

AMMI Review sessions

Deep Learning (2)
Machine Learning Basics (2)

Performance evaluation metrics

- Choosing the right metric is crucial while evaluating machine learning (ML) models
- Various metrics are proposed to evaluate ML models in different applications

Performance evaluation metrics

- Choosing the right metric is crucial while evaluating machine learning (ML) models
- Various metrics are proposed to evaluate ML models in different applications
- What is the difference between the loss function and a metric?
- Loss functions are functions that show a measure of the model performance and are used to train a machine learning model and are usually differentiable in model's parameters.
- metrics are used to monitor and measure the performance of a model (during training, and test), and do not need to be differentiable
- o In some tasks the performance metric is differentiable, it can be used both as a loss function and a metric, such as MSE.

Popular Performance evaluation metrics

- Popular evaluation metrics includes but not limited to:
- Classification Metrics (accuracy, precision, recall, F1-score, ROC, AUC, ...)
- Regression Metrics (MSE, MAE)
- Ranking Metrics (MRR, DCG, NDCG)
- Statistical Metrics (Correlation)
- Computer Vision Metrics (PSNR, SSIM, IoU)
- NLP Metrics (Perplexity, BLEU score)
- Deep Learning Related Metrics (Inception score, Frechet Inception distance)

- Let's first review the **Confusion Matrix** concept:
- Tabular visualization of the model predictions versus the ground-truth labels

- True positive(TP) Correct positive prediction
- False positive(FP) Incorrect positive prediction
- True negative(TN) Correct negative prediction
- False negative(FN) Incorrect negative prediction

- Classification metrics derived from the confusion matrix:
- Accuracy = $\frac{TP+TN}{P+N}$ how many samples predicted correctly
- **Precision**(Positive predicted value) = $\frac{true\ positives}{predicted\ postives} = \frac{TP}{TP+FP}$ can we trust your positive predictions?
- Recall/Sensitivity(True positive rate) = $\frac{true\ positives}{actual\ postives} \frac{TP}{TP+FN}$

Of all of the true samples how many of them we were able to predict correctly/ how much we missed?

Predicted class

- Specificity (True negative rate) = $\frac{TN}{N}$
- F1 Score(Harmonic mean of precision and recall) = $\frac{(1+b)*Precision*Recall}{b^2Percision+Recall}$ where b is commonly 0.5, 1, 2

- Depending on application, you may want to give higher priority to recall or precision
- In medical diagnosis for example you try to avoid false negatives → requires high recall
- For a spam binary classifier you try to avoid false positives \rightarrow requires high precision

- The confusion Matrix for Multi-class
- Let's say you have N classes, then your confusion matrix would be an N×N matrix
- With the left axis showing the true class, and the top axis showing the class assigned to an item with that true class.
- Each element i,j of the matrix would be the number of items with true class i that were classified as being in class j.
- You then can calculate the precision recall per class, how ?! (exercise)

Target 1	t	Selected							Acc	
	1	2	3	4	5	6	7	8	9	
1	137	13	3	0	0	1	1	0	0	0.89
2	1	55	1	0	0	0	0	6	1	0.86
3	2	4	84	0	0	0	1	1	2	0.89
4	3	0	1	153	5	2	1	1	1	0.92
5	0	0	3	0	44	2	2	1	2	0.82
6	0	0	2	1	4	35	0	0	1	0.81
7	0	0	0	0	0	0	61	2	2	0.94
8	0	0	0	1	0	0	0	69	3	0.95
9	0	0	0	0	0	0	0	2	26	0.93
										0.89

ROC Curve

- The **receiver operating characteristic curve** is plot which shows the performance of a binary classifier as function of its cut-off threshold.
- It essentially shows the true positive rate (TPR) against the false positive rate (FPR) for various threshold values.
- As an example your model may predict the below probabilities for 4 sample images: [0.45, 0.6, 0.7, 0.3].
- Then depending on the threshold values below, you will get different labels:
 - cut-off= 0.5: predicted-labels= [0,1,1,0] (default threshold)
 - cut-off= 0.2: predicted-labels= [1,1,1,1]
 - cut-off= 0.8: predicted-labels= [0,0,0,0]

ROC Curve

• For each of these 4 different thresholds we can construct a confusion matrix and calculate the TRP and FPR.

