3000788 Intro to Comp Molec Biol

Lecture 13: Functional enrichment analysis

September 28, 2023

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Overrepresentation analysis

Enrichment fold

Gene group	Kinase	Not kinase	Total
Differentially expressed	50	350	400
Not differentially expressed	150	5450	5600
Total	200	5800	6000

- There are 200 kinases among 6000 genes
- Expected 400 x 200 / 6000 = 13 kinases to be differentially expressed
- Enrichment = 50 / 13 = 3.85 folds

Fisher's Exact Test

Gene group	Kinase	Not kinase	Total
Differentially expressed	k ≥ 50	400 – k	400
Not differentially expressed	200 – k	5400 + k	5600
Total	200	5800	6000

- P-value for this observation = P(Kinase & DE ≥ 50)
- P(Kinase & DE = k) = Hypergeometric(N = 6000, K = 200, n = 400, k)

Hypergeometric distribution

- $\binom{K}{k}$ ways to select the intersected k genes
- $\binom{N-K}{n-k}$ ways to select the remaining n-k non-kinase genes
- Total of $\binom{N}{n}$ ways
- Probability = $\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$

Gene Set Enrichment Analysis (GSEA)

GSEA algorithm sketch

 Sort genes by the extent of up-/downregulation across conditions

- Label genes annotated with a function
- If these genes are clustered together at the top, then this function is up-regulated
- If these genes are clustered together at the bottom, then this function is down-regulated

GSEA scoring

- Starting at score = 0 from the top of the sorted gene list
- If encounter gene from *S*, +score
- Otherwise, -score
- Score indicates the extent of up-/down-regulation
 - Correlation with conditions
 - Log fold-change

Interpretation of GSEA score

- High enrichment score indicates cluster of genes from function S at the top of the gene list
 - Up-regulation
- Low (negative) enrichment score indicates cluster of genes from function S at the bottom of the list
 - Down-regulation

Up-regulated versus unchanged pathways

Null hypothesis for GSEA

- **Null hypothesis**: Genes from *S* are uniformly distributed in the list
- +score and -score are uniformly distributed in the list
- This is a Random Walk

Statistical behaviors of random walks

https://demonstrations.wolfram.com/SimulatingTheSimpleRandomWalk/

P(maximal deviation > d) $\approx 2 \sum_{k=1}^{\infty} (-1)^{k-1} e^{-2(kd)^2}$

Statistical testing for GSEA

- Score ES(S) for a function S
- P-value = $P(score \ge ES(S))$ under the random walk model
- Test of deviation from ES = 0
- Kolmogorov-Smirnov test

Kolmogorov-Smirnov test

- Test whether two probability distribution are equal
- Compare cumulative density (red and blue trends)
- If they are equal, the two curves should stay close to each other
- Null hypothesis: random walk

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Setting the score for GSEA

Enrichment statistic. The exponential scaling factor of the phenotype score in enrichment score formula.

- Originally developed for microarray data

- Adapted to RNA-seq
 - Log fold-change
 - No score (simply rank genes)
- Weighted score = (score)^p
 - Default: p = 1
 - No score: p = 0
 - More weights for top genes: p > 1

Comparing the impact of p = 0 and 1

Pros and cons of GSEA

- No need to define p-value cutoff
- Identify both up- and down-regulated functions at once

Network topology-based analysis

Gene and protein interaction networks

Chen, C. et al. Scientific Reports 9:1197 (2019)

Network coherence scores

Connectedness

- Number of components
- Number of edges

Path length between genes

- Unweighted
- Weighted by fold changes

Chen, C. et al. Scientific Reports 9:1197 (2019)

Permutation test: Gene set

- Randomly select the same number of genes
 - Recalculate network coherence scores
 - P-value = fraction of samplings that the score is ≥ the original

Chen, C. et al. Scientific Reports 9:1197 (2019)

Permutation test: Network

Edge switching

Temate-Tiageru *et al.* BMC Genomics, 17:542 (2016)

Source: https://mathematica.stackexchange.com/questions/11632/how-to-generate-a-random-tree

Differential network

Ideker et al. Mol Syst Biol, 8:565 (2012)

- Detect gain/loss gene co-expression
- Unrelated interaction remains the same

Pros and cons

- Overrepresentation
 - Easy and fast to calculate
 - Depend on p-value cutoff
- GSEA
 - No p-value cutoff
 - Distinguish up- and down-regulated functions
- Network-based
 - Most biologically meaningful
 - Network data is incomplete

Any question?

- Coming up:
 - Functional enrichment analysis demo with online tools