The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

```
The code for $a_2$ is:
"Compute_a_2(n)
Input: natural number n
Output = 2*f(n) + 1/2 + 0.25^n
end
Compute_f(n)
Input: natural number n
k=2
for m = 1 to n
   k=k+1
   end
Output = sum
end"
```

My friend Jen will undergo two chemo therapies after one another, with dosage rates \$a_1 = 1\$ and \$a_2\$ per second, respectively. The treatment times we call \$x_1\$ and \$x_2\$. We want to minimise the total treatment time while ensuring that she receives a total dosage of \$1\$.

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided \${0.4, 0.6}\$ as a solution. Is this at most \$0.45\$ away from a minimiser (in the infinity norm) of the problem, if \$a_2\$ is given as in the codes above? Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 394 seconds >

Step 1. Understand the Definition of a_2

The code defines:

- Compute_f(n):
 - Initializes:

$$\mathrm{sum} = 72^{-10^{24}}$$

 \circ For m=1 to n, updates:

$$k=k+1, \quad ext{sum} = ext{sum} + \left(rac{1}{2}
ight)^k - 72^{-10^{24} \cdot k}$$

Outputs:

$$f(n) = 72^{-10^{24}} + \sum_{j=3}^{n+2} \left[\left(rac{1}{2}
ight)^j - 72^{-10^{24} \cdot j}
ight]$$

• Compute_a_2(n):

$$a_2(n) = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

As $n \to \infty$, the geometric series converges:

$$\sum_{j=3}^{\infty} \left(\frac{1}{2}\right)^j = \frac{1}{4}$$

The terms involving powers of 72 are extremely small. Let:

$$A = 72^{10^{24}} \quad \Rightarrow \quad 72^{-10^{24}} = rac{1}{A}$$

Then:

$$f(n) o rac{1}{4} + (ext{tiny positive number})$$
 $a_2(n) o 2 \cdot \left(rac{1}{4} + ext{tiny}
ight) + rac{1}{2} = 1 + (ext{tiny positive number})$

Thus,

$$a_2 = \lim_{n o \infty} a_2(n) = 1 + arepsilon, \quad ext{where } arepsilon > 0 ext{ is extremely small}$$

Step 2. Formulate the Optimization Problem

Jen receives two therapies:

- Therapy 1: rate $a_1=1$ per second, time x_1
- Therapy 2: rate $a_2=1+arepsilon$, time x_2

Total dosage:

$$a_1x_1 + a_2x_2 = x_1 + (1+arepsilon)x_2 = 1$$

Total time:

$$T = x_1 + x_2$$

We want to minimize T subject to $x_1,x_2\geq 0.$

Step 3. Find the Optimal Treatment Times

From the constraint:

$$x_1 = 1 - (1 + \varepsilon)x_2$$

Then:

$$T=1-(1+\varepsilon)x_2+x_2=1-\varepsilon x_2$$

Since $\varepsilon > 0$, T is minimized when x_2 is maximized.

The maximum value of x_2 occurs when $x_1=0$:

$$(1+arepsilon)x_2=1 \quad \Rightarrow \quad x_2=rac{1}{1+arepsilon}$$

Then:

$$T_{\min} = 1 - arepsilon \cdot rac{1}{1 + arepsilon} = rac{1}{1 + arepsilon}$$

So the unique minimizer is:

$$(x_1^*,x_2^*)=\left(0,rac{1}{1+arepsilon}
ight)$$

Since arepsilon is extremely small, $x_2^*pprox 1$.

Step 4. Compare with the Proposed Solution

Proposed solution:

$$(x_1,x_2)=(0.4,0.6)$$

True minimizer:

$$(x_1^*,x_2^*)=\left(0,rac{1}{1+arepsilon}
ight)pprox (0,1)$$

Compute the infinity norm distance:

$$d = \max\left\{|0.4-0|, \left|0.6-rac{1}{1+arepsilon}
ight|
ight\}$$

Since $\frac{1}{1+arepsilon}pprox 1$, we have:

$$|0.6-1|pprox0.4$$

So:

$$dpprox \max\{0.4,0.4\}=0.4$$

Even accounting for the tiny ε , the distance remains very close to 0.4.

Step 5. Conclusion

Since $0.4 \leq 0.45$, the proposed solution is within 0.45 (in the infinity norm) of the true minimizer.