007701805

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Kalchman, Michael

Nayden. Michael R.

Hackam, Abigail

Chora, Vikramjit Singh

Nicholson, Donald W.

Vallaincourt, John P.

Rasper, Dita M.

(ii) TITLE OF INVENTION: Apoptosis Modulators That Interact with the

Huntington's Disease Gene

- (iii) NUMBER OF SEQUENCES: 44
- (iv) CORRESPONDENCE ADDRESS:
- (A) ADDRESSEE Oppedahl & Larson
- (B) STREET: PO Box 5270
- (C) CITY: Frisco
- (D) STATE: CO
- (E) COUNTRY: USA
- (F) ZIP: 80443-5270
- (v) COMPUTER READABLE FORM:
- (A) MEDIUM TYPE: Diskette 3.50 inch, 1.44 Kb storage
- (B) COMPUTER: IBM Compatible
- (C) OPERATING SYSTEM: MS DOS 5.0
- (D) SOFTWARE: WordPerfect
- (vi) CURRENT APPLICATION DATA:
- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
- (A) NAME: Larson, Marina T.
- (B) REGISTRATION NUMBER: 32038
- (C) REFERENCE/DOCKET NUMBER: UBC.P\013US2
- (ix) TELECOMMUNICATION INFORMATION:
- (A) TELEPHONE: (970) 668-2050
- (B) TELEFAX: (970) 668-2052
- (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1164
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no

i ing

IN i.a

WO 99/60986

- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: cDNA for Huntingtin-interacting protein
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAGCTGACA	CCCTGCAAGG	CCACCGGGAC	CGCTTCATGG	AGCAGTTTAC	50
AAAGTTGAAA	GATCTGTTCT	ACCGCTCCAG	CAACCTGCAG	TACTTCAAGC	100
GGGTCATTCA	GATCCCCCAG	CTGCCTGAGA	ACCCACCCAA	CTTCCTGCGA	150
GCCTCAGCCC	TGTCAGAACA	TATCAGCCCT	GTGGTGGTGA	TCCCTGCAGA	200
GGCCTCATCC	CCCGACAGCG	AGCCAGTCCT	AGAGAAGGAT	GACCTCATGG	250
ACATGGATGC	CTCTCAGCAG	AATTTATTTG	ACAACAAGTT	TGATGACNTC	300
TTTGGCAGTT	CATCCAGCAG	TGATCCCTTC	AATTTCAACA	GTCAAAATGG	350
TGTGAACAAG	GATGAGAAGG	ACCACTTAAT	TGAGCGACTA	TACAGAGAGA	400
TCAGTGGATT	GAAGGCACAG	CTAGAAAACA	TGAAGACTGA	GAGCCAGCGG	450
GTTGTGCTGC	AGCTGAAGGG	CCACGTCAGC	GAGCTGGAAG	CAGATCTGGC	500
CGAGCAGCAG	CACCTGCGGC	AGCAGGCGGC	CGACGACTGT	GAATTCCTGC	550
GGGCAGAACT	GGACGAGCTC	AGGNGGCAGC	GGGAGGACAC	CGAGAAGGCT	600
CAGCGGAGCC	TGTCTGAGAT	AGAAAGGAAA	GCTCAAGCCA	ATGAACAGCG	650
ATATAGCAAG	CTAAAGGAGA	AGTACAGCGA	GCTGGTTCAG	AACCACGCTG	700
ACCTGCTGCG	GAAGAATGCA	GAGGTGACCA	AACAGGTGTC	CATGGCCAGA	750
CAAGCCCAGG	TAGATTTGGA	ACGAGAGAAA	AAAGAGCTGG	AGGATTCGTT	800
GGAGCGCATC	AGTGACCAGG	GCCAGCGGAA	GACTCAAGAA	CAGCTGGAAG	850
TTCTAGAGAG	CTTGAAGCAG	GAACTTGGCA	CAAGCCAACG	GGAGCTTCAG	900
GTTCTGCAAG	GCAGCCTGGA	AACTTCTGCC	CAGTCAGAAG	CAAACTGGGC	950
AGCCGAGTTC	GCCGAGCTAG	AGAAGGAGCG	GGACAGCCTG	GTGAGTGGCG	1000
CAGCTCATAG	GGAGGAGGAA	TTATCTGCTC	TTCGGAAAGA	ACTGCAGGAC	1050
ACTCAGCTCA	AACTGGCCAG	CACAGAGGAA	TCTATGTGCC	AGCTTGCCAA	1100
AGACCAACGA	AAAATGCTTC	TGGTGGGGTC	CAGGAAGGCT	GCGGAGCAGG	1150
TGATACAAGA	CGCG				1164

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 386 (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Thr Ala Asp Thr Leu Gln Gly His Arg Asp Arg Phe Met Glu Gln 1 5 10 15

Phe Thr Lys Leu Lys Asp Leu Phe Tyr Arg Ser Ser Asn Leu Gln 20 25 30

Tyr Phe Lys Arg Val Ile Gln Ile Pro Gln Leu Pro Glu Asn Pro

110 22/00200											
	35					40					45
Pro Asn Phe	Leu Arg 50	Ala	Ser	Ala	Leu	Ser 55	Glu	His	Ile	Ser	Pro 60
Val Val Val	Ile Pro 65	Ala	Glu	Ala	Ser	Ser 70	Pro	Asp	Ser	Glu	Pro 75
Val Leu Glu	Lys Asp 80	Asp	Leu	Met	Asp	Met 85	Asp	Ala	Ser	Gln	Gln 90
Asn Leu Phe	Asp Asn 95	Lys	Phe	Asp	Asp	Phe 100	Gly	Ser	Ser	Ser	Ser 105
Ser Asp Pro	Phe Asn 110	Phe	Asn	Ser	Gln	Asn 115	Gly	Val	Asn	Lys	Asp 120
Glu Lys Asp	His Leu 125	Ile	Glu	Arg	Leu	Tyr 130	Arg	Glu	Ile	Ser	Gly 135
Leu Lys Ala	Gln Leu 140	Glu	Asn	Met	Lys	Thr 145	Glu	Ser	Gln	Arg	Val 150
Val Leu Gln	Leu Lys 155	Gly	His	Val	Ser	Glu 160	Leu	Glu	Ala	Asp	Leu 165
Ala Glu Gln	Gln His 170	Leu	Arg	Gln	Gln	Ala 175	Ala	Asp	Asp	Cys	Glu 180
Phe Leu Arg	Ala Glu 185	Leu	Asp	Glu	Leu	Arg 190	Gln	Arg	Glu	Asp	Thr 195
Glu Lys Ala	Gln Arg 200	Ser	Leu	Ser	Glu	Ile 205	Glu	Arg	Lys	Ala	Gln 210
Ala Asn Glu	Gln Arg 215	Tyr	Ser	Lys	Leu	Lys 220	Glu	Lys	Tyr	Ser	Glu 225
Leu Val Gln	Asn His 230	Ala	Asp	Leu	Leu	Arg 235	Lys	Asn	Ala	Glu	Val 240
Thr Lys Gln	Val Ser 245	Met	Ala	Arg	Gln	Ala 250	Gln	Val	Asp	Leu	Glu 255
Arg Glu Lys	Lys Glu 260	Leu	Glu	Asp	Ser	Leu 265	Glu	Arg	Ile	Ser	Asp 270
Gln Gly Gln	Arg Lys 275	Thr	Gln	Glu	Gln	Leu 280	Glu	Val	Leu	Glu	Ser 285
Leu Lys Gln	Glu Leu	Gly	Thr	Ser	Gln	Arg	Glu	Leu	Gln	Val	Leu

PCT/US99/11743 WO 99/60986 295 300 290 Gln Gly Ser Leu Glu Thr Ser Ala Gln Ser Glu Ala Asn Trp Ala 305 310 Ala Glu Phe Ala Glu Leu Glu Lys Glu Arg Asp Ser Leu Val Ser 320 Gly Ala Ala His Arg Glu Glu Glu Leu Ser Ala Leu Arg Lys Glu 340 335 Leu Gln Asp Thr Gln Leu Lys Leu Ala Ser Thr Glu Glu Ser Met 355 360 350 Cys Gln Leu Ala Lys Asp Gln Arg Lys Met Leu Leu Val Gly Ser 375 365 370 Arg Lys Ala Ala Glu Gln Val Ile Gln Asp Ala 385 386 380

- (2) INFORMATION FOR SEQ ID NO:3:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 4796
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: cDNA for Huntingtin-interacting protein
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 3:

CAGTGTACGG	TTGATCATAT	AACGCCGCGG	GCGGGGATTG	GTTTATATAT	50
CGCAAATTGA	TNTAGGGGGG	GGGGGATGGN	CAGAGATTTC	GCTTCATTAG	100
GCCATTATAA	GCAGGAAGGG	TTTCAAGGAA	AAAAACCCAG	AAAGTGCATA	150
TTGCACCCAC	CATGAGAAAG	GGGCAACAGA	CCTTNTGTTN	TGTTNTCAAC	200
CGCCTGCTTC	TGTTTTAGCA	ACGCAGTGTT	TTGGTGGAAG	TTGTGCCATG	250
TGTTCCACAA	ANTCTTCCGA	GATGGACACC	CGAACGTCCT	GAAGGACTTT	300
GTGAGATACA	GAAATGAATT	GAGTGACATG	AGCAGGATGT	GGGGCCACCT	350
GAGCGAGGGG	TATGGCCAGC	TGTGCAGCAT	CTACCTGAAA	CTGCTAAGAA	400
CCAAGATGGA	GTACCACACC	AAAAATCCCA	GGTTCCCAGG	CAACCTGCAG	450
ATGAGTGACC	GCCAGCTGGA	CGAGGCTGGA	GAAAGTGACG	TGAACAACTT	500
TTTCCAGTTA	ACAGTGGAGA	TGTTTGACTA	CCTGGAGTGT	GAACTCAACC	550
TCTTCCAAAC	AGTATTCAAC	TCCCTGGACA	TGTCCCGCTC	TGTGTCCGTG	600
ACGGCAGCAG	GGCAGTGCCG	CCTCGCCCCG	CTGATCCAGG	TCATCTTGGA	650
CTGCAGCCAC	CTTTATGACT	ACACTGTCAA	GCTTCTCTTC	AAACTCCACT	700
CCTGCCTCCC	AGCTGACACC	CTGCAAGGCC	ACCGGGACCG	CTTCATGGAG	750

,, _ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
CAGTTTACAA	AGTTGAAAGA	TCTGTTCTAC	CGCTCCAGCA	ACCTGCAGTA	800
CTTCAAGCGG	CTCATTCAGA	TCCCCCAGCT	GCCTGAGAAC	CCACCCAACT	850
TCCTGCGAGC	CTCAGCCCTG	TCAGAACATA	TCAGCCCTGT	GGTGGTGATC	900
CCTGCAGAGG	CCTCATCCCC	CGACAGCGAG	CCAGTCCTAG	AGAAGGATGA	950
CCTCATGGAC	ATGGATGCCT	CTCAGCAGAA	TTTATTTGAC	AACAAGTTTG	1000
ATGACATCTT	TGGCAGTTCA	TTCAGCAGTG	ATCCCTTCAA	TTTCAACAGT	1050
CAAAATGGTG	TGAACAAGGA	TGAGAAGGAC	CACTTAATTG	AGCGACTATA	1100
CAGAGAGATC	AGTGGATTGA	AGGCACAGCT	AGAAAACATG	AAGACTGAGA	1150
GCCAGCGGGT	TGTGCTGCAG	CTGAAGGGCC	ACGTCAGCGA	GCTGGAAGCA	1200
GATCTGGCCG		CCTGCGGCAG	CAGGCGGCCG	ACGACTGTGA	1250
ATTCCTGCGG	GCAGAACTGG	ACGAGCTCAG	GAGGCAGCGG	GAGGACACCG	1300
AGAAGGCTCA	GCGGAGCCTG	TCTGAGATAG	AAAGGAAAGC	TCAAGCCAAT	1350
GAACAGCGAT	ATAGCAAGCT	AAAGGAGAAG	TACAGCGAGC	TGGTTCAGAA	1400
CCACGCTGAC	CTGCTGCGGA	AGAATGCAGA	GGTGACCAAA	CAGGTGTCCA	1450
TGGCCAGACA	AGCCCAGGTA	GATTTGGAAC	GAGAGAAAAA	AGAGCTGGAG	1500
GATTCGTTGG	AGCGCATCAG	TGACCAGGGC	CAGCGGAAGA	CTCAAGAACA	1550
GCTGGAAGTT	CTAGAGAGCT	TGAAGCAGGA	ACTTGGCACA	AGCCAACGGG	1600
AGCTTCAGGT	TCTGCAAGGC	AGCCTGGAAA	CTTCTGCCCA	GTCAGAAGCA	1650
AACTGGGCAG	CCGAGTTCGC	CGAGCTAGAG	AAGGAGCGGG	ACAGCCTGGT	1700
GAGTGGCGCA	GCTCATAGGG	AGGAGGAATT	ATCTGCTCTT	CGGAAAGAAC	1750
TGCAGGACAC	TCAGCTCAAA	CTGGCCAGCA	CAGAGGAATC	TATGTGCCAG	1800
CTTGCCAAAG	ACCAACGAAA	AATGCTTCTG	GTGGGGTCCA	GGAAGGCTGC	1850
GGAGCAGGTG	ATACAAGACG	CCCTGAACCA	GCTTGAAGAA	CCTCCTCTCA	1900
TCAGCTGCGC	TGGGTCTGCA	GATCACCTCC	TCTCCACGGT	CACATCCATT	1950
TCCAGCTGCA	TCGAGCAACT	GGAGAAAAGC	TGGAGCCAGT	ATCTGGCCTG	2000
CCCAGAAGAC	ATCAGTGGAC	TTCTCCATTC	CATAACCCTG	CTGGCCCACT	2050
TGACCAGCGA	CGCCATTGCT	CATGGTGCCA	CCACCTGCCT	CAGAGCCCCA	2100
CCTGAGCCTG	CCGACTCACT	GACCGAGGCC	TGTAAGCAGT	ATGGCAGGGA	2150
AACCCTCGCC	TACCTGGCCT	CCCTGGAGGA	AGAGGGAAGC	CTTGAGAATG	2200
CCGACAGCAC	AGCCATGAGG	AACTGCCTGA	GCAAGATCAA	GGCCATCGGC	2250
GAGGAGCTCC	TGCCCAGGGG	ACTGGACATC	AAGCAGGAGG	AGCTGGGGGA	2300
CCTGGTGGAC	AAGGAGATGG	CGGCCACTTC	AGCTGCTATT	GAAACTTGCA	2350
CGGCCAGAAT	AGAGGAGATG	CTCAGCAAAT	CCCGAGCAGG	AGACACAGGA	2400
GTCAAATTGG	AGGTGAATGA	AAGGATCCTT	CGTTGCTGTA	CCAGCCTCAT	2450
GCAAGCTATT	CAGGTGCTCA	TCGTGGCCTC	TAAGGACCTC	CAGAGAGAGA	2500
TTGTGGAGAG	CGGCAGGGGT	ACAGCATCCC	CTAAAGAGTT	TTATGCCAAG	2550
AACTCTCGAT	GGACAGAAGG	ACTTATCTCA	GCCTCCAAGG	CTGTGGGCTG	2600
GGGAGCCACT	GTCATGGTGG	ATGCAGCTGA	TCTGGTGGTA	CAAGGCAGAG	2650
GGAAATTTGA	GGAGCTAATG	GTGTGTTCTC	ATGAAATTGC	TGCTAGCACA	2700
GCCCAGCTTG	TGGCTGCATC	CAAGGTGAAA	GCTGATAAGG	ACAGCCCCAA	2750
CCTAGCCCAG	CTGCAGCAGG	CCTCTCGGGG	AGTGAACCAG	GCCACTGCCG	2800
GCGTTGTGGC	CTCAACCATT	TCCGGCAAAT	CACAGATCGA	AGAGACAGAC	2850
AACATGGACT	TCTCAAGCAT	GACGCTGACA	CAGATCAAAC	GCCAAGAGAT	2900
GGATTCTCAG	GTTAGGGTGC	TAGAGCTAGA	AAATGAATTG	CAGAAGGAGC	2950
GTCAAAAACT	GGGAGAGCTT	CGGAAAAAGC	ACTACGAGCT	TGCTGGTGTT	3000
GCTGAGGGCT	GGGAAGAAGG	AACAGAGGCA	TCTCCACCTA	CACTGCAAGA	3050
AGTGGTAACC	GAAAAAGAAT	AGAGCCAAAC	CAACACCCCA	TATGTCAGTG	3100
TAAATCCTTG	TTACCTATCT	CGTGTGTGTT	ATTTCCCCAG	CCACAGGCCA	3150
	GTCCCAGGGG	CAGCCACACC	ACTGCCATTA	CCCAGTGCCG	3200
AGGACATGCA			TCCATAGCGA	CACCCTTTCT	3250
GTTTGGACCC	ATGGTCATCT	CTGTTCTTTT	CCCGCCTCCC	TAGTTAGCAT	3300

