

PrimePar: Efficient Spatial-temporal Tensor Partitioning for Large Transformer Model Training

Haoran Wang, Lei Wang, Haobo Xu, Ying Wang, Yuming Li, Yinhe Han

Research Center for Intelligent Computing Systems
Institute of Computing Technology, Chinese Academy of Sciences

ASPLOS 2024

Training Large Language Models (LLM) is Challenging

Kaplan J, McCandlish S, Henighan T, et al. Scaling laws for neural language models[J]. arXiv preprint arXiv:2001.08361, 2020.

Model	Corpus size	Model Parameters
GPT	800M tokens	117M
GPT-3	300B tokens	175B
Llama 2	2T tokens	70B
Llama 3	15T tokens	70B

LLM training:

- Larger dataset size
- Larger model parameter size

Training LLM is Challenging

Focus of this work: better tensor partition with less collective communication and tensor replication

Motivational ideas

Distributing sub-operators along spatial dimension

Motivational ideas

Distributing sub-operators along temporal dimension provides extra opportunities

Optimizing both throughput and memory footprint

Tensor Partition Notations

Spatial index: device ID $\mathbf{D} = (d_1, d_2, ..., d_n), d_i = 0, 1$

Temporal index: t = 0,1,2,...

Dimension slice index (DSI): $I_X(\mathbf{D}, t)$

Example:

Given DSIs:

$$I_M(\mathbf{D}, t) = 0$$

$$I_N(\mathbf{D}, t) = d_1$$

$$I_K(\mathbf{D}, t) = d_2$$

Device $(d_1 = 0, d_2 = 0)$

$$I_M = 0$$

 $I_N = d_1 = 0$
 $I_K = d_2 = 0$

Device $(d_1 = 0, d_2 = 1)$

$$I_M = 0$$

 $I_N = d_1 = 0$
 $I_K = d_2 = 1$

Device $(d_1 = 1, d_2 = 0)$

$$I_M = 0$$

 $I_N = d_1 = 1$
 $I_K = d_2 = 0$

Device $(d_1 = 1, d_2 = 1)$

$$I_M = 0$$

 $I_N = d_1 = 1$
 $I_K = d_2 = 1$

Existing Spatial Tensor Partition

Partition dimension N $I_M^F = I_M^B = I_M^G = 0$ $I_N^F = I_N^B = I_N^G = \mathbf{d_1}$ $I_K^F = I_K^B = I_K^G = 0$

$$I_M^F = I_M^B = I_M^G = 0$$

$$I_N^F = I_N^B = I_N^G = \mathbf{d_1}$$

$$I_K^F = I_K^B = I_K^G = 0$$

Each time choose one dimension to partition and partition recursively

Existing Spatial Tensor Partition

Partition dimension K $I_M^F = I_M^B = I_M^G = 0$ $I_N^F = I_N^B = I_N^G = \mathbf{d_1}$ $I_K^F = I_K^B = I_K^G = \mathbf{d_2}$ Device (1,1) Device (0,0) Device (0,1) Device (1,0) Forward all-reduce all-reduce **Backward** all-reduce all-reduce Gradient

Each time choose one dimension to partition and partition recursively

Spatial $I_M = 0$

Device $(d_1 = 0, d_2 = 0)$

Device $(d_1 = 0, d_2 = 1)$

Device $(d_1 = 1, d_2 = 0)$

Device $(d_1 = 1, d_2 = 1)$

• Different d_1 : all-reduce

- Different d_1 : all-reduce
- **2** Same d_1 and different d_2 : replication

- Different d_1 : all-reduce
- **2** Same d_1 and different d_2 : replication

 $(d_1 = 1, d_2 = 1)$

- I_N takes all possible values as t variates: no all-reduce
- **2** Fixing t, (I_M, I_N) can't be the same for different devices: no replication

X

Novel Spatial-temporal Tensor Partition Primitive

Regard 2^{2k} devices as a square with row and column indices $0 \le r, c < 2^k$

Temporal index $0 \le t < 2^k$

Gradient
$$I_{M} = (r+t) \bmod 2^{k}$$

$$I_{N} = (r+c-1+\delta_{t,2^{k}-1}) \bmod 2^{k}$$

$$I_{K} = (c-1+\delta_{t,2^{k}-1}) \bmod 2^{k}$$

- Collective communication free: Summed-over dimensions take all possible values when t variates
- **2** No tensor replication: $(r+c-1) = (r'+c'-1) \mod 2^k$

$$\begin{cases} (r+c-1) \equiv (r'+c'-1) \bmod 2^k \\ (c'+t) \equiv (c+t) \bmod 2^k \end{cases} \longrightarrow r = r', c = c'$$

3 Continuity between training phases: Forward last step

$$I_N = (r+c+2^k-1) \bmod 2^k$$
 $I_K = c \bmod 2^k$
Backward first step
$$I_N = (r+c-1) \bmod 2^k$$
 $I_K = (c+0) \bmod 2^k$ match

Communicate tensor I

from right
$$(r, c + 1, t)$$
:

 $I_M = r \mod 4$
 $I_N = (r + c + 1 + t) \mod 4$
 $I_N = (r + c + t + t) \mod 4$
 $I_N = (r + c + t + t) \mod 4$

Communicate tensor W

$$(r+1,c,t): \xrightarrow{\text{from bottom}} (r,c,t+1):$$

$$I_N = (r+1+c+t) \bmod 4$$

$$I_K = c \bmod 4$$

$$I_K = c \bmod 4$$

$$I_K = c \bmod 4$$

Forward DSIs

$$I_{M} = r \mod 4$$

$$I_{N} = (r + c + t) \mod 4$$

$$I_{K} = c \mod 4$$

Communicate tensor I

from right
$$(r, c + 1, t)$$
:

 $I_M = r \mod 4$
 $I_N = (r + c + 1 + t) \mod 4$
 $I_N = (r + c + t + t) \mod 4$
 $I_N = (r + c + t + t) \mod 4$

Communicate tensor W

$$(r+1,c,t): \xrightarrow{\text{from bottom}} (r,c,t+1):$$

$$I_N = (r+1+c+t) \bmod 4$$

$$I_K = c \bmod 4$$

$$I_K = c \bmod 4$$

$$I_K = c \bmod 4$$

Forward DSIs

$$I_{M} = r \mod 4$$

$$I_{N} = (r + c + t) \mod 4$$

$$I_{K} = c \mod 4$$

$$O_{0,0} += \overline{l_{0,1}} \times W_{1,0} \qquad O_{0,1} += \overline{l_{0,2}} \times W_{2,1} \qquad O_{0,2} += \overline{l_{0,3}} \times W_{3,2} \qquad O_{0,3} += \overline{l_{0,0}} \times W_{0,3}$$

$$O_{1,0} += \overline{l_{1,2}} \times W_{2,0} \qquad O_{1,1} += \overline{l_{1,3}} \times W_{3,1} \qquad O_{1,2} += \overline{l_{1,0}} \times W_{0,2} \qquad O_{1,3} += \overline{l_{1,1}} \times W_{1,3}$$

$$O_{2,0} += \overline{l_{2,3}} \times W_{3,0} \qquad O_{2,1} += \overline{l_{2,0}} \times W_{0,1} \qquad O_{2,2} += \overline{l_{2,1}} \times W_{1,2} \qquad O_{2,3} += \overline{l_{2,2}} \times W_{2,3}$$

$$O_{3,0} += \overline{l_{3,0}} \times W_{0,0} \qquad O_{3,1} += \overline{l_{3,1}} \times W_{1,1} \qquad O_{3,2} += \overline{l_{3,2}} \times W_{2,2} \qquad O_{3,3} += \overline{l_{3,3}} \times W_{3,3}$$

Communicate tensor I

from right
$$(r, c + 1, t)$$
:

 $I_M = r \mod 4$
 $I_N = (r + c + 1 + t) \mod 4$
 $I_N = (r + c + t + t) \mod 4$
 $I_N = (r + c + t + t) \mod 4$

Communicate tensor W

$$(r+1,c,t): \xrightarrow{\text{from bottom}} (r,c,t+1):$$

$$I_N = (r+1+c+t) \bmod 4$$

$$I_K = c \bmod 4$$

$$I_K = c \bmod 4$$

$$I_K = c \bmod 4$$

Forward DSIs

$$I_{M} = r \mod 4$$

$$I_{N} = (r + c + t) \mod 4$$

$$I_{K} = c \mod 4$$

$$O_{0,0} += \overline{l_{0,2}} \times W_{2,0} \qquad O_{0,1} += \overline{l_{0,3}} \times W_{3,1} \qquad O_{0,2} += \overline{l_{0,0}} \times W_{0,2} \qquad O_{0,3} += \overline{l_{0,1}} \times W_{1,3}$$

