183	4.23598374	.09328883
17	WARM TEST	295.15 -1.00794775	.00024794		
18	COLD TEST	79.1572250474	.00026766	4.17032037	.12491184
19	WARM TEST	295.15 -1.00745625	.00031105		
2Ø	COLD TEST	79.1572433386	.00021670	4.20387985	.06873077

CH. 11 ,69.4 MHz MHz

MOISE FIGURE AVERAGE (dB) = 4.15434631315

NOISE POWER STABILITY (K) = .0731439954915

NOISE POWER STABILITY DELTA (K) = .100474104473

 $NPS_MAX_{(K)} = .124911838357$   $NPS_MIN_{(K)} = .0244377338835$ 

INTEGRATION TIME = .165

5/0 622627 P/N 1356429-2 TDS 10

## TEST DATA SHEET 10 (Sheet 12 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified:	Baseplate Temperature $(T_B)$ $\frac{27,9}{}$ °C	PLO No. 2
Signature		

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	v _c	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
		Posi- tive		22.0	-1.001	. 000430	-194.0	-,7191	.000379
				22.0	-1.001	.000407	-194.0	7166	,000350
				22.0	-1.001	.000421	-194.0	-,7212	.000296
				22.0	-1.001	.000426	-194.0	7199	,000313
LO	12	+15.12	486.41	22.0	-1.001	.000453	-194.0	7194	,000298
		Nega- tive		22.0	-1.002	,000462	-194.0	- 7202	, 600310
		-15.14	-67.33	22.0	-1.002	,000461	-194.0	-,7179	,000316
			:	22.0	1.002	.000421	194.0	-,7187	,000348
				22.0	-1.002	.000394	-194.0	-, 7189	,000307
				22.0	-1.002	,000460	-194.0	7166	,000253
Mixer/ Amps	All	9.93	249.1						
IF Amps	All	7.94	266.7						

50# 622627 Part No.:1356429-2	
Part No.: 1356721-2	Test Engineer: Comment of Comble
Serial No.:F06	Quality Assurance: 200
	Date: 6/1/99

## TEST DATA SHEET 10 (Sheet 27 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial C	Baseplate Temperature $(T_B)$ $28.0$ ${}^{\circ}C$	PLO No. 2
Signature		

		NF (	(dB)		NPS (K)					
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail	
12	(Max)	4.20				.08				
		4.16				.13				
		4.23				<i>i11</i>				
		4.21				.09				
		4.19				.07				
		4.20				.10				
		4.17				./0				
		4.18				.11				
		4.18				.15				
		4.15				.09				
	4.7		4.19	P	0.18		.10	,03	P	

50# 622 627 Part No.: 1356429-2	Test Engineer: Hand Rambu
•	(Constant)
Serial No.: FO6	Quality Assurance:  Date: (199)
	Date

A1-1 F06 ATP, CH 12 NF & NPS PLO# 2, TB =27, 5/29/99

SEQ	TEMP_TEST	TEST TEM	P VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.15	-1. <b>00095</b> 853	.00042977	~~~~~~~	
2	COLD TEST	79.15	71914436	.00037937	4.19583876	.08103122
3	WARM TEST	295.15	-1.00085886	.00040686		
4	COLD TEST	79.15	71664426	.00035022	4.15831769	.13230478
5	WARM TEST	295.15	-1.00105044	.00042106	~~~~~~	
6	COLD TEST	79.15	72118636	.00029610	4.22659987	.10531809
7	WARM TEST	295.15	-1.00098486	.00042559		
មី	COLD TEST	79.15	~.71993148	.00031350	4.20777312	.09336499
9	WARM TEST	295.15	-1.00144121	.00045289		
ΙŌ	COLD TEST	79.15	71942270	.00029803	4.19477752	.07283845
11	WARH TEST	295.15	-1.00167305	.00046229		
12	COLD TEST	79.15	72020807	.00031001	4.20437958	.10167712
13	WARM TEST	295.15	-1.00161975	.00046070		
14	COLD TEST	79.15	71793206	.00031580	4.16975450	.09683105
15	WARM TEST	295.15	-1.00182713	.00042082		
16	COLD TEST	79.15	71867053	.00034822	4.17885293	.10551018
17	WARM TEST	295.15	-1.00186088	.00039443		
18	COLD TEST	79.15	71899028	.00030674	4.18341869	.15396941
19	WARM TEST	295.15	-1.00185666	.00045985		
20	COLD TEST	79.15	71859231	.00025286	4.14655433	.09343839

CH. 12 ,31 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.18669740605

NOISE POWER STABILITY (K) = .103608368394

NOISE POWER STABILITY DELTA (K) = .0811309618299

 $NPS_MAX(K) = .153969408805$   $NPS_MIN(K) = .0728384469746$ 

INTEGRATION TIME = .165

Slo GZZ627 Plw 1356429-2 TDS 10

## TEST DATA SHEET 10 (Sheet 13 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: (T_B) 27.9 °C PLO No. 2 Signature

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H		T _C (°C)	V _c (V)	
nent	No.					Standard Deviation		Mean	Standard Deviation
		Posi-		20.			-1040		
		tive		22.0	-1.042	.000629	-194.0	7.7452	.00044
				22.0	-1.041	.000440	-194.0	77487	,00045
				22.0	-1.041	.000668	-194.0	7435	.00046
				22.0	-1.041	,000703	-194.0	-, 7421	.000455
LO	13	+15.12	486.62	22.0	-1.041	.000711	-194.0	7428	,00046
	, 1	Nega- tive		22.0	-1.041	,000641	-194.0	-7434	,00048
		75.13	-47.33	22.0	-1.041	. 000732	-194.0	774154	. 00047
				22.0	-1.041	,000585	-194.0	7439	.00049
				22.0	-1.041	,000631	-194.0	7,7458	,00044.
	·			220	-1.041	. 0007/1	-194.0	-,7449	.00047
Mixer/ Amps	All	9.94	249.3						
IF Amps	All	7.93							

50# 622627 Part No.: 1356429-2	Test Engineer: Quincile esquindo
Serial No.: FO6	Quality Assurance:
	Date: 6/1/93

### TEST DATA SHEET 10 (Sheet 28 of 30)

	<u> </u> 	NF			NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
13		4.15				.10			
		4.21				.06			
		4.13				. 13			
		4.11				. 20			
		4.12				,22			
		4.13				,05	<b>机机</b>		
		4.11				. 25			
		4.14				,20			
		4.17				,10			
		4.16				.22			
	4.7		4.14	F	0.24		.15	.20	P

	rass = r,
50# 622627 Part No.:1356429-2	
Part No.: 1356429-2	Test Engineer: James Test andic
Serial No.: FO6	Test Engineer: (17) Quality Assurance:
• "	Date: 6/1/99
	/

A1-1 F06 ATP. CH 13 NF & NPS, PLO #2, 5/29/99

```
NF (dB)
                                    STO DEV
SEO TEMP TEST TEST TEMP VOLTAGE
                                   .00062965
                                                ______
1 WARM TEST 295.15 -1.04192244
                                                               .10284345
                                                4.14516133
 2 COLD TEST
                                  .00044745
              79.15
                     -.74515540
                                                ______
 3 WARM TEST 295.15 -1.04080258
                                  .00064023
                                                              .05545794
                                                4.20928106
 4 COLD TEST
             79.15
                     -.74867008
                                   .00048525
                                  .00066776
                                                _____
                                                              _____
 5 WARM TEST 295.15 -1.04083112
                                                              .12656843
                                                4.13201323
 6 COLD TEST
             79.15 -.74348217
                                  .00046699
                                   .00070347
                                                              _____
 7 WARM TEST 295.15 -1.04060132
                                                              .20403604
                                                4.11408167
 8 COLD TEST
             79.15
                    -.74209845
                                   .00045479
                                                _____
                                                              _____
 9 WARM TEST 295.15 -1.04089414
                                   .00071125
                                                              .21769397
                                   .00046916
                                                4.12081215
10 COLD TEST
              79.15 -.74276449
                                                _____
                                                              _____
                                   .00064065
   WARM TEST 295.15 -1.04076879
11
                                                              .05168550
                                   .00048091
                                                4.13080866
             79.15 -.74335573
12 COLD TEST
13 WARM TEST 295.15 -1.04063924
                                  .00073241
                                                              .25125854
                                   .00047560
                                                4.10580228
   COLD TEST
             79.15 -.74155776
14
              295.15 -1.04054442
                                   .00058496
15 WARM TEST
                                                               .19690677
                                   .00049624
                                                4.14073711
              79.15 -.74386986
16 COLD TEST
                                                _____
                                   .00053076
17 WARM TEST 295.15 -1.04066181
                                                              .09704335
                                                4.16757351
                                   .00044219
18 COLD TEST
              79.15
                      -.74576923
                                                              _____
                                                _____
                                  .00071089
19 WARM TEST
              295.15 -1.04055003
                                                4.15728678
                                                               .21930915
                     -.74499462
                                  .00047134
20 COLD TEST 79.15
```

CH, 13 .15.8 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.14245025863

NOISE POWER STABILITY (K) = .152280223805

NOISE POWER STABILITY DELTA (K) = .199573141472

MPS MAX (K) = .251258638045 NPS_MIN (K) = .0516854965732

INTEGRATION TIME = .165

5/0 622627 1/N 1356429-7 TDS 10

#### TEST DATA SHEET 10 (Sheet 14 of 30)

Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified: _______ Baseplate Temperature (T_B) _____ 28.0 °C PLO No. 2 Signature

Compo-	Channel	V _b (V)	I _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	V _c	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
		Posi- tive		22.0	-, 9828	.000986	-194.0	-7023	,000 781
				22.0	9812	,000957	-194.0	-, 7022	.000767
:				22.0	4811	.000903	194.0	77025	.000723
				22.0	9815	.000976	-194.c	77036	,000722
LO	14	+15.12	486.62	22.0	-, 9817	,000949	-194.0	-, 7064	,000665
		Nega- tive		22.0	4817	.000970	-194.0	7.7063	,000705
		-15.12	-67.32	22.0	98/9	.000955	-194.0	7.7049	.000663
				22.0	9824	.000962	-194.0	7062	.000643
				22.0	9822	,000895	-194.0	.7044	.000667
				22.0	9825	,000488	-194.0	7070	,000619
Mixer/ Amps	All	9.94	249.3						
IF Amps	Ali	7.95	266.9						

50#622627 Part No.: 1356429-2	Test Engineer: Aamot and
Serial No.: FO6	Quality Assurance:
	Date: 6/1/99

## TEST DATA SHEET 10 (Sheet 29 of 30) Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified:	Baseplate Temperature (T _B ) <u>28.∂</u> °C	PLO No. 2
Signature		

		NF (	dB)				NPS (K)		
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
14	(max)	4.14				.04			
		4.15				.18			
		4.16				.31		新游	
		4.17				• 1 (		XC.	
		4.21				. 21			
		4.21				.14			
		4.19				.19			
		4.20				.17			
		4.18				, 32			
		4.21				.04			
	4.7		4.18	P	0.36		.17	.28	P

50# 622627 Part No.: 1356429 - 2	
	Quality Assurance:
Serial No.: FO6	Date: 6/1/99

A1-1 FØB ATP, CH 14 NF & NPS, PLO #2, TB = 27, 5/29/99

SEO	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
Ì	WARM TEST	295.15	98276260	.00098612		
2	COLD TEST	79.15	70232284	.00078053	4.13699887	.04321253
3	WARM TEST	295.15	98119250	.00095714		
4	COLD TEST	79.15	70215445	.00075697	4.15191779	.18375127
5	WARM TEST	295.15	98111568	.00090301		
5	COLD TEST	79.15	70254439	.00072330	4.15889575	.30711190
7	WARM TEST	295.15	98152291	.00097645		
8	COLD TEST	79.15	70363225	.00072223	4.17140654	.10897039
9	WARM TEST	295.15	98172910	.00094964		
10	COLD TEST	79.15	70642000	.00066512	4.21313301	.21008991
11	WARM TEST	295.15	98167689	.00097019		
12	COLD TEST	79.15	70625048	.00070475	4.21103790	.14051168
13	WARM TEST	295.15	98193312	.00095519		
14	COLD TEST	79.15	70494658	.00066265	4.18748253	.19346087
15	WARM TEST	295.15	98237425	.00098:95	~~~~~~~	
15	COLD TEST	79.15	70824040	.00054330	4.20292689	.17396432
17	WARM TEST	295.15	98219990	.00089538		
18	COLD TEST	79.15	70436461	.00066728	4.17529182	.32213446
19	WARM TEST	295.15	98251578	.00098886		
20	COLD TEST	79.15	70704237	.00051938	4.21402656	.04119471

CH. 14 ,8 MHz MHz

NOISE FIGURE AVERAGE (dB) = 4.18239147081

NOISE POWER STABILITY (K) = .172450204548

NOISE POWER STABILITY DELTA (K) = .280939750117

 $NPS_MAX(K) = .322134458821$   $NPS_MIN(K) = .0411947087039$ 

INTEGRATION TIME = .165

510 622627 11N 1356429-2 TDS 10

TEST DATA SHEET 10 (Sheet 15 of 30)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-1)

Test Setup Verified:	Tany hamlen Signature	Baseplate Temperature (T _B ) 28 °C	7
----------------------	--------------------------	-----------------------------------------------	---

Compo-	Channel	V _b (V)	l _b (mA)	T _H (°C)	V _H	(V)	T _C (°C)	V _C	(V)
nent	No.	1 20(1)	J. 7		Mean	Standard Deviation		Mean	Standard Deviation
				ય.∘	-1.0524	.000684	194:	-7760	. 000 48
				22.0	-).0502	·०००६५ <b>६</b>	194	- 7753	.∞05′8
				22.0	-1.0496	· 00 0730	194	7.7742	. 000491
				22.0	-1,0492	. 000646	194	77/8	.00048
LO	15	14.88	158	22.0	-1.0495	.000622	194	7719	.00049
	1			27.0	-1.0493	.000674	194	- 7728	.00047
				22.0	1.0498	.000695	194	7.7742	.00054
				22.0	-1.0499	.000672	194	- 7744	.0004
				27.0	-1.0501	.000672	194	- 7725	.0004
				22.0		1.000714	194	7727	.0004
Mixer/ Amps	All	9.93	249						
IF Amps	All	7.95	767						

S6# 622627  Part No.: 1356429-2  Serial No.: F06	Quality Assurance: 6/1/99
Senal No.:	Date: 6/1/99

#### TEST DATA SHEET 10 (Sheet 30 of 30)

		Noise Figu	re and Noise	Power Stab	lity Test Dat	а (Paragтaph	3.5.4) (A1-	1)	
Test Set	up Verified:	A am	1 Lound	Basepla	ite Temperati	ure (T _R ) 2	8 °C		
	•	Sign	ature			(- <b>B</b> )			
r	<del></del>				.,				
		NF	(dB)				NPS (K)		
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
15		6.76				.041			
		6.70	12.3			.050		T.	
		6.69				.067			
		6.72				٠٥4٦			
		6.72				· 09Z			
	ļ	6.69				.025			
		6.70				-06 (		器描	
		6.76				.030			
		6.75				.047		が発	
		677				.115			
	9.05		6.73	P	0.15		-057	-091	P
							F	Pass = P,	Fail = F
50#	6226	527						A	
_		429-2	<u> </u>	<u> </u>	Test Enginee	r: <u>I a</u>	of han	mh	
Serial No.:	FOE	· 			Quality <b>Assu</b>	rance:	(7A) 200		
				1	Date:	<u> </u>	1/99		

At-1 F06 ATP, CH15 NF & NPS: 5/28/99 TB = 27

SEQ	TEMP_TEST	TEST TEMP	VOLTAGE	STD_DEV	NF (dB)	NPS(K)
1	WARM TEST	295.15	89820738	.00007652	5 05503455	0 t 0 C 2 7 f C
2	COLD TEST	79.15	75785198	.00007964	6.76582155	.04062746
3	WARM TEST	295.15	89788916	.00007888		0.4000.407
4	COLD TEST	79.15	75569258	.00006581	6.70746390	.04962423
5	WARM TEST	295.15	89776834	.00008432		
6	COLD TEST	79.15	75534227	.00007688	6.69984726	.06709223
7	WARM TEST	295.15	89762732	.00006631		
\$	COLD TEST	79.15	75587868	.00011350	6.71994657	.04183757
Ī	WARM TEST	295.15	89865042	.00009402		
ŧΘ	COLD TEST	79.15	75690850	.00008534	6.72511906	.09241201
11	WARM TEST	295.15	89903232	.00006995		
12	COLD TEST	79.15	75601337	.00008600	6.68787104	.02498478
13	WARM TEST	295.15	89939185	.00008237		
14	COLD TEST	79.15	75682810	.00008534	6.70351148	.06085386
15	WARM TEST	295.15	89930205	.00007434		
15	COLD TEST	79.15	75844619	.00010756	6.75561534	.02891315
17	WARM TEST	295.15	89962136	.00007828		
i B	COLD TEST	79.15	75850247	.00010364	E.74903035	.04725644
19	WARM TEST		89972368	.00010396		
20	COLD TEST		75936176	.00009948	6.77297199	.11548879
20	0000 1001	, = , , =				

CH. 15 .948 MHz MHz

NOISE FIGURE AVERAGE (dB) * 6.72881372687

NOISE POWER STABILITY (K) = .0569090496306

NOISE POWER STABILITY DELTA (K) = .0905040091894

NPS_MAX (K) = .115488786987 NPS_MIN (K) = .0249847777978

INTEGRATION TIME = .165

Slo 622627 Pln 1356429-2 Sln FO6

## TEST DATA SHEET 16 Temperature Sensor and Thermistor Test Data (Paragraph 3.6.1) (A1-1)

Test Setup Verified:	R11 Platt	Baseplate Temperature (T _B )23°C
	Signature	

Reference Designation	Specification	Measured Value	Pass/Fail
RT 40	2200 ± 100 Ω	2171 Ω	P
RT 45	$2200 \pm 100 \Omega$	2171 0	P
RT 11	2200 ± 100 Ω	2167 Ω	P
RT 13	$2200 \pm 100 \Omega$	2176 Ω	·· 6
RT 15	2200 ± 100 Ω	2171Ω	P
RT 14	2200 ± 100 Ω	21710	P
RT 20	2200 ± 100 Ω	2170 Ω	P
RT 21	2200 ± 100 Ω	2170 Ω	P
RT 23	2200 ± 100 Ω	2175 Ω	P
RT 24	2200 ± 100 Ω	2170 0	P
RT 25	2200 ± 100 Ω	2171 Ω	P
RT 26	2200 ± 100 Ω	2175 Ω	P
RT 27	2200 ± 100 Ω	2173 0	P
RT 28	2200 ± 100 Ω	2176 Ω	P
RT 29	2200 ± 100 Ω	2175 n	P
RT 30	2200 ± 100 Ω	2176 0	P
RT 31	2200 ± 100 Ω	2176 Ω	Ρ
RT 34	2200 ± 100 Ω	2170 0	P
TB 56	$3000 \pm 100 \Omega$	3002 0	ρ
TB 57	3000 ± 100 Ω	300 Z D	P
TB 53	4.1 – 4.6 V	4.35 V	P

50 # 622627	
Part No.: 1356429-2	Test Engineer: Qanada Sanada
Serial No.:_FO6	Quality Assurance:
	Date: 5/28/99
	/

#### TEST DATA SHEET 19

Survival Heater and Thermal Switch Test Data (Paragraph 3.6.2) (A1-1)

Test Setup Verified:	Rept 18 Plat	Baseplate Temperature (T _B ) 23 °C
	Signature	

	Open Switch		Closed Switch		
Reference Designation	>10 MΩ	Pass/Fail	Specification	Measured Value	Pass/Fail
HR1/TS1	>50 MQ	P		30.55	P
1	> 50 MQ	P	25 - 35 Ω	30.652	P
HR2/TS2	>50 MS	P		30.752	P
,	>50Ms	ρ		30.752	P

50#622627 Part No.: 1356429-2	Test Engineer: Aam 12 50 50
	Quality Assurance:
Serial No.: FO6	Floodaga
	Date:

## TEST DATA SHEET 22 (Sheet 1 of 3) Bias Voltage Verification Test Data (Paragraph 3.6.3) (A1-1)

Test Setup Verified: Dollar M. Rat	Baseplate Temperature (T _B ) 24 °C
Signature	*

Reference Designation	Specification	Measured Value (V)	Pass/Fail
Mixer/IF AMP Ch 6, 7, 15, 9-14	+10 ±0.1	9.91	Ρ.
DRO Ch 7	+10 ±0.1	9.91	P
DRO Ch 15	+15 ±0.15	14.86	P
PLO +15	+15 ±0.15	15.07	ρ
PLO -15	-15 ±0.15	-15.15	P
IF AMP Ch 9-14	+8 ±0.08	7.925	P
DRO Ch 6	+10 ±0.1	9,94	P

50# 622627	
Part No.: 1356429-2	
Serial No: FO6	

Test Engineer:

Quality Assurance:

Date: 5/38/99

### 7.0 ASSEMBLY INSTALLATION AND REPLACEMENT LOG

The assembly installation and replacement for this receiver subsystem are logged in the following pages.

---

600

GENCORP	MANUFACT	URING ASSEMBLY	INSTRUC	TIONS (M.A.I.)	PAGE	OF
AEROJET	PART DESCRIPTION RECEIVED	VER ASSEMBLY	(A1-2)	1356409-1	1	6
B. MULLIC	AN	10/21/98	REVISIO 03	NEXT ASSEMBLY 1331720-2/1356008-1	00	

# ASSEMBLY INSTALLATION AND REPLACEMENT LOG

		INITI	AL INSTALLATION	LINSTALLATION REPLACEMENT									
ITEM NO.	PART NUMBER	REV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	IN			
17	1356680-1	B	ISOLATOR, CH 3	012	2-17 99 (7)		B	006	魯				
18	1356680-2	В	ISOLATOR, CH 4	010	1-17-90		ħ		•.				
19	1356680-3	B	ISOLATOR, CH 5	09	Z-1949		b	011	變				
20	1356680-6	B	ISOLATOR, CH 8	010	2-18-49 95		Ь	011	癴				
22	1331507-1	G	MULTIPLEXER	68	2-17-41								
23	1331509-1	6	WAVEGUIDE ATTENUATOR	103	1-2-5		G	101					
24	1331509-2	G	WAVEGUIDE ATTENUATOR	104	1.6.99		G	102	2-23.94				
25	1331509-3	E	WAVEGUIDE ATTENUATOR	104	1-699								
26	1331509-6		WAVEGUIDE ATTENUATOR	101	-			103	7/25/00	_			
28	1336610-3	F	STABLE OSCILLATOR	8509	1-8-49 (35)		F	85097	2(35)	_			
29	1336610-4	F	STABLE OSCILLATOR	8504	21.6.19					_			
30	1336610-5	F	STABLE OSCILLATOR	8503	3 1.6.9		F	85036 85032					

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S HAVE BEEN REMOVED AND REPLACED MORE THAN ONCE RECORD THE REPLACEMENT F NUMBER AT THE END OF THE ASSEMBLY LOG

**6**%

GENCORP	MANUFACT	MANUFACTURING ASSEMBLY INSTRUCTIONS (M.A.I.)										
AEROJET	PART DESCRIPTION RECEI	VER ASSEMBLY	(A1-2)	PART NUMBER 1356409-1	2	6						
B. MULLIG	AN	10/21/98	REVISION 03	NEXT ASSEMBLY 1331720-2/1356008-1	000							

# ASSEMBLY INSTALLATION AND REPLACEMENT LOG

ſ	<del> </del>	<del> </del>	INITI	AL INSTALLATIO				<b>.</b>	DEDI 40		
ł	ITEM	PART	REV			L VERG	Dian		REPLAC		<del></del>
	NO.	NUMBER	KEV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	INSI
	31	1336610-8	F	STABLE OSCILLATOR	85074				85019	7/21/00	
	37	1331562-13	G	MIXER/AMP' CH 3	7A63	18/A		G	7AZ3	繳	
$\cdot \left[   ight]$	38	1331562-14	G	MIXER/AMP CH 4	7ALL	18/99 18/99			<del>2468</del>	4.0	
	39	1331562-15	G	MIXER/AMP CH 5	7A65	1200 AG				31.190	
	40	1331562-18	G	MIXER/AMP CH 8	7858	7.3.49		G	7A68	癴	
	86	1331559-2	E	FILTER, IF BAND PASS	022	3.9 49 95					
	87	1331559-3	E	FILTER, IF BAND PASS	011	3.9.99					
	88	1331559-4	E	FILTER, IF BAND PASS	014	3-9-49					<del></del>
	89	1331559-5	ITI	FILTER, IF BAND PASS	007	3-9 49					
	9	1356406-1	D	THERMISTER COMPONENT ASSY	F 31 F58	3-24-99					
	98	1 33 7651-1		THERMISTER COMPUNENT ASSY	CN 209	3-24-99					

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- IF A COMPONENT(S) OR PART(S)
   ARE REMOVED AND REPLACED,
   RECORD THE REPLACEMENT
   PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S)
  HAVE BEEN REMOVED AND
  REPLACED MORE THAN ONCE,
  RECORD THE REPLACEMENT PART
  NUMBER AT THE END OF THE
  ASSEMBLY LOG.

