Leyes 0-1

IIC3263

Leyes 0-1: Notación

Dado: Vocabulario \mathcal{L}

▶ Recuerde que una propiedad \mathcal{P} sobre \mathcal{L} (\mathcal{L} -propiedad) es un subconjunto de $Struct[\mathcal{L}]$

Leyes 0-1: Notación

Dado: Vocabulario \mathcal{L}

▶ Recuerde que una propiedad P sobre L (L-propiedad) es un subconjunto de STRUCT[L]

Notación

- $ightharpoonup s_{\mathcal{L}}^n$: Número de \mathcal{L} -estructuras con dominio $\{1,\ldots,n\}$
- $ightharpoonup s_{\mathcal{L}}^{n}(\mathcal{P})$: Número de \mathcal{L} -estructuras con dominio $\{1,\ldots,n\}$ que satisfacen la propiedad \mathcal{P}

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ・ 差 ・ 釣९@

IIC3263 – Leyes 0-1 2 / 84

Leyes 0-1: Notación

Ejemplo

Sea
$$\mathcal{L} = \{R(\cdot, \cdot)\}$$

- Si P es el conjunto de estructuras que satisfacen la dependencia funcional:

$$\forall x \forall y \forall z (R(x,y) \land R(x,z) \rightarrow y = z),$$

entonces
$$s_{\mathcal{L}}^n(\mathcal{P}) = (n+1)^n$$

<□ > <□ > <□ > < = > < = > < 0

Leyes 0-1: Probabilidad asintótica

Definición

• $\mu_{\mathcal{L}}^{n}(\mathcal{P}) = \frac{s_{\mathcal{L}}^{n}(\mathcal{P})}{s_{\mathcal{L}}^{n}}$: Representa la probabilidad de que una \mathcal{L} -estructura satisfaga la propiedad \mathcal{P}

Leyes 0-1: Probabilidad asintótica

Definición

- $\mu_{\mathcal{L}}^{n}(\mathcal{P}) = \frac{s_{\mathcal{L}}^{n}(\mathcal{P})}{s_{\mathcal{L}}^{n}}$: Representa la probabilidad de que una \mathcal{L} -estructura satisfaga la propiedad \mathcal{P}
- $\blacktriangleright \ \mu_{\mathcal{L}}(\mathcal{P}) = \lim_{n \to \infty} \mu_{\mathcal{L}}^n(\mathcal{P})$

Leyes 0-1: Probabilidad asintótica

Definición

- $\mu_{\mathcal{L}}^{n}(\mathcal{P}) = \frac{s_{\mathcal{L}}^{n}(\mathcal{P})}{s_{\mathcal{L}}^{n}}$: Representa la probabilidad de que una \mathcal{L} -estructura satisfaga la propiedad \mathcal{P}
- $\blacktriangleright \ \mu_{\mathcal{L}}(\mathcal{P}) \ = \ \lim_{n \to \infty} \mu_{\mathcal{L}}^n(\mathcal{P})$

Ejemplo

Si \mathcal{P} es el conjunto de estructuras que satisfacen la dependencia funcional $\forall x \forall y \forall z \, (R(x,y) \land R(x,z) \rightarrow y = z)$, entonces:

$$\mu_{\mathcal{L}}(\mathcal{P}) = 0$$

◆ロ > ◆昼 > ◆ き > ・ き ・ り Q ○

Leyes 0-1: Ejercicios

Notación

Dada una oración φ en una lógica:

$$s_{\mathcal{L}}^{n}(\varphi) = |\{\mathfrak{A} \in \text{Struct}[\mathcal{L}] \mid el \ dominio \ de \ \mathfrak{A} \ es \ \{1, \dots, n\} \ y \ \mathfrak{A} \models \varphi\}|$$

Leyes 0-1: Ejercicios

Notación

Dada una oración φ en una lógica:

$$\begin{split} s_{\mathcal{L}}^n(\varphi) \; &= \; |\{\mathfrak{A} \in \mathrm{Struct}[\mathcal{L}] \; \mid \\ &\quad \textit{el dominio de } \mathfrak{A} \; \textit{es} \; \{1,\dots,n\} \; \textit{y} \; \mathfrak{A} \models \varphi\}| \end{split}$$

Ejercicios

- 1. Sea $\varphi = \forall x \exists y \ R(x,y)$. Demuestre que $\mu_{\mathcal{L}}(\varphi) = 1$
- 2. Demuestre que $\mu_{\mathcal{L}}(\mathcal{P})$ puede no estar definido
- 3. Demuestre que $\mu_{\mathcal{L}}(\mathcal{P})$ puede tomar un valor distinto de 0 y 1

- 4 ㅁ > 4 큠 > 4 분 > 4 분 > - 분 - 쒼 Q @

5 / 84

Ejercicio 1: Relación entre $\mu_{\mathcal{L}}(\mathcal{P})$ y $\mu_{\mathcal{L}}(\overline{\mathcal{P}})$

Dado un vocabulario \mathcal{L} y una \mathcal{L} -propiedad \mathcal{P} :

$$\overline{\mathcal{P}} \ = \ \{\mathfrak{A} \in \mathrm{Struct}[\mathcal{L}] \mid \mathfrak{A} \not \in \mathcal{P}\}$$

Suponga que $\mu_{\mathcal{L}}(\mathcal{P}) = c$, donde $c \in [0,1]$

▶ Se tiene que $\lim_{n\to\infty} \mu_{\mathcal{L}}^n(\mathcal{P}) = c$

Entonces se tiene que $\mu_{\mathcal{L}}(\overline{\mathcal{P}}) = 1 - c$

Ya que
$$\lim_{n\to\infty} \mu_{\mathcal{L}}^n(\overline{\mathcal{P}}) = \lim_{n\to\infty} \left(1 - \mu_{\mathcal{L}}^n(\mathcal{P})\right) = 1 - \lim_{n\to\infty} \mu_{\mathcal{L}}^n(\mathcal{P})$$

IIC3263 - Leyes 0-1 6 / 8

Ejercicio 1: Relación entre $\mu_{\mathcal{L}}(\mathcal{P})$ y $\mu_{\mathcal{L}}(\overline{\mathcal{P}})$

Sea
$$\mathcal{L} = \{R(\cdot, \cdot)\}\ y\ \varphi = \forall x \exists y\ R(x, y)$$

 $\neg \varphi \equiv \exists x \forall y \neg R(x, y)$

Vamos a demostrar que $\mu_{\mathcal{L}}(\neg \varphi) = 0$

▶ Concluimos que $\mu_{\mathcal{L}}(\varphi) = 1$

Sea
$$n \geq 1$$
, $i \in \{1, \ldots, n\}$ y:
$$N_i = \{\mathfrak{A} \in \mathrm{STRUCT}[\mathcal{L}] \mid \mathrm{el\ dominio\ de\ } \mathfrak{A} \ \mathrm{es\ } \{1, \ldots, n\}$$
 y no existe $j \in \{1, \ldots, n\}$ tal que $(i, j) \in R^{\mathfrak{A}}\}$

◆□▶ ◆□▶ ◆■▶ ◆■ りゅ○

IIC3263 - Leyes 0-1 7 / 84

Ejercicio 1: Relación entre $\mu_{\mathcal{L}}(\mathcal{P})$ y $\mu_{\mathcal{L}}(\overline{\mathcal{P}})$

Tenemos que
$$s_{\mathcal{L}}^n(\neg\varphi) \leq \sum_{i=1}^k |N_i|$$

Dado que $|N_i| = 2^{(n-1)\cdot n}$, concluimos que $s_{\mathcal{L}}^n(\neg \varphi) \leq n \cdot 2^{(n-1)\cdot n}$

Por lo tanto:

$$\mu_{\mathcal{L}}^{n}(\neg\varphi) \leq \frac{n \cdot 2^{(n-1) \cdot n}}{2^{n^2}} = \frac{n}{2^n}$$

Concluimos que:

$$0 \leq \mu_{\mathcal{L}}(\neg \varphi) \leq \lim_{n \to \infty} \frac{n}{2^n} = 0$$

IIC3263 - Leyes 0-1 8 / 84

Sea $\mathcal{L} = \{U(\cdot)\}\$ y \mathcal{P} la siguiente propiedad:

 ${\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid U^{\mathfrak{A}} \text{ tiene una cantidad par de elementos}}$

Vamos a demostrar que $\mu_{\mathcal{L}}(\mathcal{P}) = \frac{1}{2}$

Para $n \ge 1$, sea:

$$P_n = \{A \subseteq \{1, \dots, n\} \mid |A| \text{ es par}\}$$

Lema

Para cada $n \ge 1$, se tiene que $|P_n| = 2^{n-1}$

→ロト→部ト→ミト→ミ から(*)

Vamos a demostrar el lema por inducción:

- ► Caso base (n = 1): $P_1 = \{\emptyset\}$, por lo que $|P_1| = 1 = 2^{1-1}$
- \triangleright Case inductivo: Suponga que la propiedad se cumple para n

Tenemos que:

$$P_{n+1} = \{A \subseteq \{1, \dots, n+1\} \mid |A| \text{ es par y } n+1 \notin A\} \cup \{A \subseteq \{1, \dots, n+1\} \mid |A| \text{ es par y } n+1 \in A\}$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ - 臺 - 釣९@

Como estos conjuntos son disjuntos:

$$|P_{n+1}| = |\{A \subseteq \{1, \dots, n+1\} \mid |A| \text{ es par y } n+1 \not\in A\}| + |\{A \subseteq \{1, \dots, n+1\} \mid |A| \text{ es par y } n+1 \in A\}|$$

Pero:

$$\begin{aligned} |\{A \subseteq \{1, \dots, n+1\} \mid |A| \text{ es par y } n+1 \not\in A\}| &= |P_n| \\ |\{A \subseteq \{1, \dots, n+1\} \mid |A| \text{ es par y } n+1 \in A\}| &= 2^n - |P_n| \end{aligned}$$

Por hipótesis de inducción $|P_n| = 2^{n-1}$

Concluimos que
$$|P_{n+1}| = 2^{n-1} + 2^{n-1} = 2^n$$

◆ロ > ◆園 > ◆ 恵 > ◆ 恵 > ・ 恵 ・ 夕 Q @

11 / 84

Sea $n \ge 1$. Dado que $s_{\mathcal{L}}^n(\mathcal{P}) = |P_n|$, concluimos del lema que:

$$\mu_{\mathcal{L}}^n(\mathcal{P}) = \frac{s_{\mathcal{L}}^n(\mathcal{P})}{s_{\mathcal{L}}^n} = \frac{2^{n-1}}{2^n} = \frac{1}{2}$$

Por lo tanto: $\mu_{\mathcal{L}}(\mathcal{P}) = \frac{1}{2}$

Leyes 0-1: Definición

Definición

Una lógica \mathcal{LO} tiene la ley 0-1 para un vocabulario \mathcal{L} si para cada \mathcal{L} -propiedad \mathcal{P} definible en \mathcal{LO} , se tiene que $\mu_{\mathcal{L}}(\mathcal{P})=0$ o $\mu_{\mathcal{L}}(\mathcal{P})=1$

Leyes 0-1: Definición

Definición

Una lógica \mathcal{LO} tiene la ley 0-1 para un vocabulario $\mathcal L$ si para cada $\mathcal L$ -propiedad $\mathcal P$ definible en $\mathcal L\mathcal O$, se tiene que $\mu_{\mathcal L}(\mathcal P)=0$ o $\mu_{\mathcal L}(\mathcal P)=1$

Teorema (Glebskii-Kogan-Liogon'kii-Talanov & Fagin)

Si $\mathcal L$ es un vocabulario que sólo contiene relaciones, entonces LPO tiene la ley 0-1 para $\mathcal L$

<ロ > ∢母 > ∢差 > ∢差 > 差 めへの

13 / 84

Leyes 0-1 para LPO: Demostración

Vamos a demostrar que LPO tiene la ley 0-1

Para cada vocabulario que sólo contiene relaciones

14 / 84

Leyes 0-1 para LPO: Demostración

Vamos a demostrar que LPO tiene la ley 0-1

Para cada vocabulario que sólo contiene relaciones

Pero antes:

 Vamos a mostrar como pueden ser utilizadas las leyes 0-1 para demostrar resultados de inexpresibilidad

4 U P 4 M P 4 E P 4 E P E *) Q (*

14 / 84

Leyes 0-1 para LPO: Demostración

Vamos a demostrar que LPO tiene la ley 0-1

▶ Para cada vocabulario que sólo contiene relaciones

Pero antes:

- Vamos a mostrar como pueden ser utilizadas las leyes 0-1 para demostrar resultados de inexpresibilidad
- Vamos a mostrar porque no podemos considerar lenguajes con constantes

Leyes 0-1: Usos

¿Para qué nos sirve esta ley?

- Nos indica que una lógica no puede contar
- Podemos utilizarla para demostrar que una propiedad no es expresable en alguna lógica

Ejemplo

Sea $\mathcal{L} = \emptyset$ y PARIDAD = $\{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \text{dominio de } \mathfrak{A} \text{ tiene}$ un número par de elementos $\}$.

Vamos a demostrar que PARIDAD no es expresable en LPO

Leyes 0-1: Paridad

Ejemplo (continuación)

Supongamos que PARIDAD si es expresable en LPO

▶ Existe φ en LPO tal que $\mathfrak{A} \models \varphi$ si y sólo si el dominio de \mathfrak{A} tiene un número par de elementos

Dado que LPO tiene la ley 0-1 para \mathcal{L} : $\mu_{\mathcal{L}}(\varphi) = 0$ ó $\mu_{\mathcal{L}}(\varphi) = 1$

Pero:

$$s_{\mathcal{L}}^{n}(arphi) = egin{cases} 0 & n ext{ es impar} \ 1 & n ext{ es par} \end{cases}$$

Como $s_{\mathcal{L}}^n=1$, concluimos que $\mu_{\mathcal{L}}(\varphi)$ no está definido

► Esto contradice que $\mu_{\mathcal{L}}(\varphi) = 0$ ó $\mu_{\mathcal{L}}(\varphi) = 1$

IC3263 - Leyes 0-1 16 / 84

Leyes 0-1: Vocabularios con constantes

Vamos a mostrar que LPO no necesariamente tiene la ley 0-1 para un vocabulario con constantes.

Sea $\mathcal{L} = \{P(\cdot), c\}$ y $\varphi = P(c)$. Vamos a demostrar que $\mu_{\mathcal{L}}^k(\varphi) = \frac{1}{2}$ para todo $k \geq 1$.

Por lo tanto: $\mu_{\mathcal{L}}(\varphi) = \frac{1}{2}$

Para cada $k \ge 1$, sea:

$$S_k = \{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \operatorname{dominio} \operatorname{de} \mathfrak{A} \text{ es } \{1, \dots, k\} \text{ y } \mathfrak{A} \models \varphi\}$$

 $N_k = \{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \operatorname{dominio} \operatorname{de} \mathfrak{A} \text{ es } \{1, \dots, k\} \text{ y } \mathfrak{A} \models \neg \varphi\}$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めのの

IIC3263 - Leyes 0-1 17 / 84

Leyes 0-1: Vocabularios con constantes

Sea $f: S_k \to N_k$ definida como:

$$f(\langle A, P^{\mathfrak{A}}, c^{\mathfrak{A}} \rangle) = \langle A, A \setminus P^{\mathfrak{A}}, c^{\mathfrak{A}} \rangle$$

La función f es una biyección

► ¿Por qué?

Se tiene que $|S_k| = |N_k|$

▶ De esto se concluye que $\mu_{\mathcal{L}}^k(\varphi) = \frac{1}{2}$ ya que $s_{\mathcal{L}}^k = |S_k| + |N_k|$ y $s_{\mathcal{L}}^k(\varphi) = |S_k|$

<ロ > < 部 > < き > くき > き の < で

Ley 0-1 para LPO: Demostración

Vamos a demostrar que la LPO tiene la ley 0-1

▶ Para cada vocabulario que sólo contiene relaciones

Suponemos que $\mathcal{L} = \{R(\cdot, \cdot)\}$

El caso general se demuestra de la misma forma

Pieza fundamental: Axiomas de extensión

Está es la demostración dada por Fagin

◆□▶ ◆□▶ ◆■▶ ◆■▶ ◆□◆ ◆○○○

19 / 84

Dado: Variables $x_1, \ldots, x_n \ (n \ge 0)$

- ▶ $A_{\mathcal{L}}(x_1,...,x_n)$: Conjunto de todas las fórmulas atómicas de la forma R(u,v), donde $\{u,v\}\subseteq\{x_1,...,x_n\}$
- ▶ Para cada $F \subseteq A_{\mathcal{L}}(x_1, ..., x_n)$, definimos $\chi_F(x_1, ..., x_n)$ como:

$$\left(\bigwedge_{\varphi\in\mathcal{F}}\varphi\right)\wedge\left(\bigwedge_{\psi\in\left(A_{\mathcal{L}}(x_{1},\ldots,x_{n})\setminus\mathcal{F}\right)}\neg\psi\right)$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Dado: Variable z tal que $z \neq x_i$, para cada $i \in \{1, ..., n\}$

▶ Dado $F \subseteq A_{\mathcal{L}}(x_1, \dots, x_n)$ y $G \subseteq A_{\mathcal{L}}(x_1, \dots, x_n, z)$, decimos que G extiende a F si $F = G \cap A_{\mathcal{L}}(x_1, \dots, x_n)$

Nota: Si n = 0, entonces $A_{\mathcal{L}}(x_1, \dots, x_n) = \emptyset$

IIC3263 - Leyes 0-1 21 / 84

Definición (Axioma de extensión)

Dado $F \subseteq A_{\mathcal{L}}(x_1, \dots, x_n)$ y $G \subseteq A_{\mathcal{L}}(x_1, \dots, x_n, z)$ tal que G extiende a F, definimos $AE_{F,G}$ como:

$$\forall x_1 \cdots \forall x_n \left(\left(\bigwedge_{1 \le i < j \le n} x_i \ne x_j \land \chi_F(x_1, \dots, x_n) \right) \rightarrow \\ \exists z \left(\bigwedge_{i=1}^n z \ne x_i \land \chi_G(x_1, \dots, x_n, z) \right) \right)$$

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ - 巻 - 夕९@

Definición (Axioma de extensión)

Dado $F \subseteq A_{\mathcal{L}}(x_1, \dots, x_n)$ y $G \subseteq A_{\mathcal{L}}(x_1, \dots, x_n, z)$ tal que G extiende a F, definimos $AE_{F,G}$ como:

$$\forall x_1 \cdots \forall x_n \left(\left(\bigwedge_{1 \le i < j \le n} x_i \ne x_j \land \chi_F(x_1, \dots, x_n) \right) \rightarrow \\ \exists z \left(\bigwedge_{i=1}^n z \ne x_i \land \chi_G(x_1, \dots, x_n, z) \right) \right)$$

Si n=0, entonces obtenemos el axioma de extensión $\exists z \, \chi_G(z)$

▶ Tenemos dos posibilidades: $\exists z R(z,z)$ ó $\exists z \neg R(z,z)$

◆ロト ◆部ト ◆草ト ◆草ト 草 めの(*)

IIC3263 - Leyes 0-1 22 / 84

Lema

$$\mu_{\mathcal{L}}(\neg AE_{F,G}) = 0$$

Demostración: $\neg AE_{F,G}$ es equivalente a la siguiente oración:

$$\exists x_1 \cdots \exists x_k \left(\left(\bigwedge_{1 \le i < j \le k} x_i \ne x_j \land \chi_F(x_1, \dots, x_k) \right) \land \\ \forall z \left(\bigwedge_{i=1}^k z \ne x_i \rightarrow \neg \chi_G(x_1, \dots, x_k, z) \right) \right)$$

23 / 84

Sea $n \geq k+1$ y a_1, \ldots, a_k puntos en el intervalo $\{1, \ldots, n\}$

De las 2^{n^2} \mathcal{L} -estructuras con dominio $\{1, \ldots, n\}$:

- $ightharpoonup rac{1}{2^{k^2}}$ es la fracción de estructuras que satisfacen $\chi_F(a_1,\ldots,a_k)$
- ▶ $\frac{1}{2^{k^2}} \cdot \left(1 \frac{1}{2^{2k+1}}\right)$ es la fracción de estructuras que satisfacen $\chi_F(a_1, \dots, a_k) \land \neg \chi_G(a_1, \dots, a_k, b)$, para un b distinto de cada a_i

(ロ) (団) (国) (国) (国)

▶ $\frac{1}{2^{k^2}} \cdot \left(1 - \frac{1}{2^{2k+1}}\right)^{n-k}$ es la fracción de estructuras que satisfacen:

$$\chi_F(a_1,\ldots,a_k) \wedge \forall z \left(\bigwedge_{i=1}^k z \neq x_i \rightarrow \neg \chi_G(a_1,\ldots,a_k,z) \right)$$

Concluimos que:

$$\mu_{\mathcal{L}}^{n}(\neg AE_{F,G}) \leq n \cdot (n-1) \cdots$$

$$(n-k+1) \cdot \frac{1}{2^{k^2}} \cdot \left(1 - \frac{1}{2^{2k+1}}\right)^{n-k}$$

Por lo tanto:

$$\begin{array}{ll} 0 & \leq & \lim_{n \to \infty} \mu_{\mathcal{L}}^n (\neg A E_{F,G}) & \leq \\ & \frac{\frac{1}{2^{k^2}}}{\left(1 - \frac{1}{2^{2k+1}}\right)^k} \cdot \left(\lim_{n \to \infty} n^k \cdot \left(1 - \frac{1}{2^{2k+1}}\right)^n\right) \end{array}$$

Como k es una constante y $\left(1-\frac{1}{2^{2k+1}}\right)<1$, tenemos que:

$$\mu_{\mathcal{L}}(\neg AE_{F,G}) = \lim_{n \to \infty} \mu_{\mathcal{L}}^{n}(\neg AE_{F,G}) = 0$$

Axiomas de extensión: Propiedades fundamentales

Sea AE_k $(k \ge 1)$ el siguiente conjunto de oraciones en LPO:

$$\left\{AE_{F,G} \mid \text{ existe } i \in [0,k-1] \text{ tal que } F \subseteq A_{\mathcal{L}}(x_1,\ldots,x_i), \\ G \subseteq A_{\mathcal{L}}(x_1,\ldots,x_i,z) \text{ y } G \text{ extiende a } F\right\}$$

Axiomas de extensión: Propiedades fundamentales

Sea AE_k ($k \ge 1$) el siguiente conjunto de oraciones en LPO:

$$\left\{AE_{F,G} \;\middle|\; \text{existe } i \in [0,k-1] \; \text{tal que } F \subseteq A_{\mathcal{L}}(x_1,\ldots,x_i), \right. \\ \left. G \subseteq A_{\mathcal{L}}(x_1,\ldots,x_i,z) \; \text{y} \; \; G \; \text{extiende a} \; F\right\}$$

Corolario

Para cada $k \geq 1$, se tiene que $\mu_{\mathcal{L}}(\bigwedge AE_k) = 1$

IIC3263 - Leyes 0-1 27 /

Sea AE_k $(k \ge 1)$ el siguiente conjunto de oraciones en LPO:

$$\left\{AE_{F,G} \;\middle|\; \mathsf{existe}\; i \in [0,k-1] \;\mathsf{tal}\; \mathsf{que}\; F \subseteq A_{\mathcal{L}}(x_1,\ldots,x_i), \right. \\ \left. G \subseteq A_{\mathcal{L}}(x_1,\ldots,x_i,z) \;\mathsf{y}\; G \;\mathsf{extiende}\; \mathsf{a}\; F\right\}$$

Corolario

Para cada $k \geq 1$, se tiene que $\mu_{\mathcal{L}}(\bigwedge AE_k) = 1$

Demostración: El corolario es una consecuencia del lema anterior y de los dos siguientes lemas.

◆ロ → ◆母 → ◆ き → を ● り へ ○

Dado: \mathcal{L} -propiedades \mathcal{P}_1 y \mathcal{P}_2

Lema

Si $\mu_{\mathcal{L}}(\mathcal{P}_1)$, $\mu_{\mathcal{L}}(\mathcal{P}_2)$ y $\mu_{\mathcal{L}}(\mathcal{P}_1 \cup \mathcal{P}_2)$ están definidos, entonces:

$$\mu_{\mathcal{L}}(\mathcal{P}_1 \cap \mathcal{P}_2) = \mu_{\mathcal{L}}(\mathcal{P}_1) + \mu_{\mathcal{L}}(\mathcal{P}_2) - \mu_{\mathcal{L}}(\mathcal{P}_1 \cup \mathcal{P}_2)$$

Dado: \mathcal{L} -propiedades \mathcal{P}_1 y \mathcal{P}_2

Lema

Si $\mu_{\mathcal{L}}(\mathcal{P}_1)$, $\mu_{\mathcal{L}}(\mathcal{P}_2)$ y $\mu_{\mathcal{L}}(\mathcal{P}_1 \cup \mathcal{P}_2)$ están definidos, entonces:

$$\mu_{\mathcal{L}}(\mathcal{P}_1 \cap \mathcal{P}_2) = \mu_{\mathcal{L}}(\mathcal{P}_1) + \mu_{\mathcal{L}}(\mathcal{P}_2) - \mu_{\mathcal{L}}(\mathcal{P}_1 \cup \mathcal{P}_2)$$

Demostración: Para cada \mathcal{L} -propiedad \mathcal{P} , sea:

$$\mathcal{P}^n = \{\mathfrak{A} \in \mathcal{P} \mid \text{el dominio de } \mathfrak{A} \text{ es } \{1, \dots, n\}\}$$

Tenemos que: $s_{\mathcal{L}}^n(\mathcal{P}) = |\mathcal{P}^n|$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Sea $n \ge 1$. Dado que:

$$\begin{array}{rcl} (\mathcal{P}_1 \cap \mathcal{P}_2)^n & = & \mathcal{P}_1^n \cap \mathcal{P}_2^n \\ (\mathcal{P}_1 \cup \mathcal{P}_2)^n & = & \mathcal{P}_1^n \cup \mathcal{P}_2^n \\ |\mathcal{P}_1^n \cup \mathcal{P}_2^n| & = & |\mathcal{P}_1^n| + |\mathcal{P}_2^n| - |\mathcal{P}_1^n \cap \mathcal{P}_2^n| \end{array}$$

Tenemos que:

$$|(\mathcal{P}_1 \cap \mathcal{P}_2)^n| = |\mathcal{P}_1^n| + |\mathcal{P}_2^n| - |(\mathcal{P}_1 \cup \mathcal{P}_2)^n|$$

Por lo tanto:

$$\frac{|(\mathcal{P}_1 \cap \mathcal{P}_2)^n|}{2^{n^2}} \ = \ \frac{|\mathcal{P}_1^n|}{2^{n^2}} + \frac{|\mathcal{P}_2^n|}{2^{n^2}} - \frac{|(\mathcal{P}_1 \cup \mathcal{P}_2)^n|}{2^{n^2}}$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Concluimos que:

$$\mu_{\mathcal{L}}^{n}(\mathcal{P}_{1}\cap\mathcal{P}_{2}) \ = \ \mu_{\mathcal{L}}^{n}(\mathcal{P}_{1}) + \mu_{\mathcal{L}}^{n}(\mathcal{P}_{2}) - \mu_{\mathcal{L}}^{n}(\mathcal{P}_{1}\cup\mathcal{P}_{2})$$

