§1 Случайные векторы

Определение 1 (Случайный вектор). Случайным вектором назовём произвольное хорошее отображение $X: \Omega \to \mathbb{R}^n$. См. примечание про измеримость в ??. Борелевские множества можно рассматривать и в \mathbb{R}^n , как наименьшую сигма-алгебру, содержащую все полуоткрытые параллелепипеды.

Так же можно считать, что случайный вектор — набор случайных величин.

Определение 2 (Функция распределения).

$$F_X: \mathbb{R}^n \to [0;1]: F_X(x) = P(X^1 < x^1, \dots, X^n < x^n)$$

То есть вероятность попадания в параллелепипед, уходящий в бесконечность.

Замечание 1. Тут как раз используется, что борелевские множества «прямоугольные».

Утверждение 1. Про F(x) верно следущее:

- 1. F не убывает по каждому аргументу.
- 2. $\lim_{x \to -\infty} F(x) = 0$
- 3. $\lim_{x \to +\infty} F(x) = 1$
- 4. $\lim_{\substack{x \to x_0 = 0 \ us}} F(x) = F(x_0)$ (по совокупности переменных). Это просто следует

тоже важно, так что отдельно

Утверждение 2. Пусть $a^1 < b^1, \ldots, a^n < b^n$, тогда работает формула включений и исключений

$$F(b^{1}, \dots, b^{n}) - \sum_{i} F(b^{1}, \dots, a^{i}, \dots, b^{n}) + \dots + F(a^{1}, \dots, a^{n}) = P(x \in [a^{1}, b^{1}) \times [a^{n}, b^{n}))$$

По сути следствие формулки про вероятность объединения.

Определение 3. Векторная случайная величина называется дискретной, если

$$\exists (\{a_i \mid a_i \in \mathbb{R}^n\} \sim \mathbb{N}) \colon \left(\sum_i P(X = a_i) = 1\right)$$

то есть

$$P(X \in B) = \sum_{\{i | a_i \in B\}} p_i, \ p_i = P(X = a_i)$$

Определение 4. Векторная случайная величина называется непрерывной, если

$$\exists (f_X \colon B \to \mathbb{R}) \colon \left(P(X \in B) = \int_B f_X(x^1, \dots, x^n) \, \mathrm{d}x^1 \cdots \, \mathrm{d}x^n \right)$$

Замечание 1. Для функций распределения:

$$F(x^1, \dots, x^n) = \int_{-\infty}^{x^n} \dots \int_{-\infty}^{x^1} f_X(x^1, \dots, x^n) dx^1 \dots dx^n$$

Утверждение 3. Пусть X, Y — независимы. Тогда $p_{X+Y}(x,y) = p_X(x) \cdot p_Y(y)$

 \blacksquare

По определению функции распределения

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(x,y) \, dx dy$$

Из независимости X, Y

$$F_{X,Y}(x,y) = P(X < x, Y < y) = P(\omega \mid X(\omega) \in (-\infty; x] \cap \omega \mid Y(\omega) \in (-\infty; y]$$

$$= P(\omega \mid X(\omega) \in (-\infty; x]) \cdot P(\omega \mid Y(\omega) \in (-\infty; y])$$

$$= P(X < x) \cdot P(Y < y) = F_X(x) \cdot F_Y(y)$$

А тогда из независимости подынтегральных функций

$$F_X(x) \cdot F_Y(y) = \int_{-\infty}^x p_X(x) \, \mathrm{d}x \cdot \int_{-\infty}^y p_Y(y) \, \mathrm{d}y = \int_{-\infty}^x \int_{-\infty}^y p_X(x) \cdot p_Y(y) \, \mathrm{d}x \, \mathrm{d}y$$

А дальше можно заметить, что нам неважно по какому множеству интегрировать.

$$\int_{B} (p(x,y) - p_X(x) \cdot p_Y(y)) dxdy = 0$$

Здесь правда всё ломается на отсутствии непрерывности у p. Но если она есть, то дальше стандартное рассуждение в окрестности точки где не 0.

▲

§ 2 Функция от случайного вектора

Определение 1 (Функция от случайного вектора). $g: \mathbb{R}^n \to \mathbb{R}^m$.

Здесь нужно снова говорить про измеримость g — прообраз борелевского множества должен быть борелевским множеством. Иначе g(X) может не получиться случайной величиной. Но всякие мерзкие отображения всё равно никому не нужны $\ddot{\smile}$.

Утверждение 1. Пусть $X - \partial u \varepsilon \varepsilon p e m$ ная случайная величина, $f - \delta \varepsilon p e m$ има, Y = g(X), $b_j = f(a_j)$. Тогда $P(Y^i = b_j^i) = P(X^i = a_j^i)$.

▼

$$P(Y^{i} = b_{j}^{i}) = P(f(X^{i}) = f(a_{j}^{i})) = P(\omega \mid f(X^{i}(\omega)) = f(a_{j}^{i}))$$

Поскольку f — обратима, она биективна. Значит $f(X) = f(a_j) \Leftrightarrow X = a_j$. Собственно, всё.

lack

Утверждение 2. Пусть X — непрерывная случайная величина, f — обратима, $Y=g(X), f^{-1}=g$. Тогда $p_y(y)=p_X(g(y))\left|\frac{\mathrm{d}g}{\mathrm{d}y}\right|$.

Пусть D = f(B). Тогда $P(Y \in D) = P(X \in B)$ опять-таки в силу биективности f. Ну, ничего нового туда попасть не может и у всего есть прообраз. Так что (здесь будем рисовать один значок интеграла и дифференциала из экономии размера пдф-ки, хотя в этом замечании данных может и больше)

$$\int_{D} p_{Y}(y) dy = \int_{B} p_{X}(x) dx = \int_{D} p_{X}(g(y)) \left| \frac{dg}{dy} \right|$$

Якобиан тут под модулем, так как множество неориентированное. Я верю, что нам ещё про это расскажут на матане.

§3 Матожидание и дисперсия суммы случайных величин

Утверждение 1. Пусть $X,Y,n\in (A\sim \mathbb{N})$ — две дискретные независимые случайные величины. Тогда

$$P(X+Y=n) = \sum_{k \in A} P(X=n-k) \cdot P(Y=k)$$

Из формулы полной вероятности ($Y=k, k \in A$ правда полная группа)

$$P(X + Y = n) = \sum_{k \in A} P(X + Y = n \mid Y = k) \cdot P(Y = k) = \sum_{k \in A} P(X = n - k \mid Y = k) \cdot P(Y = k)$$

А вот тут уже поможет независимость X, Y.

$$\cdots = P(X = n - k) \cdot P(Y = k)$$

Утверждение 2. Пусть $X_1, X_2, n \in \mathbb{R} - \partial se$ непрерывные независимые случайные величины. Тогда

$$p_{X_1+X_2}(y) = \int_{\mathbb{R}} p_1(y-t)p_2(t) dt$$

Пусть $Y = X_1 + X_2$. Тут видно, что нет биекции, придется руками что-то делать.

$$F_Y(y) = \iint_{x_1 + x_2 < y} p(x_1, x_2) dx_1 dx_2 = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{y - x_1} p(x_1, x_2) dx_2 = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{y} p(x_1, u - x_1) du$$

Переменные независимы, так что можно поменять местами интегралы (ещё же по области интегрируем, неважно как)¹ А тогда, убирая внешний интеграл из определения функции распределения, получаем

$$p_Y(y) = \int_{-\infty}^{\infty} p(t, y - t) dt$$

¹слишком много раз пользовались на физике, так что оставим на 4 семестр

Поскольку X_1, X_2 независимы, то $p(t, y - t) = p_1(t) \cdot p_2(y - t)$. Нумерация никого не интересует, так что

$$p_Y(y) = \int_{-\infty}^{\infty} p_1(y-t) \cdot p_2(t) dt$$

Теперь можно перейти и к содержанию билета

Утверждение 3. $\mathrm{M}\left(\sum_{i}X_{i}\right)=\sum_{i}\mathrm{M}\,X_{i}$. Да и вообще оно линейно.

 $\Pi y \text{сть } f(X,Y) = X + Y$

$$M(X+Y) = \int_{-\infty}^{+\infty} f(x,y)p(x,y) dxdy = \int_{-\infty}^{+\infty} xp(x,y) dxdy + \int_{-\infty}^{+\infty} yp(x,y) dxdy$$
$$= \int_{-\infty}^{+\infty} x \left(\int_{-\infty}^{+\infty} p(x,y)dy \right) dx + \int_{-\infty}^{+\infty} y \left(\int_{-\infty}^{+\infty} p(x,y)dx \right) dy$$
$$= MX + MY$$

Покажем, что $\int\limits_{-\infty}^{+\infty} p(x,y) \,\mathrm{d}y = p_X(x)$

$$\int_{-\infty}^{x} \left(\int_{-\infty}^{+\infty} p(x, y) \, dx \right) dy = F(x, +\infty) = P(X < x, Y < +\infty)$$

$$= P(\omega \mid X(\omega) \in (-\infty, x], Y \in \mathbb{R} \cup \{+\infty\})$$

$$= P(X < x) = F_X(x) = \int_{-\infty}^{x} p_X(x) \, dx$$

Опять-таки интервал можно сжать как угодно, правда снова проблемы с непрерывностью.

Часть про константу слишком очевидна, не будем её доказывать.

