Hw 1 R Code

Deanna Springgay

1/31/2021

1.4

Below are two plots of different simulations of the chi-squared distribution in following code block. Both appear to follow non-normal distributions but they are not random - they follow a chi-squared distribution.

```
set.seed(7) \\ chiSquare \leftarrow ts(rchisq(n = 48, df = 2)) \\ plot(chiSquare, type = "o", ylab = "", main = "Chi-Squared Distribution, n = 48, df = 2") \\ abline(h = 0, lty = 2) \\
```

Chi-Squared Distribution, n = 48, df = 2

Chi-Squared Distribution, n = 48, df = 2

1.5

Below are two plots of different simulations of the t distribution in following code block. Both appear to follow normal and do not appear to be random.

```
set.seed(17)
chiSquare <- ts(rt(n = 48, df = 5))
plot(chiSquare, type = "o", ylab = "", main = "t Distribution, n = 48, df = 5")
abline(h = 0, lty = 2)</pre>
```

t Distribution, n = 48, df = 5

t Distribution, n = 48, df = 5

1.6

```
data("tempdub")
plot(tempdub, type = "l", ylab = "Average Temperature")
points(y = tempdub, x = time(tempdub), pch = as.vector(season(tempdub)))
```


1																			
d	19	a)	Y,=	0.	+ e.														
			<i>t</i> >	1 '	Y, = (). +	Y ₆₋₁	+0.											
			١, =				16-1	Ą											
			•				+0												
									0										
							. + (e,								
		1 \	It	* t(为 * (1+1	£-1 ·	·- #.	e,	. 1	10		(. 1			1		1	
		6)	EL	YE]	EL	16	·le	+ lt	-1	e, j	= tt	b+F	Le _t J	+61	eti	J . · ·	ELe	,)	
					: f(+ (0+0	†	· +O	= E	$\theta_{\mathbf{c}_{-}}$		•						
		c)	Cov	Y)\	٤, ٤	t-h)	= C)	
							= 0	ev (le-v	١٤	-K-1 [‡]	,	e (-1	+6	-15-1	٠ ا			
							= V	w[2 6-m	ret.	h-1 +]	t-h) 0;	1			
											71								