Samir Faci CS301

a.)
$$\emptyset \subseteq \emptyset$$

b.) $\emptyset \in \emptyset$

e.)
$$\{a,b\}$$
 $\in \{a,b,5\}$

$$f(x) = \{a,b\} \subseteq \{a,b,\{a,b\}\}$$

$$f.) \{a,b\} \subseteq \{a,b,\{a,b\}\}$$

$$g.) \{a,b\} \subseteq 2^{\{a,b,\{a,b\}\}}$$

$$h) \{\{a,b\}\} \in 2$$

$$\{a,b,\{a,b\}\}$$

h)
$$\{29, 699\}$$
 = $\{9, 6\}$ = $\{9, 6\}$ false

a)
$$(\{1,3,5\}, \cup \{3,1\}, \cap \{3,5,7\}) = \{3,5\}$$

b.)
$$\bigcup \{\{3\}, \{3,5\}, \bigcap \{\{5,7\}, \{7,9\}\}\}\}$$

= $\bigcup \{\{3\}, \{3,5\}, \{7\}\}\}$
= $\{3, 5, 7\}$

c.)
$$(\{1,2,5\}-\{5,7,9\})\cup(\{5,7,9\}-\{1,2,5\})=\{1,2\}\cup\{7,9\}=\{1,2,7,9\}$$

true

false

true

true

true

true

true

true

```
1.2.1) (continued)
d.) 2 $7,3,93 - 2 $7,93
  ££73, £833, £93, £7,333, £8,93, £7,93, £7,8,133 -
££73, £93, {7,933
    = { 183, 1733, { 8,93, { 7,8,933
e) 2 = 0
1.1.3) a.) A U(B \cap C) = (A \cup B) \cap (A \cup C)
 * AU (BAC) & (AUB) A (AUC)
suppose X & A U (B Mc) by def of union X & A or
    x & B nc
  since XEA then XE AUB by def of union and also
  XE AUC by def of union, hence X \(\int (AUB) \) (AUC)
 by det of intersection.
  therefore AU(BNC) (AUB) N (AUC) by def & =
    subset
 * (AUB) N (AUC) C AU (BNC)
   suppose x ∈ (AUB) A (AUC) by def of intersection,
    X & A UB and X & A U C
   since x EA we can immediately conclude that
```

X & A U (BAC) by det- of union.

by dof. of set equality.

since both subset relations have been proven,

it follows that AU (BNC) = (AUB) n(AUC)

```
1.1.3) (continued)
```

b.) An (BUC) = (ANB) U (ANC)

* An (BUC) = (ABNB) U (Anc)

suppose $x \in A \cap (B \cup C)$ by def of intersection

 $X \in A$ and $X \in (BUC)$

since x EA then x E (ANB) by def. of intersel

oud $x \in (A \cap C)$ by def of intersection and

X & (AMB) U (AMC) by def of union.

theredore since $x \in AAB$) U(AAC) and $x \in AAB$

it holds that AN (BUC) = (ANB) U (ANC)

* (A NB) U (ANC) = A N (BUC)

suppose $x \in (A \cap B) \cup (A \cap C)$ by def of union $x \in (A \cap B)$ or $x \in (A \cap C)$, since $x \in A$ we can conclude that $x \in A \cap (B \cap B)$ by def of the suppose $x \in A$ we can conclude that $x \in A \cap (B \cap B)$

Since $x \in AA(BUC)$ then by det. $(A \land B) \cup (A \land C) \in A \land (B \lor C)$

since both subset relations hold, it follows that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- c.) $A \cap (A \cup B) = A$ $A \cup B = \{x : x \in A \text{ or } x \in B\}$ $A \cap B = \{x : x \in A \text{ and } x \in B\}$
 - if any $\exists x \in A$ or $x \in B$ then $x \in (A \cup B)$ let $A \cup B$ be defined as C (i.e. $C = A \cup B$) since $A \subseteq C$ and $A \cap C$ is defined as any $x \in A$ and $x \in C$ the $A \cap C = A$ therefore $A \cap (A \cup B) = A$
- d.) $A \cup (A \cap B) = A$ if $x \in A$ and then by dof. of union $x \in A \cup A \cup A$ anything) therefore $x \in A$.
 - e.) $A (B \cap C) = (A B) \cup (A C)$ Let $L = A (B \cap C)$ and $R = (A B) \cup A \cap (A C)$ a.) Let $x \in L$ then $x \in A$ but $x \in B$ or $x \in C$ hence x is an element of either A B or A Cand thus an element of R i.e. $L \subseteq R$
 - (b) Let $x \in R$ then x is an element of either (A-B) or A-C by def of substraction, it has to be in A, $(x \in A)$ but $x = (B \cap C)$ by def of substraction and union on R so $x \in L$, therefore $R \subseteq L$ by definition of set equality L = R $A-(B \cap C) = (A-B) \cup (A-C)$