Metody Optymalizacji - Laboratorium 3

Wojciech Sęk

11 czerwca 2023

1 Zadanie 1

1.1 Idea algorytmu

Algorytm 2-aproksymacyjny oparty na programowaniu liniowym dla problemu szeregowania zadań na niezależnych maszynach z kryterium minimalizacji długości uszeregowania polegał na następujących kroków (m to liczba maszyn, n to liczba zadań, p_{ij} - czas wykonywania zadania j na maszynie i):

- 1. Znalezieniu wartości α wynoszącej długość uszeregowania dla algorytmu zachłannego (zadanie idzie na maszynę, na której najkrócej się wykonuje)
- 2. Następnie znalezieniu najmniejszej wartości $T \in [\frac{\alpha}{m}, \alpha]$ takiej, że problem zdefiniowany przez następujące ograniczenia (oznaczanie $S_T = \{(i,j) \in [m] \times [n] : p_{ij} \leqslant T\}$):
 - $x_{ij} \geqslant 0 : \forall (i,j) \in S_T$
 - $\sum_{(i,j)\in S_T} x_{ij} = 1 : \forall j \in [n]$
 - $\sum_{(i,j)\in S_T} p_{ij} x_{ij} \leqslant T : \forall i \in [m]$

Taki model uzyskuje nam szeregowanie, gdzie każde z zadań może być rozdzielone na kilka maszyn.

3. Następnie dzieli się zadania, które zostały podzielone na różne maszyny odpowiednio modyfikuje się do wykonywania na dokładnie jednej.

1.2 Eksperymenty

Eksperymentu dokonano na instancjach z rodziny U(1000, 1100), czyli takich, w których czasy wykonywania zadania były wybierane jednostajnie ze zbioru [1000, 1001, ..., 1100].

Wyniki porównywano z wynikami ze strony http://soa.iti.es/problem-instances, które nie dla każdej instancji były optymalne, ale są to najlepsze znane wyniki dla danych instancji (liczone na CPLEX 11.1 w czasie 2 godzin na komputerze z Core 2 Duo 2.4 GHz).

Jak widać na wykresie, algorytm faktycznie wyznacza rozwiązania nie większe niż dwukrotność najlepszych znanych rozwiązań.