

Similar	ly for	fisger	. 2:													
Bc =		0														
- 2	0 0															
	0 0															
a =	poez = [l	o .	, 7 T													
	Roc2 = R2	(90') =	= 0	-1	0											
				0	0											
	_ 0 - 0	1/	1		٦_											
⇒g ocz	1 0 0		2													
	0 0	. 0														
			T													
using	MATLA	3 , A	dgoci	→												
			0													
Ad g in	₋ 0 -1		0 0													
7	0 0	0 0	0 0													
	0 0	0 0 -	10													
	0 0 LL 0	- <u>lu</u> (0 0													
	-	00	١													
Adgoci Bc	- 10															
	0 0															
	0 0															
	[<u>l</u> w o]															
	101	. 0 -	-17													
⇒ 6 ₁	-1 0															
	0 0	0	o l													
	0 0	1 <u>1</u> 2	0													
	lw c	lw.	0													
	2	2	9													
The con	contact for	nus a	t eac	h u	mtac	t p	oint	a	re	8 w	bjec	tt) Jt	he	frieta	m
Friction	cone at	finge	\	, zu	ney !	by:										
1). / 6	= Sigi Htegi		507	U		0										
0.(14)	uteus -	- f _{est}	[0]													


```
=> tcy1 = fcy2 > fcn1 = fcm2 , fcm1 + fcm2 = 0
       Thus, fcn: = 0. Which indicates o friction force
              for = fonz = 0, fog = fog = fog,
         be an internal force, gumen friction come
                                                           constraints are met.
1.5) Since fey, - fey, are internal forces, and from 13,
 To hold the object up, f_c = \begin{bmatrix} mg \cos \phi/2 \\ f_{cy} \\ -mg \cos \phi/2 \end{bmatrix}, s.t. [f_{cy} - mg \cos \phi/2] \ge 0
     for minimum value, fcg, z vogcoso 2M
16) The hand Jacobian J_h is given by:
J_h = \begin{bmatrix} B_c \end{bmatrix} Adg_{sic}, J_{sif}
                                Bcz Adgszcz Jszfz
  gsici Rsici = Rz (210+4) = -484
                                                     cos o
                                                              m (0,+02), 0)
```

```
Similarly for 952c2

RS2ca = R_2(90+4) = \begin{bmatrix} -\sin \phi & -\cos \phi & 0 \\ \cos \phi & -\sin \phi & 0 \end{bmatrix}
  Psaca = [1, co, + 12 ((0,+02), 1, so, +12 (03+04), 0]
T_{s,f_1} = \left( \left( \frac{3}{3} \frac{1}{5} \frac{1}{1} \right) \frac{3}{3} \frac{1}{5} \frac{1}{1} \right) \left( \frac{3}{3} \frac{1}{5} \frac
                                 eτ [εί εί]
    \mathcal{E}_{i}^{\dagger} = \begin{bmatrix} -\omega_{i} \times P_{i} \\ \omega_{i} \end{bmatrix}
                         \omega_{1} = [0,0,1]^{T}
p_{1} = [0,0,0]^{T}
     = \frac{1}{2} \mathcal{E}' = [0, 0, 0, 0, 0, 0]
= \frac{1}{2} \mathcal{E}' = [0, 0, 0, 0, 0]
= \frac{1}{2} \mathcal{E}' = [0, 0, 0, 0]
= \frac{1}{2} \mathcal{E}' = [0, 0, 0, 0]
                                w2 x p2 = [-1, sino, , 1, coso, ,0]T
                   => & = [ -[ ], sino, , -l, coso, , 0, 0, 0, 1) ]
        => Js = 0 l, sino, -
```

```
Tour get

\begin{array}{c}
T_{32}T_{2} = \begin{bmatrix}
0 & 0 & \sin \theta_{3} \\
0 & -0 & \cos \theta_{3}
\end{bmatrix}

  And computing the adjoints of gsic, and gsic using
   MATLAB, me get
  Adg 5762 = -ch -sh 0 0 0 125(03+04)+1,503 -1, clo3+04)-1,cto3

longuting Bc; Adg 5; it is uning MATLAB, we get:
   Bc, Adg - J, = [-1, c(0, +0, -0), -1, cos(4-0, ), -1, c(0, +0, -0)]
                                1,3(p-0,)-1,3(0,402-p) -1,5(0,402-p)
  Bc_{1}^{T}Adg_{52c_{1}}^{-1}J_{52f_{2}} = \begin{bmatrix} l_{1}c(\theta_{3}+\theta_{4}-\phi)-l_{1}c(\phi-\theta_{3}) & -l_{2}c(\theta_{3}+\theta_{4}-\phi) \\ l_{1}s(\theta_{3}+\theta_{4}-\phi)-l_{1}s(\phi-\theta_{3}) & l_{2}s(\theta_{3}+\theta_{4}-\phi) \end{bmatrix}
          [-\sigma_4 - l, \cos(\phi - \theta_1)] - \sigma_4 + \sigma_3 + l, \cos(\phi - \theta_3) + \sigma_3
       ] lisin(1-03) - 52 | 6, -lisin(1-03) | 6,
  6_1 = l_2 \sin(\theta_3 + \theta_4 - \phi), 6_2 = l_2 \sin(\theta_1 + \theta_2 - \phi), 6_3 = l_2 \cos(\theta_1 + \theta_2 - \phi), 6_4 = l_2 \cos(\theta_1 + \theta_2 - \phi)
```

1.7) For internal motions, we have to look at the mull space of Jy, because these are notions that have no effect on the contact / body velocity out gives internal motions if J, out =0 i.e., out will (J,) Using MATLAB to compute, $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$ lisino2 - li sin (0, -03) + l, y, + l, l, y, - l, l, y, l, ψ - l = ψ, lile singe lisino2 Ψ1 = sin(0,+02-03-04) y = sin(0 + 04 -01) 43 = sin(0,+02 -03) 1.8) The robot independently has 4 DOF. The object by itself has 3 DOF. when the probot and object are in contact, the robot has some motions that have no effect on the objects velocity or wench. This is the entra DOF that is missing or lost. This comes at the cost of keeping contact with the object. To summarise, the extra DOF is the grasping me chanism of the internal forces of the nobot after grasping the object.

```
syms 11 12 t1 t2 t3 t4 p real
w1 = [0, 0, 1]'
w1 = 3 \times 1
     0
     0
     1
p1 = [0, 0, 0]'
p1 = 3 \times 1
     0
     0
     0
e1 = [-cross(w1, p1); w1]
e1 = 6 \times 1
     0
     0
     0
     0
     0
     1
w2 = [0, 0, 1]';
p2 = [11*cos(t1), 11*sin(t1), 0]'
p2 =
(l_1\cos(t_1))
 l_1 \sin(t_1)
    0
e2 = [-cross(w2, p2); w2]
e2 =
 (l_1 \sin(t_1))
 -l_1\cos(t_1)
     0
     0
     0
w3 = [0, 0, 1]'
w3 = 3 \times 1
     0
     0
     1
p3 = [0, 0, 0]'
```

```
p3 = 3×1
0
0
0
```

e3 = [-cross(w3, p3); w3]

e3 = 6×1 0 0 0 0

w4 = [0, 0, 1]'

 $w4 = 3 \times 1$ 0
0
1

p4 = [11*cos(t3), 11*sin(t3), 0]'

 $p4 = \begin{pmatrix} l_1 \cos(t_3) \\ l_1 \sin(t_3) \\ 0 \end{pmatrix}$

e4 = [-cross(w4, p4); w4]

e4 =

 $\begin{pmatrix} l_1 \sin(t_3) \\ -l_1 \cos(t_3) \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

Js1f1 = [e1, e2]

Js1f1 =

$$\begin{pmatrix} 0 & l_1 \sin(t_1) \\ 0 & -l_1 \cos(t_1) \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Js2f2 = [e3, e4]

Js2f2 =
$$\begin{pmatrix} 0 & l_1 \sin(t_3) \\ 0 & -l_1 \cos(t_3) \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

1

```
gs1c1 = [sin(p), cos(p), 0, l1*cos(t1) + l2*cos(t1 + t2);...
-cos(p), sin(p), 0, l1*sin(t1) + l2*sin(t1 + t2); 0, 0, 1, 0; 0, 0, 0, 1]
```

gs1c1 =

$$\begin{pmatrix}
\sin(p) & \cos(p) & 0 & l_2 \cos(t_1 + t_2) + l_1 \cos(t_1) \\
-\cos(p) & \sin(p) & 0 & l_2 \sin(t_1 + t_2) + l_1 \sin(t_1) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$gs2c2 = [-sin(p), -cos(p), 0, 11*cos(t3) + 12*cos(t3 + t4);...$$

