AN INTRODUCTION TO BIG DATA

Master Program in Computer Science University of Calabria

Prof. F. Ricca

Let's start from few citations

Data creation is exploding.

With all the selfies and useless files people refuse to delete on the cloud. . . . The world's data storage capacity will be overtaken. . . . Data shortages, data rationing, data black markets . . . data-geddon!

Gavin Belson, HBOs Silicon Valley

Data is the new oil

Clive Humby, UK Mathemetician, 2006

. .

Qi Lu, the chief of Microsoft's Applications and Services, 2016

Let's start from few citations

Information is the oil of the 21st century, and analytics is the combustion engine

Peter Sondergaard, Gartner Research, 2011

A relational database is like a garage that forces you to take your car apart and store the pieces in little drawers

Anonymous

An finally SQL is back!

Anonymous

Is there a definition of bigdata?

- No unique definition!
- A buzzword often misused

"Data whose volume, variety, velocity of production, and complexity require new architectures, techniques, algorithms and analytics to manage it and extract value and hidden knowledge from it"

The famous "Vs"

- The Vs of Bigdata
 - Volume: scale of data
 Data volume is increasing ..up to ZB!
 - Variety: different forms of data
 Text, images, numerical values, etc.
 - Velocity: speed of production and elaboration e.g., streaming data, logs
 - Veracity: uncertainty and imprecision of data → quality!
 - Value: exploit intrinsic value by data
 - to create business advantage, thus
 - need for strong analytics and reasoning → Data Science

WHAT IS BIGDATA?

Let's try to answer from a historical perspective

Three revolutions in data bases

The main factors driving the main changes were:

- 1. The emergence of the electronic computer
- 2. The emergence of the relational database
- 3. The need of global scope and continuous availability

Three revolutions in data bases

- The term database dates back to the late 1960s
- But, collecting and organizing data has been an integral factor in the development of human civilization and technology

Three revolutions in data bases

- The emergence of electronic computers following the Second World War ignited the first revolution in databases
 - Direct high-speed access to individual records became possible in in the mid-1950s
 - ISAM (Index Sequential Access Method)
 made fast record-oriented access feasible
 - The birth of the first OLTP
 (On-line Transaction Processing) computer systems
 - These were completely under the control of the application
 - No Database Management Systems (DBMS)

First generation databases

- The first-generation databases ran exclusively on the mainframe computers (largely IBM mainframes)
- Two competing data models emerged in early 70-ties:
 - Network model (CODASYL standard)
 - Hierarchical model (somewhat simpler approach)
- "Navigational" in nature
 - Navigate using pointers or links
 - Dominated up until the late 1970s
- Extremely inflexible
 - Queries anticipated during the design phase
 - Complex analytic queries required complex coding
- The golden era of Cobol programmers!

The Second Database Revolution

The main issues:

- 1. Existing databases were too hard to use
 - only for people with specialized programming skills
- Lacked a solid mathematical foundation
 - no logical consistency, nor ability to deal with missing information
- 3. Mixed logical and physical implementations
 - physical storage incomprehensible to nontechnical users
- In 1970 Codd published
 - "A Relational Model of Data for Large Shared Data Banks"
 - defined the relational database model
 - the most significant—almost universal—model for database systems for a generation

The Second Database Revolution

- The relational model by Codd
 - Clearly presents data to the user
 - Does not mention how it should be stored on disk or in memory
 - Solid mathematical foundations
 - Levels of conformance via "normal forms"
- Concurrent data change requests → transactions
 - ensure consistency and integrity of data
 - A transaction is a transformation of state which has the properties of atomicity (all or nothing), durability (effects survive failures) and consistency (a correct transformation).
 - ACID transactions: Atomic, Consistent, Isolated, and Durable.
 - Model defined by Jim Gray in the late 1970s
 - the standard for all serious database implementations

Un-normalized data

Student Name Test Name Test Name Test Date Answer 1 Answer 2 Answer 3 Answer 4 Answer 5 Answer 6 Answer N

Normalized data

Relational DBMSs

- Initially vendors including IBM did not like the idea
 - Can a relational DB deliver adequate performance?
- IBM initiate proved it in 1974 with System R
 - it pioneered the SQL language
- On the hardware side minicomputers replaced mainframes in the 80-ties
- In 10 about years many new DBMSs were introduced
 - E.g., Oracle, Sybase, SQL Server, Informix, MySQL, and DB2
- Today a Relational DBMS means:
 - Relational data model + ACID transactions + SQL
- Dominating technology, unchallenged until the latter half of the 2000s

