# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

### 特開平11-238318

(43)公開日 平成11年(1999) 8月31日

| (51) Int.Cl. <sup>6</sup> G11B 20 |     | <b>談別記号</b> | FI<br>G11B 20/12 |         |
|-----------------------------------|-----|-------------|------------------|---------|
|                                   |     | 103         |                  | 103     |
| 20                                | /10 | 3 0 1       | 20/10            | 3 0 1 Z |

#### 審査請求 未請求 請求項の数12 OL (全 98 頁)

| (21)出顯番号 | 特顧平10-40879       | (71)出版人 000003078         |    |
|----------|-------------------|---------------------------|----|
|          |                   | 株式会社東芝                    |    |
| (22)出顧日  | 平成10年(1998) 2月23日 | 神奈川県川崎市幸区堀川町72番地          |    |
|          |                   | (71) 出顧人 000221029        |    |
|          |                   | 東芝エー・ブイ・イー株式会社            |    |
|          |                   | 東京都港区新橋3丁目3番9号            |    |
|          |                   | (72)発明者 安東 <del>秀夫</del>  |    |
|          |                   | 神奈川県川崎市幸区柳町70番地 株式        | 会社 |
|          |                   | 東芝柳町工場内                   |    |
|          |                   | (72)発明者 ▲吉▼岡 容            |    |
|          |                   | 東京都港区新橋3丁目3番9号 東芝         | エ  |
|          |                   | ー・プイ・イー株式会社内              |    |
|          |                   | (74)代理人 弁理士 鈴江 武彦 (51.6名) |    |

#### (54) 【発明の名称】 情報記憶媒体および情報記録再生システム

#### (57)【要約】

【課題】ビデオとオーディオの再生タイミングずれを防止できるデジタル情報記録再生システムを提供する。を 提供する。

【解決手段】ビデオ情報、オーディオ情報および制御情報を含むオーディオ・ビデオデータを光ディスクに記録し再生するシステムにおいて、前記制御情報にオーディオ同期情報を記述する。再生時に、前記オーディオ同期情報に基づいて、前記ビデオ情報と前記オーディオ情報との同期を取る。これにより、ビデオとオーディオの再生タイミングずれを防止する。

| VOBU<br>一般情報<br>ダミー<br>パック | I ピクチャ<br>純丁位置                    | Iピクチャ最終位置のVOSU<br>先験位置からの差分アドレス値                                                                      |                             |  |  |
|----------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
| ,                          |                                   | ルーニニルウショカノアレス製                                                                                        | 1                           |  |  |
| ,                          | ダミーバッグ職                           | VOHU内のダミーパック数                                                                                         | 1                           |  |  |
| 1999                       | グミーパック<br>分布                      | YORU先駆からのグミーバック<br>根入着分アドレスと何々のグミー<br>パック集をそれぞれ2パイト表現                                                 | 2 H<br>1/4-<br>1/40<br>1/40 |  |  |
|                            | オーディオ<br>ストリーム<br>テャネル <b>ロ</b> サ | オーディオストリーム<br>のチャネル他                                                                                  | ,                           |  |  |
|                            | 1ピクテヤ<br>オーディオ<br>位戦#1            | 1ビクティ間的可加と共命性のオーティオパッタが含まれるECCプロック<br>のVの9リ先駆からの総分アドレス個<br>(風上をピットー* 9 * で他分字を<br>風上をピットー* 1 * で前方序を) | 1                           |  |  |
| <i>*</i> -                 | リピクテヤ<br>開始オーデ<br>イオサンプ<br>ル番号#1  | 上足をとこプロック内において、<br>「ピクテャ製炉物理と質問題の<br>オーディオヤンブルを配の<br>サンプル参考を、セナーディオ<br>パックの運動で発生品を<br>パックの運動で発生品を     | 2                           |  |  |
| ディ<br>オ<br>国期              | オーディオ<br>円型情報<br>フラグま1            | オーディオストリームとビデオ<br>ストリームとの間の内別情報の<br>有数(旅のとをは次項日なし)                                                    | 1                           |  |  |
| 376                        | オーディオ<br>同島ゲータ                    | VOBUに含まれる<br>オーディオサンプル数                                                                               | 2                           |  |  |
| Ĺ                          |                                   |                                                                                                       |                             |  |  |
|                            | 1 ピクチ                             | ヤオーディオ位置#2 #                                                                                          |                             |  |  |
| - [                        | 1ピクテャ開始オーディオサンブル番号#2 と            |                                                                                                       |                             |  |  |
|                            | <b>オー</b> 5                       | イオ同期フラグ#2                                                                                             |                             |  |  |
|                            | オーディオ同語データ                        |                                                                                                       |                             |  |  |

#### 【特許請求の範囲】

【請求項1】ビデオ情報、オーディオ情報および制御情 報を含むオーディオ・ビデオデータを記録し再生するも のにおいて、

前記制御情報に、前記ビデオ情報と前記オーディオ情報 との同期を取るためのオーディオ同期情報を記述したこ とを特徴とする情報記憶媒体。

【請求項2】前記ビデオ情報は所定単位のデータの繋が りで構成されており、

前記オーディオ同期情報が、前記特定単位のデータの再 生開始時刻における前記オーディオ情報の記録位置情報 を記述したことを特徴とする請求項1に記載の情報記憶 媒体。

【請求項3】前記ビデオ情報は所定単位のデータの繋が りで構成されており、

前記オーディオ同期情報が、前記特定単位のデータにお けるオーディオ情報のサンプル数を記述したことを特徴 とする請求項1または請求項2に記載の情報記憶媒体。

【請求項4】前記オーディオ同期情報が、前記ビデオ情 報と前記オーディオ情報との同期情報の有無を示すオー 20 ディオ同期情報フラグを含むことを特徴とする請求項1 ないし請求項3のいずれか1項に記載の情報記憶媒体。

【請求項5】前記オーディオ同期情報フラグが前記同期 情報有を示すときに、前記オーディオ同期情報が、前記 特定単位のデータに含まれるオーディオサンプル数の情 報をさらに含むことを特徴とする請求項4に記載の情報 記憶媒体。

【請求項6】前記特定単位のデータは所定サイズを持つ 複数のデータパックに格納されるもので、これらのデー タパックの一部に前記ビデオ情報が格納され、これらの データパックの他部に前記オーディオ情報が格納される ように構成したことを特徴とする請求項1、請求項2ま たは請求項5に記載の情報記憶媒体。

【請求項7】前記オーディオ・ビデオデータは所定のE CCプロック単位でエラー訂正が行われるように構成さ れており、

前記特定単位のデータが、前記ECCブロックのサイズ の整数倍のサイズを持つように構成されることを特徴と する請求項2ないし請求項6のいずれか1項に記載の情 報記憶媒体。

【請求項8】複数のオーディオストリームで構成される オーディオ情報および制御情報を含むデータを記録し再 生するものにおいて、

前記制御情報に、前記オーディオ情報の各オーディオス トリーム間の同期を取ることに利用できるオーディオ同 期情報を記述したことを特徴とする情報記憶媒体。

【請求項9】ビデオ情報、オーディオ情報および制御情 報を含むオーディオ・ビデオデータを所定の情報記憶媒 体に記録し再生するものにおいて、

前記制御情報にオーディオ同期情報を記述し、

再生時に、前記オーディオ同期情報に基づいて、前記ビ デオ情報と前記オーディオ情報との同期を取るように構 成したことを特徴とする情報記録再生システム。

【請求項10】複数のオーディオストリームで構成され るオーディオ情報および制御情報を含むデータを所定の 情報記憶媒体に記録し再生するものにおいて、

前記制御情報に、前記オーディオ情報の各オーディオス トリーム間の同期を取ることに利用できるオーディオ同 期情報を記述し、

再生時に、前記オーディオ同期情報に基づいて、前記オ ーディオストリーム間の同期を取るように構成したこと を特徴とする情報記録再生システム。

【請求項11】ビデオ情報、オーディオ情報および制御 情報を含むオーディオ・ビデオデータを所定の情報記憶 媒体に記録し再生するものにおいて、

前記制御情報に、前記ビデオ情報と前記オーディオ情報 との同期を取るためのオーディオ同期情報が記述され、 前記オーディオ同期情報が、前記ビデオ情報と前記オー ディオ情報との同期情報の有無を示すオーディオ同期情 報フラグを含み、

前記オーディオ同期情報フラグが前記同期情報有を示す ときに、前記オーディオ同期情報が、前記特定単位のデ ータに含まれるオーディオサンプル数の情報をさらに含 み、

前記オーディオサンブル数に合わせて前記ビデオ情報と 前記オーディオ情報とが同時に再生されるように構成し たことを特徴とする情報記録再生システム。

【請求項12】ビデオ情報、オーディオ情報および制御 情報を含むオーディオ・ビデオデータを所定の情報記憶 媒体に記録し再生するものにおいて、

前記制御情報にオーディオ同期情報を記述し、ビデオ情 報内の特定情報を情報記憶媒体上の異なる位置に記録し 直す場合に、前記オーディオ同期情報に従いビデオ情報 に同期したオーディオ情報も情報記憶媒体上の異なる位 置に記録し直すように構成したことを特徴とする情報記 録再生システム。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、大容量光ディス クに代表される情報記憶媒体およびこの媒体を利用した デジタル情報録画再生システムに関する。

【0002】とくに、上記媒体に記録されたビデオ情報 およびオーディオ情報を再生する際に、両者の再生タイ ミングのずれを防止できる録画再生システムに関する。 [0003]

【従来の技術】近年、映像(動画)や音声等を記録した 光ディスクを再生するシステムが開発され、LD(レー ザディスク) あるいはビデオCD (ビデオコンパクトデ ィスク) などの様に、映画ソフトやカラオケ等を再生す 50 る目的で、一般に普及している。

【0004】その中で、国際規格化したMPEG2(ムービングピクチャエキスパートグループ)方式を使用し、AC-3(デジタルオーディオコンプレッション)その他のオーディオ圧縮方式を採用したDVD(デジタルパーサタイルディスク)規格が提案された。このDVD規格には、再生専用のDVDビデオ(またはDVD-ROM)、ライトワンスのDVD-R、反復読み書き可能なDVD-RW(またはDVD-RAM)が含まれる。

【0005】DVDビデオ(DVD-ROM)の規格は、MPEG2システムレイヤに従って、動画圧縮方式としてはMPEG2、音声記録方式としてはリニアPC Mの他にAC3オーディオおよびMPEGオーディオをサポートしている。さらに、このDVDビデオ規格は、字幕用としてビットマップデータをランレングス圧縮した副映像データ、早送り巻き戻しデータサーチ等の再生制御用コントロールデータ(ナビゲーションデータ)を追加して構成されている。

【0006】また、この規格では、コンピュータでデータを読むことができるように、ISO9660およびU 20 DFブリッジフォーマットもサポートしている。このことから、パーソナルコンピュータ環境でもDVDビデオの映像情報を取り扱えるようになっている。

#### [0007]

【発明が解決しようとする課題】ところで、通常のデジタルオーディオ録音機器の基準クロックの周波数ずれ量はおよそ0.1%程度と言われている。すると、たとえばデジタルピデオテープ(DAT)レコーダによりデジタル録音した音源情報を、デジタルコピーにより、DVDーRAMディスクへ既に録画したビデオ情報に重ね記30録する場合、ビデオ情報とオーディオ情報間の基準クロックずれが0.1%程度ずれる可能性がある。この基準クロックのずれはデジタルコピー(あるいはパーソナルコンピュータ等を利用したノンリニア編集)を繰り返して行くうちに無視できない大きさとなり、再生音の途切れあるいは再生チャネル間での位相ずれとなって現れる。

【0008】また、図24に示すように、特定のビデオパックに対応した音声情報がそのビデオパックから大きく離れた位置のオーディオパック内に収納される場合が 40ある。ここで、図79~図81に示すように特定のセル(セル#2A)を情報記憶媒体の別位置に記録し直す場合、特定のセル(セル#2A)の下にあるパック(VOBU108dと108e)を単に移動させただけでは、ビデオパックとオーディオパックとの間の同期が取れなくなる。すると、記録後再生するときに、その部分で音切れ等が生じてしまう。

【0009】この発明の目的は、オーディオ情報の基準 クロックがずれてもビデオ情報とオーディオ情報を同期 して再生できるように(あるいはマルチチャネル音声の 50 4

チャネル間位相同期が取れるように)、特別な同期情報 を持つ情報記憶媒体およびこの媒体を利用したデジタル 情報記録再生システムを提供することである。

【0010】また、この発明の他の目的は、情報記憶媒体上に記録された情報の編集処理等により、たとえばビデオ情報内の特定情報(特定セル)の記録位置が変更された場合、この記録位置が変更された特定情報の再生時に再生情報の欠落(音切れ等)が生じないようにしたデジタル情報記録再生システムを提供することである。

#### [0011]

【課題を解決するための手段】上記目的を達成するために、ビデオ情報(ビデオパック)、オーディオ情報(オーディオパック)および制御情報(DA21)を含むオーディオ・ビデオデータ(DA2)を記録するこの発明の情報記憶媒体では、前記制御情報(DA21)に、前記ビデオ情報(ビデオパック)と前記オーディオ情報(オーディオパック)との同期を取るためのオーディオ同期情報(DA21/DA210/CTCI/CTI#m/VOBU情報/オーディオ同期情報)を記述している。

【0012】また、上記目的を達成するために、複数のオーディオストリームで構成されるオーディオ情報(オーディオバック)および制御情報(DA21)を含むデータ(DA2)を記録するこの発明の情報記憶媒体では、前記制御情報(DA21)に、前記オーディオ情報(オーディオバック)の各オーディオストリーム間の同期を取ることに利用できるオーディオ同期情報(DA21/DA210/CTCI/CTI#m/VOBU情報/オーディオ同期情報)を記述している。

【0013】また、上記目的を達成するために、ビデオ情報(ビデオパック)、オーディオ情報(オーディオパック)および制御情報(DA21)を含むオーディオ・ビデオデータ(DA2)を所定の情報記憶媒体に記録し再生するこの発明のデジタル情報記録再生システムは、前記制御情報(DA21)にオーディオ同期情報(DA21/DA210/CTCI/CTI#m/VOBU情報/オーディオ同期情報)を記述し、再生時に、前記オーディオ同期情報に基づいて、前記ビデオ情報(ビデオパック)と前記オーディオ情報(オーディオパック)との同期を取るようにように構成している。

【0014】また、上記他の目的を達成するために、ビデオ情報(ビデオバック)、オーディオ情報(オーディオパック)および制御情報(DA21)を含むオーディオ・ビデオデータ(DA2)を所定の情報記憶媒体に記録し再生するこの発明のデジタル情報記録再生システムは、前記制御情報(DA21)にオーディオ同期情報(DA21/DA210/CTCI/CTI#m/VOBU情報/オーディオ同期情報)を記述し、ビデオ情報(DA22)内の特定情報(セル#2A)を情報記憶媒体(10)上の異なる位置に記録し直す場合に、前記オ

ーディオ同期情報に従いビデオ情報(ビデオパック)に 同期したオーディオ情報(オーディオパック)も情報記 憶媒体上の異なる位置(VOBU108d\*または10 8 p) に記録し直すように構成している。

[0015]

【発明の実施の形態】以下、図面を参照して、この発明 の一実施の形態に係るデジタル情報記録再生システムを 説明する。

【0016】この発明に係るデジタル情報記録再生シス テムの代表的な一実施の形態として、MPEG2に基づ きエンコードされた動画を可変ビットレートで記録・再 生する装置、たとえばDVDデジタルビデオレコーダが ある。 (このDVDデジタルビデオレコーダの具体的な 構成例については後述する。)

図1は、上記DVDデジタルビデオレコーダに使用され る記録可能な光ディスク(DVD-RAM/DVD-R Wディスク等) 10の構造を説明する斜視図である。

【0017】図1に示すように、この光ディスク10 は、それぞれ記録層17が設けられた一対の透明基板1 4を接着層20で貼り合わせた構造を持つ。各基板14 は0.6mm厚のポリカーボネートで構成することがで き、接着層 2 0 は極薄(たとえば 4 0 μ m厚)の紫外線 硬化性樹脂で構成することができる。これら一対の0. 6mm基板14を、記録層17が接着層20の面上で接 触するようにして貼り合わすことにより、1.2mm厚 の大容量光ディスク10が得られる。

【0018】なお、記録層17はROM/RAM2層構 造を持つことができる。その場合、読み出し面19側か らみて近い方にROM層/光反射層 (エンボス層) 17 Aが形成され、読み出し面19側からみて遠い方にRA M層/相変化記録層17Bが形成される。

【0019】光ディスク10には中心孔22が設けられ ており、ディスク両面の中心孔22の周囲には、この光 ディスク10を回転駆動時にクランプするためのクラン プエリア24が設けられている。中心孔22には、図示 しないディスクドライブ装置に光ディスク10が装填さ れた際に、ディスクモータのスピンドルが挿入される。 そして、光ディスク10は、そのクランプエリア24に おいて、図示しないディスククランパにより、ディスク 回転中クランプされる。

【0020】光ディスク10は、クランプエリア24の 周囲に、ビデオデータ、オーディオデータその他の情報 を記録することができる情報エリア25を有している。

【0021】情報エリア25のうち、その外周側にはリ ードアウトエリア26が設けられている。また、クラン プエリア24に接する内周側にはリードインエリア27 が設けられている。そして、リードアウトエリア26と リードインエリア27との間にデータ記録エリア28が 定められている。

には、記録トラックがたとえばスパイラル状に連続して 形成されている。その連続トラックは複数の物理セクタ に分割され、これらのセクタには連続番号が付されてい る。このセクタを記録単位として、光ディスク10に種 々なデータが記録される。

【0023】データ記録エリア28は、実際のデータ記 録領域であって、記録・再生情報として、映画等のビデ オデータ(主映像データ)、字幕・メニュー等の副映像 データおよび台詞・効果音等のオーディオデータが、同 様なピット列(レーザ反射光に光学的な変化をもたらす 物理的な形状あるいは相状態)として記録されている。

【0024】光ディスク10が片面1層で両面記録のR AMディスクの場合は、各記録層17は、2つの硫化亜 鉛・酸化シリコン混合物 (ZnS·SiO2) で相変化 記録材料層(たとえばGe2Sb2Te5)を挟み込ん だ3重層により構成できる。

【0025】光ディスク10が片面1層で片面記録のR AMディスクの場合は、読み出し面19側の記録層17 は、上記相変化記録材料層を含む3重層により構成でき る。この場合、読み出し面19から見て反対側に配置さ れる層17は情報記録層である必要はなく、単なるダミ 一層でよい。

【0026】光ディスク10が片面読み取り型の2層R AM/ROMディスクの場合は、2つの記録層17は、 1つの相変化記録層(読み出し面19からみて奥側;読 み書き用)と1つの半透明金属反射層 (読み出し面19 からみて手前側;再生専用)で構成できる。

