HOW ТО заботать экзамен по алгебре (2 семестр)

Должен признаться, что не планирую делать полный конспект к экзамену по линейной алгебре, так как это слишком долгий процесс.

Список билетов

1. Многочлены

- (а) Основные понятия теории делимости. Отношение ассоциированности
- (b) Деление многочленов с остатком
- (с) Теорема о наибольшем общем делителе. Алгоритм Евклида
- (d) Существование и однозначность разложения на неприводимые многочлены в кольце многочленов над полем
- (е) Поле частных области. Рациональные дроби.
- (f) Кольцо многочленов над областью с однозначным разложением. Лемма Гаусса и ее следствия
- (g) Однозначность разложения на неприводимые многочлены в кольце многочленов над областью с однозначным разложением
- (h) Теорема Безу. Корни многочлена.
- (i) Классификация неприводимых многочленов над полями комплексных и действительных чисел
- (j) Неприводимые многочлены с целыми коэффициентами. Критерий Эйзенштейна. Алгоритм Кронекера
- (к) Неприводимые многочлены над полями вычетов
- (1) Отделение кратных множителей
- (m) Кратные корни. Число корней многочлена n-й степени
- (n) Поле разложения многочлена. Конечные поля
- (o) Симметрические многочлены. Формулы Виета. Основная теорема о симметрических многочленах
- (р) Лемма о модуле старшего члена. Основная теорема алгебры комплексных чисел.

2. Линейные операторы

- (а) Изменение матрицы при замене базиса
- (b) Собственные числа и собственные значения линейного оператора. Линейные операторы простой структуры
- (с) Линейные функционалы. Теорема о строении линейного функционала на унитарном (евклидовом) пространстве.
- (d) Сопряженный оператор. Линейность сопряженного оператора. Свойства операции сопряжения. Матрица сопряженного оператора
- (е) Теорема Фредгольма. Альтернатива Фредгольма.
- (f) Нормальный оператор. Теорема о строении нормального оператора.
- (g) Унитарные и ортогональные операторы.
- (h) Самосопряженные операторы.

(i) Неотрицательные самосопряженные операторы. Квадратные корни из неотрицательных самосопряженных операторов.

- (j) Полярное разложение оператора на унитарном (евклидовом) пространстве
- (k) Сингулярные числа и их применения. Теорема Эккарта-Янга
- (1) Псевдообратный оператор. Нормальное псевдорешение несовместной системы линейных уравнений.

3. Жорданова теория

- (а) Разложение Фиттинга. Корневое разложение. Теорема о корневом разложении.
- (b) Теорема о минимальном многочлене. Теорема Гамильтона-Кэли
- (с) Жорданов базис нильпотентного оператора
- (d) Теорема Жордана

4. Квадратичные формы

- (а) Метод Лагранжа
- (b) Закон инерции действительных квадратичных форм
- (с) Критерий Сильвестра

5. Квадрики на плоскости и в пространстве

- (а) Эллипс, гипербола, парабола
- (b) Упрощение уравнения 2-го порядка от двух переменных. Классификация плоских квадрик
- (с) Эллипсоиды, гиперболоиды, параболоиды, конусы, цилиндры
- (d) Упрощение уравнения 2-го порядка от трех переменных. Классификация пространственных квадрик

Линейные операторы

Изменение матрицы при замене базиса

Пусть V - конечномерное векторное пространство над полем F, а $P = \{p_1, p_2, ..., p_n\}$ и $Q = \{q_1, q_2, ..., q_n\}$ - два базиса этого пространства. **Матрицей перехода от базиса** P **к базису** Q нызывается $n \times n$ матрицы, i-ый столбец которой (для каждого i = 1, ..., n) есть координатный столбец вектора q_i в базисе P.

Обозначается как $T_{P\to Q}$.

Предложение.

Пусть P и Q - два базиса пространства V. Тогда для любого $x \in V$

$$[x]_P = T_{P \to Q}[x]_Q$$

$$[x]_P = T_{P \to Q} T_{Q \to P} [x]_P$$

Предложение.

Пусть P и Q - два базиса пространства V. Матрица $T_{P\to Q}$ обратима и обратной к ней является матрицаа обратного перехода $T_{Q\to P}$.

Теорема (о замене матрицы).

Пусть V и W - конечномерные векторные пространства над полем F, P_1, P_2 - базисы пространства V, Q_1, Q_2 - базисы пространства W, а $\mathcal{A}: V \to W$ - линейный оператор. Тогда

$$A_{P_2,Q_2} = T_{Q_2 \to Q_1} A_{P_1,Q_1} T_{P_1 \to P_2}$$

Важный частный случай W=V. Тогда $Q_1=P_1, Q_2=P_2.$

Определение. Квадратные матрицы A и B над некоторым полем F называются подобными над F, если существует невырожденная квадратная матрица над F такая, что $B = T^{-1}AT$.

Таким образом, все матрицы одного и тогоже линейного оператора $\mathcal{A}:V\to V$ подобны между собой.

Собственные числа и собственные значения линейного оператора. Линейные операторы простой структуры

Пусть V - векторное пространство над полем F, а \mathcal{A} - линейный оператор на V. Вектор $x \in V$ нызвается **собственным вектором** оператора \mathcal{A} , если $x \neq 0$ и существует скаляр $\lambda \in F$ такой, что

$$Ax = \lambda x$$

Замечание. Характеристические многочлены подобных матриц равны.

Справка

Квадратные матрицы A и B одинакового порядка называются подобными, если существует невырожденная матрица P того же порядка, такая что $B = P^{-1}AP$

Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.

Замечания

У линейного оператора на n-мерном пространстве не более n собственных значений (так как у многочлена n степени не более n корней).

У любого линейного оператора обычного трехмерного пространства есть собственный вектор. Геометрически это отнюдь не очевидно, но сразу следует из наличия действительного корня у многочленов третьей степени.

В силу основной теоремы алгебры комплексных чисел у любого оператора на любом конечномерном пространстве над полем С есть собственные значения и собственные вектора.

Алгоритм поиска собственных значений и собственных векторов оператора \mathcal{A} :

- 1. Взять матрицу A оператора \mathcal{A} в некотором базисе
- 2. Вычислить характеристический многочлен $\det(A \lambda E)$
- 3. Найти корни характеристического многочлена $\lambda_1, ..., \lambda_k$.
- 4. Для каждого λ_i найти ненулевые решения системы линейных однородных уравнений $(A-\lambda_i E)x=0$

Теорема.

Собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы.

Следствие.

Если у линеуного опретора \mathcal{A} на n-мерном пространстве имеется n различных собственных значений, то в V существует базис из собственных векторов оператора \mathcal{A} .

экзамен алгем 2 семестр ФТ-104

Определение. Оператор с n различными собственными значениями нызваеют **операторами простой структуры**.

В базисе из собственных векторов оператора его матрица диагональна, причем по диагонали идут собственные значения, которым принадлежат вектора базиса. Поэтому операторы, допускающие такой базис, называют приводимыми к диагональному виду или диагонализируемыми.

Из отмеченного выше следствия вытекает, что операторы простой структуры диагонализируемы. Обратное, разумеется, неверно: например, тождественный оператор и нулевой оператор диагонализируемы, так как у каждого из них любой ненулевой вектор собственный. Бывают ли недиагонализируемые операторы? Конечно, некоторые операторы недиагонализируемы из-за нехватки собственных значений. Например, оператор поворота плоскости на угол $\frac{\pi}{2}$ недиагонализируем. Но бывают и недиагонализируемые операторы, у которых есть собственные значения.

Сопряжённые операторы

Оператора \mathcal{A}^* называется сопряжённым с \mathcal{A} , если $\forall x,y \in V$

$$(\mathcal{A}(x), y) = (x, \mathcal{A}^*(y))$$

Свойства:

- $1. \mathcal{A}^*$ линейный оператор
- $2. (\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^*$
- 3. $(\alpha A)^* = \overline{\alpha} A^*$
- 4. $(\mathcal{AB})^* = \mathcal{B}^* \mathcal{A}^*$
- 5. $(A^*)^* = A$

Предложение (матрица сопряжённого оператора).

Если линейный оператор $\mathcal{A}:V_1\to V_2$ имеет в ортонормированных базисах пространств V_1 и V_2 матрицу A, то сопряжённый ему оператор $\mathcal{A}^*:V_2\to V_1$ имеет в тех же базисах матрицу A^*

Да, это верно. Ортогональная матрица - это квадратная матрица Q, для которой выполняется условие $Q^TQ=QQ^T=I$, где T обозначает транспонирование матрицы и I - единичная матрица.

Пусть \vec{v} - некоторый вектор, такой что $Q\vec{v}=\vec{0}$, где $\vec{0}$ - нулевой вектор. Тогда мы можем умножить обе стороны на $Q^T\colon Q^TQ\vec{v}=Q^T\vec{0}$, то есть $I\vec{v}=\vec{0}$, так как $Q^TQ=I$. Следовательно, $\vec{v}=\vec{0}$, что означает, что ядро ортогональной матрицы состоит только из нулевого вектора. Таким образом, ортогональная матрица инъективна (взаимно-однозначное соответствие) и является линейным оператором на всем пространстве.

Для доказательства данного утверждения необходимо воспользоваться определением изометрического оператора и сингулярным разложением матрицы оператора.

Определение изометрического оператора. Линейный оператор A называется изометрическим, если выполняется условие ||Ax|| = ||x|| для всех $x \in V$, где ||x|| - норма вектора x.

Сингулярное разложение. Любую матрицу A размера $m \times n$ можно представить в виде произведения трех матриц: $A = U \Sigma V^T$, где U и V - ортогональные матрицы размера $m \times m$ и $n \times n$ соответственно, а Σ - диагональная матрица размера $n \times m$, элементы главной диагонали которой являются сингулярными числами матрицы A.

Доказательство:

Пусть A - изометрический оператор и $A=U\Sigma V^T$ - его сингулярное разложение. Мы можем проверить, что все сингулярные числа матрицы A равны 1, используя определение изометрического оператора и свойства ортогональных матриц.

Для любого вектора $x \in V$ мы можем записать x в виде линейной комбинации столбцов матрицы V: $x = \sum_{i=1}^n v_i u_i$, где u_i - столбцы матрицы U, а v_i - элементы вектора $V^T x$. Тогда:

$$||Ax||^2 = ||U\Sigma V^T x||^2 = ||\Sigma V^T x||^2 = \sum_{i=1}^n \sigma_i^2 (V^T x)_i^2 = \sum_{i=1}^n (V^T x)_i^2 = ||x||^2$$

где σ_i - i-ое сингулярное число матрицы A.

Таким образом, мы получаем, что для любого вектора $x \in V$ выполняется условие $||Ax||^2 = ||x||^2$, откуда следует, что ||Ax|| = ||x|| (в силу неотрицательности нормы вектора), что означает, что линейный оператор A является изометрическим.

 ${\bf C}$ учетом этого мы можем заключить, что все сингулярные числа матрицы A равны единице, так как:

 $\|Ax\| = \|x\|$ для любого $x \in V$. Рассмотрим сингулярное разложение $A = U\Sigma V^T$. Тогда σ_i^2 равны квадратам собственных значений A^TA . Так как $\|Ax\| = \|x\|$, собственные значения A^TA равны 1 (или можно записать, что $\|A^TAx\| = \|x\|$ для любого $x \in V$). Следовательно, $\sigma_i^2 = 1$ для всех i. Таким образом, доказано, что если линейный оператор является изометрическим, то все сингулярные числа его матрицы равны 1.

чтобы показать, что $\sigma_1^2(v_1^Tx)^2 \leq |x|^2/n$, мы воспользовались тем фактом, что $|Ax| = |\Sigma V^Tx|$. Для этого мы заметили, что слагаемые в выражении $|\Sigma V^Tx|$ (которые представляют собой произведения сингулярных чисел на координаты вектора V^Tx) являются неотрицательными. Следовательно, наибольшим значением выражения $\sigma_1^2(v_1^Tx)^2$ может быть само значение $|\Sigma V^Tx|^2$, которое является равным $|x|^2$.