

GUPOY

Day 29 特徵工程

特徵評估

陳明佑

知識地圖特徵工程特徵評估

機器學習概論 Introduction of Machine Learning

監督式學習 Supervised Learning

新處理 Processing 上數據分析 Exploratory Data Analysis

特徵 工程 Feature Engineering

模型 選擇 Model selection

參數調整 Fine-tuning

集成 Ensemble 非監督式學習 Unsupervised Learning

> 分群 Clustering

降維 Dimension Reduction

本日知識點目標

- 樹狀模型的特徵重要性,可以分為哪三種?
- sklearn 樹狀模型的特徵重要性與 Xgboost 的有何不同
- ◎ 特徵工程中,特徵重要性本身的重要性是什麼

細說特徵重要性(1/3)

讓我們先來看看什麼是特徵重要性:

下列是房價預估決策樹的預測圖,四個特徵(坪數、房間數、屋齡、是否靠近捷運站)之中,請問你覺得哪一個特徵比較重要?

細說特徵重要性(2/3)

特徵重要性預設方式是取特徵決定分支的次數

此例而言: 坪數x1次 房間數x3次 靠近捷運站x2次 屋齡x1次

所以最重要的特徵是 房間數

細說特徵重要性(3/3)

但分支次數以外,還有兩種更直覺的特徵重要性:特徵覆蓋度、損失函數降低量本例的特徵覆蓋度(假定八個結果樣本數量一樣多):坪數與房間數的覆蓋度相同(都是8)而損失函數降低量,則是要看損失函數 (loss function) 決定

套件中的特徵重要性

- sklearn 當中的樹狀模型,都有特徵重要性這項方法 (.feature_importances_),而實際上都是分支次數
- 進階版的 GDBT模型(xgboost, lightgbm, catboost) 中, 才有上述三種不同的重要性

	Xgboost 對應參數 (importance_type)	計算時間	估計精確性	sklearn 有此功能
分支次數	weight	最快	最低	
分支覆蓋度	cover	快	中	X
損失降低量 (資訊增益度)	gain	較慢	最高	X

機器學習中的優化循環

- 機器學習特徵優化,循環方式如圖
- > 其中增刪特徵指的是
 - 特徵選擇(刪除)
 - 挑選門檻,刪除一部分特徵 重要性較低的特徵
 - 特徵組合(增加)
 - 依領域知識,對前幾名特徵 做特徵組合或群聚編碼,形 成更強力特徵
- 由交叉驗證確認特徵是否有改善,若沒有改善則回到上一輪重選特徵增刪
- 這樣的流程圖綜合了 PART 2:特徵工程的主要內容,是這個部分的核心知識

排列重要性 (permutation Importance)

- 雖然特徵重要性相當實用,然而計算原理必須基於樹狀模型,於是有了可 延伸至非樹狀模型的排序重要性
- 排序重要性計算,是打散單一特徵的資料排序順序,再用原本模型重新預測,觀察打散前後誤差會變化多少

	特徵重要性 Feature Impotance	排序重要性 Permutation Importance
適用模型	限定樹狀模型	機器學習模型均可
計算原理	樹狀模型的分歧特徵	打散原始資料中單一特徵的排序
額外計算時間	較短	較長

重要知識點複習

- 樹狀模型的特徵重要性,可以分為分支次數、特徵覆蓋度、損失函數降低量三種
- sklearn 樹狀模型與 Xgboost 的特徵重要性,最大差 異就是在 sklearn 只有精準度最低的「分支次數」
- 特徵重要性本身的重要性,是在於本身是增刪特徵的 重要判定準則,在領域知識不足時,成為改善模型的 最大幫手

請跳出PDF至官網Sample Code&作業 開始解題