GENCORP	PART DESCRIPTION PART NUMBER							
AEROJET								
B. MULLIC	GAN	10/21/98	REVISION 03	1331720-2/1356008-1	00°			

	· · · · · · · · · · · · · · · · · · ·	INITIA	L INSTALLATION	· · · ·				REPLAC		
ITEM NO.	PART NUMBER	REV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	INSP
		<del> </del>								
		ļ	,					· ·	1.	
				<u> </u>						
· · · · · · · · · · · · · · · · · · ·										
						····.				
		1								
******		-								
					<u> </u>					
		<del> </del>								<u> </u>
							<u> </u>	<u> </u>		<u> </u>

- I. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- 2. IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S)
  HAVE BEEN REMOVED AND
  REPLACED MORE THAN ONCE,
  RECORD THE REPLACEMENT
  PART NUMBER AT THE END OF
  THE ASSEMBLY LOG.

GENCORP	MANUFACT	URING ASSEMBLY IN	STRUCTI	ONS (M.A.I.)	PAGE	OF ?
AEROJET	PART DESCRIPTION RECEIVED	VER ASSEMBLY (A	1-2)	1356409-1	4	6
B. MULLIG	AN	10/21/98				

		INITIA	L INSTALLATION	<del></del>			REPLACEMENT						
ITEM NO.	PART NUMBER	REV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	INSP			
			,		·		_						
									^. 				
			:					<u>                                     </u>		<del></del>			
										·-···			
							- "						
				·						<u> </u>			
				<del> </del>									
			•										

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S)
  HAVE BEEN REMOVED AND
  REPLACED MORE THAN ONCE,
  RECORD THE REPLACEMENT PAR'
  NUMBER AT THE END OF THE
  ASSEMBLY LOG.

GENCORP MANUFACTURING ASSEMBLY INSTRUCTIONS (M.A.I.)  PART DESCRIPTION I PART NUMBER									
AEROJET	PART DESCRIPTION RECEIV	5	6						
B. MULLIGAN		10/21/98	REVISION 03	NEXT ASSEMBLY 1331720-2/1356008-1	000				

#### ASSEMBLY INSTALLATION AND REPLACEMENT LOG TEMPERATURE SENSORS & THERMISTORS

						D OBNO							
S E		INITIAL TALLAT		REI	PLACEM	ENT	S E - N	INITIAI	. INSTAL	LATION	REP	LACEMI	ENT
N S O	S/N	MFG	INSP	S/N	MFG	INSP	S O R	S/N	MFG	INSP	S/N	MFG	INS
RT12	\3\b°						TB54	CN109	3-24-99				
RT17						-,	TB58	F 58	3-24-99		•.		
ŖT18							TB59	F31	3-24-99				
RT19													
RT22													
RT33													
RT41													
RT42	195												
RT43													
RT44													
NOT	~~			·									

- THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- 2. IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S) HA BEEN REMOVED AND REPLACED MORE THAN ONCE, RECORD THE REPLACEMENT PART NUMBER AT THE END OF THE ASSEMBLY LOG.

GENCORP									
AEROJET	PART DESCRIPTION RECEI	VER ASSEMBLY (A	A1-2)	1356409-1	6	6			
B. MULLIC	GAN	10/21/98	03	NEXT ASSEMBLY 1331720-2/1356008-1	00 00				

#### ASSEMBLY INSTALLATION AND REPLACEMENT LOG IF ATTENUATORS

	INITIAL INSTALLATION REPLACEMENT												
								REP	ACEMEN	T			
ATTEN- UATOR	ON MODULE	DASH NO.	S/N	ĄT NO.	MF.G.	INSP	DASH NO.	S/N	AT NO.	MFG	INSP		
A18	A5												
A19	A9			.,		·							
A20	A13			,					-				
A21	A17	,											
											<del></del>		
											<del></del>		
			·				·						
											<del></del>		
			·										
							<del>-,</del>						
			W										
			- "										

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR Part(s)
- IF A COMPONENT(S) OR PART(S)
   ARE REMOVED AND REPLACED,
   RECORD THE REPLACEMENT PART
   ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S)
  HAVE BEEN REMOVED AND
  REPLACED MORE THAN ONCE,
  RECORD THE REPLACEMENT PAR
  NUMBER AT THE END OF THE
  ASSEMBLY LOG.



GENCORP	MANUFACTURING ASSEMBLY INSTRUCTIONS (M.A.I.)							
AEROJET	PART DESCRIPTION RECEIVER ASSEMBLY (A1-1)		PART NUMBER 1356429-2	1	6			
PLANNED BY B. MULLIGAN	10/14/98	REVISION 02	NEXT ASSEMBLY 1331720-2		PER 004			

·		INITI	AL INSTALLATION	1				REPLAC		
ITEM	PART	REV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	INSI
NO.	NUMBER				12-22-48					
9	1356680-4	B	ISOLATOR, CHAN 6	10						
10	1356680-5	B,	ISOLATOR, CHAN 7	104 108	17-99			07	27 10	<b>.</b>
11	1356680-7	B	ISOLATOR, CHAN 9-14	99	12.019)				, [ , ,	
12	1356680-8	В	ISOLATOR, CHAN 15	07	1246-98 (3)					
14	1331509-4	BE	WAVEGUIDE ATTENUATOR	+07	1-7-49	<i>-</i>				
15	1331509-5	G	WAVEGUIDE ATTENUATOR	103	1-8-99			103	5/10/00	
16	1331509-7	ろ	WAVEGUIDE ATTENUATOR	105	49ich					
17	1331509,8 -10	T	WAVEGUIDE ATTENUATOR	102	2-24-99				1	
18	1331509-9	#E	WAVEGUIDE ATTENUATOR	106	1-8-9		E	107	512469	
19	1331510-1	E	WAVEGUIDE A-1 (CHAN 9)	105	3-15-9	7				
20	1336610-6	F	STABLE OSCILLATOR (A39)	85020						
21	1336610-7	F	STABLE OSCILLATOR (A34)	8507 8502	3-1-99		·	95013	Skoloo	

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- 2. IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S)
  HAVE BEEN REMOVED AND
  REPLACED MORE THAN ONCE,
  RECORD THE REPLACEMENT PAINUMBER AT THE END OF THE
  ASSEMBLY LOG.

GENCORP	MANUFACT	URING ASSEMBLY	NSTRUCTI	ONS (M.A.I.)	PAGE	OF
AEROJET	RECEIVER	ASSEMBLY (A1-1)	1	PART NUMBER 1356429-2	2	6
B. MULLIGAN		10/14/98	REVISION 02	NEXT ASSEMBLY 1331720-2	00 00	ER 04

I			INITI	AL INSTALLATIO	V				REPLAC	EMENT	
	ITEM NO.	PART NUMBER	REV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	INSP
	22	1336610-10	Ē	STABLE OSCILLATOR (A29)	FM3	1-8-99 (95)		E	FMZ	ड्या ग्री	7
	23	1356669-1	В	POWER DIVIDER, 3 WAY	P234	1-20-49				, and	
	25	1331546-1	G	MULTIPLEXER	07	12-15-98 (35)					
	26	1348360-4	P	PLO ASSEMBLY (A65)	FII	3-16-99		P.	F14	41644	
	26	1348360-4 4/26/05	P	PLO ASSEMBLY (A66)	Foi	4126/14					)
	27	1331554-1	F	HYBRID TEE (A63)	06	3-16-49 9-5 T					
	31	1331562-16	G	MIXER/AMP CHAN 6	7A66	1-8-91					
	32	1331562-17	G	MIXER/AMP CHAN 7	7A 57	1-8-99			747	5/1/5	
X	33	1331562-19	G	MIXER/AMP CHAN 9-14	7A59	3-12-99					
	34	1331562-20	6	MIXER/AMP CHAN 15 (A25)	7A70	1-7-99		G	7A69	5/13/q 選	?
	35	1331576-1	C	SAW FILTER	Воч	3-16-99					
	36	1331576-2	C	SAW FILTER	B06	3-16-99 (25)					

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- 2. IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S)
  HAVE BEEN REMOVED AND
  REPLACED MORE THAN ONCE,
  RECORD THE REPLACEMENT PART
  NUMBER AT THE END OF THE
  ASSEMBLY LOG.

GENCORP	PAGE	OF			
AEROJET	PART DESCRIPTION RECEIVER ASSEMBLY (A1-1	)	1356429-2	3	6
B. MULLIGAN	DATE 10/14/98	REVISION 02	NEXT ASSEMBLY 1331720-2	00 00	04

		INITIA	L INSTALLATION	1				REPLAC	EMENT	
ITEM NO.	PART NUMBER	REV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	INSP
37	1331576-3	C	SAW FILTER	B07	316-99					
38	1331576-4	C	SAW FILTER	B08	3.16.99 95					
39	1356670-1	C	POWER DIVIDER 4-WAY	ρ235 04	3-1-99					
40	1331579-7	F	AMPLIFIER, IF	106	3-1-99					
41	1331579-8	G	AMPLIFIER, IF	110	3-1-99					
42	1331579-9	6	AMPLIFIER, IF	109	3-1-99					
43	1331579-10	G	AMPLIFIER, IF	110	3-14-99 95					
44	1331579-11	G	AMPLIFIER, IF	109	3-16-99 95 T	7				
45	1331579-12	G	AMPLIFIER, IF	110	3.16.99					
46	1331579-13	G	AMPLIFIER, IF	109	3-16-99					
54 <b>5</b> 4	1331559-2	E	FILTER, I.F. BAND PASS	019 011	12-21-91 (35)					
55	1331559-1	E	FILTER, I.F. BAND PASS	006	1-5.99					

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S) HAVE BEEN REMOVED AND REPLACED MORE THAN ONCE, RECORD THE REPLACEMENT PART NUMBER AT THE END OF THE ASSEMBLY LOG.

GENCORP	MANUFACT		PAGE	OF			
AEROJET	RECEIVER	ASSEMBLY (A1-1)	PART NUMBER 1356429-2		4	6	
B. MULLIGAN		10/14/98	REVISION 02	NEXT ASSEMBLY 1331720-2		OPE 00(	

			L INSTALLATION	ı			<u>†                                      </u>	REPLAC	CEMENT	
ITEM NO.	PART NUMBER	REV	DESCRIPTION	S/N	MFG	INSP	REV	S/N	MFG	INSP
56	1331559-7	E	FILTER, I.F. BAND PASS	P233	3.15.59					
57	1331559-4	E	FILTER, I.F. BAND PASS	P230 015	3-15-99 (95)					
160	1357410-1		RELAY							
27 58	1331554./	F	HYBRID TEE	02	Z24· <b>17</b>					
151	133745/-/	Ω	THERMISTOR COMP. ASSY	C/N 212						
8	1354404-1	D	THERMISTOR COMP. ASSY	F51	3-3/-99					
8	1354 404-1	C C	11	FIO						
										-
										<del>.</del>

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- IF A COMPONENT(S) OR PART(S)
   ARE REMOVED AND REPLACED,
   RECORD THE REPLACEMENT
   PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S)
  HAVE BEEN REMOVED AND
  REPLACED MORE THAN ONCE,
  RECORD THE REPLACEMENT PAR'
  NUMBER AT THE END OF THE
  ASSEMBLY LOG.

GENCORP	MANUFACT	MANUFACTURING ASSEMBLY INSTRUCTIONS (M.A.I.)							
AEROJET	PART DESCRIPTION RECEIVER	ASSEMBLY (A1-1)	)	1356429-2	5		6		
PLANNED BY B. MULLIGAN	- <b>I</b>	10/14/98	REVISION 02	NEXT ASSEMBLY 1331720-2		оре 000			

#### ASSEMBLY INSTALLATION AND REPLACEMENT LOG TEMPERATURE SENSORS & THERMISTORS

											<del> </del>		—
S E		INITIAL TALLAT		RE	PLACEM	ENT	S E N	INITIAL	, INSTAL	LATION	REP	LACEME	ENT
N S O	S/N	MFG	INSP	S/N	MFG	INSP	S O	S/N	MFG	INSP	S/N	MFG	INS
RT11	dty						RT28	1338					
RT13	1213						RT29	1352					
RT14	1346						RT30	1343					
RT15	1208						RT31	1337					
RT20	1347						RT34	1272					
RT21	1334						RT40	1341					
RT23	1362						RT45	1345					
RT24	1276												
RT25	1342						TB53	212	331-99				
RT26	1336						TB56	FIO	3-31-99				
RT27	1340						TB57	FS1	3-3/-49				_
												-	_
Non													

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR PART(S)
- IF A COMPONENT(S) OR PART(S)
   ARE REMOVED AND REPLACED,
   RECORD THE REPLACEMENT
   PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S) HA BEEN REMOVED AND REPLACED MORE THAN ONCE, RECORD THE REPLACEMENT PART NUMBER AT THE END OF THE ASSEMBLY LOG.

GENCORP	MANUFACT	MANUFACTURING ASSEMBLY INSTRUCTIONS (M.A.I.)						
AEROJET	RECEIVER	ASSEMBLY (A1-1)	)	PART NUMBER 1356429-2	6	6		
B. MULLIGAN		10/14/98	REVISION 02	NEXT ASSEMBLY 1331720-2	00 00			

#### ASSEMBLY INSTALLATION AND REPLACEMENT LOG IF ATTENUATORS

	ı			IF AII		UKS					<del></del>
				NSTALLA					ACEMEN		
ATTEN- UATOR	ON MODULE	DASH NO.	S/N	AT NO.	MFG	INSP	DASH NO.	S/N	AT NO.	MFG	INSP
A28	A26										
A33	A32										
A38	A37										
A47	A46										
A50	A49										
A53	A52										
A56	A55										
A59	A58							1			
A62	A61										
	L	L		L	l		L		L		

- 1. THIS LOG SHALL BE COMPLETED AT THE TIME THAT THE COMPONENT(S) OR PART(S) ARE BEING INSTALLED INTO THE ASSEMBLY. EACH LINE SHALL BE ENTERED AND STAMPED BY THE OPERATOR THAT INSTALLED THE COMPONENT(S) OR Part(s)
- 2. IF A COMPONENT(S) OR PART(S) ARE REMOVED AND REPLACED, RECORD THE REPLACEMENT PART ON IT'S RESPECTIVE LINE.
- 3. IF A COMPONENT(S) OR PART(S)
  HAVE BEEN REMOVED AND
  REPLACED MORE THAN ONCE,
  RECORD THE REPLACEMENT PAR
  NUMBER AT THE END OF THE
  ASSEMBLY LOG.

# ADDENDUM/AMENDMENT A TO REPORT 11491

		~-
		<u> </u>

### ADDENDUM/AMENDMENT TO

# PERFORMANCE VERIFICATION TEST REPORT METSAT (S/N: 109) AMSU-A1 RECEIVER ASSEMBLIES FOR INTEGRATED ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A)

CONTRACT NO. NAS5-32314 CDRL PAR 3.3.2.1

**JANUARY 2000** 

#### SUBMITTED TO

NATIONAL AERONAUTICS AND SPACE ADMINISTERATION GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771

SUBMITTED BY

AEROJET ELECTRONIC SYSTEMS PLANT 1100 WST HOLLYVALE STREET AZUSA, CALIFORNIA 91702

#### 1.0 Summary

After the survival/safety heater check, during the Thermal Cycle No.1 at cold temperature (-12°C) of METSAT/AMSU-A1 system (Assembly No. 1331720-3, S/N: 109), it was noted that the radiometric counts on Channel 8 were  $\sim$ 8,000 counts (should be  $\sim$ 16,000). During the transition to +48° C the counts returned to normal level at ~+11°C. After receiving permission from NASA (S. Krimchansky), Aerojet again cooled the instrument from ambient to  $\sim$  -12°C. After the power was turned on the Channel 8 anomaly repeated (~8,000 counts). The instrument was returned to ambient and removed from the temperature chamber. The Channel 8 RF section (isolator (P/N: 1356680-6, S/N 011), mixer/IF amplifier (P/N: 1331562-18, S/N: 7A68), DRO (P/N: 1336610-8, S/N: 85074), and waveguide attenuator (P/N: 1331509-6, S/N: 101), was replaced by the spare RF components (isolator S/N: 008), mixer/IF amplifier (S/N: 7A38), DRO (S/N: 85079), and waveguide attenuator (S/N: 103). An LPT was performed and the instrument was returned to Thermal Cycle testing with the new (spare) Channel 8 RF section. The test data for DRO (S/N: 85079) and mixer/IF amplifier (S/N: 7A38), are included in the addendum/amendment of this Test Report (Report No. 11491). The tables for the center frequency and frequency stability of the LO, and the gain-temperature sensitivity of the mixer/IF amplifier are modified to reflect the replacement components for that channel. The test data for the new components are recorded in bold.

			_
			)
			<u> </u>

#### 2.0 Summary

During thermal vacuum test at temperature combination #7 cycle/subcycle 6, the NE∆T for Channel 7 was .301. (Should be ≤ .250). Distribution plot also indicated high degree of noise. After receiving permission from NASA, re-ran test at same plateau, and performed engineering test runs as instrument approached ambient. Test results were as stated above. The instrument was removed from chamber and removed from calibration fixture.

The Channel 7 RF section (Waveguide Attenuator P/N 1331509-5 S/N 102, mixer/amp P/N 1331562-17, S/N 7A57, DRO Assembly P/N 1336610-7 S/N 85017, isolator P/N 1356680-5 S/N 008) were removed. Replaced by DRO Assy S/N 85023, mixer/amp S/N 7A67, Waveguide Attenuator S/N 103, isolator S/N 7. Bandpass, IF power output, full print and NEΔT tests were performed. Instrument was vibrated and returned to thermal vacuum testing. The test data for DRO S/N 85023, and mixer/amp S/N 7A67 are included in the addendum/amendment of this test report (#11491). The tables for center frequency and frequency stability of the lo, and gain-temperature sensitivity of the mixer/IF amplifier are modified to reflect replacement components for that channel. The test data for the new components are recorded in bold.

			_
			<u> </u>
			<u> </u>
		н	

#### CENTER FREQUENCY AND FREQUENCY STABILITY

#### **FOR**

LOCAL OSCILLATORS (LOs) (DROs, PLOs, & GDO)

			<u></u>
			_
			<b>)</b>
		:1	

# CENTER FREQUENCY OF LOS

4				9	7	∞	9-14 *	15
	50.3	52.8	53.596	54.4	54.94	55.5	57.290344	0.68
	0.002	0.001	0.001	0.001	0.001	0.002	0.000086	0.03
	50.30054	52.80020	53.59594	54.40007	54.94028	55.50030	57.290342	800.68
1							57.290328	

* Measured for PLO No. 1 and No. 2.

# FREQUENCY STABILITY OF LOS

					<del></del>		
15	08	30	50 8	+15.,		50	76
9-14 *	980:0			+0.007,	+0.016,	0.114	0.115
8	8	2	9	+0.33,		2	0.1
7	3	-	2	+.25		2	0.1
9	3		2	+1.47,		2	0.1
5	3	-	2	+0.16, .		2	0.1
4	3		2	+0.21,		2	0.1
3	8	2	9	+3.46,		2	0.1
Channel No.	Short-Term Specification (+/-MHz)	Setting Accuracy (+/-MHz)	W/ Temp. & Voltage (+/-MHz)	Measured (MHz) Total		<u>Long-Term</u> Specification (+/-MHz)	By Design or Analysis ** (+/-MHz)

^{*} Measured for PLO No. 1 and No. 2.** Based on accelerated life-test data for DROs.

Note: Additional +/-0.1MHz frequency stability reserved for safety margin for channels 11-14.

