QUESTION 1

1.1

```
#The sample mean is 7359.571 cases.
qt(p = 1-0.05/2, df = 7-1)
#This result is 2.446912
 MA =7359,571
 ta/2,1-1 = 2.447
                                    a= 7359571
                            060-0)2+(8756-0)2+(7456-0)2+(6224-0)
       = 24650393.7
                                 4108399.952
                         410 8399,952
        5490.279
                     3258.863)
      estimated mean value for covid cases in August (sample size = 7
    7359.571 cases. We are 95% confident that the population mean for the cases
    between 5490.279 and 9228.863 Eass.
```

1.2

```
covid2 = read.csv("daily.covid.aug8to14.csv")
covid2.mean = mean(covid2$daily.covid.cases)
#The sample mean is 4879 cases.

qt(p = 1-0.05/2, df = 7-1)
#This result is 2.446912
```

covid1 = read.csv("daily.covid.aug1to7.csv")
covid1.mean = mean(covid1\$daily.covid.cases)

MB=4873
tap.11-1=2.447 From R
$\hat{\sigma}_{0}^{2} = \frac{1}{6} \sum_{i=1}^{2} (y_{i} - 4879)$ b = 4879
ist (st
= 1 [(6348-6)2+(5857-6)2+(5518-6)2+(5135-6)2+(4274-6)2
- (3419-b)2 + (3602-b)2)
= 7716656 => 1286109.333
6
MA-MB=7359.571 - 4879 = 2480.571
7 Victorians
Estimated mean aither enter
(I difference in means:
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
(MA-MB-Za/z V NA + NB + Za/z V NA NB)
$= \left(\frac{M_A - M_B - 2\alpha_{12}\sqrt{\frac{OA}{nA} + \frac{OB}{NIS}}}{7}, \frac{M_A - M_B}{NIS} + \frac{2\alpha_{12}\sqrt{\frac{OA}{nA} + \frac{OB}{NIS}}}{7}\right)$
(MA - MB - Za/2 V NA + NB + Za/2 V NA + NB)
$= \left(\frac{2480.571 - 1.96\sqrt{\frac{4108359.952}{7}}}{2480.571 + 1.96\sqrt{\frac{4108359.952}{7}}} + \frac{1286109.333}{7}\right)$
$= \left(\frac{2480.571 - 1.96\sqrt{\frac{4108359.952}{7}}}{2480.571 + 1.96\sqrt{\frac{4108359.952}{7}}} + \frac{1286109.333}{7}\right)$
$= \left(\frac{2480.571 - 1.96\sqrt{\frac{4108399.957}{nA} + \frac{1286109.333}{7}}}{7}\right)$
(MA-MB-20/2 \ \frac{CA+OB}{nA} \ \frac{MB+20A2 \ NA+NB}{20} \] = \(\begin{pmatrix} 2480.571 - \left. 96 \ \frac{4108399-952}{7} + \frac{1286109.323}{7} \\ - \begin{pmatrix} 2480.571+1.96 \ \frac{4108399-952}{7} + \frac{1786109.323}{7} \\ - \begin{pmatrix} 759.959 \ \text{\gain} \\ \text{\gain} \\ \text{\gain} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
$= \left(\frac{2480.571 - 1.96\sqrt{\frac{4108359.952}{7}}}{2480.571 + 1.96\sqrt{\frac{4108359.952}{7}}} + \frac{1286109.333}{7}\right)$
(MA-MB-20/2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(MA-MB-20/2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(MA-MB-20/2 \ \frac{108}{nA} \ \frac{108}{nB} \ MA-MB + 2a/2 \ \frac{108}{nA} \ \frac{108}{nB} \) = \((2480.57) - 1.96 \) \(\frac{4108399 952}{7} \) \(\frac{1286109.323}{7} \) = \((759.959) \) \(\frac{4108399 952}{7} \) \(\frac{1286109.323}{7} \) = \((759.959) \) \(\frac{4201.183}{7} \) The estimated difference in mean of covid cases between August 1 to 7 and 8 to 14 (both size n= 7) is 2480.571. (We are 95% confident that the population

the sales are
16 : Ux = My
H. : Ne & My ,
Ho: Population overage daily reported cases between the two groups is the same.
HI: Population average daily reported cases between the two groups is not the same.
7: M My 2480.271 -7.875
(6; 0; V4108399.952 1286[09.333
nA nB V 7
#p-value
2P(Z L-2.8%) = 2*pnorm (-2.825) Lin R 2*pnorm(-2.825) #p-value = 0.00472
2 0.66472 mp-varue = 0.00472
0.00472 < 0.05 -> Strong evidence against null hypothesis
that there is no difference between population
and the second s
This p-value indicates that the changes in the daily reported cases is incredibly
unlikely to happen just by chance. We accept the alternative hypothesis, that
the average daily reported cars between the two groups are not the same.

