《微型计算机接口技术》考前必背 2022.1

第5~7章 输入输出系统

1. 总线的分类

地址总线,数据总线,控制总线

2. 接口电路的作用是什么? I/O 接口应具备哪些功能? (相对来说考的少一些)

答:接口是CPU和外设交换信息的中转站。

(1)数据缓冲功能(2)联络功能(3)寻址功能(4)数据转换功能(5)中断管理功能

3. 什么是端口?按端口存放信息的物理意义来分,端口分为几类?

答: 能与 CPU 交换信息的寄存器成为 I/O 寄存器,简称"端口"。 按端口的寄存器存放信息的物理意义来分,端口可分为 3 类: 1)数据端口 2)状态端口 3)控制端口

4. I/O 接口有哪两种编程方式? PC 系列机中采用哪种编程方式?

答: (1)统一编址(2)I/O 端口独立编址 在 PC 系列机中, I/O 端口采用独立编址方式。

5. 微机系统与 I/O 之间的传送方式

无条件传送,查询,中断,DMA DMA 方式不通过 CPU 间接交换

第八章 中断系统(8259A)

1. 中断类型码怎么获取

2. 试比较硬件中断和软件中断的区别?

- (1) 中断的引发方式不同
- (2) CPU 获取中断类型码的方式不同
- (3) CPU 响应的条件不同
- (4) 中断处理程序的结束方式不同
- 3. 按照中断级别从高到低的顺序,对非屏蔽中断、可屏蔽中断、以及 DMA 请求进行 排序。此外,简述 CPU 响应非屏蔽中断的条件。
- 答: DMA 请求级别 高于 非屏蔽中断 高于 可屏蔽中断。
- ①NMI 引脚有中断请求,系统没有 DMA 请求。
- ②CPU 当前指令执行完毕。

4. CPU 响应可屏蔽中断的条件是什么?

- 答:①INTR 引脚有中断请求,NMI 引脚没有中断请求,系统没有 DMA 请求。
 - ②CPU 当前指令执行完毕。
 - ③CPU 处于开中断状态(I 标=1)
- 5. 问法 1: 若 INTR 引脚提出的一个中断请求没有被响应,试分析其原因。问法 2: 日时钟中断源向 CPU 提出中断申请,但 CPU 不响应,简述其原因。
- ①CPU 有 DMA 请求,有非屏蔽中断请求
- ②CPU 一条指令未执行完毕
- ③CPU 处于关中断状态(I标=0)

6. 中断指令

- 1. 执行 INT n 指令或响应中断时, CPU 保护现场的次序是先保护 F 寄存器, 其次 CS, 最后 IP
- 2. CPU 执行 IRET 指令后,从栈顶弹出 6 字节数据,分别赋给 IP、CS 和 F 寄存器。(重点掌握)

7. 简述 CPU 执行 INT 21H 指令时如何完成整个中断响应过程

- ①将 F 寄存器、CS 和 IP 的当前值压入堆栈(1分)
- ②CPU 从 4*21H-4*21H+3 单元中取出 21H 型中断向量写入 IP、CS 中 (2分)
- ③执行 21H 中断服务程序, 完毕前从栈顶弹出两个分量到 IP、CS 还包括 F 寄存器内容(2分), 返回断点(3分)

8. 简述实模式下中断向量的概念和组成。

中断向量是实模式下,中断服务子程序的入口地址。

它由2部分组成:①服务程序所在代码段的段基址 ②服务程序入口的偏移地址

概率统计、微机、高数 A 下,期考补考 4 小时速成视频/辅导。 QQ: 3159 321 398

9. 写出 8259A 中两个寄存器的名称,并简述其作用

- (1) 中断请求寄存器,寄存中断请求引脚的中断请求信号
- (2) 中断屏蔽寄存器,用于开放和屏蔽某些中断
- (3) 中断服务寄存器,用于记录当前 CPU 正在为哪些可屏蔽的中断服务

10. 可屏蔽中断的优先级。日时钟中断、键盘中断、用户中断的中断类型码和中断源

主8259	中断源	中断类型	从8259	中断源	中断类型
IR0	日时钟	08H	IR0	实时时钟	70H
IR1	键盘	09H	IR1	用户中断	71H改向0AH
IR2	从8259		IR2	保留	72H
IR3	辅串口	0BH	IR3	保留	73H
IR4	主串口	0СН	IR4	保留	74H
IR5	并行口2	0DH	IR5	协处理器	75H
IR6	软盘	0EH	IR6	硬盘	76H
IR7	并行口1	0FH	IR7	保留	77 H

