INTEGRAL CALCULUS

Sample Questions

ABU ABDILLAH MOHAMMAD NASIM

Lecturer, Department of CSE, RMU. abuabdillahmath@outlook.com

01.Indefinite integral

i.
$$\int \cos^4 x \sin x \ dx$$

ii.
$$\int \frac{1}{(\cos^2 x \sin^2 x)} dx$$

iii.
$$\int \frac{2x^2 - 1}{(1+x)^2(x-2)} dx$$

iv.
$$\int \frac{\sin^6 x + \cos^6 x}{(\cos^2 x \sin^2 x)} dx$$

$$v. \int \frac{x}{(1+x)(x+2)^2} dx$$

vi.
$$\int \frac{\ln(\ln x)}{x} dx$$

vii.
$$\int \frac{dx}{(x-a)(x-b)^2}$$

viii.
$$\int \frac{x}{1 + \cos x} dx$$

ix.
$$\int \tan^{-1} x \ dx$$

$$x. \qquad \int \frac{e^{m \tan^{-1} x}}{1 + x^2} dx$$

$$xi. \int e^x \frac{x^2 + 1}{(x+1)^2} dx$$

$$xii. \int \frac{e^{m \tan^{-1} x}}{(1+x^2)^2} dx$$

$$xiii. \quad \int e^x \frac{1 + \sin x}{1 + \cos x} dx$$

02.Definite integral

i. State and prove the fundamental theorem of integral calculus.

ii.
$$\int_{0}^{\pi/2} \frac{dx}{1 + \cot x}$$

iii.
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

iv.
$$\int_{0}^{\pi/2} \frac{dx}{1 + \sqrt{\cot x}}$$

$$V. \int_{0}^{\pi/2} \frac{\sqrt{\tan x}}{1 + \sqrt{\tan x}} dx$$

vi.
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$

vii.
$$\int_{0}^{\pi} \frac{x}{1 + \sin x} dx$$

$$Viii. \int_{0}^{\pi/2} \frac{x}{\cos x + \sin x} dx$$

ix.
$$\int_{0}^{\pi} x \cos^4 x \, dx$$

$$x. \int_{0}^{\pi} \ln(1+\cos x) \, dx$$

xi. Prove that
$$\int_{0}^{\pi} \ln(\sin x) dx = \int_{0}^{\pi} \ln(\cos x) dx = \frac{\pi}{2} \ln \frac{1}{2}$$

03. Definite integral as the limit of the sum

i. Evaluate
$$\int_{a}^{b} \sin x \, dx$$
 by first principal / definition.

ii. Evaluate
$$\int_{a}^{b} \cos x \, dx$$
 by first principal / definition.

iii. Evaluate
$$\int\limits_{0}^{\pi/2}\cos x\ dx$$
 by first principal / definition.

iv. Evaluate
$$\int_{0}^{\pi/2} \sin x \, dx$$
 by first principal / definition.

v. Evaluate
$$\int_{a}^{b} x^2 dx$$
 by first principal / definition.

vi. Evaluate
$$\int_{0}^{2} x^{2} dx$$
 by first principal / definition.

vii. Evaluate
$$\int_{a}^{b} e^{x} dx$$
 by first principal / definition.

viii. Evaluate
$$\int_{0}^{2} e^{x} dx$$
 by first principal / definition.

ix. Find the value of
$$\lim_{n\to\infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\cdots\cdots+\frac{1}{2n}\right]$$

x. Find the value of
$$\lim_{n \to \infty} \left[\frac{1}{n} + \frac{1}{\sqrt{n^2 - 1}} + \frac{1}{\sqrt{n^2 - 2^2}} + \dots + \frac{1}{\sqrt{n^2 - (n - 1)^2}} \right]$$

xi. Find the value of
$$\lim_{n\to\infty}\left[\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\cdots\cdots+\frac{1}{2n}\right]$$

