## **Titanic Team B**

Data science and Artificial Intelligence Society

Team Member: Yujin Choi, Sangmok Lee, Heera Lee, Nakyung Lee

## **Predicting the Survival of Titanic Passengers**

Topic: Data Analysis, Machine Learning

Expected Duration: 4 weeks

#### **Titanic Tutorial**

- Titanic Tutorial Blog
- Divided into 5 parts
  - Part 1: Check data (WK 1)
  - Part 2: Exploratory Data Analysis (WK 2)
  - Part 3: Exploratory Data Analysis (WK 3)
  - Part 4: Feature engineering (WK 3,4)
  - Part 5: Build Machine Learning Model and Prediction (WK 4)

https://kaggle-kr.tistory.com/17?category=868316#2\_5

## o. Setting Library

- Titanic survival data from Kaggle
- Data visualization:
  - Matplotlib
  - Seaborn
  - Plotly
- Data analysis:
  - Pandas
  - Numpy
- Machine Learning Tool:
  - Sklearn

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('seaborn')
sns.set(font_scale=2.5)
import missingno as msno
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

Source Link:

https://www.kaggle.com/c/titanic/data?select=test.csv

#### 1. Check Data

- Titanic survival data from Kaggle
- Used the following data for analysis
  - Check NULL data
  - Target Label Distribution (Survived)

```
for col in df_train.columns:
     msg = 'column: {:>10}\t Percent of NaN value: {:.2f}x'.format(col. 100 + (df train[col].isnull().sum() / df train[col].shape[0]))
column: Passengerld
                         Percent of NaN value: 0.00%
                         Percent of NaN value: 0.00%
                         Percent of NaN value: 0.00%
                          Percent of NaN value: 77.10%
for col in df_test.columns:
     msg = 'column: {:>IO}#t Percent of NaN value: {:.2f}%'.format(col, 100 + (df_test[col].isnull().sum() / df_test[col].shape[0]))
     print(msg)
column: Passengerld
                         Percent of NaN value: 0.00%
                         Percent of NaN value: 78.23%
```

Source Link:

https://www.kaggle.com/c/titanic/data?select=test.csv

### 1. Check Data

- Titanic survival data from Kaggle
- Used the following data for analysis
  - Check NULL data
  - Target Label Distribution (Survived)

Source Link:

https://www.kaggle.com/c/titanic/data?select=test.csv





#### Target label distribution (Survived)



# 2. Exploratory Data AnalysisPclass

- Graph Visualization using matplotlib and seaborn
- Higher the class, higher the survival rate
- Conclusion: Pclass is an important factor that should be considered for predicting survival

#### Survival Rate depend on Pclass





## 2. Exploratory Data AnalysisSex

- Graph Visualization using Pandas and seaborn
- Female survival rate is higher than that of Male
- Conclusion: Sex is an important factor that should be considered for predicting survival



#### Survival Rate depend on Sex





# 2. Exploratory Data Analysis- Age

- Graph Visualization using matplotlib and seaborn
- Younger the age, higher the survival rate
- Conclusion: Age is an important factor that should be considered for predicting survival





Survival rate change depending on range of Age



## 2. Exploratory Data Analysis

### - Pclass, Sex, Age

- Graph Visualization using violinplot of seaborn
- Conclusion:
- In all Pclasses, the younger passengers survived more
- Female survived more than male



#### **Titanic Tutorial**

- Titanic Tutorial Blog
- Divided into 5 parts
  - Part 1: Check data (WK 1)
  - Part 2: Exploratory Data Analysis (WK 2)
  - Part 3: Exploratory Data Analysis (WK 3)
  - Part 4: Feature engineering (WK 3,4)
  - Part 5: Build Machine Learning Model and Prediction (WK 4)

https://kaggle-kr.tistory.com/17?category=868316#2\_5

# 2. Exploratory Data Analysis- Embarked

- Graph Visualization using matplotlib and seaborn
- Passenger embarked at C survived more than others
- Conclusion: Highest survival rate at C is because the higher Pclass passengers boarded at C.





# 2. Exploratory Data AnalysisFamily (SibSp + Parch)

- Graph Visualization using Pandas and seaborn
- Family member = Sibling +
   Parent&Children
- Family size from 1 to 11
- Conclusion: Family size between 2 to 4 has the highest survival rate





# 2. Exploratory Data AnalysisFare

- Graph Visualization using matplotlib and seaborn
- Modifying skewness by having log on fare data





## 2. Exploratory Data AnalysisCabin & Ticket

- Cabin:
  - Null value about 80%, difficult to relate the feature with survival
- Ticket:
  - Various ticket numbers, difficult to relate the feature with survival
- Conclusion:
   Will not include Cabin and Ticket in model formation.



