

EECS2070 02 Digilent Basys3 FPGA Board Part 6

Ref: Digilent Basys3™ FPGA Board Reference Manual

黃稚存

國立清華大學 資訊工程學系

Lecture 14

Pmod I2S Stereo Audio Amplifier

Pmod Connectors (1/2)

Pmod I2S

Basys3 provides 3 Pmod connectors for user

er
Basys3: Pmod Pin-Out Diagram

Pmod Connectors (2/2)

- Each 12-pin Pmod connector provides
 - Two 3.3V VCC signals (pins 6 and 12)
 - Two Ground signals (pins 5 and 11)
 - Eight logic signals

Figure 20. Pmod connectors; front view as loaded on PCB.

Speaker

Control the DAC (digital to analog converter) CS4344

Lec14

Preset Parameters

- Control the DAC (digital to analog converter) CS4344
 - LRCK (Left-Right Clock, or Word Select (WS) Clock, or Sample Rate (Fs) Clock)
 controls the sequence (left or right) of the serial stereo output
 - 25MHz/128 (~192kHz)
 - MCLK (Master Clock) synchronizes the audio data transmission
 - 25MHz (~24.5760MHz)
 - MCLK/LRCK must be an integer ratio
 - **128**
 - Serial Clock (SCK) controls the shifting of data into the input data buffers (32*Fs)
 - = 25MHz/128*32 = 25MHz/4

	MCLK (MHz)									
LRCK (kHz)	64x	96x	128x	192x	256x	384x	512x	768x	1024x	1152x
32	-	-	-	-	8.1920	12.2880	-	-	32.7680	36.8640
44.1	-	-	-	-	11.2896	16.9344	22.5792	33.8680	45.1580	-
48	-	-	-	-	12.2880	18.4320	24.5760	36.8640	49.1520	-
64	-	-	8.1920	12.2880	-	-	32.7680	49.1520	-	-
88.2	-	-	11.2896	16.9344	22.5792	33.8680	-	-	-	-
96	-	-	12.2880	18.4320	24.5760	36.8640	-	-	-	-
128	8.1920	12.2880	-	-	32.7680	49.1520	-	-	-	-
176.4	11.2896	16.9344	22,5792	33.8680	-	-	-	-	-	-
192	12.2880	18.4320	24.5760	36.8640	-	-	-	-	-	-
Mode	QSM			DS	SM		SS	SM		

Audio Controller

Buzzer control + speaker control

Buzzer Control

- The buzzer frequency is obtained by dividing crystal frequency 100MHz by N
 - E.g., cnt_max = 100_000_000 / N
- The buzzer clock (b_clk) is periodically inverted for every N/2 clock cycles
 - To determine the sound frequency
- Example for music notes
 - Mid Do: 261 Hz
 - Mid Re: 293 Hz
 - Mid Mi: 330 Hz

$$Ex: Do > 261 Hz$$

 $100,000,000/N = 261$
 $N = 383,142$
 $N/2 = 191,571$

Speaker Control

- Inputs (stereo audio parallel input)
 - Two 16-bit channels: audio_left [15:0], audio_right[15:0]
 - Value: 16'h8000 (min) < V < 16'h7FFF (max)
 - Volume of output sound in 16-bit two's complement
 - □ Keep $|V_{max}| \approx |V_{min}|$
- Outputs (stereo audio serial output)
 - audio_mclk = 25MHz (divided by 4 from external 100MHz clock source)
 - audio_lrck = 25MHz/128 (clock rate of parallel audio input) ____ Data rate is the same:
 - audio_sck = 25MHz/4 (clock rate of serial audio output)6.25Mbps
 - audio_sdin (1 bit serial audio data output)

9

Lec14

Speaker Control

- Frequency dividers
 - audio_mclk
 - audio_lrck
 - audio_sck
- Parallel to serial module
 - To re-formulate the audio sequence
 - Left first, then right
 - MSB first
- one SCK cycle delayed **LRCLK** 25MH2/128)X32 CLK clock before MSB **SDIN** 3 15 13 | 12 | 11 10 0 15 **MSB** LSB MSB LSB MSB Left Channel Right Channel

Buzzer Control

```
module buzzer control(
 clk, // clock from crystal
 rst, // active high reset
 note div, // div for note generation
 audio left, // left sound audio
  audio right // right sound audio
);
// I/O declaration
input clk; // clock from crystal
input rst; // active high reset
input [21:0] note div; // div for note generation
output [15:0] audio left; // left sound audio
output [15:0] audio right; // right sound audio
// Declare internal signals
reg [21:0] clk cnt next, clk cnt;
reg b clk, b clk next;
```

```
// Note frequency generation
always @(posedge clk or posedge rst)
  if (rst == 1'b1) begin
    clk cnt <= 22'd0;
    b clk <= 1'b0;
  end else begin
    clk cnt <= clk cnt next;</pre>
    b clk <= b clk next;</pre>
  end
always @*
  if (clk_cnt ==(note_div) begin
    clk cnt next = 22'd0;
    b_clk_next = ~b_clk;
  end else begin
    clk cnt next = clk cnt + 1'b1;
   b_clk_next = b_clk; -2^{13} \rightarrow he000
  end
// Assign the amplitude of the note
assign audio_left = -2^{14}
    (b \ clk == 1'b0) ? 16'hC000 : 16'h4000;
assign audio right =
    (b \ clk == 1'b0) ? 16'hC000 : 16'h4000;
endmodule
```

Speaker Control (1/2)

```
module speaker control(
  clk, // clock from the crystal
 rst, // active high reset
  audio in left, // left audio data input
  audio in right, // right channel audio input
  audio mclk, // master clock
  audio lrck, // left-right clock, Word Select
             // clock, or sample rate clock
  audio sck, // serial clock
 audio sdin // serial audio data input
);
// I/O declaration
input clk; // clock from the crystal
input rst; // active high reset
input [15:0] audio in left; // left audio input
input [15:0] audio in right; // right audio input
output audio mclk; // master clock
output audio lrck; // left-right clock
output audio sck; // serial clock
output audio sdin; // serial audio data input
reg audio sdin;
```

```
// Declare internal signal nodes
wire [8:0] clk cnt next;
reg [8:0] clk cnt;
reg [15:0] audio left, audio right;
// Counter for the clock divider
assign clk cnt next = clk cnt + 1'b1;
always @(posedge clk or posedge rst)
  if (rst == 1'b1) (SOM(4)
    clk cnt <= 9'd0;
  else
    clk cnt <= clk cnt next;</pre>
// Assign divided clock output
assign audio_mclk = clk_cnt[1];
assign audio_lrck = clk_cnt[8]; clk_= 25MHz
// use internal serial clock mode
assign audio sck = 1'b1;
```

Speaker Control (2/2)

```
// audio input data buffer
always @(posedge(clk cnt[8]) or posedge rst)
  if (rst == 1'b1) begin
    audio left <= 16'd0;</pre>
    audio right <= 16'd0;</pre>
  end else begin
    audio left <= audio in left;</pre>
    audio right <= audio in right;</pre>
  end
alwavs @*
  case (clk cnt[8:4])
    5'b00000: audio sdin = audio right[0];
    5'b00001: audio sdin = audio left[15];
    5'b00010: audio sdin = audio left[14];
    5'b00011: audio_sdin = audio_left[13];
    5'b00100: audio sdin = audio left[12];
    5'b00101: audio sdin = audio left[11];
    5'b00110: audio sdin = audio left[10];
    5'b00111: audio sdin = audio_left[9];
    5'b01000: audio sdin = audio left[8];
    5'b01001: audio sdin = audio left[7];
    5'b01010: audio sdin = audio left[6];
    5'b01011: audio sdin = audio left[5];
```

```
5'b01100: audio sdin = audio left[4];
    5'b01101: audio sdin = audio left[3];
    5'b01110: audio sdin = audio left[2];
    5'b01111: audio sdin = audio left[1];
    5'b10000: audio sdin = audio left[0];
    5'b10001: audio sdin = audio right[15];
    5'b10010: audio sdin = audio right[14];
    5'b10011: audio sdin = audio right[13];
    5'b10100: audio sdin = audio right[12];
    5'b10101: audio sdin = audio right[11];
    5'b10110: audio sdin = audio right[10];
    5'b10111: audio sdin = audio right[9];
    5'b11000: audio sdin = audio right[8];
    5'b11001: audio sdin = audio right[7];
    5'b11010: audio sdin = audio right[6];
    5'b11011: audio sdin = audio right[5];
    5'b11100: audio sdin = audio right[4];
    5'b11101: audio_sdin = audio_right[3];
    5'b11110: audio sdin = audio_right[2];
    5'b11111: audio sdin = audio right[1];
    default: audio sdin = 1'b0;
  endcase
endmodule
```

Top Model of Audio Controller: speaker.v

```
module speaker(
  clk, // clock from crystal
 rst, // active high reset
 audio mclk, // master clock
  audio lrck, // left-right clock
  audio sck, // serial clock
  audio sdin // serial audio data input
);
// I/O declaration
input clk; // clock from the crystal
input rst; // active high reset
output audio mclk; // master clock
output audio lrck; // left-right clock
output audio sck; // serial clock
output audio sdin; // serial audio data input
// Declare internal nodes
wire [15:0] audio in left, audio in right;
// Note generation
                                          S61+13
buzzer control Ung(
  .clk(clk), // clock from crystal
  .rst(rst), // active high reset
  .note div(22'd191571), // div for note generation
  .audio left(audio in left), // left sound audio
  .audio right(audio in right) // right sound audio
```

```
// Speaker controllor
speaker_control Usc(
   .clk(clk), // clock from the crystal
   .rst(rst), // active high reset
   .audio_in_left(audio_in_left), // left channel
   .audio_in_right(audio_in_right), // right channel
   .audio_mclk(audio_mclk), // master clock
   .audio_lrck(audio_lrck), // left-right clock
   .audio_sck(audio_sck), // serial clock
   .audio_sdin(audio_sdin) // serial audio data
input
);
endmodule
```

Example of Pmod Pin Assignment: speaker.xdc

```
# Clock
set_property PACKAGE_PIN W5 [get_ports {clk}]
set property IOSTANDARD LVCMOS33 [get ports {clk}]
# active low reset
set_property PACKAGE_PIN V17 [get_ports {rst}]
set property IOSTANDARD LVCMOS33 [get ports {rst}]
# Pmod T2S
set property PACKAGE PIN A14 [get ports {audio_mclk}]
set_property IOSTANDARD LVCMOS33 [get_ports {audio_mclk}]
set property PACKAGE PIN A16 [get ports {audio lrck}]
set property IOSTANDARD LVCMOS33 [get ports {audio lrck}]
set property PACKAGE_PIN B15 [get_ports {audio_sck}]
set property IOSTANDARD LVCMOS33 [get ports {audio sck}]
set property PACKAGE PIN B16 [get ports {audio sdin}]
set property IOSTANDARD LVCMOS33 [get ports {audio sdin}]
```

General Pin Assignments for Pmod Connectors

Figure 20. Pmod connectors; front view as loaded on PCB.

Corresponding pins in a constraint file (.xdc)

```
##Pmod Header JA
##Sch name = JA1
#set property PACKAGE PIN J1 [get ports {JA[0]}]
#set property IOSTANDARD LVCMOS33 [get ports {JA[0]}]
##Sch name = JA2
#set property PACKAGE PIN L2 [get ports {JA[1]}]
#set property IOSTANDARD LVCMOS33 [get ports {JA[1]}]
##Sch name = JA3
#set property PACKAGE PIN J2 [get ports {JA[2]}]
#set property IOSTANDARD LVCMOS33 [get ports {JA[2]}]
##Sch name = JA4
#set property PACKAGE PIN G2 [get ports {JA[3]}]
 set property IOSTANDARD LVCMOS33 [get ports {JA[3]}]
##Sch name = JA7
#set property PACKAGE PIN H1 [get ports {JA[4]}]
#set property IOSTANDARD LVCMOS33 [get ports {JA[4]}]
##Sch name = JA8
#set property PACKAGE PIN K2 [get ports {JA[5]}]
#set property IOSTANDARD LVCMOS33 [get ports {JA[5]}]
##Sch name = JA9
#set property PACKAGE PIN H2 [get ports {JA[6]}]
#set property IOSTANDARD LVCMOS33 [get ports {JA[6]}]
##Sch name = JA10
#set property FACKAGE PIN G3 [get ports {JA[7]}]
#set property IOSTANDARD LVCMOS33 [get ports {JA[7]}]
```

Pmod JA	Pmod JB	Pmod JC
JA1: J1	JB1: A14	JC1: K17
JA2: L2	JB2: A16	JC2: M18
JA3: J2	JB3: B15	JC3: N17
JA4: G2	JB4: B16	JC4: P18
JA7: H1	JB7: A15	JC7: L17
JA8: K2	JB8: A17	JC8: M19
JA9: H2	JB9: C15	JC9: P17
JA10: G3	JB10: C16	JC10: R18

Table 6. Basys3 Pmod pin assignme

Basic Concepts of Sound

- Sound that is perceptible by humans has frequencies from about 20 Hz to 20,000 Hz
- Frequency:
 - The higher frequency, the higher pitch
 - The lower frequency, the lower pitch
- Duty Cycle:
 - The evener duty cycle, the better quality
 - → ~50%

音高 (pitch)

	Do-H	Re-H	Mi-H	Fa-H	So-H	La-H	Si-H
數字	- 1	2	3	4	• 5	6	• 7
頻率(Hz)	524	588	660	698	784	880	988
唱名	Do	Re	Mi	Fa	So	La	Si
音高	С	D	E	F	G	Α	В
數字	1	2	3	4	5	6	7
頻率(Hz)	262	294	330	349	392	440	494
唱名	Do-L	Re-L	Mi-L	Fa-L	So-L	La-L	Si-L
數字	1	2	3	4	5	6	7
頻率(Hz)	131	147	165	174	196	220	247

Ref. "音高", wikipedia

Ref. "Numbered Musical Notation (簡譜)", wikipedia

鍵盤音名與簡譜對應

(也可以參考超簡單樂理 Lesson 1 嘎老師 Miss Ga https://youtu.be/liyzCW--nTY)

Src: Yus Music: https://goo.gl/4emT4H

Lec14 EECS2070 02 CT 2019 20

頻率,單位為 <u>赫茲(括號內為<mark>半音</mark>距離,"(0</u>)"為中央C)										
C	16.352	32.703	65.406	130.81	261.63	523.25	1046.5	2093.0	4186.0	8372.0
	(-48)	(-36)	(-24)	(-12)	(0)	(+12)	(+24)	(+36)	(+48)	(+60)
C#/Db	17.324	34.648	69.296	138.59	277.18	554.37	1108.7	2217.5	4434.9	8869.8
	(-47)	(-35)	(-23)	(-11)	(+1)	(+13)	(+25)	(+37)	(+49)	(+61)
D	18.354	36.708	73.416	146.83	293.66	587.33	1174.7	2349.3	4698.6	9397.3
	(-46)	(-34)	(-22)	(-10)	(+2)	(+14)	(+26)	(+38)	(+50)	(+62)
Д♯/ЕЬ	19.445	38.891	77.782	155.56	311.13	622.25	1244.5	2489.0	4978.0	9956.1
	(-45)	(-33)	(-21)	(-9)	(+3)	(+15)	(+27)	(+39)	(+51)	(+63)
E	20.602	41.203	82.407	164.81	329.63	659.26	1318.5	2637.0	5274.0	10548
	(-44)	(-32)	(-20)	(-8)	(+4)	(+16)	(+28)	(+40)	(+52)	(+64)
F	21.827	43.654	87.307	174.61	349.23	698.46	1396.9	2793.8	5587.7	11175
	(-43)	(-31)	(-19)	(-7)	(+5)	(+17)	(+29)	(+41)	(+53)	(+65)
F♯/G♭	23.125	46.249	92.499	185.00	369.99	739.99	1480.0	2960.0	5919.9	11840
	(-42)	(-30)	(-18)	(- 6)	(+6)	(+18)	(+30)	(+42)	(+54)	(+66)
G	24.500	48.999	97.999	196.00	392.00	783.99	1568.0	3136.0	6271.9	12544
	(-41)	(-29)	(-17)	(-5)	(+7)	(+19)	(+31)	(+43)	(+55)	(+67)
G♯/A♭	25.957	51.913	103.83	207.65	415.30	830.61	1661.2	3322.4	6644.9	13290
	(-40)	(-28)	(-16)	(-4)	(+8)	(+20)	(+32)	(+44)	(+56)	(+68)
A	27.500 (-39)	55.000 (-27)	110.00 (-15)	220.00 (-3)	440.00 (+9)	880.00 (+21)	1760.0 (+33)	3520.0 (+45)	7040.0 (+57)	14080 (+69)
А♯/ВЬ	29.135	58.270	116.54	233.08	466.16	932.33	1864.7	3729.3	7458.6	14917
	(-38)	(-26)	(-14)	(-2)	(+10)	(+22)	(+34)	(+46)	(+58)	(+70)
В	30.868	61.735	123.47	246.94	493.88	987.77	1975.5	3951.1	7902.1	15804
	(-37)	(-25)	(-13)	(-1)	(+11)	(+23)	(+35)	(+47)	(+59)	(+71)

Ref. "音高", Wikipedia: https://zh.wikipedia.org/wiki/音高

Lec14 EECS2070 02 CT 2019 21

Numbered Musical Notation 1

Numbered Musical Notation 2

櫻桃小丸子

哆啦A夢

6 5 4 0 | 2
$$\boxed{7 \cdot 6}$$
 $\boxed{5 \cdot 6}$ $\boxed{5 \cdot 4}$ | 0 $\boxed{5 \cdot 6}$ $\boxed{3 \cdot 2}$ | 1 - - 0 ||

More about Numbered Musical Notation

音符	簡 譜 (以Do為例)	休 止 符	簡譜
全音符(1	全休止符	0 0 0 0
二分音符	1 -	二分休止符 ==	0 0
四分音符	1	四分休止符	0
八分音符	1	八分休止符 7	<u>o</u>
十六分音符	1 =	十六分休止符 💆	0

附點音符	簡 譜 (以 Do 為例)	附點休止符	簡譜
附點全音符 〇・	1 1 -	附點全休止符 ==-	000000
附點二分音符 。	1	附點二分休止符 ===	000
附點四分音符 .	1 •	附點四分休止符・	0 •
附點八分音符 🎝	<u>1</u> •	附點八分休止符 7.	ō •
附點十六分音符	1 •	附點十六分休止符 り	0 •

Some more interested facts about video game music...

- 好和弦 NiceChord: https://youtu.be/IAEIrown7GI
 - ◆ 為什麼超級瑪莉會聽起來像是超級瑪莉?

