Discussion: Systemic analysis: A method to show how funds flow through financial systems

Author: Juliaan Bol

Discussant: Mateusz Dadej

ICMA Centre, University of Reading, June 2024
Doctoral Finance Symposium

- The paper introduces a framework to analyze flow of funds through the financial system.
- The system satisfy accounting conditions:
 - $L_{tot}^t = A_{tot}^t$ (assets = liabilities)
 - Complete balance sheet identity: $N_e^t + \sum_{i=1}^l (A_i^t + V_i^t) = \sum_{i=1}^l L_i^t + S_i^t$
- The flow of funds (ΔA_d) can be disentangled into:

$$\bullet \underbrace{\frac{A_t^d}{T_e^t} \left(\sum_{j \in P} \Delta_s L_j + \Delta_s S_e \right)}_{} + \underbrace{\frac{1}{T_e^t} \sum_{i \in P} \left(A_i^t \Delta A_d - A_d^t \Delta A_i \right)}_{} + \underbrace{\frac{A_d^t}{T_e^t} \Delta R_e}_{}$$

Growth factors

Realocation factors

- The paper introduces a framework to analyze flow of funds through the financial system.
- The system satisfy accounting conditions:
 - $L_{fec}^t = A_{fec}^t$ (assets = liabilities)
 - Complete balance sheet identity: $N_e^t + \sum_{i=1}^I (A_i^t + V_i^t) = \sum_{j=1}^I L_j^t + S_e^t$
- The flow of funds (ΔA_d) can be disentangled into:

$$\bullet \underbrace{\frac{A_t^d}{T_e^t} \left(\sum_{j \in P} \Delta_s L_j + \Delta_s S_e \right)}_{} + \underbrace{\frac{1}{T_e^t} \sum_{i \in P} \left(A_i^t \Delta A_d - A_d^t \Delta A_i \right)}_{} + \underbrace{\frac{A_d^t}{T_e^t} \Delta R_e}_{}$$

Growth factors

Realocation factors

- The paper introduces a framework to analyze flow of funds through the financial system.
- The system satisfy accounting conditions:
 - $L_{fec}^t = A_{fec}^t$ (assets = liabilities)
 - Complete balance sheet identity: $N_e^t + \sum_{i=1}^I (A_i^t + V_i^t) = \sum_{j=1}^I L_j^t + S_e^t$
- The flow of funds (ΔA_d) can be disentangled into:

$$= \underbrace{\frac{A_t^d}{T_e^t} \left(\sum_{j \in P} \Delta_s L_j + \Delta_s S_e \right)}_{} + \underbrace{\frac{1}{T_e^t} \sum_{i \in P} \left(A_i^t \Delta A_d - A_d^t \Delta A_i \right)}_{} + \underbrace{\frac{A_d^t}{T_e^t} \Delta R_e}_{}$$

Growth factors

Realocation factors

- The paper introduces a framework to analyze flow of funds through the financial system.
- The system satisfy accounting conditions:
 - $L_{fec}^t = A_{fec}^t$ (assets = liabilities)
 - Complete balance sheet identity: $N_e^t + \sum_{i=1}^I (A_i^t + V_i^t) = \sum_{j=1}^I L_j^t + S_e^t$
- The flow of funds (ΔA_d) can be disentangled into:

rowth factors Realocation

- The paper introduces a framework to analyze flow of funds through the financial system.
- The system satisfy accounting conditions:
 - $L_{fec}^t = A_{fec}^t$ (assets = liabilities)
 - Complete balance sheet identity: $N_e^t + \sum_{i=1}^I (A_i^t + V_i^t) = \sum_{j=1}^I L_j^t + S_e^t$
- The flow of funds (ΔA_d) can be disentangled into:

•
$$\frac{A_t^d}{T_e^t} \left(\sum_{j \in P} \Delta_s L_j + \Delta_s S_e \right) + \underbrace{\frac{1}{T_e^t} \sum_{i \in P} \left(A_i^t \Delta A_d - A_d^t \Delta A_i \right) + \frac{A_d^t}{T_e^t} \Delta R_e}_{\text{Realocation factors}}$$

realocation factor.

- The paper introduces a framework to analyze flow of funds through the financial system.
- The system satisfy accounting conditions:
 - $L_{fec}^t = A_{fec}^t$ (assets = liabilities)
 - Complete balance sheet identity: $N_e^t + \sum_{i=1}^I (A_i^t + V_i^t) = \sum_{j=1}^I L_j^t + S_e^t$
- The flow of funds (ΔA_d) can be disentangled into:

•
$$\underbrace{\frac{A_t^d}{T_e^t} \left(\sum_{j \in P} \Delta_s L_j + \Delta_s S_e \right)}_{\text{Growth factors}} + \underbrace{\frac{1}{T_e^t} \sum_{i \in P} \left(A_i^t \Delta A_d - A_d^t \Delta A_i \right) + \frac{A_d^t}{T_e^t} \Delta R_e}_{\text{Realocation factors}}$$

System diagram

Figure 1: Relation between balance sheets, their financial network and aggregate ALM

(a) Entity balance sheets

Household		Bank		Business		Government	
deposits:80 shares:20	wealth:100	loans:70 bonds:30	deposits:80 shares:20	nonfinancial assets:70	loans:70		bonds:30 wealth:-30

(b) Financial network

(c) Aggregate ALM as sum of instrument ALM

	Household	Bank	Business	Government	
Household	- 0	0	0	0	
Bank	shares:20+deposits:80	0	0	0	
Business	0	loans:70	0	0	
Government	0	bonds:30	0	0	

- The framework is **very** general and broadly applicable.
 - Stress testing
 - Policy scenario evaluation
 - Systemic crisis analysis
- Minimal amount of assumptions due to accounting relations.
- Ease of communicating results.

- The framework is **very** general and broadly applicable.
 - Stress testing
 - Policy scenario evaluation
 - Systemic crisis analysis
- Minimal amount of assumptions due to accounting relations.
- Ease of communicating results.

- The framework is **very** general and broadly applicable.
 - Stress testing
 - Policy scenario evaluation
 - Systemic crisis analysis
- Minimal amount of assumptions due to accounting relations.
- Ease of communicating results.

- The framework is **very** general and broadly applicable.
 - Stress testing
 - Policy scenario evaluation
 - Systemic crisis analysis
- Minimal amount of assumptions due to accounting relations
- Ease of communicating results.

- The framework is **very** general and broadly applicable.
 - Stress testing
 - Policy scenario evaluation
 - Systemic crisis analysis
- Minimal amount of assumptions due to accounting relations.
- Ease of communicating results.

- The framework is **very** general and broadly applicable.
 - Stress testing
 - Policy scenario evaluation
 - Systemic crisis analysis
- Minimal amount of assumptions due to accounting relations.
- Ease of communicating results.

- Consider a simple VAR model with time-varying parameters for break point detection (à la Diebold and Yılmaz 2014) in order to have a single model for breaks and eliminate potential spurious breaks.
 Alternatively, graphical models.
- Regarding "Creating financial systems from national accounts":
 Consider matrix completion literature applied to interbank markets (e.g. Anand et al. 2018 for benchmark of various methods).
- See the literature for stock-flow consistent modeling (Godley and Lavoie 2006)
- Consider the literature suggesting endogenous money/deposit creation (McLeay, Radia, and Thomas 2014)

- Consider a simple VAR model with time-varying parameters for break point detection (à la Diebold and Yılmaz 2014) in order to have a single model for breaks and eliminate potential spurious breaks.
 Alternatively, graphical models.
- Regarding "Creating financial systems from national accounts":
 Consider matrix completion literature applied to interbank markets (e.g. Anand et al. 2018 for benchmark of various methods).
- See the literature for stock-flow consistent modeling (Godley and Lavoie 2006)
- Consider the literature suggesting endogenous money/deposit creation (McLeay, Radia, and Thomas 2014)

- Consider a simple VAR model with time-varying parameters for break point detection (à la Diebold and Yılmaz 2014) in order to have a single model for breaks and eliminate potential spurious breaks. Alternatively, graphical models.
- Regarding "Creating financial systems from national accounts":
 Consider matrix completion literature applied to interbank markets (e.g. Anand et al. 2018 for benchmark of various methods).
- See the literature for stock-flow consistent modeling (Godley and Lavoie 2006)
- Consider the literature suggesting endogenous money/deposit creation (McLeay, Radia, and Thomas 2014)

- Consider a simple VAR model with time-varying parameters for break point detection (à la Diebold and Yılmaz 2014) in order to have a single model for breaks and eliminate potential spurious breaks. Alternatively, graphical models.
- Regarding "Creating financial systems from national accounts":
 Consider matrix completion literature applied to interbank markets (e.g. Anand et al. 2018 for benchmark of various methods).
- See the literature for stock-flow consistent modeling (Godley and Lavoie 2006)
- Consider the literature suggesting endogenous money/deposit creation (McLeay, Radia, and Thomas 2014)

References I

Anand, Kartik et al. (2018). "The missing links: A global study on uncovering financial network structures from partial data". In: *Journal of Financial Stability* 35. Network models, stress testing and other tools for financial stability monitoring and macroprudential policy design and implementation, pp. 107–119. ISSN: 1572-3089. DOI: https://doi.org/10.1016/j.jfs.2017.05.012. URL: https://www.sciencedirect.com/science/article/pii/S1572308917303649.

References II

S0304407614000712.

Godley, Wynne and Marc Lavoie (2006). Monetary economics: an integrated approach to credit, money, income, production and wealth. Springer.

McLeay, Michael, Amar Radia, and Ryland Thomas (2014). "Money creation in the modern economy". In: Bank of England quarterly bulletin, Q1.