densité conticions Je Cer KNU(0/1) YNU(0,X) jantas 12 densidéd da Y. brdo X=x con x6(0,1)? Did. $\chi_{6}(0,1)$ $\chi_{0}(0,\chi)$ $\frac{1}{2} + \lambda i \times (\lambda i) = \begin{cases} \frac{1}{2} & \text{s.t.} & \lambda \in (0, x) \\ 0 & \text{c.c.} \end{cases}$ $\frac{1}{2}$ avil es $f_{\chi,y}$? Si $\chi \in (0,1)$ $y \in (0,\chi)$ $f^{\times}(x) = \frac{f^{\times}(x)}{f^{\times}(x)}$

 \rightarrow $4_{xy}(x,y) = 4_{y(x)}(y(x)) \cdot 4_{x}(x)$

$$= \begin{cases} \frac{1}{X} & \text{si} \quad x \in (0,1) \text{ if } y \in (0,x) \\ 0 & \text{cc} \end{cases}$$

$$f^{\lambda}(\lambda) = \int_{\varphi} f^{\lambda\lambda}(x^{\lambda}\lambda) f^{\lambda}$$

$$= \int_{-\infty}^{\infty} \frac{1}{x} \cdot \frac{1}{(0,x)} \cdot \frac{1}{(0,1)} \cdot \frac{1}{$$

$$=\int_{V}^{V}\frac{X}{V}\left(0^{V}X\right)\left(A\right)\int_{V}^{X}$$

$$= \int_{V}^{A} \frac{x}{1} dx$$

 $= \left\{ \begin{array}{c} \left(n \left(y \right) \right) \\ 0 \end{array} \right.$ m 16(0,X) Motivición Jugadas paga 100 \$ pos jugas. Juego frène (XI. XS) resultados. Est et resultato. Xi sa de. et jugader gana . & Xi. ¿ Convien jugzs.? Espanyonos que el jugador decide jugar n veces ¿ Cuzulo gansó de celo de n?

Defino Y:= "cezultado de 12 i-ézens jugede Vi=11.--. N. Quiero umacer el volor de ·) R(Yi) = {X1. - X1} . Ui=1, ..., N. ·) Y,... Yn son interptes Con igurl. distribución y vunz denside liggete f función. . Y. a. arlapier de Il Envenas . ellz (resultato de une jugada) Sor Mn (Xi) 12 crutidad de vices resultad Xi eu oursió. d n jugadas $y_{i+1} - y_{i+2} = \sum_{i=1}^{n} x_{i} N_{n}(x_{i}^{n})$

gaure à en pronedie (yntetyn × 1/4).) Si My 100 Couriere juges -) Si M< 100 No ·) Si /1 = 100 de la mismo le 13. un promedio porde 1200 de los vilore 3 /X1, -- XEI y se la lleur à esperante 0 vilor espevilo de 12 N.2 Det X v. 2 discoetz con possibles Notores XI. XV. y duriste fx. Decimos X time esperiure finte g le Jefinios umo $E(x) = \sum_{x_i} x_i A_x(x_i)$

$$\sum_{i} |x_{i}| + x(x_{i}) < \infty$$

$$\sum_{i=0}^{\infty} |x_i| f_x(i) = \sum_{i=0}^{\infty} i f_x(i)$$

$$= e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i}}{(i-\lambda)!}$$

$$z e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{j+1}}{j!}$$

$$z \in \mathbb{Z}$$
 $\sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}$

$$=e^{-\lambda}\lambda e^{\lambda} = \lambda < \omega$$

$$\Rightarrow \quad \xi(x) = y$$

Det Zer X N.2 contine con función Jenentra Ax, Jecimos que X tione esperenza traita si SalxIfx(x) dx < 20 y sec

define le coponner de X o volor esperado como E(X) = $\int_{-\Delta}^{\Delta} X A_{X}(X)$

G. X~ M. (3/5)

 $\int_{-a}^{b} |x| + (x) dx - \int_{a}^{b} |x| \frac{1}{b^{-2}} |(25)(x)| dx$

$$F(x) = \int_{-\infty}^{\infty} x \frac{1}{5-2} (2,6)(x) dx$$

$$= \frac{1}{5-2} \int_{2}^{\infty} x dx$$

$$\frac{1}{6-2} \cdot x^2 \cdot \begin{vmatrix} 5 \\ 3 \end{vmatrix} = -2 \cdot 2 \cdot \frac{542}{2}$$

$$\int_{-2}^{2} |x| + \langle x \rangle = \int_{0}^{2} x + \langle x \rangle$$

$$=\int_{0}^{\infty} \chi \frac{\lambda^{2} \chi^{2} e^{-\lambda \chi}}{T(x)} dx$$

$$=\frac{\lambda^{\alpha}}{\Gamma(\alpha)}\int_{-\infty}^{\infty}x^{\alpha}e^{-\lambda x}dx$$

$$=\frac{1}{\sqrt{T(\alpha)}}\int_{0}^{\alpha}u^{\alpha}e^{-u}du$$

$$=\frac{1}{\lambda \Gamma(x)} \Gamma(xH)$$

$$\exists$$
 \exists \exists (X)

$$y \in (x) = \int_{-\infty}^{\infty} x \left(x(x) dx = \frac{x}{\lambda} \right)$$

$$f_{x}(x) = \frac{1}{\pi(1+x^{2})} \quad \forall x \in \mathbb{N}$$

$$\int_{-\lambda}^{\lambda} |x| f_{x}(x) dx = \frac{1}{\pi} \int_{-\lambda}^{\lambda} \frac{|x|}{1+x^{2}} dx$$

$$fucion per$$

$$\frac{2}{\pi} \int_{0}^{\infty} \frac{x}{1+x^{2}} dx = \frac{2}{\pi} \left(\frac{x}{1+x^{2}} dx \right)$$

$$E(z) = \sum \varphi(\vec{x_j}) + \hat{\chi}(\vec{x_j})$$

(B) Crso Contino Ser X=(x1,..., XP) vector. Contino Con Xi re Contine Viel, - P e) con Invistre crejente. 4 = + (x1, -- × p.) Ser 4: M°-> 15 g Z=4(X) on 2 time asponers finite si $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\Psi(x_1, x_2) \right] + \chi(x_1, x_2) = \lambda$ $y \in (2) - \int \int \varphi(x_1, x_p) + \chi(x_1, x_1) dx$ teo XeY v. 2 direct 2 con esperanza finita 1 2) Sn C=de P(X=C) z 1

7) E(X)2.C.

	•		· 6	`	10	,	•						•
	•			,		*)	•	٠	•		•		•
•	•		. C/		٠		•	*		•	•		
	•		,	•	•	**					•		
		Ju	10	~)	. 5							•	•
			•		. •	•						• 2	•
													•
												*:	•
												•	