State of the Art PacBio repeats through tweaked PfTools software suite

Thierry Schuepbach

August 29, 2016

Contents

1	Description of the experiment	1
	Early methods and new addons to the PfTools 2.1 Perl scripts	
3	Results so far	2
4	Future	6

1 Description of the experiment

In an attempt to account tandem repeats inside PacBio Next Generation Sequencing Technology data was generated for a single fixed number of repeat (to be determined) of "CAG" trinucleotides.

Available data files are:

```
[4.0K] Analysis_Results
   - [3.2G] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.1.bax.h5
    - [448K] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.1.log
   [ 20M] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.1.subreads.fasta
    [ 40M] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.1.subreads.fastq
    [2.8G] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.2.bax.h5
    - [442K] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.2.log
     [ 19M]
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.2.subreads.fasta
     [ 37M]
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.2.subreads.fastq
     [3.2G]
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.3.bax.h5
     [440K]
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.3.log
     [22M]
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.3.subreads.fasta
    - [ 43M]
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.3.subreads.fastq
    -[1.3M]
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.bas.h5
     [ 74M]
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.sts.csv
             m160726_161412_42182_c101000162550000001823232709161623_s1_p0.sts.xml
 [220G] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.1.trx.h5
 [8.8K] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.1.xfer.xml
 [220G] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.2.trx.h5
 [5.2K] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.2.xfer.xml
 [220G] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.3.trx.h5
- [5.2K] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.3.xfer.xml
- [673M] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.mcd.h5
[3.9K] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.metadata.xml
- [1.3M] m160726_161412_42182_c101000162550000001823232709161623_s1_p0.trc.h5
```

2 Early methods and new addons to the PfTools

2.1 Perl scripts

The following Perl script is used to account the number of "CAG" found within a subread:

cat xxx.fastq | perl -ne '@A= $=^{(C{1,3}A{1,3}G{1,3})/g}$; printf "%d\n",\$#A+1'

2.2 Addons to the PfTools: PfRepeat

The PfTools suite as of version 3.x no longer had support for cyclic profiles. That feature was deprecated at the time of reimplementation in C due to the lack of use as opposed to the work involved. I thus forked the code into a brand new tool "PfRepeat", reimplementing the connection so that input sequences could loop again on the profile if proven benefical. Furthermore, several new analysis were added to fit the experiment goal, it is worth mentioning that unlike the Perl script, the code here always compute the reverse complement and chooses the best value.

Histogram Given the number of bins, a histogram is generated for all subreads. That can be on the number of profile cycle or Density plots are available to compare profile scores with profile number of cycles.

Standard regex Regex sequences can be directly given instead or with a profile in order to account the number of matches.

Appended regex As en extension to the previous analysis, we self-concatenate the regex sequence until nothing is found within the input string sequence.

PacBio pipeline exports sequences in FASTA format which is fine for the PfTools. Nevertheless, such available sequences have been filtered (quality, number of subreads, etc...). Therefore direct reading of PacBio native format was implemented to allow analysis not only on a subread basis but also on a hole basis. Output formats were modified accordingly to export interesting pieces of informations such as hole locations, qualities, types and number of subreads. At last, hole analysis would not be complete without mininum, maximum and mean computed values with respect to the number of subreads.

3 Results so far

PacBio FASTA output

PacBio H5 output

Carefully read the histogram plot of subreads number as it only shows the range [4, 100].