### Replace initial title

- 17 initial titles were replaced by 5 titles (Master, Miss, Mr, Mrs, Other)
- Graph Visualization using matplotlib
- Conclusion:
- Female group(Miss, Mrs) has a higher survived rate





- Fill Age, Embarked

- Fill null value of age using the average age of each title
- Fill null value of embarked with the S value
- The count of embarked null values is 2
- The most embarked is S

|         | Passengerld | Survived | Pclass   | Age       | SibSp    | Parch    | Fare     | Family Size |
|---------|-------------|----------|----------|-----------|----------|----------|----------|-------------|
| Initial |             |          |          |           |          |          |          |             |
| Master  | 414.975000  | 0.575000 | 2.625000 | 4.574167  | 2.300000 | 1.375000 | 3.340710 | 4.675000    |
| Miss    | 411.741935  | 0.704301 | 2.284946 | 21.860000 | 0.698925 | 0.537634 | 3.123713 | 2.236559    |
| Mr      | 455.880907  | 0.162571 | 2.381853 | 32.739609 | 0.293006 | 0.151229 | 2.651507 | 1.444234    |
| Mrs     | 456.393701  | 0.795276 | 1.984252 | 35.981818 | 0.692913 | 0.818898 | 3.443751 | 2.511811    |
| Other   | 564.444444  | 0.111111 | 1.666667 | 45.888889 | 0.111111 | 0.111111 | 2.641605 | 1.222222    |



Value count

**Embarked count** 

- Change Age(continuous to categorical) using 'loc' method
- Change Initial, Embarked, and Sex(string to numerical) using 'map' mehod
- Graph Visualization using the heatmap plot
- Sex, Pcalss, Fare are correlated with Survived

#### 'Loc' method (continuous to categorical)

```
# Age_cat: category

df_train['Age_cat'] = 0

df_train.loc[df_train['Age'] < 10, 'Age_cat'] = 0

df_train.loc[(10 <= df_train['Age']) & (df_train['Age'] < 20), 'Age_cat'] = 1

df_train.loc[(20 <= df_train['Age']) & (df_train['Age'] < 30), 'Age_cat'] = 2

df_train.loc[(30 <= df_train['Age']) & (df_train['Age'] < 40), 'Age_cat'] = 3

df_train.loc[(40 <= df_train['Age']) & (df_train['Age'] < 50), 'Age_cat'] = 4

df_train.loc[(50 <= df_train['Age']) & (df_train['Age'] < 60), 'Age_cat'] = 5

df_train.loc[(60 <= df_train['Age']) & (df_train['Age'] < 70), 'Age_cat'] = 6

df_train.loc[70 <= df_train['Age'], 'Age_cat'] = 7
```

#### 'Map' method (String to numerical)

```
df_train['Initial'] = df_train['Initial'].map({'Master':0, 'Miss':1, 'Mr':2, 'Mrs':3, 'Other':4})
df_test['Initial'] = df_test['Initial'].map({'Master': 0, 'Miss':1, 'Mr':2, 'Mrs':3, 'Other':4})
df_train['Embarked'] = df_train['Embarked'].map({'C': 0, 'Q': 1, 'S': 2})
df_test['Embarked'] = df_test['Embarked'].map({'C': 0, 'Q': 1, 'S': 2})
df_train['Sex'] = df_train['Sex'].map({'female':0, 'male':1})
df_test['Sex'] = df_test['Sex'].map({'female':0, 'male':1})
```

#### Heatmap plot



### 3. Feature engineering \_ One hot encoding

- Create fifth dimensional vector in train set regarding title and embarked
- Use get\_dummies in Pandas

|        | Initial_Master | Initial_Miss | Initial_Mr | Initial_Mrs | Initial_Other |
|--------|----------------|--------------|------------|-------------|---------------|
| Master | 1              | 0            | 0          | 0           | 0             |
| Miss   | 0              | 1            | 0          | 0           | 0             |
| Mr     | 0              | 0            | 1          | 0           | 0             |
| Mrs    | 0              | 0            | 0          | 1           | 0             |
| 0ther  | 0              | 0            | 0          | 0           | 1             |



