Differentialgleichungen: Grundbegriffe

In diesem Paragraphen sei I stets ein Intervall in \mathbb{R} .

Erinnerung: Sei $p \in \mathbb{N}$ und $y: I \to \mathbb{R}^p, \ y = (y_1, \dots, y_p).$ y heißt auf I k-mal (stetig) db auf $I \iff y_j \text{ ist auf } I \text{ k-mal (stetig) db } (j = 1, \dots, p).$

In diesem Fall gilt:

$$y^{(j)} = (y_1^{(j)}, \dots, y_p^{(j)}) \quad (j = 0, \dots, k)$$

Definition

Seien $n, p \in \mathbb{N}$ und $D \subseteq \mathbb{R} \times \underbrace{\mathbb{R}^p \times \ldots \times \mathbb{R}^p}_{n+1 \text{ Faktoren}}$ und $F: D \to \mathbb{R}^p$ eine Funktion.

Eine Gleichung der Form

(i)
$$F(x, y, y', \dots, y^{(n)}) = 0$$

heißt eine (gewöhnliche) Differentialgleichung (Dgl) n-ter Ordnung.

Eine Funktion $y: I \to \mathbb{R}^p$ heißt eine **Lösung** von (i), gdw. gilt:

- y ist auf I n-mal db,
- $\forall x \in I : (x, y(x), y'(x), \dots, y^{(n)}(x)) \in D$ und
- $\forall x \in I : F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0.$

Beispiele:

(1)
$$n = p = 1$$
, $F(x, y, z) = y^2 + z^2 - 1$, $D = \mathbb{R}^3$.

Dgl:
$$y^2 + y'^2 - 1 = 0$$
.

 $y: \mathbb{R} \to \mathbb{R}, \ y(x) = 1 \text{ ist eine L\"osung},$

 $\bar{y}: \mathbb{R} \to \mathbb{R}, \ \bar{y}(x) = \sin x \text{ ist eine weitere Lösung.}$

(2)
$$n = p = 1$$
, $F(x, y, z) = z + \frac{y}{x}$, $D = \{(x, y, z) \in \mathbb{R}^3 : x \neq 0\}$.

Dgl:
$$y' + \frac{y}{x} = 0$$
.

 $y:(0,\infty)\to\mathbb{R},\ y(x)=\frac{1}{x}$ ist eine Lösung, $\bar{y}:(-\infty,0)\to\mathbb{R},\ \bar{y}(x)=\frac{17}{x}$ ist eine weitere Lösung.

(3) n = 1, p = 2. Mit $y = (y_1, y_2)$:

$$y' = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} -y_2 \\ y_1 \end{pmatrix}$$

 $y: \mathbb{R} \to \mathbb{R}^2$, $y(x) = (\cos x, \sin x)$ ist eine Lösung.

Definition

Seien $n, p \in \mathbb{N}, \ D \subseteq \mathbb{R} \times \underbrace{\mathbb{R}^p \times \ldots \times \mathbb{R}^p}_{n \text{ Faktoren}} \text{ und } f : D \to \mathbb{R}^p.$

Eine Gleichung der Form

(ii)
$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

heißt explizite Differentialgleichung n-ter Ordnung.

Ist $(x_0, y_0, y_1, \dots, y_{n-1}) \in D$ (fest), so heißt das Gleichungssystem

(iii)
$$\begin{cases} y^{(n)} = f(x, y, y', \dots, y^{(n-1)}) \\ y(x_0) = y_0, \ y'(x_0) = y_1, \dots, \ y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$

ein Anfangswertproblem (AWP)

 $y: I \to \mathbb{R}^p$ heißt eine **Lösung** von (ii), gdw. gilt:

- y ist auf I n-mal db,
- $\forall x \in I : (x, y(x), y'(x), \dots, y^{(n-1)}(x)) \in D$ und
- $\forall x \in I : y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x)).$

 $y: I \to \mathbb{R}^p$ heißt eine **Lösung** von (iii), gdw. gilt:

- y ist eine Lösung von (ii),
- $x_0 \in I$ und
- $y^{(j)}(x_0) = y_j \ (j = 0, \dots, n-1)$

Das AWP (iii) heißt eine eindeutig lösbar, gdw. gilt:

- (iii) hat eine Lösung und
- für je zwei Lösungen $y_1: I_1 \to \mathbb{R}^p, \ y_2: I_2 \to \mathbb{R}^p \text{ von } (iii) \ (I_1, I_2 \text{ Intervalle in } \mathbb{R}) \text{ gilt:}$ $y_1 \equiv y_2 \text{ auf } I_1 \cap I_2$

Beispiele:

(1)

AWP:
$$\begin{cases} y' = 2\sqrt{|y|} \\ y(0) = 0 \end{cases} \quad (n = 1, \ p = 1)$$

 $y: \mathbb{R} \to \mathbb{R}, \ y(x) = 0$ ist eine Lösung des AWPs, $\bar{y}: [0, \infty) \to \mathbb{R}, \ \bar{y}(x) = x^2$ ist eine weitere Lösung.

(2)

AWP:
$$\begin{cases} y' = 2y \\ y(0) = 1 \end{cases} \quad (n = 1, \ p = 1)$$

 $y: \mathbb{R} \to \mathbb{R}, \ y(x) = e^{2x}$ ist eine Lösung des AWPs.

Sei $\bar{y}:I\to\mathbb{R}$ eine Lösung des AWPs. Wir definieren

$$g(x) := \frac{\bar{y}(x)}{e^{2x}} \ (x \in I)$$

.

Nachrechnen:
$$g'(x) = 0 \ \forall x \in I \implies \exists c \in \mathbb{R} : g(x) = c \ \forall x \in I \implies \bar{y}(x) = ce^{2x} \ (x \in I).$$

 $1 = \bar{y}(0) = c \implies \bar{y}(x) = e^{2x} \ \forall x \in I.$

Das AWP ist also eindeutig lösbar.