Sintaxis y Semántica de los lenguajes

Autómatas relacionados con lenguajes tipo 0 y 1

2020

Facultad Regional Delta, Universidad Tecnológica Nacional

Máquina de Turing

Una máquina de Turing está definida por la siguiente tupla

$$MT = \langle Q, \Gamma, \Sigma, B, q_0, \delta, F \rangle$$

donde Q es el conjunto de estados,

 Γ es el alfabeto de la cinta,

 Σ es el alfabeto de la cadena de entrada, $\Sigma \subseteq \Gamma$,

B es un símbolo que representa una celda de la cinta en blanco,

$$B \in \Gamma$$
, $B \notin \Sigma$

δ es la función de transición y está definida en

$$δ$$
: Q x $Γ \rightarrow$ Q x $Γ$ x { I, D }

q₀ es el estado inicial, y

F es el conjunto de estados finales.

Definición (configuración instantánea)

Una configuración instantánea nos permite conocer la situación actual de una máquina de Turing y está definada por

$$\alpha_1 q \alpha_2$$

donde q es el estado actual del automáta y α 1, α 2 $\in \Gamma$ *, siendo α_1 el contenido de la cinta a la izquierda del cursor (sin incluir la celda sobre el cursor) y α_2 el contenido de la cinta a la derecha del cursor (incluyendo la celda sobre el cursor).

Cambio de configuración instantánea en una MT

Sea la configuración instantánea $X_1X_2 \dots X_i \mathbf{q} X_{i+1} \dots X_n$

Si δ está definida para q como $\delta(q, X_{i+1}) = (p, Y, I)$, la MT evolucionará a la siguiente configuración instantánea $X_1X_2 \dots X_{i-1}$ **p** X_i Y $X_{i+2} \dots X_n$.

En cambio, si δ está definida para q como $\delta(q, X_{i+1}) = (p, Y, \mathbf{D})$, la MT evolucionará a la siguiente configuración instantánea

$$X_1X_2 \dots X_i Y \mathbf{p} X_{i+2} \dots X_n$$
.

Lenguaje aceptado por una máquina de Turing

Sea la MT = < Q, Γ , Σ , B, q₀, δ , F >, el lenguaje L(MT) aceptado será L = { α / α \in Σ^* \wedge q₀ α |---* γ q γ ' / q \in F}

Ejemplo:

Sea $L = \{ 0^n 1^n / n \ge 1 \}$ definir la MT que lo acepte.

En la cinta está escrita la cadena de entrada de modo tal que al comenzar a operar la MT el cursor estará posicionado sobre la celda que contiene al primer símbolo de la cadena de entrada.

La configuración instantánea inicial será entonces

 $q_0 w$

donde q₀ es el estado inicial y w el contenido de la cinta a la derecha del cursor conteniendo a la cadena de entrada (notar que a la izquierda del cursor la cinta contiene a todas sus celdas en blanco).

El diagrama de transición de la MT es:

Cambios de configuración instantánea para la cadena w = 0011

 $\mathbf{q_0}$ 0011 |--- a $\mathbf{q_1}$ 011 |--- a0 $\mathbf{q_1}$ 11 |--- a $\mathbf{q_2}$ 0b1 |--- $\mathbf{q_2}$ a011 |--- a $\mathbf{q_0}$ 0b1 |--- aa $\mathbf{q_1}$ b1 |--- aab $\mathbf{q_1}$ 1 |--- aa $\mathbf{q_1}$ bb |--- aab |--- aab $\mathbf{q_3}$ b |--- aabb $\mathbf{q_3}$ |--- aabb $\mathbf{q_3}$ |--- aabb $\mathbf{q_4}$

Definición (Autómata Acotado Linealmente):

Un Autómata Acotado Linealmente es una máquina de Turing cuya longitud de la cinta es finita y función lineal de la longitud de la cadena de entrada.

Usualmente los símbolos de inicio y final de la cinta son ¢ y \$.

Lenguaje aceptado por un Autómata Acotado Linealmente

Sea el AAL =
$$<$$
 Q, Γ , Σ , B, q₀, δ , F $>$, el lenguaje L(AAL) aceptado será L = $\{ \alpha / \alpha \in (\Sigma - \{ \phi, \$ \})^* \land q_0 \phi \alpha \$ \mid ---^* \gamma q \gamma' / q \in F \}$

Nota: el cursor nunca se puede mover a la izquierda de ¢ ni a la derecha de \$.

Teorema:

Sea G del **tipo 1**, $G = \langle V_N, V_T, P, S \rangle$ entonces existe un **AAL** que acepta L (G).

Idea de demostración:

Sean $p_1, p_2,..., p_n$ las producciones de G y en donde para cualquier producción p_i representada como $\alpha \rightarrow \gamma$ se verifica que $|\alpha| \le |\gamma|$.

Sea el AAL cuya cinta tiene una longitud acotada por la longitud de k*|w| + la longitud máxima de las partes derechas de las producciones de G, donde |w| es la longitud de la cadena de entrada y k una constante entera.

El AAL procede según el siguiente seudocódigo:

- 1. Escribe a continuación del último símbolo de la cadena de entrada, el símbolo distinguido de la gramática.
- 2. Busca una producción para re-escribir el símbolo distinguido, remueve el símbolo distinguido de la cinta y en su lugar escribe la parte derecha de la producción seleccionada.

- 3. Identifica una subcadena de la forma sentencial actual y busca una producción tal que le permita re-escribir dicha subcadena.
- 4. Remueve la subcadena identificada en 3 y la reemplaza por la parte derecha de la producción seleccionada en 3.
- 5. Si la nueva forma sentencial obtenida es la cadena w, listo. Terminar aceptando w.
- 6. Si la forma sentencial obtenida es de longitud menor o igual a la longitud de w y existen más posibilidades de derivación entonces

volver a 3

sino

Si ya se han formado todas las formas sentenciales posible con longitud menor o igual a la longitud de la cadena w entonces

la cadena w es rechazada

sino

volver a 1

Ejemplo:

Sea G =
$$\langle V_N, V_T, P, S \rangle$$
 con P = $\{S \rightarrow 0BS2, S \rightarrow 012, B0 \rightarrow 0B, B1 \rightarrow 11\},$ $V_N = \{S, B\}, y$ $V_T = \{0, 1, 2\}.$

Fijarse que la gramática cumple que

$$\forall (\alpha \rightarrow \beta) \text{ en } P |\alpha| \leq |\beta|,$$

luego es del tipo 1.

Fijarse que S → 0BS2 aplicada i-1 veces genera la forma sentencial

Si aplicamos $S \rightarrow 012$ obtenemos

Ahora usamos $B0 \rightarrow 0B$ varias veces para permutar los 0s a la izquierda de las Bs de modo de obtener

y usando B1 → 11 reemplazamos las Bs con 1s para obtener

Ejercicio: dado el lenguaje del ejemplo anterior definir un AAL que lo acepte.

Consideremos el AAL = < Q, Γ , Σ , B, q_0 , δ , F > con

Q = {
$$q_0$$
, q_1 , q_2 , q_3 , q_4 , q_5 , q_6 },
 Σ = { 0, 1, 2 },
 Γ = { 0, 1, 2, a, b, c, B, ¢, \$ } y

 $F = \{ q_6 \}.$

La función de transición se corresponde con el siguiente diagrama de transición:

Sea M un Máquina de Turing, cuales son las posibles respuestas para decidir si una cadena pertenece o no a un lenguaje: M se detenga en un estado final de aceptación \Rightarrow w \in L(M) M se detenga en un estado final de rechazo \Rightarrow w \notin L(M) M no se detenga \Rightarrow w \notin L(M)

Si L es un lenguaje del tipo 0 (pero **recursivo**) entonces existe un Máquina de Turing M tal que:

si w ∈ L ⇒ M se detiene en un estado final de aceptación

si w ∉ L ⇒ M se detiene en un estado final de rechazo

Si L es un lenguaje del tipo 0 (pero **recursivamente enumerable**) entonces existe un Máquina de Turing M tal que:

si $w \in L \Rightarrow M$ se para en un estado final de aceptación si $w \notin L \Rightarrow M$ no se para.