Онлайн-приложение к статье

«А был ли сдвиг: эмпирический анализ тестов на структурные сдвиги в волатильности доходностей»

Андрей Викторович Костырка — Дмитрий Игоревич Малахов 9 октября 2020 г.

$$AIT \stackrel{\text{def}}{=} \sup_{k} \sqrt{C_T \hat{\sigma}^2 / \hat{S}} \cdot |D_k|, \qquad (1)$$

где $D_k \stackrel{\text{def}}{=} C_k/C_T - k/T$, $C_k \stackrel{\text{def}}{=} \sum_{t=1}^k \tilde{r}_t^2$, $C_T \stackrel{\text{def}}{=} \sum_{t=1}^T \tilde{r}_t^2$, \tilde{r}_t — центрированные доходности, $\hat{\sigma}^2 \stackrel{\text{def}}{=} C_T/T$ и \hat{S} — НАС-оценка безусловной дисперсии $\kappa ea\partial pamoe$ доходностей, т. е. $\hat{S} \stackrel{\text{def}}{=} \sum_{j=-m}^m w(j,m)\hat{\Omega}_j$,где $\hat{\Omega}_j = \widehat{\text{Cov}}(\tilde{r}_t^2,\tilde{r}_{t-j}^2) \stackrel{\text{def}}{=} T^{-1} \sum_{t=j+1}^T (\tilde{r}_t^2 - \hat{\sigma}^2)(\tilde{r}_{t-j}^2 - \hat{\sigma}^2)$, w(j,m) — ядерные веса выборочных автоковариаций, m — ширина окна.

Упрощённая версия данной статистики для IID-рядов:

$$\operatorname{IT} \stackrel{\text{def}}{=} \sup_{k} \sqrt{T/2} \cdot |D_k| \,. \tag{2}$$

1 ICSS-алгоритм для выявления структурных сдвигов

В данном разделе под нулевой гипотезой будет подразумеваться гипотеза \mathcal{H}_0 : отсутствует структурный сдвиг. Порядок проведения данного теста приводится по Inclan, Tiao (1994):

- 1. Получить эмпирические критические значения АІТ-статистики из уравнения (1) для ряда с похожей динамикой и похожей длиной (с помощью Монте-Карлосимуляций) или взять асимптотические критические значения Inclán, Tiao: $1,224,\,1,358,\,1,628$ для квантилей уровня $90\,\%,\,95\,\%$ и $99\,\%$ соответственно.
- 2. Посчитать АІТ-статистику для исследуемого ряда.
 - (а) Если расчётное значение не превышает критического, то остановить тест и сделать заключение об однородности дисперсии ряда.
 - (b) Если расчётное значение превышает критическое, то зациклить проверку от конца к началу: определить $k_{t} \stackrel{\text{def}}{=} \operatorname{argmax} |\{D_{k}\}_{k=1}^{T}|$ (момент потенциального структурного сдвига), обрезать выборку **с конца** (т.е. оста-

вить наблюдения $\{r_t\}_{t=1}^{k_t}$), рассчитать АІТ-статистику для $\{r_t\}_{t=1}^{k_t}$, сравнить с критическим значением, при превышении оного определить $k_H \stackrel{\text{def}}{=} \operatorname{argmax}_k |\{D_k\}_{k=1}^{k_t}|$ и повторять проверку на укорачиваемой с конца выборке до тех пор, пока не перестанет отвергаться \mathcal{H}_0 . Определить k_1^* — момент первого потенциального сдвига — как точку конца минимальной выборки, на которой не отвергается \mathcal{H}_0 , т. е. $k_1^* \stackrel{\text{def}}{=} k_H$... (последний из найденных k_t, k_H, k_H, \dots).

- 3. Рассмотреть вторую часть выборки, $\{r_t\}_{t=k_1^*+1}^T$, рассчитать на ней АІТ-статистику.
 - (а) Если расчётное значение не превышает критического, то заключить, что в ряде больше сдвигов нет.
 - (b) Если расчётное значение превышает критическое, то зациклить проверку от начала обрезанной выборки к концу: определить $k' \stackrel{\text{def}}{=}$ argmax $|\{D_k\}_{k=k_1^*+1}^T|$ (момент потенциального структурного сдвига), обрезать выборку **с начала** (оставить наблюдения $\{r_t\}_{t=k'+1}^T$), рассчитать АІТ-статистику для $\{r_t\}_{t=k'+1}^T$, сравнить с критическим значением, при превышении оного определить $k'' \stackrel{\text{def}}{=}$ argmax $_k |\{D_k\}_{k=k'+1}^T|$ и повторять проверку на укорачиваемой с начала выборке до тех пор, пока не перестанет отвергаться \mathcal{H}_0 . Определить k_2^* момент второго потенциального сдвига как точку, предшествующую точке начала последней укороченной выборки без сдвигов, т. е. $k_2^* \stackrel{\text{def}}{=} k''$... (последний из найденных k', k'', k''', \ldots).
- 4. Если на шагах 2b и 3b были обнаружены моменты сдвигов, то зациклить шаги 2 и 3: рассмотреть укороченную с обоих концов выборку, т. е. середину ряда, $\{r_t\}_{t=k_1^*+1}^{k_2^*}$. Повторять шаги 2–3 для этой средней части выборки, находя поочерёдно первый потенциальный сдвиг в начале и последний потенциальный сдвиг на оставшейся части и укорачивая выборку с обоих концов, пока не перестанет отвергаться нулевая гипотеза о том, что на оставшейся средней части структурный сдвиг отсутствует, и сделать вывод о наличии потенциальных (но ещё не подтверждённых окончательно) упорядоченных по возрастанию моментов сдвига $k_{(1)}^*, \ldots, k_{(B)}^*$ в динамике параметров, где B общее число выявленных сдвигов.
- 5. Уточнить найденные точки потенциальных сдвигов по количеству и по позиции (так как обычно на предыдущих шагах находится больше точек сдвига, чем есть на самом деле). Определить $k_{(0)}^* \stackrel{\text{def}}{=} 0$ и $k_{B+1}^* \stackrel{\text{def}}{=} T$. Зациклить следующую процедуру уточнения результатов.
 - (а) Проверить наличие сдвига на каждом интервале от предшествующего до следующего момента, т. е. рассчитать АІТ-статистики для $\{r_t\}_{t=k_{(i-1)}^*+1}^{k_{(i+1)}^*}$, $i=1,\ldots,B$.

- (b) Если АІТ-статистики на некоторых интервалах не превышают критического значения и всего обнаружилось B' < B статистик выше порога, то это значит, что некоторые найденные до этого точки не являются моментами структурного сдвига и что необходимо исключить их из ранжировки: после всех B проверок исключить из набора $k_{(1)}^* < \ldots < k_{(B)}^*$ точки, для которых не отвергается гипотеза об отсутствии структурного сдвига на интервале от предыдущей до следующей точки, и переопределить набор потенциальных сдвигов $k_{(1)}^* < \ldots < k_{(B')}^*$.
- (c) Если все B АІТ-статистик превышают критическое значение, то переопределить $k_{(i)}^* \stackrel{\text{def}}{=} \operatorname{argmax}_k |\{D_k\}_{k=k_{(i-1)}^*+1}^{k_{(i+1)}^*}|$, т. е. уточнить положение каждого потенциального сдвига на интервале. Отсортировать $k_{(i)}^*$ по возрастанию.
- (d) Возвращаться на шаг 5а, пока количество потенциальных точек сдвига не перестанет уменьшаться на шаге 5b, а все значения $k_{(i)}^*$ при отсутствии изменения количества точек не перестанут изменяться с каждой следующей итерацией более чем на некоторое пороговое значение на шаге 5с (рекомендуется значение порога в 2 точки).

На усмотрение исследователя на шаге 5 можно проверять дополнительное ограничение: если в результате очередного изменения некоторое $k_{(i)}^*$ оказалось слишком близко к $k_{(i-1)}^*$ и из содержательных соображений нельзя заключить, что структурные сдвиги происходят так часто, то $k_{(i)}^*$ удаляется из набора. Это же ограничение можно применять, если максимальное изменение положения точки шаге 5 перестаёт уменьшаться и остаётся на уровне, выше порогового. В данной работе используется менее строгое ограничение: минимально допустимое расстояние между $k_{(i)}^*$ и $k_{(i-2)}^*$ должно быть 20 точек, иначе $k_{(i-1)}^*$ удаляется из набора, а при наличии зацикливания ограничивается количество итераций (не более 100).

В данной работе мы предлагаем ещё одну проверку, не описанную в других работах: существует вероятность того, что на шагах 2–3 были выявлены два или более потенциальных сдвигов, однако на шаге 5а ни на одном интервале не обнаруживается значимых сдвигов (этот феномен изредка наблюдался в симуляциях примерно в 0.1% случаев). Алгоритм предписывает исключить все потенциальные точки сдвига одновременно, что приведёт к тому, что гипотеза о наличии в ряде сдвига отвергается (так как на всём ряде расчётное значение AIT-статистики превышает критическое), однако достоверно установить присутствие хотя бы одного сдвига не удаётся. В таком случае мы не исключаем сразу все точки из рассмотрения, а рассчитываем середины интервалов, определяемых этими точками, и проводим проверку ещё раз. Например, если B'=2 и B''=0, то не исключаются одновременно $k_{(1)}^*$ и $k_{(2)}^*$, а задаётся $\tilde{B}''=B'-1=1$, рассчитывается $k_{(\tilde{B}'')}^*=(k_{(1)}^*+k_{(2)}^*)/2$, и проверка возобновляется с шага 5b. Данное решение обусловлено тем фактом, что если на некотором участке ряда на самом деле присутствует один сдвиг, расположенный близко к краю, то ICSS-метод, скорее всего, его не обнаружит, и в случае, когда вместо истинного момента сдвига обнаруживается два близких ложных, расположенных по разные

стороны от истинного, скорее всего, на подвыборках, содержащих момент истинного сдвига близко к краю, никаких сдвигов обнаружено не будет, поэтому при отсутствии добавленной нами проверки оба потенциальных момента сдвига будут ошибочно исключены одновременно.

Список литературы

Inclan C., Tiao G. C. Use of cumulative sums of squares for retrospective detection of changes of variance // Journal of the American Statistical Association. — 1994. — T. 89, \mathbb{N}^{9} 427. — c. 913—923.