

優先權主張 1975年18月15日 P25 46 165.8 西ドイツ(M

図(特許法集38条但し書) の規定による特許出題)

船和51年10月15 <u>日</u>

特許庁長官 1.発明の名称

ナアゾリジン誘導体およびその製法

2. 特許請求の範囲に記載された発明の数

西ドイツ国アルテンハイン/タウヌス。ガルテンシ 住所

氏名 ハンス・ヨーヒエン・ラング

(外1名)

4.特許出願人

住所

遊ドイツ国 国籍

5代 厘

東京都千代田区御町3丁草2番地(明月第一ビル)

電話 261 2022

. 6256

51 124381

(19) 日本国特許庁

公開特許公報

①特開昭 52-51364

昭 52. (1977) 4.25 43公開日

21)特願昭 51-124381

昭州. (1976) 10.11 22出願日

審査請求 未結束 (全21頁)

庁内整理番号

6762 44 7043 44 5921 44

50日本分類

16 E351 30 6133.23 30 H352

(51) Int. C12.

C070277/181 A61K 31/425

識別

記号

ACX

1. 無男の名称 アゾリジン酢沸体をよびその

2. 特許請求の範囲

1) 一般式1

[式中 R¹は 1 ~ 4 個の炭素原子を有するブル キルあるいはアルケニルであり、 R3は協合化 よつては1~2個の炭素原子を有するアルコ キシ基によつて世狭されている1~6個の段 条原子を有するアルキルあるいはアルケニル 残 碁 、 3~ 8 個 の 段 業 康 子 を 有 寸 る シ タ ロ ナ ルキル残畜、アルキル部分中に1あるいは2 毎の炭素原子を有するフエニルアルキル残益 を意味し、そして式中 R¹と R²はまた共同して 独合によつては校分れの2~4個の炭素原子

を有するアキキシン厳を表わすととができ、 R⁵は水洪、1~5個の炭素原子を有する低数 ルキルあるいはアルコキシ、あるいはアミ ノ基-NR4R5(式中R44)よびR5は同じかまたは 典なつていて水素、1~4個の炭素原子を有 する低級アルキル機器を扱わすかあるいは R4 はR5が水果である場合5~6個の炭素原子を するシクロアルヤル鉄温を意味するものと その数、R⁴と R⁵はまた共同してN原子と 共に5~1員の飽和複素環を形成することが できる)でありそしてYは塩米あるいは臭米 を意味する〕を有するチアソリジン的事体並 びにその栗母学上受容され待る塩。

4~(3-アセナルスルフアモイル-4-イミノー 1.5 ーチアンリジンニムーオール 臭化水素酸塩である前配第1項配敷の化合物。

- 4) 4~(4-クロルー3-メトキシカルボニルスルフアモイルーフエニル)~3-メテルー2-メテルイミノ~1.5-チアンリジンーである機配。
 4-オールー具化水素健塩富1項配像の化合物。
- 5) 4 (4 クロル・3 ンクロヘキシルア ミノカルポニルスルフアモイル・フエニル) - 5 - メテル・2 - メテルイミノ・1,5 - テ ごある前配第1項配象の アソリジン・4 - オール奥化水素酸塩化合物。
- 6) 一般尖」の化合物を製造するにあたり、
 - a) 一般式 [

$$\mathbb{R}^{5} \bigvee_{0}^{H} \bigvee_{0}^{N} \bigcup_{0}^{B} OH_{2} - Z \qquad (8)$$

(武中 R⁵およびYは前配した意味を有し2は

(式中以はアルカリあるいはアルカリ土欒会 異を扱わす)を有するその金典塩を場合によ つては塩素の存在下に酸 R3-000H の反応性の 導体と反応させるか、あるいは

a) 一般实刊

(式中Rはアルキルを意味し R1、R2、R5かよび Y は前配した送りの意味を有する)を有する 2 - ハロゲン - 5 - (2 - イミノー 1.5 - チ アゾリジン - 4 - オール - 4 - イル) - ベン ゼンスルホニル - イソ尿素エーテル、 - イソ チオ尿素エーテルを加水分解的化分解させる か、あるいは

d) 一般式程

修期 852-51364 (2)

無機あるいは有機能の括性エステルの残害を 表わす)を有する化合物を一般式量(これは 式且aおよびDDの両刀の式で存在しりる)

(A) (A)

(式中 R¹ および R² は 助配した意味を有する) を有するチオ尿素と反応させるか、あるいは

を有する化合物、その酸付加塩あるいは一般 式 V

を有する化合物を実現

$$Ha.\mathcal{L}-C \stackrel{N-R^1}{\underset{\Omega}{\stackrel{N}{=}}} (VE)$$

(丈中 R¹、R²、R³かよびYは前配した意味を有 し、Haとは塩素あるいは具象を扱わす)を有 する化合物と反応させるか、あるいは

e) 式器の化合物をカルポジイミド (K

$$R^{1}-N-C-N-R^{2}$$
 (K)

(式中 R*および R*社前能した意味を有する) と反応させるか、あるいは

t) 一般或 X

(式中 R1~R5 および Y は前配した意味を有し Ba4は塩素 あるいは臭葉を扱わす)を有する化 合物を酸化剤で処理し、

そして場合によつては方伝α)~ f)により得ら

特周昭52 -- 51364 (3)

れる一般式 I の化合物を有根あるいは無機酸を用いてその酸付加塩にあるいは得られる一般式 I の化合物の塩を塩基を用いて式 I の遊離の塩基性化合物にあるいはアルカリあるいはアンモニウム塩に受換することを特徴とする、一般式 I の化合物の製造方法。

- 7) 煎配第1項による化合物から成るかもしく はそれを包含している塩類利尿作用を有する 医薬製剤。
- 8) 前記解1項による化合物を場合によつては 無利上の損体および/または安定剤と共に治 便上の目的に適した使用形となすことを特徴 とする塩製剤尿作用を有する医薬製剤の製法。

問じかまたは異なつていて水家、1~4個の飲業原子を有する低級アルキル残差を扱わすかあるいは R5が水果である場合 R4は 5 ~ 8 個の設業原子を有するシクロアルキル残器を意味し、その際 R4は R5はまた N 康子と共同して 5 ~ 7 美の動和複素環を形成できる)でありそして Y は塩素のるいは臭業を意味する〕を有するチアンリッシの時体かよびその薬薬学的に受容され得る塩に関する。

本発明の対象はさらに下記すなわち

a) 一般实了

(式中 R 3 かよび Y は前記した意味を有しそして Z は無徴 あるいは有徴酸の活性エステルの残器を扱わす)を有する化合物を式 B a かよび B b の両方にかいて存在し得る一般式 E

5.発明の詳細な説明

本発明の対象は一枚式!