 ROC curve essentially finds out the TPR and FPR for various threshold values and plots TPR against the FPR

ROC Curve

- The lower the cut-off threshold on positive class, the more samples predicted as positive class, i.e. higher true positive rate (recall) and also higher false positive rate
- Therefore, there is a trade-off between how high the recall could be versus how much we want to bound the error (FPR).
- ROC curve is a popular curve to look at overall model performance and pick a good cut-off threshold for the model.
- Detailed example

Area Under The Curve (AUC)

- An aggregated measure of performance of a binary classifier on all possible threshold values
 - Can be used to compare the performance of two different models
- if your application requires higher recall then you might choose a model using a point the ROC curve even if the the AUC value is not too high

Regression Related Metrics

Mean squared error	$\text{MSE} = \frac{1}{n} \sum_{t=1}^n e_t^2$
Root mean squared error	$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$
Mean absolute error	$\mathrm{MAE} = \frac{1}{n} \sum_{t=1}^n e_t $

Pearson's Correlation Coefficient

- Correlation is a technique for investigating the relationship between two quantitative, continuous variables, for example, age and blood pressure.
- Pearson's correlation coefficient (r) is a **measure of the strength of the association** between the two variables.
- The first step in studying the relationship between two continuous variables is to draw a scatter plot of the variables to check for linearity.
- The nearer the scatter of points is to a straight line, the higher the strength of association between the variables.

Pearson's Correlation Coefficient

- r = -1
- data lie on a perfect straight line with a negative slope

- r = 0
- no linear relationship between the variables

- r = +1
- data lie on a perfect straight line with a positive slope

Cross validation

Split	Exp. A	Exp. B	Exp. C
Train Valid	Performance Al	Performance B1	Performance C1

K-fold cross-validation

Splits	Exp. A	Ехр. В	Exp. C
Train Valid	Performance A_1	Performance B_1	Performance C_1
	Performance A_2	Performance B_2	Performance C_2
	Performance A_K	Performance B_K	Performance C_K
	Average perf. A StdError perf. A	Average perf. B StdError perf. B	Average perf. C StdError perf. C

Test

K-fold cross-validation

Splits	Exp. A	Ехр. В	Exp. C	
Train Valid	Performance A_1	Performance B_1	Performance C_1	
	Performance A_2	Performance B_2	Performance C_2	
	Performance A_K	Performance B_K	Performance C_K	
	Average perf. A StdError perf. A	Average perf. B StdError perf. B	Average perf. C StdError perf. C	
	Test			

• K-fold is less biased but it's computationally expensive, in the above example we train the model 9 times and validate it 9 times and test 1 time!

Normalization

Feature scaling

$$x' = rac{x - x_{min}}{x_{max} - x_{min}}$$

Original Data

Scaled data

0.8

0.6

0.4

0.2

0.0

0.0

0.0

0.0

0.0

0.5

1.0

Standardization

$$z=rac{x-\mu}{\sigma}$$

- In scaling, you're changing the range of your data while in normalization you're mostly changing the shape of the distribution of your data.
- You need to normalize our data if you're going use a machine learning or statistics technique that assumes that data is normally distributed

Hyperparameter search

Random search with good candidates is already a strong baseline.

Random Layout Unimportant parameter Important parameter

Source:Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research 13, no. Feb (2012): 281-305.

Hyperparameter search

Random search with good candidates is already a strong baseline.

Source:Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research 13, no. Feb (2012): 281-305.

Hyperparameter search

Random search with good candidates is already a strong baseline.

Source:Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research 13, no. Feb (2012): 281-305.

References

- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. "Deep learning", MIT press, 2016.
- Shervin Minaee 20 Popular Machine Learning Metrics
- <u>Ivado-mila Deep learning summer school 2019</u>