$$O_{1,0} += \overline{l_{1,3}} \times W_{3,0} \qquad O_{1,1} += \overline{l_{1,0}} \times W_{0,1} \qquad O_{1,2} += \overline{l_{1,1}} \times W_{1,2} \qquad O_{1,3} += \overline{l_{1,2}} \times W_{2,3}$$

$$O_{2,0} += \overline{l_{2,0}} \times W_{0,0} \qquad O_{2,1} += \overline{l_{2,1}} \times W_{1,1} \qquad O_{2,2} += \overline{l_{2,2}} \times W_{2,2} \qquad O_{2,3} += \overline{l_{2,3}} \times W_{3,3}$$

$$O_{3,0} += \overline{l_{3,1}} \times W_{1,0} \qquad O_{3,1} += \overline{l_{3,2}} \times W_{2,1} \qquad O_{3,2} += \overline{l_{3,3}} \times W_{3,2} \qquad O_{3,3} += \overline{l_{3,0}} \times W_{0,3}$$

Last step of Forward, no communication:

Forward $0 = I \times W$ Backward $dI = dO \times W^T$

• W alignment

Forward
$$(r, c, t = 3)$$
:

 $I_N = (r + c + 3) \mod 4$
 $I_K = c \mod 4$

Backward $(r, c, t = 0)$:

 $I_N = (r + c - 1) \mod 4$
 $I_K = (c + 0) \mod 4$

$O_{0,0} += I_{0,3} \times W_{3,0}$	$O_{0,1} += I_{0,0} \times \mathbf{W_{0,1}}$	$O_{0,2} += I_{0,1} \times \mathbf{W_{1,2}}$	$O_{0,3} += I_{0,2} \times W_{2,3}$
$O_{1,0} += I_{1,0} \times W_{0,0}$	$O_{1,1} += I_{1,1} \times \mathbf{W}_{1,1}$	$O_{1,2} += I_{1,2} \times W_{2,2}$	$O_{1,3} += I_{1,3} \times W_{3,3}$
$O_{2,0} += I_{2,1} \times W_{1,0}$	$O_{2,1} += I_{2,2} \times W_{2,1}$	$O_{2,2} += I_{2,3} \times W_{3,2}$	$O_{2,3} += I_{2,0} \times W_{0,3}$
$O_{3,0} += I_{3,2} \times W_{2,0}$	$O_{3,1} += I_{3,3} \times W_{3,1}$	$O_{3,2} += I_{3,0} \times W_{0,2}$	$O_{3,3} += I_{3,1} \times W_{1,3}$

Communicate tensor d0

$$(r,c+1,t): \xrightarrow{\text{from right}} (r,c,t+1): \\ I_M = r \bmod 4 \\ I_K = (c+1+t) \bmod 4 \xrightarrow{\text{match}} I_K = (c+t+1) \bmod 4$$

Communicate tensor W

$$(r-1,c+1,t): \xrightarrow{\text{from right-top}} (r,c,t+1): \\ I_N = (r-1+c+1-1) \bmod 4 \\ I_K = (c+1+t) \bmod 4 \xrightarrow{\text{match}} I_K = (c+t+1) \bmod 4$$

Backward DSIs

$$I_{M} = r \mod 4$$

$$I_{N} = (r + c - 1) \mod 4$$

$$I_{K} = (c + t) \mod 4$$

$$dI_{0,3} += dO_{0,0}^{T} \times W_{0,3}^{T} \qquad dI_{0,0} += dO_{0,1}^{T} \times W_{1,0}^{T} \qquad dI_{0,1} += dO_{0,2}^{T} \times W_{2,1}^{T} \qquad dI_{0,2} += dO_{0,3}^{T} \times W_{3,2}^{T} \qquad dI_{1,0} += dO_{1,0}^{T} \times W_{0,0}^{T} \qquad dI_{1,1} += dO_{1,1}^{T} \times W_{1,1}^{T} \qquad dI_{1,2} += dO_{1,2}^{T} \times W_{2,2}^{T} \qquad dI_{1,3} += dO_{1,3}^{T} \times W_{3,3}^{T} \qquad dI_{2,1} += dO_{2,0}^{T} \times W_{0,1}^{T} \qquad dI_{2,2} += dO_{2,1}^{T} \times W_{1,2}^{T} \qquad dI_{2,3} += dO_{2,2}^{T} \times W_{2,3}^{T} \qquad dI_{2,0} += dO_{2,3}^{T} \times W_{3,0}^{T} \qquad dI_{3,1} += dO_{3,3}^{T} \times W_{3,1}^{T} \qquad dI_{3,1} += dO_{3,2}^{T} \times W_{3,1}^{T} \qquad dI_{3,2} += dO_{3,2}^{T} \times W_{3,2}^{T} \qquad dI_{3,2} += dO_{3,2}^{T} \times W_{3,2}^$$

