Control computarizado - Asignación de polos, controlador incremental

Kjartan Halvorsen

July 16, 2020

Controlador de dos grados de libertad

Åström & Wittenmark problema 5.3

Dado sistema

$$H(z) = \frac{z + 0.7}{z^2 - 1.8z + 0.81}$$

Determina controlador de dos grados de libertad, dónde el polinomio caracteristica del sistema en lazo cerrado, desde la señal de referencia a la salida sea

$$A_c(z) = z^2 - 1.5z + 0.7.$$

Pon los polos del observador en el origen (deadbeat observer). Considera tres casos

- (a) Control posicional con cancelación del cero del proceso
- (b) Control posicional sin cancelación del cero del proceso
- (c) Control incremental sin cancelación del cero del proceso

¿Por qué cancelar el cero?

Diagramas de Bode para los sistemas en lazo cerrado (seguimiento de referencia) con y sin cancelación del cero

Ejercicio preliminario 1

Dado sistema $H(z)=\frac{z+0.7}{z^2-1.8z+0.81}$ y polinomio caracteristico deseado $A_c(z)=z^2-1.5z+0.7$

Actividad Marca los polos del proceso H(z), y los polos deseados del sistema en lazo cerrado, asumiendo h=0.1.

Ejercicio preliminario 1 - Solución

Dado sistema
$$H(z) = \frac{z+0.7}{z^2-1.8z+0.81} = \frac{z+0.7}{(z-0.9)^2}$$
 y polinomio caracteristico deseado $A_c(z) = z^2 - 1.5z + 0.7 = (z - 0.75 + i0.37)(z - 0.75 - i0.37)$.

Ejercicio preliminario 2

Cuál de las respuestas de sistema en lazo cerrado corresponde a (a) Control posicional con cancelación del cero del proceso, (b) Control posicional sin cancelación del cero del, (c) Control incremental sin cancelación del cero del proceso

Asignación de los polos

Dado sistema $H(z)=\frac{z+0.7}{z^2-1.8z+0.81}$ y polinomio caracteristico deseado $A_c(z)=z^2-1.5z+0.7$.

1. Orden del controlador Eligimos el controlador

$$F_b(z) = \frac{S(z)}{R(z)} = \frac{S(z)}{(z + 0.7)\bar{R}(z)}$$

para que haya cancelación del cero. Ecuación diofantina

$$A(z)(z+0.7)\bar{R}(z) + (z+0.7)S(z) = (z+0.7)A_c(z)A_o(z)$$

$$A(z)\bar{R}(z) + S(z) = A_c(z)A_o(z) \qquad (*)$$

Número de coeficientes desconocidos del controlador: $n_{\bar{R}} + n_{\bar{R}} + 2$. Número de ecuaciones de la ecuación diofantina: $n_A + n_{\bar{R}}$. \Rightarrow $n_{\bar{R}} = n_A - 2 = 2 - 2 = 0$

$$F_b(z) = \frac{s_0z + s_1}{z + 0.7}$$

2. Polinomio del obervador Factorización de $A_{cl}(z) = A_c(z)A_o(z)$. Ecuación (*) es de orden 2, igual que $A_c(z)$, entonces

$$A_o(z)=1$$

.

3. Solución de la ecuación diofantina Determina los polinomios R(z) y S(z). La ecuación diofantina

$$(z^2 - 1.8z + 0.81) + s_0z + s_1 = z^2 - 1.5z + 0.7$$

nos da el sistema de ecuaciones

$$\begin{cases} z^1: & s_0 = -1.5 + 1.8 = 0.3 \\ z^0: & s_1 = 0.7 - 0.81 = -0.11 \end{cases}$$

$$F_b(z) = \frac{0.3z - 0.11}{z + 0.7}$$

4. El polinomio T(z)

$$F_f(z) = \frac{T(z)}{R(z)} = \frac{t_0 A_o(z)}{B(z)}$$

Función de transferencia del seguimiento a la referencia:

$$G_c(z) = rac{rac{T}{R}rac{B}{A}}{1+rac{B}{A}rac{S}{R}} = = rac{TB}{AR+BS} = rac{t_0B}{BA_c} = rac{t_0}{A_c(z)}$$

Para obtener ganancia stática unitaria:

$$t_0 = A_c(1) = 0.2$$

Controlador completo

$$U(z) = \frac{T(z)}{R(z)}U_c(z) - \frac{S(z)}{R(z)}Y(z) = \frac{0.2}{z + 0.7}U_c(z) - \frac{0.3z - 0.11}{z + 0.7}Y(z)$$

Dado sistema

$$H(z) = \frac{z + 0.7}{z^2 - 1.8z + 0.81}$$

y polinomio caracteristico deseado

$$A_c(z) = z^2 - 1.5z + 0.7.$$

1. Orden del controlador Controlador

$$F_b(z) = \frac{S(z)}{R(z)}$$

nos da la ecuación diofantina

$$A(z)R(z) + B(z)S(z) = A_c(z)A_o(z)$$

Número de coeficientes desconocidos del controlador: $2n_R + 1$. Número de ecuaciones de la ecuación diofantina: $n_A + n_R$. \Rightarrow $n_R = n_A - 1 = 2 - 2 = 1$

$$F_b(z) = \frac{s_0z + s_1}{z + r_1}$$

2. Polinomio del obervador Factorización de $A_{cl}(z) = A_c(z)A_o(z)$. La ecuación diofantina es de orden 3, y tenemos el polinomio caracteristico deseado $A_c(z) = z^2 - 1.5z + 0.7$. Entonces

$$A_o(z) = z$$

3. Solución de la ecuación diofantina

$$(z^2 - 1.8z + 0.81)(z - 1)(z + r_1) + (z + 0.7)(s_0z + s_1) = z(z^2 - 1.5z + 0.7)z^3 - 1.8z^2 + 0.81z + r_1$$

Poniendo coeficientes iguales da las ecuaciones

$$\begin{cases} z^2: & r_1 + s_0 = -1.8 - 1.5 \\ z^1: & -1.8r_1 + 0.7s_0 + s_1 = -0.81 + 0.7 \\ z^0: & 0.81r_1 + 0.7s_1 = 0 \end{cases}$$

$$R(z) = z + 0.088,$$
 $S(z) = 0.21z - 0.10$

4. El polinomio T(z)

$$F_f(z) = \frac{T(z)}{R(z)} = \frac{t_0 A_o(z)}{B(z)}, \qquad G_c(z) = \frac{t_0 B(z)}{A_c(z)}, \qquad G_c(1) = 1 \quad \Rightarrow$$

$$t_0 = \frac{A_c(1)}{B(1)} = \frac{1 - 1.5 + 0.7}{1 + 0.7} = \frac{2}{17}$$

Controlador completo

$$U(z) = \frac{T(z)}{R(z)} U_c(z) - \frac{S(z)}{R(z)} Y(z)$$
$$= \frac{\frac{2}{17}z}{z + 0.088} U_c(z) - \frac{0.21z - 0.10}{z + 0.088} Y(z)$$

Dado sistema

$$H(z) = \frac{z + 0.7}{z^2 - 1.8z + 0.81}$$

y polinomio caracteristico deseado

$$A_c(z) = z^2 - 1.5z + 0.7.$$

1. Orden del controlador $F_b(z)=\frac{S(z)}{(z-1)\bar{R}(z)}$, con $n_S=n_{\bar{R}}+1$ nos da la ecuación diofantina

$$A(z)(z-1)\bar{R}(z)+B(z)S(z)=A_c(z)A_o(z)$$

Número de coeficientes desconocidos del controlador: $n_{\bar{R}} + \bar{R} + 2$. Número de ecuaciones de la ecuación diofantina: $n_A + n_{\bar{R}+1}$. \Rightarrow $n_{\bar{R}} = n_A + 1 - 2 = 1$

$$F_b(z) = \frac{s_0 z^2 + s_1 z + s_2}{(z - 1)(z + r_1)}$$

2. Polinomio del obervador Factorización de $A_{cl}(z) = A_c(z)A_o(z)$. La ecuación diofantina es de orden 4, y tenemos el polinomio caracteristico deseado $A_c(z) = z^2 - 1.5z + 0.7$. Entonces

$$A_o(z) = z^2$$

3. Solución de la ecuación diofantina

$$(z^2 - 1.8z + 0.81)(z - 1)(z + r_1) + (z + 0.7)(s_0z^2 + s_1z + s_2) = z^2(z^2 - 1.5z + 0.7)$$

► El lado izgierdo

$$(z^{2} - 1.8z + 0.81)(z^{2} + (r_{1} - 1)z - r_{1}) + s_{0}z^{3} + s_{1}z^{2} + s_{2}z + 0.7s_{0}z^{2} + 0.7s_{1}z + 0.7s_{2}z^{4} - 1.8z^{3} + 0.81z^{2} + (r_{1} - 1)z^{3} - 1.8(r_{1} - 1)z^{2} + 0.81(r_{1} - 1)z - r_{1}z^{2} + 1.8r_{1}z - 0.81r_{1}z^{4} + (r_{1} + s_{0} - 2.8)z^{3} + (-2.8r_{1} + 0.7s_{0} + s_{1} + 2.61)z^{2} + (2.61r_{1} + 0.7s_{1} + s_{2} - 0.81)z^{4} + (-0.81r_{1} + 0.7s_{2})$$

3. Solución de la ecuación diofantina

$$z^{4} + (r_{1} + s_{0} - 2.8)z^{3} + (-2.8r_{1} + 0.7s_{0} + s_{1} + 2.61)z^{2} + (2.61r_{1} + 0.7s_{1} + s_{2} - 0.81)z$$
$$+ (-0.81r_{1} + 0.7s_{2}) = z^{4} - 1.5z^{3} + 0.7z^{2}$$

Coeficientes iguales da las ecuaciones

$$\begin{cases} z^3: & r_1 + s_0 = 2.8 - 1.5 \\ z^2: & -2.8r_1 + 0.7s_0 + s_1 = -2.61 + 0.7 \\ z^1: & 2.61r_1 + 0.7s_1 + s_2 = 0.81 \\ z^0: & -0.81r_1 + 0.7s_2 = 0 \end{cases}$$

$$R(z) = (z-1)(z+0.45),$$
 $S(z) = 0.85z^2 - 1.25z + 0.52$

4. El polinomio T(z)

$$F_f(z) = \frac{T(z)}{R(z)} = \frac{t_0 A_o(z)}{B(z)}, \qquad G_c(z) = \frac{t_0 B(z)}{A_c(z)}, \qquad G_c(1) = 1 \quad \Rightarrow$$

$$t_0 = \frac{A_c(1)}{B(1)} = \frac{1 - 1.5 + 0.7}{1 + 0.7} = \frac{2}{17}$$

Controlador completo

$$U(z) = \frac{T(z)}{R(z)}U_c(z) - \frac{S(z)}{R(z)}Y(z)$$

$$= \frac{\frac{2}{17}z^2}{(z-1)(z+0.45)}U_c(z) - \frac{0.85z^2 - 1.25z + 0.52}{(z-1)(z+0.45)}Y(z)$$

La importancia de los polos del observador

Mybinder Solución usando Python

Solución usando matlab necesita este funcion RST_{sym.m}