Mathematics for Informatics

Carlos Areces and Patrick Blackburn

areces@loria.fr

http://www.loria.fr/~areces

blackbur@loria.fr

http://www.loria.fr/~blacbur

INRIA Lorraine Nancy, France

2007/2008

The Course

▶ imperative style, very simple

- ▶ imperative style, very simple
 - input variables: X_1, X_2, \dots

- ▶ imperative style, very simple
 - input variables: X_1, X_2, \dots
 - output variable (only one): Y

- ▶ imperative style, very simple
 - ▶ input variables: $X_1, X_2, ...$
 - output variable (only one): Y
 - \blacktriangleright temporal variables: Z_1, Z_2, \dots
 - you don't need to declare them
 - they are all initialized to the value 0

- imperative style, very simple
 - ▶ input variables: $X_1, X_2, ...$
 - output variable (only one): Y
 - temporal variables: Z_1, Z_2, \dots
 - you don't need to declare them
 - they are all initialized to the value 0
- ► The only data type: the natural numbers (including 0)
 - there are no constants

- imperative style, very simple
 - ▶ input variables: $X_1, X_2, ...$
 - output variable (only one): Y
 - temporal variables: Z_1, Z_2, \dots
 - you don't need to declare them
 - they are all initialized to the value 0
- ► The only data type: the natural numbers (including 0)
 - there are no constants
- ▶ increment in one: $X_1 \leftarrow X_1 + 1$

- imperative style, very simple
 - ▶ input variables: $X_1, X_2, ...$
 - output variable (only one): Y
 - temporal variables: Z_1, Z_2, \dots
 - you don't need to declare them
 - they are all initialized to the value 0
- ► The only data type: the natural numbers (including 0)
 - there are no constants
- ▶ increment in one: $X_1 \leftarrow X_1 + 1$
- decrement in one:
 - $X_1 \leftarrow X_1 1$
 - if X_1 is 0 then it won't be modified

- imperative style, very simple
 - ▶ input variables: $X_1, X_2, ...$
 - output variable (only one): Y
 - temporal variables: Z_1, Z_2, \ldots
 - you don't need to declare them
 - they are all initialized to the value 0
- ► The only data type: the natural numbers (including 0)
 - there are no constants
- ▶ increment in one: $X_1 \leftarrow X_1 + 1$
- decrement in one:
 - $X_1 \leftarrow X_1 1$
 - if X_1 is 0 then it won't be modified
- ▶ a primitive IF GOTO construction
 - ▶ IF $X_1 \neq 0$ GOTO A
 - ▶ A is a label that marks another instruction in the program

- imperative style, very simple
 - ightharpoonup input variables: X_1, X_2, \dots
 - output variable (only one): Y
 - temporal variables: Z_1, Z_2, \dots
 - you don't need to declare them
 - they are all initialized to the value 0
- The only data type: the natural numbers (including 0)
 - there are no constants
- ▶ increment in one: $X_1 \leftarrow X_1 + 1$
- decrement in one:
 - $X_1 \leftarrow X_1 1$
 - if X_1 is 0 then it won't be modified
- a primitive IF GOTO construction
 - ▶ IF $X_1 \neq 0$ GOTO A
 - ▶ A is a label that marks another instruction in the program
- you can't call subroutines.

[A]
$$X \leftarrow X - 1$$

 $Y \leftarrow Y + 1$
IF $X \neq 0$ GOTO A

- ▶ We write X for X_1 ; Z for Z_1
- ightharpoonup when X=0 the program stops as there is no next instruction
- ▶ it comput the function $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} x & \text{if } x \neq 0 \\ 1 & \text{otherwise} \end{cases}$$

it always left the variable X in 0

[A] IF
$$X \neq 0$$
 GOTO B
$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO E
[B] $X \leftarrow X - 1$

$$Y \leftarrow Y + 1$$

$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO A

▶ it computes the function $f : \mathbb{N} \to \mathbb{N}, f(x) = x$

[A] IF
$$X \neq 0$$
 GOTO B
$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO E
[B] $X \leftarrow X - 1$

$$Y \leftarrow Y + 1$$

$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO A

- ▶ it computes the function $f : \mathbb{N} \to \mathbb{N}, f(x) = x$
- ▶ when it tries to go to *E*, it finishes

[A] IF
$$X \neq 0$$
 GOTO B
$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO E
[B] $X \leftarrow X - 1$

$$Y \leftarrow Y + 1$$

$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO A

- ▶ it computes the function $f : \mathbb{N} \to \mathbb{N}, f(x) = x$
- ▶ when it tries to go to *E*, it finishes
- ▶ In the example, Z is used only to force an unconditional jump. In general GOTO L is equivalent to

$$V \leftarrow V + 1$$
IF $V \neq 0$ GOTO L

where V is a new variable.

Macros

- $lacksymbol{\mathcal{S}}$ does not have unconditional jump
- ▶ but we can simulate it with GOTO L

Macros

- $ightharpoonup \mathscr{G}$ does not have unconditional jump
- but we can simulate it with GOTO L
- we use it as if it were part of the language, but
 - each time that we see

GOTO L

in a program P, we replace it with

 $V \leftarrow V + 1$

IF $V \neq 0$ GOTO L

where V is a variable that does not appears in P.

Macros

- S does not have unconditional jump
- but we can simulate it with GOTO L
- we use it as if it were part of the language, but
 - each time that we see

GOTO L

in a program P, we replace it with

$$V \leftarrow V + 1$$
IF $V \neq 0$ GOTO L

where V is a variable that does not appears in P.

We will see that we can simulate many other operations. Once we know that we can write them down in \mathcal{S} , we will used them as if they were part of the language (they are called pseudoinstructions)

- the abbreviated form it's called a macro
- the program that the macro stands for it's called macro expansion

```
[A]
        IF X \neq 0 GOTO B
        GOTO C
[B]
     X \leftarrow X - 1
        Y \leftarrow Y + 1
        Z \leftarrow Z + 1
        GOTO A
       IF Z \neq 0 GOTO D
[C]
        GOTO E
[D]
        Z \leftarrow Z - 1
        X \leftarrow X + 1
        GOTO C
```

- [A] IF $X \neq 0$ GOTO B GOTO C
- [B] $X \leftarrow X 1$ $Y \leftarrow Y + 1$ $Z \leftarrow Z + 1$ GOTO A
- [C] IF $Z \neq 0$ GOTO D GOTO E
- [D] $Z \leftarrow Z 1$ $X \leftarrow X + 1$ GOTO C

▶ the first cycle copies the value from X into Y and Z

- [A] IF $X \neq 0$ GOTO B GOTO C
- [B] $X \leftarrow X 1$ $Y \leftarrow Y + 1$ $Z \leftarrow Z + 1$ GOTO A
- [C] IF $Z \neq 0$ GOTO D GOTO E
- [D] $Z \leftarrow Z 1$ $X \leftarrow X + 1$ GOTO C

- ▶ the first cycle copies the value from X into Y and Z
- the second cycle puts in X the original value and leaves Z in zero.

- [A] IF $X \neq 0$ GOTO B GOTO C
- [B] $X \leftarrow X 1$ $Y \leftarrow Y + 1$ $Z \leftarrow Z + 1$ GOTO A
- [C] IF $Z \neq 0$ GOTO D GOTO E

[D]
$$Z \leftarrow Z - 1$$

 $X \leftarrow X + 1$
GOTO C

- ▶ the first cycle copies the value from X into Y and Z
- the second cycle puts in X the original value and leaves Z in zero.
- ▶ we use the macro GOTO A
 - it should not be expanded as

$$Z \leftarrow Z + 1$$

IF $Z \neq 0$ GOTO A

but as

$$Z_2 \leftarrow Z_2 + 1$$

IF $Z_2 \neq 0$ GOTO A

- [A] IF $X \neq 0$ GOTO B GOTO C
- $[B] \qquad X \leftarrow X 1$ $Y \leftarrow Y + 1$ $Z \leftarrow Z + 1$ GOTO A
- [C] IF $Z \neq 0$ GOTO D GOTO E
- [D] $Z \leftarrow Z 1$ $X \leftarrow X + 1$ GOTO C

