SEQUENCE LISTING

5	<110> Schmülling, Thomas Werner, Tomás
5	<120> Method for modifying plant morphology, biochemistry and physiology
10	<130> CROP-005-PCT
10	<140><141>
15	<150> EP 00870132.8 <151> 2000-06-16
	<150> US 60/258,415 <151> 2000-12-27
20	<150> EP 01870053.4 <151> 2001-03-16
	<160> 36
25	<170> PatentIn Ver. 2.1
30	<210> 1 <211> 2236 <212> DNA <213> Arabidopsis thaliana
	<400> 1 atgggattga cctcatcctt acggttccat agacaaaaca acaagacttt cctcggaatc
35	ttcatgatct tagttctaag ctgtatacca ggtagaacca atctttgttc caatcattct 120
	gttagtaccc caaaagaatt accttcttca aatccttcag atattcgttc ctcattagtt 180
40	tcactagatt tggagggtta tataagcttc gacgatgtcc acaatgtggc caaggacttt 240
	ggcaacagat accagttacc acctttggca attctacatc caaggtcagt ttttgatatt 300
	tcatcgatga tgaagcatat agtacatctg ggctccacct caaatcttac agtagcagct 360
45	agaggccatg gtcactcgct tcaaggacaa gctctagctc atcaaggtgt tgtcatcaaa 420
	atggagtcac ttcgaagtcc tgatatcagg atttataagg ggaagcaacc atatgttgat 480
50	gtctcaggtg gtgaaatatg gataaacatt ctacgcgaga ctctaaaaata cggtctttca 540
	ccaaagtcct ggacagacta ccttcatttg accgttggag gtacactatc taatgctgga 600
	atcagcggtc aagcattcaa gcatggaccc caaatcaaca acgtctacca gctagagatt 660
55	gttacaggta tttcattcat gctttatctc tgcggtagtc tcaaaaaaat atgcacctgt 720
	aaagaatatc catctcttca tgagcaaaaa cactgacgac tttaaataat ttttgactat 780
60	aaaacaagag tgcataggca caaatgtgaa atatgcaaca cacaattgta acttgcacca 840

```
agaaaaaagt tataaaaaca aacaactgat aagcaatata tttccaatat ttaatcaggg
    900
    aaaggagaag togtaacotg ttotgagaag oggaattotg aacttttott cagtgttott
    ggcgggcttg gacagtttgg cataatcacc cgggcacgga tctctcttga accagcaccg
5
    catatggtaa agttctatct tgaacaaagt tcaaacaata tacgctatga ttctaagaac
    10
    tgacttttct gcattttcaa gggaccaaga atatctgatt tcgaaggaga aaacttttga
    1200
    ttacgttgaa ggatttgtga taatcaatag aacagacctt ctcaataatt ggcgatcgtc
    1260
    attcagtccc aacgattcca cacaggcaag cagattcaag tcagatggga aaactcttta
15
    1320
    ttgcctagaa gtggtcaaat atttcaaccc agaagaagct agctctatgg atcaggtaag
    1380
    atgtgaaagc aatatataac tagacttagt ttccacagag agctccaaat caaccgttgg
20
    1440
    ctactagcct actaacataa tgaatggttg ccgtgcagga aactggcaag ttactttcag
    1500
    agttaaatta tattccatcc actttgtttt catctgaagt gccatatatc gagtttctgg
    1560
    atcgcgtgca tatcgcagag agaaaactaa gagcaaaggg tttatgggag gttccacatc
25
    1620
    cctggctgaa tctcctgatt cctaagagca gcatatacca atttgctaca gaagttttca
    1680
     acaacattet cacaagcaac aacaacggte etateettat ttatecagte aatcaateca
30
     1740
     agtaagtgag caaaatgcca aaagcaaatg cgtccagtga ttctgaaaca taaattacta
     1800
     accatatcca acattttgtg gtttcaggtg gaagaaacat acatctttga taactccaaa
     1860
     tgaagatata ttctatctcg tagcctttct cccctctgca gtgccaaatt cctcagggaa
35
     1920
     aaacgatcta gagtaccttt tgaaacaaaa ccaaagagtt atgaacttct gcgcagcagc
     1980
     aaacctcaac gtgaagcagt atttgcccca ttatgaaact caaaaagagt ggaaatcaca
40
     2040
     ctttggcaaa agatgggaaa catttgcaca gaggaaacaa gcctacgacc ctctagcgat
     2100
     tctagcacct ggccaaagaa tattccaaaa gacaacagga aaattatctc ccatccaact
     2160
     cgcaaagtca aaggcaacag gaagtcctca aaggtaccat tacgcatcaa tactgccgaa
45
     2220
     acctagaact gtataa
     2236
50
     <210> 2
     <211> 575
     <212> PRT
     <213> Arabidopsis thaliana
55
     <400> 2
     Met Gly Leu Thr Ser Ser Leu Arg Phe His Arg Gln Asn Asn Lys Thr
                                         10
       1
     Phe Leu Gly Ile Phe Met Ile Leu Val Leu Ser Cys Ile Pro Gly Arg
```

20

Œ

Thr Ser Asn Leu Thr Val Ala Ala Arg Gly His Gly His Ser Leu Gln Gly Gln Ala Leu Ala His Gln Gly Val Val Ile Lys Met Glu Ser Leu Arg Ser Pro Asp Ile Arg Ile Tyr Lys Gly Lys Gln Pro Tyr Val Asp Val Ser Gly Gly Glu Ile Trp Ile Asn Ile Leu Arg Glu Thr Leu Lys Tyr Gly Leu Ser Pro Lys Ser Trp Thr Asp Tyr Leu His Leu Thr Val Gly Gly Thr Leu Ser Asn Ala Gly Ile Ser Gly Gln Ala Phe Lys His Gly Pro Gln Ile Asn Asn Val Tyr Gln Leu Glu Ile Val Thr Gly Lys Gly Glu Val Val Thr Cys Ser Glu Lys Arg Asn Ser Glu Leu Phe Phe Ser Val Leu Gly Gly Leu Gly Gln Phe Gly Ile Ile Thr Arg Ala Arg Ile Ser Leu Glu Pro Ala Pro His Met Val Lys Trp Ile Arg Val Leu 45 265 Tyr Ser Asp Phe Ser Ala Phe Ser Arg Asp Gln Glu Tyr Leu Ile Ser 285 50 Lys Glu Lys Thr Phe Asp Tyr Val Glu Gly Phe Val Ile Ile Asn Arg Thr Asp Leu Leu Asn Asn Trp Arg Ser Ser Phe Ser Pro Asn Asp Ser 315 55 Thr Gln Ala Ser Arg Phe Lys Ser Asp Gly Lys Thr Leu Tyr Cys Leu Glu Val Val Lys Tyr Phe Asn Pro Glu Glu Ala Ser Ser Met Asp Gln 60

agtacattcc aagtagcggc tcgtggccaa ggccactcct taaacggcca agcctcggtc tccggcggag taatcgtcaa catgacgtgt atcactgacg tggtggtttc aaaagacaag 5 aagtacgctg acgtggcggc cgggacgtta tgggtggatg tgcttaagaa gacggcggag aaaggggtgt cgccggtttc ttggacggat tatttgcata taaccgtcgg aggaacgttg tegaatggtg gaattggtgg teaagtgttt egaaacggte etettgttag taacgteett 10 gaattggacg ttattactgg tacgcatctt ctaaactttg atgtacatac aacaacaaaa actgtttttg ttttatagta tttttcattt tttgtaccat aggttttatg ttttatagtt 660 15 gtgctaaact tcttgcacca cacgtaagtc ttcgaaacac aaaatgcgta acgcatctat atgttttttg tacatattga atgttgttca tgagaaataa agtaattaca tatacacaca 780 tttattgtcg tacatatata aataattaaa gacaaatttt cacaattggt agcgtgttaa 20 840 tttgggattt ttgtaatgta catgcatgac gcatgcatat ggagcttttc ggttttctta 900 gatttgtgta gtatttcaaa tatatcattt attttctttc gaataaagag gtggtatatt 960 25 tttaaaatag caacatttca gaatttttct ttgaatttac actttttaaa ttgttattgt 1020 taatatggat tttgaataaa taatttcagg gaaaggtgaa atgttgacat gctcgcgaca 1080 gctaaaccca gaattgttct atggagtgtt aggaggtttg ggtcaatttg gaattataac 30 1140 gagagccaga attgttttgg accatgcacc taaacgggta cgtatcatca tattttacca 1200 tttgttttag tcagcattca tttttcatta gtaattccgt ttcaatttct aaatttttt 35 agtcaataga aaatgattct tatgtcagag cttgattatt tagtgatttt tattgagata aaataaaata taacctaacg gaaataatta ttttactaat cggataatgt ctgattaaaa 1380 cattttatga tattacacta agagagttag agacgtatgg atcacaaaac atgaagcttt 40 1440 cttagatggt atcctaaaac taaagttagg tacaagtttg gaatttaggt caaatgctta agttgcatta atttgaacaa aatctatgca ttgaataaaa aaaagatatg gattatttta 45 taaagtatag toottgtaat ootaggactt gttgtotaat ottgtottat gogtgcaaat ctttttgatg tcaatatata atccttgttt attagagtca agctctttca ttagtcaact actcaaatat actccaaagt ttagaatata gtcttctgac taattagaat cttacaaccg 50 ataaacgtta caatttggtt atcattttaa aaaacagatt tggtcataat atacgatgac gttctgtttt agtttcatct attcacaaat tttatataat tattttcaag aaaatattga 55 1920 tctctaaatg aaattgtgta ggccaaatgg tttcggatgc tctacagtga tttcacaact tttacaaagg accaagaacg tttgatatca atggcaaacg atattggagt cgactattta 60 2040

gaaggtcaaa tatttctatc aaacggtgtc gttgacacct cttttttccc accttcagat caatctaaag tcgctgatct agtcaagcaa cacggtatca tctatgttct tgaagtagcc 2160 aagtattatg atgatcccaa tctccccatc atcagcaagg tactacacat ttacattttc 5 2220 atcatcgttt ttatcatacc ataagatatt taaatgattc atcattgcac cacattaaga tattcatcat catcatcgtt acattttttt ttgcatctta tgcttctcat aatctactat 10 2340 tgtgtaggtt attgacacat taacgaaaac attaagttac ttgcccgggt tcatatcaat 2400 gcacgacgtg gcctacttcg atttcttgaa ccgtgtacat gtcgaagaaa ataaactcag atctttggga ttatgggaac ttcctcatcc ttggcttaac ctctacgttc ctaaatctcg 15 gattctcgat tttcataacg gtgttgtcaa agacattctt cttaagcaaa aatcagcttc gggactcgct cttctctatc caacaaaccg gaataagtac atacttctct tcattcatat 20 ttatcttcaa gaaccaaagt aaataaattt ctatgaactg attatgctgt tattgttaga tgggacaatc gtatgtcggc gatgatacca gagatcgatg aagatgttat atatattatc 25 qqactactac aatccgctac cccaaaggat cttccagaag tggagagcgt taacgagaag ataattaggt tttgcaagga ttcaggtatt aagattaagc aatatctaat gcattatact agtaaagaag attggattga gcattttgga tcaaaatggg atgatttttc gaagaggaaa 30 gatctatttg atcccaagaa actgttatct ccagggcaag acatcttttg a 2991 35 <210> 4 <211> 501 <212> PRT <213> Arabidopsis thaliana 40 <400> 4 Met Ala Asn Leu Arg Leu Met Ile Thr Leu Ile Thr Val Leu Met Ile Thr Lys Ser Ser Asn Gly Ile Lys Ile Asp Leu Pro Lys Ser Leu Asn 45 20 30 Leu Thr Leu Ser Thr Asp Pro Ser Ile Ile Ser Ala Ala Ser His Asp Phe Gly Asn Ile Thr Thr Val Thr Pro Gly Gly Val Ile Cys Pro Ser 50 50 55 Ser Thr Ala Asp Ile Ser Arg Leu Leu Gln Tyr Ala Ala Asn Gly Lys 65 55 Ser Thr Phe Gln Val Ala Ala Arg Gly Gln Gly His Ser Leu Asn Gly 85 Gln Ala Ser Val Ser Gly Gly Val Ile Val Asn Met Thr Cys Ile Thr 60 110 105 100

