Autómata Off-Lattice: Bandadas de agentes autopropulsados

Camila Di Toro Kevin Catino Iván Chayer

Instituto Técnologico de Buenos Aires [72.27] Simulación de Sistemas

Contenidos

Introducción

Sistema Real

Sistema Real

Partículas auto-propulsadas

Objetivo

Investigar su auto-organización a partir de su interacción.

Modelo de partículas auto-propulsadas

Reglas base del modelo:

- Cada partícula se desplaza en cada paso temporal
- Velocidad de módulo constante
- La dirección es un promedio de direcciones de velocidades vecinas en un radio de interacción "r" ^a
- Se adiciona ruido al cálculo de la dirección promedio

^aEl cálculo incluye el angulo de la propia partícula

Modelo de partículas auto-propulsadas

Posición de la i-ésima partícula para cada tiempo t:

$$x_i(t+1) = x_i(t) + v_i(t)\Delta t, \ \Delta t = 1$$
(1)

La dirección de la velocidad se obtiene a partir de la expresión:

$$\theta(t+1) = \langle \theta(t) \rangle_r + \Delta \theta$$
 (2)

$\langle \theta(t) \rangle y \Delta \theta$

Cálculo del promedio de los ángulos:

$$\langle \theta(t) \rangle_r = atan2 \left[\frac{\langle sin(\theta(t)) \rangle_r}{\langle cos(\theta(t)) \rangle_r} \right]$$
 (3)

 $\Delta\theta$ es el ruido y se obtiene de una distribución unifrome de intervalo $[-\frac{\eta}{2},\frac{\eta}{2}]$

Implementación

Arquitectura

Motor de simulación

Utiliza el método getNextBoard de la clase BoardSequence para avanzar en el tiempo y obtener el próximo Board.

Resumen de las operaciones realizadas:

- Cálculo de la nueva velocidad y posición
- Se actualiza la velocidad y posición de la partícula
- Se recalcula las celdas en las que se encuentran las partículas
- Se obtienen los vecinos utilizando Cell Index Method

Actualización de la posición

Actualización de la velocidad

```
getNext(neighbours: list<particle>, noise: double) ->
   Velocity:
    noiseValue = RandomBetween(-noise/2, noise/2)
    angles = new list
    for each particle in neighbours:
        angle = arctan(particle.vy / particle.vx)
        angles.add(angle)
    selfAngle = arctan(this.velocity.y / this.velocity.x)
    angles.add(selfAngle)
    sinAvg = promedio de los senos en 'angles'
    cosAvg = promedio de los cosenos en 'angles'
    nextAngle = arctan(sinAvg / cosAvg) + noiseValue
    nextVx = cos(nextAngle) * modulo de v
    nextVy = sin(nextAngle) * modulo de v
    return Velocity(nextVx, nextVy)
```

Simulaciones

Modelo Propuesto

- Partículas puntuales en una celda de lado L con condiciones periódicas.
- **◄** Velocidad constante v = 0.03.
- **◄** Dirección θ .
- ▶ Radio de interacción r=1.
- N partículas en el sistema.

Condiciones Iniciales

- \blacksquare Generación de N partículas aleatoriamente a t=0.
- Módulo de velocidad constante v = 0.03.
- **◄** Direcciones θ aleatorias, $\theta \in [0, 2\pi]$.

Comportamiento del Sistema

 \blacktriangleleft Velocidad promedio normalizada v_a como observable.

$$v_a = \frac{1}{Nv} \left| \sum_{i=1}^{N} v_i \right|$$

- ▶ Parámetros de interés: ruido η y densidad $\rho = N/L^2$.
- $lack v_a$ tiende a cero para desorden total y a 1 para partículas polarizadas.

Simulaciones y Análisis

- ◀ Variación de v_a en función del ruido (η).
- **◄** Variación de v_a en función de la densidad (ρ)

Parámetros

Comportamiento de v_a con ruido

- $\eta \in [0, 5], N \in \{40, 100, 400\}$
- **◄** Densidad constante $\rho = 4$, ajuste L con N.

Comportamiento de v_a con densidad

$$\bullet \ \rho \in [0,10] \text{, } L=20 \text{, } \eta = 2.5$$

Cálculo de v_a y Estado Estacionario

- \blacktriangleleft Se calcula v_a cuando sistema esté estable.
- ◆ Se determina el tiempo estacionario con pruebas.

Parámetros Constantes

- ◀ Módulo velocidad: 0.03
- Radio interacción: 1

Baja densidad

- L = 20
- ightharpoonup N = 200
- $\rho = 0.5$

Alta densidad

- L = 20
- $\eta = 2.5$
- N = 2000
- $\rho = 5$

Bajo ruido

- ightharpoonup L = 10
- $\blacktriangleleft \eta = 0.1$
- ightharpoonup N = 400
- $\rho = 4$

Alto ruido

- ightharpoonup L = 10
- ightharpoonup N = 400
- $\rho = 4$

Resultados

v_a en función del tiempo

- ightharpoonup L = 10
- $\blacktriangleleft N = 400$

- \bullet $\eta \in \{3,5\}$: v_a no se estabiliza.
- \bullet $\eta = 0.1$: v_a se estabiliza desde $t \approx 700$.
- \bullet $\eta = 1$: v_a se estabiliza desde $t \approx 4500$.

v_a en función del tiempo

- **◄** L = 20
- $\blacktriangleleft \eta = 2.5$

- \bullet $\rho \in \{5, 10\}$: v_a se estabiliza desde $t \approx 4000$
- $\rho = 0.5$: v_a no se estabiliza.

Cálculo de v_a

Se decide utilizar el siguiente método:

- ◆ Si la variación de v_a en 10 iteraciones consecutivas es < 0.01, se toma ese promedio.
 </p>
- \blacktriangleleft Si al llegar a la iteración 5000 no se cumplió la condición anterior, se calcula v_a como el promedio de las iteraciones 5001 a 6000.

v_a en función del <u>ruido</u>

v_a en función de la densidad

- $\eta = 2.5$
- **◄** L = 20

Conclusiones

Conclusiones

 $lacktriangledown v_a$ es un indicador de polarización de las partículas del sistema.

Relación entre η y v_a

$$\uparrow \eta \implies \downarrow v_a$$

Relación entre ρ y v_a

$$\uparrow \rho \implies \uparrow v_a$$

Temporary page!

this document.

there was some unprocessed data that should have been added

the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page go away, because LATEX now knows how many pages to expect

LATEX was unable to guess the total number of pages correctly.