- 用sklearn做波士頓房價線性回歸

不錯的參考資料

政治大學線上課程<成為python數據分析達人的第一門課>

<機器學習的數學>

▼ 1. 前置練習--畫直線

先自己創建一組線性二維數據,且自己設定y=mx+b的m與b 再用matplotlib做直線

```
import numpy as np #引入numpy資源庫
import matplotlib.pyplot as plt #引入matplotlib資源庫
x=np.linspace(0,5,50) #x軸在0-50之間產生50個點
y=1.5*x+0.8 #斜率設1.5
```

plt. scatter(x, y) # 下圖藍色點狀圖 plt. plot(x, y, 'r') # 直線形式(紅色)

[<matplotlib.lines.Line2D at 0x7f76c2dbb5d0>]

▼ 2. 前置練習--加入噪點

因為真實世界的數據不會如上圖,加入噪點產生隨機數據

y1=1.5*x+0.8+np.random.randn(50) # 因為x軸有50個點,每個點都要加上偏移,所以加上50個隨機偏移plt.scatter(x,y1)

<matplotlib.collections.PathCollection at 0x7f76bd12d8d0>

按兩下 (或按 Enter 鍵) 即可編輯

- 3. Sklearn 把X軸數據從50x1改成1x50

```
from sklearn.linear_model import LinearRegression
regr = LinearRegression()
X= x.reshape(50,1)
```

X

X

```
, 0.10204082, 0.20408163, 0.30612245, 0.40816327,
array([0.
       0.51020408, 0.6122449, 0.71428571, 0.81632653, 0.91836735,
       1.02040816, 1.12244898, 1.2244898, 1.32653061, 1.42857143,
       1.53061224, 1.63265306, 1.73469388, 1.83673469, 1.93877551,
       2. 04081633, 2. 14285714, 2. 24489796, 2. 34693878, 2. 44897959,
       2. 55102041, 2. 65306122, 2. 75510204, 2. 85714286, 2. 95918367,
       3. 06122449, 3. 16326531, 3. 26530612, 3. 36734694, 3. 46938776,
       3. 57142857, 3. 67346939, 3. 7755102, 3. 87755102, 3. 97959184,
       4. 08163265, 4. 18367347, 4. 28571429, 4. 3877551, 4. 48979592,
       4. 59183673, 4. 69387755, 4. 79591837, 4. 89795918, 5.
                                                                     7)
array([[0.
       [0.10204082],
       [0.20408163],
       [0.30612245],
       [0.40816327],
       [0.51020408],
       [0.6122449]
       [0.71428571],
       [0.81632653],
       [0.91836735],
       [1.02040816],
       [1.12244898],
       [1.2244898],
       [1. 32653061],
       [1.42857143],
       [1.53061224],
       [1.63265306],
       [1.73469388],
       [1.83673469],
       [1.93877551],
       [2.04081633],
       [2.14285714],
       [2.24489796],
       [2.34693878],
       [2.44897959],
       [2.55102041],
       [2.65306122],
       [2.75510204],
       [2.85714286],
       [2.95918367],
       [3, 06122449].
       [3.16326531],
       [3.26530612],
       [3.36734694],
       [3.46938776],
       [3.57142857],
       [3.67346939],
       [3.7755102],
       [3.87755102],
       [3.97959184],
```

[4. 08163265], [4. 18367347], [4. 28571429],

```
[4. 3877551],
[4. 48979592],
[4. 59183673],
[4. 69387755],
[4. 79591837],
[4. 89795918],
[5. ]])
```

- 4. 利用fit功能進行線性回歸

regr. fit(X, y1)

#regr為前面步驟調用的線性回歸方法,就有點像自己給有線性回歸功能的寶可夢自己取名字

X為輸入資料, y為正確答案

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

- 5. 利用建立好的regr開始進行預測

```
Y = regr. predict(X)
```

- # f(x) = y1 預設的輸入x和正確答案y
- # x 進行矩陣行列轉換變成X
- # 線性回歸尋找X和y1關係,把建立關係式模型寫入regr
- # 利用建立好的regr模型,預測X輸入後的結果, 並把結果命為Y, regr(X)=Y

- 6. 對比正確答案和線性預測結果

```
plt. scatter(x, y1)# 正確答案
plt. plot(x, 1.5*x+0.8, 'green')# 綠色線為預設線性方程
plt. plot(x, Y, 'blue') #藍色線為線性回歸結果
```

[<matplotlib.lines.Line2D at 0x7f76abc42190>]

7. 避免overfit 進行數據分割練習

圖片來源:Sagar Sharma / Towards Data Science

overfit就像考試作弊背答案沒有真正理解,

雖然劃出來預測線涵蓋所有數據,但一旦脫離預測的數據

輸入其他數據進行預測時跑出來的就會失真

為了避免被答案,就要分割數據,把一部分的數據拿來考建立好的模型

- 8. 數據分割練習

x=np. linspace(0, 5, 100)
y=1. 2*x+0. 9+0. 5*np. random. randn(100)
plt. scatter(x, y)

