AIRPLANE FLIGHT MANUAL

HondaJet

Model HA-420

Original Issue: December 8, 2015

Revision B2: March 3, 2017

These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations.

Diversion contrary to U.S. law is prohibited.

FAA Approved in the Normal Category based on 14 CFR Part 23. This document must be carried in the airplane at all times and kept within reach of the pilot during all flight operations. This manual includes the material required to be furnished to the pilot by 14 CFR Part 23.

FAA Approved by:

Christina M. Underwood, Manager Atlanta Aircraft Certification Office

Federal Aviation Administration

Registration No.:

Part No.: HJ1-29000-003-001

Copyright © Honda Aircraft Company 2016

FOR TRINING PURPOSES ONLY

Copyright © Honda Aircraft Co., LLC 2016 All Rights Reserved

Published by

Honda Aircraft Company 6430 Ballinger Road Greensboro, NC 27410 USA www.hondajet.com

LIST OF EFFECTIVE PAGES

This list contains all current pages with effective revision date.

Use this list to maintain the most current version of the manual: Insert the latest revised pages. Then destroy superseded or deleted pages.

Note: A vertical revision bar in the left margin of the page indicates pages that have been added, revised or deleted.

MODEL HA-420 AFM

March 3, 2017
March 3, 2017

SECTION 1 - INTRODUCTION

Pages 1 – 20	October 30, 2016
--------------	------------------

SECTION 2 – LIMITATIONS

Pages $1-2$	March 3, 2017
Pages 3 – 16.	October 30, 2016
Pages 17 – 18	March 3, 2017
Pages 19 – 24	October 30, 2016
Pages 25 – 26	March 3, 2017
Pages 27 – 34	October 30, 2016
Pages 35 – 38	March 3, 2017
Pages 39 – 44	October 30, 2016

FAA APPROVED March 3, 2017

SECTION 3 – EMERGENCY PROCI	EDURES
Pages 1 – 38	October 30, 2016
Pages 39 – 40	
Pages 41 – 62	
Pages 63 – 66	
SECTION 3A – ABNORMAL PROCI	EDURES
Pages 1 – 132	
Pages 133 – 134	
Pages 135 – 154	
Pages 155 – 156	
Pages 157 – 188	
SECTION 3B – ADVISORY PROCE	DURES
Pages 1 – 26	October 30, 2016
SECTION 4 – NORMAL PROCED	URES
Pages 1 – 4	October 30, 2016
Pages 5 – 6	March 3, 2017
Pages 7 – 60	
SECTION 5 – PERFORMANO	CE
Pages 1 – 168	October 30, 2016
Pages 169 – 170	
Pages 171 – 176	Iviai oii 5, 201 /
-	October 30, 2016
Pages 177 – 178	October 30, 2016 March 3, 2017
Pages 177 – 178	October 30, 2016 March 3, 2017 October 30, 2016
Pages 177 – 178	October 30, 2016 March 3, 2017 October 30, 2016 March 3, 2017

FAA APPROVED March 3, 2017

SECTION 6 – WEIGHT AND BALANCE

Pages 1 – 32 October 30, 2016

SECTION 7 – SUPPLEMENTS

This page intentionally left blank

FAA APPROVED March 3, 2017

RECORD OF REVISIONS

REV.	ISSUE	REVISION DESCRIPTION
NO.	DATE	
A-1	12-18-2015	Placard information added in Section 2
A-2	3-31-2016	ICE DETECTED CAS maintenance instructions added in Section 3B. EASA requirements were added in Sections 2 and 4 and minor format/font updates were made throughout document.
A3	7-1-2016	Reduced Vertical Separation Minimum (RVSM) Airspace related changes
В	10-30-2016	Flight into Known Icing (FIKI) information added. Also added CPDLC, SurfaceWatch, Windshear and general formatting updates.
B1	12-23-2016	Removed required fuel additive section. Added icing inhibitor to approved fuel additives section.
B2	3-3-2017	Added content for additional approved fuels, RVSM, and grammatical and formatting enhancements.

FAA APPROVED March 3, 2017

This page intentionally left blank

FAA APPROVED March 3, 2017

RECORD OF TEMPORARY REVISIONS

Approved temporary changes must be included in this manual for all flight operations.

TEMP. REV. NO.	TEMP. REV. DATE	TEMP. REVISION DESCRIPTION	APPROVED BY

This page intentionally left blank

FAA APPROVED March 3, 2017

LIST OF SERVICE BULLETINS

The following is a list of active Service Bulletins applicable to the operation of this airplane and incorporated into this manual.

SB NO.	SB REV. NO.	REVISION INCORPORATED	SB TITLE	EFFECTIVITY
110.	110.	INCORTORATED		

This page intentionally left blank

DOCUMENTATION GROUP

The following is a list that defines the group of documents that provides pilots with the information required for the safe and efficient operation of the airplane.

This documentation group is effective for serial numbers SN-49 and after, and prior airplanes SN-11 thru SN-48 with HAC Service Bulletin HA-420-42-001 installed.

Serial number SN-11 thru SN-48 without HAC Service Bulletin HA-420-42-001 installed continue using HJ1-29000-003-001 Rev A3 until compliance with HAC Service Bulletin HA-420-42-001 is achieved.

MANUAL PART NO.	REV. NO.	MANUAL	RELEASE DATE
HJ1-29000- 003-001	B2	Airplane Flight Manual	3-3-2017
HJ1-29000- 035-001	B2	Electronic Checklist	3-3-2017
HJ1-29000- 005-001	B2	Pilot's Operating Manual	3-3-2017
HJ1-29000- 007-001	B2	Quick Reference Handbook, Vol I and II	3-3-2017

This page intentionally left blank

FAA APPROVED March 3, 2017

INTRODUCTION

This Airplane Flight Manual (AFM) contains the material required to be furnished to the pilot by Federal Aviation Regulations.

This AFM must be carried in the airplane at all times and it is the owner/operator's responsibility to ensure that all issued, applicable revisions and supplements are incorporated.

This AFM has been prepared to provide pilots with the information required for the safe and efficient operation of the airplane.

Honda Aircraft Company supports authorized facilities worldwide for ease of maintenance and service on our aircraft. For information on how to obtain revisions for this manual or other Honda Aircraft Company service publications, visit the HondaJet Connect website: https://hondajetconnect.com/.

HA-420 AFM

INTRODUCTION

SECTION CONTENTS

Section 2 – Limitations Contains FAA approved operating limitations, which must be observed during aircraft operations except where a deviation is specifically authorized.

Section 3 – Emergency Procedures Contains FAA approved procedures to protect the occupants and airplane from serious harm during critical conditions requiring immediate response. Pilots should memorize procedural steps highlighted with bold type in a red box, so they can execute without the checklist.

Section 3A – Abnormal Procedures Contains FAA approved procedures to maintain an acceptable level of airworthiness or reduce operational risk resulting from a failure.

Section 3B – Advisory Procedures Contains FAA approved procedures to maintain an acceptable level of airworthiness or reduce operational risk resulting from a failure.

Section 4 – Normal Procedures Contains FAA approved routine operating procedures for the aircraft and its systems.

Section 5 – Performance Contains FAA approved data defining the aircraft performance under standard performance conditions.

Section 6 – Weight and Balance Contains FAA approved data intended to assist the operator in ensuring the aircraft is properly loaded.

Section 7 – Supplements Contains FAA approved supplements. The supplements include operating limitations, procedures, performance data, and other necessary data for the aircraft conducting special operations and/or equipped with specific equipment not covered by the basic AFM.

HA-420 AFM

INTRODUCTION

REVISION INSTRUCTIONS

Honda Aircraft Company Technical Publications will update this manual and distribute revisions to this manual as required.

The List of Effective Pages shows the revision status of each page by notating the date of the revision. The Record of Revisions shows each revision and its date of release.

MANUAL CONVENTIONS

TABLE OF CONTENTS

A table of contents precedes each section of the manual, except Section 3B. In the Emergency and Abnormal Procedures sections, the table of contents is grouped by system. Within each system, procedures without an associated crew alerting system (CAS) message are listed first, followed by procedures with an associated CAS message. Within each group, the table lists procedures alphabetically.

OPTIONAL EQUIPMENT

This manual contains limitations and procedures for using standard and optional equipment. Omit procedural steps referring to any optional equipment that is not installed.

HA-420 AFM

INTRODUCTION

USE OF L(R) AND L-R

L(R) or L-R may precede a CAS message text. L(R) applies if the message annunciates as either L or R, depending on the affected side. L-R applies to a condition affecting both sides simultaneously.

USE OF L(R) VERSUS 1(2)

L(R) terminology is used for systems that are located on the left or right side of the aircraft. An example is the engine anti-ice system, shown with either an L or R, preceding the associated CAS text. Other systems that are redundant but not associated with the left or right side use 1 or 2. An example is AHRS 1 which is a redundant system that can couple to the left or right side flight instruments.

AURAL ALERTS

Aural alerts accompany specific conditions. AFM procedure titles include the aural alert where applicable. Aural alerts may be voice alerts or tones. A description of the aural alert is adjacent to the aural symbol as shown below.

The Aural symbol indicates a tone or voice alert will sound. Next to the symbol is the applicable tone or voice alert enclosed in quotation marks.

FAA APPROVED October 30, 2016

HA-420 AFM INTRODUCTION

NOTES, CAUTIONS, AND WARNINGS

This AFM uses the following notations to categorize procedures addressing safety or airplane operation.

WARNING

Operating procedures or techniques which may result in personal injury or loss of life if not carefully followed.

CAUTION

Operating procedures or techniques which may result in damage to equipment if not carefully followed.

NOTE

Additional, significant operating information requiring emphasis.

CHECKLIST EXECUTION

A Checklist is complete when the --- END OF PROCEDURE --- statement is reached. In cases where the checklist continues for more than one page, the text procedure Continued papears at the bottom of the page.

Some more complex emergency procedures have significant impact to the actions required to be followed during approach and landing. In these cases the emergency procedure has been written to incorporate all applicable normal procedure steps, and allows the crew to use the single checklist all the way through landing. These checklists include subsections titled the same as the associated normal procedures checklist. The number for each subsection starts at "1" to indicate the subsection represents the complete set of normal / abnormal steps.

FAA APPROVED October 30, 2016

HA-420 AFM INTRODUCTION

CHECKLIST EXECUTION (continued)

In some cases a checklist may be partially completed enroute, but have additional steps or considerations during the descent, approach, landing, or following landing. For these cases, the procedure contains subsection headers indicating in which phase of flight the step(s) should be executed. These checklists have continuous numbering.

NOTE

Checklists may contain a step directing "Land as soon as possible" or "Land at nearest suitable airfield", but these steps are not necessarily the last step in the checklist. Continue through the remaining checklist steps while diverting to the selected airport. Checklist is not complete until --- END OF PROCEDURE --- is reached.

SYMBOLS AND "IF" STATEMENTS

Certain procedures are dependent on prescribed conditions (see the example below). These conditions are presented in bold italics as independent "If" statements. If additional levels of "If" statements are required, they will be preceded by a symbol (e.g., • or •).

Procedures completed by following the actions in the "If" statement will be indicated by an --- END OF PROCEDURE --- statement following the last step. Otherwise, the additional steps following the other possible "If" statements should be followed.

HA-420 AFM INTRODUCTION

SYMBOLS AND "IF" STATEMENTS (continued)

W	ING	BLEED LEAK
Ai	leak	has been detected in wing anti-ice system
		;
	1.	WING ANTI-ICEOFF
	2.	Icing conditionsExit
If	WIN	NG BLEED LEAK message remains
	3.	L ENGINE BLEED OFF
	4.	Altitude Descend to FL 250 or below
	5.	Land at nearest suitable airport
If	WIN	NG BLEED LEAK message remains
	6.	L ENGINE BLEEDNORM
	7.	R ENGINE BLEED OFF
	0	If no icing conditions are encountered prior to landing or SAT above 5 $^{\circ}\!C$
	8.	Land using normal procedures

Figure 1. Example Procedure

HA-420 AFM

INTRODUCTION

CAS MESSAGE INHIBITING

The following describes features that inhibit certain CAS messages during certain conditions or phases of flight.

TAKEOFF AND LANDING INHIBIT

CAS messages deemed non-critical during the takeoff or landing are inhibited until the takeoff or landing phase is complete.

OTHER PHASE INHIBITS

During other phases of normal operations such as battery only operation on the ground or engine starting, some CAS messages which reflect unpowered equipment or automatic operations are inhibited. This simplifies the CAS list display and allows the pilot to more easily recognize a true failure condition.

CASCADING FAILURES

Failure of some systems cause other associated failures. An example is an electrical bus failure which would subsequently fail equipment powered solely by that bus. In most cases, the design mitigates flight crew distraction by inhibiting cascading CAS messages related to the associated failure and allows the crew to more easily understand the primary failure. In these cases, the procedures for the posted CAS message include all the required steps for the un-annunciated failure, and a table is included at the end of the procedure listing inoperative equipment.

FAA APPROVED October 30, 2016

HA-420 AFM INTRODUCTION

CIRCUIT BREAKERS AND SOLID STATE RELAYS (SSR)

With the exception of the ALTERNATE GEAR RELEASE Extension procedure, these checklists do not require circuit breaker manipulation. However, if a circuit breaker is found to be open, it may be reset once. If the circuit breaker opens again, do not attempt another reset.

Solid State Relays are associated with specific electrical buses and equipment. In cases where an SSR trip may cause a failure, resetting the SSR is referenced in the appropriate checklist. As with circuit breakers, SSRs may be reset once. If the SSR trips again, do not attempt another reset.

HA-420 AFM INTRODUCTION

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY

Additional performance related terminology is included in Section 5 – Performance. Additional weight and balance terminology can be found in Section 6 – Weight and Balance.

TERM	DEFINITION
%MAC	Percent of Mean Aerodynamic Chord is the CG location expressed as a percentage of the average chord length of the wing.
ADS-B	Automatic Dependent Surveillance-Broadcast
AMMD	Airport Moving Map Display
Arm	The horizontal distance from the reference datum to the center of gravity (CG) of an item. The airplane's arm is obtained by adding the airplane's individual moments and dividing the sum by the total weight.
ASI	Aircraft System Indication refers to the system information normally presented on the left side of the center display below the engine indications.
BEW	The Basic Empty Weight is the actual weight of the airplane including all operating equipment that has a fixed location in the airplane. The basic empty weight includes the weight of unusable fuel and full oil.

HA-420 AFM INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY (continued)

TERM	DEFINITION
CG	Center of Gravity is the point at which an airplane would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.
EDM	Emergency Descent Mode
EIS	Engine Indication System refers to the engine information display which is normally presented on the top left of the center display.
FRT	Fixed Radius Transitions
GNSS	Global Navigation Satellite System
GP	Glidepath

HA-420 AFM

INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY (continued)

TERM

DEFINITION

IDLE

The engine has four idle modes: flight idle, ground idle, ground anti-ice idle, and ground APU mode. Automatic selection between modes is accomplished by the FADEC based on inputs from the aircraft.

Flight idle mode is activated when the aircraft weight is off wheels and the thrust lever is in the IDLE detent. Flight idle provides minimum engine bleed pressure sufficient for ECS and anti-ice systems.

Ground idle mode is activated when the thrust lever is in the IDLE detent with aircraft weight on wheels. Ground idle provides a stable, minimum engine thrust level for ground operations.

Ground Anti-Ice idle mode is activated so a higher N₁ is commanded by the FADEC when either the wing anti-ice or engine anti-ice systems are activated.

Ground APU idle mode is activated when the thrust lever is in the IDLE detent with aircraft weight on wheels and only one engine is running. Ground APU idle provides a stable, minimum engine thrust level for single engine ground operations.

Ind. Indication

FAA APPROVED October 30, 2016

HA-420 AFM INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY (continued)

TERM	DEFINITION
ISA	International Standard Atmosphere (standard day) is an atmosphere where:
	 (1) the air is a dry perfect gas (2) the temperature at sea level is 15 °C, (3) the pressure at sea level is 29.92 in. Hg (1013.2 hPA), and (4) the temperature decreases by 2 °C for every 1000 ft up to 36,089 ft, and is a constant -56.5 °C above 36,089 ft.
KCAS	Knots Calibrated Airspeed is the indicated airspeed corrected for position and instrument error.
KGS	Knots Ground Speed
KIAS	Knots Indicated Airspeed is the speed shown on the airspeed indicator when corrected for instrument error. The IAS values published in this manual assume no instrument error.
M	Mach Number is the ratio of true airspeed to the speed of sound.
M_{I}	Indicated Mach Number is the Mach number shown on the airspeed indicator. Zero instrument error is assumed.

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 1-14

HA-420 AFM INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY (continued)

TERM	DEFINITION
M_{SB}	Speed Brake Operating Mach Number is the maximum Mach number that the speed brake may be operated.
MCT	Maximum Continuous Thrust is the maximum thrust rating available for continuous use.
MLW	Maximum Landing Weight is the maximum weight of the airplane allowed by structural design which should normally not be exceeded at touchdown.
Moment	The product of the weight of an item multiplied by its arm.
MRW	Maximum Ramp Weight is the highest weight of the airplane allowed by structural design.
MTOW	Maximum Takeoff Weight is the highest permissible weight of the airplane at brake release for takeoff.
MZFW	Maximum Zero Fuel Weight is the maximum permissible weight of the loaded airplane prior to usable fuel being added.
NWS	Nosewheel Steering
OSP	Overspeed Protection

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 1-15

HA-420 AFM INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY (continued)

TERM	DEFINITION
PFD	The Primary Flight Displays are the left and right displays which present primary flight information as well as a multi-function tile.
Pressure Altitude	Pressure Altitude is the altitude read from the altimeter when the altimeter's barometric adjustment has been set to 29.92 in. Hg (1013 hPA).
Reference Datum	An imaginary vertical plane from which all horizontal distances are measured for balance purposes.
RF	Radius to a Fix
RNAV	Area Navigation
RNP	Required Navigation Performance
SAT	Static Air temperature is the ambient free air static temperature obtained from either 1) ground meteorological sources or 2) from the total air temperature obtained from onboard temperature measurement adjusted for compressibility effects.
SBAS	Satellite Based Augmentation System
SSR	Solid State Relay

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 1-16

HA-420 AFM INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY (continued)

TERM	DEFINITION
Station	A location along the airplane fuselage measured in inches from the reference datum and expressed as a number. For example, a point 123 inches aft of the reference datum is Fuselage Station 123.0 (FS 123).
Tare	The weight of all items used to hold or position the airplane on the scales for weighing. Tare includes blocks, shims, and chocks. Tare weight must be subtracted from the associated scale reading.
TAT	Total Air Temperature is the onboard measurement of temperature not corrected for compressibility effects on the temperature probe. TAT will always be greater than SAT in proportion to Mach number.
TLD	Time Limited Dispatch is the period of time the operator may be allowed to defer short-time and long-time faults up to their specified time limits, at which time repair of the faults is required. Deferral and subsequent dispatch is only authorized in accordance with an approved MEL.
TO	Takeoff Thrust is the highest thrust rating available.
TOAC	Time of Arrival Control

FAA APPROVED October 30, 2016

HA-420 AFM INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY (continued)

TERM	DEFINITION
V_A	Maneuvering Speed is the maximum speed at which application of full control movement will not overstress the airplane.
V_{AC}	Approach Climb speed which is equal to $V_{\text{REF}} + 5$ knots.
V_{ENR}	Enroute (single-engine) Climb Speed with gear and flaps up.
$V_{ ext{FE}}$	Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended position.
V_{LE}	Maximum Landing Gear Extended Speed is the maximum speed at which an aircraft can be safely flown with the landing gear extended.
V_{LO}	Maximum Landing Gear Operating Speed is the maximum speed at which the landing gear can be safely extended or retracted.
V _{MCA}	Minimum Control Speed Air is the minimum flight speed out of ground effect in the takeoff configuration at which the airplane is controllable with up to 5° of bank when one engine suddenly becomes inoperative and the remaining engine is operating at takeoff thrust.

FAA APPROVED October 30, 2016

HA-420 AFM INTRODUCTION

SYMBOLS, ABBREVIATIONS, AND TERMINOLOGY (continued)

TERM	DEFINITION
V _{MCL}	Minimum Control Speed Landing is the minimum flight speed out of ground effect in the landing configuration at which the airplane is controllable with up to 5° of bank when one engine suddenly becomes inoperative and the remaining engine is operating at takeoff thrust.
V_{MO}/M_{MO}	Maximum Operating Limit Speed is the speed limit that may not be deliberately exceeded in normal flight operations. V is expressed in knots, and M in Mach Number.
VNAV	Vertical Navigation
V_{REF}	Reference Landing Speed is the landing approach speed with the airplane configured for landing.
V_{SB}	Maximum Speedbrake Speed is the maximum speed where the speedbrake can be safely extended.
V_{SR}	Stall speed is the lowest airspeed at which level flight can be sustained by the airplane's wings.
V_{TIRE}	Maximum Tire Speed is the maximum ground speed permissible during ground operations.

FAA APPROVED October 30, 2016

HA-420 AFM INTRODUCTION

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

SECTION 2 LIMITATIONS

TABLE OF CONTENTS

INTRODUCTION	2-3
AIRSPEED LIMITS	2-3
ENGINE LIMITS	2-6
WEIGHT LIMITS	2-12
CENTER OF GRAVITY LIMITS	2-14
MANEUVER LIMITS	2-15
MINIMUM FLIGHT CREW/OCCUPANCY LIMITS.	2-15
KINDS OF OPERATION	2-16
OPERATIONAL LIMITS	2-17
AVIONICS / AFCS LIMITS	2-23
ELECTRICAL SYSTEM LIMITS	2-34
ENVIRONMENTAL / PRESSURIZATION LIMITS	2-35
FUEL SYSTEM LIMITS	2-36
HYDRAULIC SYSTEM LIMITS	2-38
MISCELLANEOUS SYSTEM LIMITS	2-38
PLACARDS	2-38

FAA APPROVED March 3, 2017

HA-420 AFM LIMITATIONS

This page intentionally left blank

FAA APPROVED March 3, 2017

HA-420 AFM LIMITATIONS

LIMITATIONS

INTRODUCTION

The limitations included in this section are required for safe operation of the airplane. Compliance with these limitations when operating the airplane is required by Federal Aviation Regulations.

AIRSPEED LIMITS

The listed speeds are as displayed on the Primary Flight Display (PFD) unless otherwise specified.

MAXIMUM OPERATING SPEED V_{MO}/M_{MO}

V_{MO}	270 KIAS
M_{MO}	0.72 M _I

MANEUVERING SPEED VA

Full application of pitch, roll, or yaw controls should be confined to speeds below the maneuvering speed. Avoid rapid and large alternating control inputs, especially in combination with large changes in pitch, roll, or yaw (e.g., large sideslip angles) as they may result in structural failures at any speed, including below $V_{\rm A}$.

V _Δ

FAA APPROVED October 30, 2016

HA-420 AFM	LIMITATIONS
MAXIMUM LANDING GEAR SPEEDS	
V _{LO}	200 KIAS
V _{LE}	200 KIAS
MAXIMUM FLAP EXTENDED SPEED V _{FE}	
Flaps TO/APPR	200 KIAS
Flaps LDG	160 KIAS
MAXIMUM SPEEDBRAKE SPEED V _{SB} /M _{SB}	
$ m V_{SB}/M_{SB}$	No limit
MINIMUM CONTROL SPEED AIR V _{MCA}	
The speed shown is the minimum demonstrated speed operational.	with rudder bias
Flaps UP	105 KIAS
Flaps TO/APPR	100 KIAS
MINIMUM CONTROL SPEED LANDING V _{MC}	CL
The speed shown is the minimum demonstrated speed operational.	with rudder bias
Flaps LDG	95 KIAS

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 2-4

HA-420 AFM	LIMITATIONS
MAXIMUM TIRE SPEED V _{TIRE}	
V_{TIRE} is the maximum ground speed for both nos	se and main wheel tires.
V _{TIRE}	165 KGS

HA-420 AFM LIMITATIONS

ENGINE LIMITS

ENGINE OPERATING LIMITS

OPERATING CONDITIONS		OPERATING LIMIT				
Thrust Setting	Time Limit (Minutes)	N ₁ Fan % RPM	ITT °C	N ₂ Turbine % RPM	Oil Press (1) PSIG	Oil Temp °C
Takeoff	5 10 OEI	100.0	860	100.9	179 max 55 min	165 max 10 min
(TO)	2	100.0	885	100.9	179 max 55 min	165 max 10 min
Maximum	None	100.0	860	100.9	179 max 55 min	143 max 10 min
Continuous (MCT)	15	100.0	860	100.9	179 max 55 min	165 max 10 min
Idlo	None	(2)	860	(2)	47 max 15 min	143 max -40 min
Idle	15	(2)	860	(2)	47 max 15 min	165 max -40 min
Start	None		556 (3)		 (4)	-40 min

NOTES:

- (1) Minimum and maximum oil pressure varies based on N₂ speed. Values in the table are based on maximum N₂ for TO and MCT, and typical N₂ for Idle. Higher oil pressure indications are acceptable when oil temperature is below 60 °C. Oil pressure outside the normal range is indicated by red digits and a cautionary range is provided for low oil pressure and is indicate by amber digits. Operation above the maximum limit (with oil temperature above 60 °C) or in the cautionary range is indicative of an oil system malfunction that must be corrected before next engine operation.
- (2) Idle N_1 and N_2 speeds vary with ambient conditions.
- (3) ITT Start limits only apply when the FADEC START mode ICON is displayed on the Engine Indicating System.
- (4) Oil pressure indications are inhibited when oil temperatures are below -40 °C.

FAA APPROVED

HJ1-29000-003-001

October 30, 2016 Page 2-6

HA-420 AFM LIMITATIONS

ENGINE INDICATOR MARKINGS

Instrument	Lower Limit (red)	Normal Operating Range (green)	Transient / Caution Range (amber)	Upper Limit (red)
N ₁		0 to 100.0 %		100.0%
ITT		200 to 860 °C (1) 200 to 556 °C (2)	860 to 885 °C (3)	860 °C (1) 885 °C (3) 556 °C (2)
N ₂		0 to 100.9 %		100.9 %
Oil Pressure	(4)	(4)	(4)	(4)
Oil Temperature	-40 °C	10 to 143 °C (5)	143 to 165 °C (6) -40 to 10 °C (7)	165 °C (8) 143 °C (9)
Fuel Flow		0 to 1300 pph		

NOTES:

- (1) Applies for continuous operations
- (2) Applies for engine starting
- (3) Applies for 2 minutes with TO thrust
- (4) Oil pressure operating limits are calculated by the FADEC based on engine operating conditions. For more specific information see the Pilot's Operating Manual, HJ1-29000-005-001.
- (5) Oil temperature between 10 $^{\circ}$ C and 165 $^{\circ}$ C is normal for 5 minutes of operation at TO thrust.
- (6) Applies from 5 to 15 minutes of operation above 143 °C
- (7) Applicable to engine warm-up near IDLE only. Oil temperature should be in the normal range before selecting high power
- (8) Applies for up to 15 minutes of operation
- (9) Applies following 15 minutes of operation

FAA APPROVED October 30, 2016

NOTE

It is recommended the aircraft be aligned with the prevailing wind when the velocity is greater than 20 knots to minimize the possibility of an aborted start.

AMBIENT TEMPERATURE LIMITS FOR ENGINE START

Engine starts are permitted following a ground cold soak at ambient temperatures to -40 °C, as defined in the Cold Weather Operations (Refer to Section 4 – Normal Procedures).

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

APPROVED ENGINE GROUND OPERATIONS ENVELOPE

The following envelope has been approved for engine ground operations.

Figure 2. Approved Engine Ground Operations Envelope

NOTES:

- Headwind is not limited.
- Unrestricted operations with crosswind up to 21 knots and tailwind up to 15 knots.
- N₁ must be 50 percent or less for crosswind from 22 to 25 knots, and tailwind from 15 to 25 knots.
- IDLE only operations for crosswinds or tailwinds from 26 to 30 knots.
- For gusty conditions, an additional 5 knots are allowed.

FAA APPROVED

HJ1-29000-003-001

October 30, 2016 Page 2-9

HA-420 AFM LIMITATIONS

AMBIENT TEMPERATURE OPERATING LIMITS

Figure 3. Ambient Temperature Operating Limits

HA-420 AFM LIMITATIONS

STARTER LIMITS (GROUND STARTS)

Starter duty cycle is as follows:

- 30 seconds on, 30 seconds off
- 30 seconds on, 30 seconds off
- 30 seconds on, 30 minutes off

APPROVED OIL

The following Type II oils are approved. Additional approved oils may be found in the HF120 Service Bulletin 79-0001.

Oil brands have no incompatibilities, but it is recommended to avoid indiscriminate mixing of different brands of oil. Refer to the most recent version of HF120 Service Bulletin 79-0001 for details on changing from one brand of oil to another.

- AeroShell Ascender
- BP Turbo Oil 2380 / Exxon Turbo Oil 2380
- BP Turbo Oil 2197 / Exxon Turbo Oil 2197
- Mobil Jet Oil II
- Mobil Jet Oil 254
- Mobil Jet Oil 387

APPROVED OIL CONSUMPTION

The maximum allowable oil consumption rate is 48 cc (0.05 quarts) per hour during normal operation.

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

WEIGHT LIMITS

Maximum Ramp Weight	10,680 lbs (4,844 kg)
Maximum Takeoff Weight	10,600 lbs (4,808 kg)
Maximum Landing Weight	9,860 lbs (4,472 kg)
Maximum Zero Fuel Weight	8,800 lbs (3,992 kg)
Maximum Fwd Baggage Compartment Loading	g100 lbs (45 kg)
Maximum Aft Baggage Compartment Loading.	

TAKEOFF WEIGHT LIMIT

Takeoff weight is limited by the most restrictive of the following:

- Maximum Takeoff Weight
- Max Weight to Achieve Takeoff Climb

Requirements......Refer to Section 5, Performance

- Max Weight to Meet Brake Energy
 - Requirements......Refer to Section 5, Performance
- Takeoff Field LengthRefer to Section 5, Performance

HA-420 AFM LIMITATIONS

LANDING WEIGHT LIMIT

Landing weight is limited by the most restrictive of the following:

• Maximum Landing Weight

NOTE Perform Hard/Overweight Landing Inspection if the Maximum Certified Landing Weight is exceeded.

- Maximum Weight to Achieve Approach Climb

 Requirements.......Refer to Section 5, Performance
- Landing Field Length......Refer to Section 5, Performance

HA-420 AFM LIMITATIONS

CENTER OF GRAVITY LIMITS

The center-of-gravity must be maintained within the Weight and CG Envelope during all flight conditions.

Figure 4. Weight and CG Envelope

HA-420 AFM LIMITATIONS

MANEUVER LIMITS

This airplane is approved in the Normal Category.

Maneuvers are limited to any maneuver incident to normal flying, stalls (except whip stalls), and steep turns in which the angle of bank is not more than 60 degrees.

Acrobatic maneuvers, including spins, are prohibited.

MANEUVERING LOAD FACTOR LIMITS

Flaps UP	+3.27g, -1.31g
Flaps TO/APPR and LDG	+2.0g, 0.0g

MINIMUM FLIGHT CREW/OCCUPANCY LIMITS

MINIMUM FLIGHT CREW

The minimum flight crew is one pilot in the left seat. For single pilot operation, the following equipment must be operative and available:

- Autopilot
- Quick Reference Handbook Normal Procedures
- Quick Reference Handbook Emergency/Abnormal Procedures

HA-420 AFM LIMITATIONS

MAXIMUM OCCUPANCY

- Single Pilot, 1 Pilot and 1 Passenger (cockpit), 5 Passengers (cabin when equipped with optional side-facing seat)
- Two Pilots, 1 Pilot and 1 Copilot, 5 Passengers (cabin when equipped with optional side-facing seat)

NOTE The lavatory seat is not certified for use during takeoff and landing.

KINDS OF OPERATION

This airplane is certificated in the normal category and is eligible for the following kinds of operations when the appropriate instruments and equipment required by the airworthiness and the Minimum Equipment List are installed and operational:

- VFR Day
- VFR Night
- IFR
- RVSM
- Flight into Known Icing

HA-420 AFM LIMITATIONS

OPERATIONAL LIMITS

The following equipment must be checked and operable in accordance with the procedures in Section 4 – Normal Procedures prior to flight:

- Pitch Trim Systems (normal and standby)
- Stall Warning System
- Fire Detection and Suppression Systems
- Switchlights
- Cockpit Speakers

OPERATION IN RVSM DESIGNATED AIRSPACE

This airplane has been demonstrated to meet the requirements of 14 CFR 91 Appendix G and FAA Advisory Circular 91-85, dated 21 August 2009, "Authorization of Aircraft for Flight in Reduced Vertical Separation Minimum Airspace" and is qualified for flight operations in RVSM airspace. This does not constitute operational approval.

In addition, this airplane has been demonstrated to meet the requirements of CS ACNS.E.RVSM (Reduced Vertical Separation Minimum) and is qualified for flight operations in European RVSM airspace. This does not constitute operational approval.

The following equipment must be operable prior to entering RVSM airspace:

- Air Data Computer 1 and 2
- Pilot and Copilot Primary Flight Displays
- Altitude Alerter
- Transponder 1 or 2
- Autopilot

FAA APPROVED March 3, 2017

HA-420 AFM LIMITATIONS
TAKEOFF AND LANDING
Takeoff Flap SettingsUP, TO/APPR
Landing Flap SettingLDG
Landing Flap Setting (with ice accumulated on airframe) TO/APPR
Runway Surface Smooth, Hard, and Paved Only
Runway Slope+/- 2%
Airfield Pressure Altitude1,000 to 10,000 ft.
Ambient Temperature40 °C to ISA+40 °C
Tailwind
Crosswind
Turnaround TimeRefer to Section 5, Performance
ENROUTE
Maximum Pressure Altitude43,000 ft
Maximum Altitude for landing gear extension18,000 ft
Maximum Altitude for flap extension
• TO/APPR
• LDG

HA-420 AFM LIMITATIONS

ALL OPERATIONS

ICING LIMITATIONS

The aircraft has been approved for operation within the icing envelope defined by 14 CFR Part 25, Appendix C. Conditions outside of the approved envelope may be identified by:

- Unusually extensive ice accreted on the airframe in areas not normally observed to collect ice
- Inability of the protected areas (wing leading edge or engine inlet) to prevent ice buildup (following normal warm-up time) or unusually extensive ice accretes on the wing or engine nacelle aft of the protected area
- Erratic air data and angle of attack indications
- Inability of the windshield heat system to keep the inboard zones free of ice
- Performance losses larger than normally encountered in icing conditions
- Frequent autopilot retrimming or mistrim alerts during straight and level flight
- Unusual control force or control deflection or uncommanded control movement or unusual lateral trim requirements
- Moderate to severe aircraft buffet

Supercooled cloud environment and freezing rain, freezing drizzle, or mixed conditions have not been tested. Operation in these conditions is prohibited. These icing environmental conditions are outside the icing envelope of 14 CFR Part 25, Appendix C, and may exceed the capabilities of the ice protection system, and may result in a serious degradation of performance or handling characteristics.

HA-420 AFM LIMITATIONS

ICING LIMITATIONS (continued)

For operations in known or forecast icing, the airplane must be operated with its ice protection systems used as described in OPERATING IN ICING CONDITIONS (Section 4 – Normal Procedures). Where specific operational speeds and performance information have been established for such conditions, this information must be used.

Ground Operations

Engine anti-ice must be ON in ground icing conditions.

A visual and tactile check of the wing leading edge and wing upper surfaces is required prior to takeoff in ground icing conditions.

Ground icing conditions are defined as outside air temperature of 5 °C (41 °F) or less, or either L or R wing fuel temperature cannot be determined to be above 0 °C (32 °F) and:

- Visible moisture (rain, drizzle, sleet, snow, fog, etc.) is present; or
- The airplane was exposed to visible moisture (rain, drizzle, sleet, snow, fog, etc.) since the previous landing; or
- The difference between the dew point and the outside air temperature is 3 °C (5 °F) or less; or
- The airplane was exposed to atmospheric conditions conducive to formation of frost; or
- Water is present on the wing

HA-420 AFM LIMITATIONS

ICING LIMITATIONS (continued)

Takeoff is prohibited with any ice, snow, slush, or frost (including polished frost) adhering on aircraft critical areas. Aircraft critical areas are defined as:

- Wing and winglet surfaces
- Horizontal and vertical stabilizer
- Flaps and control surfaces
- Engine inlets and pylons
- Air data probes
- Windshield
- Fuel vents
- Landing Gear

Wing anti-ice must be ON for takeoff in ground icing conditions. Thrust settings above that used for normal taxi are prohibited for ground operations with the wing anti-ice on.

Ground deicing/anti-icing operations are limited to Type I, II de-icing fluids and Type IV anti-icing fluids. Refer to TAKEOFF – ANTI-ICE FLUID PERFORMANCE ADDITIVES (Section 5 – Performance) for increased takeoff speeds and distances, if Type II or IV fluids are used.

HA-420 AFM LIMITATIONS

ICING LIMITATIONS (continued)

Flight Operations

Engine anti-ice must be ON for flight in visible moisture when SAT is 5 °C (41 °F) to -40 °C (-40 °F).

Wing anti-ice must be NORM for all operations, except wing anti-ice must be ON for takeoff in icing conditions and flight above FL 340 in icing conditions. Inflight operation of wing anti-ice should not be necessary at temperatures below -40°C, but the wing anti-ice switch must remain in NORM.

Use of autopilot is prohibited in conditions exceeding the approved icing envelope defined by 14 CFR Part 25, Appendix C.

Minimum thrust setting when wing anti-ice is operating is 62% N₁. Thrust settings as low as 50% N₁ are allowed if required for descent or deceleration, but these thrust reductions must be limited to less than 5 minutes.

Minimum speed in icing conditions is 180 KIAS except as required for takeoff, approach and landing.

Flaps and landing gear must remain retracted in icing conditions except as required for takeoff, approach and landing.

Retraction of flaps to UP is prohibited following an icing encounter with flaps extended until the flaps can be confirmed free of ice, except as required for normal takeoff.

Extension of flaps to LDG is prohibited following an icing encounter unless the airframe can be confirmed free of ice.

The wing ice inspection lights must be operable prior to flight into known or forecast icing at night.

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

AVIONICS / AFCS LIMITS

GENERAL

The installed Garmin G3000TM system complies with AC 20-138D for IFR navigation using GPS for enroute, terminal area, and approach operations under the conditions described in the Navigation Operational Capabilities section. The Global Navigational Satellite System (GNSS) has been approved per TSO-C115c and TSO-146c.

NAVIGATION OPERATIONAL CAPABILITIES

The *G3000* system must use at least software version Honda HA-420 System 1792.09 as the minimum version. The aircraft must have other operational, approved navigation equipment installed appropriate to the operation.

The *G3000* Integrated Avionics System Cockpit Reference Guide, P/N 190-01490-01 Rev B, dated September 2016 (or later appropriate revision) must be immediately available to the flight crew whenever navigation is predicated on the use of the system.

When using the *G3000* VNAV system, the barometric altimeter must be used as the primary altitude reference for all operations; including instrument approach procedure step-down fixes.

The navigation equipment as installed has been found to comply with the requirements established for the following navigation specifications. This does not constitute an operational approval.

GNSS FDE availability, where required per the following table, must be verified using the Garmin WFDE Prediction Program, part number 006-A0154-01 (010-G1000-00) or later.

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

NAVIGATION OPERATIONAL CAPABILITIES (continued)

Navigation Specification	Operational Requirements/ Authorizations	Required Equipment	Reference Guidance
Oceanic and Remote Areas of Operation (Class II Navigation)	GNSS FDE availability must be verified prior to flight.	Two Avionics Computer systems, operating and receiving usable navigation information from each of the dual GNSS sensors (or one navigation system and one GNSS sensor for those routes requiring only one long range navigation sensor).	Meets the applicable requirements of AC20-138D, AC90-100A, AC91-70A, FAA Order 8400.33.
North Atlantic Tracks (NAT) Minimum Navigation Performance Specifications (MNPS)	GNSS FDE availability must be verified prior to flight.	Two Avionics Computer systems, operating and receiving usable navigation information from each of the dual GNSS sensors (or one FMS and one GNSS sensor for those routes requiring only one long range navigation sensor).	Meets the applicable requirements of AC20-138D, AC91-70A.

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

NAVIGATION OPERATIONAL CAPABILITIES (continued)

Navigation Specification	Operational Requirements/ Authorizations	Required Equipment	Reference Guidance
RNAV-10 RNP-10	GNSS FDE availability must be verified prior to flight.	Two Avionics Computer systems, operating and receiving usable navigation information from each of the dual GNSS sensors.	Meets the applicable requirements of AC20-138D FAA Order 8400.12C.
B-RNAV/ RNAV-5 RNP-5	EPU/ANP does not exceed RNP.	At least one Avionics Computer system is receiving usable navigation information from the GNSS sensor.	Meets the applicable requirements of AC20-138D, AC90-96A, AC90-100A, EASA AMC 20-4.
RNP-4 Oceanic and Remote Area Operations	GNSS FDE availability must be verified prior to flight. EPU/ANP does not exceed RNP.	Two Avionics Computer navigation systems, operating and receiving usable navigation information from each of the dual GNSS sensors.	Meets the applicable requirements of AC20-138D, FAA Order 8400.33.

HA-420 AFM LIMITATIONS

NAVIGATION OPERATIONAL CAPABILITIES (continued)

Navigation Specification	Operational Requirements/ Authorizations	Required Equipment	Reference Guidance
RNAV-2 RNAV-1 P-RNAV RNAV Routes (DPs, STARS, Q and T Routes) RNP-2 RNP-1	GNSS is required for takeoff in P-RNAV airspace. GNSS FDE availability must be verified prior to flight for DPs that require GNSS. EPU/ANP does not exceed RNP.	At least one Avionics Computer system is receiving usable navigation information from one or more GNSS sensor (required for takeoff in P-RNAV airspace and some DPs).	Meets the applicable requirements of AC20-138D, AC90-105, AC90-96A, AC90-100A, JAA TGL 10.
RNP-APCH [titled RNAV (GPS) or RNAV (GNSS)] -including RNP procedures to a minimum value of RNP-0.3 (LNAV or LPV minimums). RNP AR-APCH procedures, and approach procedures with RF legs are NOT authorized.	All instrument approach procedures that are retrieved from the navigation system database are authorized. GNSS is required to initiate RNAV (GPS) approach procedures. For RNAV (GPS) approach procedures, a missed approach is required if both GNSS sensors become unavailable.	At least one Avionics Computer system is receiving usable navigation information from a GNSS sensor (required for RNAV (GPS) approach procedures).	Meets the applicable requirements of AC20-138D, AC90-105, EASA AMC 20-27.

FAA APPROVED March 3, 2017

HA-420 AFM LIMITATIONS

NAVIGATION OPERATIONAL CAPABILITIES (continued)

Navigation Specification	Operational Requirements/ Authorizations	Required Equipment	Reference Guidance
	EPU/ANP does not exceed RNP (except during a missed approach procedure following loss of GNSS navigation).		
	Maximum predicted RAIM		
	outage is 5 minutes.		
	For ILS, LOC, LOC-BC, LDA, and SDF approach procedures, the active navigation source must be LOC or BC (green needles) prior to crossing the final approach fix.		
Enroute, Terminal and Approach Vertical Navigation (VNAV)	Use of Vertical Glidepath (GP) guidance to a published DA is approved.	The selected navigation system is receiving usable information for a baro-VNAV (or SBAS, if applicable) solution.	Meets the applicable requirements of AC20-138D, AC90-100A, AC90-105, EASA AMC 20-27.

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

NAVIGATION OPERATIONAL CAPABILITIES (continued)

The following Advanced RNP functions are supported:

- Parallel Offsets
- RNAV Holding
- Fixed Radius Transitions (FRT)

The following Advanced RNP functions are not supported:

- Radius to a Fix (RF Legs)
- Scalable RNP
- Time of Arrival Control (TOAC)

VOR NAVIGATION

VHF NAV must not be used as the primary means of navigation beyond 100 nm from the VOR station.

SAFETAXI

The SafeTaxi airport moving map display (AMMD) functionality with own-ship position symbol is designed to assist flight crews in orienting themselves on the airport surface to improve pilot positional awareness during taxi and flight operations. Do not use the AMMD function as the basis for ground maneuvering. SafeTaxi is limited to ground operations only.

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

WEATHER RADAR

Do not operate the weather radar on the ground in close proximity to ground crew. All personnel must remain beyond the safe operating zone which is 11 feet (3.4 meters) from the antenna.

Figure 5. Safe Zone for Weather Radar Operation

HA-420 AFM LIMITATIONS

ATTITUDE AND HEADING REFERENCE SYSTEM (AHRS)

Operation in the following regions is not authorized due to unsuitability of the magnetic fields near the Earth's poles:

- 1) North of 72° North latitude at all longitudes
- 2) South of 70° South latitude at all longitudes
- 3) North of 65° North latitude between longitude 75° W and 120° W. (Northern Canada)
- 4) North of 70° North latitude between longitude 70° W and 128° W. (Northern Canada)
- 5) North of 70° North latitude between longitude 85° E and 114° E. (Northern Russia)
- 6) South of 55° South latitude between longitude 120° E and 165° E. (Region south of Australia and New Zealand)

SYNTHETIC VISION SYSTEM

Navigation must not be predicated upon the use of the Synthetic Vision System display.

NOTE

The synthetic vision system may not provide either the accuracy or fidelity, or both, on which to solely base decisions and plan maneuvers to avoid terrain or obstacles.

HA-420 AFM LIMITATIONS

TRAFFIC COLLISION AVOIDANCE SYSTEM (TCAS)

Pilots are authorized to deviate from their current Air Traffic Control (ATC) clearance to comply with a TCAS II resolution advisory (RA).

Maneuvers based solely on a traffic advisory (TA) or on information displayed on the traffic display are not authorized.

TERRAIN AWARENESS AND WARNING SYSTEM (TAWS)

Navigation or terrain clearance must not be predicated upon the use of the TAWS.

NOTE

The terrain display is intended to serve as a situational awareness tool only. It may not provide either the accuracy or fidelity, or both, on which to solely base decisions and plan maneuvers to avoid terrain or obstacles.

VERTICAL SITUATION DISPLAY

Navigation or terrain clearance must not be predicated upon the use of the Vertical Situation Display.

HA-420 AFM LIMITATIONS

ELECTRONIC CHECKLIST

The Electronic Checklist must not be edited without the appropriate certification and/or operational approval from the applicable competent authority.

CONTROLLER-PILOT DATA LINK COMMUNICATIONS (CPDLC)

The installed CPDLC system is fully compliant with the requirements of CS ACNS.B.DLS (Data Link Services). Compliance with the above does not constitute an operational approval.

AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST (ADS-B)

The installed ADS-B Out system has been demonstrated to meet the equipment requirements of 14 CFR 91.225 and 91.227. The installed ADS-B Out system is fully compliant with the requirements of CS ACNS.D.ADSB (1090 MHz Extended Squitter ADS-B Out). Compliance with the above does not constitute an operational approval.

TRANSPONDER

The installed transponder system is able to respond to interrogations in Modes A, C and S and is fully compliant with the requirements of CS ACNS.D.ELS/EHS (Mode S Elementary/Enhanced Surveillance).

HA-420 AFM LIMITATIONS

AUTOPILOT

In order to prevent a mistrim condition, do not manually override the autopilot.

Minimum Use Heights:

- Climb, Enroute, or Descent: 500 ft AGL
- Approach:
 - Visual and Non-precision: 200 ft AGL
 - o Precision: 100 ft AGL

YAW DAMPER

The Yaw Damper must be disengaged for taxi, takeoff, and landing.

The Yaw Damper must be engaged in flight except as required for takeoff and landing.

Minimum Use Height

• 50 ft AGL

HA-420 AFM LIMITATIONS

ELECTRICAL SYSTEM LIMITS

GENERATOR LIMITS

NOTE

The GCU will automatically trip offline due to an overcurrent. The trip point varies based on the amount of overcurrent and duration. A GCU trip is imminent anytime **GENERATOR OVERLOAD** is posted.

EXTERNAL POWER LIMITS

External power cart minimum voltage is 27.0 Volts DC (VDC). The power cart must be capable of generating a minimum of 1,000 amps momentarily and 300 amps continuously.

BATTERY LIMITS FOR GROUND STARTS

Minimum battery voltage for start	23.5 volts
Minimum battery cold-soak temperature	20 °C

NOTE

If the batteries have been cold-soaked as defined in Cold Weather Operations (Section 4 – Normal Procedures), engine start is permitted to 22.5 volts.

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

ENVIRONMENTAL / PRESSURIZATION LIMITS

ALTITUDE LIMITS FOR DEGRADED OPERATIONS

during single cabin inflow operations25,000 ft

CABIN PRESSURIZATION LIMITS

GROUND COOLING MODE

Operation with Ground Cooling Mode enabled is prohibited during taxi or flight.

HA-420 AFM LIMITATIONS

FUEL SYSTEM LIMITS

APPROVED FUELS

Description	Specification	
Jet A	ASTM-D 1655	
Jet A-1 (AVTUR)	ASTM-D1655 (DEF STAN 91-91)	
JP-8	MIL-DTL-83133	
PRC No. 3 Jet Fuel	GB6537-2006 (1)	

NOTES:

(1) See the Prohibited Fuels Additives section

MINIMUM/MAXIMUM FUEL TEMPERATURE

-40 °C / 60 °C

MAXIMUM FUEL IMBALANCE

FAA APPROVED March 3, 2017

HA-420 AFM LIMITATIONS

APPROVED FUEL ADDITIVES

Fuel biocide SOHIO Biobor JF additive is approved at a concentration not to exceed 20 ppm (270 ppm total additive) of elemental boron.

- Shock Treatment (Max) (270 PPM) = 2.6 Fl Oz/100 Gal of Jet Fuel
- Maintenance Level (135 PPM) = 1.3 Fl Oz/100 Gal of Jet Fuel

Fuel Static Dissipator Dupont Stadis 450 anti-static additive or equivalent is approved to bring fuel up to 300 conductive units, but must not exceed 1 part per million (ppm).

• 0.5-3.0 mg/l or 0.189-1.135g/100 Gal of Jet Fuel

Fuel icing inhibitors (FSII) meeting specification MIL-DTL-27686 (EGME) or MIL-DTL-85470 (DiEGME) are approved in amounts not more than 0.15% by volume.

• 0.15 Gal/100 Gal or 0.6 Qts/100 Gal or 19.2 Oz/100 Gal

NOTE If used, the icing inhibitor must be well blended into the fuel and not poured or splash-blended into the fuel tank. The icing inhibitor must be added either by an injector system on the fuel unit (truck or stand) or by injection into the fuel stream at the re-fuel port using aerosol cans.

PROHIBITED FUEL ADDITIVES

The following additives defined in GB6537-2006 are not approved for use:

- T1502 Antistatic Agent
- T1601 Anti-Wear Agent (Corrosion Inhibitor/Lubricity Improver)
- T1602 Anti-Wear Agent (Corrosion Inhibitor/Lubricity Improver)

FAA APPROVED March 3, 2017

HA-420 AFM LIMITATIONS

HYDRAULIC SYSTEM LIMITS

APPROVED HYDRAULIC FLUID

MISCELLANEOUS SYSTEM LIMITS

Oxygen supply must be adequate for the intended flight.

Each pilot's onside audio speaker must be on if headsets are not worn.

The cockpit and cabin must have been warmed to at least -15 °C prior to takeoff if the aircraft has been cold-soaked, as defined in Cold Weather Operations (Section 4 – Normal Procedures).

Crew and passenger oxygen masks are not approved for use above 40,000 ft cabin altitude. Prolonged operation of passenger masks above 25,000 ft cabin altitude is not approved.

Only the cabin wireless system may be used to provide airborne access services (Internet/World Wide Web) to the aircraft's cabin passengers with access via portable electronic devices (PEDs). Use of cell phones for this purpose (other than through 802.11 b/g WiFi) is prohibited.

Maintenance personnel must use the Cabin Telecommunications Router Configuration Page during ground operations only. Use of this page at other times is prohibited.

PLACARDS

Placards remind the flight crew and passengers of certain types of equipment and safety devices.

FAA APPROVED March 3, 2017

HA-420 AFM LIMITATIONS

DOOR SHOWN OPEN LOOKING FORWARD

420AFM02_3199A

Figure 6. Exterior Placards HJ1-29000-003-001

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

Figure 7. Exterior Placards HJ1-29000-003-001

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

DETAIL A

420AFM02_3203B

Figure 8. Interior Placards

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

Figure 9. Interior Placards HJ1-29000-003-001

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

Figure 10. Interior Placards HJ1-29000-003-001

FAA APPROVED October 30, 2016

HA-420 AFM LIMITATIONS

DETAIL C

420AFM02_3206A

FAA APPROVED October 30, 2016 Figure 11. Interior Placards HJ1-29000-003-001

HA-420 AFM EMERGENCY

SECTION 3 EMERGENCY PROCEDURES

CAS INDEX

	CAS Message	Page
	CABIN ΔP HIGH	3-17
	CABIN ALT HIGH	3-19
L(R)	CABIN BLEED LEAK	3-20
	ELEC EMER POWER	3-7
L(R)	ENG BLEED LEAK	3-21
L(R)	ENG EXCEEDANCE	3-9
L(R)	ENGINE FIRE	3-35
L(R)	ENGINE FLAMEOUT	3-10
L-R	ENGINE FLAMEOUT	3-13
L(R)	ENG OIL PRESS LOW	3-15
L(R)	ENG VIBRATION HIGH	3-16
	LDG GEAR UNSAFE	3-27
	NORMAL BRAKES FAIL	3-28
	TAKEOFF CONFIG	3-64
	WING BLEED LEAK	3-23

HA-420 AFM EMERGENCY

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

SECTION 3 EMERGENCY PROCEDURES

TABLE OF CONTENTS

ELECTRICAL SYS	ГЕМ	
ELEC EMER POV	VER	3-7
ENGINES		
L(R) ENG EXCEE	DANCE	3-9
L(R) ENGINE FLA	AMEOUT	3-10
L-R ENGINE FLA	MEOUT	3-13
L(R) ENG OIL PR	ESS LOW	3-15
L(R) ENG VIBRA	TION HIGH	3-16
ENVIRONMENTAL	. / PRESSURIZATION SYSTI	EMS
CABIN AP HIGH.	•••••	3-17
CABIN ALT HIGH	H	3-19
L(R) CABIN BLEF	ED LEAK	3-20
L(R) ENG BLEED	LEAK	3-21
WING BLEED LEAK		3-23
FLIGHT CONTROL	LS	
Flight Control Mal	function	3-25
FAA APPROVED	HJ1-29000-003-001	D 00
October 30, 2016		Page 3-3

HA-420 AFM	EMERGENCY
LANDING GEAR AND BRAKES	
LDG GEAR UNSAFE	3-27
NORMAL BRAKES FAIL	3-28
SMOKE OR FIRE	
Smoke or Fire	3-29
Electrical Fire or Smoke	3-30
Environmental System Smoke or Odor	3-33
L(R) ENGINE FIRE	3-35
OPERATIONAL	
Ditching	3-37
Emergency Descent	3-40
Emergency Evacuation	3-41
Inadvertent Overspeed	3-42
Operation with Emergency Power Only	3-43
Operation With #1 Buses Only	3-50
Operation With #2 Buses Only	3-55
Rejected Takeoff	3-63
Stall Recovery	3-63
Windshear or Terrain Avoidance	3-64
TAKEOFF CONFIG	3-64
PFD / EIS / ASI Flags	3-65

HA-420 AFM EMERGENCY

EMERGENCY PROCEDURES

GENERAL

The procedures contained in this section have been developed by the manufacturer and approved by the certifying agency to provide a means to protect the occupants and the aircraft from harm during a critical situation requiring immediate response. Immediate actions which should be accomplished without reference to this manual are delineated by bold text within a red box.

Emergency procedures are grouped by functional system. Within each functional system area, the procedures are sorted by non-CAS procedures, CAS based, and other visual indications such as PFD flags. Each subgroup is sorted by alphabetical order.

Certain failures are capable of compromising multiple airplane systems. The pilot must respond directly to each annunciated or otherwise identified system failure and consult the AFM for each specific Abnormal or Emergency procedure. For cases where multiple procedures specify different airplane configurations for continued safe flight and landing, the most restrictive must be used. If multiple procedures specify additional landing distance factors, each factor is additive and applied to the normal landing distance.

Some more complex emergency procedures have significant impact to the actions required to be followed during approach and landing. In these cases the emergency procedure has been written to incorporate all applicable normal procedure steps and allow the crew to use the single checklist all the way through landing.

Procedures are for use in flight unless other conditions are specifically called out. If not specifically addressed, while on the ground conditions addressed in this section must be corrected prior to flight, unless dispatch

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

is allowed by an approved MEL or otherwise authorized by the appropriate aviation authority.

TERMINOLOGY

Sound judgment, a thorough knowledge of the aircraft, its characteristics, and the flight manual procedures are essential for handling any emergency situation. Some emergencies may compromise airworthiness or functionality, and therefore, the terms "land at nearest suitable airport" or "land as soon as possible" may be used which are defined as:

Land at nearest suitable airport – the mission should be terminated, and the aircraft landed at a suitable airfield. The airfield and duration of the flight is left to the aircrew's discretion based on their specific circumstances. Considerations should include (but are not limited to):

- Severity of the emergency
- Aircraft performance
- Field facilities
- Weather
- Ambient conditions such as lighting
- Degraded aircraft functionality

Land as soon as possible – the mission should be terminated, and the aircraft landed as soon as possible. The same considerations apply when selecting a suitable airfield, but this term is used when prolonged flight is not recommended.

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

ELECTRICAL SYSTEM

ELEC EMER POWER

Both generators are off-line in the air, or on the ground with both engines running

1. GENERATORS (one at a time)......OFF, then NORM

NOTE

During ground operations, N_2 may need to be increased above 55% on the associated engine prior to cycling the generator switch to reset the generator.

If only one generator comes on

- 2. GENERATOR (inoperative side)......OFF
- 3. Accomplish L(R) GENERATOR FAIL (Section 3A Abnormal Procedures)

--- END OF PROCEDURE ---

If neither generator comes on

2. GENERATOR......Both OFF

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

ELEC EMER POWER (continued)

NOTE

The Cockpit Flood light may be used to provide cockpit illumination at night when operating on Emergency Power.

3. Accomplish OPERATION WITH EMERGENCY POWER ONLY (Section 3 – Emergency Procedures)

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

ENGINES

L(R) ENG EXCEEDANCE

An exceedance of N_1 , ITT, N_2 , oil pressure, or oil temperature has been detected

- 1. Thrust Lever (affected engine)...... Retard
- 2. Engine Indications......Monitor within limits

If engine parameters cannot be maintained within limits

3. Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A – Abnormal Procedures)

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

L(R) ENGINE FLAMEOUT

An un-commanded N_2 deceleration of the associated engine has been detected

DURING TAKEOFF (BELOW V_1 – TAKEOFF ABORTED)

1. Accomplish REJECTED TAKEOFF (Section 3 – Emergency Procedures)

--- END OF PROCEDURE ---

DURING TAKEOFF (ABOVE V_1 – TAKEOFF CONTINUED)

1. Pitch Attitude...... Flaps TO/APPR - 10° Nose Up Flaps UP - 11° Nose Up

NOTE Flight Director TO mode pitch targets are automatically adjusted for flap position and engine failure.

- 3. Airspeed...... Maintain V₂
- 4. Trim......As required
- 5. Airspeed (1500 ft AGL or clear of obstacles) Accelerate to $V_2 + 10$

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY L(R) ENGINE FLAMEOUT (continued) FLAPS......UP Airspeed......Accelerate to 140 KIAS Continue planned takeoff flight path Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A – Abnormal Procedures) --- END OF PROCEDURE ---**DURING FLIGHT** Successful engine relight is indicated by steady increase NOTE of ITT and N₂ within 10 seconds. If engine relights within 10 seconds 2. Thrust Lever (affected engine) As required following Stabilized idle --- END OF PROCEDURE ---¬ Procedure Continued ¬

HA-420 AFM EMERGENCY

L(R) ENGINE FLAMEOUT (continued)

If engine does not relight within 10 seconds

2. Thrust Lever (affected engine)CUT OFF

NOTE The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active until WING FLOW is selected from the operable side.

3. Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A – Abnormal Procedures)

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

L-R ENGINE FLAMEOUT

An un-commanded N_2 deceleration of both engines has been detected

NOTE Successful engine relight is indicated by steady increase of ITT and N_2 within 10 seconds.

If one or both engines automatically relights within 10 seconds

- 2. Thrust Lever (affected engine) As required following Stabilized idle
- 3. Accomplish L(R) ENGINE FLAMEOUT (Section 3 Emergency Procedures) if required

--- END OF PROCEDURE ---

If neither engine automatically relights within 10 seconds

- 3. Airspeed......140 KIAS Minimum

 Γ Procedure Continued γ

HA-420 AFM EMERGENCY

L-R ENGINE FLAMEOUT (continued)

CAUTION

To minimize the risk of rotor lock:

- Maintain airspeed above 140 KIAS to ensure core rotation.
- Following commanded or uncommanded inflight shutdown, maintain positive core rotation throughout the engine-out scenario. If core rotation has stopped, take action to achieve core rotation as soon as practical. Failure to maintain positive core rotation may preclude a successful start.
- 5. Accomplish ENGINE AIRSTART (Section 3A Abnormal Procedures)

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

L(R) ENG OIL PRESS LOW

Engine oil pressure is below the minimum limit

NOTE

Aircraft negative-g maneuvers can cause temporary oil supply interruption resulting in low oil pressure indications (below redline) and an **ENG OIL PRESS LOW** message. Engine operations below the oil pressure limits are permitted for a maximum of 15 seconds before engine shutdown is required.

If ENG OIL PRESS LOW message remains

- 2. Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A Abnormal Procedures)
 - --- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

L(R) ENG VIBRATION HIGH

Excessive engine vibration has been detected

1. Thrust Lever (affected engine) Slowly reduce thrust

NOTE If icing conditions were encountered, cycling Thrust Lever between IDLE and MCT may reduce engine

vibration due to ice accumulation.

If vibration condition remains

2. Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A – Abnormal Procedures)

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

ENVIRONMENTAL / PRESSURIZATION SYSTEMS

CABIN AP HIGH

Cabin differential pressure has exceeded 9.2 psid

- 1. Oxygen Masks......DON
- 2. Crew Communications Establish

NOTE

Crew communications can be established by use of headsets, selecting cockpit speakers ON, or selecting the OXY MASK AUDIO switch to EMER.

- 3. CABIN INFLOWL or R OFF
- 5. Land at nearest suitable airport

If cabin differential pressure remains high

6. Cycle remaining CABIN INFLOW between OFF and NORM as required to maintain differential pressure below 9.0 psid

 Γ Procedure Continued γ

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

CABIN ALT HIGH

Cabin altitude has exceeded 10,000 ft (15,000 ft in High Field Mode)

- 1. Oxygen Masks......DON
- 2. OXY MASK AUDIO..... EMER
- "Cabin Altitude" aural alert will repeat every 30 seconds after acknowledgement via the Master Warning Switch.
- **NOTE** If the airplane is above 25,000 ft MSL and the autopilot is engaged, it will automatically enter Emergency Descent Mode (EDM) when the **CABIN ALT HIGH** warning posts.

If cabin altitude is greater than 15,000 ft

3. Accomplish EMERGENCY DESCENT (Section 3 – Emergency Procedures)

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY L(R) CABIN BLEED LEAK A leak has been detected in cabin bleed air system 1. CABIN INFLOW (affected side)...... OFF 3. Land at nearest suitable airport If CABIN BLEED LEAK message remains 4. ENGINE BLEED (affected side)OFF 5. WING FLOW FROM R(L) (operable side) If CABIN BLEED LEAK message remains 6. Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A – Abnormal Procedures) --- END OF PROCEDURE ---

HA-420 AFM EMERGENCY L(R) ENG BLEED LEAK A leak has been detected in engine bleed air system or the engine anti-ice system 1. ENGINE BLEED (affected side)...... OFF **CAUTION** When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance. The L(R) ENG CONTROL FAULT message may NOTE post if wing anti-ice is active until WING FLOW is selected from the operable side. WING FLOW FROM R(L) (operable side) 4. Land at nearest suitable airport If ENG BLEED LEAK message remains Icing ConditionsExit ENGINE ANTI-ICE (affected engine).....OFF

¬ Procedure Continued ¬

HA-420 AFM	EMERGENCY
L(R) ENG BLEED LEAK (continued)	
If ENG BLEED LEAK message remains	
7. WING ANTI-ICE	OFF
If ENG BLEED LEAK message remains	
8. Thrust Lever (affected engine)	IDLE
If ENG BLEED LEAK message remains	
9. Accomplish ENGINE PRECAUTION FLIGHT (Section 3A – Abnormal Pro	
END OF PROCEDU	RE

HA-420 AFM EMERGENCY

WING BLEED LEAK

leak	has been detected in wing anti-ice system	
1.	WING ANTI-ICEO	FF
2.	Icing conditionsE	Exit
f WIN	NG BLEED LEAK message remains	
3.	L ENGINE BLEED	FF
4.	Altitude Descend to FL 250 or bel	OW
5.	Land at nearest suitable airport	
f WIN	NG BLEED LEAK message remains	
6.	L ENGINE BLEED	RM
7.	R ENGINE BLEED	FF
0	If no icing conditions are encountered prior to landing	
8.	Land using normal procedures	
	END OF PROCEDURE	

┌ Procedure Continued **┐**

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

WING BLEED LEAK (continued)

- o If wing protected surfaces cannot be confirmed to be free of ice, or icing conditions are expected during approach or landing
- 8. Accomplish LANDING WITH ICE ACCUMULATION ON WINGS (Section 3A Abnormal Procedures)

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

FLIGHT CONTROLS

FLIGHT CONTROL MALFUNCTION

An unexpected aircraft or flight control motion has occurred whose cause is unknown

1.	AFCS / TRIM MASTER Press and Hold
2.	Airplane attitude
pitch	anomaly
3.	PITCH SERVO POWEROFF
4.	PITCH TRIM MODESTBY
5.	AFCS / TRIM MASTER Release
6.	Adjust trim by use of the STANDBY PITCH switch
7.	Yaw Damper Engage
8.	RVSM airspaceExi
9.	Land at nearest suitable airport
	END OF PROCEDURE

${\it If roll \ anomaly}$

3. ROLL SERVO POWEROFF

Procedure Continued 7

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

FLIGHT CONTROL MALFUNCTION (continued)

4.	ROLL TRIM POWEROFF
5.	AFCS / TRIM MASTERRelease
6.	Yaw Damper Engage
7.	RVSM airspaceExit
8.	Land at nearest suitable airport
	END OF PROCEDURE
If yaw	anomaly
3.	YAW SERVO POWEROFF
NO	The rudder bias system is inoperative. Rudder forces with one engine inoperative will increase.
N (4.	J 1
	with one engine inoperative will increase.
4.	with one engine inoperative will increase. YAW TRIM POWER
4. 5.	with one engine inoperative will increase. YAW TRIM POWER
4. 5.	with one engine inoperative will increase. YAW TRIM POWER
4. 5. 6.	with one engine inoperative will increase. YAW TRIM POWER
4. 5. 6.	with one engine inoperative will increase. YAW TRIM POWER

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 3-26

HA-420 AFM EMERGENCY

LANDING GEAR AND BRAKES

LDG GEAR UNSAFE

(three green)

One or more landing gear is not safe for landing

If unsafe landing gear indications persist and both main gear are down and locked

3. Accomplish ALTERNATE GEAR RELEASE EXTENSION (Section 3A – Abnormal Procedures)

--- END OF PROCEDURE ---

If unsafe landing gear indications persist and only one main gear is down and locked

- 3. LANDING GEAR.....UP
- 4. Accomplish ALTERNATE GEAR RELEASE EXTENSION (Section 3A Abnormal Procedures)

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3-27

HA-420 AFM EMERGENCY

NORMAL BRAKES FAIL

Normal wheel brakes have failed

1. EMERGENGY BRAKE Apply gradually

CAUTION Anti-skid will not operate. Avoid cycling the brake

handle. Approximately ten applications are available

with a fully charged system.

NOTE Gradually pull emergency brake handle until desired

braking action is achieved.

NOTE Landing distance will increase by 50% on a dry runway

and 100% on a wet runway.

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

SMOKE OR FIRE

SMOKE OR FIRE

Smoke or fire has been detected in the cockpit or cabin area

1.	Oxygen Masks	DON and	100%	OXYGEN	V
2.	Smoke Goggles		•••••	DOI	V

- 3. OXY MASK AUDIO.....EMER

NOTE

Attempt to identify the source of the smoke or fumes. Electrical smoke is generally gray or tan in color and irritating to the nose and eyes. Environmental system smoke is usually white in color and less irritating.

NOTE

The oxygen mask microphone will be turned off if the OXY MASK AUDIO switch is returned from EMER to NORM. The oxygen mask microphone can be reenabled through the AUDIO AND RADIOS page on the CDU.

- 5. CABIN OXYGEN......As required
- 6. Accomplish ELECTRICAL FIRE OR SMOKE or ENVIRONMENTAL SYSTEM SMOKE OR ODOR as appropriate (Section 3 Emergency Procedures)

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

ELECTRICAL FIRE OR SMOKE

Fire or smoke has been determined to be caused electrically

If source is known:

1. Faulty EquipmentIsolate

--- END OF PROCEDURE ---

If source is not known:

NOTE

The Cockpit Flood light may be used to provide cockpit illumination at night when operating on Emergency Power, or on #1 Buses Only.

- If smoke or fire decreases or ceases
- 2. Accomplish OPERATION WITH EMERGENCY POWER ONLY (Section 3 Emergency Procedures)

--- END OF PROCEDURE ---

- If smoke or fire persists
- 2. L GENERATORNORM
- 3. BUS TIE......OPEN
- 4. BATTERY.....OFF

Procedure Continued ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3-30

HA-420 AFM EMERGENCY ELECTRICAL FIRE OR SMOKE (continued) 5. Left DISPLAY REVERSIONREV If smoke or fire decreases or ceases 7. Accomplish OPERATION WITH #1 BUSES ONLY (Section 3 – Emergency Procedures) --- END OF PROCEDURE ---If smoke or fire persists R GENERATOR NORM 9. L GENERATOROFF **NOTE** The Cockpit Map lights may be used to provide cockpit illumination at night when operating on #2 Buses Only. ¬ Procedure Continued ¬

HA-420 AFM EMERGENCY

ELECTRICAL FIRE OR SMOKE (continued)

- > If smoke or fire decreases or ceases
- 10. Accomplish OPERATION WITH #2 BUSES ONLY (Section 3 Emergency Procedures)

--- END OF PROCEDURE ---

- > If smoke or fire persists
- 10. L GENERATORNORM
- 11. BUS TIE......Normal
- 12. BATTERY.....NORM

- NOTE

Repowering left side buses will result in the LENG VIBRATION HIGH and RENG VIBRATION HIGH messages posting briefly following touchdown.

- 15. Land as soon as possible
 - --- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

ENVIRONMENTAL SYSTEM SMOKE OR ODOR

Smoke or odor has been determined to originate from the environmental system

1. CABIN INFLOWL OFF

If smoke or fire decreases or ceases

- 3. Land at nearest suitable airport

--- END OF PROCEDURE ---

If smoke persists

- 2. CABIN INFLOWL NORM, R OFF
- o If smoke or fire decreases or ceases
- 4. Land at nearest suitable airport

--- END OF PROCEDURE ---

- If smoke persists
- 3. CABIN INFLOW Both OFF
- 4. CABIN OXYGEN......DROP MASK

¬ Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

ENVIRONMENTAL SYSTEM SMOKE OR ODOR (continued)

- 5. Land as soon as possible
- 6. Accomplish EMERGENCY DESCENT (Section 3 Emergency Procedures)

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

L(R) ENGINE FIRE

A fire has been detected in the indicated engine

1.	Thrust Lever (affected engine)IDLE
If ENC	GINE FIRE indications still present after 15 seconds
2.	Thrust Lever (affected engine)CUT OFF
3.	ENGINE FIRE PUSH Switch (affected engine)Lift
	cover
	and push
4.	FIRE EXT PUSH Switch (affected engine)Push

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

NOTE

The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active until WING FLOW is selected from the operable side.

- 5. FUEL CROSSFEEDAs required
- 6. WING FLOW.....FROM L(R) (operable side)

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

L(R) ENGINE FIRE (continued)

7.	TCAS (TCAS II only)TA ONLY
8.	ENGINE ANTI-ICE (affected engine)OFF
9.	AltitudeDescend to FL 250 or below
10.	Land at nearest suitable airport
11.	Accomplish SINGLE-ENGINE APPROACH AND LANDING (Section 3A – Abnormal Procedures)

--- END OF PROCEDURE ---

If ENGINE FIRE indications are not still present after 15 seconds

- 2. Thrust Lever (affected engine) Maintain at IDLE
- 4. WING FLOW......FROM L(R) (operable side)

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

- 5. TCAS (TCAS II only)TA ONLY
- 6. Land at nearest suitable airport
- 7. Accomplish SINGLE-ENGINE APPROACH AND LANDING (Section 3A Abnormal Procedures)

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

OPERATIONAL

DITCHING

The aircraft is required to be force landed in water

NOTE

Ditching has not been demonstrated. However, the following procedures are recommended.

DESCENT

1.	Airspeed
2.	Transponder
3.	ELTON
4.	Brief and prepare passengers for ditching
5.	CABIN SIGNSAs required
6.	Seat belts and harness
7.	Cabin seatsPositioned for landing
8.	TAWS Warnings
	┌ Procedure Continued ┐

HA-420 AFM EMERGENCY

DITCHING (continued)

APPROACH

1.	FLAPS	•••••	TO/APPR	(if operable)

- 3. CABIN SIGNSAs required

NOTE

Ditch parallel to and near the crest of the swell unless there is a crosswind of 20 knots or more. In strong wind, heading should be more into the wind and slightly across the swell, planning to touch down on the upslope of the swell near the top.

Wave motion is indicative of wind direction, but the swell does not necessarily move with the wind. Water surface conditions are indicative of wind speed, as related below.

Surface Condition	Wind Speed (kts)
Few white crests	10 - 15
Many white crests	15 - 25
Streaks of foam from crests	25 - 35
Spray blown from tops of wav	7 = 35 - 45

Procedure Continued ¬

HA-420 AFM EMERGENCY

DITCHING (continued)

LANDING

1.	FLAPS	LDG (if operable)
2.	CABIN DUMP	DUMP
3.	ENGINE BLEED (Both)	OFF
4.	Sink rate	200 – 300 ft / minute
5	CENED ATOD	Doth OFF

AFTER LANDING

- **CAUTION**

The lower edge of the Main Entrance Door should be above the waterline during calm seas. During rough seas only the Emergency Exit Door should be used.

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

EMERGENCY DESCENT

A maximum rate descent is required due to an emergency condition

- 1. Thrust Levers...... IDLE
- 2. SPEEDBRAKE (if installed) EXT
- 3. Airspeed......Maintain V_{MO} / M_{MO}

CAUTION

If structural damage is suspected, limit airspeed to a speed lower than V_{MO} / M_{MO} and limit maneuvering loads until damage assessment can be made.

CAUTION

Emergency Descent Mode (EDM) will automatically command a descent at V_{MO}/M_{MO} . If a lower speed is desired, the autopilot must be disengaged.

NOTE

EDM cannot guarantee a maximum rate of descent. The pilot must ensure the thrust levers are commanded to IDLE.

NOTE

If the airplane is above 25,000 ft MSL, and the autopilot is engaged, it will automatically enter EDM when the **CABIN ALT HIGH** warning message posts.

Procedure Continued ¬

FAA APPROVED March 3, 2017

HA-420 AFM EMERGENCY EMERGENCY DESCENT (continued) CABIN OXYGEN.....DROP MASK (as required) CABIN SIGNSON ATC......Notify and obtain local altimeter setting Descend to 10,000 ft MSL or Minimum Safe Altitude, whichever is higher 9. Land at nearest suitable airport NOTE EDM will automatically set the altitude pre-selector to 15,000 ft. --- END OF PROCEDURE ---**EMERGENCY EVACUATION** The aircraft is required to be evacuated in an emergency situation PARKING BRAKE......Set 2. ENGINE FIRE PUSH Switches LIFT COVER and PUSH BATTERY.....OFF Evacuate the aircraft using the cabin door and/or the emergency exit --- END OF PROCEDURE ---FAA APPROVED HJ1-29000-003-001

Page 3-41

October 30, 2016

HA-420 AFM EMERGENCY

INADVERTENT OVERSPEED

The aircraft has inadvertently exceeded V_{MO} or M_{MO}

- 2. SPEEDBRAKE (if installed)...... EXT
- 3. Perform wings level pull-up

NOTE

AFCS Overspeed Protection (OSP) mode will engage when speed exceeds 276 KIAS or M 0.73 if the Flight Director is active and the vertical mode is not ALT. OSP will command a 1.5g pull until speed decreases to below 267 KIAS / M 0.715.

--- END OF PROCEDURE ---

HA-420 AFM EMERGENCY

OPERATION WITH EMERGENCY POWER ONLY

The aircraft is operating on battery power only

NOTE When selected on, the Cockpit Flood light provides illumination during all electrical system configurations and may be used when executing this procedure at night.

1. Icing ConditionsExit

CAUTION

Windshield heat, wing anti-ice, and tail de-ice systems are not available when operating with emergency power only.

- 2. L PFD Verify displaying AHRS 1and STBY ADC
- 3. Radio COM 1

NOTE COM 1, NAV 1 and 2, and GPS are the only communication and navigation sources available on emergency power.

- 4. NavigationNAV 1 or 2, or GPS based only
- 6. SPEEDBRAKE (if installed).....RET

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

OPERATION WITH EMERGENCY POWER ONLY (continued)

7.	PRESSU	JRIZAT	TION CONTROL MODEHOLD		
8.	RVSM airspaceExit				
9.	Land as	soon as	possible		
NO	DTE		imum of 60 minutes of operation on battery has been demonstrated.		
DESC	ENT				
1.	Altimete	ers (trans	sition altitude) Set		
APPR	OACH				
1.	Seats an	d Seat B	BeltsAdjusted and secure		
2.	Passenge	er Briefi	ingComplete		
3.	Avionic	S	Set		
4.	Landing	Data	Set and confirmed		
	a.	Radios a	and NavigationSet		
	NO'	TE	COM 1, NAV 1 and 2, and GPS are the only communication and navigation sources available on emergency power.		
		Г	- Procedure Continued 7		

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

OPERATION WITH EMERGENCY POWER ONLY (continued)

b.	V-speeds, FMS, and Flight Guidance	eSet,
		programmed,
	ar	nd modes selected
c.	Landing Distance	Confirm

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%

NOTE Due to the stall pusher being inoperative, the minimum

approach speed and landing distance factor are defined

in the table.

NOTE If icing conditions cannot be avoided, reference

LANDING WITH ICE ACCUMULATION ON WINGS and SIDE WINDOW LANDING

(Section 3A – Abnormal Procedures).

5. CAS Messages......Check

6. Approach Briefing......Complete

7. LANDING Light.....ON

8. FLAPS.....TO/APPR

¬ Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

OPERATION WITH EMERGENCY POWER ONLY (continued)

B

EFOR	E LAN	DING	
	Landing		Alternate extension
	a.		GEAR CTRL circuit breakerPULL (B7)
	b.		DING GEAR DN
	c.		eed
	d.	_	RNATE GEAR RELEASE handle Pull fully
	e.		airplane, if necessary, to obtain gear locked down
	f.		DING GEAR indicator Verify three green DN
	NO	OTE	The gear DOOR icon will remain posted but a normal landing is possible without gear doorground contact.
	g.	ALTE	RNATE GEAR RELEASE handleStow
•	CAUTI	ON	The ALTERNATE GEAR RELEASE handle could interfere with thrust lever operation if not stowed following use.
	NO	OTE	Normal landing gear operations cannot be restored in flight after activation of the alternate gear release.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Procedure Continued ¬

Page 3-46

EMERGENCY OPERATION WITH EMERGENCY POWER ONLY (continued) FLAPS.....LDG Airspeed..... $V_{REF} + 5$ 4. CABIN DUMP......DUMP WARNING The airplane must be unpressurized prior to landing. **LANDING**

- Brakes......Apply (after touchdown) SPEEDBRAKE (if installed).....EXT
- NOTE

HA-420 AFM

The speedbrake may not be operational, or the deflection may be reduced depending on the system and normal accumulator pressure at the time of landing.

¬ Procedure Continued ¬

HA-420 AFM EMERGENCY

OPERATION WITH EMERGENCY POWER ONLY (continued)

FOLLOWING LANDING ROLLOUT

- 1. Do not taxi
- 2. Wheel chocks Install

CAUTION

Following landing rollout, the emergency and brake accumulators may drop below the level required for nosewheel steering and braking.

¬ Procedure Continued ¬

HA-420 AFM EMERGENCY

The following equipment is OPERATIVE for a limited time			
Communication			
L and R Intercom	COM 1		
Navigat	ion / AFCS		
L PFD (using Standby Air Data)	MFD		
NAV 1	L CDU		
Transponder 1	NAV 2		
AHRS 1	Standby Instrument		
Standby AHRS and ADC	GPS		
Low Speed Awareness (Degraded	Rudder Bias		
Mode)			
	ngine		
Engines*	FADEC Control*		
Engine Instruments	Ignition		
Fire Detection	Fire Extinguishers		
Vibration Detection			
	t Control		
Normal Flight Controls*	All Trim		
Flaps			
Landing Go	ear and Brakes		
Landing Gear (alternate extension)*	Normal Brakes (accumulator)*		
Hydraulic Pump (ground only)	Anti-Skid (if normal brakes available)		
Parking Brake (accumulator) Emergency Brake (accumulator)*			
Nosewheel Steering (accumulator)*			
Fuel			
Fuel Pumps	Fuel Shutoff Valves		
Fuel Quantity Indications	Fuel Low Level Sensors		
Fuel Crossfeed			
Environmental			
Engine Bleed	Pressurization (HOLD Mode)		
Dump Mode	Oxygen*		
Bleed Leak Detection			
	rotection		
Ice Detection	Standby Probe Heat		
Engine Anti-ice (failed on)			
	ghting		
Cockpit Flood Light	L Ice Inspection Light		
L Landing Light	Footwell Lights		

NOTE: * These items do not require aircraft electrical power to operate and are not time limited.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HJ1-29000-003-001

tober 30, 2016 Page 3-49

HA-420 AFM EMERGENCY

OPERATION WITH #1 BUSES ONLY

Operation of the aircraft with #1 buses only is required

1. Thrust Levers......Avoid rapid movements

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

NOTE The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active until WING FLOW is selected from the operable side.

- 2. Icing ConditionsExit
- 3. Radio COM 1

NOTE Copilot will lose all communication capability.

4. NavigationNAV 1 or GPS

NOTE COM 1, NAV 1, and GPS are the only communication and navigation sources available during #1 bus only operation.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

OPERATION WITH #1 BUSES ONLY (continued)

5.	Transponder					
6.	R WINDSHIELD HEATOFF					
7.	R ENGINE BLEEDOFF					
8.	WING FLOWFROM L					
9.	PRESSURIZATION CONTROL MODEHOLD					
10.	AltitudeDescend to FL 250 or below					
11.	Land at nearest suitable airport					
DESCI	ENT					
1.	Altimeters (transition altitude)					
APPRO	DACH					
1.	Seats and Seat BeltsAdjusted and secure					
2.	Passenger BriefingComplete					
3.	AvionicsSet					
4.	Landing Data Set and confirmed					
	a. Radios and Navigation Set					
	b. V-speeds, FMS, and Flight GuidanceSet,					
	programmed, and modes selected					
	c. Landing Distance					
	┌ Procedure Continued ┐					

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

OPERATION WITH #1 BUSES ONLY (continued)

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%

NOTE Due to the stall pusher being inoperative, the minimum

approach speed and landing distance factor are defined

in the table.

NOTE If icing conditions cannot be avoided, reference

LANDING WITH ICE ACCUMULATION ON

WINGS and SIDE WINDOW LANDING

(Section 3A – Abnormal Procedures).

6. Approach Briefing......Complete

7. FLAPS......TO/APPR

⊢ Procedure Continued ¬

HA-420 AFM EMERGENCY OPERATION WITH #1 BUSES ONLY (continued) **BEFORE LANDING** 1. LANDING GEARDN NOTE Hydraulic pressure indications will be unavailable during #1 bus operation, but the hydraulic pump will be operable. Cabin Differential Pressure Verify less than 0.3 psi WARNING The airplane must be unpressurized prior to landing. FLAPS.....LDG Airspeed..... $V_{REF} + 5$ Autopilot/Yaw Damper Disengage **LANDING** Brakes......Apply (after touchdown)

FAA APPROVED October 30, 2016

HJ1-29000-003-001

¬ Procedure Continued ¬

HA-420 AFM EMERGENCY

The following equipment will be <u>INOPERATIVE</u> during #1 bus only operations		
Con	nmunication	
COM 2	R Audio	
Navig	ation / AFCS	
R PFD	MFD	
R CDU	TCAS II	
AHRS 2 and ADC 2	NAV 2	
ADF	CVFDR	
Transponder 2	DME	
Radio Altimeter	Weather Radar	
SATCOM / Connext TM Weather	Stall Pusher	
	Engine	
Right Oil Temperature	R Fire Detection	
R Fire Extinguisher	Vibration Detection	
Flig	ght Control	
Standby Pitch Trim	Speedbrake	
Landing	Gear and Brakes	
Hydraulic (indication)		
	Fuel	
R Fuel Low Level Sensor	Fuel Crossfeed	
R Fuel Quantity	R Fuel Shutoff Valve	
R Fuel Pump		
Env	rironmental	
Air Conditioner	R Bleed Leak Detection	
R Engine Bleed	Cabin Oxygen Automatic Deployment	
Pressure Control (normal)	Oxygen Quantity (Ind)	
	Cabin Fan	
Ice Protection		
R Wing Anti-ice Valve	R Engine Anti-ice (failed on)	
R Windshield Zone Heat	Right Probe Heat	
Ice Detector 2		
Lighting		
R Landing Light	Strobe Lights	
Logo Lights	Taxi Lights	
RECOG Lights	NAV Lights	
Cockpit Map Lights	Cabin Overhead Lights	
Copilot Footwell Light	Cabin Signs	
Ice Inspection Lights		

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 3-54

HA-420 AFM EMERGENCY

OPERATION WITH #2 BUSES ONLY

Operation of the aircraft with #2 buses only is required

- 1. PITCH TRIM MODE......STBY
- 2. Thrust Levers......Avoid rapid movements

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

NOTE The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active until WING FLOW is selected from the operable side.

- 3. Icing ConditionsExit

CAUTION

Pilot will not hear intercom or alerts through headset, but alerts will be automatically routed to cross-side speaker. Speaker volume may need to be adjusted to ensure alerts can be heard while wearing headset.

Procedure Continued ¬

HA-420 AFM EMERGENCY

OPERATION WITH #2 BUSES ONLY (continued)

ILIAIION	WITH #2 BOOLO OILL (Continued)	
NOTE	The pilot's boom mic, or oxygen mask mic is automatically routed to COM 2 for communication with ATC.	
NOTE	Marker beacon functionality (aural and visual) will be inoperative on the pilot's side.	
5. Navigation		
NOTE	COM 2, NAV 2, and GPS are the only communication and navigation sources available for #2 bus only operation.	
6. Transpo	anderXPDR 2 (if applicable) or notify ATC	
7. L WINDSHIELD HEATOFF		
8. L ENGINE BLEEDOFF		
9. WING FLOWFROM R		
10. Altitude	Descend to FL 250 or below	
11. NOSE WHEEL STEERINGOFF		

 Γ Procedure Continued γ

HA-420 AFM EMERGENCY

OPERATION WITH #2 BUSES ONLY (continued)

12. Select a long, wide, and dry runway with minimal crosswind

WARNING

Anti-skid is not available. Any braking above light in wet runway conditions could result in blown tires and loss of directional control.

CAUTION

Nosewheel steering is inoperative. Crosswinds should be minimized to ensure adequate directional control during the low-speed portion of the rollout using differential braking.

NOTE

Landing distance will double on a wet runway using light braking.

13. Land at nearest suitable airport

NOTE

Stall Pusher is inoperative. Low Speed Awareness remains operative in a degraded mode based on remaining ADC AOA data.

Procedure Continued ¬

HA-420 AFM EMERGENCY

OPERATION WITH #2 BUSES ONLY (continued)

DESC	ENT
1.	Landing Field Elevation
2.	Altimeters (transition altitude)
APPR	OACH
1.	Seats and Seat BeltsAdjusted and secure
2.	Passenger BriefingComplete
3.	AvionicsSet
4.	Landing Data Set and confirmed
	a. Radios and Navigation Set
	b. V-speeds, FMS, and Flight GuidanceSet, programmed,

Procedure Continued ¬

c. Landing Distance......Confirm

and modes selected

HA-420 AFM EMERGENCY

OPERATION WITH #2 BUSES ONLY (continued)

Flap Setting	Min Approach Speed	Landing Distance
UP	$V_{REF} + 20$	Add 105%
TO/APPR	$V_{REF} + 10$	Add 75%
LDG	$V_{REF} + 5$	Add 60%

NOTE Flaps are inoperative during #2 bus only operation. The flap setting at the time #2 bus only operation was initiated will be the final flap setting.

NOTE Due to anti-skid and the stall pusher being inoperative, the minimum approach speed and landing distance factors are defined in the table.

NOTE Landing distance will double on a wet runway using light braking.

If icing conditions cannot be avoided, reference LANDING WITH ICE ACCUMULATION ON WINGS and SIDE WINDOW LANDING (Section 3A – Abnormal Procedures).

- 6. Approach Briefing......Complete

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM EMERGENCY

OPERATION WITH #2 BUSES ONLY (continued)

BEFORE LANDING

_		
1. Landin	g Gear	Alternate Extension
a.	LDG GEAR CTRL circuit break	erPULL (B7)
b.	LANDING GEAR	DN
c.	Airspeed	150 KIAS minimum
d.	ALTERNATE GEAR RELEASE	E handle Pull fully
e.	Yaw airplane, if necessary, to ob	tain gear locked down
f.	LANDING GEAR indicator V	erify three green DN
NO	The gear DOOR icon w normal landing is possil ground contact.	
g.	ALTERNATE GEAR RELEASI	E handleStow
CAUTION	The ALTERNATE GEAR RE interfere with thrust lever op following use.	

Procedure Continued ¬

Normal landing gear operations cannot be restored in flight after activation of the alternate gear release.

FAA APPROVED October 30, 2016

NOTE

HA-420 AFM EMERGENCY OPERATION WITH #2 BUSES ONLY (continued) Airspeed..... (Flaps UP) - V_{REF} + 20 (Flaps TO/APPR) - $V_{REF} + 10$ (Flaps LDG) - $V_{REF} + 5$ 3. Yaw Damper...... Disengage **LANDING** Thrust Levers IDLE Brakes...... Apply Gradually Maintain directional control with rudder and differential braking **CAUTION** Brakes must be applied gradually. Light to moderate braking can be applied without skidding tires on a dry surface, however, the pilot should consider runway surface conditions when applying brakes. FOLLOWING LANDING ROLLOUT R ENGINE BLEED.....OFF 2. Do not taxi Wheel chocks Install **CAUTION** Following landing rollout, the emergency and brake accumulators may drop below the level required for braking.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

¬ Procedure Continued ¬

HA-420 AFM EMERGENCY

The following equipment will be <u>INOPERATIVE</u> during #2 bus only operations		
	nication	
COM 1	L Audio	
Navigatio	on / AFCS	
Autopilot	L PFD	
AHRS 1 and ADC 1	XM Weather	
Standby Instrument	NAV 1	
Transponder 1	Control Yoke System Control	
Standby AHRS and ADC	L CDU	
Weather Radar	TCAS	
Stall Pusher	SATCOM / Connext TM Weather	
Low Speed Awareness (degraded mode)		
Eng	gine	
L Engine Instruments	L Fire Detection	
L Fire Extinguisher		
Flight	Control	
Pitch (primary), Roll and Yaw Trim	Speedbrake	
Flaps	1	
Landing Gea	r and Brakes	
Landing Gear (normal extension)	Anti-Skid	
Hydraulic Pump	Nosewheel Steering	
	ıel	
L Fuel Pump	L Fuel Shutoff Valve	
Left Fuel Quantity	Left Fuel Low Level Sensor	
Center Fuel Quantity		
	nmental	
Left Engine Bleed	L Bleed Leak Detection	
Cockpit Fan	Ground Cooling Fan	
Air Conditioner	211	
Ice Protection		
Ice Detector 1	L Engine Anti-ice (failed on)	
Standby Probe Heat	L Wing Anti-ice Valve	
L Windshield Zone Heat	L Probe Heat	
Lighting		
Beacon	L Landing Light	
Cabin Overhead Lights	Cabin Signs	
Cockpit Flood Light	NAV Lights	
Footwell Lights	Right Taxi Light	
Ice Inspection Lights		

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 3-62

HA-420 AFM EMERGENCY

REJECTED TAKEOFF

A condition requiring the takeoff to be rejected has been encountered

- 1. Thrust Levers......IDLE
- 2. Brakes......Apply maximum braking
- 3. SPEEDBRAKE (if installed) EXT

NOTE

Consult the Aircraft Maintenance Manual (AMM) for required maintenance actions if a rejected takeoff is conducted above 100 knots ground speed.

--- END OF PROCEDURE ---

STALL RECOVERY

The aircraft has stalled or is approaching stall

- 1. Pitch Attitude.....Lower to reduce angle of attack
- 2. Thrust Levers......TO
- 3. Level the wings
- 4. Airspeed...... Accelerate above stall condition

--- END OF PROCEDURE ---

FAA APPROVED March 3, 2017

HA-420 AFM EMERGENCY

WINDSHEAR OR TERRAIN AVOIDANCE

A condition has been encountered requiring a vertical escape maneuver

TAKEOFF CONFIG

One or more configuration items are not properly set for takeoff

 Accomplish REJECTED TAKEOFF (Section 3 – Emergency Procedures)

--- END OF PROCEDURE ---

FAA APPROVED March 3, 2017

HA-420 AFM EMERGENCY

PFD / EIS / ASI FLAGS

The following malfunctions are indicated by flags

Display Flag / Indication	Description	
AFCS		
AP	The autopilot has disconnected abnormally. This alert is accompanied by continuous disconnect aural tones. These alerts will repeat continuously until acknowledged. Refer to the Cockpit Reference Guide for details.	
SurfaceWatch		
RWY TOO SHORT	The aircraft is aligned with a runway during takeoff or landing that is too short, as determined by the SurfaceWatch. This is accompanied by the "Runway Too Short" aural alert. Refer to the Cockpit Reference Guide for details.	
TWY LANDING	The aircraft is aligned with a taxiway during the landing phase, as detected by the SurfaceWatch. This is accompanied by the "Taxiway" aural alert. Refer to the Cockpit Reference Guide for details.	
TWY TAKEOFF	The aircraft is aligned with a taxiway and thrust levers are set to TO, as detected by the SurfaceWatch. This is accompanied by the "Taxiway" aural alert. Refer to the Cockpit Reference Guide for details.	

FAA APPROVED March 3, 2017

HA-420 AFM EMERGENCY

Display Flag / Indication	Description
Traffic Collision and Avoidance System (TCAS)	
TRAFFIC	Resolution Advisory (RA) is active. A potentially hazardous intruding aircraft has been detected and is closing to within 15-35 seconds of a potential collision area. An appropriate aural alert is also issued, providing the flight crew with maneuver instructions to avoid the hazardous traffic. This alert is only applicable to TCAS II installations. Refer to the Cockpit Reference Guide for details.

HA-420 AFM ABNORMAL

SECTION 3A ABNORMAL PROCEDURES

CAS INDEX

CAS Message		Page
	AFCS MISTRIM	3A-16
	AFT BAG DOOR UNSAFE	3A-49
1(2)	AHRS FAIL	3A-16
1(2)	AIR DATA FAIL	3A-17
	ANTI-SKID FAIL	3A-170
L(R)	AUDIO FAIL	3A-18
	AVIONICS COMPUTER 1 FAIL	3A-19
	AVIONICS COMPUTER 2 FAIL	3A-21
	BATTERY BUS 1 FAIL	3A-55
	BATTERY BUS 1A FAIL	3A-64
	BATTERY BUS 1B FAIL	3A-70
	BATTERY BUS 1C FAIL	3A-75
	BATTERY BUS 2 FAIL	3A-77
	BATTERY BUS 2A FAIL	3A-82
	BATTERY BUS 2B FAIL	3A-86
	BATTERY BUS 2C FAIL	3A-91

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

	CAS Message	Page
	BUS TIE FAIL	3A-92
	CABIN ALT CTRL FAIL	3A-115
	CABIN ALT CTRL FAULT	3A-116
	CABIN ALT HIGH FIELD	3A-116
L(R)	CABIN BLEED FAIL	3A-117
L(R)	CABIN BLEED TEMP HIGH	3A-118
	CABIN DOOR UNSAFE	3A-50
	CABIN OXYGEN OFF	3A-117
	CPDLC FAIL	3A-23
	DATA ACQUISITION 1 FAIL	3A-23
	DATA ACQUISITION 2 FAIL	3A-26
	DATA ACQUISITION 3 FAIL	3A-29
	DATA CONCENTRATOR 1 FAIL	3A-31
	DATA CONCENTRATOR 2 FAIL	3A-33
	ECS AIR COND FAIL	3A-119
	ECS GND COOLING FAN FAIL	3A-119
	EMER EXIT DOOR UNSAFE	3A-51
L(R)	ENG ANTI-ICE FAIL	3A-143
L(R)	ENG BLEED FAIL	3A-120
L(R)	ENG CONTROL FAIL	3A-109
L(R)	ENG CONTROL FAULT	3A-110

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

CAS Message		Page
L-R	ENG FUEL BYPASS	3A-111
L(R)	ENG OIL TEMP HIGH	3A-112
L(R)	ENG OVERSPD PROT FAIL	3A-113
L(R)	ENG START FAIL	3A-106
	EXT PWR DOOR UNSAFE	3A-52
L(R)	FIRE DETECTOR FAIL	3A-114
	FLAP FAIL	3A-127
	FLAP FAULT	3A-128
	FLT DIR MODE CHANGE	3A-35
	FUEL CROSSFEED	3A-131
	FUEL CROSSFEED FAIL	3A-131
	FUEL IMBALANCE	3A-132
	FUEL LEVEL CTRL FAULT	3A-133
L-R	FUEL PRESSURE LOW	3A-134
L(R)	FUEL PRESSURE LOW	3A-134
L(R)	FUEL PUMP FAIL	3A-135
	FUEL QTY FAULT	3A-136
L-R	FUEL QTY LOW	3A-138
L(R)	FUEL QTY LOW	3A-138
	FUEL TEMP HIGH	3A-139
	FUEL TEMP LOW	3A-140

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

CAS Message		Page
	FWD BAG DOOR UNSAFE	3A-53
L(R)	GENERATOR FAIL	3A-92
L(R)	GENERATOR OVERLOAD	3A-94
	HYD PUMP FAIL	3A-141
	HYD PRESSURE LOW	3A-141
	ICE DETECT FAIL	3A-144
	ICE PROT NOT ACTIVE	3A-148
	LDG GEAR FAIL	3A-171
	MAIN BUS 1 FAIL	3A-94
	MAIN BUS 2 FAIL	3A-96
	NO LDG FIELD ELEV	3A-122
	NOSEWHEEL STEER FAIL	3A-172
	OXYGEN LOW	3A-123
	OXYGEN QTY FAIL	3A-124
	OXYGEN UNAVAILABLE	3A-125
	PARK BRAKE FAIL	3A-174
	PARK BRAKE ON	3A-174
	PITCH TRIM FAIL	3A-129
L(R)	PROBE HEAT FAIL	3A-150
	RUDDER BIAS FAIL	3A-35
	SPEEDBRAKE EXTENDED	3A-130

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

	CAS Message	Page
	STALL PUSHER FAIL	3A-36
	STALL WARN MISCOMP	3A-37
	STBY PROBE HEAT FAIL	3A-151
	TAIL DE-ICE FAIL	3A-151
	TRANSPONDER MODE	3A-37
L-R	WING A/I TEMP LOW	3A-155
	WING ANTI-ICE FAIL	3A-152
	WING ANTI-ICE FAIL ON	3A-153
L(R)	WING ANTI-ICE OVERHEAT	3A-154
L(R)	WING ANTI-ICE TEMP LOW	3A-158
	WING ANTI-ICE UNAVAIL	3A-161
L(R)	WSHD ZONE FAIL	3A-163
L(R)	WSHD ZONE OVERHEAT	3A-164
	YAW DAMPER FAIL	3A-38
	YAW DAMPER OFF	3A-39

HA-420 AFM ABNORMAL

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

SECTION 3A ABNORMAL PROCEDURES

TABLE OF CONTENTS

AVIONICS / AFCS	
Primary Flight or Multi-Function Display Failure	3A-15
AFCS MISTRIM	3A-16
AHRS 1(2) FAIL	3A-16
AIR DATA 1(2) FAIL	3A-17
L(R) AUDIO FAIL	3A-18
AVIONICS COMPUTER 1 FAIL	3A-19
AVIONICS COMPUTER 2 FAIL	3A-21
CPDLC FAIL	3A-23
DATA ACQUISITION 1 FAIL	3A-23
DATA ACQUISITION 2 FAIL	3A-26
DATA ACQUISITION 3 FAIL	3A-29
DATA CONCENTRATOR 1 FAIL	3A-31
DATA CONCENTRATOR 2 FAIL	3A-33
FLT DIR MODE CHANGE	3A-35
RUDDER BIAS FAIL	3A-35
STALL PUSHER FAIL	3A-36

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-7

HA-420 AFM	ABNORMAL
STALL WARN MISC	OMP 3A-37
TRANSPONDER MO	DE 3A-37
YAW DAMPER FAIL	3A-38
YAW DAMPER OFF	3A-39
PFD / EIS / ASI FLAC	SS
DOORS	
AFT BAG DOOR UNS	SAFE 3A-49
CABIN DOOR UNSA	FE 3A-50
EMER EXIT DOOR U	U NSAFE 3A-51
EXT PWR DOOR UN	SAFE 3A-52
FWD BAG DOOR UN	ISAFE 3A-53
ELECTRICAL SYSTEMS	5
BATTERY BUS 1 FA	IL3A-55
BATTERY BUS 1A F	AIL
BATTERY BUS 1B FA	AIL
BATTERY BUS 1C F	AIL
BATTERY BUS 2 FA	IL3A-77
BATTERY BUS 2A F	AIL
BATTERY BUS 2B FA	AIL
BATTERY BUS 2C F	AIL
BUS TIE FAIL	3A-92
L(R) GENERATOR F	AIL
FAA APPROVED October 30, 2016	HJ1-29000-003-001 Page 3A-8

HA-420 AFM		ABNORMAL
L(R) GENERATO	OR OVERLOAD	3A-94
MAIN BUS 1 FAI	L	3A-94
MAIN BUS 2 FAI	L	3A-96
ENGINES		
Engine Airstart		3A-99
Engine Precaution	nary Shutdown in Flight	3A-103
L(R) ENG START	Γ FAIL	3A-106
Engine Start Abou	¹t	3A-106
Engine Tailpipe F	ire After Shutdown	3A-108
L(R) ENG CONT	ROL FAIL	3A-109
L(R) ENG CONT	ROL FAULT	3A-110
L-R ENG FUEL F	BYPASS	3A-111
L(R) ENG OIL TI	EMP HIGH	3A-112
L(R) ENG OVER	SPD PROT FAIL	3A-113
L(R) FIRE DETE	CTOR FAIL	3A-114
ENVIRONMENTAL	/ PRESSURIZATION SYST	EMS
Cracked Windshie	eld or Window	3A-115
CABIN ALT CTR	L FAIL	3A-115
CABIN ALT CTR	RL FAULT	3A-116
CABIN ALT HIG	H FIELD	3A-116
L(R) CABIN BLE	ED FAIL	3A-117
CABIN OXYGEN	OFF	3A-117
FAA APPROVED October 30, 2016	HJ1-29000-003-001	Page 3A-9

HA-420 AFM		ABNORMAL
L(R) CABIN BLE	EED TEMP HIGH	3A-118
ECS AIR COND	FAIL	3A-119
ECS GND COOL	ING FAN FAIL	3A-119
L(R) ENG BLEE	D FAIL	3A-120
NO LDG FIELD	ELEV	3A-122
OXYGEN LOW.		3A-123
OXYGEN QTY F	'AIL	3A-124
OXYGEN UNAV	AILABLE	3A-125
FLIGHT CONTROL	S	
FLAP FAIL		3A-127
FLAP FAULT		3A-128
PITCH TRIM FA	AIL	3A-129
SPEEDBRAKE E	EXTENDED	3A-130
FUEL SYSTEMS		
FUEL CROSSFE	ED	3A-131
FUEL CROSSFE	ED FAIL	3A-131
FUEL IMBALAN	NCE	3A-132
FUEL LEVEL C	ΓRL FAULT	3A-133
L-R FUEL PRES	SURE LOW	3A-134
L(R) FUEL PRES	SSURE LOW	3A-134
L(R) FUEL PUM	P FAIL	3A-135
FUEL QTY FAU	LT	3A-136
FAA APPROVED October 30, 2016	HJ1-29000-003-001	Page 3A-10

HA-420 AFM	ABNORMAL
L-R FUEL QTY LOW	3A-138
L(R) FUEL QTY LOW	3A-138
FUEL TEMP HIGH	3A-139
FUEL TEMP LOW	3A-140
HYDRAULIC SYSTEMS	
HYD PUMP FAIL	3A-141
HYD PRESSURE LOW	3A-141
ICE PROTECTION SYSTEM	IS
L(R) ENG ANTI-ICE FAI	L3A-143
ICE DETECT FAIL	3A-144
ICE PROT NOT ACTIVE	3A-148
L(R) PROBE HEAT FAIL	3A-150
STBY PROBE HEAT FAI	L3A-151
TAIL DE-ICE FAIL	3A-151
WING ANTI-ICE FAIL	3A-152
WING ANTI-ICE FAIL O	N3A-153
L(R) WING ANTI-ICE O	VERHEAT 3A-154
L-R WING A/I TEMP LO	W 3A-155
L(R) WING ANTI-ICE TI	EMP LOW 3A-158
WING ANTI-ICE UNAVA	AIL
L(R) WSHD ZONE FAIL	3A-163
L(R) WSHD ZONE OVER	RHEAT 3A-164
FAA APPROVED HJ1	-29000-003-001
October 30, 2016	Page 3A-11

HA-420 AFM	ABNORMAL
LANDING GEAR AND BRAKES	
ALTERNATE GEAR RELEASE Extension	3A-165
ANTI-SKID FAIL	3A-170
LDG GEAR FAIL	3A-171
NOSEWHEEL STEER FAIL	3A-172
PARK BRAKE FAIL	3A-174
PARK BRAKE ON	3A-174
OPERATIONAL	
Cabin System Shedding	3A-175
Landing With Ice Accumulation on Wings	3A-176
Reduced Flap Landing	3A-180
Side Window Landing	3A-183
Single-Engine Approach and Landing	3A-184
Single-Engine Missed Approach	3A-187

HA-420 AFM ABNORMAL

ABNORMAL PROCEDURES

GENERAL

The procedures contained in this section have been developed to provide a means to maintain an acceptable level of airworthiness or reduce operational risk resulting from a failure condition.

Abnormal procedures are grouped by functional system. Within each functional system area, the procedures are sorted by non-CAS procedures, CAS based, and other visual indications such as PFD flags. Each subgroup is sorted by alphabetical order.

Certain failures are capable of compromising multiple airplane systems. The pilot must respond directly to each annunciated or otherwise identified, system failure and consult the AFM for each specific Abnormal or Emergency procedure. For cases where multiple procedures specify different airplane configurations for continued safe flight and landing, the most restrictive must be used. If multiple procedures specify additional landing distance factors, each factor is additive and applied to the normal landing distance.

Procedures are for use in flight unless other conditions are specifically called out. If not specifically addressed while on the ground, conditions addressed in this section must be corrected prior to flight, unless dispatch is allowed by an approved MEL or otherwise authorized by the appropriate aviation authority.

HA-420 AFM ABNORMAL

TERMINOLOGY

Sound judgment, a thorough knowledge of the aircraft, its characteristics, and the flight manual procedures are essential for handling any abnormal situation. Some failures may compromise airworthiness or functionality, and therefore, the term "land at nearest suitable airport" may be used which is defined as:

Land at nearest suitable airport – the mission should be terminated, and the aircraft landed at a suitable airfield. The airfield and duration of the flight is left to the aircrew's discretion based on their specific circumstances. Considerations should include (but are not limited to):

- Severity of the emergency
- Aircraft performance
- Field facilities
- Weather
- Ambient conditions such as lighting
- Degraded aircraft functionality

HA-420 AFM ABNORMAL

AVIONICS / AFCS

PRIMARY FLIGHT or MULTI-FUNCTION DISPLAY FAILURE

A Primary Flight Display or Multi-Function Display has failed.

LEFT PFD FAILED

1. DISPLAY REVERSION (pilot side) REV

--- END OF PROCEDURE ---

RIGHT PFD FAILED

1. Transfer controls to left seat pilot

--- END OF PROCEDURE ---

MFD FAILED

1. DISPLAY REVERSION (pilot flying) REV

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL AFCS MISTRIM Autopilot is holding constant force. **NOTE** Expect high flight control forces when autopilot is disengaged. Axis and direction of mistrim is indicated by flag in upper left hand corner of the PFD. Trim aircraft as necessary Yaw Damper.....Engage as required 4. Autopilot......Engage as required --- END OF PROCEDURE ---AHRS 1(2) FAIL The associated AHRS unit has failed. If system does not automatically revert to operable AHRS 1. PFD (affected side)...... Select operable AHRS --- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

AIR DATA 1(2) FAIL

The associated air data computer is not providing proper data.

- 1. PFD (affected side)..... Ensure operable ADC selected
- 2. RVSM airspace.....Exit
- 3. Do not perform intentional stalls

NOTE Stall Pusher is inoperative. Stall Warning remains operative based on remaining ADC AOA data.

PRIOR TO LANDING

4. Final approach speed $V_{REF} + 5$

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%
TO/APPR (ice)	V _{REF} + 5	Add 10%

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

L(R) AUDIO FAIL

The intercom and associated speaker, handmic, and oxygen mask mic have failed.

- 2. Speaker Volume (opposite side)......Adjust

CAUTION

Pilot with failed audio will not hear intercom or alerts through headset, but alerts will be automatically routed to cross-side speaker. Speaker volume may need to be adjusted to ensure alerts can be heard while wearing headset.

- **NOTE** The handheld microphone, speaker and oxygen mask mic on the failed side are inoperative.
- **NOTE** The audio system on the failed side will default to use of the onside radio only at a fixed volume.
- **NOTE** Marker beacon functionality (aural and visual) will be inoperative on the failed side.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

AVIONICS COMPUTER 1 FAIL

Avionics computer 1 has failed.

- 2. Navigation Select NAV 2 or GPS
- 3. Transponder.....Ensure operating transponder selected
- 4. Do not perform intentional stalls
- **NOTE** Stall Pusher is inoperative. Stall Warning remains operative based on available valid ADC AOA data.
- Failure of Avionics Computer 1 will cause associated failures which will result in the following CAS messages: FLAP FAULT,

NOSEWHEEL STEER FAULT,

TAIL DEICE FAULT. The procedures for those messages should be followed in addition to this procedure.

Procedure Continued 7

HA-420 AFM ABNORMAL

AVIONICS COMPUTER 1 FAIL (continued)

PRIOR TO LANDING

5. Final approach speed $V_{REF} + 5$

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%
TO/APPR (ice)	V _{REF} + 5	Add 10%

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

The following equipment will be <u>INOPERATIVE</u> with Avionics Computer 1 failure			
Communication			
COM 1 tuning (defaults to 121.5)	NAV 1		
GPS 1	Transponder 1 (only for dual installations)		
Navigation / AFCS			
AHRS 1 and 2 (degraded) CSC			
TAWS (degraded)	Radio Altimeter		
Stall Pusher	TCAS		
	Engine		
L Fire Suppression CAS			
Flight Control			
Flaps (Degraded)			

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 3A-20

HA-420 AFM ABNORMAL

AVIONICS COMPUTER 2 FAIL

Avionics computer 2 has failed.

- 2. NavigationNAV 1 or GPS
- 3. Transponder......Verify XPDR 1
- 4. Do not perform intentional stalls
- **NOTE** Stall Pusher is inoperative. Stall Warning remains operative based on available valid ADC AOA data.
- Failure of Avionics Computer 2 will cause associated failures which will result in the following CAS messages: **FLAP FAULT**,

NOSEWHEEL STEER FAULT. The procedures for those messages should be followed in addition to this procedure.

Procedure Continued ¬

HA-420 AFM ABNORMAL

AVIONICS COMPUTER 2 FAIL (continued)

PRIOR TO LANDING

5. Final approach speed $V_{REF} + 5$

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%
TO/APPR (ice)	V _{REF} + 5	Add 10%

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

The following equipment will be INOPERATIVE with an Avionics Computer 2 failure			
Communication			
COM 2 tuning (defaults to 121.5)	NAV 2		
GPS 2	Transponder 2		
Navigation / AFCS			
AHRS 1 and 2 (degraded)	Stall Pusher		
ILS/BC on Standby Instrument	CSC		
Engine			
R Fire Suppression CAS			
Flight	Control		
Flaps (Degraded)	Speedbrake Auto-retract		

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

CPDLC FAIL

The CPDLC has failed.

1. Select other means of communication

--- END OF PROCEDURE ---

DATA ACQUISITION 1 FAIL

Data Acquisition Unit 1 has failed.

1.	L FUEL PUMP	ON
2.	Icing Conditions	Exit
3.	ENGINE ANTI-ICE	Both OFF, if practical
4.	WING ANTI-ICE	OFF
_	TTT	Manitan

CAUTION

Engines will not sense operation of wing anti-ice or left engine anti-ice. This could result in an engine ITT exceedance if TO or MCT power is selected and the wing or engine anti-ice is on.

6. Land at nearest suitable airport

Procedure Continued 7

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

DATA ACQUISITION 1 FAIL (continued)

BEFORE SHUTDOWN

NOTE

Failure of Data Acquisition Unit 1 will cause associated failures which will result in the following CAS

messages: L ENG CONTROL FAULT,

R ENG CONTROL FAULT,

WING ANTI-ICE FAULT

L ENG ANTI-ICE FAULT

L ENG BLEED FAUL<mark>t</mark>,

PITCH TRIM FAULT,

L ENG FAULT,

NOSEWHEEL STEER FAULT.

The procedures for those messages should be followed in addition to this procedure.

Procedure Continued 7

HA-420 AFM ABNORMAL

DATA ACQUISITION 1 FAIL (continued)

The following equipment will be <u>INOPERATIVE</u> with Data Acquisition Unit 1 failure			
]	Engine		
L Fuel Filter Pressure Sensing	L Oil Filter Pressure Sensing		
L Chip Detector Sensing	L Oil Level		
L Vibration Detection	L Oil Temperature		
L and R Wing Anti-ice Sensing			
Hydraulic			
Volume and System Pressure (Ind.)	Emergency/Parking Brake Pressure (Ind.)		
Anti-Skid Fail monitor			
	Fuel		
L Fuel Pump Automatic Activation	L Fuel Pump Fail Sensing		
L and R SOV Position (Ind.)	Crossfeed Valve (Ind.)		
L Fuel Temperature	L Fuel Pump (Ind.)		
Environmental			
L Manifold Temp and Press (Ind.)	L and R CABIN INFLOW (Ind.)		
L ENG Bleed (Ind.)	L Eng Bleed Leak Detection		
Ice 1	Protection		
L Eng Anti-ice Temp and Press (Ind.)	L Wing Anti-ice Valve (Ind.)		
L WINDSHIELD Zone (Ind.)	Wing Anti-ice High Flow		
Wing Bleed Leak Detection			

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL **DATA ACQUISITION 2 FAIL** Data Acquisition Unit 2 has failed. R FUEL PUMPON Icing ConditionsExit 2. 3. WING ANTI-ICE OFF ITT......Monitor Engines will not sense operation of wing anti-ice or **CAUTION** right engine anti-ice. This could result in an engine ITT exceedance if TO or MCT power is selected and the wing or engine anti-ice is on. 6. Land at nearest suitable airport **BEFORE SHUTDOWN**

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Procedure Continued ¬

HA-420 AFM ABNORMAL

DATA ACQUISITION 2 FAIL (continued)

NOTE Failure of Data Acquisition Unit 2 will cause associated

failures which will result in the following CAS

messages: R ENG CONTROL FAULT,

WING ANTI-ICE FAULT,

R ENG ANTI-ICE FAULT,

R ENG BLEED FAULT,

L CABIN BLEED FAULT,

PITCH TRIM FAULT,

R ENG FAULT<mark>, NOSEWHEEL STEER FAULT.</mark>

The procedures for those messages should be followed in addition to this procedure.

Procedure Continued ¬

HA-420 AFM ABNORMAL

DATA ACQUISITION 2 FAIL (continued)

The following equipment will be INOPERATIVE with Data Acquisition Unit 2 failure				
E	Engine			
R Fuel Filter Pressure Sensing R Oil Filter Pressure Sensing				
R Chip Detector Sensing	R Oil Level			
R Vibration Detection	R Oil Temperature			
L and R Wing Anti-ice Sensing				
Ele	ectrical			
R Generator Voltage or Current (Ind.)				
Hydraulic				
Anti-Skid Fail Monitor Parking/Emer Brake Position Sensing				
Hydraulic Pump (Ind.)	Main Accumulator Pressure (Ind.)			
	Fuel			
R Fuel Pump Automatic Activation	R Fuel Pump Fail Sensing			
L and R SOV Closed Position (Ind.)	Crossfeed Valve Closed (Ind.)			
Environmental				
R Manifold Temp and Press (Ind.)	L and R ENG Bleed (Ind.)			
R Eng Bleed Leak Detection	L and R HPRSOV (Ind.)			
Ice Protection				
R Eng Anti-ice Temp and Press (Ind.)	Ice Detector 2			
R WINDSHIELD Zone (Ind.)	R Zone Temp (Ind.)			
Wing Crossflow (Ind.)	R Eng Anti-ice (Ind.)			
Wing Anti-ice High Flow				

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

DATA ACQUISITION 3 FAIL

Data Acquisition Unit 3 has failed.

1.	Icing Conditions	Ex	it
----	------------------	----	----

- 2. WING ANTI-ICE.....OFF

CAUTION

Engines will not sense operation of wing anti-ice. This could result in an engine ITT exceedance if TO or MCT power is selected and the wing or engine anti-ice is on.

4. Land at nearest suitable airport

NOTE

Failure of Data Acquisition Unit 3 will cause associated failures which will result in the following CAS

messages: L CABIN BLEED FAIL,

R ENG CONTROL FAULT,

WING ANTI-ICE FAULT, R CABIN BLEED FAULT,

R ENG FAULT, NOSEWHEEL STEER FAULT.

The procedures for those messages should be followed in addition to this procedure.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

DATA ACQUISITION 3 FAIL (continued)

The following equipment will be <u>INOPERATIVE</u> with Data Acquisition Unit 3 failure		
	Engine	
L and R Fire Extinguisher Status		
Hydraulic		
Normal Brake Pressure (Ind.)	Brake Accumulator Pressure (Ind.)	
Fuel		
L and R Fuel Pressure (Ind.)	R Fuel Temp Sensing	
Fuel ISO Valve (Ind.)	L and R Fuel Pump Control (Latched ON)	
Env	vironmental	
R Cabin Bleed Temp (Ind)	Air Conditioner Status (Ind.)	
L and R Eng Bleed Leak Detection	Cockpit Duct Temp	
Doors		
External Power Door (Ind.)	Electrical Service Doors (Ind.)	
Ice	Protection	
L and R Wing Anti-ice Valve (Ind.) U or R Wing Anti-ice Sensing and Indication Wing Bleed Leak Detection		

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

DATA CONCENTRATOR 1 FAIL

Data Concentrator 1 has failed.

1. Land at nearest suitable airport

CAUTION Loss of data will suppress some subsequent failure

indications including CAS alerts.

CAUTION Left engine fire warning and suppression will be

unavailable except the light in the ENGINE FIRE

PUSH Switch.

NOTE Failure of Data Concentrator 1 will cause associated

failures which will result in the following CAS

messages: FUEL QTY FAULT,

L ENG CONTROL FAULT,

STALL PUSHER FAIL, L GENERATOR FAULT,

ENG SYNC FAIL<mark>,</mark> R ENG FAULT<mark>,</mark> L ENG FAULT,

AIR DATA 1 FAULT<mark>,</mark> AFCS FAULT,

NOSEWHEEL STEER FAULT. The procedures for

those messages should be followed in addition to this

procedure.

NOTE If use of the oxygen mask is required, the OXYGEN

MASK AUDIO switch must be selected to EMER to

activate the oxygen mask microphone.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-31

HA-420 AFM ABNORMAL

DATA CONCENTRATOR 1 FAIL (continued)

The following equipment will be <u>INOPERATIVE</u> with Data Concentrator Unit 1 failure			
Commu	ınication		
Pilot Scroll Wheel FDR Data to CVFDR			
Pilot O2 Mask Mic Door Switch			
Navigatio	on / AFCS		
Stall Pusher	ADC 1 Temperature Indication		
ADF	XM Weather and Music		
AHRS 1 (degraded)	INMARSAT		
Weather Radar	CSC		
En	gine		
L Engine Fire Warning Aural	L Eng Fire Warning CAS and EI flag		
L and R FADEC Data Redundancy	L Engine Fire Pushbutton		
L Fire Extinguisher Control	Engine Sync		
Elec	trical		
No indication of #1 side information			
F	uel		
L and CTR Fuel Quantity	Fuel Iso Valve Position (Ind.)		
L and R SOV Position (Ind.)			
Enviro	nmental		
L ENG Bleed Valve (Ind.)			
Ligi	hting		
Lighting Control 1	Ice Inspection Light(s)		
NAV Lights	L Landing Light		
Beacon	R Taxi Light		

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

DATA CONCENTRATOR 2 FAIL

Data Concentrator 2 has failed.

1. Land at nearest suitable airport

CAUTION Loss of data will suppress some subsequent failure

indications including CAS alerts.

CAUTION Right engine fire warning and suppression will be

unavailable except the light in the ENGINE FIRE

PUSH Switch.

NOTE Failure of Data Concentrator 2 will cause associated

failures which will result in the following CAS

messages: FUEL QTY FAULT,

R ENG CONTROL FAULT,

STALL PUSHER FAIL,

R GENERATOR FAULT<mark>,</mark> ENG SYNC FAIL,

R ENG FAULT<mark>,</mark> AIR DATA 2 FAULT<mark>,</mark>

AFCS FAULT<mark>, NOSEWHEEL STEER FAULT.</mark>

The procedures for those messages should be followed

in addition to this procedure.

NOTE If use of the oxygen mask is required, the OXYGEN

MASK AUDIO switch must be selected to EMER to

activate the oxygen mask microphone.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

DATA CONCENTRATOR 2 FAIL (continued)

The following equipment will be INOPERATIVE with Data Concentrator Unit 2 failure			
Comm	unication		
Copilot Scroll Wheel SATCOM / Connext TM Weather			
Copilot O2 Mask Mic Door Switch			
Navigati	on / AFCS		
Stall Pusher	AHRS 2 (degraded)		
Weather Radar	DME		
ADC 2 Temperature Indication	CSC		
En	gine		
R Engine Fire Warning Aural	R Engine Fire CAS and EI flag		
L and R FADEC Data Redundancy	R Engine Fire Pushbutton		
R Engine Fire Extinguisher Control	Engine Sync		
	etrical		
No indication of #2 side information			
F	uel		
R Fuel Quantity	Fuel Iso Valve Position (Ind.)		
L and R SOV Position (Ind.)	Crossfeed Valve Position (Ind.)		
Enviro	onmental		
Cabin Fan Speed (Ind.)			
Lig	hting		
Lighting Control 2	Strobe Lights		
L Taxi Light	RECOG Lights		
R Landing Light Logo Lights			

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

FLT DIR MODE CHANGE

The flight director function has automatically reverted to a non-armed mode.

1. Mode Control Panel...... Re-engage desired modes

NOTE

During approach, loss or unavailability of the navigation source signal could cause a flight director mode change. In this case, the desired mode may be unavailable until the navigation signal is available.

--- END OF PROCEDURE ---

RUDDER BIAS FAIL

The rudder bias system has failed.

1. Maintain directional control with rudder inputs

NOTE

Rudder forces with one engine inoperative will increase with Rudder Bias inoperative. Use of additional bank angle into the operable engine may be used to reduce residual forces.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

STALL PUSHER FAIL

The stall pusher has failed.

1. Do not perform intentional stalls.

NOTE Stall Pusher is inoperative. Stall Warning remains operative based on available valid ADC AOA data.

PRIOR TO LANDING

2. Final approach speed $V_{REF} + 5$

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%
TO/APPR (ice)	V _{REF} + 5	Add 10%

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

--- END OF PROCEDURE ---

HA-420 AFM	ABNORMAL
STALL WARN MISCOMP	
AOA 1 and AOA 2 do not agree within allowable limits.	
1. Compare Left and Right PFD air data informati	on
2. PFD (affected side)	operable ADC
3. RVSM airspace	Exit
END OF PROCEDURE	
TRANSPONDER MODE	
TRANSI ONDER MODE	
The transponder is not in ALT mode while airborne.	
The transponder is not in ALT mode white dirborne.	
1. Select appropriate transponder mode	
If TRANSPONDER MODE message remains posted	
2. TransponderSelect other transponder	er (if installed)
If TRANSPONDER MODE message remains posted	
3. RVSM airspace	Exit
END OF PROCEDURE	

HA-420 AFM ABNORMAL YAW DAMPER FAIL The Yaw Damper system has failed. If the autopilot is available 1. Autopilot..... Engage Dutch Roll damping improves at all altitudes with the **NOTE** autopilot engaged If the autopilot is not available Dutch Roll damping improves at lower altitudes NOTE 2. Land at nearest suitable airport --- END OF PROCEDURE ---

HA-420 AFM	ABNORMAL
YAW DAMPER OFF	
The Yaw Damper is operational but not select operations.	ted during enroute flight
1. Yaw Damper	Engage
END OF PROCED	OURE

HA-420 AFM ABNORMAL

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

PFD / EIS / ASI FLAGS

The following malfunctions are indicated by flags

Display Flag / Indication	Description
Air Data	
IAS	An Indicated Airspeed miscompare of greater than 6 knots has been detected between the two primary air data probes.
ΛΙΤ	An Altitude miscompare of greater than 200 ft. has been detected between the two primary air data probes.
ALI	The aircraft no longer meets the requirements for flight in RVSM airspace and RVSM airspace must be exited.
LSA FAIL	Low Speed Awareness is failed.
	The pilot and copilot PFDs are displaying air data from the #1 air data probe.
BOTH ON ADC 1	The aircraft no longer meets the requirements for flight in RVSM airspace and RVSM airspace must be exited.
	The pilot and copilot PFDs are displaying air data from the #2 air data probe.
BOTH ON ADC 2	The aircraft no longer meets the requirements for flight in RVSM airspace and RVSM airspace must be exited.

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

Display Flag / Indication	Description
Air Data (continued)	
BOTH ON ADC STBY	The pilot and copilot PFDs are displaying air data from the standby air data probe. The aircraft no longer meets the requirements for flight in RVSM airspace and RVSM airspace must be exited.
USING ADC1	The copilot PFD is displaying air data from the #1 air data probe.
USING ADC 2	The pilot PFD is displaying air data from the #2 air data probe.
USING ADC STBY	The pilot or copilot PFD is displaying air data from the standby air data probe. The aircraft no longer meets the requirements for flight in RVSM airspace and RVSM airspace must be exited.
IAS	Indicates the avionics system is not able to perform the airspeed comparator function. Airspeed data is missing or invalid from one or both primary air data probes.
ALT	Indicates the avionics system is not able to perform the altitude comparator function. Altitude data is missing or invalid from one or both primary air data probes. The aircraft no longer meets the requirements for flight in RVSM airspace and RVSM airspace must be exited.

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

Display Flag / Indication	Description
Attitude Heading Reference System (AHRS)	
BOTH ON AHRS 1	The pilot and copilot PFDs are displaying attitude and heading data from the #1 AHRS.
BOTH ON AHRS 2	The pilot and copilot PFDs are displaying attitude and heading data from the #2 AHRS.
BOTH ON AHRS STBY	The pilot and copilot PFDs are displaying attitude and heading data from the standby AHRS.
USING AHRS 1	The copilot PFD is displaying attitude and heading data from the #1 AHRS.
USING AHRS 2	The pilot PFD is displaying attitude and heading data from the #2 AHRS.
USING AHRS STBY	The pilot or copilot PFD is displaying attitude and heading data from the standby AHRS.
PIT	A Pitch miscompare of greater than 5° has been detected between the two primary AHRS.
ROL	A Roll miscompare of greater than 6° has been detected between the two primary AHRS.

HA-420 AFM ABNORMAL

Display Flag / Indication	Description	
Attitude Heading Reference System (AHRS) (continued)		
HDG	A Heading miscompare of greater than 6° has been detected between the two primary AHRS.	
	Note: This flag may be observed on the ground in the vicinity of equipment or buildings.	
PIT	Indicates the avionics system is not able to perform the pitch comparator function. Pitch data is missing or invalid from one or both primary AHRS.	
ROL	Indicates the avionics system is not able to perform the roll comparator function. Roll data is missing or invalid from one or both primary AHRS.	
HDG	Indicates the avionics system is not able to perform the heading comparator function. Heading data is missing or invalid from one or both primary AHRS.	
Global Positioning System (GPS)		
BOTH ON GPS 1	GPS 2 is failed. The system is using GPS 1 for GPS position, vector, and time information.	
BOTH ON GPS 2	GPS 1 is failed. The system is using GPS 2 for GPS position, vector, and time information.	

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

Display Flag / Indication	Description	
Global Positioning System (GPS) (continued)		
DR	Dead Reckoning mode is active. The system is using non-navigation source information (heading, airspeed, etc.) to estimate aircraft position from last known navigation source position.	
GPS LOI	GPS Loss of Integrity (LOI). This display flag indicates loss of GPS integrity monitoring functions or the integrity is insufficient for the current phase of flight. This flag is also displayed when both GPS units are failed. During this condition FMS course deviation data is removed from the PFD.	
UNABLE RNP	The system is unable to achieve the required accuracy.	
Radio Altimeter		
RA FAIL The Radio Altimeter has failed.		
SurfaceWatch		
CHECK RUNWAY	The aircraft is aligned with a runway that is not entered in the avionics, as detected by the SurfaceWatch. This is accompanied by the "Check Runway" aural alert. Refer to the Cockpit Reference Guide for details.	

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM ABNORMAL

Display Flag / Indication	Description	
Terrain Awareness and Warning System		
TERRAIN	Terrain Caution, accompanied by the appropriate aural and CDU pop-up alert, as determined by the TAWS. Refer to the Cockpit Reference Guide for details.	
TAWS FAIL	The TAWS function has failed. All or portions of the TAWS function are not available. Refer to the Cockpit Reference Guide for details. This alert is accompanied by a "TAWS System Failure" aural alert.	
GPWS FAIL	The GPWS function has failed. All or portions of the GPWS function are not available. Refer to the Cockpit Reference Guide for details. This alert is accompanied by a "GPWS System Failure" aural alert. This alert is only displayed in TAWS-A configurations.	
TAWS N/A	Portions of the TAWS function are not available, depending on the failure cause. Refer to the Cockpit Reference Guide for details.	
GLIDESLOPE	An excessive glideslope deviation has been detected by the TAWS. This alert is only displayed in TAWS-A configurations.	
GLIDEPATH	An excessive glide path deviation has been detected by the TAWS. This alert is only displayed in TAWS-A configurations.	

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

Display Flag / Indication	Description
Traffic Collision and Avoidance System (TCAS) (continued)	
TRAFFIC	Traffic Advisory (TA) is active. A potentially hazardous intruding aircraft has been detected and is closing to within 20-48 seconds of a potential collision area. In TCAS I installations, this visual alert is accompanied by an aural alert indicating the presence of traffic and relative bearing/altitude ("Traffic! 11 o'clock, high, six miles!"). In TCAS II installations, this visual alert is accompanied by a "Traffic! Traffic!" aural alert.
TCAS FAIL	The TCAS has failed.
TCAS STBY	The TCAS is in Standby mode during flight.
TA ONLY	TA mode has been selected by the flight crew or automatically engaged during takeoff or landing. During this mode, Resolution Advisories are inhibited. This selection is only available in TCAS II installations.
TCAS STBY	Standby mode has been selected by the flight crew while the aircraft is on ground. In flight the annunciation is amber. During this mode, all TCAS alerting functions are unavailable.

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

Display Flag / Indication	Description
Windshear	
WINDSHEAR	Windshear Caution indicating increasing performance windshear. This alert is accompanied by a repeating "Caution Windshear" aural alert.

HA-420 AFM ABNORMAL

DOORS

AFT BAG DOOR UNSAFE

The aft baggage door is not closed and latched with an engine running and the parking brake not set, on ground or in flight.

ON GROUND

--- END OF PROCEDURE ---

DURING FLIGHT

- 1. Airspeed......Reduce
- 2. Land at nearest suitable airport

HA-420 AFM ABNORMAL

CABIN DOOR UNSAFE

The main cabin door is not closed and latched with an engine running and the parking brake not set, on ground or in flight.

ON GROUND

--- END OF PROCEDURE ---

DURING FLIGHT

- 1. Seatbelts......Verify fastened
- 2. CABIN SIGNS
 - a. SEATBELTS.....ON
- 3. Airspeed.....Reduce
- 4. Descend to 10,000 ft MSL or Minimum Safe Altitude, whichever is higher
- 5. Land at nearest suitable airport

HA-420 AFM ABNORMAL

EMER EXIT DOOR UNSAFE

The Emergency Exit door is not closed and latched, on ground or in flight.

ON GROUND

1. Emergency Exit Door......Verify properly installed --- END OF PROCEDURE ---

DURING FLIGHT

1. Emergency Exit Door HandleVerify closed

If EMER EXIT DOOR UNSAFE message remains

2. Continue planned flight

NOTE The emergency exit door is a plug type door.

HA-420 AFM ABNORMAL

EXT PWR DOOR UNSAFE

The external power door is not closed with an engine running and the parking brake not set.

ON GROUND

- 1. Do not taxi

--- END OF PROCEDURE ---

DURING FLIGHT

1. Continue planned flight

NOTE

The external power door will remain closed due to airflow during flight.

HA-420 AFM ABNORMAL

FWD BAG DOOR UNSAFE

The forward baggage door is not closed and latched with an engine running and the parking brake not set, on ground or in flight.

ON GROUND

1. Fwd Baggage Door......Close

--- END OF PROCEDURE ---

DURING FLIGHT

- 1. Airspeed......Reduce
- 2. Land at nearest suitable airport

HA-420 AFM ABNORMAL

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ELECTRICAL SYSTEMS

BATTERY BUS 1 FAIL

Battery bus 1 is isolated from the aircraft electrical system

1.	PITCH TRIM MODE	STBY
2.	Thrust Levers	Avoid rapid movements
3.	Icing Conditions	Exit
4.	Left DISPLAY REVERSION	REV
5.	Radio	COM 2

CAUTION

Pilot will not hear intercom or alerts through headset, but alerts will be automatically routed to cross-side speaker. Speaker volume may need to be adjusted to ensure alerts can be heard while wearing headset.

 Γ Procedure Continued γ

HA-420 AFM ABNORMAL BATTERY BUS 1 FAIL (continued) NOTE The pilot's handheld microphone and speaker are inoperative. NOTE The pilot's boom mic, or oxygen mask mic is automatically routed to COM 2 for communication with ATC. **NOTE** Marker beacon functionality (aural and visual) will be inoperative on the failed side. 6. NavigationNAV 2 or GPS NOTE COM 2, NAV 2, and GPS are the only communication and navigation sources available during a Battery Bus 1 failure. 7. Transponder......XPDR 2 (if applicable) or notify ATC L ENGINE BLEED.....OFF 9. WING FLOW.....FROM R 10. L WINDSHIELD HEAT.....OFF

FAA APPROVED October 30, 2016

HJ1-29000-003-001

12. NOSE WHEEL STEERINGOFF

¬ Procedure Continued ¬

HA-420 AFM ABNORMAL

BATTERY BUS 1 FAIL (continued)

13. Select a long, wide, and dry runway with minimal crosswind

WARNING Anti-skid is not functional. Any braking above

light in wet runway conditions could result in blown tires and loss of directional control.

NOTE

Landing distance will double on a wet runway using light braking.

CAUTION

Nosewheel steering is inoperative. Crosswinds should be minimized to ensure adequate directional control during the low-speed portion of the rollout using differential braking.

14. Land at nearest suitable airport

CAUTION

Loss of data will suppress some subsequent failure indications including CAS alerts.

NOTE

Stall Pusher is inoperative. Low Speed Awareness remains operative in a degraded mode based on available valid ADC AOA data.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-42() AFM	ABNORMA
BATT	ERY BUS 1 FAIL (continued)	
DESC	ENT	
1.	Landing Field Elevation	Verify set
2.	Altimeters (transition altitude)	Set
APPR	ОАСН	
1.	Seats and Seat Belts	Adjusted and secure
2.	Passenger Briefing	Complete
3.	Avionics	Set
	_C Procedure Con	ntinued 7

HA-420 AFM ABNORMAL

BATTERY BUS 1 FAIL (continued)

4.	Landin	ng Data Set and c	onfirmed
	a.	Radios and Navigation	Set
	b.	V-speeds, FMS, and Flight Guidance	
		prog	grammed,
		and modes	selected
	c.	Landing Distance	.Confirm

Flap Setting	Min Approach Speed	Landing Distance
UP	$V_{\text{REF}} + 20$	Add 105%
TO/APPR	$V_{REF} + 10$	Add 75%
LDG	V _{REF} + 5	Add 60%

NOTE Flaps are inoperative during a Battery Bus 1 failure.

The flap setting at the time the failure occurred will be

the final flap setting.

NOTE Due to anti-skid and the stall pusher being inoperative,

the minimum approach speed and landing distance

factor are defined in the table.

NOTE Landing distance will double on a wet runway using

light braking.

¬ Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL BATTERY BUS 1 FAIL (continued) CAS Messages......Check Approach Briefing......Complete **BEFORE LANDING** Alternate Extension 1. Landing Gear LDG GEAR CTRL circuit breaker.....PULL (B7) Airspeed...... 150 KIAS minimum c. ALTERNATE GEAR RELEASE handle..... Pull fully Yaw airplane, if necessary, to obtain gear locked down f. LANDING GEAR indicator.... Verify three green DN NOTE The gear DOOR icon will remain posted but a normal landing is possible without gear door ground contact. **¬ Procedure Continued ¬**

HA-420 AFM ABNORMAL

BATTERY BUS 1 FAIL (continued)

g. ALTERNATE GEAR RELEASE handle Stow

CAUTION The ALTERNATE GEAR RELEASE handle could interfere with thrust lever operation if not stowed following use.

NOTE Normal landing gear operations cannot be restored in flight after activation of the alternate gear release.

2. Airspeed.....(Flaps UP) - V_{REF} + 20 (Flaps TO/APPR) - V_{REF} + 10 (Flaps LDG) - V_{REF} + 5

 $_{\Gamma}$ Procedure Continued $_{\mathbb{k}}$

HA-420 AFM ABNORMAL

BATTERY BUS 1 FAIL (continued)

LANDING

- 2. Brakes...... Apply Gradually
- 3. Maintain directional control with rudder and differential braking

CAUTION

Brakes must be applied gradually. Light to moderate braking can be applied without skidding tires on a dry surface, however, the pilot should consider runway surface conditions when applying brakes.

FOLLOWING LANDING ROLLOUT

- 1. Do not taxi
- 2. Wheel chocks Install

CAUTION

Following landing rollout, the emergency and brake accumulators may drop below the level required for braking.

┌ Procedure Continued ┐

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

The following equipment will be <u>INOPERATIVE</u> with a Battery Bus 1 failure			
Communication			
COM 1 L Audio			
Transponder 1			
Navigati	on / AFCS		
Autopilot	L PFD		
AHRS 1 and ADC 1	SiriusXM [®] Weather Datalink		
Standby Instrument	NAV 1		
Standby AHRS and ADC	L CDU		
ADF	Weather Radar		
TCAS	SATCOM / Connext TM Weather		
Radio Altimeter	GPWS		
Eı	ngine		
L Engine Instruments	L Fire Detection		
L Fire Extinguisher			
Flight	Control		
Normal Pitch Trim	Stall Warning		
Roll and Yaw Trim	Flaps		
Stall Pusher	Speedbrake		
Landing Ge	ar and Brakes		
Landing Gear Control	Anti-Skid		
Hydraulic Pump	Hydraulic Pump		
I	Tuel Tuel		
L Fuel Pump	L Fuel Pump		
Left Fuel Quantity	Left Fuel Quantity		
Center Fuel Quantity	Center Fuel Quantity		
Enviro	onmental		
L ENG Bleed (Ind.)	L Eng Bleed Leak Detection		
Cockpit Fan			
Ice Pr	rotection		
Ice Detector 1	L Engine Anti-ice (failed on)		
Standby Probe Heat	L Wing Anti-ice		
L Probe Heat	L Windshield Zone Heat		
Lig	hting		
Cockpit Flood Light	Cabin Signs		
L Landing Light	Beacon		
Ice Inspection Light(s)	Position Lights		
Strobe Light	R Taxi Light		
Footwell Lights			

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM ABNORMAL BATTERY BUS 1A FAIL Battery bus 1A has failed or is isolated from the aircraft electrical system. Solid State Relay (SSR)...... Reset if necessary If BATTERY BUS 1A FAIL message remains Thrust Levers......Avoid rapid movements **CAUTION** When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance. The L(R) ENG CONTROL FAULT message may post NOTE if wing anti-ice is active until WING FLOW is selected from the operable side. Icing ConditionsExit 3. Left DISPLAY REVERSION REV 5. RadioCOM 2 **CAUTION** Pilot will not hear intercom or alerts through headset, but alerts will be automatically routed to cross-side speaker. Speaker volume may need to be adjusted to ensure alerts can be heard while wearing headset. ¬ Procedure Continued ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM	ABNORMAL
BATTERY BU	S 1A FAIL (continued)
NOTE	The pilot's handheld microphone and speaker are inoperative.
NOTE	The pilot's boom mic, or oxygen mask mic is automatically routed to COM 2 for communication with ATC.
NOTE	Marker beacon functionality (aural and visual) will be inoperative on the failed side.
6. Navigat	ion
NOTE	COM 2, NAV 2, and GPS are the only communication and navigation sources available during a Battery Bus 1A failure.
7. Transpo	onderXPDR 2 (if applicable) or notify ATC
8. LENG	NE BLEEDOFF
9. WING	FLOWFROM R
10. Altitude	eDescend to FL 250 or below
11. Land at	nearest suitable airport
CAUTION	Loss of data will suppress some subsequent failure indications including CAS alerts.

Procedure Continued ¬

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM ABNORMAL

BATTERY BUS 1A FAIL (continued)

DESCENT

1. Landing Field Elevation	1.
2. ENGINE ANTI-ICE	2.
3. Altimeters (transition altitude) Ser	3.
PROACH	APPR(
1. Seats and Seat BeltsAdjusted and secure	1.
2. Passenger BriefingComplete	2.
3. CABIN SIGNSAs required	3.
4. AvionicsSet	4.
5. Landing Data Set and confirmed	5.
a. Radios and Navigation Ser	
b. V-speeds, FMS, and Flight GuidanceSet programmed and modes selected	
c. Landing DistanceConfirm	

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%

Procedure Continued

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 1A FAIL (continued)

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

6.	CAS Messages	C	heck

- 7. Approach Briefing......Complete
- 8. FLAPS......TO/APPR

BEFORE LANDING

1. Landing Gear

Alternate Extension

- a. LDG GEAR CTRL circuit breaker.....PULL (B7)
- b. LANDING GEAR.....DN
- c. Airspeed 150 KIAS minimum
- d. ALTERNATE GEAR RELEASE handle Pull fully
- e. Yaw airplane, if necessary, to obtain gear locked down
- f. LANDING GEAR indicator.... Verify three green DN

NOTE

The gear DOOR icon will remain posted but a normal landing is possible without gear door - ground contact.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL BATTERY BUS 1A FAIL (continued) ALTERNATE GEAR RELEASE handle......Stow **CAUTION** The ALTERNATE GEAR RELEASE handle could interfere with thrust lever operation if not stowed following use. NOTE Normal landing gear operations cannot be restored in flight after activation of the alternate gear release. 2. FLAPSLDG Airspeed..... $V_{REF} + 5$ **LANDING** 2. Brakes Apply SPEEDBRAKE (if installed)...... EXT **¬ Procedure Continued** ¬

HA-420 AFM ABNORMAL

BATTERY BUS 1A FAIL (continued)

The following equipment will be <u>INOPERATIVE</u> with a Battery Bus 1A failure			
	Communication		
COM 1 Transponder 1			
L Audio			
N	avigation / AFCS		
L PFD	L CDU		
Stall Pusher	ADF		
Standby Instrument	NAV 1		
Standby AHRS and ADC	Control Yoke System Control and Scroll Wheel		
SiriusXM [®] Weather Datalink	Weather Radar		
TCAS	GPWS		
Radio Altimeter			
	Engine		
L Fire Detection			
Land	ing Gear and Brakes		
Landing Gear Control			
	Fuel		
Left Fuel Quantity	L Fuel Shutoff Valve		
R Fuel Pump Control (latches ON)			
	Environmental		
L Bleed Leak Detection	L Engine Bleed		
	Ice Protection		
L Wing Anti-ice			
	Lighting		
Cockpit Flood Light	Lighting Control 1		
L Landing Light	Ice Inspection Light(s)		
NAV Lights	Ground Beacon		
Right Taxi Light			

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL BATTERY BUS 1B FAIL Battery bus 1B has failed or is isolated from the aircraft electrical system. Solid State Relay (SSR)...... Reset if necessary If BATTERY BUS 1B FAIL message remains PITCH TRIM MODE......STBY Thrust Levers......Avoid rapid movements 3. **CAUTION** When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance. The L(R) ENG CONTROL FAULT message may post NOTE if wing anti-ice is active until WING FLOW is selected from the operable side.

Procedure Continued ¬

NOSE WHEEL STEERINGOFF

WING FLOW.....FROM R

Icing ConditionsExit

Left PFD...... Verify AHRS 2 selected

RVSM airspace.....Exit

FAA APPROVED October 30, 2016

5.

8.

HA-420 AFM ABNORMAL

BATTERY BUS 1B FAIL (continued)

9. Select a long, wide, and dry runway with minimal crosswind

WARNING

Anti-skid function is not available. Any braking above light in wet runway conditions could result in blown tires and loss of directional control.

CAUTION

Nosewheel steering is inoperative. Crosswinds should be minimized to ensure adequate directional control during the low-speed portion of the rollout using differential braking.

NOTE

Landing distance will double on a wet runway using light braking.

10. Land at nearest suitable airport

NOTE

Stall Pusher is inoperative. Low Speed Awareness remains operative in a degraded mode based on available valid ADC AOA data.

DESCENT

1.	Landing Field Elevation	Verify set
2.	Altimeters (transition altitude)	Set

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 1B FAIL (continued)

APPROACH

1.	Seats a	nd Seat Belts	Adjusted and secure
2.	Passen	ger Briefing	Complete
3.	CABI	N SIGNS	As required
4.	Avioni	cs	Set
5.	Landir	g Data	Set and confirmed
	a.	Radios and Navigation	Set
	b.	V-speeds, FMS, and Flight Guid	lanceSet, programmed, and modes selected
	C	Landing Distance	Confirm

Flap Setting	Min Approach Speed	Landing Distance
UP	$V_{REF} + 20$	Add 105%
TO/APPR	$V_{REF} + 10$	Add 75%
LDG	V _{REF} + 5	Add 60%

NOTE

Flaps are inoperative during a Battery Bus 1B failure. The flap setting at the time the failure occurred will be the final flap setting.

┌ Procedure Continued ┐

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL BATTERY BUS 1B FAIL (continued) **NOTE** Due to anti-skid and the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table. NOTE Landing distance will double on a wet runway using light braking. CAS Messages......Check 7. Approach Briefing......Complete **BEFORE LANDING** 1. Landing Gear......DN Airspeed.....(Flaps UP) - V_{REF} + 20 (Flaps TO/APPR) - $V_{REF} + 10$

LANDING

Yaw Damper...... Disengage

FAA APPROVED October 30, 2016

HJ1-29000-003-001

(Flaps LDG) - $V_{REF} + 5$

HA-420 AFM ABNORMAL

BATTERY BUS 1B FAIL (continued)

3. Use rudder and differential braking to maintain direction control

CAUTION

Brakes must be applied gradually. Light to moderate braking can be applied without skidding tires on a dry surface, however, the pilot should consider runway surface conditions when applying brakes.

4. SPEEDBRAKE (if installed)...... EXT

FOLLOWING LANDING ROLLOUT

1. Taxi to parking using differential braking

The following equipment will be <u>INOPERATIVE</u> with a Battery Bus 1B failure		
Navigati	on / AFCS	
AHRS 1	AFCS Panel	
Stall Pusher	Yaw Damper (once disengaged)	
TCAS RA Mode	Flight Director	
Er	ngine	
L Fire Extinguisher		
Flight	Control	
Pitch (normal), Roll and Yaw Trim Flaps		
Landing Gear and Brakes		
Anti-Skid	Nosewheel Steering	
Ice Protection		
Ice Detector 1	L Engine Anti-ice (failed on)	
Standby Probe Heat		
Lighting		
L Landing Light		

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 1C FAIL

Battery bus 1C has failed or is isolated from the aircraft electrical system.

1. Solid State Relay (SSR) Reset if necessary

If BATTERY BUS 1C FAIL message remains

- 2. RVSM airspace.....Exit
- 3. Do not perform intentional stalls

NOTE Stall Pusher is inoperative. Stall Warning remains operative based on remaining ADC AOA data.

4. L PFDVerify ADC 2 selected

PRIOR TO LANDING

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%
TO/APPR (ice)	V _{REF} + 5	Add 10%

⊢ Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 1C FAIL (continued)

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

9 1 1	ment will be <u>INOPERATIVE</u> attery Bus 1C failure	
Navigation / AFCS		
ADC 1	SiriusXM [®] Weather Datalink	
Stall Pusher		
E	Cnvironmental	
Cockpit Fan		
	Lighting	
Beacon		

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

BATTERY BUS 2 FAIL

Battery bus 2 is isolated from the aircraft electrical system.

1. Thrust Levers......Avoid rapid movements

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

NOTE The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active until WING FLOW is selected from the operable side.

- 2. Icing ConditionsExit

NOTE Copilot will lose all communication capability.

4. NavigationNAV 1 or GPS

NOTE

COM 1, NAV 1, and GPS are the only communication and navigation sources available following a Battery Bus 2 failure.

┌ Procedure Continued **┐**

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL BATTERY BUS 2 FAIL (continued) PRESSURIZATION CONTROL MODE......HOLD 5. R ENGINE BLEED.....OFF WING FLOW.....FROM L 7. 8. 9. Land at nearest suitable airport **CAUTION** Loss of data will suppress some subsequent failure indications including CAS alerts. **DESCENT** Landing Field Elevation Verify set **APPROACH** Seats and Seat Belts......Adjusted and secure Passenger Briefing......Complete 2. CABIN SIGNSAs required 3. **¬ Procedure Continued ¬**

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 2 FAIL (continued)

5. Landing Data	Se	et and confirmed
a. Radios	and Navigation	Set
b. V-spee	ds, FMS, and Flight Guidance.	programmed, l modes selected
c. Landir	g Distance	Confirm

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%

NOTE Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined

in the table.

6. CAS Messages......Check

7. Approach Briefing......Complete

8. FLAPS.....TO/APPR

 Γ Procedure Continued γ

HA-420 AFM ABNORMAL BATTERY BUS 2 FAIL (continued) **BEFORE LANDING** NOTE Hydraulic pressure indications will be unavailable with a loss of Battery Bus 2, but the hydraulic pump will be operable. Cabin Differential Pressure Verify less than 0.3 psi CABIN DUMP DUMP (if required) WARNING The airplane must be unpressurized prior to landing. 4. FLAPSLDG Airspeed...... $V_{REF} + 5$ 5. **LANDING** Brakes......Apply (after touchdown) **¬ Procedure Continued** ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-80

HA-420 AFM ABNORMAL

BATTERY BUS 2 FAIL (continued)

The following equipment will be <u>INOPERATIVE</u> with a Battery Bus 2 failure			
C	ommunication		
CPDLC	COM 2		
R Audio			
Nav	vigation / AFCS		
MFD	Stall Pusher		
NAV 2	Weather Radar		
DME			
	Engine		
Right Engine Instruments	R Fire Detection		
R Fire Extinguisher	Vibration Detection		
F	Tlight Control		
Standby Pitch Trim Speedbrake			
Landin	g Gear and Brakes		
Hydraulic (indication)			
	Fuel		
R Fuel Low	Fuel Crossfeed		
R Fuel Quantity	R Fuel Shutoff Valve		
R Fuel Pump			
E	nvironmental		
Air Conditioner	R Bleed Leak		
R Engine Bleed	Cabin Oxygen Automatic Deployment		
Pressure Control (normal)	Cabin Fan		
I	Ice Protection		
R Wing Anti-ice	R Engine Anti-ice (failed on)		
	Lighting		
Ice Inspection Light	Strobe Lights		
Lighting Control 2	L Taxi Light		
RECOG Lights	Right Landing Lights		
Logo Lights			

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 2A FAIL

Battery bus 2A has failed or is isolated from the aircraft electrical system.

1. Solid State Relay (SSR)...... Reset if necessary

If BATTERY BUS 2A FAIL message remains

2. Thrust Levers......Avoid rapid movements

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

NOTE The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active until WING FLOW is selected from the operable side.

- 3. Icing ConditionsExit
- 5. NavigationNAV 1 or GPS

NOTE

COM 1, NAV 1, and GPS are the only communication and navigation sources available following a Battery Bus 2A failure.

¬ Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL BATTERY BUS 2A FAIL (continued) Transponder...... Verify XPDR 1 R ENGINE BLEED.....OFF WING FLOWFROM L Altitude Descend to FL 250 or below 10. Land at nearest suitable airport **NOTE** Stall Pusher is inoperative. Stall Warning remains operative based on remaining ADC AOA data. DESCENT Landing Field Elevation Verify set **APPROACH** Seats and Seat Belts......Adjusted and secure Passenger Briefing......Complete 2. CABIN SIGNSAs required **¬ Procedure Continued ¬**

HA-420 AFM ABNORMAL BATTERY BUS 2A FAIL (continued) Set and confirmed 5. Landing Data Radios and Navigation Set V-speeds, FMS, and Flight Guidance......Set, programmed, and modes selected Landing Distance......Confirm Flap Setting Min Approach Speed **Landing Distance** LDG Add 10% $V_{REF} + 5$ NOTE Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table. CAS Messages......Check Approach Briefing......Complete FLAPS.....TO/APPR **BEFORE LANDING** 2. FLAPS.....LDG 3. Airspeed..... $V_{REE} + 5$ **¬ Procedure Continued** ¬ **FAA APPROVED** HJ1-29000-003-001

FOR TRAINING PURPOSES ONLY

Page 3A-84

October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 2A FAIL (continued)

LANDING

1.	Thrust Levers	IDLE
2.	Brakes	Apply (after touchdown)
3	SPEEDBRAKE (if installed)	EXT

The following equipment will be <u>INOPERATIVE</u> with a Battery Bus 2A failure		
Navigation	/ AFCS	
Stall Pusher	COM 2	
NAV 2	GPS 2	
Transponder 2		
Engi	ne	
Right Engine Instruments	R Fire Detection	
Fue	l	
R Fuel Low	Fuel Crossfeed	
R Fuel Quantity		
Environmental		
R Engine Bleed	R Bleed Leak	
Ice Protection		
R Wing Anti-ice		

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

BATTERY BUS 2B FAIL

Battery bus 2B has failed or is isolated from the aircraft electrical system.

1. Solid State Relay (SSR)...... Reset if necessary

If BATTERY BUS 2B FAIL message remains

2. Thrust Levers......Avoid rapid movements

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

NOTE The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active until WING FLOW is selected from the operable side.

- 3. Icing ConditionsExit
- 4. WING FLOW FROM L
- 5. Left DISPLAY REVERSION REV

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 2B FAIL (continued)

7. Speaker Volume (left side).......Adjust

CAUTION

Copilot will not hear intercom or alerts through headset, but alerts will be automatically routed to cross-side speaker. Speaker volume may need to be adjusted to ensure alerts can be heard while wearing headset.

NOTE The handheld microphone, speaker and oxygen mask mic on the right side are inoperative.

NOTE The audio system on the right side will default to use of the onside radio only at a fixed volume

- 8. Transponder......Verify XPDR 1
- 9. Land at nearest suitable airport

CAUTION Loss of data will suppress some subsequent failure indications including CAS alerts.

NOTE Stall Pusher is inoperative. Stall Warning remains operative based on remaining ADC AOA data.

Procedure Continued

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 2B FAIL (continued)

DESCENT

APPROACH

1.	Seats a	and Seat BeltsAdjus	sted and secure
2.	Passen	ger Briefing	Complete
3.	CABIN	N SIGNS	As required
4.	Avioni	ics	Set
5.	Landin	ng Data Set	and confirmed
	a.	Radios and Navigation	Set
	b.	V-speeds, FMS, and Flight Guidance and r	Set, programmed, modes selected
	c.	Landing Distance	Confirm

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{\text{REF}} + 5$	Add 10%
TO/APPR (ice)	V _{REF} + 5	Add 10%

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-88

HA-420 AFM	ABNORMAL	
BATTERY BUS 2B FAIL (continued)		
6. CAS Messages	Check	
7. Approach Briefing	Complete	
8. FLAPS	TO/APPR	
BEFORE LANDING		
1. LANDING GEAR	DN	
NOTE Hydraulic pressure indications will be a failure of Battery Bus 2B, but the hebe operable.		
2. FLAPSLDG or	TO/APPR (ice)	
CAUTION Do not extend the flaps to LDG un can be confirmed free of ice and ice not expected during approach and	ring conditions are	
NOTE If TAWS-A is installed, the TAWS Wa annunciate when landing with Flaps at 'Flap Override is selected.	•	
3. Airspeed	V _{REF} + 5	
4. Yaw Damper	Disengage	
┌ Procedure Continued ┐		
FAA APPROVED HJ1-29000-003-001 October 30, 2016	Page 3A-89	

HA-420 AFM ABNORMAL

BATTERY BUS 2B FAIL (continued)

LANDING

1.	Thrust Levers	IDLE
2.	Brakes	Apply (after touchdown)

The following equipment will be <u>INOPERATIVE</u> with a Battery Bus 2B failure		
Com	munication	
CPDLC	R Audio Functions	
Navig	ation / AFCS	
MFD	DME	
Weather Radar	TCAS RA Mode	
Stall Pusher	GPS 2	
Transponder 2		
Engine		
R Fire Extinguisher		
Flig	ht Control	
Speedbrake STBY Pitch Trim		
Landing (Gear and Brakes	
Hydraulic Press (indication)		
Env	ironmental	
Cabin Oxygen Automatic Deployment		
Ice Protection		
R Engine Anti-ice (failed on)		
Lighting		
Ice Inspection Light	Strobe Lights	
Lighting Control 2	L Taxi Light	
RECOG Light	R Landing Light	
Logo Lights		

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

BATTERY BUS 2C FAIL

Battery bus 2C has failed or is isolated from the aircraft electrical system.

1. Solid State Relay (SSR) Reset if necessary

If BATTERY BUS 2C FAIL message remains

2. PRESSURIZATION CONTROL MODE......HOLD

PRIOR TO LANDING

- 3. Cabin Differential Pressure Verify less than 0.3 psi

WARNING The airplan

The airplane must be unpressurized prior to landing.

The following equipment will be <u>INOPERATIVE</u> with a Battery Bus 2C failure		
Communication		
SATCOM / Connext TM Weather	TCAS RA Mode	
Environmental		
Pressure Control (normal)	Cabin Fan	

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM	ABNORMAL
BUS TIE FAIL	
Bus Tie has failed to achieve required s	tate
ON THE GROUND	
1. Do not dispatch	
END OF PRO	OCEDURE
L(R) GENERATOR FAIL	
The generator has failed	
1. GENERATOR (affected side)	OFF, then NORM
NOTE During ground operati	ons, N ₂ may need to be increased

FAA APPROVED October 30, 2016 HJ1-29000-003-001

generator switch to reset the generator.

Procedure Continued ¬

above 55% on the associated engine prior to cycling the

HA-420 AFM ABNORMAL

L(R) GENERATOR FAIL (continued)

HA-420 AFM ABNORMAL L(R) GENERATOR OVERLOAD Generator load is above allowable limits **NOTE** The GCU will automatically trip offline due to an overcurrent. The trip point varies based on the amount of overcurrent and duration. A GCU trip is imminent anytime the **GENERATOR OVERLOAD** is posted. --- END OF PROCEDURE ---**MAIN BUS 1 FAIL** Main Bus 1 has failed or is isolated from the airplane electrical system Icing ConditionsExit L WINDSHIELD HEAT.....OFF 3. Do not perform intentional stalls NOTE Stall Pusher is inoperative. Stall Warning remains operative based on remaining ADC AOA data.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

¬ Procedure Continued ¬

Page 3A-94

HA-420 AFM ABNORMAL

MAIN BUS 1 FAIL (continued)

- 4. L PFD Ensure ADC 2 selected
- 5. RVSM airspace.....Exit
- 6. Land at nearest suitable airport

PRIOR TO LANDING

7. Final approach speed $V_{REF} + 5$

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{\text{REF}} + 5$	Add 10%

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

9	will be <u>INOPERATIVE</u> 1 Bus 1 failure	
Navigation / AFCS		
Stall Pusher	Weather Radar	
TCAS	Autopilot	
Ice Protection		
L Windshield Heat Zone	L Probe Heat	

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

MAIN BUS 2 FAIL

Main Bus 2 has failed or is isolated from the airplane electrical system

1.	Icing Co	nditionsEx	it
2.	Radio		1
3.	R WIND	OSHIELD HEATOF	F
4.	. TransponderVerify XPD		1
5.	Do not p	erform intentional stalls	
NO	OTE	Stall Pusher is inoperative. Stall Warning remains operative based on remaining ADC AOA data.	
6.	RVSM a	irspaceEx	it

PRIOR TO LANDING

7. Land at nearest suitable airport

8. Final approach speed $V_{REF} + 5$

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%

Γ Procedure Continued γ

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-96

HA-420 AFM ABNORMAL

MAIN BUS 2 FAIL (continued)

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

The following equipment will be <u>INOPERATIVE</u> with a Main Bus 2 failure		
	Communication	
COM 2		
	Navigation / AFCS	
R PFD	R CDU	
Stall Pusher	AHRS 2 and ADC 2	
CVFDR	ADF	
DME	Transponder 2	
TCAS II	Radio Altimeter	
	GPWS	
Ice Protection		
R Windshield Heat Zone	Right Probe Heat	
Ice Detector 2	-	
Lighting		
Strobe Lights	Taxi Lights	
Cockpit Map Lights	R Landing Light	
Copilot Footwell Light	RECOG Lights	
Lighting Control 1	NAV Lights	

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ENGINES

ENGINE AIRSTART

An airborne restart of a shutdown engine is required

CAUTION

Do not attempt to restart an engine that has been shut down due to an engine fire or indicates obvious mechanical failures.

CAUTION

Ensure positive core rotation before attempting a relight. Positive N_2 or oil pressure >1 psi can be used to determine core rotation. If there is no indication of positive N_2 or oil pressure, the starter may be engaged as long as N_2 rotation is verified prior to moving the Thrust Lever out of CUT OFF.

Procedure Continued ¬

HA-420 AFM ABNORMAL

ENGINE AIRSTART (continued)

PRE-START

1	Thrust Lever	(affected engine))CUT OFF
1.		alloctod oligilio	/ · · · · · · · · · · · · · · · · · · ·

- 2. ENGINE ANTI-ICE (affected engine).....OFF

Figure 12. Airstart Envelope

Procedure Continued ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001 Page 3A-100

HA-420 AFM ABNORMAL

ENGINE AIRSTART (continued)

STARTER ASSISTED AIRSTART

- 1. Engine START Switch (affected engine)......Press
- 3. Engine Instruments.......Monitor

NOTE

The FADEC will not automatically abort an in-flight engine start. The pilot should abort the start if any of the following indications are observed:

- No ITT rise in 30 seconds
- No positive oil pressure indication within 10 seconds after N₂ increase
- Failure of N₁ or N₂ to accelerate to idle
- ITT approaching limit

Reference ENGINE START ABORT (Section 3A – Abnormal Procedures) as appropriate.

WINDMILLING AIRSTART

- 1. FUEL PUMP (affected engine).....ON
- 2. Thrust Lever (affected engine) IDLE at 8% N₂ minimum

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ENGINE AIRSTART (continued)

NOTE The FADEC will not automatically abort an in-flight engine start. The pilot should abort the start if any of the following indications are observed:

- No ITT rise in 30 seconds
- No positive oil pressure indication within 10 seconds after N₂ increase
- Failure of N₁ or N₂ to accelerate to idle
- ITT approaching limit

Reference ENGINE START ABORT (Section3A – Abnormal Procedures) as appropriate.

POST START

1. Thrust Lever (affected engine)As required

NOTE

If conditions permit, allow the engine to warm up at IDLE until the oil temperature is above 10 °C prior to selecting a higher thrust setting.

- 2. FUEL PUMP (affected engine)......NORM
- 3. ENGINE ANTI-ICE (affected engine)......As required
- 4. WING FLOW......NORM
- 5. TCAS.....AUTO (TCAS II only)

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-102

HA-420 AFM ABNORMAL

ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT

An inflight shutdown of an engine is required

CAUTION

Severe damage to the engine, and possibly the aircraft, may occur if engine operation is continued with a serious engine malfunction. A serious malfunction can be recognized by one or more of the following symptoms:

- Increase in engine vibration accompanied by higher than normal ITT or fuel flow
- Repeated or uncontrollable engine stalls
- Loss of thrust
- A shift in engine-to-engine parameters, or in the relationship of one parameter to another during steady-state operation
- Oil pressure increase or decrease of ±8 psid or more from the normal steady-state operating pressure, and/or an increase in oil temperature, or indications of oil filter bypass.

NOTE

If conditions permit with no abnormal engine indications, stabilize the engine at idle thrust for 2 minutes prior to shut down.

⊢ Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (continued)

1. Thrust Lever (affected engine)......CUT OFF

CAUTION

To minimize the risk of rotor lock:

- Maintain airspeed above 140 KIAS to ensure core rotation.
- Following commanded or uncommanded inflight shutdown, maintain positive core rotation throughout the engine-out scenario. If core rotation has stopped, take action to achieve core rotation as soon as practical. Failure to maintain positive core rotation may preclude a successful start.

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

NOTE

The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active until WING FLOW is selected from the operable side.

- 3. WING FLOW..... FROM L(R) (operable side)
- 4. TCAS (TCAS II only)TA ONLY
- 5. ENGINE ANTI-ICE (affected engine).....OFF

Procedure Continued

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-104

HA-420 AFM ABNORMAL

ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (continued)

6. Altitude.....FL 250 or below

NOTE The left zone heating of both windshields is inoperative during single generator operations.

7. Accomplish ENGINE AIRSTART (Section 3A – Abnormal Procedures) or SINGLE-ENGINE APPROACH AND LANDING (Section 3A – Abnormal Procedures)

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

L(R) ENG START FAIL

ENGINE START ABORT

The FADEC has detected a starting abnormality or has automatically aborted a ground engine start, or the pilot has detected a reason to abort the start attempt.

GROUND OR STARTER ASSISTED AIRSTART

1. Thrust Lever (affected engine)CUT OFF

NOTE

For a pilot initiated start abort on the ground, the START icon and start ITT limits will remain displayed for 60 seconds after the thrust lever is selected to CUT OFF.

If ITT rise observed or ITT is above 120 °C

2. Engine START Switch (affected engine)......Press

CAUTION

If the ENGINE START ABORT is performed after the starter is disengaged, allow N_2 to decrease below 45% before energizing the starter for motoring or a subsequent start attempt.

 \lceil Procedure Continued \rceil

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

L(R) ENG START FAIL (continued)

ENGINE START ABORT (continued)

- 4. Engine PUSH TO DISCPress
- Accomplish SHUTDOWN (Section 4 Normal Procedures) or ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section3A – Abnormal Procedures) as appropriate

--- END OF PROCEDURE ---

WINDMILLING AIRSTART

- 1. Thrust Lever (affected engine)......CUT OFF
- 2. Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A Abnormal Procedures)

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

ENGINE TAILPIPE FIRE AFTER SHUTDOWN

Engine ITT does not decrease after shutdown indicating a tailpipe fire

1. Thrust Lever (affected engine)Verify CUT OFF

If ITT rise observed

- 2. Engine START Switch (affected engine)......Press
- 3. Engine Indications.......Verify ITT decrease
- 4. Engine PUSH TO DISC Press (after 30 seconds)

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

L(R) ENG CONTROL FAIL

The FADEC has detected a loss of thrust control

ON GROUND

1.	Thrust Lever	(affected	engine)	CUT OFF
----	--------------	-----------	---------	---------

2. ENGINE FIRE PUSH Switch (affected engine).....LIFT COVER

--- END OF PROCEDURE ---

IN FLIGHT

- 1. Thrust Lever (responsive engine)......As required
- 2. Fuel CROSSFEEDAs required

WHEN AIRCRAFT IS IN A POSITION TO LAND

- 3. Thrust Lever (affected engine)......CUT OFF
- 4. ENGINE FIRE PUSH Switch (affected engine).....LIFT

 COVER

 AND PUSH
- 5. Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A Abnormal Procedures)

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HJ1-29000-003-001

AND PUSH

HA-420 AFM ABNORMAL

L(R) ENG CONTROL FAULT

The FADEC has detected a fault that may result in degraded engine response.

ON GROUND

1. Do not dispatch

--- END OF PROCEDURE ---

IN FLIGHT

1. WING FLOW..... FROM L(R) (operable side)

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

NOTE

The **L(R) ENG CONTROL FAULT** message may post if wing anti-ice is active on a single bleed source until WING FLOW is selected from the operable side.

If ENG CONTROL FAULT is still illuminated

- 2. Thrust Lever (affected engine)Avoid rapid movements
- 3. Engine Indications (affected engine)...... Monitor
- 4. Land at nearest suitable airport

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-110

HA-420 AFM ABNORMAL

L-R ENG FUEL BYPASS

An impending bypass of the fuel filters on both engines has been detected.

- 1. Thrust Levers......Avoid rapid movements
- Land at nearest suitable airport

NOTE

The **ENG FUEL BYPASS** message will post for an impending bypass condition. The filter has been designed to allow for continued engine operation during the diversion to a suitable landing airport even with a maximum expected level of fuel contamination.

NOTE

High differential pressure across the fuel filter is most likely to occur at high power settings such as takeoff, and the message may self clear after power is reduced. If the message posts and then clears after takeoff, notify maintenance after landing.

HA-420 AFM ABNORMAL

L(R) ENG OVERSPD PROT FAIL

The FADEC has detected a failure of the overspeed protection system.

If engine indications remain within limits

- 3. Thrust Lever (affected engine) Maintain at IDLE
- 4. FUEL CROSSFEED As Required
- 5. WING FLOW..... FROM L(R) (operable side)

CAUTION

When operating on a single engine bleed with wing anti-ice ON above FL 340, large or sudden thrust changes may result in an ITT exceedance.

- 6. TCAS (TCAS II only)TA ONLY
- 7. Land at nearest suitable airport
- 8. Accomplish SINGLE-ENGINE APPROACH AND LANDING (Section 3A Abnormal Procedures)

Procedure Continued ¬

HA-420 AFM ABNORMAL

L(R) ENG OVERSPD PROT FAIL (continued)

If un-commanded acceleration of affected engine occurs

- 10. Land at nearest suitable airport
- 11. Accomplish ENGINE PRECAUTIONARY SHUTDOWN IN FLIGHT (Section 3A Abnormal Procedures)

--- END OF PROCEDURE ---

L(R) FIRE DETECTOR FAIL

The associated fire detection system has failed.

If ENGINE FIRE indications were present prior to the failure

- 1. Consider fire still burning
- 2. Land at nearest suitable airport

--- END OF PROCEDURE ---

If ENGINE FIRE indications were not present prior to the failure

- 2. Continue planned flight

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 3A-114

HA-420 AFM ABNORMAL

ENVIRONMENTAL / PRESSURIZATION SYSTEMS

CRACKED WINDSHIELD OR WINDOW

A cracked or shattered windshield or window has been detected.

- 1. Airspeed......200 KIAS maximum
- 2. Descend to 15,000 ft MSL or Minimum Safe Altitude, whichever is higher
- 3. Land at nearest suitable airport

--- END OF PROCEDURE ---

CABIN ALT CTRL FAIL

The Cabin Pressurization system automatic operation has failed.

1. PRESSURIZATION CONTROL MODE......HOLD

PRIOR TO LANDING

2. CABIN DUMP......DUMP

WARNING The airplane must be unpressurized prior to landing.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-115

HA-420 AFM ABNORMAL **CABIN ALT CTRL FAULT** A fault has been detected which affects the cabin dump function. FOLLOWING LANDING 1. CABIN DUMP......DUMP WARNING The pressurization controller may not be able to ensure all residual cabin pressure is dumped following landing. NOTE The first motion of the main entry door handle operates a small pressure relief valve which will release any residual pressure. --- END OF PROCEDURE ---**CABIN ALT HIGH FIELD** The Cabin Pressurization system has been operating in the High Field Mode for more than 30 minutes. --- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM	ABNORMAL	
L(R) CABIN BLEED FAIL		
There has been a failure of the cabin bleed s	system.	
1 CADIN INELOW (affacted side)	OFF	
1. CABIN INFLOW (affected side)		
2. AltitudeDe	escend to FL 250 or below	
END OF PROCE	DURE	
CABIN OXYGEN OFF		
Cabin oxygen is off and cabin altitude is gre	eater than 15,500 ft.	
If passengers occupy the cabin		
1. CABIN OXYGEN	DROP MASK	
END OF PROCE	DURE	

HA-420 AFM ABNORMAL L(R) CABIN BLEED TEMP HIGH The cabin bleed temperature is above normal operating limits when operating in Manual Mode. If L CABIN BLEED TEMP HIGH message is posted 1. CABIN TEMP...... Press COLD and release (3-5 times) **NOTE** The COLD button must be released for approximately one second prior to each subsequent re-selection. If R CABIN BLEED TEMP HIGH message is posted COCKPIT TEMP Press COLD and release (3-5 times) If L(R) CABIN BLEED TEMP HIGH message remains posted 2. CABIN INFLOW (affected side)OFF Altitude......Descend to FL 250 or below --- END OF PROCEDURE ---

HA-420 AFM ABNORMAL ECS AIR COND FAIL The Temperature Control system has detected a failure of the automatic system. 1. ECS MODE......MANUAL COCKPIT TEMP......As required CABIN TEMP......As required --- END OF PROCEDURE ---ECS GND COOLING FAN FAIL Ground cooling fan has failed to operate when commanded. **ON GROUND** CABIN INFLOW Both OFF

2. Dispatch per MEL

HA-420 AFM ABNORMAL

L(R) ENG BLEED FAIL

There has been a failure of the bleed system, or the aircraft was powered up with a high bleed manifold temperature.

ON GROUND

1. Associated bleed manifold temperature Check

NOTE

The **L(R) ENG BLEED FAIL** may post on the ground following power-up if the associated bleed manifold temperature is 75 °C or greater. In this case, the message may clear by de-powering the aircraft and allowing the manifold temperature to cool prior to repowering.

--- END OF PROCEDURE ---

Procedure Continued ¬

HA-420 AFM ABNORMAL NO LDG FIELD ELEV The Cabin Pressurization system does not have landing field elevation information. 1. Enter flight plan destination or manually enter landing field elevation If NO LDG FIELD ELEV message remains 2. PRESSURIZATION CONTROL MODE......HOLD PRIOR TO LANDING 3. CABIN DUMPDUMP WARNING The airplane must be unpressurized prior to landing. --- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

OXYGEN LOW

Oxygen quantity is less than 465 liters.

- 1. Descend to 10,000 ft MSL or Minimum Safe Altitude, whichever is higher
- 2. Oxygen quantity Monitor
- 3. CABIN OXYGEN.....OFF

NOTE The CABIN OXYGEN knob is mechanical and may be difficult to move to the OFF position.

4. Land at nearest suitable airport

HA-420 AFM ABNORMAL

OXYGEN QTY FAIL

The oxygen pressure transducer is indicating out of range.

- 1. Descend to 10,000 ft MSL or Minimum Safe Altitude, whichever is higher
- 2. Land at nearest suitable airport

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

If OXYGEN UNAVAILABLE message remains

- 2. Descend to 10,000 ft MSL or Minimum Safe Altitude, whichever is higher
- 3. Land at nearest suitable airport

HA-420 AFM ABNORMAL

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

FLIGHT CONTROLS

FLAP FAIL

The flap system has reported a failure.

1. Flaps are inoperative

CAUTION

If the flap position is unknown, limit inflight speed to 160 KIAS and assume the flaps are UP for subsequent landing.

CAUTION

If the avionics system is unable to determine flap position, the **STALL PUSHER FAIL** message will post in combination with this message. Adjustments to the landing speed and distance must be applied for both failures.

2. Accomplish REDUCED FLAP LANDING (Section 3A – Abnormal Procedures)

HA-420	20 AFM	ABNORMAL
FLAP	P FAULT	
v	lap system has reported a fault or has been po out performing the Built-In Test.	wered for three days
ON G l	GROUND In some circumstances, the fault may be cle	eared by cycling
1.	aircraft power.	carea by cycling
	END OF PROCEDURE	
DURI	ING FLIGHT	
1.	END OF PROCEDURE	-

HA-420 AFM ABNORMAL

PITCH TRIM FAIL

The primary pitch trim has failed, or a stuck switch has been detected.

NOTE In case of a stuck switch, autopilot may continue to function, and pitch trim functionality may be available from the other switch.

- 1. AUTOPILOT...... Disengage
- 2. PITCH TRIM MODE.....Cycle STBY then NORM

If pitch trim remains failed

- 3. PITCH TRIM MODE.....STBY
- 4. Adjust trim by use of the STANDBY PITCH switch

NOTE The autopilot will not be available with a primary pitch trim failure.

5. RVSM airspace.....Exit

If SPEEDBRAKE EXTENDED is still posted

2. Land at nearest suitable airport

CAUTION

Range will be reduced with the speedbrake extended. FMS fuel planning information is based on current flight conditions and may be beneficial to determine available range.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

FUEL SYSTEMS

FUEL CROSSFEED

Fuel Crossfeed has been selected for more than 5 minutes with both engines running, or for 15 minutes with only one engine running.

1. Fuel Quantity......Monitor for excessive decrease

If fuel leak is suspected

- 2. FUEL CROSSFEEDNORM
- 3. Land at nearest suitable airport

--- END OF PROCEDURE ---

FUEL CROSSFEED FAIL

Fuel crossfeed has been selected but is not functioning.

- 1. FUEL PUMPVerify both NORM
- 2. FUEL CROSSFEED Select NORM for 2 seconds, then reselect desired direction

If FUEL CROSSFEED FAIL message remains

3. FUEL PUMP...... To side OFF, From side ON

¬ Procedure Continued ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 3A-131

HA-420 AFM ABNORMAL **FUEL CROSSFEED FAIL** (continued) If FUEL CROSSFEED FAIL message remains 4. FUEL PUMPBoth NORM FUEL CROSSFEEDNORM 6. Fuel Quantity......Monitor maintain fuel balance --- END OF PROCEDURE ---**FUEL IMBALANCE** A 100 lb fuel imbalance between the left and right wing tanks has been detected 1. FUEL CROSSFEEDSelect to side with lower fuel quantity When FUEL IMBALANCE indication clears 2. FUEL CROSSFEEDNORM An emergency fuel imbalance of 600 pounds has been NOTE demonstrated for safe return and landing. **¬ Procedure Continued** ¬

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 3A-132

HA-420 AFM ABNORMAL

FUEL IMBALANCE (continued)

NOTE

If a crosswind landing is required with a fuel imbalance greater than 100 lbs, select a runway with the crosswind from the heavy wing side.

--- END OF PROCEDURE ---

FUEL LEVEL CTRL FAULT

A fault has been detected in the fuel level control system.

- 1. Avoid rapid rolling and abrupt pitching maneuvers
- 2. Land at nearest suitable airport

HA-420 AFM ABNORMAL L-R FUEL PRESSURE LOW Fuel pressure is below minimum allowable limits for both engines. 1. FUEL PUMP (both)ON If FUEL PRESSURE LOW message remains THRUST LEVER (affected engine)...... Minimum practical setting 3. Altitude...... Maintain 20,000 ft MSL or below 4. Land at nearest suitable airport --- END OF PROCEDURE ---L(R) FUEL PRESSURE LOW Fuel pressure is below minimum allowable limits. 1. FUEL PUMP (affected side) ON If FUEL PRESSURE LOW message remains THRUST LEVER (affected engine)...... Minimum practical setting 3. Altitude...... Maintain 20,000 ft MSL or below 4. Land at nearest suitable airport --- END OF PROCEDURE --FAA APPROVED HJ1-29000-003-001 March 3, 2017 Page 3A-134

FOR TRAINING PURPOSES ONLY

HA-420 AFM ABNORMAL

FUEL QTY FAULT

A failure of fuel quantity system has been detected which affects the left, right, or center fuel quantity indication.

1. Indicated Fuel Quantity......Check to determine failed system

CAUTION

A **FUEL QTY FAULT** which affects the left or right wing tanks will cause the associated **FUEL QTY LOW** message to delay posting until the wing tank fuel quantity is as low as 110 lbs.

NOTE

Faults affecting the fuel quantity indication may also affect the Fuel Used information on the Fuel Synoptic page, and Fuel Remaining indications of the Weight and Balance Information on the CDU.

⊢ Procedure Continued ¬

HA-420 AFM ABNORMAL

FUEL QTY FAULT (continued)

If all fuel tank quantities are still displayed, or the center tank fuel quantity is invalid ("----")

- 2. Avoid rapid rolling and abrupt pitch maneuvers
- 3. Land at nearest suitable airport

CAUTION

If all fuel tank quantities are still displayed, faults may be affecting one or more fuel tanks. All fuel quantity information should be considered inaccurate.

If L or R fuel tank quantities are displayed as invalid ("----")

2. Replan flight as necessary

NOTE

Displayed fuel quantity information is valid and can be assumed to be available for inflight planning.

HA-420 AFM ABNORMAL

L-R FUEL QTY LOW L(R) FUEL QTY LOW

Approximately 220 lbs or less of fuel remains in one or both wings based on either the optical low level sensor, or the fuel quantity indicator.

CAUTION

A **FUEL QTY FAULT** which affects the left or right wing tanks will cause the associated **FUEL QTY LOW** message to delay posting until the wing tank fuel quantity is as low as 110 lbs.

1. Land at nearest suitable airport

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

HYDRAULIC SYSTEMS

HYD PUMP FAIL

The Hydraulic Pump has failed.

--- END OF PROCEDURE ---

HYD PRESSURE LOW

Main system hydraulic pressure is below allowable limits.

- 2. Speedbrake (if installed)......Do not extend
- 3. Land at nearest suitable airport

PRIOR TO LANDING

4. Accomplish ALTERNATE GEAR RELEASE EXTENSION (Section 3A – Abnormal Procedures)

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

HYD PRESSURE LOW (continued)

AFTER TOUCHDOWN

5. Normal braking and steering are operable using accumulator pressure

FOLLOWING LANDING ROLLOUT

6. Do not taxi

CAUTION

Following landing rollout, the emergency and brake accumulators may drop below the level required for nosewheel steering and braking.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ICE PROTECTION SYSTEMS

L(R) ENG ANTI-ICE FAIL

The engine anti-ice system has failed.

ON GROUND

1. ENGINE ANTI-ICE (affected engine).....OFF

If ground icing conditions are present

- 3. Do not dispatch

--- END OF PROCEDURE ---

DURING FLIGHT

- 1. ENGINE ANTI-ICE (affected engine).....OFF
- 2. Icing ConditionsExit

HA-420 AFM ABNORMAL ICE DETECT FAIL Both ice detectors have failed. 1. Icing ConditionsExit **CAUTION** With a failure of the ice detectors, windshield high heat mode is not available, and the windshield heat may not provide sufficient anti-icing of the windshield. **NOTE** When the ice detectors are failed, icing conditions are defined as a SAT of 5 °C to -40 °C in visible moisture. Select a landing airport free of icing conditions for approach and landing If icing conditions are inadvertently encountered 1. ICE PROTECTION (ON) WING ANTI-ICE.....ON NOTE Monitor ITT during operation of wing anti-ice. **¬ Procedure Continued** ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ICE DETECT FAIL (continued)

- b. ENG ANTI-ICEON
- c. TAIL DE-ICE.....ON
- **NOTE** Ice protection must remain ON for a minimum of 3 minutes after exiting icing conditions.
- **NOTE** When the ice detectors are failed, icing conditions are defined as a SAT of 5 °C to -40 °C in visible moisture.

If an approach and landing must be made through icing conditions

- 1. Select longest, widest runway available
- 2. Adjust pilot seat in order to look through the lower forward portion of the side window
- **CAUTION**

With a failure of the ice detectors, windshield high heat mode is not available and the windshield heat may not provide sufficient anti-icing of the windshield.

- 3. Use copilot, if available, to adjust power during approach
- 4. Avoid left crosswind if possible for single pilot operations

Procedure Continued

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL ICE DETECT FAIL (continued) **DESCENT** Landing Field Elevation Verify set ICE PROTECTION (ON) WING ANTI-ICE...... ON NOTE Monitor ITT during operation of wing anti-ice. ENG ANTI-ICEON TAIL DE-ICE......ON APPROACH Seats and Seat Belts.......Adjusted and secure 1. Passenger Briefing......Complete 3. CABIN SIGNSAs required Landing Data Set and confirmed Radios and Navigation Set

Landing Distance......Confirm

Procedure Continued

FAA APPROVED October 30, 2016

HJ1-29000-003-001

V-speeds, FMS, and Flight Guidance.....Set,

Page 3A-146

programmed,

and modes selected

HA-420 AFM ABNORMAL

ICE DETECT FAIL (continued)

STALL WARN ICE ADVANCE message will post. Do not fly slower than the approach reference speed (green circle). Refer to Uncorrected Landing Field Length, Flaps TO/APPR – Icing (Section 5 – Performance).

6.	CAS Messages	Check
7.	Approach Briefing	Complete
8.	FLAPS	TO/APPR
9.	TAWS Warnings	Flap Override
BEFO	RE LANDING	
1.	LANDING GEAR	DN
2.	SPEEDBRAKE (if installed)	RET

2.	SPEEDBRAKE (if installed)	RET
3.	Airspeed	V _{REF}
4.	Autopilot/Yaw Damper D	isengage

LANDING

- 1. At approximately 300 ft AGL, transition to visual reference looking out side window
- 3. Land with minimum flare

⊢ Procedure Continued ¬

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM	ABNORMAL
ICE DETECT	FAIL (continued)
4. Brakes	Apply (after touchdown)
5. SPEED	DBRAKE (if installed) EXT
	END OF PROCEDURE
ICE PROT NO	DT ACTIVE
Ice detected an	d one or more protection systems are not active.
ON GROUND	
1. ICE PR	ROTECTION (ON and NORM)
a.	WING ANTI-ICEON
NOTE	Monitor ITT during operation of wing anti-ice.
b.	ENGINE ANTI-ICEON
c.	TAIL DE-ICEON
d.	WINDSHIELD HEAT NORM
	┌ Procedure Continued ┐

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ICE PROT NOT ACTIVE (continued)

IN

IN FLIGHT 1. ICE PF	ROTECTION (ON and NORM)
a.	WING ANTI-ICEON
NOTE	Wing anti-ice will not activate automatically above FL 340 when the wing anti-ice switch is in the NORM position, and it must be manually selected on for flight in icing conditions above FL 340.
NOTE	Monitor ITT during operation of wing anti-ice.
b.	ENGINE ANTI-ICEON
c.	TAIL DE-ICENORM or ON
d.	WINDSHIELD HEAT NORM
If message doe	
2. Icing C	ConditionsExit
	END OF PROCEDURE

HA-420 AFM ABNORMAL

L(R) PROBE HEAT FAIL

The associated air data probe heater has failed or is not powered.

- 1. PFD (affected side)...... Select operable ADC
- 2. RVSM airspace.....Exit
- 3. Do not perform intentional stalls

NOTE Stall Pusher is inoperative. Stall Warning remains operative based on remaining ADC AOA data.

PRIOR TO LANDING

4. Final approach speed $V_{REF} + 5$

Flap Setting	Min Approach Speed	Landing Distance
LDG	$V_{REF} + 5$	Add 10%
TO/APPR (ice)	$V_{REF} + 5$	Add 10%

NOTE

Due to the stall pusher being inoperative, the minimum approach speed and landing distance factor are defined in the table.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM	ABNORMAL
STBY PROBE HEAT FAIL	
The standby air data probe heater has failed or is not p	powered.
1. Disregard standby instrument air data	
END OF PROCEDURE	
TAIL DE-ICE FAIL	
The tail de-ice system has failed.	
1. Solid State Relay (SSR)Re	eset if necessary
If TAIL DE-ICE FAIL message remains	
2. Icing Conditions	Exit
END OF PROCEDURE	

HA-420 AFM ABNORMAL

WING ANTI-ICE FAIL

Wing anti-ice system pre-flight test has failed, wing anti-ice has failed, or wing bleed air leak detection has failed.

ON GROUND

1. WING ANTI-ICE.....OFF

NOTE

The wing anti-ice system performs a self-test after the second engine is started on the ground. If an engine is subsequently shut down or manifold pressure did not remain above 10 psi during the self-test, the **WING ANTI-ICE-FAIL** message will post. In this case, the message can be cleared by shutting down the engines and cycling aircraft power off and back on again.

--- END OF PROCEDURE ---

IN THE AIR

- 1. WING ANTI-ICE.....OFF

If wing protected surfaces cannot be confirmed to be free of ice, or icing conditions are expected during approach or landing

 Accomplish LANDING WITH ICE ACCUMULATION ON WINGS (Section 3A – Abnormal Procedures)

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM	ABNORMAL
WING ANTI-ICE FAIL ON	
Wing anti-ice system has failed on.	
1. Icing Conditions	Exit
2. WING ANTI-ICE	OFF
If WING ANTI-ICE FAIL ON message	remains posted
3. Continue with planned flight	
FOLLOWING LANDING	
4. ENGINE BLEED	Both OFF
END OF PRO	CEDURE

HA-420 AFM ABNORMAL L(R) WING ANTI-ICE OVERHEAT An overheat has been detected in the associated wing anti-ice system. 1. WING FLOW..... FROM R(L) (opposite engine) If L(R)WING ANTI-ICE OVERHEAT message remains 2. Icing ConditionsExit WING ANTI-ICE.....OFF If wing protected surfaces cannot be confirmed to be free of ice, or icing conditions are expected during approach or landing

4. Accomplish LANDING WITH ICE ACCUMULATION ON WINGS (Section 3A – Abnormal Procedures)

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

L-R WING A/I TEMP LOW

The wing anti-ice system is operating at a lower than expected temperature.

NOTE Operation of wing anti-ice is not required when SAT is

below -40 °C. The **L-R WING A/I TEMP LOW** message may post if the system is operated in these conditions.

NOTE Monitor ITT during operation of wing anti-ice.

NOTE Stall warning ice advance will go to the failure schedule after one minute in icing conditions with the L-R WING A/I TEMP LOW message posted.

- 1. Thrust Levers...... Increase (Minimum 62% N₁)
- **NOTE** If thrust was set below 62% N₁, it may take up to three minutes for the system to warm up sufficiently to clear the message.
- Posting of the L-R WING A/I TEMP LOW message may occur if operating in icing conditions outside the approved envelope. However, if the message does not clear within approximately one minute after exiting icing conditions, a system failure is likely and further icing encounters must be avoided.

Procedure Continued

FAA APPROVED March 3, 2017

HA-420 AFM ABNORMAL L-R WING A/I TEMP LOW (continued) If L-R WING A/I TEMP LOW message remains posted Icing ConditionsExit 3. Accomplish LANDING WITH ICE ACCUMULATION ON WINGS (Section 3A – Abnormal Procedures) --- END OF PROCEDURE ---If L-R A/I TEMP LOW message clears 2. Continue flight in icing conditions as required When clear of icing conditions **CAUTION** Do not attempt more than one reset of the STALL WARN ICE ADVANCE. Multiple occurrences of the L-R WING A/I TEMP LOW message likely indicates a system failure. 3. Stall Warn Ice Advance Reset Select 4. WING ANTI-ICEON Operate wing anti-ice until the STALL WARN ICE NOTE ADVANCE message posts (approximately one minute). **¬ Procedure Continued** ¬

FAA APPROVED March 3, 2017

WINGS (Section 3A – Abnormal Procedures)

3. Accomplish LANDING WITH ICE ACCUMULATION ON

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

L(R) WING ANTI-ICE TEMP LOW

The affected wing anti-ice system is operating at a lower than expected temperature.

NOTE Operation of wing anti-ice is not required when SAT is

below -40 °C. If the system is operated in these conditions, the **L(R) WING ANTI-ICE TEMP LOW**

message may post.

NOTE Monitor ITT during operation of wing anti-ice.

NOTE Stall warning ice advance will go to the failure schedule after one minute with the L(R) WING ANTI-ICE

TEMP LOW message posted.

1. Thrust Levers...... Increase (Minimum 62% N₁)

NOTE If thrust was set below 62% N₁, it may take up to three minutes for the system to warm up sufficiently to clear

the message.

NOTE Posting of the L(R) WING ANTI-ICE TEMP LOW

message may occur if operating in icing conditions outside the approved envelope. However, if the message does not clear within approximately one minute after exiting icing conditions, a system failure is likely and

further icing encounters must be avoided.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM ABNORMAL L(R) WING ANTI-ICE TEMP LOW (continued) WING FLOWFROM R(L) (opposite side) If L(R) WING ANTI-ICE TEMP LOW message remains posted Icing ConditionsExit WING ANTI-ICE.....OFF Accomplish LANDING WITH ICE ACCUMULATION ON WINGS (Section 3A – Abnormal Procedures) --- END OF PROCEDURE ---If L(R) WING ANTI-ICE TEMP LOW message clears 3. Continue flight in icing conditions as required When clear of icing conditions Do not attempt more than one reset of the STALL **CAUTION** WARN ICE ADVANCE. Multiple occurrences of the L(R) WING ANTI-ICE TEMP LOW message likely indicates a system failure. WING ANTI-ICE ON Operate wing anti-ice until the STALL WARN ICE **NOTE** ADVANCE message posts (approximately one minute). **¬ Procedure Continued** ¬ FAA APPROVED HJ1-29000-003-001

FOR TRAINING PURPOSES ONLY

Page 3A-159

October 30, 2016

HA-420 AFM ABNORMAL

L(R) WING ANTI-ICE TEMP LOW (continued)

- 6. WING ANTI-ICE.....NORM
 - --- END OF PROCEDURE ---
- o If icing conditions expected through approach and landing
- 4. Accomplish LANDING WITH ICE ACCUMULATION ON WINGS (Section 3A Abnormal Procedures)
 - --- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

WING ANTI-ICE UNAVAIL

Wing anti-ice has been selected ON but is unavailable during single bleed operations.

NOTE

When operating in the Single Bleed Inoperative Keep Out Zone, the engine is incapable of supporting wing anti-ice using a single bleed source. If wing anti-ice is manually selected ON, the

WING ANTI-ICE UNAVAIL message will post alerting the pilot that wing anti-ice is unavailable.

¬ Procedure Continued ¬

HA-420 AFM ABNORMAL

WING ANTI-ICE UNAVAIL (continued)

Figure 13. Single Bleed Inoperative Keep Out Zone

- 1. Remain clear of icing conditions
- 2. WING ANTI-ICE.....NORM

NOTE Monitor ITT during operation of wing anti-ice.

 Γ Procedure Continued γ

HJ1-29000-003-001

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL WING ANTI-ICE UNAVAIL (continued) If icing conditions are encountered 3. Altitude...... Expedite descent to FL 250 or below If wing protected surfaces cannot be confirmed to be free of ice 4. Accomplish LANDING WITH ICE ACCUMULATION ON WINGS (Section 3A – Abnormal Procedures) --- END OF PROCEDURE ---L(R) WSHD ZONE FAIL There is a failure of the windshield zone heat. Solid State Relay (SSR) Reset if necessary If WSHD ZONE FAIL message remains Icing ConditionsExit WINDSHIELD HEAT (affected zone)OFF --- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM	ABNORMAL
L(R) WSHD ZONE OVERHEAT	
There is an overheat of the windshield zone.	
J	
1. Icing Conditions	Exit
2. WINDSHIELD HEAT (affected zone)	OFF
FND OF PROCEDIN	RF

HA-420 AFM ABNORMAL

LANDING GEAR AND BRAKES

ALTERNATE GEAR RELEASE EXTENSION

Extension of the landing gear using the alternate system is required

1. LDG GEAR CTRL circuit breakerPULL (B7)
2. LANDING GEARDN
3. Airspeed
4. ALTERNATE GEAR RELEASE handlePull fully
5. Yaw airplane, if necessary, to obtain gear locked down
6. LANDING GEAR indicator Verify three green DN
NOTE The gear DOOR icon will remain posted but a normal landing is possible without gear door - ground contact.
7. ALTERNATE GEAR RELEASE handleStow
CAUTION The ALTERNATE GEAR RELEASE handle could interfere with thrust lever operation if not stowed following use.
NOTE Normal landing gear operations cannot be restored in flight after activation of the alternate gear release.
┌ Procedure Continued ┐

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM ABNORMAL

ALTERNATE GEAR RELEASE EXTENSION (continued)

If all landing gear indicates down and locked

8. Land using normal procedures

--- END OF PROCEDURE ---

If all landing gear doesn't indicate down and locked

DESCENT

1.	Select a long, wide, and dry runway with minimal crosswind
2.	Landing Field Elevation
3.	ENGINE ANTI-ICE
4.	Altimeters (transition altitude)

APPROACH

1.	Seats and Seat Belts	Adjusted and secure
2.	Passenger Briefing	Complete
3.	CABIN SIGNS	As required
4.	Avionics	Set
5.	Landing Data	Set and confirmed
6.	Radios and Navigation	Set

 $_{\Gamma}$ Procedure Continued $_{\mathbb{k}}$

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ALTERNATE GEAR RELEASE EXTENSION	(continued)
----------------------------------	-------------

7. V-speeds,	FMS, and Flight Guidance
8. CAS Mess	sagesCheck
9. Approach	BriefingComplete
10. FLAPS	TO/APPR
	ING RAKE (if installed)RETLDG or TO/APPR (ice)
_, _, _, _, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	
CAUTION	Do not extend the flaps to LDG unless the airframe can be confirmed free of ice and icing conditions are not expected during approach and landing.
NOTE	If TAWS-A is installed, the TAWS Warnings will annunciate when landing with Flaps at TO/APPR, unless Flap Override is selected.
3. Airspeed	V_{REF}
4. Autopilot/	Yaw Damper Disengage
	┌ Procedure Continued ┐

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ALTERNATE GEAR RELEASE EXTENSION (continued)

LANDING

- o If the nose wheel is not down and locked
- 2. After touchdown......... Hold nose off ground after landing for as long as possible. Lower prior to loss of elevator control
- 3. Maintain directional control with rudder and differential braking

NOTE When the anti-skid system is active during braking, the amount of available differential braking is reduced.

- o If one main wheel is not down and locked
- 2. After touchdown...... Hold unsupported wing off ground after landing for as long as possible. Lower wing prior to loss of lateral control
- 3. Maintain directional control with rudder and nosewheel steering
- 4. EMERGENCY BRAKE Apply gradually

CAUTION

Use of the emergency brake is required to achieve satisfactory braking as anti-skid would cause brakes to release due to one main gear not being down if normal brakes were used.

Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL ALTERNATE GEAR RELEASE EXTENSION (continued) **NOTE** Gradually pull emergency brake handle until desired braking action is achieved. **NOTE** Landing distance will increase by 50%. SPEEDBRAKE (if installed).....EXT AFTER AIRCRAFT STOPS PARKING BRAKE......Set ENGINE FIRE PUSH Switches LIFT **COVER** and PUSH FIRE EXT PUSH Switch Push (if required) BATTERY.....OFF 5. Evacuate the aircraft using the cabin door and/or the emergency exit --- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

ANTI-SKID FAIL

The antiskid braking system has failed.

PRIOR TO LANDING

1. Select a dry runway

Flap Setting	Min Approach Speed	Landing Distance
LDG	$ m V_{REF}$	Add 50%
TO/APPR (ice)	$V_{ m REF}$	Add 50%

WARNING

Any braking above light in wet runway conditions could result in blown tires and loss of directional control.

NOTE

Landing distance will increase by 50% on a dry runway and 100% on a wet runway using light braking.

AFTER TOUCHDOWN

2. Brakes Apply gradually

CAUTION

Brakes must be applied gradually. Light to moderate braking can be applied without skidding tires on a dry surface, however, the pilot should consider runway surface conditions when applying brakes.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HJ1-29000-003-001

LDG GEAR FAIL The landing gear has not reached the handle commanded position after 20 seconds. If LANDING GEAR handle is UP --- END OF PROCEDURE ---If LANDING GEAR handle is DN and both main gear are indicating down 1. Accomplish ALTERNATE GEAR RELEASE EXTENSION (Section 3A – Abnormal Procedures) --- END OF PROCEDURE ---If LANDING GEAR handle is DN and both main gear are not indicating down 1. LANDING GEAR......UP 2. Accomplish ALTERNATE GEAR RELEASE EXTENSION (Section 3A – Abnormal Procedures) --- END OF PROCEDURE ---

HA-420 AFM

ABNORMAL

HA-420 AFM ABNORMAL NOSEWHEEL STEER FAIL The nosewheel steering system has failed, or is selected OFF during taxi operations. ON GROUND 1. NOSE WHEEL STEERINGNORM If NOSEWHEEL STEER FAIL message remains 2. Do not taxi --- END OF PROCEDURE ---IN THE AIR 1. NOSE WHEEL STEERINGOFF PRIOR TO LANDING 2. Select runway aligned with wind Nosewheel steering is inoperative. Crosswinds **CAUTION** should be minimized to ensure adequate directional control during the low-speed portion of the rollout using differential braking. **¬ Procedure Continued** ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM ABNORMAL

NOSEWHEEL STEER FAIL (continued)

Flap Setting	Min Approach Speed	Landing Distance
LDG	$ m V_{REF}$	Add 10%
TO/APPR (ice)	${ m V}_{ m REF}$	Add 10%

NOTE

Nosewheel Steering has failed. Due to use of differential braking, landing distance will increase by 10%.

AFTER TOUCHDOWN

3. Maintain directional control with rudder and differential braking

NOTE

When the anti-skid system is active during braking, the amount of available differential braking is reduced.

FOLLOWING LANDING ROLLOUT

4. Taxi to parking using differential braking

--- END OF PROCEDURE ---

PARK BRAKE FAIL Brake pressure is less than 1450 psi with the PARK BRAKE set. 1. Wheel chocks	HA-420 AFM	ABNORMAL
1. Wheel chocks	PARK BRAKE FAIL	
PARK BRAKE ON The parking brake is pressurized during flight. 1. EMERGENCY/PARKING BRAKE handle	Brake pressure is less than 1450 psi with a	the PARK BRAKE set.
PARK BRAKE ON The parking brake is pressurized during flight. 1. EMERGENCY/PARKING BRAKE handle		
The parking brake is pressurized during flight. 1. EMERGENCY/PARKING BRAKE handle	1. Wheel chocks	Install
The parking brake is pressurized during flight. 1. EMERGENCY/PARKING BRAKE handle	END OF PROCE	DURE
1. EMERGENCY/PARKING BRAKE handle	PARK BRAKE ON	
If PARKING BRAKE ON message remains posted 2. Brake pressure	The parking brake is pressurized during fl	light.
2. Brake pressure	1. EMERGENCY/PARKING BRAH	•
If brake pressure is greater than 175 psi 3. Select long wide runway CAUTION Main landing gear tires may fail at touchdown. If one or both tires fail 4. EMERGENGY BRAKE	If PARKING BRAKE ON message rema	ins posted
3. Select long wide runway CAUTION Main landing gear tires may fail at touchdown. If one or both tires fail 4. EMERGENGY BRAKE	2. Brake pressure	Monitor
CAUTION Main landing gear tires may fail at touchdown. If one or both tires fail 4. EMERGENGY BRAKE	If brake pressure is greater than 175 psi	
If one or both tires fail 4. EMERGENGY BRAKE Apply gradually END OF PROCEDURE	3. Select long wide runway	
4. EMERGENGY BRAKE Apply gradually END OF PROCEDURE	CAUTION Main landing gear tire	es may fail at touchdown.
END OF PROCEDURE	If one or both tires fail	
	4. EMERGENGY BRAKE	Apply gradually
FAA APPROVED HJ1-29000-003-001	END OF PROC	CEDURE
October 30, 2016 Page 3A-174		

FOR TRAINING PURPOSES ONLY

HA-420 AFM ABNORMAL

OPERATIONAL

CABIN SYSTEM SHEDDING

An anomaly has been detected with a cabin system (including lighting, inverters, or wireless transmitter) requiring the cabin systems to be depowered

1. CABIN POWER.....OFF

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

LANDING WITH ICE ACCUMULATION ON WINGS

A landing is required with ice buildup on the wing protected surfaces, asymmetric ice buildup or larger than usual buildup aft of the protected surfaces.

1. Select a long, wide, and dry runway with minimal crosswind

CAUTION

Aircraft response is degraded with ice accumulation on the wings. Crosswinds should be minimized to ensure satisfactory control during approach and landing rollout.

DESCENT

1.	Airspeed	200 KIAS or greater
2.	Landing Field Elevation	Verify set
3.	ENGINE ANTI-ICE	As required
4.	Altimeters (transition altitude)	Set

APPROACH

1.	Seats and Seat Belts	Adjusted and secure
2.	Passenger Briefing	Complete
3.	CABIN SIGNS	As required
4.	Avionics	Set

Procedure Continued ¬

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM ABNORMAL

LANDING WITH ICE ACCUMULATION ON WINGS (continued)

5.	Landin	g Data	Set and confirmed
	a.	Radios and Navigation	Set
	b.	V-speeds, FMS, and Flight Guidan	ceSet, programmed,
		6	and modes selected
	c.	Landing Distance	Confirm

Flap Setting	Min Approach Speed	Landing Distance
TO/APPR (ice)	$V_{REF} + 35$	Add 75%

NOTE

If STALL WARN ICE ADVANCE message is posted with Wing Anti-ice OFF or failed, the minimum speeds, as indicated by the low-speed awareness cues, will be increased. Do not fly slower than the approach reference speed (green circle).

NOTE

The minimum approach speed and landing distance factor are defined in the table. Refer to Uncorrected Landing Field Length, Flaps TO/APPR – Icing (Section 5 – Performance).

¬ Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

LANDING WITH ICE ACCUMULATION ON WINGS (continued)

6.	CAS Messages	
7.	Approach BriefingComplete	
8.	AirspeedV _{REF} +40 minimum	
9.	TAWS Warnings	
BEFO	RE LANDING	
1.	FLAPSTO/APPR	
2.	LANDING GEAR	
3.	SPEEDBRAKE (if installed)RET	
4.	AirspeedV _{REF} +35	
5.	Autopilot/Yaw Damper Disengage	
LAND	ING	
1.	Thrust Levers	
2.	BrakesApply (after touchdown)	
3.	SPEEDBRAKE (if installed) EXT	
┌ Procedure Continued ┐		

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

LANDING WITH ICE ACCUMULATION ON WINGS (continued)

BALKED LANDING

1.	TO/GA	Press
2.	Thrust Levers	TO
3.	Airspeed	Maintain V _{REF} +35

When clear of obstacles

CAUTION

Retracting the flaps to UP following an icing encounter with the flaps extended may result in damage to the flaps or airframe.

NOTE

See performance tables in the Airplane Flight Manual (Section 5 – Performance) and either the Quick Reference Handbook (Volume 1, Performance Section) or the Pilot's Operating Manual (Section 2 – Flight Planning).

- 4. LANDING GEAR.....UP (positive rate of climb)
- 5. Yaw Damper..... Engaged
- 6. Thrust Levers.....MCT
- 7. Flight GuidanceAs required

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

REDUCED FLAP LANDING

A landing with flaps TO/APPR or UP is required.

DESCENT

DEDUE	
1.	Landing Field Elevation
2.	ENGINE ANTI-ICEAs required
3.	Altimeters (transition altitude)
APPRO	OACH
1.	Seats and Seat BeltsAdjusted and secure
2.	Passenger BriefingComplete
3.	CABIN SIGNSAs required
4.	AvionicsSet
5.	Landing Data Set and confirmed
	a. Radios and Navigation Set
	b. V-speeds, FMS, and Flight GuidanceSet, programmed, and modes selected

Procedure Continued ¬

c. Landing Distance......Confirm

HA-420 AFM ABNORMAL

REDUCED FLAP LANDING (continued)

Flap Setting	Min Approach Speed	Landing Distance
UP	$V_{REF} + 15$	Add 30%
TO/APPR	V _{REF} + 5	Add 10%
UP (ice)	V _{REF} + 10	Add 30%

NOTE The minimum approach speed and landing distance

factor are defined in the table.

NOTE For landing in icing conditions, refer to

Uncorrected Landing Field Length, Flaps TO/APPR –

Icing (Section 5 – Performance).

6. CAS Messages......Check

7. Approach Briefing......Complete

8. TAWS Warnings Flap Override

⊢ Procedure Continued ¬

HA-420 AFM ABNORMAL

REDUCED FLAP LANDING (continued)

BEFO	RE LANDING
1.	LANDING GEAR
2.	SPEEDBRAKE (if installed)RET
3.	Airspeed(Flaps UP) - V_{REF} +15 (Flaps TO/APPR) - V_{REF} +5 (Flaps UP [ice]) - V_{REF} +10
4.	Autopilot/Yaw Damper Disengage
LAND	ING
1.	Thrust Levers
2.	BrakesApply (after touchdown)
3.	SPEEDBRAKE (if installed) EXT
	END OF PROCEDURE

HA-420 AFM ABNORMAL

SIDE WINDOW LANDING

A landing is to be conducted using the side windows only due to obstruction of the forward windows.

- 1. Select longest, widest runway available.
- 2. Adjust pilot seat in order to look through the lower forward portion of the side window.
- 3. Use copilot, if available, to adjust power during approach.
- 4. Avoid left crosswind if possible for single pilot operations.

If executing an ILS or LPV APPROACH

- 5. At approximately 300 ft AGL, transition to visual reference looking out side window.
- 6. Land with minimum flare.

--- END OF PROCEDURE ---

If executing a VISUAL APPROACH

- 5. Conduct approach using a left base to short final.
- 6. Establish airplane on runway centerline at 300 ft AGL and transition to visual reference looking out the side window.
- 7. Land with minimum flare.

--- END OF PROCEDURE ---

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

SINGLE-ENGINE APPROACH AND LANDING

A landing with one engine shut down is required.

DESCENT

DESCE	NT
1.	Landing Field Elevation Verify set
2.	ENGINE ANTI-ICEAs required
3.	Altimeters (transition altitude)
APPRO	ACH
1.	Seats and Seat BeltsAdjusted and secure
2.	Passenger BriefingComplete
3.	CABIN SIGNSAs required
4.	AvionicsSet
5.	Landing Data Set and confirmed
	a. Radios and Navigation Set
	b. V-speeds, FMS, and Flight GuidanceSet, programmed, and modes selected

Procedure Continued ¬

c. Landing Distance......Confirm

HA-420 AFM ABNORMAL

SINGLE-ENGINE APPROACH AND LANDING (continued)

Flap Setting	Min Approach Speed Landing Di	
TO/APPR	$V_{\text{REF}} + 5$	Add 10%
LDG	$ m V_{REF}$	Normal
TO/APPR (ice)	$ m V_{REF}$	Normal

6.	CAS Messages	Check
7.	Approach Briefing	Complete
8.	TAWS Warnings	Flap Override
9	FLAPS	TO/APPR

BEFORE LANDING

1.	LANDING GEAR	DN
2.	SPEEDBRAKE (if installed)	RET
3.	FLAPS	TO/APPR
4.	Airspeed	V _{REF} +5
5.	AFCS/TRIM MASTER	Push and release

NOTE

Yaw damper status is not annunciated while the rudder bias function is active. Momentary selection of the AFCS/TRIM MASTER will ensure the yaw damper is disengaged for landing.

⊢ Procedure Continued ¬

FAA APPROVED October 30, 2016

HA-420 AFM ABNORMAL

SINGLE-ENGINE APPROACH AND LANDING (continued)

NOTE

Rudder bias function will be momentarily disabled when the AFCS/TRIM MASTER button is pressed. The pilot should be prepared to apply additional rudder pedal force to compensate.

LANDING ASSURED

- 1. FLAPSLDG or TO/APPR (ice)

LANDING

- 1. Thrust Lever (operable engine) IDLE
- 2. BrakesApply (after touchdown)
- 3. SPEEDBRAKE (if installed)...... EXT

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

SINGLE-ENGINE MISSED APPROACH

A missed approach with one engine shut down is required.

1.	TO/GA	Press
2.	Thrust Lever (operable engine)	TO
3.	FLAPS	TO/APPR
4.	Climb airspeed	V _{AC}
5.	LANDING GEAR	. UP (Positive rate of climb)
6.	Yaw Damper	As required

When clear of obstacles

7. FLAPS......UP (130 KIAS minimum) or TO/APPR (ice)

CAUTION

Retracting the flaps to UP following an icing encounter with the flaps extended may result in damage to the flaps or airframe.

--- END OF PROCEDURE ---

HA-420 AFM ABNORMAL

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

SECTION 3B ADVISORY PROCEDURES

CAS MSG	Description	Crew Action	Dispatch		
AVIONICS / AFCS					
ADF FAIL	The Automatic Direction Finding system has failed	Use other means of navigation. Note: GNSS may be substituted for	MEL		

ADF per AC 90-108

ADS B OUT 1(2) The ADS-B Out function has failed Select other transponder (if installed) Consider operational impact MEL

AFCS FAULT	A fault has been detected by the AFCS system	Crew Awareness	No Dispatch
------------	--	-------------------	----------------

HA-420 AFM ADVISORY

CAS MSG Description	Crew Action	Dispatch
---------------------	--------------------	----------

AVIONICS / AFCS (continued)

AFCS PITCH	Pitch Servo is	Crew Awareness Exit RVSM airspace Autopilot and Stall Pusher functions are unavailable	No
SERVO OFF	selected OFF		Dispatch
AFCS ROLL SERVO OFF	Roll Servo is selected OFF	Crew Awareness Exit RVSM airspace Autopilot function is unavailable	No Dispatch
AFCS YAW SERVO	Yaw Servo is	Crew Awareness Yaw Damper and Rudder Bias functions are unavailable	No
OFF	selected OFF		Dispatch

CAS MSG Description Crew Action Dispatch
--

AVIONICS / AFCS (continued)

AIR DATA 1(2) FAULT	The affected air data probe is operating in a degraded mode. Some minor degradation in air data may be experienced under certain flight conditions.	Monitor Standby Flight Instrument	No Dispatch
AUTOPILOT FAIL	The autopilot function has failed	Crew Awareness Exit RVSM airspace	MEL
AUTOPILOT FAULT	An automatic pitch trim fault has been detected by the autopilot. If autopilot is disengaged, it may not be able to be reengaged.	Monitor autopilot operations. Notify maintenance following landing	No Dispatch
AVIONICS CONFIG	The avionics software/hardware configuration is not correct for the aircraft	Crew Awareness	No Dispatch

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG Description Crew Action Dispatch	1
--	---

AVIONICS / AFCS (continued)

AVIONICS FAULT	One or more avionics components are reporting a need for maintenance. One or more displays may be dimmer than usual.	Verify all avionics SD cards are inserted properly. Notify maintenance following landing	MEL
COM 1(2) TEMP HIGH	Affected radio reporting a high internal temperature – effective range may be reduced	Consider using other radio for ATC communications	MEL
CONFIG BRAKE	Parking brake pressure is greater than 175 psi with the parking brake not set.	Crew Awareness	No Dispatch
CONFIG FLAP	Flaps not set to the correct takeoff position	Correct flap position	No Dispatch
CONFIG PITCH TRIM	Pitch trim not set in the takeoff band	Correct pitch trim	No Dispatch

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

AVIONICS / AFCS (continued)

CONFIG SPEEDBRAKE	Speedbrake not in the takeoff position	Correct speedbrake position	No Dispatch
CONFIG WING ANTI-ICE	Wing anti-ice is active on the ground but wing temperature is less than 10 °C.	Allow wing to warm up before takeoff	No Dispatch
CPDLC TEMP HIGH	The CPDLC radio is reporting a high internal temperature – effective range may be reduced.	Consider operational impact	MEL
CRUISE SPD CTRL FAIL	Cruise speed control has failed	Control speed manually using the thrust levers	MEL
CVR FAIL	The Cockpit Voice Recorder has failed	Consider operational impact	MEL

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

AVIONICS / AFCS (continued)

DME FAIL	Distance measuring equipment has failed	Use other means of navigation. Note: GNSS may be substituted for DME per AC 90-108	MEL
FDR FAIL	The Flight Data Recorder has failed	Consider operational impact	MEL
GLIDE-SLOPE 1(2) FAIL	Affected glide slope has failed	Crew Awareness Use other navigation source	MEL
MAINTENANCE MODE	The avionics system is in maintenance mode	Exit Maintenance Mode	No Dispatch
L(R) MIC STUCK ON	Associated handmic or PTT switch is stuck on	If associated with handmic, unplug associated	MEL

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG Description	n Crew Action Dispatch
---------------------	------------------------

AVIONICS / AFCS (continued)

RUDDER BIAS FAULT	Rudder Bias system has detected a fault but can still activate	Crew Awareness	No Dispatch
SATCOM FAIL	Satellite Communication system has failed including Connext TM Weather, or there has been a failure to receive data correctly during an update	Crew Awareness Another update may be attempted. A successful update will clear the message	MEL
STALL SHAKER FAIL	The stick shaker is unable to actuate a stall warning command	Crew Awareness	No Dispatch

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	-------------	----------

AVIONICS / AFCS (continued)

STALL WARN ICE ADVANCE	Stall Shaker and Pusher trigger thresholds and the approach reference speed (green circle) have been compensated due to ice detection or manual operation of wing anti-ice.	Monitor ITT during both automatic and manual operation of wing anti-ice. If the aircraft cannot be confirmed to be free of ice accumulation, use Flaps TO/APPR for landing. Reference Uncorrected Landing Field Length, Flaps TO/APPR – Icing (Section 5 – Performance).	Not applicable
STBY AHRS FAIL	The standby AHRS has failed	Crew Awareness	No Dispatch
STBY AIR DATA FAIL	Standby instrument air data computer is not providing proper data	Crew Awareness	No Dispatch
SURFACE WATCH FAIL	SurfaceWatch has failed.	Crew Awareness	MEL

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG Description Crew Action Dispatch
--

AVIONICS / AFCS (continued)

TRANSPONDER 1(2) FAIL	The associated transponder has failed	Select other transponder (if installed) If no transponder is available, the aircraft no longer meets the requirements for flight in RVSM airspace and RVSM airspace must be exited	MEL
WEATHER RADAR FAIL	The weather radar has failed	Crew Awareness	MEL
WINDSHEAR FAIL	The windshear function has failed	Crew Awareness	MEL
XM DATALINK FAIL	SiriusXM [®] Datalink Weather and Music is failed or data is missing	Crew Awareness	MEL

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

AVIONICS / AFCS (continued)

YAW DAMPER FAULT	A fault has been detected in the yaw damper	Monitor yaw damper operations Notify maintenance following landing	No Dispatch
---------------------	---	---	----------------

DOORS

AFT BAG DOOR OPEN	Door open and parking brake set on ground	Crew Awareness	MEL
CABIN DOOR OPEN	Door open and parking brake set on ground	Crew Awareness	MEL
ELEC SRVC DOOR OPEN	Door open	Crew Awareness	MEL
EXT PWR DOOR OPEN	Door open and parking brake set on ground	Crew Awareness	Not Applicable
FWD BAG DOOR OPEN	Door open and parking brake set on ground	Crew Awareness	MEL

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG Description	Crew Action	Dispatch
---------------------	--------------------	----------

ELECTRICAL SYSTEMS

BATTERY OFF	Battery selected off	Crew Awareness	No Dispatch
BATTERY 1(2)	The associated battery has failed	Crew	No
FAIL		Awareness	Dispatch
BATTERY 1(2)	A fault has been detected in the battery or charging system, or the battery temperature is too low for charging.	Crew	No
FAULT		Awareness	Dispatch
BUS TIE OPEN	BUS TIE switch is selected to OPEN	Crew Awareness	No Dispatch
CABIN BUS FAIL	The Cabin bus has failed	One solid state relay reset may be attempted, if applicable	MEL
CABIN POWER	The Cabin bus has been manually turned off	Crew	Not
OFF		Awareness	Applicable
L(R) GENERATOR	Minor generator fault detected	Crew	No
FAULT		Awareness	Dispatch

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

ELECTRICAL SYSTEMS (continued)

L(R) GENERATOR	The affected GEN switch is selected OFF	Crew	No
OFF		Awareness	Dispatch
POWER OUTLETS MAN ON	Power outlets have been commanded on when auto mode would have commanded them off	Crew Awareness	No Dispatch

ENGINES

L(R) ENG FAULT	Minor engine fault detected	Crew Awareness	No Dispatch
L(R) ENG CHIP DETECTED	Engine oil chip detected	Continue planned flight	No Dispatch
L(R) ENG FUEL BYPASS	An impending bypass of the associated fuel filter has been detected	Continue planned flight	No Dispatch
L(R) ENG SHUTDOWN	Engine is shutdown	Crew Awareness	No Dispatch

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
ENGINES (continued)			

Crew Awareness Engine sync has **ENG SYNC FAIL MEL** failed CSC will not be available Minor failure Crew L(R) ENG TLD **MEL** detected Awareness The associated L(R) ENG VIB Crew No engine vibration **DETECTOR FAIL** Dispatch Awareness detector has failed Affected fire bottle L(R) FIRE BOTTLE Crew No has been DISCH Awareness Dispatch discharged The associated engine fire extinguisher L(R) FIRE BOTTLE Continue No pressure is low and LOW planned flight Dispatch may not be adequate to extinguish a fire L(R) FIRE EXT Fire extinguisher Crew No

FAIL

Awareness

has failed

Dispatch

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

ENVIRONMENTAL / PRESSURIZATION SYSTEMS

CABIN ALT ABOVE 10K	Cabin altitude exceeds 10,000 feet when operating in High Field Mode	Crew Awareness	Inflight Only Message
CABIN ALT DUMP	Pressurization selected to DUMP mode	Crew Awareness	MEL
CABIN ALT FAULT	Fault in the cabin pressurization system	Crew Awareness	MEL
CABIN ALT HOLD	Pressurization selected to HOLD mode	Crew Awareness	No Dispatch
L(R) CABIN BLEED FAULT	A fault in the affected cabin bleed system detected	Crew Awareness	MEL
L(R) CABIN INFLOW OFF	Associated inflow selected OFF	Crew Awareness Maximum Pressure Altitude 25,000 feet	MEL
CABIN OXYGEN ON	Cabin oxygen system is on	Crew Awareness	No Dispatch

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 3B-14

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

ENVIRONMENTAL / PRESSURIZATION SYSTEMS (continued)

ECS AIR COND FAULT	Either the cockpit or cabin evaporator fan has failed	Crew Awareness If cooling is insufficient, ECS Manual Mode may improve cooling	MEL
ECS TEMP CONTROL MANUAL	ECS manual mode has been selected	Crew Awareness	Yes
L(R) ENG BLEED FAULT	A fault in the affected engine bleed system detected	Crew Awareness	MEL
L(R) ENG BLEED OFF	Bleed selected off	Crew Awareness Maximum pressure altitude is 25,000 feet	MEL
OXYGEN QTY FAULT	A fault has been detected in the oxygen quantity display	Crew Awareness	No Dispatch

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

FUEL SYSTEMS

FUEL CROSSFEED OPEN	Fuel Crossfeed valve is open when commanded closed	Monitor fuel balance and crossfeed as required	No Dispatch
FUEL ISO VALVE CLOSED	Isolation valve has failed in the closed position	Crew Awareness Refuel system is inoperative	MEL
FUEL ISO VALVE OPEN	Fuel isolation SOV has failed in the open position	Crew Awareness	MEL
L(R) FUEL PUMP OFF	Affected FUEL PUMP switch selected OFF	Crew Awareness	No Dispatch
L(R) FUEL PUMP ON	Affected fuel pump is commanded on automatically or via the switch	Crew Awareness	No Dispatch
L(R) FUEL QTY DEGRADE	A single fuel quantity probe has failed in the affected fuel tank	Monitor affected fuel quantity	No Dispatch

HA-420 AFM	ADVISORY

CAS MSG Description	Crew Action	Dispatch
---------------------	--------------------	----------

FUEL SYSTEMS (continued)

L(R) FUEL SOV FAIL	Fuel shutoff valve has failed to achieve commanded position	Crew Awareness	No Dispatch
L(R) FUEL SOV	The Fuel SOV	Crew	No
CLOSED	Valve is closed	Awareness	Dispatch

FLIGHT CONTROLS

FLAP DEGRADE	Minor flap fault detected	Crew Awareness	MEL
FLAP LEVER DISAGREE	The flap handle does not match the flap position after initial power-up	Select new flap position and then reset to current flap position	No Dispatch
PITCH TRIM FAULT	A fault has been detected by the pitch trim system One side of pitch trim indication displaying "X" indicates a failure of one trim tab. In this case the trim rate will be degraded	Crew Awareness If the trim rate is degraded, avoid rapid speed changes	No Dispatch

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

FLIGHT CONTROLS (continued)

ROLL TRIM FAIL	Roll trim has failed or a stuck switch has been detected and disabled	In the event of a stuck trim switch, roll trim may be regained by cycling the ROLL TRIM POWER to OFF and then back to NORM	No Dispatch
ROLL TRIM FAULT	A fault has been detected by the roll trim system	Crew Awareness	MEL
ROLL TRIM OFF	Roll trim is selected OFF	Crew Awareness	No Dispatch
SPEEDBRAKE FAIL	Speedbrake has failed	Crew Awareness	MEL

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	-------------	----------

FLIGHT CONTROLS (continued)

STBY PITCH TRIM ON	Standby pitch trim has been selected	Crew Awareness Exit RVSM airspace Normal pitch trim is not available Autopilot will not be available	No Dispatch
YAW TRIM FAIL	Yaw trim has failed or a stuck switch has been detected	Crew Awareness For a stuck trim switch, functionality might be regained by cycling the YAW TRIM POWER switch to OFF and back to NORM	No Dispatch
YAW TRIM FAULT	A fault has been detected by the yaw trim system	Crew Awareness	MEL

FAA APPROVED October 30, 2016

HA-420 AFM ADVISO

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

FLIGHT CONTROLS (continued)

YAW TRIM OFF	Yaw trim has been selected OFF	Crew Awareness	No Dispatch

HYDRAULIC SYSTEMS

EMER BRAKE FAIL	Emergency brake accumulator pressure is less than 1650 psi	Crew Awareness	No Dispatch
HYD FLUID LEVEL LOW	The hydraulic reservoir fluid level is below allowable limits	Monitor hydraulic pressure and reservoir fluid level Service hydraulic fluid prior to next flight	MEL
HYD FLUID OVERFILL	The hydraulic reservoir fluid level is above allowable limits	Service hydraulic fluid prior to next flight	MEL
HYD PUMP FAIL ON	Hydraulic pump has failed on	Monitor hydraulic pressure	No Dispatch

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

ICE PROTECTION SYSTEMS

L(R) ENG ANTI- ICE FAULT	A fault has been detected in the affected engine anti-ice system	Crew Awareness	MEL
ICE DETECTED	Ice has been detected	Crew Awareness For planes that have NOT accomplished GHAE SB 72-0021: Notify maintenance following landing Maintenance action (LMM task 72-00-00-200-804) required within two flights	Not Applicable
ICE DETECT FAULT	One ice detector has failed	Exit icing conditions	MEL
TAIL DE-ICE FAIL ON	The tail de-ice system has failed on	Crew Awareness	MEL

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

ICE PROTECTION SYSTEMS (continued)

TAIL DE-ICE FAULT	There is a degradation in tail de-icing capability	Exit icing conditions	MEL
TAIL DE-ICE OFF	The TAIL DE-ICE switch has been selected OFF	Crew Awareness	MEL
TAIL DE-ICE ON	The TAIL DE-ICE switch has been selected ON	Crew Awareness	Not Applicable
WING ANTI-ICE FAULT	A fault has been detected in the wing anti-ice system	Exit icing conditions	MEL
WING ANTI-ICE OFF	WING ANTI-ICE switch selected OFF	Crew Awareness	MEL
WING ANTI-ICE ON	WING ANTI-ICE switch selected ON	Monitor ITT during operation of wing anti-ice	Not Applicable
WING FLOW FROM L(R)	WING FLOW switch selected FROM L(R)	Crew Awareness	No Dispatch

FAA APPROVED October 30, 2016

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

ICE PROTECTION SYSTEMS (continued)

L(R) WSHD ZONE FAULT	Affected zone unable to select high heat mode	Exit icing conditions	MEL
L(R) WSHD ZONE OFF	Applicable windshield zone switch selected OFF	Crew Awareness	MEL

LANDING GEAR AND BRAKES

LDG GEAR DOOR	Landing gear door failed to close	Crew	No
FAIL		Awareness	Dispatch

HA-420 AFM ADVISORY

CAS MSG	Description	Crew Action	Dispatch
---------	-------------	--------------------	----------

LANDING GEAR AND BRAKES (continued)

NOSEWHEEL STEER FAULT	A fault has been detected in the Nosewheel Steering system	NOSE WHEEL STEERING switch should remain in the NORM position during flight and taxi operations to prevent a steering uncommand movement Note: When the aircraft is completely stopped, cycling the NOSE WHEEL STEERING switch may clear the message if the fault condition no longer exists	No Dispatch
NOSEWHEEL STEER OFF	NOSE WHEEL STEERING switch selected OFF	Crew Awareness	No Dispatch
WOW FAULT	WOW system disagree	Crew Awareness	No Dispatch

FAA APPROVED October 30, 2016

HA-420 AFM ADVISORY	ISORY
---------------------	-------

CAS MSG	Description	Crew Action	Dispatch
LIGHTS			
EXT LIGHTS MAN OFF	Some external lights have manually been selected OFF when automatic logic had determined they should be on	Crew Awareness	Yes
LIGHTING CONTROL 1(2) FAIL	The associated lighting controller has failed	Some lighting control may be unavailable Associated lights fail to a default	MEL

configuration

HA-420 AFM ADVISORY

This page intentionally left blank

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

SECTION 4 NORMAL PROCEDURES

TABLE OF CONTENTS

PREFLIGHT INSPEC	TION4-3
BEFORE STARTING	ENGINES4-15
STARTING ENGINES	4-19
BEFORE TAXI	4-21
TAXI	4-22
BEFORE TAKEOFF	4-23
TAKEOFF	4-24
AFTER TAKEOFF	4-25
CLIMB	4-25
CRUISE	4-26
DESCENT	4-26
APPROACH	4-27
BEFORE LANDING	4-28
	4-28
	4-29
	4-30
	4-31
	T-
FAA APPROVED	НЈ1-29000-003-001

FAA APPROVED October 30, 2016

HA-420 AFM	NORMAL
CROSSWIND PROCEDURES	4-32
COLD WEATHER OPERATIONS	4-37
OPERATING IN ICING CONDITIONS	4-43
OXYGEN DURATION TABLES	4-57

HA-420 AFM NORMAL

NORMAL PROCEDURES

GENERAL

The operating procedures contained in this section are recommended by Honda Aircraft Company for use in operating the airplane. These procedures are provided for guidance and should not be construed as prohibiting the owner/operator from developing equivalent procedures.

PREFLIGHT INSPECTION

PRELIMINARY EXTERIOR INSPECTION

1.	Wheel Chocks	As required
2.	Engine Covers	Removed
3.	Static Wick Covers	Removed
4.	Pitot Covers	Removed
5.	External Rudder Lock	Removed
6.	Aircraft Tie-Downs	Removed
7	External Power Unit	Connect as required

HA-420 AFM NOR			ORMAL
COCK	(PIT/CABI	N INSPECTION	
1.	Emergency	Exit	Secure
2.	Emergency	Exit Handle Locking MechanismRe	moved
3.	Emergency	EquipmentCl	necked
	NOTE	Emergency equipment should be checked to it is properly located, not damaged, and is serviceable.	o ensure
4.	Gust Lock.	Re	moved
5.	Circuit Brea	akers	Check
6.	LANDING	GEAR Handle	DN
7. BATTERY			ON
	NOTE	The avionics are not fully initialized until approximately 60 seconds after selecting the to ON. Indications may be invalid or error during that time.	-
8.	Databases	Verify	current
	CAUTION	Do not use outdated database information Pilots using any outdated database do so entirely at their own risk.	
9.	Fuel Quanti	ity	Check
10.	PARKING	BRAKE	Set
FAA Al	PPROVED	HJ1-29000-003-001	
October	30, 2016		Page 4-4

HA-420 AFM NORMAL

COCKPIT/CABIN INSPECTION (continued)

11. Engine O	il QuantityCheck
NOTE	If the oil quantity indicates LOW, the aircraft may dispatch if the oil quantity is visually checked to be above the ADD line on the affected engine's sight glass. If the oil quantity is low, add oil prior to engine operation. The minimum acceptable oil quantity as indicated by the ADD line is 5319 cc (5.62 quarts), and the maximum quantity as indicated by the FULL line is 5775 cc (6.10 quarts).
12. Hydraulic	Reservoir QuantityCheck
NOTE	Nominal hydraulic reservoir quantity is between 75 and 100%.
13. Oxygen Q	Quantity Adequate for intended flight
14. Trims	Set for takeoff
15. FLAPS	UP
16. BATTER	YAs required

HA-420 AFM NORMAL

EXTERIOR INSPECTION

NOTE

Prior to conducting flight operation in RVSM airspace, special emphasis should be placed on the condition of Air Data Probes. If any visible damage, deformation, obstruction or static port irregularities are noted, the airplane is no longer RVSM compliant until the discrepancy is corrected.

1. Cabin Door (Checked)

- a. Door Seal......Check condition
- b. Upper fuselage antennas......Check condition

2. Left Nose (Checked)

- a. Windshield and Side Window...........Check condition

- d. LuggageSecured properly
- e. Baggage Door.....Secure and locked
- f. Oxygen Blowout Disk..... Green
- h. Nosewheel, Tire, and Strut......Check condition
- i. Nosewheel Steering Pin..... Installed

HA-420 AFM NORMAL

EXTERIOR INSPECTION (continued)

3.	Right N	Jose (Checked)	
	a.	Standby Air Data ProbeCheck condition	
	b.	Right Air Data ProbeCheck condition	
	c.	Ice Detector Check condition	
	d.	Windshield and Side Window Check condition	
	e.	Lower Fuselage Antennas Check condition	
4.	Right V	Ving (Checked)	
	a.	Landing LightCheck condition	
	b.	External Power Door	
	c.	Ice Light Check condition and operation	
	d.	Electrical Service Door Check condition and secure	
	e.	Air Inlet (belly panel) Check clear	
	f.	Center Tank Fuel DrainsDrain and check (3)	
	NOTE	Fuel drain sumping is only required prior to the first flight of the day.	
	g.	Lower Fuselage Check condition	
	h.	Emergency Exit	
	i.	Engine Inlet Check condition	
	j.	T ₁ ProbeCheck condition	

HA-420 AFM NORMAL

EXTERIOR INSPECTION (continued)

k.	Engine Duct and Fan Check condition and clear
1.	Stall Strip
m.	Anti-ice Exhaust Holes
n.	Wing Tank Fwd Fuel Drain Drain and check
NOTE	Fuel drain sumping is only required prior to the first flight of the day.
0.	Gear Doors
p.	Wheel, Tire, and StrutCheck condition
q.	Upper Surface and Leading Edge Check condition
r.	Vortilon Checked
s.	Wing Bump Checked
t.	Wingtip Fence
u.	Lower Surface Check condition
v.	Vortex GeneratorsCheck installed (14)
w.	Wingtip Light Assembly Check condition

NOTE

Pay special attention to surface erosion or frosting of the lens as this may adversely affect the light pattern and brightness.

HA-420 AFM NORMAL

EXTERIOR INSPECTION (continued)

	х.	Winglet
	y.	Wingtip TrianglesCheck installed (18)
	z.	Anti-ice Exhaust Vent Check clear
	aa.	Static WicksCheck installed (3)
	bb.	Aileron, Trim Tab, and FlapCheck condition
	cc.	Wing Tank Aft Fuel Drain Drain and check
	NOTE	Fuel drain sumping is only required prior to the first flight of the day.
5.	Right N	Vacelle (Checked)
	a.	Anti-Ice Exhaust Vent Check clear
	b.	Oil Servicing Cap and DoorInstalled and secure
	c.	Engine Drains Check clear
	d.	Engine Exhaust
	e.	Inboard Nacelle Access Door
	f.	Generator exhaust
	g.	Fan Air Outlet
	h.	Pylon NACA Scoop Check clear

HA-420 AFM NORMAL

EXTERIOR INSPECTION (continued)

- 6. Right Aft Fuselage (Checked)
 - a. Wheel, Tire, and StrutCheck condition

NOTE

The amount of exposed chrome on the landing gear strut should not be more than 1.5 inches difference between the left and right strut when the aircraft is on level ground with a balanced fuel load. An exposed chrome difference of more than 1.5 inches in this case may indicate an improperly serviced strut.

b.	Brake	Check wear pins
c.	Beacon	Check condition
d.	Fuel Vent	Check clear
e.	Hydraulic Panel	Check closed
f.	Lav Service Door	Check closed
g.	ECS Heat Exchanger Exhaust	Check clear
h.	Ram Air Intake	Check clear
i.	Fuel Cap	Installed and secure

HA-420 AFM NORMAL

EXTERIOR INSPECTION (continued)

7. Emper	nnage (Checked)
a.	Vertical Tail Surface Check condition
b.	VOR AntennaCheck condition
c.	Rudder, Trim Tab, and T-Strips Check condition
d.	Rudder Static WicksCheck installed (3)
e.	Position Light
f.	Speedbrake Panels (if installed) Check condition
g.	Horizontal Tail Surface Check condition
h.	Logo Lights Checked
i.	Elevator, Cuffs, Trim Tabs, and T-Strips
j.	Elevator Static WicksCheck installed (4)
k.	Vortex Generators Check installed (42)
8. Left A	ft Fuselage (Checked)
a.	Environmental Air Intake Check clear
b.	Aft Fuselage Antennas Check condition
c.	Ram Air Intake
d.	Aft Baggage CompartmentProperly loaded
	and secure

HA-420 AFM NORMAL

EXTERIOR INSPECTION (continued)

e.	Aft Baggage Door	Closed and locked
f.	Fuel Vent	Check clear
g.	Wheel, Tire, and Strut	Check condition

NOTE

The amount of exposed chrome on the landing gear strut should not be more than 1.5 inches difference between the left and right strut when the aircraft is on level ground with a balanced fuel load. An exposed chrome difference of more than 1.5 inches in this case may indicate an improperly serviced strut.

- - b. Pylon NACA Scoop Check clear

 - f. Engine Drains Check clear
 - g. Oil Servicing Cap and DoorInstalled and secure
 - h. Anti-Ice Exhaust Vent...... Check clear

HA-420 AFM NORMAL

EXTERIOR INSPECTION (continued)

10. Left Wi	ing (Checked)
a.	Wing Tank Aft Fuel Drain Drain and check
NOTE	Fuel drain sumping is only required prior to the first flight of the day.
b.	Aileron, Trim Tab, and Flaps Check condition
c.	Static WicksCheck installed (3)
d.	Anti-ice Exhaust vent Check clear
e.	Winglet
f.	Wingtip TrianglesCheck installed (18)
g.	Wingtip Light Assembly Check condition
NOTE	Pay special attention to surface erosion or frosting of the lens as this may adversely affect the light pattern and brightness.
h.	Vortex GeneratorsCheck installed (14)
i.	Lower Surface Check condition
j.	Wingtip Fence
k.	Wing Bump Checked
1.	Vortilon Checked

HA-420 AFM NORMAL

EXTERIOR INSPECTION (continued)

j	m.	Upper Surface and Leading Edge Check condition
1	n.	Engine Inlet
(ο.	T ₁ ProbeCheck condition
]	p.	Engine Duct and Fan Check condition
(q.	Stall StripCheck condition
1	r.	Anti-ice Exhaust HolesCheck condition
;	s.	Wing Tank Fwd Fuel DrainDrain and check
NO.	ΓE	Fuel drain sumping is only required prior to the first flight of the day.
1	t.	Gear Doors
1	u.	Wheel, Tire, and Strut Check condition
,	v.	Ice Light Check condition and operation
,	w.	Electrical Service DoorCheck closed
	х.	Landing Light Check condition

HA-420 AFM NORMAL		
BEFORE STARTING ENGINES		
1. B	ATTERY	ON
2. O	XYGEN (Checked, ON and NORM	Λ)
	a. OXYGEN SUPPLY	Push ON
	b. Oxygen Masks	Set 100%
	c. OXY MASK AUDIO	EMER
	d. Oxygen box TEST/RESET	Depress and hold
		verify blinker turns
		yellow momentarily,
		then turns black
	e. Oxygen Mask PRESS TO TE	ST Simultaneously
		Depress for
		approximately 3 sec.,
	vei	rify blinker turns yellow
		momentarily,
		onfirm speaker operation
	by l	istening for oxygen flow
		over speaker
	f. Oxygen box TEST/RESET	Release
	g. OXY MASK AUDIO	NORM
	h. CABIN OXYGEN	NORM
3. PF	RESSURIZATION (NORM)	
	a. CONTROL MODE	NORM
	b. CABIN DUMP	NORM

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM NORMAL

BEFORE STARTING ENGINES (continued)

4. ELECTRICAL (ON and NORM)
a. BATTERYVerify ON
b. GENERATORBoth NORM
c. BUS TIENormal (dark)
d. CABIN POWERNormal (dark)
5. ELTNORM
6. NOSE WHEEL STEERINGNORM
7. LANDING GEAR DN
8. ALTERNATE GEAR RELEASE Handle Stowed (fully in)
9. PARKING BRAKESet
10. FLAPSUP
11. Thrust Levers
12. SPEEDBRAKE (if installed)RET
13. ICE PROTECTION (NORM and OFF)
a. WING ANTI-ICENORM
b. WING FLOWNORM
c. ENGINE ANTI-ICE Both OFF
d. TAIL DE-ICENORM
14. FUEL PANEL (NORM)
a. PUMPsBoth NORM
b. CROSSFEEDNORM

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 4-16

HA-420 AFM NORMAL

BEFORE STARTING ENGINES (continued)

15. TRIM	PANEL (Checked, set and NORM)
a.	PITCH MODE STBY (check operation), then NORM
b.	ROLL TRIM POWERNORM
c.	YAW TRIM POWERNORM
d.	Trims Checked and set for takeoff
16. WIND	SHIELD HEAT PanelNORM
17. PNEU	MATIC Panel (NORM)
a.	CABIN INFLOWBoth NORM
b.	ENGINE BLEEDBoth NORM
18. Glares	hield Panels (Dark)
a.	Pilot's DISPLAY REVERSION Normal (dark)
b.	Pilot's CHIME Normal (dark)
c.	AFCS PITCH SERVO POWER Normal (dark)
d.	AFCS ROLL SERVO POWER Normal (dark)
e.	AFCS YAW SERVO POWER Normal (dark)
f.	Copilot's DISPLAY REVERSION Normal (dark)
g.	Copilot's CHIME Normal (dark)
19. Standb	y Instrument

HA-420 AFM NORMAL

BEFORE STARTING ENGINES (continued)

20. AVIONICS INITIALIZATION (Complete)
a. SYSTEM TESTSComplete
i. Fire Detection and SuppressionPress
 Verify both FIRE lights illuminate accompanied by FIRE aural alert
ii. Stall Warning and ProtectionPress
 Verify shaker activates twice
iii. SwitchlightsPress
 On GPU power, verify all switchlights are illuminated
 On battery power, verify all switchlights illuminate, except AFCS Servo Power Pane and PUSH TO DISC switchlights.
iv. CVFDRPress
 Verify tone can be heard in headset for 5 seconds
NOTE When operating on battery power, the CVFDR is unpowered and the system test will fail. If necessary

FAA APPROVED October 30, 2016 HJ1-29000-003-001

GPU power is available.

the system can be retested once engine generator or

HA-420 AFM NORMAL

BEFORE STARTING ENGINES (continued)

b.	WEIGHT AND FUEL	Entered
c.	FLIGHT PLAN	Entered
d.	V-speeds	Entered
e.	ADS-B information	Entered

STARTING ENGINES

1.	Passenger Briefing	Complete
2.	Rudder Pedals	Adjusted
3.	Seats, Safety Belts	Set
4.	Doors	Closed

NOTE The pilot should verify the doors are closed by review of the CAS messages or synoptic page, and by verifying the main entry door indicators are green.

- - NOTE If the batteries have been cold-soaked as defined in Cold Weather Operations (Section 4 Normal Procedures), engine start is permitted to 22.5 volts.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 4-19

HA-420 AFM NORMAL

STARTING ENGINES (continued)

- 8. Engines (Start)
 - a. ENGINE START (selected engine)Press
 - b. Thrust Lever IDLE
 - c. Engine Indications......MONITOR
 - i. ITT..... Verify rise within 15 seconds
 - ii. Verify starter disengages at 45% N₂

NOTE

The FADEC will automatically terminate an abnormal start but it cannot ensure that ITT start limits (556 °C) are not exceeded. The Pilot must monitor ITT during start and ensure ITT remains within limits.

The FADEC will abort starts on the ground for the following conditions:

- No increase in ITT within 15 seconds after fuel is introduced
- No N₁ rotation
- N₂ not steadily increasing to Idle
- N₂ fails to reach 95% of Idle within 76 seconds after light off

HA-420 AFM NORMAL

STARTING ENGINES	(continued)
------------------	-------------

9. Engine Instruments
10. ENGINE ANTI-ICEAs required
11. External Power
12. Flight Controls
BEFORE TAXI
1. WING ANTI-ICEAs required
NOTE Monitor ITT during operation of wing anti-ice.
2. Avionics / Flight Data (Set/Entered)
a. Transponder Code Entered
b. Flight IDConfirmed
c. Flight Plan Entered
d. RunwaySelected
e. Navigation sourceSet
3. Altimeters

HA-420 AFM NORMAL

BEFORE TAXI (continued)

4.	FLAPS	Set for takeoff
5.	SPEEDBRAKE (if installed)	Checked then RET
6.	CABIN SIGNS	As required
7.	PARKING BRAKE	Release

TAXI

1.	Brakes	Check
2.	Nosewheel Steering	Check
3.	Flight Instruments	Check

NOTE

The recognition and landing lights may be used to supplement the taxi lights as needed in poorly lit and/or wet taxiway conditions.

HA-420 AFM NORMAL **BEFORE TAKEOFF** FLAPS Set for takeoff 2. 3. SPEEDBRAKE (if installed)......RET CAS Messages......Review Navigation Set Flight Guidance Set 7 TOLD Data......Confirmed NOTE Crew must confirm that appropriate V-speeds are still posted. V-speeds may become deselected and revert back to default values after performing engine starts on battery power. NOTE The takeoff field length provided in the performance section of the flight manual is based on a dry runway. If departing from a wet runway, it is recommended to increase the predicted takeoff field length by 30%. 8. Takeoff Briefing......Complete

HA-420 AFM NORMAL

BEFORE TAKEOFF (continued)

10.	ICE PROTECTION (As required)
	a. WING ANTI-ICEAs required
NO	Monitor ITT during operation of wing anti-ice.
	b. ENGINE ANTI-ICEAs required
TAK	EOFF
1.	Thrust LeversTO
2.	Engine Instruments Verify that N_1 pointers match N_1 target settings within 1%.
3.	Brakes
4.	Nose-up Pitch Attitude at Rotation 13° (Flaps UP)
	12° (Flaps TO/APPR)

HA-420 AFM NORMAL AFTER TAKEOFF LANDING GEARUP (positive rate of climb) Yaw Damper......Verify engaged 3. FLAPS UP (130 KIAS minimum) Thrust Levers......MCT Flight GuidanceAs required ICE PROTECTION (As required) WING ANTI-ICE......NORM ENGINE ANTI-ICE......As required 7. CABIN SIGNSAs required **CLIMB** Altimeters (transition altitude)Set STD PRIOR TO ENTERING RVSM AIRSPACE select desired modes Autopilot...... Engage

HA-420 AFM	NORMA
CRUISE	
WHEN IN RVSM AIRSPACE, ONCE PER H	IOUR
1. Altimeters / AltitudeSet / Ag	gree within 200 ft
DURING ALL PHASES OF CRUISE FLIGH	т
2. Systems	Monitor
DESCENT	
1. Landing Field Elevation	Verify set
2. ENGINE ANTI-ICE	As required
3. Altimeters (transition altitude)	Set

HA-420 AFM NORMAL

APPR	ACH	
1. S	ats and Seat BeltsAdjusted and secu	ıre
2. F	ssenger BriefingComple	ete
3. (ABIN SIGNSAs requir	ed
4. A	vionics	Set
5. I	nding Data Set and confirm	ed
	a. Radios and Navigation	Set
	b. V-speeds, FMS, and Flight Guidance	ed,
	c. Landing DistanceConfin	rm
NOT	The landing distance provided in the performance section of the flight manual is based on a dry runw If landing on a wet runway, it is recommended to increase the predicted landing distance by 30%.	'ay.
6. (AS MessagesChe	ck
7. A	oproach BriefingComple	ete
8. F	APSTO/API	PR

HA-420 AFM	NORMAL	
BEFORE LANDING		
1. LANDING GEAR	DN	
2. SPEEDBRAKE (if installed)	RET	
3. FLAPSLDG or TO/	APPR (ice)	
CAUTION Do not extend the flaps to LDG unless can be confirmed free of ice, and icing are not expected during approach and	conditions	
NOTE If TAWS-A is installed, the TAWS W annunciate when landing with Flaps at unless Flap Override is selected.	•	
4. Airspeed	V _{REF}	
5. Autopilot/Yaw Damper	. Disengage	
LANDING		
1. Thrust Levers	IDLE	
2. BrakesApply (after t	couchdown)	
NOTE Establish directional control using rudder apply brakes symmetrically during the inilanding rollout.		
3. SPEEDBRAKE (if installed)	EXT	
FAA APPROVED HJ1-29000-003-001 October 30, 2016	Page 4-28	

HA-420	AFM	NORMAL		
BALI	KED LANDING			
1.	TO/GA	Press		
2.	Thrust Levers	TO		
3.	AirspeedMaintai	n V _{REF}		
WHEN CLEAR OF OBSTACLES				
4.	FLAPSTO)/APPR		
5.	LANDING GEARUP (positive rate of	climb)		
6.	Yaw Damper E	ngaged		
7.	AirspeedMainta	in V _{AC}		
8.	FLAPSUP (130 KIAS minimum) or TO/APP	PR (ice)		
CA	UTION Retracting the flaps to UP following an icin encounter with the flaps extended may resuldamage to the flaps or airframe.	_		
9.	Thrust Levers	MCT		
10.	Flight GuidanceAs re	equired		

HA-420 AFM NORMAL

AFTER LANDING

- 1. CABIN SIGNSAs required
- 3. SPEEDBRAKE (if installed)......RET
- 4. FLAPS UP or TO/APPR (ice)

CAUTION

Retracting the flaps to UP following an icing encounter with the flaps extended may result in damage to the flaps or airframe. The flaps must be inspected, and any residual ice must be removed before retracting the flaps to UP.

- 5. Trims Set in green band
 - **NOTE**

The recognition and landing lights may be used to supplement the taxi lights as needed in poorly lit and/or wet taxiway conditions or when ice has accumulated on the wing taxi light. Reduce taxi speed as required.

HA-420) AFM	NORMAL
SHU	TDOWN	
1.	PARKING BRAKE	Set
2.	Wheel Chocks	Installed
3.	ENGINE ANTI-ICE	OFF
4.	External Power	As desired
5.	Thrust Levers	CUT OFF
NO	Operate the engine at idle thrust for a minim 2 minutes before shutdown to thermally state engine hot section. Time of operation at or such as taxiing can be considered idle thrus	bilize the near idle
6.	CABIN SIGNS	s required
7.	OXYGEN SUPPLY	Pull off
8.	PARKING BRAKE	Release
9	RATTFRV	OFF

HA-420 AFM NORMAL

CROSSWIND PROCEDURES

GENERAL

These procedures are applicable for crosswind takeoff and landing with or without the optional speedbrake.

CAUTION

Takeoffs and landings on contaminated runways can have significant additional risks due to the varied surface conditions likely to be encountered.

CAUTION

For takeoffs and landings on wet or icy runways, the maximum crosswind capability may be significantly reduced due to the reduced steering authority contributed by the nosewheel.

CAUTION

Operations with any tailwind component in conjunction with crosswinds, especially on contaminated runways, should be avoided due to the inherent hazard of operating on such runways.

CAUTION

Large and prompt aileron and rudder pedal inputs may be required in crosswind conditions close to or exceeding the maximum allowable crosswind or in gusty conditions.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM NORMAL

CROSSWIND TAKEOFF PROCEDURE

The crosswind technique for takeoff requires that the pilot hold aileron into the wind to maintain wings level. Maintain nosewheel contact with the runway throughout the takeoff roll. Do not over control in aileron since it can result in heading deviations due to induced lift differences between the upwind and downwind wing. Rudder pedals must be used to maintain directional control.

The directional authority available through the rudder pedals is a function of groundspeed, airspeed, runway condition (wet, icy, etc.) and the magnitude of the crosswind.

CROSSWIND LANDING PROCEDURE

WARNING

The bank angle must be limited to 10 degrees in order to ensure wingtip clearance from the runway surface.

CAUTION

Not following the procedures provided in this section may result in large centerline deviations.

HA-420 AFM NORMAL

CROSSWIND LANDING PROCEDURE (continued)

The final approach phase of the crosswind landing should be flown wings-level, utilizing a crab angle into the wind sufficient to stabilize the aircraft path along the extended runway center line.

For landings with a crosswind greater than 15 knots, the approach must be made using a crab technique. A landing in these conditions using a wing low method could result in a wingtip strike.

Avoid excessive airspeed during the final approach. Similar to a performance landing, minimum flare should be used. An extended flare will make drift correction more difficult and will increase pilot workload.

Just prior to touchdown, perform the de-crab maneuver by applying rudder to align the aircraft fuselage with the runway. Simultaneously apply aileron into the wind to minimize drift. Attempt to completely align the aircraft with the center line prior to touchdown. If drift cannot be controlled, a go-around should be performed.

Touch down with the upwind landing gear first, then set the other main wheel on the runway without delay followed by a prompt de-rotation.

HA-420 AFM NORMAL

CROSSWIND LANDING PROCEDURE (continued)

Upwind aileron should be applied immediately after touchdown to ensure the upwind landing gear remains firmly in contact with the surface. Directional control should be maintained by applying rudder to track the center line. Apply slight forward pressure on the yoke to ensure nosewheel contact with the runway. Symmetrical braking and speedbrake (if installed) should be applied as required to decelerate.

NOTE

Lateral control during the ground roll has been shown to be relatively ineffective in countering wing rocking motions, which may occur after touchdown of one main gear prior to the opposite main gear. Use steady, upwind aileron input to maintain main gear firmly in contact with the ground rather than attempting a counter rocking motion.

NOTE

Approximately 2 seconds after nosewheel has registered weight-on-wheels, the nosewheel steering becomes active, and the steering will then move to the position being commanded by the rudder pedals. This transition may introduce a yawing response, which should be promptly countered using rudder inputs.

NOTE

Rudder and nosewheel steering are significantly more effective in maintaining directional control than differential braking. In addition, the amount of available differential braking may be reduced if antiskid is active.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM NORMAL

CROSSWIND LANDING PROCEDURE (continued)

NOTE

The contribution to directional stability from the main wheels is reduced with increased braking. If directional control is in question, release the brakes and apply rudder as required to correct. Once directional control has been re-established, apply symmetrical braking.

HA-420 AFM NORMAL

COLD WEATHER OPERATIONS

When operating in cold weather conditions, adherence to the procedures listed below in addition to the normal procedures, is recommended.

COLD SOAK

Cold soak is defined as a continuous period of longer than two hours at an outside air temperature below 0 °C in which the aircraft is not powered. Prior to aircraft cold-soak, perform the following:

General

- Retract flaps (after confirming free of ice and snow).
- Chock wheels. Release parking brake.
- Install engine, ice detector and air data probe covers.
- Remove beverage containers.
- Drain water system.
- Drain waste system.

Below -15 °C

• Remove crew oxygen masks and store at room temperature.

NOTE

Masks may be left in the aircraft if OXYGEN SUPPLY is left in the OFF position until the cockpit temperature is at or above -15 °C.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM NORMAL

COLD SOAK (continued)

Below -15 °C (continued)

• Remove hand-held microphones and store at room temperature.

NOTE Microphones may be left in the aircraft if not used until the cockpit temperature is at or above -15 °C.

Below -20 °C

• Remove both batteries and store at room temperature.

PREFLIGHT INSPECTION

During pre-flight inspection following a cold-soak, add or pay special attention to the following items.

Aircraft Preparation

- Install batteries (if removed).
- Service water system.
- Service waste system.

NOTE

If the water or waste system is serviced in below freezing temperatures, the cabin heating system must be operating within 30 minutes to prevent fluids from freezing.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM NORMAL

PREFLIGHT INSPECTION (continued)

- Install crew oxygen masks (if removed).
- Install hand-held microphones (if removed).

Exterior Inspection

- Carefully inspect all surfaces of the airframe to ensure that aircraft critical areas are free of any ice, snow, slush, or frost. See ICING LIMITATIONS (Section 2 - Limitations) for definition of critical areas.
- Remove snow, slush and ice from landing gear struts, brakes, switches, doors and wheel wells.

NOTE

Carefully inspect forward facing parts of the nose landing gear and door. Contamination of the nose landing gear and door may prevent successful gear retraction.

- Carefully inspect engine inlet, inlet lip, fan, inner fan case abradable liner (wear), spinner, and exhaust duct to ensure all ice and / or snow is removed. Rotate fan to ensure it rotates freely.
- Carefully inspect for any fluid leaks.
- Carefully inspect all intakes and vents for blockage.

HA-420 AFM NORMAL

BEFORE STARTING ENGINES

Cockpit displays may take up to one minute to power up. Colors may be faded, touch-screen response may be slower and dynamic items may appear blurred until the displays are fully warmed up.

NOTE

A "CHECKLIST FILE INVALID" CDU message may post. The checklist will be functional after the message has been acknowledged and all displays are powered.

Confirm seat adjustments have latched since they may not automatically spring back to the latched position before the cabin has been heated up.

If the batteries were cold-soaked, the following procedure must be followed:

Before starting engines, warm up the batteries by operating on battery power (no external power) with BUS TIE OPEN for a minimum of 25 minutes or when bus voltage drops to 22.5 V, whichever comes first.

The **FUEL TEMP LOW** message may post if the aircraft has been cold-soaked close to or below -40 °C. Refueling with warmer fuel or warming the aircraft in a hangar is recommended. Operating the engines for an extended period of time may also increase fuel temperature enough to clear the message.

HA-420 AFM NORMAL

STARTING ENGINES

Engine starts will be slower than normal and higher than normal oil pressure can be expected.

If the oil temperature is below the start limitation of -40 °C, the engines should be preheated using warm air prior to start.

NOTE

Oil pressure indications are dashed when the oil temperature is below -40 °C.

Oil pressure may reach the maximum indication but should subside as oil temperature increases. If oil pressure remains above normal range after oil temperature stabilizes, the engine should be shut down and the cause investigated.

Delay selection of engine anti-ice to ON until 15 seconds after reaching IDLE thrust.

WARNING Do not use external heaters to heat the fuel.

Operate each trim axis to ensure proper operation, and perform a thorough, full deflection flight control sweep.

NOTE Flight control forces will be higher than usual due to increased friction.

HA-420 AFM NORMAL

BEFORE TAXI

Do not operate engines at MCT or above until oil temperature is at or above 10 °C.

Cockpit and Cabin temperature must be at or above -15 °C (5 °F) before dispatch. Operating both engines above IDLE thrust (at least 45 psi manifold pressure is recommended) will reduce time required to warm the cabin.

Cabin delta P of up to 0.5 psi may be indicated with the cabin unpressurized before the cabin has been heated.

TAXI

If taxiways are covered by ice, snow or slush, taxi at lower than usual speeds and allow greater distance for stopping. Avoid taxiing closely behind aircraft with running engines. Use the brakes frequently and taxi with flaps retracted. Monitor wingtips for clearance to snow banks.

TAKEOFF

Consider the effect of any runway contaminants on the takeoff distance.

Delay landing gear retraction after taking off from a snow or slush covered runway.

HA-420 AFM NORMAL

OPERATING IN ICING CONDITIONS

Adherence to the procedures listed below in addition to the normal procedures and limitations are required when operating in conditions susceptible to airframe icing.

ICING CONDITIONS

The aircraft has been approved to operate within the icing envelope defined by 14 CFR Part 25 Appendix C. Icing conditions that are outside this envelope may be encountered during flight operations. The ice detecting system detects those conditions requiring automatic activation of the ice protection systems. Some conditions that may result in a very light ice accretion on the airframe do not require ice protection and, therefore, will not be annunciated. Other conditions, such as freezing rain or freezing drizzle, may exceed the capabilities of the ice protection systems and can have a severe impact on aircraft handling characteristics and performance.

The autopilot and CSC may not maintain airspeed if ice accretes on the airplane. Monitor airspeed closely.

HA-420 AFM NORMAL

ICING CONDITIONS (continued)

WARNING

If unusually extensive ice accretes on the wing or engine nacelle aft of the protected areas, or if unusual lateral trim requirements or autopilot trim warnings are encountered, or if ice accretes on the wing or engine protected areas, accomplish the following:

- If the flaps are extended, do not retract them until the airframe is verified clear of ice.
- Reduce the angle-of-attack by increasing speed as much as the airplane configuration and weather allow, without exceeding design maneuvering speed.
- If the autopilot is engaged, hold the control wheel firmly and disengage the autopilot. Do not reengage the autopilot until the airframe is verified clear of ice.
- Exit the icing area immediately by changing altitude or course; and
- Report these weather conditions to air traffic control.

CAUTION

Flight in freezing rain or freezing drizzle, may exceed the capability of the ice protection system and result in hazardous ice build-up on protected surfaces, or may result in unusually extensive ice formation aft of the protected area. This ice may not be shed using the ice protection systems, and it may seriously degrade the performance and controllability of the airplane.

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

ICING CONDITIONS (continued)

NOTE

The prohibition on flight in freezing rain or freezing drizzle is not intended to prohibit purely inadvertent encounters with the specified meteorological conditions; however, pilots should make all reasonable efforts to avoid such encounters and must immediately exit the conditions if they are encountered.

Ice may form in freezing rain or freezing drizzle at temperatures as cold as -18 °C (0 °F), increased vigilance is warranted at temperatures around freezing with visible moisture present. In addition to the cues for determining icing conditions beyond the approved envelope described in ICING LIMITATIONS (Section 2 – Limitations) the following may be used to identify possible freezing rain or freezing drizzle:

- Visible rain when SAT is 5 °C or less.
- Droplets that splash or splatter on impact when SAT is 5 °C or less.

If freezing rain or freezing drizzle conditions are encountered, exit icing (by changing altitude and/or course) conditions immediately. Asking for priority to leave the area is fully justified under these conditions. The following actions are also recommended:

- Avoid abrupt and excessive maneuvering that may exacerbate control difficulties.
- Do not engage the autopilot, as it may mask unusual control system forces. If the autopilot is already engaged, hold the control wheel firmly and disengage.
- If an unusual roll response or uncommanded control movement is observed, reduce the angle-of-attack by increasing airspeed or rolling wings level, and apply additional power, if needed.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 4-45

HA-420 AFM NORMAL

ICING CONDITIONS (continued)

- Avoid extending flaps. If the flaps are extended, do not retract them until the airframe is clear of ice.
- If erratic air data indications are observed, fly using known aircraft attitude and thrust settings, crosscheck GPS speed and altitude indications, etc., to maintain basic aircraft control.
- Report the weather conditions to ATC.

ICE DETECTION

While ice detectors are the primary means to identify icing conditions in-flight they are not capable of reliably detecting icing conditions during ramp and taxi operations. A combination of outside air temperature and atmospheric conditions have to be used, as described in ICING LIMITATIONS (Section 2 – Limitations), to determine whether ground icing conditions exist.

PREFLIGHT PLANNING

If icing conditions are expected along the planned route certain pre-flight planning considerations must be applied.

NOTE

When wing anti-ice is activated (automatically or manually), there will be a reduction in aircraft performance. See performance tables in the Airplane Flight Manual (Section 5 – Performance) and either the Quick Reference Handbook (Volume 1, Performance Section) or the Pilot's Operating Manual (Section 2 – Flight Planning).

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

PREFLIGHT PLANNING (continued)

Takeoff

Operating the engine and wing anti-ice systems has a negative impact on aircraft acceleration and climb capability. Performance tables for Wing Anti-ice ON must be used if taking off in ground icing conditions and should be considered if the planned takeoff profile penetrates known or forecast icing conditions. Refer to TAKEOFF – ANTI-ICE FLUID PERFORMANCE ADDITIVES (Section 5 – Performance) if Type II or IV fluids are used.

Enroute

Operating the engine and wing anti-ice systems has a detrimental effect on climb performance, altitude capability and cruise performance. The impact on fuel burn when operating with engine and wing anti-ice protection systems active must be considered.

Approach and Landing

If icing conditions are expected along the route of flight, landing performance planning must be based on using TO/APPR flaps and increased icing speeds. Reduced crosswind capability must also be considered. Additionally, operating the engine and wing anti-ice systems has a negative impact on go-around and climb capability in the event of a missed approach or balked landing.

HA-420 AFM NORMAL

PREFLIGHT PLANNING (continued)

Alternate

If icing conditions are expected at the destination airport it may not be possible to safely retract flaps to UP in case of a missed approach. The reduced approach climb capability must be considered, as well as the increased fuel burn to the alternate destination in this configuration.

NOTE

See performance tables in the Airplane Flight Manual (Section 5 – Performance) and either the Quick Reference Handbook (Volume 1, Performance Section) or the Pilot's Operating Manual (Section 2 – Flight Planning).

EXTERIOR INSPECTION

The wing ice inspection lights must be operable prior to flight into known or forecast icing at night.

BEFORE TAXI

If wing anti-ice is required for takeoff, select it on after completion of the automatic pre-flight test to ensure adequate warm-up prior to takeoff. Up to 5 minutes of operation at idle power may be required.

NOTE Monitor ITT during operation of wing anti-ice.

If operating in ground icing conditions, a visual and tactile check of the wing leading edge and upper surfaces must be performed as defined in ICING LIMITATIONS (Section 2 – Limitations).

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

BEFORE TAXI (continued)

Ground De-icing

NOTE

For instructions on how to de-ice the aircraft, see the Pilot's Operating Manual (Section 4 - Service, Handling, and Maintenance).

Following application of the de-icing fluid, perform a slow, full deflection flight control sweep to prevent pooling of fluid in flight control cavities.

If the aircraft has been de-iced, a de-icing inspection must be performed immediately following or during the ground de-icing/anti-icing process. All items below must be confirmed free of snow, ice, and frost accumulation.

- Wing, including leading edges, upper and lower surfaces and aileron control surfaces
- Flaps
- Vertical and horizontal stabilizers, including leading edges, horns, upper and lower surfaces, rudder, elevator and side panels
- Engine inlet and exhaust and nacelle precooler exhaust
- Windshield
- Antennas
- Fuselage
- Air data probes
- Ice Detectors

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

BEFORE TAXI (continued)

- Fuel tank vents
- Inlets and exhausts
- Landing gear, gear doors, and wheels and brake assemblies

A final inspection should be performed prior to takeoff to ensure effectiveness of the de-icing and/or anti-icing procedure. The inspection should be conducted within 5 minutes of takeoff and may be conducted from inside the airplane. If a visual inspection is not sufficient to determine whether ice is adhering, perform a tactile check. Indications of loss of effectiveness of de-icing/anti-icing fluid or contamination on airplane surfaces include the items that follow.

- Progressive surface freezing or snow accumulation
- Random snow accumulation
- Dulling of surface reflectivity (loss of gloss) caused by the gradual deterioration of the de-icing/anti-icing fluid to slush

HA-420 AFM NORMAL

TAXI

When operating in ground icing conditions, takeoff must be accomplished within 60 minutes of engine start. If an engine has been operated for more than 60 minutes in these conditions, the following ice shedding procedure must be performed prior to takeoff:

1. Over a span of 15 seconds, increase thrust from IDLE to 60% N_1 . Then over a span of 15 seconds, decrease thrust from 60% N_1 to IDLE.

NOTE

If airport surface conditions or the proximity of other aircraft do not permit the engine thrust to be increased to 60% N₁, then use a thrust level as high as practical.

- 2. Repeat until exiting ground icing conditions or engine vibrations return to normal levels.
- 3. Shut down engine and inspect for ice accumulation.
- 4. Engines may be restarted if confirmed clear of ice accumulation.

HA-420 AFM NORMAL

TAKEOFF

Do not take off with any ice, snow, slush, or frost (including polished) adhering to the aircraft critical areas. See ICING LIMITATIONS (Section 2 - Limitations) for definition of critical areas.

Wing anti-ice must be ON for takeoff in icing conditions. After takeoff, set the WING ANTI-ICE switch to NORM. Minimize time with flaps extended after takeoff. Accelerate to 180 KIAS as soon as practical.

NOTE If the WING ANTI-ICE switch is not set to NORM,

this may delay failure detection.

NOTE Monitor ITT during operation of wing anti-ice.

HA-420 AFM NORMAL

ENROUTE

Minimize the duration of icing encounters as much as practical. Often a small change in altitude may be sufficient to exit icing conditions.

The requirement for maintaining a minimum thrust setting when in icing conditions may reduce the descent capability of the aircraft. Consider the reduction in descent and slow-down capability when planning a descent through potential icing conditions. Minimize time with thrust set below the steady state limit. Speedbrake (if installed) can be used to improve descent and slow-down capability.

NOTE Monitor ITT during operation of wing anti-ice.

NOTE Wing anti-ice must be manually selected on for flight in icing conditions above FL 340.

NOTE The outboard heating zone of each windshield may not remain clear in icing conditions.

The autopilot may mask tactile cues that indicate adverse changes in handling characteristics. When in icing conditions, consider not using the autopilot or disconnect it periodically to check for unusual control force or deflection, and to move the flight controls to check for evidence of ice accreting in control surface gaps or frozen actuators.

WARNING The autopilot and CSC may not maintain airspeed if ice accretes on the airplane. Monitor airspeed closely.

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

APPROACH AND LANDING

Minimum thrust setting when wing anti-ice is operating is 62% N₁. Thrust settings as low as 50% N₁ are allowed if required for descent or deceleration, but these thrust reductions must be limited to less than 5 minutes.

NOTE

Thrust must be reset to 62% N₁ minimum prior to 5 minutes of operation at lower thrust setting to prevent **L-R WING A/I TEMP LOW** from posting and to prevent the stall warning ice advance from going to the failure schedule.

Use Flaps TO/APPR for landing whenever the aircraft cannot be confirmed clear of ice or if icing conditions may be encountered during approach and landing. Refer to Uncorrected Landing Field Length, Flaps TO/APPR - Icing (Section 5 – Performance).

CAUTION

Do not extend the flaps to LDG unless the airframe can be confirmed free of ice, and icing conditions are not expected during approach and landing.

NOTE

If TAWS-A is installed, the TAWS Warnings will annunciate when landing with Flaps at TO/APPR, unless Flap Override is selected.

Minimize time with thrust set below the minimum limit. Delay slow-down below 180 KIAS and flap and landing gear extension as long as possible, to minimize the build-up of ice on flaps and landing gear.

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

APPROACH AND LANDING (continued)

The stall warning ice advance must not be reset unless the airframe has been confirmed to be free of contamination. There is no visual indicator to confirm that the airframe is clean. Therefore an outside air temperature greater than 5 °C may be the only indication that the airframe is free of contamination.

BALKED LANDING

It may not be possible to safely retract flaps to UP in case of a missed approach, if icing conditions were encountered with the flaps extended. Climb performance capability and increased fuel burn during cruise to the alternate destination must be considered in this configuration.

CAUTION

Retracting the flaps to UP following an icing encounter with the flaps extended may result in damage to the flaps or airframe.

NOTE

See performance tables in the Airplane Flight Manual (Section 5 – Performance) and either the Quick Reference Handbook (Volume 1, Performance Section) or the Pilot's Operating Manual (Section 2 – Flight Planning).

HA-420 AFM NORMAL

AFTER LANDING

If icing was encountered with the flaps extended or after landing on snow or slush covered runway, do not retract flaps to UP until they can be verified to be free from ice and snow accumulation.

CAUTION

Retracting the flaps to UP following an icing encounter with the flaps extended may result in damage to the flaps or aircraft. The flaps must be inspected, and any residual ice must be removed before retracting the flaps to UP.

SHUTDOWN

If operating in ground icing conditions, perform the ice shedding procedure described in the preceding TAXI section prior to engine shutdown.

Following a flight with de-icing fluid applied, perform a slow, full deflection flight control sweep to prevent pooling of fluid in flight control cavities.

POSTFLIGHT INSPECTION

Carefully inspect engine inlet, inlet lip, fan, inner fan case abradable (wear), spinner, and exhaust duct to ensure all ice or snow is removed. Rotate fan to ensure it spins freely.

Inspect the airframe for signs of damage due to ice shedding.

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

OXYGEN DURATION TABLES

The following tables are provided for information and mission planning.

OXYGEN CONSUMPTION

The 50 cubic ft oxygen cylinder provides the following consumption for a pressurized aircraft. The usable oxygen quantity is 1,243 liters with a fully charged system.

NOTE

Once the lanyard for a cabin mask has been pulled that mask will continue to flow at the listed rate until oxygen is depleted. To preserve crew oxygen, flow to the cabin can be stopped by selecting the CABIN OXYGEN knob to OFF.

HA-420 AFM NORMAL

OXYGEN CONSUMPTION (LITERS/HOUR) – CRUISE FLIGHT

NOTE

If a passenger is seated in the Copilot seat, use data for Crew Mask for that passenger.

Table 4-1. Oxygen Consumption – Cruise Flight

Aircraft Altitude	Each Crew Mask		Each Cabin Mask
(Feet)	(Liters per Hour)		(Liters per Hour)
	Normal	100%	
43,000	114	114	186
41,000	138	138	186
40,000	150	150	186
35,000	210	210	189
30,000	270	270	192
25,000	300	414	195
20,000	198	474	198
15,000	150	570	204
10,000	150	714	210

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

OXYGEN CONSUMPTION (LITERS) – EMERGENCY DESCENT

The following tables provide the amount of oxygen required to execute an emergency descent from 43,000 ft to the listed final altitude. Table 4-2 indicates oxygen consumption when the copilot seat is not occupied, and Table 4-3 indicates consumption when the copilot seat is occupied.

Table 4-2. Oxygen Consumption – If Copilot Seat Is Not Occupied

Final Altitude		Numbe	r of Pass	engers in	Cabin	
(Feet)	0	1	2	3	4	5
25,000	25	38	50	63	76	88
20,000	36	53	68	87	103	120
15,000	53	75	95	118	139	159
10,000	79	106	130	161	186	212

Table 4-3. Oxygen Consumption – If Copilot Seat Is Occupied

Final Altitude		Numbe	er of Pass	sengers i	n Cabin	
(Feet)	0	1	2	3	4	5
25,000	51	63	77	89	102	114
20,000	74	90	110	126	142	158
15,000	110	130	155	175	196	216
10,000	164	188	222	247	272	297

FAA APPROVED October 30, 2016

HA-420 AFM NORMAL

This page intentionally left blank

FAA APPROVED October 30, 2016

SECTION 5 PERFORMANCE

TABLE OF CONTENTS

GENERAL	5-3
PERFORMANCE DEFINITIONS	5-7
REFERENCE INFORMATION	5-15
ACOUSTIC LEVELS	5-25
CERTIFICATION NOISE LEVELS	5-25
GENERAL INFORMATION	5-26
TAKEOFF	5-36
TAKEOFF – ANTI-ICE FLUID PERFORMANCE	
TAKEOFF – FLAPS TO/APPR	5-39
TAKEOFF – FLAPS UP	5-107
OBSTACLE CLEARANCE	5-184
ENROUTE CLIMB	5-212
APPROACH AND LANDING	5-232
TURNAROUND	5-261

HA-420 AFM PERFORMANCE

This page intentionally left blank

INTRODUCTION

GENERAL

This document presents the performance information for the HondaJet Model HA-420 airplane fitted with two Honda GE HF-120 engines. Information in this section specifies the conditions, configurations, and operating modes in which the appropriate performance criteria were calculated.

All performance data in this section are based on flight test data and the following performance conditions:

- 1. Minimum guaranteed thrust rating less installation, bleed air, and accessory losses.
- 2. Full temperature and altitude accountability within the operational limits for which the airplane has been certified.
- 3. Thrust settings (N_1) as indicated by the N_1 pointers.
- 4. All takeoff and landing performance is based on a paved, hard runway surface.
- 5. ICAO standard atmosphere conditions (ISA), with corrections for non-standard conditions, when applicable.
- 6. Wind speed is measured at a height of 10 meters (33 feet) above the surface.
- 7. The performance data have been calculated based on the following
 - a. A minimum takeoff safety speed (V_2) of $1.13 \times V_{SR1}$
 - b. A minimum landing reference speed (V_{REF}) of $1.23 \times V_{SR0}$

NOTE When necessary, interpolation may be used between table values to determine performance for the current ambient conditions and aircraft weight. If interpolation is not used, the next higher ambient temperature and weight should be used for the determination of aircraft performance.

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

Standard Operating Configurations

Flight Segment	Engines	Thrust	Flaps	Gear	Speed
1 st Segment Climb	1	ТО	UP or TO/APPR	DN	V_{LOF} to V_{2}
2 nd Segment Climb	1	ТО	UP or TO/APPR	UP	V_2
Final Segment/ Enroute Climb	1	МСТ	UP	UP	140 KIAS
Approach Climb	1	ТО	TO/APPR	UP	V_{AC}
Landing Climb/ Landing	2	ТО	LDG	DN	V_{REF}
Landing Climb/ Landing (Icing)	2	ТО	TO/APPR	DN	$V_{ m REF}$

Standard Performance Procedures

Normal All Engine Takeoff

- 1. Set the thrust levers to the takeoff position.
- 2. Once the engines have stabilized at takeoff power, release the brakes.
- 3. At V_R , rotate smoothly to a pitch attitude of 12° (Flaps TO/APPR) or 13° (Flaps UP).
- 4. Adjust the pitch attitude as required to achieve a minimum of V_2+10 to 15 KIAS at a height of 35 feet above the runway.
- 5. Retract the landing gear when a positive rate of climb is achieved.

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Takeoff with One Engine Inoperative (Accelerate Go)

- 1. Follow the procedures for a Normal All Engine Takeoff.
- 2. The pilot recognizes an engine failure at or above V_1 .
- 3. Continue the acceleration to V_R .
- 4. At V_R , rotate smoothly to a pitch attitude of 10° (Flaps TO/APPR) or 11° (Flaps UP).
- 5. Adjust the pitch attitude as required to achieve a minimum of V_2 at a height of 35 feet above the runway.
- 6. Retract the landing gear when a positive rate of climb is achieved.

NOTE A momentary decrease in rate of climb may occur due to the landing gear transitioning to the up position.

Rejected Takeoff (Accelerate Stop)

- 1. Follow the procedures for a Normal All Engine Takeoff.
- 2. The pilot recognizes an engine failure or other malfunction prior to V_1 .
- 3. Reduce both thrust levers to IDLE.
- 4. Simultaneously initiate maximum braking.
- 5. Continue maximum braking until the airplane comes to a complete stop.

HA-420 AFM PERFORMANCE

Landing

- 1. Prior to 50 feet above the runway, establish the airplane on approach at V_{REF} with the Flaps set as required for landing and gear down using thrust to maintain a 3 degree glideslope.
- 2. At 50 feet above the runway, rapidly reduce both thrust levers to IDLE.
- 3. Touchdown firmly with little or no flare.
- 4. Upon touchdown, promptly derotate to nose touchdown and then apply maximum braking.
- 5. Deploy speedbrakes (if installed).
- 6. Continue maximum braking until the airplane comes to a complete stop.

NOTE The distances provided in this AFM <u>do not</u> take credit for the decrease in stopping distance when deploying the speedbrakes.

Variable Factors Affecting Performance

Some performance data presented in this section exceeds the weight temperature/altitude limits of the aircraft. These data are provided for interpolation purposes only.

Details of variables affecting performance are given with tables and charts to which they apply. Conditions which relate to all performance computations are:

- 1. Cabin pressurization ON;
- 2. Effect of wind corrections have been applied per the applicable FAA regulations.

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

PERFORMANCE DEFINITIONS

Term	Definition
1st Segment Climb	The OEI takeoff climb with the remaining engine at takeoff thrust and the landing gear extended from V_{LOF} to V_{2} .
2nd Segment Climb	The OEI takeoff climb with the remaining engine at takeoff thrust and the landing gear retracted at V_2 .
Accelerate-Stop Distance	The horizontal distance from brake release to the point at which the airplane comes to a complete stop during a takeoff when the first action to stop (apply brakes) was initiated no later than V_1 .
Actual Landing Distance (ALD)	The distance from a point 50 feet above the runway surface to the point at which the airplane would come to a complete stop. This distance assumes a dry, hard surfaced runway.
AEO	All engines operating.
Approach Climb	The OEI climb in the approach configuration with the engine at takeoff thrust, the flaps in the approach position and the landing gear retracted at $V_{\rm AC}$.
Balked Landing Climb	The AEO climb in the landing configuration with the engines at takeoff thrust, the flaps in the landing position and the landing gear down at V_{REF} .

FAA APPROVED October 30, 2016

HA-420 AFM	PERFORMANCE

Term	Definition
Brake Energy	The portion of total airplane energy that is absorbed by the brakes during deceleration.
Buffet Boundary	The speed of buffet onset in maneuvering flight with flaps and gear up.
CAS	Calibrated airspeed. Indicated airspeed corrected for position and instrument error. KCAS is calibrated airspeed expressed in knots.
Demonstrated Crosswind	The 90° crosswind velocity component for which adequate control of the airplane was actually demonstrated during takeoff and landing dry runway certification flight testing.
Departure Airport Icing Conditions	Icing conditions at the departure airport are defined as a temperature of 5°C SAT or colder with visible moisture present, whether or not icing has been reported or forecasted.
Engine-Out Accelerate-Go Distance	The horizontal distance from brake release to the point at which the airplane is 35 feet above the runway surface during a takeoff when one engine is failed at the critical engine failure speed. Also referred to as OEI takeoff distance.
Enroute Climb	The OEI climb with the remaining engine at maximum continuous thrust, the flaps up and the landing gear retracted at 140 KIAS.

FAA APPROVED October 30, 2016

HA-420 AFM	PERFORMANCE
Term	Definition
Factored Landing Distance	The factored dry landing distance is equal to the actual landing distance increased by an operational factor.
Final Segment Climb	The OEI climb with the remaining engine at maximum continuous thrust, the flaps up and the landing gear retracted at 140 KIAS.
Gradient of Climb	The ratio of the change in height during a portion of the climb to the horizontal distance traveled in the same time interval.
Gross Climb Gradient	See gradient of climb.
IAS	Indicated airspeed. The airspeed indicator reading as installed in the airplane. The information in this manual is presented in terms of knots indicated airspeed (KIAS) unless otherwise stated and assumes zero instrument error.
Ice Protection On	Engine Anti-Ice on and Wing Anti-Ice on
ISA	International standard atmosphere.
M	Mach number. The ratio of true airspeed to the speed of sound.
$M_{\rm I}$	Indicated Mach number. The Mach number reading as installed in the airplane. Zero instrument error is assumed.
FAA APPROVED October 30, 2016	HJ1-29000-003-001 Page 5-9

HA-420 AFM	PERFORMANCE
Term	Definition
$ m M_{MO}$	Maximum operating Mach number. The Mach number that may not be deliberately exceeded in any flight condition.
Net Climb Gradient	The gross gradient of climb reduced by 0.8 % during the takeoff phase. The net climb gradient is used for calculating the takeoff flight path.
OAT	Outside air temperature. $(OAT = SAT)$
OEI	One engine inoperative.
Position Error Correction	A correction applied to indicated airspeed, Mach number and altitude to eliminate the effect of the location of the pressure sources on the instrument reading.
Pressure Altitude	Altitude measured from standard sea level pressure (29.92 in Hg) by a pressure altimeter. It is the indicated pressure altitude corrected for position and instrument error. In this manual, altimeter instrument errors are assumed to be zero. Position errors may be obtained from the correction tables/charts.
RTO	Rejected takeoff. RTO distance = accelerate-stop distance.
Runway Gradient	The change in runway elevation per 100 feet of runway length. A positive gradient refers to an uphill gradient.
	TTT 20000 002 001

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 5-10

Term	Definition
SAT	Static air temperature. The ambient free air static temperature obtained from either 1) ground meteorological sources or 2) from the total air temperature obtained from onboard temperature measurement adjusted for compressibility effects. (SAT = OAT)
Takeoff Flight Path	The climb profile of the airplane beginning at 35 feet above the runway and continuing to a height of at least 1,500 feet, and the aircraft being configured in its enroute configuration and airspeed. The profile is constructed assuming the failure of one engine at the critical engine failure speed during takeoff. The takeoff flight path information may be used to ensure clearance of obstacles during departure.
Takeoff Speed Schedule	The values of V_1 , V_R and V_2 for a particular takeoff considering the aircraft configuration, ambient conditions and the runway.
TAT	Total air temperature. The onboard measurement of temperature not corrected for compressibility effects on the temperature probe. TAT will always be greater than SAT in proportion to Mach number.

HA-420 AFM

PERFORMANCE

HA-420 AFM	PERFORMANCE
Term	Definition
TOFL	Takeoff field length. The takeoff field length for a specific weight, altitude, temperature, wind and runway gradient that is the longer of:
	115 % of the AEO takeoff distance
	The OEI RTO distance
	The OEI takeoff distance.
Turnaround Time	The minimum waiting time after landing that will ensure that the brakes have cooled enough to provide sufficient braking capacity to perform an RTO and meet the published takeoff performance.
V_A	Maneuvering speed. The maximum speed at which application of full aerodynamic control will not overstress the airplane.
V_1	Takeoff decision speed. The maximum speed at which the pilot must initiate the first action to discontinue the takeoff.
V_2	Takeoff safety speed (OEI). The actual speed attained at 35 feet above the runway with one engine inoperative as demonstrated during certification flight testing.
V_{35}	Takeoff safety speed (AEO). The actual speed attained at 35 feet above the runway with all engines operating.
V_{AC}	Approach climb speed. $V_{AC} = V_{REF} + 5$
FAA APPROVED October 30, 2016	HJ1-29000-003-001 Page 5-12

HA-420 AFM	PERFORMANCE
Term	Definition
$ m V_{EF}$	Engine failure speed. The speed at which the critical engine is assumed to fail during takeoff.
$ m V_{FE}$	Maximum flaps extended speed. The maximum airspeed allowed for operation with the flap setting.
$V_{ ext{FTO}}$	Final takeoff speed. Also called enroute climb speed, this is the OEI climb speed with flaps up and maximum continuous thrust.
Visible Moisture	Visible moisture includes, but is not limited to, the following conditions: fog or clouds with visibility less than one mile, falling snow and rain.
$ m V_{LE}$	Maximum landing gear extended speed. The maximum airspeed allowed for aircraft operation with the landing gear extended.
V_{LO}	Maximum landing gear operating speed. The maximum airspeed at which the landing gear can safely be extended or retracted.
V_{LOF}	Liftoff speed. The speed at which the airplane first becomes airborne during the takeoff roll.
V_{MCA}	Minimum control speed, air. The minimum flight speed out of ground effect, in the takeoff configuration, at which the airplane is controllable with up to 5° of bank when one engine suddenly becomes inoperative and the remaining engine is operating at takeoff thrust.
FAA APPROVED	HJ1-29000-003-001

October 30, 2016

Page 5-13

HA-420 AFM	PERFORMANCE
------------	--------------------

Term	Definition
$V_{ m MCL}$	Minimum control speed, landing. The minimum flight speed out of ground effect, in the landing configuration, at which the airplane is controllable with up to 5° of bank when one engine suddenly becomes inoperative and the remaining engine is operating at takeoff thrust.
V_{MO}	Maximum operating airspeed. The speed that may not be deliberately exceeded in any flight condition.
V_R	Rotation speed. The speed at which rotation is initiated during the takeoff roll.
V_{REF}	Reference landing speed. The landing approach/climb airspeed.
V_{SR}	Reference stall speed. The lowest airspeed at which level flight can be sustained by the airplane's wings.
Wind	The wind velocity, in knots, recorded as variables in the tables/charts of this section are to be understood as the headwind or tailwind components of the actual winds at 10 meters (33 feet) above the runway surface (tower winds).

HA-420 AFM

PERFORMANCE

REFERENCE INFORMATION

ISA Conversion

Relationship of Static Air Temperature to ISA

	ISA Conversion										
Alt	Static Air Temperature [°C]										
[ft]	-55	-50	-40	-30	-20	-10	0	10	20	30	40
0	-40.0	-35.0	-25.0	-15.0	-5.0	5.0	15.0	25.0	35.0	45.0	55.0
1000	-42.0	-37.0	-27.0	-17.0	-7.0	3.0	13.0	23.0	33.0	43.0	53.0
2000	-44.0	-39.0	-29.0	-19.0	-9.0	1.0	11.0	21.0	31.0	41.0	51.0
3000	-45.9	-40.9	-30.9	-20.9	-10.9	-0.9	9.1	19.1	29.1	39.1	49.1
4000	-47.9	-42.9	-32.9	-22.9	-12.9	-2.9	7.1	17.1	27.1	37.1	47.1
5000	-49.9	-44.9	-34.9	-24.9	-14.9	-4.9	5.1	15.1	25.1	35.1	45.1
6000	-51.9	-46.9	-36.9	-26.9	-16.9	-6.9	3.1	13.1	23.1	33.1	43.1
7000	-53.9	-48.9	-38.9	-28.9	-18.9	-8.9	1.1	11.1	21.1	31.1	41.1
8000	-55.8	-50.8	-40.8	-30.8	-20.8	-10.8	-0.8	9.2	19.2	29.2	39.2
9000	-57.8	-52.8	-42.8	-32.8	-22.8	-12.8	-2.8	7.2	17.2	27.2	37.2
10000	-59.8	-54.8	-44.8	-34.8	-24.8	-14.8	-4.8	5.2	15.2	25.2	35.2
11000	-61.8	-56.8	-46.8	-36.8	-26.8	-16.8	-6.8	3.2	13.2	23.2	33.2
12000	-63.8	-58.8	-48.8	-38.8	-28.8	-18.8	-8.8	1.2	11.2	21.2	31.2
13000	-65.8	-60.8	-50.8	-40.8	-30.8	-20.8	-10.8	-0.8	9.2	19.2	29.2
14000	-67.7	-62.7	-52.7	-42.7	-32.7	-22.7	-12.7	-2.7	7.3	17.3	27.3
15000	-69.7	-64.7	-54.7	-44.7	-34.7	-24.7	-14.7	-4.7	5.3	15.3	25.3
16000	-71.7	-66.7	-56.7	-46.7	-36.7	-26.7	-16.7	-6.7	3.3	13.3	23.3
17000	-73.7	-68.7	-58.7	-48.7	-38.7	-28.7	-18.7	-8.7	1.3	11.3	21.3
18000	-75.7	-70.7	-60.7	-50.7	-40.7	-30.7	-20.7	-10.7	-0.7	9.3	19.3
19000	-77.6	-72.6	-62.6	-52.6	-42.6	-32.6	-22.6	-12.6	-2.6	7.4	17.4
20000	-79.6	-74.6	-64.6	-54.6	-44.6	-34.6	-24.6	-14.6	-4.6	5.4	15.4
21000	-81.6	-76.6	-66.6	-56.6	-46.6	-36.6	-26.6	-16.6	-6.6	3.4	13.4
22000	-83.6	-78.6	-68.6	-58.6	-48.6	-38.6	-28.6	-18.6	-8.6	1.4	11.4
23000	-85.6	-80.6	-70.6	-60.6	-50.6	-40.6	-30.6	-20.6	-10.6	-0.6	9.4
24000 25000	-87.5 -89.5	-82.5	-72.5 -74.5	-62.5 -64.5	-52.5 -54.5	-42.5 -44.5	-32.5 -34.5	-22.5	-12.5 -14.5	-2.5 -4.5	7.5 5.5
26000	-91.5	-84.5 -86.5	-74.5	-66.5	-56.5	-46.5	-36.5	-24.5 -26.5	-16.5	-6.5	3.5
27000	-93.5	-88.5	-78.5	-68.5	-58.5	-48.5	-38.5	-28.5	-18.5	-8.5	1.5
28000	-95.5	-90.5	-80.5	-70.5	-60.5	-50.5	-40.5	-30.5	-20.5	-10.5	-0.5
29000	-97.5	-92.5	-82.5	-72.5	-62.5	-52.5	-42.5	-32.5	-22.5	-12.5	-2.5
30000	-99.4	-94.4	-84.4	-74.4	-64.4	-54.4	-44.4	-34.4	-24.4	-14.4	-4.4
31000	-101.4	-96.4	-86.4	-76.4	-66.4	-56.4	-46.4	-36.4	-26.4	-16.4	-6.4
32000	-103.4	-98.4	-88.4	-78.4	-68.4	-58.4	-48.4	-38.4	-28.4	-18.4	-8.4
33000	-105.4	-100.4	-90.4	-80.4	-70.4	-60.4	-50.4	-40.4	-30.4	-20.4	-10.4
34000	-107.4	-102.4	-92.4	-82.4	-72.4	-62.4	-52.4	-42.4	-32.4	-22.4	-12.4
35000	-109.3	-104.3	-94.3	-84.3	-74.3	-64.3	-54.3	-44.3	-34.3	-24.3	-14.3
36000	-111.3	-106.3	-96.3	-86.3	-76.3	-66.3	-56.3	-46.3	-36.3	-26.3	-16.3
37000	-111.5	-106.5	-96.5	-86.5	-76.5	-66.5	-56.5	-46.5	-36.5	-26.5	-16.5
43000	-111.5	-106.5	-96.5	-86.5	-76.5	-66.5	-56.5	-46.5	-36.5	-26.5	-16.5

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Temperature Conversion

To convert from Celsius to Fahrenheit, find, in bold face columns, the number representing the Celsius temperature to be converted. The equivalent Fahrenheit temperature is read in the adjacent column headed °F.

To convert from Fahrenheit to Celsius, find, in bold face columns, the number representing the Fahrenheit temperature to be converted. The equivalent Celsius temperature is read in the adjacent column headed °C.

HA-420 AFM

PERFORMANCE

			Fa	hrenl	heit-Ce	elsius	Tem	peratu	re Cor	ivers	ion			
°C	▼ ▶	°F	°C	▼	°F	°C	▼ ▶	°F	°C	▼	°F	°C	▼ ▶	°F
-73.3	-100	-148.0	-45.6	-50	-58.0	-17.8	0	32.0	10.0	50	122.0	37.8	100	212.0
-72.8	-99	-146.2	-45.0	-49	-56.2	-17.2	1	33.8	10.6	51	123.8	38.3	101	213.8
-72.2	-98	-144.4	-44.4	-48	-54.4	-16.7	2	35.6	11.1	52	125.6	38.9	102	215.6
-71.7	-97	-142.6	-43.9	-47	-52.6	-16.1	3	37.4	11.7	53	127.4	39.4	103	217.4
-71.1	-96	-140.8	-43.3	-46	-50.8	-15.6	4	39.2	12.2	54	129.2	40.0	104	219.2
-70.6	-95	-139.0	-42.8	-45	-49.0	-15.0	5	41.0	12.8	55	131.0	40.6	105	221.0
-70.0	-94	-137.2	-42.2	-44	-47.2	-14.4	6	42.8	13.3	56	132.8	41.1	106	222.8
-69.4	-93	-135.4	-41.7	-43	-45.4	-13.9	7	44.6	13.9	57	134.6	41.7	107	224.6
-68.9	-92	-133.6	-41.1	-42	-43.6	-13.3	8	46.4	14.4	58	136.4	42.2	108	226.4
-68.3	-91	-131.8	-40.6	-41	-41.8	-12.8	9	48.2	15.0	59	138.2	42.8	109	228.2
-67.8	-90	-130.0	-40.0	-40	-40.0	-12.2	10	50.0	15.6	60	140.0	43.3	110	230.0
-67.2	-89	-128.2	-39.4	-39	-38.2	-11.7	11	51.8	16.1	61	141.8	43.9	111	231.8
-66.7	-88	-126.4	-38.9	-38	-36.4	-11.1	12	53.6	16.7	62	143.6	44.4	112	233.6
-66.1	-87	-124.6	-38.3	-37	-34.6	-10.6	13	55.4	17.2	63	145.4	45.0	113	235.4
-65.6	-86	-122.8	-37.8	-36	-32.8	-10.0	14	57.2	17.8	64	147.2	45.6	114	237.2
-65.0	-85	-121.0	-37.2	-35	-31.0	-9.4	15	59.0	18.3	65	149.0	46.1	115	239.0
-64.4	-84	-119.2	-36.7	-34	-29.2	-8.9	16	60.8	18.9	66	150.8	46.7	116	240.8
-63.9	-83	-117.4	-36.1	-33	-27.4	-8.3	17	62.6	19.4	67	152.6	47.2	117	242.6
-63.3	-82	-115.6	-35.6	-32	-25.6	-7.8	18	64.4	20.0	68	154.4	47.8	118	244.4
-62.8	-81	-113.8	-35.0	-31	-23.8	-7.2	19	66.2	20.6	69	156.2	48.3	119	246.2
-62.2	-80	-112.0	-34.4	-30	-22.0	-6.7	20	68.0	21.1	70	158.0	48.9	120	248.0
-61.7	-79	-110.2	-33.9	-29	-20.2	-6.1	21	69.8	21.7	71	159.8	49.4	121	249.8
-61.1	-78	-108.4	-33.3	-28	-18.4	-5.6	22	71.6	22.2	72	161.6	50.0	122	251.6
-60.6	-77	-106.6	-32.8	-27	-16.6	-5.0	23	73.4	22.8	73	163.4	50.6	123	253.4
-60.0	-76	-104.8	-32.2	-26	-14.8	-4.4	24	75.2	23.3	74	165.2	51.1	124	255.2
-59.4	-75	-103.0	-31.7	-25	-13.0	-3.9	25	77.0	23.9	75	167.0	51.7	125	257.0
-58.9	-74	-101.2	-31.1	-24	-11.2	-3.3	26	78.8	24.4	76	168.8	52.2	126	258.8
-58.3	-73	-99.4	-30.6	-23	-9.4	-2.8	27	80.6	25.0	77	170.6	52.8	127	260.6
-57.8	-72	-97.6	-30.0	-22	-7.6	-2.2	28	82.4	25.6	78	172.4	53.3	128	262.4
-57.2	-71	-95.8	-29.4	-21	-5.8	-1.7	29	84.2	26.1	79	174.2	53.9	129	264.2
-56.7	-70	-94.0	-28.9	-20	-4.0	-1.1	30	86.0	26.7	80	176.0	54.4	130	266.0
-56.1	-69	-92.2	-28.3	-19	-2.2	-0.6	31	87.8	27.2	81	177.8	55.0	131	267.8
-55.6	-68	-90.4	-27.8	-18	-0.4	0.0	32	89.6	27.8	82	179.6	55.6	132	269.6
-55.0	-67	-88.6	-27.2	-17	1.4	0.6	33	91.4	28.3	83	181.4	56.1	133	271.4
-54.4	-66	-86.8	-26.7	-16	3.2	1.1	34	93.2	28.9	84	183.2	56.7	134	273.2
-53.9	-65	-85.0	-26.1	-15	5.0	1.7	35	95.0	29.4	85	185.0	57.2	135	275.0
-53.3	-64	-83.2	-25.6	-14	6.8	2.2	36	96.8	30.0	86	186.8	57.8	136	276.8
-52.8	-63	-81.4	-25.0	-13	8.6	2.8	37	98.6	30.6	87	188.6	58.3	137	278.6
-52.2	-62	-79.6	-24.4	-12	10.4	3.3	38	100.4	31.1	88	190.4	58.9	138	280.4
-51.7	-61	-77.8	-23.9	-11	12.2	3.9	39	102.2	31.7	89	192.2	59.4	139	282.2
-51.1	-60	-76.0	-23.3	-10	14.0	4.4	40	104.0	32.2	90	194.0	60.0	140	284.0
-50.6	-59	-74.2	-22.8	-9	15.8	5.0	41	105.8	32.8	91	195.8	60.6	141	285.8
-50.0	-58	-72.4	-22.2	-8	17.6	5.6	42	107.6	33.3	92	197.6	61.1	142	287.6
-49.4	-57	-70.6	-21.7	-7	19.4	6.1	43	109.4	33.9	93	199.4	61.7	143	289.4
-48.9	-56	-68.8	-21.1	-6	21.2	6.7	44	111.2	34.4	94	201.2	62.2	144	291.2
-48.3	-55	-67.0	-20.6	-5	23.0	7.2	45	113.0	35.0	95	203.0	62.8	145	293.0
-47.8	-54	-65.2	-20.0	-4	24.8	7.8	46	114.8	35.6	96	204.8	63.3	146	294.8
-47.2	-53	-63.4	-19.4	-3	26.6	8.3	47	116.6	36.1	97	206.6	63.9	147	296.6
-46.7	-52	-61.6	-18.9	-2	28.4	8.9	48	118.4	36.7	98	208.4	64.4	148	298.4
-46.1 TEMP_C0	-51	-59.8	-18.3	-1	30.2	9.4	49	120.2	37.2	99	210.2	65.0	149	300.2
- CIVIP_CC	NAN ELES	ION												

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Weight Conversion

To convert from kilograms to pounds, find, in bold face columns, the number representing the kilogram weight to be converted. The equivalent pound weight is read in the adjacent column headed pounds.

To convert from pounds to kilograms, find, in bold face columns, the number representing the pounds weight to be converted. The equivalent kilogram weight is read in the adjacent column headed kilograms.

HA-420 AFM

PERFORMANCE

				Weigh	t Conv	ersion			
0.5 1 2.2 204.1 450 992.1 244.0 5300 11684.5 0.9 2 4.4 208.7 460 1014.1 2449.4 5400 11905.0 1.4 3 6.6 213.2 470 1036.2 22494.8 5500 12125.4 1.8 4 8.8 217.7 480 1058.2 2540.1 5600 12345.9 2.3 5 11.0 222.3 490 1080.3 2585.5 5700 12566.8 3.2 7 15.4 272.2 600 1322.8 2676.2 5900 13007.3 3.6 8 17.6 317.5 700 1543.2 2721.6 6000 13227.7 4.1 9 19.8 362.9 800 1763.7 2766.9 6100 13448.2 9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 13889.1 13.6 30 66.1	Kg	▼	Lb	Kg	4 •	Lb	Kg	4 •	Lb
1.4 3 6.6 213.2 470 1036.2 2494.8 5500 12125.4 1.8 4 8.8 217.7 480 1058.2 2540.1 5600 12345.9 2.7 6 13.2 226.8 500 1102.3 2630.8 5800 12786.8 3.2 7 15.4 272.2 600 1322.8 2676.2 5900 13007.3 3.6 8 17.6 317.5 700 1543.2 2721.6 6000 13227.7 4.1 9 19.8 362.9 800 1763.7 2766.9 6100 13448.2 4.5 10 22.0 408.2 900 1984.2 2812.3 6200 13668.7 9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 1388.91 13.6 30 66.1 499.0 1100 2425.1 2903.0 6400 14199.6 13.8 7 <t< td=""><td>0.5</td><td></td><td>2.2</td><td>204.1</td><td>450</td><td></td><td>2404.0</td><td></td><td>11684.5</td></t<>	0.5		2.2	204.1	450		2404.0		11684.5
1.8 4 8.8 217.7 480 1058.2 2540.1 5600 12345.9 2.3 5 11.0 222.3 490 1080.3 2585.5 5700 12566.3 2.7 6 13.2 226.8 500 1102.3 2630.8 5800 12786.8 3.2 7 15.4 272.2 600 1322.8 2676.2 5900 13007.3 3.6 8 17.6 317.5 700 1543.2 2721.6 6000 13227.7 4.1 9 19.8 362.9 800 1763.7 2766.9 6100 13448.2 4.5 10 22.0 408.2 900 198.42 2812.3 6200 13668.7 9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 13488.91 13.6 30 66.1 499.0 1100 2425.1 2903.0 6400 14190.6 4185.0 2948.4 6500 <td>0.9</td> <td>2</td> <td>4.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11905.0</td>	0.9	2	4.4						11905.0
2.3 5 11.0 222.3 490 1080.3 2585.5 5700 12566.3 2.7 6 13.2 226.8 500 1102.3 2630.8 5800 12786.8 3.2 7 15.4 272.2 600 1322.8 2676.2 5900 13007.3 3.6 8 17.6 317.5 700 1543.2 2721.6 6000 13227.7 4.1 9 19.8 362.9 800 1763.7 2766.9 6100 13448.2 4.5 10 22.0 408.2 900 1984.2 2812.3 6200 13668.7 9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 13889.1 13.6 30 66.1 499.0 1100 2425.1 2903.0 6400 14109.6 18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 1450.0 227.7 60 132.3		3							
2.7 6 13.2 226.8 500 1102.3 2630.8 5800 12786.8 3.2 7 15.4 272.2 600 1322.8 2676.2 5900 13007.3 3.6 8 17.6 317.5 700 1543.2 2721.6 6000 13227.7 4.1 9 19.8 362.9 800 1763.7 2766.9 6100 13488.2 4.5 10 22.0 408.2 900 1984.2 2812.3 6200 1368.7 9.1 20 44.1 453.6 1000 2245.1 2903.0 6400 14109.6 18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 14330.0 22.7 50 110.2 589.7 1300 2866.0 2993.7 6600 14750.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 3129.8 6900 152			8.8	217.7					
3.2 7 15.4 272.2 600 1322.8 2676.2 5900 13007.3 3.6 8 17.6 317.5 700 1543.2 2721.6 6000 13227.7 4.1 9 19.8 362.9 800 1763.7 2766.9 6100 1348.2 4.5 10 22.0 408.2 900 1984.2 2812.3 6200 13668.7 9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 13889.1 13.6 30 66.1 499.0 1100 2425.5 2948.4 6500 14330.0 18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 14350.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 336.9 3084.4 6800 14991.4 40.8 90 <td>2.3</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.3	5							
3.6 8 17.6 317.5 700 1543.2 2721.6 6000 13227.7 4.1 9 19.8 362.9 800 1763.7 2766.9 6100 13448.2 4.5 10 22.0 408.2 900 1984.2 2812.3 6200 13668.7 9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 13688.7 13.6 30 66.1 499.0 1100 2425.1 2903.0 6400 14109.6 18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 14550.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 3306.9 3084.4 6800 14991.4 40.8 90 198.4 771.1 1700 377.9 3175.1 7000 15622.8 49.9 1		6							
4.1 9 19.8 362.9 800 1763.7 2766.9 6100 13448.2 4.5 10 22.0 408.2 900 1984.2 2812.3 6200 13668.7 9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 13889.1 13.6 30 66.1 499.0 1100 2425.1 2903.0 6400 14109.6 18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 14330.0 22.7 50 110.2 589.7 1300 2866.0 2993.7 6600 14550.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15432.4 45.4		7							
4.5 10 22.0 408.2 900 1984.2 2812.3 6200 13668.7 9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 13889.1 13.6 30 66.1 499.0 1100 2425.1 2903.0 6400 14109.6 18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 14330.0 22.7 50 110.2 589.7 1300 2866.0 2993.7 6600 14550.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15652.8 49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4									
9.1 20 44.1 453.6 1000 2204.6 2857.6 6300 13889.1 13.6 30 66.1 499.0 1100 2425.1 2903.0 6400 14109.6 18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 14330.0 22.7 50 110.2 589.7 1300 2866.0 2993.7 6600 14550.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 3306.9 3084.4 6800 14991.4 36.3 80 176.4 725.7 1600 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15432.4 49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4									
13.6 30 66.1 499.0 1100 2425.1 2903.0 6400 14109.6 18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 14330.0 22.7 50 110.2 589.7 1300 2866.0 2993.7 6600 14550.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 3306.9 3084.4 6800 14991.4 36.3 80 176.4 725.7 1600 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15432.4 45.4 100 220.5 816.5 1800 3968.3 3220.5 7100 15652.8 49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
18.1 40 88.2 544.3 1200 2645.5 2948.4 6500 14330.0 22.7 50 110.2 589.7 1300 2866.0 2993.7 6600 14550.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 3306.9 3084.4 6800 14991.4 36.3 80 176.4 725.7 1600 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15432.4 45.4 100 220.5 816.5 1800 3968.3 3220.5 7100 15652.8 49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4 120 264.6 907.2 2000 4409.2 3311.2 7300 16093.7 59.0<									
22.7 50 110.2 589.7 1300 2866.0 2993.7 6600 14550.5 27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 3306.9 3084.4 6800 14991.4 36.3 80 176.4 725.7 1600 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15432.4 45.4 100 220.5 816.5 1800 3968.3 3220.5 7100 15652.8 49.9 110 242.5 861.8 1900 4409.2 3311.2 7300 16093.7 59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16755.1 72.						2425.1			
27.2 60 132.3 635.0 1400 3086.5 3039.1 6700 14771.0 31.8 70 154.3 680.4 1500 3306.9 3084.4 6800 14991.4 36.3 80 176.4 725.7 1600 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15452.8 49.9 110 242.5 861.8 1900 498.3 320.5 7100 15652.8 54.4 120 264.6 907.2 2000 4409.2 3311.2 7300 16093.7 59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.									
31.8 70 154.3 680.4 1500 3306.9 3084.4 6800 14991.4 36.3 80 176.4 725.7 1600 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15432.4 45.4 100 220.5 816.5 1800 3968.3 3220.5 7100 15652.8 49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4 120 264.6 907.2 2000 4409.2 3311.2 7300 16093.3 59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6									
36.3 80 176.4 725.7 1600 3527.4 3129.8 6900 15211.9 40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15432.4 45.4 100 220.5 816.5 1800 3968.3 3220.5 7100 15652.8 49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4 120 264.6 907.2 2000 4409.2 3311.2 7300 16093.7 59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 68.0 150 330.7 1043.3 2300 5070.6 3447.3 7600 16755.1 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
40.8 90 198.4 771.1 1700 3747.9 3175.1 7000 15432.4 45.4 100 220.5 816.5 1800 3968.3 3220.5 7100 15652.8 49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4 120 264.6 907.2 2000 4409.2 3311.2 7300 16093.7 59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 68.0 150 330.7 1043.3 2300 5070.6 3447.3 7600 16755.1 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1									
45.4 100 220.5 816.5 1800 3968.3 3220.5 7100 15652.8 49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4 120 264.6 907.2 2000 4409.2 3311.2 7300 16093.7 59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 68.0 150 330.7 1043.3 2300 5070.6 3447.3 7600 16755.1 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5									
49.9 110 242.5 861.8 1900 4188.8 3265.9 7200 15873.3 54.4 120 264.6 907.2 2000 4409.2 3311.2 7300 16093.7 59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 68.0 150 330.7 1043.3 2300 5070.6 3447.3 7600 16755.1 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5 86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0									
54.4 120 264.6 907.2 2000 4409.2 3311.2 7300 16093.7 59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 68.0 150 330.7 1043.3 2300 5070.6 3447.3 7600 16755.1 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5 86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0 90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4									
59.0 130 286.6 952.5 2100 4629.7 3356.6 7400 16314.2 63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 68.0 150 330.7 1043.3 2300 5070.6 3447.3 7600 16755.1 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5 86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0 90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4 95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9								7200	
63.5 140 308.6 997.9 2200 4850.2 3401.9 7500 16534.7 68.0 150 330.7 1043.3 2300 5070.6 3447.3 7600 16755.1 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5 86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0 90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4 95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9 99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4									
68.0 150 330.7 1043.3 2300 5070.6 3447.3 7600 16755.1 72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5 86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0 90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4 95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9 99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4 104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8									
72.6 160 352.7 1088.6 2400 5291.1 3492.7 7700 16975.6 77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5 86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0 90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4 95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9 99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4 104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8 108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3									
77.1 170 374.8 1134.0 2500 5511.6 3538.0 7800 17196.1 81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5 86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0 90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4 95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9 99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4 104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8 108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
81.6 180 396.8 1179.3 2600 5732.0 3583.4 7900 17416.5 86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0 90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4 95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9 99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4 104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8 108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3 113.4 250 551.2 1496.9 3300 7275.3 3900.9 8600 18959.8 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
86.2 190 418.9 1224.7 2700 5952.5 3628.7 8000 17637.0 90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4 95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9 99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4 104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8 108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3 113.4 250 551.2 1496.9 3300 7275.3 3900.9 8600 18959.8 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 <									
90.7 200 440.9 1270.1 2800 6172.9 3674.1 8100 17857.4 95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9 99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4 104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8 108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3 113.4 250 551.2 1496.9 3300 7275.3 3900.9 8600 18959.8 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1									
95.3 210 463.0 1315.4 2900 6393.4 3719.5 8200 18077.9 99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4 104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8 108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3 113.4 250 551.2 1496.9 3300 7275.3 3900.9 8600 18959.8 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1 131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>17057.0</td>									17057.0
99.8 220 485.0 1360.8 3000 6613.9 3764.8 8300 18298.4 104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8 108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3 113.4 250 551.2 1496.9 3300 7275.3 3900.9 8600 18959.8 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1 131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6									
104.3 230 507.1 1406.1 3100 6834.3 3810.2 8400 18518.8 108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3 113.4 250 551.2 1496.9 3300 7275.3 3900.9 8600 18959.8 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1 131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6									
108.9 240 529.1 1451.5 3200 7054.8 3855.5 8500 18739.3 113.4 250 551.2 1496.9 3300 7275.3 3900.9 8600 18959.8 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1 131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6									
113.4 250 551.2 1496.9 3300 7275.3 3900.9 8600 18959.8 117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1 131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6									
117.9 260 573.2 1542.2 3400 7495.7 3946.3 8700 19180.2 122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1 131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6									
122.5 270 595.2 1587.6 3500 7716.2 3991.6 8800 19400.7 127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1 131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6									
127.0 280 617.3 1632.9 3600 7936.6 4037.0 8900 19621.1 131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6						7716.2			
131.5 290 639.3 1678.3 3700 8157.1 4082.3 9000 19841.6									
									20282.5
			705.5					9300	20503.0
									20723.5
									20943.9
158.8 350 771.6 1950.4 4300 9479.9 4354.5 9600 21164.4									21164.4
									21384.8
									21605.3
									21825.8
									22046.2
									22266.7
									22487.2
									22707.6
195.0 430 948.0 2313.3 5100 11243.6 4717.4 10400 22928.1		90.00000000				11243.6			
									23148.5

WT_CONVERSION

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Volume Conversion

To convert from liters to gallons, find, in bold face columns, the number representing the liters volume to be converted. The equivalent gallons volume is read in the adjacent column headed gallons.

To convert from gallons to liters, find, in bold face columns, the number representing the gallons volume to be converted. The equivalent liters volume is read in the adjacent column headed liters.

HA-420 AFM

PERFORMANCE

	Volume Conversion								
Liters	4	Gallons	Liters	◆ ►	Gallons	Liters	4 ►	Gallons	
3.8	1	0.3	1324.9	350	92.5	2952.6	780	206.1	
7.6	2	0.5	1362.7	360	95.1	2990.5	790	208.7	
11.4	3	0.8	1400.6	370	97.7	3028.3	800	211.3	
15.1	4	1.1	1438.5	380	100.4	3066.2	810	214.0	
18.9	5	1.3	1476.3	390	103.0	3104.0	820	216.6	
22.7	6	1.6	1514.2	400	105.7	3141.9	830	219.3	
26.5	7	1.8	1552.0	410	108.3	3179.7	840	221.9	
30.3	8	2.1	1589.9	420	111.0	3217.6	850	224.5	
34.1	9	2.4	1627.7	430	113.6	3255.5	860	227.2	
37.9	10	2.6	1665.6	440	116.2	3293.3	870	229.8	
75.7	20	5.3	1703.4	450	118.9	3331.2	880	232.5	
113.6	30	7.9	1741.3	460	121.5	3369.0	890	235.1	
151.4	40	10.6	1779.1	470	124.2	3406.9	900	237.8	
189.3	50	13.2	1817.0	480	126.8	3444.7	910	240.4	
227.1	60	15.9	1854.9	490	129.4	3482.6	920	243.0	
265.0	70	18.5	1892.7	500	132.1	3520.4	930	245.7	
302.8	80	21.1	1930.6	510	134.7	3558.3	940	248.3	
340.7	90	23.8	1968.4	520	137.4	3596.1	950	251.0	
378.5	100	26.4	2006.3	530	140.0	3634.0	960	253.6	
416.4	110	29.1	2044.1	540	142.7	3671.8	970	256.2	
454.2	120	31.7	2082.0	550	145.3	3709.7	980	258.9	
492.1	130	34.3	2119.8	560	147.9	3747.6	990	261.5	
530.0	140	37.0	2157.7	570	150.6	3785.4	1000	264.2	
567.8	150	39.6	2195.5	580	153.2	4164.0	1100	290.6	
605.7	160	42.3	2233.4	590	155.9	4542.5	1200	317.0	
643.5	170	44.9	2271.2	600	158.5	4921.0	1300	343.4	
681.4	180	47.6	2309.1	610	161.1	5299.6	1400	369.8	
719.2	190	50.2	2347.0	620	163.8	5678.1	1500	396.3	
757.1	200	52.8	2384.8	630	166.4	6056.7	1600	422.7	
794.9	210	55.5	2422.7	640	169.1	6435.2	1700	449.1	
832.8	220	58.1	2460.5	650	171.7	6813.7	1800	475.5	
870.6	230	60.8	2498.4	660	174.4	7192.3	1900	501.9	
908.5	240	63.4	2536.2	670	177.0	7570.8	2000	528.3	
946.4	250	66.0	2574.1	680	179.6	7949.4	2100	554.8	
984.2	260	68.7	2611.9	690	182.3	8327.9	2200	581.2	
1022.1	270	71.3	2649.8	700	184.9	8706.4	2300	607.6	
1059.9	280	74.0	2687.6	710	187.6	9085.0	2400	634.0	
1097.8	290	76.6	2725.5	720	190.2	9463.5	2500	660.4	
1135.6	300	79.3	2763.4	730	192.8	9842.1	2600	686.8	
1173.5	310	81.9	2801.2	740	195.5	10220.6	2700	713.3	
1211.3	320	84.5	2839.1	750	198.1	10599.2	2800	739.7	
1249.2	330	87.2	2876.9	760	200.8	10977.7	2900	766.1	
1287.0 VOL_CONVERS	340 SION	89.8	2914.8	770	203.4	11356.2	3000	792.5	

VOL_CONVERSION

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Length Conversion

To convert from meters to feet, find, in bold face columns, the number representing the meters length to be converted. The equivalent feet are read in the adjacent column headed, Feet.

To convert from feet to meters, find, in bold face columns, the number representing the feet length to be converted. The equivalent meters are read in the adjacent column headed, Meters.

HA-420 AFM

	Length Conversion							
Meters	∢ ►	Feet	Meters	∢ ►	Feet			
0.3	1	3	365.8	1200	3937			
0.6	2	7	396.2	1300	4265			
0.9	3	10	426.7	1400	4593			
1.2	4	13	457.2	1500	4921			
1.5	5	16	487.7	1600	5249			
1.8	6	20	518.2	1700	5577			
2.1	7	23	548.6	1800	5906			
2.4	8	26	579.1	1900	6234			
2.7	9	30	609.6	2000	6562			
3.0	10	33	640.1	2100	6890			
6.1	20	66	670.6	2200	7218			
9.1	30	98	701.0	2300	7546			
12.2	40	131	731.5	2400	7874			
15.2	50	164	762.0	2500	8202			
18.3	60	197	792.5	2600	8530			
21.3	70	230	823.0	2700	8858			
24.4	80	262	853.4	2800	9186			
27.4	90	295	883.9	2900	9514			
30.5	100	328	914.4	3000	9843			
45.7	150	492	944.9	3100	10171			
61.0	200	656	975.4	3200	10499			
76.2	250	820	1005.8	3300	10827			
91.4	300	984	1036.3	3400	11155			
106.7	350	1148	1066.8	3500	11483			
121.9	400	1312	1097.3	3600	11811			
137.2	450	1476	1127.8	3700	12139			
152.4	500	1640	1158.2	3800	12467			
167.6	550	1804	1188.7	3900	12795			
182.9	600	1969	1219.2	4000	13123			
198.1	650	2133	1249.7	4100	13451			
213.4	700	2297	1280.2	4200	13780			
228.6	750	2461	1310.6	4300	14108			
243.8	800	2625	1341.1	4400	14436			
259.1	850	2789	1371.6	4500	14764			
274.3	900	2953	1402.1	4600	15092			
289.6	950	3117	1432.6	4700	15420			
304.8	1000	3281	1463.0	4800	15748			
335.3	1100	3609	1493.5	4900	16076			

LEN_CONVERSION

FAA APPROVED October 30, 2016 HJ1-29000-003-001

PERFORMANCE

HA-420 AFM

PERFORMANCE

Wind Components

Example:

Ambient Conditions:

Wind Speed	25 knots
Wind Direction	175°
Using the Chart:	
1 Runway Heading	230°

1.	Runway Heading	230
2.	Wind Direction from Runway	55°
3.	Wind Velocity	25 knots
4.	Headwind Component	14.3 knots
5.	Crosswind Component	20.5 knots

FAA APPROVED October 30, 2016

ACOUSTIC LEVELS

The following noise levels comply with part 36, Appendix B, Stage 4 maximum noise level requirements and were obtained by analysis of approved data from noise tests conducted under the provisions of part 36, Amendment 36-29. The noise measurement and evaluation procedures used to obtain these noise levels are considered by the FAA to be equivalent to the Chapter 4 noise level required by the International Civil Aviation Organization (ICAO) in Annex 16, Volume I, Appendix 2, Amendment 10, effective July 2011.

No determination has been made by the Federal Aviation Administration that the noise levels of this aircraft are or should be acceptable or unacceptable for operation at, into, or out of any airport.

These noise values are stated for reference conditions per a standard acoustic atmospheric day, defined as ISA sea level pressure, 25 °C ambient temperature (ISA + 10 °C), 70 % relative humidity, no runway slope and zero wind.

Flyover and lateral noise levels were determined for the maximum takeoff weight of 10,600 lbs., TO/APPR flap setting, climb speed of $V_2 + 15$ KIAS. For Flyover, a thrust cutback altitude of 3,300 ft AGL (nominally) was used. Approach noise levels were determined for the maximum landing weight of 9,860 lbs., LDG flap setting, approach speed of $V_{REF} + 10$ KIAS, landing gear down (DN) and a glideslope of 3 degrees.

CERTIFICATION NOISE LEVELS

The demonstrated effective perceived noise levels (EPNdB), noise limits and margins of compliance to Title 14 CFR 36, Stage 4, and ICAO Annex 16, Volume I, Chapter 4 are listed below:

Reference Condition	Certification Noise Level [EPNdb]	Maximum Allowable Requirement [EPNdb]
Flyover	72.9	89.0
Lateral	85.4	94.0
Approach	87.5	98.0

ICAO Annex 16, Volume I, Chapter 4 and 14 CFR 36 Stage 4 compliance has been demonstrated with a minimum -8.6 EPNdB margin.

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

GENERAL INFORMATION

PRIMARY AIRSPEED POSITION ERROR CORRECTION - dV					
INDICATED AIRSPEED [KIAS]	dV [knots]				
100	-1				
125	-1				
150	-1				
175	-1				
200	-1				
225	-1				
250	-1				
270	-1				

CSP-SSEC-AS-03

dV = KCAS - KIAS

HA-420 AFM

PERFORMANCE

Airspeed Correction (continued)

STDBY AIRSPEED POSITION ERROR CORRECTION - dV							
INDICATED		dV					
AIRSPEED		[knots]					
[KIAS]	Flaps UP	Flaps TO/APPR	Flaps LDG				
100	-5	-2	-2				
125	-3	-1	-1				
150	-1	-1	-1				
175	-1	-1	-1				
200	-1	-1	-1				
225	-1	-1	-1				
250	-1	-1	-1				
270	-1	-1	-1				

STB-SSEC-AS-03

dV = KCAS - KIAS

HA-420 AFM

PERFORMANCE

Altimeter Correction

PRIMARY ALTITUDE POSITION ERROR CORRECTION - dH							
INDICATED		dH					
AIRSPEED		[feet]					
[KIAS]	Up to FL200	FL300	FL400				
100	10	5	-15				
125	5	-5	-25				
150	-5	-15	-35				
175	-5	-20	-40				
200	-10	-25	-30				
225	-10	-25	-30				
250	-15	-20					
270	-15	-30					

CSP-SSEC-HP-03

dH = Calibrated - Indicated Altitude

Note: Altitude correction is less than 10 feet for

Flaps TO/APPR and LDG

HA-420 AFM

PERFORMANCE

Altimeter Correction (continued)

STDBY ALTITUDE POSITION ERROR CORRECTION - dH							
INDICATED		dH					
AIRSPEED		[feet]					
[KIAS]	Flaps UP	Flaps TO/APPR	Flaps LDG				
100	-70	-25	-15				
125	-40	-5	0				
150	-10	5	-5				
175	0	-5	-25				
200	0	-10					
225	-10						
250	-25						
270	-45						

STB-SSEC-HP-03

dH = Calibrated - Indicated Altitude

HA-420 AFM

PERFORMANCE

Stall Speeds

	Reference Stall Speed [KIAS]*								
	FLAPS UP								
Weight		Bank An	gle [deg]						
[lb]	0	30	45	60					
7000	89	95	106	126					
7800	94	101	111	133					
8200	96	103	114	136					
8600	98	106	117	139					
8800	100	107	118	141					
9000	101	108	120	142					
9400	103	110	122	145					
9800	105	113	125	148					
10200	107	115	127	151					
10300	107	115	128	152					
10600	109	117	129	154					

	Reference Stall Speed [KIAS]*							
	Flaps TO/APPR							
Weight		Bank An	gle [deg]					
[lb]	0	30	45	60				
7000	81	87	96	114				
7800	85	92	101	120				
8200	87	94	104	123				
8600	89	96	106	126				
8800	90	97	108	128				
9000	92	98	109	129				
9400	94	94 100 111						
9800	95	103	113	135				
10200	97	105	116	138				
10300	98	105	116	138				
10600	99	107	118	140				

Reference Stall Speed [KIAS]*									
	Flaps LDG								
Weight		Bank An	gle [deg]						
[lb]	0	30	45	60					
7000	78	84	93	110					
7800	82	88	98	116					
8200	84	91	100	119					
8600	86	93	103	122					
8800	87	94	104	123					
9000	88	95	105	125					
9400	90	97	107	127					
9800	92	99	109	130					
10200	92	99	110	131					
10300	94	101	112	133					
10600	96	103	114	135					

^{*} Valid from Sea Level to 20,000 feet.

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

High Altitude Stall Speeds

	Reference Stall Speed [KIAS]									
FLAPS UP										
Weight			Altitude	[1000 ft]						
[lb]	20	25	30	35	40	43				
7000	89	91	94	97	102	106				
7500	92	95	97	101	106	110				
8000	95	98	100	104	110	113				
8500	98	101	104	107	113	117				
9000	101	101 104 107 111 116 121								
9500	103	103 106 109 113 120 124								
10000	106	106 109 112 116 123 127								
10500	108	111	115	119	125	130				

SS_UP_0_HI_06

Buffet Boundary

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Buffet Boundary (continued)

Example:

Initial Conditions:

Bank Angle 45°

Weight 9000 lbs Altitude 35000 ft

Using the Chart:

1. Low Speed Buffet Boundary 140 kcas / 0.43M

2. High Speed Buffet Boundary 270 kcas / 0.72M

1.3g Maneuver Margin

October 30, 2016

HA-420 AFM PERFORMANCE

1.3g Maneuver Margin (continued)

Example:

Initial Conditions:

Weight 9000 lbs Altitude 30000 ft

Using the Chart:

1. 1.3 g maneuver margin 0.34 Mach

HA-420 AFM PERFORMANCE

TAKEOFF

Use of takeoff information tables:

- 1. Determine the airplane gross weight for the desired loading and the planned airplane configuration (flaps, ice protection).
- 2. Obtain airport information:
 - active runway
 - available runway length
 - runway gradient
 - obstacles in the takeoff flight path
 - ambient temperature
 - O Verify that the temperature is within the ambient temperature limits found in the limitations section.
 - pressure altitude
 - wind
 - O Determine the wind component parallel to active runway from the crosswind component chart.
- 3. Check the maximum takeoff weight permitted by climb requirements and brake energy limits for the planned airplane configuration using "Maximum Takeoff Weight" charts. If any of these limitations restrict the takeoff gross weight, the pilot must off load weight until the requirement is met.
- 4. Using the takeoff gross weight determined in step 3 and the planned airplane takeoff configuration, determine V₁, V_R, V₂, attitude and uncorrected takeoff field length using the tables on pages 48 59 (Flaps TO/APPR, Ice Protection Off), pages 71 82 (Flaps TO/APPR, Ice Protection On), pages 116 127 (Flaps UP, Ice Protection Off) or 145 156 (Flaps UP, Ice Protection On).
- 5. For wind and runway gradients, the takeoff field length must be corrected using the correction tables on pages 63 67 (Flaps TO/APPR, Ice Protection Off) and 86 90 (Flaps TO/APPR, Ice Protection On) or 131 138 (Flaps UP, Ice Protection Off) and 160 167 (Flaps UP, Ice Protection On).

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Use of takeoff information tables (continued):

- 6. If the available runway length is less than the required takeoff field length, the airplane weight must be reduced until this requirement can be met.
- 7. If obstacle clearance is a factor, use the Obstacle Clearance section to ensure adequate performance is available. If the required obstacle clearance is not achieved, the gross weight must be adjusted until the obstacle can be cleared.
- 8. The second segment takeoff net climb tables are provided on pages 91 97 (Flaps TO/APPR, Ice Protection Off and On) and 168 174 (Flaps UP, Ice Protection Off and On) with wind correction tables on pages 94, 98, 171 and 175.
- 9. Final segment climb tables are provided on pages 99 105 (Flaps TO/APPR, Ice Protection Off and On) and 176 182 (Flaps UP, Ice Protection Off and On) with wind correction tables on pages 102, 106, 179 and 183.
- **NOTE** If MTOW is not limited by brake energy for a given wind, a chart is not provided.
- NOTE Ice Protection ON assumes both ENG and WING A/I are ON. If only ENG A/I is on, the Ice Protection ON tables must be used.
- The takeoff field length provided in the performance section of the flight manual is based on a dry runway. If departing from a wet runway, it is recommended to increase the predicted takeoff field length by 30 %.

HA-420 AFM

PERFORMANCE

Takeoff Pitch Trim Settings

Pitch trim for takeoff should be set per the following table.

TOGW C.G.	Pitch Trim Setting			
[% M.A.C.]	Flaps UP	Flaps TO/APPR		
20 – 24	3.2	4.3		
24 – 27	2.9	4.0		
27 – 31	2.5	3.6		

TO_PITCH_TRIM_03

TAKEOFF – ANTI-ICE FLUID PERFORMANCE ADDITIVES

After the use of anti-ice fluids:

- 1. Increase V_R and V_2 by 5
- 2. Increase the calculated field length by 30%.

HA-420 AFM PERFORMANCE

TAKEOFF - FLAPS TO/APPR

Max Takeoff Weight - Climb and Brake Energy Limited

Red shading on the takeoff tables indicates conditions where the airplane does not meet the climb requirements or exceeds the brake energy limits, but can be used for interpolation.

Example:

Ambient Conditions:

Temperature 35 °C Airport Altitude 5500 ft

Wind 10 kts Tailwind

Runway Gradient -2.0 %

Aircraft Configuration:

Flaps TO/APPR

Bleed Setting:

Ice Protection Off

Using the Weight Limit Charts:

Climb Weight Limit 9500 lbs

Using the Tables:

Uncorrected

V₁ 119 KIAS
 V_R 121.5 KIAS
 V₂ 122.5 KIAS
 Field Length 6967 ft
 Climb Gradient 1.5 %

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Example: (continued)

Using the Tables (continued):

Wind Correction:

V₁ 118 KIAS
Field Length 7960 ft
Climb Gradient 1.4 %

Slope Correction:

V₁ 116 KIAS
 V₂ 124.5 KIAS
 Field Length 7565 ft

HJ1-29000-003-001

Page 5-44

HJ1-29000-003-001

Page 5-46

Slope Corre	Slope Corrected Maximum Takeoff Weight for Brake Energy [lb]									
	Flaps TO/APPR, Ice Protection Off									
	Runway Gradient [%]									
-2	-1	▼ REF [0] ▶	1	2						
7564	7698	7800	8110	8605						
7659	7795	7900	8202	8683						
7753	7891	8000	8294	8760						
7848	7988	8100	8386	8838						
7942	8084	8200	8479	8915						
8037	8181	8300	8571	8993						
8131	8277	8400	8663	9070						
8226	8374	8500	8755	9148						
8320	8470	8600	8847	9225						
8415	8567	8700	8939	9303						
8509	8663	8800	9031	9380						
8604	8760	8900	9124	9458						
8698	8856	9000	9216	9535						
8793	8953	9100	9308	9613						
8887	9049	9200	9400	9690						
8982	9146	9300	9492	9768						
9076	9242	9400	9584	9845						
9171	9339	9500	9676	9923						
9265	9435	9600	9769	10000						
9360	9532	9700	9861	10078						
9454	9628	9800	9953	10155						
9549	9725	9900	10045	10233						
9643	9821	10000	10137	10310						
9738	9918	10100	10229	10388						
9832	10014	10200	10321	10465						
9927	10111	10300	10414	10543						
10021	10207	10400	10506	10600						
10116	10304	10500	10598	10600						
10210	10400	10600	10600	10600						

BESC1_TO_0_04

HA-420 AFM

PERFORMANCE

Page	,	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]								
Temp.		The state of the second								
No. No.	Fla	그리고 하는 것으로 가는 것을 보고 살아보니 하는 것은 사람들이 되었다. 그리고 있는 것은 나는 것을 하는 것								
V1	- 012-1-130-10-1	Data			Take	off Weigl	nt [lb]			
-40	[°C]	Data	7800	8000	8500	9000	9500	10000	10600	
124		-110 31	0.0000000	107	108	X100011111		11 150000000	300 - 333-4-11	
TOFL 2698 2726 2797 2868 2939 3081 3204 V1 106 106 107 107 108 109 110 VR 113 113 113 113 113 113 114 115 V2 123 122 121 120 120 120 119 120 TOFL 3182 3214 3304 3393 3482 3627 3809 V1 106 106 106 107 107 107 109 110 VR 113 113 113 113 113 113 114 115 V2 123 122 121 120 120 120 120 120 TOFL 3275 3300 3393 3485 3577 3720 3913 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 120 119 120 120 120 TOFL 3532 3574 3679 3852 4030 4199 4438 V1 107 108 110 111 112 114 115 VR 113 113 115 115 116 118 119 V2 120 119 120 120 120 120 121 121 TOFL 3715 3772 4011 4160 4366 4581 4840 V1 110 110 110 112 113 115 116 117 V2 120 119 120 120 120 121 121 TOFL 4072 4123 4336 4565 4798 5033 5316 V1 115 115 116 117 118 119 120 VR 117 117 118 119 120 121 122 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 VR 119 119 120 121 122 123 124 VR 119 119 120 121 121 122 123 124	-40	VR	113	113	113	113	113	114	115	
V1	-,0	V2	124	123	122	121	120	120	120	
15 VR 113 113 113 113 114 115 V2 123 122 121 120 120 119 120 TOFL 3182 3214 3304 3393 3482 3627 3809 V1 106 106 106 107 107 109 110 VR 113 113 113 113 113 114 115 V2 123 122 121 120 120 119 120 TOFL 3275 3300 3393 3485 3577 3720 3913 35 VR 113 113 113 114 115 116 117 V2 121 120 120 119 120 120 120 35 VR 113 113 113 114 115 116 117 40 VR 113 113 115 116			2698	2726	2797	2868	2939	3081	3204	
15		V1	106	106	107	107	108	109	110	
TOFL 3182 3214 3304 3393 3482 3627 3809 V1 106 106 106 107 107 109 110 VR 113 113 113 113 113 113 114 115 V2 123 122 121 120 120 119 120 TOFL 3275 3300 3393 3485 3577 3720 3913 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 120 119 120 120 120 TOFL 3532 3574 3679 3852 4030 4199 4438 V1 107 108 110 111 112 114 115 VR 113 113 115 116 118 119 VR 113 110 110 112 113 115 116 117 VR 1110 110 110 112 113 115 116 117 VR 115 115 116 117 118 119 120 VR 115 117 117 118 119 120 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 VR 117 117 118 119 120 121 122 TOFL 4458 4559 4812 5055 5312 5569 5882 VR 119 119 120 121 122 123 124 VR 119 119 120 121 122 123 124 VR 119 119 120 121 122 122 123 124 VR 119 119 120 121 122 122 123 124	15	VR	20, 20,000	113	113	26 X C 2 1	113	114	115	
25 V1 106 106 107 107 109 110 VR 113 113 113 113 113 114 115 V2 123 122 121 120 120 119 120 TOFL 3275 3300 3393 3485 3577 3720 3913 W1 106 107 107 109 110 111 113 YR 113 113 113 114 115 116 117 Y2 121 120 120 119 120 120 120 TOFL 3532 3574 3679 3852 4030 4199 4438 40 VR 113 113 115 115 116 118 119 V2 120 119 120 120 120 121 121 TOFL 3715 3772 4011 4160 4366	10	V2	123	122	121	120	120	119	120	
25 VR 113 113 113 113 114 115 V2 123 122 121 120 120 119 120 TOFL 3275 3300 3393 3485 3577 3720 3913 35 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 120 119 120 120 120 TOFL 3532 3574 3679 3852 4030 4199 4438 40 VR 113 113 115 115 116 118 119 V2 120 119 120 120 120 121 121 121 TOFL 3715 3772 4011 4160 4366 4581 4840 45 VR 115 115		TOFL	3182	3214	3304	3393	3482	3627	3809	
V2		V1	106	106	106	107	107	109	110	
TOFL 3275 3300 3393 3485 3577 3720 3913 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 120 119 120 120 120 TOFL 3532 3574 3679 3852 4030 4199 4438 V1 107 108 110 111 112 114 115 VR 113 113 115 116 118 119 V2 120 119 120 120 120 121 121 TOFL 3715 3772 4011 4160 4366 4581 4840 V1 110 110 110 112 113 115 116 117 VR 115 115 116 117 118 119 120 VR 115 115 116 117 118 119 120 VR 1110 110 110 110 120 120 121 121 VR 115 115 116 117 118 119 120 VR 117 117 118 119 120 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 VI 110 120 121 121 122 122 TOFL 4458 4559 4812 5055 5312 5569 5882 VR 119 119 120 121 122 123 124 VR 119 119 120 121 122 123 124 VR 119 119 120 121 122 123 124	25	VR	113	113	113	113	113	114	115	
V1	20	V2	123	122	121	120	120	119	120	
35 VR		TOFL	3275	3300	3393	3485	3577	3720	3913	
V2 121 120 120 119 120 120 120 TOFL 3532 3574 3679 3852 4030 4199 4438 V1 107 108 110 111 112 114 115 VR 113 113 115 115 116 118 119 V2 120 119 120 120 120 121 121 TOFL 3715 3772 4011 4160 4366 4581 4840 45 VR 115 115 116 117 118 119 120 VR 115 115 116 117 118 119 120 V2 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 40 VR 117 117 118 119		V1	106	107	107	109	110	111	113	
TOFL 3532 3574 3679 3852 4030 4199 4438 V1 107 108 110 111 112 114 115 VR 113 113 115 115 116 118 119 V2 120 119 120 120 120 121 121 TOFL 3715 3772 4011 4160 4366 4581 4840 VI 110 110 112 113 115 116 117 VR 115 115 116 117 118 119 120 VZ 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 VI 112 113 114 116 117 118 120 VR 117 117 118 119 120 121 122 122 TOFL 4458 4559 4812 5055 5312 5569 5882 VR 119 119 120 121 122 123 124 VZ 121 121 122 122 123 124 VZ 121 121 122 122 123 124	35	VR	113	113	113	114	115	116	117	
40 V1 107 108 110 111 112 114 115 VR 113 113 115 115 116 118 119 V2 120 119 120 120 120 121 121 TOFL 3715 3772 4011 4160 4366 4581 4840 V1 110 110 112 113 115 116 117 VR 115 115 116 117 118 119 120 V2 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 V1 112 113 114 116 117 118 120 V2 120 120 121 121 122 122 123 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312	33	V2	121	120	120	119	120	120	120	
40 VR 113 113 115 115 116 118 119 V2 120 119 120 120 120 121 121 TOFL 3715 3772 4011 4160 4366 4581 4840 V1 110 110 112 113 115 116 117 VR 115 115 116 117 118 119 120 V2 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 V1 112 113 114 116 117 118 120 VR 117 117 118 119 120 121 122 122 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 VR 119 119 120 121 <td></td> <td>TOFL</td> <td>3532</td> <td>3574</td> <td>3679</td> <td>3852</td> <td>4030</td> <td>4199</td> <td>4438</td>		TOFL	3532	3574	3679	3852	4030	4199	4438	
40 V2 120 119 120 120 120 121 121 TOFL 3715 3772 4011 4160 4366 4581 4840 45 V1 110 110 112 113 115 116 117 VR 115 115 116 117 118 119 120 V2 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 4072 112 113 114 116 117 118 120 50 VR 117 117 118 119 120 121 122 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 V2 121 121 122 <td></td> <td>V1</td> <td>107</td> <td>108</td> <td>110</td> <td>111</td> <td>112</td> <td>114</td> <td>115</td>		V1	107	108	110	111	112	114	115	
V2	40	VR	113	113	115	115	116	118	119	
45 V1 110 110 112 113 115 116 117 VR 115 115 116 117 118 119 120 V2 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 V1 112 113 114 116 117 118 120 VR 117 117 118 119 120 121 122 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 V8 119 119 120 121 122 123 124 V2 121 121 122 123 124	70	V2	120	119	120	120	120	121	121	
45 VR 115 115 116 117 118 119 120 V2 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 VR 117 113 114 116 117 118 120 VR 117 117 118 119 120 121 122 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 V2 121 121 122 122 123 124		TOFL	3715	3772	4011	4160	4366	4581	4840	
V2 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 V1 112 113 114 116 117 118 120 VR 117 117 118 119 120 121 122 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 V2 121 121 122 122 123 124		V1	110	110	112	113	115	116	117	
V2 120 119 120 120 121 121 122 TOFL 4072 4123 4336 4565 4798 5033 5316 V1 112 113 114 116 117 118 120 VR 117 117 118 119 120 121 122 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 V2 121 121 122 123 124	45	VR	115	115	116	117	118	119	120	
50 V1 112 113 114 116 117 118 120 VR 117 117 118 119 120 121 122 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 V2 121 121 122 122 123 124		V2	120	119	120	120	121	121	122	
50 VR 117 117 118 119 120 121 122 V2 120 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 V2 121 121 122 122 123 123 124		TOFL	4072	4123	4336	4565	4798	5033	5316	
V2 120 121 121 122 122 123 TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 V2 121 121 122 122 123 124		V1	112	113	114	116	117	118	120	
TOFL 4458 4559 4812 5055 5312 5569 5882 V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 V2 121 121 122 122 123 124	50	VR	117	117	118	119	120	121	122	
V1 115 116 117 118 119 121 122 VR 119 119 120 121 122 123 124 V2 121 121 122 122 123 124	30	V2	120	120	121	121	122	122	123	
VR 119 119 120 121 122 123 124 V2 121 121 122 122 123 124		TOFL	4458	4559	4812	5055	5312	5569	5882	
⁵⁵ V2 121 121 122 122 123 123 124) <u></u>	V1	115	116	117	118	119	121	122	
V2 121 121 122 122 123 123 124	55	VR	119	119	120	121	122	123	124	
TOFL 4977 5087 5364 5643 5915 6201 6610	33	V2	121	121	122	122	123	123	124	
		TOFL	4977	5087	5364	5643	5915	6201	6610	

TOFL_TO_0_-1_06

HA-420 AFM PERFORMANCE

,	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind							
					Translate Automotive	Programme West		
	ps TO/	APPR,	ice Pro				Sea Le	evel
Temp.	Data				off Weigl			
[°C]		7800	8000	8500	9000	9500	10000	10600
	V1	107	107	108	108	109	110	111
-40	VR	113	113	113	113	113	114	115
	V2	123	123	122	121	120	120	120
	TOFL	2781	2810	2884	2958	3032	3187	3318
	V1	105	106	106	107	108	109	110
15	VR	113	113	113	113	113	114	115
1.50	V2	123	122	121	120	119	119	120
	TOFL	3282	3314	3407	3500	3593	3750	3934
	V1	105	106	106	107	107	109	110
25	VR	113	113	113	113	113	114	115
20	V2	122	122	121	120	119	119	120
	TOFL	3378	3404	3500	3597	3693	3849	4045
	V1	107	107	108	110	111	112	114
35	VR	113	113	114	115	115	117	118
33	V2	120	120	119	120	120	120	121
	TOFL	3698	3742	3891	4111	4265	4472	4728
	V1	108	109	110	112	113	115	116
40	VR	114	115	115	116	117	118	120
40	V2	119	119	119	120	120	121	122
	TOFL	3959	4062	4227	4448	4677	4908	5186
is a	V1	110	111	113	114	116	117	118
45	VR	115	116	117	118	119	120	121
45	V2	119	120	120	121	121	122	122
	TOFL	4312	4413	4661	4901	5151	5404	5709
	V1	114	114	116	117	118	119	120
50	VR	118	118	119	120	121	122	123
50	V2	121	121	121	122	122	123	123
	TOFL	4807	4916	5187	5460	5726	6005	6343
i e	V1	117	117	118	120	121	122	123
55	VR	120	120	121	122	123	123	124
55	V2	122	122	122	123	123	123	124
	TOFL	5387	5506	5805	6107	6400	6714	7142

TOFL_TO_0_0_06

HA-420 AFM

PERFORMANCE

	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]								
	Dry Runway, Zero Slope, No Wind								
Fla	Flaps TO/APPR, Ice Protection Off, Altitude 1000 feet								
Temp.	Data				off Weigl				
[°C]	27215 (C1741).	7800	8000	8500	9000	9500	10000	10600	
	V1	107	107	108	108	109	111	112	
-40	VR	113	113	113	113	114	115	116	
	V2	123	122	121	120	120	120	120	
	TOFL	2892	2923	3002	3081	3197	3352	3493	
	V1	106	106	106	107	108	110	111	
15	VR	113	113	113	113	113	115	115	
10	V2	122	122	121	120	119	120	120	
	TOFL	3410	3450	3548	3646	3756	3957	4127	
	V1	106	106	107	107	108	110	111	
25	VR	113	113	113	113	114	115	116	
20	V2	121	121	120	119	119	120	120	
	TOFL	3548	3590	3694	3798	3959	4152	4347	
V: 3-	V1	106	107	107	109	110	112	113	
30	VR	113	113	113	114	115	116	117	
50	V2	120	120	119	119	119	120	120	
	TOFL	3721	3766	3879	4094	4254	4455	4710	
	V1	107	108	110	111	112	114	115	
35	VR	113	113	115	116	117	118	119	
33	V2	119	119	120	120	120	121	121	
	TOFL	3914	3998	4236	4404	4626	4856	5133	
	V1	110	110	112	113	115	116	117	
40	VR	115	115	116	117	118	119	120	
40	V2	120	119	120	120	121	121	122	
	TOFL	4290	4345	4583	4829	5078	5329	5631	
	V1	112	113	114	116	117	118	120	
45	VR	117	117	118	119	120	121	122	
75	V2	120	120	121	121	122	122	123	
	TOFL	4707	4814	5084	5354	5617	5891	6225	
	V1	115	116	117	119	120	121	122	
50	VR	119	119	120	121	122	123	124	
50	V2	121	121	122	122	123	123	124	
TOFL TO 0 1 0	TOFL	5257	5375	5670	5968	6257	6562	6961	

TOFL_TO_0_1_06

HA-420 AFM PERFORMANCE

	Uncorre					(1) 10 H	ls [KIAS	
			Runway,		THE STATE OF THE STATE OF	Productive West		
The second secon	ps TO/	APPR,	Ice Pro				2000 f	eet
Temp.	Data				off Weigl			
[°C]		7800	8000	8500	9000	9500	10000	10600
	V1	107	107	108	108	110	111	112
-40	VR	113	113	113	113	114	115	116
	V2	122	122	121	120	120	120	120
	TOFL	3008	3041	3124	3208	3365	3495	3674
	V1	106	106	107	107	108	110	111
10	VR	113	113	113	113	114	115	116
	V2	122	121	120	119	119	120	120
	TOFL	3501	3542	3644	3746	3900	4094	4281
	V1	105	106	106	107	108	110	111
20	VR	113	113	113	113	114	115	116
20	V2	121	121	120	119	119	120	120
	TOFL	3598	3641	3747	3853	4007	4213	4402
	V1	107	107	109	110	111	113	115
30	VR	113	113	114	115	116	117	118
50	V2	120	119	119	119	120	120	121
	TOFL	3941	3990	4218	4391	4609	4839	5117
	V1	109	110	111	112	114	115	117
35	VR	114	115	116	117	118	119	120
33	V2	119	120	119	120	121	121	122
	TOFL	4263	4357	4545	4782	5031	5280	5582
16	V1	111	112	113	115	116	117	119
40	VR	116	116	117	118	119	120	121
40	V2	120	120	120	121	121	122	122
	TOFL	4625	4725	5000	5259	5530	5803	6133
	V1	114	115	116	117	118	120	121
45	VR	118	118	119	120	121	122	123
45	V2	121	121	121	122	122	123	123
	TOFL	5141	5258	5550	5844	6129	6430	6795
Te e	V1	117	118	119	120	121	122	123
F0	VR	120	120	121	122	123	124	124
50	V2	122	122	122	123	123	124	124
	TOFL	5761	5889	6211	6536	6852	7187	7614

TOFL_TO_0_2_06

HA-420 AFM

PERFORMANCE

Page		Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
Temp.			Dry I	Runway,	Zero Slo	pe, No I	Vind				
Topic Part Topic Topic	Flaps TO/APPR, Ice Protection Off, Altitude 3000 feet										
V1	Temp.	Data		ation to pay of the standing payers than 1 and 1							
-40	[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
V2		V1	107	107	108	109	110	111	113		
TOFL 3132 3167 3255 3370 3552 3670 3870 10	-40	VR	113	113	113	113	115	115	117		
V1	-40	V2	122	121	120	119	120	120	120		
10 VR 113 113 113 114 115 116 V2 121 121 120 119 119 120 120 TOFL 3648 3691 3799 3908 4117 4276 4513 WR 113 113 113 113 115 115 117 VR 113 113 113 115 115 117 V2 121 120 120 119 119 119 120 TOFL 3776 3821 3935 4064 4293 4448 4702 25 VR 113 113 114 115 116 117 118 V2 120 119 119 119 119 119 120 121 TOFL 3970 4019 4199 4423 4607 4836 5115 30 VR 114 114 115 116		TOFL	3132	3167	3255	3370	3552	3670	3870		
10		V1	106	106	107	107	109	110	112		
TOFL 3648 3691 3799 3908 4117 4276 4513 V1 106 106 107 107 109 110 112 VR 113 113 113 113 115 115 117 V2 121 120 120 119 119 119 120 TOFL 3776 3821 3935 4064 4293 4448 4702 VR 113 113 114 115 116 117 118 V2 120 119 119 119 119 120 121 TOFL 3970 4019 4199 4423 4607 4836 5115 VR 114 114 115 116 117 118 120 VR 115 116 117 118 120 VR 116 117 118 120 VR 117 118 119 120 120 121 121 TOFL 4241 4353 4536 4776 5026 5277 5580 VI 108 119 119 120 121 121 122 122 TOFL 4587 4697 4964 5225 5496 5768 6098 VI 116 116 117 118 119 120 121 121 VR 117 118 119 120 121 121 122 TOFL 5052 5169 5460 5752 6036 6335 6695 VR 119 120 121 121 122 122 VR 119 120 121 121 122 122 VR 119 120 121 121 122 122 VR 116 116 117 118 119 120 121 121 VR 117 118 119 120 121 122 122 TOFL 5052 5169 5460 5752 6036 6335 6695 VR 119 120 121 121 122 122 123 124 VR 119 120 121 121 122 123 124	10	VR	113	113	113	113	114	115	116		
20 V1 106 106 107 107 109 110 112 VR 113 113 113 113 115 115 117 V2 121 120 120 119 119 119 120 TOFL 3776 3821 3935 4064 4293 4448 4702 V1 107 107 108 110 111 112 114 VR 113 113 114 115 116 117 118 V2 120 119 119 119 119 120 121 TOFL 3970 4019 4199 4423 4607 4836 5115 V1 108 109 110 112 113 114 116 V2 119 119 119 120 120 121 121 Y2 119 119 119 120 120	10	V2	121	121	120	119	119	120	120		
VR		TOFL	3648	3691	3799	3908	4117	4276	4513		
V2		V1	106	106	107	107	109	110	112		
TOFL 3776 3821 3935 4064 4293 4448 4702 V1 107 107 108 110 111 112 114 VR 113 113 114 115 116 117 118 V2 120 119 119 119 119 120 121 TOFL 3970 4019 4199 4423 4607 4836 5115 V1 108 109 110 112 113 114 116 VR 114 114 115 116 117 118 120 V2 119 119 119 120 120 121 121 TOFL 4241 4353 4536 4776 5026 5277 5580 V1 110 111 112 114 115 116 118 VR 115 116 117 118 119 120 121 TOFL 4587 4697 4964 5225 5496 5768 6098 V1 113 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 122 TOFL 4587 4697 4964 5225 5496 5768 6098 V1 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 122 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 VR 119 120 121 121 122 122 VR 119 120 121 121 122 122 TOFL 5052 5169 5460 5752 6036 6335 6695 VR 119 120 121 121 122 122 123 124 V2 121 121 122 122 123 124 V2 121 121 122 122 123 124 V2 121 121 122 122 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436	20	VR	113	113	113	113	115	115	117		
25 V1 107 107 108 110 111 112 114 VR 113 113 114 115 116 117 118 V2 120 119 119 119 119 120 121 TOFL 3970 4019 4199 4423 4607 4836 5115 W1 108 109 110 112 113 114 116 VR 114 114 115 116 117 118 120 V2 119 119 119 120 120 121 121 TOFL 4241 4353 4536 4776 5026 5277 5580 WR 115 116 117 118 119 120 121 121 122 122 122 122 122 122 122 122 122 122 122 122 122 122 123	20	V2	121	120	120	119	119	119	120		
25 VR 113 113 114 115 116 117 118 V2 120 119 119 119 119 120 121 TOFL 3970 4019 4199 4423 4607 4836 5115 WR 114 109 110 112 113 114 116 VR 114 114 115 116 117 118 120 V2 119 119 119 120 120 121 121 TOFL 4241 4353 4536 4776 5026 5277 5580 VR 115 116 117 118 119 120 121 121 122 122 120 121 121 122 122 122 122 122 122 122 122 122 122 122 122 122 123 124 122 122 123 124		TOFL	3776	3821	3935	4064	4293	4448	4702		
V2 120 119 119 119 119 120 121 TOFL 3970 4019 4199 4423 4607 4836 5115 W1 108 109 110 112 113 114 116 WR 114 114 115 116 117 118 120 V2 119 119 119 120 120 121 121 TOFL 4241 4353 4536 4776 5026 5277 5580 VR 115 116 117 118 119 120 121 VR 115 116 117 118 119 120 121 V2 119 119 120 121 121 122 122 TOFL 4587 4697 4964 5225 5496 5768 6098 40 VR 117 118 119 120 121		V1	107	107	108	110	111	112	114		
TOFL 3970 4019 4199 4423 4607 4836 5115 V1 108 109 110 112 113 114 116 VR 114 114 115 116 117 118 120 V2 119 119 119 120 120 121 121 TOFL 4241 4353 4536 4776 5026 5277 5580 V1 110 111 112 114 115 116 118 VR 115 116 117 118 119 120 121 V2 119 119 120 121 121 122 TOFL 4587 4697 4964 5225 5496 5768 6098 V1 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 122 VR 119 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036 6335 6695 VI 116 116 118 119 120 121 122 VR 119 120 121 121 122 122 123 124 VR 119 120 121 121 122 122 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436	25	VR	113	113	114	115	116	117	118		
30	25	V2	120	119	119	119	119	120	121		
30 VR 114 114 115 116 117 118 120 V2 119 119 119 120 120 121 121 TOFL 4241 4353 4536 4776 5026 5277 5580 V1 110 111 112 114 115 116 118 VR 115 116 117 118 119 120 121 V2 119 119 120 121 121 122 122 TOFL 4587 4697 4964 5225 5496 5768 6098 V1 113 113 115 116 117 119 120 V2 120 120 121 122 122 122 123 V2 120 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036		TOFL	3970	4019	4199	4423	4607	4836	5115		
V2 119 119 119 120 120 121 121 TOFL 4241 4353 4536 4776 5026 5277 5580 35 V1 110 111 112 114 115 116 118 VR 115 116 117 118 119 120 121 V2 119 119 120 121 121 122 122 TOFL 4587 4697 4964 5225 5496 5768 6098 40 VR 117 118 119 120 121 121 122 VR 117 118 119 120 121 121 122 122 123 124 V2 120 120 121 122 122 122 123 124 V8 119 120 121 121 122 123 124 V8		V1	108	109	110	112	113	114			
TOFL 4241 4353 4536 4776 5026 5277 5580 V1 110 111 112 114 115 116 118 VR 115 116 117 118 119 120 121 V2 119 119 120 121 121 122 122 TOFL 4587 4697 4964 5225 5496 5768 6098 V1 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 121 122 V2 120 120 121 122 122 122 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 VR 119 120 121 121 122 122 VR 119 120 121 121 122 122 VR 119 120 121 121 122 123 124 VR 119 120 121 121 122 122 123 124 VR 119 120 121 121 122 122 123 124 VR 119 120 121 121 122 123 124 VR 119 120 121 121 122 123 124 VR 15627 5754 6073 6393 6705 7034 7436	30	VR	114	114	115	116	117	118	120		
35 V1 110 111 112 114 115 116 118 VR 115 116 117 118 119 120 121 V2 119 119 120 121 121 122 122 TOFL 4587 4697 4964 5225 5496 5768 6098 V1 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 122 V2 120 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 V8 119 120 121 121 122 123 124 V2 121 121 122 123 123	00	V2	119	119	119		120	121	121		
35 VR 115 116 117 118 119 120 121 V2 119 119 120 121 121 122 122 TOFL 4587 4697 4964 5225 5496 5768 6098 V1 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 122 V2 120 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036 6335 6695 VR 119 120 121 121 122 122 123 124 VS 119 120 121 121 122 123 124 VS 121 121 122 122 123 124 VS 121 121 122 122 123		TOFL	4241	4353	4536	4776	5026	5277	5580		
V2 119 119 120 121 121 122 122 TOFL 4587 4697 4964 5225 5496 5768 6098 W1 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 122 V2 120 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 V8 119 120 121 121 122 123 124 V2 121 121 122 122 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436		V1	110	111	112	114	115	St. Barrie	118		
TOFL 4587 4697 4964 5225 5496 5768 6098 V1 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 122 V2 120 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 VR 119 120 121 121 122 122 123 124 VR 119 120 121 121 122 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436	35	VR	115	116	117	118	119	120	121		
40 V1 113 113 115 116 117 119 120 VR 117 118 119 120 121 121 121 122 122 122 123 V2 120 120 121 122 122 122 123 123 124 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 VR 119 120 121 121 122 123 124 V2 121 121 122 122 123 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436	00	V2	119	119	120	121	121	122	122		
40 VR 117 118 119 120 121 121 122 V2 120 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 VR 119 120 121 121 122 123 124 V2 121 121 122 122 123 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436		TOFL	4587	4697	4964	5225	5496	5768	6098		
V2 120 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 VR 119 120 121 121 122 123 124 V2 121 121 122 122 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436		V1	113	113	115	116	117	119	120		
V2 120 120 121 122 122 122 123 TOFL 5052 5169 5460 5752 6036 6335 6695 V1 116 116 118 119 120 121 122 VR 119 120 121 121 122 123 124 V2 121 121 122 122 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436	40	VR	117	118	119	120	121	121	122		
V1 116 116 118 119 120 121 122 VR 119 120 121 124 V2 121 121 122 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436	70	V2	120	120	121	122	122	122	123		
45 VR 119 120 121 121 122 123 124 V2 121 121 122 122 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436		TOFL	5052	5169	5460	5752	6036	6335	6695		
V2 121 121 122 122 123 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436		V1	116	116	118	119	120	121	122		
V2 121 121 122 122 123 123 124 TOFL 5627 5754 6073 6393 6705 7034 7436	45	VR	119	120	121	121	122	123	124		
	70	N3966.000	V1011/2/114	20000000	100000000	5.14-5(1.77-65)	123	123	124		
TOFL_TO_0_3_06		A TOTAL STATE OF THE STATE OF T	5627	5754	6073	6393	6705	7034	7436		

TOFL_TO_0_3_06

	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind									
Fla	Flaps TO/APPR, Ice Protection Off, Altitude 4000 feet									
Temp.		,	100 1 10		off Weigl		-1000	001		
[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
	V1	107	107	108	109	111	112	113		
40	VR	113	113	113	114	115	116	117		
-40	V2	121	121	120	120	120	120	121		
	TOFL	3263	3301	3395	3555	3712	3867	4083		
	V1	106	106	107	108	110	111	112		
10	VR	113	113	113	114	115	115	117		
10	V2	121	120	119	119	120	119	120		
	TOFL	3806	3852	3967	4125	4351	4510	4769		
	V1	106	106	107	109	110	112	113		
20	VR	113	113	113	115	115	116	118		
20	V2	120	120	118	119	119	120	121		
	TOFL	4001	4050	4192	4447	4609	4836	5116		
	V1	107	108	110	111	112	114	115		
25	VR	113	114	115	116	117	118	119		
25	V2	118	119	119	119	120	121	121		
	TOFL	4224	4333	4568	4776	5024	5276	5580		
	V1	110	110	112	113	115	116	117		
30	VR	115	115	116	117	119	120	121		
30	V2	119	119	120	120	121	121	122		
	TOFL	4621	4693	4964	5226	5499	5773	6104		
	V1	112	113	114	115	117	118	119		
35	VR	117	117	118	119	120	121	122		
33	V2	120	120	121	121	122	122	123		
	TOFL	5037	5154	5447	5730	6026	6325	6687		
	V1	115	115	117	118	119	120	121		
40	VR	118	119	120	121	122	122	123		
40	V2	121	121	122	122	123	123	123		
	TOFL	5561	5688	6005	6325	6636	6963	7362		
	V1	117	118	119	120	121	122			
45	VR	120	121	122	122	123	124			
٠,٠	V2	122	122	123	123	123	124			
TOFL TO 0 4 0	TOFL	6182	6320	6668	7020	7360	7723			

TOFL_TO_0_4_06

	Uncorre				- T		ds [KIAS]		
9	Dry Runway, Zero Slope, No Wind									
Flaps TO/APPR, Ice Protection Off, Altitude 5000 feet										
Temp.	Data				off Weigl					
[°C]		7800	8000	8500	9000	9500	10000	10600		
	V1	107	107	108	110	111	112	114		
-40	VR	113	113	113	115	115	116	118		
-,0	V2	121	120	119	120	120	120	121		
	TOFL	3402	3442	3558	3764	3896	4080	4308		
	V1	106	106	107	109	110	111	113		
5	VR	113	113	113	114	115	116	117		
Ŭ	V2	120	120	119	119	119	120	120		
	TOFL	3918	3966	4087	4313	4487	4699	4971		
	V1	106	106	107	109	110	111	113		
15	VR	113	113	113	114	115	116	117		
10	V2	120	120	119	119	119	120	120		
	TOFL	4040	4090	4215	4453	4630	4853	5136		
	V1	109	110	111	113	114	115	117		
25	VR	115	115	116	117	118	119	120		
20	V2	119	119	119	120	121	121	122		
	TOFL	4659	4720	4957	5225	5500	5775	6108		
	V1	111	112	114	115	116	117	119		
30	VR	116	117	118	119	120	121	122		
00	V2	120	120	120	121	122	122	123		
	TOFL	5032	5155	5450	5735	6034	6334	6698		
	V1	114	114	116	117	118	119	121		
35	VR	118	118	119	120	121	122	123		
00	V2	121	121	121	122	122	123	123		
	TOFL	5542	5670	5990	6311	6622	6951	7349		
	V1	117	117	118	120	121	122	123		
40	VR	120	120	121	122	123	123	124		
-,0	V2	122	122	122	123	123	123	124		
	TOFL	6145	6284	6632	6984	7325	7687	8128		
	V1	119	120	121	122	123				
45	VR	122	122	123	124	124				
-10	V2	123	123	123	124	124				
	TOFL	6857	7009	7392	7780	8156				
TOFL_TO_0_5_0	06									

FAA APPROVED October 30, 2016 HJ1-29000-003-001

ı	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind									
Flaps TO/APPR, Ice Protection Off, Altitude 6000 feet										
Temp.		,			off Weigl		00001	CCL		
[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
	V1	107	107	109	110	111	113	114		
40	VR	113	113	114	115	116	117	118		
-40	V2	120	120	119	120	120	120	121		
	TOFL	3549	3591	3754	3942	4106	4305	4547		
	V1	106	107	108	110	110	112	114		
_	VR	113	113	114	115	115	117	118		
0	V2	120	119	119	119	119	120	121		
	TOFL	4036	4086	4249	4497	4668	4900	5183		
	V1	106	106	108	109	110	112	114		
10	VR	113	113	114	115	116	117	118		
10	V2	120	119	119	119	119	120	121		
	TOFL	4166	4218	4394	4646	4829	5070	5365		
	V1	108	109	110	112	113	115	116		
20	VR	114	115	115	117	118	119	120		
20	V2	119	119	119	120	120	121	122		
	TOFL	4642	4757	4957	5221	5497	5774	6108		
	V1	110	111	113	114	116	117	118		
25	VR	116	116	117	118	119	120	121		
25	V2	119	119	120	121	121	122	122		
	TOFL	5024	5137	5439	5727	6027	6328	6693		
	V1	113	114	115	117	118	119	120		
30	VR	118	118	119	120	121	122	123		
50	V2	120	121	121	122	122	123	123		
	TOFL	5541	5669	5991	6315	6629	6959	7359		
	V1	116	116	118	119	120	121	122		
35	VR	119	120	121	122	122	123	124		
55	V2	121	121	122	122	123	123	124		
	TOFL	6126	6266	6616	6969	7311	7674	8115		
	V1	118	119	120	121	122	123			
40	VR	121	122	122	123	124	124			
٠,٠	V2	122	122	123	123	124	124			
TOFL TO 0 6 0	TOFL	6819	6972	7355	7743	8119	8521			

TOFL_TO_0_6_06

	Uncorrec				- T		ds [KIAS	1
	- TO		Runway,				7000	
	ps IO/	APPR,	ice Pro				7000 f	eet
Temp.	Data	7000	0000		off Weigl		40000	40000
[°C]	- 14	7800	8000	8500	9000	9500	10000	10600
	V1	107	107	109	110	112	113	115
-40	VR	113	113	115	115	116	117	119
13,45504	V2	120	119	120	119	120	121	121
	TOFL	3704	3749	3973	4127	4331	4544	4801
	V1	106	107	109	110	111	113	114
0	VR	113	113	114	115	116	117	118
	V2	119	119	119	119	120	120	121
	TOFL	4227	4281	4523	4718	4952	5202	5504
	V1	106	107	109	110	111	113	114
10	VR	113	113	114	115	116	117	118
10	V2	119	119	119	119	120	120	121
	TOFL	4365	4421	4683	4876	5127	5388	5703
	V1	108	109	110	111	113	114	116
15	VR	114	115	115	116	117	118	120
13	V2	119	119	119	120	120	121	121
	TOFL	4628	4755	4958	5225	5503	5782	6118
	V1	110	110	112	114	115	116	118
20	VR	115	116	117	118	119	120	121
20	V2	119	119	120	120	121	122	122
	TOFL	5010	5133	5431	5720	6021	6324	6690
	V1	112	113	115	116	117	118	120
25	VR	117	118	119	120	121	121	122
25	V2	120	120	121	121	122	122	123
	TOFL	5529	5659	5983	6308	6624	6956	7357
	V1	115	116	117	118	119	120	122
20	VR	119	119	120	121	122	123	124
30	V2	121	121	122	122	123	123	124
	TOFL	6117	6257	6609	6963	7308	7671	8114
	V1	118	118	119	121	122	122	
0.5	VR	121	121	122	123	123	124	
35	V2	122	122	123	123	123	124	
	TOFL	6782	6936	7321	7709	8085	8486	

TOFL_TO_0_7_06

ļ	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind									
Fla	Flaps TO/APPR, Ice Protection Off, Altitude 8000 feet									
Temp.	rece and	,	100110		off Weigl		00001	CCL		
[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
	V1	107	108	110	111	112	114	115		
40	VR	113	114	115	116	117	118	119		
-40	V2	119	119	120	120	120	121	121		
	TOFL	3867	3955	4183	4353	4572	4798	5070		
	V1	107	107	109	110	112	113	115		
40	VR	113	113	115	115	117	118	119		
-10	V2	119	118	119	119	120	120	121		
	TOFL	4283	4368	4636	4823	5071	5327	5635		
7	V1	107	107	109	110	112	113	115		
o	VR	113	113	115	116	117	118	119		
U	V2	119	118	119	119	120	120	121		
	TOFL	4432	4530	4805	5004	5264	5531	5852		
	V1	107	108	109	111	112	114	115		
10	VR	113	114	115	116	117	118	119		
10	V2	118	119	119	119	120	121	121		
	TOFL	4627	4739	4994	5232	5509	5790	6128		
	V1	109	110	112	113	114	116	117		
15	VR	115	115	116	118	119	120	121		
10	V2	119	119	120	120	121	121	122		
	TOFL	5051	5137	5439	5731	6034	6339	6708		
	V1	112	112	114	115	117	118	119		
20	VR	117	117	118	119	120	121	122		
20	V2	120	120	121	121	122	122	123		
	TOFL	5517	5647	5973	6288	6618	6950	7353		
	V1	114	115	116	118	119	120	121		
25	VR	118	119	120	121	122	122	123		
	V2	121	121	122	122	122	123	123		
	TOFL	6101	6243	6598	6954	7300	7664	8107		
	V1	117	118	119	120	121	122			
30	VR	120	121	122	122	123	124			
	V2	122	122	122	123	123	124			
TOFL TO 0 8 0	TOFL	6769	6923	7310	7700	8079	8481			

TOFL_TO_0_8_06

	Uncorre				- T		ds [KIAS	l		
	Dry Runway, Zero Slope, No Wind									
Flaps TO/APPR, Ice Protection Off, Altitude 9000 feet										
Temp.	Data			Take	off Weigl	nt [lb]				
[°C]	Dala	7800	8000	8500	9000	9500	10000	10600		
	V1	108	109	110	111	113	114	116		
-40	VR	114	114	115	116	117	118	119		
,0	V2	119	119	119	120	120	121	121		
	TOFL	4080	4175	4374	4590	4828	5067	5356		
	V1	107	108	110	111	113	114	116		
-10	VR	114	114	115	116	117	118	119		
10	V2	118	119	119	120	120	121	121		
	TOFL	4535	4654	4871	5120	5391	5663	5992		
	V1	107	108	109	111	113	114	116		
0	VR	114	114	115	116	117	118	119		
Ŭ	V2	118	119	119	119	120	121	121		
	TOFL	4695	4821	5039	5305	5588	5872	6214		
	V1	109	109	111	112	114	115	117		
10	VR	115	115	116	117	118	119	120		
10	V2	119	119	119	120	121	121	122		
	TOFL	5094	5164	5439	5741	6047	6354	6725		
	V1	111	112	113	115	116	117	119		
15	VR	116	117	118	119	120	121	122		
10	V2	119	120	120	121	121	122	123		
	TOFL	5520	5660	5989	6307	6640	6974	7380		
	V1	114	114	116	117	118	119	121		
20	VR	118	118	120	120	121	122	123		
	V2	120	121	121	122	122	123	123		
	TOFL	6092	6234	6591	6949	7297	7663	8108		
	V1	116	117	118	119	120	121	123		
25	VR	120	120	121	122	123	123	124		
19-8-70	V2	121	122	122	123	123	123	124		
	TOFL	6755	6911	7300	7691	8071	8474	8965		
	V1	119	119	121	122	123				
30	VR	122	122	123	123	124				
	V2	122	123	123	123	124				
	TOFL	7517	7687	8113	8543	8960				
TOFL_TO_0_9_0	16									

FAA APPROVED October 30, 2016 HJ1-29000-003-001

1	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind									
Flan	Flaps TO/APPR, Ice Protection Off, Altitude 10,000 feet									
Temp.	6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00 1 10		off Weigl		10,000	1001		
[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
	V1	109	109	110	112	113	115	116		
40	VR	114	115	115	117	118	119	120		
-40	V2	119	120	119	120	121	121	122		
	TOFL	4329	4442	4620	4862	5115	5369	5676		
	V1	108	109	110	112	113	115	116		
45	VR	114	115	115	117	118	119	120		
-15	V2	119	119	119	120	120	121	122		
	TOFL	4750	4868	5073	5345	5628	5912	6255		
	V1	108	109	110	112	113	115	116		
-5	VR	114	115	116	117	118	119	120		
-5	V2	119	119	119	120	120	121	122		
	TOFL	4914	5028	5251	5534	5830	6126	6483		
	V1	108	109	110	112	113	115	116		
5	VR	115	115	116	117	118	119	120		
5	V2	119	119	119	120	120	121	122		
	TOFL	5101	5207	5445	5743	6051	6360	6733		
	V1	110	111	113	114	116	117	118		
10	VR	116	116	118	119	120	121	122		
10	V2	119	120	120	121	121	122	122		
	TOFL	5550	5685	6018	6339	6676	7014	7422		
	V1	113	114	115	117	118	119	120		
15	VR	118	118	119	120	121	122	123		
13	V2	120	120	121	122	122	123	123		
	TOFL	6102	6246	6606	6967	7319	7687	8134		
	V1	116	116	118	119	120	121	122		
20	VR	119	120	121	122	122	123	124		
20	V2	121	121	122	122	123	123	124		
	TOFL	6744	6900	7291	7684	8067	8471	8963		
	V1	118	119	120	121	122	123			
25	VR	121	122	122	123	124	124			
20	V2	122	122	123	123	124	124			
TOFL TO 0 10	TOFL	7520	7691	8120	8553	8972	9420			

TOFL_TO_0_10_06

HA-420 AFM

PERFORMANCE

Wind	Corrected V1	[KIAS]
FL	APS TO/AP	PR
Ice	Protection	Off
Tailwind		Headwind
10	▼ REF [0] ▶	30
104	105	106
105	106	107
106	107	108
107	108	109
108	109	110
109	110	111
110	111	112
111	112	113
112	113	114
113	114	115
114	115	116
115	116	117
116	117	118
117	118	119
118	119	119
119	120	120
121	121	121
122	122	122
123	123	123
124	124	124

V1WC_TO_0_05

HA-420 AFM

PERFORMANCE

	Slope	Corrected V1 [KIAS]						
FL	FLAPS TO/APPR, Ice Protection Off								
	Runway Gradient [%]								
-2	-1	■ REF [0] ▶	1	2					
103	104	104	105	106					
104	105	105	106	107					
105	106	106	107	108					
106	106	107	108	109					
107	107	108	109	110					
108	108	109	110	111					
109	109	110	111	112					
110	110	111	112	113					
111	111	112	113	114					
111	112	113	114	115					
112	113	114	115	116					
113	114	115	116	116					
114	115	116	117	117					
115	116	117	118	118					
116	117	118	119	119					
117	118	119	120	120					
118	119	120	121	121					
119	120	121	122	122					
120	121	122	123	123					
121	122	123	124	124					
122	123	124	125	125					
123	124	125	126	126					

V1SC_TO_0_05

Takeoff Rotation Speed (V_R) Slope Correction, Ice Protection Off

NOTE V_R with flaps TO/APPR and Ice Protection Off does not require slope correction.

		Corrected V2 [
FL		APPR, Ice Pr		Off					
	Ri	unway Gradient [ˈ	%]						
-2	-1	■ REF [0] ▶	1	2					
120	119	118	117	116					
121	120	119	118	117					
122	121	120	119	118					
123	122	121	120	119					
124	123	122	121	120					
125									
126	125	124	123	122					

V2SC_TO_0_05

HA-420 AFM

PERFORMANCE

FLAPS TO/APPR, Ice Protection Off Tailwind Headwind 10 ◄ REF [0] ► 10 20 30 3181 2600 2437 2295 2155 3291 2700 2533 2388 2244 3400 2800 2630 2481 2333 3510 2900 2726 2573 2423 3619 3000 2823 2666 2512 3729 3100 2919 2759 2601 3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 <t< th=""></t<>
10 ◀ REF [0] ▶ 10 20 30 3181 2600 2437 2295 2155 3291 2700 2533 2388 2244 3400 2800 2630 2481 2333 3510 2900 2726 2573 2423 3619 3000 2823 2666 2512 3729 3100 2919 2759 2601 3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494
3181 2600 2437 2295 2155 3291 2700 2533 2388 2244 3400 2800 2630 2481 2333 3510 2900 2726 2573 2423 3619 3000 2823 2666 2512 3729 3100 2919 2759 2601 3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686
3291 2700 2533 2388 2244 3400 2800 2630 2481 2333 3510 2900 2726 2573 2423 3619 3000 2823 2666 2512 3729 3100 2919 2759 2601 3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778
3400 2800 2630 2481 2333 3510 2900 2726 2573 2423 3619 3000 2823 2666 2512 3729 3100 2919 2759 2601 3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
3510 2900 2726 2573 2423 3619 3000 2823 2666 2512 3729 3100 2919 2759 2601 3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
3619 3000 2823 2666 2512 3729 3100 2919 2759 2601 3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
3729 3100 2919 2759 2601 3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
3838 3200 3016 2852 2691 3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
3947 3300 3112 2944 2780 4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4057 3400 3209 3037 2869 4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4166 3500 3306 3130 2959 4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4276 3600 3402 3222 3048 4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4385 3700 3499 3315 3137 4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4495 3800 3595 3408 3227 4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4604 3900 3692 3500 3316 4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4714 4000 3788 3593 3405 4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4823 4100 3885 3686 3494 4933 4200 3981 3778 3584
4933 4200 3981 3778 3584
5042 4300 4078 3871 3673
5151 4400 4174 3964 3762
5261 4500 4271 4056 3852
5370 4600 4367 4149 3941
5480 4700 4464 4242 4030
5589 4800 4560 4334 4120
5699 4900 4657 4427 4209
5808 5000 4753 4520 4298
5918 5100 4850 4613 4388
6027 5200 4946 4705 4477
6137 5300 5043 4798 4566
6246 5400 5139 4891 4656
6356 5500 5236 4983 4745
6465 5600 5332 5076 4834
6 574 5700 5429 5169 4924
6684 5800 5525 5261 5013
6793 5900 5622 5354 5102
6903 6000 5718 5447 5192
7012 6100 5815 5539 5281

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM

PERFORMANCE

	ind Corrected Ta			
FL	APS TO/APP	R, Ice Pr	otection (Off
Tailwind			Headwind	
10	■ REF [0] ▶	10	20	30
7012	6100	5815	5539	5281
7122	6200	5911	5632	5370
7231	6300	6008	5725	5460
7341	6400	6104	5817	5549
7450	6500	6201	5910	5638
7560	6600	6297	6003	5728
7669	6700	6394	6096	5817
7779	6800	6491	6188	5906
7888	6900	6587	6281	5995
7997	7000	6684	6374	6085
8107	7100	6780	6466	6174
8216	7200	6877	6559	6263
8326	7300	6973	6652	6353
8435	7400	7070	6744	6442
8545	7500	7166	6837	6531
8654	7600	7263	6930	6621
8764	7700	7359	7022	6710
8873	7800	7456	7115	6799
8983	7900	7552	7208	6889
9092	8000	7649	7300	6978
9202	8100	7745	7393	7067
9311	8200	7842	7486	7157
9420	8300	7938	7578	7246
9530	8400	8035	7671	7335
9639	8500	8131	7764	7425
9749	8600	8228	7857	7514
9858	8700	8324	7949	7603
9968	8800	8421	8042	7693
10077	8900	8517	8135	7782
10187	9000	8614	8227	7871
10296	9100	8710	8320	7961
10406	9200	8807	8413	8050
10515	9300	8903	8505	8139
10624	9400	9000	8598	8228

TOWC2_TO_0_02

HA-420 AFM PERFORMANCE

FLAPS TO/APPR, Ice Protection Off Runway Gradient [%] -2 -1 ◄ REF [0] ▶ 1 2 2361 2222 2100 2072 2064 2450 2316 2200 2176 2173 2538 2411 2300 2281 2283 2627 2505 2400 2385 2392 2716 2599 2500 2489 2502 2805 2693 2600 2593 2612 2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 342	SIG	ope Correct	ed Takeoff Field	l Length [fe	et]
-2 -1 ◀ REF [0] ▶ 1 2 2361 2222 2100 2072 2064 2450 2316 2200 2176 2173 2538 2411 2300 2281 2283 2627 2505 2400 2385 2392 2716 2599 2500 2489 2502 2805 2693 2600 2593 2612 2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 35	FL	APS TO/	APPR, Ice Pr	otection (Off
2361 2222 2100 2072 2064 2450 2316 2200 2176 2173 2538 2411 2300 2281 2283 2627 2505 2400 2385 2392 2716 2599 2500 2489 2502 2805 2693 2600 2593 2612 2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3635 3708 3782 3729 3700 3739		Rı	unway Gradient [%]	
2450 2316 2200 2176 2173 2538 2411 2300 2281 2283 2627 2505 2400 2385 2392 2716 2599 2500 2489 2502 2805 2693 2600 2593 2612 2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739	-2	-1	■ REF [0] ▶	1	2
2538 2411 2300 2281 2283 2627 2505 2400 2385 2392 2716 2599 2500 2489 2502 2805 2693 2600 2593 2612 2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3729 3700 3739 3817 3870 3824 3800 3844 3927	2361	2222	2100	2072	2064
2627 2505 2400 2385 2392 2716 2599 2500 2489 2502 2805 2693 2600 2593 2612 2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948	2450	2316	2200	2176	2173
2716 2599 2500 2489 2502 2805 2693 2600 2593 2612 2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052	2538	2411	2300	2281	2283
2805 2693 2600 2593 2612 2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156	2627	2505	2400	2385	2392
2894 2787 2700 2697 2721 2982 2882 2800 2802 2831 3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4260 4365	2716	2599	2500	2489	2502
2982 2882 2800 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 469 4	2805	2693	2600	2593	2612
3071 2976 2900 2906 2940 3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4677	2894	2787	2700	2697	2721
3160 3070 3000 3010 3050 3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4677	2982	2882	2800	2802	2831
3249 3164 3100 3114 3160 3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677	3071	2976	2900	2906	2940
3338 3258 3200 3218 3269 3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4260 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886	3160	3070	3000	3010	3050
3426 3353 3300 3323 3379 3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4986	3249	3164	3100	3114	3160
3515 3447 3400 3427 3488 3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 5198	3338	3258	3200	3218	3269
3604 3541 3500 3531 3598 3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4936 4954 5000 5094 5242 5025 5048 5100 5198	3426	3353	3300	3323	3379
3693 3635 3600 3635 3708 3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302	3515	3447	3400	3427	3488
3782 3729 3700 3739 3817 3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5615	3604	3541	3500	3531	3598
3870 3824 3800 3844 3927 3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5291 5331 5400 5511	3693	3635	3600	3635	3708
3959 3918 3900 3948 4036 4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511	3782	3729	3700	3739	3817
4048 4012 4000 4052 4146 4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	3870	3824	3800	3844	3927
4137 4106 4100 4156 4256 4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	3959	3918	3900	3948	4036
4226 4200 4200 4260 4365 4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4048	4012	4000	4052	4146
4314 4295 4300 4365 4475 4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4137	4106	4100	4156	4256
4403 4389 4400 4469 4584 4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4226	4200	4200	4260	4365
4492 4483 4500 4573 4694 4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4314	4295	4300	4365	4475
4581 4577 4600 4677 4804 4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4403	4389	4400	4469	4584
4670 4671 4700 4781 4913 4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4492	4483	4500	4573	4694
4758 4766 4800 4886 5023 4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4581	4577	4600	4677	4804
4847 4860 4900 4990 5132 4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4670	4671	4700	4781	4913
4936 4954 5000 5094 5242 5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4758	4766	4800	4886	5023
5025 5048 5100 5198 5352 5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790	4847	4860	4900	4990	5132
5114 5142 5200 5302 5461 5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790		4954	5000	5094	5242
5202 5237 5300 5407 5571 5291 5331 5400 5511 5680 5380 5425 5500 5615 5790			5100	5198	5352
5291 5331 5400 5511 5680 5380 5425 5500 5615 5790		5142	5200	5302	5461
5380 5425 5500 5615 5790	5202	5237	5300	5407	5571
	5291	5331	5400	5511	5680
E460 EE40 E600 E740 5000	5380	5425	5500	5615	5790
5469 5519 5600 5719 5900 1000	5469	5519	5600	5719	5900

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM

PERFORMANCE

Slo	pe Correct	ed Takeoff Field	l Length [fe	et]
FL	APS TO/	APPR, Ice Pr	otection (Off
	Ru	unway Gradient [%]	
-2	-1	■ REF [0] ▶	1	2
5469	5519	5600	5719	5900
5558	5613	5700	5823	6009
5646	5708	5800	5928	6119
5735	5802	5900	6032	6228
5824	5896	6000	6136	6338
5913	5990	6100	6240	6448
6002	6084	6200	6344	6557
6090	6179	6300	6449	6667
6179	6273	6400	6553	6776
6268	6367	6500	6657	6886
6357	6461	6600	6761	6996
6446	6555	6700	6865	7105
6534	6650	6800	6970	7215
6623	6744	6900	7074	7324
6712	6838	7000	7178	7434
6801	6932	7100	7282	7544
6890	7026	7200	7386	7653
6978	7121	7300	7491	7763
7067	7215	7400	7595	7872
7156	7309	7500	7699	7982
7245	7403	7600	7803	8092
7334	7497	7700	7907	8201
7422	7592	7800	8012	8311
7511	7686	7900	8116	8420
7600	7780	8000	8220	8530
7689	7874	8100	8324	8640
7778	7968	8200	8428	8749
7866	8063	8300	8533	8859
7955	8157	8400	8637	8968
8044	8251	8500	8741	9078
8133	8345	8600	8845	9188
8222	8439	8700	8949	9297
8310	8534	8800	9054	9407
8399	8628	8900	9158	9516
8488	8722	9000	9262	9626
8577	8816	9100	9366	9736
TOSC2_TO_0_03				

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM

PERFORMANCE

	Slope Corrected Takeoff Field Length [feet]									
FL	FLAPS TO/APPR, Ice Protection Off									
Runway Gradient [%]										
-2	-1	■ REF [0] ▶	1	2						
8577	8816	9100	9366	9736						
8666	8910	9200	9470	9845						
8754	9005	9300	9575	9955						
8843	9099	9400	9679	10064						
8932	9193	9500	9783	10174						
9021	9287	9600	9887	10284						
9110	9381	9700	9991	10393						
9198	9476	9800	10096	10503						
9287	9570	9900	10200	10612						
9376	9664	10000	10304	10722						
9465	9758	10100	10408	10832						
9554	9852	10200	10512	10941						
9642	9947	10300	10617	11051						
9731	10041	10400	10721	11160						
9820	10135	10500	10825	11270						
9909	10229	10600	10929	11380						
9998	10323	10700	11033	11489						

TOSC3_TO_0_03

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 5-68

FAA APPROVED October 30, 2016

HJ1-29000-003-001

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 5-70

HA-420 AFM PERFORMANCE

	Uncorre			_			ds [KIAS]
Flo	no TO/		Runway,				4000	Saat
	ps TO/	APPK,	ice Pro				-10001	reet
Temp. [°C]	Data	7800	8000	8500	off Weigl	9500	10000	10600
[0]	V1	107					110	111
l .	VR		107	108	108	109		
-40	100000	113	113	113	113	113	114	115
l .	V2	124	123	122	121	120	120	120
⊢—	TOFL	2700	2729	2799	2870	2941	3081	3205
	V1	106	107	107	108	108	110	111
-30	VR	113	113	113	113	113	114	115
	V2	124	123	122	121	120	120	120
<u> </u>	TOFL	2789	2819	2893	2967	3042	3186	3318
	V1	106	107	107	108	108	110	111
-20	VR	113	113	113	113	113	114	115
	V2	123	123	122	121	120	120	120
	TOFL	2876	2907	2985	3062	3140	3287	3429
l .	V1	106	106	107	108	108	110	111
-10	VR	113	113	113	113	113	114	115
	V2	123	123	122	121	120	120	120
	TOFL	2965	2998	3079	3160	3241	3389	3541
	V1	106	106	107	107	108	109	111
-5	VR	113	113	113	113	113	114	115
	V2	123	123	122	121	120	120	120
	TOFL	3008	3041	3124	3206	3289	3434	3594
	V1	106	106	107	107	108	109	111
0	VR	113	113	113	113	113	114	115
ľ	V2	123	123	122	121	120	120	120
	TOFL	3050	3084	3168	3252	3337	3480	3647
	V1	106	106	107	107	108	109	111
5	VR	113	113	113	113	113	114	115
3	V2	123	122	121	121	120	119	120
	TOFL	3097	3127	3213	3299	3385	3526	3700
	V1	106	106	107	107	108	109	110
10	VR	113	113	113	113	113	114	115
10	V2	123	122	121	121	120	119	120
	TOFL	3143	3170	3258	3345	3433	3572	3754

TOFL_TO_2_-1_02

HA-420 AFM

PERFORMANCE

·	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
	Dry Runway, Zero Slope, No Wind									
Fla	Flaps TO/APPR, Ice Protection On, Altitude Sea Level									
Temp.	Data				off Weigl					
[°C]		7800	8000	8500	9000	9500	10000	10600		
	V1	107	107	107	108	109	110	111		
-40	VR	113	113	113	113	113	114	115		
٦٥	V2	123	123	122	121	120	120	120		
	TOFL	2782	2811	2885	2959	3034	3186	3318		
	V1	106	107	107	108	108	110	111		
-30	VR	113	113	113	113	113	114	115		
-50	V2	123	123	122	121	120	120	120		
	TOFL	2877	2908	2985	3062	3140	3296	3435		
	V1	106	106	107	108	108	110	111		
-20	VR	113	113	113	113	113	114	115		
-20	V2	123	123	122	121	120	120	120		
	TOFL	2964	2996	3078	3158	3240	3398	3540		
	V1	106	106	107	107	108	110	111		
-10	VR	113	113	113	113	113	114	115		
-10	V2	123	122	121	121	120	120	120		
	TOFL	3055	3089	3174	3258	3343	3500	3655		
	V1	106	106	107	107	108	109	111		
-5	VR	113	113	113	113	113	114	115		
-~	V2	123	122	121	120	120	120	120		
	TOFL	3100	3134	3220	3306	3393	3548	3710		
	V1	106	106	107	107	108	109	111		
0	VR	113	113	113	113	113	114	115		
Ŭ	V2	123	122	121	120	120	120	120		
	TOFL	3144	3179	3267	3354	3442	3595	3765		
	V1	106	106	107	107	108	109	110		
5	VR	113	113	113	113	113	114	115		
ı ı	V2	123	122	121	120	120	119	120		
	TOFL	3193	3224	3313	3403	3492	3644	3821		
	V1	106	106	106	107	108	109	110		
10	VR	113	113	113	113	113	114	115		
10	V2	123	122	121	120	120	119	120		
	TOFL	3239	3268	3360	3451	3542	3694	3876		

TOFL_TO_2_0_02

HA-420 AFM PERFORMANCE

	Uncorrec						ls [KIAS]		
Fla	Dry Runway, Zero Slope, No Wind Flaps TO/APPR, Ice Protection On, Altitude 1000 feet									
	ps 10/	AFFK,	ice Fit		off Weigl		10001	eet		
Temp. [°C]	Data	7800	8000	8500	9000	9500	10000	10600		
[0]	V1	107	107	108	108	109	111	112		
	VR	113	113	113	113	114	115	116		
-40	VX V2	123	122	121	120	120	120	120		
	TOFL	2892	2923	3002	3081	3195		3491		
\vdash	V1	106	107	107	108	109	3352 111	112		
	VR	113	7,000,000	12 10 10 10 10 10 10 10 10 10 10 10 10 10		114		116		
-30			113	113	113		115			
	V2	123	122	121	120	119	120	120		
	TOFL V1	2990	3023	3105 107	3187	3302	3470 110	3611 111		
		106	107		108	109				
-20	VR	113	113	113	113	113	115	116		
	V2	122	122	121	120	119	120	120		
	TOFL	3083	3117	3203	3289	3403	3582	3726		
	V1	106	106	107	107	108	110	111		
-10	VR	113	113	113	113	113	115	115		
	V2	122	122	121	120	119	120	120		
	TOFL	3177	3213	3302	3391	3502	3687	3839		
	V1	106	106	107	107	108	110	111		
-5	VR	113	113	113	113	113	115	115		
	V2	122	122	121	120	119	120	120		
	TOFL	3223	3260	3351	3442	3551	3739	3895		
	V1	106	106	107	107	108	110	111		
0	VR	113	113	113	113	113	115	115		
	V2	122	122	121	120	119	120	120		
	TOFL	3269	3307	3400	3493	3600	3791	3950		
	V1	106	106	107	107	108	110	111		
5	VR	113	113	113	113	113	115	115		
	V2	122	122	121	120	119	120	120		
	TOFL	3316	3354	3449	3543	3650	3843	4007		
	V1	106	106	107	107	109	110	112		
10	VR	113	113	113	113	114	115	116		
	V2	122	121	120	119	119	120	120		
	TOFL	3381	3419	3515	3611	3770	3939	4128		

TOFL_TO_2_1_02

HA-420 AFM

PERFORMANCE

Property Property		Uncorre			•			ds [KIAS	l	
Temp.			Dry I	Runway,	Zero Slo	pe, No V	Vind			
No. No.	Flaps TO/APPR, Ice Protection On, Altitude 2000 feet									
V1		Data		Takeoff Weight [lb]						
-40	[°C]	Data	7800	8000	8500	9000	9500	10000	10600	
10			107	107	108	108	110	111	112	
TOFL 3007 3040 3124 3207 3362 3494 3671 -30	-40	VR	113	113	113	113	114	115	116	
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	٦,0	V2	122	122	121	120	120	120	120	
-30			3007	3040	3124	3207	3362	3494	3671	
-30		V1	106	107	107	108	109	111	112	
TOFL 3107 3142 3229 3317 3470 3616 3795 V1 106 107 107 108 109 111 112 VR 113 113 113 113 114 115 116 V2 122 122 121 120 119 120 120 TOFL 3205 3241 3332 3423 3575 3735 3914 V1 106 106 107 108 109 110 112 VR 113 113 113 113 114 115 116 V2 122 121 120 119 120 120 TOFL 3303 3341 3436 3530 3680 3853 4033 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3303 3341 3436 3530 3680 3853 4033 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3353 3391 3488 3584 3733 3913 4093 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3401 3441 3539 3638 3786 3972 4153 V1 106 106 107 107 108 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3401 3441 3539 3638 3786 3972 4153 V1 106 106 107 107 108 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116	-30	VR	113	113	113	113	114	115	116	
-20	-50	V2	122	122	121	120	120	120	120	
-20		TOFL	3107	3142	3229	3317	3470	3616	3795	
-20		V1	106	107	107	108	109	111	112	
TOFL 3205 3241 3332 3423 3575 3735 3914 10	-20	VR	113	113	113	113	114	115	116	
-10	-20	V2	122	122	121	120	119	120	120	
-10		TOFL	3205	3241	3332	3423	3575	3735	3914	
TOFL 3303 3341 3436 3530 3680 3853 4033 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3353 3391 3488 3584 3733 3913 4093 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3353 3391 3488 3584 3733 3913 4093 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3401 3441 3539 3638 3786 3972 4153 V1 106 106 107 107 108 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120		V1	106	106	107	108	109	110	112	
TOFL 3303 3341 3436 3530 3680 3853 4033 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3353 3391 3488 3584 3733 3913 4093 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 VR 113 3491 3591 3692 3840 4032 4214 VR 113 113 113 114 115 116 117 VR 113 113 113 114 115 116 117 VR 113 113 113 114 115 116 117	-10	VR	113	113	113	113	114	115	116	
-5	-10	V2	122	121	121	120	119	120	120	
-5		TOFL	3303	3341	3436	3530	3680	3853	4033	
-5		V1	106	106	107	107	109	110	111	
V2 122 121 120 120 119 120 120 TOFL 3353 3391 3488 3584 3733 3913 4093 V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3401 3441 3539 3638 3786 3972 4153 V1 106 106 107 107 108 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111	-5	VR	113	113	113	113	114	115	116	
V1 106 106 107 107 109 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3401 3441 3539 3638 3786 3972 4153 V1 106 106 107 107 108 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 <td< td=""><td></td><td>V2</td><td>122</td><td>121</td><td>120</td><td>120</td><td>119</td><td>120</td><td>120</td></td<>		V2	122	121	120	120	119	120	120	
VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3401 3441 3539 3638 3786 3972 4153 V1 106 106 107 107 108 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120		TOFL	3353	3391	3488	3584	3733	3913	4093	
V2 122 121 120 120 119 120 120 TOFL 3401 3441 3539 3638 3786 3972 4153 5 V1 106 106 107 107 108 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120		V1	106	106	107	107	109	110	100 100 100	
V2 122 121 120 120 119 120 120 TOFL 3401 3441 3539 3638 3786 3972 4153 V1 106 106 107 107 108 110 111 VR 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120	n	VR	113		113	113	114	115	116	
5 V1 106 106 107 107 108 110 111 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120	Ŭ	V2	122	121	120	120	119	120	120	
5 VR 113 113 113 113 114 115 116 V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120		TOFL	3401	3441	3539	3638	3786	3972	4153	
V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120		V1	106	106	107	107	108	110	111	
V2 122 121 120 120 119 120 120 TOFL 3451 3491 3591 3692 3840 4032 4214 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120	5	VR	113	113	113	113	114	115	116	
10 V1 106 107 107 109 110 111 113 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120	ĭ	V2	122	121	120	120	119	120	120	
10 VR 113 113 113 114 115 116 117 V2 121 120 119 119 120 120 120		TOFL	3451	3491	3591	3692	3840	4032	4214	
10 V2 121 120 119 119 120 120 120		V1	106	107	107	109	110	111	113	
V2 121 120 119 119 120 120 120	10	VR	113	113	113	114	115	116	117	
TOFL 3538 3579 3679 3845 4021 4183 4415	10	V2	121	120	119	119	120	120	120	
		TOFL	3538	3579	3679	3845	4021	4183	4415	

TOFL_TO_2_2_02

HA-420 AFM PERFORMANCE

	Uncorre			_			ds [KIAS]
	- T O		Runway,				0000	
	ps 10/	APPR,	ice Pro				3000 f	eet
Temp.	Data	=			off Weigl		40000	10000
[°C]		7800	8000	8500	9000	9500	10000	10600
	V1	107	107	108	109	110	111	113
-40	VR	113	113	113	113	115	115	117
	V2	122	121	120	119	120	120	120
	TOFL	3130	3165	3254	3365	3546	3666	3865
	V1	106	107	107	108	110	111	112
-30	VR	113	113	113	113	115	115	116
00	V2	122	121	120	119	120	120	120
	TOFL	3240	3276	3368	3476	3663	3790	3998
	V1	106	107	107	108	110	111	112
-20	VR	113	113	113	113	115	115	116
-20	V2	121	121	120	119	120	120	120
	TOFL	3334	3373	3469	3572	3766	3895	4116
	V1	106	106	107	108	109	110	112
-10	VR	113	113	113	113	114	115	116
-10	V2	121	121	120	119	120	120	120
	TOFL	3438	3478	3579	3679	3878	4021	4245
	V1	106	106	107	107	109	110	112
-5	VR	113	113	113	113	114	115	116
-5	V2	121	121	120	119	119	120	120
	TOFL	3490	3531	3633	3736	3936	4083	4309
	V1	106	106	107	107	109	110	112
_	VR	113	113	113	113	114	115	116
0	V2	121	121	120	119	119	120	120
	TOFL	3542	3584	3688	3793	3994	4147	4375
	V1	106	106	107	108	110	110	112
_	VR	113	113	113	113	115	115	117
5	V2	121	121	120	119	120	119	120
	TOFL	3604	3646	3752	3878	4093	4237	4475
	V1	107	107	109	110	111	113	114
	VR	113	113	114	115	116	117	118
10	V2	120	119	119	119	120	120	121
	TOFL	3715	3758	3938	4116	4296	4501	4748

TOFL_TO_2_3_02

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind									
Flaps TO/APPR, Ice Protection On, Altitude 4000 feet									
Temp.	Data				off Weigl				
[°C]		7800	8000	8500	9000	9500	10000	10600	
	V1	107	107	108	109	111	112	113	
-40	VR	113	113	113	114	115	116	117	
٦٠	V2	121	121	120	120	120	120	121	
	TOFL	3262	3299	3393	3549	3710	3861	4077	
	V1	107	107	107	109	110	111	113	
-30	VR	113	113	113	114	115	116	117	
-50	V2	121	121	120	119	120	120	120	
	TOFL	3371	3410	3508	3660	3838	3987	4211	
	V1	106	107	107	108	110	111	113	
-20	VR	113	113	113	114	115	116	117	
-20	V2	121	121	120	119	120	120	120	
	TOFL	3475	3516	3618	3768	3961	4110	4342	
	V1	106	106	107	108	110	111	113	
-10	VR	113	113	113	114	115	116	117	
-10	V2	121	121	120	119	120	120	120	
	TOFL	3585	3628	3734	3884	4090	4240	4481	
	V1	106	106	107	108	110	111	112	
-5	VR	113	113	113	114	115	115	117	
-5	V2	121	120	120	119	120	120	120	
	TOFL	3640	3683	3792	3941	4155	4305	4550	
	V1	106	106	107	108	110	111	112	
0	VR	113	113	113	114	115	115	117	
. .	V2	121	120	120	119	120	119	120	
	TOFL	3695	3739	3850	4000	4219	4371	4620	
	V1	106	107	108	110	110	112	114	
5	VR	113	113	113	115	115	116	118	
٥	V2	120	120	119	120	119	120	121	
	TOFL	3779	3824	3959	4193	4338	4545	4801	
	V1	108	109	110	112	113	114	116	
10	VR	114	114	115	116	117	118	119	
10	V2	119	119	119	120	120	121	121	
	TOFL	3967	4065	4228	4436	4655	4874	5138	

TOFL_TO_2_4_02

HA-420 AFM PERFORMANCE

	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind									
Flo	Flaps TO/APPR, Ice Protection On, Altitude 5000 feet									
	ps 10/	APPK,	ice Pi		off Weigl		5000 1	eet		
Temp. [°C]	Data	7800	8000	8500	9000	9500	10000	10600		
[0]	V1	107	107	108	110	111	112	114		
l .	VR	113	113	113	115	115	116	118		
-40	VR V2	121	120	119	120	120	120	121		
l .										
⊢	TOFL	3399	3439	3541	3752	3886	4069	4297 113		
	V1	107	107	107	109	110	112	10.11.7		
-30	VR	113	113	113	115	115	116	117		
	V2	121	120	119	120	119	120	121		
⊢—	TOFL	3518	3560	3663	3875	4017	4208	4445		
	V1	106	107	107	109	110	112	113		
-20	VR	113	113	113	114	115	116	117		
	V2	121	120	119	119	119	120	121		
Ь—	TOFL	3623	3667	3775	3986	4138	4334	4581		
l .	V1	106	107	107	109	110	111	113		
-10	VR	113	113	113	114	115	116	117		
	V2	120	120	119	119	119	120	120		
	TOFL	3739	3784	3897	4108	4275	4473	4729		
	V1	106	106	107	109	110	111	113		
-5	VR	113	113	113	114	115	116	117		
Ĭ	V2	120	120	119	119	119	120	120		
	TOFL	3797	3843	3959	4172	4343	4544	4805		
	V1	106	106	107	109	110	111	113		
0	VR	113	113	113	114	115	116	117		
ľ	V2	120	120	119	119	119	120	120		
	TOFL	3856	3903	4020	4235	4412	4615	4881		
	V1	107	108	110	111	112	113	115		
5	VR	113	113	115	115	117	118	119		
٦	V2	119	119	120	119	120	121	121		
	TOFL	3969	4047	4283	4447	4665	4890	5161		
	V1	110	110	112	113	115	116	118		
10	VR	115	115	116	118	119	120	121		
10	V2	119	119	120	120	121	122	122		
	TOFL	4298	4370	4595	4830	5065	5299	5583		

TOFL_TO_2_5_02

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
	Dry Runway, Zero Slope, No Wind								
Fla	Flaps TO/APPR, Ice Protection On, Altitude 6000 feet								
Temp.	Data		Takeoff Weight [lb]						
[°C]	STATE SECTION	7800	8000	8500	9000	9500	10000	10600	
	V1	107	107	108	110	111	113	114	
-40	VR	113	113	114	115	116	117	118	
	V2	120	120	119	120	120	120	121	
	TOFL	3545	3587	3741	3937	4094	4292	4534	
	V1	107	107	108	110	111	112	114	
-30	VR	113	113	114	115	116	117	118	
-00	V2	120	120	119	120	120	120	121	
	TOFL	3666	3710	3861	4074	4230	4436	4687	
	V1	107	107	108	110	111	112	114	
-20	VR	113	113	113	115	115	117	118	
-20	V2	120	120	119	120	119	120	121	
	TOFL	3781	3827	3977	4207	4363	4576	4837	
	V1	106	107	108	110	111	112	114	
-10	VR	113	113	113	115	115	117	118	
-10	V2	120	120	119	120	119	120	121	
	TOFL	3904	3952	4103	4343	4505	4727	4999	
	V1	106	107	108	110	110	112	114	
-5	VR	113	113	113	115	115	117	118	
-5	V2	120	120	119	120	119	120	121	
	TOFL	3967	4016	4169	4414	4580	4806	5083	
	V1	107	107	109	110	111	113	114	
o	VR	113	113	114	115	116	117	118	
Ŭ	V2	119	119	119	119	120	120	121	
	TOFL	4054	4104	4334	4514	4735	4970	5253	
	V1	109	110	111	112	114	115	117	
5	VR	115	115	116	117	118	119	120	
٥	V2	119	119	119	120	121	121	122	
	TOFL	4339	4408	4603	4838	5079	5321	5612	
	V1	112	112	114	115	117	118	119	
10	VR	116	117	118	119	120	121	122	
10	V2	120	120	121	121	122	122	123	
TOFL TO 2 6 0	TOFL	4699	4800	5054	5299	5555	5811	6120	

TOFL_TO_2_6_02

HA-420 AFM PERFORMANCE

	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind								
FIG	Flaps TO/APPR, Ice Protection On, Altitude 7000 feet								
Temp.	ps IO/	AFFR,	ICC FIC		off Weigl		70001	CCL	
[°C]	Data	7800	8000	8500	9000	9500	10000	10600	
- 1	V1	107	107	109	110	112	113	115	
40	VR	113	113	114	115	116	117	118	
-40	V2	120	119	119	119	120	120	121	
	TOFL	3702	3747	3958	4117	4318	4531	4787	
*	V1	107	107	109	110	111	113	114	
-30	VR	113	113	114	115	116	117	118	
-30	V2	120	119	119	119	120	120	121	
	TOFL	3832	3878	4088	4264	4466	4687	4954	
	V1	107	107	109	110	111	113	114	
-20	VR	113	113	114	115	116	117	118	
-20	V2	120	119	119	119	120	120	121	
	TOFL	3952	4001	4205	4404	4608	4839	5116	
7	V1	107	107	108	110	111	113	114	
-10	VR	113	113	114	115	116	117	118	
-10	V2	119	119	119	119	120	120	121	
	TOFL	4085	4136	4347	4555	4768	5008	5297	
	V1	106	107	108	110	111	113	114	
-5	VR	113	113	114	115	116	117	118	
-5	V2	119	119	119	119	120	120	121	
	TOFL	4155	4207	4434	4635	4855	5100	5396	
	V1	108	109	110	112	113	114	116	
0	VR	114	115	115	116	117	118	120	
ĕ	V2	119	119	119	120	120	121	121	
	TOFL	4338	4454	4634	4874	5124	5373	5675	
	V1	111	111	113	114	116	117	118	
5	VR	116	116	117	118	119	120	121	
Ĭ	V2	119	120	120	121	121	122	122	
	TOFL	4670	4768	5031	5280	5539	5798	6112	
	V1	114	114	116	117	118	120	121	
10	VR	118	118	119	120	121	122	123	
2.5	V2	121	121	121	122	122	123	123	
	TOFL	5180	5290	5566	5831	6110	6389	6729	

TOFL_TO_2_7_02

HA-420 AFM

PERFORMANCE

Temp. Data Temp. Provided Temp. Data Temp. Color Temp. Color Temp. Data Temp. Temp	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
Temp.	Dry Runway, Zero Slope, No Wind									
Topic Para Topic Topic	Fla	Flaps TO/APPR, Ice Protection On, Altitude 8000 feet								
V1	- 012-1-130-10-1	Data		Takeoff Weight [lb]						
-40	[°C]	Data	7800	8000	8500	9000	9500	10000	10600	
19		V1	107	108	110	111	112		an ourses	
TOFL 3865 3943 4177 4342 4560 4785 5056 V1	-40	VR	113	113	115	115	117	118	119	
-30	-,0		119	119	120	120	120	121	121	
-30			3865	3943	4177					
V2		E. 103	107	107	110	110	112	113	115	
TOFL 4000 4072 4327 4490 4716 4951 5234 V1 107 107 109 110 112 113 115 VR 113 113 115 115 116 118 119 V2 119 118 119 119 120 120 121 TOFL 4134 4207 4473 4644 4881 5126 5421 V1 107 107 109 110 112 113 115 VR 113 113 115 115 117 118 119 V2 119 118 119 119 120 120 121 VR 113 113 115 115 117 118 119 V2 119 118 119 119 120 120 121 TOFL 4279 4359 4636 4815 5063 5318 5626 V1 107 108 110 111 112 114 115 VR 113 114 115 116 117 118 119 V2 118 119 119 119 120 121 121 TOFL 4369 4482 4730 4942 5199 5460 5775 V1 110 110 110 112 113 115 116 118 VR 115 115 117 118 119 120 121 V2 119 119 120 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 116 117 118 119 120 121 122 122 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 120 121 122 VR 120 120 121 122 122 123 124 VR 120 120 121 122 122 123 124 VR 120 120 121 122 122 123 124	-30	VR	113	113	115	115	116	118	119	
-20	-00	V2	119	119	120	119	120	121	121	
-20			4000	4072	4327	4490	4716	4951	5234	
-20		V1	107	107	109	110	112	113	115	
TOFL 4134 4207 4473 4644 4881 5126 5421 10	-20	VR	113		115	115	116	118	119	
-10	-20	V2	119	118	119	119	120	120	121	
-10		TOFL	4134	4207	4473	4644	4881	5126	5421	
TOFL 4279 4359 4636 4815 5063 5318 5626 V1 107 108 110 111 112 114 115 VR 113 114 115 116 117 118 119 V2 118 119 119 119 120 121 121 TOFL 4369 4482 4730 4942 5199 5460 5775 V1 110 110 112 113 115 116 118 VR 115 115 117 118 119 120 121 V2 119 119 120 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 V2 120 120 121 121 122 122 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 VR 120 120 121 122 122 123 VR 120 120 121 122 122 123 124 VR 120 120 121 122 122 123 124		V1	107	107	109	110	112	113	115	
TOFL 4279 4359 4636 4815 5063 5318 5626 V1 107 108 110 111 112 114 115 VR 113 114 115 116 117 118 119 V2 118 119 119 119 120 121 121 TOFL 4369 4482 4730 4942 5199 5460 5775 V1 110 110 112 113 115 116 118 V2 119 119 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 124 VR 120 120 121 122 122 123 124 VR 120 120 121 122 122 123 124	-10	VR	113	113	115	115	117	118	119	
-5	-10	V2	119	118	119	119	120	120	121	
-5 VR 113 114 115 116 117 118 119 V2 118 119 119 119 120 121 121 TOFL 4369 4482 4730 4942 5199 5460 5775 V1 110 110 112 113 115 116 118 VR 115 115 117 118 119 120 121 V2 119 119 120 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 V2 120 120 121 121 122 122 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 VR 120 120 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 124 VR 120 120 121 122 122 123 124		TOFL	4279	4359	4636	4815	5063	5318	5626	
-5		V1	107	108	110	111	112	114	115	
V2 118 119 119 119 120 121 121 TOFL 4369 4482 4730 4942 5199 5460 5775 V1 110 110 112 113 115 116 118 VR 115 115 117 118 119 120 121 V2 119 119 120 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 V2 120 120 121 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 V8 120 120 121 122 122 123 </td <td>-5</td> <td>VR</td> <td>113</td> <td>114</td> <td>115</td> <td>116</td> <td>117</td> <td>118</td> <td>119</td>	-5	VR	113	114	115	116	117	118	119	
0 V1 110 110 112 113 115 116 118 VR 115 115 117 118 119 120 121 V2 119 119 120 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 123 V2 120 120 121 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 V2 120 120 121 122 122 123 124 V2 121 122 123 123 123 124	-0	V2	118	119	119	119	120	121	121	
0 VR 115 115 117 118 119 120 121 V2 119 119 120 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 122 V2 120 120 121 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 V8 120 120 121 122 122 123 124 V2 121 122 123 123 123 124		TOFL	4369	4482	4730	4942	5199	5460	5775	
V2 119 119 120 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 V2 120 120 121 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 124 V2 121 122 123 123 123 124		V1	110	110	112	113	115	AL BOSTO	118	
V2 119 119 120 120 121 122 122 TOFL 4684 4778 5043 5299 5566 5833 6155 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 V2 120 120 121 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 124 V2 121 122 122 123 123 124	n	VR	115	115	117	118	119	120	121	
5 V1 113 113 115 116 118 119 120 VR 117 118 119 120 121 122 122 V2 120 120 121 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 124 V2 121 122 123 123 123 124	Ŭ	V2	119	119	120	120	121	122	122	
5 VR 117 118 119 120 121 122 122 V2 120 120 121 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 124 V2 121 122 123 123 123 124		TOFL	4684	4778	5043	5299	5566	5833	6155	
V2 120 121 121 122 122 123 TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 124 V2 121 122 123 123 123 124		V1	113	113	115	116	118	119	120	
TOFL 5126 5237 5515 5782 6062 6343 6683 V1 116 117 118 119 120 121 122 VR 120 120 121 122 123 124 V2 121 122 122 123 124	5	VR	117	118	119	120	121	122	122	
V1 116 117 118 119 120 121 122 VR 120 120 121 122 122 123 124 V2 121 122 122 123 123 123 124	Ŭ	V2	120	120	121	121	122	122	123	
10 VR 120 120 121 122 123 124 V2 121 122 122 123 124		TOFL	5126	5237	5515	5782	6062	6343	6683	
10 V2 121 122 122 123 123 123 124	3	V1	116	117	118	119	120	121	122	
V2 121 122 122 123 123 123 124	10	VR	120	120	121	122	122	123	124	
TOFL 5719 5839 6138 6439 6731 7038 7412	10	V2	121	122	122	123	123	123	124	
TOFL_TO_2_8_02		A TOTAL CONTRACTOR OF THE PARTY	5719	5839	6138	6439	6731	7038	7412	

