Real World Optimization of Energy Efficient Vehicle Control

Bastian Lang

Bonn-Rhein-Sieg University of Applied Science

July 21, 2016

Content

- Project Description
- The Simple Model
- NEAT with Simple Model
- Control Program for Velomobile
- Open Tasks

Project Description

What is the project about?

Creating Energy Efficient Vehicle Controller

Project Description

What is the project about?

Creating Energy Efficient Vehicle Controller

What ML technologies are being used?

ANNs evolved using NEAT

Project Description

What is the project about?

Creating Energy Efficient Vehicle Controller

What ML technologies are being used?

ANNs evolved using NEAT

What is the project based on?

Paper showing ANNs can compete with state-of-the-art approaches ([Gaier and Asteroth, 2014])

Task Overview

Minimum

• Evolve Energy Efficient Controller with Simple Model

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Expected

• Create Data Driven Model

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality
- Compare Solutions

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality
- Compare Solutions

Project Description Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Expected

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality
- Compare Solutions

Maximum

• Use Multi-Objective Approach (i.e. Surrogate Modelling)

Content

- Project Description
- 2 The Simple Model
- NEAT with Simple Model
- Control Program for Velomobile
- Open Tasks

Simple Vehicle Model

Time Based Model

$$\frac{ds}{dt} = \begin{pmatrix} t' \\ x' \\ v' \\ W' \end{pmatrix} = \begin{pmatrix} 1 \\ v \\ \frac{F(x,v)}{m} \\ F_u * v \end{pmatrix}$$

Where

- ullet F_U : Force at wheel due to control command
- F(x, v): F_U some drag

Content

- Project Description
- The Simple Model
- NEAT with Simple Model
- Control Program for Velomobile
- Open Tasks

Parameters

Population size: 60

• Maximum Generations: 40

• Speciation algorithm: k-means

Number of Species: 3

• Drop-off rate: 25

Dataset of 30/5 tracks (Training/Test)

Figure: Initial Network Topology

NEAT with Simple Model

Evaluating Fitness

On Set of Tracks

Weighted Sum of Single Track Fitnesses

On Single Track

- Fitness: Saved Energy Time Penalty
- Saved Energy: Maximum Energy Consumption Actual Energy Consumption
- Time Penalty:

```
 \left\{ \begin{array}{ll} 0 & \text{if } \textit{neededTime} \leq \textit{desiredTime} \\ (\textit{neededTime} - \textit{desiredTime})^2 & \text{else} \end{array} \right.
```

Results

- Total runs (so far): 218
- Average Best Fitness: 7.4569e+04
- Best Fitness: 10.3410e+04

Figure: Simulation of Evolved Controller

Figure: Simulation of Evolved Controller

Content

- Project Description
- 2 The Simple Model
- NEAT with Simple Model
- Control Program for Velomobile
- Open Tasks

Control Program

Given

Hardware

- Velomobile
- Electric Motor (Vivax-Assist)
- Speed Controller (MasterSPIN 75 Pro OPTO)
- Brake Sensor
- Hall Sensor
- Power Sensor
- Simple Button

Control Program

Given

Hardware

- Velomobile
- Electric Motor (Vivax-Assist)
- Speed Controller (MasterSPIN 75 Pro OPTO)
- Brake Sensor
- Hall Sensor
- Power Sensor
- Simple Button

Software

- Run motor on constant speed
- Read brake sensor
- Read hall sensor
- Shuts off above 25km/h
- Shuts off on brake activation
- Shuts off on button press

Reading Hall Sensor

Problems

- Communication with hall sensor not working
- Needed for velocity data
- Python-code to read sensor
- C-code to control motor

Reading Hall Sensor

Problems

- Communication with hall sensor not working
- Needed for velocity data
- Python-code to read sensor
- C-code to control motor

Solution

 $\bullet \ \mathsf{Write}/\mathsf{read} \ \mathsf{file} \ \mathsf{in} \ \mathsf{python}/\mathsf{C} \to \mathsf{Synchronization}$

Reading Hall Sensor

Problems

- Communication with hall sensor not working
- Needed for velocity data
- Python-code to read sensor
- C-code to control motor

Solution

- ullet Write/read file in python/C o Synchronization
- \bullet Write/Read output stream \to Python script needs to call C script and resets state

Reading Hall Sensor

Problems

- Communication with hall sensor not working
- Needed for velocity data
- Python-code to read sensor
- C-code to control motor

Solution

- ullet Write/read file in python/C o Synchronization
- \bullet Write/Read output stream \to Python script needs to call C script and resets state
- Use socket communication

Speed Adaptation

Problems

- No mechanism to adjust speed
- Needed for collecting data

Speed Adaptation

Problems

- No mechanism to adjust speed
- Needed for collecting data

Solution

• Increase speed on button click

Speed Adaptation

Problems

- No mechanism to adjust speed
- Needed for collecting data

Solution

- Increase speed on button click
- Shut motor off on brake activation

No Motor Reaction

Problems

- No reaction to signal
- No signal measured
- Vehicle does not move

No Motor Reaction

Problems

- No reaction to signal
- No signal measured
- Vehicle does not move

Solution

• (Hardware-)Debug with working initial code

No Motor Reaction

Problems

- No reaction to signal
- No signal measured
- Vehicle does not move

Solution

- (Hardware-)Debug with working initial code
- Only send signal on change

No Motor Reaction

Problems

- No reaction to signal
- No signal measured
- Vehicle does not move

Solution

- (Hardware-)Debug with working initial code
- Only send signal on change
- Range [7,19] instead of [0,100]

5 Seconds to Brake

Problems

- Setting motor to 0 takes 5 seconds
- Motor waits for timeout
- Safety

5 Seconds to Brake

Problems

- Setting motor to 0 takes 5 seconds
- Motor waits for timeout
- Safety

Solution

• Set signal to small value first

5 Seconds to Brake

Problems

- Setting motor to 0 takes 5 seconds
- Motor waits for timeout
- Safety

- Set signal to small value first
- Use hardware emergency off switch

Huge Numbers in Log

Problems

- Obviously wrong data gets logged
- No synchronization during data access

Huge Numbers in Log

Problems

- Obviously wrong data gets logged
- No synchronization during data access

Solution

ullet Synchronize using mutexes o Still huge values

Huge Numbers in Log

Problems

- Obviously wrong data gets logged
- No synchronization during data access

- $\bullet \ \, \text{Synchronize using mutexes} \to \text{Still huge values} \\$
- ullet Remove all possible multi-threading o Hall Sensor

Huge Numbers in Log

Problems

- Obviously wrong data gets logged
- No synchronization during data access

- $\bullet \ \, \mathsf{Synchronize} \ \, \mathsf{using} \ \, \mathsf{mutexes} \to \mathsf{Still} \ \, \mathsf{huge} \ \, \mathsf{values}$
- ullet Remove all possible multi-threading o Hall Sensor
- Rewrite in Python → Files empty, occasional restarts

Huge Numbers in Log

Problems

- Obviously wrong data gets logged
- No synchronization during data access

- $\bullet \ \, \mathsf{Synchronize} \ \, \mathsf{using} \ \, \mathsf{mutexes} \to \mathsf{Still} \ \, \mathsf{huge} \ \, \mathsf{values}$
- ullet Remove all possible multi-threading o Hall Sensor
- Rewrite in Python → Files empty, occasional restarts

Huge Numbers in Log

Problems

- Obviously wrong data gets logged
- No synchronization during data access

Solution

- ullet Synchronize using mutexes o Still huge values
- ullet Remove all possible multi-threading o Hall Sensor
- ullet Rewrite in Python o Files empty, occasional restarts

Open Approaches

• Use C-code with wiringPi synchronization mechanism

Content

- Project Description
- The Simple Model
- NEAT with Simple Model
- Control Program for Velomobile
- Open Tasks

Open Tasks

- Fix Logging
- Evaluate Solutions Simple Model
- Collect Data
- Learn Model
- NEAT on DD Model
- Evaluate Solutions DD Model

Sources I

Gaier, A. and Asteroth, A. (2014).

Evolving look ahead controllers for energy optimal driving and path planning. In *Innovations in Intelligent Systems and Applications (INISTA) Proceedings, 2014 IEEE International Symposium on*, pages 138–145. IEEE.