В ходе проекта получен подготовленный список гипотез для увеличения выручки. Нужно приоритизировать гипотезы, запустить А/В-тест и проанализировать результаты. Проект состоит из 2-х частей.

В первой части нужно приоритизировать гипотезы по увеличению выручки интернет-магазина с применением фреймворков ICE и RICE. Указать, как изменилась приоритизация гипотез при применении RICE вместо ICE и почему.

Во второй части нужно провести анализ А/В-теста. Для этого: Построить графики: кумулятивной выручки по группам, кумулятивного среднего чека по группам, относительного изменения кумулятивного среднего чека группы В к группе А, кумулятивной конверсии по группам, относительного изменения кумулятивной конверсии группы В к группе А, график количества заказов по пользователям, график стоимостей заказов. Посчитать: 95-й и 99-й перцентили количества заказов на пользователя. Выбрать границу для определения аномальных пользователей, 95-й и 99-й перцентили стоимости заказов. Выбрать границу для определения аномальных заказов, статистическую значимость различий в конверсии между группами по «сырым» данным, статистическую значимость различий в конверсии между группами по «очищенным» данным, статистическую значимость различий в конверсии между группами по «очищенным» данным, статистическую значимость различий в среднем чеке заказа между группами по «очищенным» данным, статистическую значимость различий в среднем чеке заказа между группами по «очищенным» данным.

```
На каждом этапе сделать выводы и предположения.
Принять решение по результатам теста и объяснить его.
Варианты решений: 1. Остановить тест, зафиксировать победу одной из групп.
2. Остановить тест, зафиксировать отсутствие различий между группами.

3. Продолжить тест.
```

## Принятие решений в бизнесе на основе данных.

## Загрузка данных и подготовка их к анализу

Загрузим данные о визитах, заказах и гипотезах в переменные. Оптимизируем данные для анализа. Убедимся, что тип данных в каждой колонке — правильный. Путь к файлам:

```
/datasets/hypothesis.csv.
/datasets/orders.csv.
/datasets/visitors.csv.
```

### Загрузка данных

```
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from matplotlib import pyplot as plt
import scipy.stats as stats
from pandas.plotting import register_matplotlib_converters
%config InlineBackend.figure_format = 'retina'
import warnings
warnings.filterwarnings('ignore')
pd.set_option('display.max_colwidth',1000)
```

### Предобработка данных

```
In [3]:
         #получаем информацию
        hypothes.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9 entries, 0 to 8
        Data columns (total 5 columns):
        # Column Non-Null Count Dtype
        ---
            -----
                       -----
         0 Hypothesis 9 non-null object
        1 Reach 9 non-null 2 Impact 9 non-null
                                     int64
                                      int64
         3 Confidence 9 non-null
                                      int64
        4
           Efforts 9 non-null
                                      int64
        dtypes: int64(4), object(1)
        memory usage: 488.0+ bytes
In [4]:
        #получаем информацию
        orders.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1197 entries, 0 to 1196
        Data columns (total 5 columns):
           Column
                         Non-Null Count Dtype
        _ _ _
            -----
                          -----
         0
           transactionId 1197 non-null int64
         1 visitorId 1197 non-null int64
         2
            date
                          1197 non-null object
         3 revenue
                         1197 non-null int64
         4 group
                          1197 non-null object
        dtypes: int64(3), object(2)
        memory usage: 46.9+ KB
In [5]:
        #получаем информацию
        visits.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 62 entries, 0 to 61
        Data columns (total 3 columns):
        # Column Non-Null Count Dtype
         0
                    62 non-null
            date
                                     object
            group
                    62 non-null
         1
                                     object
            visitors 62 non-null
                                     int64
        dtypes: int64(1), object(2)
        memory usage: 1.6+ KB
       Видим, что пропусков нет. Но время указано в формате object и названия столбцов указаны
       неправильно. Исправим.
In [6]:
         # приведем названия столбцов к нижнему регистру и исправим названия:
        hypothes.columns = hypothes.columns.str.lower().str.replace(' ', '_')
In [7]:
        hypothes.columns# проверка результатов - перечень названий столбцов
        Index(['hypothesis', 'reach', 'impact', 'confidence', 'efforts'], dtype='object')
In [8]:
         # приведем названия столбцов к нижнему регистру и исправим названия:
```

```
visits.columns = visits.columns.str.lower().str.replace(' ',
 In [9]:
          visits.columns# проверка результатов - перечень названий столбцов
Out[9]: Index(['date', 'group', 'visitors'], dtype='object')
In [10]:
          # приведем названия столбцов к нижнему регистру и исправим названия:
          orders = orders.rename(columns={'transactionId':'transaction Id', 'visitorId':'visitor Id'})
          orders.columns = map(str.lower, orders.columns)
In [11]:
          orders.columns# проверка результатов - перечень названий столбцов
Out[11]: Index(['transaction_id', 'visitor_id', 'date', 'revenue', 'group'], dtype='object')
In [12]:
          # проверим на дубликаты
          hypothes.duplicated().sum()
Out[12]: 0
In [13]:
          # проверим на дубликаты
          visits.duplicated().sum()
Out[13]: 0
In [14]:
          # проверим на дубликаты
          orders.duplicated().sum()
Out[14]: 0
In [15]:
          # преобразование данных о времени
          visits['date'] = pd.to_datetime(visits['date'])
          orders['date'] = pd.to_datetime(orders['date'])
```

В процессе предобработки данных были выявлены следующие ошибки: время указано в формате object, названия столбцов указаны неправильно. Привели названия столбцов к нижнему регистру и перемеиновали. Преобразовали данные о времени. Проверили на дубликаты. Дубликатов не обнаружено.

#### Проверим количество пользователей в группах.

Группы равны, можно проводить тест.

Проверим, есть ли пользователи, которые попали в две группы теста одновременно.

```
visitors_2 = orders.groupby('visitor_id').agg({'group':'nunique'}).query('group > 1')#Пользовам
In [17]:
           visitors 2.count()
                    58
Out[17]: group
          dtype: int64
         58 пользователей находятся в двух группах одновременно. Это меньше 1% пользователей, можно
         пренебречь.
         Начало и конец теста
In [18]:
           visits['date'].min()
          Timestamp('2019-08-01 00:00:00')
Out[18]:
In [19]:
           visits['date'].max()
Out[19]: Timestamp('2019-08-31 00:00:00')
         Приоритизация гипотез.
In [20]:
           #В файле /datasets/hypothesis.csv 9 гипотез по увеличению выручки интернет-магазина с указанным
           hypothes.style
                                                                              reach impact confidence efforts
                                                                    hypothesis
Out[20]:
                      Добавить два новых канала привлечения трафика, что позволит
          0
                                                                                   3
                                                                                          10
                                                                                                      8
                                                                                                              6
                                         привлекать на 30% больше пользователей
                   Запустить собственную службу доставки, что сократит срок доставки
                                                                                                             10
                                                                       заказов
              Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы
          2
                                                                                                      7
                                                                                   8
                                                                                          3
                                                                                                              3
                                         повысить конверсию и средний чек заказа
              Изменить структура категорий, что увеличит конверсию, т.к. пользователи
          3
                                                                                                      3
                                                                                          3
                                                                                                              8
                                                                                   8
                                                   быстрее найдут нужный товар
               Изменить цвет фона главной страницы, чтобы увеличить вовлеченность
                                                                                   3
                                                                                                      1
                                                                                                              1
              Добавить страницу отзывов клиентов о магазине, что позволит увеличить
                                                                                   3
                                                                                          2
                                                                                                      2
                                                                                                              3
                                                            количество заказов
                     Показать на главной странице баннеры с актуальными акциями и
          6
                                                                                   5
                                                                                                              3
                                       распродажами, чтобы увеличить конверсию
             Добавить форму подписки на все основные страницы, чтобы собрать базу
                                                                                                      8
                                                                                                              5
                                                                                  10
                                                    клиентов для email-рассылок
          8
                          Запустить акцию, дающую скидку на товар в день рождения
                                                                                   1
                                                                                          9
                                                                                                      9
                                                                                                              5
In [21]:
           #Применим фреймворк ICE для приоритизации гипотез. Отсортируем их по убыванию приоритета.
           hypothes['ICE'] = hypothes['impact'] * hypothes['confidence'] / hypothes['efforts']
In [22]:
           print(hypothes[['ICE']].sort_values(by='ICE', ascending=False).round(3))
                ICE
             16.200
```