Communicate tensor d0

$$(r,c+1,t): \xrightarrow{\text{from right}} (r,c,t+1):$$

$$I_{M} = r \bmod 4$$

$$I_{K} = (c+1+t) \bmod 4$$

$$I_{K} = (c+t+1) \bmod 4$$

Communicate tensor W

$$(r-1,c+1,t): \xrightarrow{\text{from right-top}} (r,c,t+1): \\ I_N = (r-1+c+1-1) \bmod 4 \\ I_K = (c+1+t) \bmod 4 \xrightarrow{\text{match}} I_K = (c+t+1) \bmod 4$$

Backward DSIs

$$I_{M} = r \mod 4$$

$$I_{N} = (r + c - 1) \mod 4$$

$$I_{K} = (c + t) \mod 4$$

$$dI_{0,3} += dO_{0,1} \times W_{1,3}^{T} \qquad dI_{0,0} += dO_{0,2} \times W_{2,0}^{T} \qquad dI_{0,1} += dO_{0,3} \times W_{3,1}^{T} \qquad dI_{0,2} += dO_{0,0} \times W_{0,2}^{T} \qquad dI_{1,0} += dO_{1,1} \times W_{1,0}^{T} \qquad dI_{1,1} += dO_{1,2} \times W_{2,1}^{T} \qquad dI_{1,2} += dO_{1,3} \times W_{3,2}^{T} \qquad dI_{1,3} += dO_{1,0} \times W_{0,3}^{T} \qquad dI_{2,1} += dO_{2,1} \times W_{1,1}^{T} \qquad dI_{2,2} += dO_{2,2} \times W_{2,2}^{T} \qquad dI_{2,3} += dO_{2,3} \times W_{3,3}^{T} \qquad dI_{2,0} += dO_{2,0} \times W_{0,0}^{T} \qquad dI_{3,1} += dO_{3,1} \times W_{1,2}^{T} \qquad dI_{3,1} += dO_{3,2} \times W_{0,1}^{T} \qquad dI_{3,1} += dO_{3,1} \times W_{0,1}^{T} \qquad dI_{3,1}$$

Communicate tensor d0

$$(r,c+1,t): \xrightarrow{\text{from right}} (r,c,t+1):$$

$$I_{M} = r \bmod 4$$

$$I_{K} = (c+1+t) \bmod 4$$

$$I_{K} = (c+t+1) \bmod 4$$

Communicate tensor W

$$(r-1,c+1,t): \xrightarrow{\text{from right-top}} (r,c,t+1): \\ I_N = (r-1+c+1-1) \bmod 4 \\ I_K = (c+1+t) \bmod 4 \xrightarrow{\text{match}} I_K = (c+t+1) \bmod 4$$

Backward DSIs

$$I_{M} = r \mod 4$$

$$I_{N} = (r + c - 1) \mod 4$$

$$I_{K} = (c + t) \mod 4$$

$$dI_{0,3} += dO_{0,2}^{T} \times W_{2,3}^{T} \qquad dI_{0,0} += dO_{0,3}^{T} \times W_{3,0}^{T} \qquad dI_{0,1} += dO_{0,0}^{T} \times W_{0,1}^{T} \qquad dI_{0,2} += dO_{0,1}^{T} \times W_{1,2}^{T} \qquad dI_{1,0} += dO_{1,2}^{T} \times W_{2,0}^{T} \qquad dI_{1,1} += dO_{1,3}^{T} \times W_{3,1}^{T} \qquad dI_{1,2} += dO_{1,0}^{T} \times W_{0,2}^{T} \qquad dI_{1,3} += dO_{1,1}^{T} \times W_{1,3}^{T} \qquad dI_{2,1} += dO_{2,2}^{T} \times W_{2,1}^{T} \qquad dI_{2,2} += dO_{2,3}^{T} \times W_{3,2}^{T} \qquad dI_{2,3} += dO_{2,0}^{T} \times W_{0,3}^{T} \qquad dI_{2,0} += dO_{2,1}^{T} \times W_{1,0}^{T} \qquad dI_{3,2} += dO_{3,2}^{T} \times W_{2,2}^{T} \qquad dI_{3,3} += dO_{3,3}^{T} \times W_{3,3}^{T} \qquad dI_{3,0} += dO_{3,0}^{T} \times W_{0,0}^{T} \qquad dI_{3,1} += dO_{3,1}^{T} \times W_{1,1}^{T} \qquad dI_{3,1} += dO_{3,1}^{T} \times W_{1,1}^$$

