Septième partie VII

Agents logiques

En bref ...

۸ .	C 1/		1		
4 gents	tondes	sur o	165	connaissance	25

Principes généraux de la logique

Logique propositionnelle

Raisonnement et preuve en logique propositionnelle

Plan

- 1. Introduction à l'intelligence artificielle
- 2. Agents intelligents
- 3. Algorithmes classiques de recherche en IA
- 4. Algorithmes et recherches heuristiques
- 5. Programmation des jeux de réflexion
- 6. Problèmes de satisfaction de contraintes
- 7. Agents logiques
- 8. Logique du premier ordre
- 9. Inférence en logique du première ordre
- 10. Introduction à la programmation logique avec Prolog
- 11. Planification
- 12. Apprentissage

Motivations

- Agents fondés sur des connaissances
 - Représentation des connaissances
 - Processus de raisonnement
- Tirer parti de connaissances grâce à une capacité à combiner et recombiner des informations pour les adapter à une multitude de fins. Par exemple :
 - Mathématicien démontre un théorème
 - Astronome calcule la durée de vie de la Terre
- Environnements partiellement observables : combiner connaissances générales et percepts reçus pour inférer des aspects cachés de l'état courant
 - Médecin ausculte un patient
 - Compréhension du langage naturel :
 - "John a vu le diamant à travers le carreau et l'a convoité"
 - "John a lancé un caillou à travers le carreau et l'a cassé"
 - Connaissances de sens commun

Agents fondés sur des connaissances

Agent fondé sur des connaissances

- Un agent fondé sur des connaissances doit être capable de :
 - 1. Représenter les états, les actions
 - 2. Incorporer de nouvelles perceptions
 - 3. Mettre à jour sa représentation interne du monde
 - 4. Déduire les propriétés cachées du monde
 - 5. Déduire les actions appropriées

Base de connaissances

- Base de connaissances : ensemble d'énoncés exprimés dans un langage formel
- Les agents logiques peuvent être vus au :
 - niveau des connaissances : ce qu'ils savent, quelle que soit l'implémentation
 - niveau des implémentations : structures de données dans la base de connaissances, et les algorithmes qui les manipulent
- Approche déclarative pour construire la base de connaissances
 - Tell : ce qu'ils doivent savoir
 - Ask: demander ce qu'ils doivent faire. La réponse doit résulter de base de connaissances

Agent fondé sur des connaissances

Algorithme

```
funtion KB-AGENT (percept) return an action

KB, a knowledge base
static:
    t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence (percept, t))
action \leftarrow Ask(KB, Make-Action-Query (t))

Tell(KB, Make-Action-Sentence (action, t))
t \leftarrow t + 1
return action
```

Exemple : le monde du Wumpus

• Mesures de performance :

- or : +1000; mort : -1000;
- action : -1; utiliser la flèche : -10

Environnement

- Agent commence en case [1,1]
- Les cases adjacentes au Wumpus sentent mauvais
- Brise dans les cases adjacentes aux puits
- Lueur dans la cases contenant de l'or
- Tirer tue le Wumpus s'il est en face
- On ne peut tirer qu'une fois
- S'il est tué, le Wumpus crie
- Choc si l'agent se heurte à un mur
- Saisir l'or si même case que l'agent
- Capteurs : odeur, ouïe, touché
- Actions : tourne gauche, tourne droite, avance, attrappe, tire

3

Exemple : le monde du Wumpus

PIT

Exemple : le monde du Wumpus

• Totalement observable : Non. Perception locale uniquement

• Déterministe : Oui

• Épisodique : Non. Séquentiel au niveau des actions

• Statique : Oui. Le Wumpus et les puits ne bougent pas

• Discret : Oui

• Mono-agent : Oui. Le Wumpus est une caractéristique de la nature

Principes généraux de la logique

Principes généraux de la logique

- Logique : langage formel permettant de représenter des informations à partir desquelles on peut tirer des conclusions
- La syntaxe désigne les phrases (ou énoncés) bien formées dans le langage
- La sémantique désigne la signification, le sens de ces phrases
- Par exemple, dans le langage arithmétique :
 - x + y = 4 est une phrase syntaxiquement correcte
 - x4y+= n'en est pas une
 - 2+3 = 4 est une phrase syntaxiquement correcte mais sémantiquement incorrrecte
 - x + y = 4 est vraie ssi x et y sont des nombres et que leur somme fait 4
 - x + y = 4 est vraie dans un monde où x = 1 et y = 3
 - x + y = 4 est fausse dans un monde où x = 2 et y = 1