#### **Channel 8 LO**

DRO (P/N: 1336610-8, S/N: 85079)

# TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET 6/A FINAL DATA SET 6/2

11	IIAL DAI	TOET THE PARTY			
LITTON TYPE LS E 90	36 AK/A	_		1336610- <u>8</u>	
SERIAL NUMBER: 8	5079	QUAL TEST N/A	_ ACCEP	T TEST	<del></del>
Basic Electrical Test; Ref. Test	Para. 5.2.2				
SPECIFICATION		MEASUREMENT AT In	nom ±1°C	LIMIT	
Measurement at Vop=10 VDC		22 °C		Table IIIB	
Temperature		lo VDC		10.0 ± 0.2 VDC	
Input Voltage		179 mA		Table IIIB	
Input Current		1.79 _W DC		P _{diss} max	
Input Power, P _{diss}		55.50030 GHz		Table IIIB	
Frequency, f _{Tnom}		12.3 dBm		12 to 17 dBm	
RF Output Power, P _{Tnom}		0.30 MHz		12 (0 17 (12))	
Frequency Setting Accuracy, $\Delta f_S (= f_{Tnom} - F_o)$					
Frequency and RF Output Power			.2.3		
Measurement at 9.5 VDC or at	<u> </u>	22 ℃		Table IIIB	
Temperature		9.5 VDC		9.5 VDC or Para. 5.2.3.2	
Input Voltage		$\frac{177}{177}$ mA		Table IIIB	
Input Current		55.50030 GHz		Table IIIB	
equency, f _{meas}		(2.3 dBm		12 to 17 dBm	
KF Output Power, P _{meas}					
Measurement at 10.5 VDC or a	t <u>i0.5</u> VI	)C 22 °C		Tabla IIID	
Temperature				Table IIIB 10.5 VDC or Para. 5.2.3.3	
Input Voltage				Table IIIB	
Input Current		178 mA		Table IIIB	
Frequency, f _{meas}		55.50030 GHz		12 to 17 dBm	
RF Output Power, P _{meas}		12.3dBm		12 to 17 dbiii	
Calculate Frequency Variation,	$\Delta f_V = f_{\text{meas}} - f_T$	nom»			
$\Delta f_v$ at 9.5 VDC or at 9.5	VDC	= <u>Ø</u>	MHz		
$\Delta f_V$ at 10.5 VDC or at 10.5	VDC		MHz		
Calculate RF Output Power Va	 uriation. ΔP _V =	P _{meas} - P _{Tnom} ,			
Calculate 14 Output 10 to the	•	,	_		
$\Delta P_V$ at 9.5 VDC or at $\frac{9.5}{\Delta P_V}$ at 10.5 VDC or at $\frac{6.5}{\Delta P_V}$			dB dB		
	A	ccept Reject			
		Date 7-27-98			
Test Performed by	inci				
tton QA	(11)	Date JUL 3 0 1993			
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68	
56348	A	1300823	B3		
20240	11	100000			

### TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS ITIAL DATA SET AND EINAL DATA SET

INITIAL	DATASET	N/A FINA	AL DATA SE	11		
LITTON TYPE LS E 9036 SERIAL NUMBER: 850	AK/A	QUAL TEST		ESD 1336610- CCEPT TEST	8	
Temperature Testing at T=10°C,			<del>-/</del>			
SPECIFICATION	MEAS	UREMENT AT T	=10° ±1°C	LIMIT		
Measurement at Vop=10 VDC						
Temperature		10 °C	•	100 + 100		
Input Voltage			, DC	10° ± 1°C	TD C	
Input Current				$10.0 \pm 0.2 \text{ V}$	DC	
Input Power, P _{diss}		<del></del>	DC	Table IIIB		
Frequency, f _{10°C}				Pdiss max		
		55.50024 GI		Table IIIB		
RF Output Power, P _{10°C}		12.3dB	om.	12 to 17 dBr	n	
Frequency and RF Output Power Measurement at 9.5 VDC or at _		OC .	Test Para 5.2.	5.1		
Temperature		10 °C		Table IIIB		
Input Voltage		9.5 VI	OC	9.5 VDC or 3	Para. 5.2.3.2	
Input Current		176 m/	4	Table IIIB		
requency, f _{meas}		55.50022 GF	łz	Table IIIB		
RF Output Power, Pmeas		12.3dB	m	12 to 17 dBn	1	-
Measurement at 10.5 VDC or at	10.5 V	TDC				
Temperature	<del></del> '			Table IIIB		
Input Voltage		/0.5 VI			Para. 5.2.3.3	
Input Current		178 mA		Table IIIB	Tara. J.2.J.J	
Frequency, f _{meas}		55.50022 GH		Table IIIB		
RF Output Power, P _{meas}		12.3 dB		12 to 17 dBn	,	
meas			•••	12 10 17 0011	ı	
Calculate Frequency Variation, ∆	$f_V = f_{meas} - f$	10°C:				
$\Delta f_V$ at 9.5 VDC or at $9.5$	VDC =					
Δf _V at 10.5 VDC or at 10.5	VDC =					
$\Delta f_T$ at 10.0 VDC (= $f_{10^{\circ}C}$ - $f_{Tnom}$ )	==	_ 0.00	MHz			
Calculate RF Output Power Varia	ation AP., =	: P P				
$\Delta P_{\rm V}$ at 9.5 VDC or at 9.5	VDC =	,	dB			
$\Delta P_V$ at 10.5 VDC or at 10.5	VDC =		dB			
$\Delta P_T$ at 10.0 VDC (= $P_{10^{\circ}C}$ - $P_{Tnom}$ )	, DC =	<u></u>	dB			
ar   at 10.0 v Do ( 1 10-C 1 1 nom)		Ψ_	wb			
rest Performed by VIII itton Q.A.	7C;		rept	Reject		,
CODE IDENT NO.   SI	ZE	NUMBER	REV	SHEET 39 C	OF 68	_
	Α	1300823	B3			
LITTON / SOLID STA	TE DIVIS	ION / 3251 OLCO	IT ST / SANT	A CLARA, CA	95054	

# TEST DATA SHEET 7.4 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET V/A FINAL DATA SET V

INITIAL DA	ATA SET <u>D/A</u> FINAL DATA SE	
LITTON TYPE LS = 9036 SERIAL NUMBER: 850	<del></del>	ACCEPT TEST
Temperature Extreme Testing at T	min, Ref. Test Para. 5.2.5.2	
SPECIFICATION	MEASUREMENT AT Tmin ±	1°C LIMIT
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmin} RF Output Power, P _{Tmin}	°C 0 VDC 179 mA W DC 55.50013 GHz dBm	Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm
Frequency and RF Output Power Measurement at 9.5 VDC or at Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	Variation With Voltage, Ref. Test Para 5  9.5 VDC	Table IIIB 9.5 VDC or Para 5.2.3.2 Table IIIB Table IIIB 12 to 17 dBm
Measurement at 10.5 VDC or at Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	O.5   VDC	Table IIIB 10.5 VDC or Para 5.2.3.3 Table IIIB Table IIIB 12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V$ at 9.5 VDC or at 9.5 $\Delta f_V$ at 10.5 VDC or at 10.5 $\Delta f_T$ at 10.0 VDC (= $f_{Tmin}$ - $f_{Tnom}$ )	VDC =	NHz NHz NHz
Calculate RF Output Power Variate $\Delta P_V$ at 9.5 VDC or at $\underline{\qquad q.5}$ $\Delta P_V$ at 10.5 VDC or at $\underline{\qquad lo.5}$ $\Delta P_T$ at 10.0 VDC (= $P_{Tmin}$ - $P_{Tnom}$ )	VDC =	dB dB dB
Test Performed by Litton Q.A.	Accept Reject  Date 7-27-98  Date JIII 3 0 1998	
CODE IDENT NO.	NUMBER REV A 1300823 B3	
	C. C. C. C. C. C. C. C. C. C. C. C. C.	TTA OT ADA OA OSOSA

# TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

		<del></del>		<del></del>		
LITTON TYPE LSE	9036 AK/A		/.		1336610-	8
SERIAL NUMBER:	85079	QUAL TEST	N/A	ACCE	EPT TEST _	
Temperature Testing at T	=30°C, Ref. Test I	Para. 5.2.5.3				
SPECIFICATION		MEASUREM	ENT AT	T=30° ±1°C	LIN	AIT.
Measurement at Vop=10	VDC					
Temperature		30	_°C		$30^{\circ} \pm 1^{\circ}C$	
Input Voltage		10	VDC		$10.0 \pm 0.2$	VDC
Input Current		180	_mA		Table IIIB	
Input Power, P _{diss}		1.80	W DC		Pdiss max	
Frequency, f _{30°C}		55.50030	GHz		Table IIIB	
RF Output Power, P _{30°C}		12.3	dBm		12 to 17 dE	3m
Frequency and RF Output	Power Variation	With Voltage, R	Ref. Test l	Para 5.2.5.3		
Measurement at 9.5 VDC	_					
Temperature		30	°C		Table IIIB	
Input Voltage		9.5	VDC			r Para. 5.2.3.2
Input Current		178	mA	-	Table IIIB	
requency, $f_{meas}$		55.50031	GHz		Table IIIB	
RF Output Power, P _{meas}		12.3	dBm		12 to 17 dE	3m
Measurement at 10.5 VDC	C or at $10.5$	VDC 30				
Temperature			_°C		Table IIIB	
Input Voltage		10.5	VDC			or Para. 5.2.3.3
Input Current		179	_mA		Table IIIB	
Frequency, f _{meas}		55.50030	GHz		Table IIIB	
RF Output Power, P _{meas}		12.3	dBm		12 to 17 dE	3m
Calculate Frequency Varia	ation, $\Delta f_V = f_{meas}$ -	f _{30°C} :				
$\Delta f_V$ at 9.5 VDC or at			10.0	MHz		
$\Delta f_V$ at 10.5 VDC or at 10	. <u>5</u> VDC =	=	<u>ø_1</u>	MHz		
$\Delta f_T$ at 10.0 VDC (= $f_{30^{\circ}C}$ - $f_{30^{\circ}C}$	r _{nom} )	<u> </u>	<u></u>	MHz		
Calculate RF Output Power	er Variation, ΔP _v	= P _{meas} - P _{30°C} .:				
$\Delta P_{V}$ at 9.5 VDC or at	_		ø .	iB		
$\Delta P_V$ at 10.5 VDC or at	<del></del>	•	$\phi$	iB		
$\Delta P_T$ at 10.0 VDC (= $P_{30^{\circ}C}$ -			<u>d</u>	iB		
	••••		/	/ "		
	17:1		cept	Reject		
Test Performed by	VN (urror)	Date	7-27-	<del></del>		
itton Q.A.	(4/101)	Date	JUL 3	0 1998		
CODE IDENT NO.	SIZE	NUMBER	- T	REV	SHEET 41	OF 68
56348	A	1300823		B3	CILLUI TI	<b>01</b> 00
	ID STATE DIVIS		COTT S		CLARA CA	95054
LITTON / SOL	TANDIUTIONIAN	JEGIA I DEDI OF		T 1 D: 11 1 1 1 1 7 /		. ,,,,,,

# TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET V/A FINAL DATA SET V/A

IIIII E DIIII be	1	
LITTON TYPE LS E 9036 AK/A SERIAL NUMBER: 85079		AESD 1336610- 8 ACCEPT TEST
Temperature Extreme Testing at Tmax, Ref	. Test Para. 5.2.5.4	
SPECIFICATION	MEASUREMENT AT Tmax	±1°C LIMIT
Measurement at Vop=10 VDC Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmax} RF Output Power, P _{Tmax}		Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm
Frequency and RF Output Power Variation Measurement at 9.5 VDC or at9.5 V Temperature Input Voltage Input Current Frequency, f _{meas} 'F Output Power, P _{meas}		Table IIIB 9.5 VDC or Para 5.2.3.2 Table IIIB Table IIIB 12 to 17 dBm
Measurement at 10.5 VDC or at 10.5  Temperature  Input Voltage  Input Current  Frequency, f _{meas} RF Output Power, P _{meas}	VDC	Table IIIB 10.5 VDC or Para 5.2.3.3 Table IIIB Table IIIB 12 to 17 dBm
Calculate Frequency Variation, $\Delta f_V = f_{meas}$ · $\Delta f_V$ at 9.5 VDC or at 9.5 VDC $\Delta f_V$ at 10.5 VDC or at (6.5 VDC $\Delta f_T$ at 10.0V (= $f_{Tmax}$ - $f_{Tnom}$ )	$= \frac{-0.02}{\text{MHz}}$	
Calculate RF Output Power Variation, $\Delta P_V$ $\Delta P_V$ at 9.5 VDC or at $9.5$ VDC $\Delta P_V$ at 10.5 VDC or at $0.5$ VDC $\Delta P_T$ at 10.0 VDC (= $P_{Tmax}$ - $P_{Tnom}$ )	= Ø dB	
Test Performed by Litton Q.A.  Acce	Pept Reject  Date 7-27-98  Date JUL 3 0 1998	<u> </u>
	NUT COED DE	V SHEET 42 OF 68

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 42 OF 68
56348	Α	1300823	B3	

### TEST DATA SHEET 7.7 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

ATTON TYPE LS = 902 SERIAL NUMBER: 850	06 AK/A 79 QI	JAL TEST N/A ACCEPT	AESD 1336610 TEST	08	
Power Supply Immunity, Ref. Te	st Para. 5.2.4				
SPECIFICATION		MEASUREMENT AT Tho	m <u>±1°C</u>	LIMIT	
Initial Measurement Temperature Input Voltage Input Current Input Power Frequency (f _{Tnom} ) RF Output Power Frequency Setting Accuracy, $\Delta f_s$ Performance After Short Circuit of		22 °C 10 VDC 179 mA 179 W DC 55.50021 GHz 12.3 dBm		Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm	
Input Voltage Input Current Input Power Frequency RF Output Power		179 mA 1.79 W DC 55.50018 GHz 12.3 dBm		10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm	
Over Voltage: Ref Test Para 5.2.4  Overvoltage Input Voltage  Performance After Input Overvol				+28V	
Input Voltage Input Current Input Power Frequency RF Output Power	1435	0 VDC   MA   1.79 W DC   55.50016 GHz   12.3 dBm		10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm	
Reverse Polarity: Ref Test Para 5 Reverse Input Voltage	<u>.2.4.4</u>			-10.0 ± 0.2 VDC	
Performance After Reverse Input Input Voltage Input Current Input Power Frequency, f _{Tnom} RF Output Power Frequency Setting Accuracy, Δf _S Test Performed by		10		10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB 12 to 17 dBm	
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 43 OF 68	

#### LITTON

#### Solid State

# TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET NAL DATA SET

INII	IAL DATA	SEI $\frac{N/A}{A}$ FINAL I	DATA SET
	036 AK/1	4_ QUAL TESTN	AESD 1336610-8 ACCEPT TEST
Frequency and Power Hyste	resis: Ref T	est Para. 5.8	
TEST DESCRIPTION			LIMITS
1. Initial Perform	mance at Tno	om ± 1°C	
Temperature Frequency, $f_{Tnom}$ RF Output Power, $P_{Tnom}$ Input Voltage, $V_B$ Input Current, $I_B$ Frequency Setting Accuracy $\Delta f_S (= f_{Tnom} - F_o)$	12: 10 179	0 30 GHz B dBm VDC mA	Tnom ± 1°C Table IIIB 12 to 17 dBm 10 ± 0.2 VDC Table IIIB
2. Performance	at Tnom $\pm 1$	°C after +60°C soak.	
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	55.5000 12.3 (0 180	<del></del> -	Tnom $\pm$ 1°C Table IIIB 12 to 17 dBm $V_B \pm .005 VDC$ Table IIIB
3. Performance	at Tnom ± 1	°C after -30°C soak.	
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	22 55.500 12.3 10	dBm VDC	Tnom $\pm$ 1°C Table IIIB 12 to 17 dBm $V_B \pm .005 \text{ VDC}$ Table IIIB
Calculate frequency variation $\Delta f_H$ after 60°C soak = $\Delta f_H$ after -30°C soak =	n, $\Delta f_H = f_{mea}$	s - f _{Tnom} :  - 0.22 MHz  0.01 MHz	
Calculate RF output power $\Delta P_H$ = after 60°C soak = $\Delta P_H$ = after -30°C soak =	variation, ΔP	$H = P_{\text{meas}} - P_{\text{Tnom}};$ $\frac{\cancel{\phi}}{\cancel{\phi}} dB$	
Test Performed by Litton Q.A.	VN (kg	Acce Date Date	ept Reject
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV SHEET 58 OF 68 B3

## TEST DATA SHEET 7.22B FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET INITIAL DATA SET

1	MITIAL DATAS	EI <u>V/A</u> FINAL	L DATA SET	
LITTON TYPE LS <u>E</u> SERIAL NUMBER:	9036 AK/ 85079	<u>4.</u> _ QUAL TESTN	/4	AESD 1336610- 8 ACCEPT TEST
Frequency and Power H	ysteresis: Ref Te	st Para. 5.8		
TEST DESCRIPTION			LIN	<u>AITS</u>
4. Performa	nce at Tnom ± 1°	C at Ambient Pressure		
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage, V _B Input Current	22 55.500 2 12.4 10	_°C 7_GHz _dBm _VDC _mA	Tab 12 t V _B :	om ± 1°C le IIIB o 17 dBm ± .0005 VDC le IIIB
Calculate frequency vari	ation, $\Delta f_P = f_{\text{meas}}$	$f_{Tnom}$ :		
$\Delta f_p =$	-0.03 MHz			
Calculate RF output pow	ver variation, $\Delta P_p$	= P _{meas} - P _{Tnom} :	•	
$\Delta P_p = \underline{\bullet \cdot 1}$	dB			
·				
	Acce	ept Reject		
Test Performed by	<b>∞</b>	Date	7-28-98	
Litton Q.A	LITTON	Date	JUL 3	0 1998
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 59 OF 68
LITTON / SOI	ID STATE DIVI	SION / 3251 OLCOTT		CLARA, CA 95054

#### **LITTON**

#### **Solid State**

# TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET V/A FINAL DATA SET V

INITIAL DA	ATA SET <u>N/A</u> FINAL	DATA SET
LITTON TYPE LS E 9036 A SERIAL NUMBER: 05079	QUAL TEST N	AESD 1336610- 8 ACCEPT TEST
Frequency Pulling and Load VSWR	2.5:1 max. all phases. Ref 7	Test Para. 5.9
TEST DESCRIPTION		LIMITS
Initial Measurement. Ref Test Par. 5	5.9.1	
Temperature	<u>23</u> °C	$24^{\circ}\text{C} \pm 5^{\circ}\text{C}$
Frequency	5055 500 23 GHz	Table IIIB
RF Output Power	dBm	12 to 17 dBm
Input Voltage	VDC	$10 \pm 0.2 \text{ VDC}$
Input Current	mA	Table IIIB
Reference test. Ref. Test Para. 5.9.3		
Frequency, f _{Ref}	55.50023 GHz	Table IIIB
RF Output Power, P _{Ref}	55.50023 GHz -3.2 dBm	Table IIID
r		
oad Pulling Test. Ref. Test Para. 5.	.9.4	
Maximum Frequency, f _{meas}	55.50024 GHz	Table IIIB
Minimum Frequency, f _{meas}	55.50023 GHz	Table IIIB
Maximum RF Output Power P _{meas}	<b>2.8</b> dBm	
Minimum RF Output Power, P _{meas}	dBm	
Calculate maximum positive ( $f_{meas}$ is $\Delta f_L = f_{meas} - f_{Ref}$ :	s greater than f _{Ref} ) and negativ	ve (f _{meas} is less than f _{Ref} ) frequency variation,
Maximum Positive $\Delta f_L =$	0.01 MHz	
Maximum Negative $\Delta f_L =$	MHz	
Calculate maximum positive ( $P_{meas}$ i Variation, $\Delta P_L = P_{meas} - P_{Ref}$ :	s greater than P _{Ref} ) and negati	ive (P _{meas} is less than P _{Ref} ) RF Output Power
Maximum Positive $\Delta P_L =$ Maximum Negative $\Delta P_L =$	<u>0.4</u> dB dB	
	Accept Reject	<del></del>
Tast Parformed by	rod Data	7 av 04
	Date	<u>フーキャーのき</u> <u>JUL 3 0 1998</u>
itton Q.A.	(LITTO: Date	<u>007 0 0 1990</u>
CODE IDENT NO. SIZE	NUMBER	REV SHEET 60 OF 68
56348 A	1300823	B3
LITTON / SOLID STATE	E DIVISION / 3251 OLCOTT	ST/SANTA CLARA, CA 95054

# LITTON Solid State

# TEST DATA SHEET 7.23B

		IONAL PERFORM				<u> </u>
IV.	IITIAL DATA SE	T <u>ル/A</u> FINA	AL DATA S	ET		
	1	,			<del></del>	
LITTON TYPE LS ESERIAL NUMBER:	9036 AK/A	_	•	AESD	1336610-	S
SERIAL NUMBER:	85079	QUAL TEST	N/A	ACCE	PT TEST	~
	•		,			
Frequency Pulling and Lo	oad VSWR 2.5:1 n	nax. all phases. Re	f Test Para.	5.9		
TEST DESCRIPTION				<u>LIMITS</u>		
Output Open and Short. I	Ref. Test Para. 5.9.	5				
_						
Temperature	23	·°C		$24^{\circ}\text{C} \pm 5^{\circ}\text{C}$		
Frequency:	55.50027	GHz	•	Table IIIB		
RF Output Power:	12.4	dBm		12 to 17 dBm		
Input Voltage	10	VDC		$10 \pm 0.2 \text{ VDC}$		
Input Current:	(8)	mA		Table IIIB		
Results:		Acceptable	]	No Damage or	Degradatio	n
		-		· ·	3	-
Calculate maximum Freq	uency Accuracy (b	oth positive and ne	gative),			
$\Delta f_{acc} = \Delta f_{S}$ (Use worst-ca				$(A) + \Delta f_i$ (from	n 7.23A):	
•	•	,	•• •	, L		
Maximum $\Delta f_{acc} =$	0.32	MHz (Positive)	-	Γable IIIB		`
200	-0.22	<del>-</del> ` ` '		Γable IIIB		
Calculate maximum Shor	t-term Frequency S	Stability (both posit	ive and nega	tive).		
$\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use w				<b>/</b> ,		
· · · · · · · · · · · · · · · · · · ·	•		•			
Maximum $\Delta f_{V+T} =$	0.01	_ MHz (Positive)	7	Table IIIB		
***	-0.26	_ MHz (Negative)		Table IIIB		
		(	•			
Calculate maximum overa	all RF Output Pow	er Stability (both p	ositive and n	egative).		
$\Delta P_{OV} = \Delta P_V + \Delta P_T (Use)$					+ AP. (from	7 23 A)·
-0vv1(000	··· OIDT GENE LAX V MAX		т н	(110111 / 12211)	· L (Hom	r.23mj.
Maximum $\Delta P_{OV} =$	0.4	_ dB (Positive)	1	.0 dB		
		_ dB (Negative)		1.0 dB		
		_ us (regunve)		1.0 <b>G</b>		
	Accer	pt Reject				
	110001					
Test Performed by	1001	Dat	e 7-28	-98		
					•	
itton Q.A.		Dat	, JUL	3 0 199 <b>8</b>		
	M ED	<i>Da</i> t	.~			
CODE IDENTATIO		) II h Mrn	7.54	, lorena	(1 05 (5	
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET	61 OF 68	
56348	A	1300823	B3	<u> </u>		
LITTON / SOL	ID STATE DIVIS	3251 OLCO	II ST/SAI	NTA CLARA,	CA 95054	

# GAIN STABILITY AND GAIN COMPRESSION FOR MIXER/AMPLIFIERS AND IF AMPLIFIERS

	_	

GAIN-TEMPERATURE SENSITIVITY FOR MIXER/AMPLIFIERS AND IF AMPLIFIERS

						_
15	0.02	-0.017			-0.017	
14	90.0	-0.020	+0.005,	-0.020	+0.005,	
13	90:0	-0.020	+0.005.	+0.010	+0.015,	
12	90:0	-0.020	+0.005,	-0.010	+0.005,	
11	90:0	-0.020	+0.005,	-0.014	+0.005,	
10	0.04	-0.020	+0.005		+0.005,	
6	0.04	-0.020	+0.005		+0.005,	
×	0.02	0152			0152	
7	0.02	-0.017			-0.017	
9	0.02	-0.017			-0.017	
5	0.02	-0.015			-0.015	
4	0.02	-0.017			-0.017	
8	0.02	-0.015			-0.015	
Channel No.	Specification (+/-dB/°C)	Measured (dB/°C)			Total (dB/°C)	

# Channel 8 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-18, S/N: 7A38)

#### TEST DATA SHEET NO. 6. AMPLIFIER TESTS

CATN	FLATNESS	TFST.	ATP	PARA	GRAPH	513
иии .	LULINEOD		nII		UIVII II	J. X.J.

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

(dB)ppK

ACC

0.60

0,50

#### GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER

**GAIN** 

VOLTAGE

READING (dBm)

 $\Delta G/\Delta V$ 

SPEC.

 $\Delta G/\Delta V$ 

REJ

2.0

DATE ACC REJ

/ PART NO. <u>1331562-186</u>

SPACEK QA

SER NO. 7A38

TEST FAILURE:

TESTED BY:

FAILURE ANALYSIS NO. _

END DATE: 6-5-98

END TIME: 1600

Spacek Labs, Inc.

212 E. Gutierrez St.

Santa Barbara, CA, 93101



#### TEST DATA SHEET NO. 7. AMPLIFIER TESTS

#### GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Relat	ive Gain	ΔG/ΔT		SPEC	ACC	REJ	
G _{T1}	71.63						
		• 0,0	115	0.035dB/°C	QA		]
GT2	71,42				1		ren
		* 010	729	0.020dB/°C		QA	ECN
Gт ₃	70,85					11	CAMS
		* 0,	029	0.035dB/°C	na		
GT4	70,50				1	$A_{}$	
	Gт1 Gт2 Gт3	GT1 7/,63 GT2 7/,42 GT3 70,85	GT1 7/163 * 0.0 GT2 7/142 * 0.0 GT3 70.85 * 0.0	GT1 71.63 • 0.015 GT2 71.42 • 0.029 GT3 70.85 • 0.029	GT1 7/,63  * 0,015 0.035dB/°C  GT2 7/,42  * 0,029 0.020dB/°C  GT3 70,85  * 0,029 0.035dB/°C  GT4 70,50	GT1 71.63  * 0.015 0.035dB/°C / 04  GT2 71,42  * 0.029 0.020dB/°C  GT3 70.85  * 0.029 0.035dB/°C  QA	GT1 7/.63  * 0.015 0.035dB/°C (M)  GT2 7/.42  * 0.029 0.020dB/°C (QA)  GT3 70.85  * 0.029 0.035dB/°C (QA)  GT4 70.50

U-1352

*Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = \begin{array}{c} G_{Ti} - G_{Ti+1} \\ ----- \\ T_i - T_{i+1} \end{array} \qquad \qquad i = 1,2,3,4 \qquad \qquad \Delta G_T = \begin{array}{c} \frac{1}{1/3} - dB \\ ---- dB \end{array}$$

 $\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \frac{1.6}{1.00} dB \text{ Spec } 1.4dB$  ACC

CAMSU-1352

PART NO. <u>1331562-186</u>

SPACEK QA

SER NO. 7A38

TEST FAILURE:

TESTED BY:

FAILURE ANALYSIS NO.

END DATE: 6-5-96

# 1600

Spacek Labs, Inc. 212 E. Gutierrez St.

END TIME:

Santa Barbara, CA, 93101



#### TEST DATA SHEET NO. 8. AMPLIFIER TESTS

#### OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

D	Δ	CH	#
1,	~	.7 🗆	#

11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP. PT.(dBm)
X X X X X X X X	10	- 7,3	0.7	1.0
X	20			
X X	50			
X X X X X X X X X	100	-Z,U	0,6	1,0
X	150			
<u> </u>	200	-2,3	0.7	1.0 8.
X	400			· · · · · · · · · · · · · · · · · · ·
X	500	<del></del>		
X	1000		-	
X	1500			

#### AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 5/6/99 AMBIENT ROOM TEMPERATURE °C: 23°

AMPLIFIER	AMPLIFIER		
OUTPUT	OUTPUT		AMPLIFIER
POWER	POWER	Y FACTOR	NOISE
AMBIENT (dBm)	(-77 K)(dBm)	(dB)	FIGURE (dB)
<b>.</b>	_	7 7	
721.4	-25.1	3.7	1,11

Above data taken with Daden filter attached (except -19) .

#### Intermediate test results for information only

PART NO. <u>133</u>	1562-186	SPACEK QA	C-29-8 REJ
SER NO.	7A38	TEST FAILUR	E:
TESTED BY:	of off	FAILURE ANALY	SIS NO
END DATE:	6/5/98		
END TIME: _	1600	Spacek La 212 E. Gu Santa Barl	

#### TEST DATA SHEET NO. 12. MIXER-AMPLIFIER ASSEMBLY TESTS

#### RF PORT RETURN LOSS TEST: ATP PARAGRAPH 5.4.6.

RF TOTAL	UUT	RF	SPEC. RF	
FREQ REFLECTED	REFLECTED	RETURN	RETURN	
(GHZ) POWER (dBm)	POWER (dBm)	LOSS (dB)	LOSS (dB)	ACC REJ
55.30 - 3.0	-2210	19,0	14.0	
55.50 - 3.4	- 20.0	16.6	14.0	
55.70 -4.0	-18.3	<u> 14.3</u>	14.0	

#### AVERAGE NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.4.7.

DATE: 6-25-98 AMBIENT ROOM TEMPERATURE °C: +2/

	TOTAL	TOTAL			SPEC.		
	POWER @	POWER @	Y	DSB NOISE	DSB NOISE		
	AMBIENT	77.2 DEG K	FACTOR	FIGURE	FIGURE		
	(dBm)	(dBm)	(dB)	(dB)	(dB)	ACC	REJ
LO po	ower level at +8	8.5dBm(with ri	pple)				
1ST	-19.50	-21.20	1,70	_3.6_	3.8		
2ND	-1950	-21,20	1.70	3.6	3.8	21.44	
3RD	-19.50	-21.20	1.70	3.6	3.8	( 04	<u> </u>
AVG	-19.50	-24.20	1.70	3.6	3.8		
LO po	wer level at +1	10dBm(with rip	ple)				
IST.	-19.20	-20.90	1.70	3.6	7.8		
2ND	-19.20	-20.90	1.70	3.6	3.8	, <u> </u>	
3RD	-19.20	-20,90	1.70	316	3,8	( Oa	,-
AVG	-14.70	-20,90	1.70	5.6	3.8		į
LO po	ower level at +1	l 1.5dBm(with r	ipple)				
1ST	-19.00	-20,65	1.65	5.7	3.8		
2ND	-19.00	-20,65	1.65	<u> </u>	3.8	1.11.5	
3RD	-19.00	-20.65	1.65	3.7	3.8	Qa	
AVG	-19.00	-20.65	165	3.7	3.8	1	
+700	m -19.80		1.70	3.6	3.8		
NOTE	E: Above data w	vas taken with th	ne Daden filte,	except on the	-19 unit.		

END TIME: (600	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101
END DATE: 4-25-48	
TESTED BY: 4)4	FAILURE ANALYSIS NO.
SER NO	TEST FAILURE:
PART NO. <u>1331562-18</u>	SPACEK QA 6-2-78

# TEST DATA FOR SPARE CHANNEL 8

	_	











Eng. Eval opu. 0044 \$ 10778372
TEST DATA SHEET 8 (Sheet 1 of 2)

P /N/336610-8

Bandpass Characteristics Test Data (Paragraph 3.5.3) (A1-2)

Component No.	Measured
3 90	
4 200	
LO 5 170	
8 10.0 V 1745 4.2 164.2 163	156 MHZ Park
ixer/ All /0.0V 472.6 mg	

TEST DATA SHEET 11 (Sheet 4 of 8)
Noise Figure and Noise Power Stability Test Data (Paragraph 3.5.4) (A1-2)

Test Setup Verified:	lang l	ram		Baseplate Temperature (T _B ) 2	.3°€	_°C
•		ature	,			

Compo-	Channel	V _b (V)	l _b (mA)	T _H (°C)	V _H _	(V)	T _C (°C)	V _C	(V)
nent	No.				Mean	Standard Deviation		Mean	Standard Deviation
				24	89328	-000167	-194	:62254765	.64026309
				24	-, PF23	-000186	-194	-6216957-	.600 1 5 749
				24	893229	.000 PTX	-194	62097666	. 6007429
				24	.888A	.04019100	-194	7.6 2006780	.000/5477
LO	8	9.990	178	کی	8929449	200016746	-194	:6/969373	ન્જાપાય
				24	-: 57251739	.00015024	-194	61927677	.00017775
				24	4 <i>9</i> 397 ₄₄	.00 113W	-194	6 1910364	-006/369
* .				24	99 <del>36</del> 42	.000 20065	-194	61885412	.6001946
				24	8926138	-04020377	-194	6 K4 <b>49</b> /4	•00622365
				24	8926242	.606/7696	-194	61802504	.000/4336
Mixer/ Amps	All	10.05	42,7						

Part No.: 1336610-8	Test Engineer: July Ola L
Serial No.: 85079	Quality Assurance: (892)
oper ocoso	Date: 11-5-99

		•
		$\cup$
		<u> </u>

#### TEST DATA SHEET 11 (Sheet 8 of 8)

	NF (dB)				NPS (K)				
Channel No.	Required (Max)	Measured	Average	Pass/Fail	Required (Max)	Measured	Average	Delta	Pass/Fail
8		3,90				.03 ک			
	<b>*</b> •	3.89				.057			
		3.88				-079			
		3.86				.066			
	•	3.86				,032			
		3.89				.067			
ì		3.84				/ (ه.			
		3,85				. o8 Z			
1		3.89				-087			
		3.84				.080			
	5.0		3.86	P	0.08		.065	.055	1 P
								Pass 5 P, 9	Fail = F
			~			. //		1	
D . M	133	66 10 - 50 79 2030	- 8		Test Engine	eer:	7A 200	· an	

			$\smile$
		a	

for Net only Encopata

00000 910 77837Z P/N 133640-8 5/085079

# FOR REFERENCE ONLY

#### AMSU-A TEST

Channel 8, 11/3/99 L0-10.0

SEO	TEMP TEST	TEST TEMP	VOLTAGE	STO_OEV	NF (UB)	MPS(K)
į	WARM TEST	297.15	89327722	7565 F6756		
2	COLD TEST	75.15	62254765	. 000026309	3.30170444	.03280399
7	WARH TEST	297.15	89323084	.00018527		
å	COLO TEST	79.15	62160555	.00015746	3.68698739	.0569263!
5	WARM TEST	297.15	85322924	.00019876		
ñ	COLO TEST	79.15	-,52097696	.00017929	3.87585539	07942947
7	MARH TEST	297.15	-189305798	_ <b>200   5   0</b> 0		
Ä	onin TEST	79.15	- 152005780	. 000 (5977	5.864(5028 ⁻	.06537736
9	MARH TEST	797.15	-189294697	.00016745		
i ហ៊	colo TEST	79.15	61968373	.66614456	5.85921904	.03795666
11	MARM TEST	797.15	89288739	.00015025		
12	ODLO TEST	79.15	- 51927677	.00017775	3,89339298	. 0565758
: <del>-</del> : 3	WARM TEST	797.15	- 89297445	. @@@   <b>9</b> 368		
14	onio TEST	79.15	- 61810364	00013699	3184981098	.07058678
15	WARH TEST	797.45	89284200	_ @@@2@@65		
15	nnin TEST	79.15	61885912	.00019455	3.84716512	. <del>@22</del> @@ <del>@</del> @2
17	WARM TEST	797 (5	- 89261384	00020379		
15	noin TEST	75.15	51848314	nnn23365	3.84377361	.08577004
10	WARM TEST	257.15	- 85252425			
1 2 20		75.15	- 51602504	00014334	3.83623711	.07590752
て点	COLD TEST	(2.13	.9:005964		<del></del> - · ·	

CH. 8 ,163 MHz MHz

NOISE FIGURE AVERAGE (UB) - 3.86(95729703

NOISE POWER STABILITY (K) - .0649330748536

NOISE POWER STABILITY DELTA (K) - .0548151752758

NP5_MAX (K) - .0867700361854 NP5_MIN (K) - .0379568608696

INTEGRATION TIME - .165

			př
			r
		, a	

	SPLIT REFERENCE	RENCE	COMPLETION DATE PART DESCRIPTION STABI	E OSCILLATOR	PART NUMBER 1336610-8		DWG REV	10 01
778372	WORK		OPERAT	OPERATION DESCRIPTION	STAMP PROD IN	IP SETUP INSP RUNTIME		IR's/EQCR's/TAR's/TRR' COMMENTS
		THIS	THIS SHOP ORDER WILL DOC TESTING FOR SPARE CH 8 ON	DOCUMENT ENGINEERING EVALUATION 8 ON THE A1-2 RECEIVER ASSEMBLY.				
		NOT	NOTE: THIS ASSEMBLY CON COMPONENTS. HANDLE IN A	NOTE: THIS ASSEMBLY CONTAINS STATIC SENSITVE COMPONENTS. HANDLE IN ACCORDANCE WITH MPI 09-008.				
	PC /	A RELE	RELEASE S/O			99		
		B ISSU ID'S PAN 1 SAN	E THE FOLLOWING 1336610-8, STABLE O	PARTS AND RECORD THE S/N'S AND TRACE SCILLATOR ACE ID A5 18131		446		
		S/N	P/N 1331562-18, MIXER/ AMP: S/N	<u> 200043065</u>				
		S/N	P/N 1356680-6, ISOLATOR: S/N 08 TRACE 1	ror: тrace id <u>Looo2</u> 4714				
99/22/8		SAN SAN SAN SAN SAN SAN SAN SAN SAN SAN	1331509-6, WAVI 103 1331559-4, BANI 7230-016	EGUIDE ATTENUATOR: TRACE ID ASI SIGNASS FILTER: TRACE ID LOOO 33,309	Joseph Joseph			
TEST TATT		A SET I W.G.	SET UP TEST EQUIPMENT TO W.G. ATTENUATOR ADJUSTIN STABLITY AND 3 dB BANDPA	PERFORM ENGINEERING EVALUA  TENT, NOISE FIGURE, NOISE POWE  SS CHARACTERISTIC TEST PER A  A 44. —	TEPPIN (FEB)	86/22		
		DOOZ BOOT	TEY INSPECTION TEST SI	er-u	8-7/6 8-19-19-19-19-19-19-19-19-19-19-19-19-19-			

	ų.

**Channel 7 LO** 

DRO (P/N: 1336610-7, S/N: 85023)

		<u> </u>
		<u> </u>

## LITTON

# **Solid State**

# TEST DATA SHEET 7.28 MECHANICAL MEASUREMENTS FINAL DATA SET

LITTON TYPE LS E 9 SERIAL NUMBER: 8	036 AJ/A 5023 QUAL TEST	. N/A	AESD 1		
Weight Ref. Test Para. 6.1.					
SPECIFICATION	MEASUREMENT		LIMIT		
Weight:	1 в Ч	.753.	1.5 pour	ds max.	
ŕ	/	· .			•
	Accept F	leject	- _ 2 8 1998		
Inspection Performed By:		'J.	JL 2 8 1998		
Litton Q.A. M 60		Date:			
Outline and Marking	•		4		
Ref. Test Para. 6.2, Inspection	on to Outline drawing, Litton	1300316 <u>B</u>			٠ ,
(i	TITON I	Reject	-		
Inspection Performed by:	M 60	Date:J	UL 2 8 1998	•	
Litton Q.A.		Date	1 2 8 1998		
	L com L Name of	<del></del>	rv larer	(( OF (0	
CODE IDENT NO. 56348	SIZE NUMBE A 130082		EV SHEET B3	66 OF 68	

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

# TEST DATA SHEET 7.2 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

) INITIAL DATA	SET NA FINAL DATA SE	T
LITTON TYPE LS E 9036 AJ/A	, A	AESD 13366107
SERIAL NUMBER: 85023	QUAL TEST NA	ACCEPT TEST
Basic Electrical Test; Ref. Test Para. 5.2.2	•	17 m
SPECIFICATION	MEASUREMENT AT Tnom ±1°	C LIMIT
Measurement at Vop=10 VDC		
Temperature	22°c	Table Rep
Input Voltage	lo VDC	Table IIIB
Input Current	194 mA	10.0 ± 0.2 VDC
Input Power, P _{diss}	1.94 WDC	Table IIIB
Frequency, f _{Tnom}	54.94028 GHz	P _{diss} max
RF Output Power, P _{Tnom}	12.5 dBm	Table IIIB
Frequency Setting Accuracy,	0.28 MHz	12 to 17 dBm
$\Delta f_S = f_{Tnom} - F_o$	WIHZ	
Frequency and RF Output Power Variation With	Voltage, Ref. Test Para 5.2.3	
Measurement at 9.5 VDC or at 9-5 VDC		
Temperature	°C	Table IIIB
Input Voltage	9-5 VDC	9.5 VDC or Para. 5.2.3.2
Input Current	191 mA	Table IIIB
Frequency, f _{meas}	5494021 GHz	Table IIIB
RF Output Power, P _{meas}	12:5 dBm	12 to 17 dBm
Measurement at 10.5 VDC or at 10.5 VDC	•	
Temperature	°C	Table IIIB
Input Voltage	(o VDC.	10.5 VDC or Para. 5.2.3.3
Input Current	192 mA	Table IIIB
Frequency, f _{meas}	54-94021 GHz	Table IIIB
RF Output Power, Pmeas	12.5 dBm	12 to 17 dBm
•		12 to 17 tipin
Calculate Frequency Variation, $\Delta f_V = f_{meas} - f_{Tnom}$	ษ	
$\Delta f_v$ at 9.5 VDC or at 9.5 VDC =	0.07 MHz	
$\Delta f_V$ at 10.5 VDC or at 10.5 VDC =	-0.07 MHz	
Calculate RF Output Power Variation, $\Delta P_V = P_{me}$	ess - P _{Tnom} ,	
AD HOSVIDS	~	
$\Delta P_{\rm V}$ at 9.5 VDC or at $\frac{9.5}{10.00}$ VDC =	dB	
$\Delta P_V$ at 10.5 VDC or at 10.5 VDC =	dB	
Accep	ot Reject	
Test Performed by	7 33 48	
7 11777813	Date $\frac{7-22-98}{1000000000000000000000000000000000000$	and the second second
A 60	Date <u>JUL 2 8 1998</u>	

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 38 OF 68
56348	A	1300823	B3	
I ITTONI (COLT	000 1000 100	707007 /0051 01 0000		<del></del>

# TEST DATA SHEET 7.3 FUNCTIONAL PERFORMANCE TESTS

	<b>INITIAL DATA</b>	SET NA FI	NAL DATA SET	
LITTON TYPE LS ESERIAL NUMBER:	9036 AJ/A 85023	QUAL TEST_	N/A ACC	D 1336610- 7 CEPT TEST
Temperature Testing	at T=10°C, Ref. 7	Test Para. 5.2.5.1		
SPECIFICATION	M	EASUREMENT AT	T=10° ±1°C	LIMIT
Measurement at Vop= Temperature Input Voltage Input Current Input Power, P _{diss}	10 VDC	193	PC VDC nA W DC	10° ± 1°C 10.0 ± 0.2 VDC Table IIIB Pdiss max
Frequency, f _{10°C} RF Output Power, P ₁₀	• <b>c</b>		GHz IBm	Table IIIB 12 to 17 dBm
Frequency and RF Ou Measurement at 9.5 V Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{me}	DC or at <u>9.5</u>	_VDC 	C VDC nA	Table IIIB 9.5 VDC or Para. 5.2.3.2 Table IIIB Table IIIB 12 to 17 dBm
Measurement at 10.5 Y Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{me}		10 ° 10.5 ° 191 ° 54.94043 °	C /DC nA GHz IBm	Table IIIB 10.5 VDC or Para. 5.2.3.3 Table IIIB Table IIIB 12 to 17 dBm
Calculate Frequency V $\Delta f_V$ at 9.5 VDC or at $\Delta f_V$ at 10.5 VDC or at $\Delta f_T$ at 10.0 VDC (= $f_{10}$	9.5 VI	$\frac{10^{-0.0}}{10^{-0.0}}$ : $\frac{10^{-0.0}}{10^{-0.0}}$ : $\frac{10^{-0.0}}{10^{-0.0}}$ : $\frac{10^{-0.0}}{10^{-0.0}}$ :	MHz	
Calculate RF Output F $\Delta P_V$ at 9.5 VDC or at $\Delta P_V$ at 10.5 VDC or at $\Delta P_T$ at 10.0 VDC (= $P_T$	9.5 VI	$\Delta P_{V} = P_{meas} - P_{10^{\circ}C:}$ $DC = Q$ $DC = Q$ $QC = QC$	dB dB 5 dB	
Test Performed by Litton Q.A.	LITTON M GO	Date Date	7-22-98 UL 28 1998	eject
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 39 OF 68

# TEST DATA SHEET 7.4 FUNCTIONAL PERFORMANCE TESTS

IJ.	NITIAL DATA SE	r <u>N/A</u> F	INAL DATA	SET_	<u> </u>
LITTON TYPE LS <u>E</u> SERIAL NUMBER:	9036 AJ/A 85023	QUAL TEST_	N/A	AESD ACCE	1336610- <u>7</u> PT TEST
Temperature Extreme T	esting at Tmin, Re	f. Test Para. 5.2.	5.2		
SPECIFICATION		MEASUREMI	NT AT Tm	in±1°C	LIMIT
Measurement at Vop=10 Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmin} RF Output Power, P _{Tmin}	. •	-1 10 193 1.93 54.94017	°C VDC mA W DC GHz dBm		Table IIIB  10.0 ± 0.2 VDC  Table IIIB  Pdiss max  Table IIIB  12 to 17 dBm
Frequency and RF Outp Measurement at 9.5 VD Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	C or at <u>9.5</u> V		Ref. Test Par °C VDC mA GHz dBm	a 5.2.5.2	Table IIIB 9.5 VDC or Para 5.2.3.2 Table IIIB Table IIIB 12 to 17 dBm
Measurement at 10.5 VI Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas}	•	VDC -1 10.5 191 54.94019 12.7	°C VDC mA GHz dBm	•	Table IIIB 10.5 VDC or Para 5.2.3.3 Table IIIB Table IIIB 12 to 17 dBm
Calculate Frequency Va $\Delta f_V$ at 9.5 VDC or at $\Delta f_V$ at 10.5 VDC or at _ $\Delta f_T$ at 10.0 VDC (= $f_{Tmin}$	9.5 VDC 10.5 VDC	=	0.02 -0.11	_MHz _MHz _MHz	
Calculate RF Output Po $\Delta P_V$ at 9.5 VDC or at $\Delta P_V$ at 10.5 VDC or at $\Delta P_T$ at 10.0 VDC (= $P_{Tm}$	9.5 VDC 10.5 VDC	=	<u> </u>	dB dB dB	
Test Performed by Litton Q.A	Acce (LITTON)	ept Rej Date Date	ect	<u>78</u> 1998	
CODE IDENT NO. 56348 LITTON / SO	SIZÉ A	NUMBER 1300823 ISION / 3251 OL		REV B3 SANTA	SHEET 40 OF 68 CLARA, CA 95054

## LITTON

## **Solid State**

# TEST DATA SHEET 7.5 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

	MILL DAIR SI		MIN DEI	
LITTON TYPE LS E	9036 AJ/A	_	AESI	0 13366107
SERIAL NUMBER:	85023	QUAL TEST N/A	ACC	EPT TEST
Temperature Testing at	Γ=30°C, Ref. Test	Para. 5.2.5.3		
SPECIFICATION		MEASUREMENT A	[ T=30° ±1°C	LIMIT
Measurement at Vop=10	VDC			
Temperature		<u>30</u> •c		30° ± 1°C
Input Voltage		lo VDC		10.0 ± 0.2 VDC
Input Current		194 mA		Table IIIB
Input Power, P _{diss}		1.94 W DC	٠	Pdiss max
Frequency, f _{30°C}		54.94009 GHz		Table IIIB
RF Output Power, P _{30°C}		12.5 dBm		<del></del>
id Output rower, r _{30°C}				12 to 17 dBm
Frequency and RF Outpu	ıt Power Variation	With Voltage, Ref. Tes	t Para 5.2.5.3	
Measurement at 9.5 VD(		'DC		
Temperature	<del></del>	<u>3o_</u> ℃		Table IIIB
Input Voltage		9.5 VDC		9.5 VDC or Para. 5.2.3.2
Input Current		192 mA	•	Table IIIB
Frequency, f _{meas}		54.94011 GHz		Table IIIB
RF Output Power, P _{meas}		12.5 dBm		12 to 17 dBm
meas		ubin		12 to 17 dbm
Measurement at 10.5 VI	C or at 10.5	VDC .	·	
Temperature		30 ℃		Table IIIB
Input Voltage		10.5 VDC	•	10.5 VDC or Para, 5.2.3.3
Input Current	<b>s</b> .	192 mA		Table IIIB
Frequency, f _{meas}		54.94010 GHz	•	Table IIIB
RF Output Power, P _{meas}	,	12.5 dBm	•	12 to 17 dBm
rd Output Fower, F _{meas}	. •			12 to 17 dBm
Calculate Frequency Var	riation, $\Delta f_V = f_{meas}$ -	f _{30°C} :		
$\Delta f_V$ at 9.5 VDC or at	9.5 VDC		MHz	
$\Delta f_V$ at 10.5 VDC or at	lo.5 VDC	= 0.81	MHz	
$\Delta f_T$ at 10.0 VDC (= $f_{30^{\circ}C}$	-f _{Tnom} )	= -0.19	MHz	
		n - n		
Calculate RF Output Pov			מג	
ΔP _V at 9.5 VDC or at			dB	
ΔP _V at 10.5 VDC or at _			dB	
$\Delta P_T$ at 10.0 VDC (= $P_{30^{\circ}C}$	-P _{Tnom} )	= <u> </u>	dB	
		Accept	Rejec	<b>†</b>
Test Performed by	VN.			<u> </u>
Litton Q.A.		<del></del>	<u>8 1998</u>	
	(LITCN)	Date JUL 2	<u>o 1330 - </u>	
CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 41 OF 68
56348	A	1300823	B3	
				CLARA, CA 95054

