SIGNAL AND SYSTEM IMPORTANT 30 MCQ PDF WITH SOLUTION

- The discrete-time signal $x(n) = (-1)^n$ is periodic with fundamental period **Q.1**
 - **(A)** 6

(B) 4

(C) 2

(D) 0

Ans: C Period = 2

- **Q.2** The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (α t), α > 0 by a factor
 - (A) α .

(C) α^2 .

Transform \rightarrow x(at), a > 0Ans: A x(t)

- $a > 1 \Longrightarrow$ compression in t, expansion in f by a.
- $a < 1 \Longrightarrow$ expansion in t, compression in f by a.

- **Q.3** A useful property of the unit impulse 6 (t) is that
 - **(A)** 6 (at) = a 6 (t).

- **(B)** 6 (at) = 6 (t).
- (C) $6 \text{ (at)} = \frac{1}{6} \text{ (t)}$.
- **(D)** $6(at) = [6(t)]^a$.

Ans: C Time-scaling property of 6(t):

$$6(at) = \frac{1}{a}6(t), a > 0$$

- The continuous time version of the unit impulse **Q.4** relations
- 6(t) is defined by the pair of

- (A) $6(t) = \begin{cases} 1 & t = 0 \\ 0 & t \neq 0. \end{cases}$ (B) 6(t) = 1, t = 0 and f 6(t) dt = 1.(C) $6(t) = 0, t \neq 0 \text{ and } f 6(t) dt = 1.$ (D) $6(t) = \begin{cases} 1, t \geq 0 \\ 0, t < 0 \end{cases}$
- **Ans:** C 6(t) = 0, $t \in 0 \rightarrow 6(t) \in 0$ at origin
 - f 6(t) dt = 1 \rightarrow Total area under the curve is unity.
 - [6(t) is also called Dirac-delta function]
- **Q.5** Two sequences $x_1(n)$ and $x_2(n)$ are related by $x_2(n) = x_1(-n)$. In the z-domain, their ROC's are
 - (A) the same.

- **(B)** reciprocal of each other.
- **(C)** negative of each other.
- **(D)** complements of each other.
- **Ans:** B $x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(z)$, RoC R_x

Reciprocals

- $x_2(n) = x_1(-n) \longrightarrow X_1(1/z)$, RoC 1/ R_x
- The Fourier transform of the exponential signal e Jm 0 t is
 - (A) a constant.

(B) a rectangular gate.

(C) an impulse.

- **(D)** a series of impulses.
- Since the signal contains only a high frequency ω_0 its FT must be an impulse at $\omega = \omega_0$
- If the Laplace transform of f(t) is $\frac{\omega}{(s^2 + \omega_2)}$, then the value of $\lim_{t \to \infty} f(t)$
 - (A) cannot be determined.
- **(B)** is zero.

(C) is unity.

(D) is infinity.

Ans: B f(t) $\xrightarrow{L} \frac{m}{s^2 + m^2}$

Lim f(t) = Lim s F(s) [Final value theorem]t → œ s → 0

$$= \lim_{s \to 0} \frac{sm}{s^2 + m^2} = 0$$

Q.8 The unit impulse response of a linear time invariant system is the unit step function u(t). For t > 0, the response of the system to an excitation

$$e^{-at}u(t)$$
, $a > 0$, will be

(A) ae^{-at} .

(B) $\frac{1-e^{-at}}{a}$. **(D)** $1-e^{-at}$.

(C) $a(1-e^{-at})$.

Ans: B

$$h(t) = u(t); x(t) = e^{-at} u(t), a > 0$$

System response
$$y(t) = L^{-1} \begin{bmatrix} 1 & 1 \\ \frac{1}{s} & \frac{1}{s+a} \end{bmatrix}$$

$$= L^{-1} \begin{bmatrix} 1 & \frac{1}{s} & -\frac{1}{s+a} \end{bmatrix}$$

$$= \underbrace{1}_{a} (1 - e^{-at})$$
a
$$0$$

Q.9 The z-transform of the function $\sum_{k=-\infty}^{\infty} \delta(n-k)$ has the following region of convergence

(A)
$$|z| > 1$$

(B)
$$|z| = 1$$

(C)
$$|z| < 1$$

(D)
$$0 < |z| < 1$$

(C)
$$|z| < 1$$
 (D) $0 < |z| < 1$

Ans: C $x(n) = \int_{k = -\infty}^{0} 6(n-k)$
 $x(z) = \int_{k = -\infty}^{0} z^{-k} = \dots + z^{3} + z^{2} + z + 1$ (Sum of infinite geometric series)

 $= \frac{1}{1-z}, \quad |z| < 1$

- The auto-correlation function of a rectangular pulse of duration T is Q.10
 - (A) a rectangular pulse of duration T.
 - **(B)** a rectangular pulse of duration 2T.
 - (C) a triangular pulse of duration T.
 - (D) a triangular pulse of duration 2T.

