9.1 Vecteurs dans un repère

9.1.1 Différents repères

Définition 1.9.

Soient O un point du plan et \overrightarrow{i} et \overrightarrow{j} deux vecteurs de ce plan de directions différentes. (O; \overrightarrow{i} ; \overrightarrow{j}) est appelé ______ du plan : O est appelé ______ du repère et le couple (\overrightarrow{i} ; \overrightarrow{j}) est appelé _____ du repère.

Définitions.

Soit un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ du plan.

- 1. Si les directions de \overrightarrow{i} et de \overrightarrow{j} sont orthogonales, le repère est dit ______
- 2. Si les normes de \overrightarrow{i} et de \overrightarrow{j} sont égales à 1, le repère est dit ______
- 3. Si les directions de \overrightarrow{i} et de \overrightarrow{j} sont orthogonales et que les normes de \overrightarrow{i} et de \overrightarrow{j} sont égales à 1, le repère est dit _____
- 4. Sinon, le repère est dit _____

Illustrations.

Repère orthogonal Repère normé Repère orthonormé \overrightarrow{j}

Définition 2.9.

Dans ce repère, si un vecteur \overrightarrow{u} est égal à $\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j}$ on dit que les coordonnées de \overrightarrow{u} sont :

$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 que l'on peut également noter $(x; y)$.

Exemple 1.9.

Déterminons les coordonnées des vecteurs \overrightarrow{u} et \overrightarrow{v} dans le repère $(O; \overrightarrow{i}; \overrightarrow{j})$:

Ici les coordonnées de \overrightarrow{u} sont $\bigg(\ \ \bigg)$, les coordonnées de \overrightarrow{v} sont $\bigg(\ \ \bigg)$.

9.1.2 Coordonnées d'un vecteur

Propriété 1.9.

Dans un repère les coordonnées du vecteur \overrightarrow{AB} sont $\left(\begin{array}{c} x_B-x_A\\ y_B-y_A \end{array}\right)$ que l'on peut aussi noter :

$$(x_B-x_A\,;\,y_B-y_A)$$

Propriété 2.9.

Dans un repère, on considère \overrightarrow{u} de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$

$$\overrightarrow{u} = \overrightarrow{v} \Longleftrightarrow x = x' \text{ et } y = y'$$

ightharpoonup Application 1.9. Dans un repère $(0; \overrightarrow{i}; \overrightarrow{j})$, on considère les points A(1; 2), B(5; 4), C(2; 1), D(-2; -1)et E(6; 2).

- 1. Montrer que le quadrilatère ABCD est un parallélogramme.
- 2. Calculer les coordonnées du point G pour que le quadrilatère CBEG est un parallélogramme.

9.1.3 Somme de vecteurs

Propriété 3.9.

Dans un repère, soit les vecteurs \overrightarrow{u} de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ et \overrightarrow{v} $\begin{pmatrix} x' \\ y' \end{pmatrix}$ Dans ce repère, $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Application 2.9. Dans un repère $(0; \overrightarrow{i}; \overrightarrow{j})$, on donne $\overrightarrow{u}(1; 2)$ et $\overrightarrow{v}(-4; 7)$. Calculer les coordonnées du vecteur $\overrightarrow{u} + \overrightarrow{v}$.

9.1.4 Produit d'un vecteur par un réel

Dans un repère, on considère le vecteur $\overrightarrow{u}(x;y)$.

Le vecteur $\overrightarrow{u} + \overrightarrow{u}$ a pour coordonnées (x+x; y+y), soit (2x; 2y). On le note $2\overrightarrow{u}$.

De même Le vecteur $\overrightarrow{u} + \overrightarrow{u} + \overrightarrow{u}$ a pour coordonnées (x + x + x; y + y + y), soit (3x; 3y). On le note $3\overrightarrow{u}$.

De manière générale, on pose la définition suivante :

Définition 3.9.

Dans un repère, soit le vecteur \overrightarrow{u} de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ et k un nombre réel.

Le vecteur $k \overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} kx \\ ky \end{pmatrix}$ dans ce repère.

Application 3.9. Soit dans un repère $\overrightarrow{u}(2; 1)$.

Calculez les coordonnées des vecteurs $4\overrightarrow{u}$ et $-6\overrightarrow{u}$.

9.2 Vecteurs colinéaires

Définition 4.9.

Deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont colinéaires signifie qu'ils ont la même direction. Il existe alors un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

▶ Note 1.9.

Le vecteur nul est colinéaire à tout vecteur.

Définition 5.9.

On considère deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On appelle $d\acute{e}terminant$ de \overrightarrow{u} et \overrightarrow{v} noté $\det\left(\overrightarrow{u}\ ;\ \overrightarrow{v}\right)$ ou $\left|\begin{array}{cc} x & x'\\ y & y' \end{array}\right|$, est le nombre défini par :

$$\det(\overrightarrow{u}; \overrightarrow{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx'$$
 (différence des produits en croix)

Propriété 4.9.

Dans un repère, on considère deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

 \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement les coordonnées de ces deux vecteurs sont proportionnelles, c'est-à-dire si et seulement si xy'=x'y ou encore :

$$\det\left(\overrightarrow{u}\;;\;\overrightarrow{v}\right) = 0$$

Application 4.9. Soit dans un repère, $\overrightarrow{u}(1; \sqrt{2}+1)$ et $\overrightarrow{v}(\sqrt{2}-1; 1)$.

Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont-ils colinéaires?

9.2.1 Applications de la colinéarité de vecteurs

Propriétés.

Soient A, B, C et D quatre points du plan distincts deux à deux.

- 1. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- 2. Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

ightharpoonup Application 5.g. Soit M(1; 4), N(3; 3) et P(7; 1). Démontrer que les points M, N et P sont alignés.

9.3 Milieu et longueur d'un segment

9.3.1 Coordonnées du milieu d'un segment

Propriété 5.9.

On se place dans un repère quelconque.

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ et $I(x_I; y_I)$ milieu de [AB].

Alors:

$$x_I = \frac{x_A + x_B}{2}$$
 et $y_I = \frac{y_A + y_B}{2}$.

Application 6.9. On se place dans un repère orthonormé $(0; \overrightarrow{i}; \overrightarrow{j})$ et on donne les points A(4; 0) et G(-2; 6). Calculez les coordonnées du point K milieu du segment [AG].

9.3.2 Calculs de distances

Propriété 6.9.

Dans un repère **orthonormé**, la distance AB entre les points $A(x_A; y_A)$ et $B(x_B; y_B)$ est telle que :

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

Application 7.9. On se place dans un repère orthonormé $(0; \overrightarrow{i}; \overrightarrow{j})$ et on donne les points A(-4; -1), B(4; -2), et C(-2; 2).

- 1. Calculez les distances AB, AC et BC.
- 2. Le triangle ABC est-il rectangle?