 $cos(p), -sin(p), 0, 11*sin(t3) + 12*sin(t3 + t4); 0, 0, 1, 0; 0, 0, 0, 1]$

gs2c2 =

$$\begin{pmatrix}
-\sin(p) & -\cos(p) & 0 & l_2\cos(t_3 + t_4) + l_1\cos(t_3) \\
\cos(p) & -\sin(p) & 0 & l_2\sin(t_3 + t_4) + l_1\sin(t_3) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Adgs1c1 = simplify(tform2adjoint(inv(gs1c1)))

Adgs1c1 =

$$\begin{cases} \sin(p) & -\cos(p) & 0 & 0 & 0 & -l_2\cos(t_1 - p + t_2) - l_1\cos(p) \\ \cos(p) & \sin(p) & 0 & 0 & 0 & l_1\sin(p - t_1) - l_2\sin(t_1 - p) \\ 0 & 0 & 1 & l_2\sin(t_1 + t_2) + l_1\sin(t_1) & -l_2\cos(t_1 + t_2) - l_1\cos(t_1) & 0 \\ 0 & 0 & 0 & \sin(p) & -\cos(p) & 0 \\ 0 & 0 & 0 & \cos(p) & \sin(p) & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{cases}$$

```
Adgs2c2 = simplify(tform2adjoint(inv(gs2c2)))
```

Adgs2c2 =

```
-\sin(p) \cos(p) = 0
                                  0
                                                                  0
                                                                                   l_2 \cos(t_3 - p + t_4) + l_1 \cos(p
                                    0
                                                                  0
-\cos(p) - \sin(p) = 0
                                                                                   l_2 \sin(t_3 - p + t_4) - l_1 \sin(p)
   0
                   1 l_2 \sin(t_3 + t_4) + l_1 \sin(t_3) - l_2 \cos(t_3 + t_4) - l_1 \cos(t_3)
                                                                                                    0
   0
             0
                    0
                                 -\sin(p)
                                                               cos(p)
                                                                                                    0
   0
             0
                     0
                                -\cos(p)
                                                              -\sin(p)
                                                                                                    0
             0
                     0
                                    0
                                                                  0
                                                                                                    1
```

Bc1 = [1 0; 0 1; 0 0; 0 0; 0 0; 0 0]

Bc2 = [1 0; 0 1; 0 0; 0 0; 0 0; 0 0]

Jh = [simplify(Bc1' * Adgs1c1 * Js1f1), simplify(Bc2' * Adgs2c2 * Js2f2)]

Jh =

$$\begin{pmatrix} -\sigma_4 - l_1 \cos(p - t_1) & -\sigma_4 & \sigma_3 + l_1 \cos(p - t_3) & \sigma_3 \\ l_1 \sin(p - t_1) - \sigma_2 & -\sigma_2 & \sigma_1 - l_1 \sin(p - t_3) & \sigma_1 \end{pmatrix}$$

where

$$\sigma_1 = l_2 \sin(t_3 - p + t_4)$$

$$\sigma_2 = l_2 \sin(t_1 - p + t_2)$$

$$\sigma_3 = l_2 \cos(t_3 - p + t_4)$$

$$\sigma_4 = l_2 \cos(t_1 - p + t_2)$$

t_int = simplify(null(Jh))

t_int =

$$\begin{pmatrix} \frac{l_2 \sigma_1 + l_1 \sigma_3}{l_1 \sin(t_2)} & \frac{l_2 \sigma_1}{l_1 \sin(t_2)} \\ -\frac{l_1^2 \sin(t_1 - t_3) + l_2^2 \sigma_1 + l_1 l_2 \sigma_3 - l_1 l_2 \sigma_2}{l_1 l_2 \sin(t_2)} & -\frac{l_2 \sigma_1 - l_1 \sigma_2}{l_1 \sin(t_2)} \\ 1 & 0 & 1 \end{pmatrix}$$

where

$$\sigma_1 = \sin(t_1 + t_2 - t_3 - t_4)$$

$$\sigma_2 = \sin(t_3 - t_1 + t_4)$$

$$\sigma_3 = \sin(t_1 + t_2 - t_3)$$