

Identification of cell-type-specific genetic regulation of gene expression for transcriptome-wide association studies

I. BACKGROUND

i. The Central Dogma

- Protein is generated through DNA transcription, RNA translation.
- Protein level dominantly affects phenotypes.
- Genotypes is a sequence of alleles along the SNPs (X).
- Gene expression (**GE (Z)**) is the level of mRNA in one cell type. **Bulk level GE** (**G**) is the combined GE of all cell types in a tissue.

Encode DNA into SNPs data

	Ind 1	Ind 2	Ind 3	Geno1	Geno2	Geno3
1	AA	AG	AG	0	1	1
	CT	CC	CC	1	1	2
	•	•	•	•	•	•
	•	•	•	•	•	•
ļ	AA	AG	AG	↓ o	1	1

ii. Current Studies

- Genome-wide association studies (GWAS)^[3] linearly associate SNPs with phenotypes
- Transcriptome-wide association studies (**TWAS**)^[2] linearly characterize the association with regulation of gene expression by SNPs.

iii. Challenges & Goals

Methodological

Unclear how SNPs affect phenotypes

- Missing cell type information
- Fail to tell causality from correlation

Our Goal

Deconvolute bulk level GE into cell-specific GE with SNPs and cell-type weights. Associate cell-type specific GE with phenotypes

The Central Dogma

Practical

Cell-type-specific biological data being resource intensive and expensive to acquire.

Healthy Blood Cells Red blood cells Neutrophil* Lymphocyte* Monocyte*

ii. TCA model

$$G_i = c_i^2 \delta + \sum_{h=1}^k w_{hi} z_{hi} + \epsilon_g \qquad \boldsymbol{\epsilon_g} \in \mathbf{N}(\mathbf{0}, \boldsymbol{\sigma_g})$$

TCA assumes bulk level GE is a linear combination of GEs

III. RESULT

i. Data Simulation

Is the prediction result of proposed model significant?

Power of cell-specific expression imputation High abundance Intermediate abundance Low abundance Low abundance Training sample size

Is the model underfitting or overfitting?

Compare our modified TCA and the original TCA, which is better?

II. METHODOLOGY

1. TCA deconvolutes bulk level GE into cell-type-specific ones

- 2. Effect size of SNPs on cell-type-specific GE imputed by LASSO
- 3. Cell-type-specific gene expression imputed from effect size
- 4. Estimated GE is regressed into phenotype

Reference

[1] Rahmani, E., Schweiger, R., Rhead, B., Criswell, L. A., Barcellos, L. F., Eskin, E., ... & Halperin, E. (2019). Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. *BioRxiv*, 437368.

[2] Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., ... & Sullivan, P. F. (2016). Integrative approaches for large-scale transcriptome-wide association studies. *Nature genetics*, 48(3), 245.

[3] Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-wide association studies. *PLoS computational biology*, 8(12), e1002822. doi:10.1371/journal.pcbi.1002822

ii. Real Data

Is the model's performance consistent between cell types?

Is the model overfitting on real data?

Acknowledgement

- This work is supported by CSST program.
- The authors gratefully acknowledge the discussions with Elior Rahmani and Yue Wu.