	Asp	Val	Val 115	Val	Ser	Lys	Asp	Lys 120	Lys	Tyr	Ala	qaA	Val 125	Ala	Ala	Gly
5	Thr	Leu 130	Trp	Val	Asp	Val	Leu 135	Lys	Lys	Thr	Ala	Glu 140	Lys	Gly	Val	Ser
10	Pro 145	Val	Ser	Trp	Thr	Asp 150	Tyr	Leu	His	Ile	Thr 155	Val	Gly	Gly	Thr	Leu 160
10	Ser	Asn	Gly	Gly	Ile 165	Gly	Gly	Gln	Val	Phe 170	Arg	Asn	Gly	Pro	Leu 175	Val
15	Ser	Asn	Val	Leu 180	Glu	Leu	Asp	Val	Ile 185	Thr	Gly	Lys	Gly	Glu 190	Met	Leu
	Thr	Cys	Ser 195	Arg	Gln	Leu	Asn	Pro 200	Glu	Leu	Phe	Tyr	Gly 205	Val	Leu	Gly
20	Gly	Leu 210	Gly	Gln	Phe	Gly	Ile 215	Ile	Thr	Arg	Ala	Arg 220	Ile	Val	Leu	Asp
25	His 225	Ala	Pro	Lys	Arg	Ala 230	Lys	Trp	Phe	Arg	Met 235		Tyr	Ser	Asp	Phe 240
	Thr	Thr	Phe	Thr	Lys 245	Asp	Gln	Glu	Arg	Leu 250	Ile	Ser	Met	Ala	Asn 255	Asp
30	Ile	Gly	Val	Asp 260	Tyr	Leu	Glu	Gly	Gln 265	Ile	Phe	Leu	Ser	Asn 270	Gly	Val
	Val	Asp	Thr 275	Ser	Phe	Phe	Pro	Pro 280	Ser	Asp	Gln	Ser	Lys 285	Val	Ala	Asp
35	Leu	Val 290	Lys	Gln	His	Gly	Ile 295	Ile	Tyr	Val	Leu	Glu 300	Val	Ala	Lys	Tyr
40	Tyr 305	Asp	Asp	Pro	Asn	Leu 310	Pro	Ile	Ile	Ser	Lys 315	Val	Ile	Asp	Thr	Leu 320
70	Thr	Lys	Thr	Leu	Ser 325	Tyr	Leu	Pro	Gly	Phe 330	Ile	Ser	Met	His	Asp 335	Val
45	Ala	Tyr	Phe	Asp 340	Phe	Leu	Asn	Arg	Val 345	His	Val	Glu	Glu	Asn 350	Lys	Leu
	Arg	Ser	Leu 355	Gly	Leu	Trp	Glu	Leu 360	Pro	His	Pro	Trp	Leu 365	Asn	Leu	Tyr
50	Val	Pro 370	Lys	Ser	Arg	Ile	Leu 375	Asp	Phe	His	Asn	Gly 380	Val	Val	Lys	Asp
55	Ile 385	Leu	Leu	Lys	Gln	Lys 390	Ser	Ala	Ser	Gly	Leu 395	Ala	Leu	Leu	Tyr	Pro 400
JJ	Thr	Asn	Arg	Asn	Lys 405	Trp	Asp	Asn	Arg	Met 410	Ser	Ala	Met	Ile	Pro 415	Glu
60	Ile	Asp	Glu	Asp 420	Val	Ile	Tyr	Ile	Ile 425	Gly	Leu	Leu	Gln	Ser 430	Ala	Thr

1080

Pro Lys Asp Leu Pro Glu Val Glu Ser Val Asn Glu Lys Ile Ile Arg 440 Phe Cys Lys Asp Ser Gly Ile Lys Ile Lys Gln Tyr Leu Met His Tyr 5 455 460 Thr Ser Lys Glu Asp Trp Ile Glu His Phe Gly Ser Lys Trp Asp Asp 465 475 10 Phe Ser Lys Arg Lys Asp Leu Phe Asp Pro Lys Lys Leu Leu Ser Pro 490 Gly Gln Asp Ile Phe 15 500 <210> 5 20 <211> 3302 <212> DNA <213> Arabidopsis thaliana <400> 5 25 atggcgagtt ataatcttcg ttcacaagtt cgtcttatag caataacaat agtaatcatc attactctct caactccgat cacaaccaac acatcaccac aaccatggaa tatcctttca 120 cacaacgaat tegeeggaaa acteaectee teeteeteet eegtegaate ageegeeaca 30 gatttcggcc acgtcaccaa aatcttccct tccgccgtct taatcccttc ctccgttgaa gacatcacag atctcataaa actctctttt gactctcaac tgtcttttcc tttagccgct 35 cgtggtcacg gacacagcca ccgtggccaa gcctcggcta aagacggagt tgtggtcaac atgcggtcca tggtaaaccg ggatcgaggt atcaaggtgt ctaggacctg tttatatgtt gacgtggacg ctgcgtggct atggattgag gtgttgaata aaactttgga gttagggtta 40 acqccqgttt cttggacgga ttatttgtat ttaacagtcg gtgggacgtt atcaaacggc qqaattaqtq qacaaacgtt tcggtacggt ccacagatca ctaatgttct agagatggat 45 gttattactg gtacgtacca cgatcttttt cacacagaga ttaaaaaaaaa cagtaatagt gattttaact togtacgttt otgatagaca acaaagaact togtacgttt ttogaagttt tttcgtcttt ttcattttag atctgcgcgg ccatttttgg ttatgctatt gtttgtttgt 50 attgtttgtc tctgtttatt tatttctcga acttgttgat agcttttctt cttttcacac atcaatctaa tcaccttttt tggtcttaag attagaaaga agatacggac taggtaaaaa 900 55 taggtggttg taaacgtaga cgcattaaaa aaatattggt ttttttattt tttgataagc aaaattggtg gttggtctaa gattataaac ttgatattaa tgcaaaggtc gatctagcaa tagaagatta atcaatattc ttggtgtttt aacaacagat tatttcatca ttaaaatcgt

gaaacaaaga aattttggta gtatacatta cgtgtagttt tgttagttta ttaaaaaaaa tagtatatag ttttgttaaa acgcgattta tttagtaaca cattagtata ttacacgttt aaccaactaa acttttttt ttgaataatt atgttctata tttcttactc aaattatgca 5 aatttcgtgg attcgaagtc aaatttctgc gaaatttaca tggtcatata ttataaaact gttcatataa cccggtgaac aaacagacaa ttaagggttt gaatggttac ggcggttggg 10 gcggacacaa ccgtcaatag atcagaccgt tttttattta ccattcatca attatattcc gcagtggttt ggggtaaaaa aaatagaaga aaaccgcagc ggaccaattc cataccgttt 1500 ttacatacaa ataaacatgg tgcgcaacgg tttattgtcc gcctcaaaaa tgaaatggac 15 taaaccgcag ataaattaga ccgctttgtc cgctgcctcc attcatagac taaaaaaaaa caaccaaaaa aaaaatggtc ccacgcccat gattttacac gaggtttctt gtggcgtaag 20 gacaaaactc aaaagttcat aacgtttggt cctaaccagg tgtaatggat taagtaacag tcaattttct tattatagct gtatccatta tgtccacata tgcatccata tacattacac tgttggtctc aagtgtagtt agattacgaa gactttcaag ttccattttt tggttaggag 25 ataaacataa tttaatgata ccgactttag cactctaggc tcaaaacaag tacagaagag aatagtttta tttcaaactc gttgcattgt tgtatcaatt aattgtgtta gtctttgtat 30 attcttacat aacggtccaa gtttgttgaa atagtttact tactaaactt ttcctaatgg ggtcaaattt tattttatag gaaaaggaga gattgcaact tgttccaagg acatgaactc ggatcttttc ttcgcggtgt taggaggttt gggtcaattc ggcattataa caagagccag 35 aattaaactt gaagtagctc cgaaaagggt atgttaaatt tgtaaattat gcaactacag aaaattctat gaaatttatg aatgaacata tatgcatttt tggatttttg taggccaagt 40 ggttaaggtt totatacata gatttctccg aattcacaag agatcaagaa cgagtgatat cgaaaacgga cggtgtagat ttcttagaag gttccattat ggtggaccat ggcccaccgg ataactggag atccacgtat tatccaccgt ccgatcactt gaggatcgcc tcaatggtca 45 aacgacatcg tgtcatctac tgccttgaag tcgtcaagta ttacgacgaa acttctcaat acacagtcaa cgaggtccgt acatacatac aatcataaat catacatgta taattgggag 50 atctttatgc attattcaat tatattaatt tactttagtt atttaactta tgcaggaaat 2640 ggaggagtta agcgatagtt taaaccatgt aagagggttt atgtacgaga aagatgtgac 2700 gtatatggat ttcctaaacc gagttcgaac cggagagcta aacctgaaat ccaaaggcca 55 2760 atgggatgtt ccacatccat ggcttaatct cttcgtacca aaaactcaaa tctccaaatt 2820 tgatgatggt gtttttaagg gtattatcct aagaaataac atcactagcg gtcctgttct 60 2880

			ct a	tgaa	tcgc	a ac	aagt	aagt	tta	actc	gat	attg	caaa	at t	tact	atcta
	2940 catt	ttcg	tt t	tgga	atcc	g aa	atat	tctt	aca	agct	aat	ttta	tgcg	gc g	gtttt	taggt
5	ggaa 3060	itgat														gtttt
	3120)														actga
10	3180)														acaag
	3240)														taaat gagtt
15	3300 ag 3302)	aa a	.u.c.gu												
20	<211 <212	0> 6 L> 52 2> PF 3> Ar	ΥS	lopsi	ls th	nalia	ına									
25	<400 Met 1	0> 6 Ala	Ser	Tyr	Asn 5	Leu	Arg	Ser	Gln	Val 10	Arg	Leu	Ile	Ala	Ile 15	Thr
20	Ile	Val	Ile	Ile 20	Ile	Thr	Leu	Ser	Thr 25	Pro	Ile	Thr	Thr	Asn 30	Thr	Ser
30	Pro	Gln	Pro 35	Trp	Asn	Ile	Leu	Ser 40	His	Asn	Glu	Phe	Ala 45	Gly	Lys	Leu
35	Thr	Ser 50	Ser	Ser	Ser	Ser	Val 55	Glu	Ser	Ala	Ala	Thr 60	Asp	Phe	Gly	His
	Val 65	Thr	Lys	Ile	Phe	Pro 70	Ser	Ala	Val	Leu	11e 75	Pro	Ser	Ser	Val	Glu 80
40	Asp	Ile	Thr	Asp	Leu 85	Ile	Lys	Leu	Ser	Phe 90	Asp	Ser	Gln	Leu	Ser 95	Phe
45	Pro	Leu	Ala	Ala 100	Arg	Gly	His	Gly	His 105	Ser	His	Arg	Gly	Gln 110	Ala	Ser
45	Ala	Lys	Asp 115	Gly	Val	Val	Val	Asn 120	Met	Arg	Ser	Met	Val 125	Asn	Arg	Asp
50	Arg	Gly 130	Ile	Lys	Val	Ser	Arg 135	Thr	Cys	Leu	Tyr	Val 140	Asp	Val	. Asp	Ala
	Ala 145		Leu	Trp	Ile	Glu 150	Val	Leu	Asn	Lys	Thr 155	Leu	Glu	Leu	ı Gly	Leu 160
55	Thr	Pro	Val	Ser	Trp 165		Asp	Tyr	Leu	Tyr 170	Leu	Thr	Val	Gly	Gly 175	Thr
60	Leu	Ser	Asn	Gly 180	Gly	Ile	Ser	Gly	Gln 185	Thr	Phe	Arg	Tyr	Gly 190	Pro	Gln

•	Ile	Thr	Asņ 195	Val	Leu	Glu	Met	Asp 200	Val	Ile	Thr	Gly	Lys 205	Gly	Glu	Ile
5	Ala	Thr 210		Ser	Lys	Asp	Met 215	Asn	Ser	Asp	Leu	Phe 220	Phe	Ala	Val	Leu
	Gly 225	Gly	Leu	Gly	Gln	Phe 230		Ile	Ile	Thr	Arg 235	Ala	Arg	Ile	Lys	Leu 240
10	Glu	Val	Ala	Pro	Lys 245	Arg	Ala	Lys	Trp	Leu 250	Arg	Phe	Leu	Tyr	Ile 255	Asp
	Phe	Ser	Glu	Phe 260	Thr	Arg	Asp	Gln	Glu 265	Arg	Val	Ile	Ser	Lys 270	Thr	Asp
15	Gly	Val	Asp 275	Phe	Leu	Glu	Gly	Ser 280	Ile	Met	Val	Asp	His 285	Gly	Pro	Pro
20	Asp	Asn 290	Trp	Arg	Ser	Thr	Tyr 295	Tyr	Pro	Pro	Ser	Asp 300	His	Leu	Arg	Ile
	Ala 305	Ser	Met	Val	Lys	Arg 310	His	Arg	Val	Ile	Tyr 315	Cys	Leu	Glu	Val	Val 320
25	Lys	Tyr	Tyr	Asp	Glu 325	Thr	Ser	Gln	Tyr	Thr 330	Val	Asn	Glu	Glu	Met 335	Glu
	Glu	Leu	Ser	Asp 340	Ser	Leu	Asn	His	Val 345	Arg	Gly	Phe	Met	Tyr 350	Glu	Lys
30	Asp	Val	Thr 355	Tyr	Met	Asp	Phe	Leu 360	Asn	Arg	Val	Arg	Thr 365	Gly	Glu	Leu
35	Asn	Leu 370		Ser	Lys	Gly	Gln 375		Asp	Val	Pro	His 380	Pro	Trp	Leu	Asn
•	Leu 385	Phe	Val	Pro	Lys	Thr 390		Ile	Ser	Lys	Phe 395		Asp	Gly	Val	Phe 400
40	Lys	Gly	Ile	Ile	Leu 405		Asn	Asn	Ile	Thr 410		Gly	Pro	Val	Leu 415	Val
	Tyr	Pro	Met	Asn 420		Asn	Lys	Trp	Asn 425		Arg	Met	Ser	Ala 430	Ala	Ile
45	Pro	Glu	Glu 435		Val	Phe	туг	Ala 440		Gly	Phe	Leu	Arg 445		Ala	Gly
50	Phe	Asp 450		Trp	Glu	. Ala	Phe 455		Gln	Glu	. Asn	Met 460		ılle	Leu	Lys
	Phe		s Glu	ı Asp	· Ala	Asr 470		Gly	· Val	Ile	Glr 475		Leu	Pro	Tyr	His 480
55	Ser	Sei	Glr	ı Glu	ı Gly 485		va]	l Arg	His	Phe 490		Pro	Arç	Trp	Asn 495	Ile
	Ph∈	e Val	l Glu	a Arg		з Туг	Ly:	s Tyr	Asp 505		Lys	s Met	: Ile	Lev 510	Ser	Pro
60																

Gly Gln Asn Ile Phe Gln Lys Ile Asn Ser Ser 515 520

5						
	<210> 7					
	<211> 2782 <212> DNA					
	<213> Arabi	dopsis thal	iana			
10	<400> 7					
	atgactaata	ctctctgttt	aagcctcatc	accctaataa	cgctttttat	aagtttaacc
15	ccaaccttaa 120	tcaaatcaga	tgagggcatt	gatgttttct	tacccatatc	actcaacctt
	acggtcctaa 180		•		acgacttcgg	
	240				cggaggtggc	
20	300				ccagccccgc	
	360			•	aagcctctgc	
25.	420				cagcggcggt	
	480				gggtggatgt	
	540				atttgtatct	
30	600				gacacggccc	
	660				caaaacttca	
35	720				ctcaactctt	
	780				tgcaagcttt	
	840				tgataatata	
40	900			•	accagtataa	•
	960				agttatgcta	
45	1020				aggaaaaggt	
	1080				tttaggaggt	
~ 0	1140				acccacaagg	
50	1200				gtcctaaatc	
	1260				aggetgattt	
55	1320				tttattaga	
	1380				tagatatagt	
	aatatctaat 1440	ctttttatt	atatttccct	acytaagttt	tagatatagt	Caccetaade

tgctataaat tgtgtacgta tagactttag ataaaaagtt gtggtcgctt gcacctattt gtttatcgct atagtgattc aaaggtctat atatgattct tggtttttct ttttgaaaaa 1560 aatagaccat acaatccaag gaagatgatc ttaaatggac taatttatgg atataaattg 5 atatacaaat ctgcaggtga aatggtctcg catactctac agtgacttct cggcttttaa aagagaccaa gagcgtttaa tatcaatgac caatgatctc ggagttgact ttttggaagg 10 tcaacttatg atgtcaaatg gcttcgtaga cacctctttc ttcccactct ccgatcaaac aagagtegea tetettgtga atgaceaeeg gateatetat gttetegaag tageeaagta ttatgacaga accaccette ceattattga ceaggtaeta aaateeatta tteatgatga 15 1920 ttatcttcac acaatcagta tcatcaccaa ttaccatcat cacttgtcat atatgatcca 1980 aagtaaatat atcacatgat ataaataaat cgttcaaatc ttttttttta aagaataaaa 20 gaatcatttt caagcattac tcatacacat ctacgaatca ccgtgaccat atataaccat 2100 acgettatta aataateatt titgtitgta ggtgatigae aegitaagta gaactetagg 2160 tttcgctcca gggtttatgt tcgtacaaga tgttccgtat ttcgatttct tgaaccgtgt 25 2220 ccgaaacgaa gaagataaac tcagatcttt aggactatgg gaagttcctc atccatggct 2280 taacatcttt gtcccggggt ctcgaatcca agattttcat gatggtgtta ttaatggcct 30 2340 tcttctaaac caaacctcaa cttctggtgt tactctcttc tatcccacaa accgaaacaa 2400 gtaaatattt actttttgat tttgttttat ttgaaagtat atcccaataa tgtatgttaa 2460 attgttaaca agaatttatt ttattaatag atggaacaac cgcatgtcaa cgatgacacc 35 2520 ggacgaagat gttttttatg tgatcggatt actgcaatca gctggtggat ctcaaaattg 2580 gcaagaactt gaaaatctca acgacaaggt tattcagttt tgtgaaaact cgggaattaa 40 2640 gattaaggaa tatttgatgc actatacaag aaaagaagat tgggttaaac attttggacc 2700 aaaatgggat gattttttaa gaaagaaaat tatgtttgat cccaaaagac tattgtctcc 45 aggacaagac atatttaatt aa 2782

<210> 8
50 <211> 524
<212> PRT
<213> Arabidopsis thaliana

Ile Ser Leu Thr Pro Thr Leu Ile Lys Ser Asp Glu Gly Ile Asp Val 20 25 30

	Phe	Leu	Pro 35	Ile	Ser	Leu	Asn	Leu 40	Thr	Val	Leu	Thr	Asp 45	Pro	Phe	Ser
5	Ile	Ser 50	Ala	Ala	Ser	His	Asp 55	Phe	Gly	Asn	Ile	Thr 60	Asp	Glu	Asn	Pro
	Gly 65	Ala	Val	Leu	Cys	Pro 70	Ser	Ser	Thr	Thr	Glu 75	Val	Ala	Arg	Leu	Leu 80
10	Arg	Phe	Ala	Äsn	Gly 85	Gly	Phe	Ser	Tyr	Asn 90	Lys	Gly	Ser	Thr	Ser 95	Pro
15	Ala	Ser	Thr	Phe 100	Lys	Val	Ala	Ala	Arg 105	Gly	Gln	Gly	His	Ser 110	Leu	Arg
13	Gly	Gln	Ala 115	Ser	Ala	Pro	Gly	Gly 120	Val	Val	Val	Asn	Met 125	Thr	Cys	Leu
20	Ala	Met 130	Ala	Ala	Lys	Pro	Ala 135	Ala	Val	Val	Ile	Ser 140	Ala	Asp	Gly	Thr
	Tyr 145	Ala	Asp	Val	Ala	Ala 150	Gly	Thr	Met	Trp	Val 155	Asp	Val	Leu	Lys	Ala 160
25	Ala	Val	Asp	Arg	Gly 165	Val	Ser	Pro	Val	Thr 170	Trp	Thr	Asp	Tyr	Leu 175	Tyr
30	Leu	Ser	Val	Gly 180	Gly	Thr	Leu	Ser	Asn 185	Ala	Gly	Ile	Gly	Gly 190	Gln	Thr
30	Phe	Arg	His 195	Gly	Pro	Gln	Ile	Ser 200	Asn	Val	His	Glu	Leu 205	Asp	Val	Ile
35	Thr	Gly 210		Gly	Glu	Met	Met 215		Cys	Ser	Pro	Lys 220	Leu	Asn	Pro	Glu
	Leu 225		Tyr	Gly	Val	Leu 230	Gly	Gly	Leu	Gly	Gln 235	Phe	Gly	Ile	Ile	Thr 240
40	Arg	Ala	Arg	Ile	Ala 245		Asp	His	Ala	250		Arg	Val	Lys	Trp 255	Ser
45	Arg	Ile	Leu	Tyr 260		Asp	Phe	Ser	Ala 265		. Lys	Arg	Asp	Gln 270	Glu	Arg
43	Leu	Ile	Ser 275		Thr	Asn	Asp	280		Val	. Asp	Phe	Leu 285	Glu	Gly	Gln
50	Leu	Met 290		Ser	Asn	Gly	Phe 295		. Asp	Thr	Ser	300		Pro	Leu	. Ser
	Asp 305		Thr	Arg	y Val	Ala 310		r Leu	ı Val	Asr	315		Arg	, Ile	: Ile	320
55	Val	. Lev	ı Glu	ı Val	Ala 325		туг	туг	Asp	330		Thr	. Leu	ı Pro	335	: Ile
60	Asp	Glr	ı Val	. Il∈ 340		Thr	Leu	ı Ser	345		. Lev	ı Gly	/ Phe	350	a Pro	Gly
00																

