Bayesian Networks

School of Electronic and Computer Engineering Peking University

Wang Wenmin

Contents

- ☐ 7.5.1 About Uncertain Knowledge
- ☐ 7.5.2 Rational Decisions
- □ 7.5.3 Algorithm of a Decision-theoretic Agent
- ☐ 7.5.4 Bayes' Rule
- ☐ 7.5.5 Representing Full Joint Distribution
- □ 7.5.6 Constructing Bayesian Networks

Artificial Intelligence 2

Contents

- ☐ 7.5.7 Compactness
- ☐ 7.5.8 Node Ordering
- ☐ 7.5.9 Conditional Independence Relations

Artificial Intelligence

About Uncertain Knowledge 关于不确定性知识

- □ Evolution of an intelligent agent: problem solving, reasoning, planning and learning.
 智能体的进化:问题求解、推理、规划以及学习。
- Agents may need to handle uncertainty, due to partial observability and nondeterminism.

智能体可能需要处理不确定性,由于部分可观察性和不确定性问题。

- □ To make decision with uncertainty, we need 在不确定性的情况下做出决策,我们需要
 - Probability theory, 概率论,
 - Utility theory, 效用论,
 - Decision theory.决策论。

Example: An uncertainty problem 一个不确定性问题

 A_{90} = home to airport 90 minutes by taxi before flight departs. 从家里打车在航班起飞前90分钟到机场

□ Question: 问题

"Will A_{90} get me to the airport on time?"

 A_{90} 能使我准时到达机场吗?

□ Answer: 答案

The taxi agent concludes either:

出租汽车公司给出两个结论中的一个:

- the risks falsehood: " A_{90} will get us there in time". 有风险的谎言: A_{90} 将使我们及时到达机场。
- the weaker conclusion: " A_{90} will get us there in time, if there is no traffic jam, I don't get into an accident, the car doesn't break down, and ..."

 A_{90} 将使我们及时到达机场,如果没有交通堵塞、不出交通事故、汽车不出故障的话, \cdots

Rational Decisions 理性决策

- □ Probability theory 概率论 for dealing with degrees of belief.是用于处理置信度的理论
- □ Utility theory 效用论 the quality of being useful. 是有效性的质量
 - to represent and reason with preferences, every state has a degree of usefulness/utility. 用偏好来表现和推理,每个状态都具有"有效性/效用"的度量值。
- □ Decision theory 决策论the general theory of rational decisions.是理性决策的通论
 - Decision theory = probability theory + utility theory决策论 = 概率论 + 效用论

Algorithm of a Decision-theoretic Agent 一种决策论智能体的算法

function DECISION-THEORETIC-AGENT(*percept*) **returns** an *action* **persistent**: *belief_state*, probabilistic beliefs about the current state of the world *action*, the agent's action

update belief_state based on action and percept
calculate outcome probabilities for actions,
given action descriptions and current belief_state
select action with highest expected utility,
given probabilities of outcomes and utility information
return action

A decision-theoretic agent that selects rational actions.

一个选择理性动作的决策论智能体

Bayes' Rule 贝叶斯规则

- ☐ Product rule 乘积规则
 - Two ways to factor a joint distribution over two variables:

两个变量联合分布的两种计算方法:

$$P(a \land b) = P(a \mid b) P(b)$$
 and $P(a \land b) = P(b \mid a) P(a)$

□ Bayes' rule 贝叶斯规则

$$P(b \mid a) = \frac{P(a \mid b) P(b)}{P(a)}$$

- □ This rule underlies most modern AI for probabilistic inference. 这个规则成为大多数现代人工智能概率推理的基础。
- □ Why is Bayes' rule useful 为什么贝叶斯定理有用
 - Often we have good probability estimates for three terms to compute the fourth. 我们常常需要根据三个项的概率估计值去计算第四个。

Example: Inference with Bayes' Rule 贝叶斯规则进行推理

Often we perceive as evidence the *effect* of some unknown cause, and would like to determine that *cause*. In that case, Bayes' rule becomes

