数学

长郡中学 周书予

2019年9月25日

欧几里得算法及其扩展

求 gcd(a, b)?

欧几里得算法及其扩展

 $\mathbf{x} \gcd(a,b) ?$

求 $ax + by = \gcd(a, b)$ 的一组整数解?

2019年9月25日 2/48

欧几里得算法及其扩展

gcd(a,b) ?

求
$$ax + by = \gcd(a, b)$$
 的一组整数解?

由 $gcd(a, b) = gcd(b, a \mod b)$ 可得:

$$ax_1 + by_1 = bx_2 + \left(a - \left\lfloor \frac{a}{b} \right\rfloor b\right) y_2$$

该不定方程的一组特解为:

$$\begin{cases} x_1 = y_2 \\ y_1 = x_2 - \lfloor \frac{a}{b} \rfloor y_2 \end{cases}$$

递归到
$$b=0$$
 时存在一组特解 $\begin{cases} x=1 \\ y=y$ 。

费马小定理

若 p 为质数,则 $a^{p-1} \equiv 1 \mod p$ 。

常使用 $a^{p-2} \equiv a^{-1} \mod p$ 来求逆元。

欧拉定理及其扩展

若 gcd(a, n) = 1,则 $a^{\varphi(n)} \equiv 1 \mod n$ 。

可以发现费马小定理是欧拉定理在 n 为质数时的特殊情况。

若 $gcd(a, n) \neq 1$, 则

$$a^{b} \equiv \begin{cases} a^{b} & b < \varphi(n) \\ a^{b \bmod \varphi(n) + \varphi(n)} & b \ge \varphi(n) \end{cases} \mod n$$

线性求逆元

在 O(n) 时间内求出 1...n 在模 p 意义下的逆元。

$$i \times \lfloor \frac{p}{i} \rfloor + (p \bmod i) \equiv 0 \mod p$$

$$i \times \lfloor \frac{p}{i} \rfloor \equiv -(p \bmod i) \mod p$$

$$i^{-1} \equiv -\lfloor \frac{p}{i} \rfloor \times (p \bmod i)^{-1} \mod p$$

这种求法同样适用于 p 不为质数的情况。

当然也可以使用 $O(n + \log p)$ 的方法,但要注意去除与 p 不互质(不存在 逆元)的数。

中国剩余定理

假设 $p_1, p_2, ..., p_k$ 两两互质,并记 $P = \prod_{i=1}^k p_i$,则同余方程组

$$\begin{cases} x \equiv a_1 \mod p_1 \\ x \equiv a_2 \mod p_2 \\ \dots \\ x \equiv a_k \mod p_k \end{cases}$$

的最小整数解为 $\sum_{i=1}^k e_i w_i a_i \mod P$, 其中 $w_i = \frac{P}{p_i}, e_i w_i \equiv 1 \mod p_i$ 。

唯一分解定理

任意正整数都可以被唯一分解成若干质数的乘积。

$$n = \prod_{i=1}^{k} p_i^{\alpha_i}$$

接下来会默认存在上述定义。

干货

本页给出一张 n 以内最多不同质因子个数与最多约数个数的表格,在计算复杂度时,大可不必用 $O(\log n)$ 和 $O(\sqrt{n})$ 去估计此二者。

$n \leq$	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}
$\max\{\omega(n)\}$	2	3	4	5	6	7	8	8	9
$\max\{d(n)\}$	4	12	32	64	128	240	448	768	1344
$n \leq$	10^{10}	10^{11}	10^{12}	10^{13}	10^{14}	10^{15}	10^{16}	10^{17}	10^{18}
$\max\{\omega(n)\}$	10	10	11	12	12	13	13	14	15
$\max\{d(n)\}$	2304	4032	6720	10752	17280	26880	41472	64512	103680

质数分解算法

$O(\sqrt{n})$ 分解

由于 n 只包含至多 1 个大于 \sqrt{n} 的质因子,所以可以枚举所有小于等于 \sqrt{n} 的质因子试除,剩下的数若大于 1 则说明也是 n 的一个质因子。

$O(n) - O(\log n)$ 分解

考虑到质因子个数是 $O(\log n)$ 级别的,因此先 O(n) 预处理 1...n 所有数的最小质因子 d_i ,每次分解时通过不断地 $x \to \frac{x}{d_x}$ 即可实现单次 $O(\log n)$ 分解。

Pollard-Rho 质因数分解

复杂度 $O(n^{\frac{1}{4}})$, 有兴趣的同学可以去自行了解。说白了就是懒得讲

积性函数

若 f(n) 的定义域为正整数集,值域为复数集,则称 f(n) 为数论函数。

若 f(n) 为数论函数,且 f(1) = 1,对于任意互质的正整数 p, q 均满足 $f(p \times q) = f(p) \times f(q)$,则称 f(n) 为积性函数。

若 f(n) 为积性函数,且对于任意正整数 p,q 均满足 $f(p \times q) = f(p) \times f(q)$,则称 f(n) 为完全积性函数。

常见积性函数

莫比乌斯函数
$$\mu(n) = \prod_{i=1}^k -[\alpha_i = 1]$$
。

欧拉函数
$$\varphi(n) = \sum_{i=1}^{n} [\gcd(i, n) = 1] = \prod_{i=1}^{k} (p_i - 1) p_i^{\alpha_i - 1}$$
。

除数函数
$$\sigma_x(n) = \sum_{d|n} d^x = \prod_{i=1}^k \sum_{j=0}^{\alpha_i} p_i^{xj} = \prod_{i=1}^k \frac{1 - p_i^{x(\alpha_i + 1)}}{1 - p_i^x}$$
.

单位元函数
$$e(n) = [n = 1]$$
。

恒等函数
$$I(n) = 1$$
。

幂函数
$$id_x(n) = n^x$$
。

Dirichlet 卷积

数论函数 f(n) 与 g(n) 的 Dirichlet 卷积为 $(f*g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})$, 当 f 和 g 均为积性函数时, f*g 也是积性函数。

Dirichlet 卷积满足交换律、结合律,对加法满足分配率,存在单位元函数 e(n)=[n=1] 使得 f*e=e*f=f,且任意 $f(1)\neq 0$ 的数论函数 f(n) 存在唯一的逆元 $f^{-1}(n)$ 使得 $f*f^{-1}=e$ 。

4□ > 4□ > 4□ > 4□ > 4□ > 9

 长郡中学 周书予
 数学
 2019 年 9 月 25 日 13 / 48

大家都知道

$$\sum_{d|n} \mu(d) = [n=1], \sum_{d|n} \varphi(d) = n$$

大家都知道

$$\sum_{d|n} \mu(d) = [n=1], \sum_{d|n} \varphi(d) = n$$

写成 Dirichlet 卷积的形式就是

$$\mu * I = e, \varphi * I = id_1$$

大家都知道

$$\sum_{d|n} \mu(d) = [n=1], \sum_{d|n} \varphi(d) = n$$

写成 Dirichlet 卷积的形式就是

$$\mu * I = e, \varphi * I = id_1$$

那么就很显然可以看出

$$\mu * id_1 = \varphi$$

大家都知道

$$\sum_{d|n} \mu(d) = [n=1], \sum_{d|n} \varphi(d) = n$$

写成 Dirichlet 卷积的形式就是

$$\mu * I = e, \varphi * I = id_1$$

那么就很显然可以看出

$$\mu * id_1 = \varphi$$

筛法

埃氏筛法

枚举每个质数并筛去其倍数,时间复杂度 $O(n \log \log n)$ 。

欧拉筛法 (线性筛)

枚举每个数 n,从小到大枚举质数 $p \le p_1$ 并把 $n \times p$ 筛掉,这样可以保证 所有数只会被其最小质因子筛掉一次。

原根

假设 g 是质数 p 的一个原根,则 $g^0, g^1, ..., g^{p-2}$ 在模 p 意义下两两不同。

也即,对于 $\forall x \in [1, p-1]$,均存在 $k \in [0, p-2]$ 使 $x \equiv g^k \mod p$ 。

由这种方式可以把模意义下的乘法转化成原根指数上的加法,也就是实现了模意义下的离散对数。

大步小步算法

给出 a, b, p, 求 $a^x \equiv b \mod p$ 。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日 16 / 48

大步小步算法

给出 a, b, p, 求 $a^x \equiv b \mod p$ 。

分块,令 $k = \lceil \sqrt{p} \rceil$,设 x = ky - z,则有 $a^{ky} = b \times a^z$ 。 显然 $y, z \in [0, k]$,因此预处理出所有 a^{ky} 并哈希存储,再枚举 z 判断是否存在相等的即可。

大步小步算法

给出 a, b, p, 求 $a^x \equiv b \mod p$ 。

分块,令 $k = \lceil \sqrt{p} \rceil$,设 x = ky - z,则有 $a^{ky} = b \times a^z$ 。 显然 $y, z \in [0, k]$,因此预处理出所有 a^{ky} 并哈希存储,再枚举 z 判断是否存在相等的即可。

这个做法要求 gcd(a, p) = 1,因为推导过程中用到了 a 在模 p 意义下的逆元。

组合数

 $\binom{n}{m}$ 表示从 n 个元素中选出 m 个的方案数。

通项:
$$\binom{n}{m} = \binom{n}{n-m} = \frac{n!}{m!(n-m)!}$$

递推式:
$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

同行递推:
$$\binom{n}{m} = \binom{n}{m-1} \times \frac{n-m+1}{m}$$

二项式定理:
$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

网格图上每步可以向右或向上走一步,从(0,0)走到(n,m)的方案数?

 长郡中学 周书予
 数学
 2019 年 9 月 25 日 18 / 48

网格图上每步可以向右或向上走一步,从(0,0)走到(n,m)的方案数?

 $\binom{n+m}{n}$, 即从共计 n+m 步中选出 n 步向右走。

网格图上每步可以向右或向上走一步,从(0,0)走到(n,m)的方案数?

 $\binom{n+m}{n}$,即从共计 n+m 步中选出 n 步向右走。

从 (0,0) 走到 (n,m), 要求不碰到直线 y = x + b(n + b < m) 的方案数?

长郡中学 周书予 数学 2019 年 9 月 25 日 18 / 48

网格图上每步可以向右或向上走一步,从(0,0)走到(n,m)的方案数?

 $\binom{n+m}{n}$, 即从共计 n+m 步中选出 n 步向右走。

从 (0,0) 走到 (n,m), 要求不碰到直线 y = x + b(n + b < m) 的方案数?

 $\binom{n+m}{n}-\binom{n+m}{n+b}$,因为所有碰到直线 y=x+b 的方案均可唯一对应到一种从 (-b,b) 出发走到 (n,m) 的方案。

Lucas 定理

已知
$$p$$
 为质数、则有 $\binom{n}{m} \bmod p = \binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \times \binom{n \bmod p}{m \bmod p} \bmod p$.

长郡中学 周书予 数学 2019 年 9 月 25 日 19 / 48

Lucas 定理

已知 p 为质数,则有 $\binom{n}{m} \mod p = \binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \times \binom{n \mod p}{m \mod p} \mod p$ 。

另一种表述是,令 $n = \overline{n_1 n_2 ... n_k}(p)$, $m = \overline{m_1 m_2 ... m_k}(p)$ (即 n, m 的 p 进制表示),则有

$$\binom{n}{m} \bmod p = \prod_{i=1}^k \binom{n_i}{m_i} \bmod p$$

定义 n < m 时 $\binom{n}{m} = 0$ 。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 19 / 48

Lucas 定理

已知 p 为质数,则有 $\binom{n}{m} \mod p = \binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \times \binom{n \mod p}{m \mod p} \mod p$ 。

另一种表述是,令 $n = \overline{n_1 n_2 ... n_k}(p)$, $m = \overline{m_1 m_2 ... m_k}(p)$ (即 n, m 的 p 进制表示),则有

$$\binom{n}{m} \bmod p = \prod_{i=1}^k \binom{n_i}{m_i} \bmod p$$

定义 n < m 时 $\binom{n}{m} = 0$ 。

证明可以考虑 $\binom{n}{m}$ 的生成函数解释是 $[x^m](1+x)^n$, 把此处的 n, m 按 p 进制拆分后再运用一些组合小技巧 $((1+x)^p \equiv 1+x^p \mod p)$ 即可完成证明。

容斥原理

$$|\overline{\bigcup_{i=1}^{n} A_i}| = \sum_{k=0}^{n} (-1)^k \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|$$

说人话就是,n 件坏事都不发生的概率,可以通过 2^n 个子集中的坏事同时发生的概率通过加加减减得到。

↓□▶ ⟨@▶ ⟨ē▶ ⟨ē▶ ē りҳ҈

错排问题

有 n 个人编号为 1, ..., n, 问这 n 个人站成一排全都站错位置的方案数。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 21 / 48

错排问题

有 n 个人编号为 1, ..., n, 问这 n 个人站成一排全都站错位置的方案数。

设 f(n) 表示 n 个人随便站的方案数,显然 f(n) = n!,设 g(n) 表示 n 个人都站错的方案数,枚举有多少个人站错了位置,我们有

$$f(n) = \sum_{k=0}^{n} \binom{n}{k} g(k)$$

然而我们是不知道 g 而知道 f 吧!

错排问题

有 n 个人编号为 1, ..., n,问这 n 个人站成一排全都站错位置的方案数。

设 f(n) 表示 n 个人随便站的方案数,显然 f(n) = n!,设 g(n) 表示 n 个人都站错的方案数,枚举有多少个人站错了位置,我们有

$$f(n) = \sum_{k=0}^{n} \binom{n}{k} g(k)$$

然而我们是不知道 q 而知道 f 吧!

这里给出一个组合恒等式,接下来我们将会使用它来证明二项式反演。

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = [n=0]$$

首先说一句废话

$$g(n) = \sum_{m=0}^{n} [n - m = 0] \binom{n}{m} g(m)$$

首先说一句废话

$$g(n) = \sum_{m=0}^{n} [n - m = 0] \binom{n}{m} g(m)$$

然后将我们之前的那个式子代入

$$g(n) = \sum_{m=0}^{n} \sum_{k=0}^{n-m} (-1)^k \binom{n-m}{k} \binom{n}{m} g(m)$$

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 22 / 48

首先说一句废话

$$g(n) = \sum_{m=0}^{n} [n - m = 0] \binom{n}{m} g(m)$$

然后将我们之前的那个式子代入

$$g(n) = \sum_{m=0}^{n} \sum_{k=0}^{n-m} (-1)^k \binom{n-m}{k} \binom{n}{m} g(m)$$

利用组合恒等式进行变换(提示:考虑组合意义)

$$g(n) = \sum_{m=0}^{n} \sum_{k=0}^{n-m} (-1)^k \binom{n}{k} \binom{n-k}{m} g(m)$$

首先说一句废话

$$g(n) = \sum_{n=0}^{n} [n - m = 0] \binom{n}{m} g(m)$$

然后将我们之前的那个式子代入

$$g(n) = \sum_{m=0}^{n} \sum_{k=0}^{n-m} (-1)^k \binom{n-m}{k} \binom{n}{m} g(m)$$

利用组合恒等式进行变换(提示:考虑组合意义)

$$g(n) = \sum_{k=1}^{n} \sum_{k=1}^{n-m} (-1)^k \binom{n}{k} \binom{n-k}{m} g(m)$$

交换求和号

证完了

$$g(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \sum_{m=0}^{n-k} \binom{n-k}{m} g(m)$$

证完了

$$g(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \sum_{m=0}^{n-k} \binom{n-k}{m} g(m)$$

后面的那坨就是 f(n-k), 也就是说

$$\begin{cases} f(n) = \sum_{k=0}^{n} \binom{n}{k} g(k) \\ g(n) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k) \end{cases}$$

此即为二项式反演。

长郡中学 周书予 数学 2019 年 9 月 25 日 23 / 48

莫比乌斯反演

莫比乌斯反演的一般形式为

$$\begin{cases} f(n) = \sum_{d|n} g(d) \\ g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) \end{cases}$$

莫比乌斯函数满足 $\sum_{d|n} \mu(d) = [n=1]$ 。

莫比乌斯反演

莫比乌斯反演的一般形式为

$$\begin{cases} f(n) = \sum_{d|n} g(d) \\ g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) \end{cases}$$

莫比乌斯函数满足 $\sum_{d|n} \mu(d) = [n=1]$.

