Отчёта по лабораторной работе №7

Команды безусловного и условного переходов в Nasm. Программирование ветвлений.

Газизянов Владислав Альбертович

Содержание

1	Цель	ь работы	
2	Зада	ание	5
3	Выполнение лабораторной работы		6
	3.1	Реализация переходов в NASM	6
	3.2	Изучение структуры файлы листинга	10
	3.3	Задание для самостоятельной работы	12
4	Выв	ОДЫ	17

Список иллюстраций

5.1	Создаем каталог с помощью команды ткаіг и фаил с помощью
	команды touch
3.2	Заполняем файл
3.3	Запускаем файл и смотрим на его работу
3.4	Изменяем файл
3.5	Запускаем файл и смотрим на его работу
3.6	Создаем файл командой touch
3.7	Заполняем файл
3.8	Смотрим на работу программ
3.9	Изучаем файл
3.10	Удаляем операндум из файла
	Транслируем файл
3.12	Создаем файл командой touch
	Пишем программу
3.14	Смотрим на рабботу программы(всё верно)
	Создаем файл командой touch
	Пишем программу
	Проверяем работу программы
3.18	Проверяем работу программы

1 Цель работы

Освоить условного и безусловного перехода. Ознакомиться с назначением и структурой файла листинга.

2 Задание

Написать программы для решения системы выражений.

3 Выполнение лабораторной работы

3.1 Реализация переходов в NASM

Создаем каталог для программ ЛБ7, и в нем создаем файл (рис. 3.2).

```
vagazizyanov@vagazizyanov:~$ mkdir ~/work/arch-pc/lab07
vagazizyanov@vagazizyanov:~$ cd ~/work/arch-pc/lab07
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ touch lab7-1.asm
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$
```

Рис. 3.1: Создаем каталог с помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.1 (рис. ??).

```
1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
3 msg1: DB 'Сообщение № 1',0
4 msg2: DB 'Сообщение № 2',0
5 msg3: DB 'Сообщение № 3',0
6 SECTION .text
7 GLOBAL _start
8 _start:
9 jmp label2
10 _label1:
11 mov eax, msg1 ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
13 label2:
14 mov eax, msg2 ; Вывод на экран строки
15 call sprintLF ; 'Сообщение № 2
16 label3:
17 mov eax, msg3 ; Вывод на экран строки
18 call sprintLF ; 'Сообщение № 3'
19 _end:
20 call quit ; вызов подпрограммы завершения
```

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. 3.3).

```
vagazizyanov@vagazizyanov:-/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
vagazizyanov@vagazizyanov:-/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.
o
vagazizyanov@vagazizyanov:-/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 3
```

Рис. 3.3: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его в соответствии с листингом 7.2 (рис. 3.4).

```
1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
 3 msg1: DB 'Сообщение № 1',0
4 msg2: DB 'Сообщение № 2',0
5 msg3: DB 'Сообщение № 3',0
 6 SECTION .text
7 GLOBAL _start
8 _start:
 9 jmp _label3
10 _label1:
11 mov eax, msg1 ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
13 jmp _end
14 _label2:
15 mov eax, msg2 ; Вывод на экран строки
16 call sprintLF ; 'Сообщение № 2'
17 jmp _label1
18 _label3:
19 mov eax, msg3 ; Вывод на экран строки
20 call sprintLF ; 'Сообщение № 3'
21 jmp _label2
22 _end:
23 call quit ; вызов подпрограммы завершения
```

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. 3.5).

```
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1. o vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ./lab7-1 Cooбщение № 3 Сообщение № 2 Сообщение № 1
```

Рис. 3.5: Запускаем файл и смотрим на его работу

Создаем новый файл (рис. 3.6).

Рис. 3.6: Создаем файл командой touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.3 (рис. 3.7).

```
1 %include 'in_out.asm'
 2 section .data
 3 msg1 db 'Введите В: ',0h
 4 msg2 db "Наибольшее число: ",0h
 5 A dd '20'
 6 C dd '50'
 7 section .bss
 8 max resb 10
9 B resb 10
10 section .text
11 global _start
12 _start:
13; ------ Вывод сообщения 'Введите В: '
14 mov eax,msg1
15 call sprint
16; ----- Ввод 'В'
17 mov ecx,B
18 mov edx, 10
19 call sread
20; ----- Преобразование 'В' из символа в число
21 mov eax,B
22 call atoi ; Вызов подпрограммы перевода символа в число
23 mov [B],eax ; запись преобразованного числа в 'B'
24; ----- Записываем 'А' в переменную 'мах'
25 mov ecx,[A]; 'ecx = A'
26 mov [max],ecx; 'max = A'
27; ------ Сравниваем 'A' и 'C' (как символы)
28 стр есх,[С]; Сравниваем 'A' и 'C'
29 jg check_B; если 'A>C', то переход на метку 'check_B',
30 mov ecx,[C]; иначе 'ecx = C'
31 mov [max],ecx; 'max = C'
             --- Преобразование 'max(A,C)' из символа в число
33 check_B:
34 mov eax,max
35 call atoi ; Вызов подпрограммы перевода символа в число
36 mov [max],eax ; запись преобразованного числа в `max`
```

Рис. 3.7: Заполняем файл

Создаем исполняемый файл и проверяем его работу, вводя разные значения В (рис. 3.8).

```
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2. o vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ./lab7-2 Введите В: 23 Наибольшее число: 50
```

Рис. 3.8: Смотрим на работу программ

3.2 Изучение структуры файлы листинга

Открываем файл листинга с помощью команды mcedit и изучаем его (рис. 3.9).

