Name: Entry No

COL 765: Introduction to Logic and Functional Programming "Big Quiz" (40 minutes, 40 marks), 11.11.2024

Name: ANSWERS Entry No. XXX

Q1. First-Order Logic for Specifying Relational Properties. [2+2+2+2=8] Suppose we also have a *binary* predicate symbol $R^{(2)} \in \Pi$. Write First-order Logic (FOL) sentences using individual variables x, y, z, w, propositional connectives \neg , \wedge , \vee , \rightarrow , quantifiers \forall , \exists , and = the (binary) equality relational symbol with its standard meaning, to describe the following properties:

- (a) R is <u>not transitive</u>: $\neg((\forall x)(\forall y)(\forall z)[(R(x,y) \land R(y,z)) \rightarrow R(x,z)])$ $\Leftrightarrow (\exists x)(\exists y)(\exists z)[R(x,y) \land R(y,z) \land \neg R(x,z)]$ by De Morgan's Laws.
- (b) R is <u>not anti-symmetric</u>: $\neg((\forall x)(\forall y)[(R(x,y) \land R(y,x)) \rightarrow (x=y)])$ $\Leftrightarrow (\exists x)(\exists y)[R(x,y) \land R(y,x) \land \neg(x=y)]$ by De Morgan's Laws.
- (c) Now suppose we also have a *unary* predicate symbol $P^{(1)} \in \Pi$. We say P is a logical property closed under equality if whenever an element has property P, then all elements equal to it also have that property. Write a <u>FOL sentence</u> in $\mathcal{L}(\mathcal{X}, \Sigma, \Pi)$ to express closure under equality of property P:

$$(\forall x)(\forall y)[(x = y) \rightarrow (P(x) \rightarrow P(y))]$$
 or equivalently $(\forall x)(\forall y)[((x = y) \land P(x)) \rightarrow P(y)]$

(d) Now suppose we also have a *binary* predicate symbol $\sqsubseteq^{(2)} \in \Pi$, which satisfies reflexivity, antisymmetry and transitivity properties. Write a <u>FOL formula in</u> $\mathscr{L}(\mathcal{X}, \Sigma, \Pi)$ to express that z is a *least upper bound* of x and y with respect to partial ordering \sqsubseteq : $(x \sqsubseteq z) \land (y \sqsubseteq z) \land (\forall w)[((x \sqsubseteq w) \land (y \sqsubseteq w)) \rightarrow (z \sqsubseteq w)]$

(z is an upper bound of both x and y, and f or any upper bound w of both x and y, z is less than or equal to w).

- **Q2. First-Order Logic for Specifying Properties of Models.** [2+2+1+2+3+2=12] First-order Logic (FOL) <u>sentences</u> can be used to characterise sets (which satisfy the sentence). Write <u>FOL sentences</u> using only individual variables x, y, z, propositional connectives \neg , \wedge , \vee , \rightarrow , quantifiers \forall , \exists , and = as the <u>only</u> (binary) relational symbol (with its standard meaning) to describe the following properties of sets:
- (a) There is <u>at most one</u> element in the set: [Hint: all elements, if they exist, are **equal**] $\phi_{|\leq 1|} \equiv (\forall x)(\forall y)[x=y]$ [This is the negation of saying there are at least two different elements]
- (b) There is <u>at least one</u> element in the set: [Hint: there exists an element such that **true**, i.e., **it's equal to itself**] $\phi_{|>1|} \equiv (\exists x)[x = x]$
- (c) There is *exactly one* element in the set: $\phi_{|\leq 1|} \wedge \phi_{|\geq 1|}$

Name: Entry No

(d) There are <u>at least two</u> elements in the set:

$$\phi_{|\geq 2|} \equiv (\exists x)(\exists y)[\neg(x=y)]$$
 Note this is equivalent to $\neg \phi_{|\leq 1|} \equiv \neg((\forall x)(\forall y)[x=y])$

(e) There are <u>at most two</u> elements in the set:

$$\phi_{|\leq 2|} \equiv (\forall x)(\forall y)(\forall z)[(x=y) \lor (x=z) \lor (y=z)]$$
 [This is the negation of saying there are at least three different elements]

(f) There are *exactly two* elements in the set:

$$\phi_{|\leq 2|} \wedge \phi_{|\geq 2|}$$

Q3 Encodings in the Untyped λ -calculus [2+2+4=8]

Recall the encoding of the booleans in the Pure Untyped λ -calculus — constants **T** and **F** as $T \equiv \lambda x . \lambda y . x$, $F \equiv \lambda x . \lambda y . y$ and **if-then-else** as $D \equiv \lambda t . \lambda x . \lambda y . ((t \ a) \ b)$

If you coded these in OCaml, giving type variables to the arguments, what are types of these terms? (Show your working by decorating the arguments of the λ -expressions.)

(a) Type of
$$T \equiv \lambda x^{\alpha} . \lambda y^{\beta} . x : \alpha \rightarrow (\beta \rightarrow \alpha)$$

(b) Type of
$$F \equiv \lambda x^{\alpha} . \lambda y^{\beta} . y : \alpha \rightarrow (\beta \rightarrow \beta)$$

(c) Type of
$$D \equiv \lambda t^{\gamma} \cdot \lambda x^{\alpha} \cdot \lambda y^{\beta} \cdot ((t \ a)^{\theta} \ b)^{\delta} : (\alpha \to (\beta \to \delta)) \to (\alpha \to (\beta \to \delta))$$

 $\gamma = \alpha \to \theta$, for some type θ — since t, of type γ , is applied to a of type α $\theta = \beta \to \delta$, for some type δ — since $(t \ a)$, of type θ , is applied to b, which is of type β Therefore, $\gamma = \alpha \to (\beta \to \delta)$

Q4 Specifying a Type-Checker in Prolog [12]

Consider the following typing rules for a simply-typed λ -calculus:

$$(Var) \frac{}{\Gamma \vdash x : \tau} \quad \text{provided } (x : \tau) \in \Gamma$$

$$(App) \ \frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash e_1 \ e_2 : \tau_2} \qquad (Pair) \ \frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2}$$

$$(Lam) \frac{\Gamma[x:\tau_1] \vdash e:\tau_2}{\Gamma \vdash \lambda x.e:\tau_1 \to \tau_2} \qquad (Proj_i) \frac{\Gamma \vdash e:\tau_1 \times \tau_2}{\Gamma \vdash \operatorname{proj}_i e:\tau_i} \qquad (i = 1 \text{ or } 2)$$

Suppose we encode type assumptions Γ in Prolog as a *stack* (i.e., a list) of pairs of the form (X, T) where Prolog variable X represents a λ -calculus variable X, and Prolog variable X

Name: Entry No

represents a type τ . We use a Prolog predicate member (A, S) that succeeds if A appears in list S, and fails otherwise, for looking for a type assumption on the stack.

The types in our system are represented using Prolog constructors: a Prolog name A is used to represent a type variable α , and $\mathtt{arrow}(\mathbb{T}1, \mathbb{T}2)$ represents the function type $\tau_1 \to \tau_2$, where $\mathbb{T}1$ and $\mathbb{T}2$ are Prolog variables representing types τ_1 and τ_2 ; cartesian product of types $\tau_1 \times \tau_2$ is represented as $\mathtt{cartesian}(\mathbb{T}1, \mathbb{T}2)$. λ -expressions are coded using Prolog constructors $\mathtt{var}(\mathbb{X})$, $\mathtt{app}(\mathbb{E}1,\mathbb{E}2)$, $\mathtt{lam}(\mathbb{X},\mathbb{E})$, $\mathtt{pair}(\mathbb{E}1,\mathbb{E}2)$, $\mathtt{proj1}(\mathbb{E})$ and $\mathtt{proj2}(\mathbb{E})$.

The notation $\Gamma[x:\tau]$ denotes the type assumptions Γ augmented with the (most recent) type assumption $x:\tau$. The objective is to define the type-checker as a Prolog predicate hastype (G, E, T) encoding the typing judgment $\Gamma \vdash e:\tau$. We show you how the rules (Var) and (Lam) respectively are encoded:

```
% Var
hastype(G, var(X),T) :- member((X,T),G), !.
% Lam
hastype(G,lam(X,E),arrow(T1,T2)) :- hastype([(X,T1)|G],E,T2).
```

Now complete the encoding for the other typing rules given above: