

Analysing Diffraction Data of La_{2-x}Sr_xCuO_{4+y} Using McStas Virtual Experiments

Linda Udby

@ Risø DTU

& @ Copenhagen University

- Sr doping: T_M peaking at $n_h \sim 1/8$. T_c peaking at $n_h \sim 0.16$
- (High) O doping: $T_M = T_c = 40$ K. Staging for y > 0.06
- Sr + O doping: $T_M = T_c = 40$ K. Staging for x < 0.06

H.E. Mohottala et al, Nature Materials 5 377

Undoped AFM:

LSCO+O:

LNSCO IC AFM:

N.B. Christensen et al. PRL 98 (2007) J.M. Tranguada et al (1995-)

х	$\delta_H[\text{rlu}]$	$\delta_K[rlu]$
0	0.130(3)	0.125(3)
0.04	0.124(3)	0.124(3)
0.065	0.122(3)	0.122(3)
0.09	0.115(3)	0.123(3)

$$x = 0.065 (x = 0.04)$$

5% diff in proj of moment

but > 50% int diff high/low Q

$$\begin{array}{lcl} \frac{\mathrm{d}\sigma_{M}}{\mathrm{d}\Omega}(\mathbf{Q}) & = & N\frac{2\pi}{V_{0}}\sum_{\tau}|pf(\mathbf{Q})w^{-W}|^{2}|F_{M\perp}(\mathbf{Q})|^{2}\delta(\mathbf{Q}-\tau) \\ F_{M\perp}(\mathbf{Q}) & = & \mathbf{Q}\times(F_{M\perp}(\mathbf{Q})\times\mathbf{Q})) \\ F_{M}(\mathbf{Q}) & = & \sum_{\sigma}m_{\sigma}e^{i\mathbf{Q}\cdot\mathbf{r}}d \end{array}$$

 The intensity difference in high/low Q peaks is qualitatively explained by a model with stripes in 3 layers.

LCO:

LSCO+O:

• Staging number = $1/\delta_L$

х	Staging number
0	3.8
0.04	5.5
0.065	disordered tilts
0.09	none

- The staging number increases with Sr content
- Decreasing O content with increasing staging number

- Intensity cross-section
- Position periodicity
- Width domain size

- Intensity cross-section
- Position periodicity
- Width domain size
- But often hard to know the resolution in detail in order to deconvolute domain size
- Would be nice to have resolution limited linescans for comparison

- Intensity cross-section
- Position periodicity
- Width domain size
- But often hard to know the resolution in detail in order to deconvolute domain size
- Would be nice to have resolution limited linescans for comparison
- Virtual experiments on homogenous samples!

- Test instrument on powder 2 θ scan
- ■Test instrument energy resolution on Vanadium

- Find sample mosaicity vs. rocking curve
- Find uncertainty in lattice parameter vs longitudinal scan

- Perform VE corresponding to diffraction data
- Deconvolute correlation length

Linda Udby, RisøDTU

Effective instrumental resolution and thereby the linewidth of a particular scan depends on

- Divergence of the beam before the monochromator: Size of source, geometry and m-values of guide elements
 - Mosaicity of the monochromator listed by producer as 37'
 - Mosaicity of the analyser
- Geometrical factors: Sizes of components
 and distances between them
- Divergence of collimators

found

- Point-spread function of the position sensitive detector (PSD)
- Absolute energy of the incoming and scattered beam
- Sample parameters
- shape/size (all samples including incoherent scatterer, powder, single-crystal)
 - particle size in sample (powder)
 - mosaicity and uncertainty in lattice parameters (single-crystal)

The samples in the virtual experiments are homogeneous and by deconvoluting the effective resolution the linewidth broadening due to finite size effect is

PowderN sample

McStas
 RITA-II

Fundamental reflections (020) and (-200) used to set mosaicity and $\frac{\Delta d}{d}$

Simulated (resolution) width agrees within 5% of measured

• The IC AFM peak is narrow and close to resolution limited...

The IC AFM peak is narrow and close to resolution limited...
 but effects larger than 10% are observable by McStas VE

IC AFM broadened:

Fit to Voigt lw=0.006(2)
$$\mathring{A}^{-1} \Rightarrow$$
 Corr. = 340 \pm 130 \mathring{A}

Fit to Gaussian
$$w = \sqrt{w_m^2 - w_r^2}$$
 w=0.010Å $^{-1}$ $\Rightarrow \frac{2\pi}{w} \sim 610\pm140$ Å

The IC AFM peak is narrow and close to resolution limited...
 but effects larger than 10% are observable by McStas VE

Bmab broadened: w=0.034 Å $^{-1}$ Domain size $\frac{2\pi}{w}\sim$ 185 \pm 30 Å

Staging broadened: w=0.064 Å $^{-1}$ Domain size $\frac{2\pi}{w}\sim$ 100 \pm 8 Å

Bmab broadened: w=0.034 Å⁻¹ Domain size $\frac{2\pi}{w} \sim 185 \pm 30$ Å

Staging broadened: w=0.064 Å $^{-1}$ Domain size $\frac{2\pi}{w}\sim$ 100 \pm 8 Å

 Mcstas VE is a useful tool when there is no instrumentally resolved peak in the vicinity

I would like to thank my coworkers:

- UConn: Barret O. Wells, Hashini E. Mohottala, Samuel B. Emery
- McStas: Peter K. Willendrup, Erik Knudsen, Kim Lefmann, Emmanuel Farhi
- Risø DTU: Niels H Andersen, Thomas B.S. Jensen, Asger B. Abrahamsen and Bente Lebech
- PSI: Niels B. Christensen, Christof Niedermayer

PLEASE VISIT OUR POSTER 11.2 IN THE POSTER SESSION TUESDAY AFTERNOON!

THANK YOU FOR LISTENING!

