# A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues

Zhouxing Shi and Minlie Huang Tsinghua University zhouxingshichn@gmail.com

January 12, 2019

#### The Task

**Discourse parsing**: to identify relations between discourse units and to discover the discourse structure that the units form.

#### The Task

**Discourse parsing**: to identify relations between discourse units and to discover the discourse structure that the units form.

#### Significance

Discourse structures are beneficial for various NLP tasks, including dialogue understanding, question answering, information retrieval, and sentiment analysis.

## Multi-Party Dialogue

A dialogue where multiple speakers are conversing.

### Multi-Party Dialogue

A dialogue where multiple speakers are conversing.

### Elementary Discourse Unit (EDU)

A discourse can be segmented into clause-level units called *Elementary Discourse Units (EDUs)*.

### An Example



A multi-party dialogue example with its discourse structure from the  $\mathsf{STAC}$  Corpus.

#### Related Work

#### Rhetorical Structure Theory (RST)

designed for *written text* and only allows discourse relations to appear between adjacent discourse units, and thus is inapplicable for *multi-party dialogues*.

#### Related Work

## Previous SOTA Approaches for Discourse Dependency Parsing

They parse dependency structures in two-stages:

- Predict the local probability of the dependency relation for each possible combination of EDU pairs.
- Apply a decoding algorithm to construct the final structure, e.g. Maximum Spanning Trees (MST), A\* algorithm, Integer Linear Programming (ILP).

#### Related Work

### Previous SOTA Approaches for Discourse Dependency Parsing

They parse dependency structures in two-stages:

- Predict the local probability of the dependency relation for each possible combination of EDU pairs.
- Apply a decoding algorithm to construct the final structure, e.g. Maximum Spanning Trees (MST), A\* algorithm, Integer Linear Programming (ILP).

#### Drawbacks

- The probability estimation only relies on the local information of the two considered EDUs.
- Dependency prediction and discourse structure construction are separated in two stages, thereby the information from the predicted discourse structure cannot be utilized.

#### Our Solution

- The model constructs a discourse structure incrementally by predicting dependency relations and building the structure jointly and alternately.
- Dependency prediction relies on not only local information that encodes the two concerned EDUs, but also global information that encodes the EDU sequence and the discourse structure that is already built at the current step.
- The predicted link and relation type, in return, are used to build the structure incrementally with a structured encoder.

#### Problem Definition

Discourse parsing on a multi-party dialogue:

- **Input**: a dialogue segmented into a sequence of EDUs  $u_1, u_2, \dots, u_n$  and an additional dummy root  $u_0$ .
- **Output**: dependency links and the corresponding relation types  $\{(u_i, u_i, r_{ji})| j \neq i\}$  between the EDUs.

**Constraint**: The predicted dependency relations should constitute a Directed Acyclic Graph (DAG) and there should be no relation linked to  $u_0$ . **Simplified goal**: The discourse structure predicted by our model is a dependency tree, which is a special type of DAG.

#### Model Overview Link Relation Classification Prediction Non-Structured Structured $r_{ii} = r_k$ Structured argmax argmaz Representation Encoder i-1 000 Structured Representation of $u_i$

#### The overall process:

- Compute the non-structured representations of the EDUs with hierarchical Gated Recurrent Unit (GRU) encoders.
- Make a sequential scan of the EDUs, predicting dependency relations and constructing the discourse structure.

#### Model Overview



#### Three steps when handling $u_i$ :

**1 Link prediction**: predict the parent node  $p_i$  of EDU  $u_i$  with a link predictor.

#### Model Overview



#### Three steps when handling $u_i$ :

- **1 Link prediction**: predict the parent node  $p_i$  of EDU  $u_i$  with a link predictor.
- **Q** Relation classification: predict the relation type between  $p_i$  (assume  $p_i = u_j$ ) and  $u_i$  with a relation classifier.

#### Model Overview



#### Three steps when handling $u_i$ :

- **1 Link prediction**: predict the parent node  $p_i$  of EDU  $u_i$  with a link predictor.
- **Q** Relation classification: predict the relation type between  $p_i$  (assume  $p_i = u_j$ ) and  $u_i$  with a relation classifier.
- **3 Structured representation encoding**: compute the structured representation of  $u_i$  with a structured representation encoder.

#### Discourse representations

- Local representations: non-structured and encode the local information of EDUs individually.
- Global representations: encode the global information of the EDU sequence or the predicted discourse structure.

#### Local Representations

For each EDU  $u_i$ , a bidirectional GRU (bi-GRU) encoder is applied on the word sequence, and the last hidden states in two directions are concatenated as the local representation of  $u_i$ , denoted as  $h_i$ .

#### Local Representations

For each EDU  $u_i$ , a bidirectional GRU (bi-GRU) encoder is applied on the word sequence, and the last hidden states in two directions are concatenated as the local representation of  $u_i$ , denoted as  $h_i$ .

#### Non-structured Global Representations

The local representations of the EDUs  $h_0, h_1, \dots, h_n$  are taken as input to a GRU encoder and the hidden states are viewed as the *non-structured* global representations of the EDUs, denoted as  $g_0^{NS}, g_1^{NS}, \dots, g_n^{NS}$ .

#### Structured Global Representations

**Observation**: There is exactly one path from the root to each EDU on the predicted dependency tree, and the path represents the development of the dialogue.

#### Structured Global Representations

**Observation**: There is exactly one path from the root to each EDU on the predicted dependency tree, and the path represents the development of the dialogue.

**Encoding strategy**: We apply a structured encoder to these paths to obtain *structured global representations* (or *structured representations* briefly) of the EDUs.

#### Structured Global Representations

**Observation**: There is exactly one path from the root to each EDU on the predicted dependency tree, and the path represents the development of the dialogue.

**Encoding strategy**: We apply a structured encoder to these paths to obtain *structured global representations* (or *structured representations* briefly) of the EDUs.

**In practice**: The structured representations are computed incrementally.  $g_i^S$  is computed once the parent of  $u_i$  and the corresponding relation type are decided.

## The Speaker Highlighting Mechanism (SHM) in Structured Representations

**Motivation**: When predicting a dependency relation linking from  $u_j$  to  $u_i$ , it is beneficial to highlight previous utterances from the same speaker as that of  $u_i$ , in order to help the model to better understand the development of the dialogue involving this speaker.

## The Speaker Highlighting Mechanism (SHM) in Structured Representations

**Motivation**: When predicting a dependency relation linking from  $u_j$  to  $u_i$ , it is beneficial to highlight previous utterances from the same speaker as that of  $u_i$ , in order to help the model to better understand the development of the dialogue involving this speaker.

**Approach**: Compute  $|\mathcal{A}|$  different structured representations for each EDU such that each one highlights a specific speaker, where  $\mathcal{A}$  is the set of all speakers in the dialogue.

#### Structured Representations

 $g_{i,a}^{S}$ : the structured representation of  $u_i$  when highlighting speaker  $a_i$ ,  $p_i = u_j$  is the predicted parent of  $u_i$ , and  $a_i$  is the speaker of EDU  $u_i$ .

$$g_{i,a}^{S} = \begin{cases} 0 & i = 0 \\ \mathbf{GRU}_{hl}(g_{j,a}^{S}, h_{i} \oplus r_{ji}) & a_{i} = a, i > 0 \\ \mathbf{GRU}_{gen}(g_{j,a}^{S}, h_{i} \oplus r_{ji}) & a_{i} \neq a, i > 0 \end{cases}$$
(1)

where  $\oplus$  denotes vector concatenation,  $\mathbf{GRU}$  stands for the functions of a GRU cell, and  $r_{ji}$  denotes the embedding vector of relation type  $r_{ji}$ , and hl and gen are short for highlighted and general respectively.

#### Link Prediction and Relation Classification

For each EDU  $u_j(j < i)$  that precedes  $u_i$  in the dialogue, we concatenate the representations  $h_i, g_i^{NS}, g_j^{NS}, g_{j,a_i}^{S}$  to obtain an input vector  $H_{i,j}$  for link prediction and relation classification:

$$H_{i,j} = h_i \oplus g_i^{NS} \oplus g_j^{NS} \oplus g_{j,a_i}^{S}$$
 (2)

#### Link Prediction

**Step 1**: Project the input vectors  $H_{i,j}(j < i)$  to a hidden representation:

$$L_{i,j}^{link} = \tanh(W_{link} \cdot H_{i,j} + b_{link}) \tag{3}$$

**Step 2**: Compute the probability that  $u_j$  is the parent of  $u_i$  on the predicted dependency tree as follows:

$$o_{i,j}^{link} = U_{link} \cdot L_{i,j}^{link} + b_{link}' \tag{4}$$

$$P(p_{i} = u_{j}|H_{i,< i}) = \frac{\exp(o_{i,j}^{link})}{\sum_{k < i} \exp(o_{i,k}^{link})}$$
(5)

**Step 3**: Choose the predicted  $p_i$ :

$$p_i = \underset{u:i < i}{\operatorname{argmax}} P(p_i = u_j | H_{i, < i})$$
(6)

#### Relation Classification

**Step 1**: Project the input vector  $H_{i,j}$  to a hidden representation:

$$L_{i,j}^{rel} = \tanh(W_{rel} \cdot H_{i,j} + b_{rel}) \tag{7}$$

**Step 2**: Predict the relation type  $r_{ji}$  from the probability distribution over all types computed:

$$P(r|H_{i,j}) = softmax(U_{rel} \cdot L_{i,j}^{rel} + b_{rel}')$$
(8)

#### Dataset

**The STAC Corpus**<sup>a</sup>: a multi-party dialogue corpus collected from an online game.

|          | Dialogues | EDUs   | Relations |
|----------|-----------|--------|-----------|
| Training | 1,062     | 11,711 | 11,350    |
| Test     | 111       | 1,156  | 1,126     |

Table: Statistics of the STAC corpus.

ahttps://www.irit.fr/STAC/corpus.html

#### **Baselines**

- MST: A two-stage approach that adopts Maximum Spanning Trees (MST) as a decoder, using the probabilities from a dependency relation classifier that uses local information only.
- **ILP**: A variant of MST that uses Integer Linear Programming (ILP) as the decoder.
- **Deep+MST**: a variant of MST that uses deep discourse encoders.
- Deep+ILP: A variant of ILP with the same modification as from MST to Deep+MST.
- **Deep+Greedy**: A variant that uses a greedy decoding algorithm which directly selects a parent for each EDU from previous EDUs with the largest probability.

#### Results

| Model                    | Link | Link & Rel |
|--------------------------|------|------------|
| MST                      | 68.8 | 50.4       |
| ILP                      | 68.6 | 52.1       |
| Deep + MST               | 69.6 | 52.1       |
| Deep+ILP                 | 69.0 | 53.1       |
| Deep + Greedy            | 69.3 | 51.9       |
| Deep Sequential (shared) | 72.1 | 54.7       |
| Deep Sequential          | 73.2 | 55.7       |

Table:  $F_1$  scores (%) for different models. Link means link prediction; and Link & Rel means that a correct prediction must predict dependency link and relation type correctly at the same time.

#### Variants of Our Sequential Model

- Deep Sequential (NS): Structured representations are removed.
   The input to the link predictor and relation type classifier has only non-structured representations, as that of the deep baseline models.
- Deep Sequential (Random): The structured representations encode a random structure.
- Deep Sequential (w/o SHM): The speaker highlighting mechanism is disabled.

## Effectiveness of the Structured Representations

| Model                     | Link | Link & Rel |
|---------------------------|------|------------|
| Deep+Greedy               | 69.3 | 51.9       |
| Deep Sequential (NS)      | 71.0 | 53.7       |
| Deep Sequential (Random)  | 71.8 | 53.7       |
| Deep Sequential (w/o SHM) | 71.7 | 54.5       |
| Deep Sequential           | 73.2 | 55.7       |

Table:  $F_1$  scores (%) for different models.

#### Case Study

- (1) A: Anyone have sheep?
- (2) A: I can give ore or wheat.
- (3) B: I've got sheep as well.
- (4) A: Need ore or wheat?
- (5) C: I need wheat.
- (6) B: Wheat.



A dialogue example from three speakers, along with the golden discourse structure and discourse structures predicted by various models. "Elab." is short for "Elaboration", "QAP" for "Question-Answer-Pair", "Q-Elab" for "Question-Elaboration", and "Ack." for "Acknowledgement".  $u_i$  in the graphs corresponds to the i-th utterance in the left panel.

#### Contributions

- We proposed a deep sequential model for discourse parsing on multi-party dialogues. The model predicts dependency relations and constructs a discourse structure jointly and alternately.
- We devised a prediction module that fully utilizes local information that encodes the concerned units, and also global information that encodes the EDU sequence and the currently constructed structure.
- We devised a structured encoder for representing structured global information, and propose a speaker highlighting mechanism to utilize speaker information and enhance dialogue understanding.

## Q&A

Preprint: https://arxiv.org/abs/1812.00176