第 8 讲 点估计

知识梳理

一 点估计的基本流程

1.矩估计法

- ① 求出分布(含待估参数 θ)的期望(含参数 θ)
- ② 变换期望的表达式为 $\theta = f(E(X))$ 的形式
- ③ 将 E(X) 换成 \overline{X} ,得到矩估计量 $\hat{\theta} = f(\overline{X})$

2. 极大似然估计法

- · 假设有简单随机样本 X_1, \dots, X_n , 分布律或密度函数中含有待估参数 λ
- ① 写出极大似然函数 $L(\lambda)$: 所有 X_1 对应取值的概率或概率密度之积
- ② 取对数 ln L(\lambda) (将乘积式化为加和式,方便求导)
- ③ 对 ln L(\(\lambda\) 求导(若参数有多个,则分别对各个参数求偏导)
- ④ 如果存在极值,找到极大值对应的 λ ,作为极大似然估计量 $\hat{\lambda}$ 如果 $L(\lambda)$ 是单调的,找到 λ 取值范围的最值使 $L(\lambda)$ 达到最大值,作为极大似然估计量 $\hat{\lambda}$

二 点估计量的评价

1. 无偏性准则

无偏性准则

 $\hat{\theta}$ 是 θ 的无偏估计 \Leftrightarrow $E(\hat{\theta}) = \theta$

2.有效性准则

有效性准则

若估计量都是 θ 的无偏估计, $Var(\hat{\theta})$ 越小的更有效(越小越好)

3. 均方误差准则

$$\operatorname{Mse}(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = \operatorname{Var}(\hat{\theta}) + [E(\hat{\theta}) - \theta]^2$$

4. 相合性准则

相合性准则

 $\hat{\theta} \neq \theta$ 的相合估计 $\Leftrightarrow \hat{\theta}_n \xrightarrow{P} \theta, n \rightarrow +\infty$

题型解析

十四 估计量评价

1. 题型简述与解法

- · 以填空题或大题的形式, 判断某估计量是否满足四种准则之一, 或已知估计评价反求参数
- · 代入计算即可, 注意要运用上一讲的结论以及期望方差的运算性质

2. 历年考试典型例题

① 无偏估计

- **例1** (15—16 春夏)设总体 $X \sim N(\mu, \sigma^2)$, X_1, \dots, X_n 为来自 X 的简单随机样本;若 $aX_1^2 + bX_1X_2$ 是 σ^2 的无偏估计,则 (a-b) =
- 解 由无偏估计 $\rightarrow E(aX_1^2 + bX_1X_2) = aE(X_1^2) + bE(X_1X_2) = a(\mu^2 + \sigma^2) + b\mu^2 = \sigma^2$ 比较系数: a+b=0, $a=1 \rightarrow b=-1$, 因此a-b=2

② 有效性准则

例 2 (16-17 春夏) 总体 X 的密度函数 $f(x;\theta) = \begin{cases} \frac{2x}{\theta^2}, 0 < x < \theta \\ 0, 其他 \end{cases}$, $\theta > 0$ 未知, X_1, X_2, X_3 是 X 的简单

随机样本,设 $T = aX_1 + bX_2 + cX_3$,其中a,b,c是实数.

- (1) 求T是 θ 的无偏估计的充分必要条件;
- (2) 问 a,b,c 取什么值时, $T \in \theta$ 的有效估计量? 说明理由.
- \mathbf{E} (1) $T \to \theta$ 的无偏估计 $\Leftrightarrow E(T) = aE(X_1) + bE(X_2) + cE(X_3) = (a+b+c)E(X) = \theta$

$$: E(X) = \int_0^\theta \frac{2x^2}{\theta^2} dx = \frac{2}{3}\theta \quad : (a+b+c)\frac{2}{3}\theta = \theta \quad \Leftrightarrow \quad a+b+c = \frac{3}{2}$$

- (2) 有效的前提是无偏, 因此 $a+b+c=\frac{3}{2}$

 - \therefore 当 $a=b=c=\frac{1}{2}$ 时,Var(T)取到最小值,此时T是 θ 的有效估计量

③ 均方误差准则

- **例 3** (17-18 **春夏**)设总体 $X \sim N(\mu, \sigma^2)$, X_1, \dots, X_{16} 是总体 X 的简单随机样本, \overline{X} 是样本均值. 若 $\mu=0$,用 $T=16(\overline{X})^2$ 估计 σ^2 ,则均方误差 Mse(T)= ______
- $\mathbf{F} \qquad \mathbf{F} \sim N(0, \sigma^2) \rightarrow \frac{16}{\sigma^2} \overline{X}^2 \sim \chi^2(1) \rightarrow E(\overline{X}^2) = \frac{\sigma^2}{16}, \quad D(\overline{X}^2) = \frac{2\sigma^4}{16^2}$

:
$$E(T) = 16E(\overline{X}^2) = \sigma^2$$
. $D(T) = 2\sigma^4$

$$\therefore \operatorname{Mse}(T) = D(T) + \lceil E(T) - \sigma^2 \rceil^2 = 2\sigma^2$$

:
$$E(Y) = \mu - \mu = 0$$
, $D(Y) = \frac{\sigma^2}{2} + \frac{\sigma^2}{16} - 2\text{Cov}(\frac{X_1 + X_2}{2}, \overline{X})$

$$\text{Cov}(\frac{X_1 + X_2}{2}, \overline{X}) = \text{Cov}(\sum_{i=1}^{2} \frac{1}{2} X_i, \sum_{i=1}^{16} \frac{1}{16} X_j) = \frac{1}{32} \text{Cov}(\sum_{i=1}^{2} X_j, \sum_{i=1}^{16} X_j) = \frac{D(X_1) + D(X_2)}{32} = \frac{\sigma^2}{16}$$

:
$$D(Y) = \frac{\sigma^2}{2} + \frac{\sigma^2}{16} - 2\frac{\sigma^2}{16} = \frac{7}{16}\sigma^2$$
 : $Y \sim N(0, \frac{7}{16}\sigma^2)$

:
$$P(Y > \sigma) = 1 - \Phi(4/\sqrt{7}) = 1 - \Phi(1.51) = 0.07$$

④ 相合性准则

例 4 (14-15 **秋冬**) 随机变量 X 的概率密度为 $f(x;\theta) = \begin{cases} 2\theta^2 x, 0 < x < \theta^{-1} \\ 0, 其他 \end{cases}$. (2) 若 $\theta > 0$ 是未知参

数,设 X_1, \cdots, X_n 是来自总体X的样本, $\frac{1}{X}$ 是 θ 的相合估计吗?答:______(是或不是).

解
$$E(X) = \int_0^{\theta^{-1}} 2\theta^2 x^2 dx = \frac{2}{3} \theta^{-1}$$
 ∴ $\frac{1}{X} \xrightarrow{P} \frac{1}{E(X)} = \frac{3}{2} \theta \neq \theta$ → 不是相合估计

十五 求矩估计并评价

1. 题型简述与解法

· 按照求矩估计的流程依葫芦画瓢即可: $\mathbf{x} E(X) \rightarrow \mathbf{5}$ 转换成 $\theta = \mathbf{0}$ 形式 $\rightarrow \mathbf{8} E(X)$ 换成 \overline{X}

2. 历年考试典型例题

例1 (15-16 **秋冬**) 设总体 X 的分布律如下表,其中 $0 < \theta < 1$ 为未知参数.

X	0	1	3	6
概率	$\frac{\theta}{2}$	$\frac{\theta}{2}$	$\frac{2(1-\theta)}{3}$	$\frac{1-\theta}{3}$

(1) X_1, \dots, X_n 为来自 X 的简单随机样本,求 θ 的矩估计量 $\hat{\theta}_1$,并判断其是否为无偏估计量,是否为相合估计量,说明理由;

Proof:
$$E(X) = 0 \times \frac{\theta}{2} + 1 \times \frac{\theta}{2} + 3 \times \frac{2(1-\theta)}{3} + 6 \times \frac{1-\theta}{3} = 4 - \frac{7\theta}{2} \implies \theta = \frac{2}{7}(4 - E(X))$$

∴ 矩估计量
$$\hat{\theta}_1 = \frac{2}{7}(4 - \overline{X})$$
, 其中 $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$

十六 求极大似然估计并评价

1. 题型简述与解法

- ·按照求极大估计的流程依葫芦画瓢即可:列出 $L(\lambda) \to \mathbf{v}$ 取对数 $\to \mathbf{v}$ 求导 $\to \mathbf{v}$ 找最大值
- ・注意: 如果 $L(\lambda)$ 是单调函数,就要找 λ 的取值范围,此时如果密度函数给出 $0 < x < \lambda$ 之类的 就能得到 λ 的最值,即 $\max\{X_i\}$ 之类
- · 因此在求期望时就需要用到第5讲求随机变量函数的分布函数的技巧了
- · 此外,有时还要求P(X?)的极大似然估计,将参数的极大似然估计代入即可

2. 历年考试典型例题

- **例 1** (16-17 **秋冬**) 大学新生报到时,无家长陪同,1 位家长陪同,2 位家长陪同的概率分别为 θ , $(1-\theta)/4$, $3(1-\theta)/4$ (这里 θ 未知).现按简单随机抽样调查了 100 名新生,设新生中陪同的家长数是 0 位、1 位、2 位的人数分别是 n_0, n_1, n_2 , $n_0 + n_1 + n_2 = 100$.设 Y 表示 100 个新生中无家长陪同的人数.
 - (2) 求P(Y < 13)的近似值(用 θ 表示)
 - (3)(节选) 求 θ 的极大似然估计量;
 - (4) (节选) 若 n_0 = 10 , n_1 = 26 , n_2 = 64 , 求 θ 的极大似然估计值,以及 $P(Y \le 13)$ 的极大似然估计近似值.
- 解 (2) 由题意 $Y \sim B(100, \theta)$, 因此 $Y \sim N(100\theta, 100\theta(1-\theta))$

$$P(Y \le 13) = P(\frac{Y - 100\theta}{\sqrt{100\theta(1 - \theta)}} \le \frac{13 - 100\theta}{\sqrt{100\theta(1 - \theta)}}) = \Phi(\frac{13 - 100\theta}{\sqrt{100\theta(1 - \theta)}})$$

$$(3) \quad L(\theta) = \prod_{i=1}^{100} P(X_i = x_i) = \theta^{n_0} \cdot \left(\frac{1-\theta}{4}\right)^{n_1} \cdot \left(\frac{3(1-\theta)}{4}\right)^{n_2}$$

