WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB F/G 8/10 A COMPARISON OF VELOCITY PROFILES OBTAINED FROM AN EXPENDABLE THETC(U) FEB 81 T B SANFORD, J H DUNLAP, R G DREVER N00014-80-C-0347 NL AD-A097 051 a Nelassi fie L JOE / . 4 -81 DT#C

OD A 0.9

A COMPARISON OF VELOCITY PROFILES OBTAINED FROM AN EXPENDABLE TEMPERATURE AND VELOCITY PROFILER (XTVP) AND AN ACOUSTICALLY TRACKED PROFILER AT THE ATLANTIC UNDERWATER TEST AND EVALUATION CENTER (AUTEC).

by Thomas B./Sanford
John H./Dunlap
Robert G/Drever

APL-UW-8105

Applied Physics Laboratory University of Washington

NORDA Contract N90014-80-C-9347

0211

ACKNOWLEDGMENTS

The profiler experiment was organized by personnel of the Applied Physics Laboratory, Johns Hopkins University. Moreover, certain costs for this work, such as those for transportation to the range, APL/JHU personnel, the research vessel, and the use of the AUTEC range, were paid by APL/JHU. We are grateful for this support and for the vital cooperation and service given by personnel of the Atlantic Undersea Test and Evaluation Center (AUTEC). The acoustically tracked profiles were computed by Dr. David Wenstrand of APL/JHU. The personal organizational and operational efforts of Messrs. Jeffrey Smart and Robert Mattey of APL/JHU were essential to the success of this research. The XTVP program was assisted by Mr. Arthur Bartlett (APL-UW) and supported by the Naval Ocean Research and Development Activity (Contract N00014-77-C-0422).

ABSTRACT

A series of nearly simultaneous drops of two velocity profilers was made at the Atlantic Underwater Test and Evaluation Center (AUTEC). One profiling method was based on the measurement of motionally induced electric currents by an expendable device. This profiler, the Expendable Temperature and Velocity Profiler (XTVP), was compared with an acoustically tracked free-fall device operated by personnel of the Johns Hopkins University's Applied Physics Laboratory. Based on drops separated by less than 100 m horizontally and about 50 minutes in time, the two sets of profiles were found to agree within about 1 cm/s rms for east and north horizontal velocity components.

Acceptance	
Accession For	
NTIS GPI&I	
DTIC TYP	
Unantion one	
Just'r sale	
8.4	
Distance	
Available Coss	- 1
300 13	i
District Section of the Section of t	,
Print	•
1/1_	1
H	!
1 / 1	i
The same of the sa	1

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	INSTRUMENTATION	2
III.	OPERATIONS	7
IV.	OBSERVATIONS	30
٧.	RESULTS AND DISCUSSION	47
37 T	DECEDENCES	65

LIST OF FIGURES

			Page
Figure	1.	The APL/JHU acoustically tracked profiler	4
Figure	2a.	Expendable temperature and velocity profiler (XTVP-5) .	5
Figure	2b.	XTVP block diagram	6
Figure	3a.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #3	8
Figure	3b.	East (X) and North (Y) trajectories of the R/V Cape and and APL/JHU profiler for Drop #4	9
Figure	3c.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #5	10
Figure	3d.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #6	11
Figure	3e.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #7	12
Figure	3f.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #8	13
Figure	3g.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #9	14
Figure	3h.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #10	15
Figure	3i.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #11	16
Figure	3j.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #12	17
Figure	3k.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #13	18
Figure	31.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #14	19
Figure	3m.	East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #15	20

			Page
Figure	4a.	APL/JHU Drop #1	31
Figure	4b.	APL/JHU Drop #2	32
Figure	4c.	APL/JHU Drop #3	33
Figure	4d.	APL/JHU Drop #4	34
Figure	4e.	APL/JHU Drop #5	35
Figure	4f.	APL/JHU Drop #6	36
Figure	4g.	APL/JHU Drop #7	37
Figure	4h.	APL/JHU Drop #8	38
Figure	4i.	APL/JHU Drop #9	39
Figure	4j.	APL/JHU Drop #10	40
Figure	4k.	APL/JHU Drop #11	41
Figure	41.	APL/JHU Drop #12	42
Figure	4m.	APL/JHU Drop #13	43
Figure	4n.	APL/JHU Drop #14	44
Figure	40.	APL/JHU Drop #15	45
Figure	5.	AUTEC shipboard and playback processing system	46
Figure	6a.	Comparison of nearly simultaneous velocity profiles	50
Figure	6b.	Comparison of nearly simultaneous velocity profiles	51
Figure	6c.	Comparison on nearly simultaneous velocity profiles	52
Figure	6d.	Comparison on nearly simultaneous velocity profiles	53
Figure	6e.	Comparison on nearly simultaneous velocity profiles	54
Figure	6f.	Comparison of nearly simultaneous velocity profiles	55
Figure	6g.	Comparison of nearly simultaneous velocity profiles	56

LIST OF TABLES

			Page
Table	1.	Description of the XTVP's by type, model, and number	. 3
Table	2.	Joint APL-UW and APL/JHU observation log	. 21
Table	3.	R/V Cape and APL/JHU profiler positions at times of XTVP deployments	. 26
Table	4a.	Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -340 m depth	. 57
Table	4b.	Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -450 m depth	. 58
Table	4c.	Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -500 m depth	. 59
Table	4d.	Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -470 m depth	. 60
Table	4e.	Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -500 m depth	. 61
Table	4f.	Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -500 m depth	. 62
Table	4g.	Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -500 m depth	. 63
Table	5.	Minimum values of the square root of the cross-structure function for east and north velocity components computed between -100 and -480 m depth	. 64

I. INTRODUCTION

In early May 1979, an experiment was conducted at AUTEC for the purpose of establishing the performance of the XTVP (Expendable Temperature and Velocity Profiler). Numerous XTVP profiles were obtained, separated in time and space by 10 minutes and 100 m from those obtained with an acoustically tracked free-fall profiler operated by personnel of the Applied Physics Laboratory, Johns Hopkins University. The primary purpose of the experiment was to validate the measurements of the XTVP probes against the APL/JHU acoustically tracked velocity profiler's measurements at depths greater than 200 m. In addition, the performance of the XTVP's in the upper 200 m was examined under various launch conditions, including distance from boat at launch. Tests were also performed with specially produced probes having shorted electrodes or preamplifiers and special weight shapes. Pressure measurements were made with some probes to determine the depth versus run-time relation. The performance of the XTVP was also evaluated by comparing simultaneous or nearly simultaneous XTVP profiles.

II. INSTRUMENTATION

APL/JHU Current Profiler

For this experiment, the APL/JHU velocity profiler was tracked by the AUTEC acoustic range. From the time series of profiler position, the vertical velocity profile was determined. Implicit in this method is the assumption that the horizontal length scales are long compared to 100 m. This allows velocity measurements at various horizontal positions to be presented as a vertical profile taken at one position.

