Lab3,Group15

$Nave en\ Gabriel\ , Sridhar\ Adhirkala$ 2019-03-01

Contents

1	Assignment 1	2
	1.1 Import Data into R	. 2
	1.2 Creating a function to select random city	. 2
	1.3 Using the function created in the previous step	. 2
	1.4 Selected Cities	. 3
	1.5 Plot showing population of cities selected	. 3
_	Different distribution	6
	2.1 Generate double exponential distribution $DE(0,1)$ from $Unif(0,1)$ by using the inverse CDI	7
	method	
	2.2 Acceptance/Rejection method	. 7
3	Appendix	10

1 Assignment 1

1.1 Import Data into R

1.2 Creating a function to select random city

```
#function to randomly select a city
selectRandCity = function(data){
  total_pop = sum(data$Population)
  data$prob = data$Population/total_pop
  data$cumPop = cumsum(data$prob)
  randNum = runif(1, 0, 1)
  selected_ind = which.max((data$cumPop > randNum )*1)
  return(selected_ind)
}
```

In this part we are creating a function that selects and returns a randomly selected row index. The random selection is based on the population of the cities. Cities with lager population have higher probability of getting selected.

I have converted the populations column into probabilities by dividing it by the total population. The cumPop column is the cumulative sum of the prob column, which is probabilities of the cities. After this a random number is generated between 0 and 1 and the city having the cumulative probability in that range is selected.

1.3 Using the function created in the previous step

```
#setting seed to get reproducable results
set.seed(123456)
#selecting 20 random cities
selectedCities = cities[1,]
for(i in 1:20){
  ind = selectRandCity(cities)
```

```
selectedCities[i,] = cities[ind,]
cities = cities[-ind,]
}
```

1.4 Selected Cities

```
#print selected cities
print(selectedCities)
# A tibble: 20 \times 3
   Code `County Municipality` Population
 * <dbl> <chr>
                                    <dbl>
 1 1883 Karlskoga
                                    29742
2 1491 Ulricehamn
                                    22753
    880 Kalmar
 3
                                    62388
   680 Jönköping
 4
                                   126331
 5
    781 Ljungby
                                    27410
6
   160 Täby
                                    63014
7 1287 Trelleborg
                                    41891
8
   180 Stockholm
                                   829417
9 2580 Luleå
                                    73950
   380 Uppsala
                                   194751
10
11 1982 Fagersta
                                    12249
12 1480 Göteborg
                                   507330
13 2281 Sundsvall
                                    95533
14 2180 Gävle
                                    94352
15 2581 Piteå
                                    40860
16 2121 Ovanåker
                                    11530
17 2061 Smedjebacken
                                    10758
18
   483 Katrineholm
                                    32303
19
    881 Nybro
                                    19576
20
   1861 Hallsberg
                                    15235
```

The cities with the largest population are selected in this random process. Stockholm and Goteborg which are one of the largest populated cities in Sweden get selected almost every time as they have a very large probability of getting selected.

1.5 Plot showing population of cities selected

```
ggplot(cities, aes(cities$`County Municipality`, cities$Population)) +
geom_histogram(stat = "identity")
```



```
ggplot(selectedCities, aes(`County Municipality` , Population)) +
  geom_histogram(stat = "identity") + coord_flip()
```


Some of the cities with the largest population, like Stockholm, Gothenberg, Upsalla, were selected as they were given higher priority than others. Stockholm has the largest population, so it has the highest probability of getting selected. This turns out to be true as it gets selected almost every time we run a simulation with different seed.

The majority of the cities do not have too large a population, so most of the 20 random cities selected is made up from these. They have low probability of gettin selected but there are too many of such cities, so these cities are the ones that fill up the majority of the 20 random picks.

2 Different distribution

2.1 Generate double exponential distribution DE(0,1) from Unif(0,1) by using the inverse CDF method

- * There are three steps to generate samples from a distribution using inverse CDF method:
 - 1. Generate random probabilities. This can be done using uniform random generator between 0 and 1.
 - 2. From the pdf of a distribution, find the inverse CDF of the distribution.
 - 3. Substitute the probabilities in the inverse CDF of the distribution to get the samples.