(式中 R1および R2は前配した意味を有する)を 有するチオ原業と反応させるか、あるいは

b) 一般或 [[

を有する化合物、その酸付加塩あるいは一般式

(式中以はアルカリあるいはアルカリ土熱金銭を意味する)を有するその金属塩を飯 R8-COOH

朗昭52-51364(4)

の反応性務場体と場合によつては塩基の存在下 に反応させるか、 るいは

a) 一般实现

(式中R はアルキルを意味 し R1、R2、R3かよび Y は前記の意味を有する)を有する 2 - ハロゲン-5 - (2 - イミノー 1.5 - テアゾリ ツン - 4 - オール - 4 - イル) - ペンゼンスルホニルーイン 尿素エーテルまたは - インテオ 尿素エーテルを 加水分解的に分解させるか、 あるいは - 砂玄 物

を有する化合物を式源

その酸付加塩にあるいは得られる一般式 I の化合物の塩を塩素を用いて式 I の遊離の塩素性化合物にあるいはアルカリもしくはアンモニウム

ことを特徴とする一般式「の化合物の製法である。

無機能としては例えば塩化水素能をよび臭化 水素酸のようなハロゲン化水素酸、ならびに例 酸、りん能をよびアミドスルホン能があけられる。

有機能としてもけられるのは他えばぎ酸、酢酸、安息苦酸、コハク酸、フマル酸、マレイン酸、乳酸、滋石酸、クエン酸、サリテル酸、オヤンエタンスルホン酸、エテレンジアミンテトラ酢酸、メタンスルホン酸、ロートルエンスルホン酸その他である。

化合物「はまたその互変異性形態」なでも存

(式中 R1、R2、R3かよび Y は煎配の意味を有した して Ra∠ は塩果るるいは臭素を扱わす)を有す る化合物と反応させるか、あるいは

e) 式籠の化合物をカルポジイミド以

$$R^1-N=C=N-R^2$$
 (X)

(式中 R*かよび R*は前配の意味を有する)と反 応させるか、あるいは

(式中 R¹~ R⁸かよび Y は前配した意味を有し、 Ha & 性塩製 あるい性臭素を扱わす)を有する化 台物を飯化剤で処理し、そして 場合によつては万伝 a)~ 1)によつて得られる一 数式 | の化合物を有扱めるいは無機額を用いて

本発明による式」の化合物はその他にもその 可能な幾何異性体構造において存在しうる。

RIかよび R²が異なる場合式 I の 微状化合物は 開放 傾互変異性形 J を経て式 I c を有する位置 単性化合物 かよび その酵 付加塩

と平衡状態で存在する。 斑状異性体 I あるいは ! o またはその酸付加塩のいずれが優先的に存 在するかは、空間的により小さい智振分が優先 的にチアソリジン環系の 5 位に存在する特定態 様における世換分 R または R 2の異なる空間充て んの根壁による。 本発明による化合物に貼して は簡単さのためにそれぞれの物質について可能

な異性体または互変異性形の一方のみが生ずる。 前記 a)に記載されている方法は好ましくは化 台物目をチオ放業目とモル比 1:1~1:1.5化か いて反応させることにより実施される。チオ尿 果を比較的大きいモル透劇に用いても、一般に 何ら格別の利益は得られない。反応は好ましく は例えばジメテルホルムアミド、ジメテルアセ トアミド、ジオキサン、テトラヒドロフラン、 アセトニトリル、ニトロメタン、ジエチレング リコールジメテルエーテル等のような極性有限 客様のような不估性俗様中で行われる。しかし ながら毎に好ましい反応能質としては酢酸メデ ルエステル および 酢酸 エチルエステルのような 酢酸低酸アルキルエステル、1~4個の炭素原 子を有する体験アルコール毎にメタノール、エ メノール、イソプロパノールならびに例えばて セトン、メチルエテルケトンのような低級ジア

ルキルケトンが良いことが何つた。上配単独の ための容様とそれより遠しない俗談との混合物 のような上配容数の混合物もまた使用されるこ とができる。例えばメタノール/ペンゼン、エ タノール/トルエン、メタノール/ジエチルエ ーテル、エタノール/ 四塩 化炭素、アセトン/ クロロホルムであり、その際合目的的には極性 俗族が過剰に存在しているべきである。その既 反応相手はそれぞれの必能に熱渇さたは解解状 顔で存在し得る。原則上は及応柏手は特にまた それぞれのチオ尿素が可能な限り低い酸点で自 由に取扱われる場合に昇終の使用なしに反応さ れ得る。しかしながらその場合発熱反応進行の ために副反応が出現し得、使つてとの方法の費 更は密謀を使用する無作万缶に対してさほど利 益をもたらさない。反応は担よく発熱的に進行 し 0 0~1 0 0 0 好せ し く は 1 0 0~7 0 0 で尖 能 さ れ

得る。 20℃~55℃の間度範囲が特に好都分なと とが判つた。

及応時間は反応値度に広く依存し比較的高い 温度範囲では2分間ないし比較的低い温度では 60時間である。好都合な温度範囲では反応時 間は一般に5分~40時間である。

使用されるテオ尿無量については文献上配数されている物質が増も大きく問題となる。これらは既知の万法でアミンとイソテオシアナート、 催化炭素 あるいはテオホスグンとの反応化より 調製される(ホウベン・ワイル (Rouben-Wey1)

特開 昭52-- 51 364 (6)

の「メトーデン・デル・オルガニフシエン・へ i - (Methoden der organischen Chemie)」第9 告第884頁第4版(1955)参照]。

式 I の化合物化 かいて活性エステル 2 の残害としては例えば CL、Br、J、CH₅-SO₂-O-、C₂H₅-SO₂-O-、C₄B₅-SO₂-O-、CH₅C₄H₄-SO₂-O-かめげられる。

式』の化合物は多くのそれ自体肌知の方法により取得できる。

一数大 1 (式中 R³かよび Y は前配した意味を有しそして 2 は堪象 あるいは具象である)の化合物の好ましい調整法は一数大 2

$$\mathbb{R}^{B} \bigvee_{0}^{H} \bigvee_{0}^{Y_{0}} OH_{B} \qquad (2)$$

を有する化合物を例えば元素状塩素あるいは長素、塩化スルフリル、モノクロル尿素、異化第二個、プロムジオキサン、N-プロムコハク銀

有機かよび無機能の活性誘導体と反応せしめることにより取得できる。一般大量の中間生成物は文献上既知の方法によりそして方法 b)あるいは a)と同様にして 2 ーハログン - 5 - アセテルーペンセンスルホニルアミド [アルンナイミンテルフォルシニウング (Arsneimittelforschung) 思 1 5 巻第 2 6 9 頁 (1 9 6 5) 参照] から鞠毅され待る。

前記 b)に記載されている方法によれば一般実 胃のスルファモイルチアゾリジンをハロゲン化 アンルおよび無無水物、アンルーリーイミダン ール、イソシアナート、カルバミン酸ハロゲン 化物のような酸 R³-CO₂H の上配反応性誘導体と 分目的的には塩基の存在下に反応せしめる。ア シル化剤としては好ましい塩塩で液体である酸 クロリド、カルボン酸無水物およびアルギルイ ソンアナートが用いられるので、反応は純粋な イミドのようなハログン化剤と既知の条件下で 反応せしめるかあるいは一般式溜

$$H_2N-8$$

$$O_2$$

$$CH_2-2$$

$$(Xi)$$

を有する α - ヒドロキシケトンを文献上鉄知の条件下でメタンスルホン酸クロリド、エタンスルホン酸クロリド、ペンゼンスルホン酸タロリド、ウートルエンスルホン酸クロリド、臭化チオニル、三塩化りん、三臭化りん、オキシ塩化

りん、p‐ニトロペンゾイルクロリドのような

RE-CO-NH-028 CO-CH20H (XII)

アンル化剤中で行われ待る。しかしながら反応 は例えばジメテルスルホキンド、ジメテルホル ムアミド、ジエテレングリコールジメテルエー テル、アセトコトリル、アセトン、酢酸エステ ル、テトラヒドロフラン、ジオキサンのような 依性有機能無中で行われるのが好ましく、その 数イソンアナートとの反応は上肥常雄中におけ るその他好ましくはまた例えばメタノール、エ タノール、インブロパノール、ロープタノール のような低数アルコール中あるいはそれらと水 との混合物中において行われる。

アシル化反応を可能な限り特定的にスルホンフミド高において離和な条件下で行わせるため
に、合目的的には塩基例えば水酸化物、メテラート、イソプロピラート、第三プ
テラート、炭酸塩、アルカリあるいはアルカリ
土魚金鳥のメテルスルホニルメチドを使用して