TOFL_TO_2_8_02

HA-420 AFM PERFORMANCE

,	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]								
	Dry Runway, Zero Slope, No Wind								
	Flaps TO/APPR, Ice Protection On, Altitude 9000 feet								
Temp.	Data		Takeoff Weight [lb]						
[°C]	10010101001	7800	8000	8500	9000	9500	10000	10600	
	V1	108	108	110	111	113	114	116	
-40	VR	113	114	115	116	117	118	119	
	V2	119	119	119	120	120	121	121	
	TOFL	4068	4164	4371	4580	4816	5055	5343	
	V1	107	108	110	111	113	114	115	
-30	VR	113	114	115	116	117	118	119	
	V2	119	119	119	120	120	121	121	
	TOFL	4210	4310	4532	4746	4992	5241	5542	
	V1	107	108	110	111	113	114	116	
-20	VR	113	114	115	116	117	118	119	
20	V2	118	119	119	120	120	121	121	
	TOFL	4361	4465	4693	4921	5179	5440	5754	
	V1	107	108	110	111	113	114	116	
-10	VR	114	114	115	116	117	118	119	
-10	V2	118	119	119	120	120	121	121	
	TOFL	4528	4646	4866	5113	5384	5656	5985	
	V1	109	109	111	113	114	115	117	
-5	VR	115	115	116	117	118	119	120	
-5	V2	119	119	119	120	121	121	122	
	TOFL	4768	4837	5081	5355	5632	5909	6244	
ia -	V1	112	112	114	115	117	118	119	
О	VR	116	117	118	119	120	121	122	
U	V2	120	120	121	121	122	122	123	
	TOFL	5110	5223	5507	5781	6067	6354	6700	
	V1	115	116	117	118	119	120	122	
5	VR	119	119	120	121	122	123	124	
3	V2	121	121	122	122	123	123	124	
	TOFL	5656	5777	6079	6381	6673	6981	7354	
1	V1	118	119	120	121	122	123	1	
10	VR	121	121	122	123	124	124		
10	V2	122	122	123	123	124	124		
	TOFL	6324	6454	6780	7109	7427	7764		

TOFL_TO_2_9_02

HA-420 AFM

PERFORMANCE

Temp. Data Temp. Takeoff Weight Temp. Pata Temp. Takeoff Weight Temp. Temp	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
Temp. Pata Takeoff Weight Temp. Top.		Dry Runway, Zero Slope, No Wind								
Total Tota	The second line is not a second line in									
V1		Data								
-40	[°C]	SOUTH PROPERTY.	0.0000000000000000000000000000000000000	Charles Designation		100000	107934-001932	2002/09/09/09/09		
19		(104 A)	556,225,556		100000000000000000000000000000000000000	2011/10/00/0	THE TAUDITO			
TOFL 4314 4434 4612 4855 5108 5362 5669 V1 108 109 110 112 113 115 116 VR 114 115 115 116 118 119 120 TOFL 4474 4600 4787 5040 5305 5570 5890 V1 108 109 110 112 113 115 116 VR 114 115 115 117 118 119 120 V2 119 119 119 110 120 120 121 122 TOFL 44653 4775 4971 5236 5513 5791 6126 V1 108 109 110 112 113 115 116 VR 114 115 116 117 118 119 120 VV 119 119 119 110 112 113 115 116 VR 114 115 116 117 118 119 120 VV 119 119 119 120 120 121 122 TOFL 4832 4943 5161 5440 5729 6020 6370 VI 110 111 113 114 116 117 118 VR 116 116 117 118 119 120 121 VV 119 119 120 121 122 122 TOFL 5107 5215 5515 5797 6091 6385 6741 V1 114 114 116 117 118 119 121 VR 118 118 120 120 121 122 122 TOFL 5596 5718 6021 6312 6619 6927 7300 VI 117 118 119 120 121 122 122 TOFL 5596 5718 6021 6312 6619 6927 7300 VI 117 118 119 120 121 122 122 TOFL 6264 6395 6723 7053 7373 7711 V1 120 121 122 123 123 124 VR 122 123 123 124 V2 123 124 VR 122 123 123 124	-40		12.00							
-30 V1 108 109 110 112 113 115 116 VR 114 115 115 116 118 119 120 120 121 122 123 123 123 124 VR 120 121 122 123 123 124 VR 120 120 121 122 123 123 124 VR 120 120 121 122 123 123 124 VR 120 121 122 123 123 124 VR 120 121 122 123 123 124 VR 120 121 122 123 124 VR 120 121 122 123 123 124 VR 120 121 122 123 124 VR 120 121 122 123 123 124 VR 120 121 122 122 123 123 124 VR 120 121 122 122 123 123 124 VR 120 121 122 123 123 124 VR 120 121 122 123										
-30										
-30			10000000	109	110	112	113	115	116	
TOFL 4474 4600 4787 5040 5305 5570 5890 V1 108 109 110 112 113 115 116 VR 114 115 115 117 118 119 120 V2 119 119 119 120 120 121 122 TOFL 4653 4775 4971 5236 5513 5791 6126 V1 108 109 110 112 113 115 116 VR 114 115 116 117 118 119 120 V2 119 119 119 120 120 121 122 TOFL 4832 4943 5161 5440 5729 6020 6370 V1 110 111 113 114 116 117 118 VR 116 116 117 118 119 120 121 V2 119 119 120 121 122 122 TOFL 5107 5215 5515 5797 6091 6385 6741 V1 114 114 116 117 118 119 121 VR 118 118 120 120 121 122 123 TOFL 5596 5718 6021 6312 6619 6927 7300 V1 120 121 122 122 123 123 VR 120 121 122 122 123 124 VR 120 121 122 122 123 7751 7751	-30	VR	114	115	115	116	118	119	120	
-20	-00	ROBERT SE	119	119	119	120	120	121	122	
-20		TOFL	4474	4600	4787	5040	5305	5570	5890	
-20		V1	108	109	110	112	113	115	116	
TOFL 4653 4775 4971 5236 5513 5791 6126 V1 108 109 110 112 113 115 116 VR 114 115 116 117 118 119 120 V2 119 119 119 120 120 121 122 TOFL 4832 4943 5161 5440 5729 6020 6370 V1 110 111 113 114 116 117 118 VR 116 116 117 118 119 120 121 V2 119 119 120 121 122 122 TOFL 5107 5215 5515 5797 6091 6385 6741 V1 114 114 116 117 118 119 121 VR 118 118 120 120 121 122 122 TOFL 5596 5718 6021 6312 6619 6927 7300 V1 117 118 119 120 121 122 V2 122 122 122 123 123 VR 120 121 122 122 123 124 VR 120 121 122 123 124	-20	VR	114	115	115	117	118	119	120	
-10 VR 114 115 116 117 118 119 120 V2 119 119 119 120 120 121 122 TOFL 4832 4943 5161 5440 5729 6020 6370 V1 110 111 113 114 116 117 118 VR 116 116 117 118 119 120 121 V2 119 119 120 121 122 122 TOFL 5107 5215 5515 5797 6091 6385 6741 V1 114 114 116 117 118 119 121 V2 121 121 121 122 122 TOFL 5596 5718 6021 6312 6619 6927 7300 V1 117 118 119 120 121 122 V2 122 122 122 123 123 V3 123 123 124 V4 120 121 122 123 123 V4 120 121 122 123 123 V4 120 121 122 122 123 124 V7 120 121 122 122 123 124 V8 120 121 122 122 123 124 V8 120 121 122 122 123 124 V9 122 122 122 123 123 124 V9 122 123 123 124 V9 120 121 122 122 123 124 V9 120 121 122 122 123 124 V9 120 121 122 123 124	-20	V2	119	119	119	120	120	121	122	
-10		TOFL	4653	4775	4971	5236	5513	5791	6126	
TOFL 4832 4943 5161 5440 5729 6020 6370 V1): :	V1	108	109	110	112	113	115	116	
TOFL 4832 4943 5161 5440 5729 6020 6370 V1 110 111 113 114 116 117 118 VR 116 116 117 118 119 120 121 122 122 TOFL 5107 5215 5515 5797 6091 6385 6741 V1 114 114 116 117 118 119 121 VR 118 118 120 120 121 121 122 123 V2 121 121 121 122 122 123 123 TOFL 5596 5718 6021 6312 6619 6927 7300 VR 120 121 122 122 123 124 V2 122 122 122 123 124 V2 121 121 122 122 123 124 V2 122 122 122 123 124 V3 120 121 122 122 123 124 V4 120 121 122 122 123 124 V6 120 121 122 122 123 124 V7 120 121 122 122 123 124 V8 120 121 122 122 123 124 V8 120 121 122 122 123 124 V8 120 121 122 123 124 V8 120 121 122 123 124 V8 120 121 122 123 124 V9 120 121 122 123 V8 120 121 122 123 V8 120 121 122 123 124 V9 120 121 122 123 V8 120 121 122 123	10	VR	114	115	116	117	118	119	120	
-5	-10	V2	119	119	119	120	120	121	122	
-5 VR 116 116 117 118 119 120 121 V2 119 119 120 121 121 122 122 TOFL 5107 5215 5515 5797 6091 6385 6741 0 VR 118 118 120 120 121 122 123 V2 121 121 121 122 122 123 TOFL 5596 5718 6021 6312 6619 6927 7300 10 VR 120 121 122 122 123 124 V2 122 122 122 123 124 V2 122 122 122 123 124 V2 121 121 122 122 123 124 V2 122 122 122 123 124 V2 120 121 122 123 124 V2 120 121 122 123 VX 120 121 122 123 VX 120 121 122 123 124 VX 120 121 122 123		TOFL	4832	4943	5161	5440	5729	6020	6370	
-5		V1	110	111	113	114	116	117	118	
V2 119 119 120 121 121 122 122 TOFL 5107 5215 5515 5797 6091 6385 6741 V1 114 114 116 117 118 119 121 VR 118 118 120 120 121 122 123 V2 121 121 121 122 122 123 123 TOFL 5596 5718 6021 6312 6619 6927 7300 V1 117 118 119 120 121 122 VR 120 121 122 123 124 V2 122 122 123 123 124 TOFL 6264 6395 6723 7053 7373 7711 10 VR 122 123 123 124 V2 123 123 124 V2 123 123 124	5	VR	116	116	117	118	119	120	121	
0	-5	V2	119	119	120	121	121	122	122	
0 VR 118 118 120 120 121 122 123 123 123 124 TOFL 5596 5718 6021 6312 6619 6927 7300 5 VR 120 121 122 122 123 124 125 126 127 128 129 129 120 121 122 129 129 129 129 129 129 129 129		TOFL	5107	5215	5515	5797	6091	6385	6741	
V2 121 121 121 122 122 123 123 TOFL 5596 5718 6021 6312 6619 6927 7300 V1 117 118 119 120 121 122 VR 120 121 122 122 123 124 V2 122 122 123 123 124 TOFL 6264 6395 6723 7053 7373 7711 V1 120 121 122 123 VR 122 123 124 V2 123 123 124 V2 123 123 124		V1	114	114	116	117	118	119	121	
V2 121 121 121 122 122 123 123 TOFL 5596 5718 6021 6312 6619 6927 7300 V1 117 118 119 120 121 122 VR 120 121 122 123 124 V2 122 122 123 123 124 TOFL 6264 6395 6723 7053 7373 7711 V1 120 121 122 123 VR 122 123 124 V2 123 123 124	0	VR	118	118	120	120	121	122	123	
V1 117 118 119 120 121 122 VR 120 121 122 122 123 124 V2 122 122 123 123 124 TOFL 6264 6395 6723 7053 7373 7711 V1 120 121 122 123 VR 122 123 123 124 V2 123 123 124	٠	V2	121	121	121	122	122	123	123	
5 VR 120 121 122 122 123 124 V2 122 122 123 124 TOFL 6264 6395 6723 7053 7373 7711 V1 120 121 122 123 VR 122 123 124 V2 123 123 124 V2 V2 123 123 124 V2		TOFL	5596	5718	6021	6312	6619	6927	7300	
V2 122 122 123 123 124 TOFL 6264 6395 6723 7053 7373 7711 V1 120 121 122 123 VR 122 123 123 124 V2 123 123 124		V1	117	118	119	120	121	122		
V2 122 122 123 123 124 TOFL 6264 6395 6723 7053 7373 7711 V1 120 121 122 123	5	VR	120	121	122	122	123	124		
V1 120 121 122 123 VR 122 123 123 124 V2 123 123 124	5	V2	122	122	122	123	123	124		
10 VR 122 123 123 124 V2 123 123 124		TOFL	6264	6395	6723	7053	7373	7711		
V2 123 123 124 124		V1	120	121	122	123				
V2 123 123 123 124	10	VR	122	123	123	124				
TOFL 7018 7160 7516 7875	10	V2	123	123	123	124				
		TOFL	7018	7160	7516	7875				

TOFL_TO_2_10_03

HA-420 AFM PERFORMANCE

Wind	Corrected V1	[KIAS]
FL	APS TO/AP	PR
Ice	Protection	On
Tailwind		Headwind
10	▼ REF [0] ▶	30
104	105	107
105	106	108
106	107	109
107	108	109
108	109	110
109	110	111
110	111	112
111	112	113
112	113	114
113	114	115
114	115	116
115	116	117
116	117	118
117	118	119
118	119	120
119	120	121
120	121	121
121	122	122
122	123	123
123	124	124

V1WC_TO_2_03

HA-420 AFM

PERFORMANCE

	Slope Corrected V1 [KIAS]						
FL	APS TO/	APPR, Ice Pr	otection (On			
	Ri	unway Gradient [%]				
-2	-1	■ REF [0] ▶	1	2			
103	104	104	105	106			
104	105	105	106	107			
105	106	106	107	108			
106	106	107	108	109			
107	107	108	109	110			
108	108	109	110	111			
109	109	110	111	112			
110	110	111	112	113			
111	111	112	113	114			
112	112	113	114	115			
112	113	114	115	115			
113	114	115	116	116			
114	115	116	117	117			
115	116	117	118	118			
116	117	118	119	119			
117	118	119	120	120			
118	119	120	121	121			
119	120	121	122	122			
120	121	122	123	123			
121	122	123	124	124			
122	123	124	125	125			

V1SC_TO_2_05

Takeoff Rotation Speed (V_R) Slope Correction, Ice Protection On

NOTE V_R with flaps TO/APPR and Ice Protection On does not require slope correction.

HA-420 AFM

PERFORMANCE

Slope Corrected V2 [KIAS]								
FL	FLAPS TO/APPR, Ice Protection On							
	Runway Gradient [%]							
-2	-1	▼ REF [0] ▶	1	2				
120	119	118	117	116				
121	120	119	118	117				
122	121	120	119	118				
123	122	121	120	119				
124	123	122	121	120				
125	124	123	122	121				
126	125	124	123	122				

V2SC_TO_2_06

HA-420 AFM

PERFORMANCE

V	Wind Corrected Takeoff Field Length [feet]						
FLAPS TO/APPR, Ice Protection On							
Tailwind			Headwind				
10	▼ REF [0] ▶	10	20	30			
3180	2600	2447	2293	2159			
3289	2700	2543	2385	2248			
3399	2800	2640	2478	2337			
3509	2900	2736	2570	2426			
3618	3000	2833	2663	2515			
3728	3100	2929	2755	2603			
3837	3200	3026	2848	2692			
3947	3300	3122	2940	2781			
4057	3400	3219	3033	2870			
4166	3500	3315	3125	2959			
4276	3600	3412	3218	3048			
4386	3700	3509	3311	3137			
4495	3800	3605	3403	3226			
4605	3900	3702	3496	3315			
4715	4000	3798	3588	3404			
4824	4100	3895	3681	3493			
4934	4200	3991	3773	3581			
5043	4300	4088	3866	3670			
5153	4400	4184	3958	3759			
5263	4500	4281	4051	3848			
5372	4600	4377	4143	3937			
5482	4700	4474	4236	4026			
5592	4800	4571	4329	4115			
5701	4900	4667	4421	4204			
5811	5000	4764	4514	4293			
5921	5100	4860	4606	4382			
6030	5200	4957	4699	4471			
6140	5300	5053	4791	4559			
6249	5400	5150	4884	4648			
6359	5500	5246	4976	4737			
6469	5600	5343	5069	4826			
6578	5700	5439	5161	4915			
6688	5800	5536	5254	5004			
6798	5900	5633	5347	5093			
6907	6000	5729	5439	5182			
7017	6100	5826	5532	5271			

TOWC1_TO_2_03

HA-420 AFM PERFORMANCE

	Wind Corrected Takeoff Field Length [feet]								
F	LAPS TO/AP	PR, Ice Pr	otection O	n					
Tailwind			Headwind						
10	■ REF [0] ▶	10	20	30					
7017	6100	5826	5532	5271					
7127	6200	5922	5624	5360					
7236	6300	6019	5717	5449					
7346	6400	6115	5809	5537					
7455	6500	6212	5902	5626					
7565	6600	6308	5994	5715					
7675	6700	6405	6087	5804					
7784	6800	6501	6179	5893					
7894	6900	6598	6272	5982					
8004	7000	6695	6365	6071					
8113	7100	6791	6457	6160					
8223	7200	6888	6550	6249					
8333	7300	6984	6642	6338					
8442	7400	7081	6735	6427					
8552	7500	7177	6827	6515					
8661	7600	7274	6920	6604					
8771	7700	7370	7012	6693					
8881	7800	7467	7105	6782					
8990	7900	7563	7197	6871					
9100	8000	7660	7290	6960					
9210	8100	7757	7383	7049					
9319	8200	7853	7475	7138					
9429	8300	7950	7568	7227					
9539	8400	8046	7660	7316					
9648	8500	8143	7753	7405					
9758	8600	8239	7845	7493					
9867	8700	8336	7938	7582					
9977	8800	8432	8030	7671					
10087	8900	8529	8123	7760					
10196	9000	8625	8215	7849					
10306	9100	8722	8308	7938					
10416	9200	8819	8401	8027					
10525	9300	8915	8493	8116					
10635	9400	9012	8586	8205					

TOWC2_TO_2_03

HA-420 AFM

PERFORMANCE

Slo	ope Correct	ed Takeoff Field	l Length [fe	et]					
FL	FLAPS TO/APPR, Ice Protection On								
		unway Gradient [
-2	-1	▼ REF [0] ▶	1	2					
2318	2209	2100	2096	2075					
2409	2304	2200	2199	2186					
2499	2400	2300	2303	2297					
2590	2495	2400	2406	2409					
2680	2590	2500	2510	2520					
2770	2685	2600	2614	2631					
2861	2780	2700	2717	2743					
2951	2876	2800	2821	2854					
3042	2971	2900	2924	2965					
3132	3066	3000	3028	3077					
3222	3161	3100	3131	3188					
3313	3256	3200	3235	3299					
3403	3352	3300	3338	3411					
3494	3447	3400	3442	3522					
3584	3542	3500	3546	3633					
3674	3637	3600	3649	3745					
3765	3732	3700	3753	3856					
3855	3828	3800	3856	3967					
3946	3923	3900	3960	4079					
4036	4018	4000	4063	4190					
4126	4113	4100	4167	4301					
4217	4208	4200	4270	4413					
4307	4304	4300	4374	4524					
4398	4399	4400	4478	4635					
4488	4494	4500	4581	4747					
4578	4589	4600	4685	4858					
4669	4684	4700	4788	4969					
4759	4780	4800	4892	5081					
4850	4875	4900	4995	5192					
4940	4970	5000	5099	5303					
5030	5065	5100	5202	5415					
5121	5160	5200	5306	5526					
5211	5256	5300	5410	5637					
5302	5351	5400	5513	5749					
5392	5446	5500	5617	5860					
5482 TOSC1 TO 2 03	5541	5600	5720	5971					

TOSC1_TO_2_03

HA-420 AFM PERFORMANCE

Slo	pe Correct	ed Takeoff Field	l Length [fe	et]
FL	APS TO/	APPR, Ice Pr	otection (On
		unway Gradient [
-2	-1	■ REF [0] ▶	1	2
5482	5541	5600	5720	5971
5573	5636	5700	5824	6083
5663	5732	5800	5927	6194
5754	5827	5900	6031	6305
5844	5922	6000	6134	6417
5934	6017	6100	6238	6528
6025	6112	6200	6342	6639
6115	6208	6300	6445	6751
6206	6303	6400	6549	6862
6296	6398	6500	6652	6973
6386	6493	6600	6756	7085
6477	6588	6700	6859	7196
6567	6684	6800	6963	7307
6658	6779	6900	7066	7419
6748	6874	7000	7170	7530
6838	6969	7100	7274	7641
6929	7064	7200	7377	7753
7019	7160	7300	7481	7864
7110	7255	7400	7584	7975
7200	7350	7500	7688	8087
7290	7445	7600	7791	8198
7381	7540	7700	7895	8309
7471	7636	7800	7998	8421
7562	7731	7900	8102	8532
7652	7826	8000	8206	8643
7742	7921	8100	8309	8755
7833	8016	8200	8413	8866
7923	8112	8300	8516	8977
8014	8207	8400	8620	9089
8104	8302	8500	8723	9200
8194	8397	8600	8827	9311
8285	8492	8700	8930	9423
8375	8588	8800	9034	9534
8466	8683	8900	9138	9645

TOSC2_TO_2_03

HA-420 AFM

PERFORMANCE

Sle	Slope Corrected Takeoff Field Length [feet]							
FLAPS TO/APPR, Ice Protection On								
	Rı	unway Gradient [%]					
-2	-1	▼ REF [0] ▶	1	2				
8466	8683	8900	9138	9645				
8556	8778	9000	9241	9757				
8646	8873	9100	9345	9868				
8737	8968	9200	9448	9979				
8827	9064	9300	9552	10091				
8918	9159	9400	9655	10202				
9008	9254	9500	9759	10313				

TOSC3_TO_2_03

	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind								
	Flaps TO/APPR, Gear UP, Ice Protection Off, V2								
F. ALT	Temp.				off Weigh				
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600	
	-40	10.3	9.9	8.9	7.9	7.0	6.1	5.1	
	15	10.6	10.2	9.1	8.1	7.2	6.3	5.3	
	25	10.7	10.3	9.2	8.2	7.3	6.4	5.4	
-1000	35	8.9	8.5	7.5	6.5	5.7	4.8	3.9	
-1000	40	7.7	7.3	6.3	5.4	4.6	3.8	3.0	
	45	6.5	6.1	5.2	4.3	3.6	2.9	2.1	
	50	5.2	4.9	4.0	3.2	2.5	1.9	1.2	
	55	4.0	3.6	2.9	2.2	1.6	1.0	0.3	
	-40	10.1	9.7	8.6	7.7	6.8	5.9	5.0	
	15	10.4	10.0	8.9	8.0	7.0	6.2	5.2	
	25	10.5	10.1	9.0	8.0	7.1	6.2	5.2	
Sea	35	8.3	7.9	6.9	6.0	5.1	4.3	3.4	
Level	40	7.1	6.6	5.7	4.9	4.1	3.3	2.5	
	45	5.8	5.5	4.6	3.8	3.0	2.4	1.6	
	50	4.6	4.2	3.4	2.7	2.0	1.4	0.7	
3	55	3.4	3.0	2.3	1.7	1.1	0.5	-0.1	
	-40	9.7	9.3	8.3	7.4	6.5	5.6	4.7	
	15	10.1	9.7	8.6	7.6	6.7	5.9	4.9	
	25	9.7	9.3	8.3	7.3	6.4	5.5	4.6	
1000	30	8.6	8.2	7.2	6.3	5.4	4.6	3.7	
1000	35	7.5	7.1	6.1	5.3	4.4	3.7	2.8	
	40	6.3	5.9	5.0	4.2	3.4	2.7	2.0	
	45	5.1	4.7	3.9	3.1	2.4	1.8	1.1	
	50	3.9	3.5	2.8	2.1	1.5	0.9	0.2	
	-40	9.4	9.0	8.0	7.0	6.1	5.3	4.4	
	10	9.7	9.3	8.3	7.3	6.4	5.5	4.6	
	20	9.8	9.3	8.3	7.4	6.4	5.6	4.6	
2000	30	7.8	7.4	6.4	5.5	4.7	3.9	3.1	
2000	35	6.7	6.3	5.4	4.6	3.8	3.1	2.3	
	40	5.6	5.2	4.3	3.5	2.8	2.2	1.4	
	45	4.4	4.0	3.2	2.5	1.9	1.2	0.6	
(c.)	50	3.2	2.9	2.2	1.5	0.9	0.4	-0.3	

TCG2_TO_0_-1_06

	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind								
Flaps TO/APPR, Gear UP, Ice Protection Off, V2									
F. ALT	Temp.		,		off Weigh				
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600	
	-40	9.0	8.6	7.6	6.7	5.8	5.0	4.1	
	10	9.4	8.9	7.9	7.0	6.1	5.2	4.3	
	20	9.2	8.8	7.8	6.8	5.9	5.1	4.2	
3000	25	8.1	7.7	6.7	5.8	4.9	4.2	3.3	
3000	30	7.0	6.6	5.7	4.8	4.0	3.3	2.5	
	35	5.9	5.5	4.6	3.8	3.1	2.4	1.7	
	40	4.8	4.4	3.6	2.9	2.2	1.6	0.9	
	45	3.7	3.3	2.6	1.9	1.3	0.7	0.1	
	-40	8.7	8.3	7.3	6.4	5.5	4.7	3.8	
	10	9.0	8.6	7.6	6.6	5.7	4.9	4.0	
	20	8.4	7.9	7.0	6.0	5.2	4.4	3.5	
4000	25	7.3	6.9	5.9	5.0	4.2	3.5	2.7	
4000	30	6.1	5.8	4.9	4.0	3.3	2.6	1.8	
	35	5.1	4.7	3.9	3.1	2.4	1.8	1.1	
	40	4.0	3.7	2.9	2.2	1.6	1.0	0.3	
	45	3.0	2.7	2.0	1.3	8.0	0.2		
	-40	8.3	7.9	7.0	6.0	5.2	4.4	3.5	
	5	8.6	8.2	7.2	6.2	5.4	4.6	3.7	
	15	8.6	8.1	7.2	6.2	5.4	4.6	3.7	
5000	25	6.4	6.0	5.1	4.3	3.5	2.8	2.0	
5000	30	5.3	4.9	4.1	3.3	2.6	2.0	1.2	
	35	4.3	3.9	3.2	2.4	1.8	1.2	0.5	
	40	3.2	2.9	2.2	1.6	1.0	0.4	-0.2	
	45	2.2	2.0	1.3	0.7	0.2			
	-40	8.0	7.6	6.7	5.7	4.9	4.1	3.3	
	0	8.2	7.8	6.8	5.9	5.0	4.2	3.4	
	10	8.2	7.7	6.8	5.8	5.0	4.2	3.3	
6000	20	6.7	6.3	5.4	4.5	3.7	3.0	2.2	
0000	25	5.6	5.2	4.4	3.6	2.8	2.2	1.4	
	30	4.5	4.2	3.4	2.6	2.0	1.4	0.7	
	35	3.5	3.2	2.4	1.8	1.2	0.6	0.0	
is :	40	2.5	2.2	1.6	0.9	0.4	-0.1		

TCG2_TO_0_3_06

5.	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind								
a.	Flaps TO/APPR, Gear UP, Ice Protection Off, V2								
F. ALT	Temp.				off Weigh		,		
[ft]	[°Cj	7800	8000	8500	9000	9500	10000	10600	
	-40	7.7	7.3	6.3	5.4	4.6	3.9	3.0	
	0	7.8	7.4	6.4	5.5	4.7	3.9	3.1	
	10	7.7	7.3	6.4	5.5	4.6	3.9	3.0	
7000	15	6.9	6.5	5.6	4.7	3.9	3.2	2.4	
7000	20	5.9	5.5	4.6	3.8	3.1	2.4	1.6	
	25	4.8	4.4	3.6	2.9	2.2	1.6	0.9	
	30	3.7	3.4	2.7	2.0	1.4	0.8	0.1	
	35	2.8	2.5	1.8	1.2	0.6	0.1		
	-40	7.4	7.0	6.0	5.2	4.3	3.6	2.8	
	-10	7.4	7.1	6.1	5.2	4.4	3.6	2.8	
	0	7.4	7.0	6.0	5.1	4.3	3.6	2.8	
8000	10	7.2	6.8	5.8	4.9	4.1	3.4	2.6	
8000	15	6.0	5.7	4.8	4.0	3.2	2.5	1.8	
	20	5.0	4.7	3.8	3.1	2.4	1.7	1.0	
	25	4.0	3.6	2.9	2.2	1.6	1.0	0.3	
	30	3.0	2.7	2.0	1.3	8.0	0.2		
	-40	7.1	6.7	5.7	4.9	4.1	3.3	2.5	
	-10	7.0	6.6	5.7	4.8	4.0	3.3	2.5	
	0	7.0	6.6	5.7	4.8	4.0	3.3	2.5	
9000	10	6.3	5.9	5.0	4.2	3.4	2.7	1.9	
3000	15	5.2	4.9	4.0	3.2	2.5	1.9	1.2	
	20	4.2	3.9	3.1	2.4	1.7	1.1	0.5	
	25	3.2	2.9	2.2	1.5	0.9	0.4	-0.2	
	30	2.3	2.0	1.3	0.7	0.2			
	-40	6.7	6.3	5.4	4.5	3.7	3.0	2.2	
	-15	6.6	6.2	5.3	4.5	3.7	3.0	2.2	
	-5	6.6	6.2	5.3	4.5	3.7	3.0	2.2	
10,000	5	6.5	6.2	5.3	4.4	3.6	2.9	2.1	
10,000	10	5.4	5.1	4.2	3.4	2.7	2.0	1.3	
	15	4.4	4.1	3.3	2.6	1.9	1.3	0.6	
	20	3.4	3.1	2.4	1.7	1.1	0.6	-0.1	
	25	2.5	2.2	1.5	0.9	0.4	-0.2		

TCG2_TO_0_7_06

HA-420 AFM

PERFORMANCE

Wi	nd Corrected Ta	keoff Climi	b Gradient [[%]
FLAPS (JP and TO/Al	PPR, V2, I	ice Protec	ction Off
Tailwind			Headwind	
10	■ REF [0] ▶	10	20	30
0.0	0.0	0.0	0.0	0.0
0.5	0.5	0.5	0.5	0.5
0.9	1.0	1.0	1.0	1.1
1.4	1.5	1.5	1.6	1.6
1.8	2.0	2.1	2.1	2.2
2.3	2.5	2.6	2.7	2.8
2.7	3.0	3.1	3.2	3.4
3.2	3.5	3.6	3.8	3.9
3.6	4.0	4.2	4.3	4.5
4.0	4.5	4.7	4.9	5.1
4.5	5.0	5.2	5.4	5.7
4.9	5.5	5.7	6.0	6.2
5.4	6.0	6.2	6.5	6.8
5.8	6.5	6.8	7.1	7.4
6.3	7.0	7.3	7.6	7.9
6.7	7.5	7.8	8.2	8.5
7.1	8.0	8.3	8.7	9.1
7.6	8.5	8.9	9.2	9.7
8.0	9.0	9.4	9.8	10.2
8.5	9.5	9.9	10.3	10.8
8.9	10.0	10.4	10.9	11.4
9.4	10.5	10.9	11.4	12.0
9.8	11.0	11.5	12.0	12.5
10.2	11.5	12.0	12.5	13.1
10.7	12.0	12.5	13.1	13.7

CGWC_TO_ALL_05

NOTE Use this table when determining the ground reference flight path for obstacle clearance with Ice Protection Off.

HA-420 AFM PERFORMANCE

	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind								
	Flaps TO/APPR, Gear UP, Ice Protection On, V2								
F. ALT			,		off Weigl		, , , , ,		
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600	
	-40	10.3	9.9	8.9	7.9	7.0	6.1	5.2	
	-30	10.4	9.9	8.9	7.9	7.0	6.1	5.2	
	-20	10.4	10.0	8.9	8.0	7.0	6.2	5.2	
-1000	-10	10.5	10.0	9.0	8.0	7.1	6.2	5.2	
-1000	-5	10.5	10.1	9.0	8.1	7.1	6.2	5.3	
	0	10.6	10.1	9.1	8.1	7.2	6.3	5.3	
	5	10.6	10.2	9.1	8.1	7.2	6.3	5.3	
	10	10.6	10.2	9.1	8.2	7.2	6.3	5.3	
	-40	10.1	9.7	8.7	7.7	6.8	5.9	5.0	
	-30	10.1	9.7	8.7	7.7	6.8	6.0	5.0	
	-20	10.2	9.8	8.8	7.8	6.9	6.0	5.0	
Sea	-10	10.3	9.9	8.8	7.8	6.9	6.1	5.1	
Level	-5	10.3	9.9	8.9	7.9	7.0	6.1	5.1	
	0	10.4	10.0	8.9	7.9	7.0	6.1	5.1	
	5	10.4	10.0	8.9	8.0	7.0	6.2	5.2	
	10	10.5	10.0	9.0	8.0	7.1	6.2	5.2	
	-40	9.8	9.3	8.3	7.4	6.5	5.6	4.7	
	-30	9.8	9.4	8.4	7.4	6.5	5.7	4.7	
	-20	9.9	9.5	8.4	7.5	6.6	5.7	4.8	
1000	-10	10.0	9.5	8.5	7.6	6.6	5.8	4.8	
1000	-5	10.0	9.6	8.6	7.6	6.7	5.8	4.8	
	0	10.1	9.6	8.6	7.6	6.7	5.8	4.9	
	5	10.1	9.6	8.6	7.6	6.7	5.8	4.9	
	10	9.6	9.2	8.2	7.2	6.3	5.5	4.5	
	-40	9.4	9.0	8.0	7.1	6.2	5.3	4.4	
	-30	9.5	9.1	8.1	7.1	6.2	5.4	4.4	
	-20	9.6	9.2	8.1	7.2	6.3	5.4	4.5	
2000	-10	9.7	9.2	8.2	7.3	6.4	5.5	4.6	
	-5	9.7	9.3	8.2	7.3	6.4	5.5	4.6	
	0	9.7	9.3	8.3	7.3	6.4	5.5	4.6	
	5	9.7	9.3	8.3	7.3	6.4	5.6	4.6	
	10	8.8	8.4	7.4	6.5	5.6	4.8	3.9	

TCG2_TO_2_-1_02

HA-420 AFM

PERFORMANCE

	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind									
	Flaps TO/APPR, Gear UP, Ice Protection On, V2									
F. ALT										
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600		
	-40	9.1	8.7	7.7	6.8	5.8	5.0	4.1		
	-30	9.2	8.7	7.7	6.8	5.9	5.1	4.2		
	-20	9.2	8.8	7.8	6.9	6.0	5.2	4.2		
3000	-10	9.3	8.9	7.9	6.9	6.0	5.2	4.3		
3000	-5	9.3	8.9	7.9	7.0	6.1	5.2	4.3		
	0	9.4	8.9	7.9	7.0	6.1	5.2	4.3		
	5	9.2	8.7	7.7	6.8	5.9	5.1	4.1		
	10	7.9	7.5	6.6	5.7	4.8	4.0	3.2		
	-40	8.7	8.3	7.3	6.4	5.5	4.7	3.8		
	-30	8.8	8.4	7.4	6.5	5.6	4.8	3.9		
	-20	8.9	8.5	7.5	6.6	5.7	4.9	3.9		
4000	-10	9.0	8.5	7.5	6.6	5.7	4.9	4.0		
4000	-5	9.0	8.6	7.6	6.6	5.7	4.9	4.0		
	0	9.0	8.6	7.6	6.7	5.7	4.9	4.0		
	5	8.3	7.9	7.0	6.0	5.2	4.4	3.5		
	10	7.0	6.6	5.7	4.8	4.0	3.3	2.5		
	-40	8.4	8.0	7.1	6.1	5.3	4.5	3.6		
	-30	8.5	8.1	7.1	6.2	5.3	4.5	3.6		
	-20	8.5	8.1	7.2	6.2	5.4	4.6	3.7		
5000	-10	8.6	8.2	7.2	6.3	5.4	4.6	3.7		
(alecteropes)	-5	8.6	8.2	7.2	6.3	5.4	4.6	3.7		
	0	8.6	8.2	7.2	6.3	5.4	4.6	3.7		
	5	7.5	7.1	6.1	5.2	4.4	3.6	2.8		
	10	6.1	5.7	4.8	4.0	3.2	2.5	1.8		
	-40	8.1	7.7	6.7	5.8	5.0	4.2	3.3		
	-30	8.2	7.7	6.8	5.9	5.0	4.2	3.4		
	-20	8.2	7.8	6.9	5.9	5.1	4.3	3.4		
6000	-10	8.2	7.8	6.9	5.9	5.1	4.3	3.4		
	-5	8.2	7.8	6.9	5.9	5.1	4.3	3.4		
	0	7.8	7.4	6.4	5.5	4.7	3.9	3.1		
	5	6.5	6.1	5.2	4.4	3.6	2.9	2.1		
2	10	5.1	4.8	3.9	3.2	2.5	1.8	1.1		

TCG2_TO_2_3_02

	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind								
	Flaps TO/APPR, Gear UP, Ice Protection On, V2								
F. ALT	Temp.		,		off Weigh		,		
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600	
	-40	7.8	7.4	6.4	5.5	4.7	3.9	3.1	
	-30	7.8	7.4	6.5	5.6	4.7	4.0	3.1	
	-20	7.9	7.5	6.5	5.6	4.8	4.0	3.1	
7000	-10	7.9	7.5	6.5	5.6	4.8	4.0	3.1	
7000	-5	7.8	7.4	6.5	5.6	4.7	4.0	3.1	
	0	6.9	6.5	5.6	4.7	3.9	3.2	2.4	
	5	5.6	5.2	4.3	3.5	2.8	2.2	1.4	
	10	4.2	3.9	3.1	2.4	1.8	1.2	0.5	
	-40	7.4	7.1	6.1	5.2	4.4	3.6	2.8	
	-30	7.5	7.1	6.1	5.3	4.4	3.7	2.9	
	-20	7.5	7.1	6.1	5.3	4.4	3.7	2.9	
8000	-10	7.5	7.1	6.1	5.2	4.4	3.6	2.8	
0000	-5	7.3	6.8	5.9	5.0	4.2	3.5	2.6	
	0	6.0	5.6	4.7	3.9	3.1	2.5	1.7	
	5	4.7	4.3	3.5	2.8	2.1	1.5	8.0	
	10	3.4	3.1	2.4	1.7	1.1	0.5	-0.1	
	-40	7.1	6.7	5.8	4.9	4.1	3.4	2.5	
	-30	7.2	6.7	5.8	4.9	4.1	3.4	2.6	
	-20	7.1	6.7	5.8	4.9	4.1	3.4	2.5	
9000	-10	7.1	6.6	5.7	4.8	4.0	3.3	2.5	
3000	-5	6.3	5.9	5.0	4.2	3.5	2.8	2.0	
	0	5.1	4.7	3.9	3.1	2.4	1.8	1.1	
	5	3.8	3.5	2.7	2.0	1.4	8.0	0.2	
	10	2.6	2.3	1.6	1.0	0.5	-0.1		
	-40	6.7	6.3	5.4	4.6	3.8	3.1	2.3	
	-30	6.7	6.3	5.4	4.6	3.8	3.1	2.3	
	-20	6.7	6.2	5.3	4.5	3.7	3.0	2.2	
10,000	-10	6.6	6.2	5.3	4.5	3.7	3.0	2.2	
10,000	-5	5.5	5.1	4.2	3.5	2.8	2.1	1.4	
	0	4.2	3.8	3.1	2.4	1.7	1.1	0.5	
	5	2.9	2.7	2.0	1.3	0.7	0.2	-0.4	
	10	1.8	1.6	0.9	0.4	-0.2			

TCG2_TO_2_7_02

HA-420 AFM

PERFORMANCE

Wind Corrected Takeoff Climb Gradient [%]							
FLAPS	UP and TO/A	APPR, V2,	Ice Protec	tion On			
Tailwind			Headwind				
10	▼ REF [0] ▶	10	20	30			
0.1	0.0	0.0	0.0	0.0			
0.5	0.5	0.5	0.5	0.4			
1.0	1.0	1.0	1.0	1.0			
1.4	1.5	1.5	1.6	1.6			
1.9	2.0	2.0	2.1	2.2			
2.3	2.5	2.6	2.6	2.7			
2.7	3.0	3.1	3.2	3.3			
3.2	3.5	3.6	3.7	3.9			
3.6	4.0	4.1	4.3	4.4			
4.1	4.5	4.7	4.8	5.0			
4.5	5.0	5.2	5.4	5.6			
5.0	5.5	5.7	5.9	6.2			
5.4	6.0	6.2	6.5	6.7			
5.8	6.5	6.8	7.0	7.3			
6.3	7.0	7.3	7.6	7.9			
6.7	7.5	7.8	8.1	8.5			
7.2	8.0	8.3	8.7	9.0			
7.6	8.5	8.8	9.2	9.6			
8.1	9.0	9.4	9.8	10.2			
8.5	9.5	9.9	10.3	10.8			
8.9	10.0	10.4	10.9	11.3			
9.4	10.5	10.9	11.4	11.9			
9.8	11.0	11.5	11.9	12.5			
10.3	11.5	12.0	12.5	13.1			
10.7	12.0	12.5	13.0	13.6			

CGWC_UP_2_03

NOTE Use this table when determining the ground reference flight path for obstacle clearance with Ice Protection On.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM PERFORMANCE

	Net Takeoff Climb Gradient, Final Segment [%]										
	Zero Slope, No Wind Flaps UP, Gear UP, Ice Protection Off, 140 KIAS										
	The state of the s	JP, Gea	ir UP, I		off Weigl		U KIAS	•			
F. ALT [ft]	Temp. [°C]	7800	8000	8500	9000	9500	10000	10600			
נונן	-40	9.8	9.4	8.5	7.6	6.9	6.1	5.3			
	15	10.2	9.8	8.9	8.0	7.2	6.4	5.6			
	25	10.2	9.9	8.9	8.0	7.2	6.5	5.7			
	35	8.6	8.2	7.3	6.5	5.8	5.1	4.4			
-1000	40	7.6	7.2	6.4	5.7	5.0	4.4	3.7			
	45	6.5	6.2	5.4	4.7	4.1	3.5	2.9			
	50	5.3	5.1	4.4	3.7	3.2	2.6	2.0			
	55	4.2	4.0	3.3	2.8	2.3	1.8	1.2			
,	-40	9.5	9.1	8.2	7.3	6.6	5.9	5.1			
	15	9.9	9.5	8.5	7.7	6.9	6.2	5.4			
	25	9.9	9.5	8.6	7.7	6.9	6.2	5.4			
Sea	35	7.8	7.4	6.6	5.8	5.2	4.5	3.8			
Level	40	6.8	6.5	5.7	5.0	4.3	3.7	3.1			
	45	5.8	5.5	4.8	4.1	3.5	3.0	2.3			
	50	4.7	4.4	3.8	3.2	2.6	2.1	1.5			
	55	3.6	3.4	2.8	2.2	1.7	1.3	0.7			
1.5	-40	9.1	8.7	7.8	7.0	6.3	5.6	4.8			
	15	9.5	9.1	8.2	7.4	6.6	5.9	5.1			
	25	9.1	8.7	7.8	7.0	6.3	5.6	4.8			
1000	30	8.0	7.7	6.8	6.1	5.4	4.7	4.0			
1000	35	7.0	6.7	5.9	5.2	4.5	3.9	3.2			
	40	6.0	5.7	5.0	4.3	3.7	3.2	2.5			
	45	5.1	4.8	4.1	3.5	2.9	2.4	1.8			
	50	4.1	3.8	3.2	2.6	2.1	1.6	1.1			
	-40	8.8	8.4	7.5	6.7	6.0	5.3	4.5			
	10	9.1	8.7	7.8	7.0	6.3	5.6	4.8			
	20	9.2	8.8	7.9	7.1	6.3	5.6	4.8			
2000	30	7.2	6.9	6.1	5.4	4.7	4.1	3.4			
	35	6.2	5.9	5.2	4.5	3.9	3.3	2.7			
	40	5.3	5.0	4.3	3.7	3.1	2.6	2.0			
	45	4.4	4.1	3.5	2.9	2.4	1.9	1.3			
2	50	3.5	3.2	2.6	2.1	1.6	1.2	0.6			

TCG3_TO_0_-1_06

	Net Takeoff Climb Gradient, Final Segment [%] Zero Slope, No Wind									
	Flans L	JP. Gea		-		Off. 14	10 KIAS	•		
F. ALT	Flaps UP, Gear UP, Ice Protection Off, 140 KIAS Temp. Takeoff Weight [lb]									
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600		
	-40	8.4	8.0	7.2	6.4	5.7	5.0	4.3		
	10	8.8	8.4	7.5	6.7	6.0	5.3	4.5		
	20	8.6	8.2	7.3	6.5	5.8	5.1	4.4		
2000	25	7.4	7.1	6.3	5.6	4.9	4.3	3.6		
3000	30	6.4	6.1	5.3	4.7	4.0	3.5	2.8		
	35	5.5	5.2	4.5	3.9	3.3	2.7	2.1		
	40	4.6	4.3	3.7	3.1	2.5	2.0	1.5		
	45	3.7	3.5	2.9	2.4	1.9	1.4	0.9		
	-40	8.1	7.7	6.9	6.1	5.4	4.8	4.0		
	10	8.3	8.0	7.1	6.3	5.6	5.0	4.2		
	20	7.7	7.3	6.5	5.8	5.1	4.5	3.8		
4000	25	6.6	6.3	5.5	4.9	4.2	3.6	3.0		
4000	30	5.6	5.3	4.6	4.0	3.4	2.9	2.3		
	35	4.8	4.5	3.8	3.2	2.7	2.2	1.6		
	40	3.9	3.7	3.1	2.5	2.0	1.5	1.0		
	45	3.1	2.9	2.3	1.8	1.3	0.9			
	-40	7.7	7.4	6.6	5.8	5.1	4.5	3.8		
	5	7.9	7.6	6.7	6.0	5.3	4.6	3.9		
	15	7.9	7.5	6.7	6.0	5.3	4.6	3.9		
5000	25	5.9	5.5	4.8	4.2	3.6	3.0	2.4		
0000	30	4.9	4.7	4.0	3.4	2.8	2.3	1.7		
	35	4.1	3.8	3.2	2.7	2.1	1.7	1.1		
	40	3.3	3.0	2.5	2.0	1.5	1.0	0.5		
	45	2.5	2.3	1.8	1.3	0.9				
	-40	7.4	7.1	6.3	5.5	4.9	4.2	3.6		
	0	7.5	7.2	6.4	5.6	5.0	4.3	3.6		
	10	7.5	7.2	6.3	5.6	4.9	4.3	3.6		
6000	20	6.1	5.8	5.1	4.4	3.8	3.2	2.6		
	25	5.2	4.9	4.2	3.6	3.0	2.5	1.9		
	30	4.3	4.0	3.4	2.8	2.3	1.8	1.3		
	35	3.5	3.2	2.7	2.1	1.6	1.2	0.7		
TCG3 TO 0	40	2.7	2.5	1.9	1.5	1.0	0.6			

TCG3_TO_0_3_06

Net Takeoff Climb Gradient, Final Segment [%] Zero Slope, No Wind										
F	Flaps UP, Gear UP, Ice Protection Off, 140 KIAS									
F. ALT	Temp.				off Weigh					
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600		
	-40	7.1	6.8	6.0	5.3	4.6	4.0	3.3		
	0	7.1	6.8	6.0	5.3	4.6	4.0	3.3		
	10	7.1	6.8	6.0	5.3	4.6	4.0	3.3		
7000	15	6.4	6.1	5.3	4.6	4.0	3.4	2.8		
7000	20	5.4	5.1	4.4	3.8	3.2	2.7	2.1		
	25	4.5	4.2	3.6	3.0	2.5	2.0	1.4		
	30	3.7	3.4	2.8	2.3	1.8	1.3	0.8		
	35	2.9	2.7	2.1	1.6	1.2	0.7			
	-40	6.8	6.5	5.7	5.0	4.3	3.8	3.1		
	-10	6.8	6.5	5.7	5.0	4.4	3.8	3.1		
	0	6.8	6.4	5.7	5.0	4.3	3.7	3.1		
8000	10	6.6	6.3	5.5	4.8	4.2	3.6	3.0		
8000	15	5.7	5.4	4.7	4.0	3.4	2.9	2.3		
	20	4.7	4.5	3.8	3.2	2.7	2.2	1.6		
	25	3.9	3.6	3.0	2.5	2.0	1.5	1.0		
	30	3.1	2.9	2.3	1.8	1.3	0.9			
	-40	6.4	6.1	5.4	4.7	4.1	3.5	2.8		
	-10	6.4	6.1	5.3	4.7	4.0	3.5	2.8		
	0	6.4	6.1	5.4	4.7	4.0	3.5	2.8		
9000	10	5.9	5.6	4.9	4.2	3.6	3.1	2.4		
3000	15	5.0	4.7	4.0	3.4	2.9	2.3	1.8		
	20	4.1	3.8	3.2	2.7	2.1	1.7	1.1		
	25	3.3	3.0	2.5	2.0	1.5	1.0	0.5		
	30	2.5	2.3	1.8	1.3	0.9				
	-40	6.1	5.8	5.1	4.4	3.8	3.2	2.6		
	-15	6.0	5.7	5.0	4.4	3.7	3.2	2.5		
	-5	6.1	5.7	5.0	4.4	3.8	3.2	2.6		
10,000	5	6.1	5.8	5.1	4.4	3.8	3.2	2.6		
10,000	10	5.2	4.9	4.2	3.6	3.1	2.5	1.9		
	15	4.3	4.1	3.4	2.9	2.3	1.8	1.3		
	20	3.5	3.2	2.7	2.1	1.6	1.2	0.7		
	25	2.7	2.5	1.9	1.5	1.0	0.6			

TCG3_TO_0_7_06

HA-420 AFM

PERFORMANCE

Wi	nd Corrected Er	route Clim	b Gradient	[%]
FLAF	PS UP, 140 [K	IAS], Ice	Protectio	n Off
Tailwind			Headwind	
10	■ REF [0] ▶	10	20	30
0.1	0.0	0.0	0.0	0.1
0.5	0.5	0.5	0.5	0.7
1.0	1.0	1.0	1.0	1.2
1.4	1.5	1.5	1.6	1.8
1.9	2.0	2.1	2.1	2.3
2.3	2.5	2.6	2.6	2.9
2.8	3.0	3.1	3.2	3.5
3.2	3.5	3.6	3.7	4.0
3.7	4.0	4.1	4.3	4.6
4.1	4.5	4.6	4.8	5.2
4.6	5.0	5.2	5.3	5.7
5.0	5.5	5.7	5.9	6.3
5.5	6.0	6.2	6.4	6.8
5.9	6.5	6.7	7.0	7.4
6.4	7.0	7.2	7.5	8.0
6.8	7.5	7.8	8.1	8.5
7.3	8.0	8.3	8.6	9.1
7.7	8.5	8.8	9.1	9.7
8.1	9.0	9.3	9.7	10.2
8.6	9.5	9.8	10.2	10.8
9.0	10.0	10.4	10.8	11.4
9.5	10.5	10.9	11.3	11.9
9.9	11.0	11.4	11.8	12.5
10.4	11.5	11.9	12.4	13.0
10.8	12.0	12.4	12.9	13.6

ECGWC_UP_ALL_05

HA-420 AFM

PERFORMANCE

	Net Takeoff Climb Gradient, Final Segment [%]									
	Zero Slope, No Wind Flaps UP, Gear UP, Ice Protection On, 140 KIAS									
		JP, Gea	ar UP, I		off Weigl		IU KIAS	•		
F. ALT [ft]	Temp. [°C]	7800	8000	8500	9000	9500	10000	10600		
[it]	-40	9.9	9.5	8.5	7.7	6.9	6.2	5.4		
	-30	9.9	9.5	8.6	7.7	6.9	6.2	5.4		
	-20	10.0	9.6	8.6	7.8	7.0	6.3	5.5		
	-10	10.1	9.7	8.7	7.9	7.1	6.3	5.5		
-1000	-5	10.1	9.7	8.8	7.9	7.1	6.4	5.6		
	0	10.2	9.8	8.8	7.9	7.1	6.4	5.6		
	5	10.2	9.8	8.8	8.0	7.2	6.4	5.6		
	10	10.3	9.8	8.9	8.0	7.2	6.5	5.6		
	-40	9.5	9.1	8.2	7.3	6.6	5.9	5.1		
	-30	9.6	9.2	8.2	7.4	6.6	5.9	5.1		
	-20	9.7	9.3	8.3	7.5	6.7	6.0	5.2		
Sea	-10	9.8	9.4	8.4	7.6	6.8	6.1	5.3		
Level	-5	9.8	9.4	8.5	7.6	6.8	6.1	5.3		
	0	9.8	9.4	8.5	7.6	6.9	6.1	5.3		
	5	9.9	9.5	8.5	7.7	6.9	6.2	5.4		
	10	9.9	9.5	8.6	7.7	6.9	6.2	5.4		
	-40	9.2	8.8	7.9	7.0	6.3	5.6	4.8		
	-30	9.2	8.8	7.9	7.1	6.4	5.7	4.9		
	-20	9.3	8.9	8.0	7.2	6.4	5.7	5.0		
1000	-10	9.4	9.0	8.1	7.3	6.5	5.8	5.0		
1000	-5	9.4	9.1	8.1	7.3	6.5	5.8	5.0		
	0	9.5	9.1	8.2	7.3	6.6	5.9	5.1		
	5	9.5	9.1	8.2	7.4	6.6	5.9	5.1		
	10	9.0	8.6	7.7	6.9	6.2	5.5	4.7		
	-40	8.8	8.4	7.6	6.7	6.0	5.3	4.6		
	-30	8.9	8.5	7.6	6.8	6.1	5.4	4.6		
	-20	9.0	8.6	7.7	6.9	6.2	5.5	4.7		
2000	-10	9.1	8.7	7.8	7.0	6.2	5.5	4.8		
	-5	9.1	8.7	7.8	7.0	6.2	5.6	4.8		
	0	9.1	8.7	7.8	7.0	6.3	5.6	4.8		
	5	9.2	8.8	7.9	7.0	6.3	5.6	4.8		
	10	8.1	7.7	6.9	6.1	5.4	4.8	4.0		

TCG3_TO_2_-1_02

HA-420 AFM

PERFORMANCE

	Net Takeoff Climb Gradient, Final Segment [%] Zero Slope, No Wind									
	Elana I	ID Cod				On 1/	O KIAS			
F. ALT		JP, Gea	ar UP, I		off Weigl		O KIAS)		
F. ALT	Temp. [°C]	7800	8000	8500	9000	9500	10000	10600		
[it]	-40	8.5	8.1	7.3	6.5	5.7	5.1	4.3		
	-30	8.6	8.2	7.3	6.5	5.8	5.1	4.4		
	-20	8.6	8.3	7.4	6.6	5.9	5.2	4.5		
	-10	8.7	8.3	7.5	6.7	5.9	5.3	4.5		
3000	-5	8.7	8.4	7.5	6.7	6.0	5.3	4.5		
	0	8.8	8.4	7.5	6.7	6.0	5.3	4.5		
	5	8.5	8.1	7.3	6.5	5.8	5.1	4.4		
	10	7.2	6.8	6.0	5.3	4.7	4.0	3.4		
,	-40	8.2	7.8	7.0	6.2	5.5	4.8	4.1		
	-30	8.2	7.9	7.0	6.2	5.5	4.9	4.2		
	-20	8.3	7.9	7.1	6.3	5.6	4.9	4.2		
4000	-10	8.4	8.0	7.1	6.4	5.6	5.0	4.2		
4000	-5	8.4	8.0	7.1	6.4	5.7	5.0	4.3		
	0	8.4	8.0	7.2	6.4	5.7	5.0	4.3		
	5	7.6	7.2	6.4	5.7	5.0	4.4	3.7		
n .	10	6.3	5.9	5.2	4.5	3.9	3.3	2.7		
	-40	7.8	7.4	6.6	5.9	5.2	4.5	3.8		
	-30	7.9	7.5	6.7	5.9	5.2	4.6	3.9		
	-20	7.9	7.6	6.8	6.0	5.3	4.7	3.9		
5000	-10	8.0	7.6	6.8	6.0	5.3	4.7	4.0		
0000	-5	8.0	7.6	6.8	6.0	5.3	4.7	4.0		
	0	8.0	7.6	6.8	6.0	5.3	4.7	4.0		
	5	6.7	6.3	5.6	4.9	4.2	3.7	3.0		
	10	5.4	5.1	4.4	3.8	3.2	2.7	2.1		
	-40	7.5	7.1	6.3	5.6	4.9	4.3	3.6		
	-30	7.5	7.2	6.4	5.6	5.0	4.3	3.6		
	-20	7.6	7.2	6.4	5.7	5.0	4.4	3.7		
6000	-10	7.6	7.2	6.4	5.7	5.0	4.4	3.7		
	-5	7.6	7.2	6.4	5.7	5.0	4.4	3.7		
	0	7.1	6.7	6.0	5.2	4.6	4.0	3.3		
	5	5.8	5.5	4.8	4.1	3.5	3.0	2.4		
	10	4.6	4.3	3.7	3.1	2.6	2.1	1.5		

TCG3_TO_2_3_02

	Net Takeoff Climb Gradient, Final Segment [%] Zero Slope, No Wind									
	Flaps UP, Gear UP, Ice Protection On, 140 KIAS									
F. ALT	Temp.	Takeoff Weight [lb]								
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600		
	-40	7.1	6.8	6.0	5.3	4.6	4.0	3.4		
	-30	7.2	6.9	6.1	5.4	4.7	4.1	3.4		
	-20	7.2	6.9	6.1	5.4	4.7	4.1	3.4		
7000	-10	7.2	6.9	6.1	5.3	4.7	4.1	3.4		
7000	-5	7.2	6.8	6.0	5.3	4.7	4.1	3.4		
	0	6.2	5.9	5.2	4.5	3.9	3.3	2.7		
	5	5.0	4.7	4.0	3.4	2.9	2.3	1.8		
	10	3.9	3.6	3.0	2.5	2.0	1.5	0.9		
	-40	6.8	6.5	5.7	5.0	4.4	3.8	3.1		
	-30	6.9	6.5	5.8	5.1	4.4	3.8	3.2		
	-20	6.8	6.5	5.7	5.0	4.4	3.8	3.1		
8000	-10	6.8	6.5	5.7	5.0	4.4	3.8	3.1		
0000	-5	6.6	6.3	5.5	4.8	4.2	3.6	2.9		
	0	5.4	5.1	4.4	3.8	3.2	2.7	2.1		
	5	4.2	4.0	3.3	2.8	2.3	1.8	1.2		
	10	3.2	2.9	2.4	1.8	1.4	0.9	0.4		
	-40	6.5	6.2	5.4	4.7	4.1	3.5	2.9		
	-30	6.5	6.2	5.4	4.8	4.1	3.5	2.9		
	-20	6.5	6.1	5.4	4.7	4.1	3.5	2.9		
9000	-10	6.4	6.1	5.4	4.7	4.1	3.5	2.8		
3000	-5	5.8	5.5	4.8	4.1	3.5	3.0	2.3		
	0	4.6	4.3	3.7	3.1	2.6	2.1	1.5		
	5	3.5	3.3	2.7	2.2	1.7	1.2	0.7		
	10	2.5	2.3	1.7	1.3	8.0	0.4			
-	-40	6.1	5.8	5.1	4.4	3.8	3.2	2.6		
	-30	6.1	5.8	5.1	4.4	3.8	3.2	2.6		
	-20	6.1	5.8	5.0	4.4	3.8	3.2	2.6		
10,000	-10	6.1	5.8	5.0	4.4	3.8	3.2	2.6		
10,000	-5	5.0	4.7	4.0	3.4	2.9	2.4	1.8		
	0	3.9	3.6	3.0	2.5	1.9	1.5	0.9		
	5	2.8	2.6	2.0	1.5	1.1	0.6	0.2		
	10	1.8	1.6	1.2	0.7	0.3				

TCG3_TO_2_7_02

HA-420 AFM

PERFORMANCE

N	ind Corrected E	nroute Clim	b Gradient [%	6]
FLA	PS UP, 140 [KIAS], Ice	Protection	On
Tailwind			Headwind	
10	▼ REF [0] ▶	10	20	30
0.1	0.0	0.0	0.0	0.0
0.5	0.5	0.5	0.5	0.5
1.0	1.0	1.0	1.0	1.0
1.4	1.5	1.5	1.6	1.6
1.9	2.0	2.1	2.1	2.2
2.3	2.5	2.6	2.6	2.7
2.8	3.0	3.1	3.2	3.3
3.2	3.5	3.6	3.7	3.9
3.6	4.0	4.1	4.3	4.4
4.1	4.5	4.7	4.8	5.0
4.5	5.0	5.2	5.4	5.6
5.0	5.5	5.7	5.9	6.1
5.4	6.0	6.2	6.5	6.7
5.9	6.5	6.7	7.0	7.3
6.3	7.0	7.3	7.5	7.8
6.8	7.5	7.8	8.1	8.4
7.2	8.0	8.3	8.6	9.0
7.7	8.5	8.8	9.2	9.5
8.1	9.0	9.3	9.7	10.1
8.6	9.5	9.9	10.3	10.7
9.0	10.0	10.4	10.8	11.2
9.4	10.5	10.9	11.3	11.8
9.9	11.0	11.4	11.9	12.4
10.3	11.5	11.9	12.4	12.9
10.8	12.0	12.5	13.0	13.5

ECGWC_UP_2_03

HA-420 AFM PERFORMANCE

TAKEOFF - FLAPS UP

Max Takeoff Weight - Climb and Brake Energy Limited

Red shading on the takeoff tables indicates conditions where the airplane does not meet the climb requirements or exceeds the brake energy limit, but can be used for interpolation.

Example:

Ambient Conditions:

Temperature -10 °C Airport Altitude 7500 ft

Wind 15 kts Headwind

Runway Gradient +1.0 %

Aircraft Configuration:

Flaps UP

Weight 10600 lbs

Bleed Setting:

Ice Protection On

Using the Weight Limit Charts:

BE Weight Limit 15kt Headwind Not Limited BE Weight Limit +1% Runway Gradient Not Limited

Using the Tables:

Uncorrected

V₁ 126 KIAS
 V_R 126 KIAS
 V₂ 131.5 KIAS
 Field Length 7642 ft

• Climb Gradient 4.5 %

FAA APPROVED October 30, 2016

HJ1-29000-003-001

HA-420 AFM PERFORMANCE

Using the Tables: (continued)

Wind Correction:

•	V_1	126 KIAS
•	Field Length	7216 ft
•	Climb Gradient	4.8 %

Slope Correction:

•	V_1	126 KIAS
•	V_2	130.5 KIAS
•	Field Length	8249 ft

FAA APPROVED October 30, 2016

HJ1-29000-003-001

PERFORMANCE

FAA APPROVED October 30, 2016

HJ1-29000-003-001

FAA APPROVED October 30, 2016

HJ1-29000-003-001

PERFORMANCE

FAA APPROVED October 30, 2016

HJ1-29000-003-001

FAA APPROVED October 30, 2016

HJ1-29000-003-001

PERFORMANCE

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Slope Corrected Maximum Takeoff Weight for Brake Energy [lb]									
	Flaps UP, Ice Protection Off								
Runway Gradient [%]									
-2	-1	■ REF [0] ▶	1	2					
7440	7640	7800	7940	8083					
7539	7739	7900	8042	8187					
7637	7837	8000	8144	8290					
7736	7936	8100	8246	8393					
7834	8034	8200	8349	8497					
7933	8133	8300	8451	8600					
8031	8231	8400	8553	8703					
8130	8330	8500	8655	8807					
8229	8429	8600	8757	8910					
8327	8527	8700	8859	9013					
8426	8626	8800	8961	9117					
8524	8724	8900	9064	9220					
8623	8823	9000	9166	9323					
8721	8921	9100	9268	9427					
8820	9020	9200	9370	9530					
8919	9119	9300	9472	9633					
9017	9217	9400	9574	9737					
9116	9316	9500	9676	9840					
9214	9414	9600	9779	9943					
9313	9513	9700	9881	10047					
9411	9611	9800	9983	10150					
9510	9710	9900	10085	10253					
9609	9809	10000	10187	10357					
9707	9907	10100	10289	10460					
9806	10006	10200	10391	10563					
9904	10104	10300	10494	10600					
10003	10203	10400	10596	10600					
10101	10301	10500	10600	10600					
10200	10400	10600	10600	10600					

BESC1_UP_0_04

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind									
		F100000		Maria (1997)	Triffical Action _ Acceptable in	Per income Artes			
- CO	Flaps l	JP, Ice	Protec				00 feet	5	
Temp.	Data			Take	off Weigl				
[°C]	Water Microsoft	7800	8000	8500	9000	9500	10000	10600	
	V1	111	111	113	114	117	121	125	
-40	VR	119	119	119	119	121	123	126	
10	V2	131	131	130	130	130	132	134	
	TOFL	2736	2790	2923	3050	3269	3530	3898	
	V1	109	110	112	113	116	119	123	
15	VR	119	119	119	119	121	123	126	
10	V2	130	130	129	129	130	131	134	
	TOFL	3210	3277	3439	3594	3858	4175	4565	
	V1	109	110	111	113	116	119	123	
25	VR	119	119	119	119	121	123	126	
25	V2	130	130	129	128	130	131	133	
	TOFL	3291	3360	3527	3687	3959	4285	4688	
<i>y</i> :	V1	112	113	114	115	118	123	126	
35	VR	119	119	119	119	121	123	126	
33	V2	129	128	128	127	128	130	132	
	TOFL	3706	3776	3951	4120	4410	4901	5986	
	V1	114	115	116	117	121	123	126	
40	VR	119	119	119	119	121	123	126	
40	V2	128	128	127	126	128	129	132	
	TOFL	3982	4055	4232	4404	5006	5946	7055	
	V1	116	116	118	119	121	123	126	
45	VR	119	119	119	119	121	123	126	
70	V2	127	127	126	126	127	129	131	
	TOFL	4281	4355	4624	5234	6102	7047	8169	
	V1	119	119	119	119	121	123	126	
50	VR	119	119	119	119	121	123	126	
30	V2	126	126	125	125	126	128	130	
	TOFL	4775	5053	5727	6371	7236	8194	9338	
	V1	119	119	119	119	121	123	126	
55	VR	119	119	119	119	121	123	126	
33	V2	125	125	125	124	125	127	130	
	TOFL	5985	6253	6900	7523	8391	9367	10541	

TOFL_UP_0_-1_06

HA-420 AFM PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]											
Dry Runway, Zero Slope, No Wind											
-	Flaps UP, Ice Protection Off, Altitude Sea Level										
Temp.	Data	Takeoff Weight [lb]									
[°C]	WASHINGTON,	7800	8000	8500	9000	9500	10000	10600			
	V1	111	111	113	114	117	121	126			
-40	VR	119	119	119	119	121	123	126			
	V2	131	131	130	129	130	132	134			
	TOFL	2825	2881	3018	3150	3376	3647	4042			
	V1	109	110	112	113	116	119	123			
15	VR	119	119	119	119	121	123	126			
.0	V2	130	130	129	128	129	131	133			
	TOFL	3316	3385	3552	3711	3985	4312	4717			
	V1	109	110	111	113	116	119	123			
25	VR	119	119	119	119	121	123	126			
20	V2	130	130	129	128	129	131	133			
	TOFL	3402	3473	3645	3810	4092	4430	4847			
	V1	113	113	115	116	119	123	126			
35	VR	119	119	119	119	121	123	126			
55	V2	128	128	127	127	128	130	132			
	TOFL	3918	3992	4173	4349	4679	5477	6603			
	V1	115	115	116	118	121	123	126			
40	VR	119	119	119	119	121	123	126			
70	V2	127	127	126	126	127	129	131			
	TOFL	4220	4295	4479	4779	5639	6599	7734			
25	V1	116	117	119	119	121	123	126			
45	VR	119	119	119	119	121	123	126			
70	V2	126	126	126	125	126	128	131			
	TOFL	4534	4649	5193	5864	6747	7717	8871			
	V1	119	119	119	119	121	123	126			
50	VR	119	119	119	119	121	123	126			
50	V2	126	125	125	124	126	128	130			
	TOFL	5444	5722	6396	7042	7925	8908	10088			
3	V1	119	119	119	119	121	123	126			
55	VR	119	119	119	119	121	123	126			
35	V2	125	125	124	124	125	127	130			
	TOFL	6683	6950	7600	8226	9116	10123	11340			

TOFL_UP_0_0_06

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]										
Dry Runway, Zero Slope, No Wind										
Flaps UP, Ice Protection Off, Altitude 1000 feet										
Temp.	Data	Takeoff Weight [lb]								
[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
	V1	111	112	113	115	118	121	126		
-40	VR	119	119	119	119	121	123	126		
-40	V2	131	130	130	129	130	132	134		
	TOFL	2966	3024	3165	3303	3538	3820	4408		
	V1	110	110	112	113	116	120	124		
15	VR	119	119	119	119	121	123	126		
15	V2	130	129	129	128	129	131	133		
	TOFL	3480	3551	3723	3889	4175	4516	5018		
	V1	110	111	112	114	117	120	126		
25	VR	119	119	119	119	121	123	126		
20	V2	129	129	128	128	129	130	133		
	TOFL	3653	3726	3903	4078	4373	4729	5359		
	V1	112	113	114	115	118	123	126		
30	VR	119	119	119	119	121	123	126		
00	V2	128	128	127	127	128	130	132		
	TOFL	3915	3988	4174	4353	4659	5219	6359		
	V1	114	114	116	116	121	123	126		
35	VR	119	119	119	119	121	123	126		
55	V2	128	127	127	126	127	129	132		
	TOFL	4201	4278	4466	4648	5311	6285	7435		
	V1	116	116	118	119	121	123	126		
40	VR	119	119	119	119	121	123	126		
-10	V2	127	126	126	125	127	129	131		
	TOFL	4511	4589	4893	5528	6427	7409	8576		
	V1	119	119	119	119	121	123	126		
45	VR	119	119	119	119	121	123	126		
70	V2	126	126	125	125	126	128	130		
	TOFL	5025	5314	6013	6681	7578	8574	9763		
12	V1	119	119	119	119	121	123	126		
50	VR	119	119	119	119	121	123	126		
55	V2	125	125	124	124	125	127	130		
TOFL UP 0 1 0	TOFL	6271	6548	7220	7866	8769	9785	11008		

TOFL_UP_0_1_06

HA-420 AFM PERFORMANCE

,	Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]										
Dry Runway, Zero Slope, No Wind											
	Flaps UP, Ice Protection Off, Altitude 2000 feet										
Temp.	Data	Data Takeoff Weight [lb]									
[°C]	20-218 NESSES	7800	8000	8500	9000	9500	10000	10600			
	V1	112	112	114	115	118	121	126			
-40	VR	119	119	119	119	121	123	126			
,,,	V2	130	130	129	128	129	131	133			
	TOFL	3109	3168	3314	3459	3703	3996	4775			
	V1	110	111	112	114	117	120	126			
10	VR	119	119	119	119	121	123	126			
10	V2	129	129	128	128	129	131	133			
	TOFL	3601	3673	3847	4019	4311	4661	5273			
	V1	110	111	112	114	116	120	125			
20	VR	119	119	119	119	121	123	126			
20	V2	129	129	128	128	129	130	133			
	TOFL	3699	3773	3953	4131	4432	4793	5400			
	V1	113	114	115	116	120	123	126			
30	VR	119	119	119	119	121	123	126			
30	V2	128	127	127	126	127	129	132			
	TOFL	4203	4281	4473	4659	5118	6060	7225			
	V1	115	115	116	119	121	123	126			
35	VR	119	119	119	119	121	123	126			
33	V2	127	127	126	126	127	129	131			
	TOFL	4502	4582	4778	5211	6129	7125	8306			
6	V1	117	118	119	119	121	123	126			
40	VR	119	119	119	119	121	123	126			
40	V2	126	126	125	125	126	128	130			
	TOFL	4847	5015	5650	6341	7255	8262	9463			
	V1	119	119	119	119	121	123	126			
45	VR	119	119	119	119	121	123	126			
45	V2	125	125	125	124	125	127	130			
	TOFL	5857	6144	6841	7508	8425	9450	10681			
) i	V1	119	119	119	119	121	123	126			
50	VR	119	119	119	119	121	123	126			
30	V2	125	124	124	124	125	127	129			
	TOFL	7120	7397	8069	8718	9645	10697	11968			

TOFL_UP_0_2_06

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]										
Dry Runway, Zero Slope, No Wind										
Flaps UP, Ice Protection Off, Altitude 3000 feet										
Temp.	Data	Takeoff Weight [lb]								
[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
	V1	112	113	114	115	118	122	126		
-40	VR	119	119	119	119	121	123	126		
-40	V2	130	129	129	128	129	131	133		
	TOFL	3261	3322	3475	3625	3879	4225	5166		
	V1	111	111	113	114	117	120	126		
10	VR	119	119	119	119	121	123	126		
10	V2	129	129	128	127	128	130	133		
	TOFL	3780	3854	4034	4215	4518	4884	5700		
	V1	111	112	113	114	117	120	126		
20	VR	119	119	119	119	121	123	126		
20	V2	129	128	128	127	128	130	132		
	TOFL	3927	4003	4191	4377	4691	5078	5999		
	V1	113	113	115	116	119	123	126		
25	VR	119	119	119	119	121	123	126		
20	V2	128	128	127	126	127	129	132		
	TOFL	4212	4292	4488	4677	5058	5885	7066		
	V1	114	115	116	118	121	123	126		
30	VR	119	119	119	119	121	123	126		
	V2	127	127	126	126	127	129	131		
	TOFL	4517	4598	4798	5104	5951	6959	8153		
	V1	116	116	119	119	121	123	126		
35	VR	119	119	119	119	121	123	126		
00	V2	126	126	125	125	126	128	131		
	TOFL	4830	4913	5370	6083	7014	8034	9248		
	V1	119	119	119	119	121	123	126		
40	VR	119	119	119	119	121	123	126		
-,0	V2	126	125	125	124	126	128	130		
	TOFL	5469	5767	6488	7178	8111	9149	10392		
	V1	119	119	119	119	121	123	126		
45	VR	119	119	119	119	121	123	126		
-10	V2	125	125	124	124	125	127	130		
TOEL LIP 0 3 0	TOFL	6713	7000	7695	8364	9305	10365	11643		

TOFL_UP_0_3_06

HA-420 AFM PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind											
	Flaps UP, Ice Protection Off, Altitude 4000 feet										
Temp.		Takeoff Weight [lh]									
[°C]	Data	7800	8000	8500	9000	9500	10000	10600			
	V1	113	113	115	116	118	123	126			
40	VR	119	119	119	119	121	123	126			
-40	V2	129	129	128	128	129	130	133			
	TOFL	3422	3486	3646	3801	4065	4555	5585			
ħ .	V1	111	112	113	114	117	121	126			
40	VR	119	119	119	119	121	123	126			
10	V2	128	128	128	127	128	130	132			
	TOFL	3974	4051	4240	4427	4743	5190	6187			
	V1	112	113	114	115	118	123	126			
20	VR	119	119	119	119	121	123	126			
20	V2	128	128	127	126	128	129	132			
	TOFL	4224	4305	4504	4697	5028	5719	6916			
) i	V1	114	114	115	117	121	123	126			
25	VR	119	119	119	119	121	123	126			
25	V2	127	127	126	126	127	129	131			
	TOFL	4533	4616	4819	5049	5784	6806	8016			
	V1	115	116	118	119	121	123	126			
30	VR	119	119	119	119	121	123	126			
30	V2	126	126	126	125	126	128	131			
	TOFL	4855	4939	5281	5932	6877	7909	9137			
is .	V1	118	119	119	119	121	123	126			
35	VR	119	119	119	119	121	123	126			
33	V2	126	125	125	124	126	128	130			
	TOFL	5326	5557	6299	7008	7954	9001	10254			
	V1	119	119	119	119	121	123	126			
40	VR	119	119	119	119	121	123	126			
+∪	V2	125	125	124	124	125	127	130			
	TOFL	6404	6701	7420	8110	9063	10131	11417			
	V1	119	119	119	119	121	123	126			
45	VR	119	119	119	119	121	123	126			
-,-	V2	124	124	124	123	125	127	129			
TOFL UP 0 4 0	TOFL	7599	7886	8584	9258	10225	11324	12656			

TOFL_UP_0_4_06

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]										
Dry Runway, Zero Slope, No Wind										
Flaps UP, Ice Protection Off, Altitude 5000 feet										
Temp.	Data	Takeoff Weight [lb]								
[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
	V1	113	114	115	116	119	123	126		
-40	VR	119	119	119	119	121	123	126		
-40	V2	129	128	128	127	128	130	132		
	TOFL	3591	3658	3824	3985	4261	4963	6016		
	V1	112	112	114	115	117	122	126		
5	VR	119	119	119	119	121	123	126		
٦	V2	128	128	127	127	128	130	132		
	TOFL	4120	4198	4394	4584	4908	5472	6617		
	V1	112	112	114	115	117	122	126		
15	VR	119	119	119	119	121	123	126		
13	V2	128	128	127	127	128	130	132		
	TOFL	4249	4330	4532	4729	5064	5649	6806		
0:	V1	115	115	117	119	121	123	126		
25	VR	119	119	119	119	121	123	126		
25	V2	126	126	126	125	126	128	131		
	TOFL	4878	4965	5230	5764	6725	7771	9015		
	V1	117	118	119	119	121	123	126		
30	VR	119	119	119	119	121	123	126		
30	V2	126	125	125	125	126	128	130		
	TOFL	5290	5466	6158	6883	7845	8908	10178		
	V1	119	119	119	119	121	123	126		
35	VR	119	119	119	119	121	123	126		
33	V2	125	125	124	124	125	127	130		
	TOFL	6208	6513	7250	7957	8925	10006	11306		
	V1	119	119	119	119	121	123	126		
40	VR	119	119	119	119	121	123	126		
40	V2	124	124	124	123	125	127	129		
2	TOFL	7389	7684	8402	9094	10073	11182	12524		
S	V1	119	119	119	119	121	123	126		
45	VR	119	119	119	119	121	123	126		
45	V2	124	124	123	123	124	126	129		
TOFL UP 0 5 0	TOFL	8595	8883	9585	10266	11264	12409	13803		

TOFL_UP_0_5_06

HA-420 AFM PERFORMANCE

	Uncorre					아이지는 아름다 그르다?	ls [KIAS	
	Dry Runway, Zero Slope, No Wind							
	Flaps UP, Ice Protection Off, Altitude 6000 feet							
Temp.	Data	Takeoff Weight [lb]						
[°C]	25-272-3123-623	7800	8000	8500	9000	9500	10000	10600
	V1	113	114	115	116	120	123	126
-40	VR	119	119	119	119	121	123	126
,,,	V2	128	128	127	127	128	130	132
	TOFL	3768	3839	4011	4177	4530	5371	6449
	V1	112	113	114	115	118	123	126
0	VR	119	119	119	119	121	123	126
Ŭ	V2	128	127	127	126	127	129	132
	TOFL	4270	4352	4552	4746	5091	5859	7056
	V1	112	113	114	115	118	123	126
10	VR	119	119	119	119	121	123	126
10	V2	128	127	127	126	127	129	132
	TOFL	4410	4495	4703	4903	5269	6047	7273
0:	V1	114	115	116	119	121	123	126
20	VR	119	119	119	119	121	123	126
20	V2	127	126	126	125	126	128	131
	TOFL	4899	4987	5203	5610	6564	7624	8884
	V1	116	117	119	119	121	123	126
25	VR	119	119	119	119	121	123	126
25	V2	126	126	125	125	126	128	130
	TOFL	5242	5405	5965	6709	7686	8761	10044
is s	V1	119	119	119	119	121	123	126
30	VR	119	119	119	119	121	123	126
30	V2	125	125	124	124	125	127	130
	TOFL	6051	6364	7119	7842	8825	9919	11234
	V1	119	119	119	119	121	123	126
35	VR	119	119	119	119	121	123	126
33	V2	124	124	124	124	125	127	129
	TOFL	7220	7522	8258	8965	9958	11079	12433
ie .	V1	119	119	119	119	121	123	126
40	VR	119	119	119	119	121	123	126
+∪	V2	124	124	123	123	124	126	129
	TOFL	8419	8714	9433	10129	11140	12296	13702

TOFL_UP_0_6_06

HA-420 AFM

PERFORMANCE

	Uncorrec						ls [KIAS]	I
	Dry Runway, Zero Slope, No Wind							
	Flaps I	JP, Ice	Protec	tion O	ff, Altit	ude 70	00 feet	
Temp.	Data Takeoff Weight [lb]							
[°C]	Data	7800	8000	8500	9000	9500	10000	10600
	V1	114	114	115	116	121	123	126
-40	VR	119	119	119	119	121	123	126
-40	V2	128	128	127	127	128	130	132
	TOFL	3954	4027	4206	4379	4853	5789	6893
	V1	113	113	115	116	119	123	126
О	VR	119	119	119	119	121	123	126
ŭ	V2	127	127	127	126	127	129	131
	TOFL	4502	4587	4795	4997	5471	6392	7619
	V1	113	113	114	115	119	123	126
10	VR	119	119	119	119	121	123	126
10	V2	127	127	126	126	127	129	131
	TOFL	4653	4741	4956	5165	5669	6610	7866
	V1	114	114	115	118	121	123	126
15	VR	119	119	119	119	121	123	126
10	V2	127	126	126	125	127	128	131
	TOFL	4924	5014	5233	5570	6422	7498	8774
	V1	115	116	119	119	121	123	126
20	VR	119	119	119	119	121	123	126
20	V2	126	126	125	125	126	128	130
	TOFL	5266	5358	5800	6538	7532	8621	9920
	V1	119	119	119	119	121	123	126
25	VR	119	119	119	119	121	123	126
20	V2	125	125	125	124	125	127	130
	TOFL	5871	6179	6954	7695	8693	9800	11129
	V1	119	119	119	119	121	123	126
30	VR	119	119	119	119	121	123	126
55	V2	125	124	124	124	125	127	129
	TOFL	7058	7369	8122	8845	9853	10987	12355
	V1	119	119	119	119	121	123	126
35	VR	119	119	119	119	121	123	126
55	V2	124	124	123	123	124	127	129
TOFL UP 0 7 0	TOFL	8239	8542	9278	9990	11014	12182	13599

TOFL_UP_0_7_06

HA-420 AFM PERFORMANCE

,	Uncorre					맛있었는 어떻게 그 보다	s [KIAS	I
	Dry Runway, Zero Slope, No Wind							
	Flaps UP, Ice Protection Off, Altitude 8000 feet Temp. Takeoff Weight [lb]							
Temp.	Data	=	2222				40000	40000
[°C]	1.44	7800	8000	8500	9000	9500	10000	10600
	V1	114	115	116	117	121	123	126
-40	VR	119	119	119	119	121	123	126
	V2	128	127	127	126	127	129	132
	TOFL	4150	4225	4410	4590	5269	6229	7362
	V1	113	114	115	116	121	123	126
0	VR	119	119	119	119	121	123	126
	V2	127	127	126	126	127	129	131
	TOFL	4750	4839	5054	5264	5903	6968	8228
	V1	114	114	115	116	121	123	126
10	VR	119	119	119	119	121	123	126
	V2	127	126	126	125	127	129	131
	TOFL	4948	5040	5263	5527	6270	7360	8651
	V1	115	115	118	119	121	123	126
15	VR	119	119	119	119	121	123	126
10	V2	126	126	125	125	126	128	130
	TOFL	5300	5394	5771	6412	7421	8524	9839
	V1	118	119	119	119	121	123	126
20	VR	119	119	119	119	121	123	126
20	V2	125	125	125	124	125	128	130
	TOFL	5810	6002	6778	7537	8550	9671	11016
	V1	119	119	119	119	121	123	126
25	VR	119	119	119	119	121	123	126
25	V2	125	124	124	124	125	127	130
	TOFL	6877	7196	7968	8708	9731	10880	12264
	V1	119	119	119	119	121	123	126
30	VR	119	119	119	119	121	123	126
30	V2	124	124	124	123	125	127	129
	TOFL	8092	8402	9155	9883	10921	12102	13535
) i	V1	118	118	118	118	120	122	125
25	VR	118	118	118	118	120	122	125
35	V2	122	122	122	122	123	125	128
	TOFL	9308	9612	10353	11073	12133	13354	14846

TOFL_UP_0_8_07

HA-420 AFM

PERFORMANCE

Page		Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]							
Temp.			V		A CONTRACTOR AND ADDRESS OF	SECTION ASSESSMENT	2000 topo 244		
Topic Part Topic Topic		Flaps	UP, Ice	Protec	tion O	ff, Altit	ude 90	00 feet	
VI	Temp.	Data			Take	off Weigl	nt [lb]		
-40	[°C]	Dala	7800	8000	8500	9000	9500	10000	10600
126		V1	114	115	116	118	121	123	126
TOFL 4354 4432 4624 4891 5693 6675 7838 V1	40	VR	119	119	119	119	121	123	126
V1 114 114 115 117 121 123 126 VR 119 119 119 119 121 123 126 V2 127 126 126 125 127 128 131 TOFL 5003 5095 5318 5636 6449 7541 8836 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 TOFL 5333 5428 5738 6273 7297 8413 9742 15 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 119	-40	V2	127	127	126	126	127	129	131
O VR 119 119 119 121 123 126 V2 127 126 126 125 127 128 131 TOFL 5003 5095 5318 5636 6449 7541 8836 WR 119 115 117 119 121 123 126 VR 119 119 119 119 121 123 126 VZ 126 126 125 125 126 128 130 TOFL 5333 5428 5738 6273 7297 8413 9742 15 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 119 12		TOFL	4354	4432	4624	4891	5693	6675	7838
V2 127 126 126 125 127 128 131 TOFL 5003 5095 5318 5636 6449 7541 8836 V1 115 115 117 119 121 123 126 VR 119 119 119 119 121 123 126 V2 126 126 125 125 126 128 130 TOFL 5333 5428 5738 6273 7297 8413 9742 15 VR 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 125 125 124 126 128 130 TOFL 5788 5978 6658 7434 8462 9597 10955 20 VR 119 119 119 119 121 123)i	V1	114	114	115	117	121	123	126
TOFL 5003 5095 5318 5636 6449 7541 8836 V1 115 115 117 119 121 123 126 VR 119 119 119 119 121 123 126 V2 126 126 125 125 126 128 130 TOFL 5333 5428 5738 6273 7297 8413 9742 V1 117 118 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125 VR 118 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125	0	VR	119	119	119	119	121	123	126
10	U	V2	127	126	126	125	127	128	131
10 VR 119 119 119 119 121 123 126 V2 126 126 125 125 126 128 130 TOFL 5333 5428 5738 6273 7297 8413 9742 15 V1 117 118 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 125 125 125 124 126 128 130 TOFL 5788 5978 6658 7434 8462 9597 10955 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 125 125 124 124 125 127 130 TOFL 6698 7025 7817 8575		TOFL	5003	5095	5318	5636	6449	7541	8836
V2		V1	115	115	117	119	121	123	126
TOFL 5333 5428 5738 6273 7297 8413 9742 V1 117 118 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 125 125 125 124 126 128 130 TOFL 5788 5978 6658 7434 8462 9597 10955 V1 119 119 119 119 121 123 126 VR 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125	10	VR	119	119	119	119	121	123	126
15	10	V2	126	126	125	125	126	128	130
15		TOFL	5333	5428	5738	6273	7297	8413	9742
TOFL 5788 5978 6658 7434 8462 9597 10955 V1 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 125 125 124 124 125 127 130 TOFL 6698 7025 7817 8575 9613 10773 12169 VR 119 119 119 119 121 123 126 VR 124 124 124 123 125 127 129 TOFL 7935 8253 9025 9768 10821 12014 13458 VR 119 119 119 119 119 121 123 126 VR 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125 VR 118 118 118 118 118 120 122 125 VR 118 118 118 118 118 120 122 125): :	V1	117	118	119	119	121	123	126
TOFL 5788 5978 6658 7434 8462 9597 10955 V1	15	VR	119	119	119	119	121	123	126
20 V1 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 125 125 124 124 125 127 130 TOFL 6698 7025 7817 8575 9613 10773 12169 V1 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 124 124 123 125 127 129 TOFL 7935 8253 9025 9768 10821 12014 13458 30 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 123 123 124 126 129 TOFL 9163 9474 10233 10968 120	13	V2	125	125	125	124	126	128	130
20 VR 119 119 119 119 121 123 126 V2 125 125 124 124 125 127 130 TOFL 6698 7025 7817 8575 9613 10773 12169 V1 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 124 124 123 125 127 129 TOFL 7935 8253 9025 9768 10821 12014 13458 30 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 35 VR 118 118 118 <t< td=""><td></td><td>TOFL</td><td>5788</td><td>5978</td><td>6658</td><td>7434</td><td>8462</td><td>9597</td><td>10955</td></t<>		TOFL	5788	5978	6658	7434	8462	9597	10955
V2 125 125 124 124 125 127 130 TOFL 6698 7025 7817 8575 9613 10773 12169 V1 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 124 124 123 125 127 129 TOFL 7935 8253 9025 9768 10821 12014 13458 V1 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 35 VR 118 118 118 118 120 122 125 V2 122 122 122 121 123		V1	119	119	119	119	121	123	126
TOFL 6698 7025 7817 8575 9613 10773 12169 V1 119 119 119 119 121 123 126 V2 124 124 124 123 125 127 129 V3 119 119 119 119 121 123 126 V4 124 124 124 123 125 127 129 TOFL 7935 8253 9025 9768 10821 12014 13458 V1 119 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 123 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 V1 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125 V2 122 122 122 121 123 125 127	20	VR	119	119	119	119	121	123	126
25	20	V2	125	125	124	124	125	127	130
25 VR 119 119 119 119 121 123 126 V2 124 124 124 123 125 127 129 TOFL 7935 8253 9025 9768 10821 12014 13458 30 VR 119 119 119 119 121 123 126 V2 124 123 123 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 VI 118 118 118 118 120 122 125 V2 122 122 121 123 126 127		TOFL	6698	7025	7817	8575	9613	10773	12169
V2 124 124 124 123 125 127 129 TOFL 7935 8253 9025 9768 10821 12014 13458 V1 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 123 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 V1 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125 V2 122 122 122 121 123 125 127	ia :	V1	119	119	119	119	121	123	126
TOFL 7935 8253 9025 9768 10821 12014 13458 V1 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 V2 124 123 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 V1 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125 V2 122 122 122 121 123 125 127	25	VR	119	119	119	119	121	123	126
30 V1 119 119 119 119 121 123 126 VR 119 119 119 121 123 126 V2 124 123 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 V1 118 118 118 118 120 122 125 V2 122 122 121 123 125 127	25	V2	124	124	124	123	125	127	129
30 VR 119 119 119 119 121 123 126 V2 124 123 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 VI 118 118 118 118 120 122 125 V2 122 122 122 121 123 125 127		TOFL	7935	8253	9025	9768	10821	12014	13458
V2 124 123 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 V1 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125 V2 122 122 122 121 123 125 127		V1	119	119	119	119	121	123	126
V2 124 123 123 123 123 124 126 129 TOFL 9163 9474 10233 10968 12042 13275 14779 V1 118 118 118 118 120 122 125 VR 118 118 118 120 122 125 V2 122 122 121 123 125 127	30	VR	119	119	119	119	121	123	126
35 V1 118 118 118 118 120 122 125 VR 118 118 118 118 120 122 125 V2 122 122 122 121 123 125 127	30	V2	124	123	123	123	124	126	129
35 VR 118 118 118 118 120 122 125 127 122 121 123 125 127		TOFL	9163	9474	10233	10968	12042	13275	14779
V2 122 122 121 123 125 127	Ve S	V1	118	118	118	118	120	122	125
V2 122 122 122 121 123 125 127	35	VR	118	118	118	118	120	122	125
TOFL 10453 10759 11508 12240 13344 14630 16208	33	V2	122	122	122	121	123	125	127
TOFL_UP_0_9_07		The Court of the C	10453	10759	11508	12240	13344	14630	16208

HA-420 AFM PERFORMANCE

	Uncorrec					그래요 - 그림 - 그리다	s [KIAS	I
	Dry Runway, Zero Slope, No Wind							
	Flaps UP, Ice Protection Off, Altitude 10,000 feet							
Temp.	Data	Data Takeoff Weight [lb]						
[°C]	202325427271	7800	8000	8500	9000	9500	10000	10600
	V1	115	115	116	119	121	123	126
-40	VR	119	119	119	119	121	123	126
	V2	127	127	126	126	127	129	131
	TOFL	4577	4659	4859	5238	6159	7164	8355
	V1	114	115	116	118	121	123	126
-5	VR	119	119	119	119	121	123	126
	V2	126	126	126	125	126	128	131
	TOFL	5181	5274	5503	5931	6890	7995	9308
	V1	114	115	115	118	121	123	126
5	VR	119	119	119	119	121	123	126
3	V2	126	126	125	125	126	128	131
	TOFL	5361	5457	5695	6158	7151	8282	9626
	V1	116	117	119	119	121	123	126
10	VR	119	119	119	119	121	123	126
10	V2	125	125	125	124	126	128	130
	TOFL	5780	5977	6568	7361	8404	9553	10928
	V1	119	119	119	119	121	123	126
15	VR	119	119	119	119	121	123	126
15	V2	125	125	124	124	125	127	130
	TOFL	6561	6896	7706	8481	9534	10709	12121
3	V1	119	119	119	119	121	123	126
20	VR	119	119	119	119	121	123	126
20	V2	124	124	124	123	125	127	129
	TOFL	7774	8100	8890	9651	10718	11926	13386
	V1	119	119	119	119	121	123	126
<u> </u>	VR	119	119	119	119	121	123	126
25	V2	124	123	123	123	124	126	129
	TOFL	9056	9374	10149	10900	11988	13234	14752
	V1	118	118	118	118	120	122	125
00	VR	118	118	118	118	120	122	125
30	V2	122	122	122	121	123	125	127
	TOFL	10315	10628	11395	12141	13258	14552	16140

TOFL_UP_0_10_07

HA-420 AFM

PERFORMANCE

Wind	Corrected V1	[KIAS]
	FLAPS UP	
Ice	Protection	Off
Tailwind		Headwind
10	▼ REF [0] ▶	30
108	109	111
109	110	112
110	111	113
111	112	114
112	113	114
113	114	115
114	115	116
115	116	117
116	117	118
117	118	119
118	119	120
119	120	121
120	121	122
121	122	123
122	123	124
123	124	125
124	125	126
125	126	126

V1WC_UP_0_04

HA-420 AFM

PERFORMANCE

	Slope	Corrected V1 [KIAS]	
	FLAPS (JP, Ice Prote	ction Off	
	Rı	unway Gradient [%]	
-2	-1	■ REF [0] ▶	1	2
105	106	108	110	113
106	107	109	111	114
107	108	110	112	114
108	109	111	113	115
109	110	112	114	116
110	111	113	115	116
110	112	114	116	117
111	113	115	117	118
112	114	116	117	119
113	115	117	118	119
114	117	118	119	120
115	118	119	120	121
116	119	120	121	121
117	120	121	122	122
118	121	122	123	123
119	122	123	124	123
120	123	124	124	124
121	124	125	125	125
122	125	126	126	126

V1SC_UP_0_04

Takeoff Rotation Speed (V_R) Slope Correction, Ice Protection Off

NOTE V_R with flaps UP and Ice Protection Off does not require slope correction.

HA-420 AFM

PERFORMANCE

	Slope Corrected V2 [KIAS]					
	FLAPS (JP, Ice Prote	ction Off			
	R	unway Gradient [%]			
-2	-1	▼ REF [0] ▶	1	2		
124	124	123	122	122		
125	125	124	123	123		
126	126	125	124	124		
127	127	126	125	125		
128	128	127	126	126		
129	129	128	127	127		
130	130	129	128	128		
131	131	130	129	129		
132	132	131	130	130		
133	133	132	131	131		
134	134	133	132	132		
135	135	134	133	133		

V2SC_UP_0_05

HA-420 AFM

PERFORMANCE

W	ind Corrected Ta	akeoff Field	Length [fee	et]
	FLAPS UP,	Ice Prote	ction Off	
Tailwind			Headwind	
10	■ REF [0] ▶	10	20	30
3244	2700	2538	2396	2274
3352	2800	2635	2491	2366
3461	2900	2733	2585	2458
3570	3000	2830	2680	2550
3679	3100	2927	2775	2642
3788	3200	3025	2869	2734
3896	3300	3122	2964	2826
4005	3400	3220	3058	2918
4114	3500	3317	3153	3010
4223	3600	3414	3248	3102
4331	3700	3512	3342	3194
4440	3800	3609	3437	3286
4549	3900	3706	3532	3378
4658	4000	3804	3626	3470
4766	4100	3901	3721	3562
4875	4200	3999	3815	3654
4984	4300	4096	3910	3746
5093	4400	4193	4005	3838
5202	4500	4291	4099	3930
5310	4600	4388	4194	4022
5419	4700	4486	4288	4114
5528	4800	4583	4383	4206
5637	4900	4680	4478	4298
5745	5000	4778	4572	4390
5854	5100	4875	4667	4482
5963	5200	4972	4762	4574
6072	5300	5070	4856	4666
6180	5400	5167	4951	4758
6289	5500	5265	5045	4850
6398	5600	5362	5140	4942
6507	5700	5459	5235	5034
6616	5800	5557	5329	5126
6724	5900	5654	5424	5218
6833	6000	5752	5518	5310
6942	6100	5849	5613	5402
7051	6200	5946	5708	5494
TOWC1_UP_0_02				

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

W	ind Corrected Ta	akeoff Field	Length [fe	et]
	FLAPS UP,	lce Prote	ction Off	
Tailwind			Headwind	
10	■ REF [0] ▶	10	20	30
7051	6200	5946	5708	5494
7159	6300	6044	5802	5586
7268	6400	6141	5897	5678
7377	6500	6238	5992	5770
7486	6600	6336	6086	5862
7594	6700	6433	6181	5954
7703	6800	6531	6275	6046
7812	6900	6628	6370	6138
7921	7000	6725	6465	6230
8030	7100	6823	6559	6322
8138	7200	6920	6654	6414
8247	7300	7018	6748	6506
8356	7400	7115	6843	6598
8465	7500	7212	6938	6690
8573	7600	7310	7032	6782
8682	7700	7407	7127	6874
8791	7800	7504	7222	6966
8900	7900	7602	7316	7058
9008	8000	7699	7411	7150
9117	8100	7797	7505	7242
9226	8200	7894	7600	7334
9335	8300	7991	7695	7426
9444	8400	8089	7789	7518
9552	8500	8186	7884	7610
9661	8600	8284	7978	7702
9770	8700	8381	8073	7794
9879	8800	8478	8168	7886
9987	8900	8576	8262	7978
10096	9000	8673	8357	8070
10205	9100	8770	8452	8162
10314	9200	8868	8546	8254
10422	9300	8965	8641	8346
10531	9400	9063	8735	8438
10640	9500	9160	8830	8530
10749	9600	9257	8925	8622
10858 TOWC2_UP_0_02	9700	9355	9019	8714

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

W	ind Corrected Ta	akeoff Field	Length [fee	et]
	FLAPS UP,	ice Protec	ction Off	
Tailwind			Headwind	
10	■ REF [0] ▶	10	20	30
10858	9700	9355	9019	8714
10966	9800	9452	9114	8806
11075	9900	9550	9208	8898
11184	10000	9647	9303	8990
11293	10100	9744	9398	9082
11401	10200	9842	9492	9174
11510	10300	9939	9587	9266
11619	10400	10036	9682	9358
11728	10500	10134	9776	9450
11836	10600	10231	9871	9542
11945	10700	10329	9965	9634
12054	10800	10426	10060	9726
12163	10900	10523	10155	9818
12272	11000	10621	10249	9910
12380	11100	10718	10344	10002
12489	11200	10816	10438	10094
12598	11300	10913	10533	10186
12707	11400	11010	10628	10278
12815	11500	11108	10722	10370
12924	11600	11205	10817	10462
13033	11700	11302	10912	10554
13142	11800	11400	11006	10646
13250	11900	11497	11101	10738
13359	12000	11595	11195	10830
13468	12100	11692	11290	10922
13577	12200	11789	11385	11014
13686	12300	11887	11479	11106
13794	12400	11984	11574	11198
13903	12500	12082	11668	11290
14012	12600	12179	11763	11382
14121	12700	12276	11858	11474
14229	12800	12374	11952	11566
14338	12900	12471	12047	11658
14447	13000	12568	12142	11750
14556	13100	12666	12236	11842
14664	13200	12763	12331	11934
TOWC3_UP_0_02				

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

W	Wind Corrected Takeoff Field Length [feet]						
	FLAPS UP, Ice Protection Off						
Tailwind			Headwind				
10	■ REF [0] ▶	10	20	30			
14664	13200	12763	12331	11934			
14773	13300	12861	12425	12026			
14882	13400	12958	12520	12118			
14991	13500	13055	12615	12210			
15100	13600	13153	12709	12302			
15208	13700	13250	12804	12394			
15317	13800	13348 12898 12486					
15426	13900	13445	12993	12578			

TOWC4_UP_0_02

HA-420 AFM

PERFORMANCE

Sid	pe Correct	ed Takeoff Field	l Length [fe	et]
		JP, Ice Prote		
		unway Gradient [
-2	-1	■ REF [0] ▶	1	2
2200	2200	2200	2237	2273
2300	2300	2300	2338	2377
2400	2400	2400	2440	2480
2500	2500	2500	2542	2583
2600	2600	2600	2643	2687
2700	2700	2700	2745	2790
2800	2800	2800	2847	2893
2900	2900	2900	2948	2997
3000	3000	3000	3050	3100
3109	3109	3100	3197	3303
3219	3219	3200	3344	3506
3328	3328	3300	3492	3708
3422	3426	3400	3639	3911
3505	3516	3500	3786	4114
3588	3606	3600	3933	4317
3671	3697	3700	4080	4520
3755	3787	3800	4227	4723
3838	3877	3900	4375	4925
3921	3967	4000	4522	5128
4004	4057	4100	4669	5331
4088	4148	4200	4816	5534
4171	4238	4300	4963	5737
4254	4328	4400	5111	5939
4337	4418	4500	5254	6134
4421	4509	4600	5369	6256
4504	4599	4700	5484	6378
4587	4689	4800	5599	6500
4670	4779	4900	5714	6622
4754	4869	5000	5828	6744
4837	4960	5100	5943	6866
4920	5050	5200	6058	6988
5003	5140	5300	6173	7110
5087	5230	5400	6287	7232
5170	5320	5500	6402	7354
5253	5411	5600	6517	7476
5336	5501	5700	6632	7598
TOSC1_UP_0_02				

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

Slope Corrected Takeoff Field Length [feet]										
	FLAPS (JP, Ice Prote	ction Off							
	Ru	unway Gradient [%]							
-2	-1	■ REF [0] ▶	1	2						
5336	5501	5700	6632	7598						
5417	5588	5800	6747	7720						
5476	5648	5900	6861	7842						
5535	5707	6000	6966	7964						
5594	5766	6100	7069	8086						
5653	5825	6200	7171	8208						
5712	5885	6300	7274	8330						
5771	5944	6400	7377	8443						
5830	6003	6500	7479	8555						
5889	6062	6600	7582	8668						
5948	6122	6700	7684	8780						
6006	6181	6800	7787	8893						
6065	6240	6900	7890	9005						
6124	6299	7000	7992	9118						
6183	6359	7100	8095	9230						
6242	6418	7200	8197	9343						
6301	6477	7300	8300	9455						
6360	6537	7400	8403	9567						
6419	6596	7500	8507	9672						
6478	6655	7600	8611	9778						
6537	6714	7700	8715	9883						
6596	6774	7800	8820	9989						
6655	6833	7900	8924	10095						
6713	6935	8000	9028	10200						
6772	7041	8100	9132	10306						
6831	7146	8200	9237	10411						
6890	7252	8300	9341	10517						
6949	7358	8400	9445	10622						
7008	7463	8500	9550	10728						
7067	7569	8600	9654	10833						
7126	7674	8700	9758	10939						
7185	7780	8800	9863	11045						
7244	7882	8900	9967	11150						
7303	7976	9000	10071	11256						
7361	8071	9100	10175	11361						
7420 TOSC2_UP_0_02	8165	9200	10280	11467						

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Slo	pe Correct	ed Takeoff Field	l Length [fe	et]
	FLAPS (JP, Ice Protec	ction Off	
	Ru	unway Gradient [ˈ	%]	
-2	-1	■ REF [0] ▶	1	2
7420	8165	9200	10280	11467
7479	8259	9300	10384	11572
7538	8353	9400	10488	11678
7597	8447	9500	10593	11783
7656	8541	9600	10697	11889
7715	8635	9700	10801	11995
7774	8729	9800	10905	12100
7833	8823	9900	11010	12206
7892	8918	10000	11114	12311
7951	9012	10100	11218	12417
8010	9106	10200	11323	12522
8068	9200	10300	11427	12628
8127	9294	10400	11531	12733
8186	9388	10500	11636	12839
8245	9482	10600	11740	12944
8304	9576	10700	11844	13050
8363	9671	10800	11948	13156
8422	9765	10900	12053	13261
8481	9859	11000	12157	13367
8540	9953	11100	12261	13472
8599	10047	11200	12366	13578
8658	10141	11300	12470	13683
8717	10235	11400	12574	13789
8775	10329	11500	12679	13894
8834	10424	11600	12783	14000
8893	10518	11700	12887	14106
8952	10612	11800	12991	14211
9011	10706	11900	13096	14317
9070	10800	12000	13200	14422
9129	10894	12100	13304	14528
9188	10988	12200	13409	14633
9247	11082	12300	13513	14739
9306	11176	12400	13617	14844
9365	11271	12500	13721	14950
9423	11365	12600	13826	15056
9482	11459	12700	13930	15161
TOSC3_UP_0_02				

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

Sle	ope Correct	ed Takeoff Field	l Length [fe	et]
		JP, Ice Prote		
	Rı	unway Gradient [%]	
-2	-1	■ REF [0] ▶	1	2
9482	11459	12700	13930	15161
9541	11553	12800	14034	15267
9600	11647	12900	14139	15372
9659	11741	13000	14243	15478
9718	11835	13100	14347	15583
9777	11929	13200	14452	15689
9836	12024	13300	14556	15794
9895	12118	13400	14660	15900
9954	12212	13500	14764	16005
10013	12306	13600	14869	16111
10072	12400	13700	14973	16217
10130	12494	13800	15077	16322
10189	12588	13900	15182	16428
10248	12682	14000	15286	16533
10307	12777	14100	15390	16639
10366	12871	14200	15495	16744
10425	12965	14300	15599	16850
10484	13059	14400	15703	16955
10543	13153	14500	15807	17061
10602	13247	14600	15912	17167
10661	13341	14700	16016	17272
10720	13435	14800	16120	17378
10779	13529	14900	16225	17483
10837	13624	15000	16329	17589
10896	13718	15100	16433	17694
10955	13812	15200	16537	17800
11014	13906	15300	16642	17905
11073	14000	15400	16746	18011
11132	14094	15500	16850	18117

TOSC4_UP_0_02

HJ1-29000-003-001

HJ1-29000-003-001

HJ1-29000-003-001

HJ1-29000-003-001

Slope Corre	ected Maximu	um Takeoff Weig	ht for Brake	Energy [lb]
	Flaps U	IP, Ice Protec	tion On	
	R	unway Gradient [%]	
-2	-1	■ REF [0] ▶	1	2
7471	7629	7800	7974	8237
7568	7728	7900	8075	8334
7666	7827	8000	8175	8431
7763	7926	8100	8276	8528
7861	8025	8200	8377	8625
7958	8124	8300	8478	8722
8055	8223	8400	8578	8819
8153	8322	8500	8679	8916
8250	8421	8600	8780	9013
8348	8520	8700	8881	9110
8445	8619	8800	8981	9207
8543	8718	8900	9082	9304
8640	8817	9000	9183	9401
8738	8916	9100	9284	9499
8835	9015	9200	9384	9596
8933	9114	9300	9485	9693
9030	9213	9400	9586	9790
9127	9312	9500	9686	9887
9225	9411	9600	9787	9984
9322	9510	9700	9888	10081
9420	9609	9800	9989	10178
9517	9708	9900	10089	10275
9615	9807	10000	10190	10372
9712	9906	10100	10291	10469
9810	10005	10200	10392	10566
9907	10104	10300	10492	10600
10005	10203	10400	10593	10600
10102	10302	10500	10600	10600
10199	10400	10600	10600	10600

BESC1_UP_2_03

HA-420 AFM PERFORMANCE

	Uncorre	ted Tak		-			ds [KIAS]
	- 1 1		Runway,				00.5	
	Flaps (JP, Ice	Protec				ou teet	
Temp.	Data	=			off Weig		10000	10000
[°C]		7800	8000	8500	9000	9500	10000	10600
	V1	111	111	113	114	117	121	125
-40	VR	119	119	119	119	121	123	126
	V2	131	131	130	130	130	132	134
	TOFL	2736	2791	2923	3051	3270	3531	3892
	V1	110	111	113	114	117	121	125
-30	VR	119	119	119	119	121	123	126
00	V2	131	131	130	129	130	132	134
	TOFL	2826	2883	3021	3153	3381	3653	4020
	V1	110	111	113	114	117	120	125
-20	VR	119	119	119	119	121	123	126
-20	V2	131	131	130	129	130	132	134
	TOFL	2913	2973	3116	3253	3489	3771	4143
	V1	110	111	112	114	117	120	124
-10	VR	119	119	119	119	121	123	126
-10	V2	131	130	130	129	130	132	134
	TOFL	3001	3063	3211	3354	3598	3891	4263
	V1	110	110	112	113	116	120	124
-5	VR	119	119	119	119	121	123	126
-5	V2	131	130	130	129	130	132	134
	TOFL	3042	3104	3256	3401	3649	3946	4312
	V1	109	110	112	113	116	120	124
_	VR	119	119	119	119	121	123	126
0	V2	131	130	130	129	130	132	134
	TOFL	3082	3146	3300	3447	3699	4001	4374
	V1	109	110	112	113	116	120	124
_	VR	119	119	119	119	121	123	126
5	V2	131	130	129	129	130	132	134
	TOFL	3123	3188	3344	3494	3750	4057	4436
	V1	109	110	112	113	116	120	123
4.0	VR	119	119	119	119	121	123	126
10	V2	130	130	129	129	130	131	134
	TOFL	3163	3229	3389	3541	3801	4113	4498

TOFL_UP_2_-1_02

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS] Dry Runway, Zero Slope, No Wind									
	Flaps l	JP, Ice	Protec				a Level	l	
Temp.	Data				off Weigl				
[°C]		7800	8000	8500	9000	9500	10000	10600	
	V1	111	111	113	114	117	121	125	
-40	VR	119	119	119	119	121	123	126	
"	V2	131	131	130	129	130	132	134	
	TOFL	2825	2881	3018	3150	3376	3647	4035	
	V1	110	111	113	114	117	120	125	
-30	VR	119	119	119	119	121	123	126	
	V2	131	131	130	129	130	132	134	
	TOFL	2920	2979	3121	3258	3493	3775	4168	
	V1	110	111	112	114	117	120	125	
-20	VR	119	119	119	119	121	123	126	
-20	V2	131	130	130	129	130	132	134	
	TOFL	3007	3068	3216	3358	3603	3895	4290	
	V1	110	110	112	114	117	120	124	
-10	VR	119	119	119	119	121	123	126	
-10	V2	131	130	129	129	130	132	134	
	TOFL	3097	3160	3314	3461	3714	4016	4410	
	V1	110	110	112	113	116	120	124	
-5	VR	119	119	119	119	121	123	126	
-~	V2	130	130	129	129	130	131	134	
	TOFL	3139	3203	3360	3509	3766	4074	4463	
	V1	109	110	112	113	116	120	124	
0	VR	119	119	119	119	121	123	126	
I ~	V2	130	130	129	129	130	131	134	
	TOFL	3181	3247	3406	3558	3819	4131	4517	
	V1	109	110	112	113	116	120	123	
5	VR	119	119	119	119	121	123	126	
	V2	130	130	129	129	130	131	134	
	TOFL	3224	3291	3453	3608	3873	4190	4582	
	V1	109	110	112	113	116	119	123	
10	VR	119	119	119	119	121	123	126	
10	V2	130	130	129	128	130	131	133	
	TOFL	3267	3336	3500	3657	3927	4249	4647	

TOFL_UP_2_0_02

HA-420 AFM PERFORMANCE

	Uncorre						ds [KIAS]		
			Runway,							
	Flaps UP, Ice Protection On, Altitude 1000 feet									
Temp.	Data				off Weigl					
[°C]		7800	8000	8500	9000	9500	10000	10600		
	V1	111	112	113	115	118	121	126		
-40	VR	119	119	119	119	121	123	126		
	V2	131	130	130	129	130	132	134		
	TOFL	2964	3023	3163	3302	3537	3818	4394		
l	V1	111	112	113	114	117	121	126		
-30	VR	119	119	119	119	121	123	126		
00	V2	130	130	129	129	130	131	134		
	TOFL	3063	3123	3269	3413	3658	3950	4499		
	V1	111	111	113	114	117	120	126		
-20	VR	119	119	119	119	121	123	126		
-20	V2	130	130	129	128	130	131	133		
	TOFL	3155	3218	3370	3519	3773	4077	4590		
	V1	110	111	113	114	117	120	125		
-10	VR	119	119	119	119	121	123	126		
-10	V2	130	130	129	128	129	131	133		
	TOFL	3247	3312	3470	3624	3887	4202	4697		
	V1	110	111	112	114	117	120	125		
-5	VR	119	119	119	119	121	123	126		
-5	V2	130	130	129	128	129	131	133		
	TOFL	3292	3358	3519	3676	3943	4263	4754		
	V1	110	111	112	114	116	120	125		
0	VR	119	119	119	119	121	123	126		
ı o	V2	130	130	129	128	129	131	133		
	TOFL	3338	3405	3569	3727	3999	4324	4814		
	V1	110	111	112	113	116	120	125		
5	VR	119	119	119	119	121	123	126		
5	V2	130	129	129	128	129	131	133		
	TOFL	3383	3452	3619	3780	4056	4387	4876		
	V1	111	111	113	114	117	120	126		
10	VR	119	119	119	119	121	123	126		
10	V2	129	129	128	128	129	131	133		
	TOFL	3484	3552	3716	3879	4156	4488	5154		

TOFL_UP_2_1_02

HA-420 AFM

PERFORMANCE

Page		Uncorre			_			ls [KIAS]			
Temp.			Dry I	Runway,	Zero Slo	pe, No V	Vind				
No. No.		Flaps UP, Ice Protection On, Altitude 2000 feet									
V1	Temp.	Data			Takeoff Weight [lb]						
-40	[°C]	Data	7800	8000	8500	9000	9500	10000	10600		
130		V1	112	112	114	115	118	121	126		
TOFL 3107 3167 3312 3458 3702 3995 4767 V1	-40	VR	119	119	119	119	121	123	126		
-30 -30 -30 -30 -30 -30 -30 -30 -30 -30	-40	V2	130	130	129	128	129	131	133		
-30		TOFL	3107	3167	3312	3458	3702	3995	4767		
130		V1	111	112	113	115	118	121	126		
TOFL 3207 3269 3421 3572 3825 4130 4867 V1 111 112 113 114 117 121 126 VR 119 119 119 119 121 123 126 V2 130 129 129 128 129 131 133 TOFL 3303 3368 3525 3682 3945 4262 4954 V1 111 111 113 114 117 120 126 VR 119 119 119 119 121 123 126	-30	VR	119	119	119	119	121	123	126		
-20	-50	V2	130	130	129	128	129	131	133		
-20		TOFL	3207	3269	3421	3572	3825	4130	4867		
V2		V1	111	112	113	114	117	121	126		
TOFL 3303 3368 3525 3682 3945 4262 4954 V1	-20	VR	119	119	119	119	121	123	126		
-10	-20	V2	130	129	129	128	129	131	133		
-10		TOFL	3303	3368	3525	3682	3945	4262	4954		
TOFL 3400 3468 3631 3792 4065 4393 5039 V1 111 111 113 114 117 120 126 VR 119 119 119 119 121 123 126 V2 130 129 129 128 129 131 133 TOFL 3449 3518 3684 3848 4125 4459 5085 V1 110 111 113 114 117 120 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VZ 129 129 128 128 129 131 133 TOFL 3498 3568 3737 3903 4185 4524 5133 TOFL 3498 129 129 128 128 129 131 133 TOFL 3498 3568 3737 3903 4185 4524 5133 V1 110 111 112 114 117 120 126 VR 119 119 119 119 121 123 126 VZ 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 VR 119 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126		V1	111	111	113	114	117		126		
TOFL 3400 3468 3631 3792 4065 4393 5039 V1 111 111 113 114 117 120 126 VR 119 119 119 119 121 123 126 V2 130 129 129 128 129 131 133 TOFL 3449 3518 3684 3848 4125 4459 5085 V1 110 111 113 114 117 120 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VR 119 119 119 119 121 123 126 VZ 129 129 128 128 129 131 133 TOFL 3498 3568 3737 3903 4185 4524 5133 VI 110 111 112 114 117 120 126 VR 119 119 119 119 121 123 126	-10	VR	119	119	119	119	121	123	126		
-5	-10	V2	130	129	129	128	129	131	133		
-5		TOFL	3400	3468	3631	3792	4065	4393	5039		
-5		V1	111	111	113	114	117	120	126		
V2 130 129 129 128 129 131 133 TOFL 3449 3518 3684 3848 4125 4459 5085 V1 110 111 113 114 117 120 126 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3498 3568 3737 3903 4185 4524 5133 V1 110 111 112 114 117 120 126 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V2 129 128 128 127 128 130	-5	VR	119	119	119	119	121	123	126		
0 V1 110 111 113 114 117 120 126 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3498 3568 3737 3903 4185 4524 5133 V1 110 111 112 114 117 120 126 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V1 112 113 114 115 118 122 126 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 1		V2	130	129	129	128	129	131	133		
VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3498 3568 3737 3903 4185 4524 5133 V1 110 111 112 114 117 120 126 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V1 112 113 114 115 118 122 126 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 130 132		TOFL	3449	3518	3684	3848	4125	4459	5085		
V2 129 129 128 128 129 131 133 TOFL 3498 3568 3737 3903 4185 4524 5133 V1 110 111 112 114 117 120 126 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V1 112 113 114 115 118 122 126 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 130 132		V1	110	111	113	114	117	120	126		
V2 129 129 128 128 129 131 133 TOFL 3498 3568 3737 3903 4185 4524 5133 V1 110 111 112 114 117 120 126 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V1 112 113 114 115 118 122 126 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 130 132	_	VR	119	119	119	119	121	123	126		
5 V1 110 111 112 114 117 120 126 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V1 112 113 114 115 118 122 126 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 130 132	Ŭ	V2	129	129	128	128	129	131	133		
5 VR 119 119 119 119 121 123 126 V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V1 112 113 114 115 118 122 126 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 130 132		TOFL	3498	3568	3737	3903	4185	4524	5133		
V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V1 112 113 114 115 118 122 126 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 130 132		V1	110	111	112	114	117	120	126		
V2 129 129 128 128 129 131 133 TOFL 3547 3618 3790 3959 4246 4591 5190 V1 112 113 114 115 118 122 126 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 130 132	5	VR	119	119	119	119	121	123	126		
10 V1 112 113 114 115 118 122 126 VR 119 119 119 121 123 126 V2 129 128 128 127 128 130 132	J	V2	129	129	128	128	129	131	133		
10 VR 119 119 119 119 121 123 126 V2 129 128 128 127 128 130 132		TOFL	3547	3618	3790	3959	4246	4591	5190		
10 V2 129 128 128 127 128 130 132		V1	112	113	114	115	118	122	126		
V2 129 128 128 127 128 130 132	10	VR	119	119	119	119	121	123	126		
TOFL 3704 3772 3942 4107 4390 4850 5898	10	V2	129	128	128	127	128	130	132		
		TOFL	3704	3772	3942	4107	4390	4850	5898		

TOFL_UP_2_2_02

HA-420 AFM PERFORMANCE

	Uncorrec		eoff Field Runway,				ds [KIAS	1
	Flore						00 foot	
Т	riaps	UP, ICE	Protec				00 feet	
Temp.	Data	7000	0000		off Weig		40000	40000
[°C]	1/4	7800	8000	8500	9000	9500	10000	10600
	V1	112	113	114	115	118	122	126
-40	VR	119	119	119	119	121	123	126
	V2	130	129	129	128	129	131	133
⊢—	TOFL	3257	3319	3471	3621	3875	4215	5149
	V1	112	112	114	115	118	121	126
-30	VR	119	119	119	119	121	123	126
	V2	130	129	129	128	129	131	133
	TOFL	3365	3429	3587	3744	4008	4339	5244
	V1	111	112	113	115	117	121	126
-20	VR	119	119	119	119	121	123	126
	V2	129	129	128	128	129	131	133
	TOFL	3460	3526	3690	3853	4126	4456	5332
	V1	111	112	113	114	117	120	126
-10	VR	119	119	119	119	121	123	126
-10	V2	129	129	128	128	129	131	133
	TOFL	3564	3633	3802	3971	4254	4596	5434
	V1	111	112	113	114	117	120	126
-5	VR	119	119	119	119	121	123	126
-~	V2	129	129	128	128	129	130	133
	TOFL	3616	3687	3858	4030	4319	4666	5489
	V1	111	112	113	114	117	120	126
0	VR	119	119	119	119	121	123	126
0	V2	129	129	128	127	129	130	133
	TOFL	3669	3741	3915	4090	4384	4737	5548
	V1	111	112	113	114	117	121	126
5	VR	119	119	119	119	121	123	126
5	V2	129	129	128	127	128	130	132
	TOFL	3748	3820	3997	4173	4469	4844	5768
	V1	113	114	115	116	120	123	126
40	VR	119	119	119	119	121	123	126
10	V2	128	128	127	126	128	129	132
	TOFL	3946	4017	4189	4356	4743	5605	6713

TOFL_UP_2_3_02

HA-420 AFM

PERFORMANCE

	Uncorrec						ds [KIAS	1
			Runway,					
	Flaps	UP, Ice	Protec				00 feet	
Temp.	Data			Take	off Weigl	nt [lb]		
[°C]	Data	7800	8000	8500	9000	9500	10000	10600
	V1	113	113	114	116	118	123	126
-40	VR	119	119	119	119	121	123	126
-40	V2	129	129	128	128	129	130	133
	TOFL	3417	3481	3641	3797	4061	4520	5552
	V1	112	113	114	115	118	122	126
-30	VR	119	119	119	119	121	123	126
-50	V2	129	129	128	128	129	130	133
	TOFL	3526	3593	3758	3920	4195	4627	5655
	V1	112	112	114	115	118	122	126
-20	VR	119	119	119	119	121	123	126
-20	V2	129	129	128	127	128	130	133
	TOFL	3631	3700	3872	4040	4325	4751	5761
	V1	112	112	114	115	117	122	126
-10	VR	119	119	119	119	121	123	126
-10	V2	129	128	128	127	128	130	132
	TOFL	3743	3815	3992	4167	4462	4888	5884
	V1	111	112	113	115	117	121	126
-5	VR	119	119	119	119	121	123	126
~	V2	129	128	128	127	128	130	132
	TOFL	3799	3872	4052	4230	4530	4956	5946
	V1	111	112	113	115	117	121	126
0	VR	119	119	119	119	121	123	126
ľ	V2	129	128	128	127	128	130	132
	TOFL	3855	3929	4112	4293	4599	5026	6008
	V1	112	113	114	115	118	123	126
5	VR	119	119	119	119	121	123	126
ľ	V2	128	128	127	127	128	130	132
	TOFL	3989	4063	4246	4423	4727	5428	6568
	V1	114	115	116	118	121	123	126
10	VR	119	119	119	119	121	123	126
10	V2	127	127	126	126	127	129	131
TOFL UP 2 4 0	TOFL	4218	4289	4464	4727	5526	6480	7605

TOFL_UP_2_4_02

HA-420 AFM PERFORMANCE

	Uncorre		eoff Field Runway,	_		-	ds [KIAS	1
	Flore				• •		00 foot	
Т	riaps	UP, ICE	Protec				00 feet	
Temp.	Data	7000	0000		off Weig		40000	40000
[°C]	1/4	7800	8000	8500 115	9000	9500	10000	10600
	V1	113	113		116	118	123	126
-40	VR	119	119	119	119	121	123	126
	V2	129	129	128	127	128	130	132
\vdash	TOFL	3585	3651	3818	3979	4255	4924	5977
	V1	112	113	114	115	118	123	126
-30	VR	119	119	119	119	121	123	126
	V2	129	128	128	127	128	130	132
	TOFL	3704	3772	3946	4113	4400	5006	6091
	V1	112	113	114	115	118	123	126
-20	VR	119	119	119	119	121	123	126
	V2	129	128	128	127	128	130	132
	TOFL	3812	3883	4063	4237	4534	5103	6216
	V1	112	113	114	115	118	123	126
-10	VR	119	119	119	119	121	123	126
	V2	128	128	127	127	128	130	132
	TOFL	3930	4004	4191	4371	4679	5225	6353
	V1	112	113	114	115	118	123	126
-5	VR	119	119	119	119	121	123	126
Ĭ	V2	128	128	127	127	128	130	132
	TOFL	3990	4066	4255	4439	4752	5295	6424
	V1	112	112	114	115	117	122	126
0	VR	119	119	119	119	121	123	126
ľ	V2	128	128	127	127	128	130	132
	TOFL	4051	4127	4320	4507	4826	5373	6501
	V1	114	114	115	116	121	123	126
5	VR	119	119	119	119	121	123	126
٦	V2	127	127	127	126	127	129	131
	TOFL	4246	4322	4505	4683	5272	6251	7404
	V1	116	116	118	119	121	123	126
10	VR	119	119	119	119	121	123	126
10	V2	126	126	126	125	126	128	131
	TOFL	4507	4579	4899	5556	6447	7413	8556

TOFL_UP_2_5_02

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
Dry Runway, Zero Slope, No Wind									
Flaps UP, Ice Protection On, Altitude 6000 feet									
Temp.	Data	Takeoff Weight [lb]							
[°C]	Data	7800	8000	8500	9000	9500	10000	10600	
	V1	113	114	115	116	119	123	126	
-40	VR	119	119	119	119	121	123	126	
-40	V2	128	128	128	127	128	130	132	
	TOFL	3759	3830	4003	4170	4504	5317	6396	
	V1	113	113	115	116	119	123	126	
-30	VR	119	119	119	119	121	123	126	
-50	V2	128	128	127	127	128	130	132	
	TOFL	3881	3955	4135	4308	4634	5422	6532	
	V1	113	113	115	116	118	123	126	
-20	VR	119	119	119	119	121	123	126	
-20	V2	128	128	127	127	128	130	132	
	TOFL	4000	4076	4263	4443	4762	5529	6669	
	V1	112	113	114	115	118	123	126	
-10	VR	119	119	119	119	121	123	126	
-10	V2	128	128	127	127	128	130	132	
	TOFL	4128	4206	4400	4588	4909	5660	6829	
	V1	112	113	114	115	118	123	126	
-5	VR	119	119	119	119	121	123	126	
~	V2	128	128	127	126	128	129	132	
	TOFL	4194	4274	4471	4662	4989	5735	6918	
	V1	113	114	115	116	120	123	126	
0	VR	119	119	119	119	121	123	126	
ľ	V2	127	127	127	126	127	129	132	
	TOFL	4317	4397	4593	4782	5237	6155	7340	
	V1	115	115	116	119	121	123	126	
5	VR	119	119	119	119	121	123	126	
٦	V2	127	126	126	125	127	128	131	
	TOFL	4547	4623	4829	5297	6212	7203	8374	
	V1	118	119	119	119	121	123	126	
10	VR	119	119	119	119	121	123	126	
10	V2	126	125	125	125	126	128	130	
TOFL UP 2 6 0	TOFL	4940	5109	5827	6511	7410	8397	9570	

TOFL_UP_2_6_02

HA-420 AFM PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
Dry Runway, Zero Slope, No Wind									
Flaps UP, Ice Protection On, Altitude 7000 feet									
Temp.	Data	Takeoff Weight [lb]							
[°C]	SALAN MENANT	7800	8000	8500	9000	9500	10000	10600	
	V1	114	114	115	116	120	123	126	
-40	VR	119	119	119	119	121	123	126	
	V2	128	128	127	127	128	130	132	
	TOFL	3946	4020	4198	4372	4808	5731	6837	
	V1	113	114	115	116	120	123	126	
-30	VR	119	119	119	119	121	123	126	
- 00	V2	128	128	127	126	128	129	132	
	TOFL	4079	4156	4342	4522	4948	5853	6990	
	V1	113	114	115	116	119	123	126	
-20	VR	119	119	119	119	121	123	126	
-20	V2	128	127	127	126	127	129	132	
	TOFL	4205	4284	4478	4666	5091	5985	7154	
	V1	113	113	115	116	119	123	126	
-10	VR	119	119	119	119	121	123	126	
-10	V2	128	127	127	126	127	129	132	
	TOFL	4345	4427	4628	4823	5259	6147	7345	
	V1	113	113	115	116	119	123	126	
-5	VR	119	119	119	119	121	123	126	
-5	V2	127	127	127	126	127	129	132	
	TOFL	4420	4504	4709	4907	5356	6253	7466	
A	V1	114	115	116	118	121	123	126	
0	VR	119	119	119	119	121	123	126	
U	V2	127	127	126	125	127	129	131	
	TOFL	4606	4686	4884	5199	6045	7061	8264	
	V1	116	117	119	119	121	123	126	
5	VR	119	119	119	119	121	123	126	
3	V2	126	126	125	125	126	128	130	
	TOFL	4860	5009	5550	6258	7179	8185	9380	
3	V1	119	119	119	119	121	123	126	
10	VR	119	119	119	119	121	123	126	
10	V2	125	125	124	124	125	127	130	
	TOFL	5831	6123	6829	7504	8417	9430	10639	

TOFL_UP_2_7_02

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
Dry Runway, Zero Slope, No Wind									
Flaps UP, Ice Protection On, Altitude 8000 feet									
Temp.	Data	Takeoff Weight [lb]							
[°C]	Data	7800	8000	8500	9000	9500	10000	10600	
	V1	114	114	115	116	121	123	126	
-40	VR	119	119	119	119	121	123	126	
-40	V2	128	127	127	126	127	129	132	
	TOFL	4143	4219	4404	4584	5217	6180	7316	
	V1	114	114	115	116	121	123	126	
-30	VR	119	119	119	119	121	123	126	
-50	V2	127	127	127	126	127	129	132	
	TOFL	4283	4362	4554	4742	5329	6319	7487	
	V1	114	114	115	116	121	123	126	
-20	VR	119	119	119	119	121	123	126	
-20	V2	127	127	127	126	127	129	131	
	TOFL	4425	4507	4708	4903	5478	6495	7695	
	V1	113	114	115	116	121	123	126	
-10	VR	119	119	119	119	121	123	126	
-10	V2	127	127	126	126	127	129	131	
	TOFL	4581	4666	4875	5077	5665	6707	7938	
	V1	114	114	115	116	121	123	126	
-5	VR	119	119	119	119	121	123	126	
-5	V2	127	127	126	126	127	129	131	
	TOFL	4687	4773	4982	5212	5930	6980	8221	
	V1	115	116	118	119	121	123	126	
0	VR	119	119	119	119	121	123	126	
Ŭ	V2	126	126	125	125	126	128	131	
	TOFL	4913	4995	5361	6042	6987	8018	9242	
	V1	119	119	119	119	121	123	126	
5	VR	119	119	119	119	121	123	126	
5	V2	125	125	125	124	125	127	130	
	TOFL	5504	5807	6537	7234	8166	9194	10419	
	V1	119	119	119	119	121	123	126	
10	VR	119	119	119	119	121	123	126	
10	V2	124	124	124	124	125	127	129	
TOFL UP 2 8 0	TOFL	6853	7141	7838	8507	9438	10482	11734	

TOFL_UP_2_8_02

HA-420 AFM PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]									
Dry Runway, Zero Slope, No Wind									
Flaps UP, Ice Protection On, Altitude 9000 feet									
Temp.	Data	Takeoff Weight [lb]							
[°C]	2012 N. 1850	7800	8000	8500	9000	9500	10000	10600	
	V1	114	115	116	117	121	123	126	
-40	VR	119	119	119	119	121	123	126	
	V2	127	127	126	126	127	129	131	
	TOFL	4347	4425	4618	4868	5644	6627	7789	
	V1	114	114	115	117	121	123	126	
-30	VR	119	119	119	119	121	123	126	
- 00	V2	127	127	126	126	127	129	131	
	TOFL	4501	4583	4783	5030	5787	6798	7995	
	V1	114	114	115	117	121	123	126	
-20	VR	119	119	119	119	121	123	126	
-20	V2	127	127	126	126	127	129	131	
	TOFL	4659	4744	4952	5217	5989	7028	8258	
75	V1	114	114	115	117	121	123	126	
-10	VR	119	119	119	119	121	123	126	
-10	V2	127	126	126	125	127	129	131	
	TOFL	4831	4919	5135	5426	6220	7284	8545	
	V1	115	115	117	119	121	123	126	
-5	VR	119	119	119	119	121	123	126	
-5	V2	126	126	125	125	126	128	131	
	TOFL	4993	5080	5354	5878	6853	7914	9173	
8	V1	117	119	119	119	121	123	126	
o	VR	119	119	119	119	121	123	126	
U	V2	125	125	125	124	126	128	130	
	TOFL	5366	5538	6278	7002	7956	9006	10258	
	V1	119	119	119	119	121	123	126	
5	VR	119	119	119	119	121	123	126	
5	V2	125	124	124	124	125	127	129	
	TOFL	6536	6834	7556	8247	9195	10252	11519	
	V1	119	119	119	119	121	123	126	
10	VR	119	119	119	119	121	123	126	
10	V2	124	124	123	123	124	126	129	
	TOFL	7880	8165	8857	9525	10478	11556	12856	

TOFL_UP_2_9_02

HA-420 AFM

PERFORMANCE

Uncorrected Takeoff Field Length [feet] and Speeds [KIAS]										
Dry Runway, Zero Slope, No Wind										
Flaps UP, Ice Protection On, Altitude 10,000 feet										
Temp.	Data	Takeoff Weight [lb]								
[°C]	- 10 10 10 10 10 10 10 10 10 10 10 10 10	7800	8000	8500	9000	9500	10000	10600		
	V1	115	115	116	119	121	123	126		
-40	VR	119	119	119	119	121	123	126		
	V2	127	127	126	126	127	129	131		
	TOFL	4573	4654	4855	5218	6127	7132	8323		
	V1	114	115	116	118	121	123	126		
-30	VR	119	119	119	119	121	123	126		
-50	V2	127	126	126	125	127	129	131		
	TOFL	4741	4827	5035	5403	6310	7344	8570		
	V1	114	115	116	118	121	123	126		
-20	VR	119	119	119	119	121	123	126		
-20	V2	127	126	126	125	126	128	131		
	TOFL	4914	5003	5220	5614	6552	7615	8875		
	V1	114	115	116	118	121	123	126		
-10	VR	119	119	119	119	121	123	126		
-10	V2	126	126	126	125	126	128	131		
	TOFL	5094	5186	5411	5832	6793	7885	9182		
	V1	116	117	119	119	121	123	126		
-5	VR	119	119	119	119	121	123	126		
-0	V2	126	125	125	124	126	128	130		
	TOFL	5302	5478	6031	6783	7764	8839	10118		
	V1	119	119	119	119	121	123	126		
О	VR	119	119	119	119	121	123	126		
Ŭ	V2	125	125	124	124	125	127	130		
	TOFL	6211	6521	7267	7981	8946	10017	11298		
	V1	119	119	119	119	121	123	126		
5	VR	119	119	119	119	121	123	126		
3	V2	124	124	124	123	125	127	129		
	TOFL	7610	7905	8619	9307	10275	11366	12682		
12	V1	119	119	119	119	121	123	126		
10	VR	119	119	119	119	121	123	126		
10	V2	123	123	123	123	124	126	129		
TOFL UP 2 10	TOFL	8954	9236	9926	10594	11572	12692	14048		

TOFL_UP_2_10_02

HA-420 AFM PERFORMANCE

Wind Corrected V1 [KIAS]									
FLAPS UP									
lce	Protection	On							
Tailwind	Tailwind Headwind								
10	▼ REF [0] ▶	30							
108	109	111							
109	110	112							
110	111	113							
111	112	114							
112	113	114							
113	114	115							
114	115	116							
115	116	117							
116	117	118							
117	118	119							
118	119	120							
119	120	121							
120	121	122							
121	122	123							
122	123	124							
123	124	125							
124	125	126							
125	126	126							

V1WC_UP_2_03

HA-420 AFM

PERFORMANCE

Slope Corrected V1 [KIAS]										
FLAPS UP, Ice Protection On										
	Runway Gradient [%]									
-2	-1	-1 ∢ REF [0] ▶ 1 2								
106	107	108	110	112						
106	107	109	111	113						
107	108	110	112	114						
107	109	111	113	115						
108	110	112	114	116						
109	111	113	115	116						
110	112	114	116	117						
111	113	115	117	118						
112	114	116	118	119						
114	115	117	119	120						
115	116	118	120	120						
116	117	119	121	121						
117	118	120	121	122						
118	119	121	122	123						
119	121	122	123	124						
120	122	123	124	125						
121	123	124	125	125						
122	124	125	126	126						
124	125	126	126	126						

V1SC_UP_2_04

Takeoff Rotation Speed (V_R) Slope Correction, Ice Protection On

NOTE V_R with flaps up and Ice Protection On does not require slope correction.

HA-420 AFM

PERFORMANCE

	Slope Corrected V2 [KIAS]								
	FLAPS UP, Ice Protection On								
	Rı	unway Gradient [ˈ	%]						
-2	-1	■ REF [0] ▶	1	2					
123	123	122	121	121					
124	124	123	122	122					
125	125	124	123	123					
126	126	125	124	124					
127	127	126	125	125					
128	128	127	126	126					
129	129	128	127	127					
130	130	129	128	128					
131	131	130	129	129					
132	132	131	130	130					
133	133	132	131	131					
134	134	133	132	132					
135	135	134	133	133					

V2SC_UP_2_05

HA-420 AFM

PERFORMANCE

Wind Corrected Takeoff Field Length [feet]								
FLAPS UP, Ice Protection On								
Tailwind			Headwind					
10	▼ REF [0] ▶	10	20	30				
3311	2700	2535	2409	2265				
3417	2800	2633	2503	2357				
3523	2900	2730	2598	2449				
3629	3000	2828	2692	2541				
3734	3100	2925	2787	2634				
3840	3200	3023	2881	2726				
3946	3300	3121	2975	2818				
4051	3400	3218	3070	2911				
4157	3500	3316	3164	3003				
4263	3600	3413	3259	3095				
4369	3700	3511	3353	3187				
4474	3800	3608	3448	3280				
4580	3900	3706	3542	3372				
4686	4000	3804	3636	3464				
4791	4100	3901	3731	3557				
4897	4200	3999	3825	3649				
5003	4300	4096	3920	3741				
5109	4400	4194	4014	3833				
5214	4500	4291	4109	3926				
5320	4600	4389	4203	4018				
5426	4700	4487	4297	4110				
5531	4800	4584	4392	4203				
5637	4900	4682	4486	4295				
5743	5000	4779	4581	4387				
5849	5100	4877	4675	4479				
5954	5200	4974	4770	4572				
6060	5300	5072	4864	4664				
6166	5400	5170	4958	4756				
6271	5500	5267	5053	4849				
6377	5600	5365	5147	4941				
6483	5700	5462	5242	5033				
6589	5800	5560	5336	5125				
6694	5900	5657	5431	5218				
6800	6000	5755	5525	5310				

TOWC1_UP_2_03

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM PERFORMANCE

Wind Corrected Takeoff Field Length [feet]								
	FLAPS UP	lce Prote	ction On					
Tailwind			Headwind					
10	■ REF [0] ▶	10	20	30				
6800	6000	5755	5525	5310				
6906	6100	5853	5619	5402				
7011	6200	5950	5714	5495				
7117	6300	6048	5808	5587				
7223	6400	6145	5903	5679				
7329	6500	6243	5997	5771				
7434	6600	6340	6092	5864				
7540	6700	6438	6186	5956				
7646	6800	6536	6280	6048				
7751	6900	6633	6375	6141				
7857	7000	6731	6469	6233				
7963	7100	6828	6564	6325				
8069	7200	6926	6658	6417				
8174	7300	7023	6753	6510				
8280	7400	7121	6847	6602				
8386	7500	7219	6941	6694				
8491	7600	7316	7036	6787				
8597	7700	7414	7130	6879				
8703	7800	7511	7225	6971				
8809	7900	7609	7319	7063				
8914	8000	7706	7414	7156				
9020	8100	7804	7508	7248				
9126	8200	7902	7602	7340				
9231	8300	7999	7697	7433				
9337	8400	8097	7791	7525				
9443	8500	8194	7886	7617				
9549	8600	8292	7980	7709				
9654	8700	8389	8075	7802				
9760	8800	8487	8169	7894				
9866	8900	8585	8263	7986				
9971	9000	8682	8358	8079				
10077	9100	8780	8452	8171				
10183	9200	8877	8547	8263				
10289	9300	8975	8641	8355				

TOWC2_UP_2_03

HA-420 AFM

PERFORMANCE

Wind Corrected Takeoff Field Length [feet]								
FLAPS UP, Ice Protection On								
Tailwind			Headwind					
10	▼ REF [0] ▶	10	20	30				
10289	9300	8975	8641	8355				
10394	9400	9072	8736	8448				
10500	9500	9170	8830	8540				
10606	9600	9268	8924	8632				
10711	9700	9365	9019	8725				
10817	9800	9463	9113	8817				
10923	9900	9560	9208	8909				
11029	10000	9658	9302	9001				
11134	10100	9755	9397	9094				
11240	10200	9853	9491	9186				
11346	10300	9951	9585	9278				
11451	10400	10048	9680	9371				
11557	10500	10146	9774	9463				
11663	10600	10243	9869	9555				
11769	10700	10341	9963	9647				
11874	10800	10438	10058	9740				
11980	10900	10536	10152	9832				
12086	11000	10634	10246	9924				
12191	11100	10731	10341	10017				
12297	11200	10829	10435	10109				
12403	11300	10926	10530	10201				
12509	11400	11024	10624	10293				
12614	11500	11121	10719	10386				
12720	11600	11219	10813	10478				
12826	11700	11317	10907	10570				
12931	11800	11414	11002	10663				
13037	11900	11512	11096	10755				
13143	12000	11609	11191	10847				
13249	12100	11707	11285	10939				
13354	12200	11804	11380	11032				
13460	12300	11902	11474	11124				
13566	12400	12000	11568	11216				
13671	12500	12097	11663	11309				
13777	12600	12195	11757	11401				

TOWC3_UP_2_03

HA-420 AFM

PERFORMANCE

Wind Corrected Takeoff Field Length [feet]								
FLAPS UP, Ice Protection On								
Tailwind			Headwind					
10	■ REF [0] ▶	10	20	30				
13777	12600	12195	11757	11401				
13883	12700	12292	11852	11493				
13989	12800	2800 12390 11946 11585						
14094	12900	12487	12041	11678				

TOWC4_UP_2_03

HA-420 AFM

PERFORMANCE

Slope Corrected Takeoff Field Length [feet]										
	FLAPS UP, Ice Protection On									
		unway Gradient [
-2	-1	▼ ŘEF [0] ▶	1	2						
2205	2205	2200	2278	2357						
2308	2308	2300	2416	2536						
2410	2410	2400	2555	2715						
2513	2513	2500	2694	2894						
2615	2615	2600	2833	3072						
2718	2718	2700	2971	3251						
2821	2821	2800	3110	3430						
2923	2923	2900	3249	3609						
3026	3026	3000	3388	3787						
3128	3128	3100	3526	3966						
3231	3231	3200	3665	4145						
3315	3322	3300	3804	4323						
3399	3414	3400	3943	4502						
3483	3505	3500	4082	4681						
3567	3596	3600	4220	4860						
3651	3687	3700	4359	5038						
3735	3778	3800	4498	5217						
3819	3870	3900	4637	5396						
3903	3961	4000	4775	5574						
3987	4052	4100	4896	5717						
4071	4143	4200	5006	5839						
4155	4234	4300	5116	5962						
4239	4326	4400	5226	6085						
4323	4417	4500	5336	6207						
4407	4508	4600	5446	6330						
4491	4599	4700	5557	6453						
4575	4690	4800	5667	6576						
4659	4781	4900	5777	6698						
4743	4873	5000	5887	6821						
4827	4964	5100	5997	6935						
4911	5055	5200	6107	7049						
4995	5146	5300	6217	7162						
5079	5237	5400	6328	7276						
5156	5326	5500	6438	7389						

TOSC1_UP_2_03

HA-420 AFM PERFORMANCE

Slope Corrected Takeoff Field Length [feet]									
	FLAPS UP, Ice Protection On								
		unway Gradient [
-2			1	2					
5156	5326	5500	6438	7389					
5217	5406	5600	6548	7503					
5278	5487	5700	6658	7616					
5339	5567	5800	6768	7730					
5400	5647	5900	6878	7844					
5461	5728	6000	6982	7957					
5522	5808	6100	7087	8071					
5583	5889	6200	7191	8184					
5644	5969	6300	7295	8298					
5705	6050	6400	7399	8412					
5766	6130	6500	7503	8525					
5827	6211	6600	7608	8639					
5888	6291	6700	7712	8752					
5949	6371	6800	7816	8866					
6010	6452	6900	7920	8980					
6071	6532	7000	8024	9093					
6132	6613	7100	8129	9201					
6193	6693	7200	8233	9307					
6254	6774	7300	8337	9414					
6315	6854	7400	8441	9521					
6376	6935	7500	8545	9627					
6437	7015	7600	8650	9734					
6498	7095	7700	8754	9840					
6559	7176	7800	8858	9947					
6620	7256	7900	8962	10054					
6681	7337	8000	9066	10160					
6742	7417	8100	9170	10267					
6803	7498	8200	9275	10373					
6864	7578	8300	9379	10480					
6925	7659	8400	9483	10587					
6986	7739	8500	9587	10693					
7047	7819	8600	9691	10800					
7108	7900	8700	9796	10906					
7169	7980	8800	9900	11013					

TOSC2_UP_2_03

HA-420 AFM

PERFORMANCE

Slope Corrected Takeoff Field Length [feet]										
	FLAPS UP, Ice Protection On									
		unway Gradient [
-2	-1	▼ REF [0] ▶	1	2						
7169	7980	8800	9900	11013						
7230	8061	8900	10002	11117						
7291	8141	9000	10097	11213						
7352	8222	9100	10192	11309						
7412	8302	9200	10287	11405						
7473	8382	9300	10382	11500						
7534	8463	9400	10478	11596						
7595	8543	9500	10573	11692						
7656	8624	9600	10668	11788						
7717	8704	9700	10763	11884						
7778	8785	9800	10858	11980						
7839	8865	9900	10953	12076						
7900	8946	10000	11048	12171						
7961	9026	10100	11144	12267						
8022	9106	10200	11239	12363						
8083	9187	10300	11334	12459						
8144	9267	10400	11429	12555						
8205	9348	10500	11524	12651						
8266	9428	10600	11619	12747						
8327	9509	10700	11715	12842						
8388	9589	10800	11810	12938						
8449	9670	10900	11905	13034						
8510	9750	11000	12000	13130						
8571	9830	11100	12095	13226						
8632	9911	11200	12190	13322						
8693	9991	11300	12285	13418						
8754	10072	11400	12381	13513						
8815	10152	11500	12476	13609						
8876	10233	11600	12571	13705						
8937	10313	11700	12666	13801						
8998	10394	11800	12761	13897						
9059	10474	11900	12856	13993						
9120	10554	12000	12952	14089						
9181 TOSC3 UP 2.03	10635	12100	13047	14184						

TOSC3_UP_2_03

HA-420 AFM

PERFORMANCE

Slo	Slope Corrected Takeoff Field Length [feet]									
	FLAPS UP, Ice Protection On									
Runway Gradient [%]										
-2	-1	■ REF [0] ▶	1	2						
9181	10635	12100	13047	14184						
9242	10715	12200	13142	14280						
9303	10796	12300	13237	14376						
9364	10876	12400	13332	14472						
9425	10957	12500	13427	14568						
9486	11037	12600	13522	14664						
9547	11118	12700	13618	14760						
9608	11198	12800	13713	14855						
9668	11278	12900	13808	14951						
9729	11359	13000	13903	15047						
9790	11439	13100	13998	15143						
9851	11520	13200	14093	15239						
9912	11600	13300	14189	15335						
9973	11681	13400	14284	15431						
10034	11761	13500	14379	15526						
10095	11841	13600	14474	15622						
10156	11922	13700	14569	15718						
10217	12002	13800	14664	15814						
10278	12083	13900	14759	15910						
10339	12163	14000	14855	16006						
10400	12244	14100	14950	16102						

TOSC4_UP_2_03

HA-420 AFM

PERFORMANCE

Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind									
Flaps UP, Gear UP, Ice Protection Off, V2									
F. ALT	Temp.								
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600	
	-40	11.9	11.4	10.3	9.3	8.4	7.5	6.5	
	15	12.2	11.7	10.6	9.6	8.6	7.7	6.7	
	25	12.2	11.8	10.7	9.6	8.6	7.7	6.7	
-1000	35	10.4	9.9	8.9	8.0	7.1	6.2	5.3	
-1000	40	9.2	8.8	7.8	6.9	6.1	5.3	4.4	
	45	8.0	7.6	6.7	5.9	5.1	4.3	3.5	
	50	6.8	6.5	5.6	4.8	4.1	3.4	2.6	
	55	5.7	5.3	4.6	3.8	3.1	2.5	1.8	
	-40	11.6	11.2	10.1	9.1	8.2	7.3	6.3	
	15	12.0	11.5	10.4	9.4	8.4	7.5	6.5	
	25	12.0	11.6	10.5	9.5	8.5	7.6	6.6	
Sea	35	9.7	9.3	8.3	7.4	6.5	5.7	4.8	
Level	40	8.5	8.1	7.2	6.4	5.5	4.8	3.9	
	45	7.4	7.0	6.1	5.3	4.6	3.8	3.1	
	50	6.2	5.9	5.1	4.3	3.6	2.9	2.2	
	55	5.1	4.8	4.0	3.3	2.7	2.0	1.4	
	-40	11.3	10.8	9.8	8.8	7.9	7.0	6.0	
	15	11.6	11.2	10.1	9.1	8.1	7.2	6.3	
	25	11.2	10.8	9.7	8.7	7.8	6.9	6.0	
1000	30	10.1	9.7	8.7	7.7	6.9	6.0	5.1	
1000	35	9.0	8.6	7.6	6.7	5.9	5.1	4.3	
	40	7.8	7.4	6.6	5.7	4.9	4.2	3.4	
	45	6.7	6.3	5.5	4.7	4.0	3.3	2.5	
	50	5.6	5.2	4.5	3.7	3.1	2.4	1.7	
	-40	10.9	10.5	9.4	8.5	7.6	6.7	5.8	
	10	11.2	10.8	9.7	8.7	7.8	6.9	6.0	
	20	11.3	10.8	9.8	8.8	7.8	7.0	6.0	
2000	30	9.3	8.9	7.9	7.0	6.2	5.4	4.5	
	35	8.2	7.8	6.9	6.1	5.3	4.5	3.7	
	40	7.1	6.8	5.9	5.1	4.3	3.6	2.9	
	45	6.0	5.7	4.9	4.1	3.4	2.8	2.1	
TCG2 UP 0	50	5.0	4.6	3.9	3.2	2.5	1.9	1.2	

TCG2_UP_0_-1_06

HA-420 AFM PERFORMANCE

	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind									
	Flaps UP, Gear UP, Ice Protection Off, V2									
F. ALT	Temp.									
[ft]	[°Cj	7800	8000	8500	9000	9500	10000	10600		
	-40	10.5	10.1	9.1	8.1	7.2	6.4	5.5		
	10	10.9	10.4	9.4	8.4	7.5	6.6	5.7		
	20	10.7	10.3	9.2	8.3	7.3	6.5	5.6		
3000	25	9.6	9.2	8.2	7.3	6.4	5.6	4.7		
3000	30	8.5	8.1	7.2	6.3	5.5	4.7	3.9		
	35	7.4	7.1	6.2	5.4	4.6	3.9	3.1		
	40	6.4	6.1	5.3	4.5	3.8	3.1	2.4		
7:	45	5.4	5.1	4.3	3.6	2.9	2.3	1.6		
112	-40	10.2	9.7	8.7	7.8	6.9	6.1	5.2		
	10	10.5	10.0	9.0	8.1	7.2	6.3	5.4		
	20	9.8	9.4	8.4	7.5	6.6	5.8	4.9		
4000	25	8.7	8.4	7.4	6.5	5.7	4.9	4.1		
4000	30	7.7	7.3	6.4	5.6	4.8	4.1	3.3		
	35	6.7	6.3	5.5	4.7	4.0	3.3	2.6		
	40	5.7	5.4	4.6	3.9	3.2	2.5	1.8		
2	45	4.8	4.4	3.7	3.0	2.4	1.8	1.1		
()	-40	9.8	9.4	8.4	7.5	6.6	5.8	4.9		
	5	10.1	9.6	8.6	7.7	6.8	6.0	5.1		
	15	10.1	9.6	8.6	7.7	6.8	6.0	5.1		
5000	25	7.9	7.6	6.7	5.8	5.0	4.3	3.5		
5000	30	6.9	6.5	5.7	4.9	4.2	3.5	2.7		
	35	5.9	5.6	4.8	4.1	3.4	2.7	2.0		
	40	5.0	4.7	3.9	3.2	2.6	2.0	1.3		
	45	4.1	3.8	3.1	2.4	1.8	1.2	0.6		
ts.	-40	9.5	9.1	8.1	7.2	6.3	5.6	4.7		
	0	9.7	9.3	8.3	7.4	6.5	5.7	4.8		
	10	9.7	9.2	8.2	7.3	6.5	5.7	4.8		
6000	20	8.2	7.8	6.9	6.0	5.2	4.5	3.7		
5555	25	7.2	6.8	5.9	5.1	4.4	3.7	2.9		
	30	6.2	5.8	5.0	4.3	3.5	2.9	2.2		
	35	5.2	4.9	4.1	3.4	2.8	2.1	1.5		
	40	4.3	4.0	3.3	2.6	2.0	1.4	0.8		

TCG2_UP_0_3_06

HA-420 AFM

PERFORMANCE

	Net Takeoff Climb Gradient, Second Segment [%]								
	Zero Slope, No Wind								
E ALT	F. ALT Temp. Takeoff Weight [lb]								
F. ALT	Temp. [°C]	7800	8000	8500	9000	9500	10000	10600	
[it]	-40	9.2	8.8	7.8	6.9	6.1	5.3	4.4	
	0	9.3	8.9	7.9	7.0	6.1	5.4	4.5	
	10	9.2	8.8	7.9	7.0	6.1	5.3	4.5	
	15	8.4	8.0	7.1	6.2	5.4	4.7	3.8	
7000	20	7.4	7.0	6.2	5.4	4.6	3.9	3.1	
	25	6.4	6.1	5.2	4.5	3.7	3.1	2.3	
	30	5.5	5.1	4.3	3.6	2.9	2.3	1.6	
	35	4.6	4.3	3.5	2.8	2.2	1.6	1.0	
	-40	8.8	8.4	7.5	6.6	5.8	5.0	4.2	
	-10	8.9	8.5	7.6	6.7	5.8	5.1	4.2	
	0	8.9	8.5	7.5	6.6	5.8	5.0	4.2	
9000	10	8.7	8.3	7.3	6.4	5.6	4.9	4.0	
8000	15	7.6	7.2	6.3	5.5	4.7	4.0	3.2	
	20	6.6	6.3	5.4	4.7	3.9	3.2	2.5	
	25	5.7	5.3	4.6	3.8	3.1	2.5	1.8	
	30	4.8	4.5	3.7	3.0	2.4	1.8	1.1	
	-40	8.5	8.1	7.2	6.4	5.5	4.8	4.0	
	-10	8.5	8.1	7.2	6.3	5.5	4.8	3.9	
	0	8.5	8.1	7.2	6.3	5.5	4.7	3.9	
9000	10	7.8	7.4	6.5	5.7	4.9	4.2	3.4	
0000	15	6.8	6.5	5.6	4.8	4.1	3.4	2.6	
	20	5.9	5.6	4.8	4.0	3.3	2.7	2.0	
	25	5.0	4.7	3.9	3.2	2.5	1.9	1.3	
	30	4.1	3.8	3.1	2.4	1.8	1.2	0.6	
	-40	8.1	7.7	6.8	6.0	5.2	4.4	3.6	
	-5	8.1	7.7	6.8	6.0	5.2	4.4	3.6	
	5	8.1	7.7	6.8	5.9	5.1	4.4	3.6	
10,000	10	7.0	6.6	5.8	5.0	4.2	3.5	2.8	
	15	6.1	5.7	4.9	4.2	3.5	2.8	2.1	
	20	5.2	4.9	4.1	3.4	2.7	2.1	1.4	
	25	4.3	4.0	3.3	2.6	2.0	1.4	0.8	
	30	3.5	3.2	2.5	1.9	1.3	0.7	0.1	

TCG2_UP_0_7_07

HA-420 AFM PERFORMANCE

Wi	nd Corrected Ta	keoff Clim	b Gradient	[%]
FLAPS (JP and TO/A	PPR, V2, I	ice Prote	ction Off
Tailwind			Headwind	
10	■ REF [0] ▶	10	20	30
0.0	0.0	0.0	0.0	0.0
0.5	0.5	0.5	0.5	0.5
0.9	1.0	1.0	1.0	1.1
1.4	1.5	1.5	1.6	1.6
1.8	2.0	2.1	2.1	2.2
2.3	2.5	2.6	2.7	2.8
2.7	3.0	3.1	3.2	3.4
3.2	3.5	3.6	3.8	3.9
3.6	4.0	4.2	4.3	4.5
4.0	4.5	4.7	4.9	5.1
4.5	5.0	5.2	5.4	5.7
4.9	5.5	5.7	6.0	6.2
5.4	6.0	6.2	6.5	6.8
5.8	6.5	6.8	7.1	7.4
6.3	7.0	7.3	7.6	7.9
6.7	7.5	7.8	8.2	8.5
7.1	8.0	8.3	8.7	9.1
7.6	8.5	8.9	9.2	9.7
8.0	9.0	9.4	9.8	10.2
8.5	9.5	9.9	10.3	10.8
8.9	10.0	10.4	10.9	11.4
9.4	10.5	10.9	11.4	12.0
9.8	11.0	11.5	12.0	12.5
10.2	11.5	12.0	12.5	13.1
10.7	12.0	12.5	13.1	13.7

CGWC_TO_ALL_05

NOTE Use this table when determining the ground reference flight path for obstacle clearance with Ice Protection Off.

HA-420 AFM

PERFORMANCE

	Net Takeoff Climb Gradient, Second Segment [%]											
	Zero Slope, No Wind											
Flaps UP, Gear UP, Ice Protection On, V2												
F. ALT		7000	Takeoff Weight [lb]									
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600				
	-40	11.9	11.4	10.3	9.4	8.4	7.5	6.5				
	-30 -20	11.9 12.0	11.5 11.5	10.4 10.4	9.4 9.4	8.4 8.4	7.5 7.5	6.5 6.6				
	-10	12.0	11.5	10.4	9.4	8.5	7.5	6.6				
-1000	-10 -5	12.0	11.6	10.5	9.5	8.5	7.6	6.6				
	-5	12.1	11.6	10.5	9.5	8.6	7.6	6.7				
	5	12.1	11.7	10.5	9.6	8.6	7.7	6.7				
	10	12.1	11.7	10.6	9.6	8.6	7.7	6.7				
\vdash	-40	11.6	11.7	10.0	9.1	8.2	7.7	6.3				
	-30	11.7	11.2	10.1	9.2	8.2	7.3	6.4				
	-20	11.7	11.3	10.2	9.2	8.3	7.4	6.4				
Sea	-10	11.8	11.4	10.2	9.3	8.3	7.4	6.5				
Level	-5	11.9	11.4	10.3	9.3	8.4	7.5	6.5				
Level	0	11.9	11.5	10.4	9.4	8.4	7.5	6.5				
	5	12.0	11.5	10.4	9.4	8.4	7.5	6.5				
	10	12.0	11.5	10.4	9.4	8.4	7.5	6.6				
-	-40	11.3	10.8	9.8	8.8	7.9	7.0	6.1				
	-30	11.3	10.9	9.8	8.9	7.9	7.0	6.1				
	-20	11.4	11.0	9.9	8.9	8.0	7.1	6.1				
4000	-10	11.5	11.0	10.0	9.0	8.0	7.1	6.2				
1000	-5	11.5	11.1	10.0	9.0	8.1	7.2	6.2				
	0	11.6	11.1	10.0	9.0	8.1	7.2	6.2				
	5	11.6	11.1	10.1	9.1	8.1	7.2	6.3				
	10	11.1	10.7	9.6	8.7	7.7	6.9	5.9				
	-40	10.9	10.5	9.4	8.5	7.6	6.7	5.8				
	-30	11.0	10.6	9.5	8.6	7.6	6.8	5.8				
2000	-20	11.1	10.6	9.6	8.6	7.7	6.8	5.9				
	-10	11.2	10.7	9.7	8.7	7.8	6.9	5.9				
	-5	11.2	10.8	9.7	8.7	7.8	6.9	6.0				
	0	11.2	10.8	9.7	8.7	7.8	6.9	6.0				
	5	11.3	10.8	9.7	8.8	7.8	7.0	6.0				
	10	10.3	9.9	8.8	7.9	7.0	6.2	5.3				

TCG2_UP_2_-1_02

HA-420 AFM PERFORMANCE

	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind									
	Flaps UP, Gear UP, Ice Protection On, V2									
F. ALT	Temp.				off Weigl					
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600		
	-40	10.6	10.1	9.1	8.2	7.3	6.4	5.5		
	-30	10.7	10.2	9.2	8.3	7.3	6.5	5.6		
	-20	10.8	10.3	9.3	8.3	7.4	6.6	5.6		
3000	-10	10.8	10.4	9.3	8.4	7.5	6.6	5.7		
3000	-5	10.9	10.4	9.4	8.4	7.5	6.6	5.7		
	0	10.9	10.4	9.4	8.4	7.5	6.6	5.7		
	5	10.7	10.2	9.2	8.2	7.3	6.5	5.6		
	10	9.4	9.0	8.0	7.1	6.3	5.5	4.6		
	-40	10.2	9.8	8.8	7.9	7.0	6.1	5.2		
	-30	10.3	9.9	8.9	7.9	7.0	6.2	5.3		
	-20	10.4	10.0	8.9	8.0	7.1	6.3	5.4		
4000	-10	10.4	10.0	9.0	8.1	7.1	6.3	5.4		
4000	-5	10.5	10.0	9.0	8.1	7.2	6.3	5.4		
	0	10.5	10.1	9.0	8.1	7.2	6.3	5.4		
	5	9.8	9.4	8.4	7.5	6.6	5.8	4.9		
	10	8.5	8.1	7.2	6.3	5.5	4.8	3.9		
	-40	9.9	9.5	8.5	7.6	6.7	5.9	5.0		
	-30	10.0	9.5	8.6	7.6	6.7	5.9	5.0		
	-20	10.0	9.6	8.6	7.7	6.8	6.0	5.1		
5000	-10	10.1	9.7	8.7	7.7	6.8	6.0	5.1		
5000	-5	10.1	9.7	8.7	7.7	6.9	6.0	5.1		
	0	10.1	9.7	8.7	7.8	6.9	6.0	5.1		
	5	8.9	8.5	7.6	6.7	5.9	5.1	4.3		
	10	7.6	7.2	6.4	5.5	4.8	4.0	3.3		
	-40	9.6	9.1	8.2	7.3	6.4	5.6	4.7		
	-30	9.6	9.2	8.2	7.3	6.5	5.7	4.8		
	-20	9.7	9.3	8.3	7.4	6.5	5.7	4.8		
6000	-10	9.7	9.3	8.3	7.4	6.5	5.7	4.9		
6000	-5	9.7	9.3	8.3	7.4	6.5	5.7	4.9		
	0	9.3	8.9	7.9	7.0	6.1	5.4	4.5		
	5	8.0	7.6	6.7	5.9	5.1	4.4	3.6		
	10	6.8	6.4	5.6	4.8	4.0	3.4	2.6		

TCG2_UP_2_3_02

HA-420 AFM

PERFORMANCE

	Net Takeoff Climb Gradient, Second Segment [%] Zero Slope, No Wind										
Flaps UP, Gear UP, Ice Protection On, V2											
F. ALT	Temp. Takeoff Weight [lb]										
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600			
	-40	9.2	8.8	7.9	7.0	6.1	5.3	4.5			
	-30	9.3	8.9	7.9	7.0	6.2	5.4	4.5			
	-20	9.4	8.9	8.0	7.1	6.2	5.4	4.6			
7000	-10	9.4	8.9	8.0	7.1	6.2	5.4	4.6			
7000	-5	9.3	8.9	8.0	7.1	6.2	5.4	4.5			
	0	8.4	8.0	7.1	6.2	5.4	4.6	3.8			
	5	7.1	6.8	5.9	5.1	4.4	3.7	2.9			
7.	10	5.9	5.6	4.8	4.0	3.3	2.7	2.0			
	-40	8.9	8.5	7.6	6.7	5.9	5.1	4.2			
	-30	9.0	8.6	7.6	6.7	5.9	5.1	4.3			
	-20	9.0	8.6	7.6	6.7	5.9	5.1	4.3			
8000	-10	8.9	8.5	7.6	6.7	5.9	5.1	4.3			
0000	-5	8.7	8.3	7.4	6.5	5.7	4.9	4.1			
	0	7.5	7.1	6.3	5.4	4.7	4.0	3.2			
	5	6.3	6.0	5.1	4.4	3.7	3.0	2.3			
	10	5.1	4.8	4.1	3.4	2.7	2.1	1.4			
	-40	8.6	8.2	7.3	6.4	5.6	4.8	4.0			
	-30	8.6	8.2	7.3	6.4	5.6	4.8	4.0			
	-20	8.6	8.2	7.3	6.4	5.6	4.8	4.0			
9000	-10	8.5	8.1	7.2	6.3	5.5	4.8	3.9			
	-5	7.9	7.5	6.6	5.8	5.0	4.2	3.4			
	0	6.7	6.3	5.5	4.7	4.0	3.3	2.6			
	5	5.5	5.2	4.4	3.7	3.0	2.4	1.7			
	10	4.4	4.1	3.4	2.7	2.1	1.5	0.9			
	-40	8.2	7.8	6.9	6.1	5.3	4.5	3.7			
	-30	8.2	7.8	6.9	6.1	5.3	4.5	3.7			
	-20	8.2	7.8	6.9	6.0	5.2	4.5	3.7			
10,000	-10	8.1	7.7	6.8	6.0	5.2	4.4	3.6			
	-5	7.1	6.7	5.8	5.0	4.3	3.6	2.8			
	0	5.9	5.5	4.7	4.0	3.3	2.6	1.9			
	5	4.7	4.4	3.7	3.0	2.3	1.7	1.1			
TCG2 UP 2	10	3.7	3.4	2.7	2.1	1.5	0.9	0.3			

TCG2_UP_2_7_02

HA-420 AFM

PERFORMANCE

V	Vind Corrected	Takeoff Climi	Gradient [%	6]
FLAPS	UP and TO/A	APPR, V2,	Ice Protect	tion On
Tailwind			Headwind	
10	▼ REF [0] ▶	10	20	30
0.1	0.0	0.0	0.0	0.0
0.5	0.5	0.5	0.5	0.4
1.0	1.0	1.0	1.0	1.0
1.4	1.5	1.5	1.6	1.6
1.9	2.0	2.0	2.1	2.2
2.3	2.5	2.6	2.6	2.7
2.7	3.0	3.1	3.2	3.3
3.2	3.5	3.6	3.7	3.9
3.6	4.0	4.1	4.3	4.4
4.1	4.5	4.7	4.8	5.0
4.5	5.0	5.2	5.4	5.6
5.0	5.5	5.7	5.9	6.2
5.4	6.0	6.2	6.5	6.7
5.8	6.5	6.8	7.0	7.3
6.3	7.0	7.3	7.6	7.9
6.7	7.5	7.8	8.1	8.5
7.2	8.0	8.3	8.7	9.0
7.6	8.5	8.8	9.2	9.6
8.1	9.0	9.4	9.8	10.2
8.5	9.5	9.9	10.3	10.8
8.9	10.0	10.4	10.9	11.3
9.4	10.5	10.9	11.4	11.9
9.8	11.0	11.5	11.9	12.5
10.3	11.5	12.0	12.5	13.1
10.7	12.0	12.5	13.0	13.6

CGWC_UP_2_03

NOTE Use this table when determining the ground reference flight path for obstacle clearance with Ice Protection On.

HA-420 AFM

PERFORMANCE

	Ne	t Takeof			27	egment	[%]					
	Zero Slope, No Wind Flaps UP, Gear UP, Ice Protection Off, 140 KIAS											
	F. ALT Temp. Takeoff Weight [lb]											
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600				
[it]	-40	9.8	9.4	8.5	7.6	6.9	6.1	5.3				
	15	10.2	9.8	8.9	8.0	7.2	6.4	5.6				
	25	10.3	9.9	8.9	8.0	7.2	6.5	5.7				
	35	8.6	8.2	7.3	6.5	5.8	5.1	4.4				
-1000	40	7.6	7.2	6.4	5.7	5.0	4.4	3.7				
	45	6.5	6.2	5.4	4.7	4.1	3.5	2.9				
	50	5.3	5.1	4.4	3.7	3.2	2.6	2.0				
	55	4.2	4.0	3.3	2.8	2.3	1.8	1.2				
	-40	9.5	9.1	8.2	7.3	6.6	5.9	5.1				
	15	9.9	9.5	8.5	7.7	6.9	6.2	5.4				
	25	9.9	9.5	8.6	7.7	6.9	6.2	5.4				
Sea	35	7.8	7.4	6.6	5.8	5.2	4.5	3.8				
Level	40	6.8	6.5	5.7	5.0	4.3	3.7	3.1				
	45	5.8	5.5	4.8	4.1	3.5	3.0	2.3				
	50	4.7	4.4	3.8	3.2	2.6	2.1	1.5				
	55	3.6	3.4	2.8	2.2	1.7	1.3	0.7				
	-40	9.1	8.7	7.8	7.0	6.3	5.6	4.8				
	15	9.5	9.1	8.2	7.4	6.6	5.9	5.1				
	25	9.1	8.7	7.8	7.0	6.3	5.6	4.8				
1000	30	8.0	7.7	6.8	6.1	5.4	4.7	4.0				
1000	35	7.0	6.7	5.9	5.2	4.5	3.9	3.2				
	40	6.0	5.7	5.0	4.3	3.7	3.2	2.5				
	45	5.1	4.8	4.1	3.5	2.9	2.4	1.8				
	50	4.1	3.8	3.2	2.6	2.1	1.6	1.1				
	-40	8.8	8.4	7.5	6.7	6.0	5.3	4.5				
	10	9.1	8.7	7.8	7.0	6.3	5.6	4.8				
2000	20	9.2	8.8	7.9	7.1	6.3	5.6	4.8				
	30	7.2	6.9	6.1	5.4	4.7	4.1	3.4				
	35	6.2	5.9	5.2	4.5	3.9	3.3	2.7				
	40	5.3	5.0	4.3	3.7	3.1	2.6	2.0				
	45	4.4	4.1	3.5	2.9	2.4	1.9	1.3				
	50	3.5	3.2	2.6	2.1	1.6	1.2	0.6				

TCG3_UP_0_-1_06

HA-420 AFM PERFORMANCE

	Net Takeoff Climb Gradient, Final Segment [%] Zero Slope, No Wind										
	Flaps UP, Gear UP, Ice Protection Off, 140 KIAS										
F. ALT	Temp.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		off Weigl						
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600			
	-40	8.4	8.0	7.2	6.4	5.7	5.0	4.3			
	10	8.8	8.4	7.5	6.7	6.0	5.3	4.5			
	20	8.6	8.2	7.3	6.5	5.8	5.1	4.4			
3000	25	7.4	7.1	6.3	5.6	4.9	4.3	3.6			
3000	30	6.4	6.1	5.3	4.7	4.0	3.5	2.8			
	35	5.5	5.2	4.5	3.9	3.3	2.7	2.1			
	40	4.6	4.3	3.7	3.1	2.5	2.0	1.5			
	45	3.7	3.5	2.9	2.4	1.9	1.4	0.9			
<i>\(\)</i>	-40	8.1	7.7	6.9	6.1	5.4	4.8	4.0			
	10	8.3	8.0	7.1	6.3	5.6	5.0	4.2			
	20	7.7	7.3	6.5	5.8	5.1	4.5	3.8			
4000	25	6.6	6.3	5.5	4.9	4.2	3.6	3.0			
4000	30	5.6	5.3	4.6	4.0	3.4	2.9	2.3			
	35	4.8	4.5	3.8	3.2	2.7	2.2	1.6			
	40	3.9	3.7	3.1	2.5	2.0	1.5	1.0			
	45	3.1	2.9	2.3	1.8	1.3	0.9	0.4			
1.5	-40	7.7	7.4	6.6	5.8	5.1	4.5	3.8			
	5	7.9	7.6	6.7	6.0	5.3	4.6	3.9			
	15	7.9	7.5	6.7	6.0	5.3	4.6	3.9			
5000	25	5.9	5.5	4.8	4.2	3.6	3.0	2.4			
0000	30	4.9	4.7	4.0	3.4	2.8	2.3	1.7			
	35	4.1	3.8	3.2	2.7	2.1	1.7	1.1			
	40	3.3	3.0	2.5	2.0	1.5	1.0	0.5			
	45	2.5	2.3	1.8	1.3	0.9	0.4	0.0			
	-40	7.4	7.1	6.3	5.5	4.9	4.2	3.6			
	0	7.5	7.2	6.4	5.6	5.0	4.3	3.6			
	10	7.5	7.2	6.3	5.6	4.9	4.3	3.6			
6000	20	6.1	5.8	5.1	4.4	3.8	3.2	2.6			
5555	25	5.2	4.9	4.2	3.6	3.0	2.5	1.9			
	30	4.3	4.0	3.4	2.8	2.3	1.8	1.3			
	35	3.5	3.2	2.7	2.1	1.6	1.2	0.7			
9	40	2.7	2.5	1.9	1.5	1.0	0.6	0.1			

TCG3_UP_0_3_06

HA-420 AFM

PERFORMANCE

	Net Takeoff Climb Gradient, Final Segment [%] Zero Slope, No Wind										
	Flaps UP, Gear UP, Ice Protection Off, 140 KIAS										
F. ALT	Temp.										
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600			
	-40	7.1	6.8	6.0	5.3	4.6	4.0	3.3			
	0	7.1	6.8	6.0	5.3	4.6	4.0	3.3			
	10	7.1	6.8	6.0	5.3	4.6	4.0	3.3			
7000	15	6.4	6.1	5.3	4.6	4.0	3.4	2.8			
7000	20	5.4	5.1	4.4	3.8	3.2	2.7	2.1			
	25	4.5	4.2	3.6	3.0	2.5	2.0	1.4			
	30	3.7	3.4	2.8	2.3	1.8	1.3	8.0			
	35	2.9	2.7	2.1	1.6	1.2	0.7	0.2			
	-40	6.8	6.5	5.7	5.0	4.3	3.8	3.1			
	-10	6.8	6.5	5.7	5.0	4.4	3.8	3.1			
	0	6.8	6.4	5.7	5.0	4.3	3.7	3.1			
8000	10	6.6	6.3	5.5	4.8	4.2	3.6	3.0			
8000	15	5.7	5.4	4.7	4.0	3.4	2.9	2.3			
	20	4.7	4.5	3.8	3.2	2.7	2.2	1.6			
	25	3.9	3.6	3.0	2.5	2.0	1.5	1.0			
	30	3.1	2.9	2.3	1.8	1.3	0.9	0.4			
	-40	6.4	6.1	5.4	4.7	4.1	3.5	2.8			
	-10	6.4	6.1	5.3	4.7	4.0	3.5	2.8			
	0	6.4	6.1	5.4	4.7	4.0	3.5	2.8			
9000	10	5.9	5.6	4.9	4.2	3.6	3.1	2.4			
3000	15	5.0	4.7	4.0	3.4	2.9	2.3	1.8			
	20	4.1	3.8	3.2	2.7	2.1	1.7	1.1			
	25	3.3	3.0	2.5	2.0	1.5	1.0	0.5			
	30	2.5	2.3	1.8	1.3	0.9	0.4	0.0			
	-40	6.0	5.7	5.0	4.4	3.7	3.2	2.5			
	-5	6.1	5.7	5.0	4.4	3.8	3.2	2.6			
	5	6.1	5.8	5.1	4.4	3.8	3.2	2.6			
10,000	10	5.2	4.9	4.2	3.6	3.1	2.5	1.9			
10,000	15	4.3	4.1	3.4	2.9	2.3	1.8	1.3			
	20	3.5	3.2	2.7	2.1	1.6	1.2	0.7			
	25	2.7	2.5	1.9	1.5	1.0	0.6	0.1			
TCG3 UP 0	30	2.0	1.8	1.3	8.0	0.4	0.0	-0.4			

TCG3_UP_0_7_07

HA-420 AFM

PERFORMANCE

Wi	nd Corrected Er	Wind Corrected Enroute Climb Gradient [%]									
FLAF	PS UP, 140 [K	IAS], Ice	Protectio	n Off							
Tailwind			Headwind								
10	■ REF [0] ▶	10	20	30							
0.1	0.0	0.0	0.0	0.1							
0.5	0.5	0.5	0.5	0.7							
1.0	1.0	1.0	1.0	1.2							
1.4	1.5	1.5	1.6	1.8							
1.9	2.0	2.1	2.1	2.3							
2.3	2.5	2.6	2.6	2.9							
2.8	3.0	3.1	3.2	3.5							
3.2	3.5	3.6	3.7	4.0							
3.7	4.0	4.1	4.3	4.6							
4.1	4.5	4.6	4.8	5.2							
4.6	5.0	5.2	5.3	5.7							
5.0	5.5	5.7	5.9	6.3							
5.5	6.0	6.2	6.4	6.8							
5.9	6.5	6.7	7.0	7.4							
6.4	7.0	7.2	7.5	8.0							
6.8	7.5	7.8	8.1	8.5							
7.3	8.0	8.3	8.6	9.1							
7.7	8.5	8.8	9.1	9.7							
8.1	9.0	9.3	9.7	10.2							
8.6	9.5	9.8	10.2	10.8							
9.0	10.0	10.4	10.8	11.4							
9.5	10.5	10.9	11.3	11.9							
9.9	11.0	11.4	11.8	12.5							
10.4	11.5	11.9	12.4	13.0							
10.8	12.0	12.4	12.9	13.6							

ECGWC_UP_ALL_05

HA-420 AFM

PERFORMANCE

	Ne	t Takeof		Gradient, Glope, No		egment	[%]				
	Flaps UP, Gear UP, Ice Protection On, 140 KIAS										
F. ALT	Temp.										
[ft]	[°Cj	7800	8000	8500	9000	9500	10000	10600			
	-40	9.9	9.5	8.5	7.7	6.9	6.2	5.4			
	-30	9.9	9.5	8.6	7.7	6.9	6.2	5.4			
	-20	10.0	9.6	8.6	7.8	7.0	6.3	5.5			
-1000	-10	10.1	9.7	8.7	7.9	7.1	6.3	5.5			
-1000	-5	10.1	9.7	8.8	7.9	7.1	6.4	5.6			
	0	10.2	9.8	8.8	7.9	7.1	6.4	5.6			
	5	10.2	9.8	8.8	8.0	7.2	6.4	5.6			
	10	10.3	9.8	8.9	8.0	7.2	6.5	5.6			
	-40	9.5	9.1	8.2	7.3	6.6	5.9	5.1			
	-30	9.6	9.2	8.2	7.4	6.6	5.9	5.1			
	-20	9.7	9.3	8.3	7.5	6.7	6.0	5.2			
Sea	-10	9.8	9.4	8.4	7.6	6.8	6.1	5.3			
Level	-5	9.8	9.4	8.5	7.6	6.8	6.1	5.3			
	0	9.8	9.4	8.5	7.6	6.9	6.1	5.3			
	5	9.9	9.5	8.5	7.7	6.9	6.2	5.4			
	10	9.9	9.5	8.6	7.7	6.9	6.2	5.4			
	-40	9.2	8.8	7.9	7.0	6.3	5.6	4.8			
	-30	9.2	8.8	7.9	7.1	6.4	5.7	4.9			
	-20	9.3	8.9	8.0	7.2	6.4	5.7	5.0			
1000	-10	9.4	9.0	8.1	7.3	6.5	5.8	5.0			
,,,,,	-5	9.4	9.1	8.1	7.3	6.5	5.8	5.0			
	0	9.5	9.1	8.2	7.3	6.6	5.9	5.1			
	5	9.5	9.1	8.2	7.4	6.6	5.9	5.1			
	10	9.0	8.6	7.7	6.9	6.2	5.5	4.7			
	-40	8.8	8.4	7.6	6.7	6.0	5.3	4.6			
	-30	8.9	8.5	7.6	6.8	6.1	5.4	4.6			
	-20	9.0	8.6	7.7	6.9	6.2	5.5	4.7			
2000	-10	9.1	8.7	7.8	7.0	6.2	5.5	4.8			
	-5	9.1	8.7	7.8	7.0	6.2	5.6	4.8			
	0	9.1	8.7	7.8	7.0	6.3	5.6	4.8			
	5	9.2	8.8	7.9	7.0	6.3	5.6	4.8			
TCG3 UP 2	10	8.1	7.7	6.9	6.1	5.4	4.8	4.0			

TCG3_UP_2_-1_02

HA-420 AFM PERFORMANCE

	Net Takeoff Climb Gradient, Final Segment [%] Zero Slope, No Wind										
	Flaps UP, Gear UP, Ice Protection On, 140 KIAS										
F. ALT	Temp.		· ·		off Weigl						
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600			
	-40	8.5	8.1	7.3	6.5	5.7	5.1	4.3			
	-30	8.6	8.2	7.3	6.5	5.8	5.1	4.4			
	-20	8.6	8.3	7.4	6.6	5.9	5.2	4.5			
3000	-10	8.7	8.3	7.5	6.7	5.9	5.3	4.5			
3000	-5	8.7	8.4	7.5	6.7	6.0	5.3	4.5			
	0	8.8	8.4	7.5	6.7	6.0	5.3	4.5			
	5	8.5	8.1	7.3	6.5	5.8	5.1	4.4			
	10	7.2	6.8	6.0	5.3	4.7	4.0	3.4			
	-40	8.2	7.8	7.0	6.2	5.5	4.8	4.1			
	-30	8.2	7.9	7.0	6.2	5.5	4.9	4.2			
	-20	8.3	7.9	7.1	6.3	5.6	4.9	4.2			
4000	-10	8.4	8.0	7.1	6.4	5.6	5.0	4.2			
1000	-5	8.4	8.0	7.1	6.4	5.7	5.0	4.3			
	0	8.4	8.0	7.2	6.4	5.7	5.0	4.3			
	5	7.6	7.2	6.4	5.7	5.0	4.4	3.7			
	10	6.3	5.9	5.2	4.5	3.9	3.3	2.7			
	-40	7.8	7.4	6.6	5.9	5.2	4.5	3.8			
	-30	7.9	7.5	6.7	5.9	5.2	4.6	3.9			
	-20	7.9	7.6	6.8	6.0	5.3	4.7	3.9			
5000	-10	8.0	7.6	6.8	6.0	5.3	4.7	4.0			
5000	-5	8.0	7.6	6.8	6.0	5.3	4.7	4.0			
	0	8.0	7.6	6.8	6.0	5.3	4.7	4.0			
	5	6.7	6.3	5.6	4.9	4.2	3.7	3.0			
	10	5.4	5.1	4.4	3.8	3.2	2.7	2.1			
	-40	7.5	7.1	6.3	5.6	4.9	4.3	3.6			
	-30	7.5	7.2	6.4	5.6	5.0	4.3	3.6			
	-20	7.6	7.2	6.4	5.7	5.0	4.4	3.7			
6000	-10	7.6	7.2	6.4	5.7	5.0	4.4	3.7			
3300	-5	7.6	7.2	6.4	5.7	5.0	4.4	3.7			
	0	7.1	6.7	6.0	5.2	4.6	4.0	3.3			
	5	5.8	5.5	4.8	4.1	3.5	3.0	2.4			
	10	4.6	4.3	3.7	3.1	2.6	2.1	1.5			

TCG3_UP_2_3_02

HA-420 AFM

PERFORMANCE

	Net Takeoff Climb Gradient, Final Segment [%] Zero Slope, No Wind										
	Flaps UP, Gear UP, Ice Protection On, 140 KIAS										
F. ALT	Temp. Takeoff Weight [lb]										
[ft]	[°C]	7800	8000	8500	9000	9500	10000	10600			
	-40	7.1	6.8	6.0	5.3	4.6	4.0	3.4			
	-30	7.2	6.9	6.1	5.4	4.7	4.1	3.4			
	-20	7.2	6.9	6.1	5.4	4.7	4.1	3.4			
7000	-10	7.2	6.9	6.1	5.3	4.7	4.1	3.4			
7000	-5	7.2	6.8	6.0	5.3	4.7	4.1	3.4			
	0	6.2	5.9	5.2	4.5	3.9	3.3	2.7			
	5	5.0	4.7	4.0	3.4	2.9	2.3	1.8			
	10	3.9	3.6	3.0	2.5	2.0	1.5	0.9			
	-40	6.8	6.5	5.7	5.0	4.4	3.8	3.1			
	-30	6.9	6.5	5.8	5.1	4.4	3.8	3.2			
	-20	6.8	6.5	5.7	5.0	4.4	3.8	3.1			
8000	-10	6.8	6.5	5.7	5.0	4.4	3.8	3.1			
0000	-5	6.6	6.3	5.5	4.8	4.2	3.6	2.9			
	0	5.4	5.1	4.4	3.8	3.2	2.7	2.1			
	5	4.2	4.0	3.3	2.8	2.3	1.8	1.2			
	10	3.2	2.9	2.4	1.8	1.4	0.9	0.4			
	-40	6.5	6.2	5.4	4.7	4.1	3.5	2.9			
	-30	6.5	6.2	5.4	4.8	4.1	3.5	2.9			
	-20	6.5	6.1	5.4	4.7	4.1	3.5	2.9			
9000	-10	6.4	6.1	5.4	4.7	4.1	3.5	2.8			
	-5	5.8	5.5	4.8	4.1	3.5	3.0	2.3			
	0	4.6	4.3	3.7	3.1	2.6	2.1	1.5			
	5	3.5	3.3	2.7	2.2	1.7	1.2	0.7			
	10	2.5	2.3	1.7	1.3	0.8	0.4	-0.1			
	-40	6.1	5.8	5.1	4.4	3.8	3.2	2.6			
	-30	6.1	5.8	5.1	4.4	3.8	3.2	2.6			
	-20	6.1	5.8	5.0	4.4	3.8	3.2	2.6			
10,000	-10	6.1	5.8	5.0	4.4	3.8	3.2	2.6			
	-5	5.0	4.7	4.0	3.4	2.9	2.4	1.8			
	0	3.9	3.6	3.0	2.5	1.9	1.5	0.9			
	5	2.8	2.6	2.0	1.5	1.1	0.6	0.2			
TCG3 UP 2	10	1.8	1.6	1.2	0.7	0.3	-0.1	-0.5			

TCG3_UP_2_7_02

HA-420 AFM

PERFORMANCE

N	Wind Corrected Enroute Climb Gradient [%]								
FLA	PS UP, 140 [KIAS], Ice	Protection	ı On					
Tailwind			Headwind						
10	▼ REF [0] ▶	10	20	30					
0.1	0.0	0.0	0.0	0.0					
0.5	0.5	0.5	0.5	0.5					
1.0	1.0	1.0	1.0	1.0					
1.4	1.5	1.5	1.6	1.6					
1.9	2.0	2.1	2.1	2.2					
2.3	2.5	2.6	2.6	2.7					
2.8	3.0	3.1	3.2	3.3					
3.2	3.5	3.6	3.7	3.9					
3.6	4.0	4.1	4.3	4.4					
4.1	4.5	4.7	4.8	5.0					
4.5	5.0	5.2	5.4	5.6					
5.0	5.5	5.7	5.9	6.1					
5.4	6.0	6.2	6.5	6.7					
5.9	6.5	6.7	7.0	7.3					
6.3	7.0	7.3	7.5	7.8					
6.8	7.5	7.8	8.1	8.4					
7.2	8.0	8.3	8.6	9.0					
7.7	8.5	8.8	9.2	9.5					
8.1	9.0	9.3	9.7	10.1					
8.6	9.5	9.9	10.3	10.7					
9.0	10.0	10.4	10.8	11.2					
9.4	10.5	10.9	11.3	11.8					
9.9	11.0	11.4	11.9	12.4					
10.3	11.5	11.9	12.4	12.9					
10.8	12.0	12.5	13.0	13.5					

ECGWC_UP_2_03

HA-420 AFM PERFORMANCE

OBSTACLE CLEARANCE

Obstacle Clearance Procedure

- 1. Prior to determining obstacle clearance information, determine the takeoff data for the desired weight. (Configuration, TOFL, airport altitude, temperature, wind)
- 2. Determine the minimum climb gradient for departure. (Min Grad = Obstacle Height / (Rwy Length TOFL + Distance to Obstacle from DER).
- 3. Determine the height of the obstacle (Clearance Height MSL).
- 4. Convert the Clearance Height to pressure altitude using the Height and Temperature in the Pressure Altitude table.

NOTE Temperature decreases 1°C per 500 ft altitude.

- 5. Determine the climb gradient at the pressure altitude of the obstacle.
- 6. Correct the climb gradient for wind.
- 7. Compare the corrected climb gradient to the minimum climb gradient.
 - i) If the corrected climb gradient is equal to or greater than the minimum climb gradient, the aircraft meets the performance requirement.
 - ii) If the corrected climb gradient is less than the minimum climb gradient, the aircraft does NOT meet the performance requirement and configuration must be changed to meet the requirement. (Less weight, alternate flap setting, alternate runway).
- 8. Determine indicated altitude at Clearance Height.
 - i) Convert Airport Elevation to pressure altitude using the Pressure Altitude table. Do not use altimeter reading for this.
 - ii) Subtract the airport pressure altitude (B) from the pressure altitude of the obstacle (M).
 - iii) Add the result to the airport elevation (A) to get indicated altitude at the obstacle height. This assumes the correct baro-setting on the altimeter and represents the minimum level-off height

FAA APPROVED March 3, 2017

HJ1-29000-003-001

HA-420 AFM

PERFORMANCE

The example worksheet shows a situation that meets the performance requirement after an engine failure.

Obstacle Clearance Worksheet

	Α	Airport Elevation					
	В	Airport Pressure Altitude from Table					
	С	Airport Temperature					
	D	Airport Winds					
Step 1	Е	Available Runway Length (ft)					
Step 1	F	Obstacle Height Above Runway (ft)					
	G	Obstacle Distance from Runway (ft)					
	Н	Takeoff Flap and Ice Protection Setting					
	I Aircraft Weight						
	J	Corrected TOFL					
Step 2	K	Min Grad = [F / (E - J + G)]*100					
Step 3	L	Clearance Height MSL = (A + F)					
Step 4	М	CH Pressure Altitude from Table (L, C)					
Step 5	Ζ	Uncorrected Climb Gradient					
Step 6	0	Corrected Climb Gradient (N, D)					
Step 7		Compare K and O; O ≥ K					
Step 8		Altimeter Reading at CH = (A + M - B)					

OCW_02

HA-420 AFM

PERFORMANCE

Example Worksheet

	Α	Airport Elevation	3000
	В	Airport Pressure Altitude from Table	3346
	С	Airport Temperature	-20
	D	Airport Winds	10 kt HW
	Е	Available Runway Length (ft)	7000
Step 1	F	Obstacle Height Above Runway (ft)	1000
	G	Obstacle Distance from Runway (ft)	4nm x 6076
	н	Takeoff Flap and Ice Protection Setting	TO/APPR, Ice Protection On
	-	Aircraft Weight	10600
	J	Wind Corrected TOFL	3910
Step 2	K	Min Grad = [F / (E - J + G)]*100	3.7
Step 3	L	Clearance Height MSL = (A + F)	4000
Step 4	М	CH Pressure Altitude from Table (L, C)	4428
Step 5	N	Uncorrected Climb Gradient	3.9
Step 6	0	Corrected Climb Gradient (N, D)	4.0
Step 7		Compare K and O; O ≥ K	4.0 > 3.7
Step 8		Altimeter Reading at CH = (A + M - B)	4082

OCE_02

HA-420 AFM PERFORMANCE

Airport Pressure Altitude Conversion

To convert from Airport Elevation to Pressure Altitude, find, in bold face numbers in the first column, the number representing the airport elevation to be converted. The equivalent pressure altitude is read in the adjacent column headed temperature.

For example, for an airport with an elevation of 900 feet and a temperature of 0 °C, read 945 feet pressure altitude from the table.

