MIS Homework 5

Xinhao Du

March 2023

Problem 7.8

Solution:

7.8

Ax+S=0

$$I^{T}(Ax+S)=0$$
 $(I^{T}AX+(I^{T}S)=0)$

A is the incidence matrix, and

 $I^{T}A$ is the row vector of columns

sums of A, so $I^{T}A=0$.

Thus we can have $I^{T}S=0$.

 $coef = \frac{1}{\sqrt{n}} \cdot I_{n}^{T} \propto \frac{1}{\sqrt{n}}$
 $coef = \frac{1}{\sqrt{n}} \cdot I_{n}^{T} \propto \frac{1}{\sqrt{n}}$

Problem 8.8

Problem 8.12

8.12 (a) For
$$k \ge 1$$
. $b_k = \int_{-1}^{1} t^{k-1} dt = \begin{cases} \frac{1}{k} & k \text{ is coold} \\ 0 & k \text{ is even} \end{cases}$

So the quadrature rule has order d
 $w: t^{k-1} + w: t^{k-1} + \dots + w: t^{k-1} = b_k \quad k = 1.2 \dots dt$

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots$$

Problem 10.16

$$|O \cdot 1b \cdot (a) M = (A^{T} \mid 1) + n = \frac{(a_{i} \cdot T)}{n}$$

$$|O \cdot 1b \cdot (a) M = [A \cdot \cdots A_{k}] \cdot [M_{i} \mid 1 \cdots M_{k} \mid 1]$$

$$= A \cdot [M^{T}]$$

$$|C \cdot (a_{i}) \mid 1 = \frac{1}{N} \widetilde{\alpha}_{i} \cdot \widetilde{\alpha}_{i} = \frac{1}{N} |O_{i} \mid 1|^{2}$$

$$= std(a_{i})^{T}$$

$$= std(a_{i})^{T}$$

$$= std(a_{i})^{T}$$

$$= std(a_{i})^{T}$$

$$= std(a_{i})^{T}$$

$$|C \cdot (a_{i}) \mid 1 = \frac{1}{N} \widetilde{\alpha}_{i} \cdot \widetilde{\alpha}_{i} = |C_{i}| std(a_{i}) std(a_{i})$$

$$|C \cdot (a_{i}) \mid 1 = \frac{1}{N} \widetilde{\alpha}_{i} \cdot \widetilde{\alpha}_{i} = |C_{i}| std(a_{i}) std(a_{i})$$

$$|C \cdot (a_{i}) \mid 1 = \frac{1}{N} \operatorname{diag}(\frac{1}{N} \cdot \operatorname{dia$$

Problem 10.31

Solution:

Problem 10.36

10.36. (a)
$Ax = \begin{bmatrix} a_1, & a_2 & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}, & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$
Lan. ans "ann [xn]
$ \begin{array}{c c} \vdots & \alpha_{1j} \times j \\ \vdots & \vdots \\ \Sigma & \alpha_{nj} \times j \end{array} $
$x^{T}A \times = \begin{bmatrix} x_{1} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} \frac{r}{r} & \alpha_{1}\hat{j} & \alpha_{\hat{j}} \\ \vdots & \ddots & \vdots \\ \frac{r}{r} & \alpha_{n}\hat{j} & \alpha_{\hat{j}} \end{bmatrix}$
[\$\frac{\Sigma}{\gamma_{\beta=1}} anj \cdot \gamma_{\beta}
= En Aij Xi Xi
$(b) X^{T}(A^{T})X = (AX)^{T}X = \langle AX.X \rangle$
= < x . A x > = x ^T A x
For problem b, we have xTATX=XTAX
So we have $X^{T}((A+A^{T})/2)X^{T}X^{T}AX$
(d) 2x12-3x1x2-x2
= > x 12 - 3 x1x2 - 3 x1x2-x2
$= \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} 2 & -\frac{3}{7} \\ -\frac{3}{7} & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$
$= x^T A x$
$A = \begin{bmatrix} 2 - \frac{3}{y} \\ -\frac{3}{y} - 1 \end{bmatrix} \qquad x = \overline{1} \times \overline{1}$
$\begin{bmatrix} -\frac{3}{y} & -1 \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix}$

Problem 11.11

Solution:

Problem 11.21

11.27.] [1 1]] [W,]] b,]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{bmatrix} t & 1 & 1 & 1 \\ t & 1 & 1 & 2 & 4 \\ t & 1 & 1 & 2 & 4 \\ t & 1 & 1 & 2 & 4 \\ t & 1 & 1 & 2 & 4 \\ t & 1 & 1 & 2 & 4 \\ t & 1 & 2 & 3 & 4 & 4 \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \\ W_3 \\ W_4 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} $
Lti ti ti ti L b4
where $b_{r} = \int_{-1}^{1} t^{r-1} dt = \begin{cases} \frac{2}{F} & t \text{ is odd} \\ 0 & t \text{ is even} \end{cases}$
t is even
The solution is $W_1 = 1.4375$ $W_2 = -0.4375$ $W_4 = 1.4375$
for ft()= e ^x α= 2.35 ο4 α= 2.51£7