1. Задано щільність розподілу випадкової величини ξ :

$$f(x) = \begin{cases} \cos x, & x \in (0, \pi/2], \\ 0, & x \notin (0, \pi/2]. \end{cases}$$

Знайти функцію розподілу F(x).

2. Задано показникову модель

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x \ge 0, \theta > 0 \\ 0, & x < 0 \end{cases}$$

Показати, що оцінка $\widehat{\theta} = \frac{\xi_1 + \ldots + \xi_n}{n}$ буде ефективною.

3. Нехай $\xi_1,...,\xi_n$ - вибірка з генеральної сукупності з щільністю розподілу $f(x,\theta) = \frac{1}{2\theta} e^{-\frac{1}{\theta}|x|}, \quad x \in R$.

Побудувати оцінку параметра θ методом моментів і перевірити її на конзистентність.

- **4**. Випадкові величини ξ і η незалежні. Величина ξ рівномірно розподілена на відрізку [–2; 2], а η на відрізку [–4; 4]. Знайти розподіл випадкової величини $2\xi + \eta$.
- **5.** Нехай $(\xi_1,\eta_1),...,(\xi_n,\eta_n)$ незалежні спостереження випадкового вектора (ξ_0,η_0) . Показати, що величина

$$m = \frac{1}{n-1} \sum_{k=1}^{n} (\xi_k - \overline{\xi}) (\eta_k - \overline{\eta}) , \text{ де } \overline{\xi} = \frac{1}{n} \sum_{k=1}^{n} \xi_k , \ \overline{\eta} = \frac{1}{n} \sum_{k=1}^{n} \eta_k \ \text{ буде незсунутою оцінкою } \cot(\xi_0, \eta_0) = \alpha \, .$$

1.. Випадкова величина ξ розподілена за показниковим законом з параметром λ . Яка з подій більш ймовірна: $\{\xi > M\xi\}$ чи $\{\xi < M\xi\}$.

2. Нехай $\xi_1,...,\xi_n$ - вибірка з генеральної сукупності з щільністю розподілу $f(x,\theta) = \frac{1}{2\theta} e^{-\frac{1}{\theta}|x|}, \quad x \in R$.

Побудувати оцінку параметра θ методом моментів і перевірити її на конзистентність.

3. Нехай $\xi_1,...,\xi_n$ - вибірка з генеральної сукупності з щільністю розподілу

$$f(x,\theta) = \begin{cases} k(\theta)xe^{-\frac{x^2}{\theta^2}}, & x \ge 0, \theta > 0 \\ 0, & x < 0 \end{cases}$$

Знайти функцію $k(\theta)$ і за методом максимальної вірогідності знайти оцінку параметра θ . Перевірити чи буде знайдена оцінка конзистентною.

4. Випадкові величини ξ і η незалежні. Величина ξ рівномірно розподілена на відрізку [1; 5], а η - на відрізку [-5; -1]. Знайти функцію розподілу випадкової величини $\xi - \eta$.

5. Побудувати методом моментів оцінки параметрів a і b по результатам n незалежних спостережень випадкових величин $\xi_1,...,\xi_n$ кожна з яких має нормальний розподіл N(0,1) або N(a,1) з ймовірністю b і 1-b відповідно.

1. Випадкова величина ξ розподілена за показниковим законом з параметром λ . При якому значенні λ ймовірність події $\{\xi \in [\alpha, \beta]\}$ буде максимальною?

2. Нехай $\xi_1,...,\xi_n$ - вибірка з генеральної сукупності з щільністю розподілу

$$f(x,\theta) = \begin{cases} k(\theta)xe^{-\frac{x^2}{\theta^2}}, & x \ge 0, \theta > 0 \\ 0, & x < 0 \end{cases}$$

Знайти функцію $k(\theta)$ і за методом максимальної вірогідності знайти оцінку параметра θ . Перевірити чи буде знайдена оцінка конзистентною.

3. За вибіркою з генеральної сукупності $\xi_1,...,\xi_n$ представлена формула

$$k\sum_{j=1}^{n-1} (\xi_{j+1} - \xi_j)^2$$
.

Яким повинно бути $\,k\,$, щоб це була незміщена оцінка дисперсії?

4. Випадкові величини ξ і η незалежні. Величина ξ рівномірно розподілена на відрізку [–3; 3], а η - на відрізку [–1; 1]. Знайти розподіл випадкової величини ξ + 3 η .

5. Нехай $\xi_1,...,\xi_n$ - вибірка з генеральної сукупності з щільністю розподілу

$$f(x,\theta) = \begin{cases} \exp\{-(x-\theta)\}, & x \ge \theta \\ 0, & x < \theta \end{cases}$$

Довести, що оцінка $\widehat{\theta}=\xi_{\scriptscriptstyle (1)}-\frac{1}{n}$ буде незміщеною.

1. Задано щільність розподілу випадкової величини ξ :

$$f(x) = \begin{cases} \sin x, & x \in (0, \pi/2], \\ 0, & x \notin (0, \pi/2]. \end{cases}$$

Знайти функцію розподілу F(x).

2. За вибіркою з генеральної сукупності $\xi_1,...,\xi_n$ представлена формула

$$k\sum_{j=1}^{n-1} (\xi_{j+1} - \xi_j)^2$$
.

Яким повинно бути $\,k\,$, щоб це була незміщена оцінка дисперсії?

3. Нехай $\xi_1,...,\xi_n$ - вибірка з генеральної сукупності зі щільністю розподілу $f(x,\theta) = \frac{2x}{\theta^2} \exp\left(-\frac{x^2}{\theta^2}\right), x \ge 0, \theta > 0.$ Побудувати оцінку параметра θ методом моментів і перевірити її на конзистентність.

4. Випадкові величини ξ і η незалежні. Величина ξ рівномірно розподілена на відрізку [1; 5] , а η - на відрізку [-5;-1]. Знайти функцію розподілу випадкової величини $\xi - \eta$.

5. Задано показникову модель

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x \ge 0, \theta > 0 \\ 0, & x < 0 \end{cases}$$

Показати, що оцінка $\widehat{\theta} = \frac{\xi_1 + \ldots + \xi_n}{n}$ буде ефективною.

1. Знайти дисперсію випадкової величини ξ , заданої функцією розподілу

$$F(x) = \begin{cases} 1, x > 2, \\ \frac{x+2}{4}, x \in (-2, 2], \\ 0, x \le -2. \end{cases}$$

2. Нехай $(\xi_1,\eta_1),...,(\xi_n,\eta_n)$ - незалежні спостереження випадкового вектора (ξ_0,η_0) . Показати, що величина

$$m=rac{1}{n-1}\sum_{k=1}^{n}(\xi_{k}-\overline{\xi}\,)(\eta_{k}-\overline{\eta}\,)$$
 , де $\overline{\xi}=rac{1}{n}\sum_{k=1}^{n}\xi_{k},\ \overline{\eta}=rac{1}{n}\sum_{k=1}^{n}\eta_{k}$ буде незміщеною оцінкою $\mathrm{cov}(\xi_{0},\eta_{0})=lpha$.

3. Нехай $\xi_1,...,\xi_n$ - вибірка з генеральної сукупності з щільністю розподілу

$$f(x,\theta) = \begin{cases} k(\theta)xe^{-\frac{x^2}{\theta^2}}, & x \ge 0, \theta > 0 \\ 0, & x < 0 \end{cases}$$

Знайти функцію $k(\theta)$ і за методом максимальної вірогідності знайти оцінку параметра θ . Перевірити чи буде знайдена оцінка конзистентною.

- **4.** Випадкові величини ξ і η незалежні. Величина ξ рівномірно розподілена на відрізку [-1;1], а η на відрізку [-2;2]. Знайти розподіл випадкової величини $2\xi-\eta$.
- 5. Задано показникову модель

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x \ge 0, \theta > 0 \\ 0, & x < 0 \end{cases}$$

Показати, що оцінка $\hat{\theta} = \frac{\xi_1 + ... + \xi_n}{n}$ буде ефективною.