M - 122 - 2012

프레스 방호장치의 선정·설치 및 사용 기술지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한국산업안전보건공단 윤 상 용

ㅇ 개정자 : 안전연구실

○ 제·개정경과

- 1999년 11월 기계안전분야 기준제정위원회 심의
- 1999년 12월 총괄기준제정위원회 심의
- 2002년 11월 기계안전분야 기준제정위원회 심의
- 2002년 12월 총괄기준제정위원회 심의
- 2012년 4월 기계안전분야 기준제정위원회 심의 (개정)
- ㅇ 관련규격 및 자료
 - EN 692-1996, Mechanical press safety
 - 한국산업안전보건공단, 프레스검사 및 안전기술
- o 관련 법규·규칙·고시 등
 - 산업안전보건 기준에 관한 규칙 제2편 제1장 제3절 제103조(프레스 등 의 위험방지)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6 월 20 일

제 정 자 : 한국산업안전보건공단 이사장

프레스 방호장치의 선정・설치 및 사용 기술지침

1. 목적

이 지침은 산업안전보건기준에관한 규칙(이하 "안전보건규칙"이라 한다) 제2편 제1장 제3절 제103조(프레스 등의 위험방지)의 규정에 따라 방호장치의 선정 및 설치와 사용에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 신규로 설치되거나 사용중인 프레스에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "가드식 방호장치"라 함은 가드의 개폐를 이용한 방호장치로서 기계의 작동을 서로 연동하여 가드가 열려 있는 상태에서는 기계의 위험부분이 가동되지 않고, 또한 기계가 작동하여 위험한 상태로 있을 때에는 가드를 열 수 없게 한 장치를 말한다.
 - (나) "양수조작식 방호장치"라 함은 기계의 조작을 양손으로 동시에 하지 않으면 기계가 가동하지 않으며 한 손이라도 떼어내면 기계가 급정지 또는 급상승하게 하는 장치를 말한다.
 - (다) "광전자식 방호장치"라 함은 광선 검출트립기구를 이용한 방호장치로서 신체의 일부가 광선을 차단하면 기계를 급정지 또는 급상승시켜 안전을 확보하는 장치를 말한다.
 - (라) "손쳐내기식 방호장치"라 함은 기계의 작동에 연동시켜 위험상태로 되기 전에 손을 위험 영역에서 밀어내거나 쳐냄으로써 위험을 배제하는 장치를 말

M - 122 - 2012

한다.

- (마) "수인식 방호장치"라 함은 슬라이드와 작업자 손을 끈으로 연결하여 슬라이드 하강시 작업자 손을 당겨 위험영역에서 빼낼 수 있도록 한 장치를 말한다.
- (바) "안전 1행정 방식"이라 함은 슬라이드가 하강 중에 작업자가 실수를 하여 슬라이드 사이(금형 사이)에 손을 넣게 되어 일어나는 경우의 상해를 방지하는 것을 목적으로 한 것이며, 양수조작식 누름버튼 또는 조작레버로 부터 손을 떼면 슬라이드가 정지하는 방식을 말한다. 작업자가 조작버튼을 누르고 슬라이드가 하사점의 아주 가까운 거리까지의 하강행정에서 조작버튼에서 손을 떼면 슬라이드의 하강은 언제라도 정지하고 그 뒤는 조작버튼을 떼어도 상사점에서 정지하기까지 운전이 된다. 부분회전식 클러치 프레스에 있어서 대부분 적용된다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행 규칙, 안전보건규칙 및 고용노동부 고시에서 정하는 바에 의한다.

4. 방호장치의 종류와 부착요건

- 4.1 프레스 방호장치의 종류
 - (1) 가드식 방호장치
 - (가) 가드방식
 - (나) 게이트 가드방식
 - (2) 양수조작식 방호장치
 - (가) 양수조작식
 - (나) 양수기동식
 - (3) 광전자식 방호장치
 - (가) 투과식

M - 122 - 2012

- (나) 반사식
- (다) 광막식
- (4) 수인식 방호장치
- (5) 손쳐내기식 방호장치
- (6) 기타 방호장치
 - (가) 광전자식 검출기구를 부착한 손쳐내기식 방호장치
 - (나) 양수조작식과 급정지기구가 부착된 방호장치
 - (다) 광전자식과 급정지기구가 부착된 방호장치
 - (라) 정전용량식 방호장치
- (마) 워적외선식 방호장치

4.2 방호장치 부착요건

- (1) 슬라이드 작동 중에 작업자의 신체 일부가 위험한계 내에 들어갈 우려가 있을 경우에는 <표 1> 방호장치 일반적 부착요건에 적합한 장치를 부착하여야 한다.
- (2) 프레스의 종류, 압력능력, 속도, 행정 및 작업방법 등이 방호장치 성능과 부합하여야 한다.