特開昭52-51364(7)

操作し、これらはスルホンアイド基を関知のように説ブロトン化しその際化合物質をそのアシル化に先立つて一般式Vの塩に変換し、次いでこれがアシル化剤と反応せしめられる。塩Vはなかんすく反応無質中でアシル化製脂に先立つて直接製造され単離されることなく続いて直ちに反応に付される。

- 50 C- + 60 Cなかんすく 0 C-+ 50 C合目的 的には 18 C-25 Cで操作する。

しかしまた原即的には塩Vは単離され続いて上記アンル化剤の一つと反応せしめられ待る。 化合物Vの純穀をよび単部のためには、好ましくは太Rのチアソリジンに通当な溶媒例えば水 あるいはメタノール中1~1.2 モルの協議例えば KOH または NaOCHsを加えないで水溶液を凍結乾燥または 4 0 で以下で被圧下蒸発させるか、 る

圧下に55で以下の指盤で振鞴しそして我何物をなかんずくメタノール、エタノールあるいはイソプロパノール中没費して行われる。 無機塩は戸港のるいは遠心分解し所望のチアンリシン 1 を酸付加塩の形で溶解を新たに蒸発させたのちあるいは方法。)に記載されている沈峻剤の一つを用いて沈殿させることにより待る。カルパミン酸ハログン化物としてはまず第一に塩化物が過する。

出発物質としてあげられているペンゼンスルホニルーイン炭素エーテルをよび・イソテオ炭 表エーテルの方伝のJに配収されている分解は合 目的的にはアルカリ加水分解により行われる。 イン炭素エーテルはまた酸性無負中でも良好な 船果をもつて分解され得る。

ベンゼンスルホニル・イン尿素エーテルは文 似上鉄知の万法により製造される。例えば 4 ~ ルエーテル、ペンゼン、トルエン、石油エーテル、作版エテルエステル、即級イソプロビルエステル、下セトン るいは上記密集の混合物のような通告な沈駿剤を用いて有機鉄質から塩を 沈駿させるようにして物作する。

ハログン・ミースルフアモイルアセトフェノン をアルキルイソチオシアナドトを用いて2~ハ ログン - 5 - アセテル - ペンセンスルホニル --チオ尿素に変換することができる。後者を例え **はホスゲンを作用させ飲いてアルコールと反応** させることにより2- ハロゲンー 5 - アセチル - ペンゼンスルホニル・イン尿素に転移させ、 これを万法 a)と向様にしてハログン化し続いて 終りに式皿のチオ尿巣と反応させることができ る。ホスゲンの代りにジンクロヘキシルカルボ ジイミドを用いた複合、2-ハログンー5-7 セチルーペンセンスルホニルーカルポジイミド が待られ、とれからアルコールを用いて同様に 記載されている2-ハロゲン-5-アセテル~ ペンセンスルホニルーイン尿素が導かれる。記 敷されている経路は装配式により明示される。

特朗昭52-51364(8)

既処方法と関係だして製造される。

$$\begin{array}{c} \vdots \\ \mathbb{I} + \mathbb{R}^6 - \mathbb{C} \stackrel{\circ}{\longleftrightarrow} \rightarrow \\ \mathbb{E} + \mathbb{E} +$$

普製造のためのもう一つの可能性は化合物 II と、例えばシメテルホルムアミド中 0で~4 0 での温度で不活性部部中における硫化水果ナトリウムあるいはカリウムとの反応のような硫化水果アルカリ金属との反応である。

万伝 エ)によれは、一般失义の化合物を連当な

方法 d)によれは式削の化合物を熔鉄中式削の 既知化合物と反応させる。 存業としては 1 ~ 4 個の炭素原子を有する低級 アルコールならびに 例えば酢酸メテルエステル および酢酸エテルエ ステルのようなアルキル部分中に 1 ~ 4 個の炭 素原子を有する酢酸の低級 アルキルエステルが 毎に避している。反応は一般に 0 で~6 0 でなか んずく 15 で~35 での温度範囲で行われ、反応時 間は 5 ~ 6 0 時間である。

酸化剤なかんずく拮性マンガン切オキシドを用いて式 | の化合物またはその酸付加塩に変換する。溶鉄としては例えば塩化メテレン、クロロホルム、テトラクロルエタンのようななかんずくハログン化炭化水素が用いられ、その誤反応は 0で~40 でなかんずく 20で~50でで10~60 時間行われる。

式 X の化合物へは、例えば、式 I (式中 2 はなかんずく塩素 B るいは 具素を意味する)を有するハロゲンケトンを例えばアルツナイミッテルフォルシュウング第22巻 第2095 頂 (1972の配数に従い、 派当な 産元剤な かんずく 水準化 倒常、ナトリウムを用いメタノール中 0で~25 での個質で式 XV

を有する化合物に型換して行われる。化合物XV

特開明52--51364 (9)

はハロゲン化アルキルとして武昌のチオ尿素と 反応して式 X のイソテウロニウム塩となる。その豚反応条件は方法 a)のそれに相当する。

モル当り 2 ~ 2.5 モルの酸が用いられるかしか しながら多量の酸を用いることもできる。 合目 的的には 0 ℃~4 0 で好ましくは 1 0 ℃~2.5 ℃の数 数で操作する。反応は通旋に発熱性である。

般付加生成物はまた非常に高い純度等級で非

常にしばしば粘稠な抽の形かるるいは無足形の ガラス様生成物の形で洗験する。この無定形生 皮物は場合によつては有機熔集で処理しながら 40℃~80℃に加强することにより膨晶化する。 結系化を促進する奴隷としては毎に酢飼メチル エステル、酢酸エチルエステル、酢酸ローブチ ルエステルのようなアルキル部分中に1~4個 の炭素原子を有する酢酸低酸アルキルエステル ならびにアセトンあるいはメテルエテルケトン のような低級ジアルキルケトン、ジエチルエー テル、ツイソプロピルエーテルあるいはジーロ - プチルエーテルのような低敵ジアルキルエー テル、ならびに アセトニトリル、ニトロメメン かよびある柏台にはまたメタノール、エタノー ル、インプロパノールあるいはユーブタノール のような低級アルコールが通している。

酸付加生成物は激品な熔集中で1モルの塩素

と処理することにより一般吹しの化合物へ脱アートンにされる。塩素としては例えばカテかいない。カルシウムの多水酸化物のような無限を散せまりから、製造を取りから、製造を取りから、製造を取りから、製造を取りない。カーシンクロへもといいました。メテルーシンクロへも。

過剰の堪塞を飲加する場合化合物 I はアシルスルファモイル避をさらに脱プロトン化して非常に容易に丈 XVI

(R^{1~R³ 、 Y かよび M は 前記 した 意味を有する)}

のほに変換される。その際無定形の本発明による化合物」を製造するためには非常に狭いpH 範囲内で操作せればならず、それは微換分 R1~R5 の性質の如何に応じて4~6であり。衝定曲線を用意することにより調べられる。

-

よび式中 Risk よび Rick また共同して 2 ~ 4 側の 数据原子を有するアルケニル値を扱わしてもよ く、Y 仕塩素あるいは臭素を意味し、 Rick メテ ルあるいは前記した意味における -NR Rick 扱わ す化合物である。

本発明により実施的に配数されている4 ー(5-ストフアモイル・フェニル) - 1.5 ーテアソリジン - 4 - オールの他に例えばまた以下の数に掲げられている一般式 | の化合物またはその数性および返謝性塩