04.Successive reduction

i. Find the reduction formula for
$$\int \sin^n x \, dx$$

ii. Find the reduction formula for
$$\int \cos^n x \, dx$$

iii. Find the reduction formula for
$$\int \sec^n x \, dx$$

iv. Find the reduction formula for
$$\int \tan^n x \, dx$$

v. Find the reduction formula for
$$\int \cos^m x \cos nx \, dx$$

vi. Find
$$\int \cos^5 x \cos 2x \, dx$$

vii. Find the reduction formula for
$$\int \sin^m x \sin nx \, dx$$

viii. Find the reduction formula for
$$\int \cos^m x \sin nx \, dx$$

ix. Find the reduction formula for
$$\int \sin^m x \cos^n x \, dx$$

$$x. \quad \text{Find} \quad \int \sin^4 x \, \cos^3 x \, dx$$

xi. Find the reduction formula for
$$\int x^n e^{ax} dx$$

xii. Walle's formula: Prove

$$\int_{0}^{\pi/2} \sin^{n} x \, dx = \int_{0}^{\pi/2} \cos^{n} x \, dx = \begin{cases} \frac{(n-1)(n-3)\cdots\cdots5\cdot3\cdot1}{n(n-2)\cdots\cdots6\cdot4\cdot2} & \text{when n is even} \\ \frac{(n-1)(n-3)\cdots\cdots6\cdot4\cdot2}{n(n-2)\cdots\cdots5\cdot3\cdot1} & \text{when n is odd} \end{cases}$$

$$\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x \, dx = \int_{0}^{\pi/2} \cos^{m} x \sin^{n} x \, dx$$

$$= \begin{cases} \frac{1 \cdot 3 \cdot 5 \cdots \cdots (m-1) \times 1 \cdot 3 \cdot 5 \cdots \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots \cdots (m+n)} & \text{when m and n are even} \\ \frac{2 \cdot 4 \cdot 6 \cdots \cdots (m-1)}{(n+1)(n+3) \cdots \cdots (n+m)} & \text{when m is odd} \end{cases}$$

05.Improper Integrals

06. Differentiation under the sign of integration

07.Area of plane curve

- i. Find the area bounded by the curve $y=\sin x$, the axis of x and the straight lines x=0 and $x=\pi$.
- ii. Show that the area between the parabola $y^2 = 4x$ and the straight line y = 2x 4 is 9 square unit.
- iii. Find the area of the region bounded by the parabolas $y^2 = 4b(b-x)$ and $y^2 = 4a(a+x)$.
- iv. Find the area above the *x*-axis, included between parabola $y^2 = ax$ and the circle $x^2 + y^2 = 2ax$.
- V. Find the area between the curve $y^2 = \frac{(a-x)^3}{a+x}$ and the asymptote.
- Vi. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- vii. Find the area of the loop of the curve $xy^2 + (x + a)(x + 2a) = 0$.
- viii. Find the area of the cycloid

$$x = a(\theta + \sin \theta)$$

$$y = a(1 - \cos \theta)$$

bounded by its base.

- ix. Find the area bounded by the cardioid $r = a(1 \cos \theta)$.
- x. Find the area of the region enclosed by the rose curve $r = \sin 2\theta$.
- xi. Find the area common to the cardioid $r = a(1 + \cos \theta)$ and the circle $r = \frac{3}{2}a$.
- xii. Find the area bounded by the cardioid $r = a(1 + \sin \theta)$.
- xiii. Find the area bounded by the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- xiv. Find the area bounded by the hypocycloid $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = 1$.

08.Length of plane curve

- i. Find the length of the semi-cubical parabola $ay^2 = x^3$ from the vertex to the point (a, a).
- ii. Find the intersected arc length of the parabola $y^2 = 4ax$ and the straight line 3y = 8x.
- iii. Find the length of the curve $8y^2 = x^2 x^4$.
- iv. Find the perimeter of the hypocycloid $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$.
- v. Find the perimeter of the circle $x^2 + y^2 = a^2$.
- vi. Find the arc length of the cycloid $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$ of one cycle.
- vii. Find the perimeter of the cardioid $r = a(1 + \cos \theta)$.

09. Volume and surface area of solids of revolution

- i. The part of the curve $y = \sin x$ form x = 0 to $x = \pi$ revolves about the x-asix. Find the volume and the surface area of the solid that generated.
- ii. Find the volume and area of the curved surface of a paraboloid of revolution formed by revolving the parabola $y^2 = 4ax$ about the x-axis and bounded by the section $x = x_1$.
- iii. Find the volume and the surface area of the solid generated by revolving the cycloid

$$x = a(\theta + \sin \theta)$$

$$y = a(1 + \cos \theta)$$

about its base.

iv. Find the volume and the surface area of the solid generated by revolving the cardioid $r = a(1-\cos\theta)$

about the initial line.