【0027】光ディスク10がライトワンスのDVDー Rである場合は、基板としてはポリカーボネートが用い られ、図示しない反射膜としては金、図示しない保護膜 としては紫外線硬化樹脂を用いることができる。この場 合、記録層17には有機色素が用いられる。この有機色 素としては、シアニン、スクアリリウム、クロコニッ ク、トリフェニルメンタン系色素、キサンテン、キノン 系色素(ナフトキン、アントラキノン等)、金属錯体系 色素(フタロシアン、ボルフィリン、ジチオール錯体 等) その他が利用可能である。

【0028】このようなDVD-Rディスクへのデータ **書き込みは、たとえば波長650nmで出力6~12m** W程度の半導体レーザを用いて行うことができる。

【0029】光ディスク10が片面読み取り型の2層R OMディスクの場合は、2つの記録層17は、1つの金 属反射層 (読み出し面19からみて奥側) と1つの半透 明金属反射層(読み出し面19からみて手前側)で構成

【0030】読み出し専用のDVD-ROMディスク1 0では、基板14にピット列が予めスタンパーで形成さ れ、このピット列が形成された基板14の面に金属等の 反射層が形成され、この反射層が記録層17として使用 【0022】情報エリア25の記録層(光反射層)17 50 されることになる。このようなDVD-ROMディスク

10では、通常、記録トラックとしてのグループは特に 設けられず、基板14の面に形成されたピット列がトラ ックとして機能するようになっている。

【0031】上記各種の光ディスク10において、再生 専用のROM情報はエンボス信号として記録層17に記 録される。これに対して、読み書き用(またはライトワ ンス用)の記録層17を持つ基板14にはこのようなエ ンポス信号は刻まれておらず、その代わりに連続のグル 一ブ溝が刻まれている。このグルーブ溝に、相変化記録 層が設けられるようになっている。読み書き用DVD- 10 RAMディスクの場合は、さらに、グループの他にラン ド部分の相変化記録層も情報記録に利用される。

【0032】なお、光ディスク10が片面読み取りタイ プ(記録層が1層でも2層でも)の場合は、読み出し面 19から見て裏側の基板14は読み書き用レーザに対し て透明である必要はない。この場合は裏側基板14全面 にラベル印刷がされていても良い。

【0033】後述するDVDデジタルビデオレコーダ は、DVD-RAMディスク (またはDVD-RWディ スク)に対する反復記録・反復再生(読み書き)と、D VD-Rディスクに対する1回の記録・反復再生と、D VD-ROMディスクに対する反復再生が可能なように 構成できる。

【0034】図2は、図1の光ディスク(DVD-RA M等) 10のデータ記録エリア28とそこに記録される データの記録トラックとの対応関係を説明する図であ

【0035】ディスク10がDVD-RAM (またはD VD-RW)の場合は、デリケートなディスク面を保護 するために、ディスク10の本体がカートリッジ11に 収納されるようになっている。DVD-RAMディスク 10がカートリッジ11ごと後述するDVDピデオレコ ーダのディスクドライブに挿入されると、カートリッジ 11からディスク10が引き出されて図示しないスピン ドルモータのターンテーブルにクランプされ、図示しな い光ヘッドに向き合うようにして回転駆動される。

【0036】一方、ディスク10がDVD-RまたはD VD-ROMの場合は、ディスク10の本体はカートリ ッジ11に収納されておらず、裸のディスク10がディ スクドライブのディスクトレイに直接セットされるよう になる。

【0037】図1に示した情報エリア25の記録層17 には、データ記録トラックがスパイラル状に連続して形 成されている。その連続するトラックは、図2に示すよ うに一定記憶容量の複数論理セクタ(最小記録単位)に 分割され、この論理セクタを基準にデータが記録されて いる。1つの論理セクタの記録容量は、1パックデータ 長と同じ2048バイト (あるいは2kバイト) に決め られている(図24参照)。

【0038】データ記録エリア28には、実際のデータ

記録領域であって、管理データ、主映像(ビデオ)デー

タ、副映像データおよび音声(オーディオ)データが同 様に記録されている。

【0039】なお、図4を参照して後述するが、図2の ディスク10のデータ記録エリア28は、リング状 (年 輪状)に複数の記録エリア(複数の記録ゾーン)に分割 することができる。各記録ゾーン毎にディスク回転速度 は異なるが、各ゾーン内では線速度または角速度を一定 にすることができる。この場合、各ゾーン毎に予備の記 録エリアすなわちスペアエリア (フリースペース) を設 けることができる。このゾーン毎のフリースペースを集 めて、そのディスク10のリザーブエリアとすることが

【0040】図3は、図1の2層貼合せ光ディスク10 を読書両用とする場合の、データ記録部をデフォルメし て示す部分断面図である。ここでは、金(Au)または 硫化亜鉛(2nS)と酸化シリコン(SiO2)との混 合物(ZnS·SiO2)で、厚さがたとえば20nm の読出専用情報記録層(ROM層17A)を形成してい 20 る。

【0041】また、アルミニウム(A1)またはアルミ ニウム・モリブデン合金(Al·Mo)を用いた光反射 膜と紫外線硬化性樹脂接着層20との間に、2つの硫化 亜鉛・酸化シリコン混合物 Ζ n S · S i O 2 (9 2 、9 4) で相変化記録材料層 90 (Ge 2 Sb 2 Te 5 ある いはGeAnTe等)を挟み込んだ3重層(90~9 4)が、設けられている。この3重層が、読み書き可能 な情報記録層(RAM層17B)を形成している。

【0042】アルミニウムまたはアルミニウム・モリブ デン合金反射膜の厚さはたとえば100nm程度に選ば れ、 ZnS・SiO2混合物層94の厚さはたとえば2 0 nm程度に選ばれ、Ge2Sb2Te5相変化記録材 料層90の厚さはたとえば20nm程度に選ばれ、2n S・SiO2混合物層92の厚さはたとえば180nm 程度に選ばれる。

【0043】RAM層17Bに対する書込レーザ光WL は、基板14側から半透明のROM層17Aを貫通し て、相変化記録材料層90に入射するようになってい る。

【0044】RAM層17Bに対する読出レーザ光RL は、基板14側から半透明のROM層17Aを貫通して 相変化記録材料層90に入射し、そこで書込状態(結晶 質か非結晶質か)に応じた反射をするようになってい

【0045】一方、ROM層17Aに対する読出レーザ 光RLは、基板14側から入射し半透明のROM層17 Aの凹凸(エンボス)状態に応じた反射をするようにな っている。ROM層17Aを読むかRAM層17Bを読 むかは、どちらの層に光ピックアップのフォーカスを結 ばせるかで切り換えることができる。

【0046】なお、読出専用の情報がエンボス信号として記録されている基板14に対して、読み書き用の基板にはこのようなエンボス信号は刻まれておらず、その代わりに連続のグループ溝が刻まれている。このグループ溝に、相変化記録材料層90が設けられるようになっている。

【0047】図4は、図1の2層光ディスクのRAM層のデータトラック構成例(交替処理用スペアエリアSA00~SA23が各ユーザエリアUA00~UA23の外側に配置された構成)を説明する図である。

【0048】毎秒回転数(Hz)がN00のユーザエリアUA00の外側同心状に、毎秒回転数(Hz)がN00のスペアエリアSA00(ユーザエリアUA00で生じた欠陥部分の交替処理用)が設けられている。同様に、毎秒回転数(Hz)がN01のユーザエリアUA01の外側に毎秒回転数(Hz)がN01のスペアエリアSA01が同心状に設けられ、毎秒回転数(Hz)がN23のユーザエリアUA23の外側に毎秒回転数(Hz)がN23のスペアエリアSA23が同心状に設けられる。

【0049】この同心状エリア構成において、各回転ゾーン $00(UA00+SA00)\sim23(UA23+SA23)$ 間での記録密度を平均化してディスク全体で大きな記録容量を確保するために、各定回転ゾーン毎の回転数を $N00>N01>\cdots>N23$ としている。

【0050】なお、ここでは同心状のゾーン数を24個 (ゾーン00~ゾーン23)としてあるが、このゾーン 数24以外でもこの発明を実施できる。

【0051】図4の構成の光ディスク10において、ユーザエリアUA00に書込を行うときは、その管理(ユーザエリアUA00のどこからどこまでに該当データが書き込まれるか等)および欠陥発生時の交替処理は同じ回転数ゾーン内で行なう。同様に、ユーザエリアUA01での書込管理・欠陥管理は同じ回転数ゾーン内で行ない、ユーザエリアUA23での書込管理・欠陥管理は同じ回転数ゾーン内で行なう。

【0052】このようにすれば、書込管理処理中あるいは交替処理中にディスク10の回転速度を切り換える必要がなくなるから、書込処理および交替処理を高速化できる。

【0053】図5は、図1の2層光ディスクのRAM層のレイアウトを説明する図である。

【0054】すなわち、ディスク内周側のリードインエリア27は、光反射面が凹凸形状をしたエンボスゾーン、表面が平坦(鏡面)なミラーゾーンおよび書替可能ゾーンで構成される。エンボスゾーンは基準信号ゾーンおよび制御データゾーンを含み、ミラーゾーンは接続ゾーンを含む。

【0055】 魯替可能ゾーンは、ディスクテストゾーンと、ドライブテストゾーンと、ディスクID (識別子)

10

ゾーンと、欠陥管理エリアDMA1およびDMA2を含んでいる。

【0056】ディスク外周側のリードアウトエリア26は、欠陥管理エリアDMA3およびDMA4と、ディスクID(識別子)ゾーンと、ドライブテストゾーンと、ディスクテストゾーンを含む書替可能ゾーンで構成される。

【0057】リードインエリア27とリードアウトエリア26との間のデータエリア28は、24個の年輪状のソーン00~ゾーン23に分割されている。各ゾーンは一定の回転速度を持っているが、異なるゾーン間では回転速度が異なる。また、各ゾーンを構成するセクタ数も、ゾーン毎に異なる。具体的には、ディスク内周側のゾーン(ゾーン00等)は回転速度が早く構成セクタ数は少ない。一方、ディスク外周側のゾーン(ゾーン23等)は回転速度が遅く構成セクタ数が多い。このようなレイアウトによって、各ゾーン内ではCAVのような高速アクセス性を実現し、ゾーン全体でみればCLVのような高密度記録性を実現している。

【0058】図6は、図5のレイアウトにおけるリードイン部分およびリードアウト部分の詳細を説明する図である。

【0059】エンボスデータゾーンの制御データゾーンには、適用されるDVD規格のタイプ(DVD-ROM・DVD-R等)およびパートバージョンと、ディスクサイズおよび最小読出レートと、ディスク構造(1層ROMディスク・1層RAMディスク・2層ROM/RAMディスク等)と、記録密度と、データエリアアロケーションと、バーストカッティングエリアの記述子と、記録時の露光量指定のための線速度条件と、読出パワーと、ピークパワーと、バイアスパワーと、媒体の製造に関する情報が記録されている。

【0060】別の言い方をすると、この制御データゾーンには、記録開始・記録終了位置を示す物理セクタ番号などの情報記憶媒体全体に関する情報と、記録パワー、記録バルス幅、消去パワー、再生パワー、記録・消去時の線速などの情報と、記録・再生・消去特性に関する情報と、個々のディスクの製造番号など情報記憶媒体の製造に関する情報等が事前に記録されている。

【0061】リードインおよびリードアウトの書替可能 データゾーンには、各々の媒体ごとの固有ディスク名記 録領域と、試し記録領域(記録消去条件の確認用)と、 データエリア内の欠陥領域に関する管理情報記録領域が 設けられている。これらの領域を利用することで、個々 のディスクに対して最適な記録が可能となる。

【0062】図7は、図5のレイアウトにおけるデータエリア部分の詳細を説明する図である。

【0063】24個のゾーン毎に同数のグループが割り 当てられ、各グループはデータ記録に使用するユーザエ 50 リアと交替処理に使用するスペアエリアをペアで含んで

いる。各グループのユーザエリアおよびスペアエリアは 同じ回転速度のゾーンに収まっており、グループ番号の 小さい方が高速回転ゾーンに属し、グループ番号の大き い方が低速回転ゾーンに属する。低速回転ゾーンのグル ープは高速回転ゾーンのグループよりもセクタ数が多い が、低速回転ゾーンはディスクの回転半径が大きいの で、ディスク10上での物理的な記録密度はゾーン全体 (グループ全て) に渡りほぼ均一になる。

【0064】各グループにおいて、ユーザエリアはセク タ番号の小さい方(つまりディスク上で内周側)に配置 10 され、スペアエリアはセクタ番号の大きい方(ディスク 上で外周側)に配置される。このセクタ番号の割り当て 方は、図4のディスク10上におけるユーザエリアUA とスペアエリアSAとの配置方法に対応する。

【0065】次に、情報記憶媒体(DVD-RAMディ スク10等)上に記録される情報の記録信号構造とその 記録信号構造の作成方法について説明する。なお、媒体 上に記録される情報の内容そのものは「情報」と呼び、 同一内容の情報に対しスクランブルしたり変調したりし たあとの構造や表現、つまり信号形態が変換された後の 20 "1"~ "0"の状態のつながりは「信号」と表現し て、両者を適宜区別することにする。

【0066】図8は、図5のデータエリア部分に含まれ るセクタの構造を説明する図である。図8の1セクタは 図7のセクタ番号の1つに対応し、図2に示すように2 048バイトのサイズを持つ。各セクタはディスク10 にエンボスで刻まれたヘッダを先頭に、同期コードと変 調後の信号(ビデオデータその他)を交互に含んでい る。

【0067】次に、DVD-RAMディスク10におけ 30 るECCプロック処理方法について説明する。

【0068】図9は、図5のデータエリア部分に含まれ る情報の記録単位(エラーコレクションコードのECC 単位)を説明する図である。

【0069】パーソナルコンピュータ用の情報記憶媒体 (ハードディスクHDDや光磁気ディスクMOなど)の ファイルシステムで多く使われるFAT(ファイルアロ ケーションテーブル)では、256バイトまたは512 パイトを最小単位として情報記憶媒体へ情報が記録され る。

【0070】それに対し、CD-ROMやDVD-RO M、DVD-RAMなどの情報記憶媒体では、ファイル システムとしてUDF(ユニバーサルディスクフォーマ ット;詳細は後述)を用いており、ここでは2048バ イトを最小単位として情報記憶媒体へ情報が記録され る。この最小単位をセクタと呼ぶ。つまりUDFを用い た情報記憶媒体(光ディスク10)に対しては、図9に 示すようにセクタ501毎に2048バイトずつの情報 を記録して行く。

12

リッジを使わず裸ディスクで取り扱うため、ユーザサイ ドで情報記憶媒体表面に傷が付いたり表面にゴミが付着 し易い。情報記憶媒体表面に付いたゴミや傷の影響で特 定のセクタ (たとえば図9のセクタ501c) が再生不 可能(もしくは記録不能)な場合が発生する。

【0072】DVDでは、そのような状況を考慮したエ ラー訂正方式(積符号を利用したECC)が採用されて いる。具体的には16個ずつのセクタ(図9ではセクタ 501aからセクタ501pまでの16個のセクタ) で 1個のECC (エラーコレクションコード) プロック5 02を構成し、その中で強力なエラー訂正機能を持たせ ている。その結果、たとえばセクタ501cが再生不可 能といったような、ECCブロック502内のエラーが 生じても、エラー訂正され、ECCブロック502のす べての情報を正しく再生することが可能となる。

【0073】図10は、図5のデータエリア内でのゾー ンとグループ(図7参照)との関係を説明する図であ る。

【0074】図5の各ゾーン00~23は、図4に示す ようにディスク10上に物理的に配置されるもので、実 際に使用されるデータエリア(ユーザエリア+スペアエ リア)の他に、ゾーン間のデータ使用エリアを区分けす るガードエリアを持っている。これに対して、図7のグ ループは実際に使用されるデータエリア(ユーザエリア +スペアエリア)に対して割り当てられる。

【0075】すなわち、図10においてガードエリア7 11で区切られたグループ00はディスク10の物理セ クタ番号031000hから始まるユーザエリアUA0 0およびスペアエリアSA00を含み、ガードエリア7 11とガードエリア712で区切られたグループ01は ユーザエリアUA01およびスペアエリアSA01を含 む。以下同様に、ディスク10の最外周側のガードエリ ア713で区切られたグループ23はディスク10の最 終物理セクタ番号で終わるユーザエリアUA23および スペアエリアSA23を含んでいる。

【0076】図10の構成を持つ図4の光ディスク(D VD-RAMディスク)10が図示しないディスクドラ イブにかけられているときは、ガードエリア通過中にデ ィスク10の回転速度を切り替える処理を行なうことが できる。たとえば、図示しない光ヘッドがグループ00 からグループ01にシークする際に、ガードエリア71 1を通過中にディスク10の回転速度がN00からN0 1に切り替えられる。

【0077】図11は、図5のデータエリア内での論理 セクタの設定方法を説明する図である。物理的には図1 0に示すようなガードエリアがディスク10上に設けら れているが、論理的には(つまり書込制御を行なうソフ トウエアからみれば)、各グループ00~23が密に並 んでいる。このグループ00~23の並びは、グループ 【0071】CD-ROMやDVD-ROMではカート 50 番号の小さい方(物理セクタ番号の小さい方)がディス

(8)

ク10の内周側(リードイン側)に配置され、グループ 番号の大きい方(物理セクタ番号の大きい方)がディス ク10の外周側(リードアウト側)に配置される。

【0078】この配置において、同一グループ内のスペアエリアの論理セクタ番号は事前には設定されておらず、ユーザエリアの欠陥発生時に、交替処理前のユーザエリアの欠陥位置での論理セクタ番号が、交替処理後の対応するスペアエリア位置に移される。ただし、物理セクタ番号については、ユーザエリアもスペアエリアも始めから設定されている。

【0079】次に、ユーザエリアで生じた欠陥を処理する方法を幾つか説明する。その前に、欠陥処理に必要な欠陥管理エリア(図5または図6のDMA1~DMA4)およびその関連事項について説明しておく。

【0080】 [欠陥管理エリア] 欠陥管理エリア(DMA1~DMA4) はデータエリアの構成および欠陥管理の情報を含むもので、たとえば32セクタで構成される。2つの欠陥管理エリア(DMA1、DMA2) は光ディスク(DVD-RAMディスク)10のリードインエリア27内に配置され、他の2つの欠陥管理エリア(DMA3、DMA4)は光ディスク10のリードアウトエリア26内に配置される。各欠陥管理エリア(DMA1~DMA4)の後には、適宜予備のセクタ(スペアセクタ)が付加されている。

【0081】各欠陥管理エリア(DMA1~DMA4)は、2つのECCブロックからなる。各欠陥管理エリア(DMA1~DMA4)の最初のECCブロックには、ディスク10の定義情報構造(DDS; Disc Definition Structure)および一次欠陥リスト(PDL; Primary Defect List)が含まれる。各欠陥管理エリア(DMA1~DMA4)の2番目のECCブロックには、二次欠陥リスト(SDL; Secondary Defect List)が含まれる。4つの欠陥管理エリア(DMA1~DMA4)の4つの一次欠陥リスト(PDL)は同一内容となっており、それらの4つの二次欠陥リスト(SDL)も同一内容となっている。

