Score-of-Mixture Training

One-Step Generative Model Training Made Simple via Score Estimation of Mixture Distributions

Tejas Jayashankar*, Jongha (Jon) Ryu*, Gregory W. Wornell

MIT EECS | {tejasj,jongha,gww}@mit.edu

TL;DR: Stable training from scratch, SOTA samples via one-step sampling (cf. GAN, diffusion distillation, consistency training)

Preliminaries: Diffusion Models

Idea: Learn noisy scores & emulate reverse process

(+) Stable training (via denoising score matching & multi-noise-level training)

- (+) High-quality samples (noisy scores can be estimated accurately)
- (-) Emulating reverse process is slow and expensive

Goal: One-Step Generative Modeling

We want $q_{\theta} \approx p$ with T = 1 (cf. T \approx (a few hundreds) for diffusion models)

Solutions for One-Step Generative Modeling

	Learning principle	Generation complexity	Training dynamics	Requires pretrained model?
Diffusion model	Denoising score matching	<i>T</i> > 1	Stable	No
Diffusion distillation	Reverse KLD minimization	$T \ge 1$	Stable	Yes
GAN	Minimize JSD w/ discriminator	T = 1	Unstable	No
Consistency training Consistency distillation	Emulate PF ODE paths	$T \ge 1$	Unstable Stable	No Yes
SMT (from scratch) SMD (distillation)	Minimize α -JSD w/ score of mixture	T = 1	Stable	No Yes

We can achieve the BEST of ALL WORLDS!

- Idea 1. Minimizing New Statistical Divergences
- Idea 2. Gradient Update with Score of Mixture Estimation

Experiments

	ImageNet 64x64			CIFAR-10 32x32		
Method	# params	NFE	FID↓	# params	NFE	FID↓
Training fro	m scratch: 1	Diffusion	n models	,		
DDPM (Ho et al., 2020)	-	-	-	56M	1000	3.17
ADM (Dhariwal & Nichol, 2021)	296M	250	2.07	-	-	-
EDM (Karras et al., 2022b)	296M	512	1.36	56M	35	1.97
Training fro	m scratch:	One-step	models			
CT (Song et al., 2023)	296M	1	13.0	56M	1	8.70
iCT (Song & Dhariwal, 2024a)	296M	1	4.02	56M	1	2.83
iCT-deep (Song & Dhariwal, 2024a)	592M	1	3.25	112M	1	2.51
ECT (Geng et al., 2024)	280M	1	5.51	56M	1	3.60
SMT (ours)	296M	1	3.23	56M	1	3.13
D	iffusion disti	llation				
PD (Salimans & Ho, 2022)	296M	1	10.7	60M	1	9.12
TRACT (Berthelot et al., 2023)	296M	1	7.43	56M	1	3.78
CD (LPIPS) (Song et al., 2023)	296M	1	6.20	56M	1	4.53
Diff-Instruct (Luo et al., 2024a)	296M	1	5.57	56M	1	4.53
MultiStep-CD (Heek et al., 2024)	1200M	1	3.20	-	-	-
DMD w/o reg (Yin et al., 2024b)	296M	1	5.60	56M	1	5.58
DMD2 w/ GAN (Yin et al., 2024a)	296M	1	1.51	56M	1	2.43
MMD (Salimans et al., 2024)	400M	1	3.00	-	-	-
SiD (Zhou et al., 2024)	296M	1	1.52	56M	1	1.92
SiM (Luo et al., 2024b)	-	-	-	56M	1	2.02
SMD (ours)	296M	1	1.48	56M	1	2.22
w/ expensi	ve regularize	er or fin	etuning			
CTM (Kim et al., 2024)	296M	1	1.92	56M	1	1.98
DMD w/ reg (Yin et al., 2024b)	296M	1	2.62	56M	1	2.66
DMD2 (finetuned) (Yin et al., 2024a)	296M	1	1.23	_	_	_

Samples from SMT on ImageNet64x64. (Unique class per row.)

SOTA for ImageNet 64x64, competitive result for CIFAR-10 (Bonus: we can also support *distillation*!)

Idea 1 (for Generator Training Objective):

Minimizing New Statistical Divergences

New statistical divergence: α -skew Jensen-Shannon divergence ($\alpha \in [0,1]$)

$$D_{\mathrm{JS}}^{(\alpha)}(p, q_{\theta}) \triangleq \frac{1}{1 - \alpha} D_{\mathrm{KL}}\left(p \parallel \alpha p + (1 - \alpha)q_{\theta}\right) + \frac{1}{\alpha} D_{\mathrm{KL}}\left(q_{\theta} \parallel \alpha p + (1 - \alpha)q_{\theta}\right)$$

- Well-defined even for non-overlapping supports
- Interpolating
 - $\alpha = 0$: $D_{KL}(q_{\theta} || p)$ (reverse KL)
 - $\alpha = \frac{1}{2}$: $D_{JS}(p, q_{\theta})$ (Jensen-Shannon)
 - $\alpha = 1$: $D_{KL}(p || q_{\theta})$ (forward KL)
- mode-seeking p mode-seeking mode-seeking

Intuition: Promote better support matching

• Different α enforce different support matching property

Our generator objective function:

Idea 2 (for Generator Gradient Estimation):

Gradient Estimate with Score of Mixture Distribution

Our Proposal: Score-of-Mixture Training (SMT)