Ans: D

$$R_{XX}(1) = \frac{1}{T} \int_{-T/2}^{T/2} f(x(1)) x(t+1) d1$$
 \Rightarrow triangular function of duration 2T.

- **Q.11** The Fourier transform (FT) of a function x (t) is X (f). The FT of dx(t)/dt will be
 - (A) dX(f)/df.

(B) $j2\pi f X(f)$.

(C) jf X(f).

(D) X(f)/(jf).

Ans: B (t) =
$$\frac{1}{2n} \int_{-\infty}^{\infty} X(f) e^{jmt} dm$$

$$\frac{d\underline{x}}{dt} = \underbrace{\frac{1}{2n}}_{f} \int_{f} f \int_{f}$$

- **Q.12** The FT of a rectangular pulse existing between t = -T/2 to t = T/2 is a
 - (A) sinc squared function.
- **(B)** sinc function.
- **(C)** sine squared function.
- (D) sine function.

Ans:
$$\mathbf{B} \mathbf{x}(t) = 1$$
, $-\frac{\mathbf{T}}{2} \mathbf{C} \mathbf{t} \mathbf{C} \frac{\mathbf{T}}{2}$
0, otherwise

$$X(jm) = \int_{-\infty}^{+\infty} f(t) e^{-jmt} dt = \int_{-T/2}^{+T/2} e^{-jmt} dt = \frac{e^{-jmt}}{jm} \Big|_{-T/2}^{+T/2}$$

$$= -\frac{1}{jm} (e^{-jmT/2} - e^{jmT/2}) = \frac{2}{m} \left(\frac{e^{jmT/2} - e^{-jmT/2}}{2j} \right)$$

$$= \frac{2}{jm} \sin \frac{mT}{2} = \frac{\sin(mT/2)}{mT/2}.T$$

Hence X(jm) is expressed in terms of a sinc function.

- 0.13 An analog signal has the spectrum shown in Fig. The minimum sampling rate needed to completely represent this signal is
 - (A) 3 KHz.
 - **(B)** 2 KHz.
 - (C) 1 KHz.
 - **(D)** 0.5 KHz.

Ans: C For a band pass signal, the minimum sampling rate is twice the bandwidth, which is 0.5kHz here.

Q.14 A given system is characterized by the differential equation:

$$\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t).$$

The system is:

- (A) linear and unstable.
- **(B)** linear and stable.
- **(C)** nonlinear and unstable.
- **(D)** nonlinear and stable.

Ans:A
$$\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t), x(t) \longrightarrow h(t)$$
 system $y(t)$

The system is linear. Taking LT with zero initial conditions, we get $s^{2}Y(s) - sY(s) - 2Y(s) = X(s)$

or,
$$H(s) = \underline{Y(s)} = \underline{1} = \underline{1}$$

 $X(s) = s^2 - s - 2 = (s-2)(s+1)$

Because of the pole at s = +2, the system is unstable.

The system characterized by the equation y(t) = ax(t) + b is

- (A) linear for any value of b.
- **(B)** linear if b > 0.

(C) linear if b < 0.

(D) non-linear.

Ans: D The system is non-linear because x(t) = 0 does not lead to y(t) = 0, which is a violation of the principle of homogeneity.

Q.16 Inverse Fourier transform of $u(\omega)$ is

(B) $\frac{1}{2}\delta(t)$.

(A) $\frac{1}{2}\delta(t) + \frac{1}{2}$. (C) $2\delta(t) + \frac{1}{2}$.

(D) $\delta(t) + \operatorname{sgn}(t)$.

Ans: A
$$x(t) = u(t) \leftarrow Y(jm) = n \frac{6(m)}{Jm} + 1$$

Duality property: $X(jt) \leftarrow 2n x(-m)$

$$u(m) \leftarrow \frac{1}{2} 6(t) + \frac{1}{nt}$$

- Q.17 The impulse response of a system is $h(n) = a^n u(n)$. The condition for the system to be BIBO stable is
 - (A) a is real and positive.
- **(B)** a is real and negative.

(C)
$$|a| > 1$$
.

(D)
$$|a| < 1$$
.

- **Q.18** If R_1 is the region of convergence of x (n) and R_2 is the region of convergence of y(n), then the region of convergence of x (n) convoluted y (n) is
 - (A) R_1+R_2 .

(B) $R_1 - R_2$.

(C) $R_1 \cap R_2$.

(D) $R_1 \cup R_2$.

Ans:C
$$x(n)$$
 $\stackrel{Z}{\longleftrightarrow}$ $X(z)$, RoC R_1
 $y(n)$ $\stackrel{Y}{\longleftrightarrow}$ $Y(z)$, RoC R_2
 $x(n) * y(n)$ $\stackrel{Z}{\longleftrightarrow}$ $X(z).Y(z)$, RoC at least R_1 fi R_2

- **Q.19** The continuous time system described by $y(t) = x(t^2)$ is
 - (A) causal, linear and time varying.
 - **(B)** causal, non-linear and time varying.
 - (C) non causal, non-linear and time-invariant.
 - (D) non causal, linear and time-invariant.

$$y(t) = x(t^2)$$

y(t) depends on $x(t^2)$ i.e., future values of input if t > 1.

System is anticipative or <u>non-causal</u>

$$\alpha x_1(t) \rightarrow y_1(t) = \alpha x_1(t^2)$$

$$\beta x_2(t) \rightarrow y_2(t) = \beta x_2(t^2)$$

$$\alpha x_1(t) + \beta x_2(t) \rightarrow y(t) = \alpha x_1(t^2) + \beta x_2(t^2) = y_1(t) + y_2(t)$$

System is Linear

System is time varying. Check with $x(t) = u(t) - u(t-z) \rightarrow y(t)$ and $x_1(t) = x(t-1) \rightarrow y_1(t)$ and find that $y_1(t) \neq y_1(t-1)$.

- **Q.20** If G(f) represents the Fourier Transform of a signal g (t) which is real and odd symmetric in time, then G (f) is
 - (A) complex.

(B) imaginary.

(C) real.

(D) real and non-negative.

$$\begin{array}{c} FT \\ \textbf{Ans:B } g(t) & \longleftarrow & G(f) \end{array}$$

g(t) real, odd symmetric in time

 $G^*(jm) = -G(jm)$; G(jm) purely imaginary.

- **Q.21** For a random variable x having the PDF shown in the Fig., the mean and the variance are, respectively,
 - **(A)** $\frac{1}{2}$ and $\frac{2}{3}$.
 - **(B)** 1 and $\frac{4}{3}$.
 - (C) 1 and $\frac{2}{3}$.
 - **(D)** 2 and $\frac{4}{3}$.

Ans:B Mean = $\mu_x(t) = f x f_{x(t)}(x) dx$

$$= \int_{-1}^{3} x \, \frac{1}{4} dx = \frac{1}{4} \frac{x^{2}}{2} \begin{vmatrix} 3 & = & 9 - \frac{1}{2} & \frac{1}{4} = 1 \\ -1 & 4 & 4 & 2 \end{vmatrix} = 1$$

Variance = $\int_{-\infty}^{+\infty} (x - \mu_x)^2 f_x(x) dx$

$$= \int_{-1}^{3} f(x-1)^{2} \frac{1}{4} d(x-1)$$

$$= \underbrace{\frac{1(x-1)^3}{4}}_{3} \begin{vmatrix} 3 & = \underbrace{1[8+8]}_{3} = \underbrace{4}_{3}$$

O.22 If white noise is input to an RC integrator the ACF at the output is proportional to

(A)
$$\exp \left\{ \frac{-|\tau|}{RC} \right\}$$

(B)
$$\exp \left\{ \frac{-\tau}{RC} \right\}$$
.

(C)
$$\exp(\tau |RC)$$
.

(D)
$$\exp(-\tau RC)$$
.

Ans: A

$$R_{N}(1) = \underbrace{N_{0}}_{4RC} \exp{-\underbrace{11}}_{RC}$$

Q.23 $x(n) = a^{\frac{1}{n}} | a < 1 \text{ is}$

- (A) an energy signal.
- **(B)** a power signal.
- (C) neither an energy nor a power signal.
- **(D)** an energy as well as a power signal.

= finite since
$$|a| < 1$$

∴ This is an energy signal.

Q.24 The spectrum of x (n) extends from $-m_0$ to $+m_0$, while that of h(n) extends

from
$$-2m_0$$
 to $+2m_0$. The spectrum of $y(n) = \sum_{k=-\infty}^{\infty} h(k) x(n-k)$ extends

from

(A)
$$-4m_0$$
 to $+4m_0$.

(B)
$$-3m_0$$
 to $+3m_0$.
(D) $-m_0$ to $+m_0$

(C)
$$-2m_0$$
 to $+2m_0$.

(D)
$$-m_0$$
 to $+m_0$

Ans: D Spectrum depends on H(e^{jm}) \longrightarrow X(e^{jm}) Smaller of the two ranges.

The signals $x_1(t)$ and $x_2(t)$ are both bandlimited to $(-m_1, +m_1)$ and Q.25

 $(-m_2, +m_2)$ respectively. The Nyquist sampling rate for the signal $x_1(t)x_2(t)$ will be

(A) $2m_1$ if $m_1 > m_2$.

(B)
$$2m_2$$
 if $m_1 < m_2$.

(C)
$$2(m_1+m_2)$$
.

(D)
$$\binom{m_1 + m_2}{2}$$
.

Nyquist sampling rate = $2(Bandwidth) = 2(m_1 - (-m_2)) = 2(m_1 + m_2)$ Ans: C

- Q.26 If a periodic function f(t) of period T satisfies $f(t) = -f(t + \frac{T}{2})$, then in its Fourier series expansion,
 - (A)the constant term will be zero.
 - **(B)**there will be no cosine terms.
 - (C)there will be no sine terms.
 - (D)there will be no even harmonics.

Ans:

$$\underbrace{\frac{1}{T}}_{0}^{T} f(t) dt = \underbrace{\frac{1}{T}}_{0}^{T/2} f(t) dt + \underbrace{\frac{T}{f}}_{0}^{T/2} f(t) dt = \underbrace{\frac{1}{T}}_{0}^{T/2} f(t) dt + \underbrace{\frac{T}{f}}_{0}^{T/2} f(t) dt + \underbrace{\frac{T}{f}}_{0}^{T/2} f(t) dt = 0$$

- Q.27 A band pass signal extends from 1 KHz to 2 KHz. The minimum sampling frequency needed to retain all information in the sampled signal is
 - (A)1 KHz.

(B) 2 KHz.

(C) 3 KHz.

(**D**) 4 KHz.

Ans: B

Minimum sampling frequency = 2(Bandwidth) = 2(1) = 2 kHz

Q.28 The region of convergence of the z-transform of the signal

$$2^{n} u(n) - 3^{n} u(-n-1)$$

(A) is |z| > 1.

- **(B)** is |z| < 1.
- (C) is 2 < z < 3.
- (D) does not exist.

Ans:

$$2^n u(n) \leftarrow \frac{1}{1-2} z^{-1} |z| > 2$$

$$3^{n}u(-n-1)$$
 $1 - 3z^{-1}$, $|z| < 3$

ROC is 2 < |z| < 3.

Q.29 The number of possible regions of convergence of the function

$$\frac{\left(e^{-2}-2\right)z}{\left(z-e\right)z-2}$$

is

(A) 1.

(B) 2.

(C) 3.

(D) 4.

Ans: C

Possible ROC's are $|z| > e^{-2}$, |z| < 2 and $e^{-2} < |z| < 2$

The Laplace transform of u(t) is A(s) and the Fourier transform of u(t) is $B(j\omega)$. Q.30 Then

$$(A) B(j\omega) = A(s)_{s=i\omega}$$

(B)
$$A(s) = \frac{1}{s} but B(j\omega) \neq \frac{1}{s}$$

(A)
$$B(j\omega) = A(s)_{s=j\omega}$$
.
(B) $A(s) = \frac{1}{but} B(j\omega) \neq \frac{1}{s}$.
(C) $A(s) \neq \frac{1}{but} B(j\omega) = \frac{1}{j\omega}$.
(D) $A(s) \neq \frac{1}{but} B(j\omega) \neq \frac{1}{s}$.
 $S(s) = \frac{1}{but} B(j\omega) \neq \frac{1}{s}$.

(D)
$$A(s) \neq \frac{1}{s} but B(j\omega) \neq \frac{1}{j\omega}$$
.

Ans: B
$$u(t) \iff A(s) = \frac{1}{s}$$

F.T
$$u(t) \rightleftharpoons B(jm) = \frac{1}{jm} + n 6(m)$$

$$A(s) = \frac{1}{s} \text{ but B(jm) } C \frac{1}{jm}$$