## Arhitecturi de retea

Lenuta Alboaie adria@info.uaic.ro

# Cuprins

- Retele de calculatoare organizare
- Modele de arhitecturi de retea (OSI, TCP/IP)
- Modelul TCP/IP
- ISO/OSI versus TCP/IP

# Retele de calculatoare – organizare

- Organizarea retelelor de calculatoare stiva de nivele
  - Functionalitate:
    - Interfata: asigura comunicarea intre doua nivele consecutive
    - Serviciu: furnizeaza functionalitatea unui nivel
  - Rezultat: reducerea complexitatii proiectarii
  - Principiul de comunicare: ce transmite emitatorul la nivelul n este ceea ce se primeste la destinatar la nivelul n
  - Protocol regulile si conventiile prin care se realizeaza comunicarea

# Exemplu: legatura - nivele, protocoale si interfete



- Specificarea serviciului este realizata printr-un set de primitive (operatii) puse la dispozitia celui ce foloseste serviciul
- Serviciu != Protocol



- Tipuri de servicii
  - Orientat-conexiune (eng. connection-oriented)
    - Comunicarea necesita stabilirea unei conexiuni
    - Similar serviciului telefonic
  - Fara conexiune (eng. connectionless)
    - Comunicarea nu necesita stabilirea unei conexiuni
    - Similar serviciului postal

- Arhitectura de retea: multimea de nivele si de protocoale
  - Specificatia unei arhitecturi trebuie sa ofere suficiente informatii pentru ca programele sau echipamentele destinate unui nivel sa indeplineasca protocoalele corespunzatoare
- Stiva de protocoale: lista de protocoale (de pe toate nivelele) utilizate de catre un anumit sistem

- Fiecare nivel trebuie sa realizeze indentificarea emitatorilor & receptorilor printr-un mecanism de adresare
- Identificarea regulilor de transfer a datelor
  - comunicare simplex
    - Exemplu: TV
  - comunicare half-duplex
    - Exemplu: "walkie-talkie"
  - comunicare full-duplex
    - Exemplu: telefon

- In general canalele de comunicatie nu pastreaza ordinea mesajelor trimise => necesitatea unui protocol ce furnizeaza un mecanism de reconstituire a ordinii corecte a mesajelor
- Exista situatii in care receptorul nu poate face managementul mesajelor de lungime variabila => trebuie sa existe un mecanism de impartire/asamblare a mesajelor
- Costuri mari in alocarea de conexiuni separate? => multiplexarea
   utilizarea aceleiasi conexiuni pentru conversatii independente
- In general exista mai multe cai intre sursa si destinatie => mecanism de rutare
- Circuitele fizice de comunicatii nu sunt perfecte => necesitatea unui mecanism de control al erorilor

#### Modele de referinta pentru arhitecturi de retea

- ISO/OSI (International Standard Organization/ Open System Interconnection)
- TCP/IP (Transmission Control Protocol/ Internet Protocol)



[conform Computer Networks, 2010 – Andrew S. Tanenbaum, et.al.]

# Arhitectura de retea - Echipamente



Figura: Dispozitive si nivelele corespunzatoare

#### Modelul OSI- motivatie

- Necesitatea unui nivel de abstractizare diferit => crearea unui nou nivel
  - Obs. Numarul de niveluri trebuie sa fie optim a.i. acelasi nivel sa aiba functii diferite, dar arhitectura sa fie functionala
- Un nivel are un rol bine definit; functia nivelului trebuie aleasa acordindu-se atentie definirii de protocoale standardizate pe plan international
- Minimizarea fluxului de informatii intre nivele este realizata printr-o buna delimitare a nivelelor
  - => nivelele pot fi modificate si implementate in mod independent
- Fiecare nivel ofera un serviciu nivelului superior (folosind servicii de pe nivelurile anterioare)
- Nivelurile "peer" al sistemelor diferite comunica via un protocol



# Modelul OSI – structura unui mesaj



[Retele de calculatoare – curs 2007-2008, Sabin Buraga]

#### Modelul OSI – structura

- Nivelul Fizic
- Nivelul Legaturii de Date
- Nivelul Retea
- Nivelul Transport
- Nivelul Sesiune
- Nivelul Prezentare
- Nivelul Aplicatie



- Nivelul Fizic: mediu de transmisie a datelor
  - Rol: asigura faptul ca secventa de biti transmisa de la emitator ajunge la receptor
  - Medii de transmisie:
    - Cu fir (cablu torsadat, cablu coaxial, fibre optice)
    - Fara fir (spectru electromagnetic radio, microunde, infrarosii,...) -> curs viitor

#### Nivelul Fizic:

#### Transmiterea datelor:

- Analogic (valori continue)
  - Exemplu: vechi sisteme telefonice
- Digital (valori discrete)
  - Exemplu: computerele, ...

Conversia datelor din format analogic în format digital si invers

- Modem: date în format digital sunt transmise în format analogic
- Codec (coder/decoder): date în format analogic sunt transmise în format digital



Figura. Semnal Analogic



Figura. Semnal Digital

- Nivelul Fizic aspecte:
  - Largimea de banda (Bandwidth): numarul de biti care pot fi transmisi pe retea intr-o anumita perioada de timp (viteza transfer de date)
    - •Se exprima de obicei in bits/secunda
  - Latenta: reprezinta intervalul de timp
    maxim necesar unui bit de a se propaga de la o extremitate la alta a retelei si se exprima in unitati de timp
    - •RTT(*Round Trip Time*) Timpul necesar unui bit să traverseze de la un capăt la altul, şi înapoi mediul

Parametrii fundamentali de asigurare a performantei retelei

Nivelul Fizic – Aspecte

Modificari suferite de semnale in timpul propagarii in mediile de transmisie:

- Atenuarea: pierderea de energie în timpul propagării semnalului printr-un mediu de transmisie
- Zgomotul: modificarea semnalului cauzata de factori externi (e.g. fulgere, alte echipamente electronice etc)
  - Diafonia = zgomot provenit din semnal transmis de mediul de transmisie vecin
- Distorsiune (engl. Distortion)- este o modificare determinista a semnalului receptionat fata de cel emis



#### Nivelul Fizic – Concluzii

Ofera servicii de transport, asupra carora putem indentifica o serie de probleme posibile

- Datele pot fi alterate/distruse din cauza zgomotului
- Daca destinatia nu poate prelucra datele in ritmul celor emise, o parte se vor pierde
- Daca un acelasi mediu de transmisie este utilizat de mai multe emitatoare, exista riscul ca pachetele trimise sa se altereze reciproc
- Este mai putin costisitoare construirea de legaturi logice care sa partajeze aceeeasi legatura fizica, decat crearea de legaturi fizice independente



- Nivelul legatura de date:
  - Ofera
    - mecanisme de detectie si corectare a erorilor
    - mecansime de reglementare a fluxului de date
    - mecanism de control al accesului la mediu
    - servicii nivelului retea, unitatea de date fiind cadrul (engl. *frame*)

- Nivelul legatura de date:
  - Datele se incapsuleaza in cadre (frame-uri)
  - Analogie: frame=plic digital



- Nivelul legatura de date:
  - Ofera servicii nivelului retea
    - Servicii neconfirmate fara conexiune
      - » Emitatorul transmite cadre independente catre destinatar fara sa astepte confirmare
      - » Un cadru pierdut nu este recuperat
    - Servicii confirmate fara conexiune
      - » Se realizeaza confirmarea cadrelor trimise
      - » Transmiterea cadrelor nu se face in ordine
    - Servicii confirmate orientate-conexiune
      - » Inainte de transmiterea datelor se stabileste o conexiune
      - » Cadrele sunt numerotate pentru a se pastra ordinea

- Nivelul legatura de date:
  - Divizat in doua subniveluri:
    - Controlul logic al legaturii LLC (Logical Link Control)
      - Rol: Ofera nivelelor superioare o vedere independenta de mediul de comunicare
    - Controlul accesului la mediu MAC (Medium Access Control)
      - Rol: Folosit pentru a determina cine urmeaza sa transmita intr-un canal multi-acces (engl. multiaccess channel)

- Nivelul legatura de date:
- Controlul accesului la mediu MAC (Medium Access Control)
  - Contextul problemei: acelasi mediu fizic e folosit de mai multi emitatori (identificati unic printr-o adresa fizica sau adresa MAC) care activeaza simultan, de exemplu:
    - transmisie semi-duplex, intre entitati care utilizeaza acelasi mediu fizic pentru ambele sensuri
    - comunicatia prin unde radio, cand exista statii care
       emit pe aceeasi lungime de unda (Wireless Ethernet
      - IEEE 802.11, Bluetooth, etc).