CCAGGCTGGC	CAGTGCTGCC	CATGAGCAAG	CCTAGGTACG	AAGAGGGGTG	3350
GTGGGGGGCA	GGGCCACTCA	ACAGAGAGGA	CCAACATCCA	GTCCTGCTGA	3400
CTATTTGACC	CCCACAACAA	TGGGTATCCT	TAATAGAGGA	GCTGCTTGTT	3450
GTTTGTTGAC	AGCTTGGAAA	GGGAAGATCT	TATGCCTTTT	CTTTTCTGTT	3500
TTCTTCTCAG	TCTTTTCAGT	TTCATCATTT	GCACAAACTT	GTGAGCATCA	3550
GAGGGCTGAT	GGATTCCAAA	CCAGGACACT	ACCCTGAGAT	CTGCACAGTC	3600
AGAAGGACGG	CAGGAGTGTC	CTGGCTGTGA	ATGCCAAAGC	CATTCTCCCC	3650
CTCTTTGGGC	AGTGCCATGG	ATTTCCACTG	CTTCTTATGG	TGGTTGGTTG	3700
GGTTTTTTGG	TTTTGTTTTT	TTTTTTTAAG	TTTCACTCAC	ATAGCCAACT	3750
CTCCCAAAGG	GCACACCCCT	GGGGCTGAGT	CTCCAGGGCC	CCCCAACTGT	3800
GGTAGCTCCA	GCGATGGTGC	TGCCCAGGCC	TCTCGGTGCT	CCATCTCCGC	3850
CTCCACACTG	ACCAAGTGCT	GGCCCACCCA	GTCCATGCTC	CAGGGTCAGG	3900
CGGAGCTGCT	GAGTGACAGC	TTTCCTCAAA	AAGCAGAAGG	AGAGTGAGTG	3950
CCTTTCCCTC	CTAAAGCTGA	ATCCCGGCGG	AAAGCCTCTG	TCCGCCTTTA	4000
CAAGGGAGAA	GACAACAGAA	AGAGGGACAA	GAGGGTTCAC	ACAGCCCAGT	4050
TCCCGTGACG	AGGCTCAAAA	ACTTGATCAC	ATGCTTGAAT	GGAGCTGGTG	4100
AGATCAACAA	CACTACTTCC	CTGCCGGAAT	GAACTGTCCG	TGAATGGTCT	4150
CTGTCAAGCG	GGCCGTCTCC	CTTGGCCCAG	AGACGGAGTG	TGGGAGTGAT	4200
TCCCAACTCC	TTTCTGCAGA	CGTCTGCCTT	GGCATCCTCT	TGAATAGGAA	4250
GATCGTTCCA	CTTTCTACGC	AATTGACAAA	CCCGGAAGAT	CAGATGCAAT	4300
TGCTCCCATC	AGGGAAGAAC	CCTATACTTG	GTTTGCTACC	CTTAGTATTT	4350
ATTACTAACC	TCCCTTAAGC	AGCAACAGCC	TACAAAGAGA	TGCTTGGAGC	4400
AATCAGAACT	TCAGGTGTGA	CTCTAGCAAA	GCTCATCTTT	CTGCCCGGCT	4450
ACATCAGCCT	TCAAGAATCA	GAAGAAAGCC	AAGGTGCTGG	ACTGTTACTG	4500
ACTTGGATCC	CAAAGCAAGG	AGATCATTTG	GAGCTCTTGG	GTCAGAGAAA	4550
ATGAGAAAGG	ACAGAGCCAG	CGGCTCCAAC	TCCTTTCAGC	CACATGCCCC	4600
AGGCTCTCGC	TGCCCTGTGG	ACAGGATGAG	GACAGAGGGC	ACATGAACAG	4650
CTTGCCAGGG	ATGGGCAGCC	CAACAGCACT	TTTCCTCTTC	TAGATGGACC	4700
CCAGCATTTA	AGTGACCTTC	TGATCTTGGG	AAAACAGCGT	CTTCCTTCTT	4750
TATCTATAGC	AACTCATTGG	TGGTAGCCAT	CAAGCACTTC	GGAATT	4796

- (2) INFORMATION FOR SEQ ID NO: 4:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 924
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ser Arg Met Trp Gly His Leu Ser Glu Gly Tyr Gly Gln Leu 1 5 10 15

Cys Ser Ile Tyr Leu Lys Leu Leu Arg Thr Lys Met Glu Tyr His 20 25 30

,	WO 99	/60986									•		PCTA	US99/11
Thr	Lys	Asn	Pro	Arg 35	Phe	Pro	Gly	Asn	Leu 40	Gln	Met	Ser	Asp	Arg 45
Gln	Leu	Asp	Glu	Ala 50	Gly	Glu	Ser	Asp	Val 55	Asn	Asn	Phe	Phe	Gln 60
Leu	Thr	Val	Glu	Met 65	Phe	Asp	Tyr	Leu	Glu 70	Cys	Glu	Leu	Asn	Leu 75
Phe	Gln	Thr	Val	Phe 80	Asn	Ser	Leu	Asp	Met 85	Ser	Arg	Ser	Val	Ser 90
Val	Thr	Ala	Ala	Gly 95	Gln	Cys	Arg	Leu	Ala 100	Pro	Leu	Ile	Gln	Val 105
Ile	Leu	Asp	Cys	Ser 110	His	Leu	Tyr	Asp	Tyr 115	Thr	Val	Lys	Leu	Leu 120
Phe	Lys	Leu	His	Ser 125	Cys	Leu	Pro	Ala	Asp 130	Thr	Leu	Gln	Gly	His 135
Arg	Asp	Arg	Phe	Met 140	Glu	Gln	Phe	Thr	Lys 145	Leu	Lys	Asp	Leu	Phe 150
Tyr	Arg	Ser	Ser	Asn 155	Leu	Gln	Tyr	Phe	Lys 160	Arg	Leu	Ile	Gln	Ile 165
Pro	Gln	Leu	Pro	Glu 170	Asn	Pro	Pro	Asn	Phe 175	Leu	Arg	Ala	Ser	Ala 180
Leu	Ser	Glu	His	Ile 185	Ser	Pro	Val	Va1	Val 190	Ile	Pro	Ala	Glu	Ala 195
Ser	Ser	Pro	Asp	Ser 200	Glu	Pro	Val	Leu	Glu 205	Lys	Asp	Asp	Leu	Met 210
Asp	Met	Asp	Ala	Ser 215	Gln	Gln	Asn	Leu	Phe 220	Asp	Asn	Lys	Phe	Asp 225
Asp	Ile	Phe	Gly	Ser 230	Ser	Phe	Ser	Ser	Asp 235	Pro	Phe	Asn	Phe	Asn 240
Ser	Gln	Asn	Gly	Val 245	Asn	Lys	Asp	Glu	Lys 250	Asp	His	Leu	Ile	Glu 255
Arg	Leu	Tyr	Arg	Glu 260	Ile	Ser	Gly	Leu	Lys 265	Ala	Gln	Leu	Glu	Asn 270
Met	Lys	Thr	Glu	Ser 275	Gln	Arg	Val	Val	Leu 280	Gln	Leu	Lys	Gly	His 285

PCT/US99/11743 WO 99/60986 Val Ser Glu Leu Glu Ala Asp Leu Ala Glu Gln Gln His Leu Arg Gln Gln Ala Ala Asp Asp Cys Glu Phe Leu Arg Ala Glu Leu Asp Glu Leu Arg Arg Gln Arg Glu Asp Thr Glu Lys Ala Gln Arg Ser Leu Ser Glu Ile Glu Arg Lys Ala Gln Ala Asn Glu Gln Arg Tyr Ser Lys Leu Lys Glu Lys Tyr Ser Glu Leu Val Gln Asn His Ala Asp Leu Leu Arg Lys Asn Ala Glu Val Thr Lys Gln Val Ser Met Ala Arg Gln Ala Gln Val Asp Leu Glu Arg Glu Lys Lys Glu Leu Glu Asp Ser Leu Glu Arg Ile Ser Asp Gln Gly Gln Arg Lys Thr Gln Glu Gln Leu Glu Val Leu Glu Ser Leu Lys Gln Glu Leu Gly Thr Ser Gln Arg Glu Leu Gln Val Leu Gln Gly Ser Leu Glu Thr Ser Ala Gln Ser Glu Ala Asn Trp Ala Ala Glu Phe Ala Glu Leu Glu Lys Glu Arg Asp Ser Leu Val Ser Gly Ala Ala His Arg Glu Glu Glu Leu Ser Ala Leu Arg Lys Glu Leu Gln Asp Thr Gln Leu Lys Leu Ala Ser Thr Glu Glu Ser Met Cys Gln Leu Ala Lys Asp Gln Arg Lys Met Leu Leu Val Gly Ser Arg Lys Ala Ala Glu Gln Val Ile Gln Asp Ala Leu Asn Gln Leu Glu Glu Pro Pro Leu Ile Ser Cys Ala Gly Ser Ala Asp His Leu Leu Ser Thr Val Thr Ser

PCT/US99/11743 WO 99/60986 Ile Ser Ser Cys Ile Glu Gln Leu Glu Lys Ser Trp Ser Gln Tyr Leu Ala Cys Pro Glu Asp Ile Ser Gly Leu Leu His Ser Ile Thr Leu Leu Ala His Leu Thr Ser Asp Ala Ile Ala His Gly Ala Thr Thr Cys Leu Arg Ala Pro Pro Glu Pro Ala Asp Ser Leu Thr Glu Ala Cys Lys Gln Tyr Gly Arg Glu Thr Leu Ala Tyr Leu Ala Ser Leu Glu Glu Glu Gly Ser Leu Glu Asn Ala Asp Ser Thr Ala Met Arg Asn Cys Leu Ser Lys Ile Lys Ala Ile Gly Glu Glu Leu Leu Pro Arg Gly Leu Asp Ile Lys Gln Glu Glu Leu Gly Asp Leu Val Asp Lys Glu Met Ala Ala Thr Ser Ala Ala Ile Glu Thr Cys Thr Ala Arg Ile Glu Glu Met Leu Ser Lys Ser Arg Ala Gly Asp Thr Gly Val Lys Leu Glu Val Asn Glu Arg Ile Leu Arg Cys Cys Thr Ser Leu Met Gln Ala Ile Gln Val Leu Ile Val Ala Ser Lys Asp Leu Gln Arg Glu Ile Val Glu Ser Gly Arg Gly Thr Ala Ser Pro Lys Glu Phe Tyr Ala Lys Asn Ser Arg Trp Thr Glu Gly Leu Ile Ser Ala Ser Lys Ala Val Gly Trp Gly Ala Thr Val Met Val Asp Ala Ala Asp Leu Val Val Gln Gly Arg Gly Lys Phe Glu Glu Leu Met Val Cys Ser His Glu Ile Ala Ala Ser Thr Ala Gln Leu Val

Ala	Ala	Ser	Lys	Val 810	Lys	Ala	Asp	Lys	Asp 815	Ser	Pro	Asn	Leu	Ala 820
Gln	Leu	Gln	Gln	Ala 825	Ser	Arg	Gly	Val	Asn 830	Gln	Ala	Thr	Ala	Gly 835
Val	Val	Ala	Ser	Thr 840	Ile	Ser	Gly	Lys	Ser 845	Gln	Ile	Glu	Glu	Thr 850
Asp	Asn	Met	Asp	Phe 855	Ser	Ser	Met	Thr	Leu 860	Thr	Gln	Ile	Lys	Arg 865
Gln	Glu	Met	Asp	Ser 870	Gln	Val	Arg	Val	Leu 875	Glu	Leu	Glu	Asn	Glu 880
Leu	Gln	Lys	Glu	Arg 885	Gln	Lys	Leu	Gly	Glu 890	Leu	Arg	Lys	Lys	His 895
Tyr	Glu	Leu	Ala	Gly 900	Val	Ala	Glu	Gly	Trp 905	Glu	Glu	Gly	Thr	Glu 910
Ala	Ser	Pro	Pro	Thr 915	Leu	Gln	Glu	Val	Val 920	Thr	Glu	Lys	Glu 924	

- (2) INFORMATION FOR SEQ ID NO: 5
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1090
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Leu Leu Cys Gln Gly Ser Glu Trp Arg Arg Asp Gln Gln Leu 15

Gly Thr Ala Asn Ala Arg Gln Trp Cys Pro Leu Pro Gln Asp Ala 20

Gln Pro Ala Gly Ser Trp Glu Arg Cys Pro Pro Leu Pro Pro Ala 45

Gly Arg Leu Gln Gly Thr Asp His Pro Trp Gly Trp Gly Arg Leu 60

PCT/US99/11743 WO 99/60986 Ala Gly Gly Glu Arg Gly Gly Leu Trp Glu Gly Leu Ser His Ser Gln Arg Leu Ile His Leu Ile Leu Leu Ser Leu Pro Leu Leu Val Phe Gln Thr Val Ser Ile Asn Lys Ala Ile Asn Thr Gln Glu Val Ala Val Lys Glu Lys His Ala Arg Thr Cys Ile Leu Gly Thr His His Glu Lys Gly Ala Gln Thr Phe Trp Ser Val Val Asn Arg Leu Pro Leu Ser Ser Asn Ala Val Leu Cys Trp Lys Phe Cys His Val Phe His Lys Leu Leu Arg Asp Gly His Pro Asn Val Leu Lys Asp Ser Leu Arg Tyr Arg Asn Glu Leu Ser Asp Met Ser Arg Met Trp Gly His Leu Ser Glu Gly Tyr Gly Gln Leu Cys Ser Ile Tyr Leu Lys Leu Leu Arg Thr Lys Met Glu Tyr His Thr Lys Asn Pro Arg Phe Pro Gly Asn Leu Gln Met Ser Asp Arg Gln Leu Asp Glu Ala Gly Glu Ser Asp Val Asn Asn Phe Phe Gln Leu Thr Val Glu Met Phe Asp Tyr Leu Glu Cys Glu Leu Asn Leu Phe Gln Thr Val Phe Asn Ser Leu Asp Met Ser Arg Ser Val Ser Val Thr Ala Ala Gly Gln Cys Arg Leu Ala Pro Leu Ile Gln Val Ile Leu Asp Cys Ser His Leu Tyr Asp Tyr Thr Val Lys Leu Leu Phe Lys Leu His Ser Cys Leu Pro Ala Asp Thr Leu Gln Gly His Arg Asp Arg Phe

