Kapitel III

Lokale Eigenschaften von Varietäten

§ 12 Lokale Ringe

 $\textbf{Definition} \ + \ \textbf{Bemerkung 12.1} \ \ \text{Sei} \ \mathbb{K} \ \ \text{K\"{o}rper}, \ V \ \text{eine quasiprojektive Variet\"{a}t\"{a}t\"{u}ber} \ \mathbb{K}, \ x \in V.$

(i) Der lokale Ring von V in x ist definiert als

$$\mathcal{O}_{V,x} := \{ (U, f)_{\sim} \mid U \subseteq V \text{ offen }, x \in U, f \in \mathcal{O}_V(U) \}$$

wobei

$$(U_1, f_1) \sim (U_2, f_2) \iff \text{Es existiert } U \subseteq U_1 \cap U_2 \text{ offen mit } f_1|_U = f_2|_U$$

- (ii) Die Elemente von $\mathcal{O}_{V,x}$ heißen Keime von regulären Funktionen. Notation: $(U,f)_{\sim} =: f_x$.
- (iii) $\mathcal{O}_{V,x}$ ist K-Algebra und die Abbildung

$$\phi_x: \mathcal{O}_{V,x} \longrightarrow \mathbb{K}, \quad (U,f)_{\sim} \mapsto f(x)$$

ist surjektiver Homomorphismus von K-Algebren.

(iv) $\mathcal{O}_{V,x}$ ist lokaler Ring mit maximalem Ideal

$$\mathfrak{m}_x = \{(U, f)_{\sim} \mid f(x) = 0\} = \ker \phi_x$$

Beweis. (iii) Klar.

(iv) Nach dem Homomorphiesatz und (iii) gilt

$$\mathcal{O}_{V,x}/\mathfrak{m}_x\cong\mathbb{K}$$

also ist \mathfrak{m}_x maximales Ideal. Zeige nun, dass \mathfrak{m}_x das einzige ist. Sei hierfür $f \in \mathcal{O}_V(U)$ für ein $U \subseteq V$ mit $x \in U$ und es gelte $f(x) \neq 0$. Zeige: f_x ist Einheit in $\mathcal{O}_{V,x}$.

Es gilt $x \in D(f) \subseteq V$ offen, d.h. $(U, f) \sim (D(f), f)$. Damit haben wir

$$\frac{1}{f} \in \mathcal{O}_V(D(f))$$

also schließlich

$$\left(D(f), \frac{1}{f}\right) \cdot (D(f), f) = 1_x,$$

was behauptet wurde.

Bemerkung 12.2 Für jedes offene $U \subseteq V$ mit $x \in U$ ist

$$\psi_x^U: \mathcal{O}_V(U) \longrightarrow \mathcal{O}_{V,x}, \quad f \mapsto f_x = (U, f)_{\sim}$$

ein Homomorphismus von \mathbb{K} -Algebren.

Dabei sind die ψ^U_x verträglich mit Restriktionsabbildungen und es gilt

$$\mathcal{O}_{V,x} = \varinjlim_{U \subseteq V, x \in U} \mathcal{O}_V(U)$$

Proposition 12.3 Sei V quasiprojektive Varietät über \mathbb{K} , $V_0 \subseteq V$ affin, offen und $x \in V_0$. Dann ist

$$\mathcal{O}_{V,x} \cong \mathbb{K}[V_0]_{\mathfrak{m}^{V_0}},$$

wobei

$$\mathfrak{m}_x^{V_0} = \{ f \in \mathbb{K}[V_0] \mid f(x) = 0 \}$$

das zu x zugehörige maximale Ideal des affinen Koordinatenrings $\mathbb{K}[V_0]$ ist.

Beweis. Sei

$$\alpha: \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}} \longrightarrow \mathcal{O}_{V,x}, \quad \frac{f}{g} \mapsto \left(\frac{f}{g}\right)_x$$

wobei $f, g \in \mathbb{K}[V_0]$ und $g \notin \mathfrak{m}_x^{V_0}$, d.h. $g(x) \neq 0$. Dann ist α wohldefinierter Homomorphismus. Zeige, dass dieser die gewünschte Isomorphie der \mathbb{K} -Algebren liefert.

injektiv. Sei

$$\frac{f}{g} \in \ker \alpha$$
, also $\alpha \left(\frac{f}{g} \right) = 0$.

Dann gibt es eine Umgebung U von $x, U \subseteq D(g)$ mit f(y) = 0 für alle $y \in U$.

Sei $W=V_0\backslash U.$ Dann ist W abgeschlossen in V_0 und es gilt $x\notin W.$

Damit existiert $h \in I(W)$ mit $h(x) \neq 0$, also $h \notin \mathfrak{m}_x^{V_0}$ und $(h \circ f)(y) = 0$ für alle $y \in V_0$. Dann ist $h \circ f = 0$ in $\mathbb{K}[V_0]$, also

$$\frac{f}{g} = 0 \text{ in } \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}}$$

surjektiv. Sei nun $(U, f)_{\sim} \in \mathcal{O}_{V,x}$, ohne Einschränkung sei $U \subseteq V_0$ und U = D(h) für ein $h \in \mathbb{K}[V_0]$ mit $h(x) \neq 0$. Dann gilt

$$f \in \mathcal{O}_V(U) = \mathcal{O}_{V_0}(U) = \mathcal{O}_{V_0}(D(h)) = \mathbb{K}[V_0]_h$$

d.h. es ist

$$f = \frac{g}{h^k}, \quad k \geqslant 0, g \in \mathbb{K}[V_0] \implies \frac{g}{h^k} \in \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}}$$

Damit gilt

$$(U, f)_{\sim} = \left(\frac{g}{h^k}\right)_r = \alpha \left(\frac{g}{h^k}\right),$$

wie behauptet.

Bemerkung 12.4 Sei $\phi: V \longrightarrow W$ Morphismus quasiprojektiver Varietäten. Für jedes $x \in V$ induziert ϕ einen Homomorphismus von \mathbb{K} -Algebren

$$\phi_x^\#: \mathcal{O}_{W,\phi(x)} \longrightarrow \mathcal{O}_{V,x}$$

Weiter gilt

$$\phi_x^{\#}\left(\mathfrak{m}_{\phi(x)}\right) \subseteq \mathfrak{m}_x$$

Beweis. Ohne Einschränkung seien V, W affin, denn x und $\phi(x)$ sind in affine Teilmengen enthalten. ϕ induziert also

$$\phi^{\#}: \mathbb{K}[W] \longrightarrow \mathbb{K}[V] \hookrightarrow \mathbb{K}[V]_{\mathfrak{m}_{x}^{V}}, \quad f \mapsto f \circ \phi = \phi^{\#}(f)$$

Dabei ist

$$f \in \mathfrak{m}_{\phi(x)}^{W} \iff f(\phi(x)) = 0 \iff (f \circ \phi)(x) = 0 \iff f \circ \phi = \phi^{\#}(f) \in \mathfrak{m}_{x}^{V}$$

und es gilt also

$$\phi^{\#}\left(\mathbb{K}[W]\backslash\mathfrak{m}_{\phi(x)}^{W}\right)\subseteq\left(\mathbb{K}[V]_{\mathfrak{m}_{x}^{V}}\right)^{\times}.$$

Mit der universellen Eigenschaft der Lokalisierung lässt sich $\phi^{\#}$ also fortsetzen zu

$$\phi_x^\#:\mathcal{O}_{W,\phi(x)}=\mathbb{K}[W]_{\mathfrak{m}_{\phi(x)}^W}\longrightarrow \mathbb{K}[V]_{\mathfrak{m}_x^V}=\mathcal{O}_{V,x}$$

Weiter gilt

$$\phi_x^{\#}(\mathfrak{m}_{\phi(x)}) = \phi_x^{\#}\left(\mathfrak{m}_{\phi(x)}^W \cdot \mathbb{K}[W]_{\mathfrak{m}_{\phi(x)}^W}\right) \subseteq \mathfrak{m}_x^V \cdot \mathbb{K}[V]_{\mathfrak{m}_x^V} = \mathfrak{m}_x,$$

was zu zeigen war.