- Nivelul legatura de date:
- Controlul accesului la mediu MAC (Media Access Control)
  - Strategii:
    - Alocare statica
      - » FDM (Frequency Division Multiplexing)
      - » TDM (Time Division Multiplexing)
    - Acceptarea posibilitatii coliziunilor si retransmiterea pachetelor afectate de coliziuni – alocare dinamica

Coliziune=transmiterea simultana a datelor

Mecanism general: o statie ce are date de transmis, le transmite imediat; in caz de coliziune va face retransmitere pana la transmitere cu succes

Nivelul legatura de date:

Controlul accesului la mediu – **protocoale** (alocare dinamica):

- ALOHA
  - Pure ALOHA: "transmite original doresti"
  - Slotted ALOHA
- CSMA (Carrier Sense Multiple Access): protocol cu detectia transmisiei ("canal liber inainte de a transmite?")
  - 1-persistent CSMA
  - ...
  - p-persistent CSMA

- Nivelul legatura de date:
  - Controlul accesului la mediu protocoale:
    - CSMA (Carrier Sense Multiple Access)
      - -CSMA/CD (CSMA with Collision Detection)
        - » "canalul e liber in timp ce transmiti?"
        - » baza pentru Ethernet LAN (IEEE 802.3)
    - MACA (Multiple Access with Collision Avoidance)
      - -Baza pentru retelele wireless (IEEE 802.11)
    - MACAW
      - Imbunatateste MACA

| Standard<br>IEEE     | Descriere                                                                |
|----------------------|--------------------------------------------------------------------------|
| 802                  | Grupul de standarde pentru reţele LAN şi<br>MAN                          |
| 802.2                | LLC (Logical Link Control)                                               |
| 802.3                | Ethernet (Carrier Sense Multiple Access with Collision Detect (CSMA/CD)) |
| 802.3u               | Fast Ethernet                                                            |
| 802.3z               | Gigabit Ethernet                                                         |
| 802.11<br>a/b/g/n/ac | Reţele fără fir – wireless (WLAN)                                        |
| 802.15               | Wireless PAN (802.15.1 Bluetooth,)                                       |
| 802.16               | Reţele wireless WAN                                                      |

#### Accesul la mediu – Exemplu de Standarde

- Nivelul legatura de date echipamente
  - punti (engl. bridges)
    - Retransmit frame-urile dintre doua retele (LAN)
    - Nu modifica continutul frame-urilor si pot schimba doar antetele acestora
    - Imbunatatesc siguranta transmiterii si performanta
    - Pot oferi controlul fluxului si congestiei datelor
    - Retransmiterea datelor se realizeaza via rute statice sau folosind un arbore de acoperire

STP (IEEE 802.1D) – Spanning Tree Protocol

— Alte echipamente? (Curs 1)



#### Nivelul retea:

- Preia pachetele de la sursa si le transfera catre destinatie
- Ofera servicii nivelului transport
  - ce fel de servicii?
    - Comunitatea Internet propune:
      - » servicii neorientate conexiune: SEND PACKET, RECEIVE PACKET
      - » Pachetele (numite datagrame) sunt independente si sunt dirijate in mod individual
      - » Serviciile de tip datagrama sunt similare sistemului de posta (obsinuita)



#### Nivelul retea:

- Preia pachetele de la sursa si le transfera catre destinatie
- Ofera servicii nivelului transport
  - ce fel de servicii?
    - Companiile telefonice propun:
      - » Servicii orientate conexiune, sigure
      - » Inainte de transfer se initiaza o negociere pentru stabilirea unei conexiuni (*VC-virtual circuit*)
      - » Serviciile de acest tip sunt similare sistemului telefonic

#### Nivelul retea:

- Protocoale folosite
  - X.25 (orientat conexiune)
  - IP
- -Probleme
  - Conversii de protocol si adrese
  - Controlul erorilor (flux, congestie)
  - Divizarea si recompunerea pachetelor
  - Securitatea criptare, firewall



- Nivelul transport: ofera siguranta si cost-eficient in transportul datelor de la masina sursa la masina destinatie, independent de reteaua fizica sau retelele in prezent in uz
  - Servicii: ofera servicii orientate-conexiune si fara conexiune

Diferente intre nivelul transport si nivelul retea?