Les modèles

- Les logiciens pensent en terme de modèles, qui sont des mondes structurés dans lesquels la vérité ou la fausseté de chaque énoncé peut être évaluée
- m est un modèle de l'énoncé α si α est vraie dans m
- $M(\alpha)$ est l'ensemble de tous les modèles de α
- $BC \models \alpha$ si et seulement si $M(BC) \subseteq M(\alpha)$

Relation de conséquences

 Relation de conséquence : un énoncé découle logiquement d'un autre énoncé

$$\alpha \models \beta$$

- $\alpha \models \beta$ est vraie si et seulement si β est vraie dans tous mondes où α est vraie
 - Si α est vraie, β doit être vraie
 - Par exemple : $(x + y = 4) \models (x + y \le 4)$
- Bases de connaissances = ensemble d'énoncés. Une BC a un énoncé pour conséquence : $BC \models \alpha$
- La relation de conséquences est une relation entre des énoncés (la syntaxe) basée sur la sémantique

Relation de conséquence dans le mondes du Wumpus

- ullet Situation après n'avoir rien détecté en [1,1]
 - Tourner à droite
 - Brise en [2,1]
- Considérons les modèles possible pour les cases? en ne considérant que les puits
 - 3 choix booléens ⇒ 2³ = 8 modèles possibles

Modèles du monde du Wumpus

- BC = règles du monde Wumpus + observations
- $\alpha_2 =$ "[2,2] est sans puits"
- $BC \not\models \alpha_2$, prouvé par vérification des modèles (model checking)

Logique propositionnelle

Inférence logique

- $BC \vdash_i \alpha$: l'énoncé α est dérivé de BC par la procédure i
- Validité (soundness) : i est valide si, lorsque $BC \vdash_i \alpha$ est vrai, alors $BC \models \alpha$ est également vrai
- Complétude (completness) : i est complète si lorsque $BC \models \alpha$ est vrai alors $BC \vdash_i \alpha$ est également vrai
- Une procédure valide et complète permet de répondre à toute question dont la réponse peut être déduite de la base de connaissances

Logique propositionnelle

- Logique propositionnelle = logique très simple
- Un énoncé est un énoncé atomique ou un énoncé complexe
- Un symbole propositionnel est une proposition qui peut être vraie ou fausse P, Q, R, \dots
- Enoncés atomiques : un seul symbole propositionnel, *vrai* ou *faux*.
 - Appelé aussi un littéral
- Enoncés complexes :
 - Si E est un énoncé, $\neg E$ est un énoncé (négation)
 - Si E_1 et E_2 sont des énoncés, $E_1 \wedge E_2$ est un énoncé (conjonction)
 - Si E_1 et E_2 sont des énoncés, $E_1 \vee E_2$ est un énoncé (disjonction)
 - Si E_1 et E_2 sont des énoncés, $E_1 \Rightarrow E_2$ est un énoncé (implication)
 - Si E_1 et E_2 sont des énoncés, $E_1 \Leftrightarrow E_2$ est un énoncé (équivalence)