【0082】4つの欠陥管理エリア(DMA1~DMA4)の4つの定義情報構造(DDS)は基本的には同一内容であるが、4つの欠陥管理エリアそれぞれのPDLおよびSDLに対するポインタについては、それぞれ個40別の内容となっている。

【0083】ここでDDS/PDLブロックは、DDSおよびPDLを含むECCブロックを意味する。また、SDLブロックは、SDLを含むECCブロックを意味する。

【0084】光ディスク(DVD-RAMディスク)10を初期化したあとの各欠陥管理エリア(DMA1~DMA4)の内容は、以下のようになっている:

(1) 各DDS/PDLブロックの最初のセクタはDDSを含む;

14

(2) 各DDS/PDLプロックの2番目のセクタはP DLを含む;

(3) 各SDLブロックの最初のセクタはSDLを含む。

【0085】一次欠陥リストPDLおよび二次欠陥リストSDLのプロック長は、それぞれのエントリ数によって決定される。各欠陥管理エリア(DMA1~DMA4)の未使用セクタはデータ0FFhで書き潰される。また、全ての予備セクタは00hで書き潰される。

【0086】 [ディスク定義情報] 定義情報構造DDSは、1セクタ分の長さのテーブルからなる。このDDSはディスク10の初期化方法と、PDLおよびSDLそれぞれの開始アドレスを規定する内容を持つ。DDSは、ディスク10の初期化終了時に、各欠陥管理エリア(DMA)の最初のセクタに記録される。

【0087】 [パーティショニング] ディスク10の初期化中に、データエリアは24の連続したグループ00~23に区分される。最初のゾーン00および最後のゾーン23を除き、区分された各ゾーンの頭には複数のバッファブロックが配置される。各グループは、バッファフロックを除き1つのゾーンを完全にカバーするようになっている。

【0088】各グループは、データセクタ(ユーザエリア)のフルブロックと、それに続くスペアセクタ(スペアエリア)のフルブロックを備えている。

【0089】 [スペアセクタ] 各データエリア内の欠陥 セクタは、所定の欠陥管理方法(後述する検証、スリッピング交替、スキッピング交替、リニア交替)により、正常セクタに置換(交替)される。この交替のためのスペアセクタのブロックは、図7の各グループのスペアエリアに含まれる。

【0090】光ディスク10は使用前に初期化できるようになっているが、この初期化は検証の有無に拘わらず 実行可能となっている。

【0091】欠陥セクタは、スリッピング交替処理(Slipping Replacement Algorithm)、スキッピング交替処理(Skipping Replacement Algorithm)あるいはリニア交替処理(Linear Replacement Algorithm)により処理される。これらの処理(Algorithm)により前記PDLおよびSDLにリストされるエントリ数の合計は、所定数、たとえば4092以下とされる。

【0092】 [初期化] ディスク10の初期化において、そのディスクの最初の使用よりも前に、4つの欠陥管理エリア (DMA1~DMA4) が前もって記録される。データエリアは24グループ (図7のグループ00~23) にパーティションされる。各グループは、データセクタ (ユーザエリア) 用に多数のブロックと、それに続く多数のスペアブロック (スペアエリア) を含む。これらのスペアブロックは欠陥セクタの交替用に用いる50 ことができる。

【0093】初期化時は各グループの検証(サーティファイ)を行なうこともできる。これにより、初期化段階で発見された欠陥セクタは特定され、使用時にはスキップされるようになる。

【0094】全ての定義情報構造DDSのパラメータは、4つのDDSセクタに記録される。一次欠陥リストPDLおよび二次欠陥リストSDLは、4つの欠陥管理エリア(DMA1~DMA4)に記録される。最初の初期化では、SDL内のアップデートカウンタは00hにセットされ、全ての予約ブロックは00hで書き潰され、10る。

【0095】 [検証/サーティフィケーション] ディスク10を検証する場合は、各グループ内のデータセクタ (ユーザエリア) およびスペアセクタ (スペアエリア) を検証することになる。この検証は、各グループ内セクタの読み書きチェックにより行なうことができる。

【0096】検証中に発見された欠陥セクタは、たとえばスリッピング交替により処理される。この欠陥セクタは、読み書きに使用してはならない。

【0097】検証の実行中にディスク10のゾーン内ス 20ペアセクタを使い切ってしまったときは、そのディスク10は不良と判定し、以後そのディスク10は使用しないものとする。

【0098】なお、ディスク10をコンピュータのデータ記憶用に用いるときは上記初期化+検証が行われるが、ビデオ録画用に用いられるときは、上記初期化+検証を行うことなく、いきなりビデオ録画することもあり得る。

【0099】図12は、図5のデータエリア内での交替処理(スリッピング交替法)を説明する図である。

【0100】検証が実行されたときは、データエリア内の各グループ全てに対してスリッピング交替処理が個別に適用される。

【0101】検証中に発見された欠陥データセクタ(たとえばm個の欠陥セクタ731)は、その欠陥セクタの後に続く最初の正常セクタ(ユーザエリア723b)と交替(あるいは置換)される(交替処理734)。これにより、該当グループの末端に向かってmセクタ分のスリッピング(論理セクタ番号後方シフト)が生じる。同様に、その後にn個の欠陥セクタ732が発見されれば、その欠陥セクタはその後に続く正常セクタ(ユーザエリア723c)と交替される。最後のデータセクタ(ユーザエリア723c)欠陥がある場合については、そのグループのスペアセクタ(スペアエリア724のうち論理セクタ番号の小さい方の記録使用領域743から順に)にスリッピングする。

【0102】欠陥セクタのアドレスは一次欠陥リスト (PDL)に書き込まれる。欠陥セクタは、ユーザデー タの記録に使用してはならない。もし検証中に欠陥セク タが発見されないときは、PDLには何も書き込まな 16

いっ

【0103】最後のデータセクタ(ユーザエリア723 c)を超えてスペアエリア724にスリッピングすることがあれば、検証中に欠陥が発見されたスペアセクタのアドレスは、PDLに書き込まれる。この場合、使用可能なスペアセクタ(スペアエリアの不使用領域736のセクタ)の数は減少する。

【0104】該当グループのユーザエリア中でm+n個の欠陥セクタが発見されたときは、m+nセクタ分がスペアエリア724の記録使用領域743にスリッピングし、その結果、スペアエリア724の不使用領域726はm+nセクタ分減少する。

【0105】もしあるグループのスペアエリア724の セクタを検証中に交替処理で使い切ってしまったとき は、検証失敗とみなす。

【0106】検証が成功した場合、欠陥セクタのないユーザエリア723a~723cとスペアエリアの記録使用領域743がそのグループの情報記録使用部分(論理セクタ番号設定領域735)となり、この部分に連続した論理セクタ番号が割り当てられる。

【0107】図13は、図5のデータエリア内での他の 交替処理(スキッピング交替法)を説明する図である。

【0108】スキッピング交替処理は、ディスク10の使用中の反復読み書きにより発生した欠陥または劣化に適用できる。このスキッピング交替処理は、16セクタ単位、すなわちECCブロック単位(1セクタが2kバイトなので32kバイト単位)で実行される。

【0109】たとえば、正常なECCブロックで構成されるユーザエリア723aの後に1個の欠陥ECCブロック741が発見されれば、この欠陥ECCブロック741に記録予定だったデータは、直後の正常なユーザエリア723bのECCブロックに代わりに記録される(交替処理744) 同様に ト個の欠陥FCCブロッ

(交替処理744)。同様に、k個の欠陥ECCブロック742が発見されれば、これらの欠陥ブロック742に記録する予定だったデータは、直後の正常なユーザエリア723cのk個のECCブロックに代わりに記録される。

【0110】こうして、該当グループのユーザエリア中で1+k個の欠陥ECCプロックが発見されたときは、 (1+k) ECCプロック分がスペアエリア 7 2 4 の記録使用延長領域 7 4 3 にスキッピングする。その結果、スペアエリア 7 2 4 の不使用領域 7 2 6 は (1+k) E CCプロック分減少し、残りの不使用領域 7 4 6 は小さくなる。そしてスペアエリア 7 2 4 の不使用領域 7 2 6 はm+nセクタ分減少する。

【0111】もし該当グループのスペアエリア724を 検証中に交替処理で使い切ってしまったときは、検証失 敗とみなす。

【0112】検証が成功した場合、欠陥ECCブロックのないユーザエリア 723a~723cがそのグループ

の情報記録使用部分(論理セクタ番号設定領域725)となる。そして、欠陥ECCブロック741および742の論理セクタ番号設定位置がスペアエリア724の延長領域743に平行移動する。このとき、欠陥ECCブロックのないユーザエリア723a~723cは、欠陥の有無に拘わらず、欠陥がないときに割り振られた論理セクタ番号のまま不変に保たれている。

【0113】上記論理セクタ番号設定位置の平行移動745により、延長領域743にスキッピングされた(1+k)個のECCブロックを構成するセクタの論理セクタ番号が、欠陥ECCブロック741とk個の連続ECCブロックに事前に割り振られた論理セクタ番号を担うことになる。

【0114】このスキッピング交替処理法では、ディスク10が事前に検証(サーティファイ)されていなくても、ECCブロック単位でエラーが発見されたら、即、交替処理を実行して行ける。

【0115】図14は、図5のデータエリア内でのさらに他の交替処理(リニア交替法)を説明する図である。

【0116】リニア交替処理は、検証以後の反復読み書 20 きにより発生した欠陥セクタおよび劣化セクタの双方に適用できる。このリニア交替処理も、16セクタ単位、すなわちECCブロック単位(32kバイト単位)で実行される。

【0117】リニア交替処理では、欠陥ECCブロック751は、該当グループ内で最初に使用可能な正常スペアブロック(スペアエリア724の最初の記録使用領域753)と交替(置換)される(交替処理758)。もしそのグループにスペアブロックが残っていないなら、つまりそのグループ内に残っているセクタが16セクタ未満のときは、その旨は二次欠陥リスト(SDL)に記録される。そして、欠陥ブロックは、他のグループ内で最初に使用可能な正常スペアブロックと交替(置換)される。欠陥プロックのアドレスおよびその最終交替(置換)プロックのアドレスは、SDLに書き込まれる。

【0118】上述したように、該当グループにスペアブロックがないときは、その旨はSDLに記録される。グループ00にスペアブロックがないということは、SDLの所定ビットに"1"をセットすることで示される。この所定ビットが"0"にセットされているときは、そ40のグループ00内にまだスペアブロックが残っていることを示す。この所定ビットはグループ00に対応して設けられる。グループ01に対しては別の所定ビットが2なりのグループ00~23それぞれに対応するようになっている。

【0119】検証後、もしデータブロック(ECCブロック)に欠陥が発見されたときは、そのブロックは欠陥ブロックとみなし、その旨はSDLの新エントリとしてリストされる。

18

【0120】SDLにリストされた交替ブロックが、後に欠陥ブロックであると判明したときは、ダイレクトポインタ法を用いてSDLに登録を行なう。このダイレクトポインタ法では、交替ブロックのアドレスを欠陥ブロックのものから新しいものへ変更することによって、交替された欠陥ブロックが登録されているSDLのエントリが修正される。

【0121】上記二次欠陥リストSDLを更新するときは、SDL内の更新カウンタを1つインクリメントする。

【0122】 [検証されないディスク] スキッピング交替処理あるいはリニア交替処理は、検証されていないディスク10で発見された欠陥セクタに対しても適用できる。この交替処理は、16セクタ単位(すなわち1EC Cブロック単位)で実行される。

【0123】たとえばリニア交替処理の場合、欠陥プロックは、該当グループ内で最初に使用可能な正常スペアプロックと交替(置換)される。もしそのグループにスペアプロックが残っていないなら、その旨が二次欠陥リスト (SDL) に記録される。そして、欠陥プロックは、他のグループ内で最初に使用可能な正常スペアブロックと交替(置換)される。欠陥プロックのアドレスおよびその最終交替(置換)プロックのアドレスは、SDLに書き込まれる。

【0124】該当グループにスペアプロックがないときは、その旨がSDLに記録される。グループ00にスペアプロックがないということは、そのグループの所定ビットに"1"をセットすることで示される。この所定ビットが"0"にセットされているときは、グループ00内にまだスペアプロックが残っていることを示す。

【0125】もし、一次欠陥リスト(PDL)内に欠陥 セクタのアドレスリストが存在するなら、たとえそのディスクが検証されていなくても、これらの欠陥セクタは ディスク使用時にスキップされる。この処理は、検証されたディスクに対する処理と同様である。

【0126】[曹込処理]あるグループのセクタにデータ曹込を行うときは、一次欠陥リスト(PDL)にリストされた欠陥セクタはスキップされる。そして、前述したスリッピング交替処理にしたがって、欠陥セクタに書き込もうとするデータは次に来るデータセクタに書き込まれる。もし書込対象ブロックが二次欠陥リスト(SDL)にリストされておれば、そのブロックへ書き込もうとするデータは、前述したリニア交替処理またはスキッピング交替処理にしたがって、SDLにより指示されるスペアプロックに書き込まれる。

【0127】なお、パーソナルコンピュータの環境下では、パーソナルコンピュータファイルの記録時にはリニア交替処理が利用され、AVファイルの記録時にはスキッピング交替処理が利用される。

50 【0128】[一次欠陥リスト; PDL]一次欠陥リス

ト(PDL)は常に光ディスク10に記録されるもので あるが、その内容が空であることはあり得る。

【0129】欠陥セクタのリストは、ディスク10の検 証以外の手段によって得ても良い。

【0130】PDLは、初期化時に特定された全ての欠 陥セクタのアドレスを含む。これらのアドレスは、昇順\* \*にリストされる。PDLは必要最小限のセクタ数で記録 するようにする。そして、PDLは最初のセクタの最初 のユーザバイトから開始する。PDLの最終セクタにお ける全ての未使用バイトは、OFFhにセットされる。 このPDLには、以下のような情報が書き込まれること

20

バイト位置 PDLの内容 0 00h;PDL識別子 1 01h;PDL識別子 PDL内のアドレス数; MSB 2 3 PDL内のアドレス数; LSB 4 最初の欠陥セクタのアドレス (セクタ番号;MSB) 5 最初の欠陥セクタのアドレス (セクタ番号) 最初の欠陥セクタのアドレス (セクタ番号) 最初の欠陥セクタのアドレス (セクタ番号;LSB) 7 x - 3最後の欠陥セクタのアドレス(セクタ番号; MSB) x-2最後の欠陥セクタのアドレス (セクタ番号) x-1最後の欠陥セクタのアドレス (セクタ番号) 最後の欠陥セクタのアドレス (セクタ番号; L S B)

\*注;第2パイトおよび第3パイトが00hにセットされているときは、第3 バイトはPDLの末尾となる。

【0131】なお、マルチセクタに対する一次欠陥リス ト(PDL)の場合、欠陥セクタのアドレスリストは、 2番目以降の後続セクタの最初のバイトに続くものとな る。つまり、PDL識別子およびPDLアドレス数は、 最初のセクタにのみ存在する。

【0132】PDLが空の場合、第2バイトおよび第3 バイトは00hにセットされ、第4バイトないし第20 47バイトはFFhにセットされる。

【0133】また、DDS/PDLプロック内の未使用 セクタには、FFhが書き込まれる。

【0134】 [二次欠陥リスト; SDL] 二次欠陥リス ト(SDL)は初期化段階で生成され、サーティフィケ ーションの後に使用される。全てのディスクには、初期 化中にSDLが記録される。

【0135】このSDLは、欠陥データブロックのアド レスおよびこの欠陥ブロックと交替するスペアブロック のアドレスという形で、複数のエントリを含んでいる。 SDL内の各エントリには、8バイト割り当てられてい 40 る。つまり、その内の4バイトが欠陥ブロックのアドレ スに割り当てられ、残りの4バイトが交替ブロックのア※

※ドレスに割り当てられている。

【0136】上記アドレスリストは、欠陥プロックおよ びその交替ブロックの最初のアドレスを含む。欠陥ブロ ックのアドレスは、昇順に付される。

【0137】SDLは必要最小限のセクタ数で記録さ れ、このSDLは最初のセクタの最初のユーザデータバ イトから始まる。SDLの最終セクタにおける全ての未 30 使用パイトは、0FFhにセットされる。その後の情報 は、4つのSDL各々に記録される。

【0138】SDLにリストされた交替プロックが、後 に欠陥ブロックであると判明したときは、ダイレクトポ インタ法を用いてSDLに登録を行なう。このダイレク トポインタ法では、交替ブロックのアドレスを欠陥プロ ックのものから新しいものへ変更することによって、交 替された欠陥ブロックが登録されているSDLのエント リが修正される。その際、SDL内のエントリ数は、劣 化セクタによって変更されることはない。

【0139】このSDLには、以下のような情報が書き 込まれることになる:

| ベイト位置 | SDLの内容      |
|-------|-------------|
| 0     | (00);SDL識別子 |
| 1     | (02);SDL識別子 |
| 2     | (00)        |
| 3     | (01)        |
| 4     | 更新カウンタ;MSB  |
| 5     | 更新カウンタ      |
| 6     | 更新カウンタ 50   |

22

|              | 22                          |
|--------------|-----------------------------|
| 7            | 更新カウンタ;LSB                  |
| $8 \sim 26$  | 予備 (00h)                    |
| $27 \sim 29$ | ゾーン内スペアセクタを全て使い切ったことを示すフラク  |
| 3 0          | SDL内のエントリ数;MSB              |
| 3 1          | SDL内のエントリ数;LSB              |
| 3 2          | 最初の欠陥ブロックのアドレス(セクタ番号;MSB)   |
| 3 3          | 最初の欠陥ブロックのアドレス (セクタ番号)      |
| 3 4          | 最初の欠陥ブロックのアドレス (セクタ番号)      |
| 3 5          | 最初の欠陥ブロックのアドレス(セクタ番号;LSB)   |
| 3 6          | 最初の交替ブロックのアドレス(セクタ番号;MSB)   |
| 3 7          | 最初の交替ブロックのアドレス (セクタ番号)      |
| 3 8          | 最初の交替ブロックのアドレス (セクタ番号)      |
| 3 9          | 最初の交替ブロックのアドレス (セクタ番号;LSB)  |
| y — 7        | 最後の欠陥ブロックのアドレス(セクタ番号;MSB)   |
| y — 6        | 最後の欠陥ブロックのアドレス (セクタ番号)      |
| y — 5        | 最後の欠陥プロックのアドレス (セクタ番号)      |
| y — 4        | 最後の欠陥プロックのアドレス(セクタ番号:LSB)   |
| y — 3        | 最後の交替プロックのアドレス(セクタ番号:MSB)   |
| y — 2        | 最後の交替ブロックのアドレス (セクタ番号)      |
| y — 1        | 最後の交替ブロックのアドレス (セクタ番号)      |
| у            | 最後の交替プロックのアドレス (セクタ番号; LSB) |
|              |                             |