• W alignment from right
Forward (r, c, t = 0): $I_N = (r + c) \mod 4$ Backward (r, c + 1, t = 3): — $I_N = (r + c + 1 - 1) \mod 4$ Forward $O = I \times W$ $I_K = (c+1+3) \bmod 4$ match $I_{\kappa} = (c) \mod 4$ Backward $dI = dO \times W^T$ Gradient $dW = I^T \times dO$ • d0 alignment • *I* alignment Forward (r, c, t = 3): Gradient (r, c, t = 0): Backward (r, c, t = 3): Gradient (r, c, t = 0): $\begin{array}{c}
\longleftarrow \\
\text{match}
\end{array} \begin{array}{c}
I_M = (r+0) \bmod 4 \\
I_K = (r+c-1) \bmod 4
\end{array}$ $I_M = r \mod 4$ $I_M = r \bmod 4$ $I_K = (c+3) \bmod 4$ $I_K = (c+1) \bmod 4$ $I_K = (c-1) \bmod 4$ $I_N = (r+c+3) \bmod 4$

				_
$dI_{0,3} += dO_{0,3} \times W_{3,3}^T$	$dI_{0,0} += dO_{0,0} \times W_{0,0}^T$	$dI_{0,1} += dO_{0,1} \times W_{1,1}^T$	$dI_{0,2} += dO_{0,2} \times W_{2,2}^T$	/
$dI_{1,0} += dO_{1,3} \times W_{3,0}^T$	$dI_{1,1} += dO_{1,0} \times W_{0,1}^T$	$dI_{1,2} += dO_{1,1} \times W_{1,2}^T$	$dI_{1,3} += dO_{1,2} \times W_{2,3}^T$	/
$dI_{2,1} += dO_{2,3} \times W_{3,1}^T$	$dI_{2,2} += dO_{2,0} \times W_{0,2}^T$	$dI_{2,3} += dO_{2,1} \times W_{1,3}^T$	$dI_{2,0} += dO_{2,2} \times W_{2,0}^T$	/
$dI_{3,2} += dO_{3,3} \times W_{3,2}^T$	$dI_{3,3} += dO_{3,0} \times W_{0,3}^T$	$dI_{3,0} += dO_{3,1} \times W_{1,0}^T$	$dI_{3,1} += dO_{3,2} \times W_{2,1}^T$	

Communicate tensor I

$$\begin{array}{c} (r+1,c-1,t) \colon & \xrightarrow{\qquad \qquad } (r,c,t+1) \colon \\ I_{M} = (r+1+t) \ mod \ 4 \\ I_{N} = \left(r+1+c-1-1+\delta_{0,3}\right) \ mod \ 4 \end{array} \qquad \begin{array}{c} I_{M} = (r+t+1) \ mod \ 4 \\ I_{N} = \left(r+c-1+\delta_{1,3}\right) \ mod \ 4 \end{array}$$

Communicate tensor d0

$$(r+1,c,t): \xrightarrow{\text{from bottom}} (r,c,t+1):$$

$$I_{M} = (r+1+t) \bmod 4$$

$$I_{K} = (c-1+\delta_{0,3}) \bmod 4 \xrightarrow{\text{match}} I_{K} = (c-1+\delta_{1,3}) \bmod 4$$

