Arquitetura de Redes Modelos e Protocolos de Rede

Prof.: Caio Malheiros

caio.duarte@sp.senai.br

Protocolo de comunicação

 O que é preciso para estabelecer uma comunicação?

 Para o estabelecimento de uma comunicação, é necessário mais do que um meio de transmissão!

 Um conjunto de mensagens com sintaxe (estrutura) bem definida deve ser estabelecido

Protocolo de comunicação

 Um protocolo representa um conjunto de regras que governa uma comunicação, incluindo formato, sequência de mensagens, e ações tomadas ao enviar ou receber uma mensagem

 Define o que é comunicado, como é comunicado e quando será comunicado

Protocolo de comunicação

• Qual é o protocolo utilizado?

Protocolo de Rede

 Em uma rede, os protocolos permitem a comunicação de máquinas e equipamentos de interconexão no lugar de humanos

 Computadores devem implementar o mesmo protocolo para se comunicarem

 Na prática, porém, diferentes protocolos colaboram entre si.

Protocolo de Rede

Padronização de comunicação

Modelo OSI (Open System Interconnection)

- Criado pela ISO em 1971 e formalizado em 1983, para padronizar a comunicação entre sistemas de redes diferentes.
- **Objetivo**: Facilitar a interoperabilidade entre diferentes dispositivos e sistemas de redes

- Principais Benefícios:
 - Estrutura lógica para entender redes.
 - Facilita o desenvolvimento de novas tecnologias de rede.
 - Ajuda a resolver problemas ao separar as funções da rede em camadas distintas.

Protocolo TCP / IP

• O TCP/IP é um conjunto de protocolos de comunicação.

• O nome vem de dois protocolos TCP (Transmissi Control Protocol) e o IP (Internet Protocol).

 Ele tem por objetivo padronizar todas as comunicações de rede, principalmente as comunicações na web.

Protocolo TCP / IP - Modelo

 O modelo TCP/IP é dividido em quatro camadas, cada uma com protocolos específicos que ajudam na comunicação e transferência de dados entre dispositivos conectados em rede.

• Vint Cerf (Vinton Gray Cerf) é um dos pais da Internet. Ele é um cientista da computação norte-americano que, junto com Bob Kahn, desenvolveu o protocolo TCP/IP, que é a base da comunicação na internet até hoje.

Protocolo TCP / IP

• Ele foi desenvolvido pelo Departamento de Defesa dos EUA e possui 4 camadas.

- Camadas do Modelo TCP/IP (de cima para baixo):
- Aplicação Protocolos como HTTP, FTP, SMTP, DNS
- Transporte Comunicação confiável ou não (TCP ou UDP)
- Internet Endereçamento e roteamento de pacotes (IP)
- Acesso à rede (ou interface de rede) Enlace + física (Ethernet, Wi-Fi)

Protocolo IP (internet protocol)

• É um conjunto de regras que permite que dados sejam enviados de um computador para outro através da internet ou de qualquer rede.

• Permitir que cada dispositivo em uma rede tenha um endereço único (o endereço IP) e possa enviar e receber pacotes de dados.

Como o IP funciona (de forma simples)

Imagine o IP como o sistema de endereçamento de uma carta:

- O remetente é quem envia a carta (endereço IP de origem).
- O destinatário é quem vai receber (endereço IP de destino).
- Os correios são a rede que entrega os pacotes (roteadores).
- A carta é o pacote de dados.

Pacotes IP

Os dados enviados pela rede são divididos em pacotes.

Cada pacote possui:

- Endereço IP de origem
- Endereço IP de destino
- Informações de controle (versão, TTL, etc.)
- Dados (conteúdo

Versões do IP

- IPv4 (versão 4)
- Mais comum
- 32 bits (endereços como 192.168.0.1)
- Limite de ~4,3 bilhões de endereços
- IPv6 (versão 6)
- Criado por causa da escassez do IPv4
- 128 bits (endereços como 2001:0db8:85a3:0000:0000:8a2e:0370:7334)
- Quantidade infinita de endereços

Roteamento

• O IP trabalha junto com **roteadores** para encontrar o **melhor caminho** entre o remetente e o destinatário.

• O pacote pode passar por vários dispositivos até chegar ao destino.

Tipos de endereço IP

- Público vs. Privado:
- Público: visível na internet
 - Privado: usado em redes internas (como 192.168.x.x)
- Estático vs. Dinâmico:
 - Estático: fixo
 - Dinâmico: atribuído automaticamente (via DHCP)

Conclusão

- IP é como o CPF dos dispositivos na rede.
- É essencial para a comunicação entre máquinas.
- Versões IPv4 e IPv6 convivem, mas o futuro é IPv6.
- Trabalha com outros protocolos para formar a base da Internet.

Dúvidas? Ótimo dia para todos!