Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчёт

Лабораторная работа №3 Вариант 10

Выполнил:

Сандов Кирилл Алексеевич

P3213

Преподаватель:

Машина Екатерина Алексеевна

Цель работы

Найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Вычисление заданного интеграла

Точное значение интеграла

$$\int_{2}^{4} (x^{3} - 3x^{2} + 7x - 10)dx = \left(-\frac{1}{4}x^{4} - x^{3} + \frac{7}{2}x^{2} - 10x\right)\Big|_{2}^{4} = 256/4 - 64 + 7 * 16/2 - 40 - (4 - 8)$$

$$+ 14 - 20) = 26$$

Вычисление по формуле Ньютона-Котеса

n = 6

$$h = (b - a)/n = (4 - 2)/6 = 0.33$$

$$x_0=2, x_1=2.33, x_2=2.66, x_3=3, x_4=3.33, x_5=3.66, x_6=4$$
 - равностоящие узлы

$$c_6^0 = c_6^6 = \frac{41(b-a)}{840} \quad c_6^1 = c_6^5 = \frac{216(b-a)}{840} \quad c_6^2 = c_6^4 = \frac{27(b-a)}{840} \quad c_6^3 = \frac{272(b-a)}{840}$$

$$\int_{2}^{4} f(x)dx \approx \sum_{i=0}^{6} f(x_i)c_n^i =$$

f(2)*(41*2/840) + f(2.333)*(216*2/840) + f(2.666)*(27*2/840) + f(3)*(272*2/840) + f(3.333)*(27*2/840) + f(3.666)*(216*2/840) + f(4)*(41*2/840) = 25.988752249807142

Вычисление по формуле средних прямоугольников

n = 10

$$h = (b - a)/n = 0.2$$

i	0	1	2	3	4	5	6	7	8	9	10
x_i	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	4
x_i-½		2.1	2.3	2.5	2.7	2.9	3.1	3.3	3.5	3.7	3.9
f(x_i-½)		0.73	2.4	4.38	6.71	9.46	12.66	16.36	20.63	25.48	31

$$\int_{2}^{4} f(x)dx \approx h \sum_{i=0}^{10} f(x_{i-1/2}) =$$

=0.2*(0.73+2.4+4.38+6.71+9.46+12.66+16.36+20.63+25.48+31)=25.962

Вычисление по формуле трапеций

n = 10

$$h = (b - a)/n = 0.2$$

i	0	1	2	3	4	5	6	7	8	9	10
x_i	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	4
y_i	0	1.53	3.34	5.5	8	11	14.45	18.42	22.98	28.15	34

$$\int_{2}^{4} f(x)dx \approx h/2 (y_{0} + y_{10} + 2 \sum_{i=0}^{6} y_{i}) =$$

=0.4/2 * (22 - 6 + 2*(6.52 - 3.05 - 7.9 - 9.16 - 8 - 5.55 - 2.97 - 1.42 - 2.05 - 6))=26.02

Вычисление по формуле Симпсона

i	0	1	2	3	4	5	6	7	8	9	10
x_i	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	4
y_i	0	1.53	3.34	5.5	8	11	14.45	18.42	22.98	28.15	34

$$\int_{2}^{4} f(x)dx \approx h/3 \left(y_{0} + 4(y_{1} + y_{3} + \dots + y_{n-1}) + 2(y_{2} + y_{4} + \dots + y_{n-2}) + y_{n} \right) =$$

=(0.4/3) * (22 + 4*(6.52 -7.9 - 8 - 2.97 - 2.05) + 2*(-3.05 -9.16 - 5.55 - 1.42) - 6)=25.9959

Погрешности каждого из методов

Метод	Относительная погрешность				
Ньютона-Котеса	0.04%				
Средних прямоугольников	0.15%				
Трапеций	0.08%				
Симпсона	0.02%				

Код программы

https://github.com/amphyxs/Computational-Math-2024/tree/mai n/P3213/Sandow_367527/lab3

Вывод

В результате выполнения данной лабораторной работы были изучены методы для приближённого вычисления значений определенного интеграла.