Техническое задание

Рассчитать основные параметры пластинчато-ребристого двухпоточного теплообсенного аппарата.

Эскиз ТОА:

Прямой поток - ГЕЛИЙ.

Температура на входе в ТОА $T_1 := 318.1 \mathrm{K}$

Давление потока на входе

 $p_1 := 2.3 M\Pi a$

Массовй расход

$$G_1 := 460 \cdot \frac{\kappa \Gamma}{\Psi}$$

Обратный поток - ГЕЛИЙ.

Температура на входе в ТОА $T_2 := 75.98K$

Давление потока на входе

$$p_2 := 0.1141 M\Pi a$$

Массовый расход

$$G_2 := 494.5 \cdot \frac{\kappa \Gamma}{\Psi}$$

Значение недорекуперации:

$$\Delta T := 4K$$

Коэффициент запаса по площади поверхности 20%, т.е.

$$\beta := 1.2$$

Средняя температура:

$$T_{cp} := \frac{T_1 + T_2}{2} = 197.04 \,\mathrm{K}$$

Для полученного значения по таблице свойств вещества определяем средние тепоемкости:

прямого

$$Cp_{cp1} := C_{p_Tpz}(T_{cp}, p_1, x_{He}) = 5.199 \cdot \frac{\kappa \mu_{K}}{\kappa \Gamma \cdot K}$$

обратного

$$Cp_{cp2} := C_{p_Tpz}(T_{cp}, p_2, x_{He}) = 5.193 \cdot \frac{\kappa \Delta \pi}{\kappa \Gamma \cdot K}$$

Дополнительно. Разъяснение по выбору конца задания недорекуперации. Построим зависимость температуры в точке 3 от отношения водяных жвивалентов. Соотношение следует из теплового баланса аппарата:

$$\begin{aligned} &Q_{\text{OC}} + W_{\text{пр}} \cdot \left(T_1 - T_3 \right) = W_{\text{oбp}} \cdot \left(T_1 - \Delta T - T_2 \right) \\ &T_3 = T_1 + \frac{Q_{\text{OC}}}{W_{\text{пp}}} - \frac{W_{\text{oбp}}}{W_{\text{пp}}} \cdot \left(T_1 - \Delta T - T_2 \right) \\ &T_3(\lambda) = T_1 + \frac{Q_{\text{OC}}}{W_{\text{пp}}} - \lambda \cdot \left(T_1 - \Delta T - T_2 \right) \end{aligned}$$

Условно зададим:

$$\frac{Q_{OC}}{W_{\Pi p}} = 5K$$

Тогда:

$$T_3(\lambda) := T_1 + 5K - \lambda \cdot \left(T_1 - \Delta T - T_2\right)$$

Из графика следует, следующее: когда отношение водяных эквивалентов обратного и прямого потоков меньше 1 (водяной эквивалент **прямого потока больше** водяного эквивалента **обратного потока**) недорекуперацию следует задавать на **теплом конце ТОА** и наоборот, когда водяной эквивалент обратного потока больше водяного эквивалента прямого потока, недорекуперация задается на холодном конце.

Из полученной закономерности также можно сделать вывод: в случае, когда водяной эквивалент прямого потока сильно больше водяного эквивалента обратного потока - обратный поток не может принять значительный тепловой поток, в результате чего возникает явление "засечка".

1. Определим водяные эквиваленты потоков:

прямого
$$W_1 := G_1 \cdot Cp_{cp1} = 0.664 \cdot \frac{\kappa B_T}{K}$$

обратного

$$W_2 := G_2 \cdot Cp_{cp2} = 0.713 \cdot \frac{\kappa BT}{K}$$

Недорекуперация на холодном конце теплооменника, т.к. W2>W1:

$$T_3 := T_2 + \Delta T = 79.98 K$$

Определим параметры рабочих веществ:

Прямой поток:

$$\begin{split} T_1 &= 318.1\,\text{K} & T_3 &= 79.98\,\text{K} \\ h_1 &\coloneqq h_{Tpz} \Big(T_1, p_1, x_{He} \Big) = 1.664 \times 10^3 \frac{\kappa \text{Дж}}{\text{K} \text{\Gamma}} & h_3 \coloneqq h_{Tpz} \Big(T_3, p_1, x_{He} \Big) = 425.242 \frac{\kappa \text{Дж}}{\text{K} \text{\Gamma}} \\ \rho_1 &\coloneqq \rho_{Tpz} \Big(T_1, p_1, x_{He} \Big) = 3.446 \frac{\text{K} \text{\Gamma}}{\text{M}^3} & \rho_3 &\coloneqq \rho_{Tpz} \Big(T_3, p_1, x_{He} \Big) = 13.335 \frac{\text{K} \text{\Gamma}}{\text{M}^3} \end{split}$$

Обратный поток:

Тепловой баланс ТОА:

$$G_1 \cdot h_1 + G_2 \cdot h_2 = G_1 \cdot h_3 + G_2 \cdot h_4$$

Тогда энтальния обратного потока:

$$h_4 := \frac{G_1 \cdot h_1 + G_2 \cdot h_2 - G_1 \cdot h_3}{G_2} = 1.553 \times 10^3 \cdot \frac{\kappa \text{Дж}}{\kappa \Gamma}$$

Соответсвующая данной энтальпии плотность:

$$\rho_4 := \rho_{phz}(p_2, h_4, x_{He}) = 0.184 \frac{\kappa \Gamma}{\frac{3}{M}}$$

Соответсвующая данной энтальпии температура

$$T_4 := T_{phz}(p_2, h_4, x_{He}) = 297.915 K$$

Средняя температура прямого потока:

$$T_{cp\Pi p} := \frac{T_1 + T_3}{2} = 199.04 \,\mathrm{K}$$

Средняя температура обратного потока:

$$T_{\text{cpO6p}} := \frac{T_2 + T_4}{2} = 186.947 \,\text{K}$$

Теплофизические параметры, соответсвующие средней температуре:

Плотности:

$$\begin{split} &\rho_{cp\Pi p} \coloneqq \rho_{Tpz} \big(T_{cp\Pi p}, p_1, x_{He} \big) = 5.473 \frac{\kappa \Gamma}{\frac{3}{M}} \\ &\rho_{cpO\delta p} \coloneqq \rho_{Tpz} \big(T_{cpO\delta p}, p_2, x_{He} \big) = 0.294 \frac{\kappa \Gamma}{\frac{3}{M}} \end{split}$$

Динамические вязкости:

$$\begin{split} \mu_{cp\Pi p} &:= \mu_{Tdx} \big(T_{cp\Pi p}, \rho_{cp\Pi p}, x_{He} \big) = 1.526 \times 10^{-5} \, \text{Ta} \cdot \text{c} \\ \mu_{cpO6p} &:= \mu_{Tdx} \big(T_{cpO6p}, \rho_{cpO6p}, x_{He} \big) = 1.447 \times 10^{-5} \, \text{Ta} \cdot \text{c} \end{split}$$

Коэффициент теплопроводности:

$$\lambda_{cp\Pi p} := \lambda_{Tdx} \left(T_{cp\Pi p}, \rho_{cp\Pi p}, x_{He} \right) = 0.119 \frac{B_T}{M \cdot K}$$

$$\lambda_{cpO\delta p} := \lambda_{Tdx} \left(T_{cpO\delta p}, \rho_{cpO\delta p}, x_{He} \right) = 0.113 \frac{B_T}{M \cdot K}$$

Теплоемкости изобарные:

$$C_{cp\Pi p} := C_{p_Tpz} (T_{cp\Pi p}, p_1, x_{He}) = 5.198 \frac{\kappa \cancel{\square} x}{\kappa \Gamma \cdot K}$$
 $C_{cpOб\Pi} := C_{p_Tpz} (T_{cpOбp}, p_2, x_{He}) = 5.194 \frac{\kappa \cancel{\square} x}{\kappa \Gamma \cdot K}$

Число Прандтля:

$$Pr_{\prod p} := \frac{C_{cp\Pi p} \cdot \mu_{cp\Pi p}}{\lambda_{cp\Pi p}} = 0.664$$

$$Pr_{O\delta p} := \frac{C_{cpO\delta n} \cdot \mu_{cpO\delta p}}{\lambda_{cpO\delta p}} = 0.667$$

2. Тепловой расчет

Ребра	1/1	Толцина ребер б _р	Расстояние между прорезями Δ	Эквивалент- ный диаметр d_s	Компактность по свободному объему, M^2/M^3			Степень стеснения у
					$S_{cb,p}$	$S_{cB,\Pi}$	S_{cB}	Степень
Гладкие непре-	-	0,15	-	4,64	520	342	862	0,196
	6/4	0,15	1,5	4,64	520	342	862	0,196
1	12/4	0,25	2,0	5,69	534	169	703	0,153
Прерывистые	12/2	0,25	2,0	3,05	1143	169	1312	0,209
	4/2	0,15	1,0	2,50	1081	519	1600	0,285
	6/2	0,25	1,0	2,68	1143	342	1485	0,282
	6/2,3	0,20	10	3,08	952	342	1297	0,244
Чешуйчатые	7/4	0,15	5,0	4,22	604	342	946	0,175

Геометрические характеристики поверхности:

Рис. 4.23. Пластинчато-ребристые поверхности различных типов:

a-c перфорированными ребрами; b-c волнистыми непрерывными ребрами;

в — с прерывистыми ребрами; г — с чешуйчатыми (жалюзийными) ребрами;

д — элемент оребрения

тип поверхности: 6/4

- шаг ребра: t := 4мм - расстояние между прорезями: $\Delta := 1.5$ мм

- эквивалентный диаметр: $d_3 := 4.64$ мм

Компактность:

- поверхность ребер:
$$S_{CB.P} := 520 \frac{M^2}{M^3}$$

- поверхность проставок:
$$S_{CB.\Pi} := 342 \frac{M^2}{M^3}$$

- по свободному объему:
$$S_{CB} := 862 \frac{M^2}{M^3}$$

Степень стеснения:
$$\gamma := 0.196$$

Коэффициент оребрения: ор :=
$$\frac{S_{CB.P}}{S_{CB}} = 0.603$$

Задается:

- толщина пластины: $\delta_{\Pi}:=0.5$ мм

- материал: сплав алюминия деформируемый

- коэффициент теплопроводности материала проставок и ребер:

$$\lambda_{\prod} := 150 \cdot \frac{B_T}{M \cdot K}$$
 $\lambda_P := 150 \cdot \frac{B_T}{M \cdot K}$

Тепловая нагрузка:

$$Q := G_2 \cdot C_{cpO6\pi} \cdot (T_4 - T_2) = 158.325 \cdot \kappa B_T$$

Приняли, что теплообнные поверхности для прямого и обратного потоков одинаковые. Зададимся скоростью потока:

$$v_1 := 1.2 \cdot \frac{M}{c}$$

Площадь свободного сечения:

$$\operatorname{Fcb}_1 := \frac{G_1}{\rho_{\operatorname{cp}\Pi \operatorname{p}^{\cdot \operatorname{V}} 1}} = 0.019 \cdot \operatorname{m}^2 \qquad \operatorname{Fcb}_2 := \operatorname{Fcb}_1 = 0.019 \cdot \operatorname{m}^2$$

Скорость обратного потока:

$$v_2 := \frac{G_2}{\text{Fcb}_2 \cdot \rho_2} = 9.785 \cdot \frac{M}{c}$$

Числа Рейнольдса

$$Re_1 := \frac{v_1 \cdot \rho_{cp\Pi p} \cdot d_9}{\mu_{cp\Pi p}} = 1997.5 \quad Re_2 := \frac{v_2 \cdot \rho_{cpO6p} \cdot d_9}{\mu_{cpO6p}} = 921$$

6/4

Коэффициенты теплоотдачи находятся в зависимости от чесел Рейнольдса по таблице:

Ребра	1/1		Теплообмен	Гидравлическое сопротивление			
		Re	А	n	Re	В	m
Непре- рывные		500—2 000 2 000—6 500 6 500—25 000	0,21 0,0089 0,027	0,48 0,905 0,78	7 000—2 000 2 000—30 000	32,7 0,065	-1,03 -0,21
Преры- вистые	6/4	700—2 000 2 000—13 000	0,0088 0,076	1,067 0,77	600—2 000 2 000—17 000	0,73 0,12	-0.32 -0.085
	12/4	1800—6 000 6 000—22 000	0,10 0,23	0,74 0,65	1800—6 000 6 000—30 000	0,21 0,12	-0,15 -0,08
	12/2	700—2 500 2 500—7 500	0,0031 0,19	1,15 0,64	700—2 500 2 500—10 000	0,37 0,23	-0,21 -0,15
	6/2	800—2 000 2 000—5 500	0,002 0,0113	1,19 0,962	600—1200 1200—6 500	5,95 0,22	-0,62 $-0,15$
	4/2	700—4 500	0,0022	1,16	400—900 900—6 500	89,6 0,24	-1,0 $-0,13$
	6/2,3	160—1600 1600—4 500	0,0043 0,0512	1,098 0,76	200—950 950—3 000 3 000—5 000	22,5 1,18 0,2	-0,93 -0,49 -0,27
Чешуй- чатые	7/4	2 400—10 500	0,19	0,63	2 600—14 500	0,23	-0,14

$$A := 0.0088$$
 $n := 1.067$

фактор Колборна:

$$j_1 := A \cdot (Re_1)^{n-1} = 0.015$$
 $j_2 := A \cdot (Re_2)^{n-1} = 0.014$

коэффициенты теплоотдачи:

$$\alpha_1 := \frac{j_1 \cdot \rho_{cp\Pi p} \cdot v_1 \cdot C_{cp\Pi p}}{\frac{3}{2}} = 923.06 \cdot \frac{B_T}{K \cdot \text{m}^2} \qquad \alpha_2 := \frac{j_2 \cdot \rho_{cpO6p} \cdot v_2 \cdot C_{cpO6\pi}}{\frac{3}{2}} = 380.521 \cdot \frac{B_T}{K \cdot \text{m}^2}$$

Определение коэффициента теплопередачи

Параметры ребра

$$m_1 := \sqrt{\frac{2 \cdot \alpha_1}{\lambda_P \cdot \delta_p}} = 286.443 \cdot \frac{1}{\text{M}} \qquad m_2 := \sqrt{\frac{2 \cdot \alpha_2}{\lambda_P \cdot \delta_p}} = 183.913 \cdot \frac{1}{\text{M}}$$

КПД ребра

$$\eta_{p1} := \frac{\tanh\left(\frac{m_1 \cdot 1}{2}\right)}{\frac{m_1 \cdot 1}{2}} = 0.81 \qquad \qquad \eta_{p2} := \frac{\tanh\left(\frac{m_2 \cdot 1}{2}\right)}{\frac{m_2 \cdot 1}{2}} = 0.91$$

КПД оребренных поверхностей

$$\eta_1 := 1 - \frac{s_{CB.P}}{s_{CB}} \cdot \left(1 - \eta_{p1}\right) = 0.885 \qquad \qquad \eta_2 := 1 - \frac{s_{CB.P}}{s_{CB}} \cdot \left(1 - \eta_{p2}\right) = 0.945$$

Коэффициент теплопередачи, отнесённый к поверхности прямого потока:

$$k_1 := \left(\frac{1}{\alpha_1 \cdot \eta_1} + \frac{\delta_{\Pi} \cdot S_{CB}}{\lambda_{\Pi} \cdot S_{CB.\Pi}} + \frac{S_{CB} \cdot Fcb_1}{\alpha_2 \cdot \eta_2 \cdot S_{CB} \cdot Fcb_2}\right)^{-1} = 249.263 \cdot \frac{B_T}{K \cdot M^2}$$

Средний температурный напор:

$$\Delta T_{CP} := \frac{\left(T_1 - T_4\right) - \left(T_3 - T_2\right)}{\ln\left(\frac{T_1 - T_4}{T_3 - T_2}\right)} = 9.999 \,\mathrm{K}$$

Площадь поверхности теплообмена:

$$F_1 := \frac{Q}{k_1 \cdot \Delta T_{CP}} = 63.522 \cdot M^2$$

Основные геометрические характеристики:

Свободный объём каналов по тёплому потоку:

$$V_{CB1} := \frac{F_1}{S_{CR}} = 0.074 \cdot M^3$$

Высота теплообменника:

$$H := \frac{V_{CB1}}{Fcb_1} = 3.788 \cdot M$$

Площадь полного поперечного сечения теплообменника:

$$F := 2 \cdot \frac{\text{Fcb}_1}{1 - \gamma} = 0.048 \cdot \text{m}^2$$

Принимаем число каналов для каждого потока $N_K := 8$, высота канала $h_K := 16$ мм, тогда ширина канала без учета проставочных брусков:

$$L := \frac{F}{2 \cdot N_{K} \cdot h_{k}} = 252.075 \cdot MM$$

С учётом толщины разделительных пластин $\delta_{\prod} = 0.5 \, \text{мм}\,$ ширина сечения пакета теплообменника:

$$\begin{bmatrix} 2 \cdot N_K \cdot h_K + \delta_{\prod} \cdot \left(2 \cdot N_K + 1 \right) \end{bmatrix} = 200.5 \cdot \text{MM}$$

$$L = 252.075 \, \text{MM}$$

Гидравличекие сопротивления собственной поверхности теплообменника (для данных поверхностей по таблице:

$$B := 0.73$$
 $m := -0.32$

Фактор трения прямого потока:

$$f_1 := B \cdot (Re_1)^m = 0.064$$

гидравлическое сопротивление:

$$\Delta p_1 := 4 \cdot f_1 \cdot \frac{\rho_{cp\Pi p} \cdot v_1^2}{2} \cdot \frac{H}{d_3} = 825.3 \cdot \Pi a$$

Фактор трения обратного потока:

$$f_2 := B \cdot (Re_2)^m = 0.082$$

гидравлическое сопротивление:

$$\Delta p_2 := 4 \cdot f_2 \cdot \frac{\rho_{cpO6p} \cdot v_2^2}{2} \cdot \frac{H}{d_3} = 3770.8 \cdot \Pi a$$