## SOLVER2D MATLAB

## 1 ESTRUTURAS DE DADOS

- Cell side Numero de células de cada lado do domínio, é que se usa para mudar o tamanho da malha;
- Vert\_side Numero de vértices em cada lado do domínio;
- Cell\_num—Mumero total de celulas,
- Face num Numero total de Faces;
- Vert\_num Numero total de Vértices,
- Verts Matriz com as Coordenadas de cada vértice;
  - Verts(vértice)=(x,y);
- Cella Matriz com as Coordenadas dos Ceptróides de cada Célula;
  - Cells(celula)=(x,y);
- Faces Matriz com as Coordenadas dos Centró des de cada Face.
  - Faces(face)=(x,y);
- Cell\_verts Matriz com os Vértices de cada Célula;
  - Cell\_verts(gélula) (vertice1, vertice2, vertice3, vertice4)
- Cell\_faces Matriz com as Faces de cada Célula;
  - Cell\_faces/célula)=(face1/face2,face3,face4);
  - Cell\_faces(célula)=(face oeste, face norte, face este,face sul);
- Cell vol Vetor com o Volume de cada Célula;
- Cell\_norm Matriz com as normais exteriores de cada célula;
  - Cell\_norm(célula)=(nxface1,nyface1, nxface2,nyface2, nxface3,nyface3, nxface4,nyface4);
- Cell\_bound Matriz que determina se a Célula é de fronteira, caso seja fronteira o valor é 1;
  - Cell bound(célula)=(fronteira, fronteirax, fronteiray);
- Cell\_vert\_num Vetor que indica o número de vértices de cada célula;
- Cell\_face\_num Vetor que indica o número de faces de cada celula;
- Face\_vert Matriz gue indica quais os vertices que a face tem;

- Face\_vert(face)=(vert1,vert2),
- Face\_vert(face)=(vertesquerda,veltdireita);
- Face\_vert(face)=(vert baixo,vertcima);
- Face\_cells Matriz que indica quais as células adjacentes à face;
  - Face\_cells(face)=(celula1,celula2);
- Face\_area Matriz que indica a área de cada face;
  - Face\_area(face)=(área/areax,areay);
- Face\_bound Matriz que indica se a Face é de fronteira, caso seja fronteira tem o valor 1;
  - Face\_bound(face)=(fronteira,fronteirax,fronteiray);
- Vert\_cells Matriz que indica quais as células a que esse vértice pertence;
  - Vert\_cells(vert)=(celula1,ce/ula2,celula3,celula4);
- Vert\_cell\_num Vetor que indica a quantas células esse vértice pertence;
- Vert\_face\_num Vetor que indica a quantas faces esse vértice pertence;
- Phi Valores da Solução Analítica no centróide da célula;
- Lap\_phi Valores do Laplaciano Analítico na célula;
- Phi\_faces Valores da Solução Analítica nos centróides das Faces de fronteira;
- Flux\_phi\_faces Valores do Fluxo Analítico nos centróides das Faces de fronteira;
  - Flux\_phi\_faces(face)=(fluxox,fluxoy);
- Phi\_num Valores da Solução Numérica nos centróides da célula;
- Lap\_phi\_num Valores do Laplaciano da Solução Numérica no Centróide da Célula;
- A Matriz A;
- Source Vetor do termo Fonte;
- Source\_faces Termo Fonte que se obtém a partir das células de fronteira;
- Source\_cells Termo Fonte que se obtém a partir da solução analítica;
- Stencil cells Stencil de células de cada face, ordenados por ordem decrescente;
  - Stencil\_cells(face)=(celula1,celula2,...,celulan);

- Stencil\_faces Stencil das Faces de Fronteira de cada face, ordenado por ordem decrescente;
  - o Stencil\_faces(face)=(face1,face2,...,facen);
- Stencil\_size Tamanho do stencil de cada face;
  - Stencil\_size(face)=(tamanho total, celulas, faces);
- T Matriz dos Mínimos Quadrados para cada Face;
- D Matriz com as distancias de Mínimos Quadrados;

