# COGNIFYZ TECHNOLOGIES MACHINE LEARNING TASKS - DOCUMENTATION

## **Problem Statement and Objective**

<u>Problem Statement</u>:- There are four problem statements (tasks) given as per the internship task PDF document:

- 1. Build a machine learning model to predict the aggregate rating of a restaurant based on other features.
- 2. Create a restaurant recommendation system based on user preferences.
- 3. Develop a machine learning model to classify restaurants based on their cuisines
- 4. Perform a geographical analysis of the restaurants in the dataset.

The objective is to build a Prediction model for Task 1, Recommendation model for Task 2, Classification model for Task 3 and Clustering model for Task 4.

#### **Data Analysis, Visualization and Pre-Processing**

The restaurant dataset was already provided, which contains of several features such as Restaurant ID, Name, City, Address, Longitude, Latitude, Cuisines, Average cost for two, Price Range, Aggregate Rating, etc. I have used data pre processing techniques such as:

- 1. Handling missing values in the dataset to ensure fairness in model training.
- 2. Performed data analysis such as Mean, Standard Deviation, etc.
- 3. One-hot encoding "Cuisine" values from string to numerical attributes to train the model
- 4. Converting "Cuisines" String attributes into numerical attributes using Text Vectorization for Recommendation model.
- 5. Performed visualistic correlation between the parameters of the dataset:



### **Model Selection and Development**

The models that are selected for implementation are:

- 1. Random Forest Regressor Model for Rating Prediction
  - i. Split the Dataset into two parts:- Training the Model(80% dataset) and Testing the Model(20% dataset). Again we separate them into X\_train, y\_train for training our model and X\_test and y\_test for the actual performance of the model.
  - ii. Load the Random Forest Regressor Model, which is an ensemble of multiple decision trees, used especially for making predictions on continuous variables, and fit the X\_train and y\_train into the model.
  - iii. Compare the predictions of both Training Data and Testing Data and generated the R-Square scores of each.
  - iv. Built a predictive system, which takes the name of the restaurant to predict the aggregate rating of the restaurant.
- 2. Nearest Neighbours Algorithm with TF-IDF (Term Frequency-Inverse Document Frequency) for Restaurant Recommendation
  - i. Create a TF-IDF vectorizer to transform the "Cuisines" column from string to numerical attributes and combined it with the other numerical features.
  - ii. Create a Nearest Neighbours Model using Cosine Similarity, which measures the angle between the vectors and fit the required features into the model.
  - iii. Built a recommendation system, which takes the important features such as Cuisines, Average cost for two and aggregate rating and recommends the top restaurants based on the user preferences.
- 3. Random Forest Classifier Model for Restaurant Classification
  - i. Split the Dataset into two parts:- Training the Model(80% dataset) and Testing the Model(20% dataset). Again we separate them into X\_train, y\_train for training our model and X\_test and y\_test for the actual performance of the model.
  - ii. Load the Random Forest Classifier Model, which is an ensemble of multiple decision trees used for categorical variables, and fit the X\_train and y\_train into the model.
  - iii. Compare the predictions of both Training Data and Testing Data and generate the accuracy scores of each.
  - iv. Built a classification-based system, which takes the name of the cuisine and classifies the restaurants based on the cuisine.

- 4. K-Means Clustering for Geographical Restaurant Analysis
  - i. Extract the values of Geographical Longitude and Latitude columns from the dataset.
  - ii. Find the WCSS(Within Clusters Sum of Squares) value of the dataset.
  - iii. Plot an Elbow Graph to find the value of minimum number of clusters that we can group into.
  - iv. Train the Model according to the value of number of clusters we found from the elbow graph.
  - v. Plot the clusters and their centroids using matplotlib.
  - vi. Calculate statistics such as average ratings and price ranges by City.

#### **Visualizations and Insights**

You can take a look at some of the output visuals and some statistical insights of the trained models:

```
restaurant_name = "Vikings"
    restaurant = dataset[dataset['Restaurant Name'].str.lower() == restaurant_name.lower()]
    if not restaurant.empty:
        input_features = pd.get_dummies(restaurant.drop(columns=features_to_drop))
        input_features = input_features.reindex(columns=X.columns, fill_value=0)
        prediction = model.predict(input_features)[0]
        print(f"Predicted rating for {restaurant_name}: {prediction:.2f}")
    else:
        print(f"Restaurant '{restaurant_name}' not found in the dataset.")

Predicted rating for Vikings: 4.26
```

```
Top recommended restaurants based on your preferences:
Restaurant: Ooma, Cuisine: Japanese, Sushi
Restaurant: IZU, Cuisine: Japanese, Sushi
Restaurant: Sushi Haus, Cuisine: Japanese, Sushi
Restaurant: Aim Cafe And Restaurant, Cuisine: Japanese, Sushi
Restaurant: Kuuraku, Cuisine: Japanese
```







