Zadaci prve domaće zadaće iz Fizike 2

- **1 Zadatak:** Bakreni štap duljine $\ell = 1$ m obješen je jednim krajem o strop. Odredite koliko će se štap produljiti zbog djelovanja sile teže. (Youngov modul bakra E = 130 GPa, gustoća bakra $\rho = 8960$ kg m⁻³, ubrzanje gravitacijske sile g = 9.81 m s⁻².)
- **2 Zadatak:** Odredite dubinu na kojoj će uslijed hidrostatskog tlaka gustoća slatke vode porasti za $\delta = 1\%$ u odnosu na gustoću vode na površini. (Kompresibilnost vode $\kappa = 4.9 \times 10^{-10} \, \mathrm{Pa}^{-1}$, gustoća vode pri atmosferskom tlaku (na površini) $\rho = 1000 \, \mathrm{kg \, m}^{-3}$, ubrzanje gravitacijske sile $q = 9.81 \, \mathrm{m \, s}^{-2}$.)
- 3 Zadatak: Čelična žica promjera $d=1\,\mathrm{mm}$ razvučena je između dva zida razmaka $\ell=2\,\mathrm{m}$. Žica je vodoravna, krajevi su učvršćeni, a njena napetost je zanemariva. Ako na sredinu žice objesimo uteg mase $m=0.25\,\mathrm{kg}$ odredite koliko će se sredina žice spustiti. (Youngov modul čelika $E=200\,\mathrm{GPa}$, ubrzanje gravitacijske sile $g=9.81\,\mathrm{m\,s^{-2}}$.)
- **4 Zadatak:** Odredite količinu energije potrebnu da čeličnu žicu promjera $d=1\,\mathrm{mm}$ i duljine $\ell=2\,\mathrm{m}$ produljimo za $\Delta\ell=1\,\mathrm{mm}$. (Youngov modul čelika $E=200\,\mathrm{GPa}$.)
- **5 Zadatak:** Najveća elongacija (pomak u odnosu na ravnotežni položaj) točke koja harmonijski titra iznosi $x_{\text{max}} = 5 \,\text{cm}$, a najveća brzina koju točka postiže iznosi $v_{\text{max}} = 12 \,\text{cm s}^{-1}$. Odredite iznos brzine u trenutku kada je elongacija $x = 3 \,\text{cm}$.
- 6 Zadatak: Opruga opterećena težinom utega produlji se za $\Delta x_1 = 4 \,\mathrm{cm}$. Druga opruga opterećena istim utegom produlji se za $\Delta x_2 = 6 \,\mathrm{cm}$. Odredite period titranja oscilatora sastavljenog od te dvije opruge spojene u seriju i tog utega. (Ubrzanje gravitacijske sile $g = 9.81 \,\mathrm{m\,s^{-2}}$.)
- 7 Zadatak: Uteg leži na vodoravnoj podlozi koja titra u vodoravnom smjeru frekvencijom f = 2 Hz. Ako je koeficijent trenja između utega i podloge $\mu = 0.8$, odredite maksimalnu amplitudu titranja podloge pri kojoj još ne dolazi do proklizavanja utega. (Ubrzanje gravitacijske sile $g = 9.81 \,\mathrm{m\,s^{-2}}$.)
- 8 Zadatak: Voda se nalazi u cijevi oblika slova 'U' površine poprečnog presjeka $S=1\,\mathrm{cm}^2$. Ako se u cijevi nalazi $m=20\,\mathrm{g}$ vode odredite period titranja nivoa vode. Pretpostavite da je obujam koljena cijevi zanemariv te da nema trenja pri protjecanju vode kroz cijev. (Gustoća vode $\rho=1000\,\mathrm{kg}\,\mathrm{m}^{-3}$, ubrzanje gravitacijske sile $q=9.81\,\mathrm{m}\,\mathrm{s}^{-2}$.)
