

Project's objective
Objectives for this project

O2. Our Environment
What we used for the simulation

O3. Vision

Block spawning and recognition

O4. Manipulation

Path analysis and movement

Objective

Move an UR5 robotic arm with a gripper, in order to grab and move some different randomly spawned blocks from a random start position to a desired position.

Environment

The project is made on a simulated environment.

Using Ros2, we can simulate a UR5 arm to make the task.

To work on it, we structured our project in a certain way.

Vision

Section related to the creation, analysis and of the block spawned. The main sections are:

- spawn blocks
- image detection
- image analysis/processing
- object elaboration (camera instance and orientation)

..... Manipulation

Section related to the trajectory computation and actuation. The main sections are:

- path calculation
- gripper control
- path actuation

····· Invocation workflow ·····

yolo.sh detection.py

conversion.sh

init.sh setupGazebo.sh start.sh sim.launch.py

complete_job.sh

process.py

.... Execution workflow

image.cpp

waiting for the images

process.py

converts 2D image points to 3D coordinates

gripper_service.cpp

manage the change in the state of the gripper (closed, neutral, open)

visual.py

from camera_ws
image manipulation, for taking
what we need

detection.py

detect the block and calculate his bounding box

kinematics.cpp

Processes UR5 joint states and controls robot movement