# TEST DATA SHEET 7.6 FUNCTIONAL PERFORMANCE TESTS

	INITIAL DATA SE	T_N/A_FINALI	DATA SET	
LITTON TYPE LS <u>6</u> SERIAL NUMBER: _	9036 AJ/A 85023	QUAL TEST N/A		1336610- <u>7</u> EPT TEST
Temperature Extreme T	esting at Tmax, Ref	. Test Para. 5.2.5.4		
SPECIFICATION		MEASUREMENT AT	Tmax ±1°C	LIMIT
Measurement at Vop=1 Temperature Input Voltage Input Current Input Power, P _{diss} Frequency, f _{Tmax}	0 VDC	44 °C 10 VDC 195 mA 1.95 W DC 54.93951 GHz		Table IIIB 10.0 ± 0.2 VDC Table IIIB Pdiss max Table IIIB
RF Output Power, P _{Tma}	×	dBm		12 to 17 dBm
Frequency and RF Outp Measurement at 9.5 VI Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{meas} Measurement at 10.5 V Temperature Input Voltage Input Current Frequency, f _{meas} RF Output Power, P _{mea} Calculate Frequency V Af _V at 9.5 VDC or at	OC or at $9.5$ V  DC or at $10.5$ ariation, $\Delta f_V = f_{meas}$	DC	t Para 5.2.5.4	Table IIIB 9.5 VDC or Para 5.2.3.2 Table IIIB Table IIIB 12 to 17 dBm  Table IIIB 10.5 VDC or Para 5.2.3.3 Table IIIB Table IIIB Table IIIB
$\Delta f_V$ at 10.5 VDC or at	10.5 VDC	= <u>d</u>	MHz	
$\Delta f_T$ at 10.0V (= $f_{Tmax}$ - $f_T$ ) Calculate RF Output Po $\Delta P_V$ at 9.5 VDC or at _ $\Delta P_V$ at 10.5 VDC or at $\Delta P_T$ at 10.0 VDC (= $P_T$ )	ower Variation, ΔP _V <u>9.5</u> VDC (0.5 VDC max-P _{Tnom} )	= \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \delta \\ \	_MHz _dB _dB _dB	
Test Performed by Litton Q.A.	Acce Unition	Date <u>7-</u> Date <u>1111 2</u>	22-98 8 1998	
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 42 OF 68
		SION / 3251 OLCOTT		CLARA, CA 95054

### TEST DATA SHEET 7.7

	INITIAL DA	TA SET NA FINAL DAT	A SET $\nu$		*
	1.				
LITTON TYPE LS E 903	6 A-J/A	. , , A	ESD 1336610	)- <u>7</u>	
SERIAL NUMBER: 85	5023 QU	AL TEST N/A ACCEPT	TEST	<u> </u>	
Power Supply Immunity, Ref. Te	est Para. 5.2.4				
SPECIFICATION		MEASUREMENT AT Thor	<u>n±1℃</u>	LIMIT	
Initial Measurement	• • • •				* • • • •
Temperature		22_ ℃		Table IIIB	
Input Voltage		lo VDC		$10.0 \pm 0.2 \text{ VDC}$	
Input Current		19 4 mA		Table IIIB	
Input Power		1-94 W DC		Pdiss max	
Frequency (f _{Tnom} )	•	54.94029 GHz		Table IIIB	
RF Output Power		12.5 dBm		12 to 17 dBm	
Frequency Setting Accuracy, $\Delta f_S$	$(=f_{T_{nom}}-F_o)$	0.29 MHz			
Performance A Acceptance Characteristics	<b>~</b> ~	D CT . D CO 40			•
Performance After Short Circuit	on Power Supp	y: Ref Test Para 5.2.4.2	•		
Input Voltage		10 VDC		10.0 ± 0.2 VDC	
Input Current		194 mA		Table IIIB	
Input Power		1.94 WDC		Pdiss max	
Frequency		54.94029 GHz		Table IIIB	-
RF Output Power		12.5 dBm		12 to 17 dBm	
Over Voltage: Ref Test Para 5.2.	<u>4.3</u>				
Overvoltage Input Voltage		28 _{VDC}		12017	
Overvoitage niput voitage		<u> </u>		+28V	
Performance After Input Overvo	ltage		•		
Input Voltage		(o vdc		10.0 ± 0.2 VDC	
Input Current	•	194 mA		Table IIIB	
Input Power		1.94 WDC		Pdiss max	
Frequency		54.94031 GHz	1.54	Table IIIB	
RF Output Power		12.5 dBm		12 to 17 dBm	
· · · · ·				12 10 17 4511	•
Reverse Polarity: Ref Test Para	5.2.4.4				
Reverse Input Voltage		-10 VDC		-10.0 ± 0.2 VDC	
				-	
Performance After Reverse Input	Voltage				
Input Voltage		lo vDC		10.0 ± 0.2 VDC	
Input Current		193 mA		Table IIIB	
Input Power		1.93 W DC		Pdiss max	
Frequency, f _{Tnom}		54.94032 GHz		Table IIIB	
RF Output Power		12.5 dBm		12 to 17 dBm	
Frequency Setting Accuracy, Δf _S	(=fF)	0.32 MHz		12 to 17 ubiii	
	(° 'Tmom'' o				
		Accept Reject			
Test Performed by VN	LITTON	Date $7 - 22 - 98$	•		,
∠itton Q.A.	460	Date <u>JUL 2 8 1998</u>	=		
CODE IDENT NO.	SIZE	NUMBER	REV	CUEET 42 OF 4	0
	1	i i		SHEET 43 OF 6	00
56348	A	1300823	B3		

# TEST DATA SHEET 7.8

1	ICTIONAL PERFORMANCE T A SET		
LITTON TYPE LS E 9036 AS SERIAL NUMBER: 85023		AESD 1336610 ACCEPT TEST _	7
Maximum Instantaneous Current, Ref.	Test Para. 5.3		
SPECIFICATION	MEASUREMENT AT TO	nom ±1°C LIN	AIT .
Temperature: Input Voltage: Maximum Instantaneous Current:	°C VDC vmA	Tnom ± 1° 10.0 ± 0.2 ° Table IIIB	





		Acc	ept Reje	ect		
Test Performed by	VÑ	Date _	7-22-98	_		
Litton Q.A.	W EO	Date _	JUL 2 8 1998	_		
CODE IDENT NO. 56348	SIZE	NUMBER 1300823	REV B3	SHEET	44 OF 68	
	LID STATE DIVIS			CLARA,	CA 95054	

# TEST DATA SHEET 7.9 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET_______ FINAL DATA SET_____

LITTON TYPE LS &	9036 AJ/A			AESD 1336610	7	
SERIAL NUMBER:	85023	QUAL TEST	N/A	ACCEPT TEST _	~	

Start up at Survival Temperature Extremes, Ref. Test Para. 5.4

Turn-On Characteristics at -30° ± 1°C

Ref. Test Para. 5.4.3

Temp	Vop	Iop	Fr <del>e</del> q.	Pout
°C	VDC	mA	GHz	dBm
-30	lo	190	54.94090	12.8

Turn-On Characteristics at +60° ± 1°C Ref. Test Para. 5.4.5

- [	Temp	Vop	Iop	Freq.	Pout
_)	°C	VDC	mA	GHz	dBm
	60	10	196	54.93873	12.0

Test Performed by

Litton Q.A.



Date 7-22-98

Date <u>JUL 2 8 1998</u>

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 45 OF 68
56348	$\mathbf{A}$	1300823	В3	

LITTON				
Solid State				
FUN	EST DATA SHEET ICTIONAL PERFOR SET <u>U/A</u> FI	RMANCE TE	ESTS SET	
LITTON TYPE LS E 9036 AJ SERIAL NUMBER: 65023	QUAL TEST_	N/A	AESD 1336610 ACCEPT TEST	- <u>7</u>
Spurious Outputs: Ref. Test Para. 5.5.2				
TEST DESCRIPTION			<u>LIMITS</u>	
Temperature Spurious Outputs Peaks observed:	22 °C YES		Tnom ± 1°C NO	
Value of peaks observed, if any:	NONE		-90 dBc min	
•				
•				
) Attach Spurious Signals plots from Spec	etnım Anglyzer			
or and a process of the spect	outum Analyzor.			
•			•	
				<b>.</b>
Α	ccept Reje	ect		
Test Performed by VN	I	Date <u>7 -</u>	24_98	

CODE IDENT NO. 56348 SHEET 46 OF 68 SIZE NUMBER 1300823 A **B**3 LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054

Date

JUL 2 8 1998

REV

Litton Q.A.





								\$		N
								րի այսում արդերի այր այր այր այր այր այր այր այր այր այր	indelinanden de la la la la la la la la la la la la la	O. OMH.
			·					ademining the	الالاد الندوطية أعدا للندولية	500. OMHX 130880
								and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	सहित्त सामा है। स्थान है।	Ω.
										Z A U S
								A de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la consta	in franchina philine	N I N
								Population of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the land of the	તો હોતા કો કો કો કો કો કો કો કો કો કો કો કો કો	
		N I U	E M T					and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		m,
		000	67					Septiminaliration of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of the septiment of th		\mathbb{Y}
	-	Σ N	1 0) 4					The section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the se		* C
<b>L</b>			Ŋ	<b>.</b>	<u> </u>	<b>!</b>	<u> </u>			* U IL
			9008	ΣΝ Ι Χ. Φ Θ . Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	ΣΝ   Χ : 0	ΣΝ Ι Χ. α . 4 Θ . α	ΣΝ Χ.ο. Θ.ο. Ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ΣΝ Ι Χ Ο Ο Ο Ο Ο Ο Ο Ο Δ Ι		MXRR SO. SOOO GHZ  -S4. 67 dBm  When the first the first three the first three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three three

			 <del></del>	<del></del>		<del></del>	. <del></del>	<del></del>				
· )	E								·	सन्दर्भात्रकात्रात्रकात्रा	energene en de la la la la la la la la la la la la la	
	ээчв	N				,		-		oled be Hermini Franka		100.
	-94. 33dBm	BOOOGHZ								e dibilitates	in Mediana mandal parting di propinsi	SPAN 500. OMHN SWP 130880
		52.80								P. C. C. C. C. C. C. C. C. C. C. C. C. C.		O O
Spurious	Σ	נט									ા ભાગમાં મામ મામ મામ મામ મામ મામ મામ મામ મામ	N I V
) S	,	10dB/								4		N -
		ן ד							q		والمراط المراط المراط المراط المراط المراط المراط المراط المراط المراط المراط المراط المراط المراط المراط المراط	I ≫ O 0 O > O *
2 >	<u>m</u> (			N U U	d B A					And Dan Male and Anderson	ير القرار المراجعة أودراً إوا مراجعة	0
	9.00B			8000	<u>ო</u>							$\mathcal{L}$
7-24-98		ל ן ן		ΣΝ ΧΝ Γ.	1 0) 4					in the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of		* CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT * CENT *
2	<u>.</u>	<b>-</b>			Ŋ			<b>-</b>	<del></del>		<del></del>	* ~

ì							otsoni lalahan mangalan da	મુક્તિમાં કામમાં ભાગ	Σ O
	-94. 67dBm 960GHz						Minellenninglisetanis Helb	յուն յուների արդարանան արդարանան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդար Արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարան արդարա	500.0MHX 130sec
	-04.67 5960CHx						Ampingalpagalpatig	ម្យាល្យមានក្រាល់	
	Σ W					·	in the control of the second second	a Matanala phylogenesis i	
SPURIOUS	۱۱۱ ک						3	անականականուն	D T N
JA Z	10dB/					·	al faitheachtaidh an tairt ann an taileann an tairt an taileann an tairt an taileann ann an tairt an tairt an	ni Madantalanda na	<b>⊢</b>
	<b>ਜ</b>		NI-				e de sere de la ferencia	وأنواعاريين المارية أعامار	BOOCH N * < B ×
7 >	9 0 0 0 0		N U				្រាំប្រមួយប្រែប្រាស្រាវប្រវត្តិ		
3 TO 80 80 80 80 80 80 80 80 80 80 80 80 80	23.0dB		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				વાંતાનું માં મામ મામ માં માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર માત્ર મ	ાર્કાણી તમાં તેમણે અને કારણ માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્ર ભાગમાં માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્રા માત્ર	Υ
7-24-48 5/2 85023	ן א ט		О Ю П М Г				and the summent	anta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la con	* C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E Z + C E
•				Ŋ					*

`)	E							edistantelium elite	N I U D W
	-94.67dBm					Not real		affisherende freedstaansk statestissteria statest	0.0
	.000 .000 .000					Jan 1		nagelangibakhank	N A A N M T
	MKR -04.67 54.4000011			·		Not o	The first of the second	માં માર્થિક મુક્તિમાં માર્થક માર્થક માં માર્થક માત્ર માર્થક માત્ર માર્થક માર્થક માર્થક માર્થક માર્થક માત્ર માલ્ 	
Spurious	<b>≥</b> W						Aughtetreitment de	and a pharticular of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	N Y O
dS (	10dB/			Not real			and all attitute the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of the factor of	hanaman kalandari	<b>.</b> ⊢
	1 (			1			Tital control	il, gerttetetaladin	
7 >	E B		U U U				स्तित्वात्वत्वत्वत्वत्वत्वत्वत्वत्वत्वत्वत्वत्वत	յանահանարկից հետանակարական ին հետանական հումանակում է ու որ որ որ որ որ որ որ որ որ որ որ որ որ	4 0 *
	CL 23.0dB RL -7.0dBm		T 日 日 日 日 日 日 日				gentrestignitus	(તું કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા કાર્યા ક 	<u>I</u>
2/ 85023	ר ר מ ו		CENTER 54. 400				ger pestilete pi beistete e [just	nelducathuandhen de	
I)	<del></del>			Ŋ	 ~				* ~

-	E				۲ –			
	1700m HX				Not REA			130sec
	-03.17 0933CHX	J			ARE		leteraku, Medukerak Imbupan propini	Z Y S
	Σ (λ Χ 4 	Fundaments			SPURS		Tenter period de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de	N. W.
SPURious	ΣIN	FW -			ALL			T T N
<b>΄</b>	10dB/							• ∺
	7							0.40 N H D D O + N W W X
2	3 0 0 0		N I U	двн			energia de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la constanta de la	•
-98 723	23.0dB -7.0dB		8 8 8 8	. 17				Y
7-24-98 5/N 85023	7 7 1 1		Σ N X 4 Γ.	0)   				CENTER *RBW 10
	<u>.</u> щ	 		ហ				*







## LITTON

## **Solid State**

LITTON TYPE LS E 9036 AJ/A

# TEST DATA SHEET 7.13 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET ______ FINAL DATA SET _____

FM Noise: Ref. Test Para. 5.6.1  TEST DESCRIPTION  LIMITS  FM noise (Attach plot):  Temperature  22 °C  Measured = <-110 dBc/Hz 1 MHz to 40 MHz Accept -100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc/Hz max100 dBc	SERIAL NUMBER:		AESD 1336610- 7
TEST DESCRIPTION  FM noise (Attach plot):  Temperature 22 °C  Measured = <-110 dBc/Hz 1 MHz to 40 MHz -100 dBc/Hz max.  Measured = <-135 dBc/Hz 40 MHz to 400 MHz -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz max.  -100 dBc/Hz	January Month Err.	85023' QUAL TEST	N/A ACCEPT TEST
FM noise (Attach plot):  Temperature 22 °C Tnom ± 1°C  Measured = <110 dBc/Hz 1 MHz to 40 MHz Measured = <135 dBc/Hz 40 MHz to 400 MHz —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —100 dBc/Hz max. —10	FM Noise: Ref. Test	Para. 5.6.1	
FM noise (Attach plot):         Temperature       2.2 °C       Tnom ± 1°C         Measured       = <110 dBc/Hz 1 MHz to 40 MHz	TEST DESCRIPTION	<u>N</u>	LIMITS
Measured =	FM noise (Attach plo	ot):	
Measured = \( \frac{1.35}{1.00} \) dBc/Hz 40 MHz to 400 MHz \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \frac{1.00}{1.00} \) dBc/Hz max. \( \fr	Temperature	°C	Tnom ± 1°C
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			-100 dBc/Hz max. -100 dBc/Hz max.
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68	•	•	•
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			÷.
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68		•	•
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			•
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			•
Test Performed by  Date  7-24-98  Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV SHEET 49 OF 68			
Litton Q.A.  Date  JUL 2 8 1998  CODE IDENT NO.  SIZE  NUMBER  REV  SHEET 49 OF 68		Acce	ept Reject
Litton Q.A.  Date JUL 2 8 1998  CODE IDENT NO. SIZE NUMBER REV SHEET 49 OF 68	Test Performed by	UN Date	7-24-98
56249 SHEET 49 OF 08	Litton Q.A.	(3 ₈ )	
ит <b>ча</b> і а і 1700000 і <b>»</b> - і		i i	1 17 01 00
LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054		A 1300823	i B3 i



		Γ	T	T		T	T	<del>                                     </del>	<del></del>			7 1
Ì	E		*							Haistatanagilia	والأوالالمارالا	N (
	7 d B									office and all the last last last		
30 MHz	-95.17dBm 1600GHx									o de la company de la company de la company de la company de la company de la company de la company de la comp		55. 34000HX
40 MHZ → 400 MHZ)	Σ N									in in a table in the later	માં <b>પ્રોક્ષેક</b> ધારા મહાકારા છે.	
	צֿ מ		* 4			-				en ellindeethelis fron	etytettelgelettettettet	N
Noise ( From	10dB/									Մարկարերությունը անուրդությունը հայանությունը հայանությունը արդանությունը հայանականությունը անդարացությունը հա	ունեց հանում Արևայյի և անհիրկաի անձիայն հրանականում իր և արագարանի իր հանում անում եր և արարդանի ուներայանում	[] 
FM NG	<del>г.</del> П								•		iel de company de la company de la company de la company de la company de la company de la company de la compa	
7	E 0 00			N I U	д В Э	<b>.</b> .				្រាក់	بأمارس وأحالما اطريوالا وأماء	00 (00 )
	23.0dB			1600	17					ar Aphantana an an an an an an an an an an an an	ninginingininging para	H U U T X I I I I I I I I I I I I I I I I I I
5/2 B5023	ה ר ו וי			Σ N	0 0		-			માં માના મામ માના માના માના માના માના મા	indevidue de la company de la company de la company de la company de la company de la company de la company de	* X A X Y X X X X X X X X X X X X X X X X
	O 11.		<b>.</b>		Ŋ					<del></del>		ග

			T	T	1		1	1	1	7
	E								destinitation of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	
- 40 MH2)	Ш П И ОО Т				,			l	majajajajajajajajajajajajajajajajajajaj	000
	-95. 33dBm 7200GHz	·						Not rea	Alighbolds distributed	SWP 90.08
FM woise (From - 400 MH2 >	Σ							7	elekalelikelekalekalekalekalekalekalekalekalekale	
From	צ וט								adelite de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la	N
A Noise	10dB/								onspirated on particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particular de la particula	H —
Ĺ	н О									
3	E E			и I U					en in de proportie de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la compa	0 4 0 x
	23.0dB -7.0dBm			F 4 0			-		desperatoristical	10 U L A I I I I I I I I I I I I I I I I I I
5/N 85023				0.0 ⊢4 ∢•					isinyy dipilipilipidad	1 LL
	א ט				S O				7	* N * N * N * N * N * N * N * N * N * N

# TEST DATA SHEET 7.16 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET N/A FINAL DATA SET

*			111111	DAIA	,L1 -	<u> </u>	•	
LITTON TYPE LS ESERIAL NUMBER:	9036 AJ 85023	<u>DA</u>	L TEST N	/ _A			1336610	
AM Noise: Ref. Test I	Para. 5.6.2			<del>/</del>		ACCE	PT TEST	
TEST DESCRIPTION					LIM	TS.		
AM noise (Attach plot)	) <b>:</b>							
Temperature	<u> </u>				Tnon	a ± 1°C		
	<-137 dBc/H <-155 dBc/H <-160 dBc/H	z 10 kHz to	100 kHz		-145	dBc/Hz m dBc/Hz m dBc/Hz m	ax.	
RF Power Input, Mixer  P _{mixer} RF Voltage, Termination  V _{carrier} RF Voltage, Termination  V _{5dB} RF Voltage, Termination	on (Nominal), on (attn5dB),		0.081	_dBm _V _V ^		0 to 7 d	Bm	
$V_{+.5dB}$ Calculate mixer carrier $P_{carrier} =$ Calculate5dB carrier			- 8.8	_V _dBm				
$P_{5dB} =$ Calculate +.5dB carrier $P_{+.5dB} =$ Calculate Mixer Transfe	er Correction Fac		<i>u</i> <b>-</b>	_dBm _dBm			•	•
$CF_{mixer} = P_{5dB} - CF_{mixer} = Noise (spectrum analyzer)$ Total Gain, LNA, $G_{LNA}$ Calculate Noise of UUT $L_f =$	er), Lmeas	_{rrier} - G _{LNA} -	-104 G4 CF _{mixer} :	.dB .dB .dB .dBc/Hz .dBc/Hz		-	150 dBc	⁄Hz max
	A	ccept	Reject					
Test Performed by	VN	5011	Date	7-	24	-98		
Litton Q.A		10N 60	Date		<u>L 2</u> 8	1998	· · · · ·	
CODE IDENT NO. 56348	SIZE A		MBER 00823	REV B3	7	SHEET	52 OF (	58

LITTON / SOLID STATE DIVISION / 3251 OLCOTT ST / SANTA CLARA, CA 95054



								-
Ĵ	E							
(۲	17dBm							DMHN
400 MH2)	1 0 0 Σ 4 I N							400.
40211	Σ <i>U</i>							
( From 40	ΣΝ							SHOL
Sion (	10dB/							
ΑW	1 (							<u>N</u>
	10dB		N I S	дВш				N N I N
85023	$\bar{\mathbf{n}}$		0	17				⊢ 04
5/v 85	ATTEN RL Od		Σ () ス () 広 ()	-64				STAR
	· <b>LL</b>			Ŋ				U)

90. Osec SWD 1. OKIN **₩© *** . 1 O T I N * N M ×

### **LITTON**

### **Solid State**

# TEST DATA SHEET 7.19 FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET JA FINAL DATA SET

INITIAL DATA SET NA FINAL DA	
LITTON TYPE LS E 9036 AJ/A SERIAL NUMBER: 85023 QUAL TEST N/A	AESD 1336610- 7 ACCEPT TEST
Harmonics Tests: Ref. Test Para. 5.7	
TEST DESCRIPTION	<u>LIMITS</u>
Temperature       22       °C         Frequency, per 5.7.1       5494028       GHz         RF Output Power, per 5.7.1       12.5       dBm	Tnom ± 1°C Table IIIB 12 to 17 dBm
Harmonics:	
Level of second Harmonic — 77 dBm Difference (2nd Harmonic) — 90 dB	-30 dBc min
Subharmonics:	•
Level of Subharmonic — 96 dBm  Difference (Subharmonic) — 108 dB	-90 dBc min
	· Va
	· · · · · · · · · · · · · · · · · · ·
AcceptReject	
Test Performed by Date	7-24-98
Litton Q.A. Date	JUL 2 8 1998

CODE IDENT NO.	SIZE	NUMBER	REV	SHEET 55 OF 68
56348	A	1300823	B3	

		 	,		 <del></del>	<u>,                                     </u>			
<u> </u>	E		,	·				Himidilladiqican	O. OMHN
				,				en de la la la la la la la la la la la la la	500. OMHN 130sec
	-77. OOG 8800CHN							den distribution	
	Σ ⁻¹								Q. Q.
RMONIC	ΣΗ							Petricial section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of	N I Y O
2 NE HARMONIC	10dB/								
. •	4		N				•	idelle properties de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la consti	
3	a a		N U U	T D D				entrinativi printerita de la compania de la compania de la compania de la compania de la compania de la compani La compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del compania del compania de la compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del com	o o
	10.0dB		8800	00.				in a gallette keke dilika	Y
7-24-98 s/N 85023	7 N N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Σ t X O X O	22-				entering of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the least of the le	CENTER *RBW 10
	UE			Ŋ			**************************************		- U (£



#### LITTON

### **Solid State**

# TEST DATA SHEET 7.22A FUNCTIONAL PERFORMANCE TESTS

INIT	TAL DATA	SET N/A FINAL	DATA SET_	
LITTON TYPE LS € CONSERIAL NUMBER:	1036 AJ/ 85023	A QUAL TEST	/A	AESD 1336610-7 ACCEPT TEST
Frequency and Power Hysto	eresis: Ref T	Cest Para. 5.8		
TEST DESCRIPTION			LIM	TS.
1. Initial Perform	mance at Tn	om ± 1°C		
Temperature Frequency, $f_{Tnom}$ RF Output Power, $P_{Tnom}$ Input Voltage, $V_B$ Input Current, $I_B$ Frequency Setting Accuracy $\Delta f_S (= f_{Tnom} - F_o)$	2.5   10   194	024 GHz 5dBm VDC mA	Table 12 to 10 ±	n ± 1°C e IIIB 17 dBm 0.2 VDC e IIIB
2. Performance	at Tnom ± 1	°C after +60°C soak.		
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	22 54.9400 12.5 10 195	<del></del>	- Table 12 to	17 dBm .005 VDC
3. Performance	at Tnom ± 1	°C after -30°C soak.		
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage Input Current	54.940 12.5 10 193	30 GHz	Table 12 to	17 dBm .005 VDC
Calculate frequency variation  Δf _H after 60°C soak =  Δf _H after -30°C soak =	on, $\Delta f_H = f_{mea}$	- f _{Tnom} : - 0.22 MHz - 0.06 MHz		
Calculate RF output power $\Delta P_H$ = after 60°C soak = $\Delta P_H$ = after -30°C soak =	variation, ΔP	$P_{H} = P_{meas} - P_{Tnom}$ :	_	
Test Performed by Litton Q.A.	VN	Ac Date Date	JUL 2 8 100	
CODE IDENT NO. 56348	SIZE A	NUMBER 1300823	REV B3	SHEET 58 OF 68

# LITTON Solid State

) 	FUNC ITIAL DATA S	TEST DATA	FORMAN	CE TESTS			
LITTON TYPE LS E SERIAL NUMBER:	9036 AJ/ 85023				AESD 133	6610- <u>7</u> TEST	
Frequency and Power Hy	steresis: Ref Te	st Para. 5.8					
TEST DESCRIPTION				LIM	ITS		
4. Performance	ce at Tnom ± 1°	C at Ambient	Pressure				
Temperature Frequency, f _{meas} RF Output Power, P _{meas} Input Voltage, V _B Input Current	22 54.94038 12.7 10 193	~		Tabl 12 to V _B ±	m ± 1°C e IIIB o 17 dBm : .0005 VDC e IIIB		
Calculate frequency variate	tion, $\Delta f_P = f_{\text{meas}}$	- f _{Tnom} :					
$\Delta f_{\mathbf{p}} =$	0.14 MHz						
Calculate RF output powe	r variation, ΔP,	= P _{mess} - P _{Tnor}	•	•			
$\Delta P_p = 0.2$	dB	1101	•				•
	••·						
	·						<b>4</b>
	Acc	ept	Reject	<del></del>			
Test Performed by	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	diti)	Date _	7-24- JUL 28			
CODE IDENT NO. 56348	SIZE A	NUMBE 130082		REV B3	SHEET 59	OF 68	

**B**3

1300823

# TEST DATA SHEET 7.23A FUNCTIONAL PERFORMANCE TESTS INITIAL DATA SET //A FINAL DATA SET //

INITIA	T DATA 25	$\frac{1}{N/R}$	LINAL	DATA SEI _		
LITTON TYPE LS = 903 SERIAL NUMBER: 8	5023	QUAL TE	ST N/	/ _{A .}	AESD 133661 ACCEPT TES	0- 7 T
Frequency Pulling and Load V	SWR 2.5:1	max. all phas	es. Ref Te	est Para. 5.9		
TEST DESCRIPTION	**			LIMI	<u>TS</u>	
Initial Measurement. Ref Test	Par. 5.9.1	22 00		242		
Temperature	51.	<u> </u>			±5°C	. •
Frequency	<u> 54.9</u>	14037 GF		Table		
RF Output Power		12.7 dB		•	17 dBm	
Input Voltage	<u></u>	10 VI			0.2 VDC	•
Input Current	!	94m	1	Table	: IIIB	
Reference test. Ref. Test Para.	5.9.3					•••
Fraguency f	511	94036 GHz	_	T-11	TTTD	
Frequency, f _{Ref}				Table	нв	
RF Output Power, P _{Ref}		- <u>30</u> dBn	1	•		
Load Pulling Test. Ref. Test P	ara. 5.9.4		-			
Maximum Frequency, f _{meas}	รน (	140 37 GHz	,	Table	TITE	
Minimum Frequency, f _{meas}		40 35 GHz		Table		
Maximum RF Output Power P		-2.8 dBm		I auto	шь	•
Minimum RF Output Power, F	meas	3.3 dBn		•		
Manada Id Output I ower, I	meas	- 2.2 WI	ı			
Calculate maximum positive ( $\Delta f_L = f_{meas} - f_{Ref}$	f _{meas} is greate	er than f _{Ref} ) ar	nd negative	e (f _{meas} is less	than f _{Ref} ) frequen	cy variation,
Maximum Dagiting A.S.		0.01 MT	T_			
Maximum Positive $\Delta f_L =$						
Maximum Negative $\Delta f_L =$		0.01 MI	1Z			
Calculate maximum positive (Variation, $\Delta P_L = P_{meas} - P_{Ref}$ :	P _{meas} is great	er than P _{Ref} ) a	and negativ	ve (P _{meas} is less	s than P _{Ref} ) RF O	utput Power
Maximum Positive AD -		0. 9 ap				
Maximum Positive $\Delta P_L =$	·	$\frac{0.2}{0.3}$ dB				
Maximum Negative $\Delta P_L =$		<u>0.5</u> ub				
	Acc	ept	Reject	<del></del>		
Test Performed by	VN ; /	240	Date	7-24	-98	
Litton Q.A.	(	OLC)	Date	JUL 2 8	<del></del>	
CODE IDENT NO.	SIZE	NUMB		REV	SHEET 60 OF	68
56348	A	130082		B3		
LITTON / SOLID S	TATE DIVI	SION / 3251	OLCOTT	ST/SANTA	CLARA, CA 95	054

CODE IDENT NO.

56348

n		TEST DATA SHEET 7.231 TIONAL PERFORMANCE ET _N/A FINAL DA	TESTS
LITTON TYPE LS <u>E</u> SERIAL NUMBER:	9036 AJ/A 85023	QUAL TEST N/A	AESD 1336610- 7 ACCEPT TEST
Frequency Pulling and L	oad VSWR 2.5:1	max. all phases. Ref Test I	Para. 5.9
TEST DESCRIPTION			<u>LIMITS</u>
Output Open and Short.	Ref. Test Para. 5.9	<b>9.5</b>	
Temperature Frequency: RF Output Power: Input Voltage Input Current: Results:	22 <u>5494037</u> 12.7 10 194	_°C '_ GHz _ dBm _ VDC _ mA _ Acceptable	24°C ± 5°C Table IIIB 12 to 17 dBm 10 ± 0.2 VDC Table IIIB No Damage or Degradation
		(both positive and negative) 7.7, and 7.22A) $+ \Delta f_H$ (from	$f_{L}$ , and $f_{L}$ (from 7.23A):
Maximum $\Delta f_{acc} =$	0.39	MHz (Positive) MHz (Negative)	Table IIIB Table IIIB
Calculate maximum Sho $\Delta f_{V+T} = \Delta f_V + \Delta f_T$ (Use v		Stability (both positive and $\Delta f_T$ from 7.2 thru 7.6):	l negative),
Maximum $\Delta f_{V+T} =$	0.25 -0.18	MHz (Positive) MHz (Negative)	Table IIIB Table IIIB
	•	wer Stability (both positive and $\Delta P_T$ from 7.2 thru 7.6) +	and negative), $\Delta P_H$ (from 7.22A) + $\Delta P_L$ (from 7.23A):
Maximum ΔP _{ov} =	0.4	dB (Positive) dB (Negative)	1.0 dB -1.0 dB
	Acc	ept Reject	·
Test Performed by	VN	Date	7-24-98
Litton Q.A.	NOLL!	Date	JUL 2 8 1998

SHEET 61 OF 68

REV

**B**3

NUMBER

1300823

SIZE

A

## Channel 7 Mixer/Amplifier

Mixer/Amplifier (P/N: 1331562-17, S/N: 7A67)

#### TEST DATA SHEET NO. 6. AMPLIFIER TESTS

GAIN FL	ATNESS TEST:	ATP PARAGRAPH 5.1.3

GAIN FLATNESS

SPEC. GAIN FLATNESS

(dB)ppK

(dB)ppK

REJ ACC

0.50

#### GAIN VERSUS VOLTAGE SENSITIVITY TEST: ATP PARAGRAPH 5.1.4

AMPLIFIER GAIN VOLTAGE

READING (dBm)

SPEC.

 $\Delta G/\Delta V$ 

70,82

70,69

1.63

 $\Delta G/\Delta V$ 

2.0

DATE ACC REJ

PART NO. <u>1331562-</u> 176

SPACEK QA

SER NO. 7A67

 $d\mathbf{B}$ 

TEST FAILURE:

TESTED BY: 77

FAILURE ANALYSIS NO. _____

END DATE:

END TIME: 1600

Spacek Labs, Inc. 212 E. Gutierrez St.

Santa Barbara, CA, 93101



#### TEST DATA SHEET NO. 7. AMPLIFIER TESTS

#### GAIN VERSUS TEMPERATURE SENSITIVITY TEST: ATP PARAGRAPH 5.1.5

Nomi (°C)	nal Temperature	Relat	ive Gain	ΔG/ΔT	SPEC	ACC	REJ
Ť1	-6	GT1	71,65			,: <u>-</u>	1
				. 0.018	0.035dB/°C	( QA	ì
T2	+8	GT2	71,40				20
				* 0.023	0.020dB/°C		- QA
Т3	+28	Gтз	70.94				
					0.035dB/°C	AO	
T4	+40	GT4	70.58				)

* Perform the following calculations and record on the TDS

$$\Delta G/\Delta T = G_{Ti} - G_{Ti+1}$$

$$\Delta G/\Delta T = I,2,3,4$$

$$T_{i} - T_{i+1}$$

$$\Delta G_T = \frac{1.07}{dB}$$

 $\Delta G_{TOTAL} = \Delta G_V + \Delta G_T + 0.4 = \frac{1}{6} dB$  Spec 1.4dB

ACC	REJ 1

PART NO. <u>1331562-17</u>

SPACEK QA

40

DATE ACC REJ ENGINEERING DATI

SER NO.

TEST FAILURE:

TESTED BY:

FAILURE ANALYSIS NO.

END DATE: 6-5-98

Spacek Labs, Inc. 212 E. Gutierrez St.

END TIME:

Santa Barbara, CA, 93101



#### TEST DATA SHEET NO. 8. AMPLIFIER TESTS

#### OUTPUT 1.0 dB COMPRESSION POINT TEST: ATP PARAGRAPH 5.1.6

$\mathbf{r}$	٨	CLI	#
	А	24	₩

11 12 13 14 15 16 17 18 19 20	FREQ. (MHz)	P2 COMP (dBm)	OUTPUT COMP. at+10(dBm)	SPEC. COMP. PT.(dBm) ACC REJ
X X X X X X X X	10	-2.3	0.7	1.0 (3-
X	20			
хх	50			
X X X X X X X X	100	-2,4	0-6	1.0
X	150			
X X X X X X	200	-2,4	0.6	1.0 5-
X	400			
X	500			
X	1000			
X	1500		-	

#### AMPLIFIER NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.1.7

DATE: 6. 5-98 AMBIENT ROOM TEMPERATURE °C: 23°C

AMPLIFIER OUTPUT	AMPLIFIER OUTPUT		AMPLIFIER
POWER	POWER	Y FACTOR	NOISE
AMBIENT (dBm)	(-77 K)(dBm)	(dB)	FIGURE (dB)
-20.5	~ 24./	3.6	1.19

Above data taken with Daden filter attached (except -19).

#### Intermediate test results for information only

PART NO. <u>1331562- 17 F</u>	SPACEK QA /0-28-99 Q4
SER NO. 7A67	TEST FAILURE:
TESTED BY:	FAILURE ANALYSIS NO
END DATE: 6-5-98	
END TIME: 1600	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

### TEST DATA SHEET NO. 12. MIXER-AMPLIFIER ASSEMBLY TESTS

### RF PORT RETURN LOSS TEST: ATP PARAGRAPH 5.4.6.

-	OTAL EFLECTED	UUT REFLECTED	RF RETURN	SPEC. RF RETURN	
	OWER (dBm)	POWER (dBm)	LOSS (dB)	LOSS (dB) ACC	REJ
5 <u>4.72</u> 54.94	-4.8 -4.8	<u>-19.6</u>	14.8	14.0 11.73	
55.16 _	-4.7	-19.5	14.8	14.0/1.73	

## AVERAGE NOISE FIGURE AND TOTAL POWER TEST: ATP PARAGRAPH 5.4.7.

DATE: 1/-20-98AMBIENT ROOM TEMPERATURE °C: +2/

	TOTAL POWER @ AMBIENT (dBm)	TOTAL POWER @ 77.2 DEG K (dBm)	Y FACTOR (dB)	DSB NOISE FIGURE (dB)	SPEC. DSB NOISE FIGURE (dB)	ACC	REJ
-		8.5dBm(with ri		n 3,3	» (Y		
1ST	-20.00	-21.90	1.90	010	3.8		
2ND	-20.00	-21,90	1.90		3.8		
3RD	70.00	-21,90	1.90	3.3	3.8	QA	
AVG		-21,90	1.90	3.3	_3-8	<b>-</b>	<i>'</i> ——
LO p	ower level at ±	<b>10dBm</b> (with rip	ople) +8,5760				
1ST	-19.80	-21,70	1.90	3.3	3.8		
2ND	-19.80	-21.70	1.90	3.3	3.8		
3RD	-19.80	-21.70	1.90	3,3	3.8	QA	
	-19.80	-21,70	1.90	3.3	<u>3.8</u>	البلغ.	
LO p	ower level at	11.5dBm (with	ripple) +10.0dl	9м		_	
1ST	-19.50	-21.50	1.9.0	3.3	_3.8		
2ND	-19.50	-21.40	1.90	3,3	3.8		
3RD	-19,50	-21.40	1.90	3.3	3.8	AQ.	
AVG	-19,50	-21.40	1.90	· 3,3	3.8		
						1.0	

NOTE: Above data was taken with the Daden filte, except on the -19 unit.

PART NO. <u>1331562-17-5</u>	SPACEK QA	DATE ACC REJ
SER NO	TEST FAILURE:	
TESTED BY:	FAILURE ANALYS	IS NO
END DATE:		<b>T</b>
END TIME:	Spacek Labs 212 E. Gutic Santa Barba	

### TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

# NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

DATE: 11-19-98AMBIENT ROOM TEMPERATURE °C: +21

UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	ACC REJ
-6	43,3	-19,30	-21,25	1.95	3,2	3.8	- OA
+8	43.4	-19.60	-21.50	1.90	3.3	3.8	QA -
+28	43,5	-19.90	-21.80	1.90	3.7	3.8	
+40	43.6	-20,10	-22,00	1.90	3,3	3-8	1
			pec is .5dB peak h the Daden filt	-		CC_1	REJ
NEAT-N	JOISE POW	ER STABILIT	Y TEST: ATP	PAR AGR APH	549		

#### NEAT-NOISE POWER STABILITY TEST: ATP PARAGRAPH 5.4.9

Date: 11-24-98 Ambient Room Temperature °C: 25

Attach computer generated  $NE\Delta T$  spreadsheet to this test data sheet.

Record the calculated Nps(K) from spreadsheet data: 0.047

Record Nps(K) O. O g for dash number from Aerojet specification AE-24869, Table II.

Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

		. AÇC∖	REJ
		1	
PART NO. <u>1331562-</u> 176	SPACEK QA	<u>DATE</u> //-2 <u>5-98</u>	ACC REJ
SER NO. 7467	TEST FAILURE:		
TESTED BY: 777	FAILURE ANALYSI	S NO	<del></del>
END DATE: 11-25-98			_
END TIME: 1600	Spacek Labs 212 E. Gutie Santa Barba	rrez St.	01

### TEST DATA SHEET NO. 13. MIXER-AMPLIFIER ASSEMBLY TESTS

### NOISE FIGURE, TOTAL POWER AND CURRENT VS. TEMPERATURE TEST: ATP PARA 5.4.8.

	DATE:	622	1-98AMI	BIENT I	ROOM	<b>TEMPER</b>	ATURE °C	Ċ:	+21	
--	-------	-----	---------	---------	------	---------------	----------	----	-----	--

DAIL.	<u> </u>	DILITI ROOM	I ILIVII LIGIT	0. <u>1 c</u>	<u></u>			
UUT TEMP °C.	UUT CURRENT	MIXER- AMP. OUTPUT POWER (AMBIENT) (dBm)	MIXER- AMP. OUTPUT POWER (77 DEG K) (dBm)	Y FACTOR (dB)	MIXER- AMP. NOISE FIGURE (dB)	SPEC. MIXER- AMP. NOISE FIGURE (dB)	AEC.	REJ
-6	43.3	-18.70	-20,4	1.70	3.6	3.8		
18	43.4	- A.00	-20,70	1.70	3.6	3.8	(CA)	
<u> † 28</u>	43.5	-19,20	- 20,90	1.70	3.6	3.8		
+40	43.6	-19140	-21.05	1.65	3.7	3.8	1	
		Oi/ dB Sp to be taken with	_	_		cc (4)	REJ	
ΝΕΔΤ-Ν	OISE POWI	ER STABILITY	Y TEST: ATP	PARAGRAPH	5.4.9			
Date:_	<u>_2z-9</u> 8Amt	pient Room Ten	nperature °C:	24				-
Attach c	omputer gen	erated <i>NE∆T</i> si	oreadsheet to th	nis test data she	et.			

Record the calculated Nps(K) from spreadsheet data: 0.040

Record Nps(K) 0.08 for dash number from Aerojet specification AE-24869, Table II. Accept units if calculated Nps(K) is less than or equal to specified Nps(K), otherwise reject.

·.	ACC. REJ
	DATE ACC REJ
PART NO. <u>1331562- 18 6</u>	SPACEK QA 6-29-78 1
SER NO	TEST FAILURE:
TESTED BY:	FAILURE ANALYSIS NO
END DATE: 6-26-98	
END TIME:	Spacek Labs, Inc. 212 E. Gutierrez St. Santa Barbara,CA,93101

TEST DATA
FOR
CHANNEL 7

				201, 3111,				43/2
15 18			,	201				7 2 3
E 0	품 <b>3</b>							S S S S S S S S S S S S S S S S S S S
-193.7 MHz 0.36 d8	POS							*STOP 210.0 MHz  *ST 5.200 sec  7257ENG: Explain  Date: 5-12.60  Onto the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name of the Name
AFRQ	- Arran							 \$10P *\$1 72 0at
MKR #1aFRQ	***************************************	22 dbm						
	Aspert	=-26.52 dbm						HZ CH7 REWORK— *UB 300 Hz CH7 NO MESH" ENGEVAL
MAY 12, 2000	des series	put buch						REWOIN NO NO
12 TE	4	Output						CH7 CH7 ENGE
53 d8m V	*							Σ.
11:10:53   -48.75 d8m   TEN 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8   0 10 d8	P PRA	dB						START 5.00 SP:00800 STEP: C
R B B B B B B B B B B B B B B B B B B B	MARK	0.36		1,6MH3				*
		•	_			$\sim$ 1	50. 10L	\$6: 822739

			$\smile$
			<u> </u>
		Ħ	

					3/11/5	\				
1Hz	dB				201, 3/H/2					1 12 1 101
<u></u>	9	<del>\$</del>								3
193.5 MHz	0.6	Landonson								\$10P 210.0 MHz *ST 5.200 Sec TEST ENG: Layer Date: 5-12-60
MKR #1¤FRQ		Hyproduce		52 d/m						\$10P *\$T 7ES
MKR #			دوام العامده معدد	:-26.	MHz					
			and the street of the street	Pawer	- 193.5					RK MESH L
2000				Put fout	DFreg = 193.5 MHz	O				THT REWORL
MAY 12, 2000		4.4.4			7					HZ CH7 REWORK *UB 300 HZ CH7 "WITH MESH" ENG EVAL
29 MF dBm	B U	Net Andrew								Σ
(4) 12:29:29 RL -48.75 dBm	*ATTEN 10 dB 1.00 dB/D1V	GARAGE ARA	193.5 MHz 0.06 dB		6					START 5.00 *RB 1.00 MHz
RL - L	*ATTE 1.00	MARK	193. 0.06	<b>4</b> □	J. 7.6 M.					*RB 1
•.							5/N: 109	56: 822 739	04: 0080 Step: C	•

		$\overline{}$

## TEST DATA SHEET NO. 53 Receiver Subsystem IF 3dB Bandwidth Measurements (Paragraph 3.3.8.1)

Output	Description	(+) Pin	(-) Pin	Measured Voltage	Required Voltage	Pass/ Fail
7	+15V	J805-7	J805-6	ŊΆ	14.8 to 15.2	A/A
8	-15V	J805-8	J805-6		-14.8 to -15.2	
9	+8V	J805-10	J805-9		7.9 to 8.1	
10	+10V	J803-1	J803-2		9.9 to 10.1	
11	+10V	J805-1	J805-2		9.9 to 10.1	
12	+10V	J803-6	J803-5		9.9 to 10.1	
13	+10V	J803-8	J803-7		9.9 to 10.1	
14	+10V	J804-1	J804-2		9.9 to 10.1	
15	+10V	J804-5	J804-4		; <b>9</b> .9 to 10.1	
16	+10V	J805-13	J805-12		9.9 to 10.1	
17	+10V	J805-15	J805-14	<b>V</b>	9.9 to 10.1	V
18	+15V	J805-17	J805-16	N/A	14.8 to 15.2	NA