### 3. Feature engineering - Drop columns

• Delete unnecessary columns using the 'drop' function

- Before drop

|   | DCIOIC      | ai Op    |        |                                                               |     |       |       |                     | _        |       |          | _           |         |           |           |                  |
|---|-------------|----------|--------|---------------------------------------------------------------|-----|-------|-------|---------------------|----------|-------|----------|-------------|---------|-----------|-----------|------------------|
|   | Passengerid | Survived | Pclass | Name                                                          | Sex | SibSp | Parch | Ticket              | Fare     | Cabin | Embarked | Family Size | Age_cat | Initial_0 | Initial_1 | Initial_2 Initia |
| 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | 1   | 1     | 0     | A/5 21171           | 1.981001 | NaN   | 2        | 2           | 2       | 0         | 0         | 1                |
| 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | 0   | 1     | 0     | PC 17599            | 4.266662 | C85   | 0        | 2           | 3       | 0         | 0         | 0                |
| 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | 0   | 0     | 0     | STON/O2.<br>3101282 | 2.070022 | NaN   | 2        | 1           | 2       | 0         | 1         | 0                |
| 3 | 4           | 1        | 1      | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | 0   | 1     | 0     | 113803              | 3.972177 | C123  | 2        | 2           | 3       | 0         | 0         | 0                |
| 4 | 5           | 0        | 3      | Allen, Mr.<br>William<br>Henry                                | 1   | 0     | 0     | 373450              | 2.085672 | NaN   | 2        | 1           | 3       | 0         | 0         | 1                |

- After drop

|   | Survived | Pclass | Sex | Fare     | Family Size | Age_cat | Initial_0 | Initial_1 | Initial_2 | Initial_3 | Initial_4 | Embarked_0 | Embarked_1 | Embarked_2 |
|---|----------|--------|-----|----------|-------------|---------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| 0 | 0        | 3      | 1   | 1.981001 | 2           | 2       | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 1          |
| 1 | 1        | 1      | 0   | 4.266662 | 2           | 3       | 0         | 0         | 0         | 1         | 0         | 1          | 0          | 0          |
| 2 | 1        | 3      | 0   | 2.070022 | 1           | 2       | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 1          |
| 3 | 1        | 1      | 0   | 3.972177 | 2           | 3       | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 1          |
| 4 | 0        | 3      | 1   | 2.085672 | 1           | 3       | 0         | 0         | 1         | 0         | 0         | 0          | 0          | .1         |

#### **Titanic Tutorial**

- Titanic Tutorial Blog
- Divided into 5 parts
  - Part 1: Check data (WK 1)
  - Part 2: Exploratory Data Analysis (WK 2)
  - Part 3: Exploratory Data Analysis (WK 3)
  - Part 4: Feature engineering (WK 3,4)
  - Part 5: Build Machine Learning Model and Prediction (WK 4)

https://kaggle-kr.tistory.com/17?category=868316#2\_5

### Setting Library

- Titanic survival data from Kaggle
- Data visualization:
  - Matplotlib
  - Seaborn
  - Plotly
- Data analysis:
  - Pandas
  - Numpy
- Machine Learning Tool:
  - Sklearn

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('seaborn')
sns.set(font_scale=2.5)
import missingno as msno
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

#### 1. Check Dataset & Null

- Titanic survival data from Kaggle
- Used the following data for analysis
  - Check NULL data
  - Target Label Distribution (Survived)

#### Check NULL data



Target label distribution (Survived)



# 2. Exploratory Data AnalysisPclass

- Graph Visualization using matplotlib and seaborn
- Higher the class, higher the survival rate
- Conclusion: Pclass is an important factor that should be considered for predicting survival

#### Survival Rate depend on Pclass





# 2. Exploratory Data AnalysisSex

- Graph Visualization using Pandas and seaborn
- Female survival rate is higher than that of Male
- Conclusion: Sex is an important factor that should be considered for predicting survival



#### Survival Rate depend on Sex

|   | Sex    | Survived |
|---|--------|----------|
| 0 | female | 0.742038 |
| 1 | male   | 0.188908 |

# 2. Exploratory Data Analysis- Age

- Graph Visualization using matplotlib and seaborn
- Younger the age, higher the survival rate
- Conclusion: Age is an important factor that should be considered for predicting survival





Survival rate change depending on range of Age



# 2. Exploratory Data Analysis- Embarked

- Graph Visualization using matplotlib and seaborn
- Passenger embarked at C survived more than others
- Conclusion: Highest survival rate at C is because the higher Pclass passengers boarded at C.





# 2. Exploratory Data AnalysisFamily (SibSp + Parch)

- Graph Visualization using Pandas and seaborn
- Family member = Sibling +
   Parent&Children
- Family size from 1 to 11
- Conclusion: Family size between 2 to 4 has the highest survival rate





# 2. Exploratory Data AnalysisFare

- Graph Visualization using matplotlib and seaborn
- Modifying skewness by having log on fare data





## 2. Exploratory Data AnalysisCabin & Ticket

- Cabin:
  - Null value about 80%, difficult to relate the feature with survival
- Ticket:
  - Various ticket numbers, difficult to relate the feature with survival
- Conclusion:
   Will not include Cabin and Ticket in model formation.







|         | Passengerid | Survived | Pclass   | Age       | SibSp    | Parch    | Fare     | Family Size |
|---------|-------------|----------|----------|-----------|----------|----------|----------|-------------|
| Initial |             |          |          |           |          |          |          |             |
| Master  | 414.975000  | 0.575000 | 2.625000 | 4.574167  | 2.300000 | 1.375000 | 3.340710 | 4.675000    |
| Miss    | 411.741935  | 0.704301 | 2.284946 | 21.860000 | 0.698925 | 0.537634 | 3.123713 | 2.236559    |
| Mr      | 455.880907  | 0.162571 | 2.381853 | 32.739609 | 0.293006 | 0.151229 | 2.651507 | 1.444234    |
| Mrs     | 456.393701  | 0.795276 | 1.984252 | 35.981818 | 0.692913 | 0.818898 | 3.443751 | 2.511811    |
| Other   | 564.444444  | 0.111111 | 1.666667 | 45.888889 | 0.111111 | 0.111111 | 2.641605 | 1.222222    |



**Embarked count** 

Value count

#### 'Loc' method (continuous to categorical)

#### 'Map' method (String to numerical)

```
df_train['Initial'] = df_train['Initial'].map({'Master':0, 'Miss':1, 'Mn':2, 'Mrs':3, 'Other':4})
df_test['Initial'] = df_test['Initial'].map('Waster':0, 'Miss':1, 'Mr':2, 'Mrs':3, 'Other':4})
df_train['Embarked'] = df_train['Embarked'].map('('c':0, 'Q':1, 'S':2))
df_test['Embarked'] = df_test['Embarked'].map('('c':0, 'Q':1, 'S':2))
df_train['Sex'] = df_train['Sex'].map('female':0, 'male':1})
df_test['Sex'] = df_test['Sex'].map('female':0, 'male':1])
```

#### Heatmap plot



- Delete unnecessary columns using the 'drop' function
  - Before drop

|   | Passengerid | Survived | Pclass | Name                                                          | Sex | SibSp | Parch | Ticket              | Fare     | Cabin | Embarked | Family Size | Age_cat | Initial_0 | Initial_1 | Initial_2 | Initia |
|---|-------------|----------|--------|---------------------------------------------------------------|-----|-------|-------|---------------------|----------|-------|----------|-------------|---------|-----------|-----------|-----------|--------|
| 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | 1   | 1     | 0     | A/5 21171           | 1.981001 | NaN   | 2        | 2           | 2       | 0         | 0         | 1         |        |
| 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | 0   | 1     | 0     | PC 17599            | 4.266662 | C85   | 0        | 2           | 3       | 0         | 0         | 0         |        |
| 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | 0   | 0     | 0     | STON/O2.<br>3101282 | 2.070022 | NaN   | 2        | 1           | 2       | 0         | 1         | 0         |        |
| 3 | 4           | 1        | 1      | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | 0   | 1     | 0     | 113803              | 3.972177 | C123  | 2        | 2           | 3       | 0         | 0         | 0         |        |
| 4 | 5           | 0        | 3      | Allen, Mr.<br>William<br>Henry                                | 1   | 0     | 0     | 373450              | 2.085672 | NaN   | 2        | 1           | 3       | 0         | 0         | 1         |        |

#### - After drop

|   | Survived | Pclass | Sex | Fare     | Family Size | Age_cat | Initial_0 | Initial_1 | Initial_2 | Initial_3 | Initial_4 | Embarked_0 | Embarked_1 | Embarked_2 |
|---|----------|--------|-----|----------|-------------|---------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| 0 | 0        | 3      | 1   | 1.981001 | 2           | 2       | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 1          |
| 1 | 1        | 1      | 0   | 4.266662 | 2           | 3       | 0         | 0         | 0         | 1         | 0         | 1          | 0          | 0          |
| 2 | 1        | 3      | 0   | 2.070022 | 1           | 2       | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 1          |
| 3 | 1        | 1      | 0   | 3.972177 | 2           | 3       | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 1          |
| 4 | 0        | 3      | 1   | 2.085672 | 1           | 3       | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 1          |

### 3. Feature engineering \_ One hot encoding

- Create fifth dimensional vector in train set regarding title and embarked
- Use get\_dummies in Pandas

|        | Initial_Master | Initial_Miss | Initial_Mr | Initial_Mrs | Initial_Other |
|--------|----------------|--------------|------------|-------------|---------------|
| Master | 1              | 0            | 0          | 0           | 0             |
| Miss   | 0              | 1            | 0          | 0           | 0             |
| Mr     | 0              | 0            | 1          | 0           | 0             |
| Mrs    | 0              | 0            | 0          | 1           | 0             |
| 0ther  | 0              | 0            | 0          | 0           | 1             |



### 3. Feature engineering - Drop columns

• Delete unnecessary columns using the 'drop' function

- Before drop

|   | Deroie      | , •      |        |                                                               | -   |       |       |                     |          |       |          | 1           |         |           |           |           |        |
|---|-------------|----------|--------|---------------------------------------------------------------|-----|-------|-------|---------------------|----------|-------|----------|-------------|---------|-----------|-----------|-----------|--------|
| 1 | Passengerid | Survived | Pclass | Name                                                          | Sex | SibSp | Parch | Ticket              | Fare     | Cabin | Embarked | Family Size | Age_cat | Initial_0 | Initial_1 | Initial_2 | Initia |
| 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | 1   | 1     | 0     | A/5 21171           | 1.981001 | NaN   | 2        | 2           | 2       | 0         | 0         | 1         |        |
| 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | 0   | 1     | 0     | PC 17599            | 4.266662 | C85   | 0        | 2           | 3       | 0         | 0         | 0         |        |
| 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | 0   | 0     | 0     | STON/O2.<br>3101282 | 2.070022 | NaN   | 2        | 1           | 2       | 0         | 1         | 0         |        |
| 3 | 4           | 1        | 1      | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | 0   | 1     | 0     | 113803              | 3.972177 | C123  | 2        | 2           | 3       | 0         | 0         | 0         |        |
| 4 | 5           | 0        | 3      | Allen, Mr.<br>William<br>Henry                                | 1   | 0     | 0     | 373450              | 2.085672 | NaN   | 2        | 1           | 3       | 0         | 0         | 1         |        |

- After drop

|   | Survived | Pclass | Sex | Fare     | Family Size | Age_cat | Initial_0 | Initial_1 | Initial_2 | Initial_3 | Initial_4 | Embarked_0 | Embarked_1 | Embarked_2 |
|---|----------|--------|-----|----------|-------------|---------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| 0 | 0        | 3      | 1   | 1.981001 | 2           | 2       | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 1          |
| 1 | 1        | 1      | 0   | 4.266662 | 2           | 3       | 0         | 0         | 0         | 1         | 0         | 1          | 0          | 0          |
| 2 | 1        | 3      | 0   | 2.070022 | 1           | 2       | 0         | 1         | 0         | 0         | 0         | 0          | 0          | 1          |
| 3 | 1        | 1      | 0   | 3.972177 | 2           | 3       | 0         | 0         | 0         | 1         | 0         | 0          | 0          | 1          |
| 4 | 0        | 3      | 1   | 2.085672 | 1           | 3       | 0         | 0         | 1         | 0         | 0         | 0          | 0          | 1          |

### 4. Building machine learning model and prediction

 Importing all the required ML packages (sklearn - RandomForest)

```
#importing all the required ML packages
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn.model_selection import train_test_split
```



Split dataset into train, valid, test set

```
X_train = df_train.drop('Survived', axis=1).values
target_label = df_train['Survived'].values
X_test = df_test.values

X_tr, X_vld, y_tr, y_vld = train_test_split
(X_train, target_label, test_size=0.3, random_state=2018)
```

Model generation and prediction

```
model = RandomForestClassifier()
model.fit(X_tr, y_tr)
prediction = model.predict(X_vld)

print('총 {}명 중 {:.2f}% 정확도로 생존을 맞춤'.format
(y_vld.shape[0], 100 * metrics.accuracy_score(prediction, y_vld)))
```

### 4. Building machine learning model and prediction

```
Feature Importance
  from pandas import Series
  feature importance = model.feature importances
  Series feat imp = Series(feature importance, index = df test.columns)
  plt.figure(figsize=(8, 8))
  Series feat imp.sort values(ascending=True).plot.barh()
  plt.xlabel('Feature importance')
  plt.ylabel('Feature')
  plt.show()
             Fare
         Initial 2
        Age cat
              Sex
          Pclass
Feature
     FamilySize
         Initial 1
         Initial 3
   Embarked 2
   Embarked 0
   Embarked 1 ■
         Initial 0
         Initial 4
                                            0.2
                                                          0.3
                  0.0
                               0.1
```

Feature importance

