DAY 2

STAN WORKSHOP

RECAP

- Ran multiple Stan programs!
- Wrote multiple Stan programs.

Non-analytic; can only be solved with MCMC. Last model isn't found in any package.

Started learning a new language.

We conflated statistical modeling and the language.

Stan language is really flexible.

For learning: Time helps. Practice helps.

TODAY: MORE ADVANCED STAN

Iterate over statistical models

- Hierarchical models and non-centered reparameterization
- Exposing functions

HIERARCHICAL MODELS

8 SCHOOLS

- Educational Testing Service studied effect of coaching on SAT scores
- No prior belief any one program was
 - more effective than the others
 - more similar to others

8 SCHOOLS: DATA

School	Estimated treatment effect	Standard error of treatment effect			
A	28	15			
В	8	10			
C	-3	16			
D	7	11			
E	-1	9			
F	1	11			
G	18	10			
Н	12	18			

READ DATA

. . .

```
From: https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
In R:
schools_dat <- list(J = 8,</pre>
                    y = c(28, 8, -3, 7, -1, 1, 18, 12),
                    sigma = c(15, 10, 16, 11, 9, 11, 10, 18))
Stan program:
data {
 int J;
  real y[J];
  real<lower = 0> sigma[];
```

MODEL 1: COMPLETE POOLING

- Key assumptions
 - Normal likelihood (true for this set of models)
 - All programs have the same effect (complete pooling of the effect across schools)

Hint: add a parameter. This will be interpreted as the coaching effect.

real theta;

Write the model.

MODEL 1: COMPLETE POOLING

```
data {
  int J;
  real y[J];
  real<lower = 0> sigma[];
parameters {
  real theta;
model {
  y ~ normal(theta, sigma);
```

MODEL 1: COMPLETE POOLING

- Run using RStan

```
> fit1
```

```
Inference for Stan model: eight_schools_1.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

```
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat theta 7.87 0.11 4.07 -0.24 5.22 7.94 10.62 15.74 1465 1 1p__ -2.85 0.02 0.72 -4.85 -3.02 -2.58 -2.40 -2.35 1445 1
```

Samples were drawn using NUTS(diag_e) at Wed Jun 1 00:57:15 2016. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

MODEL 2: NO POOLING

- Key assumptions
 - Each program has its own, independent effect.

Hint: instead of one parameter, we have one for each school.

real theta[J];

Write the model.

MODEL 2: NO POOLING

```
data {
  int J;
  real y[J];
  real<lower = 0> sigma[];
parameters {
  real theta[J];
model {
  y ~ normal(theta, sigma);
```

MODEL 2: NO POOLING

> fit2
Inference for Stan model: eight_schools_2.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
theta[1]	27.70	0.24	14.96	-1.65	17.47	27.82	37.78	56.54	3752	1
theta[2]	7.93	0.17	10.00	-12.17	1.36	8.00	14.72	26.98	3500	1
theta[3]	-2.80	0.27	16.56	-35.14	-14.28	-2.46	8.50	29.47	3712	1
theta[4]	6.87	0.18	11.08	-14.55	-0.72	6.69	14.46	28.19	3859	1
theta[5]	-0.95	0.15	9.01	-18.51	-7.25	-0.88	5.41	16.28	3690	1
theta[6]	1.16	0.18	11.19	-20.46	-6.41	1.12	8.61	23.59	3724	1
theta[7]	17.64	0.18	10.30	-2.46	10.69	17.68	24.83	37.25	3296	1
theta[8]	11.62	0.29	17.67	-22.80	-0.47	11.53	23.72	45.82	3735	1
7p	-4.07	0.04	2.02	-9.00	-5.17	-3.71	-2.64	-1.17	2057	1

Samples were drawn using NUTS(diag_e) at Wed Jun 1 01:01:56 2016. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

MODEL 3: PARTIAL POOLING WITH FIXED HYPERPARAMETER

- Key assumptions
 - Hierarchical model on school effects:
 Schools are similar to each other, but not exactly the same
 - Determined by hyperparameter, tau.

- Hint:
 - add new data: real<lower = 0> tau;
 - > add new parameter: real mu;

Write the model.

MODEL 3: PARTIAL POOLING WITH FIXED HYPERPARAMETER

```
data {
  int J;
  real y[J];
  real<lower = 0> sigma[];
  real<lower = 0> tau;
parameters {
  real theta[];
  real mu;
model {
  theta ~ normal(mu, tau);
  y ~ normal(theta, sigma);
```

MODEL 3: PARTIAL POOLING WITH FIXED HYPERPARAMETER, TAU = 25

> fit3

```
Inference for Stan model: eight_schools_3.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

```
75% 97.5% n_eff Rhat
                                     25%
                                           50%
                         sd 2.5%
         mean se_mean
theta[1] 22.73
                 0.22 13.18 -3.10 13.91 22.82 31.46 48.13
                                                            3664
                 0.15 9.57 -10.27 1.58 7.94 14.39 27.30
theta[2]
         8.04
                                                            3855
theta[3]
                 0.23 14.05 -25.89 -9.71 0.25 9.89 28.20
         0.35
                                                            3826
theta[4]
        7.32
                 0.16 10.09 -12.09 0.44 7.41 14.39 26.73
                                                            4000
                                                                    1
theta[5]
                 0.14 8.60 -16.72 -5.76 -0.03 5.70 17.51
         0.05
                                                            3878
theta[6] 2.21
                 0.16 \ 10.01 \ -17.48 \ -4.63 \ 2.23 \ 9.07 \ 21.46
                                                            3768
theta[7] 16.63
                 0.15 9.47 -1.92 10.37 16.58 23.05 34.67
                                                            3993
                                                                    1
                 0.26 15.13 -18.11 0.39 10.60 21.09 39.70
theta[8] 10.72
                                                            3514
                 0.17 9.93 -10.41 1.76 8.69 15.41 28.03
          8.63
                                                            3496
mu
                       2.10 - 10.06 - 6.19 - 4.67 - 3.45 - 1.83
         -5.00
                                                           1624
1p___
```

Samples were drawn using NUTS(diag_e) at Wed Jun 1 01:12:02 2016. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

MODEL 3: PARTIAL POOLING WITH FIXED HYPERPARAMETER, TAU = 0.1

> fit3

```
Inference for Stan model: eight_schools_3.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

```
25%
                                           50%
                                                 75% 97.5% n_eff Rhat
                              2.5%
          mean se_mean
                         sd
theta[1]
                  0.31 3.98
                                    5.05
                                         7.64 10.76 15.87
         7.95
                                                             170 1.03
                              0.77
theta[2]
                  0.31 3.98
                                   5.03
                                         7.60 10.81 15.77
                                                             170 1.03
         7.95
                              0.81
theta[3]
                 0.30 3.98
         7.95
                              0.79
                                   5.04 7.63 10.77 15.83
                                                             170 1.03
theta[4]
                              0.76 5.06 7.64 10.79 15.84
         7.94
                  0.31 3.98
                                                             170 1.03
                              0.76 5.04 7.65 10.77 15.84
theta[5]
                  0.30 3.98
                                                             170 1.03
         7.94
                                   5.03 7.63 10.78 15.79
theta[6]
         7.94
                                                             170 1.03
                  0.31 3.98
                              0.76
                              0.74 5.05 7.62 10.80 15.80
theta[7]
                                                             170 1.03
                  0.31 3.98
         7.95
theta[8]
                                    5.05 7.63 10.80 15.78
                                                             170 1.03
         7.95
                  0.31 3.98
                              0.72
          7.95
                             0.75 5.02 7.60 10.77 15.82
                                                             170 1.03
                  0.31 3.98
mu
                  0.06\ 2.09\ -11.84\ -7.91\ -6.46\ -5.28\ -3.69
         -6.80
                                                            1100 1.00
1p___
```

Samples were drawn using NUTS(diag_e) at Wed Jun 1 01:13:53 2016. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

MODEL 3: PARTIAL POOLING WITH FIXED HYPERPARAMETER, TAU = 1000

> fit3

