ROTEIRO PARA EXPERIMENTOS

ASSUNTO: Disco Flutuante - A Influência do Atrito no Movimento

Etec Prof. Eudécio Luiz Vicente Adamantina - SP	Grupo:	FISICA
	Data://	
	http://experimentos-de-fisica.webnode.com	
	Prof: Silvio Luis Agostinho dos Santos	E.MC

Objetivo

Mostrar a influência que o atrito exerce sobre o movimento de um objeto.

Contexto

O Princípio da Inércia, ou Primeira Lei de Newton, diz que "um objeto tende sempre a manter o seu estado de movimento, este podendo também ser o de repouso, se não houver a ação de forças externas". E o atrito, ou melhor, as forças de atrito, são na maioria dos casos, as responsáveis pelo fato de que não se observa comumente um objeto se deslocando continuamente sem a ação de uma outra força propulsora.

Este experimento serve para mostrar que quando posto em movimento, um objeto desloca-se por distâncias maiores se são removidas fontes de atrito. Quanto mais fontes se remover, maior será a distância percorrida. Se removermos todas as fontes de atrito, então é plausível que o objeto se desloque para sempre.

Idéia do Experimento

O experimento consiste de um disco de papelão preparado de tal modo que possa ser acoplado um balão de borracha (bexiga) cheio de ar. Quando liberado, o ar contido na bexiga deve sair pela parte de baixo do disco (aquela que fica em contato com a superfície de um piso ou mesa).

Primeiramente usa-se o disco sem o balão acoplado. Através de petelecos, tentase pôr o disco em movimento. Observa-se a distância percorrida, que vai depender da rugosidade das duas superfícies em contato: a do disco e a da mesa ou piso.

Ao se acoplar o balão e permitir a saída do ar, o mesmo peteleco aplicado ao disco aumenta sensivelmente a distância percorrida.

A idéia é explorar este aumento de distância percorrida como consequência direta da diminuição do atrito entre o disco e a superfície da mesa devido à camada de ar que existe agora entre as duas superfícies. O atrito entre cada superfície e o ar é bem menor que entre as duas superfícies.

No entanto, a inclusão do balão traz uma nova fonte de atrito para o conjunto disco+balão, que é a resistência do ar ao movimento do balão. O fato é que o atrito total do conjunto ainda é menor que o atrito do disco sozinho. É por isto que aparatos mais sofisticados que aproveitam "colchões" de ar e dispensam o uso do balão, são mais eficazes.

Tabela do Material

Item	Observações
Um pedaço de papelão	Desse tipo usado em embalagens grosseiras para artigos de supermercado.
Cartolina	

Uma caneta esferográfica	Usamos da marca BIC, sem necessidade da carga.	
Bexiga		
Fita adesiva		
Cola		

Montagem

• Corte o papelão em forma de disco, com um diâmetro aproximadamente de 10 cm e com um furo no centro de aproximadamente 2mm de diâmetro.

• Corte três discos de cartolina: o primeiro com aproximadamente 6 cm de diâmetro e um furo central de 2mm de diâmetro; o segundo e o terceiro com 4 e 2 cm de diâmetro, respectivamente, com furos centrais com o mesmo diâmetro do corpo da tampa do fundo da caneta BIC (aproximadamente 4 mm).

• Cole o maior círculo de cartolina, sobre o papelão, de forma que os furos centrais coincidam. Faça um furo no fundo da tampinha vedante da caneta BIC (a tampinha do fundo da caneta), com um alfinete com aproximadamente 2 mm de diâmetro. Cole a tampinha de base para baixo sobre o primeiro pedaço de cartolina já colado anteriormente, de forma a coincidirem os furos centrais. Encaixe e cole sobre a tampinha o segundo e o terceiro discos de cartolina.

• Depois de colado e bem seco, o conjunto ficará com o seguinte aspecto:

- Para vedação, cole um pedaço de fita adesiva no furo existente no tubo da caneta.
- Prenda a bexiga no fundo do tubo da caneta, também com fita adesiva. Toda vez que precisar encher a bexiga, basta retirar o tubo da caneta do encaixe.

Comentários

• A escolha do papelão é uma parte delicada. Ele não pode ser muito pesado, o que ocorre com alguns tipos.

Esquema Geral de Montagem

