Термодинамика.				
Уравнение состояния идеального газа.	$PV = \nu RT.$	Канонические уравнения. <i>U</i> .	U = U(S, V).	
Закон Дальтона	$P = P_1 + \dots + P_n$, где P_i - парциальные давления газов.	Канонические уравнения. <i>H</i> .	H = H(S, P).	
Некоторые тождества.	$dV = \left(\frac{\partial V}{\partial P}\right)_T dP + \left(\frac{\partial V}{\partial T}\right)_P dT;$ $\left(\frac{\partial P}{\partial V}\right)_T + \left(\frac{\partial V}{\partial T}\right)_R + \left(\frac{\partial T}{\partial P}\right)_V = -1.$	Канонические уравнения. Ψ.	$\Psi = \Psi(T, V).$	
Работа внешних сил.	$ \frac{\left(\frac{\partial P}{\partial V}\right)_T + \left(\frac{\partial V}{\partial T}\right)_P + \left(\frac{\partial T}{\partial P}\right)_V = -1.}{\delta A_{\text{внеш}} = -P_{\text{внеш}} dV.} $	Канонические уравнения. Ф.	$\Phi = \Phi(T, P).$	
Закон сохранения энергии.	$Q = U_2 - U_1 + A_{12}$	Уравнения Гиббса- Гельмгольца. (I)	$U = \Psi - T \left(\frac{\partial \Psi}{\partial T} \right)_V$	
Определение теплоёмкости.	$C = \frac{\delta Q}{dT}.$	Уравнения Гиббса- Гельмгольца. (II)	$H = \Phi - T \left(\frac{\partial \Phi}{\partial T}\right)_P$	
Энтальпия.	H = U + PV.	Промежуточные соотношения. (I)	$T = \left(\frac{\partial U}{\partial S}\right)_V, P = -\left(\frac{\partial U}{\partial V}\right)_S.$	
Уравнение Роберта-Майера.	$C_P - C_V = R.$	Промежуточные соотношения. (II)	$T = \left(\frac{\partial H}{\partial S}\right)_P, V = \left(\frac{\partial H}{\partial P}\right)_S.$	
Уравнение Пуассона.	$PV^{\gamma}=const,$ где $\gamma=rac{C_P}{C_V}.$	Промежуточные соотношения. (III)	$S = -\left(\frac{\partial \Psi}{\partial T}\right)_V, P = -\left(\frac{\partial \Psi}{\partial V}\right)_T.$	
Скорость звука в газе.	$c = \sqrt{\gamma \frac{P}{\rho}}.$	Промежуточные соотношения. (IV)	$S = -\left(\frac{\partial \Phi}{\partial T}\right)_V V = \left(\frac{\partial \Phi}{\partial P}\right)_T$	
Уравнение Бернулли.	$\varepsilon + \frac{P}{\rho} = const, \ \varepsilon$ - полная элергия единицы массы.	Соотношения Максвелла. (I)	$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V.$	
Уравнение Бернулли в другом виде.	$u + \frac{P}{\rho} + gh + \frac{v^2}{2} = i + gh + \frac{v^2}{2} = const, i$ - энтальпия единицы массы.	Соотношения Максвелла. (II)	$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P.$	
Скорость итечения идельного газа.	$v_2 = \sqrt{\frac{2}{\mu} C_P T_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} \right]}$	Соотношения Максвелла. (III)	$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V.$	
КПД.	$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1}.$	Соотношения Максвелла. (IV)	$\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial T}\right)_P.$	
КПД тепловой машины, ра- ботающей по циклу Карно.	$\eta = \frac{A}{Q_1} = \frac{T_1 - T_2}{T_1}$	Химический потенциал.	$\mu^* = \left(\frac{\partial U}{\partial N}\right)_{V,S} = \left(\frac{\partial \Psi}{\partial N}\right)_{T,V} = \left(\frac{\partial \Phi}{\partial N}\right)_{T,P} = \left(\frac{\partial H}{\partial N}\right)_{P,S}.$	
Вторая теорема Карно.	$\frac{Q_1 - Q_2}{Q_2} \le \frac{T_1 - T_2}{T_1}$	Внутренняя энергия в случае изменения числа частиц.	$dU = TdS - PdV + \mu^* dN.$	
Неравенство Клаузиуса:	$\oint rac{\delta Q}{T} \leq 0$, где Q — подводимое тепло.	Закон теплопроводности.	$j = -\kappa \frac{\partial T}{\partial x}.$	
Энтропия.	$dS = \left(\frac{\delta Q}{T}\right)_{\text{KBCT}}$	Уравнение теплопроводно- сти.	$ \rho c_v \frac{\partial T}{\partial t} = -\left(\frac{\partial j_x}{\partial x} + \frac{\partial j_y}{\partial y} + \frac{\partial j_z}{\partial z}\right) + q $	
Энтропия идеального одного моля газа.	$dS = \frac{\delta Q}{T} = C_V(T)\frac{dT}{T} + R\frac{dV}{V}$	Уравнение теполопроводно- сти в случае сферической симметрии.	$ \rho c_v \frac{\partial T}{\partial t} = -\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 j) + q = \frac{1}{r^2} \frac{\partial}{\partial r} (\kappa r^2 \frac{\partial T}{\partial r}) + q. $	
Энтропия идеального одного моля газа.	$S = C_V \ln T + R \ln V + const$	Уравнение теплопроводно- сти в случае циллиндриче- ской симметрии.	$\rho c_v \frac{\partial T}{\partial t} = -\frac{1}{r} \frac{\partial}{\partial r} (rj) + q = \frac{1}{r} \frac{\partial}{\partial r} (\kappa r \frac{\partial T}{\partial r}) + q.$	
Связь энтрапии и энтальпии.	dH = TdS + VdP.	Стац. распр. температуры в бесконечной пластинке.	$T = \frac{T_2 - T_1}{l} x.$	
Свободная энергия.	$\Psi = U - TS.$	Стац. распр. температуры между двумя конц. сфера- ми.	$T = \frac{r_2 T_2 - r_1 T_1}{r_2 - r_1} + \frac{r_1 r_2 (T_1 - T_2)}{r (r_2 - r_1)}.$	
Термодинамический потенциал (потенциал Гиббса).	$\Phi = \Psi + PV.$	Стац. распр. температуры между двумя конц. циллиндрами.	$T = \frac{T_1 \ln r_2 - T_2 \ln r_1}{\ln r_2 / r_1} + \frac{T_2 - T_1}{\ln r_2 / r_1} \ln r.$	
Выражение для дифференциала свободной энергии.	$d\Psi = -SdT - PdV.$	Связь давления и кинетической энергии поступательного движения молекул.	$P = \frac{1}{3}nm\langle v^2 \rangle.$	
Выражение для дифференциала термодинамического потенциала.	$d\Phi = -SdT + VdP.$	Связь среднеквадратичной скорости молекул и скорости звука.	$\overline{v} = \sqrt{\langle v^2 \rangle} = c\sqrt{\frac{3}{\gamma}}$	

Термодинамика.				
Кинетическая энергия молекулы, приходящаяся на одну степень свободы.	$\frac{1}{2}kT$.	Уравнение газа Ван-дер- Ваальса.	$\left(P + \frac{a}{V^2}\right)(V - b) = RT.$	
Формула Эйнштейна.	$\langle r^2 \rangle = r_0^2 + 6kTBt.$	Уравнение газа Ван-дер- Ваальса (для произволь- ного количества).	$\left(P + \frac{a\nu^2}{V^2}\right)(V - b\nu) = \nu RT.$	
Молярная теплоёмкость одноатомного газа.	$C_V = \frac{3}{2}R, \ C_P = \frac{5}{2}R.$	Уравнение изотермы газа Ван-дер-Ваальса.	$PV^3 - (RT + Pb)V^2 + aV - ab = 0.$	
Молярная теплоёмкость двухатомного газа.	$C_V = \frac{5}{2}R, \ C_P = \frac{7}{2}R.$	Критическая температура.	$T_k = \frac{8a}{27Rb}.$	
Молярная теплоёмкость многоатомного газа.	$C_V = 3R, C_P = 4R.$	Приведённые параматры для уравнения Ван-дер- Ваальса.	$\varphi = \frac{V}{V_k}, \pi = \frac{P}{P_k}, \tau = \frac{T}{T_k}.$	
Молярная теплоёмкость твёрдого тела с кристаллической решёткой.	$C_V = 3R.$	Приведённое уравнение Ван-дер-Ваальса.	$\left(\pi + \frac{3}{\phi^2}\right)\left(\varphi - \frac{1}{3}\right) = \frac{8}{3}\tau.$	
Плотность вероятности распределения скоростей. (I)	$\varphi(v_x) = \sqrt{\frac{m}{2\pi kT}} \exp\left(-\frac{mv_x^2}{2kT}\right).$	Внутренняя энергия газа Ван-дер-Ваальса (в случае постоянности теплоёмкости).	$U = C_V T - \frac{a}{V}.$	
Плотность вероятности распределения скоростей. (I)	$f(v) = \sqrt{\frac{m}{2\pi kT}}^3 \exp\left(-\frac{mv^2}{2kT}\right).$	Внутренняя энергия газа Ван-дер-Ваальса.	$U = \int C_V(T)dT - \frac{a}{V}.$	
Плотность вероятности абсолютного значения скоростей.	$F(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 \exp\left(-\frac{\varepsilon}{kT}\right).$	Формула Лапласа.	$\Delta P = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right).$	
Среднее значение аб- солютного значения скорости (математическое ожидание).	$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}} = v_m \sqrt{\frac{4}{\pi}}.$	Уравнение Клайперона- Клаузиуса.	$\frac{dP}{dT} = \frac{q}{T(v_1 - v_2)}.$	
Среднее значение числа молекул, сталкивающихся с стенкой.	$\frac{1}{4}n\langle v\rangle = n\sqrt{\frac{kT}{2\pi m}}.$	Зависимость давления насыщенного газа от температуры.	$P = P_0 \exp \frac{\mu q}{R} \left(\frac{1}{T_0} - \frac{1}{T} \right).$	
Распределение Больцма- на.	$n=n_0\exp\left(-rac{arepsilon_p}{kT} ight)$, где $arepsilon_p$ — потенциальная энергия молекулы.			
Распределение Больцмана.	$P = P_0 \exp\left(-\frac{\mu g z}{RT}\right).$			
Относительная средне- квадратичная флуктуа- ция.	$\delta_f = rac{\sqrt{(\Delta f)^2}}{\overline{f}}.$			
Флуктуации числа частиц идеального газа в выделенном объеме.	$(\Delta n)^2$, $\delta_n = \frac{1}{\sqrt{n}}$.			
Флуктуации температуры в заданном объёме.	$\overline{(\Delta T)_V^2} = \frac{kT^2}{C_V}.$			
Определение D .	$j_x = -D\frac{\partial n}{\partial x}.$ $\vec{F} = \frac{\vec{v}}{B}.$			
Определение подвижности.	$ec{F} = rac{ec{v}}{B}.$			
Соотношение Эйнштейна.	D = kTB, где B — подвижность.			
Средняя длина свободного пробега.	$\lambda = \frac{1}{n\sigma\sqrt{2}}.$			
Эффективное сечение.	$\sigma = \pi (r_1 + r_2)^2.$			
Эффективное сечение че-	$\sigma = \frac{\Delta N}{nv},$ где ΔN — число столк-			
рез частоту столкновений	новений с частицей-мишенью за			
с частицей-мишенью.	единицу времени. $\sigma = \sigma \cdot (1 + S)$			
Эффективное сечение в зависимоти от температуры.	$\sigma = \sigma_0 \left(1 + \frac{S}{T} \right).$			
Ослабление интенсивности	$J = J_0 e^{-x/\lambda}$, где λ — длина сво-			
почка в газе.	бодного пробега.			
Ньютоновский закон вяз-	$\tau_{xy} = \eta \frac{du}{dx}, \ \eta = \frac{1}{3} nmv\lambda.$			
кости.				