Marcos Históricos:

With 1 layer and 1 neuron

Recap

With 1 layer and N neuron

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Multi-Layer Perceptron

 O grande desafio foi achar um algoritmo de aprendizado para atualizar dos pesos das camadas intermediarias

Idéia Central

 Os erros dos elementos processadores da camada de saída (conhecidos pelo treinamento supervisionado) são retropropagados para as camadas intermediarias

Processador j pertence à Camada de Saída:

$$e_j = (t_j - x_j) F'(y_j)$$

Processador j pertence à Camada Escon '' '

Fase 1: Feed-Forward

Fase 1: Feed-Forward

Fase 1: Feed-Forward

Fluxo de Dados Camadas Escondidas Entrada Saída

Fase 1: Feed-Forward

- Fase 1: Feed-Backward
 - Cálculo do erro da camada de saída Fluxo de Erros

- Fase 1: Feed-Backward
 - Atualização dos pesos da camada de saída Fluxo de Erros

- Fase 1: Feed-Backward
 - Cálculo do erro da 2º camada escondida

- Fase 1: Feed-Backward
 - Atualização dos pesos da 2º camada Fluxo de Erros

- Fase 1: Feed-Backward
 - Cálculo do erro da 1º camada escondida Fluxo de Erros

- Fase 1: Feed-Backward
 - Atualização dos pesos da 1º camada

Camada de Entrada Camada Escondida Camada de Saída

- Entrada:
 - $x_1 = 1, x_2 = 0$
- Saída Desejada:
 - $t_3 = 1$
- Pesos iniciais:
 - $W_{ij}(0) = 0$
- Taxa de Aprendizagem:
 - $\eta = 0.5$

Função de Ativação:

$$F(y_i) = \frac{1}{1 + \exp(-y_i)}$$

Derivada da Função de Ativação:

$$F'(y_i) = \frac{\exp(-y_i)}{[1 + \exp(-y_i)]^2}$$

Algoritmo de Aprendizado:

$$w_{ij} = w_{ij} + \eta x_i e_j$$

Camada de Saída

$$e_j = (t_j - x_j) F'(y_j)$$

Camada Escondida

$$e_j = F'(y_j) \sum_k e_k w_{jk}$$

Feed-Forward:

- $y_1 = 1*0+1*0+0*0 = 0$
 - $x_1 = F(y_1) = 0.5$
- $y_2 = 1*0+1*0+0*0 = 0$
 - $x_2 = F(y_2) = 0.5$
- $y_3 = 1*0+0.5*0+0.5*0 = 0$
 - $x_3 = F(y_3) = 0.5$

$$y_j = \sum x_i w_{ij} + \theta_j$$

- Feed-Backward:
 - $t_3 x_3 = 1 0.5 = 0.5$
 - $e_3 = 0.5*0.25 = 0.125$

$$e_j = (t_j - x_j)F'(y_j)$$

Feed-Backward:

$$w_{ij} = w_{ij} + \eta x_i e_j$$

- $w^2_{03} = 0 + 0.5 * 1 * 0.125 = 0.0625$
- $w^{2}_{13} = 0 + 0.5*0.5*0.125 = 0.0313$
- $w^{2}_{23} = 0 + 0.5*0.5*0.125 = 0.0313$

- Feed-Backward:
 - $e_1 = 0.25*(0.125*0.0313) = 0.00097813$
 - $e_2 = 0.25*(0.125*0.0313) = 0.00097813$

$$e_j = F'(y_j) \sum_k e_k w_{jk}$$

Feed-Backward:

$$w_{ij} = w_{ij} + \eta x_i e_j$$

- $w_{01}^1 = 0 + 0.5*1*0.00097813 = 0.00048907$
- $w_{02}^1 = 0 + 0.5*1*0.00097813 = 0.00048907$
- $w_{11}^1 = 0 + 0.5*1*0.00097813 = 0.00048907$
- $w_{12}^1 = 0 + 0.5*1*0.00097813 = 0.00048907$
- $w_{21}^1 = 0 + 0.5*0*0.00097813 = _{x_2}$
- $W_{22}^1 = 0 + 0.5*0*0.00097813 = C_{Almada}_{de Entrada}$

Camada Escondida Camada de Saída

Problema XOR

Problema XOR

 Borda de decisão construída pelo 1º neurônio escondido Borda de decisão construída pelo 2º neurônio escondido

Problema XOR

 Borda de decisão construída pela rede completa

With N layer and 1 neuron