```
Inference for Stan model: eight_schools_3.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
theta[1]	28.31	0.24	15.15	-1.78	18.33	28.18	38.25	58.75	4000	1
theta[2]	8.20	0.17	10.04	-11.69	1.64	8.26	14.95	27.42	3575	1
theta[3]	-2.74	0.25	16.02	-33.62	-13.52	-2.88	8.21	28.98	4000	1
theta[4]	6.96	0.17	10.82	-14.10	-0.23	6.75	13.91	28.85	4000	1
theta[5]	-1.00	0.15	9.20	-19.41	-7.08	-0.94	5.11	17.39	3530	1
theta[6]	0.87	0.18	11.46	-21.78	-6.76	0.81	8.67	23.05	4000	1
theta[7]	18.07	0.16	9.94	-1.66	11.46	18.06	24.75	37.23	4000	1
theta[8]	12.15	0.28	17.75	-22.30	0.21	11.65	24.43	46.33	3980	1
mu	5.04	5.79	351.04	-673.13	-229.53	11.84	239.87	676.59	3679	1
1p	-4.54	0.05	2.17	-9.47	-5.76	-4.18	-2.96	-1.36	1631	1

Samples were drawn using NUTS(diag_e) at Wed Jun 1 01:15:48 2016. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Figure 5.6 Conditional posterior means of treatment effects, $E(\theta_j|\tau,y)$, as functions of the between-school standard deviation τ , for the educational testing example. The line for school C crosses the lines for E and F because C has a higher measurement error (see Table 5.2) and its estimate is therefore shrunk more strongly toward the overall mean in the Bayesian analysis.

WOULDN'T IT BE NICE TO LEARN TAU?

- Amount of pooling determined by data!
- Easy to specify: change tau to a parameter.
- Problems when running:

Warning messages:

- 1: There were 124 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help.
- 2: Examine the pairs() plot to diagnose sampling problems

PROBLEM: DIVERGENT TRANSITIONS

- Do not ignore divergent transitions
 - Part of the sample space is ill-behaved
 - MCMC estimates will be biased

PROBLEM: DIVERGENT TRANSITIONS

- Do not ignore divergent transitions
 - Part of the sample space is ill-behaved
 - MCMC estimates will be biased

- Fixes
 - 1. super-easy: set adapt_delta higher

2. easy: reparameterize (next section)

QUICK ASIDE

Why doesn't MLE work for the hierarchical model?

QUICK ASIDE

[1] 283.0284

Why doesn't MLE work for this hierarchical model?

```
> optimizing(fit4@stanmodel, data = schools_dat)
STAN OPTIMIZATION COMMAND (LBFGS)
init = random
save_iterations = 1
init_alpha = 0.001
tol_obj = 1e-12
tol_grad = 1e-08
tol_param = 1e-08
tol_rel_obj = 10000
tol_rel_grad = 1e+07
history_size = 5
seed = 286152403
initial log joint probability = -119.833
Optimization terminated with error:
  Line search failed to achieve a sufficient decrease, no more progress can be made
$par
                                        theta[4] theta[5]
                                                               theta[6]
    theta[1]
               theta[2] theta[3]
                                                                              theta[7]
                                                                                             theta[8]
                                                                                                               mu
                                                                                                                           tau
1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 2.205697e-16
$value
```

QUICK ASIDE

[1] 283.0284

Why doesn't MLE work for this hierarchical model?

```
> optimizing(fit4@stanmodel, data = schools_dat)
STAN OPTIMIZATION COMMAND (LBFGS)
init = random
save_iterations = 1
init_alpha = 0.001
tol_obj = 1e-12
tol_grad = 1e-08
tol_param = 1e-08
tol_rel_obj = 10000
tol_rel_grad = 1e+07
history_size = 5
seed = 286152403
initial log joint probability = -119.833
Optimization terminated with error:
  Line search failed to achieve a sufficient decrease, no more progress can be made
$par
              theta[2] theta[3] theta[4] theta[5] theta[6]
                                                                              theta[7]
    theta[1]
                                                                                            theta[8]
                                                                                                               mu
                                                                                                                           tau
1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 1.945095e+00 2.205697e-16
$value
```

NON-CENTERED REPARAMETERIZATION

FUNNEL

- $y \in \mathbb{R}$
- $x \in \mathbb{R}^9$

$$p(y, x) = Normal(y|0, 3)$$

$$\times \prod_{n=1}^{\infty} \text{Normal}(x_n | 0, \exp(y/2))$$

Funnel Density (log scale)

WHEN DO YOU SEE THIS?

- Hierarchical models
- Variance parameters go to 0, all parameters shrink
 Variance parameters get large, all parameters spread
- Trick to handle low data situations
- Called non-centered parameterization aka the Matt trick ...

STEPS

- 1. Add new parameter, *_raw.
- 2. Move original parameter to transformed parameters block.
- 3. Assign transformation of *_raw to original parameter.
- 4. Put Normal(0, 1) prior on *_raw.

CENTERED FUNNEL

- Easy to write in Stan
- Run. See any problems?

```
parameters {
  real y;
  vector[9] x;
model {
  y \sim normal(0, 3);
  x \sim normal(0, exp(y/2));
```

Add new parameter, *_raw.

```
parameters {
  real y;
  vector[9] x;
model {
  y \sim normal(0, 3);
  x \sim normal(0, exp(y/2));
```

Add new parameter, *_raw.

```
parameters {
  real y;
  vector[9] x;
  real y_raw;
model {
  y \sim normal(0, 3);
  x \sim normal(0, exp(y/2));
```

Move original parameter to transformed parameters block.

```
parameters {
  real y;
  vector[9] x;
  real y_raw;
model {
  y \sim normal(0, 3);
  x \sim normal(0, exp(y/2));
```

Move original parameter to transformed parameters block.

```
parameters {
  vector[9] x;
  real y_raw;
transformed parameters {
  real y;
model {
  y \sim normal(0, 3);
  x \sim normal(0, exp(y/2));
```

Assign transformation of *_raw to original parameter.

```
parameters {
  vector[9] x;
  real y_raw;
transformed parameters {
  real y;
model {
  y \sim normal(0, 3);
  x \sim normal(0, exp(y/2));
```

NON-CENTERED FUNNEL: STEP 3

Assign transformation of *_raw to original parameter.

```
parameters {
  vector[9] x;
  real y_raw;
transformed parameters {
  real y;
  y <- 3 * y_raw;
model {
  y \sim normal(0, 3);
 x \sim normal(0, exp(y/2));
```

NON-CENTERED FUNNEL: STEP 4

Put Normal(0, 1) prior on *_raw.

```
parameters {
  vector[9] x;
  real y_raw;
transformed parameters {
  real y;
  y <- 3 * y_raw;
model {
  y \sim normal(0, 3);
  x \sim normal(0, exp(y/2));
```

NON-CENTERED FUNNEL: STEP 4

Put Normal(0, 1) prior on *_raw.

```
parameters {
  vector[9] x;
  real y_raw;
transformed parameters {
  real y;
  y <- 3 * y_raw;
model {
  y_raw \sim normal(0, 1);
  x \sim normal(0, exp(y/2));
```

NON-CENTERED FUNNEL

- Repeat for xs.
- Steps:
 - 1. Add new parameter, *_raw.
 - 2. Move original parameter to transformed parameters block.
 - 3. Assign transformation of *_raw to original parameter.
 - 4. Put Normal(0, 1) prior on *_raw.

NON-CENTERED FUNNEL

```
parameters {
  real y_raw;
  vector[9] x_raw;
transformed parameters {
  real y;
  vector[9] x;
  y <- 3.0 * y_raw;
  x \leftarrow \exp(y/2) * x_raw;
model {
  y_raw \sim normal(0, 1);
  x_raw \sim normal(0, 1);
```

CENTERED VS NON-CENTERED

```
parameters {
    real y;
    vector[9] x;
}
model {
    y ~ normal(0, 3);
    x ~ normal(0, exp(y/2));
}
```

```
parameters {
  real y_raw;
  vector[9] x_raw;
transformed parameters {
  real y;
  vector[9] x;
  y < -3.0 * y_raw;
  x \leftarrow \exp(y/2) * x_raw;
model {
  y_raw \sim normal(0, 1);
  x_raw \sim normal(0, 1);
```

EIGHT SCHOOLS

REPARAMETERIZE EIGHT SCHOOLS

Here's the centered parameterization.

```
data {
  int J;
  real y[J];
  real<lower = 0> sigma[J];
parameters {
  real theta[J];
  real mu;
  real<lower = 0> tau;
  theta ~ normal(mu, tau);
  y ~ normal(theta, sigma);
```

NON-CENTERED REPARAMETERIZATION

- Follow steps:
 - 1. Add new parameter, *_raw.
 - 2. Move original parameter to transformed parameters block.
 - 3. Assign transformation of *_raw to original parameter.
 - 4. Put Normal(0, 1) prior on *_raw.

