Chapitre 15. Continuité sur un intervalle

Plan du chapitre

1 Fonctions continues sur un intervalle	page 2
1.1 Définitions	. page 2
1.2 Fonctions continues et opérations	. page 2
2 Les grands théorèmes	page 3
2.1 Le théorème des valeurs intermédiaires	. page 3
2.1.1 Rappels sur les intervalles de $\mathbb R$. page 3
2.1.2 Le théorème des valeurs intermédiaires	. page 3
2.2 Image continue d'un segment	page 5
3 Fonctions lipschitziennes	page 6
4 Fonctions continues strictement monotones	page 8

1 Fonctions continues sur un intervalle

1.1 Définitions

La définition de la continuité sur un intervalle ou une réunion d'intervalles pose quelques problèmes techniques. On commence par le cas d'un intervalle ouvert.

Définition 1.

1) Soit f une fonction définie sur un intervalle **ouvert** non vide I de \mathbb{R} à valeurs dans \mathbb{R} ou \mathbb{C} .

f est continue sur I si et seulement si f est continue en chaque point de I.

2) Soit f une fonction définie sur un intervalle I de la forme [a,b[(a réel et b réel ou infini et a < b) (resp.]a,b] (b réel et a réel ou infini et a < b)) à valeurs dans \mathbb{R} ou \mathbb{C} .

f est **continue** sur I si et seulement si f est continue en chaque point de]a, b[et continue à droite en a (resp. continue à gauche en b).

3) Soit f une fonction définie sur un intervalle I de la forme [a,b] (a et b réels et a < b) à valeurs dans $\mathbb R$ ou $\mathbb C$.

f est **continue** sur I si et seulement si f est continue en chaque point de]a,b[, continue à droite en a et continue à gauche en b.

La continuité de f sur I peut s'écrire avec des quantificateurs :

f continue sur
$$I \Leftrightarrow \forall x_0 \in I, \ \forall \varepsilon > 0, \ \exists \alpha > 0/\ \forall x \in I, \ (|x - x_0| \le \alpha \Rightarrow |f(x) - f(x_0)| \le \varepsilon).$$

Notation. L'ensemble des fonctions continues sur un intervalle I à valeurs dans $\mathbb{K} = \mathbb{R}$ (resp. \mathbb{C}) se note $\mathcal{C}(I,\mathbb{R})$ (resp. $\mathcal{C}^0(I,\mathbb{R})$) ou aussi $C^0(I,\mathbb{R})$ (resp. $C^0(I,\mathbb{C})$). C^0 (fonctions de classe C^0) est le début d'une liste : C^0 , C^1 (fonctions de classe C^1 déjà définies dans le chapitre « Calculs de primitives et d'intégrales » pour les intégrations par parties), C^2 , ..., C^{∞}).

 \Rightarrow Commentaire. La définition précédente se généralise sans problème à des sous-ensembles D de $\mathbb R$ tels que $D=\mathbb R^*$ (qui n'est pas un intervalle) ou $D=]0,1]\cup[2,+\infty[$. Ici D est une réunion de deux intervalles disjoints et f est continue sur D si et seulement si f est continue sur chacun des deux intervalles.

Mais il faut se méfier : si $D = I_1 \cup I_2$ où $I_1 = [0,1[$ et $I_1 = [1,+\infty[$, la continuité sur I_1 et sur I_2 n'assure pas la continuité D car une fonction continue sur I_1 et sur I_2 est continue à droite en 1 mais n'est pas nécessairement continue en 1. Ainsi, on ne peut pas dire « f est continue sur [0,1[et sur $[1,+\infty[$ et donc f est continue sur $[0,+\infty[$ » car c'est faux.

1.2 Fonctions continues et opérations

Les théorèmes du chapitre précédent fournissent immédiatement :

Théorème 1. Soient f et g deux fonctions continues sur un intervalle I de \mathbb{R} à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- 1) Pour tout $(\lambda, \mu) \in \mathbb{K}^2$, la fonction $\lambda f + \mu g$ est continue sur I.
- 2) La fonction $f \times g$ est continue sur I.
- 3) Si de plus la fonction g ne s'annule pas sur I, la fonction $\frac{f}{g}$ est continue sur I.

En particulier,

Théorème 2. Soient f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans $\mathbb{K} = \mathbb{R}$ et g une fonction définie sur un intervalle J de \mathbb{R} à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} telles que $f(I) \subset J$.

Si f est continue sur I et q est continue sur J, alors q o f est continue sur I.

On rappelle que les fonctions usuelles sont quasiment toutes continues sur le domaine de définition. Plus précisément,

- les fonctions $x \mapsto x^n$, $n \in \mathbb{N}$, sont définies et continues sur \mathbb{R} ;
- les fonctions $x \mapsto x^n$, $n \in \mathbb{Z}$, sont définies et continues sur \mathbb{R}^* ;
- les fonctions $x \mapsto \sqrt[n]{x}$, $n \in \mathbb{N} \setminus \{0, 1\}$, sont définies et continues sur $[0, +\infty[$;
- les fonctions $x \mapsto x^{\alpha}$, $\alpha \in \mathbb{R}$, sont définies et continues sur $]0, +\infty[$;
- la fonction $x \mapsto |x|$ est définie et continue sur \mathbb{R} ;
- les fonctions $x \mapsto a^x$, $a \in]0,1[\cup]1,+\infty[$, sont définies et continues sur \mathbb{R} ;
- les fonctions $x \mapsto \log_{\alpha}(x)$, $\alpha \in]0,1[\cup]1,+\infty[$, sont définies et continues sur $]0,+\infty[$;
- les fonctions $x \mapsto \sin(x)$ et $x \mapsto \cos(x)$ sont définies et continues sur \mathbb{R} ;
- la fonction $x \mapsto \tan(x)$ est définie et continue sur $\mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$;

- les fonctions $x \mapsto Arcsin(x)$ et $x \mapsto Arccos(x)$ sont définies et continues sur [-1,1];
- la fonction $x \mapsto \operatorname{Arctan}(x)$ est définie et continue sur \mathbb{R} ;
- les fonctions $x \mapsto \operatorname{sh}(x)$, $x \mapsto \operatorname{ch}(x)$ et $x \mapsto \operatorname{th}(x)$ sont définies et continues sur \mathbb{R} .

En ce qui concerne les fonctions $x \mapsto \operatorname{Arcsin}(x)$, $x \mapsto \operatorname{Arccos}(x)$ et $x \mapsto \operatorname{Arctan}(x)$, leurs continuité est une conséquence d'un théorème concernant la réciproque d'une bijection qui sera énoncé et démontré à la fin du chapitre.

En ce qui concerne les fonctions $x \mapsto \operatorname{sh}(x)$, $x \mapsto \operatorname{ch}(x)$ et $x \mapsto \operatorname{th}(x)$, leurs continuité est une conséquence des théorèmes 1 et 2 et de la continuité de la fonction exponentielle.

Sinon, le théorème 1 permet d'énoncer :

Théorème 3.

- Un polynôme est continu sur \mathbb{R} .
- Une fraction rationnelle est continue sur son domaine de définition.

A titre d'exemple d'utilisation de ces « théorèmes généraux », étudions la continuité de la fonction $f: x \mapsto \frac{\operatorname{Arcsin}\left(\frac{2x}{x^2+1}\right)}{\ln\left(x^2+1\right)}$.

• Pour tout réel x, $1+x^2 \neq 0$ puis $1-\left|\frac{2x}{x^2+1}\right| = \frac{x^2-2|x|+1}{x^2+1} = \frac{(|x|-1)^2}{x^2+1} \geqslant 0$ et donc, pour tout réel x, $-1 \leqslant \frac{2x}{x^2+1} \leqslant 1$.

La fonction $g_1: x \mapsto \frac{2x}{x^2+1}$ est continue sur \mathbb{R} en tant que fraction rationnelle définie sur \mathbb{R} et à valeurs dans [-1,1]

et la fonction $g_2: y \mapsto \operatorname{Arcsin}(y)$ est continue sur [-1,1]. Donc, la fonction $g = g_2 \circ g_1: x \mapsto \operatorname{Arcsin}\left(\frac{2x}{x^2+1}\right)$ est continue sur \mathbb{R} .

- Pour tout réel x, $1+x^2>0$. La fonction $h_1: x\mapsto x^2+1$ est continue sur $\mathbb R$ à valeurs dans $]0,+\infty[$ et la fonction $h_2: y\mapsto \ln(y)$ est continue sur $]0,+\infty[$. Donc, la fonction $h=h_2\circ h_1: x\mapsto \ln\left(x^2+1\right)$ est continue sur $\mathbb R$.
- Pour tout réel x, $1+x^2>1$ puis $\ln\left(x^2+1\right)>0$ et en particulier, pour tout réel x, $h(x)\neq 0$. La fonction $f=\frac{g}{h}$ est continue sur $\mathbb R$ en tant que quotient de fonctions continues sur $\mathbb R$ dont le dénominateur ne s'annule pas sur $\mathbb R$.

2 Les grands théorèmes

2.1 Le théorème des valeurs intermédiaires

2.1.1 Rappels sur les intervalles de \mathbb{R}

On rappelle les différents types d'intervalles :

- [a, b], a et b réels tels que $a \le b$ (intervalle fermé borné ou segment)
- [a, b[, a et b réels tels que a < b (intervalle semi-ouvert à droite et borné) et]a, b], a et b réels tels que a < b (intervalle semi-ouvert à gauche et borné)
-]a, b[, a et b réels tels que a < b (intervalle ouvert et borné)
- $[a, +\infty[$, a réel (intervalle fermé et borné à gauche et non majoré) et $]-\infty, b]$, b réel (intervalle fermé et borné à droite et non minoré)
-]a, $+\infty$ [, a réel (intervalle ouvert et borné à gauche et non majoré) et] $-\infty$, b[, b réel (intervalle ouvert et borné à droite et non minoré)
- $]-\infty,+\infty[=\mathbb{R}.$

On rappelle aussi la caractérisation des intervalles de \mathbb{R} énoncée dans le chapitre 12 : « L'ensemble des nombres réels ».

Théorème 4. Soit I une partie non vide de \mathbb{R} .

I est un intervalle si et seulement si $\forall (a,b) \in I^2 \ (a \leqslant b \Rightarrow [a,b] \subset I)$.

2.1.2 Le théorème des valeurs intermédiaires

Théorème 5 (théorème des valeurs intermédiaires). Soit f une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{R} .

Si f est continue sur I, alors f(I) est un intervalle.

DÉMONSTRATION.

1ère démonstration (par dichotomie). Posons J = f(I). Montrons que $\forall [c, d] \in J^2$, $(c \le d \Rightarrow [c, d] \subset J)$.

Soient donc c et d deux éléments de J tels que $c \le d$. On note a et b deux éléments de I tels que f(a) = c et f(b) = d. On peut supposer, sans perte de généralité, que $a \le b$. On se donne enfin $\gamma \in [c,d]$ et on veut montrer que l'équation $f(x) = \gamma$ admet une solution dans I.

Pour $x \in [a, b]$, on pose $g(x) = f(x) - \gamma$ puis on pose $a_0 = a$ et $b_0 = b$. a_0 et b_0 sont deux réels de I tels que $g(a_0) = f(a) - \gamma = c - \gamma \leqslant 0$ et $g(b_0) = f(b) - \gamma = d - \gamma \geqslant 0$.

Si
$$g\left(\frac{a_0+b_0}{2}\right) \geqslant 0$$
, on pose $a_1=a_0$ et $b_1=\frac{a_0+b_0}{2}$ et si $g\left(\frac{a_0+b_0}{2}\right) < 0$, on pose $a_1=\frac{a_0+b_0}{2}$ et $b_1=b_0$. Dans les deux cas, a_1 et b_1 sont deux réels de I tels que $[a_1,b_1]$ est l'une des deux moitiés de l'intervalle $[a_0,b_0]$ et $g(a_1) \leqslant 0$ et $g(b_1) \geqslant 0$.

Soit $n \ge 1$. Supposons avoir construit $a_0, \ldots, a_n, b_0, \ldots, b_n$ des réels de I tels que

- $\forall k \in [1, n]$, $[a_k, b_k]$ est l'une des deux moitiés de l'intervalle $[a_{k-1}, b_{k-1}]$,
- $\forall k \in [0, n], g(a_k) \leq 0 \text{ et } g(b_k) \geq 0.$

Si
$$g\left(\frac{a_n+b_n}{2}\right)\geqslant 0$$
, on pose $a_{n+1}=a_n$ et $b_{n+1}=\frac{a_n+b_n}{2}$ et si $g\left(\frac{a_n+b_n}{2}\right)<0$, on pose $a_{n+1}=\frac{a_n+b_n}{2}$ et $b_{n+1}=b_n$. Dans les deux cas, a_{n+1} et b_{n+1} sont deux réels de I tels que $[a_{n+1},b_{n+1}]$ est l'une des deux moitiés de l'intervalle $[a_n,b_n]$ et $g\left(a_{n+1}\right)\leqslant 0$ et $g\left(b_{n+1}\right)\geqslant 0$.

On a ainsi construit par récurrence deux suites $(\mathfrak{a}_n)_{n\in\mathbb{N}}$ et $(\mathfrak{b}_n)_{n\in\mathbb{N}}$ d'éléments de I telles que

- $\bullet \ \forall n \in \mathbb{N}, \ [a_{n+1},b_{n+1}] \ \mathrm{est} \ l'\mathrm{une} \ \mathrm{des} \ \mathrm{deux} \ \mathrm{moiti\acute{e}s} \ \mathrm{de} \ l'\mathrm{intervalle} \ [a_n,b_n],$
- $\forall n \in \mathbb{N}, \ g(a_n) \leq 0 \text{ et } g(b_n) \geq 0.$

Puisque pour tout $n \in \mathbb{N}$, $[a_{n+1}, b_{n+1}]$ est l'une des deux moitiés de l'intervalle $[a_n, b_n]$, on a en particulier $a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n$. Les suites $(a_n)_{n \in \mathbb{N}}$ sont donc respectivement croissantes et décroissantes.

D'autre part, puisque pour tout $n \in \mathbb{N}$, $[a_{n+1},b_{n+1}]$ est l'une des deux moitiés de l'intervalle $[a_n,b_n]$, pour tout $n \in \mathbb{N}$, on a $b_{n+1}-a_{n+1}=\frac{b_n-a_n}{2}$ puis pour tout $n \in \mathbb{N}$, on a $b_n-a_n=\frac{b_0-a_0}{2^n}=\frac{b-a}{2^n}$. On en déduit que la suite $(b_n-a_n)_{n\in\mathbb{N}}$ converge vers 0.

Les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont donc adjacentes et en particulier convergentes, de même limite. Notons x_0 la limite commune de ces deux suites. Puisque $x_0 \in [a,b]$, x_0 est un élément de I. Puisque g est continue sur I et en particulier en x_0 , les suites $(g(a_n))_{n\in\mathbb{N}}$ et $(g(b_n))_{n\in\mathbb{N}}$ convergent vers $g(x_0)$. Puisque pour tout $n\in\mathbb{N}$, $g(a_n)\leqslant 0$ et $g(b_n)\geqslant 0$, quand n tend vers $+\infty$, on obtient $g(x_0)\leqslant 0$ et $g(x_0)\geqslant 0$. Finalement, $g(x_0)=0$ ou encore $f(x_0)=\gamma$ ce qui achève la démonstration.

2ème démonstration. Posons J = f(I). Montrons que $\forall [c, d] \in J^2$, $(c \le d \Rightarrow [c, d] \subset J)$. Soient donc c et d deux éléments de J tels que $c \le d$. On note a et b deux éléments de I tels que f(a) = c et f(b) = d et on suppose, sans perte de généralité, que $a \le b$.

Soit $\gamma \in [c, d]$. On va montrer qu'il existe $x_0 \in I$ tel que $f(x_0) = \gamma$. Soit $\mathcal{E} = \{x \in [a, b]/ f(x) \le \gamma\}$. Puisque $f(a) = c \le \gamma$, on a $a \in \mathcal{E}$. D'autre part, pour tout $x \in \mathcal{E}$, on a $x \le b$. Ainsi, \mathcal{E} est une partie non vide et majorée (par b) de \mathbb{R} . \mathcal{E} admet donc une borne supérieure que l'on note x_0 . x_0 est un élément de [a, b] et donc de I. On va montrer que $f(x_0) = \gamma$.

1er cas. Supposons que $x_0 < b$. Puisque x_0 est un majorant de \mathcal{E} , si $x \in]x_0, b]$, x n'est pas un élément de \mathcal{E} et donc $f(x) > \gamma$. On fait tendre x vers x_0 par valeurs supérieures. Par continuité de f sur I et donc en x_0 , f(x) tend vers $f(x_0)$ quand x tend vers x_0 par valeurs supérieures et on obtient donc $f(x_0) \ge \gamma$.

D'autre part, puisque $x_0 = \operatorname{Sup}(\mathcal{E})$, pour tout $n \in \mathbb{N}^*$, il existe $u_n \in \mathcal{E}$ tel que $|u_n - x_0| \leqslant \frac{1}{n}$. Pour chaque $n \in \mathbb{N}^*$, u_n est un

élément de I tel que $f(u_n) \leqslant \gamma$. Puisque pour tout $n \in \mathbb{N}^*$, $|u_n - x_0| \leqslant \frac{1}{n}$, la suite $(u_n)_{n \in \mathbb{N}^*}$ converge vers x_0 . Puisque f est continue sur I et en particulier en x_0 , la suite $(f(u_n))_{n \in \mathbb{N}^*}$ converge vers $f(x_0)$. Puisque pour tout $n \in \mathbb{N}^*$, $f(u_n) \leqslant \gamma$, quand n tend vers $+\infty$, on obtient $f(x_0) \leqslant \gamma$ et finalement $f(x_0) = \gamma$.

2ème cas. Supposons que $x_0 = b$. On a déjà $\gamma \leqslant d = f(b) = f(x_0)$. D'autre part, comme dans le premier cas, on peut construire une suite $(u_n)_{n \in \mathbb{N}^*}$ d'éléments de \mathcal{E} convergeant vers $x_0 = b$ et comme précédemment, on obtient $f(x_0) \leqslant \gamma$ puis $f(x_0) = \gamma$.

Dans tous les cas, on a trouvé un élément x_0 de I tel que $f(x_0) = \gamma$. Ainsi, tout γ de [c,d] est un élément de f(I) = J et donc $[c,d] \subset J$. On a montré que $\forall (c,d) \in J^2$, $(c \leqslant d \Rightarrow [c,d] \subset J)$ et donc J est un intervalle.

\Rightarrow Commentaire.

- ♦ Le théorème des valeurs intermédiaires se résume parfois en la phrase : « l'image continue d'un intervalle est un intervalle ».
- \diamond Si f est continue sur un intervalle I à valeurs dans $\mathbb R$ et si on pose $\mathfrak m = \mathit{Inf}(f(I))$ et $M = \mathit{Sup}(f(I))$ où $\mathfrak m$ et M sont réels ou infinis, alors

$$]m, M[\subset f(I) \subset [m, M].$$

Le théorème des valeurs intermédiaires a un certain nombre de corollaires intéressants :

Théorème 6. Soit f une fonction continue sur un intervalle I à valeurs dans R.

S'il existe deux réels a et b de I tels que $f(a)f(b) \leq 0$, alors f s'annule au moins une fois dans I.

DÉMONSTRATION. f(I) est un intervalle et donc contient toute valeur comprise entre f(a) et f(b). Puisque $f(a)f(b) \le 0$, 0 est une valeur comprise entre f(a) et f(b) et il existe x comprise entre a et b et donc dans I tel que f(x) = 0.

Théorème 7. Un polynôme de degré impair à coefficients réels s'annule au moins une fois sur \mathbb{R} .

DÉMONSTRATION. Puisque f est un polynôme de degré impair, ou bien $\lim_{x\to-\infty} f(x) = -\infty$ et $\lim_{x\to+\infty} f(x) = +\infty$, ou bien $\lim_{x\to-\infty} f(x) = +\infty$ et $\lim_{x\to+\infty} f(x) = -\infty$. Dans tous les cas, $\inf(f(\mathbb{R})) = -\infty$ et $\sup(f(\mathbb{R})) = +\infty$. Puisque f est un polynôme, f est continue sur \mathbb{R} et donc $f(\mathbb{R})$ est un intervalle de \mathbb{R} ou encore

$$f(\mathbb{R}) =]Inf(f(\mathbb{R})), Sup(f(\mathbb{R}))[=] - \infty, +\infty[= \mathbb{R}.$$

En particulier, $0 \in f(\mathbb{R})$ et donc il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$.

Exercice 1. Soient a et b deux réels tels que a < b. Soit f une application de [a, b] dans lui-même, continue sur [a, b]. Montrer que l'équation f(x) = x admet au moins une solution dans [a, b].

Solution 1. Pour $x \in [a, b]$, posons g(x) = f(x) - x.

- g est continue sur [a, b] car f l'est.
- $g(a) = f(a) a \ge 0$ (car $f(a) \in [a, b]$) et $g(b) = f(b) b \le 0$.

D'après le théorème des valeurs intermédiaires, il existe au moins un réel x_0 de [a,b] tel que $g(x_0) = 0$ ou encore tel que $f(x_0) = x_0$.

2.2 Image continue d'un segment

Théorème 8. Soit f une fonction définie et continue sur un segment [a,b] de \mathbb{R} à valeurs dans \mathbb{R} .

Alors, f([a,b]) est un segment de \mathbb{R} .

DÉMONSTRATION. D'après le théorème des valeurs intermédiaires, f([a,b]) est un intervalle I de \mathbb{R} .

• Montrons que I est borné. Supposons par l'absurde I non majoré. Alors, pour chaque $n \in \mathbb{N}$, il existe $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $n \in \mathbb{N}$, il existe $\nu_n \in I$ tel que $\nu_n \geqslant n$. Puisque pour tout $\nu_n \in \mathbb{N}$, il existe $\nu_n \in I$ tel que $\nu_n \geqslant n$. Puisque pour tout $\nu_n \in \mathbb{N}$, il existe $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$. Pour $\nu_n \in I$ tel que $\nu_n \geqslant n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est une suite d'éléments de [a,b] et en particulier, la suite $(u_n)_{n\in\mathbb{N}}$ est une suite réelle bornée. D'après le théorème de Bolzano-Weierstrass, on peut extraire de la suite $(u_n)_{n\in\mathbb{N}}$ une sous-suite $(u_{\phi(n)})_{n\in\mathbb{N}}$ convergeant vers un certain réel x_0 .

Puisque pour tout $n \in \mathbb{N}$, $a \le u_{\phi(n)} \le b$, par passage à la limite quand n tend vers $+\infty$, on obtient $a \le x_0 \le b$ ou encore $x_0 \in [a,b]$. Puisque f est continue sur [a,b], f est continue en x_0 .

Puisque la suite $(u_{\phi(n)})_{n\in\mathbb{N}}$ converge vers x_0 et que f est continue en x_0 , on a $\lim_{n\to+\infty} f(u_{\phi(n)}) = f(x_0)$. Ceci contredit le fait que $\lim_{n\to+\infty} f(u_n) = +\infty$. Il était donc absurde de supposer I non majoré.

On montre de manière analogue que I est minoré.

• I est donc un intervalle borné de \mathbb{R} . Posons $\mathfrak{m}=\mathrm{Inf}(I)$ et $M=\mathrm{Sup}(I)$, \mathfrak{m} et M sont deux réels tels que

$$]m, M[\subset I \subset [m, M].$$

Montrons que la borne supérieure M de f sur I est atteinte. Puisque $M = \sup\{f(x), \ x \in [a,b]\}$, pour tout $n \in \mathbb{N}^*$, il existe $\nu_n \in I$ tel que $M - \frac{1}{n} < \nu_n \leqslant M$. D'après le théorème des gendarmes, la suite $(\nu_n)_{n \in \mathbb{N}^*}$ converge vers M.

Pour chaque $n \in \mathbb{N}^*$, il existe $u_n \in [a,b]$ tel que $f(u_n) = v_n$. De nouveau, la suite $(u_n)_{n \in \mathbb{N}}$ est une suite d'éléments de [a,b] et d'après le théorème de Bolzano-Weierstrass, on peut extraire de la suite $(u_n)_{n \in \mathbb{N}}$ une sous-suite $(u_{\phi(n)})_{n \in \mathbb{N}}$ convergeant vers un certain réel x_0 de [a,b]. Puisque f est continue en x_0 , la suite $(f(u_{\phi(n)}))_{n \in \mathbb{N}}$ converge vers $f(x_0)$. D'autre part, la suite

 $\left(f\left(u_{\phi(n)}\right)\right)_{n\in\mathbb{N}}\text{ est extraite de la suite }\left(f\left(u_{n}\right)\right)_{n\in\mathbb{N}}\text{ qui converge vers }M.\text{ On en déduit que la suite }\left(f\left(u_{\phi(n)}\right)\right)_{n\in\mathbb{N}}\text{ converge aussi vers }M\text{ et donc que }f\left(x_{0}\right)=M.\text{ On a montré que }M\text{ est une valeur atteinte par }f.$

On montre de même que f atteint sa borne inférieure \mathfrak{m} et finalement $f([a,b]) = [\mathfrak{m},M]$. On a montré que l'image du segment [a,b] par la fonction continue f est un segment de \mathbb{R} .

⇒ Commentaire. Le théorème 8 se réénonce parfois sous la forme « l'image continue d'un segment est un segment » ou sous la forme « si f est une fonction continue sur un segment, f est bornée et atteint ses bornes », cette dernière phrase signifiant que f admet un minimum et un maximum.

3 Fonctions lipschitziennes sur un intervalle

DÉFINITION 2. Soit f une fonction définie sur un intervalle I de $\mathbb R$ à valeurs dans $\mathbb R$ ou $\mathbb C$.

f est lipschitzienne sur I si et seulement si

$$\exists k \in \mathbb{R}^+ / \forall (x, y) \in I^2, |f(x) - f(y)| \leq k|x - y|.$$

Si $\forall (x,y) \in I^2$, $|f(x) - f(y)| \leq k|x - y|$, on dit que f est k-lipschitzienne. Le nombre k n'est pas unique car si $\forall (x,y) \in I^2$, $|f(x) - f(y)| \leq k|x - y|$ alors par exemple, $\forall (x,y) \in I^2$, $|f(x) - f(y)| \leq (k+1)|x - y|$.

Un résultat immédiat est

Théorème 9. f est lipschitzienne sur
$$I \Leftrightarrow \operatorname{Sup}\left\{\left|\frac{f(x)-f(y)}{x-y}\right|,\; (x,y)\in I^2,\; x\neq y\right\}<+\infty.$$

Exercice 2.

- 1) Montrer que la fonction $x \mapsto \sqrt{x}$ est lipschitzienne sur $[1, +\infty[$.
- 2) Montrer que la fonction $x \mapsto \sqrt{x}$ n'est pas lipschitzienne sur [0, 1].

Solution 2.

1) Soient x et y deux réels de $[1, +\infty[$.

$$\left|\sqrt{x}-\sqrt{y}\right|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}}\leqslant \frac{|x-y|}{\sqrt{1}+\sqrt{1}}=\frac{1}{2}|x-y|.$$

Donc, la fonction $x \mapsto \sqrt{x}$ est $\frac{1}{2}$ -lipschitzienne sur $[1, +\infty[$.

2) Soit
$$M = \operatorname{Sup}\left\{\left|\frac{\sqrt{x}-\sqrt{y}}{x-y}\right|, \ (x,y) \in [0,1]^2, \ x \neq y\right\}$$
. M est un élément de $[0,+\infty]$.

Pour tout $x \in]0,1], M \geqslant \left| \frac{\sqrt{x} - \sqrt{0}}{x - 0} \right| = \frac{1}{\sqrt{x}}$. Quand x tend vers 0 par valeurs supérieures, on obtient $M \geqslant +\infty$. Finalement,

$$\sup\left\{\left|\frac{\sqrt{x}-\sqrt{y}}{x-y}\right|,\;(x,y)\in[0,1]^2,\;x\neq y\right\}=+\infty\;\text{et donc la fonction}\;x\mapsto\sqrt{x}\;\text{n'est pas lipschitzienne sur}\;[0,1].$$

 \Rightarrow Commentaire. Une fonction lipschitzienne à valeurs dans $\mathbb R$ est une fonction dont les valeurs absolues des pentes des cordes joignant deux points quelconques de son graphe constituent un ensemble majoré. La fonction $x \mapsto \sqrt{x}$ est $\frac{1}{2}$ -lipschitzienne sur $[1,+\infty[$: les pentes des cordes à son graphe sont positives et inférieures ou égales à $\frac{1}{2}$ qui est la pente de la tangente à son graphe en son point d'abscisse 1.

La fonction $x \mapsto \sqrt{x}$ n'est pas lipschitzienne sur [0,1] car l'ensemble des pentes des cordes de son graphe n'est pas majoré.

Théorème 10. Soit f une fonction définie sur un intervalle I de $\mathbb R$ à valeurs dans $\mathbb R$ ou $\mathbb C$.

Si f est lipschitzienne sur I, alors f est continue sur I.

DÉMONSTRATION. Supposons f lipschitzienne sur I. Il existe $k \in \mathbb{R}^+$ tel que $\forall (x,y) \in I^2$, $|f(x) - f(y)| \leq k|x - y|$. Quite à remplacer k par k+1, on peut supposer k>0, ce que l'on fait.

1ère démonstration. Soit $x_0 \in I$. Pour tout x de I, $|f(x) - f(x_0)| \le k|x - x_0|$. Quand x tend vers x_0 , $k|x - x_0|$ tend vers 0 et donc, d'après le théorème des gendarmes, $\lim_{x \to x_0} f(x) = f(x_0)$. f est donc continue en x_0 .

Ainsi, f est continue en chaque x_0 de I et finalement f continue sur I.

2ème démonstration. Soit $x_0 \in I$. Soit $\epsilon > 0$. Soit $\alpha = \frac{\epsilon}{k}$. Soit x un réel de I tel que $|x - x_0| \leqslant \alpha$. Alors,

$$|f(x) - f(x_0)| \leqslant k |x - y| \leqslant k \times \frac{\varepsilon}{k} = \varepsilon.$$

On a montré que : $\forall x_0 \in I$, $\forall \epsilon > 0$, $\exists \alpha > 0 / \ \forall x \in I$, $(|x - x_0| \leqslant \alpha \Rightarrow |f(x) - f(x_0)| \leqslant \epsilon)$. Donc, f est continue en chaque x_0 de I et finalement f continue sur I.

Par exemple, on a vu que la fonction $x \mapsto \sqrt{x}$ est $\frac{1}{2}$ -lipschitzienne sur $[1, +\infty[$. La fonction $x \mapsto \sqrt{x}$ est donc uniformément continue sur $[1, +\infty[$.

Citons aussi l'exemple de la fonction $\theta \mapsto e^{i\theta}$. Pour tous réels θ et θ' ,

$$\begin{split} \left| e^{i\theta} - e^{i\theta'} \right| &= \left| e^{i\frac{\theta + \theta'}{2}} \right| \left| e^{i\frac{\theta - \theta'}{2}} - e^{-i\frac{\theta - \theta'}{2}} \right| = 2 \left| \sin\left(\frac{\theta - \theta'}{2}\right) \right| \\ &\leqslant 2 \left| \frac{\theta - \theta'}{2} \right| = |\theta - \theta'| \,. \end{split}$$

La fonction $\theta \mapsto e^{i\theta}$ est 1-lipschitzienne sur \mathbb{R} et donc en particulier continue sur \mathbb{R} .

Exercice 3. Soit A une partie non vide de \mathbb{R} . Pour $x \in \mathbb{R}$, on pose $d_A(x) = \inf\{|x - a|, \ a \in A\}$ ($d_A(x)$ est la distance du réel x à la partie A).

- 1) Montrer que la fonction d_A est définie sur \mathbb{R} .
- 2) Montrer que la fonction d_A est continue sur $\mathbb R$

Solution 3.