HA-420 AFM

PERFORMANCE

Ht [ft MSL]				ssure A l pient Ten	_	_		
[]	-40	-20	0	10	20	30	40	55
0	0	0	0	0	0	0	0	0
100	124	114	106	102	98	95	92	88
200	247	228	211	203	196	190	184	175
300	370	341	316	305	295	285	276	263
400	494	455	421	406	392	379	367	350
500	617	568	526	507	490	474	459	438
600	739	681	631	609	588	568	550	525
700	862	794	736	709	685	663	642	612
800	984	907	840	810	783	757	733	699
900	1107	1019	945	911	880	851	824	786
1000	1229	1132	1049	1011	977	945	915	873
1100	1351	1244	1153	1112	1074	1038	1006	959
1200	1472	1356	1257	1212	1171	1132	1097	1046
1300	1594	1468	1361	1312	1268	1226	1187	1133
1400	1715	1580	1464	1412	1365	1319	1278	1219
1500	1836	1691	1568	1511	1461	1412	1368	1305
1600	1957	1803	1671	1611	1557	1505	1458	1391
1700	2078	1914	1774	1710	1654	1598	1548	1477
1800	2199	2025	1877	1810	1750	1691	1638	1563
1900	2319	2136	1980	1909	1846	1784	1728	1649
2000	2439	2247	2083	2008	1941	1876	1818	1735
2100	2559	2358	2186	2107	2037	1969	1908	1820
2200	2679	2468	2288	2205	2133	2061	1997	1906
2300	2799	2578	2390	2304	2228	2153	2087	1991
2400	2918	2689	2493	2402	2323	2245	2176	2077
2500	3038	2799	2595	2500	2419	2337	2265	2162
2600	3157	2908	2696	2599	2514	2429	2354	2247
2700	3276	3018	2798	2697	2609	2521	2443	2332
2800	3395	3128	2900	2795	2703	2612	2532	2417
2900 EPPA 0 03	3513	3237	3001	2893	2798	2704	2621	2502

FPPA_0_03

HA-420 AFM

PERFORMANCE

Ht MOLI					Ititude [f	-		
[ft MSL]	-40	-20	0	10	20	30	40	55
3000	3632	3346	3103	2991	2892	2795	2709	2586
3100	3750	3455	3204	3088	2987	2887	2798	2671
3200	3868	3564	3305	3186	3081	2978	2886	2755
3300	3986	3672	3406	3283	3175	3069	2974	2839
3400	4103	3781	3506	3381	3269	3160	3062	2924
3500	4221	3889	3607	3478	3363	3251	3150	3008
3600	4338	3997	3707	3575	3457	3342	3238	3092
3700	4455	4105	3807	3672	3550	3432	3326	3176
3800	4572	4213	3908	3768	3644	3523	3414	3259
3900	4689	4321	4007	3865	3737	3613	3501	3343
4000	4805	4428	4107	3962	3830	3704	3589	3427
4100	4921	4536	4207	4058	3923	3794	3676	3510
4200	5038	4643	4306	4154	4016	3884	3763	3594
4300	5154	4750	4406	4250	4109	3974	3850	3677
4400	5269	4857	4505	4346	4201	4064	3937	3760
4500	5385	4963	4604	4442	4294	4153	4024	3843
4600	5500	5070	4703	4538	4386	4243	4110	3926
4700	5615	5176	4802	4633	4479	4332	4197	4009
4800	5730	5282	4900	4729	4571	4422	4283	4091
4900	5845	5388	4999	4824	4663	4511	4370	4174
5000	5960	5494	5097	4919	4754	4600	4456	4256
5100	6074	5599	5195	5014	4846	4689	4542	4339
5200	6188	5705	5293	5109	4938	4778	4628	4421
5300	6302	5810	5391	5204	5029	4866	4713	4503
5400	6416	5915	5489	5298	5120	4955	4799	4585
5500	6529	6020	5586	5393	5211	5043	4885	4667
5600	6643	6125	5683	5487	5302	5132	4970	4749
5700	6756	6229	5781	5582	5393	5220	5055	4831
5800	6869	6334	5878	5676	5484	5308	5141	4912
5900	6982	6438	5975	5770	5575	5396	5226	4994

FPPA_3_03

HA-420 AFM

PERFORMANCE

Ht [ft MSL]					Ititude [f nperature	_		
[it inot]	-40	-20	0	10	20	30	40	55
6000	7094	6542	6071	5863	5665	5484	5311	5075
6100	7207	6646	6168	5957	5755	5572	5396	5156
6200	7319	6750	6264	6051	5846	5659	5480	5238
6300	7431	6853	6361	6144	5936	5747	5565	5319
6400	7543	6956	6457	6237	6026	5834	5649	5400
6500	7654	7060	6553	6330	6115	5922	5734	5480
6600	7766	7163	6649	6424	6205	6009	5818	5561
6700	7877	7265	6744	6516	6294	6096	5902	5642
6800	7988	7368	6840	6609	6384	6183	5986	5722
6900	8099	7471	6935	6702	6473	6269	6070	5803
7000	8209	7573	7030	6794	6562	6356	6153	5883
7100	8319	7675	7125	6887	6651	6443	6237	5963
7200	8430	7777	7220	6979	6740	6529	6321	6043
7300	8540	7879	7315	7071	6829	6615	6404	6123
7400	8649	7980	7410	7163	6917	6702	6487	6203
7500	8759	8082	7504	7254	7005	6788	6570	6283
7600	8869	8183	7599	7346	7094	6874	6653	6362
7700	8979	8285	7693	7438	7183	6959	6737	6442
7800	9089	8387	7788	7529	7271	7045	6820	6521
7900	9199	8489	7883	7620	7360	7131	6903	6600
8000	9309	8590	7977	7711	7448	7216	6986	6680
8100	9419	8692	8072	7802	7536	7301	7069	6759
8200	9529	8793	8166	7893	7625	7387	7152	6838
8300	9638	8894	8260	7984	7713	7472	7235	6916
8400	9747	8995	8354	8074	7801	7557	7317	6995
8500	9856	9096	8448	8165	7888	7641	7400	7074
8600	9965	9197	8542	8255	7976	7726	7482	7152
8700	10074	9297	8635	8345	8064	7811	7565	7231
8800	10183	9398	8729	8435	8151	7895	7647	7309
8900 EPPA 6 03	10291	9498	8822	8525	8238	7979	7729	7387

FPPA_6_03

HA-420 AFM

PERFORMANCE

Ht [ft MSL]				ssure Al pient Ten	_	_		
[it mor]	-40	-20	0	10	20	30	40	55
9000	10399	9598	8915	8615	8325	8064	7811	7465
9100	10507	9698	9008	8704	8412	8148	7893	7543
9200	10615	9798	9101	8794	8499	8232	7974	7621
9300	10723	9897	9194	8883	8586	8316	8056	7699
9400	10830	9997	9286	8972	8673	8399	8137	7776
9500	10938	10096	9379	9061	8759	8483	8219	7854
9600	11045	10195	9471	9150	8846	8566	8300	7931
9700	11152	10294	9563	9239	8932	8650	8381	8008
9800	11259	10393	9655	9327	9018	8733	8462	8086
9900	11365	10492	9747	9416	9104	8816	8543	8163
10000	11472	10590	9839	9504	9190	8899	8624	8240
10100	11578	10689	9931	9592	9276	8982	8705	8316
10200	11684	10787	10022	9681	9362	9064	8786	8393
10300	11790	10885	10113	9768	9447	9147	8866	8470
10400	11896	10983	10205	9856	9533	9229	8947	8546
10500	12002	11081	10296	9944	9618	9312	9027	8623
10600	12107	11178	10387	10031	9703	9394	9107	8699
10700	12212	11276	10478	10119	9789	9476	9187	8775
10800	12317	11373	10568	10206	9874	9558	9267	8851
10900	12422	11470	10659	10293	9958	9640	9347	8927
11000	12527	11567	10749	10380	10043	9722	9427	9003
11100	12631	11664	10839	10467	10128	9803	9506	9079
11200	12736	11760	10929	10553	10212	9885	9586	9154
11300	12840	11857	11019	10640	10296	9966	9665	9230
11400	12944	11953	11109	10726	10381	10047	9745	9305
11500	13048	12049	11199	10812	10465	10128	9824	9380
11600	13151	12145	11289	10898	10549	10209	9903	9455
11700	13255	12241	11378	10984	10633	10290	9982	9531
11800	13358	12337	11467	11070	10716	10371	10061	9605
11900	13461	12433	11556	11156	10800	10451	10139	9680
12000	13564	12528	11645	11241	10883	10532	10218	9755

FPPA_9_03

FAA APPROVED October 30, 2016 HJ1-29000-003-001

HA-420 AFM

PERFORMANCE

	Unc	orrected	Net Cli	mb Grad	dient [%]	at pres	sure alti	tude	
	Flaps	TO/AF	PPR, G	ear U	P, Ice	Protec	tion C	Off, V2	
F. ALT	TEMP			Т	akeoff V	Veight [II	b]		
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600
	-40	10.4	9.5	8.7	7.9	7.2	6.5	5.8	5.2
	15	10.7	9.8	8.9	8.2	7.4	6.7	6.0	5.3
	20	10.7	9.8	9.0	8.2	7.4	6.7	6.0	5.4
	25	10.7	9.9	9.0	8.2	7.5	6.7	6.0	5.4
-1000	30	10.1	9.2	8.4	7.6	6.9	6.2	5.5	4.9
-1000	35	8.9	8.1	7.3	6.6	5.9	5.2	4.6	4.0
	40	7.7	7.0	6.2	5.5	4.8	4.2	3.6	3.0
	45	6.5	5.8	5.0	4.4	3.7	3.2	2.6	2.1
	50	5.2	4.5	3.9	3.3	2.7	2.2	1.7	1.2
	55	4.0	3.4	2.8	2.2	1.7	1.2	0.8	0.3
	-40	10.3	9.4	8.6	7.9	7.1	6.4	5.7	5.1
	15	10.6	9.7	8.9	8.1	7.4	6.6	5.9	5.3
	20	10.6	9.8	8.9	8.1	7.4	6.7	6.0	5.3
	25	10.7	9.8	8.9	8.2	7.4	6.7	6.0	5.3
Sea	30	9.6	8.7	7.9	7.2	6.4	5.7	5.1	4.4
Level	35	8.4	7.6	6.8	6.1	5.4	4.7	4.1	3.5
	40	7.2	6.3	5.6	4.9	4.3	3.7	3.1	2.6
	45	5.9	5.2	4.5	3.9	3.3	2.7	2.2	1.7
	50	4.6	4.0	3.3	2.8	2.2	1.7	1.2	0.8
	55	3.4	2.8	2.3	1.7	1.2	0.8	0.3	-0.1
	-40	9.9	9.1	8.3	7.5	6.8	6.1	5.4	4.8
	10	10.2	9.4	8.5	7.8	7.0	6.3	5.6	5.0
	15	10.2	9.4	8.6	7.8	7.0	6.3	5.6	5.0
	20	10.3	9.4	8.6	7.8	7.1	6.3	5.7	5.0
1000	25	9.9	9.0	8.2	7.4	6.7	6.0	5.3	4.7
1000	30	8.8	7.9	7.2	6.4	5.7	5.0	4.4	3.8
	35	7.6	6.8	6.1	5.4	4.7	4.1	3.5	2.9
	40	6.4	5.7	4.9	4.3	3.7	3.1	2.5	2.0
	45	5.2	4.5	3.8	3.2	2.6	2.1	1.6	1.1
FPCG TO 0	50	3.9	3.3	2.7	2.2	1.6	1.2	0.7	0.3

FPCG_TO_0_-1_04

HA-420 AFM

PERFORMANCE

	Unc	orrected	Net Cli	mb Grad	dient [%]	at pres	sure alti	tude	
	Flaps	TO/A	PPR, G	ear U	P, Ice	Protec	tion C	Off, V2	
F. ALT	TEMP			Т	akeoff V	Veight [II	o]		
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600
	-40	9.6	8.7	8.0	7.2	6.5	5.8	5.1	4.5
I	10	9.9	9.0	8.2	7.4	6.7	6.0	5.3	4.7
I	15	9.9	9.1	8.2	7.5	6.7	6.0	5.4	4.7
I	20	9.9	9.1	8.3	7.5	6.8	6.0	5.4	4.7
2000	25	9.1	8.2	7.5	6.7	6.0	5.3	4.7	4.1
2000	30	8.0	7.2	6.4	5.7	5.0	4.4	3.8	3.2
I	35	6.9	6.1	5.4	4.7	4.0	3.4	2.9	2.4
I	40	5.7	4.9	4.2	3.6	3.0	2.5	2.0	1.5
I	45	4.4	3.8	3.2	2.6	2.1	1.6	1.1	0.6
	50	3.2	2.6	2.1	1.6	1.1	0.6	0.2	-0.2
	-40	9.2	8.4	7.6	6.9	6.2	5.5	4.8	4.2
I	5	9.5	8.7	7.9	7.1	6.4	5.7	5.0	4.4
I	10	9.5	8.7	7.9	7.1	6.4	5.7	5.0	4.4
I	15	9.6	8.7	7.9	7.1	6.4	5.7	5.1	4.4
3000	20	9.4	8.5	7.7	7.0	6.2	5.5	4.9	4.3
3000	25	8.2	7.4	6.7	5.9	5.2	4.6	4.0	3.4
I	30	7.2	6.3	5.6	4.9	4.3	3.7	3.1	2.6
I	35	6.1	5.3	4.6	4.0	3.4	2.8	2.3	1.8
I	40	4.9	4.2	3.6	3.0	2.4	1.9	1.4	1.0
	45	3.7	3.1	2.5	2.0	1.5	1.0	0.6	0.1
	-40	8.9	8.1	7.3	6.5	5.8	5.2	4.5	3.9
I	5	9.1	8.3	7.5	6.8	6.0	5.3	4.7	4.1
I	10	9.1	8.3	7.5	6.8	6.0	5.4	4.7	4.1
I	15	9.2	8.3	7.5	6.8	6.0	5.4	4.7	4.1
4000	20	8.5	7.7	6.9	6.2	5.5	4.8	4.2	3.6
1	25	7.5	6.6	5.9	5.2	4.5	3.9	3.3	2.8
	30	6.3	5.5	4.8	4.2	3.6	3.0	2.5	1.9
	35	5.2	4.5	3.8	3.2	2.7	2.1	1.6	1.2
	40	4.1	3.5	2.9	2.3	1.8	1.3	0.9	0.4
	45	3.1	2.5	1.9	1.4	1.0	0.5	0.1	-0.3

FPCG_TO_0_2_04

HA-420 AFM

PERFORMANCE

	Und	orrected	Net Cli	mb Grad	dient [%]	at pres	sure alti	tude	
	Flaps	TO/AF	PPR, G	ear U	P, Ice	Protec	tion C	Off, V2	
F. ALT	TEMP			Т	akeoff V	Veight [II	b]		
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600
	-40	8.5	7.7	7.0	6.2	5.5	4.9	4.2	3.7
	5	8.7	7.9	7.2	6.4	5.7	5.0	4.4	3.8
I	10	8.7	7.9	7.2	6.4	5.7	5.0	4.4	3.8
	15	8.7	7.9	7.2	6.4	5.7	5.0	4.4	3.8
5000	20	7.7	6.9	6.1	5.4	4.7	4.1	3.5	3.0
3000	25	6.5	5.8	5.1	4.4	3.8	3.2	2.7	2.1
I	30	5.5	4.7	4.1	3.4	2.9	2.3	1.8	1.3
	35	4.4	3.7	3.1	2.6	2.0	1.5	1.1	0.6
I	40	3.4	2.8	2.2	1.7	1.2	0.7	0.3	-0.1
	45	2.4	1.8	1.3	0.8	0.4	0.0	-0.4	-0.8
	-40	8.2	7.4	6.6	5.9	5.2	4.6	4.0	3.4
I	0	8.4	7.6	6.8	6.0	5.3	4.7	4.1	3.5
I	5	8.3	7.5	6.8	6.0	5.3	4.7	4.1	3.5
I	10	8.3	7.5	6.7	6.0	5.3	4.7	4.0	3.5
6000	15	7.9	7.1	6.3	5.6	4.9	4.3	3.7	3.2
0000	20	6.8	6.1	5.3	4.6	4.0	3.4	2.9	2.3
	25	5.7	5.0	4.3	3.7	3.1	2.5	2.0	1.5
I	30	4.6	4.0	3.3	2.8	2.2	1.7	1.2	0.8
I	35	3.6	3.0	2.4	1.9	1.4	0.9	0.5	0.1
5000	40	2.6	2.0	1.5	1.0	0.6	0.2	-0.3	-0.6
	-40	7.9	7.1	6.3	5.6	4.9	4.3	3.7	3.1
	0	8.0	7.2	6.4	5.7	5.0	4.3	3.8	3.2
I	5	7.9	7.1	6.3	5.6	5.0	4.3	3.7	3.2
I	10	7.9	7.1	6.3	5.6	4.9	4.3	3.7	3.1
7000	15	7.1	6.3	5.6	4.9	4.2	3.6	3.0	2.5
, 555	20	6.0	5.3	4.6	3.9	3.3	2.8	2.2	1.7
	25	4.9	4.2	3.6	3.0	2.4	1.9	1.4	1.0
	30	3.8	3.2	2.6	2.1	1.6	1.1	0.6	0.2
	35	2.9	2.3	1.8	1.3	8.0	0.4	-0.1	-0.5
FPCG TO 0	40	1.9	1.4	0.9	0.4	0.0	-0.4	-0.8	-1.2

FPCG_TO_0_5_04

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude											
	Flaps	TO/AF	PPR, G	ear U	P, Ice	Protec	tion C	Off, V2				
F. ALT	TEMP			Т	akeoff V	Veight [II	b]					
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600			
	-40	7.5	6.7	6.0	5.3	4.6	4.0	3.4	2.9			
1	-5	7.6	6.8	6.0	5.3	4.6	4.0	3.4	2.9			
1	0	7.5	6.7	6.0	5.3	4.6	4.0	3.4	2.9			
1	5	7.5	6.7	6.0	5.3	4.6	4.0	3.4	2.8			
8000	10	7.4	6.5	5.8	5.1	4.4	3.8	3.2	2.7			
8000	15	6.2	5.5	4.8	4.1	3.5	2.9	2.4	1.9			
1	20	5.2	4.5	3.8	3.2	2.6	2.1	1.6	1.1			
1	25	4.1	3.5	2.9	2.3	1.8	1.3	0.8	0.4			
1	30	3.1	2.5	2.0	1.5	1.0	0.5	0.1	-0.3			
	35	2.1	1.6	1.1	0.7	0.2	-0.2	-0.6	-1.0			
	-40	7.2	6.4	5.7	5.0	4.3	3.7	3.2	2.6			
1	-5	7.2	6.4	5.6	4.9	4.3	3.7	3.1	2.6			
1	0	7.2	6.3	5.6	4.9	4.3	3.7	3.1	2.6			
1	5	7.1	6.3	5.6	4.9	4.3	3.7	3.1	2.5			
9000	10	6.4	5.7	5.0	4.3	3.7	3.1	2.6	2.1			
3000	15	5.4	4.7	4.0	3.4	2.8	2.3	1.8	1.3			
1	20	4.4	3.7	3.1	2.5	2.0	1.5	1.0	0.6			
1	25	3.3	2.7	2.2	1.7	1.2	0.7	0.3	-0.1			
1	30	2.4	1.8	1.3	0.8	0.4	0.0	-0.4	-0.8			
	35	1.4	0.9	0.5	0.0	-0.4	-0.7	-1.1	-1.5			
	-40	6.9	6.1	5.4	4.7	4.1	3.5	2.9	2.4			
1	-5	6.8	6.0	5.3	4.6	4.0	3.4	2.8	2.3			
1	0	6.8	6.0	5.3	4.6	4.0	3.4	2.8	2.3			
1	5	6.7	5.9	5.2	4.5	3.9	3.3	2.8	2.2			
10000	10	5.5	4.8	4.1	3.5	2.9	2.4	1.9	1.4			
10000	15	4.6	3.9	3.3	2.7	2.1	1.6	1.2	0.7			
	20	3.6	3.0	2.4	1.8	1.4	0.9	0.4	0.0			
	25	2.6	2.0	1.5	1.0	0.6	0.1	-0.3	-0.7			
	30	1.7	1.2	0.7	0.2	-0.2	-0.6	-0.9	-1.3			
FPCG TO 0	35	0.7	0.3	-0.1	-0.5	-0.9	-1.3	-1.6	-1.9			

FPCG_TO_0_8_04

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Flaps TO/APPR, Gear UP, Ice Protection Off, V2										
F. ALT	TEMP			Т	akeoff V	Veight [II	o]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	6.4	5.7	5.0	4.3	3.7	3.1	2.6	2.1		
	-10	6.4	5.6	4.9	4.3	3.6	3.1	2.5	2.0		
	-5	6.4	5.6	4.9	4.3	3.6	3.1	2.5	2.0		
	0	6.4	5.6	4.9	4.2	3.6	3.1	2.5	2.0		
11000	5	5.9	5.2	4.5	3.8	3.2	2.7	2.2	1.7		
11000	10	4.8	4.1	3.5	2.9	2.3	1.8	1.3	0.9		
	15	3.8	3.2	2.6	2.0	1.5	1.1	0.6	0.2		
	20	2.8	2.3	1.7	1.2	0.8	0.3	-0.1	-0.5		
	25	1.9	1.4	0.9	0.4	0.0	-0.4	-0.8	-1.1		
	30	1.0	0.5	0.1	-0.3	-0.7	-1.1	-1.4	-1.8		
	-40	6.1	5.3	4.6	4.0	3.4	2.8	2.3	1.8		
	-10	6.0	5.3	4.6	3.9	3.3	2.8	2.3	1.8		
	-5	6.1	5.3	4.6	4.0	3.4	2.8	2.3	1.8		
I	0	6.0	5.3	4.6	3.9	3.3	2.8	2.2	1.7		
12000	5	5.1	4.4	3.7	3.1	2.6	2.1	1.6	1.1		
12000	10	4.0	3.4	2.8	2.2	1.7	1.2	0.8	0.3		
	15	3.0	2.5	1.9	1.4	0.9	0.5	0.1	-0.3		
	20	2.1	1.6	1.1	0.6	0.2	-0.2	-0.6	-1.0		
	25	1.2	0.7	0.3	-0.1	-0.5	-0.9	-1.3	-1.6		
	30	0.4	0.0	-0.5	-0.8	-1.2	-1.5	-1.9	-2.2		

FPCG_TO_0_11_04

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Flaps	TO/AI	PPR, G	ear U	P, Ice	Protec	ction C	Dn, V2			
F. ALT	TEMP			Т	akeoff V	Veight [II	b]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	10.4	9.5	8.7	8.0	7.2	6.5	5.8	5.2		
1	-30	10.4	9.6	8.7	8.0	7.2	6.5	5.8	5.2		
1	-25	10.4	9.6	8.8	8.0	7.2	6.5	5.8	5.2		
1	-20	10.4	9.6	8.8	8.0	7.3	6.5	5.9	5.2		
-1000	-15	10.5	9.6	8.8	8.0	7.3	6.6	5.9	5.2		
-1000	-10	10.5	9.6	8.8	8.0	7.3	6.6	5.9	5.2		
1	-5	10.6	9.7	8.9	8.1	7.3	6.6	5.9	5.3		
1	0	10.6	9.7	8.9	8.1	7.4	6.7	6.0	5.3		
1	5	10.6	9.8	8.9	8.2	7.4	6.7	6.0	5.3		
	10	10.7	9.8	9.0	8.2	7.4	6.7	6.0	5.4		
	-40	10.3	9.5	8.7	7.9	7.2	6.4	5.8	5.1		
1	-30	10.3	9.5	8.7	7.9	7.2	6.5	5.8	5.1		
1	-25	10.4	9.5	8.7	7.9	7.2	6.5	5.8	5.2		
1	-20	10.4	9.5	8.7	8.0	7.2	6.5	5.8	5.2		
Sea	-15	10.4	9.6	8.7	8.0	7.2	6.5	5.8	5.2		
Level	-10	10.5	9.6	8.8	8.0	7.3	6.5	5.9	5.2		
1	-5	10.5	9.7	8.8	8.0	7.3	6.6	5.9	5.2		
1	0	10.6	9.7	8.9	8.1	7.3	6.6	5.9	5.3		
1	5	10.6	9.7	8.9	8.1	7.4	6.6	5.9	5.3		
\Box	10	10.6	9.7	8.9	8.1	7.4	6.7	6.0	5.3		
	-40	9.9	9.1	8.3	7.5	6.8	6.1	5.4	4.8		
1	-30	10.0	9.1	8.3	7.6	6.8	6.1	5.5	4.8		
1	-25	10.0	9.2	8.4	7.6	6.9	6.2	5.5	4.9		
1	-20	10.0	9.2	8.4	7.6	6.9	6.2	5.5	4.9		
1000	-15	10.1	9.2	8.4	7.6	6.9	6.2	5.5	4.9		
1000	-10	10.1	9.3	8.5	7.7	6.9	6.2	5.6	4.9		
	-5	10.2	9.3	8.5	7.7	7.0	6.3	5.6	5.0		
	0	10.2	9.3	8.5	7.7	7.0	6.3	5.6	5.0		
	5	10.2	9.4	8.5	7.8	7.0	6.3	5.6	5.0		
FPCG_TO_2	10	9.8	8.9	8.1	7.3	6.6	5.9	5.2	4.6		

FPCG_TO_2_-1_02

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Flaps	TO/A	PPR, G	ear U	P, Ice	Protec	tion C	On, V2			
F. ALT	TEMP			Т	akeoff V	Veight [II	b]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	9.6	8.8	8.0	7.2	6.5	5.8	5.2	4.5		
	-30	9.7	8.8	8.0	7.3	6.6	5.8	5.2	4.6		
	-25	9.7	8.9	8.1	7.3	6.6	5.9	5.2	4.6		
	-20	9.7	8.9	8.1	7.3	6.6	5.9	5.2	4.6		
2000	-15	9.8	8.9	8.1	7.4	6.6	5.9	5.3	4.7		
2000	-10	9.8	9.0	8.2	7.4	6.7	6.0	5.3	4.7		
	-5	9.9	9.0	8.2	7.4	6.7	6.0	5.3	4.7		
	0	9.9	9.0	8.2	7.5	6.7	6.0	5.3	4.7		
	5	9.9	9.1	8.2	7.5	6.7	6.0	5.4	4.7		
	10	8.9	8.1	7.3	6.6	5.9	5.2	4.6	4.0		
	-40	9.3	8.4	7.7	6.9	6.2	5.5	4.9	4.3		
	-30	9.3	8.5	7.7	7.0	6.2	5.6	4.9	4.3		
	-25	9.4	8.6	7.8	7.0	6.3	5.6	5.0	4.3		
	-20	9.4	8.6	7.8	7.1	6.3	5.6	5.0	4.4		
3000	-15	9.5	8.6	7.8	7.1	6.3	5.7	5.0	4.4		
0000	-10	9.5	8.7	7.9	7.1	6.4	5.7	5.0	4.4		
	-5	9.5	8.7	7.9	7.1	6.4	5.7	5.0	4.4		
	0	9.5	8.7	7.9	7.1	6.4	5.7	5.1	4.4		
	5	9.3	8.5	7.7	6.9	6.2	5.5	4.9	4.3		
	10	8.1	7.3	6.5	5.8	5.1	4.5	3.9	3.3		
	-40	8.9	8.1	7.3	6.6	5.9	5.2	4.6	4.0		
	-30	9.0	8.2	7.4	6.6	5.9	5.3	4.6	4.0		
	-25	9.0	8.2	7.4	6.7	6.0	5.3	4.7	4.1		
I	-20	9.1	8.2	7.5	6.7	6.0	5.3	4.7	4.1		
4000	-15	9.1	8.3	7.5	6.7	6.0	5.3	4.7	4.1		
	-10	9.1	8.3	7.5	6.8	6.0	5.3	4.7	4.1		
	-5	9.1	8.3	7.5	6.8	6.0	5.4	4.7	4.1		
	0	9.2	8.3	7.5	6.8	6.1	5.4	4.7	4.1		
	5	8.5	7.7	6.9	6.1	5.5	4.8	4.2	3.6		
FPCG TO 2	10	7.2	6.4	5.7	5.0	4.3	3.7	3.1	2.6		

FPCG_TO_2_2_02

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Flaps	TO/AI	PPR, C	ear U	P, Ice	Protec	ction C	On, V2			
F. ALT	TEMP			Т	akeoff V	Veight [II	b]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	8.6	7.8	7.0	6.3	5.6	4.9	4.3	3.7		
I	-30	8.6	7.8	7.1	6.3	5.6	5.0	4.3	3.8		
I	-25	8.7	7.9	7.1	6.3	5.6	5.0	4.4	3.8		
I	-20	8.7	7.9	7.1	6.4	5.7	5.0	4.4	3.8		
5000	-15	8.7	7.9	7.2	6.4	5.7	5.0	4.4	3.8		
3000	-10	8.8	7.9	7.2	6.4	5.7	5.0	4.4	3.8		
I	-5	8.8	8.0	7.2	6.4	5.7	5.1	4.4	3.8		
I	0	8.8	8.0	7.2	6.4	5.7	5.1	4.4	3.8		
I	5	7.6	6.8	6.1	5.4	4.7	4.1	3.5	2.9		
	10	6.2	5.5	4.8	4.1	3.5	2.9	2.4	1.9		
	-40	8.2	7.5	6.7	5.9	5.3	4.6	4.0	3.4		
I	-30	8.3	7.5	6.7	6.0	5.3	4.7	4.1	3.5		
I	-25	8.3	7.5	6.8	6.0	5.3	4.7	4.1	3.5		
I	-20	8.4	7.6	6.8	6.0	5.4	4.7	4.1	3.5		
6000	-15	8.4	7.6	6.8	6.1	5.4	4.7	4.1	3.5		
0000	-10	8.4	7.6	6.8	6.1	5.4	4.7	4.1	3.5		
I	-5	8.4	7.6	6.8	6.1	5.4	4.7	4.1	3.5		
I	0	8.0	7.2	6.4	5.7	5.0	4.3	3.7	3.2		
I	5	6.6	5.9	5.2	4.5	3.9	3.3	2.7	2.2		
	10	5.3	4.6	3.9	3.3	2.7	2.2	1.7	1.2		
	-40	7.9	7.2	6.4	5.7	5.0	4.3	3.7	3.2		
I	-30	8.0	7.2	6.4	5.7	5.0	4.4	3.8	3.2		
I	-25	8.0	7.2	6.4	5.7	5.1	4.4	3.8	3.3		
I	-20	8.0	7.3	6.5	5.7	5.1	4.4	3.8	3.3		
7000	-15	8.1	7.3	6.5	5.8	5.1	4.4	3.8	3.3		
,,,,,	-10	8.0	7.3	6.5	5.7	5.1	4.4	3.8	3.3		
	-5	8.0	7.2	6.4	5.7	5.0	4.4	3.8	3.2		
	0	7.1	6.2	5.5	4.8	4.2	3.6	3.0	2.5		
	5	5.7	5.0	4.3	3.7	3.1	2.5	2.0	1.5		
FPCG TO 2	10	4.4	3.7	3.1	2.5	2.0	1.5	1.0	0.6		

FPCG_TO_2_5_02

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude									
	Flaps	TO/A	PPR, G	ear U	P, Ice	Protec	ction C	Dn, V2		
F. ALT	TEMP			Т	akeoff V	Veight [II	b]			
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600	
	-40	7.6	6.8	6.1	5.4	4.7	4.1	3.5	2.9	
1	-30	7.7	6.9	6.1	5.4	4.7	4.1	3.5	3.0	
	-25	7.7	6.9	6.1	5.4	4.7	4.1	3.5	3.0	
	-20	7.7	6.9	6.1	5.4	4.7	4.1	3.5	3.0	
8000	-15	7.7	6.9	6.1	5.4	4.7	4.1	3.5	3.0	
8000	-10	7.6	6.8	6.1	5.4	4.7	4.1	3.5	2.9	
	-5	7.4	6.6	5.9	5.2	4.5	3.9	3.3	2.8	
1	0	6.1	5.4	4.7	4.0	3.4	2.8	2.3	1.8	
1	5	4.8	4.1	3.5	2.9	2.3	1.8	1.3	0.9	
	10	3.5	2.9	2.3	1.8	1.3	0.9	0.4	0.0	
	-40	7.3	6.5	5.8	5.1	4.4	3.8	3.2	2.7	
1	-30	7.3	6.5	5.8	5.1	4.4	3.8	3.2	2.7	
	-25	7.3	6.5	5.8	5.1	4.4	3.8	3.2	2.7	
1	-20	7.3	6.5	5.7	5.0	4.4	3.8	3.2	2.7	
9000	-15	7.3	6.4	5.7	5.0	4.4	3.8	3.2	2.6	
3000	-10	7.2	6.4	5.7	5.0	4.3	3.7	3.2	2.6	
I	-5	6.5	5.7	5.0	4.3	3.7	3.1	2.6	2.1	
1	0	5.2	4.5	3.8	3.2	2.7	2.1	1.6	1.2	
	5	3.9	3.3	2.7	2.2	1.6	1.2	0.7	0.3	
	10	2.7	2.2	1.6	1.1	0.7	0.2	-0.2	-0.6	
	-40	6.9	6.1	5.4	4.7	4.1	3.5	2.9	2.4	
	-30	6.9	6.1	5.4	4.7	4.1	3.5	2.9	2.4	
	-25	6.9	6.1	5.4	4.7	4.1	3.5	2.9	2.4	
	-20	6.8	6.1	5.3	4.7	4.0	3.4	2.9	2.3	
10000	-15	6.8	6.0	5.3	4.6	4.0	3.4	2.8	2.3	
10000	-10	6.8	6.0	5.3	4.6	4.0	3.4	2.8	2.3	
	-5	5.6	4.9	4.2	3.6	3.0	2.5	2.0	1.5	
	0	4.3	3.7	3.1	2.5	2.0	1.5	1.0	0.6	
	5	3.1	2.5	1.9	1.4	1.0	0.5	0.1	-0.3	
	10	1.9	1.4	0.9	0.5	0.0	-0.4	-0.7	-1.1	

FPCG_TO_2_8_02

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Flaps	TO/Al	PPR, G	ear U	P, Ice	Protec	ction C	On, V2			
F. ALT	TEMP			Т	akeoff V	Veight [II	b]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	6.5	5.7	5.0	4.4	3.7	3.2	2.6	2.1		
I	-30	6.4	5.7	5.0	4.3	3.7	3.1	2.6	2.1		
I	-25	6.4	5.7	5.0	4.3	3.7	3.1	2.6	2.0		
I	-20	6.4	5.6	4.9	4.3	3.6	3.1	2.5	2.0		
11000	-15	6.4	5.6	4.9	4.3	3.6	3.1	2.5	2.0		
11000	-10	6.0	5.2	4.5	3.9	3.3	2.7	2.2	1.7		
I	-5	4.7	4.1	3.4	2.8	2.3	1.8	1.3	0.8		
I	0	3.5	2.8	2.3	1.8	1.3	0.8	0.4	0.0		
I	5	2.3	1.7	1.2	0.8	0.3	-0.1	-0.5	-0.9		
	10	1.2	0.7	0.3	-0.2	-0.6	-0.9	-1.3	-1.6		
	-40	6.1	5.4	4.7	4.0	3.4	2.8	2.3	1.8		
I	-30	6.1	5.3	4.6	4.0	3.4	2.8	2.3	1.8		
I	-25	6.0	5.3	4.6	4.0	3.4	2.8	2.3	1.8		
I	-20	6.0	5.3	4.6	3.9	3.3	2.8	2.3	1.8		
12000	-15	6.0	5.3	4.6	3.9	3.3	2.8	2.3	1.8		
12000	-10	5.1	4.4	3.8	3.2	2.6	2.1	1.6	1.1		
I	-5	3.8	3.2	2.6	2.1	1.6	1.1	0.6	0.2		
	0	2.6	2.1	1.6	1.1	0.6	0.2	-0.2	-0.6		
	5	1.5	1.0	0.5	0.1	-0.3	-0.7	-1.1	-1.4		
EDCG TO 2	10	0.5	0.0	-0.4	-0.8	-1.1	-1.5	-1.8	-2.1		

FPCG_TO_2_11_02

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Fla	aps UF	, Gea	r UP, I	ce Pro	tectio	n Off,	V2			
F. ALT	TEMP			Т	akeoff V	Veight [II	b]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	11.9	11.0	10.2	9.4	8.6	7.9	7.2	6.5		
	15	12.2	11.3	10.4	9.6	8.8	8.1	7.4	6.7		
	20	12.2	11.3	10.4	9.6	8.8	8.1	7.4	6.7		
	25	12.3	11.3	10.5	9.7	8.9	8.1	7.4	6.8		
-1000	30	11.6	10.7	9.8	9.1	8.3	7.6	6.9	6.2		
-1000	35	10.4	9.6	8.8	8.0	7.3	6.6	6.0	5.4		
	40	9.2	8.4	7.7	7.0	6.3	5.6	5.0	4.5		
	45	8.0	7.3	6.6	5.9	5.3	4.6	4.1	3.6		
	50	6.8	6.1	5.5	4.9	4.3	3.7	3.2	2.7		
	55	5.7	5.1	4.4	3.9	3.3	2.8	2.3	1.8		
	-40	11.8	10.9	10.1	9.3	8.5	7.8	7.1	6.5		
	15	12.1	11.2	10.4	9.5	8.8	8.0	7.3	6.7		
	20	12.2	11.2	10.4	9.6	8.8	8.0	7.3	6.7		
	25	12.2	11.3	10.4	9.6	8.8	8.1	7.4	6.7		
Sea	30	11.1	10.2	9.4	8.6	7.8	7.1	6.5	5.8		
Level	35	9.9	9.0	8.3	7.5	6.8	6.1	5.5	4.9		
	40	8.6	7.8	7.1	6.4	5.8	5.1	4.6	4.0		
	45	7.5	6.7	6.1	5.4	4.8	4.2	3.6	3.1		
	50	6.3	5.6	5.0	4.4	3.8	3.2	2.7	2.3		
	55	5.2	4.6	4.0	3.4	2.9	2.3	1.9	1.4		
	-40	11.4	10.6	9.7	8.9	8.2	7.5	6.8	6.2		
	10	11.7	10.8	10.0	9.2	8.4	7.7	7.0	6.4		
	15	11.8	10.9	10.0	9.2	8.4	7.7	7.0	6.4		
	20	11.8	10.9	10.0	9.2	8.5	7.7	7.0	6.4		
1000	25	11.4	10.5	9.6	8.9	8.1	7.4	6.7	6.1		
1000	30	10.2	9.4	8.6	7.9	7.1	6.5	5.8	5.2		
	35	9.1	8.3	7.6	6.8	6.2	5.5	4.9	4.4		
	40	7.9	7.2	6.5	5.8	5.2	4.6	4.0	3.5		
	45	6.8	6.1	5.4	4.8	4.2	3.6	3.1	2.6		
FPCG UP (50	5.7	5.0	4.4	3.8	3.2	2.7	2.2	1.8		

FPCG_UP_0_-1_04

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude											
	Flaps UP, Gear UP, Ice Protection Off, V2											
F. ALT	TEMP			Т	akeoff V	Veight [II	0]					
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600			
	-40	11.1	10.2	9.4	8.6	7.9	7.2	6.5	5.9			
I	10	11.4	10.5	9.7	8.9	8.1	7.4	6.7	6.1			
I	15	11.4	10.5	9.7	8.9	8.1	7.4	6.7	6.1			
I	20	11.5	10.6	9.7	8.9	8.2	7.4	6.8	6.1			
2000	25	10.6	9.7	8.9	8.1	7.4	6.7	6.1	5.5			
2000	30	9.4	8.6	7.9	7.2	6.5	5.8	5.2	4.6			
I	35	8.4	7.6	6.9	6.2	5.5	4.9	4.3	3.8			
I	40	7.2	6.5	5.8	5.2	4.6	4.0	3.4	2.9			
I	45	6.1	5.4	4.8	4.2	3.6	3.1	2.6	2.1			
	50	5.0	4.4	3.8	3.3	2.7	2.2	1.7	1.3			
	-40	10.7	9.9	9.1	8.3	7.6	6.9	6.2	5.6			
I	5	11.0	10.1	9.3	8.5	7.8	7.1	6.4	5.8			
I	10	11.0	10.2	9.3	8.6	7.8	7.1	6.4	5.8			
I	15	11.1	10.2	9.4	8.6	7.8	7.1	6.5	5.8			
3000	20	10.9	10.0	9.2	8.4	7.7	7.0	6.3	5.7			
3000	25	9.7	8.9	8.1	7.4	6.7	6.0	5.4	4.8			
I	30	8.6	7.9	7.1	6.4	5.8	5.1	4.6	4.0			
I	35	7.6	6.9	6.2	5.5	4.9	4.3	3.7	3.2			
I	40	6.5	5.9	5.2	4.6	4.0	3.4	2.9	2.4			
	45	5.5	4.8	4.2	3.7	3.1	2.6	2.1	1.6			
	-40	10.4	9.5	8.7	8.0	7.3	6.6	5.9	5.3			
I	5	10.6	9.8	9.0	8.2	7.5	6.8	6.1	5.5			
I	10	10.6	9.8	9.0	8.2	7.5	6.8	6.1	5.5			
I	15	10.7	9.8	9.0	8.2	7.5	6.8	6.1	5.5			
4000	20	10.0	9.2	8.4	7.6	6.9	6.3	5.6	5.0			
1000	25	8.9	8.1	7.4	6.7	6.0	5.4	4.8	4.2			
	30	7.8	7.1	6.4	5.7	5.1	4.5	3.9	3.4			
	35	6.8	6.1	5.5	4.8	4.2	3.7	3.1	2.7			
	40	5.8	5.2	4.6	4.0	3.4	2.9	2.4	1.9			
FPCG UP 0	45	4.9	4.2	3.7	3.1	2.6	2.1	1.6	1.2			

FPCG_UP_0_2_04

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Flaps UP, Gear UP, Ice Protection Off, V2										
F. ALT	TEMP			Т	akeoff V	Veight [II	b]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	10.0	9.2	8.4	7.7	6.9	6.3	5.6	5.1		
	5	10.2	9.4	8.6	7.9	7.1	6.5	5.8	5.2		
	10	10.2	9.4	8.6	7.9	7.1	6.4	5.8	5.2		
	15	10.2	9.4	8.6	7.8	7.1	6.4	5.8	5.2		
5000	20	9.2	8.4	7.6	6.9	6.2	5.6	5.0	4.4		
3000	25	8.1	7.3	6.6	6.0	5.3	4.7	4.1	3.6		
	30	7.0	6.3	5.7	5.0	4.4	3.8	3.3	2.8		
	35	6.1	5.4	4.8	4.2	3.6	3.1	2.6	2.1		
	40	5.1	4.5	3.9	3.3	2.8	2.3	1.8	1.4		
	45	4.2	3.6	3.1	2.5	2.0	1.5	1.1	0.7		
	-40	9.7	8.8	8.1	7.4	6.7	6.0	5.4	4.8		
	0	9.9	9.0	8.2	7.5	6.8	6.1	5.5	4.9		
	5	9.8	9.0	8.2	7.5	6.8	6.1	5.5	4.9		
	10	9.8	9.0	8.2	7.5	6.8	6.1	5.5	4.9		
6000	15	9.4	8.6	7.8	7.1	6.4	5.8	5.2	4.6		
0000	20	8.3	7.6	6.9	6.2	5.5	4.9	4.3	3.8		
	25	7.3	6.6	5.9	5.3	4.6	4.1	3.5	3.0		
	30	6.3	5.6	5.0	4.4	3.8	3.2	2.7	2.3		
	35	5.4	4.7	4.1	3.5	3.0	2.5	2.0	1.6		
	40	4.4	3.8	3.3	2.7	2.2	1.7	1.3	0.9		
	-40	9.3	8.5	7.8	7.1	6.4	5.7	5.1	4.6		
	0	9.4	8.6	7.9	7.2	6.5	5.8	5.2	4.6		
	5	9.4	8.6	7.8	7.1	6.4	5.8	5.2	4.6		
	10	9.4	8.6	7.8	7.1	6.4	5.8	5.2	4.6		
7000	15	8.6	7.8	7.1	6.4	5.7	5.1	4.5	4.0		
1 , 555	20	7.6	6.8	6.1	5.5	4.9	4.3	3.7	3.2		
	25	6.5	5.8	5.2	4.6	4.0	3.4	2.9	2.4		
	30	5.6	4.9	4.3	3.7	3.2	2.6	2.2	1.7		
	35	4.7	4.1	3.5	2.9	2.4	1.9	1.5	1.0		
FPCG UP (40	3.8	3.2	2.7	2.1	1.7	1.2	0.8	0.4		

FPCG_UP_0_5_04

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Fla	aps UF	, Gea	r UP, I	ce Pro	tectio	n Off,	V2			
F. ALT	TEMP			Т	akeoff V	Veight [II	o]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	9.0	8.2	7.5	6.8	6.1	5.5	4.9	4.3		
1	-5	9.1	8.3	7.5	6.8	6.1	5.5	4.9	4.3		
1	0	9.0	8.2	7.5	6.8	6.1	5.5	4.9	4.3		
1	5	9.0	8.2	7.5	6.8	6.1	5.4	4.8	4.3		
8000	10	8.8	8.0	7.3	6.6	5.9	5.3	4.7	4.1		
0000	15	7.8	7.0	6.3	5.7	5.0	4.4	3.9	3.4		
1	20	6.8	6.1	5.4	4.8	4.2	3.6	3.1	2.6		
1	25	5.8	5.1	4.5	3.9	3.4	2.8	2.3	1.9		
1	30	4.9	4.3	3.7	3.1	2.6	2.1	1.6	1.2		
	35	4.0	3.4	2.9	2.4	1.9	1.4	1.0	0.6		
	-40	8.7	7.9	7.2	6.5	5.8	5.2	4.6	4.1		
1	-5	8.6	7.9	7.1	6.4	5.8	5.1	4.6	4.0		
1	0	8.6	7.9	7.1	6.4	5.8	5.1	4.6	4.0		
1	5	8.6	7.8	7.1	6.4	5.7	5.1	4.5	4.0		
9000	10	8.0	7.2	6.5	5.8	5.2	4.6	4.0	3.5		
0000	15	7.0	6.3	5.6	5.0	4.4	3.8	3.3	2.8		
1	20	6.0	5.4	4.7	4.1	3.6	3.0	2.5	2.1		
1	25	5.1	4.5	3.9	3.3	2.8	2.3	1.8	1.4		
1	30	4.2	3.6	3.1	2.6	2.0	1.6	1.1	0.7		
	35	3.4	2.8	2.3	1.8	1.3	0.9	0.4	0.1		
	-40	8.4	7.6	6.9	6.2	5.5	4.9	4.4	3.8		
1	-5	8.3	7.5	6.8	6.1	5.5	4.9	4.3	3.8		
1	0	8.3	7.5	6.8	6.1	5.5	4.9	4.3	3.8		
1	5	8.2	7.4	6.7	6.0	5.4	4.8	4.2	3.7		
10000	10	7.1	6.4	5.7	5.1	4.5	3.9	3.4	2.9		
10000	15	6.2	5.5	4.9	4.3	3.7	3.2	2.7	2.2		
	20	5.3	4.7	4.1	3.5	3.0	2.4	2.0	1.5		
	25	4.4	3.8	3.2	2.7	2.2	1.7	1.3	0.8		
	30	3.6	3.0	2.5	2.0	1.5	1.0	0.6	0.2		
FPCG UP 0	35	2.7	2.2	1.7	1.2	0.8	0.3	-0.1	-0.4		

FPCG_UP_0_8_04

HA-420 AFM

PERFORMANCE

	Uncorrected Net Climb Gradient [%] at pressure altitude										
	Flaps UP, Gear UP, Ice Protection Off, V2										
F. ALT	TEMP			Т	akeoff V	Veight [II	0]				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600		
	-40	8.0	7.2	6.5	5.9	5.2	4.6	4.1	3.5		
	-10	7.9	7.2	6.5	5.8	5.1	4.5	4.0	3.5		
	-5	7.9	7.2	6.5	5.8	5.2	4.6	4.0	3.5		
	0	7.9	7.2	6.4	5.8	5.1	4.5	4.0	3.5		
11000	5	7.5	6.7	6.1	5.4	4.8	4.2	3.6	3.1		
11000	10	6.4	5.7	5.1	4.5	3.9	3.3	2.8	2.4		
	15	5.5	4.9	4.3	3.7	3.1	2.6	2.1	1.7		
	20	4.6	4.0	3.5	2.9	2.4	1.9	1.4	1.0		
	25	3.8	3.2	2.7	2.1	1.7	1.2	0.8	0.4		
	30	3.0	2.4	1.9	1.4	1.0	0.5	0.1	-0.2		
	-40	7.6	6.9	6.2	5.5	4.9	4.3	3.8	3.3		
	-10	7.6	6.8	6.1	5.5	4.9	4.3	3.7	3.2		
	-5	7.6	6.8	6.2	5.5	4.9	4.3	3.7	3.2		
	0	7.6	6.8	6.1	5.5	4.9	4.3	3.7	3.2		
12000	5	6.7	6.0	5.4	4.7	4.1	3.6	3.1	2.6		
12000	10	5.7	5.1	4.4	3.8	3.3	2.8	2.3	1.8		
	15	4.8	4.2	3.6	3.1	2.5	2.0	1.6	1.2		
	20	4.0	3.4	2.9	2.3	1.8	1.4	0.9	0.5		
	25	3.2	2.6	2.1	1.6	1.1	0.7	0.3	-0.1		
	30	2.4	1.9	1.4	0.9	0.5	0.1	-0.3	-0.7		

FPCG_UP_0_11_04

HA-420 AFM

PERFORMANCE

	Unc	orrected	Net Cli	mb Grad	lient [%]	at pres	sure alti	tude	
	Fla	aps UF	, Gea	r UP, I	ce Pro	tectio	n On,	V2	
F. ALT	TEMP					Veight [II			
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600
	-40	11.9	11.0	10.2	9.4	8.6	7.9	7.2	6.6
I	-30	12.0	11.0	10.2	9.4	8.6	7.9	7.2	6.6
I	-25	12.0	11.1	10.2	9.4	8.6	7.9	7.2	6.6
I	-20	12.0	11.1	10.2	9.4	8.7	7.9	7.2	6.6
-1000	-15	12.0	11.1	10.2	9.5	8.7	7.9	7.2	6.6
-1000	-10	12.0	11.1	10.3	9.5	8.7	8.0	7.3	6.6
I	-5	12.1	11.2	10.3	9.5	8.7	8.0	7.3	6.7
I	0	12.1	11.2	10.4	9.6	8.8	8.0	7.3	6.7
I	5	12.2	11.3	10.4	9.6	8.8	8.1	7.4	6.7
	10	12.2	11.3	10.4	9.6	8.8	8.1	7.4	6.7
	-40	11.8	11.0	10.1	9.3	8.5	7.8	7.1	6.5
I	-30	11.9	11.0	10.1	9.3	8.6	7.8	7.1	6.5
I	-25	11.9	11.0	10.2	9.4	8.6	7.8	7.2	6.5
I	-20	11.9	11.0	10.2	9.4	8.6	7.9	7.2	6.5
Sea	-15	12.0	11.0	10.2	9.4	8.6	7.9	7.2	6.6
Level	-10	12.0	11.1	10.2	9.4	8.7	7.9	7.2	6.6
I	-5	12.0	11.1	10.3	9.5	8.7	7.9	7.3	6.6
I	0	12.1	11.2	10.3	9.5	8.7	8.0	7.3	6.6
I	5	12.1	11.2	10.3	9.5	8.8	8.0	7.3	6.7
	10	12.2	11.2	10.4	9.6	8.8	8.0	7.3	6.7
	-40	11.5	10.6	9.7	9.0	8.2	7.5	6.8	6.2
I	-30	11.5	10.6	9.8	9.0	8.2	7.5	6.8	6.2
I	-25	11.5	10.6	9.8	9.0	8.3	7.5	6.9	6.2
I	-20	11.6	10.7	9.8	9.1	8.3	7.6	6.9	6.3
1000	-15	11.6	10.7	9.9	9.1	8.3	7.6	6.9	6.3
1000	-10	11.6	10.7	9.9	9.1	8.3	7.6	6.9	6.3
	-5	11.7	10.8	9.9	9.2	8.4	7.6	7.0	6.3
	0	11.7	10.8	10.0	9.2	8.4	7.7	7.0	6.4
	5	11.8	10.8	10.0	9.2	8.4	7.7	7.0	6.4
	10	11.3	10.4	9.6	8.8	8.0	7.3	6.6	6.0

FPCG_UP_2_-1_02

HA-420 AFM

PERFORMANCE

	Unc	orrected	Net Cli	mb Grad	dient [%]	at pres	sure alti	tude	
	Fla	aps UF	, Gea	r UP, I	ce Pro	tectio	n On, ˈ	V2	
F. ALT	TEMP			Т	akeoff V	Veight [II	b]		
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600
	-40	11.1	10.2	9.4	8.7	7.9	7.2	6.5	5.9
	-30	11.2	10.3	9.5	8.7	8.0	7.2	6.6	6.0
	-25	11.2	10.3	9.5	8.7	8.0	7.3	6.6	6.0
	-20	11.2	10.4	9.5	8.8	8.0	7.3	6.6	6.0
2000	-15	11.3	10.4	9.6	8.8	8.0	7.3	6.7	6.0
2000	-10	11.3	10.4	9.6	8.8	8.1	7.3	6.7	6.1
	-5	11.4	10.5	9.6	8.9	8.1	7.4	6.7	6.1
	0	11.4	10.5	9.7	8.9	8.1	7.4	6.7	6.1
	5	11.4	10.5	9.7	8.9	8.1	7.4	6.7	6.1
	10	10.4	9.6	8.8	8.0	7.3	6.6	6.0	5.4
	-40	10.8	9.9	9.1	8.3	7.6	6.9	6.3	5.7
	-30	10.8	10.0	9.2	8.4	7.7	7.0	6.3	5.7
	-25	10.9	10.0	9.2	8.5	7.7	7.0	6.3	5.7
	-20	10.9	10.1	9.2	8.5	7.7	7.0	6.4	5.8
3000	-15	11.0	10.1	9.3	8.5	7.8	7.1	6.4	5.8
0000	-10	11.0	10.1	9.3	8.5	7.8	7.1	6.4	5.8
	-5	11.0	10.1	9.3	8.6	7.8	7.1	6.4	5.8
	0	11.0	10.2	9.3	8.6	7.8	7.1	6.5	5.8
I	5	10.8	10.0	9.1	8.4	7.6	6.9	6.3	5.7
	10	9.6	8.7	8.0	7.3	6.6	5.9	5.3	4.7
	-40	10.4	9.6	8.8	8.0	7.3	6.6	6.0	5.4
I	-30	10.5	9.6	8.8	8.1	7.4	6.7	6.0	5.4
	-25	10.5	9.7	8.9	8.1	7.4	6.7	6.1	5.5
I	-20	10.6	9.7	8.9	8.2	7.4	6.7	6.1	5.5
4000	-15	10.6	9.7	8.9	8.2	7.4	6.8	6.1	5.5
	-10	10.6	9.8	9.0	8.2	7.5	6.8	6.1	5.5
	-5	10.6	9.8	9.0	8.2	7.5	6.8	6.1	5.5
	0	10.7	9.8	9.0	8.2	7.5	6.8	6.2	5.6
	5	10.0	9.1	8.4	7.6	6.9	6.2	5.6	5.0
FPCG UP 2	10	8.7	7.9	7.2	6.5	5.8	5.2	4.6	4.1

FPCG_UP_2_2_02

HA-420 AFM

PERFORMANCE

	Unc	orrected	Net Cli	mb Grad	dient [%]	at pres	sure alti	tude	
	Fla	aps UF	, Gea	r UP, I	ce Pro	tectio	n On,	V2	
F. ALT					akeoff V				
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600
	-40	10.1	9.2	8.4	7.7	7.0	6.3	5.7	5.1
I	-30	10.1	9.3	8.5	7.8	7.1	6.4	5.8	5.2
I	-25	10.2	9.3	8.5	7.8	7.1	6.4	5.8	5.2
I	-20	10.2	9.4	8.6	7.8	7.1	6.4	5.8	5.2
5000	-15	10.2	9.4	8.6	7.9	7.1	6.4	5.8	5.2
3000	-10	10.2	9.4	8.6	7.9	7.1	6.5	5.8	5.2
I	-5	10.3	9.4	8.6	7.9	7.2	6.5	5.8	5.3
I	0	10.3	9.4	8.6	7.9	7.2	6.5	5.8	5.3
I	5	9.1	8.3	7.6	6.9	6.2	5.5	4.9	4.4
	10	7.8	7.0	6.3	5.7	5.0	4.4	3.9	3.4
	-40	9.7	8.9	8.1	7.4	6.7	6.1	5.4	4.9
I	-30	9.8	9.0	8.2	7.5	6.8	6.1	5.5	4.9
I	-25	9.8	9.0	8.2	7.5	6.8	6.1	5.5	4.9
I	-20	9.9	9.0	8.3	7.5	6.8	6.2	5.5	5.0
6000	-15	9.9	9.1	8.3	7.5	6.8	6.2	5.5	5.0
0000	-10	9.9	9.1	8.3	7.6	6.8	6.2	5.6	5.0
I	-5	9.9	9.1	8.3	7.6	6.8	6.2	5.6	5.0
I	0	9.4	8.6	7.9	7.2	6.5	5.8	5.2	4.6
I	5	8.2	7.4	6.7	6.0	5.4	4.8	4.2	3.7
	10	6.9	6.2	5.5	4.9	4.3	3.7	3.2	2.7
	-40	9.4	8.6	7.8	7.1	6.4	5.8	5.2	4.6
I	-30	9.5	8.7	7.9	7.2	6.5	5.8	5.2	4.7
I	-25	9.5	8.7	7.9	7.2	6.5	5.9	5.2	4.7
I	-20	9.5	8.7	7.9	7.2	6.5	5.9	5.3	4.7
7000	-15	9.5	8.7	8.0	7.2	6.5	5.9	5.3	4.7
, , , ,	-10	9.5	8.7	8.0	7.2	6.5	5.9	5.3	4.7
	-5	9.5	8.7	7.9	7.2	6.5	5.9	5.2	4.7
	0	8.6	7.8	7.0	6.4	5.7	5.1	4.5	4.0
	5	7.3	6.6	5.9	5.2	4.6	4.0	3.5	3.0
FPCG UP 2	10	6.1	5.4	4.8	4.2	3.6	3.0	2.5	2.1

FPCG_UP_2_5_02

HA-420 AFM

PERFORMANCE

	Unc	orrected	Net Cli	mb Grad	lient [%]	at pres	sure alti	tude	
	Fla	aps UF	, Gea	r UP, I	ce Pro	tectio	n On,	V2	
F. ALT	TEMP			Т	akeoff V	Veight [II	o]		
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600
	-40	9.1	8.3	7.5	6.8	6.2	5.5	4.9	4.4
	-30	9.1	8.3	7.6	6.9	6.2	5.5	4.9	4.4
	-25	9.1	8.3	7.6	6.9	6.2	5.6	5.0	4.4
	-20	9.1	8.3	7.6	6.9	6.2	5.6	5.0	4.4
8000	-15	9.1	8.3	7.6	6.9	6.2	5.6	4.9	4.4
8000	-10	9.1	8.3	7.6	6.9	6.2	5.5	4.9	4.4
	-5	8.9	8.1	7.4	6.7	6.0	5.3	4.7	4.2
	0	7.7	6.9	6.2	5.6	4.9	4.4	3.8	3.3
	5	6.4	5.8	5.1	4.5	3.9	3.4	2.8	2.4
	10	5.3	4.6	4.0	3.5	2.9	2.4	1.9	1.5
	-40	8.7	8.0	7.2	6.5	5.9	5.2	4.7	4.1
	-30	8.8	8.0	7.3	6.6	5.9	5.3	4.7	4.1
	-25	8.8	8.0	7.3	6.6	5.9	5.3	4.7	4.1
	-20	8.8	8.0	7.2	6.5	5.9	5.2	4.7	4.1
9000	-15	8.7	7.9	7.2	6.5	5.8	5.2	4.6	4.1
3000	-10	8.7	7.9	7.2	6.5	5.8	5.2	4.6	4.1
	-5	8.0	7.3	6.6	5.9	5.2	4.6	4.1	3.6
	0	6.8	6.1	5.5	4.8	4.2	3.7	3.1	2.7
	5	5.6	5.0	4.4	3.8	3.2	2.7	2.2	1.8
	10	4.5	3.9	3.4	2.8	2.3	1.8	1.4	0.9
	-40	8.4	7.6	6.9	6.2	5.6	5.0	4.4	3.9
	-30	8.4	7.6	6.9	6.2	5.6	5.0	4.4	3.9
	-25	8.4	7.6	6.9	6.2	5.6	4.9	4.4	3.8
	-20	8.3	7.6	6.9	6.2	5.5	4.9	4.3	3.8
10000	-15	8.3	7.5	6.8	6.2	5.5	4.9	4.3	3.8
10000	-10	8.3	7.5	6.8	6.1	5.5	4.9	4.3	3.8
	-5	7.2	6.5	5.8	5.2	4.6	4.0	3.4	2.9
	0	6.0	5.3	4.7	4.1	3.5	3.0	2.5	2.0
	5	4.9	4.2	3.7	3.1	2.6	2.1	1.6	1.2
FPCG_UP_2	10	3.8	3.2	2.7	2.2	1.7	1.2	0.8	0.4

FPCG_UP_2_8_02

HA-420 AFM

PERFORMANCE

	Und	orrected	Net Cli	mb Grad	dient [%]	at pres	sure alti	tude	
	Fla	aps UF	, Gea	r UP, I	ce Pro	tectio	n On,	V2	
F. ALT	TEMP			Т	akeoff V	Veight [II	0]		
[ft]	[°C]	7800	8200	8600	9000	9400	9800	10200	10600
	-40	8.0	7.3	6.6	5.9	5.2	4.6	4.1	3.6
I	-30	8.0	7.2	6.5	5.9	5.2	4.6	4.1	3.5
I	-25	7.9	7.2	6.5	5.8	5.2	4.6	4.0	3.5
	-20	7.9	7.2	6.5	5.8	5.2	4.6	4.0	3.5
11000	-15	7.9	7.2	6.4	5.8	5.1	4.5	4.0	3.5
11000	-10	7.5	6.8	6.1	5.4	4.8	4.2	3.7	3.2
I	-5	6.4	5.7	5.1	4.4	3.9	3.3	2.8	2.3
I	0	5.2	4.6	4.0	3.4	2.9	2.4	1.9	1.4
I	5	4.1	3.5	3.0	2.5	2.0	1.5	1.0	0.6
	10	3.1	2.6	2.1	1.6	1.1	0.7	0.3	-0.1
	-40	7.6	6.9	6.2	5.6	4.9	4.3	3.8	3.3
I	-30	7.6	6.9	6.2	5.5	4.9	4.3	3.8	3.2
I	-25	7.6	6.8	6.2	5.5	4.9	4.3	3.7	3.2
I	-20	7.6	6.8	6.1	5.5	4.9	4.3	3.7	3.2
12000	-15	7.6	6.8	6.1	5.5	4.9	4.3	3.7	3.2
12000	-10	6.7	6.0	5.4	4.8	4.2	3.6	3.1	2.6
	-5	5.6	4.9	4.3	3.7	3.2	2.6	2.2	1.7
	0	4.5	3.9	3.3	2.7	2.2	1.7	1.3	0.9
	5	3.4	2.9	2.3	1.8	1.4	0.9	0.5	0.1
	10	2.5	1.9	1.5	1.0	0.5	0.1	-0.3	-0.6

FPCG_UP_2_11_02

HA-420 AFM PERFORMANCE

ENROUTE CLIMB

Use of enroute climb tables:

- 1. Determine the airplane gross weight.
- 2. Obtain ambient information:
 - ambient temperature
 - O Determine that the temperature is within the ambient temperature limits found in the limitations section.
 - pressure altitude
- 3. Using the gross weight determined in step 1, find the 1 Engine and/or 2 Engine enroute climb gradient and/or rate of climb using pages 213 through 231.

\mathbf{H}	\-42() ((F	\ /
$\mathbf{\Pi}$	1-421	,	\ r	VI

PERFORMANCE

L					Single Fngine En Route Gross Climb Gradient [%]	Fnair	ne En	Route	Gros	s Clim	b Gra	dient	[%]					Γ
			FLA	LAPS U	UP, G	GEAR UP, Ice Protection Off, MCT, 140 [KIAS]	UP, I	ce P	rotec	tion	Off, I	MCT,	140	[KIA	S			
Αŧ	W							ľ	EMPE	TEMPERATURE [°C]	RE [°C							
Œ	[q]]	-40	-35	-30	-25	-20	-15	-10	ç	0	2	10	15	20	25	30	35	4
	8000	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.7	10.7	10.8	10.8	10.8	10.9	10.9	9.7	8.7	7.8
	8500	9.6	9.6	9.6	9.6	9.6	9.6	9.7	9.7	9.8	8.6	8.0	6.6	9.9	9.9	8.8	7.9	7.0
ō	9000	8.7	8.7	8.7	8.8	8.8	8.8	8.8	8.8	8.9	8.9	8.9	9.0	9.0	9.0	8.0	7.1	6.2
25	9500	7.9	7.9	7.9	8.0	8.0	8.0	8.0	8.0	8.1	8.1	8.1	8.2	8.2	8.2	7.2	6.4	5.6
	10000	7.2	7.2	7.2	7.2	7.2	7.2	7.3	7.3	7.3	7.4	7.4	7.4	7.4	7.4	6.5	5.7	5.0
	10500	6.5	6.5	6.5	6.5	6.5	6.5	9.9	9.9	9.9	6.7	6.7	6.7	6.7	6.7	5.9	5.1	4.4
	8000	8.8	8.8	8.9	8.9	8.9	8.9	9.0	9.0	9.0	9.0	9.0	9.0	7.9	6.8	5.9		
	8500	7.9	8.0	8.0	8.0	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	7.1	6.1	5.2		
5000	0006	7.2	7.2	7.2	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	6.3	5.4	4.6		
3	9500	6.4	6.5	6.5	6.5	6.5	9.9	9.9	9.9	9.9	9.9	9.9	9.9	5.7	4.8	4.0		
	10000	5.8	5.8	5.8	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.0	4.2	3.5		
	10500	5.2	5.2	5.2	5.2	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	4.5	3.7	3.0		
	8000	7.2	7.2	7.2	7.2	7.1	7.1	7.1	7.1	7.1	7.1	6.1	5.2	4.4				
	8500	6.4	6.4	6.4	6.4	6.4	6.3	6.3	6.3	6.3	6.3	5.4	4.6	3.8				
1	0006	5.7	5.7	5.7	2.7	5.7	2.7	5.6	5.6	5.6	5.6	4.8	4.0	3.2				
	9500	5.1	5.1	5.1	5.1	5.0	5.0	5.0	5.0	5.0	2.0	4.2	3.5	2.7				
	10000	4.5	4.5	4.5	4.5	4.5	4.4	4.4	4.4	4.4	4.4	3.7	2.9	2.3				
	10500	3.9	4.0	3.9	3.9	3.9	3.9	3.9	3.8	3.9	3.9	3.2	2.5	1.8				
1ERCG_UP_0_1_05	0_1_05													l	l			

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

L				Sing	Single Engine En Route Gross Climb Gradient [%]	ne En I	Soute G	3ross C	Slimb G	radient	[%]			l	Γ
		_	LAPS	, UP,	FLAPS UP, GEAR UP, Ice Protection Off, MCT, 140 [KIAS]	UP, I	ce Pro	otection	on Off	, MCT	, 140	[KIA8	~		
₩	W						TE	MPERA	TEMPERATURE [°C]	ွင]					
Œ	[q]	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	2	10
	8000				5.4	5.4	5.4	5.4	5.4	5.4	5.4	4.6	3.8	3.0	2.3
	8500				4.7	4.7	4.7	4.7	4.7	4.8	4.8	4.0	3.2	2.5	1.8
7000	9000				4.1	4.1	4.1	4.1	4.1	4.2	4.2	3.4	2.7	2.0	1.4
2	9500				3.6	3.6	3.6	3.6	3.6	3.6	3.6	2.9	2.2	1.6	1.0
	10000				3.0	3.0	3.1	3.1	3.1	3.1	3.1	2.4	1.8	[-	9.0
	10500				5.6	5.6	2.6	2.6	5.6	5.6	5.6	2.0	1.3	0.8	0.2
	8000			4.2	4.2	4.2	4.2	4.2	4.2	3.4	2.7	1.9	1.2		
	8500			3.6	3.6	3.6	3.6	3.7	3.6	5.9	2.2	1.5	0.8		
0000	9000			3.1	3.1	3.1	3.1	3.1	3.0	2.4	1.7	1.	0.4		
20002	9500			2.6	2.6	2.6	5.6	2.6	5.6	2.0	د .	0.7	0.1		
	10000			2.1	2.1	2.1	2.1	2.2	2.1	1.5	6.0	0.3	-0.3		
	10500			1.7	1.7	1.7	1.7	1.7	1.7	1.1	0.5	0.0	-0.6		
	8000	3.4	3.4	3.4	3.5	3.5	3.1	2.4	1.8	1.2	9.0				
	8200	2.9	2.9	2.9	2.9	2.9	5.6	6.	1.4	0.8	0.2				
25000	9000	2.4	2.4	2.4	2.4	2.5	2.1	1.5	1.0	0.4	о. 1				
2000	9500	1.9	6.1	2.0	2.0	2.0	1.6	1.1	9.0	0.1	-0.5				
	10000	1.5	1.5	1.5	1.5	1.6	1.2	0.7	0.2	-0.3	-0.8				
	10500	1.1	1.1	1.1	1.1	1.1	0.8	0.3	-0.1	-0.6	-1.1				
1ERCG_UP_0_2_05	P_0_2_05														

FAA APPROVED October 30, 2016

\mathbf{H}^{A}	\-42	0	\F	M
	1-74	V	.	LVI

PERFORMANCE

L					Sin	gle Er	gine	Single Engine En Route Rate of Climb [FPM]	ute R	ate of	Climb	FPM	_					Γ
			FLA	PS L	IP, G	EAR	UP,	ce P	rotec	tion	Off,	MCT,	FLAPS UP, GEAR UP, Ice Protection Off, MCT, 140 [KIAS]	[KIA	S			
At	₩							Ĭ	TEMPERATURE [°C]	RATU	RE [°C	7.						
[¥]	[q]]	-40	-35	-30	-25	-20	-15	-10	ç	0	5	10	15	20	25	30	35	4
	8000	1346 1361	1361	1377	1393	1393 1409 1424 1443	1424	1443	1462	1482	1501	1518	1535	1553	1566 1417		1281	1147
	8500	1224	1224 1238	1252	1267	1281	1295	1312	1330	1348	1366	1381	1397	1413	1425	1285	1156	1029
Ū	9000	9000 1113 1125	1125	1138	1152	1165	1177	1193	1210	1226	1243	1257	1152 1165 1177 1193 1210 1226 1243 1257 1271 1286	1286	1297	1164	1042	922
70	9500	1011	1011 1022	1034	1046	1058	1070	1084	1099	1115	1130	1143	1156	1170	1180	1053	938	823
	10000	917	927	938	949	960	971	984	866	1012	1026	1038	1050	1063	1071	951	841	732
	10500	830	839	849	859	869	879	891	904	917	930	941	952	963	971	856	751	647
	8000	1227 1246	1246	1264	1282	1298	1314	1329	1344	1358	1371	1381	1390	1231	1076	941		
	8500		1108 1125	1141	1158		1187	1173 1187 1200 1214 1227 1239 1248 1256	1214	1227	1239	1248		1106	096	831		
2000	0006	999 101	1015	1030	1045	1058	1072	1084	1096		1107 1118 1127		1133	991	853	731		
3	9500	839	913	927	941	953	965	926	282	866	1008	1015	1021	988	754	639		
	10000	807	820	832	845	856	867	877	887	897	906	912	917	789	663	553		
	10500	721	733	744	756	292	776	785	794	803	811	816	821	869	578	472		
	8000	1103 111	1116	6 1126		1140	1147	1134 1140 1147 1153 1162 1173	1162	1173	1185	1039	895	222				
	8500	986	666	1007	1014	1019	1025	1030	1038	1048	1059	921	785	653				
1000	0006	880	891	899	904	606	913	918	925	934	944	812	684	559				
2	9500	781	791	798	803	807	811	815	820	829	837	713	290	471				
	10000	069	669	705	209	712	716	719	724	731	739	620	503	390				
	10500	909	614	619	622	624	627	629	633	640	647	533	421	313				
1ERROC_L	1ERROC_UP_0_1_05																	

FAA APPROVED October 30, 2016

H	Δ	-420) A	\mathbf{F}	M

PERFORMANCE

				S	ngle Er	ngine E	n Rout	e Rate	Single Engine En Route Rate of Climb [FPM]	JP [FPN			l	l	Γ
		ш	LAPS	UP,	GEAR	UP, I	ce Pro	otection	FLAPS UP, GEAR UP, Ice Protection Off, MCT, 140 [KIAS]	, MCT	, 140	[KIAS	<u></u>		
Alt	W						TEN	MPERA	TEMPERATURE [°C]	°C]					
Œ	[Q]	-55	-20	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
	8000				914	925	937	949	961	973	382	839	695	556	426
	8500				803	813	823	834	845	826	867	729	592	461	338
15000	0006				701	709	719	728	738	748	758	627	497	373	256
2000	9500				209	614	622	631	639	648	657	532	408	290	179
	10000				519	525	532	540	547	222	563	444	326	213	107
	10500				436	442	448	454	461	468	475	361	248	140	88
	8000			771	783	795	806	817	810	8/9	230	391	249		
	8500			664	675	685	969	705	869	572	433	301	167		
0000	0006			266	575	584	593	601	594	475	342	217	8		
20002	9500			474	482	490	498	505	497	384	258	138	17		
	10000			388	395	402	409	415	407	298	178	64	51		
	10500			308	313	319	325	331	322	218	103	9-	-117		
	8000	681	694	90/	719	731	650	517	392	263	125				
	8500	574	282	297	809	618	545	416	297	175	4				
25000	0006	476	485	495	505	514	441	321	209	83	<u>ب</u>				
2000	9200	384	392	401	409	417	347	233	126	15	-103				
	10000	298	305	312	319	326	259	150	47	59	-172				
	10500	217	223	229	235	241	176	71	-27	-129	-237				
1ERROC_	IERROC_UP_0_2_05														

FAA APPROVED October 30, 2016

\mathbf{H}^{A}	\ _4	120) 4	Æ	M
	\- -		, –	.	v

PERFORMANCE

			Sing	le Engin	e En Rou	ute Gros	s Climb	Single Engine En Route Gross Climb Gradient [%]	[%]			
		FLAPS	P.	GEAR (UP, Ice	Protect	tion O	GEAR UP, Ice Protection On, MCT, 140 [KIAS]	, 140 [(IAS]		
Alt	W					TEMP	TEMPERATURE (°C)	(E [°C]				
Œ	[q]	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
	8000	10.6	10.6	10.7	10.7	10.7	10.7	10.8	10.8	10.9	10.9	10.9
	8500	9.7	9.7	9.7	9.7	9.7	8.6	8.6	8.6	6.6	6.6	6.0 6.0
ō	0006	8.8	8.8	8.8	8.8	8.9	6.8	8.9	9.0	9.0	9.0	0.6
2	9500	8.0	8.0	8.0	8.0	8.0	8.1	8.1	8.1	8.2	8.2	8.2
	10000	7.2	7.2	7.3	7.3	7.3	7.3	7.4	7.4	7.4	7.4	7.4
	10500	6.5	6.5	9.9	9.9	9.9	9.9	6.7	6.7	6.7	6.7	6.7
	8000	8.9	9.0	9.0	9.0	9.0	9.1	9.1	9.1	9.1	7.8	6.5
	8200	8.1	8.1	8.1	8.1	8.2	8.2	8.2	8.2	8.2	7.0	5.8
2000	0006	7.3	7.3	7.3	7.3	7.4	7.4	7.4	7.4	7.4	6.2	5.1
3	9200	9.9	9.9	9.9	9.9	9.9	6.7	6.7	6.7	6.7	5.6	4.5
	10000	5.9	5.9	5.9	5.9	0.9	0.9	0.9	0.9	0.9	4.9	3.9
	10500	5.3	5.3	5.3	5.3	5.3	5.3	5.4	5.4	5.4	4.4	3.4
	8000	7.3	7.3	7.3	7.2	7.2	7.2	7.1	6.0	4.9	3.8	2.8
	8200	6.5	6.5	6.5	6.5	6.4	6.4	6.4	5.3	4.3	3.3	2.3
1000	0006	5.8	5.8	5.8	5.8	5.7	2.7	5.7	4.7	3.7	2.7	1.9
2	9200	5.2	5.2	5.2	5.1	5.1	5.1	5.0	4.1	3.1	2.3	4.1
	10000	4.6	4.6	4.6	4.5	4.5	4.5	4.4	3.6	5.6	1.8	1.0
	10500	4.0	4.0	4.0	4.0	3.9	3.9	3.9	3.0	2.2	1.4	9.0
1ERCG_UP_2_1_02	2_1_02											

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

				Sing	Single Engine En Route Gross Climb Gradient [%]	ne En l	Soute (Sross C	Simb G	radien	[%]				Γ
		_	LAPS	, UP,	FLAPS UP, GEAR UP, Ice Protection On, MCT, 140 [KIAS]	UP, I	ce Pro	otection	on On	, MCT	, 140	[KIAS	~		
Alt	₩						TEN	MPERA	TEMPERATURE [°C]	.c]					
Œ	[q]	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
	8000				5.4	5.4	5.4	5.4	5.5	4.5	3.4	2.4	1.5	0.7	-0.4
	8500				4.8	4.8	4.8	4.8	4.8	3.9	2.9	9.	1.	0.3	-0.7
15000	0006				4.1	4.2	4.2	4.2	4.2	3.3	2.4	1.5	0.7	-0.1	-1.0
0000	9500				3.6	3.6	3.6	3.6	3.6	2.8	6.1	1.	0.3	-0.4	-1.3
	10000				3.1	3.1	3.1	3.1	3.1	2.3	7.	0.7	0.1	-0.7	-1.6
	10500				2.6	5.6	2.6	2.6	2.6	1.9	1.0	0.3	-0.4	-1.0	-1.8
	8000			4.2	4.2	4.2	3.3	2.4	1.4	0.5	-0.4	-1.1	-1.9		
	8500			3.6	3.6	3.6	2.8	9:	1.0	0.1	-0.7	4.1-	-2.1		
2000	0006			3.1	3.1	3.1	2.3	1.5	9.0	-0.2	-1.0	-1.6	-2.3		
2000	9500			2.6	2.6	5.6	8.	1.	0.3	-0.5	1.	6.1-	-2.5		
	10000			2.1	2.1	2.1	4.	0.7	- 0.1	6.0-	7.	-2.1	-2.7		
	10500			1.7	1.7	1.6	1.0	0.3	-0.4	-1.2	-1.8	-2.4	-2.9		
	8000	3.4	3.4	3.0	2.3	1.6	0.8	0.0	9.0	-1.5	-3.1				
	8500	2.9	2.9	2.5	1.8	[:	0.4	-0.3	1.	-1.8	-3.2				
25000	0006	2.4	2.4	2.0	1.4	0.7	0.0	-0.6	-1.3	-2.0	-3.4				
72000	9500	1.9	6.1	1.6	1.0	0.4	-0.3	-0.9	-1.6	-2.3	-3.5				
	10000	1.5	1.5	1.2	9.0	0.0	9.0-	-1.2	6.1	-2.5	-3.7				
	10500	1.1	1.1	0.8	0.2	-0.3	6.0-	-1.5	-2.1	-2.7	-3.9				
1ERCG_UP_2_2_02	2 2 02														

FAA APPROVED October 30, 2016

П	A-4	20	A 1	71	/ T
	/ 3 = 4	- 21	<i>I</i> A	יוייו	v

PERFORMANCE

	֡	GEAR	ביים.	Protec	tion O	FLAPS UP, GEAR UP, Ice Protection On, MCT, 140 [KIAS]	. 140	A A S		
-40 1346 1223				TEMP	TEMPERATURE [°C]	E [°C]			ı	Г
1346	-35	-30	-25	-20	-15	-10	-5	0	5	10
	1361	1378	1396	1414	1431	1451	1470	1488	1505	1521
_	1237	1253	1269	1286	1301	1319	1337	1354	1369	1384
9000 11112	1124	1138	1153	1169	1183	1199	1216	1231	1246	1259
9500 1010	1021	1034	1048	1062	1075	1090	1105	1119	1132	1144
10000 915	926	938	950	963	975	986	1003	1016	1028	1039
10500 828	837	848	860	872	883	895	806	920	931	941
8000 1240	1256	1273	1290	1306	1322	1336	1350	1361	1175	991
8500 1119	1134	1150	1165	1179	1194	1206	1220	1230	1054	881
9000 1009	1023	1037	1051	1064	1077	1089	1101	1110	944	779
9500 909	921	934	946	929	970	981	992	1000	842	989
10000 815	827	838	850	861	872	881	891	868	748	599
10500 729	739	750	200	770	780	788	797	803	099	518
8000 1110	1122	1131	1138	1145	1150	1156	986	807	637	478
8500 992	1003	1012	1018	1023	1028	1033	873	703	543	392
9000 885	895	902	206	912	916	920	292	209	455	313
9500 786	795	801	908	810	813	816	672	519	374	239
10000 695	702	208	711	715	717	720	582	436	299	169
10500 609	919	621	624	929	628	630	498	329	227	104

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

		֓֟֟֓֓֓֟֓֓֓֓֓֓֓֓֟ <u>֟</u>	J V D	S	Single Engine En Route Rate of Climb [FPM]	ngine E	in Rout	te Rate	of Clin	Ib [FPN	146	IVIVO		П	П
ΨIA	₩.		Š	, 0,	TEARS OF, GEAN OF, ICE FIOTECTION ON, MCI, 140 [NIAS] TEMPERATURE ("C)	, OF,		MPERA	FIOUECIION ON, N TEMPERATURE I'CI	ر الالا	, 140	NAC.			
€	<u>@</u>	-55	-50	-45	-49	-35	-30	-25	-28	-15	-10	ΐ	0	5	10
	8000				606	919	930	942	954	789	607	437	272	120	-74
	8500				798	808	817	828	838	683	510	320	195	51	-133
7 0	0006				269	705	713	723	732	584	421	269	122	-15	-188
0000	9500				603	610	617	625	634	493	338	193	23	-77	-242
	10000				515	521	528	535	542	408	260	122	-12	-135	-293
	10500				433	438	444	450	457	328	187	22	-73	-192	-342
	8000			774	2778	784	930	459	280	97	-71	-218	-372		
	8500			999	699	674	529	367	198	52	-133	-273	-418		
0000	9000			267	569	573	435	282	121	-42	-193	-325	-463		
2000	9500			475	476	479	348	202	49	-106	-250	-376	-507		
	10000			388	389	391	266	127	-19	-168	-305	-425	-550		
	10500			307	307	309	189	55	-84	-226	-357	-472	-592		
	8000	683	694	616	470	325	165	8	-163	-333	-671				
	8500	575	282	511	373	236	84	-64	-226	-387	-705				
25000	9000	476	485	414	283	153	თ	-133	-286	-438	-740				
2000	9500	384	391	323	198	74	සු	-197	-343	-489	-775				
	10000	297	303	238	118	0	-131	-260	-399	-538	-810				
	10500	215	221	158	43	-71	-196	-319	-453	-585	-846				
1ERROC L	1ERROC UP 2 2 02														

FAA APPROVED October 30, 2016

\mathbf{H}	\-42() ((F	\ /
$\mathbf{\Pi}$	1-421	,	\ r	VI

PERFORMANCE

				A	All Engine En Route Gross Climb Gradient [%]	En Ro	ute Gr	oss Cli	mb Gra	dient [[%]				Γ
	교	FLAPS (UP, G	EAR L	UP, GEAR UP, Ice Protection Off, MCT, 210 / 0.57 [KIAS / MACH]	Prot	ectior	n Off,	MCT,	210 /	0.57	KIAS	/ MAC	王	
At	Wŧ						TEN	TEMPERATURE	TURE [[,c]					
[£]	[q]]	-40	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40
	8000	23.6	23.6	23.7	23.7	23.8	23.9	23.9	24.0	24.1	24.1	24.2	22.2	20.2	18.0
	8500	22.0	22.1	22.1	22.2	22.2	22.3	22.4	22.4	22.5	22.6	22.6	20.7	18.8	16.8
ō	0006	20.7	20.7	20.7	20.8	20.8	20.9	21.0	21.1	21.1	21.2	21.2	19.4	17.6	15.7
or I	9200	19.4	19.5	19.5	19.5	19.6	19.7	19.7	19.8	19.9	19.9	19.9	18.3	16.6	14.8
	10000		18.4	18.4	18.4	18.5	18.5	18.6	18.7	18.7	18.8	18.8	17.2	15.6	13.9
	10500		17.3	17.4	17.4	17.4	17.5	17.6	17.6	17.7	17.7	17.8	16.2	14.7	13.1
	8000	20.4	20.7	20.8	20.8	20.8	20.8	20.9	20.9	20.9	18.8	16.9	15.3		
	8500	19.0	19.3	19.4	19.4	19.5	19.5	19.5	19.5	19.5	17.6	15.8	14.2		
000	0006	17.8	18.1	18.2	18.2	18.2	18.2	18.3	18.3	18.3	16.5	14.8	13.3		
3	9500	16.8	17.0	17.1	17.1	17.1	17.1	17.2	17.2	17.2	15.5	13.9	12.4		
	10000	15.8	16.0	16.1	16.1	16.1	16.1	16.2	16.2	16.2	14.5	13.0	11.7		
	10500	14.9	15.1	15.2	15.2	15.2	15.2	15.2	15.3	15.3	13.7	12.2	11.0		
	8000	17.4	17.5	17.4	17.4	17.3	17.3	17.3	15.6	13.8	12.2				
	8200	16.3	16.3	16.3	16.2	16.1	16.1	16.1	14.5	12.9	11.4				
000	0006	15.2	15.3	15.2	15.2	15.1	15.1	15.1	13.6	12.0	10.6				
3	9500	14.3	14.3	14.3	14.2	14.2	14.1	14.2	12.7	11.2	6.6				
	10000	13.4	13.5	13.4	13.4	13.3	13.3	13.3	11.9	10.5	9.3				
	10500	12.6	12.7	12.6	12.6	12.5	12.5	12.5	11.2	6.6	8.7				
	8000	14.0	14.0	14.0	14.0	14.1	12.6	11.2	9.8						
	8200	13.0	13.0	13.0	13.1	13.1	11.8	10.4	9.1						
15000		12.2	12.1	12.2	12.2	12.2	11.0	9.7	8.5						
200	9500	11.4	11.4	11.4	11.4	11.4	10.2	9.1	7.9						
	10000		10.6	10.7	10.7	10.7	9.6	8.5	7.3						
	10500	10.0	10.0	10.0	10.0	10.1	9.0	7.9	6.9						
2ERCG_UP_0_1_06	2_0_1_05														

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

		FLAPS	JP. G	All	All Engine En Route Gross Climb Gradient [%] UP. GEAR UP. Ice Protection Off. MCT. 210 / 0.57 IKIAS / MACHI	En Re	oute Gr	oss Cli n Off.	mb Gra	adient [210 /	%] 0.57 [KIAS	/ MAC	뒱	
Αŧ	¥	_					TE	MPERA	TEMPERATURE [°C]	ွင့					Γ
[#]	[q]]	-65	09-	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0
	8000					12.0	12.0	12.0	12.1	12.1	12.0	10.5	9.1	7.8	9.9
	8500					11.1	11.1	11.2	11.2	11.2	11.1	9.8	8.5	7.2	0.9
	0006					10.4	10.4	10.4	10.4	10.5	10.3	9.1	7.9	6.7	5.6
2000	9500					9.7	9.7	9.7	9.7	8.6	9.7	8.5	7.3	6.2	5.1
	10000					9.0	9.1	9.1	9.1	9.1	9.0	7.9	8.9	5.7	4.7
	10500					8.5	8.5	8.5	8.5	9.8	8.5	7.4	6.3	5.3	4.4
	8000			10.9	11.0	11.0	11.1	11.1	10.0	8.9	7.7	9.9	5.5		
	8500			10.2	10.2	10.2	10.3	10.3	9.2	8.2	7.1	6.1	2.0		
25000	0006			9.5	9.5	9.5	9.5	9.6	8.6	9.7	9.9	5.6	4.6		
22000	9500			8.8	8.8	8.9	8.9	8.9	8.0	7.1	6.1	5.1	4.2		
	10000			8.2	8.3	8.3	8.3	8.4	7.4	9.9	2.7	4.7	3.9		
	10500			7.7	7.7	7.8	7.8	7.8	6.9	6.1	5.2	4.4	3.5		
	8000	8.2	8.2	8.3	8.3	8.3	9.7	6.4	5.4	4.4	3.5				
	8500	9.7	9.7	7.6	9.7	7.7	7.0	5.9	4.9	4.0	3.2				
3000	0006	7.0	7.0	7.1	7.1	7.1	6.5	5.5	4.5	3.7	2.9				
	9500	6.5	6.5	9.9	9.9	9.9	0.9	5.0	4.1	3.3	5.6				
	10000	0.9	6.1	6.1	6.1	6.1	5.5	4.6	3.8	3.0	2.3				
	10500	5.6	5.6	5.7	5.7	5.7	5.1	4.3	3.5	2.7	2.1				
2ERCG_UP_0_2_05	2_0_2_05												l		

FAA APPROVED October 30, 2016

	EI APS IIP	D GE/	All Eng	jine En F	Soute Gr	All Engine En Route Gross Climb Gradient [%] GEAR IIP Ice Protection Off MCT 210 / 0 57 IKIAS / MACHI	Ib Gradi	ent [%]	IKIAS	MAC	5
∀ŧ	¥	i)	,		I	TEMPERATURE [°C]	TURE [°	Σ			
[#]	[q]]	-75	-20	-65	09-	-55	-50	-45	-40	-35	-30
	8000	8.0	8.0	8.0	8.0	7.8	7.0	6.1	5.1	4.1	3.2
	8500	7.3	7.3	7.3	7.3	7.1	6.4	5.6	4.6	3.7	2.8
35000	9000	6.7	6.7	6.7	6.7	6.5	5.8	5.0	4.1	3.3	2.4
2000	9200	6.1	6.1	6.1	6.1	0.9	5.3	4.6	3.7	2.9	2.1
	10000	5.6	5.6	5.6	5.6	5.4	4.8	4.1	3.3	2.5	1.7
	10500	5.1	5.1	5.1	5.1	5.0	4.4	3.7	2.9	2.2	1.4
	8000	5.2	5.2	5.2	5.2	4.8	4.1	3.2	2.4	1.5	0.7
	8500	4.6	4.7	4.7	4.6	4.3	3.6	2.7	2.0	1.2	0.4
7000	0006	4.1	4.1	4.2	4.1	3.8	3.1	2.3	1.6	6.0	0.1
200	9200	3.6	3.7	3.7	3.6	3.3	2.7	1.9	1.3	9.0	-0.2
	10000	3.2	3.2	3.2	3.2	2.9	2.3	1.6	6.0	0.3	-0.4
	10500	2.8	2.8	2.8	2.8	2.5	1.9	1.2	9.0	0.0	-0.6
	8000	3.6	3.6	3.6	3.5	3.1	2.4	1.7	6.0	0.1	-0.7
	8500	3.1	3.1	3.1	3.0	5.6	6.1	1.3	9.0	-0.2	-1.0
73000	0006	2.6	2.6	2.6	2.5	2.2	1.5	6.0	0.3	-0.5	-1.2
2	9200	2.2	2.2	2.2	2.1	1.8	1.2	9.0	-0.1	-0.7	-1.5
	10000	1.8	1.8	1.8	1.7	4.1	8.0	0.3	-0.4	-1.0	-1.7
	10500	1.4	1.4	1.4	1.3	1.0	0.5	-0.1	-0.6	-1.3	-1.9
30 6 0 011 00016	30 6 0										

HA-420 AFM

PERFORMANCE

L					All Enc	ine En	Route	Rate o	All Engine En Route Rate of Climb [FPM]	rfpM1			l	l	Γ
	ద	FLAPS I	UP, G	EAR L	JP, Ice	Prot	ectior	n Off,	UP, GEAR UP, Ice Protection Off, MCT, 210 / 0.57 [KIAS / MACH]	210/	0.57	KIAS	/ MAC	至	
Αŧ	Wŧ						TEI	TEMPERATURE		[]					
Œ	[q]	-40	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40
	8000	4510	4713	4762	4818	4877	4941	5003	5062	5120	5179	5230	4837	4434	3998
	8500	4217	4406	4452	4204	4560	4620	4678	4733	4788	4843	4890	4521	4141	3730
ō	0006	3955	4132	4176	4224	4277	4333	4388	4440	4491	4543	4587	4238	3879	3490
2	9500	3719	3886	3926	3972	4022	4074	4126	4175	4223	4272	4314	3983	3643	3274
	10000	3505	3662	3700	3744	3790	3840	3889	3935	3981	4027	4066	3752	3428	3078
	10500	3310	3458	3495	3536	3580	3627	3673	3717	3760	3804	3841	3541	3233	2899
	8000	4266	_	4570	4622	4674	4720	4771	4823	4863	4423	4008	3639		
	8500	3985		4269	4318	4366	4409	4457	4506	4543	4128	3738	3390		
000	0006	3733	_	4000	4046	4091	4131	4176	4222	4257	3865	3496	3167		
3	9500	3506	3710	3757	3801	3843	3881	3923	3966	3999	3627	3278	2966		
	10000	3300	_	3537	3578	3618	3654	3694	3734	3765	3411	3079	2782		
	10500	3112	3295	3336	3375	3413	3447	3484	3523	3552	3215	2898	2615		
	8000	4000	_	4209	4235	4260	4292	4334	3941	3526	3152				
	8500	3732		3926	3950	3974	4003	4043	3673	3282	2929				
1000		3491	3649	3673	3695	3718	3745	3782	3432	3063	2729				
3		3274		3445	3466	3486	3512	3546	3215	2865	2548				
	10000	3077		3237	3257	3276	3300	3333	3017	2684	2383				
	10500	2897	_	3048	3066	3084	3107	3138	2837	2519	2232				
	8000	3531	3675	3717	3763	3810	3454	3099	2739						
	8200	3287	3421	3460	3503	3547	3211	2877	2538						
15000	0006	3068	3193	3230	3270	3311	2993	2677	2357						
2000	9500	2871	2987	3022	3059	3098	2797	2497	2193						
	10000	2691	2800	2832	2867	2904	2617	2332	2043						
	10500	2526	2629	2659	2692	2727	2453	2181	1905						
2ERROC_UP_0_1_06	JP_0_1_05														

FAA APPROVED October 30, 2016

П	A	42	n	A	\ /
	/ ■ =	4 Z		\mathbf{A}	v

PERFORMANCE

L					All Eng	jine En	Route	Rate o	All Engine En Route Rate of Climb [FPM]	[FPM]					Γ
	교	FLAPS (UP, G	EAR L	JP, Ice	e Prot	ectior	n Off,	UP, GEAR UP, Ice Protection Off, MCT, 210 / 0.57 [KIAS / MACH]	210/	0.57	KIAS	/ MAC	迁	
Αţ	Wŧ						TEN	MPERA	TEMPERATURE [°C]	့င]					
[#]	[q]]	-65	09-	-55	-20	-45	-40	-35	-30	-25	-20	-15	-10	-5	0
	8000					3292	3338	3382	3426	3470	3465	3087	2705	2342	1977
	8500					3059	3102	3143	3184	3225	3220	2863	2503	2161	1818
0000	0006					2850	2890	2929	2967	3005	3000	2662	2322	1999	1674
2000	9500					2661	2698	2734	2770	2806	2800	2480	2158	1851	1543
	10000					2488	2523	2557	2591	2624	2619	2315	2007	1716	1422
	10500					2330	2363	2395	2426	2458	2453	2162	1869	1591	1311
	8000			3259	2088	3354	3403	3453	3131	2811	2476	2134	1794		
	8500			3025	3070	3114	3159	3206	2902	2601	2285	1963	1642		
טטטט	0006			2815	2857	2898	2940	2984	2697	2411	2112	1808	1504		
22000	9500			2625	2664	2702	2742	2783	2510	2239	1956	1667	1379		
	10000			2451	2488	2524	2561	2599	2340	2082	1812	1538	1264		
	10500			2292	2327	2360	2395	2431	2184	1938	1681	1418	1157		
	8000	2644	2689	2727	2922	2799	2591	2223	1883	1562	1258				
	8500	2443	2485	2520	2553	2587	2391	2044	1723	1421	1134				
3000	0006	2262	2301	2334	2365	2396	2210	1882	1579	1293	1021				
3	9500	2098	2134	2165	2193	2222	2046	1734	1447	1176	918				
	10000	1948	1982	2010	2037	2064	1896	1599	1325	1067	822				
	10500	1810	1842	1868	1893	1918	1757	1474	1213	296	733				
SO C O GIT JORGEC	20 0 0 01														

FAA APPROVED October 30, 2016

L	l		All	All Engine En Route Rate of Climb [FPM]	n Route	Rate of	Climb [F	PM]		l	Γ
Œ	FLAPS UP,	P, GE/	GEAR UP, Ice Protection Off, MCT, 210 / 0.57 [KIAS / MACH]	Ice Pro	otection	ι Off, Ν	ICT, 21	0 / 0.57	[KIAS	/ MAC	물
Alt	₩				T	<u>TEMPERATURE [°C]</u>	TURE [°([]			Γ
[#]	[q]]	-75	-20	-65	09-	-55	-50	-45	-40	-35	-30
	8000	2526	2560	2593	2625	2589	2364	2088	1759	1435	1108
	8500	2310	2341	2372	2401	2366	2153	1893	1583	1277	896
35000	0006	2115	2143	2171	2198	2164	1962	1716	1422	1132	840
20000	9200	1936	1962	1987	2012	1979	1787	1553	1274	866	721
	10000	1771	1795	1819	1841	1809	1626	1403	1136	874	610
	10500	1619	1641	1663	1683	1652	1477	1263	1009	758	506
	8000	1647	1674	1701	1706	1606	1361	1079	819	534	244
	8200	1468	1493	1517	1520	1425	1195	928	682	413	139
7000	0006	1304	1327	1349	1351	1260	1041	788	555	300	40
2000	9500	1154	1174	1193	1194	1108	839	658	437	194	-53
	10000	1014	1032	1049	1049	996	292	537	326	94	-141
	10500	883	899	915	914	833	643	423	221	0	-226
	8000	1137	1153	1167	1156	1035	802	222	322	42	-254
	8500	975	686	1002	066	875	654	442	200	-64	-344
73000	9000	826	838	849	837	726	517	316	98	-164	-430
2	9500	889	869	707	694	289	389	197	-21	-260	-512
	10000	228	267	574	561	460	269	82	-123	-351	-592
	10500	437	444	449	436	338	155	-21	-221	-438	699-
0000000	30 0 0 011										

FRROC UP 0 3 05

HA-420 AFM PERFORMANCE

		All	Engir	ne En	Rout	e Gro	ss Cli	imb G	radie	nt [%]			
FLAP	S UP,	GEA	R UP	, Ice	Prote	ection	on,	МСТ	, 21 0	/0.57	[KIA	S/MA	(CH
Alt	Wt					TEM	PERA	TURE	[°C]				
[ft]	[lb]	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
	8000		23.7	23.7	23.7	23.8	23.8	23.8	23.9	24.0	24.1	24.1	24.2
	8500		22.2	22.2	22.2	22.2	22.2	22.3	22.3	22.4	22.5	22.6	22.6
SL	9000		20.8	20.8	20.8	20.8	20.9	20.9	20.9	21.0	21.1	21.2	21.2
SL	9500		19.5	19.5	19.6	19.6	19.6	19.6	19.7	19.8	19.8	19.9	19.9
	10000		18.4	18.4	18.4	18.5	18.5	18.5	18.6	18.6	18.7	18.8	18.8
	10500		17.4	17.4	17.4	17.4	17.4	17.5	17.5	17.6	17.7	17.7	17.8
	8000		20.6	20.7	20.7	20.8	20.9	20.9	21.0	21.0	21.0	21.1	19.9
	8500		19.2	19.3	19.4	19.5	19.5	19.6	19.6	19.6	19.7	19.7	18.6
5000	9000		18.0	18.1	18.2	18.2	18.3	18.3	18.4	18.4	18.4	18.4	17.4
3000	9500		16.9	17.0	17.0	17.1	17.2	17.2	17.2	17.3	17.3	17.3	16.3
	10000		15.9	16.0	16.0	16.1	16.2	16.2	16.2	16.3	16.3	16.3	15.4
	10500		15.0	15.1	15.1	15.2	15.2	15.3	15.3	15.3	15.4	15.4	14.5
	8000		17.6	17.6	17.7	17.7	17.6	17.6	17.5	17.4	16.5	14.5	12.7
	8500		16.4	16.5	16.5	16.5	16.4	16.4	16.3	16.3	15.4	13.5	11.8
10000	9000		15.4	15.4	15.4	15.4	15.4	15.3	15.3	15.2	14.4	12.6	11.0
10000	9500		14.4	14.4	14.5	14.5	14.4	14.4	14.3	14.3	13.5	11.8	10.3
	10000		13.5	13.6	13.6	13.6	13.5	13.5	13.5	13.4	12.7	11.1	9.6
	10500		12.8	12.8	12.8	12.8	12.8	12.7	12.7	12.6	11.9	10.4	9.0
	8000		14.1	14.1	14.1	14.1	14.1	14.1	13.5	11.9	10.3	8.7	7.3
	8500		13.1	13.1	13.1	13.1	13.1	13.1	12.5	11.0	9.5	8.1	6.8
15000	9000		12.3	12.2	12.2	12.2	12.2	12.3	11.7	10.3	8.9	7.5	6.2
10000	9500		11.5	11.4	11.4	11.4	11.5	11.5	10.9	9.6	8.2	7.0	5.8
	10000		10.8	10.7	10.7	10.7	10.7	10.8	10.2	8.9	7.7	6.5	5.3
ldot	10500		10.1	10.1	10.1		10.1	10.1	9.6	8.4	7.2	6.0	4.9
	8000		12.1			11.4	9.8	8.3	6.9	5.5	4.3		
	8500		11.2				9.1	7.7	6.3	5.1	3.9		
20000	9000	10.5	10.5	10.5	10.5	9.8	8.5	7.1	5.8	4.7	3.6		
	9500	9.8	9.8	9.8	9.8	9.2	7.9	6.6	5.4	4.3	3.2		
	10000	9.1	9.1	9.2	9.2	8.6	7.3	6.1	5.0	3.9	2.9		
	10500	8.5	8.6	8.6	8.6	8.0	6.8	5.7	4.6	3.6	2.6		

2ERCG_UP_2_1_02

HA-420 AFM

PERFORMANCE

		All	Engi	ine E	n Roı	ıte G	ross	Climl	b Gra	dient	[%]			
FLAP	S UP,	GEA	R UF	, lc∈	Pro	tecti	on O	n, M	CT, 2	210/0	.57	KIAS	S/MA	CH]
Alt	Wt							RATL						
[ft]	[lb]	-75	-65	-60	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10
	8000				11.0	11.1	11.1	10.7	9.4	8.3	7.1	5.9	4.6	3.4
	8500				10.2	10.3	10.3	10.0	8.7	7.7	6.5	5.4	4.2	3.1
25000	9000				9.5	9.6	9.6	9.3	8.1	7.1	6.0	4.9	3.8	2.7
25000	9500				8.9	8.9	8.9	8.6	7.5	6.6	5.6	4.5	3.4	2.5
	10000				8.3	8.3	8.4	8.1	7.0	6.1	5.1	4.2	3.1	2.2
	10500				7.8	7.8	7.8	7.5	6.6	5.7	4.7	3.8	2.8	1.9
	8000		8.2	8.3	8.3	8.0	7.1	5.9	4.8	3.8	2.8	1.8		
	8500		7.6	7.7	7.7	7.4	6.6	5.4	4.4	3.5	2.5	1.6		
30000	9000		7.1	7.1	7.1	6.9	6.1	5.0	4.0	3.1	2.2	1.3		
30000	9500		6.5	6.6	6.6	6.4	5.6	4.6	3.7	2.8	2.0	1.1		
	10000		6.1	6.1	6.1	5.9	5.2	4.2	3.3	2.5	1.7	0.9		
	10500		5.6	5.7	5.7	5.5	4.8	3.9	3.0	2.3	1.5	0.7		
	8000	8.0	8.0	7.6	6.9	5.8	4.8	3.7	2.7	1.6				
	8500	7.3	7.3	7.0	6.2	5.3	4.3	3.3	2.3	1.3				
35000	9000	6.7	6.7	6.4	5.7	4.8	3.9	2.9	1.9	1.0				
00000	9500	6.1	6.1	5.8	5.2	4.3	3.4	2.5	1.6	0.7				
	10000	5.6	5.6	5.3	4.7	3.9	3.1	2.2	1.3	0.5				
	10500	5.1	5.1	4.9	4.3	3.5	2.7	1.9	1.1	0.2				
	8000	5.2	5.1	4.6	3.7	2.8	1.9	0.9	-0.5	-1.6				
	8500	4.7	4.6	4.1	3.3	2.4	1.5	0.5	-0.7					
40000	9000	4.1	4.0	3.6	2.8	2.0	1.2	0.3	-0.9					
10000	9500	3.7	3.6	3.1	2.4	1.6	0.8	0.0	-1.1					
	10000		3.1	2.7	2.0	1.3	0.5	-0.3	-1.3					
ш	10500	2.8	2.7	2.3	1.7	1.0	0.3	-0.5	_	-2.4				
	8000		3.4	2.8	2.0	1.1	-0.1							
	8500		2.9		1.6			-1.3						
43000	9000		2.5	1.9	1.2	0.4		-1.5						
	9500	2.2	2.0	1.5	0.8			-1.7						
	10000		1.6	1.1	0.5			-1.9						
25000 110	10500	1.4	1.3	8.0	0.2	-0.5	-1.4	-2.1	-2.4	-3.0				

2ERCG_UP_2_2_02

FAA APPROVED October 30, 2016

\mathbf{H}	۱-4	20) A	F	M
	\- -	$\Delta \mathbf{U}$, ,		v

PERFORMANCE

FLAPS UP, GEAR UP, Ice Protection On, MICT, 210 / 0.57 KIALAS / MACH] Alt Wt 8000 4512 4563 4614 4667 4718 4769 4831 4895 4957 5018 5075 8000 4512 4266 4314 4363 4411 4459 4831 4895 4957 5018 5075 8000 4218 4266 4314 4363 4411 4459 4831 4895 4967 5018 5075 8000 350 370 3761 3804 3847 3889 3932 3983 4036 4088 4138 4185 10000 350 370 3761 3804 3847 3869 3932 3983 4036 4088 4138 4185 8000 4284 4348 4410 4473 4532 4586 4600 4692 4770 4789 8000 4284 4348 4410 4473 4738 4335 4389 3859 3859 3884 8000 3749 3804 3800 3914 3966 4014 4061 4107 4151 4192 3993 8000 3749 3804 3800 3914 3966 4014 4061 4107 4151 4192 3993 8000 3749 3804 3800 3914 3968 3931 3858 3891 3804 3378 8000 3751 3800 3841 3880 3908 3934 3958 3891 3804 3378 8000 3751 3800 3841 3880 3908 3934 3958 3981 3804 3378 8000 3751 3800 3841 3880 3908 3934 3368 3881 3804 3378 8000 3291 3253 3370 3442 3483 4473 4268 4080 3628 3191 8000 3291 3293 3373 3493 3300 3945 3958 3981 3804 3378 8000 3291 3293 3373 3493 3473 3481 3869 3981 3804 3378 8000 3291 3293 3373 3493 3472 3472 3482 2596 2599 2032 15000 3093 3133 3133 3167 3199 3222 3241 3904 3572 2416 8000 3544 3572 3606 3646 3687 3730 3590 3192 2795 2996 2037 8000 364 3572 366 3646 3887 3730 3590 2030 3791 2772 2416 8000 379 3133 3163 3163 3163 3267 3284 3278 2418 1907 1478 8000 3690 379 3133 3167 2209 2204 3207 2416 1907 1477 1476 1908 8000 3644 3572 2660 3646 3687 3730 2691 2772 2416 1907 1477 1476 1908 8000 379 3133 3163 3163 3163 3163 3164 2772 2416 1907 1477 1476 1908 8000 3644 3672 2862 3073 2097 2097 2097 2097 1772 1476 1368					All Eng	ine En R	Soute Rai	All Engine En Route Rate of Climb [FPM]	nb [FPM]			l	Γ
-36 -25 -20 -15 -10 -5 0 5 4563 4614 4667 4718 4769 4831 4895 4957 5018 4266 4314 4667 4718 4769 4831 4895 5018 4266 4314 4667 4718 4769 4831 4895 4957 5018 4001 4046 4092 4136 4182 4236 4236 4692 4014 4014 3761 3804 3864 3863 3636 3691 3693 3693 3691 3691 3693 3691 3693 3691 3693<		FLA	PS UP,	GEAR	UP, Ice	Prote	ction O	n, MCT	7, 210 /	0.57 [K	IAS / M	IACH]	
-36 -30 -25 -10 -5 0 5 4563 4614 4667 4718 4769 4831 4895 4957 5018 4266 4314 4667 4718 4769 4831 4895 5018 4692 4001 4046 4092 4136 4118 4236 4293 4347 4401 3761 3804 3847 3889 3932 3983 4036 4088 4138 3545 3585 3626 3665 3706 3754 3804 3884 4336 4038 4014 4338 3424 3461 3500 3545 3593 3684 4833 3694 3884 3347 3486 3914 3507 3550 3591 4804 4604 4602 4774 4789 4061 4120 4178 4233 4284 4335 3893 3628 3893 3628 3894	Alt	W					TEMP	ERATUR	[0.]				
4563 4614 4667 4718 4769 4831 4895 4957 5018 4266 4314 4363 4411 4459 4517 4635 4692 4001 4046 4092 4136 4182 4236 4293 4347 4401 3761 3804 3847 3889 3932 3983 4036 4088 4138 3545 3585 3626 3665 3706 3754 3804 3863 3901 3347 3385 3626 3666 4014 4061 4107 4173 4743 4440 4473 4532 4284 4335 4383 4474 4474 3804 3865 3671 3766 4014 4061 4107 4174 4174 3804 3867 3572 3571 3828 3828 3828 3838 3804 3865 380 3388 3463 3864 3864<	[#]	[q]]	-40		-30	-25	-20	-15	-10	-5	0	5	10
4266 4314 4363 4411 4459 4517 4577 4635 4692 4001 4046 4092 4136 4182 4236 4293 4347 4401 3761 3804 3847 3889 3932 3983 4036 4088 4138 3545 3585 3626 3665 3706 3754 3804 3863 3901 3347 3385 3424 3461 3500 3545 3629 3639 3684 4348 4410 4473 4532 4586 4640 4692 4742 4789 4041 4410 4473 4532 4586 4640 4692 4742 4789 4041 4101 4014 4061 4107 4174 4189 4214 4061 4107 4174 4189 3625 3671 3308 3348 3388 3428 3893 3893 3803 3841		8000	4512		4614	4667	4718	4769	4831	4895	4957	5018	5075
4001 4046 4092 4136 4182 4236 4293 4347 4401 3761 3804 3847 3889 3932 3983 4036 4088 4138 3545 3585 3626 3665 3706 3754 3804 3853 3901 3347 3385 3424 3461 3500 3545 3633 3639 3684 4061 4120 4473 4532 4586 4640 4692 4742 4789 4061 4120 4473 4284 4335 4436 4474 4789 3804 3860 3914 4061 4061 4107 4174 4189 3807 3860 3908 3348 3388 3426 3467 3407 3073 3417 4159 4189 4217 4243 4068 4080 3938 3800 3841 3860 3908 3924 3563 367<		8200	4218		4314	4363	4411	4459	4517	4577	4635	4692	4745
3761 3804 3847 3889 3932 3983 4036 4088 4138 3545 3585 3626 3665 3706 3754 3804 3853 3901 3347 3385 3424 3461 3500 3545 3593 3639 3684 4338 4410 4473 4532 4586 4640 4692 4742 4789 4061 4100 4473 4532 4586 4640 4692 4742 4789 3804 3860 3914 3966 4014 4061 4107 4147 4167 3804 3860 3971 3771 3815 3858 3938 3938 3873 3412 3461 3507 3550 3591 3628 3981 3800 3841 3880 3934 3288 3426 3463 3476 3800 3841 3880 3938 3241 3428 3333	ō	0006	3956		4046	4092	4136	4182	4236	4293	4347	4401	4451
3545 3585 3626 3706 3754 3804 3853 3901 3347 3385 3424 3461 3500 3545 3593 3639 3684 4348 4410 4473 4532 4586 4640 4692 4742 4789 4061 4120 4178 4233 4284 4335 4383 4430 4474 3804 3860 3914 3966 4014 4061 4107 4151 4174 3804 3860 3914 3966 4014 4061 4107 4151 4174 3873 3425 3771 3815 3898 3899 3938 3363 3412 3461 350 352 3671 370 4073 4117 4159 4189 4217 4243 4268 4080 3638 3800 3841 3880 3908 3934 3958 3981 3804 3378 <td>2</td> <td>9500</td> <td>3720</td> <td></td> <td>3804</td> <td>3847</td> <td>3889</td> <td>3932</td> <td>3983</td> <td>4036</td> <td>4088</td> <td>4138</td> <td>4185</td>	2	9500	3720		3804	3847	3889	3932	3983	4036	4088	4138	4185
3347 3385 3424 3461 3500 3545 3639 3639 3684 4348 4410 4473 4532 4586 4640 4692 4742 4789 4061 4120 4178 4233 4284 4335 4383 4430 4474 3804 3860 3914 3966 4014 4061 4107 4151 4174 3804 3860 3914 356 3771 3815 3828 3839 3938 3172 3218 3265 3591 3626 3671 3707 3172 3218 3265 3591 3626 3680 3691 3843 3463 3658 3680 3684 3668 3680 3703 3724 3556 3671 3704 3656 3164 3704 3656 3680 3981 3804 3841 3800 3841 3880 3880 3824 3628 3869 <td< td=""><td></td><td>10000</td><td>3505</td><td></td><td>3585</td><td>3626</td><td>3665</td><td>3706</td><td>3754</td><td>3804</td><td>3853</td><td>3901</td><td>3945</td></td<>		10000	3505		3585	3626	3665	3706	3754	3804	3853	3901	3945
4348 4410 4473 4532 4586 4640 4692 4742 4789 4061 41120 4178 4233 4284 4335 4383 4474 4774 3804 3860 3914 3966 4014 4061 4107 4151 4174 3573 3625 3677 3725 3771 3815 3898 3898 3898 3898 3898 3172 3218 3265 3308 3348 3426 3463 3497 4073 4117 4159 4189 4217 4243 4268 4080 3628 3800 3841 3880 3934 3958 3891 3804 3378 3855 3593 3656 3680 3703 3724 3556 3154 3133 3167 3199 3222 3244 3263 3349 346 346 369 3349 356 369 3333 336 </td <td></td> <td>10500</td> <td>3310</td> <td></td> <td>3385</td> <td>3424</td> <td>3461</td> <td>3200</td> <td>3545</td> <td>3593</td> <td>3639</td> <td>3684</td> <td>3726</td>		10500	3310		3385	3424	3461	3200	3545	3593	3639	3684	3726
4061 4120 4178 4233 4284 4335 4385 4430 4474 3804 3860 3914 3966 4014 4061 4107 4151 4192 3573 3625 3677 3725 3771 3815 3858 3899 3938 3363 3412 3461 3507 3550 3591 3652 3671 3707 3172 3218 3265 3308 3348 3426 3463 3497 4073 4117 4159 4189 4217 4243 4268 4080 3628 3800 3841 3880 3934 3958 3981 3804 3778 3800 3841 3880 3656 3680 3703 3724 3556 3146 3724 3724 3556 3733 2945 2599 3334 3370 3404 3429 3472 3492 3333 2945 2599		8000	4284		4410	4473	4532	4586	4640	4692	4742	4789	4566
3804 3860 3914 3966 4014 4061 4107 4151 4192 3573 3625 3677 3725 3771 3815 3858 3899 3938 3363 3412 3461 3507 3550 3591 3632 3671 3707 3172 3218 3265 3308 3348 3388 3426 3463 3497 4073 4117 4159 4189 4217 4243 4268 4080 3628 3800 3841 3880 3934 3958 3981 3804 3378 3800 3841 3880 3934 3958 3981 3804 3378 3555 3593 3630 3656 3680 3703 3724 3556 3154 3334 3370 3492 3333 2345 3281 3167 34133 3167 3034 3054 3050 3192 2408 259		8500	4001		4120	4178	4233	4284	4335	4383	4430	4474	4263
3573 3625 3677 3725 3771 3815 3858 3899 3938 3363 3412 3461 3507 3550 3591 3632 3671 3707 3172 3218 3265 3308 3348 3326 3463 3497 4073 4117 4159 4189 4217 4243 4268 4080 3628 3800 3841 3880 3934 3958 3981 3804 3378 3800 3841 3880 3934 3958 3981 3804 3378 3855 3593 3650 3680 3703 3724 3563 3281 3154 3133 3167 3199 3222 3244 3263 3281 3130 2767 2950 2982 3012 3034 3054 3045 2345 2591 2796 2591 3103 3133 3167 3294 3472 3441	000	0006	3749		3860	3914	3966	4014	4061	4107	4151	4192	3993
3363 3412 3461 3507 3550 3591 3632 3671 3707 3172 3218 3265 3308 3348 3388 3426 3463 3497 4073 4117 4159 4189 4217 4243 4268 4080 3628 3800 3841 3880 3908 3934 3958 3981 3804 3378 3555 3593 3630 3656 3680 3703 3724 3556 3154 3334 3370 3404 3429 3451 3472 3492 3333 2951 2950 2982 3012 3034 3054 3072 3089 2945 2599 3357 3606 3646 3687 3730 3590 3192 2795 2399 3403 2947 3241 3116 2762 2408 2050 1772 2903 2931 2777 2241 1907	2000	9500	3521	3573	3625	3677	3725	3771	3815	3858	3899	3938	3749
3172 3218 3265 3308 3348 3388 3426 3463 3497 4073 4117 4159 4189 4217 4243 4268 4080 3628 3800 3841 3880 3908 3934 3958 3981 3804 3378 3555 3593 3630 3656 3680 3703 3724 3556 3154 3334 3370 3404 3429 3451 3472 3492 3333 2951 2950 2982 3012 3034 3054 3072 3089 2945 2599 3357 3606 3646 3687 3730 3590 3192 2796 2399 3103 2931 2964 3687 3730 3590 3192 2796 2591 2718 3103 2931 2963 2997 3032 2913 2577 2241 1907 2721 2747 2740		10000	3314		3412	3461	3507	3550	3591	3632	3671	3707	3527
4073 4117 4159 4189 4217 4243 4268 4080 3628 3800 3841 3880 3908 3934 3958 3981 3804 3378 3555 3593 3650 3656 3680 3703 3724 3556 3154 3334 3370 3404 3429 3451 3472 3492 3333 2951 2950 2982 3012 3222 3244 3263 3281 3130 2767 2950 2982 3012 3034 3054 3072 3089 2945 2599 3572 3606 3646 3687 3730 3590 3192 2795 2399 3103 3133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2963 2942 3341 2668 2409 2090 1772 2721 2747 2759 2409		10500	3125	3172	3218	3265	3308	3348	3388	3426	3463	3497	3326
3800 3841 3880 3908 3934 3958 3981 3804 3378 3555 3593 3650 3650 3703 3724 3556 3154 3334 3370 3404 3429 3451 3724 3556 3154 3133 3167 3199 3222 3244 3263 3281 3130 2767 2950 2982 3012 3034 3054 3072 3089 2945 2599 3572 3606 3646 3687 3730 3590 3192 2795 2599 3325 3357 3394 3432 3472 3341 2966 2591 2218 3103 3133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2963 2842 2729 2409 2090 1772 2554 2579 2568 2560 2255 1951 1647		8000	4021		4117	4159	4189	4217	4243	4268	4080	3628	3191
3555 3593 3630 3656 3680 3703 3724 3556 3154 3334 3370 3404 3429 3451 3472 3492 3333 2951 3133 3167 3199 3222 3244 3263 3281 3130 2767 2950 2982 3012 3034 3054 3072 3089 2945 2599 3572 3606 3646 3687 3730 3590 3192 2795 2399 3325 3357 3394 3432 3472 3341 2966 2591 2218 3103 3133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2967 3032 2913 2577 2241 1907 2721 2747 2777 2688 2560 2255 1951 1647		8200	3751		3841	3880	3308	3934	3958	3981	3804	3378	2966
3334 3370 3404 3429 3451 3472 3492 3333 2951 3133 3167 3199 3222 3244 3263 3281 3130 2767 2950 2982 3012 3034 3054 3072 3089 2945 2599 3572 3606 3646 3687 3730 3590 3192 2795 2399 3325 3357 3394 3432 3472 3341 2966 2591 2218 3103 2133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2967 3032 2913 2577 2241 1907 2721 2747 2740 2050 1772 2554 2579 2668 2560 2255 1951 1647	1000	0006	3509		3593	3630	3656	3680	3703	3724	3556	3154	2765
3133 3167 3199 3222 3244 3263 3281 3130 2767 2950 2982 3012 3034 3054 3072 3089 2945 2599 3572 3606 3646 3687 3730 3590 3192 2795 2599 3325 3357 3394 3432 3472 3341 2966 2591 2218 3103 3133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2963 2997 3032 2913 2577 2241 1907 2721 2747 2777 2809 2842 2729 2409 2090 1772 2554 2579 2668 2560 2255 1951 1647	3	9500	3291		3370	3404	3429	3451	3472	3492	3333	2951	2582
2950 2982 3012 3034 3054 3072 3089 2945 2599 3572 3606 3646 3687 3730 3590 3192 2795 2399 3325 3357 3394 3432 3472 3341 2966 2591 2218 3103 3133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2963 2997 3032 2913 2577 2241 1907 2721 2747 2777 2809 2842 2729 2409 2090 1772 2554 2579 2668 2560 2255 1951 1647		10000	3093		3167	3199	3222	3244	3263	3281	3130	2767	2416
3572 3606 3646 3687 3730 3590 3192 2795 2399 3325 3357 3394 3432 3472 3341 2966 2591 2218 3103 3133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2967 3032 2913 2577 2241 1907 2721 2747 2809 2842 2729 2409 2090 1772 2554 2579 2607 2637 2668 2560 2255 1951 1647		10500	2912		2982	3012	3034	3054	3072	3089	2945	2599	2264
3325 3357 3394 3432 3472 3341 2966 2591 2218 3103 3133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2963 2997 3032 2913 2577 2241 1907 2721 2747 2777 2809 2842 2729 2409 2090 1772 2554 2579 2607 2637 2668 2560 2255 1951 1647		8000	3544		3606	3646	3687	3730	3290	3192	2795	2399	2032
3103 3133 3167 3204 3241 3116 2762 2408 2055 2903 2931 2963 2997 3032 2913 2577 2241 1907 2721 2747 2777 2809 2842 2729 2409 2090 1772 2554 2579 2607 2637 2668 2560 2255 1951 1647		8200	3299		3357	3394	3432	3472	3341	2966	2591	2218	1872
2903 2931 2963 2997 3032 2913 2577 2241 1907 2721 2747 2777 2809 2842 2729 2409 2090 1772 2554 2579 2607 2637 2668 2560 2255 1951 1647	15000	0006	3079		3133	3167	3204	3241	3116	2762	2408	2055	1728
2721 2747 2777 2809 2842 2729 2409 2090 1772 2554 2579 2607 2637 2668 2560 2255 1951 1647	3	9500	2881		2931	2963	2997	3032	2913	2577	2241	1907	1597
2554 2579 2607 2637 2668 2560 2255 1951 1647		10000	2700	2721	2747	2777	2809	2842	2729	2409	2090	1772	1476
		10500	2535	2554	2579	2607	2637	2668	2560	2255	1951	1647	1366

FAA APPROVED October 30, 2016

TTA	-420	A 1	
\Box	1 = 4 Z U		r IVI

PERFORMANCE

L				ľ	III Engi	ne En l	Route	All Engine En Route Rate of Climb [FPM]	Climb	[FPM]					Γ
	5	FLAPS U	IP, GE	EAR U	P, Ice	Prote	ection	JP, GEAR UP, Ice Protection On, MCT, 210 / 0.57 [KIAS / MACH]	ACT,	210/0	.57 [k	(IAS /	MAC	豆	
Alt	Wŧ						Œ	TEMPERATURE [°C]	TURE	[့					
[#]	[q]]	-65	09-	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0
	8000					3308	3352	3396	3440	3255	2838	2433	2029	1648	1292
	8500					3074	3115	3156	3197	3023	2629	2248	1867	1508	1173
00000	0006					2864	2902	2940	2978	2814	2442	2081	1721	1381	1065
70007	9500					2674	2709	2745	2781	2624	2271	1929	1588	1266	365
	10000					2500	2533	2567	2601	2452	2116	1791	1466	1160	874
	10500					2342	2373	2404	2436	2294	1974	1663	1353	1061	789
	8000			3272	3318	3366	3288	2926	2592	2237	1871	1476	1108		
	8500			3037	3080	3124	3051	2710	2395	2060	1715	1343	966		
00030	0006			2826	2866	2907	2837	2515	2217	1900	1574	1222	894		
22000	9500			2635	2672	2711	2644	2338	2056	1755	1446	1112	800		
	10000			2461	2495	2532	2468	2177	1908	1622	1328	1010	714		
	10500			2301	2334	2368	2307	2029	1773	1499	1219	916	633		
	8000	2649	2692	2730	2669	2397	2017	1661	1326	986	646				
	8500	2447	2488	2523	2465	2209	1850	1515	1199	878	258				
30000	0006	2266	2303	2336	2281	2038	1699	1382	1083	780	476				
2000	9500	2101	2136	2166	2114	1883	1562	1261	277	689	401				
	10000	1951	1983	2011	1961	1741	1435	1149	879	909	331				
	10500	1812	1843	1869	1820	1611	1319	1045	788	526	265				
2ERROC_UP_2_2_02	P_2_2_02														

FAA APPROVED October 30, 2016 HJ1-29000-003-001

Page 5-230

П	A-4	20	A 1	71	/ T
	/ 3 = 4	- 21	<i>I</i> A	יוייו	v

PERFORMANCE

L			Ā	All Engine En Route Rate of Climb [FPM]	En Route	Rate of C	limb [FP	F			Γ
	FLAPS	P.	EAR UF	GEAR UP, Ice Protection On, MCT, 210 / 0.57 [KIAS / MACH]	otection	on, Mو	CT, 210	7 0.57	KIAS / N	/ACH]	
Alt	Wŧ					TEMPERATURE [°C]	TURE [°C				
[ŧf]	[q]]	-75	-70	-65	09-	-55	-50	-45	-40	-35	-30
	8000	2531	2564	2595	2509	2277	1965	1630	1276	923	545
	8200	2315	2345	2374	2292	2072	1778	1462	1128	795	438
25000	0006	2119	2146	2173	2095	1886	1608	1309	992	229	339
22000	9200	1939	1965	1989	1914	1716	1452	1167	298	292	247
	10000	1775	1798	1820	1749	1559	1307	1036	750	464	159
	10500	1623	1644	1664	1595	1414	1173	914	641	368	77
	8000	1648	1674	1658	1505	1240	943	623	293	-164	-576
	8200	1469	1493	1477	1331	1081	800	513	187	-244	-632
7000	0006	1306	1327	1311	1172	935	699	397	88	-320	-688
4000	9200	1155	1174	1158	1025	799	546	288	φ	-394	-743
	10000	1015	1032	1015	889	673	432	185	-95	-464	-797
	10500	884	899	883	761	555	324	88	-180	-532	-850
	8000	1129	1146	1111	923	658	365	-17	-347	-730	-902
	8200	896	982	949	771	521	243	-118	-430	-566	-845
43000	0006	820	832	799	630	392	129	-213	-508	-636	-900
2000	9200	682	692	099	498	272	22	-304	-585	-705	-955
	10000	553	561	529	375	159	8	-390	-658	-772	-1010
	10500	431	438	407	258	51	-178	-474	-730	-837	-1065
2ERROC_UP_2_3_02	2_3_02										

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

APPROACH AND LANDING

Use of approach and landing information tables:

- 1. Determine the airplane gross weight and expected airplane configuration based on icing conditions at the time of landing.
- 2. Obtain airport information:
 - active runway
 - available runway length
 - runway gradient
 - ambient temperature
 - O Determine that the temperature is within the ambient temperature limits found in the limitations section.
 - pressure altitude
 - wind
 - O Determine the wind component parallel to active runway from the crosswind component chart on page 24.
- 3. Check the maximum landing weight permitted by climb requirement for the planned airplane configuration on page 234. If the limitations restrict the landing gross weight, the pilot must burn fuel prior to landing.
- 4. Using the landing gross weight determined in step 3, determine V_{REF} and the uncorrected landing field length on pages 236 251.
- 5. For runway gradients and wind, the landing field length must be corrected using the correction tables on pages 239 253.
- 6. If the available runway length is less than the required landing field length, the airplane weight must be reduced until this requirement can be met.
- 7. Approach climb and landing climb gradient tables are provided on pages 242 259.

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

Use of approach and landing information tables (continued):

NOTE Landing distances include a 15 % factor to account for

operational factors including crosswind and landing technique. If required, use the Operational Factors Required for Landing Distance section to remove or increase the factor based on the operational rules required.

1

NOTE Landing data for 10,600 lbs are provided for reference

and interpolation only in case an emergency landing is

required.

NOTE The landing field length provided in the performance

section of the flight manual is based on a dry runway. If landing on a wet runway, it is recommended to increase the predicted landing field length by 30 %.

NOTE Ice Protection ON assumes both ENG and WING A/I

are ON. If only ENG A/I is on, the Ice Protection ON

tables must be used.

NOTE The landing field length wind and runway slope

correction tables are valid for Ice Protection Off and On.

HA-420 AFM PERFORMANCE

Maximum Landing Weight - Climb and Brake Energy Limited

For reference, data has been provided for weights over the maximum landing weight.

Red shading on landing tables indicates conditions where the airplane does not meet the climb requirements, but can be used for interpolation.

Example:

Ambient Conditions:

Temperature 30 °C Airport Altitude 926 ft

Wind 10 kts Tailwind

Runway Gradient -1.6 %

Aircraft Configuration:

Flaps LDG Weight 9860 lbs

Bleed Setting:

Ice Protection Off

Using the Weight Limit Chart:

Weight Limit Not Limited

Using the Tables:

Uncorrected

V_{REF} 112 KIAS
 Field Length 3716 ft
 Approach Gradient 5.7 %

Wind Correction:

• Field Length 4262 ft

Slope Correction:

• Field Length: 6016 ft

FAA APPROVED **HJ1-29000-003-001** October 30, 2016

Page 5-234

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

	U			nding Fi		-	et]	
		VACOURAL DUS		Zero SI		n medamedayyet		
		Flaps	LDG,	Ice Pr	otecti	on Off		
				Landi	ng Weig	ıht [lb]	VO.	,,,,,
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600
[ft]	[°C]				REF [KIA			
		100	102	105	108	111	113	117
	-40	2539	2602	2703	2802	2900	2970	3112
	15	2906	2981	3101	3219	3335	3418	3587
	25	2973	3051	3173	3294	3414	3500	3674
-1000	35	3041	3120	3246	3371	3494	3581	3760
	45	3108	3190	3319	3446	3573	3663	3846
	50	3141	3224	3355	3484	3612	3703	3889
	55	3174	3258	3390	3521	3651	3743	3931
	-40	2596	2662	2765	2867	2968	3040	3186
	15	2976	3054	3177	3298	3418	3504	3678
Sea	25	3046	3126	3252	3377	3500	3588	3767
Level	35	3116	3198	3327	3455	3582	3672	3856
Level	45	3185	3269	3402	3534	3663	3756	3945
	50	3219	3305	3439	3572	3704	3797	3989
	55	3253	3340	3476	3611	3744	3839	4032
	-40	2657	2724	2830	2935	3039	3113	3264
	10	3014	3093	3218	3341	3462	3549	3726
	20	3085	3167	3295	3422	3547	3636	3818
1000	30	3157	3241	3373	3503	3631	3723	3910
	40	3229	3315	3450	3583	3715	3810	4001
	45	3265	3352	3488	3624	3757	3853	4047
	50	3300	3388	3526	3663	3799	3895	4092
	-40	2721	2791	2900	3008	3115	3191	3346
	10	3090	3172	3300	3427	3552	3642	3823
	20	3165	3249	3381	3511	3640	3731	3919
2000	30	3239	3325	3461	3594	3727	3821	4013
	40	3313	3402	3540	3678	3813	3910	4108
	45	3349	3439	3580	3719	3856	3955	4155
	50	3386	3477	3619	3760	3899	3998	4201

LFL_LDG_0_-1_06

HA-420 AFM PERFORMANCE

	U			nding Fi			et]	
		V26/04/64 0U9		Zero SI		n medamedawa		
		Flaps	LDG,	Ice Pr	otecti	on Off	7	
				Landi	ng Weig	ıht [lb]	VO.	A.C.
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600
[ft]	[°C]				REF [KIA			
		100	102	105	108	111	113	117
	-40	2788	2860	2973	3084	3194	3272	3432
	5	3132	3215	3345	3473	3600	3691	3876
	15	3208	3294	3428	3560	3691	3784	3974
3000	25	3285	3373	3510	3646	3781	3876	4072
	35	3362	3452	3593	3732	3870	3969	4170
	40	3399	3491	3634	3775	3915	4015	4218
	45	3437	3530	3674	3817	3959	4060	4266
	-40	2858	2933	3048	3163	3276	3357	3521
	0	3173	3258	3390	3520	3649	3741	3928
100000000000000000000000000000000000000	10	3253	3340	3475	3610	3742	3837	4030
4000	20	3332	3422	3561	3699	3835	3933	4131
	35	3450	3543	3689	3832	3974	4076	4282
	40	3489	3584	3731	3876	4020	4123	4332
	45	3528	3623	3772	3919	4065	4169	4382
	-40	2931	3008	3127	3245	3362	3445	3614
	0	3258	3346	3481	3616	3748	3843	4036
100.00000000000000000000000000000000000	10	3340	3430	3570	3708	3845	3942	4141
5000	30	3503	3598	3746	3892	4036	4140	4350
	35	3544	3640	3790	3938	4084	4189	4402
	40	3584	3681	3833	3983	4131	4237	4453
	45	3623	3722	3876	4028	4178	4285	4504
	-40	3007	3087	3210	3332	3452	3537	3712
	-5	3303	3393	3531	3667	3801	3898	4094
0.0000000000000000000000000000000000000	5	3388	3480	3622	3762	3901	4000	4202
6000	15	3473	3568	3714	3858	4001	4103	4311
	30	3599	3698	3850	4000	4149	4255	4472
	35	3640	3740	3894	4047	4198	4306	4525
	40	3682	3783	3939	4093	4247	4356	4578

LFL_LDG_0_3_05

HA-420 AFM

PERFORMANCE

	U					gth [fee	et]	
		VACOURAL DUS		Zero SI	STATE STORY	n medamedayyet		
		Flaps	LDG,	Ice Pr	otecti	on Off		
				Landi	ng Weig	ht [lb]		
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600
[ft]	[°C]				REF [KIA			
		100	102	105	108	111	113	117
	-40	3087	3169	3296	3421	3545	3633	3813
	-10	3349	3441	3580	3719	3855	3953	4152
	10	3525	3622	3770	3917	4062	4166	4377
7000	25	3656	3756	3911	4064	4216	4324	4544
	30	3699	3801	3958	4113	4266	4376	4600
	35	3742	3845	4004	4161	4317	4428	4655
	40	3784	3889	4050	4209	4367	4480	4709
	-40	3169	3254	3385	3514	3642	3733	3919
	-15	3396	3489	3631	3771	3910	4009	4211
	0	3532	3630	3778	3925	4071	4175	4386
8000	20	3713	3816	3973	4129	4283	4393	4617
	25	3758	3862	4021	4179	4336	4447	4675
	30	3802	3908	4070	4230	4388	4501	4732
	35	3846	3953	4117	4280	4440	4555	4789
	-40	3254	3343	3478	3611	3743	3837	4028
	-15	3490	3586	3733	3877	4021	4123	4331
	15	3771	3876	4036	4194	4351	4463	4691
9000	20	3817	3924	4086	4247	4406	4519	4751
	25	3863	3971	4136	4299	4460	4576	4810
	30	3909	4019	4186	4351	4514	4631	4869
	35	3955	4066	4235	4402	4568	4687	4928
	-40	3343	3435	3574	3711	3847	3944	4142
	-20	3539	3637	3785	3932	4078	4182	4393
	15	3878	3986	4152	4315	4477	4593	4828
10000	20	3925	4036	4203	4369	4533	4651	4890
	25	3973	4085	4255	4423	4590	4709	4951
	30	4021	4134	4306	4477	4645	4766	5012
	35	4068	4183	4357	4530	4701	4823	5073

LFL_LDG_0_7_05

HA-420 AFM PERFORMANCE

	Win	d Corrected	Landi	ng Fie	ld Ler	ngth [f	eet]	
		Flaps LD	G, Ice	Prote	ction(Off		
Tail	wind				Head	dwind		
-10	-5	▼ REF [0] ▶	5	10	15	20	25	30
2450	2230	2000	1950	1900	1840	1790	1730	1670
2556	2333	2100	2050	1998	1938	1886	1826	1766
2661	2436	2200	2149	2097	2035	1983	1922	1861
2767	2538	2300	2249	2195	2133	2079	2018	1957
2872	2641	2400	2348	2294	2230	2176	2114	2052
2978	2744	2500	2448	2392	2328	2272	2210	2148
3084	2847	2600	2548	2490	2426	2368	2306	2244
3189	2950	2700	2647	2589	2523	2465	2402	2339
3295	3052	2800	2747	2687	2621	2561	2498	2435
3400	3155	2900	2846	2786	2718	2658	2594	2530
3506	3258	3000	2946	2884	2816	2754	2690	2626
3612	3361	3100	3046	2982	2914	2850	2786	2722
3717	3464	3200	3145	3081	3011	2947	2882	2817
3823	3566	3300	3245	3179	3109	3043	2978	2913
3928	3669	3400	3344	3278	3206	3140	3074	3008
4034	3772	3500	3444	3376	3304	3236	3170	3104
4140	3875	3600	3544	3474	3402	3332	3266	3200
4245	3978	3700	3643	3573	3499	3429	3362	3295
4351	4080	3800	3743	3671	3597	3525	3458	3391
4456	4183	3900	3842	3770	3694	3622	3554	3486
4562	4286	4000	3942	3868	3792	3718	3650	3582
4668	4389	4100	4042	3966	3890	3814	3746	3678
4773	4492	4200	4141	4065	3987	3911	3842	3773
4879	4594	4300	4241	4163	4085	4007	3938	3869
4984	4697	4400	4340	4262	4182	4104	4034	3964
5090	4800	4500	4440	4360	4280	4200	4130	4060
5196	4903	4600	4540	4458	4378	4296	4226	4156
5301	5006	4700	4639	4557	4475	4393	4322	4251
5407	5108	4800	4739	4655	4573	4489	4418	4347
5512	5211	4900	4838	4754	4670	4586	4514	4442
5618	5314	5000	4938	4852	4768	4682	4610	4538

LWC_LDG_0_06

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

	Slope	e Corr	ected	Landing Fi	ield Le	ngth	[feet]	
		Fla	ps LD	G, Ice Prote	ection	Off		
			Rui	nway Gradient	[%]			
-2.0	-1.5	-1.0	-0.5	▼ REF [0] ►	0.5	1.0	1.5	2.0
2010	1957	1834	1726	1600	1526	1432	1379	1300
2197	2100	1955	1835	1700	1619	1521	1464	1383
2385	2244	2077	1943	1800	1713	1611	1550	1465
2572	2387	2198	2052	1900	1806	1700	1635	1548
2760	2530	2320	2160	2000	1900	1790	1720	1630
2948	2673	2442	2268	2100	1994	1880	1805	1712
3135	2816	2563	2377	2200	2087	1969	1890	1795
3323	2960	2685	2485	2300	2181	2059	1976	1877
3510	3103	2806	2594	2400	2274	2148	2061	1960
3698	3246	2928	2702	2500	2368	2238	2146	2042
3886	3389	3050	2810	2600	2462	2328	2231	2124
4073	3532	3171	2919	2700	2555	2417	2316	2207
4261	3676	3293	3027	2800	2649	2507	2402	2289
4448	3819	3414	3136	2900	2742	2596	2487	2372
4636	3962	3536	3244	3000	2836	2686	2572	2454
4824	4105	3658	3352	3100	2930	2776	2657	2536
5011	4248	3779	3461	3200	3023	2865	2742	2619
5199	4392	3901	3569	3300	3117	2955	2828	2701
5386	4535	4022	3678	3400	3210	3044	2913	2784
5574	4678	4144	3786	3500	3304	3134	2998	2866
5762	4821	4266	3894	3600	3398	3224	3083	2948
5949	4964	4387	4003	3700	3491	3313	3168	3031
6137	5108	4509	4111	3800	3585	3403	3254	3113
6324	5251	4630	4220	3900	3678	3492	3339	3196
6512	5394	4752	4328	4000	3772	3582	3424	3278
6700	5537	4874	4436	4100	3866	3672	3509	3360
6887	5680	4995	4545	4200	3959	3761	3594	3443
7075	5824	5117	4653	4300	4053	3851	3680	3525
7262	5967	5238	4762	4400	4146	3940	3765	3608
7450	6110	5360	4870	4500	4240	4030	3850	3690
7638	6253	5482	4978	4600	4334	4120	3935	3772

LSC1_LDG_0_06

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

	Slop	e Corr	ected	Landing Fi	ield Le	ngth	[feet]	
		Fla	ps LD	G, Ice Prote	ection	Off		
			Ru	nway Gradient	[%]			
-2.0	-1.5	-1.0	-0.5	◀ REF [0] ▶	0.5	1.0	1.5	2.0
7638	6253	5482	4978	4600	4334	4120	3935	3772
7825	6396	5603	5087	4700	4427	4209	4020	3855
8013	6540	5725	5195	4800	4521	4299	4106	3937
8200	6683	5846	5304	4900	4614	4388	4191	4020
8388	6826	5968	5412	5000	4708	4478	4276	4102
8576	6969	6090	5520	5100	4802	4568	4361	4184
8763	7112	6211	5629	5200	4895	4657	4446	4267
8951	7256	6333	5737	5300	4989	4747	4532	4349
9138	7399	6454	5846	5400	5082	4836	4617	4432
9326	7542	6576	5954	5500	5176	4926	4702	4514
9514	7685	6698	6062	5600	5270	5016	4787	4596
9701	7828	6819	6171	5700	5363	5105	4872	4679

LSC2_LDG_0_06

HA-420 AFM

PERFORMANCE

-	Uncor		Discont		A- Barrier Control		ent [%]	
		12.71	unway,	77 7121		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
		aps T	O/APP				Off	
				The second contracting	ng Weig			
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600
[ft]	[°C]				REF [KIA			
		100	102	105	108	111	113	117
	-40	12.6	11.4	10.1	8.9	7.9	7.2	5.9
	15	12.9	11.7	10.3	9.1	8.1	7.4	6.1
	25	12.9	11.7	10.4	9.2	8.1	7.4	6.1
-1000	35	10.9	9.8	8.6	7.5	6.5	5.9	4.7
	45	8.4	7.4	6.3	5.3	4.5	3.9	2.9
	50	7.1	6.2	5.2	4.3	3.5	2.9	2.0
	55	5.9	5.0	4.1	3.2	2.5	2.0	1.1
	-40	12.3	11.2	9.9	8.7	7.7	7.0	5.7
	15	12.6	11.5	10.1	9.0	7.9	7.2	5.9
Sea	25	12.7	11.5	10.2	9.0	8.0	7.3	6.0
Level	35	10.2	9.2	8.0	6.9	6.0	5.4	4.2
V=31.74	45	7.7	6.8	5.7	4.8	4.0	3.4	2.4
	50	6.4	5.6	4.6	3.7	3.0	2.5	1.5
	55	5.2	4.4	3.5	2.7	2.0	1.5	0.7
	-40	11.9	10.8	9.5	8.3	7.3	6.7	5.4
	10	12.2	11.1	9.8	8.6	7.6	6.9	5.6
12/20/20/20	20	12.3	11.1	9.8	8.6	7.6	6.9	5.7
1000	30	10.6	9.5	8.3	7.2	6.3	5.6	4.5
	40	8.2	7.2	6.1	5.2	4.3	3.8	2.8
	45	6.9	6.0	5.0	4.2	3.4	2.8	1.9
	50	5.7	4.9	4.0	3.1	2.4	1.9	1.0
	-40	11.5	10.4	9.1	8.0	7.0	6.4	5.2
	10	11.8	10.7	9.4	8.3	7.3	6.6	5.4
0005	20	11.9	10.7	9.4	8.3	7.3	6.6	5.4
2000	30	9.7	8.7	7.5	6.5	5.6	5.0	3.9
	40	7.4	6.5	5.5	4.5	3.7	3.2	2.2
	45	6.2	5.4	4.4	3.6	2.8	2.3	1.4
MAC TO 0 -1	50	5.1	4.3	3.4	2.6	1.9	1.4	0.6

MAC_TO_0_-1_07

HA-420 AFM PERFORMANCE

	Uncor					h Gradi	ent [%]	
		V00000-M3	unway,	01-02070-001 - 025-5	SCHOOL SCHOOL	it introductional states		
	F	aps To	O/APP	The state of the s		ction (Off	
					ng Weig			
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600
[ft]	[°C]	1000000	-55/01-005/4		REF [KIA			
		100	102	105	108	111	113	117
	-40	11.1	10.0	8.8	7.7	6.7	6.0	4.9
	5	11.4	10.3	9.0	7.9	6.9	6.3	5.1
	15	11.4	10.3	9.0	7.9	6.9	6.3	5.1
3000	25	10.0	8.9	7.8	6.7	5.8	5.2	4.1
	35	7.7	6.8	5.7	4.8	4.0	3.4	2.5
	40	6.6	5.8	4.8	3.9	3.1	2.6	1.7
	45	5.5	4.7	3.8	3.0	2.2	1.8	0.9
	-40	10.7	9.6	8.4	7.3	6.4	5.7	4.6
	0	10.9	9.8	8.6	7.5	6.6	5.9	4.8
F2120-6220	10	11.0	9.9	8.6	7.6	6.6	5.9	4.8
4000	20	10.3	9.2	8.0	7.0	6.0	5.4	4.3
	35	6.9	6.0	5.0	4.1	3.3	2.8	1.9
	40	5.8	5.0	4.1	3.2	2.5	2.0	1.1
	45	4.8	4.0	3.2	2.4	1.7	1.2	0.4
	-40	10.3	9.2	8.0	7.0	6.1	5.4	4.3
	0	10.5	9.4	8.2	7.2	6.2	5.6	4.5
	10	10.5	9.4	8.2	7.2	6.2	5.6	4.5
5000	30	7.1	6.2	5.2	4.3	3.5	3.0	2.0
	35	6.1	5.2	4.3	3.5	2.7	2.2	1.3
	40	5.1	4.3	3.4	2.6	1.9	1.4	0.6
	45	4.1	3.3	2.5	1.8	1.1	0.7	-0.1
	-40	9.9	8.9	7.7	6.7	5.8	5.2	4.0
	-5	10.1	9.0	7.9	6.8	5.9	5.3	4.2
	5	10.0	9.0	7.8	6.8	5.9	5.3	4.2
6000	15	9.6	8.6	7.4	6.4	5.5	4.9	3.8
	30	6.3	5.5	4.5	3.7	2.9	2.4	1.5
	35	5.3	4.5	3.6	2.8	2.1	1.6	0.8
	40	4.3	3.6	2.7	2.0	1.3	0.9	0.1

MAC_TO_0_3_05

HA-420 AFM

PERFORMANCE

	Uncor		Discont unway,				ent [%]	
	E		O/APP	a renorm that	COL-	2 65 65 65 65 65 65 65 65)ff	
		aps i	JIAFF		ng Weig		J11	
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600
[ft]	[°C]	7000	0000		REF [KIA		5000	10000
		100	102	105	108	111	113	117
	-40	9.6	8.5	7.4	6.4	5.5	4.9	3.8
	-10	9.7	8.7	7.5	6.5	5.6	5.0	3.9
	10	9.6	8.6	7.4	6.4	5.5	4.9	3.8
7000	25	6.6	5.7	4.7	3.9	3.1	2.6	1.7
	30	5.6	4.7	3.8	3.0	2.3	1.8	0.9
	35	4.6	3.8	3.0	2.2	1.5	1.1	0.3
	40	3.6	2.9	2.1	1.4	0.8	0.3	-0.4
	-40	9.2	8.2	7.1	6.1	5.2	4.6	3.6
	-15	9.3	8.3	7.1	6.1	5.3	4.7	3.6
	0	9.2	8.2	7.1	6.1	5.2	4.6	3.5
8000	20	6.8	5.9	4.9	4.1	3.3	2.8	1.8
	25	5.8	5.0	4.0	3.2	2.5	2.0	1.1
	30	4.8	4.0	3.2	2.4	1.7	1.3	0.4
	35	3.9	3.2	2.3	1.6	1.0	0.5	-0.2
	-40	8.9	7.9	6.8	5.8	4.9	4.4	3.3
	-15	8.8	7.9	6.8	5.8	4.9	4.3	3.3
* *****	15	7.0	6.1	5.1	4.2	3.4	2.9	2.0
9000	20	6.0	5.2	4.2	3.4	2.7	2.2	1.3
	25	5.0	4.2	3.4	2.6	1.9	1.4	0.6
	30	4.1	3.4	2.5	1.8	1.1	0.7	-0.1
	35	3.2	2.5	1.7	1.0	0.4	0.0	-0.7
	-40	8.5	7.5	6.4	5.5	4.6	4.1	3.0
	-20	8.4	7.5	6.4	5.4	4.6	4.0	3.0
an santana.	15	6.2	5.4	4.4	3.6	2.8	2.3	1.4
10000	20	5.3	4.5	3.6	2.8	2.1	1.6	0.7
	25	4.3	3.5	2.7	2.0	1.3	0.9	0.1
	30	3.4	2.7	1.9	1.2	0.6	0.2	-0.6
MAC_TO_0_7_	35	2.5	1.9	1.1	0.5	-0.1	-0.5	-1.2

HA-420 AFM PERFORMANCE

	Ur			ked Lan			[%]	
		VICTOR OF		Zero SI	CHARGESTAN COLOR	The second decreases		
		Flaps	LDG,	Ice Pr			7	<u> </u>
					ng Weig			
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600
[ft]	[°C]				REF [KIA			
		100	102	105	108	111	113	117
	-40	32.2	29.8	27.1	24.8	22.6	21.2	18.7
	15	32.6	30.3	27.6	25.2	23.0	21.6	19.0
	25	32.8	30.4	27.7	25.3	23.1	21.7	19.1
-1000	35	28.7	26.6	24.1	21.9	19.9	18.6	16.3
	45	23.6	21.7	19.5	17.6	15.8	14.7	12.6
	50	21.0	19.3	17.2	15.4	13.8	12.7	10.8
	55	18.6	16.9	15.0	13.3	11.8	10.8	9.0
	-40	32.0	29.7	27.0	24.6	22.5	21.1	18.6
	15	32.5	30.1	27.4	25.0	22.9	21.5	18.9
Sea	25	32.6	30.2	27.5	25.1	23.0	21.6	19.0
Level	35	27.6	25.5	23.1	20.9	19.0	17.8	15.4
Level	45	22.4	20.6	18.5	16.6	14.9	13.8	11.7
	50	19.9	18.2	16.2	14.4	12.9	11.8	9.9
	55	17.4	15.9	14.0	12.4	10.9	10.0	8.2
	-40	31.1	28.8	26.2	23.9	21.8	20.4	17.9
	10	31.6	29.3	26.6	24.3	22.2	20.8	18.3
	20	31.7	29.4	26.7	24.4	22.3	20.9	18.4
1000	30	28.3	26.2	23.7	21.5	19.6	18.3	16.0
	40	23.4	21.5	19.3	17.4	15.6	14.5	12.4
	45	20.9	19.1	17.1	15.3	13.7	12.6	10.7
	50	18.4	16.8	14.9	13.2	11.7	10.7	8.9
	-40	30.2	28.0	25.4	23.2	21.1	19.8	17.4
	10	30.8	28.5	25.9	23.6	21.6	20.2	17.7
	20	30.9	28.6	26.0	23.7	21.6	20.3	17.8
2000	30	26.5	24.5	22.1	20.0	18.2	17.0	14.7
	40	21.8	20.0	17.9	16.1	14.4	13.3	11.3
	45	19.4	17.8	15.8	14.1	12.5	11.5	9.6
	50	17.1	15.5	13.7	12.1	10.6	9.7	8.0

BLC_LDG_0_-1_06

HA-420 AFM

PERFORMANCE

	Uncorrected Balked Landing Gradient [%] Dry Runway, Zero Slope, No Wind										
				ALD I COLD TO THE		40.000.000.000.000					
	Flaps LDG, Ice Protection Off										
					ng Weig						
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600			
[ft]	[°C]		VREF [KIAS]								
		100	102	105	108	111	113	117			
	-40	29.4	27.2	24.7	22.5	20.5	19.2	16.8			
1	5	29.9	27.7	25.2	22.9	20.9	19.6	17.2			
l	15	30.0	27.8	25.2	23.0	21.0	19.6	17.2			
3000	25	27.1	25.0	22.6	20.5	18.7	17.4	15.1			
	35	22.5	20.6	18.5	16.7	15.0	13.9	11.9			
	40	20.3	18.6	16.6	14.8	13.2	12.2	10.3			
	45	18.0	16.4	14.6	12.9	11.4	10.4	8.7			
	-40	28.6	26.5	24.0	21.8	19.8	18.6	16.2			
	0	29.0	26.9	24.4	22.2	20.2	18.9	16.5			
	10	29.1	26.9	24.4	22.2	20.2	18.9	16.6			
4000	20	27.7	25.6	23.2	21.0	19.1	17.9	15.6			
	35	20.8	19.1	17.1	15.3	13.7	12.6	10.7			
	40	18.7	17.1	15.2	13.5	12.0	11.0	9.2			
	45	16.7	15.1	13.3	11.8	10.3	9.4	7.7			
	-40	27.8	25.7	23.3	21.1	19.2	17.9	15.6			
	0	28.2	26.1	23.6	21.4	19.5	18.2	15.9			
	10	28.2	26.1	23.6	21.4	19.5	18.2	15.9			
5000	30	21.3	19.5	17.5	15.7	14.0	13.0	11.0			
	35	19.2	17.6	15.6	13.9	12.4	11.4	9.6			
	40	17.2	15.6	13.8	12.2	10.8	9.8	8.1			
	45	15.2	13.7	12.0	10.5	9.2	8.3	6.7			
	-40	27.0	24.9	22.6	20.5	18.6	17.3	15.1			
	-5	27.3	25.2	22.9	20.7	18.8	17.6	15.3			
	5	27.2	25.2	22.8	20.7	18.8	17.6	15.3			
6000	15	26.3	24.3	22.0	19.9	18.0	16.8	14.6			
	30	19.7	18.0	16.1	14.3	12.8	11.7	9.9			
	35	17.7	16.1	14.2	12.6	11.2	10.2	8.4			
	40	15.7	14.2	12.5	10.9	9.6	8.7	7.1			

BLC_LDG_0_3_05

HA-420 AFM PERFORMANCE

	Uncorrected Balked Landing Gradient [%]									
	Dry Runway, Zero Slope, No Wind									
	Flaps LDG, Ice Protection Off									
				Landi	ng Weig	ıht [lb]	VO.	250		
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600		
[ft]	[°C]		VREF [KIAS]							
		100	102	105	108	111	113	117		
	-40	26.3	24.2	21.9	19.8	18.0	16.8	14.6		
	-10	26.5	24.4	22.1	20.0	18.2	17.0	14.7		
	10	26.3	24.3	21.9	19.9	18.0	16.8	14.6		
7000	25	20.2	18.5	16.5	14.7	13.2	12.1	10.2		
	30	18.1	16.5	14.7	13.0	11.5	10.6	8.8		
	35	16.2	14.7	12.9	11.4	10.0	9.1	7.4		
	40	14.2	12.8	11.2	9.7	8.4	7.6	6.0		
	-40	25.5	23.5	21.3	19.2	17.4	16.2	14.1		
	-15	25.7	23.7	21.4	19.3	17.5	16.3	14.2		
5-0-115	0	25.5	23.5	21.2	19.2	17.4	16.2	14.0		
8000	20	20.7	19.0	17.0	15.2	13.6	12.5	10.6		
	25	18.6	17.0	15.1	13.4	11.9	10.9	9.1		
	30	16.6	15.1	13.3	11.7	10.3	9.4	7.7		
	35	14.8	13.3	11.7	10.2	8.9	8.0	6.4		
	-40	24.8	22.9	20.6	18.6	16.9	15.7	13.6		
	-15	24.8	22.9	20.6	18.6	16.9	15.7	13.6		
Service description	15	21.1	19.3	17.3	15.5	13.9	12.8	10.9		
9000	20	19.1	17.4	15.5	13.8	12.3	11.3	9.5		
	25	17.1	15.5	13.7	12.1	10.7	9.8	8.0		
	30	15.2	13.7	12.0	10.5	9.2	8.3	6.7		
	35	13.3	12.0	10.4	9.0	7.7	6.9	5.4		
	-40	24.1	22.1	20.0	18.0	16.3	15.1	13.0		
	-20	24.0	22.1	19.9	17.9	16.2	15.1	13.0		
	15	19.5	17.8	15.9	14.1	12.6	11.6	9.7		
10000	20	17.5	16.0	14.1	12.5	11.1	10.1	8.4		
	25	15.6	14.1	12.4	10.9	9.5	8.6	7.0		
	30	13.8	12.4	10.8	9.3	8.1	7.2	5.7		
	35	12.0	10.7	9.2	7.8	6.6	5.9	4.4		

BLC_LDG_0_7_05

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 5-248

HA-420 AFM PERFORMANCE

•	Uncorrected Landing Field Length [feet] Dry Runway, Zero Slope, No Wind									
						O GENERAL CONTROL				
Flaps TO/APPR - Icing										
623000					ng Weig					
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600		
[ft]	[°C]		r		REF [KIA					
		109	111	115	118	121	124	128		
	-40	2818	2909	3021	3131	3241	3319	3478		
	-20	2964	3062	3182	3301	3419	3503	3674		
-1000	-10	3056	3156	3280	3402	3523	3610	3786		
	-5	3090	3192	3317	3442	3565	3653	3831		
	0	3123	3227	3354	3481	3606	3695	3877		
	5	3156	3261	3391	3519	3646	3737	3921		
	10	3187	3294	3425	3556	3684	3776	3964		
	-40	2878	2971	3086	3200	3312	3393	3557		
	-20	3030	3131	3255	3377	3498	3585	3761		
Sea	-10	3128	3231	3359	3484	3609	3698	3879		
Level	-5	3163	3268	3397	3525	3652	3742	3927		
LCVCI	0	3198	3304	3435	3565	3694	3786	3973		
	5	3231	3339	3473	3605	3736	3829	4019		
	10	3262	3371	3507	3641	3773	3868	4061		
	-40	2940	3036	3155	3273	3389	3472	3640		
	-20	3104	3207	3335	3461	3585	3675	3856		
	-10	3203	3309	3440	3570	3698	3790	3977		
1000	-5	3240	3347	3481	3612	3743	3836	4026		
	0	3274	3383	3519	3653	3785	3880	4073		
	5	3308	3419	3556	3692	3827	3923	4118		
	10	3342	3455	3594	3732	3869	3966	4164		
	-40	3006	3105	3228	3349	3469	3554	3728		
	-20	3183	3289	3420	3549	3678	3769	3956		
	-10	3281	3391	3526	3659	3792	3886	4079		
2000	-5	3319	3430	3567	3703	3838	3934	4129		
	0	3354	3466	3606	3744	3880	3978	4177		
	5	3389	3504	3645	3785	3924	4023	4225		
	10	3425	3542	3685	3827	3968	4068	4272		
LFL_T0_21_	03									

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

	U			nding Fi			et]			
		Dry R	unway,	Zero SI	ope, No	Wind				
	Flaps TO/APPR - Icing									
				Landi	ng Weig	ıht [lb]				
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600		
[ft]	[°C]	VREF [KIAS]								
		109	111	115	118	121	124	128		
	-40	3080	3182	3308	3433	3556	3644	3824		
	-20	3265	3374	3509	3643	3775	3869	4062		
	-10	3365	3477	3616	3754	3890	3987	4186		
3000	-5	3401	3516	3657	3797	3935	4034	4236		
	0	3437	3553	3697	3839	3980	4080	4285		
	5	3475	3593	3738	3883	4026	4128	4336		
	10	3512	3632	3780	3926	4071	4174	4385		
	-40	3162	3267	3397	3525	3652	3743	3928		
	-20	3345	3458	3597	3735	3871	3968	4167		
	-10	3448	3564	3707	3849	3989	4090	4294		
4000	-5	3486	3604	3750	3894	4037	4139	4346		
	0	3524	3644	3792	3938	4083	4187	4398		
	5	3562	3684	3834	3983	4130	4235	4449		
	10	3603	3726	3878	4029	4178	4284	4501		
	-40	3246	3354	3487	3619	3750	3844	4034		
	-20	3431	3547	3690	3832	3973	4073	4277		
	-10	3536	3656	3804	3950	4095	4198	4409		
5000	-5	3574	3696	3846	3995	4142	4247	4461		
	0	3614	3738	3890	4041	4191	4298	4516		
	5	3655	3780	3935	4089	4241	4349	4570		
	10	3696	3823	3980	4135	4289	4398	4622		
	-40	3335	3446	3584	3720	3855	3951	4147		
	-20	3523	3643	3791	3937	4082	4185	4396		
	-10	3627	3750	3902	4053	4202	4309	4526		
6000	-5	3667	3792	3947	4100	4252	4360	4581		
	0	3709	3836	3993	4149	4303	4413	4638		
	5	3751	3880	4040	4198	4355	4467	4695		
	10	3794	3925	4087	4247	4406	4520	4751		

LFL_TO_2_3_03

HA-420 AFM PERFORMANCE

	Uncorrected Landing Field Length [feet] Dry Runway, Zero Slope, No Wind									
		1000 M			0.00	or on Accinocacy/rel				
		=	aps To	O/APP	R - Ici	ng				
				Landi	ng Weig	ıht [lb]				
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600		
[ft]	[°C]				REF [KIA					
		109	111	115	118	121	124	128		
	-40	3427	3541	3683	3823	3962	4061	4264		
	-20	3611	3734	3887	4037	4187	4294	4511		
Andre all Williams Asset No.	-10	3720	3847	4004	4159	4313	4423	4648		
7000	-5	3762	3891	4051	4209	4365	4477	4705		
	0	3806	3937	4099	4260	4418	4532	4763		
	5	3851	3984	4148	4311	4473	4588	4823		
	10	3895	4029	4196	4361	4525	4642	4880		
	-40	3519	3637	3783	3927	4070	4173	4381		
	-20	3708	3835	3992	4148	4302	4412	4636		
	-10	3817	3948	4110	4270	4429	4542	4774		
8000	-5	3861	3994	4158	4321	4482	4597	4832		
	0	3907	4042	4208	4374	4538	4655	4893		
	5	3954	4091	4260	4428	4594	4713	4955		
	10	4001	4140	4312	4482	4651	4771	5017		
	-40	3611	3732	3883	4032	4180	4285	4500		
	-20	3805	3936	4098	4259	4418	4531	4763		
	-10	3917	4052	4219	4384	4548	4665	4903		
9000	-5	3964	4101	4271	4439	4605	4724	4966		
	0	4012	4152	4324	4494	4663	4784	5030		
	5	4061	4202	4377	4550	4722	4844	5094		
	10	4113	4256	4434	4609	4783	4908	5161		
	-40	3706	3831	3986	4140	4293	4402	4624		
	-20	3908	4043	4210	4376	4540	4657	4896		
	-10	4023	4162	4334	4505	4674	4795	5041		
10000	-5	4072	4213	4388	4562	4734	4856	5107		
	0	4123	4266	4444	4620	4795	4920	5174		
	5	4173	4319	4499	4678	4855	4982	5240		
	10	4230	4378	4561	4743	4922	5051	5312		
LFL_TO_2_7_0	3									

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

	Win	d Corrected	Landi	ng Fie	ld Ler	ngth [f	eet]	
		Flaps	TO/A	PPR -	lcing			
Tail	wind					lwind		
-10	-5	▼ REF [0] ▶	5	10	15	20	25	30
2440	2220	2000	1945	1890	1830	1775	1720	1660
2546	2323	2100	2044	1989	1928	1872	1816	1756
2651	2426	2200	2144	2087	2026	1969	1912	1851
2757	2529	2300	2243	2186	2123	2065	2008	1947
2862	2632	2400	2342	2284	2221	2162	2104	2042
2968	2735	2500	2441	2383	2319	2259	2200	2138
3073	2838	2600	2541	2481	2417	2356	2296	2233
3179	2941	2700	2640	2580	2514	2452	2392	2329
3284	3044	2800	2739	2678	2612	2549	2488	2424
3390	3147	2900	2838	2777	2710	2646	2584	2520
3495	3250	3000	2938	2875	2808	2743	2680	2615
3601	3353	3100	3037	2974	2905	2839	2776	2711
3706	3456	3200	3136	3072	3003	2936	2872	2806
3812	3559	3300	3235	3171	3101	3033	2968	2902
3917	3662	3400	3335	3269	3199	3130	3064	2997
4023	3765	3500	3434	3368	3296	3226	3160	3093
4128	3868	3600	3533	3466	3394	3323	3256	3188
4234	3971	3700	3632	3565	3492	3420	3352	3284
4339	4074	3800	3732	3663	3590	3517	3448	3379
4445	4177	3900	3831	3762	3687	3613	3544	3475
4550	4280	4000	3930	3860	3785	3710	3640	3570
4656	4383	4100	4029	3959	3883	3807	3736	3666
4761	4486	4200	4129	4057	3981	3904	3832	3761
4867	4589	4300	4228	4156	4078	4000	3928	3857
4972	4692	4400	4327	4254	4176	4097	4024	3952
5078	4795	4500	4426	4353	4274	4194	4120	4048
5183	4898	4600	4526	4451	4372	4291	4216	4143
5289	5001	4700	4625	4550	4469	4387	4312	4239
5394	5104	4800	4724	4648	4567	4484	4408	4334
5500	5207	4900	4823	4747	4665	4581	4504	4430
5605	5310	5000	4923	4845	4763	4678	4600	4525

LWC_TO_2_02

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

	Slope	e Corr	ected	Landing Fi	ield Le	ngth	[feet]	
			Flaps	TO/APPR -	- Icing			
			Rui	nway Gradient	[%]			
-2.0	-1.5	-1.0	-0.5	▼ REF [0] ►	0.5	1.0	1.5	2.0
3134	2806	2558	2361	2200	2076	1966	1880	1793
3320	2950	2680	2470	2300	2170	2055	1965	1875
3506	3094	2802	2579	2400	2264	2144	2050	1957
3692	3238	2923	2688	2500	2358	2233	2135	2039
3877	3382	3045	2798	2600	2452	2323	2220	2121
4063	3525	3166	2907	2700	2545	2412	2305	2203
4249	3669	3288	3016	2800	2639	2501	2390	2285
4435	3813	3409	3125	2900	2733	2590	2475	2367
4620	3957	3531	3235	3000	2827	2680	2560	2448
4806	4101	3652	3344	3100	2921	2769	2645	2530
4992	4245	3774	3453	3200	3015	2858	2730	2612
5178	4388	3895	3562	3300	3108	2947	2815	2694
5363	4532	4017	3672	3400	3202	3037	2900	2776
5549	4676	4138	3781	3500	3296	3126	2985	2858
5735	4820	4260	3890	3600	3390	3215	3070	2940
5921	4964	4382	3999	3700	3484	3304	3155	3022
6107	5108	4503	4108	3800	3578	3393	3240	3104
6292	5252	4625	4218	3900	3672	3483	3325	3186
6478	5395	4746	4327	4000	3765	3572	3410	3268
6664	5539	4868	4436	4100	3859	3661	3495	3350
6850	5683	4989	4545	4200	3953	3750	3580	3432
7035	5827	5111	4655	4300	4047	3840	3665	3513
7221	5971	5232	4764	4400	4141	3929	3750	3595
7407	6115	5354	4873	4500	4235	4018	3835	3677
7593	6258	5475	4982	4600	4328	4107	3920	3759
7778	6402	5597	5092	4700	4422	4197	4005	3841
7964	6546	5718	5201	4800	4516	4286	4090	3923
8150	6690	5840	5310	4900	4610	4375	4175	4005
8336	6834	5962	5419	5000	4704	4464	4260	4087
8522	6978	6083	5528	5100	4798	4553	4345	4169
8707	7122	6205	5638	5200	4892	4643	4430	4251

LSC_TO_2_02

FAA APPROVED October 30, 2016

HA-420 AFM

PERFORMANCE

	Uncorrected Discontinued Approach Gradient [%]									
	Dry Runway, Zero Slope, No Wind									
	Flaps TO/APPR - Icing									
				Landi	ng Weig	ht [lb]				
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600		
[ft]	[°C]	VREF [KIAS]								
		109	111	115	118	121	124	128		
	-40	8.0	6.9	5.6	4.4	3.4	2.7	1.5		
	-20	8.1	6.9	5.6	4.4	3.4	2.7	1.5		
4000	-10	8.1	6.9	5.6	4.5	3.4	2.8	1.5		
-1000	-5	8.1	7.0	5.7	4.5	3.5	2.8	1.6		
	0	8.2	7.0	5.7	4.5	3.5	2.8	1.6		
	5	8.2	7.1	5.7	4.6	3.5	2.9	1.6		
	10	8.3	7.1	5.8	4.6	3.6	2.9	1.6		
	-40	7.8	6.6	5.3	4.2	3.2	2.5	1.3		
	-20	7.8	6.7	5.4	4.2	3.2	2.6	1.3		
Sea	-10	7.9	6.7	5.4	4.3	3.3	2.6	1.4		
Level	-5	7.9	6.8	5.5	4.3	3.3	2.6	1.4		
2010.	0	8.0	6.8	5.5	4.4	3.4	2.7	1.5		
	5	8.0	6.9	5.6	4.4	3.4	2.7	1.5		
	10	8.1	6.9	5.6	4.4	3.4	2.7	1.5		
	-40	7.4	6.2	5.0	3.9	2.9	2.2	1.0		
	-20	7.4	6.3	5.0	3.9	2.9	2.3	1.1		
	-10	7.5	6.4	5.1	4.0	3.0	2.3	1.1		
1000	-5	7.6	6.4	5.2	4.0	3.0	2.4	1.2		
	0	7.6	6.5	5.2	4.1	3.1	2.4	1.2		
	5	7.6	6.5	5.2	4.1	3.1	2.4	1.2		
	10	7.7	6.5	5.2	4.1	3.1	2.4	1.2		
	-40	7.0	5.8	4.6	3.5	2.6	1.9	0.7		
	-20	7.1	6.0	4.7	3.6	2.7	2.0	0.8		
	-10	7.2	6.0	4.8	3.7	2.7	2.1	0.9		
2000	-5	7.2	6.1	4.8	3.7	2.7	2.1	0.9		
	0	7.2	6.1	4.9	3.8	2.8	2.1	0.9		
	5	7.2	6.1	4.9	3.8	2.8	2.1	0.9		
	10	7.3	6.1	4.9	3.8	2.8	2.2	1.0		

MAC_TO_2_-1_03

HA-420 AFM PERFORMANCE

	Uncorrected Discontinued Approach Gradient [%]									
		Dry R	unway,	Zero SI	ope, No	Wind				
	Flaps TO/APPR - Icing									
				Landi	ng Weig	ıht [lb]				
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600		
[ft]	[°C]		VREF [KIAS]							
		109	111	115	118	121	124	128		
	-40	6.5	5.5	4.3	3.2	2.2	1.6	0.5		
	-20	6.7	5.6	4.4	3.3	2.4	1.7	0.6		
Andrew Mathematical In-	-10	6.8	5.7	4.5	3.4	2.4	1.8	0.6		
3000	-5	6.8	5.7	4.5	3.4	2.4	1.8	0.6		
	0	6.8	5.7	4.5	3.4	2.4	1.8	0.7		
	5	6.8	5.7	4.5	3.4	2.5	1.8	0.7		
	10	6.7	5.7	4.4	3.4	2.4	1.8	0.6		
	-40	6.2	5.1	3.9	2.9	1.9	1.3	0.2		
	-20	6.3	5.3	4.1	3.0	2.1	1.4	0.3		
	-10	6.4	5.3	4.1	3.0	2.1	1.5	0.3		
4000	-5	6.4	5.3	4.1	3.1	2.1	1.5	0.4		
	0	6.4	5.3	4.1	3.1	2.1	1.5	0.4		
	5	6.4	5.4	4.2	3.1	2.1	1.5	0.4		
	10	6.1	5.0	3.9	2.8	1.9	1.3	0.2		
	-40	5.8	4.7	3.6	2.6	1.6	1.0	-0.1		
	-20	5.9	4.9	3.7	2.7	1.8	1.2	0.0		
	-10	6.0	4.9	3.8	2.7	1.8	1.2	0.1		
5000	-5	6.0	4.9	3.8	2.7	1.8	1.2	0.1		
	0	6.0	5.0	3.8	2.7	1.8	1.2	0.1		
	5	6.0	4.9	3.8	2.7	1.8	1.2	0.1		
	10	5.4	4.4	3.3	2.2	1.3	0.8	-0.3		
	-40	5.4	4.4	3.3	2.3	1.4	0.8	-0.3		
	-20	5.6	4.5	3.4	2.4	1.5	0.9	-0.2		
	-10	5.6	4.6	3.4	2.4	1.5	0.9	-0.2		
6000	-5	5.6	4.6	3.4	2.4	1.5	0.9	-0.2		
	0	5.6	4.5	3.4	2.4	1.5	0.9	-0.2		
	5	5.3	4.3	3.2	2.2	1.3	0.7	-0.4		
	10	4.5	3.5	2.4	1.5	0.6	0.1	-1.0		

MAC_TO_2_3_03

HA-420 AFM

PERFORMANCE

Uncorrected Discontinued Approach Gradient [%] Dry Runway, Zero Slope, No Wind											
		F2000-F21 000			CONTRACTOR CONTRACTOR	th developments.					
		ā	aps To								
5000			F		ng Weig						
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600			
[ft]	[°C]	V-4	VREF [KIAS]								
	- 10	109	111	115	118	121	124	128			
	-40	5.1	4.1	3.0	2.0	1.1	0.5	-0.6			
	-20	5.2	4.2	3.0	2.0	1.2	0.6	-0.5			
7000	-10	5.2	4.2	3.0	2.1	1.2	0.6	-0.5			
7000	-5	5.1	4.1	3.0	2.0	1.1	0.6	-0.5			
	0	5.1	4.1	3.0	2.0	1.1	0.5	-0.5			
	5	4.7	3.7	2.6	1.6	0.8	0.2	-0.8			
	10	3.6	2.7	1.6	0.7	-0.1	-0.6	-1.6			
	-40	4.7	3.7	2.6	1.7	8.0	0.2	-0.8			
	-20	4.8	3.8	2.7	1.7	8.0	0.3	-0.8			
	-10	4.7	3.8	2.7	1.7	8.0	0.3	-0.8			
8000	-5	4.7	3.7	2.6	1.7	8.0	0.2	-0.8			
	0	4.6	3.6	2.5	1.6	0.7	0.1	-0.9			
	5	3.9	3.0	1.9	1.0	0.2	-0.4	-1.4			
	10	2.7	1.8	0.9	0.0	-0.8	-1.3	-2.2			
	-40	4.4	3.4	2.3	1.4	0.5	0.0	-1.0			
	-20	4.4	3.4	2.3	1.4	0.5	0.0	-1.0			
	-10	4.3	3.3	2.3	1.3	0.5	-0.1	-1.1			
9000	-5	4.3	3.3	2.3	1.3	0.5	-0.1	-1.1			
	0	4.0	3.0	2.0	1.1	0.2	-0.3	-1.3			
	5	3.1	2.2	1.2	0.3	-0.5	-1.0	-1.9			
	10	1.9	1.1	0.2	-0.7	-1.4	-1.9	-2.8			
	-40	4.0	3.0	2.0	1.1	0.2	-0.3	-1.3			
	-20	3.9	3.0	2.0	1.0	0.2	-0.3	-1.3			
	-10	3.9	2.9	1.9	1.0	0.1	-0.4	-1.4			
10000	-5	3.9	3.0	1.9	1.0	0.2	-0.4	-1.4			
	0	3.4	2.5	1.5	0.6	-0.2	-0.8	-1.7			
	5	2.2	1.4	0.4	-0.4	-1.2	-1.6	-2.5			
	10	1.1	0.4	-0.5	-1.3	-2.0	-2.5	-3.3			
MAC_TO_2_7_	03										

FAA APPROVED October 30, 2016

HA-420 AFM PERFORMANCE

	Uncorrected Balked Landing Gradient [%]									
	Dry Runway, Zero Slope, No Wind									
	Flaps TO/APPR - Icing									
	Landing Weight [lb]									
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600		
[ft]	[°C]				REF [KIA	1,000,000				
		109	111	115	118	121	124	128		
	-40	29.5	27.1	24.4	22.1	20.0	18.6	16.0		
	-20	29.5	27.1	24.5	22.1	20.0	18.6	16.1		
	-10	29.6	27.2	24.5	22.2	20.1	18.7	16.1		
-1000	-5	29.7	27.3	24.6	22.3	20.1	18.8	16.2		
	0	29.8	27.4	24.7	22.3	20.2	18.8	16.3		
	5	29.9	27.5	24.8	22.4	20.3	18.9	16.3		
	10	29.9	27.5	24.8	22.5	20.3	18.9	16.4		
	-40	29.3	26.9	24.3	21.9	19.8	18.4	15.9		
	-20	29.4	27.0	24.3	22.0	19.9	18.5	16.0		
Sea	-10	29.5	27.1	24.4	22.1	20.0	18.6	16.0		
Level	-5	29.6	27.2	24.5	22.1	20.0	18.7	16.1		
	0	29.7	27.3	24.6	22.2	20.1	18.7	16.2		
	5	29.7	27.3	24.6	22.3	20.2	18.8	16.2		
	10	29.8	27.4	24.7	22.3	20.2	18.8	16.3		
	-40	28.4	26.1	23.5	21.2	19.1	17.8	15.3		
	-20	28.6	26.2	23.6	21.3	19.2	17.9	15.4		
	-10	28.7	26.4	23.7	21.4	19.3	18.0	15.5		
1000	-5	28.8	26.4	23.8	21.5	19.4	18.0	15.6		
	0	28.9	26.5	23.9	21.5	19.5	18.1	15.6		
	5	28.9	26.6	23.9	21.6	19.5	18.1	15.6		
	10	29.0	26.6	24.0	21.6	19.5	18.2	15.7		
	-40	27.6	25.3	22.8	20.5	18.5	17.2	14.7		
	-20	27.8	25.5	23.0	20.7	18.7	17.3	14.9		
	-10	28.0	25.7	23.1	20.8	18.8	17.5	15.0		
2000	-5	28.0	25.7	23.2	20.9	18.8	17.5	15.0		
	0	28.1	25.8	23.2	20.9	18.9	17.6	15.1		
	5	28.1	25.8	23.2	21.0	18.9	17.6	15.1		
	10	28.2	25.9	23.3	21.0	19.0	17.6	15.2		

BLC_TO_2_-1_03

HA-420 AFM

PERFORMANCE

-	Uncorrected Balked Landing Gradient [%]										
		Dry R	unway,	Zero SI	ope, No	Wind					
	Flaps TO/APPR - Icing										
				Landi	ng Weig	ıht [lb]					
ALT	TEMP	7600	8000	8500	9000	9500	9860	10600			
[ft]	[°C]		VREF [KIAS]								
		109	111	115	118	121	124	128			
	-40	26.8	24.5	22.0	19.8	17.9	16.6	14.2			
	-20	27.1	24.8	22.3	20.1	18.1	16.8	14.4			
	-10	27.2	24.9	22.4	20.2	18.2	16.9	14.5			
3000	-5	27.2	25.0	22.4	20.2	18.2	16.9	14.5			
	0	27.3	25.0	22.5	20.2	18.2	16.9	14.5			
	5	27.3	25.0	22.5	20.3	18.3	17.0	14.5			
	10	27.1	24.9	22.3	20.1	18.1	16.8	14.4			
	-40	26.0	23.8	21.3	19.2	17.2	15.9	13.6			
	-20	26.3	24.1	21.6	19.4	17.5	16.2	13.8			
	-10	26.4	24.2	21.7	19.5	17.5	16.2	13.9			
4000	-5	26.4	24.2	21.7	19.5	17.6	16.3	13.9			
	0	26.4	24.2	21.7	19.5	17.6	16.3	13.9			
	5	26.5	24.2	21.8	19.6	17.6	16.3	14.0			
	10	25.8	23.6	21.2	19.0	17.1	15.8	13.5			
	-40	25.2	23.0	20.6	18.5	16.6	15.3	13.1			
	-20	25.5	23.3	20.9	18.8	16.8	15.6	13.3			
	-10	25.6	23.4	21.0	18.8	16.9	15.6	13.3			
5000	-5	25.6	23.4	21.0	18.8	16.9	15.7	13.3			
	0	25.6	23.4	21.0	18.9	16.9	15.7	13.4			
	5	25.6	23.4	21.0	18.9	17.0	15.7	13.4			
	10	24.4	22.3	20.0	17.9	16.0	14.8	12.5			
	-40	24.4	22.3	20.0	17.9	16.0	14.8	12.5			
	-20	24.7	22.6	20.2	18.1	16.2	15.0	12.7			
	-10	24.8	22.6	20.3	18.2	16.3	15.0	12.8			
6000	-5	24.8	22.6	20.3	18.2	16.3	15.1	12.8			
	0	24.7	22.6	20.2	18.1	16.3	15.0	12.8			
	5	24.2	22.1	19.8	17.7	15.9	14.7	12.4			
	10	22.5	20.5	18.3	16.3	14.5	13.3	11.2			

BLC_TO_2_3_03

HA-420 AFM PERFORMANCE

Uncorrected Balked Landing Gradient [%]									
Dry Runway, Zero Slope, No Wind									
Flaps TO/APPR - Icing									
		Landing Weight [lb]							
ALT [ft]	TEMP [°C]	7600	8000	8500	9000	9500	9860	10600	
		VREF [KIAS]							
		109	111	115	118	121	124	128	
7000	-40	23.7	21.6	19.3	17.3	15.4	14.2	12.0	
	-20	23.9	21.8	19.5	17.4	15.6	14.4	12.2	
	-10	23.9	21.8	19.5	17.5	15.6	14.4	12.2	
	-5	23.9	21.8	19.5	17.4	15.6	14.4	12.2	
	0	23.8	21.7	19.4	17.4	15.5	14.3	12.1	
	5	22.9	20.8	18.6	16.6	14.8	13.6	11.5	
	10	20.7	18.8	16.6	14.7	13.1	11.9	9.9	
	-40	23.0	20.9	18.7	16.7	14.9	13.7	11.5	
8000	-20	23.1	21.0	18.8	16.8	15.0	13.8	11.6	
	-10	23.0	21.0	18.7	16.7	14.9	13.7	11.6	
	-5	22.9	20.9	18.7	16.7	14.9	13.7	11.5	
	0	22.7	20.7	18.4	16.4	14.7	13.5	11.3	
	5	21.3	19.4	17.2	15.3	13.6	12.5	10.4	
	10	18.9	17.1	15.1	13.3	11.7	10.6	8.7	
9000	-40	22.3	20.3	18.0	16.1	14.3	13.2	11.0	
	-20	22.3	20.3	18.0	16.1	14.3	13.2	11.0	
	-10	22.1	20.1	17.9	16.0	14.2	13.1	10.9	
	-5	22.1	20.1	17.9	15.9	14.2	13.0	10.9	
	0	21.4	19.5	17.3	15.4	13.7	12.5	10.5	
	5	19.6	17.7	15.7	13.8	12.2	11.1	9.2	
	10	17.3	15.5	13.6	11.9	10.4	9.4	7.5	
10000	-40	21.5	19.6	17.4	15.5	13.7	12.6	10.5	
	-20	21.4	19.5	17.3	15.4	13.6	12.5	10.4	
	-10	21.3	19.3	17.2	15.2	13.5	12.4	10.3	
	-5	21.3	19.3	17.2	15.3	13.5	12.4	10.3	
	0	20.3	18.4	16.3	14.4	12.7	11.6	9.6	
	5	17.9	16.1	14.1	12.4	10.8	9.8	8.0	
	10	15.7	14.0	12.2	10.6	9.1	8.2	6.4	

BLC_TO_2_7_03

HA-420 AFM

PERFORMANCE

Operational Factors for Landing Distance

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 5-260

HA-420 AFM PERFORMANCE

TURNAROUND

Landing Brake Energy

A minimum of 30 minutes between landing and takeoff in the event of the following sequence:

- 1. Maximum landing weight full stop.
- 2. Takeoff in 15 minutes or less.
- 3. Less than 1 hour flight.

HA-420 AFM PERFORMANCE

This page intentionally left blank

SECTION 6 WEIGHT AND BALANCE

TABLE OF CONTENTS

INTRODUCTION	6-3
WEIGHT AND BALANCE DEFINITIONS	6-4
WEIGHING INSTRUCTIONS	6-7
LOADING INSTRUCTIONS	6-18
CABIN FLOORPLAN / PAYLOAD DATA	6-21
CONSUMABLES AND BAGGAGE	6-23
CENTER OF GRAVITY LIMITS	6-24
USABLE FUEL	6-26
ENGINE OIL / UNUSABLE FUEL	6-27
APPENDIX A – BLANK FORMS	6-28

HA-420 AFM

WEIGHT AND BALANCE

This page intentionally left blank

WEIGHT AND BALANCE

INTRODUCTION

This section of the Airplane Flight Manual contains the HA-420 model (HondaJet) Weight and Balance instructions, forms and data required by 14 CFR Part 23.1583 Operating limitations (Airplane Flight Manual).

Specifically this section complies with the following 14 CFR regulations:

- 1. Weight limits
- 2. Empty weight and corresponding center of gravity
- 3. Weight and center of gravity
- 4. Loading information

Each airplane will have a specific Basic Empty Weight (BEW) and Balance Form in the "as delivered" from manufacturer condition, along with an example loading in the "as delivered" condition as shown in WEIGHING INSTRUCTIONS.

Also included are the forms and data necessary to compute BEW and perform loading calculations along with the airplane Equipment List.

HA-420 AFM

WEIGHT AND BALANCE

WEIGHT AND BALANCE DEFINITIONS

Term	Definitions				
Approved Loading Envelope	Those combinations of airplane weight and center of gravity which define the limits beyond which loading is not approved				
Basic Empty Weight	The completed airplane (all structure and systems) including enclosed fluids such as unusable fuel, engine oil, hydraulic oil, ECS refrigerants and oxygen. BEW corresponds to the 14 CFR Part 23.29 description				
Center of Gravity (CG)	The point at which the weight of an item can be considered concentrated for weight and balance purposes				
CG Limits	The CG locations within which the airplane must be operated at a given weight				
Empty Weight	The airplane weight prior to fuel or engine oil being added. Empty weight includes all permanently installed equipment, full system operating fluids and fixed ballast. Essentially manufacturers "dry" weight of the completed airplane				
Engine Oil (Drainable)	The amount of oil that can be drained from the engine				
Fuselage Station (F-Sta)	The longitudinal distance (in inches) from the zero fuselage reference data plane to a specific point				
FAA APPROVED October 30, 2016	HJ1-29000-003-001 Page 6-4				

HA-420 AFM	WEIGHT AND BALANCE

Jack Point(s) Appropriate position(s) specified by the

airplane manufacturer as correct point for jacking the airplane during weighing or

maintenance operation

Leveling Point(s) Those points which are used to level the

airplane in pitch and roll during the

weighing operation

Maximum Landing

Weight (MLW)

The maximum weight of the airplane allowed by structural design that should normally not be exceeded at touchdown

Maximum Ramp Weight (MRW) The highest weight of the airplane allowed by structural design that should not be

exceeded

Maximum Takeoff Weight (MTOW)

The highest permissible weight of the airplane at break release for takeoff (ramp

weight minus taxi and run up fuel =

MTOW)

Maximum Zero Fuel Weight (MZFW)

The Maximum permissible weight of the loaded airplane before usable fuel is added

Moment (mom) A meas

A measure of rotational tendency of an item about a specified line mathematically equal to the product of the weight and fuse

station (weight * F-Sta = moment)

Operating Weight Empty (OWE)

BEW plus crew and mission specific equipment (does not include fuel)

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 6-5

HA-420 AFM	WEIGHT AND BALANCE
	WEIGHT AND BALANCE

Payload is any combination of items

(passengers, baggage or consumables) added to the airplane for mission purposes.

Fuel is not considered payload

Ramp Weight The airplane weight at engine start after

loading is complete

Tare The weight indicated by a scale prior to

applied load, or, the weight indicated by a scale when the load is removed. (Indicated

weight minus tare = actual weight)

Unusable Fuel The quantity of fuel remaining in the tanks

that cannot be used by the aircraft engines when in flight. Unusable fuel is further

divided into two areas:

• **Unusable/Drainable** The amount of fuel that can be drained from the fuel tanks when starting with the unusable

quantity

• **Unusable/Undrainable** The amount of fuel remaining in the tanks after

draining and "sumping" also known as

"Trapped Fuel"

Zero Fuel Weight Airplane operating weight plus payload

without usable fuel

FAA APPROVED October 30, 2016

WEIGHING INSTRUCTIONS

Weighing Procedure

- 1. Airplane must be weighed in an enclosed area.
- 2. Ventilation system (heating or cooling) must not impinge on the airplane.
- 3. Floor must be level (slope not to exceed $\frac{1}{4}$ " per foot).
- 4. Airplane must be defueled and drained per normal maintenance procedure to obtain BEW.
- 5. Each engine must have full Engine Oil.
- 6. Flaps to be in the retracted position.
- 7. Note the airplane configuration prior to weighing and any overages or shortages.
 - Additional or missing Equipment List Items, Life Rafts, changes to Interior configuration, Potable Fluids, Consumables, etc. should be recorded on page 2 of the Basic Empty Weight and Balance Form. These overage and shortage items will reconcile the "as weighed" value to BEW.
- 8. Check for current weighing device calibration and allow sufficient "warm up" time per manufacturer's instructions and ensure all readings are stable prior to applying load.
- 9. If weighing on platform scales (weight on wheels) measurements will be taken from a known Fuselage Reference Point (FRP). If weighing on Jacking points, refer to Basic Empty Weight and Balance Form. The FRP is the intersection of the wing leading edge to the fuselage fairing and corresponds to F-Sta 222.454".

Figure 14. Weighing Procedure – Wing Root LE Point

- 10. Airplane must be leveled in Pitch and Roll by the use of an inclinometer (or other level) placed on the marked Cabin Floor Panel
 ↑ LEVEL AIRCRAFT HERE ↑
- 11. Remove Inclinometer/Leveling device and close passenger door.
- 12. Note reactions (scale or load cell readings) at each location and enter on "Basic Empty Weight and Balance Form" (see example on following pages).
- 13. If weighing on jack points with load cells no distance measurements are required.

FAA APPROVED October 30, 2016

HJ1-29000-003-001

Page 6-8

14. If weighing on Landing gear, obtain by measuring the landing gear contact (reaction) points and enter the values in the F-Sta column of the "as weighed" table on the BEW and Balance Form (see example on following pages).

Static Landing Gear contact points are shown on the BEW and Balance form, however due to trailing link configuration and payload variation it is better to verify reaction points by measurement. For detailed measuring instructions; see **Measuring Landing Gear Tire Contact Points**.

15. The airplane "as weighed" condition is computed on Basic Empty Weight and Balance Form from reactions (noted in step 12) and measurements (taken in step 14). Add and subtract any overage or shortage items to "as weighed" to obtain BEW.

If there are many overages and shortages; utilize BEW and Balance Form sheet 2.

16. Measuring Landing Gear Tire Contact Points. One method is shown below in steps a through h.

Figure 15. Method to Measure Landing Gear Tire Contact Points

a) Mark the floor at the center of each main gear tire, a plumb line dropped from the axle center will give the correct reaction (contact) point.

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

- b) Mark the floor at the center of each side of the NLG tire, employing the same method as the main gear.
- c) Mark a point on the floor below the FRP on the left and right side of the fuselage using a similar method as the gear.
- d) Measure the perpendicular distance between the left and right FRP points and the MLG points, add the two numbers, then divide by two. This is dimension (Dimn) A.
 - Example measurements of 53.33" and 53.35" give Dimn A = 53.34".
- e) Add Dimn A to the FRP value and enter the value in the "Main Total" row F-Sta column intersect cell of the BEW and Balance Form.
 - For example, 222.454 + 53.34 = 275.79 (see example table below).
- f) Measure the perpendicular distance between the left and right NLG points and the FRP points, add the two numbers, then divide by two. This is Dimension (Dimn) B.
 - Example measurements of 163.82" and 163.86" give Dimn B = 163.84".
- g) Minus Dimn B from the FRP value and enter the value in the "Nose" F-Sta cell of the BEW and Balance Form. See entry example below.
 - For example, 222.454 163.84 = 58.61
- h) Landing Gear Reaction Point Table Example

Reaction P	oints	Scale Reading	Tare	Net Weight	F-Sta	Mom/100	% MAC
Quality Stamp	Left Main	3,231.0	6.2	3,224.8			
	Right Main	3,218.0	5.9	3,212.1			
	Main Total			6,436.9	275.79	17,752	
	Nose	719.0	6.9	712.1	58.61	417	
As Weighed T	otal (lb)			7,149.0	254.15	18,169	36.76%

HA-420 AFM

WEIGHT AND BALANCE

17. After inputting the individual weight values and reaction points take note of any Tare weight at each reaction point and enter the value on the form.

NOTE

Tare weight is typically "chock weight" or a reading other than zero prior to applying load. If the Tare weight is negative, add the value to the scale reading to obtain net weight. If the Tare weight is positive, subtract the value from the scale reading to obtain net weight.

- 18. Add the Left and Right Main net weights together and input the result in Net Weight Main Total cell.
- 19. Using the F-Sta values (obtained either from Jack Points, Static reference or actual measurement), multiply this value by the net weight and divide by 100 and add this value in the Mom/100 column.
- 20. Add the Nose and Main Net weights together to obtain the "As weighed Total".
- 21. Add the Main Total Mom/100 and Nose Mom/100 values together and input value into the "As weighed Total" Mom/100
- 22. Divide the As weighed Total mom/100 by the As Weighed Total Net and multiply by 100 to obtain the F-Sta CG
- 23. To obtain the as weighed % MAC value use the following formula

Equation 1: As Weighed % MAC Formula

As Weighed % MAC =
$$\frac{(As\ Weighed\ F_{sta}CG - 232.20)}{59.72}*100$$

HA-420 AFM

WEIGHT AND BALANCE

- 24. The Basic Empty Weight can now be computed by adding and subtracting the overages and shortages (noted step 15) to the as weighed total. Overages should be subtracted from the as weighed to obtain BEW. Shortages should be added to the as weighed to obtain BEW.
- 25. Basic Empty Weight and Balance Form (example) A blank form is available in Appendix A.

WEIGHT AND BALANCE

420AFM06_2514A

Figure 16. Basic Empty Weight and Balance Form Sheet 1 (Example)

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

26. Basic Empty Weight and Balance Form Sheet 2 (example) – A blank form is available in Appendix A.

This form is used to record and reconcile specific configurations, and to detail items too numerous for sheet 1.

HA-420 AFM

WEIGHT AND BALANCE

Extra worksheet to document and capture items weighed but no weight items not in airplane at tim	ot part of basic em	npty weight (O	verages) and ba	sic empty
Additions or Subtractions to as weighed condition.	lb lb	F-Sta	Moment/100	% MAC
ubtract: (Overages)				
			0	
			0	
			0	
			0	
			0	
			0	
			0	
			0	
		<u> </u>	0	
			0	
			0	
			0	
			0	
Total Subtractions	0.0		0	
dd: (Shortages)				
— 0,0 Pr - 12			0	
			0	
			0	
			0	
	-		0	
			0	
			0	
	+		0	
			0	
			0	
	_		0	
			0	
			0	
			0	
			0	
			0	
Total Additions easuring Equipment:	0.0		0	
	4 <u>°</u>	at was		0.40/
cale Type: In-Ground Floor Scales	Incremer	its/Accuracy	better tha	n 0.1%
Model Number: IND780 5607882-5FK	Cali	bration Date:	May 26,	2015
irplane Configuration: *Circle one	Flaps Retrac	ted: (Yeg /No	*	
Fuel Qty: 0 (b) gallon* Defuel	ed: (eg/No*		: Yes /No*	
Level Info: HA-2485 07/31/15 HA-3356 4/30/16 Late	ral: (es /No* 0	.1° Long	gitudinal: es/	No* 0.02

420AFM06_2517A

Figure 17. Basic Empty Weight and Balance Form Sheet 2 (Example)

FAA APPROVED

HJ1-29000-003-001

October 30, 2016 Page 6-15

HA-420 AFM

WEIGHT AND BALANCE

27. Basic Empty Weight and Balance Record – A blank form is available in Appendix A.

A running total of BEW should be kept to record changes in equipment and its effect on weight and balance; see the following example.

HA-420 AFM

WEIGHT AND BALANCE

			Basic Empty Weight and Balance Record	ight and Ba	alance Re	scord				Honda Aircraft Model	raft Model	HA-420
											Serial #	P14
400	1	_ ;			Added			Removed	P	Curr	Current BEW Total	otal
dav/mon/vear		lleui	Item Description or Modification	weight			weight	arm	moment	weight		moment
50	Add	Rem		(sql)	<u>e</u>	(lbs.in)/100	(Sq)	3	(lbs.in)/100	(lps)	<u></u>	(lbs.in)/100
1-Jan-2015			Weight & balance by airplane manufacturer	0:0	0.0	0.0	0:0	0.0	0.0	7,000.0	250.00	17,500.0
12-Mar-2015		>	Removed Rudder for Rebalancing	0:0	0.0	0:0	-55.0	446.3	-245.5	6,945.0	248.45	17,254.5
16-Mar-2015	>		Added Re-balanced Rudder with production mass balance configuration.	56.0	446.3	249.9	0:0	0:0	0:0	7,001.0	250.03	17,504.5
				— X	3	EXAMPLE						
								_				

Figure 18. Basic Empty Weight and Balance Record

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

LOADING INSTRUCTIONS

GENERAL

It is the airplane owner/operator's responsibility to ensure the airplane is correctly loaded. Honda Aircraft Company will furnish the BEW and all necessary data to compute specific airplane loadings at the time of delivery. All subsequent changes to the airplane BEW and loading configurations are the responsibility of the owner/operator.

LIMITS

The airplane weight and CG (for all flight and ground operations) must be maintained within the approved weight and CG limits described in **CENTER OF GRAVITY LIMITS**.

UNITS

All airplane and individual weight information is given in pounds, Stations and measurements are in inches and moments are in inchpounds divided by one hundred (in-lbs/100).

FORMULA

When performing the computing procedure the following formulae display the relationship between the respective CG terms.

F-Sta Distance from Fuselage reference plane in inches

F-Sta to % MAC (F-Sta - 232.20) / 59.72 * 100

F-Sta to Moment (F-Sta * weight) / 100

LOADING FORM COMPUTING PROCEDURE

Enter the latest BEW data from either the Basic Empty Weight and Balance Form or the Basic Empty Weight and Balance Record onto Line 1 of the Weight and Balance Loading Form.

- 1. Enter the Crew, Passenger and Payload weights onto lines 2 through 15. A diagram of the interior floorplan/payload location (based on the delivered configuration) can be found in the next section (**Cabin Floorplan**). Payload weight and moment data is included in **Payload Data**.
- 2. Total the weight of lines 1-15 to determine Zero Fuel Weight (ZFW). ZFW must not exceed 8,800 lbs.
- 3. Calculate ZFW CG by totaling the moments of lines 1-15, dividing by the weight obtained in step 2 and multiplying by 100. Ensure CG is within ZFW limits; payload may have to be relocated or removed to respect limits (forward and aft ZFW limits are shown graphically in **Weight and CG Envelope** and numerically in **Loading Envelope Limits**).
- 4. Enter the Fuel weight and moment data on line 17. Corresponding moments for fuel loads can be found in **USABLE FUEL**.
- 5. Total lines 16 and 17 (ZFW plus Fuel) to obtain Ramp Weight. Ramp weight must not exceed 10,680 lbs Check the Ramp Weight and CG is within the Loading Envelope Limits.
- 6. Enter Taxi/Run up fuel on line 19 and subtract from line 18 to obtain Takeoff Weight. Takeoff weight must not exceed 10,600 lbs.
- 7. Complete Loading Form by entering estimated post flight fuel remaining on line 22 (usable fuel moments can be found in **USABLE FUEL**). Add line 22 values to line 21 (same as line 16 Zero Fuel weight) to determine Landing Weight. Landing weight must not exceed 9,860 lbs.

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

8. Weight and Balance Loading Form (see Loading example below). Loading example includes: 2 Crew, 4 Cabin Passengers, Aft Baggage and a fuel load of 2144 lb. Blank forms are available in Appendix A.

	Weight & Ba	lance Load	ing Form		
			Н	A-420 Serial#	P12
				Date:	2/16/2015
Line	Item Description	weight	arm	moment	%MAC
	nom Beesilpaen	(lbs)	(in)	(lbs.in)/100	701111710
1	Basic Empty Weight	7,000.0	253.00	17,710.0	34.83%
	Basic Empty Weight	7,000.0	233.00	17,710.0	34.03 /6
2	Pilot	200.0	121.40	242.8	
3	Copilot	200.0	121.40	242.8	
4	Crew Equipment	200.0		0.0	
5	Provisions-Cabinet	15.0	142.50	21.4	
6	Operating Weight	7,415.0	245.68	18,217.0	22.57%
7	Side Facing Passenger		158.71	0.0	
8	Fwd LH Pasenger	170.0	188.37	320.2	
9	Fwd RH Passenger	170.0	188.37	320.2	
10	Aft LH Passenger	170.0	239.43	407.0	
11	Aft RH Passenger	170.0	239.43	407.0	
12	Miscellaneous			0.0	
13	Cabin Baggage			0.0	
14	Aft Baggage (Max 400)	150.0	311.65	467.5	
15	Fwd Baggage (Max 100)		54.30	0.0	
16	Zero Fuel Weight (Limit 8,800)	8,245.0	244.26	20,139.0	20.19%
			· ·		
17	Fuel Weight	2,144.0		5,516.0	
18	Ramp Weight (Limit 10,680)	10,389.0	246.94	25,655.0	24.69%
- 10		100 0	222 52	200.0	
19	Minus Taxi/Run-up Fuel	100.0	288.59	288.6	04.040/
20	Take-off Weight (Limit 10,600)	10,289.0	246.54	25,366.4	24.01%
	7 Fire 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0045.0	044.00	20420.0	
21	Zero Fuel Weight (s/as line 16)	8245.0	244.26	20139.0	
22	Estimated Fuel Remaining	1,005.0	245 77	2,595.0	22 720/
23	Landing Weight (Limit 9,860)	9,250.0	245.77	22,734.0	22.73%

Figure 19. Weight and Balance Loading Form (Example)

CABIN FLOORPLAN / PAYLOAD DATA

CABIN FLOORPLAN

Figure 20. Cabin Floorplan

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

PAYLOAD DATA

Occupants

Weight	Pilot /	Copilot	Side Face	Passenger	Fwd Pas	ssengers	Rear Pa	ssengers
VVeignt	F-Sta	mom/100	F-Sta	mom/100	F-Sta	mom/100	F-Sta	mom/100
(lb)	(in)	(lb.in)	(in)	(lb.in)	(in	(lb)	(in)	(lb.in)
80	121.40	97.1	158.71	127.0	188.37	150.7	239.43	191.5
90	121.40	109.3	158.71	142.8	188.37	169.5	239.43	215.5
100	121.40	121.4	158.71	158.7	188.37	188.4	239.43	239.4
110	121.40	133.5	158.71	174.6	188.37	207.2	239.43	263.4
120	121.40	145.7	158.71	190.5	188.37	226.0	239.43	287.3
130	121.40	157.8	158.71	206.3	188.37	244.9	239.43	311.3
140	121.40	170.0	158.71	222.2	188.37	263.7	239.43	335.2
150	121.40	182.1	158.71	238.1	188.37	282.6	239.43	359.1
160	121.40	194.2	158.71	253.9	188.37	301.4	239.43	383.1
170	121.40	206.4	158.71	269.8	188.37	320.2	239.43	407.0
180	121.40	218.5	158.71	285.7	188.37	339.1	239.43	431.0
190	121.40	230.7	158.71	301.5	188.37	357.9	239.43	454.9
200	121.40	242.8	158.71	317.4	188.37	376.7	239.43	478.9
210	121.40	254.9	158.71	333.3	188.37	395.6	239.43	502.8
220	121.40	267.1	158.71	349.2	188.37	414.4	239.43	526.7
230	121.40	279.2	158.71	365.0	188.37	433.3	239.43	550.7
240	121.40	291.4	158.71	380.9	188.37	452.1	239.43	574.6
250	121.40	303.5	158.71	396.8	188.37	470.9	239.43	598.6

Figure 21. Occupants Weights

CONSUMABLES AND BAGGAGE

Forward Baggage Compartment is limited to 100 lbs capacity.

Aft Baggage Compartment is limited to 400 lb capacity with the load evenly spread between the three baggage areas (forward 160 lb, Mid 120 lb, Aft 120 lb); items should be secured with the straps provided.

Weight	Fwd B	aggage	Aft Bagga	age (Fwd)	Aft Bagg	age (Mid)	Aft Bagg	gage (Aft)
	F-Sta	mom/100	F-Sta	mom/100	F-Sta	mom/100	F-Sta	mom/100
(lb)	(in)	(lb.in)	(in)	(lb.in)	(in	(lb)	(in)	(lb.in)
10	54.3	5.4	311.65	31.2	331.5	33.2	347.65	34.8
20	54.3	10.9	311.65	62.3	331.5	66.3	347.65	69.5
30	54.3	16.3	311.65	93.5	331.5	99.5	347.65	104.3
40	54.3	21.7	311.65	124.7	331.5	132.6	347.65	139.1
50	54.3	27.2	311.65	155.8	331.5	165.8	347.65	173.8
60	54.3	32.6	311.65	187.0	331.5	198.9	347.65	208.6
100	54.3	54.3	311.65	311.7	331.5	331.5	347.65	347.7
120	Max Con	npartment	311.65	374.0	331.5	397.8	347.65	417.2
160	Allowable	= 100.0 lb	311.65	498.6				

420AFM06_2521A

Figure 22. Baggage

Weight	LH Ca	abinet	RH C	abinet	Luggag	je Valet
vveignt	F-Sta	mom/100	F-Sta	mom/100	F-Sta	mom/100
(lb)	(in)	(lb.in)	(in)	(lb)	(in)	(lb.in)
10	141.77	14.2	143.86	14.4	162.63	16.3
20	141.77	28.4	143.86	28.8	162.63	32.5
22			143.86	31.6	162.63	35.8
30					162.63	48.8
40					162.63	65.1
50					162.63	81.3
		reshment ad = 20.0 lb		reshment ad = 22.0 lb		partment e = 50.0 lb

Weight	Vanity 0	Carry-on	Vanity	Water	Lav V	Vater
vveignt	F-Sta	mom/100	F-Sta	mom/100	F-Sta	mom/100
(lb)	(in)	(lb.in)	(in)	(lb)	(in)	(lb.in)
1.25	270.84	3.4				
5.0			271.42	13.6		
10.6					273.16	28.9

Figure 23. Consumables and Storage

FAA APPROVED October 30, 2016

CENTER OF GRAVITY LIMITS

WEIGHT AND CG ENVELOPE

Figure 24. Weight and CG Envelope

FAA APPROVED October 30, 2016

LOADING ENVELOPE LIMITS

Below are the forward and aft limits of the weight and CG envelope.

	Weight		Fwd Limit		П		Aft Limit	
	lb	F-Sta	Moment/100	%MAC	1 1	F-Sta	Moment/100	% MAC
	7,000	244.14	17,090.1	20.00	П	248.32	17,382.7	27.00
	7,100	244.14	17,334.2	20.00		248.42	17,638.1	27.17
	7,200	244.14	578.4, 17	20.00		248.52	17,893.7	27.33
	7,300	244.14	17,822.5	20.00		248.62	18,149.5	27.50
	7,400	244.14	18,066.7	20.00		248.72	18,405.5	27.67
	7,500	244.14	18,310.8	20.00		248.82	18,661.7	27.83
	7,600	244.14	18,554.9	20.00		248.92	18,918.0	28.00
	7,700	244.14	18,799.1	20.00		249.02	19,174.6	28.17
	7,800	244.14	19,043.2	20.00		249.12	19,431.4	28.33
	7,900	244.14	19,287.4	20.00		249.22	19,688.4	28.50
	8,000	244.14	19,531.5	20.00		249.32	19,945.6	28.67
	8,100	244.14	19,775.7	20.00		249.42	20,203.0	28.83
	8,200	244.14	20,019.8	20.00		249.52	20,460.5	29.00
	8,300	244.14	20,264.0	20.00		249.62	20,718.3	29.17
	8,400	244.14	20,508.1	20.00		249.72	20,976.3	29.33
	8,500	244.14	20,752.2	20.00		249.82	21,234.5	29.50
	8,600	244.14	20,996.4	20.00		249.92	21,492.9	29.67
	8,700	244.14	21,240.5	20.00		250.02	21,751.4	29.83
MZFW	8,800	244.14	21,484.7	20.00		250.12	22,010.2	30.00
	8,900	244.24	21,737.7	20.17		250.22	22,269.2	30.17
	9,000	244.34	21,990.9	20.33		250.32	22,528.4	30.33
	9,100	244.44	22,244.3	20.50		250.41	22,787.7	30.50
	9,200	244.54	22,497.9	20.67		250.51	23,047.3	30.67
	9,300	244.64	22,751.7	20.83		250.61	23,307.1	30.83
	9,400	244.74	23,005.7	21.00		250.71	23,567.0	31.00
	9,500	244.84	23,259.9	21.17		250.71	23,817.8	31.00
	9,600	244.94	23,514.3	21.33		250.71	24,068.5	31.00
	9,700	245.04	23,768.9	21.50		250.71	24,319.2	31.00
	9,800	245.14	24,023.7	21.67	Ш	250.71	24,569.9	31.00
MLW	9,860	245.20	24,176.6	21.77	Ш	250.71	24,720.3	31.00
	9,900	245.24	24,278.6	21.83		250.71	24,820.6	31.00
	10,000	245.34	24,533.8	22.00		250.71	25,071.3	31.00
	10,100	245.44	24,789.2	22.17		250.71	25,322.0	31.00
	10,200	245.54	25,044.8	22.33		250.71	25,572.7	31.00
	10,300	245.64	25,300.6	22.50		250.71	25,823.5	31.00
	10,400	245.94	25,577.3	23.00		250.71	26,074.2	31.00
	10,500	246.23	25,854.6	23.50		250.71	26,324.9	31.00
MTOW	10,600	246.53	26,132.5	24.00		250.71	26,575.6	31.00
MRW	10,680	246.53	26,329.7	24.00		250.71	26,776.2	31.00

Figure 25. Loading Envelope Limits

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

USABLE FUEL

The figure below shows the values for fuel quantity in gallons along with the corresponding weight and fuselage station for fuel of various densities.

Quantity		/gallon		/gallon	b. / ID	/gallon	6.9 10,	/gallon	7.1 lb	/gallon
	weight	mom/100	weight	mom/100	weight	mom/100	weight	mom/100	weight	mom/100
(gallons)	(lb)	(lb.in)	(lb)	(lb.in)	(lb)	lb.in	(lb)	(lb.in)	(lb)	(lb.in)
10	63	165	65	170	67	175	69	181	71	186
20	126	329	130	340	134	350	138	360	142	371
30	189	493	195	509	201	524	207	540	213	555
40	252	656	260	677	268	698	276	719	284	739
50	315	819	325	845	335	871	345	897	355	923
60	378	981	390	1,013	402	1,044	414	1,075	426	1,106
70	441	1,144	455	1,180	469	1,216	483	1,253	497	1,289
80	504	1,306	520	1,347	536	1,388	552	1,430	568	1,471
90	567	1,467	585	1,514	603	1,560	621	1,607	639	1,653
100	630	1,629	650	1,680	670	1,732	690	1,784	710	1,836
110	693	1,790	715	1,847	737	1,904	759	1,961	781	2,017
120	756	1,954	780	2,016	804	2,078	828	2,140	852	2,202
130	819	2,117	845	2,184	871	2,252	897	2,319	923	2,386
140	882	2,279	910	2,352	938	2,424	966	2,496	994	2,569
150	945	2,440	975	2,517	1,005	2,595	1,035	2,672	1,065	2,749
160	1,008	2,598	1,040	2,680	1,072	2,763	1,104	2,845	1,136	2,928
170	1,071	2,756	1,105	2,844	1,139	2,931	1,173	3,019	1,207	3,106
180	1,134	2,916	1,170	3,009	1,206	3,101	1,242	3,194	1,278	3,286
190	1,197	3,075	1,235	3,173	1,273	3,271	1,311	3,368	1,349	3,466
200	1,260	3,235	1,300	3,338	1,340	3,440	1,380	3,543	1,420	3,646
210	1,323	3,395	1,365	3,503	1,407	3,610	1,449	3,718	1,491	3,826
220	1,386	3,554	1,430	3,667	1,474	3,780	1,518	3,893	1,562	4,005
230	1,449	3,713	1,495	3,831	1,541	3,949	1,587	4,066	1,633	4,184
240	1,512	3,870	1,560	3,992	1,608	4,115	1,656	4,238	1,704	4,361
250	1,575	4,026	1,625	4,153	1,675	4,281	1,725	4,409	1,775	4,537
260	1,638	4,181	1,690	4,314	1,742	4,447	1,794	4,580	1,846	4,712
270	1,701	4,337	1,755	4,474	1,809	4,612	1,863	4,750	1,917	4,887
280	1,764	4,492	1,820	4,635	1,876	4,777	1,932	4,920	1,988	5,062
290	1,827	4,654	1,885	4,802	1,943	4,950	2,001	5,098	2,059	5,245
300	1,890	4,825	1,950	4,979	2,010	5,132	2,070	5,285	2,130	5,438
310	1,953	5,003	2,015	5,162	2,077	5,320	2,139	5,479	2,201	5,638
320	2,016	5,187	2,080	5,351	2,144	5,516	2,208	5,681	2,272	5,845
330	2,079	5,371	2,145	5,542	2,211	5,712	2,277	5,883	2,343	6,053
340	2,142	5,554	2,210	5,731	2,278	5,907	2,346	6,083	2,414	6,260
350	2,205	5,739	2,275	5,921	2,345	6,104	2,415	6,286	2,485	6,468
360	2,268	5,925	2,340	6,113	2,412	6,302	2,484	6,490	2,556	6,678
370	2,331	6,112	2,405	6,306	2,479	6,500	2,553	6,694	2,627	6,888
380	2,394	6,298	2,470	6,497	2,546	6,697	2,622	6,897	2,698	7,097
390	2,457	6,479	2,535	6,684	2,613	6,890	2,691	7,096	2,769	7,302
400	2,520	6,661	2,600	6,873	2,680	7,084	2,760	7,296	2,840	7,507
410	2,583	6,823	2,665	7,040	2,747	7,256	2,829	7,473	2,911	7,689
420	2,646	6,977	2,730	7,198	2,814	7,420	2,898	7,641	2,982	7,863
424	2,671	7,039	2,756	7,262	2,841	7,485	2,926	7,709	3,010	7,932

420AFM06_2524A

Figure 26. Usable Fuel

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

ENGINE OIL / UNUSABLE FUEL

Weight	Engi	Engine Oil		ed Fuel ainable)	99.40	Unusable uel	Total Unusable Fuel			
	F-Sta	mom/100	F-Sta	mom/100	F-Sta	mom/100	F-Sta	mom/100		
(lb)	(in)	(lb.in)	(in)	(lb.in)	(in	(lb)	(in)	(lb.in)		
12.3	320.00	39.2								
8.4			254.87	21.4						
37.0				2	257.70	95.4				
45.4				73590a 190a 1			257.18	116.8		

420AFM06_2525A

NOTE Unusable fuel (both Trapped and Drainable) is considered part of the Basic Empty Weight.

Figure 27. Engine Oil / Unusable Fuel

HA-420 AFM

WEIGHT AND BALANCE

APPENDIX A – BLANK FORMS

The following blank forms are available in this Appendix A:

Basic Empty Weight and Balance Form: Sheet 1

Basic Empty Weight and Balance Form: Sheet 2

Basic Empty Weight and Balance Record

Weight and Balance Loading Form

HA-420 AFM

WEIGHT AND BALANCE

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

						Sheet 2 o
	A-420 - Basic Emp	_				
Extra worksheet to documen pasic empty weight items no				c empty we	ight (Overages) and
Additions or Subtractio	ons to as weighed cond	lition.	Ib	F-Sta	Moment/100	% MAC
<u>Subtract:</u> (Overages)	nio to do noignos cont					70 1111 10
Total S	Subtractions					
<u>.dd:</u> (Shortages)	AND GOTTON					
Total	Additions					
<u>fleasuring Equipment:</u>						
Scale Type:			Increments	(Accuracy	-	
scale Type:			increments	MCCUI acy	•	
Model Number:			Calibr	ation Date	:	
Airplane Configuration:	*Circle one		laps Retract	ed: Yes /N	0*	
Fuel Qty:	lb/ gallon*	Defueled:	Yes/No*	Draine	l:Yes/No*	
Level Info:		Lateral:	Yes/No*	Lon	gitudinal: Yes/i	Vo*
Notes/Remarks:						

FAA APPROVED October 30, 2016

HA-420 AFM

WEIGHT AND BALANCE

HA-420	W	moment	(lbs.in)/100															
Honda Aircraft Model HA-420 Serial #	Running BEW	arm	(in)															
Honda Air		-	(lps)															
	d	moment	(lbs.in)/100															
	Removed	arm	(in)															
		weight	(lps)															
sord		moment	(lbs.in)/100															
lance Re	Added	arm	(in)															
ht and Ba		weight	(lps)															
Basic Empty Weight and Balance Record		Item Description or Modification																
	tom.	=	Rem															
	_	=	Add															

FAA APPROVED October 30, 2016

WEIGHT AND BALANCE

	Weight & Ba	lance Load	ling Form							
			ı	HA-420 Serial# Date:						
Line	Item Description	arm (in)	%MAC							
1	Basic Empty Weight									
2	Pilot									
3	Copilot									
4	Crew Equipment									
5	Provisions-Cabinet									
6	Operating Weight									
7	Side Facing Passenger									
8	Fwd LH Pasenger									
9	Fwd RH Passenger									
10	Aft LH Passenger									
11	Aft RH Passenger									
12	Miscellaneous									
13	Cabin Baggage									
14	Aft Baggage (Max 400)									
15	Fwd Baggage (Max 100)									
16	Zero Fuel Weight (Limit 8,800)									
17	Fuel Weight									
18	Ramp Weight (Limit 10,680)		zi.							
		-04		1						
19	Minus Taxi/Run-up Fuel									
20	Take-off Weight (Limit 10,600)		0							
		23								
21	Zero Fuel Weight (s/as line 16)									
22	Estimated Fuel Remaining				×					
23	Landing Weight (Limit 9,860)									

420AFM06_3265A