KOSHA GUIDE M - 122 - 2012

<표 1> 방호장치 일반적 부착 요건

특성 종류	사 용 제 한				스키시드이		
	안전1행정	1 행정 1 정지	연속행정	안 전 성	슬라이드의 작동조작	작 업 성	조 정
가드식	사용가능	사용가능	사용가능	우수	양수 및 한손	가능 사이를 방해	조정을
	각종 프레스에 사용가능 (안전거리 확보 필요 없음)			이상행정시 방지 효과 큼	또는 누름 스위치 작동	가드 개폐시 시간이 걸리는 단점이 있음	요하지 않음
양수조작식	사용가능	작동, 정지 스위치 사용	사용불가	양호	양수 조작	., -	조정을
	원칙적으로 급정지 기구를 부착한 프레스에 사용(안전거리 확보 필요)			이상행정시 방지 효과 없음	스위치 작동	양호	요하지 않음
양수기동식	완전회전식클러치 프레스 사용가 사용불가		가능 이상행정시 방지	상무 소작 가능 요리	조정을 요하지		
	안전거리 확보 필요			효과 없음	스위치 작농		않음
	사용가능	사용가능	사용가능		양수 및 한손	우수 양수조작 및	
광전자식 원적외선식	급정지 기구 부착한 프레스에 사용 안전거리 확보 필요			양호 이상행정시 방지 효과 없음	조작 또는 누름 스위치 작동	미동 작업외 안전장치를 무효화 시키지 말 것	조정을 요하지 않음
수인식	사용가능	사용가능	사용가능	11.	A) & 27	가능	작업변경시 수인끈의
	액압 프레스에는 적절하지 못함 고속 또는 저속 프레스에는 적절하지 못함		가능 이상행정시 방지 효과 있음	양수 조작 스위치 작동 (원칙)	손의 운동범위를 구속	길이를 조절할 필요가 있음	
손쳐내기식	사용가능	사용가능	사용가능				작업변경시 손쳐내기봉
	액압 프레스에는 적절하지 못함 고속 또는 저속 프레스에는 적절하지 못함		가능 이상행정시 방지 효과 있음	양수 조작 스위치 작동 (원칙)	가능 시야의 방해 가 있음	의 길이 해 진폭을 조정할 필요가 있음	

KOSHA GUIDE M - 122 - 2012

5. 방호장치의 구조 및 선정 조건

5.1 가드식 방호장치

- (1) 1행정 1정지기구를 갖춘 프레스에 사용한다.
- (2) 가드 높이는 프레스에 부착되는 금형 높이 이상(최소 180㎜)으로 한다.
- (3) 가드 폭은 <표 2>에 따른다.

<표 2> 가드 폭과 금형 폭과의 관계

구 분			크	기(mm)		
가 드 폭	700	600	500	400	300	200
금형최대폭	700	600	450	300	200	100

- (4) 가드 폭이 400mm 이하일 때에는 가드 측면을 방호하는 가드를 부착하여 사용한다.
- (5) 가드의 틈새로 손가락 및 손이 위험한계 내에 들어가지 않도록 <표 3>에 따라 가드 틈새를 정한다.

<표 3> 가드 틈새와 위험한계거리(단위㎜)

가드 틈새	가드에서 위험한계까지의 거리
6	20 미만
8	20 이상 ~ 50 미만
12	50 이상 ~ 100 미만
16	100 이상 ~ 150 미만
25	150 이상 ~ 200 미만
35	200 이상 ~ 300 미만
45	300 이상 ~ 400 미만
50	400 이상 ~ 500 미만

M - 122 - 2012

- (6) 미동(Inching) 행정에서는 가드를 개방할 수 있는 것이 작업성에 좋다.
- (7) 오버런 감지장치가 있는 프레스에서는 상승 행정 완료 전에 가드를 열 수 있는 구조로 할 수 있다.
- (8) 급정지 기구를 구비한 부분회전식 클러치 프레스에서 오버런 감시장치가 없는 것은 슬라이드가 하사점을 지나 상사점에 도달하여 동작이 정지된 후 가드를 개방할 수 있는 구조로 한다.
- (9) 부분회전식 프레스에 급정지 기구가 없는 프레스를 사용하는 경우 슬라이드 상사점 정지를 확인한 후가 아니면 가드를 개방할 수 없는 구조로 한다.

5.2 양수조작식 방호장치

- (1) 1행정 1정지기구를 갖춘 프레스에 사용한다.
- (2) 완전 회전식 클러치 프레스에는 기계적 1행정 1정지기구를 구비하고 있는 양수기동식 방호장치에 한하여 사용한다.
- (3) 안전거리가 확보될 수 있어야 한다.
- (4) 비상정지스위치를 구비한다.
- (5) 2인 이상 공동 작업 시 모든 작업자에게 양수조작식 조작반을 배치한다.
- (6) 누름버튼 등을 양손으로 동시에 조작하지 않으면 슬라이드를 작동시킬 수 없으며 양손에 의한 동시조작은 0.5초 이내에서 작동되는 것으로 한다.
- (7) 슬라이드의 작동 중에 누름버튼으로부터 손을 떼어 위험한계에 들어가기 전에 슬라이드 작동이 정지되어야 한다.
- (8) 1행정마다 누름버튼에서 양손을 떼지 않으면 재기동 작업을 할 수 없는 구조이어야 한다.

M - 122 - 2012

5.3 광전자식 방호장치

5.3.1 일반선정조건

- (1) 급정지기구가 있는 프레스에 한해서 사용한다.
- (2) 안전거리가 확보될 수 있어야 한다.
- (3) 태양광선 기타 강한 광선(반사광선 포함)이 수광기 또는 반사판에 직사할 우려가 있는 프레스에는 사용하지 않는다.
- (4) 행정(Stroke)과 슬라이드 조절량의 합계길이(방호높이)에 따라 선정한다.
- (5) 서서 작업하는 경우에 최상단의 광축 윗쪽으로 작업자의 손이 위험한계 내에 들어가서는 안되며 의자에 앉아서 작업을 하는 경우에는 최하단 광축 아래쪽으로부터 손이 위험한계 내에 들어가지 않는 방호높이로 한다.
- (6) 유효작동거리가 테이블의 폭보다 커야 한다.
- (7) 앞·뒷면에서 작업을 하는 경우의 프레스에는 앞·뒷면에 방호장치를 설치한다.
- (8) 위험한계까지의 거리가 짧은 200mm 이하의 프레스에는 연속차광폭이 작은 30mm 이하의 방호장치를 선택한다.
- (9) 방호장치의 출력은 프레스의 제어회로 전류 및 전압에 대해 여유가 있어야 한다.
- (10) 대형 프레스에서 광축과 테이블 앞면과의 수평거리가 400mm를 넘어서 작업자가 이 사이에 들어갈 수 있는 공간이 있을 때는 테이블에 대해 평행 또는 수평으로 200~300mm 마다 보조광축을 설치한다.
- (11) 슬라이드가 하강 중에 광축을 차단하여 급정지 한 뒤 이어서 통광이 되었을 때 슬라이드가 작동되지 않는 구조이어야 한다.

M - 122 - 2012

5.3.2 광축구성

(1) 투과식

- (가) 가장 많이 사용하는 방식이며 투광기에서 조사되는 광선에 대향하는 수 광기에 직접 조사되며 이 사이를 손 등으로 차단하면 수광기가 이를 감지하여 프레스에 급정지 신호를 보낸다.
- (나) 통상 투광기, 수광기의 양쪽 방향 렌즈 조리개 등의 집광장치를 설치할 수 있으므로 유효작동거리를 반사식 보다 길게 잡을 수 있는 이점이 있다.

(2) 반사식

- (가) 투광기에서 조사된 광선이 일단 반사판으로 조사된 뒤 투광기와 같은 쪽에 있는 수광기로 조사되어 감지된다.
- (나) 반사판은 조밀한 다수의 프리즘에 의한 분관으로 플라스틱 판에 의해서 구성되며 그 광선이 조사되어 같은 방향으로 가기 때문에 투과식에 비해 광축의 조절이 용이하다.
- (다) 반사판 부근에 광선이 확산되기 쉽기 때문에 유효작동거리가 투과식에 비해 짧은 것이 단점이다.

