Estatística II — CE003

Prof. Fernando de Pol Mayer — Departamento de Estatística — DEST

Exercícios: probabilidade

- 1. Para cada um dos eventos abaixo, escreva o espaço amostral correspondente e conte seus elementos:
 - (a) $\Omega = \{CC, CR, RC, RR\}$ $n(\Omega) = 4$
 - (b) $\Omega = \{PP, PI, IP, II\}$ $n(\Omega) = 4$
 - (c) $\Omega = \{AA, AV, VA, VV\}$ $n(\Omega) = 4$
 - (d) $\Omega = \{2, 3, 4, \dots, 12\}$ $n(\Omega) = 11$
 - (e) $\Omega = \{MMM, MMF, MFM, FMM, FFM, FMF, MFF, FFF\}$ $n(\Omega) = 8$
 - (f) $\Omega = \{\omega : 0 \le \omega \le 20\}$ $n(\Omega) = 21$
 - (g) $\Omega = \{C, RC, RRC, RRRC, RRRRC, \ldots\}$ $n(\Omega) = \infty$
 - (h) $\Omega = \{\omega : \omega > 0\} = \mathbb{R}^+$ $n(\Omega) = \infty$
 - (i) $\Omega = \{3, 4, 5, \dots, 10\}$ $n(\Omega) = 8$
 - (j) $\Omega = \{1, 2, 3, ...\}$ $n(\Omega) = \infty$
 - (k) $\Omega = \{AA, AB, AC, AD, AE, BA, BB, BC, BD, BE, CA, CB, CC, CD, CE, DA, DB, DC, DD, DE, EA, EB, EC, ED, EE\}$ $n(\Omega) = 25$
 - (1) $\Omega = \{AB, AC, AD, AE, BA, BC, BD, BE, CA, CB, CD, CE, DA, DB, DC, DE, EA, EB, EC, ED\}$ $n(\Omega) = 20$
 - (m) $\Omega = \{AB, AC, AD, AE, BC, BD, BE, CD, CE, DE\}$ $n(\Omega) = 10$
- 2. $\Omega = \{BC, BR, VB, VV\}$
- 3. (a) $\Omega = \{VV, VA, VB, AA, AV, AB, BB, BA, BV\}$
 - (b) $\Omega = \{VA, VB, AV, AB, BA, BV\}$
- 4. (a) $\Omega = \{x : x > 0\}$
 - (b) $A \cup B = \{x : x > 11\}$
 - (c) $A \cap B = \{x : 11 < x \le 15\}$
 - (d) $A^c = \{x : x \le 11\}$
 - (e) $A \cup B \cup C = \{x : x \ge 8\}$
 - (f) $(A \cup C)^c = \{x : x < 8\}$
 - (g) $A \cap B \cap C = \emptyset$
 - (h) $B^c \cap C = \emptyset$
 - (i) $A \cup (B \cap C) = \{x : x \ge 8\}$
- 5. $\Omega = \{\omega : \omega \ge 0\}$
 - (a) $A = \{\omega : 675 \le \omega \le 700\}$
 - (b) $B = \{\omega : 450 \le \omega \le 500\}$
 - (c) $A \cap B = \emptyset$
 - (d) $A \cup B = \{\omega : 450 \le \omega \le 500 \cup 675 \le \omega \le 700\}$
- 6. $\Omega = \{PPP, PPN, PNP, NPP, PNN, NPN, NNP, NNN\}$
 - (a) $A = \{PPP\}$
 - (b) $B = \{NNN\}$
 - (c) $A \cap B = \emptyset$
 - (d) $A \cup B = \{PPP, NNN\}$

- 7. Considere o lançamento de dois dados. Considere os eventos A = "soma dos números obtidos igual a 9", e B = "número no primeiro dado maior ou igual a 4".
 - (a) Enumere os elementos de A e B.
 - (b) Obtenha $A \cup B$, $A \cap B$, e A^c .
 - (c) Obtenha todas as probabilidades dos eventos acima.
- 8. (a) 0,0296 (b) 0,0298
- 9. (a) 0,049 (b) 0,463 (c) 0,295
- 10. (a) 0,8 (b) 0,3 (c) 0
- 11. (a) 0,3 (b) 0,4 (c) 0,1 (d) 0,2 (e) 0,6 (f) 0,8
- 12. (a) 0,9 (b) 0 (c) 0 (d) 0 (e) 0,1
- 13. Discos de plástico de policarbonato, provenientes de um fornecedor, são analisados com relação à resistência a arranhões e a choques. Os resultados de uma amostra de 100 discos estão resumidos a seguir:

Res. a arranhões	Res. a choques		
ics. a arrannoes	Alta	Baixa	
Alta	70	9	
Baixa	16	5	

Seja *A* o evento em que um disco tem alta resistência a choque e *B* o evento em que um disco tem alta resistência a arranhões. Com isso:

- (a) $A \cap B = 70$, $A^c = 14$, $e A \cup B = 95$.
- (b) Se um disco for selecionado aleatoriamente, determine as seguintes probabilidades: i. 0,86 ii. 0,79 iii. 0,14 iv. 0,7 v. 0,95 vi. 0,84 vii. P(A|B) viii. P(B|A)
- (c) Se um disco for selecionado ao acaso, qual será a probabilidade de sua resistência a arranhões ser alta e de sua resistência a choque ser alta?
- (d) Se um disco for selecionado ao acaso, qual será a probabilidade de sua resistência a arranhões ser alta ou de sua resistência a choque ser alta?
- (e) Os eventos A e B são mutuamente exclusivos?
- (f) Os eventos A e B são independentes?
- 14. 0,4

- 15. Um lote de 100 chips semicondutores contém 20 defeituosos. Dois deles são selecionados ao acaso, sem reposição.
 - (a) Qual é a probabilidade de que o primeiro chip selecionado seja defeituoso?
 - (b) Qual é a probabilidade de que o segundo chip selecionado seja defeituoso, dado que o primeiro deles foi defeituoso?
 - (c) Qual é a probabilidade de que ambos sejam defeituosos?
 - (d) Como a resposta do item (b) mudaria se os chips selecionados fossem repostos antes da próxima seleção?
- 16. A tabela abaixo resume 204 reações endotérmicas envolvendo bicarbonato de sódio.

Condições finais de temperatura	Calor absorvido		
Condições iniais de temperatura	Abaixo do valor alvo	Acima do valor alvo	
266 K	12	40	
271 K	44	16	
274 K	56	36	

Seja *A* o evento em que a temperatura final de uma reação seja 271 K ou menos. Seja *B* o evento em que o calor absorvido esteja acima do valor alvo. Com isso:

- (a) Determine o número de reações em cada um dos seguintes eventos:
 - i. $A \cap B$ ii. A^c iii. $A \cup B$ iv. $A \cup B^c$ v. $A^c \cap B^C$
- (b) Determine as seguintes probabilidades: i. $P(A \cap B)$ ii. $P(A^c)$ iii. $P(A \cup B)$ iv. $P(A \cup B^c)$ v. $P(A^c \cap B^c)$ vi. $P(A^c \cup B^c)$ vii. P(A|B) viii. $P(A^c|B)$
 - (c) Os eventos A e B são independentes?

ix. $P(A|B^c)$ x. P(B|A)

- 17. Suponha que P(A|B) = 0,4 e P(B) = 0,5. Determine o seguinte: (a) $P(A \cap B)$ (b) $P(A^c \cap B)$
- 18. Suponha que P(A|B) = 0, 2, $P(A|B^c) = 0, 3$ e P(B) = 0, 8. Qual é P(A)? (Dica: escreva A como a união de dois eventos disjuntos).
- 19. Um artigo na revista *The Journal of Data Science*, forneceu a seguinte tabela de falhas em poços, para grupos de diferentes formações geológicas em Baltimore (EUA):

Grupo com formação geológica	Poços	
Grupo com formação geológica	Falha	Total
Gnaise	170	1685
Granito	2	28
Mina Loch de xisto	443	3733
Máfico	14	363
Mármore	29	309
Mina Prettyboy de xisto	60	1403
Outros xistos	46	933
Serpentina	3	39

Seja *A* o evento em que a formação geológica tenha mais de 1000 poços e *B* o evento em que o poço tenha falhado. Com isso:

- (a) Determine o número de poços dos seguintes eventos:
- i. $A \cap B$ ii. A^c iii. $A \cup B$ iv. $A \cup B^c$ v. $A^c \cap B^C$ (b) Determine as seguintes probabilidades:
 - i. $P(A \cap B)$ ii. $P(A^c)$ iii. $P(A \cup B)$ iv. $P(A \cup B^c)$ v. $P(A^c \cap B^c)$ vi. $P(A^c \cup B^c)$ vii. P(A|B)
- (c) Qual a probabilidade de uma falha, dado que existem mais de 1000 falhas em uma formação geológica?
- (d) Qual a probabilidade de uma falha, dado que existem menos de 500 falhas em uma formação geológica?
- (e) Os eventos A e B são independentes?

20. O tempo de enchimento de um reator é medido em minutos (e frações de minutos). Seja $\Omega = \mathbb{R}^+$. Defina os aventos A e B como segue:

$$A = \{x : x \le 72, 5\}$$
 e $B = \{x : x > 52, 5\}$

Descreva cada um dos seguintes eventos:

(a)
$$A^c$$
 (b) B^c (c) $A \cap B$ (d) $A \cup B$

- 21. Falhas no coração são por causa tanto de ocorrências naturais (87%) como por fatores externos (13%). Fatores externos estão relacionados a substâncias induzidas (73%) ou a objetos estranhos (27%). Ocorrências naturais são causadas por bloqueio arterial (56%), doenças (27%) e infecção (17%).
 - (a) Determine a probabilidade de uma falha ser causada por substância induzida.
 - (b) Determine a probabilidade de uma falha ser causada por doença ou infecção.
- 22. Uma amostra de dois itens é selecionada sem reposição a partir de uma batelada. Descreva o espaço amostral (ordenado) para cada uma das seguintes bateladas:
 - (a) A batelada contém os itens $\{a, b, c, d\}$
 - (b) A batelada contém os itens $\{a, b, c, d, e, f, g\}$
 - (c) A batelada contém 4 itens defeituosos e 20 itens bons
 - (d) A batelada contém 1 item defeituoso e 20 itens bons
- 23. Cada um dos cinco resultados possíveis de um experimento aleatório é igualmente provável. O espeço amostral é $\Omega = \{a, b, c, d, e\}$. Seja A o evento $\{a, b\}$ e B o evento $\{c, d, e\}$. Determine:

```
(a) P(A) (b) P(B) (c) P(A^c) (d) P(A \cup B) (e) P(A \cap B)
```

- 24. O espaço amostral de um experimento aleatório é $\Omega = \{a, b, c, d, e\}$, com probabilidades 0,1; 0,1; 0,2; 0,4; 0,2, respectivamente. Seja A o evento $\{a, b, c\}$ e B o evento $\{c, d, e\}$. Determine:
 - (a) P(A) (b) P(B) (c) $P(A^c)$ (d) $P(A \cup B)$ (e) $P(A \cap B)$
- 25. Uma amostra de duas placas de circuito impresso é selecionada sem reposição a partir de uma batelada. Descreva o espaço amostral (ordenado) para cada uma das seguintes bateladas:
 - (a) A batelada contém 90 placas que são não defeituosas, 8 placas com pequenos defeitos, e 2 placas com grandes defeitos.
 - (b) A batelada contém 90 placas que são não defeituosas, 8 placas com pequenos defeitos, e 1 placa com grandes defeitos.
- 26. Em uma titulação ácido-base, uma base ou um ácido é gradualmente adicionada(o) ao outro até que eles sejam completamente neutralizados. Uma vez que ácidos e bases são geralmente incolores, o pH é medido para monitorar a reação. Suponha que o ponto de equivalência seja alcançado depois que aproximadamente 100 ml de uma solução de NaOH tenham sido adicionados (o suficiente para reagir com todo o ácido acético presente), porém essa quantidade pode variar de 95 ml a 104 ml. Suponha que volumes sejam medidos em ml em uma escala discreta, e descreva o espaço amostral.
 - (a) Qual é a probabilidade de que a equivalência seja indicada em 100 ml?
 - (b) Qual é a probabilidade de que a equivalência seja indicada em menos do que 100 ml?
 - (c) Qual é a probabilidade de que a equivalência seja indicada entre 98 ml e 102 ml (inclusive)?
 - (d) Considere que dois técnicos conduzam a titulação de forma independente.
 - i. Qual é a probabilidade de ambos os técnicos obterem equivalência em 100 ml?
 - ii. Qual é a probabilidade de ambos os técnicos obterem equivalência entre 98 e 104 ml (inclusive)?

27. 0,74

28. Em uma bateria de NiCd, uma célula completamente cerregada é composta de Hidróxido de Níquel. Níquel é um elemento que tem múltiplos estados de oxidação, sendo geralmente encontrado nos seguintes estados:

Carga de níquel	Proporções encontradas
0	0,17
+2	0,35
+3	0,33
+4	0,15

- (a) Qual é a probabilidade de uma célula ter no mínimo uma das opções de níquel carregado positivamente?
- (b) Qual é a probabilidade de uma célula não ser composta de uma carga positiva de níquel maior do que +3?

29. Tabela de contingência

	Economia (E)	Administração (A)	Outros (O)	Total
Esportista (Es)	100	200	3700	4000
Não esportista (Es ^c)	400	500	5100	6000
Total	500	700	8800	10000

- (a) 4000/10000 = 2/5
- (b) 200/10000 = 1/50
- (c) 8800/10000 = 22/25
- (d) 5100/10000 = 51/100
- (e) 100/500 = 1/5
- (f) 500/6000 = 1/12
- (g) 5100/8800 = 51/88
- (h) 3700/4000 = 37/40

30. (a) Sim, porque não é possível receber conceito A e B ao mesmo tempo.

- (b) 0
- (c) $P(A \cap B) = 0 \neq 0, 24 = P(A) \cdot P(B)$. São dependentes.

31. (a) 0,4 (b) 0,5

32. (a) 3/8 (b) 1/2 (c) 1/2

33. (a) (b) 0,5 (c) 0,3 (d) 0,5 (e) $P(C|E) = 0,5 \neq 0,3 = P(C)$. São dependentes.

34. 0,064

35. Um artigo na revista *The Canadian Entomologist* estudou a vida da praga da alfafa a partir dos ovos até a vida adulta. A tabela seguinte mostra o número de larvas que sobreviveram em cada estágio do desenvolvimento.

Ovos	Fase precoce	Fase madura	Pré-pupa	Pupa	Adultos
	da larva	da larva			
421	412	306	45	35	31

- (a) Qual é a probabilidade de um ovo sobreviver até a vida adulta?
- (b) Qual é a probabilidade de sobrevivência até a vida adulta, dada a sobrevivência para a fase madura da larva?
- (c) Que estágio tem a menor probabilidade de sobrevivência para o próximo estágio?
- 36. Se P(A|B) = 0, 4, P(B) = 0, 8, P(A) = 0, 5, os eventos *A* e *B* são independentes?
- 37. Se P(A|B) = 0, 3, P(B) = 0, 8, P(A) = 0, 3, o evento B e o evento complementar de A são independentes?
- 38. Se P(A) = 0, 2, P(B) = 0, 2, e A e B são mutuamente excludentes, eles são independentes?
- 39. Matriz redundante de discos independentes (RAID *Redundant Array of Independent Disks*) é uma tecnologia que usa discos rígidos múltiplos para aumentar a velocidade de transferência de dados e fornecer cópia de segurança instantânea de dados. Suponha que a probabilidade de qualquer disco rígido falhar em um dia seja 0,001, e que as falhas do disco sejam independentes.
 - (a) Suponha que você implemente um esquema de RAID 0, que usa dois discos rígidos, cada um contendo uma imagem do outro, como um espelho. Qual é a probabilidade de perda de dados? Considere que a perda de dados ocorrerá se ambos os discos falharem dentro do mesmo dia.
 - (b) Suponha que você implemente um esquema de RAID 1, que divide os dados em dois discos rígidos. Qual é a probabilidade de perda de dados? Considere que a perda de dados ocorrerá se no mínimo um disco falhar dentro do mesmo dia. (Dica: escreva o evento "no mínimo um disco falhar" como o seu complementar).
- 40. Cabelos vermelhos naturais consistem em dois genes. Pessoas com cabelo vermelho natural têm dois genes dominantes, dois genes recessivos, ou um dominante e um recessivo. Um grupo de 1000 pessoas foi categorizado como segue:

Gene 1	Gene 2			
Gelle 1	Dominante	Recessivo	Outro	
Dominante	5	25	30	
Recessivo	7	63	35	
Outro	20	15	800	

Seja *A* o evento em que uma pessoa tem um gene dominante de cabelo vermelho, e seja *B* o evento em que uma pessoa tem um gene recessivo de cabelo vermelho. Se uma pessoa desse grupo for selecionada ao acso, calcule o seguinte:

- (a) P(A)
- (b) $P(A \cap B)$
- (c) $P(A \cup B)$
- (d) $P(A^c \cap B)$
- (e) P(A|B)
- (f) Considerando que para uma pessoa ter cabelo vermelho são necessários dois genes dominates, qual a probabilidade de que a pessoa selecionada tenha cabelo vermelho?