What is claimed is:

5

15

20

25

- 1. An electrical resistive device for sensing hydrogen gas, the device comprising:
 - (a) an array of titania nanotubes open at an outwardly-directed end formed by anodizing at least a portion of a titanium layer;
 - (b) a plurality of palladium clusters having been deposited atop said array of titania nanotubes; and
 - (c) said array of titania nanotubes mechanically supported by an integral support member.

10 2. The device of claim 1 wherein:

- (a) said integral support member comprises an electrically insulative substrate layer, said top surface thereof being generally smooth; and
- (b) said titanium layer was deposited atop said integral support member by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating, electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), and laser ablation.

3. The device of claim 1 wherein:

- (a) said integral support member comprises an electrically insulative substrate layer; and
- (b) said palladium clusters were deposited atop said array of nanotubes by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating, electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), electroless deposition, and laser ablation.
- 4. The device of claim 1 further comprising:
 - (a) a plurality of metal electrode-contacts deposited atop said nanotubes with said metal clusters; and
 - **(b)** whereby an exposure of said array of titania nanotubes to radiant ultraviolet energy in the presence of oxygen, removes at least a portion of a contaminant, if present on said titania nanotubes.

35

- 5. The device of claim 1 wherein:
 - (a) said substrate layer is made of an electrically insulative material, said top surface thereof being generally smooth;
 - (b) a thin oxidized barrier layer is formed at the base of said array of nanotubes; and
 - (c) said integral support member further comprises a metal layer interposed between said substrate layer and a metal-oxide layer, with said oxidized barrier layer atop said metal-oxide layer.

10 **6.** The device of claim 1 wherein:

5

15

20

25

- (a) said substrate layer is made of an electrically conductive material atop an electrically insulative base layer;
- (b) a thin oxidized barrier layer is formed at the base of said array of nanotubes; and
- (c) said integral support member further comprises an alumina nanoporous structure interposed between said electrically conductive substrate layer and a metal-oxide layer, with said oxidized barrier layer atop said metal-oxide layer.
- 7. The device of claim 1 wherein:
 - (a) said titanium layer is a titanium foil layer;
 - **(b)** said integral support member comprises a substrate layer comprised of a portion of said titanium foil layer that is not anodized; and
 - (c) said array of titania nanotubes were so formed by exposing an outwardly-directed surface of said titanium foil layer to an acidic electrolyte solution comprising a fluoride compound and an acid at a voltage selected from a range from 100 mV to 40V, for a selected time-period; and
 - (d) a thin oxidized barrier layer is formed at the base of said array of titania nanotubes.

30 **8.** The device of claim 1 wherein:

- (a) said titanium layer is a doped titanium foil layer;
- (b) said dopant comprises a material selected from the group consisting of: Pd, Pt, Sb, Sb₂O₃, In, Bi₂O₃, Ru, Nb, Ni, MgO, Au, Cr, Ag, Cu, N, and C;
- (c) said integral support member comprises a substrate layer comprised of a portion of said doped titanium foil layer that is not anodized; and

4/2/04

(d) whereby an exposure of said array of titania nanotubes to radiant energy emitted within a range of frequencies from visible to ultraviolet, in the presence of oxygen, removes at least a portion of a contaminant, if present on said titania nanotubes.

5

10

20

25

30

- **9.** The device of claim 1 wherein:
 - (a) said titanium layer is a titanium foil layer;
 - **(b)** said integral support member comprises a substrate layer comprised of a portion of said titanium foil layer that is not anodized; and
 - (c) said array of titania nanotubes were so formed by exposing an outwardly-directed surface of said titanium foil layer to a basic electrolyte solution at a voltage selected from a range from 100 mV to 40V, for a selected time-period within a range of 1 minute to 24 hours.
- 15 10. An electrical resistive device for sensing hydrogen gas, the device comprising:
 - (a) an array of titania nanotubes comprising a dopant in an amount less than 1% by mass;
 - (b) a plurality of palladium clusters having been deposited atop said array of titania nanotubes; and
 - (c) said array of nanotubes mechanically supported by an integral support member.

11. The device of claim 10 wherein:

- (a) said integral support member comprises a substrate layer of an electrically insulative material;
- (b) said array of titania nanotubes were formed by anodizing at least a portion of a titanium layer comprising said dopant; and
- (c) said titanium layer comprising said dopant having been produced, prior to said anodizing, by depositing titanium and said dopant atop said integral support member by a co-deposition process selected from the group consisting of: co-sputtering, co-evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion implantation, ion plating, chemical vapor deposition, laser ablation, and thermal diffusion of said dopant into a deposited titanium matrix.

4/2/04

- 12. The device of claim 11 wherein:
 - (a) a thin oxidized barrier layer is formed at the base of said array of titania nanotubes;
 - (b) said integral support member further comprises a metal-oxide layer interposed between said electrically insulative substrate layer and said array of titania nanotubes, with said oxidized barrier layer atop said metal-oxide layer; and
 - (c) a plurality of metal electrode-contacts are deposited atop said titania nanotubes.
- 10 13. The device of claim 11 wherein:
 - (a) said dopant comprises a metallic material selected from the group consisting of: Pd, Pt, Sb, Sb₂O₃, In, Bi₂O₃, Ru, Nb, Ni, MgO, Au, Cr, Ag and Cu; and
 - (b) said titania nanotubes are heat treated; and
 - (c) said integral support member further comprises a metal layer interposed between said electrically insulative substrate layer and a metal-oxide layer, with said array of titania nanotubes atop said metal-oxide layer.
 - 14. The device of claim 10 wherein:
 - (a) said array of titania nanotubes were formed by anodizing at least a portion of a titanium foil layer comprising said dopant, said anodizing comprising exposing an outwardly-directed surface of said foil layer to an acidic electrolyte solution comprising a fluoride compound and an acid;
 - (b) said integral support member comprises a substrate layer comprised of a portion of said titanium foil layer that is not anodized; and
 - (c) whereby an exposure of said array of titania nanotubes to radiant ultraviolet energy in the presence of oxygen, removes at least a portion of a contaminant, if present on said titania nanotubes.
- 30 15. An electrical resistive device for sensing hydrogen gas, the device comprising:
 - (a) an array of titania nanotubes mechanically supported by an integral support member;
 - (b) a plurality of clusters of a noble metal having been deposited atop said array of titania nanotubes after a heat treatment is performed thereto; and

4/2/04 - 34 -

5

20

15

(c) whereby an exposure of said array of titania nanotubes to radiant energy emitted within a range of frequencies from visible to ultraviolet, in the presence of oxygen, removes at least a portion of a contaminant, if present on said titania nanotubes.

5

10

15

16. The device of claim 15 wherein:

- (a) said array of titania nanotubes were formed by anodizing at least a portion of a titanium layer comprising a dopant in an amount less than 1% by mass:
- **(b)** said contaminant is so present on said titania nanotubes and is selected from the group consisting of: liquid crude petroleum, pathogens, fungi, and proteins.

17. The device of claim 16 wherein:

(a) said titanium layer is a doped titanium foil layer;

- (b) said dopant comprises a material selected from the group consisting of: Pd, Pt, Sb, Sb₂O₃, In, Bi₂O₃, Ru, Nb, Ni, MgO, Au, Cr, Ag, Cu, N, and C; and
- (c) said integral support member comprises a substrate layer comprised of a portion of said doped titanium foil layer that is not anodized.

20

18. The device of claim 15 wherein:

- (a) said titanium layer is a titanium foil layer;
- (b) said integral support member comprises a substrate layer comprised of a portion of said titanium foil layer that is not anodized; and

(c) said noble metal clusters were deposited atop said array of nanotubes by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating, electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), electroless deposition, and laser ablation.

30

25

19. The device of claim 15 wherein:

(a) said integral support member comprises a metal-oxide layer interposed between an electrically insulative substrate layer and said array of titania nanotubes; and

- (b) said titanium layer was deposited atop said integral support member by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating, electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), and laser ablation.
- 20. The device of claim 15 wherein:

5

10

15

20

25

30

35

- (a) said integral support member comprises a substrate layer of an electrically insulative material;
- (b) said array of titania nanotubes were formed by anodizing at least a portion of a titanium layer comprising a dopant; and
- (c) said titanium layer comprising said dopant having been produced, prior to said anodizing, by depositing titanium and said dopant atop said integral support member by a co-deposition process selected from the group consisting of: co-sputtering, co-evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion implantation, ion plating, chemical vapor deposition, laser ablation, and thermal diffusion of said dopant into a deposited titanium matrix.
- 21. An electrical resistive device for sensing hydrogen gas, the device comprising:
 - (a) an array of nanotubes open at an outwardly-directed end formed by anodizing at least a portion of a titanium layer comprising a dopant;
 - (b) said array of nanotubes having been heat treated;
 - (c) said array of nanotubes mechanically supported by an integral support member; and
 - (d) said titanium layer comprising said dopant having been produced, prior to said anodizing, by depositing titanium and said dopant atop said integral support member by a co-deposition process selected from the group consisting of: co-sputtering, co-evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion implantation, ion plating, chemical vapor deposition, laser ablation, and thermal diffusion of said dopant into a deposited titanium matrix.
- 22. The device of claim 21 adapted for use to remove a contaminant from said array of nanotubes by exposure thereof to radiant energy emitted within a range of frequencies from visible to ultraviolet, in the presence of oxygen; said contaminant selected from the group consisting of: liquid crude petroleum, pathogens, fungi, and proteins.

4/2/04 - 36 -

- 23. A method of producing an electrical resistive device for sensing hydrogen gas, the method comprising the steps of:
 - (a) forming an array of titania nanotubes open at an outwardly-directed end by anodizing at least a portion of a titanium layer;
 - **(b)** depositing a plurality of palladium clusters atop said array of titania nanotubes by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating, electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), electroless deposition, and laser ablation; and
 - (c) said array of titania nanotubes being mechanically supported by an integral support member.

15 **24.** The method of claim 23:

5

10

20

25

30

- (a) wherein said step of forming said array comprises exposing an outwardly-directed surface of said titanium layer to an acidic electrolyte solution comprising a fluoride compound and an acid at a voltage selected from a range from 100 mV to 40V, for a selected time-period within a range of 1 minute to 24 hours; and
- (b) further comprising the step of, prior to said anodizing, depositing said titanium layer atop said integral support member, which comprises an electrically insulative substrate layer, by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating, electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), and laser ablation.

25. The method of claim 23:

(a) wherein said titanium layer comprises a titanium foil layer, and said step of forming said array comprises exposing an outwardly-directed surface of said foil layer to an acidic electrolyte solution comprising a fluoride compound, leaving a substrate layer comprised of a portion of said foil layer that is not anodized, said integral support member comprising said substrate layer; and

- (b) further comprising the step of exposing said array of titania nanotubes to radiant energy emitted within a range of frequencies from visible to ultraviolet, in the presence of oxygen to remove at least a portion of a contaminant, if present on said titania nanotubes; said contaminant selected from the group consisting of: liquid crude petroleum, pathogens, fungi, and proteins.
- 26. A method of producing an electrical resistive device for sensing hydrogen gas, the method comprising the steps of:
 - (a) forming an array of titania nanotubes open at an outwardly-directed end by anodizing at least a portion of a titanium layer comprising a dopant in an amount less than 1% by mass;
 - (b) depositing a plurality of palladium clusters atop said array of titania nanotubes by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating, electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), electroless deposition, and laser ablation; and
 - (c) said array of titania nanotubes being mechanically supported by an integral support member.

27. The method of claim 26:

5

10

15

20

25

30

35

- (a) wherein said integral support member comprises a substrate layer of an electrically insulative material; and
- (b) further comprising the step of, prior to said anodizing, depositing titanium and said dopant atop said integral support member by a co-deposition process selected from the group consisting of: co-sputtering, co-evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion implantation, ion plating, chemical vapor deposition, laser ablation, and thermal diffusion of said dopant into a deposited titanium matrix.

28. The method of claim 26 wherein:

(a) wherein said titanium layer comprises a titanium foil layer comprising said dopant, and said step of forming said array comprises exposing an outwardly-directed surface of said doped titanium foil layer to an acidic electrolyte solution comprising a fluoride compound, leaving a substrate layer comprised of a portion

4/2/04 - 38 -

of said doped titanium foil layer that is not anodized, said integral support member comprising said substrate layer; and

- (b) further comprising the step of exposing said array of titania nanotubes to radiant energy emitted within a range of frequencies from visible to ultraviolet, in the presence of oxygen to remove at least a portion of a contaminant, if present on said titania nanotubes; said contaminant selected from the group consisting of: liquid crude petroleum, pathogens, fungi, and proteins.
- 29. A method of producing an electrical resistive device for sensing hydrogen gas, the method comprising the steps of:
 - (a) forming an array of titania nanotubes open at an outwardly-directed end by anodizing at least a portion of a first titanium layer;
 - (b) prior to said anodizing, depositing said first titanium layer atop said integral support member, which comprises an electrically insulative substrate layer, by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating, electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), and laser ablation;
 - (c) after said step of depositing said first titanium layer, depositing a second titanium layer, leaving a portion of said first titanium layer uncovered for said forming said array of titania nanotubes; and
 - (d) depositing a plurality of metal electrode-contacts atop said titania nanotubes so formed.
- 30. A method of producing an electrical resistive device for sensing hydrogen gas, the method comprising the steps of:
 - (a) forming an array of titania nanotubes open at an outwardly-directed end by anodizing at least a portion of a titanium layer;
 - **(b)** prior to said anodizing, depositing an aluminum layer atop an electrically insulative substrate layer;
 - (c) after said step of depositing said aluminum layer, depositing said titanium layer atop said aluminum layer by performing a deposition process selected from the group consisting of: sputtering, evaporation using thermal energy, E-beam evaporation, ion assisted deposition, ion plating,

4/2/04

5

15

20

electrodeposition, screen printing, chemical vapor deposition, molecular beam epitaxy (MBE), and laser ablation; and

(d) after said anodizing, heat treating said array of titania nanotubes in the presence of oxygen forming a titanium-oxide layer interposed between said aluminum layer and said array of titania nanotubes.

5

4/2/04 - 40 -