## 2 CONSTANTES

- Malha string que escolhe o tipo de malha, só funciona com o comando 'cart';
- Solution String que escolhe a solução analítica, estão implementadas as seguintes soluções:
  - Sin Sinusoidal;
  - Exp Exponencial;
  - o 2nd Polinómio Linear;
  - o 4th Polinómio Cubico;
  - o 6th Polinómio de 5º Grau;
  - 8th Polinómio de 6º Grau;
- Equation String que escolhe o tipo de equação que se está a resolver, só funciona o comando 'diffusion';
- Metodo Método Numérico que se está a implementar;
  - o FDM\_2 Diferenças Finitas de 2ª Ordem;
  - o WLS\_2 − Mínimos Quadrados de 2ª Ordem;
  - O WLS\_4 − Mínimos Quadrados de 4ª Ordem;
  - o WLS\_6 − Mínimos Quadrados de 6ª Ordem;
  - WLS\_8 Mínimos Quadrados de 8ª Ordem;
- Uniforme Tipo de malha cartesiana que se está a usar.
  - True Malha uniforme;
  - False Malha Não Uniforme, não está implementado;
- Explicito Tipo de Cálculo que se pretende, só é utilizado para diferenças finitas;
  - o True Cálculo Explicito, não implementado;
  - o False Cálculo Implícito;
- Dirichlet Tipo de Condição de Fronteira;
  - o True Condição de Fronteira de Dirichlet;
  - o False Condição de Fronteira de Neumann, não implementado;
- Ponderado Tipo de Cálculo Utilizado nos Mínimos Quadrados;
  - o True Mínimos Quadrados com Ponderação;
  - False Mínimos Quadrados sem Ponderação;

- GMRES Tipo de Solver que se utiliza;
  - o True GMRES;
  - False BICGSTAB;
- ILU Précondigionador;
  - True Précondicionador ILU
  - False Sem Précondicionador;

## 3 Funções

- Informação Escreve para um ficheiro e para um ecrã as informações sobre os dados de input da simulação;
- CartMesh1 Constrói a malha cartesiana, só está implementado a parte da malha uniforme;
- CartMesh2 Algumas propriedades da Malha;
- AnalyticalSolution Determina a Solução analítica, só está implementada a função difusiva;
  - SolutionDiffusion Calcula os valores analíticos da função, é aqui que se adiciona soluções analíticas;
    - solution Solução analítica;
    - x Coordenada x;
    - y Coordenada y;
    - type Tipo de Solução;
      - 'anal' Solução Analitica;
      - 'lap' Laplaciano;
      - 'xflux' Derivada em X;
      - 'yflux' Derivada em Y;
  - Gausspoints Determina os pontos de Gauss da célula ou da Face, calcula para linhas e triângulos;
    - X1,Y1 Vértice 1;
    - X2,Y2 Vértice 2;
    - X3,Y3 Centróide da Célula ou da Face;
    - Type Tipo de pontos, '1D' para linha, '2D' para um triângulo;
    - Order Ordem de integração;
- FiniteDifferenceMethod2ndOrder Diferenças Finitas de 2ª Ordem, pode-se utilizar o GMRES ou o
  BICSGTAB com ou sem précondicionador em ambos os casos;
  - MatrixDiffFDM Matriz A para a equação difusiva;
- WeightedLeastSquares Mínimos Quadrados;
  - o Stencil Constrói o Stencil para cada Face mediante a ordem do método;
  - Reconstruction2ndOrder Reconstrução do Polinómio Linear através de Mínimos Quadrados;
  - o Reconstruction4thOrder Reconstrução do Polinómio Cubico através de Mínimos Quadrados;
  - o Reconstruction6thOrder Reconstrução do Polinómio 5º Grau através de Mínimos Quadrados;

- o Reconstruction8thOrder Reconstrução do Polinómio 7º Grau através de Mínimos Quadrados;
  - Matriz T e matriz D para cada face do dominio;
- GaussFace Determina as coordenadas dos pontos de Gauss para cada Face, resulta numa matriz com 3 colunas e o numero de linhas é em função do numero de pontos de gauss que se tem;
  - G(face)=(x,y,Peso);
- MatrixDiffusion Determina a Matriz Global da equação difusiva;
  - PolyReconstruction2ndOrder Reconstrução do Polinómio Linear;
  - PolyReconstruction4thOrder Reconstrução do Polinómio Cubico;
  - PolyReconstruction6thOrder Reconstrução do Polinómio 5º Grau;
  - PolyReconstruction8thOrder − Reconstrução do Polinómio 7º Grau;
    - C Constantes para essa célula do Stencil;
    - X1,Y1 Coordenadas do Ponto onde se Pretende Calcular;
    - Xf,Yf Coordenadas do Centróide da Face onde foi feita a reconstrução;
    - Type Tipo de solução
      - 'poly' Polinómio;
      - 'xflux' Derivada em X;
      - 'yflux' Derivada em Y;
- Errorcalculation Cálculo dos valores do erro;
- Exportplots Exporta os resultados para o Tecplot;

