Statistical Inference and Predictive Analytics

IS 6489

Session 2

1

Outline

- Discuss Assignment 1
- Going from population to individual unit
 - Outcome
 - Probability
 - Random variable
 - Expectation
- Simulation

Statistical Inference and Predictive Analytics

B. Kadiyala

Probability – Terminology

- Experiment: any procedure that can be repeated infinitely
 - Rolling die once
 - Maximum temperature tomorrow
- Sample space: All possible outcomes in an experiment
 - Rolling die: 1, 2, 3, ..., 6Temperature: [10, 100]
- Event: any collection of outcomes in the sample space
 - The outcome is even (2, 4, 6); outcome is 1; ...
 - Max temperature is above 50; is lower than yesterday's temperature; ...

Statistical Inference and Predictive Analytics

B. Kadiyala

3

3

What is Probability?

• *Probability* is a **function** that maps events to a number between [0,1].

Events ──── [0, 1]

- · Experiment: rolling two dice
- Outcomes: {(1,1), ..., (1,6), (2,1), ..., (2,6),...}
- Events: Sum of dice face is even, both dice have identical outcomes, the outcomes are 3 and 1, ...

Statistical Inference and Predictive Analytics

B. Kadiyali

Review of Probability – Random Variable

- The outcome of an experiment, which is unknown, is represented by a *random variable*
 - usually represented by a capital letter.
 - Temperature, demand, stock price, number of clicks on a website
- Random variables are categorized as either *discrete* or *continuous*
 - Temperature?
 - Is it going to snow tomorrow?
 - Demand?
 - Number of clicks on a website?
- Example: Random variables X denotes the outcome of coin toss
 - Takes value 0 (corresponding to Heads) or 1 (otherwise).
 - What is Prob(X = 0)?

Statistical Inference and Predictive Analytics

© B. Kadiyala

5

Review of Probability - Distributions

- The *Probability Distribution* of a random variable tells us the probability that the variable can take one or more of the possible values
 - What is the probability maximum temperature tomorrow is between 35F and 45F?
 - Let the random variable Maximum Temperature be denoted by Tmax: Prob(Tmax ∈ [35,45]).
 - What is the probability tomorrow's demand for a product is at least 100 units.
 - Let the random variable Demand be denote by D: $Prob(D \ge 100)$

Statistical Inference and Predictive Analytics

B. Kadiyala

Review of Probability – Discrete Distribution

- When the random variable is discrete, the associated probability distribution is also discrete
- Let the random variable R denote the outcome of a dice roll.
 - R takes values 1, 2, 3, 4, 5, or 6
 - Probability distribution (more accurately, *mass function*) is given by

Outcome of dice roll	Probability of outcome
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Statistical Inference and Predictive Analytics

7

Review of Probability - Examples of Discrete Random Variables

- Uniform (parameter: *n* number of elements in sample space)
 - All outcomes equally likely: Roll of a die, Tossing a coin
- Bernoulli (parameters: *p*)
 - Used to describe an experiment that has only two outcomes: *success* or *failure*, represented as 0 and 1, respectively
 - Success with probability p (or failure with probability 1-p).
- Binomial (parameters: *n*, *p*)
 - Used to describe the number of success in an experiment that involves multiple Bernoulli trials; takes values 0, 1, ..., n.
 - Success in each trail has probability p.

Statistical Inference and Predictive Analytics

B. Kadiyala

Expected Value (Discrete Random Variable)

• Definition: the *expected value* of a random variable X, which takes values x_i with probability p_i , where i = 1, 2, ..., n, is given by the weighted sum of the outcomes:

$$E[X] = x_1p_1 + x_2p_2 + \dots + x_np_n$$
 (mathematical definition)

- If the experiment is repeated long enough, the average of all outcomes approaches expected value
 - Suppose X_i is the outcome observed in the i-th experiment. Then

$$E[X] \cong \frac{X_1 + X_2 + \dots + X_T}{T}$$
 (data-driven)

Statistical Inference and Predictive Analytics

B. Kadiyala

11

11

Continuous Distributions

- Uniform (parameters: *l*, *u*)
 - Takes any value in the range [l, u] with equal probability
- Normal (parameters: μ , σ)
 - Can take any value in $(-\infty, +\infty)$
 - Mean is μ , and standard-deviation is σ
- Exponential (parameter: λ)
 - Can take any value in $[0, +\infty)$
 - Mean is λ

Statistical Inference and Predictive Analytics

© B. Kadiyala

Continuous Distributions

- (Cumulative) Distribution Function (CDF) gives the probability that a random variable is less than or equal to a number
 - CDF denoted by $F(x) = \text{Prob}(X \le x)$.
 - What is the probability X is between [2, 3]?
 = Probability(X ≤ 3) Probability(X ≤ 2)
 = F(3) F(2)
- *Probability density function* (PDF) gives the probability that a random variable belongs to a tiny interval around any point.
 - Probability that r.v. X lies in the interval $[x, x + \Delta]$, where $\Delta > 0$ is a very small number.

Statistical Inference and Predictive Analytics

B. Kadiyala

13

13

Probability Density Function - Standard Normal

- 1. What is the probability $X \ge 0$?
- 2. What is the probability $2 \le X \le 5$?
- 3. What is the probability $X \le 0$?

Probability is the area underneath the curve

Statistical Inference and Predictive Analytics

Expected Value (Continuous Random Variable)

• Definition: the *expected value* of a random variable X with pdf f(x) is given by the (weighted sum) integral over the outcomes:

$$E[X] = \int x f(x) dx$$
 (mathematical definition of area under curve $f(x)$)

- If the experiment is repeated long enough, the average of all outcomes approaches expected value
 - Suppose X_i is the outcome observed in the i-th experiment. Then

$$E[X] \cong \frac{X_1 + X_2 + \dots + X_T}{T}$$
 (data-driven)

Statistical Inference and Predictive Analytics

B. Kadiyala

17

Simulation

- **Simulation** refers to (imaginary) random sampling from a known population distribution
 - Imaginary because we do not physically "sample" from the population
 - Draw random samples which have the necessary statistical properties
 - Evaluate the quantity of interest (typically sample mean, standard deviation etc.)
- Suppose we know the population distribution of a (random) variable of interest (e.g., customer expenditure). But
 - We do not know it's mean, median, standard deviation, etc.
 - Need to evaluate another random variable (say, firm's profit which depends on customer expenditure) whose definition depends on the original r.v. in a complex fashion.
- The approach is useful even in estimation/inference
 - Bootstrapping
 - Markov Chain Monte Carlo technique

Statistical Inference and Predictive Analytics

D. Kauiyaia

19

19

Restaurant Example

Read the *Restaurant* case uploaded on canvas.

Statistical Inference and Predictive Analytics