Repeat above procedure many times to generate samples so that it represent the distribution

We have Laplace distribution as:

$$DE(\mu, \alpha) = \frac{\alpha}{2} * e^{(-\alpha * |x - \mu|)}$$

CDF of Laplace distribution, When $x \ge \mu$, the sign of the mod operator does not change and we get CDF as:

$$F(X) = 1 - \frac{1}{2} * (1 - e^{-\alpha * (x - \mu)})$$

When $x < \mu$, the sign of $(x-\mu)$ flips and we get CDF as:

$$F(x) = \frac{1}{2} * (e^{\alpha * (x-\mu)})$$

The inverse of laplace distribution,

When P<0.5 and this happens when $x < \mu$:

$$F^{-1}(P) = \frac{1}{\alpha} * log(2P) + \mu$$

When **P >=0.5* and this happens when $x >= \mu$:

$$F^{-1}(P) = \mu - \frac{1}{\alpha} * log(2 - log2P)$$

The graph shows how similar is the our laplace histogram generated (red) with inverse CDF method with true laplace (black) for 10000 random numbers. Moreover, the generated distribution looks similar to Laplace distribution which resembles 2 exponential distribution back to back.

2.2 Acceptance/Rejection method

This is used when it is not possible to find inverse CDF of a distribution so that we can get RV using inverse but we have a pdf for the distribution.

The idea is to find a probability distribution, g(x), from which we can generate a RV and able to tell whether this RV can be accepted for our target distribution f(x).

$$g(x|\mu=0,\alpha=1) = \frac{1}{2} * e^{-|x|} - LapalceDistribution$$

$$f(x|\mu=0,\alpha=1) = \frac{1}{\sqrt{2\pi}} * e^{\frac{-x^2}{2}} - NormalDistribution$$

We assume that the ratio $\frac{f(x)}{g(x)}$ is bounded by a constant C. C(g(x)) acts as a envelope for the target function f(x). This fraction inherently implies that how many fraction of RV for f(x) is included in $C^*g(x)$. We need to maximize this fraction so that we can cover most of the points in g(x) for f(x). For this we need to take differential and equate it to zero.

$$C \ge \frac{f(x)}{g(x)}$$
$$C \ge \frac{\sqrt{2} * e^{-\frac{x^2}{2} + |x|}}{\sqrt{\pi}}$$

Then we differentiate the above ratio and equate to 0 to get the value of x which will give the value of C.

$$\frac{\sqrt{2} * e^{-\frac{x^2}{2} + |x|}}{\sqrt{\pi}} * (\frac{|x|}{x} - x)$$

Setting the above differential to zero we get the maximum value of above equation at x=1, value of C is obtained.

$$C = \sqrt{\frac{2e}{\pi}}$$

The condition to accept RV generated from g(x) as RV for f(x) is :

$$U \le \frac{f(x)}{C * g(x)}$$
$$U \le 0.5 * e^{\frac{x^2}{2} + |x|}$$

* Following is the Acceptance Rejection algorithm:

- 1. Sample $X \sim g(x)$.
- 2. Sample $U \sim Unif(0,1)$.
- 3. Reject X if U > $\frac{f(x)}{C.g(x)}$. Go to step 1.
- 4. Else accept X for f(x).
- 5. Keep repeating the above step for desired number of samples.

```
accept_reject <- function(sam) {</pre>
    f_x \leftarrow c()
    cnt <- 1
    while(cnt<=sam){</pre>
         U \leftarrow runif(1,0,1)
#generate a random variable from laplace distribution
         r_x \leftarrow ifelse(U < 0.5, log(2*U), -log(2-(2*U)))
         uni <- runif(1)
         frac <- \exp(-(r_x^2)/2 + abs(r_x) - 0.5) #value of f(X)/c(g(X))
         if(uni<=frac){</pre>
              f_x[cnt] \leftarrow r_x
              cnt <- cnt+1</pre>
         total <<- total + 1
    }
return(f_x)
n = 2000
total <-0
```

Normal distribution generated by Accept/Rejection method

We can see that the normal distribution generated by acceptance rejection method is nearly same as distribution

generated by rnorm.

The expected rejection rate is equal to:

$$1 - \frac{1}{c} = 0.2398264$$

The average rejection rate is :

$$1 - \frac{2000}{total}$$

Where total is the total number of iterations required to generate 2000 samples. Our average rejection rate is nearly equal to expected rejection rate.

The average rejection rate is : 0.2595335

3 Appendix

```
knitr::opts_chunk$set(
    echo = TRUE,
    eval=TRUE,
    message = FALSE,
    warning = FALSE,
    comment = NA
)

library(readxl)
library(ggplot2)

#reading data and setting col names
```

```
population <- read_excel("population.xls",</pre>
                         skip = 9, col_names = FALSE, na = '.')
colNm = c("Code", "County Municipality", "Population", "Population growth",
          "Live Births", "Deaths", "Population surplus", "In_mig_tot", "In_mig_from_sc",
          "In_mig_from_ros", "In_mig_from_ab", "Out_mig_tot", "Out_mig_from_sc",
          "Out_mig_from_ros", "Out_mig_from_ab", "Net_mig_tot", "Net_mig_from_sc",
          "Net_mig_from_ros", "Net_mig_from_ab", "Adjustments")
colnames(population) = colNm
#splitting counties and cities
population$keep = population$Code <= 25</pre>
counties = population[population$keep,c("Code", "County Municipality", "Population")]
cities = population[!population$keep,c("Code", "County Municipality", "Population")]
#function to randomly select a city
selectRandCity = function(data){
 total_pop = sum(data$Population)
  data$prob = data$Population/total_pop
 data$cumPop = cumsum(data$prob)
 randNum = runif(1, 0, 1)
 selected_ind = which.max((data$cumPop > randNum )*1)
 return(selected ind)
}
#setting seed to get reproducable results
set.seed(123456)
#selecting 20 random cities
selectedCities = cities[1,]
for(i in 1:20){
  ind = selectRandCity(cities)
  selectedCities[i,] = cities[ind,]
 cities = cities[-ind,]
#print selected cities
print(selectedCities)
ggplot(cities, aes(cities$`County Municipality`, cities$Population)) +
  geom_histogram(stat = "identity")
ggplot(selectedCities, aes(`County Municipality` , Population)) +
  geom histogram(stat = "identity") + coord flip()
knitr::opts chunk$set(
   echo = TRUE,
   eval=TRUE,
   message = FALSE,
   warning = FALSE,
   comment = NA
)
library(ggplot2)
```

```
set.seed(123456)
p <- data.frame(runif(10000,0,1)) #Generate probabilities between 0 and 1
colnames(p) <- "Uniform_num"</pre>
#Generate samples from inverse of CDF
c <- ifelse(p$Uniform_num<0.5, log(2*p$Uniform_num), -log(2-(2*p$Uniform_num)))
p$X <- c
#Estimating distribution of true laplace
p$Laplace <- rmutil::rlaplace(10000,0,1)</pre>
ggplot(p) + geom_histogram(aes(X),fill="red",alpha =0.7) +
    geom_histogram(aes(Laplace),fill="black") + xlab("Samples") +
    ylab("Frequency") + ggtitle("Inverse CDF vs true Laplace distribution")
accept_reject <- function(sam) {</pre>
    f_x \leftarrow c()
    cnt <- 1
    while(cnt<=sam){</pre>
        U <- runif(1,0,1)
#generate a random variable from laplace distribution
        r_x \leftarrow ifelse(U < 0.5, log(2*U), -log(2-(2*U)))
        uni <- runif(1)
        frac \leftarrow \exp(-(r_x^2)/2 + abs(r_x) - 0.5) #value of f(X)/c(g(X))
        if(uni<=frac){</pre>
             f x[cnt] \leftarrow r x
             cnt <- cnt+1
        total <<- total + 1
    }
return(f_x)
}
n = 2000
total <-0
values <- accept_reject(n)</pre>
normal_dist <- rnorm(2000,0,1)</pre>
compare_data <- cbind(values,normal_dist)</pre>
compare_data <- as.data.frame(compare_data)</pre>
colnames(compare_data) <- c("Accept_Rejection", "By_Rnorm")</pre>
hist(compare_data$Accept_Rejection,main = "Normal distribution")
     generated by Accept/Rejection method", xlab = "Random Variables")
ggplot(compare_data) + geom_histogram(aes(Accept_Rejection,fill="Accept_Rejection"),alpha=0.4) +
       geom_histogram(aes(By_Rnorm,fill ="By_Rnorm"), alpha =0.5)
rj_rt <- 1-(2000/total)
cat("The average rejection rate is :", rj_rt)
```