Proposition 12.5 Seien V, W quasiprojektive Varietäten $x \in V, y \in W$. Gilt

$$\mathcal{O}_{V,x} \cong \mathcal{O}_{W,y}$$

als \mathbb{K} -Algebren, so gibt es offene Umgebungen $U\subseteq V$ von x und $U'\subseteq W$ von y und einen Isomorphismus

$$f: U \longrightarrow U', \quad x \mapsto y$$

Beweis. Ohne Einschränkung seien V,W affin. Sei

$$\phi: \mathcal{O}_{V,x} = \mathbb{K}[V]_{\mathfrak{m}_x^V} \longrightarrow \mathbb{K}[W]_{\mathfrak{m}_y^W} = \mathcal{O}_{W,y}$$

ein Isomorphismus. Seien f_1, \ldots, f_r die Erzeuger von $\mathbb{K}[V]$ als \mathbb{K} -Algebra. Für die Keime $(f_i)_x$ gilt also

$$\phi((f_i)_x) = \left(\frac{g_i}{h_i}\right)_y, \quad g_i, h_i \in \mathbb{K}[W], h_i(y) \neq 0$$

Sei $U_2 \subseteq W$ offen, affin mit $y \in U_2$ und es gelte

$$\frac{g_i}{h_i} \in \mathcal{O}_W(U_2) \iff \frac{g_i}{h_i} \text{ regulär für alle } i \in \{1, \dots, r\}$$

Beh. (1) Falls x auf jeder irreduziblen Komponente von V liegt, ist ψ_x^V injektiv. Dann folgt daraus:

$$\phi \circ \psi_x^V : \mathbb{K}[V] \longrightarrow \mathbb{K}[W]$$

ist injektiv. Damit induziert $\phi \circ \psi_x^V$ einen dominanten Morphismus $g: W \longrightarrow V$. Selbiges Vorgehen mit ϕ^{-1} liefert einen dominanten Morphismus $f: V \longrightarrow W$ mit $g \circ f = \mathrm{id}_V$ und $f \circ g = \mathrm{id}_W$

$$\psi_x^V : \mathbb{K}[V] \longrightarrow \mathbb{K}[V]_{\mathfrak{m}^V}$$

ist injekitv genau dann, wenn $\mathbb{K}[V]\backslash \mathfrak{m}_x^V$ keine Nullteiler enthält. Sei also $h \in \mathbb{K}[V]\backslash \mathfrak{m}_x^V$ Nullteiler in $\mathbb{K}[V]$, d.h. es gibt $g \in \mathbb{K}[V]\backslash \{0\}$ mit $h \cdot g = 0$, also $h(x) \neq 0$.

Sei Z eine irreduzible Komponente mit $g|_Z \neq 0$, d.h. $V(g) \cap Z \neq Z$. Da $x \in Z$, gilt auch $V(h) \cap Z \neq Z$. Damit ist $(V(h) \cap V(g)) \cap Z \neq Z$, da Z irreduzibel ist und V(h), V(g) echt abgeschlossen sind. Damit folgt $g \cdot h \neq 0$, ein Widerspruch zur Annahme.

§ 13 Dimension

Bew. (1) Es gilt:

Definition 13.1 Für einen topologischen Raum X heißt

 $\dim(X) := \sup\{n \in \mathbb{N}_0 \mid \text{ es existiert eine Kette } V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n, V_i \text{ abgeschlossen und irreduzibel } \}$ die *Krull-Dimension* von X.

Beispiel 13.2 (i) Für einen Hausdorffraum H gilt $\dim(H) = 0$.

(ii) Es gilt $\dim(\mathbb{A}^1(\mathbb{K})) = 1$, falls \mathbb{K} unendlich ist.

Erinnerung 13.3 Sei R ein Ring, $\mathfrak{p} \leq R$ ein Primadeal.

(i) Die $H\ddot{o}he$ von \mathfrak{p} in R ist

 $\operatorname{ht}(\mathfrak{p}) := \sup\{n \in \mathbb{N}_0 \mid \text{ es existiert eine Kette von Primidealen } \mathfrak{p}_{\mathfrak{o}} \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n = \mathfrak{p}\}$

(ii) Die Krull-Dimension von R ist

$$\dim(R) := \sup\{\operatorname{ht}(\mathfrak{p}) \mid \mathfrak{p} \leqslant R \text{ prim }\}$$

§ 13 DIMENSION 49

Proposition 13.4 Ist \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, so gilt

$$\dim(V) = \dim(\mathbb{K}[V])$$

Beweis. Irreduzible Teilmengen von V entsprechen gerade bijektiv den Primaidealen in $\mathbb{K}[V]$.

Erinnerung + **Bemerkung 13.5** Für eine Körpererweiterung \mathbb{L}/\mathbb{K} ist $\operatorname{trdeg}_{\mathbb{K}}\mathbb{L}$ die Maximalzahl an algebraisch unabhängigen Elementen in \mathbb{L} über \mathbb{K} . Beispielsweise ist $\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(X) = 1$. Wir halten fest:

- (i) Es gilt $\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(X_1,\ldots,X_n)=n$.
- (ii) Es gilt $\operatorname{trdeg}_{\mathbb{K}} \mathbb{L} = 0$, falls \mathbb{L}/\mathbb{K} algebraisch ist.
- (iii) Noether-Normalisierung light: Sei A endlich erzeugte \mathbb{K} -Algebra. Dann ist A ganze Ringerweiterung eines Polynomrings $\mathbb{K}[X_1, \dots, X_n]$.
- (iv) Ist S/R ganze Ringerweiterung, so gilt dim $R = \dim S$.
- (v) Es gilt dim $\mathbb{K}[X_1,\ldots,X_n]=n$.
- (vi) Noether-Normalisierung deluxe: Sei $I \leq A$ ein Ideal. Dann gibt es einen Polynomring, sodass $A/\mathbb{K}[X_1, \ldots X_n]$ ganze Ringerweiterung ist und

$$I \cap \mathbb{K}[X_1, \dots X_n] = \langle X_{\delta+1}, \dots, X_n \rangle$$

für ein $0 \le \delta \le n$.

Beispiel 13.6 Es sei $A := \mathbb{K}[X,Y]$ und I das vom Polynom $f := Y^2 - X^3 + X \in A$ erzeugte Ideal. Es wird $f = Y^2 - X^3 + X$ als Variable in einem neuen Polynomring betrachtet, setze also $B := \mathbb{K}[X,f] \subseteq A$. Dann wird A als Ringerweiterung von B offenbar durch das Elemente Y erzeugt. Weiter ist Y ganz über B, denn für das normierte Polynom $g := Z^2 - X^3 + X - f \in B[Z]$ gilt

$$q(Y) = Y^2 - X^3 + X - f = f - f = 0$$

und damit ist A/B ganze Ringerweiterung. Weiter gilt $I \cap B = \langle f \rangle$.

Beachte: f ist nun eine Variable, das heißt, wir haben für $\delta = 1$ ein Beispiel für eine Noether-Normalisierung gefunden.

Lemma 13.7 Für eine irreduzible Varietät V qilt

$$\dim V = \operatorname{trdeg}_{\mathbb{K}} \mathbb{K}(V)$$

Beweis. Nach 13.3 gilt dim $V = \dim \mathbb{K}[V]$. Mit Bemerkung 13.4 (iii) folgt, dass $\mathbb{K}[V]$ als endlich erzeugte \mathbb{K} -Algebra eine ganze Ringerweiterung von $\mathbb{K}[X_1, \ldots, X_n]$ für ein $n \in \mathbb{N}$ ist. Mit (iv) gilt

$$\dim \mathbb{K}[V] = \dim \mathbb{K}[X_1, \dots, X_n] = n.$$

Damit ist $\mathbb{K}(V)/\mathbb{K} = \operatorname{Quot}(\mathbb{K}[V])/\mathbb{K}$ algebraische Erweiterung von $\mathbb{K}(X_1, \dots, X_n)$ und es folgt

$$\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(V) = \operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(X_1, \dots, X_n) = n,$$

die Behauptung.

Proposition 13.8 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät.

(i) Dann gilt für jede affine Varietät $V_0 \subseteq V$, die in V offen und dicht ist:

$$\dim(V) = \dim(V_0)$$

(ii) Seien Z_1, \ldots, Z_r die irreduziblen Komponenten von V. Dann ist

$$\dim(V) = \max_{i \in \{1, \dots, r\}} \dim(Z_i)$$

Beweis. (i) Es gilt:

" \geqslant " Diese Aussage gilt allgemein für einen topologischen Raum und einer Teilmenge $Y \subseteq X$, denn:

Ist $\emptyset \subsetneq Y_0 \subset \ldots \subsetneq Y_d$ eine Kette von abgeschlossenen, irreduziblen Teilmengen von Y, so gilt für die Abschlüsse $X_i := \overline{Y}_i$: X_i ist irreduzibel in Y und $X_i \cap Y = Y_i$ für alle $i \in \{1, \ldots, d\}$ und damit $X_{i+1} \neq X_i$. Da die Y_i abgeschlossen sind, folgt die Inklusion.

"< " Wegen (ii) dürfen wir V und damit auch V_0 irreduzibel voraussetzen. Sei

$$\emptyset \neq Z_0 \subsetneq Z_1 \subset \ldots \subsetneq Z_d$$

eine Kette von abgeschlossenen, irreduziblen Teilmengen von V und $d = \dim V$. Dann ist Z_0 offenbar ein Punkt (andernfalls verlängern wir die Kette).

Sei nun $V_0 \subseteq V$ eine affine, offene, dichte Untervarietät mit $Z_0 \in V_0$. Dann ist $X_i = Z_i \cap V_0$ nichtleer und abgeschlossen in V_0 und damit $\overline{X}_i = Z_i$, da sonst

$$Z_i = \overline{X}_i \cup (Z_i \backslash V_0)$$

eine unerlaubte Zerlegung von Z_i wäre. Damit ist X_i irreduzibel mit $X_{i+1} \neq X_i$, es folgt also die Behauptung.

(ii) Es gilt allgemeiner: Ist X toplogischer Raum mit

$$X = \bigcup_{i=1}^{r} Z_i, \qquad Z_i \subseteq X \text{ abgeschlossen},$$

so gilt

$$\dim X = \max_{i \in \{1, \dots, r\}} \dim Z_i,$$

denn:

"≥" Klar.

" \leq " Sei $\varnothing \subsetneq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_d$ eine Kette von abgeschlossenen, irreduziblen Teilmengen von X. Dann ist

$$X_d = \bigcup_{i=1}^r X_d \cap Z_i$$

und da $X_d \cap Z_i$ abgeschlossen in X_d ist und X_d irreduzibel ist, existiert ein $i \in \{1, \dots r\}$ mit $X_d \subseteq Z_i$. Damit ist bereits die gesamte Kette in Z_i enthalten und es folgt $d \leq \dim Z_i$.

§ 13 DIMENSION 51

Proposition 13.9 Ist A endlich erzeugbare, nullteilerfreie \mathbb{K} -Algebra, so haben alle maximalen Primidealketten in A dieselbe Länge. Dabei heißt eine Kette $\langle 0 \rangle \subsetneq \mathfrak{p}_0 \subsetneq \ldots \subset \mathfrak{p}_d$ maximal, falls es kein Primadeal $\mathfrak{p} \triangleleft A$ gibt mit $\mathfrak{p}_{i-1} \subsetneq \mathfrak{p} \subsetneq \mathfrak{p}_i$ für alle $i \in \{1, \ldots d\}$

Definiton + **Proposition 13.10** Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät, $x \in V$.

- (i) $\dim_x V := \dim \mathcal{O}_{V,x}$ heißt lokale Dimension von V in x.
- (ii) Es gilt

$$\dim_x V = \operatorname{ht}(\mathfrak{m}_x) = \operatorname{ht}(\mathfrak{m}_x^{V_0})$$

für jede offene, affine Umgebung $V_0 \subseteq V$ von x.

- (iii) Es gilt $\dim_x V = \dim V$, falls V irreduzibel ist.
- (iv) Allgemeiner gilt

 $\dim_x V = \max\{\dim Z \mid Z \subseteq V \text{ ist irreduzible Komponente von } V \text{ mit } x \in Z\}$

Beweis. (ii) Es gilt $\mathcal{O}_{V,x} = \mathbb{K}[V_0]_{\mathfrak{m}_x^{V_0}}$ und damit dim $\mathcal{O}_{V,x} = \operatorname{ht}(\mathfrak{m}_x^{V_0})$.

(iii) Ohne Einschränkung sei V affin (vgl. 13.4). Dann gilt nach (ii)

$$\dim_x V = \operatorname{ht}(\mathfrak{m}_x^V)$$

Wegen 13.7 haben alle maximalen Ideale in $\mathbb{K}[V]$ dieselbe Höhe. Damit folgt bereits

$$\dim V = \dim \mathbb{K}[V] = \operatorname{ht}(\mathfrak{m}_x^V) = \dim_x V.$$

(iv) Ohne Einschränkung sei V wieder affin. Es gilt

$$\dim_x V = \dim \mathcal{O}_{V,x} = \operatorname{ht} \left(\mathfrak{m}_x^V\right) = \sup\{k \in \mathbb{N} \mid \text{es gibt eine Primidealkette} \ \langle 0 \rangle \neq \mathfrak{p}_{\mathfrak{o}} \subsetneq \ldots, \subsetneq \mathfrak{p}_k = \mathfrak{m}_x^V\}$$

Damit entspricht \mathfrak{p}_0 einer irreduziblen Komponente Z mit $x \in Z$ Mit Proposition 13.7 hat diese Kette die Länge dim Z und damit folgt die Behauptung.

Korollar 13.11 Ist \mathbb{K} algebraisch abgeschlossen, so gilt für jede irreduzible Varietät $V \subseteq \mathbb{A}^n(\mathbb{K})$:

$$\dim V + \operatorname{ht}(I(V)) = n.$$

Beweis. Sei $0 \subseteq \mathfrak{p}_1 \subset \ldots \subseteq \mathfrak{p}_d$ eine maximale Primidealkette in $\mathbb{K}[X_1, \ldots X_n]$, die I(V) enthält. Dann gilt $I(V) = \mathfrak{p}_i$ für ein $i \in \{1, \ldots d\}$. Es folgt $i = \operatorname{ht}(I(V))$ und wegen 13.9 auch d = n. Außerdem ist

$$0 = \mathfrak{p}_i / I(V) \subset \ldots \subset \mathfrak{p}_n / I(V)$$

eine maximale Primidealkette für $\mathbb{K}[X_1,\ldots,X_n]/I(V) = \mathbb{K}[V]$, und erneut mit 13.9 folgt

$$n - i = \dim \mathbb{K}[V] = \dim V$$
,

was zu zeigen war.

Korollar 13.12 Sei \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(\mathbb{K})$ eine Hyperfläche, d.h. V = V(f) für ein $f \in \mathbb{K}[X_1, \dots X_n]$ mit deg $f \geq 1$. Dann ist

$$\dim V = n - 1.$$

Beweis. Aus 13.9 folgt

$$\dim V = n - \operatorname{ht}(\langle f \rangle).$$

Zeige also: $ht(\langle f \rangle) = 1$.

" \geqslant " Klar.

" \leq " Sei $\mathfrak{p} \leq \mathbb{K}[X_1, \dots X_n]$ ein Primideal mit $\langle 0 \rangle \subsetneq \mathfrak{p} \subseteq \langle f \rangle$. Sei $h \in \mathfrak{p} \setminus \{0\}$ mit minimalem Grad. Da $\mathfrak{p} \subseteq \langle f \rangle$, gilt $h = f \cdot g$ für ein $g \in \mathbb{K}[X_1, \dots X_n]$. Wir erhalten

$$\deg h = \deg f + \deg g > \deg g$$

und damit ist $g \notin \mathfrak{p}$. Da \mathfrak{p} prim ist, folgt $f \in \mathfrak{p}$ und damit $\mathfrak{p} = \langle f \rangle$.

Satz 13.13 ("Going down", Cohen-Seidenberg) Sei A endlich erzeugte, nullteilerfreie \mathbb{K} -Algebra, A/B mit $B := \mathbb{K}[X_1, \dots X_n]$ via Noether-Normalisierung eine ganze Ringerweiterung. Sei weiter $\mathfrak{P}_1 \subset A$ ein Primadeal, $\mathfrak{p}_0 \subset B$ mit $\mathfrak{p}_0 \subset \mathfrak{p}_1 := \mathfrak{P}_1 \cap B$. Dann gibt es ein Primadeal $\mathfrak{P}_0 \subset A$ mit $\mathfrak{P}_0 \subset \mathfrak{P}_1$ und $\mathfrak{P}_0 \cap B = \mathfrak{p}_0$.

Beweis. Nach dem "Going up"-Theorem in der Algebra (Prop. 13.7) gibt es ein Primadeal $\mathfrak{P}'_0 \subset A$ mit $\mathfrak{P}'_0 \cap B = \mathfrak{p}_0$ und ein Primadeal $\mathfrak{P}'_1 \subset A$ mit $\mathfrak{P}'_0 \subset \mathfrak{P}'_1$ und $\mathfrak{P}'_1 \cap B = \mathfrak{p}_1$. Setze

$$\mathbb{M} := \operatorname{Quot}(B), \qquad \mathbb{L} := \operatorname{Quot}(A).$$

Dann ist L/M eine endliche, algebraische Körpererweiterung.

Fall (a) Es ist \mathbb{L}/\mathbb{M} Galoiserweiterung. Dann ist

$$Gal(\mathbb{L}/\mathbb{M}) = \{ \sigma_1 = id, \sigma_2, \dots \sigma_n \}, \quad n := [\mathbb{L} : \mathbb{M}].$$

Sei nun $\mathfrak{P}_i := \sigma_i(\mathfrak{P}_1)$ für $i \in \{1, \dots n\}$. Dann ist \mathfrak{P}_i ein Primadeal in A für ein $i \in \{1, \dots n\}$ (nichttrivial! Warum gilt $\sigma_i(A) \subseteq A$?).

Angenommen, $\mathfrak{P}'_i \neq \mathfrak{P}_i$ für alle $i \in \{1, \dots n\}$. Dann ist auch $\mathfrak{P}'_1 \subseteq \mathfrak{P}_i$, da

$$\mathfrak{P}'_i \cap B = \mathfrak{P}_1 \cap B = \mathfrak{p} = \mathfrak{P}_i \cap B$$
.

Dann folgt

$$\mathfrak{P}'_i \subsetneq \bigcup_{i=1}^n \mathfrak{P}_i$$

(diese Aussage gilt nicht nur für Primideale). Also existiert $a \in \mathfrak{P}'_1$ mit $a \notin \mathfrak{P}_i$ für alle $i \in \{1, \ldots n\}$ und es gilt $\sigma_j(a) \in \mathfrak{P}_i$ für alle $i, j \in \{1, \ldots n\}$. Schließlich ist

$$\mathbb{M} \ni N_{\mathbb{L}/\mathbb{M}} \stackrel{(*)}{=} \prod_{i=1}^{n} \sigma_{j}(a) \in \mathfrak{P}_{i}$$
 für alle $i \in \{1, \dots n\},$

§ 13 DIMENSION 53

andererseits aber

$$N_{\mathbb{L}/\mathbb{M}} \in \mathbb{M} \cap \mathfrak{P}'_1 = B \cap \mathfrak{P}'_1 = \mathfrak{p}_1$$

und $\mathfrak{p}_i \subseteq \mathfrak{P}_i$ für alle $i \in \{1, \ldots, n\}$, ein Widerspruch!

Damit war die Annahme falsch und es gibt einen Index $i \in \{1, ... n\}$, sodass

$$\mathfrak{P}_i' = \sigma_i(\mathfrak{P}_i).$$

Das Ideal $\mathfrak{P}_0 = \sigma_i^{-1}(\mathfrak{P}_0')$ erfüllt damit

$$\mathfrak{P}_0 \subset \mathfrak{P}_1$$
 und $\mathfrak{P}_0 \cap B = \mathfrak{P}'_0 \cap B = \mathfrak{p}_0$.

Fall (b) L/M ist nicht Galois. Ist L/M nicht separabel, so ändert dies nichts an dem Beweis, bis auf die Tatsache, dass der Ausdruck in (*) nicht der Norm entspricht, sondern nur eine gewissen Wurzel von ihr.

Ist andererseits \mathbb{L}/\mathbb{M} nicht normal, so betrachten wir die die normale Hülle $\tilde{\mathbb{M}} \supset \mathbb{M}$. Hier wird der Beweis ein wenig technischer, im Wesentlichen ändert sich jedoch trotzdem nicht viel.

(Beweis von 13.9) Es sei

$$\langle 0 \rangle = \mathfrak{P}_1 \subsetneq \mathfrak{P}_1 \subsetneq \ldots \subsetneq \mathfrak{P}_m$$

eine maximale Kette von Primidealen in A. Sei weiter A/B mit $B := \mathbb{K}[X_1, \dots X_d]$ eine via Noether-Normalisierung erhaltene ganze Ringerweiterung . Setze

$$\mathfrak{p}_i := \mathfrak{P}_i \cap B$$
 für $i \in \{1, \dots m\}$.

Beh. (a) Wir haben eine maximale Kette von Primideale in B:

$$\langle 0 \rangle \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_m$$

Da dim $A = \dim B$, genügt es nun zu zeigen: m = d. Zeige dies über Induktion nach d: d=1 Klar.

 $\mathbf{d} \geqslant \mathbf{1}$ Sei C/B mit $C := \mathbb{K}[Y_1, \dots Y_d]$ eine via Noether-Normalisierung erhaltene ganze Ringerweiterung, sodass gilt $\mathfrak{p}_1 \cap C = \langle Y_{\delta+1}, \dots, Y_d \rangle$ für ein $dir 0o \leqslant \delta \leqslant d$. Für

$$\mathfrak{q}_i := \mathfrak{p}_i \cap C, \qquad i \in \{1, \dots m\}$$

ist wegen der Behauptung

$$\langle 0 \rangle \subsetneq \mathfrak{q}_1 \subsetneq \ldots \subsetneq \mathfrak{q}_m$$

eine maximale Kette in C. damit folgt $\operatorname{ht}(\mathfrak{q}_1)=1$, also $\delta=d-1$. Sei nun $C':=C/\mathfrak{q}_1\cong \mathbb{K}[Y_1,\ldots,Y_{d-1}]$. Dann ist

$$\langle 0 \rangle = \mathfrak{q}_1 / \mathfrak{q}_1 \subsetneq \ldots \subsetneq \mathfrak{q}_m / \mathfrak{q}_1$$

eine maximale Kette in C', d.h. es gilt m-1=d-1, also m=d.

Es bleibt nun also, die Behauptung (a) zu zeigen.

Bew. (a) Nach Definition ist $\mathfrak{p}_i \subseteq \mathfrak{p}_{i+1}$. Es ist also zu zeigen: $\mathfrak{p} \neq \mathfrak{p}_{i+1}$. Sei dazu ohne Einschränkung i = 0 - andernfalls ersetze A durch A/\mathfrak{p}_i und B durch B/\mathfrak{p}_i .

Sei $b \in \mathfrak{P}_1 \setminus \{0\} = \mathfrak{P}_1 \setminus \mathfrak{P}_0$. Da b ganz ist über B, gibt es eine Gleichung

$$b^n + a_{n-1}N^{n-1} + \ldots + a_1b + a_0 = 0$$
, $a_i \in B$ für alle $i \in \{1, \ldots, n-1\}$.

Wir wählen *n* minimal, sodass gilt $a_0 = 0$.Dann ist

$$a_0 = -b \cdot (b^{n-1} + a_{n-1}b^{n-1} + \dots + a_1) \in B \cap \mathfrak{P}_1 = \mathfrak{p}_1,$$

also $\mathfrak{p}_1 \neq \langle 0 \rangle 0$.

Schließlich muss noch gezeigt werden, dass die Kette tatsächlich maximal ist, d.h. es gibt für kein $i \in \{1, ... m\}$ ein Primideal \mathfrak{q} mit $\mathfrak{p}_{i-1} \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}_i$. Proposition 13.11 liefert und jedoch genau dies. Damit ist die Behauptung gezeigt.

§ 14 Tangentialraum und Singularitäten

Erinnerung 14.1 Sei $f \in \mathbb{K}[X_1, \dots, X_n], a = (a_1, \dots, a_n) \in \mathbb{K}^n$.

(i) Es gilt

$$f = \sum_{(\nu_1, \dots, \nu_n) \in \mathbb{N}_n^n} \frac{1}{(\nu_1 + \dots + \nu_n)!} \left(\left(\frac{\partial}{\partial X_1} \right)^{\nu_1} \cdots \left(\frac{\partial}{\partial X_n} \right)^{\nu_n} f \right) (a) \prod_{i=1}^n (X_i - a_i)^{\nu_i}$$

(ii) Es ist

$$f = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial X_i}(a)(X_i - a_i) + \text{ h\"ohere Terme}$$

Definition + **Bemerkung 14.2** Sei $f \in \mathbb{K}[X_1, \dots, X_n], a = (a_1, \dots, a_n) \in \mathbb{K}^n$.

(i) Die *Linearisierung von f* in a ist

$$f_a^{(1)} = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(a)X_i =: D_a(f)$$

(ii) Sei $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät, $a \in V$, $I = I(V) \leqslant \mathbb{K}[X_1, \dots, X_n]$. Sei weiter I_a das von den Linearisierungen $f_a^{(1)}$ für alle $f \in I$ erzeugte Ideal in $\mathbb{K}[X_1, \dots, X_n]$. Dann heißt

$$T_a = T_{V,a} := V(I_a)$$

Tangential raum an V in a.

- (iii) Ist $I(V) = \langle f_1, \dots, f_r \rangle$, so ist $I_a = \langle (f_1)_a^{(1)}, \dots, (f_r)_a^{(1)} \rangle$.
- (iv) $T_{V,a}$ ist ein Untervektorraum des \mathbb{K}^n . Genauer ist

$$T_{V,a} = \ker \mathcal{J}_{f_1,\dots,f_r}(a), \quad \mathcal{J} := \mathcal{J}_{f_1,\dots,f_r} = \left(\frac{\partial f}{\partial X_i}\right)_{i,j}$$

Beweis. (iii) Es gilt

$$D_{a}(f+g) = D_{a}(f) + D_{a}(g)$$

$$D_{a}(fg) = (f \cdot g)_{a}^{(1)} = \sum_{i=1}^{n} \frac{\partial}{\partial X_{i}} (fg)(a) X_{i} = \sum_{i=1}^{n} \left(f(a) \frac{\partial g}{\partial X_{i}} (a) + g(a) \frac{\partial f}{\partial X_{i}} (a) \right) X_{i}$$

$$= f(a) \sum_{i=1}^{n} \frac{\partial g}{\partial X_{i}} (a) X_{i} + g(a) \sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}} (a) X_{i}$$

$$= f(a) D_{a}(g) + g(a) D_{a}(f)$$

Ist nun also

$$f = \sum_{k=1}^{r} g_k f_k \in I(V), \qquad g_k \in \mathbb{K}[X_1, \dots, X_n],$$

so ist

$$D_a(f) = \sum_{k=1}^r (f_k(a)D_a(g_k) + g_k(a)D_a(f_k)) = \sum_{k=1}^r g_k(a)(f_k)_a^{(1)} \in \langle (f_a)_a^{(1)}, \dots, (f_r)_a^{(1)} \rangle$$

(iv) Folgt aus (iii).

Beispiel 14.3 (i) Sei $f = Y^2 - X^3 - X^2 \in \mathbb{K}[X, Y], V = V(f)$. Ist $(a, b) \in V$, so gilt

$$f_{(a,b)}^{(1)} = -a(3a+2)X + 2bY$$

Trivial wird dieses Gleichungssystem für (a,b)=0 und $(a,b)=\left(-\frac{2}{3},0\right)$. Da aber der zweite Punkt nicht auf V liegt, erhalten wir als Tangentialraum eine Gerade außerhalb von (0,0) und $T_{V,(0,0)}=\mathbb{K}^2$.

(ii) Sei $f = Y^2 - X^3 \in \mathbb{K}[X, Y], V = V(f)$. Dann ist

$$f_{(a,b)}^{(1)} = -3a^2X + 2bY$$

und mit selbiger Argumentation ist $T_{V,(0,0)} = \mathbb{K}^2$ und außerhalb von (0,0) eine Gerade.

(iii) Sei $f = X^2 + Y^2 - Z^2 \in \mathbb{K}[X, Y, Z], V = V(f)$. Es ist

$$f_{(a,b)}^{(1)} = 2aX + abY - 2cZ,$$

also ist $T_{V,(0,0,0)} = \mathbb{K}^3$ und eine Ebene außerhalb von (0,0).

Bemerkung 14.4 Seien $V_0 \subseteq V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietäten, V_0 dicht in V, $a \in V_0$. Dann ist

$$T_{V_0,a} \cong T_{V,a}$$
.

Beweis. Ohne Einschränkung sei $V_0 = D(g)$ für ein $g \in \mathbb{K}[V]$. Sei $I(V) = \langle f_1, \dots, f_r \rangle$. Dann ist $V_0 \cong V_0' := V(f_1, \dots, f_r, gX_{n+1} - 1) \subseteq \mathbb{A}^{n+1}(\mathbb{K})$. Dabei entspricht der Punkt $a = (a_1, \dots, a_n) \in V_0$ dem Punkt $a' = \left(a_1, \dots, a_n, \frac{1}{g(a)}\right)$. Weiter ist

$$T_{V_0',a'} = V\left((f_1)_{a'}^{(1)}, \dots, (f_r)_{a'}^{(1)}, \frac{1}{g(a)}g_{a'}^{(1)} + g(a)X_{n+1}\right) \subseteq \mathbb{K}^{n+1}.$$

Da der Term $\frac{1}{g(a)}g_{a'}^{(1)} + g(a)X_{n+1}$ als einziger X_{n+1} enthält, gilt

$$\dim T_{V',a'} = n + 1 - \operatorname{Rang}\left((f_1)_{a'}^{(1)}, \dots, (f_r)_{a'}^{(1)}, \frac{1}{g(a)}g_{a'}^{(1)} + g(a)X_{n+1}\right)$$

$$= n - \operatorname{Rang}\left((f_1)_{a'}^{(1)}, \dots, (f_r)_{a'}^{(1)}\right)$$

$$= \dim T_{V,a},$$

was zu zeigen war.

Definition 14.5 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät, $a \in V$. Dann ist der *Tangentialraum in a* an V definiert als

$$T_{V,a} := T_{V_0,a},$$

wobei $V_0 \subseteq V$ ein offene, affine Umgebung von a ist.

Definition 14.6 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät.

- (i) $a \in V$ heißt nichtsingulärer oder regulärer Punkt, falls dim $T_{V,a} = \dim_a V$. Andernfalls heißt a singulär.
- (ii) V heißt $nichtsingul\ddot{a}r$, wenn jedes $a \in V$ nichtsingulär ist.

Proposition 14.7 (Jacobi-Kriterium) $Sei\ V \subseteq \mathbb{A}^n(\mathbb{K})$ affine $Varite\"{a}t,\ a \in V,\ I = I(V) = \langle f_1, \ldots, f_r \rangle.$ Dann gilt

$$a \text{ ist nichtsingul\"{a}r} \iff Rang(\mathcal{J}_{f_1,\dots,f_r}(a)) = n - \dim_a V.$$

Beweis. Nach Bemerkung 14.2 ist

$$T_{V,a} = \ker\left(\frac{\partial f_i}{\partial X_i}(a)\right)_{i,j}$$

Mit

$$\operatorname{Rang}(\mathcal{J}_{f_1,\dots,f_r}(a)) = n - \dim \ker \mathcal{J}(a) = n - \dim T_{V,a}$$

folgt die Behauptung.

Beispiel 14.8 (i) Sei $V = V(f) \subseteq \mathbb{A}^n(\mathbb{K})$ Hyperfläche. Dann ist

$$\mathcal{J}_f(a) = \left(\frac{\partial f}{\partial X_1}(a), \dots, \frac{\partial f}{\partial X_n}(a)\right)$$

also

$$a \text{ ist singulär} \iff \frac{\partial f}{\partial X_1}(a) = \dots = \frac{\partial f}{\partial X_n}(a) = f(a) = 0.$$

(ii) Sei $f = Y^2 - X^3 + X \in \mathbb{K}[X, Y], V = V(f) \subseteq \mathbb{A}^2(\mathbb{K})$. Dann ist

$$\mathcal{J}_f(x,y) = \left(-3x^2 + 1, 2y\right).$$

Dann gilt:

$$a = (x_0, y_0)$$
 ist singulär $\iff y_0 = 0, \ 3x_0^2 = 1 \iff a = \left(\frac{1}{\sqrt{3}}, 0\right).$

Aber es gilt: $f(a) \neq 0 \iff a \notin V$. Damit ist V(f) nichtsingulär.

Wir betrachten nun den projektiven Abschluss $\overline{V} = V(Y^2Z - X^3 + XZ^2) \subseteq \mathbb{P}^2(\mathbb{K})$. Der einzige neu auftretende Punkt ist $P_{\infty} = (0:1:0)$. Wir betrachten eine affine Umgebung

$$U := U_Y \cap \overline{V} = V(Z - X^3 + XZ^2).$$

Dann ist für $G = Z - X^3 + XZ^2$:

$$\mathcal{J}_g(x,z) = (-3x^2 + z^2, 2xz + 1) \implies \mathcal{J}_g(P_\infty) = (0,1)$$

womit P_{∞} ein regulärer Punkt ist. Also ist sogar \overline{V} nichtsingulär.

(iii) Wir variieren nun die Varietät aus Beispiel (ii). Setze hierfür

$$f_{a,b} := Y^2 - X^3 - aX - b.$$

Dann ist

$$\mathcal{J}_{f_{a,b}}(x,y) = (-3x^2 - a, 2y)$$

Sei nun $x_0, y_0 \in E_{a,b} = V(f_{a,b})$ singulär. Dann ist $y_0 = 0$ und $-a = 3x_0^2$. Weiter muss der Punkt auf $E_{a,b}$ liegen, wir erhalten also die Bedingung

$$x_0^3 - 3x_0^3 + b = 0 \iff b = 2x_0^3 \iff b^2 = 4x_0^6 = 4\frac{-a^3}{27} \iff 27b^2 + 4a^3 = 0.$$

Andererseits gilt

$$f_{a,b9=0} \iff Y^2 = X^3 + aX + b =: g_{a,b}(X)$$

und damit

$$\Delta(a,b) = 0 \iff g_{a,b}$$
 hat eine doppelte Nullstelle.

Wobei mit $\Delta(a, b)$ die Diskriminante von a und b bezeichnet wird. Damit erhalten wir

$$\overline{E}_{a,b}$$
 ist nichtsingulär \iff $\Delta(a,b) \neq 0$,

was zu zeigen war.

Satz 14.9 Sei \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(\mathbb{K})$ affine Varietät. Sei $\mathfrak{m}_x = \{f_x \in \mathcal{O}_{V,x} \mid f_x(x) = 0\}$ das zum Punkt $x \in V$ zugehörige maximale Ideal. Bezeichne weiterhin $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$ den Dualraum des \mathbb{K} -Vektorraums $\mathfrak{m}_x/\mathfrak{m}_x^2$. Dann gibt es einen natürlichen Isomorphismus von \mathbb{K} -Vektorräumen

$$\alpha: T_{V,x} \longrightarrow \left(\mathfrak{m}_x / \mathfrak{m}_x^2\right)^*$$

Beweis. Zur Wohldefiniertheit der Behauptung: Es ist $\mathfrak{m}_x/\mathfrak{m}_x^2$ ein Modul über $\mathcal{O}_{V,x}$, das heißt, Multiplikation mit Ringelementen aus $\mathcal{O}_{V,x}$ ist definiert. Multiplikation mit einem Elemente aus \mathfrak{m}_x ist die Nullabbildung. Damit ist $\mathfrak{m}_x/\mathfrak{m}_x^2$ ein $\mathcal{O}_{V,x}/\mathfrak{m}_x$ -Modul, also ein \mathbb{K} -Vektorraum und der Dualraum dazu ist wohldefiniert. Dieser wird auch als Zariski-Tangentialraum bezeichnet.

Nun zur Behauptung. Definiere

$$\alpha: T_{V,x} \longrightarrow \left(\mathfrak{m}_x / \mathfrak{m}_x^2\right)^*, \quad v = (v_1, \dots, v_n) \mapsto \alpha(v)(\overline{f}) := \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x)v_i$$

Dann ist α wohldefiniert, denn für $g, h \in \mathfrak{m}_x$ gilt

$$\alpha(v)(gh) = \sum_{i=1}^{n} \frac{\partial(gh)}{\partial X_i}(x)v_i = \sum_{i=1}^{n} \left(g(x)\frac{\partial h}{\partial X_i}(x) + h(x)\frac{\partial g}{\partial X_i}(x)\right)v_i = 0$$

Damit ist dann auch für alle $f \in \mathfrak{m}_x^2$ bereits $\alpha(v)(f) = 0$. Definiere nun umgekehrt

$$\beta: (\mathfrak{m}_x/\mathfrak{m}_x^2)^* \longrightarrow T_{V,x}, \quad l \mapsto (l(\overline{X_1 - x_1}), \dots, l(\overline{X_n - x_n}))$$

Zeige zunächst: $\beta(l) \in T_{V,x}$ für alle $l \in (\mathfrak{m}_x/\mathfrak{m}_x^2)^*$. Sei dazu $f \in I(V)$ und

$$f_x^{(1)} = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(a) X_i \in I$$

seine Linearisierung. Dann ist

$$f_x^{(1)}\left(\beta(l)\right) = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x)l\left(\overline{X_i - x_i}\right) = l\left(\sum_{i=1}^n \overline{\frac{\partial f}{\partial X_i}(x)(X_i - x_i)}\right) = l\left(\overline{f_x^{(1)} - f_x^{(1)}(x)}\right) = 0$$

Die letzte Gleichheit gilt, da $f_x^{(1)} - f_x^{(1)}(x) \in \mathfrak{m}_x^2$, denn es gilt

$$\mathbb{K}[V] \ni f = \underbrace{f(x)}_{=0} + f_x^{(1)} - f_x^{(1)}(x) + \text{ Terme in } \mathfrak{m}_x^2$$

Wir rechnen nach:

(i) Es gilt
$$(\beta \circ \alpha)(v) = \beta (\alpha(v)) = \beta \left(f \mapsto \sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}}(x)v_{i} \right)$$

$$= \left(\sum_{i=1}^{n} \frac{\partial (\overline{X_{i} - x_{i}})}{\partial X_{i}}(x)v_{1}, \dots, \sum_{i=1}^{n} \frac{\partial (\overline{X_{n} - x_{n}})}{\partial X_{i}}(x)v_{n} \right)$$

$$= (v_{1}, \dots, v_{n})$$

(ii) sowie für $l \in \mathfrak{m}_x / \mathfrak{m}_x^2$ und $f \in \mathfrak{m}_x$

$$(\alpha \circ \beta)(l)(f) = \alpha \left(l(\overline{X_1 - x_1}), \dots, l(\overline{X_n - x_n}) \right)$$

$$= \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x) l(\overline{X_i - x_i})$$

$$= l\left(\overline{f_x^{(1)} - f_x^{(1)}(x)}\right)$$

$$= l(\overline{f}),$$

es folgt also die Behauptung.

Folgerung 14.10 Sei V quasiprojektive Varietät, $x \in V$. Dann gilt

$$x$$
 ist nichtsingulär \iff dim $\mathfrak{m}_x/\mathfrak{m}_x^2 = \dim \mathcal{O}_{V,x}$

Definition 14.11 Ein noetherscher lokaler Ring R heißt regulär, falls

$$\dim_{\mathbb{K}} \mathfrak{m} / \mathfrak{m}^2 = \dim R,$$

wobei \mathfrak{m} das maximale Ideal in R sowie \mathbb{K} den zugehörigen Restklassenkörper bezeichne.

Beispiel 14.12 Betrachte $R=\mathbb{Z}_{\langle p\rangle}$ für eine Primzahl $p\in\mathbb{P}$. Dann ist $\mathfrak{m}=p\mathbb{Z}_{\langle p\rangle}$ sowie $\mathbb{K}=\mathbb{Z}_{\langle p\rangle}\left/p\mathbb{Z}_{\langle p\rangle}\cong\mathbb{F}_p$. Weiter ist

$$\dim \mathbb{Z}_{\langle p \rangle} = 1 = \dim_{\mathbb{F}_p} \mathbb{F}_p = \dim_{\mathbb{F}_p} p \mathbb{Z}_{\langle p \rangle} \left/ p^2 \mathbb{Z}_{\langle p \rangle} = \dim_{\mathbb{F}_p} \mathfrak{m} \left/ \mathfrak{m}^2 \right.,$$

folglich ist $\mathbb{Z}_{\langle p \rangle}$ regulär.

Lemma 14.13 (Nakayama-Lemma) Sei R lokaler Ring mit maximalem Ideal \mathfrak{m} und M endlich erzeugter R-Modul, $N \subseteq M$ Untermodul. Dann gilt

$$M = N + \mathfrak{m}M \implies M = N.$$

Beweis. Ohne Einschränkung gelte N=0, denn aus $M=\mathfrak{m}M+N$ folgt

$$M/N = (N + \mathfrak{m}M)/N \cong \mathfrak{m}M/N \cap \mathfrak{m}M \cong \mathfrak{m}M/N$$

Sei nun also $M = \mathfrak{m}M$ und nehme an, es gelte $M \neq 0$. Dann sei $x_1, \dots x_n$ ein minimales Erzeugendensystem von M. Dann gilt

$$x_1 = \sum_{i=1}^n a_i x_i$$
 für geeignete $a_i \in \mathfrak{m}$,

also wegen $R^{\times} = R \backslash \mathfrak{m}$

$$x_1(\underbrace{1-a_1}_{\notin \mathfrak{m}}) = \sum_{i=2}^n a_i x_i \in \langle x_2, \dots x_n \rangle,$$

ein Widerspruch zur Minimalität.

Lemma 14.14 Sei (R, \mathfrak{m}) noetehrscher lokaler Ring. Dann bilden $x_1, \ldots, x_n \in \mathfrak{m}$ ein minimales Erzeugendensystem von \mathfrak{m} genau dann, wenn die Restklassen $\overline{x}_1, \ldots, \overline{x}_n \in \mathfrak{m}/\mathfrak{m}^2$ eine \mathbb{K} -Vektorraumbasis von $\mathfrak{m}/\mathfrak{m}^2$ bilden.

Beweis. " \Rightarrow " Sei also $x_1, \ldots x_n$ ein minimales Erzeugendensystem von \mathfrak{m} . Sicherlich bildet $S := \{\overline{x}_1, \ldots, \overline{x}_n\}$ ein Erzeugendensystem für $\mathfrak{m}/\mathfrak{m}^2$. Angenommen, S ist linear abhängig, d.h. ohne Einschränkung finden wir eine Darstellung

$$\overline{x}_1 = \sum_{i=2}^n \lambda_i \overline{x}_i, \qquad \lambda_i \in \mathbb{K}.$$

Für $\tilde{\lambda}_i \in R$ mit $\overline{\tilde{\lambda}}_i = \lambda_i$ gilt dann

$$x_1 - \sum_{i=2}^n \tilde{\lambda}_i x_i \in \mathfrak{m}^2.$$

Andererseits wird \mathfrak{m}^2 erzeugt von den $x_i x_j$. Schreibe also

$$x_1 - \sum_{i=2}^n \tilde{\lambda}_i x_i = \sum_{j=1}^n \mu_{1j} x_1 x_j + \underbrace{\sum_{i,j=2}^n \mu_{ij} x_i x_j}_{=:y} = y + x_1 \sum_{j=1}^n \mu_{1j} x_j,$$

wobei $\mu_i \in R$ geeignete Konstanten sind. Dann folgt

$$x_1\left(\underbrace{1-\sum_{i=1}^n\mu_ix_i}_{\notin\mathfrak{m}}\right)\in\langle x_2,\ldots,x_n\rangle,$$

also ein Widerspruch zur Minimalität von S.

"

"

"

"

Sei nun umgekehrt $\overline{x}_1, \ldots, \overline{x}_n$ eine K-Basis von $\mathfrak{m}/\mathfrak{m}^2$. Zeige nun, dass x_1, \ldots, x_n \mathfrak{m} erzeugen. Die Minimalität ist klar. Sei dazu $N := \langle x_1, \ldots x_n \rangle \subseteq \mathfrak{m}$. Dann gilt

$$\mathfrak{m} = N + \mathfrak{m}^2$$

und mit Lemma 14.11 folgt $N = \mathfrak{m}$.

Proposition 14.15 Ein noetherscher lokaler Ring (R, \mathfrak{m}) ist genau dann regulär, wenn \mathfrak{m} von dim $R = ht(\mathfrak{m})$ Elementen erzeugt werden kann.

Beweis. " \Rightarrow " Sei R regulär. Dann gilt dim $R = \dim \mathfrak{m}/\mathfrak{m}^2 =: n$. Dan kann \mathfrak{m} also von n Elementen erzeugt werden.

"

"
Kann nun umgekehrt \mathfrak{m} von $n:=\dim R$ Elementen erzeugt werden, so auch $\mathfrak{m}/\mathfrak{m}^2$, das heißt, mit Lemma 14.14 gilt bereits $\dim \mathfrak{m}/\mathfrak{m}^2 \leqslant \dim R$. Krulls Hauptidealsatz (ohne Beweis) liefert die umgekehrte Ungleichung und damit $\dim R = \dim \mathfrak{m}/\mathfrak{m}^2$.

Folgerung 14.16 Sei $V \subseteq \mathbb{P}^n(\mathbb{K})$ quasiprojektive Varietät, $x \in V$. Dann gilt

$$x$$
 ist singulär \iff $\dim \mathfrak{m}_x / \mathfrak{m}_x^2 > \dim_x V$

Proposition 14.17 Jede irreduzible d-dimensionale Varietät ist birational äquivalent zu einer Hyper-fläche in $\mathbb{A}^{d+1}(\mathbb{K})$.

Beweis. Zuz zeigen: $\mathbb{K}(V)$ ist isomorph zum Funktionenkörper einer Hyperfläche, also

$$\mathbb{K}(V) \cong \operatorname{Quot}\left(\mathbb{K}[X_1,\ldots,X_n]/\langle f\rangle\right)$$

für ein geeignetes $f \in \mathbb{K}[X_1, \dots, X_n]$. Sei hierfür $\mathbb{K}[V]/\mathbb{K}[X_1, \dots, X_d]$ eine durch Noethernormalisierung erhaltene, ganze Ringerweiterung. Dann ist $\mathbb{K}(V)/\mathbb{K}(X_1, \dots, X_d)$ eine endliche Körperweite-

rung. Ohne Einschränkung sei diese separabel. Dann liefert der Satz vom primitiven Element ein $y \in \mathbb{K}(X_1, \dots, X_d)$, sodass gilt

$$\mathbb{K}(V) = \mathbb{K}(X_1, \dots, X_d)[y].$$

Sei $h \in \mathbb{K}(X_1, \dots, X_d)[Y]$ das Minimalpolynom von y und g der Hauptnenner von h. Dann ist

$$f = g \cdot h \in \mathbb{K}[X_1, \dots, X_d, Y] \cong \mathbb{K}[X_1, \dots, X_{d+1}]$$

und

Quot
$$(\mathbb{K}[X_1,\ldots,X_d,Y]/\langle f\rangle) = \mathbb{K}(V),$$

was die Behauptung liefert.

Satz 14.18 Sei \mathbb{K} algebraisch abgeschlossen, $V \subseteq \mathbb{P}^n(\mathbb{K})$ nichtleere, quasiprojektive Varietät. Dann ist

$$Sing(V) := \{ x \in V \mid x \text{ ist singulär } \}$$

eine echte abgeschlossene Teilmenge.

Beweis. Zeige zunächst, dass Sing(V) abgeschlossen ist. Ohne Einschränkung sei hierfür V irreduzibel. Denn sind V_1, \ldots, V_r die irreduziblen Komponenten von V, so gilt

$$\operatorname{Sing}(V) = \bigcup_{i=1}^r \operatorname{Sing}(V_i) \cup \bigcup_{i \neq j}^r V_i \cap V_j.$$

Weiter sei V ohne Einschränkung affin, denn Abgeschlossenheit ist eine lokale Eigenschaft. Wähle nun Erzeuger f_1, \ldots, f_r von $I(V) \leq \mathbb{K}[X_1, \ldots, X_n]$ und betrachte die Jacobimatrix $\mathcal{J} := \left(\frac{\partial f_i}{\partial X_j}\right)_{i,j}$. Dann gilt

$$\begin{aligned} \operatorname{Sing}(V) &= & \{x \in V \mid \operatorname{Rang}(\mathcal{J}(x)) < n - \dim V =: s\} \\ &= & \{x \in V \mid \det M(x) = 0 \text{ für alle } s \times s \text{ Untermatrizen } M \text{ von } \mathcal{J}\} \end{aligned}$$

Da die Determinante ein Polynom in n Variablen ist, ist $\operatorname{Sing}(V) = V(\det)$ und $\operatorname{Sing}(V)$ als affine Varietät abgeschlossen. Zeige nun, dass $\operatorname{Sing}(V)$ eine echte Teilmenge von V ist. Ohne Einschränkung sei hierfür V irreduzibel, denn: Sei Z eine irreduzible Komponente von V mit $\operatorname{Sing}(Z) \neq Z$, so ist $Z\backslash\operatorname{Sing}(Z)$ offen, nichtleer, also dicht in Z. Damit enthält $Z\backslash\operatorname{Sing}(Z)$ einen Punkt z, die auf keiner anderen irreduziblen Komponente liegt. Wegen $\mathcal{O}_{Z,z} = \mathcal{O}_{V,z}$ folgt $z \in V\backslash\operatorname{Sing}(V)$, also $\operatorname{Sing}(V) \neq V$. Wegen Proposition 14.17 genügt es, denn Spezialfall $V = V(f) \subseteq \mathbb{A}^n(\mathbb{K})$ zu betrachten, wobei $f \in \mathbb{K}[X_1,\ldots,X_n]$ ein irreduzibles Polynom von Grad $\deg f > 0$ ist. Es ist

$$\operatorname{Sing}(V) = \left\{ x \in V \mid \frac{\partial f}{\partial X_1}(x), \dots, \frac{\partial f}{\partial X_n}(x) = 0 \right\}.$$

Angenommen es gelte $\operatorname{Sing}(V) = V$. Dann wäre $\frac{\partial f}{\partial X_i} \in I(V) = \langle f \rangle$ für alle $i \in \{1, \dots, n\}$. Ist $\operatorname{char}(\mathbb{K}) = 0$, so folgt daraus, dass f konstant ist, ist $\operatorname{char}(\mathbb{K}) = p > 0$, so gilt $f \in \mathbb{K}[X_1^p, \dots, X_n^p]$, also $f = g^p$ für ein $g \in \mathbb{K}[X_1, \dots, X_n]$. In beide Fällen erhalten wir einen Widerspruch zur Wahl von f, es folgt die Behauptung.