K-plus proche Voisin (Régression)

Lille 3

Types des données

k-PPV Régression

K-plus proche Voisin (Régression) L'apprentissage automatique (2016-2017)

UFR MIME

Université Lille 3

7 décembre 2016

Sommaire

K-plus proche Voisin (Régression)

Lille 3

Types de: données

k-PPV Régression

Types des données

2 k-PPV Régression

Données quantitatives et qualitatives

K-plus proche Voisin (Régression)

Lille 3

Types des données

k-PPV Régression

- Données quantitatives : valeurs numérique soit des scalaires ou vecteurs en \mathbb{R}^d
 - L'age, poids, salaires, tailles de maison, couleur (valeur)
- Données qualitatives : valeurs catégorique ou des classes
 - couleur (nom), sexe, nationalité, mode de transport

	(X) couleur	formes	firmes/pas	(y) Classe
•	Vert	cylindrique	firme	Légumes
	Jaune	cylindrique	mou	Fruit
	Blanc	cylindrique	dur	Grain

X et y sont catégorique

Classe / $y \in \{$ Fruit, Légumes, Grain $\}$, forme $\in \{$ rond, cylindrique $\}$

	(X) # chambres	surface	énergie (grade)	Prix (\$)
•	2	127	1	305000
	3	106	3	275000

- ullet X,y sont numérique, $X\in\mathbb{R}^3$ et $y\in\mathbb{R}$
- Les variables quantitatives / qualitatives peuvent êtres dans les sorties/entrées d'un problème d'apprentissage supervisé

k-PPV¹: Régression

K-plus proche Voisin (Régression)

Lille

données

k-PPV Régression

Algorithme

• Ensemble d'apprentissage (ou Training set) :

$$X_{\mathsf{Tr}} := \{ (\mathbf{x}_1, y_1), \mathbf{x}_2, y_2), \dots, \mathbf{x}_N, y_N) \}$$

- $\mathbf{x}_i \in \mathbb{R}^d$ et $y_i \in \mathbb{R}$
- Pour une nouvelle entrée z qui vient dans le ensemble test!
- Pour classification

•
$$f_{\theta}(\mathbf{z}) = \text{VoteMajoritaire}\{y_i | i \in \text{k-PPV}(\mathbf{z})\} \text{ dans } X_{\text{Tr}}$$

- Pour Régression
 - $f_{\theta}(\mathbf{z}) = \mathsf{ValeurMoyenneDe}\{y_i | i \in \mathsf{k-PPV}(z)\} \ \mathsf{dans} \ X_{\mathsf{Tr}}$
- Pour calculer la k-plus proche voisin de x utliser la meme algorithme d'avant

Exemple

K-plus proche Voisin (Régression)

Lille 3

Types des données

k-PPV Régression

K-plus proche Voisin (Régression)

Lille 3

Types des

k-PPV Régression

k=1, trop compliqué

K-plus proche Voisin (Régression)

Lille 3

Types des

k-PPV Régression

k=2, compliqué

K-plus proche Voisin (Régression)

Lille 3

Types des

k-PPV Régression k=5, bien!

K-plus proche Voisin (Régression)

Lille 3

Types des

k-PPV Régression

k=20, simplifié

K-plus proche Voisin (Régression)

Lille 3

Types des

k-PPV Régression

k=40, trop simplifié

Classification Vs Régression

K-plus proche Voisin (Régression)

Lille 3

Types de données

k-PPV Régression

- La régression et utilisé pour prédire les valeurs continue en étudiant la relation entres les variables d'entrés, et pour classification on prédit les valeurs catégorique
- Pour calculer la distance entres les valeurs catégorique il nous faut une méthode de vectorisation qui associe une valeur numérique a chaque valeur catégorique.
- On peut classifier/régresser les données catégorique avec les arbres de décision. (exemple médecin)
- Évaluation de performance : Taux d'erreurs
 - $\bullet \quad \text{Classification} \, : \, \frac{\# \text{ pr\'edictions incorrecte}}{\# \text{ \'echantillons dans l'ensemble teste}}$
 - Régression : $\sum_{i=1}^{\mathsf{Ntest}} (\mathsf{cible}_i \mathsf{prediction}_i)^2 = \sum_{i=1}^{\mathsf{Ntest}} (y_i \hat{y}_i)$