- 9 Zadatak: Homogena kugla polumjera $r=5\,\mathrm{cm}$ obješena je za konac dugačak $d=10\,\mathrm{cm}$ (kraj konca učvršćen je za točku na površini kugle.) Odredite relativnu pogrešku koju napravimo pri računanju perioda pretpostavimo li da se radi o matematičkom njihalu duljine $\ell=r+d=15\,\mathrm{cm}$.
- 10 Zadatak: Položaj čestice u x, y ravnini opisan je funkcijama $x(t) = A \sin(\omega t)$ i $y(t) = A \cos(2\omega t)$. Odredi maksimalnu brzinu koju čestica postiže.
- 11 Zadatak: Matematičko njihalo duljine ℓ obješeno je u kolicima koja bez trenja kližu niz kosinu kuta nagiba α . Masa njihala neznatna je u odnosu na masu kolica. Odredite period malih oscilacija njihala.

- 12 Zadatak: Odredite na kojoj udaljenosti od središta homogenog štapa duljine ℓ treba postaviti vodoravnu os rotacije da bi period njegovih malih oscilacija bio najmanji.
- 13 Zadatak: Amplitude brzine prisilnih oscilacija pri $f_1 = 200 \,\mathrm{Hz}$ i $f_2 = 300 \,\mathrm{Hz}$ su jednake. Ako je amplituda vanjske sile u oba slučaja ista, pronadite rezonantnu frekvenciju oscilatora.
- 14 Zadatak: Čestica izvodi prigušeno titranje s logaritamskim dekrementom prigušenja $\lambda = 0.002$. Odredi ukupni put koji čestica pređe do konačnog zaustavljanja ako je puštena u gibanje iz mirovanja pri otklonu $x_0 = 1$ mm u odnosu na ravnotežni položaj?
- 15 Zadatak: Koordinate triju uzastopnih krajnjih položaja čestice koja prigušeno titra su $x_1 = 20 \,\mathrm{cm}, \, x_2 = 5.6 \,\mathrm{cm}$ i $x_3 = 12.8 \,\mathrm{cm}$. Odredite koordinatu ravnotežnog položaja.
- 16 Zadatak: Amplituda prisilnih oscilacija uzrokovanih periodičnom silom amplitude F pri vrlo maloj frekvenciji iznosi $A_0 = 2 \,\mathrm{mm}$, a u rezonanciji $A_{\mathrm{rez.}} = 16 \,\mathrm{mm}$. Odredite logaritamski dekrement prigušenja.
- 17 Zadatak: Matematičko njihalo se giba u mediju zbog kojeg logaritamski dekrement prigušenja iznosi $\lambda=1.5$. Koliko puta treba povećati otpor medija da bi harmoničko titranje postalo nemoguće?
- 18 Zadatak: Na užetu titra stojni val pri čemu su točke koje titraju amplitudom $a=3\,\mathrm{mm}$ razmaknute $\Delta_1=3\,\mathrm{cm}$ i $\Delta_2=7\,\mathrm{cm}$. Odredite maksimalnu amplitudu titranja tog stojnog vala.
- 19 Zadatak: Čelična žica promjera d=1 mm i duljine $\ell=3$ m razapeta je između dva zida tako da joj je osnovna frekvencija (transverzalnog) titranja $f=200\,\mathrm{Hz}$. Ako žica titra tom frekvencijom s maksimalnom amplitudom $a=2\,\mathrm{cm}$, odredite ukupnu energiju titranja te žice. (Gustoća čelika $\rho=7800\,\mathrm{kg}\,\mathrm{m}^{-3}$.)
- **20 Zadatak:** Avion leti vodoravno na visini $h=4\,\mathrm{km}$ nadzvučnom brzinom. Ako zvuk do promatrača koji miruje na zemlji stigne $\Delta t=11\,\mathrm{s}$ nakon što je avion proletio iznad njega, odredite brzinu aviona. (Brzina zvuka u zraku $v_z=340\,\mathrm{m\,s^{-1}}$.)