```
In [1]: ## Preparation
        # Import the necessary libraries
        import torch
        import torch.nn as nn
        from sklearn.model_selection import train_test_split
        from torchvision import models, datasets, transforms
        from torch.utils.data import DataLoader, Subset
        from sklearn.metrics import confusion matrix, ConfusionMatrixDisplay, classification
        import matplotlib.pyplot as plt
        import numpy as np
        import os
        import optuna
        import time
        from activation import Swish, ResidualBlock
        ## Global Var
        dataset_path = os.getcwd() + '/dataset/classified'
        class_labels = ["Normal", "Cataract"]
In [2]: print(f"Is using CUDA? {torch.cuda.is_available()}") # Should return True if CUDA
        print(torch.version.cuda) # Check the CUDA version PyTorch is using
        print(torch.cuda.current_device()) # Check CUDA device used
       Is using CUDA? True
       12.6
In [3]: # Augmentation
        transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.RandomRotation(15),
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.RandomCrop(224, padding=4),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # Normalize
        ])
        # Load Dataset
        ds = datasets.ImageFolder(root=dataset_path, transform=transform)
        indices = list(range(len(ds)))
        # labels = [ds.targets[i] for i in indices]
        # Split into train and test dataset
        train_indices, test_indices = train_test_split(indices, test_size=0.3, random_state
        train_ds = Subset(ds, train_indices)
        test_ds = Subset(ds, test_indices)
        train_loader = DataLoader(train_ds, batch_size=128, shuffle=True, pin_memory=True,
```

```
test_loader = DataLoader(test_ds, batch_size=128, shuffle=False, pin_memory=True, n
        total_samples = len(train_ds) + len(test_ds)
        print(f"Train size: {(len(train_ds) / total_samples) * 100:.2f}%, Test size: {(len(
        print(f"Total samples: {total_samples}, Train size: {len(train_ds)}, Test size: {le
       Train size: 69.97%, Test size: 30.03%
       Total samples: 1159, Train size: 811, Test size: 348
In [4]: def denormalize(tensor, mean=None, std=None):
            if std is None:
                std = [0.5, 0.5, 0.5]
            if mean is None:
                mean = [0.5, 0.5, 0.5]
            mean = torch.tensor(mean).view(3, 1, 1)
            std = torch.tensor(std).view(3, 1, 1)
            return tensor * std + mean # Reverse normalization
        # Get a batch of images
        dataiter = iter(train_loader)
        images, labels = next(dataiter)
        # Select one image
        img = images[0]
        label = labels[0].item()
        # Denormalize image
        img = denormalize(img)
        # Convert from Tensor (C, H, W) to NumPy (H, W, C)
        img = np.transpose(img.numpy(), (1, 2, 0))
        # Plot the image
        plt.imshow(img)
        plt.title(f"Label: {class_labels[label]}") # Display Label
        plt.axis("off")
        plt.show()
```

## Label: Cataract



```
In [5]: # Optuna Hyperparameter
        best_trial = None
        best_model = None
        torch.backends.cudnn.benchmark = True
        device_name = "cuda" if torch.cuda.is_available() else "cpu"
        use_amp = device_name == "cuda"
        def objective(trial: optuna.Trial) -> float:
            device = torch.device(device_name)
            # Define hyperparameters
            lr = trial.suggest_float("lr", 1e-3, 1e-1, log=True)
            dropout_rate = trial.suggest_float("dropout", 0.3, 0.5)
            optimizer_name = trial.suggest_categorical("optimizer", ["AdamW", "SGD"])
            num_epochs = trial.suggest_int("num_epochs", 5, 15)
            model = models.efficientnet_b0(progress=True, weights=models.EfficientNet_B0_We
            for param in model.features[:-2].parameters():
                param.requires_grad = False
            number_of_features = model.classifier[1].in_features
            model.classifier = nn.Sequential(
                nn.Linear(number_of_features, 256),
                nn.BatchNorm1d(256),
                Swish(),
```

```
ResidualBlock(256, 256),
    nn.Dropout(dropout_rate),
    ResidualBlock(256, 128),
    nn.Dropout(dropout_rate),
    ResidualBlock(128, 128),
    nn.Dropout(dropout_rate),
    ResidualBlock(128, 64),
    nn.Dropout(dropout_rate),
    nn.Linear(64, 1)
).to(device)
model.to(device)
# Define loss and optimizer
criterion = nn.BCEWithLogitsLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4)
if optimizer_name == "SGD":
    optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
train_losses = []
train_accuracies = []
scaler = torch.amp.GradScaler(device=device_name)
# Training Loop
for epoch in range(num_epochs):
   model.train()
   total_loss, correct, total = 0, 0, 0
    for images, labels in train loader:
        images, labels = images.to(device), labels.float().to(device).unsqueeze
        optimizer.zero_grad()
        with torch.amp.autocast("cuda", enabled=use_amp):
            outputs = model(images)
            loss = criterion(outputs, labels)
        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()
        total_loss += loss.item()
        preds = (torch.sigmoid(outputs) > 0.5).float()
        correct += (preds == labels).sum().item()
        total += labels.size(0)
    scheduler.step()
```

```
epoch_loss = total_loss / len(train_loader)
    epoch acc = correct / total * 100
   train_losses.append(epoch_loss)
   train_accuracies.append(epoch_acc)
    print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}, Accuracy: {
   trial.set_user_attr("train_losses", train_losses)
   trial.set_user_attr("train_accuracies", train_accuracies)
   # Pruning: Stop bad trials early
   trial.report(epoch_acc, epoch)
    if trial.should prune():
        raise optuna.exceptions.TrialPruned()
# Evaluate Model
model.eval()
correct, total = 0, 0
trial_preds = []
trial_labels = []
with torch.no_grad():
    for images, labels in test_loader:
        images, labels = images.to(device), labels.float().to(device).unsqueeze
        outputs = model(images)
        preds = (torch.sigmoid(outputs) > 0.5).float()
        correct += (preds == labels).sum().item()
        total += labels.size(0)
        trial_preds.extend(preds.cpu().numpy())
        trial_labels.extend(labels.cpu().numpy())
test_acc = correct / total * 100
print(f"@ Test Accuracy: {test_acc:.2f}%")
# **Save best model globally**
global best_model, best_trial
try:
    best_trial = trial.study.best_trial
    best_value = trial.study.best_value
except ValueError:
    best_value = float('-inf')
if best_model is None or (best_trial is not None and test_acc > best_value):
    best_model = model.state_dict()
best_acc = trial.study.user_attrs.get("best_accuracy", 0)
if test_acc > best_acc:
    study.set_user_attr("best_accuracy", test_acc)
    trial preds = np.array(trial preds).flatten().tolist()
```

```
trial_labels = np.array(trial_labels).flatten().tolist()

study.set_user_attr("best_preds", trial_preds)
    study.set_user_attr("best_labels", trial_labels)

return test_acc

In [6]: study = optuna.create_study(
    direction="maximize",
    study_name=f"hyperparam cataract classifier_{int(time.time())}",
    pruner=optuna.pruners.MedianPruner(),
    storage="sqlite:///optuna.db",
```

```
study_name=="nyperparam Cataract Classifier_{int(time.time())}",
    pruner=optuna.pruners.MedianPruner(),
    storage="sqlite:///optuna.db",
    load_if_exists=True
)

study.optimize(
    objective,
    n_trials=50,
    n_jobs=4,
    show_progress_bar=True
)

acc = study.best_value

print("\nBest Hyperparameters:", study.best_params)
    print("\nAccuracy:", acc)
```

```
Epoch [1/10], Loss: 0.6744, Accuracy: 58.08%
Epoch [1/11], Loss: nan, Accuracy: 50.06%
Epoch [1/8], Loss: 0.6102, Accuracy: 61.90%
Epoch [1/13], Loss: 0.6377, Accuracy: 61.78%
Epoch [2/13], Loss: 0.4640, Accuracy: 76.70%
Epoch [2/10], Loss: 0.6631, Accuracy: 60.05%
Epoch [2/8], Loss: 0.3783, Accuracy: 87.42%
Epoch [2/11], Loss: nan, Accuracy: 49.45%
Epoch [3/10], Loss: 0.6461, Accuracy: 64.98%
Epoch [3/13], Loss: 0.3024, Accuracy: 87.55%
Epoch [3/8], Loss: 0.2599, Accuracy: 93.59%
Epoch [3/11], Loss: nan, Accuracy: 54.50%
Epoch [4/13], Loss: 0.2204, Accuracy: 91.74%
Epoch [4/10], Loss: 0.6309, Accuracy: 66.71%
Epoch [4/8], Loss: 0.2100, Accuracy: 94.33%
Epoch [4/11], Loss: nan, Accuracy: 56.97%
Epoch [5/13], Loss: 0.1984, Accuracy: 92.36%
Epoch [5/10], Loss: 0.6145, Accuracy: 68.43%
Epoch [5/8], Loss: 0.1760, Accuracy: 95.93%
Epoch [5/11], Loss: nan, Accuracy: 56.35%
Epoch [6/10], Loss: 0.6099, Accuracy: 69.17%
Epoch [6/13], Loss: 0.1589, Accuracy: 93.59%
Epoch [6/8], Loss: 0.1631, Accuracy: 95.68%
Epoch [6/11], Loss: nan, Accuracy: 61.04%
Epoch [7/10], Loss: 0.6091, Accuracy: 68.80%
Epoch [7/13], Loss: 0.1337, Accuracy: 95.81%
Epoch [7/8], Loss: 0.1400, Accuracy: 97.78%
Epoch [7/11], Loss: nan, Accuracy: 62.15%
Epoch [8/10], Loss: 0.5969, Accuracy: 70.04%
Epoch [8/13], Loss: 0.1200, Accuracy: 95.81%
Epoch [8/8], Loss: 0.1093, Accuracy: 98.52%
Epoch [8/11], Loss: nan, Accuracy: 61.90%
Epoch [9/10], Loss: 0.6065, Accuracy: 69.17%
Epoch [9/13], Loss: 0.1248, Accuracy: 94.94%
[I 2025-03-13 20:20:58,481] Trial 3 finished with value: 93.39080459770115 and param
eters: {'lr': 0.002078800264403543, 'dropout': 0.3082008559678301, 'optimizer': 'Ada
mW', 'num epochs': 8}. Best is trial 3 with value: 93.39080459770115.
Epoch [9/11], Loss: nan, Accuracy: 64.73%
Epoch [10/13], Loss: 0.1160, Accuracy: 96.42%
Epoch [10/10], Loss: 0.5944, Accuracy: 69.42%
Epoch [1/12], Loss: 0.6273, Accuracy: 64.61%
Epoch [10/11], Loss: nan, Accuracy: 64.24%
Epoch [11/13], Loss: 0.0998, Accuracy: 97.04%
Epoch [2/12], Loss: 0.4380, Accuracy: 84.22%
[I 2025-03-13 20:22:06,941] Trial 1 finished with value: 78.44827586206897 and param
eters: {'lr': 0.002906536218172741, 'dropout': 0.46157561243925405, 'optimizer': 'SG
D', 'num_epochs': 10}. Best is trial 3 with value: 93.39080459770115.
Epoch [11/11], Loss: nan, Accuracy: 62.64%
Epoch [12/13], Loss: 0.1354, Accuracy: 94.70%
Epoch [3/12], Loss: 0.3392, Accuracy: 92.11%
Epoch [1/15], Loss: 0.5089, Accuracy: 73.61%
6 Test Accuracy: 75.00%
[I 2025-03-13 20:23:00,191] Trial 2 finished with value: 75.0 and parameters: {'lr':
0.0016296769159054182, 'dropout': 0.454553751910741, 'optimizer': 'SGD', 'num epoch
```

```
s': 11}. Best is trial 3 with value: 93.39080459770115.
Epoch [13/13], Loss: 0.1355, Accuracy: 95.56%
Epoch [4/12], Loss: 0.2676, Accuracy: 94.08%
Epoch [2/15], Loss: 0.2802, Accuracy: 89.27%
Epoch [1/5], Loss: nan, Accuracy: 57.21%
Epoch [5/12], Loss: 0.2269, Accuracy: 94.33%
[I 2025-03-13 20:23:51,290] Trial 0 finished with value: 91.6666666666666 and param
eters: {'lr': 0.061202104931043756, 'dropout': 0.3178114096276243, 'optimizer': 'SG
D', 'num_epochs': 13}. Best is trial 3 with value: 93.39080459770115.
Epoch [3/15], Loss: 0.1955, Accuracy: 91.37%
Epoch [2/5], Loss: nan, Accuracy: 54.50%
Epoch [6/12], Loss: 0.1954, Accuracy: 95.56%
Epoch [1/13], Loss: 0.7123, Accuracy: 52.90%
Epoch [4/15], Loss: 0.1484, Accuracy: 94.08%
Epoch [3/5], Loss: nan, Accuracy: 61.53%
Epoch [7/12], Loss: 0.1840, Accuracy: 95.68%
Epoch [2/13], Loss: 0.6423, Accuracy: 62.76%
Epoch [5/15], Loss: 0.1525, Accuracy: 94.94%
Epoch [4/5], Loss: nan, Accuracy: 63.87%
Epoch [8/12], Loss: 0.1625, Accuracy: 96.30%
Epoch [6/15], Loss: 0.1178, Accuracy: 95.31%
Epoch [3/13], Loss: 0.6166, Accuracy: 69.30%
Epoch [5/5], Loss: nan, Accuracy: 62.89%
Epoch [9/12], Loss: 0.1642, Accuracy: 97.04%
Epoch [7/15], Loss: 0.0936, Accuracy: 96.92%
Epoch [4/13], Loss: 0.5888, Accuracy: 69.42%
6 Test Accuracy: 75.00%
[I 2025-03-13 20:26:37,400] Trial 6 finished with value: 75.0 and parameters: {'lr':
0.0022339987933251227, 'dropout': 0.4637339536492728, 'optimizer': 'SGD', 'num_epoch
s': 5}. Best is trial 3 with value: 93.39080459770115.
Epoch [10/12], Loss: 0.1386, Accuracy: 97.78%
Epoch [8/15], Loss: 0.0698, Accuracy: 97.53%
Epoch [5/13], Loss: 0.5585, Accuracy: 71.52%
Epoch [1/8], Loss: nan, Accuracy: 58.69%
Epoch [11/12], Loss: 0.1621, Accuracy: 96.55%
Epoch [9/15], Loss: 0.0753, Accuracy: 97.16%
Epoch [6/13], Loss: 0.5329, Accuracy: 71.76%
[I 2025-03-13 20:27:24,223] Trial 7 pruned.
Epoch [2/8], Loss: nan, Accuracy: 66.34%
Epoch [12/12], Loss: 0.1509, Accuracy: 97.04%
Epoch [10/15], Loss: 0.0717, Accuracy: 97.16%
Epoch [1/6], Loss: 0.6524, Accuracy: 60.17%
Epoch [3/8], Loss: nan, Accuracy: 71.76%
[I 2025-03-13 20:28:29,938] Trial 4 finished with value: 93.10344827586206 and param
eters: {'lr': 0.001386957211909266, 'dropout': 0.34375037058911473, 'optimizer': 'Ad
amW', 'num_epochs': 12}. Best is trial 3 with value: 93.39080459770115.
Epoch [11/15], Loss: 0.0662, Accuracy: 97.41%
Epoch [2/6], Loss: 0.5140, Accuracy: 76.08%
Epoch [4/8], Loss: nan, Accuracy: 74.11%
[I 2025-03-13 20:29:02,419] Trial 8 pruned.
Epoch [1/7], Loss: 0.5909, Accuracy: 62.76%
Epoch [12/15], Loss: 0.0685, Accuracy: 98.03%
Epoch [3/6], Loss: 0.3718, Accuracy: 82.98%
Epoch [1/5], Loss: nan, Accuracy: 61.90%
```

```
Epoch [2/7], Loss: 0.3215, Accuracy: 87.30%
Epoch [13/15], Loss: 0.0677, Accuracy: 97.16%
Epoch [4/6], Loss: 0.2926, Accuracy: 87.05%
Epoch [2/5], Loss: nan, Accuracy: 77.68%
Epoch [3/7], Loss: 0.2115, Accuracy: 91.37%
Epoch [14/15], Loss: 0.0645, Accuracy: 97.90%
Epoch [5/6], Loss: 0.1906, Accuracy: 92.85%
Epoch [3/5], Loss: nan, Accuracy: 90.14%
Epoch [4/7], Loss: 0.1585, Accuracy: 94.82%
Epoch [15/15], Loss: 0.0843, Accuracy: 97.29%
Epoch [6/6], Loss: 0.1892, Accuracy: 92.85%
[I 2025-03-13 20:30:59,043] Trial 9 pruned.
Epoch [4/5], Loss: nan, Accuracy: 90.14%
Epoch [5/7], Loss: 0.1813, Accuracy: 93.71%
6 Test Accuracy: 93.39%
[I 2025-03-13 20:31:30,178] Trial 5 finished with value: 93.39080459770115 and param
eters: {'lr': 0.012751529538156727, 'dropout': 0.40998819876694803, 'optimizer': 'Ad
amW', 'num_epochs': 15}. Best is trial 3 with value: 93.39080459770115.
Epoch [1/9], Loss: 0.6895, Accuracy: 61.16%
[I 2025-03-13 20:31:33,993] Trial 12 pruned.
Epoch [5/5], Loss: nan, Accuracy: 92.23%
[I 2025-03-13 20:32:01,671] Trial 11 pruned.
Epoch [6/7], Loss: 0.1029, Accuracy: 96.30%
Epoch [1/8], Loss: 0.5561, Accuracy: 71.64%
Epoch [1/15], Loss: 0.5237, Accuracy: 73.00%
Epoch [1/15], Loss: nan, Accuracy: 72.01%
Epoch [7/7], Loss: 0.1194, Accuracy: 96.55%
Epoch [2/8], Loss: 0.2846, Accuracy: 90.51%
Epoch [2/15], Loss: 0.2754, Accuracy: 90.63%
[I 2025-03-13 20:33:09,216] Trial 10 finished with value: 92.81609195402298 and para
meters: {'lr': 0.008294039193832786, 'dropout': 0.4871118701458195, 'optimizer': 'Ad
amW', 'num_epochs': 7}. Best is trial 3 with value: 93.39080459770115.
Epoch [2/15], Loss: nan, Accuracy: 89.89%
Epoch [3/8], Loss: 0.1995, Accuracy: 93.34%
Epoch [3/15], Loss: 0.2072, Accuracy: 91.00%
Epoch [1/15], Loss: 0.5942, Accuracy: 66.71%
Epoch [3/15], Loss: nan, Accuracy: 91.86%
Epoch [4/8], Loss: 0.1711, Accuracy: 93.46%
Epoch [4/15], Loss: 0.1903, Accuracy: 93.22%
Epoch [2/15], Loss: 0.3375, Accuracy: 87.42%
Epoch [4/15], Loss: nan, Accuracy: 94.08%
Epoch [5/8], Loss: 0.1584, Accuracy: 95.19%
Epoch [5/15], Loss: 0.1408, Accuracy: 95.68%
Epoch [3/15], Loss: 0.2340, Accuracy: 92.11%
Epoch [5/15], Loss: nan, Accuracy: 93.34%
Epoch [6/8], Loss: 0.1256, Accuracy: 95.68%
Epoch [6/15], Loss: 0.1188, Accuracy: 95.68%
Epoch [4/15], Loss: 0.1790, Accuracy: 93.83%
Epoch [6/15], Loss: nan, Accuracy: 94.08%
[I 2025-03-13 20:35:38,750] Trial 15 pruned.
Epoch [7/8], Loss: 0.0966, Accuracy: 96.92%
Epoch [7/15], Loss: 0.1274, Accuracy: 95.44%
[I 2025-03-13 20:35:52,065] Trial 14 pruned.
Epoch [5/15], Loss: 0.1731, Accuracy: 94.20%
Epoch [1/15], Loss: nan, Accuracy: 72.87%
```

```
Epoch [8/8], Loss: 0.0726, Accuracy: 97.66%
Epoch [1/9], Loss: 0.5699, Accuracy: 68.56%
Epoch [6/15], Loss: 0.1236, Accuracy: 96.67%
Epoch [2/15], Loss: nan, Accuracy: 87.92%
[I 2025-03-13 20:36:56,060] Trial 13 finished with value: 92.81609195402298 and para
meters: {'lr': 0.005167788246562698, 'dropout': 0.36084162703774086, 'optimizer': 'A
damW', 'num_epochs': 8}. Best is trial 3 with value: 93.39080459770115.
Epoch [2/9], Loss: 0.2449, Accuracy: 91.12%
Epoch [7/15], Loss: 0.1224, Accuracy: 96.92%
Epoch [3/15], Loss: nan, Accuracy: 91.37%
Epoch [1/10], Loss: 0.5804, Accuracy: 69.30%
Epoch [3/9], Loss: 0.2109, Accuracy: 91.49%
Epoch [8/15], Loss: 0.0912, Accuracy: 97.41%
Epoch [4/15], Loss: nan, Accuracy: 93.46%
Epoch [2/10], Loss: 0.2860, Accuracy: 88.04%
Epoch [4/9], Loss: 0.1960, Accuracy: 93.09%
[I 2025-03-13 20:38:20,386] Trial 18 pruned.
Epoch [9/15], Loss: 0.0843, Accuracy: 97.90%
Epoch [5/15], Loss: nan, Accuracy: 93.59%
[I 2025-03-13 20:38:51,843] Trial 17 pruned.
Epoch [3/10], Loss: 0.2167, Accuracy: 91.99%
Epoch [1/11], Loss: 0.5470, Accuracy: 70.28%
Epoch [10/15], Loss: 0.0732, Accuracy: 98.03%
Epoch [1/11], Loss: nan, Accuracy: 62.64%
Epoch [4/10], Loss: 0.1598, Accuracy: 93.59%
Epoch [2/11], Loss: 0.3086, Accuracy: 89.15%
Epoch [11/15], Loss: 0.0590, Accuracy: 99.01%
Epoch [2/11], Loss: nan, Accuracy: 72.26%
[I 2025-03-13 20:40:05,316] Trial 21 pruned.
Epoch [5/10], Loss: 0.1677, Accuracy: 93.46%
[I 2025-03-13 20:40:11,902] Trial 19 pruned.
Epoch [3/11], Loss: 0.2429, Accuracy: 92.23%
Epoch [12/15], Loss: 0.0824, Accuracy: 97.66%
Epoch [1/13], Loss: nan, Accuracy: 70.78%
Epoch [1/13], Loss: 0.5620, Accuracy: 65.72%
Epoch [4/11], Loss: 0.1790, Accuracy: 93.83%
Epoch [13/15], Loss: 0.0993, Accuracy: 97.66%
Epoch [2/13], Loss: nan, Accuracy: 88.53%
Epoch [2/13], Loss: 0.3334, Accuracy: 86.31%
Epoch [5/11], Loss: 0.1559, Accuracy: 95.31%
Epoch [14/15], Loss: 0.0703, Accuracy: 98.03%
Epoch [3/13], Loss: nan, Accuracy: 92.48%
Epoch [3/13], Loss: 0.2043, Accuracy: 91.99%
Epoch [6/11], Loss: 0.1216, Accuracy: 96.55%
Epoch [15/15], Loss: 0.0557, Accuracy: 98.64%
Epoch [4/13], Loss: nan, Accuracy: 90.75%
[I 2025-03-13 20:42:28,100] Trial 22 pruned.
Epoch [4/13], Loss: 0.1914, Accuracy: 93.22%
[I 2025-03-13 20:42:34,202] Trial 23 pruned.
Epoch [7/11], Loss: 0.0913, Accuracy: 96.55%
[I 2025-03-13 20:42:57,940] Trial 16 finished with value: 93.96551724137932 and para
meters: {'lr': 0.004268185293191574, 'dropout': 0.37772331610047594, 'optimizer': 'A
damW', 'num epochs': 15}. Best is trial 16 with value: 93.96551724137932.
Epoch [1/12], Loss: nan, Accuracy: 65.97%
```

```
Epoch [1/14], Loss: 0.6417, Accuracy: 61.65%
[I 2025-03-13 20:43:09,254] Trial 25 pruned.
Epoch [8/11], Loss: 0.0948, Accuracy: 97.16%
Epoch [1/14], Loss: 0.5463, Accuracy: 72.87%
Epoch [2/12], Loss: nan, Accuracy: 81.75%
[I 2025-03-13 20:43:38,026] Trial 24 pruned.
Epoch [1/14], Loss: 0.6142, Accuracy: 63.26%
Epoch [9/11], Loss: 0.0925, Accuracy: 96.67%
Epoch [2/14], Loss: 0.3222, Accuracy: 90.51%
Epoch [1/14], Loss: nan, Accuracy: 65.10%
Epoch [2/14], Loss: 0.4116, Accuracy: 85.20%
[I 2025-03-13 20:44:19,769] Trial 27 pruned.
Epoch [10/11], Loss: 0.0807, Accuracy: 97.41%
Epoch [3/14], Loss: 0.2245, Accuracy: 93.22%
Epoch [2/14], Loss: nan, Accuracy: 85.45%
[I 2025-03-13 20:44:47,489] Trial 28 pruned.
Epoch [1/14], Loss: 0.6218, Accuracy: 62.39%
Epoch [11/11], Loss: 0.0782, Accuracy: 98.15%
Epoch [4/14], Loss: 0.1784, Accuracy: 94.45%
Epoch [1/7], Loss: nan, Accuracy: 66.95%
Epoch [2/14], Loss: 0.3779, Accuracy: 88.66%
[I 2025-03-13 20:45:34,064] Trial 20 finished with value: 92.52873563218391 and para
meters: {'lr': 0.0035693409643108563, 'dropout': 0.33550898830503706, 'optimizer':
'AdamW', 'num_epochs': 11}. Best is trial 16 with value: 93.96551724137932.
Epoch [5/14], Loss: 0.1439, Accuracy: 95.07%
Epoch [2/7], Loss: nan, Accuracy: 88.66%
Epoch [3/14], Loss: 0.2562, Accuracy: 91.99%
Epoch [1/7], Loss: 0.5219, Accuracy: 74.11%
Epoch [6/14], Loss: 0.1197, Accuracy: 95.68%
Epoch [3/7], Loss: nan, Accuracy: 91.99%
Epoch [4/14], Loss: 0.2019, Accuracy: 93.59%
[I 2025-03-13 20:46:41,852] Trial 29 pruned.
Epoch [2/7], Loss: 0.2312, Accuracy: 90.88%
Epoch [7/14], Loss: 0.0963, Accuracy: 97.04%
Epoch [4/7], Loss: nan, Accuracy: 91.86%
[I 2025-03-13 20:47:06,932] Trial 30 pruned.
Epoch [1/7], Loss: 0.5165, Accuracy: 72.38%
Epoch [3/7], Loss: 0.1824, Accuracy: 91.37%
Epoch [8/14], Loss: 0.0855, Accuracy: 97.53%
Epoch [1/9], Loss: nan, Accuracy: 60.05%
[I 2025-03-13 20:47:45,030] Trial 33 pruned.
Epoch [2/7], Loss: 0.2523, Accuracy: 91.86%
Epoch [4/7], Loss: 0.2164, Accuracy: 92.73%
[I 2025-03-13 20:47:58,335] Trial 31 pruned.
Epoch [9/14], Loss: 0.0765, Accuracy: 97.41%
Epoch [1/12], Loss: nan, Accuracy: 68.19%
Epoch [3/7], Loss: 0.1857, Accuracy: 92.85%
Epoch [1/12], Loss: 0.5856, Accuracy: 70.41%
Epoch [10/14], Loss: 0.0643, Accuracy: 98.52%
Epoch [2/12], Loss: nan, Accuracy: 83.60%
[I 2025-03-13 20:49:01,349] Trial 34 pruned.
Epoch [4/7], Loss: 0.1581, Accuracy: 92.60%
[I 2025-03-13 20:49:11,124] Trial 32 pruned.
Epoch [2/12], Loss: 0.3647, Accuracy: 89.03%
Epoch [11/14], Loss: 0.0764, Accuracy: 98.15%
```

```
Epoch [1/12], Loss: nan, Accuracy: 64.98%
Epoch [1/12], Loss: 0.7157, Accuracy: 49.08%
[I 2025-03-13 20:49:55,120] Trial 37 pruned.
Epoch [3/12], Loss: 0.2639, Accuracy: 93.71%
Epoch [12/14], Loss: 0.0744, Accuracy: 97.90%
Epoch [2/12], Loss: nan, Accuracy: 78.30%
[I 2025-03-13 20:50:23,956] Trial 36 pruned.
Epoch [1/15], Loss: 0.7024, Accuracy: 52.03%
[I 2025-03-13 20:50:35,405] Trial 38 pruned.
Epoch [4/12], Loss: 0.2366, Accuracy: 92.11%
[I 2025-03-13 20:50:39,414] Trial 35 pruned.
Epoch [13/14], Loss: 0.0682, Accuracy: 98.40%
Epoch [1/15], Loss: nan, Accuracy: 50.31%
[I 2025-03-13 20:51:00,579] Trial 39 pruned.
Epoch [1/10], Loss: 0.6817, Accuracy: 57.83%
[I 2025-03-13 20:51:12,135] Trial 40 pruned.
Epoch [1/10], Loss: 0.6917, Accuracy: 53.39%
[I 2025-03-13 20:51:16,000] Trial 41 pruned.
Epoch [14/14], Loss: 0.0767, Accuracy: 97.90%
Epoch [1/10], Loss: nan, Accuracy: 53.27%
[I 2025-03-13 20:51:38,811] Trial 42 pruned.
Epoch [1/13], Loss: 0.5765, Accuracy: 68.80%
Epoch [1/6], Loss: 0.5401, Accuracy: 71.52%
[I 2025-03-13 20:52:15,089] Trial 26 finished with value: 90.80459770114942 and para
meters: {'lr': 0.0031561675802634355, 'dropout': 0.34646203283673693, 'optimizer':
'AdamW', 'num_epochs': 14}. Best is trial 16 with value: 93.96551724137932.
Epoch [1/6], Loss: nan, Accuracy: 68.19%
Epoch [2/13], Loss: 0.3581, Accuracy: 88.78%
Epoch [2/6], Loss: 0.2682, Accuracy: 91.25%
Epoch [1/6], Loss: 0.5683, Accuracy: 70.65%
Epoch [2/6], Loss: nan, Accuracy: 89.40%
Epoch [3/13], Loss: 0.2441, Accuracy: 93.59%
Epoch [3/6], Loss: 0.2128, Accuracy: 92.36%
Epoch [2/6], Loss: 0.2781, Accuracy: 91.25%
Epoch [3/6], Loss: nan, Accuracy: 91.25%
[I 2025-03-13 20:53:46,785] Trial 45 pruned.
Epoch [4/13], Loss: 0.2140, Accuracy: 93.59%
[I 2025-03-13 20:54:02,750] Trial 43 pruned.
Epoch [4/6], Loss: 0.2000, Accuracy: 92.60%
[I 2025-03-13 20:54:08,850] Trial 44 pruned.
Epoch [3/6], Loss: 0.1858, Accuracy: 93.71%
Epoch [1/8], Loss: nan, Accuracy: 69.42%
Epoch [1/8], Loss: 0.6054, Accuracy: 64.49%
Epoch [1/8], Loss: 0.6463, Accuracy: 62.39%
[I 2025-03-13 20:54:47,504] Trial 49 pruned.
Epoch [4/6], Loss: 0.1475, Accuracy: 94.20%
Epoch [2/8], Loss: nan, Accuracy: 87.55%
Epoch [2/8], Loss: 0.3371, Accuracy: 87.67%
Epoch [5/6], Loss: 0.1374, Accuracy: 95.31%
Epoch [3/8], Loss: nan, Accuracy: 90.63%
[I 2025-03-13 20:55:43,164] Trial 47 pruned.
Epoch [3/8], Loss: 0.2571, Accuracy: 92.23%
Epoch [6/6], Loss: 0.1626, Accuracy: 94.94%
[I 2025-03-13 20:56:11,607] Trial 46 pruned.
Epoch [4/8], Loss: 0.1731, Accuracy: 93.46%
```

```
[I 2025-03-13 20:56:27,584] Trial 48 pruned.
```

```
Best Hyperparameters: {'lr': 0.004268185293191574, 'dropout': 0.37772331610047594, 'optimizer': 'AdamW', 'num_epochs': 15}
```

Accuracy: 93.96551724137932

```
In [7]: best_trial = study.best_trial
        best_train_losses = best_trial.user_attrs.get("train_losses", [])
        best_train_accuracies = best_trial.user_attrs.get("train_accuracies", [])
        plt.figure(figsize=(10, 5))
        # Loss Graph
        plt.subplot(1, 2, 1)
        plt.plot(best_train_losses, label="Loss", marker="o", linestyle="-", color="b")
        plt.xlabel("Epoch")
        plt.ylabel("Loss")
        plt.title("Training Loss per Epoch")
        plt.legend()
        # Accuracy Graph
        plt.subplot(1, 2, 2)
        plt.plot(best_train_accuracies, label="Accuracy (%)", marker="o", linestyle="-", co
        plt.xlabel("Epoch")
        plt.ylabel("Accuracy")
        plt.title("Training Accuracy per Epoch")
        plt.legend()
        plt.show()
```



```
In [8]: best_preds = np.array(study.user_attrs.get("best_preds", []))
  best_labels = np.array(study.user_attrs.get("best_labels", []))
  conf_matrix = confusion_matrix(best_preds, best_labels)
```

```
ConfusionMatrixDisplay(conf_matrix, display_labels=class_labels).plot(cmap=plt.cm.B
cr = classification_report(best_preds, best_labels)
print(f"Accuracy: {acc:.2f}%")
print(cr)
```

Accuracy: 93.97%

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0.0          | 0.96      | 0.96   | 0.96     | 260     |
| 1.0          | 0.89      | 0.88   | 0.88     | 88      |
|              |           |        |          |         |
| accuracy     |           |        | 0.94     | 348     |
| macro avg    | 0.92      | 0.92   | 0.92     | 348     |
| weighted avg | 0.94      | 0.94   | 0.94     | 348     |



```
In [9]: # # save
    output_model_path = f"output/checkpoint-{acc}-hyperparam.pth"

torch.save({
        "model_state_dict": study.user_attrs.get("best_model_state"), # Best model wei
        "optimizer_state_dict": study.user_attrs.get("best_optimizer_state"), # Best o
        "best_hyperparameters": study.best_params,
        "best_accuracy": study.best_value,
        "best_train_losses": study.user_attrs.get("best_train_losses", []), # Best tra
        "best_train_accuracies": study.user_attrs.get("best_train_accuracies", []), #
}, output_model_path)
```

```
In [10]: # checkpoint = torch.load("checkpoint.pth")
     # model.load_state_dict(checkpoint['model_state_dict'])
     # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
     # model.eval()
```