13.333

11.200

7.000

7

6

2

```
1 2.000
5 1.333
3 1.125
4 1.000
```

В приоритете 8, 0 и 7 гипотезы: Запустить акцию, дающую скидку на товар в день рождения. Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей. Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email-рассылок

```
In [23]:
          # Применим фреймворк RICE для приоритизации гипотез. Отсортируем их по убыванию приоритета.
          hypothes['RICE'] = hypothes['reach'] * hypothes['impact'] * hypothes['confidence'] / hypothes[
In [24]:
          print(hypothes.sort values(by='RICE', ascending=False)[['RICE']])
             RTCF
         7 112.0
         2
           56.0
         0 40.0
         6 40.0
         8 16.2
         3
             9.0
         1
             4.0
         5
              4.0
         4
              3.0
In [25]:
          print(hypothes[['ICE']].sort_values(by='ICE', ascending=False).round(3))
          print(hypothes.sort_values(by='RICE', ascending=False)[['RICE']])
               ICE
         8 16.200
         0 13.333
         7 11.200
         6
           8.000
           7.000
         2
           2.000
         1
            1.333
         5
         3
           1.125
         4 1.000
            RTCF
         7 112.0
         2
           56.0
           40.0
         0
            40.0
         6
           16.2
         8
         3
              9.0
              4.0
         1
         5
              4.0
```

С большим отрывом 7 гипотеза. Следом 2, 0 и 6: Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email-рассылок. Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы повысить конверсию и средний чек заказа. Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей. Показать на главной странице баннеры с актуальными акциями и распродажами, чтобы увеличить конверсию.

Приоритизация гипотез при применении RICE вместо ICE изменилась. С большим отрывом идет 7 гипотеза - "Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email-рассылок".Так получилось потому, что ее параметр reach равен 10 - больше, чем у других гипотез.У 8 гипотезы -"Запустить акцию, дающую скидку на товар в день рождения" параметр reach равен 1,поэтому она ушла на 5 место.Охват аудитории имеет огромное значение.

### Анализ А/В-теста

### График кумулятивной выручки по группам

```
In [26]:
          datesGroups = orders[['date', 'group']].drop duplicates()
          ordersAggregated = datesGroups.apply(
              lambda x: orders[
                   np.logical and(
                       orders['date'] <= x['date'], orders['group'] == x['group']</pre>
              ].agg(
                   {
                       'date': 'max',
                       'group': 'max',
                       'transaction id': 'nunique',
                       'visitor_id': 'nunique',
                       'revenue': 'sum',
                   }
              ),
              axis=1,
          ).sort values(by=['date', 'group'])
          visitorsAggregated = datesGroups.apply(
              lambda x: visits[
                   np.logical_and(
                       visits['date'] <= x['date'], visits['group'] == x['group']</pre>
               l.agg({'date': 'max', 'group': 'max', 'visitors': 'sum'}),
              axis=1,
          ).sort_values(by=['date', 'group'])
          cumulativeData = ordersAggregated.merge(
              visitorsAggregated, left_on=['date', 'group'], right_on=['date', 'group']
          cumulativeData.columns = [
              'date',
               'group',
               'orders',
               'buyers',
               'revenue'
               'visitors',
          cumulativeRevenueA = cumulativeData[cumulativeData['group']=='A'][['date','revenue', 'orders']]
          cumulativeRevenueB = cumulativeData[cumulativeData['group']=='B'][['date', 'revenue', 'orders']]
          plt.figure(figsize = (20,6))
          plt.plot(cumulativeRevenueA['date'], cumulativeRevenueA['revenue'], label='A')
          plt.plot(cumulativeRevenueB['date'], cumulativeRevenueB['revenue'], label='B')
          #plt.annotate('скачок', ху=('2019-08-17', 2800000), хуteхt=('2019-08-10', 3500000),
                        arrowprops=dict(facecolor='g'))
          #plt.annotate('отрыв', ху=('2019-08-05', 800000), хуtext=('2019-08-05', 2000000),
                        arrowprops=dict(facecolor='q'))
          plt.title(' График кумулятивной выручки по группам', size = 23)
          plt.xlabel('Дата', size =15)
          plt.ylabel('Выручка, руб', size =15)
          plt.grid()
          plt.legend()
          plt.show()
```



В середине теста сегмент В вырвался вперед и продолжил лидировать до конца теста.Похоже, что это аномально большие заказы влияют на результаты.Впоследствии их нужно удалить.

### График кумулятивного среднего чека по группам



Кумулятивное значение среднего чека по сегментам продолжает колебаться. Принимать решение по этой метрике нельзя. Или придется анализировать выбросы, сильно влияющие на результаты.

# График относительного изменения кумулятивного среднего чека группы В к группе А.

```
In [28]:
    plt.figure(figsize = (20,6))
    mergedCumulativeRevenue = cumulativeRevenueA.merge(cumulativeRevenueB, left_on='date', right_or
    plt.plot(mergedCumulativeRevenue['date'], (mergedCumulativeRevenue['revenueB']/mergedCumulative
    plt.title('График относительного изменения кумулятивного среднего чека группы В к группе A',siz
    plt.xlabel('Дата',size =15)
    plt.ylabel('Отношение В к A',size =15)
    plt.axhline(y=0, color='black', linestyle='--')
    plt.grid()
    plt.show()
```



График относительного различия в среднем чеке между группами. Результаты теста значительно и резко менялись несколько раз по датам.Видимо,именно тогда были совершены аномальные выбросы.

## График кумулятивной конверсии по группам

```
In [29]:
          plt.figure(figsize = (20,6))
          cumulativeData['conversion'] = cumulativeData['orders']/cumulativeData['visitors']
          cumulativeDataA = cumulativeData[cumulativeData['group']=='A']
          cumulativeDataB = cumulativeData[cumulativeData['group']=='B']
          plt.plot(cumulativeDataA['date'], cumulativeDataA['conversion'], label='A')
          plt.plot(cumulativeDataB['date'], cumulativeDataB['conversion'], label='B')
          plt.title('График кумулятивной конверсии по группам',size = 23)
          plt.xlabel('Дата', size =15)
          plt.ylabel('Конверсия', size =15)
          plt.legend()
          #plt.annotate('отрыв', ху=('2019-08-06', 0.033), хуtext=('2019-08-05', 0.035),
                       arrowprops=dict(facecolor='g'))
          #plt.axis(figsize = (0,1))
          plt.ylim()
          plt.grid()
          plt.show()
```



В начале сегмент А имел большую конверсию, но затем сегмент В выравнялся и зафиксировал большее значение относительно сегмента А.

# График относительного изменения кумулятивной конверсии группы В к группе А.

```
plt.plot(mergedCumulativeConversions['date'], mergedCumulativeConversions['conversionB']/merged plt.title('График относительного изменения кумулятивной конверсии группы В к группе A.', size = plt.xlabel('Дата', size = 15) plt.ylabel('Отношение В к A', size = 15) plt.axhline(y=0, color='black', linestyle='--') plt.axhline(y=0.2, color='grey', linestyle='--') plt.grid() plt.show()
```



График относительного различия конверсии между группами. Почти с самого начала теста группа В лидирует по конверсии. Был спад в начале, снижение в середине теста. К концу теста наметился подъем до показателя 13% относительно группы А.

### Точечный график количества заказов по пользователям.

```
visitor_id orders
1023 4256040402
                      11
591
      2458001652
                      11
569
      2378935119
                       9
487
      2038680547
                       8
44
                       5
      199603092
744
     3062433592
                       5
                       5
55
      237748145
                       5
917
      3803269165
                       5
299
      1230306981
897
    3717692402
                       5
```



Пользователей, заказавших более 2 раз,немного. А заказавших более 3 раз совсем мало. Они вполне могут быть аномальными.

# Подсчет 95-й и 99-й перцентили количества заказов на пользователя.

```
In [32]:
          print(ordersByUsers.sort values(by='orders', ascending=False).head(10))
          print(np.percentile(ordersByUsers['orders'], [90, 95, 99]))
                visitor_id orders
         1023
                4256040402
                                 11
         591
                2458001652
                                 11
         569
                2378935119
                                 9
         487
                2038680547
                                 8
         44
                 199603092
                                 5
         744
                3062433592
                                 5
         55
                 237748145
                                 5
         917
                3803269165
                                 5
          299
                1230306981
                                 5
         897
                3717692402
          [1. 2. 4.]
```

Не более 5% пользователей совершили 2 заказа, и не более 1% - более 4 заказов.

