NUST SEECS

Multivariable Calculus

Assignment 3 Individual Assignment
BSCS-AB Summer 2024
Due Date: 16th August 2024 Friday (Before 4pm) Marks: 60

[CLO - 3]Evaluate Fourier series, Fourier integral and Fourier-transforms of a given function.

Note: Hard copy submission is compulsory at 2pm to 4pm in CR-02

Suppose that f(x) be any periodic function with period 2π , which can be represented in the form $f(x) = a_0 + a_1 cos x + b_1 sin x + a_2 cos 2x + b_2 sin 2x + ... + a_n cos n x + b_n sin n x + ...$ This representation is called Fourier series of f(x). The coefficients a_0 , a_n and b_n are known as Fourier coefficients and can be obtain by the formulas given in the following definition.

Question: Find the Fourier series of the following function. Also check whether the following

function are even or odd.

(i)
$$f(x) = x$$
, $-2 < x < 2$

(ii)
$$f(x) = \begin{cases} -1 & -\pi < x < 0 \\ 1 & 0 \le x < \pi \end{cases}$$

(iii)
$$f(x) = x^2$$
, $0 < x < \pi$

(iv)
$$f(x) = x|\sin x|, -\pi < x < \pi$$

DEFINITION 11.2.1 Fourier Series

The Fourier series of a function f defined on the interval (-p, p) is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{p} x + b_n \sin \frac{n\pi}{p} x \right), \tag{8}$$

where
$$a_0 = \frac{1}{p} \int_{-p}^{p} f(x) dx \tag{9}$$

$$a_n = \frac{1}{p} \int_{-p}^{p} f(x) \cos \frac{n\pi}{p} x \, dx$$
 (10)

$$b_n = \frac{1}{p} \int_{-p}^{p} f(x) \sin \frac{n\pi}{p} x \, dx. \tag{11}$$

Note: For more details on the topic you can consult the following:

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, 3rd edition, Chapter 9.
- 2. Differential Equations with Boundary Value problems by D G Zill, 7th edition, Chapter 11.