The Iterated Mod Problem

Soham Chatterjee

Chennai Mathematical Institute

October 30, 2023

Soham Chatterjee The Iterated Mod Problem 1/1

- 1 Iterated Integer Mod (IIM) Problem
 - *CVP* is *P*-complete
 - $NANDCVP \leq_l IIM$
- 2 Super Increasing 0-1 Knapsack Problem
 - Introduction
 - SIK is P-complete
- 3 Polynomial Iterated Mod Problem (PIM)
 - Introduction
 - PIM is in NC

Soham Chatterjee The Iterated Mod Problem 2 / 1:

Introduction

- This paper is about the Iterated Mod Problem by Karloff and Ruzzo [KR89]
- Diferente de programas WYSWYG;
- Uma apresentação *Beamer* é como qualquer outro documento LaTeX, contém:
 - Preâmbulo e um corpo;
 - O preâmbulo pode-se dizer que é o "índice", tipo do documento e pacotes;
 - O corpo contém sections e subsections;
 - Os dispositivos deverão ser estruturados utilizando ambientes de item e enumerate, ou texto simples (curto).

- 1 Iterated Integer Mod (IIM) Problem
 - *CVP* is *P*-complete
 - $NANDCVP \leq_1 IIM$
- 2 Super Increasing 0-1 Knapsack Problem
 - Introduction
 - *SIK* is *P*-complete
- 3 Polynomial Iterated Mod Problem (PIM)
 - Introduction
 - PIM is in NC

Iterated Integer Mod Problem

• Given positive integers $x, m_n, m_{n-1}, \ldots, m_1$ find if

$$((x \bmod m_n) \bmod m_{n-1}) \cdots) \bmod m_1) = 0$$

- We will show this problem is *P*-complete.
- Since we can replace every ∧ and ∨ in a circuit with NAND gate and the size of the circuit still remains polynomial we only consider the circuits with NAND and NOT gates.
- We will show that *NANDCVP* is log space reducible to *IIM*.
- An *NANDCVP* circuit the r nodes y_1, \ldots, y_r of indegree 0 are th inputs and the G nodes with indegree 2 are the gates. The gates are numbers $1, \ldots, G$. The gates are numbered in reverse topological order i.e. every edge is directed from a higher numbered gate to a lower numbered gate and the last gate with gate number 1 is the output with the edge going out of it is 0th edge. The edges E = 2G + 1 are numbered so that the two gates into gate g are numbered 2g and 2g 1.

 ♦ □ ▷ ◆ □ ▷ ◆ □ ▷ ◆ □ ▷ ◆ □ ▷ ◆ ○ □

 Soham Chatteriee
 The Iterated Mod Problem
 5 / 18

CVP is P-complete

$NANDCVP \leq_l IIM$

Log-Space Reduction

Let n = 2G. The reduction from NANDCVP to the integer iterated mod problem is as follows:

- Let x is n + 1 = E-bit integer whose ith bit is Y_j if the ith edge is incident from the input y_i. Otherwise it is 1.
- For $1 \le g \le G$ let

$$m_{2g} = 2^{2g} + 2^{2g-1} + \sum_{\substack{\text{jth edge} \\ \text{out-edge from } g}} 2^{j} \text{ and } m_{2g-1} = 2^{2g-1}$$

This reduction is a log-space reduction from NANDCVP to Integer Iterated Mod problem.

• Here m_{2g} and m_{2g-1} simulate the gate g

The next theorem proves that the output gate of the CVP instance is 0 iff

$$((\cdots((x \bmod m_{2G}) \bmod m_{2g-1})\cdots)) = 0$$

 ♦ □ ▷

$NANDCVP \leq_l IIMI$

Correctnes

Theorem

Let $x_{G+1} = x$. And for all $1 \le g \le G$ $x_g = ((\cdots ((x \mod m_{2G}) \mod m_{2g-1}) \cdots \mod m_{2g}) \mod m_{2g-1}) = 0$. Then:

- **1** For all $1 \le g \le G + 1$, $x_g \le 2^{2g-1}$
- **②** For all $1 \le g \le G+1$, $0 \le j \le 2g-1$ if the jth edge is an outgoing edge from an input node or from a gate h such that $h \ge g$ then x_g 's jth bit is the value carried by jth edge otherwise 1

Prove by downward induction.

