Introduction à la théorie des catégories Mémoire de M2 Agrégation

Quentin EHRET

Sous la direction de Dragos FRATILA

Structure de la présentation

1. Catégories

- Définition
- Exemples

Structure de la présentation

1. Catégories

- Définition
- Exemples

2. Foncteurs

- Définition; application : théorème de Brouwer
- Propriétés; théorème de Galois

Structure de la présentation

1. Catégories

- Définition
- Exemples

2. Foncteurs

- Définition; application : théorème de Brouwer
- Propriétés; théorème de Galois

3. Produits et coproduits

- Définitions
- Exemples

Une catégorie ${\mathcal C}$ est la donnée :

• d'une collection d'objets Ob(C);

Une catégorie ${\mathcal C}$ est la donnée :

- d'une collection d'objets Ob(C);
- $\forall x, y \in Ob(\mathcal{C})$, un ensemble $Hom_{\mathcal{C}}(x, y)$ de flèches ou morphismes;

Une catégorie ${\mathcal C}$ est la donnée :

- d'une collection d'objets Ob(C);
- $\forall x, y \in Ob(\mathcal{C})$, un ensemble $Hom_{\mathcal{C}}(x, y)$ de flèches ou morphismes;
- $\forall x \in Ob(\mathcal{C})$, une flèche *identité* $1_x \in Hom_{\mathcal{C}}(x,x)$;

Une catégorie ${\mathcal C}$ est la donnée :

- d'une collection d'objets Ob(C);
- $\forall x, y \in Ob(\mathcal{C})$, un ensemble $Hom_{\mathcal{C}}(x, y)$ de flèches ou morphismes;
- $\forall x \in Ob(C)$, une flèche *identité* $1_x \in Hom_C(x,x)$;
- $\forall x, y, z \in Ob(C)$, une fonction *composition*

$$\mathsf{Hom}_\mathcal{C}(y,z) imes \mathsf{Hom}_\mathcal{C}(x,y) o \mathsf{Hom}_\mathcal{C}(x,z) \ (g,f) \mapsto g \circ f$$

qui doivent de plus satisfaire les deux axiomes suivants :

• $\forall f, g, h \text{ composables}, (h \circ g) \circ f = h \circ (g \circ f);$

• $\forall f \in Hom_{\mathcal{C}}(x, y), f \circ 1_x = 1_y \circ f = f.$

Exemples de catégories

- **Set** : objets : ensembles; flèches : applications;
- Grp: groupes; homomorphismes de groupes;
- Top: espaces topologiques; applications continues;
- $Vect_K : K$ -espaces vectoriels; applications K-linéaires.

Autres exemples : catégorie à 1 objet

Un groupe peut être vu comme une catégorie : elle comporte 1 élément, noté • et ses flèches sont les éléments du groupe.

Préordre

Si \mathcal{P} est une catégorie telle que, pour tous objets p et q, il existe au plus une flèche $p \longrightarrow q$, alors \mathcal{P} est un **préordre**.

Préordre

Si $\mathcal P$ est une catégorie telle que, pour tous objets p et q, il existe au plus une flèche $p\longrightarrow q$, alors $\mathcal P$ est un **préordre**.

On peut écrire, pour $p,q\in \mathit{Ob}(\mathcal{P})$:

$$p \leq q \Longleftrightarrow$$
 il existe une flèche $p \longrightarrow q$.

Tout ensemble $\mathcal P$ muni d'une telle relation \leq définit un préordre. On le note alors $(\mathcal P,\leq)$.

Exemples de préordres :

• $(\mathbb{R}, \leq) : x \longrightarrow y \iff x \leq y$;

Exemples de préordres :

•
$$(\mathbb{R}, \leq) : x \longrightarrow y \iff x \leq y$$
;

•
$$(\mathbb{N}, |) : n \longrightarrow k \iff n | k;$$

Exemples de préordres :

- $(\mathbb{R}, \leq) : x \longrightarrow y \iff x \leq y$;
- $(\mathbb{N}, |) : n \longrightarrow k \iff n | k$;
- si X est un ensemble, on note P(X) l'ensemble des parties de X. Alors $(P(X),\subseteq)$ est un préordre :

$$A \longrightarrow B \iff A \subseteq B$$

Catégorie opposée

Soit ${\mathcal C}$ une catégorie.

Catégorie opposée \mathcal{C}^{op} : mêmes objets que \mathcal{C}_{\cdot} , flèches inversées.

Foncteurs : définition

Soient $\mathcal C$ et $\mathcal D$ deux catégories. Un foncteur $T:\mathcal C\longrightarrow \mathcal D$ est la donnée :

• d'une fonction objet $T: Ob(\mathcal{C}) \longrightarrow Ob(\mathcal{D}), c \longmapsto T(c)$;

Foncteurs: définition

Soient $\mathcal C$ et $\mathcal D$ deux catégories. Un foncteur $T:\mathcal C\longrightarrow \mathcal D$ est la donnée :

- d'une fonction objet $T: Ob(\mathcal{C}) \longrightarrow Ob(\mathcal{D}), c \longmapsto T(c)$;
- d'une fonction flèche :

$$T: Hom(\mathcal{C}) \longrightarrow Hom(\mathcal{D})$$
$$[f: c \longrightarrow c'] \longmapsto [T(f): T(c) \longrightarrow T(c')]$$

Foncteurs : définition

Soient $\mathcal C$ et $\mathcal D$ deux catégories. Un foncteur $T:\mathcal C\longrightarrow \mathcal D$ est la donnée :

- d'une fonction objet $T: Ob(\mathcal{C}) \longrightarrow Ob(\mathcal{D}), c \longmapsto T(c)$;
- d'une fonction flèche :

$$T: Hom(\mathcal{C}) \longrightarrow Hom(\mathcal{D})$$
$$[f: c \longrightarrow c'] \longmapsto [T(f): T(c) \longrightarrow T(c')]$$

devant de plus satisfaire :

- $\forall c \in Ob(\mathcal{C}), \ T(1_c) = 1_{T(c)}$
- $T(g \circ f) = T(g) \circ T(f)$ pour tous f, g, h composables.

Foncteurs : définition

Exemples de foncteurs : foncteurs identité et "oubli"

• $Id: \mathcal{C} \longrightarrow \mathcal{C}: X \longmapsto X, f \longmapsto f$

Exemples de foncteurs : foncteurs identité et "oubli"

- $Id: \mathcal{C} \longrightarrow \mathcal{C}: X \longmapsto X, f \longmapsto f$
- $U: \mathsf{Grp} \longrightarrow \mathsf{Set}: (G,+) \longmapsto G, f \longmapsto Uf$ f est l'homomorphisme de groupes, Uf l'application ;

Exemples de foncteurs : foncteurs identité et "oubli"

- $Id: \mathcal{C} \longrightarrow \mathcal{C}: X \longmapsto X, f \longmapsto f$
- $U: \mathsf{Grp} \longrightarrow \mathsf{Set}: (G,+) \longmapsto G, f \longmapsto Uf$ f est l'homomorphisme de groupes, Uf l'application;
- U: Rng → Ab: (A,+,×) → (A,+), f → Uf
 f est l'homomorphisme d'anneaux, Uf l'homomorphisme de groupes;

Autres exemples

•
$$\mathsf{Set}^{op} \longrightarrow \mathsf{Vect}_K : X \longmapsto \mathit{Hom}(X,K);$$

Autres exemples

•
$$Set^{op} \longrightarrow Vect_K : X \longmapsto Hom(X, K);$$

$$\bullet \ \mathsf{Top}^{\mathit{op}} \longrightarrow \mathbb{C} - \mathsf{Alg} : \qquad X \longmapsto \mathit{C^o}(X,\mathbb{C});$$

Composition de foncteurs

Soient C, D, \mathcal{E} des catégories.

Soient $T: \mathcal{C} \longrightarrow \mathcal{D}$ et $S: \mathcal{D} \longrightarrow \mathcal{E}$ deux foncteurs.

Soient $c \in \mathcal{C}$ et f une flèche de \mathcal{C} .

Alors:

$$S \circ T : c \longmapsto S(Tc)$$
 (objets)
 $f \longmapsto S(Tf)$ (flèches)

est un foncteur.

Soit $(X, x_0) \in \mathbf{Top}^*$.

Définition

L'ensemble des classes d'homotopie [f] de lacets $f:[0,1] \to X$ tels que $f(0) = f(1) = x_0$ est noté $\pi_1(X,x_0)$.

Soit $(X, x_0) \in \mathbf{Top}^*$.

Définition

L'ensemble des classes d'homotopie [f] de lacets $f:[0,1] \to X$ tels que $f(0) = f(1) = x_0$ est noté $\pi_1(X,x_0)$.

Proposition

 $\pi_1(X, x_0)$ est un groupe pour le produit [f][g] = [f * g].

Proposition

$$\pi_1: \textbf{\textit{Top*}} \longrightarrow \textbf{\textit{Grp}} \ (X, x_0) \longmapsto \pi_1(X, x_0) \quad \textit{est un foncteur.}$$

Application de la fonctorialité de π_1 : Un théorème de point fixe de Brouwer

- ullet D^2 est le disque unité de \mathbb{R}^2 ;
- S^1 est le cercle unité de \mathbb{R}^2 ;

Application de la fonctorialité de π_1 :

Un théorème de point fixe de Brouwer

- ullet D^2 est le disque unité de \mathbb{R}^2 ;
- S^1 est le cercle unité de \mathbb{R}^2 ;

Théorème (Brouwer)

Théorème (Brouwer)

Théorème (Brouwer)

Théorème (Brouwer)

Théorème (Brouwer)

Qualités éventuelles de foncteurs

Isomorphisme de catégories

Soient \mathcal{C},\mathcal{D} des catégories.

Soit $T: \mathcal{C} \longrightarrow \mathcal{D}$ un foncteur.

T est un isomorphisme de catégories si :

$$\exists S : \mathcal{D} \longrightarrow \mathcal{C}, \quad S \circ T = I_{\mathcal{C}} \quad \text{et} \quad T \circ S = I_{\mathcal{D}}.$$

Qualités éventuelles de foncteurs

Equivalence de catégories

Soient C, D des catégories. Soit $T: C \longrightarrow D$ un foncteur.

T est une équivalence de catégories si :

$$\exists S : \mathcal{D} \longrightarrow \mathcal{C}, \quad S \circ T \simeq I_{\mathcal{C}} \quad \text{et} \quad T \circ S \simeq I_{\mathcal{D}}.$$

Application : théorème de Galois

```
Soient K/F une extension galoisienne et G := Gal(K/F).
\mathcal{L}:
objets : corps L tels que F \subseteq L \subseteq K;
flèches : morphismes de corps \varphi tels que \varphi_{|F}=\operatorname{id} ;
G-Fintr:
objets : ensembles finis munis d'une action de G transitive;
flèches : applications préservant l'action de G.
```

Application : théorème de Galois

Théorème (Galois)

 \mathcal{L}^{op} et $\emph{G-Fin}^{tr}$ sont équivalentes via le foncteur

$$\psi: \mathcal{L}^{op} \longrightarrow G\text{-}Fin^{tr}$$

$$L \longmapsto Hom_F(L,K)$$

• Dans **Set**, c'est le produit cartésien $X \times Y$;

- Dans **Set**, c'est le produit cartésien $X \times Y$;
- Dans \mathbf{Grp} , c'est le produit direct $G \times H$;

- Dans Set, c'est le produit cartésien X × Y;
- Dans **Grp**, c'est le produit direct $G \times H$;
- ullet Dans $oldsymbol{\mathsf{Vect}}_{oldsymbol{\mathsf{K}}}$, c'est la somme directe $F\oplus G$;

- Dans Set, c'est le produit cartésien X × Y;
- Dans **Grp**, c'est le produit direct $G \times H$;
- ullet Dans $oldsymbol{\mathsf{Vect}}_{oldsymbol{\mathsf{K}}}$, c'est la somme directe $F\oplus G$;
- Dans Fields, il n'existe pas toujours!

- Dans Set, c'est le produit cartésien X × Y;
- Dans **Grp**, c'est le produit direct $G \times H$;
- Dans Vect_K, c'est la somme directe F ⊕ G;
- Dans Fields, il n'existe pas toujours!
- Dans un préordre :
 - ▶ dans (\mathbb{R}, \leq) , c'est le min ou l'inf;

- Dans **Set**, c'est le produit cartésien $X \times Y$;
- Dans **Grp**, c'est le produit direct $G \times H$;
- Dans $\mathbf{Vect}_{\mathbf{K}}$, c'est la somme directe $F \oplus G$;
- Dans Fields, il n'existe pas toujours!
- Dans un préordre :
 - ▶ dans (\mathbb{R}, \leq) , c'est le min ou l'inf;
 - \blacktriangleright dans $(\mathbb{N},|)$, c'est le pgcd;
 - ▶ dans $(P(X), \subseteq)$, c'est l'intersection \bigcap .

Coproduit

La notion duale de **coproduit** $x \sqcup y$ se définit de manière symétrique, avec le diagramme suivant :

Exemples: produit libre dans Grp, somme directe dans $Vect_K$.

- Saunders MacLane, Categories for the Working Mathematician, Springer-Verlag, 1971.
- Emily Riehl, Category Theory in Context, Cambridge University Press, 2014.
- Tom Leinster, *Basic Category Theory*, Cambridge University Press, 2014.