Logique propositionnelle

- Un modèle : une valeur de vérité (*vrai* ou *faux*) pour chaque symbole propositionnel
 - Soit 3 symboles propositionnels P_1 , P_2 et P_3 tels que
 - $m = \{P_1 = vrai, P_2 = vrai, P_3 = faux\}$
- n symboles propositionnels = 2^n modèles possibles
- Règles pour évaluer un énoncé en fonction d'un modèle m
 - ¬E est vrai ssi E est faux
 - $E_1 \wedge E_2$ est vrai ssi E_1 est vrai et E_2 est vrai
 - $E_1 \lor E_2$ est vrai ssi E_1 est vrai ou E_2 est vrai
 - ullet $E_1 \Rightarrow E_2$ est \emph{vrai} ssi E_1 est \emph{faux} ou E_2 est \emph{vrai}
 - $E_1 \Rightarrow E_2$ est faux ssi E_1 est vrai et E_2 est faux
 - $E_1 \Leftrightarrow E_2$ est vrai ssi $E_1 \Rightarrow E_2$ est vrai et $E_2 \Rightarrow E_1$ est vrai
- L'évaluation d'un énoncé peut être réalisée par un simple processus récursif, e.g.,

$$\neg P_1 \land (P_2 \lor P_3) = vrai \land (faux \lor vrai) = vrai \land vrai = vrai$$

Base de connaissances du monde du Wumpus

- $P_{i,j}$ vrai s'il y a un puits en [i,j]
- $B_{i,j}$ vrai s'il y a une brise en [i,j]
- Base de connaissances :
 - $R_1 : \neg P_{1,1}$
 - Brise ssi puits dans une case adjacente :
 - $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
 - $R_4 : \neg B_{1,1}$
 - $R_5: B_{2,1}$
- $BC: R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$

Table de vérité des connecteurs logiques

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
faux	faux	vrai	faux	faux	vrai	vrai
faux	vrai	vrai	faux	vrai	vrai	faux
vrai	faux	faux	faux	vrai	faux	faux
vrai	vrai	faux	vrai	vrai	vrai	vrai

Base de connaissances du monde du Wumpus

• 7 symboles propositionnels : $2^7 = 128$ modèles possibles

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	P _{1,2}	$P_{2,1}$	$P_{2,2}$	P _{3,1}	R_1	R ₂	R ₃	R ₄	R ₅	ВС
faux	faux	faux	faux	faux	faux	faux	vrai	vrai	vrai	vrai	faux	faux
faux	faux	faux	faux	faux	faux	vrai	vrai	vrai	faux	vrai	faux	faux
:	:	i	:	:	:	:	:	:	:	:	:	:
faux	vrai	faux	faux	faux	faux	faux	vrai	vrai	faux	vrai	vrai	faux
faux	vrai	faux	faux	faux	faux	vrai	vrai	vrai	vrai	vrai	vrai	vrai
faux	vrai	faux	faux	faux	vrai	faux	vrai	vrai	vrai	vrai	vrai	vrai
faux	vrai	faux	faux	faux	vrai	vrai	vrai	vrai	vrai	vrai	vrai	vrai
faux	vrai	faux	faux	vrai	faux	faux	vrai	faux	faux	vrai	vrai	false
:	:	:	:	:	:	:	:	:	:	:	:	÷
vrai	vrai	vrai	vrai	vrai	vrai	vrai	faux	vrai	vrai	faux	vrai	faux

Inférence par énumération

```
Algorithme

funtion TT-ENTAIL? (KB, \alpha) return an true or false

KB, a knowledge base, a sentence in propositional logic

\alpha, the query, a sentence in propositional logic

symbols \leftarrow a list of propositions symbols in KB and \alpha

return TT-CHECK-ALL(KB, \alpha, symbols, (B))

funtion TT-CHECK-ALL(KB, (B), and symbols, model) return an true or false

if EMPTY? ((B)) if EMPTY? ((B)) if PL-TRUE? ((B)) if P
```

Équivalence logique

• Deux énoncés sont logiquement équivalents si et seulement si ils sont vrais dans les modèles :