WO 99/60986

PCT/US99/11743

Clar Clar Pho Thr Lvc Lou Lvc Aca Lou Pho Tyr Arc Sor Sor

Met Gl	u Gln	Phe	Thr 320	Lys	Leu	Lys	Asp	Leu 325	Phe	Tyr	Arg	Ser	Ser 330
Asn Le	u Gln	Tyr	Phe 335	Lys	Arg	Leu	Ile	Gln 340	Ile	Pro	Gln	Leu	Pro 345
Glu As	n Pro	Pro	Asn 350	Phe	Leu	Arg	Ala	Ser 355	Ala	Leu	Ser	Glu	His 360
Ile Se	r Pro	Val	Val 365	Val	Ile	Pro	Ala	Glu 370	Ala	Ser	Ser	Pro	Asp 375
Ser Gl	u Pro	Val	Leu 380	G1u	Lys	Asp	Asp	Leu 385	Met	Asp	Met	Asp	Ala 390
Ser Gl	n Gln	Asn	Leu 395	Phe	Asp	Asn	Lys	Phe 400	Asp	Asp	Ile	Phe	Gly 405
Ser Se	r Phe	Ser	Ser 410	Asp	Pro	Phe	Asn	Phe 415	Asn	Ser	Gln	Asn	Gly 420
Val As	n Lys	Asp	Glu 425	Lys	Asp	His	Leu	Ile 430	Glu	Arg	Leu	Tyr	Arg 435
Glu Il	e Ser	Gly	Leu 440	Lys	Ala	Gln	Leu	Glu 445	Asn	Met	Lys	Thr	Glu 450
Ser Gl	n Arg	Val	Val 455	Leu	Gln	Leu	Lys	Gly 460	His	Val	Ser	Glu	Leu 465
Glu Al	a Asp	Leu	Ala 470	Glu	Gln	Gln	His	Leu 475	Arg	Gln	Gln	Ala	Ala 480
Asp As	p Cys	Glu	Phe 485	Leu	Arg	Ala	Glu	Leu 490	Asp	Glu	Leu	Arg	Arg 495
Gln Ar	g Glu	Asp	Thr 500	Glu	Lys	Ala	Gln	Arg 505	Ser	Leu	Ser	Glu	Ile 510
Glu Ar	g Lys	Ala	Gln 515	Ala	Asn	Glu	Gln	Arg 520	Tyr	Ser	Lys	Leu	Lys 525
Glu Ly	s Tyr	Ser	Glu 530	Leu	Val	Gln	Asn	His 535	Ala	Asp	Leu	Leu	Arg 540
Lys As	n Ala	Glu	Val 545	Thr	Lys	Gln	Val	Ser 550	Met	Ala	Arg	Gln	Ala 555
Gln Va	l Asp	Leu	Glu 560	Arg	Glu	Lys	Lys	Glu 565	Leu	Glu	Asp	Ser	Leu 570

PCT/US99/11743 WO 99/60986 Glu Arg Ile Ser Asp Gln Gly Gln Arg Lys Thr Gln Glu Gln Leu Glu Val Leu Glu Ser Leu Lys Gln Glu Leu Ala Thr Ser Gln Arg Glu Leu Gln Val Leu Gln Gly Ser Leu Glu Thr Ser Ala Gln Ser Glu Ala Asn Trp Ala Ala Glu Phe Ala Glu Leu Glu Lys Glu Arg Asp Ser Leu Val Ser Gly Ala Ala His Arg Glu Glu Leu Ser Ala Leu Arg Lys Glu Leu Gln Asp Thr Gln Leu Lys Leu Ala Ser Thr Glu Glu Ser Met Cys Gln Leu Ala Lys Asp Gln Arg Lys Met Leu Leu Val Gly Ser Arg Lys Ala Ala Glu Gln Val Ile Gln Asp Ala Leu Asn Gln Leu Glu Glu Pro Pro Leu Ile Ser Cys Ala Gly Ser Ala Asp His Leu Leu Ser Thr Val Thr Ser Ile Ser Ser Cys Ile Glu Gln Leu Glu Lys Ser Trp Ser Gln Tyr Leu Ala Cys Pro Glu Asp Ile Ser Gly Leu Leu His Ser Ile Thr Leu Leu Ala His Leu Thr Ser Asp Ala Ile Ala His Gly Ala Thr Thr Cys Leu Arg Ala Pro Pro Glu Pro Ala Asp Ser Leu Thr Glu Ala Cys Lys Gln Tyr Gly Arg Glu Thr Leu Ala Tyr Leu Ala Ser Leu Glu Glu Glu Gly Ser Leu Glu Asn Ala Asp Ser Thr Ala Met Arg Asn Cys Leu Ser Lys Ile Lys Ala Ile Gly Glu Glu Leu Leu Pro Arg Gly Leu

WO 99/60986 PCT/US99/11743 Asp Ile Lys Gln Glu Glu Leu Gly Asp Leu Val Asp Lys Glu Met Ala Ala Thr Ser Ala Ala Ile Glu Thr Ala Thr Ala Arg Ile Glu Glu Met Leu Ser Lys Ser Arg Ala Gly Asp Thr Gly Val Lys Leu Glu Val Asn Glu Arg Ile Leu Gly Cys Cys Thr Ser Leu Met Gln Ala Ile Gln Val Leu Ile Val Ala Ser Lys Asp Leu Gln Arg Glu Ile Val Glu Ser Gly Arg Gly Thr Ala Ser Pro Lys Glu Phe Tyr Ala Lys Asn Ser Arg Trp Thr Glu Gly Leu Ile Ser Ala Ser Lys Ala Val Gly Trp Gly Ala Thr Val Met Val Asp Ala Ala Asp Leu Val Val Gln Gly Arg Gly Lys Phe Glu Glu Leu Met Val Cys Ser His Glu Ile Ala Ala Ser Thr Ala Gln Leu Val Ala Ala Ser Lys Val Lys Ala Asp Lys Asp Ser Pro Asn Leu Ala Gln Leu Gln Gln Ala Ser Arg Gly Val Asn Gln Ala Thr Ala Gly Val Val Ala Ser Thr Ile Ser Gly Lys Ser Gln Ile Glu Glu Thr Asp Asn Met Asp Phe Ser Ser Met Thr Leu Thr Gln Ile Lys Arg Gln Glu Met Asp Ser Gln Val Arg Val Leu Glu Leu Glu Asn Glu Leu Gln Lys Glu Arg Gln Lys Leu Gly Glu Leu Arg Lys Lys His Tyr Glu Leu Ala Gly Val Ala Glu Gly Trp Glu Glu Gly Thr Glu Ala Ser Pro Pro

Thr Leu Gln Glu Val Val Thr Glu Lys Glu 1085 1090

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 3301
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: cDNA for Huntingtin-interacting protein
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CGGTGAGCTG	GAGGAGCAGC	GGAAGCAGAA	GCAGAAGGCC	CTGGTGGATA	50
ATGAGCAGCT	CCGCCACGAG	CTGGCCCAGC	TGAGGGCTGC	CCAGCTGGAG	100
CGCGAGCGGA	GCCAGGGCCT	GCGTGAGGAG	GCTGAGAGGA	AGGCCAGTGC	150
CACGGAGGCG	CGCTACAACA	AGCTGAAGGA	AAAGCACAGT	GAGCTCGTCC	200
ATGTGCACGC	GGAGCTGCTC	AGAAAGAACG	CGGACACAGC	CAAGCAGCTG	250
ACGGTGACGC	AGCAAAGCCA	GGAGGAGGTG	GCGCGGGTGA	AGGAGCAGCT	300
GGCCTTCCAG	GTGGAGCAGG	TGAAGCGGGA	GTCGGAGTTG	AAGCTAGAGG	350
AGAAGAGCGA	CCAGCAGGAG	AAGCTCAAGA	GGGAGCTGGA	GGCCAAGGCC	400
GGAGAGCTGG	CCCGCGCGCA	GGAGGCCCTG	AGCCACACAG	AGCAGAGCAA	450
GTCGGAGCTG	AGCTCACGGC	TGGACACACT	GAGTGCGGAG	AAGGATGCTC	500
TGAGTGGAGC	TGTGCGGCAG	CGGGAGGCAG	ACCTGCTGGC	GGCGCAGAGC	550
CTGGTGCGCG	AGACAGAGGC	GGCGCTGAGC	CGGGAGCAGC	AGCGCAGCTC	600
CCAGGAGCAG	GGCGAGTTGC	AGGGCCGGCT	GGCAGAGAGG	GAGTCTCAGG	650
AGCAGGGGCT	GCGGCAGAGG	CTGCTGGACG	AGCAGTTCGC	AGTGTTGCGG	700
GGCGCTGCTG	CCGAGGCCGC	GGGCATCCTG	CAGGATGCCG	TGAGCAAGCT	750
GGACGACCCC	CTGCACCTGC	GCTGTACCAG	CTCCCCAGAC	TACCTGGTGA	800
GCAGGGCCCA	GGAGGCCTTG	GATGCCGTGA	GCACCCTGGA	GGAGGGCCAC	850
GCCCAGTACC	TGACCTCCTT	GGCAGACGCC	TCCGCCCTGG	TGGCAGCTCT	900
GACCCGCTTC	TCCCACCTGG	CTGCGGATAC	CATCATCAAT	GGCGGTGCCA	950
CCTCGCACCT	GGCTCCCACC	GACCCTGCCG	ACCGCCTCAT	AGACACCTGC	1000
AGGGAGTGCG	GGGCCCGGGC	TCTGGAGCTC	ATGGGGCAGC	TGCAGGACCA	1050
GCAGGCTCTG	CGGCACATGC	AGGCCAGCCT	GGTGCGGACA	CCCCTGCAGG	1100
GCATCCTTCA	GCTGGGCCAA	GAACTGAAAC	CCAAGAGCCT	AGATGTGCGG	1150
CAGGAGGAGC	TGGGGGCCGT	GGTCGACAAG	GAGATGGCGG	CCACATCCGC	1200
AGCCATTGAA	GATGCTGTGC	GGAGGATTGA	GGACATGATG	AACCAGGCAC	1250
GCCACGCCAG	CTCGGGGGTG	AAGCTGGAGG	TGAACGAGAG	GATCCTCAAC	1300
TCCTGCACAG	ACCTGATGAA	GGCTATCCGG	CTCCTGGTGA	CGACATCCAC	1350
TAGCCTGCAG	AAGGAGATCG	TGGAGAGCGG	CAGGGGGCA	GCCACGCAGC	1400
AGGAATTTTA	CGCCAAGAAC	TCGCGCTGGA	CCGAAGGCCT	CATCTCGGCC	1450
TCCAAGGCTG	TGGGCTGGGG	AGCCACACAG	CTGGTGGAGG	CAGCTGACAA	1500
GGTGGTGCTT	CACACGGGCA	AGTATGAGGA	GCTCATCGTC	TGCTCCCACG	1550
AGATCGCAGC	CAGCACGGCC	CAGCTGGTGG	CGGCCTCCAA	GGTGAAGGCC	1600

AACAAGCACA GCCCCCACCT GAGCCGCCTG CAGGAATGTT CTCGCACAGT 1650 CAATGAGAGG GCTGCCAATG TGGTGGCCTC CACCAAGTCA GGCCAGGAGC 1700 AGATTGAGGA CAGAGACACC ATGGATTTCT CCGGCCTGTC CCTCATCAAG 1750 CTGAAGAAGC AGGAGATGGA GACGCAGGTG CGTGTCCTGG AGCTGGAGAA 1800 GACGCTGGAG GCTGAACGCA TGCGGCTGGG GGAGTTGCGG AAGCAACACT 1850 ACGTGCTGGC TGGGGCATCA GGCAGCCCTG GAGAGGAGGT GGCCATCCGG 1900 CCCAGCACTG CCCCCGAAG TGTAACCACC AAGAAACCAC CCCTGGCCCA 1950 GAAGCCCAGC GTGGCCCCCA GACAGGACCA CCAGCTTGAC AAAAAGGATG 2000 GCATCTACCC AGCTCAACTC GTGAACTACT AGGCCCCCCA GGGGTCCAGC 2050 AGGGTGGCTG GTGACAGGCC TGGGCCTCTG CAACTGCCCT GACAGGACCG 2100 AGAGGCCTTG CCCCTCCACC TGGTGCCCAA GCCTCCCGCC CCACCGTCTG 2150 GATCAATGTC CTCAAGGCCC CTGGCCCTTA CTGAGCCTGC AGGGTCCTGG 2200 GCCATGTGGG TGGTGCTTCT GGATGTGAGT CTCTTATTTA TCTGCAGAAG 2250 GAACTTTGGG GTGCAGCCAG GACCCGGTAG GCCTGAGCCT CAACTCTTCA 2300 GAAAATAGTG TTTTTAATAT TCCTCTTCAG AAAATAGTGT TTTTAATATT 2350 CCGAGCTAGA GCTCTTCTTC CTACGTTTGT AGTCAGCACA CTGGGAAACC 2400 GGGCCAGCGT GGGGCTCCCT GCCTTCTGGA CTCCTGAAGG TCGTGGATGG 2450 ATGGAAGGCA CACAGCCCGT GCCGGCTGAT GGGACGAGGG TCAGGCATCC 2500 TGTCTGTGGC CTTCTGGGGC ACCGATTCTA CCAGGCCCTC CAGCTGCGTG 2550 GTCTCCGCAG ACCAGGCTCT GTGTGGGCTA GAGGAATGTC GCCCATTACC 2600 TCCTCAGGCC CTGGCCCTCG GGCCTCCGTG ATGGGAGCCC CCCAGGAGGG 2700 GTCAGATGCT GGAAGGGGCC GCTTTCTGGG GAGTGAGGTG AGACATAGCG 2750 GCCCAGGCGC TGCCTTCACT CCTGGAGTTT CCATTTCCAG CTGGAATCTG 2800 CAGCCACCC CATTTCCTGT TTTCCATTCC CCCGTTCTGG CCGCGCCCCA 2850 CTGCCCACCT GAAGGGGTGG TTTCCAGCCC TCCGGAGAGT GGGCTTGGCC 2900 CTAGGCCCTC CAGCTCAGCC AGAAAAGCC CAGAAACCCA GGTGCTGGAC 2950 CAGGGCCCTC AGGGAGGGAC CCTGCGGCTA GAGTGGGCTA GGCCCTGGCT 3000 TTGCCCGTCA GATTTGAACG AATGTGTGTC CCTTGAGCCC AAGGAGAGCG 3050 GCAGGAGGG TGGGACCAGG CTGGGAGGAC AGAGCCAGCA GCTGCCATGC 3100 CCTCCTGCTC CCCCCACCCC AGCCCTAGCC CTTTAGCCTT TCACCCTGTG 3150 CTCTGGAAAG GCTACCAAAT ACTGGCCAAG GTCAGGAGGA GCAAAAATGA 3200 GCCAGCACCA GCGCCTTGGC TTTGTGTTAG CATTTCCTCC TGAAGTGTTC 3250 TGTTGGCAAT AAAATGCACT TTGACTGTTA AAAAAAAAA AAAAAAAAA 3300 3301 Α

