Synchronous Sequential Logic Part II

Mantiksal Tasarım – BBM231

State Reduction and Assignment

- In the design process of sequential circuits certain techniques are useful in reducing the circuit complexity
 - state reduction
 - state assignment
- State reduction
 - Fewer states → fewer number of flip-flops
 - m flip-flops → 2^m states
 - Example: $m = 5 \rightarrow 2^m = 32$
 - If we reduce the number of states to 21 do we reduce the number of flip-flops?

Example: State Reduction

Example: State Reduction

state	a	а	Ь	С	f	9	f	f	9	а	а	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		

- What is important?
 - not the states
 - but the output values the circuit generates
- Therefore, the problem is to find a circuit
 - with fewer number of states,
 - but that produces the same output pattern for any given input pattern, starting with the same initial state

State Reduction Technique 1/7

0/0 a

• Step 1: get a state table

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	α	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	α	f	0	1	
f	9	f	0	1	
5 9	a	f	0	1	

State Reduction Technique 2/7

- Step 2: Inspect the state table for equivalent states
 - Equivalent states: Two states,
 - 1. that produce exactly the same output
 - 2. whose next states are identical
 - for each input combination

State Reduction Technique 3/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	9	f	0	1	
9	а	f	0	1	

State Reduction Technique 3/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	9	f	0	1	
9	a	f	0	1	

- States "e" and "g" are equivalent
- One of them can be removed

State Reduction Technique 3/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	9	f	0	1	
9	а	f	0	1	

- States "e" and "g" are equivalent
- One of them can be removed

State Reduction Technique 4/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	е	f	0	1	

We keep looking for equivalent states

State Reduction Technique 4/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	е	f	0	1	

- We keep looking for equivalent states
- >> d & f are now equivalent

State Reduction Technique 5/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	d	0	0	
d	е	d	0	1	
е	a	d	0	1	

We keep looking for equivalent states

State Reduction Technique 5/7

present state	next	state	Output		
	x = 0 $x =$		x = 0	× = 1	
α	α	b	0	0	
b	С	d	0	0	
С	С	d	0	0	
d	е	d	0	1	
е	a	d	0	1	

- We keep looking for equivalent states
- >> b & c are now equivalent

State Reduction Technique 6/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
а	α	b	0	0	
b	b	d	0	0	
d	е	d	0	1	
е	α	d	0	1	

- Any more?
- NO! We stop when there are no remaining equivalent states

State Reduction Technique 7/7

present state	next	state	Output		
state	x = 0	x = 1	x = 0	× = 1	
α	α	b	0	0	
b	Ь	d	0	0	
d	е	d	0	1	
e	α	d	0	1	

How many flip flops do we need?

state	а	а	Ь	Ь	d	e	d	d	e	а	а	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		

State Reduction Technique 7/7

present state	next	state	Ou	tput
state	x = 0	× = 1	x = 0	× = 1
α	α	b	0	0
b	Ь	d	0	0
d	е	d	0	1
е	α	d	0	1

We need 2 flip-flops

state	а	а	b	b	d	e	d	d	e	а	а	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		

State Assignments 1/4

- We have to assign binary values to each state
- If we have m states, then we need a code with minimum n bits, where n = log₂m
- There are different ways of encoding
- Example: Eight states: S_0 , S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7

State	Binary	Gray	One-hot
S ₀	000	000	000001
$\mathtt{S}_\mathtt{1}$	001	001	000010
\mathtt{S}_2	010	011	000100
S_3	011	010	001000
\mathtt{S}_4	100	110	010000
\mathtt{S}_{5}	101	111	100000
\mathtt{S}_{6}	111	101	100000
S ₇	111	100	100000

State Assignments 2/4

- The circuit complexity depends on the state encoding (assignment) scheme
- Previous example: Binary state encoding

present state	next state		Output	
	x = 0	× = 1	x = 0	× = 1
(a) 00	00	01	0	0
(b) 01	01	10	0	0
(d) 10	11	10	0	1
(e) 11	00	10	0	1

State Assignments 3/4

Gray encoding

present state	next state		Output	
	x = 0	× = 1	x = 0	× = 1
(a) 00	00	01	0	0
(b) 01	01	11	0	0
(d) 11	10	11	0	1
(e) 10	00	11	0	1

State Assignments 4/4

One-hot encoding

present state	next state		Output	
	x = 0	× = 1	x = 0	× = 1
(a) 0001	0001	0010	0	0
(b) 0010	0010	0100	0	0
(d) 0100	1000	0100	0	1
(e) 1000	0001	0100	0	1

Designing Sequential Circuits

- Combinational circuits
 - can be designed given a truth table
- Sequential circuits
 - We need,
 - state diagram or
 - state table
 - Two parts
 - <u>flip-flops</u>: number of flip-flops is determined by the number of states
 - combinational part:
 - output equations
 - flip-flop input equations

Design Process

- Once we know the <u>types</u> and <u>number</u> of flipflops, design process is reduced to design process of combinational circuits
- Therefore, we can apply the techniques of combinational circuit design

Design Steps (cont.)

- The design steps
- 1. Given a verbal description of desired operation, derive the state diagram from that.
- 2. Reduce the number of states if necessary and possible
- 3. Do state assignment
- 4. Obtain the encoded state table
- 5. Derive the simplified flip-flop input equations
- 6. Derive the simplified output equations
- 7. Draw the logic diagram

Example

- Verbal description:
 - "we want a (sequential) circuit that detects <u>three or</u> <u>more consecutive 1's in a string of bits"</u>
 - Input: string of bits of any length
 - Output:
 - "1" if the circuit detects the pattern in the string
 - "0" otherwise

Example: State Diagram

• Step 1: Derive the state diagram

Example: State Diagram

• Step 1: Derive the state diagram

Moore Machine

- The number of flip-flops
 - Four states
 - ? flip-flops
- State reduction
 - not possible in this case
- State Assignment
 - Use binary encoding
 - $s_0 \rightarrow 00$
 - $s_1 \rightarrow 01$
 - $s_2 \rightarrow 10$
 - $s_3 \rightarrow 11$

• Step 4: Obtain the state table

Present state		Input	Next	state	Output
Α	В	Х	А	В	У
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- Step 5: Choose the flip-flops
 - D flip-flops
- Step 6: Derive the simplified flip-flop input equations
 - Boolean expressions for D_A and D_B

Presen	t state	Input	Next	state	Output
А	В	х	А	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$D_A =$$

29

- Step 5: Choose the flip-flops
 - D flip-flops
- Step 6: Derive the simplified flip-flop input equations
 - Boolean expressions for D_A and D_B

Presen	Present state		Next	state	Output
A	В	х	А	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$D_A = Ax + Bx$$

30

Presen	t state	Input	Next state		Output
A	В	Х	А	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$D_B =$$

- <u>Step 7</u>: Derive the simplified output equations
 - Boolean expressions for y.

Presen	nt state	Input	Next state		Output
Α	В	Х	А	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Bx				
A	00	01	11	10
0	0	1	0	0
1	0	1	1	0

$$D_B = Ax + B'x$$

- Step 7: Derive the simplified output equations
 - Boolean expressions for y.

$$y = AB$$

Step 8: Draw the logic diagram

Example: 3-bit binary counter with T flip-flops

How many flip-flops?

State assignments:

- $s_0 \to 000$
- $S_1 \to 001$
- $S_2 \to 010$
- . . .
- $S_7 \rightarrow 111$

State Diagram

• Example: 3-bit binary counter with T flip-flops $0 \rightarrow 1 \rightarrow 2 \rightarrow ... \rightarrow 7 \rightarrow 0 \rightarrow 1 \rightarrow 2$

How many flip-flops?

State assignments:

- $S_0 \to 000$
- $S_1 \to 001$
- $S_2 \to 010$
- . . .
- $S_7 \rightarrow 111$

State Diagram

State Table

present state			next state			FF inputs		
A ₂	A ₁	A ₀	A ₂	A ₁	A ₀	T ₂	T ₁	T ₀
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
36 1	1	1	0	0	0			

Synthesis with T Flip-Flops 3/4

Pre	esent sta	ate	FF inputs			
A ₂	A ₁	A_0	T ₂	T ₁	T ₀	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	0	0	0	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	1	0	1	1	
1	1	0	0	0	1	
1	1	1	1	1	1	

