Designing meta material slabs exhibiting negative refraction using topology optimization

Rasmus E. Christiansen1 · Ole Sigmund1

Structural and Multidisciplinary Optimization

18 March 2016

Fig. 1 Model problem sketch. Ω : Truncated Domain. Ω_{op} : Optimization domain. Ω_d : Design domain. $\delta\Omega$: Truncated Domain boundary. $\delta\Omega_{PW}$: Excitation boundary

Fig. 2 ψ : Enveloped plane wave (Solution to (1)-(3)) and ψ_{target} : Target wave, overlaid on modeling domain. Ω : Truncated Domain. Ω_{op} : Optimization domain. Ω_{d} : Design domain. $\delta\Omega$: Truncated Domain boundary. $\delta\Omega_{\text{PW}}$: Excitation boundary

Fig. 3 Sketch of negative refraction of a beam entering the domain centered at $\langle x_0, y_0 \rangle$, including quantities needed to calculate the placement of the center of ψ_{target} , $\langle x_3, y_3 \rangle$, in order to obtain a desired n for a given θ_1

The objective function, Φ , to be minimized, is formulated based on the standard deviation, $\mathbf{STD}(x)$, between $|\psi|^2$ and $|\psi_{\text{target}}|^2$ and is defined on Ω_{OP} as

$$\Phi = c_s \cdot \mathbf{STD}_{\mathbf{\Omega}_{OP}} \left(|\psi|^2 - |\psi_{\text{target}}|^2 \right), \tag{7}$$

$$\mathbf{STD}(x) = c_s \cdot \frac{\int \left(x - \frac{\int x \, d\boldsymbol{\Omega}_{\mathrm{OP}}}{\int d\boldsymbol{\Omega}_{\mathrm{OP}}}\right)^2 d\boldsymbol{\Omega}_{\mathrm{OP}}}{\int d\boldsymbol{\Omega}_{\mathrm{OP}}},$$
(8)

where c_s is a scaling parameter used to adjust the magnitude of Φ to improve the performance of the optimization algorithm. If Φ reaches a very low value it is beneficial to modify it by applying the natural logarithm to further improve the performance of the optimization algorithm.