- (2) INFORMATION FOR SEQ ID NO: 7
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 676 (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
- Gly Glu Leu Glu Glu Gln Arg Lys Gln Lys Ala Leu Val
 5 10

WO 99/60986 PCT/US99/11743 Asp Asn Glu Gln Leu Arg His Glu Leu Ala Gln Leu Arg Ala Ala Gln Leu Glu Arg Glu Arg Ser Gln Gly Leu Arg Glu Glu Ala Glu Arg Lys Ala Ser Ala Thr Glu Ala Arg Tyr Asn Lys Leu Lys Glu Lys His Ser Glu Leu Val His Val His Ala Glu Leu Leu Arg Lys Asn Ala Asp Thr Ala Lys Gln Leu Thr Val Thr Gln Gln Ser Gln Glu Glu Val Ala Arg Val Lys Glu Gln Leu Ala Phe Gln Val Glu Gln Val Lys Arg Glu Ser Glu Leu Lys Leu Glu Glu Lys Ser Asp Gln Gln Glu Lys Leu Lys Arg Glu Leu Glu Ala Lys Ala Gly Glu Leu Ala Arg Ala Gln Glu Ala Leu Ser His Thr Glu Gln Ser Lys Ser Glu Leu Ser Ser Arg Leu Asp Thr Leu Ser Ala Glu Lys Asp Ala Leu Ser Gly Ala Val Arg Gln Arg Glu Ala Asp Leu Leu Ala Ala Gln Ser Leu Val Arg Glu Thr Glu Ala Ala Leu Ser Arg Glu Gln Gln Arg Ser Ser Gln Glu Gln Gly Glu Leu Gln Gly Arg Leu Ala Glu Arg Glu Ser Gln Glu Gln Gly Leu Arg Gln Arg Leu Leu Asp Glu Gln Phe Ala Val Leu Arg Gly Ala Ala Ala Glu Ala Ala Gly Ile Leu Gln Asp Ala Val Ser Lys Leu Asp Asp Pro Leu His Leu Arg Cys Thr Ser Ser Pro Asp Tyr Leu Val Ser Arg Ala Gln

	WO 99	/60986											FCI/	0399/11/
Glu	Ala	Leu	Asp	Ala 275	Val	Ser	Thr	Leu	Glu 288	Glu	Gly	His	Ala	Gln 285
Tyr	Leu	Thr	Ser	Leu 290	Ala	Asp	Ala	Ser	Ala 295	Leu	Val	Ala	Ala	Leu 300
Thr	Arg	Phe	Ser	His 305	Leu	Ala	Ala	Asp	Thr 310	Ile	Ile	Asn	Gly	Gly 315
Ala	Thr	Ser	His	Leu 320	Ala	Pro	Thr	Asp	Pro 325	Ala	Asp	Arg	Leu	Ile 330
Asp	Thr	Cys	Arg	Glu 335	Cys	Gly	Ala	Arg	Ala 340	Leu	Glu	Leu	Met	Gly 345
Gln	Leu	Gln	Asp	Gln 350	Gln	Ala	Leu	Arg	His 355	Met	Gln	Ala	Ser	Leu 360
Va1	Arg	Thr	Pro	Leu 365	Gln	Gly	Ile	Leu	Gln 370	Leu	Gly	Gln	Glu	Leu 375
Lys	Pro	Lys	Ser	Leu 380	Asp	Val	Arg	Gln	Glu 385	Glu	Leu	Gly	Ala	Val 390
Val	Asp	Lys	Glu	Met 395	Ala	Ala	Thr	Ser	Ala 400	Ala	Ile	Glu	Asp	Ala 405
Val	Arg	Arg	Ile	Glu 410	Asp	Met	Met	Asn	Gln 415	Ala	Arg	His	Ala	Ser 420
Ser	Gly	Val	Lys	Leu 425	Glu	Val	Asn	Glu	Arg 430	Ile	Leu	Asn	Ser	Cys 435
Thr	Asp	Leu		Lys 440			_		Leu 445	Val	Thr	Thr	Ser	Thr 450
Ser	Leu	Gln	Lys	Glu 455	Ile	Val	Glu	Ser	Gly 460	Arg	Gly	Ala	Ala	Thr 465
Gln	Gln	Glu	Phe	Туr 470	Ala	Lys	Asn	Ser	Arg 475	Trp	Thr	Glu	Gly	Leu 480
Ile	Ser	Ala	Ser	Lys 485	Ala	Val	Gly	Trp	Gly 490	Ala	Thr	Gln	Leu	Val 495
Glu	Ala	Ala	Asp	Lys 500	Val	Val	Leu	His	Thr 505	Gly	Lys	Tyr	Glu	Glu 510
Leu	Ile	Val	Cys	Ser 515	His	Glu	Ile	Ala	Ala 520	Ser	Thr	Ala	Gln	Leu 525

PCT/US99/11743 WO 99/60986 Val Ala Ala Ser Lys Val Lys Ala Asn Lys His Ser Pro His Leu 530 Ser Arg Leu Gln Glu Cys Ser Arg Thr Val Asn Glu Arg Ala Ala 550 Asn Val Val Ala Ser Thr Lys Ser Gly Gln Glu Gln Ile Glu Asp 560 565 570 Arg Asp Thr Met Asp Phe Ser Gly Leu Ser Leu Ile Lys Leu Lys 575 588 585 Lys Gln Glu Met Glu Thr Gln Val Arg Val Leu Glu Leu Glu Lys 600 590 595 Thr Leu Glu Ala Glu Arg Met Arg Leu Gly Glu Leu Arg Lys Gln 610 His Tyr Val Leu Ala Gly Ala Ser Gly Ser Pro Gly Glu Glu Val 620 625 Ala Ile Arg Pro Ser Thr Ala Pro Arg Ser Val Thr Thr Lys Lys 635 640 645 Pro Pro Leu Ala Gln Lys Pro Ser Val Ala Pro Arg Gln Asp His 660 650 655 Gln Leu Asp Lys Lys Asp Gly Ile Tyr Pro Ala Gln Leu Val Asn 675 670 665

Tyr

- (2) INFORMATION FOR SEQ ID NO:8:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2338
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: mouse
- (ix) FEATURE: cDNA for Huntingtin-interacting protein mHIP1
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 8:

GGCACGAGGG	CTCATTCAGA	TCCCCCAGCT	GCCCGAGAAT	CCACCCAACTT	50
CCTACGAGCC	TCGGCCCTGT	CAGAGCACAT	CAGTCCTGTG	GTGGTGATCCC	100
GGCAGAGGTG	TCATCCCCAG	ACAGTGAGCC	TGTCCTGGAG	AAGGATGACCT	150
CATGGACATG	GACGCCTCCC	AGCAGACTTT	GTTTGACAAC	AAGTTTGATGA	200

WO 99/60986 CGTCTTTGGC AGCTCATTGA GCAGCGACCC TTTCAATTTC AACAATCAAAA 250 TGGCGTGAAC AAGGACGAGA AGGACCACTT GATTGAACGC CTGTACAGAGA 300 GATCAGTGGA CTGACAGGGC AGCTGGACAA CATGAAGATT GAGAGCCAGCG 350 GGCCATGCTG CAGCTGAAGG GTCGAGTGAG TGAGCTGGAG GCAGAGCTAGC 400 AGAGCAGCAG CACTTGGGCC GGCAGGCTAT GGATGACTGC GAGTTCCTGCG 450 CACTGAGCTG GATGAACTGA AGAGGCAGCG AGAGGACACG GAGAAGGCACA 500 GCGCAGCCTG ACTGAGATAG AAAGAAAGGC CCAGGCTAAT GAACAGAGGTA 550 TAGCAAGTTA AAAGAGAAGT ACAGTGAACT GGTGCAGAAC CATGCTGACCT 600 GCTGCGGAAG AACGCAGAGG TGACCAAACA GGTGTCCGTG GCCCGGCAAGC 650 CCAGGTGGAT TTGGAAAGAG AGAAAAAAGA GCTAGCAGAT TCCTTTGCAC 700 GTGTAAGTGA CCAGGCCCAG CGGAAGACTC AAGAGCAACA GGATGTTCTA 750 GAGAACCTGA AGCATGAACT GGCCACCAGC AGACAGGAGC TGCAGGTCCT 800 CCACAGCAAC CTGGAAACCT CTGCCCAGTC AGAAGCGAAA TGGCTGACAC 850 AGATCGCCGA GTTGGAGAAG GAACAAGGCA GCTTGGCGAC TGTTGCAGCT 900 CAGAGAGAG AAGAGTTATC AGCCCTCCGA GACCAGCTGG AAAGCACCCA 950 GATCAAGCTG GCTGGGGCCC AGGAATCCAT GTGCCAGCAG GTGAAGGACC 1000 AGAGGAAAAC CCTCTTGGCA GGGATCAGGA AGGCTGCGGA GCGTGAGATA 1050 CAGGAGGCGC TGAGCCAGCT TGAGGAACCC ACCCTCATCA GCTGTGCAGG 1100 ATCCACAGAT CACCTTCTCT CCAAAGTCAG CTCCGTTTCC AGCTGCCTCG 1150 AGCAACTGGA AAAGAACGGC AGCCAGTATC TGGCCTGCCC AGAAGATATT 1200 AGTGAGCTTC TGCACTCGAT CACCCTGCTT GCCCACTTGA CCGGTGACAC 1250 TGTCATCCAG GGGAGTGCCA CCAGCCTCCG GGCCCCACCG GAGCCAGCCG 1300 ACTCGTTGAC GGAGGCCTGT AGGCAGTATG GCAGAGAAAC CCTGGCCTAT 1350 CTGTCCTCCC TGGAGGAAGA GGGAACTGTG GAGAATGCTG ACGTCACAGC 1400 CCTTAGGAAT TGCCTCAGCA GGGTCAAGAC CCTTGGCGAG GAGCTGCTGC 1450 CCAGGGGCCT GGACATCAAG CAGGAAGAGC TGGGTGACCT GGTGGACAAG 1500 GAGATGGCAG CCACTTCAGC TGCCATTGAA GCTGCCACCA CCCGGATAGA 1550 GGAAATTCTC AGTAAGTCCC GAGCAGGAGA CACGGGAGTC AAGCTGGAGG 1600 TGAATGAGAG GATCCTGGGT TCCTGTACCA GCCTGATGCA GGCCATCAAG 1650 GTGCTCGTTG TGGCCTCCAA GGACCTCCAG AAGGAGATAG TGGAGAGTGG 1700 CAGGGGTAGT GCATCCCCTA AAGAATTTTA CGCCAAGAAC TCTCGGTGGA 1750 CGGAAGGGCT GATATCCGCC TCCAAAGCTG TTGGTTGGGG AGCTACCATC 1800 ATGGTGGATG CTGCTGATCT TGTGGTCCAA GGCAAAGGGA AGTTCGAGGA 1850 GCTGATGGTG TGTTCACGCG AGATTGCTGC CAGTACTGCC CAGCTCGTGG 1900 CTGCATCCAA GGTGAAAGCG AACAAGGGCA GCCTCAATCT GACCCAGCTG 2000 CAGCAGGCCT CTCGAGGAGT GAACCAGGCC ACAGCCGCTG TGGTGGCCTC 2050 AACCATTTCT GGCAAATCTC AGATTGAGGA AACAGACAGT ATGGACTTCT 2100 CAAGCATGAC ACTGACCCAG ATCAAGCGCC AGGAGATGGA TTCCCAGGTT 2150 AGGGTGCTGG AGCTGGAAAA TGACCTGCAG AAGGAGCGTC AGAAACTAGG 2200 AGAGCTACGG AAGAAACACT ACGAGCTGGA GGGCGTGGCT GAGGGCTGGG 2250 AGGAAGGGAC AGAAGCATCA CCGTCTACTG TCCAAGAAGC AATACCGGAC 2300 AAAGAGTAGA GCCAAGCCGA CACCCCACAC ATCAGAAA 2338

PCT/US99/11743

- (2) INFORMATION FOR SEQ ID NO: 9:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 676
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein

- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: mouse
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Ala Arg Gly Leu Ile Gln Ile Pro Gln Leu Pro Glu Asn Pro Pro
5 10 15

Asn Phe Leu Arg Ala Ser Ala Leu Ser Glu His Ile Ser Pro Val 20 25 30

Val Val Ile Pro Ala Glu Val Ser Ser Pro Asp Ser Glu Pro Val
35 40 45

Leu Glu Lys Asp Asp Leu Met Asp Met Asp Ala Ser Gln Gln Thr
50 55 60

Leu Phe Asp Asn Lys Phe Asp Asp Val Phe Gly Ser Ser Leu Ser 65 70 75

Ser Asp Pro Phe Asn Phe Asn Asn Gln Asn Gly Val Asn Lys Asp 80 85 90

Glu Lys Asp His Leu Ile Glu Arg Leu Tyr Arg Glu Ile Ser Gly
95 100 105

Leu Thr Gly Gln Leu Asp Asn Met Lys Ile Glu Ser Gln Arg Ala 110 115 120

Met Leu Gln Leu Lys Gly Arg Val Ser Glu Leu Glu Ala Glu Leu 125 130 135

Ala Glu Gln Gln His Leu Gly Arg Gln Ala Met Asp Asp Cys Glu 140 145 150

Phe Leu Arg Thr Glu Leu Asp Glu Leu Lys Arg Gln Arg Glu Asp 155 160 165

Thr Glu Lys Ala Gln Arg Ser Leu Thr Glu Ile Glu Arg Lys Ala 170 175 180

Gln Ala Asn Glu Gln Arg Tyr Ser Lys Leu Lys Glu Lys Tyr Ser 185 190 195

Glu Leu Val Gln Asn His Ala Asp Leu Leu Arg Lys Asn Ala Glu 200 205 210

Val Thr Lys Gln Val Ser Val Ala Arg Gln Ala Gln Val Asp Leu 215 220 225

Glu Arg Glu Lys Lys Glu Leu Ala Asp Ser Phe Ala Arg Val Ser

ν	VO 99/	60986											PCT/U	JS99/117
,	, (3)			230					235					240
Asp	Gln	Ala	Gln	Arg 245	Lys	Thr	Gln	Glu	Gln 250	Gln	Asp	Va1	Leu	Glu 255
Asn	Leu	Lys	His	Glu 260	Leu	Ala	Thr	Ser	Arg 265	Gln	Glu	Leu	Gln	Val 270
Leu	His	Ser	Asn	Leu 275	Glu	Thr	Ser	Ala	Gln 288	Ser	Glu	Ala	Lys	Trp 285
Leu	Thr	Gln	Ile	Ala 290	Glu	Leu	Glu	Lys	Glu 295	Gln	Gly	Ser	Leu	Ala 300
Thr	Val	Ala	Ala	Gln 305	Arg	Glu	Glu	Glu	Leu 310	Ser	Ala	Leu	Arg	Asp 315
Gln	Leu	Glu	Ser	Thr 320	Gln	Ile	Lys	Leu	Ala 325	Gly	Ala	Gln	Glu	Ser 330
Met	Cys	Gln	Gln	Val 335	Lys	Asp	Gln	Arg	Lys 340	Thr	Leu	Leu	Ala	Gly 345
Ile	Arg	Lys	Ala	Ala 350	Glu	Arg	Glu	Ile	Gln 355	Glu	Ala	Leu	Ser	Gln 360
Leu	Glu	Glu	Pro	Thr 365	Leu	Ile	Ser	Cys	Ala 370	Gly	Ser	Thr	Asp	His 375
Leu	Leu	Ser	Lys	Val 380	Ser	Ser	Val	Ser	Ser 385	Cys	Leu	Glu	Gln	Leu 390
Glu	Lys	Asn	Gly	Ser 395	Gln	Tyr	Leu	Ala	Cys 400	Pro	Glu	Asp	Ile	Ser 405
Glu	Leu	Leu	His	Ser 410	Ile	Thr	Leu	Leu	Ala 415	His	Leu	Thr	Gly	Asp 420
Thr	Val	Ile	Gln	Gly 425	Ser	Ala	Thr	Ser	Leu 430	Arg	Ala	Pro	Pro	Glu 435
Pro	Ala	Asp	Ser	Leu 440		Glu	Ala	. Cys	Arg 445	Gln	Tyr	Gly	Arg	Glu 450
Thr	Leu	Ala	Tyr	Leu 455		Ser	Leu	ı Glu	Glu 460	Glu	Gly	Thr	Val	Glu 465
Asn	Ala	. Asp	val	Thr 470		. Leu	ı Arç	g Asn	Cys 475		Ser	Arg	Val	Lys 480

