complete

Data Cleaning

Load Assets

```
library(tidyverse)
Warning: package 'lubridate' was built under R version 4.4.2
— Attaching core tidyverse packages —
                                                              — tidyverse 2.0.0 —
           1.1.4 √ readr
√ dplyr
                                    2.1.5

√ forcats 1.0.0 
√ stringr 1.5.1

√ ggplot2 3.5.1

                      √ tibble
                                    3.2.1
✓ lubridate 1.9.4
                     √ tidyr
                                    1.3.1
✓ purrr
             1.0.2
-- Conflicts -
                                                        -- tidyverse_conflicts() --
X dplyr::filter() masks stats::filter()
X dplyr::lag()
                   masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
errors
 library(readxl)
 library(writexl)
full <- read_excel("data/bds_data.xlsx", sheet = "BDS")</pre>
 patents <- read_excel("data/bds_data.xlsx", sheet = "Patents")</pre>
 stem_edu <- read_excel("data/S&EDegrees2000-2018.xlsx")</pre>
New names:
• `2018-All S&E degrees/all higher education degrees (Percent)` -> `2018-All
  S&E degrees/all higher education degrees (Percent)...58`

    `2018-All S&E degrees/all higher education degrees (Percent)` -> `2018-All

  S&E degrees/all higher education degrees (Percent)...59`
 employment_growth <- read_excel("data/bds_data.xlsx", sheet = "Copy of Total Employment Growth")</pre>
 sector_growth <- read_excel("data/bds_data.xlsx", sheet = "Info Employment Growth")</pre>
 vc <- read_excel("data/Wide Data Set.xlsx", sheet = "VC #", skip = 1)</pre>
```

Make datasets long

```
patents <- patents |>
  pivot_longer(cols = 2:27, values_to = "Number of Utility Patents", names_to = "Year") |>
```

```
mutate(Year = as.numeric(Year))

stem_edu <- stem_edu |>
   head(51) |>
   pivot_longer(cols = 2:59, values_to = "Number", names_to = "Year") |>
   mutate(Number = as.numeric(Number))

vc <- vc |>
   pivot_longer(cols = 2:27, values_to = "Number of Firms Receiving VC", names_to = "Year") |>
   mutate(Year = as.numeric(Year))
```

Clean S&E Dataset and Fix Formatting

```
se_degrees <- stem_edu |>
  filter(str_detect(Year, "conferred")) |>
  mutate(Year = str_sub(Year, 1, 4), Year = as.numeric(Year)) |>
  rename("S&E Degrees" = Number)

total_degrees <- stem_edu |>
  filter(str_detect(Year, "All higher")) |>
  mutate(Year = str_sub(Year, 1, 4), Year = as.numeric(Year)) |>
  rename("Total Degrees" = Number)

se_degree_proportion <- stem_edu |>
  filter(str_detect(Year, "All S&E")) |>
  mutate(Year = str_sub(Year, 1, 4), Year = as.numeric(Year)) |>
  distinct() |>
  rename("Proportion of S&E" = Number)
```

Full, long dataset of all the variables of every state in every year

```
full <- full |>
  left_join(patents, join_by(State, Year)) |>
  left_join(se_degrees, join_by(State, Year)) |>
  left_join(total_degrees, join_by(State, Year)) |>
  left_join(se_degree_proportion, join_by(State, Year)) |>
  left_join(vc, join_by(State, Year))

write_xlsx(full, "data/full_dataset.xlsx")

full <- full |>
  mutate(State = factor(State))
```

Plots

Separate plots for every year of states vs selected variable

Employment by State in 2022

Employment

Employment

Separate plots for each variable trend over time, with separate lines for every state

```
variables <- c("Total Employment", "Information Sector", "Net Job Creation",
               "Establishment Births", "Establishment, Firm Deaths",
               "Number of Utility Patents", "Proportion of S&E",
               "Number of Firms Receiving VC")
# Loop through each variable and generate the plot
suppressWarnings(for (v in variables) {
  plot <- ggplot(full, aes(x = Year, y = .data[[v]], color = State)) +</pre>
    geom_point() +
    geom_smooth(se = FALSE) +
    labs(title = paste(v, "Across States Over Time"),
         x = "Year",
         y = v) +
    theme(legend.position = "right",
        legend.text = element_text(size = 4))
  print(plot)
})
```

 $\ensuremath{\text{`geom_smooth()`}}\$ using method = 'loess' and formula = 'y \sim x'

 $[\]ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$

 $[\]ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y \sim x'$

Year

Establishment, Firm Deaths Across States Over Time

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y \sim x'$

Number of Utility Patents Across States Over Time

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y \sim x'$

Year

Number of Firms Receiving VC Across States Over Time

Separate plots for each variable (summarized over time) across states

employment by State Across Years

establishments by State Across Years

births by State Across Years

investments by State Across Years