Рис. 3.9: Изучаем файл

Строка 33: 0000001D-адрес в сегменте кода, BB01000000-машинный код, mov ebx,1-присвоение переменной есх значения 1.

Строка 34: 00000022-адрес в сегменте кода, В804000000-машинный код, mov еах,4-присвоение переменной еах значения 4.

Строка 35 00000027-адрес в сегменте кода, CD80-машинный код, int 80h-вызов ядра.

Открываем файл и удаляем один операндум (рис. 3.10).

Рис. 3.10: Удаляем операндум из файла

Транслируем с получением файла листинга (рис. 3.11).

```
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2
.asm
lab7-2.asm:21: error: invalid combination of opcode and operands
```

Рис. 3.11: Транслируем файл

При трансляции файла, выдается ошибка, но создаются исполнительный файл lab7-2 и lab7-2.lst

3.3 Задание для самостоятельной работы

ВАРИАНТ-2

Напишите программу нахождения наименьшей из 3 целочисленных переменных а,b и с.Значения переменных выбрать из табл. 7.5 в соответствии с вариантом, полученнымпри выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу.

Создаем новый файл (рис. 3.12).

vagazizyanov@vagazizyanov:~/work/arch-pc/lab07\$ touch lab7-3.asm

Рис. 3.12: Создаем файл командой touch

Открываем его и пишем программу, которая выберет наименбшее число из трех(2 числа уже в программе, 3е вводится из консоли) (рис. 3.13).

```
1 %include 'in out.asm'
2 section .data
3 msg1 db 'Введите В: ',0h
4 msg2 db "Наименьшее число: ",0h
5 A dd '82'
6 C dd '61'
7 section .bss
8 min resb 10
9 B resb 10
0 section .text
1 global _start
2 start:
3 mov eax,msg1
4 call sprint
5 mov ecx,B
6 mov edx,10
7 call sread
8 mov eax,B
9 call atoi
0 mov [B],eax
1 mov ecx,[A]
2 mov [min],ecx
3 cmp ecx,[C]
4 jl check_B
5 mov ecx,[C]
6 mov [min],ecx
7 check B:
8 mov eax,min
9 call atoi
0 mov [min],eax
1 mov ecx,[min]
2 cmp ecx,[B]
3 jl fin
4 mov ecx,[B]
5 mov [min],ecx
6 fin:
```

Рис. 3.13: Пишем программу

Транслируем файл и смотрим на работу программы (рис. 3.14).

```
vagazizyanov@vagazizyanov:~/work/arch-pc/lab06$ cd ~/work/arch-pc/lab07/
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ nasm -f elf lab7-3.asm
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.
o
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ./lab7-3
Введите В: 59
Наименьшее число: 59
```

Рис. 3.14: Смотрим на рабботу программы(всё верно)

2. Напишите программу, которая для введенных с клавиатуры значений х и а вычисляет значение заданной функции f(x) и выводит результат вычислений. Вид функции f(x) выбрать из таблицы 7.6 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу для значений х и а из 7.6.

Создаем новый файл (рис. 3.15).

```
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ touch lab7-4.asm
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$
```

Рис. 3.15: Создаем файл командой touch

Открываем его и пишем программу, которая решит систему уравнений, при даных, введенных в консоль (рис. 3.16).

```
1 %include 'in out.asm'
 2 section .data
3 msg1 DB 'Введите X: ',0h
4 msg2 DB "Введите A: ",0h
5 ans: DB 'F(x)=',0h
 6 section .bss
 7 x: RESB 80
8 a: RESB 80
9 res: RESB 80
10 section .text
11 global _start
12 _start:
13 mov eax, msg1
14 call sprint
15 mov ecx,x
16 mov edx,80
17 call sread
18 mov eax,x
19 call atoi
20 mov [x],eax
21 mov eax, msg2
22 call sprint
23 mov ecx,a
24 mov edx,80
25 call sread
26 mov eax,a
27 call atoi
28 mov [a],eax
29 mov eax, [x]
30 cmp eax, [a]
32 jl x_smaller_a
33 mov eax, [x]
34 dec eax
35 jmp ansv
36
```

Рис. 3.16: Пишем программу

Транслируем файл и проверяем его работу при x=1 и a=1(рис. 3.17).

```
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ nasm -f elf lab7-4.asm vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4. o vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ./lab7-4 Введите X: 5 Введите A: 7 F(x)=6
```

Рис. 3.17: Проверяем работу программы

Транслируем файл и проверяем его работу при x=2 и a=2(рис. 3.18).

```
vagazizyanov@vagazizyanov:~/work/arch-pc/lab07$ ./lab7-4
Введите X: 6
Введите A: 4
F(x)=5
```

Рис. 3.18: Проверяем работу программы

4 Выводы

Мы познакомились с структурой файла листинга, изучили команды условного и безусловного перехоа.