Introduction to security

Information security in past and present

- Traditional Information Security
 - keep the cabinets locked
 - put them in a secure room
 - human guards
 - electronic surveillance systems
 - in general:physical and administrative mechanisms
- Modern World
 - Data are in computers
 - Computers are interconnected

Computer and Network Security

Background

- Information Security requirements have changed in recent times
- traditionally provided by physical and administrative mechanisms
- computer use requires automated tools to protect files and other stored information
- use of networks and communications links requires measures to protect data during transmission

Why Security is Important?

Vulnerabilities of OS and networking devices

Examples to incidents: DoS attacks, IP spoofing, attacks based on sniffing

Security Trends

High Intruder Knowledge									Low		
1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001

Source: CERT

Social engineering

[user] Hello?

[hacker] Hi, this is Bob from IT Security. We've had a security breach on the system and we need every user to verify their username and password.

[user] What do I need to do?

[hacker] Let's walk through a login, just to make sure everything is fine.

[user] OK

[hacker] OK, go ahead and login. What username are you coming in as?

[user] My username is "smith".

[hacker] Excellent. What password are you using?

[user] I am using the password "drowssap".

[hacker] Do you have a system prompt yet?

[user] Yes, I'm in.

[hacker] OK, there you are. I see you now.

Everything is fine. We appreciate your cooperation [user] OK, goodnight.

[hacker] Thanks again, goodbye.

Computer Security Losses

Security Technologies Used

Definitions

- Computer Security generic name for the collection of tools designed to protect data and to thwart hackers
- Network Security measures to protect data during their transmission
- Internet Security measures to protect data during their transmission over a collection of interconnected networks

OSI Security Architecture

- ITU-T X.800 "Security Architecture for OSI"
- defines a systematic way of defining and providing security requirements
- for us it provides a useful, if abstract, overview of concepts we will study

Aspects of Security

- 3 aspects of information security:
 - security attacks (and threats)
 - actions that (may) compromise security
 - security services
 - services counter to attacks
 - security mechanisms
 - used by services
 - E.g. secrecy is a service, encryption (a.k.a encipherment) is a mechanism

Security Attack

- any action that compromises the security of information owned by an organization
- information security is about how to prevent attacks, or failing that, to detect attacks on information-based systems
- often threat & attack used to mean same thing
- have a wide range of attacks
- can focus of generic types of attacks
 - passive
 - active

Attacks

- Network Security
 - Active attacks
 - Passive attacks
- Passive attacks
 - interception of the messages
 - What can the attacker do?
 - read the content
 - traffic analysis
 - hard to avoid
 - Hard to detect, try to prevent

Passive Attacks

Attacks

- Active attacks
 - Attacker actively manipulates the communication
 - Masquerade
 - · pretend as someone else
 - possible to get more privileges
 - Fabrication
 - create a bogus message
 - Replay
 - · passively capture data and send later
- Darth Capture message from Bob to Alice; later replay message to Alice

 Internet or other comms facility

- Denial-of-service
 - prevention the normal use of servers, end users, or network itself

Attacks

- Active attacks (cont'd)
 - deny
 - · repudiate sending/receiving a message later
 - modification
 - · change the content of a message

Active Attacks

Security Service

- enhance security of data processing systems and information transfers of an organization
- intended to counter security attacks
- using one or more security mechanisms
- often replicates functions normally associated with physical documents
 - which, for example, have signatures, dates; need protection from disclosure, tampering, or destruction; be notarized or witnessed; be recorded or licensed

Security Services

X.800:

"a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers"

RFC 2828:

"a processing or communication service provided by a system to give a specific kind of protection to system resources"

Basic Security Services

- Authentication
 - assurance that the communicating entity is the one it claims to be
 - peer entity authentication
 - mutual confidence in the identities of the parties involved in a connection
 - Data-origin authentication
 - assurance about the source of the received data
- Access Control
 - prevention of the unauthorized use of a resource

Basic Security Services

- Data Confidentiality
 - protection of data from unauthorized disclosure (against eavesdropping)
 - traffic flow confidentiality is one step ahead
- Data Integrity
 - assurance that data received are exactly as sent by an authorized sender
 - i.e. no modification, insertion, deletion, or replay

Basic Security Services

Non-Repudiation

- protection against denial by one of the parties in a communication
- Origin non-repudiation
 - proof that the message was sent by the specified party
- Destination non-repudiation
 - proof that the message was received by the specified party

Availability Service

 The property of a system or a system resource being accessible and usable upon demand by an authorized system entity

The language of cryptography

m plaintext message $K_A(m)$ ciphertext, encrypted with key $K_A(m) = K_B(K_A(m))$

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric) key: K_S

- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
- Q: how do Bob and Alice agree on key value?