Step	Output	Measured Voltage(volts)	Required Voltage(volts)	Measured Current(mA)	Required Current(mA)	Pass/ Fail
21	+28V		26 to 30		<3000	
	(Main)	NA		MA		N/A
21	+28V		26 to 30		<200	
	(Pulse)	N/A		N/A		NA

Channel		asured er Band	Filter Lower Band		leasured per Band	Filter Upper Band		sured lwidth	Bandwidth Requirement	i	ndwidth ss/Fail
	(1	MHz)	(MHz)		(MHz)	(MHz)*		(Hz)	(MHz)		
3	N	/A	8-10		NA	88-90	NA		≤ 90	N	la
4			8-10		ľ	198-200			≤ 200	Í	
5		/	30-32		<b>V</b>	198-200	$\Psi$	_	≤ 170		,
6	N/	Ά	8-10		NA	198-200	N/ſ	١	≤ 200	Z	/14
7	7.	6 MHz	8-10	2	01.3MHs	198-200	19	73.5	≤ 200	P	55
8	N		8-10		N/A	163-165	N/	9	≤ 165	7	Y/A
9	Ì		8-10			163-165			≤ 165		l'
10			178-180			254-256			≤ 78		
11 lower			255.3-258.1			290.3-293.1			≤ 36		
11 upper			351.3-354.1			386.3-389.1			≤ 36		
12 lower			291.3-293.6			306.8-309.1			≤ 16		
12 upper			335.3-337.6			350.8-353.1			≤ 16		
13 lower		1	308-308.5			315.9-316.4			≤8		
13 upper			328-328.5			335.9-336.4			≤8		
14 lower			316-316.5			318.9-319.4			≤3		
14 upper		4	325-325.5	`	1	327.9-328.4		$\overline{\Psi}$	_≤3		,
15	N/	A	480-500	N	I/A	1480-1500	N	3	△ ≤ 1020	1	WA

Filter data from AE-24687 and AE-24937 and is for reference only

"P = Pass, F = Fail

NOTE: Spectrum analyzer plots must be attached to this data sheet

S. Test Systems Engineer

5 12-00 Date

Quality Control

Date

			<u> </u>
			<u> </u>
		я	

## TEST DATA SHEET NO. 54

Receiver Subsystem IF Output Power Measurements (Paragraph 3.3.8.2)

Channel	Measured IF Output (dBm)	Required IF Output (dBm)	Pass/Fail
3	N/A	-27 ± 1	N/A
4		-27 ± 1	Ĭ
5		-27 <u>+</u> 1	V
6	N/A	-27 ± 1	N/A
7	-26.52	-27 ± 1	PASS
8	N/A	-27 ± 1	N/A
9	7	-27 ± 1	
10		-27 ± 1 ⁻⁵	(
11		-27 ± 1	
12		-27 ± 1	
13		-27 ± 1	(
14	J.	-27 <u>+</u> 1	$\overline{\mathbf{A}}$
15	N/A	-27 <u>+</u> 1	N/A

**Quality Control** 

		_	
		<u> </u>	

			[ 15	16	[ 17	18	19	20	URN
P1 12-MAY-00 10:39:16 SCAN NUMBER			DS ANTENNA IN COLD CAL POSIT = NO [	ANTENNA IN NADIR POSITION = NO [	ANTENNA IN FULL SCAN MODE = YES [	PLLO # 1 [ 18	ZERO [ 19	ZERO [ 20	[ 1 ] RETURN
Z			اا د	ا ا	   	9	N	2	Н.
SCAI			OSIT	rior	MODE	PLI	11	11	
9			ų ų	ISO	'AN		COLD CAL POSITION MSB	COLD CAL POSITION LSB	
39:1			S S	IR F	SC T		LON	NO	JL.L
10:			COLI	NAD	FULI		SIT	SIT	F.
00-			NI	NI	IN	PLL POWER =	PO.	PO	m
MAY.			MNA	NNA	MNA	POWE	CAI	CAL	j
12-1			S NTE	NTE	NTEI	L I	OLD	OLD	RINT
Pl			(AND)	Ø	A	д	ט	บั	Ā
			COMMANDS ANT	OFF	NO	NO	NO	NO	2
MODE 30	00	00	ici.	0	0	0	0	Z II	] X
AN N			CONNECT	Ш				SIT	ONI
SC	ENT	ENT	บั		11	엄	R II	PO	EEN 3
FULL SCAN MODE ELEMENT 0000	ELEMENT	ELEMENT		HEATER POWER		SCANNER A1 - 1 POWER	OME	CAL	ON SCR
		٠,		TER	LY (	Н	7 I	ARM	] BITT
SXE	DATA	Ą.	WER	HEA	TAL	- -	- 덕	N	EEN
A1.I	П	DAT	ы ЭС	VAL	E TC	ER A	ER A	I A	VER ISCR
33. ITA	TT	LOG	MODULE POWER	RVI	DUL	ANN	ANNI	TEN	POV
A1- DIG	DIG	ANA	W O	solution	W Q		SC	AN	Ã H
MSU A1-33 A1.EXE 5 ] DIGITAL A DATA	6 ] DIGITAL B	7 ] ANALOG DATA	9 ]	10 ] SURVIVAL	11 ] MODULE TOTALLY OFF	12 ]	13 ] SCANNER A1 - 2 POWER	14 ] ANTENNA IN WARM CAL POSIT	POWER [ 4 ] ON SCREEN ONLY [ 2 ] PRINT [ 3 ] FULL SELECT TOUCHSCREEN BITTON 3
>:									żń

56. B22738 00. 0080 STEP C

PN:1331720-3 5N:109

			<u> </u>
		ы	

,	-1	VALUE	<ul><li>いるのののなるののはなるなるのでのこれをしまる。</li><li>これをしまるをしまるをしまる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできる。</li><li>これをしまるのできるのできる。</li><li>これをしまるのできるのできる。</li><li>これをしまるのできるのできる。</li><li>これをしまるのできるのできる。</li><li>これをしまるのできるのできるのできるのできる。</li><li>これをしまるのできるのできるのできるのできるのできるのできるのできるのできるのできるのでき</li></ul>	ԱՄԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱՐԱ	00000000000000000000000000000000000000
	12-MAY-00 10:39:19 PAGE E	ENT DESCRIPTION	SCENE DATA BP 17 CH CH 1 CH 1 CH 1 CH 1 CH 1 CH 1 CH	REFLECTOR 1 POSITION 1 REFLECTOR 2 POSITION 1 REFL 2 POS 19 2ND LOO REFL 2 POS 19 2ND LOO REFL 2 POS 19 2ND LOO CH CH CH CH CH CH CH CH CH CH CH CH CH	REFLECTOR 1 POSITION 20 REFLECTOR 2 POSITION 20 REFL 1 POS 20 2ND LOOK REFL 2 POS 20 2ND LOOK SCENE DATA BP 20 CH CH
	A DATA SCAN MODE	VALUE ELEMENT	14400100 2 2000 14400100 2 2000 1441010000222000 1441100000000004888	CONTRACTOR OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF THE TEMPT OF	#HWHWH@R@@ -W44440@R44 0GWR@@PR@W 0GWR@@D
	DIGITAL		11	HERERERERER NA 2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO 11 CO
::: • •	A1_33 A1.EXE	NT DESCRIPTION	SYNC SEQUENCE BYTE SYNC SEQUENCE BYTE SYNC SEQUENCE BYTE UNIT ID AND SERIAL DIGITAL B DATA BYTE DIGITAL B DATA BYTE DIGITAL B DATA BYTE DIGITAL B DATA BYTE DIGITAL B DATA BYTE CTOR 1 POSITIO REFL 2 POS 1 2ND REFL 2 POS 1 2ND SCENE DATA BP 1	REFLECTOR 1 POSITIO REFLECTOR 2 POSITIO REFL 1 POS 2 2ND REFL 2 POS 2 2ND SCENE DATA BP 2	REFLECTOR 1 POSITIO REFLECTOR 2 POSITIO REFL 1 POS 3 2ND REFL 2 POS 3 2ND SCENE DATA BP 3
-	AMSU	ELEMENT	144440 44444444444444444444444444444444	<i>UUUU</i> UUUUUU44444UUUUUQ <i>OOOOOCCC</i> U4080U4080U4080U4080U4080U	~~~ 708888866 7080749804

 $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}$ 

 $\omega$ 42

REFLECTOR 1 REFLECTOR 2 REFL 1 POS REFL 2 POS SCENE DATA

REFLECTOR 1 REFLECTOR 2 REFL 1 POS REFL 2 POS SCENE DATA

**ユニエエエエエエコロのこ** 

PAGE

ELEMEN

ĸ	VALUE	11111111111111111111111111111111111111	Ს८८๚Ტ₳๚₲₳₲₳₢₢ᲢᲢᲡ८₢₢ Ე₳₡ <b>८₢₣₭₲₣</b> ₢₡₡₣₢₡₢	90000000000000000000000000000000000000
A DATA 12-MAY-00 10:39:19 PAGE SCAN MODE	DESCRIPTION	ECTOR 1 POSITION 24 1 POS 24 2ND LOOK 2 POS 24 2ND LOOK E DATA BP 24 CH 3 E DATA BP 24 CH 3 CH 15 CH 15 CH 15 CH 15 CH 15 CH 15 CH 15 CH 15 CH 15 CH 15 CH 14 CH 15 CH 15 CH 15 CH 15 CH 14 CH 15 CH 14 CH 15 CH 16 CH 17 CH 17 CH 14 CH 17 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH 18 CH	ECTOR 1 POSITION 2 CH CH CH CH CH CH CH CH CH CH CH CH CH	CH 1 CH 1 CH 1 CH 1 CH 1 CH 1 CH 1 CH 1
	ELEMENT	24777777777777777777777777777777777777	11111202222222222222222222222222222222	552 6652 6664 6664 6664 6664 6664 6664 6
DIGITAL A I	. 7			11 1221 102020 10202011111 10401202020
	IPTION	POSITION CHARTEN AND CONTRACT TO SOLUTION CONTRACT TO SOLUTION CHARTEN AND CONTRACT TO SOLUTION CHARTEN AND CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRACT TO SOLUTION CONTRA	SSS SAN SECTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT	POSITION 99 ZND LOOK 190 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND LOOK 99 ZND ZND POS 99 ZND LOOK 99 ZND POS 99 ZND LOOK 99 ZND POS 99 ZND
A1_33 A1.EXE	NT DESCR	REFLECTOR 1 REFLECTOR 2 REFL 1 POS REFL 2 POS SCENE DATA	REFLECTOR 1 REFL 1 POS REFL 2 POS SCENE DATA	REFLECTOR 1 REFLECTOR 2 REFL 1 POS REFL 2 POS SCENE DATA

4	VALUE	44000400000000000000000000000000000000	でなる10411010~~~00~~~~~~~	700044444 104440000 1000000000
 Y-00 10:39:19 PAGE	DESCRIPTION	CH CH CH CH CH CH CH CH CH CH CH CH CH C		CTOR 1 POSITION 29 CTOR 2 POSITION 29 CTOR 2 POSITION 29 1 POS 29 2ND LOOK 2 POS 29 2ND LOOK DATA BP 29 CH 3
ITAL A DATA 12-MAY FULL SCAN MODE	VALUE ELEMENT	6669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 669950 66995	1000 1000 1000 1000 1000 1000 1000 10	0207 0207 0111150 01150 01150 020 020 020 020 020 020 020 020 020 0
DIG		HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	-1-100	HHHOOKK I
A1_33 A1.EXE	DESCRIPTION	REFLECTOR 1 POSITIO REFLECTOR 2 POSITIO REFL 1 POS 10 2ND REFL 2 POS 10 2ND SCENE DATA BP 10	REFLECTOR 1 POSITIO REFLECTOR 2 POSITIO REFL 1 POS 11 2ND REFL 2 POS 11 2ND SCENE DATA BP 11	REFLECTOR 1 POSITIO REFLECTOR 2 POSITIO REFL 1 POS 12 2ND REFL 2 POS 12 2ND SCENE DATA BP 12
~. ⊃	ENT	<b>EEEEO</b>	KKKKO	REERIO

Ŋ	VALUE	$\begin{array}{llllllllllllllllllllllllllllllllllll$
AY-00 10:39:19 PAGE	DESCRIPTION	LECTOR 1 POSITION 30 LECTOR 2 POSITION 30 LECTOR 2 POSITION 30 LECTOR 2 POSITION 30 LECTOR 2 POSITION 30 LECTOR 2 CCH 113 CH 12 CH 12 CH 12 CH 12 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 13 CH 14 CH 13 CH 14 CH 14 CH 14 CH 14 CH 14 CH 14 CH 14 CH 14 CH 14 CH 15 CH 14 CH 15 CH 14 CH 15 CH 15 CH 16 CH 16 CH 16 CH 16 CH 16 CH 17 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 17 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 16 CH 17 CH 17 CH 16 CH 16 CH 16 CH 16 CH 16 CH 17 CH 17 CH 16 CH 17 CH 17 CH 16 CH 16 CH 16 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 17 CH 1
IGITAL A DATA 12-MAY FULL SCAN MODE	VALUE ELEMENT	439と89012842
SU Al_33 Al.EXE D	ELEMENT DESCRIPTION	CH CH CH CH CH CH CH CH CH CH CH CH CH C
AMSU	ELE	$\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$

	9	VALUE	$\begin{array}{c} T T T T T T T T$
:19 PAGE	:19	NO	22.000 NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO NOVANO
\	-00 10:39	DESCRIPTION	CTOR 1 WARM CTOR 2 WARM 1 WARM CAL 2 WARM CAL CAL DATA 1 CAL DATA 2
	A 12-MAY-	ELEMENT	777 2477 240888888888888888888888888888888888888
	ITAL A DATA FULL SCAN MODE	VALUE EI	41414141414141414141414141414141414141
	DIGI	No	HE HERE HERE HERE HERE HERE HERE HERE H
A1_33 A1.EXE	DESCRIPTION	TA BP  R 1 POSI  R 2 POSI  TA BP  TA BP  TA BP  TA BP  TA BP  TA BP	
		REFLECTO REFLECTO REFLECTO REFLECTO REFLECTO REFLECTO REFLECTO REFLECTO REFLECTO REFLECTO REFL 1 P	
	AMSU A1	ELEMENT	44400000000000000000000000000000000000

DESCRIPTION

7

U

DEG

VALUE

TEMPERATURE

 $\mathsf{L}_{\mathsf{L}}$ 

44

SCAN MOTOR A1-1
FEEDHORN A1-1
FEEDHORN A1-2
RF MUX A1-2
RF MUX A1-2
LOCAL OSCILLATOR CHANNEL 4
LOCAL OSCILLATOR CHANNEL 5
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
LOCAL OSCILLATOR CHANNEL 15
RIXER/IF AMPLIFIER CHANNEL 15
MIXER/IF AMPLIFIER CHANNEL 15
MIXER/IF AMPLIFIER CHANNEL 11
RAMPLIFIER CHANNEL 11
LOCAL OSCILLATOR CHANNEL 15
RE AMPLIFIER CHANNEL 11
LOCAL OSCILLATOR CHANNEL 11
LOCAL OSCILLATOR CHANNEL 12
RE AMPLIFIER CHANNEL 11
LOCAL OSCILLATOR 11
LOCAL OSCILLATOR CHANNEL 12
RE SHELF A1-2
LOCAL OSCILLATOR 11
RAMPLIFIER CHANNEL 12
RE SHELF A1-2
LOCAL OSCILLATOR 11
RAMPLIFIER CHANNEL 12
RE SHELF A1-2
A1-1 WARM LOAD 3
A1-1 WARM LOAD 3
A1-1 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 3
A1-2 WARM LOAD 4
A1-2 WARM LOAD 5
A1-2 WARM LOAD 5
A1-2 WARM LOAD 5
A1-2 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-3 WARM LOAD 5
A1-

ASSEMBLY

PAGE 8	STATUS	ON ON PLLO # 1 NO NO YES OFF CONF ZERO ZERO	VALUE DEG C 214 18.0 214 18.0 213 16.6 213 16.6	### 1 D
:39:19		# D	D 8889000	0 년년 · · · · · · · · · · · · · · · · · ·
00 10	STATUS	PLLLO ONN NOO YES COOFF ZEROO ZEROO	VALUE 2114 2214 2215 215	I D 88764454466477777 ユア
12-MAY-0		# 1 CT	D 2004.00	<ul><li>び は ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>
B DATA SCAN MODE	STATUS	PLLO NO NO NO VEC ONFF CONFF ZERO	VALUE 2144 2114 2115	2 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
DIGITAL B D FULL SCA		MODE MODE E	द लंख	LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (AVRG) LENT (
AMSU A1_33 A1.EXE	DESCRIPTION	SCANNER A1-1 POWER SCANNER A1-2 POWER PLL POWER ANTENNA IN WARM CAL POSITION ANTENNA IN COLD CAL POSITION ANTENNA IN RADIR POSITION MOD ANTENNA IN FULL SCAN MODE SURVIVAL HEATER POWER MODULE POWER COLD CAL POSITION MSB	ANALOG DATA DESCRIPTION A1-1 SCANNER MOTOR TEMPERATURE A1-2 SCANNER MOTOR TEMPERATURE A1-1 RF SHELF TEMPERATURE A1-1 WARM LOAD TEMPERATURE A1-1 WARM LOAD TEMPERATURE	DESCRIPTION  1-1 ANTENNA DRIVE MOTOR  1-2 ANTENNA DRIVE MOTOR  1-2 ANTENNA DRIVE H15 VDC  1GNAL PROCESSING +15 VDC  1GNAL PROCESSING -15 VDC  1GNAL PROCESSING -15 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  1GNAL PROCESSOR +5 VDC  100 VOLTAGE  100 VOLTAGE  100 VOLTAGE  100 VOLTAGE  100 VOLTAGE  110 # 2 LOCK DETECT  1110 # 2 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT  1110 # 1 LOCK DETECT

	O									
	10:39:19 PAGE	A1-2 01 DEG 02 14.0 03 16.0	605 6005 6007 6007 610 822 822 843 843 843 843 843 843 843 843 843 843	112 25.0 113 69.0 114 70.0 32 77.0	A1-2 O. A1-2 37 34.0	224 224 225 225 226 226 226 226 226 226 226 226	102 103 103 103 103 103 103 103 103 103 103	177 000 000 000 000 000 000 000	<b>31240</b>	77 74.0 81 76.0
	AZONIX DATA 12-MAY-00 FULL SCAN MODE	A1-1 0. DEG 15 42.0 16 43.0 17 44.0 18 45.0	6619 6220 6221 6222 624 624 624 644 655 650 650 650 650 650 650 650 650 650	226 53.0 228 67.0 229 71.0 31	A1-1 O: DEG 58 5.0	5000 7000 7000 7000	16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	7.14 1.00 1.00	5000 5000 5000 640 6400 6400 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6	23 65.0 75 73.0 79 75.0
)	AMSU A1_33 A1.EXE	PRT TEMPERATURES VARIABLE TARGET	FIXED TARGET	BASEPLATE	THERMOCOUPLE TEMPERATURES FIXED TARGET SHROUD	VARIABLE TARGET SHROUD	ריז	HEATER N2	FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER BASEPLATE HEATER N2 BASEPLATE N2	BASEPLATE FLOW METER ADJUNCT RADIATORS

SCAN NUMBER									[1] RETU
10:38:15				DATA	655	655 655 665 665 665 665 665 665 665 665	700 700 700 700 700 700	} } >	] FULL
00-				ВР	222	700 700/	SOW SOW	) :	[ 3 ]
			DATA	ÓATA	6557	e e e e e e e e e e e e e e e e e e e	655	)	PRINT
P1			CIL	ВР	7 7 8 0	22F	1220 1221	3	Щ
40DE	0.0	0.0	ADIOMETE	DATA	655 655 655 656	o S S S S S S S S S S S S S S S S S S S	7000 7000 7000 7000	OWN	ONLY [2]
700 000	_	_	3	ВР					NO
TULL SCA	SLEMENT	SLEMENT		DATA	655	ა გეგ 1000	665 655 765 765 765 765 765 765 765 765		) ON SCREEN C BUTTON 2
				ВР	177	<b>ህ</b> 4ሴ	10Ca	)	] BU.
AMSU A1-33 A1.EXE [ 5 ] DIGITAL A DATA	[ 6 ] DIGITAL B DATA	[ 7 ] ANALOG DATA						[ 21 ] UP	POWER [ 4 SELECT TOUCHSCREEN
	1.EXE FULL SCAN MODE P1 12-MAY-00 10:38:15 A DATA ELEMENT 0000	1.EXE FULL SCAN MODE P1 12-MAY-00 10:38:15 A DATA ELEMENT 0000 B DATA ELEMENT 00	1.EXE FULL SCAN MODE P1 12-MAY-00 10:38:15 A DATA ELEMENT 000 B DATA ELEMENT 00 DATA ELEMENT 00	1. EXE FULL SCAN MODE P1 12-MAY-00 10:38:15 A DATA ELEMENT 000 B DATA ELEMENT 00 RADIOMETRIC DATA RADIOMETRIC DATA	1. EXE FULL SCAN MODE P1 12-MAY-00 10:38:15 B DATA ELEMENT 00  DATA ELEMENT 00  RADIOMETRIC DATA  BP DATA BP DATA BP DATA	1. EXE FULL SCAN MODE P1 12-MAY-00 10:38:15  B DATA ELEMENT 00  DATA ELEMENT 00  RADIOMETRIC DATA CHANNEL 7  BP DATA BP DATA BP DATA  1 16564 9 16561 17 16578 25 16563	1. EXE FULL SCAN MODE P1 12-MAY-00 10:38:15  B DATA ELEMENT 00  DATA ELEMENT 00  RADIOMETRIC DATA  RADIOMETRIC DATA  BP DATA BP DATA BP DATA  1 16564 10 16561 17 16578 25 16563 16564 11 16564 11 16566 19 16561 28 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 165	1. EXE FULL SCAN MODE P1 12-MAY-00 10:38:15  B DATA ELEMENT 00  BATA ELEMENT 00  RADIOMETRIC DATA  CHANNEL 7  CHANNEL 7  BP DATA BP DATA BP DATA  BP DATA BP DATA BP DATA  1 16569 10 16562 18 16563 16563 16565 16565 16569 20 16561 28 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 1	1. EXE FULL SCAN MODE P1 12-MAY-00 10:38:15  B DATA ELEMENT 00  DATA ELEMENT 00  RADIOMETRIC 7  BP DATA BP DATA BP DATA BP DATA  1 16564 10 16562 18 16563 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 16565 1

[ 1 ] RETURN

# TEST DATA SHEET 50 (Sheet 1 of 2) Radiometer "Relative" NΕΔΤ Verification* (Paragraph 3.2.4.4.2.2)

Channel Number>	3	4	5	6
NEΔT (Average of 5 data)	0.254	0.171	0.153	0.137
Pass/Fail	PASS	<u> PASS</u>	22AG	PASS
NEΔT (Specified) K **	0.40	0.25	0.25	0.25
Channel Number>	7	8	9	10
NEΔT (Average of 5 data)	Q.154	0.308	0.173	0.205
Pass/Fail	PASS	PASS	PASS	PASS
NEΔT (Specified) K **	0.25	0.25	0.25	0.40
Channel Number>	11	12	13	14
NEΔT (Average of 5 data)	<u>0.238</u>	0.324	0.454	0.706
Pass/Fail	<u>PASS</u>	PASS	PMSS	PASS
NEΔT (Specified) K **	0.40	0.60	0.80	1.20
Channel Number>	15			
NEΔT (Average of 5 data)	0.147			
Pass/Fail	PASS			

