Strike while the Iron is Hot:

Optimal Monetary Policy with a Nonlinear Phillips Curve

Peter Karadi^{1,4} Anton Nakov^{1,4} Galo Nuño^{2,4} Ernesto Pasten³ Dominik Thaler¹

 $^{1}\text{ECB}\cdot{}^{2}\text{Bank}$ of Spain $\cdot\,{}^{3}\text{Central}$ Bank of Chile $\cdot\,{}^{4}\text{CEPR}$

19 September 2024

The views here are those of the authors only, and do not necessarily represent the views of their employers.

Motivation

- ► The recent inflation surge featured
 - ► Increase in the frequency of price changes (Montag and Villar, 2023) US
 - ▶ Increase in Phillips curve slope (Benigno and Eggertsson, 2023; Cerrato and Gitti, 2023) US
- Optimal monetary policy is mainly studied in models, in which the Phillips curve is linear and the frequency is held constant (Galí, 2008; Woodford, 2003)
- ▶ What does optimal monetary policy look like with a nonlinear Phillips curve and endogenous variation in frequency? How should CBs respond to a large inflation surge?

What do we do?

- ▶ We use the standard state-dependent pricing model of Golosov and Lucas (2007)
- ► Solve it nonlinearly using a new algorithm over the sequence space under perfect foresight
- Positive analysis under a Taylor rule
 - ► Trace the responses to shocks of different sizes
 - ► Assess the nonlinearity of the Phillips curve
- ► Normative analysis: Ramsey optimal policy
 - Optimal long-run inflation
 - ► Trace the optimal responses to shocks
 - ► Characterize the nonlinear targeting rule after *large* cost-push shocks

What do we find?

- ▶ In this model the Phillips curve is nonlinear: it gets steeper as frequency increases
- ▶ In response to small shocks, optimal monetary policy is similar to the one under Calvo
- ▶ In response to efficient shocks, there is divine coincidence, as in Calvo
- Different responses to small and large cost-push shocks. Optimal policy leans aggressively against inflation, when frequency increases: "it strikes while the iron is hot"

Literature

- Nonlinear Phillips curve (Benigno and Eggertsson, 2023; Cerrato and Gitti, 2023)
 - Microfounded by state-dependent price setting
 (Golosov and Lucas, 2007; Gertler and Leahy, 2008; Auclert et al., 2022)
 - In the presence of large aggregate shocks (Karadi and Reiff, 2019; Alvarez and Neumeyer, 2020; Costain et al., 2022; Alexandrov, 2020; Blanco et al., 2024)
- Optimal policy in a menu cost economy
 - ▶ Optimal inflation target (Burstein and Hellwig, 2008; Adam and Weber, 2019; Blanco, 2021)
 - ► Small shocks, large shocks, optimal nonlinear target rule (comp. Galí, 2008; Woodford, 2003)
 - Focus on aggregate shocks (unlike Caratelli and Halperin, 2023, who study sectoral shocks)

Overview of the model

- ▶ Heterogeneous-firm DSGE model with fixed costs of price-adjustment
- \blacktriangleright Households: consume (C_t) a Dixit-Stiglitz basket of goods, and work (N_t) \boxplus
- Firms: produce differentiated goods (j) using labor only and are subject to aggregate TFP shocks (A_t) and idiosyncratic "quality" shocks $(A_t(j))$. They have market power and set prices optimally subject to a fixed cost (η) (Golosov and Lucas, 2007) Firms.
- Monetary policy: either follows Taylor rule or set optimally to maximize household welfare under commitment Policy

Model: Intuitive summary

- ► Each period, firm *j* chooses whether to reset its price and, if so, what new price to set
- The firm's optimality conditions define the reset price and the inaction region (S,s)
- Given the idiosyncratic shock, this endogenously determines the price distribution
- Let $p_t(j) \equiv \log (P_t(j)/(A_t(j)P_t))$ be the quality-adjusted log relative price
- ▶ Let $x_t(j) \equiv p_t(j) p_t^*(j)$ be the price gap

Model: Intuitive summary, cont.

- Large aggregate shock: Shifts optimal price $p_t^*(j)$ and price gap $x_t(j)$ for all firms
- ► Limited impact on the (S,s) bands
- Pushes a large fraction of firms outside of inaction region
- Large increase in the frequency of price changes and hence additional flexibility of the aggregate price level (on top of selection)

Model: Intuitive summary, cont.