Base Case (g = G + 1): We have $x < 2^{2(G+1)-1} = 2^{2G+1} = 2^n$. True as x is n-bit number. And second condition follows by constuction. Let the theorem holds for all g > k.

 $x_k = (x_{k+1} \mod m_{2k}) \mod m_{2g-1}$. $m_{2k-1} = 2^{2k-1}$. So x_k has 2k-1 bits so $x_k < 2^{2k-1}$. So Part (a) is proved.

$NANDCVP \leq_l IIM II$

Correctnes

- The only bits differ between x_{k+1} and x_k are the bits corresponding to edges incident on kth vertex (in and out). In x_{k+1} the jth bits are 1 if jth edge going out from gate k.
- The 2k and 2k 1th edges are in edges of gate k. So in x_{k+1} the (2k)th and (2k 1)th bits are the value carried by the (2k) and (2k 1)th edges. Two cases to consider:
- Both (2k) and (2k+1)th bits are 1. $x_{k+1} \ge m_{2k}$ and $x_{k+1} < 2m_{2k}$. So $x_{k+1} \mod m_{m_{2k}} = x_{k+1} m_{2k} < 2^{2k-1} \implies x_{k+1} m_{2k} \mod m_{2k-1} = x_{k+1} m_{2k}$. So x_k obtained is deleting the leading two 1's and replacing the 1 in position j by a 0 where jth bit of m_{2k} is 1. So at every edge leaving k has value 0=NAND(1,1)
- At least one of the bits 2k, 2k 1 is 0. Then $x_{k+1} < m_{2k} \implies x_{k+1} \mod m_{2k} = x_{k+1}$. So x_k has the rightmost 2k 1 bits of x_{k+1} . So the jth bit of x_k has 1 where jth bit of m_{2k} is 1. So every edge leaving k has value 1=NAND(1,0)=NAND(0,1)=NAND(0,0)
- Part (b) is proved

So with previous theorem true after m_1 we have $x_1 < 2^1$ which is the value carried by the 0th edge which is the value of the CVP instance. Hence $NANDCVP \le IIM$

IIM is *P*-complete

Theorem,

 $IIM \in P$

For any 2 numbers a and b, a mod b is in P. Here we are doing n iterated mods. So it still takes polynomial time. So $IIM \in P$.

Theorem

Integer Iterated Mod Problem is P-complete

- 1 Iterated Integer Mod (IIM) Problem
 - *CVP* is *P*-complete
 - NANDCVP <1 IIM
- 2 Super Increasing 0-1 Knapsack Problem
 - Introduction
 - SIK is P-complete
- 3 Polynomial Iterated Mod Problem (PIM
 - Introduction
 - PIM is in NC

Super Increasing Knaspsack Problem (SIK)

Introduction

Definition (0-1 Knapsack Problem)

Given an integer w and a sequence of integers w_1, w_2, \ldots, w_n is there a sequence of 0-1 valued variables $x_1, \ldots x_n$ such that $w = \sum_{i=1}^n x_i w_i$.

- 0-1 Knapsack Problem is known to be *NP*-complete. [GJ90]
- A knapsack instance is called super increasing (*SIK*) if each weight w_i is larger than the sum of the previous weights i.e. for all $2 \le i \le n$ we have $w_i > \sum_{i=1}^{i-1} w_j$

Theorem

 $SIK \in P$

Greedy strategy considering the w'_i in decreasing order gives a linear time algorithm for solving super increasing knapsack problem.

