Nirma University

Institute of Technology

Semester End Examination (RPR), May - 2018
B. Tech. in Computer Engineering / Information Technology, Semester-V CE501 Theory of Computation

Roll/ Exam N	lo			Supervise with dat	sor's initial e			
Time: 3 Hours Max Marks						Max Marks:	100	
Instruct	1. Atte	empt all questi ures to the rigl		ull marks.				
		w neat sketch sume necessar			d and state th	ne assumptions.		
	Do as directly Prove that			×			[15] [05]	
B)	In each ca (reflexivity, • R={(1	se the relat transitivity 1,3),(3,1),(2,2 1,1),(2,2),(3,3	ion on th and symn 2)}			Determine relation	[05]	
				OR	2 1/4 4 1/4			
B)	Construct	nstruct an FA recognizing for (010 + 00)(11)*.						
C)	 Find the regular expression and finite automaton for following languages. Σ={a,b} The language of all strings containing exactly two a's. The language of all strings containing at least two a's. The language of all strings that do not end with ab 						[05]	
	Answer the following. Convert NFA- \land with following transition table to equivalent FA. starting state = $\{1\}$ and A = $\{1\}$							
	starting st	$ate = \{1\} and$ Q		8(a a)	8(a b)			
		1	δ(q, ^) φ	δ(q,a) {2}	δ(q,b) φ			
		2	φ	{ 5 }	{3}			
		2	(1)	(4)	4			

{3}

ф

ф

{1}

4

5

- B) Draw NFA ∧ for regular expression aa(ba)* + b*aba* using Kleen's [05] theorem and without using kleen's theorem
 C) Prove that for any integers a and b, if a and b are odd, then ab is odd. [05]
- Q-3. Do as directed. [20]
 A) Minimize the following Finite Automata. [10]

- B) Let M1 and M2 are two FA recognizing languages L1 and L2 respectively,
 L1= The language of all strings ending with 01.
 L2= The language of all strings contains odd length of string.
 Draw the FA recognizing L1 U L2. Σ={a,b}
- Q-4. Answer the following. [15]
 - A) Find CFG for following languages [05]
 - 1) Odd length strings in {a,b}* whose first, middle and last symbols all are same.
 - 2) Palindromes strings over { a,b}*

OR

- A) Draw the PDA for the language $L = \{ XcY \text{ where } |X| = |Y| \text{ and } X,Y \in \{a,b\}^* \}$ [05]
- B) Construct a PDA for following languages. [05] The language $L = \{x \in \{a,b\}^* \mid n_a(x) \neq n_b(x)\}$
- C) Define the term regular grammar and its need in compiler construction. [05]
- Q-5. Answer the following. [15]
 A) Use pumping lemma to show the given language is not regular. [05] $L = \{0^{i}1^{i} \mid i > 0\}$

B)	Here is a context-free grammar:				
	$S \rightarrow AB \mid CD$ $A \rightarrow BG \mid 0$ $B \rightarrow AD \mid \varepsilon$ $C \rightarrow CD \mid 1$ $D \rightarrow BB \mid E$ $E \rightarrow AF \mid B1$ $F \rightarrow EG \mid OC$ $G \rightarrow AG \mid BD$				
	Find all the nullable symbols				
C)	"A standard example of ambiguity in programming language is dangling else". Explain it. OR				
C)	Convert following CFG to CNF (Chomsky Normal Form).				
	$S \rightarrow AACD$ $A \rightarrow aAb \mid null$ $C \rightarrow aC \mid a$ $D \rightarrow aDa \mid bDb \mid null$				
	Do as directed.	[20]			
A)	Design a Turing machine for accepting the language $L = \{ ww \mid w \in \{a,b\}^* \}$	[10]			
A)	OR				
23)	$S \rightarrow S[S]$ null and Parse the string $x = [][[]]$				
B)	Draw a Turing machine to accept $L = \{0^{i}1^{2i} \mid i>0\}$.	[10]			