1) Soit $x \in \mathbb{R}$. Soit $D = \{|x - a|, a \in A\}$. Puisque A n'est pas vide, D n'est pas vide. D'autre part, D est un ensemble de réels positifs et donc D est minoré par 0. En résumé, D est une partie non vide et minorée de \mathbb{R} . On en déduit que D admet une borne inférieure dans \mathbb{R} . Donc, $d_A(x)$ existe dans \mathbb{R} .

On a montré que la fonction d_A est définie sur \mathbb{R} .

2) • Soient x et y deux réels. Soit $a \in A$.

$$d_A(x) \le |x - a| = |(x - y) + (y - a)| \le |x - y| + |y - a|.$$

Par suite, pour tout $a \in A$, $|y - a| \ge d_A(x) - |x - y|$. Le réel $d_A(x) - |x - y|$ est indépendant de a: c'est un minorant de l'ensemble $\{|y - a|, a \in a\}$. Puisque $d_A(y)$ est le plus grand des minorants de cet ensemble, on en déduit que $d_A(x) - |x - y| \le d_A(y)$. On a montré que

$$\forall (x,y) \in \mathbb{R}^2, \ d_A(x) - d_A(y) \leqslant |x - y|.$$

• Soient x et y deux réels. En échangeant les rôles de x et y, on a aussi : $d_A(y) - d_A(x) \le |y - x| = |x - y|$. $|d_A(x) - d_A(y)|$ est l'un des deux réels $d_A(x) - d_A(y)$ ou $d_A(y) - d_A(x)$ et donc $|d_A(x) - d_A(y)| \le |x - y|$. On a montré que

$$\forall (x,y) \in \mathbb{R}^2, |d_A(x) - d_A(y)| \leqslant |x - y|.$$

La fonction d_A est donc 1-lipschitzienne sur $\mathbb R$ et en particulier la fonction d_A est continue sur $\mathbb R$.

4 Fonctions continues strictement monotones

Dans ce paragraphe, toutes les fonctions considérées sont définies sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{R} .

Rappelons les principaux résultats déjà énoncés et démontrés.

- si f est strictement monotone sur I, alors f est injective.
- si f est continue sur I, alors f(I) est un intervalle.

Si on cumule ces deux résultats, on obtient : si f est continue et strictement monotone sur I, alors f réalise une bijection de I sur J = f(I) qui est un intervalle. On rappelle alors que

 \bullet si f est bijective de I sur J et strictement monotone sur I, alors f^{-1} est strictement monotone sur J, de même sens de variation que f.

Vérifions que l'intervalle J est de même nature que l'intervalle I (ouvert, semi-ouvert, fermé). On suppose que f est continue et strictement monotone sur I.

1er cas. On suppose que I est un segment [a,b] (a et b réels tels que $a \le b$). On sait déjà que $f(I) = \begin{bmatrix} \min_{x \in I} (x), \max_{x \in I} (x) \end{bmatrix}$. Puisque f est strictement monotone sur I, on a f([a,b]) = [f(a),f(b)] si f est croissante sur I et f([a,b]) = [f(b),f(a)] si f est décroissante sur I. Dans ce cas, J est un intervalle de même nature que I.

2ème cas. On suppose que I est un intervalle semi-ouvert [a,b[(a réel et b réel ou infini tels que a < b). Supposons de plus f continue et strictement croissante sur [a,b[. On sait que f a une limite en b, réelle ou infinie, et que $\forall x \in [a,b[$, $f(a) \le f(x) < \lim_{t \to b} f(t)$. Plus précisément, on sait que $f(a) = \min_{I} (f)$ et que $\lim_{t \to b} f(t) = \sup_{I} (f)$.

$$\mathrm{Donc}\ f([\mathfrak{a},\mathfrak{b}[) = \left\lceil \mathrm{Min}_{I}(f), \mathrm{Sup}(f) \right\rceil = \left\lceil f(\mathfrak{a}), \lim_{t \to \mathfrak{b}} f(t) \right\rceil.$$

De même, si f est strictement décroissante sur [a,b[, $f([a,b[)=]\lim_{t\to b}f(t),f(a)]$ et aussi $f([a,b])=\lim_{t\to a}f(t),f(b)]$ si f est strictement croissante et $f([a,b])=\Big[f(b),\lim_{t\to a}f(t)\Big[$ si f est strictement décroissante. Dans tous les cas, f([a,b[) est un

3ème cas. On suppose que I est un intervalle ouvert]a, b[(a et b réels ou infinis tels que a < b). Supposons de plus f continue et strictement croissante sur [a, b[. On sait que $\forall x \in [a, b[, \lim_{t \to a} f(t) < f(x) < \lim_{t \to b} f(t)$. Plus précisément, on sait

De même, si f est strictement décroissante sur $]a,b[,f(]a,b[)=]\lim_{t\to b}f(t),\lim_{t\to a}f(t)\Big[.$ Dans ce cas, f(]a,b[) est un intervalle ouvert.

On a montré :

Théorème 11. Soit f une fonction définie sur une intervalle I de \mathbb{R} à valeurs dans \mathbb{R} .

Si f est continue et strictement monotone sur I alors f réalise une bijection de I sur J = f(I) qui est alors un intervalle de même nature que I (ouvert, semi-ouvert, fermé).

On va maintenant établir que la réciproque f^{-1} est continue sur J. On a besoin du lemme suivant :

Théorème 12. Soit f une fonction définie sur une intervalle I de \mathbb{R} à valeurs dans \mathbb{R} , strictement monotone sur I. f est continue sur I si et seulement si f(I) est un intervalle.

