Lung Cancer Prediction Success

By: Yusuf Karadogan

BACKGROUND

- **Lung cancer** is a type of cancer that begins in the lungs. Your lungs are two spongy organs in your chest that take in oxygen when you inhale and release carbon dioxide when you exhale.
- Lung cancer is the leading cause of cancer deaths worldwide.
- People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. The risk of lung cancer increases with the length of time and number of cigarettes you've smoked. If you quit smoking, even after smoking for many years, you can significantly reduce your chances of developing lung cancer.
- Lung cancer typically doesn't cause signs and symptoms in its earliest stages. Signs and symptoms of lung cancer typically occur when the disease is advanced. [Source of information: MayoClinic]

Signs and symptoms of lung cancer may include:

- A new cough that doesn't go away
- Coughing up blood, even a small amount
- Shortness of breath
- Chest pain
- Hoarseness
- Losing weight without trying
- Bone pain
- Headache

PROBLEM IDENTIFICATION

- Can we predict whether if a patient is in risk of lung cancer? If so what is the level of risk?
- As the cancer progresses and continues to spread, just like other forms of cancers, it becomes harder to treat and the survival rate decreases significantly. By analyzing patients' lifestyle and symptoms, I'll try to predict the risk level of being diagnosed with lung cancer. The success of a patient being diagnosed as early as possible, would add years if not decades to a patient's life, with the current advancement of immuno and chemo therapies.

Who Might Care?

Data Information

- This data set was obtained through data.world
- Contained 1000 patients and with 24 features.
- The final set after feature engineering and data wrangling contained 1000 rows and 23 features.

	count	mean	std	min	25%	50%	75%	max
Age	1000.0	37.174	12.005493	14.0	27.75	36.0	45.0	73.0
Gender	1000.0	1.402	0.490547	1.0	1.00	1.0	2.0	2.0
Air Pollution	1000.0	3.840	2.030400	1.0	2.00	3.0	6.0	8.0
Alcohol use	1000.0	4.563	2.620477	1.0	2.00	5.0	7.0	8.0
Dust Allergy	1000.0	5.165	1.980833	1.0	4.00	6.0	7.0	8.0
OccuPational Hazards	1000.0	4.840	2.107805	1.0	3.00	5.0	7.0	8.0
Genetic Risk	1000.0	4.580	2.126999	1.0	2.00	5.0	7.0	7.0
chronic Lung Disease	1000.0	4.380	1.848518	1.0	3.00	4.0	6.0	7.0
Balanced Diet	1000.0	4.491	2.135528	1.0	2.00	4.0	7.0	7.0
Obesity	1000.0	4.465	2.124921	1.0	3.00	4.0	7.0	7.0
Smoking	1000.0	3.948	2.495902	1.0	2.00	3.0	7.0	8.0
Passive Smoker	1000.0	4.195	2.311778	1.0	2.00	4.0	7.0	8.0
Chest Pain	1000.0	4.438	2.280209	1.0	2.00	4.0	7.0	9.0
Coughing of Blood	1000.0	4.859	2.427965	1.0	3.00	4.0	7.0	9.0
Fatigue	1000.0	3.856	2.244616	1.0	2.00	3.0	5.0	9.0
Weight Loss	1000.0	3.855	2.206546	1.0	2.00	3.0	6.0	8.0
Shortness of Breath	1000.0	4.240	2.285087	1.0	2.00	4.0	6.0	9.0
Wheezing	1000.0	3.777	2.041921	1.0	2.00	4.0	5.0	8.0
Swallowing Difficulty	1000.0	3.746	2.270383	1.0	2.00	4.0	5.0	8.0
Clubbing of Finger Nails	1000.0	3.923	2.388048	1.0	2.00	4.0	5.0	9.0
Frequent Cold	1000.0	3.536	1.832502	1.0	2.00	3.0	5.0	7.0
Dry Cough	1000.0	3.853	2.039007	1.0	2.00	4.0	6.0	7.0
Snoring	1000.0	2.926	1.474686	1.0	2.00	3.0	4.0	7.0

Data Exploration

Data Exploration Cont.

Top Important Features

Modelling

- Instead of trying different individual models, I used PyCaret to run 14 different models for me and rank them based on their accuracy.
- I chose 3 different machine learning classification models: Logistic Regression, Random Forest Classifier, and Gradient Boosting Classifier. The metric I focused on when building my models was accuracy. I wanted my model to predict the level of risk of a patient. Luckily most of the models gave almost 100% accuracy in predicting the risk level of lung cancer.

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
ir	Logistic Regression	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.4370
nb	Naive Bayes	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0080
dt	Decision Tree Classifier	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0070
ridge	Ridge Classifier	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0070
rf	Random Forest Classifier	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0670
qda	Quadratic Discriminant Analysis	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0090
gbc	Gradient Boosting Classifier	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.1380
et	Extra Trees Classifier	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0690
lightgbm	Light Gradient Boosting Machine	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0350
catboost	CatBoost Classifier	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.1700
svm	SVM - Linear Kernel	0.9959	0.0000	0.9958	0.9962	0.9958	0.9939	0.9940	0.0090
knn	K Neighbors Classifier	0.9795	0.9976	0.9787	0.9818	0.9794	0.9692	0.9704	0.0130
lda	Linear Discriminant Analysis	0.9243	0.9551	0.9240	0.9322	0.9243	0.8861	0.8899	0.0110
ada	Ada Boost Classifier	0.7014	0.8652	0.7012	0.8155	0.6277	0.5563	0.6478	0.0310

Modelling Cont.

- I would like to focus on the most successful prediction model, which was Logistic Regression Classifier.
- With this model I was able to obtain 100% accuracy.

Key Take Away's & Summary

We see that Logistic Regression is the best model for predicting the risk of lung cancer in patients. Although the
majority of the models had very good accuracy, the Logistic Regression model consistently came as number one
due to the higher TT (Sec)

As stated in the beginning, as the cancer progresses and continues to spread, just like other forms of cancers, it
becomes harder to treat and the survival rate decreases significantly. By diagnosing a patient as soons as
possible we can add years if not decades to a patient's life, with the current advancement of immuno and chemo
therapies. For example, a few extra months or years could be enough time for a new drug or therapy to be
developed or optimized to be approved by the FDA and become accessible to patients.

 Not all emphasis and hope should be put onto doctors and drug companies. As seen with feature importance, our health care professionals and education institutes should emphasize the power of personal, life decisions to prevent the increased risk of lung cancer. We should make trials and data accessible, in an understandable way, to show the benefits of conscious lifestyle habits.