Math250aHw8

Trustin Nguyen

October 24, 2023

Exercise 1: Write out a careful proof of the "contravariant Yoneda embedding theorem":

Theorem 0.1: If F is a contravariant functor from a category C to the category of sets, and A is an object in C, then there is a natural isomorphism

$$((-,A),F) \cong F(A)$$

and its important consequence, the full embedding theorem:

Proof. We want to show:

$$((-,A),F) \xrightarrow{\eta} F(A)$$

where $\delta \eta = id$ and $id = \eta \delta$. We consider δ_A as

$$((A, A), F) \rightarrow F(A)$$

and since the functor is contravariant:

$$F(A) \xrightarrow{F(\varphi)} F(A)$$

$$\uparrow \qquad \qquad \uparrow$$

$$A \longleftarrow \qquad A$$

commutes. So if $\alpha_A \in ((A,A),F)$, then we send it by δ_A to an object in F(A), which is the evaluation of α_A . We know that identities are sent to identities by isomorphism, so it must be that $\alpha_A \mapsto \alpha_A(1_A)$.

Now for $\eta_B(x)$, consider the diagram:

$$\begin{array}{ccc} (A,A) & \longrightarrow & F(A) \\ & & & & \downarrow^{F(\phi \circ f)} \\ (B,A) & \longrightarrow & F(B) \end{array}$$

If we have $\varphi \in (A,A)$, then for some $f:B\to A$, we have that the morphism from $(A,A)\to (B,A)$ is composition shown above. Now if $x\in F(A)$, then it is sent to F(B) by $F(\varphi\circ f)(x)$. Then there is a natural mapping from $(B,A)\to F(B)$:

$$f \longrightarrow x$$

$$\downarrow^{\varphi \circ f} \qquad \qquad \downarrow^{F(\varphi \circ f)}$$

$$\varphi \circ f \longrightarrow F(\varphi \circ f)(x)$$

Then if $\psi \in (B, A)$, we have the mapping from $\eta : x \mapsto (\psi \mapsto F(\psi)(x))$.

 $(\delta(\eta(x)) = x)$ We have:

$$\delta(\eta(x)) = (\eta(x))_A (1_A)$$

$$= F(\phi)(x)(1_A)$$

$$= F(1_A)(x)$$

$$= (1_A)(x)$$

$$= x$$

which shows that $\delta \eta$ is the identity on F(A).

 $(\eta(\delta(\alpha))_B = \alpha_B)$ We have that

$$\eta(\delta(\alpha))_{B}(\varphi) = \eta(\alpha_{A}(1_{A}))_{B}(\varphi)$$
$$= F(\varphi)(\alpha_{A}(1_{A}))$$

Now recall that we have the natural transformation:

$$(A,A) \xrightarrow{\alpha_A} F(A)$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{F(\varphi)}$$

$$(B,A) \xrightarrow{\alpha_B} F(B)$$

So we have

$$F(\varphi)(\alpha_A(1_A)) = F(\varphi)(\alpha_A)(1_A) = \alpha_B(1_A)(\varphi) = \alpha_B(\varphi)$$

Therefore, we have that

$$\eta(\delta(\alpha))_B(\varphi) = \alpha_B(\varphi)$$

where ϕ was just a placeholder morphism. So $\eta(\delta(\alpha))_B = \alpha_B$, which shows that $\eta\delta$ is the identity. \Box

Corollary 0.2: The functor from C to the category of functors $C \to Sets$ taking an object A to the functor (-,A) is one-to-one and onto on morphisms and takes non-isomorphic objects to non-isomorphic functors.

Proof. We will use the fact that for any A object of C, since (-,A) is a contravariant functor, we have:

$$((-,A),id) \cong A$$

Now we just map:

$$((-,A),id) \mapsto (-,A)$$

This is one-to-one because if F(((-,A),id)) = F(((-,B),id)), then $(-,A) \cong (-,B)$, which means that the identity morphism in (A,A) must map to the identity on (A,B) which is only possible if $A \cong B$ or $((-,A),id) \cong ((-,B),id)$. The map is onto because if $(-,D) \in (C \to Set)$, then we just have that $((-,D),id) \cong D$ maps to it. We finally have that non-isomorphic objects are sent to non-isomorphic functors just by the contrapositive statement of the injectivity proved before. So we are done.

Exercise 2: Read Lang, pp. 173-186 and do problems p.213, #1 - 3.

Exercise 3: Let k be a field and $f(X) \in k[X]$ a non-zero polynomial. Show that the following conditions are equivalent:

- (a) The ideal (f(X)) is prime.
- (b) The ideal (f(X)) is maximal.
- (c) f(X) is irreducible.

