Ministry of Higher Education Higher Institute for Engineering and Technology at El-Manzala First semester: 2022/2023 Department: Electronic Engineering. Sheet No. (2) Code: COM113 Course title: fundamental of electronics Examiner: Dr. Mohamed Abdel Rahman

Answer all of the Following Questions

Question (1):

A Full wave rectifier (FWR) is operated from 50Hzsupply with $E_{s(rms)} = 120 \, \mathrm{V}$. It is connected to a load drawing $I_{DC} = 60 \, \mathrm{mA}$ and using $C = 100 \, \mu\mathrm{F}$ filter capacitor. Calculate the dc output voltage and the root mean square value (rms) of the ripple voltage V_{rms} . Also calculate the ripple factor γ .(3 marks)

Question (2):

Aided with the provided I-V characteristics of the diode and the circuit shown in Fig.1, find the diode current and voltage graphically using load line analysis for the following:

 $V_s = 1 V$ and $R = 20 \Omega$.

Fig. (1b)

Question (3):

a)	No.	Parameters	Light emitting diode (LED)	Photo diode
	1	function		
	2	Schematic symbol		
	3	Bias for normal operation		
	4	Applications		

Question (4):

- a) Aided with the configurations, sketch a bridge rectifier and demonstrate the output voltage in case of with and without capacitor filter.
- b) An abrupt silicon p-n junction having doping of $N_A = 10^{18} \, \mathrm{cm}^{-3}$; $N_D = 10^{15} \, \mathrm{cm}^{-3}$ and a circular cross section with diameter of 0.02 inch. Consider $n_i = 1.5 \times 10^{10} \, \mathrm{cm}^{-3}$ for silicon at room temperature, relative permittivity $\varepsilon_s = 11.9$ and $\varepsilon_o = 8.85 \times 10^{-14} \, \mathrm{F/cm}$.

Determine the following:

- i) The value of built in voltage V_a .
- ii) The depletion width in n-region x_{no} .
- iii) The depletion width in n-region x_{DD} .
- iv) iv) Total depletion width W_d.
- v) Sketch the electric field intensity E, charge density ρ distributions and potential V across the junction.

Question (5):

- a) Draw the zener diode I-V characteristics and label each region.
- b) Consider a zener diode regulator circuit as shown in Fig. 1.

 $V_{SS} = 30 \text{ V}, R = 1.5 \text{ k}\Omega, R_L = 6 \text{ k}\Omega \text{ and } V_Z = 10 \text{ V}.$ Compute the

following:

Fig

i) The current flowing through the load, I_L
ii) The source current, I_s
i) The zener current I _z at full load
The zener current 1 _Z at run load
ii) Power of zener diode P_z
iii) Power supplied by the source, P_s
v) Output voltage with removing the zener diode