Relational DBMS

- More than 30 years of commercial dominance!
- A triumph of computer science and software engineering
 - Strong theoretical foundations
 - Data independent of the physical storage implementation
 - ACID transaction model
 - Flexible query mechanisms that do not require sophisticated programming skills

The unlucky OODBMS

- Another significant paradigm shift impacted mainstream application-development languages:
 - Object-oriented (OO) programming
 - Encapsulation: An object class encapsulates both data and actions (methods) that may be performed on that data
 - Inheritance: Object classes can inherit the characteristics of a parent class
- The "impedance mismatch"
 - The first serious challenge to the relational database
 - Various differences in the models
 - From identity, to navigation, to association maintenance, etc.
 - Did not match current technology
 - Alleviated by Object Relational Matching (ORM)

The Third Database Revolution

- No significant new databases were introduced for about 10 years (1995–2005)
- The era of massive web-scale applications begins
 - RDBMS demonstrate scalability limits, and high costs
 - Scale-up vs scale-out
 - Google had to invent new hardware and software architectures
 - Amazon needed transactional processing capability that could operate at massive scale
 - MySpace and eventually Facebook faced similar challenges in scaling their infrastructure from thousands to millions of users
 - Oracle could not provide sufficient scalability

New database designs emerge

- Sharding (Facebook/Twitter) involves partitioning the data across multiple databases → ACID transactions are lost
- Amazon developed an alternative to strict ACID
 - → key-value store (DynamoDB)
- Programmers unhappy with the impedance mismatch
 - → Document databases (CouchBase and MongoDB)
 - Enabled by AJAX and diffusion of JSON
- NoSQL and NewSQL "the Nonrelational Explosion"
 - H-Store described a pure in-memory distributed database
 - C-Store specified a design for a columnar database

Google solutions

- In 2003, Google revealed
 - the distributed file system GFS
 - the parallel processing algorithm MapReduce
 - its BigTable distributed structured database

Hadoop ecosystem

- The Hadoop project (by Yahoo!)
 - Opens source inspired to Google solutions
 - a rapid uptake from 2007 on become an ecosystem
 - a technology enabler for Big Data
 - the de facto solution for massive unstructured data
- Hadoop
 - Hadoop Distributed File System (HDFS)
 - YARN (Yet Another Resource Negotiator)
- Hadoop ecosystem
 - Hbase, Hive, Pig, Sqoop, Spark, Mahout, etc.
- Spark
 - in-memory, distributed, fault-tolerant processing framework
 - Implemented in Scala, higher-level than MapReduce, no IO bottlenecks

MAPREDUCE (Processing using different languages)

HIVE & DRILL (Analytical SQL-on-Hadoop)

KAFKA & STORM

(Streaming)

MAHOUT & SPARK MLIIb (Machine learning)

PIG (Scripting)

HBASE (NoSQL Database)

OOZIE

(Scheduling)

ZOOKEEPER & AMBARI (Management & Coordination)

SPARK (In-Memory, Data Flow Engine)

(Searching & Indexing) Apache Solr

SOLR & LUCENE

Resource Management

YARN

Storage

1951: Magnetic Tape 1955: Magnetic Disk

1961: ISAM

1965: Hierarchical model

1968: IMS

1969: Network Model

1971: IDMS

2003: MarkLogic

2004: MapReduce

2005: Hadoop

2005: Vertica

2007: Dynamo

2008: Cassandra

2008: Hbase

2008: Nuo DB

2009: MongoDB

2010: VoltDB

2010: Hana

2011: Riak

2012: Areospike

2014: Splice Machine

1950 - 1972 Pre-Relational

1972 - 2005 Relational 2005 - 2015

The Next Generation

1970: Codd's Paper

1974: System R

1978: Oracle

1980: Commerical Ingres

1981: Informix

1984: DB2

1987: Sybase

1989: Postgres

1989: SQL Server

1995: MySQL

3rd Platform

Cloud Social Big Data Mobile Internet of Things

2nd Platform

Client-Server Web 1.0

1st Platform

Mainframes Minicomputers Relational Database NoSQL NewSQL Big Data platforms

Relational Database

Hierarchical Database Network Database ISAM files

New database designs emerge

- In 2007, Michael Stonebraker
 - "the hardware assumptions that underlie the consensus relational architecture no longer applied, a single architecture might not be optimal across all workloads"
- NoSQL, NewSQL, and Big Data vaguely defined, overhyped, and overloaded terms
 - NoSQL → reject the constraints of the relational model
 - NewSQL → retain many features of the relational model but new technology
 - Big Data systems
 → generally technologies within the Hadoop ecosystem, increasingly including Spark