最適化(後半) 第10回

講義資料と課題

最適性の原理

最適性の原理:全体が最適であるためには部分も最適である

問題例

$$b=7$$
, $c_1=4$, $c_2=6$, $a_1=2$, $a_2=4$,

容量 <i>k</i> 要素 <i>j</i>	0	1	2	3	4	5	6	7
1	0	O 境界	4	4い一段目の	4 D欄を埋め	4	4	4
2								

$$b=7$$
, $c_1=4$, $c_2=6$, $a_1=2$, $a_2=4$,

容量 <i>k</i> 要素 <i>j</i>	0	1	2	3	4	5	6	7
1	0	0	4	4	4	4	4	4
2	→ O 再帰	→ 0 対の第一〕	↓ 4 項は, 上の	↓ 4 段の値の:	↓ 4 コピーを取	↓ 4 ることに相	↓ 4 当する	4

$$b=7$$
, $c_1=4$, $c_2=6$, $a_1=2$, $a_2=4$,

容量 <i>k</i> 要素 <i>j</i>	0	1	2	3	4	5	6	7
1	– 0	0	4	4	4	4	4	4
2					+c ₂ =6	+c ₂ =6	+c ₂ =6 10	+c ₂ ¥6 10

再帰式の第二項は、上の段の値を a_2 =4 だけ右へシフトさせたのち、 c_2 =6 を上乗せすることに相当する

$$b=7$$
, $c_1=4$, $c_2=6$, $a_1=2$, $a_2=4$,

容量 <i>k</i> 要素 <i>j</i>	0	1	2	3	4	5	6	7
1	0	0	4	4	4	4	4	4
2	0	0	4	4	4 6	4 6	4 10	4 10
	0	0	4	4	6	6	10	10

再帰式に従い、第一項と第二項のうち大きな利得値を選ぶ.

 $f^*(2,b)$ =10 がこの問題例の最適値である.

バックトラックによる最適解の計算

$$b=7$$
, $c_1=4$, $c_2=6$, $a_1=2$, $a_2=4$,

- ② 次に、ここで最適値f*(1,3)=4を決めているのは、 1番目のアイテムを使う、使わないの選択のうち、 使う選択である。 $z_1=1$ となる。
- ③最適解は z=(1,1)であることが分かる.

容量 <i>k</i> 要素 <i>j</i>	0	1	2	3	4	5	6	7
1	0	0	4 (4	4	4	4	4
2	0	0	4	4	4 6	4 6	4 10	4 10
	0	0	4	4	6	6	10	10

① まず、ここで最適値 $f^*(2,b)=10$ を決めているのは第一項と第二項のうち第二項である。よって、2番目のアイテムは使う。 $z_2=1$ となる。