#### Nivelul transport:

- Primitive:
  - LISTEN se blocheaza pina cind un proces incearca sa se conecteze
  - CONNECT incearca sa stabileasca o conexiune
  - SEND trimite date
  - RECEIVE se blocheaza pina se primesc datele
  - DISCONNECT eliberarea conexiunii
- Performanta calitatea serviciilor (QoS Quality of Service): stabilirea/eliberarea conexiunii, rata de eroare, protectia, prioritatea, rezilienta (probabilitatea ca o conexiune sa se inchida din ratiuni interne), duplicarea pachetelor, controlul fluxului



- Nivelul sesiune: se refera la probleme de stabilire de sesiuni (servicii de control al dialogului, de sincronizare etc.)
- Nivelul prezentare: se ocupa de prezentarea datelor, codificindu-le intr-un format standard
  - Pentru a se asigura comunicarea intre calculatoare cu reprezentari diferite, nivelul prezentare asigura conversia reprezentarilor interne a structurilor de date in reprezentare standardizata din retea si invers

#### **Modelul OSI**

#### Nivelul aplicatie:

gestioneaza servicii ale retelei: terminal virtual abstract, transfer de fisiere, posta electronica, executia la distanta a aplicatiilor,...



#### Termeni:

- sistem terminal (eng. end-system) gazda (eng. host)
- retea (eng. network) ofera suportul pentru transferul de date intre sisteme terminale
- internet colectie de retele (interconectate)
- subretea (eng. subnetwork) componenta din internet
- sistem intermediar (eng. intermediate system) conecteaza doua subretele

### Modelele de referinta: OSI si TCP/IP

| TCP/IP Model    | TCP/IP - Protocols | OSI Model    |
|-----------------|--------------------|--------------|
| Application     | FTP, Telnet, HTTP, | Application  |
|                 |                    | Presentation |
| Transport       | TCP, UDP,          | Session      |
|                 |                    | Transport    |
| Internetwork    | IP,                | Network      |
| Host to Network | Ethernet,          | Datalink     |
|                 |                    | Physical     |

Figura: Imaginea generala a modelelor OSI si TCP/IP



[Retele de calculatoare – curs 2007-2008, Sabin Buraga]

- Ofera posibilitatea de a interconecta mai multe tipuri de retele
- Are ca axa nivelurile retea si transport
- Implementat cu succes peste Ethernet (IEEE 802.3)

   suportat de multe implementari ale nivelului fizic (cablu coaxial, twisted pair, fibra optica)



Figura. Modelul TCP/IP - protocoale



#### **Ethernet**

- Ofera acces multiplu (mediu partajat de transmisie) intr-o retea cu difuzare
- Detectia coliziunilor: CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
- Fiecare interfata Ethernet are o adresa unica de 48 biti: adresa hardware (MAC) –
   e.g. C0:B3:44:17:21:17
  - Adresele sunt asignate producatorilor de placi de retea (NIC Network Interface Card) de o autoritate centrala

#### **Ethernet**

Fiecare interfata(placa) de retea are o adresa MAC unica (unele sisteme de operare permit sa fie modificata prin soft)



Primii 24 de biti identifica producatorul

#### **Ethernet**

Forma unui cadru (frame) de date:



- Broadcast: adresa are toti bitii setati pe 1
- Fiecare interfata de retea inspecteaza pentru orice cadru adresa de destinatie
- Daca adresa destinatie nu se potriveste cu adresa hardware sau cea de broadcast, atunci cadrul este ignorat

#### **Ethernet** – standarde (exemple):

- 10 BASE5: 10 Mbps folosind cablu coaxial gros (Thick Ethernet)-1980
- 1BASE5: 1 Mbps folosind 2 cabluri UTP (Unshilded Twisted Pair)
- 10BASE-T: 10Mbps folosind 2 perechi UTP 1990
- 10BASE-FL: 10 Mbps fibra optica cu legatura point-to-point
- 10BASE-FB: 10Mbps backbone cu fibra optica (intre repetoare)
- 100BASE FX: 100MBps CSMA/CD cu 2 fibre optice, full duplex
- ... etc

#### **Ethernet versus Fast Ethernet**

|                   | Ethernet         | Fast Ethernet |
|-------------------|------------------|---------------|
| Viteza            | 10 Mbiti/s       | 100 Mbiti/s   |
| Protocolul MAC    | CSMA/CD          | CSMA/CD       |
| Diametrul retelei | 2.5 km           | 205 m         |
| Topologie         | Magistrala, stea | Stea          |
| Tip cablu         | Coax, UTP, fibra | UTP, fibra    |
| Standard          | 802.3            | 802.3u        |
| Cost              | С                | 2*c           |

[conform Retele de calculatoare – curs 2007-2008, Sabin Buraga]

#### Gigabit Ethernet

- Implementari atit pentru cabluri de cupru (802.3ab), cat si pentru fibra optica (802.3z)
- Diferenta fata de alte implementari Ethernet este la nivel fizic

#### 10 Gigabit Ethernet

- Implementari doar pentru fibra optica (802.3ae)
- Opereaza la distante de 40km (util pentru MAN si WAN)
- Formatul cadrelor este similar celui de la celelalte implementari Ethernet



[http://www.networkcomputing.com/networking/will-2014-be-the--year-of-10-gigabit-ethernet/a/d-id/1234640?]