(3) 광막식

- (가) 현재 사용되고 있는 반사식의 일종이지만 단일광선을 사용하며 반투명 거울, 회전거울 및 방물면 거울에 의해서 구성된 광학계의 작용에 의해 1개의 수광기에 집광하여 감지를 한다.
- (나) 이 장치는 광선이 연속 이동하여 광막을 형성하므로 광축 간격이 없다.
- (다) 1회의 광막 형성은 5~10ms를 요하므로 앞의 광선이 조사된 뒤 다음 광선이 조사되기까지의 사이는 차광효과가 없다.
- (라) 1개의 광원에 의해서 방호할 수 있는 범위가 크며 다른 반사식 장치에 비해 광선의 너비가 작다.

KOSHA GUIDE M - 122 - 2012

5.4 수인식 방호장치

- (1) 완전회전식 클러치 프레스에 적합하다.
- (2) 가공재를 손으로 이동하는 거리가 너무 클 때에는 작업에 불편하므로 사용하지 않는다.
- (3) 슬라이드 행정길이가 50㎜ 이상 프레스에 사용한다.
- (4) 슬라이드 행정수가 100spm 이하 프레스에 사용한다.
- (5) 손의 끌어당김 양 조절이 용이하고 조절 후 확실하게 고정할 수 있어야 한다.
- (6) 손의 끌어당김 양을 120mm 이하로 조절할 수 없도록 한다.
- (7) 손목밴드는 손에 착용하기 용이하고 땀이나 기름에 상하지 않는 것이어야한다.
- (8) 수인끈의 연결구는 가볍고 견고하여야 한다.
- (9) 수인끈의 끌어당기는 양은 테이블 세로 길이의 1/2 이상이어야 한다.
- (10) 프레스 압력능력별 수인끈의 조절 양과 범위는 <표 4>에 따른다.

<표 4> 프레스 압력능력별 끈의 수인 양과 범위

압력능력(ton)	행정길이 (mm)	행정수 (spm)	수인 양 (mm)	프레스의 테이블 세로길이(mm)	참 고 사 항
4~12	40~80(b)	120이하(a)	120~230	150~400	
12~25	40~150(c)	120이하(a)	160~350	300~450	(a) 100spm이하 사용
25~50	50~180	100이하	200~400	350~500	이 바람직함. (b)(c) 50mm이상 사용
50~80	70~220	100이하	240~450	450~650	이 바람직함.
80~100	80~300	80이하	300~500	550~800	

5.5 손쳐내기식 방호장치

- (1) 완전회전식 클러치 프레스에 적합하다.
- (2) 1행정 1정지기구를 갖춘 프레스에 사용한다.
- (3) 슬라이드 행정이 40㎜ 이상의 프레스에 사용한다.
- (4) 슬라이드 행정수가 100spm 이하 프레스에 사용한다.
- (5) 금형 폭이 500㎜ 이상인 프레스에는 사용하지 않는다.
- (6) 방호판의 폭이 금형 폭의 1/2(최소폭 120mm) 이상이어야 하고 높이는 행정길이 이상이어야 한다.

M - 122 - 2012

- (7) 슬라이드 조절 양이 많은 것에는 손쳐내기 봉의 길이 및 진폭의 조절범위가 큰 것을 선정한다.
- (8) 쳐내는 방향이 우측, 좌측으로 변환이 용이하고 작업성에 맞아야 한다.
- (9) 손이 접촉되는 손쳐내기 봉에 완충조치를 한다.
- (10) 프레스 압력능력별 손쳐내기 봉의 길이와 범위는 <표 5>에 따른다.

<표 5> 프레스 압력능력별 봉의 길이와 범위

압력능력	행정길이	행정수	봉의 길이	사용금형	프레스	비고	
(ton)	(mm)	(spm)	(mm)	크기(mm)	테이블의 폭(mm)	n 14	
4~12	40~80	120이하(a)	200~300	200이하	200~500		
12~25	$40 \sim 150$	120이하(a)	250~400	300이하	400~750	(a) 100spm	
25~50	50~180	$50 \sim 120(a)$	350~600	400이하	600~900	이하 적당	
50~80	70~220	40~90	$500 \sim 750$	500이하	800~1100	(b) 500mm	
80~100	80~300	40~70	600~850	600이하(b)	900~1200	이하 적당	
100~120	150~300	30~50	650~900	700이하(b)	950~1300		
※ 손쳐내기 봉과 금형 사이에 손이 협착되는 일이 없도록 조정하여야 한다.							

5.6 기타 방호장치

5.6.1 광전자식 검출기구를 부착한 손쳐내기식 방호장치

- (1) 1행정 1정지기구를 갖추었으나 급정지기구를 구비하지 않은 프레스에 적합하다.
- (2) 위험한계에서 광축까지의 거리는 광선을 차단직후 손이 위험한계 내에 도달하기 전에 손쳐내기봉 기구로 손을 쳐낼 수 있도록 안전거리를 확보할 수

M - 122 - 2012

있어야 한다.

5.6.2 양수조작식과 급정지기구가 부착된 방호장치

- (1) 1행정 1정지기구를 갖춘 프레스에 사용한다.
- (2) 누름버튼에서 손을 떼 위험한계에 도달하기 전에 슬라이드가 정지하는 데 필요한 안전거리를 확보하여야 한다.
- (3) 행정수가 60spm 이하와 압력능력 150ton 이하이면서 완전회전식 클러치가 부착된 프레스에 사용한다.
- (4) 급정지 조작을 유효하게 할 수 있는 크랭크 각도의 범위가 일반적으로 한정되어 있다.

5.6.3 광전자식과 급정지기구가 부착된 방호장치

- (1) 완전회전식 클러치가 부착된 프레스에 일정한 크랭크 각도 이내에서 광선을 차단하였을 때 슬라이드를 급정지시킬 수 있는 기능을 구비한다.
- (2) 위험한계에서 광축까지 거리는 광선을 차단 후 손이 위험한계에 도달하기 전에 슬라이드가 정지하는 데 필요한 거리를 확보하여야 한다.

5.6.4 정전용량식 방호장치

- (1) 위험한계 외부에 구성된 감지한계 내에 신체 일부가 들어갔을 때 이를 감지하여 프레스에 급정지 신호를 보내어 프레스를 정지시킨다.
- (2) 설치프레스에는 작업에 적합한 안테나를 구비한 것이어야 한다.
- (3) 급정지 기구를 부착한 프레스에 사용한다.
- (4) 위험한계에서 안테나까지의 거리는 감지한계 내에 들어옴에 따라서 감지된

M - 122 - 2012

것이 위험한계에 도달하기 전에 슬라이드가 정지하는 데에 필요한 거리를 확보할 수 있어야 한다.

5.6.5 원적외선식 방호장치

- (1) 급정지 기구가 있는 프레스에 한하여 사용한다.
- (2) 안전거리가 확보될 수 있어야 한다.
- (3) 유효작동거리가 방호지역 보다 커야 한다.
- (4) 앞·뒷면에서 작업을 하는 경우의 프레스에는 앞·뒷면에 방호장치를 설치하여야 한다.

6. 방호장치의 설치조건

6.1 공통 준수사항

- (1) 방호장치의 기능을 발휘할 수 있도록 하여야 한다.
- (2) 사용자는 설치공사 시 취급설명서의 제한사항, 준수사항 등을 확인하고 취급설명서와 같이 운전시험을 하여야 한다.
- (3) 사용자는 설치한 방호장치의 작동시험 후 정상이 아닌 때에는 작업자에게 프레스 사용을 금지시킨다.
- (4) 양수조작식 방호장치 또는 광전자식 방호장치를 부착할 때 안전거리를 확보한다.

6.2 안전거리

M - 122 - 2012

안전거리는 다음 식에 의한다.

$$D \geq 1.6 (T\ell + T_S) \cdots (1)$$

$$D \ge 1.6 \text{ Tm} \cdots (2)$$

- 여기서 (1) 식은 급정지기구가 있는 안전 1행정 프레스에 사용되는 양수조작식 및 광전자식 방호장치의 적용 식이다.
 - (2) 식은 완전회전식 클러치 기구가 있는 프레스의 양수기동식 방호장치의 적용 식이다.

D : 안전거리(mm) 지동시간

- ② 손이 광선을 차단한 순간부터 급정지 기구가 작동 개시 하기까지 시간(ms).
- Ts : 급정지 기구가 작동을 개시 할 때부터 슬라이드가 정지할 때까지의 시간

Tℓ + Ts는 최대정지시간

Tm: 누름버튼을 누른 때부터 사용하는 프레스의 슬라이드가 하사점에 도달할 때까지의 소요 최대시간(ms)이며 다음 식에 의하여 산출된다.

$$T_{\rm m} = \left(\frac{1}{2} + \frac{1}{N}\right) \times \frac{60,000}{\text{spm}}$$

여기서 N: 확동클러치의 봉합개소의 수

s.p.m : 분당 행정수

6.3 최대 정지시간 측정

M - 122 - 2012

- (1) 급정지시간(Ts)은 최근 프레스에는 제작사에서 측정치가 표시되어 있으므로 그 값을 사용하면 된다.
- (2) 기존 설치된 프레스에 Ts가 없는 경우 사용자가 측정하여야 한다.
- (3) Ts 측정은 디지탈식의 정지성능측정기가 있으며 전자 그래프로 판독되는 구조이다. 측정할 때는 프레스를 사용상태로 정비하고 각 회전축, 작동부, 클러치, 브레이크 작동유 등을 상온상태로 유지하여 운전 후 20~30회 급정지하여 측정해야 한다.
- (4) 광전자식 방호장치 및 양수조작식 방호장치의 지동시간 $(T\ell)$ 에 대해서는 방호장치 제작사의 표시값을 사용한다.

6.4 안전거리의 적용

- (1) 안전거리가 적용되는 프레스 경우에는 프레스의 정지성능을 고려하여야 한다.
- (2) 안전거리는 제6.2항 (1)식과 (2)식을 적용하여 산출하며 10%정도 여유를 둔다.
- (3) 누름버튼 또는 광축 위치는 누름버튼에서 떨어지거나 광축을 차단한 손이 위험한계에 이동할 때 최단 이동거리가 여유를 둔 안전거리에 상당하도록 위험한계로부터 떨어져서 정한다.

6.5 가드식 방호장치의 설치

- (1) 가드의 봉과 봉 사이가 간격이 있도록 제작되는 경우가 있을 때 그 사이로 손가락 등을 집어넣어 손가락 끝이 위험한계에 도달하지 않도록 한다.
- (2) 거리가 짧은 경우 가드에는 투명 아크릴판 등을 부착하여 손이나 손가락이 들어가지 않도록 한다.
- (3) 가드 폭이 좁아 측면에서 손을 위험한계 내에 집어넣을 수 있을 때는 측면 가드를 부착하거나 금형 측면가드를 부착한다.
- (4) 가드 높이가 부족하여 상방향에서 위험한계에 손을 집어넣을 수 있는 경우

M - 122 - 2012

윗쪽에 고정가드를 부착한다.

- (5) 가드는 고정된 물체와의 사이에 손 또는 손가락이 협착되지 않도록 부착한다.
- (6) 가드를 테이블 바로 앞에 부착하는 경우 가드의 아래쪽에서 금형에 쉽게 손이 들어가지 못하도록 부착한다.
- (7) 가드 하단(하강식)과 테이블과의 간격은 6mm 이하가 되도록 한다.
- (8) 가드의 조작용 스위치는 양수기동식이 바람직하다.
- (9) 급정지기구 및 오버런 감시장치를 구비한 프레스나 유압프레스를 제외하고 슬라이드 상승 시 가드를 개방하는 조치를 하면 안된다.
- (10) 가드의 분리될 수 있는 부분은 공구를 이용하여야만 분리될 수 있어야 한다.

6.6 양수조작식 방호장치의 설치

- (1) 양수조작식 방호장치는 안전거리를 확보하여 설치하여야 한다.
- (2) 누름버튼의 상호 간 내측거리는 300㎜ 이상으로 한다.
- (3) 누름버튼 윗면이 버튼케이스 또는 보호링의 상면보다 2~5mm 낮은 매립형으로 한다.
- (4) 부착위치는 테이블 바로 앞쪽의 테이블 상면보다 조금 낮은 위치에 부착하는 것이 좋으며 작업에 장해 요소가 없도록 한다.
- (5) 테이블 상면보다 낮은 적당한 위치에 부착하지 못할 경우에는 기계 본체의 상부에 부착할 수 있다.
- (6) 광전자식 방호장치를 병용할 경우 광축 부착위치가 누름버튼과 작업자와 가까이 있으면 일반적으로 작업성이 나쁘게 되므로 부착 시에 해당 광축 위치를 고려해야 한다.

M - 122 - 2012

6.7 광전자식 방호장치의 설치

- (1) 광전자식 방호장치는 안전거리를 확보하여 설치하여야 한다.
- (2) 투광기와 수광기 또는 반사판이 정확하게 마주보도록 부착 고정한다.
- (3) 수광기 및 반사판에 태양광선 또는 스포트라이트 등 강한 빛이 직사하지 않도록 외광을 차단한다.
- (4) 부착위치는 테이블 외측이나 사이드 프레임 등이 좋다.
- (5) 설치 후 차광봉을 수광기(반사판) 가까이에서 상하로 이동하면서 올바르게 반응하는가를 확인한다.
- (6) 테이블 측면방향에서 작업을 할 때 손이 위험한계 내에 들어갈 우려가 있을 경우에는 측방에 고정가드를 설치한다.

6.8 수인식 방호장치의 설치

- (1) 평형레버 등은 작동 시 당기는 끈 등에 의해서 비틀어지는 일이 없도록 한다.
- (2) 기계본체에 설치 사용하는 볼트 등이 풀어지는 일이 없도록 한다.
- (3) 와이어로프 등이 기계에 접촉하여 마모되는 일이 없도록 한다.
- (4) 수인량은 안전작업을 고려하여 조절한다.
- (가) 테이블 안쪽길이의 1/2 이상으로 한다.
- (나) 소형 프레스는 120mm 이하에서는 조절하지 않도록 한다.
- (다) 수인량은 수인효과가 없어질 정도의 길이로 조정해서는 안된다.
- (라) 조절 후는 각 조절부를 확실하게 고정한다.

6.9 손쳐내기식 방호장치의 설치

M - 122 - 2012

- (1) 손쳐내기 봉의 중심은 진폭이 우측 또는 좌측으로 편향되지 않도록 하고 테이블 중심위치에 두도록 한다.
- (2) 손쳐내기 봉의 설치 위치는 가능하면 테이블의 앞쪽이 되도록 한다.
- (3) 방호판이 금형에 접촉하지 않도록 한다.
- (4) 손쳐내기 봉을 유효하게 작동시키기 위하여 다음과 같이 조절 설치한다.
- (가) 진폭은 금형 폭 이상으로 한다.
- (나) 방호판 부착 위치는 금형의 위험부분을 확실하게 방호하도록 조절한다.
- (다) 조절 후는 각 조절부분을 확실하게 고정한다.
- (5) 테이블 측면방향에서 작업을 할 때 손이 위험한계 내에 들어갈 우려가 있을 경우에는 측방에 고정가드를 설치한다.
- 6.10 기타 방호장치의 설치
- 6.10.1 광전자식 검출기구를 부착한 손쳐내기식 방호장치
 - (1) 안전거리가 확보되는 위치에 설치한다.
 - (2) 손쳐내기식 방호장치는 6.8(손쳐내기식 방호장치의 설치)을 준용한다.
- 6.10.2 양수조작식과 급정지기구가 부착된 방호장치
 - (1) 안전거리가 확보되는 위치에 설치한다.
 - (2) 양수조작식 방호장치는 6.6(양수조작식 방호장치의 설치)을 준용한다.
- 6.10.3 광전자식과 급정지기구가 부착된 방호장치
 - (1) 안전거리가 확보되는 위치에 설치한다.

M - 122 - 2012

(2) 광전자식 방호장치는 6.7(광전자식 방호장치의 설치)의 내용을 준용한다.

6.10.4 정전용량식 방호장치

- (1) 안전거리가 확보되는 위치에 설치한다.
- (2) 프레스의 진동 등으로 감지되는 방호구역이 변경되지 않도록 견고하게 부착한다.
- (3) 설치 후 올바르게 반응하는가를 확인한다.

6.10.5 원적외선식 방호장치

- (1) 안전거리가 확보되는 위치에 설치한다.
- (2) 프레스의 진동 등으로 감지되는 방호구역이 변경되지 않도록 견고하게 부착한다.
- (3) 설치 후 올바르게 반응하는가를 확인한다.

