

Qitong Cao

Duke Kunshan University CS/Econ 206 | Computational Economics

May 5 2022

- 1 Part I: Summary
- 2 Part II: Critics
- Part III: Inspirations
- References

1 Part I: Summary

Part I: Summary •00000

Part I: Summary 000000

Figure 1: Summary Mindmap created by Whimsical

Background

 Limitations: high energy consumption, time inefficiency, low transaction throughput, poor security, poor user revenue fairness (Sun et al. 2020).

Figure 1: Summary Mindmap created by Whimsical

Background

 Limitations: high energy consumption, time inefficiency, low transaction throughput, poor security, poor user revenue fairness (Sun et al. 2020).

Motivation

 To improve the efficiency and security of the consortium blockchain to and the performance of the blockchain platform.

4 / 15

Research Question

Part I: Summary 000000

> Research Questions: How to improve the efficiency and security of consortium blockchain?

Model & Simulation method

- Authority: by increasing uncertainty
- Security: by introducing "lottery drawing" to avoid attacks
- Regulation: by adding "asset" to increase "crime cost"

Ш

Model Comparison

- Compare with Practical Byzantine Fault Tolerance (PBFT) and Mixed Byzantine Fault Tolerance (MBFT) algorithms
- shows apparent advantages in user benefit fairness, time efficiency, and elasticity against target attack and has acceptable extra cost in energy consumption.

Part I: Summary

Proof of Work (PoW)

the cost of additional CPU consumption; higher time cost; lower system throughput; the quality of service requirements of some scenarios (Frankenfield 2021).

increase the cost of malicious behavior

Proof of Work (PoW)

the cost of additional CPU consumption; higher time cost; lower system throughput; the quality of service requirements of some scenarios (Frankenfield 2021).

increase the cost of malicious behavior

Proof of Stake (PoS)

the decentralization of authority

converted identities to limit and disperse authority to avoid monopoly

Part II: Critics Part III: Inspirations References

Intellectual Merits

Part I: Summary

Proof of Work (PoW)

the cost of additional CPU consumption; higher time cost; lower system throughput; the quality of service requirements of some scenarios (Frankenfield 2021).

increase the cost of malicious behavior

Proof of Stake (PoS)

the decentralization of authority

converted identities to limit and disperse authority to avoid monopoly

Byzantine Fault Tolerance (BFT) algorithm

low system capacity; leaders vulnerable to targeted attacks

 Part I: Summary

000000

- The new consensus algorithm is expected to solve the drawbacks of the existing blockchain algorithms or update the current consensus algorithm to improve the performance of the blockchain platform.
- As a newly born partial theoretical algorithm mechanism, VDC also needs further experiments and improvements to adapt to highly complex application scenarios (Sun et al. 2020).

- Part I: Summary
- 2 Part II: Critics

Figure 2: Critics Mindmap created by Whimsical

- Economics for Computer Science
 - Incentives: Combination of Credit & Asset
 - Strength: Increase the "crime cost"
 - Limitation: Other potential features

10 / 15

Part II: Critics

Figure 2: Critics Mindmap created by Whimsical

- Economics for Computer Science
 - Incentives: Combination of Credit & Asset
 - Strength: Increase the "crime cost"
 - Limitation: Other potential features
- Computer Science for Economics
 - Mechanism design: Uncertainty Utilization
 - Strength: Increase the fairness
 - Limitation: Risk Management

- Part I: Summary
- 3 Part III: Inspirations

Part III: Inspirations

Figure 3: Inspirations Mindmap created by Whimsical

- Interdisciplinary Research
 - Interactions with other non-human agents

Figure 3: Inspirations Mindmap created by Whimsical

- Interdisciplinary Research
 - Interactions with other non-human agents
- Research for Real-world Practices
 - Game Theory Model Construction
 - Reinforcement learning with big data

Figure 3: Inspirations Mindmap created by Whimsical

- Interdisciplinary Research
 - Interactions with other non-human agents
- Research for Real-world Practices
 - Game Theory Model Construction
 - Reinforcement learning with big data
- Future Professional Growth
 - Applications: content ranking in user-generated content sites

- Part I: Summary

- 4 References

Revision responding to peer review

- Jargon Explanation
 - Definition of technical words added to the article
 - Glossary table of major words construction
 - Abbreviations spelled out
- More citations
 - Citations of major technical words
 - Citations in "Background" and "Intellectual Merits"

- Revision of "Professional Development"
 - Original part moved to Part II
 - More related topic added

15 / 15

Website

- Consortium Blockchain | CoinMarketCap. n.d. CoinMarketCap Alexandria. Accessed May 5, 2022.
- Frankenfield, Jake. 2019a. Consensus Mechanism (Cryptocurrency). Investopedia. 2019.
- Practical Byzantine Fault Tolerance (PBFT) BitcoinWiki.
 n.d. En.bitcoinwiki.org. Accessed May 5, 2022.

Articles

- Dafoe, Allan, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson, and Thore Graepel. 2021. Cooperative Al: Machines Must Learn to Find Common Ground. Nature 593 (7857): 3336.
- Daly, Lyle. 2021. What Is Byzantine Fault Tolerance? The Motley Fool. November 10, 2021.
- Daly, Lyle. 2021. What Is Byzantine Fault Tolerance? The Motley Fool. November 10, 2021.
- Du, Mingxiao, Qijun Chen, and Xiaofeng Ma. 2020. MBFT: A New Consensus Algorithm for Consortium Blockchain. IEEE