Project Design Phase-I Solution Architecture

Date	30 October 2023
Team ID	NM2023TMID03207
Project Name	Indian Food EDA
Maximum Marks	4 Marks

Solution Architecture:

Data Science Process

Solution architecture for Indian food EDA (Exploratory Data Analysis) involves defining the technical infrastructure, tools, and processes to analyze and gain insights from data related to Indian cuisine. EDA is a critical step in understanding and optimizing the Indian food domain, from restaurant management to recipe creation. Here's a high-level description of the architecture:

1. Data Collection:

- Data sources: Collect data from various sources, including restaurant databases, food delivery platforms, recipe websites, and user-generated content.
- Data types: Gather structured and unstructured data, such as menu items, ingredients, customer reviews, ratings, images, and more.

2. Data Ingestion:

- Data Extraction: Extract data from diverse sources using ETL (Extract, Transform, Load) processes.
- Data Storage: Store the data in a scalable and reliable database system, such as a relational database or a NoSQL database.

3. Data Preprocessing:

- Data Cleaning: Clean and preprocess the data to handle missing values, outliers, and inconsistencies.
- Data Transformation: Transform data into a suitable format for analysis, including encoding categorical variables, normalizing numerical data, and feature engineering.

4. EDA Tools and Technologies:

- Programming Language: Utilize languages like Python and R for data analysis.
- Data Analysis Libraries: Leverage data analysis libraries like Pandas, NumPy, Matplotlib, Seaborn, and Plotly.
 - Visualization Tools: Create interactive visualizations using tools like Tableau or Power BI.
 - Statistical Analysis: Apply statistical tests and techniques to uncover insights.

5. Exploratory Data Analysis:

- Descriptive Statistics: Compute summary statistics, such as mean, median, mode, and standard deviation, for key food attributes.
- Data Visualization: Create plots, charts, and graphs to visualize trends, patterns, and correlations within the data.
- Hypothesis Testing: Test hypotheses related to Indian food preferences, ingredients, and regional variations.
 - Customer Segmentation: Segment customers based on their preferences and behavior.
- Sentiment Analysis: Analyze customer reviews to understand sentiment and identify areas for improvement in the food industry.

6. Reporting and Insights:

- Dashboard Creation: Develop interactive dashboards to present EDA findings in a user-friendly manner.
- Key Metrics: Identify and track key performance indicators (KPIs) for Indian food-related businesses, such as customer satisfaction, popular dishes, and geographical trends.
- Recommendations: Generate actionable recommendations for restaurants, chefs, and food delivery platforms based on EDA results.

7. Continuous Monitoring:

- Set up monitoring mechanisms to continuously collect and analyze data to keep up with changing food trends and customer preferences.
 - Regularly update the EDA process as new data becomes available.

8. Scalability and Security:

- Ensure that the architecture can scale to handle large volumes of data.
- Implement security measures to protect sensitive data and comply with data privacy regulations.

9. Collaboration and Documentation:

- Collaborate with domain experts, data scientists, and stakeholders to validate findings and refine analysis.
- Document the entire EDA process, including data sources, preprocessing steps, and analysis techniques.