7/7 meeting

應名宥

training cost

- asymmetric loss structure
 - ~ 7m 05s (4 kimg)
- asymmetric loss structure (preprocess ResNet features)
 - ~ 6m 30s (4 kimg)
- symmetric loss structure
 - ~ 7m 23s (4 kimg)
- symmetric loss structure (preprocess ResNet features)
 - ~ 6m 57s(4 kimg)

tuning hyper-parameters

- 1. structure parameter
- 2. image-text parameter
- 3. image-image parameter
- 4. heterologous parameter

structure parameter

structure parameters ratio

o Discriminator: 1

• CLIP : 2

o ResNet : 1

image-text parameter

- expected tuning range
 - o [0.5, 1.25, 2.5, 3.75, 5]

image-image parameter

- expected tuning range
 - o [0.5, 1.25, 2.5, 3.75, 5]

heterologous parameter

- expected tuning range
 - o [0.1, 0.2, 0.5, 1, 2]

example (discriminator)

$$w_{D}^{ii} = S_{D} \cdot C_{ii} \cdot 1$$

$$w_{D}^{ii'} = S_{D} \cdot C_{ii} \cdot h$$

$$w_{D}^{it} = S_{D} \cdot C_{it} \cdot 1$$

$$w_{D}^{it'} = S_{D} \cdot C_{it} \cdot h$$

pretrain model

training result

pretrain model

training result

calculate FID

- origin (VIT-B32)
 - 20.741864805036187 (2000 kimg)
 - 16.797841481759033 (3000 kimg)
- modified (VIT-L14@336px)
 - 17.078982249532714 (2300 kimg)

clip model

some advice

- tune hyper-parameters from 1~50 (itd, itc... etc)
- do not config ada to compare with previous methods fairly
- Increase batch size for contrastive learning may lead to performance improvement

experiments

- test old CLIP model (VIT-B16)
- test symmetric loss structure
- large model capacity

study

- SimCLR (google research)
 - A Simple Framework for Contrastive Learning of Visual Representations (mlr.press)
 - break through in image classification (resnet)
- MSG-GAN
 - CVPR 2020 Open Access Repository (thecvf.com)
 - stylegan2 generator structure (base)
- Weakly Supervised Contrastive Learning
 - ICCV 2021 Open Access Repository (thecvf.com)
 - supervised contrastive learning framework