Chapter Five: Submanifolds

Lee, An Introduction to Smooth Manifolds

5.2 Boundary is embedded submanifold. By Theorem 5.8, it suffices to prove that δM satisfies the local k-slice condition. Take $p \in \delta M$ and let (U, ϕ) be a smooth boundary chart such that $\phi(p) \in \delta \mathbb{H}^n$. By the topological invariance of the boundary, $\phi(\delta M) = \phi(U) \cap \{x^n = 0\}$. Therefore (U, ϕ) is the necessary slice chart.

5.4 Figure 8 is not an embedded submanifold of \mathbb{R}^2 . Let S be the figure 8. Since small open subsets of S can be easily seen to homeomorphic to open intervals, it follows from the topological invariance of dimension (Theorem 1.2) that if S is an embedded submanifold, it must have dimension 1. Now, let (U, ϕ) be a chart containing (0,0) but not (0,1) or (0,-1). Assume that U is an open ball centered at (0,0). Since U is connected, $\phi(U)$ must be an interval, so ϕ induces a homeomorphism between an "x" shape and an interval. But then ϕ restricts to a homeomorphism between $U \setminus (0,0)$ and two open intervals. This is a contradiction, since $U \setminus (0,0)$ has four connected components while the intervals have two.

5.6 Tangent sphere to a submanifold of \mathbb{R}^n . If i is the inclusion $M \hookrightarrow \mathbb{R}^n$, define $\Phi : TM \to \mathbb{R}$

$$\Phi(p, v_p) = ||Di_p(v_p)||_{\mathbb{R}^n}.$$

Then Φ is smooth as the composition of smooth maps. It is a submersion, because if $N: \mathbb{R}^n \to \mathbb{R}$ is the norm map, then $DN_p \neq 0$ for $p \neq 0$, and therefore since $D\Phi_p = DN_{i(p)} \circ Di_p$, 1 is a regular value of Φ . But $UM = \Phi^{-1}(1)$, so be Corollary 5.14, UM is a smooth 2m-1 dimensional manifold.

5.8 Removing a coordinate ball creates a boundary diffeomorphic to S^{n-1} . It is clear that $F(p) = ||p||^{-1}$ is a smooth immersion $\mathbb{R}^n \setminus \{0\} \to \mathbb{R}$, and therefore by Proposition 5.47, $D = \mathbb{R}^n \setminus \mathbb{B}_1(0) = F^{-1}(-\infty, 1]$ is an embedded submanifold with boundary of $\mathbb{R}^n \setminus \{0\}$, and therefore of \mathbb{R}^n . By Proposition 5.46, the boundary of D is the S^{n-1} .

Now, the definition of a regular coordinate ball B gives that $B \subset B'$ where (B', ϕ) is a chart, $\bar{B} \subset B'$, and the image of B and B' under ϕ are nested balls in \mathbb{R}^n . The above shows that $\phi(B') \setminus \phi(B)$ is a manifold with boundary, so $B' \setminus B$ is a manifold with boundary δB . Since the condition is local, this implies that $M \setminus B$ is a manifold with boundary δB . Additionally, ϕ restricted to δB gives the necessary diffeomorphism with S^{n-1} .

5.10 A family of algebraic curves. Define $F_a(x,y) = x(x-a)(x-1) - y^2$. For $a \in \mathbb{R} \setminus \{0,1\}$, F_a has 0 as a regular value. For its differential is given by

$$D(F_a)\Big|_{(x,y)} = (3x^2 - 2(a+1)x + a, -2y).$$

In order for $D(F_a)$ to vanish at a point such that $F_a(x,y) = 0$, we must have y = 0, so x(x-1)(x-a) = 0 as well. Checking the cases x = 0, 1, a shows that this can only occur when $a \in \{0, 1\}$. It follows from Corollary 5.14 that M_a is an embedded submanifold for $a \in \mathbb{R} \setminus \{0, 1\}$.

In the case where a=0, M_a is not an immersed submanifold. For let $S=M_0$, $S_+=M_0\cap\{y>0\}$, $S_-=M_0\cap\{y<0\}$, and $\phi(x,y)=y$. Then S is an embedded submanifold with smooth structure induced by the charts $(S_+,\phi|_{S_+})$ and $(S_-,\phi|_{S_-})$ (Lemma 1.35). For define $g_+:\mathbb{R}_{>1}\to\mathbb{R}$ by $g_+(x)=+\sqrt{x^2(x-1)}$, so that $\phi^{-1}|_{y>0}=(g_+^{-1}(y),y)$. Now g'(x)>0 for x>1 so g is a local diffeormorphism, and therefore a global diffeomorphism, between $\mathbb{R}_{>1}$ and $\mathbb{R}_{>0}$. Therefore the inclusion map i has the coordinate representation on S_+

$$(g^{-1}(y), y)$$

which is a smooth immersion by what we have argued. A similar argument gives smoothness on S_{-} . It is clear that the inclusion map is a homeomorphism with respect to the topology defined by these charts.

Therefore, if M_0 is an immersed submanifold, its smooth structure must restrict to this smooth structure on S. NOT FINISHED

I believe that if a = 1, M_a is an immersed submanifold, but I cannot figure out how to show it. NOT FINISHED

5.10 Restricting a smooth covering map to a boundary component. By Theorem 5.11, δE is an embedded submanifold of E, and any component is an open subset of δE . Let C be such a component. Then by Theorem 5.27 $\pi|_C$ is smooth. Now clearly $\pi(\delta E) = \delta M$. Since $\pi|_C$ is therefore continuous, $A = \pi|_C(C)$ is connected. By Proposition 4.33, π is an open map, so $\pi_{\delta E}$ is an open map from δE to its image δE with the subspace topology. This implies that $\pi|_C(C)$ is open and closed in δM , so it is a component of δM .

It remains to show that $\pi|_C$ is a smooth covering map. Take $p \in A$ and U an evenly covered set containing p. Let $B = \pi^{-1}(U \cap \delta M) \cap C$. Then $\pi(B)$ is also an open subset of δM containing x that is diffeomorphic to B through π , again by Theorem 5.27. MORE WORK?