A powder diffractometer

Based on the output of the earlier exercises, we will now assemble a powder diffractometer.

TASKS

- 1. Find back your solution to the monochromator exercise or take one one of those provided
- Using mcdoc and the PDF information, add PowderN to the sample position. Sample geometry should be a cylindar of radius=0.005 and yheight=0.07. Sample definition can be one of your choice, but a good candidate is reflections=Na2Ca3Al2F14.laz
- 3. Next, add a banana-shaped detector (cyllindrical cut) by using Monitor_nD of radius 1.2 m and height 30 cm, measuring a diffractogram using options="banana theta bins=640 limits=[-170 -10]" positioned AT (0,0,0) RELATIVE your sample
- 4. Run a simulation with 1e7 neutron rays, hopefully you have arrived at something that resembles this as a diffraction pattern. In existance, but not too

pretty...:

(produced using this instrument)

- 5. We should now optimise a bit:
 - Assign only a tiny fraction of stats to "direct beam", set p_transmit=1e-6
 - Assign just 3% to incoherent scattering p_inc=0.03
 - Let us use a d_phi limitation, corresponding to detector height / detector radius ~14 deg.
 - Let us only scatter to the negative side (detector only in place there) tth_sign=-1
 - Use a SPLIT of \sim 800, corresponding to the number of dspacings available in the reflection file

6. Rerun with MPI (auto will run on all available cores) and 1e7 rays, much bet-

ter:

(produced using this instrument)

- 7. **Bonus task:** Use mcdocto add a radial collimator in between sample and detector
- 8. Bonus task: Add a flag (similar to e.g. $coll_in$ to enable/disable your radial collimator
- 9. **Bonus task:** Use NeXpy and NeXus output to fit a selected peak. Do you see an improved resolution by adding the radial collimator?