A4-Assignment-CH3.2

John Akujobi - Math 374

1. Verify that when Newton's method is used to compute \sqrt{R} (by solving the equation $x^2=R$), the sequence of iterates is defined by

$$x_{n+1} = rac{1}{2} \left(x_n + rac{R}{x_n}
ight)$$

I want to solve $X^2 - R = 0$

• First, for Newton's method we set

•
$$f(x) = x^2 - R$$
, $f'(x) = 2x$

• Iterating the formula

$$egin{array}{l} -X_{n+1} &= x_n - rac{f(x_n)}{f'(x_n)} \ - &= x_n - rac{x_n^2 - R}{2x_n} \ - &= rac{2x_n^2 - (x_n^2 - R)}{2x_n} \ - &= rac{x_n^2 + R}{2x_n} \ - &= rac{1}{2} \Big(x_n + rac{R}{x_n} \Big) \end{array}$$

✓ Success

Our formula is gonna be

$$x_{n+1}=rac{1}{2}igg(x_n+rac{R}{x_n}igg)$$

2. (Continuation) Show that if the sequence \boldsymbol{x}_n is defined as in the preceding exercise, then

$$x_{n+1}^2 - R = rac{x_n^2 - R}{2x_n}$$

• Using the iteration formula:

$$ullet X_{n+1} = rac{1}{2} \Big(x_n + rac{R}{x_n} \Big)$$

Square both sides:-

$$ullet X_{n+1}^2 = rac{1}{4} \Big(x_n^2 + 2R + rac{R^2}{x_n^2} \Big)$$

Subtract (R)

$$ullet X_{n+1}^2 - R = rac{1}{4} \Big(x_n^2 - 2R + rac{R^2}{x_n^2} \Big)$$

$$\bullet = \frac{(x_n^2 - R)^2}{4x_n^2}$$

13. Each of the following functions has $\sqrt[3]{R}$ as a zero for any positive real number R. Determine the formulas for Newton's method for each and any necessary restrictions on the choice for x_0 .

b.
$$b(x) = 1/x^3 - 1/R$$

• Find the derivative:

•
$$b'(x) = -\frac{3}{x^4}$$

• Apply Newton's method:

$$ullet x_{n+1} = x_n - rac{b(x_n)}{b'(x_n)}$$

$$ullet = x_n - rac{rac{1}{x_n^3} - rac{1}{R}}{-rac{3}{x_n^4}}$$

$$ullet = x_n + rac{x_n^4}{3} \Big(rac{1}{x_n^3} - rac{1}{R}\Big).$$

$$ullet = x_n + rac{x_n}{3} \Big(1 - rac{x_n^3}{R}\Big).$$

$$\bullet = x_n + \frac{x_n}{3} - \frac{x_n^4}{3R}).$$

Simplified to

$$oldsymbol{ar{\gamma}} - = x_n \cdot rac{4R - x_n^3}{3R}$$

✓ Success

$$x_{n+1} = x_n \cdot \frac{4R - x_n^3}{3R}$$

• Restriction: Since the derivative $b'(x) = -3/x^4$ is undefined at x=0, we must choose an initial guess $x_0 \neq 0$. To converge to the positive cube root, choose $x_0 > 0$.

d.
$$d(x) = x - R/x^2$$

• First, for Newton's method, we need the derivative

•
$$d'(x) = 1 + 2R/x^3$$

• Using the formula

$$egin{array}{l} -x_{n+1} &= x_n - rac{d(x_n)}{d'(x_n)} \ - &= x_n - rac{x_n - R/x_n^2}{1 + 2R/x_n^3} \ - &= x_n - rac{x_n^3 - R/x_n^2 \cdot x_n^3}{x_n^3 + 2R} \ - &= x_n - rac{x_n^4 - R}{x_n^3 + 2R} = x_n - rac{x_n(x_n^3 - R)}{x_n^3 + 2R} \ - &= rac{x_n(x_n^3 + 2R) - x_n(x_n^3 - R)}{x_n^3 + 2R} = rac{x_n(x_n^3 + 2R + R - x_n^3)}{x_n^3 + 2R} \ - &= rac{x_n(3R)}{x_n^3 + 2R} \ - &= rac{3Rx_n}{x_n^3 + 2R} \ - &= rac{3Rx_n}{x_n^3 + 2R} \end{array}$$

✓ Success

Our formula is $X_{n+1} = rac{3Rx_n}{x_n^3 + 2R}$

Restrictions: $(x_0 > 0)$.