The profiler, described in APL/JHU document STD-R-138, Chapter IV, System Description, is shown in Figure 1. It consists of a pressure vessel enclosing a clock, electronics, and an AUTEC-supplied acoustic pinger assembly. Either synchronous or asynchronous tracking for the range is acceptable, but it is important that tracking uncertainties be as low as possible (<30 cm on a point-to-point basis). The profiler, which weighs 225 pounds in air, is dropped into the ocean without a tether, and descends at approximately 30 cm/s. Upon reaching a preset depth, a pressure-actuated mechanism releases a lead weight, and the unit returns to the surface at the same rate of 30 cm/s. Current profile data are gathered on both the descent and the ascent. Additional descriptions of the profiler can be found in Wenstrand (1979).

The XTVP Current Profiler

The XTVP velocity profiler [Drever and Sanford (1980) and Fig. 2a] is a ship-launched expendable instrument whose development is based on a larger, nonexpendable instrument also developed by Sanford, Drever, and Dunlap (1978). The probe takes a vertical profile of the relative horizontal velocity vector by measuring the voltages induced by the motion of the sea and the instrument through the geomagnetic field. The term "relative" is used in the sense that the measured velocity is offset by an unknown constant velocity.

The XTVP consists of a probe similar to that of a Sippican XBT, but stretched an additional 12 inches. A block diagram of the electronics is given in Figure 2b. The thermistor used is identical to that in a standard Sippican XBT. A depth sensor is not part of the present design, but depth sensors were installed on several probes used in the tests reported here.

Three signals, electric field, compass direction, and temperature, are sent via FM transmission to an on-boat receiver over a two-wire, balanced line. The received signal is sent to an analog recorder and to the FM receiver/demodulator for recording and plotting.

Seventy-nine probes were manufactured for this experiment. Of these, only 45 were standard units of either the model 4's built by Woods Hole Oceanographic Institution or the Sippican-made model 5's. The special units were built to investigate noise sources and vehicle fall characteristics. For example, 16 units of each model transmitted pressure measurements in place of temperature. The pressure measurements provide a refined relation of fall rate versus elapsed time. The complete complement is presented in Table 1.

Table 1. Description of the XTVP's by Type, Model, and Number

Type	Model 4	Model 5
Standard units	9	36
Pressure measuring	6	6
Pressure measuring and		
10° afterbody fins	2	2
15° afterbody fins	2	2
20° afterbody fins	2	2
Blunt nose weight	4	4
Shorted electric field amplifier	3	3
	24	55

Figure 1. The APL/JHU Acoustically Tracked Profiler

Figure 2a. Expendable Temperature and Velocity Profiler (XTVP-5)

Figure 2b. XTVP Block Diagram

III. OPERATIONS

The XTVP probes and supporting instrumentation were installed aboard the R/V Cape, a vessel owned and operated by the Applied Physics Laboratory, Johns Hopkins University. Two standard Sippican XBT launchers were used. One was the stanchion-mounted, breech-loaded launcher and the other was the hand-held, plastic launcher with about 100 feet of electrical cable. The electronics were installed in the laboratory beneath the main deck just forward of the steering room. The laboratory was linked to the bridge and control personnel via internal voice units and to shore with a UHF radio. All drops except those from the towed rubber boat were made from the vessel's side.

The operational procedure was to have the Cape directed to a predetermined site for the launch of an APL/JHU tracked profiler. Once this profiler was deployed and falling, the deployment scheme for XTVP probes was to have the Cape execute loops at slow speed (5 knots) following navigational instructions from the range control center. As the Cape neared the closest point of approach to the falling profiler, an XTVP probe would be released. The goal was to release the probe within 100 m horizontally of the APL/JHU profiler. This goal was achieved in 32 out of 45 intercomparison drops. In no case was the separation greater than 200 m.

The positions of the Cape and the acoustically tracked profilers are shown in Figures 3a through 3m (provided by Dr. David Wenstrand of APL/JHU). Note that the X and Y scales are in yards and are not equal. The track of the Cape can usually be distinguished from that of the profiler by its larger extent and more loop-like character. The horizontal separation between the ship and the tracked profiler at the time of XTVP deployment cannot be easily determined from these figures and is listed in Table 2.

A log of the joint observations is presented in Table 2. The depth and range of the APL/JHU profiler are given, based on the computer printouts provided by Dr. Wenstrand. The CTD position information was provided by Mr. Stephen A. Mack. Cryptic, but useful, comments are provided about the type of observation, the maximum depth or data quality, etc.

Position data have been abstracted from the vessel and profiler tracking printout and are presented in Table 3. The vertical and horizontal separation information provided in Table 2 was determined from these data. No correction has been made for the 15-yard separation between the radar transponder or in-water acoustic source used to track the vessel and the launch position of the XTVP probes, except for when the probes were launched from a rubber boat towed behind the vessel. In the latter case, the vessel/launch position difference is about 50 yards. Since the vessel was receding from the profiler for each XTVP deployment, this 50 yards has been subtracted from the vessel/profiler separation or range.

Figure 3a. East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #3

30, 0 SECONDS BETWEEN MARKERS

Figure 3b. East (X) and North (Y) trajectories of the R/V Cape and the APL_JHU profiler for Drop #4.

East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #5. Figure 3c.

SOLU SETUEN MARKERS

TRANSPORTER NOTWOOD BEING BOOKER East(X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #6. Figure 3d.

า กาลหล่า กรารยนี้ เกาะ การเกาะ

20.0 SECONDS BETWEEN MARKERS East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #7. Figure 3e.

- -;- -

Figure 3f. East (X) and North (Y) trajectories of the RV Cape and the APL/JHU profiler for Drop #8.

30, C SECONDS BEINFEN MARKERS

A SECTION ASSESSMENT

30, C SECONDS BETWEEN MARKERS East (X) and North (Y) trajectories of the R/V Capc and the APL/JHU profiler for Drop #9.Figure 3g.

Figure 3h. East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #10.

30.0 SECONDS BETWEEN MARKERS East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #11. Figure 3i.

Figure 3j. East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #12.

30.0 SECONDS BETWEEN MARKERS

Figure 3k. East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #13.

30.0 SECONDS BEINEEN MARKERS

East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #14. Figure 31.

30.0 SECONDS BETWEEN MARKERS

Figure 3m. East (X) and North (Y) trajectories of the R/V Cape and the APL/JHU profiler for Drop #15.

30. C SECONDS BETWEEN MARKERS

Table 2. Joint APL-UW and APL/JHU Observation Log

Comments 200 dbar	160-190 dbar OK NG:Shorted electrodes? NG 240 dbar Yo-yo 160-190 dbar		Lo compass coil; Hi in-phase component 240 dbar deep	175 m OK NG: Noisy	240 dbar 160 m
Profiler Range (yd) NA	A A A A A A A A A A A A A A A A A A A	e e e e e e e e e e e e e e e e e e e	4 4	% %	8
Profiler Depth (yd) NA	A A A A A A A A A	NA NA NA	NA NA	% %	X
Stop (2) 004530	020500 011300 022545 034145	0342 035805	1202 130355	132800 133415	140845
Start (z) 003900	010500 010900 012600 013800 021700	0250 0338 034900	0/49 1159 125612	131826 132415 133145	140100
Date 1979 8 May	8 May 8 May 8 May 8 May 8 May 8 May	8 May 8 May	8 May	8 May 8 May 8 May	8 May 8 May
Mod. No.	4-142 5-unkn unkn	unkn 5-045	5-021	5-027 5-029	
Instrument Type § No. CTD 201	CTD 202 XTVP 150 XTVP 151 XTVP 152 CTD 203 CTD 204	XTVP 153 XTVP 154 CTD 205	APL/JHU #1 XTVP 155 CTD 206	APL/JHU #2 XTVP 156 XTVP 157	CTD 207 APL/JHU #3
Obs.	2 K 4 K 9 g	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 10 11	12 13	15 16

Comments NG: Noisy NG	240 dbar	360 м	0K 0k	X XO	0 K	1st 80 s NG	240 dbar	47C #	# C / / C	χο α ₀	*	× ×	OK OK	240 dbar	400	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OK
Profiler Range (yd) 161 75	NA	}	43	34	36	28	NA			7 6	70 211	111	171	NA		: 1: 	54
Profiler Depth (yd) 79 48	NA	} }	23	363	223	89	NA	;	249	45.1	412	195	54	NA) 	27	299
Stop (z) 143130 144445	151200	160634	153800	154610	155845	160600	170525	181444	-1737	174620	175720	180815	181600	185230			192630
Start (2) 1428 144100	150400	152600	153445	154230	155450	160215	165700	172156	173300	174305	175330	180435	181230	184500	1910	191030	192300
Date 1979 8 May 8 May	8 May	8 May	8 May	8 May	8 May	8 Мау	8 May	8 May	8 May	8 May	. 8 May	8 May	8 May	8 May	8 May	8 May	8 May
Mod. No. 6 S/N 5-040 5-049		5~unkn	5-025	5-038	5-042	5-020			4-195	4-162	4-186	4-188	4-152			2-000	4-115
Instrument Type & No. XTVP 158 XTVP 159	CTD 208	APL/JHU #4 XTVP 160	XTVP 161	XTVP 162	XTVP 163	XIVP 164	СТD 209	APL/JHU #5	XTVP 165	XTVP 166	XTVP 167	XTVP 168	XTVP 169	CTD 210	APL/JIW #6	XTVP 170	XTVP 171
0bs. No. 17	19	20	22	23	24	\$	26	27	28	59	30	31	32	33	34	35	36

	Comments	NG: Strange	0 K	0K		470 m	NG: Ground problem	OK: Rubber boat	OK: Rubber boat	OK: Rubber boat	OK: Rubber boat	RF interference APL/JHU #7 snagged!	Shorted electrodes	Shorted electrodes	Shorted electrodes	EF* preamp shorted	EF preamp shorted	Shorted	OK: Big shear	OK: Big shear	Noisy: Underway	NG: 11 knots	240 dbar	:::
Profiler	Range (yd)	76	84	70		!	50	34	31	72	43	! !	NA	NA	NA	NA	AN.	NA	N.A	VN	NA	NA	VA	
Profiler	Depth (yd)	491	338	44		 	48	362	503	322	141	15	NA	NA	NA	NA	A'N	NA	NA	NA	NA	NA	Y.X	
Stop	(2)	193630	194904	200540		214540	205820	211315	212245	213145	214205	214930		234145	234545	235240	235810	000440	001040	9017	002825	003415	194550	
Start	(2)	193230	194550	200200		205334	205500	210930	211900	212830	213820	214545	233300	233800	234230	2349	235430	000100	000200	001330	0024	003100	193800	
Date	1979	8 May	8 May	8 May	•	8 May	8 May	8 May	8 May	8 May	8 May	8 May	8 May	8 May	8 May	8 May	8 May	9 May	9 May	9 May	9 May	9 May	10 May	
Mod. No.	N/S 3	2-026	5-028	5-046			5-046	5-033	5-036	5-039	5-041	5-050	4~190	4-202	4-203	5-016	5-017	5-018	5-052	5-051	5-044	5-048		
Instrument	Type 6 No.	XTVP 172	XTVP 173	XTVP 174		APL/JHU #7	XTVP 175	XTVP 176	XTVP 177	XTVP 178	XTVP 179	XTVP 180	XTVP 181	XTVP 182	XTVP 183	XTVP 184	XTVP 185	XTVP 186	XTVP 187	XTVP 188	XTVP 189	XTVP 190	CTD 211	
.sq0	No.	37	38	39		40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57	

23

* EF = electric field

	Comments	OK: 1978 vintage	490 m	480 m	ОК	NG	Noisy	OK: Pressure	400 dbar	NG	Blunt nose; 4 H _z	OK: 1978 vintage	EF NG, but pressure OK	ОК	490 ш	200 m	OK: Pressure; in-phase trend	OK: 1978 vintage	400 dbar	OK: Pressure	OK: 1978 vintage	OK: Pressure	OK: 1978 vintage		480 m	
Profiler	Range (yd)	N.A	! !	!	30	30	53	53	NA	82	74	18	NA	NA	!	i i	26	56	NA	146	146	102	102		:	
Profiler	Depth (yd)	NA NA	:	1 1 2	31	31	255	255	NA	523	353	198	N.A	NA	!!!	;	283	283	NA	425	425	282	282		! ! !	
Stop	3	195730	211358	211953	202540	202530	203730	203730	205505	205400	210515	211230	222000	222000	231008	232239	223910	223910	225050	230158	230150	231013	231013		010306	
Start	(2)	195400	202110	202112	202200	202200	203400	203400	204009	205020	210000	210900	221625	221625	221539	222058	223530	223530	223840	225830	225830	230645	230645		000330	
Date	1979	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	10 May	-	11 May	,
Mod. No.	8, S/N	4-220			5-035	4-144	5-012	4-237			5-032	4-187	4-239	4-222			4-236	4-226		4-233	4-231	4-238	4-234			
Instrument	Type & No.	XTVP 191	APL/JHU #8	APL/JHU #9	XTVP 192	XTVP 193	XTVP 194	XTVP 195	CTD 212	XTVP 196	XTVP 197	XTVP 198	XTVP 199	XTVP 200	APL/JHU #10	APL/JHU #11	XTVP 201	XTVP 202	CTD 213	XTVP 203	XTVP 204	XTVP 205	XTVP 206		APL/JHU #13	
Obs.	No.	28	29	09	61	62	63	64	9	99	29	89	69	70	71	72	73	74	75	92	77	78	42		80	

Comments 500 m Wobble: Pressure; 15 ⁰ fins Wobble: Pressure: 10 ⁰ fins	400 dbar Wobble: Pressure; 15° fins Wobble: Pressure; 20° fins Some wobble; pressure, 20° fins Wobble: Pressure; 10° fins	460 m 480 m NG: Blunt nose NG: Blunt nose 400 dbar OK: Pressure	Perhaps a yo-yo NG: Pressure OK OK OK: Big shear OK: Big shear
Profiler Range (yd) 114	NA 168 57 57	 46 125 NA 157	
Profiler Depth (yd) 259 259	NA 551 551 159 159	34 271 NA 335	X X X X X X
Stop (2) 010539 002515	004650 004000 004000 010030	033547 034716 025440 030730	055000 061330 063320 065320
Start (2) 001115 002230 002230	00350 003705 003705 005720 005720	024430 024856 025000 030245 030700	054630 061000 063000 065000
Date 1979 11 May 11 May 11 May	11 May 11 May 11 May 11 May 11 May	11 May 11 May 11 May 11 May 11 May 11 May	11 May 11 May 11 May 11 May 11 May 11 May
Mod. No. § S/N 4-179 4-166	4-230 4-163 4-164 4-167	Big Small 5-019 5-023 4-240	5-006 4-153 4-228 4-232 4-235
Instrument Type 6 No. APL/JHU #12 XTVP 207 XTVP 208	CTD 214 XTVP 209 XTVP 210 XTVP 211 XTVP 212	APL/JHU #14 APL/JHU #15 XTVP 213 XTVP 214 CTD 215 XTVP 215	CTD XTVP 216 XTVP 217 XTVP 218 XTVP 219
0bs. No. 81 82	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	89 90 92 93	95 96 97 98 99

Table 3. R/V Cape and APL/JHU Profiler Positions at Times of XTVP Deployments

APL/JHU	XTVP		R	/V Cape (yd)	APL/JI	Don		
PROFILER	DROP		x	у	z	x	у	z	Range (yd)
NO.	NO.	TIME	(+)	(-)	(-)	(+)	(-)	(+)	R
		-10	10219.92	8696.63	45.86	10223.94	8733.90	19.01	37.49
4	160	152630	10217.22	8689.95	45.85	10222.30	8732.48	22.74	42.83
		+10	10213.54	8682,51	45.84	10220.82	8731.01	26.49	49.05
		-10	10112.45	8626.97	45.65	10165.34	8647.92	199.31	56.98
4	161	153445	10085.24	8619.07	45.61	10164.95	8646.38	202.93	84.26
		+10	10056.32	8605.26	45.56	10164.79	8645.07	206.55	115.55
		-10	10140.18	8668.51	45.73	10159.96	8652.97	359.58	25.15
4	162	154230	10148.76	8685.88	45.76	10159.61	8653.79	362.82	33.88
		+10	10157.33	8703.26	45.79	10159.01	8654.57	366.19	48.72
_		-10	10136.75	8674.87	45.73	10147.06	8676.31	225.34	10.41
4	163	155450	10121.28	8700.45	45.74	10146.69	8675.43	222.35	35.67
		+10	10107.99	8723.24	45.74	10146.29	8674.55	219.07	61.95
		-10	10099.54	8568.61	45.58	10113.74	8596.08	91.50	30.93
4	164	160215	10096.70	8537.83	45.55	10112.38	8593.88	88.60	58.21
		+10	10092.62	8510.62	45.52	10111.00	8591.96	85.72	83.38
		-10	10037.91	8712.93	45.64	10061.83	8686.05	245.70	35.98
5	165	173300	10030.46	8740.31	45.65	10061.45	8686.29	249.27	62.28
		+10	10031.33	8765.27	45.68	10061.23	8687.12	252.72	83.67
		-10	10079.15	8648.94	45.63	10060.81	8707.98	448.12	61.82
5	166	174305	10094.32	8633.78	45.64	10060.72	8708.18	451.37	81.63
		+10	10112.43	8620.93	45.65	10060.71	8708.39	454.74	101.61
		-10	9948.72	8726.43	45.53	10050.96	8729.30	415.33	102.28
5	167	175330	9939.91	8725.43	45.52	10050.91	8729.64	412.11	111.07
		+10	9926.44	8728.24	45.50	10050.74	8730.19	408.63	124.32
			10085.45	8717.45	45.70	10048.41	8746.45	197.56	47.04
5	168	180435	10108.49	8720.60	45.74	10047.84	8745.52	194.51	65.57
			10122.43	8733.20	45.77	10047.37	8744.41	191.34	75.90
		-10	10063.85	8527.03	45.49	9998.16	8684.84	54.12	170.93
5	169	181230	10074.34	8521.77	45.50	9996.30	8683.71	51.05	179.76
		+10	10081.15	8515.12	45.50	9994.26	8682.52	48.21	188.60
		-10	10244.30	8833.04	46.03	10250.29	8867.71	23.29	35.18
6	170	191030	10243.09	8830.55	46.02	10249.91	8866.78	26.95	36.87
		+10	10240.66	8825.56	46.02	10249.47	8866.57	30.47	41.94
		-10	10177.28	8885.03	45.99	10194.30	8838.78	295.37	49.29
6	171	192300	10174.30	8888.76	45.99	10194.35	8838.90	298.84	53.74
		+10	10169.82	8894.36	45.99	10194.73	8839.29	302.14	60.44
		-10	10231.14	8813.43	45.99	10195.49	8855.01	487.53	54.77
6	172	193230	10229.29	8787.59	45.96	10195.13	8855.21	490.63	75.77
		+10	10222.26	8762.24	45.93	10194.51	8855.44	494.02	97.25

APL/JHU PROFILER NO.	XTVP DROP NO.		R/V Cane (yd)			APL/JHU Profiler (yd)			0.44571
		TIME	X (+)	y (-)	(-)	x (+)	y (-)	2 (+)	RANGE (yd) R
6		-10	10239.61	8901.16	46.09	10177.52	8871.11	341.13	68.9
	173	*194550	10250.30	8915.82	46.11	10178.01	8872.18	337.98	84,44
		+10	10263.17	8933.76	46.15	10178.32	8873.44	334.6"	104.10
6		-10	10083,28	8846.41	45.83	10128.69	8863,84	47.02	48.65
	174	200200	10066.74	8827.06	45.79	10126.24	8863.27	44.25	69.65
		+10	10047.70	8814.84	45.75	10123.65	8862.69	41.38	59.77
7		-10	10332.19	8737.94	46.05	10307,88	8825.61	44.42	90.98
	175	205500	10342.77	8732.56	46.06	10305.57	8825.29	48.09	99.91
		+10	10352.37	8732,49	46.07	10303,45	8825,05	51.82	104.69
7		-10	10254.20	8766.20	45.98	10269.39	8829.24	358.55	64,84
	176	210930	10260.88	8745.63	45.97	10269.16	8829.62	361.96	84.40
		+10	10268.05	8716.35	45.95	10269.22	8829.66	365.33	113.32
7		-10	10238.09	8876.99	46.06	10274.31	8831.80	506.15	57.91
	177	211900	10228.80	8898.66	46.07	10274.50	8832.01	503.04	80.78
	•	+10	10222.19	8920.95	46.08	10274.61	8832.27	499.88	105.02
7		-10	10290.88	8741.92	46.00	10277,60	8836.64	325.13	95.65
	178	212830	10298.77	8717.74	45.99	10277.71	8837.47	321.97	121.57
	• 1 0	+10	10307.12	8690.91	45.97	10277.92	8838.14	318.78	150.09
		-10	10218.52	8893.51	46.05	10268.72	8848.00	143.87	67,76
7	179	213820	10205.02	8916.40	46.06	10267.88	8847.58	140.96	93.22
,	1/3	+10	10196.21	8935.41	46.06	10266.98	8847.18	138.02	113.11
		-10	10217.02	8831.19	45.99	10224.18	8828.08	16.68	7,80
7	180	214545	10216.15	8812.20	45.97	10223.10	8827.45	15.40	**16.76
,	100	+10	(none)	0012.20	43.57	100001.10	0027.43	10.40	100. 00
		-10	(none)						
8		202110	10077,06	8894.23	16.37	10082.68	8873.96	16.04	21.04
O		+10	10077.00	8893.60	16.59	10082.08	8873.04	20.34	21.83
		* 10	10073.30	0033.00	10.33	10001.25	007.04	20	21.00
9		-10 202110	(none) 10076,41	8893.98	16.52	10084.43	8875.28	16.12	20.39
y		+10	10073.41	8893.99	16.28	10084.43	8874.24	18.70	21.04
		710	100/3.31	0033.33	10.40	10001.92	00/4.24	10.70	
		-10	10065.11	8892.84	16.41	10082.57	8872.17	27.88	27.06
9	192	202200	10062.34	8892.60	16.44	10083.23	8871.72	31.47	29.53
		+10	10059.50	8892.43	16.39	10083.96	8871.29	34.43	32.28

^{*} Time from observation log. Note: time may be 194530(XTVP log).

^{**} APL/JHU #7 snagged.

APL/JHU	XTVP		R/	V Cape (y	d)	APL/JHU	J Profile	r (yd)	Range (yd)	
PROFILER NO.	DROP NO.	TIME	(+)	ў (-)	(-)	(+)	y (-)	Z (+)	R	
9	193	Same as	192							
9	194	-10 203400 +10	10081.99 10084.80 10091.53	8803.52 8776.06 8750.90	16.49 16.62 16.20	10075.74 10075.18 10074.57	8828.17 8828.24 8828.14	252.22 255.27 258.40	24.14 53.06 77.92	
9	195	Same as	194							
9	196	-10 205020 +10	10006.20 10003.13 10000.03	8910.93 8910.46 8910.02	16.53 16.51 16.28	10085.25 10084.89 10084.62	8903.04 8904.01 8905.00	525.55 522.97 520.11	79.29 81.90 84.74	NG
9	197	-10 210000 +10	10035.42 10056.24 10078.68	9027.99 9016.60 9003.62	16.93 16.60 16.73	10084.41 10084.53 10084.41	8946.86 8947.76 8949.13	355.86 352.80 350.42	95.68 74.43 54.79	
9	198	-10 210900 +10	10082.33 10081.61 10080.38	8934.03 8962.69 8990.70	16.16 16.48 16.59	10089.69 10089.91 10090.06	8979.52 8978.77 8977.93	200.48 197.50 194.59	46.08 18.09 16.02	
9	199	-10 221625 +10	Data not	avai lable						
9	200		Data not	available	•					
11	201	-10 223530 +10	10175.33 10183.88 10191.40	8837.35 8823.74 8811.19	16.20 16.29 16.04	10206.63 10206.84 10206.94	8873.89 8874. 9 7 8875.73	276.66 282.69 285.72	47.79 56.14 65.30	
11	202	Same as	201							
11	203	-10 225830 +10	10321.48 10328.65 10335.47	9004.01 9034.76 9064.32	16.63 16.74 16.69	10205,78 10205,93 10206,17	8954.13 8954.79 8955.46	427.77 424.86 421.86	125.08 145.61 166.93	
11	204	Same as	203							
11	205	-10 230645 +10	10299.93 10293.05 10288.81	8946.88 8929.43 8913.87	16.57 16.70 16.54	10204.72 10204.90 10205.06	8980.27 8980.74 8981.45	285.00 281.94 279.29	101.04 101.85 107.31	
11	206	Same as	205							
12	207	-10 002230 +10	10458.42 10464.64 10470.51	8830.15 8857.26 8885.21	16.79 16.86 16.53	10428.69 10429.25 10429.77	8746.55 8747.03 8748.13	255.56 258.88 262.42	86.07 114.45 141.75	
12	208	Same as	207							
12	209	-10 003705 +10	10296.33 10292.22 10288.05	8665.02 8664.68 8664.27	16.38 16.69 16.36	10420.69 10420.36 10420.15	8773.47 8773.30 8773.21	547.53 550.97 554.00	164.60 167.88 171.02	

NOT / THE YEAR			R/\	R/V Cape (yd)		AFL/JHU Profiler (yd)			
APL/JHU PROFILER NO.	DROP NO.	TIME	(+)	<i>y</i> (-)	(-)	(+)	y (-)	(+)	Range (yd) R
12	210	Same as	209						
12	211	-10 005720 +10	10452.52 10454.05 10453.25	8775.54 8752.90 8732.01	16.91 17.02 16.69	10416.36 10416.79 10417.15	8796.23 8795.76 8795.39	162.11 158.93 156.06	41.66 56.79 72.94
12	212	Same as	211						
15	213	-10 025000 +10	9846.58 9841.03 9835.54	8802.46 8801.01 8799.63	17.14 16.82 16.94	9878.62 9878.05 9877.83	8828.70 8828.08 8827.27	31,45 34,34 37,76	11.15 15.86 50.30
15	214	-10 030245 +10	9971.52 9970.90 9969.44	8845.70 8850.90 8855.11	17.06 17.09 17.12	9879.94 9879.61 9879.37	8763.91 8764.86 8765.40	267,92 270,95 274,09	122.68 125.27 127.12
15	215	-10 032840 +10	10008.91 10012.46 10013.24	8801.66 8807.26 8812.07	17.23 17.00 17.34	9862.55 9861.98 9861.60	8761.58 8761.77 8761.88	338.36 335.48 332.37	151,53 157,01 159,65
15	216	-10 054630 +10	Data not	available	٠.				

IV. OBSERVATIONS

The APL/JHU velocity profiles are presented in Figures 4a through 4o in which the line for the descent portion is about half the width of the line for ascent. Dr. Wenstrand points out that APL/JHU drops 14 and 15 contain several instances of error caused when the tracking computer switched between different hydrophone arrays. This switching was allowed because certain hydrophone combinations yield better signal strengths, but it produces small discontinuities in position determination and spikes in computed velocity. This problem seems somewhat more severe in drop 14, and so drop 15 was used for intercomparison purposes.

The profiles in Figures 4a-4o were digitized on an HP9874A digitizer coupled to an HP9845S computer. The digitized versions of the APL/JHU profiles were plotted on an HP9872A plotter and compared with the originals. The rms difference between the original and digitized version was less than $0.2\ \text{cm/s}$.

The processing procedure followed in the treatment of the XTVP data was as follows:

- 1. The analog tapes were replayed so that all variables were measured and plotted on the analog plotter. The playback system is depicted in Figure 5. The analog plots consisted of I (in-phase) and Q (quadrature-phase) for electric field, and I and Q for compass coil; on the third plot, there were graphs of temperature and rotation period.
- 2. The analog plots were digitized by hand with the 9874A digitizer connected to the 9845S computer. The work was done under the control of the program DIGITZ.
- 3. The digitized variables were plotted by DIGITZ on the 9872A plotter with the same scaling as the original so that digitized and original versions could be overlaid for comparison and error detection.
- 4. The raw digitized profiles were processed using the calibration factors and known corrections by program XPROC. This program also deconvolves the profile to eliminate the effect of the analog filter in the PAR 129 lock-in amplifier (Fig. 5) and filters to a scale similar to that of the APL/JHU profiles.
- 5. The final processed profiles were plotted by XPROC on the 9872A and stored in a flexible disk.

Portions of some profiles are missing due to probe malfunction (e.g., several gaps in XP170g, Figure 6c) or have been deleted because of interference from the electric and magnetic fields around the research vessel. Since most of the probes were released from the vessel, the uppermost portion (about 100 m) of the profile has been deleted.

APL/JHU Drop #1: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by P. Wenstrand. Thicker line is as profiler ascends. Figure 4a.

.

APL/JHU Drop #2: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4b.

APL/JHU Drop *5: Profiles of East (VEL(X)) and North (VEL(Y)) relocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4c.

62 - MON-ZI - STEEZERD TO POSTA A

APL/JHU Drop *4: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4d.

APL'JHU Drop '5: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4e.

66-100-45 68:81:11 :016810089

APL/JHU Drop #6: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4f.

PROCESSED: 08:54:07 31-JUL-79

APL/JHU Drop #7: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4g.

APL/JHU Drop #8: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4h.

00.00 320.00

00.08

00.092

PROCESSED: 09:28:13 06-AUG-79

ос•Ъ

00.02

00.091

00.012

APL/JHU Drop #9: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4i.

APL/JHU Drop #10: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4j.

3

APL/JHU Drop #il: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4k.

-

velocity components as computed and plotted by D. Wenstrand. Thicker APL/JHU Drop #12: Profiles of East (VEL(X)) and North (VEL(Y)) line is as profiler ascends. Figure 41.

).

1

APL/JHU Drop #13: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4m.

The state of the s

APL/JHU Drop #14: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 4n.

64-908-80 S1.85.51 :03523 Me-

APL/JHU Drop #15: Profiles of East (VEL(X)) and North (VEL(Y)) velocity components as computed and plotted by D. Wenstrand. Thicker line is as profiler ascends. Figure 40.

The second second

Figure 5. AUTEC Shipboard and Playback Processing System.

V. RESULTS AND DISCUSSION

The purpose of this section is to evaluate the performance of the XTVP relative to the APL/JHU profiler. The intercomparison will be performed in stages of increasingly finer examination. The first stage is a visual comparison of nearly simultaneous profiles. These data are presented in Figures 6a through 6g. There is a high degree of similarity; even small-scale features are in common.

The second stage of analysis is to quantify XTVP performance relative to all appropriate acoustic profiles, regardless of the 10-minute simultaneity and 100 m horizontal separation restriction. The procedure is to compute the rms difference between profiles as a function of vertical lag. This statistic is related to a structure function

$$R_{ij}(U,\Delta z) = \overline{[U_i(z) - U_j(z+\Delta z)]^2}$$

where U_i and U_j are the east components of velocity of the i^{th} and j^{th} profiles, Δz is the depth lag or offset, and the overbar is an average over depth (typically -100 to -500 m). Similar expressions are used for the north component (V) and for U and V taken together. In the latter case,

$$R(U,V,\Delta z) = \overline{[U_{i}(z) - U_{j}(z+\Delta z)]^{2} + [V_{i}(z) - V_{j}(z+\Delta z)]^{2}}.$$

These statistics are computed for a range of Δz values, but the value of Δz for which R is the minimum is of special importance. The minimum R^{1/2} is taken to be the rms deviation between profile pairs regardless of the depth offset. Because a preliminary fall rate versus time relation was used for the XTVP profiles, there are systematic depth offsets between XTVP and APL/JHU profiles.

The minimum rms differences are presented in a series of arrays for all appropriate profiles in Tables 4a through 4g.

For the whole data set, the rms differences over the span of simultaneous data for APL/JHU (down), APL/JHU (up), and XTVP are:

1. APLD vs. APLU: 7 realizations

$$\sigma_{\Delta u} = 1.0 \text{ cm/s}$$

$$\sigma_{\Delta v} = 0.9 \text{ cm/s}$$

2. XTVP vs. XTVP: 27 realizations

$$\sigma_{\Delta u} = 1.0 \text{ cm/s}$$

$$\sigma_{\Lambda v} = 1.3 \text{ cm/s}$$

APLD or APLU vs. XTVP: 44 realizations (22 vs. D and 22 vs. U profiles)

$$\sigma_{\Lambda u} = 1.1 \text{ cm/s}$$

$$\sigma_{\Lambda v} = 1.5 \text{ cm/s}.$$

When comparing data from two profiles produced by the same technique, it seems reasonable to divide the errors equally between the two profiles. Consider two variables, U_1 and U_2 , each having a random noise contribution ϵ . The mean difference, $\overline{U_1}$ - $\overline{U_2}$, is forced to be zero (the vertical mean is meaningless in the XTVP method), and the mean squared difference is

$$\sigma^2 = \overline{\left(U_1 + \varepsilon_1 - U_2 - \varepsilon_2\right)^2} = \overline{\varepsilon_1^2} + \overline{\varepsilon_2^2} - 2 \overline{\varepsilon_1 \varepsilon_2} ,$$

where the overbar represents the vertical mean.

If the errors are uncorrelated between profiles, then

$$\sigma_{\Delta u}^2 = \overline{\varepsilon_1^2} + \overline{\varepsilon_2^2} = 2\varepsilon^2$$

if errors are equally distributed between profiles.

Thus, for ensemble-averaged σ values of 1.0 and 1.3 cm/s for east and north XTVP differences, the appropriate error estimate for a single profile would be 1.0 and 1.3 cm/s divided by $\sqrt{2}$, or 0.7 and 0.9 cm/s respectively. Similarly, the APL/JHU random errors would be 0.7 and 0.6 cm/s.

Another test of the APL/JHU data is to compare the profiles obtained with two profilers operated simultaneously. There are three examples of these which we examined: APL/JHU 8 and 9, 10 and 11, and 12 and 13. A fourth example was 14 and 15, but there clearly are problems with these data, especially 14, because the tracking computer was switching hydrophone sets in an attempt to maximize signal strength. The rms differences are shown in Table 5. The average for nearly simultaneous profiles is 0.9 cm/s for east and for north components. Sharing the variance equally yields an rms value of 0.6 cm/s.

Wenstrand (personal communication) has analyzed the difference between drops 8 and 9 and found 0.3 cm/s for east and 0.2 cm/s for north over 100 to 450 m. We find differences of 0.6 to 0.8 over a slightly longer interval. The higher rms differences probably result from errors made in the tracing (digitization) of graphs provided by APL/JHU.

Recent analyses by Sanford and D'Asaro (unpublished) have shown that an error of about 1.0 cm/s rms exists in the north velocity component due to tilts of the XTVP probes. Thus, even if we ignore any errors contributed by the APL/JHU technique and assume all differences are due to XTVP errors, the 1.1 cm/s rms difference in east remains 1.1 cm/s and the 1.5 cm/s rms difference in north becomes

$$\sqrt{(1.5)^2 - (1.0)^2} = 1.1 \text{ cm/s}$$
.

In summary, the AUTEC profiles support a random error level of about ± 1 cm/s for the XTVP compared with the APL/JHU profiler.

Figure 6a. Comparison of nearly simultaneous velocity profiles.

Figure 6b. Comparison of nearly simultaneous velocity profiles.

Figure 6c. Comparison of nearly simultaneous velocity profiles.

Figure 6d. Comparison of nearly simultaneous velocity profiles.

Figure 6e. Comparison of nearly simultaneous velocity profiles.

Figure 6f. Comparison of nearly simultaneous velocity profiles.

Figure 6g. Comparison of nearly simultaneous velocity profiles.

Table 4a. Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -340 m depth. The entries are for east, north, and combined in that order reading downward in each column. The units are centimeters/second. The depth offset at minimum in meters is shown in parentheses, where a positive value means column profile must be shifted down to agree with row profile.

	AP4U	XP160G	XP161E	XP162E	XP163E
AP4D	1.5(0) 0.7(2) 1.2(0)	0.8(11) 1.4(24) 1.8(18)	0.9(7) 1.1(20) 1.8(13)	0.8(11) 6.7(13) 0.9(13)	-
AP4U		1.5(11) 1.1(22) 1.8(18)	1.1(7) 1.4(18) 1.6(13)	` ,	0.8(13) 0.8(13) 0.8(13)
XP160G			0.9(-4) 0.9(-4) 0.9(-4)	1.2(-9)	
XP161E				0.6(4) 0.7(-4) 1.2(-2)	0.5(-4)
XP162E					0.7(4) 0.7(0) 0.8(2)

Table 4b. Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -450 m depth. The entries are for east, north, and combined in that order reading downward in each column. The units are centimeters/second. The depth offset at minimum in meters is shown in parentheses, where a positive value means column profile must be shifted down to agree with row profile.

	AP5U	XP165G	XP166E	XP168E
AP5D	0.8(2) 1.1(2) 0.9(2)	0.8(7) 1.8(29) 2.0(24)	1.0(15) 2.0(20) 1.6(20)	1.2(13) 1.6(15) 1.4(13)
AP5U		0.9(2) 1.7(24) 1.9(20)	0.8(11) 1.7(18) 1.4(15)	0.7(9) 1.0(11) 0.9(11)
XP165G			1.1(9) 1.4(-2) 1.6(0)	1.2(7) 1.5(-9) 1.7(-2)
				0.9(-2) 1.6(-4) 1.3(-4)

Table 4c. Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -500 m depth. The entries are for east, north, and combined in that order reading downward in each column. The units are centimeters/second. The depth offset at minimum in meters is shown in parentheses, where a positive value means column profile must be shifted down to agree with row profile.

	AP6U	XP170G	XP171E	XP173E	XP174E
AP6D	0.8(2) 1.0(2) 0.8(2)	0.8(11) 1.4(15) 1.3(13)	0.9(13) 1.3(20) 1.1(18)	1.0(18) 1.2(20) 1.1(18)	1.5(15) 1.2(18) 1.4(18)
AP6U		0.9(9) 1.9(13) 1.5(13)	0.8(13) 1.7(18) 1.4(15)	1.0(15) 1.5(18) 1.2(15)	1.3(15) 1.1(15) 1.2(15)
XP170G			0.5(2) 0.9(4) 0.7(4)	0.8(4) 1.3(4) 1.1(4)	1.3(4) 1.6(2) 1.4(4)
XP171E				0.7(2) 1.0(0) 0.9(0)	1.1(2) 1.5(-2) 1.3(0)
XP173E					1.0(0) 1.2(0) 1.1(0)

Table 4d. Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -470 m depth. The entries are for east, north, and combined in that order reading downward in each column. The units are centimeters/second. The depth offset at minimum in meters is shown in parentheses, where a positive value means column profile must be shifted down to agree with row profile.

	AP7U	XP176G	XP177G	XP178E	XP179E
AP7D	0.7(2) 0.7(2) 0.7(2)	0.8(11) 1.2(20) 1.3(18)	1.4(18) 1.4(20) 1.4(20)	1.3(11) 0.6(20) 1.0(15)	1.1(15) 1.3(18) 1.2(15)
AP7U		0.9(9) 1.2(18) 1.5(15)	1.2(11) 1.3(20) 1.4(20)	1.0(9) 0.7(18) 0.8(13)	0.7(11) 1.2(15) 1.1(13)
XP176G			1.2(-11) 1.0(7) 1.1(7)	0.8(-7) 0.4(-2) 0.7(-2)	1.0(2) 0.8(-2) 0.8(-2)
XP177G				1.3(-4) 1.1(-7) 1.2(-7)	1.2(0) 0.8(41) 1.2(-9)
XP178E					0.6(0) 0.5(-2) 0.6(-2)

Table 4e. Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -500 m depth. The entries are for east, north, and combined in that order reading downward in each column. The units are centimeters/second. The depth offset at minimum in meters is shown in parentheses, where a positive value means column profile must be shifted down to agree with row profile.

	AP8U	XP192G	XP195G	XP198G
AP8D	0.9(2) 1.9(2) 1.1(2)	1.5(20) 1.8(20) 1.7(20)	1.4(15) 1.7(18) 1.5(15)	2.1(24) 2.6(26) 2.4(24)
AP8U		2.0(18) 2.1(15) 2.1(18)	1.8(15) 1.1(13) 1.5(13)	1.9(20) 2.0(22) 1.9(22)
XP192G			1.1(-2) 2.8(-2) 2.1(-2)	2.4(4) 3.6(7) 3.1(7)
XP1956				2.2(9) 1.9(9) 2.1(9)

Table 4f. Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -500 m depth. The entries are for east, north, and combined in that order reading downward in each column. The units are centimeters/second. The depth offset at minimum in meters is shown in parentheses, where a positive value means column profile must be shifted down to agree with row profile.

	AP10U	XP202G	XP203E	XP205E
AP10D	0.6(2) 1.0(2) 0.8(2)	0.8(11) 2.6(15) 2.0(15)	1.0(18) 2.1(20) 1.7(20)	1.0(20) 2.1(15) 1.7(18)
AP10U		1.0(9) 2.4(15) 1.9(13)	.9(15) 1.8(18) 1.4(18)	1.1(18) 1.8(15) 1.5(15)
XP202G			.8(7) 1.1(4) 1.0(4)	.8(9) 1.5(0) 1.4(0)
XP203E				1.0(2) 1.1(-4) 1.0(-2)

Table 4g. Minimum values of the square root of the cross-structure function for east, north, and east-and-north velocity components computed between -100 and -500 m depth. The entries are for east, north, and combined in that order reading downward in each column. The units are centimeters/second. The depth offset at minimum in meters is shown in parentheses, where a positive value means column profile must be shifted down to agree with row profile.

	AP15U	XP215E
AP15D	1.2(0) 1.2(0) 1.2(0)	1.1(13) 1.4(15) 1.3(13)
AP15U		1.1(13) 2.0(15) 1.6(13)

Table 5. Minimum values of the square root of the cross-structure function for east and north velocity components computed between -100 and -480 m depth. The entries are for east and north in that order reading downward in each column. The units are centimeters/second. The depth offset at minimum in meters is shown in parentheses, where a positive value means column profile must be shifted down to agree with row profile.

	AP8U	AP9D	AP9U
AP8D	0.9(2) 1.2(2)	0.7(2) 0.6(2)	1.5(2) 1.4(4)
AP8U		1 .3(0) 1 .0(-2)	0.8(2) 0.6(2)
AP9D			2.0(2) 1.3(4)
	AP10U	AP11D	APIlU
AP1OD	0.6(2) 1.0(2)	0.6(0) 0.5(0)	1.1(2) 1.1(2)
AP10U		0 .7(-2) 1 .0(-2)	1.0(0)
APllD			1.3(2) 1.2(2)
	AP12U	AP13D	AP13U
AP12U	0.8(2) 0.9(2)	1.2(-2) 1.0(-2)	1.2(2) 1.2(0)
AP12U		1.0(-4) 1.0(-4)	1.3(0) 1.4(0)
AP13D			1.1(4) 1.3(4)

VI. REFERENCES

- Drever, R.G., and T.B. Sanford, 1980: An expendable temperature and velocity profiler (XTVP). Near Surface Ocean Experimental Technology Workshop Proceedings, 6-8 November 1979. Naval Ocean Research and Development Activity, Bay St. Louis, Mississippi.
- Sanford, T.B., R.G. Drever, and J.H. Dunlap, 1978: A velocity profiler based on the principles of geomagnetic induction. *Deep-Sea Res.* 25: 183-210.
- Wenstrand, D.C., 1979: Measurements of vertical profiles of oceanic current and Richardson number near St. Croix, U.S.V.I. J. Hydronaut. 13: 69-76.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2 GOVT ACCESSION NO.	
1D-H097 051	
4 TITLE (and Subtitle) A COMPARISON OF VELOCITY PROFILES	5 TYPE OF REPORT & PERIOD COVERED
OBTAINED FROM AN EXPENDABLE TEMPERATURE AND VELOCITY PROFILER (XTVP) AND AN ACOUSTICALLY	Final Report
TRACKED PROFILER AT THE ATLANTIC UNDERWATER TEST	6 PERFORMING ORG REPORT NUMBER
AND EVALUATION CENTER (AUTEC)	APL-UW 8105
7 AuTHOR(s)	B CONTRACT OR GRANT NUMBER(s)
Thomas B. Sanford	
John H. Dunlap	N00014-80-C-0347
Robert G. Drever	
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS
Applied Physics Laboratory	
University of Washington 1013 N.E. 40th St., Seattle, WA 98105	
11 CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE
i	February 1981
Naval Ocean Research and Development Activity	13 NUMBER OF PAGES
NSTL Station, MS 39529	72
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15 SECURITY CLASS (of this report)
	Harak and Co. 1
	Unclassified
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
	<u></u>
16 DISTRIBUTION STATEMENT (of this Report)	
Unlimited	
Oil I mited	
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different fro	m Report)
18 SUPPLEMENTARY NOTES	
19 KEY WORDS (Continue on reverse eide if necessary and identify by block number)	
TO NET WORLD (Continue on reverse side it decessely and identity by brock induser)	
Valuaitu mastilas	
Velocity profiles	(A. 1977) (A. 1977)
Atlantic Underwater Test and Evaluation	
Expendable Temperature and Velocity Prof	iler (XIVP)
20 AB\$TRACT (Continue on reverse side if necessary and identify by block number)	
A series of nearly simultaneous drops of two velocit	y profilers was made at the
Atlantic Underwater Test and Evaluation Center (AUTEC).	One profiling method was based
on the measurement of motionally induced electric current	
This profiler, the Expendable Temperature and Velocity Pr with an acoustically tracked free-fall device operated by	
University's Applied Physics Laboratory. Based on drops	separated by less than 100 m
horizontally and about 50 minutes in time, the two sets of	of profiles were found to agree
within about 1 cm/s rms for east and north horizontal vel	ocity components.

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102 LF 014 6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

