Approximation Algorithms

What do you do when a problem is NP-complete?

- or, when the "polynomial time solution" is impractically slow?
- assume input is random, do "expected performance." Eg, Hamiltonian path in all graphs. Problem: agreeing on good distribution.
- run a nonpolynomial (hopefully only slightly) algorithms such as branch and bound. Usually no proven bound on runtime, but sometime can.
- settle for a heuristic, but prove it does well enough (our focus)

Definitions:

- \bullet optimization problem, instances I, solutions S(I) with values $f:S(I)\to R$
- maximization/minimization: find solution in S(I) maximizing/minimizing f
- called OPT(I)
- eg bin-packing. instance is set of $s_i \in {0,1}$, partition so no subset exceeds

Techincal assumptions we'll often make:

- assumption: all inputs and range of f are integers/rationals (can't represent reals, and allows, eg, LP, binary search).
- assumption $f(\sigma)$ is a polynomial size (num bits) number (else output takes too long)
- look for polytime in bit complexity

NP-hardness

- optimization NP-hard if can reduce an NP-hard decision problem to it
- (eg, problem of "is opt solution to this instance $\leq k$?")
- but use more general notion of turing-reducibility (GJ).

Approximation algorithm:

- any algorithm that gives a feasible answer
- eg, each item in own bin.
- of course, want *good* algorithm. How measure?

Absolute Approximations

Definition: k-abs approx if on any I, have $|A(I) - OPT(I)| \le k$ Example: planar graph coloring.

- NP-complete to decide if 3 colorable
- know 4-colorable
- easy to 5-color
- • Ditto for edge coloring: Vizing's theorem says opt is Δ or (constructive) $\Delta+1$

Known only for trivial cases, where opt is bounded by a constant. Often, can show impossible by "scaling" the problem.

- EG knapsack.
 - define profits p_i , sizes s_i , sack B
 - wlog, integers.
 - suppose have k-absolute
 - multiply all p_i by k+1, solve, scale down.
- EG independent set (clique)
 - -k+1 copies of G

Relative Approximation

Definitions:

- An α -optimum solution has value at most α times optimum for minimization, at least $1/\alpha$ times optimum for minimization.
- an algorithm has approximation ratio α if on any input, it outputs an α -approximate feasible solution.
- \bullet called an $\alpha\text{-}approximation$ algorithm

How do we prove algorithms have relative approximations?

- Can't describe opt, so can't compare to it
- instead, comparison to computable lower bounds.

Greedy Algorithms

Do obvious thing at each step.

- Hard part is proving it works.
- Usually, by attention to right upper/lower bound.

Max cut

- Upper bound trivial
- Max-cut greedy.

Min-diameter clustering?

- Gonzales' algorithm.
- Distances to existing centers keep dropping
- \bullet Suppose after k chosen, farthest remaining is distance d
- Then $OPT \ge d$
 - -k+1 mutually-distance-d points
 - some must share a cluster
- Now assign each point to closest center
- \bullet Max distance from center (radius) is d
- So max diameter is 2d
- 2-approx.

Set cover

- \bullet *n* items
- OPT = k
- \bullet At each step, can still cover remainder with k sets
- So can cover 1/k of remainder

Vertex cover:

- define problem
- suppose repeatedly pick any uncovered edge and cover: no approx ratio
- suppose pick uncovered edge and cover both sides: 2-approx
- sometime, need to be extra greedy

• Explicit attention to where lower bound is coming from—lower bound informs algorithm.

Graham's rule for $P||C_{\max}$ is a $2-\frac{1}{m}$ approximation algorithm

- explain problem: m machines, n jobs with proc times p_i , min proc time.
- can also think of minimizing max load of continuously running jobs
- use a greedy algorithm to solve
- proof by comparison to lower bounds
- first lower bound: average load: OPT $\geq \frac{1}{m} \sum p_j$
- second lower bound: OPT $\geq \max p_j$
- suppose M_1 has max runtime L at end
- suppose j was last job added to M_1
- then before, M_1 had load $L p_j$ which was minimum
- so $\sum p_i \ge m(L p_j) + p_j$
- so OPT $\geq L + (1 \frac{1}{m})p_j$
- so $L \le \text{OPT} + (1 \frac{1}{m})p_j \le (2 \frac{1}{m})\text{OPT}$

Notice:

- this algorithm is *online*, competitive ratio $2 \frac{1}{m}$
- we have no idea of optimum schedule; just used lower bounds.
- we used a greedy strategy
- tight bound: consider m(m-1) size-1 jobs, one size-m job
- where was problem? Last job might be big
- LPT achieves 4/3, but not online
- newer online algs achieve 1.8 or so.

Approximation Schemes

So far, we've seen various constant-factor approximations.

- WHat is *best* constant achievable?
- Lower bounds: APX-hardness/Max-SNP

An approximation scheme is a family of algorithms A_{ϵ} such that

- each algorithm polytime
- A_{ϵ} achieve $1 + \epsilon$ approx

But note: runtime might be awful as function of ϵ

FPAS, Pseudopolynomial algorithms

Knapsack

- Dynamic program for bounded profits
- $B(j,s) = \text{best subset of jobs } 1, \ldots, j \text{ of total size } \leq s.$
- rounding
 - Let opt be P.
 - Scale prices to $\lfloor (n/\epsilon P)p_i \rfloor$
 - New opt is it least $n/\epsilon n = (1 \epsilon)n/\epsilon$
 - So find solution within 1ϵ of original opt
 - But table size polynomial
- did this prove P = NP? No
- recall pseudopoly algorithms

pseudopoly gives FPAS; converse almost true

- Knapsack is only weakly NP-hard
- strong NP-hardness (define) means no pseudo-poly