大家了解一下 8250 的主串口和辅串口也是中断源

概率统计、微机、高数 A 下, 期考补考 4 小时速成视频/辅导。 QQ: 3159 321 398

主8259	中断源	中断级别	从8259	中断源	中断级别
IR0	日时钟	最高	IR0	实时时钟	→高
IR1	键盘	次高	IR1	用户中断	
IR2	从8259		IR2	保留	
IR3	辅串口	高	IR3	保留	
IR4	主串口		IRA	保留	
IR5	并行口2		IR5	协处理器	
IR6	软盘		IR6	硬盘	
IR7	并行口1	│ 最低	IR7	保留	~ 低

	中断类型码	中断源
日时钟中断	08H	系统 8254 0#计数器,每 55ms 有一次中断请求
键盘中断	09H	
用户中断	71H 改向 0AH	系统的 ISA 总线 B4 端子引入的中断请求信号

11.8259 应用编程

1.写中断向量(DOS 25H 子功能)

[INT 21H 的 25H 子功能] 功能:写入n型中断向量

入口: DS=中断服务程序所在代码段的段基址 DX=中断服务程序入口的偏移地址

AL=中断类型码

例1: 设 SHOW 为 0AH 型用户中断服务程序。请编写**子程序**写入中断向量表

WRITEOA PROC

PUSHA PUSH DS

MOV AX, SEG SHOW

MOV DS,AX ; 中断服务子程序所在代码段的段基址 → DS MOV DX,OFFSET SHOW ; 中断服务子程序入口的偏移地址 → DX

MOV AL,0AH ; 中断类型码 \rightarrow AL MOV AH,25H ; 25H 型子程序 \rightarrow AH

上面两句可以写成一句: MOV AX,250AH

INT 21H POP DS POPA

RET

WRITEOA ENDP

概率统计、微机、高数 A 下, 期考补考 4 小时速成视频/辅导。 QQ: 3159 321 398

2.开放用户中断

	中断屏蔽寄存器 口地址	接收中断结束命令的 寄存器口地址
主8259	21H	20H
从8259	A1H	АОН

例2: 设计开放用户中断的子程序

I8259A PROC

IN AL,21H

AND AL,11111011B

OUT 21H,AL ; 开主 8259 的 IR2 中断

IN AL,0A1H

AND AL,11111101B

RET

I8259A ENDP

3.中断服务程序的编写(写中断结束命令字 20H)

① 若用户中断定义为 0AH 型(主),服务程序结束前只向主 8259A 送结束命令。(2 句指令)

MOV AL, 20H OUT 20H, AL

②若用户中断定义为 71H 型(从), 服务程序结束前,向主从 8259A 各送一中断结束命令。(3 句指令)

MOV AL, 20H

OUT 20H, AL

OUT 0A0H, AL

第九章 微型计算机系统串行通信(8250)

1. 简述异步串行通信的三种传输方式及其各自特点?

答: ①单工方式: 只允许数据按照一个固定的方向传送。

- ②半双工方式: 收发双方均具备接收和发送数据的能力,由于只有一条信道,数据不能在两个方向上同时传送。
- ③全双工方式: 收发双发可以同时进行数据传送。
- 串行异步通信协议要求收、发双方预置的(通信速率)和(一帧数据格式)必须一致.

3. 请简述串行异步通信中一帧数据的组成部分

(1)起始位 (2)数据位 (3)奇偶校验位 (4)停止位

注:而且你要知道起始位是逻辑"0",停止位是逻辑"1",以及各个组成部分的位数(附录给出了一些)

4. 什么是波特率?单位是什么?

每秒钟传送的 0、1 代码个数。单位为"波特"。

5. 掌握 RS-232C 接口标准

标准规定:逻辑"1"信号, 电平在 -3V~-15V 之间;

逻辑"0"信号, 电平在 +3V~+15V 之间;

6. 串行通信的外部环境

1.全双工-**无联络线**:

2. 单工-无联络线

3. 外环自发自收--无联络线

7. 请列举 8250 片内的 4 级中断及优先级。其中优先级最高的是哪种?

附录有,不用背,在8250的中断允许寄存器:

接收线路状态中断;

接收缓冲器满;

发送保持器空;

MODEM 状态中断;

优先级最高:接收线路状态中断;

8. 用系统机串行口采用中断方式完成字符发送和接收,编程时应采取哪些措施?

答: (1)中断允许寄存器相应位置 1

(2)MODEM 控制寄存器 $D_3=1$,即 $\overline{OUT_2}=0$ 打通 8250 的中断请求通道。

(3)8259 相应中断屏蔽位置 0(主 8259 IR_3 、 IR_4)— 8259

(4)CPU 处于开中断 (STI) — CPU

概率统计、微机、高数 A 下,期考补考 4 小时速成视频/辅导。 QQ: 3159 321 398

9. 8250 初始化编程 (B98B9C)

- 1) 80H → 通信线路控制寄存器;
- 2) 确定波特率 → 除数寄存器 ;
- 3) 数据格式 → 通信线控制寄存器;
- 4) 设置中断允许寄存器 (查询方式为 0; 如果是发送中断, 则 D1=1 即 0000 0010B; 如果是接收中断, 则 D0=1 即 0000 0001B; 如果是发送中断+接收中断则 D0=1, D1=1 即 0000 0011B)
- 5) 设置 MODEM 控制寄存器 (通常设为是 0 或者 03H; 如果是中断 (发送中断和接收中断都算),则 D3=1即 0000 1000B; 如果是内环自发自收,则 D4=1即 00010000B)

10. 应用编程

1) 查询状态。只有当 D0 = 1 时, CPU 才能读数; 只有当 D5=1 或 D6=1 时, CPU 才能写数据。

2. 通信线状态寄存器(3FDH/2FDH)

D7 位=0 D3 位: 帧错标志位

D6 位: 发送移位寄存器忙闲标志位 D2 位: 奇偶错标志位

D5 位: 发送保持寄存器忙闲标志位 D1 位: 溢出错标志位

D4 位:线路间断标志位 D0 位:接收数据准备好标志位

2) 发送接收字符。发送的字符 →发送保持寄存器 OR 接受缓冲寄存器 → 接受的字符

6. 发送保持寄存器 (接收缓冲寄存器地址 同) (3F8H/2F8H)

第十章 并行 I/O 接口(8255A)

1. 8255A 有哪几个数据端口? 各数据端口有哪几种工作方式? 工作方式对应的名称?

答:

工作方式	工作方式的名称	适用于端口
方式 0:	基本型入/出	АП、ВП、СП
方式 1:	选通型入/出	АП、ВП
方式 2:	双向传输	АП

2. 当 CPU 用查询方式和 8255A 交换信息时,应查询哪些信号,对应的名称是什么? (查 附录)

答: ①CPU 采用查询方式从 8255A 读取数据之前,应查询 IBF,输入缓冲器满;

注:查询 IBF=1时(输入缓冲器满),表示可以用 IN 指令从 A 或 B 口<mark>读入</mark>外设送来的数据

②CPU 采用查询方式向 8255A 输出数据之前,应先查询 \overline{OBF} ,输出缓冲器满。

注:查询 \overline{OBF} =<mark>1</mark>时(输出缓冲器空),表示可以用 OUT 指令向 A 或 B 口<mark>写</mark>数据以送给外设

概率统计、微机、高数 A 下,期考补考 4 小时速成视频/辅导。 QQ: 3159 321 398

3. 8255A 的 A 口工作在方式 1 输入或输出时,各对应的一组端口联络信号是什么? 对 应的信号名称? (查附录)

A口工作在方式1输入: STB 输入选通信号、IBF 输入缓冲器满

A 口工作在方式 1 输出: \overline{OBF} 输出缓冲器满、 \overline{ACK} 应答信号

4. 初始化编程

1) 方式选择命令字→控制口

2) 工作在方式 1、2 时(方式 0 不需要)。允许中断(或禁止中断)的命令字→控制口步骤 1 是肯定需要的,步骤 2 可能需要重复 n 次(n=0,1,2)

第十一章 可编程定时器/计数器(8254)

1. 内部结构

8254 有 1 个控制口,有 3 个数据口(计数器)。

对于每个计数器:

是 16 位计数器, 计数初值可设成二进制或 BCD 码

有6种工作方式:方式0~方式5

有 2 种启动方式: 硬件启动(方式 1,5)、软件启动(其他)

2. 简述 PC 机中 8254 的 3 个计数器的用途。

计数器 0 用于定时(约 55ms)中断。

计数器 1 用于动态存储器刷新定时。

计数器 2 用于产生方波送至扬声器。

3. 计数初值

计数初值
$$N = rac{f_{clk}}{f_{out}} = rac{T_{out}}{T_{clk}}$$

BCD 码时,计数初值 N 范围 $0\sim9999$,表示计数次数 $1\sim10000$,其中计数初值 0 对应计数次数 10000 二进制时,计数初值 N 范围 $0\sim$ FFFFH(65535),表示计数次数 $1\sim65536$,其中计数初值 0 对应计数次数 65536

4. 初始化编程

- 1) 方式选择命令字→控制口。
- 2) 计数初值→选择的计数器。