1 线性空间与基向量:

1.1 线性空间:

设有空间 V, 如果在 V 中的向量 \vec{x}, \vec{y} , 有 $\forall \vec{x}, \vec{y} \in V$, 且满足:

$$\forall k \in R, k \cdot \vec{x} \in V$$

$$\forall \alpha,\beta \in R, \alpha \cdot \vec{x} + \beta \cdot \vec{y} \in V$$

我们称空间 V 是线性空间。常见的 R, R^2, R^3 都是线性空间。 下面我们以二维平面 R^2 为例讨论有关线性空间的内容。

1.2 线性空间的基

在二维平面 R^2 中,建立平面直角坐标系 XOY,在这个坐标系中,有两条向量是非常特殊的,记为 $\vec{e_i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{e_j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$,通常称这两条向量称为二维平面空间中的一对基向量;XOY 坐标系中任意一条向量 $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ 都可以看作 $\vec{e_i}$, $\vec{e_j}$ 的线性组合:

$$\left(\begin{array}{c} x \\ y \end{array}\right) = x \cdot \left(\begin{array}{c} 1 \\ 0 \end{array}\right) + y \cdot \left(\begin{array}{c} 0 \\ 1 \end{array}\right)$$

相对应的,我们称平面 XOY 是由向量 $\vec{e_i}, \vec{e_j}$ 张成的空间,记 $\begin{pmatrix} x \\ y \end{pmatrix}$ 为向量 \vec{u} 在这对基向量张成空间下的坐标。

默认状态下,我们认为一个向量的坐标即为它在 XOY 坐标系中的坐标。

1.2.1 线性相关与线性无关:

对于一组向量 (多于一个) $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$,如果存在不全为 0 的系数 $k_1, k_2, ..., k_n$, 使得 $\sum_{i=1}^k k_i \cdot \vec{a}_i = 0$, 则称 $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ 是一组线性相关的向量;

反之,若当且仅当 $k_1 = k_2 = ... = k_n = 0$ 时,才能使 $\sum_{i=1}^k k_i \cdot \vec{a}_i = 0$ 成立,则称 $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ 是一组线性无关的向量。

• 在 XOY 平面内,两个向量线性相关意味着两个向量是共线的。

• 在 XOY 平面内, 超过三个向量一定线性相关。

我们说任意一组线性无关的向量可以张成一个线性空间,向量组中向量的个数称为该线性空间的秩。

1.2.2 线性空间的基与向量坐标的计算:

• 设 XOY 中有向量 $\vec{u} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$, 显然在以 $\vec{e_i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{e_j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 的 原坐标系中坐标为 $\begin{pmatrix} 5 \\ 7 \end{pmatrix}$.

我们现在以另一组向量 $\vec{e_p} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{e_q} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 为基张成另一个 线性空间 V_1 ,在这个新的线性空间中,向量 \vec{u} 的坐标就换成了另一对 $\begin{pmatrix} u_x \\ u_y \end{pmatrix}$,且满足 $u_x \cdot \vec{e_0} + u_y \cdot \vec{e_1} = \vec{u}$,即

$$u_x \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + u_y \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$

联立得到方程

$$\begin{cases} u_x - u_y = 5 \\ u_x + u_y = 7 \end{cases}$$

解方程得

$$\begin{cases} u_x = 6 \\ u_y = 1 \end{cases}$$

于是得到向量 \vec{u} 在线性空间 V_1 中的坐标为 $\begin{pmatrix} 6\\1 \end{pmatrix}$

• 类似的,对于在空间 V_1 中的向量 $\vec{u} = \begin{pmatrix} u_x \\ u_y \end{pmatrix}$,可以计算该向量在 XOY 平面中的坐标:

$$ec{e}_0 = \left(egin{array}{c} 1 \ 1 \end{array}
ight), ec{e}_1 = \left(egin{array}{c} -1 \ 1 \end{array}
ight)$$

于是可以计算得出在原坐标系中:

$$\vec{u} = u_x \cdot \vec{e}_0 + u_y \cdot \vec{e}_1$$

即

$$\vec{u} = u_x \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + u_y \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} u_x - u_y \\ u_x + u_y \end{pmatrix}$$

即为在 XOY 平面中的坐标

2 线性变换: