Lesson 4: Enhanced Entity-Relationship Model

CSC430/530 - DATABASE MANAGEMENT SYSTEMS

DR. ANDREY TIMOFEYEV

OUTLINE

- •Enhanced entity relationship model.
- •Subclasses & superclasses.
- Specialization & generalization.
- Specialization & generalization constraints.
- Hierarchies & lattices.
- Categories.

INTRODUCTION

- •Enhanced (extended) ER model aims to design more accurate database schemas.
 - Allows more complex requirements to reflect data properties and constraints more precisely.
- •Includes all modeling concepts of basic ER model.
- Additional concepts:
 - Subclasses & superclasses.
 - Inheritance of attributes & relationships.
 - Specialization & generalization.
 - Categories (UNION type).

SUBCLASSES & SUPERCLASSES (1)

- •Subclass (subtype) meaningful subgrouping of an entity type (superclass).
 - Represented **explicitly** because of the significance to the database application.
 - Inherits all attributes & relationships of superclass.
 - Type inheritance.

•Example:

- EMPLOYEE entity type subdivided into:
 - SECRETARY, ENGINEER, TECHNICIAN.
 - Based on **job title**.
 - MANAGER.
 - Based on role.
 - SALARIED_EMPLOYEE, HOURLY_EMPLOYEE.
 - Based on method of pay.

SECRETARY

SUBCLASSES & SUPERCLASSES (2)

SUBCLASSES & SUPERCLASSES (3)

- •Subclass entity represents the same real-world entity as members of the superclass.
 - Subclass member is the same entity, but in a distinct specific role.
 - An entity cannot exist in the database merely by being a member of a subclass.
 - It must also be a member of the superclass.
 - A member of the superclass can be *optionally* included as a member of **any number** of its **subclasses**.
 - It is not necessary that every entity in a superclass be a member of some subclass.

SPECIALIZATION

- •Specialization is the process of defining a set of subclasses of a superclass.
 - Based on some distinguishing characteristics of the entities in the superclass.
- •Examples of *EMPLOYEE* specializations:
 - {SECRETARY, ENGINEER, TECHNICIAN}.
 - Based on job type.
 - {MANAGER}.
 - Based on role.
 - {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}.
 - Based on method of pay.

EMPLOYEE entity type specializations

GENERALIZATION

- •Generalization is the reverse of the specialization process.
- •Several classes with common features can be generalized into a superclass.
 - Original classes become subclasses of superclass.

GENERALIZATION

- •Generalization is the reverse of the specialization process.
- •Several classes with common features can be generalized into a superclass.
 - Original classes become subclasses of superclass.

•Example:

- CAR, TRUCK generalized into VEHICLE.
 - Both *CAR*, *TRUCK* become **subclasses** of the **superclass** *VEHICLE*.
 - VEHICLE is a **generalization** of CAR and TRUCK.
 - {CAR, TRUCK} is a **specialization** of VEHICLE.

TYPES OF SPECIALIZATION & GENERALIZATION

- •Specialization/generalization types:
 - Predicate-defined (condition-defined).
 - Based on defining predicate.
 - Job_type = 'Secretary'.
 - Attribute-defined.
 - Based on defining attribute.
 - User-defined.
 - Defined by the user on an entity by entity basis.

EMPLOYEE entity type specializations

SPECIALIZATION & GENERALIZATION CONSTRAINTS (1)

- Specialization & generalization have two types of constraints:
 - Disjointness constraint.
 - Specialization/generalization can be disjoint or overlapping.
 - Completeness constraint.
 - Specialization/generalization can be total or partial.

SPECIALIZATION & GENERALIZATION CONSTRAINTS (2)

Disjointness constraint.

- **Disjoint** sets.
 - Entity can be a member of at most one of the subclasses of the specialization.
 - Specified by d in EER diagram.
- Overlapping sets.
 - Entity may be a member of more than one subclass of the specialization.
 - Specified by o in EER diagram.

SPECIALIZATION & GENERALIZATION CONSTRAINTS (3)

Completeness constraint.

- Total.
 - Every entity in the superclass must be a member of some subclass in the specialization/generalization.
 - Shown in EER diagrams by a <u>double line</u>.
- Partial.
 - Allows an entity not to belong to any of the subclasses.
 - Shown in EER diagrams by a <u>single line</u>.
- Disjointness and completeness constraints are independent.
 - Disjoint total.
 - Disjoint partial.
 - Overlapping total.
 - Overlapping partial.

HIERARCHIES & LATTICES (1)

- A subclass may have its own subclasses.
 - Forms a hierarchy or a lattice.

Hierarchy.

- Every subclass has only one superclass.
- **Single** inheritance.
- *Tree-like* structure.

Lattice.

- Subclass can have more than one superclass.
 - Subclass that has more than one superclass is called a shared subclass.
- Multiple inheritance.
- *Graph-like* structure.
- •In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of all its predecessor superclasses.

HIERARCHIES & LATTICES (2)

•Example:

• ENGINEERING_MANAGER is a **shared subclass** that inherits from three superclasses ENGINEER, MANAGER and SALARIED_EMPLOYEE.

HIERARCHIES & LATTICES (3)

- •ER schema can be further refined into EER schema in two ways:
 - Top-down conceptual refinement.
 - Based on specialization.
 - Start with an entity type and then define subclasses of the entity type by successive specialization.
 - Bottom-up conceptual synthesis.
 - Based on **generalization**.
 - Start with many entity types and generalize those that have common properties.
- •In practice, a combination of both processes is employed.

HIERARCHIES & LATTICES (4)

CATEGORIES / UNION TYPES (1)

•Category (union type).

- In some cases it is necessary to represent a collection of entities from different entity types.
 - Subclass represents a collection of entities that is a **subset** of the *UNION* of entities from distinct entity types.

Example.

- In a database for vehicle registration, a vehicle owner can be a PERSON, a BANK or a COMPANY.
- OWNER category (union type) is created to represent a subset of the union of the three superclasses COMPANY, BANK, and PERSON.
- A category member must exist in at least one (typically just one) of its superclasses.

CATEGORIES / UNION TYPES (2)

- •Example (cont.)
 - OWNER category (union type).
 - Union of BANK, PERSON, and COMPANY entity types.
 - REGISTERED_VEHICLE category (union type)
 - **Union** of *CAR* and *TRUCK* entity types.

EER DESIGN GUIDELINES

•Guidelines for the EER design process:

- More specializations and subclasses = more accurate conceptual model.
 - **Drawback** *cluttered* design.
- Subclass with few specific (local) attributes / no specific relationships is merged into superclass.
 - Specific attributes = NULL values for entities that are not members of the subclass.
 - A type attribute can be used to specify the subclass.
- The choice for disjoint/overlapping and total/partial constraints is driven by the rules in the mini-world.
 - **No** particular constraints = *overlapping* and *partial*.

SUMMARY

- Enhanced ER model.
- Subclasses & superclasses.
- Specialization & generalization.
 - Predicate-defined, attribute-defined, and user-defined.
- •Constraints on specialization & generalization.
 - Disjointness & completeness.
- Hierarchies & lattices.
 - Single inheritance / multiple inheritance.
- Categories (union types).