文興高中	數學(一)4-1	一維數據分析
ᄎ サササリฅ/┳	サX 子(/T- 1	が出るメルタ ノーコー

4-1 一維數據分析

一維數據是指只有一個變數的數據。例如:身高,體重,數學成績,產量等。

%算術平均數 (μ 來表示一群數據的**算術平均數**)

數據 x_1, x_2, \dots, x_n 的算術平均數是

$$\mu=\frac{x_1+x_2+\cdots+x_n}{n}$$
 \circ

例題 1------

經調查鎮西堡第二區神木群的 11 棵神木, 其樹齡分別約為 1600, 2000,

1800, 2400, 2500, 2000, 2000, 2000, 1500, 1000, 2100 年, 求神木之平均樹齡是多少?

(資料來源:行政院 農業委員會 林務局)

解

隨堂練習------

2012 年 7 月 10 日,臺北市氣溫創下有觀測紀錄以來第四高溫。下表為該日 12 個觀測時間所測得的溫度,求這 12 個觀測時間的平均溫度?(取到小數點後第二位)

時間(時)	01	03	05	07	09	11	13	15	17	19	21	23
溫度 (℃)	29.6	29	29	29.5	32.4	36.1	37.4	36.3	34.9	33.2	31.6	30.3

(資料來源:交通部 中央氣象局)

※加權平均數

當各數據所占比重不相同時, 適合用加權平均數。

設有 k 個數值 x_1, x_2, \dots, x_k ,其對應的權數分別為 w_1, w_2, \dots, w_k ,則加權平均數為

$$W = \frac{\sum_{k=1}^{n} (x_i \times w_i)}{w_i}$$

數值	權數
x_1	w_1
x_2	w_2
<i>x</i> ₃	w_3
:	:
x_k	W_k

例題 2------

小芬參加某系的申請入學。她學測成績國文、英文、數學、社會、自然分別為 13、13、15、14、14 級分。已知小芬通過第一階段篩選,且筆試一 70 分、筆試二 80 分。試問小芬收到成績單上的分數為多少分?

		學科能力	測驗篩	選方式	甄選總成績採計方式及占總成績比例				
××大學××系		第一階段		第二階段					
		科目	檢定	6選 學測成績 占甄選總 地立西	化色话口	松立	占甄選總		
		竹日	既是	倍率	採計方式	成績比例	指定項目	檢定	成績比例
校系代碼	005566	國文	l		* 1.00	15 %	筆試一	_	45 %
招生名額	40	英文	均標		* 1.00		筆試二	_	40 %
性別要求	無	數學	前標	3	* 2.00				
預計甄試人數	120	社會	_	_	_				
原住民外加名額	1	自然	-	-	* 1.00				
離島外加名額	無	總級分	_	5	_				

解

文興高中	數學(二)4-1 一維數據分	析	王級:	座號:	姓名:	_3

文興高中	數學(一)4-1	一維數據分析
ᄎ サササリฅ/┳	サX 子(/T- 1	が出るメルタ ノーコー

隨堂練習-----

小璿參加跳水比賽,成績算法如上述。試問他得到幾分?

	裁判 1	裁判 2	裁判 3	裁判 4	裁判 5	裁判 6	裁判 7
分數	9	7	7.5	8.5	9	7	8

※幾何平均數

設有數據 x_1, x_2, \dots, x_n (且都是正數),則幾何平均數 G 為

$$G={}^{n}\sqrt{x_{1}x_{2}\cdots x_{n}}$$

幾何平均數可以計算怪獸的平均成長倍率,也就是 x_1, x_2, \dots, x_n 的幾何平均數。

例題 3------

某都市房價在 2008 年年初每坪是 64000 元,至 2008 年底每坪增加至 80000 元、2009 年 底每坪增加至 121000 元,試問:

- (1) 2008 年當年的房價成長率為何?
- (2) 2009 年當年的房價成長率為何?
- (3) 自 2008 年至 2009 年這兩年來,房價每年的平均成長率為何?

文興高中 數學(二)4-1 一維數據分析 隨堂練習		座號:			6
承例題 3, 若在 2010 年底每坪增加至	175616 元,	則自 2008	至 2010 年這	三年來,	房價
每年的平均成長率為何?					
※中位數 (記為 Me)也是一群數據代表值的常用 在正中間位置的數。	月指標。中位	數就是將這	群數據由小到力	六排序後	,排
 設有一群由小到大排列的數據 x ₁ · x ₂ · .	\dots , x_n ,				
(1) 若 n 是奇數 . 則中位數恰為位於正	中間的數。即		•		
(2) 若 n 是偶數,則中位數定義為位於	中間兩個數的	的算術平均數	数。即 $Me = \frac{1}{2}$ ($x_{\frac{n}{2}} + x_{\frac{n}{2}}$) ,
	5/1曲//击				
眾數定義為一群數據中,出現次數最多的 	178X1目。				
例題 4					
有一旅遊團成員年齡如下:7,50,5,6	60, 6, 6, 7	,5,7 歲。	求年齡之算術	平均數及	中位
數。何者較能代表這群數據?					

文興高中 數學(二)4-1-	一維數據分析	班級:	座號:	姓名:7	
隨堂練習					
已知某排球隊的六位	成員身高分別為 180,	182, 172, 1	90, 188, 180	公分,試求中位數	0

一群數據分散的程度

※變異數、標準差

設一組數據 x_1, x_2, \dots, x_n 之算術平均數為 μ , 則:

定義 x_i 的**離均差**為 $x_i - \mu$ 。

離均差平方的平均值稱為**變異數**(記為 σ^2)

變異數
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{n} ((x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2)$$

變異數
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 = \frac{1}{n} ((x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2)$$
 標準差 $\sigma = \sum_{i=1}^n \sqrt{\frac{1}{n}} (x_i - \mu)^2 = \sqrt{\frac{1}{n} ((x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2)}$

例題 4				
試求 6,	1, 3	, 10	這四個數的變異數與標準差。	

解

隨堂練習-----

試求 1, 3, 8 這三個數的變異數與標準差。

文興高中 例題 6	數學()4-1 一維數據分析 		坐號: 	姓名: 	9
班上組成	甲、乙兩讀書小組,成員的成績資	料如下:			
甲:80,	75, 90, 65, 95, 85, 70 分;				
乙:80,	69, 78, 81, 79, 91, 82 分。				
試就標準	差比較兩組資料分散情形。				

甲、乙兩讀書小組成員的體重資料如下:

甲:49,53,52,50,47,51,48公斤;

乙:54,46,52,56,48,44,50公斤。

試問兩組的體重何者較分散?

文興高中	數學(二)4-1 一維數據分析	班級:	_座號:	_姓名:	_10

文興高中	數學(二)4-1	一維數據分析
义兴同十	— 数字(<i>—)</i> +−1	

班級	:	座號	:	姓名	:	11
力工的人	•		•	XI_U	•	11

※變異數、標準差

變異數 $\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \mu^2$,

標準差 $\sigma = \sum_{i=1}^{n} \sqrt{\frac{1}{n}} \quad x_i^2 - \mu^2$ 。

例題 7------

試求數據 1, 2, 3, …, 49 的變異數。

解

 $\sum_{i=1}^{49} \qquad \qquad \left(\qquad \qquad \right)$

 $\sum_{i=1}^{49} \left(\begin{array}{c} \\ \\ \end{array} \right)$

隨堂練習-------

試求數據 1, 2, 3, …, 10 的變異數。

※平移與伸縮對 σ 與 μ 的影響

設原始資料 $x_1, x_2, \dots, x_n \circ \diamondsuit y_i = ax_i + b, i = 1, 2, \dots, n,$ 則:

- $(1) \mu_y = a\mu_x + b,$
- (2) $\sigma_y = |a|\sigma_x \circ$

例題 8------

國外某一女子排球隊來訪,陣容整齊,九位隊員身高登記分別為

1.73, 1.76, 1.74, 1.71, 1.75, 1.78, 1.76, 1.77, 1.75,

試求平均身高及標準差(以米為單位)。

文興高中		班級:		姓名:	12
解					
隨堂練習	된 =				
某年七月	引分臺北地區的平均氣溫是攝氏	30 度,標準差	是攝氏 5 度	○若以華氏溫度表	示, 則
亚均氩温	開始標準差確見多心 ?				

$$\left(\ \, \text{華氏 (°F)} = \frac{9}{5} \ \, \text{攝氏 (°C)} + 32 \, \right)$$

數據的標準化

已知數據 x_1, x_2, \cdots, x_n ,則將此數據先減去算術平均數 μ ,再除以標準差為 σ (設 $\sigma>0$),得到

$$z_1, z_2, \cdots, z_n, \quad \left(\not \sqsubseteq \psi \ z_i = \frac{x_i - \mu}{\sigma} \right)$$

此稱為原數據的標準化數據。

例題 9------

假設有一組數據的平均數與標準差分別是 $\mu=8$, $\sigma=4$ 。將其中的幾個數據 2, 12, 10, 8,

6, 4, 14 標準化後的新數據為何?

