FCC TEST REPORT

FCC ID : 2AALB-201761-01

Applicant : Camelot SI. LLC

Address : 27725 Stansbury Blvd., Ste. 175, Farmington Hills, Michigan, 48334, USA

Equipment Under Test (EUT):

Product description: FM Transmitter

Model No. : T11,201761-01

Standards : FCC 15 Paragraph 15.239

Date of Test : July 02~15, 2013

Date of Issue : July 15, 2013

Test Result : PASS

Project Engineer : Olic huang

Reviewed By : Philo zhong

Prepared By:

Thele should

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488

Fax:+86-755-27553868

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

2 Contents

1	CC	OVER PAGE	Page
2		ONTENTS	
3		ST SUMMARY	
4	GE	ENERAL INFORMATION	
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3 4.4	DETAILS OF E.U.T. DESCRIPTION OF SUPPORT UNITS	
	4.5	STANDARDS APPLICABLE FOR TESTING.	
	4.6	TEST FACILITY	
	4.7	TEST LOCATION	
5	EQ	QUIPMENT USED DURING TEST	6
	5.1	EQUIPMENTS LIST	6
	5.2	Measurement Uncertainty	
	5.3	TEST EQUIPMENT CALIBRATION	7
6	RA	ADIATION EMISSION TEST	8
	6.1	TEST EQUIPMENT	8
	6.2	Measurement Uncertainty	
	6.3	TEST PROCEDURE	9
	6.4	RADIATED TEST SETUP	
	6.5	TEST RESULT & MARGIN CALCULATION	
	6.6	RADIATED EMISSIONS LIMIT	
	6.7 6.8	RADIATED EMISSIONS TEST RESULT RADIATED EMISSIONS TEST SETUP VIEW	
7		NDWIDTH TEST	
′			
	7.1 7.2	TEST SETUP	
	7.2	TEST RESULTS	
8		ND EDGE TEST	
O			
	8.1 8.2	TEST LIMIT	
	8.3	METHOD OF MEASUREMENT	
	8.4	TEST RESULTS	
9	AN	TENNA REQUIREMENT	22
	9.1	STANDARD REQUIREMENT	22
	9.2	RESULT	
10	PH	IOTOGRAPHS - CONSTRUCTIONAL DETAILS	23
	10.1	EUT-Full View	23
	10.1	EUT-Side View	
	10.3	EUT-BACK VIEW	
	10.4	EUT-SIDE VIEW	24
		Services (Shenzhen) Co.,Ltd.	
<u>ht</u>	tp://wv	<u>ww.waltek.com.cn</u> Ref. No.: WTS13S07	'05238E

10.5	EUT-OPEN VIEW	25
10.6	PCB-Top View	25
	PCB-BOTTOM VIEW	

3 Test Summary

Test Items	Test Requirement	Standard Paragraph	Result
Radiated Emission (0.009MHz to 1080MHZ)	FCC PART 15: 2008	FCC PART 15.209&15.239	Compliance
Conducted Emission (150KHz to 30MHz)	FCC PART 15: 2008	FCC PART 15.207	Not applicable
Bandwidth requirement	FCC PART 15: 2008	FCC PART 15.239a	Compliance
Band edge requirement	FCC PART 15: 2008	FCC PART 15.239a	Compliance
Antenna requirement	FCC PART15:2008	FCC PART 15.203	Compliance

Note: denote that for more details of the EUT, please refer to the relating test items as below.

Remark : the methods of measurement in all the test items were according to the ANSI C63.4: 2009. In this whole report, TX(or tx) means Transmitter

4 **General Information**

4.1 **Client Information**

Camelot SI. LLC Applicant:

Address of Applicant: 27725 Stansbury Blvd., Ste. 175, Farmington Hills,

Michigan,48334,USA

SAGE HUMAN ELECT INTL CO., LTD. Manufacturer:

Address: 3/F, Building NO. A15, Qinghu Industry Park, Silicon Valley

Power, Longhua Town, Bao'an District, Shenzhen, China

4.2 General Description of E.U.T.

FM Transmitter Product description:

Modulation: FM

88.1~107.9MHZ Frequency range: Maximum power: 48.98dBuV/m

Brand Name: Sharper Image Model No.: T11,201761-01

Model difference: The models have same schematic ,PCB layout and structure.

As a matter of fact, the models only an one product and for

different client.

4.3 **Details of E.U.T.**

Power Supply: DC12.0-24.0V

> Remark: the EUT was tested the two voltages of DC12.0V and DC24.0V, and the worse case was the DC24.0V, so the data

> > Ref. No.: WTS13S0705238E

show was the worse case only in the report.

4.4 **Description of Support Units**

iPod is a only support unit during test.

4.5 **Standards Applicable for Testing**

The customer requested FCC tests for a FM Transmitter. The standards used were FCC Part 15 Paragraph 15.239, Paragraph 15.209, Paragraph 15.203, Paragraph 15.33, Paragraph 15.35.

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, July 12, 2012.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All Emissions tests were performed at:-

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Bao'an District, Shenzhen 518105, Guangdong, China.

5 Equipment Used during Test

5.1 Equipments List

J.1 LC	uipilielits List					
Conduc	cted Emissions				-	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101178	Aug. 13,2012	Aug. 12,2013
2.	LISN	R&S	ENV216	101215	Aug. 13,2012	Aug. 12,2013
3.	Cable	HUBER+SUHNER	CBL2-NN-3M	2230300	Aug. 13,2012	Aug. 12,2013
3m Sen	ni-anechoic Chamber f	or Radiation Emissi	ons			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer	Agilent	E7405A	MY45114943	Aug. 13,2012	Aug. 12,2013
2.	Active Loop Antenna Beijing Dazhi		ZN30900A	-	Aug. 13,2012	Aug. 12,2013
3.	Trilog Broadband Antenna	SCHWARZBECK I		336	Aug. 13,2012	Aug. 12,2013
4.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Aug. 13,2012	Aug. 12,2013
5.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	399	Aug. 13,2012	Aug. 12,2013
6.	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-254	Aug. 13,2012	Aug. 12,2013
7.	Broadband Preamplifier SCHWARZBECK		BBV 9718	9718-148	Aug. 13,2012	Aug. 12,2013
8.	10m Coaxial Cable with N- plug	SCHWARZBECK	AK 9515 H	-	Aug. 13,2012	Aug. 12,2013
9.	10m 50 Ohm Coaxial Cable with N-plug	SCHWARZBECK	AK 9513	-	Aug. 13,2012	Aug. 12,2013
10.	Positioning Controller	C&C LAB	CC-C-IF	-	Aug. 13,2012	Aug. 12,2013

SP-14C

Aug. 13,2012 | Aug. 12,2013

Ref. No.: WTS13S0705238E

Color Monitor

11.

SUNSPO

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Temperature	±1 °C
DC Source	±0.05%
Radiated Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious	± 0.5 dB (9KHz~1000MHz)
Emissions test	± 1 dB(1000M~26500MHz)
Conducted Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

6 Radiation Emission Test

Product Name: FM Transmitter

Test Requirement: FCC Part15 Paragraph 15.209&15.239

Test Method: ANSI C63.4:2009

Frequency Range: 0.009MHZ to 1080MHZ

Measurement Distance: 3m

Detector: Peak for pre-scan (120kHz resolution bandwidth)

Quasi-Peak if maximised peak within 6dB of limit

6.1 Test Equipment

Please refer to Section 5 this report.

6.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase centre variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on ANSI C63.4: 2009, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is \pm 5.03dB.

6.3 Test Procedure

- 1. New battery were installed in the equipment under test for radiated emissions test.
- 2. This is a handhold device, The radiation emission should be tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 3. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.
- 4. All data was recorded in the peak and average detection mode for fundamental frequencies and Quasi-peak detection mode for other frequencies.
- 5. The EUT was under FM Transmit modulation with signals mode during the final qualification test and the configuration was used to represent the worst case results.

6.4 Radiated Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2009, The specification used in this report was the FCC Part15 Paragraph 15.239 and Paragraph 15.209 limits.

Below 30MHZ Test Setup

Above 30MHZ Test Setup

Above 1GHZ Test Setup

6.5 Test Result & Margin Calculation

The Test Result is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Factor - Amplifier Gain

Test Result = Indicated Reading + Correct Factor

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit . The equation for margin calculation is as follows:

6.6 Radiated Emissions Limit

At Frequency Range of 9kHz-1000MHz,20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class A (dBu	ıV/m) (at 3m)	Class B (dBuV/m) (at 3m)		
FREQUENCT (MITZ)	PEAK	AVERAGE	PEAK	AVERAGE	
Above 1000	80	60	74	54	

Note: Emission level (dBuV/m)=20log Emission level (uV/m).

Test Frequency: Below 30MHz

Rmark: the test frequency below 30MHz was lower 20dB than the limit, So the data was not

Ref. No.: WTS13S0705238E

showing in the report.

6.7 Radiated Emissions Test Result

1.Fundamental emission

Peak Detector

Test Frequency	Peak(dBuV/m)		Limits	Margin(c	dB)
	Vertical	Horizontal	dBuV/m	Vertical	Horizontal
88.1	35.52	44.83	68	-32.48	-23.17
98.1	45.58	48.4	68	-22.42	-19.6
107.9	45.64	48.98	68	-22.36	-19.02

Average Detector

Test Frequency	Peak(dBuV/m)		Limits	Margin(o	dB)
	Vertical	Horizontal	dBuV/m	Vertical	Horizontal
88.1	26.49	41.86	48	-21.51	-6.41
98.1	39.17	43.82	48	-8.83	-4.18
107.9	43.17	44.29	48	-4.83	-3.71

2. Harmonics & Spurious Emissions

Frequency (MHZ)	Detector	Antenna Polarity	Result dBuV/m	Limit dBuV/m	Margin (dB)	Antenna Hight(m)	Turntable Angle (°)			
Lowest Char	Lowest Channel:88.1MHZ									
176.2	QP	Vertical	32.87	43.5	-10.63	1.1	120			
264.3	QP	Vertical	25.99	46	-20.01	1.2	110			
352.4	QP	Vertical	23.15	46	-22.85	1.2	45			
440.5	QP	Vertical	20.18	46	-25.82	1	60			
528.6	QP	Vertical	17.34	46	-28.66	1.1	90			
616.7	QP	Vertical	16.19	46	-29.81	1.1	75			
704.8	QP	Vertical	13.27	46	-32.73	1.3	120			
792.9	QP	Vertical	10.58	46	-35.42	1.1	110			
881	QP	Vertical	10.06	46	-35.94	1	78			
176.2	QP	Horizontal	36.41	43.5	-7.09	1.2	60			
264.3	QP	Horizontal	27.62	46	-18.38	1.5	45			
352.4	QP	Horizontal	22.08	46	-23.92	1.2	110			
440.5	QP	Horizontal	21.56	46	-24.44	1.1	85			

