4) (15b) Napište tabulku operace násobení (druhá skupina měla sčítání) v GF(4). Jako ireducibilní polynom použijte x^2+x+1 a prvky tělesa GF(4) vyjádřete v tabulce jako vektory se souřadnicemi v bázi $\{1,\alpha\}$, kde α je primitivní prvek. (druhá skupina měla jako mocniny primitivního prvku). Mám něco špatně? Otevři PR na Githubu!

Postup řešení:

Výpočet primitivních prvků α

Nejdříve je nutno odvodit počet prvků, neboli to v jaké zbytkové třídě se nacházíme. $GF(2^2)$ nám značí zbytkovou třídu \mathbb{Z}_4 , tedy čtyři prvky celkem. Prvky GF jsou polynomy. Máme zadán generující polynom, pomocí kterého lze odvodit prvky tohoto pole. Řád generujícího polynomu vždy bude shodný s číslem n, na které je umocněna 2 v značení $GF(2^n)$. Číslo n také značí počet bitů, na které se budou kódovat prvky pole.

Prvek	Notace polynomem	Binární kódování	
0	0	00	
α^0	1	01	
α^1	$x \cdot \alpha^0 = x$	10	
α^2	$x \cdot \alpha^1 = x^2 = x + 1$	11	

Binární kódování polynomu znamená pouze to, že pro i-tou mocninu x napíšeme 1 pokud tam je a 0 pokud tam není (např. $x^2+x+1\to 111$, nebo $x^3+1\to 1001$). Při vytváření prvků pole se vždy začíná nulou, a $\alpha^0=1$. Každá další α^i se dá vypočítat jako $x\cdot\alpha^{i-1}$. V tabulce lze vidět takto vypočítanou α^1 , kterou lze pohodlně zakódovat na 2 bity. Problém nastává až s $\alpha^2=x^2$, což se na dva bity zakódovat nedá, na tři ale ano $(x^2\to 100)$. Nyní je jen potřeba prvek dostat do pole, tedy ho XORovat s generujícím polynomem a oříznout na dva bity:

$$100 \oplus 111 = 011$$

Což je po oříznutí 11. Tabulka je tedy hotová, pokud bychom se pokusili o výpočet α^3 , dostali bychom opět α^0 .

2a) Tvorba tabulky pro operaci sčítání s mocninami α

Operace sčítání není v GF nic jiného než obyčejný XOR binární reprezentace. Pro tvorbu tabulky je jen pak potřeba najít odpovídající alfu. Pozor, v $GF(2^n)$ je operace sčítání stejná jako odčítání.

+	0	α^0	α^1	α^2
0	0	α^0	α^1	α^2
α^0	α^0	0	α^2	α^1
α^1	α^1	α^2	0	α^0
α^2	α^2	α^1	α^0	0

2b) Tvorba tabulky pro operaci násobení s vektory v bázi $\{1, \alpha\}$

Abych se přiznal, tak netuším, co znamenají ty vektory báze, ale podle vzorového řešení je to jen binární reprezentace s MSB vpravo, tedy opačně než jsem si zapsal nahoře do tabulky.

Násobení v GF(q) funguje tak, že $\alpha^i \cdot \alpha^j = \alpha^{(i+j)mod(q-1)}$. V našem případě, tedy GF(4) např. $\alpha^1 \cdot \alpha^2 = \alpha^{3mod3} = \alpha^0 \to 01$ binárně $\to (1,0)$ ve vektoru.

	(0,0)	(1,0)	(0,1)	(1,1)
(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
(1,0)	(0,0)	(1,0)	(0,1)	(1,1)
(0, 1)	(0,0)	(0,1)	(1,1)	(1,0)
(1, 1)	(0,0)	(1,1)	(1,0)	(0,1)

Zdrojové materiály:

Slidy k BMS (14,15)

Obrázek 1: Vzorové řešení z konzultací