

Hi3136V100 卫星数字电视信道处理芯片

用户指南

文档版本 00B10

发布日期 2013-05-02

版权所有 © 深圳市海思半导体有限公司 2013。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式 传播。

商标声明

(上)、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服 务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或 默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导, 本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

+86-755-28357515 客户服务传真:

客户服务邮箱: support@hisilicon.com

Н	
_	Ж
_	717

前言

概述

本文档主要介绍 Hi3136V100 卫星数字电视信道处理芯片的主要特点、逻辑结构、以及硬件设计信息,提供给用户设计使用参考。

产品版本

与本文档相对应的产品版本如下。

产品名称	版本
Hi3136	V100

读者对象

本文档(本指南)主要适用于以下工程师:

- 电子产品设计维护人员
- 电子产品元器件市场销售人员

约定

寄存器访问类型约定

类型	说明	类型	说明		
RO	只读,不可写。		只读,不可写。 RW		可读可写。
RC	读清零。	WC	可读,写1清零,写0保持不变。		

寄存器复位值约定

在寄存器定义表格中:

- 如果某一个比特的复位值 "Reset" (即 "Reset" 行) 为 "?",表示复位值不确定。
- 如果某一个或者多个比特的复位值 "Reset" 为 "?",则整个寄存器的复位值 "Total Reset Value" 为 "-",表示复位值不确定。

数值单位约定

数据容量、频率、数据速率等的表达方式说明如下。

类别	符号	对应的数值
数据容量(如 RAM 容量)	1K	1024
	1M	1,048,576
	1G	1,073,741,824
频率、数据速率等	1k	1000
	1M	1,000,000
	1G	1,000,000,000

地址、数据的表达方式说明如下。

符号	举例	说明
0x	0xFE04、0x18	用 16 进制表示的数据值、地址值。
0b	0b000、0b00 00000000 表示 2 进制的数据值以及 2 进制 (寄存器描述中除外)。	
X	00X、1XX	在数据的表达方式中, X表示 0 或 1。例如: 00X表示 000 或 001; 1XX表示 100、101、110 或 111。

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修改日期	版本	修改说明
2012-11-24	00B01	第1个临时版本。

前言

修改日期	版本	修改说明
2013-05-02	00B10	修改 3.8 章节接口时序。

目 录

1	_ 产品概述	1-1
	1.1 概述	
	1.2 主要特点	1-1
	1.2.1 多标准解调	1-1
	1.2.2 特性	1-1
	1.2.3 系统	1-2
	1.2.4 接口	1-2
	1.2.5 工艺	1-2
	1.3 功能框图	1-2
	1.4 应用领域	1-3
	1.5 曲刑应用	1_3

插图目录

图 1-1 Hi3136V100 功能框图	1	-3
图 1-2 前端接收应用框图	1	-4

】 产品概述

1.1 概述

Hi3136V100 是一款集成了 DVB-S2、DVB-S、DirecTV 模式的卫星数字电视信道接收芯片。芯片完成卫星数字信号从基带采样到 MPEG-TS 流输出的全数字处理过程。芯片支持 QPSK/8PSK/16APSK/32APSK 和 ACM/VCM 功能,是业内功能最齐全的产品。芯片支持高达 60M baud 的符号率,提供快速高可靠的全频段盲扫功能,自动获得载波频率、符号率等系统信息。提供优越的抗相位噪声、抗多径和抗干扰能力。提供快速同步能力,缩短换频道的等待时间。Hi3136V100 具有高性能、适应环境能力强的优点。

1.2 主要特点

1.2.1 多标准解调

- 支持 DVB-S2、DVB-S、DirecTV(ITU-R BO.1516 System B)标准,并自动识别
- DVB-S2 下支持 QPSK、8PSK、16APSK、32APSK
- DVB-S2 下支持所有 11 种码率
- DVB-S2 下支持短帧和长帧
- DVB-S2 下支持 CCM、VCM 和 ACM 模式
- DVB-S2 下支持 TS 流和 GS 流,适应数据业务

1.2.2 特性

- 更加快速且更加可靠的全频段盲扫功能,自动获得载波频率、符号率、码率等系统信息
- 更加优越的抗相位噪声性能
- 更加优越的抗多径性能,有效降低高建筑物反射以及阻抗不匹配的影响
- 更加优异的抗干扰性能,对环境的适应能力更强
- 更加快速的信道同步能力,缩短换频道的等待时间
- 载波和符号率的捕获范围大,提高应用适应能力
- 自适应频谱反转识别

- 最高比特率范围达 187.5Mbps
- 最低符号率到 1MSps; 最高符号率支持:
 - QPSK 和 8PSK: 最高 60MSps
 - 16APSK: 最高 47MSps
 - 32APSK: 最高 37.5MSps

1.2.3 系统

- 集成 125MHz、10 比特的双通道 ADC, 确保采样的高精度
- 集成 PLL,外部仅需无源晶振,频率 10MHz~30MHz,典型 24MHz
- 提供信号强度、信噪比和误码率的实时监测
- 外部电路简单,支持两层板布线,BOM成本更低

1.2.4 接口

- 支持 I2C 总线协议,实现对芯片灵活控制
- 支持对 Tuner 的 I2C 总线的中继
- 支持 DiSEqCTM v2.x 协议和 FSK 协议,方便对各种卫星设备的控制
- 支持串行和并行 TS 流输出,并提供多种灵活选择,方便与解码芯片的配合
- TS 流输出信号管脚号任意配置, PCB 布板更方便

1.2.5 工艺

- 内核供电 1.2V, IO 供电 3.3V。最大功耗 540 mW
- 封装 MQFN48, 尺寸 6mm×6mm, RoHS

1.3 功能框图

Hi3136V100 芯片的功能框图如图 1-1 所示。

图1-1 Hi3136V100 功能框图

1.4 应用领域

- 卫星调谐器
- 卫星机顶盒和数字一体电视机
- 卫星调制解调器和数字电视卡

1.5 典型应用

Hi3136V100 芯片的前端接收的典型应用如图 1-2 所示。

图1-2 前端接收应用框图

目录

2 Demod	2-1
2.1 概述	2-1
2.2 时钟	2-1
2.3 复位	2-4
2.4 I2C 控制器	2-4
2.5 ADC	2-6
2.6 AGC	2-6
2.7 抗混叠滤波	2-7
2.8 时钟恢复	2-7
2.9 匹配滤波器	2-7
2.10 均衡	2-7
2.11 载波恢复	2-8
2.12 帧同步	2-8
2.13 DVB-S2 FEC 模块	2-8
2.14 DVB-S&DirecTV FEC 模块	2-8
2.15 TS 输出	2-9
2.16 信号监测	2-13
2.17 信道盲扫	2-18
2.18 DISEQC	2-19
2.19 寄存器概览	2-22
2.20 Demod 岑左哭描述	2_20

插图目录

图 2-1 Demod 内部时钟域示意	2-1
图 2-2 I2C 读时序	2-5
图 2-3 I2C 写时序	2-5
图 2-4 I2C 转发功能	2-6
图 2-5 TS 并行输出时序示意	2-10
图 2-6 TS 1bit 串行输出时序示意	2-10
图 2-7 TS 2bit 串行输出时序示意	2-11
图 2-8 0 Tone Burst 输出示意	2-20
图 2-9 1 Data Burst 输出示意	2-21
图 2-10 DISFOC 消息数据输出示章	2-21

表格目录

表 2-1 其他主要模块时钟域	2-2
表 2-2 PLL 内部及输入输出时钟范围	2-3
表 2-3 Demod 支持最高符号率	2-3
表 2-4 AGC 信号时钟频率选择	2-7
表 2-5 TS 输出模式选择	2-9
表 2-6 ts_x_sel 与所控制管脚关系(x 取值 0/1/2/3/4/5/6/7/8/9/a)	2-12
表 2-7 ts_x_sel 取值与输出关系(x 取值 0/1/2/3/4/5/6/7/8/9/a)	2-12
表 2-8 PLS_CODE 高 5 位与调制模式码率关系	2-13
表 2-9 roll_off 取值与滚降系数对应关系	2-14
表 2-10 DVB_S&DirectV 模式下码率	2-14
表 2-11 DVB-S2 模式下 N 取值	2-17
表 2-12 BER_CTRL[6:4]与 frams 关系	2-17
表 2-13 DISEQC 模式选择	2-20
表 2-14 Demod 寄存器概览 (基址是 0x00)	2-22

2 Demod

2.1 概述

Demod 完成卫星数字电视信号从基带采样、解调、纠错译码到 MPEG-TS 流输出的全数字处理过程,完全支持 DVB-S2(ETS 302 307)、DVB-S (ETS 300 421)和 DirecTV(ITU-R BO.1294 System B)标准。

2.2 时钟

Demod 的输入时钟来自外接晶振或外部时钟,经内部 PLL 得到 Demod 工作需要的时钟频率。Demod 内部分两个时钟域,ADC(Analog Digital Converter,模数转换器)和解调部分工作在 CLK_DEMO 时钟域,纠错译码和 TS 输出部分工作在 CLK_FEC 时钟域。Demod 内部时钟如图 2-1 所示。

图2-1 Demod 内部时钟域示意

其他主要模块工作的时钟域如表 2-1 所示。

表2-1 其他主要模块时钟域

模块	时钟域
I2C	上电工作在晶振时钟(或外部时钟)上,待芯片内部 PLL 稳定后可切换到 CLK_DEMO 上以提高 I2C 通信速度。
DISEQC	CLK_DEMO(解调时钟)
FSK	CLK_FEC(纠错译码时钟)

CLK DEMO 的频率可通过以下 I2C 操作设置。

- 步骤 1 将寄存器 ADC_CTRL2[i2c_xo_clk]清 0,切换 I2C 时钟到晶振或外部时钟上(如芯片从上电复位开始,I2C 默认工作在晶振/外部时钟上)。
- 步骤 2 将 PLL1 CTRL1[pll1 pd]置 1,关闭 PLL1。
- 步骤3 配置 PLL1 的参数。

FVCO1=FREF/pll1_refdiv[5:0]*(pll1_fbdiv[7:0]+pll1_frac[11:0]/2^12)
FOUT1=FVCO1/pll1_postdiv1[2:0]/pll1_postdiv2[2:0]

其中:

- FREF 为晶振/外部时钟频率。
- FVCO1 为 PLL1 的 VCO 频率。
- FOUT1 即 CLK DEMO 输出频率。
- 其他参数参考 PLL1 的寄存器说明。

在典型的 24MHz 晶振/外部时钟输入情况下,基于默认配置,CLK_DEMO 的工作频率为 125MHz。

- 步骤 4 将 PLL1 CTRL1[pll1 pd]清 0, 重新使能 PLL1。
- 步骤 5 延时等待 TS CTRL2[pll1 lock]指示,为 1表示 PLL1 锁定。
- 步骤 6 将 PLL1 CTRL5[pll1 vcopd]清 0,使能 PLL1 输出。
- 步骤 7 将寄存器 ADC_CTRL2[i2c_xo_clk]清 0, 切换 I2C 时钟到 CLK_DEMO 上。
- 步骤 8 对芯片做一次热复位,即 RSTN_CTRL[hot_rst_n]先写 0 后写 1。

----结束

CLK_FEC 的频率设置与 CLK_DEMO 相同步骤,只需把其中 PLL1/pll1/FVCO1/FOUT1 相关的部分分别替换为 PLL2/pll2/FVCO2/FOUT2,请参考 PLL2 相关的寄存器说明。在典型的 24MHz 晶振/外部时钟输入情况下,基于默认配置,CLK_FEC 的工作频率为 187.5MHz。

□ 说明

可以在 I2C 切到晶振/外部时钟后,一起完成 CLK_DEMO 和 CLK_FEC 的配置。PLLx(x 取值 1 或 2,下同)输入输出及内部各时钟项允许的频率范围如表 2-2 所示。

表2-2 PLL 内部及输入输出时钟范围

时钟项	频率范围(MHz)
FREF	10~30
FREF/pllx_refdiv	10~40
FVCOx	≤1600
CLK_DEMO (即 FOUT1)	≤125
CLK_FEC (即 FOUT2)	≤187.5

为保证解调部分正常工作,Demod 所能支持的最高符号率为 CLK_DEMO/2。为保证纠错译码部分正常工作,Demod 所能支持的最高符号率与 CLK_FEC 的关系如表 2-3 所示。

表2-3 Demod 支持最高符号率

调制模式	最高符号率
QPSK	CLK_FEC/2
8PSK	CLK_FEC/3
16APSK	CLK_FEC/4
32APSK	CLK_FEC/5

上电复位情况下,PLL1 和 PLL2 的输出是关闭的,需要将 PLL1_CTRL5[pll1_vcopd]和 PLL2_CTRL5[pll2_vcopd]清 0,来打开时钟输出。

为保证芯片正常工作,在修改完 PLL 频率设置后,需要:

- 把当前 CLK_DEMO 频率置入寄存器 CLK_DEMO_L[clk_demo_l]、 CLK_DEMO_M[clk_demo_m]和 CLK_DEMO_H[clk_demo_h]中,用 kHz 表示的 CLK_DEMO 频率等于:
 - $clk_demo_h*65536+clk_demo_m*256+clk_demo_l$
- 把当前 CLK_FEC 频率置入寄存器 CLK_FEC_L[clk_fec_l]、 CLK_FEC_M[clk_fec_m]和 CLK_FEC_H[clk_fec_h]中。用 kHz 表示的 CLK_FEC 频率等于:
 - clk fec h*65536+clk fec m*256+clk fec l

此外,Demod 还提供晶振/外部时钟的环出 CLK_OUT (PIN_24) 供 MPEG 等其它芯片 使用。

2.3 复位

复位包括硬件复位和软件复位:

- 外部管脚 RSTN 用于上电复位或者主控芯片对 Demod 的硬复位,复位所有寄存器。
- 内部寄存器复位通过 I2C 可支持冷复位 (cool rst n) 和热复位 (hot rst n):
 - 冷复位,对RSTN_CTRL[cool_rst_n]先写 0 后写 1,效果同硬件复位,复位所有寄存器。
 - 热复位,对 RSTN_CTRL[hot_rst_n]先写 0 后写 1,仅复位逻辑,配置寄存器的值保持不变。

2.4 I2C 控制器

Demod 上的 I2C 控制器实现了 I2C 的 slave 功能,通过 I2C 通信可完成对 Demod 内部配置寄存器的读取/写入,也可实现对 Tuner 的 I2C 通信的转发。

Demod 做为 slave,接受主控芯片的各项 I2C 操作。Demod 的器件地址用 8 位二进制表示为:10110XXY(其中 XX 通过芯片管脚 ADDR[1:0]设定;Y 用于区分读写操作,1 为读,0 为写)。I2C 的操作时序如图 2-2、图 2-3 所示。

结合软件的控制,Demod 的 I2C 控制器可实现连续读/写多个寄存器的操作。对于Tuner 来说,Demod 可以完成 I2C 的转发功能,即当主控芯片需要访问 Tuner 时,打开主控芯片与 Tuner 之间的 I2C 路径,主控芯片随即可像访问 Demod 一样访问 Tuner,当一次 I2C 读或写操作完成后 Demod 会自动关闭转发功能,以防止 I2C 对 Tuner 的干扰。Tuner 的 I2C 地址参见相关 Tuner 器件手册。

I2C 转发功能如图 2-4 所示。

图2-4 I2C 转发功能

打开 I2C 转发功能请参考寄存器 TUNER SEL 说明。

2.5 ADC

Demod 片内集成高性能 10bit 双通道 ADC(Analog Digital Converter),对前端 Tuner 输出的基带模拟 I(In-phase,同相)/Q(Quadrant,正交)信号进行采样。通过改变 CLK_DEMO 频率可改变实际采样时钟频率,最高可支持到 125MHz。ADC 支持差分或单端输入(默认为差分输入),满幅峰峰值为 1V。可通过寄存器 ADC CTRL2[adc clk inv]选择采样时钟的边沿。

一般情况下,ADC 的 I/Q 与 Tuner 的 I/Q 分别相接。但有时为方便 PCB 布线,ADC 的 I/Q 与 Tuner 的 Q/I 分别相接,Demod 也能自动识别。

Demod 上电后,请通过寄存器 ADC_CTRL1[adc_om]先写 3 再写 0 的操作对其做一次 初始化。

2.6 AGC

AGC 模块接收 ADC 的 I/Q 输出,根据期望功率和实际功率之差,生成 AGC 控制信号 (PDM 波)。该 AGC 控制信号经过外部简单的 RC 滤波后送往 Tuner,调整 Tuner 信号输出幅度至期望值。AGC 控制信号的时钟频率通过 AGC_CTRL[pdm_div]可调,输出极性可以通过 AGC_CTRL[agc_inverse]配置。

- AGC 期望功率可以通过 AGC GOAL[agc goal]设置。
- AGC 调整速度通过 AGC SPEED BOUND[agc speed]控制。

AGC 信号时钟频率选择如表 2-4 所示。

表2-4 AGC 信号时钟频率选择

pdm_div[2:0]	AGC 信号时钟频率
0	CLK_DEMO
1	CLK_DEMO/2
2	CLK_DEMO/4
3	CLK_DEMO/8
4	CLK_DEMO/16
5	CLK_DEMO/32
6	CLK_DEMO/64
7	CLK_DEMO/128

2.7 抗混叠滤波

抗混叠滤波模块 AAF(Anti-aliasing Filter)根据所设符号率完成带外干扰的抑制,防止对有用信号的干扰。

2.8 时钟恢复

时钟恢复 TR(Timing Recovery,定时恢复)是要恢复出与发送端符号率完全相同的时钟,并且恢复出准确时钟相位下的采样数据。

为使时钟恢复模块正常工作,Demod 需要通过 I2C 写入符号率初值 fs。fs 为无符号数,用 16 位表示,最低位(LSB)表示 1kHz,这样 fs 最高可表示到约 65MHz。请参考寄存器器 FS H 和 FS L。

当启用信道盲扫时,符号率初值可由盲扫功能模块给出,请参考信道盲扫说明部分。

2.9 匹配滤波器

匹配滤波器 MF(Matched Filter, 匹配滤波器)为根升余弦滤波器, 其滚降系数支持 0.2/0.25/0.35, 且可自动识别。

2.10 均衡

均衡模块 EQU (Equalizer,均衡器)结合使用盲均衡和判决反馈均衡用于消除回波和线性信道失真的影响。盲均衡的步长可通过 2.20 EQU CTRL[blind step]调整。判决反

馈均衡的步长可通过 LMS_STEP[lms_step_4_8]和 RD_WR_TAP[lms_step_16_32]调整, 其中 LMS_STEP[lms_step_4_8]针对 QPSK 和 8PSK, RD_WR_TAP[lms_step_16_32]针 对 16APSK 和 32APSK。

2.11 载波恢复

载波恢复模块 CR(Carrier Recovery,载波恢复)用于跟踪和补偿载波的频率偏移与相位偏移。芯片内部采用创新的算法,使抗相位噪声性能、同步速度、捕获范围达到综合最佳。

某些情况下(比如小符号率),通过设偏 Tuner 中心频率,解调部分能得到更好的性能。该偏移量需要在芯片内部补偿回来,可以通过 CENT_FREQ_L[cent_freq_l]和 CENT_FREQ_H[cent_freq_h]设置。cent_freq[15:0]的值取 Tuner 输入端信号实际中心频率和 Tuner 所设中心频率之差,为有符号数,最低位(LSB)表示 1kHz,这样表示的范围为正负 32MHz。

2.12 帧同步

DVB-S2 信号为按帧组织的,需要可靠界定帧的起始位置。帧同步完成此功能。支持极低信噪比下的快速同步。并支持 VCM/ACM 时逐帧变化帧长情况下的可靠同步。

2.13 DVB-S2 FEC 模块

此模块完成以下操作:

- 步骤1 进行符号解映射,生成的软信息送解交织处理。
- 步骤 2 解交织完成后,存入 RAM 中进行 LDPC 译码,LDPC 译码可以支持长帧和短帧模式, 并支持标准所有码率。
- 步骤 3 LDPC 译码之后的数据输出到 BCH 模块进行 BCH 译码。

----结束

2.14 DVB-S&DirecTV FEC 模块

此模块完成以下操作:

- 步骤 1 进行 Viterbi 码率识别和同步操作。
- 步骤 2 进行解删余和解映射操作。
- 步骤 3 Viterbi 译码, 支持码率 1/2、2/3、3/4、5/6、7/8、6/7。
- 步骤 4 进行 DVB-S/ DirecTV 的解交织操作。

步骤 5 解交织后数据输入 RS(Reed-Solomon Decoder)模块,完成信道纠错功能。DVB-S 输出包长为 188 字节, DirecTV 输出包长为 130 字节。

----结束

2.15 TS 输出

Demod 提供 3 种 TS 输出模式,包括并行模式、串行模式和 2bit 串行模式。

TS 输出接口信号包括数据信号 TS_OUT[7:0]、时钟信号 TS_CLK、数据有效信号 TS_VLD、同步头信号 TS_SYNC 和包错误信号 TS_ERR:

- TS_OUT: TS 帧数据。并行模式下用 8 位, 串行模式下用 1 位, 2bit 串行模式用 2 位。
- TS CLK: 数据时钟。时钟沿可设,在不同模式下对应不同的时钟输出。
- TS VLD: TS 包数据有效指示(并行模式是字节有效,串行模式是比特有效)。
- TS SYNC: TS 包同步头指示(并行模式是字节有效,串行模式是比特有效)。
- TS_ERR: TS 包错误指示, 当前 TS 包出错则置 1。

TS 接口的并行/1bit 串行/2bit 串行输出模式通过寄存器 TS_PARALL_CTRL[ts_parall]和 TS_PARALL_CTRL[ts_serial2]选择。

表2-5 TS 输出模式选择

ts_parall	ts_serial2	TS 输出模式	TS_CLK 最高速率 (MHz)	所支持的最高 TS 流比 特速率(Mbps)
1	0	并行	23.5	187.5
1	1	串行 2bit	94	187.5
0	x	串行 1bit	187.5	187.5

图2-5 TS 并行输出时序示意

图2-6 TS 1bit 串行输出时序示意

*注: 串行输出情况下 TS_CLK 固定工作在 CLK_FEC 频率,通过 TS_VLD 为低电平屏蔽掉无效的 bit。图中所示为高位输出优先,通过寄存器 2.20 TS_CTRL0[ts_lsb_first]可改成低位输出优先。 TS_OUT 可实际映射到 TS_OUT[7:0]中任意一个管脚,参考后面说明。

图2-7 TS 2bit 串行输出时序示意

*注:两比特串行输出情况下TSOUT可实际映射到TSOUT[7:0]的任意两个管脚。

并行和串行两比特输出模式下,TS_CLK 的时钟沿通过 TS_CTRL0[ts_clk_inv]选择,0 为上升沿在 TS 数据中间,1 为下降沿在 TS 数据中间。

串行输出模式下,TS_CLK 的时钟沿通过 ADC_CTRL2[clk_inv]选择,0 为上升沿,1 为下降沿。

并行和串行两比特输出模式下,Demod 可根据 CLK_FEC 的频率、传输制式、符号率及调制模式自动生成均匀化的 TS_CLK 信号。用户也可以指定用 CLK_FEC 的固定分频来作为 TS_CLK 信号,此种为推荐工作方式,可更好支持包括 VCM/Multi-TS 在内的多种情况下的 TS 输出。方法如下:

- 步骤 1 设置寄存器 TS_CTRL4[ts_clk_div]、 TS_CLK_DIV_F_L[]ts_clk_div_f_l]、 TS_CLK_DIV_F_H[ts_clk_div_f_h]来确定系统时钟的分频比。其中 ts_clk_div[5:0]为分频比的整数部分,取值 8~63。ts_clk_div_f[15:0]为分频比的小数部分。实际分频比为 ts_clk_div[5:0]+ts_clk_div_f[15:0]/65536。
- 步骤 2 TS CTRL4[clk auto]清零切换 TS CLK 到设定的频率上。
- 步骤3 通过 TS CTRL0[mask ts clk]选择是否在 TS VLD 为低期间屏蔽掉 TS CLK 输出。

注意

此种情形下的 TS CLK 频率需保证能够传输最高 TS 流速率的要求。

串行(1bit)模式下,如前所述,TS_CLK 的输出固定在 CLK_FEC 频率上。通过 TS VLD 为低电平来屏蔽无效 bit。

TS 管脚映射通过以下控制信号来选择输出。

表2-6 ts_x_sel 与所控制管脚关系(x 取值 0/1/2/3/4/5/6/7/8/9/a)

控制信号	所在寄存器	所控制的芯片外部管脚
ts_0_ sel	TS_10_SEL	TS_OUT0
ts_1_sel	TS_10_SEL	TS_OUT1
ts_2_ sel	TS_32_SEL	TS_OUT2
ts_3_sel	TS_32_SEL	TS_OUT3
ts_4_ sel	TS_54_SEL	TS_OUT4
ts_5_ sel	TS_54_SEL	TS_OUT5
ts_6_sel	TS_76_SEL	TS_OUT6
ts_7_ sel	TS_76_SEL	TS_OUT7
ts_8_ sel	TS_98_SEL	TS_SYNC
ts_9_ sel	TS_98_SEL	TS_VLD
ts_ a_sel	TS_PARALL_CTRL	TS_ERR

ts_x_sel 取值与内部 TS 信号的选择关系。

表2-7 ts_x_sel 取值与输出关系(x 取值 0/1/2/3/4/5/6/7/8/9/a)

ts_x_sel 取值	所选择的芯片内部 TS 信号
0000	ts_out[0]
0001	ts_out[1]
0010	ts_out[2]
0011	ts_out[3]
0100	ts_out[4]
0101	ts_out[5]
0110	ts_out[6]
0111	ts_out[7]
1000	ts_sync
1001	ts_vld
其他	ts_err

*注:

串行 1bit 输出情况下,如果高位输出优先,芯片内部 TS 数据信号请选择 ts_out[7],如果低位输出优先,芯片内部 TS 数据信号请选择 ts_out[0];

串行 2bit 输出情况下,如果高位输出优先,芯片内部 TS 数据信号请选择 $ts_out[7:6]$,如果低位输出优先,芯片内部 TS 数据信号请选择 $ts_out[1:0]$ 。

----结束

2.16 信号监测

信号强度

Demod 内部提供信号功率统计,可以先后读取 AGC_CTRL_L[agc_ctrl_l]和 AGC_CTRL_H[agc_ctrl_h]来得到信号强度指示。

sig_strength=agc_ctrl_h*256+agc_ctrl_l.

sig strength 值越大表示信号越弱。

传输制式和频谱反转识别

通过如下操作读取传输制式的信息:

步骤 1 等待 LOCK_FLAG[fec_ok]为 1。只有 fec_ok 为 1 下面读出的信息才可靠。

步骤 2 读取 LOCK_FLAG[sync_ok]。如果为 1 表示 DVB-S2 模式,如果为 0 表示 DVB-S/DirecTV 模式。

● DVB-S2 模式

可读取 PLS_CODE[6:0]。其中 PLS_CODE[6:2]表示调制模式和码率; PLS_CODE[1]表示帧长,0为 normal 帧(帧长 64800 比特),1为 short 帧(帧长 16200 比特); PLS_CODE[0]表示有无导频,为 0 无导频,为 1 带导频。

表2-8 PLS CODE 高 5 位与调制模式码率关系

PLS_CODE[6:2]	调制模式和码率	PLS_CODE[6:2]	调制模式和码率
00000	DUMMY(QPSK)	10000	8PSK 8/9
00001	QPSK 1/4	10001	8PSK 9/10
00010	QPSK 1/3	10010	16APSK 2/3
00011	QPSK 2/5	10011	16APSK 3/4
00100	QPSK 1/2	10100	16APSK 4/5
00101	QPSK 3/5	10101	16APSK 5/6
00110	QPSK 2/3	10110	16APSK 8/9
00111	QPSK 3/4	10111	16APSK 9/10

PLS_CODE[6:2]	调制模式和码率	PLS_CODE[6:2]	调制模式和码率
01000	QPSK 4/5	11000	32APSK 3/4
01001	QPSK 5/6	11001	32APSK 4/5
01010	QPSK 8/9	11010	32APSK 5/6
01011	QPSK 9/10	11011	32APSK 8/9
01100	8PSK 3/5	11100	32APSK 9/10
01101	8PSK 2/3	11101	Reserved
01110	8PSK 3/4	11110	Reserved
01111	8PSK 5/6	11111	Reserved

DVB-S2 下读取 TS_CTRL3[is_ccm], 值为 0 表示当前传输为 VCM/ACM 模式, 值为 0 表示当前传输为 CCM 模式。

DVB-S2下的滚降系数可以通过ROLL_OFF[roll_off]读取。

表2-9 roll_off 取值与滚降系数对应关系

roll_off[1:0]	滚降系数
00	0.35
01	0.25
10	0.2
11	reserved

DVB-S2 模式下读取 FREQ_INV[freq_inverse], 值为 1 表示频谱反转, 值为 0 表示频谱未反转。

DVB-S/DirecTV

可进一步读取 SEAR_RESULT [0], 值为 1 表示为 DirecTV 模式, 值为 0 表示 DVBS 模式。进一步读取 SEAR_RESULT [3:1]可得到 DVB-S/DirecTV 的码率信息。

表2-10 DVB_S&DirectV 模式下码率

SEAR_RESULT [3:1]	DVB-S 模式下码率	DirecTV 模式下码率
000	1/2	1/2
001	2/3	2/3
010	3/4	NA

SEAR_RESULT [3:1]	DVB-S 模式下码率	DirecTV 模式下码率
011	5/6	NA
100	7/8	NA
101	NA	6/7
110	NA	NA
111	NA	NA

其中:

- DVB-S/DirecTV 的调制方式固定为 OPSK。
- DVB-S 的滚降系数固定为 0.35, DirecTv 的滚降系数固定为 0.2。
- DVB-S&DirecTV 模式下读取 DEC RESULT[iq swap]:
 - 1: 频谱反转;
 - 0: 频谱未反转。

----结束

符号率偏差

如前所述,定时恢复需要预先置入符号率初值 fs。当定时环路稳定后,可以从 Demod 先后读出 FS_OFFSET_FC_L[fs_offset_fc_l]和 FS_OFFSET_FC_H[fs_offset_fc_h],实际符号率和 fs 的偏差按下式计算:

```
fs_offset_tmp =(fs_offset_fc_h*256+fs_offset_fc_l)
if(fs_offset_tmp>=32768)
    fs_offset = (fs_offset_tmp-65536)/2^22*CLK_DEMO
else
    fs_offset = fs_offset_tmp/2^22*CLK_DEMO.
```

计算值 fs_offset 如果为正表示实际符号率比设置的符号率大,为负则反之。因 CLK_DEMO 用 kHz 表示,fs_offset 的单位也为 kHz。

注:在 LOCK FLAG[fec ok]为 1 后读取的符号率偏差才有效。

载波偏差

当载波环路稳定后,可以从 Demod 先后读取 FREQ_OFFSET_FC_L[freq_offset_fc_l]和 FREQ_OFFSET_FC_H[freq_offset_fc_h],实际信号中心频率和 Tuner 所设中心频率的偏差按下式计算:

```
freq_offset_tmp=(freq_offset_fc_h*256+freq_offset_fc_l)
if(freq_offset_tmp>=32768)
    freq_offset = (freq_offset_tmp - 65536)/2^17*CLK_DEMO
else
```


freq_offset = freq_offset_tmp/2^17*CLK_DEMO.

计算值 freq_offset 如果为正表示实际载波频率比 Tuner 设置频率高,为负则反之。因 CLK_DEMO 用 kHz 表示,freq_offset 的单位也为 kHz。

注:在LOCK_FLAG[fec_ok]为1后读取的载波偏差才有效。

信号质量

Demod 提供噪声功率统计寄存器 NOISE_POW_H[noise_pow_h]和 NOISE_POW_L[noise_pow_l],可以通过如下公式转成信噪比估计(单位 dB),作为信号质量的指示。

SNR = 10.0*log10(8192.0/(noise_pow_h [6:0]*256+noise_pow_l))

注意

请先读寄存器 NOISE_POW_H 再读 NOISE_POW_L, 此处为特例。读寄存器 NOISE_POW_H[cnr_est_ok]可以得到指示,只有当 cnr_est_ok 为 1 时,信噪比估计才可靠。

BER 统计

通过 Demod 内部的错误比特统计计数器(FEC_BER_H、FEC_BER_L),可以计算出 RS(DVB-S&DirecTV 模式)、BCH(DVB-S2 模式)纠错前的 BER(Bit Error Rate,误比特率)。

先后读取 FEC_BER_L 和 FEC_BER_H,则错误比特数 error_cnt= FEC_BER_H*256+FEC_BER_L。误码率较高的情况下,实际错误比特数可能会超过统计计数器最大值,统计计数器将保持最大值,此时 BER 比实际偏小。

DVB-S&DirecTV 模式下, RS 译码前 BER 计算公式为:

$$BER = \frac{error_cnt}{8 \times N \times frams}$$

- DVB-S 模式时, N 为 204, DirecTV 时, N 为 146。
- frams 表示总统计帧数,通过寄存器 BER_CTRL [6:4]设置。

DVB-S2 模式下 BCH 译码之前 BER 计算公式为:

$$BER = \frac{error_cnt}{N \times frams}$$

- N表示不同帧长模式和码率下的 BCH 码长。
- frams 值仍通过寄存器 BER CTRL [6:4]设置。

表2-11 DVB-S2 模式下 N 取值

ldpc 码率	Normal 帧 N 值	Short 帧 N 值
1/4	16200	3240
1/3	21600	5400
2/5	25920	6480
1/2	32400	7200
3/5	38880	9720
2/3	43200	10800
3/4	48600	11880
4/5	51840	12600
5/6	54000	13320
8/9	57600	14400
9/10	58320	NA

表2-12 BER_CTRL[6:4]与 frams 关系

BER_CTRL [6:4]	DVB-S&DirecTV 模式下 frams 值	DVB-S2 模式下 frams 值
b'000	d'16	d'4
b'001	d'64	d'16
b'010	d'256	d'128
b'011	d'1024	d'256
b'100	d'4096	d'2048
b'101	d'16384	d'4096
b'110	d'65536	d'32768
b'111	d'262144	d'65535

- DVB-S&DirecTV 模式下 RS 译码后 BER 计算公式为: BER=32*FER。 这里的 FER 参照下面 FER 统计部分, RS 之后 BER 计算为近似计算。
- DVB-S2 模式下 BCH 译码之后 BER 计算公式为: BER=27*FER。
 这里的 FER 参照下面 FER 统计部分, BCH 之后 BER 计算为近似计算。
- □ 说明

BER 统计使能寄存器为 FS CTRL2[1], 高有效, 缺省值为高。

FER 统计

FER(Frame Error Rate,误帧率统计)用于统计帧出错概率。这里所指的帧,对于 DVB-S/DirecTV 来说就是一个 RS 帧,对于 DVB-S2 信号来说就是一个 BCH 帧。与 BER 统计复用同一个统计使能 FS CTRL2bit [1]。

先后读取 FEC_FER_L 和 FEC_FER_H,则 error_fram=FEC_FER_H*256+FEC_FER_L。DVB-S/DirecTV/DVB-S2 模式下总统计帧数 frams 与 BER_CTRL bit [6:4]的关系参照 BER 统计部分。

FER=error_fram/frams.

PER 统计

DVB-S2 模式下,一个 BCH 帧可能包含若干个 TS/GS 包,可以进一步统计 PER (Packet Error Rate, 误包率),按照如下方式进行:

- 步骤 1 如果当前属 Multi-TS 传输,首先通过 TS_CTRL4[isi_sel_vld]置 1 且 ISI_SEL[isi_sel]置 入流 ID 选取所需流。如果当前是 Single-TS 传输则略过此步。
- 步骤 2 置入 RST_WAIT[crc_pkt_cnt]指定用于统计 PER 的总包数。总包数等于 crc pkt cnt*1024。crc pkt cnt 为 0 时,总包数取 1024。
- 步骤 3 读取 CRC_ERR[crc_err]。计算 PER=crc_err/1024。

注意

- 如果所选取的流为连续流,则 PER 统计无效。
- 如果 PER 为非 0 且小于 1/1024, 则被限为 1/1024。
- 如果 PER 大于 255/1024, 则被限为 255/1024。

2.17 信道盲扫

信道盲扫就是在未知信道中心频率和符号率情况下进行盲扫描,信道盲扫描后可以得到精确的信号中心频率和信号符号率。

通常的信道盲扫是在未知 TP(Transponder,转发器)载波频率和符号率时进行盲扫描,盲扫可以获得比较精确的 TP 载波频率和符号率。如果已知载波频率和符号率,结合盲扫可使系统具有更强大的同步能力。

盲扫的三种状态如下:

- 关闭盲扫功能:配置寄存器 CBS CTRL RDADDR[use cbs]为 0。
- 已知载波频率和符号率的盲扫:配置 CBS_CTRL_RDADDR[use_cbs]为 1、CBS_CTRL_RDADDR[know_fs_fc]为 1、CBS_CTRL_RDADDR[cbs_rd_addr]为 0。其它操作与非盲扫的操作完全相同。

● 全频段盲扫: 设置 CBS_CTRL_RDADDR[use_cbs]为 1、 CBS_CTRL_RDADDR[know_fs_fc]为 0。盲扫可能会发现多个 TP, 自动选择 CBS_CTRL_RDADDR[cbs_rd_addr]指定的 TP 进行后继解调和 FEC 译码。

全频段盲扫过程如下:

- 步骤1 初始化芯片。
- 步骤 2 设置盲扫模式。即配置 CBS_CTRL_RDADDR[use_cbs]为 1, CBS_CTRL_RDADDR[know_fs_fc]为 0。
- **步骤** 3 给 Tuner 配置 RF 频率,等待一段时间(与 Tuner 相关,参考值为 5~20ms),热复 位。
- 步骤 4 等待一段时间(参考值为 2~5ms);查询 CBS_FINISH[cbs_finish],当 cbs_finish=1 时,进入下一步,当 cbs_finish=0 时,继续等待和查询。
- 步骤 5 先读出 CBS_R2_NUM[sig_num](表示有效信号个数); 当 sig_num 不为 0 时,设置 CBS_CTRL_RDADDR[cbs_rd_addr]=0,读出首个 TP 的符号率和载波偏差,RF 频率加(或减,与硬件有关)载波偏差得到首个 TP 的实际载波频率。再设 CBS_CTRL_RDADDR[cbs_rd_addr]=1,同上读出第 2 个 TP 的信息;同样操作直至 cbs_rd_addr=sig_num-1。TP 的符号率和载波偏差请分别参考寄存器 CBS_FS_L、CBS_FS_H、CBS_FC_L、CBS_FC_H 的说明。
- 步骤 6 返回到步骤 2, 给 Tuner 换 RF 频率(增量最大不能大于 13.5MHz), 直至完成指定频 段范围的盲扫。
- 步骤 7 软件处理盲扫结果,比如去掉重复 TP、TP 按载波排序、TP 有效性确认等,由软件方案确定。
 - ----结束

注音

- CBS_RELIABILITY1 和 CBS_R2_NUM 中还提供了盲扫到的各个 TP 的可靠性度量,可作为软件方案的额外信息,采取更复杂的软件控制策略,以加快盲扫速度或提高可靠性。
- 已知载波频率和符号率的盲扫时(CBS_CTRL_RDADDR[know_fs_fc]=1),盲扫结果中的载波偏差是相对已知的载波频率值而言的。当全频段盲扫时,盲扫结果中的载波偏差是绝对的载波偏差。盲扫的载波偏差均不包含载波恢复模块所给出的载波偏差。

2.18 DISEQC

实现 Diseqc 2.x 标准的收发功能。Diseqc 一般用于控制卫星前端设备如 LNB,Multi-Switch 等的工作状态。

可通过 DSEC_EN [dsec_en]打开/关闭 Diseqc 外围电路。

- 1:管脚 LNB_EN 输出高电平;
- 0: 管脚 LNB_EN 输出低电平。

可通过 TX_CTRL1[hv_sel]选择 13/18V 电平。

- 1: 管脚 HV_SEL 输出高电平;
- 0: 管脚 HV SEL 输出低电平。

使用 Diseqc 功能前首先需要配置 22kHz 载波。通过 DSEC_RATIO_L(diseqc_ratio 低 8 位)和 DSEC_RATIO_H(diseqc_ratio 高 8 位)置入 CLK_DEMO 的分频比得到 22KHz 频率。

diseqc_ratio[15:0]=round (CLK_DEMO/22).

其中 CLK_DEMO 以 kHz 表示, round 表示取整。

发送

Diseqc 发端的几种工作模式通过 TX_CTRL1[dsec_mode]选择。

表2-13 DISEQC 模式选择

dsec_mode[2:0]	发送模式
000	空闲
001	发送连续的 22kHz 方波,占空比 50%
010	发送一个 0 Tone Burst
011	发送一个 1 Data Burst
100	发送 diseqc 消息数据
其他	保留

图2-8 0 Tone Burst 输出示意

图2-9 1 Data Burst 输出示意

图2-10 DISEQC 消息数据输出示意

发送流程如下:

- 步骤1 将寄存器 TX_CTRL1[dsec_mode]配置0,如果发送消息数据转步骤2,否则转步骤6。
- 步骤 2 DSEC DATA[dsec data]写入数据。
- 步骤 3 DSEC_ADDR[dsec_addr]的 bit [2:0]写入需要存储的地址, bit [7]为 0, bit [3]为 0。
- 步骤4 重复步骤2和步骤3,直到用户数据全部存入。
- 步骤 5 配置 TX_CTRL1[num_byte]。
- 步骤 6 配置 TX_CTRL1[dsec_mode]开始发送。
- 步骤 7 除了 $TX_CTRL1[dsec_mode]$ 配置为 001 的情况需要手动更改外,其他模式在发送完成后将自动清除 $dsec_mode$ 至 0。

----结束

□ 说明

考虑节省 I2C 地址,Diseqc 的消息数据存储在内部 ram 里。当存数据时,先写入数据至dsec_data,然后写入存储地址至 dsec_addr,则数据被存入;当读数据时,先写入读取地址至dsec addr,然后可以从 dsec data 中读取数据值。具体地址分配按如下规则进行:

- dsec_addr[7]为1时表示当前为读操作,dsec_addr[3]为0时,dsec_addr[2:0]用于指定发送数据存储地址;dsec_addr[3]为1时,dsec_addr[2:0]用于指定接收数据存储地址;
- dsec_addr[7]为 0 时表示当前为写操作,dsec_addr[3]为 0 时,dsec_addr[2:0]用于指定发送数据存储地址; dsec_addr[3]为 1 时,dsec_addr[2:0]给出的地址无效。

接收

如果发送消息的第一个字节的 bit [1]为 1,则发送完成后自动进入接收状态。接收流程如下:

- 步骤1 读取 INT STATE 获取接收状态信息。
- 步骤 2 读取 RX STATE[rx recv bytes]获取接收字节数。
- 步骤 3 在寄存器 DSEC_ADDR[dsec_addr]的 bit[2:0]中写入需要读取的地址,配置 dsec_addr[7] 为 1,dsec_addr[3]为 1。
- 步骤 4 读取 DSEC DATA[dsec data]。
- 步骤 5 重复步骤 3 和步骤 4, 直到所有数据读出。
 - ----结束

2.19 寄存器概览

当对寄存器进行部分写操作(对寄存器中某几比特写)时,请先读该寄存器,仅改变所需要修改比特,其它用读出的值替代。

当读取某个状态量,而该状态量分布在多个寄存器中,如该寄存器描述中无特别申明,则请先读低地址的寄存器,后读高地址。举例: FREQ_OFFSET_FC_L 和 FREQ_OFFSET_FC_H 结合对应 freq_offset_fc 状态量,应先读 FREQ_OFFSET_FC_L,后读 FREQ_OFFSET_FC_H。

注意

注意信号质量处的读取顺序相反,仅此处为特例。

Demod 寄存器概览如表 2-14 所示。

表2-14 Demod 寄存器概览(基址是 0x00)

偏移地址	名称	描述	页码
0x00	PLL1_CTRL1	pll1 控制寄存器 1	2-29
0x01	PLL1_CTRL2	pll1 控制寄存器 2	2-29
0x02	PLL1_CTRL3	pll1 控制寄存器 3	2-30

偏移地址	名称	描述	页码
0x03	PLL1_CTRL4	pll1 控制寄存器 4	2-30
0x04	PLL1_CTRL5	pll1 控制寄存器 5	2-31
0x05	PLL2_CTRL1	pll2 控制寄存器 1	2-31
0x06	PLL2_CTRL2	pll2 控制寄存器 2	2-32
0x07	PLL2_CTRL3	pll2 控制寄存器 3	2-32
0x08	PLL2_CTRL4	pll2 控制寄存器 4	2-33
0x09	PLL2_CTRL5	pll2 控制寄存器 5	2-33
0x0A	ADC_CTRL1	adc 控制寄存器 1	2-34
0x0B	TS_CTRL1	ts 控制寄存器 1	2-35
0x0C	ADC_CTRL2	adc 控制寄存器 2	2-36
0x0D	IO_CTRL1	io 控制寄存器	2-37
0x0E	IO_CTRL2	io 控制寄存器 2	2-38
0x0F	TS_CTRL2	ts 控制寄存器 2	2-38
0x20	MAN_RST_CTRL0	复位控制寄存器	2-39
0x21	MAN_RST_CTRL1	复位控制使能寄存器	2-40
0x22	STATE_WAITS	超时复位寄存器	2-41
0x23	CLK_DEMO_L	解调时钟低位寄存器	2-41
0x24	CLK_DEMO_M	解调时钟中位寄存器	2-42
0x25	CLK_DEMO_H	解调时钟高位寄存器	2-42
0x26	CLK_FEC_L	纠错译码时钟低位寄存器	2-42
0x27	CLK_FEC_M	纠错译码时钟中位寄存器	2-43
0x28	CLK_FEC_H	纠错译码时钟高位寄存器	2-43
0x29	LOCK_TIME_L	锁定时间低位寄存器	2-43
0x2A	LOCK_TIME_M	锁定时间中位寄存器	2-44
0x2B	LOCK_TIME_H	锁定时间高位寄存器	2-44
0x2C	LOCK_FLAG	锁定指示寄存器	2-45
0x2D	TUNER_SEL	tuner 控制寄存器	2-45
0x2E	RSTN_CTRL	逻辑复位寄存器	2-46

偏移地址	名称	描述	页码
0x2F	ILA_SEL	测试向量选择寄存器	2-46
0x30	AGC_SPEED_BOU ND	agc 步长寄存器	2-47
0x31	AGC_GOAL	agc 功率寄存器	2-47
0x32	AGCOK_WAIT	agc 等待寄存器	2-48
0x33	AGC_CTRL	agc 控制寄存器	2-48
0x34	AGC_DC_I	I路直流寄存器	2-49
0x35	AGC_DC_Q	Q路直流寄存器	2-49
0x36	DAGC_CTRL	数字 agc 控制寄存器	2-49
0x37	AGC_CTRL_L	agc 功率低位寄存器	2-50
0x38	AGC_CTRL_H	agc 功率高位寄存器	2-50
0x39	AMP_ERR_IIR	功率误差寄存器	2-51
0x3A	PDM_CTRL_L	手动 agc 控制字低位寄存器	2-51
0x3B	PDM_CTRL_H	手动 agc 控制字高位寄存器	2-51
0x40	TR_CTRL1	tr 控制寄存器	2-52
0x41	DAGC_STD	dagc 控制寄存器	2-52
0x43	TR_MONITOR	tr 监控寄存器	2-53
0x44	CNT_THRESH	tr 等待时间寄存器	2-53
0x46	FS_L	符号率低位寄存器	2-54
0x47	FS_H	符号率高位寄存器	2-54
0x48	CENT_FREQ_L	载波频率低位寄存器	2-55
0x49	CENT_FREQ_H	载波频率高位寄存器	2-55
0x4C	FS_OFFSET_FC_L	符号率偏差低位寄存器	2-55
0x4D	FS_OFFSET_FC_H	符号率偏差高位寄存器	2-56
0x4E	FREQ_OFFSET_FC_ L	频率偏差低位寄存器	2-56
0x4F	FREQ_OFFSET_FC_ H	频率偏差高位寄存器	2-56
0x50	PLH_SYNC_1	帧同步控制寄存器 1	2-57

偏移地址	名称	描述	页码
0x51	PLH_SYNC_2	帧同步控制寄存器 2	2-57
0x52	CR_CTRL_SW	cr 控制寄存器	2-58
0x53	SCAN_STEP_L	扫频速度寄存器	2-59
0x54	SCAN_STEP_FB	扫频控制寄存器	2-59
0x55	SCAN_ADJUST	自动扫频速度寄存器	2-59
0x56	CR_ZUNI_WAIT	载波控制寄存器	2-60
0x57	CR_BW_ADJUST	载波带宽控制寄存器	2-60
0x58	CR_BW_MAX	载波最大带宽控制寄存器	2-61
0x59	CR_BW_SET	载波带宽控制寄存器	2-61
0x5A	CR_CN	载波 CN 值寄存器	2-61
0x5B	CR_STATE	载波状态寄存器	2-62
0x5C	PLS_CODE	pls_code 寄存器	2-62
0x5D	FREQ_INV	频谱反转寄存器	2-63
0x5E	CR_ZUNI_BW_L	载波带宽寄存器	2-63
0x5F	CR_ZUNI_BW_H	载波带宽寄存器	2-63
0x60	SYNC_FREQ_L	帧同步频率寄存器	2-64
0x61	SYNC_FREQ_H	帧同步频率寄存器	2-64
0x62	SCAN_FREQ_L	扫频频率寄存器	2-65
0x63	SCAN_FREQ_H	扫频频率寄存器	2-65
0x64	FREQ_ACC_L	载波频差慢反馈寄存器	2-65
0x65	FREQ_ACC_H	载波频差慢反馈寄存器	2-66
0x66	TR_FREQ_FB_L	载波频差 tr 反馈寄存器	2-66
0x67	TR_FREQ_FB_H	载波频差 tr 反馈寄存器	2-67
0x68	CR_LOOP_DC_L	载波 PLL 控制字寄存器	2-67
0x69	CR_LOOP_DC_H	载波 PLL 控制字寄存器	2-67
0x6C	CHIP_ID_0	芯片 ID 寄存器 0	2-68
0x6D	CHIP_ID_1	芯片 ID 寄存器 1	2-68
0x6E	CHIP_ID_2	芯片 ID 寄存器 2	2-68

偏移地址	名称	描述	页码
0x6F	CHIP_ID_3	芯片 ID 寄存器 3	2-69
0x70	EQU_CTRL	均衡控制寄存器	2-69
0x71	LMS_STEP	均衡步长控制寄存器	2-69
0x75	CN_CTRL	噪声功率统计控制寄存器	2-70
0x76	EQU_TAP_REAL	均衡抽头实部寄存器	2-70
0x77	EQU_TAP_IMAG	均衡抽头虚部寄存器	2-71
0x78	EQU_TAP_SEL	抽头选择寄存器	2-71
0x7A	XREG_INIT_LOW	均衡控制寄存器	2-72
0x7B	XREG_INIT_MID	均衡控制寄存器	2-72
0x7C	XREG_INIT_HI	均衡控制寄存器	2-72
0x7D	RD_WR_TAP	抽头控制寄存器	2-73
0x7E	NOISE_POW_L	噪声功率低位寄存器	2-73
0x7F	NOISE_POW_H	噪声功率高位寄存器	2-74
0x82	LDPC_ITER	ldpc 迭代控制寄存器	2-74
0x83	BER_CTRL	ber 控制寄存器	2-75
0x84	FEC_BER_L	ber 低位寄存器	2-75
0x85	FEC_BER_H	ber 高位寄存器	2-76
0x86	FEC_FER_L	fer 低位寄存器	2-76
0x87	FEC_FER_H	fer 高位寄存器	2-76
0x88	S2_SUCCESS	s2 译码成功寄存器	2-77
0x89	VTB_CTRL1	vtb 控制寄存器	2-77
0x8A	VTB_THRES	vtb 搜索控制寄存器	2-78
0x8B	VTB_CTRL2	vtb 控制寄存器	2-79
0x8C	FS_CTRL1	s 帧同步控制寄存器	2-79
0x8D	FS_CTRL2	s 帧同步控制寄存器	2-80
0x8E	SEAR_RESULT	s 搜索结果寄存器	2-81
0x8F	DEC_RESULT	s 译码结果寄存器	2-81
0x90	TS_PARALL_CTRL	ts 输出选择寄存器	2-82

偏移地址	名称	描述	页码
0x91	TS_10_SEL	ts 输出控制寄存器	2-83
0x92	TS_32_SEL	ts 输出控制寄存器	2-84
0x93	TS_54_SEL	ts 输出控制寄存器	2-84
0x94	TS_76_SEL	ts 输出控制寄存器	2-84
0x95	TS_98_SEL	ts 输出控制寄存器	2-85
0x96	TS_CTRL0	ts 控制寄存器 0	2-85
0x97	TS_CTRL3	ts 控制寄存器 3	2-86
0x98	TS_CTRL4	ts 控制寄存器 4	2-87
0x99	TS_CLK_DIV_F_L	ts 时钟低位寄存器	2-88
0x9A	TS_CLK_DIV_F_H	ts 时钟高位寄存器	2-88
0x9B	ISI_SEL	isi 选择寄存器	2-88
0x9C	МАТТҮРЕ	流 id 寄存器	2-89
0x9D	ROLL_OFF	滚降寄存器	2-89
0x9E	CRC_ERR	crc 校验寄存器	2-90
0x9F	RST_WAIT	复位等待寄存器	2-90
0xA0	FC_MAX_RELIABL E	盲扫载波控制寄存器	2-91
0xA1	FS_SPAN	盲扫符号率范围寄存器	2-91
0xA7	AMP_MIN_FS	盲扫最低符号率寄存器	2-92
0xA8	CBS_CTRL_RDAD DR	盲扫控制寄存器	2-92
0xA9	CBS_FS_L	盲扫符号率低位寄存器	2-93
0xAA	CBS_FS_H	盲扫符号率高位寄存器	2-93
0xAB	CBS_FC_L	盲扫频偏低位寄存器	2-94
0xAC	CBS_FC_H	盲扫频偏高位寄存器	2-94
0xAD	CBS_FINISH	盲扫结束寄存器	2-95
0xAE	CBS_RELIABILITY 1	盲扫可靠度寄存器	2-95
0xAF	CBS_R2_NUM	盲扫信号个数寄存器	2-95

偏移地址	名称	描述	页码
0xB0	DSEC_ADDR	dsec 地址寄存器	2-96
0xB1	DSEC_DATA	dsec 数据寄存器	2-96
0xB2	DSEC_RATIO_L	dsec 低位频率寄存器	2-97
0xB3	DSEC_RATIO_H	dsec 高位频率寄存器	2-97
0xB4	TX_CTRL1	dsec 发送控制寄存器	2-98
0xB5	RX_CTRL1	dsec 接收控制寄存器	2-98
0xB7	DSEC_EN	dsec 使能寄存器	2-99
0xB8	RX_STATE	dsec 接收状态寄存器	2-99
0xB9	INT_STATE	dsec 状态寄存器	2-100
0xC0	DF_FC_L	fsk 频偏低位寄存器	2-100
0xC1	DF_FC_H	fsk 频偏高位寄存器	2-101
0xC2	FS_FC_L	fsk 符号率低位寄存器	2-101
0xC3	FS_FC_M	fsk 符号率中位寄存器	2-102
0xC4	FS_FC_H	fsk 符号率高位寄存器	2-102
0xC5	HEAD_L	帧头低位寄存器	2-102
0xC6	HEAD_M	帧头中位寄存器	2-103
0xC7	HEAD_H	帧头高位寄存器	2-103
0xC8	NBIT_HEAD	fsk 控制寄存器	2-104
0xC9	CRC_POLY_L	crc 低位寄存器	2-104
0xCA	CRC_POLY_M	crc 中位寄存器	2-104
0xCB	CRC_POLY_H	crc 高位寄存器	2-105
0xCC	NBIT_CRC	crc 控制寄存器	2-105
0xCD	TCF_FC_L	发送频率低位寄存器	2-106
0xCE	TCF_FC_H	发送频率高位寄存器	2-106
0xCF	RCF_FC_L	接收频率低位寄存器	2-106
0xD0	RCF_FC_H	接收频率高位寄存器	2-107
0xD1	TX_NBIT_L	发送控制寄存器	2-107
0xD2	TX_CTRL2	发送控制寄存器	2-108

偏移地址	名称	描述	页码
0xD3	RX_NBIT_L	接收控制寄存器	2-108
0xD4	RX_CTRL2	接收控制寄存器	2-109
0xD5	FSK_ADDR	fsk 地址寄存器	2-109
0xD6	FSK_DATA	fsk 数据寄存器	2-110
0xD7	FSK_RX_LEN	fsk 控制寄存器	2-110

2.20 Demod 寄存器描述

PLL1_CTRL1

PLL1_CTRL1 为 pll1 控制寄存器 1。

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0x00	ı		PLL1_0	CTRL1		0x01		
Bit	7		6		5	4	3	2	1	0	
Name	pll1_pd		pll1_l	oypass			pll1_1	refdiv			
Reset	0		0		0	0	0	0	0	1	
	Bits	Aco	cess	Name	Description						
	[7]	RW	T	pll1_p	d	PLL1 的全局 powerdown 信号,高有效。					
	[6] RW pll1_b		ypass	ss PLL1 bypass 信号,高有效。							
	[5:0]	[5:0] RW pll1_re			efdiv	PLL1 分频值	,分频后的	时钟应在1~	40MHz 范围	0	

PLL1_CTRL2

PLL1_CTRL2 为 pll1 控制寄存器 2。

		Of	fset Ad 0x01			Register Name PLL1_CTRL2			Total Reset Value 0x61		
Bit	7			6	5	4	3	2	1	0	
Name	pll1_dsm	pd			pll1_postdiv2		pll1_dacpd		pll1_postdiv1		
Reset	0			1	1	0	0	0	0	1	
	Bits	Bits Access				Description					
	[7]	[7] RW pll1_dsmpd					PLL1 的 delta sigma power down 信号。 1: 整数分频; 0: 小数分频。				
	[6:4]	6:4] RW pll1			ostdiv/)	PLL1 FVCO fout=fvco/pos					
	[3] RW		pll1_dacpd		PLL1 的 DAC pd 信号,正常情况下为低。						
	[2:0] RW			pll1_p	astdiv l	PLL1 FVCO fout=fvco/pos					

PLL1_CTRL3

PLL1_CTRL3 为 pll1 控制寄存器 3。

		Of	fset Ad			Register Name PLL1_CTRL3			Total Reset Value 0x1F	
Bit	7		(5	5	4	3	2	1	0
Name						pll1_	fbdiv			
Reset	0		()	0	1	1	1	1	1
	Bits	Aco	cess	Name		Description				
	[7:0]	RW	T	pll1_ft	odiv	PLL1 的整数	PLL1 的整数分频值的低 8bit(高 4bit 不会用到,连接为 0)。			

PLL1_CTRL4

PLL1_CTRL4 为 pll1 控制寄存器 4。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x03	i		PLL1_CTRL4			0x00		
Bit	7			6	5	4	3	2	1	0	
Name						p111_1	frac_1				
Reset	0			0	0	0	0	0	0	0	
	Bits Ac		cess	Name		Description					
	[7:0]	I	pll1_fr	ac I	PLL1 的小数 0)。	分频值的 bit	[19:12] (低 1	l2bit 不会用到	到,连接为		

PLL1_CTRL5

PLL1_CTRL5 为 pll1 控制寄存器 5。

		Of	fset Ad	dress		Register	Name		Total Reset Value		
			0x04			PLL1_CTRL5			0x14		
Bit	7			6	5	4	3	2	1	0	
Name	reserved				pll1_postdivpd	pll1_vcopd	pll1_frac_h				
Reset			0	0	1	0	1	0	0		
	Bits	its Access Na		Name	:	Description					
	[7:6]	-		reserved		保留。					
	[5]	RW	T	pll1_p	ostdivpd	PLL1 FVOC 后的分频器 power down 信号,1 有效。					
	[4] RW pll1_		pll1_v	cona	PLL1 的 vco buffer power down 信号,vco 仍然工作,但是输出 buffer 被 disable。						
	[3:0] RW pll1_f		pll1_fi	ac n	PLL1 的小数 0)。	分频值的 bit	[23:20] (低]	12bit 不会用到	到,连接为		

PLL2_CTRL1

PLL2_CTRL1 为 pll2 控制寄存器 1。

		Of	fset Ad 0x05			Register			Total Reset Value 0x01		
Bit	7		(6	5	4	3	2	1	0	
Name	pll2_pd pll2		pll2_l	2_bypass			pl12_1	refdiv			
Reset	0		(0	0	0	0	0	0	1	
	Bits Ac		cess Name		Description						
	[7]	RW	/ pll2_p		d	pll2 的全局 powerdown 信号,高有效。					
	[6] RW		pll2_b		ypass	PLL2 bypass	pypass 信号,高有效。				
	[5:0]	RW	T	pll2_re	efdiv	PLL2 分频值	,分频后的	时钟应在 1~	40Mhz 范围	0	

PLL2_CTRL2

PLL2_CTRL2 为 pll2 控制寄存器 2。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x06			PLL2_CTRL2			0x61			
Bit	7					4	3	2	1	0		
Name	pll2_dsmpd			pll2_postdiv2		pll2_dacpd			pll2_postdiv1			
Reset	0			1	1	0	0	0	0	1		
	Bits Access		cess	Name		Description	Description					
	[7]	7] RW		nII / demnd		PLL2 的 delta 表示小数分频		er down 信号,	为1表示整	逐数分频,0		
	[6:4] RW		7	nll2 nostdiv2		PLL2 FVCO 后的分频器 2 分频值。 fout=fvco/postdiv1/postdiv2。						
	[3] RW		T	pll2_d	acpd	PLL2的 DA	C pd 信号,	正常情况下为	为低。			
	[2:0] RW			nll2 nostdivl		PLL2 FVCO 后的分频器 1 分频值。 fout=fvco/postdiv1/postdiv2。						

PLL2_CTRL3

PLL2_CTRL3 为 pll2 控制寄存器 3。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x07			PLL2_C	CTRL3	0x2E			
Bit	7	7 6			5	4	3	2 1		0	
Name	pll2_fbdiv										
Reset	0	0		0	1	0 1 1 1			0		
	Bits Access		Name		Description						
	[7:0] RW pll2_fbdiv			odiv	PLL2 的整数分频值的低 8bit(高 4bit 不会用到,连接为				接为 0)。		

PLL2_CTRL4

PLL2_CTRL4 为 pll2 控制寄存器 4。

		Of	fset Ad	dress		Register Name			Total Reset Value		
	0x08					PLL2_C	CTRL4	0x 0 0			
Bit	7			6	5	4	3	2	1	0	
Name						pll2_frac_1					
Reset	0		0		0	0	0	0	0	0	
	Bits Acc		cess Name			Description					
	[7:0] RW		Intil trac 1		PLL2 的小数分频值的 bit [19:12] (低 12bit 不会用到,连接; 0)。						

PLL2_CTRL5

PLL2_CTRL5 为 pll2 控制寄存器 5。

		Of	ffset Ad	dress		Register	Name	Total Reset Value				
			0x09	1		PLL2_C	CTRL5		0x1E			
Bit	7			6	5	4	3	2	1	0		
Name	reserved pl				pll2_postdivpd	pll2_vcopd	pll2_frac_h					
Reset	0			0	0	1	1	1	1	0		
	Bits	Bits Access		Name		Description						
	[7:6] - reserv		reserve	ed	保留。							
	[5] RW pll2_			pll2_p	ostdivpd	PLL2 FVOC	后的分频器	power down	信号,1 有效			

[4]	RW	nII/ veana	PLL2 的 vco buffer power down 信号,vco 仍然工作,但是输出 buffer 被 disable。
[3:0]	RW	inii 2 frac h	PLL2 的小数分频值的 bit [23:20] (低 12bit 不会用到,连接为0)。

ADC_CTRL1

ADC_CTRL1 为 adc 控制寄存器 1。

		Of	fset Ad			Register ADC_0			Total Reset Value 0x4A			
Bit	7			6	5	4	3	2	1	0		
Name	adc_od	f	adc_p	delamp ade		e_om ade_c		e_cs	es adc_is			
Reset	0			1	0	0	1	0	1	0		
	Bits	Aco	cess	Name		Description						
	[7] RW add			adc_oo	lf	输出格式选排 1: 补码形式 0: 原码形式	4;					
	[6] RW adc_pdcla				lclamp	adc 模式控制 1: AC 模式; 0: DC 模式;	;					
	[5:4] RW adc_			adc_or	n	模式选择寄存器。 00: 正常模式; 01: stand_by 模式(最小 start_up 时间); 10: 最小功耗模式; 11: power down 模式。						
	[3:2] RW adc_cs					通道选择信 ⁴ 00: I 路通道 11: Q 路通过 10: 双通道过 11: 保留。	i; 首;					

			偏压控制寄存器。
			00: 比当前值减少 50%;
[1:0]	RW	adc_is	01: 比当前值减少 25%;
			10: 没有偏移;
			11: 比当前值增加 25%。

TS_CTRL1

TS_CTRL1 为 ts 控制寄存器 1。

		O	ffset Ac			Register TS_CT			Total Reset Value 0x6C				
Bit	7	7		6	5	4	3	2	1	0			
lame			ts_v	d_ds			ts_err_ds rese						
Reset	()		1	1	0	0 1 1 0 0						
	Bits	Sits Access Name			2	Description							
	[7:5] RW			ts_vld_	_ds	TS_VLD 管脚 000: 0mA; 001: 4mA; 010: 8mA; 011: 12mA; 100: 12mA; 101: 16mA; 110: 20mA; 111: 24mA。		門节寄存器。					
	[4:2] RW ts_err_ds				_ds	TS_ERR 管肽 000: 0mA; 001: 4mA; 010: 8mA; 011: 12mA; 100: 12mA; 101: 16mA; 110: 20mA		节寄存器。					
	[1:0]	-		reserve	ed	保留。							

ADC_CTRL2

ADC_CTRL2 为 adc 控制寄存器 2。

		Of	fset Ad	dress		Register Name			Total Reset Value				
			0x0C	}		ADC_0	CTRL2		0x52				
Bit	7			6	5	4	3	2	1	0			
Name	adc_clk_s	sel	adc_c	elk_on	adc_clk_inv	i2c_xo_clk	reserved	clk_inv	lock_fsko	ts_testout			
Reset	0			1	0	1 0 0 1 0							
	Bits	Aco	cess	Name		Description							
						adc io 时钟选择寄存器。							
	[7]	RW	T	adc_cl	k_sel	1: TS_SYNC 端口为 adc_clk 的输入端口;							
						0: TS_SYNC 端口为输出端口,输出 ts_sync 信号。							
						adc 时钟使能寄存器。							
	[6]	RW	T	adc_cl	k_on	1: adc 时钟	正常;						
						0: adc 没有时钟。							
	[5] RW ade elk inv					adc 时钟反向寄存器。							
	[5] RW adc_clk_inv					1: adc 时钟	为反向时钟;						
	[5] KW auc_cik_iiiV					0: adc 时钟	为正向时钟。						
						晶振时钟选	泽寄存器。						
	[4]	RW	T	i2c_xo	_clk	1: clk_i2c 时钟选择晶振输入;							
						0: clk_i2c 时钟选择 pll 输出时钟。							
	[3]	-		reserve	ed	保留。							
						ts 串行时钟点	反向寄存器。						
	[2]	RW	T	clk_inv	V	1: ts 时钟反	向输出;						
	[2] KW CIK_INV					0: ts 时钟正	向输出。						
						锁定输出选	泽寄存器 。						
	[1] RW lock_fsko					1: fsk 输出;							
						0: 信道锁定标志输出。							
						测试模式选择寄存器。							
	[0] RW ts_testout					0: 正常 ts 流输出;							
	[U] KW ts_testout					1: 复用 ts 流管脚来输出测试信号。							

IO_CTRL1

IO_CTRL1 为 io 控制寄存器。

		Offset Address 0x0D			Register Name IO_CTRL1			Total Reset Va 0x1B	lue
Bit	7		6	5	4	3	2	1	0
Name	adc_im	adc_	_clk_sel		ts_out_ds			ts_sync_ds	
Reset	0		0	0	1	1	0	1	1
	Bits	Access	Name	2	Description	,			
	[7]	RW	adc_in	n	输入模式选指 1: 单端输入 0: 差分输入	.;			
	[6] RW		adc_cl	lk_sel	adc 时钟选打 1:使用 io 」 0:使用 pll [‡]	二的时钟;			
	[5:3]	[5:3] RW ts_out			TS_OUT管例 000: 0mA; 001: 4mA; 010: 8mA; 011: 12mA; 100: 12mA; 101: 16mA; 110: 20mA		节寄存器。		
	[2:0]	RW	ts_syn	c_ds	TS_SYNC 管 000: 0mA; 001: 4mA; 010: 8mA; 011: 12mA; 100: 12mA; 101: 16mA; 110: 20mA 111: 24mA。		调节寄存器。		

IO_CTRL2

IO_CTRL2 为 io 控制寄存器 2。

		Of	ffset Ad	dress		Registe	r Name		Total Reset Value			
			0x0E	L		IO_C	TRL2		0x1B			
Bit	7			6	5	4	3	2	1	0		
Name	test_clk_	en	clko	ut_sel		fsko_ds			ts_clk_ds			
Reset	0			0	0	1	1	0	1	1		
	Bits	Ac	cess	Name	:	Description						
	[7]	RW	I	test_cl	k_en	测试时钟使能。 使用测试时钟输出; 正常功能。 						
	[6] RW clkout_sel					时钟输出控制 1: 使用 dise 时钟信号; 0: 正常管脚	eqc_in 和 dise	qc_out 管脚۶	来复用输出 pi	ll0 和 pll1 的		
	[5:3] RW fsko_ds FSK_OUT 管脚驱动能力调节寄存器。											
	[2:0]	RW	I	ts_clk_	_ds	TS_CLK 管脚驱动能力调节寄存器。						

TS_CTRL2

TS_CTRL2 为 ts 控制寄存器 2。

		Of	fset Ad 0x0F			Register Name TS_CTRL2			Total Reset Value 0x00		
Bit	7		5	5	4	3	2	1	0		
Name	pll2_loc	k	pll1_	lock	ts_out_sl	ts_sync_sl	ts_vld_sl	ts_err_sl	ts_clk_sl	fsko_sl	
Reset	0		()	0	0	0	0	0	0	
	Bits	Access Na				Description					
	[7] RO		pll2_lc	ock	pll2 的锁定标 1:锁定; 0:没锁定。	示 志。					
	[6] RO		pll1_lc	ock	pll1 的锁定标 1:锁定; 0:没锁定。	示 志。					

[5]	RW	ts_out_sl	TS_OUT 管脚速度调节。 1: 慢边沿; 0: 快边沿。
[4]	RW	ts_sync_sl	TS_SYNC 管脚速度调节。 1: 慢边沿; 0: 快边沿。
[3]	RW	ts_vld_sl	TS_VLD 管脚速度调节。 1: 慢边沿; 0: 快边沿。
[2]	RW	ts_err_sl	TS_ERR 管脚速度调节。 1: 慢边沿; 0: 快边沿。
[1]	RW	ts_clk_sl	TS_CLK 管脚速度调节。 1: 慢边沿; 0: 快边沿。
[0]	RW	fsko_sl	FSK_OUT 管脚速度调节。 1:慢边沿; 0:快边沿。

MAN_RST_CTRL0

MAN_RST_CTRL0 为复位控制寄存器。

		Of	fset Ad	dress		Register	Name		Total Reset Value		
			0x20			MAN_RST_CTRL0			0xFF		
Bit	7 6			5	5	4	3	2	1	0	
Name	rstn_fsk		rstn_outp		rstn_fec	rstn_equ	rstn_cr	rstn_tr	rstn_cbs	rstn_agc	
Reset	1		1		1	1	1	1	1	1	
	Bits Ac		cess Name			Description					
	[7] RW		7	rstn_fs	k	fsk 的复位控 1:取消复位 0:复位。					

[6]	RW	rstn_outp	outp 的复位控制。 1: 取消复位; 0: 复位。
[5]	RW	rstn_fec	fec 的复位控制。 1: 取消复位; 0: 复位。
[4]	RW	rstn_equ	equ 的复位控制。 1: 取消复位; 0: 复位。
[3]	RW	rstn_cr	cr 的复位控制。 1: 取消复位; 0: 复位。
[2]	RW	rstn_tr	tr 的复位控制。 1: 取消复位; 0: 复位。
[1]	RW	rstn_cbs	cbs 的复位控制。 1: 取消复位; 0: 复位。
[0]	RW	rstn_agc	agc 的复位控制。 1: 取消复位; 0: 复位。

MAN_RST_CTRL1

MAN_RST_CTRL1 为复位控制使能寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x21			MAN_RS	Γ_CTRL1	0x07			
Bit	7		6 5			4	3	2	1	0	
Name					reserved			auto_rst_ena	rstn_diseqc	rstn_catch	
Reset	0		0 0			0	0	1	1	1	
	Bits	Access Name				Description					
	[7:3]	reserved			ed	保留。					

[2]	RW	auto_rst_ena	fec 自复位时能信号。 1: 允许自复位; 0: 不允许自复位。
[1]	RW	rstn_diseqc	diseqc 的复位控制。 1: 取消复位; 0: 复位。
[0]	RW	rstn_catch	catch 的复位控制。 1: 取消复位; 0: 复位。

STATE_WAITS

STATE_WAITS 为超时复位寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
	0x22					STATE_	WAITS		0x1B		
Bit	7			6	5	4	3	2	1	0	
Name						state_wait					
Reset	0		0		0	1 1		0	1	1	
	Bits Access		cess	Name	:	Description					
	[7:0]	RW	I	state_v	vait	等待 ok 信号 当计数器的 l		tate_wait 时,	复位系统。		

CLK_DEMO_L

CLK_DEMO_L 为解调时钟低位寄存器。

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x23			CLK_DI	EMO_L	0x48			
Bit	7 6			6	5	4 3		2	1	0	
Name	clk_demo_l										
Reset	0		1		0	0 1		0	0	0	
	Bits Access Name					Description					
	[7:0] RW clk_demo_l				mo_l	解调时钟 CLK_DEMO 频率低位,LSB=1KHz。					

CLK_DEMO_M

CLK_DEMO_M 为解调时钟中位寄存器。

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x24			CLK_DE	EMO_M	0xE8			
Bit	7	6			5	4	3	2	1	0	
Name						clk_demo_m					
Reset	1			1	1	0 1 0 0				0	
	Bits Access Name				Description						
	[7:0] RW clk_demo_m			mo_m	解调时钟 CLK_DEMO 频率中位。						

CLK_DEMO_H

CLK_DEMO_H 为解调时钟高位寄存器。

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0x25			CLK_DEMO_H			0x01		
Bit	7	7		6	5	4	3	2	1	0	
Name					rese	rved		clk_demo_h			
Reset	0		0		0	0 0 0		0	0	1	
	Bits Access		cess	Name		Description					
	[7:2] -			reserved		保留。					
	[1:0] RW clk		clk_de	mo_h	解调时钟 CLK_DEMO 频率高位。						

CLK_FEC_L

CLK_FEC_L 为纠错译码时钟低位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x26			CLK_F	FEC_L	0x6C				
Bit	7	6 5				4	3	2	0			
Name						clk_t	clk_fec_l					
Reset	0	1		1	1	0 1		1	0	0		
	Bits Access Name					Description						
	[7:0] RW			clk_fe	c_l	纠错译码时钟 CLK_FEC 频率低位,LSB=1KHz。						

CLK_FEC_M

CLK_FEC_M 为纠错译码时钟中位寄存器。

		Of	fset Ad	dress		Register	Name	Total Reset Value				
			0x27			CLK_F	EC_M		0xDC			
Bit	7			6	5	4	3	2	1	0		
Name						clk_f	ec_m					
Reset	1			1	0	1	1	1	0	0		
	Bits	Aco	cess	Name	;	Description						
	[7:0] RW clk_fec_m					纠错译码时钟 CLK_FEC 频率中位。						

CLK_FEC_H

CLK_FEC_H 为纠错译码时钟高位寄存器。

		Of	fset Ad	dress		Register Name				alue		
			0x28		CLK_FEC_H				0x02			
Bit	7		(6	5	4	3	2	1	0		
Name					rese	rved		clk_fec_h				
Reset	0		(0	0	0 0 0 1 0						
	Bits	Acc	cess	Name		Description						
	[7:2]	-		reserve	ed	保留。						
	[1:0]	RW	T	clk_fe	e_h	解调时钟 CLK_FEC 频率高位。						

LOCK_TIME_L

LOCK_TIME_L 为锁定时间低位寄存器。

		Offs	set Ad	dress		Register	r Name		Total Reset Value			
			0x29			LOCK_T	ΓIME_L		0x00			
Bit	7		(5	5	4	3	2	1	0		
Name		tr_time						cbs_time				
Reset	0		()	0	0 0 0 0						
	Bits	Bits Access Name				Description						
	[7:4] RO tr_time				e	tr 锁定时间,	单位为 10m	IS o				
	[3:0] RO cbs_time			ne	cbs 锁定时间,单位为 10ms。							