Así, dado que $\mu_{\mathcal{L}}(\mathcal{P}_1)$, $\mu_{\mathcal{L}}(\mathcal{P}_2)$ y $\mu_{\mathcal{L}}(\mathcal{P}_1 \cup \mathcal{P}_2)$ están definidos, concluimos que:

$$\mu_{\mathcal{L}}(\mathcal{P}_1 \cap \mathcal{P}_2) = \mu_{\mathcal{L}}(\mathcal{P}_1) + \mu_{\mathcal{L}}(\mathcal{P}_2) - \mu_{\mathcal{L}}(\mathcal{P}_1 \cup \mathcal{P}_2)$$

_

Lema

Si
$$\mu_{\mathcal{L}}(\mathcal{P}_1) = 1$$
 y $\mu_{\mathcal{L}}(\mathcal{P}_2) = 1$, entonces:

$$\mu_{\mathcal{L}}(\mathcal{P}_1 \cap \mathcal{P}_2) = 1$$

Demostración: Dado que $\mathcal{P}_1 \subseteq (\mathcal{P}_1 \cup \mathcal{P}_2)$, tenemos que

$$1 = \mu_{\mathcal{L}}(\mathcal{P}_1) \leq \mu_{\mathcal{L}}(\mathcal{P}_1 \cup \mathcal{P}_2) \leq 1$$

Por lo tanto, por lema anterior:

$$\mu_{\mathcal{L}}(\mathcal{P}_1 \cap \mathcal{P}_2) = \mu_{\mathcal{L}}(\mathcal{P}_1) + \mu_{\mathcal{L}}(\mathcal{P}_2) - \mu_{\mathcal{L}}(\mathcal{P}_1 \cup \mathcal{P}_2)$$
$$= 1 + 1 - 1$$
$$= 1$$

4□ → 4□ → 4 = → 4 = → 9 Q P

Concluimos que para cada $k \ge 1$:

 \blacktriangleright AE_k es un conjunto satisfacible de fórmulas

Concluimos que para cada $k \ge 1$:

 \blacktriangleright AE_k es un conjunto satisfacible de fórmulas

¿Puede dar un modelo de AE_k ?

<□ > <□ > <□ > < = > < = > < 0

Concluimos que para cada $k \ge 1$:

 $ightharpoonup AE_k$ es un conjunto satisfacible de fórmulas

¿Puede dar un modelo de AE_k ?

 En este caso no es difícil demostrar que existe un modelo, pero sí lo es construirlo

(ロ) (部) (注) (注) 注 り(0)

IIC3263 - Leves 0-1 32 / 84

Concluimos que para cada $k \ge 1$:

 \blacktriangleright AE_k es un conjunto satisfacible de fórmulas

¿Puede dar un modelo de AE_k ?

 En este caso no es difícil demostrar que existe un modelo, pero sí lo es construirlo

Esta es la esencia del método probabilista

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 - り Q ()

Paréntesis: Un modelo para AE_2

La matriz de adyacencia para una estructura que satisface AE_2 :

Este es el modelo de AE2 con menor número de nodos

IIC3263 - Leyes 0-1 33 / 84

La matriz de adyacencia para una estructura que satisface AE_3

Este modelo tiene 343 nodos (gracias a Martín Ugarte por ambos modelos)

Sea AE el conjunto de todos los axiomas de extensión.

▶ Para estudiar AE también tenemos que considerar modelos infinitos

35 / 84

Sea AE el conjunto de todos los axiomas de extensión.

▶ Para estudiar AE también tenemos que considerar modelos infinitos

Proposición

AE es satisfacible. Además, cada modelo de AE es infinito

Sea AE el conjunto de todos los axiomas de extensión.

▶ Para estudiar AE también tenemos que considerar modelos infinitos

Proposición

AE es satisfacible. Además, cada modelo de AE es infinito

Demostración: Usando compacidad y los corolarios anteriores.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Lema

Si $\mathfrak{A},\mathfrak{B}\in \mathrm{Struct}[\mathcal{L}]$ satisfacen AE $_k$, entonces $\mathfrak{A}\equiv_k\mathfrak{B}$

Lema

 $\mathit{Si}\,\mathfrak{A},\mathfrak{B}\in\mathrm{Struct}[\mathcal{L}]$ satisfacen AE_k , entonces $\mathfrak{A}\equiv_k\mathfrak{B}$

Ejercicio

Demuestre el lema

Lema

 $Si\ \mathfrak{A},\mathfrak{B}\in \mathrm{Struct}[\mathcal{L}]$ satisfacen AE_k , entonces $\mathfrak{A}\equiv_k\mathfrak{B}$

Ejercicio

Demuestre el lema

Corolario

Si $\mathfrak A$ y $\mathfrak B$ son modelos de AE y φ es una $\mathcal L$ -oración en LPO, entonces $\mathfrak A \models \varphi$ si y sólo si $\mathfrak B \models \varphi$

Finalmente tenemos todos los ingredientes para demostrar que LPO tiene la ley 0-1 para \mathcal{L} .

Finalmente tenemos todos los ingredientes para demostrar que LPO tiene la ley 0-1 para \mathcal{L} .

Sea Φ una oración en LPO.

▶ Suponga que $k = rc(\Phi)$

(ㅁ▶ (라) (불) (불) (불) **연**(연

Finalmente tenemos todos los ingredientes para demostrar que LPO tiene la ley 0-1 para \mathcal{L} .

Sea Φ una oración en LPO.

▶ Suponga que $k = rc(\Phi)$

Vamos a demostrar que $\mu_{\mathcal{L}}(\Phi)=0$ ó $\mu_{\mathcal{L}}(\Phi)=1$

Consideramos dos casos

◆□▶ ◆□▶ ◆冟▶ ◆冟▶ 冟 釣९@

1. Existe $\mathfrak{A} \in Struct[\mathcal{L}]$ tal que $\mathfrak{A} \models AE_k$ y $\mathfrak{A} \models \Phi$

Sea
$$\mathfrak{B} \in \mathrm{Struct}[\mathcal{L}]$$
 tal que $\mathfrak{B} \models AE_k$

Por resultados anteriores: $\mathfrak A$ y $\mathfrak B$ están de acuerdo en todas las oraciones con rango de cuantificación k

▶ Entonces: $\mathfrak{B} \models \Phi$

Concluimos que $AE_k \models \Phi$, por lo que para todo $n \ge 1$: $s_{\mathcal{L}}^n(\bigwedge AE_k) \le s_{\mathcal{L}}^n(\Phi)$

De esto y los resultados anteriores concluimos que:

$$1 = \mu_{\mathcal{L}}(\bigwedge AE_k) \leq \mu_{\mathcal{L}}(\Phi) \leq 1$$

- ◆ロ ▶ ◆昼 ▶ ◆ Ē ▶ · · Ē · · · りへで

2. No existe $\mathfrak{A} \in Struct[\mathcal{L}]$ tal que $\mathfrak{A} \models AE_k$ y $\mathfrak{A} \models \Phi$

Entonces existe $\mathfrak{A} \in Struct[\mathcal{L}]$ tal que $\mathfrak{A} \models AE_k$ y $\mathfrak{A} \models \neg \Phi$

Por caso anterior: $\mu_{\mathcal{L}}(\neg \Phi) = 1$

Por lo tanto: $\mu_{\mathcal{L}}(\Phi) = 0$

Una aplicación: Casi todos los grafos no son 3-coloreables

Sea
$$\mathcal{L} = \{E(\cdot, \cdot)\}$$

Queremos demostrar que casi todos los grafos (o $\mathcal{L}\text{-estructuras})$ no son 3-coloreables

Una aplicación: Casi todos los grafos no son 3-coloreables

Sea
$$\mathcal{L} = \{E(\cdot, \cdot)\}$$

Queremos demostrar que casi todos los grafos (o $\mathcal{L}\text{-estructuras})$ no son 3-coloreables

Vamos a demostrar algo más fuerte: Casi todos los grafos contienen un clique con 4 nodos (K_4)

▶ De esto se concluye que no son 3-coloreables

Una aplicación: Casi todos los grafos no son 3-coloreables

Sea
$$\mathcal{L} = \{E(\cdot, \cdot)\}$$

Queremos demostrar que casi todos los grafos (o $\mathcal{L}\text{-estructuras})$ no son 3-coloreables

Vamos a demostrar algo más fuerte: Casi todos los grafos contienen un clique con 4 nodos (K_4)

▶ De esto se concluye que no son 3-coloreables

Sea:

$$\varphi = \exists x_1 \exists x_2 \exists x_3 \exists x_4 \bigwedge_{1 \leq i < j \leq 4} \left(x_i \neq x_j \land E(x_i, x_j) \land E(x_j, x_i) \right)$$

