THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION

BEST AVAILABLE COPY

RF Project 497
Report No. 1

TECHNICAL

REPORT

by

THE OBIO STATE UNIVERSITY RESEARCH FOUNDATION

Columbus 10, Ohio

To

OFFICE OF NAVAL RESEARCH Contract No. Nonr-495(04) NR 055 298

On

STERIC FACTORS IN ORGANIC CHEMISTRY

Submitted by

Shalom Sarel and Melvin S. Newman Department of Chemistry

Date October 1, 1953

SUMMARY

C

The synthesis of a number of acids, alcohols derived by reduction, and the acetates of these alcohols is described. Physical properties and yields are tabulated.

The rates of alkaline hydrolysis of these acetates at 20° and 30° in aqueous dioxane have been measured and calculations of rate constants and thermodynamic properties have been made.

ALKALINE HYDROLYSIS OF ACETATES OF HIGHLY BRANCHED ALCOHOLS

INTRODUCTION

The over-all objective of the work herein reported is to accumulate quantitative data on the saponification of a large number of primary, secondary, and tertiary acetates. These data will be used in a study of steric effects of various alkyl groups in alkaline hydrolysis. It is hoped that eventually these data will be useful in predicting the alkyl ester to be used in many different reactions where bifunctional compounds, one function of which is the ester function, are involved.

EXPERIMENTAL

A. SYNTHESIS OF ACIDS

Five different methods were used for the preparation of the carboxylic acids or their esters. These methods are outlined below.

1. Carboxylation of the Grignard reagent:

$$R - x \xrightarrow{Mg} R - Mg x \xrightarrow{CO_2} RCOOH$$

2. Alkykation of Malonic or Cyanoacetic Esters:

3. Alkylation of Nitriles (Ziegler Method):

4. Alkaline Rearrangement of α-Haloketones (Faworski Reaction):

B. REDUCTION OF ACIDS AND ESTERS

The use of $\text{LiAlH}_{i,j}$ as a reducing reagent for converting carboxylic acids and esters into the corresponding primary alcohols has been found highly satisfactory.

C. FORMATION OF ACETATES

The primary alcohols were easily acetylated either by

(1) acetyl chloride or (2) acetic anhydride in presence of dry

pyridine, affording very good yields, depending on effectiveness

of isolation methods of the product used. The data are summar
ized in Table I. The physical properties are listed in Table II.

The secondary and tertiary alcohols were acetylated by acetyl chloride and magnesium metal in dry ether as follows: (See Table III).

D. RATES OF SAPONIFICATION

The rate of hydrolysis of the acetates with 0.01 N sodium hydroxide, using water or 70% aqueous dioxane as solvents, was followed titrimetrically at 20°C and 30°C. The rate constants are given in Table IV. The thermodynamic data in Table IV were calculated using the equations listed below.

E. CALCULATION OF ARRHENIUS PARAMETERS

0

(1)
$$\Delta E^* = 2.303 \times R \times \frac{T_1 \cdot T_2}{T_2 - T_1} \cdot \log \frac{k_2}{k_1}$$
 (Energy of activation)

(2)
$$\log PZ = \log k + \frac{\Delta E^*}{2.303 \cdot RT} = B$$

(3)
$$\Delta S^* = 2.303 \times R \left(B - \log \frac{RT}{Rh} \right)$$
 (entropy of activation for all degrees of freedom)

which are derived from the transition state theory of reaction velocity:

$$k = \frac{RT}{Mh} \cdot e^{-\Delta S^{*}/R} \cdot e^{-\Delta E^{*}/RT}$$

or
$$\log k = \log \frac{RT}{Nh} + \frac{\Delta S^{*}}{2.303 R} - \frac{\Delta E^{*}}{2.303 RT}$$

where R/N and h are the Boltzman and Planck constants, respectively, and ΔS^* is the entropy of activation for all degrees of freedom.

Equation (2) is used for calculating $B(= \log PZ)$ at each temperature; average B is used in equation (3). In equation (3) the average temperature is used as T = 298.

F. INFRARED SPECTRA

Spectra were recorded between 5000 and 625 cm⁻¹ with a Baird Infrared Recording Spectrophotometer, Model B. All liquids were

measured in a sandwich-type sodium chloride cell. See data in Table II.

