MAT292 - Fall 2018

Term Test 2 - November 12, 2018

Time allotted: 100 min	Aids permitted: None		
Total marks: 65			
Full Name:			
	Last	First	
Student Number:			
Email:			_ @mail.utoronto.ca

Instructions

- DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.
- Please have your **student card** ready for inspection and read all the instructions carefully.
- DO NOT start the test until instructed to do so.
- In the first section, only answers are required. In the second section, justify your answers fully.
- This test contains 10 pages (including this title page). Make sure you have all of them.
- You can use pages 9–10 for rough work or to complete a question (Mark clearly).

DO NOT DETACH PAGES 9–10.

• No calculators, cellphones, or any other electronic gadgets are allowed. If you have a cellphone with you, it must be turned off and in a bag underneath your chair.

HAVE FUN!

SECTION I No explanation is necessary.

(10 marks)

1. (4 marks) Each curve in the phase plane is a solution to which differential equation $\frac{dx}{dt} = Ax$?

$$i) A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

iii)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

v) none of the above

 x_1

(b)

(a) <u>ii</u>

- (2 marks) Let y_1 and y_2 be solutions to y''(t) + 7y = 0 with initial values $y_1(0) = 0$, $y_1'(0) = 1$, $y_2(0) = 1$, $y_2'(0) = 0$. Compute the Wronskian of $y_1(t)$ and $y_2(t)$: $W[y_1, y_2](t) = \underline{\qquad -1}$
- (1 mark) Find γ so that $y = cte^{2t}$ (for some constant c) is a solution to $y'' 3y' + \gamma y = e^{2t}$.
- (2 marks) Find a and b so that $x(t) = e^{at} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is a solution of the system $\frac{dx}{dt} = \begin{pmatrix} 1 & 2b \\ 2 & 3b \end{pmatrix} x$.

$$a = \underline{-1} \qquad \qquad b = \underline{-1}$$

a a b a

-1

-2

5. (1 mark) For $\frac{d\mathbf{x}}{dt} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \mathbf{x}$, $\mathbf{x}_0 = \mathbf{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, find \mathbf{x}_1 , the result of applying Euler's method with step size h =

$$x_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$\begin{tabular}{ll} \bf SECTION \ II & \bf Justify \ your \ answers. \end{tabular}$

(55 marks)

6. Solve the following initial value problem with two different methods,

(10 marks)

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad A = \frac{1}{3} \begin{pmatrix} 1 & 4 \\ 2 & -1 \end{pmatrix}, \quad x_1(0) = 1, \ x_2(0) = 2.$$

(a) (5 marks) The eigenvalue method.

Solution: The characteristic polynomial is $(\frac{1}{3} - \lambda)(-\frac{1}{3} - \lambda) - \frac{8}{9} = 0$ with roots $\lambda = \pm 1$. Eigenvectors are $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ for $\lambda = 1$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ for $\lambda = -1$. Since $\begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, the solution to the initial value problem is $\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = e^t \begin{pmatrix} 2 \\ 1 \end{pmatrix} - e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2e^t - e^{-t} \\ e^t + e^{-t} \end{pmatrix}$.

(b) (5 marks) Let $z_1 = x_1 + x_2$ and $z_2 = x_1 - 2x_2$. Solve separate differential equations for z_1 and z_2 and then determine $x_1 = (2z_1 + z_2)/3$ and $x_2 = (z_1 - z_2)/3$.

Solution:

$$z_1' = (x_1 + x_2)' = x_1' + x_2' = \frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{2}{3}x_1 - \frac{1}{3}x_2 = x_1 + x_2 = z_1.$$
 Since $z_1(0) = x_1(0) + x_2(0) = 3$, $z_1(t) = 3e^t$.
$$z_2' = (x_1 - 2x_2)' = x_1' - 2x_2' = \frac{1}{3}x_1 + \frac{4}{3}x_2 - \frac{4}{3}x_1 + \frac{2}{3}x_2 = -x_1 + 2x_2 = -z_2.$$
 Since $z_2(0) = x_1(0) - 2x_2(0) = -3$, $z_2(t) = -3e^{-t}$. Therefore, $x_1 = (2z_1 + z_2)/3 = 2e^t - e^{-t}$ and $x_1 = (z_1 - z_2)/3 = e^t + e^{-t}$.

7. Show that for two solutions $x_1(t)$ and $x_2(t)$ to the system of differential equations (5 marks) $\frac{dx}{dt} = P(t)x$, that $x_1(t) + x_2(t)$ is a solution. Is it necessary that x_1 and x_2 be linearly independent? Solution: Using linearity of the derivative and matrix multiplication,

$$\frac{d}{dt}(x_1 + x_2) = \frac{dx_1}{dt} + \frac{dx_2}{dt} = P(t)x_1 + P(t)x_2 = P(t)(x_1 + x_2),$$

so that $x_1 + x_2$ is a solution to the differential equation. It is **not** necessary that x_1 and x_2 be linearly independent.

- 8. Consider the differential equation $y'' 2\alpha y' + (\alpha^2 \alpha + 1)y = 0$ with parameter $\alpha \in \mathbb{R}$. (10 marks)
 - (a) (2 marks) For which values of α are solutions (except $y \equiv 0$) i) growing amplitude oscillations, and ii) decaying amplitude oscillations.

Solution: The characteristic equation is $\lambda^2 - 2\alpha\lambda + (\alpha^2 - \alpha + 1) = 0$ with roots $\lambda = \alpha \pm \sqrt{\alpha - 1}$. For $0 < \alpha < 1$, there are only growing amplitude oscillations (i). For $\alpha < 0$, there are only decaying amplitude oscillations (ii).

(b) (3 marks) For all α , find the general real solution. Consider the cases of distinct real, repeated real, and complex conjugate pairs of eigenvalues separately.

Solution:

$$\alpha < 1$$
: $y = c_1 e^{\alpha t} \cos(\sqrt{1 - \alpha t}) + c_2 e^{\alpha t} \sin(\sqrt{1 - \alpha t})$

$$\alpha > 1$$
: $y = c_1 \exp\left((\alpha + \sqrt{\alpha - 1})t\right) + c_2 \exp\left((\alpha - \sqrt{\alpha - 1})t\right)$

$$\alpha = 1: \quad y = c_1 e^t + c_2 t e^t$$

(c) (5 marks) Using the method of undetermined coefficients for all α find a particular solution of $y'' - 2\alpha y' + (\alpha^2 - \alpha + 1)y = e^t$.

Solution: Try
$$y_{\mathbf{p}} = Ae^t$$
 so that $y'_{\mathbf{p}} = y''_{\mathbf{p}} = Ae^t$ and

$$y_{\mathrm{p}}''-2\alpha y_{\mathrm{p}}'+(\alpha^2-\alpha+1)y_{\mathrm{p}}=A(1-2\alpha+\alpha^2-\alpha+1)e^t=A(\alpha^2-3\alpha+2)e^t.$$

So we have a particular solution for $A = 1/(\alpha^2 - 3\alpha + 2)$.

This form fails for $\alpha = 1$ and $\alpha = 2$.

For
$$\alpha = 2$$
, try $y_p = Ate^t$ so that $y_p' = Ae^t(1+t)$, $y_p'' = Ae^t(2+t)$ and $y_p'' - 2\alpha y_p' + (\alpha^2 - \alpha + 1)y_p = Ae^t(2+t - 4(1+t) + 3t) = Ae^t(-2)$.

So we have a particular solution for $A = -\frac{1}{2}$.

For
$$\alpha = 1$$
, try $y_p = At^2e^t$ so that $y_p' = Ae^t(2t + t^2)$, $y_p'' = Ae^t(2 + 4t + t^2)$ and $y_p'' - 2\alpha y_p' + (\alpha^2 - \alpha + 1)y_p = Ae^t(2 + 4t + t^2 - 2(2t + t^2) + t^2) = Ae^t(2)$.

