Дисциплина Организация ЭВМ и систем

Преподаватель *Страбыкин Дмитрий Алексеевич*

ВВЕДЕНИЕ

- 1. Компетентностный подход к обучению
 - 1.1 Основные документы
 - 1.2 Компетенции
- 2. Структура и задачи дисциплины
 - 2.1 Характеристика курса
 - 2.2 Лабораторный практикум

Знать: цель и задачи дисциплины, основные разделы курса, виды занятий и формы контроля знаний, место дисциплины в учебном плане, организацию лабораторного практикума.

Литература:

- 1. Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по направлению подготовки 09.03.01 Информатика и вычислительная техника.
- 2. Основная профессиональная образовательная программа (ОПОП) (включающая Рабочие учебные планы) по направлению подготовки 09.03.01 Информатика и вычислительная техника по профилю (направленности):
 - 1. Вычислительные машины, комплексы, системы и сети.
 - 2. Программное обеспечение вычислительной техники и автоматизированных систем.
- **3. Рабочая программа** по дисциплине "Организация ЭВМ и систем" со списком рекомендуемой литературы.

1 Компетентностный подход к обучению

1.1 Основные документы

- 1. <u>ФГОС ВО</u> по направлению подготовки 09.03.01 Информатика и вычислительная техника.
- 1. Основные профессиональные образовательные программы (ОПОП) по направлению подготовки 09.03.01 Информатика и вычислительная техника по профилям (направленностям):
 - 1. Вычислительные машины, комплексы, системы и сети.
 - 2. Программное обеспечение вычислительной техники и автоматизированных систем.

Включающие рабочие учебные планы и графики учебных процессов.

2. <u>Рабочая программа</u> по дисциплине «Организация ЭВМ и систем» со списком рекомендуемой литературы.

1.2 Компетенции

- **Компетенция** совокупность знаний, умений, навыков, формируемых в процессе обучения дисциплине (модулю), а также способность применять знания, умения, навыки и личностные качества для успешной деятельности в определенной области.
- В Федеральных государственных образовательных стандартах высшего образования (ФГОС ВО) выделяют общекультурные (ОК), общепрофессиональные (ОПК) и профессиональные (ПК) компетенции.

1.2.1 Входные компетенции дисциплины «Организация ЭВМ и систем»

Дисциплина	Компетенции
Дискретная математика	ПК-1, ОПК-5
Информатика	ОПК-2
Математическая логика и теория	ОК-7, ОПК-2
алгоритмов	
Теория автоматов	ОК-7, ОПК-2
Электротехника и электроника	ПК-3, ПК-7, ПК-8

Логические и физические основы построения ЭВМ («Знает»)

- Логические основы построения ЭВМ теория логических функций: определение, способы задания, вычисления и минимизации, функционально полные наборы, суперпозиция функций, системы логических функций, логические элементы и логические схемы.
- Логические основы построения ЭВМ теория конечных автоматов: определение, виды, способы задания, абстрактный и структурный синтез автоматов.
- Физические основы построения ЭВМ принципы построения и работы, принципиальные электрические схемы и характеристики, а также временные диаграммы логических элементов и элементов памяти, типовых узлов.

Логический и физические основы построения ЭВМ («Умеет»)

- Описывать работу синтезируемого устройства системой логических функций. Переходить от табличного задания логических функций к формулам и наоборот. Минимизировать системы логических функций, строить по формулам логических функций схемы вычисления их значений.
- Описывать работу синтезируемого устройства моделью конечного автомата. Задавать автомат с помощью таблицы, графа, формул и переходить от одной формы задания к другой. Строить граф автомата по граф-схеме микропрограммы. Минимизировать число состояний автомата.
- Переходить от функциональных к принципиальным электрическим схемам устройств в заданной системе элементов, анализировать временные диаграммы работы устройств и рассчитывать время задержки сигнала от входа до выхода, оценивать потребляемую мощность устройства.

Логический и физические основы построения ЭВМ («Владеет»)

- Методами синтеза комбинационных схем с минимальными аппаратурными затратами в заданном базисе логических элементов.
- Методами построения функциональной схемы цифрового устройства обработки информации на основе описания его работы с помощью модели конечного автомата. Методами построения функциональной схемы устройства управления по исполняемой им микропрограмме на основе описания его работы с помощью модели конечного автомата.
- Методами построения принципиальных электрических схем устройств в заданной системе элементов по функциональным электрическим схемам.

Арифметические основы построения ЭВМ

- **Знает.** Арифметические основы построения ЭВМ: системы счисления (2,8,16), формы представления информации, методы выполнения арифметических операций и способы ускорения их выполнения.
- Умеет. Переводить числа из одной системы счисления в другую, выполнять арифметические операции над числами в форме с фиксированной и плавающей запятой в системах счисления с основаниями: 2,8,16 с выявлением всех видов не корректных завершений.
- **Владеет.** Методами выполнения арифметических операций над числами в форме с фиксированной и плавающей запятой в двоичной системе счисления.

1.2.2 Выходные компетенции дисциплины «Организация ЭВМ и систем»

• Компетенция ПК-7

способность проверять техническое состояние вычислительного оборудования и осуществлять необходимые профилактические процедуры

• Компетенция ОПК-4

способность участвовать в настройке и наладке программно-аппаратных комплексов

Выходная компетенция ПК-7

- Знает. Структуры и алгоритмы функционирования вычислительных устройств (ВУ) и процессоров ЭВМ. Методы анализа аппаратных средств ЭВМ.
- Умеет. Проверять корректность функционирования ВУ и процессоров ЭВМ по тактам при выполнении микропрограмм и программ (используя диалоговые системы управления исследуемыми объектами).
- **Владеет.** Методикой проведения исследований функционирования ВУ и процессоров ЭВМ (используя диалоговые системы управления исследуемыми объектами).

Выходная компетенция ОПК-4 («Знает»)

- Основы построения вычислительных устройств.
- Запоминающие устройства: адресные, типа стек и магазин, ассоциативные.
- Основные виды периферийных устройств (включая 3D).
- Построение процессоров ЭВМ: архитектуры, структуры и рабочие циклы процессоров различных видов ЭВМ. Суперконвейерные и суперскалярные процессоры; системы прерывания программ.
- Организацию памяти вычислительных систем. Виртуальную память; защиту памяти; особенности организации памяти в процессорах Pentium и Itanium.
- Основы построения параллельных ЭВМ. Вычислительные системы с явным параллелизмом команд.

Выходная компетенция ОПК-4 («Умеет»)

- Разрабатывать структурную схему, алгоритм рабочего цикла ВУ и микропрограммы для выполнения заданных операций.
- Разрабатывать структурные схемы устройств управления с программируемой логикой для заданных микропрограмм.
- Строить функциональную схему ЗУ заданного вида с необходимой разрядностью и емкостью.
- Разрабатывать структурную схему и микропрограмму командного цикла процессора для заданной архитектуры
 ЭВМ и требованиям к системе прерываний программ.

Выходная компетенция ОПК-4 («Владеет»)

- Методами расчета быстродействия (времени выполнения микроопераций, микрокоманд, микропрограмм, операций, команд) и аппаратурных затрат процессоров, ВУ, операционных устройств и устройств управления с программируемой логикой.
- Способами преобразования структур и микропрограмм операционных устройств, устройств управления с программируемой логикой и процессоров с целью повышения их быстродействия (включая конвейерное выполнение микрокоманд, операций и команд) и сокращения аппаратурных затрат (в том числе с помощью функциональной интеграции).

2 Структура и задачи дисциплины 2.1 Характеристика курса

- **2.1.1 Цель дисциплины:** формирование у студентов компетенций, закрепленных за дисциплиной, путем изучения систематизированных знаний по предмету курса, привития умений по анализу и синтезу основных устройств ЭВМ и вычислительных систем.
- **2.1.2** Задачи дисциплины анализ принципов организации и функционирования, а также методов проектирования:
 - > операционных устройств (ОУ),
 - > устройств управления (УУ),
 - > запоминающих устройств (ЗУ),
 - > вычислительных устройств (ВУ),
 - > периферийных устройств (ПУ),
 - процессоров (ПР),
 - **»** вычислительных машин (BM);
 - **вычислительных систем (ВС).**

2.1.3 Место дисциплины в рабочем учебном плане

Семестры						
4	5	6	7			
Схемотехника ЭВМ	Системное программное обеспечение	Базы данных	Операционные системы			
Организация Э	ВМ и систем	Проектирование ЭВМ / Разработка модулей системного ПО	Высокопроизво- дительные вычислительные комплексы			
Теория автоматов	Проектирование цифровых устройств / Разработка программных систем	Организация памяти ЭВМ	Сети ЭВМ и телекоммуникации			

2.1.4 Тематический план курса

Содержание раздела	Лекции (час.)	ПЗ (час.)	ЛР (час.)				
Семестр 4							
1. Введение	1						
2. Операционные устройства	3	2	4				
3. Запоминающие устройства	4	2					
4. Устройства управления	4	4	4				
5. Вычислительные устройства	8	6	10				
6. Периферийные устройства	6						
7. Процессоры	10	4					
Итого в 4 семестре (зачет):	36	18	18				

Тематический план курса (семестр 5)

Содержание раздела	Лекции (час.)	ПЗ (час.)	ЛР (час.)
7. Вычислительные машины	6	8	12
8. Вычислительные системы (ВС)	2		
9. ВС: системы прерывания	6	6	6
10. ВС: организация ввода-вывода	4		
11. ВС: организация памяти	6		
12. Высокопроизводительные ВС	6	2	
13. ВС: явный параллелизм команд	5	2	
14. Заключение	1		
Всего:	36	18	18
ИТОГО (экзамен):	72	36	36

2.2 Лабораторный практикум

2.2.1 Состав лабораторных работ

Часть 1. Устройства с микропрограммным уровнем управления.

Лабораторные работы:

- ОУ;
- yy;
- BУ.

Часть 2. Устройства с программным уровнем управления.

Лабораторные работы:

- учебная ЭВМ (МЭ);
- система адресации МЭ;
- система прерывания МЭ.

2.2.2 Лабораторные установки на основе ДСУ Структура лабораторных установок

Схематичное изображение современной лабораторной установки

Функции программного обеспечения ПЭВМ

- Подача управляющих сигналов в модуль исследуемого устройства (МИУ)
- Прием осведомительных сигналов из МИУ
- Копирование состояния внутренних регистров (ячеек памяти) МИУ после каждого такта (цикла) работы
- Организация работы МИУ по тактам и в автоматическом режиме

- Обеспечение предварительного ввода пользователем управляющих воздействий (сигналов, микропрограмм, программ)
- Вывод на экран текущего и нового состояния МИУ после каждого такта (цикла) работы
- Запись и считывание с диска введенных микропрограмм (программ) и данных

Программное обеспечение вариантов лабораторных установок*

- "Имитатор операционного устройства" для лабораторной работы по исследованию ОУ.
- "Имитатор устройства управления" для лабораторной работы по исследованию УУ.
- "Имитатор микропрограммируемого микропроцессора" для лабораторных работ по исследованию ВУ с ЗУ и разработке учебной ЭВМ.
- "Имитатор микропрограммируемой микроЭВМ" для лабораторных работ по исследованию системы адресации и системы прерывания программ ЭВМ.

^{*} Страбыкин Д.А. Экспериментальное исследование микропроцессорных устройств с помощью диалоговых систем управления. Микропроцессорные средства и системы. — 1987. — № 4. — С. 62—64.

Моделируемые структуры

Структура ОЎ

Структура ЭВМ

2.2.3 Управление лабораторной установкой Окно выполнения микрокоманд (ЭВМ)

Окно ввода микрокоманд (ЭВМ)

Окно ввода команд и данных (ЭВМ)

Литература

Основная литература

- Орлов, С. А. Организация ЭВМ и систем. Учебник для вузов. / Орлов С. А., Цилькер, Б. Я. СПб. : Питер, 2011. 668 с. (Допущено Министерством образования и науки РФ в качестве учебника для студентов высших учебных заведений, обучающихся по направлению «Информатика и вычислительная техника»).
- Новожилов, О. П. Архитектура ЭВМ и систем: учеб. для бакалавров: для студентов высших учебных заведений, обучающихся по направлениям подготовки 230100 «Информатика и вычислительная техника» / О. П. Новожилов. Москва: Юрайт, 2012. 527 с.

Дополнительная литература

• Страбыкин Д. А. Организация ЭВМ: Лабораторный практикум на компьютерах: учебное пособие / Д. А. Страбыкин. —3-е изд. доп. — Киров ФБГОУ ВПО «ВятГУ», 2013. — 162 с.

Литература (продолжение)

- Паттерсон Д. Архитектура компьютера и проектирование компьютерных систем. Классика Computers Science. / Паттерсон Д., Хеннесси Дж. 4-е изд. СПб. : Питер, 2012. 784 с.
- Бакшаев, Анатолий Михайлович. Организация памяти ЭВМ: Учеб. пособие / Бакшаев, Анатолий Михайлович; ВятГТУ, ФАВТ, каф. ЭВМ. Киров, 2000. 140с.
- Жмакин А.П. Архитектура ЭВМ: Учеб. Пособие / Жмакин А.П. СПб. : БХВ-Петербург, 2006 . 320 с.
- Мельцов, Василий Юрьевич. Высокопроизводительные вычислительные системы: Учеб. пос. / Мельцов, Василий Юрьевич, Фоминых, Леонид Федорович; ВятГУ, ФАВТ, каф. ЭВМ. Киров, 2002. 159 с.

Литература (окончание)

- Пятибратов, Александр Петрович. Вычислительные системы, сети и телекоммуникации: Учеб. для вузов / Пятибратов, Александр Петрович, Гудыно, Лев Петрович, Кириченко, Александр Апполонович. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2001, 2002. 512 с.
- Страбыкин, Дмитрий Алексеевич. Организация машин параллельного логического вывода: Учеб. пособие / Страбыкин, Дмитрий Алексеевич; ВятГТУ, ФАВТ, каф. ЭВМ. Киров, 1999. 189 с.
- Горнец, Николай Николаевич. Организация ЭВМ и систем: учеб. / Н. Н. Горнец, А. Г. Рощин, В. В. Соломенцев. – М.: Академия, 2006. – 320 с.
- Древс, Юрий Георгиевич. Организация ЭВМ и вычислительных систем: учебник / Ю. Г. Древс. М.: Высш. шк., 2006. 501 с.