CSCE 633: Machine Learning, Assignment - 2

Neha Joshi

8 March 2024

Question 1

Suppose you are given 6 training points for a classification problem with two binary attributes X1 and X2 and three classes $Y \in \{1, 2, 3\}$. You will use a decision tree learner based on information gain.

<i>X</i> 1	X2	Y
1	1	1
1	1	1
1	1	2
1	0	$\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$
0	0	2
0	0	3

Answer

(1) Conditional Entropy for X1 and X2

Conditional entropy H(Y|X) is given by:

$$H(Y|X) = -\sum_{x \in X} P(X = x) \sum_{y \in Y} P(Y = y|X = x) \log_2 P(Y = y|X = x)$$

For attribute X1:

$$P(X1=1) = \frac{4}{6} = 0.66$$

$$P(X1=0) = \frac{2}{6} = 0.33$$

For X1 = 1:

$$P(Y=1|X1=1) = \frac{2}{4} = 0.5$$

$$P(Y=2|X1=1) = \frac{1}{4} = 0.25$$

$$P(Y=3|X1=1) = \frac{1}{4} = 0.25$$

For X1 = 0:

$$P(Y = 1|X1 = 0) = 0$$

$$P(Y = 2|X1 = 0) = \frac{1}{2} = 0.5$$

$$P(Y=3|X1=0) = \frac{1}{2} = 0.5$$

So, for X1:

 $H(Y|X1) = -[0.66 \cdot (0.5 \cdot \log_2 0.5 + 0.25 \cdot \log_2 0.25 + 0.25 \cdot \log_2 0.25) + 0.33 \cdot (0 + 0.5 \cdot \log_2 0.5 + 0.5 \cdot \log_2 0.5)] = \mathbf{1.32}$

For attribute X2:

$$P(X2 = 1) = \frac{3}{6} = 0.5$$
$$P(X2 = 0) = \frac{3}{6} = 0.5$$

For X2 = 1:

$$P(Y=1|X2=1) = \frac{2}{3} = 0.66$$

$$P(Y=2|X2=1) = \frac{1}{3} = 0.33$$

$$P(Y = 3|X2 = 1) = 0$$

For X2 = 0:

$$P(Y = 1|X2 = 0) = 0$$

$$P(Y = 2|X2 = 0) = \frac{1}{3} = 0.33$$

$$P(Y = 3|X2 = 0) = \frac{2}{3} = 0.66$$

So, for X2:

$$H(Y|X2) = -[(0.5 \cdot (0.66 \cdot \log_2 0.66 + 0.33 \cdot \log_2 0.33 + 0) + (0.5 \cdot (0.66 \cdot \log_2 0.66 + 0.33 \cdot \log_2 0.33 + 0)] = \mathbf{0.9234}$$

(2) Information Gain

Information gain is given by:

$$InfoGain(Y, X) = H(Y) - H(Y|X)$$

So,

$$InfoGain(Y,X1) = H(Y) - H(Y|X1)$$

$$InfoGain(Y, X2) = H(Y) - H(Y|X2)$$

$$H(Y) = -\left(\sum_{i=1}^{n} P(Y=i)\log_2 P(Y=i)\right) = -\left[\left(\left(0.33 \cdot \log_2 0.33 + 0.33 \cdot \log_2 0.33 + 00.33 \cdot \log_2 0.33\right)\right)\right] = 1.583$$

So,

$$InfoGain(Y, X1) = H(Y) - H(Y|X1) = 1.583 - 1.32 =$$
0.2633 $InfoGain(Y, X2) = H(Y) - H(Y|X2) = 1.583 - 0.9234 =$ **0.6596**

(3) Decision Tree

The attribute with the highest information gain will be used for the first split. Since information gain of X2 is greater than X1, we start with X2

(4) Classification for Test Example

From the tree above, since the decision tree splits based on X2 classified as Y = 1.