Phe Met Phe Val Gln Asp Val Pro Tyr Phe Asp Phe Leu Asn Arg Val 360 Arg Asn Glu Glu Asp Lys Leu Arg Ser Leu Gly Leu Trp Glu Val Pro 5 His Pro Trp Leu Asn Ile Phe Val Pro Gly Ser Arg Ile Gln Asp Phe 390 395 His Asp Gly Val Ile Asn Gly Leu Leu Leu Asn Gln Thr Ser Thr Ser 10 405 Gly Val Thr Leu Phe Tyr Pro Thr Asn Arg Asn Lys Trp Asn Asn Arg 425 15 Met Ser Thr Met Thr Pro Asp Glu Asp Val Phe Tyr Val Ile Gly Leu 435 Leu Gln Ser Ala Gly Gly Ser Gln Asn Trp Gln Glu Leu Glu Asn Leu 20 455 Asn Asp Lys Val Ile Gln Phe Cys Glu Asn Ser Gly Ile Lys Ile Lys 465 Glu Tyr Leu Met His Tyr Thr Arg Lys Glu Asp Trp Val Lys His Phe 25 490 Gly Pro Lys Trp Asp Asp Phe Leu Arg Lys Lys Ile Met Phe Asp Pro 505 30 Lys Arg Leu Leu Ser Pro Gly Gln Asp Ile Phe Asn 520 35 <210> 9 <211> 2805 <212> DNA <213> Arabidopsis thaliana 40 <400> 9 atgacgtcaa gctttcttct cctgacgttc gccatatgta aactgatcat agccgtgggt ctaaacgtgg gccccagtga gctcctccgc atcggagcca tagatgtcga cggccacttc 45 acceptccacc cttccgactt agcctccgtc tcctcagact tcggtatgct gaagtcacct gaagagccat tggccgtgct tcatccatca tcggccgaag acgtggcacg actcgtcaga 240 acagettacg gttcagecac ggcgtttccg gtctcagecc gaggccacgg ccattccata 50 300 aacggacaag ccgcggcggg gaggaacggt gtggtggttg aaatgaacca cggcgtaacc gggacgccca agccactcgt ccgaccggat gaaatgtatg tggatgtatg gggtggagag 55 420 ttatgggtcg atgtgttgaa gaaaacgttg gagcatggct tagcaccaaa atcatggacg gattacttgt atctaaccgt tggaggtaca ctctccaatg caggaatcag tggtcaagct

tttcaccatg gtcctcaaat tagtaacgtc cttgagctcg acgttgtaac tggttagtat taaaacattc aagttcatat attttaaatg cttttgtctg aagttttact aataacaaga 660 aattgatacc aaaaagtagg gaaaggagag gtgatgagat gctcagaaga agagaacaca 5 aggetattee atggagttet tggtggatta ggteaatttg ggateateae tegageaega atctctctcg aaccagctcc ccaaagggta atatttttt aatgactagc tatcaaaaat 10 840 ccctggcggg tccatacgtt gtaatctttt tagtttttac tgttgatggt atttttata 900 tattttggat aataaaaccc taaaatggta tattgtgatg acaggtgaga tggatacggg 960 tattgtattc gagcttcaaa gtgtttacgg aggaccaaga gtacttaatc tcaatgcatg 15 gtcaattaaa gtttgattac gtggaaggtt ttgtgattgt ggacgaagga ctcgtcaaca attggagatc ttctttcttc tctccacgta accccgtcaa gatctcctct gttagttcca 20 acggctctgt tttgtattgc cttgagatca ccaagaacta ccacgactcc gactccgaaa tcgttgatca ggtcactttc attattcact tagaaaaaag cgatattttc atttttata ttgatgaata tctggaagga tttaacgcta tgcgactatt gggaaatcat tatgaaaaaa 25 tatttagttt atatgattga aagtggtctc catagtattt ttgttgtgtc gactttatta 1380 taacttaaat ttggaagagg acatgaagaa gaagccagag aggatctaca gagatctagc 30 1440 ttttccacct gaacttaata atgcacattt atataattat ttttcttctt ctaaagttta 1500 gtttatcact agcgaattaa tcatggttac taattaagta gtggacaggg tcatggacca 1560 35 ctcactcacc aaataatgat tcctctttac tcttaagttt aattttaata aaaccaactc tactggaatc ttaacttatc cttggttttg gtaggctttt atagcaacac ggttttttta 1680 attttcctat tccagatttt gtatattaaa tgtcgatttt ttttcttttt gtttcaggaa 40 1740 gttgagattc tgatgaagaa attgaatttc ataccgacat cggtctttac aacggattta 1800 caatatgtgg actttctcga ccgggtacac aaggccgaat tgaagctccg gtccaagaat 1860 ttatgggagg ttccacaccc atggctcaac ctcttcgtgc caaaatcaag aatctctgac 45 1920 ttcgataaag gcgttttcaa gggcattttg ggaaataaaa caagtggccc tattcttatc 1980 taccccatga acaaagacaa gtaagtcttg acattaccat tgattactac ttctaaattt 50 2040 2100 ggggattaat tagtggtcca agaaaaaaag tttgtcaaaa ttgaaaaaaa ctagacacgt 2160 ggtacatggg attgtccgaa aaacgttgtc cacatgtgca tcgaaccagc taagattgac 55 2220 2280 attgggttta tttgttttta agttcctaga actcatggtg ggtgggtccc aatcagattc 60 2340

	2400)														atata
_	2460)	_													ggagc
5	2520)														cttta
	2580)														tcttg
10	2640)														cacag
	2700)														ctgag
15	2760)													acccc	tgtct
15	2805		ete c	gtcg	ıtegt	c tt	CLLC	gtea	ı geç	gett	.cac	ggcg	a			
	-210)> 10	1													
20	<211	L> 53 2> PF	86													
	<213	3> A1	abio	lopsi	s th	nalia	na									
25)> 10 Thr		Ser	Phe 5	Leu	Leu ·	Leu	Thr	Phe 10	Ala	Ile	Cys	Lys	Leu 15	Ile
÷	Ile	Ala	Val	Gly 20	Leu	Asn	Val	Gly	Pro 25	Ser	Glu	Leu	Leu	Arg 30	Ile	Gly
30	Ala	Ile	Asp 35	Val	Asp	Gly	His	Phe 40	Thr	Val	His	Pro	Ser 45	Asp	Leu	Ala
35	Ser	Val 50	Ser	Ser	Asp	Phe	Gly 55	Met	Leu	Lys	Ser	Pro 60	Glu	Glu	Pro	Leu
	Ala 65	Val	Leu	His	Pro	Ser 70	Ser	Ala	Glu	Asp	Val 75	Ala	Arg	Leu	Val	Arg 80
40	Thr	Ala	Tyr	Gly	Ser 85	Ala	Thr	Ala	Phe	Pro 90	Val	Ser	Ala	Arg	Gly 95	His
	Gly	His	Ser	Ile 100	Asn	Gly	Gln	Ala	Ala 105	Ala	Gly	Arg	Asn	Gly 110	Val	Val
45	Val	Glu	Met 115	Asn	His	Gly	Val	Thr 120	Gly	Thr	Pro	Lys	Pro 125	Leu	Val	Arg
50	Pro	Asp 130	Glu	Met	Tyr	Val	Asp 135	Val	Trp	Gly	Gly	Glu 140	Leu	Trp	Val	Asp
	Val 145		Lys	Lys	Thr	Leu 150	Glu	His	Gly	Leu	Ala 155	Pro	Lys	Ser	Trp	Thr 160
55	Asp	Tyr	Leu	Tyr	Leu 165	Thr	Val	Gly	Gly	Thr 170	Leu	Ser	Asn	Ala	Gly 175	Ile
60	Ser	Gly	Gln	Ala 180	Phe	His	His	Gly	Pro 185	Gln	Ile	Ser	Asn	Val 190	. Leu	Glu

	Leu	Asp	Val 195	Val	Thr	Gly	Lys	Gly 200	Glu	Val	Met	Arg	Cys 205	Ser	Glu	Glu
5	Glu	Asn 210	Thr	Arg	Leu	Phe	His 215	Gly	Val	Leu	Gly	Gly 220	Leu	Gly	Gln	Phe
	Gly 225	Ile	Ile	Thr	Arg	Ala 230	Arg	Ile	Ser	Leu	Glu 235	Pro	Ala	Pro	Gln	Arg 240
10	Val	Arg	Trp	Ile	Arg 245	Val	Leu	Tyr	Ser	Ser 250	Phe	Lys	Val	Phe	Thr 255	Glu
15	Asp	Gln	Glu	Tyr 260	Leu	Ile	Ser	Met	His 265	Gly	Gln	Leu	Lys	Phe 270	Asp	Tyr
13	Val	Glu	Gly 275	Phe	Val	Ile	Val	Asp 280	Glu	Gly	Leu	Val	Asn 285	Asn	Trp	Arg
20	Ser	Ser 290	Phe	Phe	Ser	Pro	Arg 295	Asn	Pro	Val	Lys	Ile 300	Ser	Ser	Val	Ser
	Ser 305	Asn	Gly	Ser	Val	Leu 310	Tyr	Сув	Leu	Glu	Ile 315	Thr	Lys	Asn	Tyr	His 320
25	Asp	Ser	Asp	Ser	Glu 325	Ile	Val	Asp	Gln	Glu 330	Val	Glu	Ile	Leu	Met 335	Lys
30	Lys	Leu	Asn	Phe 340	Ile	Pro	Thr	Ser	Val 345	Phe	Thr	Thr	Asp	Leu 350	Gln	Tyr
50	Val	Asp	Phe 355	Leu	Asp	Arg	Val	His 360	Lys	Ala	Glu	Leu	Lys 365	Leu	Arg	Ser
35	Lys	Asn 370	Leu	Trp	Glu	Val	Pro 375	His	Pro	Trp	Leu	Asn 380	Leu	Phe	Val	Pro
	Lys 385	Ser	Arg	Ile	Ser	Asp 390	Phe	Asp	Lys	Gly	Val 395	Phe	Lys	Gly	Ile	Leu 400
40	Gly	Asn	Lys	Thr	Ser 405	Gly	Pro	Ile	Leu	Ile 410		Pro	Met	Asn	Lys 415	Asp
45	Lys	Trp	Asp	Glu 420	Arg	Ser	Ser	Ala	Val 425	Thr	Pro	Asp	Glu	Glu 430	Val	Phe
15	Tyr	Leu	Val 435	Ala	Leu	Leu	Arg	Ser 440		Leu	Thr	Asp	Gly 445		Glu	Thr
50	Gln	Lys 450	Leu	Glu	Tyr	Leu	Lys 455	Asp	Gln	Asn	Arg	Arg 460	Ile	Leu	Glu	Phe
	Cys 465	Glu	Gln	Ala	Lys	Ile 470	Asn	Val	Lys	Gln	Tyr 475	Leu	Pro	His	His	Ala 480
55	Thr	Gln	Glu	Glu	Trp 485		Ala	His	Phe	Gly 490		Lys	Trp	Asp	Arg 495	Phe
60	Arg	Ser	Leu	Lys 500		Glu	Phe	Asp	Pro 505		His	Ile	Leu	Ala 510	Thr	Gly