我们往往想根据一些未知原因的证据,来查明其原因。这样,贝叶斯定理就变成了

$$P(cause \mid effect) = \frac{P(effect \mid cause)P(cause)}{P(effect)}$$

U Knows $P(symptoms \mid disease)$ and want to derive a diagnosis, $P(disease \mid symptoms)$. 已知 $P(symptoms 症状 \mid disease$ 疾病),想要得出一个诊断 $P(symptoms 症状 \mid disease$ 疾病),

```
P(s \mid m) = 0.7 // conditional probability that meningitis causes a stiff neck 脑膜炎导致颈部僵硬的条件概率 P(m) = 1/50000 // prior probability that a patient has meningitis 病人患脑膜炎的先验概率 P(s) = 0.01 // prior probability that any patient has a stiff neck 任何病人患有颈部僵硬的先验概率 P(m \mid s) = \frac{P(s \mid m)P(m)}{P(s)} = \frac{0.7 \times 1/5000}{0.01} = 0.0014 // a stiff neck to have meningitis 颈部僵硬患有脑膜炎的概率
```

About Bayesian Networks 贝叶斯网络

- ☐ A probabilistic graphical model (a type of statistical model)
 - 一种概率图模型(一种统计模型的类型)
- ☐ With a directed acyclic graph (DAG), it represents:
 - a set of random variables, and conditional dependencies between the variables. 采用一种有向无环图 (DAG),它表示:一组随机变量,以及变量之间的条件相关性。
- □ Its specification: 它的规范如下:
 - 1) a set of nodes, each corresponds to a random variable, 2) a set of directed links to those nodes, and 3) a conditional probability distribution for each node given its parents:
 - 1)一组节点,每个节点对应于一个随机变量,2)一组这对这些节点的有向连接,以及3)每个节点在给定双亲下的条件概率分布:

 $\mathbf{P}(X_i \mid Parents(X_i))$

About Bayesian Networks 贝叶斯网络

□ The name of Bayesian networks is the most common one, but there are many synonyms, including:

贝叶斯网络这个名称是最常用的,但还有许多同义词,包括:

- belief network, 信念网络
- probabilistic network, 概率网络
- causal network. 因果网络
- □ A Bayesian network represents a set of random variables and their conditional dependencies.
 - 一个贝叶斯网络表示一组随机变量和他们的条件依赖关系。
 - E.g., it could represent the probabilistic relationships between diseases and symptoms.

例如: 它可以表示疾病与症状之间的概率关系。

Two Views 两个观点

- □ The two views to understand semantics of Bayesian networks:
 理解贝叶斯网络语义的两个观点:
 - 1st: to view the network as a representation of the joint probability distribution. 第一、将该网络视为一种联合概率分布的表示。
 - 2nd: to view it as an encoding of a collection of conditional independence statements.

第二、将其视为一组条件独立语句的一种编码。

- □ The two views are equivalent, but: 这两个观点是等价的,但是:
 - 1st view: helpful in understanding how to construct networks, 第一种观点: 有助于理解如何构建网络,
 - 2nd view: helpful in designing inference procedures. 第二种观点: 有助于设计推理过程。

Example: A typical Bayesian network 一个典型的贝叶斯网络

- □ A burglar alarm installed at home, used to detect a burglary or minor earthquakes. 房子里安装了一个防盗报警器,用于检测被盗或地震。
- ☐ Two neighbors, John and Mary, who have promised to call you at work when they hear the alarm.
 - 有两个邻居,John和Mary,他们已答应当听到报警时,就给你的办公室打电话。
- □ Variables 变量: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls.
- Network topology reflects the knowledge:
 - 网络的拓扑结构要反应如下知识:
 - A Burglar or an Earthquake can set the Alarm. 盗窃或者地震会导致报警。
 - The *Alarm* can cause *Mary* or *John* to call. 报警会引起Mary或John打电话。

Example: A typical Bayesian network 一个典型的贝叶斯网络

A Bayesian network with the conditional probability tables (CPTs).

