Topology Course Notes (KSM1C03)

Day 1: 12th August, 2025

basic set theory -- power set -- product of sets -- equivalence relation -- order relation

1.1 Power set

Given a set X, the *power set* is defined as

$$\mathcal{P}(X) := \{ A \mid A \subset X \} .$$

Exercise 1.1

If X is a finite set, prove via induction that $|\mathcal{P}(X)| = 2^{|X|}$, where $|\cdot|$ denotes the cardinality.

Exercise 1.2

For any arbitrary set X, prove that there exists a natural bijection of $\mathcal{P}(X)$ with the set

$$\mathcal{F} := \{ f : X \to \{0, 1\} \}$$

of all functions from X to the 2-point set $\{0, 1\}$.

Hint

How many functions $\{a,b,c\} \rightarrow \{0,1\}$ can you define? Look at their inverse images.

Given two sets X, Y denote the set of all functions from X to Y as

$$Y^X \coloneqq \{f: X \to Y\} \,.$$

Exercise 1.3

If X and Y are finite sets, then show that $\left|Y^X\right|=\left|Y\right|^{|X|}$. Use this to show $|\mathcal{P}(X)|=2^{|X|}$.

Exercise 1.4: (Set exponential law)

Given three sets X, Y, Z, prove that there is a natural bijection

$$\left(Z^Y\right)^X = Z^{Y \times X}$$

Hint

Write down what the elements look like. Can you see the pattern? This bijection is also known as *Currying*.

1.2 Arbitrary union and intersection

Suppose A is a collection of sets. Then, we have the *union*

$$\bigcup_{X \in \mathcal{A}} X \coloneqq \left\{ x \mid x \in X \text{ for some } X \in \mathcal{A} \right\},$$

and the intersection

$$\bigcap_{X \in \mathcal{A}} X \coloneqq \{x \mid x \in X \text{ for all } X \in \mathcal{A}\}.$$

Exercise 1.5: (Empty union)

Suppose we have an *empty* collection \mathcal{A} of sets. From the definition, prove that

$$\bigcup_{X \in \mathcal{A}} X = \emptyset.$$

Exercise 1.6: (Empty intersection)

Suppose A is a *nonempty* subset of the power set of some fixed set X. Show that

$$\bigcap_{A \in \mathcal{A}} = \left\{ x \in X \mid x \in A \text{ for all } A \in \mathcal{A} \right\}.$$

If $A \subset \mathcal{P}(X)$ is the *empty* collection, justify

$$\bigcap_{A\in\mathcal{A}}A=X$$

1.3 Cartesian product

Given two sets A, B, their Cartesian product (or simply, product) is defined as the set

$$A \times B := \{(a, b) \mid a \in A, \quad b \in B\}$$

of ordered pairs. We have the two *projections*

$$\pi_A: A \times B \to A$$
 and $\pi_B: A \times B \to B$ $(a,b) \mapsto a,$ $(a,b) \mapsto b.$

Exercise 1.7

Justify $A \times \emptyset = \emptyset$, where \emptyset is the empty set.

Remark 1.8: (A different product?)

Suppose A, B are given. Consider the set

$$C = \{(a, b, a) \mid a \in A, \quad b \in B\}.$$

Clearly there is a natural bijection between C and $A \times B$. Also, we have maps $\pi_A : C \to A$ and $\pi_B : C \to B$.

Exercise 1.9: (Universal property of the product)

Suppose A, B are given sets, and $\pi_A : A \times B \to A, \pi_B : A \times B \to B$ be the projections.

a) Show that given any set C, and functions $f:C\to A, g:C\to B$, there exists a *unique* function $h:C\to A\times B$ such that the diagram commutes.

b) Suppose we are given a set P, along with two functions $p_A:P\to A$ and $p_B\to B$, which satisfies the following property: given any set C, and functions $f:C\to A,\ g:C\to B$, there exists a *unique* function $h:C\to P$ satisfying $f=p_A\circ h,\ g=p_B\circ h$.

Show that the exists a bijection from $\psi: A \times B \to P$, such that $p_A \circ \psi = \pi_A$ and $p_B \circ \psi = \pi_B$.

Hint

Look at the diagrams

Can you show that $\phi \circ \psi = \mathrm{Id}_{A \times B}$ and $\psi \circ \phi = \mathrm{Id}_{P}$? The uniqueness should be useful.

3

1.4 Equivalence relation

Definition 1.10: (Relation)

Given a set X, a *relation* on it is a subset $\mathcal{R} \subset X \times X$. We say \mathcal{R} is an *equivalence relation* if the following holds.

- a) (Reflexive) For each $x \in X$ we have $(x, x) \in \mathcal{R}$.
- b) (Symmetric) If $(x, y) \in \mathcal{R}$, then $(y, x) \in \mathcal{R}$.
- c) (Transitive) If $(x,y) \in \mathcal{R}$ and $(y,z) \in \mathcal{R}$, then $(x,z) \in \mathcal{R}$.

For any $x \in X$, the equivalence class (with respect to the equivalence relation \mathcal{R}) is defined as the set

$$[x] := \{ y \in X \mid (x, y) \in \mathcal{R} \}.$$

We shall denote $x \sim_{\mathcal{R}} y$ (sometimes also denoted $x\mathcal{R}y$, or simply $x \sim y$) whenever $(x,y) \in \mathcal{R}$. The collection of equivalence classes are sometimes denoted as $X/_{\sim}$.

Exercise 1.11

Given an equivalence relation \mathcal{R} on X, check that any two equivalence classes are either disjoint or equal (i.e., they cannot have nontrivial intersection).

Exercise 1.12

Suppose X is a given set, and $A \subset X$ is a nonempty subset. Define the relation $\mathcal{R} \subset X \times X$ as follows.

$$\mathcal{R} := \{(x, x) \mid x \in X \setminus A\} \bigcup \{(a, b) \mid a, b \in A\}.$$

- a) Check that ${\cal R}$ is an equivalence relation.
- b) Identify the equivalence classes. We shall denote the collection of equivalence classes as X/A.
- c) What is X/X ?

Exercise 1.13

Suppose ${\cal G}$ is a group and ${\cal H}$ is a subgroup. Define a relation

$$\mathcal{C} := \left\{ (g_1, g_2) \mid g_1^{-1} g_2 \in H \right\} \subset G \times G.$$

- a) Show that ${\cal C}$ is an equivalence relation.
- b) Identify the equivalence classes ${\cal G}/{\cal H}.$

Hint

Recall the definition of cosets.

Definition 1.14: Partition

Given a set X, a partition of X is a collection of subsets $X_{\alpha} \subset X$ for some indexing set $\alpha \in \mathcal{I}$, such that the following holds.

- $X_{\alpha} \cap X_{\beta} = \emptyset$ for any $\alpha, \beta \in \mathcal{I}$ with $\alpha \neq \beta$.
- $X = \bigcup_{\alpha \in \mathcal{I}} X_{\alpha}$.

Exercise 1.15: (Partitions and equivalence relations)

Given an equivalence relation \mathcal{R} on a set X, show that the collection of equivalence classes is a partition of X. Conversely, given any partition of X, show that there exists a unique equivalence relation which gives that partition.

1.5 Order relation

Definition 1.16: (Linear order)

A relation $\mathcal{O} \subset X \times X$ on X is called an *order relation* (also known as *linear order* or *simple order*) if the following holds.

- a) (Non-reflexive) $(x,x) \notin \mathcal{O}$ for all $x \in X$.
- b) (Transitive) If $(x, y) \in \mathcal{O}$ and $(y, z) \in \mathcal{O}$, then $(x, z) \in \mathcal{O}$.
- c) (Comparable) For $x, y \in X$ with $x \neq y$, either $(x, y) \in \mathcal{O}$ or $(y, x) \in \mathcal{O}$.

We shall denote $x <_{\mathcal{O}} y$ (or even simply x < y) whenever $(x,y) \in \mathcal{O}$. If either $x <_{\mathcal{O}} y$ or x = y holds, then we shall denote $x \leq_{\mathcal{O}} y$ (or $x \leq y$). Given $x, y \in X$, we have the interval

$$(x,y) \coloneqq \{z \in X \mid x < z \text{ and } z < x\}.$$

Exercise 1.17

Given an ordered set (X, <), define the intervals [x, y], [x, y), (x, y] for some $x, y \in X$. What happens when x = y?

Definition 1.18: (Order preserving function)

Given two ordered set $(X_1, <_1)$ and $(X_2, <_2)$, a function $f: X_1 \to X_2$ is said to *order preserving* if

$$x <_1 y \Rightarrow f(x) <_2 f(y), \quad \forall \ x, y \in X_1.$$

Definition 1.19: (Total order)

A relation $\mathcal{O} \subset X \times X$ on a set X is called a *total order* if the following holds.

- a) (Reflexive) $(x, x) \in \mathcal{O}$ for all $x \in X$.
- b) (Transitive) If $(x,y) \in \mathcal{O}$ and $(y,z) \in \mathcal{O}$, then $(x,z) \in \mathcal{O}$.
- c) **(Total)** For $x, y \in X$ either $(x, y) \in \mathcal{O}$ or $(y, x) \in \mathcal{O}$

d) (Antisymmetric) If $(x,y) \in \mathcal{O}$ and $(y,x) \in \mathcal{O}$, then x = y.

We shall denote $x \leq_{\mathcal{O}} y$ (or even simply $x \leq y$) whenever $(x, y) \in \mathcal{O}$.

Definition 1.20: (Dictionary order)

Given X,Y two totally ordered sets the *dictionary order* (or *lexicographic order*) on the product $X \times Y$ is defined as

$$(x_1, y_1) < (x_2, y_2)$$
 if and only if $\{x_1 < x_2\}$ or $\{x_1 = x_2, \text{ and } y_1 < y_2\}$,

for any $(x_1, y_1), (x_2, y_2) \in X \times Y$.

Exercise 1.21

Let X, Y be totally ordered sets.

- a) Check that the dictionary order on $X \times Y$ is indeed a total ordering.
- b) Check that the projection maps $\pi_X \to X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ are order preserving maps.
- c) Suppose Z is another totally ordered set. Let $f:Z\to X$ and $g:Z\to Y$ be two order preserving maps. Show that there exists a unique order preserving map $h:Z\to X\times Y$ such that $\pi_X\circ h=f$ and $\pi_Y\circ h=g$.
- d) Let us define a new relation $(x_1, y_1) \preceq (x_2, y_2)$ if and only $x_1 \leq x_2$ and $y_1 \leq y_2$. Is \preceq a total order on $X \times Y$?