Gradient DSIs

$$I_{M} = (r + t) \mod 4$$

 $I_{N} = (r + c - 1 + \delta_{0,3}) \mod 4$
 $I_{K} = (c - 1 + \delta_{0,3}) \mod 4$

$$dW_{3,3} += I_{3,0}^T \times dO_{0,3} \qquad dW_{0,0} += I_{0,0}^T \times dO_{0,0} \qquad dW_{1,1} += I_{1,0}^T \times dO_{0,1} \qquad dW_{2,2} += I_{2,0}^T \times dO_{0,2}$$

$$dW_{0,3} += I_{0,1}^T \times dO_{1,3} \qquad dW_{1,0} += I_{1,1}^T \times dO_{1,0} \qquad dW_{2,1} += I_{2,1}^T \times dO_{1,1} \qquad dW_{3,2} += I_{3,1}^T \times dO_{1,2}$$

$$dW_{1,3} += I_{1,2}^T \times dO_{2,3} \qquad dW_{2,0} += I_{2,2}^T \times dO_{2,0} \qquad dW_{3,1} += I_{3,2}^T \times dO_{2,1} \qquad dW_{0,2} += I_{0,2}^T \times dO_{2,2}$$

$$dW_{2,3} += I_{2,3}^T \times dO_{3,3} \qquad dW_{3,0} += I_{3,3}^T \times dO_{3,0} \qquad dW_{0,1} += I_{0,3}^T \times dO_{3,1} \qquad dW_{1,2} += I_{1,3}^T \times dO_{3,2}$$

Communicate tensor I

$$\begin{array}{c} (r+1,c-1,t) \colon \xrightarrow{\qquad \qquad } & \text{from bottom left} \\ I_M = (r+1+t) \bmod 4 \\ I_N = \left(r+1+c-1-1+\delta_{1,3}\right) \bmod 4 & \xrightarrow{\qquad \qquad } & I_M = (r+t+1) \bmod 4 \\ I_N = \left(r+c-1+\delta_{2,3}\right) \bmod 4 & \xrightarrow{\qquad } & I_N = \left(r+c-1+\delta_{2,3}\right) \bmod 4 \end{array}$$

Communicate tensor d0

$$(r+1,c,t): \xrightarrow{\text{from bottom}} (r,c,t+1):$$

$$I_{M} = (r+1+t) \bmod 4$$

$$I_{K} = (c-1+\delta_{1,3}) \bmod 4 \xrightarrow{\text{match}} I_{K} = (c-1+\delta_{2,3}) \bmod 4$$

Gradient DSIs

$$I_{M} = (r + t) \mod 4$$

 $I_{N} = (r + c - 1 + \delta_{1,3}) \mod 4$
 $I_{K} = (c - 1 + \delta_{1,3}) \mod 4$

$$dW_{3,3} += I_{3,1}^T \times dO_{1,3} \qquad dW_{0,0} += I_{0,1}^T \times dO_{1,0} \qquad dW_{1,1} += I_{1,1}^T \times dO_{1,1} \qquad dW_{2,2} += I_{2,1}^T \times dO_{1,2}$$

$$dW_{0,3} += I_{0,2}^T \times dO_{2,3} \qquad dW_{1,0} += I_{1,2}^T \times dO_{2,0} \qquad dW_{2,1} += I_{2,2}^T \times dO_{2,1} \qquad dW_{3,2} += I_{3,2}^T \times dO_{2,2}$$

$$dW_{1,3} += I_{1,3}^T \times dO_{3,3} \qquad dW_{2,0} += I_{2,3}^T \times dO_{3,0} \qquad dW_{3,1} += I_{3,3}^T \times dO_{3,1} \qquad dW_{0,2} += I_{0,3}^T \times dO_{3,2}$$

$$dW_{2,3} += I_{2,0}^T \times dO_{0,3} \qquad dW_{3,0} += I_{3,0}^T \times dO_{0,0} \qquad dW_{0,1} += I_{0,0}^T \times dO_{0,1} \qquad dW_{1,2} += I_{1,0}^T \times dO_{0,2}$$

Communicate tensor I

$$\begin{array}{c} (r+1,c,t) \colon & \xrightarrow{\qquad \qquad \qquad } (r,c,t+1) \colon \\ I_{M} = (r+1+2) \ mod \ 4 & \xrightarrow{\qquad \qquad } I_{M} = (r+3) \ mod \ 4 \\ I_{N} = \left(r+1+c-1+\delta_{2,3}\right) \ mod \ 4 & \xrightarrow{\qquad \qquad } I_{N} = \left(r+c-1+\delta_{3,3}\right) \ mod \ 4 \\ \end{array}$$

