Introduction

AI value creation by 2030

\$13 trillion

[Source: McKinsey Global Institute.]

Demystifying AI

(artificial narrow intelligence)

E.g., smart speaker, self-driving car, web search, AI in farming and factories

(artificial general intelligence)

Do anything a human can do

What you'll learn

- What is AI?
 - Machine Learning
 - Data
 - What makes an AI company
 - What machine learning can and cannot do
 - Optional: Intuitive explanation of Deep Learning
- Building AI projects
- Building AI in your company
- AI and society

Machine Learning

Supervised Learning

Input

Output

Input (A)	Output (B)	Application
email	spam? (0/1)	spam filtering
audio	text transcripts	speech recognition
English	Chinese	machine translation
ad, user info	click? (0/1)	online advertising
image, radar info	position of other cars	Self-driving car
image of phone	defect? (0/1)	visual inspection

Why Now?

What is data

Example of a table of data (dataset)

house (square feet)	# of bedrooms	price (1000\$)
523 645 708 1034 2290	1 1 2 3 4	100 150 200 300 350
2545	4	440

image	label
	cat
	not cat
	cat
6 6	not cat

"Google cat"

Acquiring data

- Manual labeling

cat

not cat

eat

not cat

- From observing user behaviors

user ID	time	price (\$)	purchased
4783	Jan 21 08:15.20	7.95	yes
3893	March 3 11:30.15	10.00	yes
8384	June 11 14:15.05	9.50	no
0931	Aug 2 20:30.55	12.90	yes

machine	temperature (°C)	pressure (psi)	machine fault
17987	60	7.65	N
34672	100	25.50	N
08542	140	75.50	Y
98536	165	125.00	Y

- Download from websites / partnerships

Use and mis-use of data

Don't throw data at an AI team and assume it will be valuable.

Data is messy

- Garbage in, garbage out
- Data problems
 - Incorrect labels
 - Missing values
- Multiple types of data

images, audio, text

house	# of	price
(square feet)	bedrooms	(1000\$)
523	1	100
645	1	0.001
708	unknown	200
1034	3	unknown
unknown	4	350
2545	unknown	440

The terminology of AI

Machine learning vs. data science

Home prices

size	# of	# of	newly	price
(square feet)	bedrooms	bathrooms	renovated	(1000\$)
523 645 708 1034 2290 2545	1 1 2 3 4 4	2 3 1 3 4 5	N N N Y N	100 150 200 300 350 440

Running AI system (e.g., websites / mobile app)

Homes with 3 bedrooms are more expensive than homes with 2 bedrooms of a similar size.

Newly renovated homes have a 15% premium.

Machine learning vs. data science

Machine learning

Data science

"Field of study that gives computers the ability to learn without being explicitly programmed."

Science of extracting knowledge and insights from data.

-Arthur Samuel (1959)

AI has many tools

- Machine learning and data science
- -Deep learning / neural network
- -Other buzzwords: Unsupervised learning, graphical models, planning, knowledge graph, ...

What makes an AI company?

A lesson from the rise of the Internet

<u>Internet Era</u>

Shopping mall + website ≠ Internet company

- A/B testing
- Short iteration time
- Decision making pushed down to engineers and other specialized roles

AI era

Any company + deep learning ≠ AI company

- Strategic data acquisition
- Unified data warehouse
- Pervasive automation
- New roles (e.g., MLE) and division of labor

AI Transformation

- 1. Execute pilot projects to gain momentum
- 2. Build an in-house AI team
- 3. Provide broad AI training
- 4. Develop an AI strategy
- 5. Develop internal and external communication

What machine learning can and cannot do

Supervised Learning

Input (A)	Output (B)	Application
email	spam? (0/1)	spam filtering
audio	text transcripts	speech recognition
English	Chinese	machine translation
ad, user info	click? (0/1)	online advertising
image, radar info	position of other cars	Self-driving car
image of phone	defect? (0/1)	visual inspection

Anything you can do with 1 second of thought, we can probably now or soon automate.

What machine learning today can and cannot do

The toy arrived two days late, so I wasn't able to give it to my niece for her birthday.

Can I return it?

"Refund request"

Refund/ Support/ Shipping

Oh, sorry to hear that. I hope your niece had a good birthday. Yes, we can help with....

What happens if you try?

Input (A)Output (B)User email2-3 paragraph response

1000 examples

"My box was damaged." — Thank you for your email.

"Where do I write a review?" — Thank you for your email.

"What's the return policy?" — Thank you for your email.

"When is my box arriving?" — Thank yes now your....

What makes an ML problem easier

1. Learning a "simple" concept

2. Lots of data available

More examples of what machine learning can and cannot do

Self-driving car

Can do

Cannot do

hitchhiker

bike turn left signal

- 1. Data
- 2. Need high accuracy

X-ray diagnosis

Can do

Diagnose pneumonia from ~10,000 labeled images

Cannot do

Diagnose pneumonia from 10 images of a medical textbook chapter explaining pneumonia

Strengths and weaknesses of machine learning

ML tends to work well when:

- 1. Learning a "simple" function
- 2. There is lots of data available

ML tends to work poorly when:

- 1. Learning complex functions from small amounts of data
- 2. It is asked to perform on new types of data that it learned from

Non-technical explanation of deep learning I (optional)

Demand prediction

Demand prediction

price

shipping cost

marketing

material

demand

Demand prediction

Non-technical explanation of deep learning II (optional)

Face recognition

30	32	22	12	10	10	12	33	35	30
12	11	12	234	170	176	13	15	12	12
234	222	220	230	200	222	230	234	56	78
190	220	186	112	110	110	112	180	30	32
49	250	250	250	4	2	254	200	44	6
55	250	250	250	3	1	250	245	25	3
189	195	199	150	110	110	182	190	199	55
200	202	218	222	203	200	200	208	215	222
219	215	220	220	222	214	215	210	220	220
220	220	220	220	221	220	221	220	220	222

Face recognition

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Starting an AI project

Starting an AI project

- Workflow of projects
- Selecting AI projects
- Organizing data and team for the projects

Workflow of a machine learning project

Example: Speech recognition

Amazon Echo / Alexa

Google *Home*

Apple Siri

Baidu DuerOS

Key steps of a machine learning project

Echo / Alexa

- 1. Collect data
- 2. Train model

 Iterate many times until good enough
 - 3. Deploy model
 Get data back
 Maintain / update model

Key steps of a machine learning project

Self-driving car

1. Collect data

image position of other cars

- 2. Train model

 Iterate many times until good enough
- 3. Deploy model

 Get data back

 Maintain / update model

Workflow of a data science project

Example: Optimizing a sales funnel

Visit website

Product page

Shopping cart

Checkout

Key steps of a data science project

Optimizing a sales funnel

1. Collect data

User ID	Country	Time	Webpage
2009	Spain	08:34:30 Jan 5	home.html
2897	USA	13:20:22 May 18	redmug.html
4893	Philippines	22:45:16 Jun 11	mug.html

2. Analyze data

Iterate many times to get good insights

3. Suggest hypotheses/actions
Deploy changes

Re-analyze new data periodically

Key steps of a data science project

Manufacturing line

Mix clay Shape mug

Add glaze

Final inspection

2. Analyze data

Iterate many times to get good insight

3. Suggest hypotheses/actions
Deploy changes
Re-analyze new data periodically

Mug Batch #	Country	Humidity	Temperature in kiln (F)	Duration in kiln (hours)
301	Spain	0.002%	1410°	22
302	USA	0.003%	1520°	24
303	Malaysia	0.002%	1420°	22

Every job function needs to learn how to use data

Sales

Data science

Visit website

Product page

Checkout

Optimize sales funnel

Machine learning

Name	Title	Company size	Email	Priority
Tayler	CEO	3050	tay@a	high
Janet	Manager	230	jan@b	medium
David	Intern	30	dave@c	low

Automated lead sorting

Manufacturing line manager

Data science

Mix clay Shape mug Add glaze

Final Fire kiln inspection

Optimize sales funnel

Machine learning

Automated visual inspection

Recruiting

Data science Email Phone outreach screen Onsite Offer interview

Optimize recruiting funnel

Machine learning

Automated resume screening

Marketing

Data science

Break into Al

Whether you want to build algorithms or build a company, deeplearning an's courses will teach you key concepts and applications of Al.

Take the Deep Learning Specialization

A B

A/B testing

Machine learning

Customized product recommendation

Agriculture

Data science

Crop analytics

Machine learning

Precision weed killing

How to choose an AI project I

AI knowledge and domain knowledge

What AI can do

Things valuable for your business

AI experts

Domain experts

Brainstorming framework

- Think about optimizing tasks rather than automating jobs. E.g., call center routing, radiologists.
- What are the main drivers of business value?
- What are the main points in your business?

You can make progress even without big data

- Having more data almost never hurts.
- Data makes some businesses (like web search) defensible.
- But with small datasets, you might still make progress.

How to choose an AI project II

Due diligence on project

Due diligence on project

Technical diligence

- Can AI system meet desired performance
- How much data is needed
- Engineering timeline

Business diligence

- Lower costs
- Increase revenue
- Launch new product or business

current

business

new business

Build vs. buy

- ML projects can be in-house or outsourced
- DS projects are more commonly in-house
- Some things will be industry standard avoid building those.

Working with an AI team

Specify your acceptance criteria

ok

ok

defect

Goal: detect defects with 95% accuracy

Provide AI team a dataset on which to measure their performance

How AI teams think about data

Training set

ok

ok

ok

Test set

ok

ok

defect

Pitfall: Expecting 100% accuracy

Test set

ok

ok

ok

defect

ok

- Limitations of ML
- Insufficient data
- Mislabeled data
- Ambiguous label

Technical tools for AI teams (optional)

Open-source frameworks

Machine learning frameworks:

- TensorFlow
- PyTorch
- Keras
- MXNet
- CNTK
- Caffe
- PaddlePaddle
- Scikit-learn
- R
- Weka

Research publications

Arxiv

Open source repositories:

• GitHub

CPU vs. GPU

CPU: Computer processor (Central Processing Unit)

GPU: Graphics Processing Unit

Cloud vs. On-premises

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Building AI in Your Company

Introduction

Building AI in your company

- Case studies of complex AI products
- Roles in an AI team
- AI Transformation Playbook
- Taking your first step

Building AI in Your Company

Case study: Smart speaker

Smart speaker

Amazon Echo / Alexa

Google *Home*

Apple Siri

Baidu DuerOS

"Hey device, tell me a joke"

"Hey device, tell me a joke"

Steps to process the command:

- 1. Trigger word/wakeword detection Audio "Hey device"? (0/1)
- 2. Speech recognition Audio "tell me a joke"
- 3. Intent recognition "tell me a joke" time?

 Market is less to the state of the st
- 4. Execute joke call? weather?

Trigger word detection Speech recognition Intent recognition Execution

"Hey device, set timer for 10 minutes"

Steps to process the command:

- 1. Trigger word/wakeword detection Audio "Hey device"? (0/1)
- 2. Speech recognition Audio "set timer for 10 minutes"
- 3. Intent recognition "set timer for 10 minutes" timer
 - 4. a) Extract duration
 - "Set timer for 10 minutes"
 - "Let me know when 10 minutes is up"
 - b) Start timer with set duration

Other functions

- Play music
- Volume up/down
- Make call
- Current time
- Units conversion
- Simple question
- •

Key steps:

- 1. Trigger/wakeword detection
- 2. Speech recognition
- 3. Intent recognition
- 4. Specialized program to execute command

Building AI in Your Company

Case study: Self-driving car

Steps for deciding how to drive

Key steps:

1. Car detection

2. Pedestrian detection

3. Motion planning

Steps for deciding how to drive

Building AI in Your Company

Example roles of an AI team

Example roles

- Software Engineer
 - E.g., joke execution, ensure self-driving reliability, ...
- Machine Learning Engineer

Applied ML Scientist

- Machine Learning Researcher
 - Extend state-of-the-art in ML

Example roles

Data Scientist

- Examine data and provide insights

- Make presentation to team/executive

Data Engineer

- Organize data

1,000,000 MB = TB (terabyte)1.000,000,000 MB = PB (petabyte)

1,000 MB = GB (gigabyte)

1 MB (megabyte)

- Make sure data is saved in an easily accessible, secure and cost effective way

AI Product Manager

- Help decide what to build; what's feasible and valuable

Getting started with a small team

- 1 Software Engineer, or
- 1 Machine Learning Engineer/Data Scientist, or
- Nobody but yourself

Building AI in Your Company

AI Transformation Playbook (Part I)

AI Transformation Playbook

- 1. Execute pilot projects to gain momentum
- 2. Build an in-house AI team
- 3. Provide broad AI training
- 4. Develop an AI strategy
- 5. Develop internal and external communications

1. Execute pilot projects to gain momentum

- More important for the initial project to succeed rather than be the most valuable
- Show traction within 6-12 months
- Can be in-house or outsourced

2. Build an in-house AI team

BU= Business Unit

AI function can be under CTO, CIO, CDO, etc. or a new CAIO

3. Provide broad AI training

Role	What they should learn
Executives and senior business leaders	What AI can do for your enterpriseAI strategyResource allocation
Leaders of divisions working on AI projects	 Set project direction (technical and business diligence) Resource allocation Monitor progress
AI engineer trainees	 Build and ship AI software Gather data Execute on specific AI projects

The smart CLO knows they should *curate* rather than *create* content

Building AI in Your Company

AI Transformation Playbook (Part II)

AI Transformation Playbook

- 1. Execute pilot projects to gain momentum
- 2. Build an in-house AI team
- 3. Provide broad AI training
- 4. Develop an AI strategy
- 5. Develop internal and external communications

4. Develop an AI strategy

• Leverage AI to create an advantage specific to your industry sector

• Design strategy aligned with the "Virtuous Cycle of AI"

4. Develop an AI strategy

- Consider creating a data strategy
 - -Strategic data acquisition
 - -Unified data warehouse
- Create network effects and platform advantages
 - -In industries with "winner take all" dynamics,

AI can be an accelerator

5. Develop internal and external communications

- Investor relations
- Government relations
- Customer/user education
- Talent/recruitment
- Internal communications

Detailed AI Transformation Playbook: https://landing.ai/ai-transformation-playbook/

Building AI in Your Company

AI pitfalls to avoid

AI pitfalls to avoid

Don't:

Expect AI to solve everything

• Hire 2-3 ML engineers and count solely on them to come up with use cases

Do:

- Be realistic about what AI can and cannot do given limitations of technology, data, and engineering resources
- Pair engineering talent with business talent and work crossfunctionally to find feasible and valuable projects

AI pitfalls to avoid

Don't:

• Expect the AI project to work the first time

- Expect traditional planning processes to apply without changes
- Think you need superstar
 AI engineers before you can
 do anything

Do:

- Plan for AI development to be an iterative process, with multiple attempts needed to succeed
- Work with AI team to establish timeline estimates, milestones, KPIs, etc.
- Keep building the team, but get going with the team you have

Building AI in Your Company

Taking your first step in AI

Some initial steps you can take

- Get friends to learn about AI
 - -This course
 - -Reading group
- Start brainstorming projects
 - -No project is too small
- Hire a few ML/DS people to help
- Hire or appoint an AI leader (VP AI, CAIO, etc.)
- Discuss with CEO/Board possibilities of AI Transformation
 - -Will your company be much more valuable and/or more effective if it were good at AI?

Building AI in Your Company

Survey of major AI application areas (optional)

Computer Vision

• Image classification/Object recognition

cat

-Face recognition

register

new

Object detection

Natural Language Processing

- Text classification
 - Sentiment recognition
- Information retrieval
 - E.g., web search
- Name entity recognition
- Machine translation

Email

Product description

"The food was good"

"Service was horrible"

Spam/Non-Spam

Product category

'Queen Elizabeth II knighted Sir Paul McCartney for his services to music at the Buckingham Palace"

AIは、新たな電気だ AI is the new electricity

Natural Language Processing

• Others: parsing, part-of-speech tagging

Speech

- Speech recognition (speech-to-text)
- Trigger word/wakeword detection
- Speaker ID
- Speech synthesis (text-to-speech, TTS)
 The quick brown fox jumps over the lazy dog.

Robotics

- Perception: figuring out what's in the world around you
- Motion planning: finding a path for the robot to follow
- Control: sending commands to the motors to follow a path

General machine learning

• Unstructured data (images, audio, text)

image

audio

AIは、新たな電気だ

text

AI is the new electricity

Structured data

House size (square feet)	# of bedrooms	Price (1000\$)
523	1	100
645	1	150
708	2	200

Clay batch	Supplier	Mixing time (minutes)
001	ClayCo	35
001 034	ClayCo GooClay	22
109	BrownStuff	28

Building AI in Your Company

Survey of major AI techniques (optional)

Unsupervised learning

Clustering Potato chip sales

Given data (without any specific desired output labels), find something interesting about the data

Finding cats from unlabeled YouTube videos

Transfer learning

Car detection

100,000 images

Golf cart detection

100 images

Learn from task A, and use knowledge to help on task B

Reinforcement learning

Use a "reward signal" to tell the AI when it is doing well or poorly. It automatically learns to maximize its rewards.

Reinforcement learning

Use a "reward signal" to tell the AI when it is doing well or poorly. It automatically learns to maximize its rewards.

GANs (Generative Adversarial Network)

Synthesize new images from scratch

[Source: Karras et al. (2018). Progressive Growing of GANs for Improved Quality, Stability, and Variation]

Knowledge Graph

Ada Lovelace		
Born	Dec 10, 1815	
Died	Nov 27, 1852	
Bio	English mathematician and writer	

Northern Rooster Hotel	
Address	45 Rooster St, LA
Phone	(650) 555-3992
Wifi	yes
Pool	no

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Introduction

- AI and hype
- Limitations of AI
 - -Bias AI and Ethics
 - -Adversarial attacks
- AI, developing economies, and jobs
- Conclusion

A realistic view of AI

Goldilocks rule for AI

- Too optimistic: Sentient / super-intelligent AI killer robots coming soon
- Too pessimistic: AI cannot do everything, so an AI winter is coming
- Just right: AI can't do everything, but will transform industries

Limitations of AI

- Performance limitations
- Explainability is hard (but sometimes doable)

Right-sided Pneumothorax (collapsed lung)

[Rajpurkar et al. (2018). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning.]
[Wang et al. (2017). ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. IEEE CVPR]
[Images source: NIH Clinical Center Image dataset: https://nihcc.app.box.com/v/ChestXray-NIHCC]

Limitations of AI

- Biased AI through biased data
- Adversarial attacks on AI

Discrimination / Bias

AI learning unhealthy stereotypes

• Man: Woman as Father: Mother

Man: Woman as King: Queen

• Man: Computer programmer as Woman: Homemaker

Man: (1,1)

Computer programmer: (3,2)

Woman: (2,3)

Homemaker: (4,4)

Bolukbasi et al. (2016). Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings.

Why bias matters

- Hiring tool that discriminated against women
- Facial recognition matching dark skinned individuals to criminal mugshots
- Bank loan approvals
- Toxic effect of reinforcing unhealthy stereotypes

Combating bias

- Technical solutions:
 - E.g., "zero out" the bias in words
 - Use less biased and/or more inclusive data
- Transparency and/or auditing processes
- Diverse workforce
 - Creates less biased applications

Adversarial attacks on AI

Adversarial attacks on AI

Hummingbird

Hammer

Hare

Minor perturbation

Desk

Physical attacks

"Milla Jovovich"

Fails to see stop sign

Banana

Physical attacks

[Sharif et al. (2016). Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition.] [Eykholt et al. (2018). Physical Adversarial Examples for Object Detectors.] [Brown et al. (2018). Adversarial Patch.]

Adversarial defenses

- Defenses do exist, but incur some cost
- Similar to spam vs. anti-spam, we may be in an arms race for some applications

Adverse uses of AI

Adverse uses of AI

- DeepFakes
 - Synthesize video of people doing things they never did
- Undermining of democracy and privacy
 - Oppressive monitoring of individuals
- Generating fake comments
- Spam vs. anti-spam and fraud vs. anti-fraud

AI and developing economies

Developing economies

- "leapfrog"
- -Mobile phones
- -Mobile payments
- -Online education

How developing economies can build AI

- US and China are leading, but all AI communities are still immature
- Focus on AI to strengthen a country's vertical industries
- Public-private partnerships to accelerate development

AI and jobs

AI's impact on jobs worldwide

Jobs replaced by 2030

400-800 mil

Jobs created by 2030

555-890 mil

[Source: McKinsey Global Institute.]

AI's impact on jobs worldwide

Some solutions

- Conditional basic income: provide a safety net but incentivize learning
- Lifelong learning
- Political solutions

AI for Everyone

Conclusion

What you've learned

- What is AI?
- Building AI projects
- Building AI in your company
- AI and society

Keep learning!

- Online courses, books, blogs, ...
- deeplearning.ai mailing list

Thank you!