# IBM Applied Data Science Capstone

# Opening a New Restaurant in Toronto, Canada

By Suyash Singh
June 2020

## Introduction

With the rising economic growth in the Greater Toronto Area (GTA), people have higher spending power, and this can be seen in the growing number of hotels, restaurants and entertainment centers. The diversity in this region has allowed the rise of a variety of cuisines being offered. We have been approached by a property dealer to identify potential areas for a new restaurant business. We are tasked with the goal of identifying what cuisines would work in each area.

#### **Business Problem**

The investors are not picky about the cuisine and want to choose the cuisine that will give them the highest profits. They are looking to open a restaurant in the Toronto area. We are required to analyze the different areas of Toronto and identify the more popular cuisines in these areas. For this purpose, we will implement a k-means algorithm to cluster different areas of Toronto based on the popular restaurants in the region. At the end of the analysis, we will be able to identify regions with potential for a new restaurant and will recommend the cuisine to offer.

#### Data

#### **Data Sources**

The data used in this analysis come from:

- 1. Wikipedia
- 2. Foursquare API

Wikipedia(<a href="https://en.wikipedia.org/wiki/List\_of\_postal\_codes\_of\_Canada:\_M">https://en.wikipedia.org/wiki/List\_of\_postal\_codes\_of\_Canada:\_M</a>) provides a table containing postal codes and the associated neighborhoods of Toronto. We use the BeautifulSoup package in Python to scrape the table from the website and modify it for our use.

We will then extract the latitude and longitude values for these neighborhoods using the Geocoder package in Python.

List of restaurants will be extracted using the Foursquare API. We will use the latitude and longitude values of the neighborhoods from previous step and find restaurants within 500 metres radius.

Once we have cleaned the data after extraction, we will apply k-means clustering algorithm to identify the identical clusters.

#### Data Extraction

## Wikipedia

We use Wikipedia to scrape a table containing neighborhoods of Toronto and their postal codes. We use BeautifulSoup package to extract this table. After cleaning the data, the final table looks like the one below.

|    | Postal Code | Borough          | Neighborhood                                |
|----|-------------|------------------|---------------------------------------------|
| 2  | МЗА         | North York       | Parkwoods                                   |
| 3  | M4A         | North York       | Victoria Village                            |
| 4  | M5A         | Downtown Toronto | Regent Park, Harbourfront                   |
| 5  | M6A         | North York       | Lawrence Manor, Lawrence Heights            |
| 6  | M7A         | Downtown Toronto | Queen's Park, Ontario Provincial Government |
| 8  | M9A         | Etobicoke        | Islington Avenue, Humber Valley Village     |
| 9  | M1B         | Scarborough      | Malvern, Rouge                              |
| 11 | МЗВ         | North York       | Don Mills                                   |
| 12 | M4B         | East York        | Parkview Hill, Woodbine Gardens             |
| 13 | M5B         | Downtown Toronto | Garden District, Ryerson                    |

Figure 1: Postal Code and relevant Neighborhoods in Toronto

# Geocoder (Python package)

We then use the postal code to extract their latitude and longitude values using the Geocoder package on python. The data after extracting these values looks like this:

| Pos | tal Code | Borough          | Latitude  | Longitude  |
|-----|----------|------------------|-----------|------------|
| 0   | МЗА      | North York       | 43.753259 | -79.329656 |
| 1   | M4A      | North York       | 43.725882 | -79.315572 |
| 2   | M5A      | Downtown Toronto | 43.654260 | -79.360636 |
| 3   | МбА      | North York       | 43.718518 | -79.464763 |
| 4   | M7A      | Downtown Toronto | 43.662301 | -79.389494 |
| 5   | M9A      | Etobicoke        | 43.667856 | -79.532242 |
| 6   | M1B      | Scarborough      | 43.806686 | -79.194353 |
| 7   | МЗВ      | North York       | 43.745906 | -79.352188 |
| 8   | M4B      | East York        | 43.706397 | -79.309937 |

Figure 2: Latitude and Longitude values of Postal Codes

#### FourSquare API

We wrote a function that retrieves nearby venues for each neighborhood. It does this using the FourSquare API. We also obtain the latitude and longitude values of these venues. We manipulate the dataset to obtain the count of top ten most common category of restaurants in each neighborhood and apply mean function on the columns to convert the values to mean values. This is done to implement the k-means algorithm. The final dataset that will be used for the clustering looks like this:

| Neighborhood                                             | Afghan<br>Restaurant | American<br>Restaurant | Asian<br>Restaurant | Belgian<br>Restaurant | Brazilian<br>Restaurant | Cajun /<br>Creole<br>Restaurant | Caribbean<br>Restaurant |
|----------------------------------------------------------|----------------------|------------------------|---------------------|-----------------------|-------------------------|---------------------------------|-------------------------|
| Berczy Park                                              | 0.000000             | 0.000000               | 0.000000            | 0.000000              | 0.000000                | 0.000000                        | 0.000000                |
| Brockton,<br>Parkdale<br>Village,<br>Exhibition<br>Place | 0.000000             | 0.000000               | 0.000000            | 0.000000              | 0.000000                | 0.000000                        | 0.000000                |
| Business reply<br>mail Processing<br>Centre, South<br>C  | 0.000000             | 0.000000               | 0.000000            | 0.000000              | 0.000000                | 0.000000                        | 0.000000                |
| CN Tower, King<br>and Spadina,<br>Railway Lands,<br>Har  | 0.000000             | 0.000000               | 0.000000            | 0.000000              | 0.000000                | 0.000000                        | 0.000000                |
| Central Bay<br>Street                                    | 0.000000             | 0.000000               | 0.000000            | 0.000000              | 0.000000                | 0.000000                        | 0.000000                |
| Christie                                                 | 0.000000             | 0.000000               | 0.000000            | 0.000000              | 0.000000                | 0.000000                        | 0.000000                |
| Church and<br>Wellesley                                  | 0.013158             | 0.013158               | 0.000000            | 0.000000              | 0.000000                | 0.000000                        | 0.013158                |

Figure 3: Final dataset

# Methodology

In this analysis, we are going to develop a K-means clustering algorithm to cluster neighborhoods in Toronto based on the most common type of restaurants in the area. We generated a map of Toronto displaying the various boroughs using Folium.



Figure 4:Map generated using Folium

The final dataset on which we apply the k-means algorithm contains mean of all restaurants in each neighborhood. We apply the algorithm to see what kind of clusters we get.

## Elbow Method (Cluster number selection)

We will first use the elbow method to identify the ideal number of clusters to be used. Here we calculate the sum of squared distances of the values in the dataset and plot its value with increasing value of K.

The K at which we see an elbow is the ideal number of clusters to use.



Figure 5: Number of Clusters VS Sum of Squared Distances

The optimal K value is at k = 5. Hence, we will use this value as the number of clusters for the k-means clustering algorithm. We plot the results of the clustering on a map of Toronto using Folium. The representation looks like this:



Figure 6: Map of Toronto after K- means Clustering

# Results

The K-means clustering algorithm gave us 5 clusters based on the restaurants in Toronto area. The clusters are mentioned below.

| Cluster 1          | Cluster 2      | Cluster 3             | Cluster 4           | Cluster 5          |
|--------------------|----------------|-----------------------|---------------------|--------------------|
| St. James Town     | High Park, The | Regent Park,          | Forest Hill North & | The Danforth West, |
|                    | Junction South | Harbourfront          | West, Forest Hill   | Riverdale          |
|                    |                |                       | Road Park           |                    |
| Berczy Park        |                | Queen's Park,         |                     |                    |
|                    |                | Ontario Provincial    |                     |                    |
|                    |                | Government            |                     |                    |
| Central Bay Street |                | Garden District,      |                     |                    |
|                    |                | Ryerson               |                     |                    |
| Christie           |                | The Beaches           |                     |                    |
| Toronto Dominion   |                | Richmond,             |                     |                    |
| Centre, Design     |                | Adelaide, King        |                     |                    |
| Exchange           |                |                       |                     |                    |
| India Bazaar, The  |                | Dufferin,             |                     |                    |
| Beaches West       |                | Dovercourt Village    |                     |                    |
| Commerce Court,    |                | Harbourfront East,    |                     |                    |
| Victoria Hotel     |                | Union Station,        |                     |                    |
|                    |                | Toronto Islands       |                     |                    |
| Studio District    |                | Little Portugal,      |                     |                    |
|                    |                | Trinity               |                     |                    |
| Parkdale,          |                | Brockton, Parkdale    |                     |                    |
| Roncesvalles       |                | Village, Exhibition   |                     |                    |
|                    |                | Place                 |                     |                    |
| Davisville         |                | Lawrence Park         |                     |                    |
| University of      |                | Roselawn              |                     |                    |
| Toronto, Harbord   |                |                       |                     |                    |
| Runnymede,         |                | Davisville North      |                     |                    |
| Swansea            |                |                       |                     |                    |
| Stn A PO Boxes     |                | North Toronto         |                     |                    |
|                    |                | West, Lawrence        |                     |                    |
|                    |                | Park                  |                     |                    |
| St. James Town,    |                | The Annex, North      |                     |                    |
| Cabbagetown        |                | Midtown, Yorkville    |                     |                    |
| First Canadian     |                | Moore Park,           |                     |                    |
| Place, Underground |                | Summerhill East       |                     |                    |
| city               |                |                       |                     |                    |
| Church and         |                | Kensington Market,    |                     |                    |
| Wellesley          |                | Chinatown, Grange     |                     |                    |
| <i>1</i>           |                | Park                  |                     |                    |
|                    |                | Summerhill West, R    |                     |                    |
|                    |                | athnelly, South Hill, |                     |                    |
|                    |                | Forest Hill SE, Deer  |                     |                    |
|                    |                | Park                  |                     |                    |
|                    |                | I WITE                |                     |                    |

| Rosedale              |  |
|-----------------------|--|
| Business reply mail   |  |
| Processing Centre,    |  |
| South Central Letter  |  |
| Processing Plant      |  |
| Toronto               |  |
| CN Tower, King and    |  |
| Spadina, Railway La   |  |
| nds, Harbourfront     |  |
| West, Bathurst Qua    |  |
| y, South Niagara, Isl |  |
| and airport           |  |
|                       |  |

The first cluster is strongly dominated by Italian and American Restaurants as well as a few other cuisines in smaller numbers. The second cluster has strong presence of Thai and Mexican Restaurants. The third cluster has many Vietnamese restaurants. We also notice in this group that the number of restaurants in this region aren't many. The fourth cluster has a strong presence of Sushi Restaurants and the final cluster is dominated by Greek and Italian Restaurants.

## Conclusion

The clustering has allowed us to determine the kind of restaurant distribution in the Toronto region.

Business owners looking to open a restaurant in areas under Cluster 1 should explore the Italian and

American Restaurant. We see a strong presence of these restaurants in this cluster. Other cuisines have little or no presence in these regions.

Cluster 2 contains only contains the neighborhoods of High Park and The Junction South. These neighborhoods are good for a Thai and Mexican restaurant business. We see a strong presence of these restaurants here. Cajun and Fast Food restaurants also have higher presence than other clusters. This cluster generally looks good for the restaurant business.

Cluster 3 contains many Vietnamese Restaurants. We also see a presence of Vegetarian/ Vegan cuisines. There are lower number of restaurants in these clusters. This maybe because these neighborhoods may be housing areas or occupied by other structures that prevent the rise of a vibrant restaurant business. More data may be required to deduce why exactly these areas don't have many restaurants. We would not advise opening a restaurant business in these neighborhoods.

Cluster 4 is only dominated by Sushi restaurants. No other restaurant business is present in these neighborhoods. We believe only Sushi restaurants have scope for business in these regions.

Cluster 5 contains the Danforth West and Riverdale neighborhoods. These neighborhoods have many Greek and Italian Restaurants. We recommend exploring these cuisines in this region.

This analysis gives us information about what kind of cuisines are doing better business in different areas of Toronto region. We conclude that Clusters 1,2,4 and 5 have scope for a new restaurant business. Cluster 3 is the only cluster to avoid investing in.