1. Ejemplo 3

El movimiento de caída de un cuerpo de masa m en un medio que opone una resistencia proporcional al cuadrado de la velocidad está gobernado por la ecuación diferencial:

$$\frac{d^2s}{dt^2} = g - \frac{K}{m} \left(\frac{ds}{dt}\right)^2 \tag{1}$$

siendo $g=10\frac{m}{s^2}$ y $K\frac{kg}{s}$ una constante de proporcionalidad cuyo valor depende del problema concreto. Si el cuerpo se abandona sin velocidad inicial y las condiciones inciales son

$$s(0) = s'(0) = 0 (2)$$

Calcular una tabla de valores de las funciones s(t) y s'(t) para dibujar sus gráficas en el intervalo [0,1]. Tomar $\frac{K}{m} = 5$.

Solución:

El problema que se nos propone resolver es

$$\begin{cases} s'' + 5(s')^2 - 10 = 0\\ s(0) = s'(0) = 0 \end{cases}$$

Una formulación equivalente se obtiene haciendo $s(t) \equiv u(t)$ y $s'(t) \equiv v(t)$ de modo que se tiene el sistema:

$$\begin{cases} u' = v \\ v' = -5v^2 + 10 \\ u(0) = 0, v(0) = 0 \end{cases}$$

como el objetivo es dibujar la gráfica de las funciones no es necesaria mucha exactitud y por su sencillez en este caso es ideal el uso del método del trapecio. Tomaremos h = 0,1.

La forma que toma el método del trapecio para sistemas de dos ecuaciones es:

$$\begin{cases} u_j = u_{j-1} + \frac{1}{2}(\Delta u_0 + \Delta u_1) \\ \Delta u_0 = hf(t_{j-1}, u_{j-1}, v_{j-1}) \\ \Delta u_1 = hf(t_{j-1}, u_{j-1} + \Delta u_0, v_{j-1} + \Delta v_0) \\ v_j = v_{j-1} + \frac{1}{2}(\Delta v_0 + \Delta v_1) \\ \Delta v_0 = hg(t_{j-1}, u_{j-1}, v_{j-1}) \\ \Delta v_1 = hg(t_{j-1}, u_{j-1} + \Delta u_0, v_{j-1} + \Delta v_0) \end{cases}$$

cuya expresión será deducida en el correspondiente trabajo. La tabla de valores obtenida es la siguiente:

j	t_{j-1}	(u_{j-1}, v_{j-1})	t_{j}	(u_j, v_j)
1	0.00	0.000000, 0.000000	0.10	0.050000, 0.750000
2	0.10	0.050000, 0.750000	0.20	0.160938,1.070068
3	0.20	0.160938,1.070068	0.20	0.289318,1.223146
4	0.30	0.289318,1.223146	0.40	0.424231,1.305143
5	0.40	0.424231,1.305143	0.50	0.562160,1.351168
6	0.50	0.562160,1.351168	0.60	0.701635,1.377549
7	0.60	0.701635,1.377549	0.70	0.841949,1.392822
8	0.70	0.841949,1.392822	0.80	0.982733,1.401712
9	0.80	0.982733,1.401712	0.90	1.123784,1.406900
10	0.90	1.123784,1.406900	1.00	1.264990,1.409933

Tabla 1: Trapecio para sistemas con h=0,1

Finalmente las gráficas generadas son:

Figura 1: Representación gráfica de sys'.