17. 변화율과 도함수

DataScience

Exported on 03/24/2021

Table of Contents

1	변화율	.3
	평균변화율	
	변화율의 표현	
1.3	변화율의 검증을 위한 사전 작업	.4
	변화율의 검증	
	순간변화율	
1.6	순간변화율의 기하학적 의미 - 기울기	.5
2	함수의 미분	.6
	다항함수의 미분을 위한 함수 선정	
2.2	다항함수의 미분	.6
2.3	exponential 함수의 미분은 자기 자신이다	.6
2.4	자연로그의 미분	. 7
2.5	합성함수	. 7
	합성함수 코드로 점검	
2.7	합성함수의 미분	. 7
2.8	합성함수의 미분	. 8

1 변화율

1.1 평균변화율

- 평균변화율: x의 변화에 따른 y의 변화량
 평균변화율은 많은 정보를 놓칠 수 있어서 x의 변화량을 줄여서 관찰한다

1.2 변화율의 표현

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

1.3 변화율의 검증을 위한 사전 작업

```
import numpy as np

x = 5

f = lambda x : x**2
    df = lambda x : 2*x

x, f(x), df(x)

(5, 25, 10)
```

1.4 변화율의 검증

```
delta_x = 0.00001
df(x), (f(x+delta_x)-f(x))/delta_x
```

(10, 10.000009999444615)

1.5 순간변화율

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

1.6 순간변화율의 기하학적 의미 - 기울기

2 함수의 미분

2.1 다항함수의 미분을 위한 함수 선정

```
import sympy as sym

x = sym.Symbol('x')
y = x**2 + 2*x
y
```

 $x^2 + 2x$

2.2 다항함수의 미분

 e^{x}

```
x^2 + 2x
```

```
sym.diff(y, x)
2x + 2
```

2.3 exponential 함수의 미분은 자기 자신이다

```
y = \text{sym.exp}(x)

y
e^{x}
\text{sym.diff}(y, x)
```

2.4 자연로그의 미분

```
y = sym.ln(x)
y
\log(x)
```

sym.diff(y, x)

 $\frac{1}{x}$

2.5 합성함수

$$f(x) = x^2 + 3x$$
$$h(x) = x^2$$
$$h \circ f(x) = (x^2 + 3x)^2$$

2.6 합성함수 코드로 점검

```
y = x**2 + 3*x
h = y**2
h
```

$$\left(x^2 + 3x\right)^2$$

2.7 합성함수의 미분

$$\left(x^2 + 3x\right)^2$$

sym.diff(h, x)

$$(4x+6)(x^2+3x)$$

2.8 합성함수의 미분

$$(h \circ f)' = \frac{dh}{dx} = \frac{dh}{df} \cdot \frac{df}{dx}$$