	hole.number	X	у	subreads	avg.seq.len	HQ.region.len	avg.score	min.cycle	avg.cycle	max.cycle	min.regex	avg.regex	max.regex
1	91357	-15	97	1	58297.00	58297	145800.00	10000	15492.00	15492	10000	15843.00	15843
2	16165	111	76	1	27558.00	27558	69396.00	7862	7862.00	7862	12	12.00	12
3	28528	87	-14	1	26413.00	26413	55106.00	6797	6797.00	6797	77	77.00	77
4	57902	37	13	1	20632.00	20632	39680.00	5241	5241.00	5241	81	81.00	81
5	145755	-108	22	1	24858.00	24858	27446.00	5126	5126.00	5126	138	138.00	138
6	62070	31	75	1	24979.00	24979	15786.00	4379	4379.00	4379	199	199.00	199
7	37074	72	103	1	17042.00	17042	29074.00	3902	3902.00	3902	78	78.00	78
8	144583	-105	60	1	15433.00	15433	30524.00	3728	3728.00	3728	3700	3700.00	3700
9	92632	-17	88	1	12809.00	12809	24708.00	3248	3248.00	3248	32	32.00	32
10	139162	-95	-44	1	11247.00	11247	6692.00	2045	2045.00	2045	100	100.00	100
11	104324	-35	-8	1	2852.00	2852	5394.00	720	720.00	720	8	8.00	8
12	81885	0	-17	1	4717.00	4717	2698.00	638	638.00	638	607	607.00	607
13	108346	-42	-63	2	6839.50	13727	2878.00	281	501.50	722	164	399.50	635
14	16745	110	-52	1	3427.00	3427	2742.00	496	496.00	496	520	520.00	520
15	113348	-50	-15	1	3605.00	3605	1989.00	492	492.00	492	494	494.00	494
16	27872	88	-128	1	3762.00	3762	2148.00	459	459.00	459	487	487.00	487
17	102180	-32	60	1	3391.00	3391	3198.00	451	451.00	451	454	454.00	454
18	16942	109	-92	1	3049.00	3049	1786.00	427	427.00	427	437	437.00	437
19	73635	13	130	1	3593.00	3593	1323.00	420	420.00	420	416	416.00	416
20	125707	-70	65	1	4765.00	4765	1864.00	402	402.00	402	388	388.00	388
21	46389	56	-67	1	2234.00	2234	1974.00	400	400.00	400	379	379.00	379
22	47210	55	148	1	3154.00	3154	2114.00	399	399.00	399	403	403.00	403
23	16415	111	91	1	4364.00	4364	940.00	396	396.00	396	31	31.00	31
24	89461	-12	130	1	3259.00	3259	2796.00	395	395.00	395	403	403.00	403
25	149039	-115	30	1	2917.00	2917	1534.00	395	395.00	395	393	393.00	393
26	50855	49	123	1	2081.00	2081	2288.00	384	384.00	384	15	15.00	15
27	158331	-138	-33	1	2482.00	2482	2258.00	377	377.00	377	386	386.00	386
28	79137	4	142	1	3470.00	3470	1684.00	375	375.00	375	399	399.00	399
29	159528	-142	42	1	2440.00	2440	2082.00	368	368.00	368	369	369.00	369
30	126954	-73	-133	1	2154.00	2154	2394.00	359	359.00	359	368	368.00	368
31	158681	-139	-11	1	4196.00	4196	1676.00	353	353.00	353	351	351.00	351
32	96246	-23	-145	1	3460.00	3460	1288.00	352	352.00	352	362	362.00	362
33	88936	-11	-72	1	3213.00	3213	1996.00	346	346.00	346	384	384.00	384
34	130611	-79	107	1	3219.00	3219	1998.00	343	343.00	343	395	395.00	395
35	141356	-99	85	1	2181.00	2181	1756.00	341	341.00	341	313	313.00	313
36	131073	-80	7	1	2197.00	2197	1236.00	332	332.00	332	314	314.00	314
37	17043	109	9	1	2198.00	2198	2334.00	331	331.00	331	362	362.00	362
38	74721	11	-75	1	2998.00	2998	1182.00	328	328.00	328	347	347.00	347
39	81633	0	54	1	4932.00	4932	1098.00	328	328.00	328	340	340.00	340
_40	42419	62	-128	1	3031.00	3031	1938.00	325	325.00	325	44	44.00	44

4 Future

- 1. At the moment we lack the pulse data files, but \dots
- 2. Analysis of neighboring holes and their effect to the center ?
- 3