# 7.4 Orthogonal Complements and Decompositions

## Orthogonal Complements

**Definition/Theorem:** Let W be any subspace of an inner product space V. We define the **orthogonal complement** of W, another subspace of V, by:

$$W^{\perp} = \{ \vec{v} \in V | \langle \vec{v} | \vec{w} \rangle = 0 \text{ for all } \vec{w} \in W \}$$

**Theorem:** Let  $B = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_k\}$  be a **basis** for a subspace W of a finite dimensional inner product space V. Then  $\vec{v} \in V$  is a member of  $W^{\perp}$  if and only if:

$$\langle \vec{v} \mid \vec{w}_i \rangle = 0$$
 for all  $i = 1, 2, ... k$ 

Thus, it is both necessary and sufficient that we check that an arbitrary vector  $\vec{v} \in V$  is orthogonal to every member of a basis B for W.

Strategy: Set-up and solve a homogeneous system of equations (nullspace!).

# Finding Orthonormal Bases for W and W<sup>1</sup>

Theorem (The Dimension Theorem for Orthogonal Complements):

Let W = Span(B) be a subspace of a *finite dimensional* inner product space V, where  $B = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$  is a basis for W.

If we enlarge B to:

$$B' = {\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k, \vec{w}_{k+1}, \dots, \vec{w}_n},$$

a basis for V, and

$$S = {\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k, \vec{u}_{k+1}, \dots, \vec{u}_n}$$

is the orthonormal basis for V obtained after applying the Gram-Schmidt Algorithm to  $B^{\prime}$ , then

$$S_1 = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k\}$$

is an orthonormal basis for W, and

$$S_2 = \{\vec{u}_{k+1}, \dots, \vec{u}_n\}$$

is an orthonormal basis for  $W^{\perp}$ .

### Consequently:

$$dim(W) + dim(W^{\perp}) = n.$$

More generally, if  $S = S_1 \cup S_2$  is an orthonormal basis for V, where  $S_1$  and  $S_2$  are non-empty subsets of S with no member in common, then  $W_1 = Span(S_1)$  and  $W_2 = Span(S_2)$  are orthogonal complements of *each other*. Thus:

$$(W^{\perp})^{\perp} = W.$$

Note: It is an interesting fluke in Linear Algebra that the last equation above is not necessarily true in an *infinite dimensional* inner product space.

However, it is *always true* that  $W \subset (W^{\perp})^{\perp}$ .

### Orthogonal Decompositions

**Theorem:** Let W be a **finite-dimensional subspace** of an inner product space V. Then, any vector  $\vec{v} \in V$  can be expressed **uniquely** as a sum:

$$\vec{v} = \vec{w}_1 + \vec{w}_2,$$

where  $\vec{w}_1 \in W$  and  $\vec{w}_2 \in W^{\perp}$ . We refer to this as the *orthogonal* decomposition of  $\vec{v}$  with respect to W and  $W^{\perp}$ .

Moreover, we can explicitly construct  $\vec{w}_1$  and  $\vec{w}_2$  as follows:

If  $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_k\}$  is any orthonormal basis for W, then:

$$\vec{w}_1 = \langle \vec{v} | \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{v} | \vec{u}_2 \rangle \vec{u}_2 + \dots + \langle \vec{v} | \vec{u}_k \rangle \vec{u}_k$$
, and

$$\vec{w}_2 = \vec{v} - \vec{w}_1$$

We call  $\vec{w}_1$  the *orthogonal projection* of  $\vec{v}$  onto W, and  $\vec{w}_2$  the orthogonal projection of  $\vec{v}$  onto  $W^{\perp}$ .

We write this as:

$$\vec{w}_1 = proj_W(\vec{v})$$
 and  $\vec{w}_2 = proj_{W^{\perp}}(\vec{v})$ 



The Orthogonal Decomposition 
$$\vec{v} = \vec{w}_1 + \vec{w}_2$$
, where  $\vec{w}_1 \in W$  and  $\vec{w}_2 \in W^{\perp}$