Quiz 2- Machine Learning System Design

Ques1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F₁ score = (2 * precision * recall) / (precision + recall)

What is the classifier's accuracy (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

Answer:

Accuracy = (true positives + true negatives) / (total examples) = (85+10) / (1000) = 0.095

Ques2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

We train a learning algorithm with a large number of parameters (that is able to learn/represent fairly complex functions).
We train a learning algorithm with a small number of parameters (that is thus unlikely to overfit).
The features x contain sufficient information to predict y accurately. (For example, one way to verify this is if a human expert on the domain can confidently predict y when given only x).

We train a model that does not use regularization.

Ques3.

Suppose you ha	ve trained a logistic regression classifier which is outputing $h_{ heta}(x)$.
	redict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x)lt$ threshold, where reshold is set to 0.5.
Suppose you de apply.	crease the threshold to 0.1. Which of the following are true? Check all that
The clas	sifier is likely to now have higher recall.
The clas	sifier is likely to now have higher precision.
The clas	sifier is likely to have unchanged precision and recall, but
higher a	ccuracy.
The clas	sifier is likely to have unchanged precision and recall, but
lower ac	curacy.

Answer:

When the threshold has been decreased to 0.1,

Recall = (true positives) / (true positives + false negatives), true positives are more, (true positives + false negatives) remains unchanged. Thus, recall increases.

Precision = (true positives) / (true positives + false positives), true positives are more, (true positives + false positives) are more also. Thus, precision undetermined.

Accuracy = (true positives + true negatives) / (total examples), true positives are more, (total examples) remains unchanged. Thus, accuracy increases.

Ques4.

Suppose you are working on a spam classifier, where spam emails are positive examples (y=1) and non-spam emails are negative examples (y=0). You have a training set of emails in which 99% of the emails are non-spam and the other 1% is spam. Which of the following statements are true? Check all that apply.

your classifier will have a recall of 0% and precision

of 99%.

Answer:

When always predicting non-spam:

Accuracy = (true positives + true negatives) / (total examples), (true positives + true negatives) is (0 + 99%), total example is 100%. Accuracy = 99%.

Recall = (true positives) / (true positives + false negatives), true positive is 0, (true positives + false negatives) = actual positive = 1%, thus recall = 0.

Precision = (true positives) / (true positives + false positives), true positive is 1%, (true positives + false positives) = predicted positive = 0%, thus precision = 0.

When always predicting spam:

Accuracy = (true positives + true negatives) / (total examples), (true positives + true negatives) is (1% + 0), total example is 100%. Accuracy = 1%.

Recall = (true positives) / (true positives + false negatives), true positive is 1%, (true positives + false negatives) = actual positive = 1%, thus recall = 100%.

Precision = (true positives) / (true positives + false positives), true positive is 1%, (true positives + false positives) = predicted positive = 100%, thus precision = 1%.

- A) Correct.
- B) Correct.
- C) Correct.
- D) Wrong.

Ques5.

Which of the following statements are true? Check all that apply.					
	If your model is underfitting the				
	training set, then obtaining more data is likely to				
	help.				
	After training a logistic regression				
	classifier, you must use 0.5 as your threshold				
	for predicting whether an example is positive or				
	negative.				
	It is a good idea to spend a lot of time				
	collecting a large amount of data before building				
	your first version of a learning algorithm.				
	Using a very large training set				
	makes it unlikely for model to overfit the training				
	data.				
	On skewed datasets (e.g., when there are				
	more positive examples than negative examples), accuracy				
	is not a good measure of performance and you should				
	instead use F_1 score based on the				

Answer:

- A) When there are not enough useful features, feeding more data will not help.
- B) Not necessary.
- C) Not always the case.
- D) Large dataset will not overfit the model.
- E) True.