Flip-Flop input equations

$$T_0 = ?$$

$$T_1 =$$

Synthesis with T Flip-Flops 3/4

Pre	esent sta	ate	FF inputs			
A ₂	A ₁	A_0	T ₂	T ₁	T ₀	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	0	0	0	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	1	0	1	1	
1	1	0	0	0	1	
1	1	1	1	1	1	

Flip-Flop input equations

$$T_2 = A_1 A_0$$

$A_1 A_0$				
A_2	00	01	11	10
0	0	1	1	0
1	0	1	1	0

$$T_0 = 1$$

$$T_1 = A_0$$

Synthesis with T Flip-Flops 4/4

• Circuit logic-1 T_0 A_0 $T_2 = A_1 A_0$ R $T_1 = A_0$ $\mathsf{T_1}$ A_1 $T_0 = 1$ Q T_2 A_2 Q clock R reset

Synthesis with JK Flip-Flops 1/4

$$Q(t+1) = JQ' + K'Q$$

State Table & JK FF Inputs

J	K	Q(†+1)
0	0	Q
0	1	0
1	0	1
1	1	Q'

	Prese	nt state	Input	next	state		Flip-flop	inputs	
	Α	В	x	Α	В	J _A	\mathbf{K}_{A}	J_{B}	K _B
	0	0	0	0	0	0	Х	0	х
	0	0	1	0	1	0	X	1	x
	0	1	0	1	0	1	X	X	1
	0	1	1	0	1	0	X	X	0
	1	0	0	1	0	x	0	0	x
	1	0	1	1	1	x	0	1	x
	1	1	0	1	1	X	0	X	0
40	1	1	1	0	0	X	1	X	1

Synthesis with JK Flip-Flops 2/4

Optimize the flip-flop input equations

						Flip-flop	inputs	
Α	В	х	A(t+1)	B(t+1)	J_A	K_A	J_B	K_B
0	0	0	0	0	0	Х	0	Х
0	0	1	0	1	0	Х	1	Х
0	1	0	1	0	1	Х	Χ	1
0	1	1	0	1	0	Х	Χ	0
1	0	0	1	0	Х	0	0	Х
1	0	1	1	1	Х	0	1	Х
1	1	0	1	1	Х	0	Χ	0
1	1	1	0	0	Х	1	Χ	1

 $J_A = Bx'$

$$J_B = x$$

Synthesis with JK Flip-Flops 3/4

						Flip-flop	inputs	
Α	В	х	A(t+1)	B(t+1)	J_A	K_A	J_B	K_B
0	0	0	0	0	0	Х	0	Х
0	0	1	0	1	0	Χ	1	Х
0	1	0	1	0	1	Χ	Χ	1
0	1	1	0	1	0	Χ	Χ	0
1	0	0	1	0	Χ	0	0	Х
1	0	1	1	1	Χ	0	1	Х
1	1	0	1	1	Х	0	Χ	0
1	1	1	0	0	Χ	1	Χ	1

$$K_A = Bx$$

$$K_B = (A \oplus x)'$$

Synthesis with JK Flip-Flops 4/4

Logic diagram

$$J_A = Bx'$$

$$K_A = Bx$$

$$J_B = x$$

$$K_B = (A \oplus x)'$$

Unused States

Modulo-5 counter

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

Example: Unused States 1/4

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

Example: Unused States 2/4

Pre	Present State			Next State			
Α	В	С	Α	В	С		
0	0	0	0	0	1		
0	0	1	0	1	0		
0	1	0	0	1	1		
0	1	1	1	0	0		
1	0	0	0	0	0		
1	0	1					
1	1	0					
1	1	1					

$$A(t+1) = BC$$

$$B(t+1) = B \oplus C$$

$$C(t+1) = A'C'$$

Example: Unused States 2/4

Pre	Present State			Next State		
Α	В	С	Α	В	С	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	0	1	0	
1	1	0	0	1	0	
1	1	1	1	0	0	

$$A(t+1) = BC$$

$$B(t+1) = B \oplus C$$

$$C(t+1) = A'C'$$

Example: Unused States 2/4

Present State			Next State			
Α	В	С	Α	В	С	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	0	1	0	
1	1	0	0	1	0	
1	1	1	1	0	0	