^{*} Baseline data for acceptance tests. Use first CPT or first LPT data along with specification value for pass/fail criteria

0.50

NEΔT (Specified) K **

Circle Test: C	CPT LPT NEA		per. 00800 St	eb C	
METSAT/AMSU	U-A1 System P/N IS-13	31720 Shop C	order: <u>722739</u>	S/N: 109	
· .			Kensh	ane	5/12/00
Λ	$\bigcirc$	_	Test Systems En	gineer	Date
Joseph	Sonfaced	5/12/00	Vz) mita	- Naurun	5/12/00
Customer Repres	sentative Only)	Date	Quality Control		Date

^{**} For reference only

# TEST DATA SHEET 50 (Sheet 2 of 2) Radiometer "Relative" NEAT Verification* (Paragraph 3.2.4.4.2.2)

### PLLO No. 2 (Channels 9 through 14)

	•	_		
Channel Number>	9	10	11	12
NEΔT (Average of 5 data)	0.197	0.138	0.251	0.349
Pass/Fail	PASS	22AG	<u>PASS</u>	22AF
NEAT (Specified) K **	0.25	0.40	0.40	0.60
Channel Number>	13	14		
NEΔT (Average of 5 data)	0.458	<u>0.77</u> 5	4	
Pass/Fail	PASS	PASS	<i>J</i> .	
NEΔT (Specified) K **	0.80	1.20		

^{*} Baseline data for acceptance tests. Use first CPT or first LPT data along with specification value for pass/fail criteria

Circle Test: CPT LPT ΝΕΔΤ	Open. DOBOOStep C	l
METSAT/AMSU-A1 System P/N IS-1331720	Shop Order: 822739 S/N: 109	
1 0 0 0 0 0	Test Systems Engineer Date  PA  PA  PA  PA  PA  PA  PA  PA  PA  P	C
Customer Representative (Flight Hardware Only)	Date Quality Control Date	

^{**} For reference only

	DELTA T	шчиоочоооооооо оетчичичичег соочтемичест соочтемичест соочтемичест причение	PRINT HISTOGRAM
13:37:17	GAIN	HHH00H0000000 000000000000000000000000	[4]
	COLD COUNTS	11111111111111111111111111111111111111	IT RAW DATA
TEST RESULTS 12-MAY-00	WARM COUNTS	11111111111111111111111111111111111111	[3] PRINT
FUNCTIONAL	WARM TEMP	00000000000000000000000000000000000000	PRINT SCREEN
A1.EXE	Ė	111111 1456789012845	[2] P

RETURN [ 1 ] PLLO # Z

SELECT TOUCHSCREEN BUTTON 2

Test Daths in support of TDSSO S/O 822739 Open. 00800 Step C Hetsat AI S/N 109 Channel 7 Rework

-	4
_	_
101	Ž
Ē	1
b	닉

HISTOGRAM

PRINT

RAW

PRINT

ന

SCREEN

PRINT

HHHHHHH

DELTA

GAIN

COUNTS

COLD

COUNTS

WARM

TEMP

WARM

TEST RESULTS 12-MAY-00

FUNCTIONAL

A1.EXE

13:38:37

GRAPH
PRINT DISTRIBUTION OF BUTTON 2
[ 5 ] TOUCHSCREEN
SELECT

,	•
-	4
_	_
	KETOKN

RETU	[ 5 ] PRINT DISTRIBUTION GRAPH	SELECT TOUCHSCREEN BUTTON 2
[ 4 ] PRINT HISTOGRAM	[ 3 ] PRINT RAW DATA	[ 2 ] PRINT SCREEN

13:40:05

GAIN

COUNTS

COLD

COUNTS

WARM

TEM

TEST RESULTS 12-MAY-00

Н

DELTA

HH00H000000

13111

0

HHHHHHHHNOH

NNNNNNNNNNNN

HHHHHHH

**W400780014W40** 

Al.EXE

FUNCTIONAL

<u>-</u>	4
_	
וסוז	2
	744
Λ	r

HISTOGRAM

PRINT	
_	
4	
_	
4	
DATA	
PRINT RAW	
_	
സ	
<u>_</u>	
SCREEN	
PRINT	
_	
7	

GRAPH PRINT DISTRIBUTION BUTTON 2 [ 5 ] TOUCHSCREEN SELECT

GAIN

COUNTS

COLD

WARM COUNTS

TEMP

WARM

FUNCTIONAL TEST RESULTS 12-MAY-00

Al.EXE

DELTA

12228824144 12228824446 150446084446 150464646 15046466 15046466 15046466 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 1504666 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 15046 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 150466 1504

445078604244

11111

13:41:17

•	
-	1
_	-
Z	j
Ē	)
Ē	1
Ω	4

HISTOGRAM

PRINT

4

RAW

PRINT

 $\sim$ 

SCREEN

PRINT

2

11111

HH400H000000

000000000000

000000000000000

AAAAAA

Н

DELTA

GAIN

COUNTS

COLD

COUNTS

WARM

TEMP

TEST RESULTS 12-MAY-00

FUNCTIONAL

A1.EXE

13:42:29

RAPH	
DISTRIBUTION G	7
PRINT I	BUTTON
[5]	TOUCHSCREEN
	SELECT

		)

	DELTA T	W2200200000000000000000000000000000000	PRINT HISTOGRAM
13:26:37	GAIN	144001000000 00000000000000000000000000	[ 4 ]
	COLD COUNTS	11111111111111111111111111111111111111	NT RAW DATA
TEST RESULTS 12-MAY-00	WARM COUNTS		[ 3 ] PRINT
FUNCTIONAL	WARM TEMP	44400440000000000000000000000000000000	PRINT SCREEN
A1.EXE	H	ユユココユコ み4ら6786012845	[2] P

1 # 077d

RETURN [ 1 ]

SELECT TOUCHSCREEN BUTTON 2

Test Data in support of TDS 50 S/O BA2739 Open, COBCO Step C Metsat AI S/NIO9 Channel 7 Rework

,
_
_
RETIRN
£
ᆮ
È
Ω

PRINT HISTOGRAM

4

1111111

1 1

DELTA

GAIN

COUNTS

COLD

WARM COUNTS

TEST RESULTS 12-MAY-00

FUNCTIONAL

A1.EXE

13:28:37

54444100826544

GRAPH	
PRINT DISTRIBUTION	BUTTON 2
1 [ 2 ]	H NEED TOILCHSCREEN B

SCREEN

PRINT

~

_
ETURN

STOGRAM

H

PRINT

4

PRINT

SCRE

PRINT

(1)

1

ñœανανίαΩ4,αννν 

000000000000

HH00H000000

20474404044444 00000000000000

6666 WWW.WW.WW.COW. 6486 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 6460 CHR.WW.CA. 64 HAHAHAHAHAH

000000000000

ユユエフクエフファファファ 44400400000000 00000000000000 0004404444444

NNNNNNNNNNNNN

**W400786012W40** 

HHHHHHH

111111

GRAPH	
PRINT DISTRIBUTION BUTTON 2	
TOUCHSCREEN	
SELECT	

DELTA

GAIN

COUNTS

COUNTS

WARM

13:29:49

TEST RESULTS 12-MAY-00

Al.EXE

PRINT HISTOGRAM	
4	
ت	
PRINT RAW DATA	
3 ]	
· ·	
SCREEN	
Ħ	
PRIN	
7	
_	

GRAPH PRINT DISTRIBUTION BUTTON 2 SELECT TOUCHSCREEN

COUNTS

COLD

COUNTS

WARM

TEMP

WARM

TEST RESULTS 12-MAY-00

FUNCTIONAL

Al

A1.EXE

GAIN

DELTA

1.1 

HEHHHHHHHOOH

**UUU44U4444444** 

ろ456789012845

HHHHHH

111111

Н

-	4
_	_
NOTITION	ALC LONG

PRINT

4

RAW

PRINT

 $\boldsymbol{\omega}$ 

CREEN

 $\tilde{\Omega}$ 

PRINT

2

1111111

APH	
N GR	
DISTRIBUTION	N 2
PRINT	BUTTO
[5]	TOUCHSCREEN
	SELECT

13:33:33

GAIN

DELTA

1.1

4@4004404404 4@40004404000 00004044000

MH0000000000

00000000000000 0004404444444

4479789042447

COUNTS

COLD

COUNTS

WARM

TEMP

WARM

FUNCTIONAL TEST RESULTS
12-MAY-00

			<u> </u>
		a a	

	DELTA T	00004400044000 2444770277480000 4408024108044440 0044087480400447	PRINT HISTOGRAM
13:46:53	GAIN	00000000000000000000000000000000000000	[4]P
	COLD COUNTS	12211111111111111111111111111111111111	NT RAW DATA
TEST RESULTS 12-MAY-00	WARM COUNTS	11111111111111111111111111111111111111	[ 3 ] PRINT
FUNCTIONAL	WARM TEMP	00000000000000000000000000000000000000	PRINT SCREEN
A1.EXE	Ħ	111111 6450080017845	[ 2 ] PR

PLL0#1

RETURN [

SELECT TOUCHSCREEN BUTTON 2

Test Data in support of TDSSO S/O 822739 Open, OO800 Step C Metsat Al S/N 109 Channel 7 Rework

			_
			<u> </u>
		il i	

Н
RETURN

PRINT

4

RAW

PRINT

c

SCREEN

PRINT

2

GRAPH	
DISTRIBUTION	7
PRINT DI	BUTTON
[5]	TOUCHSCREEN
	SELECT

13:48:37

GAIN

H

DELTA

111

ı

000440440W0 24407400440W0 2078090748W0070 20640989747470

000440444444

COUNTS

WARM COUNTS

TEMP

WARM

COLD

000000000000

NNNNNNNNNNNN

M4R0C800H0W4Rनननननन

A1.EXE

FUNCTIONAL TEST RESULTS
12-MAY-00

		Ħ

Н
RETURN

PRINT

4

APH	
N GRZ	
DISTRIBUTION	2
PRINT	BUTTON
[ 5 ]	TOUCHSCREEN
	SELECT

2

111111 1422109876543

0001202442000 222180222044200 202480222044400 2024828280808000 111 |

Н

DELTA

GAIN

13:49:49

FUNCTIONAL TEST RESULTS
12-MAY-00

Al.EXE

		_
		<u> </u>

Н
R.
5
臼

STOGRAM

H

PRINT

4

RAW

PRINT

GRAPH PRINT DISTRIBUTION BUTTON 2 [ 5 ] TOUCHSCREEN SELECT

13:50:53

DELTA

COUNTS

COUNTS

WARM

TEMP

111

000440MMM040

**444444444004** 

EEN 4440040000000 444004000000000 SCRI PRINT

 $^{\circ}$ 

 $\alpha$ 

WARM

FUNCTIONAL

TEST RESULTS 12-MAY-00

			,
			<b>)</b>
			_
		ü	

r	1
_	_
z	
9	
F	
D T	

PRINT

4

RAW

PRINT

SCREEN

PRINT

~

 $\dashv$ 

GRAPH PRINT DISTRIBUTION BUTTON 2 SELECT TOUCHSCREEN

13:53:41 GAIN

COUNTS

COLD

COUNTS

WARM

TEMP

WARM

FUNCTIONAL TEST RESULTS 12-MAY-00

Al.EXE

111

1

665846 6658646 66586468 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 6658665 665866 665866 665866 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 6658 66586 66586 66586 66586 66586 66586 66586 66586 66586 66586 6658

**4444444444** 

44400400000000

**るよららて80042845** 

HHHHHHHHHHH

Н

DELTA

		_*
		<b>)</b>
		ii

of 11	PLN REV	01	IR's/EQCR's/TAR's/TRR's COMMENTS																
~	DWC REV	*	IR's/EQCR' COM																
			SETUP	TiME															
	PART NUMBER	1356429-3	STAMP PROD INSP	-1					8 8 9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1					(a)	21/20				
		SSEMBLY			A NEW CHANNEL 7 TENUATOR, AND	JUM.	50	MATERIAL:	ATX00056640	S/N 85023 AT A 526213	ATT 6000 46791	ATA503649	A/T 4 000 3382/		A/T <i>A 526 403</i>	ATL600 46857	ATA 503648	AT 100036281	BE ISSUED PER
(%)	PART DESCRIPTION	A1-1 RECEIVER ASSEMBLY	OPERATION DESCRIPTION		S/O IS TO RE-INSTALL A	<i>5/99.</i> ED IN THERMAL VACU	005/99 OPER 8/50	AND THE FOLLOWING MATERIAL:	ASSY S/N F06		1P S/N 7.46.7	E/ATT S/N 103	S/N 2	OWING MATERIAL:	S/N <u>65017</u>	1P S/N 2/45-7	E/ATT S/N 102	S/N COB	/ARE REQUIRED WILL
	COMPLETION DATE		OPER		THE PURPOSE OF THIS S/O IS TO RE-INSTALL A NEW CHANNEL 7 RF CHAIN-DRO, MIXER/AMP, WAVEGUIDE/ATTENUATOR, AND	ISOLATOR.  REFERENCE TAR 00 5/99.  THIS FAILURE OCCURRED IN THERMAL VACUUM.	RECEIVE FROM STO	ISSUE SHOP ORDER AN	1356429-3 RECEIVER ASSY	1336610-7 DRO ASSY	1331562-17 MIXER/AMP	1331509-5 WAVEGUIDE/ATT	1356680-5 ISOLATOR	DE-KIT THE FOLLOW	1336610-7 DRO ASSY	1331562-17 MIXER/AMP	1331509-5 WAVEGUIDE/ATT	1356680-5 ISOLATOR	REMAINDER OF HARDWARE REQUIRED WILL BE ISSUED PER MAI'S  0040 AND 0050.
	SPLIT REFERENCE		WORK		II .				/UFAS						-				<u></u>
	SHOP ORDER NUMBER		822739					*000000	*										

			<u> </u>
		si	

National Aeronautics and Space Administration	Report Docum	entation P	age	
1. Report No.	2. Government Accession N	0.	3. Recipient's Catalog N	lo.
Title and Subtitle			5. Report Date	
Integrated Advanced Mi	crowave Sounding U	Init-A	June 1999	9
(AMSU-A), Performance			6. Performing Organization	on Code
· · · · · · · · · · · · · · · · · · ·				
7. Author(s)		ľ	8. Performing Organization	on Report No.
Y. Ma		1	11491	
			10. Work Unit No.	
<ol> <li>Performing Organization Name and Aerojet</li> </ol>	Address		44 0 44 0 44	W
1100 W. H	ollyvale	ľ	<ol> <li>Contract or Grant No NAS</li> </ol>	5-32314
Azusa, CA	•	ļ.	13. Type of Report and F	
12. Sponsoring Agency Name and Ad			Final	renou covered
NASA		<u>†</u>	14. Sponsoring Agency (	Code
	pace Flight Center			
15. Supplementary Notes	Maryland 20771			
16. ABSTRACT (Maximum 200 words )		·		
This is the Performance Assemblies, P/N 135642 Advanced Microwave So	9-1 A/N F06 and P/N	l 1356409-1		
17. Key Words (Suggested by Author	(s))	18. Distribution	Statement	
EOS Microwave Sys	tem		Unclassified Un	limited
19. Security Classif. (of this report)	20. Security Classif. (of t	his page)	21. No. of pages	22. Price
Unclassified	Unclassified			

NASA FORM 1626 OCT 86

#### PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. Recipient's Catalog No.. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. <u>Key Words.</u> Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution</u> <u>Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of <u>STAR</u>) in which report is to be distributed.
- Block 19. <u>Security Classification</u> (of the report). Self-explanatory.
- Block 20. <u>Security Classification</u> (of this page). Self-explanatory.
- Block 21. <u>No. of Pages.</u> Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. <a href="Price">Price</a> Code</a>. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DO	CUMEN	TATION PAGE				Form pproved OMB No. 704-0188
Public reporting burden fothis collection ofinf gathering andmaintaining thedata needed no collection of information, including suggestio Davis Highway, Sulte 1204, Arlington, VA 22	d comoletino ar	dreviewing thecollection informa	ition Sei	ad comme	ents recarding this burde	in estimate or any other aspect of this
AGENCY USE ONLY ( Leave blank )		2. REPORT DATE	3.	REPOR	RT TYPE AND DA	TES COVERED
4. TITLE AND SUBTITLE Integrated Advanced M (AMSU-A), Performance		•	`	5. 1	FUNDING NUMBE	ERS 5-32314
6. AUTHOR(S) Y. Ma						
7. PERFORMING ORGANIZATIO Aerojet	N NAME(S)	AND ADDRESS(ES)	-		PERFORMING OF REPORT NUMBE	
1100 W. Holly Azusa, CA 91					11491 June 1999	)
9. SPONSORING/MONITORING / NASA Goddard Spa			(ES)	10.	SPONSORING/N AGENCY REPO	
Greenbelt, Ma	-					
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILI	TY STATEM	ENT		12b	. DISTRIBUTION	CODE
13. ABSTRACT (Maximum 200 words )  This is the Performance Assemblies, P/N 13564: Advanced Microwave S	29-1 S/N	F06 and P/N 135	6409		•	
14. SUBJECT TERMS						15. NUMBER OF PAGES
EOS Microwave System						16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	OF THIS	TY CLASSIFICATION S PAGE nclassified		ABSTR	classification act assified	20. LIMITATION OF ABSTRACT SAR

#### **GENERAL INSTRUCTIONS FOR COMPLETING SF 298**

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

#### Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, andyear, if available (e.g., 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program
 WU
 Work Unit

 Element
 Accession No.

Block 6. <u>Author(s)</u> Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and Address(es)</u>. Self-explanatory.

Block 8. <u>Performing Organization Report Number.</u> Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s) and Address(es)</u> Self-explanatory.

Block 10. <u>Sponsoring/MonitoringAgency Reports Number.</u> (if known).

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement Denotes public</u> availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

#### Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code.</u> Enter appropriate price code**N***TIS* only).

Block 17 - 19. <u>Security Classifications</u>. <u>Self-explanatory</u>. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract.</u> This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

### **FORMS**

National Aeronautics and Space Administration	Report Docum	nentation P	'age	
1. Report No.	Government Accession N	О.	3. Recipient's Catalog N	No.
4. Title and Subtitle Integrated Advanced Mic (AMSU-A), Performance		Jnit-A	5. Report Date June 199 6. Performing Organizati	
7. Author(s) R. Haigh			8. Performing Organizati 11491 10. Work Unit No.	ion Report No.
9. Performing Organization Name and A Aerojet 1100 W. Hol Azusa, CA 9	lyvale	ļ	11. Contract or Grant No NAS 13. Type of Report and R	5-32314
· ·	ess ace Flight Center Maryland 20771		Final  14. Sponsoring Agency	
15. Supplementary Notes				
16. ABSTRACT (Maximum 200 words)  This is the Performance Volume Assemblies, P/N 1356429-Advanced Microwave Sou (AMSU-A).	-1 S/N F06 and P/N			
17. Key Words (Suggested by Author(s EOS Microwave Syste	,	18. Distribution	Statement Unclassified Un	limited
19. Security Classif. (of this report)  Unclassified	20. Security Classif. (of the Unclassified	his page)	21. No. of pages	22. Price

#### PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. Recipient's Catalog No.. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. <u>Key Words.</u> Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of <u>STAR</u>) in which report is to be distributed.
- Block 19. <u>Security Classification (of the report).</u> Self-explanatory.
- Block 20. <u>Security Classification (of this page).</u> Self-explanatory.
- Block 21. <u>No. of Pages.</u> Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. Price Code. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DO	CUMEN	TATION PAGE			(	Form oproved DMB No. 04-0188
Public reporting burden fothis collection of infigathering andmaintaining the data needed, an collection of information, including suggestion Davis Highway, Suite 1204, Arlington, VA 22	ormation is estind completing ar for reducing this 202-4302, and	matedto average 1 hour per resp dreviewing thecollection informal burden to Washington Headqui to the Office of Management an	onse inclui tion. Send arters Serv d Budget,	ding the I comme icesDirei Paperwi	timefor reviewing instru- ents regardingthis burder ctorate for Information C ork Reduction Project (0	ctionssearching existing data source nestimate or any other aspect of this operation and Reports, 1215 Jefferso 704-0188). Washington, DC 20503.
AGENCY USE ONLY ( Leave blank )		2. REPORT DATE	3. F	EPOF	RT TYPE AND DA	TES COVERED
4. TITLE AND SUBTITLE Integrated Advanced M (AMSU-A), Performand				5. 1	FUNDING NUMBE	rs 5-32314
6. AUTHOR(S) R. Haigh					NAO C	
7. PERFORMING ORGANIZATIO Aerojet 1100 W. Holly Azusa, CA 91	yvale	AND ADDRESS(ES)			PERFORMING OF REPORT NUMBER 11491 July 1999	•
9. SPONSORING/MONITORING NASA Goddard Spa Greenbelt, Ma	ce Flight	Center	(ES)	10.	SPONSORING/N AGENCY REPO	
11. SUPPLEMENTARY NOTES				1		
12a. DISTRIBUTION/AVAILABILI	TY STATEM	ENT		12b	. DISTRIBUTION	CODE
					•••	
13. ABSTRACT (Maximum 200 words )  This is the Performance Assemblies, P/N 13564. Advanced Microwave S	29-1 S/N	F06 and P/N 135	6409			
14. SUBJECT TERMS					- <del></del>	15. NUMBER OF PAGES
EOS Microwave System						16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	OF THE	TY CLASSIFICATION S PAGE nclassified	OF	ABSTR	CLASSIFICATION ACT <b>assified</b>	20. LIMITATION OF ABSTRACT SAR

#### **GENERAL INSTRUCTIONS FOR COMPLETING SF 298**

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

#### Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, andyear, if available (e.g.,1 Jan 88). Must cite at least the year.

Block 3. <u>Type of Report and Dates Covered</u> State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program Element
 WU
 Work Unit Accession No.

Block 6. <u>Author(s)</u> Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and Address(es).</u> Self-explanatory.

Block 8. <u>Performing Organization Report Number.</u> Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s)</u> and Address(es) Self-explanatory.

Block 10. <u>Sponsoring/MonitoringAgency Reports Number.</u> (if known).

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement Denotes</u> public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief **Maximum 200 words** factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code.</u> Enter appropriate price codeNTIS only).

Block 17 - 19. <u>Security Classifications</u>. <u>Self-explanatory</u>. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

## **DOCUMENT APPROVAL SHEET**

# **AEROJET**

TITLE		I	DOCUMENT NO.	
Performance Verification Report		NAT 40 # 2 400 4 00 =	Report 11491	I.
METSAT (S/N 109) AMSU-A1 Rece	eiver Assemblies, I	P/N 1356429-1 S/N	June 1999	
F06 and P/N 1356409-1 S/N F06				
INPUT FROM:	CDRL: 208	SPECIFICATION ENGINEER:		DATE
R. Haigh	200	N/A		
CHECKED BY:	DATE	JOB NUMBER:	<u> </u>	DATE
N/A		N/A		
APPROVED SIGNATURES		11011	DEPT. NO.	DATE
Product Team Leader (A. Nieto)  Systems Engineer (R. Platt)  Design Assurance (E. Lorenz)  Quality Assurance (R. Taylor)  PMO/Technical (P. Patel)	P. R. Ro C. Josem RM Toy P. R. Ret	tel In	8410 8410 8410 7831 8410	7/27/00 7/27/00 7/27/00 7-17-00 7/27/00
Released: Configuration Management (J. Ca  By my signature, I certify the above document has requirements related to my area of responsibility.  (Data Center) FINAL	avanaugh)	nd concurs with the technical	8410	7/28/00

