Modern Fizika Labor

Fizika BSC

A mérés dátuma:	A mérés száma és címe:	Értékelés:
2009-02-23	13: molekulamodellezés	
A beadás dátuma:	A mérést végezte: Meszéna Balázs, Tüzes Dániel	

Bevezető

A feladat különböző megvalósuló molekulák paramétereinek vizsgálata. Ilyen például, hogy milyen spin mellett mekkora az energiája, milyen rezgési módusai lehetségesek az adott molekulának, milyenek a kötésszögek...stb. Habár a Schrödinger egyenlet ezeket mind leírja, alkalmazása már az egyszerűbb atomoknál (nem hogy a többatomos molekuláknál) nehézséget okoz. Ezért, hogy jelenlegi számítási kapacitásunk mellett elfogadható időn belül megkapjuk a kérdéses értékeket, olykor súlyos közelítésekbe kell bocsátkoznunk.

A méréshez a PC Spartan PLUS programot használtuk, mely képes különböző módszerekkel vizsgálni az egyes molekulákat, különböző eljárásokkal, közelítésekkel kiszámítani a keresett értékeket. A program lehetőséget ad a legszámításigényesebb ab-initio, a kevésbé számításigényes szemi-klasszikus közelítéses illetve a klasszikus módszer használatára. Míg első esetben a hibát a számítási algoritmusok közelítéses számolása adja, utóbbinál a leegyszerűsített modell hozza magával a "mért" paraméterek hibáit. Utóbbinak viszont előnye, hogy a modell egyszerűségéből adódóan olyan egyenletekhez jutunk, melyeket kevés gépidővel is elfogadható pontossággal számolhatunk ki. Köztes megoldás a szemi-klasszikus közelítés, melynél a Scrödinger-egyenlet megoldása során bizonyos egyenleteket olyan formára hozzunk, melyek értékei jellemzőek, jól meghatározhatók 1-1 rendszerre. Ezen értékéket valóságosan kimérjük, s visszahelyettesítjük az egyenletbe, annak megoldása helyett.

A program használata

Egy adott molekula szimulációjához először meg kellett határozni a magok helyét és hogy milyen kötést alakítottak ki a többi atommal. Egy adott magkonfigurációhoz hozzárendeljük az elektronok hullámfüggvényét, és így vizsgáljuk a rendszer összpotenciálját. Az optimális magkonfigurációt nevezzük geometriai optimálásnak. Ez a potenciális energia (mint a magok helyzetének függvénye) minimumának megkeresésével történik. Ezután kiszámoljuk az ehhez tartozó elektronikus hullámfüggvényt, ezekből pedig a magokra ható erőket, és ha azok kicsik, akkor ez lesz a stabil helyzet. Ha nem kicsik, akkor a potenciál deriváltjaiból kiszámoljuk, hogyan kell arrébb tolni a konfigurációt, hogy az kikompenzálja ezt az erőt. Ezután ismét kiszámoljuk a hullámfüggvényt, és megint megvizsgáljuk az erőket, mindaddig, amíg azok elég kicsik nem lesznek. Az erő meghatározáséra a Hellmann-Feynman tételt használhatjuk.

A program az elektronok hullámfüggvényének meghatározása során él a független-részecske közelítéssel, így a hullámfüggvényt egyelektron hullámfüggvényekből kombinálja ki (a szorzatalak azonban nem jó a Pauli elv miatt). Természetesen nem az általánosan használható síkhullám-függvények szerint fejti ki azt, hanem egy, a problémára jól illeszkedő bázissal. Ekkor a differenciálegyenlet megoldása helyett egy mátrixproblémát kapunk, amikor a Hamilton operátort diagonalizálni akarjuk, amit pedig a számítógép sokkal könnyebben tud kezelni. Véges számolókapacitás lévén csak véges sok báziselemet vehetünk figyelembe. Szerencsére ügyes bázis választással csak kevés elemet kell felhasználni, így hamar pontos eredményre juthatunk. A programnak mi kell, hogy megmondjuk, milyen bázis szerint fejtse ki az eredő hullámfüggvényt, de az egyes báziselemek lineár kombinációjában szereplő együtthatókat már a program határozza meg. Ezt a variációs elvre alapozva teszi, azaz olyan együtthatókat választ, hogy a hullámfüggvény Hamilton-operátorral képzett várható értéke a lehető legalacsonyabb legyen. Hartree-Fock közelítéssel dolgozunk legtöbbször, azaz a Slater determinánst használjuk ansatzként. Ennek alakja:

$$\psi\left(X_{1}, X_{2}, ..., X_{N_{e}}\right) = \frac{1}{\sqrt{N_{e}!}} \begin{vmatrix} \phi_{1}\left(X_{1}\right) & \phi_{2}\left(X_{1}\right) & \cdots & \phi_{N_{e}}\left(X_{1}\right) \\ \phi_{1}\left(X_{2}\right) & \phi_{2}\left(X_{2}\right) & \cdots & \phi_{N_{e}}\left(X_{2}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{1}\left(X_{N_{e}}\right) & \phi_{2}\left(X_{N_{e}}\right) & \cdots & \phi_{N_{e}}\left(X_{N_{e}}\right) \end{vmatrix}$$

Ez eggyel szofisztikáltabb a fentebb említett szorzatalak tippünkhöz képest, hisz tudja a Pauli elvet. Szerencsére nekünk ezzel közvetlenül nem kell törődnünk, a program ezt felhasználva képes megadni a számunkra fontos értékeket – úgy mint a kötésszögek, kötéstávolságok, rezgési módus frekvenciája.

