In [1]:

```
#importing Python packages
import pandas as pd
import numpy as np
import matplotlib as mp
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
```

In [2]:

```
# Importing time series data from the local drive through creating dataframes
# (the original source: https://www.gapminder.org/data/)
# The economic time series data is on GDP, Gini index and Billionaires per 1M po
pulation for countries across the world
gdp_df = pd.read_csv(r'/Users/ainurartay/Desktop/DAND/project2/data (gapminder)/
gdppercapita_us_inflation_adjusted.csv')
gini_df = pd.read_csv(r'/Users/ainurartay/Desktop/DAND/project2/data (gapminde
r)/gini.csv')
bln_df = pd.read_csv(r'/Users/ainurartay/Desktop/DAND/project2/data (gapminder)/
dollar_billionaires_per_million_people.csv')
```

In [3]:

We start exploring the data by viewing the contents (structure, time range) of the dataframes using .head() function $gdp_df.head()$

Out[3]:

	country	1960	1961	1962	1963	1964	1965	1966	1967	1968	 2
0	Afghanistan	NaN	 4								
1	Albania	NaN	 37								
2	Algeria	2470.0	2080.0	1630.0	2130.0	2200.0	2280.0	2110.0	2240.0	2410.0	 43
3	Andorra	NaN	 439								
4	Angola	NaN	 35								

5 rows × 59 columns

In [4]:

gini_df.head()

Out[4]:

	country	1800	1801	1802	1803	1804	1805	1806	1807	1808	 2031	2032	2033
0	Afghanistan	30.5	30.5	30.5	30.5	30.5	30.5	30.5	30.5	30.5	 36.8	36.8	36.8
1	Albania	38.9	38.9	38.9	38.9	38.9	38.9	38.9	38.9	38.9	 29.0	29.0	29.0
2	Algeria	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.2	 27.6	27.6	27.6
3	Andorra	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	 40.0	40.0	40.0
4	Angola	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	 42.6	42.6	42.6

5 rows × 242 columns

In [5]:

bln_df.head()

Out[5]:

	country	2004	2005	2006	2007
0	Argentina	0.0255	0.0253	0.0250	0.0248
1	Australia	0.2510	0.2990	0.3450	0.5870
2	Austria	0.3670	0.4890	0.3660	0.3660
3	Belgium	0.0966	0.0965	0.1930	0.1930
4	Brazil	0.0326	0.0430	0.0851	0.1050

In [6]:

Exploring the data for completeness (nulls) and data types $gdp_df.info()$

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 190 entries, 0 to 189
Data columns (total 59 columns):
country
           190 non-null object
1960
           88 non-null float64
1961
           89 non-null float64
           89 non-null float64
1962
           89 non-null float64
1963
1964
           89 non-null float64
1965
           93 non-null float64
           96 non-null float64
1966
1967
           97 non-null float64
1968
           99 non-null float64
1969
           99 non-null float64
1970
           108 non-null float64
1971
           108 non-null float64
1972
           108 non-null float64
           108 non-null float64
1973
1974
           110 non-null float64
1975
           114 non-null float64
1976
           115 non-null float64
           120 non-null float64
1977
1978
           120 non-null float64
1979
           121 non-null float64
           132 non-null float64
1980
1981
           136 non-null float64
           138 non-null float64
1982
           138 non-null float64
1983
           140 non-null float64
1984
1985
           141 non-null float64
1986
           144 non-null float64
1987
           147 non-null float64
1988
           149 non-null float64
1989
           150 non-null float64
1990
           161 non-null float64
           162 non-null float64
1991
1992
           164 non-null float64
           165 non-null float64
1993
1994
           167 non-null float64
           176 non-null float64
1995
1996
           178 non-null float64
1997
           180 non-null float64
1998
           180 non-null float64
1999
           181 non-null float64
2000
           184 non-null float64
2001
           185 non-null float64
2002
           186 non-null float64
2003
           186 non-null float64
           186 non-null float64
2004
           186 non-null float64
2005
           186 non-null float64
2006
2007
           187 non-null float64
           187 non-null float64
2008
2009
           187 non-null float64
2010
           190 non-null int64
2011
           187 non-null float64
2012
           186 non-null float64
           186 non-null float64
2013
2014
           186 non-null float64
           185 non-null float64
2015
2016
           184 non-null float64
```

2017 183 non-null float64

dtypes: float64(57), int64(1), object(1)

memory usage: 87.7+ KB

In [7]:

#checking the completeness of the data
gdp_df.isnull().sum()

Out[7]:

country	0
1960	102
1961	101
1962	101
1963	101
1964	101
1965	97
1966	94
1967	93
1968	91
1969	91
1970	82
1971	82
1972	82
1973	82
1974	80
1975	76
1976	75
1977	70
1978	70
1979	69
1980	58
1981	54
1982	52
1983	52
1984	50
1985	49
1986	46
1987	43
1988	41
1989	40
1990	29
1991	28
1992	26
1993	25
1994	23
1995	14
1996	12
1997	10
1998	10
1999	9
2000	6
2001	5
2002	4
2003	4
2004	4
2005	4
2006	4
2007	
	3
2008	3
2009	3
2010	0
2011	3
2012	4
2013	4
2014	4
2014	5
2016	6

2017 7 dtype: int64

In [8]:

Creating a new (sub) data frame with selected 4 countries (China, South Korea,
United States, Venezuela).
"_mod" in the name of the data frame stands for "modified"
gdp_mod = gdp_df.loc[[35, 155, 181, 185], :]

In [9]:

Checking if the new data farme captures the right countires gdp mod

Out[9]:

	country	1960	1961	1962	1963	1964	1965	1966	1967	19
35	China	192.0	141.0	132.0	142.0	164.0	187.0	202.0	185.0	173
155	South Korea	944.0	980.0	989.0	1050.0	1120.0	1170.0	1280.0	1360.0	151C
181	United States	17000.0	17100.0	17900.0	18400.0	19200.0	20200.0	21300.0	21600.0	22400
185	Venezuela	12400.0	12400.0	12900.0	12900.0	13800.0	13900.0	13600.0	13500.0	1410C

4 rows × 59 columns

In [10]:

Doing the same for the 2 other data frames and limiting the time range for 196
0-2017 as in the gdp_mod dataframe
gini_mod = gini_df.loc[[35, 158, 186, 190], '1960' :'2017']

In [11]:

Checking the new dataframe gini_mod

Out[11]:

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	•••	2008	2009	2010	201
35	25.3	25.1	24.9	24.7	24.5	24.3	24.1	23.9	23.6	23.4		42.3	42.5	42.5	41
158	31.5	31.7	31.9	32.1	32.4	32.6	32.8	33.0	33.3	33.7		32.0	32.1	32.0	31
186	34.7	34.6	34.4	34.3	34.1	33.9	33.7	33.5	33.4	33.1		40.8	40.7	40.7	40
190	63.1	63.4	63.7	64.2	64.8	65.3	65.9	66.5	67.1	67.5		46.9	46.9	46.9	46

4 rows × 58 columns

In [12]:

```
# For convenience, I am transposing the dataframe. This transposed frame will be
used to plot a graph.
# "_t" in the name stands for "transposed"
gdp_mod_t=gdp_mod.transpose()
```

In [13]:

 $\begin{tabular}{ll} \# \ Checking \ the \ transposed \ dataframe \\ gdp_mod_t \end{tabular}$

	35	155	181	185
country	China	South Korea	United States	Venezuela
1960	192	944	17000	12400
1961	141	980	17100	12400
1962	132	989	17900	12900
1963	142	1050	18400	12900
1964	164	1120	19200	13800
1965	187	1170	20200	13900
1966	202	1280	21300	13600
1967	185	1360	21600	13500
1968	173	1510	22400	14100
1969	197	1690	22900	13700
1970	228	1820	23300	14300
1971	238	1970	23800	14100
1972	241	2070	24800	13900
1973	254	2330	25900	14500
1974	254	2510	25500	14400
1975	272	2660	25200	14400
1976	263	2960	26300	15100
1977	279	3280	27300	15600
1978	308	3570	28500	15500
1979	327	3820	29100	15200
1980	348	3700	28700	14100
1981	361	3900	29200	13700
1982	388	4160	28400	13100
1983	424	4640	29400	12200
1984	481	5070	31300	12100
1985	539	5410	32300	11800
1986	578	5950	33100	12300
1987	635	6630	34000	12400
1988	696	7350	35100	12800
1989	714	7780	36000	11400
1990	731	8460	36300	11800
1991	788	9250	35800	12700
1992	889	9720	36600	13100
1993	1000	10300	37100	12900
1994	1120	11100	38100	12300

	35	155	181	185
1995	1230	12100	38700	12500
1996	1340	12800	39700	12300
1997	1440	13500	41000	12800
1998	1540	12700	42300	12600
1999	1650	14000	43800	11600
2000	1770	15100	45100	11800
2001	1910	15700	45000	12000
2002	2070	16700	45400	10700
2003	2260	17100	46300	9710
2004	2470	17900	47600	11300
2005	2740	18600	48800	12200
2006	3070	19400	49600	13200
2007	3490	20400	50000	14100
2008	3810	20800	49400	14700
2009	4140	20800	47600	14000
2010	4560	22100	48400	13500
2011	4970	22700	48800	13900
2012	5340	23100	49500	14500
2013	5720	23700	50000	14500
2014	6110	24300	50900	13700
2015	6500	24900	51900	NaN
2016	6890	25500	52300	NaN
2017	7330	26200	53100	NaN

In [14]:

```
# Moving the first row with names of the countries as column names (next 3 lines
of code)
new_header = gdp_mod_t.iloc[0]
```

In [15]:

```
gpd_mod_t=gdp_mod_t[1:]
```

In [16]:

```
gdp_mod_t.columns=new_header
```

In [17]:

```
# Deleting the first row with the country names and the last 3 rows with null va
lues for Venezuela
gdp_mod_t.drop(['country', '2015', '2016', '2017'], inplace=True)
```

In [18]:

Checking the result
gdp_mod_t

country	China	South Korea	United States	Venezuela
1960	192	944	17000	12400
1961	141	980	17100	12400
1962	132	989	17900	12900
1963	142	1050	18400	12900
1964	164	1120	19200	13800
1965	187	1170	20200	13900
1966	202	1280	21300	13600
1967	185	1360	21600	13500
1968	173	1510	22400	14100
1969	197	1690	22900	13700
1970	228	1820	23300	14300
1971	238	1970	23800	14100
1972	241	2070	24800	13900
1973	254	2330	25900	14500
1974	254	2510	25500	14400
1975	272	2660	25200	14400
1976	263	2960	26300	15100
1977	279	3280	27300	15600
1978	308	3570	28500	15500
1979	327	3820	29100	15200
1980	348	3700	28700	14100
1981	361	3900	29200	13700
1982	388	4160	28400	13100
1983	424	4640	29400	12200
1984	481	5070	31300	12100
1985	539	5410	32300	11800
1986	578	5950	33100	12300
1987	635	6630	34000	12400
1988	696	7350	35100	12800
1989	714	7780	36000	11400
1990	731	8460	36300	11800
1991	788	9250	35800	12700
1992	889	9720	36600	13100
1993	1000	10300	37100	12900
1994	1120	11100	38100	12300
1995	1230	12100	38700	12500

country	China	South Korea	United States	Venezuela
1996	1340	12800	39700	12300
1997	1440	13500	41000	12800
1998	1540	12700	42300	12600
1999	1650	14000	43800	11600
2000	1770	15100	45100	11800
2001	1910	15700	45000	12000
2002	2070	16700	45400	10700
2003	2260	17100	46300	9710
2004	2470	17900	47600	11300
2005	2740	18600	48800	12200
2006	3070	19400	49600	13200
2007	3490	20400	50000	14100
2008	3810	20800	49400	14700
2009	4140	20800	47600	14000
2010	4560	22100	48400	13500
2011	4970	22700	48800	13900
2012	5340	23100	49500	14500
2013	5720	23700	50000	14500
2014	6110	24300	50900	13700

In [19]:

Similar manipulation for Gini index and Billionaires per 1M population
gini_mod_t=gini_mod.transpose()

In [20]:

