Exponential Growth - Simple Dynamic System

- differential equation
- * dP/dt = rP
- * an analytic solution exists so we can write Population as a function of time (integrating both sides)
 - P = P0 * exp(rt)

Numerical Integration

- * differential equation
- * dP/dt = rP
- * We can also solve by numerical integration less precise
- * Many techniques are available to do numerical integration
- * ODE is a numerical integration tool in R it does it for you

Numerical Integration

- * differential equation
- * dP/dt = rP
- * We can also solve by numerical integration less precise
- * Many techniques are available to do numerical integration
- * ODE is a numerical integration tool in R it does it for you

Basic Concept

$$h = X_{i+1} - X_i$$

You next value (e.g Population at the next time step), is Current value + derivative at the value

But since the derivate itself changes with the value, your time steps should be infinitely small -

Numerical Integration Challenges

Dealing with the sensitivity to step size - is the main challenge

Many techniques for dealing this this - some use higher order derivatives etc.

(see see method under *help(ode)*

Which one is the best to use depends on the derivative equation - and the values that you need answer for (e.g what periods of time, for derivatives of time)

Why YOU need to know this

- * explains why sometimes solves (like ODE) don't work
- * Explains what some of the parameters are for the ODE solver
- * Reminds you that you should seek expert help if you are having issues with your solver
- * Cautions you about step size when you do integration by hand...

Example: Dynamic Systems

- Diffusion Ficks Law
- * flux (mass/time) =

$$Qx = -D (dC/dx)$$

Diffusivity (D) - depends on characteristics of the fluid (you can imagine how a pollutant might diffuse less rapidly in oil versus water)

D is sometimes broken in to D * A (where A is the cross sectional area at the boundary between the two fluids,) and D then is related to fluid type itself

This is a first order differential equation - changes only with x

Where x is the direction of diffusion

Diffusion

* Diffusion

How big that delta X is, depends on characteristics of the particles - often represented as a diffusivity (D) term

Flux at any instant is and any point along x

$$Qt = 0.5 * D*A * (C2-C1)$$

But as soon as particles move - C1 and C2 will change!!! - so we also need derivatives with respect to time

Diffusion

* Diffusion

How big that delta X is, depends on characteristics of the particles - often represented as a diffusivity (D) term

Fick's Second Law: $dC/dt = D d^2C/dx^2$

This a partial differential equation (derivatives of with respect to t and x), there are solves for this

Diffusion: Numerical Approximation: Difference Equation

* Diffusion

BUT if we break up x into lots of little boxes, and time into small time chunks

$$Qt = 0.5^* D^*A^* (C_{x2}-C_{x1})$$

Diffusion as a difference equation

Length =
$$nx * dx$$

Nx: number of boxes you are breaking space into dx size of each box

Diffusion Example

...

Total Simulation time = nt*dt

Difference equation in R

- data structure to store the state (Concentration at each point and time)
- * 2-d array (rows are time, columns are distance along path)
- * use it to track concentration through time

Distance Along Path			
Time			

Playing with the diffuse model

- * vary the time and space steps what happens? why?
- * vary other parameters (diffusivity, initial concentration)

filled.contour(diff1(10,10,1,10,30,0.6,1)\$conc, xlab="time",ylab="Distance Along Path")

Dynamic - Diffusion modeling

- Choosing the appropriate time and space step is important
 if either are too large then it is easy to overshoot and
 create unstable oscillations
- * These are a due to using a discrete/difference model (dividing things into units) to model what is actually a continuous process
- * Trade-off computational efficiency vs stability
- * Differential equations help us to think through this problem but often implemented in discrete ways