#### Nivelul retea

 Permite gazdelor sa emita pachete in orice retea; pachetele circula independent pina la destinatie



- Aspecte principale:
  - Dirijarea pachetelor
  - Evitarea congestiei

#### Nivelul retea

- Proiectarea nivelului a urmarit atingerea urmatoarelor obiective:
  - Serviciile oferite sunt independente de tehnologia utilizata (e.g. routere)
  - Asigura nivelului transport servicii, care ii permit acestuia sa functioneze in mod independent de numarul, tipul si topologia retelei
  - Furnizeaza un mecanism de adresare unic in LAN-uri si WAN-uri

#### Nivelul retea

- IPv4
- IPv6
- Dirijare (routing):
  - OSPF(Open Shortest Path First) RFC 1131
  - BGP(Border Gateway Protocol) RFC 1105
- Multicast:
  - IGMP (Internet Group Management Protocol) RFC 1112, 1054
- Control:
  - ICMP (Internet Control Messages Protocol) RFC 792,777
  - SNMP (Simple Network Management Protocol) RFC 1157
  - ICMPv6 (vezi curs viitor)

#### Nivelul transport

- Asigura realizarea comunicarii intre gazda sursa si gazda destinatie
- Protocoale
  - TCP (Transmission Control Protocol) RFC 793,761
  - **UDP** (User Datagram Protocol) RFC 768
  - Alte protocoale: SCTP (Stream Control Transmission Protocol) – RFC 4960, 3286 (2960, 3309); DCCP (Datagram Congestion Control Protocol) – RFC 4340, 4336;

#### Nivelul aplicatie:

- Contine protocoale de nivel inalt
- SMTP (Simple Mail Transfer Protocol) RFC 5321 (821)
- POP3(Post Office Protocol) RFC 1081
- TELNET RFC 854,764
- FTP (File Transfer Protocol) RFC 454
- NFS (Network File System) RFC 1095
- DNS (*Domain Name System*) RFC 1034,1035
- HTTP (HyperText Transfer Protocol) RFC 2616
- RTP (Real-time Transport Protocol) RFC 3550 (1889)
- SIP (Session Initiation Protocol) RFC 3261
- ...etc

- Organizatii implicate in standardizare:
  - ISOC *Internet Society*
  - IAB Internet Architecture Board
  - IETF Internet Engineering Task Force
  - IRTF Internet Research Task Force
  - InterNIC Internet Network Information Center
  - IANA Internet Assigned Number Authority
- Documentele RFC (Request For Comments)
  - Editate de Network Working Group (IETF)
  - RFC 1800 (Internet Official Protocol Standards)
  - Mai multe detalii -> www.ietf.org

### OSI versus TCP/IP

#### Asemanari:

- Ambele se bazeaza pe o stiva de protocoale
- Functionalitatile straturilor este oarecum asemanatoare
- Ambele au nivelul aplicatie ca nivel superior
- Se bazeaza (direct sau indirect) pe nivelul transport





[conform Computer Networks, 2010 – Andrew S. Tanenbaum, et.al.]

## OSI versus TCP/IP

#### Deosebiri:

- ISO/OSI este indicat ca model teoretic; TCP/IP este eficient in implementare
- OSI face explicita distinctia intre serviciu, interfata si protocol; TCP/IP nu
- ISO/OSI pune la dispozitie protocoale care asigura o comunicare fiabila (detectarea si tratare de erori la fiecare nivel);
   TCP/IP face verificarea comunicarii la nivelul.
  - TCP/IP face verificarea comunicarii la nivelul transport
- OSI suporta ambele tipuri de comunicatii la nivel retea (fara conexiune si orientate conexiune); TCP/IP suporta la nivelul retea comunicatii fara conexiune si la nivelul transport ambele moduri



[conform Computer Networks, 2010 – Andrew S. Tanenbaum, et.al.]

#### Rezumat

- Retele de calculatoare organizare
- Modele de arhitecturi de retea (OSI, TCP/IP)
- Modelul TCP/IP
- ISO/OSI versus TCP/IP

### Intrebari?