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

```
\begin{array}{rcl} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) \ \text{commutativit\'e de } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) \ \text{commutativit\'e de } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) \ \text{associativit\'e de } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) \ \text{associativit\'e de } \vee \\ \neg(\neg \alpha) & \equiv & \alpha \ \text{élimination de la double-negation} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \beta \Rightarrow \neg \alpha) \ \text{contraposition} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \alpha \vee \beta) \ \text{élimination de l'implication} \\ (\alpha \equiv \beta) & \equiv & ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \ \text{élimination de l'équivalence} \\ \neg(\alpha \wedge \beta) & \equiv & (\neg \alpha \vee \neg \beta) \ \text{De Morgan} \\ \neg(\alpha \vee \beta) & \equiv & (\neg \alpha \wedge \neg \beta) \ \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) & \equiv & ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \ \text{distributivit\'e de } \wedge \ \text{par rapport \`a} \wedge \\ (\alpha \vee (\beta \wedge \gamma)) & \equiv & ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \ \text{distributivit\'e de } \vee \ \text{par rapport \`a} \wedge \\ \end{array}
```

Inférence par énumération

- L'énumération en profondeur d'abord est valide et complète
- Pour *n* symboles, la complexité
 - en temps est de $O(2^n)$
 - en mémoire est de O(n)

Validité et satisfiabilité

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : vrai; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$
- Théorème de la déduction :

$$BC \models \alpha$$
 si et seulement si $(BC \Rightarrow \alpha)$ est valide

- Un énoncé est satisfiable s'il est vrai dans certains modèles
 - Exemples : A ∨ B : C
- Un énoncé est insatisfiable s'il n'est vrai dans aucun modèle
 - Exemple : $A \land \neg A$
- Satisfiabilité :

$$BC \models \alpha$$
 si et seulement si $(BC \land \neg \alpha)$ est insatisfiable

Raisonnement et preuve

Exemple de preuve

- Problème :
 - Soit la base de connaissances suivantes :
 - R₁ : ¬P_{1,1};
 - $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
 - R₄ : ¬B_{1,1}
 - R₅ : B_{2,1}
 - On veut prouver $\neg P_{1,2}$ (pas de puits en [1,2])
- Solution
 - 1. Élimination de l'équivalence à R_2 :

$$R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

- 2. Élimination de la conjonction à $R_6: R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$
- 3. Équivalence logique des contraposées : $R_8 : \neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1})$
- 4. Modus Ponens avec R_8 et $R_4: R_9: \neg (P_{1,2} \vee P_{2,1})$
- 5. Règle de De Morgan : $R_{10} : \neg P_{1,2} \land \neg P_{2,1}$

Méthode de preuve

- Les méthodes de preuves sont de deux principaux types :
 - 1. Application des règles d'inférence
 - Génération légitime (valide) de nouveaux énoncés à partir de ceux que l'on a déjà
 - Preuve : séquence d'applications des règles d'inférence
 - Nécessite la transformation des énoncés en forme normale
 - 2. Vérification des modèles (Model checking)
 - Enumération de la table de vérité (toujours exponentiel en n)
 - Amélioré par backtracking (Davis-Putnam-Logemann-Loveland (DPLL))
 - Recherche heuristique dans l'espace d'état (valide mais incomplet)

Résolution par chaînage avant et arrière

- L'inférence peut être réalisée en utilisant une recherche en chaînage avant ou arrière
- Ces algorithmes sont très naturels et s'exécutent en temps linéaire
- Pour fonctionner, ils ont besoins que la base de connaissances soit structurée en conjonction de clauses de Horn
 - Une close clause de Horn =
 - une proprosition ou
 - (une conjonction de proposition) ⇒ proposition
 - Par exemple :
 - $A \wedge B \Rightarrow C \text{ ou } A$
- L'inférence s'appuie sur le modus ponens

$$\frac{\alpha \wedge \beta \Rightarrow \beta}{\beta}$$

Elle consiste à affirmer une implication (si α alors β) et à poser ensuite l'antécédent (or α) pour en déduire le conséquent (donc β)

Résolution par chaînage avant

- Idée : Choisi n'importe quelle règle dont les prémisses sont satisfaites dans la base de connaissances et ajouter sa conclusion à la base de connaissance, jusqu'a ce que la propriété à vérifier soit trouvée
- Soit la base de connaissances suivantes :
 - $P \Rightarrow Q$
 - $L \wedge M \Rightarrow P$
 - $B \wedge P \Rightarrow M$
 - $\bullet \ A \wedge P \Rightarrow L$
 - $A \wedge B \Rightarrow L$
 - A
 - B

