Áreas de Conocimiento y Líneas de investigación

¿Qué vamos a estudiar en este capítulo?

Objetivo: familiarizar al alumno con las áreas y subáreas de investigación en el campo de la Ingeniería de Sistemas reconocidas por "The Computer Society" y "The Association for Computing Machinery" (IEEE/ACM), así como las líneas de investigación y áreas de conocimiento de IDIC y CONCYTEC.

"El aprendizaje es **experiencia**, todo lo demás es información..."

Áreas de Conocimiento

Investigación en Ingeniería de Sistemas

El principal objetivo de la investigación en el campo de la Ingeniería de Sistemas es generar el conocimiento tecnológico.

Tomando en cuenta el párrafo anterior, podemos afirmar que, el futuro Ingeniero de Sistemas tiene como papel fundamental contribuir y responder a los requerimientos del mercado, a través del conocimiento tecnológico necesario en el campo de las TICs.

Adaptado de varias fuentes.

Áreas de conocimiento según la OCDE y Concytec

1. Natural Sciences	1.1 Mathematics 1.2 Computer and information sciences 1.3 Physical sciences 1.4 Chemical sciences 1.5 Earth and related environmental sciences 1.6 Biological sciences 1.7 Other natural sciences	
2. Engineering and Technology	2.1 Civil engineering 2.2 Electrical engineering, electronic engineering, information engineering 2.3 Mechanical engineering 2.4 Chemical engineering 2.5 Materials engineering 2.6 Medical engineering 2.7 Environmental engineering 2.8 Environmental biotechnology 2.9 Industrial Biotechnology 2.10 Nano-technology 2.11 Other engineering and technologies	
3. Medical and Health Sciences	3.1 Basic medicine 3.2 Clinical medicine 3.3 Health sciences 3.4 Health biotechnology 3.5 Other medical sciences	
4. Agricultural Sciences	4.1 Agriculture, forestry, and fisheries 4.2 Animal and dairy science 4.3 Veterinary science 4.4 Agricultural biotechnology 4.5 Other agricultural sciences	
5. Social Sciences	5.1 Psychology 5.2 Economics and business 5.3 Educational sciences 5.3 Sociology 5.5 Law 5.6 Political Science 5.7 Social and economic geography 5.8 Media and communications 5.7 Other social sciences	
6. Humanities	6.1 History and archaeology 6.2 Languages and literature 6.3 Philosophy, ethics and religion 6.4 Art (arts, history of arts, performing arts, music) 6.5 Other humanities	

Áreas temáticas y Líneas de investigación priorizadas

	COMPUTACIÓN	SISTEMAS COGNITIVOS	CIENCIA DE DATOS	PLATAFORMA DE TIC
•	Sistemas de Información			
•	Interacción Humano Computador	Procesamiento Digital de señales	Comportamiento humano	Redes TIC
•	Ingeniería de Software	Sistemas inteligentes		Internet de la cosas
٠	Computación Gráfica e Imágenes	Sentidos y Procesamiento Natural	Psicolingüística en TIC	Redes de EnergíaCircuitos y sistemas
•	Computación Ubicua	Neurociencias	Computación paralela y Distribuida	electrónicos • Ciber seguridad
•	Lenguajes de programación	Robótica y automatización		- Ciber segundad

Áreas del Conocimiento - OCDE (Rep.). (n.d.).

Retrieved from https://sites.google.com/a/concytec.gob.pe/manual-dina/secciones/lineas-de-investigacion/areas-ocde

Vista actual de las carreras profesionales relacionadas con computación

Legend: CE=computer engineering; CS=computer science; CSEC=cybersecurity; DS=data science; EE=electrical engineering; IS=information systems; IT=information technology; SE=software engineering

ACM Computer curricula: https://www.acm.org/education/curricula-recommendations
Fuente: Computing Curricula 2020 (CC2020) (Rep.). (2020, May 1). Retrieved June 15, 2020, from https://cc2020.nsparc.msstate.edu/

Disciplinas centradas en computación

Computing-core Disciplines	Computing-Intensive Fields	Computing-Infrastructure Occupations
krtificial intelligence	Aerospace engineering	Blockchain administrator
Cloud computing	Autonomous systems	Computer technician
Computer science	Bioinformatics	Data analyst
Computer engineering	Cognitive science	Data engineer
Computational science	Cryptography	Database administrator
Database engineering	Computational science	Help desk technician
Computer graphics	Data science	Identity theft recovery agent
Cyber security	Digital library science	Network technician
Human-computer interaction	E-commerce	Professional IT trainer
Network engineering	Genetic engineering	Reputation manager
Programming languages	Information science	Security specialist
Programming methods	Information systems	System administrator
Operating systems	Public Policy and Privacy	Web identity designer
Performance engineering	Instructional design	Web programmer
Robotics	Knowledge engineering	Web services designer
Scientific computing	Management information systems	
Software architecture	Network science	
Software engineering	Multimedia design	
	Telecommunications	

Table 1. Selected professional specialties of computing.

Fuente: Denning, P. J. (2018). The computing profession. Communications of the ACM, 61(3), 33-

35. doi:10.1145/3182108

ACM Computing Classification System

https://dl.acm.org/ccs

General and reference	Hardware	Computer systems organization
Networks	Software and its engineering	Theory of computation
Mathematics of computing	Information systems	Security and privacy
Human-centered computing	Computing methodologies	Applied computing
Social and professional topics		

Áreas de Investigación IDIC - ULima

Comunicación y Cultura

- Industrias y procesos culturales
- Lenguajes y discursos
- Comunicación interpersonal
- Interculturalidad y multiculturalidad
- Liderazgo y toma de decisiones
- Estudios psicométricos

Calidad de Vida y Bienestar

- Salud
- Vivienda y construcción

- Educación

- Urbanismo

- Saneamiento

- Seguridad alimentaria
- Seguridad y violencia
- Infraestructura vial
- Transporte y comunicación

Productividad y Empleo

- Innovación: tecnologías y productos
- Formación de capital humano
- Trabajo y crecimiento
- Comercio y servicios

Derechos, Estado y Democracia

- Patrimonio cultural
- Ciudadanía
- Pobreza y desigualdad
- Género
- Procesos políticos
- Gestión pública
- Reforma del Estado

Recursos Naturales y Medio Ambiente

- Productos de la biodiversidad
- Agua, suelo y aire
- Medio ambiente
- Ecoeficiencia y tecnologías limpias
- Derecho ambiental
- Materiales avanzados

Desarrollo Empresarial

- Estrategias y comportamiento empresarial
- Operaciones y logística
- Finanzas y proyectos de inversión
- Marketing y comportamiento del consumidor
- Integración y asociación comercial
- Estudios bursátiles
- Interculturalidad en negocios internacionales

Cómo representar el conocimiento: Congresos

Congresos

- Congresos (conferencias, workshops, ...)
- Presentación oral o póster de un trabajo preliminar.
- Tipos:
 - Congreso: muy focalizado (sin sesiones paralelas).
 - Conferencia: más temas (sesiones paralelas).
 - Multiconferencia: Varios eventos asociados.
 - Workshops: Individual o satélite.
 - Algunos puntuales, otros son periódicos.

¿Qué hacer para publicar en un congreso?

Tener algo interesante que contar Mirar el Call-forpapers Escribir y Mirar las fechas

Que nos lo acepten

Congresos (A favor)

- Medio rápido para la difusión de la investigación (desde el envío al congreso: 3 meses).
- Feedback inmediato: preguntas durante la exposición.
- Fomenta las relaciones personales: permiten hacer contactos (ilos e-congress no funcionan!).
- Aumentan nuestro índice h.
- No es muy difícil publicar → Trabajos parciales.
- Permiten conocer mundo.

Congresos (En contra)

- Por lo general, menos valorados que las revistas.
- Hay que tener buena financiación:
 - Inscripción (300US\$ 600US\$)
 - Viaje (300US\$ 2000US\$)
 - Estancia (300US\$)
 - Y encima hay que comer...
- Los primeros se pasa un mal rato.
- En algunos es difícil entrar (lobbies).

Cómo representar el conocimiento: Revistas

Revistas

- Publicaciones periódicas que aglutinan trabajos en áreas más o menos concretas.
- Se definen como "archivals", es decir, lo que se manda debe estar bien rematado y contrastado.
- Algunas editoriales:

Tipos de Revistas

- Regulares: Artículos de investigación.
- Letters: Artículos cortos que necesitan difusión rápida.
- Review / Surveys / State-of-art: Artículos de revisión, comparación...
- Nacionales / Internacionales
- Con o sin Journal Citation Report (JCR) u otra métrica.
- Números especiales:
 - · Suelen ser los más interesantes.
 - Publicamos en nuestra temática experimental.
 - Nos evalúan los profesionales del área.
 - Tiene muy buen prestigio.
 - Son rápidos con el feedback: 1-2 meses...

Revistas (A favor)

- Alta repercusión en la comunidad científica (diseminación de la investigación).
- Alta consideración en la comunidad
 - → Si publicas en la revista te lo valoran.
- Suelen ser los que más aumenten el índice h.

Revistas (En contra)

- Es difícil conseguir publicar.
- Hay que trabajar muchísimo.
- Hay que pelear más todavía con los comentarios de cada uno de los revisores
 - \rightarrow Hasta 3 rounds.
- Suelen ser muy lentas, aunque los números especiales no.
- Son muy caras si elegimos una revista "Open Access".

Cuidado con Revistas Depredadoras

- "...su objetivo no es promover, preservar y difundir el conocimiento; al contrario, su objetivo es explotar el "pago por el autor", un modelo de acceso abierto, en beneficio propio" Jeffrey Beall, bibliotecario de la biblioteca de la Universidad de Colorado-Denver.
- "Attempts at definitive descriptions of predatory publishers have frequently been criticised as either being incomplete or capturing features that may legitimately exist within the complex range and diversity of scholarly publications". Committee on Publication Ethics (COPE).
- Características:
 - Dudoso proceso editorial y sin revisión por pares.
 - Tiempos de publicación muy cortos.
 - Gran cantidad de artículos anuales.
 - Pago de tasas por parte del autor.
 - A menudo usan títulos con términos parecidos a los de revistas prestigiosas.
- Link: https://beallslist.weebly.com/

También hay congresos depredadores...

