Electronic Materials and Devices

5 Semiconductor

陈晓龙 Chen, Xiaolong 电子与电气工程系

5.6 Light emitting diode 发光二极管

LED is widely used in every aspects of our life.

Indicator board

Traffic lights

LED screen

Illumination

Car lights

Decoration

Structure of a LED product

Space charge layer (SCL)

Depletion layer

No voltage bias

Forward bias

Electron and hole can recombine over an diffusion length $L_{\rm e}$ inside p-region.

Photon energy $\approx E_{\rm g}$

Photons are emitted in random directions.

To have a higher brightness of LED, the structure of LED should be improved:

Electrode should be transparent.

P-region should be thin.

Improved LED structure

Heterojunction high-intensity LEDs

Junction between two differently doped semiconductors that are of the same material, that is, the same bandgap E_g , is called a **homojunction** 单质结. (Silicon PN junction)

Junction between two different bandgap semiconductors is called a **heterojunction** 异质结.

Band diagram

Simplified band diagram shown in the textbook

Band diagram

Heterojunction high-intensity LEDs

Comparison

Light in right direction is absorbed by N⁺ region.

Growth of the heterostructure

Herbert Kroemer

Molecular Beam epitaxy (MBE)

分子外延生长

Small lattice mismatch between AlGaAs and GaAs

Homework 1-4: the band diagram and working principle of following LEDs (don't use the simplified band diagram for heterostructure).

(Quasi-) two-dimensional plane

Very thin active layer: d<10 nm

$$E_{\rm g2} > E_{\rm g1}$$

Electron energy in CB of quantum well

This is also called two-dimensional electron gas.

P N E_{g2} E_{g1} d

Hole energy in VB of quantum well

$$E_{\rm h} = E_{\rm v} - \frac{\hbar^2 n^2}{8m_{\rm h}^* d^2} - \frac{\hbar^2 k_{\rm y}^2}{2m_{\rm h}^*} - \frac{\hbar^2 k_{\rm z}^2}{2m_{\rm h}^*}$$

Working principle

Working principle

No forward bias

With forward bias

Working principle

Merits of quantum well LEDs

➤ Electrons and holes are confined in a very narrow space, and hence unable to avoid each other, which encourages recombination.

➤ 2D electron gas: large density of states (constant) at lowest energies E_1 and E_1 '; For 3D: $DOS \propto \sqrt{E}$

Ampere-voltage characteristics of quantum well LEDs

- ◆ At low bias: linear dependence of I-V
- ◆ At High bias: current becomes saturated

At high voltage bias

Quantum well are overflowed with electrons and holes.

How to solve/reduce this effect?

Multiple quantum well LEDs

LED structure and materials

AlGaInP high intensity heterostructures

Multiple quantum well III-Nitride based LED

LED structure and materials

Table 6.4 Selected LED semiconductor materials

Semiconductor Active Layer	Structure	D or I	λ (nm)	PCE (%)	Comment
GaAs	DH	D	870–900	10	Infrared (IR)
Al_xGa_{1-x} As $(0 < x < 0.4)$	DH	D	640-870	3–20	Red to IR
$In_{1-x}Ga_xAs_yP_{1-y}$ $(y \approx 2.20x, 0 < x < 0.47)$	DH	D	1–1.6 μm	>10	LEDs in communications
$Al_xGa_{0.51-x}In_{0.49}P$	DH	D	570–630	>10	Amber, green, red. High luminous intensity
InGaN/GaN	MQW	D	450-530	5–20	Blue-green
AlGaN/GaN	MQW	D	240-360	1–30	UV
$GaAs_{1-y}P_y \ (y < 0.45)$	HJ	D	630-870	<1	Red-IR
$GaAs_{1-y}P_y$ ($y > 0.45$) (N or Zn, O doping)	НЈ	I	560–700	<1	Red, orange, yellow
SiC (doped)	HJ	I	460-470	0.02	Blue. Low efficiency
GaP (Zn-O)	HJ	I	700	<2	Red
GaP (N)	НЈ	I	565	<1	Green

DH: double heterostructure

HJ: Homojunction

MQW: Multiple quantum well

LED structure and materials

TIR: total internal reflection

Emitted light with angle larger than θ_c will be reflected

 Epoxy: high refractive index and domed surface

Textured surface to decrease TIR

LED output spectrum

The emitted photon energy from an LED is not simply equal to the bandgap energy E_{q} .

Peaked at $E_{\rm c} + \frac{1}{2}kT$ Spread to $E_c + 1.8kT$ Intensity $E \blacktriangle$ $E \blacksquare$ $E_{\rm g} + \frac{1}{2}kT$ **Electron** 1.8kT0.5 $\left[\frac{1}{2}kT\right]$ 1.8kT hf_3 $E_{\mathbf{c}}$ ► hf hf_1 hf_2 hf_3 hf_1 hf_2 $hf_1 = E_g$ $E_{\mathbf{v}}$ Δf or $\Delta \lambda$: Hole Full-width at half-maximum (FWHM) kCarrier concentration per unit energy

Output spectral of AlGaAs IR LED

$$hf_0 = E_{\rm g} + \frac{1}{2}kT$$

$$\Delta f = mkT$$

Theoretical value *m*=1.8

$$\Delta \lambda = \lambda_0^2 \frac{mkT}{hc}$$

Output spectral is less asymmetric:

Higher energy photons can be reabsorbed and emitted at lower energies.

Band edge in doped semiconductor is not sharp.

Output spectral of AlGaAs IR LED

$$hf_0 = E_{\rm g} + \frac{1}{2}kT$$

Varshni equation

for semiconductors:

$$E_{\rm g} = E_{\rm g0} - \frac{AT^2}{B+T},$$

$$E_{g0} = E_g(T = 0K)$$

$$hf_0 = E_{g0} - \frac{AT^2}{B+T} + \frac{1}{2}kT$$

Brightness and efficiency of LEDs

Power conversion efficiency/external efficiency: η_{PCE}

$$\eta_{\text{PCE}} = \frac{\text{Optical output power}}{\text{Electrical input power}} = \frac{P_{\text{o}}}{IV}$$

Internal quantum efficiency: η_{IQE}

 $\eta_{\text{IQE}} = \frac{\text{Rate of radiative recombination}}{\text{Total rate of recombination (radiative + nonradiative)}}$

 $\tau_{\rm r}^{-1}$: Mean life time of an electron before it recombines radiatively.

 $\tau_{\rm nr}^{-1}$: Mean life time of an electron before it recombines nonradiatively.

$$\eta_{\text{IQE}} = \frac{\tau_{\text{r}}^{-1}}{\tau_{\text{r}}^{-1} + \tau_{\text{nr}}^{-1}}$$

Extraction efficiency: $\eta_{\rm EE}$

 $\eta_{\rm EE} = \frac{\text{Photons emitted externally from the device}}{\text{Photons generated internally by recombination}}$

External quantum efficiency: $\eta_{\rm EQE}$

 $\eta_{\text{EQE}} = \frac{\text{Photons emitted externally per seconds(Photon flux)}}{\text{Electrons flowing into the device per seconds}}$

$$=\frac{P_{0}/hf}{I/e}$$

Relation between η_{EQE} , η_{IQE} , and η_{EE} :

$$\eta_{\rm EQE} = \eta_{\rm IQE} \times \eta_{\rm EE}$$

Q:
$$\eta_{EQE} \ge \eta_{PCE}$$
 or $\eta_{EQE} \le \eta_{PCE}$ or ...?

External quantum efficiency: $\eta_{\rm EQE}$

$$\eta_{\text{EQE}} = \frac{\text{Photons emitted externally per seconds (Photon flux)}}{\text{Electrons flowing into the device per seconds}} = \frac{P_{\text{o}}/hf}{I/e}$$

Power conversion efficiency/external efficiency: η_{PCE}

$$\eta_{\text{PCE}} = \frac{\text{Optical output power}}{\text{Electrical output power}} = \frac{P_{\text{o}}}{IV}$$

Tunneling LEDs 隧穿发光二极管

Tunneling LEDs made from two-dimensional materials

Quantum LED/ Single photon light source

Send the device to low temperature: 10 Kelvin

EL mapping

10 Kelvin

FWHM: 0.8 and 3 nm

Density of states: 1

At each time, only one electron can fill the state.

Only one photon can emit at each time.

Phase of photons are all the same.

Intensity-correlation $g^2(\tau)$ measurement

Quantum communication/computation needs single photon light source.

量子通信和量子计算需要单光子源。