

Première année de Licence MIASHS

TD – Introduction à la statistique¹

Julien GREPAT²

Contents

1	Statistiques univariées	2
2	Statistiques bivariées et statistique du χ^2	7
3	Régressions linéaires	9
4	Tests statistiques	12
5	Annexe 1 – Étude PERFSTAT	15
6	Fractiles du χ^2	16

 $^{^1\}mathrm{Reproduction}$ et diffusion interdite sans l'accord de l'auteur

²Contact: julien.grepat@univ-grenoble-alpes.fr

1 Statistiques univariées

Exercice 1.1 (population, caractère, variable discrète, continue, quantitative ou qualitative)

(i) On observe le salaire des français
(a) La variable (caractère) étudiée est
\Box le salaire
\square les français
\Box une entreprise
(b) La population est
\Box le salaire
\square les français
\Box une entreprise
(c) La variable est
\Box quantitative
\Box qualitative
(ii) On observe le salaire des salariés d'une entreprise
(a) La variable (caractère) étudiée est
\Box le salaire
\square les français
\square les salariés d'une entreprise
\Box une entreprise
(b) La population est
\Box le salaire
☐ les français
\square les salariés d'une entreprise
\Box une entreprise
(iii) On observe le nombre d'entreprises par département français
(a) La variable (caractère) étudiée est
\square le nombre d'entreprises
☐ les français
\Box une entreprise
\square les départements français
(b) La population est
\square le nombre d'entreprises
☐ les français
\Box une entreprise
□ les départements français

	(c) La variable est
	\Box quantitative
	\Box qualitative
(iv)	On observe la couleur dominante (rouge, jaune, bleu, vert) du logo de différentes entreprises
	(a) La variable (caractère) étudiée est
	□ le nombre d'entreprises
	□ les français
	□ une couleur
	\square des entreprises
	☐ des logos d'entreprises
	(b) La population est
	\square le nombre d'entreprises
	\square les français
	\square une couleur
	\Box des entreprises
	\square des logos d'entreprises
	(c) La variable est
	\Box quantitative
	\square qualitative
	(d) La variable est
	\square discrète
	\Box continue
(v)	On considère le nombre de pièces produites par jour sur une machine
	(a) La variable (caractère) étudiée est
	\square le nombre de pièces
	\square des jours
	\Box une nombre de pièce par jour
	\square des machines
	(b) La population est
	\Box le nombre de pièces
	\square des jours
	\square un nombre de pièce par jour
	\square des machines
	(c) La variable est
	\Box quantitative
	\square qualitative

- (vi) On considère la capacité moyenne de production de pièces par jour sur différentes machines
 - (a) La variable (caractère) étudiée est
 - □ le nombre de pièces
 - \square des jours
 - □ un nombre moyen de pièce par jour
 - \square des machines
 - (b) La population est
 - □ le nombre de pièces
 - \square des jours
 - □ une nombre de pièce par jour
 - \square des machines
 - (c) La variable est
 - □ discrète
 - \square continue

Exercice 1.2 Lors d'une évaluation, un enseignant attribue les notes suivantes :

- (i) Tracer le diagramme en batonnets et la fonction de répartition empirique pour cette série de données.
- (ii) Calculer le mode, la moyenne et l'écart-type.
- (iii) Se trouvant a posteriori trop sévère au regard de la moyenne obtenue, l'enseignant rajoute 1.5 points à tout le monde. Donner, sans calcul, les nouveaux mode, moyenne et écart-type.
- (iv) Comment devrait-il transformer les données pour obtenir un écart-type égal à 2?
- (v) L'enseignant s'aperçoit qu'il a oublié une copie qui obtient finalement 18. Calculons la nouvelle moyenne :

$$\bar{x} = \frac{8+9+11+7+12+6+9+8+5+7+10+10+18}{13} = 9.23$$

Calculons le nouvelle écart-type :

$$s_X^2 = \frac{(8-9.23)^2 + (9-9.23)^2 + \dots + (10-9.23)^2}{13} \approx 10.02$$

$$s_X = \sqrt{10.02} \simeq 3.17$$

Qu'en pensez-vous ? Aurait-il rajouté 1.5 points à tout le monde s'il avait eu dès le début cette nouvelle copie ?

Exercice 1.3 Le tableau ci-contre représente le nombre de personnes (en milliers) sous le seuil de pauvreté (60% du revenu médian de la population) selon leur âge en France en 2018 :

Age	2018
[0, 18[2928
[18, 30[1622
[30, 40[1052
[40, 50[1169
[50, 65[1489
[65, 75[585
[75; 100[482
Total	9327

- (i) Tracer l'histogramme.
- (ii) Calculer l'âge médian et interpréter le résultat.
- (iii) Vérifier graphiquement ce résultat et lire les valeurs de $q_{0.25}$ et $q_{0.9}$.

Exercice 1.4 Nous disposons, sur R de quatre séries statistiques, SerieA, SerieB, serieC, serieD. Nous traçons les quatre histogrammes issus des données brutes et les boxplot, également issus des données brutes, avec la commande

On dispose des 4 histogrammes suivants :

Associer à chacun de ces graphiques le diagramme en boîte suivant qui lui correspond en justifiant bien votre réponse.

Exercice 1.5 Le tableau ci-dessous donne le taux d'agression (nombres d'agressions pour 100 000 habitants) de 16 villes américaines en 1970.

Honolulu	28	Washington	217
Boston	90	Detroit	220
Hartford	103	Kansas City	226
Portland	144	Chicago	242
At lant a	147	New York	267
Tucson	148	New Orleans	283
Houston	186	Dallas	293
Denver	191	Gotham City	800

Notons la présence de la ville fictive Gotham City à des fins pédagogiques.

- (i) Quelle est la population étudiée, sa taille, le caractère étudié, sa nature?
- (ii) Calculer le premier, deuxième et troisième quartiles.
- (iii) On souhaite tracer la boîte de distribution. Quelles sont les quantités nécessaires ? Les calculer.
- (iv) Tracer maintenant la boîte de distribution.

Exercice 1.6 Le tableau ci-dessous représente la distribution en fréquences du nombre de véhicules par ménages français en 1980, 1990, 2000 et 2010.

Nbre de véhicules	1980	1990	2000	2010
0	29.2%	23.2%	19.7%	16.5%
1	54.3%	50.5%	50.7%	47.6%
2	14.8%	23%	25.4%	30.7%
3	1.7%	3.3%	4.2%	5.2%

Source : Insee, Tableaux de l'économie française, Equipement des ménages, Edition 2019

(i) Quels sont la population étudiée, l'individu issu de cette population, la variable étudiée ainsi que sa nature ?

(ii) Sur le graphique ci-dessous, ajouter la courbe des fréquences cumulées de la distribution du nombre des véhicules en 2010. Commenter.

- (iii) Pour 2010, calculer:
 - (a) La médiane m_e .
 - (b) Le premier et le troisième quartiles, notés $q_{0.25}$ et $q_{0.75}$ respectivement.
 - (c) La distance interquartile IQ.
- (iv) Compléter le graphique suivant en dessinant le diagramme en boîte de l'année 2010. Commenter.

2 Statistiques bivariées et statistique du χ^2

Exercice 2.1 Quelle est la différence entre les deux phrases suivantes :

- (i) 3% des individus ont les cheveux blonds et les yeux bleus.
- (ii) 74% des individus blonds ont les yeux bleus.

Exercice 2.2 Le tableau suivant donne les résultats d'une enquête sur une population de 100 assurés (de moins de 58 ans) d'une compagnie d'assurance pour lesquels on relève d'une part, l'âge X du conducteur et d'autre part, le nombre Y d'accidents dans l'année écoulée :

$X \setminus Y$	0	1	2	3	4
[18; 26[2	6	4	2	1
[26; 34[5	10	8	1	1
[34; 42[10	15	4	1	0
[42;50[5	3	5	7	0
[50; 58]	1	2	4	2	1

- (i) Définir la population étudiée, l'unité statistique, les caractères étudiés et leur nature. Comment s'appelle le tableau ci-dessus ?
- (ii) Calculer la distribution du nombre d'accidents. Comment s'appelle cette distribution ?
- (iii) Calculer la moyenne et la médiane de la variable Y.
- (iv) Calculer la distribution du nombre d'accidents pour les conducteurs de moins de 26 ans. Comment s'appelle cette distribution ? Calculer sa moyenne.

Exercice 2.3 On dispose de données anonymées sur le niveau (A, B ou C, A étant le meilleur niveau) d'un groupe d'étudiants en mathématiques et sur leur absentéisme (Jamais, Moyen, Fréquent) à ce même cours durant le semestre. Les résultats de l'enquête sont les suivants :

Etudiant	$Absent\'eisme$	Niveau	Etudiant	$Absent\'eisme$	Niveau
1	Jamais	В			
2	Moyen	C	24	Jamais	B
3	Fréquent	C	25	$Fr\'equent$	B
4	Fréquent	C	26	Jamais	A
5	Moyen Moyen	C	27	Moyen	B
$\begin{array}{c} 3 \\ 6 \end{array}$		$B \cap B$	28	Moyen	C
	Fréquent		29	Jamais	A
7	Jamais	$A \sim C$	30	Moyen	C
8	Moyen	C	31	Fréquent	C
9	Moyen	C	32	Jamais	B
10	$Fr\'equent$	C	33	Jamais	A
11	Jamais	B	34	Moyen	B
12	Moyen	B	35	Moyen Moyen	C
13	$Fr\'equent$	C	36		C
14	Moyen	C		Moyen	
15	Fréquent	C	37	Moyen	C
16	Moyen	C	38	Moyen	C
17	Jamais	C	39	Moyen	C
18	Moyen	C	40	$Fr\'equent$	C
19	Jamais	A	41	Jamais	B
		B	42	Moyen	C
20	Jamais		43	Fréquent	C
21	Jamais	B	44	Jamais	C
22	Fréquent	C	45	Jamais	$\stackrel{\circ}{A}$
23	Fréquent	C	40	2022 2024 17	- 11

Données réelles - Premier semestre de l'année universitaire 2020-2021 - Université Paris 13

(i) Remplir le tableau de contingence suivant :

Niveau\Absentéisme	Jamais	Moyen	Fréquent	Total
A				
В				
C				
Total				

(ii) Donner le tableau des fréquences associé.

Niveau\Absentéisme	Jamais	Moyen	Fréquent	Total
A				
B				
C				
Total				

- (iii) Donner la distribution du *Niveau* pour les étudiants n'ayant pas d'absentéisme. Même question pour les deux modalités de la variable *Absentéisme*. Commenter le résultat.
- (iv) Calculer la statistique du χ^2 et quantifier l'intensité de la liaison par le V de Cramér.

3 Régressions linéaires

Exercice 3.1 Dans une expérience de perception, on étudie l'évaluation des figures géométriques par le sujet. Le sujet est invité à évaluer le périmètre de cercles en s'aidant d'une figure de référence dont il connaît le périmètre (9 cm). Les données recueillies pour un sujet sont les suivantes.

Périmètre P	2.5	4.6	6.3	7.6	8.5	9.0	9.5	10.4	11.7	13.4	15.5	
Éval Périmètre E_p	1.8	3.6	5.8	7.2	8.4	9.0	9.8	11.0	13.2	16.1	21	
P^2												
E_p^2												
$P \times E_p$												

Établir une régression linéaire, on pourra compléter le tableau.

Exercice 3.2 Attribuer à chaque nuage de points de la figure ci dessous son coefficient de corrélation en justifiant votre choix.

$$r_1 = 0.034$$
 $r_2 = -0.99$ $r_3 = -0.741$ $r_4 = 1$.

Exercice 3.3 On s'intéresse au prix d'un bien A au cours du temps. Le tableau suivant donne l'évolution du prix de ce bien de l'année 2000 à l'année 2007.

- On désigne par x la variable temps, telle que x_i correspond à l'année 200i, $i=0,\ldots,7$, c'est à dire telle que l'année 2000 correspond à $x_0=0$, l'année 2001 correspond à $x_1=1$ ect....
- On désigne par y la variable prix (donnée en centaine d'euros), telle que y_i correspond au prix du bien A au cours de l'année 200i, i = 0,...,7, c'est à dire telle que en 2000 le bien A valait y₀ = 7.32 centaines d'euros, ect....

$Ann\'{e}e x_i$	0	1	2	3	4	5	6	7
$Prix y_i$	7.32	8.02	11.55	13.07	15.91	17.33	19.52	19.65

- (i) Tracer le nuage de points.
- (ii) En utilisant la méthode des moindres carrés, déterminer l'équation de la droite représentant y en fonction de x.
- (iii) Calculer le coefficient de corrélation linéaire. Interprétez le résultat.
- (iv) Calculer le prix de ce bien en 2013.

Exercice 3.4 À la sortie d'un hypermarché, 55 personnes sont interrogées sur le montant des dépenses qu'elles viennent d'effectuer ainsi que sur la faim qu'elles ressentent. L'évaluation x de la faim se fait sur une échelle de 1 à 20 (faim faible, score bas/ faim forte, score haut). La série y mesure la dépense en euros. On signale que

$$\bar{x} = 12$$
 $\bar{y} = 100$ $\sum_{i} (x_i - \bar{x})^2 = 22.5$ $\sum_{i} (y_i - \bar{y})^2 = 32$ $\sum_{i} (x_i - \bar{x})(y_i - \bar{y}) = 18.$

(i) Établir l'équation de la droite de régression de y en x par la méthode des moindres carrés.

(ii) Peut-on envisager l'existence d'une liaison linéaire entre x et y?

Exercice 3.5 Dans une usine laitière, des machines produisent des plaquettes de beurre doux ou demi sel. Chaque machine produit des plaquettes de manière continue à la sortie d'une cuve alimentée en crème fraîche et en sel si besoin. Sur la chaîne de production de beurre doux, la machine a été alimentée en sel par inadvertance. On relève la quantité de sel par plaquette en gramme au cours du temps.

temps	t	0	1	2	3	4	5	8	10	15
sel	y	10	6.6	4.5	3.36	2.42	1.78	0.88	0.67	0.52
changement	z =									
de variable	ln(y-0.5)									

On souhaite modéliser l'évolution de la quantité de sel dans les plaquettes de beurre. On donne le nuage de points.

- (i) On renonce à une régression linéaire, expliquer pourquoi.
- (ii) On effectue le changement de variable z = ln(y 0.5). Compléter le tableau.
- (iii) Effectuer la régression linéaire de z sur t par la méthode des moindres carrés.
- (iv) Donner la valeur du coefficient de corrélation linéaire. Que pensez-vous de la légitimité du changement de variable ?
- (v) Donner l'expression de y en fonction de t.
- (vi) En déduire que

$$y = 0.5 + 9.5e^{-0.4t}.$$

Exercice 3.6 (Régression linéaire multiple) Pendant les situations de saisie, traitement, et interprétations de données, ainsi que pendant les formations de statistiques, certains individus deviendraient les "victimes" d'un changement au niveau affectif et cognitif : l'anxiété

envers les statistiques. Tous les étudiants en sciences humaines souffrent dans une certaine mesure de ce trouble.

R.J. Cruise (1985) a développé un outil de travail afin de mettre en évidence la variabilité individuelle sur la dimension "anxiété envers les statistiques". Il s'agit de STARS (The Statistics Anxiety Rating Scale). Suite à une analyse en composantes principales, six facteurs ont été identifiés comme en faisant partie.

- (i) Worth of statistics (WS): la perception de la valeur de la formation en statistiques. Une personne ayant un score élevé à ce facteur estimerait que les statistiques ne sont pas compatibles avec sa peronnalité et qu'elle détiendrait des aptitudes négatives envers les statistiques.
- (ii) Interpretation Anxiety (IA) : est un facteur lié à l'interprétation de données statistiques ; l'anxiété pourrait être générée par les décisions (perçues difficiles) du test statistique et du rejet/acceptation de l'hypothèse nulle.
- (iii) Test and class anxiety (TCA): Les étudiants avec des scores élevés à ce facteur sont anxieux quand ils doivent résoudre des problèmes de statistiques, durant leur formation ou pendant l'examen.
- (iv) Computation anxiety (CA): ce facteur est lié au concept classique d'anxiété envers les mathématiques. Toute tâche exigeant des calculs arithmétiques va amener l'étudiant à juger inaccessibles et incompréhensibles les concepts de statistiques.
- (v) Fear of asking for help (FAH) : un score élevé montre un certain niveau de peur de demander de l'aide à un collègue ou à un enseignant.
- (vi) Fear of statistics teacher (FST) : un score élevé à ce facteur indique la remise en question par l'étudiant de l'humanité de l'enseignant ; l'étudiant verrait l'enseignant comme incapable de le traiter en tant qu'être humain.

La variable **PERFSTAT** représente la performance des étudiants en statistiques. Les résultats de la régression linéaire multiple sont donnés en Annexe 1. On fait une étude sur 191 sujets.

- (i) Donner l'équation de la régression linéaire.
- (ii) Discuter de la qualité de la régression.
- (iii) Pour des raisons de limite de temps, énergie et moyens, on choisit d'agir seulement sur deux facteurs. Lesquels privilégier ?

4 Tests statistiques

Exercice 4.1 Faire un test du Chi-2 avec les données de l'exercice 2.3 et conclure sur la dépendance des deux variable dans chaque cas.

Exercice 4.2 On dispose du nombre d'hospitalisations liées au COVID-19 par région au 31 mars 2020. On souhaite savoir si le nombre d'hospitalisations est lié à la richesse de chaque région (déterminée par le PIB par habitant).

Le tableau de données est le suivant :

	PIB/Hab.	Nb Hospitalisations	Nb Hospit./millionHab
Auvergne Rhônes Alpes	31639	2333	292
Bourgogne Franche Comté	26218	902	322
Bretagne	27838	290	88
Centre Val de Loire	27274	457	176
Corse	26954	99	291
Grand Est	27378	3950	705
Hauts de France	26095	1355	226
Ile de France	55227	7689	625
Normandie	27465	479	145
Nouvelle Aquitaine	27657	658	110
Occitanie	27449	854	145
Pays de la Loire	29424	512	135
Provence Alpes Côte d'Azur	30864	1220	239

(i) Remplir de tableau de contingence suivant :

Nb Hospit./millionHab\PIB/Hab.	< 27500	≥ 27500
< 150		
[150 - 250[
≥ 250		

- (ii) Donner le tableau des fréquences associé.
- (iii) Faire le test du Chi-deux et conclure.
- (iv) Quel argument contre l'utilisation de ce test peut-on formuler.
- (v) On utilise le Test exact de Fisher avec R en rentrant les entrées suivante

On rappelle que l'hypothèse \mathcal{H}_0 testée est l'indépendance des variables. On obtient

Exercice 4.3 Discuter les tests à disposition dans la régression linéaire multiple de l'exercice 3.6 donnés en Annexe 1.

Exercice 4.4 Dans The early catastrophe, 2003, (Education review, 17, 1, 110-117), les auteurs Hart et Risley montrent qu'un enfant de 3 ans, aux États-Unis, aura entendu, en moyenne, deux à trois fois plus de vocabulaire s'il est issu d'une famille d'un statut économique haut que s'il est issu d'une famille sans emploi. C'est ce que les auteurs qualifient de "Early catastrophe". Voici le récapitulatif de leur étude.

Nous avons (un peu arbitrairement) simulé des données pour savoir si les différences de moyennes sont significatives pour le nombre de mots différents par heure pour les parents (dernière ligne du tableau). Nous pourrions faire ce type de test pour chaque série de moyennes.

Discuter de la table d'ANOVA.