### Точечный график стоимостей заказов

```
In [33]:
          print(orders.sort_values(by='revenue', ascending=False).head(10))
          plt.figure(figsize = (20,6))
          x_values = pd.Series(range(0, len(orders['revenue'])))
          plt.scatter(x_values, orders['revenue'])
          plt.title('Точечный график стоимостей заказов.',size = 23)
          plt.xlabel('Дата', size =15)
          plt.ylabel('Заказы, руб', size =15)
          plt.show()
                                                 date
               transaction_id visitor_id
                                                       revenue group
         425
                                                       1294500
                    590470918
                               1920142716 2019-08-19
                                                                   В
                                                                   В
```

```
2108080724 2019-08-15
1196
          3936777065
                                              202740
           192721366 1316129916 2019-08-27
                                               93940
858
                                                         Α
                      1307669133 2019-08-13
1136
           666610489
                                               92550
744
                       888512513 2019-08-27
                                               86620
                                                         В
          3668308183
          1216533772 4266935830 2019-08-29
682
                                               78990
                                                         В
          1811671147
                      4266935830 2019-08-29
                                               78990
662
          3603576309 4133034833 2019-08-09
743
                                               67990
                                                         Α
          1348774318
                      1164614297 2019-08-12
                                               66350
1103
                                                         Α
                      148427295 2019-08-12
                                               65710
1099
           316924019
```



Заказов болеее 100000 очень мало. Есть выбросы в районе 1200000. Это аномалии.

### Посдчет 95-й и 99-й перцентили стоимости заказов

```
In [34]:
          print(orders.head(10))
          print(np.percentile(orders['revenue'], [90, 95, 99]))
            transaction id visitor id
                                             date revenue group
         0
                3667963787 3312258926 2019-08-15
                                                      1650
         1
                2804400009 3642806036 2019-08-15
                                                       730
                                                               В
         2
                2961555356 4069496402 2019-08-15
                                                       400
                                                               Α
                                                               В
         3
                3797467345 1196621759 2019-08-15
                                                      9759
         4
                2282983706 2322279887 2019-08-15
                                                      2308
                                                               В
         5
                 182168103 935554773 2019-08-15
                                                      2210
                                                               В
                 398296753 2900797465 2019-08-15
                                                     1860
                                                               В
         7
                2626614568
                             78758296 2019-08-15
                                                     1044
                                                               Α
         8
                1576988021
                           295230930 2019-08-15
                                                     13710
                                                               Α
                                                               В
                1506739906 1882260405 2019-08-15
                                                     1855
         [18168. 28000. 58233.2]
```

Не более 5% чеков дороже 28000 и не более 1% - дороже 58233.

Построим гистрограмму распределения количества заказов на одного пользователя.

```
In [35]:
    plt.figure(figsize = (20,6))
    plt.hist(ordersByUsers['orders'])
    plt.title('Гистограмма распределения количества заказов на одного пользователя.',size = 23)
    plt.xlabel('Заказы,шт',size =15)
    plt.ylabel('Пользователи,чел',size =15)
    plt.show()
```



Большинство покупателей заказывали только один раз. Однако доля пользователей с 2-4 заказами тоже значительна.

Посчитаем выборочные перцентили количества заказов на одного пользователя:

```
print(np.percentile(ordersByUsers['orders'], [90, 95, 99]))
```

```
[1. 2. 4.]
```

Нижнюю границу для определения аномальных заказов установим в 4 заказа на одного пользователя. И отсеем аномальных пользователей по ней.

# Статистическая значимость различий в конверсии между группами по «сырым» данным.

Сформулируем гипотезы:

1. Нулевая гипотеза: Статистически значимых различий в конверсии между группами нет.

