Corollaire 0.1. Soient $f = (I_n), g = (J_n) \in \mathbb{F}(A)$, tel que $f \leq g$ et A est noethérien. Si f ou g est noethérien alors g est f – bonne \iff g est fortement entière sur f.

Proposition 0.1. Soit A un anneau noethérien. Soient $f, g \in \mathbb{F}(A)$. Si f est noethérienne alors g est fortement entière sur $f \iff il$ existe un entier naturel $N \geqslant 1$ tel que $t_N g \leqslant f \leqslant g$.

Proposition 0.2. Soient $f, g \in \mathbb{F}(A)$. Alors :

g est entière sur $f \iff \forall k \in \mathbb{N}^*, g^{(k)}$ est entière sur $f^{(k)} \iff \exists k \in \mathbb{N}^*, g^{(k)}$ est entière sur $f^{(k)}$

Corollaire 0.2. Soient $f, g \in \mathbb{F}(A)$, tel que $f \leq g$. Si A est noethérien et g est fortement entière sur f. Alors f est fortement $A.P \iff g$ est fortement A.P.

Proposition 0.3. Si $f = f_I$ alors:

f est fortement $A.P \iff f$ est $A.P \iff f$ est fortement noethérienne $\iff f$ est noethérienne $\iff f$ est E.P

Corollaire 0.3. Soient $f = (I_n)_{n \in \mathbb{N}}$ et $g = (J_n)_{n \in \mathbb{N}}$ deux filtrations de A, tel que $f \leq g$. Si f ou g est noethérienne. Alors : g est f – bonne \iff g est fortement intégral sur f

Proposition 0.4. Soient $f = (I_n)_{n \in \mathbb{N}}$ et $g = (J_n)_{n \in \mathbb{N}}$ deux filtrations de A tel que f est une réduction de g alors : g est E.P et g est f – bonne.

Proposition 0.5. Lorsque f est une filtration fortement noethérienne et g est une filtration noethérienne de l'anneau noethérien A vérifiant $f = (I_n) \leq g = (J_n)$, on montre que les assertions suivantes sont équivalentes :

- (i) f est une réduction de g
- (ii) $J_n^2 = I_n J_n, \forall n >> 0$
- (iii) L'idéal I_n est une réduction de l'idéal J_n pour tout n >> 0
- (iv) Il existe un entier $k \geq 1$ tel que g^k soit I_k bonne
- $(v) \forall m \geq 1, f^{(m)}$ est une réduction de $g^{(m)}$
- (vi) $\exists m \geq 1$, tel que $f^{(m)}$ soit une réduction de $g^{(m)}$
- (vii) g est entière sur f
- (viii) q est fortement entière sur f
- (ix) q est f fine
- (xi) g est faiblement f bonne
- (x) g est f bonne
- (xii) $\exists m \geq 1$, tel que $t_m f \leq f \leq g$
- (iii) $(P_k(f)) = (P_k(g))$ pour tout $k \in \mathbb{N}$

En particulier, il résulte des équivalences ci-dessus que si f est une filtration I – adique de l'anneau noethérien A et si g est une filtration noethérienne dominée par g, les notions suivantes sont équivalentes :

- (1) f_I est une réduction de g
- (2) g est entière sur f_I .
- (3) g est fortement entière sur f_I
- (4) g est I bonne

Théorème 0.1. Soient $f = (I_n)_{n \in \mathbb{N}} \leq g = (J_n)_{n \in \mathbb{N}}$ des filtrations sur l'anneau A. Nous considérons les assertions suivantes :

- i) f est une réduction de g.
- ii) $J_n^2 = I_n J_n$ pour tout n assez grand.
- iii) I_n est une réduction de J_n pour tout n assez grand.
- iv) Il existe un entier $s \geq 1$ tel que pour tout $n \geq s$, $J_{s+n} = J_s J_n$,

 $I_{s+n} = I_s I_n$, $J_s^2 = I_s J_s$, $J_{s+p} I_s = I_{s+p} J_s$ pour tout p = 1, 2, ..., s-1v) Il existe un entier $k \ge 1$ tel que $g^{(k)}$ est $I_k - bonne$

- vi) Il existe un entier $r \geq 1$ tel que $f^{(r)}$ est une réduction de $g^{(r)}$.
- vii) Pour tout entier m > 1 tel que $f^{(m)}$ est une réduction de $q^{(m)}$.
- viii) g est entière sur f.
- ix) g est fortement entière sur f.
- x) q est f fine.
- xi) g est f bonne.
- xii) g est faiblement f bonne.
- xiii) Il existe un entier $N \ge 1$ tel que $t_N g \le f \le g$
- xiv) Il existe un entier $N \geq 1$ tel que $t_N g' \leq t_N f'$ où f' est la clôture intégrale de f.
 - xv) P(f) = P(q), où P(f) est la clôture prüférien de f.
 - 1) On a:
- $(i) \iff (vii); (v) \iff (vi); (viii) \iff (xv); (ii) \implies (iii); (iv) \implies (i) \implies (v);$ $(ix) \Longrightarrow (vii), (xii) \ et \ (xiii) ;$
 - $(i) \Longrightarrow (x) \Longrightarrow (xi) \Longrightarrow (xii) \Longrightarrow (xiii)$
 - 2) Si de plus on suppose A noethérien, alors :
 - $(i) \iff (xiv); (i) \implies (ix) \iff (xii); (i) \implies (ii)$
- 3) Par ailleurs, si f est noethérienne, alors A est noethérien et les assertions suivantes sont équivalentes :
 - $(ix) \iff (x) \iff (xi) \iff (xii) \iff (xiii)$
 - 4) Si f et q sont noethériennes alors nous avons :
 - $(iii) \Longrightarrow (viii) \Longleftrightarrow (ix); (vi) \Longrightarrow (ix)$
- 5) Si f est fortement noethérienne et g est noethérien alors les quinze (15) assertions sont équivalentes et dans ce cas q est fortement noethérienne.
- $(ix) \iff (x) \iff (xi) \iff (xii) \iff (xiv) \iff (xv).$

 $D\acute{e}monstration.$ 1)

 $(i) \iff (vii).$

Supposons (i) et choisissons k comme dans ?? (i) alors pour tout entiers $m \geq 1$ et $n \geq k$, $J_{m(k+n)} = J_{mk}I_{mn}$, ce qui entraı̂ne (vii).

La réciproque est évidente.

 $(v) \Longrightarrow (vi).$

Posons
$$f^{(k)} = (H_n)$$
; $g^{(k)} = (K_n)$; $H_n = I_{nk}$; $K_n = J_{nk}$; $H_1 = I_k$;

Par hypothèse, $H_1K_n \subseteq K_{n+1}$ pour tout entier n et il existe un entier $n_0 \ge 1$ tel que $H_1K_n = K_{n+1}$ pour tout $n \ge n_0$.

Pour tout entier $m \geq 0$, $K_{n_0+m} = H_1^m K_{n_0} \subseteq H_m K_{n_0} \subseteq K_{n_0+m}$.

Donc $K_{n_0+m} = K_{n_0}H_m$ pour tout entier m. Et donc $f^{(k)}$ est une réduction de $g^{(k)}$. $(vi) \Longrightarrow (v)$.

Il suffit de montrer que si f est une réduction de g alors il existe $k \geq 1$ tel que $g^{(k)}$ est $I_k - bonne$.

Posons k comme dans ?? (i), alors pour tout entiers $m \ge 1$ et $J_{k(m+1)} = J_{mk}I_k$, donc $g^{(k)}$ est $I_k - bonne$.

Donc $(vi) \Longrightarrow (v)$.

 $(viii) \iff (xv).$

Si g est entière sur f alors $f \leq g \leq P(f)$, ainsi $P(f) \leq P(g) \leq P(P(f)) = P(f)$, donc P(g) = P(f).

Réciproquement si P(f) = P(g) alors $g \leq P(g) = P(f)$ et donc g est entière sur f.

 $(ii) \Longrightarrow (iii).$

Évident.

 $(iv) \Longrightarrow (i).$

Posons $n \ge 2s$ et n = qs + p avec $0 \le p < s$.

Alors $J_{s+n} = J_{(q-2)s+2s+(s+p)} = J_s^{q-2} J_{2s+(s+p)} = J_s^{q-2} J_s^2 J_{s+p} = J_s^{q-1} I_s J_{s+p} = J_s^{q-1} J_s I_{s+p} = J_s^q I_{s+p} = J_s I_s^{q-1} I_{s+p} \subseteq J_s I_n \subseteq J_{s+n}.$

Par suite $J_{s+n}=J_sI_n$ pour tout $n\geq 2s$. Donc $J_{2s+n}=J_{2s}I_n$ pour tout $n\geq 2s$. D'où (i).

 $(i) \Longrightarrow (v)$

Évident car $(vi) \Longrightarrow (v)$.

 $(ix) \Longrightarrow (viii)$

Évident

 $(ix) \Longrightarrow (xii) \Longrightarrow (xiii)$ en utilisant ?? (5)

 $(i) \Longrightarrow (x).$

Pour tout entier $n \ge N = 2k - 1$, posons n = qk + r, avec $0 \le r < k$ où k est comme dans (4.3) (i).

Alors $J_n = J_{k(q-1)}I_{k+r}$.

Ainsi $1 \le k + r < 2k - 1$, $J_n \subseteq \sum_{p=1}^{N} I_p J_{n-p} \subseteq J_n$, d'où $J_n = \sum_{p=1}^{N} I_p J_{n-p}$ pour tout n > N = 2k - 1.

Ce qui prouve que g est f - fine.

 $(x) \Longrightarrow (xi) \text{ par } ??$

 $(xi) \Longrightarrow (xii) \text{ par } ?? (1).$

2)

On suppose maintenant que A est noethérien.