PCT/US99/11743 WO 99/60986 Thr Leu Gly Glu Glu Leu Leu Pro Arg Gly Leu Asp Ile Lys Gln Glu Glu Leu Gly Asp Leu Val Asp Lys Glu Met Ala Ala Thr Ser Ala Ala Ile Glu Ala Ala Thr Thr Arg Ile Glu Glu Ile Leu Ser Lys Ser Arq Ala Gly Asp Thr Gly Val Lys Leu Glu Val Asn Glu Arg Ile Leu Gly Ser Cys Thr Ser Leu Met Gln Ala Ile Lys Val Leu Val Val Ala Ser Lys Asp Leu Gln Lys Glu Ile Val Glu Ser Gly Arg Gly Ser Ala Ser Pro Lys Glu Phe Tyr Ala Lys Asn Ser Arg Trp Thr Glu Gly Leu Ile Ser Ala Ser Lys Ala Val Gly Trp Gly Ala Thr Ile Met Val Asp Ala Ala Asp Leu Val Val Gln Gly Lys Gly Lys Phe Glu Glu Leu Met Val Cys Ser Arg Glu Ile Ala Ala Ser Thr Ala Gln Leu Val Ala Ala Ser Lys Val Lys Ala Asn Lys Gly Ser Leu Asn Leu Thr Gln Leu Gln Gln Ala Ser Arg Gly Val Asn Gln Ala Thr Ala Ala Val Val Ala Ser Thr Ile Ser Gly Lys Ser Gln Ile Glu Glu Thr Asp Ser Met Asp Phe Ser Ser Met Thr Leu Thr Gln Ile Lys Arg Gln Glu Met Asp Ser Gln Val Arg Val Leu Glu Leu Glu Asn Asp Leu Gln Lys Glu Arg Gln Lys Leu Gly Glu Leu Arg Lys Lys His Tyr Glu Leu Glu Gly Val Ala Glu

Gly Trp Glu Glu Gly Thr Glu Ala Ser Pro Ser Thr Val Gln Glu 740 745 750

Ala Ile Pro Asp Lys Glu 755

- (2) INFORMATION FOR SEQ ID NO:10:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 3964
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: mouse
- (ix) FEATURE: cDNA for Huntingtin-interacting protein mHIP1a
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 10:

GGCACGAGGC	GGCGCGCGC	CTCCGTGTGC	CTAGGCTTGA	GGCGGGCGGT	50
GACGCCTCAT	TCGCGCGGAG	CCGGGCCGGG	ACACGGTCGG	CGGCAGCATG	100
AACAGCATCA	AGAATGTGCC	GGCGCGGGTG	CTGAGCCGCA	GGCCGGGCCA	150
CAGCCTAGAG	GCCGAGCGCG	AGCAGTTCGA	CAAGACGCAG	GCCATCAGTA	200
TCAGCAAAGC	CATCAACAGC	CAGGAGGCCC	CAGTGAAGGA	GAAGCATGCC	250
CGGCGTATCA	TCCTGGGCAC	GCATCATGAG	AAGGGAGCCT	TCACCTTCTG	300
GTCCTATGCC	ATCGGCCTGC	CGCTGTCCAG	CAGCTCCATC	CTCAGCTGGA	350
AGTTCTGTCA	CGTCCTTCAC	AAGGTCCTCC	GGGACGACA	CCCCAACGTC	400
CTGCATGACT	ATCAGCGGTA	CCGGAGCAAC	ATACGTGAGA	TCGGTGACTT	450
GTGGGGCCAC	CTTCGTGACC	AGTATGGACA	CCTGGTGAAT	ATCTATACCA	500
AACTGTTGCT	GACTAAGATC	TCCTTCCACC	TTAAGCACCC	CCAGTTTCCT	550
GCAGGCCTGG	AGGTAACAGA	TGAGGTGTTG	GAGAAGGCGG	CGGGAACTGA	600
TGTCAACAAC	ATTTTTCAGC	TTACCGTGGA	GATGTTTGAC	TACATGGACT	650
GTGAACTGAA	GCTTTCTGAG	TCAGTTTTCC	GGCAGCTCAA	CACGGCCATC	700
GCAGTGTCCC	AGATGTCTTC	TGGCCAGTGT	CGCCTAGCGC	CGCTCATCCA	750
GGTCATTCAG	GACTGCAGCC	ACCTGTACCA	CTACACAGTG	AAGCTCATGT	800
${\tt TTAAGCTGCA}$	CTCCTGTCTC	CCGGCAGACA	CCCTGCAAGG	CCACAGGGAT	850
CGGTTCCACG	AGCAGTTCCA	CAGCCTCAAA	AACTTCTTCC	GCCGGGCTTC	900
AGACATGCTG	TACTTCAAGA	GGCTCATCCA	GATCCCGCGG	CTGCCTGAGG	950
GACCCCCAA	TTTCCTGCGG	GCTTCAGCCC	TGGCTGAGCA	CATCAAGCCG	1000
${\tt GTGGTGGTGA}$	TTCCCGAGGA	GGCCCCAGAG	GAAGAGGAGC	CTGAGAACCT	1050
AATTGAAATC	AGCAGTGCGC	CCCCTGCTGG	GGAGCCAGTG	GTGGTGGCTG	1100
ACCTCTTTGA	TCAGACCTTT	GGACCCCCCA	ATGGCTCCAT	GAAGGATGAC	1150
AGGGACCTCC	AAATCGAGAA	CTTGAAGAGA	GAGGTGGAGA	CCCTCCGTGC	1200
TGAGCTGGAG	AAGATTAAGA	TGGAGGCACA	GCGGTACATC	TCCCAGCTGA	1250
AGGGCCAGGT	GAATGGCCTG	GAGGCAGAGC	TGGAGGAGCA	GCGCAAGCAG	1300
AAGCAGAAGG	CCCTGGTGGA	CAACGAGCAG	CTGCGCCACG	AGCTGGCCCA	1350
GCTCAAGGCC	CTGCAGCTGG	AGGGCGCCCG	CAACCAGGGC	CTTCGAGAGG	1400
AAGCAGAGAG	GAAGGCCAGT	GCCACGGAGG	CACGCTACAG	CAAGCTGAAG	1450
GAGAAACACA	GCGAACTCAT	TAACACGCAC	GCCGAGCTGC	TCAGGAAGAA	1500

CGCAGACACG	GCCAAGCAGC	TGACAGTGAC	ACAGCAGAGC	CAGGAGGAGG	1550
TGGCACGGGT	AAAGGAACAG	CTGGCCTTCC	AGATGGAGCA	AGCGAAGCGT	1600
GAGTCTGAGA	TGAAGATGGA	AGAGCAGAGC	GACCAGTTGG	AGAAGCTCAA	1650
GAGGGAGCTG	GCGGCCAGGG	CAGGAGAGCT	GGCCCGTGCG	CAGGAGGCCC	1700
TGAGCCGCAC	AGAACAGAGT	GGGTCAGAGC	TGAGCTCACG	GCTGGACACA	1750
CTGAACGCGG	AGAAGGAAGC	CCTGAGTGGA	GTCGTTCGGC	AGCGTGAGGC	1800
AGAGCTGCTG	GCCGCTCAGA	GCCTGGTGCG	GGAGAAGGAG	GAGGCGCTTA	1850
GCCAAGAGCA	-	TCCCAGGAGA	AGGGCGAGCT	ACGGGGGCAG	1900
CTGGCAGAAA	AGGAGTCTCA	GGAGCAGGGG	CTTCGGCAGA	AGCTGCTGGA	1950
TGAGCAGTTG	GCGGTGTTGC	GAAGTGCAGC	CGCCGAGGCA		2000
TACAGGATGC	AGTGAGCAAG	CTGGACGACC	CCCTGCACCT	CCGCTGCACC	2050
AGCTCCCCAG	ACTACTTGGT	GAGCCGGGCT	CAGGCAGCCC	TGGACAGCGT	2100
GAGCGGCCTG	GAGCAGGGCC	ACACCCAGTA	CCTGGCTTCC	TCCGAAGATG	2150
CTTCTGCCCT	GGTGGCAGCG	CTGACCCGCT	TCTCCCATTT	GGCTGCGGAC	2200
ACCATTGTCA	ATGGTGCCGC	CACCTCCCAC	CTGGCCCCCA	CCGACCCCGC	2250
CGACCGCCTG	ATGGACACAT	GCAGGGAGTG	TGGAGCCCGG	GCTCTGGAGC	2300
TGGTGGGACA	GCTGCAAGAC	CAGACAGTGC	TACGGAGGGC	TCAGCCCAGC	2350
CTGATGCGGG	CCCCCTGCA	GGGCATTCTG	CAGTTGGGCC	AGGACTTGAA	2400
GCCTAAGAGC	CTGGATGTAC	GGCAAGAGGA	GCTAGGGGCC	ATGGTGGACA	2450
AGGAGATGGC	GGCCACCTCG	GCAGCCATTG	AGGACGCTGT	GCGGAGGATC	2500
GAGGACATGA	TGAGCCAGGC	CCGCCACGAG	AGCTCAGGCG	TGAAACTGGA	2550
GGTGAATGAG	AGGATCCTCA	ACTCCTGCAC	AGACCTGATG	AAGGCTATCC	2600
GGCTCCTGGT	GATGACCTCC	ACCAGCCTGC	AGAAGGAAAT	TGTGGAGAGC	2650
GGCAGGGGGG	CAGCAACGCA	GCAGGAATTT	TATGCCAAGA	ATTCACGGTG	2700
GACTGAAGGC	CTCATCTCAG	CCTCTAAGGC	AGTGGGCTGG	GGAGCCACAC	2750
AGCTGGTGGA	GTCAGCTGAC	AAGGTTGTGC	TTCACATGGG	CAAATACGAG	2800
GAACTCATCG		TGAGATTGCG		CCCAGCTGGT	2850
GGCAGCCTCG		CCAACAAGAA		TTGAGCCGCC	2900
TGCAGGAATG		GTCAACGAGA			2950
TCCACCAAAT		GCAGATTGAG			3000
CTCTGGCCTG		AGTTGAAGAA			3050
TGCGAGTCTT				TGTCCGGCTC	3100
GGGGAGCTTC		CTATGTACTG			3150
				AGTGGGGCCA	3200
		CAGAAACCCA			3250
	A CAAAAAGGA				3300
	A GGTGTTCAG				3350
	T GGCAGTGGT				3400
	C TAGTCTGTG			A ATCTATTTAT	3450
	A ACTGCCTCG		A CCCAGCAGG		3500
	G GACATCAGA		A TGCTGCGAG		3550
TTCGTAAGTT'	T AGTCAGCAC				3600
CCTTGTCTCT				A ACAGAAAGAG	3650
GGTCCCTGCT					3700
GGGAGAGCAG	G TAAGCTGGG				3750
GCATCCATGC'					3800
	T GGGGCAGCC		T GCTGTCTCT		
	C TCCCCCCGT				3900
		A TGAGTAGAT	T TCAGCCCTC	C TAAAGCTGGG	3950
GCCTTTCCTC	G TGCC				3964

- (2) INFORMATION FOR SEQ ID NO: 11:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 676
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: mouse
- (ix) FEATURE: Huntingtin-interacting protein -mHIP1a
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met	Asn	Ser	Ile	Lys 5	Asn	Val	Pro	Ala	Arg 10	Val	Leu	Ser	Arg	Arg 15
Pro	Gly	His	Ser	Leu 20	Glu	Ala	Glu	Arg	Glu 25	Gln	Phe	Asp	Lys	Thr 30
Gln	Ala	Ile	Ser	Ile 35	Ser	Lys	Ala	Ile	Asn 40	Ser	Gln	Glu	Ala	Pro 45
Val	Lys	Glu	Lys	His 50	Ala	Arg	Arg	Ile	Ile 55	Leu	Gly	Thr	His	His 60
Glu	Lys	Gly	Ala	Phe 65	Thr	Phe	Trp	Ser	Tyr 70	Ala	Ile	Gly	Leu	Pro 75
Leu	Ser	Ser	Ser	Ser 80	Ile	Leu	Ser	Trp	Lys 85	Phe	Cys	His	Val	Leu 90
His	Lys	Val	Leu	Arg 95	Asp	Gly	His	Pro	Asn 100	Val	Leu	His	Asp	Tyr 105
Gln	Arg	Tyr	Arg	Ser 110	Asn	Ile	Arg	Glu	Ile 115	Gly	Asp	Leu	Trp	Gly 120
His	Leu	Arg	Asp	Gln 125	Tyr	Gly	His	Leu	Val 130	Asn	Ile	Tyr	Thr	Lys 135
Leu	Leu	Leu	Thr	Lys 140	Ile	Ser	Phe	His	Leu 145	Lys	His	Pro	Gln	Phe 150
Pro	Ala	Gly	Leu	Glu 155	Val	Thr	Asp	Glu	Val 160	Leu	Glu	Lys	Ala	Ala 165
Gly	Thr	Asp	Val	Asn 170	Asn	Ile	Phe	Gln	Leu 175	Thr	Val	Glu	Met	Phe 180
Asp	Tyr	Met	Asp	Cys	Glu	Leu	Lys	Leu	Ser	Glu	Ser	Val	Phe	Arg

PCT/US99/11743 WO 99/60986 Gln Leu Asn Thr Ala Ile Ala Val Ser Gln Met Ser Ser Gly Gln Cys Arg Leu Ala Pro Leu Ile Gln Val Ile Gln Asp Cys Ser His Leu Tyr His Tyr Thr Val Lys Leu Met Phe Lys Leu His Ser Cys Leu Pro Ala Asp Thr Leu Gln Gly His Arg Asp Arg Phe His Glu Gln Phe His Ser Leu Lys Asn Phe Phe Arg Arg Ala Ser Asp Met Leu Tyr Phe Lys Arg Leu Ile Gln Ile Pro Arg Leu Pro Glu Gly Pro Pro Asn Phe Leu Arg Ala Ser Ala Leu Ala Glu His Ile Lys Pro Val Val Val Ile Pro Glu Glu Ala Pro Glu Glu Glu Glu Pro Glu Asn Leu Ile Glu Ile Ser Ser Ala Pro Pro Ala Gly Glu Pro Val Val Val Ala Asp Leu Phe Asp Gln Thr Phe Gly Pro Pro Asn Gly Ser Met Lys Asp Asp Arg Asp Leu Gln Ile Glu Asn Leu Lys Arg Glu Val Glu Thr Leu Arg Ala Glu Leu Glu Lys Ile Lys Met Glu Ala Gln Arg Tyr Ile Ser Gln Leu Lys Gly Gln Val Asn Gly Leu Glu Ala Glu Leu Glu Glu Gln Arg Lys Gln Lys Ala Leu Val Asp Asn Glu Gln Leu Arg His Glu Leu Ala Gln Leu Lys Ala Leu Gln Leu Glu Gly Ala Arg Asn Gln Gly Leu Arg Glu Glu