2.Обратная гипотеза:Статистически значимые различия в конверсии между группами есть.

```
In [48]:
          visitorsADaily = visits[visits['group'] == 'A'][['date', 'visitors']]
          visitorsADaily.columns = ['date', 'visitorsPerDateA']
          visitorsACummulative = visitorsADaily.apply(
              lambda x: visitorsADaily[visitorsADaily['date'] <= x['date']].agg(</pre>
                  {'date': 'max', 'visitorsPerDateA': 'sum'}
              ),
              axis=1,
          visitorsACummulative.columns = ['date', 'visitorsCummulativeA']
          visitorsBDaily = visits[visits['group'] == 'B'][['date', 'visitors']]
          visitorsBDaily.columns = ['date', 'visitorsPerDateB']
          visitorsBCummulative = visitorsBDaily.apply(
              lambda x: visitorsBDaily[visitorsBDaily['date'] <= x['date']].agg(</pre>
                  {'date': 'max', 'visitorsPerDateB': 'sum'}
              ),
              axis=1,
          visitorsBCummulative.columns = ['date', 'visitorsCummulativeB']
          ordersADaily = (
              orders[orders['group'] == 'A'][['date', 'transaction_id', 'visitor_id', 'revenue']]
               .groupby('date', as_index=False)
               .agg({'transaction_id': pd.Series.nunique, 'revenue': 'sum'})
          ordersADaily.columns = ['date', 'ordersPerDateA', 'revenuePerDateA']
          ordersACummulative = ordersADaily.apply(
              lambda x: ordersADaily[ordersADaily['date'] <= x['date']].agg(</pre>
                   {'date': 'max', 'ordersPerDateA': 'sum', 'revenuePerDateA': 'sum'}
              ),
              axis=1,
          ).sort_values(by=['date'])
          ordersACummulative.columns = [
               'date',
               'ordersCummulativeA',
              'revenueCummulativeA',
          ]
          ordersBDaily = (
              orders[orders['group'] == 'B'][['date', 'transaction_id', 'visitor_id', 'revenue']]
               .groupby('date', as_index=False)
               .agg({'transaction_id': pd.Series.nunique, 'revenue': 'sum'})
          ordersBDaily.columns = ['date', 'ordersPerDateB', 'revenuePerDateB']
          ordersBCummulative = ordersBDaily.apply(
              lambda x: ordersBDaily[ordersBDaily['date'] <= x['date']].agg(</pre>
                   {'date': 'max', 'ordersPerDateB': 'sum', 'revenuePerDateB': 'sum'}
```

```
),
    axis=1,
).sort values(by=['date'])
ordersBCummulative.columns = [
    'date',
    'ordersCummulativeB',
    'revenueCummulativeB',
]
data = (
    ordersADaily.merge(
        ordersBDaily, left on='date', right on='date', how='left'
    .merge(ordersACummulative, left_on='date', right_on='date', how='left')
    .merge(ordersBCummulative, left_on='date', right_on='date', how='left')
    .merge(visitorsADaily, left on='date', right on='date', how='left')
    .merge(visitorsBDaily, left_on='date', right_on='date', how='left')
    .merge(visitorsACummulative, left_on='date', right_on='date', how='left')
    .merge(visitorsBCummulative, left on='date', right on='date', how='left')
)
data
ordersByUsersA = (
    orders[orders['group'] == 'A']
    .groupby('visitor_id', as_index=False)
    .agg({'transaction id': pd.Series.nunique})
ordersByUsersA.columns = ['visitor_id', 'orders']
ordersByUsersB = (
    orders[orders['group'] == 'B']
    .groupby('visitor_id', as_index=False)
    .agg({'transaction_id': pd.Series.nunique})
)
ordersByUsersB.columns = ['visitor_id', 'orders']
sampleA = pd.concat([ordersByUsersA['orders'],pd.Series(0, index=np.arange(data['visitorsPerDat
sampleB = pd.concat([ordersByUsersB['orders'],pd.Series(0, index=np.arange(data['visitorsPerDat
print("{0:.3f}".format((data['ordersPerDateB'].sum()/data['visitorsPerDateB'].sum())/(data['ordersPerDateB'].sum())
print("{0:.5f}".format(stats.mannwhitneyu(sampleA, sampleB, alternative = 'two-sided')[1]))
```

0.138 0.01679

P-value значительно меньше 0.05, поэтому нулевую гипотезу отвергаем. Анализ "сырых" данных говорит, что в конверсиях между группами есть статистически значимые различия. Относительный прирост конверсии группы В к конверсии группы А равен 13.8%.

#### Автоматическая проверка двухсторонней гипотезы.

```
In [38]: print("{0:.5f}".format(stats.mannwhitneyu(sampleA, sampleB, alternative = 'two-sided')[1]))
0.01679
```

Проверка двусторонней гипотезы подтвердила результат. Анализ "сырых" данных говорит, что в конверсиях между группами есть статистически значимые различия.

# Статистическая значимость различий в среднем чеке заказа между группами по «сырым» данным.

```
In [39]: print('{0:.3f}'.format(stats.mannwhitneyu(orders[orders['group']=='A']['revenue'], orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders[orders]orders]orders]orders]orders]]]]]])]
```

p- value больше 0.05 - нулевую гипотезу о том, что статистически значимых различий в среднем чеке заказа между группами по «сырым» данным нет, не отвергаем. Относительный прирост среднего чека

сегмента В к сегменту А почти 26%.

684 358944393 Name: visitor id, dtype: int64

#### Автоматическая проверка двухсторонней гипотезы.

```
In [40]: print('{0:.3f}'.format(stats.mannwhitneyu(orders[orders['group']=='A']['revenue'], orders[orders]
```

p- value больше 0.05 - нулевую гипотезу о том, что статистически значимых различий в среднем чеке заказа между группами по «сырым» данным нет, не отвергаем.

