CZ2003: Tutorial 3

Due on February 2, 2021 at 10:30am

 $Assoc\ Prof\ Alexei\ Sourin\ -\ SS3$

Pang Yu Shao U1721680D

01/02/2021

Problem 1

Write parametric formulas x(u), y(u) for the ray cast from the point with coordinates (1, 2) through the point with coordinates (4, 3). Define the domain for the parameter u.

Solution

$$x(u) = x1 + u(x2 - x1)$$

 $x(u) = 1 + u(4 - 1)$

$$x(u) = 1 + 3u$$

$$y(u) = y1 + u(y2 - y1)$$

$$y(u) = 2 + u(3 - 2)$$

$$\mathbf{y}(\mathbf{u}) = \mathbf{2} + \mathbf{u}$$

For Rays, Domain: $u \in [0, \inf)$

Problem 2

Using an equation in intercepts, obtain an implicit formula f(x, y) = 0 for the straight line intersecting the coordinate axes X and Y at the points with coordinates (-2, 0) and (0, 3), respectively.

Solution

Intercept form:

$$\frac{x}{a} + \frac{y}{b} = 1$$
, where

$$a = -2, y = 3$$

$$\therefore \mathbf{f}(\mathbf{x}, \mathbf{y}) = \tfrac{\mathbf{x}}{2} - \tfrac{\mathbf{y}}{3} + 1 = \mathbf{0}$$

Problem 3

With reference to Figure Q3, write parametric functions x(u), y(u), $u \in [0,1]$ defining this spiral curve which has to be drawn clockwise from the point with coordinates (0,0.3).

Solution

Flip x and y from notes examples, such that $x = \sin$, $y = \cos$. Since 2 spirals, argument of \sin/\cos functions will be $4\pi u$

$$x(u) = (0.3 + 1.2u)\cos(-4\pi u + \pi/2)$$

$$\mathbf{y(u)} = (\mathbf{0.3} + \mathbf{1.2u})\mathbf{sin}(-4\pi\mathbf{u} + \pi/\mathbf{2})$$

Problem 4

Based on the way how polar coordinates are mapped to Cartesian, propose parametric functions x(u), y(u), $u \in [0,1]$ which make the trigonometric sinusoidal curve (sine wave) follow a semicircle (half circle) with the radius of 0.75. The curve has to make 10 periodic oscillations (cycles) moving counterclockwise around the semicircle with the oscillations amplitude of ± 0.25 as shown in Figure Q4.

Solution

10 oscilations – argument of sine wave function: $20\pi u$ Amplitude of sine wave: 0.25 (0.75 +- 0.25)

```
\begin{split} r &= 0.75 + 0.25sin(20\pi u) \\ x &= rcos(u) \\ \mathbf{x} &= \mathbf{cos}(\pi \mathbf{u})(\mathbf{0.75} + \mathbf{0.25sin}(\mathbf{20}\pi \mathbf{u})) \\ y &= rsin(u) \\ \mathbf{y} &= \mathbf{sin}(\pi \mathbf{u})(\mathbf{0.75} + \mathbf{0.25sin}(\mathbf{20}\pi \mathbf{u})) \\ \mathbf{u} &\in [\mathbf{0}, \mathbf{1}] \end{split}
```

