Stochastic Processes: Homework 1

Chris Hayduk

September 2, 2020

Problem 1.

Let A_1 = "Donna drew a fair coin", A_2 = "Donna drew the two-headed coin" and let B = "Donna flipped 6 heads in a row".

Note that

$$P(A_1) = \frac{64}{65}$$

$$P(B|A_1) = \frac{1/2^6}{64/65} = \frac{65}{4096} \approx 0.01587$$

and

$$P(A_2) = \frac{1}{65}$$
$$P(B|A_2) = 1$$

Hence,

$$\sum P(A_j)P(B|A_j) = \frac{64}{65} \cdot \frac{65}{4096} + \frac{1}{65} \cdot 1$$
$$= \frac{129}{4160} \approx 0.031$$

Thus, we have,

$$P(A_2|B) = \frac{P(A_2)P(B|A_2)}{\sum P(A_j)P(B|A_j)}$$
$$= \frac{1/65}{129/4160}$$
$$= \frac{64}{129} \approx 0.4961$$

So if Donna flips 6 heads in a row, there is about a 49.61% chance that she chose the two-headed coin.

Problem 2.

We have that X_1, X_2 are two independent uniform (0, 1) random variables on the same probability space. In addition, we have that $Y = \min\{X_1, X_2\}$.

In order to find the CDF of Y, we must find $P(Y \leq y)$. Note that,

$$P(Y \le y) = P(\min\{X_1, X_2\} \le y)$$

In addition, note that,

$$P(Y \le y) = 1 - P(Y > y)$$

= 1 - P(\text{min}\{X_1, X_2\} > y)

Since we are taking a minimum, $\min\{X_1, X_2\} > y$ if and only if we have both $X_1 > y$ and $X_2 > y$. Since X_1 and X_2 are independent, we can separate this joint probability as follows:

$$P(Y \le y) = 1 - P(Y > y)$$

$$= 1 - P(\min\{X_1, X_2\} > y)$$

$$= 1 - P(X_1 > y) \cdot P(X_2 > y)$$

$$= 1 - P(X_1 > y)^2$$

$$= 1 - (1 - P(X_1 \le y))^2$$

We know from p. 258 in the text that for a uniform random variable X, we have $P(X \le x) = (x-a)/(b-a)$. Thus, in our case, we have

$$1 - P(X_1 \le y) = 1 - (y - 0)/(1 - 0)$$
$$= 1 - x$$

Hence,

$$P(Y \le y) = 1 - (1 - y)^2$$

and as a result, the CDF of Y is,

$$F_Y(y) = \begin{cases} 0 & y \le 0\\ 1 - (1 - y)^2 & 0 < y < 1\\ 1 & y \ge 1 \end{cases}$$

Problem 3.

Problem 4.

- (A)
- (B)