Natural Language Processing

Lecture 19

Dirk Hovy

dirk.hovy@unibocconi.it

Goals for Today

- Learn about recurrent neural network architectures
- Learn about convolutional neural network architectures
- Understand the concept of convolution and pooling
- Understand the difference between recurrent and convolutional networks
- Understand the attention mechanism

Recurring Matters

Long-Term Trouble

SUBJECT

"Wenn er aber auf der Strasse der in Sammt und Seide gehüllten jetzt sehr ungenirt nach der neusten Mode gekleideten Regierungsräthir begegnet."

VERB

Mark Twain, The Awful German Language

Long-Term Trouble

NEGATION

This is not in any sense of the word a funny movie.

Sequence Tagging

```
PRON VERB ADP DET ??? PUNCT I went to the show .
```

```
show {VERB, NOUN}
               show
show
PART Show
  show
               show
show
PRON Show
   show
```

Structured prediction: depends on the POS of a previous word

Types of Text Classification

Recurrent Networks

Recurrence

$$y_i = f(h_i)$$

$$h_i = s(h_{i-1}, x_i)$$

...Unrolled

$$y_i = f(h_i)$$

$$h_i = s(h_{i-1}, x_i)$$

Concretely

$$y_i = f(h_i) = h_i$$

 $h_i = s(h_{i-1}, x_i) = tanh(W_1 h_{i-1} + W_2 x_i + b)$

Recap: LMs

$$P(w_1, w_2, ..., w_n) \approx \prod_{i=1}^{N} P(w_i|w_{i-2}, w_{i-1})$$
 Model

* * The weather today is fine STOP

$$P(S) = P(w_1, ..., w_n) = P(The|* *)$$

- × P(weather * The)
- × P(today The weather)

- CHAIN RULE × P(is weather today)
 - × P(fine today is)
 - × P(STOP is fine)

Neural LMs

$$P(w_1, w_2, ..., w_n) \approx \prod_{i=1}^{N} P(w_i|w_1, w_{i-1})$$

PREDICT NEXT WORD GIVEN HISTORY

RNN Tagging

STRUCTURED PREDICTION

Bidirectional-RNN

STRUCTURED PREDICTION

Special Recurrent Networks

Vanishing Memory

WHERE WERE YOU MARCH 3, 2016?

PROBLEM WITH LONG SEQUENCES

Selective Forgetting

Acceptor

Encoder-Decoder

...AND GENERATE

OUTPUT FROM IT

GOBBLE UP SEQUENCE

INTO A VECTOR ...

Convolution

Convoluted Matters

TEXT SORT CLASSIFICATION

Retail

SENTIMENT ANALYSIS

positive

RELATION EXTRACTION

founded_by(Amazon, Jeff Bezos)

Types of Text Classification

Problems with MLPs

Problems with MLPs

founded_by(Amazon, Jeff Bezos)

Jeff Bezos, or what Dr. Evil would look like on steroids, went from book seller to billionaire when he founded Amazon in 1994.

Convolution

Convolution Extraction

4

Image

Convolved Feature

CNNs in Images

CNNs in Text

$$c_i = concat(x_{i-i+3})$$
 $h_i = relu(W_1 \cdot c_i + b_1)$

The Attention Mechanism

Attention!

- Learn syntactic and semantic relations between words in
 - the input and output (RNNs)
 - only the input (CNNs)
- Good for machine translation (word alignment) and classification (complex expressions)

CNN with Attention

The law is not perfect , but its application is just The law is not perfect but its application is just

FIND LONG-RANGE DEPENDENGIES

RNN with Attention

OUTPUT

The agreement on the European Economic Area was signed in Aug 1992

/ L'						
accord						
<i>P</i> sur						
U la						
7 zone						
économique						
européenne						
a						
été						
signé						
on						
août						
1992						

LEARN REORDERING

Boccon

RNN with Attention

DIMPIM

		nas	Slowed	aown	ın	recent	years
Das							
Wirtschafts-							
wachstum							
/ hat							
N sich							
in							
den							
letzten							
Jahren							
verlangsamt							

LEARN REORDERING

Bocconi

Performance

Wrapping up

Take Home Points

- Recurrent Neural Nets address long-range dependencies
- Condition each word on all previous ones (better for LMs and sequence labels)
- Bidirectional RNNs condition on following words
- LSTMs learn to forget useless input
- Convolution windows captures different views of input
- Pooling reduces dimensionality
- CNNs are often better for text classification than feedforward NNs
- Attention improves coherence and performance

