Arithmetic for Computers

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Addition and Subtraction

- MIPS uses two's complement
- Addition:
 - a + b: Straightforward
 - (4-bit) $3_{10} + (-5_{10}) = 0011_2 + 1011_2 = 1110_2 = -2_{10}$
- Subtraction:
 - $a b = a + (-b) = a + (\bar{b} + 1)$
 - Invert b and set CarryIn of the least significant bit ALU to 1
 - (4-bit) $5_{10} 3_{10} = 5_{10} + (-3_{10}) = 0101_2 + (1100_2 + 0001_2) = 0010_2 = 2_{10}$
- Need to catch overflows

Overflow Examples

- Consider 4-bit representations:
 - $5_{10} + 4_{10}$
 - $\bullet \ \ 5_{10}+4_{10}=0101_2+0100_2=1001_2$
 - But 1001_2 in two's complement is -7_{10}
 - The answer should be 9₁₀
 - \bullet $(-3_{10}) 7_{10}$
 - $(-3_{10}) 7_{10} = (-3_{10}) + (-7_{10}) = 1101_2 + 1001_2 = 0110_2$
 - But 0110_2 is equal to 6_{10}
 - The answer should be -10_{10}
- Can we generate an overflow if we try to add two operand with different sign?
 - $0_{10} + (-8_{10}) = 0000_2 + 1000_2 = 1000_2 = -8_{10}$ no overflow
 - \bullet 7₁₀ + (-1₁₀) = 0111₂ + 1111₂ = 0110₂ = 6₁₀ no overflow

Overflow in Addition and Subtraction

- Adding two operands with different signs, no overflow
- Subtracting two operands with same signs, no overflow
 - Both positive: a b = a + (-b). Similar to addition with different signs
 - Both negative: -a (-b) = -a + b. Similar to addition with different signs
- When overflow occurs, the sign bit represents value, not sign
- Example (4-bit representation)
 - \bullet 7 + 2 = 0111₂ + 0002₂ = 1001₂. The actual result is 9 not -7
 - If we use 5 bit representation, $01001_2 = 9$
 - $-4 + -5 = 1100_2 + 1011_2 = 0111_2$. The actual result is -9 to 7
 - If we use 5 bit representation, $10111_2 = -9$

Overflow in Addition and Subtraction

- Addition: Overflow occurs in the following situations:
 - add two positive numbers and the sum is negative
 - add two negative numbers and the sum is positive
- Subtraction: Overflow occurs in the following situation
 - subtract a negative number from a positive number and get a negative result
 - subtract a positive number from a negative number and get a positive result

Operation	Operand A	Operand B	Result (overflow)
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

Overflow in MIPS

- In MIPS, an exception occurs when it detects an overflow
 - add, addi, and sub
- No exception for unsigned operations (addu, addiu, and subu) (C compiler uses these)
- When MIPS detects an overflow with an exception
 - Save the address of instruction that causes overflow in a register called exception program counter (EPC)
 - Jump to predefined address to run a routine
 - To copy the value of EPC to a general purpose register, uses mfc0 (Move From system Control) instruction

Testing Overflow without Exception

- Complier can check overflow without using exception
- For signed addition:
 - check whether all 3 signs (two operands and sum) are the same

```
addu $t0, $t1, $t2  # $t0 = $t1 + $t2, no exception xor $t3, $t1, $t2  # $t3 = 1x..x if sings are different slt $t3, $t3, $zero # $t3 = 1 if signs are different bne $t3, $zero, noOvF # Sign are different, no overflow xor $t3, $t0, $t1  # $t3 = 1x..x if signs are different slt $t3, $t3, $zero # $t3 = 1 if signs are different bne $t3, $zero, OvF # signs are different, overflow
```

Testing Overflow without Exception

- For unsigned addition:
 - Check whether result is greater than $2^{32} 1$

Multimedia Support

- Perform tasks in parallel
- In 32-bit wide ALU, Suppose we can select whether
 - the CarryIn of ALU8 should be 0, 1, or CarryOut of ALU7
 - ② the CarryIn of ALU16 should be 0, 1, or CarryOut of ALU15
 - the CarryIn of ALU24 shluld be 0, 1, or CarryOut of ALU 23
- Called Partitioning ALU
- Allow us to perform
 - Add or subtract four sets of 8-bit operands at the same time
 - Add or subtract two sets of 16-bit operands at the same time

Multiplication

- How to perform binary multiplication
- $a \times b = c$
 - a: multiplicand
 - b: multiplier
 - c: product (result)
- The size of the result is the sum of the sizes of operands
- Elementary/Middle School paper and pencil method can be used
- How to handle sign of operands?
 - If operands have the same sign, result is positive. Otherwise, negative
 - Use sign extension

 $5_{10}\times6_{10}=0101_2\times0110_2$ with sign extension to 8 bits $00000101_2\times00000110_2$ discard anything beyond 8-bit representation

which is 30₁₀

 $5_{10}\times-6_{10}=0101_2\times1010_2$ with sign extension to 8 bits $00000101_2\times11111010_2$ discard anything beyond 8-bit representation

which is -30_{10}

 $-5_{10}\times6_{10}=1011_2\times0110_2$ with sign extension to 8 bits $11111011_2\times00000110_2$ discard anything beyond 8-bit representation

which is -30_{10}

 $-5_{10}\times-6_{10}=1011_2\times1010_2$ with sign extension to 8 bits $11111011_2\times11111010_2$ discard anything beyond 8-bit representation

which is 30₁₀

Two's Complement Multiplication

Method 1

- Sign extension to the result number of bit representation
- 32-bit representation, needs 64-bit result. Thus, extend to 64-bit representation
- Perform multiplication similar to paper and pencil method

Method 2

- Remember the signs of operands
- Convert operands to positive numbers if necessary
- Perform multiplication similar to paper and pencil method
- If signs are the same, the result is positive. Otherwise, negative

Sequential Version of Multiplication in Hardware

- Implemented from paper and pencil method
- Initialize 64-bit product register to 0
- Initialize 64-bit multiplicand register to 32-bit multiplicand in the right half and 0s in the left half

Sequential Version of Multiplication in Hardware

Sequential Version of Multiplication in Hardware

- Need almost 100 clock cycle to complete 32-bit multiplication
 - One for shifting multiplier
 - One for shifting multiplicand
 - One for adding multiplicand to the product

Need 32 repetitions. Thus $32 \times 3 = 96$ clock cycles

- If done in parallel:
 - Shifting multiplier
 - Shifting multiplicand
 - Adding multiplicand to the product

at the same time. Thus reduce the number of clock cycle by a third.

Example

Using 4-bit representation, multiply 5_{10} by 6_{10} ($0101_2 \times 0110_2$)

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	011 <u>0</u>	0000 0101	0000 0000
1	1a: (0) thus Prod = Prod	0110	0000 0101	0000 0000
	2: Shift left Multiplicand	0110	0000 1010	0000 0000
	3: Shift right Multiplier	001 <u>1</u>	0000 1010	0000 0000
2	1a: (1) thus $Prod = Prod + Mcand$	0011	0000 1010	0000 1010
	2: Shift left Multiplicand	0011	0001 0100	0000 1010
	3: Shift right Multiplier	000 <u>1</u>	0001 0100	0000 1010
3	1a: (1) thus $Prod = Prod + Mcand$	0001	0001 0100	0001 1110
	2: Shift left Multiplicand	0001	0010 1000	0001 1110
	3: Shift right Multiplier	000 <u>0</u>	0010 1000	0001 1110
4	1a: (0) thus Prod = Prod	0000	0010 1000	0001 1110
	2: Shift left Multiplicand	0000	0101 0000	0001 1110
	3: Shift right Multiplier	0000	0101 0000	0001 1110
TI	' 0001 1110 20			

The answer is $0001\ 1110_2 = 30_{10}$

 Unused portion of product register can be used to store multiplier

- Initialize the right half of product register with multiplier
- Initialize the left half of product register to 0s

Use 31 32-bit wide ALU (31 add time)

Use 31 32-bit wide ALU (5 add time)

Multiplication in MIPS

- Recall that we need 64-bit product register
- MIPS uses two special purpose 32-bit product registers called Hi and Lo to contain 64-bit product
- Two instructions for multiplication
 - mult (Multiply)
 - multu (Multiply unsigned)
- Use the following instructions to move value from product registers to general purpose registers
 - mflo (Move From LOw)
 - mfhi (Move From Hlgh)

Division

$$\frac{a}{b} = c$$
 with remainder d

- a is called Dividend
- b is called Divisor
- c is called Quotient (result)
- d is called Remainder
- The following equation must hold:

 $\mathsf{Dividend} = (\mathsf{Quotient} \times \mathsf{Divisor}) + \mathsf{Remainder}$

Division

• Use paper and pencil method to calculate $234 \div 5$

- The quotient is 46 and the remainder is 4.
- Let's examine each step closely on the board.

Division

- Example: Use paper and pencil method for $7_{10}/2_{10}$ (4-bit representation)
- Basic Algorithm
 - Extend Dividend to 8-bit (padded upper four bits with 0s)
 - 2 Extend Divisor to 8-bit (padded lower four bits with 0s)
 - Try to subtract Dividend by Divisor
 - If Dividend is larger, make

Dividend = Dividend - Divisor

and put 1 into Quotient

- If Dividend is smaller, do not subtract, and put 0 into Quotient
- Shift Divisor to the right one bit and go back to step 3 until Divisor is 0

A Division Algorithm and Hardware

- Initialize 32-bit Quotient register to 0
- Initialize top 32-bit Divisor register to Divisor and bottom 32-bit to 0s
- Initialize top 32-bit Remainder register to 0s and bottom 32-bit to Dividend.

A Division Algorithm and Hardware

Example

Dividing 7_{10} by 3_{10} (0111₂/0011₂)

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0011 0000	0000 0111
1	1: Rem = Rem - Div	0000	0011 0000	<u>1</u> 101 0111
	2b: Rem < 0 , $+$ Div, sll Q, $Q0 = 0$	0000	0011 0000	0000 0111
	3: Shift Div right	0000	0001 1000	0000 0111
2	1: Rem = Rem - Div	0000	0001 1000	<u>1</u> 111 0111
	2b: Rem < 0 , $+$ Div, sll Q, $Q0 = 0$	0000	0001 1000	0000 0111
	3: Shift Div right	0000	0000 1100	0000 0111
3	1: Rem = Rem - Div	0000	0000 1100	<u>1</u> 111 1011
	2b: Rem < 0 , $+$ Div, sll Q, Q0 $= 0$	0000	0000 1100	0000 0111
	3: Shift Div right	0000	0000 0110	0000 0111
4	1: Rem = Rem - Div	0000	0000 0110	<u>0</u> 000 0001
	2a: Rem \geq 0, sll Q, Q0 $=$ 1	0001	0000 0110	0000 0001
	3: Shift Div right	0001	0000 0011	0000 0001
5	1: Rem = Rem - Div	0001	0000 0011	<u>1</u> 111 1101
	2a: Rem < 0 , $+$ Div, sll Q, Q0 $= 0$	0010	0000 0011	0000 0001
	3: Shift Div right	0010	0000 0001	0000 0001

The answer is $0010_2 = 2_{10}$ and the remainder is $0001_2 = 1_{10}$

Example

How about $4_{10}/2_{10}$ (0100₂/0010₂)?

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0100
1	1: Rem = Rem - Div	0000	0010 0000	<u>1</u> 110 0100
	2b: Rem < 0 , $+$ Div, sll Q, $Q0 = 0$	0000	0010 0000	0000 0100
	3: Shift Div right	0000	0001 0000	0000 0100
2	1: Rem = Rem - Div	0000	0001 0000	<u>1</u> 111 0100
	2b: Rem < 0 , $+$ Div, sll Q, $Q0 = 0$	0000	0001 0000	0000 0100
	3: Shift Div right	0000	0000 1000	0000 0100
3	1: Rem = Rem - Div	0000	0000 1000	<u>1</u> 111 1100
	2b: Rem < 0 , $+$ Div, sll Q, Q0 $= 0$	0000	0000 1000	0000 0100
	3: Shift Div right	0000	0000 0100	0000 0100
4	1: Rem = Rem - Div	0000	0000 0100	<u>0</u> 000 0000
	2a: Rem \geq 0, sll Q, Q0 $=$ 1	0001	0000 0100	0000 0000
	3: Shift Div right	0001	0000 0010	0000 0000
5	1: Rem = Rem - Div	0001	0000 0010	<u>1</u> 111 1110
	2b: Rem < 0 , sll Q, Q0 = 0	0010	0000 0010	0000 0000
	3: Shift Div right	0010	0000 0001	0000 0000

The answer is $0010_2 = 2_{10}$ and the remainder is $0000_2 = 0_{10}$

- Initialize the right half of the Remainder register with Dividend
- Initialize the left half of the Remainder to 0s
- Quotient is insert to the least significant bit when remainder is be shift left
- At the end:
 - The Remainder is in the left half of the Remainder register
 - The Quotient is in the right half of the Remainder register

Signed Division

- What is answer of -7/2?
 - Quotient = -3 and Remainder = -1 or
 - Quotient = -4 and Remainder = +1?
- Both answers satisfy

$$\mathsf{Dividend} = (\mathsf{Quotient} \times \mathsf{Divisor}) + \mathsf{Remainder}$$

- Rules:
 - The dividend and remainder must have the same signs
 - Must satisfy the following equation:

$$\mathsf{Dividend} = (\mathsf{Quotient} \times \mathsf{Divisor}) + \mathsf{Remainder}$$

Example

For signed division:

- Perform division as positive operands
- If signs of operands are opposite, negates the quotient
- Make the sign of remainder the same as dividend.

Example: -7/2, calculated as 7/2 and from our example the answer are

- Quotient = 3 and
- Remainder = 1
- Since signs of operand are opposite, Quotient should be -3
- Since the sign of dividend is minus, Remainder should be -1

Division in MIPS

- Use two special purpose registers Hi and Lo for 64-bit remainder register
- Supply the following instructions:
 - div: Division (signed)
 - divu: Division (unsigned)
- Results:
 - Register Hi contains the remainder and
 - Register Lo contain the quotient
- Use mflo and mfhi to transfer answers to general purpose registers

Floating Point

- Need support for numbers with fractions (real numbers)
- Example:
 - π : 3.14159265...
 - π : $\frac{22}{7} \approx 3.1428571...$
 - Speed of light: 299,792.458 km/s
 - $e = 1 + \frac{1}{1} + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \cdots \approx 2.71828...$
 - $\sqrt{2} \approx 1.41421356...$

Scientific Notation

- Examples:
 - ullet 2.4 GHz: $2.4 imes 10^9$ Hz or $24 imes 10^8$ Hz
 - 5.5 ns: 5.5×10^{-9} sec or 0.55×10^{-10} sec
- Normalized if single nonzero digit to the left of the decimal point
- Examples:
 - π : 3.14159265 \times 10⁰ but not 0.314159267 \times 10¹
 - \bullet Speed of light: 2.99792458×10^5 km/s but not 29.9792458×10^4
- In the case of speed of light
 - 2.99792458 is called fraction
 - 5 in 10⁵ is called exponent

Binary Point

- We can have binary point similar to decimal point
- Example:
 - 1101.0011₂
 - 0.1111₂
 - 1.1001₂
- What is the decimal value of 1101.0011₂ (unsigned)

$$(1\times 2^3) + (1\times 2^2) + (0\times 2^1) + (1\times 2^0) + (0\times 2^{-1}) + (0\times 2^{-2}) + (1\times 2^{-3}) + (1\times 2^{-4})$$

which is

$$8+4+0+1+0+0+\frac{1}{8}+\frac{1}{16}=13.1875$$

- We can also have scientific notation for binary
- Example:
 - 1101.0011_2 can be written as $1.1010011_2 \times 2^3$
 - 0.1111₂ can be written as $1.111_2 \times 2^{-1}$

MIPS Floating-point Number

Single precision (e.g., float in C)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	s exponent					fraction																										
1	bi	t		8	bit	s														23	3 bi	ts										

Double precision (e.g., double in C)

The value is

$$(-1)^s \times F \times 2^E$$

where

- F is the value in the fraction field and
- E is the value is the exponent field.

Overflow and Underflow in Floating-Point

- Overflow: the exponent is too large to be represented in the exponent field
- Underflow: the negative exponent is too large to fit in the exponent field
- For single precision:
 - The smallest exponent is 2^{-126} (not -127)
 - The largest exponent is 2^{127} (not 128)
- We cannot represent the following numbers:
 - $1.0_2 \times 2^{-127}$
 - $1.0_2 \times 2^{128}$

IEEE 754

- Make leading 1 bit implicit since it is always 1 (normalized)
 - 1.0101×2^{-2}
 - 1.0000×2^5
 - 1.1110×2^{-1}
 - 0.1011×2^2 (not normalize). Should be 1.0110×2^1
- Thus the value is $(-1)^s \times (1+F) \times 2^E$
- fraction means 23- or 52-bit number
- **significand** means 24- or 53-bit number (1 + fraction)
- Let s1, s2, ..., s23 correspond to the fraction from left to right. The value is

$$(-1)^s \times (1 + (s1 \times 2^{-1}) + (s2 \times 2^{-2}) + \dots + (s23 \times 2^{-23})) \times 2^E$$

Special Values in IEEE 754

IEEE 754 reserves some representations for special values

Single p	recision	Double ¡	orecision	Object represented				
Exponent	Fraction	Exponent	Fraction					
0	0	0	0	0				
0	Nonzero	0	Nonzero	\pm denormalized number				
1-254	Anything 1-2040		Anything	\pm floating-point number				
255	0	2047	0	\pm infinity				
255	Nonzero	2047	Nonzero	NaN (Not a Number)				

Examples:

- ullet Nonzero positive number divided by zero is $+\infty$
- ullet Nonzero negative number divided by zero is $-\infty$
- 0/0 is NaN

IEEE 754

- Advantages
 - Sign bit can be used for quick test using integer comparison (less than, greater than, or equal to 0)
 - Exponent can also be used for quick test using integer comparison
- Instead of using two's complement in exponent, IEEE 754 use
 bias
 - $00...00_2$: the most negative
 - $11...11_2$: the most positive
 - The bias is 127 for single precision and 1023 for double precision
 - The the actual value is

$$(-1)^s \times (1+F) \times 2^{(\mathsf{E-Bias})}$$

Examples

• Show the IEEE 754 binary representation of the number -0.75_{10}

② Show the IEEE 754 binary representation of the number 22.5_{10}

0 10000011 011010000000000000000000

3 Show the IEEE 754 binary representation of the value of π where $\pi = 3.14159265$.

0 10000000 100100100...

Example

What is the decimal number represented by

1 10001000 010101000000000000000000

The exponent is

$$1000\ 1000_2 - 127_{10} = 136_{10} - 127_{10} = 9_{10}$$

Since the fraction is 0.010101 and the sign bit is 1, the value is

$$(-1)^1 \times (1 + 0.010101_2) \times 2^9 = -1 \times (1.010101_2 \times 2^9)$$

= $-1 \times (10\ 1010\ 1000_2 \times 2^0)$
= $-1 \times (512 + 128 + 32 + 8)$
= -680