Санкт-Петербургский национальный исследовательский институт

информационных технологий, механики и оптики

Факультет фотоники и оптоинформатики

ИІТМО

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4.03

"Определение радиуса кривизны линзы по интерференционной картине колец Ньютона"

Группа: V3203	К работе допущен:
Студент: Срывкин Н.А., Ганиева И.И.	Работа выполнена:
Преподаватель: Сидельников А.А.	К отчёту допущен:

1. Цель работы

• Изучение интерференционной картины Колец Ньютона

2. Задачи

• Определение радиуса кривизны плоско-выпуклой линзы с помощью интерференционной картины колец Ньютона

3. Объект исследования

• Плоско-выпуклая линза

4. Метод исследования

• После установки системы линза-пластина на столике микроскопа и установки светофильтра, настраиваются микроскоп и лампа так, чтобы была видна четкая интерференционная картина колец. С помощью «Altami», измеряются радиусы четырёх тёмных колец Ньютона. Для каждого кольца проводятся измерения не менее трех раз. Результаты вносятся в таблицы (отдельно для каждого фильтра)

5. Рабочие формулы и исходные данные

• Радиус кривизны линзы:

$$R = \frac{r_m^2 - r_n^2}{(m-n)\lambda} \tag{1}$$

где m, n – номер радиуса тёмных колец, r_m и r_n – значения радиусов этих номеров. λ – длина волны

• MHK:

$$a = \frac{n\sum x_i y_i - \sum x_i \cdot \sum y_i}{n\sum x_i^2 - \left(\sum x_i\right)^2}$$
 (2)

$$b = \frac{\sum y_i - a \sum x_i}{n} \tag{3}$$

• Относительная погрешность для величины вида: $z=Ka^{\alpha}b^{\beta}...$ где K – постоянная величина; a,b – символы прямо измеренных величин; α,β – показатели степени, выраженные целыми, дробными, отрицательными или положительными числами:

$$\varepsilon_z = \sqrt{\left(\alpha \frac{1}{a} \Delta_a\right)^2 + \left(\beta \frac{1}{b} \Delta_b\right)^2 + \dots \cdot 100\%} \tag{4}$$

• Абсолютная погрешность:

$$\Delta_z = \frac{\hat{Z}\varepsilon_z}{100} \tag{5}$$

• Абсолютная погрешность функции вида z = z(a, b):

$$\Delta_z = \sqrt{\left(\frac{\delta f}{\delta a} \Delta_a\right)^2 + \left(\frac{\delta f}{\delta b} \Delta_b\right)^2} \tag{6}$$

6. Измерительные приборы

№	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Электронная линейка	Электронный	0-3 нм	±0.05 нм

7. Экспериментальная установка (перечень схем, которые составляют Приложение 1):

Figure 1: Система для наблюдения интерференционной картины и измерения радиусов колец Ньютона. 1 – ручки вертикального смещения тубуса (фокусировка), 2 – микрообъектив, 3 – видеоокуляр, 4 – плоско-выпуклая линза, 5 – Светофильтр с заданной длиной волны, 6 – Переключатель линз, 7 – регулятор интенсивности света

8. Результаты измерений и их обработки (таблицы, примеры расчётов):

$\lambda=435$ нм	Номер кольца (n)			
	1	2	3	4
r_1 , мкм	1.07	1.28	1.43	1.60
r_2 , мкм	1.04	1.28	1.44	1.59
r_3 , мкм	1.07	1.26	1.44	1.59
$r_{ m cp}$, мкм	1.06	1.27	1.44	1.59
r^2 , мкм 2	1.12	1.62	2.06	2.54

$\lambda=546$ нм	Номер кольца (n)			
	1	2	3	4
r_1 , мкм	1.12	1.34	1.51	1.67
r_2 , мкм	1.09	1.34	1.52	1.67
r_3 , мкм	1.10	1.33	1.52	1.67
$r_{ m cp}$, мкм	1.10	1.34	1.52	1.67
r^2 , мкм 2	1.22	1.79	2.30	2.79

$\lambda=578$ нм	Номер кольца (n)			
	1	2	3	4
r_1 , мкм	1.13	1.36	1.56	1.71
r_2 , мкм	1.12	1.36	1.56	1.73
r_3 , мкм	1.11	1.34	1.56	1.72
$r_{ m cp}$, мкм	1.12	1.35	1.56	1.72
r^2 , мкм 2	1.25	1.83	2.43	2.96

$\lambda=630$ нм	Номер кольца (n)			
	1	2	3	4
r_1 , мкм	1.15	1.41	1.59	1.78
r_2 , мкм	1.16	1.41	1.60	1.77
r_3 , мкм	1.15	1.40	1.60	1.79
$r_{ m cp}$, мкм	1.15	1.41	1.60	1.78
r^2 , мкм 2	1.33	1.98	2.55	3.17

 r_1, r_2, r_3 – радиусы кольца

9. Расчёт результатов косвенных измерений (таблицы, примеры расчётов)