\*注;第30~第31バイト目の各エントリは8バイト長。

【0140】なお、マルチセクタに対する二次欠陥リス ト(SDL)の場合、欠陥プロックおよび交替プロック のアドレスリストは、2番目以降の後続セクタの最初の バイトに続くものとなる。つまり、上記SDLの内容の 第0バイト目~第31パイト目は、最初のセクタにのみ 存在する。

【0141】また、SDLプロック内の未使用セクタに は、FFhが杳き込まれる。

【0142】図15は、図1の2層光ディスクにおける ROM層部分の論理セクタの設定方法を説明する図であ る。ここでは、リードインエリアからリードアウトエリ アまでの間のボリュームスペースにおいて、レイヤ0の データエリアの物理セクタ番号PSNおよび論理セクタ 番号LSNを、1:1で対応させている。このROM層 のセクタ構造は1層構造のDVD-ROMディスクにも 適用できる。

【0143】図16は、図1の2層光ディスクにおける ROM層/RAM層の論理セクタの設定方法を説明する 図である。リードインエリアからリードアウトエリアま での間のボリュームスペースにおいて、物理セクタ番号 PSNの小さな方(ボリュームスペースの前半)にレイ ヤOのデータエリア(再生用ROM層)を配置し、物理 セクタ番号PSNの大きな方(ボリュームスペースの後 半)にレイヤ1のデータエリア(記録用RAM層)を配 置している。ここでは、前半のROM屬の物理セクタ番 号PSN+後半のRAM層の物理セクタ番号PSNを、

応させている。

【0144】図17は、図1の2層光ディスクにおける ROM層/RAM層の論理セクタの他の設定方法を説明 する図である。ボリュームスペースの前半にROM層を 配置し、後半にRAM層を配置している点は図16の場 合と同じであるが、ROM層とRAM層のつなぎ目の物 理的な位置が違っている。

【0145】すなわち、図16ではレイヤ0のROM層 もレイヤ1のRAM層もディスクの内周から外周に向か って物理セクタ番号PSN増えるようになっている。― 方、図17の場合、レイヤ0のROM層ではディスクの 内周から外周に向かって物理セクタ番号PSN増えるよ うになっているが、レイヤ1のRAM層ではディスクの 外周から内周に向かって物理セクタ番号PSN増えるよ うになっている。しかし、ROM層の物理セクタ番号P SN+RAM層の物理セクタ番号PSNは、単一のボリ ュームスペースの論理セクタ番号LSNに対応してい

【0146】なお、図15の例は1層構造(レイヤ0) のディスク1枚の場合を示し、図16および図17の例 では2層構造(レイヤ0とレイヤ1)のディスク1枚の 場合を示している。図示はしないが、3層(レイヤ0~ レイヤ2) あるいは4層(レイヤ0~レイヤ3) のディ スク1枚の全部のレイヤを1つの連続したボリュームス ペースとすること、すなわち各レイヤの物理セクタ番号 PSNを全て繋ぎ合わせて1つの連続した論理セクタ番 単一のポリュームスペースの論理セクタ番号LSNに対 50 号LSNに対応させることは、当然可能である。

域容量の情報も含む);および

【0147】また、複数のディスクを連続的に扱えるディスクチェンジャ(あるいはディスクパック)を採用する場合は、全てのディスクの各レイヤの物理セクタ番号PSNをトータルに繋ぎ合わせて1つの連続した論理セクタ番号LSNに対応させることもできる。

【0148】このように複数ディスクの複数レイヤの物理セクタ番号を全て包含するボリュームの論理セクタ番号LSNはかなり大きな数値になりやすいが、そのアドレス管理は、32kバイトのECCブロック単位(後述するAVアドレス単位)を採用することで、無理なく行10うことができる。

【0149】図18は、たとえば図2の光ディスク(とくにDVD-RAMまたはDVD-RWディスク)10に記録される情報の階層構造の一例を説明する図である。

【0150】リードインエリア27は、光反射面が凹凸形状を持つエンボスデータゾーンと、表面が平坦(鏡面)なミラーゾーンと、情報の書き替えが可能な書替可能データゾーンとを含んでいる。

【0151】データ記録エリア (ボリュームスペース) 28は、ユーザによる書き替えが可能なボリューム/ファイル管理情報70およびデータエリアDAで構成されている。

【0152】リードインエリア27とリードアウトエリア26の間に挟まれたデータエリアDAには、コンピュータデータとAVデータの混在記録が可能になっている。コンピュータデータとAVデータの記録順序、各記録情報サイズは任意で、コンピュータデータが記録されている場所をコンピュータデータエリア(DA1、DA3)と呼びAVデータが記録された領域をAVデータエ30リア(DA2)と名付ける。

【0153】ボリューム/ファイル管理情報70には、ボリューム全体に関する情報、ボリュームスペース28に含まれるコンピュータデータ(パーソナルコンピュータのデータ)のファイル数およびAVデータに関するファイル数、記録レイヤ情報などに関する情報が記録されている。

【0154】とくに記録レイヤ情報としては、以下のものが含まれる:

- \*構成レイヤ数(たとえばROM/RAM2層ディスク 40 1枚は2レイヤとされ、ROMだけの2層ディスク1枚 62レイヤとされ、片面1層ディスク $\pi$ 枚はROMでもRAMで6 $\pi$ レイヤとされる);
- \*各レイヤ毎に割り付けた論理セクタ番号範囲テーブル (各レイヤ毎の容量を示す);
- \*各レイヤ毎の特性(DVD-RAMディスク、ROM /RAM2層ディスクのRAM部、DVD-R、CD-ROM、CD-R等);
- \*各レイヤ毎のRAM領域でのゾーン単位での割り付け 論理セクタ番号範囲テーブル (各レイヤ毎の書替可能領 50

\*各レイヤ毎の独自の I D情報 (多連ディスクパック内のディスク交換を発見するため)。

【0155】上記内容を含む記録レイヤ情報により、多連ディスクパックやROM/RAM2層ディスクに対しても、連続した論理セクタ番号を設定して1個の大きなボリュームスペースとして取り扱えるようになる。

【0156】データエリアDAには、コンピュータデータ、ビデオデータ、オーディオデータなどが記録される。ボリューム/ファイル管理情報70には、データエリアDAに記録されたオーディオ・ビデオデータのファイルまたはボリューム全体に関する情報が記録される。 【0157】リードアウトエリア26も、情報書き替えが可能なように構成されている。

【0158】リードインエリア27のエンポスデータゾーンには、たとえば以下の情報が事前に記録されている:

- (1) DVD-ROM、DVD-RAM (またはDVD-RW)、DVD-R等のディスクタイプ; 12cm、8cm等のディスクサイズ; 記録密度; 記録開始/記録終了位置を示す物理セクタ番号、その他の、情報記憶媒体全体に関する情報;
- (2) 記録パワーと記録パルス幅;消去パワー;再生パワー;記録・消去時の線速度、その他の、記録・再生・消去特性に関する情報;および
- (3)製造番号等、個々の情報記憶媒体の製造に関する情報。

【0159】また、リードインエリア27およびリードアウトエリア26の書替可能ゾーンは、それぞれ、たとえば以下の領域を含んでいる:

- (4)各情報記憶媒体毎の固有ディスク名を記録する領域;
- (5) 試し記録領域(記録消去条件の確認用);および
- (6) データエリアDA内の欠陥領域に関する管理情報 を記録する領域。

【0160】上記(4)~(6)の領域には、DVD記録装置(DVDビデオレコーダ専用機あるいはパーソナルコンピュータにDVDビデオ処理ボードと処理ソフトウエアをインストールしたもの等)による記録が可能となっている。

【0161】データエリアDAには、オーディオ・ビデオデータDA2とコンピュータデータDA1、DA3が 混在して記録できるようになっている。

【0162】なお、コンピュータデータとオーディオ・ビデオデータの記録順序および記録情報サイズ等は任意である。データエリアDAにコンピュータデータだけを記録することも、オーディオ・ビデオデータだけを記録することも、可能である。

【0163】オーディオ・ビデオデータエリアDA2は、制御情報DA21、ビデオオブジェクトDA22、

ピクチャオブジェクトDA23およびオーディオオブジェクトDA24を含んでいる。

【0164】オーディオ・ビデオデータエリアDA2の最初の位置には、制御情報DA21の記録位置を示す情報を持ったアンカーポインタAPが存在する。情報記録再生システムでこのオーディオ・ビデオデータエリアDA2の情報を利用する場合には、まず最初にアンカーポインタAPから制御情報DA21の記録位置を調べ、そこにアクセスして制御情報DA21を読み取る。

【0165】ビデオオブジェクトDA22は、記録されたビデオデータの中身(コンテンツ)の情報を含んでいる。

【0166】ピクチャオブジェクトDA23は、スチル画、スライド画、検索・編集時に用いるビデオオブジェクトDA22の中身を代表する縮小画像(サムネールピクチャ)等の静止画情報を含んでいる。

【0167】オーディオオブジェクトDA24は、記録されたオーディオデータの中身(コンテンツ)の情報を含んでいる。

【0168】なお、オーディオ・ビデオデータの再生対 20 象 (コンテンツ) の記録情報は、後述する図19のビデ オオブジェクトセットVOBSに含まれる。

【0169】制御情報DA21は、AVデータ制御情報DA210、再生制御情報DA211、記録制御情報DA212、編集制御情報DA213および縮小画像制御情報DA214を含んでいる。

【0170】AVデータ制御情報DA210は、ビデオオブジェクトDA22内のデータ構造を管理しまた情報記憶媒体(光ディスク等)10上での記録位置に関する情報を管理する情報と、制御情報の書替回数を示す情報CIRWNsを含む。