Vamos a demostrar que $\mu_{\mathcal{L}}(\varphi) = 1$

Considere las siguientes \mathcal{L} -fórmulas:

$$\alpha_{1}(x_{1}) = \neg E(x_{1}, x_{1})
\alpha_{2}(x_{1}, x_{2}) = \alpha_{1}(x_{1}) \wedge E(x_{1}, x_{2}) \wedge E(x_{2}, x_{1}) \wedge \neg E(x_{2}, x_{2})
\alpha_{3}(x_{1}, x_{2}, x_{3}) = \alpha_{2}(x_{1}, x_{2}) \wedge E(x_{1}, x_{3}) \wedge E(x_{3}, x_{1}) \wedge
E(x_{2}, x_{3}) \wedge E(x_{3}, x_{2}) \wedge \neg E(x_{3}, x_{3})
\alpha_{4}(x_{1}, x_{2}, x_{3}, x_{4}) = \alpha_{3}(x_{1}, x_{2}, x_{3}) \wedge E(x_{1}, x_{4}) \wedge E(x_{4}, x_{1}) \wedge
E(x_{2}, x_{4}) \wedge E(x_{4}, x_{2}) \wedge E(x_{3}, x_{4}) \wedge E(x_{4}, x_{3}) \wedge \neg E(x_{4}, x_{4})$$

IIC3263 - Leyes 0-1 41 / 84

Las siguientes \mathcal{L} -oraciones son elementos de AE_4 :

$$\exists z \, \alpha_1(z)$$

$$\forall x_1 \, [\alpha_1(x_1) \to \exists z \, (z \neq x_1 \land \alpha_2(x_1, z))]$$

$$\forall x_1 \forall x_2 \, [(x_1 \neq x_2 \land \alpha_2(x_1, x_2)) \to \exists z \, (z \neq x_1 \land z \neq x_2 \land \alpha_3(x_1, x_2, z))]$$

$$\forall x_1 \forall x_2 \forall x_3 \, [(x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \alpha_3(x_1, x_2, x_3)) \to$$

$$\exists z \, (z \neq x_1 \land z \neq x_2 \land z \neq x_3 \land \alpha_4(x_1, x_2, x_3, z))]$$

IIC3263 - Leyes 0-1 42 / 84

Las siguientes \mathcal{L} -oraciones son elementos de AE_4 :

$$\exists z \, \alpha_1(z)$$

$$\forall x_1 \, [\alpha_1(x_1) \to \exists z \, (z \neq x_1 \land \alpha_2(x_1, z))]$$

$$\forall x_1 \forall x_2 \, [(x_1 \neq x_2 \land \alpha_2(x_1, x_2)) \to \exists z \, (z \neq x_1 \land z \neq x_2 \land \alpha_3(x_1, x_2, z))]$$

$$\forall x_1 \forall x_2 \forall x_3 \, [(x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \alpha_3(x_1, x_2, x_3)) \to$$

$$\exists z \, (z \neq x_1 \land z \neq x_2 \land z \neq x_3 \land \alpha_4(x_1, x_2, x_3, z))]$$

Concluimos que si $\mathfrak{A}\models AE_4$, entonces $\mathfrak{A}\models \varphi$

▶ Tenemos que $AE_4 \models \varphi$

◆□▶ ◆□▶ ◆■▶ ◆■ りへ○

Las siguientes \mathcal{L} -oraciones son elementos de AE_4 :

$$\exists z \, \alpha_1(z)$$

$$\forall x_1 \, [\alpha_1(x_1) \to \exists z \, (z \neq x_1 \land \alpha_2(x_1, z))]$$

$$\forall x_1 \forall x_2 \, [(x_1 \neq x_2 \land \alpha_2(x_1, x_2)) \to \exists z \, (z \neq x_1 \land z \neq x_2 \land \alpha_3(x_1, x_2, z))]$$

$$\forall x_1 \forall x_2 \forall x_3 \, [(x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \alpha_3(x_1, x_2, x_3)) \to$$

$$\exists z \, (z \neq x_1 \land z \neq x_2 \land z \neq x_3 \land \alpha_4(x_1, x_2, x_3, z))]$$

Concluimos que si $\mathfrak{A}\models AE_4$, entonces $\mathfrak{A}\models \varphi$

▶ Tenemos que $AE_4 \models \varphi$

Por lo tanto $1 = \mu_{\mathcal{L}}(\bigwedge AE_4) \le \mu_{\mathcal{L}}(\varphi) \le 1$

• Así, tenemos que $\mu_{\mathcal{L}}(\varphi)=1$

◆ロ → ◆母 → ◆ き → も ● ・ り へ ○

Ley 0-1 para otras lógicas

Existen lógicas que no tienen la ley 0-1.

► ¿Puede dar algún ejemplo?

¿Existen otras lógicas que satisfagan la ley 0-1?

Ley 0-1 para otras lógicas

Existen lógicas que no tienen la ley 0-1.

▶ ¿Puede dar algún ejemplo?

¿Existen otras lógicas que satisfagan la ley 0-1?

Teorema

Si $\mathcal L$ es un vocabulario que sólo contiene relaciones, entonces $\mathcal L^\omega_{\infty\omega}$ tiene la ley 0-1 para $\mathcal L$

<□ > <□ > <□ > < = > < = > < 0

Axiomas de extensión y la lógica $\mathcal{L}_{\infty\omega}^{\omega}$

Lema

 $Si\ \mathfrak{A},\mathfrak{B}\in \mathrm{Struct}[\mathcal{L}]$ satisfacen AE_k , entonces $\mathfrak{A}\equiv_k^{\infty\omega}\mathfrak{B}$

Axiomas de extensión y la lógica $\mathcal{L}_{\infty\omega}^{\omega}$

Lema

Si $\mathfrak{A},\mathfrak{B}\in\mathrm{Struct}[\mathcal{L}]$ satisfacen AE $_k$, entonces $\mathfrak{A}\equiv_k^{\infty\omega}\mathfrak{B}$

Ejercicio

Demuestre el lema

Axiomas de extensión y la lógica $\mathcal{L}^{\omega}_{\infty\omega}$

Lema

 $\mathit{Si}\ \mathfrak{A}, \mathfrak{B} \in \mathrm{Struct}[\mathcal{L}]$ satisfacen AE_k , entonces $\mathfrak{A} \equiv_k^{\infty\omega} \mathfrak{B}$

Ejercicio

Demuestre el lema

Corolario

 $Si~\mathfrak{A}~y~\mathfrak{B}$ son modelos de AE $y~\varphi$ es una $\mathcal{L}_{\infty\omega}^{\omega}$ -oración, entonces $\mathfrak{A}\models\varphi$ si y sólo si $\mathfrak{B}\models\varphi$

Ley 0-1 para $\mathcal{L}^{\omega}_{\infty\omega}$: Demostración

Sabemos que
$$\mu_{\mathcal{L}}(\bigwedge AE_k) = 1$$

ightharpoonup Este resultado es fundamental para la demostración de que $\mathcal{L}^{\omega}_{\infty\omega}$ tiene la ley 0-1

(□) (♂) (∃) (∃) (3

Sabemos que
$$\mu_{\mathcal{L}}(\bigwedge AE_k) = 1$$

lacktriangle Este resultado es fundamental para la demostración de que $\mathcal{L}^\omega_{\infty\omega}$ tiene la ley 0-1

Sea Φ una oración en $\mathcal{L}_{\infty\omega}^{\omega}$.

► Entonces existe k tal que Φ es una oración en $\mathcal{L}_{\infty\omega}^k$

Sabemos que
$$\mu_{\mathcal{L}}(\bigwedge AE_k) = 1$$

lacktriangle Este resultado es fundamental para la demostración de que $\mathcal{L}^{\omega}_{\infty\omega}$ tiene la ley 0-1

Sea Φ una oración en $\mathcal{L}_{\infty\omega}^{\omega}$.

► Entonces existe k tal que Φ es una oración en $\mathcal{L}_{\infty\omega}^k$

Vamos a demostrar que $\mu_{\mathcal{L}}(\Phi) = 0$ ó $\mu_{\mathcal{L}}(\Phi) = 1$

▶ Al igual que para LPO, tenemos que considerar dos casos

1. Existe $\mathfrak{A} \in Struct[\mathcal{L}]$ tal que $\mathfrak{A} \models AE_k$ y $\mathfrak{A} \models \Phi$

Sea
$$\mathfrak{B} \in \mathrm{Struct}[\mathcal{L}]$$
 tal que $\mathfrak{B} \models AE_k$

Por los resultados anteriores: $\mathfrak A$ y $\mathfrak B$ están de acuerdo en todas las oraciones de $\mathcal L^k_{\infty\omega}$.

▶ Entonces: $\mathfrak{B} \models \Phi$

Concluimos que $AE_k \models \Phi$, por lo que para todo $n \ge 1$: $s_{\mathcal{L}}^n(\bigwedge AE_k) \le s_{\mathcal{L}}^n(\Phi)$

De esto y los resultados anteriores concluimos que:

$$1 = \mu_{\mathcal{L}}(\bigwedge AE_k) \leq \mu_{\mathcal{L}}(\Phi) \leq 1$$

2. No existe $\mathfrak{A} \in Struct[\mathcal{L}]$ tal que $\mathfrak{A} \models AE_k$ y $\mathfrak{A} \models \Phi$

Entonces existe $\mathfrak{A} \in Struct[\mathcal{L}]$ tal que $\mathfrak{A} \models AE_k$ y $\mathfrak{A} \models \neg \Phi$

Por caso anterior: $\mu_{\mathcal{L}}(\neg \Phi) = 1$

Por lo tanto: $\mu_{\mathcal{L}}(\Phi) = 0$

Existen propiedades de grafos que no pueden ser expresadas en LPO pero si en $\mathcal{L}^\omega_{\infty\omega}$.

