Habilitando um Prédio a Localizar Contextualmente Dispositivos Utilizando Redes Sem Fio

Luís Henrique Puhl

Agenda

- A Escolha do tema
- A Hipótese
- A Pesquisa
- Exploração
 - Plataformas
 - Modo monitor
 - Potência de sinal
 - Localização contextual
 - Resultados

- Construção da aplicação
 - Arquitetura geral
 - Apresentação Web
- Conclusão
- Trabalhos futuros

A escolha do tema

O crescimento da internet em geral tem sido exponencial desde sua criação.

A mais nova parte da internet são os pequenos dispositivos e objetos diários que ganharam novas funcionalidades informativas, comunicacionais e computacionais.

A escolha do tema

É previsto que 26 bilhões de dispositivos estejam conectados até 2020.

São até 5 dispositivos por pessoa no planeta.

A maioria das coisas que utilizamos no dia a dia utiliza conexão sem fio.

Estas coisas são úteis somente quando as encontramos

A interação com cada um destas coisas depende de contato virtual ou físico. Encontrar e manter contato com tantas coisas é um desafio.

É possível saber o contexto ou localização de um dispositivo apenas com o resíduo de sua comunicação sem fio?

A pesquisa

Foi realizada busca bibliográfica que revelou uma área jovem e algumas implementações semelhantes.

Optou-se por fazer a localização contextual

Para alcançar o objetivo com baixo custo optou-se por plataformas IoT que oferecem as funcionalidades mínimas necessárias.

Exploração do tema

Método de exploração

Foram testadas plataformas e construída uma aplicação demonstrativa.

- Pesquisa de plataformas no mercado local;
- Escolha e aquisição das mais favoráveis;
- Teste de 'modo monitor';
- Teste de RSS;
- Implementação da aplicação sensor, distribuidor e apresentação;

Plataformas exploradas

ESP8266

- ESP-01;
- o ESP-12e (PCB, LoLin, D1 mini);
- Arduino IDE;
- NodeMCU;
- o PFalcon e Espressif SDK.

Raspberry Pi

- Onboard;
- D-Link;
- Ralink (EDUP);

Modo monitor

O Modo Monitor de Radio Frequência permite que um computador com uma interface de comunicação sem fio monitore todo tráfego de redes sem fio.

Ou seja, o dispositivo em modo monitor recebe todos os pacotes ao seu alcance que trafegam em redes sem fio mesmo que este computador não pertença a conversa ou a rede em que ela se passa.

Somente o Raspberry Pi 3 com o adaptador Ralink permitem modo monitor.

Sobre potência de sinal recebido (RSS)

Durante 8 horas todos os pacotes de 2 APs fixos foram capturados

O sensor mostrou o comportamento que era empiricamente esperado

- Nenhum valor par;
- Cinco valores 'constantes' durante toda leitura;
- Valores muito fora do 'padrão'.

RSSI - Potência de Sinal Recebido

Em telecomunicações, *Received Signal Strength Indicator* é a medida de potência presente num sinal de rádio recebido.

Normalmente ela é invisível ao usuário porém, como a potência de sinal pode variar significativamente e afetar a funcionalidade da rede no caso do padrão IEEE 802.11 este valor é medido e disponibilizado ao usuário.

Teste de RSS - Estático

					sens	sor 1 - 06	5:27:22:b3:e5:f	е			
0	37	500	750	000 11	2500	150	000	187500	225000 2	62500 3	300000
								•••		••••	
						•		000000000000000000000000000000000000000			-
											-
											•
					• • • •			•••••	CD CO		
	•• •	•	• •		•	•	•	• •			
000			• • • • • • • • • • • • • • • • • • • •	0 000 00000 00	****				•		
6									•	• • •	
								•	•		•
				• •		000	•	• 000000		•	•
				•	• •	•		CHEMINO	0 0		
	• •		•	•					•	• • •	
	•	•		• •	•			• • •	0000 000 0	CD 000 C	-
	•		•	•				-	000 00000 0		
			S. •	•				•	000 0 00 0		-
		•					•				
								•		•	
								000 0	00 0 00	•	250
							•	• •	•••••	• • • • • • • • • • • • • • • • • • • •	
					•				• •	•	

				sensor 2 - 06	5:27:22:b3:e5:fe			
10	0 37	500 750	000 112	500 150	000 187	500 22	5000 262	2500 300000
14					• •	•		
16			nen a					
0						• • • • • • • • • • • • • • • • • • • •		
2		•	•	-/-	•	•		
5		2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
3	4							
0	•••			• •	•	• •••	•	
4				•	•			•
6								
0				•		•		
2				15.				
3	•	•	•	•				
2	•							
1	•						•	•
6		•						•
8								
0								

Com a precisão deste sensor não é possível estimar distâncias com FSPL

Free Space Path Loss - queda de potência em espaço aberto

É possível a Localização Contextual?

Para um dispositivo móvel entre dois sensores em duas salas distintas

- Dois sensores em salas distintas;
- Um smartphone em duas posições distintas;
- Uma aplicação que provocasse o uso de Wi-Fi;
- 10 minutos de captura.

Teste com smartphone

Primeiro teste

Maior potência recebida no sensor 1 em relação ao 2

Segundo teste

Maior potência recebida no sensor 2 em relação ao 1

Apesar de não estimar distância com qualidade, pode-se estimar o contexto

O que encontrei

O que aprendi depois dos testes?

- 1. Plataformas são complicadas;
- 2. Alguns adaptadores funcionam;
- Com a plataforma e sensor funcionando a distribuição e apresentação são simples.

Custo da implementação por plataforma

Sensor								
Plataforma	Raspberr	ry Pi	ESP8266					
Item	Descrição	Custo em R\$	Descrição	Custo em R\$				
Plataforma	RPI3	269,99	D1 mini (ESP-12f)	12,56				
Fonte de alimentação	Fonte Usb iPad	13,99	Fonte Usb Celular com cabo	7,85				
	Cabo Usb A-micro	2,00						
Adaptador Wi-Fi	Edup Usb	16,88						
Memória	SD c10 16GB	21,99						
Total por Sensor		324,85		20,41				

Fonte: Produzido pelo autor.

Construção da Aplicação

Arquitetura geral da aplicação

Apresentação das informações dos sensores

Conclusão

A exploração foi bem sucedida: Foram analisadas duas plataformas muito distintas que são encontradas no mercado local.

Foi confirmado que a localização geográfica através de vestígios de comunicação WiFi (FSPL) não é preciso.

Foi demonstrada a construção da aplicação IoT de localização contextual com características desejáveis.

O que fazer a seguir?

A implementação em uma plataforma com menor custo (ESP8266) é o atual desafio para este tipo de aplicação

