Quiz No.03

THEORY OF AUTOMATA

Instructor Name: Tahir Iqbal Semester Program: Fall 2022

Question No.1

Use the TG below to get the RE of language accepted by it. Assume that r_1 , r_2 , ..., r_8 are valid strings for the alphabet of language accepted by given TG.

Answer:

$$\begin{array}{c} - \frac{r_1 r_3^* r_2 + r_4 r_5 + (r_6 r_7 r_8)^* r_{67} + (r_6 r_7 r_8)^* r_6 r_5 +}{r_4 r_7 (r_8 r_6 r_7)^* + r_4 r_7 r_8 (r_6 r_7 r_8)^* r_6 r_5} \\ + \end{array}$$

Question. No.2

By following the Kaleen's Theorem find the closure of the given FA.

Ans

Current State	New State on input = a	New state on input = b
-Z ₁ (X ₁ , Y ₁)	$Z_2(X_2,Y_1)$	$Z_3(X_2,Y_2)$

Z ₂ (X ₂ , Y ₁)	$Z_4(X_3, Y_1)$	$Z_5(X_3,Y_2)$
Z ₃ (X ₂ , Y ₂)	$Z_4(X_3, Y_1)$	Z ₅ (X ₃ , Y ₂)
Z ₄ (X ₃ , Y ₁)	$Z_1(X_1, Y_1)$	Z ₆ (X ₁ , Y ₂)
Z ₅ (X ₃ , Y ₂)	$Z_1(X_1, Y_1)$	Z ₆ (X ₁ , Y ₂)
+Z ₆ (X ₁ , Y ₂)	$Z_2(X_2, Y_1)$	Z ₃ (X ₂ , Y ₂)

 $\label{eq:Question.No.3} \mbox{Construct incrementing machine where } q_0 \mbox{ is the start state and }$

$$\Sigma = \{0,1\},$$

Gema= $\{0,1\}$