LOCK_TIME_M

LOCK_TIME_M 为锁定时间中位寄存器。

		Of	fset Ad	dress		Register	Name	Total Reset Value				
			0x2A			LOCK_T	TIME_M	0x00				
Bit	7		(6	5	4	3	2	1	0		
Name				cr_ti	me_l	sync_time						
Reset	0		(0	0	0 0 0 0						
	Bits	Acc	cess	Name		Description						
	[7:4]	7:4] RO cr_time_l				cr 锁定时间(氐4位,单位	五为 10ms。				
	[3:0] RO sync_time				ime	sync 锁定时门	间,单位为1	0ms。				

LOCK_TIME_H

LOCK_TIME_H 为锁定时间高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x2B			LOCK_TIME_H					
Bit	7		(5	5	4	3	2	1	0	
Name					fec_	time			cr_time_h		
Reset	0	0 0				0 0 0 0					
	Bits	ts Access Name				Description					
	[7:2]	2] RO fec_time				fec 锁定时间	,单位为 10	ms 。			
	[1:0]	1:0] RO cr_time_h				cr 锁定时间离	高 2 位。				

LOCK_FLAG

LOCK_FLAG 为锁定指示寄存器。

		Offs	set Ad			Register Name Total Reset Value LOCK_FLAG 0x00							
Bit	7			6	5	4	3	2	1	0			
Name		reserv	ved		fec_ok	cr_ok	sync_ok	tr_ok	cbs_ok	agc_ok			
Reset	0			0	0	0 0 0 0							
	Bits	Acce	ess	Name		Description							
	[7:6]	-		reserve	ed	保留。							
	[5]	RO		fec_ok		fec 锁定标志信号。 1: 锁定; 0: 不锁定。							
	[4]	RO		cr_ok		cr 锁定标志信号。 1: 锁定; 0: 不锁定。							
	[3]	RO		sync_c		sync 锁定标志信号。 1: 锁定; 0: 不锁定。							
	[2]	RO		tr_ok		tr 锁定标志信号。 1: 锁定; 0: 不锁定。							
	[1]	RO		cbs_ok		cbs 锁定标志信号。 1: 锁定; 0: 不锁定。							
	[0] RO agc_ok					agc 锁定标志信号。 1: 锁定; 0: 不锁定。							

TUNER_SEL

TUNER_SEL 为 tuner 控制寄存器。

			et Address 0x2D		Register Name Total Reset Value TUNER_SEL 0x00				alue	
Bit	7		6	5	4	3	2	1	0	
Name			resei	rved	man_state tuner_					
Reset	0		0	0	0	0	0	0	0	
	Bits	Acces	ss Name		Description					
	[7:4]	-	reserve	ed	保留。					
	[3:1]	RO	man_st	tate	主控状态机的状态。					
	[0]	RW	tuner_s	sel	通过 i2c 配置如果需要配置完一次读或望配置,则需求	置 tuner,需要 写操作后,该	要将该寄存器 逐寄存器自清	为0;如果继		

RSTN_CTRL

RSTN_CTRL 为逻辑复位寄存器。

		Off	fset Ad			Register			Total Reset Value 0x03		
D:4	7		0x2E		-	RSTN_CTRL 0x03 4 3 2 1 0					
Bit	7			6	5	reserved				-	
Name									hot_rstn	cool_rstn	
Reset	0		(0	0	0	0	0	1	1	
	Bits	Acc	ess	Name		Description					
	[7:2]	-		reserve	ed	保留。					
	[1]	RW		hot_rst	tn	逻辑复位信 ⁴ 1:不复位; 0:复位。	号,只复位逻	辑 ,不复位	系统寄存器。		
	[0]	RW		cool_r	stn	复位信号,目 1:不复位; 0:复位。	即复位逻辑,	又复位系统	寄存器。		

ILA_SEL

ILA_SEL 为测试向量选择寄存器。

		Off	set Ad	dress		Register	r Name	Total Reset Value			
			0x2F			ILA_	SEL	0x00			
Bit	7	7 6 5			5	4	3	2	1	0	
Name						ila_sel					
Reset	0	0 0 0				0	0	0	0	0	
	Bits					Description					
	[7:0] RW ila_sel				ila 和 catch 模块测试向量选择信号。						

AGC_SPEED_BOUND

AGC_SPEED_BOUND 为 agc 步长寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x30	ı		AGC_SPEE	D_BOUND		0x67			
Bit	7			6	5	4	3	2	1	0		
Name			agc_	speed			err_bound					
Reset	0			1	1	0 0 1 1 1						
	Bits	Aco	cess	Name		Description						
	[7:5]	RW	T	agc_sp	eed	agc 步长寄存	器,实际值	为配置值+2,	最大值为7	0		
	[4:0]	:0] RW err_bound				幅度误差边界值。						

AGC_GOAL

AGC_GOAL 为 agc 功率寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x31			AGC_0	GOAL	0x22				
Bit	7		(6	5	4	3	2	1	0		
Name						agc_	goal					
Reset	0		(0	1	0 0 0 1 0						
	Bits	Acc	ess	Name		Description						
	[7:0] RW agc_goal					agc 功率目标	· 信。					

AGCOK_WAIT

AGCOK_WAIT 为 agc 等待寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x32			AGCOK	_WAIT	0x 0 F			
Bit	7	7 6 5				4	3	2	1	0	
Name						agcok	_wait				
Reset	0	0 0 0				0	1	1	1	1	
	Bits Access Name					Description					
	[7:0] RW agcok_wait				_wait	agc 幅度异常等待时间。					

AGC_CTRL

AGC_CTRL 为 agc 控制寄存器。

		Offset Ac			Register		Total Reset Value 0x71				
Bit	7		6	5	4	3	2	1	0		
Name		pdr	n_div		adc_twos	iq_swap	agc_hold	agc_inverse	dagc_on		
Reset	0		1	1	1	0	0	0	1		
	Bits	Access	Name	,	Description						
	[7:5]	RW	pdm_c	liv	agc 的 pdm 氧 实际值为配置		度。				
	[4]	RW	adc_tv	vos	输入数据类型 1:补码; 0:原码。	텐.					
	[3]	RW	iq_swa	ap	iq 路数据交换控制信号。 1: iq 交换; 0: iq 不交换。						
	[2]	RW	agc_ho	old	agc 工作类型控制信号。 1: agc 保持,输出 pdm 为固定值; 0: agc 正常工作。						

[1]	RW	agc_inverse	pdm 输出控制。 1: pdm 信号取反; 0: pdm 不取反,正常输出。
[0]	RW	dagc_on	数字 agc 开启信号。 1: 开启数字 agc; 0: 关闭数字 agc。

AGC_DC_I

AGC_DC_I为I路直流寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
	0x34					AGC_	DC_I	0x00				
Bit	7	7 6			5	4	3	2	0			
Name	agc_dc_i											
Reset	0	0		0	0	0	0	0	0	0		
	Bits Access		Name		Description							
	[7:0]	RO		agc_do	e_i	I路数据的直	流量。					

AGC_DC_Q

AGC_DC_Q为Q路直流寄存器。

	Offset Address 0x35					Register		Total Reset Value 0x00			
Bit	7	7 6		6	5	4	3	2	2 1		
Name	agc_dc_q										
Reset	0			0	0	0 0 0		0	0	0	
	Bits Access		Name		Description						
	[7:0]	RO		agc_do	_q	Q路数据的I	直流量。				

DAGC_CTRL

DAGC_CTRL 为数字 agc 控制寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x36			DAGC	_CTRL	0x 0 0			
Bit	7		6		5	4	3	2	1	0	
Name	Name dagc_ctrl										
Reset	0		(0	0	0 0 0		0	0	0	
	Bits	its Access 1		Name		Description					
	[7:0]	RO		dagc_c	etrl	数字 agc 的挂	空制字。				

AGC_CTRL_L

AGC_CTRL_L 为 agc 功率低位寄存器。

	Offset Address 0x37					Register Name AGC_CTRL_L			Total Reset Value 0x00			
Bit	7		(6	5	4	3	2	0			
Name	agc_ctrl_1											
Reset	0		()	0	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RO agc_ctrl_l					agc 控制字的低 8 位,表示当前信号的功率。						

AGC_CTRL_H

AGC_CTRL_H为 agc 功率高位寄存器。

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0x38			AGC_CTRL_H			0x00		
Bit	7		(6	5	4 3		2	1	0	
Name	agc_ok			reserved			agc_ctrl_h				
Reset	0	0		0	0	0	0	0	0	0	
	Bits	Access		Name	Description						
						agc 锁定标志。					
	[7]	RO		agc_ok		1: agc 锁定;					
						0: agc 没有9	锁定。				
	[6:4]	_		reserve	ed	保留。					

[3:0]	RO	agc_ctrl_h	agc 控制字的高 4 位,表示当前信号的功率。
-------	----	------------	--------------------------

AMP_ERR_IIR

AMP_ERR_IIR 为功率误差寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x39			AMP_E	RR_IIR	0x00			
Bit	7		6		5	4	3	2	1	0	
Name	amp_err_iir										
Reset	0)	0	0 0		0	0	0	
	Bits Access		Name		Description						
	[7:0] RO		amp_err_iir		数据功率与参	参考功率之间					

PDM_CTRL_L

PDM_CTRL_L 为手动 agc 控制字低位寄存器。

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x3A			PDM_C	TRL_L	0x00			
Bit	7 6			6	5	4	3	2	1	0	
Name	pdm_ctrl_l										
Reset	0		0		0	0	0	0	0	0	
	Bits Access Name					Description					
	[7:0] RW pdm_ctrl_l				trl_l	在手动 agc 模式下,可配置的 agc 控制字的低 8 位。					

PDM_CTRL_H

PDM CTRL H 为手动 agc 控制字高位寄存器。

		Off	fset Ado			Register Name Total Reset V PDM_CTRL_H 0x00			alue		
Bit	7		(5	5	4 3 2 1 0				0	
Name	reserved					pdm_ctrl_sel	pdm_ctrl_h				
Reset	0			0 0		0	0	0	0	0	
	Bits Access			Name		Description					
	[7:5]				ed	保留。					
	[4] RW			pdm_ctrl_sel		手动 agc 控制 1: 手动模式 0: 自动 agc	, pdm_ctrl_s	sel 作为控制:	字;		
	[3:0] RW		pdm_ctrl_h		在手动 agc 模式下,可配置的 agc 控制字的高 4 位。						

TR_CTRL1

TR_CTRL1 为 tr 控制寄存器。

		Off	fset Ad	dress		Register Name			Total Reset Value		
			0x40	ı		TR_C	TRL1	0x21			
Bit	7			6	5 4 3			2	1	0	
Name				rese	rved	dagc_bypass			dagc_speed		
Reset	0			0	1	0	0	0	0	1	
	Bits	Acc	ess	s Name		Description					
	[7:4]	-		reserved		保留。					
	[3]	RW dag			oypass	数字 agc 旁罩 1:数字 agc 0:数字 agc	不工作;				
	[2:0]	2:0] RW dagc_			need	数字 agc 调整 数字越大调量					

DAGC_STD

DAGC_STD 为 dagc 控制寄存器。

		Of	fset Ad	dress		Registe	r Name		Total Reset Value		
			0x41			DAGC	_STD		0x20		
Bit	7			6	5	4	3	2	1	0	
Name						dago	e_std				
Reset	0	0 0 1				0 0 0 0					
	Bits	Bits Access Name				Description					
	[7:0]	7:0] RW dagc_std			std	数字 agc 调整后的幅度均值。 数字越大幅度越大。					

TR_MONITOR

TR_MONITOR 为 tr 监控寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x43			TR_MO	NITOR		0x00			
Bit	7		(6	5	4	3	2	1	0		
Name	tr_ok	_			reserved							
Reset	0				0	0	0	0	0	0		
	Bits	s Access		ss Name		Description						
	[7]] RO 1		tr_ok		定时锁定指元 1: 定时锁定 0: 定时未锁	·.;					
	[6:0]	0] - reserved			ed	保留。						

CNT_THRESH

CNT THRESH 为 tr 等待时间寄存器。

		Of	fset Ad 0x44			Register CNT_TI			Total Reset Value 0x10		
Bit	7			6	5	4	3	2	1	0	
Name						cnt_t					
Reset	0			0	0	1	0	0	0	0	
	Bits Access N			Name		Description					
	[7:0] RW ent			ent_th	resh	锁定检测入键数字越大等征					

FS_L

FS_L 为符号率低位寄存器。

		Of	fset Ad	dress		Register	Name		Total Reset Value		
			0x46			FS_	L		0x10		
Bit	7		(6	5	4	3	2	1	0	
Name						fs	_1				
Reset	0		(0	0	1	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:0] RW fs_l					符号率低位,1LSB=1kHz,无符号数。					

FS_H

FS_H 为符号率高位寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x47			FS_	_H		0x27			
Bit	7		· ·	6	5	4	3	2	1	0		
Name						fs	_h					
Reset	0		(0	1	0	0	1	1	1		
	Bits	Aco	cess	Name		Description						
	[7:0] RW fs_h					符号率高位,1LSB=1kHz,无符号数。						

CENT_FREQ_L

CENT_FREQ_L 为载波频率低位寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x48			CENT_F	REQ_L		0x00		
Bit	7		(6	5	4	3	2	1	0	
Name						cent_	freq_1				
Reset	0	0 0 0				0	0	0	0	0	
	Bits	Bits Access Name				Description					
	7:0] RW cent_freq_l				req_l	载波中心频率					

CENT_FREQ_H

CENT_FREQ_H 为载波频率高位寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x49			CENT_F	REQ_H		0x00		
Bit	7		(6	5	4	3	2	1	0	
Name						cent_freq_h					
Reset	0			0	0	0	0	0	0	0	
	Bits Access Name Description										
	[7:0]	RW	7	cent_fi	req_h	载波中心频率高位,1LSB=1kHz,有符号数。					

FS_OFFSET_FC_L

FS_OFFSET_FC_L 为符号率偏差低位寄存器。

		Of	fset Ad	ldress		Register	r Name		Total Reset Value		
			0x4C	2		FS_OFFSI	ET_FC_L		0x00		
Bit	7			6	5	4	3	2	1	0	
Name						fs_offs	et_fc_l				
Reset	0			0	0	0	0	0	0	0	
	Bits	Bits Access Name				ame Description					
	7:0] RO fs_offset_fc_l					归一化到系统时钟上的符号率偏差低位,有符号数,实际一化偏差为 fs_offset_fc/2^22。					

FS_OFFSET_FC_H

FS_OFFSET_FC_H 为符号率偏差高位寄存器。

		Of	fset Ad	dress		Register	Name		Total Reset Value			
			0x4D)		FS_OFFSI	ET_FC_H		0x00			
Bit	7			6	5	4	3	2	1	0		
Name						fs_offs	et_fc_h					
Reset	0	0 0				0 0 0 0						
	Bits	its Access Na				Description						
	[7:0] RO fs_o			fs_offs						女,实际归		

FREQ_OFFSET_FC_L

FREQ_OFFSET_FC_L 为频率偏差低位寄存器。

		Of	ffset Ad	dress		Register	Name	Total Reset Value			
			0x4E			FREQ_OFF	SET_FC_L		0x00		
Bit	7		(6	5	4	3	2	1	0	
Name						freq_off	set_fc_l	fc_l			
Reset	0	0			0	0	0	0	0	0	
	Bits	Bits Access		Name		Description					
	[7:0] RO			freq_o	ttcat to I	归一化到系统时钟上的载波频率偏差低位,有符号数,实际归一化偏差为 freq_offset_fc/2^17。					

FREQ_OFFSET_FC_H

FREQ_OFFSET_FC_H 为频率偏差高位寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x4F	•		FREQ_OFF	SET_FC_H		0x00			
Bit	7			6	5	4	3	2	1	0		
Name						freq_off	set_fc_h					
Reset	0			0	0	0 0 0 0 0						
	Bits Access			Name		Description						
	[7:0]	RO		freq_o	ttset to h	归一化到系统时钟上的载波频率偏差高位,有符号数,实际归一化偏差为 freq_offset_fc/2^17。						

PLH_SYNC_1

PLH_SYNC_1 为帧同步控制寄存器 1。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x50			PLH_SY	YNC_1		0x4F		
Bit	7		(6	5	4	3	2	1	0	
Name				plh_sy	/nc_th	reserved					
Reset	0			1	0	0	1	1	1	1	
	Bits	Aco	cess	Name		Description					
	[7:4] RW plh_sync_th					帧同步进入同 也越容易假同		度计数门限	。值越小越快	快同步,但	
	[3:0] - reserved					保留。					

PLH_SYNC_2

PLH_SYNC_2 为帧同步控制寄存器 2。

	Offset Address					Register	r Name	Total Reset Value			
	0x51					PLH_S	YNC_2	0x49			
Bit	7	7		6	5	4	3	2	1	0	
Name	plh_lost_th						plh_am_th				
Reset	0	0		1	0	0	1	0	0	1	
	Bits Access Name Desc					Description	Description				
	7:4] RW plh_lost_th		of th	连续丢失的帧个数。值越小越快判断失锁,但也越容易假失锁。							

[3:0]	RW	Inlham th	帧同步时幅度相关门限。 能越慢。	值越小帧同步能力越强,	但同步可
-------	----	-----------	---------------------	-------------	------

CR_CTRL_SW

CR_CTRL_SW 为 cr 控制寄存器。

		Ot	ffset Add	lress		Register Name CR_CTRL_SW			Total Reset Value 0x3F				
Bit	7		6		5	4	3	2	1	0			
Name	cr_crfb_	fb_bypass ccm_dummy denbi_byp				use_intp	reserved	use_pulse_det	scan_auto	cr_bw_auto			
Reset	0 0 1				1	1	1	1	1	1			
	Bits	Ac	cess]	Name		Description							
	[7]	RW	V (er_erft	o_bypass	是否允许载》 1: 不许载波 0: 允许载波	频差慢反馈。)					
	[6]	RW	V	ccm_d	ummy	是否允许 CCM 中有空帧。 1: 允许 CCM 中有空帧。 0: 不许 CCM 中有空帧。							
	[5]	[5] RW denbi_bypass					是否关闭去窄带干扰模块。 1:关闭去窄带干扰模块。 0:打开去窄带干扰模块。						
	[4] RW use_intp					是否利用导频进行载波相位内插。 1: 利用导频进行载波相位内插。 0: 不用导频进行载波相位内插。							
	[3]	-	1	reserve	ed	保留。							
	[2] RW use_pulse_det					是否进行脉冲干扰检测。 1: 进行脉冲干扰检测。 0: 不进行脉冲干扰检测。							
	[1]	RW	Į s	scan_a	uto	是否自动设置 1:自动设置 0:人为设置	载波扫频步	长。					

			是否自动设置载波恢复带宽。
[0]	RW	cr_bw_auto	1: 自动设置载波恢复带宽。
			0: 人为设置载波恢复带宽。

SCAN_STEP_L

SCAN_STEP_L 为扫频速度寄存器。

	Offset Address 0x53					Register Name SCAN_STEP_L			Total Reset Value 0x64		
Bit	7		(6	5	4	3	2	1	0	
Name		scan_step_1									
Reset	0		1		1	0 0		1	0	0	
	Bits	Aco	cess	Name		Description					
	[7:0] RW scan_step_l 人为				人为设置扫频	为设置扫频速度,低8位,共12位。					

SCAN_STEP_FB

SCAN_STEP_FB 为扫频控制寄存器。

		Of	fset Ad			Register Name SCAN_STEP_FB			Total Reset Value 0x30		
Bit	7		(6	5	4	3	2	1	0	
Name	reserved	1			fb_speed		scan_step_h				
Reset	0		()	1	1	0	0	0	0	
	Bits	Aco	ccess Name			Description					
	[7]	-		reserve	ed	保留。					
	[6:4]	RW	fb_speed			载波频率慢反馈的速度控制。					
	[3:0]	RW	ī	scan_s	tep_h	人为设置扫频速度,高4位,共12位。					

SCAN_ADJUST

SCAN_ADJUST 为自动扫频速度寄存器。

	Offset Address 0x55					Register			Total Reset Value 0x18		
Bit	7			6	5	4 3 2		2	1	0	
Name		rese	rved		scan_adjust						
Reset	0	0 0		0	0	1 1		0	0	0	
	Bits	s Access Name		Name		Description					
	[7:6] - reserv		reserve	ed 保留。							
	[5:0] RW scan_a			scan_a	djust	自动载波扫频的速度调节。					

CR_ZUNI_WAIT

CR_ZUNI_WAIT 为载波控制寄存器。

	Offset Address					Register	Name		Total Reset Value		
	0x56					CR_ZUNI_WAIT			0x8B		
Bit	7 6			6	5	4 3		2	1	0	
Name	cr_zuni					cr_lock_wait					
Reset	1	1		0	0	0	1	0	1	1	
	Bits	Aco	cess	Name		Description					
	[7:5] RW cr_zuni			i	载波恢复 PLL 的稳态阻尼。						
	[4:0] RW cr_lock_wait			载波锁定的等待时间选择。							

CR_BW_ADJUST

CR_BW_ADJUST 为载波带宽控制寄存器。

	Offset Address					Register Name			Total Reset Value		
			0x57			CR_BW_ADJUST			0x20		
Bit	7		(6	5	4	3	2	1	0	
Name		resei	rved		bw_adjust						
Reset	0		0		1	0	0	0	0	0	
	Bits	Access Name				Description					
	[7:6]	7:6] - reserv			ed	保留。					

[5:0]	RW	bw_adjust	载波恢复的带宽调整。
-------	----	-----------	------------

CR_BW_MAX

CR_BW_MAX 为载波最大带宽控制寄存器。

		Of	fset Ad			Register			Total Reset Value		
			0x58			CR_BW	_MAX		0xFF		
Bit	7	6			5	4	3	2	1	0	
Name	cr_bw_max										
Reset	1		1		1	1	1	1	1	1	
	Bits Access Name					Description					
	[7:0] RW		7	cr_bw_max		该值*32 作为芯片内部实际使用的最大带宽。					

CR_BW_SET

CR_BW_SET 为载波带宽控制寄存器。

		Offs	set Address		Register	r Name		Total Reset Value		
			0x59		CR_BW_SET			0x1F		
Bit	7		6	5	4	3	2	1	0	
Name			cr_bw_exp		cr_bw_coef					
Reset	0		0	0	1 1		1	1	1	
	Bits	Acce	ess Name	9	Description					
	[7:5] RW cr_b			_exp	带宽的指数部分。					
	[4:0] RW cr_bw_coef				带宽的小数部分,实际带宽=cr_bw_coef*2^cr_bw_exp。					

CR_CN

CR_CN 为载波 CN 值寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x5A			CR_	CN	0x00			
Bit	7		6		5	4	3	2	1	0	
Name						cr_	cn				
Reset	0		0		0	0	0	0	0	0	
	Bits	Acc	cess Name		e Description						
	[7:0]	RO cr_cn			CR 处的 CN 值,限幅到 255, LSB=0.1875dB。						

CR_STATE

CR_STATE 为载波状态寄存器。

		Of	ffset Ad	dress		Register	r Name	Total Reset Value			
			0x5B			CR_ST	ГАТЕ	0x00			
Bit	7		(5	5	4 3 2 1			1	0	
Name					reserved	erved			scan_ok	sync_ok	
Reset	0				0	0	0	0	0	0	
	Bits	ts Access		Name		Description					
	[7:3]			reserve	ed	保留。					
	[2]	-				载波恢复完成。					
	[1]	RO scan_ok			k	载波扫频完成	龙 。				
	[0]	RO sync_ok				帧同步完成。					

PLS_CODE

PLS_CODE 为 pls_code 寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x5C	2		PLS_C	CODE		0x00			
Bit	7			6	5	4 3 2 1 0						
Name	reserved	d				pls_code						
Reset	0			0	0	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7] - reserved				ed	保留。						

[6:0]	RO	hls code	DVB-S2 的 PLS_CODE,高 5 位为 MODCOD,低 2 位为 TYPE。	
-------	----	----------	---	--

FREQ_INV

FREQ_INV 为频谱反转寄存器。

		Of	fset Ad 0x5E			Register FREQ		Total Reset Value 0x02			
Bit	7			6	5	4	3	2	2 1		
Name						reserved					
Reset	0			0	0	0	0	0	1	0	
	Bits	ts Access Name				Description					
	[7:1]	-		reserve	ed	保留。					
	0] RO freq_inverse					是否为频谱反转,仅在 DVB-S2 下有效。					

CR_ZUNI_BW_L

CR_ZUNI_BW_L 为载波带宽寄存器。

		Of	fset Ad	dress		Register Name			Total Reset Value			
			0x5E	,		CR_ZUN	I_BW_L		0x00			
Bit	7		(6	5	4	3	2	2 1 0			
Name						cr_zun	i_bw_l					
Reset	0		(0	0	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RO cr_zuni_bw_l					阻尼和带宽积的低 8 位(共 13 位)。						

CR_ZUNI_BW_H

CR_ZUNI_BW_H 为载波带宽寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x5F	•		CR_ZUNI_BW_H			0x00		
Bit	7			6	5	4	3	2	1	0	
Name			rese	rved		cr_zuni_bw_h					
Reset	0 0			0	0	0 0 0					
	Bits	Ac	cess Name			Description					
	[7:5]	7:5] - reserved			ed	保留。					
	[4:0] RO cr_zuni_bw_h			i_bw_h	阻尼和带宽积的高 5 位(共 13 位)。						

SYNC_FREQ_L

SYNC_FREQ_L 为帧同步频率寄存器。

		Of	fset Ad			Register		Total Reset Value				
,			0x60			SYNC_F	REQ_L		0x00			
Bit	7	7 6				4 3 2 1						
Name						sync_	freq_1					
Reset	0 0				0	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RO sync_freq_1				req_l	帧同步频率估计的低 8 位(共 12 位), LSB=2^-12 * fs。						

SYNC_FREQ_H

SYNC_FREQ_H 为帧同步频率寄存器。

		Offset A	Address		Register	r Name	Total Reset Value				
		0x	61		SYNC_F	REQ_H	0x80				
Bit	7		6	5	4	3	3 2 1				
Name			rese	rved			sync_freq_h				
Reset	1		0	0	0	0 0 0					
	Bits	Access	Name		Description						
	[7:4]	-	reserv	ed	保留。						
	[3:0] RO sync_freq_h				帧同步频率估计的高 4 位(共 12 位), LSB=2^-4 * fs。						

SCAN_FREQ_L

SCAN_FREQ_L 为扫频频率寄存器。

		Off	fset Ad	dress		Register	r Name	Total Reset Value				
			0x62			SCAN_F	REQ_L		0x00			
Bit	7		(6	5	4	3	2	2 1 0			
Name						scan_	freq_1					
Reset	0		(0	0	0	0	0	0	0		
	Bits	Acc	ess	Name		Description						
	[7:0]	RO		scan_f	req_l	扫频频率的低 8 位(共 16 位),LSB=2^-16 * fs。						

SCAN_FREQ_H

SCAN_FREQ_H 为扫频频率寄存器。

		Of	fset Ad	dress		Register		Total Reset Value				
,			0x63			SCAN_F	REQ_H	0x00				
Bit	7	7 6				4	3	2	0			
Name						scan_1	freq_h					
Reset	0 0				0	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RO scan_freq_h			req_h	扫频频率的高 8 位(共 16 位),LSB=2^-8 * fs。							

FREQ_ACC_L

FREQ_ACC_L 为载波频差慢反馈寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x64			FREQ_A	ACC_L	0x 0 0			
Bit	7 6 5				5	4	3	2	1	0	
Name						freq_	acc_l				
Reset	0 0				0	0	0	0	0	0	
	Bits Access Name					Description					
	7:0] RO freq_acc_l					载波频差慢速反馈量的低 8 位(共 16 位), LSB=2^-16 *					

FREQ_ACC_H

FREQ_ACC_H 为载波频差慢反馈寄存器。

		Of	fset Ad 0x65			Register FREQ_A			Total Reset Value 0x00			
Bit	7 6 5				5	4	3	2	1	0		
Name						freq_acc_h						
Reset	0 0			0	0	0	0	0	0			
	Bits Access Name					Description						
	[7:0] RO freq_acc_h					载波频差慢速反馈量的高 8 位(共 16 位), LSB=2^-8 * fs。						

TR_FREQ_FB_L

TR_FREQ_FB_L 为载波频差 tr 反馈寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x66			TR_FRE	Q_FB_L	0x00				
Bit	7		(6	5	4	3	2	1	0		
Name						tr_free	q_fb_l					
Reset	0		(0	0	0 0 0 0						
	Bits Access Name Description											
	[7:0] RO tr_freq_fb_l					载波频差反馈到 TR 的低 8 位(共 16 位), LSB=2^-16 * fs。						

TR_FREQ_FB_H

TR_FREQ_FB_H 为载波频差 tr 反馈寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x67			TR_FRE	Q_FB_H	0x00			
Bit	7	7 6 5				4	3	2	1	0	
Name						tr_free	լ_fb_h				
Reset	0	0 0 0				0	0	0	0	0	
	Bits	s Access Name				Description					
	[7:0]	7:0] RO tr_freq_fb_h			_fb_h	载波频差反馈到 TR 的高 8 位(共 16 位), LSB=2^-8 * fs。					

CR_LOOP_DC_L

CR_LOOP_DC_L 为载波 PLL 控制字寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x68			CR_LOO	P_DC_L		0x00			
Bit	7	7 6 5				4	3	2	1	0		
Name						cr_loo	p_dc_l					
Reset	0			0	0	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	7:0] RO cr_loop_dc_l			p_dc_l	载波 PLL 控制字的低 8 位(共 16 位), LSB=2^-20 * fs				* fs 。			

CR_LOOP_DC_H

CR_LOOP_DC_H 为载波 PLL 控制字寄存器。

		Of	ffset Ad	dress		Register	Name	Total Reset Value				
			0x69			CR_LOO	P_DC_H		0x 0 0			
Bit	7		(6	5	4	3	2	1	0		
Name						cr_loop	o_dc_h					
Reset	0			0	0	0 0 0 0						
	Bits	Ac	cess	Name		Description						
	[7:0]	7:0] RO cr_loop_dc_h				载波 PLL 控制字的高 8 位(共 16 位), LSB=2^-12 * fs。						

CHIP_ID_0

CHIP_ID_0 为芯片 ID 寄存器 0。

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x6C			CHIP_	ID_0	0x00			
Bit	7		(5	5	4	3	2	1	0	
Name						chip_	_id0				
Reset	0		()	0	0	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	7:0] RO chip_id_0					芯片 ID 的最	低8位,共	32位。			

CHIP_ID_1

CHIP_ID_1 为芯片 ID 寄存器 1。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x6D)		CHIP_	_ID_1	0x01			
Bit	7			6	5	4	3	2	1	0	
Name						chip_	_id_1				
Reset	0		(0	0	0	0	0	0	1	
	Bits	Aco	cess	Name	:	Description					
	[7:0] RO chip_id_1					芯片 ID 的次低 8 位, 共 32 位。					

CHIP_ID_2

CHIP_ID_2 为芯片 ID 寄存器 2。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x6E	,		CHIP_	_ID_2		0x36			
Bit	7		(6	5	4	3	2	1	0		
Name						chip_	_id_2					
Reset	0		(0	1	1	1 0 1 1 0					
	Bits	Aco	cess	Name								
	[7:0] RO chip_id_2					芯片 ID 的次高 8 位, 共 32 位。						

CHIP_ID_3

CHIP_ID_3 为芯片 ID 寄存器 3。

		Of	fset Ad	dress		Register	Name	Total Reset Value				
			0x6F			CHIP_	_ID_3		0x31			
Bit	7		(6	5	4	3	2	1	0		
Name						chip_id_3						
Reset	0	0 0 1				1	0	0	0	1		
	Bits	its Access Name				Description						
	[7:0] RO chip_id_3			d_3	芯片 ID 的最高 8 位, 共 32 位。							

EQU_CTRL

EQU_CTRL 为均衡控制寄存器。

		Of	fset Ad	ldress		Registe	r Name		Total Reset Va	lue		
			0x70)		EQU_	CTRL		0x06			
Bit	7			6	5	4	3	2	1	0		
Name	equ_hol	d	equ_1	oypass		reserved		blind_step				
Reset	0			0	0	0	1	0				
	Bits	Aco	cess	Name	;	Description						
	[7]	RW	7	equ_ho	old	保持当前均征 1:保持; 0:不保持。	新器系数 。					
	[6] RW equ			equ_b	ypass	旁路均衡器运算。1: 旁路;0: 不旁路。						
	[5:3]	-		reserve	ed	保留。						
	[2:0]	RW	7	blind_	step	盲均衡步长,每增加1,步长乘以2。						

LMS_STEP

LMS_STEP 为均衡步长控制寄存器。

		Of	fset Ad 0x71			Register Name Total Reset Value LMS_STEP 0x02						
Bit	7			6	5	4	3	2	1	0		
Name					reserved			lms_step_4_8				
Reset	0	0			0	0	0	0	1	0		
	Bits					Description						
	[7:3]	7:3] -		reserved		保留。						
	[2:0]	RW	I	lms_st	ep_4_8	LMS 均衡在 2。	LMS 均衡在 QPSK/8PSK 模式的步长,每增加 1,步长乘以 2。					

CN_CTRL

CN_CTRL 为噪声功率统计控制寄存器。

		Offse	et Address			er Name	Total Reset Value					
			0x75		CN_	CTRL		0x48				
Bit	7		6	5	4	3	2	1	0			
Name		reserve	ed	bypass_cnr_est	nois	se_sta		reserved				
Reset	0		1	0	0	1	0	0	0			
	Bits	Acce	ss Name		Description	Description						
	[7:6]	-	reserve	ed	保留。							
					是否旁路 CNR 估计模块。							
	[5]	RW	bypass	_cnr_est	1:旁路;							
					0: 不旁路。							
					噪声功率统计的平均次数。							
					00:64次;							
	[4:3]	RW	noise_	sta	01: 128 次;							
					10: 256 次;							
					11: 512 次。							
	[2:0]	-	reserve	ed	保留。							

EQU_TAP_REAL

EQU_TAP_REAL 为均衡抽头实部寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x76			EQU_TA	P_REAL		0x 0 0			
Bit	7			6	5	4	3	2	1	0		
Name						equ_ta	p_real					
Reset	0			0	0	0 0 0 0						
	Bits	Aco	cess	Name		Description						
	[7:0] RW ec			equ_ta	n real	准备写入第 n 个抽头的实部,或者是从第 n 个抽头读出的实部;读或者写由 rd_wr_tap 控制。						

EQU_TAP_IMAG

EQU_TAP_IMAG 为均衡抽头虚部寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x77			EQU_TA	P_IMAG		0x00			
Bit	7		(6	5	4	3	2	1	0		
Name						equ_tap	o_imag					
Reset	0		0		0	0 0		0	0	0		
	Bits Acces		cess	ss Name		Description						
	[7:0] RW		7	equ_ta	n imag	准备写入第1部;读或者写	人读出的虚					

EQU_TAP_SEL

EQU_TAP_SEL 为抽头选择寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x78			EQU_TA	AP_SEL	0x01				
Bit	7			6	5	4 3 2			1	0		
Name					equ_ta	equ_tap_sel				reserved		
Reset	0		(0	0	0 0 0						
	Bits	Sits Access Na				Description						
	[7:2]	RW	Ī	equ_ta	n col	无符号值表示选择第 n 个抽头进行读写,如果值大于实 头数,表示选择最后一个抽头。						
	[1:0]	-		reserve	ed	保留。						

XREG_INIT_LOW

XREG_INIT_LOW 为均衡控制寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x7A			XREG_IN	IT_LOW		0x01			
Bit	7	7 6			5	4	3	2	1	0		
Name						xreg_ir	nit_low					
Reset	0	0		0 0		0	0	0	0	1		
	Bits	Bits Access		Name		Description						
	[7:0] RW xreg_init			nit_low xreg_init 低 8 位。								

XREG_INIT_MID

XREG_INIT_MID 为均衡控制寄存器。

	Offset Address					Register	r Name	Total Reset Value			
			0x7B	l		XREG_IN	NIT_MID	0x 0 0			
Bit	7 6			6	5	4	3	2	1	0	
Name						xreg_init_mid					
Reset	0	0		0 0		0	0	0	0	0	
	Bits Access		Name		Description						
	[7:0] RW		xreg_i	nit_mid	xreg_init 中 8 位。						

XREG_INIT_HI

XREG_INIT_HI 为均衡控制寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x7C			XREG_INIT_HI			0x60		
Bit	7		(5	5	4 3 2 1				0	
Name			rese	rved		ffe_step			xreg_	init_hi	
Reset	0			1	1	0	0	0	0	0	
	Bits	Bits Access				Description					
	[7:5]	-		reserved		保留。					
	[4:2] RW			itte sten		均衡 FFE 部 增加 1 表示				长相同,每	
	[1:0]	RW	T	xreg_i	nit_hi	xreg_init 高 2 位。					

RD_WR_TAP

RD_WR_TAP 为抽头控制寄存器。

		Of	fset Ad 0x7E			Register Name RD_WR_TAP			Total Reset Value 0x82			
Bit	7			6	5	4 3 2 1 0						
Name			rese	rved		rd_wr_tap	reserved		lms_step_16_32	2		
Reset	1			0 0		0	0	0	1	0		
	Bits	Acc	cess	Name		Description						
	[7:5]	-		reserve	ed	保留。						
	[7:5] -			rd_wr_	_tap	读写均衡器抽头控制。 0: 读第 n 个抽头值输出到 0x76/0x77 寄存器中, n 由 equ_tap_sel 指定; 1: 写 0x76/0x77 寄存器中的值到第 n 个抽头中, n 由 equ_tap_sel 指定。						
	[3]	-		reserve	ed	保留。						
	[2:0]	RW	r	lms_st	ep_16_32	LMS 均衡在 乘以 2。	16APSK/32	APSK 模式的	步长,每增	加 1,步长		

NOISE_POW_L

NOISE_POW_L 为噪声功率低位寄存器。

		Of	fset Ad 0x7E			Register NOISE 1		Total Reset Value 0x00			
			UX/E			NOISE_I	POW_L		UXUU		
Bit	7	7 6			5	4	3	2	1	0	
Name						noise_	pow_l				
Reset	0	0)	0	0 0		0	0	0	
				Name		Description					
	[7:0] RO noise_pow_l			pow_l	输出给用户的						

NOISE_POW_H

NOISE_POW_H 为噪声功率高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x7F	•		NOISE_1	POW_H		0x00			
Bit	7	, 0				4 3 2 1						
Name	cnr_est_ok					noise_pow_h						
Reset	0		0		0 0 0		0	0	0	0		
	Bits	Aco	cess Name			Description						
	[7] RO cnr		cnr_es	t_ok	CNR 估计完成。							
	[6:0] RO noise			noise_	pow_h	输出给用户的	的噪声功率统	迁计高 7bits。				

LDPC_ITER

LDPC_ITER 为 ldpc 迭代控制寄存器。

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0x82			LDPC_	_ITER		0x50		
Bit	7		(5	5	4	3	2	1	0	
Name	fix_iter iter_num_			m_man	iter_num						
Reset	0		1	1	0	1	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7] RW		7	fix_ite	r	指示配置固定 1: 固定最大 0: 自动精确					

[6]	RW	iter_num_man	指示手动配置最大迭代次数。 1: 手动配置最大迭代次数; 0: 自动简略配置最大迭代次数。
[5:0]	RW	iter_num	手动精确配置的最大迭代次数值。

BER_CTRL

BER_CTRL 为 ber 控制寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x83	i		BER_CTRL			0xB5			
Bit	7			6	5	4 3 2 1				0		
Name	1 -				frame_num		rst_frn	n_num	rst_er	r_num		
Reset	l Bits Access			0	1	1	0	1	0	1		
	Bits Access			Name		Description						
	[7] RW st			stop_s	el		代停止。 选代停止; 大迭代次数(亭止。				
	[6:4]	RW	7	frame_	num	统计 BER 周期长度。						
	[3:2] RW			rst_frn	n_num	自复位统计总帧数。						
				rst_err	num	自复位正确帧比例,值越大,正确帧占总帧数之比越高,当正确帧与总帧数之比小于该比例时 fec 自复位。						

FEC_BER_L

FEC_BER_L 为 ber 低位寄存器。

		Of	ffset Ad	dress		Register	Name	Total Reset Value			
			0x84			FEC_B	ER_L	0x00			
Bit	7 6 5			5	4	3	2	2 1 0			
Name						fec_l	per_l				
Reset	0	0		0 0		0	0	0	0	0	
	Bits Access Name			Name		Description					
	[7:0] RO fec_ber_l			r_l	BER 统计的低 8 位。						

FEC_BER_H

FEC_BER_H为ber高位寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x85			FEC_B	ER_H		0x 0 0		
Bit	7	7 6			5	4	3	2	0		
Name	fec_ber_h										
Reset	0 0		0	0 0 0 0							
	Bits	Bits Access Name				Description					
	[7:0] RO fec_ber_h			r_h	BER 统计的高 8 位。						

FEC_FER_L

FEC_FER_L为 fer 低位寄存器。

		Of	fset Ad			Register		Total Reset Value			
			0x86			FEC_F	ER_L	0x00			
Bit	7	7 6 5			5	4	3	2	2 1 0		
Name	fec_fer_l										
Reset	0	0 0 0			0	0 0 0 0					
	Bits	Bits Access Name				Description					
	[7:0] RO fec_fer_l			:_1	错误帧数统计的低8位。						

FEC_FER_H

FEC_FER_H为fer高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x87			FEC_F	ER_H		0x 0 0		
Bit	7	7 6			5	4	3	2	1	0	
Name						fec_t	fer_h				
Reset	0	0 0		0 0		0 0 0 0				0	
	Bits	its Access Nam		Name		Description					
	[7:0]	7:0] RO fec_fer_h			r_h	错误帧数统计	十的高8位。				

S2_SUCCESS

S2_SUCCESS 为 s2 译码成功寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value	
			0x88			S2_SUC	CCESS		0x00	
Bit	7		(5	5	4	3	2	1	0
Name					iter_	num			bch_cancorr	ldpc_badly
Reset	0				0	0	0	0	0	0
	Bits					Description				
	[7:2]			iter_num		LDPC 实际译码迭代次数的一半。				
	[1] RO			bch_cancorr		指示 BCH 译码成功。 1:译码成功; 0:译码失败。				
	[0] RO I			ldpc_b	adly	指示 LDPC i 1:LDPC 译 0:LDPC 译	码失败;			

VTB_CTRL1

VTB_CTRL1 为 vtb 控制寄存器。

		Of	fset Ad 0x89			Register VTB_C	Total Reset Va	ılue				
Bit	7		(5	5	4	3	2	1	0		
Name	iq_swap_n	nod	iq_swa	ıp_man	vtb_search_mo d	vtb_sea	rch_per		vtb_rate_man			
Reset	0		()	0	0	1	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7] RW		7	iq_swap_mod		指示 IQ 反转 1:手动搜索 0:自动搜索	模式;					
	[6] RW		7	iq_swap_man		手动指示 IQ 反转。 1: IQ 反转; 0: IQ 不反转。						
	[5]	RW	7	vtb_search_mod		指示 vtb 码率 1: 手动设置 0: 自动搜索	搜索码率模	式;				
	[4:3]	RW	I	vtb_se	arch_per	指示 Vtb 搜索	索周期。					
	[2:0] RW		7	vtb_ra	te_man	指示 vtb 手刻000: 1/2; 000: 2/3; 010: 3/4; 011: 5/6; 100: 7/8; 101: 6/7; 其它: 保留。						

VTB_THRES

VTB_THRES 为 vtb 搜索控制寄存器。

		Offse	et Address		Register	r Name	Total Reset Value			
		(0x8A		VTB_T	HRES		0x22		
Bit	7		6	5	4	3	2	1	0	
Name			vtb_lo	ck_th			vtb_loss_th			
Reset	0		0	1	0	0	0	1	0	
	Bits	Acces	ss Name		Description					
	[7:4] RW		vtb_loc	vtb_lock_th		Vtb 搜索锁定门限。				
	[3:0]	RW	vtb_los	ss_th	Vtb 搜索失钞	近门限。				

VTB_CTRL2

VTB_CTRL2 为 vtb 控制寄存器。

		Offset Ac			Register Name VTB_CTRL2			Total Reset Value 0x38			
Bit	7		6	5	4	3	2	1	0		
Name			vtb_to	out_th		vtb_lock_mod	vtb_adjust_ma n	vtb_a	ıdjust		
Reset	0		0	1	1	1	0	0	0		
	Bits	Access	Name		Description						
	[7:4]	RW	vtb_to	ut_th	Vtb 搜索超时门限。						
				ck_mod	Vtb 搜索锁定 1: 锁定后不 0: 锁定后继	再失锁;	i e				
	[2]	RW	vtb_ad	just_man	Vtb 输入信号 1: 手动调整 0: 自动根据		度;	干关。			
	[1:0]	RW	vtb_ad	11101	Vtb 输入信号 时有效,值起		强度的系数, 计调的越大。	当 vtb_adju	st_man 为 1		

FS_CTRL1

FS_CTRL1 为 s 帧同步控制寄存器。

		Of	fset Ad 0x8C			Registe FS_C			Total Reset Value 0xA9				
it	7		(6	5	4	3	2	1	0			
me	fs_corr_e	en		fs_loc	ck_th	fs_loss_th fs_search_mod fs_direc_man rs_corr_en							
set	1		(0	1	0	1	0	0	1			
	Bits	Aco	cess	Name		Description							
	[7]	RW	Ī	fs_corr	_en	指示 Fs 帧头 1:对帧头进 0:不对帧头	芒行纠错;						
	[6:5] RW fs_lock_th					指示 fs 锁定	门限。						
	[4:3]	RW	7	fs_loss	_th	指示 fs 失锁	门限。						
	[2] RW fs_loss_th [2] RW fs_search_mod					指示 fs 搜索模式。 1: 手动搜索模式; 0: 自动搜索模式。							
	[1] RW fs_direc_man					指示搜索 directv 模式。 1: 手动设置搜索 directv 模式; 0: 手动设置搜索 dvbs 模式。							
	[0] RW rs_corr_en					指示 RS 纠错使能。 1: RS 进行纠错; 0: RS 不进行纠错。							

FS_CTRL2

FS_CTRL2 为 s 帧同步控制寄存器。

		Of	fset Ad 0x8D			Register FS_C			Total Reset Value 0x5A		
Bit	7			6	5	4 3		2	1	0	
Name	f	fs_sear_th			fs_mod	trans_th	fs_tout_th		ber_en	ber_clear	
Reset	0			1		1	1	0	1	0	
	Bits	Ac	cess	Name		Description					
	[7:6] RW fs_se			fs_sea	r_th	Fs 按模式搜集	搜索次数门限。				
	[5:4] RW fs_mo			fs_mo	dtrans_th	Fs 搜索一种模式的帧数门限。					

[3:2]	RW	fs_tout_th	Fs 搜索超时门限。
[1]	RW	ber_en	BER 统计使能。 1: BER 统计; 0: BER 不统计。
[0]	RW	ber_clear	BER 统计清零。 1: 清除 BER 统计结果; 0: 不清除 BER 统计结果。

SEAR_RESULT

SEAR_RESULT 为 s 搜索结果寄存器。

		Offset A			Register Name SEAR_RESULT			Total Reset Value 0x00		
Bit	7		6	5	4	3	2	1	0	
Name			rese	rved	vtb_rate			ir_directv		
Reset	0		0	0	0 0 0 0					
	Bits	Access	Name	2	Description					
	7:4] -		reserved		保留。					
	[3:1]	RO	vtb_ra	te	Vtb 搜索码率 000: 1/2; 001: 2/3; 010: 3/4; 011: 5/6; 100: 7/8; 101: 6/7; 其它: 保留。					
	[0] RO		ir_dire	ectv	指示是否为(1: DirecTV 0: DVBS 模	模式;				

DEC_RESULT

DEC_RESULT 为 s 译码结果寄存器。

		Offset A			Register DEC_R			Total Reset Value 0x41			
Bit	7		6	5	4	3	2	1	0		
Name	rst_v	/cm_err_r	um	vtb_tout	fs_tout	vtb_lock	iq_swap	fs_lock	rs_cancorr		
Reset	0		1	0	0	0	0	0	1		
	Bits	Access	Name		Description						
	[7:6]	RW	rst_vc	m_err_num	VCM 模式下自复位正确帧比例,值越大,正确率越高						
	[5]	RO	vtb_to	ut	指示 Vtb 搜索 1: vtb 搜索 0: vtb 搜索	迢时;					
	[4]	RO	fs_tou	t	指示 fs 搜索超时。 1: fs 搜索超时; 0: fs 搜索未超时。						
	[3]	RO	vtb_lo	ck	指示 vtb 搜索锁定。 1: vtb 搜索锁定; 0: vtb 搜索未锁定。						
	[2]	RO	iq_swa	ap	指示 IQ 反转。 1: IQ 反转; 0: IQ 未反转。						
	[1]	RO	fs_loc	ζ.	指示 fs 搜索锁定。 1: fs 搜索锁定; 0: fs 搜索未锁定。						
	[0]	RO	rs_can	corr	指示 RS 译码 1: RS 译码句 0: RS 译码句	昔误;					

TS_PARALL_CTRL

TS_PARALL_CTRL 为 ts 输出选择寄存器。

			Address x90		Register Name Tot TS_PARALL_CTRL			Total Reset Va 0x6A	otal Reset Value 0x6A		
Bit	7		6	5	4	3	2	1	0		
Name	c_isi_resea	rch r	reserved	ts_parall	ts_serial2 ts_a_sel						
Reset	0		1	1	0	1	0	1	0		
	Bits	Access	Name		Description						
	[7]	RW	c_isi_r	research	重新搜索流 1: 重新搜索 0: 不重新搜索	流 ID,自清;					
	[6]	-	reserve	ed	保留。						
	[5]	RW	ts_para		ts 输出并行模式选择。 1: 并行模式; 0: 串行模式。						
	[4]	RW	ts_seri		ts 2bit 输出选择。 1: ts 2bit 输出选择(此时需要将 ts_parall 配置为 1); 0: 根据 ts parall 的值来选择并或串模式。						
	[3:0]	RW	ts_a_s	el	控制管脚 TS_ERR 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。						

TS_10_SEL

TS_10_SEL 为 ts 输出控制寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x91			TS_10	_SEL		0x10			
Bit	7		(6	5	4	3	2	1	0		
Name					_sel			ts_0	_sel			
Reset	0				0	1	0	0	0	0		
	Bits Access		cess	Name		Description						
	[7:4] RW		7	fc I cel		控制管脚 TS_OUT1 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。						
	[3:0] RW			ts_0_s	<u> </u>	控制管脚 TS_OUT0 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。						

TS_32_SEL

TS_32_SEL为 ts 输出控制寄存器。

		Off	fset Ad	dress		Register	r Name	Total Reset Value			
			0x92			TS_32	_SEL	0x32			
Bit	7		(5	5	4	3	2	1	0	
Name		0			_sel			ts_2	e_sel		
Reset	0)	1	1	0	0	1	0	
	Bits	Acc	ess	Name		Description					
	[7:4] RW		•	If C A CAL		控制管脚 TS_OUT3 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。					
	[3:0] RW		,	Ite / cel		控制管脚 TS_OUT2 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。					

TS_54_SEL

TS_54_SEL 为 ts 输出控制寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x93			TS_54	_SEL	0x54			
Bit	7			6	5	4	3	2	1	0	
Name		0			_sel			ts_4	_sel		
Reset	0			1	0	1	0	1	0	0	
	Bits	Aco	cess	Name		Description					
	[7:4] RV		V ts_5_s		el	控制管脚 TS_OUT5 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。					
	[3:0] RW		Ite /I cel		控制管脚 TS_OUT4 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。						

TS_76_SEL

TS_76_SEL为 ts 输出控制寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x94			TS_76	_SEL	0x76				
Bit	7		(6	5	4	3 2 1 (
Name				ts_7	_sel			ts_6	ts_6_sel			
Reset	0				1	1	0 1 1			0		
	Bits Access			Name		Description						
	[7:4] RW			ts_7_sel		控制管脚 TS_OUT7 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。						
	[3:0] RW			ts_6_s	וב	控制管脚 TS_OUT6 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。						

TS_98_SEL

TS_98_SEL 为 ts 输出控制寄存器。

		Of	fset Ad 0x95			Register TS_98		Total Reset Value 0x98			
Bit	7		(6	5	4	3	2	1	0	
Name		1			_sel			ts_8	_sel		
Reset	1	1		0 0		1	1	0	0	0	
	Bits	Bits Acc		Name		Description					
	[7:4] RV		V ts_9_s		el	控制管脚 TS_VLD 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出					
	[3:0] RW			Ito X col		控制管脚 TS_SYNC 的输出。选择 {ts_err,ts_vld,ts_sync,ts_out[7:0]}中的相应 bit 位信号输出。					

TS_CTRL0

TS_CTRL0 为 ts 控制寄存器 0。

		Of	fset Ad			Register Name TS_CTRL0			Total Reset Value 0x92			
Bit	7			6	5	4	3	2	1	0		
Name	pcr_chan	ge	pcr_lo	cal_chg	ts_lsb_first	serial_sync8	mask_ts_clk	ts_on_bf_ok	ts_clk_on	ts_clk_inv		
Reset	1			0	0	1	0	0	1	0		
	Bits	Ac	cess	Name		Description						
	[7]	RW	I	pcr_ch	ange	修改 pcr 使能 1:允许对 pc 0:不允许对	cr 进行修改;	攵。				
	[6] RW per_local_chg					是否使用本均1:选择本地0:使用 iscr	计数器作为	更新 pcr 的值				
	[5] RW ts_lsb_first					ts 串行输出的顺序。 1: 从 0 到 7 输出; 0: 从 7 到 0 输出。						
	[4]	RW	7	serial_	sync8	ts 同步头串行时的输出个数。 1: 输出 8 个串行帧头; 0: 输出 1 个串行帧头。						
	[3]	RW	7	mask_1	ts_clk	ts 并行时钟 ɪ 1: 只有 ts_v 0:并行时钟	ld 有效时才在	有并行时钟输	〕出;			
	[2] RW ts_on_bf_ok					ts 流输出控制 1:表示系统 0:表示系统	ok 前 ts 流有					
	[1] RW ts_clk_on					ts 流输出控制。 1:表示允许 ts 流输出; 0:表示不允许 ts 流输出。						
	[0] RW ts_clk_inv					ts 时钟控制信号。 1:表示 ts 并行时钟取反后输出; 0:表示 ts 并行时钟直接输出。						

TS_CTRL3

TS_CTRL3 为 ts 控制寄存器 3。

		Of	fset Ad			Register			Total Reset Value				
			0x97			TS_C	TRL3		0x00				
Bit	7		(5	5	4	3	2	1	0			
Name	is_ccm					matype_addr							
Reset	0		(0 0		0 0 0				0			
	Bits	its Access		Name		Description							
		7] RO				当前为 CCM	[模式。						
	[7]	RO		is_ccm	1	1: 当前为 CCM;							
	.7] KO					0: 当前为 V	CM/ACM o						
						isi 流信息存 [。] 应得的流信,	储寄存器地址	上 ,置入地址	可从 matype_	_out 读出对			
						matype_addr	[4:0]用于选择	泽流;					
	[6:0]	RW	7	matype	e addr	matype_addr	[6:5]==2'b00,	matype_out 署	寄存器输出为	流 ID;			
	6:0] RW			J F	_	matype_addr[6:5]==2'b01,matype_out 寄存器输出为流 ID 对应的 matype1;							
						matype_addr 的 modcod。	[6:5]==2'b1x,	matype_out	寄存器输出为	流 ID 对应			

TS_CTRL4

TS_CTRL4 为 ts 控制寄存器 4。

		Of	fset Ad			Register TS_C			Total Reset Value 0xCA		
Bit	7		(6	5	4	3	2	1	0	
Name	isi_sel_v	isi_sel_vld clk_at		auto		ts_clk_div					
Reset	1	1 Access		1	0	0 1		0	1	0	
	Bits	its Access		Name	:	Description					
	[7]				_vld	使能通过指短 1:输出的流 0:输出的流	为 isi_sel 指	定的流;			
	[6] RW		7	clk_au	to	使能自动 ts l 1:在单流且 钟; 0:通过 ts_c	ccm 的情况	下,根据流过		成均匀 ts 时	

[5:0] RW ts_clk_div	对系统时钟分频得到 ts 并行时钟,分频比为 {ts_clk_div[5:0],ts_clk_div_f[15:0]}/2^16。 ts_clk_div 取值 8~31。	
---------------------	---	--

TS_CLK_DIV_F_L

TS_CLK_DIV_F_L 为 ts 时钟低位寄存器。

		Offset Ac	ldress		Register	r Name	Total Reset Value				
		0x99)		TS_CLK_DIV_F_L			0x 0 0			
Bit	7		6	5	4 3		2	1	0		
Name					ts_clk_						
Reset	0		0	0	0	0	0	0	0		
	Bits 2	Access	Name	:	Description						
	[7:0] RW		ts_clk_div_f_l		ts_clk_f[7:0],对系统时钟分频得到 ts 并行时钟的小数位。						

TS_CLK_DIV_F_H

TS_CLK_DIV_F_H 为 ts 时钟高位寄存器。

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0x9A		TS_CLK_DIV_F_H				0x00		
Bit	7			6	5	4	3	2	1	0	
Name						ts_clk_c	ts_clk_div_f_h				
Reset	0		0		0	0	0	0	0	0	
	Bits Ac		ccess Name			Description					
	[7:0] RW		IRW ITS CIV CIV T N		ts_clk_f[7:0],对系统时钟分频得到 ts 并行时钟的小数部位。						

ISI_SEL

ISI_SEL 为 isi 选择寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x9B			ISI_S	SEL	0x01			
Bit	7			6	5	4	3	2	1	0	
Name						isi_sel					
Reset	0	0		0 0		0	0	0	0 0 1		
	Bits	its Access Name		Name		Description					
	7:0] RW isi_sel			isi_sel		当 isi_sel_vld 为 1 时,通过 isi_sel 选择 ts 流输出。					

MATTYPE

MATTYPE 为流 id 寄存器。

		Of	fset Ad 0x9C			Register MATT			Total Reset Value 0x00		
Bit	7		6		5	4	3	2	1	0	
Name						matype_out					
Reset	0	0 (0	0	0 0 0			0		
	Bits Access Na		Name	:	Description						
	[7:0] RO		matype	e_out	isi 流 id 输出。						

ROLL_OFF

ROLL_OFF 为滚降寄存器。

		Offset A			Register Name ROLL_OFF			Total Reset Value 0x00		
Bit	7		6	5	4 3 2 1					
Name		roll_off				isi_	num			
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name	,	Description					
					滚降系数。					
					00: 0.35;					
	[7:6]	7:6] RO		ff	01: 0.25;					
					10: 0.20;					
					11: 保留。					
	[5:0]	RO	isi_nu	m	搜索得到的:	isi 流数目。				

CRC_ERR

CRC_ERR 为 crc 校验寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x9E	,		CRC_	ERR	0x00			
Bit	7		(6	5	4	3	2	1	0	
Name						crc_err					
Reset	0	0 0			0	0	0	0	0	0	
	Bits Access		cess	Name		Description					
	[7:0] RO			crc_eri	<u>-</u>	实际误包率=crc_err/1024*100%,只对 S2 信号有用,当实际 crc_err<1 且非零时,crc_err=1;当实际 crc_err>255 时,crc_err=255。					

RST_WAIT

RST_WAIT 为复位等待寄存器。

		Of	ffset Ad 0x9F			Register RST_V		Total Reset Value 0x15		
Bit	7			6	5	4	3	2	1	0
Name				crc_p	kt_cnt		rst_wait			
Reset	0			0	0	1	0	1	0	1
	Bits Access			Name		Description				
	[7:4] RW		I	lere nizt ent		用于误包率统计的包个数,实际包个数为 crc_pkt_cnt*1024; crc_pkt_cnt 为 0 时,实际包个数被限为 1024。				
	[3:0] RW		rst_wa	it	复位等待寄存器。 当 clk_cnt[28:25] == rst_wait 时,产生 ts 复位信号; clk_以 fec 时钟计数的计数器。但接口异常时计数。					

FC_MAX_RELIABLE

FC_MAX_RELIABLE 为盲扫载波控制寄存器。

		Offset Ac	ldress		Register	r Name	Total Reset Value			
		0xA	0		FC_MAX_I	RELIABLE		0xB4		
Bit	7		6	5	4	3	2	0		
Name	-	fc_dlt_sel			reserved		cbs_reliable			
Reset	1		0	1	1	0	1	0	0	
	Bits	Access	Name		Description					
	[7:6]	RW	fc_dlt_	盲扫最大载波误差限制,配置 0 时对应 3 增加 1 时对应限制值增加 1.024MHz。					,配置值每	
	[5:3]	-	reserve	d 保留。						
	[2:0]	RW	cbs_re	liable	值越大,盲扫越可靠,但盲扫时间会变长。					

FS_SPAN

FS_SPAN 为盲扫符号率范围寄存器。

		Of	fset Ad 0xA1			Register FS_S		Total Reset Value 0x00			
Bit	7		(6	5	4	3	2	1	0	
Name					reserved				fs_span		
Reset	0			0	0	0	0	0	0	0	
	Bits	Bits Access		Name		Description					
	[7:3]			reserved		保留。					
	[2:0] RW			fs_spa	n	指定 fs 时符号率搜索范围, 0 对应 2^-9 * fs, 数值加 1 则范围加倍。					

AMP_MIN_FS

AMP_MIN_FS 为盲扫最低符号率寄存器。

		Of	fset Ad 0xA7			Register Name AMP_MIN_FS			Total Reset Value 0x67		
Bit	7	7 6			5	4	4 3 2			0	
Name			rese	rved		min_fs					
Reset	0		1		1	0 0		1	1	1	
	Bits Access		cess	Name		Description					
	[7:5] -			reserve	ed	保留。					
	[4:0] RW min_fs				}	盲扫的最低符号率,LSB=128kHz。					

CBS_CTRL_RDADDR

CBS_CTRL_RDADDR 为盲扫控制寄存器。

		Of	fset Ad			Register Name			Total Reset Value			
			0xA8	3		CBS_CTRL_RDADDR 0x80						
Bit	7		(6	5	4	3	2	1	0		
Name	use_cbs	3	know	_fs_fc	reserved			cbs_rd_addr				
Reset	1		(0	0	0	0	0	0	0		
	Bits	Acc	ess	Name		Description						
	[7]	RW	r	use_cb	s	控制是否使用盲扫功能。 1: 使用盲扫功能; 0: 关闭盲扫。						
	[6]	RW	·	know_	fs_fc	控制盲扫的模式。 1: 已知 fs(符号率)和 fc(基带载波频率); 0: 未知 fs 和 fc。						
	[5]	-		reserve	ed	保留。						
	[4:0]	RW	,	cbs_rd	_addr	盲扫结果读地址。 一次盲扫可能有多个结果,存贮在 RAM 中,每个盲扫结果都 有对应的 fs、fc 和可靠度信息(对应 0xA9~0xAF 中的部分寄存 器)。						

CBS_FS_L

CBS_FS_L 为盲扫符号率低位寄存器。

		Of	fset Ad			Register Name CBS_FS_L			Total Reset Value 0x00		
Bit	7		(5	5	4	3	2 1 0		0	
Name	cbs_fs_1										
Reset	0	0 0			0	0 0 0 0					
	Bits Access Name					Description					
	[7:0] RO cbs_fs_l					盲扫结果符号率的低 8 位,LSB=1kHz。					

CBS_FS_H

CBS_FS_H 为盲扫符号率高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0xAA	1		CBS_1	FS_H	0x 0 0			
Bit	7 6 5			5	4	3	2	1	0		
Name						cbs_fs_h					
Reset	0	0 0 0			0	0	0	0	0	0	
	Bits Access Name				Description						
	[7:0] RO cbs_fs_h			_h	盲扫结果符号	号率的高8位	0				

CBS_FC_L

CBS_FC_L 为盲扫频偏低位寄存器。

		Of	fset Ad 0xAE			Register Name CBS_FC_L			Total Reset Value 0x00		
Bit	7		(5	5	4	3	2	1	0	
Name						cbs_fc_l					
Reset	0	0 0 0				0	0	0	0	0	
	Bits Access Name					Description					
	[7:0] RO cbs_fc_l			_1	盲扫结果载波频偏的低 8 位,LSB=1kHz。						

CBS_FC_H

CBS_FC_H 为盲扫频偏高位寄存器。

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0xAC	;		CBS_I	FC_H	0x 0 0			
Bit	7		(5	5	4	3	2	1	0	
Name						cbs_	fc_h				
Reset	0	0 0 0				0	0	0	0	0	
	Bits	ts Access Name				Description					
	[7:0] RO cbs_fc_h				_h	盲扫结果载波频偏的高8位,有符号数。					

CBS_FINISH

CBS_FINISH 为盲扫结束寄存器。

		Of	fset Ad 0xAI			Register Name Total Resc CBS_FINISH 0x0				llue	
Bit	7			6	5	4	3	2	1	0	
Name						reserved					
Reset	0			0	0	0	0	0	0	0	
	Bits Access			Name		Description					
	[7:1]				ed	保留。					
	[0]	0] RO cbs_finish				指示盲扫是? 1: 盲扫已结 0: 盲扫未结	束;				

CBS_RELIABILITY1

CBS_RELIABILITY1为盲扫可靠度寄存器。

		Of	fset Ad	dress		Register Name			Total Reset Value			
			0xAE	Ε		CBS_RELL	ABILITY1		0x00			
Bit	7			6	5	4	3	2	1	0		
Name						cbs_reliability1						
Reset	0		(0	0	0 0 0 0						
	Bits	Aco	cess	Name		Description						
	7:0] RO cbs_reliability1			liability1	盲扫结果的可靠度度量 1,越大越可靠。							

CBS_R2_NUM

CBS_R2_NUM 为盲扫信号个数寄存器。

		Of	fset Ad 0xAF			Register Name Total Reset Value CBS_R2_NUM 0x00						
Bit	7			6	5	4	3	2	1	0		
Name			relial	oility2			sig_num					
Reset	0 0 0				0	0 0 0 0						
	Bits	Aco	cess	Name		Description						
	7:5] RO reliability2			lity2	盲扫结果的可靠度度量 2,越大越可靠。							
	[4:0] RO sig_num			m	本次盲扫的有效信号个数。							

DSEC_ADDR

DSEC_ADDR 为 dsec 地址寄存器。

		Off	set Ad	dress		Register Name		Total Reset Value			
			0xB0			DSEC_	ADDR		0x00		
Bit	7		(5	5	4	3	2	1	0	
Name						dsec_	_addr				
Reset	0		()	0	0	0	0	0	0	
	Bits	Acc	ess	Name		Description					
						dsec_addr[7]为 1 时表示当前读操作: dsec_addr[3]为 0 时, dsec_addr[2:0]用于指定发送数据存储地址;					
	[7:0]	RW		dsec_a		dsec_addr[3]为 1 时,dsec_addr[2:0] 用于指定接收数据存储地址。					
						dsec_addr[7]为 0 时表示当前写操作: dsec_addr[3]为 0 时, dsec_addr[2:0]用于指定发送数据存储地址;					
						dsec_addr[3]为 1 时,dsec_addr[2:0]给出的地址无效。					

DSEC_DATA

DSEC_DATA 为 dsec 数据寄存器。

		Off	fset Ad	dress		Register Name			Total Reset Value		
			0xB1			DSEC_DATA			0x00		
Bit	7		(6	5	4	3	2	1	0	
Name						dsec_data					
Reset	0		(0	0	0	0	0	0	0	
	Bits Access Name					Description					
				dsec_c	lata	用于提供发达请参见 2.18 如果发送消息 入接收状态。请参见 2.18	节"发送流息第一个字节 接收流程:	程"。 ī的[1]位为 1。	,发送完成自	目动进入进	

DSEC_RATIO_L

DSEC_RATIO_L 为 dsec 低位频率寄存器。

		Of	fset Ad	dress		Register Name			Total Reset Value			
			0xB2			DSEC_R	ATIO_L		0x88			
Bit	7	7 6			5	4	3	2	1	0		
Name						dsec_1	ratio_l					
Reset	1	1 0			0 0 1 0 0							
	Bits	Bits Access Name			Jame Description							
	[7:0] RW		dsec_r	atio I	系统时钟分频低位,用于产生 22kHz 方波, diseqc_ratio=fsys(in KHz)/22。							

DSEC_RATIO_H

DSEC_RATIO_H 为 dsec 高位频率寄存器。

		Of	fset Ad 0xB3			Register Name DSEC_RATIO_H			Total Reset Value 0x13		
Bit	7			6	5	4	3	2	1	0	
Name						dsec_r	ratio_h				
Reset	0	0 0 0			0	1	0	0	1	1	
	Bits	its Access Name				Description					
	[7:0] RW dsec_ratio_h			atio_h	系统时钟分频高位,用于产生 22kHz 方波。						

TX_CTRL1

TX_CTRL1 为 dsec 发送控制寄存器。

		Offset	Address		Register	r Name		Total Reset V	alue		
		0х	kB4		TX_C	TRL1		0x00	,		
Bit	7		6	5	4	3	2	1	0		
Name	reserve	d		num_byte		dsec_mode			hv_sel		
Reset	0		0	0	0 0 0 0				0		
	Bits Access		Name	2	Description						
	[7]	-	reserv	ed	保留。	保留。					
	[6:4]	RW	num_b	oyte	发送消息字节数:实际值为配置值+1。						
	[3:1] RW dsec_mode				diseqc 工作机 000: 空闲; 001: 发送连 010: 发送一 011: 发送一 100: 发送完 其他: 保留。	续的 22kHz 个 0 Tone Bu 个 1 Data Bu 整的 diseqc	urst; urst;				
	[0] RW hv_sel				水平垂直极化方向选择。 1: 输出高电平; 0: 输出低电平。						

RX_CTRL1

RX_CTRL1 为 dsec 接收控制寄存器。

		Offs	et Address		Registe	r Name		Total Reset Va	alue	
			0xB5		RX_C	TRL1		0x00		
Bit	7		6	5	4	3	2	1	0	
Name				rese	rved		tone_cofig			
Reset	0		0	0	0	0	0	0	0	
	Bits	Acce	ess Name	2	Description					
	[7:2]	-	reserv	ed	保留。					
	[1:0]	RW	tone_c		diseqc_in 信 00: 33us~60 01: 30us~60 10: 33us~66 11: 30us~66	dus; dus; ous;	方波(44us)的。	允许周期偏差		

DSEC_EN

DSEC_EN为 dsec 使能寄存器。

		Of	fset Ad 0xB7			Register Name Total Reset Value DSEC_EN 0x00						
Bit	7		(6	5	4	3	2	1	0		
Name	dsec_en	1				reserved						
Reset	0				0 0 0 0							
	Bits				nme Description							
	[7]] RW dsec_en				使能 LNB 开 1:使能 LNI 0:关闭 LNI	3;					
	[6:0]	:0] - reserved				保留。						

RX_STATE

RX_STATE 为 dsec 接收状态寄存器。

		Off	fset Ad 0xB8			Register			Total Reset Va 0x00	alue		
Bit	7		(6	5	4	3	2	1	0		
Name				rx_sile	nt_time	rx_recv_bytes						
Reset	0	0 0 0				0	0 0 0					
	Bits	Acc	ess	Name		Description						
	[7:4]	7:4] RO rx_silent_time				diseqc 输入技	 持续为低电平	的时间: rx_	silent_time*1	6ms.		
	[3:0] RO rx_recv_bytes			v_bytes	接收的字节数	的字节数:实际值为配置值+1。						

INT_STATE

INT_STATE 为 dsec 状态寄存器。

		Of	fset Ad	dress		Register	Name		Total Reset Va	alue			
			0xB9)		INT_S	ГАТЕ		0x00				
Bit	7			6	5	4	3	2	1	0			
Name	reserved	d	rx_er	r_else	rx_err_silent	rx_err_overflo w	rx_err_par	rx_message	rx_byte	reserved			
Reset	0			0	0	0	0	0	0	0			
	Bits	Aco	cess	Name	:	Description							
	[7]	-		reserve	ed	保留。							
	[6]	RO		rx_err_	else	比特错误或与	比特错误或字节错误(接收消息比特长度不是8的整数倍)。						
	[5]	RO		rx_err_	silent	diseqc 输入持续为低超过 192ms 指示。							
	[4]	RO		rx_err_	_overflow	接收数据超过	过8字节指示	÷ 0					
	[3]	RO		rx_err_	_par	奇偶校验错扌	旨示。						
	[2] RO rx_message					消息接收完排	旨示。						
	[1] RO rx_byte					字节接收完指示。							
	[0] - reserved					保留。							

DF_FC_L

DF_FC_L 为 fsk 频偏低位寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0xC0)		DF_F	FC_L		0x0C			
Bit	7			6	5	4	3	2	1	0		
Name						df_	fc_l					
Reset	0	0 0				0	1	1	0	0		
	Bits	Bits Access				Description						
	[7:0]	7:0] RW df_fc_l				归一化到系统 df_fc/2^21。	统时钟上的 fs	sk 调制频偏f	氐位,实际归	一化频偏为		

DF_FC_H

DF_FC_H 为 fsk 频偏高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0xC1			DF_F	С_Н	0x03			
Bit	7		(5	5	4	3	2	1	0	
Name						df_f	fc_h				
Reset	0		()	0	0	0	0	1	1	
	Bits	Aco	cess	Name		Description					
	[7:0] RW df_fc_h				h	归一化到系统时钟上的 fsk 调制频偏高位。					

FS_FC_L

FS_FC_L 为 fsk 符号率低位寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0xC2	!		FS_FC_L			0x45		
Bit	7			6	5	4	3	2	1	0	
Name						fs_t	fc_1				
Reset	0	0 1				0 0 0 1 0					
	Bits	Bits Access				Description					
	7:0] RW fs_fc_l					归一化到系统时钟上的 fsk 符号率低位,实际归一化符号 df_fc/2^27。					

FS_FC_M

FS_FC_M 为 fsk 符号率中位寄存器。

		Of	fset Ad	dress		Register	Name		Total Reset Value			
			0xC3			FS_F	C_M		0x23			
Bit	7		(5	5	4	3	2	1	0		
Name						fs_f	c_m					
Reset	0		()	1	0	0	0	1	1		
	Bits	Aco	cess	Name		Description						
	[7:0] RW fs_fc_m					归一化到系统时钟上的 fsk 符号率中位。						

FS_FC_H

FS_FC_H为fsk符号率高位寄存器。

		Of	fset Ad			Register Name Total Reset Value FS FC H 0x01						
Bit	7			6	5	4	3	2	1	0		
Name			rese	erved				fs_fc_h				
Reset	0			0	0	0	0	0	0	1		
	Bits	Bits Access N				Description	Description					
	[7:5]	7:5] - reserved				保留。						
	[4:0] RW fs_fc_h			h	归一化到系统	充时钟上的 fs	sk 符号率高位	归一化到系统时钟上的 fsk 符号率高位。				

HEAD_L

HEAD_L 为帧头低位寄存器。

		Off	set Ad	dress		Register	r Name		Total Reset Value			
			0xC5			HEA	D_L		0x0D			
Bit	7		(5	5	4	3	2	1	0		
Name						hea	d_1					
Reset	0		()	0	0	1	1	0	1		
	Bits	Acc	ess	Name		Description						
	[7:0]	7:0] RW head_l				配置的帧头内容低位。						

HEAD_M

HEAD_M 为帧头中位寄存器。

		Of	fset Ad 0xC6			Register HEAI			Total Reset Va 0x55	alue	
Bit	7		(6	5	4	3	2	1	0	
Name						head	d_m				
Reset	0			1	0	1	0	1	0	1	
	Bits	Aco	cess	Name		Description					
	[7:0] RW head_m					配置的帧头内容中位。					

HEAD_H

HEAD_H 为帧头高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0xC7	,		HEA	D_H		0x55			
Bit	7		(5	5	4	3	2	1	0		
Name						hea	d_h					
Reset	0			1	0	1	0	1	0	1		
	Bits Access Name Description											
	[7:0]	RW	T	head_h	1	配置的帧头内容高位。						

NBIT_HEAD

NBIT_HEAD 为 fsk 控制寄存器。

		Of	fset Ad 0xC8			Register			Total Reset Va 0x18	alue	
Bit	7			6	5	4	3	2	1	0	
Name			rese	rved				nbit_head			
Reset	0			0	0	1	1	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:5]	-		reserve	ed	保留。					
	[4:0] RW nbit_head					指定 head 的有效比特位,head[nbit_head-1:0]被实际发送。					

CRC_POLY_L

CRC_POLY_L 为 crc 低位寄存器。

		Of	ffset Ad	dress		Register	r Name	Total Reset Value				
			0xC9)		CRC_PC	OLY_L		0x11			
Bit	7			6	5	4	3	2	1	0		
Name	crc_poly_l											
Reset	0			0	0	1 0 0 1						
	Bits Access Name Description											
	[7:0]	RW	I	crc_po	oly_l	crc 生成多项式低位, LSB 对应 X^1。						

CRC_POLY_M

CRC_POLY_M 为 crc 中位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0xCA	1		CRC_PC	DLY_M	0x89			
Bit	7	7 6 5				4	3	3 2 1 0			
Name						crc_pc	oly_m				
Reset	1	1 0 0				0	1	0	0	1	
	Bits Access Name					Description					
	[7:0] RW crc_poly_m			ly_m	crc 生成多项式中位。						

CRC_POLY_H

CRC_POLY_H 为 crc 高位寄存器。

	Offset Address 0xCB					Č	Register Name Total Reset Va CRC_POLY_H 0x00				
Bit	7		(6	5	4	3	2	1	0	
Name						crc_p	oly_h				
Reset	0	0 0 0				0	0	0	0	0	
	Bits Access Name					Description					
	[7:0] RW crc_poly_h			ly_h	crc 生成多项式高位。						

NBIT_CRC

NBIT_CRC 为 crc 控制寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0xCC	2		NBIT_						
Bit	7			6	5	4	3	2	1	0		
Name			rese	erved		nbit_crc						
Reset	0		(0	0	1 0 0 0 0						
	Bits	Aco	cess	Name		Description						
	[7:5]	-		reserve	ed	保留。						
	[4:0]	RW	7	nbit_c	rc	指定 crc 多项 成 crc 校验比		特位,crc_po	oly[nbit_crc-1	:0]被用于生		

TCF_FC_L

TCF_FC_L 为发送频率低位寄存器。

		Of	fset Ad			Register		Total Reset Value				
			0xCE)		TCF_1	FC_L		0xB8			
Bit	7		(6	5	4	3	2	1	0		
Name						tcf_	fc_l					
Reset	1		(0	1	1 1 0 0 0						
	Bits	Aco	cess	Name		Description						
	[7:0]	7:0] RW tcf_fc_l				归一化到系约 tcf_fc/2^17。	· · · · · · · · · · · · · · · · · · ·	送中心频率	低位,实际归-	一化频率为		

TCF_FC_H

TCF_FC_H 为发送频率高位寄存器。

		Of	fset Ad	dress		Register	Name	Total Reset Value			
			0xCE),		TCF_I	FC_H	0x1E			
Bit	7			5	5	4	3	2	1	0	
Name						tcf_i	fc_h				
Reset	0		()	0	1 1 1 0					
	Bits	Aco	cess	Name		Description					
	[7:0] RW tcf_fc_h				h	归一化到系统时钟上的发送中心频率高位。					

RCF_FC_L

RCF_FC_L 为接收频率低位寄存器。

		Of	ffset Ad	dress		Register	r Name		Total Reset Value			
			0xCF	7		RCF_	FC_L		0xB8			
Bit	7			6	5	4	3	2	1	0		
Name						rcf_	fc_1					
Reset	1			0	1	1	1	0	0	0		
	Bits	Ac	cess	Name	:	Description						
	[7:0]	RW	I	rcf_fc_	1	归一化到系约 tcf_fc/2^17。	· 统时钟上的接	長收中心频率	低位,实际归一	一化频率为		

RCF_FC_H

RCF_FC_H 为接收频率高位寄存器。

		Of	fset Ad 0xD0			Register RCF_I			Total Reset Va 0x1E	alue	
Bit	7		(6	5	4	3	2	1	0	
Name						rcf_:	fc_h				
Reset	0			0	0	1	1	1	1	0	
	Bits	Aco	cess	Name		Description					
	[7:0] RW rcf_fc_h					归一化到系统时钟上的接收中心频率高位。					

TX_NBIT_L

TX_NBIT_L 为发送控制寄存器。

		Offs	set Ado	dress		Register	r Name	Total Reset Value				
			0xD1			TX_NI	BIT_L		0x00			
Bit	7		ϵ	5	5	4	3	2	1	0		
Name						tx_ı	nbit					
Reset	0	0 0 0				0 0 0 0						
	Bits	its Access Name				Description						
	[7:0] RW tx_nb			tx_nbi	t	指定用户提位 1~256。	致低位,					

TX_CTRL2

TX_CTRL2 为发送控制寄存器。

		Of	fset Ad	dress		Register	Name		Total Reset Va	llue		
			0xD2	!		TX_C	TRL2		0x21			
Bit	7		(6	5	4	3	2	1	0		
Name	freq_swa	ıp	tx_:	start	tx_pad	tx_busy	tx_done	rese	rved	tx_nbit_h		
Reset	0		(0	1	0 0 0 1						
	Bits Access Name					Description						
	[7] RW freq_swap						汉比特为1对	应 cf-df,为	率。 0 对应 cf+df; 0 对应 cf-df			
	[6] RW tx_start				t	启动发送开关 自清。	¢.					
	[5] RW tx_pad					是否添加帧》 1:在用户提 crc; 0:只发送用	供的比特序	列基础上,乡	、部添加 head	,尾部添加		
	[4]	RO		tx_bus	у	发送忙指示。						
	[3] RO tx_done			ie	发送完成指示。							
	[2:1] - reserved			ed	保留。							
	[2:1] - reserved [0] RW tx_nbit_h					指定用户提供	共的发送比特	数高位,不	包括 head 和	crc o		

RX_NBIT_L

RX_NBIT_L 为接收控制寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0xD3			RX_NI	BIT_L		0x00			
Bit	7		(5	5	4	3	2	1	0		
Name						rx_n	bit_l					
Reset	0		()	0	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RO rx_nbit_l					接收的 fsk 帧比特长度低位,不包括 head 和 crc。						

RX_CTRL2

RX_CTRL2 为接收控制寄存器。

			Address		Register			Total Reset Value 0x90		
			xD4	İ	RX_C	TRL2		0x90		
Bit	7		6	5	4	3	2	1	0	
Name	rx_ena			rx_tl	hresh		rx_done	reserved	rx_nbit_h	
Reset	1		0	0	1	0	0	0	0	
	Bits	Access	Name		Description					
	[7]	RW	rx_ena	ı	使能 fsk 接收f l: fsk 接收f 0: fsk 接收 当 rx_ena 为 零,需要用 <i>j</i>	吏能; 关闭; 1 且成功接收			自动清	
	[6:3]	RW	rx_thre	esh	用于信号检测的能量门限。 值越小越容易检测到信号。					
	[2]	RO	rx_dor	ne	成功接收一个	个 fsk 包指示	0			
	[1] - r		reserve	ed	保留。					
	[0]	RO	rx_nbi	t_h	接收的 fsk 帧		位。			

FSK_ADDR

FSK_ADDR 为 fsk 地址寄存器。

	Offset Address					Register Name			Total Reset Value	
		0xD5				FSK_ADDR			0x00	
Bit	7			6	5	4	3	2	1	0
Name		fsk_addr								
Reset	0			0	0	0	0	0	0	0
	Bits Access Name				Description					
	[7:0] RW		ī	fsk_ad	dr	fsk_addr[7]为 fsk_addr[7]为	_			

FSK_DATA

FSK_DATA 为 fsk 数据寄存器。

	Offset Address 0xD6				Register Name			Total Reset Va	lue
				FSK_DATA			0x00		
Bit	7		6	5	4	3	2	1	0
Name					fsk_	data			
Reset	0		0	0	0	0	0	0	0
	Bits	Access	Name		Description				
	[7:0]	RW	fsk_da	ta	3) 重复步骤 4) 置 head, tcf_fc,df_fc 5) tx_start 置 6) 等待 tx_d 7) 回到 1 开 接收流程: 1) 置 head, rcf_fc, df_f fs_fc,datal_ 2) rx_ena 置 3) 等待 rx_d 4) 读取 rx_n 前只支持 rx_	5入数据; :0]写入需要 ² 1和 2,直至crc_poly,nb; fs_fc, tx_ 1; one; 始下一次发达 crc_poly,rfc, flen, flen 1; one; bit 得到接收 nbit 为 8 的f :0]写入需要 data;	存储的地址, 则用户数据全 bit_head,nbi pad, tx_nbi 差。 hbit_head,nb 等内容; 信息比特数(音数; 读取的地址,	it_crc, freq_ it 等内容; oit_crc, freq_ 不包括 head ⁵ 其中 fsk_add	swap, swap,

FSK_RX_LEN

FSK_RX_LEN 为 fsk 控制寄存器。

	Offset Address					Register Name			Total Reset Va	alue
	0xD7					FSK_R	FSK_RX_LEN			
Bit	7		(6	5	4	3	2	1	0
Name	data1_flen reserve		rved	flen						
Reset	0		(0	1	0	0	0	0	0
	Bits	Acc	cess	Name		Description				
	[7]	RW		data1_flen		接收帧中包括帧长字段开关。 1:接收帧中包括帧长字段,接收端利用提取的帧长; 0:接收帧中不包括帧长字段,接收端利用用户指定的帧长flen。				
	[6] -		reserved		保留。					
	[5:0] RW		T	flen		用户指定接收字节数,不包括 head 和 crc1~32。				

目 录

3	硬件设计	3-1
	3.1 封装与管脚	3-1
	3.1.1 封装与管脚分布	3-1
	3.1.2 管脚描述	3-4
	3.1.3 复用寄存器概览	3-11
	3.1.4 复用寄存器描述	3-11
	3.1.5 软件复用管脚	3-11
	3.2 电性能参数	3-12
	3.2.1 功耗分布	3-12
	3.2.2 极限工作条件	3-12
	3.2.3 推荐工作条件	3-13
	3.2.4 上下电顺序	3-13
	3.2.5 DC 电气参数	3-13
	3.3 原理图设计建议	3-14
	3.3.1 小系统设计建议	3-14
	3.3.2 电源设计建议	3-20
	3.3.3 未使用管脚处理	3-21
	3.4 PCB 设计建议	3-22
	3.4.1 层叠和布局	3-22
	3.4.2 小系统 PCB 设计建议	3-23
	3.4.3 数字、模拟接口 PCB 设计建议	3-24
	3.5 热设计建议	3-26
	3.5.1 封装热阻	3-26
	3.5.2 导热介质材料推荐	3-26
	3.5.3 原理图设计	3-26
	3.5.4 PCB 设计	3-27
	3.6 焊接工艺建议	
	3.6.1 概述	3-27
	3.6.2 加工准备	3-28
	3.7 潮敏参数	3-28

3.7.1 存放与使用	3-28
3.7.2 重新烘烤	3-29
3.8 接口时序	3-30
3.8.1 输出接口时序	3-30
3.8.2 输出时序绘料	3_32

插图目录

图 3-1 芯片封装图	3-2
图 3-2 封装参数说明表	3-3
图 3-3 Hi3136V100 封装管脚分布示意图	3-4
图 3-4 Hi3136 应用推荐晶体连接方式及器件参数	3-14
图 3-5 复位典型设计电路	3-15
图 3-6 Hi3136 与 DECODER 并接的拓扑结构图	3-16
图 3-7 Hi3136 与 DECODER 串接的拓扑结构图	3-17
图 3-8 Hi3136 DiSEqC 接口与 LM317 或 MP8126 的拓扑结构图	3-17
图 3-9 Hi3136 AGC 接口与 Tuner 的拓扑结构图	3-18
图 3-10 Hi3136 I2C 接口与 Hi3xxx 的拓扑结构图	3-18
图 3-11 多层板设计中,TS_OUT[0:7]和 DECODER 芯片互联拓扑结构	3-19
图 3-12 多层板设计中,TS_CLK/TS_SYNC/TS_VALID 和 DECODER 芯片互联拓扑结构	3-19
图 3-13 两层板设计中,TS_OUT[0:7]和 DECODER 芯片互联拓扑结构	3-19
图 3-14 两层板设计中,TS_VAILD、TS_SYNC、TS_CLK 和 DECODER 芯片互联拓扑结构	3-20
图 3-15 Hi3136 VDD33_IO 拓扑结构图	3-21
图 3-16 Hi3136 ADC_VDD12 拓扑结构图	3-21
图 3-17 单板结构图	3-23
图 3-18 焊接温度曲线图	3-28
图 3-19 TS 并行输出时序示意	3-31
图 3-20 TS 一比特串行输出时序示意	3-31
图 3-21 TS 两比特串行时序示意	3-32
图 3-22 TS_CLK 正、反向时序图	3-32
图 2.22 TC 並行和再比陸中行的时序关系	2 22

表格目录

表 3-1 官脚排列表	3-5
表 3-2 管脚 I/O 类型说明	3-6
表 3-3 ADC 管脚	3-7
表 3-4 I2C 管脚	3-8
表 3-5 TS 管脚	3-9
表 3-6 PLL 管脚	3-10
表 3-7 OSC 管脚	3-10
表 3-8 DISEQC 管脚	3-10
表 3-9 PG 管脚	3-11
表 3-10 SYS 管脚	3-11
表 3-11 FSK 管脚	3-11
表 3-12 复用寄存器概览(复用寄存器基地址为 0x00)	3-12
表 3-13 FSK_OUT 的管脚复用选择	3-12
表 3-14 FSK_OUT 的管脚复用输出	3-13
表 3-15 功耗参数	3-13
表 3-16 Hi3136V100 极限工作条件	3-13
表 3-17 推荐工作条件	3-14
表 3-18 DC 电气参数表	3-14
表 3-19 地址配置一	3-16
表 3-20 地址配置二	3-16
表 3-21 Hi3136V100 的封装热阻	3-27
表 3-22 导热介质材料推荐表	3-27
表 3-23 回流焊工艺参数表	3-29
表 3-24 floor life 参照表	3-30
表 3-25 重新烘烤参考表	3-31

表 3-26 TS 输出方向时序参数表(正	到)	.3
表 3-27 TS 输出方向时序参数表(反)	ī) 3-	.3

3 硬件设计

- 3.1 封装与管脚
- 3.1.1 封装与管脚分布

封装

Hi3136V100 芯片 MQFN(Mapped Quad Flat Non-leaded package)封装,封装尺寸为6mm×6mm,管脚间距为0.4mm,管脚总数为48个,详细封装及其参数如图 3-1、图 3-2 所示。

图3-1 芯片封装图

图3-2 封装参数说明表

	Dimen	sion in	mm	Dimer	sion in	inch
Symbol	MIN	МОМ	MAX	MIN	NOM	MAX
Α	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	(0.20 REF			0.008 RE	F
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E	5.90	6.00	6.10	0.232	0.236	0.240
D2/E2	3.65	3.80	3.95	0.144	0.150	0.156
е	0.40 BSC			0.016 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
K	0.20			0.008		
R	0.075			0.003		
aaa		0.10		0.004		
bbb		0.07		0.003		
ccc	0.10			0.004		
ddd	0.05			0.002		
eee		80.0			0.003	
fff		0.10			0.004	

NOTE:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. REFERENCE DOCUMENT: JEDEC MO-220.

管脚分布图

Hi3136V100 封装管脚分布如图 3-3 所示。

图3-3 Hi3136V100 封装管脚分布示意图

3.1.2 管脚描述

管脚排列表

Hi3136V100的管脚按位置排列如表 3-1 所示。

表3-1 管脚排列表

位置	管脚名称	位置	管脚名称
1	TS_OUT1	25	DVDD12
2	TS_OUT2	26	SDAT
3	TS_OUT3	27	SCLT
4	DVDD33	28	AVDD12_PLL

位置	管脚名称	位置	管脚名称
5	TS_OUT4	29	PLL_GND
6	TS_OUT5	30	AVDD33_PLL
7	DVDD12	31	VINPI
8	TS_OUT6	32	VINNI
9	TS_OUT7	33	ADC_VDD12
10	TS_ERR	34	ADC_GND
11	DVDD33	35	VINNQ
12	DISEQC_OUT	36	VINPQ
13	DISEQC_IN	37	AGC
14	FUNC_SEL	38	ADDR1
15	RSTN	39	ADDR0
16	FSK_OUT	40	SDA
17	DVDD12	41	SCL
18	HV_SEL	42	DVDD12
19	DVDD33	43	TS_SYNC
20	FSK_IN	44	TS_VALID
21	LNB_EN	45	DVDD33
22	XOUT	46	TS_CLK
23	XIN	47	GND
24	CLK_OUT	48	TS_OUT0

管脚类型说明

管脚 I/O 类型说明如表 3-2 所示。

表3-2 管脚 I/O 类型说明

I/O	说明
Ι	输入信号。
I_{PD}	输入信号,内部下拉。
I_{PU}	输入信号,内部上拉。
I_S	输入信号,带施密特触发器。

I/O	说明			
I_{SPD}	输入信号,带施密特触发器,内部下拉。			
I_{SPU}	输入信号,带施密特触发器,内部上垃。			
О	输出信号。			
O _{OD}	输出,漏极开路。			
I/O	双向输入/输出信号。			
I _{PD} /O	双向,输入下拉。			
I _{PU} /O	双向,输入上拉。			
I _{SPU} /O	双向,输入上拉,带施密特触发器。			
I_{PD}/O_{OD}	双向,输入下拉,输出漏极开路。			
I _{PU} /O _{OD}	双向,输入上拉,输出漏极开路。			
I _S /O	双向,输入带施密特触发器。			
I _S /O _{OD}	双向,输入带施密特触发器,输出漏极开路。			
XIN	Crystal Oscillator,晶振输入。			
XOUT	Crystal Oscillator,晶振输出。			
P	电源。			
G	地。			

ADC 管脚

ADC 管脚如表 3-3 所示。

表3-3 ADC 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
34	ADC_GND	G	-	-	模拟/数字转换地
33	ADC_VDD12	P	-	1.2	模拟/数字转换 1.2V 电源
32	VINNI	I	-	1.2	通道 I 的差分输入,单端差分输入范围均为 1Vpp 在单端模式下,加 100nF 电容耦合到地
35	VINNQ	I	-	1.2	通道 Q 差分输入,单端差分输

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
					入范围均为 1Vpp 在单端模式下,加 100nF 电容 耦合到地
31	VINPI	Ι	-	1.2	通道 I 的差分输入,单端差分输入范围均为 IVpp
36	VINPQ	Ι	-	1.2	通道Q差分输入,单端差分输入范围均为1Vpp

I2C 管脚

I2C 管脚如表 3-4 所示。

表3-4 I2C 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
39	ADDR0	I	4	3.3	Hi3136 设备地址选择 0
38	ADDR1	I	4	3.3	Hi3136 设备地址选择 1
27	SCLT	O _{OD}	4	3.3/5	I2C 总线时钟输出,控制 tuner 通讯接口,OD 门输 出,需外接上拉电阻至 3.3/5V,具体电压需要由 tuner 的 I2C 电平决定
26	SDAT	I _S /O _{OD}	4	3.3/5	I2C 总线数据输出,控制 tuner 通讯接口,OD 门输 出,需外接上拉电阻至 3.3/5V,具体电压需要由 tuner 的 I2C 电平决定
41	SCL	I_S	4	3.3	I2C 总线的时钟输入总线,外部接上拉电阻至 3.3V
40	SDA	I _S /O _{OD}	4	3.3	I2C 总线的数据总线, OD 输出, 外部接上拉电阻至 3.3V

TS 管脚

TS 管脚如表 3-5 所示。

表3-5 TS 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
37	AGC	O _{OD}	8	3.3/5	AGC 输出,控制 Tuner 增 益。OD 输出,支持 3.3V/5V 上拉。
46	TS_CLK	О	8	3.3	Demod 输出的 TS 时钟
48	TS_OUT0	О	8	3.3	TS_OUT0 Demod 输出的数据
1	TS_OUT1	О	8	3.3	TS_OUT1 Demod 输出的数据
2	TS_OUT2	О	8	3.3	TS_OUT2 Demod 输出的数据
3	TS_OUT3	О	8	3.3	TS_OUT3 Demod 输出的数据
5	TS_OUT4	О	8	3.3	TS_OUT4 Demod 输出的数据
6	TS_OUT5	О	8	3.3	TS_OUT5 Demod 输出的数据
8	TS_OUT6	О	8	3.3	TS_OUT6 Demod 输出的数据
9	TS_OUT7	О	8	3.3	TS_OUT7 Demod 输出的数据
10	TS_ERR	О	8	3.3	TS_ERR TS 错误指示
43	TS_SYNC	О	8	3.3	TS_SYNC Demod 输出的同步信号
44	TS_VALID	О	8	3.3	TS_VALID Demod 输出的数据有效信号,高电平有效

PLL 管脚

PLL 管脚如表 3-6 所示。

表3-6 PLL 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
28	AVDD12_PLL	P	-	1.2	PLL 1.2V 模拟电源
30	AVDD33_PLL	P	-	3.3	PLL 3.3V 模拟电源
29	PLL_GND	G	-	-	PLL 模拟地

OSC 管脚

OSC 管脚如表 3-7 所示。

表3-7 OSC 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
24	CLK_OUT	О	8	3.3	晶振时钟缓通输出
23	XIN	I	-	3.3	晶振输入
22	XOUT	О	-	3.3	晶振输出

DISEQC 管脚

DISEQC 管脚如表 3-8 所示。

表3-8 DISEQC 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
13	DISEQC_IN	I_S	8	3.3	DISEQC_IN DiSEqC 输入信号
12	DISEQC_OUT	О	8	3.3	DISEQC_OUT DiSEqC 输出
21	LNB_EN	О	8	3.3	LNB_EN LNB 电源控制使能
18	HV_SEL	О	8	3.3	HV_SEL 天线水平垂直选择

PG 管脚

PG 管脚如表 3-9 所示。

表3-9 PG 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
4、11、19、45	DVDD33	P	-	3.3	3.3V IO 电源
7、17、25、42	DVDD12	P	-	1.2	1.2VCORE 电压
47	GND	G	-	-	数字地

SYS 管脚

SYS 管脚如表 3-10 所示。

表3-10 SYS 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
14	FUNC_SEL	I_{SPD}	4	3.3	功能模式和 DFT 测试模式选择: 0: 功能模式 1: DFT 测试模式
15	RSTN	I_{SPU}	4	3.3	系统位信号输入,低电平有效

FSK 管脚

FSK 管脚如表 3-11 所示。

表3-11 FSK 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
20	FSK_IN	I_S	4	3.3	FSK 输入
16	FSK_OUT	О	6	3.3	FSK 输出

3.1.3 复用寄存器概览

复用寄存器概览如表 3-12 所示。

表3-12 复用寄存器概览(复用寄存器基地址为 0x00)

偏移地址	名称	描述	页码
0x0C	LOCK_FSKO	FSKO 复用控制寄存器	3-12

3.1.4 复用寄存器描述

LOCK_FSKO

FSKO 管脚复用控制寄存器。

3.1.5 软件复用管脚

FSK_OUT 的管脚复用选择如表 3-13 所示。

表3-13 FSK OUT 的管脚复用选择

Pin	Pad 信号	复用控制寄存器	复用信号 0	复用信号 1
16	FSK_OUT	LOCK_FSKO	LOCK	FSK_OUT

FSK_OUT 的管脚复用输出如表 3-14 所示。

表3-14 FSK OUT 的管脚复用输出

信号名	方向	说明
LOCK	О	信道锁定指示
FSK_OUT	О	FSK 输出

3.2 电性能参数

3.2.1 功耗分布

Hi3136V100的功耗分布如表 3-15所示。

表3-15 功耗参数

符号	参数	最小值	典型值	最大值	单位
DVDD33	3.3V I/O 电源	-	8	12	mA
AVDD33_PLL PLL 3.3V 模拟电源		-	1	1	mA
DVDD12	1.2V 内核电压	-	100	352	mA
ADC_VDD12	ADC 1.2V 电源	-	56	65	mA
AVDD12_PLL	PLL 1.2V 模拟电源	-	1	1	mA

3.2.2 极限工作条件

警告

极限工作电压参数如表 3-16 所示,超过这些数值,可能导致芯片损坏,可能导致 Hi3136V100 可靠性问题。

Hi3136V100 极限工作条件如表 3-16 所示。

表3-16 Hi3136V100 极限工作条件

符号	参数	最小值	最大值	单位
T_{OPT}	芯片工作温度	-40	125	$^{\circ}$
T_{STG}	存储温度	-65	150	$^{\circ}$ C

符号	参数	最小值	最大值	单位
VI	输入电压	-0.5	4.6	V
VO	输出电压	-0.5	4.6	V
DVDD12	内核电压	-0.5	1.8	V
DVDD33	I/O 电源	-0.5	4.6	V

3.2.3 推荐工作条件

Hi3136V100的推荐工作条件如表 3-17 所示。

表3-17 推荐工作条件

符号	参数	最小值	典型值	最大值	单位
T_{OPT}	操作环境温度	0	25	70	$^{\circ}\!\mathbb{C}$
DVDD12	内部核电压	1.14	1.2	1.26	V
DVDD33	I/O 电源	2.97	3.3	3.63	V
AVDD33_PLL	PLL 电源	2.97	3.3	3.63	V
AVDD12_PLL	PLL 电源	1.14	1.2	1.26	V
ADC_VDD12	ADC 电源	1.14	1.2	1.26	V

3.2.4 上下电顺序

Hi3136 供电采用 3.3V 电压先上电, 1.2V 电压后上; 掉电顺序 1.2V 电压先下, 后下 3.3V 电压。

3.2.5 DC 电气参数

Hi3136V100 DC 电气参数如表 3-18 所示。

表3-18 DC 电气参数表

符号	参数	最小值	典型值	最大值	单位	说明
V_{IH}	高电平输入电压	2.0	-	DVDD33+0.3	V	不支持 5V tol
$V_{\rm IL}$	低电平输入电压	-0.3	-	0.8	V	-
I_{L}	输入漏电流	-	-	±10	μΑ	-
I _{OZ}	三态输出漏电流	-	-	±10	μΑ	-

符号	参数	最小值	典型值	最大值	单位	说明
V_{OH}	高电平输出电压	2.4	-	-	V	-
V _{OL}	低电平输出电压	-	-	0.4	V	-
R_{PU}	内部上拉电阻	30	55	80	kΩ	-
R _{PD}	内部下拉电阻	30	45	80	kΩ	-

3.3 原理图设计建议

3.3.1 小系统设计建议

3.3.1.1 Clocking 电路

通过芯片内部的反馈电路与外部的 24MHz 晶体振荡电路一起构成系统时钟。推荐选 24MHz。

推荐晶体连接方式及器件参数如图 3-4 所示。

图3-4 Hi3136 应用推荐晶体连接方式及器件参数

晶振负载电容与外挂电容的计算公式如下:

$C_L = C1*C2/(C1+C2)+C$

- C: 为 IC 内部电容, 一般在 5~7pF。
- C1、C2: 在图中分别为 30pF。
- C_L: 为晶振内部负载电容,一般为 20~22pF 之间,具体由厂家提供的参数为准。

