Endliche separable K-Algebren

28.04.2022

Satz (Struktur endlicher K-Algebren). Sei B eine endlichdimensionale K-Algebra. Dann gilt

$$B \cong \prod_{i=1}^{t} B_i$$

 $f\ddot{u}r\ ein\ t\geq 0\ und\ lokale\ K-Algebren\ B_i\ mit\ nilpotentem\ Maximalideal.$

 $\textbf{Definition.} \ \ \textit{Eine endliche K-Algebra B heißt separabel, wenn der Homomorphismus}$

$$\phi \colon B \to \hom_K(B, K)$$

 $x \mapsto (y \mapsto \operatorname{Sp}(xy))$

ein Isomorphismus ist.

Satz (Struktur separabler Algebren). Sei K ein Körper mit algebraischen Abschluss \overline{K} und B eine endlichdimensionale K-Algebra. Wir definieren außerdem die K-Algebra $\overline{B} := B \otimes_K \overline{K}$. Dann sind die folgenden Aussagen äquivalent:

- 1. B ist separabel über K
- 2. \overline{B} ist separabel über \overline{K}
- 3. $\overline{B} \cong \overline{K}^n$ als K-Algebran für ein n > 0
- 4. $B \cong \prod_{i=1}^t B_i$ als K-Algebren für ein $t \geq 0$ und endlich separablen Körpererweiterungen B_i/K .

Definition. Eine π -Menge ist eine endliche Menge E mit einer stetigen Gruppenwirkung $\pi \curvearrowright E$. Dabei trägt π die proendliche und E die diskrete Topologie.

Das Hauptresultat dieses Vortrags deutet schon auf die Kategorienantiäquivalenz hin, die wir insgesamt im Seminar zeigen wollen:

Theorem. Sei K ein Körper und $\pi = \operatorname{Gal}(K_s/K)$ die absolute Galoisgruppe. Dann sind die Kategorien SepAlg_K und $\pi - \operatorname{Fin}$ antiäquivalent.