Probabilistic Modeling and Reasoning

Traiko Dinev <traiko.dinev@gmail.com>

NOTE: This partially follows Probabilistic Modeling and Reasoning, a masters level course at the University of Edinburgh.

NOTE: Note this "summary" is NOT a reproduction of the course materials nor is it copied from the corresponding courses. It was entirely written and typeset from scratch.

License: Creative Commons public license; See README.md of repository

1 Probability Identities

Non-exhaustive list of identities useful for the rest of this cheatsheet:

$$P(A,B) = P(A \mid B) P(B)$$
 product rule
$$P(A) = \sum_{B} P(A \mid B) P(B) = \sum_{B} P(A,B)$$
 sum rule
$$x \perp \!\!\!\perp y \iff P(x,y) = P(x) P(y)$$

$$x_1 \perp \!\!\!\perp x_2 \perp \!\!\!\perp, \dots, x_N \iff P(x1,\dots,x_N) = \prod_{i} P(x_i)$$

We can store discrete distributions as tables of data. Conditional independence allows us to save space. Consider the conditional independence rules first:

$$P(x, y \mid z) = P(x \mid z) P(y \mid z) \iff x \perp \!\!\!\perp y \mid z$$
$$P(x \mid y, z) = P(x \mid z)$$

Then to store P(x, y, z) = P(x)P(y)P(z) we would need $dim(x) \times dim(y) \times dim(z)$ space. If they are all equal this means $k^{3d} - 1$ entries. The factorization allows us to have $3(k^d - 1)$ entries instead.

2 Directed Graphical Models

From the chain rule, we can factorize any distribution as:

$$P(\mathbf{x}) = \prod_{i} P(x_i \mid \pi_i), \quad \pi_i = \{x_1, \dots, x_{i-1}\}$$

We can prove that the following holds true by induction:

$$P(\mathbf{x}) = \prod_{i} P(x_i \mid \pi_i) \iff x_i \perp \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i, \ \forall i$$

where π_i is some subset of elements. This is to say that the factorization implies independence and a set of independences implies a factorization.

Thus we can visualize a distribution by drawing a DAG (directed acyclic graph) where the parents are the above π_i 's. Thus if:

$$P(\mathbf{x}) = P(x_1) P(x_2) P(x_3 \mid x_1, x_2) P(x_4 \mid x_3) P(x_5 \mid x_2)$$

then the DAG is in Figure 1.

Figure 1: Simple DAG

A graph can be generated from a distribution and a (topological) ordering of the elements. A topological ordering is one where the parents come before the children. Note that different orderings may generate different graphs.

2.1 Examples

Markov Models (of order 1) or chains are a series of serial connections (Figure 2).

Figure 2: Markov Chain

Hidden Markov Models contain a markov chain that is not observed. Each hidden \mathbf{h} influences an observable. \mathbf{x} 's are often at different timesteps, making the chain represent a time series. Figure 3.

Figure 3: Hidden Markov Model

Probabilistic PCA/ Independent Component Analysis are methods that both use the same graphical model. Here the latents (hiddens) variables are not connected. At the same time they influence all of the observables. Figure 4

2.2 D-Separation

The main reason for using graphical models is to more easily determinite independencies between variables. In a DAG a tool for using this is D-separation. We start by examining the three possible trail connections in a DAG.

Figure 4: PPCA/ ICA graphical model

Note that these are not all possible connections between three elements, but rather all possible connections when following a trail.

Serial Connections are like Markov chains.

Figure 5: Serial Connecton

Importantly we have:

$$\begin{split} \mathbf{P}(x,z,y) &= \mathbf{P}(x)\mathbf{P}(z\mid x)\mathbf{P}(y\mid z) \\ x \perp\!\!\!\perp y \mid z \qquad x \not\perp\!\!\!\perp y \end{split}$$

This means that if we know the variable z, x and y, and all their parents and children that are not connected to z are independent of each other.

Diverging Connections

Figure 6: Diverging Connecton

The same property of independence holds true here:

$$\begin{split} \mathbf{P}(x,z,y) &= \mathbf{P}(z)\mathbf{P}(x\mid z)\mathbf{P}(y\mid z) \\ x \perp \!\!\! \perp y \mid z \qquad x \not\perp \!\!\! \perp y \end{split}$$

Converging Connections (Colliders)

Figure 7: Collider

For colliders if we **do not know** z, x and y are independent:

$$\begin{split} \mathbf{P}(x,z,y) &= \mathbf{P}(z)\mathbf{P}(x\mid z)\mathbf{P}(y\mid z) \\ x \perp\!\!\!\perp y & x \not\perp\!\!\!\perp y\mid z \end{split}$$

This is true since $P(\cdot) = \dots$

D-Separation Sets X and Y are d-separated by Z iff all trails are blocked by Z. One of the following needs to be true for a trail to be blocked:

1) Either b is in a head-tail or tail-tail configuration

and b is in Z.

2) b is a part of a collider

and neither b or its descendents are in z. Then $X \perp\!\!\!\perp Y \mid Z$.

2.3 I-Maps

A graph is an I-map for a set of independencies I iff all independencies asserted by the graph are part of I. A graph can thus have fewer independencies than the set. A fully-connected graph is a trivial I-map for all sets I.

2.4 Directed Local Markov Property

$$\mathbf{x}_i \perp \!\!\!\perp (\operatorname{pre}_i \setminus \operatorname{pa}_i) \mid \operatorname{pa}_i \leftrightarrow \mathbf{x}_i \perp \!\!\!\perp (\operatorname{nondesc}(\mathbf{x}_i) \setminus \operatorname{pa}_i) \mid \operatorname{pa}_i$$

This [todo] figure.

2.5 Gloabl directed Markov Property

All independencies asserted by D-separation.

2.6 Markov Blanket

By definition:

$$x \perp \!\!\!\perp (\text{all} \setminus \mathbf{x} \setminus \text{MB}(\mathbf{x})) \mid \text{MB}(\mathbf{x})$$

And for DAGs we get:

$$MB(\mathbf{x}) = pa(\mathbf{x}) \cup children(\mathbf{x}) \cup co-parents(\mathbf{x})$$

3 Undirected Graphical Models

Firstly, we note the following. For non-negative functions a and b:

$$\begin{split} x \perp\!\!\!\perp y \mid z &\leftrightarrow \mathrm{P}(x,y,z) = a(x,z) \times b(y,z) \\ x \perp\!\!\!\perp y &\leftrightarrow \mathrm{P}(x,y) = a(x) \times b(y) \\ \sum_{x,y,z} a(x,z)b(y,z) &= 1 \\ \mathbf{if} \ p(x,y,z) &= \frac{1}{Z} \phi_A(x,z)\phi_B(y,z), \quad Z = \sum_{x,y,z} \phi_A(x,z)\phi_B(y,z) \end{split}$$

3.1 Gibbs Distribution

.. is a distribution that factorizes as:

$$P(\mathbf{x}) = \frac{1}{Z} \prod_{c} \phi_{C}(\mathcal{X}_{C}), \quad \mathcal{X}_{C} \subseteq \{x_{1}, \dots, x_{d}\}$$

3.2 Energy-Based Model

If in the above $\phi_C(\mathcal{X}_C) = \exp(-E_c(\mathcal{X}_c))$. Then:

$$P(\mathbf{x}) = \frac{1}{Z} = \frac{1}{Z} exp \left[-\sum_{c} E_{c}(\mathcal{X}_{c}) \right] = \frac{1}{Z} \prod_{c} \underbrace{\exp^{-E_{c}(\mathcal{X}_{c})}}_{\phi_{c}(\mathcal{X}_{c})}$$

3.3 Undirected Graphs

Assuming a distribution (up to a constant) factorizes as:

$$P(\mathbf{x}) \propto \phi_1(x_1, x_2, x_3) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_5, x_6)$$

then we visualize it as the following graph:

Figure 8: Undirected Graph

We form cliques for all variables in each factor ϕ_i .