文興高中	數學(二)4-1 一維數據分析	班級:	_座號:	姓名:	13
DE 245 /c± 315	1				
随至練省	 				
已知一組	l數據的算術平均數 $\mu = 10$ 與標準差	σ=5。若其	其中一個數據為	∄ 20,	則該數據經過
標準化後	的新數據為何?				

文興高中	數學(二)4-1 一維數據分析	班級:	座號:	 1

※標準化數據的性質

- 1.標準化數據的算術平均數為 0, 標準差為 1。
- 2." $\frac{x_i \mu}{\sigma}$ "字面上的解釋可以說是" x_i 與算術平均數相距了幾個標準差"。亦即標準化後,可以看出 x_i 在整組數據資料中的相對位置。
- 3.透過數據標準化,可以比較兩個數值分別在兩組數據間的排序。

例題 10	
甲、乙兩校有一樣多人。某次模擬考的成績,甲校平均為 60 分、標準差為 5 分;乙校平均	
66 分、標準差為 4 分。小璿在甲校就讀,考了 65 分;小芬在乙校就讀,考了 69 分。試	
問此次模擬考試誰在學校的排名較前面?	

· **廣堂練習------**

小璿接到某次期中考的成績單,其中班上數學的算術平均數為 76 分、標準差為 4 分;英文的算術平均數為 65 分、標準差為 5 分。又小璿的數學考 78 分,英文考 70 分。試問此次期中考小璿哪一科的成績排名較佳?

習 題 4-1

- 1. 試求 1, 4, 5, 7, 8, 9, 10, 12 這 8 個數的算術平均數、中位數、變異數與標準差。
- 2. 小芬在菜市場裡分別向甲、乙、丙三家攤販購買櫻桃,每家進貨的地點不同,開價也不一 樣, 甲家每台斤賣 100 元, 乙家每台斤賣 150 元, 丙家每台斤賣 120 元, 小芬分別在 甲、乙、丙三家購買 9 台斤、3 台斤、6 台斤。請問她所購買的櫻桃平均價格是每台斤 多少錢?

文	興高中	數學(二)4-1-	一維數據分析			班級:	座號:	_姓	名:	16
3	甘八言	7相完新進 /	【昌昭教湛_	一年後調萃	21	0/2	湛第一年後再調乾	11	0/	。封閉這而年

- 3. 某公司規定新進人員服務滿一年後調薪 21 %,滿第二年後再調薪 44 %。試問這兩年的 平均調薪率為何?
- 4. 已知 7 個數據 476, 485, 479, 482, 494, 488, 491 的算術平均數為 485。試求標準化 後的數據。
- 5. 小璿班上期中考試的算術平均數 75 分、標準差 7 分;期末考試的算術平均數 60 分、標準差 5 分。又小璿期中考試成績是 61 分,期末考試成績是 55 分。試問哪一次考試的班級排名較佳?

二、進階題

- 6. 有一群數據包含一個 1, 兩個 2, 三個 3, 四個 4, …, 十個 10。試求:
 - (1) 算術平均數。(2) 中位數。(3) 眾數。(4) 標準差。
- 7. 已知兩組數據如下:

 $\exists : 73, 76, 76, 78, 79, 80, 80, 79, 84, 86, 89$

 \mathbb{Z} : 72, 73, 75, 77, 79, 80, 81, 82, 85, 87, 89 \circ

試求這兩組數據的算術平均數及變異數,並比較兩組數據的分散情形?

8. 某公司 9 名員工薪水如下:

17530, 20890, 18010, 18490, 19930, 18490, 18970, 19450, 18970(元), 將以上數據減去 17050 後再除 480, 得數據如下: 1, 8, 2, 3, 6, 3, 4, 5, 4,

- 則:(1)新數據的算術平均數及標準差為何?
 - (2) 公司員工薪水的算術平均數及標準差為何?
- 9. 將高一某班分成甲、乙兩組。某次測驗,甲組 20 位同學之平均成績為 60 分,標準差為 5 分,乙組 25 位同學之平均成績為 78 分,標準差為 4 分,試問:
 - (1) 全班 45 位同學此次測驗之平均成績為多少?
 - (2) 全班 45 位同學此次測驗之標準差為多少?