Squeezing water from a stone

A brief overview of lattice QCD

Jonas Rylund Glesaaen jonas@glesaaen.com

April 19th 2021

A bit about me

Background

- NTNU: Master's in physics
- Frankfurt: PhD in Lattice QCD
- Swansea: Postdoc Lattice QCD
- Oslo: Software development

Lattice QCD

Quantum Chromo Dynamics

Theoretical description of the strong nuclear force

It binds matter together at the subatomic level

Lattice QCD

Basically we just put on a (HUGE) lattice

The important equations

$$S = \int \mathrm{d}^4 x \, ar{\psi}(x) Q \, \psi(x) + \mathcal{L}_g[\mathit{U}(x)]$$

The important equations

$$S = \int \mathrm{d}^4 x \, ar{\psi}(x) Q \, \psi(x) + \mathcal{L}_g[\mathit{U}(x)]$$
 $\mathcal{Z} = \int \mathrm{D} \psi \mathrm{D} \mathit{U} \, e^{-\mathit{S}[\psi,U]}$

The important equations

$$S = \int \mathrm{d}^4 x \, ar{\psi}(x) Q \, \psi(x) + \mathcal{L}_g[\mathit{U}(x)]$$
 $\mathcal{Z} = \int \mathrm{D} \psi \mathrm{D} \mathit{U} \, e^{-S[\psi,U]}$

 $\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathrm{D}\psi \mathrm{D}U \mathcal{O}[\psi, U] \, e^{-S[\psi, U]}$

Discretisation

$$S \rightarrow \sum_{i,j} \bar{\psi}(x_i) Q_{i,j}[U] \psi(x_j) + \mathcal{L}_g[U(x_i)]$$

Discretisation

$$S \rightarrow \sum_{i,j} \bar{\psi}(x_i) Q_{i,j}[U] \psi(x_j) + \mathcal{L}_g[U(x_i)]$$

$$\mathcal{Z} = \int \mathrm{D}\psi \mathrm{D}U e^{-S[\psi,U]} = \int \mathrm{D}U \mathrm{det}(Q) e^{-\sum \mathcal{L}_g[U(x)]}$$

Monte Carlo Integration

Monte Carlo integration

$$\pi \approx 4 \cdot \frac{1609}{2000} = 3.21799$$

The QCD Integrand

The QCD Integrand

Redefining the problem

$$\langle \mathcal{O} \rangle = \int \mathrm{D} U \mathcal{O}[U] \frac{1}{\underline{\mathcal{Z}}} e^{-S[U]} = \int \mathrm{D} U \mathcal{O}[U] \mathcal{P}[U]$$
Probability density

Integral over U can be stochastically estimated.

$$\langle \mathcal{O} \,
angle pprox rac{1}{N} \sum_k \mathcal{O}[U_k]$$
 Distributed $\propto \mathcal{P}$

Markov Chains

$$U_1 \xrightarrow{\propto \mathcal{P}} U_2 \xrightarrow{\propto \mathcal{P}} U_3 \xrightarrow{\propto \mathcal{P}} U_4 \xrightarrow{\propto \mathcal{P}} \cdots$$

Markov Chains

$$U_1 \xrightarrow{\propto \mathcal{P}} U_2 \xrightarrow{\propto \mathcal{P}} U_3 \xrightarrow{\propto \mathcal{P}} U_4 \xrightarrow{\propto \mathcal{P}} \cdots$$

The distribution can be achieved with a Metropolis accept-reject step

$$p = \min igl\{ 1, \mathcal{P}[U_k{'}]/\mathcal{P}[U_k] igr\}$$

Markov Chains

$$U_1 \xrightarrow{\propto \mathcal{P}} U_2 \xrightarrow{\propto \mathcal{P}} U_3 \xrightarrow{\propto \mathcal{P}} U_4 \xrightarrow{\propto \mathcal{P}} \cdots$$

The distribution can be achieved with a Metropolis accept-reject step

$$p = \min igl\{ 1, \mathcal{P}[U_k{'}]/\mathcal{P}[U_k] igr\}$$

But the evaluation if this is very expensive...

 $VOL \times N_d \times N_c$

We need to solve this matrix equation many many many times

Our low temperature lattices are:

$$256 \times 32^3 \times 4 \times 3 \sim 10^8$$

 $VOL \times N_d \times N_c$

Configuration updates

Configuration updates

Configuration updates (random)

Configuration updates (directed)

Clever algorithms

- Langevin algorithm (1981)
 Seepest descent + Gaussian noise
- Moleculare Dynamics algorithm (1983)
 Additional stochastic variables + Hamilton's equations
- Hybrid Monte Carlo (1987)
 Combine Langevin and MD with Metropolis accept-reject

Measurements

Configurations

Each configuration consists of $(4 \cdot 18 \cdot \mathrm{VOL})$ numbers.

Configurations

Low temperature configuration is 4.5 GB

Hadron spectroscopy

Results

Phase diagram of QCD

Baryon parity breaking

Mass: 938 MeV

Mass: 1535 MeV

Baryon parity restoration

Conclusion

Questions?