DISCUSSION OF RESULTS

As stated before, one of the prime purposes of this study is to obtain a quantitative measure of steric hindrance towards the alkaline hydrolysis of alkyl acetates. In order to rule out polar effects as much as possible, comparisons of relative rates will be made only within the members of the same class of esters. That is, the rates of primary alkyl esters will form one class, the rates of secondary esters another, and the rates of tertiary esters still another. It is hoped that a knowledge of the magnitude of the steric factors involved will prove useful in determining that ester of an acid to be used in certain reactions involving bifunctional compounds one function of which is the ester function.

There are certain cases described in the literature in which the use of t-butyl esters is preferable to that of ethyl esters. However, the preparation of t-butyl esters is often quite tedious. It would be helpful to know what primary and secondary alcohols might be expected to show the same degree of hindrance. The completion of our work on the alkaline saponification of primary alkyl acetates allows this to be done, as will be shown below.

The rates for alkaline hydrolysis of methyl, ethyl, isopropyl, and t-butyl acetates are 7.84, 4.57, 1.26, and 0.081 respectively,

using the same units as those indicated in Table IV. Thus we see that compounds 3 and 9 saponify slightly more slowly than t-butylacetate even though primary alkyl groups are involved. All of the other primary alcohol esters listed in Table IV saponify more slowly than methyl and ethyl acetate and hence one has a nice selection of primary alkyl groups having larger steric requirements than ethyl. It remains for much future work to show how valuable this information may prove to be in the selection of the proper ester groups in various cases.

O

TABLE I. ACETATES OF PRIMARY ALCOHOLS OF FORMULA R" -C-CH2OCOCH3

					# # X			
				,			Alco-	İ
Mo.	Alcohol	R.	R E	# # # # # # # # # # # # # # # # # # #	Ac1d y1e1d	Ref.	bol yteld	Ace- tate
ä	Isobutyl	CE3	CH ₃	Ħ	1			.
જં	Reopenty.1	CH ₃	CH ₃	GB 23			\$16	8
ë.	2,2-Dimethylbutyl	CH ₃	CH ₃	28g	¥01	A-1	88	826
#	2,2-Diethylbutyl	C2HS	Colle	C2BS	60 %	A-3	65%	93%
5	2-Nethylbutyl	CH ₃	S. E.	Ħ				TT\$
6.	2-Ethylbutyl	C2H5	C2H5	Ħ				2
۲	3-We thyl-2-e thylbutyl	Colle	$(ce_3)_2 ce$	Ħ	78.5%	A-2	83%	8
&	3,3-Dimethyl-2-ethylbutyl	C2H,	$(c_{\overline{\mathbf{H}_3}})_3^{\mathbf{c}}$	Ħ			36	\$7.6
9.	2-2-Diisopropylethyl	$(c_{\rm H_3})_2$ CH	(сиз) св	Ħ	50%	A-2	\$19	75\$
10.	2,3-Dimethylbutyl	(сн3)2сн	GH3	E	% 09	A-2 A-4	%	928
ដ	Cyclopropenemethyl	Cyc]	Cyclopropane	Ħ	8. 5	A-5	407	88.9
2	Cyclobutamemethyl	Cyc]	Cyclobutane ring	Ħ	•	•	808	\$
13.	Cyclopentanemethyl	Cye]	Cyclopentane ring	E.	\$ 59	4-A	80	8
1 4.	Cyclobexaremethyl	Cye.	Cyclobexane ring	Ħ	•	1	1	F
15.	2-Ethylbeiyl-1	C2H5	п-сидо	Ħ		1	1	93%

