1

Assignment 1

CIS 410/510: Selected Topics on Optimization

Problem 1 Given $a, x \in \mathbb{R}^2$, where $a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, and $b_1, b_2 \in \mathbb{R}$,

- (1 point) prove $a^T x = ||a|| ||x|| \cos \theta$ using the definition of inner product and the "law of cosines", where θ is the angle between a and x;
- (1 point) calculate the distance between the two parallel hyperplanes $\{x|a^Tx=b_1\}$ and $\{x|a^Tx=b_2\}$.

Problem 2 (1 point) Given $x_0, x_1, ..., x_k \in \mathbb{R}^n$. Consider the set of points that are closer to x_0 than any other x_i , i.e., $S = \{x \in \mathbb{R}^n | ||x - x_0|| \le ||x - x_i||, i = 1, 2, ..., k\}$. Is S a polyhedron? If so, express it in the form of $S = \{x | Ax \le b\}$. If not, explain why.

Problem 3 (2 points) Let f be a twice differentiable function, with dom(f) convex. Prove f is convex if and only if $(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0$.

Problem 4 Prove the following functions are convex:

- (2 points) $f(x) = \max\{f_1(x), f_2(x), ..., f_m(x)\}$, where $f_i(x), i = 1, 2, ..., m$ are convex;
- (2 points) $f(x_{11},...,x_{1n},x_{21},...,x_{2n},...,x_{m1},...,x_{mn}) = \sum_{i=1}^{m} \sum_{j=1}^{n} ((x_{ij}+1)\ln(x_{ij}+1)-x_{ij})$, where $x_{ij} \in \mathbb{R}_{++}$, $i=1,2,...,m,\ j=1,2,...,n$.

Problem 5 (1 point) Consider the function $f(x) = \max\{|a^Tx + b|, \ln \frac{1}{c^Tx + d}\}$, where $a, c, x \in \mathbb{R}^n$ and $b, d \in \mathbb{R}$. Is this a convex function? Explain why.