先產生100筆含有噪點的數據

<matplotlib.collections.PathCollection at 0x7f76ab8f3a50>

from sklearn.model_selection import train_test_split # 引入數據分割模組

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state=87) #rain_test_split預設將資料分為 x_train訓練用, x_test測試用, y_train訓練用, y_test測試用 #, 0.2表示20%分給test, random state為讓隨機狀態產生標籤,指定隨便一個數字,避免每次跑出來不一樣

len(x train) # 確認訓練數據分得80筆

80

len(x test) #確認測試數據分得20筆

20

```
x_train = x_train.reshape(80,1)
# 把80筆變成一維陣列 80列*1行
```

x_test = x_test.reshape(20,1) #把20筆變成一維陣列 20列*1行

x_test #確認一下

```
[4. 64646465],

[3. 73737374],

[0. 15151515],

[0. ],

[2. 22222222],

[1. 66666667]])
```

```
regr = LinearRegression()
regr. fit(x_train, y_train)
# 一樣創建線性回歸模組,並訓練該80筆數據
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

→ 9. 查看regr線性回歸 預測結果(藍線)

```
plt. scatter(x_train, y_train)
plt. plot(x_train, regr. predict(x_train), 'blue')
```

[<matplotlib.lines.Line2D at 0x7f76ab884ed0>]

→ 10. x_test(考題)輸入建立好的regr模型

```
plt.scatter(x_test, y_test) # 問題與正確答案(藍點)
plt.plot(x_test, regr.predict(x_test),'r') # 預測出來的回歸線(考試結果)
plt.plot(x,1.2*x+0.9,'green') # 正確答案回歸線
```

[<matplotlib.lines.Line2D at 0x7f76ab779b10>]

brief summary

經過數據分割後, 跑出來的預測回歸線幾乎貼合正確答案

- 實際數據_波士頓房價分析

1. 使用sklearn進行線性回歸,並調用內含的房價數據庫

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_boston

按兩下 (或按 Enter 鍵) 即可編輯

boston = load_boston()

2. 查看數據庫內的標籤

CRIM 城鎮人均犯罪率

ZN 住宅用地超過 25000 sq.ft. 的比例 AGE 1940年之前建成的自用房屋比例 DIS 到波士頓5個中心區域的加權距離 INDUS 城鎮非零售商用土地的比例 RAD 輻射性公路的靠近指數 TAX 每10000美元的全值財產稅率 CHAS 邊界是河流為1,否則0 NOX 一氧化氮濃度 PTRATIO 城鎮師生比例 RM 住宅平均房間數 LSTAT 人口中地位低下者的比例

3. 將要訓練的數據命為X, 真實房價為Y

```
X = boston.data
Y = boston.target # 內含正確答案

len(X) #查看數據筆數

506

len(Y)
```

4. 將數據分割20%給Test

```
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state=87)
```

5. 線性回歸待訓練數據

```
regr = LinearRegression()
regr.fit(x_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

6. 訓練後將測試用x輸入regr模型,輸出predict

y_predict = regr.predict(x_test)

7. 若預測出來的y_predict 和真實的y_test數據極為相近 散佈圖會呈現對角線

畫紅色對角線

[<matplotlib.lines.Line2D at 0x7f769b6fa7d0>]

8. 列表編號技巧 enumerate

list(enumerate(L))

for i, s in enumerate(L):
 print(i+1, s)

- 1 A
- 2 B
- 3 C
- 4 D

9. 畫多張圖技巧 subplot(a,b,i) 一次要畫a列b行共a*b 張圖 i 為第幾張圖

10. 利用subplot和enumberate技巧來一次對比各項特徵和房價之間的關係

plt.figure(figsize=(8,10))

1, teature in enumerate(boston.feature_names):

```
plt. subplot (5, 3, i+1)
plt.scatter(X[:,i],Y,s=1)
plt.ylabel("price")
plt.xlabel(feature)
plt.tight_layout()
      50
                                         50
      40
                                         40
      30
                                         30
                                                                            30
      20
                                         20
                                                                            20
                                         10
      10
                                                                            10
                                                         50
                                                                    100
                                                                                         10
                       50
                              75
                    CRIM
                                                         ΖN
                                                                                          INDUS
      50
                                                                            50
      40
                                         40
                                                                             40
                                       price
      30
                                         30
                                                                            30
      20
                                         20
                                                                            20
                                         10
                                                                            10
      10
                     0.5
                                 1.0
                                                                                                     8
         0.0
                                             0.4
                                                       0.6
                                                                 0.8
                    CHAS
                                                        NOX
                                                                                            RM
      50
                                         40
      40
      30
                                         30
                                                                            30
      20
                                         20
                                                                             20
      10
                                         10
                                                                            10
                     50
                                 100
                                                      .
5
                                                                10
                                                                                          10
                                                                                                    20
                                                                                Ó
                     AGE
                                                        DIS
                                                                                           RAD
      50
                                                                            50
      40
                                         40
                                                                             40
                                                                          price
      30
                                         30
                                                                            30
      20
                                         20
                                                                            20
      10
                                         10
                                                                            10
                   400
                            600
                                                   15
                                                                                            200
                                                                                                        400
         200
                                                                20
                     TAX
                                                      PTRATIO
                                                                                             В
      50
      40
      30
      20
      10
         0
               10
                     20
```

按兩下 (或按 Enter 鍵) 即可編輯

LSTAT

×