- it can be used to assign to variable V the content of variable V' and leave V' without changes within an arbitrary program P: V ← V'.
 - change Y by V
 - change X by V'
 - change Z for a temporal variable that does not appears in P

- [A] IF $X \neq 0$ GOTO B GOTO C
- $[B] \qquad X \leftarrow X 1$ $Y \leftarrow Y + 1$ $Z \leftarrow Z + 1$ GOTO A
- [C] IF $Z \neq 0$ GOTO D GOTO E
- [D] $Z \leftarrow Z 1$ $X \leftarrow X + 1$ GOTO C

- ▶ it can be used to assign to variable V the content of variable V' and leave V' without changes within an arbitrary program P: V ← V'.
 - change Y by V
 - change X by V'
 - change Z for a temporal variable that does not appears in P
- but it works properly only when V = 0 and Z = 0

$Y \leftarrow 0$

- [A] IF $X \neq 0$ GOTO B GOTO C
- [B] $X \leftarrow X 1$ $Y \leftarrow Y + 1$ $Z \leftarrow Z + 1$ GOTO A
- [C] IF $Z \neq 0$ GOTO D GOTO E
- [D] $Z \leftarrow Z 1$ $X \leftarrow X + 1$ GOTO C

- ▶ it can be used to assign to variable V the content of variable V' and leave V' without changes within an arbitrary program P: V ← V'.
 - change Y by V
 - change X by V'
 - change Z for a temporal variable that does not appears in P
- but it works properly only when V = 0 and Z = 0
- we fix this by using Y ← 0 as first pseudoinstruction
 - we don't need to make $Z \leftarrow 0$

Macro for the assignment of zero: $V \leftarrow 0$

In a program P, the pseudoinstruction $V \leftarrow 0$ is expanded as

$$[L] V \leftarrow V - 1$$
IF $V \neq 0$ GOTO L

where \boldsymbol{L} is a label that does not appear in \boldsymbol{P}

Macro for the assignment of zero: $V \leftarrow 0$

Then the program for $V \leftarrow V'$ is:

In a program P, the pseudoinstruction $V \leftarrow 0$ is expanded as

$$[L] \qquad V \leftarrow V - 1$$
 IF $V \neq 0$ GOTO L

where L is a label that does not appear in P

[A] IF $V \neq 0$ GOTO B GOTO C

[B]
$$V \leftarrow V - 1$$

 $V' \leftarrow V' + 1$
 $Z \leftarrow Z + 1$
GOTO A

[C] IF
$$Z \neq 0$$
 GOTO D
GOTO E

$$[D] \qquad Z \leftarrow Z - 1$$

$$V \leftarrow V + 1$$

$$GOTO C$$

Macro for the assignment of zero: $V \leftarrow 0$

Then the program for $V \leftarrow V'$ is:

In a program P, the pseudoinstruction $V \leftarrow 0$ is expanded as

$$[L] \qquad V \leftarrow V - 1$$

$$\text{IF } V \neq 0 \text{ GOTO } L$$

where L is a label that does not appear in P

[A] IF
$$V \neq 0$$
 GOTO B
GOTO C

$$[B] \qquad V \leftarrow V - 1$$

$$V' \leftarrow V' + 1$$

$$Z \leftarrow Z + 1$$
GOTO A

[C] IF
$$Z \neq 0$$
 GOTO D
GOTO E

$$[D] \qquad Z \leftarrow Z - 1$$

$$V \leftarrow V + 1$$

$$GOTO C$$

$$Y \leftarrow X_1$$
 $Z \leftarrow X_2$
[B] IF $Z \neq 0$ GOTO A
GOTO E
[A] $Z \leftarrow Z - 1$
 $Y \leftarrow Y + 1$
GOTO B

Addition of two variables

$$Y \leftarrow X_1$$
 $Z \leftarrow X_2$
[B] IF $Z \neq 0$ GOTO A
GOTO E
[A] $Z \leftarrow Z - 1$
 $Y \leftarrow Y + 1$
GOTO B

computes the function
$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$f(x_1, x_2) = x_1 + x_2$$

 $Y \leftarrow X_1$ $Z \leftarrow X_2$

- [C] IF $Z \neq 0$ GOTO A GOTO E
- [A] IF $Y \neq 0$ GOTO B GOTO A
- [B] $Y \leftarrow Y 1$ $Z \leftarrow Z - 1$ GOTO C

Substraction of two variables

$$Y \leftarrow X_1$$
 $Z \leftarrow X_2$
[C] IF $Z \neq 0$ GOTO A
GOTO E
[A] IF $Y \neq 0$ GOTO B
GOTO A
[B] $Y \leftarrow Y - 1$
 $Z \leftarrow Z - 1$
GOTO C

computes the function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$g(x_1, x_2) = \begin{cases} x_1 - x_2 & \text{if } x_1 \ge x_2 \\ \uparrow & \text{otherwise} \end{cases}$$

Substraction of two variables

$$Y \leftarrow X_1$$
 $Z \leftarrow X_2$
[C] IF $Z \neq 0$ GOTO A
GOTO E
[A] IF $Y \neq 0$ GOTO B
GOTO A
[B] $Y \leftarrow Y - 1$
 $Z \leftarrow Z - 1$
GOTO C

computes the function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$g(x_1, x_2) = \begin{cases} x_1 - x_2 & \text{if } x_1 \ge x_2 \\ \uparrow & \text{otherwise} \end{cases}$$

- ▶ g is a partial function
- we mark indefinition as ↑ (in the metalanguage)
- the cause of indefinition is no termination
 - there is no other cause of indefinition

States

A state in a program P is a list of equations of the form V=m (where V is a variable and m is a number) such that

there is exactly one equation for each variable that appears in P

States

A state in a program P is a list of equations of the form V=m (where V is a variable and m is a number) such that

there is exactly one equation for each variable that appears in P

For example, for P:

[A]
$$X \leftarrow X - 1$$

 $Y \leftarrow Y + 1$
IF $X \neq 0$ GOTO A

- ▶ the following are possible states of P:
 - X = 3, Y = 1
 - X = 3, Y = 1, Z = 0
 - X = 3, Y = 1, Z = 8
 - it is not necessary that the state is reachable

States

A state in a program P is a list of equations of the form V=m (where V is a variable and m is a number) such that

there is exactly one equation for each variable that appears in P

For example, for P:

[A]
$$X \leftarrow X - 1$$

 $Y \leftarrow Y + 1$
IF $X \neq 0$ GOTO A

- ▶ the following are possible states of P:
 - X = 3, Y = 1
 - X = 3, Y = 1, Z = 0
 - X = 3, Y = 1, Z = 8
 - it is not necessary that the state is reachable

- ▶ the following are not states of P:
 - ► *X* = 3
 - ► X = 3, Z = 0
 - X = 3, Y = 1, X = 0

Let's assume that the program P has length n. For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- ▶ the pair (i, σ) is an instant description of P.
- (i, σ) is called terminal if i = n + 1.

Let's assume that the program P has length n.

For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- ▶ the pair (i, σ) is an instant description of P.
- ▶ (i, σ) is called terminal if i = n + 1.

Let's assume that the program P has length n.

For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- ▶ the pair (i, σ) is an instant description of P.
- (i, σ) is called terminal if i = n + 1.

- 1. if the *i*-th instruction of *P* is $V \leftarrow V + 1$.
 - j = i + 1
 - lacksquare au is σ , except that V=m is replaced by V=m+1

Let's assume that the program P has length n.

For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- ▶ the pair (i, σ) is an instant description of P.
- (i, σ) is called terminal if i = n + 1.

- 1. if the *i*-th instruction of *P* is $V \leftarrow V + 1$.
 - ▶ j = i + 1
 - lacksquare au is σ , except that V=m is replaced by V=m+1
- 2. if the *i*-th instruction of *P* is $V \leftarrow V 1$.
 - ▶ j = i + 1
 - ightharpoonup au is σ , except that V=m is replaced by $V=\max\{m-1,0\}$

Let's assume that the program P has length n.

For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- ▶ the pair (i, σ) is an instant description of P.
- ▶ (i, σ) is called terminal if i = n + 1.

- 1. if the *i*-th instruction of *P* is $V \leftarrow V + 1$.
 - ▶ j = i + 1
 - lacksquare au is σ , except that V=m is replaced by V=m+1
- 2. if the *i*-th instruction of *P* is $V \leftarrow V 1$.
 - ▶ j = i + 1
 - τ is σ , except that V=m is replaced by $V=\max\{m-1,0\}$
- 3. if the *i*-th instruction of *P* is IF $V \neq 0$ GOTO *L*
 - ightharpoonup au is identical to σ

Let's assume that the program P has length n.

For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- ▶ the pair (i, σ) is an instant description of P.
- ▶ (i, σ) is called terminal if i = n + 1.

- 1. if the *i*-th instruction of *P* is $V \leftarrow V + 1$.
 - ▶ j = i + 1
 - lacksquare au is σ , except that V=m is replaced by V=m+1
- 2. if the *i*-th instruction of *P* is $V \leftarrow V 1$.
 - ▶ j = i + 1
 - τ is σ , except that V=m is replaced by $V=\max\{m-1,0\}$
- 3. if the *i*-th instruction of *P* is IF $V \neq 0$ GOTO *L*
 - ightharpoonup au is identical to σ
 - 3.1 if σ has V = 0 then j = i + 1

Let's assume that the program P has length n.

For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- the pair (i, σ) is an instant description of P.
- (i, σ) is called terminal if i = n + 1.

- 1. if the *i*-th instruction of *P* is $V \leftarrow V + 1$.
 - ▶ j = i + 1
 - lacksquare au is σ , except that V=m is replaced by V=m+1
- 2. if the *i*-th instruction of *P* is $V \leftarrow V 1$.
 - ▶ j = i + 1
 - τ is σ , except that V=m is replaced by $V=\max\{m-1,0\}$
- 3. if the *i*-th instruction of *P* is IF $V \neq 0$ GOTO *L*
 - ightharpoonup au is identical to σ
 - 3.1 if σ has V = 0 then i = i + 1
 - 3.2 if σ has V = m for $m \neq 0$ then

Let's assume that the program P has length n.

For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- the pair (i, σ) is an instant description of P.
- (i, σ) is called terminal if i = n + 1.

- 1. if the *i*-th instruction of *P* is $V \leftarrow V + 1$.
 - ▶ j = i + 1
 - lacksquare au is σ , except that V=m is replaced by V=m+1
- 2. if the *i*-th instruction of *P* is $V \leftarrow V 1$.
 - j = i + 1
 - τ is σ , except that V=m is replaced by $V=\max\{m-1,0\}$
- 3. if the *i*-th instruction of *P* is IF $V \neq 0$ GOTO *L*
 - ightharpoonup au is identical to σ
 - 3.1 if σ has V=0 then j=i+1
 - 3.2 if σ has V = m for $m \neq 0$ then
 - ▶ if there is an instruction in P with label L then j = min{k : k-th instruction in P with label L}

Let's assume that the program P has length n.

For a state σ of P and $i \in \{1, \ldots, n+1\}$,

- the pair (i, σ) is an instant description of P.
- (i, σ) is called terminal if i = n + 1.

- 1. if the *i*-th instruction of *P* is $V \leftarrow V + 1$.
 - ▶ j = i + 1
 - ightharpoonup au is σ , except that V=m is replaced by V=m+1
- 2. if the *i*-th instruction of *P* is $V \leftarrow V 1$.
 - ▶ j = i + 1
 - τ is σ , except that V=m is replaced by $V=\max\{m-1,0\}$
- 3. if the *i*-th instruction of *P* is IF $V \neq 0$ GOTO *L*
 - ightharpoonup au is identical to σ
 - 3.1 if σ has V=0 then j=i+1
 - 3.2 if σ has V = m for $m \neq 0$ then
 - ▶ if there is an instruction in P with label L then j = min{k : k-th instruction in P with label L}
 - otherwise j = n + 1

Computations

A computation of a program P from an instant description d_1 is a list

$$d_1, d_2, \ldots, d_k$$

of instant descriptions of P such that

- ▶ d_{i+1} is the successor of d_i for $i \in \{1, 2, ..., k-1\}$
- $ightharpoonup d_k$ is terminal

States and Instant Descriptions

Given a program P and let r_1, \ldots, r_m be numbers.

▶ The initial state of P for r_1, \ldots, r_m is the state σ_1 , that has

$$X_1 = r_1$$
 , $X_2 = r_2$, ... , $X_m = r_m$, $Y = 0$

together with

$$V = 0$$

for each variable V that appears in P which is different from $X_1,\ldots,X_m,\,Y$

▶ the initial description of P for r_1, \ldots, r_m is

$$(1, \sigma_1)$$

Computation from the initial state

Let P be a program and let

- $ightharpoonup r_1, \ldots, r_m$ be numbers
- σ_1 the initial state (the P and r_1, \ldots, r_m)

Computation from the initial state

Let P be a program and let

- $ightharpoonup r_1, \ldots, r_m$ be numbers
- σ_1 the initial state (the P and r_1, \ldots, r_m)

There are two cases

▶ there is a computation of *P*

$$d_1,\ldots,d_k$$

such that $d_1 = (1, \sigma_1)$

We note as $\Psi_P^{(m)}(r_1,\ldots,r_m)$ the value of Y in the instant configuration d_k .

Computation from the initial state

Let P be a program and let

- $ightharpoonup r_1, \ldots, r_m$ be numbers
- $ightharpoonup \sigma_1$ the initial state (the P and r_1, \ldots, r_m)

There are two cases

▶ there is a computation of P

$$d_1,\ldots,d_k$$

such that $d_1 = (1, \sigma_1)$

We note as $\Psi_P^{(m)}(r_1,\ldots,r_m)$ the value of Y in the instant configuration d_k .

▶ there is no computation, i.e. there is an infinite sequence

$$d_1, d_2, d_3, \dots$$

where

- $d_1 = (1, \sigma_1).$
- \triangleright d_{i+1} is the successor of d_1

We say that $\Psi_P^{(m)}(r_1,\ldots,r_m)$ is undefined (we note

$$\Psi_{P}^{(m)}(r_1,\ldots,r_m)\uparrow)$$

A (partial) function $f: \mathbb{N}^m \to \mathbb{N}$ is partially computable if there is a program P such that

$$f(r_1,\ldots,r_m)=\Psi_P^{(m)}(r_1,\ldots,r_m)$$

for each $(r_1,\ldots,r_m)\in\mathbb{N}^m$.

A (partial) function $f: \mathbb{N}^m \to \mathbb{N}$ is partially computable if there is a program P such that

$$f(r_1,\ldots,r_m)=\Psi_P^{(m)}(r_1,\ldots,r_m)$$

for each $(r_1, \ldots, r_m) \in \mathbb{N}^m$.

The equality (in the meta-language) is true iff

- both sides are defined and they have the same value, or
- both sides are undefined

A (partial) function $f: \mathbb{N}^m \to \mathbb{N}$ is partially computable if there is a program P such that

$$f(r_1,\ldots,r_m)=\Psi_P^{(m)}(r_1,\ldots,r_m)$$

for each $(r_1, \ldots, r_m) \in \mathbb{N}^m$.

The equality (in the meta-language) is true iff

- both sides are defined and they have the same value, or
- both sides are undefined

A function f is computable if it is partically computable and total.

A (partial) function $f: \mathbb{N}^m \to \mathbb{N}$ is partially computable if there is a program P such that

$$f(r_1,\ldots,r_m)=\Psi_P^{(m)}(r_1,\ldots,r_m)$$

for each $(r_1, \ldots, r_m) \in \mathbb{N}^m$.

The equality (in the meta-language) is true iff

- both sides are defined and they have the same value, or
- both sides are undefined

A function f is computable if it is partically computable and total.

Note that the same program P can be used to compute functions with 1 variable, 2 variables, etc. Suppose that in P we have occurrences of X_n but not of X_i for i > n.

- ▶ if we only specify m < n input variables , X_{m+1}, \ldots, X_n take the value 0
- if we specify m > n input variables, P will ignore X_{n+1}, \ldots, X_m