HW-4

Chi Zhang

14/10/2015

Problem 1

Problem 2

Problem 3

а

 t_{pLH} for C_a should equals to t_{pLH} for C_L , hence,

$$R_{n}C_{a}ln(\frac{1}{1 - \frac{\Delta V_{a}}{V_{DD} - V_{Tn}}}) = R_{n}C_{L}ln(\frac{1}{1 - \frac{\Delta V_{out}}{V_{DD}}})$$

$$\frac{C_{a}}{C_{L}} = \frac{ln(\frac{1}{1 - \frac{\Delta V_{out}}{V_{DD}}})}{ln(\frac{1}{1 - \frac{\Delta V_{a}}{V_{DD} - V_{Tn}}})}$$

$$= ln(\frac{1}{1 - \frac{\Delta V_{out}}{V_{DD}}} - \frac{1}{1 - \frac{\Delta V_{a}}{V_{DD} - V_{Tn}}})$$
(1)

For
$$\Delta V_{out}=0.6V$$
, $\Delta V_a=1.4V$, thus $\frac{C_a}{C_L}=$.
For $\Delta V_{out}=0.8V$, $\Delta V_a=1.2V$, thus $\frac{C_a}{C_L}=$.
Thus, $\leq \frac{C_a}{C_L} \leq$.

b

For (i) A = 0, B = 0 to 1:

 C_a is charged in precharge phase. Thus both C_L and C_a need to be discharged in evaluation phase.

For (ii) B = 1, A = 0 to 1:

Only C_L is charged in precharge phase. Thus only C_L needs to be discharged in evaluation phase.

Thus, case (ii) results in the lower high-to-low delay.