# Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group

L. Naughton and G. Pfeiffer
School of Mathematics, Applied Mathematics and Statistics
National University of Ireland, Galway
Ireland

#### Abstract

The subgroup pattern of a finite group G is the table of marks of G together with a list of representatives of the conjugacy classes of subgroups of G. In this article we describe a collection of sequences realized by the subgroup pattern of the symmetric group.

### 1 Introduction

The table of marks of a finite group G was introduced by Burnside [1]. It is a matrix whose rows and columns are indexed by a list of representatives of the conjugacy classes of subgroups of G, where, for two subgroups  $H, K \leq G$  the (H, K) entry in the table of marks of G is the number of fixed points of K in the transitive action of G on the cosets of G,  $(\beta_{G/H}(K))$ . If G, ..., G, is a list of representatives of the conjugacy classes of subgroups of G, the table of marks is then the  $(r \times r)$ -matrix

$$M(G) = (\beta_{G/H_i}(H_j))_{i,j=1,...,r}.$$

In much the same fashion as the character table of G classifies matrix representations of G up to isomorphism, the table of marks of G classifies permutation representations of G up to equivalence. It also encodes a wealth of information about the subgroup lattice of G in a compact way. The GAP [3] library of tables of marks Tomlib [7] provides ready access to the tables of marks and conjugacy classes of subgroups of some 400 groups. The data exhibited in later sections has been computed using this library. The purpose of this article is to illustrate how interesting integer sequences related to the subgroup structure of a finite group can be computed from this data. This paper is organized as follows. In Section 2 we study the conjugacy classes of subgroups of  $S_n$  for  $n \leq 13$ . In Section 3 we examine the tables of marks of  $S_n$  for  $n \leq 13$  and describe how much more information regarding the subgroup structure of  $S_n$  can be obtained. In Section 4 we discuss the Euler Transform and its applications in counting subgroups of  $S_n$ .

### 2 Counting Subgroups

Given a list of representatives  $\{H_1, \ldots, H_r\}$  of Sub(G)/G, the conjugacy classes of subgroups of G, we can enumerate those subgroups which satisfy particular properties. The numbers of

conjugacy classes of subgroups of  $S_n$  and  $A_n$  are sequences  $\underline{A000638}$  and  $\underline{A029726}$  respectively in Sloane's encyclopedia [5]. The GAP table of marks library Tomlib provides access to the conjugacy classes of subgroups of the symmetric and alternating groups for  $n \leq 13$ . Table 1 records the number of conjugacy classes of subgroups of  $S_n$  which are abelian, cyclic, nilpotent, solvable and supersolvable, (SupSol). A similar table for the conjugacy classes of subgroups of the alternating groups can be found in Appendix A.

| n  | $ \mathrm{Sub}(S_{\mathfrak{n}})/S_{\mathfrak{n}} $ | Abelian | Cyclic | Nilpotent | Solvable | SupSol |
|----|-----------------------------------------------------|---------|--------|-----------|----------|--------|
| 1  | 1                                                   | 1       | 1      | 1         | 1        | 1      |
| 2  | 2                                                   | 2       | 2      | 2         | 2        | 2      |
| 3  | 4                                                   | 3       | 3      | 3         | 4        | 4      |
| 4  | 11                                                  | 7       | 5      | 8         | 11       | 9      |
| 5  | 19                                                  | 9       | 7      | 10        | 17       | 15     |
| 6  | 56                                                  | 20      | 11     | 25        | 50       | 38     |
| 7  | 96                                                  | 26      | 15     | 32        | 84       | 65     |
| 8  | 296                                                 | 61      | 22     | 127       | 268      | 187    |
| 9  | 554                                                 | 82      | 30     | 156       | 485      | 341    |
| 10 | 1593                                                | 180     | 42     | 531       | 1418     | 923    |
| 11 | 3094                                                | 236     | 56     | 648       | 2691     | 1789   |
| 12 | 10723                                               | 594     | 77     | 3727      | 9725     | 6118   |
| 13 | 20832                                               | 762     | 101    | 4221      | 18286    | 11616  |

Table 1: Sequences in  $S_n$ 

### 2.1 Subgroup Orders

A question of historical interest concerns the orders of subgroups of  $S_n$ . In [2] Cameron writes: The Grand Prix question of the Academie des Sciences, Paris, in 1860 asked "How many distinct values can a function of n variables take?" In other words what are the possible indices of subgroups of  $S_n$ . For  $n \leq 13$  Table 2 records the numbers of different orders  $\mathcal{O}(S_n)$ ,  $\mathcal{O}(A_n)$  of subgroups of  $S_n$  and  $A_n$ . One might as well also enumerate the number of "missing" subgroup orders, that is, the number,  $d(S_n)$ , of divisors d such that  $d \mid |S_n|$  but  $S_n$  has no subgroup of order d. Table 3 records the number of missing subgroup orders of  $S_n$  and  $A_n$  for  $n \leq 13$ .

| n  | $O(S_n)$ | $\mathcal{O}(A_n)$ |
|----|----------|--------------------|
| 1  | 1        | 1                  |
| 2  | 2        | 1                  |
| 3  | 4        | 2                  |
| 4  | 8        | 5                  |
| 5  | 13       | 9                  |
| 6  | 21       | 15                 |
| 7  | 31       | 22                 |
| 8  | 49       | 38                 |
| 9  | 74       | 59                 |
| 10 | 113      | 89                 |
| 11 | 139      | 115                |
| 12 | 216      | 180                |
| 13 | 268      | 226                |

| n                                      | $d(S_n)$ | $d(A_n)$ |
|----------------------------------------|----------|----------|
| 1                                      | 0        | 0        |
| $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ | 0        | 0        |
| 3                                      | 0        | 0        |
| 4                                      | 0        | 1        |
| 5                                      | 3        | 3        |
| 6                                      | 9        | 9        |
| 7                                      | 29       | 26       |
| 8                                      | 47       | 46       |
| 9                                      | 86       | 81       |
| 10                                     | 157      | 151      |
| 11                                     | 401      | 365      |
| 12                                     | 576      | 540      |
| 13                                     | 1316     | 1214     |

Table 2: Subgroup Orders

Table 3: Missing Subgroup Orders

# 3 Counting Using the Table of Marks

If in addition to a list of conjugacy classes of subgroups of G, the table of marks of G is also available, or can be computed, one can say quite a lot about the structure of the lattice of subgroups of G. We begin this section by giving some basic information about tables of marks and then go on to describe how we can count incidences and edges in the lattice of subgroups.

#### 3.1 About Tables of Marks

Let G be a finite group and let Sub(G) denote the set of subgroups of G. By Sub(G)/G we denote the set of conjugacy classes of subgroups of G. For H,  $K \in Sub(G)$  let

$$\beta_{G/H}(K)=\#\{Hg\in G/H: (Hg)k=Hg \ \mathrm{for \ all} \ k\in K\}$$

denote the mark of K on H. If  $H_1, \ldots, H_r$  is a list of representatives of the conjugacy classes of subgroups of G, the table of marks is then the  $(r \times r)$ -matrix

$$M(G)=(\beta_{G/H_i}(H_j))_{i,j=1,\dots,r}.$$

The table of marks  $M(S_4)$  of the symmetric group  $S_4$  is shown in Figure 1.

| $S_{4}/1$ | 24 |   |   |   |       |       |   |       |       |       |                |
|-----------|----|---|---|---|-------|-------|---|-------|-------|-------|----------------|
| $S_{4}/2$ | 12 | 4 |   |   |       |       |   |       |       |       |                |
| $S_{4}/2$ | 12 |   | 2 |   |       |       |   |       |       |       |                |
| $S_{4}/3$ | 8  |   |   | 2 |       |       |   |       |       |       |                |
| $S_4/2^2$ | 6  | 6 |   |   | 6     |       |   |       |       |       |                |
| $S_4/2^2$ | 6  | 2 | 2 |   | •     | 6     |   |       |       |       |                |
| $S_{4}/4$ | 6  | 2 |   |   | •     |       | 2 |       |       |       |                |
| $S_4/S_3$ | 4  |   | 2 | 1 | •     |       |   | 1     |       |       |                |
| $S_4/D_8$ | 3  | 3 | 1 |   | 3     | 1     | 1 |       | 1     |       |                |
| $S_4/A_4$ | 2  | 2 |   | 2 | 2     |       |   |       | •     | 2     |                |
| $S_4/S_4$ | 1  | 1 | 1 | 1 | 1     | 1     | 1 | 1     | 1     | 1     | 1              |
|           | 1  | 2 | 2 | 3 | $2^2$ | $2^2$ | 4 | $S_3$ | $D_8$ | $A_4$ | S <sub>4</sub> |

Figure 1: Table of Marks  $M(S_4)$ 

As a matrix, we can extract a variety of sequences from the table of marks, the most obvious of which is the sum of the entries. The sum of the entries of  $M(S_n)$  for  $n \le 13$  is shown in Figure 4. We can also sum the entries on the diagonal to obtain the sequences in Figure 5.

| n  | $S_n$        | An          |
|----|--------------|-------------|
| 1  | 1            | 1           |
| 2  | 4            | 1           |
| 3  | 18           | 5           |
| 4  | 146          | 39          |
| 5  | 681          | 192         |
| 6  | 7518         | 1717        |
| 7  | 58633        | 13946       |
| 8  | 952826       | 243391      |
| 9  | 11168496     | 2693043     |
| 10 | 232255571    | 38343715    |
| 11 | 3476965896   | 545787051   |
| 12 | 108673489373 | 15787210045 |

| n  | $S_n$     | $A_n$     |
|----|-----------|-----------|
| 1  | 1         | 1         |
| 2  | 3         | 1         |
| 3  | 10        | 4         |
| 4  | 47        | 19        |
| 5  | 165       | 73        |
| 6  | 950       | 412       |
| 7  | 5632      | 2660      |
| 8  | 43772     | 21449     |
| 9  | 376586    | 184541    |
| 10 | 3717663   | 1827841   |
| 11 | 40555909  | 20043736  |
| 12 | 484838080 | 240206213 |

Table 4: Sum of M(G)

Table 5: Sum of the Diagonal

We will now collect some elementary properties of tables of marks in Lemma 1.

**Lemma 1.** Let  $H, K \leq G$ . Then the following hold:

(i) The first entry of every row of  $\mathsf{M}(\mathsf{G})$  is the index of the corresponding subgroup,

$$\beta_{G/K}(1) = |G:K|$$
.

(ii) The entry on the diagonal is,

$$\beta_{G/K}(K) = |N_G(K):K|.$$

(iii) The length of the conjugacy class [K] of K is given by,

$$|[K]| = |G: N_G(K)| = \frac{\beta_{G/K}(1)}{\beta_{G/K}(K)}.$$

(iv) The number of conjugates of K which contain H is given by,

$$|\{K^{\alpha}|\alpha\in G, H\leq K^{\alpha}\}|=\frac{\beta_{G/K}(H)}{\beta_{G/K}(K)}.$$

The following formula which follows trivially from Lemma 1 (iv) relates marks to incidences in the subgroup lattice of G.

$$\beta_{G/K}(H) = |N_G(K): K| \cdot \#\{K^g: H \le K^g, g \in G\}. \tag{1}$$

As a first application of Formula 1 we obtain the following lemma which enables us to count the total number of subgroups of G.

**Lemma 2.** Given a list  $\{H_1, \ldots, H_r\}$  of representatives of the conjugacy classes of subgroups of G, the total number of subgroups of G is

$$|\mathrm{Sub}(G)| = \sum_{i=1}^r \frac{\beta_{G/H_i}(1)}{\beta_{G/H_i}(H_i)}.$$

*Proof.* It follows from Formula 1 that for any subgroup  $H \leq G$ ,  $\frac{\beta_{G/H}(1)}{\beta_{G/H}(H)}$  is the length of the conjugacy class of H in G.

Table 6 lists the total number of subgroups of  $S_n$  and  $A_n$  for  $n \le 13$ , sequences  $\underline{A005432}$  and  $\underline{A029725}$ .

| n  | $A_n$       | $S_n$        |
|----|-------------|--------------|
| 1  | 1           | 1            |
| 2  | 1           | 2            |
| 3  | 2           | 6            |
| 4  | 10          | 30           |
| 5  | 59          | 156          |
| 6  | 501         | 1455         |
| 7  | 3786        | 11300        |
| 8  | 48337       | 151221       |
| 9  | 508402      | 1694723      |
| 10 | 6469142     | 29594446     |
| 11 | 81711572    | 404126228    |
| 12 | 2019160542  | 10594925360  |
| 13 | 31945830446 | 175238308453 |

Table 6: Total Number of Subgroups of  $A_n$  and  $S_n$ 

#### 3.2Counting Incidences

Another immediate consequence of Formula 1 is that by dividing each row of the table of marks of G by its diagonal entry  $\beta_{G/H_i}(H_i)$  we obtain a matrix  $\mathcal{C}(G)$  describing containments in the subgroup lattice of G, where the (H, K)-entry is

$$\mathcal{C}(H, K) = \#\{K^g : H \le K^g, g \in G\}.$$
 (2)

Figure 2 illustrates the containment matrix of the symmetric group  $S_4$ .

Figure 2: Containment Matrix :  $\mathcal{C}(S_4)$ 

Given the containment matrix  $\mathcal{C}(G)$  we can easily obtain the incidence matrix,  $\mathcal{I}(G)$ , of the poset of conjugacy classes of subgroups of G by replacing each nonzero entry in  $\mathcal{C}(G)$ , (or indeed in M(G) ) by an entry 1, where J(H,K)=1 if and only if K is subconjugate to H in G. Figure 3 shows the incidence matrix  $\mathcal{I}(S_4)$  of the poset of conjugacy classes of subgroups of  $S_4$ .

Figure 3: Incidence Matrix :  $\mathfrak{I}(S_4)$ 

For comparison with Figure 3 we illustrate the poset of conjugacy classes of subgroups of  $S_4$  in Figure 4.



Figure 4: Poset of Conjugacy Classes of Subgroups of  $S_4$ 

**Lemma 3.** The number of incidences in the poset of conjugacy classes of subgroups of G is given by

$$\sum \mathfrak{I}(G)$$
.

*Proof.* The incidence matrix  $\mathcal{I}(G)$  is obtained by replacing every nonzero entry in the table of marks by an entry 1. By Formula 1  $\mathcal{I}(H,K)=1$  if and only if K is subconjugate to H in G, i.e. if and only if H and K are incident in the poset of conjugacy classes of subgroups of G.

Figure 7 lists the number of incidences in the poset of conjugacy classes of subgroups of  $A_n$  and  $S_n$  for  $n \le 13$ .

**Lemma 4.** The total number of incidences in the entire subgroup lattice of G is given by

$$\sum \mathcal{C}(\mathsf{G}).$$

*Proof.* For  $H, K \in \operatorname{Sub}(G)/G$  the H, K entry in  $\mathcal{C}(G)$  is the number of incidences between H, K in the subgroup lattice of G. Thus summing over the entries in  $\mathcal{C}(G)$  yields the total number of incidences in the entire subgroup lattice of G.

Table 8 records the number of incidences in the subgroup lattices of  $S_n$  and  $A_n$  for  $n \le 13$ .

| n  | $\sum J(S_n)$ | $\sum J(A_n)$ |
|----|---------------|---------------|
| 1  | 1             | 1             |
| 2  | 3             | 1             |
| 3  | 9             | 3             |
| 4  | 44            | 13            |
| 5  | 101           | 32            |
| 6  | 523           | 128           |
| 7  | 1195          | 330           |
| 8  | 6751          | 2309          |
| 9  | 16986         | 4271          |
| 10 | 87884         | 12468         |
| 11 | 248635        | 33329         |
| 12 | 1709781       | 196182        |
| 13 | 4665651       | 490137        |

| n  | $A_n$       | $S_n$        |
|----|-------------|--------------|
| 1  | 1           | 1            |
| 2  | 1           | 3            |
| 3  | 3           | 11           |
| 4  | 18          | 68           |
| 5  | 85          | 262          |
| 6  | 657         | 2261         |
| 7  | 4374        | 14032        |
| 8  | 55711       | 176245       |
| 9  | 530502      | 1821103      |
| 10 | 6603007     | 30883491     |
| 11 | 82736601    | 415843982    |
| 12 | 2032940127  | 10779423937  |
| 13 | 32102236563 | 177718085432 |

Table 7: Incidences in Poset

Table 8: Incidences in Subgroup Lattice

### 3.3 Counting Edges in Hasse Diagrams

The table of marks also allows us to count the number of edges in both the Hasse diagrams of the poset of conjugacy classes of subgroups and the subgroup lattice of G. To compute such data requires careful analysis of maximal subgroups in the subgroup lattice.

Formula 1 describes containments in the poset of conjugacy classes of subgroups looking upward through the subgroup lattice of G. But we can also view marks as containments looking downward through the subgroup lattice of G.

**Lemma 5.** Let  $H, K \in \operatorname{Sub}(G)/G$ . Then the number of conjugates of H contained in K is given by

$$E^{\uparrow}(H,K) = |\{H^g, g \in G : H^g \le K\}| = \frac{\beta_{G/K}(H)\beta_{G/H}(1)}{\beta_{G/H}(H)\beta_{G/K}(1)}$$

*Proof.* The total number of edges between the classes  $[H]_G$  and  $[K]_G$  can be counted in two different ways, as the length of the class times the number of edges leaving one member of the class. Thus

$$|[H_G] \cdot |\{H^g, g \in G : H^g < K\}| = |[K]_G| \cdot |\{K^g, g \in G : K^g > H\}|.$$

By Formula 1  $|[H]_G| = \frac{\beta_{G/H}(1)}{\beta_{G/H}(H)}$  and  $|[K]_G| = \frac{\beta_{G/K}(1)}{\beta_{G/K}(K)}$ . Thus  $E^{\uparrow}(H, K)$  can be expressed in terms of marks by Formula 1.

#### 3.3.1 Identifying Maximal Subgroups

It will be necessary, for the sections that follow, to identify for  $H_i \in \operatorname{Sub}(G)/G$  which classes  $H_i \in \operatorname{Sub}(G)/G$  are maximal in  $H_i$ .

**Lemma 6.** Let  $H_i \in \operatorname{Sub}(G)/G = H_1, \ldots, H_r$ . Denote by  $\rho_i = \{j : H_j <_G H_i\}$  the set of indices in  $\{1, \ldots, r\}$  of proper subgroups of  $H_i$  up to conjugacy in G. Then the positions of all maximal subgroups of  $H_i$  are given by

$$\operatorname{Max}(\mathsf{H}_{i}) = \rho_{i} \setminus \bigcup_{j \in \rho_{i}} \rho_{j} \tag{3}$$

The set of values  $\rho_i$  are easily read off the table of marks of G by simply identifying the nonzero entries in the row corresponding to  $G/H_i$ . Formula 3 is implemented in GAP via the function MaximalSubgroupsTom.

**Lemma 7.** Let  $\operatorname{Sub}(G)/G = H_1, \ldots, H_r$  be a list of representatives of the conjugacy classes of subgroups of G. The number of edges in the Hasse diagram of the poset of conjugacy classes of subgroups of G is given by

$$|E(\operatorname{Sub}(G)/G)| = \sum_{i=1}^r |\operatorname{Max}(H_i)|.$$

*Proof.* By Lemma 6  $Max(H_i)$  is a list of the positions of the maximal subgroups of  $H_i$  up to conjugacy in G. In the Hasse diagram of the poset Sub(G)/G each edge corresponds to a maximal subgroup.

Table 9 records the number of edges in the hasse diagram of the poset of conjugacy classes of subgroups of  $S_n$  and  $A_n$  for  $n \leq 13$ . In order to count the number of edges in the hasse diagram of the entire subgroup lattice of G we appeal to Formula 1 and Lemma 5.

**Lemma 8.** Let  $\operatorname{Sub}(G)/G = H_1, \ldots, H_r$  be as above. The total number of edges E(L(G)) in the Hasse diagram of the subgroup lattice of G is given by

$$E(L(G)) = \sum_{i=1}^{r} \sum_{j \in \operatorname{Max}(H_i)} E^{\uparrow}(H_i, H_j).$$

*Proof.* By restricting  $E^{\uparrow}(H_i, H_j)$  to those classes  $H_i, H_j$  which are maximal we obtain the number of edges connecting maximal subgroups of G.

Table 10 records the total number of edges in the hasse diagram of the subgroup lattice of  $S_n$  and  $A_n$  for  $n \le 13$ .

| n  | $ E(S_n) $ | $ E(A_n) $ |
|----|------------|------------|
| 1  | 0          | 0          |
| 2  | 1          | 0          |
| 3  | 4          | 1          |
| 4  | 17         | 5          |
| 5  | 37         | 13         |
| 6  | 149        | 44         |
| 7  | 290        | 98         |
| 8  | 1080       | 419        |
| 9  | 2267       | 722        |
| 10 | 8023       | 1592       |
| 11 | 17249      | 3304       |
| 12 | 72390      | 12645      |
| 13 | 153419     | 24792      |

| n  | $A_n$        | $S_n$         |
|----|--------------|---------------|
| 1  | 0            | 0             |
| 2  | 0            | 1             |
| 3  | 1            | 8             |
| 4  | 15           | 66            |
| 5  | 168          | 501           |
| 6  | 2051         | 6469          |
| 7  | 19305        | 60428         |
| 8  | 283258       | 926743        |
| 9  | 3255913      | 11902600      |
| 10 | 46464854     | 240066343     |
| 11 | 670282962    | 3677270225    |
| 12 | 18723796793  | 108748156239  |
| 13 | 321480817412 | 1980478458627 |

Table 9: Edges in Poset

Table 10: Edges in subgroup lattice

# 3.4 Maximal Property-P Subgroups

For any property P which is inherited by subgroups of G we can use the table of marks of G to enumerate the maximal property P subgroups of G.

**Lemma 9.** Let  $\operatorname{Sub}(G)/G = H_1, \ldots, H_r$  and let  $\rho = \{i \in [1, \ldots, r] : H_i \text{ is a property } P \text{ subgroup}\}$ . Then the positions of the maximal property P subgroups of G are given by

$$P(G) = \rho \setminus \bigcup_{j \in \rho} \operatorname{Max}(H_j) \tag{4}$$

Figure 5 illustrates the maximal abelian subgroups of  $S_4$ .



Figure 5: Maximal Abelian Subgroups of  $\mathbb{S}_4$ 

Table 11 records, for each of the properties listed across the first row of the table, the numbers of maximal property P classes of subgroups of  $S_n$ . A similar table for the alternating groups can be found in the Appendix.

| n  | Solvable | SupSol | Abelian | Cyclic | Nilpotent |
|----|----------|--------|---------|--------|-----------|
| 1  | 1        | 1      | 1       | 1      | 1         |
| 2  | 1        | 1      | 1       | 1      | 1         |
| 3  | 1        | 1      | 2       | 2      | 2         |
| 4  | 1        | 2      | 4       | 3      | 2         |
| 5  | 3        | 3      | 5       | 3      | 3         |
| 6  | 4        | 4      | 7       | 5      | 5         |
| 7  | 5        | 5      | 10      | 6      | 6         |
| 8  | 6        | 6      | 17      | 11     | 7         |
| 9  | 9        | 8      | 23      | 15     | 9         |
| 10 | 12       | 11     | 30      | 20     | 12        |
| 11 | 14       | 14     | 41      | 24     | 15        |
| 12 | 17       | 19     | 61      | 34     | 20        |
| 13 | 24       | 23     | 80      | 43     | 25        |

Table 11: Maximal Property-P Subgroups of  $\mathbb{S}_{\mathfrak{n}}$ 

### 4 Connected Subgroups and the Euler Transform

The conjugacy classes of subgroups of the symmetric group play an important role in the theory of combinatorial species as described in [4]. Permutation groups have been used to answer many questions about species. Every species is the sum of its molecular subspecies. These molecular species correspond to conjugacy classes of subgroups of Sym(n). Molecular species decompose as products of atomic species which in turn correspond to connected subgroups of Sym(n) in the following sense.

**Definition 1.** For each  $H \leq \operatorname{Sym}(X)$  there is a finest partition of  $X = \sqcup Y_i$  such that  $H \leq \operatorname{Sym}(Y_i)$ , i.e.  $H = \prod H_i$  with  $H_i \leq \operatorname{Sym}(Y_i)$ . We allow  $H_i = 1$  when  $|Y_i| = 1$ . We say that H is a connected subgroup of  $\operatorname{Sym}(X)$  if the finest partition is X.

In general a subgroup  $H \leq \operatorname{Sym}(X) = \prod H_i$  is a product of connected subgroups  $H_i$ . Sequence  $\underline{A000638}$  records the number of molecular species of degree  $\mathfrak n$  or equivalently the number of conjugacy classes of subgroups of  $\operatorname{Sym}(\mathfrak n)$ . Sequence  $\underline{A005226}$  records the number of atomic species of degree  $\mathfrak n$  or equivalently the number of connected conjugacy classes of subgroups of  $\operatorname{Sym}(\mathfrak n)$ .

**Lemma 10.** There is a bijection between the conjugacy classes of subgroups of  $S_n$  and the set of pairs of the form  $(\lambda, (C_1, \ldots, C_n))$  where  $\lambda = 1^{\alpha_1}, 2^{\alpha_2}, \ldots, n^{\alpha_n}$  is a partition of n and  $C_i$  is a multiset of  $\alpha_i$  conjugacy classes of connected subgroups of  $S_i$  for  $i = 1, \ldots, n$ .

Proof. Given a representative H of the conjugacy class of subgroups  $[H] \in Sub(S_n)/S_n$  we associate a pair  $(\lambda, (C_1, \ldots, C_n))$  to H as follows. Write  $H = \prod H_k$  where  $H_k$  is a connected subgroup of  $Sym(Y_k)$ . Then  $X = \{1, \ldots, n\} = \sqcup Y_k$ . Recording the size of each  $Y_k$  yields a partition  $\lambda = 1^{\alpha_1}, 2^{\alpha_2}, \ldots, n^{\alpha_n}$ . For  $1 \leq i \leq n$ ,  $C_i$  is a multiset of  $S_i$ -classes of subgroups  $H_k$  with  $|Y_k| = i$ . Bijectivity follows from the fact that conjugate subgroups yield the same  $\lambda$  and since  $H^g = \prod H_k^g$ , conjugate subgroups yield conjugate  $C_i$ .

#### 4.1 The Euler Transform

If two sequences  $\{m_n\}=m_1,m_2,m_3,\dots$  and  $\{c_k\}=c_1.c_2,c_3,\dots$  are related by

$$1 + \sum_{n \ge 1} m_n x^n = \prod_{k \ge 1} \left( \frac{1}{1 - x^k} \right)^{c_k}, \tag{5}$$

then we say that  $\{m_n\}$  is the Euler transform of  $\{c_k\}$  and that  $\{c_k\}$  is the inverse Euler transform of  $\{m_n\}$ . There are many applications of this pair of transforms (see [6]). For example, the inverse Euler transform applied to the sequence of unlabeled graphs on  $\mathfrak n$  nodes (A000088) yields the sequence of connected graphs on  $\mathfrak n$  nodes (A001349). The inverse Euler transform of A000638 (the number of conjugacy classes of subgroups of  $S_n$ ) is A005226, (the number of connected conjugacy classes of subgroups of  $S_n$ ). To see why this is so we appeal to Definition 1, Lemma 10 and note that the coefficient of  $\mathfrak x^n$  in the product on the left hand side of Formula 5 is

$$m_{n} = \sum_{1^{a_{1},2^{a_{2}},\dots,n^{a_{n}}\vdash n}} \prod_{i} \begin{pmatrix} c_{i} \\ a_{i} \end{pmatrix}$$
 (6)

i.e. the number of  $a_i$ -element multisets chosen from a set of  $c_i$  objects.

#### 4.2 Counting subgroups of the Alternating Group

In Section 4 we noted that molecular species correspond to conjugacy classes of subgroups of  $\mathsf{Sym}(n)$  and that atomic species correspond to conjugacy classes of connected subgroups of  $\mathsf{Sym}(n)$  in the sense of Definition 1. In this Section we will count the number of conjugacy classes of subgroups of  $\mathsf{A}_n$  which correspond to molecular and atomic species, and also count the number of conjugacy classes of connected subgroups of  $\mathsf{A}_n$ .

#### 4.2.1 Species based on Subgroups of the Alternating Group

In order to count molecular and atomic species corresponding to subgroups of  $A_n$  it will be necessary to introduce the following terminology. For a finite group G let Sub(G) denote the set of subgroups of G and let Sub(G)/G denote the conjugacy classes of subgroups of G. For the symmetric group we distinguish between two types of subgroups of  $S_n$ . The subgroups of  $A_n$  will be called *blue subgroups* and the subgroups of  $S_n$  which are not contained in  $A_n$  will be called *red subgroups*. The set of subgroups of  $S_n$  then is the disjoint union

$$\mathsf{Sub}(S_{\mathfrak{n}}) = \mathcal{B} \sqcup \mathcal{R}$$

where

$$\mathcal{B} = \mathsf{Sub}(\mathsf{A}_n), \ \mathcal{R} = \mathsf{Sub}(\mathsf{S}_n) \setminus \mathsf{Sub}(\mathsf{A}_n)$$

Since no red subgroup is conjugate to a blue subgroup, both  $\mathcal B$  and  $\mathcal R$  are  $S_n$ -sets. The conjugacy classes of subgroups of  $S_n$  are then

$$Sub(S_n)/S_n = \mathcal{B}/S_n \sqcup \mathcal{R}/S_n$$

Since molecular species correspond to  $S_n$ -sets we see that  $\mathcal{B}/S_n$  is the set of conjugacy classes of subgroups of  $A_n$  which correspond to molecular species and that  $\mathcal{R}/S_n$  is the set of conjugacy classes of subgroups of  $S_n$ , not contained in  $A_n$ , which correspond to molecular species. Table 12 illustrates both of these sequences together with the numbers of conjugacy classes of subgroups of  $S_n$  and  $A_n$ . For  $n \in 1, \ldots, 13$  we see that  $|Sub(S_n)/S_n| = |\mathcal{B}/S_n| + |\mathcal{R}/S_n|$ .

Since species correspond to  $S_n$ -orbits. In order to count the number of atomic species corresponding to conjugacy clases of subgroups of  $A_n$  we restrict our attention to the set  $\mathcal{B}/S_n$ . We can also count the number of atomic species corresponding to subgroups of  $S_n$  not contained in  $A_n$  by analysing  $\mathcal{R}/S_n$ . It should now be clear that in order to count the number of atomic species corresponding to conjugacy classes of subgroups of  $A_n$  we apply the Inverse Euler transform to the sequence  $|\mathcal{B}/S_n|$  in Table 12 to obtain

And to count the number of atomic species corresponding to conjugacy classes of red subgroups of  $S_n$  we examine  $\mathcal{R}/S_n$  in GAP to obtain

| n  | $ Sub(S_{n})/S_{n} $ | $ Sub(A_{n})/A_{n} $ | $ \mathcal{B}/S_n $ | $ \mathcal{R}/S_n $ |
|----|----------------------|----------------------|---------------------|---------------------|
| 1  | 1                    | 1                    | 1                   | 0                   |
| 2  | 2                    | 1                    | 1                   | 1                   |
| 3  | 4                    | 2                    | 2                   | 2                   |
| 4  | 11                   | 5                    | 5                   | 6                   |
| 5  | 19                   | 9                    | 9                   | 10                  |
| 6  | 56                   | 22                   | 22                  | 34                  |
| 7  | 96                   | 40                   | 37                  | 59                  |
| 8  | 296                  | 137                  | 112                 | 184                 |
| 9  | 554                  | 223                  | 195                 | 359                 |
| 10 | 1593                 | 430                  | 423                 | 1170                |
| 11 | 3094                 | 788                  | 780                 | 2314                |
| 12 | 10723                | 2537                 | 2401                | 8322                |
| 13 | 20832                | 4558                 | 4409                | 16423               |

Table 12: Red and Blue Subgroups of  $S_n$ 

#### 4.2.2 Connected Subgroups of the Alternating Group

When we consider counting the connected subgroups of  $A_n$  we turn our attention to the list of conjugacy classes of subgroups of  $A_n$  (A029726). By analyzing each of the subgroups in turn using GAP we obtain the sequences

**Remark 2.** There is a sequence in the encyclopedia, <u>A116653</u>, which claims to count both the number of atomic species based on subgroups of the alternating group and the number of connected subgroups of  $A_n$ . This sequence is simply the inverse Euler transform of sequence <u>A029726</u>, the number of conjugacy clases of subgroups of the alternating group. It should be clear that our sequences actually count the number of objects claimed.

### 4.3 Connected Subgroups with Additional Properties

Appealing to Definition 1 we can count the connected subgroups of  $S_n$  which possess additional group theoretic properties. We must be mindful of the fact that these additional properties should be compatible with taking direct products. Table 13 records the number of connected subgroups of  $S_n$  which additionally possess the properties listed in the first row of the table.

| n  | $ \operatorname{Sub}(S_n)/S_n $ | Abelian | Nilpotent | Solvable | SupSol |
|----|---------------------------------|---------|-----------|----------|--------|
| 1  | 1                               | 1       | 1         | 1        | 1      |
| 2  | 2                               | 1       | 1         | 1        | 1      |
| 3  | 4                               | 1       | 1         | 2        | 2      |
| 4  | 11                              | 3       | 4         | 6        | 4      |
| 5  | 19                              | 1       | 1         | 4        | 4      |
| 6  | 56                              | 6       | 9         | 23       | 15     |
| 7  | 96                              | 1       | 1         | 16       | 13     |
| 8  | 296                             | 17      | 69        | 122      | 81     |
| 9  | 554                             | 5       | 8         | 109      | 77     |
| 10 | 1593                            | 40      | 238       | 551      | 352    |
| 11 | 3094                            | 2       | 2         | 570      | 406    |
| 12 | 10723                           | 162     | 2339      | 4633     | 2995   |
| 13 | 20832                           | 5       | 8         | 4224     | 2866   |

Table 13: Connected Subgroups of  $S_n$ 

Each of the sequences in Table 13 is the inverse Euler transform of the corresponding sequence in Table 1.

#### 4.4 Connected Partitions

Since the direct product of two cyclic groups is not, in general, a cyclic group there is no column in Table 13 corresponding to cyclic groups. The inverse Euler transform applied to the sequence of conjugacy classes of cyclic subgroups of  $S_n$  yields the all ones sequence. We can, however, use GAP to count the number of connected cyclic subgroups of  $S_n$  to obtain

This sequence is quite close to two sequences already contained in the encyclopedia, sequences  $\underline{A018783}$  and  $\underline{A200976}$ . What we are in fact counting is the number of connected partitions of n.

As an example consider the symmetric group  $S_{13}$  which has 101 conjugacy classes of cyclic subgroups. Of those 101 conjugacy classes of subgroups, only 3 are not decomposable as products. Representatives of their generators are shown below.

| $C_n$ | Generator                                   | λ            |
|-------|---------------------------------------------|--------------|
| 6     | (1,4)(2,3)(5,6,7)(8,13,10,12,9,11)          | [2, 2, 3, 6] |
| 12    | (1,4,5,2,3,6)(7,8,9)(10,12,11,13)           | [6, 3, 4]    |
| 13    | (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) | [13]         |

Table 14: Partitions of 13

The partitions described above can be visualized as graphs where the vertices are represented by the lengths of the cycles and two cycles are connected if and only if there gcd is > 1. Figure 6 illustrates the three connected partitions of 13 from Table 14.



Figure 6: Partitions of 13

Sequence  $\underline{A018783}$  counts the number of partitions of  $\mathfrak n$  into parts having a common factor, while sequence  $\underline{A200976}$  counts the number of partitions of  $\mathfrak n$  such that each pair of parts (if any) has a common factor.

# Appendix A Sequences

For any of the sequences above which count conjugacy clases of subgroups we can use the table of marks of  $S_n$  or  $A_n$  to count the total number of subgroups.

# B Sequences in the symmetric group

| n  | $ \mathrm{Sub}(S_n) $ | Abelian    | Cyclic     | Nilpotent   | Solvable     | SupSol       |
|----|-----------------------|------------|------------|-------------|--------------|--------------|
| 1  | 1                     | 1          | 1          | 1           | 1            | 1            |
| 2  | 2                     | 2          | 2          | 2           | 2            | 2            |
| 3  | 6                     | 5          | 5          | 5           | 6            | 6            |
| 4  | 30                    | 21         | 17         | 24          | 30           | 28           |
| 5  | 156                   | 87         | 67         | 102         | 154          | 144          |
| 6  | 1455                  | 612        | 362        | 837         | 1429         | 1259         |
| 7  | 11300                 | 3649       | 2039       | 5119        | 11065        | 9560         |
| 8  | 151221                | 35515      | 14170      | 78670       | 148817       | 123102       |
| 9  | 1694723               | 289927     | 109694     | 664658      | 1667697      | 1371022      |
| 10 | 29594446              | 3771118    | 976412     | 13514453    | 29103894     | 23449585     |
| 11 | 404126228             | 36947363   | 8921002    | 137227213   | 396571224    | 317178020    |
| 12 | 10594925360           | 657510251  | 101134244  | 4919721831  | 10450152905  | 8296640115   |
| 13 | 175238308453          | 7736272845 | 1104940280 | 60598902665 | 172658168937 | 136245390535 |

Table 15: Total no of subgroups of  $S_n$ 

| n  | Solvable  | SupSol    | Abelian   | Cyclic    | Nilpotent |
|----|-----------|-----------|-----------|-----------|-----------|
| 1  | 1         | 1         | 1         | 1         | 1         |
| 2  | 1         | 1         | 1         | 1         | 1         |
| 3  | 1         | 1         | 4         | 4         | 4         |
| 4  | 1         | 7         | 11        | 13        | 7         |
| 5  | 21        | 31        | 51        | 31        | 31        |
| 6  | 76        | 101       | 241       | 246       | 211       |
| 7  | 456       | 491       | 1506      | 1296      | 1156      |
| 8  | 1956      | 3011      | 9649      | 10774     | 5419      |
| 9  | 12136     | 18467     | 80281     | 83238     | 40027     |
| 10 | 80836     | 114983    | 640741    | 788820    | 348331    |
| 11 | 807676    | 1283723   | 6196576   | 6835170   | 3204796   |
| 12 | 8779816   | 13380643  | 66883411  | 81364944  | 38422891  |
| 13 | 104127596 | 148321603 | 775421219 | 848378532 | 467645179 |

Table 16: Total Number of Maximal Property-P Subgroups of  $S_{\mathfrak{n}}$ 

# C Sequences in the alternating group

| n  | $ \mathrm{Sub}(A_n)/A_n $ | Abelian | Cyclic | Nilpotent | Solvable | SupSol |
|----|---------------------------|---------|--------|-----------|----------|--------|
| 1  | 1                         | 1       | 1      | 1         | 1        | 1      |
| 2  | 1                         | 1       | 1      | 1         | 1        | 1      |
| 3  | 2                         | 2       | 2      | 2         | 2        | 2      |
| 4  | 5                         | 4       | 3      | 4         | 5        | 4      |
| 5  | 9                         | 5       | 4      | 5         | 8        | 7      |
| 6  | 22                        | 9       | 6      | 10        | 19       | 14     |
| 7  | 40                        | 12      | 8      | 13        | 33       | 22     |
| 8  | 137                       | 30      | 12     | 53        | 122      | 70     |
| 9  | 223                       | 41      | 17     | 69        | 192      | 122    |
| 10 | 430                       | 60      | 23     | 122       | 364      | 225    |
| 11 | 788                       | 81      | 29     | 160       | 650      | 395    |
| 12 | 2537                      | 193     | 40     | 734       | 2194     | 1240   |
| 13 | 4558                      | 243     | 52     | 848       | 3845     | 2185   |

Table 17: Conjugacy classes of subgroups of  $\boldsymbol{A}_n$ 

| n  | $ \mathrm{Sub}(A_{\mathfrak{n}}) $ | Abelian    | Cyclic    | Nilpotent  | Solvable    | SupSol      |
|----|------------------------------------|------------|-----------|------------|-------------|-------------|
| 1  | 1                                  | 1          | 1         | 1          | 1           | 1           |
| 2  | 1                                  | 1          | 1         | 1          | 1           | 1           |
| 3  | 2                                  | 2          | 2         | 2          | 2           | 2           |
| 4  | 10                                 | 9          | 8         | 9          | 10          | 9           |
| 5  | 59                                 | 37         | 32        | 37         | 58          | 53          |
| 6  | 501                                | 207        | 167       | 252        | 488         | 418         |
| 7  | 3786                               | 1192       | 947       | 1507       | 3664        | 2894        |
| 8  | 48337                              | 11449      | 6974      | 21739      | 47210       | 33675       |
| 9  | 508402                             | 93673      | 53426     | 186983     | 498102      | 369763      |
| 10 | 6469142                            | 892783     | 454682    | 2369258    | 6293475     | 4769542     |
| 11 | 81711572                           | 8534308    | 4303532   | 22872863   | 78805290    | 58853842    |
| 12 | 2019160542                         | 148561283  | 50366912  | 746597568  | 1960342409  | 1395051100  |
| 13 | 31945830446                        | 1740198891 | 553031624 | 9157758326 | 31130243721 | 21847262156 |

Table 18: Total no of subgroups of  $A_{\mathfrak{n}}$ 

| n  | Solvable | SupSol | Abelian | Cyclic | Nilpotent |
|----|----------|--------|---------|--------|-----------|
| 1  | 1        | 1      | 1       | 1      | 1         |
| 2  | 1        | 1      | 1       | 1      | 1         |
| 3  | 1        | 1      | 1       | 1      | 1         |
| 4  | 1        | 2      | 2       | 2      | 2         |
| 5  | 3        | 3      | 3       | 3      | 3         |
| 6  | 4        | 3      | 5       | 4      | 3         |
| 7  | 5        | 4      | 6       | 5      | 5         |
| 8  | 6        | 6      | 13      | 6      | 6         |
| 9  | 10       | 8      | 19      | 8      | 7         |
| 10 | 12       | 10     | 22      | 10     | 9         |
| 11 | 14       | 13     | 27      | 14     | 12        |
| 12 | 17       | 18     | 40      | 20     | 17        |
| 13 | 24       | 22     | 54      | 24     | 20        |

Table 19: Maximal Property-P Subgroups of  $A_{\mathfrak{n}}$ 

| n  | $ \mathrm{Sub}(A_n)/A_n $ | Abelian | Nilpotent | Solvable S | upSol |
|----|---------------------------|---------|-----------|------------|-------|
| 1  | 1                         | 1       | 1         | 1          | 1     |
| 2  | 1                         | 0       | 0         | 0          | 0     |
| 3  | 2                         | 1       | 1         | 1          | 1     |
| 4  | 5                         | 2       | 2         | 3          | 2     |
| 5  | 9                         | 1       | 1         | 3          | 3     |
| 6  | 22                        | 3       | 4         | 10         | 6     |
| 7  | 40                        | 1       | 1         | 11         | 6     |
| 8  | 137                       | 14      | 36        | 80         | 42    |
| 9  | 223                       | 5       | 9         | 52         | 39    |
| 10 | 430                       | 12      | 49        | 145        | 85    |
| 11 | 788                       | 2       | 2         | 165        | 104   |
| 12 | 2537                      | 69      | 489       | 1208       | 686   |
| 13 | 4558                      | 3       | 4         | 1033       | 617   |

Table 20: Connected Subgroups of  $A_n$ 

The Connected even partitions of n

| n  | Solvable | SupSol   | Abelian   | Cyclic    | Nilpotent |
|----|----------|----------|-----------|-----------|-----------|
| 1  | 1        | 1        | 1         | 1         | 1         |
| 2  | 1        | 1        | 1         | 1         | 1         |
| 3  | 3        | 3        | 3         | 3         | 3         |
| 4  | 1        | 10       | 10        | 9         | 10        |
| 5  | 36       | 40       | 30        | 30        | 30        |
| 6  | 225      | 110      | 115       | 100       | 110       |
| 7  | 686      | 645      | 861       | 665       | 1001      |
| 8  | 4655     | 5670     | 10536     | 3885      | 4005      |
| 9  | 28728    | 47754    | 78474     | 33093     | 45696     |
| 10 | 397005   | 311850   | 1008000   | 371700    | 379155    |
| 11 | 2210890  | 3014550  | 9302964   | 3790875   | 4913040   |
| 12 | 26975025 | 24022845 | 73024380  | 37839285  | 36701280  |
| 13 | 26121667 | 46950904 | 563291872 | 350984414 | 158538380 |

Table 21: Total Number of Maximal Property-P Subgroups of  $A_n$ 

# References

[1] W. Burnside, *Theory of groups of finite order*, Dover Publications Inc., New York, 1955, 2d ed. MR 0069818 (16,1086c)

- [2] Peter J. Cameron, *Permutation groups*, London Mathematical Society Student Texts, vol. 45, Cambridge University Press, Cambridge, 1999. MR 1721031 (2001c:20008)
- [3] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4.12, 2008.
- [4] J. Labelle and Y. N. Yeh, The relation between Burnside rings and combinatorial species, J. Combin. Theory Ser. A **50** (1989), no. 2, 269–284. MR 989198 (90c:05016)
- [5] N. J. A. Sloane, *The on-line encyclopedia of integer sequences*, Notices Amer. Math. Soc. **50** (2003), no. 8, 912–915. MR 1992789 (2004f:11151)
- [6] N. J. A. Sloane and Simon Plouffe, *The encyclopedia of integer sequences*, Academic Press Inc., San Diego, CA, 1995, With a separately available computer disk. MR 1327059 (96a:11001)
- [7] Tomlib, Version 1.2.1, 2011, http://schmidt.nuigalway.ie/tomlib.