证明留作课后练习。

莫比乌斯反演

莫比乌斯反演的一般形式为

$$\begin{cases} f(n) = \sum_{d|n} g(d) \\ g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) \end{cases}$$

莫比乌斯函数满足 $\sum_{d|n} \mu(d) = [n=1]$ 。

证明留作课后练习。

(考虑 $\mu * I = e$, 由 f = g * I 得 $g = f * \mu$ 就直接证完了)

对于一个正整数 $n=\prod_{i=1}^k p_i^{\alpha_i}$,我们将其视作一个 k 维空间上的点 $(\alpha_1,\alpha_2,...,\alpha_k)$ 。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 25 / 48

对于一个正整数 $n=\prod_{i=1}^k p_i^{\alpha_i}$,我们将其视作一个 k 维空间上的点 $(\alpha_1,\alpha_2,...,\alpha_k)$ 。

之前提到的 g(n) 相当于是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的点权,而 f(n) 呢?

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 25 / 48

对于一个正整数 $n=\prod_{i=1}^k p_i^{\alpha_i}$,我们将其视作一个 k 维空间上的点 $(\alpha_1,\alpha_2,...,\alpha_k)$ 。

之前提到的 g(n) 相当于是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的点权,而 f(n) 呢?

是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的 k 维前缀和,即所有满足 $\beta_i \leq \alpha_i$ 的 $(\beta_1, \beta_2, ..., \beta_k)$ 点权之和。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 25 / 48

对于一个正整数 $n=\prod_{i=1}^k p_i^{\alpha_i}$,我们将其视作一个 k 维空间上的点 $(\alpha_1,\alpha_2,...,\alpha_k)$ 。

之前提到的 g(n) 相当于是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的点权,而 f(n) 呢?

是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的 k 维前缀和,即所有满足 $\beta_i \leq \alpha_i$ 的 $(\beta_1, \beta_2, ..., \beta_k)$ 点权之和。

回顾二维前缀和、二维差分的做法,或者脑补一下三维的情况,处理 k 维前缀和时应该需要找到 2^k 个前缀和来加加减减。

对于一个正整数 $n=\prod_{i=1}^k p_i^{\alpha_i}$,我们将其视作一个 k 维空间上的点 $(\alpha_1,\alpha_2,...,\alpha_k)$ 。

之前提到的 g(n) 相当于是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的点权,而 f(n) 呢?

是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的 k 维前缀和,即所有满足 $\beta_i \leq \alpha_i$ 的 $(\beta_1, \beta_2, ..., \beta_k)$ 点权之和。

回顾二维前缀和、二维差分的做法,或者脑补一下三维的情况,处理 k 维前缀和时应该需要找到 2^k 个前缀和来加加减减。

然而 $g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$ 哪里来的 2^k ?

对于一个正整数 $n=\prod_{i=1}^k p_i^{\alpha_i}$,我们将其视作一个 k 维空间上的点 $(\alpha_1,\alpha_2,...,\alpha_k)$ 。

之前提到的 g(n) 相当于是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的点权,而 f(n) 呢?

是 $(\alpha_1, \alpha_2, ..., \alpha_k)$ 这个点的 k 维前缀和,即所有满足 $\beta_i \leq \alpha_i$ 的 $(\beta_1, \beta_2, ..., \beta_k)$ 点权之和。

回顾二维前缀和、二维差分的做法,或者脑补一下三维的情况,处理 k 维前缀和时应该需要找到 2^k 个前缀和来加加减减。

然而 $g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$ 哪里来的 2^k ?

冷静分析,上式枚举的所有 $\mu(d)$ 中恰有 2^k 个非零,这揭示了莫比乌斯反 2^{k} 为的 2^{k} 是 2^{k} 是

高维前缀和

用于解决高维空间中的部分和问题。由于高维空间目前还没什么实际应用,因此这种高维问题往往是由某些其他问题抽象而来,比如约数(把每个质因子的指数看做一维的坐标),子集(每一维大小为 2 的高维空间)等问题。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 26 / 48

description

给出
$$\{a_0, a_1, ..., a_{2^n-1}\}$$
, 求 $\{b_0, b_1, ..., b_{2^n-1}\}$ 满足

$$b_i = \sum_{j \subseteq i} a_j$$

constriction

$$1 \le n \le 20.$$

description

给出 $\{a_0, a_1, ..., a_{2^{n-1}}\}$, 求 $\{b_0, b_1, ..., b_{2^{n-1}}\}$ 满足

$$b_i = \sum_{j \subseteq i} a_j$$

constriction

 $1 \le n \le 20$.