TABLE II. PHYSICAL PROPERTIES AND C-0 ABSORPTION BAND IN THE INFRARED SPECTRA OF ACETATES OF PRIMARY ALCOHOLS

20.	Compound Acetate of	B.P.	fressure in mm.	g ^a c	C=0 Abi	C-O Absorption m-1 µ
ч	2-Methylpropenol	אמ	747	1.3885	3401	9.56
a	2,2-Dimethylpropenol	5-121-121	142	1.3927	1031 (1050)	9.67
3.	2,2-Dimethylbutenol	152-153	047	1,4188	1038	3.6
<u>.</u>	2,2-Diethylbutanol	103-104	9	1.4269	1034 (1055)	9.69 (9.50)
5	2-Methylbutanol	138-139	747	1.4004	1042	9.58
6.	2-Ethylbutsnol	970	047	1.4090	1038-1041	9.65-9.65
	3-Methyl-2-ethylbutenol	68-88	23	1.4156	1036	9.68
8	3,3-Dimethyl-2-ethylbutenol	700	3	1.4220	1038	6.65
6	2,3-Dimethylbutenol	247	047	1.4068	1038	9.65
10.	Cyclopropanemethanol	133.5	047	1.4156	1034	19.6
ä	Cyclobutanemethanol	150	747	1.4245	1033	9.70
72.	Cyclopentanemethanol	172.5	747	1.4340	1038	9.65
13.	Cyclobexamemethanol	108	Q	1.4421	1040	6.63
٠4٢	2,2-Diisopropylethanol	185-186	047	1.4214	1045	9.65
15.	2-Ethylhexanol-1	140	04	1.4182	1001	9.65

TABLE III. ACETATES OF SECONDARY AND TENTIARY ALCOHOLS

R"=C-0-COCE3

Compound	-	. W	1 K	R to	Car- binol yield	Ace- tate yield	Ref.
16. Triethyl carbinyl		$c_2 \overline{a}_5$	C2E5	C _F	154	70%	Spassow
17. Di-isopropy, carbin	γ.	(св3)5сн	Ħ	(сн ³) ⁵ сн		8	Spassov
tert. Butyl methyl carbinyl		(cB ₃) ₃ c	Ħ	GH ₃	87	63\$	Acc1+Py

Rates of saponification of above acetates in 70% aqueous dioxane were too slow at 20°C, so that the error in the measurement is too great. Further studies on these compounds will be made.

TABLE IV. KINETICS OF ALKALINE HYDROLYSIS OF ACETATES OF PRIMARY ALCOHOLS

-O M	Compound	K g.mclc /2	/2 . win ⁻¹ 30°C	AE* Cel./wole	log. PZ	AS* Cal./deg./mole
ਜ	св ₃ се ₃ ссосе ₃ се ₃	0.280	864.0	9925	7.3079 ± 0.130	+ 1.64
N	с ₂ н5-с-сн ₂ 0сосн ₃	0.210	0.339	8258	6.0955 ± 0.111	- 3.91
m	C2H5 C2H5-5-CH2OCCH3	0.050	0.108	13280	9.7773 ± 0.107	+12.94
#	C2H5-CH-CH2OCOCH3	0.470	0.777	9670	6.3766 ± 0.110	- 2.62
~	С ₂ В ₅ - СВ - С	0.240	0.493	12420	9.1412 ± 0.163	+10.03
9	с ₄ н9-ся-ся ₂ ососн ₃	0.156	0.359	14300	10.4189 ± 0.311	+15.88
7	св ₃ ся-св-св ₂ ососв ₃	0.350	0.718	12400	9.1063 ± 0.149	+ 9.87

Table IV (continued)

8	Compound	k g. mole/	k g. mole/ ℓ . min ⁻¹	¥ãv		AS*
	1	SQ. C	30°C	Cal./mole	ਲੋਂ	al./deg./mole
0	сизси - сиси ₂ ососи ₃	0.227	0.411	10240	7.5457 ± 0.135	+ 2.73
9/	св ₃ -с з св-св ₂ ососв ₃ св ₃ с _{2в5}	090.0	0.109	10700	7.9452 \$ 0.137	+ 4.51
97	10 [>> -CE_2000CE3	1.080	2.280	12900	9.6582 \$ 0.004	+12.40
ä	11 🔷 -ch20coch3	0.742	1.473	11820	8.7614 ± 0.068	+ 8.29
ห	-CH2OCOCH3	0.537	1.078	12020	8.8426 ± 0.141	+ 8.66
13 (13 (св20сосв3	0.330	0.705	13100	9.6318 ± 0.170	+12.28
क्ष	CE3 CH CE3 CH-CE2OCOCE3 CE3 CH	0.120 ^x				

*This result is being checked

Signature Page to Technical Report 2 Contract No. Nonr-495(O4) NR 055 298 STERIC FACTORS IN ORGANIC CHEMISTRY

Supervisor State University Research Foundation

Executive Director Oran C. Woolfart Date 9 Nov. 1953

W.S. H.

