Quantifying Replicability of Multiple Studies in a Meta-Analysis

Mengli Xiao xiaox345@umn.edu ENAR 2022

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455

March 29, 2022

Mengli Xiao March 29, 2022

Systematic reviews and meta-analysis: a lens through which evidence is viewed

Image from Murad et al. (2016).

Mengli Xiao March 29, 2022

Data integration with meta-analysis

Systematic reviews and meta-analysis

- Totality of evidence.
 - Intervention effects from multiple *related* but *independent* studies
 - \rightarrow one summary effect.
- Crucial tool in evidence-based medicine to justify healthcare decisions.

Mengli Xiao March 29, 2022 3 / 28

Why meta-analysis?

- Improved statistical power & precision.
- Investigate reasons for conflicting intervention effects.

Mengli Xiao March 29, 2022

- Introduction
 - Motivating example and replicability
 - Methods
 - Meta-analysis model
 - Proposed replicability measure
 - Replicability test
 - Simulation results
 - Type I error rate
 - Power
 - Case studies
 - Discussion

Mengli Xiao March 29, 2022 4 / 28

5/28

Motivating example

• Individual-based activity (left) vs. no exercise (right) and body fat percentage among breast-cancer survivors.

Are studies replicable?

Definition of replicability

"obtaining *consistent* results across studies aimed at answering the same scientific question, each of which has obtained its own data." (National Academy of Sciences, 2019)

Mengli Xiao March 29, 2022

Why should we assess replicability in meta-analyses?

- Replication crisis of various scientific studies.
- Subjective inclusion and exclusion of studies with different designs.
- Whether a meta-analysis should exclude influential studies?
- Practical guidelines exist, but no consensus on statistical tools.

Mengli Xiao March 29, 2022

Current methods for assessing replicability

- Few metrics for replicability in meta-analysis.
- No established definition of replicability.
 - The *p*-value driven definition is problematic (Jaljuli et al., 2019).

Figure: Using agreement of the *p*-value to determine replicability in National Academy of Sciences (2019)

Mengli Xiao March 29, 2022 8 / 28

Current methods for assessing replicability

- No established definition of replicability.
 - Concept of non-replicability is entangled with heterogeneity (Schauer and Hedges, 2020).
 - Common statistic: τ^2 , Q and I^2 .
 - τ is the between-study standard deviation.
 - Q and I^2 quantify the heterogeneity (P(Q) < 0.05 and $I^2 > 0.75$). $I^2 = \frac{\tau^2}{V_{cool}}$.
 - Question: are Q or I^2 sufficient to reflect non-replicability?

Mengli Xiao March 29, 2022

Why are heterogeneity statistics insufficient?

Replicable study

• **High between-study heterogeneity** still assume studies come from the same distribution, i.e., studies are *replicable*.

Figure: Random-effects meta-analyses with different levels of heterogeneity and replicability.

Non-replicable study

10 / 28

11/28

Comparison between current methods for assessing replicability

- 17.1				0 11 1					
Methods Properties	CCMA	Prediction intervals	r-value (CE)	Sceptical p-value	P_{orig}	NCP in Q-statistic	Externalized residual	r-value (RE)	R_m
Symmetric judgement			. ,	F				. ,	
Examina whather the first study replicates									
Examine whether the first study replicates the following studies	~	×	~	×	×	~	×	~	~
_Identify non-replicable studies	~	~	~	~	~	~	~	~	
Assess effects replicability in an MA	- 2	×		×	×		×	- 2	Ž
Contribution of non-significant study effects		^		^	^		^	~	
Lisa offeet sizes									
Use effect sizes (despite statistical significance)	~	~	×	~	~	~	~	×	
Allow the overall replicable effect to be null	×	_	×	×	_		_	×	/
Quantify replicability	×		×					×	
Distinguish replicability from homogeneity	×	~	~	~	/	×	~	~	V
Hypothesis testing									
Null hypothesis is studies replicate	N/A	~	×	~	~	~	~	×	~
			Jaljuli						
First author	Braver	(2016)	(2021) or	Held (2020)	Mathur (2020)	Schauer (2020)	Schauer (2020)	Jaljuli	This paper
(year)	(2014)	(2016)	Wang	(2020)	(2020)	(2020)	(2020)	(2021)	(202+)
			(2019)						

CCMA: Continuously cumulating meta-analysis; CE: Common-effect model; MA: Meta-analysis; N/A: Not applicable; NCP: Non-centrality parameter; RE: Random-effects model.

11/28

Comparison between current methods for assessing replicability

Methods Properties	CCMA	Prediction intervals	r-value (CE)	Sceptical p-value	P_{orig}	NCP in <i>Q</i> -statistic	Externalized residual	r-value (RE)	R _m
Symmetric judgement									
Examine whether the first study replicates									
the following studies	~	×	~	×	×	~	×	~	~
Identify non-replicable studies	×	×	×	×	×	×	×	×	
Assess effects replicability in an MA	_	×	_	×	×	~	×	_	
Contribution of non-significant study effects									
Use effect sizes (despite statistical significance)	~	~	×	~	~	~	~	×	~
Allow the overall replicable effect to be null	×	_	×	×	_	_	~	×	
Quantify replicability	×	~	×	_	~	~	~	×	
Distinguish replicability from homogeneity	×	~	~	~	~	×	~	~	
Hypothesis testing									
Null hypothesis is studies replicate	N/A	~	×	~	~	~	~	×	✓
First author (year)	Braver (2014)	Patil (2016)	Jaljuli (2021) or Wang (2019)	Held (2020)	Mathur (2020)	Schauer (2020)	Schauer (2020)	Jaljuli (2021)	This paper (202+)

CCMA: Continuously cumulating meta-analysis; CE: Common-effect model; MA: Meta-analysis; N/A: Not applicable; NCP: Non-centrality parameter; RE: Random-effects model.

- Introduction
 - Motivating example and replicability
 - Methods
 - Meta-analysis model
 - Proposed replicability measure
 - Replicability test
 - Simulation results
 - Type I error rate
 - Power
 - Case studies
 - Discussion

Mengli Xiao March 29, 2022 11 / 28

Statistics behind meta-analysis

In a meta-analysis with n studies, if μ is the overall/summary mean effect size, then for each study i (where i = 1, ..., n):

- y_i : observed effect size; s_i^2 : within-study sample variance.
- Goal: obtain an estimate of μ from observed study effects, i.e., $\hat{\mu} = T(y_1, \dots, y_n, s_1^2, \dots, s_n^2)$.
- A random-effects model for the observed effect size in each study *i*:

$$y_i = \mu + \epsilon_i, \qquad \epsilon_i \sim N(0, s_i^2 + \tau^2),$$

where τ^2 is the between-study variance and is estimated from the data.

Mengli Xiao March 29, 2022

Statistics behind replicability

Definition of replicability

In order for the summary estimate $\hat{\mu}$ to be a *consistent* estimator, studies in a systematic review needs to be *replicable*.

Meta-analysis summary estimate: $\hat{\mu} = T(y_1, \dots, y_n, s_1^2, \dots, s_n^2)$, and assumes $\hat{\mu} \xrightarrow{P} u$ as $n \to \infty$

• In the typical random-effects model, the study effect sizes y_i 's are:

$$y_i = \mu + \epsilon_i$$
, $\epsilon_i \sim N(0, s_i^2 + \tau^2)$,

Mengli Xiao March 29, 2022

- Introduction
 - Motivating example and replicability
 - Methods
 - Meta-analysis model
 - Proposed replicability measure
 - Replicability test
 - Simulation results
 - Type I error rate
 - Power
 - Case studies
 - Discussion

Mengli Xiao March 29, 2022

Mengli Xiao March 29, 2022

n studies,m being non-replicable.

Mengli Xiao

March 29, 2022

n studies. m being nonreplicable.

Denote $A_{m,k}$ as the set of m studies to be removed from the meta-analysis $(k = 1, ..., M_m)$. Let $\hat{\mu}_{(-A_{m,k})}$ and $\hat{\tau}^2_{(-A_{m,k})}$ be the estimates of μ and τ^2 using the remaining n-m studies, after omitting studies in $A_{m,k}$.

Mengli Xiao March 29, 2022

Proposed measure: R_m

• The proposed measure:

$$R_m = \max_{k=1,\dots,M_m} R_{\mathcal{A}_{m,k}}$$

• R_m measures the impact of *non-replicable* studies on the total summary effect size.

Mengli Xiao March 29, 2022

Properties of R_m

- R_m (maximum of M_m dependent χ_m^2).
- Proposition 1 (in Appendix) states that R_m (maximum of M_m dependent χ_m^2) \xrightarrow{d} maximum of M_m independent χ_m^2
- This applies to y_i 's that are not normally distributed.

Mengli Xiao March 29, 2022

- Introduction
 - Motivating example and replicability
 - Methods
 - Meta-analysis model
 - Proposed replicability measure
 - Replicability test
 - Simulation results
 - Type I error rate
 - Power
 - Case studies
 - Discussion

Mengli Xiao March 29, 2022 16 / 28

Asymptotic distribution of R_m – Gumbel distribution

- Under H_0 : $y_i \sim N(\mu, s_i^2 + \tau^2)$ for all i = 1, ..., n, i.e., all studies in the meta-analysis are replicable.
- Proposition 2 (in Appendix) derives the asymptotic distribution of R_m : a Gumbel distribution.
- Based on Proposition 2, the approximate *p*-value for the replicability test is:

$$P(R_m) \cong 1 - \exp\left(-e^{-c_n^{-1}(mR_m - d_n)}\right).$$

Mengli Xiao March 29, 2022

Replicability test

- **Difficulty:** unknown # of non-replicable studies.
- Solution: we assume most studies are replicable in the meta-analysis, and show that it is sufficient to use m = 1, i.e., R_1 .
- To identify the non-replicable study: an iterative algorithm (in Appendix).

Mengli Xiao March 29, 2022

- Introduction
 - Motivating example and replicability
 - Methods
 - Meta-analysis model
 - Proposed replicability measure
 - Replicability test
 - Simulation results
 - Type I error rate
 - Power
 - Case studies
 - Discussion

Mengli Xiao March 29, 2022

Type I error rate

		$\tau = 0 (\tau^2$	= 0)	τ	$= 0.32 (\tau^2)$	$^2 = 0.10$)	τ	$\tau = 0.55 (\tau^2 = 0.30)$			
		Type I error rate			Type I error rate			Type I	error rate		
n	I^2	Gumbel	Bootstrap	I^2	Gumbel	Bootstrap	I^2	Gumbel	Bootstrap		
$s_i \sim$	$s_i \sim U(0.54, 1.41)$:										
5	0.14	0.03	0.00	0.17	0.03	0.00	0.23	0.06	0.00		
10	0.11	0.03	0.02	0.15	0.04	0.02	0.24	0.08	0.03		
20	0.08	0.03	0.03	0.15	0.06	0.05	0.26	0.08	0.06		
50	0.06	0.03	0.04	0.13	0.05	0.04	0.27	0.06	0.05		
$s_i \sim$	U(0.22)	2, 0.54):									
5	0.14	0.03	0.00	0.34	0.10	0.00	0.56	0.22	0.02		
10	0.11	0.03	0.01	0.36	0.12	0.04	0.63	0.19	0.06		
20	0.09	0.03	0.02	0.42	0.12	0.07	0.68	0.13	0.06		
50	0.06	0.03	0.04	0.44	0.07	0.05	0.71	0.08	0.06		
$s_i \sim$	U(0.10)), 0.22):									
5	0.14	0.03	0.00	0.70	0.28	0.05	0.87	0.35	0.06		
10	0.11	0.03	0.02	0.76	0.20	0.06	0.91	0.20	0.05		
20	0.09	0.03	0.02	0.80	0.13	0.05	0.92	0.12	0.05		
50	0.06	0.03	0.04	0.82	0.08	0.07	0.93	0.09	0.07		

Note: Each setting used 1000 simulated datasets.