solution

设 $f_{i,j}$ 表示前 i 维(这里是前 i 个二进制位)小于等于 j (的对应二进制位),后 n-i 维等于 j 的所有 a_i 之和,初始 $f_{0,j}=a_j$,转移为

$$f_{i,j} = f_{i-1,j} + f_{i,j-2}[2^i \subseteq j]$$
,最终答案就是 $b_i = f_{n,i}$ 。

矩阵

一个 $n \times m$ 的矩阵大概长这样:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,m} \end{bmatrix}$$

特别地, $n \times 1$ 的矩阵常被称作列向量, $1 \times m$ 的矩阵常被称作行向量, 1×1 的矩阵有时会与矩阵元素不作区分。

矩阵乘法

一个 $n \times m$ 的矩阵 A 与一个 $m \times r$ 的矩阵 B 的乘积定义为一个 $n \times r$ 的矩阵 C, 其中

$$c_{i,j} = \sum_{k=1}^{m} a_{i,k} \times b_{k,j}$$

即矩阵 A 的第 i 行与矩阵 B 的第 j 列点乘的结果。

矩阵乘法满足结合律不满足交换率。

 $n \times n$ 的矩阵乘法存在单位矩阵 E 满足 $e_{i,j} = [i = j]$,不是所有的矩阵都存在逆矩阵。

description

给一张 n 个点的有向图 G, 求点 1 到点 n 经过 k 条边的最短路。

constriction

$$1 \le n \le 100, 1 \le k \le 10^9.$$

description

给一张 n 个点的有向图 G, 求点 1 到点 n 经过 k 条边的最短路。

constriction

 $1 \le n \le 100, 1 \le k \le 10^9.$

solution

 $\langle +, \times \rangle$ 可以定义矩阵乘法, $\langle \min, + \rangle$ 也可以。

即,定义 $(A \otimes B)_{i,j} = \min_k \{a_{i,k} + b_{k,j}\}$,那么求出 $G_{1,n}^k$ 就是答案了。

description

给一张 n 个点的有向图 G, 求点 1 到点 n 长度至少为 k 的路径经过的最少边数。

constriction

$$1 \le n \le 100, 1 \le k \le 10^9.$$

description

给一张 n 个点的有向图 G,求点 1 到点 n 长度至少为 k 的路径经过的最少边数。

constriction

$$1 \le n \le 100, 1 \le k \le 10^9.$$

solution

用 $\langle \max, + \rangle$ 定义矩阵乘法。 直接二分边数再套用前面做法,复杂度 $O(n^3 \log^2 k)$ 。 依次尝试 $G^{2^{30}}, G^{2^{29}}...$,复杂度 $O(n^3 \log k)$ 。

线性递推

矩阵乘法可以用于表示线性递推,比如最经典的斐波那契递推:

$$f_k = f_{k-1} + f_{k-2} (k \ge 2)$$

$$\begin{bmatrix} f_0 & f_1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} f_1 & f_2 \end{bmatrix}$$

$$\begin{bmatrix} f_0 & f_1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n = \begin{bmatrix} f_n & f_{n+1} \end{bmatrix}$$

这样可以把求一个 m 阶递推数列的第 n 项这个问题做到 $O(m^3 \log n)$ 的时间复杂度。

hdu4471 Homework

description

已知数列 f 的前 m 项值和另外 q 个值 $f_{x_i} = y_i$,其余值满足递推式 $f_k = \sum_{i=1}^m c_i \times f_{k-i}$ 。求 f_n 的值。

constriction

 $1 \le n \le 10^9, 1 \le m, q \le 100.$

长郡中学 周书予 数学 2019 年 9 月 25 日 33 / 48

hdu4471 Homework

description

已知数列 f 的前 m 项值和另外 q 个值 $f_{x_i} = y_i$,其余值满足递推式 $f_k = \sum_{i=1}^m c_i \times f_{k-i}$ 。求 f_n 的值。

constriction

$$1 \le n \le 10^9, 1 \le m, q \le 100.$$

solution

原做法分 q 段做,每段复杂度 $O(m^3\log n)$,总复杂度 $O(qm^3\log n)$ 。 行向量乘矩阵的复杂度是 $O(m^2)$ 的,设 A 是线性递推用到的转移矩阵,预处理出 $A^1,A^2,A^4,...,A^{2^k}$ 再依次乘上行向量,时间复杂度 $O(m^3\log n + qm^2\log n)$ 。 可以把这里的 2 进制扩展到 B 进制,复杂度为

 $O(m^3B\log_B n + qm^2\log_B n)$.

高斯消元

解线性方程组

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \dots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m \end{cases}$$

解方程的过程可以概括为以下三步:

- 选取一个未被选过的未知数作为主元,选取一个未被选过的主元系数不为 0 的方程;
- 将这个方程中主元系数化为 1;
- 通过加减消元, 使其他方程中主元的系数都变成 0。

该算法的时间复杂度为 $O(n^3)$ 。需要注意可能存在无解或多解的情况。

感性理解线性基

狭义的线性基指异或空间中的一组线性无关的基底,该空间下的任意一个 向量均可以用这些基底线性表示。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 35 / 48

感性理解线性基

狭义的线性基指异或空间中的一组线性无关的基底,该空间下的任意一个 向量均可以用这些基底线性表示。

实际上将数域从 $\{0,1\}$ 扩展到 \mathbb{C} 时,线性无关的那套理论仍然成立。

因而在解线性方程组时,可以把每个方程看做一个 n 维带权向量。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 35 / 48

感性理解线性基

狭义的线性基指异或空间中的一组线性无关的基底,该空间下的任意一个 向量均可以用这些基底线性表示。

实际上将数域从 $\{0,1\}$ 扩展到 \mathbb{C} 时,线性无关的那套理论仍然成立。

因而在解线性方程组时,可以把每个方程看做一个 n 维带权向量。

方程组无解,当且仅当存在一组线性相关的向量,经过某种线性组合后(权值同乘对应系数)得到零向量,而该零向量的权值非零。

否则,若最大的线性无关组大小小于 n,方程组有多解。

否则,方程组有唯一解。

概率与期望

求概率往往可以转化为求方案数。(所以归根结底还是考数数)

期望的线性性是指和的期望等于期望的和,即使拆成的两部分是相关的。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 36 / 48

概率与期望

求概率往往可以转化为求方案数。(所以归根结底还是考数数)

期望的线性性是指和的期望等于期望的和,即使拆成的两部分是相关的。

举个例子。假设 和 同时做一道题, 可有 p_1 的概率自己做出来, 可有 p_2 的概率自己做出来, 例做出来后有 q_1 的概率告诉 怎么做, 例做出来后有 q_2 的概率告诉 怎么做。求 和 做出的总题数的期望。

概率与期望

求概率往往可以转化为求方案数。(所以归根结底还是考数数)

期望的线性性是指和的期望等于期望的和,即使拆成的两部分是相关的。

举个例子。假设 和 同时做一道题, 可有 p_1 的概率自己做出来, 可有 p_2 的概率自己做出来, 例做出来后有 q_1 的概率告诉 怎么做, 例做出来后有 q_2 的概率告诉 怎么做。求 和 做出的总题数的期望。

apio2019 奇怪装置

description

有一个奇怪的装置,在 t 时刻会显示数对 $((t + \lfloor \frac{t}{B} \rfloor) \mod A, t \mod B)$ 。给出 n 个不交的连续时间段 $[l_i, r_i]$,问这个装置在这些时间段内会显示出多少种不同的数对。

constriction

$$1 \le n \le 10^6, 1 \le A, B \le 10^{18}, 0 \le l_i \le r_i \le 10^{18}.$$

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 37 / 48

apio2019 奇怪装置

description

有一个奇怪的装置,在 t 时刻会显示数对 $((t + \lfloor \frac{t}{B} \rfloor) \mod A, t \mod B)$ 。给出 n 个不交的连续时间段 $[l_i, r_i]$,问这个装置在这些时间段内会显示出多少种不同的数对。

constriction

$$1 \le n \le 10^6, 1 \le A, B \le 10^{18}, 0 \le l_i \le r_i \le 10^{18}.$$

solution

可以发现存在循环节 $\frac{AB}{\gcd(A,B+1)}$ 。

因此所有区间对循环节取模,问题变成在 $[0, \frac{AB}{\gcd(A,B+1)})$ 上的覆盖问题, 差分统计即可。

snoi2019 数论

description

给出正整数 P, Q, T,大小为 n 的整数集 A 和大小为 m 的整数集 B,求:

$$\sum_{i=0}^{T-1} [i \bmod P \in A][i \bmod Q \in B]$$

换言之,就是求有多少小于 T 的非负整数 x 满足 x 除以 P 的余数属于 A 且 x 除以 Q 的余数属于 B。

constriction

$$1 \le n, m, P, Q \le 10^6, 1 \le T \le 10^{18}.$$

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 38 / 48

snoi2019 数论

description

给出正整数 P, Q, T,大小为 n 的整数集 A 和大小为 m 的整数集 B,求:

$$\sum_{i=0}^{T-1} [i \bmod P \in A][i \bmod Q \in B]$$

换言之,就是求有多少小于 T 的非负整数 x 满足 x 除以 P 的余数属于 A 且 x 除以 Q 的余数属于 B。

constriction

$$1 < n, m, P, Q < 10^6, 1 < T < 10^{18}$$
.

solution

$$x \to (x+P) \mod Q$$
 会形成 $\gcd(P,Q)$ 个长度为 $\frac{Q}{\gcd(P,Q)}$ 的环。

枚举 $_{k}$ 即位 (即枚举 a_i),问题变成求有多少 $0 \le x \le \lfloor \frac{T=1-a_i}{2019} \rfloor$ 满 $\frac{T}{38/48}$

jxoi2018 游戏

description

初始时有 r-l+1 个数 l, l+1, ..., r, 每次操作为随机选取一个数并删除其 所有倍数,求删完所有数的期望操作次数模 $10^9 + 7$ 。

constriction

$$1 \le l \le r \le 10^7$$
.

