Identifying Customers

Xichen Tang QUT

January 18, 2020

Subject Introduce

The data observed

Forecasts

Thanks And Question

Directory

Introduce

Directory
Subject Introduce
The data observed
Forecasts
Thanks And Question

Directory
Subject Introduce
The data observed
Forecasts
Thanks And Question

Subject Introduce

Data

Processing Data

The data observed

Forecasts

Thanks And Question

Subject Introduce

Introduce

Directory

Subject Introduce

Data

Processing Data

The data observed

Forecasts

Thanks And Question

■ The kaggle subject:Santander Customer Transaction Prediction

In this challenge, we need to identify which customers will make a specific transaction in the future, irrespective of the amount of money transacted.

Data

Directory

Subject Introduce

Data

Processing Data

The data observed

Forecasts

Thanks And Question

■ train_data

ID_code	target	var_0	var_1	•••	var_198	var_199
train_0	0	8.9255	-6.7863	• • •	12.7803	-1.0914
train_1	0	11.5006	-4.1473	• • •	18.3560	1.9518

■ test.csv

ID_code	var_0	var_1	•••	var_198	var_199
test_0	8.9255	-6.7863	• • •	12.7803	-1.0914
test_1	11.5006	-4.1473	• • •	18.3560	1.9518

■ train_data.info

RangeIndex:	200000 entries	0 to 199999	
Columns:	202 entries	ID_code to var_199	

Missing Values train data missing values? False test data missing values? False

Avg and Std

Directory

Subject Introduce

Data

Processing Data

The data observed

Forecasts

Thanks And Question

■ by describe()

Subject Introduce

The data observed

The relationship

Stability

Determine the stability

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks And Question

Naive Bayes

Statistical Functions

Directory

Subject Introduce

The data observed

The relationship

Stability

Determine the stability

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks And Question

Calculate Prob $P(A \mid B) = \frac{P(AB)}{P(B)}$

Smoothing

If the probability value to be estimated is 0, the calculation result of posterior probability will be affected. The solution to this problem is to use smoothing

Subject Introduce

The data observed

The relationship

Stability

Determine the stability

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks And Question

Validation AUC

Validation AUC = 0.805571412599524

Result

Directory

Subject Introduce

The data observed

The relationship

Stability

Determine the stability

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks And Question

1. Probability

Directory
Subject Introduce
The data observed
Forecasts
Modle
Get Result

Thanks And Question

Gaussian naive Bayes

Statistical Functions

Directory
Subject Introduce
The data observed
Forecasts
Modle
Get Result

Thanks And Question

- Calculation of prior probability use Counter() maybe more convenient
- Avg and Std
- Calculate likelihood
 Using probability density function of Gaussian distribution to calculate likelihood and then multiply to get likelihood We can get Raw data, trend data, periodic data, random variables
- Training model and get prediction

 The probabilities of each label are multiplied by the likelihood and then normalized to get the prob of each label.
- AUC
 Validation AUC is 0.8051607443604657.

Directory
Subject Introduce
The data observed
Forecasts
Thanks And Question

LinearRegression

process

Directory
Subject Introduce
The data observed
Forecasts
Thanks And Question

- Merge test/train datasets
- Add more features

 Normalize the data, Standardization of normal distribution, then Square the value, cubic the value, Cumulative normal percentile, Normalize the data, again. Do linear regression, Write submission file

AUC: 0.8025517936065763

Subject Introduce

The data observed

Forecasts

Thanks And Question

Catboost

process

Directory

Subject Introduce

The data observed

Forecasts

Thanks And Question

■ Get the features Get the top 100 features,merge them and divide the training set and test set

process

Directory
Subject Introduce
The data observed
Forecasts
Thanks And Question

In catboost, you don't have to worry about this at all. You just need to tell the algorithm which features belong to category features, and it will help you deal with them automatically Finally, we feed the data to the algorithm and train it

fit and prediction AUC: 0.80399151

Subject Introduce

The data observed

Forecasts

Thanks And Question

Conclusion

Compare

Directory
Subject Introduce
The data observed
Forecasts
Thanks And Question

■ Naive Bayes

AUC: 0.9055714

Gaussian naive Bayes

AUC: 0.8051607

LinearRegression AUC: 0.8025517

Catboost

AUC: 0.8039915

Directory
Subject Introduce
The data observed
Forecasts
Thanks And Question

Thanks and Question

