Marc Vornetran 11569565
marc.vornetran@gmail.com
Maaike Koolbergen 10592377
maaikekoolbergen@gmail.com

Predicting Quora Question Similarity with a Siamese deep MaLSTM network

Data Processing

"Can you identify question pairs that have the same intent?"

Number of question pairs for training: 323164

Total number of questions in the training data: 646328

Number of questions that appear multiple times: 119193

Total percentage of Duplicate pairs: 36.88%

Number of question pairs for testing: 81126

Total number of questions in the testing data: 162252

То	tal	number of questions	in the testing data	: 162252					
	id	question1	question2	is_duplicate					
0	0	What is the step by step guide to invest in sh	What is the step by step guide to invest in sh	NaN					
1	1	What is the story of Kohinoor (Koh-i-Noor) Dia	What would happen if the Indian government sto	NaN					
2	2	How can I increase the speed of my internet co	How can Internet speed be increased by hacking	NaN					
		10	Find the second decoder						

[math]23^{24}[/math] i

	question1	question2	is_duplicate			
9	['step', 'step', 'guide', 'invest', 'share', 'market',	['step', 'step', 'guide', 'invest', 'share', 'market',	0			
1	['story', 'kohinoor', 'koh', 'i', 'noor', 'diamond']	['would', 'happen', 'indian', 'government', 'stole',	0			
2	<pre>['increase', 'speed', 'internet', 'connection', 'using', 'vpn']</pre>	<pre>['internet', 'speed', 'increased', 'hacking', 'dns']</pre>	0			
3	<pre>['mentally', 'lonely', 'solve', 'it']</pre>	['find', 'remainder', 'math', '23', '24', 'math',	0			
4	['one', 'dissolve', 'water',	['fish', 'would', 'survive',	0			

Exploratory Data Analysis

Pre-Processing

- Load the train, train labels and test data sets;
- Join the train labels with the train data set;
- Remove id rows from both train and test data sets.

Text Cleaning

- Convert words to lower case;
- Remove punctuation;
- Normalization (What's to What is)
- Remove stop words;
- Split sentence into words separated by white space.

Model Selection Dense Concatenation Model (None, 216) input: (None, 216) input_18: InputLayer input_17: InputLayer output: (None, 216) input: (None, 216) MalSTM Model embedding_9: Embedding output: (None, 216, 300) • Manhattan Long Short-Term Memory (MaLSTM) network; • Asses semantic similarity input: (None, 216, 300) between sentence; (None, 50) • Split data to 'left' and `right' inputs; • 50-dimensional hidden input: [(None, 50), (None, 50)] representations

Model Evaluation

Feature Extraction

	question1	question2	is_duplica	
9	[1, 2, 3, 4, 5, 4, 6, 7, 8, 9, 10, 8, 11]	[1, 2, 3, 4, 5, 4, 6, 7, 8, 9, 10]	0	
1	[1, 2, 3, 12, 13, 14, 15, 16, 17]	[1, 18, 19, 20, 3, 21, 22, 23, 3, 13, 14, 15,	0	
2	[25, 26, 15, 27, 3, 28, 29, 30, 31, 32, 33, 34]	[25, 26, 30, 28, 35, 36, 5, 37, 38, 39]	0	
3	[40, 41, 15, 42, 43, 44, 25, 26, 15, 45, 46]	[47, 3, 48, 49, 50, 51, 52, 50, 2, 53, 5, 52, 51]	0	
4	[54, 55, 56, 8, 57, 58, 59, 60, 61, 62, 63, 64]	[54, 65, 18, 66, 8, 60, 57]	0	

Words to Indices

- Convert words to indices;
- Start at index 1 to reserve 0 for zero padding.

Embedding

- Use Google's Word2Vec embedding to turn words into their embedding;
- Model with 300 dimensional vectors for 3 million words and phrases (pre-trained over about 100 billion words);

Model Training

Technical Information