Prediction with Confidence: A General and Unified Framework for Prediction

Jieli Shen

In collaboration with Regina Liu & Min-ge Xie Rutgers, The State University of New Jersey

2016 Joint Statistical Meeting, Chicago August 1, 2016

Research supported in part by grants from NSF and DHS

General setup

- Observed: $\mathbf{Y}_n \sim G_{\theta}(\cdot)$
- Future: $Y^* \sim F_{\theta}(\cdot)$

Inference goal

- Make prediction about the unknown Y*
- Quantify the prediction uncertainty using a distribution function

Existing methods

- Plug-in predictive distribution: $F_{\hat{\theta}}(y^*)$
- Bayesian predictive distribution: $\int_{\Theta} F_{\theta}(y^*)p(\theta|\mathbf{y}_n)d\theta$.
- Others

Formal Definition

 $\mathcal{Y}^* = \text{sample space of } Y^*; \mathcal{Y}^n = \text{sample space of } \mathbf{Y}_n$

Definition - Predictive distribution

A function $Q(\cdot;\cdot)$ on $\mathcal{Y}^* \times \mathcal{Y}^n \longrightarrow [0,1]$ is called a predictive distribution for a new observation Y^* , if it follows the following two requirements:

- **R1)** For each given $\mathbf{Y}_n = \mathbf{y}_n \in \mathcal{Y}^n$, $Q(\cdot; \mathbf{y}_n)$ is a c.d.f on \mathcal{Y}^* ;
- **R2)** The joint distribution of $Q(Y^*; \mathbf{Y}_n)$, as a function of both random sample Y^* and \mathbf{Y}_n , satisfies the following equation:

$$\mathbb{P}_{\mathbb{J}}(Q(Y^*; \mathbf{Y}_n) \leqslant \alpha) = \alpha, \text{ for } \forall \alpha \in (0, 1).$$

We propose constructing predictive distribution based on **confidence distributions** (CDs) with (1) sound theoretical developments and (2) simple simulation algorithm.

A Brief Introduction of Confidence Distribution

Parameter estimation

- Point estimate
- Interval estimate
- Distribution estimate (e.g., Bayesian posterior, bootstrap distribution, confidence distribution)

Example: $X_1, \ldots, X_n \sim \mathcal{N}(\mu, 1)$

- Point estimate: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- Interval estimate: $(\bar{X}_n 1.96/\sqrt{n}, \bar{X}_n + 1.96/\sqrt{n})$
- Distribution estimate: $N(\bar{X}_n, 1/n)$

A confidence distribution (CD) is a sample-dependent distribution function that can represent confidence intervals (regions) of all levels for an unknown parameter. [Xie & Singh, 2013; Schweder & Hjort, 2014]

A CD-Based Formulation

Suppose $H(\cdot; \mathbf{y}_n)$ is a CD for θ based on the sample data \mathbf{y}_n , we propose to construct a distribution function for the prediction by

$$Q(y^*; \mathbf{y}_n) = \int_{\Theta} F_{\xi}(y^*) dH(\xi; \mathbf{y}_n).$$

Computing algorithm

- **1** Simulate a CD-random variable $\xi | \mathbf{y}_n \sim H(\cdot; \mathbf{y}_n)$ and then simulate $y^* | \xi \sim f_{\xi}(\cdot)$
- 2 Repeat the procedure for B times and obtain B copies of y^*
- 3 Use the B copies of y^* to construct a predictive distribution (intervals).

Main Results (in Plain Words)

Result 1 - Asymptotic frequentist coverage

 $Q(Y^*; \mathbf{Y}_n) \to U[0, 1]$ as $n \to \infty$.

Result 2 - Exact frequentist coverage

Under a pivot-based construction, $Q(Y^*; \mathbf{Y}_n) \sim U[0, 1]$.

Result 3 - Comparison of CD-based predictive distributions

A more precise CD leads to a more precise CD-based predictive distributions.

Result 4 - Kullback-Leibler superiority

 $Q(\cdot, \mathbf{Y}_n)$ is better than $F_{\hat{\theta}}(\cdot)$ measured by the average Kullback-Leibler divergence to the true $F_{\theta_0}(\cdot)$.