QUESTION 2

2.1

```
28 #QUESTION 2.1
29
30 x=seq(0,25)#The x values
31 y=rep(0,26) #The y values
32
33 #For v,r(0,1)
34 V = 0
35 r = 1
37 tor(i in 1:26)
38 + {
        y[i] = \mathsf{choose}((x[i]+r-1),x[i]) * (r \land r) * ((\mathsf{exp}(\mathsf{v})+r) \land (-r-x[i])) * \mathsf{exp}(x[i] * \mathsf{v})
39
40 ^ }
41
     plot(x,y,main="Plot for v,r(0,1)", ylab = "Probability Values", xlab = "Random Variables", col= "red") legend(x = "topright",legend = "Probability of each random variable")
42
43
44
45
     #For v,r(1,2)
46
47
    r = 2
48
49 for(i in 1:26)
50 → {
        y[i] = \mathsf{choose}((x[i] + r - 1), x[i]) * (r \wedge r) * ((\mathsf{exp}(\mathsf{v}) + r) \wedge (-r - x[i])) * \mathsf{exp}(x[i] * \mathsf{v})
51
52 ^ }
53
     plot(x,y,main="Plot for v,r(1,2)", ylab = "Probability Values", xlab = "Random Variables", col= "red") legend(x = "topright",legend = "Probability of each random variable")
54
55
56
57
     #For v,r(1.5,2)
58 V = 1.5
59
60
61 for(i in 1:26)
62 + {
        y[i] = choose((x[i]+r-1),x[i])*(r^r)*((exp(v)+r)^(-r-x[i]))*exp(x[i]*v)
63
64 ^ }
65
plot(x,y,main="Plot for v,r(1,5,2)", ylab = "Probability Values", xlab = "Random Variables", col= "red") legend(x = "topright",legend = "Probability of each random variable")
```

Plot for v,r(0,1)

Plot for v,r(1,2)

Plot for v,r(1,5,2)

2.3

Pol Su - nit		
let I'y: = ny		-
L'(ylvir) = -nr log(r) +nr log (etr) + nylog(ever) - nyv -log (f. (titi-)		(* +(-1))
8 (*1v,r) = 0		
91	1	1
(+ de (nring(ever)) + de (ngloy)	(ever))- fr (ngv)-0=0	*) (4
hrer inter - n	1 ^ -	
hrev + nyev - ny - 0	e-y=0	
nce t nge - ng (e 41) = 0	e = 3	
ince i mye was	v = ln(g)	
Mret rye - Me - My-0		
nr (e2-y) = 0		
200		

2.5

Variance: V[V]

3.1

ÂML = 176 = 1/15 (1- Omc) = 1- 1/5 = 1/5 n = 240 15+1.96/15(15) (0.677, 0.789) In our sample of n=240, the observed probability of humans turning their head to the right when kissing is 1/15. We are 95% confident that the true population probability of someone turning their head to the right is between 0.577 and 0.789 (which are biased towards turning right). This shows that there is a large probability of people turning their head to the right when kissing. 3.2 Ho : A = 0.5 H1: 0 = 0.5 Flo: There is no preference in humans for tilting their hoad to a side when hissing. Hi: There is a preterence in humas for tilting their head to a particular side when kissing. ZA= 176 - 1/2 2. 7. 23 之(1-1) 240 approximetion p-value in R: > 2*pnorm(-abs(7.23)) 2P(71-7.23)=2*pnorm (abs(7.23)) [1] 4.82994e-13 ≈ 4.82934 × 10 p-value of 4.82994×10-13 which means that if the null hypothesis is true, and n=240, then 4.82994 x10" % of the time 176 or 1855 people turn right or 69 or more turning right when kissing. This is very strong evidence against the null.

> binom.test(176, 240, p=0.5)

Exact binomial test

data: 176 and 240
number of successes = 176, number of trials = 240, p-value = 2.854e-13
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.6726355 0.7881673
sample estimates:
probability of success
0.7333333

Use binom test in R

The same conclusion as in Q3.2 but the p-value is 2.854e⁻¹³ instead of 4.82994 × 10⁻¹³. This is also a strong evidence against the null hypothesis.

The larger the sample size will result in the two p-values to be closer because inormal approximation would be better.

Mx=176 Mx=210 B	x = 176/240
1/x=240 Ny=240 Ê	y= 21/240
Pp= 176+210 ≈ 0.783	
- 240+5m0	
Z (Bx Dx) = 176/240 - 210/240	~ 0.731
V0.783(1-0.783)(+	+ 1
V 0.183(1-0.183) (14/1	40 (7248)
use proon in R	> 2*pnorm(-0.731)
p-value= 2 * pnorm (-0.731)	≈ 0.465
the: 0x=0x, handedness d	oos not affect the head turn while kissing
H. : Ox + By, handedness does	affect the head turn while kissing
The p-value suggests that if	we repeated the experiment and handrel ness allows not
affect the head turn then appro	eximately 46.5% at the 240 people's outcome would
result in a difference as great	as we observed or greater, just by chance.
	lence against the null hypothesis.
,	•1