Communicate tensor do

$$\begin{array}{c} (r+1,c+1,t) \colon & \xrightarrow{\text{from bottom right}} & (r,c,t+1) \colon \\ I_M = (r+1+2) \ mod \ 4 & \\ I_K = (c+1-1+\delta_{2,3}) \ mod \ 4 & \\ I_K = (c-1+\delta_{3,3}) \ mod \ 4 & \\ \end{array}$$

Gradient DSIs

$$I_{M} = (r+t) \mod 4$$

 $I_{N} = (r+c-1+\delta_{2,3}) \mod 4$
 $I_{K} = (c-1+\delta_{2,3}) \mod 4$

$$dW_{3,3} += I_{3,2}^{T} \times dO_{2,3} \qquad dW_{0,0} += I_{0,2}^{T} \times dO_{2,0} \qquad dW_{1,1} += I_{1,2}^{T} \times dO_{2,1} \qquad dW_{2,2} += I_{2,2}^{T} \times dO_{2,2}$$

$$dW_{0,3} += I_{0,3}^{T} \times dO_{3,3} \qquad dW_{1,0} += I_{1,3}^{T} \times dO_{3,0} \qquad dW_{2,1} += I_{2,3}^{T} \times dO_{3,1} \qquad dW_{3,2} += I_{3,3}^{T} \times dO_{3,2}$$

$$dW_{1,3} += I_{1,0}^{T} \times dO_{0,3} \qquad dW_{2,0} += I_{2,0}^{T} \times dO_{0,0} \qquad dW_{3,1} += I_{3,0}^{T} \times dO_{0,1} \qquad dW_{0,2} += I_{0,0}^{T} \times dO_{0,2}$$

$$dW_{2,3} += I_{2,1}^{T} \times dO_{1,3} \qquad dW_{3,0} += I_{3,1}^{T} \times dO_{1,0} \qquad dW_{0,1} += I_{0,1}^{T} \times dO_{1,1} \qquad dW_{1,2} += I_{1,1}^{T} \times dO_{1,2}$$

Gradient (r, c + 1, t < 3): $I_N = (r + c + 1 - 1 + \delta_{t,3}) \mod 4$ $I_K = (c + 1 - 1 + \delta_{t,3}) \mod 4$ $I_K = (c + 1 - 1 + \delta_{t,3}) \mod 4$ match

From right Gradient (r, c, t = 3): $I_N = (r + c - 1 + \delta_{3,3}) \mod 4$ match

Forward (r, c, t = 0): $I_N = (r + c + 0) \mod 4$

 $I_K = c \mod 4$

Accumulated dW when t < 3

 $dW_{3,3} + dW_{0,0} + dW_{1,1} + dW_{2,2} + dW_{0,3} + dW_{1,0} + dW_{2,1} + dW_{3,2} + dW_{1,3} + dW_{2,0} + dW_{3,1} + dW_{0,2} + dW_{2,3} + dW_{3,0} + dW_{0,1} + dW_{1,2} + dW_{1,2}$

Add dW computed during step t = 3 with shifted accumulated dW

$dW_{0,0} += I_{0,3}^T \times dO_{3,0}$	$dW_{1,1} += I_{1,3}^T \times dO_{3,1}$	$dW_{2,2} += I_{2,3}^T \times dO_{3,2}$	$dW_{3,3} += I_{3,3}^T \times dO_{3,3}$
$dW_{1,0} += I_{1,0}^T \times dO_{0,0}$	$dW_{2,1} += I_{2,0}^T \times dO_{0,1}$	$dW_{3,2} += I_{3,0}^T \times dO_{0,2}$	$dW_{0,3} += I_{0,0}^T \times dO_{0,3}$
$dW_{2,0} += I_{2,1}^T \times dO_{1,0}$	$dW_{3,1} += I_{3,1}^T \times dO_{1,1}$	$dW_{0,2} += I_{0,1}^T \times dO_{1,2}$	$dW_{1,3} += I_{1,1}^T \times dO_{1,3}$
$dW_{3,0} += I_{3,2}^T \times dO_{2,0}$	$dW_{0,1} += I_{0,2}^T \times dO_{2,1}$	$dW_{1,2} += I_{1,2}^T \times dO_{2,2}$	$dW_{2,3} += I_{2,2}^T \times dO_{2,3}$

Cost Model

Intra-operator communication: all-reduce, ring

Example:

all-reduce of forward linear operator output tensor O – induced by partition N

Profile a set of α , β for each grouping pattern

$$\alpha_1 > \alpha_2$$

$$latency = \alpha_1 \cdot sizeof(0) + \beta_1$$

$$latency = \alpha_2 \cdot sizeof(0) + \beta_2$$

Cost Model

Inter-operator communication: redistribution between operators

Example:

redistribution during forward between linear (n_1) and relu (n_2)

Shadow: where the input and output tensor do not intersect, need communication

Cost Model

Overall cost

Counting all intra- and inter- operator cost

Computation graph $G = \langle N, E \rangle$, suppose operator n_i is partitioned with strategy \mathcal{P}_i

$$Cost = \sum_{n_i \in N} intraCost(n_i, \mathcal{P}_i) + \sum_{(n_i, n_j) \in E} interCost(n_i, n_j, \mathcal{P}_i, \mathcal{P}_j)$$

To 2^n devices

- Number of partition primitives of operator n_i: P_i
- Tensor partition space size of n_i : $O(P_i^n)$

Optimization Algorithm: naïve dynamic programming

Complicated optimal substructure

Overall complexity $O(P_0^n P_2^n P_3^n P_4^n P_5^n)$

Optimization Algorithm: segmented dynamic programming

Segmentation of Transformer Models

- Dynamic programming within each segment: Optimal substructures $C_{0,2}, C_{2,7}, C_{7,12}$
- Merge segments:

$$\begin{split} &C_{0,7}(\mathcal{P}_0,\mathcal{P}_7) = \\ &\min_{\mathcal{P}_2} \Bigl\{ C_{0,2}(\mathcal{P}_0,\mathcal{P}_2) + C_{2,7}(\mathcal{P}_2,\mathcal{P}_7) - n_2(\mathcal{P}_2) + e_{0,7}(\mathcal{P}_0,\mathcal{P}_7) \Bigr\} \\ &C_{0,12}(\mathcal{P}_0,\mathcal{P}_{12}) = \\ &\min_{\mathcal{P}_7} \Bigl\{ C_{0,7}(\mathcal{P}_0,\mathcal{P}_7) + C_{7,12}(\mathcal{P}_7,\mathcal{P}_{12}) - n_7(\mathcal{P}_7) \Bigr\} \end{split}$$

Merge layers:

$$\begin{split} &C_{0,24}(\mathcal{P}_0,\mathcal{P}_{24}) = \\ &\min_{\mathcal{P}_{12}} \bigl\{ C_{0,12}(\mathcal{P}_0,\mathcal{P}_{12}) + C_{12,24}(\mathcal{P}_{12},\mathcal{P}_{24}) - n_{12}(\mathcal{P}_{12}) \bigr\} \end{split}$$

MLP blocks latency breakdown comparison

 The latency of collective communications are reduced to 19.9–62.2%

Evaluation: Performance and Memory Occupation

Normalized training throughput

Peak memory occupation

- 1.11–1.68x training speedup and 68–93% peak memory
- Optimized tensor partitions improve training speed and save memory simultaneously
- Benefits are more significant when scaling larger models to more GPUs

MLP blocks latency breakdown comparison

- The latency of collective communications are reduced to 19.9–62.2%
- Induced ring point-to-point communications are cheaper and fully overlapped with computation latency

MLP blocks latency breakdown comparison

- The latency of collective communications are reduced to 19.9–62.2%
- Induced ring point-to-point communications are cheaper and fully overlapped with computation latency
- Computation latency remains the same: does not compromise computation efficiency

Kernel execution timelines of the MLP block

Baseline:
 Intra-node collective:
 size(O)/2 + size(I)/2

Inter-node collective: size(W)/2

PrimePar:Intra-node collective:

Inter-node collective:
size(O)/4 + size(I)/4
< size(W)/2</pre>

Evaluation: Impact on 3D Parallelism

- 1.46, 1.27, 1.40x speedups for OPT 175B, Llama2 70B, Bloom 176B
- Larger models prefer higher degree of model parallelism, where PrimePar yields greater performance improvements

Conclusion

- Spatial-temporal tensor partition: more efficient communication and better utilization of hardware resources
- Formulize spatial-temporal sub-operator distribution: help design efficient tensor partition primitive and analyze communication patterns
- Further exploration into spatial-temporal tensor partition space is worthwhile

Thank you!

Please contact us at the email address below if you have any questions: wanghaoran20g@ict.ac.cn