So we have a particular solution for $A = \frac{1}{2}$.

- 9. If a solution y_1 is known for the differential equation y'' + p(t)y' + q(t)y = 0, (10 marks) then one can find the general solution using the Wronskian $W[y_1, y_2] = y_1y_2' y_2y_1'$ as follows.
 - (a) (2 marks) Show that $\left(\frac{y_2}{y_1}\right)' = \frac{W[y_1, y_2]}{y_1^2}$. Solution: Using the quotient rule $\left(\frac{y_2}{y_1}\right)' = \frac{y_2' y_1 - y_2 y_1'}{y_1^2} = \frac{W[y_1, y_2]}{y_1^2}$.
 - (b) (2 marks) Show that $W[y_1, y_2]$ satisfies W' + p(t)W = 0 and therefore $W[y_1, y_2] = c_1 \exp\left(-\int_0^t p(\tau)d\tau\right)$. Solution: Using the sum and product rules and the differential equation,

$$W' = (y_1y_2' - y_2y_1')'$$

$$= y_1'y_2' + y_1y_2'' - y_2'y_1' - y_2y_1''$$

$$= y_1(-py_2' - qy_2) - y_2(-py_1' - qy_1)$$

$$= -p(y_1y_2' - y_2y_1')$$

$$= -pW,$$

as required.

(c) (6 marks) Check that $y_1 = t^2$ is a solution of $t^2y'' - 2y = 0$. Use the Wronskian to find a second linearly independent solution. What is the general solution?

Solution:

Since
$$y_1 = t^2$$
, $y_1' = 2t$, $y_1'' = 2$ and $t^2y'' - 2y = t^22 - 2t^2 = 0$.

Since $p(t) \equiv 0$, $W[y_1, y_2] = C$, a constant.

Therefore, $(y_2/t^2)' = C/t^4$, which implies $y_2/t^2 = -\frac{C}{3}/t^3 + K$ or $y_2 = -\frac{C}{3}\frac{1}{t} + Kt^2$. A second linearly independent solution is $y_2 = 1/t$ and the general solution is $y = c_1t^2 + c_2/t$.

- 10. Consider the system of equations $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$ where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. (10 marks)
 - (a) (4 marks) Find the eigenvalues of A. What are the equilibrium solution(s)? Are they stable? Solution: The characteristic equation is $\lambda^2 + 1 = 0$ and so the eigenvalues of A are $\lambda = \pm i$. Since A is invertible, the only equilibrium solution is $\mathbf{x} = \mathbf{0}$. It is stable, but not asymptotically stable.
 - (b) (4 marks) Find solutions $\mathbf{x}_1(t) = \begin{pmatrix} a_{1,1}(t) \\ a_{2,1}(t) \end{pmatrix}$ and $\mathbf{x}_2(t) = \begin{pmatrix} a_{1,2}(t) \\ a_{2,2}(t) \end{pmatrix}$ with initial conditions $\mathbf{x}_1(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{x}_2(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Solution: An eigenvector for $\lambda = i$ is $\begin{pmatrix} i \\ 1 \end{pmatrix}$ and therefore one complex solution is $e^{it} \begin{pmatrix} i \\ 1 \end{pmatrix} = \begin{pmatrix} i\cos(t) - \sin(t) \\ \cos(t) + i\sin(t) \end{pmatrix}$. The real general solution is thus $\boldsymbol{x}(t) = c_1 \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix} + c_2 \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix}$. So $\boldsymbol{x}_1(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$ and $\boldsymbol{x}_2(t) = \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix}$ have the required initial conditions.

(c) (2 marks) Explain why the solution $\boldsymbol{x}(t)$ with the initial data $\boldsymbol{x}(0) = \boldsymbol{x}_0$ is equal $B(t)\boldsymbol{x}_0$, where $B(t) = \begin{pmatrix} a_{1,1}(t) & a_{1,2}(t) \\ a_{2,1}(t) & a_{2,2}(t) \end{pmatrix}$. (Note that the matrix B(t) is called $\exp(At)$).