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

528.6 QP Horizontal	18.16	16	27.04		
		46	-27.84	1.2	110
616.7 QP Horizontal	15.48	46	-30.52	1.2	220
704.8 QP Horizontal	15.24	46	-30.76	1.3	110
792.9 QP Horizontal	11.29	46	-34.71	1.2	90
881 QP Horizontal	10.13	46	-35.87	1.2	65
Middle Channel:98.1MHZ					
196.2 QP Vertical	33.14	43.5	-10.36	1.1	46.2
294.3 QP Vertical	26.02	46	-19.98	1.2	75
392.4 QP Vertical	22.19	46	-23.81	1.1	101
490.5 QP Vertical	18.64	46	-27.36	1.1	133
588.6 QP Vertical	15.20	46	-30.8	1.2	124
686.7 QP Vertical	13.24	46	-32.76	1.1	75
784.8 QP Vertical	11.58	46	-34.42	1.2	45
882.9 QP Vertical	10.38	46	-35.62	1.1	72
981 QP Vertical	10.13	46	-35.87	1.1	120
196.2 QP Horizontal	37.21	43.5	-6.29	1.3	133
294.3 QP Horizontal	27.48	46	-18.52	1.5	65
392.4 QP Horizontal	23.28	46	-22.72	1.2	42
490.5 QP Horizontal	19.05	46	-26.95	1.5	43
588.6 QP Horizontal	16.57	46	-29.43	1.35	105
686.7 QP Horizontal	13.34	46	-32.66	1.2	120
784.8 QP Horizontal	12.35	46	-33.65	1.2	130
882.9 QP Horizontal	11.42	46	-34.58	1.2	45
981 QP Horizontal	10.24	46	-35.76	1.3	46
Highest Channel:107.9MHZ					
215.8 QP Vertical	34.21	43.5	-9.29	1.1	132
323.7 QP Vertical	28.44	46	-17.56	1.2	45
431.6 QP Vertical	21.16	46	-24.84	1.2	110
539.5 QP Vertical	16.26	46	-29.74	1.1	46
647.4 QP Vertical	12.01	46	-33.99	1.1	65
755.3 QP Vertical	11.24	46	-34.76	1.3	72
863.2 QP Vertical	10.97	46	-35.03	1.1	42

971.1	QP	Vertical	10.26	46	-35.74	1.2	43
1079	PK	Vertical	20.35	74	-53.65	1.3	133
1079	AV	Vertical	9.58	54	-44.42	1.1	90
215.8	QP	Horizontal	37.29	43.5	-6.21	1.4	120
323.7	QP	Horizontal	27.71	46	-18.29	1.2	44
431.6	QP	Horizontal	25.23	46	-20.77	1.5	70
539.5	QP	Horizontal	20.33	46	-25.67	1.3	50
647.4	QP	Horizontal	18.41	46	-27.59	1.5	70
755.3	QP	Horizontal	16.09	46	-29.91	1.3	75
863.2	QP	Horizontal	15.47	46	-30.53	1.4	45
971.1	QP	Horizontal	11.68	46	-34.32	1.3	45
1079	PK	Horizontal	22.79	74	-51.21	1.3	150
1079	AV	Horizontal	10.21	54	-43.79	1.4	110

6.8 Radiated Emissions Test Setup View

Frequency Band: Below 30MHz.

Frequency Band: 30MHz to 1GHz.

Frequency Band: Above 1GHz.

7 Bandwidth Test

Test Requirement: FCC Part15 C

Test Method: ANSI C63.4:2009

Receiver setup: RBW10KHZ,VBW10KHZ,Span500KHZ,Sweep time 300ms

Limit: 200kHZ

7.1 Test Setup

Same as 6.4

7.2 Method of Measurement

a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

7.3 Test Results

Channel Frequency	20dB bandwidth	Limit
(MHZ)	(KHZ)	(KHZ)
88.1	195	200
98.1	145	200
107.9	155	200

88.1MHZ Test plot

98.1MHZ Test plot

107.9MHZ Test plot

8 Band Edge Test

8.1 Test Limit

Please see the Part15.239a

8.2 Test Setup

Same as 6.4

8.3 Method of measurement

- a) Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- b) Turning to Low and High frequency, then reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.
- c) Check the spurious emissions out of band.
- d) RBW, VBW Setting, please see the following test plot.

8.4 Test Results

Compliance

For more details, please see the following page.

88.1MHZ Test plot

107.9MHZ Test plot

Page 21 of 26

9 Antenna Requirement

9.1 Standard requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2 Result

The device is integral antenna, it's comply with the standard requirement.

10 Photographs - Constructional Details

10.1 EUT-Full View

10.2 EUT-Side View

10.3 EUT-Back View

10.4 EUT-Side View

10.5 EUT –Open View

10.6 PCB-Top View

10.7 PCB-Bottom View

Ant. Loaction

Ref. No.: WTS13S0705238E

-----End of Report-----