$$A(t+1) = BC$$

$$B(t+1) = B \oplus C$$

$$C(t+1) = A'C'$$

Example: Unused States 3/4

This time <u>not</u> using don't care conditions, instead assigning them all 0s

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

BC				
A	00	01	11	10
0	0	0	1	0
1	0	0	0	0

$$A(t+1) = A'BC$$

BC				
A	00	01	11	10
0	0	1	0	1
1	0	0	0	0

$$B(t+1) = A'B'C + A'BC'$$
$$= A'(B \oplus C)$$

$$C(t+1) = A'C'$$

Example: Unused States 4/4

Present State		Next State			
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1			
1	1	0			
1	1	1			

$$A(t+1) = A'BC$$

$$B(t+1) = A'(B \oplus C)$$

$$C(t+1) = A'C'$$

Example: Unused States 4/4

Present State		Next State			
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1			
1	1	0			
1	1	1			

$$A(t+1) = A'BC$$

$$B(t+1) = A'(B \oplus C)$$

$$C(t+1) = A'C'$$

Sequential Circuit Timing 1/3

- It is important to analyze the timing behavior of a sequential circuit
 - Ultimate goal is to determine the maximum clock frequency

Sequential Circuit Timing 2/3

Sequential Circuit Timing 2/3

Sequential Circuit Timing 3/3

Minimum clock period (or maximum clock frequency)

$$t_{p,NOT} = 0.5 \text{ ns}$$

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{p,AND} = t_s = 1.0 \text{ ns}$$

$$t_h = 0.25 \text{ ns}$$

Find the longest path delay from external input to the output

$$t_{p,XOR} + t_{p,XOR} = 2.0 + 2.0 = 4.0 \text{ ns}$$

$$t_{p,NOT} = 0.5 \text{ ns}$$

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{p,AND} = t_s = 1.0 \text{ ns}$$

$$t_h = 0.25 \text{ ns}$$

Find the longest path delay in the circuit from external input to positive clock edge

$$t_{p,XOR} + t_{p,NOT} = 2.0 + 0.5 = 2.5 \text{ ns}$$

$$t_{p,NOT} = 0.5 \text{ ns}$$

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{p,AND} = t_s = 1.0 \text{ ns}$$

$$t_{58} = 0.25 \text{ ns}$$

Find the longest path delay from positive clock edge to output

$$t_{p,FF} + t_{p,XOR} = 2.0 + 2.0 = 4.0 \text{ ns}$$

$$t_{p,NOT} = 0.5 \text{ ns}$$

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{p,AND} = t_s = 1.0 \text{ ns}$$

$$t_{59} = 0.25 \text{ ns}$$

Find the longest path delay from positive clock edge to the flip-flop input

$$t_{p,FF} + t_{p,AND} + t_{p,XOR} + t_{p,NOT}$$

= 2.0 + 1.0 + 2.0 + 0.5 = 5.5 ns

$$t_{p,NOT} = 0.5 \text{ ns}$$

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{p,AND} = t_s = 1.0 \text{ ns}$$

$$t_{h} = 0.25 \text{ ns}$$

Determine the maximum frequency of operation of the circuit in megahertz

$$t_p = t_{p,FF} + t_{p,AND} + t_{p,XOR} + t_{p,NOT} + ?$$

= 2.0 + 1.0 + 2.0 + 0.5 + 1.0 = 6.5 ns

$$f_{max} = 1/t_p = 1/(6.5 \times 10^{-9}) \approx 154 \text{ MHz}$$

Example

Binary encoding

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{s} = 1.0 \text{ ns}$$

$$t_p = t_{p,FF} + t_{p,XOR} + t_s = 2.0 + 2.0 + 1.0 = 5.0 \text{ ns}$$

$$f_{\text{max}} = 1/t_p = 1/(5.0 \times 10^{-9}) \approx 200 \text{ MHz}$$

Example: One-Hot-Encoding

$$S_0 \rightarrow 0001$$

 $S_1 \rightarrow 0010$
 $S_2 \rightarrow 0100$
 $S_3 \rightarrow 1000$

$$t_{p,FF}$$
 = 2.0 ns

$$t_{s} = 1.0 \text{ ns}$$

$$t_p = t_{p,FF} + t_s = 2.0 + 1.0 = 3.0 \text{ ns}$$

$$f_{max} = 1/t_p = 1/(3.0 \times 10^{-9}) \approx 333 \text{ MHz}$$