Solution: The general solution can be written as

$$\boldsymbol{x}(t) = \begin{pmatrix} a_{1,1}(t) & a_{1,2}(t) \\ a_{2,1}(t) & a_{2,2}(t) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = B(t) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Evaluating at t = 0 gives

$$\boldsymbol{x}(0) = \boldsymbol{x}_0 = B(0) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = I \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

So the general solution is $x(t) = B(t)x_0$

11. Aerial refueling is a dangerous procedure in which the receiver aircraft (10 marks) approaches a tanker aircraft from below. The receiver aircraft has altitude h(t) beginning at $h(0) = h_0$ and no vertical speed h'(0) = 0. The time until 'docking' is T. The altitude h(t) is modelled with the differential equation

 $mh'' = U\left(1 - \frac{t}{T}\right) - \gamma h' - mg.$

(a) (4 marks) Explain the meaning of each term in the differential equation.

Solution: The differential equation is Newton's second law.

mh'' is the inertia term for aircraft mass m.

 $U\left(1-\frac{t}{T}\right)$ is the lift force, which is assumed to decrease linearly from U at t=0 (at the start of the refueling procedure) to zero at t=T (at the time of docking).

 $-\gamma h'$ is the drag from presumably air resistance, which is assumed to be proportional to velocity. -mg is the downward force of gravity.

(b) (6 marks) For a 'soft-landing', h'(T) = 0. In some units, m = 1, $\gamma = 2$, g = 1, and T = 5. Find U so that there is a soft-landing. How far apart were the aircraft initially?

Solution: The homogeneous (complementary) problem $h''_c + 2h'_c = 0$ has the solution $h_c = c_1 + c_2 e^{-2t}$. Try the particular solution $y_p = At^2 + Bt$ noting that the constant solution solves the homogeneous problem.

Substituting gives $h''_{p} + 2h'_{p} = 2A + 2(2At + B) = U - 1 - \frac{U}{T}t$,

Equating coefficients gives $A = -\frac{U}{4T}$ and $B = \frac{1}{2}(U-1) - A = \frac{1}{2}(U-1) + \frac{U}{4T}$.

Applying the initial conditions $h_0 = c_1 + c_2$ and $0 = -2c_2 + B$, so $c_2 = B/2$, $c_1 = h_0 - B/2$.

Applying the condition h'(T) = 0 determines U:

$$0 = h'(5) = -2c_2e^{-2T} + 2AT + B$$

$$= (-2)B/2e^{-10} + 10A + B$$

$$= (1 - e^{-10})B + 10A$$

$$= (1 - e^{-10}) \left[\frac{1}{2}(U - 1) + \frac{U}{20} \right] - \frac{U}{2}$$

Solving gives $U = (10 - 10e^{-10})/(1 - 11e^{-10})$.

The initial separation is

$$h(T) - h_0 = c_1 + c_2 e^{-2.5} + A \cdot 5^2 + B \cdot 5 - h_0 = -B/2 + B/2 e^{-10} + 25A + 5B$$

$$= (9 + e^{-10}) \frac{B}{2} + 25A = \frac{(9 + e^{-10})}{2} \left(\frac{1}{2}(U - 1) + \frac{U}{20}\right) - \frac{5}{4}U$$

$$= \left[\frac{(9 + e^{-10})/4}{1 - e^{-10}} - \frac{5}{4}\right] U = \left[\frac{(9 + e^{-10})/4}{1 - e^{-10}} - \frac{5}{4}\right] \frac{10 - 10e^{-10}}{1 - 11e^{-10}} = \frac{10 + 15e^{-10}}{1 - 11e^{-10}}.$$

Page for scratch wor	k or for clearly-l	abelled overflow fi	rom previous pa	ges

Page for scratch work or	r for clearly-labell	ed overflow from p	previous pages