长郡中学 周书予 数学 2019年9月25日 39/48

jxoi2018 游戏

description

初始时有 r-l+1 个数 l, l+1, ..., r, 每次操作为随机选取一个数并删除其所有倍数,求删完所有数的期望操作次数模 10^9+7 。

constriction

 $1 \le l \le r \le 10^7$.

solution

根据倍数关系建拓扑图,删完整张图当且仅当删除了所有入度为零的点。求入度为零的点的个数即求有多少个数除去最小质因子后 < l。假设入度为零的点有 m 个,设 n=r-l+1,枚举操作次数,答案为 $\frac{1}{n!}\sum_{i=m}^n i \times m \times \binom{n-m}{i-m}(i-1)!(n-i)!$ 。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 39 / 48

51nod1769 Clarke and math 2

description

已知数论函数 f(n), g(n) 满足

$$g(i) = \sum_{i_1|i} \sum_{i_2|i_1} \dots \sum_{i_k|i_{k-1}} f(i_k)$$

给出 f(1)...f(n). 求 g(1)...g(n) 对 $10^9 + 7$ 取模后的结果。

constriction

$$1 \le n \le 10^5, 1 \le k \le 10^{10^5}, 0 \le f(i) < 10^9 + 7.$$

长郡中学 周书予 数学

51nod1769 Clarke and math 2

description

已知数论函数 f(n), g(n) 满足

$$g(i) = \sum_{i_1|i} \sum_{i_2|i_1} \dots \sum_{i_k|i_{k-1}} f(i_k)$$

给出 f(1)...f(n), 求 g(1)...g(n) 对 $10^9 + 7$ 取模后的结果。

constriction

$$1 \le n \le 10^5, 1 \le k \le 10^{10^5}, 0 \le f(i) < 10^9 + 7.$$

solution

写成 Dirichlet 卷积的形式是 $q = f * I^k$ 。

考虑 $I^k(n)$ 怎么求。这是一个积性函数,因此只需要考虑 $I^k(p^\alpha)$ 怎么求即可。这等价于长度为 k 值域为 $[0,\alpha]$ 的单调不降序列方案数,等价于把 α_{α}

snoi2017 遗失的答案

description

求从 $\{1,2,...,n\}$ 中选出一个非空子集,其最大公约数恰好为 G,最小公倍数恰好为 L 的方案数。

此外有 q 次询问,每次询问给出一个正整数 a_i ,询问选出的非空子集必须包含 a_i 时的方案数。

输出答案对 10^9+7 取模后的结果。

constriction

$$1 \le n, G, L \le 10^8, q \le 10^5, 1 \le a_i \le n.$$

4D> 4D> 4B> 4B> B 990

 长郡中学 周书予
 数学
 2019 年 9 月 25 日
 41 / 48

snoi2017 遗失的答案

description

求从 $\{1,2,...,n\}$ 中选出一个非空子集,其最大公约数恰好为 G,最小公倍数恰好为 L 的方案数。

此外有 q 次询问,每次询问给出一个正整数 a_i ,询问选出的非空子集必须 包含 a_i 时的方案数。

输出答案对 $10^9 + 7$ 取模后的结果。

constriction

$$1 \le n, G, L \le 10^8, q \le 10^5, 1 \le a_i \le n.$$

solution

分别考虑每个质因子,G 和 L 限制了所有数在这个质因子的幂次,即位于区间 [l,r] 之间,且至少一个取到 l,至少一个取到 r。而 10^8 内最多只有 8 个不同质因子,对每个质因子是否取到上下界状压,那么 [1,n] 内每个合法的数都可以用一个长度不超过 16 的二进制状态表示,问题转化为求从 $^{\circ}$ $^{\circ}$

bzoj4767 两双手

description

有一张无限大的棋盘以及两种移动方式 (x_1, y_1) 和 (x_2, y_2) ,同时棋盘上存在 k 个障碍点不能经过。求从 (0,0) 走到 (n,m) 不经过障碍点的方案数模 10^9+7 。

constriction

$$0 \le |x_1|, |y_1|, |x_2|, |y_2|, k, n, m \le 1000, (x_1, y_1) \times (x_2, y_2) \ne 0.$$

长郡中学 周书予 数学 2019 年 9 月 25 日 42 / 48

bzoj4767 两双手

description

有一张无限大的棋盘以及两种移动方式 (x_1, y_1) 和 (x_2, y_2) ,同时棋盘上存在 k 个障碍点不能经过。求从 (0,0) 走到 (n,m) 不经过障碍点的方案数模 10^9+7 。

constriction

$$0 \le |x_1|, |y_1|, |x_2|, |y_2|, k, n, m \le 1000, (x_1, y_1) \times (x_2, y_2) \ne 0.$$

solution

可以通过解方程把 $(x_1, y_1), (x_2, y_2)$ 转化成 (1,0), (0,1),从而转化成常规的格路问题。

设 f_i 表示从 (0,0) 出发不经过任何其他障碍点到达第 i 个障碍点的方案数,转移时容斥,枚举经过的第一个障碍点 j,从 j 走到 i 的方案数是组合数。时间复杂度 $O(k^2)$ 。

hncpc2019H 有向图

description

一张 n+m 个点的图,初始在 1 号点,每次在 i 号点时有 $P_{i,j}$ 的概率走到 j 号点,保证 $\forall i \in [n+1,n+m], P_{i,j} = [i=j]$ 。可以发现经过无限次行走后 停留在前 n 号点上的概率是 0,求停留在后 m 号点每个点的概率模 10^9+7 。

constriction

$$1 \le n + m \le 500, \forall i \in [1, i], 0 < P_{i,j} < 1 \text{ } \underline{\text{H}} \sum_{i=1}^{n+m} P_{i,j} = 1.$$