#### Подготовка очищенных от аномалий данных.

Напомним, что 95-й и 99-й перцентили средних чеков равны 28000 и 58233.2 рублям. А 95-й и 99-й перцентили числа заказов на одного пользователя равны 2 и 4 заказам на пользователя.Примем за аномальных пользователей тех, кто совершил 4 заказа и более, или совершил заказ на сумму свыше 30000 рублей.Так мы уберём 1% пользователей с наибольшим числом заказов и от 1% до 5% заказов с наибольшей стоимостью

```
In [41]:
          ordersByUsersB.columns = ['visitor_id', 'orders']
          usersWithManyOrders = pd.concat(
                 ordersByUsersA[ordersByUsersA['orders'] > 3]['visitor_id'],
              ordersByUsersB[ordersByUsersB['orders'] > 3]['visitor_id'],],
              axis=0,
          usersWithExpensiveOrders = orders[orders['revenue'] > 30000]['visitor id']
          abnormalUsers = (
          pd.concat([usersWithManyOrders, usersWithExpensiveOrders], axis=0)
               .drop_duplicates()
               .sort_values()
          print(abnormalUsers.head(5))
          print(abnormalUsers.shape)
         1099
                 148427295
         18
                 199603092
         928
                 204675465
         23
                 237748145
```

(57,)
Получили 57 аномальных пользователей. Узнаем, как их действия повлияли на результаты теста. После их удаления нужно посчитать очищенные данные.

## Статистическая значимость различий в конверсии между группами по «очищенным» данным.

```
sampleBFiltered = pd.concat(
    Γ
        ordersByUsersB[
            np.logical not(ordersByUsersB['visitor id'].isin(abnormalUsers))
        [ 'orders'],
        pd.Series(
            0,
            index=np.arange(
                data['visitorsPerDateB'].sum() - len(ordersByUsersB['orders'])
            ),
            name='orders',
        ),
    ],
    axis=0,
print('{0:.5f}'.format(stats.mannwhitneyu(sampleAFiltered, sampleBFiltered)[1]))
print('{0:.3f}'.format(sampleBFiltered.mean()/sampleAFiltered.mean()-1))
```

0.01832 0.148

Результаты по конверсии практически не изменились. p-value значительно меньше 0.05, как и в случае с "сырыми" данными. Статистическая значимость достигнута, сегмент В значительно лучше сегмента А на 14.8%.

#### Автоматическая проверка двухсторонней гипотезы.

```
In [43]:
    print('{0:.5f}'.format(stats.mannwhitneyu(sampleAFiltered, sampleBFiltered, alternative = 'two
0.01832
```

Результаты по конверсии практически не изменились. p-value значительно меньше 0.05, как и в случае с "сырыми" данными.

## Статистическая значимость различий в среднем чеке заказа между группами по «очищенным» данным

```
In [44]:
          print(
               '{0:.3f}'.format(
                   stats.mannwhitneyu(
                       orders[
                           np.logical_and(
                               orders['group'] == 'A',
                               np.logical_not(orders['visitor_id'].isin(abnormalUsers)),
                           )
                       ]['revenue'],
                       orders[
                           np.logical_and(
                               orders['group'] == 'B',
                               np.logical_not(orders['visitor_id'].isin(abnormalUsers)),
                           )
                       ]['revenue'],
                   )[1]
              )
          )
          print(
               "{0:.3f}".format(
                   orders
                       np.logical_and(
                           orders['group'] == 'B',
                           np.logical_not(orders['visitor_id'].isin(abnormalUsers)),
                   ]['revenue'].mean()
                   / orders[
```

0.958 -0.020

После удаления аномалий картина не поменялась. p-value = 0.479 больше 0.05. Значит, нулевую гипотезу о том, что статистически значимых различий в конверсии между группами нет, не отвергаем. Относительный проигрыш группы В равен 2%. Это может быть просто "шум".

