Opracowanie Zadania 4: Modelowanie i Symulacja Obiektu Stabilizacji Temperatury

Wprowadzenie

Celem niniejszego sprawozdania jest przedstawienie procesu modelowania i symulacji obiektu stabilizacji temperatury w Matlab/Simulink. Zadanie skupia się na analizie wpływu różnych scenariuszy na model obiektu stabilizacji temperatury.

Zadanie 1: Tworzenie Modelu Bazowego

Cel: Implementacja modelu obiektu stabilizacji temperatury z transmitancją c=2, d=4 **Implementacja Modelu:**

Zadanie 2: Symulacja Bez Ogrzewania przy Zmianie Temperatury Zewnętrznej

Cel: Symulacja modelu przy wyłączonym ogrzewaniu i spadku temperatury zewnętrznej z 0°C do -2°C w drugiej sekundzie.

Implementacja Scenariusza:

Wygenerowany Wykres:

Komentarz: Zgodnie z przewidywaniami temperatura wewnętrzna zaczęła maleć od drugiej sekundy, osiągając -2°C i pozostając na tym poziomie.

Zadanie 3: Symulacja z Zwiększonym Oporze Cieplnym Ścian

Cel: Modyfikacja modelu o dwukrotnie większym oporze cieplnym ścian.

Implementacja Scenariusza:

Wygenerowany Wykres:

Komentarz: W tej symulacji temperatura osiągnęła -2°C wolniej niż w poprzednim scenariuszu, co jest wynikiem zwiększonego oporu cieplnego ścian spowalniającego proces wychładzania.

Zadanie 4: Symulacja ze Zwiększoną Kubaturą Pomieszczenia

Cel: Zmodyfikowanie modelu tak, aby odzwierciedlał obiekt 2x wyższy i 2x dłuższy **Implementacja Scenariusza:**

Wygenerowany Wykres:

Komentarz: Temperatura osiągnęła -2°C znacznie dłużej niż w poprzednich symulacjach (25s), co odpowiada zwiększonej kubaturze pomieszczenia czterokrotnie.

Zadanie 5: Symulacja z Włączonym Ogrzewaniem

Cel: Symulacja modelu z włączonym ogrzewaniem o mocy 1 w 3. sekundzie symulacji.

Implementacja Scenariusza:

Wygenerowany Wykres:

Komentarz: Temperatura zaczęła spadać w drugiej sekundzie, w trzeciej sekundzie spadek został spowolniony przez włączone ogrzewanie. Ostatecznie temperatura ustabilizowała się na -1.5°C, gdzie moc wychładzania i ogrzewania się równoważyły.

Zadanie 6: Znalezienie Optymalnej Mocy Ogrzewania

Cel: Eksperymentalne znalezienie mocy ogrzewania umożliwiającej powrót do temperatury początkowej.

Implementacja Scenariusza:

Wygenerowany Wykres:

Komentarz: Moc ogrzewania na poziomie 4 pozwoliła na powrót temperatury do wartości 0°C. Proces ogrzewania trwał (25s), po czym temperatura ustabilizowała się na początkowym poziomie.

Wnioski

Realizacja zadania pozwoliła na zrozumienie wpływu różnych czynników, takich jak opór cieplny ścian, kubatura pomieszczenia czy moc ogrzewania, na proces stabilizacji temperatury w modelowanym obiekcie. Symulacje pokazały, jak ważne jest uwzględnianie tych parametrów przy projektowaniu systemów stabilizacji temperatury.