Applicants have repeated the amendments requested in the Preliminary

Amendment with reference to the paragraph numbers included in the substitute specification. Applicants respectfully request the entry of these amendments.

The Claims Are Supported by the Specification

The Examiner rejected claim 26 as allegedly containing subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventors, at the time the application was filed, had possession of the claimed invention. *Id.*, page 3. The Examiner states that, except for the glycine at position 28, all of the amino acids recited by claim 26 are identical to those found in SEQ ID NO: 1. *Id.* According to the Examiner, there is no literal support for a glycine residue at position 28. *Id.*, page 4. The Examiner concludes that claim 26 presents new matter.

Applicants respectfully traverse, but, in order to expedite prosecution, have cancelled claim 26 without prejudice or disclaimer. Applicants have added claims 43-46 to more particularly point out and distinctly claim certain embodiments of their invention. Support for the presence of amino acids other than those found in SEQ ID NO: 1 at positions 28, 43, 48, 111, 125, and 128 is found, for example, in the cDNA sequences SEQ ID NOs: 6 and 7. For example, the protein encoded by SEQ ID NO: 7 has an asparagine at position 28, a methionine at position 43, a glutamine at position 48, an arginine at position 111, a cysteine at position 125, and a phenylalanine at position 128.

The Claims Are Definite

The Examiner also rejected claim 26 under 35 U.S.C. § 112, second paragraph, as allegedly being indefinite. Office Action, page 4. According to the Examiner, the

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLLP

recitation in claim 26 that the claim proteins "comprise" SEQ ID NO: 1 contradicts the recitation in claim 25 that the proteins "consist[] essentially of SEQ ID NO: 1. *Id*.

Without acquiescing in the rejection, Applicants have cancelled claim 26 and added new claim 43, which recites "protein consisting essentially of an amino acid sequence."

The Examiner also contends that claim 26 is indefinite in its recitation of a protein that "'further comprises' specific residues at particular positions of SEQ ID NO: 1." *Id.*According to the Examiner, "it is unclear how SEQ ID NO: 1 can 'further' comprise specific amino acid residues at particular positions of SEQ ID NO: 1 when those residues are already present in SEQ ID NO: 1." *Id.*

Without acquiescing in the rejection, Applicants have cancelled claim 26 and added independent claim 43 rendering this rejection moot.

The Claims Are Not Anticipated

The Examiner rejected claim 25 under 35 U.S.C. § 102(b) as allegedly being anticipated by Stricklin et al., J. Biol. Chem. 258: 12252-12258, 1983 ("Stricklin"). Office Action, page 5. According to the Examiner, Stricklin reports the purification of a collagenase inhibitor from human skin fibroblasts, which comprises the NH₂-terminal 25 amino acids of SEQ ID NO: 1. *Id.* The Examiner cites Carmichael et al., Proc. Natl. Acad. Sci. USA 83: 2407-2411, 1986, as evidence that the protein of SEQ ID NO: 1 is the same as the protein purified by Stricklin. *Id.*

Without acquiescing in the rejection, Applicants have amended claim 25. The proteins encompassed by the amended claim all include NH₂-terminal amino acids in addition to those reported by Stricklin and are not anticipated by that reference.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

Applicants respectfully request withdrawal of the rejection of claim 25 under 35 U.S.C. § 102(b).

Applicants respectfully request reconsideration and reexamination of this application and the timely allowance of the application.

Please grant any extensions of time required to enter this response and charge any additional required fees to Deposit Account No. 06-0916.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.

Dated: July 1, 2003

William L. Strauss Reg. No. 47,114

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

Application Number: 09/987,357 Filing Date: November 14, 2001

Attorney Docket Number: 04185.0005-09

APPENDIX TO AMENDMENT OF JULY 1, 2003 VERSION WITH MARKINGS TO SHOW CHANGES MADE

Amendments to the Specification

Paragraph [016]:

--[016] The coding strand of a first preferred DNA sequence which has been discovered has the following nucleotide sequence (SEQ ID No: 5):

10	20	30	40	50	60
GTTGTTGCTG	TGGCTGATAG	CCCCAGCAGG	GCCTGCACCT	GTGTCCCACC	CCACCCACAG
70	80	90	100	110	120
ACGGCCTTCT	GCAATTCCGA	CCTCGTCATC	AGGGCCAAGT	TCGTGGGGAC	ACCAGAAGTC
130	140	150	160	170	180
AACCAGACCA	CCTTATACCA	GCGTTATGAG	ATCAAGATGA	CCAAGATGTA	TAAAGGGTTC
190	200	210	220	230	240
CAAGCCTTAG	GGGATGCCGC	TGACATCCGG	TTCGTCTACA	CCCCCGCCAT	GGAGAGTGTC
250	260	270	280	290	300
TGCGGATACT	TCCACAGGTC	CCACAACCGC	AGCGAGGAGT	TTCTCATTGC	TGGAAAACTG
310	320	330	340	350	360
CAGGATGGAC	TCTTGCACAT	CACTACCTGC	AGTTTCGTGG	CTCCCTGGAA	CAGCCTGAGC
370	380	390	400	410	420
TTAGCTCAGC	GCCGGGGCTT	CACCAAGACC	TACACTGTTG	GCTGTGAGGA	ATGCACAGTG
430	440	450	460	470	480
TTTCCCTGTT	TATCCATCCC	CTGCAAACTG	CAGAGTGGCA	CTCATTGCTT	GTGGACGGAC
490	500	510	520	530	540
CAGCTCCTCC	AAGGCTCTGA	AAAGGGCTTC	CAGTCCCGTC	ACCTTGCCTG	CCTGCCTCGG
550	560	570	580	590	600
GAGCCAGGGC	TGTGCACCTG	GCAGTCCCTG	CGGTCCCAGA	TAGCCTGAAT	CCTGCCCGGA
610		630	640	650	660
GTGGAAGCTG		AGTGTCCACC	CTGTTCCCAC	TCCCATCTTT	CTTCCGGACA

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLL

670 680 690 700
ATGAAATAAA GAGTTACCAC CCAGCAAAAA AAAAAAGGAA TTC--

Paragraph [018]:

--[018] A second preferred DNA sequence has been discovered which has an additional nucleotide sequence 5' to the initiator sequence. This sequence, which contains as the eighty-second through four-hundred-thirty-second nucleotides nucleotides 1 through 351 of the first preferred sequence set forth above, has the following nucleotide sequence (SEQ ID No: 6):

10	20	30	40	50	60
GGCCATCGCC	GCAGATCCAG	CGCCCAGAGA	GACACCAGAG	AACCCACCAT	GGCCCCCTTT
70	80	90	100	110	120
GACCCCTGGC	TTCTGCATCC	TGTTGTTGCT	GTGGCTGATA	GCCCCAGCAG	GGCCTGCACC
130	140	150	160	170	180
TGTGTCCCAC	CCCACCCACA	GACGGCCTTC	TGCAATTCCG	ACCTCGTCAT	CAGGGCCAAG
190	200	210	220	230	240
TTCGTGGGGA	CACCAGAAGT	CAACCAGACC	ACCTTATACC	AGCGTTATGA	GATCAAGATG
250	260	270	280	290	300
ACCAAGATGT	ATAAAGGGTT	CCAAGCCTTA	GGGGATGCCG	CTGACATCCG	GTTCGTCTAC
310	320	330	340	350	360
ACCCCCGCCA	TGGAGAGTGT	CTGCGGATAC	TTCCACAGGT	CCCACAACCG	CAGCGAGGAG
370	380	390	400	410	420
TTTCTCATTG	CTGGAAAACT	GCAGGATGGA	CTCTTGCACA	TCACTACCTG	CAGTTTCGTG
430					
GCTCCCTGGA	AC				

Paragraph [019]:

--[019] A third preferred DNA sequence which incorporates the 5' region of the second preferred sequence and the 3' sequence of the first preferred sequence, has the following nucleotide sequence (SEQ ID No: 7):

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

10	20	30	40	50	60
GGCCATCGCC	GCAGATCCAG	CGCCCAGAGA	GACACCAGAG	AACCCACCAT	GGCCCCCTTT
70	80	90	100	110	120
GACCCCTGGC	TTCTGCATCC	TGTTGTTGCT	GTGGCTGATA	GCCCCAGCAG	GGCCTGCACC
130	140	150	160	170	180
TGTGTCCCAC	CCCACCCACA	GACGGCCTTC	TGCAATTCCG	ACCTCGTCAT	CAGGGCCAAG
190	200	210	220	230	240
TTCGTGGGGA	CACCAGAAGT	CAACCAGACC	ACCTTATACC	AGCGTTATGA	GATCAAGATG
250	260	270	280	290	300
ACCAAGATGT	ATAAAGGGTT	CCAAGCCTTA	GGGGATGCCG	CTGACATCCG	GTTCGTCTAC
310	320	330	340	350	360
ACCCCCGCCA	TGGAGAGTGT		TTCCACAGGT	CCCACAACCG	CAGCGAGGAG
370	380	390	400	410	420
				TCACTACCTG	
430	440	450	460	470	480
				TCACCAAGAC	
490	500	510	520	530	540
				CCTGCAAACT	
550	560	570	580	500	600
				590 AAAAGGGCTT	600 CCAGTCCCGT
610	600	C 2 0	640	650	660
610 CACCTTGCCT	620 GCCTGCCTCG	630 GGAGCCAGGG	640 CTGTGCACCT	650 GGCAGTCCCT	660 GCGGTCCCAG
670 ATAGCCTGAA	680 TCCTGCCCGG	AGTGGAAGCT	700 GAAGCCTGCA	710 CAGTGTCCAC	720 CCTGTTCCCA
730	740 TCTTCCGAC	750 AATCAAATA	760	770	780 AAAAAAAGGA-
CICCCAICII	TOTTCCGGWC	AA I GAAA I AA	MONGTINCCH	CCCAGCAAAA	המטתתתתטטטא-

Paragraph [030]:

--[030] A first preferred portable DNA sequence of the present invention has a nucleotide sequence <u>SEQ ID No: 5</u> as follows:

10	20	30	40	50	60
GTTGTTGCTG	TGGCTGATAG	CCCCAGCAGG	GCCTGCACCT	GTGTCCCACC	CCACCCACAG
 70 ACGGCCTTCT	80 GCAATTCCGA	90 CCTCGTCATC	100 AGGGCCAAGT	110	

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLP

130	140	150		170	180
AACCAGACCA	CCTTATACCA	GCGTTATGAG		CCAAGATGTA	TAAAGGGTTC
190	200	210	220	230	240
CAAGCCTTAG	GGGATGCCGC	TGACATCCGG	TTCGTCTACA	CCCCCGCCAT	GGAGAGTGTC
250	260	270	280	290	300
TGCGGATACT	TCCACAGGTC	CCACAACCGC	AGCGAGGAGT	TTCTCATTGC	TGGAAAACTG
310	320	330	340	350	360
CAGGATGGAC	TCTTGCACAT	CACTACCTGC	AGTTTCGTGG	CTCCCTGGAA	CAGCCTGAGC
370	380	390	400	410	420
TTAGCTCAGC	GCCGGGGCTT	CACCAAGACC	TACACTGTTG	GCTGTGAGGA	ATGCACAGTG
430	440	450	460	470	480
TTTCCCTGTT	TATCCATCCC	CTGCAAACTG	CAGAGTGGCA	CTCATTGCTT	GTGGACGGAC
490	500	510	520	530	540
CAGCTCCTCC	AAGGCTCTGA	AAAGGGCTTC	CAGTCCCGTC	ACCTTGCCTG	CCTGCCTCGG
550	560	570	580	590	600
GAGCCAGGGC	TGTGCACCTG	GCAGTCCCTG	CGGTCCCAGA	TAGCCTGAAT	CCTGCCCGGA
610) 620	630	640	650	660
GTGGAAGCTG	AAGCCTGCAC	AGTGTCCACC	CTGTTCCCAC	TCCCATCTTT	CTTCCGGACA
670 ATGAAATAAA	680 GAGTTACCAC	690 CCAGCAAAAA	700 AAAAAAGGAA	TTC	

Paragraph [031]:

--[031] A second preferred portable DNA sequence of the present invention has the following nucleotide sequence (SEQ ID No: 6):

10	20	30	40	50	60
GGCCATCGCC	GCAGATCCAG	CGCCCAGAGA	GACACCAGAG	AACCCACCAT	GGCCCCCTTT
70	80	90	100	110	120
GACCCCTGGC	TTCTGCATCC	TGTTGTTGCT	GTGGCTGATA	GCCCCAGCAG	GGCCTGCACC
130	140	150	160	170	180
TGTGTCCCAC	CCCACCCACA	GACGGCCTTC	TGCAATTCCG	ACCTCGTCAT	CAGGGCCAAG
190	200	210	220	230	240
TTCGTGGGGA	CACCAGAAGT	CAACCAGACC	ACCTTATACC	AGCGTTATGA	GATCAAGATG
250	260	270	280	290	300
ACCAAGATGT	ATAAAGGGTT	CCAAGCCTTA	GGGGATGCCG	CTGACATCCG	GTTCGTCTAC

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LP

310 320 330 340 350 360 ACCCCCGCCA TGGAGAGTGT CTGCGGATAC TTCCACAGGT CCCACAACCG CAGCGAGGAG 370 380 390 400 410 420 TTTCTCATTG CTGGAAAACT GCAGGATGGA CTCTTGCACA TCACTACCTG CAGTTTCGTG 430 GCTCCCTGGA AC--

Paragraph [033]:

--[033] A third preferred portable DNA sequence has the nucleotide sequence (SEQ ID No: 7):

10	20		40	50	60
GGCCATCGCC	GCAGATCCAG		GACACCAGAG	AACCCACCAT	GGCCCCCTTT
70	80	90	100	110	120
GACCCCTGGC	TTCTGCATCC	TGTTGTTGCT	GTGGCTGATA	GCCCCAGCAG	GGCCTGCACC
130	140	150	160	170	180
TGTGTCCCAC	CCCACCCACA	GACGGCCTTC	TGCAATTCCG	ACCTCGTCAT	CAGGGCCAAG
190	200	210	220	230	240
TTCGTGGGGA	CACCAGAAGT	CAACCAGACC	ACCTTATACC	AGCGTTATGA	GATCAAGATG
250	260	270	280	290	300
ACCAAGATGT	ATAAAGGGTT	CCAAGCCTTA	GGGGATGCCG	CTGACATCCG	GTTCGTCTAC
310	320	330	340	350	
ACCCCCGCCA	TGGAGAGTGT	CTGCGGATAC	TTCCACAGGT	CCCACAACCG	
370 TTTCTCATTG	380 CTGGAAAACT		400 CTCTTGCACA		
430 GCTCCCTGGA	440 ACAGCCTGAG		460 CGCCGGGGCT		
490	500	510	520	530	
GGCTGTGAGG	AATGCACAGT	GTTTCCCTGT	TTATCCATCC	CCTGCAAACT	
. 550	560	570	580	590	600
ACTCATTGCT	TGTGGACGGA	CCAGCTCCTC	CAAGGCTCTG	AAAAGGGCTT	CCAGTCCCGT
610	620	630	640	650	660
CACCTTGCCT	GCCTGCCTCG	GGAGCCAGGG	CTGTGCACCT	GGCAGTCCCT	GCGGTCCCAG
670	680	690	700	710	720
ATAGCCTGAA	TCCTGCCCGG	AGTGGAAGCT	GAAGCCTGCA	CAGTGTCCAC	CCTGTTCCCA

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LP

730 740 750 760 770 780 CTCCCATCTT TCTTCCGGAC AATGAAATAA AGAGTTACCA CCCAGCAAAA AAAAAAAGGA--

Paragraph [059]:

--[059] It is anticipated that translation of mRNA coding for the metalloproteinase inhibitor in yeast will be more efficient with the preferred codon usage of yeast than with the sequence present in pUC8-Fic, as identified in Example 2, which has been tailored to the prokaryotic bias. For this reason, the portion of the 5' end of the portable DNA sequence beginning at the *Tth*1111 site is preferably resynthesized. The new sequence favors the codons most frequently used in yeast. This new sequence preferably has the following nucleotide sequence:

Paragraph [075]:

--[075] In this method, the portable DNA sequences are those synthetic or naturally-occurring polynucleotides described above. In a preferred embodiment of the present method, the portable DNA sequence has the nucleotide sequence <u>SEQ ID No:</u> 5 as follows:

10	20	30	40	50	60
GTTGTTGCTG	TGGCTGATAG	CCCCAGCAGG	GCCTGCACCT	GTGTCCCACC	CCACCCACAG
70	80	90	100	110	120
ACGGCCTTCT	GCAATTCCGA	CCTCGTCATC	AGGGCCAAGT	TCGTGGGGAC	ACCAGAAGTC
130	140	150	160	170	180
AACCAGACCA	CCTTATACCA	GCGTTATGAG	ATCAAGATGA	CCAAGATGTA	TAAAGGGTTC
190	200	210	220	230	240
CAAGCCTTAG	GGGATGCCGC	TGACATCCGG	TTCGTCTACA	CCCCCGCCAT	GGAGAGTGTC

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LP

	250	260	270	280	290	300
	TGCGGATACT	TCCACAGGTC	CCACAACCGC	AGCGAGGAGT	TTCTCATTGC	TGGAAAACTG
	310	320		340		360
l	CAGGATGGAC	TCTTGCACAT	CACTACCTGC	AGTTTCGTGG	CTCCCTGGAA	CAGCCTGAGC
l	370	380	390	400	410	420
l	TTAGCTCAGC	GCCGGGGCTT	CACCAAGACC	TACACTGTTG	GCTGTGAGGA	ATGCACAGTG
l	430	440	450	460	470	480
l	TTTCCCTGTT	TATCCATCCC	CTGCAAACTG	CAGAGTGGCA	CTCATTGCTT	GTGGACGGAC
l	490	500	510	520	530	540
l	CAGCTCCTCC	AAGGCTCTGA	AAAGGGCTTC	CAGTCCCGTC	ACCTTGCCTG	CCTGCCTCGG
l	550	560	570	580	590	600
	GAGCCAGGGC	TGTGCACCTG	GCAGTCCCTG	CGGTCCCAGA	TAGCCTGAAT	CCTGCCCGGA
	610	620	630	640	650	660
	GTGGAAGCTG	AAGCCTGCAC	AGTGTCCACC	CTGTTCCCAC	TCCCATCTTT	CTTCCGGACA
	670	680	690	700		
١	ATGAAATAAA	GAGTTACCAC	CCAGCAAAAA	AAAAAAGGAA	TTC	

Paragraph [084]:

--[084] In certain circumstances, the metalloproteinase inhibitor will assume its proper, active structure upon expression in the host microorganism and transport of the protein through the cell wall or membrane into the periplasmic space. This will generally occur if DNA coding for an appropriate leader sequence has been linked to the DNA coding for the recombinant protein. The preferred [metalloprotienase] metalloproteinase inhibitors of the present invention will assume their mature, active form upon translocation out of the inner cell membrane. The structures of numerous signal peptides have been published, for example by Marion E.E. Watson in Nuc. Acid Res. [12: 515-5164] 12: 5145-5164, 1984, specifically incorporated herein by reference. It is intended that these leader sequences, together with portable DNA, will direct intracellular production of a fusion protein which will be transported through the cell

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

membrane and will have the leader sequence portion cleaved upon release from the cell.--

Paragraph [0104]:

--[0104] The structure of FIBAC A is

(SEQ ID No: 10) (SEQ ID No: 11) GA TCC GCG ATC GGA GTG TAA GAA ATG TGC ACT G CGC TAG CCT CAC ATT CTT TAC ACG TGA

TGC GTT CCG CCG CAT CCG CAG ACT GCT TTC ACG CAA GGC GGC GTA GGC GTC TGA CGA AAG

TGC AAC TCT GAC C
ACG TTG AGA CTG GA--

Paragraph [0106]:

--[0106] Component oligonucleotide FA1 (SEQ ID No: 12) is: GATCC GCGAT CGGAG TGTAA GAAAT GTGCA CTTGC--

Paragraph [0107]:

--[0107] Component oligonucleotide FA2 (SEQ ID No: 13) is: GGAACG CAAGT GCACA TTTCT TACAC TCCGA TCGCG--

Paragraph [0108]:

--[0108] Component oligonucleotide FA3 (SEQ ID No: 14) is: GTTC CGCCG CATCC GCAGA CTGCT TTCTG CAACT CTGAC C--

Paragraph [0109]:

--[0109] Component oligonucleotide FA4 (SEQ ID No: 15) is: AGGTC AGAGT TGCAG AAAGC AGTCT GCGGA TGCGG C--

Paragraph [0112]:

--[0112] Linker A1 (SEQ ID No: 16) is: AATTGGCAG--

Paragraph [0113]:

--[0113] Linker A2 (SEQ ID No: 17) is: TCGACTGCC--

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

Paragraph [0116]:

--[0116] The sequence of the sense strand (SEQ ID No: 18) is:

10 20 30 40 50 60 GAATTCGATA TCTCGTTGGA GATATTCATG ACGTATTTTG GATGATAACG AGGCGCAAAA С A C 0 N Н 0 Q O K L Α 1 5 1 1 1 70 90 80 100 110 AATGAAAAAG ACAGCTATCG CGATCGCAGT GGCACTGGCT GGTTTCGCTA CCGTA NF PS L RNVA U UU UU 1 12 1A 120 130 GCGCA GGCCTCTGGT AAAAGCTT Η SHM HA Н TAN ILUEL NU Α

Paragraph [0120]:

1 3 1

--[0120] Linker B1 (SEQ ID No: 19) is: GATCCCAGGCCTGCA--

Paragraph [0121]:

--[0121] Linker B2 (SEQ ID No: 20) is: GGCCTGG--

31--

Paragraph [0136]:

--[0136] The second preferred sequence (SEQ ID No: 6) as set forth herein, i.e.,

GGCCCCCTTT	5U ΔΔCCCΔCCΔT	40 GACACCAGAG	70 CCCCCAGAGA	CCAGATCCAG	CCC TCCC
0000000111	MOCCACCAI	CHCHCCHORO	COCCCHONON	denomiceno	OGCCATCGCC
120	110	100	90	80	70
GGCCTGCACC	GCCCAGCAG	GTGGCTGATA	TGTTGTTGCT	TTCTGCATCC	GACCCCTGGC
180	170	160	150	140	130
CAGGGCCAAG	ACCTCGTCAT	TGCAATTCCG	GACGGCCTTC	CCCACCCACA	TGTGTCCCAC
240	230	220	210	200	190
GATCAAGATG	AGCGTTATGA	ACCTTATACC	CAACCAGACC	CACCAGAAGT	TTCGTGGGGA
300	290	280	270	260	250

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

ACCAAGATGT ATAAAGGGTT CCAAGCCTTA GGGGATGCCG CTGACATCCG GTTCGTCTAC 310 320 330 340 350 360 ACCCCGCCA TGGAGAGTGT CTGCGGATAC TTCCACAGGT CCCACAACCG CAGCGAGGAG 370 380 390 400 410 420 TTTCTCATTG CTGGAAAACT GCAGGATGGA CTCTTGCACA TCACTACCTG CAGTTTCGTG 430 GCTCCCTGGA AC--

Amendments to the Claims:

Claim 25:

- 25. (Amended) A purified collagenase inhibitor protein, said protein consisting essentially of an amino acid sequence selected from among the following:
 - [a) amino acid sequence SEQ ID NO: 1; or]
 - [b]a) amino acid sequence SEQ ID NO: 2; or

Asp Ser Pro Ser Arg Ala (SEQ ID NO: 3); or

- [c]b) the amino acid sequence[s] of a) or of SEQ ID NO: 1 [b)], further having a Met at position -1; or
- [d]c) the amino acid sequence of a) or of SEQ ID NO: 1 [b)], further having a leader sequence at the N-terminal, -1 position, wherein said leader sequence consists essentially of the following amino acid sequence from positions -38 to -1:

 Gly His Arg Arg Arg Ser Ser Ala Gln Arg Asp Thr Arg Glu Pro Thr Met Ala Pro Phe Asp Pro Trp Leu Leu His Pro Val Val Ala Val Ala
- [e]d) the amino acid sequence of a) or of SEQ ID NO: 1, [b)] further having a leader sequence at the N-terminal, -1 position, wherein said leader sequence consists essentially of the following amino acid sequence from positions -22 to -1: Met Ala Pro Phe Asp Pro Trp Leu Leu His Pro Val Val Ala Val Ala Asp Ser Pro Ser Arg Ala (SEQ ID NO: 4).

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP