Causal Inference

Zhentao Shi

The Chinese University of Hong Kong

Limited 1 / 41

Western Philosophers

- Aristotle
 - Material: The mask is made of gold
 - Formal: Mathematics
 - Effective: Change the status by external force
 - Final: I run because I want to be healthy
- Thomas Aquinas: The first cause?
- David Hume (Skepticism): Causation as a relationship between two impressions in the mind. Causality cannot be proven.
- Karl Popper: Falsification

Limited 2 / 41

Marxism

- Immanuel Kant: Causality is not a feature of the external world, but rather a way of organizing our experience of the world.
- Causality is not abstract ideas, but rather a result of interactions between material forces and human activity.
 - The economic base determines the superstructure.
 - Human agency plays a crucial role in shaping causality.
 - Class struggle is a key driver of historical change and causality.

Limited 3 / 41

Hinduism

Limited 4 / 41

Chinese Ideas

- 反者, 道之动; 弱者, 道之用。天下万物生于有, 有生于无
- 积善之家,必有余庆
- 遂古之初,谁传道之?上下未形,何由考之?…阴阳三合,何本何化?…

Limited 5 / 41

Section 1

Potential Outcomes

Comparison of Two means

- Sample 1: $(X_1, \ldots, X_{N_x}) \sim N(\mu_x, \sigma_x^2)$
- Sample 2: $(Y_1, ..., Y_{N_y}) \sim N(\mu_y, \sigma_y^2)$
- Difference in sample means $\Delta = \bar{X} \bar{Y}$
- Hypothesis $H_0: \mu_x = \mu_y$. Test statistic

$$z = \frac{\Delta}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}}$$

- Without normality, asymptotic theory helps in large sample
- Purely statistical exercise.

Limited 7 / 41

Potential Outcome Framework

- Add a story to the statistical exercise.
- A triple (y_{1i}, y_{0i}, D_i)
 - $D_i \in \{0,1\}$ is a treatment (from biomedical)
 - Two potential outcomes (y_{1i}, y_{0i})
- Observed outcome

$$y_i = \begin{cases} y_{1i}, & \text{if } D_i = 1 \\ y_{0i}, & \text{if } D_i = 0 \end{cases} \text{ control group}$$

Equivalently,

$$y_i = y_{1i}D_i + y_{0i}(1 - D_i)$$

Limited 8 / 41

Examples

- Clinical research
 - Effects of drugs
 - Surgical techniques
 - Diets
- Heraclitus: "A man cannot step into the same river twice, because it is not the same river, and he is not same man."
- Economics
 - Effects of monetary police
 - Effects of poverty alleviation
 - Effects of pension reform

Limited 9 / 41

Treatment Effect

- $\Delta_i = y_{1i} y_{0i}$ is a random variable that varies with individuals
 - e.g. severity of side effects after people receiving the same vaccine.
- ullet Δ_i is unobservable. Researchers only observe y_{1i} or y_{0i} , but not both
- Direct control experiment
- A funny video: 2:25-4:25, 5:55-7:10

Limited 10 / 41

ATE and ATET

Average treatment effect

$$ATE = E[\Delta_i]$$

Average treatment effect on the treated

$$\mathsf{ATET} = E[\Delta_i \mid D_i = 1]$$

Limited 11 / 41

Section 2

Randomized Controlled Trials

RCT

- History: James Lind in 1747 identified a treatment of scurvy
- The "gold standard" for scientific discovery
- Given a random sample from the same population. Randomly split it into a **treatment group** and a **control group**.

Limited 13 / 41

Diagram of RCT

• Example: Zhongfei Xingnao Fang (link)

Limited 14 / 41

ATE Under RCT

Random assignment implies

$$(y_{1i}, y_{0i}) \perp D_i$$
.

The potential outcome is independent of the assignment.

- Treatment group " \mathcal{T} " (N_1 observations)
- Control group "C" $(N_0 = N N_1 \text{ observations})$

$$\widehat{ATE} = \frac{1}{N_1} \sum_{i \in \mathcal{T}} y_i - \frac{1}{N_0} \sum_{i \in \mathcal{C}} y_i$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left[\frac{D_i y_i}{N_1 / N} - \frac{(1 - D_i) y_i}{N_0 / N} \right]$$

Limited 15 / 41

RCT in Development Economics

- Nobel prize 2019: Banerjee, Duflo, and Kremer
 - Deworming in Kenya (link)
 - Microcredit in India
- Example in Gansu, China (link)
- Very costly
- Few researchers have the resources