5 Annexe 1 - Étude PERFSTAT

Récapitulatif du modèle

Modèle R		R-deux	R-deux ajuste	Erreur standard de l'estimation		
1	,991 (a)	,983	,982	3,93890		

a Valeurs prédites : (constantes), CA, FST, WS, IA, FAH, TCA

ANOVA(b)

Modèle	Somme des carrés	ddl	ddl Carré moyen		Signification	
1 Régression	165429,22 6	6	27571,538	1777,093	,000(a)	
Résidu Total	2854,753 168283,97 9	184 190	15,515			

a Valeurs prédites : (constantes), CA, FST, WS, IA, FAH, TCA

b Variable dépendante : PERFSTAT

Coefficients(a)

	Coefficients n	on	Coefficients		34.1	
Modèle	standardises		standardisés	t	Signification	
		Erreur				
	В	standard	Beta			
1 (constante)	-,816	,611		-1,337	,183	
FAH	,548	,143	,114	3,838	,000	
IA	,249	,090	,054	2,769	,000	
ws	,291	,083	,062	3,518	,001	
TCA	3,913	,165	,774	23,645	,000	
FST	-,017	,022	-,009	-,782	,435	
CA	,099	,058	,022	1,717	,088	

a Variable dépendante : PERFSTAT

Tables statistiques

6 Fractiles du χ^2

dl	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005
1	0.00	0.00	0.00	0.00	0.02	0.10	0.45	1.32	2.71	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	0.58	1.39	2.77	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.82	9.35	11.35	12.84
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14.07	16.01	18.48	20.28
8	1.34		2.18	2.73	3.49	5.07	7.34	10.22	13.36	15.51	17.54	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.39	14.68	16.92	19.02	21.66	23.59
10	2.15	2.56	3.25	3.94	4.87	6.74	9.34	12.55	15.99	18.31	20.48	23.21	25.19
11	2,60	3.05	3.82	4.57	5.58	7.58	10.34	13.70	17.28	19.68	21.92	24.72	26.75
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.85	18.55	21.03	23.34	26.21	28.30
13	3.56	4.11	5.01	5.89	7.04	9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.69	26.12	29.14	31.31
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.15
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.56	40.00
21	8.03	8.90	10.28	11.59	13.24	16.34	20.34	24.93	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	17.24	21.34	26.04	30.81	33.93	36.78	40.29	42.80
23	9.26	10.19	11.69	13.09	14.85	18.14	22.34	27.14	32.01	35.17	38.08	41.64	44.18
24	9.88	10.86	12.40	13.85	15.66	19.04	23.34	28.24	33,20	36.42	39.37	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	19.94	24.34	29.34	34.38	37.65	40.65	44.32	46.93
26	11.16	12.20	13.84	15.38	17.29	20.84	25.34	30.43	35.56	38.89	41.92	45.64	48.29
27	11.80	12.88	14.57	16.15	18.11	21.75	26.34	31.53	36.74	40.11	43.20	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	22,66	27.34	32.62	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	23.57	28.34	33.71	39.09	42.56	45.72	49.59	52.34
30	13.78	14.95	16.79	18.49	20.60	24.48	29.34	34.80	40.26	43.77	46.98	50.89	53.67
40	20.67	22.14	24.42	26.51	29.06	33.67	39.34	45.61	51.80	55.75	59.34	63.71	66.80
50	27.96	29.68	32.35	34.76	37.69	42.95	49.34	56.33	63.16	67.50	71.42	76.17	79.53
60	35.50	37.46	40.47	43.19	46.46	52.30	59.34	66.98	74.39	79.08	83.30	88.40	91.98
70	43.25	45.42	48.75	51.74	55.33	61.70	69.34	77.57	85.52	90.53	95.03	100.44	104.24
80	51.14	53.52	57.15	60.39	64.28	71.15	79.34	88.13	96.57	101.88	106.63	112.34	116.33
90	59.17	61.74	65.64	69.13	73.29	80.63	89.33	98.65	107.56	113.14	118.14	124.13	128.33
100	67.30	70.05	74.22	77.93	82.36	90.14	99.33	109.14	118.49	124.34	129.56	135.82	140.19