Mérési eredmények

• meghatároztuk a két molekulára szinglet és triplet állapotok energiát, melyekre a következőket kaptuk (az energiaértékek természetesen negatív előjellel értendők):

		szinglet állapot	triplet állapot
$\overline{F_2}$	kötési energia	$198,737285au \Leftrightarrow 1,85 \cdot 10^{11}eV$	$198,671513au \Leftrightarrow 1,85061 \cdot 10^{11}eV$
	kötéstáv	1,33 <i>Å</i>	$1,64 extit{\AA}$
O_2	kötési energia	$149,579234au \Leftrightarrow 1,39332 \cdot 10^{11} eV$	$149,664141au \Leftrightarrow 1,39411 \cdot 10^{11} eV$
	kötéstáv	$1{,}15 extstyle{\AA}$	$1{,}16 extcolor{A}$

Látszik az oxigén esetében, hogy a triplet állapot egy mélyebb állapotot valósít meg, így ez a stabilabb. Ezért az oxigén paramágnes.

• Megrajzoltuk a H_2O molekulát, majd meghatároztuk a kérdéses mennyiségeket, különböző bázisok választása mellett. Az eredmények szinglet állapotra vonatkoznak. A dipólus momentum nagysága $10^{-30}C \cdot m$ -ben, a HOH által bezárt szög fokban értendő.

bázis neve	Energia	dipólusm.	kötéstáv	szög
sto-3g	$74,9659012au \Leftrightarrow 6,98303 \cdot 10^{10} eV$	5,701	0,9894 <i>Å</i>	100,03°
6-31g	$76,0236150au \Leftrightarrow 7,08156 \cdot 10^{10} eV$	7,166	$0,9431 ext{\AA}$	105,96°
6-311+G**	$76,0533052au \Leftrightarrow 7,08433 \cdot 10^{10} eV$	7,329	$0,9413 ext{\AA}$	106,2°

Látható, hogy minél bonyolultabb bázist választunk, annál pontosabb a számolás, hiszen mélyebb energiaszintet kapunk. Azaz a variációs eljárásban itt sikerült a legközelebb kerülnünk a valódi alapállapoti energiaértékhez.

- A legnagyobb feladat ebben az alpontban a fullerén szénatomainak megfelelő elhelyezése a kötések kialakítása volt. A fullerén két kötésszöggel és két kötéshosszal jellemezhető, mert topológiailag minden atom egyenértékű, mely adódik a molekula szimmetriáiból is. Így elég csak 1 atom jellemzőit vizsgálni. A kötések nagyságára adódott, hogy az a kötés, mely hatszög-ötszög mentén van, 1,46Å, míg a hatszög-hatszög mentén elhelyezkedő kötés hossza 1,38Å. Az eredményeket a semi-empirical AM1 módszerrel kaptuk.
- Egy 12 atomból álló molekulának 36 rezgési módusa van, ebből 3 transzláció és 3 rotáció, a fennmaradó 30 rezgési módusnak viszont a molekula szimmetriái miatt ennél kevesebb különböző frekvenciájú rezgési módusa lesz, vagyis egyes állapotok degeneráltak lesznek. A benzol C_6H_6 molekulájának rezgési állapotai közül sok egyforma energiával rendelkezik a szimmetriái miatt. Ezek közül vizsgáltuk azokat, melyek megtartották a molekula szimmetriáit rezgés közben, ezek a tisztán radiális módusok. Sajnálatos módon, a nagy számítási igényre való tekintettel csak a molekula-mechanika módszerrel tudtunk elég

hamar eredményt kapni. A kapott eredmények: $v_1 \Leftrightarrow 621,14\frac{1}{cm}$ illetve $v_2 \Leftrightarrow 2414,93\frac{1}{cm}$.

Ha felételezzük, hogy a valós frekvencia értékekre használható $f=c/\lambda$ képletben c a fény vákuumbeli sebessége, λ pedig a frekvencia-egyenérték reciprokja, kapjuk, hogy $v_1=1,862\cdot 10^{13}\, Hz$ illetve $v_2=7,240\cdot 10^{13}\, Hz$.

A http://www.chemtube3d.com/vibrationsC6H6.htm oldalon szintén megtalálhatjuk e méréseket, ám ott más értékeket kaptak a frekvenciákra, melynek lehetséges oka a jobb közelítés és a kevesebb elhanyagolás (nem biztos természetesen, hogy az övéké a pontosabb).

 Végül vizsgáltuk az egyszeres és kettős kötéseket felváltva tartalmazó szénhidrogéneket. Pl. egy három kettős kötést tartalmazó lánc az ábrán látható.

1,3356	1,3357	1,3358	1,3357	1,3357	1,3357
1,3446	1,3456	1,3459	1,3459	1,3459	1,3459
1,3356	1,3456	1,3468	1,3470	1,3471	1,3471
	1,3357	1,3459	1,3470	1,3472	1,3473
		1,3358	11,3459	1,3471	1,3473
			1,3357	1,3459	1,3471
				1,3357	1,3459
					1,3357

Az egyes oszlopokban a 3, 4, 5.. kötésszámú szénhidrogének kötéshosszait láthatjuk \AA -ben megadva. Látható, hogy mind hosszabb a szénhidrogénlánc, annál inkább állandósul a kötéshossz a molekula belsejében, és csak a széleken kapunk azoktól eltérő értéket. Ezzel véges atomból felépülő molekulák kötéshosszaiból következtethetünk a végtelen sok atomot tartalmazó molekulák kötéshosszaira azok létrehozása nélkül, ekkor mindegyik kettős kötés ugyanakkora.