Bayesian Hierarchical MPT Modeling Theory

Daniel W. Heck

25.02.2020

Bayesian Hierarchical MPT Modeling

- MPT models & heterogeneity
- 2) Hierarchical MPT models
- Bayesian estimation with MCMC sampling
- 4) Advantages of MCMC

MPT models & heterogeneity

Standard MPT models

Standard MPT models assume that ...

- ... people behave identically
- ... items are similarly difficult
- Technical assumption
 - Fixed-effects model: Observations are "independent and identically" (i.i.d.) distributed
 - The likelihood of all observations $i=1,\ldots,n$ is the product of the likelihood of a single observation x_i

$$p(x_1,\ldots,x_n\mid\theta)=\prod_{i=1}^n p(x_i\mid\theta)$$

What about real data?

Source-Monitoring Model

Source-Monitoring

- Study phase: List of words from Source A and B.
- Test phase: Is the presented item from Source A/B/New?

People Behave Differently

Distribution of individual response frequencies (Arnold et al., 2013)

- Study phase: Words from Source E (= expected) and U (= unexpected)
- Test phase: Is the presented item from Source E/U/New?

- Substantial variance in the choice patterns of participants
 - Differences in memory? Response bias?
- If we fit a standard MPT model to the aggregated data, these differences are ignored (treated as random, unsystematic noise)

People Behave Differently

Heterogeneity of participants

- Response frequencies are often aggregated across subjects
 - Dependent variable: Summed individual frequencies
- However, responses are likely not i.i.d.
 - Assumption can be tested statistically (Smith & Batchelder, 2008)
- Heterogeneity may result in biased statistical inference
 - Biased point estimates if parameter are correlated
 - Over-/underestimation of confidence intervals
 - Inflated model-fit statistics

How to Handle Heterogeneity?

- **Complete pooling**: Analysis of aggregated frequencies
 - Ignores differences between persons
 - High power, but possibly biased statistical inference
- **No pooling**: A separate MPT model per person
 - Low power, parameter estimates will have a large variance
 - Often, not enough data per participant
 - Problem: How to aggregate results across models?
- **E Partial pooling**: Hierarchical model
 - Account for differences AND similarities between persons jointly
 - Higher efficiency than separate analysis
 - Individual and group-level parameters inform each other

Note: This classification is very general and not limited to MPT models.

Hierarchical MPT models

Hierarchical MPT Models

Bayesian hierarchical MPT

(Klauer, 2010; Smith & Batchelder, 2010)

- Explicit model for participant heterogeneity
- Assumption: MPT structure holds for each person, but with different parameters!
- One parameter vector $\theta_i = (D_i, d_i, g_i, \dots)$ per person
- lacksquare On the group level, the $heta_i$ have a specific distribution
 - Beta-MPT: Beta distribution
 - Latent-trait MPT: multivariate normal distribution for the probit-transformed parameters

Group Level Parameters θ_i Individual Parameters k_i Individual Frequencies n_i Observations

per person

Beta distribution

- Ideally suited to model the distribution of an MPT parameter:
 - Allows values between 0 and 1
 - Two shape parameters: α and β
- lacksquare On the group level, the mean for the MPT parameter equals: lpha/(lpha+eta)

Beta-MPT

Beta-MPT (Smith & Batchelder, 2010)

Parameters:

- Level-1: MPT parameters θ_{si} of person i
- Level-2: Shape parameters α_s and β_s of beta distributions

Data:

- k_i: Individual choice frequencies
- \blacksquare n_i : Number of responses per person

Priors:

- lacksquare Uniform or gamma on $lpha_s$ and eta_s
- Truncation to $\alpha_s \ge 1$ and $\beta_s \ge 1$: Unimodal group-level distribution

Latent-Trait MPT

Latent-trait MPT (Klauer, 2010)

Parameters:

- Level-1: Person parameters are probit-transformed
 - $\theta_{si} = \Phi(\theta'_{si})$
 - $\Phi = \text{cumulative density function}$ of the standard normal
- Level-2: Probit-transformed parameters have a multivariate normal distribution
 - Mean μ and covariance matrix Σ (on probit scale)

Prior distributions:

- lacksquare Standard normal distributions for μ
- lacksquare Scaled inverse-Wishart prior for Σ

The Probit-Transformation

Transformation of MPT parameters

- We need to transform the probability parameters (d, g, \dots)
- \blacksquare We want parameters between $(-\infty, +\infty)$ (to work with normal distributions)
- Solution: Transform parameters using the cumulative density function Φ of the standard-normal distribution (similar as in logistic regression)

Illustration: Separate MPT Structure for each Person

Example: 2HTM for two persons

- Probit scores for memory parameter d are: -.10 and 1.20
- What is the predicted probability of correct OLD responses (hits)?
- We assume symmetric and identical guessing for everybody (g = .50)
- Person 1:
 - Transform: $d = \Phi(-.10) = .46$
 - MPT: P(hit) = d + (1 d)g = .46 + (1 .46).50 = .73
- Person 1:
 - **1)** Transform: $d = \Phi(1.20) = .88$
 - **MPT**: P(hit) = d + (1-d)g = .88 + (1-.88).50 = .94

Group Level: Normal Distribution

Assumption: Normal distribution of probit parameters

- Illustration: Normal distribution with mean $\mu_d = .80$ and standard deviation $\sigma_d = .3$
- For interpretation, it matters whether parameters are on the probit or the probability scale

Person 1:

below

group

0.4

average

Group-Level Distribution (latent probit) Group-Level Distribution (probability) 0.8 9.0 Density Density Person 1: Person 2 below above 0.4 group group average average 0.2 0.0 0.0 0.0 0.2 Parameter d (on latent probit-scale) Parameter d (on probability)

1.0

Person 2

above

group

0.6

average

0.8

Comparison of Groups

Parameter correlations

- Item and source memory might be correlated (parameters q and d)
- "The more likely I remember the item, the more likely I also remember the source"
- Solution: Assumption that the vector θ'_i with probit-transformed MPT parameters follows a multivariate normal distribution
- Caveat: Correlation estimates are often very unprecise and require both large number of responses and large number of participants

Summary: Hierarchical Models

Core ideas of hierarchical models

- Assume an MPT model with separate MPT parameters θ_i per person
- On the group-level, the parameters have a specific distribution
 - Beta-MPT: Beta distribution
 - Latent-trait MPT: multivariate normal distribution of probit-parameters with mean μ and covariance matrix Σ
 - Other option (not discussed here):
 Discrete latent classes (Klauer, 2006)

Excursion: Graphical Models

Bayesian graphical models

- In publications, graphical models look more difficult
- Example: Matzke et al. (2015)
- However, most models use exactly the same ingredients


```
S_{part} \sim Scaled - Inverse - Wishart(W, df = P + 1, \xi_{part})
\xi_{part_n} \sim \text{Uniform}(0, 100)
\mu_n \sim \text{Normal}(0, 1)
\theta_i^{prt} \sim \text{Multivariate} - \text{Normal}\left((\mu_1, \dots, \mu_P), \mathbf{S}_{part}^{-1}\right)
\theta_{ip} = \phi \left(\theta_{in}^{prt}\right)
Pr(C_{11})_i = \theta_{i1} \times \theta_{i2}
Pr(C_{12})_i = (1 - \theta_{i1}) \times \theta_{i3}^2
Pr(C_{13})_i = (1 - \theta_{i1}) \times 2 \times \theta_{i3} \times (1 - \theta_{i3})
Pr(C_{14})_i = \theta_{i1} \times (1 - \theta_{i2}) + (1 - \theta_{i1}) \times (1 - \theta_{i3})^2
Pr(C_{21})_i = \theta_{i3}
Pr(C_{22})_i = (1 - \theta_{i3})
\mathbf{n}_{i1} \sim \text{Multinomial} (Pr(C_1)_i, J_1)
\mathbf{n}_{i2} \sim \text{Multinomial} (Pr(C_2)_i, J_2)
```

Some Advantages

Benefits of hierarchical MPT models

- Avoid aggregation biases
- "Shrinkage" of parameter estimates
 - Parameter estimates for each person are closer together compared to fitting each person separately
 - Hence, extreme estimates are less likely
 - Overall, this ensures that parameter estimates are closer to the true values on average

1

25

- The basic idea of hierarchical models can easily applied to any other model
 - Assume that model holds for each person
 - 2) Specificy group-level distribution of parameters across persons

Effect of Shrinkage

Individuals

35

Independent estimates
Shrinkage estimates

Group mean

30

Bayesian estimation with MCMC

Fitting Hierarchical MPT Models

Parameter estimation

- How can we actually fit such models?
- Which are the "best" parameters given the data?
 - Standard MPT models: Maximum likelihood estimation
 - Not an option for hierarchical models (intractable likelihood function due to high-dimensional integrals)

Solution

■ Hierarchical models are often fitted using Bayesian statistics

Maximum Likelihood

- Logic of parameter estimation with maximum-likelihood
 - $\textbf{ Define likelihood function } p(x \mid \theta)$
- 2) Find parameters heta that maximize f
- Interpretation: "The estimator $\hat{\theta}$ has the highest likelihood."
- Computational solution: Algorithm searches for the "top of the mountain"

Likelihood

- Logic of Bayesian parameter estimation
 - Define likelihood $p(x \mid \theta)$ and prior distribution $p(\theta)$
 - Derive the posterior distribution of the parameters via Bayes' theorem:

$$p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{p(x)}$$

 \blacksquare Interpretation: "What have we learned about the parameters θ given the data x?"

