Question 1

对于映射

$$\varphi: A \to B, x \mapsto y$$

对 $C \subseteq A$, 称集合 C 在映射 φ 下的像为

$$\varphi(C) = \{ y \in B | \exists x \in C, \mathbf{\'e}; \mathbf{$$

对 $D \subset B$, 称集合 D 在映射 φ 下的原像为

$$\varphi^{-1}(D) = \{ x \in A | \varphi(x) \in D \}$$

现在, 设 $f: X \to Y$ 是 X 到 Y 的一个映射, $A \subseteq X$, $C \subseteq Y$. 试证:

$$f^{-1}(f(A)) \supseteq A;$$

 $f(f^{-1}(C)) \subseteq C.$

证明. 1. 若 $x \in A$, 则 $f(x) \in f(A)$, 这说明 $x \in \{x \in X | f(x) \in f(A)\}$, 即 $x \in f^{-1}(f(A))$. 即 $f^{-1}(f(A)) \supseteq A$

2. 若 $y \in f(f^{-1}(C))$, 则 $\exists x \in X$, 使得 $y = f(x) \in C$, 这说明 $y \in C$. 即 $f(f^{-1}(C)) \subseteq C$.

Note: 请大家自行验证: 当 f 是单射时, 第一个式子可以改成等号; 当 f 是满射时, 第二个式子可以改成等号.