Alors $(i) \Longrightarrow (ix)$ en utilisant ??.

 $(i) \Longrightarrow (ii)$

f est noethérienne par ?? donc il existe un entier k' tel que $I_{n+k'} = I_n I_{k'}$, pour tout n > k'.

Choisissons k comme dans ?? (i) nous pouvons supposons que k=k' et même prendre kk' à la place de k ou k' si nécessaire.

Pour tout $n \geq 3k$, posons n = qk + r, avec $0 \leq r < k$. Alors $q = E(\frac{n}{k}) \geq 3$.

$$\begin{split} J_n &= J_k I_{(q-1)k+r} = J_k I_k^{q-2} I_{k+r}. \\ J_n^2 &= J_k^2 I_k^{q-3} (I_k^{q-1} I_{k+r}) I_{k+r} \subseteq J_{2k} I_{(q-3)k} I_n I_{k+r}. \end{split}$$

D'où $J_n^2 \subseteq J_n I_n$ Donc $J_n^2 = J_n I_n$ pour tout $n \ge 3k$.

 $(i) \iff (iv).$

D'après 1) il suffit de montrer que $(i) \Longrightarrow (iv)$.

Nous avons vu que $(i) \Longrightarrow (ii)$. Alors il existe un entier $k' \geq 1$ tel que $J_n^2 = I_n J_n$ pour tout $n \geq k'$.

Dans la preuve de la même implication, nous avons aussi montrer qu'il existe un entier $k \geq 1$ tel que $J_{k+n} = J_k I_n = J_k J_n$ et que $I_{k+n} = I_k I_n$ pour tout $n \geq k$.

Posons $n \ge 2kk' = s$, k'' = kk' et n = qk'' + r avec $0 \le r < k''$. Alors $q \ge 2$ et :

$$J_{s+n} = J_{(q+2)k"+r} = J_{k"}^3 J_{(q-1)k"+r} = I_{k"}^2 J_{k"} J_{(q-1)k"+r} = I_s J_n.$$

$$J_{s+n} = J_s I_n = J_s J_n$$

$$I_{s+n} = I_s I_n$$

$$J_s^2 = I_s J_s$$

D'où (iv).

$$(ix) \iff (xii)$$
 d'après ??

$$(iii) \iff (xiv)$$

Nous savons que pour tout idéal $I \subseteq J$ d'un anneau noethérien, I est une réduction de J si et seulement si I' = J', où I' est la clôture intégrale de I. D'où l'équivalence.

3) Supposons que f est noethérienne.

Alors d'après ??, $(ix) \iff (xiii)$ et d'après ??,

$$(ix) \iff (x) \iff (xii) \iff (xiii) \iff (xiii)$$

4) Supposons que f et g sont noethériens. Alors $(viii) \iff (ix)$ d'après (??,??,(b)). $(iii) \Longrightarrow (viii).$

Supposons que I_n est une réduction de J_n pour tout $n \geq n_0$.

f et g sont noethérien d'où fortement A.P. à partir d'un rang commun k.

L'idéal J_{n_0k} est entière sur l'idéal I_{n_0k} . D'où g est entière sur f d'après ([?], 4.5). $(vi) \Longrightarrow (ix).$

Si $f^{(r)}$ est un réduction de $g^{(r)}$ alors $g^{(r)}$ est fortement entière sur $f^{(r)}$ d'après ?? (iii) et q est fortement entière sur f d'après ??

5) Supposons que f est fortement noethérienne. D'après l'implication précédente il est facile de montrer que $(xii) \Longrightarrow (i)$.

Supposons que (xii), alors il existe un entier $N \geq 1$ tel que pour tout n > N, $J_n = \sum_{p=0}^{N} I_{n-p} J_p.$

f étant fortement noethérienne, il existe un entier $N' \geq 1$ tel que $I_m I_n = I_{m+n}$ pour tout m, n > N'.

Posons $n \ge k = N + N'$.

Si
$$0 \le p \le N$$
, alors $N' = k - N \le k - p \le n - p$, $J_{n+k} = \sum_{p=0}^{N} I_{n+k-p} J_p =$

$$\sum\limits_{p=0}^{N}I_{n+}I_{k-p}J_{p}=I_{n}J_{k}$$
 , et f est une réduction de $g.$

Pour compléter la preuve, nous avons montrer par exemple que si f est une réduction de q et si f est fortement noethérienne alors q est fortement noethérien.

Soient k, k' des entiers ≥ 1 tel que $J_{k+n} = J_k I_n$ pour tout $n \geq k$ et $I_{m+n} = I_m I_n$ pour tout $m, n \geq k'$.

Posons $m, n \geq k'$. Alors $J_m J_n \subseteq J_{m+n} = J_k I_{m+(n-k)} = J_k I_m I_{n-k} \subseteq J_m J_n$, d'où $J_{m+n} = J_m J_n$ pour tout $m, n \geq k + k'$ et g est fortement noethérienne. \square