March 8, 2020 Antonio Pelayo

Section 3.6.2 Simple Linear Regression

A quick look at our data

We will take the time to look at the Boston housing data set in order to attempt to define a correlation between the median housing prices and percentage of population that are defined as lower status. Both being quantitative data.

A first good step is to take a look at the plot of median housing prices against percent lower status. This will allow us to gain initial insights to the data we are working with.

- > attach(Boston)
- > plot(medv~lstat,
- + xlab="Percent population in low-status",
- + ylab="Median housing price")

It is possible to see that yes this graph does seem to have a general downward trend, though definitely not linear if we are to include all data points in this observation. We can use R to find 5 number summaries for these columns.

```
> summary(medv)
  Min. 1st Qu.
                Median
                           Mean 3rd Qu.
                                            Max.
  5.00
         17.02
                  21.20
                          22.53
                                   25.00
                                           50.00
> summary(lstat)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
          6.95
                 11.36
                          12.65
                                   16.95
                                           37.97
```

Now knowing the quartiles for our data we can compute the upper and lower fences such that we can remove outliers in our data.

Removing outliers

Inner quartile range =
$$Q3 - Q1$$

Lower fence = $Q1 - 1.5IQR$
Upper fence = $Q3 + 1.5IQR$

For 'medv' we have bounds at [5.05, 36.97] and for 'lstat' [-8.05, 31.95]. Applying these fences and removing the outliers we have a slightly altered graph:

Applying a linear model

30.9136

Now we will apply a linear regression model to fit our cleaned data.

-0.7785

This tells us that our prediction equation has values $\beta_0 = 30.91, \beta_1 = -0.78$

$$\hat{y_i} = 30.91 - 0.78x_i$$

It can be found through 'summary()' that the p-value for this linear model is less than 2.2e-16, and R-squared value of 0.62 thus fitting our data fairly well.

Producing confidence intervals

We can find the 95% confidence intervals of our coefficients by calling R's confint() function:

```
> confint(lm.fit)
2.5 % 97.5 %
(Intercept) 30.0966007 31.7306978
lstat -0.8344623 -0.7224984
```

Also prediction intervals for lstat values 5, 10, and 15:

This tells us that for a location where about 10 percent of the population that is of lower status, the median value for housing should be between [22.72, 23.53] Similar predictions can be found for any value within the plotted bounds of the graphs above. Otherwise predictions may not be accurate due to extrapolation.

Diagnostic plots

All code for plots and calculations can be found in 'simple-linear-regression.R'