长郡中学 周书予 数学 2019 年 9 月 25 日 43 / 48

hncpc2019H 有向图

description

一张 n+m 个点的图,初始在 1 号点,每次在 i 号点时有 $P_{i,j}$ 的概率走到 j 号点,保证 $\forall i \in [n+1,n+m], P_{i,j} = [i=j]$ 。可以发现经过无限次行走后 停留在前 n 号点上的概率是 0,求停留在后 m 号点每个点的概率模 10^9+7 。

constriction

$$1 \le n + m \le 500, \forall i \in [1, i], 0 < P_{i,j} < 1 \text{ } \underline{\textbf{H}} \sum_{j=1}^{n+m} P_{i,j} = 1.$$

solution

设 $f_i(i \in [1, n])$ 表示 i 号点的期望经过次数,则可列出方程:

$$\begin{cases} f_i = \sum_{j=1}^n f_j P_{j,i} + 1 & i = 1 \\ f_i = \sum_{j=1}^n f_j P_{j,i} & i > 1 \\ & i > 1 \end{cases}$$

tjoi2019 唱、跳、rap 和L

description

最喜欢唱、跳、rap 和 的同学数量分别为 a, b, c, d。 和 想选出 n 个同学排成一队,但是他们不希望队伍中有连续四个人依次最喜欢唱、跳、rap 和 ,因为这样他们就会聚在一起讨论 。 求排队的方案数模 998244353,两种方案不同当且仅当存在某个位置上的同学的喜好不同。

constriction

$$1 < n, a, b, c, d < 5000, a + b + c + d > n.$$

 长郡中学 周书予
 数学
 2019 年 9 月 25 日

tjoi2019 唱、跳、rap 和

description

最喜欢唱、跳、rap 和 的同学数量分别为 a, b, c, d。 和 想选出 n 个同学排成一队,但是他们不希望队伍中有连续四个人依次最喜欢唱、跳、rap 和 ,因为这样他们就会聚在一起讨论 。 求排队的方案数模 998244353,两种方案不同当且仅当存在某个位置上的同学的喜好不同。

constriction

 $1 \le n, a, b, c, d \le 5000, a + b + c + d \ge n.$

solution

强制枚举 i 组同学讨论 ,剩下的位置随便填,容斥计算答案。记 f_i 表示从 $\{a-i,b-i,c-i,d-i\}$ 个学生中选出 n-4i 个排队的方案数,答案即为 $\sum_{i>0} (-1)^i \binom{n-3i}{i} f_i$ 。

单次计算 f_i 显然可以 $O(n^2)$ dp,但 i 从小到大枚举时 dp 数组的变化不大,因此可以考虑维护前两者的 dp 数组和后两者的 dp 数组,从而把时间复立。44/48

codeforces1097D Makoto and a Blackboard

description

有一个数 n, 每次操作为随机选择 n 的一个约数 m 并将 n 替换成 m. 求 k 次操作后 n 的期望值模 $10^9 + 7$ 。

constriction

$$1 \le n \le 10^{15}, 1 \le k \le 10^4.$$

长郡中学 周书予 数学

codeforces 1097D Makoto and a Blackboard

description

有一个数 n, 每次操作为随机选择 n 的一个约数 m 并将 n 替换成 m. 求 k 次操作后 n 的期望值模 $10^9 + 7$ 。

constriction

$$1 \le n \le 10^{15}, 1 \le k \le 10^4.$$

solution

根据乘法分配律,只需要对每个 $p_i^{\alpha_i}$ 求出答案即可。

只需要考虑指数。问题转化成给一个数 α_i ,每次把当前的数 x 等概率随 机变成 [0,x] 的一个整数,求 k 次操作后剩下的数是 $[0,\alpha_i]$ 的概率。 直接 $O(\alpha_i^2 k)$ 暴力 dp 或者 $O(\alpha_i^3 \log k)$ 矩乘。

长郡中学 周书予 数学 2019年9月25日 45/48

codeforces 1097F Alex and a TV Show

description

你需要编写一种数据结构来维护 n 个可重集合,支持四种操作:

- 将 S_x 设为 $\{v\}$
- 将 S_x 设为 $S_y + S_z$, 操作后 $|S_x| = |S_y| + |S_z|$
- 将 S_x 设为 $S_y \times S_z$, 这里的 $A \times B$ 定义为 $\{\gcd(a,b) | a \in A, b \in B\}$, 操作后 $|S_x| = |S_y| \times |S_z|$
- 询问 S_r 中 v 元素的数量

由于一些原因, 你只需要输出每个询问的答案对 2 取模后的结果。

constriction

$$1 \le n, m \le 10^5, 1 \le v \le 7000.$$

长郡中学 周书予 数学

codeforces1097F Alex and a TV Show

solution

对每个可重集维护一个数组 a_i 表示可重集中有多少个数是 i 的约数,可以发现这样的 a 数组可以唯一的表示一个可重集。

第二种操作本质是 a 数组对应位相加,第三种操作本质是 a 数组对应位相乘,这个结论读者自证不难。

由于只需要输出 mod2 意义下的答案,所以可以用一个 bitset<7000> 来维护 a 数组,这样对应位相加变成了按位异或,对应位相乘变成了按位 与。

维护 a 数组后,对于一次询问 v,答案为 $\sum_{v|u} a_u \mu(\frac{u}{v})$,由于 $-1 \equiv 1 \bmod 2$,所以只需要再维护 7000 个 bitset<7000> 表示询问 v 时哪些位的莫比乌斯函数不为零就好了。时间复杂度为 $O(\frac{7000m}{2})$ 。

谢谢大家!

感谢┛,■、■以及●的友情出镜。

 长郡中学 周书予
 数学
 2019 年 9 月 25 日 48 / 48