一个具有条件概率表 (CPTS) 的贝叶斯网络。

Where 其中

- ➤ B, E, A, J, M stand for

 Burglary, Earthquake, Alarm, JohnCalls,

 MaryCalls;

 B, E, A, J, M 代表

 Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- ➤ t and f stand for true and false; t与f代表 true 和 false
- Each row shows one number p for $X_i = t$, (the number for $X_i = f$ is just 1 p). 每一行显示 $X_i = t$ 的概率值 p, $X_i = f$ 时概率值则为 1-p

Representing Full Joint Distribution 表征全联合分布

□ By the product of the elements of conditional distributions: 采用条件分布元素的乘积:

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} P(x_i | parents(X_i))$$

- □ To illustrate this, we can calculate the probability: Alarm has sounded, but neither a Burglary nor an Earthquake has occurred, and both John and Mary call.
 为了说明,我们可以计算概率:报警响起,但盗窃和地震都未发生,而John和Mary打电话。
- □ We multiply entries from the joint distribution: 我们依据联合分布,将这些项相乘:

$$P(j, m, a, \neg b, \neg e) = P(j \mid a) P(m \mid a) P(a \mid \neg b \land \neg e) P(\neg b) P(\neg e)$$
$$= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.000628$$

where *j*, *m*, *a*, *b*, *e* stand for *JohnCalls*, *MaryCalls*, *Alarm*, *Burglary*, *Earthquake*. 其中 *j*, *m*, *a*, *b*, *e* 代表 *JohnCalls*, *MaryCalls*, *Alarm*, *Burglary*, *Earthquake*.

Constructing Bayesian Networks 构建贝叶斯网络

□ First, rewrite joint distribution in terms of conditional probability, using product rule: 首先,用条件概率公式对联合概率进行改写,使用如下乘积规则:

$$P(a \land b) = P(a \mid b) P(b)$$

$$P(x_1, ..., x_n) = P(x_n \mid x_{n-1}, ..., x_1) P(x_{n-1}, ..., x_1)$$

☐ Then, repeat the process, reducing each conjunctive probability to a conditional probability and a smaller conjunction. We end up with one big product.

然后,重复这个过程,将每个合取概率缩减为条件概率和较小的合取。最终得到一个大的乘积。

$$P(x_1, ..., x_n) = P(x_n / x_{n-1}, ..., x_1) P(x_{n-1} / x_{n-2}, ..., x_1) ... P(x_2 / x_1) P(x_1)$$
$$= \prod_{i=1}^n P(x_i | x_{i-1}, ..., x_1)$$

This is called chain rule, for any set of random variables.

这被称为对任意一组随机变量的链式法则。

Constructing Bayesian Networks 构建贝叶斯网络

 \square The specification of the joint distribution is equivalent to the general assertion that, for every variable X_i in the network,

联合分布的规格等同于一般性断言,即:对于网络中的每个变量 X_i ,

$$P(X_i | X_{i-1}, ..., X_1) = P(X_i | Parents(X_i))$$

provided that 假设

$$Parents(X_i) \subseteq \{X_{i-1}, ..., X_1\}$$

□ The equation says: Bayesian network is a correct representation of domain, only if each node is conditionally independent of its other predecessors in the node ordering, given its parents.

该等式说明:贝叶斯网络是域的一个正确表示,仅当给定其父节点,每个节点条件独立于节点序中其它前趋节点时。

Constructing Bayesian Networks 构建贝叶斯网络

- □ We can satisfy this condition with this methodology: 我们可以用如下方法来满足该条件:
 - 1. *Nodes*: First determine the set of variables to model the domain, $\{X_1, \ldots, X_n\}$. 节点: 先确定要对域建模的变量集, $\{X_1, \ldots, X_n\}$ 。
 - **2.** Links: For i = 1 to n do: 链接: $A_i = 1$
 - Choose, from X_1, \ldots, X_{i-1} , a minimal set of parents for X_i . 从 X_1, \ldots, X_{i-1} 中选择 X_i 的父节点的最小集。
 - For each parent insert a link from the parent to X_i . 对每个父节点插入一个从该父节点至 X_i 的链接。
 - Write down the conditional probability table (CPT), 记录 该条件概率表 (CPT),

$\mathbf{P}(X_i \mid Parents(X_i)).$

The parents of node X_i should contain all nodes in X_1, \ldots, X_{i-1} that directly influence X_i . 节点 X_i 的父辈应该包含直接影响 X_i 的 X_1, \ldots, X_{i-1} 中的所有节点。

Example: A typical Bayesian network 一种典型的贝叶斯网络

- □ Suppose we have completed the network, except for the choice of parents for *MaryCalls*.
 - 假设除了MaryCalls父节点的选择之外,我们已经完成了该网络。
- ☐ *MaryCalls* is not directly influenced by a *Burglary* or an *Earthquake*. Her calling behavior only through their effect on the alarm.
 - MaryCalls并非直接受盗窃或地震的支配,她打电话的行为只受它们对报警器的影响。
- □ Also, given the alarm state, whether John calls has no influence on Mary's calling. 并且,给定报警状态, John打电话与否并不影响Mary的电话。
- □ Therefore, the following *conditional independence statement* holds: 因此,如下条件独立语句成立:

 $\mathbf{P}(MaryCalls \mid JohnCalls, Alarm, Earthquake, Burglary) = \mathbf{P}(MaryCalls \mid Alarm)$

Compactness 紧凑性

□ A Bayesian network is far more *compact* than full joint distribution. Its compactness is a general property of locally structured (also called sparse) systems. 贝叶斯网络远比全联合分布紧凑。它的紧凑性是局部结构化(也称为稀疏)系统的一般特性。

□ In a locally structured system, each subcomponent interacts directly with only a bounded number of other components. 在局部结构化系统中,每个子成分仅直接与其它成分的有限数量打交道。

□ In Bayesian networks, a CPT (conditional probability table) for a Boolean variable with k parents has 2k rows.

贝叶斯网络中,具有k个父节点的布尔变量的CPT(条件概率表)有 2^k 行。

Compactness 紧凑性

- □ Assume there are n Boolean variables: 假设有n个布尔变量:
 - Bayesian networks: 贝叶斯网络 if each variable has no more than k parents, then the complete network can be specified by $n2^k$ numbers.
 - 如果每个变量的父节点不超过k个,则全部网络可以用 $n2^k$ 个数指定。
 - Full joint distribution: 全联合分布 it contains 2ⁿ numbers. 它包含 2ⁿ 个数。
- □ E.g., suppose n = 30 nodes, each with k = 5 parents, then 例如: 设节点n = 30, 每个具有 k = 5 个父节点,则
 - Bayesian network: $n2^k = 30 \times 2^5 = 960$.
 - Full joint distribution: $2^n = 2^{30} = 1,073,741,824$.

Node Ordering 节点排序

- □ We will get a compact Bayesian network only if choose node ordering well (Fig. a). 只有当选择一个好的节点排序(图a),我们才会得到一个紧凑的贝叶斯网络。
- □ What happens if we choose the wrong order (Fig. b and c).
 如果我们选择一个差的排序会发生什么(图b和c)。

- (a) A typical Bayesian network. 一个典型的贝叶斯网络
- (b) A bad node ordering 一个差的节点排序: MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.
- (c) A very bad node ordering 一个更差的节点排序: MaryCalls, JohnCalls, Earthquake, Burglary, Alarm.

Artificial Intelligence :: Reasoning :: Reasoning by Knowledge

Conditional Independence Relations 条件独立关系

■ Numerical semantics: 数值语义

a node is conditionally independent of its other predecessors, given its parents.

一个节点,给定其父节点后,条件独立于其它前趋节点。

$$P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example 举例

$$P(j, m, a, \neg b, \neg e)$$

$$= P(j \mid a) P(m \mid a) P(a \mid \neg b \land \neg e) P(\neg b) P(\neg e)$$

$$= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998$$

= 0.000628

where j, m, a, b, e stand for 其中j, m, a, b, e代表 JohnCalls, MaryCalls, Alarm, Burglary, Earthquake.

Conditional Independence Relations 条件独立关系

□ Topological semantics: 拓扑语义 each node is conditionally independent of its non-descendants, given its parents. 每个节点,给定其父节点后,条件独立于它的非后继节点。

A node X is conditionally independent of its non-descendants Z_{ij} , given its parents U_i (shown in the gray area).

节点X,给定其父节点 U_i (灰色区域所示)后, 条件独立于它的非后继节点 Z_{ij} 。

Numerical semantics ⇔ Topological semantics 数值语义 ⇔ 拓扑语义

Conditional Independence Relations 条件独立关系

■ Markov blanket 马尔科夫覆盖

a node is conditionally independent of all other nodes in the network, given its Markov blanket (i.e. parents, children, and children's parents).

一个节点,给定其马尔科夫覆盖后,条件独立于网络中的所有其它节点(即:父节点、子节点、

以及子节点的其它父节点)。

A node *X* is conditionally independent of all other nodes in the network given its Markov blanket (the gray area).

一个节点X,给定马尔科夫覆盖(灰色区域)

后,条件独立于网络中的所有其它节点。

Thank you for your affeation!