が取得される。

厄は自然発生的に行われる。反応は~55℃~100℃なかんずく0℃~25℃で行われる。水と

風和しりる有機溶解が用いられる場合、場合に
よつては反応患合物を前以つて護輸後式1の遊
離塩基を水を添加することにより抗験させる。
水と昆和しない溶解を使用する際には好ました
は反応後反応混合物を水洗し有機溶解を場合に
よつては前以つて乾燥後蒸発させるようにして
後作する。

本発明による式』の化合物またはその酸付加 類のうち以下のものが特別に意味がある。すな わち、R¹がメテル、エテル、あるいはアリルを 意味し、R²が場合によつてはメトキッあるいは エトキシ島によつて包装されている1~4個の 炭魚原子を有するアルキルあるいはアルケニル 残島、シクロアルキル残器および前記された意 味のフェニルアルキル残器を扱わす化合物、お

3	C2H5	-(CH ₂) ₂ -OOH ₃	СН§	CL
4	C ₂ H ₅	CH ₂ -CH ₃ CH ₂ -CH ₅ CH ₅ OCH ₅ -CH ₂ -CH ₂ -CH ₃	OCH2	CŁ
5	C ₂ H ₅	-(H) Chi	OCH 5	C.Ł
6	CH.	-CH2-CH-CH5	осн в	0£
7	он,	-(CH ₂) ₂ -	OCH 5	CZ
8	CH2=CH-CH2	CH2=CH-CH2-	осн в	CŁ
9	OH 5	CH ₅ -OH-CH ₂ -CH ₅	C2H5	CŁ
10	CH 5	—(H)	O ₂ H ₅	CL
11	он,	СН5	-CHCH3	02
12	СН§	-он ₂ -сн ² сн ³	CH _{CH3}	CŁ
15	OH2=CH-OH2-	CH ₂ OH-CH ₂ -	CHCH3	C.L
14	CH ₅	-OH2-C	CHCOH3	٥Ł
15	CH ₅	OOH_B $OH_2-CH-CH_B$	002H5.	CŁ
16	0 ₂ H ₅	-(H)	00 ₂ H ₅	04

特即	E452	54	36	4 (11)

1	7	он3	OH 2	- 00 ₂ H ₅	04	52	CH ₃	осн ₅ -сн ₂ -он-сн ₅	· NH-CH ₅	Br.
1	8	CH.	СН8 -ОН-СН2СН8	00 ₂ H ₅	Br	55	OH3	-CH2-CH-CH2	NH-CH ₅	Br
1	9	CH ₃	СН _Б	NH ₂	CŁ	54	он в	-он2-	NH-CH ₅	Br
· 2	:0	C2H5	CH ₅	NH ₂	CŁ	35	OH ₅	CH ²	NOT-CON CONT	0.£
2	1	OH2=CH2-C	CH_CH-CH ₂	NH ₂	CL	36	CgHs	C ₂ H ₈	-MH-CH CH	0£
2	2	CH ₈	~	NH ₂	0.6			осн,	CEs.	
2	5	CH _B -	-(OH ₂) ₂ -	NH ₂	CL	57	C ₂ H ₅	-сн2-сн-он3	-нн-	CŁ
2	4		-(OH ₂) ₂ -	NH2	CŁ	58	CH ₅	СН ₅ -СН-СН ₂ -СН ₅	-ин-	C.Ł
2	5	C ₂ H ₅	—(H)	NH-CH ₅	02	59	C2H5	-CH 2-	-ин-	0.Ł
2	6	C ₂ H ₅	-CH2-	NH-CH ₅	CL	40	сиз	CH2=CH-OH2	−ни-	0£
2	?7	-	-(OH ₂) ₂ -	NH-CH ₅	OL	41	C ₂ H ₅	C2H5	-нн	02
2	28	-	-(CH ₂) ₅ -	NH-CH ₅	CL	42	-	(CH ₂) ₂ -	-NH-H	O.Ł
2	? 9	CH ₅	OH ₅	NH-CH ₃	Br	45	CzHg	-CH2-	-NH-H	C.Ł
	0	CR ₅	он сн з	NH-CH _B	Br	44	CH _B	CH ₅	H →En-	Br
;	31	OH 5	-(H)	ин-сн	Br					
45	СН	l s	-CH CH3	-N CH 5	CZ	58	СН ₂ =ОН-ОН ₂	CH=CH-OH2	-1	0£
45	СН	i s	-CH CH 3	-N H	CL	58 59	СН ₂ =ОН-СН ₂	сн=он-он₂	-10	OL CL
45	СН	_			C2			-OH ₂ - ()	_	
		_	ОН ₅	-NCH3	CL	59	CH ₃	٠ -	-40	CL ;
46		ls	OH 5			59 60	CH ₅	-OH ₂	-40	CL OL
46	он	H5	ОН ₅	-N CH ₅	CL	59 60 61	СН ₅ СН ₅	-OH ₂ -O	-40	CL CL
46 47 48 49	CP CH C2	ь Н ₅	CH ₅ CH ₅ CH ₅	-N CH ₃ -N CH ₅ -N CH ₅ -N CH ₅ -N CH ₅) ₂	C2 C2 C2	59 60 61 62	СН ₅ СН ₅ СН ₅	-OH ₂ -O CH ₃ -OH-C ₂ H ₅ -CH ₂ -CH(CH ₅) ₂	- ½	C2 C2 C2
46 47 48 49	CP CH C2	ь Н ₅	CH ₅ CH ₅	-N CH ₅ -N CH ₅ -N H	C2 C2 C2	59 60 61 62	CH ₅ CH ₃ CH ₃ CH ₃ CH ₅ CH ₅	-OH ₂ -O OH ₃ -CH-C ₂ H ₅ -OH ₂ -CH(OH ₃) ₂		C2 C2 C2 C2
46 47 48 49	CP CH C2	H ₅ H ₅ H ₅ H ₂ —OH-OH ₂	CH ₅ CH ₅ CH ₅	-N CH ₃ -N CH ₅ -N CH ₅ -N CH ₅ -N CH ₅) ₂	C2 C2 C2 C2 C2	59 60 61 62 65	CH ₅ CH ₅ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₅	-OH ₂ -O -OH ₂ -O -CH-C ₂ H ₅ -CH ₂ -CH(CH ₅) ₂ -CH ₂ -CH-CH ₅		C2 C2 C2 C2 C2
46 47 48 49 50	OH C2 CH CH	H ₅ 5 H ₅ 12-OH-OH ₂	CH ₅ CH ₅ CH ₆ CH ₂ CH ₂ CH ₂ CH ₃	-N CH ₃ -N CH ₅ -N CH ₅ -N (CH ₅) ₂ -N (CH ₅) ₂ -N (CH ₅) ₂	C2 C2 C2 C2 C2	59 60 61 62 65 64 65	CH ₅ CH ₅ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₅	-OH ₂ -O CH ₃ -CH-C ₂ H ₅ -CH ₂ -CH(CH ₃) ₂ -CH ₂ -CH-CH ₃ C ₂ H ₅		C2 C2 C2 C2 C2
46 47 48 49 50	ОН С2 СН СН СН	H ₅ 5 H ₅ 12-OH-OH ₂	CH ₅ CH ₅ CH ₅ CH ₆ CH ₂ CH ₂ CH ₂ CH ₃ -CH-C ₂ H ₅	-N CH ₃ -N CH ₅ -N CH ₅ -N CH ₅) ₂ -N (CH ₅) ₂ -N (CH ₅) ₂ -N (CH ₅) ₂	C2 C2 C2 C2 C2 C2	59 60 61 62 65 64 65	CH ₅ CH ₅ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₅	-OH ₂ -O CH ₃ -CH-C ₂ H ₅ -CH ₂ -CH(CH ₃) ₂ -CH ₂ -CH-CH ₃ C ₂ H ₅		C2 C2 C2 C2 C2
46 47 48 49 50 51	ОН С2 СН СН СН	H ₅ is H ₅ 2-OH-OH ₂	OH 5 CH 5 CH 6 CH 2-CH-CH 2 CH 8 -CH-C 2 H 5 OH 3	CH ₃ -N CH ₅ -N CH ₅ -N (CH ₅) ₂	C2 C2 C2 C2 C2 C2 C2 C2 C2	59 60 61 62 65 64 65	CH ₅ CH ₅ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₅	-OH ₂ -O CH ₃ -CH-C ₂ H ₅ -CH ₂ -CH(CH ₃) ₂ -CH ₂ -CH-CH ₃ C ₂ H ₅		C2 C2 C2 C2 C2
46 47 48 49 50 51 52 55	OH C2 CH C4 CH C4 CH C4 CH C4	H ₅ is H ₅ is 12-OH-OH ₂ is is	CH ₅ CH ₅ CH ₆ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₆ CH ₇ CH	-N(CH ₃) ₂ -N(C ₂ H ₅) ₂ -N(C ₂ H ₅) ₂	C2 C2 C2 C2 C2 C2 C2 C2 C2	59 60 61 62 65 64 65	CH ₅ CH ₅ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₅	-OH ₂ -O CH ₃ -CH-C ₂ H ₅ -CH ₂ -CH(CH ₃) ₂ -CH ₂ -CH-CH ₃ C ₂ H ₅		C2 C2 C2 C2 C2
46 47 48 49 50 51 52 55 54	OH C2 CH CH CH CH CH CH CH CH C	H ₅ is H ₅ is 2-OH-OH ₂ is	CH ₅ CH ₅ CH ₅ CH ₆ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₆ CH ₇ CH	CH ₃ -N CH ₅ -N CH ₅ -N (CH ₅) ₂ -N(CH ₅) ₂ -N(CH ₅) ₂ -N(C ₂ H ₅) ₂	C2	59 60 61 62 65 64 65	CH ₅ CH ₅ CH ₃ CH ₃ CH ₃ C ₂ H ₅ CH ₅	-OH ₂ -O CH ₃ -CH-C ₂ H ₅ -CH ₂ -CH(CH ₃) ₂ -CH ₂ -CH-CH ₃ C ₂ H ₅		C2 C2 C2 C2 C2

特開 昭52--- 51364 (12)

本方法生成物は価値ある選択であり、そして 非常に良好な利尿性やよび塩分辨性性作用によ りすぐれている.

いくつかの特許明報書には4-アリールー 1.5 - ナアゾリジン - 4 - オール時導体の肛門 産腸性 2NB 刺皮性 かよび 対尿性作用について報 告されている〔ドイン特許公開公報第1,958,674 号明磁告かよび米国停許路 5.6 7 1.5 5 4 号明 概要 多用)・その場合、芳香夜にスルホンアミド島 のない化合物が肝臓であり、その利尿作用はテ アゾリジン機の特定の遺換に大いに依存してい る。今や驚くべきととに、本方伝による前風生 成物がとの特定の機能機に関係なくベンゼン核 の3位にスルホンアミド当を導入するととによ り非常に強い塩類剤尿作用を有し、これは砒却 のテアゾリジン辞導体より品質的にも質的にも 例らかに優れている。その上もまり譲ましくな

内)のためのアンブルがあげられる。不方法生 成物はこれらの製剤中にないてなかんずくその 殿財加生成物の形で包含される。 右療上の 1 回 量は5~500年である。とれらの製剤は特に高血 圧の治療の原債用の尤てんかよび退体物質の個 化例えばレセルピン、ヒドララジン、 グアネチ シン、αーメテルドーパあるいはクロニジンの ような抗高血圧剤をさらに包含しうる。

その上、アルドステロン括抗制例えばスピロ ノラクトンのようなカリウム保持作用化台物も るいはトリアムテレンあるいはアミロリドのよ りなプソイドアルドステロン拮抗剤との仕貸上 の組みせせ製剤も重要である。さられ、機々の 使用形例无过槽衣裳。尖刻。始忽縠。 放剂等化 かける 叶- 世美があげられる。

以下の実施例において実施例の眼点なよび分 解点は毎正されていない。

い肛門直島性かよび ZNB 刺激性作用成分は大い 化抑えられている。

新規な本方法生成物の塩類利尿作用はラット の50年/仲経口1回盤で側定される、とれらは 例えばハイドロクロルテアジド(Androchlorothiasid) およびクロルサリドン (Chlorthalidon) のよう なテアジド群の紙切の商業的製剤の塩穀利尿法 性より使れている。その上新規な本方法生成物 は長期持続性作用により抜きんでており、これ はクロルサリドンのそれにほぼ一数する。それ 敵新規な本方法生成物は毎代高血圧性状態のお 銀に通してかり、その味とれらを、今日一般的 に賃仰であるように、抗高血圧剤と組み仕せる ととができる。

新規な本方法生成物の指接上の製剤としては まず第一に最別、額衣袋、カブセル、坐剤、亚 びにまた神祇口役与(参議内、皮下をよび筋肉

美施 挽 1 4-(5-アセチルスルフアモイル - 4 - 0 D N - 7 T = N) - 5 - x テルーマーメテルイミノー 1.5 ~ チ アグリジン・4・オール臭化水素酸

105803-725ルスルフアモイル - 2 -プロムー 4~クロルーアセトフエノンをエタノ ールに 100mm中に舒屏し、5 g の 1,5 m ジメチ ルーチオ尿素添加使5分間45~50万化加温す る。一夜20℃で放金依紙圧下俗級を除去し、 残留物をアセトンだ藤麻しそしてジィソブロビ ルエーテルと境件することにより生成物を北蔵 させる。無定形の固形物質(分辨点 860以下) として待られる。

実施例2 4-(5-アセチルスルフアモイル -4-10x-712x)-5-x ナルー2ーイソプロピルイミノー

韓期 352-- 51 364 (18)

1.5 - ナナソリジン - 4 - オール共

化水果或塩

3.7 f (0.0 1 tn) 0 5 - 7 t t n n n n アモイルー2ープロムー 4 -- クロルアセトフェ ノンシよび 1.5!(001モル)の1~エチル - 5 - イソプロピルテオ尿巣をアセトン50㎡ 中5~5分削500化加温しそして一夜放置後 無色韶晶を評選する。 破点 189℃ (分解)。

実施判る もっ(4 - クロルー 5 - メテルアミ ノカルボニルスルフ アモイルーフェ ニル) - 3 - メチル - 2 - メチルイ セノー 1.5 - ナアゾリジン・4-オ ール具化水素酸塩

実施例2と回縁にして2-プロムー4-クロ ルーダーメチルアミノカルポニルスルフアモイ ルーフセトフェノンおよび - 1,5 - ジメテルテ オ駅業から得られる。融点 188℃ (分辨)。

カニボニルスルフリモイルーアモトフエノンを よび 1.3 - ジアリルナオ 尿素から作られる。酸 点 1930 (分解)。

尖面倒る 4~(3~n~ブチルアミノカルポ ニルスルフアモイルー 4 - クロルー フェニル) - 5 - メテル - 2 - メゲ ルイミノー 1.5 - チアソリシン - 4 - オール単化水準回塩

実施例2に記載されている方法と同僚にして 2 - プロムージープチルアミノカルポニルスル ファモイル・4-クロル・アセトフエノンおよ ぴょ5-ジメテルテオ駅業から借られる。酸点 1470 (分辨)。

吳雄物フ 4-(5-ロープチルアミノカルボ ニルスルフアモイル - 4 - クロル -フェニル) - 2 - イソプロビルイミ ノー5-メチル- 1,5 - チ ア ゾ リ

5-エチルー2-エチルイミノー4 実施州4 - (4 - クロル - 5 - メチルアミノ カルボニルスルファモイルフエニル) - 1.5 - チアソリジン - 4 - オール

典化水素銀塔

実施例2化配収されている方法と可像にして 2 - プロム - 4 - クロル - 5 - メテルアミノカ ルポニルスルフアモイル - アセトフエノンおよ び1.5 - ジェナルテオ尿糞から待られる・厳点 1850(分解)。

異施例5 3ーアリルー2~アリルイミノー4 - (4 - クロルーちーメチルアミノ カルポニルスルフアモイルフエニル) _ 1,5 _ チアゾリジン - 4 - オール

異化水 集 酸 堪

実施物2に記載されている方伝と同様にして 2 - プロムー 4 - クロルー 8 - メテルアミノー

シン-4-オール 異化水素銀塩

夹楯例2に配収されている方法と同様にして 2 - プロム - ジーロープテルアミノカルボニル スルフアモイルーギークロルーアセトフエノン むよび1~インプロピルー5-メチルーテオ尿 素から待られる。融点 1810 (分解)。

尖脂例8 4-(4-クロルー3-メトキシカ ルポニルスルフアモイルーフエニル) - 5 - メテルー 2 - メテルイミノー 1.5 - チアゾリジン - 4 - オール単

化水素酸塩

奥羅例2に配載さたている方法と同僚にして 2 - プロムーギークロルージャメトキシカルボ ニルスルフアモイルーアセトフエノンおよび 1.5 - ジメテル - テオ尿業そして続くジェテル エーテュ8日間を用いる沈殿により得られる。 分離点105℃以下。

突施例 9 4 - (5 - エトキシカルポニルスルフアモイル - 4 - タロル - フエニル) - 5 - メテル - 2 - メテルイミノ - 1,5 - テアソリジン - 4 - オール具化水素酸塩

契窓例 10 4 - (5 - エトキシカルボニルスルフアモイル - 4 - クロル - フエニル)
- 2 - イソフテルイミノ - 5 - メテル - 1:5 - チアンリジン - 4 - オール臭化水素硬塩

実施術 8 に記載されている方法と同様にして 5 - エトキシカルポニルスルファモイル - 2 -

アゾリジン - 4 - オール 異化 水素 曖 塩

実施例 1 1 に配載されている万依と同様だして 5′- アセチルスルフアモイル - 2,4′- ジプロムアセトフェノンかよび - 1,5 - ジメチルチオ 尿素から得られる。 融点 2010 (分解)。

失能例 15 4 - (5 - アセテルヌルフアモイル - 4 - プロムーフエエル) - 5 - エ テル- 2 - シクロヘキシルイミノー 1.5 - テアゾリジン - 4 - オール具 化水素鉄道

実施的 B に記載されている方法と何様にして ジーアセチルスルフアモイル - 2・4 - ジプロム - アセトフェノンかよび 1 - エチル - 5 - シタ ロヘキシルチオ尿素から得られ無定形の生成物 を 5 5 0 ~ 4 0 0 の 個酢酸エステル 5 0 ㎡を用い て紹弘化させる。酸点 1 5 5 ~ 1 5 8 0 (分標). 特別約52-51364 (14) プロムーギークロルーアセトフェノンシよび 1 -メチルー5-イソプチルーチオ駅米から待ら れる。収点 1930 (分解)。

実施例 11 4 - (4 - クロル・5 - プロビオニ ルスルフアモイル・フェニル) - 5 -メチル - 2 - メチルイミノ - 1.5 -チアゾリジン - 4 - オール具化水

景 徽 塩

実施例2 代配収されている方法と何様だして
2 ープロム・ がークロル・ ジーフロビオニルス
ルフアモイル・アセトフエノンおよび 1.5 ージ
メチルチオ尿素から得られ、軽楽を領導して鉄
去し無定形の比較を酢酸エステル 5 0 ㎡を用い
て船舶化させる・分解点 1050以下。

実施例 12 4 - (5 - アセテルスルフアモイル - 4 - ブロム・フエニル) - 5 - メ テル - 2 - メテルイミノ - 1.5 - テ

実施的 14 4 - (5 - アセチルスルファモイル - 4 - クロル・フエニル) - 2 - シ クロヘキシルイミノ - 5 - メチル・ 1.5 - チアゾリシン - 4 - オール奥 化水素酸塩

英盾例 2 化配数されている方法と間様化して
ジーアセチルスルフアモイルー 2 ープロムー 4
ークロルーアセトフェノンかよび 1 ーメチルー
5 ーシクロヘキシルーチオ 泉東から得られ、生
成物を酢酸エステル 5 0 配を用いて沈殿させ 無
定形の物質を少量のエーテルと 動炉することに
より由化させる。分解点 7 2 0 以下。

実施的 15 4 - (5 - アセチルスルファモイル - 4 - クロルーフエニル) - 5 - ア リルー2 - アリルイミノー 1,5 - チ アンリシン・4 - オール美化水素酸 切

特開 昭52… 51364 (15)

実施例 2 に配似されている方法と何様にして
ジーアセチルスルフアモイルー 2 ープロムーギークロルアセトフェノンシェび 1・5 ー ジアリルテオ尿素から待られる・生成物をエーテル 6 0 単を用いて沈殿させ、辞継を領導して除去し、無足形の残貨物を水7 0 単中に科解しそして複給飲味する・分解点 120 以下の無足形の値体物質として得られる

奥路例 16 5 - (5 - アセチルスルフアモイル
- 4 - タロル - フェニル) - 5 - ヒ
ドロキシー 2,5,5,6 - テトラヒドロ
イミダン (2,1 - b] テアンール臭化
水素砂塩

実施例 1 5 化配収されている方法と向機化してが-アセチルスルフアモイル-2 - ブロム・
ゼークロル・アセトフェノンかよび機能に粉砕
された 2 - イミダンリジンテォンから得られる。

実施例2兆配数されている方のと門様にし続

いて生成物をジインプロビルエーテルで化版させることによりが- アセナルスルフアモイルー
2.4¹ - ジブロム - アセトフエノン かよび 1.5 ジーロープロビルチオ尿素から待られる。 無定
形の固体物質(分解点 1250以下)である。
実用性 19 4 - (4 - クロルー 5 - シクロヘキ
ンルアミノカルボニルスルフアモイル・フェニル)- 5 - メテルー 2 -

実務例 1 8 に配収されている方法と同僚にして2 - プロム・ギークロル・ダーシクロヘキシルアミノ・カルボニルスルフアモイル・アセトフェノンかよび 1.5 - ジメチルチオ 尿素から 待ちれる。無定形の沈厳を酢酸エステルを用いて

- 4 - オール 異化水素酸塩

メチルイミノー 1,5 ーチオゾリジン

無足形の胸体物質(分解点 1100以下)である。 実施例 17 4 - (5 - アセチルスルフアモイル - 4 - クロル・フエニル) - 2 - ベ ンジルイミノ - 5 - メチル - 1.5 -チアゾリシン - 4 - オール異化水素 酸塩

実施物 1 4 に記載された方法と同様にして 5
- アセチルスルファモイル - 2 - プロム - 4 - クロル - アセトフェノン かよび 1 - ベンジル - 3 - メチル - チオ尿素から得られる。無定形の 歯体物質(分酵点900以下)である。

来離例 18 4 - (5 - アセチルスルフアモイル - 4 - プロム - フエユル) - 5 - ロ - プロビル - 2 - ロ - プロビルイミ ノ - 1,5 - チアゾリジン - 4 - オー ル異化水素酸塩

卤化させる。無定形の卤体物質(分解点 8 1 で以下)として彼られる。

実施例 1 9 化配数されている方法と同様化して 2 - プロムー 4' - クロハー 5 - シクロヘキシハアミノーカルボニルスルフアモイル - アセトフェノン かよひ - 1,5 - ジアリルチオ 尿素から 待られる。無足形の固体微負 (分辨点 1 U 1 TO 以下)として待られる。

ジン・4・オール美化水素酸塩

実施例19 代配数されている方法と回復にして2 - プロムーギークロルーギーシクロヘキシルアミノーカルボニルスルフアモイルーアセトフエノンおよび1 - エテルー5 - イソプテルーチオ尿果から待られる。厳点1560(分解)。 実施例22 3 - (3 - アセテルスルフアモイループロム・フエニル) - 3 - ヒドロキシー 2.3.5.6 - テトラヒドロイミダン(2.1-b) チアソール臭化水業酸塩

4.1 g (0.0 1 モル) のジーアセチルー 2.4 ージブロムアセトフェノンをメタノール 4 0 W 中 1 g (0.0 1 モル) の 2 ーチアンリジンチォンと 1 0 分間 4 5 ~5 0 で に加强し、 仄いで 1 0 時間 2 0 で 化放催し、 続いて強力に提呼されている酢酸エステル 100×中に 有下する・ 無足形

- 4 - クロルーフエニル) - 5 m メ テルー 2 - (2 - フェニル - エテル アミノ) - 1.3 - チアゾリジン - 4 - オール具化水素酸塩

実施例2 5 代記収されている方法と阿保化してが-アセチルスルフアモイル-2-プロムーザークロル-アセトフェノンシよび 1-メチル-5-(2-フェニルエチル)-チオ尿業から待られる・無定形の歯体物質(分解点 1050以下)である。

突 施例 25 4 - (3 - アセチルスルフアモイル - 4 - クロル・フエニル) - 3 - ロ - ブロビル - 2 - ローブロビルイミ ノー 1.5 - チアゾリジン - 4 - オー ル美化水素酸塩

美羅例23に配収されている方依と同様にしてジーソセチルスルフアモイル-2-プロム-

特別 195 で (分解)。

るファ(Q Q 1 モル)のかってセテルスルファモイルー2ープロム・ギークロルーアセトフェノンを酢酸エステル2 0 が中1 じょ(Q Q 1 モル)の1 ーエテルー5ー(2ーメトキシブロビル)ーチオ尿素と2 4 時間2 0 でで痩拌する。 次いでエーテル 6 0 がを加え、無定形の抽状化数を粉膜を傾向して酸去したのちエーテル 4 Q がで野砕することにより悩化させる、無定形の樹芽性の関体物質(分酵点 6 5 で以下)である、実施例 24 4ー(5ーアセチルスルフアモイル

4- クロルーアセトフェノンかよび 1,5 - ジーロープロビルーチオ尿素から得られる。無定形の歯体物質(分辨点 8 3 D以下)である。

実施的 26 5 - (3 - アセテルスルファモイル - 4 - クロル - フエニル) - 3 - ヒ ドロキシ - 2.5.6.7 - テトラヒドロ -5H - チアゾロ(3.2-a) ピリミンン

塩酸塩

実職例 2 2 代配収されている方法と同体化して 5 - アセチルスルフアモイル - 2 - プロム - 4 - クロルアセトフエノン かよび 分仲された 5.4.5.6 - テトラヒドロ - 2 - ピリミジンチオール から得られる。 無足形の固体物質 (分解点 1060以下) である。

実施例 27 4 - (5 - アセチルスルフアモイル - 4 - クロル・フェニル) - 5 - メ チル-2 - メチルイミノー 1,5 - チ アンリジン・4-オール塩酸塩

方法 ▲:

200で40時間強く気件する。 辞孫を献出 下に除去し、幾個物をメタノール 50 配中に とり、メタノール性堪様を用いて微性に調整 する。 滅圧下に啓蘇 10 配を留去したのち返 値で24時間放催し、分離してくる塩化ナト リウムを速心分離しそして所級の生成物をエーナル 40 配を用いて此般させる。 無定形の 均体物質(分解点 150~1550)として得られる。

方法 0 :

失権例 28 4 - (5 - アセチルスルフアモイル - 4 - クロルーフエニル) - 5 - エ 形の山体物質('分解点 1550以下)として待ちれる。

万在B:

- b) 前記 a)で興製された塩を無水ジオキサン 250xx中に緩微し、無水酢暖2.1 タを敬仰体

チルー2-インプロピルイミノー 1.5 -チアゾリジン-4-オール塩 健塩

方齿▲:

英施例 2 7 / A 化配取されている方法と同様にして4 - (5 - アセチルスルフアモイル・4 - クロルーフェニル) - 5 - エチルー 2 - イソプロビルイミノー 1.5 - チアゾリジン - 4 - オール 央化水素酸塩から待られる。無足形の向体物質(分解点 7 7 7 以下)である。

方岳B:

実施機 2 7 / B に 配収されている方法と関係 にして 5 - エテル - 4 - (4 - クロル - 5 - ス ルフアモイル - フエニル) - 2 - インプロピル イミノ - 1.5 - テアゾリジン - 4 - オール(艇 点 1750 (分解))から無水酢暖 かよびメタノ ール性塩酸を用いて得られる。無足形の固体物

转開 昭52-51364 (18)

質(分解点71な以下)である。

興趣例 29 4 - (4 - クロル - 3 - メテルアミ ノカルボニルスルフサモイル - フェ ニル) - 3 - メテル - 2 - メテルイ ミノ - 1.5 - チアゾリシン - 4 - オ

- ル具化水素破塩

実施的 2 7 / B 代配収されている方法と同僚 だして 4 ~ (4 ~ クロル ~ 5 ~ スルフアモイル ~ フェニル) ~ 5 ~ メテル ~ 2 ~ メテルイミノ ~ 1.5 ~ チアゾリシン ~ 4 ~ オールからアシル 化剤としてメテルインシアナートを用いること により得られる。酸点 1 tb 5 ~ 1 8 7 で(分解)。 実施例 50 4 ~ (4 ~ クロル ~ 5 ~ シクロペン テルアミノカルボニルスルフアモイ ルーフェニル) ~ 5 ~ メテル ~ 2 ~ メテルイミノー 1.5 ~ テアソリシン ~ 4 ~ オール臭化水栗 壊塩

> ルーフエエル) - 5 - ヒドロキシー 2,5,6,7 - テトラヒドロ - 5H - チア ゾロ(5,2 - a) ビリミシン美化水素 鉄塩

実施例 2 2 化 む 取されている方法と 円像化して 2 - プロム - ギークロル - ジーンクロベンチルフミノ - カルボニルスルフアモイル - アセトフェノン かよび 5.4.5.6 - テトラヒドロ - 2 - ビリミジンチオールから得られる。厳点 1800 (分解)・

実施例 55 4 - (4 - クロル・5 - ジーロープロピルアミノカルボニルスルフナモイル - フェニル) - 5 - メテル - 2 - メテルイミノー 1,5 - チアゾリシン-4 - オール異化水果酸塩

実施例15に配収されている方法と同僚にし、 て2 - プロム・4 - クロル・5 - シーューブロ 実施的 2 に記載されている方法と同様にして
2 - ブロム - ギークロル - ガーンクロベンチル
アミノカルボニルスルフアモイル - アセトフェ
ノンシよび 1.5 - ジメテルチオ尿素から待られる。磁点 1850 (分解)。

実施例 51 2 - ベンジルイミノ・4 - (4 - クロルー 5 - ンクロベンチルアミノカルボニルスルフアモイルーフエニル) - 5 - メテルー 1.5 - テアゾリシン- 4 - オール臭化水素酸塩

実 路 例 2 5 K 配 収 されている方 法 と 问 像 K して 2 - プロム - 4' - クロル - 5' - シクロペンチルアミノ - カルボニルスルフアモイル - アセトフェノン むよび 1 - メテル - 5 - ペンジル - チオ 承素 から待られる。 触点 1650 (分 肺)。 実 路 例 52 5 - (4 - クロル - 5 - シクロペンチルアミノカルポニルスルフアモイ

ビルブミノカルボニルスルフアモイル・フセトフエノンかよび 1.5 - ジメテルチオ駅場から得られる。蝦瓜 2050 (分勝)。

失應例 54 2 - ベンジルイミノー4 - (4 - クロル - 5 - (1 - ビベリジルカルボニル - スルフアモイル) - フェニル - 5 - メチル - 1,5 - チアゾリジン・ - 4 - オール吳化水素酸塩

実施例 2 5 にむ 載されている方法と何候にして 2 ープロム・ギークロル・ジー (1 ーピペリシルカルボニル・スルフアモイル) - アセトフェノン ひよび 1 ーメナル・5 ーペンジル・チオ 尿素 から传られる・無足形の値 体密負 (分解点 1280以下)である。

本先明の方法において使用される水料生成物の瞬級を以下に物示する。

1. 一数式目を有するハログンケトン

11. プロム化化よる

5 - T セチルスルフアモイル - 2 - プロム - 4 - クロル - アセトフエノン:

5.5 m (0.0 2 モル) のが-アセナルス
ルフアモイル・4-クロルーアセトフェノ
ンを酢酸エステル3 0 世中遊旋帝却容で形
酸大腹まで加騰し、仄いで酢酸エステル 6
ピ中の臭煮3.2 m (0.0 2 モル) の俗和 2
ピヤの臭煮3.2 m (0.0 2 モル) の俗和の央
の色が急に何矢するまで沸騰させ、仄い
で 450~ 550 まで冷却し換る異素・酢吸
エステル協自物を撹拌してして密集を前方する。酸点 1500 (少量のイソフロバノール
から。

何保の方法で扱 ! に示されている一数式 ! の2-ブロム-アセトフェノン(2=Br)が待られる。

1.2 アシエ化器	こよる	
-----------	-----	--

ジーフセチ パファモイル - 2.4' - ジブロム - アセトフエノン:

1881(Q.05モル)の2.4ーシブロム - 5'-スルフアモイルーアセトフェノンを 約100㎡の無水能銀中で1時間15分間虚 健業券し、反応属台物を脅却しそして所確 の生成物をジイソフロビルエーテル 600㎡ および石油エーテル 400㎡を用いて优較させる。 数点 1640。

門像の方法で 2.4′ - ジクロル - ジースルフ アモイル - アセトフエノンから 5′ - アセチル スルフアモイル - 2.4′ - ジクロル - アセトフ エノンが得られる (鹹点 177℃)。

5・アシルスルフアモイル・アセトフェノンハログン・ケトン目の前政権としての一致が対は以下のようにして調製される。

R 5	¥	A
0 2 H 5	o.e	1460(分解)
CH3-0-	o e	1 1 8 6 (ኇ ॠ)
0 ₂ H ₅ 0-	c <i>e</i>	1510(分解)
CH 5 - NH-	0.6	1520(分解)
D-C4H9-NH-	o e	109℃(分解)
— N H —	c e	1120(分解)
— № H-	0.8	1550 (分解)
<u> </u>	c.e	170℃ (分解) (アセトニトリルから)
(n-C3H7)2H-	oe	1 7 8 70 (か 所) (エーテル/酢酸エステルから)

D. 1. 前記 I. 2. と 阿様 化 し て ギ - クロル - ぎ - スルフ ア モ イル - ア モ ト フェ ノン か ら 無 水酢 酸 を 用い て ぎ - ア セ チ ル スルフ ア モ イル - ギ - クロルア セト フェ ノン (破点 1550) かよび 熊 水 ブロ ビ オン 銀 を 用い て ギ - クロル・ ジ - ブロ ビオニル - スルフ ア モ イル - ア モ ト フェノン (酸点 1500) が 待 られる。

11.2

a) 2541(C.1 モル)の4-クロルーダースルフアモイルーアセトフェノンをアセトン600世紀よび28前性ソーダ船被50世中代俗解したのちり~50代合却し、この鑑度でメテルイソシアナート651を向下する。さらに4時間室温で提择し、1.5 cの水を加え、塩酸を用いてp21~2代酬製し、アセトンを質去し、磁晶性の4-クロルージーメテルアミノカルボニルスルフアモイ

· 韓阿 #52 · 51 364 (20)

ルーアセトフエノン(厳点 1540)を戸別 する。

b) シクロヘキシルイソシアナート149を 用いる対応する反応により4-クロルー 5 -シクロヘキシルアミノカルボニルスルフ アモイル-アセトフエノン(眼点 1720) が待ちれる。

g. 3.

a) 2349 (Q. 1 モル) の ジークロルー ジースルフアモイルーアセトフェノンを無水ジオキサン 200世中で初末状態水炭吸カリウム 27.69と 5 時間 虚斑 承がし、クロル ぎ酸メチルエステル 7. 8 対 磁 加 使 さらに 5 時間 舞者させる・経典を除去し、無質 物を水に格解し、2N塩酸を用いてpH 1 ~ 2 に調整する・無定形に分離してくる ジークロルージーメトキシカルボニルスルファモイル・ア

(メデノールー水から)。

財記 L 4 a)と同様にして ギークロル・ダーメトキシカルボニルスルフアモイル・アセトフェノンからそれぞれの操作により下記化合物が製造される。

- b) シクロペンチルアミンを用いて、 4' クロルー 5' シクロペンチルアミノカルポニルスルフアモイル アセトフェノン (職点 1680) が得られる。
- c) ピペリジンを用いてが-クロルージーペンタメチレンアミノカルボニルスルフアモイル-アセトフェノンが無定形の油として. 得られ、これはこの形でその使の操作に用いられる。
- d) ジーロープロビルアミンを用いて 4- クロルー 5- ジーロープロビルアミノカルボニル- スルフアモイル・アセトフエノンが

セトフェノンは少母放置後的基化する。 磁 1640 (分解)。

b) クロルぎ破エテルエステル 9.6 xt を用いて対応する反応を行うと 5 - エトキンカルボニルスルフアモイル - 4 - クロル - アセトフエノン (酸点 1060) が 得られる。

g. 4.

a) 2 % 1 9 (0. 1 モル) の 4 ー クロルー 5 ーメトキシカルボニルスルフアモイルーアセトフェノンをジオキサン 10 0 xt 中 のローブテルフミン 7. 5 9 (0. 1 モル) と共化オートクレーブ中 10 0 でに 6 時間加熱する。格様を終去し、幾宵物に水 5 0 0 xt を加え、2N塩酸を用いてpit 1 ~ 2 に調整し、 飲時間放性体系の 5 ーローブテルアミノカルボニルスルファモイル・ 4 ー クロルアセトフェノンを产削する。 触点 15 5 で (分解)

無足形の袖として得られ、これはこの形で よの場の無質を出いられる。

特許出版人 ヘキスト・アクテーエングゼルシヤフト

代 華 人 一弁理士 山 下 自 😩

18 31

7. 前記以外の発明者

住所 西ドイツ国フランクフルトノマイン。ハイムヒエン ヴェーク59番

氏名 ローマン・ムシャヴェック