3.4 Independencies in Undirected Models

If

$$P(\mathbf{x}) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_4)$$

Then the corresponding graph is:

This directly implies that

$$x_4 \perp \!\!\! \perp x_1, x_2, x_3$$

 $x_1 \perp \!\!\! \perp x_3 \mid x_2$

In other words, a trail is blocked if there are no paths between the two nodes. Thus D-separation is more easily done here.

3.5 Graph \rightarrow Distribution

Since we built undirected graphs by connecting cliques, it follows that given a graph we look at the maximum cliques to recover the distribution. **I-maps** are defined as before.

3.6 Local Markov Property

An edge is independent of all other edges given its neighbors. In the below graph the neighbors are colored in red. Formally, if $ne(\alpha)$ are the neighbors of α , then:

$$\alpha \perp \!\!\! \perp X \setminus (\alpha \cup \operatorname{ne}(\alpha)) \mid \operatorname{ne}(\alpha), \quad \forall \alpha \in X$$

3.7 Pairwise Markov Property

$$\alpha \perp \!\!\! \perp \beta \mid \underbrace{X}_{\text{all nodes}} \backslash \{\alpha, \beta\}$$

for all non-neighboring $\alpha, \beta \in X$.

3.8 Markov Blanket

For undirected graph, the markov blanket of x is the neighbors of x.

N.B. All of the above properties (Markov properties) are equivalent for both directed and undirected graphical models. This means if one of them is true **for a distribution**, then all of them are true.

TODO: Add Bishop plots with repetition boxes.

3.9 Minimal I-map

- If an edge is removed, it ceases to be an imap.
- A graph is an I-map if $P(\cdot)$ factorizes over the graph.

Undirected Models

Directed Models

- For all \mathbf{x}_i find $MB(\mathbf{x}_i)$ and connect.
- For all \mathbf{x}_i find $\pi_i \subseteq \operatorname{pre}_i$ such that $\mathbf{x}_i \perp \!\!\! \perp \{\operatorname{pre}_i \setminus \pi_i\} \mid \pi_i$
- Set $pa_i = \pi_i$

4 Equivalence and Conversion Between Models

Two directed graphs G_1 and G_2 are I-equivalent if they have the same set of immoralities and the same skeleton. An immorality is a collider without covering edge. **Look for colliders that don't match.** Since serial (head-tail) and diverging (tail-tail) connections imply the same independencies, we only need to look for converging (head-head) connections that don't match.

$\textbf{4.1} \quad \textbf{Directed} \rightarrow \textbf{Undirected}$

We have:

$$P(\cdot) = \prod_{i} P(\mathbf{x}_i \mid pa_i) = \prod_{i} \underbrace{\phi_i(\mathbf{x}_i, pa_i)}_{cliques}$$

- ▶ This is called **moralization** and we obtain a **moral graph**
- ▶ This it **NOT** an undirected I-map for the distribution. Most notably we can not represent collider independencies.

4.2 Undirected \rightarrow Directed

(See example below)

- ▶ Choose an ordering.
- ▶ Read independencies off of the graph and find π_i for each i.
- ▶ Connect $\pi_i \to \mathbf{x}_i$

4.3 Non-equivalent Trails

Colliders can not be represented by undirected graphs.

In the moralized graph on the right the independence $\mathbf{x}_1 \perp \!\!\! \perp \mathbf{x}_3$ is lost.

Closed loops can not be represented by directed graphs.

8

Consider the left graph. Let's review the process of creating the directed graph:

- \blacktriangleright Choose an ordering: x, y, u, z.
- ▶ For each element, consider the parent set and read independencies off the directed graph.