- Monopolistic competition and nominal frictions imply three distortions:
 - ► Inefficient markup fluctuations
 - Price dispersion
 - ▶ Price adjustment (menu) costs

Calibration

		Household	ds
β	0.96 ^{1/12}	Discount rate	Golosov and Lucas (2007)
ϵ	7	Elasticity of substitution	Golosov and Lucas (2007)
γ	1	Risk aversion parameter	Midrigan (2011)
v	1	Utility weight on labor	Set to yield $w = C$
		Price setti	ng
η	3.6%	Menu cost	Set to match 8.7% of frequency
σ	2.4%	Std dev of quality shocks	and 8.5% size in Nakamura and Steinsson (2008)
		Monetary po	olicy
ϕ_{π}	1.5	Inflation coefficient in Taylor rule	Taylor (1993)
ϕ_y	0.5/12	Output gap coefficient in Taylor rule	Taylor (1993)
ρ_i	$0.75^{1/3}$	Smoothing coefficient	
		Shocks	
ρ_A	0.95 ^{1/3}	Persistence of the TFP shock	Smets and Wouters (2007)
ρ_{τ}	$0.9^{1/3}$	Persistence of the cost-push shock	Smets and Wouters (2007)

Nonlinearity of the Phillips Curve at realistic frequency (20%)

Consider the model under a Taylor rule Robustness

Normative results: Computation

- Challenges
 - Price change distribution and firms' value function are infinite-dimensional objects
 - ▶ In the Ramsey problem, we need derivatives w.r.t. both (Gateaux derivatives)
- ► New algorithm, inspired by González et al. (2024)
 - ▶ Approximate distribution and value functions by piece-wise linear interpolation on grid
 - ► Endogenous grid points: (S,s) bands and the optimal reset price
 - ► Solve in the sequence space using Dynare's Ramsey solver

Optimal long-run inflation rate

- ▶ The steady-state Ramsey inflation rate is slightly above zero: $\pi^* = 0.25\%$
 - ▶ Close to the inflation rate that minimizes the steady-state frequency of price changes
- ▶ Why not zero as in Calvo (1983)?
 - Asymmetry of profit function leads to asymmetric (S,s) bands: negative price gap is less desirable than a positive price gap of the same size
 - At zero inflation, more mass around the lower (s) band than around the higher (S) band
 - ightharpoonup Slightly positive inflation raises p^* and pushes the mass of firms to the right
 - ▶ This leads to lower frequency and lower price-adjustment costs

Steady-state price distribution (zero inflation)

References

▶ In linearized Calvo (1983), optimal policy is a flexible inflation targeting rule

$$\pi_t = -\frac{1}{\epsilon} \Delta \tilde{y}_t$$

- lacktriangle Slope $-1/\epsilon$ is independent of the frequency of repricing or the slope of the PC
 - ightharpoonup An increase in frequency raises the slope of the Phillips curve κ
 - \blacktriangleright But it also raises the relative weight of the output-gap in welfare $\lambda=\kappa/\epsilon$
 - ▶ Why? Because more price-flexibility implies that inflation is less costly.
- For small cost-push shocks, the slope of the targeting rule in Golosov and Lucas (2007) is also $-1/\epsilon$!!

Nonlinear targeting rule

- ► The target rule is nonlinear Robustness
- After large shocks, the planner stabilizes inflation more relative to the output gap
- Why? Stabilizing inflation is cheaper due to the lower sacrifice ratio (higher freq.)
 - Similar results with quadratic objective
 - ► The nonlinearity of the targeting rule is mainly driven by the nonlinear PC

Nonlinear targeting rule for the real interest rate

Optimal responses to efficiency shocks: "divine coincidence" holds

- ► In the standard NK model with Calvo pricing: divine coincidence holds after TFP and other shocks affecting the efficient allocation
- Optimal policy fully stabilizes inflation and closes the output gap
- We show analytically, that, after a TFP shock, divine coincidence holds also in the menu cost model: inflation is fully stabilized at steady state and the output gap is closed

Conclusion

We study optimal policy in a state-dependent framework with a nonlinear Phillips curve

- Optimal long-run inflation is near zero (slightly positive)
- Divine coincidence holds for efficiency shocks
- ► The optimal response to small cost shocks is similar to Calvo (1983): the lower welfare weight on inflation offsets the higher slope of the Phillips curve
- ▶ Lean against the frequency increase for large cost shocks: strike while the iron is hot!

CPI and frequency of price changes in the US, Montag and Villar (2023)

Phillips correlation across US cities, Cerrato and Gitti (2023)

Households

- A representative household consumes (C_t) , supplies labor hours (N_t) and saves in one-period nominal bonds (B_t) .
- ► The household's problem is:

$$\begin{aligned} \max_{C_t, N_t, B_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \log (C)_t - \nu N_t \\ \text{s.t. } P_t C_t + B_t + T_t = R_{t-1} B_{t-1} + W_t N_t + D_t, \end{aligned}$$

where P_t is the price level, R_t is the gross nominal interest rate, W_t is the nominal wage, T_t are lump sum transfers and D_t are profits

Consumption and labor

 \triangleright Aggregate consumption C_t and the price level are defined as:

$$C_t = \left\{ \int \left[A_t(i) C_t(i) \right]^{\frac{\epsilon - 1}{\epsilon}} di \right\}^{\frac{\epsilon}{\epsilon - 1}}, \quad P_t = \left[\int_0^1 \left(\frac{P_t(i)}{A_t(i)} \right)^{1 - \epsilon} di \right]^{\frac{1}{1 - \epsilon}}$$

where $A_t(i)$ is product quality, ϵ is the elasticity of substitution.

▶ Labor supply condition and Euler equation are given by:

$$W_t = v P_t C_t, \quad 1 = \mathbb{E}_t \left[\beta \frac{u'(C_{t+1})}{u'(C_t)} \frac{R_t}{\Pi_{t+1}} \right]$$

Monopolistic producers

▶ Production of good *i* is given by $Y_t(i) = A_t \frac{N_t(i)}{A_t(i)}$, where quality follows a random walk

$$log(A_t(i)) = log(A_{t-1}(i)) + \varepsilon_t(i), \quad \varepsilon_t(i) \sim N(0, \sigma_t^2)$$

Firms real profits

$$\frac{D_t(i)}{P_t} = \frac{P_t(i)}{P_t} Y_t(i) - (1 - \tau_t) \frac{W_t}{P_t} N_t(i)$$

 \blacktriangleright Firms face a fixed cost η to update prices

Quality-adjusted relative prices

- ▶ Let $p_t(i) \equiv \log(P_t(i)/(A_t(i)P_t))$ be the quality-adjusted log relative price
- Real profit then is

$$\Pi(p_t(i), w_t, A_t) \equiv \frac{D_t(i)}{P_t} = C_t e^{p_t(i)(1-\epsilon)} - C_t (1-\tau_t) \frac{w_t}{A_t} e^{p_t(i)(-\epsilon)}$$

where w_t is the real wage.

▶ When nominal price $P_t(i)$ stays constant, $p_t(i)$ evolves: $p_t(i) = p_{t-1}(i) - \sigma_t \varepsilon_t(i) - \pi_t$

Pricing decision

- Let $\lambda_t(p)$ be the price-adjustment probability
- Value function is

$$V_{t}(p) = \Pi(p, w_{t}, A_{t})$$

$$+ \mathbb{E}_{t} \left[(1 - \lambda_{t+1} (p - \sigma_{t+1} \varepsilon_{t+1} - \pi_{t+1})) \Lambda_{t,t+1} V_{t+1} (p - \sigma_{t+1} \varepsilon_{t+1} - \pi_{t+1}) \right]$$

$$+ \mathbb{E}_{t} \left[\lambda_{t+1} (p - \sigma_{t+1} \varepsilon_{t+1} - \pi_{t+1}) \Lambda_{t,t+1} \left(\max_{p'} V_{t+1} (p') - \eta w_{t+1} \right) \right].$$

► The adjustment probability is

$$\lambda_t(p) = I[\max_{p'} V_t(p') - \eta w_t > V_t(p)]$$

where $I[\cdot]$ is the indicator function.

Monetary Policy

▶ The central bank either sets policy optimally, or follows a Taylor rule:

$$\log\left(R_{t}\right) = \rho_{r}\log\left(R_{t-1}\right) + (1 - \rho_{r})\left[\phi_{\pi}(\pi_{t} - \pi^{*}) + \phi_{y}(y_{t} - y_{t}^{e})\right] + \varepsilon_{r,t} \quad \varepsilon_{r,t} \sim N(0, \sigma_{r}^{2})$$

▶ Shocks: employment subsidy (τ_t) , TFP (A_t) , volatility (σ_t)

$$\log (A_t) = \rho_A \log (A_{t-1}) + \varepsilon_{A,t} \quad \varepsilon_{A,t} \sim N(0, \sigma_A^2)$$

$$\tau_t - \tau = \rho_\tau (\tau_{t-1} - \tau) + \varepsilon_{\tau,t} \quad \varepsilon_{\tau,t} \sim N(0, \sigma_\tau^2),$$

$$\log (\sigma_t / \sigma) = \rho_\sigma \log (\sigma_{t-1} / \sigma) + \varepsilon_{\sigma,t} \quad \varepsilon_{\sigma,t} \sim N(0, \sigma_\sigma^2)$$

Aggregation and market clearing

Aggregate price index

$$1=\int e^{p(1-\epsilon)}g_{t}\left(p\right) dp,$$

Labor market equilibrium

$$N_{t} = \frac{C_{t}}{A_{t}} \underbrace{\int e^{p(-\epsilon)} g_{t}(p) dp}_{\text{dispersion}} + \eta \underbrace{\int \lambda_{t}(p - \sigma_{t}\varepsilon - \pi_{t}) g_{t-1}(p) dp}_{\text{frequency}},$$

Law of motion of the price density

$$g_{t}(p) = \begin{cases} (1 - \lambda_{t}(p)) \int g_{t-1}(p + \sigma \varepsilon + \pi_{t}) d\xi(\varepsilon) & \text{if } p \neq p_{t}^{*}, \\ (1 - \lambda_{t}(p_{t}^{*})) \int g_{t-1}(p_{t}^{*} + \sigma \varepsilon + \pi_{t}) d\xi(\varepsilon) + \\ \int_{\underline{p}}^{\overline{p}} \lambda_{t}(\tilde{p}) \left(\int g_{t-1}(\tilde{p} + \sigma \varepsilon + \pi_{t}) d\xi(\varepsilon) \right) d\tilde{p} & \text{if } p = p_{t}^{*}. \end{cases}$$

The Ramsey problem

$$\max_{\left\{g_t^c(\cdot),g_t^0,V_t(\cdot),C_t,w_t,p_t^*,s_t,S_t,\pi_t^*\right\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u\left(C_t,\frac{C_t}{A_t} \left(\int e^{(x+p_t^*)(-\epsilon_t)} g_t^c\left(p\right) dx + g_t^0 e^{(p_t^*)(-\epsilon)}\right) + \eta g_t^0\right)$$

subject to

$$1 = \int e^{(x+p_t^*)(1-\epsilon)} g_t^c(x) \, dx + g_t^0 e^{(p_t^*)(1-\epsilon)},$$

$$V'_{t}(0) = \Pi'_{t}(x) + \frac{1}{\sigma} \Lambda_{t+1} \int_{s_{t+1}}^{S_{t+1}} V_{t+1}(x') \frac{\partial \phi \left(\frac{x - x' - \pi_{t}^{*}}{\sigma}\right)}{\partial x} dx' + \Lambda_{t+1} \left(\phi \left(\frac{S_{t+1} - \pi_{t}^{*}}{\sigma}\right) - \phi \left(\frac{s_{t+1} - \pi_{t}^{*}}{\sigma}\right)\right) \left(V_{t+1}(0) - \eta w_{t+1}\right),$$

$$V_{t}(s_{t}) = V_{t}(0) - \eta w_{t}.$$

$$V_t(S_t) = V_t(0) - \eta w_t$$

$$V_t(S_t) = V_t(0) - \eta w_t$$

$$w_t = vC_t^{\gamma}$$

$$V_{t}(x) = \Pi(x, p_{t}^{*}, w_{t}, A_{t}) + \Lambda_{t, t+1} \frac{1}{\sigma} \int_{s_{t}}^{S_{t}} \left[V_{t+1}(x') \phi\left(\frac{(x - x') - \pi_{t+1}^{*}}{\sigma}\right) \right] dx' + \Lambda_{t, t+1} \left(1 - \frac{1}{\sigma} \int_{s_{t}}^{S_{t}} \left[\phi\left(\frac{(x - x') - \pi_{t+1}^{*}}{\sigma}\right) \right] dx' \right) \left[(V_{t+1}(0) - \eta w_{t+1}) \right],$$

$$g_{t}^{c}(x) = \frac{1}{\sigma} \int_{s_{t-1}}^{S_{t-1}} g_{t-1}^{c}(x_{-1}) \phi\left(\frac{x_{-1} - x - \pi_{t}^{*}}{\sigma}\right) dx_{-1} + g_{t-1}^{0} \phi\left(\frac{-x - \pi_{t}^{*}}{\sigma}\right),$$

$$g_t^0 = 1 - \int_{s_t}^{S_t} g_t^c(x) dx.$$

Robustness