31 July 53 RF 497

Distribution List for Technical Reports Contract Nonr-495(00) - NR 055-298 ROLE OF STERIC FACTORS IN ORGANIC CHEMISTRY

Copies

- 1 Director, ONR Branch Office 150: Causeway Street Boston, Mass.
- 2 Director, ONR Branch Office The John Crerar Library Bldg. 10th Floor, 86 E. Randolph St. Chicago 1, Illinois
- 1 Director, ONR Branch Office 346 Broadway New York 13, N.Y.
- 1 Director, ONR Branch Office 1000 Geary Street Sun Francisco 9, Calif.
- 1 Director, ONR Branch Office 1030 N. Green Street Pasadena 1, Calif.
- 2 Officer in Charge ONR, Navy No. 100 Fleet Post Office New York, New York
- 6 Director, Naval Research Lab. Washington 25, D.C. Attn: Technical Information Officer
- 2 Chief of Naval Research Washington 25, D.C. Attn: Chemistry Branch

F---

- 1 Dr. Ralph G.H. Sie, Research
 Director
 General Laboratories, QM Depot
 2800 S. 20th Street
 Philadelphia 45, Pennsylvania
- l Dr. Warren Stubblebine Research Director Chemical and Plastics Section RDB-MPD Quartermaster General's Office Washington 25, D.C.

Copies

- 1 Dr. A. Stuart Hunter,
 Technical Director
 Research and Development Branch
 MPI
 Quartermaster General's Office
 Washington 25, D.C.
- l Dr. A. Weissler Department of The Army Office of the Chief of Ordnance Washington 25, D.C. Attn: ORDTB-PS
- l Research and Development Group Logistics Division, General Staff Department of The Army Washington 25, D.C. Attn: Dr. W. T. Read Scientific Adviser
- 2 Director, Naval Research Lab. Washington 25, D.C. Attn: Chemistry Division
- 2 Chief of the Bureau of Ships Navy Department Washington 25, D.C. Attn: Code 340
- 2 Chief of Bureau of Aeronautics Navy Department Washington 25, D.C. Attn: Code TD-4
- 2 Chief of the Bureau of Ordnance Navy Department Washington 25, D.C. Attn: Code Rexd
- 1 Dr. H. A. Zahl, Tech. Director Signal Corps Engineering Labs. Fort Monmouth, New Jersey

Contract Nonr-495(00) - NR 055-298

Copies

Marie .

255.0

- 1 U.S. Naval Radiological Defense Lab. San Francisco 24, Calif. Attn: Technical Library
- 2 Naval Ordence Test Station Invokern CHINA LAKE, California Attn: Head, Chemistry Div.
- 1 Office of Ordnance Research 2127 Myrtle Drive Durham, North Carolina
- 1 Technical Command Chemical Corps Chemical Center, Maryland
- 1 U.S. Atomic Energy Commission Research Division Washington 25, D.C.
- 1 U.S. Atomic Energy Commission Chemistry Division Brookhaven National Laboratory Upton, New York
- U.S. Atomic Energy Commission Library Branch, Tech.Info., ORE P.O. Box E Oak Ridge, Tennessee
- 1 University of California Department of Chemistry Los Angeles 24, California Attn: Dr. S. Winstein
- Department of Chemistry
 New York 27, N.Y.
 Attn: Dr. L. P. Hammett
- 1 University of Colorado
 Department of Chemistry
 Boulder, Colorado
 Attn: Dr. S. J. Cristol

Copies

- 1 Harvard University
 Department of Chemistry
 Cambridge 38, Massachusetts
 Attn: Dr. P. D. Bartlett
- 1 Purdue University
 Department of Chemistry
 Lafayette, Indiana
 Attn: Dr. Herbert C. Brown
- 1 Massachusetts Institute of Tech.
 Department of Chemistry
 Cambridge, Massachusetts
 Attn: Dr. C. G. Swain
- 1 Pennsylvania State College Department of Chemistry State College, Pennsylvania Attn: Dr. R. W. Taft, Jr.
- 1 University of Southern California Department of Chemistry Los Angeles 7, California Attn: Dr. R. F. Brown
- 5 ASTIA Document Service Center Knott Building Dayton 2, Ohio
- 1 Office of Technical Services Department of Commerce Washington 25, D.C.
- 1 Office of Secretary of Defense Pentagon, Room 3D1041 Washington 25, D.C. Attn: Library Branch (R and D)
- 1 Dr. A. G. Horney Office Scientific Research R and D Command, USAF Box 1395 Baltimore, Maryland