4 D > 4 A > 4 E > 4 E > E 900

SIK is P-complete I

Theorem

Super Increasing Knapsack Problem is P-complete

We will show $NANDCVP \le SIK$ and the proof is very much like $NANDCVP \le IIM$. Here we will consturct base 4 numbers instead of binary. The reduction goes like this:

- Let x is n + 1 = E-length base 4 number whose ith digit is Y_j if the ith edge is incident from the input y_j . Otherwise it is 1.
- For $1 \le g \le G$ let

$$m_{2g} = 4^{2g} + 4^{2g-1} + \sum_{\substack{j \text{th edge out-edge from } g}} 4^j$$
, $m_{2g-0.5} = 4^{2g} - 4^{2g-1}$, $m_{2g-1} = 4^{2g-1}$

Define for all 1 < G,

 $x_g = ((\cdots ((x \mod m_{2G}) \mod m_{2g-1}) \cdots \mod m_{2g}) \mod m_{2g-1}) = 0 \text{ and } x_{G+1} = x.$

•
$$x_k \le 4^{2k-1}$$
 for all $1 \le g \le G+1$, $x_k < 4^{2g-1}$

Soham Chatteriee The Herated Mod Problem 13 / 18

SIK is P-complete II

Theorem

For all $1 \le g \le G+1$, $0 \le j \le 2g-1$ if the jth edge is an outgoing edge from an input node or from a gate h such that $h \ge g$ then x_g 's jth bit is the value carried by jth edge otherwise 1

- Prove by downward induction. Base case g = G + 1 is true.
- x_{k+1} and x_k differs at the positions corresponding to the edges incident on kth vertex.
- 2k and 2k 1th edges are in-edges of vertex k so they are the values carried by 2k and 2k 1th edges
- If both of them 1 then $4m_{2k} > x_{k+1} \ge m_{2k} \implies x_{k+1} \mod m_{2k} = x_{k+1} m_{2k} < 4^{2k-1}$. So $(x_{k+1} m_{2k} \mod m_{2k-0.5}) \mod m_{2k-1} = x_{k+1} m_{2k}$. In x_k the positions where m_{2k} has 1 will have 0 = NAND(1, 1)
- If at least one of them 0 then $x_{k+1} \mod m_{2k} = x_{k+1}$. So after that the positions in x_k where m_{2k} has 1 will have 1=NAND(1,0)=NAND(0,1)=NAND(0,0). Now $x_{k+1}=a\times 4^{2k}+b\times 4^{2k-1}+c$ where $a,b\in\{0,1\}$.
 - a = 1, b = 0: $(x_{k+1} \mod m_{2k-0.5}) \mod m_{2k-1} = 1 \times 4^{2k-1} + c \mod m_{2k-1} = c$
 - b = 0/1: $(x_{k+1} \mod m_{2k-0.5}) \mod m_{2k-1} = b \times 4^{2k-1} + c \mod m_{2k-1} = c$
- The theorem is true and with that we get *SIK* is *P*-complete.

- 4 ロ ト 4 回 ト 4 重 ト 4 重 ト 9 9 0 0

- 1 Iterated Integer Mod (IIM) Problem
 - CVP is P-complete
 - $NANDCVP \leq_l IIM$
- 2 Super Increasing 0-1 Knapsack Problem
 - Introduction
 - *SIK* is *P*-complete
- 3 Polynomial Iterated Mod Problem (PIM)
 - Introduction
 - PIM is in NC

Polynomial Iterated Mod Problem

Definition (Polynomial Iterated Mod Problem)

Given univariate polynomials a(x), $b_1(x)$, ..., $b_n(x)$ over a field \mathbb{F} compute the residue $((\cdots ((a(x) \bmod b_1(x)) \bmod b_2(x)) \cdots \bmod b_{n-1}(x)) \bmod b_n(x))$

PIM is in NC

Beamer Introduction

Beamer is a LATEX class.

References I

- [KR89] Howard J. Karloff and Walter L. Ruzzo. "The iterated mod problem". inInformation and Computation: 80.3 (1989), pages 193-204. ISSN: 0890-5401. DOI: https://doi.org/10.1016/0890-5401 (89) 90008-4. URL: https: //www.sciencedirect.com/science/article/pii/0890540189900084.
- [GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. USA: W. H. Freeman & Co., 1990. ISBN: 0716710455.

Soham Chatterjee