```
# Renameing the column names from indeces to country names
gini_mod_t.rename(columns={35:'China', 158:'South Korea', 186:'United States', 1
90:'Venezuela'}, inplace=True)
```

In [21]:

gini_mod_t

	China	South Korea	United States	Venezuela
1960	25.3	31.5	34.7	63.1
1961	25.1	31.7	34.6	63.4
1962	24.9	31.9	34.4	63.7
1963	24.7	32.1	34.3	64.2
1964	24.5	32.4	34.1	64.8
1965	24.3	32.6	33.9	65.3
1966	24.1	32.8	33.7	65.9
1967	23.9	33.0	33.5	66.5
1968	23.6	33.3	33.4	67.1
1969	23.4	33.7	33.1	67.5
1970	23.3	34.1	33.0	67.3
1971	23.3	34.5	32.9	66.7
1972	23.4	35.0	32.7	65.7
1973	23.5	35.6	32.7	64.3
1974	23.6	36.2	32.8	62.9
1975	23.8	36.8	32.9	61.6
1976	23.9	37.4	33.3	60.2
1977	24.0	37.9	33.7	58.8
1978	24.2	38.5	34.1	57.4
1979	24.3	38.9	34.6	56.5
1980	24.5	39.0	35.0	55.8
1981	24.8	38.9	35.4	55.3
1982	25.0	38.6	35.8	55.0
1983	25.4	38.1	36.3	54.9
1984	26.0	37.6	36.7	54.5
1985	26.7	37.0	37.0	54.2
1986	27.6	36.5	37.4	53.1
1987	28.7	36.0	37.6	51.2
1988	29.8	35.4	37.8	49.3
1989	30.9	35.0	38.0	47.2
1990	32.0	34.5	38.2	45.0
1991	33.0	34.1	38.6	44.0
1992	33.9	33.8	39.0	44.1
1993	34.5	33.5	39.5	44.8
1994	35.1	33.2	39.9	45.8
1995	35.7	32.9	40.3	47.2

	China	South Korea	United States	Venezuela
1996	36.2	32.6	40.5	48.3
1997	36.9	32.3	40.6	48.7
1998	37.6	32.0	40.6	48.8
1999	38.5	31.8	40.5	48.8
2000	39.3	31.7	40.5	49.0
2001	40.0	31.8	40.5	49.1
2002	40.4	31.9	40.5	49.4
2003	40.7	31.9	40.5	50.3
2004	40.9	32.0	40.6	50.0
2005	41.1	32.0	40.7	49.3
2006	41.5	32.0	40.8	48.6
2007	41.9	32.0	40.8	48.0
2008	42.3	32.0	40.8	46.9
2009	42.5	32.1	40.7	46.9
2010	42.5	32.0	40.7	46.9
2011	41.9	31.8	40.7	46.9
2012	41.3	31.7	40.8	46.9
2013	40.6	31.6	41.0	46.9
2014	40.0	31.6	41.2	46.9
2015	39.4	31.6	41.3	46.9
2016	39.2	31.6	41.4	46.9
2017	39.1	31.6	41.5	46.9

In [22]:

For comparability, dropping the last 3 years from the data frame
gini_mod_t.drop(['2015','2016','2017'])

	China	South Korea	United States	Venezuela
1960	25.3	31.5	34.7	63.1
1961	25.1	31.7	34.6	63.4
1962	24.9	31.9	34.4	63.7
1963	24.7	32.1	34.3	64.2
1964	24.5	32.4	34.1	64.8
1965	24.3	32.6	33.9	65.3
1966	24.1	32.8	33.7	65.9
1967	23.9	33.0	33.5	66.5
1968	23.6	33.3	33.4	67.1
1969	23.4	33.7	33.1	67.5
1970	23.3	34.1	33.0	67.3
1971	23.3	34.5	32.9	66.7
1972	23.4	35.0	32.7	65.7
1973	23.5	35.6	32.7	64.3
1974	23.6	36.2	32.8	62.9
1975	23.8	36.8	32.9	61.6
1976	23.9	37.4	33.3	60.2
1977	24.0	37.9	33.7	58.8
1978	24.2	38.5	34.1	57.4
1979	24.3	38.9	34.6	56.5
1980	24.5	39.0	35.0	55.8
1981	24.8	38.9	35.4	55.3
1982	25.0	38.6	35.8	55.0
1983	25.4	38.1	36.3	54.9
1984	26.0	37.6	36.7	54.5
1985	26.7	37.0	37.0	54.2
1986	27.6	36.5	37.4	53.1
1987	28.7	36.0	37.6	51.2
1988	29.8	35.4	37.8	49.3
1989	30.9	35.0	38.0	47.2
1990	32.0	34.5	38.2	45.0
1991	33.0	34.1	38.6	44.0
1992	33.9	33.8	39.0	44.1
1993	34.5	33.5	39.5	44.8
1994	35.1	33.2	39.9	45.8
1995	35.7	32.9	40.3	47.2

	China	South Korea	United States	Venezuela
1996	36.2	32.6	40.5	48.3
1997	36.9	32.3	40.6	48.7
1998	37.6	32.0	40.6	48.8
1999	38.5	31.8	40.5	48.8
2000	39.3	31.7	40.5	49.0
2001	40.0	31.8	40.5	49.1
2002	40.4	31.9	40.5	49.4
2003	40.7	31.9	40.5	50.3
2004	40.9	32.0	40.6	50.0
2005	41.1	32.0	40.7	49.3
2006	41.5	32.0	40.8	48.6
2007	41.9	32.0	40.8	48.0
2008	42.3	32.0	40.8	46.9
2009	42.5	32.1	40.7	46.9
2010	42.5	32.0	40.7	46.9
2011	41.9	31.8	40.7	46.9
2012	41.3	31.7	40.8	46.9
2013	40.6	31.6	41.0	46.9
2014	40.0	31.6	41.2	46.9

In [23]:

```
# Checking info in the new data frame
gdp_mod_t.info()
```

dtypes: object(4)
memory usage: 2.1+ KB

In [24]:

```
# Plotting line graphs for 4 countries to see the GDP trends.
# Upward movement for all except for Venezuela
gdp_mod_t.plot()
```

Out[24]:

<matplotlib.axes. subplots.AxesSubplot at 0x1a1bc71470>

In [25]:

```
# Visualizing Gini index trends
gini_mod_t.plot()
```

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x10e3e6710>

In [26]:

```
# Manipulating the data on billionaires per 1M population -- selecting the 4 cou
ntires into a new dataframe
# and transposing the dataframe
bln_mod_t=(bln_df.loc[[7, 43, 52, 53], :]).transpose()
```

In [27]:

```
# Checking the dataframe
bln_mod_t
```

Out[27]:

	7	43	52	53
country	China	South Korea	United States	Venezuela
2004	0.00077	0.0413	0.945	0.0799
2005	0.00153	0.0617	1.15	0.0788
2006	0.0061	0.0819	1.24	0.0777
2007	0.0152	0.204	1.38	0.0767

In [28]:

```
# Renaming the column names from indeces to appropriate country names
bln_mod_t.columns=['China', 'South Korea', 'United States', 'Venezuela']
```

In [29]:

```
# Dropping the first row (non-numerical)
bln mod t=bln mod t.drop('country')
```

In [30]:

```
# Checking the new dataframe
bln mod t.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 4 entries, 2004 to 2007
Data columns (total 4 columns):
China
                4 non-null object
South Korea
               4 non-null object
United States
               4 non-null object
                4 non-null object
Venezuela
dtypes: object(4)
```

memory usage: 160.0+ bytes

In [31]:

Visualizing the data on billionaires per 1M population $bln_mod_t.plot()$

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x10efd67f0>

In []: