Otimização de Sistemas

• Belo Horizonte - 06 de Maio de 2019 •

Gestão de Tarefas

Gabriel Luciano
Geovane Fonseca
Luigi Domenico

Sumário

- Caracterização sobre a Ilha;
- Solução proposta;
- Modelo matemático;
- Implementação;
- Desafios encontrados;
- Aplicação Móvel;

1. Contextualização sobre a ilha

Contextualização sobre a ilha

- Desenvolvimento de trabalhos em grupo;
- Distribuição de trabalhos para cada participante;
- Grau de dificuldade de cada trabalho;
- Competência de cada aluno em relação a cada disciplina;
- Maximizar a qualidade dos trabalhos.

O problema identificado

Problema:

Dividir tarefas entre alunos.

Dificuldades:

- Competência de cada aluno;
- Grau de dificuldade de cada tarefa.

2. Solução Proposta

A solução proposta

Tarefas: Foram utilizadas as tarefas em grupo que estão sob demanda no curso de Ciência da Computação do sétimo período da PUC Minas no primeiro semestre de 2019

Alunos: Membros do grupo

A solução proposta

Competências

	Tarefa 1	Tarefa 2	Tarefa 3	Tarefa 4	Tarefa 5
Aluno 1	3	5	5	3	8
Aluno 2	8	5	5	2	3
Aluno 3	8	3	3	2	2

Dificuldade

	Dificuldade
Tarefa 1	13
Tarefa 2	8
Tarefa 3	8
Tarefa 4	13
Tarefa 5	5

3. Modelo Matemático

Função Objetivo:

$$\begin{split} F.O \rightarrow \max Z &= 3x_{a_1}^{t_1} + 5x_{a_1}^{t_2} + 5x_{a_1}^{t_3} + 3x_{a_1}^{t_4} + 8x_{a_1}^{t_5} + \\ &8x_{b_1}^{t_1} + 5x_{b_1}^{t_2} + 5x_{b_1}^{t_3} + 2x_{b_1}^{t_4} + 3x_{b_1}^{t_5} + \\ &8x_{c_1}^{t_1} + 3x_{c_1}^{t_2} + 3x_{c_1}^{t_3} + 2x_{c_1}^{t_4} + 2x_{c_1}^{t_5} \end{split}$$

Restrição dos Alunos:

$$x_{a_1}^{t_1} + x_{a_1}^{t_2} + x_{a_1}^{t_3} + x_{a_1}^{t_4} + x_{a_1}^{t_5} \ge 1$$

$$x_{a_2}^{t_1} + x_{a_2}^{t_2} + x_{a_2}^{t_3} + x_{a_2}^{t_4} + x_{a_2}^{t_5} \ge 1$$

$$x_{a_3}^{t_1} + x_{a_3}^{t_2} + x_{a_3}^{t_3} + x_{a_3}^{t_4} + x_{a_3}^{t_5} \ge 1$$

$$(R1)$$

$$(R2)$$

$$(R3)$$

Restrição dos Trabalhos:

$$1 \leq 3x_{a_1}^{t_1} + 8x_{a_2}^{t_1} + 8x_{a_3}^{t_1} \leq 13$$

$$1 \leq 5x_{a_1}^{t_2} + 5x_{a_2}^{t_2} + 3x_{a_3}^{t_2} \leq 8$$

$$1 \leq 5x_{a_1}^{t_3} + 5x_{a_2}^{t_3} + 3x_{a_3}^{t_3} \leq 8$$

$$1 \leq 3x_{a_1}^{t_4} + 2x_{a_2}^{t_4} + 2x_{a_3}^{t_4} \leq 8$$

$$1 \leq 8x_{a_1}^{t_5} + 3x_{a_2}^{t_5} + 2x_{a_3}^{t_5} \leq 5$$

$$(R4)$$

$$(R5)$$

$$(R6)$$

$$1 \leq 8x_{a_1}^{t_3} + 2x_{a_2}^{t_4} + 2x_{a_3}^{t_5} \leq 5$$

$$(R8)$$

Restrição de não negatividade:

$$x_{a_1}^{t_1}, x_{a_1}^{t_2}, x_{a_1}^{t_3}, x_{a_1}^{t_4}, x_{a_1}^{t_5} \ge 0$$

$$x_{a_2}^{t_1}, x_{a_2}^{t_2}, x_{a_2}^{t_3}, x_{a_2}^{t_4}, x_{a_2}^{t_5} \ge 0$$

$$x_{a_3}^{t_1}, x_{a_3}^{t_2}, x_{a_3}^{t_3}, x_{a_3}^{t_4}, x_{a_3}^{t_5} \ge 0$$

Implementação

Codigos

Implementação em Python;

Utilização da biblioteca Pulp;

Códigos

```
# Create the 'prob' variable to contain the problem data
prob = LpProblem("Group tasks", LpMaximize)
# The 2 variables are created as binaries
x1t1 = LpVariable("Student 1 - Task 1", cat = LpBinary)
x1t2 = LpVariable("Student 1 - Task 2", cat = LpBinary)
# The objective function is added to 'prob' first
prob += 3*x1t1 + 5*x1t2 + 5*x1t3 + 3*x1t4 + 8*x1t5 \
  + 8*x2t1 + 5*x2t2 + 5*x2t3 + 2*x2t4 + 3*x2t5 \
  + 8*x3t1 + 3*x3t2 + 3*x3t3 + 2*x3t4 + 2*x3t5 \
  . "Allocated members"
```

Códigos

```
# The constraints are entered

prob += x1t1 + x1t2 + x1t3 + x1t4 + x1t5 >= 1, "Min tasks to member A"

prob += 3*x1t1 + 8*x2t1 + 8*x3t1 >= 1, "Min complexity to task 1"

prob += 3*x1t1 + 8*x2t1 + 8*x3t1 <= 13, "Max complexity to task 1"
```

Códigos

```
# The problem is solved using PuLP's GLPK
prob.solve(pulp.GLPK())

# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
    print(v.name, "=", v.varValue)
```

Resultados

Integrantes	Tarefa I	Tarefa II	Tarefa III	Tarefa IV	Tarefa V
1	1	0	1	1	0
2	1	1	0	1	1
3	0	1	1	1	1

4.
Aplicação Móvel
(Frontend)

Aplicação Móvel

4. API Restful (Backend)

API Restful

Resultado

```
Z: 39
allocations: Array
  ∨ 0: Object
       student: "Gabriel"
     ) tasks: Array
  v1: Object
       student: "Luigi"
     > tasks: Array
  v2: Object
       student: "Geovane"
     ) tasks: Array
```

Os desafios encontrados

- Definição da melhor forma de modelar o problema;
- Definição das restrições;
- Modelagem de interface;
- Biblioteca GLPK;
- Implementação GLPK;
- Aplicação móvel;
- Integração banco de dados não relacional;
- Heroku;

Obrigado!

Alguma dúvida?

