Rappel de cours :

- Si $sum_{i=1}^n m_i \overrightarrow{IA_i} = \overrightarrow{0}$ alors $I = Bari(A_i, m_i)$.
- Si le point I est le milieu d'un segment AB alors $k\overrightarrow{IA} + k\overrightarrow{IB} = \overrightarrow{0}$, donc I = Bari((A, k), (B, k)).
- Si $Bari((A, m_a), (A, n_a), ...) = Bari((A, m_a + n_a), ...).$
- Baricentre partiel. Si $F = Bari((B_j, n_j))$ alors $Bari((A_i, m_i), (B_j, n_j)) = Bari((A_i, m_i), (F, \sum n_j))$

Question 1.a

Les distances AB et A'B' sont identiques, montrons qu'il existe une isométrie $\phi(z) = az + b$ qui transforme $A' = \phi(A)$ et $B' = \phi(B)$

- soit a = 1, donc la transformation ϕ est la translation $\overrightarrow{AA'}$.
- soit $a \neq 1$. Il existe un angle θ tel que $a = e^{i\theta}$. Pour que ϕ soit une rotation alors $\phi(z) = c + d(z c) = dz + c(1 d)$. Prenons, $d = a = e^{i\theta}$ et b = c(1 d) = c(1 a). Alors ϕ est la rotation de centre c et d'angle θ .

Les valeurs de a et b sont uniques donc la transformation ϕ est unique.

Question 1.b

La transformation ϕ est une translation lorsque $a=1=e^{i\theta}$. Donc $\theta=0$, par conséquent les droites AB et A'B' sont paralléles.

Question 1.c

??

Question 1.d

??

Question 1.e

 ϕ est une isométrie donc AB = A'B', Soit $D = \phi(D)$, on a AD = AC et BD = BC car ϕ est une isométrie. De même, l'angle (AB, AC) = (A'B', A'D). D est le point tel que AD = AC et (AB, AC) = (A'B', A'D). Donc $\phi(C) = D = C'$.

Question 2.a

La transformation est une translation.

Question 2.b

Question 3

Soit s la réflexion d'axe \mathbb{D} . La rotation ϕ de centre O et d'angle $-\theta$ de la droite \mathbb{D} est l'axe des abscisses. La réflexion sur l'axe des abscisses, ϕ_a d'un point A est le conjugué du point A, $\phi_a(A) = \overline{(A)}$. Donc en utilisant le principe de conjugaison on a

$$\phi_a = \phi \bullet s \bullet \phi^{-1}$$
$$\phi^{-1} \bullet \phi_a \bullet \phi = s$$
$$s = e^{i\theta} \cdot (e^{-i\theta}z0)$$

Question 4

QED