1.	В чём заключается отличие градиентного спуска от стохастического градиентного спуска?	1 point
	В стохастическом градиентном спуске на каждой итерации используется лишь одно слагаемое в функционале ошибки.	
	В стохастическом градиентном спуске на каждой итерации к антиградиенту добавляется нормальный шум.	
	В стохастическом градиентном спуске на каждой итерации делается шаг в случайном направлении.	
2.	Как можно избавиться от свободного члена в линейных моделях?	1 point
	Добавить единичный признак.	
	Свободный член нельзя убрать, не ослабив при этом линейную модель.	
	Просто убрать его — свободный член ни на что не влияет и нужен лишь для простоты выкладок.	
3.	Выберите верные утверждения про отступ	1 point
	Отступ характеризует качество классификатора на всей обучающей выборке.	
	✓ Отступ характеризует качество классификатора на одном объекте.	
	✓ Чем больше абсолютное значение отступа, тем больше классификатор уверен в своём ответе.	
4.	Для чего при обучении линейных классификаторов используются верхние оценки на пороговую функцию потерь?	1 point
	 Чтобы перейти к функции потерь, которая будет легко вычислима — без этого градиентная оптимизация будет занимать слишком много времени. 	
	 Чтобы перейти к функции потерь, на которой градиентный спуск будет быстрее сходиться. 	
	 Чтобы заменить разрывную пороговую функцию потерь на гладкую функцию без этого градиентная оптимизация будет невозможна. 	