University of South Bohemia

Faculty of Science

Praktika IV

Relativistické chování elektronů

Datum: 20.2.2024 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

- Na HPGe detektoru proměřte spektra γ -záření připravených radioizotopů
- Určete energie peaků plného pohlcení a energie jím příslušejících Comptnových hran
- Vypočtěte hybnosti odražených Comptnovkých elektronů a na grafech ukažte, zda se chovají dle klasické teorie nebo podle teorie relativity

2 Pomůcky

Zdroj gamma záření LABKIT-SR-Cs137, detektor Osprey, program ProSpect, Radiagem 2000, podložka s úhloměrem, ocelový kůl

3 Teorie

Comptnův rozptyl je, když se srazí foton s volným elektronem. Tímto foton předá nehybnému elektronu část svojí energie. Můžou se stát dvě věci. Energie fotonu se plně pohltí eletronem, takže předá elektronu všechnu svojí energii a zmizí. Toto se projeví ve spektru jako peak s maximální energií gamma E_{γ} , což je vlastně energie fotonu. Druhá věc, co se může stát je, že se foton odrazí o 180° a elektron získá maximální hybnost. Toto se projeví ve spektru jako comptona hrana T, což je energie předaná elektronu. Hybnost elektronu pak můžeme určit ze vztahu

$$pc = 2E_{\gamma} - T \tag{1}$$

4 Postup měření

Zapnul jsem počítač a program ProSpect. Nastavil jsem následné parametry podle návodu. Vzal jsem zářič a umístil ho na detektor. Spustil jsem start. Označil jsem pomocí myši začátek a konec fotopeaku. Provedl jsem kalibraci. Data jsem uložil a opakoval pro další zářiče.

5 Data

Data jsem vynesl do grafu a určil peaky a jejich náležící comptnovy hrany. Začátek a konec comptnovské hrany je v grafu označená vertikálními čárami. První je vždy graf celého spektra a další dva nebo jeden jsou zazoomované sekce, aby byly dobře vidět comptnovy hrany.

Figure 1: Cs137

Figure 2: Co60

Figure 3: Na22

Figure 4: Y88

Tabulka 1:

prvek	E_{γ}	comptnova	chyba comptnovy	hybnost
	(peaky)	hrana	hrany	eletronu
Cs137	661.666	485.0	15.0	838.332
Co60	1173.324	970.0	20.0	1376.649
-	1332.598	1125.0	10.0	1540.196
Na22	551.031	345.0	15.0	757.061
-	1274.698	1062.5	7.5	1486.895
Y88	897.966	705.0	15.0	1090.932
=	1460.785	1245.0	2.0	1676.57

Kde hybnost elektronu jsem spočítal podle vztahu 1.

Chyba comptnovy hrany je střední odchylka dvou hodnot, a to začátku a konce comptnovy strany z grafu. Potom jsem vynesl graf závislosti kinetické energie elektronu na jeho hybnosti. Data jsem proložil křivkou klasické T a relativistické T_r kinetické energie.

$$T = \frac{p^2}{2m_e}$$

$$T_r = \sqrt{p^2c^2 + m_0^2c^4} - m_0c^2$$

Figure 5: Závislosti T(p) a $T_r(p)$

6 Diskuse

Z grafu 5 je vidět, že se naměřená data přibližují relativistické kinetické energii.

7 Závěr

Vytvořil jsem graf závislosti kinetické energie elektronu na jeho hybnosti.

8 Zdroje

https://userswww.pd.infn.it/~moretto/fontana/project/software/2018/03/16/compton-edge.html