Ala Glu Arg Lys Ala Ser Ala Thr Glu Ala Arg Tyr Ser Lys Leu

PCT/US99/11743 WO 99/60986 Lys Glu Lys His Ser Glu Leu Ile Asn Thr His Ala Glu Leu Leu Arg Lys Asn Ala Asp Thr Ala Lys Gln Leu Thr Val Thr Gln Gln Ser Gln Glu Glu Val Ala Arg Val Lys Glu Gln Leu Ala Phe Gln Met Glu Gln Ala Lys Arg Glu Ser Glu Met Lys Met Glu Glu Gln Ser Asp Gln Leu Glu Lys Leu Lys Arg Glu Leu Ala Ala Arg Ala Gly Glu Leu Ala Arg Ala Gln Glu Ala Leu Ser Arg Thr Glu Gln Ser Gly Ser Glu Leu Ser Ser Arg Leu Asp Thr Leu Asn Ala Glu Lys Glu Ala Leu Ser Gly Val Val Arg Gln Arg Glu Ala Glu Leu Leu Ala Ala Gln Ser Leu Val Arg Glu Lys Glu Glu Ala Leu Ser Gln Glu Gln Gln Arg Ser Ser Gln Glu Lys Gly Glu Leu Arg Gly Gln Leu Ala Glu Lys Glu Ser Gln Glu Gln Gly Leu Arg Gln Lys Leu Leu Asp Glu Gln Leu Ala Val Leu Arg Ser Ala Ala Ala Glu Ala Glu Ala Ile Leu Gln Asp Ala Val Ser Lys Leu Asp Asp Pro Leu His Leu Arg Cys Thr Ser Ser Pro Asp Tyr Leu Val Ser Arg Ala Gln Ala Ala Leu Asp Ser Val Ser Gly Leu Glu Gln Gly His Thr Gln Tyr Leu Ala Ser Ser Glu Asp Ala Ser Ala Leu Val Ala Ala Leu Thr Arg Phe Ser His Leu Ala Ala Asp Thr Ile Val Asn

11 0 22/00200											J D J J J T X
	6	95				700					705
Gly Ala Ala		er His 10	Leu	Ala	Pro	Thr 715	Asp	Pro	Ala	Asp	Arg 720
Leu Met Asp		ys Arg 25	Glu	Cys	Gly	Ala 730	Arg	Ala	Leu	Glu	Leu 735
Val Gly Gln		ln Asp 40	Gln	Thr	Val	Leu 745	Arg	Arg	Ala	Gln	Pro 750
Ser Leu Met		la Pro 55	Leu	Gln	Gly	Ile 760	Leu	Gln	Leu	Gly	Gln 765
Asp Leu Lys		ys Ser 70	Leu	Asp	Val	Arg 775	Gln	Glu	Glu	Leu	Gly 780
Ala Met Val		ys Glu 85	Met	Ala	Ala	Thr 790	Ser	Ala	Ala	Ile	Glu 795
Asp Ala Val		rg Ile 00	Glu	Asp	Met	Met 805	Ser	Gln	Ala	Arg	His 810
Glu Ser Ser		al Lys 15	Leu	Glu	Val	Asn 820	Glu	Arg	Ile	Leu	Asn 825
Ser Cys Thr	_	eu Met 30	Lys	Ala	Ile	Arg 835	Leu	Leu	Va1	Met	Thr 840
Ser Thr Ser		ln Lys 45	Glu	Ile	Val	Glu 850	Ser	Gly	Arg	Gly	Ala 855
Ala Thr Gln		lu Phe 60	Tyr	Ala	Lys	Asn 865	Ser	Arg	Trp	Thr	Glu 870
Gly Leu Ile		la Ser 75	. Lys	Ala	Val	Gly 888	Trp	Gly	Ala	Thr	G1n 885
Leu Val Glu		la Asp 90	Lys	Val	Val	Leu 895	His	Met	Gly	Lys	Tyr 900
Glu Glu Leu		al Cys 05	Ser	His	Glu	Ile 910	Ala	Ala	Ser	Thr	Ala 915
Gln Leu Val		la Ser 20	Lys	Val	Lys	Ala 925	Asn	Lys	Asn	Ser	Pro 930
His Leu Ser		eu Glr 35	Glu	Cys	Ser	Arg 9 4 0	Thr	Val	Asn	Glu	Arg 945
Ala Ala Asn	Val V	al Ala	Ser	Thr	Lys	Ser	Gly	Gln	Glu	Gln	Ile

	950		955	960
Glu Asp Arg Asp	Thr Met A	Asp Phe Ser	Gly Leu Ser 970	Leu Ile Lys 975
Leu Lys Lys Gln	Glu Met 0 980	Glu Thr Gln	Val Arg Val 985	Leu Glu Leu 990
Glu Lys Thr Leu	Glu Ala (995		Arg Leu Gly .100	Glu Leu Arg 1105
Lys Gln His Tyr	Val Leu <i>l</i> 1110		Met Gly Thr .115	Pro Ser Glu 1120
Glu Glu Pro Ser	Arg Pro S 1125		Pro Arg Ser .130	Gly Ala Thr 1135
Lys Lys Pro Pro	Leu Ala (1140		Ser Ile Ala 145	Pro Arg Thr 1150
Asp Asn Gln Leu	Asp Lys 1 1155		Val Tyr Pro 160	Ala Gln Leu 1165
Val Asn Tyr				

- (2) INFORMATION FOR SEQ ID NO:12:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 18
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 12:
- GAAGATACCC CACCAAAC 18
- (2) INFORMATION FOR SEQ ID NO:13:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 35
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no

- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GCTTGACAGT GTAGTCATAA AGGTGGCTGC AGTCC 35

- (2) INFORMATION FOR SEQ ID NO:14:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GGACATGTCC AGGGAGTTGA ATAC

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 41
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 15:

CUACUACUAC UACUAGGCCA CGCGTCGACT AGTACGGGII GGGIIGGGII G 41

- (2) INFORMATION FOR SEQ ID NO:16:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 516
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human

PCT/US99/11743 WO 99/60986 (x) FEATURE: exon 1 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 16: TCTGTGGAAG GTTTGGAGGG GAGAGAGGGG CAGCTGGATG CTCTTGGGCC ACGGTCGCCC 60 CTGATCTCTG CGCCTCTTCC TCCTGCTCCG GGAGAAATAA TGTTTCCCTG GGGGATGAAA 120 GCATCTCTTT GTGCGGGCTT TAATTGCCAT GTTGTTGTGC CAAGGGAGTG AGTGGCGGCG 180 GGACCAGCAG CTGGGCACAG CCAATGCCAG GCAGTGGTGC CCACTCCCTC AGGACGCCCA 240 GCCAGCTGGC TCCTGGGAGC GCTGCCCACC TCTGCCCCCA GCTGGGCGCC TGCAAGGAAC 300 CGACCACCC TGGGGCTGGG GGAGGTTGGC TGGAGGAGGA GAAAGGGGCG GGCTCTGGGA 360 GGGTCTCAGC CACTCTCAGA GGCTTATTCA TCTCATCCTC CTTTCCCTCC CCCTTCTTGT 420 TTTTCAGACT GTCAGCATCA ATAAGGCCAT TAATACGCAG GAAGTGGCTG TAAAGGAAAA 480 ACACGCCAGA AATATCCTTT GGATGTTGCT TGGAAG 516 (2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 193 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii)MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 2 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 17: TGTTTTCCAT AACCCCCCCT CACCGTGCAT ACTGGGCACC CACCATGAGA AAGGGGCACA GACCTTCTGG TCTGTTGTCA ACCGCCTGCC TCTGTCTAGC AACCCAGTGC TCTGCTGGAA 120 GTTCTGCCAT GTGTTCCACA AACTCCTCCG AGATGGACAC CCGAACGTGA GTTCCTGGGG 180 193 CTATGGGGTG GCA (2) INFORMATION FOR SEQ ID NO:18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 104 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 3 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 18: GTGTTCTTTT GCCCCTGCAG GTCCTGAAGG ACTCTCTGAG ATACAGAAAT GAATTGAGTG 60 104 ACATGAGCAG GATGTGGGTG AGTTTGGAGA TGTACTCAGG AGCC

(2) INFORMATION FOR SEQ ID NO:20: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 327

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii)MOLECULE TYPE: genomic DNA

(iii) HYPOTHETICAL: no

(iv) ANTI-SENSE: no

(vi) ORIGINAL SOURCE:

(A) ORGANISM: human

(x) FEATURE: exon 4 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 20:

AATTCCTGGC	TGCAGATCTC	TTGACTGTTA	TGTTCTTGTT	GTTGACTCTG	TTTCCCCTCC	60
TCTTCCTAAA	AGGGCCACCT	GAGCGAGGG	TATGGCCAGC	TGTGCAGCAT	CTACCTGAAA	120
${\tt CTGCTAAGAA}$	${\tt CCAAGATGGA}$	GTACCACACC	AAAGTGAGTC	TCTGCGGACA	GTTCTGCCGC	180
CACCGCCGCC	TCCCCTGCTC	${\tt CATCCCTTCA}$	GCCCCTCCCT	GGGCTCATTT	GTCAGCTCTT	240
TCAGGTAATA	GACAGCCCAG	GCTTCTGAGG	AAGTGTGCAC	ATCATGTACC	CAAGCTGTGA	300
GAGAGGAAAG	CCACCGCCAG	GCCCACG				327

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 331
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 5 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 21:

GGGCTCAAGC	AATCCTCCCA	CCTCGGCCTC	CCAAGTAGCT	GGGACCACAG	GCGTGTGCCA	60
CCACGCCCGG	${\tt CTGAGAGAGG}$	GCTCTTCATG	TCTTCTGCCC	${\tt TGACTCCCTT}$	CCTCTGCCTC	120
CCTTCCAGAA	TCCCAGGTTC	CCAGGCAACC	TGCAGATGAG	TGACCGCCAG	CTGGACGAGG	180
CTGGAGAAAG	TGACGTGAAC	AACTTGTAAG	TGGCTCCTGC	CCTGAGCCCA	GGGAGGGAGA	240
AAGCTTTTGT	${\tt GAATGCTGAC}$	ACTTCTCATA	AGGGTCATGG	AGGGCCTGAT	GGGGGGAGGC	300
CGTGGCTGGG	ATGGGGACCA	AAGCCCCTGG	G			331

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 470
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no

- (vi) ORIGINAL SOURCE: (A) ORGANISM: human
- (x) FEATURE: exon 6 of HIP1
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACTGTCGCTG	TCACTGTTGA	CTTCACCAGG	CTGCATGGCC	ATAATACCCA	CAAGGCTAAG	60
ACTTGGAGCT	GGAGTTGTGT	GTGTGTTTGC	GCATGCACAT	${\tt GAGCATTGGA}$	GACTGGAGTA	120
GCGTAGAGCG	TGGGGGAGGG	GACAGGTAAC	AGACCGGCCT	CAGGCTGTGG	AGTGTAAGCT	180
CTCTTTCCTC	TTGGGTCCAG	${\tt TTTCCAGTTA}$	ACAGTGGAGA	${\tt TGTTTGACTA}$	CCTGGAGTGT	240
GAACTCAACC	TCTTCCAAAC	AGGTGAGTCT	CTTCCCTCCC	GTCTAACCCA	GGCTCTCATG	300
GGAACTACCT	AATTCCTAGT	CCTCCTCTCC	CTGCAAAGTG	TGCAGCACAA	GGGGTAGGAA	360
AATGGAGACA	TTCACACCCC	${\tt ATCTCTGGTC}$	TCTCCAACCC	TCGTGCAGGG	AGGGACTGAA	420
CCTCTTCAGT	ATTTTTTTTT	TTAAGAGACA	AGGTCTCGGC	CGGGTGCAGT		470

- (2) INFORMATION FOR SEQ ID NO:23:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 565
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 7 of HIP1
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 23:

()	,					
TCTTCACCTG	TTTAATGGGG	ATACGTTTAC	${\tt CTATCTCATG}$	${\tt GGAGTGTTGT}$	GAAGGTTAAA	60
TGAATTAGAT	GAGGTAAAGC	ACGCACAGAA	TCGGTCCTTG	${\tt GTGTATGTTG}$	GACCCCTGCC	120
TCTGCCCCTC	TGAAGAGGCT	GCCTGTAATC	CCCTGGCTCT	ACCACCTTTC	TCCCTCACTT	180
TTATTTCCTA	GTATTCAACT	CCCTGGACAT	GTCCCGCTCT	${\tt GTGTCCGTGA}$	CGGCAGCAGG	240
GCAGTGCCGC	CTCGCCCCGC	TGATCCAGGT	CATCTTGGAC	TGCAGCCACC	TTTATGACTA	300
CACTGTCAAG	CTTCTCTTCA	AACTCCACTC	CTGTGAGTAC	CGCGGGCCAG	ATCTTCTTAC	360
ATGAGATTCA	GGCCAGAGGG	AGGATCCCAG	CCTGAGGATG	TCCCCAGAGA	AACGCAGTCC	420
TTCTCAGTGC	CTTTGGCTGT	CTGCTTCTGT	TCCAAAAGGC	CCCGGAGCTT	CTGACCATTG	480
TGAGGATAAA	AGAGCAGGGC	CCAGGCTTTG	GTGACCCCAG	TAAAGCCCCT	GGCTTGCCAC	540
TCTTGCGTCC	AGTGTTACAG	GATCT				565

- (2) INFORMATION FOR SEQ ID NO:24:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 233
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 8 of HIP1

11743

WO 99/60986		PC	r/US99/1
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 24:			
GGGACAGCTC TAGGCCAGTC GTGGCCCCTG GCAGTGCTGG	CCACATGCCC	CAGGGTAGCT	60
GGGCCCTCC CCCTCGAGAG CCCCGCTGTG GCTTCCCTGC	CCTCTGGTCC	CCCTCCCCTC	120
TCACACTCTT TCCAATTTCT TCCAGGCCTC CCAGCTGACA			180
CGCTTCATGG AGCAGTTTAC AAAGTAAGTG GTTCAAGTAA	CAGGAATGGA	GGT	233
(2) INFORMATION FOR SEQ ID NO:25:			
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 578			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: double			
• /			
(D) TOPOLOGY: linear			
(ii)MOLECULE TYPE: genomic DNA			
(iii) HYPOTHETICAL: no			
(iv) ANTI-SENSE: no			
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: human			
(x) FEATURE: exons 9 and 10 of HIP1			
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 25:			
TGAATCCCAG CACCATGGAG TTTATCTCCT TGACAGCCTC	TGCCTTTGGG	CTGGGGAGGG	60
GGCAGGAAAG CCAGGTGGCT GCTCTGTCCC CTACATGGGG			120
CCCTCAGGTC CTTCTCCACC CCTAGGTTGA AAGATCTGTT			180
AGTACTTCAA GCGGCTCATT CAGATCCCCC AGCTGCCTGA			240
CACCCTCGGC ACTGCAGAGG CCCCAGGTAC TCTCTTAAGG AAGCACTATT TGAGGATGTG TCTCCGTCTT CAGAACCCAC			300 360
AAGCACTATT TGAGGATGTG TCTCCGTCTT CAGAACCCAC GCCCTGTCAG AACATATCAG CCCTGTGGTG GTGATCCCTC			420
AGCGAGCCAG TCCTAGAGAA GGATGACCTC ATGGACATGC			480
ACCACTTGGG AGAGAAACTT GGCCTTTCCT CTCACCTGCA			540
GGAGACCCTG GCCAAAGCCC ATTGACTCTA ACCAGGTT			578
(2) INFORMATION FOR SEQ ID NO:26:			
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 390			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: double			
(D) TOPOLOGY: linear			
(ii)MOLECULE TYPE: genomic DNA			
(iii) HYPOTHETICAL: no			
(iv) ANTI-SENSE: no			
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: human			
(x) FEATURE: exon 11 of HIP1			
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 26:			
AAAAAATTT AAAAAATTAA ACAGGTCTGA ACCGTTTAA			60
CCATATCACT CAACTGACCC ACACACAGAA TTCTCTGGC			120
TTTTTGGTCA ACCACAGAAT TTATTTGACA ACAAGTTTG			180
TCAGCAGTGA TCCCTTCAAT TTCAACAGTC AAAATGGTG			240 300
TCCAAGCTGG GTTCAAGCAG ATGGTTCAGG AGCTAAGTT. CACTAACCAA AGAGGAATTC TTAATGATAC TGGGGCTTC			360
CHCTITUCIAN MANAGAMITC TIMMIGHING IGAGGCTIC			

GGGTTGGGGG CAATGGCTTA TGCCTGTAAT

390

- (2) INFORMATION FOR SEQ ID NO:27:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 547
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 12 of HIP1
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 27:

AAAATCAATA	ACCATGGATT	TATGAGTATT	${\tt AGATTAGTAT}$	CTGGTAACAT	TTAGAGTATA	60
ATTTATGGCA	TTTCAAAGAA	TTGTCCCCAA	ATTAATACCA	$\tt GCTTTTAATT$	TCCTCCCCTG	120
AGCTCACAAT	TAAAAACAGA	GGGATAGAAG	CACTATGAAA	GCAAACTCAT	TCCCCTTCTC	180
TTCCCAGGGA	${\tt CCACTTAATT}$	${\tt GAGCGACTAT}$	ACAGAGAGAT	${\tt CAGTGGATTG}$	AAGGCACAGC	240
TAGAAAACAT	GAAGACTGAG	${\tt GTATAACTTG}$	${\tt GATCTGCTCT}$	${\tt GCCTTTGCGC}$	TTCACCAAAA	300
${\tt CACGGTAGAT}$	${\tt TTGAATGTTA}$	AATTTGCATC	ACACTAGCCA	$\tt GGCACAGTGG$	CTCACACCTG	360
TAATCCTAGC	ACTTTGGGAG	GCCAAGGCAG	GAGGATTACC	${\tt TGAGGTCGGG}$	AGTTCGAGAC	420
CAGCCTGGGC	AACAGGGTGA	AACCCCCGTC	TTCAATAAAA	ATGCAATAAT	TAGCCGGGTG	480
${\tt TGTTGGCAGG}$	CACCTGTAAT	CCCAGCTACT	$\tt CGGGAAGCTG$	${\tt AGGCATGAGA}$	ATTGCTTGAA	540
CTTGGGA						547

- (2) INFORMATION FOR SEQ ID NO:28:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 436
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 13 of HIP1
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 28:

CCCCCAGCCA	CTCTAAAGAG	GACCACAATT	CCCCGGCCAT	CATCCCCTGT	TATTGTTGTT	60
GATTGAGGGG	CTCCTAATGA	CCAGATGGTC	CAACCCTCCT	GGGACGTGGA	GAGTTGACTT	120
AGGGGAATCA	GGTATTTACT	TGGAAGCATG	GTAGGACCCG	CTTCTCCGGC	CCATGCCCGT	180
GACCCGTGGC	AGTGGGCGGT	TGGCCTCATG	ACCGGAGTCC	CCCCACAGAG	CCAGCGGGTT	240
GTGCTGCAGC	TGAAGGGCCA	CGTCAGCGAG	CTGGAAGCAG	ATCTGGCCGA	GCAGCAGCAC	300
CTGCGGCAGC	AGGCGGCCGA	CGACTGTGAA	TTCCTGCGGG	CAGAACTGGA	CGAGCTCAGG	360
AGGCAGCGGG	AGGACACCGA	GAAGGCTCAG	CGGAGCCTGT	CTGAGATAGA	AAGTGAGCGG	420
TEGETEGEGE	CGGGGG					436

- (2) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 469

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii)MOLECULE TYPE: genomic DNA

(iii) HYPOTHETICAL: no

(iv) ANTI-SENSE: no

(vi) ORIGINAL SOURCE:

(A) ORGANISM: human

(x) FEATURE: exon 14 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 29:

GACTTGAGCC	CAAGGAGGTC	AAGGCTGCAG	TGAACAGTGA	TTGTGCCACT	GCACCCCAGC	60
CTGGGTGACA	GAGCAAGACT	GTCTCAAAAC	AAAACAAGGA	${\tt GGACCTTCTA}$	GGGACCCTGG	120
CTCATTGCAA	GGAAGGCAAG	$\tt GGTCCCTGCT$	${\tt AGGTTAGACT}$	CCTCACCTTG	GTCCTTTACA	180
ATACAGGGAA	AGCTCAAGCC	AATGAACAGC	GATATAGCAA	${\tt GCTAAAGGAG}$	AAGTACAGCG	240
AGCTGGTTCA	GAACCACGCT	GACCTGCTGC	GGAAGGTAAG	ACCCTCAGCC	CCTGTCACCA	300
TCCTGCAGGC	CCTGCACCTC	TAGGGAGAGA	GCGGCTCAGG	CCTGTGGCTT	CCCCGGGGCC	360
AGCAACCCCT	ACATTGATCT	CTAAGGCATT	GCCGTCATCT	CGGGAACCAC	ACCTTTTCAG	420
GCTTCCTTGC	CTCTGTGTCT	TGGGCTGTGT	CCTGGGTGCC	AATCCCATG		469

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 359
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 15 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 30:

60	TATGATTGTC	ACAGCCTGAG	TAGGGCACGC	TGTCTGACTC	GTGATTCCTG	GGGTAGGAAA
120	TTCTTCTTTT	CAAGACACTG	TCTCCTGGTT	AAGCCTGGGA	GATGTCCTCT	CTAGAAGGAG
180	TAGATTTGGA	CAAGCCCAGG	CATGGCCAGA	AACAGGTGTC	GAGGTGACCA	GCAGAATGCA
240	GCCAGCGGAA	AGTGACCAGG	GGAGCGCATC	AGGATTCGTT	AAAGAGCTGG	ACGAGAGAAA
300	TGGTGGCGGG	GCTGTTGAGT	GAGGGAGGGG	CTCGGGAAAT	ACGAGGAGCA	GGTGAGTGGG
359	ACACAGCAG	GGTTGGCATC	TCTGTGGGTC	CATGGGCAGT	ССТТСТССТС	CCCTTTCTCTCC

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 209
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no

WO 99/60986 PCT/US99/11743 (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 16 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 31: GTTGATCGCT TGGGACGTTT TTACATTTTT ATATTCTTTG TCACTGTCAC CCAGATCAGA 60 GTCCCTCTGT TTTTCTTCTC TTTCAGACTC AAGAACAGCT GGAAGTTCTA GAGAGCTTGA 120 AGCAGGAACT TGCCACAAGC CAACGGGAGC TTCAGGTTCT GCAAGGCAGC CTGGAAACTT 180 CTGCCCAGGT AAATACCTCC TTTTTTTT 209 (2) INFORMATION FOR SEQ ID NO:32: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 485 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 17 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 32: CCCCACTGC AATCAGTGTG TCCCCGGGAG GGAATCAGAG TGGCAGGTTA AAGAGCCATC 60 ACCTTCCCAG TCCTTGCAAC CCGGTGGTGG GTTGGACCTC TGGGAAGTAG GGACTGTTTA 120 ACTCAACCAG CGTCTCCCTC TTTCCTTGTG GTCACCTTTG CAGTCAGAAG CAAACTGGGC 180 AGCCGAGTTC GCCGAGCTAG AGAAGGAGCC GGACAGCCTG GTGAGTGGCG CAGCTCATAG 240 GGAGGAGGAA TTATCTGCTC TTCGGAAAGA ACTGCAGGAC ACTCAGCTCA AACTGGCCAG 300 CACAGAGGGT CACGGACATG GACACGAGCG AGCACCTGTG AATTCCCACC GAGGGCCTCT 360 GCGCATGCAC GGAGGCTGGG AGGACCCCGG GGCTGCTGAG AAGGGGTTTG GGGCCTTGGC 420 CTGATTGTGC AGACATTCTG TAGGTGTAAT GCCAGCAGGC CCTGCATTGC CTGCAGAGTC 480 485 CATGA (2) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 468 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii)MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 18 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 33: TTACTGGCTT GGACCTCATT GGCCATGACT TGAGCTAAGA TGCTAAGAGC CCCAGCCAGG 60

120

TCATCCTGCT CAGGTTCATT ATGGAGTCTA GGGCAGACTC TCACCTCCCT GGACCATTTT

PCT/US99/11743 WO 99/60986 TAGAATCTAT GTGCCAGCTT GCCAAAGACC AACGAAAAAT GCTTCTGGTG GGGTCCAGGA 180 AGGCTGCGGA GCAGGTGATA CAAGACGCCC TGAACCAGCT TGAAGAACCT CCTCTCATCA 240 GCTGCGCTGG GTCTGCAGGT ACACTTGCAA TTGCCCAGCT GGCAGGGGCC AGGTCCTTAC 300 AGCCTGAGAC TCTGTTGATG TTGAATCTCA TGTGAGACTT AGCTCAGGGG CTCTCAGCCC 360 AGCAGCATGT CAGCATTACC TTAGGGGCGC CCAGGCCCCA TCCTAGATCA GTTACATGTG 420 GAAACTCTGT GCATTAGTGC CTATACACTA GTATTTTAGT ATTTTCTT 468 (2) INFORMATION FOR SEQ ID NO:34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 393 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii)MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 19 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 34: CACTAGTAAG CTCCTCCATT CAGTGCTTAA TTAACGAGGA TGAAGCCAGC TATGAGAACT 60 TGCTCTGACC TTGCCCTGTG TTCCCTCTCA CAGATCACCT CCTCTCCACG GTCACATCCA 120 TTTCCAGCTG CATCGAGCAA CTGGAGAAAA GCTGGAGCCA GTATCTGGCC TGCCCAGAAG 180 GTAAGAATGG CCAAGGACAG TCTCTGTCGG CTAGTGATGG CCAGACAGGG TTCAGAAGCA 240 CCTGAATGCG GGGATAGTGA CAGGTCCCTC TGCATCAAGA AAGGCATGTA GGCAACTCAT 300 ACAAGAAGG CATGTAGGCA ACTCATAAAA CGGGAGGAGA GGGTATGAAA GTGTCACCAT 360 CAACCAGACC TGAGAAACTT CTCTTTCCAA TCC 393 (2) INFORMATION FOR SEQ ID NO:35: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 20 of HIP1 (xi)SEOUENCE DESCRIPTION: SEO ID NO: 35: 60 GGCCTGCCCA GAAGGTAAGA ATGGCCAAGG ACAGTCTCTG TCGGCTAGTG ATGGCCAGAC AGGGTTCAGA AGCACCTGAA TGCGGGGATA GTGACAGGTC CCTCTGCATC AAGAAAGGCA 120 TGTAGGCAAC TCATACAAGA AAGGCATGTA GGCAACTCAT AAAACGGGAG GAGAGGGTAT 180 GAAAGTGTCA CCATCAACCA GACCTGAGAA ACTTCTCTTT CCAATCCTGG CAGACATCAG 240

300

360

420 421

TGGACTTCTC CATTCCATAA CCCTGCTGGC CCACTTGACC AGCGACGCCA TTGCTCATGG

TGCCACCACC TGCCTCAGAG CCCCACCTGA GCCTGCCGAC TGTGAGTACT GGGGCATGAG

GGGCTGTTCA TGGACCAGGG GAGCAGGGGG CCTTTAAAAG TCTCTGTTGG GCCGGGCGCA

- (2) INFORMATION FOR SEQ ID NO:36:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 498
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 21 of HIP1
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 36:

AGGCCGAGGC	AGGAGAATCG	CTTGAACTCA	GGAGGCGGAG	TTTGCAGTGA	GCCGAGATGG	60
CGCCACTGCA	CTCCAGCCTG	GGCAACAAGA	GCGAGACTCC	ATCTCAAAAA	AAAAGTGTCT	120
ATTGCCTTGT	ATCTCCAGCA	CTGACCGAGG	CCTGTAAGCA	${\tt GTATGGCAGG}$	GAAACCCTCG	180
CCTACCTGGC	CTCCCTGGAG	GAAGAGGGAA	${\tt GCCTTGAGAA}$	TGCCGACAGC	ACAGCCATGA	240
GGAACTGCCT	GAGCAAGATC	AAGGCCATCG	GCGAGGTACT	TGGAGTAGTA	TCATTGAGGA	300
GCATTGTTAT	${\tt TCTTCTGGGT}$	GTGCGTGCTG	GTGAATGGCC	AGGGAATCGG	TGATGTTCTG	360
AGCTAGTTCT	TTCTGCACTT	${\tt AGAACTTGAT}$	$\mathtt{TCTAGAAAGA}$	${\tt GATTGTTAAA}$	ATTGGAAAAT	420
CTGGCCGGGT	$\tt GCAGTGATTT$	${\tt ATGCGTGTAA}$	TCCCAGCACT	TTGGGAGGCC	GAGTCAGGAG	480
GATCACTTGA	GGCTAGAC					498

- (2) INFORMATION FOR SEQ ID NO:37:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 427
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 22 of HIP1
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 37:

CCCTGTGGCT	TGCAGAAGGT	GTTTGCTGGG	TGGCCTCCTG	CCTTGCCATC	TTGTAAGGGT	60
TACAGATGGC	AGAGGAGAAG	AGACAGGAGG	CCCCAAGGTC	AGTTCAGCCT	TTGTGATGTG	120
TTCACAGGAG	CTCCTGCCCA	$\tt GGGGACTGGA$	CATCAAGCAG	GAGGAGCTGG	GGGACCTGGT	180
GGACAAGGAG	${\tt ATGGCGGCCA}$	CTTCAGCTGC	TATTGAAACT	GCCACGGCCA	GAATAGAGGT	240
AGGAGGTTCC	${\tt TGCAGGATCT}$	CCTGAAACGA	${\tt TGCCTTTGCA}$	GCTGCCCTTC	TGCAACACTG	300
CTCATTAAAC	ATGTCACAGT	${\tt CGTTCATTAA}$	GGCCATGGCA	ACCCCCTAAG	ACAGAAACCA	360
GAATTTGCCA	$\tt GGCACAGTGG$	CTCATGCCTG	TAACCCCAGC	ACCTTGGGAG	GATCACTTGA	420
GTCCAGG						427

- (2) INFORMATION FOR SEQ ID NO:38:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 367

