Semantic Theory 2025: Exercise 6 Key

Question 1

A model structure for plural terms is a tuple $M = ((U_M, \leq), V_M)$, where (U_M, \leq) is an atomic join semi-lattice with universe U_M and individual part relation \leq , and V_M is an interpretation function mapping elements of the logical language to elements of the universe.

Consider the model M_1 , where the universe U_{M_1} is generated by the following set of atoms: $\{a, b, j, m, s\}$.

a. Assume that $[\![John, Mary, and Bill sing]\!]^{M_1} = 1$, $[\![Albert sings]\!]^{M_1} = 1$, and $[\![X sing(s)]\!]^{M_1} = 0$ for all other individuals (and proper sums) X for the predicate $sing \in P_d$. Then:

```
V_{M_1}(sing) =  the join semi-lattice generated by \{j, m, b, a\}
= \{j, m, b, a, j \sqcup m, j \sqcup b, j \sqcup a, m \sqcup b, m \sqcup a, b \sqcup a, j \sqcup m \sqcup b, j \sqcup m \sqcup a, j \sqcup b \sqcup a, m \sqcup b \sqcup a, j \sqcup m \sqcup b \sqcup a\}
```

b. Assume that $[\![John\ and\ Mary\ meet]\!]^{M_1}=1$, $[\![Albert\ and\ Sally\ meet]\!]^{M_1}=1$, $[\![Bill\ and\ Mary\ meet]\!]^{M_1}=1$, and $[\![X\ meet]\!]^{M_1}=0$ for all other individuals (and proper sums) X for the predicate $meet\in P_c$. Then:

```
V_{M_1}(meet) = \{j \sqcup m, a \sqcup s, b \sqcup m\}
```

Question 2

Consider the following sentence: S = "two students summarized three papers"

a. How many readings does the sentence S have? List all possible readings in natural language.

Let:

 D_s = the distributive reading of "two students"

 C_s = the collective reading of "two students"

 D_p = the distributive reading of "three papers"

 C_p = the collective reading of "three papers"

We have the following readings:

- i. $C_s > C_p$: two students together wrote one summary that summarizes all three papers
- ii. $C_s > D_p$: two students together wrote one summary for each of the three papers
- iii. $D_s > C_p$: two students each wrote one summary that summarizes all three papers (not necessarily the same three for both students)
- iv. $D_s > D_p$: two students each wrote one summary for each of the three papers (not necessarily the same three for both students)
- v. $C_p > C_s$: same as (i)
- vi. $C_p > D_s$: two students each wrote one summary that summarizes all three papers (the same three for both students)
- vii. $D_p > C_s$: for each of the three papers, there was a group of two students that summarized that paper together
- viii. $D_p > D_s$: for each of the three papers, there were two students who individually summarized that paper
- b. Translate each reading of S to the extended first-order logic for plural terms introduced in the lecture, which extends first-order logic with a \oplus operator, a \triangleleft operator, and variables X, Y, Z, \ldots ranging over proper sums: $X \oplus Y$ denotes the group consisting of X and Y, \triangleleft denotes the part-of-relation.

You may (and should) also incorporate the function $N(X) = |\{y \mid At(y) \land y \lhd X\}|$ that takes a proper sum X and returns the number of atoms in X.

```
i. (C_s > C_p):

\exists X \exists Y [student_{PL}(X) \land N(X) = 2 \land paper_{PL}(Y) \land N(Y) = 3 \land summarize(X, Y)]
```

- ii. $(C_s > D_p)$: $\exists X \exists Y [student_{PL}(X) \land N(X) = 2 \land paper_{PL}(Y) \land N(Y) = 3 \land \forall w [(At(w) \land w \triangleleft Y) \rightarrow summarize(X, w)]]$
- iii. $(D_s > C_p)$: $\exists X[student_{PL}(X) \land N(X) = 2 \land \forall z[(At(z) \land z \triangleleft X) \rightarrow \exists Y[paper_{PL}(Y) \land N(Y) = 3 \land summarize(z, Y)]]]$
- iv. $(D_s > D_p)$: $\exists \mathbf{X}[student_{PL}(\mathbf{X}) \land N(\mathbf{X}) = 2 \land \forall z[(At(z) \land z \lhd \mathbf{X}) \rightarrow \exists \mathbf{Y}[paper_{PL}(\mathbf{Y}) \land N(\mathbf{Y}) = 3 \land \forall w[(At(w) \land w \lhd \mathbf{Y}) \rightarrow summarize(z, w)]]]]$
- v. $(C_p > C_s)$: same as (i)
- vi. $(C_p > D_s)$: $\exists Y[paper_{PL}(Y) \land N(Y) = 3 \land \exists X[student_{PL}(X) \land N(X) = 2 \land \forall z[(At(z) \land z \triangleleft X) \rightarrow summarize(z, Y)]]]$
- vii. $(D_p > C_s)$: $\exists Y[paper_{PL}(Y) \land N(Y) = 3 \land \forall w[(At(w) \land w \triangleleft Y) \rightarrow \exists X[student_{PL}(X) \land N(X) = 2 \land summarize(X, w)]]]$
- viii. $(D_p > D_s)$: $\exists Y[paper_{PL}(Y) \land N(Y) = 3 \land \forall w[(At(w) \land w \lhd Y) \rightarrow \exists X[student_{PL}(X) \land N(X) = 2 \land \forall z[(At(z) \land z \lhd X) \rightarrow summarize(z, w)]]]]$