Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. - 25. Canceled.

26. (Previously presented) The process according to claim 32 wherein the Al₂O₃ membrane is formed from an Al₂O₃ slurry.

27. - 31. Canceled.

- 32. (Currently amended) A process for manufacturing a capacitive vacuum measuring cell, comprising the following steps:
 - a. manufacturing a first Al₂O₃ housing plate (1) with outer and inner opposing surfaces and an outer periphery;
 - b. forming an electrically conductive surface (7) on the inner surface of the first Al₂O₃ housing plate to provide a first electrode of the capacitive vacuum measuring cell;
 - c. manufacturing a second Al₂O₃ housing plate (4) with an outer periphery;
 - d. forming an opening in the second Al₂O₃ housing plate (4) extending therethrough;
 - e. scaling providing a connecting port (5) about the opening formed in the second Al₂O₃ housing plate (4);
 - f. manufacturing of an Al₂O₃ membrane (2) having first and second opposing

surfaces and an outer periphery, the membrane having a thickness within the range of 10 µm to 250 µm, the manufacture of the Al₂O₃ membrane (2) including the steps of:

- i. forming the Al₂O₃ membrane (2) from an Al₂O₃ slurry;
- ii. heating the membrane in a furnace a first time to sinter the membrane, with subsequent cool-down; and
- iii. heating the membrane a second time for smoothing the membrane, with subsequent cool down;
- g. forming an electrically conductive film (7) on the first surface of the Al₂O₃ membrane (2) to provide a second electrode of the capacitive vacuum measuring cell;
- h. disposing the Al₂O₃ membrane (2) between the inner surface of the first Al₂O₃ housing plate (1) and the second Al₂O₃ housing plate (4), with the first surface of the Al₂O₃ membrane (2) facing the inner surface of the first Al₂O₃ housing plate (1), and spacing the first surface of the Al₂O₃ membrane (2) at a predetermined distance from the inner surface of the first Al₂O₃ housing plate (1) to define a reference vacuum chamber (25) therebetween, and spacing the second Al₂O₃ housing plate (4) at a predetermined distance from the second surface of the Al₂O₃ membrane (2) to define a measurement vacuum chamber (26) therebetween; and
- i. sealing the outer periphery of the Al_2O_3 membrane (2) to the outer peripheries of the first Al_2O_3 housing plate (1) and the second Al_2O_3 housing plate (4) to form a vacuum tight seal therebetween.

33. Canceled.

- 34. (Currently amended) The process recited by claim [33] <u>32</u> wherein the step of forming the Al₂O₃ slurry includes the steps of forming a ribbon-shaped Al₂O₃ green body upon a carrier foil, and subsequently pulling the ribbon-shaped Al₂O₃ green body from the carrier foil.
- 35. (Currently amended) The process recited by claim 32 including the further steps of forming a first an electrical, vacuum-tight feedthrough (6) through first Al₂O₃ housing plate (1), and coupling said first electrical, vacuum-tight feedthrough (6) to the electrically conductive surface (7) formed on the inner surface of the first Al₂O₃ housing plate to effect electrical coupling thereto.
- 36. (Currently amended) The process recited by claim [34] <u>32</u> including the further steps of forming <u>a second an</u> electrical, vacuum-tight feedthrough (6) through first Al₂O₃ housing plate (1), and coupling said second electrical, vacuum-tight feedthrough (6) to the electrically conductive surface (7) formed on the first surface of the Al₂O₃ membrane (2) to effect electrical coupling thereto.
- 37. (Currently amended) The process recited by claim 32 A process for manufacturing a capacitive vacuum measuring cell, comprising the following steps:
 - <u>a.</u> manufacturing a first Al₂O₃ housing plate (1) with outer and inner opposing surfaces and an outer periphery;
 - b. forming an electrically conductive surface (7) on the inner surface of the first Al₂O₃ housing plate to provide a first electrode of the capacitive vacuum measuring cell;

