Осуществите подстановку и приведите к нормальной форме — форме, в которой не осталось редексов, — указывая при этом основные шаги:

1
$$x := \mathbf{K}$$
 и $y := \mathbf{B}$ в y ($\lambda z. \ x \ x \ (x \ z \ x)$) ($\lambda x. \ x \ x \ x$) \mathbf{I} Решение:
$$y \ (\lambda z. \ x \ x \ (x \ z \ x)) \ (\lambda x. \ x \ x \ x) \ \mathbf{I}[x := \mathbf{K}, y := \mathbf{B}]$$
 $B(\lambda z.KK(KzK))(\lambda x.xxx)I$ ($\lambda z.KK(KzK))((\lambda x.xxx)I)$ ($\lambda z.KK(KzK))(III)$ ($\lambda z.KK(KzK))I$ $KK(KIK)$ KKI

$$\mathbf{2} \quad x := \mathbf{S} \text{ B } x \ (\lambda z \ x. \ z \ x) \ (\lambda z \ y \ x. \ x) \ x$$

Решение:

$$x (\lambda z \ x. \ z \ x) (\lambda z \ y \ x. \ x) x[x := S]$$

$$S(\lambda z x. z x) (\lambda z y x. x) S$$

$$(\lambda z x. z x) S((\lambda z y x. x) S)$$

$$(\lambda z x. z x) S(\lambda y x. x)$$

$$SK_*$$

$$(\lambda f g x. f x(g x)) (\lambda y x. x)$$

$$\lambda g x. K_* x(g x)$$

$$\lambda g x. g x$$

K

Приведите к нормальной форме, указывая основные шаги:

3
$$(\lambda x \ x \ x. \ x)$$
 I K S

Решение:

$$(\lambda x.\lambda x.\lambda x.x)IKS$$
$$(\lambda x.\lambda x.x)KS$$
$$(\lambda x.x)S$$
$$S$$

4
$$(\lambda x \ y \ z. \ y \ x \ z) (y \ x) (\lambda x. \ x \ x) f$$
 Решение:

$$(\lambda y'z.y'(yx)z)(lambdax.xx)f$$

 $(\lambda z.(\lambda x.xx)(yx)z)f$
 $(yx)(yx)f$

5 ISKSKS(SKKK)

Решение:

ISKSKS(SKKK) SKSKS(SKKK) $(\lambda x.Kx(Sx))KS(SKKK)$ KS(SKKK) KS(KK(KK)) KS(KK) KS(KK)

Введём булевы значения:

 $egin{aligned} \mathbf{tru} &:= \mathbf{K} \\ \mathbf{fls} &:= \mathbf{K}_* \\ \mathbf{not} &:= \lambda b. \ b \ \mathbf{fls} \ \mathbf{tru} \\ \mathbf{and} &:= \lambda b_1 \ b_2. \ b_1 \ b_2 \ \mathbf{fls} \end{aligned}$

6 Убедитесь, что \mathbf{and} работает как надо: покажите, что если ему подавать аргументы \mathbf{tru} и \mathbf{fls} , будут получаться логически правильные результаты.

Решение:

Проверим , что and $tru\ fls = fls$

 $(\lambda b1b2.b1b2fls)tru\ fls$ $tru\ fls\ fls$ KK_*K_* K_* fls

Верно.

Проверим, что and $tru\ tru = tru$

 $(\lambda b1b2.b1\ b2\ fls)KK$ KKK_* K tru

Верно.

Проверим, что and $fls \ fls = fls$

 $(\lambda b1b2.\lambda b1\ b2\ K_*)K_*K_*$ $K_*K_*K_*$ K_* fls

Верно.

Проверим, что and fls tru = fls

 $(\lambda b1b2.b1\ b2\ fls)fls\ tru$ $(\lambda b1b2.b1\ b2\ K_*)K_*K$ K_*KK_* K_* fls

7 Напишите функцию $or(b_1, b_2)$.

Решение: $\lambda b1b2.b1\ tru\ b2$

Напишите лямбда-термы:

8 Функцию $\mathbf{mult}(a,b)$, перемножающую два числа Чёрча.

Решение:

$$mul := \lambda n 1n 2.\lambda sz.n 1 \ (\lambda z'.add \ n 2 \ z' \ s \ z) \ 0$$

9 Функцию **iszero**(a), которая возвращает **tru**, если ей подать **0**, и **fls** в противном случае. Решение:

$$iszero := \lambda n.n(\lambda x.fls) tru$$

10 Функцию $\mathbf{pow}(a,b)$, которая вычисляет a^b , где a и b — числа Чёрча. Решение:

$$\lambda n1n2.\lambda sz.n2 \ (\lambda z'.mul \ z' \ n1)1$$

11 Функцию **iseven**(n), которая возвращает **tru**, если n — чётное число Чёрча, и **fls** в противном случае. Существует короткое решение.

Решение: Введем вспомогательную функцию $not := \lambda x.x \ fls \ tru$. Тогда

$$iseven := \lambda n.n \ (\lambda x.not \ x) \ tru$$

12 Функцию **хог** (b_1, b_2) .

Решение:

$$xor := \lambda a \ b.and \ (or \ a \ b) \ (not \ (and \ a \ b))$$

13 Функцию $\mathbf{pred}(n)$, которая находит предыдущее число Чёрча. Подсказка:

```
def pred(n):
    prd = 0
    cur = 0
    for i in range(0, n):
        prd = cur
        cur = cur + 1
    return prd
```