摘要

近期的研究发现,如果在靠近输入和靠近输出的层之间存在连接的话,卷积神经网络可以更深,更加准确,并且能够更有效地进行训练。本文提出DenseNet。每一层与其他层之间使用反馈的方式进行连接。传统的L层卷积神经网络有L个连接,DenseNet有L(L+1)/2个直接连接。对于每一层,前面层的所有特征图作为输入,输出的特征图作为之后层的输入。DenseNet有以下几个优势:能够有效缓和梯度消失问题,增强特征传输,特征复用,同时减少参数的个数。在四个主要的目标识别任务上进行验证,DenseNet的结果在大多数的数据集上表现较好,在实现较高准确率的基础下,减少计算量。

Introduction

目前存在的问题:随着卷积层深度的增加,关于输入的信息或者梯度传递多层,在到达网络最后时,很有可能出现梯度小时和梯度爆炸现象。目前的方法例如ResNet能够减少这种现象,但都需要从前面的层到后面的层之间建立连接。

本文提出一种简单的连接模式,为了保证在网络中最大的信息流,将所有的层进行直接连接(匹配的特征图大小)。为保留反馈特征,每一层从前面的所有层获取输入,然后将其输出的特征图作为后面层的输入。与ResNet对比,没有使用求和来进行特征的连接,而是进行级联(concatenating)。因此,第I 层有I个输入,包括前面所有卷积模块的feature map。

Densenet的连接方式使得其比传统的卷积网络需要更少的参数,因为不需要对冗余的 feature map重复进行学习。传统的反馈结构可以看作是一个状态,在层与层之间进行传递,每个层从前面的层读入状态并写入后面的层。在改变状态的同时保留有用的信息。 ResNet通过额外的输入变换来保留信息,ResNet的一些变形算法发现,很多层的贡献比较小,在训练过程中可以随机drop。这使得ResNet与RNN相似,但是ResNet网络的参数很多,因为每一层都有权重。 DenseNet 探索增加到网络的信息以及保留的信息之间的区别。将一小部分的特征图作为额外信息增加到网络,并维持保留信息不变,最终的分类器基于所有的特征图进行决策。

除了参数的有效性,DenseNet的另一个优势是,对于网络的信息以及梯度数据流进行优化,使得训练更容易。每一层能够直接获取损失函数的梯度以及输入的原始信号,因此网络的层次可以加深。另外,Dense连接方式具有正则化效果,减少过拟合。

DenseNet

一幅图片输入一个 L 层卷积神经网络,每一层都有一个非线性变换 $^{H_l(\bullet)}$, l 表示层的索引, $^{H_l(\bullet)}$ 可以是BN,RELU,Pooling,或者卷积的混合操作符,第 l 层的输出为 x_l 。

ResNets

传统卷积神经网络将第 l 层的输出作为第 $^{'l+1}$ 层的输入,表达式为:

 $\mathbf{x}_{\ell} = H_{\ell}(\mathbf{x}_{\ell-1})$, ResNet增加了跨层连接 $\mathbf{x}_{\ell} = H_{\ell}(\mathbf{x}_{\ell-1}) + \mathbf{x}_{\ell-1}$, ResNet能够将梯度从后面层直接传递给前面层,但是identity函数和HI的输出是使用加法进行连接,在网络中可能会阻碍信息流的的传播。

Dense连接

此时层的表示为: $\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}]), [\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}]$

表示 $0, \ldots, \ell-1$:层的特征图。

混合函数

 $H_{\ell}(\cdot)$ 表示三个操作的混合:BN,RELU,以及3x3的卷积。

池化层

当特征图的大小改变时,连接操作不可行。但是下采样能够改变feature map的大小。为了应用下采样技术,将网络分成不同的dense模块。将block之间层成为过渡层,进行卷积和池化操作。在本文中使用的过渡层包括:一个BN层,一个1x1卷积层以及一个2x2的平均池化层。

增长速度

如果每个 $H_{\ell}(\cdot)$ 产生k个特征图,则第I层一共有 $k_0+k\times(\ell-1)$ 个输入特征图,k0为输入层的通道数。与已经存在的网络相比,DenseNet有更窄的层,比如k=12。将超参数 k作为网络的增长速度,后续实验环节证明很小的增长速度就能够达到很好的效果。对此,可以解释为每一层都能够获取之前的曾的feature map,以及网络的"集体智慧"。可以将feature map作为网络的全局状态。每一层将其输出的k个特征图添加到这个状态中,增长率对每一层增加到全局状态的信息进行约束。全局信息已经写入,网络的所有层都可以获取,不需要从一个层到另外一个层进行复制。

Bottleneck层

尽管每一层都只有k个输出的feature map, 但是有很多输入。1x1卷积可以作为bottleneck层放在3x3之前,来减少输入特征图的个数,因此,为了提高计算效率。本文使用的bottleneck层:BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3),称其为DenseNet-B。在实验中,使用1x1的卷积产生4k个feature map。

压缩

为了提高模型的紧促性,需要减少过渡层的 feature map 个数。如果一个 dense 模块中包含 m 个特征图,则其后面的过渡层产生 $\left[\theta m\right]$ 个输出,其中 $0 < \theta \leq 1$ 作为压缩比。当 $\theta < 1$ 时,DenseNet-C,实验中取值 0.5。既使用 bottleNet,又使用压缩的网络称为 DenseNet-BC。 θ

实现细节

在实验中,使用三个dense模块,每个模块有相同数量的层。在进入第一个dense模块之前,使用一个16输出通道的卷积层对输入图片进行卷积(或者对于DenseNet-BC而言是增长速度的二倍)。对于每个3x3的卷积层,每个输入都使用0填充来保持特征图的大小固定。在两个连续的dense模块之间,使用1x1的卷积和2x2的平均池化层。在最后一个dense模块后面,使用全局平均池化,然后使用softmax分类器。Dense模块的特征图大小为32x32,16x16,8x8。基础结构{L=40,k=12},{L=100,k=12},{L=100,k=24},对于DenseNet,网络的默认参数为{L=100,k=12},{L=250,k=24},{L=190,k=40}。

在实验中,使用DenseNet-BC结构,有四个dense模块,对224*224的输入图片,最开始的卷积层2k个7x7的卷积,stride大小为2,其他所有层的feature map个数设置为k。

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264					
Convolution	112 × 112	7×7 conv, stride 2								
Pooling	56 × 56	3 × 3 max pool, stride 2								
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$					
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$							
Transition Layer	56 × 56	1 × 1 conv								
(1)	28×28	2×2 average pool, stride 2								
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 12$					
(2)	26 ^ 26	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$					
Transition Layer	28×28	$1 \times 1 \text{ conv}$								
(2)	14×14	2 × 2 average pool, stride 2								
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 64 \end{bmatrix}$					
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3/2}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$					
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$								
(3)	7 × 7	2 × 2 average pool, stride 2								
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 48 \end{bmatrix}$					
(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$ × 40					
Classification	1 × 1	7 × 7 global average pool								
Layer		1000D fully-connected, softmax https://blog.csdn.net/dl								

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M		3.46	ha:'\\Dic	17.18	meña

总结

DenseNet的优势在于

- 1. 有效解决梯度消失问题
- 2. 加强了特征的传播
- 3. 有效地减少了网络参数
- 4. 特征重用性高