DÉMONSTRATION. On sait déjà que si f est continue sur l'intervalle I, alors f(I) est un intervalle.

Réciproquement, supposons que f(I) soit un intervalle que l'on note J. Quite à remplacer f par -f (qui est aussi strictement monotone sur I), on supposera que f est strictement croissante sur I.

Soit x_0 un élément de I qui n'est pas une borne de I. Montrons que f est continue en x_0 . Puisque f est strictement croissante sur I, on sait que f admet en x_0 des limites à gauche et à droite que l'on note $f\left(x_0^-\right)$ et $f\left(x_0^+\right)$ respectivement $\left(f\left(x_0^-\right) = \lim_{\substack{x \to x_0 \\ x \to x_0}} f(x)\right)$ et

$$f\left(x_{0}^{+}\right)=\lim_{\substack{x\to x_{0}\\x>x_{0}}}f(x))\text{ et que }f\left(x_{0}^{-}\right)\leqslant f\left(x_{0}\right)\leqslant f\left(x_{0}^{+}\right).$$

Supposons par l'absurde f non continue en x_0 . Alors, par exemple, $f\left(x_0^-\right) < f\left(x_0\right)$ de sorte que l'intervalle $\left]f\left(x_0^-\right), f\left(x_0\right)\right[$ n'est pas vide. On sait que pour $x \in I \cap]-\infty, x_0[$, $f(x) \leqslant f\left(x_0^-\right)$ et que pour $x \in I \cap [x_0, +\infty[$, $f(x) \geqslant f\left(x_0\right)$. Ainsi, $f(I) \cap \left]-\infty, f\left(x_0^-\right)\right] \neq \emptyset$ et $f(I) \cap \left[f\left(x_0\right), +\infty[\neq \varnothing \text{ mais } f(I) \cap \left]f\left(x_0^-\right), f\left(x_0^-\right)\right] = \varnothing$ ce qui contredit le fait que f(I) est un intervalle.

La démarche est analogue si x_0 est une borne de I.

On peut maintenant établir :

Théorème 13. Soit f une fonction définie, continue et strictement monotone sur un intervalle I à valeurs dans \mathbb{R} . f réalise une bijection (encore notée f) de I sur J = f(I) qui est un intervalle de même nature que I et la réciproque f^{-1} de f est continue sur J.

DÉMONSTRATION. f^{-1} est strictement monotone sur J et $f^{-1}(J) = I$ est un intervalle de \mathbb{R} . D'après le théorème 12, f^{-1} est continue sur J.

 \Rightarrow Commentaire. La continuité de la réciproque n'a rien d'anecdotique. En deuxième année, on s'intéressera à la continuité d'une application dans une situation beaucoup plus générale que le cadre des fonctions de $\mathbb R$ dans $\mathbb R$. La réciproque d'une bijection ne sera alors pas automatiquement continue.

On peut citer aujourd'hui un exemple de bijection dont la réciproque n'est pas continue. Soit $f: [0,2\pi[\rightarrow U] \cdot f$ est une

bijection, continue sur $[0,2\pi[$ car ses parties réelles et imaginaires le sont ou aussi car f est 1-lipschitzienne. La réciproque de f est $f^{-1}: U \rightarrow [0,2\pi[$ où Arg(z) est l'argument de z qui appartient à $[0,2\pi[$. Maintenant, f^{-1} n'est pas continue en 1 car $z \mapsto Arg(z)$

9

$$\lim_{\substack{z \to 1 \\ z \in \mathbb{U}, \ Im(z) < 0}} f^{-1}(z) \mapsto Arg(z) \\ f^{-1}(z) = 2\pi \neq 0 = f^{-1}(1).$$

On termine par un résultat plus fin que le résultat : « si f est strictement monotone, alors f est injective ».

Théorème 14. Soit f une fonction définie et continue sur un intervalle I à valeurs dans \mathbb{R} .

Si f est injective, alors f est strictement monotone.

DÉMONSTRATION. On montre la contraposée : si f n'est pas strictement monotone sur I, alors f n'est pas injective sur I.

Supposons f non strictement monotone sur I. Il existe donc trois réels x_1, x_2 et x_3 de I tels que $x_1 < x_2 < x_3$ et ou bien $f(x_1) \le f(x_2)$ et $f(x_3) \le f(x_2)$, ou bien $f(x_1) \ge f(x_2)$ et $f(x_3) \ge f(x_2)$. Quite à remplacer f par -f (qui est continue et non strictement monotone sur I), on peut supposer que $f(x_1) \le f(x_2)$ et $f(x_3) \le f(x_2)$.

Si $f(x_1) = f(x_2)$ ou $f(x_3) = f(x_2)$, f n'est pas injective et c'est fini. Supposons maintenant que $f(x_1) < f(x_2)$ et $f(x_3) < f(x_2)$. Soit γ un réel de l'intervalle $]Max\{f(x_1), f(x_3)\}, f(x_2)[$ (qui n'est pas vide). Puisque $f(x_1) < \gamma < f(x_2)$ et que f est continue sur $[x_1, x_2]$, d'après le théorème des valeurs intermédiaires, il existe $\alpha \in]x_1, x_2[$ tel que $f(\alpha) = \gamma$. De même, il existe $\beta \in]x_2, x_3[$ tel que $f(\beta) = \gamma$.

Puisque $\alpha < x_2 < \beta$, α et β sont deux réels distincts et éléments de I tels que $f(\alpha) = f(\beta)$. Donc, f n'est pas injective.

Par contraposition, si f est injective et continue sur I, alors f est strictement monotone sur I.