AD-A257 302

Carderock Division Naval Surface Warfare Center

Bethesda, MD 20084-5000

CARDEROCKDIV/SHD-1371-01 September 1992 Ship Hydromechanics Department

Research and Development Report

USS KINKAID (DD 965) Hull Fouling Standardization Trials

by Everett L. Woo George. Brodie

92-28535 Ways II

Approved for public release; distribution is unlimited.

MAJOR DTRC TECHNICAL COMPONENTS

- CODE 011 DIRECTOR OF TECHNOLOGY, PLANS AND ASSESSMENT
 - 12 SHIP SYSTEMS INTEGRATION DEPARTMENT
 - 14 SHIP ELECTROMAGNETIC SIGNATURES DEPARTMENT
 - 15 SHIP HYDROMECHANICS DEPARTMENT
 - 16 AVIATION DEPARTMENT
 - 17 SHIP STRUCTURES AND PROTECTION DEPARTMENT
 - 18 COMPUTATION, MATHEMATICS & LOGISTICS DEPARTMENT
 - 19 SHIP ACOUSTICS DEPARTMENT
 - 27 PROPULSION AND AUXILIARY SYSTEMS DEPARTMENT
 - 28 SHIP MATERIALS ENGINEERING DEPARTMENT

DTRC ISSUES THREE TYPES OF REPORTS:

- 1. **DTRC reports, a formal series,** contain information of permanent technical value. They carry a consecutive numerical identification regardless of their classification or the originating department.
- 2. **Departmental reports, a semiformal series,** contain information of a preliminary, temporary, or proprietary nature or of limited interest or significance. They carry a departmental alphanumerical identification.
- 3. **Technical memoranda, an informal series,** contain technical documentation of limited use and interest. They are primarily working papers intended for internal use. They carry an identifying number which indicates their type and the numerical code of the originating department. Any distribution outside DTRC must be approved by the head of the originating department on a case-by-case basis.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

	EPORT DOC	UMENTATI	ON PAGE		Form Ap OMB No.	proved . 0704-0188
16. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE MA NONE	RKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION / AV	ALABILITY OF REPORT			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		Approved	for public release	, distri	ibution i	s unlimited
4. FERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORG	ANIZATION REPORT NUME	BER(S)		
CARDEROCKDIV/SHD-1371-01						
64. NAME OF PERFORMING ORGANIZATION Carderock Division,	6b. OFFICE SYMBOL (If applicable)	1	oring organization ace Warfare Cent	er		
Naval Surface Warfare Center	Code 1523	1	Division Detachn		Code 275	59
6c. ADDRESS (City, State, and Zip Code) Carderock Division, Naval Surface V Code 1523 Bethesda, MD 20084-5000	Warfare Center	76. ADDPESS (City, Annapolis,	State, and Zip Code) MD 21402-5607	7		
BAL NAME OF FUNDING / SPONSORING ORGANIZATION Office of Naval Research	8b. OFFICE SYMBOL (If applicable) Code 12E	9. PROCUREMENT IN	STRUMENT IDENTIFICATIO	N NUMBE	ER	
8c. ADDRESS (City, State, and Zip Code)	0000 1213	10. SOURCE OF FUND	NO NUMBERS			
Arlington, VA 22217		PROGRAM ELEMENT NO. 64710N		task no. R037	1-802	WORK UNIT ACCESSION NO. 2759-947
11. TITLE (Include Security Classification) USS KINKAID (DD 965) Hull Foul. 12. PERSONAL AUTHOR(S)		n Trials				
Woo, Everett L. and Brodie, George 13a. TYPE OF REPORT 13b. TIME COVE		14. DATE OF REPORT		11	5. PAGE COU	int
Departmental FROM	0T	Sep	otember 1992		26	
16. SUPPLEMENTARY NOTATION						
17. COSATI CODES	18. SUBJECT TERMS	(Continue on reverse if n	socssary and identify by bloc	ok number	7	
FIELD GROUP SUB-GROUP			, Hull Fouling, Sl ft Power, Propell			
		cauon iriai, sira	in Fower, Fropen	CI I III	-11	
Two Standardization Trials were evaluate the effectiveness of the fran instrumented tracking range off an average 0.9% shaft power differ that KINKAID's paint system is vwas 77,620 hp. The combined ef speed increase between the two trials.	re conducted on the very ear paint system the California coarential between for ery effective. The fect of the hull cle	m currently on the stat LaJolla. Moreon the state of the	he ship. The trial finimal marine gr rull trial data supped ed shaft power co	ls were rowth ports tommo	e conductives four the support	cted on nd and osition n trials
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT	DTIC USERS	21. ABSTRACT SECUR UNCLAS				
22a. NAME OF RESPONSIBLE INDIVIDUAL EVERETT I WOO			(Include Area Code) 7-1870	22c.	OFFICE SYN Code	

UNCLASSIFIED		
SECURITY CLASSIFICATION OF THIS PAGE		
	P	
•		

DD Form 1478, JUN 96 (Reverse)

SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

CONTENTS

Pag
FRONTISPIECE v
U.S. CUSTOMARY/METRIC UNITS
ABSTRACT 1
ADMINISTRATIVE INFORMATION
INTRODUCTION
TRIAL CONDITIONS
TRIAL INSTRUMENTATION AND PROCEDURES
PRESENTATION AND DISCUSSION OF TRIAL RESULTS 4
CONCLUSIONS 6
RECOMMENDATIONS 6
ACKNOWLEDGMENTS 7
FIGURES
1. USS KINKAID (DD 965) trials instrumentation diagram
2. USS KINKAID (DD 965) Standardization Trial results
3. USS KINKAID (DD 965) Motorola Falcon 484 range speed versus Global
Positioning System (GPS) range speed
4. USS KINKAID (DD 965) EM log speed versus Global Positioning System (GPS)
range speed
TABLES
1. USS KINKAID (DD 965) principal ship and propeller characteristics
2. USS KINKAID (DD 965) trial conditions
3. USS KINKAID (DD 965) measurement uncertainties
4. USS KINKAID (DD 965) fouled hull Standardization Trial results
5. USS KINKAID (DD 965) clean hull Standardization Trial results
5. USS KINKAID (DD 965) comparison of shaft torque results
7. USS KINKAID (DD 965) comparison of shaft power results

THIS PAGE INTENTIONALLY LEFT BLANK

U.S. CUSTOMARY/METRIC UNITS

1 foot (ft) = 0.3048 meters (m)

1 inch (in) = 25.40 millimeters (mm)

1 knot (kn) = 0.5144 meters per second (m/s)

1 pound-force (lbf) = 4.448 Newtons (N)

1 pound-force-foot (lbf-ft) = 1.35582 Newton-meters (Nm)

 $1 \log ton (2,240 \text{ lb}) = 1.016 \text{ metric tons or } 1.016 \text{ kilograms}$

1 horsepower (hp) = 0.746 kilowatts (kW)

1 nautical mile (1nmi) = 1.852 kilometers (km)

1 degree Fahrenheit (°F) = $(^{\circ}F-32)*(0.5556)(^{\circ}C)$

1 pound-force/inch² (psig) = 6894.8 pascals (Pa)

on For		
CRA&I	id	
	<u>[]</u>	
	LI	
adion		
odian I		••••
vailability	Codes	
í		
Speci	.11	
	Avail and	CRA&I DO TAB CONTROL C

of the ordered they are

Perior OTIAL THE STREET SALES

νi

ABSTRACT

Two Standardization Trials were conducted on the USS KINKAID (DD 965) in September 1991 to evaluate the effectiveness of the five year paint system currently on the ship. The trials were conducted on an instrumented tracking range off the California coast at La Jolla. Minimal marine growth was found and an average 0.9% shaft power differential between fouled and clean hull trial data supports the supposition that KINKAID 's paint system is very effective. The highest measured shaft power common to both trials was 77,620 hp. The combined effect of the hull cleaning and the displacement differential was a 0.2 kn speed increase between the two trial conditions at this shaft power.

ADMINISTRATIVE INFORMATION

The work described herein was performed by the Carderock Division, Naval Surface Warfare Center (CDNSWC), Code 1523. This project was accomplished under CDNSWC Work Unit 1-2759-947-13. The source of funding was the Office of Naval Research, Code 12E.

INTRODUCTION

The USS KINKAID (DD 965) is the third destroyer of the USS SPRUANCE (DD 963) Class. KINKAID is powered by four LM2500 gas turbine engines capable of providing a total of 80,000 shaft horsepower to the ship's two controllable pitch (CP) propellers.

The KINKAID is one of the destroyers participating in the Navy five-year paint program. This paint scheme utilizes an anti-fouling copper ablative paint. In order to determine the effectiveness of the paint system in minimizing marine growth on ship hulls, Standardization Trials are conducted. By measuring the differences in the speed/power characteristics of a clean versus fouled hull, and documenting the hull conditions with a British Maritime Technology (BMT) hull roughness analyzer, investigators can determine the effectiveness of the paint system. Another benefit realized is an understanding of marine growth rates in different geographic locations.

The trials were conducted off the California coast at La Jolla. Two trials were conducted. The first Standardization Trial was conducted with a fouled hull and clean propellers. The KINKAID was last cleaned on March 9, 1990. The second Standardization Trial was conducted with a clean hull and clean propellers. The results of the trials are considered good and the ship's electro-magnetic (EM) speed log compared well with the range speed.

TRIAL CONDITIONS

KINKAID's paint system is designed such that the ship requires a painting or touch-up of the

underwater hull and appendages with a BRA 540 anti-fouling copper ablative paint every five years. Anti-corrosion paint is applied under the anti-fouling paint. This anti-corrosion paint is supposed to be effective for ten years.

Prior to the first Standardization Trial, divers determined that the hull was covered with a light slime from the waterline to a point approximately 15 ft toward the keel. From this point to the keel the paint scheme proved to be effective and little to no slime was evident. Calcareous growth (tube worms and barnacles) was in evidence on the hull where keel blocks were in place during paint application. The propeller shafts were painted with the same paint scheme as the hull. This paint was also intact. Divers conducted a photographic survey and a BMT hull roughness survey. The propellers were then polished in preparation for the first trial.

After conducting the first Standardization Trial on 25 September 1991 at the La Jolla tracking range, the divers cleaned the hull and reinspected the propellers on 26 September 1991. The propellers did not require further polishing. BMT hull roughness measurements were taken and the hull photo documented. The second or clean hull Standardization Trial was then conducted at the same trial site on 27 September 1991. A more detailed description of the cleaning and the BMT hull roughness survey will be published in a future report by CDNSWC, Code 2841.

Principal ship and propeller characteristics are shown in Table 1. Both trials were conducted in almost ideal environmental conditions. The sea state was 1 and true wind speed varied 3.3 to 16.7 km for the fouled hull Standardization Trial and 1.7 to 14.4 km for the clean hull Standardization Trial. Further details of the trial conditions can be found in Table 2.

TRIAL INSTRUMENTATION AND PROCEDURES

Installation of the trial instrumentation occurred during the period 19 to 24 September 1991 at the Naval Station in San Diego, California. Temporary trial torsionmeters and shaft speed counters were installed in the Sewage Plant #2 room on the 6th deck. Data output from this location were routed to the Central Control Station (CCS) located on the second deck and relayed to the Electronic Wariare Equipment (EW) room on the 03 level. Additional ship signals were obtained in the CCS and also routed to the EW room. These signals include EM log speed, rudder angles, wind direction, wind speed, and hydraulic oil power module (HOPM) oil pressures and temperatures.

CDNSWC also installed a Motorola Falcon 484 pulse radar tracking system and a commercial Global Positioning System (GPS) to provide positional information and enable the calculation of ship speed. The Falcon 484 required the installation of a radar tracking range. The range

consisted of transponders located at two surveyed shore stations and a receiver/transmitter (R/T) located on the ship's aft mast approximately 110 ft above the main deck. The Falcon continually determined and updated the ship's position in X and Y coordinates and the time between position readings. Using this information, a CDNSWC computer calculated the ship's spend over the ground using the position component that is parallel to the baseline delineated by the two surveyed stations.

The Global Positioning System (GPS) utilized satellite ranging to determine ship's position. The satellites are used as reference points for triangulating the position of the ship. GPS required the availability of at least three satellites in a geometric configuration such that the Precision Dilution of Position (PDOP), a multiplicative factor that modifies ranging error, is minimized. GPS was operated in the Autonomous mode. In this mode, a single GPS receiver onboard the ship ranged the satellites to calculate position by determining the distance from the ship to the satellites. A limiting factor in operating a commercial GPS receiver in Autonomous mode is Selective Availability (S/A). S/A is an operating mode used by the Department of Defense (DoD) to degrade the accuracy of the satellite system. Only when S/A is off can the calculated position be used to determine speed over the ground to the specified accuracy. GPS continually determined and updated the ship's position in latitude and longitude and the time between position readings. This information is converted by a CDNSWC computer into X and Y coordinates. The ship's speed over the ground is calculated in the same manner as the Falcon 484 system. The calculated GPS and Falcon 484 speeds are considered range speeds.

All of the data were monitored and recorded on a Hewlett-Packard Series 9000, Model 300 computer. An instrumentation block diagram is shown in Figure 1 and a list of measurement uncertainties can be found in Table 3.

The Standardization Trials were conducted in accordance with Chapter 094 of the Naval Ship's Technical Manual. Data were obtained for speeds corresponding to 70 r/min up to full power (168 r/min). Two to three runs, alternating in direction and of three minute duration, were made at each speed. An average was applied to take into account the effects of current. For a three pass spot, the odd direction run was doubled and the four spots were then averaged.

Both trials were conducted with the propulsion system in the Manual Control Mode. The propeller pitch was adjusted to an "up against the stops" propeller pitch condition which is 110% of design. CDNSWC monitored the hydraulic oil pressure readings at the Hydraulic Oil Power Module (HOPM). The "up against the stops" or 110% propeller pitch condition is defined as the point where the hydraulic oil pressure spikes as pressure is increased. At this point, the ship was

asked to back the pitch off the stops to the point right before the pressure spike. The shaft r/mins and torques were then balanced and steady state run data was taken along a base course parallel to the baseline formed by the two shore stations. The water current averaged 0.2 kn and very little current gradient was observed.

Prior to and after each of the Standardization Trials, draft readings were taken at the pier. The displacements for the fouled and clean hull Standardization trials were 8820 LT and 8580 LT, respectively. Drag shaft tests were conducted on the morning of each of the Standardization Trials so that the residual torque in the propeller shaft could be accounted for.

PRESENTATION AND DISCUSSION OF TRIAL RESULTS

Data obtained during these trials are considered good and representative of the KINKAID in the trial conditions tested. Both trials were conducted at a nominal propeller pitch of 110%.

The fouled hull Standardization Trial was conducted at a displacement of 8820 LT. The KINKAID reached a maximum ship speed of 31.65 kn as measured by GPS. Other ship measurements at this speed were:

Average shaft r/min = 165.5 r/min

Total shaft torque = 2,463,700 lbf-ft

Total shaft power = 77,620 hp

After the ship was cleaned, the clean hull Standardization Trial was conducted. The displacement was 8580 LT. The maximum ship speed as derived by the GPS was 32.0 kn. This was achieved at the following ship conditions:

Average shaft r/min = 167.8 r/min

Total shaft torque = 2,493,900 lbf-ft

Total shaft power = 79,690 hp

From the trials data, it is apparent that a shaft power imbalance exists in several runs. In these instances, it is suspected that the propeller pitches were not the same. This would account for the power imbalance.

The difference in displacement between the two Standardization Trials was 240 LT or 2.7%. Over the speed range, KINKAID required an average 2.8% less shaft torque and 3.6% less shaft power to achieve a given speed after the hull was creaned. These values do not differentiate between the changes in powering characteristics caused by the difference in displacement and the hull cleaning. In order to isolate the effect of hull cleaning on shaft power, it was necessary to

eliminate the effect due to the displacement differential. The following procedure was utilized:

When the shaft power was normalized using the SHP/ton procedure outlined above, an average 0.9% difference in shaft power was realized after the hull was cleaned. An average 2.7% difference in shaft power resulted due to the displacement differential. As noted in the trials condition section of this report, negligible marine growth was evident on the hull which suggests that the paint system was very effective. The small average 0.9% shaft power differential between the two sets of trials data, gives credence to this supposition.

Comparison of speed/power measurements indicate that 2.1% less shaft torque and 3.5% less shaft power were required to attain 31.65 kn after the hull was cleaned. It should be noted that these values include the effects of the hull cleaning and displacement differential variables but do not quantify the individual variable's effect on shaft power.

At the shaft power common to both trials of 77,620 hp, an increase of 0.2 kn was realized with a clean hull. This value not only reflects the results of the hull cleaning, but includes the effects of displacement differential. These trial results are tabulated in Tables 4, 5, 6 and 7 and are graphically displayed in Fig. 2.

As mentioned previously, ship speed was derived by three separate means. The Falcon 484 pulse radar tracking system and the GPS speeds never varied by more than 0.20 km. The

system was inoperative during part of the clean hull Standardization Trial. This was due to transmissions by other ships on the tracking system's frequencies. The Falcon 484 assumed these transmissions were legitimate responses from the shore transponders. Hence, the data obtained was spurious. Therefore, in order for a meaningful trial comparison to be made, GPS range speeds are used for Fig. 2. A comparison of the Falcon and GPS range speeds can be found in Fig. 3. The third speed measurement comes from the ship's EM speed log. Figure 4 is a comparison of GPS range speed and EM log speed and indicates that the ship's EM log is in calibration over most of the speed range and is approximately 0.4 kn low at the top speed.

CONCLUSIONS

The results of the two Standardization Trials on KINKAID are considered to be good and the data applicable to the ship in the conditions tested. The following conclusions can be drawn from these trials:

- 1. The paint system is very effective. The 0.9% shaft power differential between the fouled and clean hull trials data indicated minimal marine growth approximately one and a half years after the latest paint application. The diver inspection and hull survey verified this fact.
- 2. The effect of cleaning the hull resulted in KINKAID requiring an average of 0.9% less shaft power to attain a given speed.
- 3. When comparing fouled and clean hull speed/power data at the highest measured speed common to both trials, the ship required 2.1% less shaft torque and 3.5% less shaft power to reach this maximum speed of 31.65 km. These values represent the combined effect of the hull cleaning and the displacement differential.
- 4. The highest measured shaft power common to both trials was 77,620 hp. The combined effect of the hull cleaning and the displacement differential was a 0.2 kn speed increase between the two trial conditions at this shaft power.

RECOMMENDATIONS

Difficulties in utilizing the Motorola Falcon 484 to develop ship speed were encountered in the San Diego/La Jolla operations area. Even though all KINKAID's communications and radar operations in the Falcon's operating frequencies were curtailed, the Falcon became inoperable due to outside sources of frequency interference. Three other ships were operating the SPS 67 radar. This put the trials in jeopardy since the Falcon tracking system accepted these

transmissions as legitimate responses from the shore transponders. The tracking data were intermittently available and dependent on the other ships operations. In the past, operational interference was caused by multiple users of the Falcon. In this situation, increased transmissions by other ships caused the problem. The use of the Falcon 484 pulse radar tracking system in the San Diego/La Jolla area has become undesirable. The Falcon 484 system is still adequate as a secondary system. GPS, operating in the autonomous mode, proved to be more reliable for tracking in the San Diego/La Jolla area and should be used as the primary means of tracking test vehicles for the purposes of developing speed and maneuvering characteristics. However, the accuracy of the commercial GPS receiver is limited by DoD's deliberate degradation of positional information via S/A. To eliminate this operating constraint, it is recommended that a military P code GPS unit, which is unaffected by S/A, be utilized.

1

ACKNOWLEDGMENTS

The authors would like to thank the officers and crew of the USS KINKAID for their interest, flexibility, and support provided during the trials period. The cooperation provided by CDR MacKinnon and the ship's engineering department was vital to the success of these trials and is greatly appreciated.

Fig. 1. USS KINKAID (DD 965) trials instrumentation diagram.

Fig. 2. USS KINKAID (DD 965) Standardization Trial results.

Fig. 3. USS KINKAID (DD 965) Motorola Falcon 484 range speed versus Global Positioning System (GPS) range speed.

Fig. 4. USS KINKAID (DD 965) EM log speed versus Global Positioning System (GPS) range speed.

Table 1. USS KINKAID (DD 965) principal ship and propeller characteristics.

Ship Characteristics

Length overall (LOA)	563.1 ft
Length between perpendiculars (LBP)	528.8 ft
Beam, maximum at DWL	55.1 ft
Number of rudders	2
Projected rudder area (per rudder)	162.6 ft ²

Propeller Characteristics

Number of propellers	2
Serial number (port)	10838
Serial number (starboard)	10837
Type of propeller	CP
Number of blades	5
Propeller diameter	17.0 ft
Propeller pitch at 0.7 radius	26.2 ft
Pitch ratio at 0.7 radius	1.54
Expanded area	165.70 ft ²
Disc area	226.98 ft ²
Projected area	134.1 ft ²
Material	Ni-AL-Bz
Manufacturer	Bird-Johnson Co.
Bird-Johnson drawing number	115651002

Table 2. USS KINKAID (DD 965) trial conditions.

Fouled Hull Standardization Trial

Trial date Displacement Ship trim Sea state	25 September 1991 8820 LT 0.04 ft up by the bow 1
Air temperature	690F
Water temperature	710F
Water specific gravity	1.026
True wind speed (varied)	3.3 kn to 16.7 kn
True wind direction (varied) Days out of dock	ranges from 254 deg thru 125 deg 565 days

Clean Hull Standardization Trial

Table 3. USS KINKAID (DD 965) measurement uncertainties.

		Calibration			Bias	Frecision	
Measurement	Source	Source	Units	Resolution 1	Limit 3	Limit	Uncertainty
Shaft Speed (Port)	Infrared	Electronic	e/min	o	+0+	± 2.2	± 2.3
Shaft Speed (Stbd)	Light Sensor	Oscillator		7:0	t ::	± 1.8	+ 1.8
Shaft Torque (Port)	Deflection	Deflection	יאל ה	00100 Ec 2	+ 1 743	± 23,433	± 23,507
Shaft Torque (Stbd)	Sensor	Calibration Stand	11.101	0.010.0	74/17	± 13,971	± 14,079
Shaft Power (Port)	Mathematical	•	ų	•	+ 108.7	± 920.1	± 962.5
Shaft Power (Stbd)	Calculation	•	di.		7.00.1	± 612.5	± 622.1
Rudder Angle (Port)	Synchro	Rudder	200	0.1	307	40.9	± 1.1
Rudder Angle (Stbd)	Transmitter	Quadrant	מכא	1.0	CO H	± 1.8	±1.9
Hydraulic Oil Pres. (Port)	Pressure	Pressure	ų.	0.1	+35	± 28.0	± 28.1
Hydraulic Oil Pres. (Stbd)	Transducer	Calibration Stand	5164	7.0	C.2.1	±39.6	±39.7
Hydraulic Oil Temp. (Port)	Strap-on Temperature	•	, Ti	10	03+	0.2	± 5.0
Hydraulic Oil Temp. (Stbd)	Sensor	•	4		0.01	0.2	±5.0
Ship Wind Direction	Anemometer	Ship	deg	0.1	±5.0	₹ 6.5	±6.5
Ship Wind Speed	Anemometer	Ship	Ę	0.1	±0.5	± 1.1	± 1.2
Steady EM Log Speed	Synchro Transmitter	Standardization Trials	5	0.1	±0.4	± 0.6	± 0.7
Steady Ship Speed	Falcon 484 Pulse Radar	Surveyed Baseline	Ē	0.01	± 0.1	8.0 ∓	∓ 0.8
Steady Ship Speed	Autonomous GPS	٠	티	0.01	±0.1	± 0.2	±0.2

Resolution - !east detectable change in measurement
 FS - Full Scale
 Bias Limit - Based on "Uncertainty Analysis of Standardization Trials on a U.S. Navy Fleet Oiler. Erik H. Johnson

Table 4. USS KINKAID (DD 965) fouled hull Standardization Trial results.

Range Range EMILog Shaft Speed Shaft Torque Shaft Torque Shaft Torque Shaft Torque Shaft Speed Spee		Falcon	GPS											True	True
Speed Speed (r/min) Average Stbd Port Total Stbd 15.00 15.20 15.2 71.7 71.8 71.8 253.4 238.7 492.1 3460 15.00 15.2 71.7 71.8 71.8 253.4 238.7 492.1 3460 14.90 15.00 15.2 70.5 72.2 71.4 222.3 244.7 477.0 3120 15.15 15.2 70.5 72.2 71.4 241.1 248.4 489.5 3240 15.15 15.2 70.5 72.2 71.4 241.1 248.4 489.5 3240 15.15 15.2 72.2 71.4 241.1 248.4 489.5 3240 20.85 20.70 20.7 98.7 100.4 99.6 433.1 442.0 875.1 8140 20.80 27.0 20.8 98.7 100.4 99.6 433.1 442.0 875.1 81450		Range	Range	EM Log	•	shaft Speed		6 ,	baft Torque	4)	σ,	Shaft Power		Wind	Wind
(Em) (Em) (Em) Stbd Port Average Stbd Port Total Stbd Stbd Port Total Stbd Stbd Port Total Stbd	Run	Speed	Speed	Speed		(r/min)			1000 lbf-ft)			(dq)		Speed	Dir.
15.00 15.00 15.2 71.7 71.8 71.8 71.8 23.4 23.7 492.1 3460 15.35 15.25 15.2 70.5 72.2 71.4 232.3 244.7 477.0 3120 14.90 15.00 15.2 70.5 72.2 71.4 241.1 248.4 489.5 3240 15.15 15.2 70.5 72.2 71.4 241.1 248.4 489.5 3240 20.85 20.90 20.7 98.7 100.4 99.6 426.4 428.5 854.9 8010 20.65 20.70 20.8 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 20.70 20.8 77.1 129.0 129.6 433.1 442.0 875.1 8140 20.50 27.2 130.0 129.6 433.1 442.0 875.1 865.0 20.50 27.4 130.0 129.6 432.1 <t< th=""><th>No.</th><th>(<u>B</u></th><th>(Kra)</th><th>(E)</th><th>Stbd</th><th>Port</th><th>Average</th><th>Stbd</th><th>port.</th><th>Total</th><th>Stbd</th><th>Port</th><th>Total</th><th>(kn)</th><th>(deg)</th></t<>	No.	(<u>B</u>	(Kra)	(E)	Stbd	Port	Average	Stbd	port.	Total	Stbd	Port	Total	(kn)	(deg)
15.35 15.25 15.2 70.5 72.2 71.4 232.3 244.7 477.0 3120 14.90 15.00 15.2 70.5 72.2 71.4 241.1 248.4 489.5 3240 15.15 15.15 15.2 70.5 72.2 71.4 241.1 248.4 489.5 3240 20.85 20.90 20.7 98.7 100.4 99.6 426.4 428.5 854.9 8010 20.40 20.45 20.9 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 20.70 20.8 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 20.70 20.8 130.0 130.0 129.5 751.6 749.9 1501.5 18450 20.50 27.2 129.1 130.0 129.5 751.6 749.9 1501.5 18450 27.10 27.2 129.1 130.0	1000i	15.00	15.00	15.2	71.7	71.8	71.8	253.4	238.7	492.1	3460	3260	6720	11.2	274
14,90 15.00 15.2 70.5 72.2 71.4 241.1 248.4 489.5 3240 20.85 20.86 20.7 98.7 100.4 99.6 426.4 428.5 854.9 8010 20.40 20.45 20.9 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 20.70 20.8 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 20.70 20.8 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 27.20 129.1 130.0 129.6 751.6 749.9 150.5 18450 27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 150.1 18450 28.80 28.80 28.6 139.3 140.6 140.1 890.9 879.3 177.8 23360 28.70 28.6 28.5 149.4	S0101	15.35	15.25	15.2	70.5	72.2	71.4	232.3	244.7	477.0	3120	3360	6480	7.6	299
20.85 20.90 20.7 98.7 100.4 99.6 426.4 428.5 854.9 8010 20.40 20.45 20.9 98.7 100.4 99.6 433.1 442.0 875.1 8140 20.45 20.45 20.8 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 20.70 20.8 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 27.00 27.2 129.1 130.0 129.6 762.0 750.3 1512.3 18140 27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 1501.5 18450 27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 1501.5 18450 28.55 28.50 28.6 139.3 140.6 140.1 890.9 880.9 1771.8 23630 28.70 28.65 2	1020N	14.90	15.00	15.2	70.5	72.2	71.4	241.1	248.4	489.5	3240	3420	0999	13.1	254
20.85 20.90 20.7 98.7 100.4 99.6 426.4 428.5 854.9 8010 20.40 20.45 20.45 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 20.70 20.8 98.7 100.5 99.6 433.1 442.0 875.1 8140 26.90 27.00 27.2 129.1 130.0 129.6 762.0 750.3 1512.3 18450 27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 1501.5 18450 27.10 27.20 27.1 129.0 130.0 140.1 890.9 880.9 1771.8 236.0 28.80 28.80 28.4 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.5 149.4 149.8 149.6 100.2 149.7 149.9 149.7 149.7 149.7 149.7	Average	15.15	15.15	15.2			71.5			483.9			0659		
20.40 20.45 20.9 98.7 100.5 99.6 433.1 442.0 875.1 8140 20.65 20.70 20.8 98.7 100.5 99.6 433.1 442.0 875.1 8140 26.90 27.00 27.2 129.1 130.0 129.6 762.0 750.3 1512.3 18730 27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 1501.5 18730 28.50 27.2 27.2 139.3 140.9 140.1 890.9 880.9 1771.8 23630 28.80 28.80 28.4 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.5 149.4 149.8 149.6 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0	1060S	20.85	20.90	20.7	7.86	100.4	9.66	426.4	428.5	854.9	8010	8190	16200	4.1	42
20.65 20.70 20.8 99.6 865.0 865.0 26.90 27.00 27.2 129.1 130.0 129.6 762.0 750.3 1512.3 18730 27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 1501.5 18450 27.10 27.20 27.2 139.3 140.9 140.1 800.9 880.9 1771.8 23630 28.50 28.6 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.4 139.3 140.6 140.0 880.4 879.3 1771.8 23630 28.70 28.65 28.4 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.5 149.4 149.8 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 149.0 </th <th>1070N</th> <th>20.40</th> <th>20.45</th> <th>20.9</th> <th>7.86</th> <th>100.5</th> <th>9.66</th> <th>433.1</th> <th>442.0</th> <th>875.1</th> <th>8140</th> <th>8460</th> <th>16600</th> <th>4.9</th> <th>328</th>	1070N	20.40	20.45	20.9	7.86	100.5	9.66	433.1	442.0	875.1	8140	8460	16600	4.9	328
26.90 27.00 27.2 129.1 130.0 129.6 762.0 750.3 1512.3 18730 27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 1501.5 18450 27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 1501.5 18450 28.55 28.50 28.6 139.3 140.9 140.1 890.9 880.9 1771.8 23630 28.70 28.65 28.4 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.5 149.4 149.8 149.6 1002.5 1007.4 2039.9 29370 29.40 29.50 149.4 149.8 149.7 1003.3 943.8 1947.1 23560 29.75 29.80 29.6 149.5 149.7 1003.3 943.8 1947.1 23560 31.45 31.50 31.5 165.	Average	20.65	20.70	20.8			9.66			865.0			16400		
27.30 27.40 27.1 129.0 130.0 129.5 751.6 749.9 1501.5 18450 27.10 27.20 27.2 129.0 130.0 129.5 751.6 749.9 1501.5 18450 28.55 28.50 28.4 139.3 140.6 140.1 890.9 880.9 1771.8 23630 28.80 28.85 28.4 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.5 149.4 149.8 149.0 1052.5 1007.4 2039.9 29370 29.40 29.50 29.6 149.4 149.8 149.7 1003.3 943.8 1947.1 23560 29.40 29.50 29.6 149.9 149.7 1003.3 943.8 1947.1 23560 29.45 31.50 31.5 164.9 165.0 165.5 1271.1 1195.9 2467.0 39910 31.70 31.75 31	1120N	26.90	27.00	27.2	129.1	130.0	129.6	762.0	750.3	1512.3	18730	18570	37300	16.4	279
28.55 28.50 28.6 139.3 140.9 140.1 890.9 880.9 1771.8 23630 28.80 28.80 28.4 139.3 140.6 140.0 880.4 879.3 1771.8 23630 28.70 28.65 28.4 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.5 149.6 140.6 140.0 170.0 23350 30.05 30.10 29.6 149.4 149.8 149.7 1003.3 943.8 1947.1 23560 29.40 29.80 29.6 149.5 149.7 1003.3 943.8 1947.1 23560 31.45 31.50 31.3 164.9 166.0 165.7 1271.1 1195.9 2467.0 39910 31.70 31.75 31.0 165.1 165.9 167.5 1271.1 1195.9 2467.0 39950	1130S	27.30	27.40	27.1	129.0	130.0	129.5	751.6	749.9	1501.5	18450	18560	37010	5.9	125
28.55 28.50 28.6 139.3 140.9 140.1 890.9 880.9 1771.8 23630 28.80 28.80 28.4 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.4 139.3 140.6 140.0 880.4 879.3 1759.7 23350 28.70 28.65 28.5 149.4 149.8 149.6 1007.4 2039.9 29370 29.40 29.50 29.6 149.5 149.9 149.7 1003.3 943.8 1947.1 23560 29.75 29.80 29.6 149.5 149.7 1003.3 943.8 1947.1 23560 31.45 31.50 31.3 164.9 166.0 165.5 1271.1 1195.9 2467.0 39910 31.70 31.75 31.0 165.1 165.9 165.5 1271.1 1195.9 2467.0 39950	Average	27.10	27.20	27.2			129.5			1506.9			37160		
28.80 28.84 139.3 140.6 146.0 880.4 879.3 1759.7 23350 28.70 28.65 28.5 149.6 140.6 140.0 880.4 879.3 1759.7 23350 30.05 30.10 29.6 149.4 149.8 149.6 1032.5 1007.4 2039.9 29370 29.40 29.50 29.6 149.5 149.7 1003.3 943.8 1947.1 23560 29.75 29.80 29.6 149.7 166.0 165.7 1271.1 1195.9 2467.0 39910 31.45 31.76 31.7 31.7 165.1 165.9 165.5 1271.1 1195.9 2467.0 39950	N0811	28.55	28.50	28.6	1303	140 9	140.1	6008	980.0	1771 8	23630	23630	47360	16.3	200
28.70 28.65 28.5 149.6 149.6 1032.5 1007.4 2039.9 29370 30.05 30.10 29.6 149.4 149.8 149.7 1003.3 943.8 1947.1 23560 29.40 29.50 29.6 149.5 149.9 149.7 1003.3 943.8 1947.1 23560 29.75 29.80 29.6 149.5 166.0 165.7 1693.5 1271.1 1195.9 2467.0 39910 31.45 31.76 31.75 31.0 165.1 165.9 165.5 1270.8 1189.6 2460.4 39950	1160S	28.80	28.80	28.4	139.3	140.6	140.0	880.4	879.3	1759.7	23350	23540	46890	4.6	310
30.05 30.10 29.6 149.4 149.8 149.6 1032.5 1007.4 2039.9 29370 29.40 29.50 29.6 149.5 149.9 149.7 1003.3 943.8 1947.1 23560 29.75 29.80 29.6 149.7 149.7 1003.3 943.8 1947.1 23560 31.45 31.50 31.3 164.9 166.0 165.5 1271.1 1195.9 2467.0 39910 31.70 31.75 31.0 165.1 165.9 165.5 1270.8 1189.6 2460.4 39950	Average	28.70	28.65	28.5			140.0			1765.8			47080		1
30.05 30.10 29.6 149.4 149.8 149.6 1032.5 1007.4 2039.9 29370 29.40 29.50 29.6 149.5 149.9 149.7 1003.3 943.8 1947.1 23560 29.75 29.80 29.6 149.5 149.9 149.7 1003.3 943.8 1947.1 23560 31.45 31.50 31.3 164.9 166.0 165.5 1271.1 1195.9 2467.0 39910 31.70 31.75 31.0 165.1 165.9 165.5 167.5 1270.8 1189.6 2460.4 39950															
29.40 29.50 29.6 149.5 149.9 149.7 1003.3 943.8 1947.1 23560 29.75 29.80 29.6 149.7 149.7 1993.5 1993.5 31.45 31.50 31.3 164.9 166.0 165.5 1271.1 1195.9 2467.0 39910 31.70 31.75 31.0 165.1 165.9 165.5 1270.8 1189.6 2460.4 39950	1180S	30.05	30.10	29.6	149.4	149.8	149.6	1032.5	1007.4	2039.9	29370	28730	58100	3.3	358
29.75 29.80 29.6 149.7 149.7 1993.5 31.45 31.50 31.3 164.9 166.0 165.5 1271.1 1195.9 2467.0 35910 31.70 31.75 31.0 165.1 165.9 165.5 165.6 35950	N0611	29.40	29.50	29.6	149.5	149.9	149.7	1003.3	943.8	1947.1	23560	26940	55500	6.9	317
31.45 31.50 31.3 164.9 166.0 165.5 1271.1 1195.9 2467.0 35910 31.70 31.75 31.0 165.1 165.9 165.5 1270.8 1189.6 2460.4 39950	Average	29.75	29.80	29.6			149.7			1993.5			26800		
31.70 31.75 31.0 165.1 165.9 165.5 1270.8 1189.6 2460.4 39950	1220N	31.45	31.50	31.3	164.9	166.0	165.5	1271.1	1195.9	2467.0	35910	37800	77710	6.4	302
	1230S	31.70	31.75	31.0	165.1	165.9	165.5	1270.8	1189.6	2460.4	39950	37580	77530	5.7	83
31.60 31.65	Average	31.60	31.65	31.2			165.5			2463.7			77620		

Table 5. USS KINKAID (DD 965) clean hull Standardization Trial results.

	Falcon	GPS											Tare	Taile
	Range	Range	EM Log	0,	Shaft Speed		S	Shaft Torque		•,	Shaft Power		Wind	Wind
Run	Speed	Speed	Speed		(r/min)		٧.٧	(1000 lbf-ft)			(hp)		Speed	Dir.
ŊĠ.	<u>B</u>	(C E)	(krii)	Stbd	Port	Average	Stbd	Port	Total	Stbd	Port	Total	(kn)	(deg)
2000S	15.40	15.30	15.0	69.1	70.5	8.69	222.5	223.1	445.6	2930	3000	5930	11.0	314
N:0102	14.60	14.60	15.0	69.1	76.5	8.69	230.6	223.9	454.5	3030	3010	6040	6.1	314
2020S	15.30	15.25	15.0	69.1	70.5	8 69	224.3	221.1	445.4	2950	2970	5920	11.1	316
Average	15.00	14.95	15.0			89. 89.			450.0			2980		
S090Z	21.35	21.35	21.1	99.2	100.2	7:65	430.7	444.1	874.8	8140	8470	16610	13.9	284
Z070N	20.80	20.90	21.2	98.1	100.3	7:56	432.6	444.6	877.2	8160	8490	16650	3.3	287
Average	21.10	21.15	21.1			£:3			876.0			16630		
S160Z	25.45	25.40	25.2	118.3	119.6	0.611	582.0	593.4	1175.4	13110	13510	26620	11.4	278
2100N	24.85	24.85	25.3	118.4	119.7	119.1	584.3	601.3	1185.6	13170	13700	26870	3.3	280
Average	25.15	25.15	25.3			0.511			1180.5			26750		
2120N	27.05	27.05	27.5	128.9	129.7	129.3	714.6	729.7	1444.3	17540	18020	35560	4.1	CPE
21305	27.60	27.50	27.3	128.9	129.8	129.4	705.8	731.4	1437.2	17320	18080	35400	14.2	296
Average	27.35	27.30	27.4			129.3			1440.8			35480	l	
2150S	,	29.40	29.1	139.8	140.6	140.2	936.2	902.3	1838.5	24920	24160	49080	14.4	285
2160N	•	28.95	29.1	139.9	140.5	140.2	929.6	894.5	1824.1	24760	23930	48690	1.1	31
21705	•	29.35	29.0	139.8	140.6	140.2	924.8	894.2	1819.0	24620	23940	48560	12.6	286
Average	,	29.15	29.1			140.2			1826.4			48760		
21805		30.35	30.0	148.0	149.8	148.9	1045.4	1036.7	2082.1	29460	29570	59030	13.2	295
2190N	,	30.30	30.2	149.1	149.7	149.4	1061.1	1015.8	2076.9	30120	28950	59070	3.1	0
Average	,	30.35	30.1			149.2			2079.5			29050		
2220S	32.15	32.35	31.5	167.0	168.0	167.5	1246.1	1245.3	2491.4	39620	39830	79450	13.5	288
2230N	31.65	31.65	31.6	168.3	168.0	168.2	1276.0	1220.4	2496.4	40890	39040	79930	2.0	т
Average	31.90	32.00	31.6			167.8			2493.9			06962		

Table 6. USS KINKAID (DD 965) comparison of shaft torque results.

GPS	Total	Total	Total
Range	Shaft Torque	Shaft Torque	Shaft Torque
Speed	Clean Hull 1	Fouled Hull	Difference
(kn)	(lpf-ft)	(lpf-ft)	(%)
15.15	473,000	483,900	2.3%
20.70	836,000	865,000	3.4%
27.20	1,463,000	1,506,900	2.9%
28.65	1,701,000	1,765,800	3.7%
29.80	1,940,000	1,993,500	2.7%
31.65	2,412,000	2,463,700	2.1%
Average			2.8%

1. Interpolated values from Standardization curves (Figure 2.)

Table 7. USS KINKAID (DD 965) comparison of shaft power results.

GPS	Total	Total	Total	Total	Total	Hull Cleaning Displacement	Displacement
Range	Shaft Power	Shaft Power Shaft Power	Shaft Power	SHP/ton	SHP/ton	Effect on	Effect on
Speed	Clean Hull	Fouled Hull	Difference	Clean Hull 2	Fouled Hull	Shaft Power 4	Shaft Power 5
(ka)	(hp)	(hp)	(%)	(shp/ton)	(shp/ton)	(%)	(%)
15.15	6,400	6,590	2.9%	0.7459	0.7472	0.2%	2.7%
20.70	15,900	16,400	3.0%	1.8531	1.8594	0.3%	2.7%
27.20	35,600	37,160	4.2%	4.1492	4.2132	1.5%	2.7%
28.65	45,200	47,080	4.0%	5.2681	5.3379	1.3%	2.7%
29.80	54,700	56,800	3.7%	6.3753	6.4399	1.0%	2.7%
31.65	74,900	77,620	3.5%	8.7296	8.8005	0.8%	2.7%
Average			3.6%			%6 .0	2.7%

1. Interpolated values from Standardization curves (Figure 2.)

2. Displacement at cl-an hull condition = 8580 LT

3. Displacement at fouled hull condition = 8820 LT

4. Hull Cleaning Effec: on Staft Power = [(shp/ton (touled hull) - shp/ton (clean hull)]/[shp/ton (fouled hull)]
5. Displacement Effect on Shaft Power = (Total Shaft Power Difference - Hull Cleaning Effect on Shaft Power)

INITIAL DISTRIBUTION

Copies

- 2 ONR
- 2 Code 12E
- 1 CO USS KINKAID (DD 965)
- 1 COMSURFLANT
- 1 COMSURFPAC
- 12 DTIC

CENTER DISTRIBUTION

Copies	Code	Name
1	15	Wm. B. Morgan
1	1504	V.J. Monacella
1	152	W.C. Lin
1	1521	W.G. Day
3	1523	R.J. Stenson
1	2841	G. Bohlander
2	3411 (C)	Publications
1	342.1	TIC (C)
1	342.2	TIC (A)
1	3432	Reports Control