1380

Gln Arg Ile Phe Gln Asn Pro Ser Leu Ser Leu Phe Pro Pro Ser Ser 515 520 525

Ser Ser Ser Ala Ala Ser Trp 5 530 535

<400> 11 atgcttatag taagaagttt caccatcttg cttctcagct gcatagcctt taagttggct 15 tgctgcttct ctagcagcat ttcttctttg aaggcgcttc ccctagtagg ccatttggag tttgaacatg tccatcacgc ctccaaagat tttggaaatc gataccagtt gatccctttg 20 geggtettae ateccaaate ggtaagegae ategeeteaa egataegaea catetggatg atgggcactc attcacagct tacagtggca gcgagaggtc gtggacattc actccaaggc caagctcaaa caagacatgg aattgttata cacatggaat cactccatcc ccagaagctg 25 caggictaca gigiggatic ccctgctcca tatgitgatg tgtctggtgg tgagctgtgg ataaacattt tgcatgagac cctcaagtac gggcttgcac caaaatcatg gacggattac 30 ctgcatttaa ctgtaggtgg tactctgtcc aatgctggaa taagcggcca ggcattccga catggaccac agatcagcaa tgttcatcaa ctggagattg tcacaggtta gttcagagtt gcagtattcg tgttttgaaa gcatagactc tatatggttg gtgactatta acaacatgaa 35 gagattcccg agaatagcta cccactaatg tcatgcctat ttattgactg caggaaaagg 720 cgagatccta aactgtacaa agaggcagaa cagcgactta tttaatggtg ttcttggtgg 40 tttaggtcag tttggcatca taacgcgggc aagaatagca ttggaaccag caccaaccat 840 ggtaaacaat aaataaataa aaacttaaa aactgaacac gcgtgtgtcc tcctaactct 900 gtataatgga caggtaaaat ggataagagt gttatacctg gattttgcag cttttgccaa 45 960 ggaccaagag caactaatat ctgcccaggg ccacaaattc gattacatag aagggtttgt 1020 gataataaac aggacaggcc teetgaacag etggaggttg tettteaceg cagaagagee 50 1080 tttagaagca agccaattca agtttgatgg aaggactctg tattgtctgg agctagccaa 1140 gtatttgaag caagataaca aagacgtaat caaccaggtg agaaaacaga gtagaagcaa tcggtagaat cttctttggt agatgacatt cattggaact gaaaatatat atatatttgt 55 ccaatccagg aagtgaaaga aacattatca gagctaagct acgtgacgtc gacactgttt

acaacggagg tagcatatga agcattettg gacagggtae atgtgtetga ggtaaaaete

cgatcgaaag ggcagtggga ggtgccacat ccatggctga acctcctggt accaagaagc aaaatcaatg aatttgcaag aggtgtattt ggaaacatac taacggatac aagcaacggc 1500 ccagtcatcg tctacccagt gaacaaatca aagtaagaaa gaaagaaaga aagagctagt 5 catgattttg tttcttttca cttgttgaca aaacaaaagc atgttggtga gcaggtggga 1620 caatcaaaca tcagcagtaa caccggagga agaggtattc tacctggtgg cgatcctaac 10 1680 atcggcatct ccagggtcgg caggaaagga tggagtagaa gagatcttga ggcggaacag aagaatactg gaattcagtg aagaagcagg gatagggttg aagcagtatc tgccacatta 1800 cacgacaaga gaagagtgga gatcccattt cggggacaag tggggagaat ttgtgaggag 15 gaaatccaga tatgatccat tggcaattct tgcgcctggc caccgaattt ttcaaaaggc agtctcatac tcatga 20 1936 <210> 12 <211> 504 25 <212> PRT <213> Arabidopsis thaliana Met Leu Ile Val Arg Ser Phe Thr Ile Leu Leu Leu Ser Cys Ile Ala 30 Phe Lys Leu Ala Cys Cys Phe Ser Ser Ser Ile Ser Ser Leu Lys Ala Leu Pro Leu Val Gly His Leu Glu Phe Glu His Val His His Ala Ser 35 40 Lys Asp Phe Gly Asn Arg Tyr Gln Leu Ile Pro Leu Ala Val Leu His 40 Pro Lys Ser Val Ser Asp Ile Ala Ser Thr Ile Arg His Ile Trp Met Met Gly Thr His Ser Gln Leu Thr Val Ala Ala Arg Gly Arg Gly His 45 Ser Leu Gln Gly Gln Ala Gln Thr Arg His Gly Ile Val Ile His Met 105 Glu Ser Leu His Pro Gln Lys Leu Gln Val Tyr Ser Val Asp Ser Pro 50 115 Ala Pro Tyr Val Asp Val Ser Gly Gly Glu Leu Trp Ile Asn Ile Leu 55 His Glu Thr Leu Lys Tyr Gly Leu Ala Pro Lys Ser Trp Thr Asp Tyr 150 145 Leu His Leu Thr Val Gly Gly Thr Leu Ser Asn Ala Gly Ile Ser Gly 60 170 165

	Gln	Ala	Phe	Arg 180	His	Gly	Pro	Gln	Ile 185	Ser	Asn	Val	His	Gln 190	Leu	Glu
5	Ile	Val	Thr 195	Gly	Lys	Gly	Glu	Ile 200	Leu	Asn	Cys	Thr	Lys 205	Arg	Gln	Asn
10	Ser	Asp 210	Leu	Phe	Asn	Gly	Val 215	Leu	Gly	Gly	Leu	Gly 220	Gln	Phe	Gly	Ile
10	Ile 225	Thr	Arg	Ala	Arg	Ile 230	Ala	Leu	Glu	Pro	Ala 235	Pro	Thr	Met	Asp	Gln 240
15	Glu	Gln	Leu	Ile	Ser 245	Ala	Gln	Gly	His	Lys 250	Phe	Asp	Tyr	Ile	Glu 255	Gly
	Phe	Val	Ile	Ile 260	Asn	Arg	Thr	Gly	Leu 265	Leu	Asn	Ser	Trp	Arg 270	Leu	Ser
20	Phe	Thr	Ala 275	Glu	Glu	Pro	Leu	Glu 280	Ala	Ser	Gln	Phe	Lys 285	Phe	Asp	Gly
25	Arg	Thr 290	Leu	Tyr	Cys	Leu	Glu 295	Leu	Ala	Lys	Tyr	Leu 300	Lys	Gln	Asp	Asn
23	Lys 305	Asp	Val	Ile	Asn	Gln 310	Glu	Val	Lys	Glu	Thr 315	Leu	Ser	Glu	Leu	Ser 320
30	Tyr	Val	Thr	Ser	Thr 325	Leu	Phe	Thr	Thr	Glu 330	Val	Ala	Tyr	Glu	Ala 335	Phe
	Leu	Asp	Arg	Val 340	His	Val	Ser	Glu	Val 345	Lys	Leu	Arg	Ser	Lys 350	Gly	Gln
35	Trp	Glu	Val 355	Pro	His	Pro	Trp	Leu 360	Asn	Leu	Leu	Val	Pro 365	Arg	Ser	Lys
40	Ile	Asn 370	Glu	Phe	Ala	Arg	Gly 375	Val	Phe	Gly	Asn	Ile 380	Leu	Thr	Asp	Thr
40	Ser 385	Asn	Gly	Pro	Val	Ile 390	Val	Tyr	Pro	Val	Asn 395	Lys	Ser	Lys	Trp	Asp 400
45	Asn	Gln	Thr	Ser	Ala 405	Val	Thr	Pro	Glu	Glu 410		Val	Phe	Tyr	Leu 415	Val
	Ala	Ile	Leu	Thr 420	Ser	Ala	Ser	Pro	Gly 425		Ala	Gly	Lys	Asp 430	Gly	Val
50	Glu	Glu	Ile 435	Leu	Arg	Arg	Asn	Arg 440	Arg	Ile	Leu	Glu	Phe 445		Glu	Glu
<i>55</i>	Ala	Gly 450		Gly	Leu	Lys	Gln 455		Leu	Pro	His	Tyr 460		Thr	Arg	Glu
55	Glu 465		Arg	Ser	His	Phe 470	Gly	Asp	Lys	Trp	Gly 475		Phe	Val	Arg	Arg 480
60	Lys	Ser	Arg	Tyr	Asp 485		Leu	Ala	Ile	Leu 490		Pro	Gly	His	Arg 495	Ile

```
Phe Gln Lys Ala Val Ser Tyr Ser
                 500
5
     <210> 13
     <211> 31
     <212> DNA
10
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
15
     <400> 13
     cggtcgacat gggattgacc tcatccttac g
     31
20
     <210> 14
     <211> 35
     <212> DNA
     <213> Artificial Sequence
25
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
30
     <400> 14
     gcgtcgactt atacagttct aggtttcggc agtat
     35
35
     <210> 15
     <211> 33
     <212> DNA
     <213> Artificial Sequence
40
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
     <400> 15
     gcggtaccag agagagaaac ataaacaaat ggc
45
     33
     <210> 16
50
     <211> 31
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
55
            : primer or probe
     <400> 16
     gcggtaccca attttacttc caccaaaatg c
60
     31
```

```
<210> 17
    <211> 34
5
    <212> DNA
    <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
10
           : primer or probe
     <400> 17
    gcggtacctt cattgataag aatcaagcta ttca
15
     <210> 18
     <211> 31
     <212> DNA
20
     <213> Artificial Sequence
  <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
25
     <400> 18
     gcggtaccca aagtggtgag aacgactaac a
     31
30
     <210> 19
     <211> 28
     <212> DNA
     <213> Artificial Sequence
35
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
40
     <400> 19
     gcggtacccc cattaaccta cccgtttg
     28
45
     <210> 20
     <211> 32
     <212> DNA
     <213> Artificial Sequence
50
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
     <400> 20
     gcggtaccag acgatgaacg tacttgtctg ta
55
     32
     <210> 21
60
     <211> 28
```

```
<212> DNA
    <213> Artificial Sequence
    <220>
    <223> Description of Artificial Sequence:oligonucleotide
5
           : primer or probe
     <400> 21
    ggggtacctt gatgaatcgt gaaatgac
10
     <210> 22
     <211> 31
15
     <212> DNA
     <213> Artificial Sequence
     <223> Description of Artificial Sequence:oligonucleotide
20
           : primer or probe
     <400> 22
     ggggtaccct ttcctcttgg ttttgtcctg t
     31
25
     <210> 23
     <211> 32
     <212> DNA
     <213> Artificial Sequence
30
     <223> Description of Artificial Sequence:oligonucleotide
           : primer or probe
35
     <400> 23
     gctctagatc aggaaaagaa ccatgcttat ag
     32
40
     <210> 24
     <211> 32
     <212> DNA
     <213> Artificial Sequence
45
     <220>
     <223> Description of Artificial Sequence:oligonucleotide
            : primer or probe
50
     <400> 24
     gctctagatc atgagtatga gactgccttt tg
     32
55
     <210> 25
     <211> 1728
     <212> DNA
     <213> Arabidopsis thaliana
60
     <400> 25
```

	atgggattga 60	cctcatcctt	acggttccat	agacaaaaca	acaagacttt	cctcggaatc
		tagttctaag	ctgtatacca	ggtagaacca	atctttgttc	caatcattct
5	gttagtaccc 180	caaaagaatt	accttcttca	aatccttcag	atattcgttc	ctcattagtt
		tggagggtta	tataagcttc	gacgatgtcc	acaatgtggc	caaggacttt
10		accagttacc	acctttggca	attctacatc	caaggtcagt	ttttgatatt
		tgaagcatat	agtacatctg	ggctccacct	caaatcttac	agtagcagct
		gtcactcgct	tcaaggacaa	gctctagctc	atcaaggtgt	tgtcatcaaa
15		ttcgaagtcc	tgatatcagg	atttataagg	ggaagcaacc	atatgttgat
		gtgaaatatg	gataaacatt	ctacgcgaga	ctctaaaata	cggtctttca
20	ccaaagtcct	ggacagacta	ccttcatttg	accgttggag	gtacactatc	taatgctgga
20	600 atcagcggtc 660	aagcattcaa	gcatggaccc	caaatcaaca	acgtctacca	gctagagatt
		aaggagaagt	cgtaacctgt	tctgagaagc	ggaattctga	acttttcttc
25		gcgggcttgg	acagtttggc	ataatcaccc	gggcacggat	ctctcttgaa
		atatggttaa	atggatcagg	gtactctact	ctgacttttc	tgcattttca
30		aatatctgat	ttcgaaggag	aaaacttttg	attacgttga	aggatttgtg
30		gaacagacct	tctcaataat	tggcgatcgt	cattcagtcc	caacgattcc
		gcagattcaa	gtcagatggg	aaaactcttt	attgcctaga	agtggtcaaa
35		cagaagaagc	tagctctatg	gatcaggaaa	ctggcaagtt	actttcagag
		ttccatccac	tttgttttca	tctgaagtgc	catatatcga	gtttctggat
40		tcgcagagag	aaaactaaga	gcaaagggtt	tatgggaggt	tccacatccc
70		tcctgattcc	taagagcagc	atataccaat	ttgctacaga	agttttcaac
	aacattctca	caagcaacaa	caacggtcct	atccttattt	atccagtcaa	tcaatccaag
45		atacatcttt	gataactcca	aatgaagata	tattctatct	cgtagccttt
		cagtgccaaa	ttcctcaggg	aaaaacgatc	tagagtacct	tttgaaacaa
50		ttatgaactt	ctgcgcagca	gcaaacctca	acgtgaagca	gtatttgccc
50		ctcaaaaaga	gtggaaatca	cactttggca	aaagatggga	aacatttgca
		aagcctacga	ccctctagcg	attctagcac	ctggccaaag	aatattccaa
55		gaaaattatc	teccatecaa	ctcgcaaagt	caaaggcaac	aggaagtcct
		attacgcatc	aatactgccg	aaacctagaa	ctgtataa	

```
<210> 26
    <211> 1506
    <212> DNA
    <213> Arabidopsis thaliana
5
    <400> 26
    atggctaatc ttcgtttaat gatcacttta atcacggttt taatgatcac caaatcatca
    aacggtatta aaattgattt acctaaatcc cttaacctca ccctctctac cgatccttcc
10
    atcatctccg cagcctctca tgacttcgga aacataacca ccgtgacccc cggcggcgta
    180
    atctgcccct cctccaccgc tgatatctct cgtctcctcc aatacgccgc aaacggaaaa
    agtacattcc aagtagcggc tcgtggccaa ggccactcct taaacggcca agcctcggtc
15
    300
     tccggcggag taatcgtcaa catgacgtgt atcactgacg tggtggtttc aaaagacaag
     360
     aagtacgctg acgtggcggc cgggacgtta tgggtggatg tgcttaagaa gacggcggag
20
     420
     aaaggggtgt cgccggtttc ttggacggat tatttgcata taaccgtcgg aggaacgttg
     480
     tcgaatggtg gaattggtgg tcaagtgttt cgaaacggtc ctcttgttag taacgtcctt
     gaattggacg ttattactgg gaaaggtgaa atgttgacat gctcgcgaca gctaaaccca
25
     gaattgttct atggagtgtt aggaggtttg ggtcaatttg gaattataac gagagccaga
     660
     attgttttgg accatgcacc taaacgggcc aaatggtttc ggatgctcta cagtgatttc
30
     acaactttta caaaggacca agaacgtttg atatcaatgg caaacgatat tggagtcgac
     780
     tatttagaag gtcaaatatt tctatcaaac ggtgtcgttg acacctcttt tttcccacct
     840
     tcagatcaat ctaaagtcgc tgatctagtc aagcaacacg gtatcatcta tgttcttgaa
35
     900
     gtagccaagt attatgatga tcccaatctc cccatcatca gcaaggttat tgacacatta
     960
     acgaaaacat taagttactt gcccgggttc atatcaatgc acgacgtggc ctacttcgat
40
     ttcttgaacc gtgtacatgt cgaagaaaat aaactcagat ctttgggatt atgggaactt
     1080
     cctcatcctt ggcttaacct ctacgttcct aaatctcgga ttctcgattt tcataacggt
     gttgtcaaag acattettet taagcaaaaa teagettegg gaetegetet tetetateea
45
     1200
     acaaaccgga ataaatggga caatcgtatg tcggcgatga taccagagat cgatgaagat
     1260
     gttatatata ttatcggact actacaatcc gctaccccaa aggatcttcc agaagtggag
50
     1320
     agcgttaacg agaagataat taggttttgc aaggattcag gtattaagat taagcaatat
     1380
     ctaatgcatt atactagtaa agaagattgg attgagcatt ttggatcaaa atgggatgat
     ttttcgaaga ggaaagatct atttgatccc aagaaactgt tatctccagg gcaagacatc
55
     1500
     ttttga
     1506
```

```
<210> 27
    <211> 1572
    <212> DNA
    <213> Arabidopsis thaliana
5
    <400> 27
    atggcgagtt ataatcttcg ttcacaagtt cgtcttatag caataacaat agtaatcatc
    attactctct caactccgat cacaaccaac acatcaccac aaccatggaa tatcctttca
10
    cacaacgaat tcgccggaaa actcacctcc tcctcctcct ccgtcgaatc agccgccaca
    gatttcggcc acgtcaccaa aatcttccct tccgccgtct taatcccttc ctccgttgaa
    gacatcacag atctcataaa actctctttt gactctcaac tgtcttttcc tttagccgct
15
     cgtggtcacg gacacagcca ccgtggccaa gcctcggcta aagacggagt tgtggtcaac
     atgcggtcca tggtaaaccg ggatcgaggt atcaaggtgt ctaggacctg tttatatgtt
20
     gacgtggacg ctgcgtggct atggattgag gtgttgaata aaactttgga gttagggtta
     acgccggttt cttggacgga ttatttgtat ttaacagtcg gtgggacgtt atcaaacggc
     ggaattagtg gacaaacgtt tcggtacggt ccacagatca ctaatgttct agagatggat
25
     gttattactg gaaaaggaga gattgcaact tgttccaagg acatgaactc ggatcttttc
     ttcgcggtgt taggaggttt gggtcaattc ggcattataa caagagccag aattaaactt
30
     gaagtagctc cgaaaagggc caagtggtta aggtttctat acatagattt ctccgaattc
     acaagagatc aagaacgagt gatatcgaaa acggacggtg tagatttctt agaaggttcc
     attatggtgg accatggccc accggataac tggagatcca cgtattatcc accgtccgat
35
     cacttgagga tcgcctcaat ggtcaaacga catcgtgtca tctactgcct tgaagtcgtc
     aagtattacg acgaaacttc tcaatacaca gtcaacgagg aaatggagga gttaagcgat
40
     agtttaaacc atgtaagagg gtttatgtac gagaaagatg tgacgtatat ggatttccta
     1080
     aaccgagttc gaaccggaga gctaaacctg aaatccaaag gccaatggga tgttccacat
     1140
     ccatggctta atctcttcgt accaaaaact caaatctcca aatttgatga tggtgttttt
45
     1200
     aagggtatta tootaagaaa taacatcact agoggtootg ttottgttta tootatgaat
     cgcaacaagt ggaatgatcg gatgtctgcc gctatacccg aggaagatgt attttatgcg
50
     1320
     gtagggtttt taagatccgc gggttttgac aattgggagg cttttgatca agaaaacatg
     1380
     gaaatactga agttttgtga ggatgctaat atgggggtta tacaatatct tccttatcat
     1440
     tcatcacaag aaggatgggt tagacatttt ggtccgaggt ggaatatttt cgtagagaga
55
     1500
     aaatataaat atgatcccaa aatgatatta tcaccgggac aaaatatatt tcaaaaaata
     1560
     aactcgagtt ag
60
     1572
```

<210> 28 <211> 1575 5 <212> DNA <213> Arabidopsis thaliana <400> 28 atgactaata ctctctgttt aagcctcatc accctaataa cgctttttat aagtttaacc 10 ccaaccttaa tcaaatcaga tgagggcatt gatgttttct tacccatatc actcaacctt acggtcctaa ccgatccctt ctccatctct gccgcttctc acgacttcgg taacataacc 180 gacgaaaatc ccggcgccgt cctctgccct tcctccacca cggaggtggc tcgtctcctc 15 cgtttcgcta acggaggatt ctcttacaat aaaggctcaa ccagccccgc gtctactttc 300 aaagtggctg ctcgaggcca aggccactcc ctccgtggcc aagcctctgc acccggaggt 20 gtcgtcgtga acatgacgtg tctcgccatg gcggctaaac cagcggcggt tgttatctcg 420 gcagacggga cttacgctga cgtggctgcc gggacgatgt gggtggatgt tctgaaggcg gcggtggata gaggcgtctc gccggttaca tggacggatt atttgtatct cagcgtcggc 25 gggacgttgt cgaacgctgg aatcggtggt cagacgttta gacacggccc tcagattagt 600 aacgttcatg agcttgacgt tattaccgga aaaggtgaaa tgatgacttg ctctccaaag 30 660 ttaaaccctg aattgttcta tggagtttta ggaggtttgg gtcaattcgg tattataacg 720 agggccagga ttgcgttgga tcatgcaccc acaagggtga aatggtctcg catactctac 780 35 agtgacttct cggcttttaa aagagaccaa gagcgtttaa tatcaatgac caatgatctc ggagttgact ttttggaagg tcaacttatg atgtcaaatg gcttcgtaga cacctctttc 900 ttcccactct ccgatcaaac aagagtcgca tctcttgtga atgaccaccg gatcatctat 40 960 gttctcgaag tagccaagta ttatgacaga accaccette ccattattga ccaggtgatt gacacgttaa gtagaactct aggtttcgct ccagggttta tgttcgtaca agatgttccg 45 tatttcgatt tcttgaaccg tgtccgaaac gaagaagata aactcagatc tttaggacta tgggaagttc ctcatccatg gcttaacatc tttgtcccgg ggtctcgaat ccaagatttt catgatggtg ttattaatgg ccttcttcta aaccaaacct caacttctgg tgttactctc 50 ttctatccca caaaccgaaa caaatggaac aaccgcatgt caacgatgac accggacgaa 1320 gatgtttttt atgtgatcgg attactgcaa tcagctggtg gatctcaaaa ttggcaagaa 1380 cttgaaaatc tcaacgacaa ggttattcag ttttgtgaaa actcgggaat taagattaag 55 1440 gaatatttga tgcactatac aagaaaagaa gattgggtta aacattttgg accaaaatgg 1500 gatgattttt taagaaagaa aattatgttt gatcccaaaa gactattgtc tccaggacaa 60 1560