- По данным таблиц строим графики зависимости $r^2(n)$
- По формулам (2) и (3) получаем аппроксимацию графиков зависимости $r^2(n)$. Зависимость радиуса кольца от номера является линейной
- Пример расчёта метода наименьших квадратов для длины волны 630 нм:

$$\sum x_i y_i = (1\cdot 1.33) + (2\cdot 1.98) + (3\cdot 2.55) + (4\cdot 3.17) = 25.61 \ \mathrm{mkm}^2$$

$$\sum x_i = 1+2+3+4=10$$

$$\left(\sum x_i\right)^2 = 100$$

$$\sum y_i = 1.33 + 1.98 + 2.55 + 3.17 = 9.03 \; \text{мкм}^2$$

$$\sum x_i^2 = 1 + 4 + 9 + 16 = 30$$

$$a = \frac{4 \cdot 25.61 - 10 \cdot 9.03}{4 \cdot 30 - 100} = 0.609 \text{ mkm}^2$$
 (7)

$$b = \frac{9.03 - 0.608 \cdot 10}{4} = 0.735 \text{ Mkm}^2 \tag{8}$$

- Таким образом уравнение для графика зависимости $r^2(n)$ для фильтра с длиной волны 630 нм имеет вид $r^2=0.609x+0.735$
- Аналогично получаются уравнения зависимости квадрата радиуса от номера кольца для остальных фильтров:

Для
$$\lambda = 578$$
 нм: $r^2 = 0.571x + 0.691$

Для
$$\lambda = 546$$
 нм: $r^2 = 0.523x + 0.716$

Для
$$\lambda = 435$$
 нм: $r^2 = 0.469x + 0.665$

По формуле (1) найдем радиус кривизны линзы по 2 парам радиусов для фильтра и среднее значение радиуса кривизны линзы $\lambda=630$ нм:

Для пары (1,2):
$$R_{12}=\frac{1.98-1.33}{630\cdot 10^{-3}}=1.03$$
 мкм

Для пары (1,4):
$$R_{14}=rac{3.17-1.33}{3.630\cdot10^{-3}}=0.97$$
 мкм

Среднее значение радиуса кривизны линзы равно: $R_{
m cp} = 1.001 \,\,{\rm mkm}$

Аналогично находим радиусы кривизны и средние значения для фильтров других длин волн:

$$\lambda=578$$
 нм: $R_{12}=0.99$ мкм, $R_{14}=0.98$ мкм, $R_{\rm cp}=0.990$ мкм $\lambda=546$ нм: $R_{12}=1.04$ мкм, $R_{14}=0.96$ мкм, $R_{\rm cp}=1.001$ мкм $\lambda=435$ нм: $R_{12}=1.14$ мкм, $R_{14}=1.08$ мкм, $R_{\rm cp}=1.1142$ мкм $\widehat{R_{\rm cp}}=\sum\frac{R_{\rm cp}}{n}=1.03$ мкм

10. Расчёт погрешностей измерений (для прямых и косвенных измерений)

• Найдем относительную погрешность измерений для пары (1,2):

$$\begin{split} r_m^2 - r_n^2 &= \frac{(1.62^2 - 1.12^2) + (1.79^2 - 1.22^2) + (1.83^2 - 1.25^2) + (1.98^2 - 1.33^2)}{4} = 1.756 \text{ мм}^2 \\ \varepsilon &= \sqrt{\left(\frac{1}{r_m^2 - r_n^2} 2\Delta r \sqrt{r_m^2 - r_n^2}\right)^2} \cdot 100\% = \frac{1}{r_m^2 - r_n^2} 2\Delta r \sqrt{r_m^2 - r_n^2} \cdot 100\% = \frac{1}{1.756} \cdot 2 \cdot 0.05 \cdot 1.32 \cdot 100\% = 7.52\% \\ \Delta_{R12} &= \frac{\hat{R}\varepsilon}{100} = \frac{1.001 \cdot 7.52}{100} = 0.075 \text{ мкм} \end{split}$$

• Найдем относительную погрешность измерений для пары (1,4):

$$\begin{split} r_m^2 - r_n^2 &= \frac{(2.54^2 - 1.12^2) + (2.79^2 - 1.22^2) + (2.96^2 - 1.25^2) + (3.17^2 - 1.33^2)}{4} = 6.743 \text{ мм}^2 \\ \varepsilon &= \sqrt{\left(\frac{1}{r_m^2 - r_n^2} 2\Delta r \sqrt{r_m^2 - r_n^2}\right)^2} \cdot 100\% = \frac{1}{r_m^2 - r_n^2} 2\Delta r \sqrt{r_m^2 - r_n^2} \cdot 100\% = \frac{1}{6.743} \cdot 2 \cdot 0.05 \cdot 2.59 \cdot 100\% = 3.85\% \\ \Delta_{R14} &= \frac{\hat{R}\varepsilon}{100} = \frac{1.001 \cdot 3.85}{100} = 0.038 \text{ мкм} \end{split}$$

• Таким образом среднее значение погрешности $\Delta R = 0.056$ мкм

11. Графики (перечень графиков, которые составляют Приложение 2)

Figure 2: Зависимость квадрата радиуса от номера кольца для $\lambda=630\,$ нм

Figure 3: Зависимость квадрата радиуса от номера кольца для $\lambda=578\,$ нм

Figure 4: Зависимость квадрата радиуса от номера кольца для $\lambda=546\,$ нм

Figure 5: Зависимость квадрата радиуса от номера кольца для $\lambda=435\,$ нм

12. Окончательные результаты

• Таким образом в ходе работы был рассчитан радиус кривизны линзы:

$$R=(1.00\pm0.13)\,$$
 мкм, $arepsilon=7.52\%$

13. Выводы и анализ результатов работы

• В ходе лабораторной работы была получена интерференционная картина (кольца Ньютона). С их помощью был рассчитан радиус кривизны линзы $R=1.00\pm0.13$ мкм, $\varepsilon=7.52\%$ и получена зависимость квадрата радиуса темных кругов колец Ньютона от номеров этих колец. Было доказано, что данная зависимость является линейной.