Enumeration

More powerful idea: k-enumeration

- Return to $P||C_{\max}$
- Schedule k largest jobs optimally
- scheduling remainder greedily
- analysis: note $A(I) \leq OPT(I) + p_{k+1}$
 - Consider job with max c_i
 - If one of k largest, done and at opt
 - Else, was assigned to min load machine, so $c_j \leq OPT + p_j \leq OPT + p_{k+1}$
 - so done if p_{k+1} small
 - but note $OPT(I) \ge (k/m)p_{k+1}$
 - deduce $A(I) \le (1 + m/k)OPT(I)$.
 - So, for fixed m, can get any desired approximation ratio

Scheduling any number of machines

- Combine enumeration and rounding
- Suppose only k job sizes
 - Vector of "number of each type" on a given machine—gives "machine type"
 - Only n^k distinct vectors/machine types
 - So need to find how many of each machine type.
 - Use dynamic program:
 - * enumerate all job profiles that can be completed by j machines in time T
 - * In set if profile is sum of j-1 machine profile and 1-machine profile
 - Works because only poly many job profiles.
- Use rounding to make few important job types
 - Guess OPT T to with ϵ (by binary search)
 - All jobs of size exceeding ϵT are "large"
 - Round each up to next power of $(1 + \epsilon)$
 - Only $O(1/\epsilon \ln 1/\epsilon)$ large types
 - Solve optimally
 - Greedy schedule remainder
 - * If last job is large, are optimal for rounded problem so with ϵ of opt
 - * If last job small, greedy analysis shows we are within ϵ of opt.

Relaxations

TSP

- Requiring tour: no approximation (finding hamiltonian path NP-hard)
- Undirected Metric: MST relaxation 2-approx, christofides
- Directed: Cycle cover relaxation

LP relaxations

Three steps

- write integer linear program
- relax
- round

Vertex cover.

MAX SAT

Define.

- literals
- clauses
- NP-complete

random setting

- achieve $1 2^{-k}$
- very nice for large k, but only 1/2 for k=1

LP

$$\sum_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1 - y_1) \ge z_j$$

Analysis

- $\beta_k = 1 (1 1/k)^k$. values 1, 3/4, .704, ...
- Random round y_i
- Lemma: k-literal clause sat w/pr at least $\beta_k \hat{z}_j$.
- proof:
 - assume all positive literals.
 - $\text{ prob } 1 \prod (1 y_i)$
 - maximize when all $y_i = \hat{z}_j/k$.
 - Show $1 (1 \hat{z}/k)^k \ge \beta_k \hat{z}_k$.
 - check at z = 0, 1
- Result: (1-1/e) approximation (convergence of $(1-1/k)^k$)
- much better for small k: i.e. 1-approx for k=1

LP good for small clauses, random for large.

- Better: try both methods.
- n_1, n_2 number in both methods
- Show $(n_1 + n_2)/2 \ge (3/4) \sum \hat{z}_i$
- $n_1 \ge \sum_{C_i \in S^k} (1 2^{-k}) \hat{z}_j$
- $n_2 \ge \sum \beta_k \hat{z}_j$
- $n_1 + n_2 \ge \sum (1 2^{-k} + \beta_k)\hat{z}_j \ge \sum \frac{3}{2}\hat{z}_j$

0.1 Chernoff-bound rounding

Set cover.

Theorem:

• Let X_i poisson (ie independent 0/1) trials, $E[\sum X_i] = \mu$

$$\Pr[X > (1+\epsilon)\mu] < \left[\frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right]^{\mu}.$$

• note independent of n, exponential in μ .

Proof.

• For any t > 0,

$$\Pr[X > (1+\epsilon)\mu] = \Pr[\exp(tX) > \exp(t(1+\epsilon)\mu)]$$

$$< \frac{E[\exp(tX)]}{\exp(t(1+\epsilon)\mu)}$$

• Use independence.

$$E[\exp(tX)] = \prod E[\exp(tX_i)]$$

$$E[\exp(tX_i)] = p_i e^t + (1 - p_i)$$

$$= 1 + p_i (e^t - 1)$$

$$\leq \exp(p_i (e^t - 1))$$

$$\prod \exp(p_i(e^t - 1)) = \exp(\mu(e^t - 1))$$

 \bullet So overall bound is

$$\frac{\exp((e^t - 1)\mu)}{\exp(t(1 + \epsilon)\mu)}$$

True for any t. To minimize, plug in $t = \ln(1 + \epsilon)$.

- Simpler bounds:
 - less than $e^{-\mu\epsilon^2/3}$ for $\epsilon < 1$
 - less than $e^{-\mu\epsilon^2/4}$ for $\epsilon < 2e 1$.
 - Less than $2^{-(1+\epsilon)\mu}$ for larger ϵ .
- By same argument on $\exp(-tX)$,

$$\Pr[X < (1 - \epsilon)\mu] < \left[\frac{e^{-\epsilon}}{(1 - \epsilon)^{(1 - \epsilon)}}\right]^{\mu}$$

bound by $e^{-\epsilon^2/2}$.

Basic application:

- $cn \log n$ balls in c bins.
- max matches average
- a fortiori for n balss in n bins

General observations:

- Bound trails off when $\epsilon \approx 1/\sqrt{\mu}$, ie absolute error $\sqrt{\mu}$
- $\bullet\,$ no surprise, since standard deviation is around μ (recall chebyshev)
- If $\mu = \Omega(\log n)$, probability of constant ϵ deviation is O(1/n), Useful if polynomial number of events.
- Note similarito to Gaussian distribution.
- Generalizes: bound applies to any vars distributed in range [0, 1].

Zillions of Chernoff applications. Wiring.

- multicommodity flow relaxation
- chernoff bound
- union bound