Mosaic: Quantifying Privacy Leakage in Mobile Networks

Ning Xia (Northwestern University)

Han Hee Song (Narus Inc.)

Yong Liao (Narus Inc.)

Marios Iliofotou (Narus Inc.)

Antonio Nucci (Narus Inc.)

Zhi-Li Zhang

(University of Minnesota)

Aleksandar Kuzmanovic (Northwestern University)

Scenario

Problem

Other research work

We are here!

How much private information can be obtained and **expanded** about end users by monitoring network traffic?

Motivation

I will know everything about everyone!

Mobile Traffic:

- Relevant: more personal information
- Challenging: frequent IP changes

Challenges

How to track users when they hop over different IPs?

Sessions:

Flows(5-tuple) are groupèd into sessions

Traffic Markers:

Identifiers in the traffic that can be used to differentiate users

With **Traffic Markers**, it is possible to connect the users' true identities to their sessions.

Datasets

Dataset	Source	Description
3h-Dataset	CSP-A	Complete payload
9h-Dataset	CSP-A	Only HTTP headers
Ground Truth Dataset	CSP-B	Payload & RADUIS info.

- 3h-Dataset: main dataset for most experiments
- 9h-Dataset: for quantifying privacy leakage
- Ground Truth Dataset: for evaluation of session attribution
 - RADIUS: provide session owners

Methodology Overview

Tessellation

Traffic attribution

<u>Mapping from</u> sessions to users

Mosaic construction

Via traffic markers

Via activity fingerprinting

Network data analysis

Web crawling

Combine information from both **network data** and **OSN profiles** to infer the user mosaic.

Traffic Markers:

- Identifiers in the traffic to differentiate users
- Key/value pairs from HTTP header
- User IDs, device IDs or sessions IDs

Domain	Keywords	Category	Source
osn1.com	c_user= <osn1_id></osn1_id>	OSN User ID	Cookies
osn2.com	oauth_token= <osn2_id>-##</osn2_id>	OSN User ID	HTTP header
admob.com	X-Admob-ISU	Advertising	HTTP header
pandora.com	user_id	User ID	Cookies
google.com	sid	Session ID	Cookies

How can we select and evaluate traffic markers from network data?

OSN IDs as Anchors:

- The most popular user identifiers among all services
- Linked to user public profiles

OSN IDs can be used as anchors, but their coverage on sessions is too small

Block Generation: Group Sessions into Blocks

Session interval δ

- Depends on the CSP
- δ=60 seconds in our study

Block

- Session group on the same IP within a short period of time
- Traffic markers shared by the same block

99K session blocks generated from the 12M sessions

Culling the Traffic Markers: OSN IDs are not enough

- Uniqueness: Can the traffic marker differentiate between users?
- Persistency: How long does a traffic marker remain the same?

We pick 625 traffic markers with uniqueness = 1, persistency >

Traffic Attribution: Connecting the Dots

Traffic markers are the key in attributing sessions to the same user over different IP addresses

Traffic Attribution via Activity Fingerprinting

What if a session block has no traffic markers?

Assumption (Activity Fingerprinting):

Users can be identified from the DNS names of their favorite services

DNS names:

- Extracted 54,000 distinct DNS names
- Classified into 21 classes

Activity Fingerprinting:

 Favorite (top-k) DNS names as the user's "fingerprint"

Service classes	Service providers
Search	bing, google, yahoo
Chat	skype, mtalk.googl.com
Dating	plentyoffish, date
E-commerce	amazon, ebay
Email	google, hotmail, yahoo
News	msnbc, ew, cnn
Picture	Flickr, picasa

Traffic Attribution via Activity Fingerprinting

- F_i : Top k DNS names from user as "activity fingerprint"
- $\Psi(F_i)$: Uniqueness of the fingerprint

Mobile users can be identified by the DNS names from their preferred services

Traffic Attribution Evaluation

identified

sessions/users

Coverage = ----total
sessions/users

Accuracy on Covered Set = correctly identified sessions/users total identified sessions/users

Traffic Attribution Evaluation

Evaluation Results

Construction of User Mosaic

Mosaic of Real User

MOSAIC with 12 information classes(<u>tesserae</u>):

- Information (Education, affiliation and etc.) from OSN profiles
- Information (Locations, devices and etc.) from users' network data

Quantifying Privacy Leakage

Leakage from OSN profiles vs. from Network Data

OSN profiles provide static user information (education, interests)

Analysis on network data provides *real-time* activities and locations

Information from both sides can corroborate to each other

Information from OSN profiles and network data can complete and corroborate each other

Preventing User Privacy Leakage

Protect traffic markers

 Traffic markers (OSN IDs and etc.) should be limited and encrypted

Restrict 3rd parties

 Third party applications/developers should be strongly regulated

Protect user profiles

 OSN public profiles should be carefully obfuscated

Conclusions

- Prevalence in the use of OSNs leaves users' true identities available in the network
- Tracking techniques used by mobile apps and services make traffic attribution easier
- Sessions can be labeled with network users' true identities, even without any identity leaks
- Various types of information can be gleaned to paint rich digital <u>Mosaic</u> about users

Mosaic: Quantifying Privacy Leakage in Mobile Network

Thanks!