Existen propiedades de grafos que no pueden ser expresadas en LPO pero si en $\mathcal{L}^\omega_{\infty\omega}$.

Ejemplo

Sea $\mathcal{L} = \{E(\cdot, \cdot)\}$ y CONEXO el siguiente lenguaje:

 $\{\mathfrak{A}\in\operatorname{Struct}[\mathcal{L}]\mid\mathfrak{A}\text{ representa un grafo conexo}\}$

CONEXO es expresable en $\mathcal{L}^3_{\infty\omega}$ como:

$$\forall x_1 \forall x_2 (x_1 \neq x_2 \rightarrow \bigvee_{i \geq 1} \theta_i(x_1, x_2))$$

donde $\theta_1(x_1, x_2) = (E(x_1, x_2) \vee E(x_2, x_1))$ y:

IIC3263 – Leyes 0-1 48 / 84

Ejemplo (continuación)

$$\theta_{n+1}(x_1, x_2) = \exists x_3 ((E(x_1, x_3) \lor E(x_3, x_1)) \land \\ \exists x_1 (x_1 = x_3 \land \theta_n(x_1, x_2)))$$

IIC3263 - Leyes 0-1 49 / 84

Ejemplo (continuación)

$$\theta_{n+1}(x_1, x_2) = \exists x_3 ((E(x_1, x_3) \lor E(x_3, x_1)) \land \\ \exists x_1 (x_1 = x_3 \land \theta_n(x_1, x_2)))$$

Entonces:
$$\mu_{\mathcal{L}}(\mathsf{CONEXO}) = 0$$
 ó $\mu_{\mathcal{L}}(\mathsf{CONEXO}) = 1$

<□ > <□ > <□ > < = > < = > < 0

Ejemplo (continuación)

$$\theta_{n+1}(x_1, x_2) = \exists x_3 ((E(x_1, x_3) \lor E(x_3, x_1)) \land \\ \exists x_1 (x_1 = x_3 \land \theta_n(x_1, x_2)))$$

Entonces:
$$\mu_{\mathcal{L}}(\mathsf{CONEXO}) = 0$$
 ó $\mu_{\mathcal{L}}(\mathsf{CONEXO}) = 1$

Casi todos los grafos son conexos, o casi todos no lo son

▶ ¿Cuál de las dos alternativas es la correcta?

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

49 / 84

Ejemplo (continuación)

Suponga que $\mathfrak A$ es una $\mathcal L$ -estructura tal que $\mathfrak A \models AE_3$

Dados elementos distintos a y b en \mathfrak{A} , existe $F \subseteq A_{\mathcal{L}}(x_1, x_2)$ tal que $\mathfrak{A} \models \chi_F(a, b)$

Entonces, dado que el siguiente es un axioma en AE_3 :

$$\forall x_1 \forall x_2 \left[(x_1 \neq x_2 \land \chi_F(x_1, x_2)) \rightarrow \exists z \left(z \neq x_1 \land z \neq x_2 \land \chi_F(x_1, x_2) \land E(x_1, z) \land E(x_2, z) \land E(z, x_2) \land \neg E(z, z) \right) \right]$$

concluimos que:

$$\mathfrak{A} \models \exists z (z \neq a \land z \neq b \land E(a, z) \land E(z, a) \land E(b, z) \land E(z, b) \land \neg E(z, z))$$

50 / 84

Ejemplo (continuación)

Como a y b son elementos arbitrarios, tenemos que:

$$\mathfrak{A} \models \forall x_1 \forall x_2 (x_1 \neq x_2 \rightarrow \theta_2(x_1, x_2))$$

Concluimos que:

$$AE_3 \models \forall x_1 \forall x_2 (x_1 \neq x_2 \rightarrow \bigvee_{i \geq 1} \theta_i(x_1, x_2))$$

Por lo tanto: $\mu_{\mathcal{L}}(\mathsf{CONEXO}) = 1$

► ¿Por qué?

- 4 ロ > 4 团 > 4 분 > 4 분 > - 분 - 쒼 Q @

Sabemos que cada fórmula en LPO con operador de menor punto fijo puede ser expresada en $\mathcal{L}^\omega_{\infty\omega}$

 Y también tenemos este resultado para LPO con operador parcial de punto fijo

IIC3263 - Leyes 0-1 52 / 84

Sabemos que cada fórmula en LPO con operador de menor punto fijo puede ser expresada en $\mathcal{L}^{\omega}_{\infty\omega}$

 Y también tenemos este resultado para LPO con operador parcial de punto fijo

Corolario

Si $\mathcal L$ es un vocabulario que sólo contiene relaciones, entonces:

- lacktriangle LPO con operador de menor punto fijo tiene la ley 0-1 para ${\cal L}$
- lacktriangle LPO con operador parcial de punto fijo tiene la ley 0-1 para ${\cal L}$

IIC3263 – Leyes 0-1 52 / 84

Consecuencia fundamental: Lógicas que no pueden contar

Sea $\mathcal{L} = \emptyset$ y PARIDAD = $\{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \text{dominio de } \mathfrak{A} \text{ tiene}$ un número par de elementos $\}$

Corolario

PARIDAD no es expresable en LPO, LPO con operador de menor punto fijo, LPO con operador parcial de punto fijo o $\mathcal{L}_{\infty\omega}^{\omega}$

Ninguna de las lógicas mencionadas en el corolario puede contar

IIC3263 - Leyes 0-1 53 /

Sabemos que el siguiente problema es indecidible:

 $\mathsf{FIN}\text{-VAL} \ = \ \{\varphi \mid \varphi \text{ es satisfecha por todos los modelos finitos}\}$

Sabemos que el siguiente problema es indecidible:

 $\mathsf{FIN}\text{-VAL} \ = \ \{\varphi \mid \varphi \text{ es satisfecha por todos los modelos finitos}\}$

Fije un vocabulario $\mathcal L$ que sólo contiene relaciones. ¿Es el siguiente problema decidible?

CASI-VAL =
$$\{\varphi \mid \varphi \text{ es una } \mathcal{L}\text{-oración y } \mu_{\mathcal{L}}(\varphi) = 1\}$$

54 / 84

Sabemos que el siguiente problema es indecidible:

 $\mathsf{FIN}\text{-VAL} \ = \ \{\varphi \mid \varphi \text{ es satisfecha por todos los modelos finitos}\}$

Fije un vocabulario $\mathcal L$ que sólo contiene relaciones. ¿Es el siguiente problema decidible?

CASI-VAL =
$$\{\varphi \mid \varphi \text{ es una } \mathcal{L}\text{-oración y } \mu_{\mathcal{L}}(\varphi) = 1\}$$

En este caso estamos preguntando si una fórmula es "casi válida"

Teorema

CASI-VAL es decidible

Teorema

CASI-VAL es decidible

Demostración: Usamos herramientas de lógica clásica

Consideramos modelos infinitos

IIC3263 - Leyes 0-1 55 / 84

Teorema

CASI-VAL es decidible

Demostración: Usamos herramientas de lógica clásica

Consideramos modelos infinitos

Suponemos que $\mathcal{L} = \{R(\cdot, \cdot)\}$

 La demostración puede ser extendida fácilmente a cualquier vocabulario que sólo contiene relaciones

IIC3263 - Leyes 0-1 55 / 84

Teorema

CASI-VAL es decidible

Demostración: Usamos herramientas de lógica clásica

Consideramos modelos infinitos

Suponemos que $\mathcal{L} = \{R(\cdot, \cdot)\}$

 La demostración puede ser extendida fácilmente a cualquier vocabulario que sólo contiene relaciones

Consideramos nuevamente el conjunto de los axiomas de extensión AE para el vocabulario $\mathcal L$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

55 / 84

Teorema

CASI-VAL es decidible

Demostración: Usamos herramientas de lógica clásica

Consideramos modelos infinitos

Suponemos que $\mathcal{L} = \{R(\cdot, \cdot)\}$

 La demostración puede ser extendida fácilmente a cualquier vocabulario que sólo contiene relaciones

Consideramos nuevamente el conjunto de los axiomas de extensión AE para el vocabulario $\mathcal L$

¿Cómo se define este conjunto para un vocabulario arbitrario (sólo con relaciones)?