取对数: $\ln L(\theta) = n_0 \ln \theta + (n_1 + n_2) \ln(1 - \theta) + C (C 为与 \theta 无关的值)$

求导:
$$\frac{\mathrm{d} \ln L(\theta)}{\mathrm{d} \theta} = \frac{n_0}{\theta} - \frac{n_1 + n_2}{1 - \theta} = 0 \rightarrow \hat{\theta} = \frac{n_0}{n_0 + n_1 + n_2} = \frac{n_0}{100}$$

(4) 代入
$$n_0 = 10$$
: $\hat{\theta} = \frac{10}{100} = 0.1$

$$P(Y \le 13) = \Phi(1) = 0.84$$

例2 (20-21**秋冬**)设总体 X 的概率密度函数为 $f(x,\theta) = \begin{cases} \frac{2\theta^2}{x^3}, & x \ge \theta \\ 0, & x < \theta \end{cases}$, 其中 $\theta > 0$ 是未知参数, X_1, \dots, X_n

是总体 X 的简单随机样本,

(2) 求 θ 的极大似然估计量 $\hat{\theta}_{0}$, 并判断其是否为 θ 的无偏估计量, 说明理由.

取对数: $\ln L(\theta) = L(\theta) = n \ln 2 + 2n \ln \theta - 3 \sum_{i=1}^{n} \ln X_i \rightarrow L(\theta)$ 单调递增

:. 当 θ 取到最大值时, $L(\theta)$ 达到最大值 :: $X_1, \cdots, X_n \geq \theta$ \rightarrow $\hat{\theta}_2 = \min\{X_i\}$ 下面判断 $\hat{\theta}_2$ 是否为无偏估计

$$P(\hat{\theta}_2 \leq z) = P(\min\{X_i\} \leq z) = 1 - P(X_1 > z, \cdots, X_n > z) = 1 - P^n(X > z) = 1 - [1 - F_X(z)]^n + [1 - F_$$

$$\text{ ... } F_{\boldsymbol{X}}(\boldsymbol{x}) = \begin{cases} 0, & \boldsymbol{x} < \boldsymbol{\theta} \\ 1 - \frac{\theta^2}{\boldsymbol{x}^2}, \, \boldsymbol{x} \geq \boldsymbol{\theta} \end{cases} \quad \text{ } \boldsymbol{F}_{\boldsymbol{Z}}(\boldsymbol{z}) = 1 - [1 - F_{\boldsymbol{X}}(\boldsymbol{z})]^n = \begin{cases} 0, & \boldsymbol{z} < \boldsymbol{\theta} \\ 1 - \frac{\theta^{2n}}{\boldsymbol{z}^{2n}}, \boldsymbol{z} \geq \boldsymbol{\theta} \end{cases}$$

$$\mathbf{..} \quad f_Z(z) = F_Z'(z) = \begin{cases} 0, & z < \theta \\ \frac{2n\theta^{2n}}{z^{2n+1}}, z \ge \theta \end{cases} \qquad E(\hat{\theta}_2) = \int_{\theta}^{+\infty} \frac{2n\theta^{2n}}{z^{2n}} \mathrm{d}z = \frac{2n}{2n-1}\theta \neq \theta$$

- $\hat{\theta}_2$ 不是 θ 的无偏估计
- **例 3** (18-19 **春夏**)设总体 X 的分布律为 P(X=0)=a , P(X=1)=b , P(X=2)=a+b , P(X=3)=1-2(a+b) .未知参数 a>0 ,b>0 ,a+b<0.5 , X_1,\cdots,X_{400} 是总体 X 的简单随机样本,其中 0 ,1,2,3 分别出现 60 ,100,140,100 次.(1)求 a,b 的极大似然估计值;

解
$$L(a,b) = \prod_{i=1}^{n} P(X = x_i; a,b) = a^{60}b^{100}(a+b)^{140}[1-2(a+b)]^{100}$$

 $\ln L(a,b) = 60 \ln a + 100 \ln b + 140 \ln (a+b) + 100 \ln [1 - 2(a+b)]$

含有两个参数, 因此求偏导:

$$\frac{\partial \ln L(a,b)}{\partial a} = \frac{60}{a} + \frac{140}{a+b} - \frac{200}{1-2(a+b)}$$

$$\frac{\partial \ln L(a,b)}{\partial b} = \frac{100}{b} + \frac{140}{a+b} - \frac{200}{1-2(a+b)}$$

$$\rightarrow \text{解得} \begin{cases} \hat{a} = 9/64 \\ \hat{b} = 15/64 \end{cases}$$
(严格上讲要求二阶导验证)