Simple encryption scheme

substitution cipher: substituting one thing for another

monoalphabetic cipher: substitute one letter for another

```
plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: mnbvcxzasdfghjklpoiuytrewq
```

e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Encryption key: mapping from set of 26 letters to set of 26 letters

Symmetric key crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 - no known good analytic attack
- making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys

Symmetric key crypto: DES

DES operation

initial permutation

16 identical "rounds" of function application, each using different 48 bits of key

final permutation

AES: Advanced Encryption Standard

- symmetric-key NIST standard, replaced DES (Nov 2001)
- processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- brute force decryption (try each key) taking I sec on DES, takes I49 trillion years for AES

Public Key Cryptography

symmetric key crypto

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

- public key crypto

- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- public encryption key known to all
- private decryption key known only to receiver

Public key cryptography

Public key encryption algorithms

requirements:

- 1 need $K_B^+(\cdot)$ and $K_B^-(\cdot)$ such that $K_B^-(K_B^+(m)) = m$
- given public key K_B⁺, it should be impossible to compute private key K_B

RSA: Rivest, Shamir, Adelson algorithm

Digital signatures

cryptographic technique analogous to hand-written signatures:

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital signatures

simple digital signature for message m:

• Bob signs m by encrypting with his private key $K_{\overline{B}}$, creating "signed" message, $K_{\overline{B}}$ (m)

Digital signatures

- suppose Alice receives msg m, with signature: m, $K_B(m)$
- Alice verifies m signed by Bob by applying Bob's public key K_B to ${}^{\dagger}K_B(m)$ then checks $K_B(K_B^{\dagger}(m)) = m$.
- If $K_B^+(K_B^-(m)) = m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:

- Bob signed m
- no one else signed m
- Bob signed m and not m '

non-repudiation:

✓ Alice can take m, and signature $K_B(m)$ to court and prove that Bob signed m

Message digests

computationally expensive to public-key-encrypt long messages

goal: fixed-length, easy-to-compute digital "fingerprint"

 apply hash function H to m, get fixed size message digest, H(m).

Hash function properties:

- many-to-l
- produces fixed-size msg digest (fingerprint)
- given message digest x, computationally infeasible to find m such that x = H(m)

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- produces fixed length digest (16-bit sum) of message
- is many-to-one

But given message with given hash value, it is easy to find another message with same hash value:

<u>message</u>	ASCII format	<u>message</u>	ASCII format				
I O U 1	49 4F 55 31	I O U <u>9</u>	49 4F 55 <u>39</u>				
00.9	30 30 2E 39	0 0 . <u>1</u>	30 30 2E <u>31</u>				
9 B O B	39 42 D2 42	9 B O B	39 42 D2 42				
	B2 C1 D2 AC —	different messages	B2 C1 D2 AC				
	but identical checksums!						

Digital signature = signed message digest

Bob sends digitally signed message:

Alice verifies signature, integrity of digitally signed message:

Hash function algorithms

- MD5 hash function widely used (RFC 1321)
 - computes 128-bit message digest in 4-step process.
 - arbitrary I28-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x
- SHA-I is also used
 - US standard [NIST, FIPS PUB 180-1]
 - 160-bit message digest

SSL: Secure Sockets Layer

- widely deployed security protocol
 - supported by almost all browsers, web servers
 - https
 - billions \$/year over SSL
- mechanisms: [Woo 1994], implementation: Netscape
- variation -TLS: transport layer security, RFC 2246
- provides
 - confidentiality
 - integrity
 - authentication

- original goals:
 - Web e-commerce transactions
 - encryption (especially credit-card numbers)
 - Web-server authentication
 - optional client authentication
 - minimum hassle in doing business with new merchant
- available to all TCP applications
 - secure socket interface

SSL and TCP/IP

Application
TCP

normal application

Application
SSL
TCP
IP

application with SSL

- SSL provides application programming interface (API) to applications
- C and Java SSL libraries/classes readily available

Could do something like PGP:

- but want to send byte streams & interactive data
- want set of secret keys for entire connection
- want certificate exchange as part of protocol: handshake phase

Toy SSL: a simple secure channel

- handshake: Alice and Bob use their certificates, private keys to authenticate each other and exchange shared secret
- key derivation: Alice and Bob use shared secret to derive set of keys
- data transfer: data to be transferred is broken up into series of records
- connection closure: special messages to securely close connection

handshake: ClientHello Real SSL handshake: ServerHello connection handshake: Certificate handshake: ServerHelloDone handshake: ClientKeyExchange ChangeCipherSpec everything handshake: Finished henceforth ChangeCipherSpec is encrypted handshake: Finished application data application_data Alert: warning, close_notify

TCP FIN follows