◆□▶ ◆圖▶ ◆蓋▶ ◆蓋▶ ● 釣魚@

IIC3263 - Leyes 0-1 55 / 84

Decibilidad de la ley 0-1 para LPO: Demostración

Sabemos que si $\mathfrak A$ y $\mathfrak B$ son modelos de AE, entonces para toda oración φ en LPO se tiene que $\mathfrak A \models \varphi$ si y sólo si $\mathfrak B \models \varphi$

Entonces: Para toda oración φ en LPO, $AE \models \varphi$ ó $AE \models \neg \varphi$

► Th(AE) es una teoría completa

Este resultado combinado con el siguiente lema nos va a dar la decibilidad de CASI-VAL

Lema

$$\mu_{\mathcal{L}}(\varphi) = 1$$
 si y sólo si AE $\models \varphi$

IIC3263 - Leyes 0-1 56 / 84

Decibilidad de la ley 0-1 para LPO: Demostración

Demostración del lema:

(⇐) Si $AE \models \varphi$, entonces por compacidad sabemos que existe $AE' \subseteq AE$ tal que AE' es finito y $AE' \models \varphi$

Por lo tanto: $AE_k \models \varphi$, para algún $k \ge 1$

Tenemos que $1 = \mu_{\mathcal{L}}(\bigwedge AE_k) \le \mu_{\mathcal{L}}(\varphi) \le 1$

$$(\Rightarrow)$$
 Si $AE \not\models \varphi$, entonces $AE \models \neg \varphi$

▶ Por el punto anterior: $\mu_{\mathcal{L}}(\neg \varphi) = 1$ y, por lo tanto, $\mu_{\mathcal{L}}(\varphi) = 0$

IIC3263 – Leyes 0-1 57 / 84

Tenemos los ingredientes necesarios para demostrar el teorema

Tenemos los ingredientes necesarios para demostrar el teorema

Del lema anterior: $\mu_{\mathcal{L}}(\varphi) = 1$ si y sólo si $\varphi \in \mathsf{Th}(AE)$

Tenemos los ingredientes necesarios para demostrar el teorema

Del lema anterior: $\mu_{\mathcal{L}}(\varphi) = 1$ si y sólo si $\varphi \in \mathsf{Th}(AE)$

Pero Th(AE) es una teoría completa con una axiomatización infinita (enumerable) y decidible

▶ Tenemos que Th(AE) es una teoría decidible

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ → 巻 → かへの

Tenemos los ingredientes necesarios para demostrar el teorema

Del lema anterior: $\mu_{\mathcal{L}}(\varphi) = 1$ si y sólo si $\varphi \in \mathsf{Th}(AE)$

Pero Th(AE) es una teoría completa con una axiomatización infinita (enumerable) y decidible

▶ Tenemos que Th(AE) es una teoría decidible

Concluimos que CASI-VAL es decidible

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

IIC3263 – Leyes 0-1 58 / 84

Demostramos que CASI-VAL es decidible

Demostramos que CASI-VAL es decidible

 Pero la demostración no nos da un algoritmo que pueda ser implementado fácilmente

59 / 84

Demostramos que CASI-VAL es decidible

 Pero la demostración no nos da un algoritmo que pueda ser implementado fácilmente

¿Cómo podemos generar un algoritmo más sencillo para CASI-VAL?

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ≡ ⟨□⟩ ⟨□⟩

Demostramos que CASI-VAL es decidible

Pero la demostración no nos da un algoritmo que pueda ser implementado fácilmente

¿Cómo podemos generar un algoritmo más sencillo para CASI-VAL?

► Vamos a utilizar los axiomas de extensión y una técnica general para demostrar decibilidad de teorías lógicas

IIC3263 Leves 0-1 59 / 84

Sea Σ un conjunto de oraciones en LPO sobre un vocabulario $\mathcal L$

Sea Σ un conjunto de oraciones en LPO sobre un vocabulario $\mathcal L$

Definición

 Σ admite eliminación de cuantificadores si para cada \mathcal{L} -fórmula $\varphi(x_1,\ldots,x_k)$, existe una \mathcal{L} -fórmula φ^{sc} sin cuantificadores tal que:

$$\Sigma \models \forall x_1 \cdots \forall x_k (\varphi(x_1, \ldots, x_k) \leftrightarrow \varphi^{sc}(x_1, \ldots, x_k))$$

Nota

Si φ es una oración, entonces $\varphi^{\rm sc}$ es \top (una tautología) o \bot (una contradicción)

60 / 84

Ejemplo

Sea $\mathcal{L} = \{0,1,s,+,\cdot,<\}$ y φ la siguiente fórmula:

$$\varphi(x_1, x_2, x_3) = \exists y (x_1 \cdot y \cdot y + x_2 \cdot y + x_3 = 0)$$

Sobre $\mathsf{Th}(\mathfrak{R})$, los cuantificadores de φ pueden ser eliminados. Si:

$$\varphi^{\text{sc}}(x_1, x_2, x_3) = \left((x_1 \cdot x_3 + x_1 \cdot x_3 + x_1 \cdot x_3 + x_1 \cdot x_3) < x_2 \cdot x_2 \right) \vee \left((x_1 \cdot x_3 + x_1 \cdot x_3 + x_1 \cdot x_3 + x_1 \cdot x_3) = x_2 \cdot x_2 \right),$$

se tiene que:

$$\mathsf{Th}(\mathfrak{R}) \models \forall x_1 \forall x_2 \forall x_3 \left(\varphi(x_1, x_2, x_3) \leftrightarrow \varphi^{\mathsf{sc}}(x_1, x_2, x_3) \right)$$

↓□▶ ↓□▶ ↓ □▶ ↓ □▶ ↓ □ ♥ ♀ ○

IC3263 - Leyes 0-1 61 / 84

Teorema

Si una teoría admite eliminación de cuantificadores, y existe un algoritmo que construye φ^{sc} a partir de φ , entonces es decidible

Eliminación de cuantificadores

Teorema

Si una teoría admite eliminación de cuantificadores, y existe un algoritmo que construye φ^{sc} a partir de φ , entonces es decidible

¿Cómo se demuestra este teorema?

¿Puede mencionar algunas teorías a las cuales se aplica?

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ かへぐ

IIC3263 – Leyes 0-1 62 / 84

Decibilidad de CASI-VAL: Eliminación de cuantificadores

Vamos a usar la técnica de eliminación de cuantificadores para demostrar que CASI-VAL es decidible.

Utilizamos la equivalencia entre CASI-VAL y Th(AE)

 Vamos a demostrar que AE admite eliminación de cuantificadores

IIC3263 – Leyes 0-1 63 / 84

Decibilidad de CASI-VAL: Eliminación de cuantificadores

Dado: Vocabulario \mathcal{L}

Teorema

AE admite eliminación de cuantificadores. Además, existe un algoritmo que construye $\varphi^{sc}(\bar{x})$ a partir de $\varphi(\bar{x})$.

Decibilidad de CASI-VAL: Eliminación de cuantificadores

Dado: Vocabulario \mathcal{L}

Teorema

AE admite eliminación de cuantificadores. Además, existe un algoritmo que construye $\varphi^{sc}(\bar{x})$ a partir de $\varphi(\bar{x})$.

Demostración: Nuevamente consideramos el lenguaje $\mathcal{L} = \{R(\cdot, \cdot)\}$

La demostración es por inducción en $\varphi(\bar{x})$

- ▶ Si $\varphi(\bar{x})$ es una fórmula atómica, entonces $\varphi^{\text{sc}}(\bar{x}) = \varphi(\bar{x})$
- Para los conectivos lógicos la propiedad es simple de verificar

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ 釣魚@

IIC3263 - Leyes 0-1 64 / 84

▶ Suponga que $\varphi(\bar{x}) = \exists y \, \psi(\bar{x}, y)$ y que la propiedad se cumple para $\psi(\bar{x}, y)$.

Existe una fórmula $\psi^{sc}(\bar{x}, y)$ sin cuantificadores tal que:

$$AE \models \forall \bar{x} \forall y (\psi(\bar{x}, y) \leftrightarrow \psi^{\mathsf{sc}}(\bar{x}, y))$$

Vamos a construir $\varphi^{\rm sc}(\bar{x})$ a partir de $\psi^{\rm sc}(\bar{x},y)$

Como $\psi^{sc}(\bar{x}, y)$ no tiene cuantificadores, se puede transformar en una fórmula de la forma:

$$\left(\bigvee_{i=1}^k \alpha_i(\bar{x}_i, y)\right) \vee \left(\bigvee_{i=k+1}^\ell \alpha_i(\bar{x}_i)\right)$$

donde cada α_i es una conjunción de fórmulas atómicas y negaciones de fórmulas atómicas

ightharpoonup Cada variable en \bar{x}_i es mencionada en \bar{x}

IIC3263 – Leyes 0-1 66 / 84

Es fácil verificar si cada una de las fórmulas α_i es consistente.

▶ ¿Cómo se puede hacer esto?

Si una fórmula α_i no es consistente, entonces es eliminada de la disyunción.