Exemple: Chaînage avant

Algorithme d'inférence en chaînage avant

```
Algorithme
funtion PL-FC-ENTAILS?(KB, q) return a true of false
                    KB, a knowledge base, a set of propositional Horn clauses
    input
                   q, the query, a proposition symbol
                   count, a table, indexed by clause, initially the number of premises
    local variables:
                   inferred, a table, indexed by symbol, each entry initially false
                   agenda, a list of symbols, initially the symbols known to be true in KB
    while agenda is not empty do
         p \leftarrow Pop(agenda)
         if p = q then return true
        if inferred[p] = false then
             inferred[p] \leftarrow true
             foreach Horn clause c in whose premise p appears do
                  decrement count[c]
                  if count[c] = 0 then
                      Push(Head[c], agenda)
    return false
```

Chaînage avant

- La procédure de chaînage avant permet d'obtenir tout énoncé atomique pouvant être déduit de *BC*
 - 1. L'algorithme atteint un point fixe au terme duquel aucune nouvelle inférence n'est possible
 - 2. L'état final peut être vu comme un modèle m dans lequel tout symbole inféré est mis à vrai, tous les autres à faux
 - 3. Toutes les clauses définies dans la BC origninellement sont vraies dans m
 - 4. Donc m est un modèle de BC
 - 5. Si $BC \models q$ est vrai, q est vrai dans tous les modèles de BC, donc dans m

Chaînage arrière

- Idée : Partir de la requête q et rebrousser chemin
 - 1. Vérifier si q n'est pas vérifiée dans BC
 - 2. Chercher dans BC les implications ayant q pour conclusion, et essayer de prouver leurs prémisses
- Éviter les boucles :
 - vérifier si le nouveau sous-but n'est pas déjà dans la liste des buts à établir
- Éviter de répéter le même travail :
 - vérifier si le nouveau sous-but a déjà été prouvé vrai ou faux

Chaînage avant versus chaînage arrière

- Chaînage avant : raisonnement piloté par les données
 - Conclusions à partir de perceptions entrants
 - Pas toujours de requête spécifique en tête
 - Beaucoup de conséquences déduites, toutes ne sont pas utiles ou nécessaires
- Chaînage arrière : raisonnement piloté par le but
 - Répondre à des questions spécifiques
 - Se limite aux seuls faits pertinents
 - La complexité du chaînage arrière peut être bien inférieure à une fonction linéaire à la taille de la base de connaissances

Exemple: Chaînage arrière

Forme Normal Conjontive

• La transformation d'un énoncé en CNF s'effectue en 4 étapes :

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

1. Élimination de \Leftrightarrow : remplacement de $\alpha \Leftrightarrow \beta$ par $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2. Élimination de \Rightarrow : remplacement de $\alpha \Rightarrow \beta$ par $\neg \alpha \lor \beta$

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \land B_{1,1})$$

3. Déplacer ¬ "à l'intérieur" en utilisant les règles de Morgan et la double négation

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \lor \neg P_{2,1}) \lor B_{1,1})$$

4. Appliquer la loi de distributivité sur ∧ et ∨

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Conclusion

- Les agents logiques appliquent l'inférence sur une base de connaissances pour déduire de nouvelles informations et prendre une décision
- Concepts basiques de la logique
 - Syntaxe : structure formelle des énoncés
 - Sémantique : vérité de chaque énoncé dans un modèle
 - Conséquence : vérité nécessaire d'un énoncé par rapport à un autre
 - Inférence : dérivation de nouveaux énoncés à partir d'anciens
 - Validité : l'inférence ne dérive que des énoncés qui sont des conséquences
 - Complétude : l'inférence dérive tous les énoncés qui sont des conséquences
- La résolution est complète pour la logique propositionnelle
- Les chaînages avant et arrière sont linéaire en temps, et complets pour les clauses de Horn
- La logique propositionnelle manque de pouvoir d'expression