Get me off Your Fucking Mailing List

David Mazières and Eddie Kohler New York University University of California, Los Angeles http://www.mailavenger.org/

Abstract

your fucking mailing list. Get me off your fucking mailing list. Get me off

your fucking mailing list. Get me off your fucking mailing list. Get me off your fucking mail-Get me off your fucking mailing list. Get me off ing list. Get me off your fucking mailing list.

Taller

Formación de grupos, dos (02) personas como máximo.

Objetivo:

- Identificar el área y subárea que se trabajará
- Definir en tema/idea de investigación.
- Realizar una presentación de 3 diapositivas máximo explicando los puntos anteriores.

El grupo podrá referenciar los trabajos en éstas fuentes u otras que encuentre que también sean confiables:

https://scholar.google.es

Bibliometría: Indicador de impacto

Bibliometría

 Análisis cuantitativo de la literatura científica, teniendo en cuenta principalmente las citas recibidas. Sin estudiar la calidad, pretende orientar sobre el impacto de la investigación (de un artículo, un investigador, un grupo, una institución...)

Indicadores bibliométricos

Cuantifican dimensiones conceptuales como: productividad de autor, impacto de las publicaciones, liderazgo científico, patrones de colaboración.

¿Para sirven los indicadores bibliométricos?

- Descubrir las revistas más convenientes donde publicar
- Localizar los investigadores más importantes de un área o posibles colaboradores.
- Indagar las tendencias de investigación en las distintas áreas.

Tipos de indicadores bibliométricos

- Productividad
 - Número de documentos citables
 - Tasa de crecimiento relativo
 - Índice de actividad temática
- Impacto
 - Número de citas recibidas
 - Promedio de citas por artículo
 - Impacto normalizado

- Colaboración
 - Número de países colaboradores
 - Tasa de colaboración internacional
 - Índice de coautoría institucional
- Otros (Altrimétricas)
 - Número de descargar
 - Uso de Mendeley
 - Medición en Twitter

Altmetric.com Dimension.ai PlumX Metrics

Fuente: Gloria, R., & Patricio, C. (2020). *Medición y evaluación del impacto de la productividad académica*. Pontificia Universidad de Chile.

Adaptado de Gloria, R., & Patricio, C. (2020). *Medición y evaluación del impacto de la productividad académica*. Pontificia Universidad de Chile.

Journal Impact Factor (JIF) vs CiteScore (CS)

- **JIF** Journal Citation Reports.
- Determina cuartil (Q) de la revista en categoría(s) temática(s) en JCR.
- Indica la cantidad de citas en promedio que han recibido los "documentos citables" (Article, Review y Proceedings Paper), publicados 2 años antes de la fecha de análisis

- Citiscore Scopus.
- Determina percentil y cuartil (Q) de la revista en categoría(s) temática(s) en Scopus.
- Indica la cantidad de citas en promedio que han recibido todos los documentos publicados 3 años antes de la fecha de análisis
- https://mjl.clarivate.com/search-results
 https://www.scopus.com/sources

Fuente: Gloria, R., & Patricio, C. (2020). *Medición y evaluación del impacto de la productividad académica*. Pontificia Universidad de Chile.

Scimago Journal Rank (SJR)

- Proporciona un índice de calidad relativo de las revistas incluidas.
- Datos suministrados por Scopus.
- Acceso es libre y gratuito.
- Ofrece también factor de impacto, cuartil e índice H.
- Utilizado para el componente de investigación en el Ranking QS
- https://www.scimagojr.com/

Conociendo las Bases de Datos Académicas

- Scopus
- https://libguides.ulima.edu.pe/Scopus tutoriales/Home?preview=da0ada84e245063 ffe0b6dafa6f21592
- SCIMAGO
- https://www.youtube.com/watch?v=PDMFEDE3At0
- Google Scholar
- https://www.youtube.com/watch?v=PbKbSAFiOnA
- IEEE
- https://libguides.ulima.edu.pe/Bases datos Tutoriales/IEEE?preview=b5efe200406304618e1659830331f286
- ACM Digital
- https://www.youtube.com/watch?v=Y6QqLKMkQ_I

Taller

Formación de grupos, dos (02) personas como máximo.

Objetivo:

- Buscar y categorizar 2 artículos científicos en la misma temática que habéis definido en el taller anterior.
- Identificar la revista y editorial.
- Identificar el Impacto (JIF, CS, SJR) que tiene según las diferentes BBDD y representarlo en una matriz.
- Identificar la contribución, métodos empleados y trabajo futuro
- Presentar una matriz identificando y diferenciando, según el punto anterior, por cada tipo de documento.
- Realizar unas 5 diapositivas con el contenido solicitado.

