Design practical consideratios in Integrated Circuits

CMOS propagation time

(a) Low-to-high

$$V_{out} = V_{DD}(1 - e^{-t/\tau})$$

$$t_P$$
: $V_{out}(50\%) = \frac{V_{DD}}{2} = V_{DD}(1 - e^{-t_P/\tau})$

 V_{DD}

$$\frac{1}{2} = e^{-t_P/\tau} \Rightarrow t_{PP} = \ln 2 \cdot \tau = \ln 2 \cdot R_P \cdot C_L$$

Symmetric propagation times, by desing iiii

$$t_{PN} = t_{PP} \Rightarrow \tau_P = \tau_P \Rightarrow R_P = R_N = R_{eq}$$

 $V_{in 5} V_{DD}$

(b) High-to-low

 $V_{out} = V_{DD}e^{-t/\tau}$

- Parasitic Capacitance
 - ❖ Transistor gate capacitance(Cg): $C_g = C_{ox} *W*L$

Capacitance per area unit

- Interconexion capacitance:
 - Increase with Length
 - More important with small technologies

Fanout=10

Fan-out is the number of load gates connected to the output

- \square R_p, R_n (R_{eq}) are decreased by making transistors BIGGER
- ☐ C_L is decreased by making transistors SMALLER

Delay due to high fanout

t_{pi} = t_p of the minimum size inverter

$$t_p = t_{pA} + t_{pB} = 2 * t_{pi} + 5 * t_{pi} = 7 * t_{pi}$$

Delay reduction in propagation time (t_p)

$$t_p = In(2) \cdot R_{eq} \cdot C_L$$

W′ **↑**

❖ Increase channel width (W -> W'):

 $\Theta > 1$

W'= ⊖·W

Bad: Area penalty

Good: Delay reduction

Move the delay to previous gate. Good only if $C_L >> C_g$

uc3m

Tiempo de propagación CMOS

Indivisible Load: output pad

$$\Theta = 50 \implies W' = 50 \cdot W \implies R_{eq}' = R_{eq}/50 \implies t_{pl}' = t_{pl}/50 = 1000 \cdot t_{pi}/50 = 20 \cdot t_{pi}$$

But:

$$t_{p0}' = \Theta \cdot t_{p0} = 50 \cdot t_{pi}$$

70·t_{pi} instead of 1001·t_{pi}

➤ Indivisible Load (C_L)

Best solution: several stages (n) with increasing sizes (α) so that: $C_{L} = \alpha^{n} C_{g}$

1 stage delay:

$$t_{pk} = \ln(2) \cdot \frac{R_{eq}}{\alpha^k} \cdot \alpha^{k+1} \cdot \text{Cg} = \alpha \cdot \ln(2) \cdot Req \cdot C_g = \alpha \cdot t_{pi}$$

Total delay (n stages):

$$t_{p} = n \cdot \alpha \cdot t_{pi} = \frac{\ln \left(\frac{C_{L}}{C_{g}}\right)}{\ln \alpha} \cdot \alpha \cdot t_{pi} = t_{pi} \cdot \ln \left(\frac{C_{L}}{C_{g}}\right) \cdot \frac{\alpha}{\ln \alpha}$$

$$\frac{\alpha}{\ln \alpha}$$

$$\frac{\alpha}{\ln \alpha} \qquad \text{Minimum: } \frac{dt_p}{d\alpha} = Cte \cdot \frac{\ln \alpha - 1}{(\ln \alpha)^2} = 0 \Rightarrow \alpha = e \Rightarrow n = \ln \left(\frac{C_L}{C_g} \right)$$

Best solution:

$$W \alpha W \alpha^2 W$$

$$t_{pi} = In(2) \cdot R_{eq} \cdot C_g$$
 $A_0 = L \cdot W$

Example: $C_l = 1000 C_g$

$$n = \ln \frac{C_L}{Cg} = \ln 1000 = 6.9 \approx 7$$

Recalculate α:

$$\alpha = \sqrt[7]{1000} = 2,68$$

Stage	1	2	3	4	5	6	7
Size	W	αW	$\alpha^2 W$	$\alpha^3 W$	$\alpha^4 W$	$\alpha^5 W$	$lpha^6 W$
R	R_{eq}	R_{eq}/α	R_{eq}/α^2	R_{eq}/α^3	R_{eq}/α^4	R_{eq}/α^5	R_{eq}/α^6
С	αC_g	$\alpha^2 C_g$	$\alpha^3 C_g$	$lpha^4 C_g$	$\alpha^5 C_g$	$\alpha^6 C_g$	$C_L = \alpha^7 C_g$
R∙C	$\alpha R_{eq} C_g$						
Area	A_0	αA_0	$\alpha^2 A_0$	$\alpha^3 A_0$	$\alpha^4 A_0$	$\alpha^5 A_0$	$\alpha^6 A_0$

Best solution:

Example: $C_l = 1000 C_g$

$$n = \ln \frac{C_L}{Cg} = \ln 1000 = 6.9 \approx 7$$

$$\alpha = \sqrt[7]{1000} = 2,68$$

Total delay:

$$t_p = \sum_{k=1}^{n} t_i = \sum_{k=0}^{n} (\ln(2) \cdot \alpha R_{eq} C_g) = \ln(2) \cdot R_{eq} C_g \cdot \alpha \cdot n = \alpha \cdot n \cdot tpi$$

$$t_p = \alpha \cdot n \cdot tpi = 2,68 \cdot 7 \cdot t_{pi} = 18.7 \cdot t_{pi}$$

Total area:

$$A = \sum_{k=0}^{n-1} \alpha^k A_o = \frac{\alpha^n - 1}{\alpha - 1} Ao$$

$$A = \frac{\alpha^n - 1}{\alpha - 1} Ao = \frac{2.68^7 - 1}{2.68 - 1} Ao = 590 \cdot Ao$$

Clock distribution

- Very high fanout
- Clock-skew: difference time clock arrival between flip-flops

Solutions:

- Routing the clock in the oppositte sense to combinational logic.
- Appropiate clock network: clock tree
- Clock buffers.
- Increase the width of the wires to reduce the resistance

Clock distribution

Solutions:

- Appropiate clock network: clock tree
- Clock buffers.

❖ Similar problems appear in the reset signal => solution: big buffer and increase the width of the wires.

Latch-up

A *latch-up* is a type of short circuit which can occur in an integrated circuit (IC).

Normal conditions pnp no conducting No Voltage through R(nwell) pnp off No Voltage through R(pwell) pnp off

Overpowering, radiation, particules

During a latch-up when one of the transistors is conducting, the other one begins conducting too. They both keep each other in saturation for as long as the structure is forward-biased and some current flows through it.

uc3m

Latch-up

A *latch-up* is a type of short circuit which can occur in an integrated circuit (IC).

Solution: **Silicon on insulator (SOI)** technology.

Metastability

Whenever there are setup and hold time violations in any flip-flop, it enters a state where its output is unpredictable: this state is known as metastable state (quasi stable state); at the end of metastable state, the flip-flop settles down to either '1' or '0'.