RCT in Tech Industry

Section 3

Observational Studies

Conditional ATE and ATET

• With control variables $X_i = x$, conditional ATE (CATE)

$$ATE(x) = E[\Delta_i | X_i = x]$$

Similar, conditional ATET is defined as

$$ATE(x) = E[\Delta_i | D_i = 1, X_i = x]$$

ullet Straightforward if X_i is a discrete random variable

Limited 19 / 41

Unconfoundedness

To mimic RCT, it requires Conditional Independence

$$(y_{1i}, y_{0i}) \perp D_i \mid X_i$$

which is also called Unconfoundedness

- In an **observational study**, it means "Once X_i is controlled, the potential outcome is independent of the treatment"
- In principle, we should include all confounding variables
- Unconfoundedness is an untestable assumption!
- ATET(x) = ATE(x) under unconfoundedness.

$$E[\Delta_i \mid D_i = 1, X_i] = E[\Delta_i \mid X_i]$$

Limited 20 / 41

Overlapping Condition

A necessary condition

$$\Pr[D_i = 1 \mid X_i = x] \in (0, 1)$$

• In the subsample $\{X_i=x\}$, define \mathcal{T}_x , \mathcal{C}_x , N_x , $N_{x,1}$, and $N_{x,0}$ accordingly. Then

$$ATE(x) = E[y_{1i} - y_{0i} | X_i = x]$$

$$\stackrel{\text{C.I.}}{=} E[y_{1i} - y_{0i} | D_i, X_i = x]$$

$$\widehat{ATE}(x) = \frac{1}{N_{x,1}} \sum_{i \in \mathcal{T}_x} y_i - \frac{1}{N_{x,0}} \sum_{i \in \mathcal{C}_x} y_i$$

$$= \frac{1}{N_x} \sum_{i=1}^{N} \left[\frac{D_i y_i}{N_{x,1}/N_x} - \frac{(1 - D_i) y_i}{N_{x,0}/N_x} \right]$$

Limited 21 / 41

Continuous X

- The above analysis is based on discrete X_i .
- If X is continuous, one way is to nonparametrically estimate

$$m_{j}(x) = E[y_{ji} \mid X_{i} = x], \text{ for } j \in \{0, 1\}$$

$$ATE(x) = m_1(x) - m_0(x)$$

- It involves nonparametric estimation techniques that we don't cover
- Average $ATE(X_i)$ over the support of X_i :

$$ATE = E[ATE(X_i)] = \int ATE(X_i) dF(X_i)$$

Limited 22 / 41

Propensity Score

• Propensity score:

$$P[x] = \Pr[D_i = 1 \mid X_i = x] = E[D_i \mid X_i = x]$$

In the treatment group

$$E\left[\frac{D_{i}y_{i}}{P[X_{i}]}\right] \stackrel{\text{LIE}}{=} E\left[\frac{1}{P[X_{i}]}E[D_{i}y_{1i} \mid X_{i}]\right]$$

$$\stackrel{\text{C.I.}}{=} E\left[\frac{1}{P[X_{i}]}E[D_{i} \mid X_{i}]E[y_{1i} \mid X_{i}]\right]$$

$$= E[E[y_{1i} \mid X_{i}]] \stackrel{\text{LIE}}{=} E[y_{1i}]$$

Limited 23 / 41

ATE Under Continuous X

- \bullet Similarly, in the control group $E\left[\frac{(1-D_i)y_i}{1-P[X_i]}\right]=E\left[y_{0i}\right]$
- The (unconditional) ATE is

$$ATE = E\left[\frac{D_i y_i}{P[X_i]} - \frac{(1 - D_i) y_i}{1 - P[X_i]}\right]$$

• Important to ensure $P[X_i] \in (0,1)$. Logistic.

Limited 24 / 41

Linear Regression

Linear regression

$$y_i = \alpha + X_i'\beta + \varepsilon_i$$

under the assumption $E[\varepsilon_i|X_i]=0$ implies that if X_i is a scalar (the simplest case), then

$$\beta = \frac{E[y_i|X_i = x_1] - E[y_i|X_i = x_0]}{x_1 - x_0}$$

for any $x_0, x_1 \in \mathcal{X}$.

• The slope coefficient is the difference between two groups.

Limited 25 / 41

Interpretation of Linear Regression: I

- Linear regression is a purely statistical exercise, just like the comparison of two means.
- Example: Wage gap in gender
- $E[y_i|X_i]$ always exists, but the linear regression may not get the "causal" effect

Limited 26 / 41

Example: Omitted Variable Bias

The causal model

$$y_i = \alpha + \beta X_i + \gamma Z_i + \varepsilon_i$$
, with $E[\varepsilon_i \mid X_i, Z_i] = 0$

but Z_i is omitted from regression

• Linear regression of y_i on X_i can still be implemented:

$$E[y_i \mid X_i] = \alpha + \beta X_i + \gamma E[Z_i \mid X_i] = \alpha + \theta X_i$$

where

$$\theta = \beta + \gamma \frac{\operatorname{Cov}(X_i, Z_i)}{\operatorname{Var}(X_i)}$$

Limited 27 / 41

Omitted Variable Bias (Cont.)