1500

gacatattta attaa 1575

5 <210> 29 <211> 1611 <212> DNA <213> Arabidopsis thaliana 10 <400> 29 atgacgtcaa gctttcttct cctgacgttc gccatatgta aactgatcat agccgtgggt ctaaacgtgg gccccagtga gctcctccgc atcggagcca tagatgtcga cggccacttc 15 acceptccacc cttccgactt agectccgtc tcctcagact tcggtatgct gaagtcacct qaaqaqccat tggccgtgct tcatccatca tcggccgaag acgtggcacg actcgtcaga acagettaeg gtteageeac ggegttteeg gteteageec gaggeeacgg ceatteeata 20 aacggacaag ccgcggcggg gaggaacggt gtggtggttg aaatgaacca cggcgtaacc gggacgccca agccactcgt ccgaccggat gaaatgtatg tggatgtatg gggtggagag 25 ttatgggtcg atgtgttgaa gaaaacgttg gagcatggct tagcaccaaa atcatggacg gattacttgt atctaaccgt tggaggtaca ctctccaatg caggaatcag tggtcaagct tttcaccatg gtcctcaaat tagtaacgtc cttgagctcg acgttgtaac tgggaaagga 30 gaggtgatga gatgctcaga agaagagaac acaaggctat tccatggagt tcttggtgga ttaggtcaat ttgggatcat cactcgagca cgaatctctc tcgaaccagc tccccaaagg 35 gtgagatgga tacgggtatt gtattcgagc ttcaaagtgt ttacggagga ccaagagtac ttaatctcaa tgcatggtca attaaagttt gattacgtgg aaggttttgt gattgtggac gaaggactcg tcaacaattg gagatcttct ttcttctctc cacgtaaccc cgtcaagatc 40 900 tcctctgtta gttccaacgg ctctgttttg tattgccttg agatcaccaa gaactaccac 960 gactccgact ccgaaatcgt tgatcaggaa gttgagattc tgatgaagaa attgaatttc 1020 45 ataccgacat cggtctttac aacggattta caatatgtgg actttctcga ccgggtacac 1080 aaggccgaat tgaagctccg gtccaagaat ttatgggagg ttccacaccc atggctcaac 1140 ctcttcgtgc caaaatcaag aatctctgac ttcgataaag gcgttttcaa gggcattttg 50 1200 ggaaataaaa caagtggccc tattcttatc taccccatga acaaagacaa atgggacgag 1260 aggageteag cegtgaegee ggatgaggaa gttttetate tggtggetet attgagatea gctttaacgg acggtgaaga gacacagaag ctagagtatc tgaaagatca gaaccgtcgg 55 1380 atcttggagt tctgtgaaca agccaagatc aatgtgaagc agtatcttcc tcaccacgca acacaggaag agtgggtggc tcattttggg gacaagtggg atcggttcag aagcttaaag

gctgagtttg atccgcgaca catactcgct actggtcaga gaatctttca aaacccatct ttgtctttgt ttcctccgtc gtcgtcttct tcgtcagcgg cttcatggtg a 1611 5 <210> 30 <211> 1515 <212> DNA 10 <213> Arabidopsis thaliana <400> 30 atgettatag taagaagttt caccatettg etteteaget geatageett taagttgget tgctgcttct ctagcagcat ttcttctttg aaggcgcttc ccctagtagg ccatttggag 15 tttgaacatg tccatcacgc ctccaaagat tttggaaatc gataccagtt gatccctttg geggtettae ateccaaate ggtaagegae ategeeteaa egataegaea eatetggatg 20 atgggcactc attcacagct tacagtggca gcgagaggtc gtggacattc actccaaggc caagetcaaa caagacatgg aattgttata cacatggaat cactecatee ecagaagetg caggictaca gigiggatic ccctgctcca tatgitgatg tgictggtgg tgagctgtgg 25 ataaacattt tgcatgagac cctcaagtac gggcttgcac caaaatcatg gacggattac ctgcatttaa ctgtaggtgg tactctgtcc aatgctggaa taagcggcca ggcattccga 30 catggaccac agatcagcaa tgttcatcaa ctggagattg tcacaggaaa aggcgagatc ctaaactgta caaagaggca gaacagcgac ttatttaatg gtgttcttgg tggtttaggt cagtttggca tcataacgcg ggcaagaata gcattggaac cagcaccaac catggaccaa 35 gagcaactaa tatctgccca gggccacaaa ttcgattaca tagaagggtt tgtgataata 780 aacaggacag gcctcctgaa cagctggagg ttgtctttca ccgcagaaga gcctttagaa 40 gcaagccaat tcaagtttga tggaaggact ctgtattgtc tggagctagc caagtatttg aagcaagata acaaagacgt aatcaaccag gaagtgaaag aaacattatc agagctaagc 960 tacgtgacgt cgacactgtt tacaacggag gtagcatatg aagcattctt ggacagggta 45 1020 catgtgtctg aggtaaaact ccgatcgaaa gggcagtggg aggtgccaca tccatggctg 1080 aacctcctgg taccaagaag caaaatcaat gaatttgcaa gaggtgtatt tggaaacata 50 1140 ctaacggata caagcaacgg cccagtcatc gtctacccag tgaacaaatc aaagtgggac 1200 aatcaaacat cagcagtaac accggaggaa gaggtattct acctggtggc gatcctaaca 1260 tcggcatctc cagggtcggc aggaaaggat ggagtagaag agatcttgag gcggaacaga 55 agaatactgg aattcagtga agaagcaggg atagggttga agcagtatct gccacattac acgacaagag aagagtggag atcccatttc ggggacaagt ggggagaatt tgtgaggagg 60 1440

```
aaatccagat atgatccatt ggcaattctt gcgcctggcc accgaatttt tcaaaaggca
    gtctcatact catga
    1515
5
    <210> 31
    <211> 84
    <212> DNA
10
    <213> Arabidopsis thaliana
     <400> 31
    tcagcttcgg gactcgctct tctctatcca acaaaccgga ataaatggga caatcgtatg
15
     tcggcgatga taccagagat cgat
     <210> 32
20
     <211> 28
     <212> PRT
     <213> Arabidopsis thaliana
     <400> 32
     Ser Ala Ser Gly Leu Ala Leu Leu Tyr Pro Thr Asn Arg Asn Lys Trp
25
     Asp Asn Arg Met Ser Ala Met Ile Pro Glu Ile Asp
                                       25
                  20
30
     <210> 33
     <211> 2814
35
     <212> DNA
     <213> Arabidopsis thaliana
     <400> 33
     atgaatcgta tgacgtcaag ctttcttctc ctgacgttcg ccatatgtaa actgatcata
40
     60
     gccgtgggtc taaacgtggg ccccagtgag ctcctccgca tcggagccat agatgtcgac
     120
     ggccacttca ccgtccaccc ttccgactta gcctccgtct cctcagactt cggtatgctg
     180
     aagtcacctg aagagccatt ggccgtgctt catccatcat cggccgaaga cgtggcacga
45
     240
     ctcgtcagaa cagcttacgg ttcagccacg gcgtttccgg tctcagcccg aggccacggc
     300
     cattccataa acggacaagc cgcggcgggg aggaacggtg tggtggttga aatgaaccac
50
     360
     ggcgtaaccg ggacgcccaa gccactcgtc cgaccggatg aaatgtatgt ggatgtatgg
     420
     ggtggagagt tatgggtcga tgtgttgaag aaaacgttgg agcatggctt agcaccaaaa
     480
     tcatggacgg attacttgta tctaaccgtt ggaggtacac tctccaatgc aggaatcagt
55
     ggtcaagctt ttcaccatgg tcctcaaatt agtaacgtcc ttgagctcga cgttgtaact
     ggttagtatt aaaacattca agttcatata ttttaaatgc ttttgtctga agttttacta
60
     660
```

ataacaagaa attgatacca aaaagtaggg aaaggagagg tgatgagatg ctcagaagaa gagaacacaa ggctattcca tggagttctt ggtggattag gtcaatttgg gatcatcact cgagcacgaa tctctctcga accagctccc caaagggtaa tatttttta atgactagct 5 atcaaaaatc cctggcgggt ccatacgttg taatcttttt agtttttact gttgatggta 900 ttttttatat attttggata ataaaaccct aaaatggtat attgtgatga caggtgagat 10 ggatacgggt attgtattcg agcttcaaag tgtttacgga ggaccaagag tacttaatct 1020 caatgcatgg tcaattaaag tttgattacg tggaaggttt tgtgattgtg gacgaaggac 1080 togtoaacaa ttggagatot totttottot otocaogtaa cocogtoaag atotoctotg 15 ttagttccaa cggctctgtt ttgtattgcc ttgagatcac caagaactac cacgactccg 1200 actccgaaat cgttgatcag gtcactttca ttattcactt agaaaaaagc gatattttca 20 ttttttatat tgatgaatat ctggaaggat ttaacgctat gcgactattg ggaaatcatt atgaaaaaat atttagttta tatgattgaa agtggtctcc atagtatttt tgttgtgtcg 1380 actttattat aacttaaatt tggaagagga catgaagaag aagccagaga ggatctacag 25 agatctagct tttccacctg aacttaataa tgcacattta tataattatt tttcttcttc 1500 taaagtttag tttatcacta gcgaattaat catggttact aattaagtag tggacagggt 30 1560 catggaccac tcactcacca aataatgatt cctctttact cttaagttta attttaataa 1620 aaccaactct actggaatct taacttatcc ttggttttgg taggctttta tagcaacacg gtttttttaa ttttcctatt ccagattttg tatattaaat gtcgattttt tttctttttg 35 1740 tttcaggaag ttgagattct gatgaagaaa ttgaatttca taccgacatc ggtctttaca 1800 acggatttac aatatgtgga ctttctcgac cgggtacaca aggccgaatt gaagctccgg 40 1860 tccaagaatt tatgggaggt tccacaccca tggctcaacc tcttcgtgcc aaaatcaaga 1920 atctctgact tcgataaagg cgttttcaag ggcattttgg gaaataaaac aagtggccct 1980 attcttatct accccatgaa caaagacaag taagtcttga cattaccatt gattactact 45 2040 tctaaatttc ttctctagaa aaaagaataa aacgagtttt gcattgcatg catgcaaagt 2100 tacacttgtg gggattaatt agtggtccaa gaaaaaaagt ttgtcaaaat tgaaaaaaac 50 2160 tagacacgtg gtacatggga ttgtccgaaa aacgttgtcc acatgtgcat cgaaccagct 2220 aagattgaca acaacacttc gtcggctcgt atttctcttt ttgttttgtg accaaatccg 2280 atggtccaga ttgggtttat ttgtttttaa gttcctagaa ctcatggtgg gtgggtccca 55 2340 atcagattct cctagaccaa accgatctca acgaaccctc cgcacatcat tgattattac 2400 attaatatag atattgtcgt tgctgacgtg tcgtaatttg atgttattgt cagatgggac 60 2460