14. Determine the formulas for Newton's method for finding a root of the function $f(x) = x - e^{x/l}$. What is the behavior of the iterates?

First, get the derivative

•
$$f'(x) = 1 - \frac{1}{l}e^{x/l}$$

• The Newton's iteration:

$$egin{array}{l} -x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)} \ -= x_n - rac{x_n - e^{x_n/l}}{1 - rac{1}{l}e^{x_n/l}} \end{array}$$

✓ Success

So, our formula is $x_{n+1} = x_n - \frac{x_n - e^{x_n/l}}{1 - \frac{1}{l}e^{x_n/l}}$.

- Behavior of the Iterates:
 - For (I > e), two roots exist.
 - Convergence depends on (x_0) . For $(l \leq e)$, iterates might diverge

18. Determine Newton's iteration formula for computing the cube root of N/M for nonzero integers N and M.

To compute the cube root of NM\frac{N}{M} (with NN and MM nonzero integers), we solve

$$f(x)=x^3-rac{N}{M}=0$$
,

So that

$$f'(x) = 3x^2$$

Newton's iteration is:

$$ullet X_{n+1}=x_n-rac{x_n^3-rac{N}{M}}{3x_n^2}$$

$$ullet = rac{3x_n^3 - (x_n^3 - rac{N}{M})}{3x_n^2}$$

$$ullet = rac{2x_n^3 + rac{N}{M}}{3x_n^2}$$

• Rearranged this to be $\frac{2}{3} x_n + \frac{N}{3M x_n^2}$.

$$x_{n+1} = rac{2}{3} \, x_n + rac{N}{3 M \, x_n^2}$$

25. Newton's method for finding \sqrt{R} is $x_{n+1}=\frac{1}{2}\left(x_n+\frac{R}{x_n}\right)$. Perform three iterations of this scheme for computing $\sqrt{2}$, starting with $x_0=1$, and of the bisection method for $\sqrt{2}$, starting with interval [1,2]. How many iterations are needed for each method in order to obtain 10^{-6} accuracy?

Newton's Method

Starting with $x_0 = 1$.

• First iteration;

•
$$X_1 = \frac{1}{2} \left(1 + \frac{2}{1} \right)$$

•
$$=\frac{1}{2}(3)$$

• Iteration 2:

•
$$X_2 = \frac{1}{2} \left(1.5 + \frac{2}{1.5} \right)$$

$$\bullet = \frac{1}{2} \Big(1.5 + 1.33333 \Big)$$

•
$$\approx \frac{2.83333}{2}$$

• Iteration 3:

•
$$X_3 = \frac{1}{2} \left(1.41667 + \frac{2}{1.41667} \right)$$
.

• Since
$$\frac{2}{1.41667} \approx 1.41176$$
,

$$ullet$$
 then $X_3 pprox rac{1.41667 + 1.41176}{2}$

- = 1.414215\$.
- Iteration 4:

This one will produce an answer accurate to better than 10^{-6} . The error will be on the

order of 10^{-9} . A lot better that what i need.

✓ Success

So, we need about of Newton's method to guarantee an accuracy of 10^{-6} .

Bisection Method

Interval ([1, 2]), each iteration halves the error.

The bisection method for $\sqrt{2}$ starts with the interval [1,2][1, 2]. At each step the error (half the interval length) is reduced by a factor of 2. So, ill use logarithms,

- $N > \log_2(10^6)$
- $\approx 6 \log_2(10)$
- $\approx 6(3.32193)$
- ≈ 19.93

✓ Success

So, we need at least 20 iterations to get an accuracy of 10^{-6} .