

Carlingford High School Mathematics Extension 2 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Term 3 2013

General Instructions

- o Reading Time 5 minutes
- o Working Time 3 hours
- o Write using a blue or black pen.
- o Board approved calculators may be used
- A Standard Integrals Sheet is provided at the back of this paper
- Show all necessary working in Questions 11-16

Total marks 100

Section I Total 10 marks

- o Attempt Questions 1-10
- o Answer on the Multiple Choice answer sheet provided
- o Allow about 15 minutes for this section

Section II Total 90 marks

- Attempt questions 11 16
- o Answer on the blank paper provided, unless otherwise instructed
- o Start a new sheet for each question
- o Allow about 2 hours 45 minutes for this section

	MC	Q11	Q12	Q13	Q14	Q15	Q16	Mark
OC1	/1	11000	/13	1100			3.484.70	/14
OC2	/3	1,100		/12	/11			/26
OC3	/1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- Marie - Mari		/15	/16
OC4	/1					/7		/8
OC5	/1			/3	/4			/8
OC6	/1	/15	- No.			1		/16
OC7	/2		/2			/8		/12
Total	/10	/15	/15	/15	/15	/15	/15	/100

Section I 10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section. Use the multiple choice answer sheet for Ouestions 1-10.

1. A square root of 8 + 6i is:

(A)

3-i (B) 5-3i (C) -3-i (D) -3+i

2. The equation of a curve is given by $x^2 + xy + y^2 = 9$. Which of the following expressions will provide the value of $\frac{dy}{dx}$ at any point on the curve?

(A) $\frac{-2x-y}{2y}$ (B) $\frac{-2x-y}{x+2y}$ (C) $\frac{-2x+y}{2y}$ (D) $\frac{-2x+y}{x+2y}$

3. The equation $x^3 + 2x^2 - 4x + 5 = 0$ has roots α , β and γ . Find the value of $a^2 + \beta^2 + \gamma^2$.

(A)

-12 (B) -4

(C)

(D)

4. The area bounded by the curves $y = x^2$ and $x = y^2$ is rotated about the x - axis. The volume of the solid of revolution formed is:

(A)

(B) $\frac{3\pi}{10}$ (C) $\frac{7\pi}{10}$

(D) $\frac{3\pi}{2}$

5. The equation of an hyperbola is given by $9x^2 - 4y^2 = 36$. The foci and the directrices of this hyperbola are:

(A) $(\pm \sqrt{13}, 0)$ and $x = \pm \frac{4\sqrt{13}}{12}$.

(B) $\left(0, \pm \sqrt{13}\right)$ and $x = \pm \frac{4\sqrt{13}}{13}$.

(C) $(\pm \sqrt{13}, 0)$ and $y = \pm \frac{4\sqrt{13}}{13}$.

(D) $(0, \pm \sqrt{13})$ and $y = \pm \frac{4\sqrt{13}}{13}$.

6. The graph of the function y = f(x) is drawn below:

Which of the following graphs best represents the graph $y = \sqrt{f(x)}$?

(A)

(B)

(D)

7.
$$\int \frac{(x^3 - 1) dx}{(x^4 - 4x)^{\frac{2}{3}}} =$$

(A)
$$\frac{3}{4\sqrt[3]{x^4-4x}} + C$$

$$(B) \quad \frac{3}{4\left(x^4 - 4x\right)} + C$$

(C)
$$\frac{3\sqrt[3]{x^4-4x}}{4} + C$$

(D)
$$\frac{3(x^4-4x)}{4}+C$$

- 8. A point is moving in a circular path about a centre O with angular velocity ω . An expression for the normal acceleration of the point at a time t is:
 - (A) $\frac{dv}{dt}$
- (B) $r \frac{d\theta}{dt}$
- (C) r ω
- (D) $r \omega^2$
- 9. The general solution of the equation $\sin 4\theta \sin 2\theta = \cos 3\theta$ is:

(A)
$$\theta = \frac{n\pi}{3} \pm \frac{\pi}{6}$$
 or $\theta = n\pi + (-1)^n \frac{\pi}{3}$.

(B)
$$\theta = \frac{n\pi}{2} \pm \frac{\pi}{4}$$
 or $\theta = n\pi + (-1)^n \frac{\pi}{6}$.

(C)
$$\theta = \frac{2n\pi}{3} \pm \frac{\pi}{6}$$
 or $\theta = n\pi + (-1)^n \frac{\pi}{3}$.

(D)
$$\theta = \frac{2n\pi}{3} \pm \frac{\pi}{6}$$
 or $\theta = n\pi + (-1)^n \frac{\pi}{6}$.

10. Thirteen students in a Year 10 PDHPE class are to be divided into two teams of six to play touch football, with the remaining person acting as the referee. If two particular students are not to be in the same team, the number of different ways the teams can be formed is:

(A)
$${}^{11}\mathbf{C}_5 \times {}^{6}\mathbf{C}_5 + {}^{12}\mathbf{C}_6 \times 2$$

(B)
$${}^{-11}\mathbf{C}_5 \times {}^{6}\mathbf{C}_5 \times 2 + {}^{12}\mathbf{C}_6$$

(C)
$${}^{11}\mathbf{C}_5 \times {}^{6}\mathbf{C}_5 + {}^{12}\mathbf{C}_6$$

(D)
$$^{13}\mathbf{C}_6 \times ^{7}\mathbf{C}_6 \div 2$$

End of Section I

Section II 90 marks

Attempt Questions 11-16. Allow about 2 hours 45 minutes for this section.

Answer all questions, starting each question on a new sheet of paper with your name and question number at the top of the page. Do not write on the back of sheets.

Question 11 (15 marks) Use a separate sheet of paper Marks

a) i) If
$$\frac{x}{(x-2)^2(x-1)} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{x-1}$$
, find the values of A, B & C.

ii) Hence evaluate
$$\int \frac{x}{(x-2)^2(x-1)} dx.$$

$$\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx.$$

ii) Hence or otherwise, find
$$\int_0^2 x^3 e^x dx$$
.

c) Find
i)
$$\int \frac{5x-3}{x^2+6x-14} dx$$
.

ii)
$$\int \frac{dx}{\left(25 + x^2\right)^2}$$
 using the trigonometric substitution $x = 5\tan \theta$.

iii)
$$\int \frac{dx}{\sqrt{4+2x-x^2}}$$
.

Prove that $\binom{n-1}{k-1} = \frac{k}{n} \binom{n}{k}$.

2

Question 12 (15 marks) Use a separate sheet of paper Marks a) If $z = \frac{1 + \sqrt{3}i}{\sqrt{3} + i}$, find: i) |z|1 Arg(z)ii) 1 1 iii) the five fifth roots of z. 2 iv) Sketch the region in the Argand plane consisting of those points z for which: $|\arg(z+1)| < \frac{\pi}{6}, z + \overline{z} \le 6 \text{ and } |z+1| > 2.$ 3 2 c) i) Use De Moivre's theorem to express $\cos 4\theta$ in terms of $\cos \theta$. 1 Hence express $\cot 4\theta$ as a rational function of x where $x = \cot \theta$. ii) By considering the roots of $\cot 4\theta = 0$, prove that iii) $\cot\frac{\pi}{8}\cdot\cot\frac{3\pi}{8}\cdot\cot\frac{5\pi}{8}\cdot\cot\frac{7\pi}{8}=1.$ 2

Questi	on 13	(15 marks) Use a separate sheet of paper	Marks
a)	i)	Show that if $x = a$ is a double root of the polynomial $P(x) = 0$, then $P'(a) = P(a) = 0$.	2
	ii)	Find the roots of the equation $f(x) = x^4 - 2x^3 + x^2 + 12x + 8$, given that it has a double root.	3
	iii)	Given that one root of the equation $x^4 - 5x^3 + 5x^2 + 25x - 26 = 0$ is $3 + 2i$, solve the equation.	3
b)	The has r	equation $2x^3 - x^2 + 3x - 1 = 0$ has roots α , β , and γ . Find the equation which oots:	
	i)	2α , 2β and 2γ .	2
	ii)	α^2 , β^2 and γ^2 .	2
c)		region bounded by $y = \sin x$ and the x – axis between $x = 0$ and $x = \pi$ is rotated the y – axis.	
	Find	the volume of the resulting solid, using the method of Cylindrical Shells.	3

Question 14 (15 marks) Use a separate sheet of paper

Marks

- a) An ellipse has equation $\frac{x^2}{16} + \frac{y^2}{25} = 1$.
 - Show that this is the equation of the locus of a point P(x, y) that moves such that the sum of its distances from A(0, 3) and B(0, -3) is 10 units.
 - 4

ii) Find the equations of the tangents to the ellipse when y = 4.

- 4
- b) The hyperbola H has equation $\frac{x^2}{4} \frac{y^2}{9} = 1$. P is an arbitrary point $(2\sec\theta, 3\tan\theta)$. Show that P lies on H and show that the equation of the tangent at P is $\frac{x\sec\theta}{2} - \frac{y\tan\theta}{3} = 1$
- 3

c) Let S be the solid having for its base the region bounded by the circle $x^2 + y^2 = 25$.

Every vertical plane section of the solid perpendicular to the x- axis is a square. Find the volume of the solid S.

4

Question 15 (15 marks) Use a separate sheet of paper

Marks

3

a) The graph of y = f(x) is shown below:

Draw separate half page sketches of the following (indicate important features).

$$y = \frac{1}{f(x)}.$$

$$y = |f(x)|.$$

$$y = e^{f(x)}.$$

b) i) Use the principle of Mathematical induction to prove that:

$$\sum_{i=1}^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}.$$

ii) Hence evaluate
$$\lim_{n\to\infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$$

c) To create the daily passcode for entry to an animal enclosure at the zoo, four letters from the word FERRETS are chosen in a random order.e.g. the code might be RRES or TERF.

How many distinct four letter passcodes are possible?

Question 16 (15 marks) Use a separate sheet of paper

Marks

- a) A body of mass 50 kg falls from a height at which gravitational acceleration is g. Assuming that air resistance is proportional to the speed v with a constant of proportion being $\frac{1}{10}$, find:
 - i) The velocity after time t.

3

ii) The terminal velocity.

1

iii) The distance the object has fallen after time t.

2

b) A particle P, of mass m kg, is suspended by a light inextensible string from a point O. It describes a circle with constant speed in a horizontal plane whose vertical distance below O is h metres.

i) By resolving forces find an equation for the period of revolution.

2

ii) Find the period if the distance below the point of suspension is 50 cm and g = 10 m/s.

1

Question 16 continues on page 13

Qu	estion	16 continued.	Marks
c)	Usin be b	recular track has a radius of 100 metres. $g = 10ms^{-2}$, calculate the angle to the nearest minute at which the track should anked in order to allow cars to travel at 80 kilometres per hour with no sideways e on the tyres?	3
d)		object of mass 5kg is attached to a fixed point on a smooth table by a string of th 1.5 metres. If the object moves with a velocity of 3m/s:	
	i)	Find the tension in the string.	1
	ii)	If the maximum tension that the string can withstand is 150N, find the greatest number of revolutions per second (in exact value) that the particle can make without breaking the string.	2

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Trial HSC Examination – Mathematics - Extension 2 2013

Section I – Multiple Choice Answer Sheet

Studer	ıt Naı	me _	·				_ :				
				for this B, C or E		st answers	the	question.	Fill	in the response ov	al completely.
Sampl	le:		2 + 4 =		(A) 2 A O		-	3) 6		(C) 8	(D) 9 D O
If you	think	you	have ma	de a mis	take, put A 🌑			gh the inco	rrect	answer and fill in	n the new answer.
-										the correct answe	er, then indicate
					Α		В	To the contract of the contrac		c O	D O
Start Here	→	1.	A 🔿	ВО	c O	Đ 🔿					
		2.	A 🔿	ВО	c O	D 🔿					
		3.	A 🔿	ВО	c O	D 🔿					
		4.	A 🔿	ВО	c O	D 🔿					
		5.	A 🔿	ВО	c O	D O					
		6.	A 🔿	ВО	c O	D 🔿					
		7.	A 🔿	ВО	c O	D 🔿					
		8.	A 🔿	ВО	c O	D O					
		9.	A O	ВО	c O	D 🔿					
		10.	A 🔿	ВО	c O	D 🔿					

Carlingford High School Mathematics Extension 2 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Term 3 2013

SOLUTIONS

Section I – Multiple Choice Answer Sheet

Name						•						
				for this B, C or I		st answe	rs the questi	on. Fill in	the resp	onse ova	al complet	ely.
Samp	le:		2 + 4 =	:	(A) 2 A O		(B) 6 B ●		(C) 8		(D) 9 D O	
If you	think	x you	have ma	de a mis	take, put A 🌑	a cross	through the		nswer an	nd fill in	the new a	nswer.
•							at you considered drawing a	an arrow as			r, then ind	icate
					ΑØ		B Ø		0		D O	
Start Here	→	1.	A O	ВО	C 🌑	DO	OC1					
		2.	A 🔿	В	c O	D 🔾	OC1					
		3.	A O	ВО	cO	D 🌑	OC2					
		4.	A O	В	c O	DO	OC5					
		5.	A 🌎	ВО	cO	DO	OC2					
		6.	A O	ВО	C 🜑	D 🔿	OC4					
		7.	A O	ВО	C 🌑	DO	OC6					
		8.	A 🔿	ВО	cO	D 🌑	OC3					
		9.	A O	ВО	c O	D 🌑	OC7					
		10.	A O	ВО	C 🌑	DO	OC7					

Multiple Choice Worked Solutions.	
1. Let $(x + iy)^2 = 8 + 6i$ then $x^2 + 2xyi - y^2 = 8 + 6i$ $\therefore x^2 - y^2 = 8 \dots \dots \dots [1]$ and $2xy = 6$	
$ (x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + 4x^{2}y^{2} $ $ = 8^{2} + (6)^{2} $ $ = 100 $ $ \therefore x^{2} + y^{2} = 10 \dots [2] $	
From [1] + [2] gives $2x^2 = 18$ $x^2 = 9$ $\therefore x = \pm 3$ From [2] - [1] gives $2y^2 = 2$ $y^2 = 1$ $\therefore y = \pm 1$	And the state of t
Since $2xy = 6$ then the square root is $\pm (3 + i)$	С
2. $x^2 + xy + y^2 = 9$ then $2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$	
$\frac{dy}{dx}(x+2y) = -2x - y$	
$\frac{dy}{dx} = \frac{-2x - y}{x + 2y}$	В
3.	D
4. $\because Volume = \pi \int_0^1 ((\sqrt{x})^2 - (x^2)^2) dx = \pi \int_0^1 (x - x^4) dx$ $= \pi \left[\frac{x^2}{2} - \frac{x^5}{5} \right]_0^1$ $= \pi \left[\left(\frac{1}{2} - \frac{1}{5} \right) - 0 \right]$ $= \frac{3\pi}{10}$	В
5. $\therefore 9x^2 - 4y^2 = 36$ then $\frac{x^2}{4} - \frac{y^2}{9} = 1$ where $a = 2$, $b = 3$ So $a^2e^2 = 2^2 + 3^2 = 13$ $ae = \sqrt{13}$ $\therefore e = \frac{\sqrt{13}}{2}$	
Hence Focus = $(\pm\sqrt{13},0)$ and Directrix $x = \pm \frac{a}{e} = \pm \frac{4}{\sqrt{13}} = \pm \frac{4\sqrt{13}}{13}$	A
6. \therefore Square root of $f(x)$ cannot be negative & square root of 4 is 2. Thus the graph is	С

$$= \frac{1}{4} \int u^{\frac{-2}{3}} du$$

$$= \frac{1}{4} \frac{u^{\frac{1}{3}}}{\frac{1}{3}} + c$$

$$= \frac{3}{4} \sqrt[3]{x^4 - 4x} + c$$

C

8. Normal component of acceleration

$$= -\ddot{x}\cos\theta - \ddot{y}\sin\theta$$

$$= i \cos \theta (-r\omega^2 \cos \theta - r\dot{\omega} \sin \theta) - \sin \theta (-r\omega^2 \sin \theta - r\dot{\omega} \cos \theta)$$

$$= r\omega^2 (\cos^2\theta + \sin^2\theta)$$

$$= r\omega^2$$

D

9.
$$: \sin 4\theta - \sin 2\theta = \cos 3\theta \text{ then } 2\cos\left(\frac{4\theta+2\theta}{2}\right)\sin\left(\frac{4\theta-2\theta}{2}\right) = \cos 3\theta$$

$$2\cos 3\theta \sin \theta - \cos 3\theta = 0$$
$$\cos 3\theta (2\sin \theta - 1) = 0$$

$$\therefore \cos 3\theta = 0$$

or
$$\sin \theta = \frac{1}{2}$$

$$\therefore \cos 3\theta = 0 \qquad or \sin \theta = \frac{1}{2}$$
Thus $3\theta = 2n\pi \pm \cos^{-1}\theta \quad or \quad \theta = n\pi + (-1)^n \sin^{-1}\frac{1}{2}$
Hence $\theta = \frac{2n\pi}{3} \pm \frac{\pi}{6} \qquad or \qquad n\pi + (-1)^n \frac{\pi}{6}$

$$\theta = n\pi + (-1)^n \sin^{-1}\frac{1}{2}$$

Hence
$$\theta = \frac{2n\pi}{3} \pm \frac{\pi}{6}$$

$$n\pi + (-1)^n \frac{\pi}{6}$$

D

Call the students who cannot be on the same team A and B. 10.

Case 1 students A and B are in separate teams.

This leaves ${}^{11}C_5 \times {}^6C_5$ ways the remaining students can be placed with the last student being the referee.

Case 2 Student A is the referee which leaves ${}^{12}\mathbf{C}_6 \times {}^{6}\mathbf{C}_6 = {}^{12}\mathbf{C}_6$ ways the team 1 and team 2 can be formed. However those chosen for team 1 and team 2 could be interchanged, and it is still the same arrangement, so the number of ways = 12 C₆ ÷ 2 ways.

Similarly if student B is the referee this again leaves ${}^{12}\mathbf{C}_6 \div 2$ ways the teams can be

Total Ways =
$${}^{11}\mathbf{C}_5 \times {}^{6}\mathbf{C}_5 + {}^{12}\mathbf{C}_6 \div 2 \times 2$$

= ${}^{11}\mathbf{C}_5 \times {}^{6}\mathbf{C}_5 + {}^{12}\mathbf{C}_6$

C

Ques	tion 11 Trial HSC Examination 2013		***************************************
Part	Solution	Marks	Comment
a) i)	Now $\frac{x}{(x-2)^2(x-1)} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{x-1}$		(OC6)
	$\therefore x = A(x-2)(x-1) + B(x-1) + C(x-2)^2$ Let $x = 1$ $\therefore C = 1$ and let $x = 2$ $\therefore B = 2$	1	For both B and C
	Thus $x = A(x-2)(x-1) + 2(x-1) + (x-2)^2$ Now let $x = 0$ then $0 = 2A - 2 + 4$ 2A + 2 = 0 2A = -2 A = -1	1	For the value of A
	Therefore $A = -1$, $B = 2$ and $C = 1$. Hence $\frac{x}{(x-2)^2(x-1)} = -\frac{1}{x-2} + \frac{2}{(x-2)^2} + \frac{1}{x-1}$		
ii)	$\therefore \int \frac{x}{(x-2)^2(x-1)} dx = \int \left(-\frac{1}{x-2} + \frac{2}{(x-2)^2} + \frac{1}{x-1}\right) dx$		
	$= \int -\frac{1}{x-2} dx + 2 \int (x-2)^{-2} dx + \int \frac{1}{x-1} dx$ $= -\ln(x-2) - 2(x-2)^{-1} + \ln(x-1) + C$	1	For the integral
	$= \ln\left(\frac{x-1}{x-2}\right) - \frac{2}{x-2} + C$	1	Correct answer
b) i)	Given $\int x^n e^x dx$ then let $u = x^n \& v' = e^x$ $\therefore u' = nx^{n-1} \qquad v = e^x$		
	Thus $\int x^n e^x dx = uv - \int vu'$ $= x^n e^x - \int e^x nx^{n-1} dx$ $\therefore \int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$	1	Reduction Formula
ii)	Now $\int_0^2 x^3 e^x dx = [x^3 e^x]_0^2 - 3 \int x^2 e^x dx$ = $[x^3 e^x]_0^2 - 3\{[x^2 e^x]_0^2 - 2 \int x e^x dx\}$		
	$= [x^3 e^x]_0^5 - 3\{[x^2 e^x]_0^5 - 2\} x e^x dx\}$ $= [x^3 e^x - 3x^2 e^x]_0^2 + 6\{[xe^x]_0^2 - \int_0^2 e^x dx\}$ $= [x^3 e^x - 3x^2 e^x + 6xe^x - 6e^x]_0^2$ $= [8e^2 - 12e^2 + 12e^2 - 6e^2] - [0 + 0 + 0 - 6]$	1	Substitution
	$=2e^2+6$	1	Correct answer

Quest	tion 11 Trial HSC Examination 2013	***************************************	
Part	Solution	Marks	Comment
c) i).	$\int \frac{5x-3}{x^2+6x-14} \ dx = \frac{5}{2} \int \frac{2x+6}{x^2+6x-14} \ dx - \int \frac{18}{x^2+6x-14} \ dx$	1	Splitting integral
	$= \frac{5}{2} \int \frac{2x+6}{x^2+6x-14} dx - 18 \int \frac{dx}{x^2+6x+9-23} dx$ $= \frac{5}{2} \ln(x^2+6x-14) - 18 \int \frac{dx}{(x+3)^2-23}$	1	First integral
	$= \frac{5}{2}ln(x^2 + 6x - 14) - \frac{18}{2\sqrt{23}}ln\frac{x+3-\sqrt{23}}{x+3+\sqrt{23}} + C$ $= \frac{5}{2}ln(x^2 + 6x - 14) - \frac{9}{\sqrt{23}}ln\frac{x+3-\sqrt{23}}{x+3+\sqrt{23}} + C$	1	Other integral
ii).	$I = \int \frac{dx}{(25 + x^2)^{\frac{3}{2}}} \qquad \text{Let } x = 5 \tan \theta \text{then } dx = 5 \sec^5 \theta d\theta$ $I = \int \frac{1}{(25 + 25 \tan^2 \theta)^{\frac{3}{2}}} 5 \sec^2 \theta d\theta$ $\text{Now } (25 + 25 \tan^2 \theta)^{\frac{3}{2}} = 125 (1 + \tan^2 \theta)^{\frac{3}{2}}$ $= 125 (\sec^2 \theta)^{\frac{3}{2}}$	1	Initial Substitution
	$I = \int \frac{5 \sec^2 \theta d\theta}{125 \sec^3 \theta}$ $= \frac{1}{25} \int \frac{1}{\sec \theta} d\theta$ $= 125 \sec^3 \theta$ $\tan \theta = \frac{x}{5}$ $\sqrt{25 + x^2}$	1	Manipulation
	$= \frac{1}{25} \int \cos \theta \ d\theta$ $= \frac{1}{25} \sin \theta + C$ $= \frac{1}{25} \frac{x}{\sqrt{25 + x^2}} + c = \frac{x}{25\sqrt{25 + x^2}} + C$ $\sin \theta = \frac{x}{\sqrt{25 + x^2}}$	1	Correct answer
iii).	$\int \frac{dx}{\sqrt{4 + 2x - x^2}} = \int \frac{dx}{\sqrt{4 - (x^2 - 2x)}}$ $= \int \frac{dx}{\sqrt{5 - (x^2 - 2x + 1)}}$ $= \int \frac{dx}{\sqrt{5 - (x - 1)^2}}$	1	Splitting integral
	Let $u = x - 1$ and $du = dx$ $= \int \frac{du}{\sqrt{5 - u^2}}$ $= \sin^{-1} \frac{u}{\sqrt{5}} + C$ $= \sin^{-1} \left[\frac{x - 1}{\sqrt{5}} \right] + C$	1	Correct answer

Part a)	Solution	Marks	
a)			Comment
i).	$z = \frac{1 + \sqrt{3}i}{\sqrt{3} + i} \qquad \text{or} z = \frac{1 + \sqrt{3}i}{\sqrt{3} + i}$ $ z = \frac{ 1 + \sqrt{3}i }{ \sqrt{3} + i } \qquad z = \frac{1 + \sqrt{3}i}{\sqrt{3} + i} \times \frac{\sqrt{3} - i}{\sqrt{3} - i}$ $= \frac{\sqrt{1^2 + (\sqrt{3})^2}}{\sqrt{(\sqrt{3})^2 + 1^2}} \qquad z = \frac{\sqrt{3} - i + 3i - \sqrt{3}i^2}{3 - i^2}$		(OC1)
ii).	$z = \frac{\sqrt{1 + 1^2}}{\sqrt{(\sqrt{3})^2 + 1^2}}$ $z = \frac{2}{3} = 1$ $z = \frac{2\sqrt{3} + 2i}{4} = \frac{\sqrt{3} + i}{2}$ $ z = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{1} = 1$ $Arg z = \frac{Arg (1 + \sqrt{3}i)}{Arg (\sqrt{3} + i)}$ or $Arg \left(\frac{\sqrt{3} + i}{2}\right) = \frac{\pi}{6}$	1	$\operatorname{Mod} z$
	$= Arg \left(1 + \sqrt{3}i\right) - Arg \left(\sqrt{3} + i\right)$ $= \frac{\pi}{3} - \frac{\pi}{6}$ $= \frac{\pi}{6}$	1	Arg z
	$z = cis \frac{\pi}{6}$ $z^4 = \left(cis \frac{\pi}{6}\right)^4$ $z^4 = cis \frac{2\pi}{3}$	1	$.z^4$
iv).	$z^{5} = cis \frac{\pi}{6}$ $z = \frac{cis \frac{\pi}{6} + 2k\pi}{5}, k = 0, 1, 2, 3, 4$ $z = cis \left(\frac{\pi}{30} + \frac{2k\pi}{5}\right), k = 0, 1, 2, 3, 4$ $Z_{0} = cis \frac{\pi}{30}$ $Z_{1} = cis \left(\frac{\pi}{30} + \frac{2\pi}{5}\right) = cis \left(\frac{13\pi}{30}\right)$	1	Working
	$Z_{1} = cis\left(\frac{\pi}{30} + \frac{4\pi}{5}\right) = cis\left(\frac{30}{30}\right)$ $Z_{2} = cis\left(\frac{\pi}{30} + \frac{4\pi}{5}\right) = cis\left(\frac{25\pi}{30}\right) = cis\left(\frac{5\pi}{6}\right)$ $Z_{3} = cis\left(\frac{\pi}{30} + \frac{6\pi}{5}\right) = cis\left(\frac{37\pi}{30}\right)$ $Z_{4} = cis\left(\frac{\pi}{30} + \frac{8\pi}{5}\right) = cis\left(\frac{49\pi}{30}\right)$	1	Roots
b)	7	3	One for each graph section
	$ \arg (z+1) < \frac{\pi}{6}$ $ z+\bar{z} \le 6$		

Ques	Question 12 Trial HSC Examination 2013							
Part	Solution	Marks	Comment					
c) i).	$cis 4\theta = (cis \theta)^4 = cos^4\theta + 4cos^3\theta sin\theta i + 6cos^2\theta sin^2\theta i^2 + 4cos\theta sin^3 i^3 + sin^4\theta i$ $cis 4\theta = (cis \theta)^4 = cos^4\theta + 4cos^3\theta sin\theta i - 6cos^2\theta sin^2\theta - 4icos\theta sin^3\theta + sin^4\theta$ $cos 4\theta = cos^4\theta - 6cos^2\theta sin^2\theta + sin^4\theta$ $= cos^4\theta - 6cos^2\theta (1 - cos^2\theta) + (1 - cos^2\theta)^2$ $= cos^4\theta - 6cos^2\theta + 6cos^4\theta + 1 - 2cos^2\theta + cos^4\theta$	1	expansion					
	$\therefore \cos 4\theta = 8\cos^4\theta - 8\cos^2\theta + 1$	1	cos 4θ					
ii).	From above $\sin 4\theta = 4\cos^3\theta \sin\theta - 4\cos\theta \sin^3\theta$ $\cos 4\theta = \cos^4\theta - 6\cos^2\theta \sin^2\theta + \sin^4\theta$ $\therefore \cot 4\theta = \frac{\cos 4\theta}{\sin 4\theta} = \frac{\cos^4\theta - 6\cos^2\theta \sin^2\theta + \sin^4\theta}{4\cos^3\theta \sin\theta - 4\cos\theta \sin^3\theta}$							
	Divide by $\sin^4 \theta$, $\cot 4\theta = \frac{\frac{\cos^4 \theta}{\sin^4 \theta} - \frac{6\cos^2 \theta \sin^2 \theta}{\sin^4 \theta} + \frac{\sin^4 \theta}{\sin^4 \theta}}{\frac{4\sin \theta \cos^3 \theta}{\sin^4 \theta} - \frac{4\cos \theta \sin^3 \theta}{\sin^4 \theta}}$							
	Let $x = \cot \theta$ then $\cot 4\theta = \frac{x^4 - 6x^2 + 1}{4x^3 - 4x}$	1	$\cot 4\theta$					
iii).	If $\cot 4\theta = 0$ then $4\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$ $\theta = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$ Also $\frac{x^4 - 6x^2 + 1}{4x^3 - 4x} = 0$ then $x^4 - 6x^2 + 1 = 0$							
	Since $x = \cot \theta$ So the roots are $\cot \frac{\pi}{8}$, $\cot \frac{3\pi}{8}$, $\cot \frac{5\pi}{8}$, $\cot \frac{7\pi}{8}$	1	Roots in terms of θ					
	From $x^4 - 6x^2 + 1 = 0$ product of the roots is 1 $cot \frac{\pi}{8} cot \frac{3\pi}{8} cot \frac{5\pi}{8} cot \frac{7\pi}{8} = 1$	1	Product of roots to obtain result.					
d)	LHS = $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-1-k+1)!}$		(OC7)					
market de la	$= \frac{(n-1)!}{(k-1)!(n-k)!}$	1	LHS Working					
	RHS = $\frac{k}{n} \frac{n!}{k! (n-k)!}$ = $\frac{(n-1)!}{(k-1)! (n-k)!}$	1	RHS Working					
	$\frac{-}{(k-1)!(n-k)!}$ $\therefore LHS = RHS$							

Ques	tion 13 Trial HSC Examination 2013		
Part	Solution	Marks	Comment
a)	" y = g ig a dayble mast of the malamamial $P(x) = 0$		(OC2)
i).	$\therefore x = a \text{ is a double root of the polynomial } P(x) = 0$ $\therefore P(x) = (x - a)^2 \cdot Q(x) \text{ where } Q(x) \text{ is a polynomial in } x.$ So $P'(x) = 2(x - a)Q(x) + (x - a)^2Q'(x)$ $\therefore P'(x) = (x - a)[2Q(x) + (x - a)Q'(x)]$ At $x = a$ then	1	Expression
	P'(a) = (a-a)[2Q(a) + (a-a)Q'(a)] = 0 \therefore if $x = a$ is a double root of the polynomial $P(x) = 0$, then $P'(a) = P(a) = 0$.	1	Showing $P'(a) = 0$
ii).	$f(x) = x^4 - 2x^3 + x^2 + 12x + 8 \text{ then}$ $f'(x) = 4x^3 - 6x^2 + 2x + 12$ $\text{Try } x = 1, \text{ then } f'(1) = 4 - 6 + 2 + 12 = 12 \neq 0$ $x = -1, \text{ then } f'(-1) = -4 - 6 - 2 + 12 = 0$ $\text{So } f(-1) = 1 + 2 + 1 - 12 + 8 = 0$	1	Finding double
	Thus $(x + 1)$ is a double root. $\therefore (x + 1)^2 = x^2 + 2x + 1 \text{ is a root of } f(x)$	1	Finding double root
	After dividing $f(x)$ by $x^2 + 2x + 1$ gives $f(x) = (x+1)^2(x^2 - 4x + 8)$ $= (x+1)^2(x-2+2i)(x-2-2i)$	1	Division
	$\therefore \text{Roots are } -1, \qquad -1, \qquad 2 \pm 2i$	1	Roots
iii).	Given $x^4 - 5x^3 + 5x^2 + 25x - 26 = 0$ If one root is $3 + 2i$ then $3 - 2i$ is also a root.		
	P(x) is divisible by $x^2 - 6x + 13$. By division P(x) = $(x^2 - 6x + 13)(x^2 + x - 2)$ i.e. P(x) = $(x^2 - 6x + 13)(x + 2)(x - 1)$	1	Quadratic Division
	$\therefore x = 3 + 2i, \ 3 - 2i, \ -2, \ 1$	1	Roots
b) i).	Given $2x^3 - x^2 + 3x - 1 = 0$ Let $x = 2X$, $\therefore X = \frac{x}{2}$		
	Thus $2\left(\frac{x}{2}\right)^3 - \left(\frac{x}{2}\right)^2 + 3\left(\frac{x}{2}\right) - 1 = 0$ $2\left(\frac{x^3}{8}\right) - \left(\frac{x^2}{4}\right) + \frac{3x}{2} - 1 = 0$	1	Substituting new variable
	$2x^{3} - 2x^{2} + 12x - 8 = 0$ $x^{3} - x^{2} + 6x - 4 = 0$	1	Correct Equation
ii).	Let $x = X^2$ $\therefore X = \sqrt{x}$ Thus $2(\sqrt{x})^3 - (\sqrt{x})^2 + 3(\sqrt{x}) - 1 = 0$ $2x\sqrt{x} - x + 3\sqrt{x} - 1 = 0$ $\sqrt{x}(2x + 3) = x + 1$	1	Substituting new variable
	$x(2x+3) = x+1$ $x(2x+3)^{2} = (x+1)^{2}$ $x(4x^{2} + 12x + 9) = x^{2} + 2x + 1$ $4x^{3} + 12x^{2} + 9x - x^{2} - 2x - 1 = 0$		
	$\therefore 4x^3 + 12x^2 + 9x - x^2 - 2x - 1 = 0$ $\therefore 4x^3 + 11x^2 + 7x - 1 = 0$	1	Correct Equation

Ques	tion 13 Trial HSC Examination 2013	***	
Part	Solution	Marks	Comment
c)	Now $V = 2\pi \int_0^{\pi} xy dx$ = $2\pi \int_0^{\pi} x \sin x dx$	1	Correct Integral
	Let $u = x$ $v' = \sin x$ $uv - \int vu'$ Then $u' = 1$ $v = -\cos x$ $-x \cos x + \cos x$ $= 2\pi \{ [-x \cos x]_0^{\pi} + \int_0^{\pi} \cos x dx \}$ $= 2\pi [-x \cos x + \sin x]_0^{\pi}$ $= 2\pi [\pi - 0]$ $= 2\pi^2$	1	Integrating by parts Answer

·

Question 14 Trial HSC Examination 2013				
Part	Solution	Marks	Comment	
a) i).	Given $P(x, y)$, $A(0, 3)$, $B(0, -3)$ PA + PB = 10 then		(OC2)	
and a second sec	$\sqrt{x^2 + (y-3)^2} + \sqrt{x^2 + (y+3)^2} = 10$	1	Substitution	
	$\sqrt{x^2 + (y-3)^2} = 10 - \sqrt{x^2 + (y+3)^2}$			
	$x^{2} + y^{2} - 6y + 9 = 100 - 20\sqrt{x^{2} + (y+3)^{2}} + x^{2} + y^{2} + 6y + 9$	1	Working	
	$20\sqrt{x^2 + (y+3)^2} = 100 + 12y$	1	Warking	
	$400(x^2 + y^2 + 6y + 9) = 10000 + 2400y + 144y^2$	1	Working	
	$400x^{2} + 400y^{2} + 2400y + 3600 = 10000 + 2400y + 144y^{2}$ $400x^{2} + 256y^{2} = 6400$			
	Now dividing by 6400 gives $\frac{x^2}{16} + \frac{y^2}{25} = 1$	1	Answer	
ii).	$\frac{x^2}{16} + \frac{y^2}{25} = 1 \text{ then } 25x^2 + 16y^2 = 400$ When $y = 4$ then $25x^2 + 16(4)^2 = 400$ $25x^2 + 256 = 400$ $25x^2 = 144$ $\therefore x = \pm \frac{12}{5}$	1	x values	
	$Now 50x + 32y \frac{dy}{dx} = 0$			
	then $\frac{dy}{dx} = \frac{-50x}{32y} = \frac{-25x}{16y}$			
	At $x = \frac{12}{5}$, then $m = \frac{-60}{64} = \frac{-15}{16}$	1	Gradients of tangents	
	Thus the equation of the tangent is $y - 4 = \frac{-15}{16} \left(x - \frac{12}{5} \right)$			
	$16y - 64 = -15x + 36$ $\therefore 15x + 16y - 100 = 0$	1	Equation	
	At $x = -\frac{12}{5}$, then $m = \frac{60}{64} = \frac{15}{16}$			
	thus the equation of the tangent is $y-4=\frac{15}{16}\left(x+\frac{12}{5}\right)$ 16y-64=15x+36			
	10y - 07 = 15x + 30 $15x - 16y + 100 = 0$	1	Equation	

Ques	tion 14 Trial HSC Examination 2013		A PARTICIPATION OF THE PARTICI
Part	Solution	Marks	Comment
b)	Given $\frac{x^2}{4} - \frac{y^2}{9} = 1$ at $P(2 \sec \theta, 3 \tan \theta)$ $LHS = \frac{(2 \sec \theta)^2}{4} - \frac{(3 \tan \theta)^2}{9}$ $= \frac{4 \sec^2 \theta}{4} - \frac{9 \tan^2 \theta}{9} = 1$ $= \sec^2 \theta - \tan^2 \theta$	1	(OC2) Showing that P satisfies equation
	$= 1 + tan^{2}\theta - tan^{2}\theta$ $LHS = RHS$ $\therefore P \text{ lies on the Hyperbola H}$ $\therefore x = 2 \sec \theta \qquad \text{and} \qquad y = 3 \tan \theta \text{ then}$ $\frac{dx}{d\theta} = 2 \sec \theta \tan \theta \qquad \text{and} \qquad \frac{dy}{d\theta} = 3 \sec^{2}\theta$ $Thus \frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$		of hyperbola
Adventura un internativo del proposazione del proposazion	$\therefore \frac{dy}{dx} = \frac{3 \sec^2 \theta}{2 \sec \theta \tan \theta} = \frac{3 \sec \theta}{2 \tan \theta}$ Eqt of tangent at P is $y - 3 \tan \theta = \frac{3 \sec \theta}{2 \tan \theta} (x - 2 \sec \theta)$ $2y \tan \theta - 6 \tan^2 \theta = 3x \sec \theta - 6 \sec^2 \theta$ $3x \sec \theta - 2y \tan \theta = 6 \sec^2 \theta - 6 \tan^2 \theta$ $3x \sec \theta - 2y \tan \theta = 6 [\tan^2 \theta + 1 - \tan^2 \theta]$ $3x \sec \theta - 2y \tan \theta = 6$ Now divide by 6 gives	1	Derivative (Implicit derive also possible)
The state of the s	$\frac{x \sec \theta}{2} - \frac{y \tan \theta}{3} = 1$	1	Required result
c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(OC5)
***	Now $AB = 2y = 2\sqrt{25 - x^2}$ So Area of Cross-section is $A(x) = 4(25 - x^2)$	1 1	Length AB Area
	$\therefore \text{ Volume} = \int_{-5}^{5} 4(25 - x^2) dx$ $= 4 \left[25x - \frac{x^3}{3} \right]_{-5}^{5}$ $= 4 \left\{ \left[125 - \frac{125}{3} \right] - \left[-125 - \frac{-125}{3} \right] \right\}$	1	Integral
	$=\frac{2000}{3} \text{ cubic units}$	1	Answer
	NB. (May also use $2 \int_0^5 etc$ also)		

Ques	tion 15 Trial HSC Examination 2013		
Part	Solution	Marks	Comment
a) i).	$\left(-3,\frac{1}{7}\right)$ 3 7	2	Lose 1 mark for each mistake.
ii).	(-3,7) 3 7	2	Lose 1 mark for each mistake.
iii).	$(-3, e^7)$ $(-6,1)$ $(7,1)$ 3	3	Lose 1 mark for each mistake.

.

Solution Let $\sum_{i=1}^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$	Marks	Comment
Let $\sum_{i=1}^{n} n^2 + n^2 + n$		
Let $\sum_{i=1}^{n} \frac{n^2}{n^2} + \frac{n^2}{n^2} + \frac{n}{n}$		(OC7)
Test $n = 1$ $1 = \frac{1}{3} + \frac{1}{2} + \frac{1}{6} = 1$ \therefore True for $n = 1$ Now assume it is true for $n = k$ i. e. $\sum_{i=1}^{k} i^2 = \frac{k^3}{3} + \frac{k^2}{2} + \frac{k}{6}$ Prove for $n = k + 1$ is true	1	Tests $n = 1$ Assume $n = k$
i. e. $\sum_{i=1}^{k+1} i^2 = \frac{k^3}{3} + \frac{k^2}{2} + \frac{k}{6} + (k+1)^2$ $LHS = \frac{2k^3 + 3k^2 + k + 6(k+1)^2}{6}$ $= \frac{2k^3 + 3k^2 + k + 6k^2 + 12k + 6}{6}$ $= \frac{2k^3 + 9k^2 + 13k + 6}{6}$ By division, taking out a factor of $(k+1)$ $\therefore LHS = \frac{(k+1)(2k^2 + 7k + 6)}{6}$	1	Case for LHS of $n = k+1$
$= \frac{2(k+1)^3 + 3(k+1)^2 + (k+1)}{6}$ $= \frac{(k+1)[2(k+1)^2 + 3(k+1) + 1]}{6}$ $= \frac{(k+1)(2k^2 + 4k + 2 + 3k + 3 + 1)}{6}$ $\therefore \text{ RHS} = \frac{(k+1)(2k^2 + 7k + 6)}{6}$ $\therefore \text{ True for } n = k+1 \text{ if true for } n = k, \text{ but true for } n = 1$ $\therefore \text{ true for } n = 1 + 1 = 2 \text{ etc}$ Hence by Mathematical induction, true for all $n \ge 1$	1	Case for RHS of $n = k+1$
		Correct limit
	Prove for $n = k + 1$ is true i. e. $\sum_{i=1}^{k+1} i^2 = \frac{k^3}{3} + \frac{k^2}{2} + \frac{k}{6} + (k+1)^2$ $LHS = \frac{2k^3 + 3k^2 + k + 6(k+1)^2}{6}$ $= \frac{2k^3 + 3k^2 + k + 6k^2 + 12k + 6}{6}$ $= \frac{2k^3 + 9k^2 + 13k + 6}{6}$ By division, taking out a factor of $(k+1)$ $\therefore LHS = \frac{(k+1)(2k^2 + 7k + 6)}{6}$ Now $RHS = \frac{(k+1)^3}{3} + \frac{(k+1)^2}{2} + \frac{k+1}{6}$ $= \frac{2(k+1)^3 + 3(k+1)^2 + (k+1)}{6}$ $= \frac{(k+1)[2(k+1)^2 + 3(k+1) + 1]}{6}$ $= \frac{(k+1)(2k^2 + 4k + 2 + 3k + 3 + 1)}{6}$ $\therefore RHS = \frac{(k+1)(2k^2 + 7k + 6)}{6}$ $\therefore True for n = k+1 if true for n = k, but true for n = 1 \therefore true for n = 1 + 1 = 2 etc Hence by Mathematical induction, true for all n \ge 1$	Prove for $n = k + 1$ is true i.e. $\sum_{i=1}^{k+1} i^2 = \frac{k^3}{3} + \frac{k^2}{2} + \frac{k}{6} + (k+1)^2$ $LHS = \frac{2k^3 + 3k^2 + k + 6(k+1)^2}{6}$ $= \frac{2k^3 + 9k^2 + 13k + 6}{6}$ By division, taking out a factor of $(k+1)$ $\therefore LHS = \frac{(k+1)(2k^2 + 7k + 6)}{6}$ Now $RHS = \frac{(k+1)^3}{3} + \frac{(k+1)^2}{2} + \frac{k+1}{6}$ $= \frac{2(k+1)^3 + 3(k+1)^2 + (k+1)}{6}$ $= \frac{(k+1)[2(k+1)^2 + 3(k+1) + 1]}{6}$ $= \frac{(k+1)(2k^2 + 4k + 2 + 3k + 3 + 1)}{6}$ $\therefore RHS = \frac{(k+1)(2k^2 + 7k + 6)}{6}$ $\therefore True for n = k + 1 if true for n = k, but true for n = 1 \therefore \text{ true for } n = 1 + 1 = 2 \text{ etc} Hence by Mathematical induction, true for all n \ge 1 Now \lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 \dots + n^2}{n^3} = \lim_{n \to \infty} \frac{1}{n^3} \left(\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}\right) = \lim_{n \to \infty} \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}\right) = \lim_{n \to \infty} \left(\frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}\right)$

Ques	tion 15 Trial HSC Examination 2013		
Part	Solution	Marks	Comment
c)	Possible passcodes could contain		(OC7)
	All different letters chosen from F,E,R,T,S in 5 C ₄ × 4! = 120 ways.		
	2 R's and no E's (ie R,R and two of F, T and S) in		
	${}^{3}\mathbf{C}_{2} \times \frac{4!}{2!} = 36 \text{ ways}$		
	2 E's and no R's (ie E,E and two of F, T and S) in		
	${}^{3}\mathbf{C}_{2} \times \frac{4!}{2!} = 36 \text{ ways}$	2	For identifying the different
	2 R's and one E (ie R,R,E and one of F, T and S) in		cases.
	${}^{3}\mathbf{C}_{1} \times \frac{4!}{2!} = 36 \text{ ways}$		
	2 E's and one R (ie R,E,E and one of F, T and S) in		
	${}^{3}\mathbf{C}_{1} \times \frac{4!}{2!} = 36 \text{ ways}$		
	2 E's and 2 R's (ie R,R,E, E) in $\frac{4!}{2! \cdot 2!} = 6$ ways	a war a	
Park property and control of the con	Total possible passcodes = $120 + 36 \times 4 + 6 = 270$ ways	1	For calculating the correct result

Ques	tion 16 Trial HSC Examination 2013		
Part	Solution	Marks	Comment
a) i).	Now $R \propto v$ then		(OC3)
	$R = kv$ $\therefore R = \frac{1}{10} v$		
	F = ma then $ma = mg - kv$		
	$a = g - \frac{kv}{\frac{m}{m}}$ $a = g - \frac{v}{\frac{v}{500}}$	1	Expression for a
	$\frac{dv}{dt} = g - \frac{v}{500}$		
	$\frac{dv}{dt} = \frac{500g - v}{500}$		
	$\frac{dt}{dv} = \frac{500}{500g - v}$		
	$\therefore t = -500 \ln(500g - v) + c$	1	Equation for t
	When $v = 0, t = 0$ then $0 = -500 \ln(500g) + c$ $\therefore c = 500 \ln(500g)$		
	$t = 500 \ln \frac{500g}{500g - v}$ $e^{\frac{t}{500}} = \frac{500g}{500g - v}$ $500g - v = 500g e^{\frac{-t}{500}}$		
	$\therefore v = 500g\left(1 - e^{\frac{-t}{500}}\right)$	1	Finding v
ii).	Terminal velocity when $t \rightarrow \infty$		
,-	$As t \to \infty, e^{\frac{-t}{500}} \to 0 \therefore v \to 500g$	1	Terminal Velocity
iii).	$v = \frac{dx}{dt} = 500g \left(1 - e^{\frac{-t}{500}}\right) \text{ then}$		
	$x = \int (500g - 500g e^{\frac{-t}{500}}) dt$		
	$= 500gt + 250000ge^{\frac{-t}{500}} + c$ When $t = 0$, $x = 0$ then $0 = 0 + 250000g + c$ $\therefore c = -250000g$	1	Equation for x
	$\therefore x = 500gt + 250000g \left(e^{\frac{-t}{500}} - 1\right)$	1	Result

Question 16 Trial HSC Examination 2013		
Part Solution	Marks	Comment
i). Vertical: $T\cos\theta = mg[1]$ Horizontal: $T\sin\theta = mr\omega^2$ Now $r = h\tan\theta$ So $T\sin\theta = m.h\tan\theta\omega^2[2]$ Eliminating T we obtain:		
Tsin θ mg $ \frac{[2]}{[1]} = \frac{T\sin\theta}{T\cos\theta} = \frac{m.h\tan\theta\omega^2}{mg} $ Thus $Tan \theta = \frac{h\tan\theta\omega^2}{g}$ $ \therefore \omega^2 = \frac{g}{h} $ i. e. $\omega = \sqrt{\frac{g}{h}} rad/s$ $ \therefore \text{ Time for 1 revolution} = \frac{2\pi}{\sqrt{\frac{g}{h}}} $	1	Resolving forces to obtain value of Tan θ
$\therefore Period = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{h}{g}}$	1	Period
ii). When $h = 50$ cm (i.e. 0.5 m) and $g = 10$ m/s ² then $T = 2\pi \sqrt{\frac{0.5}{10}} = 1.4 \text{ sec}$	1	Correct value
Now $v = \frac{80 \times 1000}{60^2} = 22\frac{2}{9} \text{ m/s}$	1	Velocity
Now $v = \frac{30 \times 100}{60^2} = 22 \frac{2}{9} \text{ m/s}$ $\therefore \tan \alpha = \frac{v^2}{gr} \text{ then}$ $= \frac{\left(22\frac{2}{9}\right)^2}{10 \times 100} = 0.49$ $\therefore \alpha = 26^{\circ}17'$	1	Sub into equation
$\therefore \alpha = \overset{10 \times 100}{26^{\circ}17'}$	1	Angle
i). $T = \frac{mv^2}{r} = \frac{5(3)^2}{1.5} = 30 \text{ N}$	1	Tension
ii). $r = \frac{mv^2}{r}$ then $150 = \frac{5v^2}{1.5} \to 45 = v^2$ $v = 3\sqrt{5} \ m/s$	1	Velocity
$\therefore \omega = \frac{3\sqrt{5}}{3\pi} rad/s$	1	Number of Revolutions