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(iii) HYPOTHETICAL: no

(iv) ANTI-SENSE: no

(vi) ORIGINAL SOURCE:

(A) ORGANISM: human

(x) FEATURE: exon 23 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 38:

CCCCCTGAAT	AGGTTAGAGT	CTGGATTCTT	TTCTGACTCT	CTCAAGAATG	TGGGCAGGGA	60
CTTGGGGACT	$\mathtt{TCCAGATTCA}$	$\tt GGTTTCCCAG$	CTACCACACG	${\tt ATGTTGGACT}$	GAAAGTATAG	120
TAAGACATTA	${\tt GTGGATCCTT}$	AATATTCAAG	GCACATTTAG	AAACCATGCT	TCTTTTTCAC	180
AGGAGATGCT	CAGCAAATCC	CGAGCAGGAG	ACACAGGAGT	CAAATTGGAG	GTGAATGAAA	240
GGTCGGTCTG	AGCGGCATGG	TGGGACCTAG	GGGAGCAGGA	TCTGTCTTCC	TGACATTGGT	300
CTATACTTTG	${\tt CATACTTATT}$	AGGGAATTAG	AGGAGAGCAG	TAGCAGCCAC	GGGGAAGGGC	360
TGAGTTG						367

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 502
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 24 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCCCGCAGAA TGTTCCAGCA	ACCTCAGCAC	CCTTCTTACC	TCCCTTTCCC	ATTCCAAGCT	60
TGCCTTTGGC TAGGAGTGGG	GAAGAGAACC	GTCGTGTTCA	${\tt TTGATCTTGG}$	ATCTTGATCT	120
CAGTGTATCC TCGACTTGTT	TGTTTGGCAG	GATCCTTGGT	TGCTGTACCA	GCCTCATGCA	180
AGCTATTCAG GTGCTCATCG	TGGCCTCTAA	GGACCTCCAG	${\tt AGAGAGATTG}$	TGGAGAGCGG	240
CAGGGTGAGC GTGGGTGTGG	GCCCTGGGCA	GGAAGAGGAG	${\tt GCATCGGTGA}$	CAGACTCCCG	300
CTCCAACGGA CTCTGTGATG	CTGCCGTCTT	ACTCTGTGTG	TCCACCTGAG	TACAGAGCAG	360
CCACTCCTGT AGATATCAGC	AGAGGCCCTG	GGGAGAAGTC	AGAGCTCCAG	GACCTCCCCA	420
GAGGGTGGCC AGGCATGTGT	CCCAACTCCA	GCTCCCTTCG	CACAGGCAGA	CATTGTTGGA	480
ACTTGCTGTG GGAGCCCTTT	TT				502

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 437
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no

PCT/US99/11743 WO 99/60986 (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 25 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 40: TTTTGGTCTC TGAATCTTCT TCTTTTTTGT AAAATGGGAA TACTAATGCT TATGTCTCAG 60 AGTTACTATG AGGATGATTT GGGATAATAT ATGTATAAAA GCACCTGCCA TATAGTACAT 120 GCTCAATAAA AGGTGGCTAT TACTATTTTT TATTTCCCTA GGGTACAGCA TCCCCTAAAG 180 240 AGTTTTATGC CAAGAACTCT CGATGGACAG AAGGACTTAT CTCAGCCTCC AAGGCTGTGG GCTGGGGAGC CACTGTCATG GTGTAAGTAT CTATTGGTAC CAAGGGTCCT CCCATGACCC 300 CTCTTCCATT GATCCACTCC AAACAATAGC TAAGGAGGGA AAAAAAAATC TGTCCCTTAG 360 AAATAAACTA TTGATCAGGA AGTCAATAGG ACCGAGTTTA CAAGGGAGCC TGGCTCTCCC 420 437 AGGGACACA GGGCAGG (2) INFORMATION FOR SEQ ID NO:41: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 351 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 26 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 41: 60 GGGAGCCTGG CTCTCCCAGG GGACACAGGG CAGGCAGCCT CCCCTCCTG TTTAGCCAAG GGCGATGGGG TGGTCTGGAG GTGGGATTGT GGAGGAGTTG CAGCTCATTT GCCCGTAACC 120 TAGTCCCTCT TGTCGTTTTC CATCAGGGAT GCAGCTGATC TGGTGGTACA AGGCAGAGGG 180 AAATTTGAGG AGCTAATGGT GTGTTCTCAT GAAATTGCTG CTAGCACAGC CCAGCTTGTG 240 GCTGCATCCA AGGTAGGACC TGGCTGGACC TCCTAGGACG CTGGAAGGCC TGGTTAGAGA 300 351 GTACTAGGCT AGGTTAAAGA GTACTTGGCT GCGTTAGGCA GTACTTGGCT G (2) INFORMATION FOR SEQ ID NO:42: (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 418 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii)MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 27 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 42: CTTTTTATAT GATAGATATG TCAGGAGCTG ACTATAGTCA GCAGATTTTG AGAAGCTGAT 60

120

180

TGGTGATTGC CGTTTGGCCC ACATATGTTT GCTAAGAACC ATCAGAGCAA TTATCTGATT

CAGTCCTTGT TGCTCTAGGT GTTGTATGAA CCTAAATCTG CTTTGTCCTG GTAGGTGAAA

WO 99/60986		PCT	Γ/US99/11743
			1/03/2/11/45
GCTGATAAGG ACAGCCCCAA CCTAGCCCAG CTGCAGCAGG			240
GCCACTGCCG GCGTTGTGGC CTCAACCATT TCCGGCAAAT	-		300
AGCCTTTCCA AAGGGACCCT TTTCTTACCC ACCCTGTTGA			360
CTGTGATCCC AACCAAATCC CACAGGACTG TGTCTAAATT	CI-I-ICATAI-I	TTTCATCT	418
(2) INFORMATION FOR SEQ ID NO:43:			
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 279			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: double			
(D) TOPOLOGY: linear			
(ii)MOLECULE TYPE: genomic DNA			
(iii) HYPOTHETICAL: no			
(iv) ANTI-SENSE: no			
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: human			
(x) FEATURE: exon 28 of HIP1			
• •			
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 43:	משכי ז כי כי ז כי כי	ርጥ አር አ አጥጥጥር	60
ATGAGACCTT CTTGTTTCCA TCCTTGCAGA CAACATGGAC			120
ACAGATCAAA CGCCAAGAGA TGGATTCTCA GGTTAGGGTG			180
GCAGAAGGAG CGTCAAAAAC TGGGAGAGCT TCGGAAAAAG			240
TGCTGAGGGC TGGGAAGAAG GTAAGCTGAC TCAAAGGAT			279
(2) INFORMATION FOR SEQ ID NO:44:			
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 3715			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: double			
(D) TOPOLOGY: linear			
(ii)MOLECULE TYPE: genomic DNA			
(iii) HYPOTHETICAL: no			
(iv) ANTI-SENSE: no			
• •			
(vi) ORIGINAL SOURCE:			
(A) ORGANISM: human			
(x) FEATURE: exon 29 and partial cds of HIP1			
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 44:			
AACATAAATT ATCATTGTCT TTTAGGAACA GAGGCATCTC			60
GTAACCGAAA AAGAATAGAG CCAAACCAAC ACCCCATATC			120
CTATCTCGTG TGTGTTATTT CCCCAGCCAC AGGCCAAATC			180 240
CACACCACTG CCATTACCCA GTGCCGAGGA CATGCATGAC ATAGCGACAC CCTTTCTGTT TGGACCCATG GTCATCTCTC			300
TTAGCATCCA GGCTGGCCAG TGCTGCCCAT GAGCAAGCC			360
GGGGGCAGGG CCACTCAACA GAGAGGACCA ACATCCAGTC			420
ACAACAATGG GTATCCTTAA TAGAGGAGCT GCTTGTTGT			480
AAGATCTTAT GCCTTTTCTT TTCTGTTTTC TTCTCAGTC			540
CAAACTTGTG AGCATCAGAG GGCTGATGGA TTCCAAACCA			600
CACAGTCAGA AGGACGGCAG GAGTGTCCTG GCTGTGAAT			660
TTTGGGCAGT GCCATGGATT TCCACTGCTT CTTATGGTG			720
መረመመመመመመመ መመምመን አድመምም ርንሮምርንሮንጥን ርርሮን አርጥርጥ	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CACCCCTCCC	780

780 8**4**0

TGTTTTTTT TTTTAAGTTT CACTCACATA GCCAACTCTC CCAAAGGGCA CACCCCTGGG

GCTGAGTCTC CAGGGCCCCC CAACTGTGGT AGCTCCAGCG ATGGTGCTGC CCAGGCCTCT

ţ						
•				CCACCCAGTC		900
GTCAGGCGG	AGCTGCTGAG	TGACAGCTTT	CCTCAAAAAG	CAGAAGGAGA	GTGAGTGCCT	960
TTCCCTCCTA	AAGCTGAATC	CCGGCGGAAA	GCCTCTGTCC	GCCTTTACAA	GGGAGAAGAC	1020
AAC'AGAAAGA	GGGACAAGAG	GGTTCACACA	GCCCAGTTCC	CGTGACGAGG	CTCAAAAACT	1080
TGATCACATG	CTTGAATGGA	GCTGGTGAGA	TCAACAACAC	TACTTCCCTG	CCGGAATGAA	1140
CTGTCCGTGA	ATGGTCTCTG	TCAAGCGGGC	CGTCTCCCTT	GGCCCAGAGA	CGGAGTGTGG	1200
GAGTGATTCC	CAACTCCTTT	CTGCAGACGT	CTGCCTTGGC	ATCCTCTTGA	ATAGGAAGAT	1260
CGTTCCACTT	TCTACGCAAT	TGACAAACCC	GGAAGATCAG	ATGCAATTGC	TCCCATCAGG	1320
GAAGAACCCT	ATACTTGGTT	TGCTACCCTT	AGTATTTATT	ACTAACCTCC	CTTAAGCAGC	1380
AACAGCCTAC	AAAGAGATGC	TTGGAGCAAT	CAGAACTTCA	GGTGTGACTC	TAGCAAAGCT	1440
CATCTTTCTG	CCCGGCTACA	TCAGCCTTCA	AGAATCAGAA	GAAAGCCAAG	GTGCTGGACT	1500
GTTACTGACT	TGGATCCCAA	AGCAAGGAGA	TCATTTGGAG	CTCTTGGGTC	AGAGAAAATG	1560
AGAAAGGACA	GAGCCAGCGG	CTCCAACTCC	TTTCAGCCAC	ATGCCCCAGG	CTCTCGCTGC	1620
CCTGTGGACA	GGATGAGGAC	AGAGGGCACA	TGAACAGCTT	GCCAGGGATG	GGCAGCCCAA	1680
CAGCACTTTT	${\tt CCTCTTCTAG}$	ATGGACCCCA	GCATTTAAGT	${\tt GACCTTCTGA}$	TCTTGGGAAA	1740
ACAGCGTCTT	CCTTCTTTAT	CTATAGCAAC	${\tt TCATTGGTGG}$	${\tt TAGCCATCAA}$	GCACTTCCCA	1800
GGATCTGCTC	CAACAGAATA	TTGCTAGGTT	TTGCTACATG	ACGGGTTGTG	AGACTTCTGT	1860
TTGATCACTG	TGAACCAACC	CCCATCTCCC	TAGCCCACCC	CCCTCCCCAA	CTCCCTCTCT	1920
GTGCATTTTC	TAAGTGGGAC	ATTCARAAAA	CTCTCTCCCA	$\tt GGACCTCGGA$	TGACCATACT	1980
CAGACGTGTG	ACCTCCATAC	TGGGTTÀAGG	AAGTATCAGC	ACTAGAAATT	GGGCAGTCTT	2040
AATGTTGAAT	GCTGCTTTCT	GCTTAGTATT	TTTTTGATTC	AAGGCTCAGA	AGGAATGGTG	2100
CGTGGCTTCC	$\mathtt{CTGTCCCAGT}$	TGTGGCAACT	AAACCAATCG	GTGTGTTCTT	GATGCGGGTC	2160
AACATTTCCA	${\tt AAAGTGGCTA}$	GTCCTCACTT	CTAGATCTCA	GCCATTCTAA	CTCATATGTT	2220
CCCAATTACC	AAGGGGTGGC	CGGGCACAGT	GCTCACGCC	TGTAATCCCA	GCACTTTGAG	2280
AGGCTGAGGT	GGTAGGATCA	CCTGAGGTCA	GGAGTTCAAG	ACCAGCCTGT	CCAACATGGT	2340
GAAACCCCCA	TCTCTACTAA	AAATACCAAA	AATTAGCCGA	${\tt GCGTAGTGAC}$	GGGTGCCCGT	2400
AATCCCAGCT	ACTCAGGAGG	CTGAGACAGG	AGAATÇACCT	GAACCCCAGA	GGCAGAGGTT	2460
GCAGTGAGCT	GAGATCACGC	CATTGTACTC	CAGCCTGGGC	AACAAGAGCA	AAACTCCGTC	2520
TCAAAAAAAA	AAAAAAATTA	CAAATGGGGC	AAACAGT Ò (TA	GTGTAATGGA	TCAAATTAAG	2580
ATTCTCTGCC	CAGCCGGGCA	CAGTGGCGCA	TGCCTGTAÀT	CCCAGAACTT	TGGGAGGCCA	2640
AGACGGGATG	ATTGCTTGAG	CTCAGGAGTT	TGAGACCAGG	CTGGGCATCA	TAGCAAGACC	2700
TCATCTCTAC	TAAAATTCAA	AAACAAAATT	AGCCGGGCAT	GATGGTGCAT	GCCTGTAGTC	2760
TCAGCTAGTT	GGGGAGCTAA	GGTGGGAGAA	TTGCTTGAGC	TTGGGAAGTC	GAGGCTGCAG	2820
TCAGCCCTGA	TTGTGCCAGT	GCACTCCGGC	CTGGGTGACA	GAGTGAGACC	CGTGCTCAAA	2880
AAAAAAAAGA	TTCTGTGTCA	GAGCCCAGCC	CAGGAGTTTG	AGGCTGCAAT	GAGCCATGAT	2940
TTCCCACTGC	ACTCCAGCCT	GAGTGACAGA	GCGAGACTCC	ATCTCTTTAA	AAACAAACAA	3000
AAAATTATCT	GAATGATCCT	GTCTCTAAAA	AGAAGCCACA	GAAATGTTA	AAAACTTCAT	3060
CGACTTAGCC	TGAGTCATAA	CGGTTAAGAA	AGCACTTAAA	CAGAAGCAGA	GGCTAATTCA	3120
GTGTCACATG	AGGAAGTAGC	TGTCAGATGT	CACATAATTA	CTTTCGTAAT	AGCTCAGATT	3180
AGAATGGCTA	CCCCATTCTC	TAGACAAAAT	CAAATTGTCC	TATTGTGACT	CTTCTAAAAA	3240
					CATCTTAAAG	3300
CTAAAAATGA	ACCTGCAAGC	CTTCTAAATG	AGTCACTGAG	CATCACTAGT	GACAAGTCTC	3360
GGGTGAGCGT	AAATGGGTCA	TGACAAGATG	GGACAGCAAC	AAAATCATGG	CTTAGGATCG	3420
				GTAAGACAGT		3480
				CCAGACATGG		3540
				ACCTGAGGTC	· · · · · · · · · · · · · · · · · · ·	3600
				АААТАСАААА		3660
				TGAGGCAGGA		3715
						<u> </u>

Sub Me