Type I error rate

		$\tau = 0 (\tau^2$	= 0)	τ	$= 0.32 (\tau^2)$	= 0.10)	$\tau = 0.55 (\tau^2 = 0.30)$			
	Type I error rate			Type I error rate				Type I	error rate	
n	I^2	Gumbel	Bootstrap	I^2	Gumbel	Bootstrap	I^2	Gumbel	Bootstrap	
$s_i \sim$	U(0.54	1, 1.41):								
5	0.14	0.03	0.00	0.17	0.03	0.00	0.23	0.06	0.00	
10	0.11	0.03	0.02	0.15	0.04	0.02	0.24	0.08	0.03	
20	0.08	0.03	0.03	0.15	0.06	0.05	0.26	0.08	0.06	
50	0.06	0.03	0.04	0.13	0.05	0.04	0.27	0.06	0.05	
$s_i \sim$	U(0.22)	2, 0.54):								
5	0.14	0.03	0.00	0.34	0.10	0.00	0.56	0.22	0.02	
10	0.11	0.03	0.01	0.36	0.12	0.04	0.63	0.19	0.06	
20	0.09	0.03	0.02	0.42	0.12	0.07	0.68	0.13	0.06	
50	0.06	0.03	0.04	0.44	0.07	0.05	0.71	0.08	0.06	
$s_i \sim$	U(0.10)), 0.22):								
5	0.14	0.03	0.00	0.70	0.28	0.05	0.87	0.35	0.06	
10	0.11	0.03	0.02	0.76	0.20	0.06	0.91	0.20	0.05	
20	0.09	0.03	0.02	0.80	0.13	0.05	0.92	0.12	0.05	
50	0.06	0.03	0.04	0.82	0.08	0.07	0.93	0.09	0.07	

Note: Each setting used 1000 simulated datasets.

Mengli Xiao March 29, 2022

Type I error rate

	$\tau = 0 (\tau^2 = 0)$			τ	$= 0.32 (\tau^2)$	= 0.10)	$\tau = 0.55 (\tau^2 = 0.30)$			
		Type I error rate			Type I error rate			Type I	error rate	
n	I^2	Gumbel	Bootstrap	I^2	Gumbel	Bootstrap	I^2	Gumbel	Bootstrap	
$s_i \sim$	U(0.54)	1, 1.41):								
5	0.14	0.03	0.00	0.17	0.03	0.00	0.23	0.06	0.00	
(10)	0.11	0.03	0.02	0.15	0.04	0.02	0.24	0.08	0.03	
20	0.08	0.03	0.03	0.15	0.06	0.05	0.26	0.08	0.06	
50	0.06	0.03	0.04	0.13	0.05	0.04	0.27	0.06	0.05	
$s_i \sim$	$s_i \sim U(0.22, 0.54)$:									
5	0.14	0.03	0.00	0.34	0.10	0.00	0.56	0.22	0.02	
10	0.11	0.03	0.01	0.36	0.12	0.04	0.63	0.19	0.06	
20	0.09	0.03	0.02	0.42	0.12	0.07	0.68	0.13	0.06	
50	0.06	0.03	0.04	0.44	0.07	0.05	0.71	0.08	0.06	
$s_i \sim$	U(0.10)), 0.22):								
5	0.14	0.03	0.00	0.70	0.28	0.05	0.87	0.35	0.06	
[10	0.11	0.03	0.02	0.76	0.20	0.06	0.91	0.20	0.05	
20	0.09	0.03	0.02	0.80	0.13	0.05	0.92	0.12	0.05	
50	0.06	0.03	0.04	0.82	0.08	0.07	0.93	0.09	0.07	

Note: Each setting used 1000 simulated datasets.

Mengli Xiao March 29, 2022

- Introduction
 - Motivating example and replicability
 - Methods
 - Meta-analysis model
 - Proposed replicability measure
 - Replicability test
 - Simulation results
 - Type I error rate
 - Power
 - Case studies
 - Discussion

Mengli Xiao March 29, 2022

Power (detect non-replicability)

Similar power to identify the right non-replicable study

	τ	$= 0 (\tau^2 =$	0)	$\tau =$	$0.32 (\tau^2 =$	0.10)	$\tau = 0.55 (\tau^2 = 0.30)$			
		Power			Po	wer		Po	wer	
n	$I_{\mathrm{tot}}^2 (I_{\mathrm{rep}}^2)$	Gumbel	Bootstrap	$I_{ m tot}^2 (I_{ m rep}^2)$	Gumbel	Bootstrap	$I_{\mathrm{tot}}^2 \left(I_{\mathrm{rep}}^2 \right)$	Gumbel	Bootstrap	
$s_i \sim$	U(0.54, 1.41):								
5	0.56 (0.15)	0.45	0.08	0.57 (0.17)	0.43	0.07	0.59 (0.23)	0.42	0.07	
10	0.42 (0.11)	0.47	0.32	0.45 (0.15)	0.45	0.28	0.50 (0.23)	0.38	0.22	
20	0.29 (0.09)	0.48	0.43	0.36 (0.15)	0.44	0.37	0.44 (0.26)	0.38	0.26	
50	0.17 (0.06)	0.44	0.44	0.24 (0.13)	0.40	0.38	0.36 (0.27)	0.35	0.27	
$s_i \sim$	U(0.22, 0.54)):								
5	0.92 (0.15)	1.00	0.73	0.92 (0.32)	0.96	0.51	0.92 (0.53)	0.84	0.30	
10	0.86 (0.11)	1.00	0.99	0.87 (0.36)	0.98	0.92	0.89 (0.61)	0.88	0.66	
20	0.75 (0.09)	1.00	1.00	0.80 (0.41)	0.99	0.97	0.85 (0.68)	0.86	0.83	
50	0.53 (0.06)	1.00	1.00	0.68(0.44)	0.98	0.98	0.79 (0.71)	0.85	0.90	
$s_i \sim$	U(0.10, 0.22)):								
_ 5	0.99 (0.15)	1.00	1.00	0.99 (0.66)	1.00	0.79	0.99 (0.84)	0.93	0.36	
10	0.97 (0.11)	1.00	1.00	0.98 (0.75)	1.00	1.00	0.98 (0.90)	0.96	0.88	
20	0.95 (0.09)	1.00	1.00	0.96 (0.80)	1.00	1.00	0.97 (0.92)	0.97	0.99	
50	0.89 (0.06)	1.00	1.00	0.93 (0.82)	1.00	1.00	0.96 (0.93)	0.96	1.00	

Note: Each setting used 1000 simulated datasets.

Mengli Xiao March 29, 2022

 I_{tot}^2 is the observed I^2 statistic for all studies in a meta-analysis.

 I_{rep}^2 is the observed I^2 statistic for replicable studies only.

- Introduction
 - Motivating example and replicability
 - Methods
 - Meta-analysis model
 - Proposed replicability measure
 - Replicability test
 - Simulation results
 - Type I error rate
 - Power
 - Case studies
 - Discussion

Mengli Xiao March 29, 2022

Can physical activity reduce body fat among breast-cancer survivors?

- Meta-analysis in Lahart et al. (2018) with 10 studies: individual-format physical activity versus control for reducing body fat in women with breast cancer after adjuvant therapy (chemotherapy and/or radiation therapy).
- Mean difference between groups is the measure, a continuous outcome.

Mengli Xiao March 29, 2022

Can physical activity reduce body fat percentage among breast-cancer survivors?

Mengli Xiao March 29, 2022

Can physical activity reduce body fat percentage among breast-cancer survivors?

- Schmitz 2005 only included participants who completed a college education and the intervention only used resistance training.
- This may suggest further research questions in how physical activity can reduce body fat percentage to improve patient care.

Mengli Xiao March 29, 2022

- Motivating example and replicability
- Methods
 - Meta-analysis model
 - Proposed replicability measure
 - Replicability test
- Simulation results
 - Type I error rate
 - Power
- Case studies
- Discussion

Mengli Xiao March 29, 2022 23 / 28

Contributions

- New metric for meta-analysis.
 - Quantify replicability regardless of heterogeneity.

(a) Low between-study heterogeneity in (b) High between-study heterogeneity in c a meta-analysis with replicability a meta-analysis with replicability in

(c) Moderate between-study heterogeneity in a meta-analysis with non-replicability

24 / 28

Mengli Xiao March 29, 2022

Contributions

- New metric for meta-analysis.
 - Apply to non-significant effects.

Mean body fat % (physical activity) – Mean body fat % (control)

25 / 28

Mengli Xiao March 29, 2022

Contributions

- The new metric can suggest sources of effect discrepancy in a meta-analysis: confounding, selection bias, measurement error, etc.
 - Improve future systematic reviews.
- To facilitate building consensus in any research topic and reduce replication crisis, we developed an R package "repMeta".

Mengli Xiao March 29, 2022

Future directions

- Method development for integrating complex dataset.
 - Multiple treatments, e.g., network meta-analysis (Lin et al., 2016).
 - Multiple outcomes, e.g., multivariate meta-analysis, longitudinal outcomes (Riley et al., 2017).
 - Multiple covariates meta-regression approach.
 - Individual participant data, e.g., hierarchical models for meta-analysis (Abo-Zaid et al., 2013).
- Applications.
 - Evaluate the robustness of overall effect from multi-center clinical trials and observation studies, and find factors that cause inconsistency, e.g., education.

.

27 / 28

Mengli Xiao March 29, 2022

Thank you!

Questions? (xiaox345@umn.edu)

Mengli Xiao March 29, 2022

References: I

- Abo-Zaid, G., Guo, B., Deeks, J. J., Debray, T. P., Steverberg, E. W., Moons, K. G., and Riley, R. D. (2013). Individual participant data meta-analyses should not ignore clustering. Journal of clinical epidemiology, 66(8):865–873.
- Embrechts, P., Mikosch, T., and Klüppelberg, C. (1997). *Modelling* Extremal Events: For Insurance and Finance. Springer-Verlag, Berlin, Germany.
- Gumbel, E. J. (1958). *Statistics of Extremes*. Columbia University Press, New York, NY.
- Jaljuli, I., Benjamini, Y., Shenhav, L., Panagiotou, O., and Heller, R. (2019). Quantifying replicability and consistency in systematic reviews. *ArXiv.* Available at https://arxiv.org/abs/1907.06856.

March 29, 2022 29 / 28

References: II

- Lahart, I. M., Metsios, G. S., Nevill, A. M., and Carmichael, A. R. (2018). Physical activity for women with breast cancer after adjuvant therapy. *Cochrane Database of Systematic Reviews*, 1:Art. No.: CD011292.
- Lin, L., Chu, H., and Hodges, J. S. (2016). Sensitivity to excluding treatments in network meta-analysis. *Epidemiology*, 27(4):562–569.
- Murad, M. H., Asi, N., Alsawas, M., and Alahdab, F. (2016). New evidence pyramid. *BMJ Evidence-Based Medicine*, 21(4):125–127.
- National Academy of Sciences (2019). *Reproducibility and Replicability in Science*. National Academies Press, Washington, DC.
- Riley, R. D., Jackson, D., Salanti, G., Burke, D. L., Price, M., Kirkham, J., and White, I. R. (2017). Multivariate and network meta-analysis of multiple outcomes and multiple treatments: rationale, concepts, and examples. *BMJ*, 358.

Mengli Xiao March 29, 2022 30 / 28

References: III

Schauer, J. M. and Hedges, L. V. (2020). Assessing heterogeneity and power in replications of psychological experiments. *Psychological Bulletin*, 146:701–719.

Mengli Xiao March 29, 2022

Proposition 1

Proposition 1

In a collection of n studies, for $i=1,\ldots,n$, assume that all studies with effect sizes y_i 's replicate each other by sharing a common overall mean μ , and the fourth moments of y_i 's are finite. Then, in the leave-m-studies-out procedure for assessing replicability,

$$R_m \xrightarrow{d} m^{-1} \max_{k=1}^{m} C_k \text{ as } M_m \to \infty, \text{ where } C_k \stackrel{\text{iid}}{\sim} \chi_m^2.$$

Mengli Xiao March 29, 2022

Proposition 2

• Under H_0 : $y_i \sim N(\mu, s_i^2 + \tau^2)$ for all i = 1, ..., n, i.e., all studies in the meta-analysis are replicable

Proposition 2

(Gumbel, 1958; Embrechts et al., 1997)

Under H_0 , as $M_m = \mathcal{C}_m^n \to \infty$, $-c_n^{-1}(mR_m - d_n) \xrightarrow{d} G$, where $c_n = 2$, $d_n = 2 \left[\log(\mathcal{C}_m^n) + (m/2 - 1) \log \log(\mathcal{C}_m^n) - \log \Gamma(m/2) \right]$, and G is a standard Gumbel random variable with CDF $F_G(x) = \exp(-e^{-x})$.

• Based on Proposition 2, the approximate *p*-value for the replicability test is:

$$P(R_m) \cong 1 - \exp\left(-e^{-c_n^{-1}(mR_m - d_n)}\right).$$

Mengli Xiao March 29, 2022

Algorithm

Algorithm 1: Procedure for identifying non-replicable studies based on R_1 .

Result: Indexes of non-replicable studies

Using Equation (2.5), calculate $M_1 = n$ values of $R_{\mathcal{A}_{1,(k)}}$ for k = 1, ..., n;

Order them such that $R_{\mathcal{A}_{1,(1)}} < R_{\mathcal{A}_{1,(2)}} < \cdots < R_{\mathcal{A}_{1,(n)}}$;

Let $l \leftarrow n$;

while
$$P\left(\max_{k=1}^{n} R_{\mathcal{N}_{1,(k)}}\right) < \alpha \operatorname{do}$$

Pick the two largest values of $R_{\mathcal{A}_{1,(k)}}$, i.e., $R_{\mathcal{A}_{1,(l-1)}}$ and $R_{\mathcal{A}_{1,(l)}}$;

Leave the corresponding studies out, indexed by a and b;

Obtain the sets of studies $\{1, ..., l\} \setminus a$ and $\{1, ..., l\} \setminus b$;

Compare
$$\max_{k \in \{1, \dots, l\} \setminus a} R_{\mathscr{A}_{1,(k)}}$$
 with $\max_{k \in \{1, \dots, l\} \setminus b} R_{\mathscr{A}_{1,(k)}}$;

Let
$$m \leftarrow \operatorname{argmin}_{\{a,b\}} \left\{ \max_{k \in \{1, \dots, l\} \setminus a} R_{\mathscr{A}_{1,(k)}'} \max_{k \in \{1, \dots, l\} \setminus b} R_{\mathscr{A}_{1,(k)}} \right\};$$

Omit study m and let $l \leftarrow l-1$;

Using Equation (2.5), calculate $M_1 = l$ values of $R_{\mathcal{A}_1(k)}$ for k = 1, ..., l;

Order them such that $R_{\mathcal{A}_{1,(1)}} < R_{\mathcal{A}_{1,(2)}} < \cdots < R_{\mathcal{A}_{1,(n)}}$;

end