#### Автоматическая проверка двухсторонней гипотезы

```
In [45]:
          print(
               '{0:.3f}'.format(
                   stats.mannwhitneyu(
                       orders[
                           np.logical and(
                               orders['group'] == 'A',
                               np.logical_not(orders['visitor_id'].isin(abnormalUsers)),
                       ]['revenue'],
                       orders[
                           np.logical_and(
                               orders['group'] == 'B',
                               np.logical_not(orders['visitor_id'].isin(abnormalUsers)),
                       ['revenue'], alternative = 'two-sided'
                   )[1]
               )
           )
```

0.958

После удаления аномалий картина не поменялась. p-value = 0.958 больше 0.05. Значит, нулевую гипотезу о том, что статистически значимых различий в конверсии между группами нет, не отвергаем.



```
In [47]:

mergedCumulativeRevenue = cumulativeRevenueA.merge(cumulativeRevenueB, left_on='date', right_or plt.figure(figsize = (20,6))
plt.plot(mergedCumulativeRevenue['date'], (mergedCumulativeRevenue['revenueB']/mergedCumulative plt.title('График относительного изменения кумулятивного среднего чека группы В к группе A',siz plt.xlabel('Дата',size =15)
plt.ylabel('Отношение В к A',size =15)
plt.axhline(y=0, color='black', linestyle='--')
plt.grid()
plt.show()
```



Есть статистически значимое различие по конверсии между группами как по сырым данным, так и после фильтрации аномалий. Нет статистически значимого различия по среднему чеку между группами как по сырым данным, так и после фильтрации аномалий. График различия конверсии между группами сообщает, что результаты группы В лучше группы А: имеют тенденцию к росту. Сейчас данные группы В лучше на почти 15 %. График различия среднего чека колеблется: он-то и позволил вам найти аномалии.

Исходя из обнаруженных фактов,остановить тест, признать его успешным и перейти к проверке следующей гипотезы.

## Выводы.

В ходе проекта обработал полученные данные крупного интернет-магазина. Первым делом проведена предобработка данных на наличие пропусков, дубликатов. Определил и изучил пропущенные значения. Там, где это необходимо, заменил типы данных на необходимые для удобной работы. Проверил,есть ли пользователи, которые попали в две группы теста одновременно. Таких 58 человек. Это мало, можно пренебречь.

В первой части проекта изучил список представленных гипотез для увеличения выручки, приоритизировал их. Для приоритизации гипотез применил фреймворки ICE и RICE. Указал, как изменилась приоритизация гипотез при применении RICE вместо ICE. Так если вначале приоритетны были гипотезы: "Запустить акцию, дающую скидку на товар в день рождения" и

"Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей", то после - "Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email-рассылок" и "Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы повысить конверсию и средний чек заказа". Это стало возможным из-за большего охвата аудитории.

Во второй части проанализировал А/В-тест: Построил график кумулятивной выручки по группам. Построил график кумулятивного среднего чека по группам. Построил график относительного изменения кумулятивного среднего чека группы В к группе А. Построил график кумулятивной конверсии по группам. Построил график относительного изменения кумулятивной конверсии группы В к группе А. Построил точечный график количества заказов по пользователям.

Посчитал 95-й и 99-й перцентили количества заказов на пользователя. Выбрал границу для определения аномальных пользователей.

Построил точечный график стоимостей заказов.

Посчитал 95-й и 99-й перцентили стоимости заказов. Выбрал границу для определения аномальных заказов.

Посчитал статистическую значимость различий в конверсии между группами по «сырым» данным.

Посчитал статистическую значимость различий в среднем чеке заказа между группами по «сырым» данным.

Посчитал статистическую значимость различий в конверсии между группами по «очищенным» данным.

Посчитал статистическую значимость различий в среднем чеке заказа между группами по «очищенным» данным.

#### Результаты по "сырым" данным:

по конверсии p- value меньше заданного, значит нулевую гипотезу не подтверждаем, статистически значимые различия есть. Прирост группы В относительно группы А 13.8%. По чекам p- value больше заданного, значит, нулевую гипотезу не отвергаем. Различий нет.Прирост группы В относительно группы А 26%.

После удаления аномальных значений картина не поменялась. По конверсии p- value меньше заданного, статистически значимые различия есть. Прирост группы В относительно группы A 14.8%.

По чекам p- value больше заданного, значит, нулевую гипотезу не отвергаем. Отношение группы В к группе A 2%. Это скорее всего, "шум".

Принял решение по результатам теста:

Метрики стабилизировались, поэтому можно остановить тест, признать его успешным.

Есть статистически значимые отличия по конверсии между группами. Группа В опережает группу A.

По среднему чеку статистически значимых отличий между группами нет.

Можно выдать интернет-магазину рекомендации :

конверсия тестовой группа лучше платит, внедряем тестируемые изменения на весь продукт.

https://pandas.pydata.org/pandas-docs/stable/user\_guide/style.html