1200

gagaggagct cagccgtgac gccggatgag gaagttttet atctggtggc tctattgaga 2520
tcagctttaa cggacggtga agagacacag aagctagagt atctgaaaga tcagaaccgt 2580
5 cggatcttgg agttctgtga acaagccaag atcaatgtga agcagtatet tcctcaccac 2640
gcaacacagg aagagtgggt ggctcatttt ggggacaagt gggatcggtt cagaagctta 2700
aaggctgagt ttgatccgcg acacatactc gctactggtc agagaatett tcaaaaccca 10 2760
tctttgtctt tgtttcctcc gtcgtcgtct tcttcgtcag cggcttcatg gtga

- 15 <210> 34 <211> 1620 <212> DNA <213> Arabidopsis thaliana
- 20 <400> 34 atgaatcgta tgacgtcaag ctttcttctc ctgacgttcg ccatatgtaa actgatcata gccgtgggtc taaacgtggg ccccagtgag ctcctccgca tcggagccat agatgtcgac ggccacttca ccgtccaccc ttccgactta gcctccgtct cctcagactt cggtatgctg 25 aagtcacctg aagagccatt ggccgtgctt catccatcat cggccgaaga cgtggcacga ctcgtcagaa cagcttacgg ttcagccacg gcgtttccgg tctcagcccg aggccacggc 30 cattccataa acggacaagc cgcggcgggg aggaacggtg tggtggttga aatgaaccac 360 ggcgtaaccg ggacgcccaa gccactcgtc cgaccggatg aaatgtatgt ggatgtatgg 420 ggtggagagt tatgggtcga tgtgttgaag aaaacgttgg agcatggctt agcaccaaaa 35 tcatggacgg attacttgta tctaaccgtt ggaggtacac tctccaatgc aggaatcagt ggtcaagctt ttcaccatgg tcctcaaatt agtaacgtcc ttgagctcga cgttgtaact 40 gggaaaggag aggtgatgag atgctcagaa gaagagaaca caaggctatt ccatggagtt 660 cttggtggat taggtcaatt tgggatcatc actcgagcac gaatctctct cgaaccagct ccccaaaggg tgagatggat acgggtattg tattcgagct tcaaagtgtt tacggaggac 45 caagagtact taatctcaat gcatggtcaa ttaaagtttg attacgtgga aggttttgtg 840 attgtggacg aaggactcgt caacaattgg agatcttctt tcttctctcc acgtaacccc 50 gtcaagatct cctctgttag ttccaacggc tctgttttgt attgccttga gatcaccaag 960 aactaccacg actccgactc cgaaatcgtt gatcaggaag ttgagattct gatgaagaaa 1020 ttgaatttca taccgacatc ggtctttaca acggatttac aatatgtgga ctttctcgac 55 1080 cgggtacaca aggccgaatt gaagctccgg tccaagaatt tatgggaggt tccacaccca

tggctcaacc tcttcgtgcc aaaatcaaga atctctgact tcgataaagg cgttttcaag

	ggca 1260		gg g	jaaat	aaaa	c aa	gtgg	ccct	att	ctta	tct	acco	catg	gaa (caaag	acaaa
	1320	1														ctcta
5	ttga 1380		ag c	ttta	acgg	a cg	gtga	agag	aca	caga	agc	taga	.gtat	ct g	gaaag	atcag
			ıga t	cttg	gagt	t ct	gtga	acaa	gcc	aaga	tca	atgt	gaag	jca 🤄	gtato	ttcct
	1440 cacc		aa c	acaq	gaac	ıa qt	aggt	ggct	cat	tttg	ıggg	acaa	gtgg	ga 1	teggt	tcaga
10	1500)														ttcaa
	1560)														
	aacc		tt t	gtct	ttgt	t to	ctcc	gtcg	teg	tctt	ctt	cgtc	agcg	igc 1	ttcat	ggtga
15																
20	<211 <212)> 35 .> 53 ?> PF 8> Ar	89 RT	lopsi	s th	nalia	ana									
)> 35														_
	Met 1	Asn	Arg	Met	Thr 5	Ser	Ser	Phe	Leu	Leu 10	Leu	Thr	Phe	Ala	Ile 15	Cys
25	Lvc	T.611	בוד	Tle	Δla	Val	Glv	T.e.11	Δsn	Val	Glv	Pro	Ser	Glu	Leu	Leu
	цув	БСС	110	20	1124	741	017		25		- 1			30		
	Arg	Ile	Gly	Ala	Ile	Asp	Val	Asp	Gly	His	Phe	Thr	Val	His	Pro	Ser
30			35					40					45			
	Asp	Leu 50	Ala	Ser	Val	Ser	Ser 55	Asp	Phe	Gly	Met	Leu 60	Lys	Ser	Pro	Glu
35	Glu 65	Pro	Leu	Ala	Val	Leu 70	His	Pro	Ser	Ser	Ala 75	Glu	Asp	Val	Ala	Arg 80
	Leu	Val	Arg	Thr		Tyr	Gly	ir	Ala		Ala	Phe	Pro	Val	Ser	Ala
40					85					90					95	
	Arg	Gly	His	Gly 100				Asn						Gly 110	Arg	Asn
45	Gly	Val	Val 115	Val	Glu	Met	Asn	His 120	Gly	Val	Thr	Gly	Thr 125	Pro	Lys	Pro
	Leu	Val 130	Arg	Pro	Asp	Glu	Met 135	Tyr	Val	Asp	Val	Trp 140	Gly	Gly	Glu	Leu
50	Trp 145	Val	Asp	Val	Leu	Lys 150	Lys	Thr	Leu	Glu	His 155	Gly	Leu	Ala	Pro	Lys 160
	Ser	Trp	Thr	Asp		Leu	Tyr	Leu	Thr		Gly	Gly	Thr	Leu	Ser	Asn
55					165					170					175	
	Ala	Gly	Ile	Ser 180	Gly	Gln	Ala	Phe	His 185	His	Gly	Pro	Gln	Ile 190	Ser	Asn
60	Val	Leu	Glu 195	Leu	Asp	Val	Val	Thr 200	Gly	Lys	Gly	Glu	Val 205	Met	Arg	Cys

	Ser	Glu 210	Glu	Glu	Asn	Thr	Arg 215	Leu	Phe	His	Gly	Val 220	Leu	Gly	Gly	Leu
5	Gly 225	Gln	Phe	Gly	Ile	Ile 230	Thr	Arg	Ala	Arg	Ile 235	Ser	Leu	Glu	Pro	Ala 240
10	Pro	Gln	Arg	Val	Arg 245	Trp	Ile	Arg	Val	Leu 250	Tyr	Ser	Ser	Phe	Lys 255	Val
10	Phe	Thr	Glu	Asp 260	Gln	Glu	Tyr	Leu	Ile 265	Ser	Met	His	Gly	Gln 270	Leu	Lys
15	Phe	Asp	Tyr 275	Val	Glu	Gly	Phe	Val 280	Ile	Val	Asp	Glu	Gly 285	Leu	Val	Asn
	Asn	Trp 290	Arg	Ser	Ser	Phe	Phe 295	Ser	Pro	Arg	Asn	Pro 300	Val	Lys	Ile	Ser
20	Ser 305	Val	Ser	Ser	Asn	Gly 310	Ser	Val	Leu	Tyr	Cys 315	Leu	Glu	Ile	Thr	Lys 320
0.5	Asn	Tyr	His	Asp	Ser 325	Asp	Ser	Glu	Ile	Val 330	Asp	Gln	Glu	Val	Glu 335	Ile
25	Leu	Met	Lys	Lys 340	Leu	Asn	Phe	Ile	Pro 345	Thr	Ser	Val	Phe	Thr 350	Thr	Asp
30	Leu	Gln	Tyr 355	Val	Asp	Phe	Leu	Asp 360	Arg	Val	His	Lys	Ala 365	Glu	Leu	Lys
	Leu	Arg 370	Ser	Lys	Asn	Leu	Trp 375	Glu	Val	Pro	His	Pro 380	Trp	Leu	Asn	Leu
35	Phe 385	Val	Pro	Lys	Ser	Arg 390	Ile	Ser	Asp	Phe	Asp 395	Lys	Gly	Val	Phe	Lys 400
40	Gly	Ile	Leu	Gly	Asn 405	Lys	Thr	Ser	Gly	Pro 410	Ile	Leu	Ile	Tyr	Pro 415	Met
40	Asn	Lys	Asp	Lys 420	Trp	Asp	Glu	Arg	Ser 425	Ser	Ala	Val	Thr	Pro 430	Asp	Glu
45	Glu	Val	Phe 435		Leu	Val	Ala	Leu 440	Leu	Arg	Ser	Ala	Leu 445		Asp	Gly
	Glu	Glu 450		Gln	Lys	Leu	Glu 455		Leu	Lys	Asp	Gln 460		Arg	Arg	Ile
50	Leu 465		Phe	Cys	Glu	Gln 470		Lys	Ile	Asn	Val 475		Gln	Tyr	Leu	Pro 480
5.5	His	His	Ala	Thr	Gln 485		Glu	Trp	Val	Ala 490		Phe	Gly	qaA	Lys 495	Trp
55	Asp	Arg	Phe	Arg		Leu	Lys	Ala	Glu 505		Asp	Pro	Arg	His 510		Leu
60	Ala	Thr	Gly 515		Arg	Ile	Phe	Gln 520		Pro	Ser	Leu	Ser 525		Phe	Pro

Pro Ser Ser Ser Ser Ser Ala Ala Ser Trp 530 535

5 <210> 36 <211> 842 <212> DNA 10 <213> Arabidopsis thaliana <400> 36 aagcttaaat gacaatttag taccttgggt tggtcatgat ttagagcgga acaaatatac 15 catacatcaa acgaggatat acagagaaaa ttcatggaag tatggaattt agaggacaat ttctcttctg ggctacaacg gaccggccca ttcgctcatt tacccagagg tatcgagttt gtggactttt gatgccgcta gagactattg gcatcggatt gaaaaaaatg tttacttcgt 20 tgttaacaat tttctgaatg caatattttc cttgtcatga atatttaaac ttgttattac tttcttttag cttaggtgtg gacaattatg gagtttactt caaacgagga agaatcttaa 25 acgctcggtt caggtctcga aaacaaacca actcacaatc ctgacttaat tgaggaaaac aatgcaaaac cacatgcatg cttccatatt tctatcataa tcttataaga aaaaacacta ctaagtgaaa tgattctgta tatatataac caatgccttt tgttttgtga tattttatgt 30 atataaact attgactttt gtcatctatg gatagtgtct cgggctcttg gcaaacatat ttcaaagaaa agttaatgac tgtaattaat taatctgaag ctagaaacag aaccccgagg taaaagaaaa agacagagca catgaagttt agtactttta tatatttaat atatcattct 35 ttcttattgc ttatctctaa agcaaaaact tccctaaacc ctaagccaaa ggactcagat cqatqcaqaa ccaaqaaggc ttgttttgga tttgagagcc aaatgcaaag aaaaaaactc 40 tt 842