Proof. We will show that $a \to c$. This is because if f(X) = g(X)h(X), then since (f(X)) is prime, we have that $g(X) \in (f(X))$ or $h(X) \in (f(X))$. So $g(X) \mid f(X)$ wlog. But since the ideal is generated by f(X), we also have $f(X) \mid g(X)$. So:

$$f(X)u = g(X)$$

and

$$g(X)p = f(X)$$

so

$$g(X)up = g(X)$$

Therefore, p is a unit which means that f(X) is irreducible.

We will now show that $c \to b$. Since k is a field, we have k[X] is a Euclidean Domain and therefore a PID. So we have (f(X), g(X)) = (h(X)) for g(X) not a multiple of f(X). This means that $h(X) \mid f(X), h(X) \mid g(X)$. Then h(X) is a unit or differs from f(X) by a unit. If h(X) is a unit, we are done. If not, we have:

$$af(X) = h(X)$$

but

$$g(X) = bh(X)$$

so

$$g(X) = abf(X)$$

which shows that $f(X) \mid g(X)$ which contradicts our assumption. So if (f(X)) is contained in any ideal, that ideal must be the whole ring or itself.

Now for a proof of $b \to a$. Suppose $g(X)h(X) \in (f(X))$, (f(X)) a proper ideal of k[X]. Since k[X] is a Euclidean Domain, we see wlog that g(X) has the same degree as f(X), otherwise, we perform the division algorithm on the degree of f and see that (f(X)) = k[X]. But:

$$deg g + deg h = deg f$$

So

$$degh = 0$$

which means that h is a unit. So $g(X) \in f(X)$.

Exercise 4:

(a) State and prove the analogue of Theorem 5.2 for the rational numbers.

Proof. We want to show that for any $\alpha \in \operatorname{Frac} \mathbb{Z}$, there is a unique decomposition such that if P is the set of primes in \mathbb{Z} , and j(p) is 0 for almost all p,

$$\alpha = \sum_{p \in P} \frac{\alpha_p}{p^{j(p)}} + \beta$$

where α_p , $\beta \in \mathbb{Z}$, $\alpha_p = 0$ if j(p) = 0, α_p is relatively prime to $p^{j(p)}$ if $j(p) \ge 1$, and $|\alpha_p| < |p^{j(p)}|$ if j(p) > 0. Furthermore, this decomposition is unique.

First, consider the primes $p_1, ..., p_m$ where $j(p_i) \neq 0$. We will show that there are $a_1, ..., a_m$ non-zero such that for any number of primes $p_1, ..., p_m$ chosen, $m \geq 2$:

$$a_1 p_1^{j(p_1)} + a_2 p_2^{j(p_2)} + \cdots + a_m p_m^{j(p_m)} = 1$$

Base Case: For m = 2, since \mathbb{Z} is a PID, p_1, p_2 relatively prime, we have:

$$a_1 p_1^{j(p_1)} + a_2 p_2^{j(p_2)} = 1$$

Indeed neither a_1 , a_2 are zero, because primes are not units by definition, so they cannot generate the ring.

Inductive Step: Suppose this is true for p_1, \ldots, p_m . Then we have:

$$p' = a_1 p_1^{j(p_1)} + a_2 p_2^{j(p_2)} + \dots + a_m p_m^{j(p_m)} = 1$$

Then p_{m+1} does not divide p', otherwise, (p_{m+1}) generates the entire ring. So p_{m+1}, p' are relatively prime. Now we have:

$$(1 - p_{m+1})p' + p_{m+1} = 1$$

so we have non-zero coefficients a_1, \ldots, a_{m+1} such that the linear combination equals 1. Now divide through

$$a_1 p_1^{j(p_1)} + a_2 p_2^{j(p_2)} + \cdots + a_m p_m^{j(p_m)} = 1$$

by $p_1^{j(p_1)}p_2^{j(p_2)}\cdots p_m^{j(p_m)}$ to get:

$$\frac{1}{p_1^{j(p_1)}p_2^{j(p_2)}\cdots p_m^{j(p_m)}} = \sum_{i=1}^m \frac{a_i}{\prod_{k\neq i} p_k^{j(p_k)}}$$

We will use this to show that any element of $\operatorname{Frac} \mathbb{Z}$ with a denominator on m primes can be decomposed into a sum of elements of $\operatorname{Frac} \mathbb{Z}$ with each summand having one prime. For the case of where a summand has one prime in the denominator, that is the very most it can be decomposed. If there are two primes, we have:

$$a_1 p_1^{j(p_1)} + a_2 p_2^{j(p_2)} = 1$$

which means:

$$c\alpha_1\frac{p_1}{p_2^{j(p_2)}}+c\alpha_2\frac{p_2}{p_1^{j(p_1)}}=\frac{c}{p_1^{j(p_1)}p_2^{j(p_2)}}$$

So for any $c/p_1^{j(p_1)}p_2^{j(p_2)}$, it can be decomposed into denominators with only one prime factor. Now suppose we had $c/\prod_{i=1}^m p_m^{j(p_m)}$, where there are m prime factors in the denominator. By the fact that we have the decomposition:

$$\alpha = \frac{c}{p_1^{j(p_1)}p_2^{j(p_2)}\cdots p_m^{j(p_m)}} = c\sum_{i=1}^m \frac{a_i}{\prod_{k\neq i} p_k^{j(p_k)}}$$

the summands on the RHS have fewer primes in the denominator, and by induction, we can decompose those into sums of fractions with one prime in the denominator.

Now since α in the above equation is decomposed as such, if we have other summands with different primes p_i' in the denominator as already established, then if:

$$\alpha = c \sum_{i=1}^m \frac{\alpha_i}{\prod_{k \neq i} p_k^{j(p_k)}} + \sum_{i \geqslant 0} \frac{c_i}{p_i'^{j(p_i')}}$$

Then we know each of the c_i 's are 0, if we also prove the unique decomposition. If any of the α_p in the numerator is greater than the denominator, we have the Euclidean algorithm such that the quotient gets added to β and the remainder replaces the numerator. α_p is relatively prime to $p^{j(p)}$ otherwise it belongs as a summand of β . Now we just need to show the decomposition is unique. Suppose that:

$$\sum_{p \in P} \frac{\alpha_p}{p^{j(p)}} + \beta = \sum_{q \in P} \frac{\alpha'_q}{q^{j(q)}} + \beta'$$

this means that:

$$\sum_{p \in P} \frac{\alpha_p}{p^{j(p)}} + \beta - \sum_{p \in P} \frac{\alpha'_p}{p^{i(p)}} - \beta' = 0$$

We have $\beta = \beta'$ because all the other summands are in Frac \mathbb{Z} and not in \mathbb{Z} . Now if for a fixed prime q, j(1) = i(1), we have that

$$\frac{\alpha_{\mathbf{q}}}{\mathbf{q}^{\mathfrak{j}(\mathbf{q})}} - \frac{\alpha_{\mathbf{q}}'}{\mathbf{q}^{\mathfrak{i}(\mathbf{q})}} = 0$$

so indeed $\alpha_q = \alpha_q'$. Now suppose j(q) < i(q) for some prime q. Then we clear denominators by multiplying by $dq^{i(q)}$ where d is the lcm of the prime powers not equal to q. So we are left with:

$$d(\alpha_q - \alpha_q'^{q^{i(q)-j(q)}}) = q^{i(q)}\eta$$

for some $\eta \in \mathbb{Z}$. But q does not divide either product parts on the LHS, which is a contradiction. So i(q) = j(q) and the decomposition is unique.

(b) State and prove the analogue of Theorem 5.3 for positive integers.

Proof. Let $p, q \in \mathbb{Z}_{\geq 0}$. Then there is a unique a_i such that:

$$p = a_0 + a_1q + a_2q^2 + \dots + a_nq^n$$

such that $a_i < q$ where q > 1. If q > p, then we take $a_0 = p < q$. If q = p, we take $a_0 = 0$, $a_1 = 1$.

Otherwise, for q < p, we require the division algorithm, which will be proved at the end of this proof. Take the largest power of q such that $q^n < p$. Then perform the division algorithm:

$$p = a_n q^n + r_n$$

We know that $a_n < q$ because q^n is the largest power less than p. Furthermore, $r_n < q^n$. Now take the largest power of q such that $q^m < r_n$. We inductively repeat this process until $r_i < q$. So we have:

$$p = a_0 + a_1 q + a_2 q^2 + \cdots + a_n q^n$$

as desired. Suppose that we also had:

$$p = b_0 + b_1 q + b_2 q^2 + \dots + b_n q^n$$

Then

$$0 = (a_0 - b_0) + (a_1 - b_1)q + \cdots + (a_n - b_n)q^n$$

So q divides $a_0 - b_0$ which we know are both less than q. So $a_0 - b_0 = 0$ and $a_0 = b_0$. But now we have:

$$0 = (a_1 - b_1)q + (a_2 - b_2)q^2 + \dots + (a_n - b_n)q^n$$

which tells us that $q \mid (a_1 - b_1)$. So we can repeat this process inductively to show $a_i = b_i$.

(Division Algorithm) (Existence) Since q > 1, we know that for $d \ge p + 1$,

So we have a finite number of possibilities for d: 1,...,p. Choose the least of them such that (d + 1)q > p. Then

But

$$(d+1)q > p \implies dq + q > p \implies q > p - dq = r$$

So we have found a d such that:

$$p = dq + r$$

and r < q.

(Uniqueness) Suppose that $p = d_1q + r_1 = d_2q + r_2$. Then

$$0 = q(d_1 - d_2) + r_1 - r_2$$

Then q divides $r_1 - r_2$ which means that $r_1 - r_2 = 0$ as $d > r_1, r_2 \ge 0$. So then:

$$0 = q(d_1 - d_2)$$

If q = 0, we have $p = r_1 = r_2$, so we are done. Otherwise, since there are no zero divisors in $\mathbb{Z}_{\geq 0}$, $d_1 - d_2 = 0$ which means $d_1 = d_2$.

Exercise 5: Let f be a polynomial in one variable over a field k. Let X, Y be two variables. Show that in k[X, Y] we have a "Taylor series" expansion

$$f(X + Y) = f(X) + \sum_{i=1}^{n} \varphi_i(X)Y^i,$$

where $\varphi_i(X)$ is a polynomial in X with coefficients in k. If k has characteristic 0, show that

$$\varphi_{\mathfrak{i}}(X) = \frac{\mathsf{D}^{\mathfrak{i}}\mathsf{f}(X)}{\mathfrak{i}!}.$$

Proof. Notice that we have for f as a polynomial in one variable:

$$f(z) = k_0 + k_1 z + k_2 z^2 + \cdots$$

where finitely many ki are non-zero. Then

$$f(X + Y) = k_0 + k_1(X + Y) + k_2(X + Y)^2 + \cdots$$

By the binomial theorem, we have:

$$\begin{split} f(X+Y) &= \sum_{i=0}^{m} k_{i} \sum_{j=0}^{i} \binom{i}{j} X^{i-j} Y^{j} \\ &= \sum_{i=1}^{m} k_{i} \sum_{j=1}^{i} \binom{i}{j} X^{i-j} Y^{j} + \sum_{i=0}^{m} k_{i} \binom{i}{0} X^{i} \\ &= \sum_{i=1}^{m} k_{i} \sum_{j=1}^{i} \binom{i}{j} X^{i-j} Y^{j} + f(X) \\ &= \sum_{i=1}^{m} \sum_{j=1}^{i} k_{i} \binom{i}{j} X^{i-j} Y^{j} + f(X) \end{split}$$

Now for each i = 1, ..., m, we look at the instance of when j = 1. This gives us

$$k_i \binom{i}{1} X^{i-1} Y^1$$

So then the collection of terms with Y¹ is:

$$\sum_{i=1}^{m} k_{i} \binom{i}{1} X^{i-1} Y^{1} = \left(\sum_{i=1}^{m} k_{i} \binom{i}{1} X^{i-1} \right) (Y^{1})$$

and therefore,

$$\varphi_1 = \sum_{i=1}^m k_i \binom{i}{1} X^{i-1}$$

and in general:

$$\varphi_j = \sum_{i \geqslant j}^m k_i \binom{i}{j} X^{i-j}$$

which is a polynomial on X, and indeed,

$$\begin{split} f(X+Y) &= \sum_{i=1}^m \sum_{j=1}^i k_i \binom{i}{j} X^{i-j} Y^j + f(X) \\ &= \sum_{j=1}^i \sum_{i\geqslant j}^m k_i \binom{i}{j} X^{i-j} Y^j + f(X) \\ &= f(X) + \sum_{j=1}^i \varphi_j(X) Y^j \end{split}$$

Now for the second part, we recall

$$\varphi_{j} = \sum_{i>j}^{m} k_{i} \binom{i}{j} X^{i-j}$$

So we can factor out a j! from the bottom:

$$\begin{split} \phi_{j} &= \frac{1}{j!} \sum_{i \geqslant j}^{m} k_{i} \frac{i!}{(i-j)!} X^{i-j} \\ &= \frac{1}{j!} \sum_{i \geqslant j}^{m} k_{i} (i) (i-1) \cdots (i-j+1) X^{i-j} \\ &= \frac{1}{j!} \sum_{i \geqslant j}^{m} k_{i} D^{j} X^{i} \\ &= \frac{1}{j!} D^{j} \sum_{i \geqslant j}^{m} k_{i} X^{i} \\ &= \frac{1}{i!} D^{j} f(X) \end{split}$$

which concludes the proof.