- \blacksquare Problem: We need to work with the posterior function $p(\theta \mid x)$
 - What is the mean/mode/95% credibility interval of θ ?
 - Often, this is analytically not tractable
- Solution: We draw random samples from the posterior distribution
 - Logic: It is easier to draw conclusions from these random samples than deriving solutions for the analytical posterior (which is a function!)
 - Example: Computing the mean of a normal distribution requires to solve:

Markov Chain Monte Carlo (MCMC) Sampling

- Draw random samples of the posterior distribution for all parameters (individual and group level)
- Summarize parameter samples (e.g., mean, SD, density, . . .)

Markov chain Monte Carlo (MCMC)

- General method to draw posterior samples
- In a hierarchical model, there are many (!) parameters
 - Group-level means and covariances, person parameters, . . .
 - Intuitively, this method moves around and searches for parameter values with high posterior density
- There are software packages that draw random samples for many models of interest
 - JAGS, WinBUGS, OpenBUGS, Stan, ...

Summary of Bayesian estimation

- Develop a model (=> psychological theory, multiTree)
- Get posterior (MCMC) samples (JAGS, TreeBUGS)
- 3) Summarize these samples (e.g., mean of group-level parameters μ_D , μ_g ,...)

Advantages of MCMC

Advantages of MCMC: Uncertainty

Advantages of MCMC sampling

- Theoretical: No asymptotic assumptions about minimal sample size
- Practical: It is easy to quantify uncertainty
 - Bayesian credibility interval (BCI): What are the 2.5%- and 97.5%-quantiles of the parameter values?
 - Highest posterior density interval (HPD or HDI): What are the 95% most plausible parameter values?
 - lacktriangleright For probability parameters, these intervals will always be in the interval [0,1]

Bavesian Credibility Interval

2.5% 95% BCI 2.5% 0.0 0.2 0.4 0.6 0.8 1.0 Parameter d

Highest Posterior Density Interval

Advantages of MCMC: Model Fit

Does the model fit the data?

- Graphical comparison: observed vs. predicted frequencies
- Use posterior samples of the MPT parameters to sample new data (= posterior predictive)
- Compare whether these predicted data (boxplot) are in line with the observations (red points)

Observed (red) and predicted (boxplot) mean frequencies

Summary

Hierarchical MPT Models

- Individual level: Assume separate MPT parameters for each person
- Group level
 - Beta-MPT: Beta distribution of person parameters
 - Latent-trait MPT: Normal distribution of probit-transformed parameters
- Bayesian model fitting: Draw posterior samples via MCMC

Appendix

Appendix: Standard vs. Hierarchical MPT Modeling

Currently open questions:

- How much do results actually differ when using different MPT model versions (standard, hierarchical, beta, latent-trait, ...)?
- Which MPT model version should be used in practice?

Large-scale reanalysis project

- Network of MPT researchers (organized by Beatrice Kuhlmann & Julia Groß)
- Reanalysis of existing data sets to compare:
 - Fixed-effects vs. hierarchical
 - Maximum-likelihood vs. Bayes
 - Different hierarchical level-2 structures (beta, multiv. normal, independent univ. normal)
- Software: "A multiverse pipeline for MPT models"
 - Maximum likelihood: MPTinR (Henrik Singmann)
 - Bayes: TreeBUGS
 - Available at: https://github.com/mpt-network/MPTmultiverse

Appendix: Standard vs. Hierarchical MPT Modeling: Reanalysis

- Source-monitoring model (data by Bayen & Kuhlmann, 2011)
- Plot: Difference in parameters across two groups

References

References

- TreeBUGS and a simple introduction to hierarchical MPT models
 - Heck, D. W., Arnold, N. R., & Arnold, D. (in press). TreeBUGS: An R package for hierarchical multinomial-processing-tree modeling. Behavior Research Methods. https://doi.org/10.3758/s13428-017-0869-7
- The latent-trait model (very technical)
 - Klauer, K. C. (2010). Hierarchical multinomial processing tree models: A latent-trait approach. Psychometrika, 75, 70–98. https://doi.org/10.1007/s11336-009-9141-0
- The latent-trait model with crossed-random effects and a JAGS implementation
 - Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J. (2015). Bayesian estimation of multinomial processing tree models with heterogeneity in participants and items. Psychometrika, 80, 205–235. https://doi.org/10.1007/s11336-013-9374-9

References

- Alternative hierarchical group structure of parameters
 - Smith, J. B., & Batchelder, W. H. (2010). Beta-MPT: Multinomial processing tree models for addressing individual differences. Journal of Mathematical Psychology, 54, 167–183. https://doi.org/10.1016/j.jmp.2009.06.007
- Benefits of hierarchical cognitive models
 - Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology, 55(1), 1–7. https://doi.org/10.1016/j.jmp.2010.08.013
- Cognitive psychometrics
 - Riefer, D. M., Knapp, B. R., Batchelder, W. H., Bamber, D., & Manifold, V. (2002). Cognitive psychometrics: Assessing storage and retrieval deficits in special populations with multinomial processing tree models. Psychological Assessment, 14(2), 184–201. https://doi.org/10.1037/1040-3590.14.2.184