Exercise 1

						13	-\-	Ro	90	V							-	-	-			+	+		
					As	272	hm	ent	K	NN	18	S	۷N	1								539			-
0-			-			1																			
		X		las	S	-							-	-	OW	-	-	-	-	-		-			
	0	.5		8		-		X	2:	22		-	(5	.0	- 0	.5)2'	F	-	1.5		-	1	-	-
	3	0.0	-	BA			-	5.0	2:	?5		-	(2	0,	- 13	3.0	2.5	+	- 3	2.0	-	-	-	-	+
-		.5		A	-	+++	-	-		+	-	-	(5	0,	-	4.5	5)	7	-	2. o	-	/	-	-	
		1.6	-	AABB	++				+	+		+	(2	.0	-	4	· 6),	-	-	0,4		/			
		- 0	-	7	+-	+		-	-		+	1	(2	0.	-	9	273	7		0, 1					
	3	5.2 5.3 5.5 7.0	-	3	++	+	-		+	1			2	6		5	2)2	1	-	0,1		~			
	1	5.5		A									(5	.0		- 5	. 7)	7	=	2.6		V			
	1	7.0		B									(1	.0		7	.0)		-	2.0	,	~			1
		9.5		B									0	. 0	-	9.	5)?		=	4.3	5			1	
										1								4			-		-	W.	-
	4	So	rte	9 9	istan	nces	:			0)	1	- nec	re.	54	ne	ig	460	our	-	(+0)	5.0);		-
						1			-	1	-	ч.	3	A		0.1	1		-		As		+		-
		×		Cla			tand	ce		-		=>	c	la	55	=	A	-	1	1 3	M 3	×		-	2
	1)	4	3	A	1		1.0	-	++	-		- ne	-6	- 1			+	+							1
-	2)		2		2		0.2		1		3		4.9		A	-	1	+		^	1×				
	w)		.3		A	++	0.3			1			(1)		B	6	2	+			2 %				
	2)		(.6	-	B A A	1	0.5			1			7.2		B	C	1.3	1			24				
	6)	5	5.5		A		0.5				4		3.7	cle	25	4	=	B							1
	7)	1	0		BBB		20			1															-
	8)	-	7.0		B		2.0					3-1	ear	es	+ ;		1			18					-
	9)	6	2.5		B		4.5					-	4.9		4			1				-	-	-	+
		!	3.5		В		4.5								B			-	-	-	A us	-			+
						1				- 4		-			B				-		B 5	×	+-	-	+
			1	, ,					-			1 20	9.	6	A	0	.4	+			-	-			1
	6)	W	eig	nted	d at	ppro	ich	-			-	+	4.	2	A	0	0.5		+		+	-		+	1
	1	-	1 3					the.	-				2	5	D		2.0	+	+		1				T
	1		nea	rest	s = F	1500	ai ws	THE.	>~\w	2							2.0		1						
-		T	-	(as	> - /	-							O.	5	B		4,5	-	1						
-	0	-	Nec	rest	:				100			=	,				=								
	1			1 -																					
				1				1										-							1
		B	:	1004	0.3	8.3	33								4		-	-							+
	18 3				0,5							1	-	-	+	+	Λ								+
			>			A			-		-			+	-	-	An	SV	ve	-	-	-	4	-	+
		=	> !	Clas	5=	A										10	1		٨	1.6	-				+
									2/4/				-	+		~)	6	\	2						-
	-			de 68			1				0 -						(H)(C)(G)	5	2						
		1	4:	0.3	+ 1	4	0.5	+ 1	5 =		6.5						8			100					
							1						-			6)	W	eig	hte	6	185	tan	ice	;	1
		+	3:	0.2	+ 2	3	2.0	+ 1	0 1	4.5	-	9.0	33		101		1) .	A						-
					1000												(3		A						
			>														9	5	A						
		-	=>	cla	ss =	A			100			1 3					-	1							
							T W																		
	1	26	cu	min	9	Tnu	239	2 00	DOC.	tio	nali	+4	119												

Exercise 2

Python Code

```
iris = load iris()
wine = load wine()
```

Report on accuracy, Precision, Recall and F score

iris, kNN Accuracy = 0.980 Precision = 0.983 Recall = 0.980 F_score = 0.980

iris, SVM Accuracy = 0.973 Precision = 0.978 Recall = 0.973 F_score = 0.973

wine, kNN Accuracy = 0.692 Precision = 0.712 Recall = 0.686 F_score = 0.680

wine, SVM Accuracy = 0.681 Precision = 0.702 Recall = 0.656 F_score = 0.647

- a) After doing 10-fold validation and measuring the mean of accuracy metrics I found out that kNN performed slightly better than SVM on these datasets.
- b) I would use kNN algorithm here because it has higher accuracy metrics. However, with different k (for example k=7) SVM algorithm was better. Parameter k always requires investigation.

I experimented with algorithms parameters as well. The best performance for kNN algorithm happened to be with parameter k = 13;

When changing SVM parameter gamma from 'scale' to 'auto', SVM accuracy on wine dataset drastically fell from 0.681 to 0.439, so I kept 'scale'.