Si todas las fórmulas α_i son eliminadas, entonces:

ho $\varphi^{
m sc} = ot$ si φ es una oración

Suponga entonces que la eliminación fue realizada y quedó la fórmula:

$$\left(\bigvee_{i=1}^{m}\beta_{i}(\bar{x}_{i},y)\right)\vee\left(\bigvee_{i=m+1}^{n}\beta_{i}(\bar{x}_{i})\right)$$

Se tiene entonces:

$$AE \models \forall \bar{x} \left[\varphi^{\text{sc}}(\bar{x}) \leftrightarrow \left(\left(\bigvee_{i=1}^{m} \exists y \, \beta_i(\bar{x}_i, y) \right) \vee \left(\bigvee_{i=m+1}^{n} \beta_i(\bar{x}_i) \right) \right) \right]$$

IIC3263 - Leyes 0-1 68 / 84

Vamos a mostrar que para cada fórmula $\exists y \ \beta_i(\bar{x}_i, y)$, es posible construir una fórmula $\beta_i^{sc}(\bar{x}_i)$ tal que:

$$AE \models \forall \bar{x}_i (\exists y \, \beta_i(\bar{x}_i, y) \leftrightarrow \beta_i^{sc}(\bar{x}_i))$$

Primero verificamos si una de las conjunciones en $\beta_i(\bar{x}_i, y)$ es y = x o x = y, donde x es una de la variables en \bar{x}_i

• Si se cumple la condición: $\beta_i^{sc}(\bar{x}_i) = \beta_i(\bar{x}_i, x)$

IIC3263 – Leyes 0-1

Suponga que la condición mencionada antes no se cumple, y que $\bar{x}_i = (x_1, \dots, x_p)$

Sabemos que:

$$\exists y \, \beta_i(\bar{x}_i, y) \equiv \left(\bigvee_{j=1}^p \beta_i(\bar{x}_i, x_j)\right) \vee \exists y \left(\bigwedge_{j=1}^p y \neq x_j \wedge \beta_i(\bar{x}_i, y)\right)$$

Por lo tanto, sólo tenemos que eliminar el cuantificador existencial de la fórmula:

$$\exists y \left(\bigwedge_{i=1}^{p} y \neq x_{j} \wedge \beta_{i}(\bar{x}_{i}, y) \right)$$
 (1)

◆ロト ◆部 ト ◆ き ト ◆ き ・ か へ ご

IIC3263 - Leyes 0-1 70 / 8

En este punto vamos a usar los axiomas de extensión.

La fórmula (1) es equivalente a:

$$\exists y \left[\bigwedge_{j=1}^{p} y \neq x_{j} \wedge \beta_{i}(\bar{x}_{i}, y) \wedge \left(\bigwedge_{1 \leq q < r \leq p} x_{q} = x_{r} \vee x_{q} \neq x_{r} \right) \wedge \left(\bigwedge_{\theta \in A_{c}(x_{1}, \dots, x_{n}, y)} \theta \vee \neg \theta \right) \right]$$
(2)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

IIC3263 - Leyes 0-1 71 /

Continuamos el proceso distribuyendo las conjunciones sobre las disyunciones en (2)

► También eliminamos fórmulas inconsistentes

Se obtiene que (1) es equivalente a una disyunción de fórmulas de la forma:

$$\kappa_i(x_1,\ldots,x_p) \wedge \xi_i(x_1,\ldots,x_p) \wedge \\ \exists y \left(\bigwedge_{j=1}^p y \neq x_j \wedge \rho_i(x_1,\ldots,x_p,y) \right)$$

Donde:

▶ Existe $F \subseteq A_{\mathcal{L}}(x_1, ..., x_p)$ tal que

$$\kappa_i(x_1,\ldots,x_p) \equiv \chi_F(x_1,\ldots,x_p)$$

- $\xi_i(x_1, \dots, x_p)$ es una conjunción de fórmulas de la forma $x_q = x_r$ o $x_q \neq x_r$ $(1 \leq q < r \leq p)$
 - ▶ Para cada $q, r \in \{1, ..., p\}$ tal que q < r, se tiene que $x_q = x_r$ o $x_q \neq x_r$ es mencionado en $\xi_i(x_1, ..., x_p)$
- ▶ Existe $G \subseteq A_{\mathcal{L}}(x_1, \dots, x_p, y)$ que extiende a F y tal que:

$$\rho_i(x_1,\ldots,x_p,y) \equiv \chi_G(x_1,\ldots,x_p,y)$$

4ロ > 4回 > 4 き > 4 き > り へ ら

Entonces tenemos que:

$$AE \models \forall x_1 \cdots \forall x_p \left[\left(\kappa_i(x_1, \dots, x_p) \land \xi_i(x_1, \dots, x_p) \right) \leftrightarrow \left(\kappa_i(x_1, \dots, x_p) \land \xi_i(x_1, \dots, x_p) \land \right. \right.$$
$$\left. \exists y \left(\bigwedge_{j=1}^p y \neq x_j \land \rho_i(x_1, \dots, x_p, y) \right) \right) \right]$$

Lo que nos permite eliminar el cuantificador $\exists y$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Un comentario final sobre el último paso:

• En este paso puede ocurrir que $\kappa_i(x_1,\ldots,x_p) \equiv \top$

Esto puede ocurrir cuando eliminamos el cuantificador $\exists y$ desde $\exists y \ R(y,y)$ ó $\exists y \ \neg R(y,y)$

¿Cómo se maneja este caso?

Ш

Sea
$$\varphi = \forall x \forall y (R(x, y) \rightarrow R(y, x))$$

ightharpoonup Vamos a aplicar la técnica de eliminación de cuantificadores para determinar $\mu_{\mathcal{L}}(\varphi)$

En la demostración eliminamos cuantificadores existenciales

Consideramos entonces la fórmula

$$\neg \varphi = \exists x \exists y \left(R(x, y) \land \neg R(y, x) \right)$$

◆ロト ◆部ト ◆差ト ◆差ト を めらる

- ► Comenzamos con la fórmula $R(x,y) \land \neg R(y,x)$ que no tiene cuantificadores.
- Después consideramos la fórmula:

$$\exists y \, (R(x,y) \land \neg R(y,x)) \tag{3}$$

Esta fórmula es equivalente a:

$$(R(x,x) \land \neg R(x,x)) \lor \exists y (x \neq y \land R(x,y) \land \neg R(y,x))$$

77 / 84

Pero: $R(x,x) \wedge \neg R(x,x)$ es inconsistente

Concluimos que (3) es equivalente a:

$$\exists y \, (x \neq y \land R(x,y) \land \neg R(y,x)) \tag{4}$$

78 / 84

► Tenemos que eliminar el cuantificador existencial de la fórmula (4)

Sabemos que esta fórmula es equivalente a:

$$\exists y \left[x \neq y \land R(x,y) \land \neg R(y,x) \land \left(R(x,y) \lor \neg R(x,y) \right) \land \left(R(x,y) \lor \neg R(x,y) \right) \land \left(R(y,x) \lor \neg R(y,x) \right) \land \left(R(y,y) \lor \neg R(y,y) \right) \right]$$

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ・ 差 ・ 釣९@

IIC3263 - Leyes 0-1 79 / 84

Vale decir, (4) es equivalente a:

$$\left(R(x,x) \land \exists y \left(x \neq y \land R(x,y) \land \neg R(y,x) \land R(y,y)\right)\right) \lor
\left(R(x,x) \land \exists y \left(x \neq y \land R(x,y) \land \neg R(y,x) \land \neg R(y,y)\right)\right) \lor
\left(\neg R(x,x) \land \exists y \left(x \neq y \land R(x,y) \land \neg R(y,x) \land R(y,y)\right)\right) \lor
\left(\neg R(x,x) \land \exists y \left(x \neq y \land R(x,y) \land \neg R(y,x) \land \neg R(y,y)\right)\right) (5)$$

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○皇 ○夕९◎

► Ahora tenemos que eliminar los cuantificadores existenciales de la fórmula (5)

Para esto utilizamos las siguientes equivalencias:

$$AE \models \forall x \left[R(x,x) \leftrightarrow \left(R(x,x) \land \right. \right. \\ \exists y \left(x \neq y \land R(x,y) \land \neg R(y,x) \land R(y,y) \right) \right]$$

$$AE \models \forall x \left[R(x,x) \leftrightarrow \left(R(x,x) \land \right. \\ \exists y \left(x \neq y \land R(x,y) \land \neg R(y,x) \land \neg R(y,y) \right) \right) \right]$$

<ロ > → □ > → □ > → □ > → □ = の へ ○

IIC3263 - Leyes 0-1 81 / 84

$$AE \models \forall x \left[\neg R(x,x) \leftrightarrow \left(\neg R(x,x) \land \right) \right]$$

$$\exists y (x \neq y \land R(x,y) \land \neg R(y,x) \land R(y,y)) \right]$$

$$AE \models \forall x \left[\neg R(x,x) \leftrightarrow \left(\neg R(x,x) \land \right) \right]$$

$$\exists y (x \neq y \land R(x,y) \land \neg R(y,x) \land \neg R(y,y)) \right]$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

IIC3263 - Leyes 0-1 82 / 84

Concluimos que:

$$AE \models \forall x \left[\left(\exists y \left(R(x, y) \land \neg R(y, x) \right) \right) \leftrightarrow \left(R(x, x) \lor \neg R(x, x) \right) \right]$$

► Finalmente, tenemos que eliminar el cuantificador existencial de la fórmula $\exists x (R(x,x) \lor \neg R(x,x))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへで

IIC3263 - Leyes 0-1 83 / 84

Distribuyendo obtenemos:

$$\exists x R(x,x) \lor \exists x \neg R(x,x)$$

Como ambas fórmulas son ciertas de acuerdo a los axiomas de extensión, concluimos que:

$$AE \models \left[\left(\exists x \exists y \left(R(x,y) \land \neg R(y,x) \right) \right) \leftrightarrow \top \right]$$

De todo el proceso concluimos que $\mu_{\mathcal{L}}(\neg \varphi) = 1$, vale decir, $\mu_{\mathcal{L}}(\varphi) = 0$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥QQ