1

ARM ASSIGNMENT

Chakali Suresh chakalisuresh2223@gmail.com IITH - Future Wireless Communication

CONTENTS

	0 4:		1			B. K-Map Implentation				
1	Questio	on .	1				Q_1	Q_2		
II	Answei II-A	r Truth Table	1 1			00	01	11	10	
	II-B	K-Map Implentation	1		0	1	0	0	0	
III	Components		2	Q_0						
IV	Implen	nentation	2		1	1	0	0	0	

I. QUESTION

The digital circuit shown _____

II. ANSWER

The above question can be solved by using Truth Table and karnaugh-map.

A. Truth Table

Pres	sent S	tate	Flip	-Flop	i/p	Next State			
Q_0	Q_1	Q_2	D_0	D_1	D_2	Q_0'	Q_1'	Q_2'	
0	0	0	1	0	0	1	0	0	
1	0	0	1	1	0	1	1	0	
1	1	0	0	1	1	0	1	1	
0	1	1	0	0	1	0	0	1	
0	0	1	0	0	0	0	0	0	

Therefore, given circuit is Divide by 5 circuit.

		$D_0 = \overline{Q}_1 + \overline{Q}_2$ $Q_1 Q_2$							
		00	01	11	10				
Q_0	0	0	0	0	0				
	1	1	0	0	1				

$$Q_1Q_2$$
 Q_1Q_2
 Q

 $D_1 = Q_0$

$$D_2 = Q_1$$

III. COMPONENTS

Components	Values	Quantity
VAMAN		1
Jumper	M-M	25
Wires		
Breadboard		1
LED		4
Resistor		
Flip Flop	7474	2

IV. IMPLEMENTATION

	INPUT		OUTPUT			CLO	5V					
	Q0	Q1	Q2	Q0'	Q1'	Q2'	CLOCK		J V			
VAMAN(pins)	2	3	4	18	21	22	5					
7474	5	9		2	12		CLK1 CLK2		1	4	10	13
7474			9			12	CLK1	CLK2	1	4	10	13

Connections

Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect LEDs to the output pins of the VA-MAN to see output.
- 3. Execute the circuit using the below code.

https://github.com/Chakali23/FWC /tree/main/IDE/arm(VAMAN)