- c. manufacturing a second Al₂O₃ housing plate (4) with an outer periphery;
- d. forming an opening in the second Al₂O₃ housing plate (4) extending therethrough;
- e. providing a connecting port (5) about the opening formed in the second

 Al₂O₃ housing plate (4);
- f. manufacturing of an Al₂O₃ membrane (2) having first and second opposing surfaces and an outer periphery, the membrane having a thickness within the range of 10 μm to 250 μm;
- g. forming an electrically conductive film (7) on the first surface of the Al₂O₃
 membrane (2) to provide a second electrode of the capacitive vacuum measuring cell;
- h. disposing the Al₂O₃ membrane (2) between the inner surface of the first Al₂O₃ housing plate (1) and the second Al₂O₃ housing plate (4), with the first surface of the Al₂O₃ membrane (2) facing the inner surface of the first Al₂O₃ housing plate (1), and spacing the first surface of the Al₂O₃ membrane (2) at a predetermined distance from the inner surface of the first Al₂O₃ housing plate (1) to define a reference vacuum chamber (25) therebetween, and spacing the second Al₂O₃ housing plate (4) at a predetermined distance from the second surface of the Al₂O₃ membrane (2) to define a measurement vacuum chamber (26) therebetween;
- i. sealing the outer periphery of the Al₂O₃ membrane (2) to the outer

 peripheries of the first Al₂O₃ housing plate (1) and the second Al₂O₃ housing plate (4) to

 form a vacuum tight seal therebetween;
- <u>j.</u> including the further steps of forming a getter opening (13/14) within the first Al₂O₃ housing plate (1) communicating with reference vacuum chamber (25),

- <u>k.</u> disposing a getter (10) within said getter opening (13/14),
- pumping down evacuating the reference vacuum chamber (25) to evacuate
 matter therefrom, and
- m. activating the getter (10) to further lower the pressure within reference vacuum chamber (25).
- 38. (Currently amended) The process recited by claim 37 including the further steps of extending the getter opening (13/14) through first Al₂O₃ housing plate (1), applying a vacuum pump to getter opening (13/14) to pump down the reference vacuum chamber (25), and subsequently applying heat to a cover (8) overlying getter opening (13/14) to form a vacuum-tight seal between the cover (8) and the first Al₂O₃ housing plate (1) and simultaneously activating the getter (10).
- 39. (Currently amended) The process recited by claim 32 wherein said step of sealing the outer periphery of the Al₂O₃ membrane to the outer peripheries of the first Al₂O₃ housing plate and the second Al₂O₃ housing plate includes the steps of:

applying a glass paste to the outer periphery of the Al₂O₃ membrane;

disposing the Al₂O₃ membrane between the outer peripheries of first Al₂O₃ housing plate and the second Al₂O₃ housing plate;

heating the Al_2O_3 membrane and the first and second Al_2O_3 housing plates to a temperature above $\frac{330 \text{ degrees}}{300 \text{ degrees}}$ Centigrade to sealingly join the outer periphery of the Al_2O_3 membrane to the outer peripheries of the first Al_2O_3 housing plate and the second Al_2O_3 housing plate.

40. (Canceled).
41. (Canceled).
42. (Canceled).
43. (Canceled).
44. (Previously presented) The process recited by claim 32 wherein the membrane has a thickness within the range of 10 μm to 120 μm .
45. (Previously presented) The process recited by claim 32 wherein the membrane has a diameter within the range of 5 mm to 80 mm.
46. (Previously presented) The process recited by claim 32 wherein the membrane has a
diameter within the range of 5 mm to 40 mm.
47. (Previously presented) The process recited by claim 32 wherein the membrane material
has a grain size less than $20 \mu m$.
48. (Previously presented) The process recited by claim 32 wherein the membrane material
has a grain size less than 10 μm.

49. (Currently amended) The process recited by claim [33] $\underline{32}$ wherein the step of heating the Al_2O_3 membrane the second time for smoothing the membrane includes the step of pressing the membrane between two flat plates.