Утверждение 4 (Дисперсия суммы). $D\left(\sum_{i} X_{i}\right) = \sum_{i} D X_{i}$

. Сначала заметим, что D $X = M(X - MX)^2$, M(X - MX) = MX - MX = 0

$$D(X + Y) = M(X + Y - M(X + Y))^{2} = M((X - MX) + (Y - MY))^{2}$$

= M(X - MX)^{2} + M(Y - MY)^{2} + 2M(X - MX)M(Y - MY)
= DX + DY

Утверждение 5. Если X, Y — независимы, то MXY = MXMY

§ 4 Матожидание функции случайной величины

Определение 1 ($\stackrel{\sim}{\sim}$). Пусть f(X) — функция от случаной величины. Тогда $\operatorname{M} f(X) = \int\limits_{-\infty}^{+\infty} f(x) p(x) \, \mathrm{d}x$. В случае чего он многомерный, просто прикидывается. Существует, если есть абсолютная сходимость.

Замечание. я ещё подумаю, может это всё же утверждение.

Утверждение 1. Матожидание функции линейно

Утверждение 2. Если X, Y — независимы, то M $f_1(X_1)f_2(X_2) = M$ $f_1(X_1)$ M $f_2(X_2)$

§ 5 Неравенство Шварца

Утверждение 1. $(M XY)^2 \leq M X^2 M Y^2$

 $M(X + tY)^2 = t^2 MY^2 + 2t MXY + MX^2 \geqslant 0$ из свойств матожидания. Ну там и подынтегральная функция положительна. Тогда квадратное уравнение в правой части может иметть не более одного корня.

$$(2 \operatorname{M} XY)^2 - 4 \operatorname{M} X^2 \operatorname{M} Y^2 \leqslant 0 \Leftrightarrow (\operatorname{M} XY)^2 \leqslant \operatorname{M} X^2 \operatorname{M} Y^2$$

▲

§ 6 Характеристическая функция суммы случайных величин

Утверждение 1. Пусть X, Y — независимые случайные величины. Тогда

$$\Phi_{X+Y}(t) = \Phi_X(t) \cdot \Phi_Y(t)$$

 \blacksquare

Из 0.6.1

$$\Phi_{X+Y}(t) = M e^{itX} e^{itY} = M e^{itX} \cdot M e^{itY} = \Phi_X(t) \cdot \Phi_Y(t)$$

▲

Следствие 1. Если все величины одинаково распределены, то $\Phi_{X_1+\dots+X_n}(t) = (\Phi(t))^n$,

$$p_{X_1 + \dots + X_n} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (\Phi(t))^n dt$$

§7 Суммирование большого числа случайных величин

:set aflameX∵

Теорема 1 (ЦПТ Линдберга-Леви-Агекяна $\stackrel{*}{\sim}$). Пусть X_1, \ldots, X_n — независимые одинаково распределённые случайные величины. Пусть κ тому жее $S_n = X_1, \ldots, X_n, \ 0 < \mathrm{D}\, X_k < \infty$. Пусть $\mathrm{M}\, X_k = a, \mathrm{D}\, X_k = \sigma$. Тогда при $n \to \infty$ $Z_n \sim N(0,1)$, в вариации из Агекяна $S_n \sim N(na, n\sigma^2)$

 \square Пусть М $X_k=a,$ D $X_k=\sigma^2$. Рассмотрим характеристическую функцию $\Phi(t)=$ М e^{itX_k} . Введём замену (которая z-преобразование.):

$$z_n = \frac{S_n - an}{\sigma\sqrt{n}}$$

Давайте ещё немного схитрим и положим $X_k \leftarrow X_k - a$. А то потом будет много возни с бедным a. При этом $z_n = \frac{S_n}{\sigma \sqrt{n}}$ Тогда

$$\Phi_{z_n}(t) = M\left(e^{\frac{itS_n}{\sigma\sqrt{n}}}\right) = \left(\Phi\left(\frac{t}{\sigma\sqrt{n}}\right)\right)^n$$

А характеристическая функция дифференцируема дважды из существования дисперсии.

$$\begin{split} \Phi'(0) &= 0 \\ \Phi''(0) &= -\sigma^2 \\ \Phi\left(\frac{t}{\sigma\sqrt{n}}\right) &= \Phi(0) + \Phi'(0)\frac{t}{\sigma\sqrt{n}} + \Phi''(0)\frac{t^2}{2\sigma^2n} + o\left(\frac{1}{n}\right) = 1 - \frac{1}{2}\frac{t^2}{n} + o\left(\frac{1}{n}\right) \end{split}$$

A при $n \to \infty$

$$\Phi\left(\frac{t}{\sigma\sqrt{n}}\right)^n = \left(1 - \frac{1}{2}\frac{t^2}{n} + o\left(\frac{1}{n}\right)\right)^n \Longrightarrow e^{-t^2/2}$$

Здесь сходимость есть на любом конечном интервале, но вот про всю прямую этого уже не скажешь. Так что снова поднимается вопрос какой теоремой о непрерывном соответствии пользоваться. Но если ей воспользоваться (тут потихому применили обратное преобразование Фурье), то

$$p_{z_n} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp \frac{-s^2 + s^2 - 2its - t^2}{2} = \frac{e^{-s^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t + is}{\sqrt{2}}\right)^2\right) d\eta = \frac{e^{-s^2/2}}{\sqrt{2\pi}}$$
$$F_{Z_n}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-s^2/2} ds$$

Дальше — вариация из Агекяна. Используя утверждение 0.2.2 про замену переменной как раз получаем нормальное распределение. Только тут нужно поменять в процессе σ

$$Z_n = \frac{S_n}{\sigma \sqrt{n}}$$

$$F_{S_n}(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma \sqrt{n}} e^{-\frac{u^2}{2\sigma^2 n}} du$$

Вернёмся обратно к ненулевому a

$$S_n \leftarrow S_n - na$$

$$F_{S_n} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma \sqrt{n}} \int_{-\infty}^x e^{-\frac{(u - na)^2}{2\sigma^2 n}} du$$

$$S_n \sim N(na, n\sigma^2)(n \to \infty)$$

§ 8 Центральная предельная теорема

Теорема 1 (ЦПТ Ляпунова). Пусть $\{X_k\}$ — независимые случаные величины (тут нет одинаковости расределений!). Введём гору обозначений:

$$S_n = \sum_i x_i$$

$$a_k = M X_k \qquad \sigma_k^2 = D x_k \qquad \gamma_k = M |X_k - a_k|^3$$

$$A_n = \sum_{k=1}^n a_k \qquad B_n^2 = \sum_{k=1}^n \sigma_k^2 \qquad C_n = \sum_{k=1}^n \gamma_k$$

Тогда

$$\frac{C_N}{B_n^3} \xrightarrow[n \to \infty]{} 0 \Rightarrow \frac{S_n - A_n}{B_n} \xrightarrow[n \to \infty]{} \mathcal{N}(0, 1)$$

Замечание. Тут какая-то жесть. Она мало где формулируется и нигде не доказывается. Что-то есть тут:[?], а здесь [?] так другую теорему обозвали

:set aflame

§ 9 Обобщённая теорема Муавра-Лапласа

Определение 1. Пусть $X_1,\dots,X_n \sim \mathcal{N}(0,1)$ и независимы. Тогда говорят, что случайная величина $\chi^2_n = \sum_{k=1}^n X_k^2$ имеет распределение χ^2 с n степенями свободы.

Утверждение 1.
$$p_{\chi_b}(z) = \frac{1}{2^{n/2} \cdot \Gamma(\frac{n}{2})} z^{n/2-1} e^{-z/2}$$

Характеристическая функция χ может быть найдена из 1 Найдём сначала характеристическую функцию X_k^2 . Для этого было бы недурно найти плотность соответвующего распределения

$$P(y < X^{2} < y + dy) = P(\sqrt{y} < X < \sqrt{y + dy}) + P(-\sqrt{y} > X > -\sqrt{y + dy})$$

$$= \frac{2}{\sqrt{2\pi}} \int_{\sqrt{y}}^{\sqrt{y + dy}} e^{-u^{2}/2} du = \sqrt{\frac{2}{\pi}} \frac{e^{-y/2}}{2\sqrt{y}}$$

А теперь можно и фурье-образ найти

$$\int_{-\infty}^{+\infty} \frac{e^{-y/2}}{2\sqrt{y}} dy = \int_{0}^{+\infty} \frac{e^{-y/2}}{2\sqrt{y}} dy = \int_{0}^{+\infty} \exp\left(\frac{-\eta^2(1-2it)}{2}\right) d\eta = (1-2it)^{-1/2} \sqrt{\frac{\pi}{2}}$$

Вспоминая про коэффициент получим $\Phi_k(t) = (1-2it)^{-1/2}$.

$$\Phi_{\gamma}(t) = (\Phi_k(t))^n = (1 - 2it)^{-n/2}$$

Тогда

$$p_{\chi}(z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (1 - 2it)^{-n/2} e^{-itz} dt$$

Дальше немного жесть

$$\int_{-\infty}^{+\infty} (1 - 2it)^{-n/2} e^{-itz} dt = \int_{-\infty}^{+\infty} e^{-l} \left(1 - 2\frac{l}{z} \right)^{-n/2} \frac{1}{iz} dl = 2 \cdot \frac{z^{n/2 - 1} e^{-z/2}}{2^{n/2}} \int_{0}^{\infty} s^{-n/2} e^{-s} ds$$
$$= 2\frac{z^{n/2 - 1} e^{-z/2}}{2^{n/2}} \cdot \Gamma\left(1 - \frac{n}{2} \right)$$

Из правила отражения для Γ -функции $\Gamma(1-n/2)\,\Gamma(n/2)=\frac{\pi}{\sin\frac{\pi n}{2}}$. А это почти что надо. \bigstar там надо интеграл поаккуратнее брать.

lack

Теорема 2 (Обобщённая теорема Муавра-Лапласа). Пусть X_1, \ldots, X_n — независимые случайные величины с дискретным распределением:

$$X_k : \frac{1 \mid \cdots \mid r}{p_1 \mid \cdots \mid p_r}$$

Рассмотрим $\nu_k = \#\{1 \leqslant i \leqslant n \mid X_i = k\}, \ 1 \leqslant k \leqslant r.$ Тогда

$$\sum_{k=1}^{r} \left(\frac{\nu_k - np_k}{\sqrt{np_k}} \right) \xrightarrow{d} \chi_{r-1}^2$$

§ 10 Метод моментов

Здесь походу нужно все статистические определения в одном параграфе:set aflame

Вводные слова В отличие от теорвера, матстатистике неизвестно распределение случайной величины. И нужно придумать, как его восстановить по конкретной реализации. Пусть X — та самая величина, про распределение которой очень хочется узнать

Главная героиня матстатистики — выборка

Определение 1. Выборка объёма n —

- 1. n независимых случайных величин, распределённых так же, как и X
- 2. набор чисел $X_i(\omega), \, \omega \in \Omega$ какой-то исход. Ещё называется реализацией выборки.

Собственно, первое определение — это до испытания, а второе — уже после.

Основные задачи Пусть $X_1, \dots, X_n \sim F(x, \theta), \ \theta \in \Theta \subset \mathbb{R}^d$ — множество параметров.

- 1. Оценивание параметров:
 - Точечные оценки: $\hat{\theta} = T(X_1, \dots, X_n)$
 - Доверительные интервалы: $P_{\alpha}(T_1 < \theta < T_2) = \alpha$
- 2. Проверка гипотез

Пусть $\Theta = \Theta_0 \cup \Theta_1$. А мы хотим узнать чему принадлежит θ .

 H_0 : $\theta \in \Theta_0$ — основная гипотеза

 H_1 : $\theta \in \Theta_1$ — альтернативная гипотеза

Выборочные характеристики Выберем реализацию случайной величины (выборку во втором смысле) X_1, \ldots, X_n . Рассмотрим новую случайную величину:

$$\widetilde{X}: \begin{array}{c|c} X_1 & \cdots & X_n \\ \hline \frac{1}{n} & \cdots & \frac{1}{n} \end{array}$$

Ну а дальше все выборочные характеристики определяются уже для этой случайной величины. Напомним следующее

Определение 2 (Индикатор).
$$I_A(X) = \begin{cases} 1, & X \in A \\ 0, & X \not\in A \end{cases}, I(X < x) = \begin{cases} 1, & X < x \\ 0, & X \geqslant x \end{cases}$$

Определение 3. Если X_1, \ldots, X_n можно упорядочить, то $X_{(1)} \leqslant \cdots \leqslant X_{(n)}$ называется вариационным рядом.

Генеральная совокупность		Выборка	
Матожида- ние	M X	$\overline{X} = \frac{1}{n} \sum_{k} X_k$	Выбороч- ное среднее
Дисперсия	$\mathrm{D}X$	$S^2 = \frac{1}{n} \sum_{k} (X_k - \overline{X})$	Выбороч- ная дисперсия
Момент порядка l	$M X^k$	$m_l = \frac{1}{n} \sum_k X_k^l$	
Ковариация	M(X - MX)(Y - MY)	$\frac{1}{n}\sum_{k}(X_{k}-\overline{X})(Y_{k}-\overline{Y})$	
Ассиметрия (γ_3)	$M(X - MX)^3/\sigma^3$	$\frac{1}{n}\sum (X-\overline{X})^3/S^3$	
Эксцесс (γ_4)	$\frac{M(X-MX)^4}{\sigma^4} - 3$		
Функция распределе- ния		$\frac{1}{n} \sum_{k} I(X_k < y)$	эмпириче- ская
Квантиль порядка $p \in (0;1)$	$\sup\{x \mid F(x) \leqslant p\}$	$X_{([pn]+1)}$	член вари- ационного ряда

ХСвойства оценок

Метод моментов

Определение 4. Пусть $F(x,\theta)$ — семейство распределений, $m(x) = \mathrm{M}\,g(x)$ — какой-то момент этого распределения. Пусть известно, что $h(\theta) = m(x)$. Тогда собственно сам метод состоит в том, чтобы оценить θ как решение уравнения выше.

$$\hat{\theta} = h^{-1}(m(x))$$

В случае чего там векторы, но особо не страшно.

Пример 1. <+примеры про непрерывные распределения+>

§ 11 Метод максимального правдоподобия

Определение 1. За $p(x,\theta)$ обозначим плотность функции распределения $F(x,\theta)$ в точке x в случае непрерывного распределения и P(X=x) в случае дискретного.

Определение 2. Пусть $\{X_k\}$ —n независимых случайных величин. Тогда $L(\theta):=\prod_{k=1}^n f_{\theta}(X_k)$ — функция правдоподобия. Ещё берут её логарифм.

Определение 3. Сам метод состоит в следующем:

$$\hat{\theta} \colon L(\hat{\theta}) = \max_{\theta} L(\theta)$$

Однако проще искать максимум у $\ln L(\theta)$. Так можно в силу монотонности логарифма.

$$\left(\ln L(\theta)\right)' = \frac{L'(\theta)}{L(\theta)}$$

<+гора примеров+>

§* Эффективные оценки

Утверждение 1 (Неравенство Рао-Крамера). Пусть $\theta, \hat{\theta}$ — параметр и его оценка, $b(\theta) = M(\hat{\theta} - \theta)$ — смещение оценки, $I(\theta)$ — информация Фишера, $F(x,\theta)$ — параметрическое семейство распределений.

$$I(\theta) = M \left(\frac{\partial}{\partial \theta} \ln p(X, \theta) \right)^2,$$

где $p(X,\theta)$ из определения 0.11.1. Если выполнены условия регулярности

- 1. Существует $C \subset \mathbb{R}$: $\forall \theta \in \Theta P(X_1 \in C) = 1 \ u \ \forall y \in C\sqrt{p(X,\theta)} \in C^1_{\theta}(\Theta)$
- 2. $I(\theta) \in C_{\theta}(\Theta), I \geqslant 0$

и $D \hat{\theta}$ ограничена на любом компакте $\subset \Theta$, то

$$M(\hat{\theta} - \theta)^2 \geqslant \frac{(1 + b'(\theta))}{nI(\theta)} + b^2(\theta)$$

Замечание 1. Всякая регулярность нужна, чтобы можно было законно запихивать производную по параметру по интеграл.

Определение 4. Оценка называется эффективной, если для неё неравенство Рао-Крамера обращатся в равенство.

§ 12 Лемма Фишера

Определение 1. Пусть X_1, \ldots, X_n — независимые случайные величины с распределением $\mathcal{N}(0,1)$. Тогда $\sum_i X_i^2$ имеет распределение χ^2 с n степенями свободы. Ещё так обозначается: K_n

Утверждение 1. Плотность распределения χ^2_n ищется по формуле

$$k_n = \frac{z^{n/2-1}e^{-z/2}}{2^{n/2}\Gamma\left(\frac{n}{2}\right)}$$

Определение 2. Пусть X_1,\dots,X_n — независимые случайные величины с распределением $\mathcal{N}(0,1)$. Тогда $\frac{x}{\sqrt{\frac{1}{n}\sum_i X_i^2}}$ имеет распределение Стьюдента с n сте-

пенями свободы.

Утверждение 2. Плотность распределения T_n ищется по формуле

$$t_n = \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{\pi n}} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

Определение 3. Пусть $C\colon V_1\to V_1$. Тогда C — ортгональный, если $CC^T=E$

Следствие 1. $\det C = 1$

Следствие 2. ||Cx|| = ||x||

Утверждение 3. Оператор ортогональный ⇔ строки его матрицы (как векторы линейного пространсва наборов чисел) образуют ортонормированный базис.

Утверждение 4. Пусть $\{X_i\} \sim \mathcal{N}(0,1), C$ — ортогональный линейный оператор. Тогда и $Y = CX \sim \mathcal{N}(0,1)$.

▼

Докажется через утверждение о пребразовании плотности при замене переменных 0.2.2 и следствие 2. Независимость получится просто из того, что вышло нормальное распределение. А σ -у можно сначала засунуть в случайные величины, а потом вытащить обратно.

▲

Лемма 5 (Фишера). Пусть X_1,\ldots,X_n независимы и $X_i \sim \mathcal{N}(\theta,\sigma^2)$. Тогда

1.
$$\sqrt{n} \frac{\overline{X} - \theta}{\sigma} \sim \mathcal{N}(0, 1)$$

2. \overline{X} , S^2 независимы 1

$$3. \ \frac{nS^2}{\sigma^2} \sim \chi_{n-1}^2$$

4.
$$\sqrt{n-1} \frac{\overline{X} - \theta}{S} \sim t_{n-1}$$

1. Заменим $Z_i = \frac{X-\theta}{\sigma}, \ Z_i \sim \mathcal{N}(0,1)$ Найдем распределение $\sum_i Z_i = \Sigma$.

$$\Phi_i(t) = e^{-t^2/2}$$

$$\Phi_{S_n}(t) = \frac{1}{n} \cdot \exp\left(-n\frac{t^2}{2}\right) = \exp\left(-\left(\frac{\sqrt{n}\,t}{\sqrt{2}}\right)^2\right) \Rightarrow p_{\Sigma}(z) = \frac{1}{\sqrt{2\pi}\sqrt{n}} \exp\left(-\frac{x^2}{2n}\right)$$
$$\frac{S_n - n\theta}{\sigma} \sim \mathcal{N}(0, \sqrt{n}) \Rightarrow \frac{n}{\sqrt{n}} \frac{\overline{X} - \theta}{\sigma} = \sqrt{n} \frac{\overline{X} - \theta}{\sigma} \sim \mathcal{N}(0, 1)$$

¹Здесь смещённая дисперсия

2. Пусть

$$C = \begin{pmatrix} \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

Первая строка как вектор имеет норму 1. А значит можно вспомнить процесс Грамма-Шмидта и набрать ортонормированный базис. Тогда C будет ортогональным. Пусть Y = CX. Из горы утверждений выше мы получим:

$$Y_{1} = \frac{X_{1} + \dots + X_{n}}{\sqrt{n}} = \overline{X}\sqrt{n}$$

$$||Y|| = ||X|| \Rightarrow \sum_{i} X_{i}^{2} = \sum_{i} Y_{i}^{2}$$

$$S^{2} = \frac{1}{n} \sum_{i} X_{i}^{2} - (\overline{X})^{2} = \frac{1}{n} \sum_{i=2}^{n} Y_{i}$$

А дальше надо честно посчитать $\operatorname{cov}\left(\frac{Y_1}{\sqrt{n}}, \sum_{i=2}^n Y_i\right)$. Правда ноль получается. Если что,

$$cov(X,Y) = M(X - MX)(Y - MY) = M(XY) - MXMY$$

3.
$$\frac{nS^2}{\sigma^2} = \sum_{i=2}^n \left(\frac{Y_i}{\sigma}\right) = \chi_{n-1}^2$$

4. Мы там порешили, что $\theta = 0$, так что

$$\sqrt{n-1} \frac{\overline{X}}{S} = \frac{Y_1}{\sqrt{\frac{n}{n(n-1)} \sum_{i=2}^n Y_i}} = \frac{Y_1}{\sqrt{\frac{1}{n-1} \sum_{i=2}^n Y_i}} \sim t_{n-1}$$

§ 13 Доверительны интервалы нормального распределения

Здесь собственно перешли к более интересной части — от точечных оценок параметров к построению для доверительных интервалов.

Определение 1. (T_1, T_2) — доверительный интервал уровня γ , если $P(T_1 < \theta < T_2) = \gamma$

Дальше всюду ведутся рассуждения про доверительные интервалы (уровня γ) параметров нормального распределения.

Утверждение 1. Доверительный интервал для θ при известном σ равен $\left(\overline{X} - \sigma \frac{z_{(1+\gamma)/2}}{\sqrt{n}}; \overline{X} + \sigma \frac{z_{(1+\gamma)/2}}{\sqrt{n}}\right)$

Интервал ищем явно симметричный, так что посчитаем

$$P\left(\sqrt{n}\,\frac{|\overline{X}-\theta|}{\sigma} < z\right)$$

Поскольку величина внутри подчиняется стандартному нормальному распределению,

$$P\left(-z < \sqrt{n} \frac{(\overline{X} - \theta)}{\sigma} < z\right) = F_n(z) - F_n(-z) = 2F_n(z) - 1 = \gamma$$

По дороге сделали замену переменной, не пугайтесь. А дальше $z=F_n(\frac{1+\gamma}{2},$ что как раз соответствует определению $\frac{1+\gamma}{2}$ квантили. Ну а дальше всё уже очевидно из преобразования неравенства выше. Мы умеем это делать, можно порассматривать $\{\omega \mid X(\omega) \cdots\}$ как уже делали раньше.

lack

Утверждение 2. Доверительный интервал для θ при неизвестном σ равен $\left(\overline{X} - S \frac{t_{n-1,(1+\gamma)/2}}{\sqrt{n}}; \overline{X} + S \frac{t_{n-1,(1+\gamma)/2}}{\sqrt{n}}\right)$

▼

аналогично 0.13.4, только пользуемся 4 пунктом леммы Фишера 0.12.5.

lack

Утверждение 3. Доверительный интервал для σ^2 при неизвестном θ равен $\left(\frac{nS^2}{v^2}; \frac{nS^2}{u}\right)$. Чиселки u, v определяются c помощью χ^2 .

Утверждение 4. Доверительный интервал для σ^2 при неизвестном θ нормально не выражается. Проще численно.

1.
$$\frac{\sum_{i=1}^{n} (X_i - \theta)^2}{\sigma^2} \sim \chi_n^2$$

2.
$$\frac{n(\overline{X}-\theta)^2}{\sigma^2} \sim \chi_1^2$$

§ 14 Проверка гипотез по параметрам нормального распределения

Будем рассматривать здесь простую гипотезу:

$$H_0: \theta = \theta_0$$
$$H_1: \theta \neq \theta_0$$

1. Пусть $X_1,\ldots,X_n\sim\mathcal{N}(\theta,\sigma^2),\,\sigma^2$ известно. Примем $H_0\colon\theta=\theta_0.$ Но тогда

$$\sqrt{n} \frac{X - \theta_0}{\sigma} \sim \mathcal{N}(0, 1)$$

из 1 пункта леммы Фишера (0.12.5).

Рассмотрим α — уровень значимости — какое-нибудь маленькое число. Часто берут 0.05.

$$P\left(\sqrt{n}\,\frac{|\overline{X}-\theta_0|}{\sigma}>z\right)=\alpha\Leftrightarrow\sqrt{n}\,\frac{|\overline{X}-\theta_0|}{\sigma}>z_{1-\alpha/2}$$

Таким образом можно найти границы критической области.

Если H_0 верна, то $P\left(\sqrt{n}\,\frac{|\overline{X}-\theta|}{\sigma}>z_{1-\alpha/2}\right)$ мала. Можно выбрать, меньше чего мы хотим её сделать, и объявить сие критерием проверки. Собственно, так и делали на практике.

2. σ^2 неизвестна. Здесь всё то же самое, только с распределением Стьюдента.

А здесь такую

$$H_0: \theta_1 = \theta_2$$

 $H_1: \theta_1 \neq \theta_2$

Будем считать, что X_i, Y_i независимы, и нормально распеделены:

$$X_1, \dots, X_{n_1} \sim \mathcal{N}(\theta_1, \sigma_1^2)$$

 $Y_1, \dots, Y_{n_2} \sim \mathcal{N}(\theta_2, \sigma_2^2)$

1. σ_1^2, σ_2^2 — известны.

$$\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2^2}}} \sim \mathcal{N}(0, 1)$$

2. $\sigma_1^2 = \sigma_2^2$, но не известны

$$\sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}} \cdot \frac{\overline{X} - \overline{Y}}{\sqrt{n_1 S_1^2 + n_2 S_2^2}} \sim S_{n_1 + n_2 - 2}$$

Это как раз тот самый t-тест

3. σ_1^2, σ_2^2 неизвестны. Тут вообще ничего не понятно. (Проблемы Беренса-Фишера)

§ 15 Линейная регрессия

Определение 1. Ковариационная матрица случайных векторов X, Y — матрица ковариаций их компонент

$$cov(X,Y)_{ij} = cov(X_i, Y_j) = M(X - MX)(Y - MY)^T$$

Определение 2. cov X = cov(X, X)

Определение 3 (Эффективность оценок). Оценка параметра $\hat{\theta}_1$ эффективнее оценки $\hat{\theta}_2$, если матрица соу $\hat{\theta}_1$ — соу $\hat{\theta}_2$ отрицательно определена.

Определение 4 (Регрессия). Пусть Y, X_1, \ldots, X_m — случайные векторы. Тогда если определено уравнение $y(x_1, \ldots, x_m) = M(Y \mid X_1 = x_1, \ldots, X_m = x_m)$, то y называется регрессией Y по X_1, \ldots, X_n .

Определение 5 (Линейная регрессия). Пусть Y, X_1, \ldots, X_m — случайные векторы. Тогда если определено уравнение $y(x) = \mathrm{M}(Y \mid X_i = x_i \, \forall \, i)$, и $y(x) = x \cdot \theta$ то y называется линейной регрессией Y по X.

Здесь x — матрица $n \times m, \, \theta \in \mathbb{R}^m, \, \epsilon \in \mathbb{R}^n, \, y \in \mathbb{R}^n$

Замечание 1. Можно с тем же успехом написать $Y = y(X) + \varepsilon$, если М $\varepsilon = 0$

Определение 6. Y называется откликом, X — регрессоры (предикторы), ε — шум, θ — параметры.

Основной метод поиска оптимальных параметров — по функции максимального правдоподобия. Если не сильно расписывать, то это выльется в $\mathop{\rm arg\;min}(Y-$

$$X\theta)(Y - X\theta)^T$$

При этом нужны условия Гаусса-Маркова:

- 1. X^TX обратима
- 2. М $\varepsilon_i=0$ (нет систематической ошибки), М $\varepsilon_i^2=\sigma^2$, М $\varepsilon_i\varepsilon_j=0$. Последние 2 равносильны соv $\varepsilon=\sigma^2E_n$