- ▶ Start with $y \not\perp\!\!\!\perp x$, which implies the edge $x \to y$.
- ▶ Find the minimal set for which u is independent of the parents π_u . This is x, y. Hence $x, y \to u$.
- ▶ For z this set is u, y. Hence $u \to z$ and $y \to z$

We no longer have the independence $u \perp \!\!\!\perp y \mid x, z$.

5 Factor Graphs

$$P(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \frac{1}{Z} \phi_1(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \phi_2(\mathbf{x}_3, \mathbf{x}_4) \phi_3(\mathbf{x}_4)$$
(1)

Figure 9: Factor Graph

6 Exact Inference in Factor Graphs

Assume discrete variables. The task is to compute $P(\mathbf{x}_k = k)$ for all k.

We can group terms in the leaves of the tree. Consider:

$$P(\cdot) \propto \phi_A(\mathbf{x}_1)\phi_B(\mathbf{x}_2)\phi_C(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)\phi_D(\mathbf{x}_3,\mathbf{x}_4)\phi_E(\mathbf{x}_3,\mathbf{x}_5)\phi_F(\mathbf{x}_5)$$
(2)

which is:

We iteratively "eliminate" variables by summing or integrating them out. Firstly, we eliminate x_5 :

$$P(\mathbf{x}_1, \dots, \mathbf{x}_4) = \sum_{\mathbf{x}_5} P(\mathbf{x}_1, \dots, \mathbf{x}_5)$$

$$\propto \sum_{\mathbf{x}_5} \phi_A(\mathbf{x}_1) \phi_B(\mathbf{x}_2) \phi_C(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \phi_D(\mathbf{x}_3, \mathbf{x}_4) \phi_E(\mathbf{x}_3, \mathbf{x}_5) \phi_F(\mathbf{x}_5)$$

$$\propto \phi_A(\mathbf{x}_1) \phi_B(\mathbf{x}_2) \phi_C(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \phi_D(\mathbf{x}_3, \mathbf{x}_4) \sum_{\mathbf{x}_5} \phi_E(\mathbf{x}_3, \mathbf{x}_5) \phi_F(\mathbf{x}_5)$$

$$\propto \phi_A(\mathbf{x}_1) \phi_B(\mathbf{x}_2) \phi_C(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \phi_D(\mathbf{x}_3, \mathbf{x}_4) \widetilde{\phi}_5(\mathbf{x}_3)$$

The idea is that we have reduced the factors above. Numerically, we would have the following:

$$\widetilde{\phi}_5(\mathbf{x}_3) = \begin{cases} a & \mathbf{x}_3 = 1 \\ \dots \\ z & \mathbf{x}_3 = N \end{cases}$$

For each value of the factor. This is pre-computing all of the values, which in this case costs $O(N^2)$. For each value of \mathbf{x}_3 we need to sum over \mathbf{x}_5 .

If we keep on doing this, the total cost will be greatly reduced from the $O(N^4)$ that is needed to sum over $\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5$.

The above operation is represented by the following **reduced** factor graph:

6.1 Message Passing

TODO: Graphs

$$\mu_{\phi \to \mathbf{x}}(\mathbf{x}) = \sum_{\mathbf{x}_1, \dots, \mathbf{x}_j} \phi(\mathbf{x}_1, \dots, \mathbf{x}_j, x) \prod_{i=1}^j \mu_{\mathbf{x}_i \to \phi}(\mathbf{x}_i)$$
$$\mu_{\mathbf{x} \to \phi}(\mathbf{x}) = \prod_{i=1}^j \mu_{\phi_i \to \mathbf{x}}$$

$$P(\mathbf{x}) \propto \prod_{i=1}^{j} \mu_{\phi_i \to \mathbf{x}}(\mathbf{x})$$

$$P(\mathbf{x}_1,\ldots,\mathbf{x}_j) \propto \phi(\mathbf{x}_1,\ldots,\mathbf{x}_j) \prod_{i=1}^j \mu_{\mathbf{x}_i \to \phi}(\mathbf{x}_i)$$

7 Inference for Markov Chains

TODO: Just scan this..

- 7.1 α -recursion
- 7.2 Smoothing
- 7.3 α - β Recursion

8 Model-Based Learning

- Probabilistic model: table for a distribution $P(\mathbf{x})$
- Statistical model: set of probabilistic models: $\{P(\mathbf{x};\theta)\}$
- Bayesian model: prior on theta, replace "parametrized by" with "conditioned on" $P(\mathbf{x}) = \int P(\mathbf{x} \mid \theta) P(\theta)$. To get the probability distribution of \mathbf{x} as above, we need to integrate over all possible values of θ .

9 Moment Matching

Assume we have a parametric statistical model:

$$P(\mathbf{x}; \theta) = \frac{P^*(\mathbf{x}; \theta)}{Z(\theta)}$$

where $Z(\theta) = \int P^*(\mathbf{x}; \theta) d\mathbf{x}$ is the partition function. Maximum likelihood returns:

$$\theta^* = \arg\max_{\theta} L(\theta) = \arg\max_{\theta} \sum_{i} \log P(\mathbf{x}_i; \theta)$$

the last being true for i.i.d. data only. This directly implies that at the maximum, the derivative is 0:

$$\nabla_{\theta} L(\theta)|_{\theta^*} = 0$$

We define the moments to be:

$$m(\mathbf{x}; \theta) = \nabla_{\theta} \log P^*(\mathbf{x}; \theta)$$

Then:

$$\nabla_{\theta} L(\theta) = \nabla_{\theta} \sum_{i} \log P(\mathbf{x}_{i}; \theta) = \nabla_{\theta} \sum_{i} \log \frac{P^{*}(\mathbf{x}_{i}; \theta)}{Z(\theta)}$$

$$= \left[\nabla_{\theta} \sum_{i} \log P^{*}(\mathbf{x}_{i}; \theta)\right] - \nabla_{\theta} n \times \log Z(\theta)$$

$$= \sum_{i} \nabla_{\theta} P^{*}(\mathbf{x}_{i}; \theta) - n \nabla_{\theta} \log Z(\theta)$$

$$= \sum_{i} m(\mathbf{x}_{i}; \theta) - n \nabla_{\theta} \log Z(\theta)$$

then for the second term we have:

$$\nabla_{\theta} \log Z(\theta) = \frac{1}{Z(\theta)} \nabla_{\theta} Z(\theta) = \frac{1}{Z(\theta)} \nabla_{\theta} \int P^{*}(\mathbf{x}; \theta) d\mathbf{x} =$$

$$= \frac{\int \nabla_{\theta} P^{*}(\mathbf{x}; \theta) d\mathbf{x}}{Z(\theta)} =$$

$$= \frac{\int \nabla_{\theta} \left[\log P^{*}(\mathbf{x}; \theta) \right] P^{*}(\mathbf{x}; \theta) d\theta}{Z(\theta)} =$$

$$= \int \nabla_{\theta} \left[\log P^{*}(\mathbf{x}; \theta) \right] P(\mathbf{x}; \theta) d\mathbf{x}$$

$$= \int m(\mathbf{x}; \theta) P(\mathbf{x}; \theta) d\mathbf{x}$$

which implies that:

$$\nabla_{\theta} L(\theta) = \sum_{i} m(\mathbf{x}_{i}; \theta) - n \int m(\mathbf{x}; \theta) P(\mathbf{x}; \theta) d\theta$$

which means that at θ^* , where $\nabla_{\theta} L(\theta) = 0$:

$$\frac{1}{n} \sum_{i} m(\mathbf{x}_{i}; \theta) = \int m(\mathbf{x}; \theta) P(\mathbf{x}; \theta) d\theta$$

This proves that maximumum likelihood can be thought of as moment matching. We are matching the empirical moments to their expectation over the normalized data distribution $P(\mathbf{x};\theta)$. Note we don't have access to $P(\mathbf{x};\theta)$, but only to $P^*(\mathbf{x};\theta)$, the unnormalized distribution.

10 Bayesian Inference

This:

$$\begin{split} \mathbf{P}(\theta \mid \mathcal{D}) &= \frac{\mathbf{P}(\theta; \mathcal{D})}{\mathbf{P}(\mathcal{D})} = \frac{\mathbf{P}(\mathcal{D} \mid \theta) \mathbf{P}(\theta)}{\mathbf{P}(\mathcal{D})} \\ &\propto \mathbf{Likelihood}(\theta) \mathbf{P}(\theta) \propto \underbrace{\left[\prod_{i} \mathbf{P}(\mathbf{x}_i \mid \theta) \right]}_{\text{for i.i.d. data}} \mathbf{P}(\theta) \end{split}$$

Figure 10: FA/ICA graphical model

11 Factor Analysis

Both FA and ICA have the same (parametrized) graphical model. See Figure 10. We have D visible and H hidden units:

$$\begin{aligned} \mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbb{I}) & H < D \\ \mathbf{P}(\mathbf{v} \mid \mathbf{h}; \theta) = \mathcal{N}(\mathbf{v}; \mathbf{F}\mathbf{h} + \mathbf{c}, \psi) \end{aligned}$$

where:

$$\theta = \{\underbrace{\mathbf{c}}_{\text{mean of } \mathbf{x}}, \mathbf{F} = \underbrace{(f_1, \dots, f_H)}_{\text{factors of size D; F is DxH}}, \Psi = \underbrace{\operatorname{diag}(\psi_1, \dots, \psi_D)}_{\text{noise variance}}\}$$

This means that the model is:

$$\mathbf{v} = \mathbf{F}\mathbf{h} + \mathbf{c} + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \Psi)$$

$$= \sum_{i=1}^{H} \mathbf{f}_{i} h_{i} + \mathbf{c} + \epsilon$$

11.1 An important identity

$$\begin{aligned} &\text{if } \mathbf{x} \sim \mathcal{N}(\mu_x, \mathbf{C}_x); \qquad \mathbf{z} \sim \mathcal{N}(\mu_z, \mathbf{C}_z) \\ \mathbf{y} &= \mathbf{A}\mathbf{x} + \mathbf{z}, \text{ then } \qquad y \sim \mathcal{N}(\mathbf{A}\mu_x + \mu_z, \mathbf{A}\mathbf{C}_x\mathbf{A}^T + C_z) \end{aligned}$$

11.2 Factor Rotation Problem

$$\mathbf{v} = \mathbf{F}\mathbf{h} + \mathbf{c} + \epsilon = \mathbf{F}(\mathbf{R}\mathbf{R}^T)\mathbf{h} + \mathbf{c} + \epsilon$$
$$= (\mathbf{F}\mathbf{R})(\mathbf{R}^T\mathbf{h}) + \mathbf{c} + \epsilon = (\mathbf{F}\mathbf{R})\bar{\mathbf{h}} + \mathbf{c} + \epsilon$$

Which means that:

$$P(\bar{\mathbf{h}}) = \mathcal{N}(\bar{\mathbf{h}}; 0, \mathbb{I})$$

since ${f R}$ is an orthogonal matrix.

- 12 Independent Component Analysis (ICA)
- 13 Intractable Likelihood Functions
- 14 Score Matching
- 15 Sampling and Monte Carlo
- 16 Sampling from Continuous Distributions
- 16.1 Rejection Sampling
- 16.2 Ancestral Sampling
- 16.3 Gibbs Sampling
- 17 Variational Inference