- 8-1 电路如图所示,变压器副边电压有效值为2 U_2 。
 - 1)画出 u_2 、 u_{D1} 和 u_O 的波形;
 - 2)求出输出电压平均值 $U_{O(AV)}$ 和输出电流平均值 $I_{L(AV)}$ 的表达式;
 - 3)二极管平均电流 $I_{D(AV)}$ 和所承受的最大反向电压 U_{Rmax} 的表达式

解答:

- 1) 全波整流电路,波形如图
- 2) $U_{\text{O(AV)}} \approx 0.9U_2$
- $I_{\rm L(AV)} \approx \frac{0.9U_2}{R_{\rm I}}$

$$I_{\rm D} \approx \frac{0.45U_2}{R_{\rm L}}$$

$$U_{\rm R} = 2\sqrt{2}U_2$$

8-2 某倍压整流电路如图所示,设 $u_2 = 2\sqrt{2}sin\omega t$ 简要分析其工作原理。标出各电容两端电压的极性和数值,并分析负载电阻上能够获得几倍压的输出

[解] 当 u_2 处于负半周时,即"上"端为负,"下"端为正时, D_1 导通, u_2 通过 D_1 向电容 C_1 充电,电容 C_1 的电压 u_{C1} 可达 u_2 的幅值 $\sqrt{2}$ U_2 ,电压 u_{C1} 的极性如图所示;当 u_2 处于正半周时,即"上"端为正,"下"端为负时,则 D_2 导通, u_2 和 u_{C1} 串联后,通过 D_2 向电容 C_2 充电, u_{C2} 最大可达 $2\sqrt{2}$ U_2 。此时, D_1 因反偏而截止。由于负载电阻 R_L 大,负载电流很小, C_2 充电后,放电时间常数 C_2 R_L 很大,输出电压 $U_0 \approx 2\sqrt{2}$ U_2 。

- 8-3 稳压电路中,已知稳压管的稳定电压 U_Z 为6V,最小稳定电流 $I_{Z_{min}}$ 为5mA,最大稳定电流 $I_{Z_{max}}$ 为40mA;输入电压 U_I 为15V,波动范围为±10%;限流电阻R为200 Ω 。
 - 1)作为稳压电路的指标, 负载电流**I**L的范围?
 - 2) 电路为什么不能空载? 如果希望可以空载,需要作何改变?

解答:

(1) 由于空载时稳压管流过的最大电流为

$$I_{\mathrm{D_Z\,max}}=I_{R\mathrm{max}}=rac{U_{\mathrm{Im\,ax}}-U_{\mathrm{Z}}}{R}=52.5\mathrm{mA}>I_{\mathrm{Zmax}}=40\mathrm{mA}$$
所以电路不能空载。

8-3 2) 作为稳压电路的指标,负载电流/的范围?

解答:

根据
$$I_{D_z \min} = \frac{U_{I \min} - U_Z}{R} - I_{L \max}$$

负载电流的
$$I_{\text{Lmax}} = \frac{U_{\text{Imin}} - U_Z}{R} - I_{\text{D}_z \text{min}} = 32.5 \text{mA}$$

根据
$$I_{D_z \max} = \frac{U_{Imax} - U_Z}{R} - I_{Lmin}$$

所以,负载电流的范围为12.5~32.5mA。

- **8-4** 电路如图所示,输入直流电压 $U_{\rm I}$ =24V,三极管的 $U_{\rm BE}$ 均等于0.7V,稳压管的 $U_{\rm Z}$ =5.3V,负载电流 $I_{\rm L}$ =100mA。试问: (1)输出电压 $U_{\rm o}$ 的范围?
 - (2) 当 C_1 的容量足够大时,变压器二次侧电压 U_2 等于多少伏特?
 - (3) 当电位器 R_W 的滑动端处于什么位置(上端或下端)时,调整管 T_1 的功耗最大?调整管 T_1 的极限参数 P_{CM} 至少应选多大(应考虑电网有 $\pm 10\%$ 的波动)?

8-4 解答: (a)
$$U_{B2} = U_{Z} + U_{BE2} = 6 \text{ V}$$

$$U_{Omin} = \frac{R_{1} + R_{2} + R_{W}}{R_{2} + R_{W}} U_{B2} = 12 \text{ V}$$

$$U_{Omax} = \frac{R_{1} + R_{2} + R_{W}}{R_{2}} U_{B2} = 18 \text{ V}$$

(b)
$$U_1 = 1.2 \ U_2$$
, $U_2 = \frac{U_1}{1.2} = 20 \ V$

(c) T_1 的最大功耗出现在 R_w 的滑动端处于最上端。

$$P_{\rm CM} = (U_{\rm I} - U_{\rm Omin}) I_{\rm CE} = 1.2 \text{ W}$$

考虑电源 10%波动时, $U_{\rm I} = 26.4 \text{ V}, P_{\rm CM} = 1.44 \text{ W}$ 。

8-5 图中画出了三个直流稳压电源电路,输出电压和输出电流的数值如图所示,试分析各电路是否有错误?如有错误,请加以改正。

8-5 解答: a) 电路有两处错误,一处是整流滤波电路的滤波电容 $(0.33 \mu F)$ 太小,另一处是变压器二次侧电压 $u_2(15 V)$ 太小。

滤波电容的选取应满足 $\tau = RC \ge (3 - 5) \frac{T}{2}$ 的关系,当 T = 20 ms 时

$$R \approx \frac{U_{\rm o} + \Delta U}{I_{\rm o}} = 27 \Omega$$

则滤波电容 $C \geqslant \frac{5}{R} \cdot \frac{T}{2} \approx 1850 \ \mu\text{F}$,选取滤波电容 C 大于 2000 μF 。

选择变压器二次侧电压时,不仅要考虑输出直流电压的大小,也要考虑调整管工作在放大区(压降约为 3 V)之要求。因而 LM7824 的输入直流电压至少应为 27 V。另外考虑到输入端滤波电容(以 2000 μ F 为例)两端电压近似为锯齿波电压,其峰峰值 $\int -A \cdot \Delta t = \frac{T}{\lambda}$

$$\Delta U = \frac{1}{C} I \Delta t = 5 \text{ V} = \frac{1 \times 10 \times 10^{-3}}{2000 \times 10^{-6}}$$

因此,要求滤波后的电压平均值不低于(27+5/2) V=29.5 V,也就是说,变压器二次侧电压 u_2 至少应为 24.6 V。

图(b)电路也有两处错误,一处是 79 系列稳压器是负电源,它不符合整流桥和输出电压极性的要求,另一处是负载需要 1 A 电流,而 LM79L12 只能提供 0.1 A电流。故应将 LM79L12 换为 LM7812。