7. 방호장치 사용 관리사항

7.1 공통사항

- (1) 새로운 방호장치를 기계에 부착하였을 때는 운전시험을 10회 반복하여 실시한다.
- (2) 방호장치의 수리, 부품 교환 또는 조정하였을 때도 운전시험 10회 이상 반복하여 실시한다.
- (3) 프레스 작업 시작 전, 휴식 후, 교환 또는 행정의 전환 후에 방호장치가 정상 작동하는가를 확인운전 한다.
- (4) 방호장치의 기능을 저해할 우려가 있는 프레스기의 조정, 사용은 해서는 안된다.

M - 122 - 2012

7.2 가드식 방호장치

- (1) 가드의 닫힘에 방해가 되는 가공재료, 스크랩, 공구 등을 프레스 테이블 위에 두지 않는다.
- (2) 가드의 측방, 상방 및 하방에 손을 집어넣지 않는다.
- (3) 가드를 개방시켜 놓고 미동작업을 한 뒤 가공작업을 시작할 때에는 반드시 가드의 유효위치에 슬라이드를 전환시켜야 하며, 특히 미동행정에 스위치를 전환한 채 가공작업을 하지 않는다.

7.3 양수조작식 방호장치

- (1) 누름버튼 보호링 상면과 버튼과의 깊이가 2mm 이상인가를 확인한다.
- (2) 누름버튼의 보호링 간의 거리를 작업자가 조정하지 않아야 한다.
- (3) 누름버튼의 내부에 금속 스크랩 및 분진 등이 침입할 우려가 있는 장소에는 고무캡이 있는 버튼를 사용한다.
- (4) 안전 1행정에 2인 이상이 공동작업을 할 때에는 전원이 동시에 양수 버튼을 조작하여 작업한다.
- (5) 안전 1행정 작업 이외에는 광전자식 또는 가드식 방호장치가 사용되도록 전환용 스위치를 전환하여야 하며, 특히 미동행정에 스위치를 전환한 채 가공작업을 하지 않는다.

7.4 광전자식 방호장치

- (1) 수광기 또는 반사판에 직사광(태양빛)이 닿지 않도록 하고 또한 국부조명 등을 근접시키지 않는다.
- (2) 미동행정에 스위치를 전환하여 가공작업을 하지 않는다.
- (3) 방호장치 무효화 위치로 스위치를 전환시키지 않아야 하며, 양수 조작에

M - 122 - 2012

의한 안전 1행정 또는 미동행정 이외의 작업은 하지 않는다.

7.5 수인식 방호장치

- (1) 작업시작 전에 손목밴드 또는 수인끈의 절단 및 손상 유무를 확인한다.
- (2) 손목밴드를 올바르게 착용한다.
- (3) 수인끈의 길이는 금형 중앙부까지 손가락이 닿는 길이로 조절한다.
- (4) 프레스의 행정수가 100spm 이하인 것을 확인한다.

7.6 손쳐내기식 방호장치

- (1) 진폭이 불충분하거나 한쪽으로 치우친 상태에서 사용하지 않는다.
- (2) 위험 한계 내에 있는 손을 손쳐내기 봉으로 확실하게 쳐내도록 봉의 길이가 조절되어 있는가를 확인한다.
- (3) 프레스의 행정수가 20~100spm 범위에 있는가를 확인한다.

7.7 기타 방호장치

- 7.7.1 광전자식 검출기구를 부착한 손쳐내기식 방호장치
 - (1) 7.6(손쳐내기식 방호장치)항을 준용한다.
- 7.7.2 양수조작식과 급정지기구가 부착된 방호장치
 - (1) 7.3(양수조작식 방호장치)항을 준용한다.

KOSHA GUIDE M - 122 - 2012

7.7.3 광전자식과 급정지기구가 부착된 방호장치

(1) 7.4(광전자식 방호장치)항을 준용한다.

7.7.4 정전용량식 방호장치

- (1) 안테나 부착시 위치를 변경하지 않는다.
- (2) 임의로 방호장치의 감도를 조정하지 않는다.
- (3) 안테나 부근의 감지전계에 영향을 미칠 우려가 있는 가공물이나 공구 등을 방치하지 않는다.
- (4) 취급설명서에 기록된 온도범위 외에는 사용하지 않는다.

7.7.5 원적외선식 방호장치

- (1) 가공재료가 변경되는 경우, 새로운 재료가 원적외선을 다량 방출하는 지를 점검한다.
- (2) 프레스 주변에 원적외선을 다량 방출하는 물질을 두어서는 아니 된다.