

Preparation for Week 1

Laurie McClymont

UCL ATLAS Meeting 29/05/15

Aims

- First data available in Week 1 (Next Week!)
- We want to look at this data and see if the b-Tagging variables are performing as expected.

Process

- Valerio Produces NTuples using Run2BtagOptimisationFramework.
- I have code that reads the NTuples and fills histograms with quantities from the NTuples.
- Code takes ~10 mins to run over NTuples.

B-tagging - IP3D, SV1, JF

<u>IP3D</u>

- Look for tracks with a large impact parameter significance = $(I.P. / \sigma)$

SV1

<u>JF</u>

- Identify a secondary vertex
- Look for large flight path significance = $(F.P. / \sigma)$

- ruentify Second and Tertiary Vertices.

- These vertices correspond to decay of B meson and decay of D meson.
- Assumes these vertices lie on an shared B flight axis

Multi-Variate B Taggers - MV2

ATLAS-CONF-2012-043

- Can combine the basic algorithms in a neural network.
- This leads to improved performance.
- MV2c20 Trained on a sample containing 20% charm.

Samples

user.vdao.mc15_13TeV.*.Pythia8EvtGen_jetjet_JZ*W
.merge.AOD.*.BTAGNTUP_OrigV5slim_BTAGSTREAM/

- A week 1 dijet sample for comparison to data.
- 2,161,636 split into 10 JZ slices each containing ~200,000 events.
- JZ slices must be re-weighted to get smooth jet-P_T spectrum.

Details/Cuts

- 20 < P_T < 4600 GeV
- Leading and Sub-Leading Jet Only
- |eta| < 2.5
- JVT > 0.941
- njets ≥ 2
- LabDr_HadF truth matching.
- AntiKt4EMTopoJets

Jet P_⊤ [GeV]

Jets

6

Di-jet sample re-weighting - Zoom In

Jet $P_T = 20-300 \text{ GeV}$

Jets

10¹²

10¹¹

10¹⁰

10⁹

10⁸

10⁷

10⁶

10⁵

b-jet c-jet

—all

10

Jet Fitter

-4

-2

2

0

6

8

4

To Do

- Still work to do!
- We want to better understand shape of the discriminant.
 - -Why is there a peak at 0 in the mv2c20?
 - Plot Leading Jet Only
 - Plot P_T slices
 - mv2c00/mv2c10
 - Show the under-fill bin algorithms have no output.
 - Check weighting
- Understand Sample
 - PV Distributions.

Track Selection Optimisation for high-P_T b-Tagging update

Track Cuts and Some Definitions

Track Cuts

From Talk by R. Zaidan at Flav Tag Workshop 2015

In this study I have applied these cuts manually in my analysis code.

Definitions

From B = Any track associated to the decay of the B or C Hadron

From = Any track without a well matched truth particle.

From Geant = Any track created by a GEANT interaction.

From Frag = Any track not From B or From Geant

From Other = Any track not From B

Selection = #Tracks FromX Selected By a Cut Efficiency # Truth Tracks From X

Fraction of Tracks = #Tracks FromX Selected By a Cut Total # Tracks Selected by a Cut

	IP3D	SV1	JFit
p _T ≥	1000	700	769.2
η ≤	2.5	2.5	2.5
N _{SI} ≥	7	7	7
N _{SCT} ≥	-	4	4
N _{PIX} ≥	2	1	1
N _{IBL} ≥	1	-	-
$N_{IBL} + N_{BL} \ge$	-	-	-
$N^{SH}_{PIX} + \frac{N^{SH}_{SCT}}{2} \le$	-	-	1
N ^{HOLE} _{SI} ≤	-	-	-
N ^{HOLE} _{PIX} ≤	-	-	-
d ₀ ≤	1	5	3.5
$z_0^* \sin(\theta) \le$	1.5	25	5
$\sigma(d_0) \leq$	-	1	0.35
$\sigma(z_0) \leq$	-	5	2.5
χ2/NDF ≤	-	-	3.5

Track Optimisation for High-P_T b-Tagging

See Full Talk: https://indico.cern.ch/event/393645/contribution/13/material/slides/0.pdf

Jet P_⊤ [GeV]

Jet P_⊤ [GeV]

16

- Applying the same cuts to a QCD sample shows larger cut on tracks from B.
- This is consistent with the removal of some B-tracks that correspond to gluon splitting
- Reduces QCD background for exotic resonances.

Future Aims

- \bullet Examine other track selection cuts, such as d0 and z0, to see if there are any optimisations that can be done for high-P_T.
- Study is underway and first results will be very soon.
- Produce ROC curves to demonstrate how the jet-P_T dependant cuts effect b-Tagging performance.
- This should be done soon.
- Next; investigate, understand and optimise the b-tagging algorithms themselves.
- Integrate b-Tagging findings into di-jet framework.