3.3.1.2 复位电路

Hi3136 的 RSTN 管脚为复位信号输入管脚,要求的复位有效信号为低电平脉冲,脉冲宽度大于 12 个 XIN 管脚输入的时钟周期(一般复位脉冲宽度为 10ms~100ms)。

板级设计时,建议 RST_N 引脚采用典型的 RC 上电复位电路设计,通过上拉电阻接 3.3V 电源,并连接 4.7uF 对地电容,实现上电复位操作。该 PIN 也可和 Hi3xxx 等 STB DECODER 主芯片连接,正常工作以后根据协议,由主芯片给出复位信号。

工作异常时,可以通过主芯片的 GPIO 管脚产生低电平脉冲,进行复位。

复位典型设计电路如图 3-5 所示。

图3-5 复位典型设计电路

3.3.1.3 Hi3136 硬件初始化系统配置电路

Hi3136 硬件初始化系统配置电路采用 I2C 总线来实现内部寄存器的初始化,需要通过外部 ADDR0、ADDR1 设置 Hi3136 的 I2C 地址。

地址配置描述如下表 3-19、表 3-20 所示。

表3-19 地址配置一

ADDR1	ADDR0		7-bit Address						R/W	Write Address(in
		MSB						LSB	bit	Hex)
Low	Low	1	0	1	1	0	0	0	0	0xB0
Low	High	1	0	1	1	0	0	1	0	0xB2
High	Low	1	0	1	1	0	1	0	0	0xB4
High	High	1	0	1	1	0	1	1	0	0xB6

表3-20 地址配置二

ADDR1	ADDR0		7-bit Address						R/W	Write Address(in
		MSB						LSB	bit	Hex)
Low	Low	1	0	1	1	0	0	0	1	0xB1
Low	High	1	0	1	1	0	0	1	1	0xB3
High	Low	1	0	1	1	0	1	0	1	0xB5
High	High	1	0	1	1	0	1	1	1	0xB7

3.3.1.4 数字/模拟信号接口电路设计

接口介绍

数字接口电平标准为 LVCMOS33, Hi3136 的数字接口有如下特点:

- 提供 1 个 TS 流串行/并行接口, 1bit 串行工作时钟频率为 187.5MHz,2bit 串行工作 频率为 94M,并行工作时钟频率最高可达 23.5MHZ,并行位宽为 8bit、1bit 串行位宽为 1bit, 2bit 串行位宽为 2bit,并行和串行工作方式可配。
- 提供 1 个 I2C 接口,通过 I2C 接口来对访问 Hi3136 和 I2C 转发控制 Tuner 的内部 寄存器, I2C 工作频率最高为 400kHz。
- 提供 DiSEqC 接口及 FSK 接口,通过 DISEQC_OUT 接口及 FSK_OUT 接口对多个 天线进行切换控制,通过 DiSEqc IN 及 FSK IN 接口回传天线反馈的控制信号
- 提供一个 AGC 输出接口, AGC 输出采用 PDM 调制的方式通过一 RC 低通滤波电路控制前端 Tuner 的增益
- 提供 1 个 RSTN,可由硬件 RC 电路进行复位,或由 STB DECODER 芯片进行复位操作,低电平有效。

TS 流拓扑结构

Hi3136 典型并行外接 STB DECODER 芯片拓扑结构如图 3-6 所示。典型串行外接 STB DECODER 拓扑结构如图 3-7 所示。

图3-6 Hi3136与 DECODER 并接的拓扑结构图

□ 说明

并行 TS 接口 TS 输出管脚中,除 TS_CLK 不能任意配置外,其余均可根据实际 Layout 需要任意 配置。

图3-7 Hi3136与 DECODER 串接的拓扑结构图

□ 说明

串行 TS 接口 TS 输出管脚中,除 TS_CLK 不能任意配置外,其余均可根据实际 Layout 需要任意配置。

DiSEqC 拓扑结构

Hi3136 内置 DiSEqC 模块,可控制多个 LNB 的切换,达到一机多星的控制效果, DiSEqC 是以不连续数字信号形式调制在 22KHz 载波及 LNB 电源上,为了获取良好的 幅度及信号质量需要外部配合整形电路进行控制,否则 DiSEqC 设备无法识别命令。

具体参数配置要求为:

- 22K 频率范围: 22 KHz±4.4KHz
- 峰峰值: 650mV (±250 mV)
- 外部总线负载电容: 不超过 250nF

DiSEqC 与外围的电路拓扑结构如图 3-8 所示。

图3-8 Hi3136 DiSEqC 接口与 LM317 或 MP8126 的拓扑结构图

AGC 拓扑结构

Hi3136 AGC 模块采用 PDM 输出的方式,通过外部 RC 低通滤波器实现数字信号到模拟信号的转换,控制前端 Tuner 的增益,达到在外部环境信号质量变化时自动控制 Tuner 的增益,保证良好的信号质量输出。PCB Layout 时 RC 滤波电路需要靠近 Hi3136 AGC 输出,避免 AGC 对模拟 RF 的干扰。Hi3136 AGC 模块与外围的电路拓扑结构为如图 3-9 所示。

图3-9 Hi3136 AGC 接口与 Tuner 的拓扑结构图

I2C 设计建议

Hi3136V100 与 DECODER 芯片之间的 I2C 总线,需要接上拉电阻,上拉电压为 3.3V,上拉电阻选 2KΩ,具体可以根据 I2C 总线速率来确定。并分别加不大于 100pF 旁路滤波电容,靠近 Hi3136 管脚放置。

图3-10 Hi3136 I2C 接口与 Hi3xxx 的拓扑结构图

TS 流匹配方式设计建议

TS 流匹配设计分两种情况,多层板设计和二层板设计。

- 多层板设计时, 走线特征阻抗为 50Ω。
 - TS OUT[0:7]采用串行匹配电阻为 33Ω, 拓扑结构如图 3-11 所示。
 - TS_CLK、TS_SYNC、TS_VALID 也采用串行匹配电阻为 33Ω, 拓扑结构如图 3-12 所示。
- 两层板设计时,走线特征阻抗为140Ω。
 - TS OUT[0:7]采用串行匹配电阻为 75Ω, 拓扑结构如图 3-13 所示。
 - TS_CLK、TS_VALID、TS_SYNC 采用串行匹配电阻为 75Ω, 拓扑结构如图 3-14 所示。

□ 说明

下图中的 5000mil 长度为最长的走线长度,实际走线一般小于该长度值。

图3-11 多层板设计中, TS OUT[0:7]和 DECODER 芯片互联拓扑结构

图3-12 多层板设计中,TS_CLK/TS_SYNC/TS_VALID 和 DECODER 芯片互联拓扑结构

图3-13 两层板设计中,TS OUT[0:7]和 DECODER 芯片互联拓扑结构

图3-14 两层板设计中,TS_VAILD、TS_SYNC、TS_CLK 和 DECODER 芯片互联拓扑结构

AGC 电路设计建议

PDM 调制信号经过低通滤波器后,模拟信号的交流成分得到了明显的削弱,在 RC 滤波网络中 RC 值越大,模拟信号的交流成分越少,而响应速度则变慢,因此需合理的选取 RC 值,使得交流成分的大小和响应速度都能满足实际应用的需求。Hi3136 AGC 电路建议 R 选择 $4.7 \mathrm{K}\Omega$,C 选择 $100 \mathrm{nF}$ 。

3.3.2 电源设计建议

道明 系统电源的设计,详细请参见 Hi3136 板原理图。

3.3.2.1 CORE 电源设计

CORE 电源(管脚名 DVDD12): 连接数字 1.2V 电源。设计建议如下:

- 若单板上无 1.2V,电源芯片的选型上,优选 LDO,要求其供电能力≥500mA。
- CORE 电源典型电流为 100mA,最大电流为 405mA。
- CORE 电源管脚放置一个 10uF 对地滤波旁路电容,而且每个 CORE 电源管脚处放置一组 10nF 和 100pF 去耦电容组合,并紧靠供电管脚摆放。

3.3.2.2 IO 电源设计

IO 电源管脚名 DVDD33: 连接数字 3.3V 电源。

- VDD IO 的最大电流为 12mA 电源供电,优选 LDO。
- IO 电源管脚处放置一组 10nF 和 100pF 去耦电容组合,并紧靠供电管脚摆放。
- IO 电源管脚的输入建议通过 BEAD 隔离, 拓扑结构如图 3-15。

图3-15 Hi3136 VDD33 IO 拓扑结构图

3.3.2.3 ADC 电源设计

ADC 电源 (管脚名 ADC VDD12): 连接 1.2V 模拟电源。

- ADC 电源的最大电流为 65mA, 和 CORE 电源共用一个 1.2V 电源。
- 通过 BEAD 和 1.2V 电源隔离,并放置一个 10uF 对地滤波旁路电容。
- ADC 电源管脚处放置一组 10nF 和 100pF 去耦电容组合,并紧靠供电管脚摆放。
- 1.2V 电源电平偏差控制在±5%以内。拓扑结构如图 3-16。

图3-16 Hi3136 ADC VDD12 拓扑结构图

3.3.2.4 注意事项

电源设计的其他注意事项如下:

- Hi3136 的电源芯片优选 LDO,数字和模拟电源通过 BEAD 隔离,并增加 10nf 和 100pf 去藕电容组合。
- 各模块电源的要求请参考芯片手册中的电性能参数,保证电源输出电压加上纹波 噪声仍然满足芯片的需求。

3.3.3 未使用管脚处理

未使用管脚处理建议如下:

直接 NC,可以通过寄存器配置关闭相应电路。

3.4 PCB 设计建议

3.4.1 层叠和布局

3.4.1.1 层叠

Hi3136V100 的封装为 MQFN48, 管脚间距 0.4mm。在 PCB 设计时,可以采用四层 PCB 板的设计,建议如下分层:

- TOP 层:信号走线
- 内一层: 地平面层
- 内二层: 电源平面层
- BOTTOM 层:信号走线

在成本非常敏感的应用方案中,也可以采用二层 PCB 板的设计, PCB 分层建议如下:

- TOP 层: 信号走线和部分电源走线
- BOTTOM 层: 地平面层和部分电源走线

PCB 设计注意事项:

- 元器件布局在 TOP 层,信号线尽量走 TOP 层。
- 电源管脚走粗线。
- 尽量保持 BOTTOM 层为一个完整的地平面层。
- 主芯片出线推荐过孔大小为 8mill。
- 特殊信号线注意阻抗要求。

PCB 材料 FR-4, PCB 板厚度为 1.6mm, 表层铜箔厚度为 1 盎司。

3.4.1.2 单板布局

Hi3136DMO 解决方案参考设计的单板尺寸信息如图 3-17 所示。

图3-17 单板结构图

Hi3136Demod 参考设计的应充分考虑射频,模拟,和数字信号,以及 ESD 保护器件的布局。如射频接口 F 头、晶体谐振器、射频环路滤波器等。

Hi3136V100 的电源管脚 3.3V, 1.2V 都尽可能通过 BEAD 和数字部分隔离。器件尽量选择小的封装。

3.4.2 小系统 PCB 设计建议

3.4.2.1 小系统电源

数字电源

Hi3136V100 的数字电源包括: DVDD33(3V3)和 DVDD12(1V2)建议与单板数字 3.3V 和 1.2V 电源用磁珠隔离,均以 Hi3136 的 exposed pad 为参考地。在保证通流能力的前提下,走线尽量宽。DVDD33 最小线宽 15mil,DVDD12 最小线宽 25mil。避免和模拟电源重叠。去藕电容靠近芯片放置。

射频/模拟电源

除了上述的数字电源外,其他属于射频/模拟电源,都必须和其他电源通过磁珠隔离,Hi3136以 exposed pad 为参考地,具体建议如下:

- 模拟电源区域禁止有数字信号走线,尤其是高速数字信号。
- 每个电源 pin 要加去耦电容且走线尽量宽,去耦电容靠近芯片放置。

3.4.2.2 时钟和复位电路

时钟

Hi3136V100 的 PLL 功能单元的供电电源和地为 AVDD12_PLL(1.2V)、AVDD33_PLL 和 PLL_GND。建议 PCB 设计时采用如下原则:

- AVDD12_PLL 为 1.2V 的 PLL 电源,建议保证通流能力的前提下,线宽需要保证在 12mil。
- AVDD33_PLL 的 PLL 电源,建议在保证通流能力的前提下,线宽需要保证在 12mil。
- PLL_GND 为 Hi3136V100 的 PLL 功能单元的参考地,建议将地线连接至 exposed pad 下,并置地孔保证完整地平面。
- 系统时钟的晶振电路走线长度须尽量短,须做包地处理,晶体的地采用局部地处理,与大片地隔离设计,避免耦合。
- 晶振相关匹配电容应靠近晶体排布;晶振紧靠 Hi3136V100 放置,与板边缘至少保持 1000mil;晶振下面不要走高速时钟等重要走线,并保证晶体底部平面信号的完整性。

复位

PIN15 为复位管脚,复位信号线为关键信号,易受干扰。

- 多层板建议走内层,紧邻地层走线,线宽要求 8mil 以上,双层板建议加保护地处理。
- 要求远离接口与电源输入,至少30mil。

3.4.3 数字、模拟接口 PCB 设计建议

3.4.3.1 数字接口设计

TS 流信号

TS 流信号的长度要求如下:

- 信号走线长度最长不能超过 5000mil。
- 所有以信号线的走线长度均以 TS CLK 作为参考,允许偏差范围为±250mil。
- 串联匹配电阻应尽量靠近 Hi3136V100 放置。
- 双层板 TS 流信号线特性阻抗控制为 140Ω, 匹配电阻值建议: TS_OUT[0:7]串联 匹配电阻为 75Ω; TS_CLK 、TS_SYNC, TS_VALID 串联匹配电阻 75Ω。
- 多层板 TS 流信号线特性阻抗控制为 50Ω, 匹配电阻值建议为 33Ω。

AGC 信号

AGC 信号的总线长度要求如下:

● 信号走线长度最长不能超过 5000mil,最小线宽要求 12mil,并保证 AGC 走线有地保护,防止 AGC 信号干扰外部信号走线,也避免本身受外部噪声的干扰。

● AGC 输出通过的 RC 低通积分滤波器需要靠近 Hi3136 AGC 输出管脚, 防止 AGC 噪声传导至板级,造成信道性能恶化问题。

I2C 总线的长度建议如下:

- SCL 信号走线长度最长不能超过 5000mil。
- SDA 走线以 SCL 为参照进行走线,允许的偏差为±250mil。

PCB 布线建议

建议 PCB 布线设计采用以下原则:

注意

信号走线尽量不要破坏 TS 流信号走线的参考地平面,并做好保护地处理,串联电阻尽量靠近 Hi3136V100 放置,详细设计请参见 Hi3136EVA 板 PCB 设计文件。

- 所有 TS 流信号走线必须分布在邻近地平面的走线层,避免信号走线穿越电源或地分割区域,必须保证信号走线都有完整的参考平面。
- 信号走线及换层过孔附近放置与地连通的过孔,保持良好的信号回流路径。
- 信号线尽量短,走线路径上尽量少打过孔,保证走线阻抗的连续性。多层板单端信号 PCB 走线特性阻抗 50Ω±10%;双层板单端信号 PCB 走线特性阻抗 140Ω±10%。串联匹配电阻靠近 Hi3136V100 放置。
- 使用排阻时,尽量避免 TS CLK 与其他 TS 流中的信号线在同一个组排上。
- 相邻信号走线间距保持在 2~3 倍线宽,即满足"3W"原则。
- 避免时钟信号紧邻数据、地址总线,对于 TS CLK 增加包地处理。

3.4.3.2 其它

PCB 信号完整性仿真设计建议

PCB设计人员可以使用板级仿真工具,根据 Hi3136V100 接口 IBIS 模型、对接器件 IBIS 模型、传输线模型以及板上拓扑结构完成信号完整性仿真分析。通过对仿真结果的分析,不断调整拓扑结构,以达到所需的信号质量要求,包括过冲、下冲、振铃、单调性等。

其它 PCB 设计注意事项

时钟信号如果带多个负载,无论频率高低,都需要特别注意其信号质量,应保证信号边沿单调。

3.5 热设计建议

3.5.1 封装热阻

注音

热阻基于 JEDEC JESD51-2 标准给出,应用时的系统设计及环境可能与 JEDEC JESD51-2 标准不同,需要根据应用条件作出分析。

Hi3136V100的封装热阻如表 3-21所示。

表3-21 Hi3136V100 的封装热阻

参数	符号	数值	单位
Junction-to-ambient thermal resistance	$\theta_{ m JA}$	32	°C/W
Junction-to-case thermal resistance	θ _{JC}	6.5	°C/W
Junction-to-top center of case thermal resistance	$\Psi_{ m JT}$	-	°C/W
Junction-to-board thermal resistance	θ ЈВ	8.5	°C/W

3.5.2 导热介质材料推荐

导热介质材料推荐表如表 3-22 所示。

表3-22 导热介质材料推荐表

散热器固定 方式	型号	导热系数 (w/m·k)	应用环境温 度(℃)	胶体类型	绝缘强度 (V/mil)	阻燃性	承重能 力(g)
需机械固定	GF2000	2	-60~+200	硅橡胶	500	UL9V0	-
无需机械固 定	Locotite 315	0.808	-	丙烯酸树 脂	6000	UL9V2	-

3.5.3 原理图设计

3.5.3.1 电源

整个单板电源树在保证稳定性的前提下效率最高,即要合理设计单板电源负载,少采用高压差 LDO 器件,减少电源自身在电源转换过程中所产生的热量。芯片底部采用 EPAD 设计,将 PCB 底部地平面进行开窗设计,利于芯片的热传导。

3.5.4 PCB 设计

3.5.4.1 器件布局

结合产品结构和热设计,器件布局建议如下:

- 单板上功耗大且产生热量大的器件不能分布在同一个风道上。
- 单板上大功耗且易产生热量器件要均匀分布,以保证单板利用 PCB 有效散热,在 这些器件正下方和周边尽量增大铜皮面积以利于散热。

3.5.4.2 PCB 热设计

PCB 热设计建议如下:

- Hi3136V100 芯片底下的 EPAD 过孔采用 FULL 孔连接,而不是普通的花孔连接, 并且 EPAD 对应的 PCB 底层的铜皮开窗,以提高单板散热效率。
- Hi3136V100的 1.2V/3.3V电源和地信号在保证过流能力的前提下尽量走宽。
- Hi3136V100 周边避免放置发热量大的器件。

3.6 焊接工艺建议

3.6.1 概述

客户在使用本产品焊接时,参考所有的元器件/IC/PCB 单板所承受 reflow profile,依据 锡膏的供应商推荐的 reflow profile 平衡制定合适的回流焊接温度,本章节仅仅是给出 本产品能承受的回流焊接温度范围。

3.6.1.1 框架材料

● OFN 镀层成份: 电镀锡

3.6.1.2 元器件包装及存储

元器件包装及存储如下:

- 表贴元器件包装类型: tray or tape&reel
- 可存储期限 (60%相对湿度以下): 12moths@40℃
- 包装材料: 防静电材料

3.6.1.3 焊接工艺

可应用的焊接方法: reflow

本产品可以承受的 reflow profile 范围如下(客户也可以参考 JEDEC020D),并非推荐的实际焊接的 reflow profile。客户实际焊接时的 reflow profile 要参考锡膏的 reflow profile 并平衡 PCB/所有 IC/元器件而定。

sec

图3-18 焊接温度曲线图

表3-23 回流焊工艺参数表

区域	时间	升温速率	峰值温度	降温速率
预热区(40-150℃)	60-150Sec	≤2.0°C/Sec	-	-
均温区(150-200℃)	60-120Sec	<1.0°C/Sec	-	-
回流区(>217℃)	30-90Sec	-	230-260℃	-
冷却区 (Tmax-180℃)	-	-	-	1.0°C/Sec≤Slope≤4.0°C/Sec

3.6.2 加工准备

客户在加工前,确认所使用的产品未受潮;原物料在有效周期内。

正式批量生产前,要做首样检验(比如要先首检锡膏厚度),首样检验结果通过,才能 批量生产。

3.7 潮敏参数

3.7.1 存放与使用

【使用范围】

海思所有 IC (潮敏产品) 的存放和使用

【存放环境】

建议产品真空包装存放,存放在<30°C/60% RH下。

【shelf life】(存储期限)

存放环境<30°C/60% RH下,真空包装存放,shelf life(存储期限)是 \ge 12 个月。

[floor life]

在环境条件<30°C/60%下, floor life 参照下表

表3-24 floor life 参照表

Level	Floor life(out of bag) at factory ambient≦30°C/60% RH or as stated
1	Unlimited at $\leq 30^{\circ}$ C/85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use, must be reflowed within the time limit specified on the label

【潮敏产品的使用】

- 产品在 ≦ 30 ℃/60%RH 下连续或累计暴露超过 2 个小时,建议进行 rebake 后再真空干燥包装。
- 产品在 ≤ 30 ℃/60%RH 下暴露累计没有超过 2 个小时,可以不用 rebake,但要更换新的干燥剂,进行真空干燥包装。

本文没有提到的存储及使用原则,请直接参考 JEDEC J-STD-033A

3.7.2 重新烘烤

【适用产品】

海思所有 IC (潮敏产品)

【使用范围】

需要重新烘烤的 IC (潮敏产品)

【重新烘烤参考表】

表3-25 重新烘烤参考表

Body thickness	level	bake@125℃	bake@90°C≦5% RH	bake@40°C≦5% RH
≤1.4mm	2a	3 hours	11 hours	5 days
	3	7hours	23 hours	9 days
	4	7 hours	23 hours	9 days
	5	7 hours	24 hours	10 days
	5a	10 hours	24 hours	10 days
≦2.0mm	2a	16 hours	2 days	22 days
	3	17 hours	2 days	23 days
	4	20 hours	3 days	28 days
	5	25 hours	4 days	35 days
	5a	40 hours	6 days	56 days
≤4.5mm	2a	48 hours	7 days	67 days
	3	48 hours	8 days	67 days
	4	48 hours	10 days	67 days
	5	48 hours	10 days	67 days
	5a	48 hours	10 days	67 days

说明:

- 此表中显示的均是受潮后,必须的最小的烘烤时间。
- 重新烘烤优先选择低温烘烤。
- 详细情况请参考 JEDEC。

3.8 接口时序

3.8.1 输出接口时序

Hi3136 提供 3 种 TS 输出模式,包括并行模式、串行模式和两比特串行模式。

TS 输出接口信号包括数据信号 TS_OUT[7:0]、时钟信号 TS_CLK、数据有效信号 TS VLD、同步头信号 TS SYNC 和包错误信号 TS ERR:

- TS_OUT: TS 帧数据。并行模式下用 8 位,串行模式下用 1 位,两比特串行模式 用 2 位。
- TS_CLK:数据时钟。时钟沿可设,在不同模式下对应不同的时钟输出。

- TS VLD: TS 包数据有效指示(并行模式是字节有效,串行模式是比特有效)。
- TS SYNC: TS 包同步头指示(并行模式是字节有效,串行模式是比特有效)。
- TS_ERR: TS 包错误指示, 当前 TS 包出错则置 1。

图3-19 TS 并行输出时序示意

图3-20 TS 一比特串行输出时序示意

图3-21 TS 两比特串行时序示意

3.8.2 输出时序参数

TS 输出时序图如图 3-22、图 3-23 所示。

图3-22 TS_CLK 正、反向时序图

图3-23 TS 并行和两比特串行的时序关系

T1 与 T2 的参数最小值为 5.3ns

表3-26 TS 输出方向时序参数表(正向)

参数	符号	最小值	典型值	最大值	单位
TS_CLK	Tck	5.3	-	5.3	ns
输出数据信号延时	t	0	-	0.48	ns

表3-27 TS 输出方向时序参数表(反向)

参数	符号	最小值	典型值	最大值	单位
TS_CLK	Tck	5.3	-	5.3	ns
输出数据信号延时	t	1.0	-	2.63	ns

Н	
\blacksquare	Ж
_	7.1

A 缩略语

A

AAF Anti-aliasing Filter 抗镜像滤波器

ACM Adaptive Coding and Modulation 自适应编码调制

ADC Analog Digital Converter 模数转换器

AGC Automatic Gain Control 自动增益控制

 APSK
 Amplitude-Phase Shift Keying
 幅度相移键控

В

BCH Bose-Chaudhuri-Hocquenghem multiple error ——种循环纠错码

correction binary block code

BER Bit Error Rate 误比特率

 \mathbf{C}

CCM Constant Coding and Modulation 固定编码调制

CLK Clock 时钟

CR Carrier Recovery 载波恢复

CRC Cyclic Redundancy Check 循环冗余码校验

D

DAGC Digital Automatic Gain Control 数字自动增益控制

E

EQU Equalizer 均衡器

ERR Error 错误

F

FEC Forward Error Correction 前向纠错

FER Frame Error Rate 误帧率

FSK Frequency-shift keying 频移键控

 \mathbf{G}

GS Generic Stream 通用流

I

I In-phase 同相

L

LDPC Low Density Parity Check Code 低密度奇偶校验码

LMS Linear Mean Square 线性最小均方算法

M

MF Matched Filter 匹配滤波器

 Multi-TS
 Multiple Transport Stream
 多传输流

P

PER Packet Error Rate 误包率

PLL Phase-Locked Loop 锁相环

PLS Physical Layer Signalling 物理层信令

 PDM
 Pulse Density Modulation
 脉宽密度调制

PSK Phase Shift Keying 相移键控

Q

Q Quadrant 正交

QPSK Quaternary Phase Shift Keying 四相相移键控

R

RS Reed Solomon 里德所罗门,一种信道编码方式。

 \mathbf{S}

SNR Signal Noise Ratio 信噪比

SYNC Synchronization 同步

T

 TR
 Timing Recovery
 定时恢复

TS Transport Stream 传输流

 \mathbf{V}

VLD Valid 有效

 VCM
 Variable Coding and Modulation
 可变编码调制