MODEL 5: HIERARCHICAL, NON-CENTERED REPARAMETERIZATION

```
data {
 int J;
 real y[J];
 real<lower = 0> sigma[J];
parameters {
 real theta_raw[];
  real mu;
 real<lower = 0> tau;
transformed parameters {
  real theta[];
 for (j in 1:J)
    theta <- mu + tau * theta_raw[j];</pre>
model {
  theta_raw \sim normal(0, 1);
 y ~ normal(theta, sigma);
```

MODEL 5: HIERARCHICAL, NON-CENTERED REPARAMETERIZATION

> fit5

```
Inference for Stan model: eight_schools_5.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
theta_raw[1]	0.43	0.02	0.95	-1.56	-0.19	0.47	1.09	2.23	1988	1.00
theta_raw[2]	0.00	0.02	0.89	-1.84	-0.57	0.00	0.59	1.75	3048	1.00
theta_raw[3]	-0.22	0.02	0.95	-2.01	-0.87	-0.23	0.42	1.64	3282	1.00
theta_raw[4]	-0.03	0.02	0.86	-1.71	-0.60	-0.03	0.53	1.70	2909	1.00
theta_raw[5]	-0.37	0.02	0.84	-1.98	-0.93	-0.38	0.18	1.33	2573	1.00
theta_raw[6]	-0.23	0.02	0.87	-1.97	-0.79	-0.23	0.35	1.52	2823	1.00
theta_raw[7]	0.36	0.02	0.88	-1.53	-0.19	0.39	0.95	1.99	2945	1.00
theta_raw[8]	0.06	0.02	0.95	-1.82	-0.55	0.06	0.66	1.93	2659	1.00
mu	7.82	0.15	5.04	-2.25	4.72	7.72	11.02	17.54	1183	1.00
tau	6.68	0.18	5.38	0.28	2.69	5.49	9.25	19.99	928	1.00
theta[1]	11.70	0.27	8.73	-2.02	6.12	10.38	15.91	33.14	1020	1.00
theta[2]	7.96	0.11	6.28	-4.12	3.96	7.86	11.83	20.89	3092	1.00
theta[3]	5.89	0.16	7.86	-11.69	1.64	6.32	10.75	20.51	2519	1.00
theta[4]	7.53	0.13	6.46	-5.81	3.77	7.56	11.49	20.47	2622	1.00
theta[5]	4.89	0.12	6.14	-8.70	1.31	5.40	9.00	16.09	2766	1.00
theta[6]	5.99	0.12	6.62	-8.25	2.08	6.34	10.18	18.03	2943	1.00
theta[7]	10.70	0.14	6.78	-1.41	6.26	10.06	14.72	25.91	2374	1.00
theta[8]	8.34	0.18	8.00	-7.21	3.70	7.98	12.75	25.99	1961	1.00
lp	-4.77	0.09	2.65	-10.77	-6.31	-4.44	-2.90	-0.40	972	1.01

Samples were drawn using NUTS(diag_e) at Wed Jun 1 01:47:53 2016.

TAKEAWAYS

Easy to express hierarchical models in Stan!

- Discussed how to get around some divergent transitions
 - Increase adapt_delta
 - Non-centered reparameterization

FUNCTIONS

STAN FUNCTIONS IN R!

- 1. Write Stan program with a function.
- 2. In R:

```
cppcode <- stanc("functions.stan")
expose_stan_functions(cppcode)</pre>
```

OR

```
fit <- stanc("functions.stan")
expose_stan_functions(fit)</pre>
```

ACCESSING PARTS OF THE STAN PROGRAM IN R

get_num_upars(fit)

- log_prob(fit, upars)
- grad_log_prob(fit, upars)
- constrain_pars(fit, upars)

unconstrain_pars(fit, pars)