The reduced form

$$y_i = \alpha + \theta X_i + u_i$$

ensures $E[u_i \mid X_i] = 0$ (under joint normality), but this is not a causal model.

- From the observational data, we cannot shift X_i without shifting u_i simultaneously.
- Causal question cannot be answered without further structures.
- Importance of the causal model: Only the causal relationship has policy implications.

Limited 28 / 41

Regression-based Causal Model

- Continue with the example: Change the year of education.
- "Keeping everything else equal, if a person's X_i is changed from x_0 to x_1 , then β is the average change of y_i ." This is a potential outcome claim.
- Given $D_i \in \{0,1\}$ there are two potential outcomes

$$y_{0i} = \alpha_0 + X_i'\beta_0 + \varepsilon_{0i}$$

$$y_{1i} = \alpha_1 + X_i'\beta_1 + \varepsilon_{1i}$$

The linear assumption makes life easier under continuous X_i .

Limited 29 / 41

CATE

The above model implies heterogeneous treatment effect

$$\Delta_i = (\alpha_1 - \alpha_0) + X_i'(\beta_1 - \beta_0) + (\varepsilon_{1i} - \varepsilon_{0i})$$

• By construction $E[\varepsilon_{1i} \mid X_i] = E[\varepsilon_{0i} \mid X_i] = 0$, and thus

$$ATE(X_i) = E[\Delta_i \mid X_i] = (\alpha_1 - \alpha_0) + X'_i(\beta_1 - \beta_0)$$

• If $\beta_1 = \beta_0$, then $ATE(X_i) = \alpha_1 - \alpha_0$ is a level change homogeneous to all people

30 / 41

Selection Bias

$$ATET(X_i) = E[\Delta_i \mid D_i = 1, X_i]$$

= $ATE(X_i) + E[\varepsilon_{1i} - \varepsilon_{0i} \mid D_i = 1, X_i]$

- Under unconfoundedness, $ATE(X_i) = ATET(X_i)$
- Otherwise, selection bias if

$$E[\varepsilon_{1i} - \varepsilon_{0i} \mid D_i = 1, X_i] \neq 0$$

The individual knows $\varepsilon_{1i}-\varepsilon_{0i}$, and he elects to the treatment group because of that.

Limited 31 / 41

Self-Selection

- Example: College premium
 - ullet Treatment: college entrance D_i
 - Unconfoundedness

$$(\varepsilon_{i,0},\varepsilon_{i,1})\bot D_i \mid X_i$$

does not hold in general.

- The linear regression does not provide credible causal interpretation.
- Need other techniques to estimate causality.

Limited 32 / 41

Section 4

Quasi experiment

Regression Discontinuity Design

- A jump point due to some ad hoc policy cutoff
- Unconfoundedness is naturally satisfied: as if randomized.
- e.g. College premium
- Caveat: valid only for the subpopulation around the cutoff
- Suppose the cutoff is c

•
$$y_{0i} = \alpha_0 + \beta_0(x_i - c) + \varepsilon_{0i}$$

•
$$y_{1i} = \alpha_1 + \beta_1(x_i - c) + \varepsilon_{1i}$$

Limited 34 / 41

Example: Air Pollution in Huai River

• Chen, Ebenstein, Greenstone, and Li (2013, PNAS)

Limited 35 / 41

Event Study

- A time series topic, but very similar to treatment
- The same individual is observed over time t = 1, 2, ..., T
- An event happens at time $t = T_1$
 - Before event (control group)
 - After event (treatment group)

Limited 36 / 41

Implementing Event Study

- Let $D_t = \mathbb{I}(t \geq T_1)$
- Regression

$$y_t = \alpha + \beta D_t + \varepsilon_t$$

Key assumption

$$E[\varepsilon_t|D_t]=0$$
 for all $t=1,2\ldots,T$

- Other control variables can be added into the regression
- My 2004 undergraduate thesis

Limited 37 / 41

Difference-in-Difference (DID)

- Two groups, two periods (simple panel data)
 - The two groups are naturally different
 - Parallel trend over time. This is an assumption!
- One of the most popular empirical techniques
- Example: North Korea and South Korea

Limited 38 / 41

Implementing DID

- Two indicators D_i and D_t
- Regression is convenient for hypothesis testing

$$y_{it} = \beta_0 + \beta_1 D_i + \beta_2 D_t + \beta_3 \cdot D_i D_t + \epsilon_{it}$$

Other control variables can be added

Limited 39 / 41

Summary

- Potential outcome framework
- RCT
- Propensity score
- Regressions for CATE
- RDD
- DID
- Popular in academia as well as tech sector (link1), (link2)
 - Bytedance
 - Kuaishou

Limited 40 / 41

Related Work of Mine

 Zhentao Shi and Jingyi Huang (2023): "Forward-Selected Panel Data Approach for Program Evaluation," Journal of Econometrics, 234(2), 512-535.

