Motivating Riemann sums

November 11th, 2024

Here are some key ideas from section 5.1.

- The area problem asks us to find the area of the region S that lies under the curve y = f(x) from a to b.
- We will use the convention that regions under the x-axis have $\frac{\text{Negative}}{\text{Al}}$ area. So in the diagram above, the area of the region is $\frac{A_1}{A_2}$.
- A Riemann sum is a way to approximate areas under curves. There are left, right, and midpoint Riemann sums. Here are some sketches:

The problems below will walk you through the process of calculating Riemann sums.

......

Trig practice: Sketch the graphs of $y = 2 \cos x$ and $y = -3 \cot x$.

Problem 1: (Stewart 5.1) Let $y=x^2$ on the interval $0 \le x \le 1$. In this problem, we will find R_4 , a right Riemann sum with four rectangles.

- 1. Sketch the graph of y on the interval [0, 1]. Shade the area under the curve.
- 2. Divide the interval [0,1] on the x-axis into four equal segments. What is the width of each segment?
- 3. Each segment has a left and right endpoint. For each right endpoint, draw a point at the corresponding *y*-value.
- 4. Each point you drew represents the height of the rectangle whose base is the corresponding segment. Draw the four rectangles.
- 5. Find the area of each rectangle (width \times height). Add the four areas to approximate the area under the curve.

My Attempt:

Problem 2: (Stewart 5.1) Repeat Problem 1, but find a left Riemann sum (L_4) instead of a right Riemann sum. In this case, the heights of the rectangles are given by the y-values of the left endpoints.

My Attempt:

Problem 3: (Stewart 5.1) Using the diagram below, find L_4 , R_4 , and M_4 to estimate the area under the curve from x = 0 to x = 8. This problem is calculator friendly.

My Attempt:

Problem 4: (Stewart 5.1) Let $f(x) = x^2$.

- a) Use the formula $1^2+2^2+3^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$ to find R_n and L_n for arbitrary n. From x : 0 to x = 1.
- b) Find $\lim_{n\to\infty} R_n$ and $\lim_{n\to\infty} L_n$. What do you notice? What do these value represent?

My Attempt:

Solution: a) $Rn = \frac{1}{n} \left(\frac{1}{n}\right)^{\frac{1}{2}} + \frac{1}{n} \left(\frac{a}{n}\right)^{\frac{1}{2}} + \dots + \frac{1}{n} \left(1\right)^{\frac{1}{2}}$ $= \frac{1}{n^{\frac{1}{2}}} \left(1^{\frac{1}{2}} + a^{\frac{1}{2}} + 3^{\frac{1}{2}} + \dots + n^{\frac{1}{2}}\right)$ $= \frac{1}{n^{\frac{1}{3}}} \frac{n(n+1)(2n+1)}{6}$ $Ln = 0 + \frac{1}{n} \left(\frac{1}{n}\right)^{\frac{1}{2}} + \frac{1}{n} \left(\frac{a}{n}\right)^{\frac{1}{2}} + \dots + \frac{1}{n} \left(\frac{n-1}{n}\right)^{\frac{1}{2}}$ $= \frac{1}{n^{\frac{1}{2}}} \left(0 + 1^{\frac{1}{2}} + a^{\frac{1}{2}} + \dots + (n-1)^{\frac{1}{2}}\right)$ $= \frac{1}{n^{\frac{1}{3}}} \frac{(n-1)(n)(2(n-1)-1)}{6}$ b) $\lim_{n \to \infty} 2n = \lim_{n \to \infty} Mn = \frac{1}{3}$ This is the exact area!

Problem 5: (Stewart 5.1) Suppose we want to find the area under the curve f(x) on a given interval. We split our interval into n segments, and we let x_1, x_2, \cdots, x_n represent the right endpoints of each of our n segments. Let Δx be the width of each segment.

- a) Find an expression for R_n using that information (the notation $\sum_{i=1}^n$ might be helpful).
- b) What does $\lim_{n\to\infty} R_n$ represent, and how should it compare to $\lim_{n\to\infty} L_n$ and $\lim_{n\to\infty} M_n$?

My Attempt:

Solution: a) $Rn = \sum_{i=1}^{n} \Delta x f(x_i) = \Delta x \sum_{i=1}^{n} f(x_i)$ b) $\lim_{n \to \infty} Rn = \lim_{n \to \infty} \ln = \lim_{n \to \infty} M_n$, which is the exact area under the curve.

Problem 6: (Stewart 5.1) Derive an expression for the area under the curve $y=x^3$ from 0 to 1 as a limit. Then use the sum of cubes formula $1^3+2^3+3^3+\cdots+n^3=\left[\frac{n(n+1)}{2}\right]^2$ to evaluate the limit.

My Attempt:

Solution: $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{n}\right)^{3}$ $= \lim_{n \to \infty} \frac{1}{n^{4}} \left(\frac{1}{1+2^{3}+3^{3}+\dots+n^{3}}\right)$ $= \lim_{n \to \infty} \frac{1}{n^{4}} \left(\frac{n(n+1)}{2}\right)^{2}$ $= \frac{1}{4}$