【0171】再生制御情報DA211は再生時に必要な情報を含むもので、プログラムチェーンPGCの繋がりを指定する機能を持つ。具体的には、PGCを統合した再生シーケンスに関する情報;この情報に関連して情報記憶媒体10をたとえば1本のテープ(デジタルビデオカセットDVCやビデオテープVTR)とみなし「擬似的記録位置」を示す情報(記録された全てのセルを連続して再生するシーケンス);異なる映像情報を持つ複数画面同時再生に関する情報;検索情報(検索カテゴリ毎に対応するセルIDとそのセル内の開始時刻のテーブルが記録され、ユーザがカテゴリを選択して該当映像情報へ直接アクセスすることを可能にする情報)等が、再生制御情報DA211に含まれる。

【0172】この再生制御情報DA211により、AVファイルのファイル名と、ディレクトリ名のパスと、PGCのIDと、セルIDを指定することができる。

【0173】記録制御情報DA212は、記録(録画および/または録音)時に必要な制御情報(番組予約録画情報等)を含む。

50 る。

26

【0174】編集制御情報DA213は、編集時に必要な制御情報を含む。たとえば、各PGC単位の特殊編集情報(該当時間設定情報、特殊編集内容等のEDL情報)やファイル変換情報(AVファイル内の特定部分を図23のAVIファイル等に変換し変換後のファイル格納位置を指定する情報等)を含むことができる。

【0175】縮小画像制御情報DA214は、ビデオデータ内の見たい場所の検索用または編集用の縮小画像(サムネールピクチャ;Thumbnail Picture)に関する管理情報および縮小画像データを含んでいる。

【0176】縮小画像制御情報DA214は、ピクチャアドレステーブルおよび縮小画像データ等を含むことができる。縮小画像制御情報DA214はまた、ピクチャアドレステーブルおよび縮小画像データの下層情報として、メニューインデックス情報、インデックスピクチャ情報、スライドおよびスチルピクチャ情報、インフォメーションピクチャ情報、欠陥エリア情報および壁紙ピクチャ情報等を含むことができる(図示せず)。

【0177】AVデータ制御情報DA210は、アロケーションマップテーブルAMTと、プログラムチェーン制御情報PGCCIと、セル時間制御情報CTCIを含む。

【0178】アロケーションマップテーブルAMTは、情報記憶媒体(光ディスク10等)上の実際のデータ配置に沿ったアドレス設定、既記録・未記録エリアの識別等に関する情報を含む。図18の例では、このアロケーションマップテーブルAMTは、ユーザエリアアロケーション記述子UAD、スペアエリアアロケーション記述子SADおよびアドレス変換テーブルACTを含んでいる(アロケーションマップAMTの別の例は図65を参照)。

【0179】プログラムチェーン制御情報PGCCIは、ビデオ再生プログラム(シーケンス)に関する情報を含む。

【0180】また、セル時間制御情報CTCIは、ビデオ情報の基本単位(セル)のデータ構造に関する情報を含む。このセル時間制御情報CTCIは、セル時間制御一般情報CTCGIと、セル時間検索情報CTSIと、m個のセル時間検索情報CTI#1~CTI#mを含む。

【0181】セル時間制御一般情報CTCGIは、個々のセルに関する情報を含む。セル時間検索情報CTSIは、特定のセルIDが指定された場合それに対応するセル時間情報の記載位置(AVアドレス)を示すマップ情報である。

【0182】各セル時間検索情報 (CTI#m) は、セル時間一般情報 CTGI#mと、セルVOBUテーブルCVT#mで構成される。このセル時間検索情報 (CTI#m) の詳細については、図26を参照して後述す

【0183】図18の概要は上記のようになるが、以下に個々の情報に対しての補足説明をまとめる。

【0184】<1>ボリューム/ファイル管理情報70には、以下の情報が含まれる:ボリュームスペース28全体に関する情報;ボリュームスペース28に含まれるコンピュータデータ (DA1、DA3)のファイル数およびオーディオ・ビデオデータ (AVデータDA2)に関するファイル数;情報記憶媒体 (DVD-RAMディスク、DVD-ROMディスクあるいはDVD-ROM/RAM多層ディスク)の記録レイヤ情報;その他。

【0185】ここで、上記記録レイヤ情報としては、構成レイヤ数(例:RAM/ROM2層ディスク1枚は2レイヤ、ROM2層ディスク1枚も2レイヤ、片面ディスクn枚はnレイヤとしてカウント);各レイヤ毎に割り付けた論理セクタ番号範囲テーブル(各レイヤ毎の容量に対応);各レイヤ毎の特性(例:DVD-RAMディスク、RAM/ROM2層ディスクのRAM部、CD-ROM、CD-R など)各レイヤ毎のRAM領域でのゾーン単位での割付け論理セクタ番号範囲テーブル

(各レイヤ毎の書替可能領域容量情報も含む);各レイヤ毎の独自のID情報(たとえば多連ディスクパック内のディスク交換を発見するため);その他が記録され、多連ディスクパックやRAM/ROM2層ディスクに対しても連続した論理セクタ番号を設定して1個の大きなボリュームスペースとして扱えるようになっている。

【0186】<2>再生制御情報DA211には、PG Cを統合した再生シーケンスに関する情報;上記PGC を統合した再生シーケンスに関連して、情報記憶媒体10をビデオテープレコーダVTRやデジタルビデオカセットDVCのように一本のテープと見なした「擬似的記録位置を示す情報」(記録された全てのセルを連続して再生するシーケンス);異なる映像情報を持つ複数画面同時再生に関する情報;検索情報(検索カテゴリー毎に対応するセルIDとそのセル内の開始時刻のテーブルが記録され、ユーザがカテゴリーを選択して該当映像情報への直接アクセスを可能にする情報);などが記録されている。

【0187】<3>記録制御情報DA212には、番組予約録画情報;などが記録されている。

【0188】<4>編集制御情報DA213には、各PGC単位の特殊編集情報(該当時間設定情報と特殊編集内容が編集ライブラリ(EDL)情報として記載されているもの);ファイル変換情報(AVファイル内の特定部分を、AVIファイルなどPC上で特殊編集を行えるファイルに変換し、変換後のファイルを格納する場所を指定する情報);などが記録されている。

【0189】図19は、図18の情報階層構造において ビデオオブジェクトのセル構成とプログラムチェーンP GCとの対応例を例示する図である。この情報階層構造 において、ビデオオブジェクトDA22はビデオオブジ 50 28

ェクトセットVOBSにより構成される。このVOBS は各々が異なる方法でセル再生順序を指定した1以上のプログラムチェーンPGC#1~#kに対応した内容を持つ。

【0190】ビデオオブジェクトセット(VOBS)は、1以上のビデオオブジェクト(VOB)の集合として定義されている。ビデオオブジェクトセットVOBS中のビデオオブジェクトVOBは同一用途に用いられる。

 【0191】たとえばメニュー用のVOBSは、通常、 1つのVOBで構成され、そこには複数のメニュー画面 表示用データが格納される。これに対して、タイトルセット用のVOBSは、通常、複数のVOBで構成される。

【0192】ここで、タイトルセット用ビデオオブジェクトセット(VTSTT\_VOBS)を構成するVOBは、あるロックバンドのコンサートビデオを例にとれば、そのバンドの演奏の映像データに相当すると考えることができる。この場合、VOBを指定することによって、そのバンドのコンサート演奏曲目のたとえば3曲目を再生することができる。

【0193】また、メニュー用ビデオオブジェクトセットVTSM\_\_VOBSを構成するVOBには、そのバンドのコンサート演奏曲目全曲のメニューデータが格納され、そのメニューの表示にしたがって、特定の曲、たとえばアンコール演奏曲目を再生することができる。

【0194】なお、通常のビデオプログラムでは、1つのVOBで1つのVOBSを構成することができる。この場合、1本のビデオストリームが1つのVOBで完結 30 することとなる。

【0195】一方、たとえば複数ストーリのアニメーション集あるいはオムニバス形式の映画では、1つのVOBS中に各ストーリに対応して複数のビデオストリーム(複数のプログラムチェーンPGC)を設けることができる。この場合は、各ビデオストリームが対応するVOBに格納されることになる。その際、各ビデオストリームに関連したオーディオストリームおよび副映像ストリームも各VOB中で完結する。

【0196】VOBには、識別番号(VOB\_IDN#i;i=0~i)が付され、この識別番号によってそのVOBを特定することができる。VOBは、1または複数のセルから構成される。通常のビデオストリームは複数のセルで構成されるが、メニュー用のビデオストリームは1つのセルで構成される場合もある。各セルには、VOBの場合と同様に識別番号(C\_IDN#j)が付されている。

【0197】図20は、図2の光ディスクのリードインエリアに記録される情報(表現方法は違うが図6のリードインデータ部分に対応)の論理構造を説明する図である。

【0198】ディスク10が図示しないDVDビデオレコーダ(または図示しないDVビデオプレーヤ)にセットされると、まずリードインエリア27の情報が読み取られる。このリードインエリア27には、セクタ番号の昇順に沿って、所定のリファレンスコードおよび制御データが記録されている。

【0199】リードインエリア27のリファレンスコードは、所定のパターン(特定のシンボル"172"の反復パターン)を含み、2つのエラー訂正コードブロック(ECCブロック)で構成されている。各ECCブロックは16セクタで構成される。この2つのECCブロック(32セクタ)は、スクランブルデータを付加して生成されるようになっている。スクランブルデータが付加されたリファレンスコードを再生したときに、特定のデータシンボル("172")が再生されるよう再生側のフィルタ操作等を行って、その後のデータ読み取り精度を確保するようにしている。

【0200】リードインエリア27の制御データは、192個のECCブロックで構成されている。この制御データの部分には、各ブロック内の16セクタの内容が、192回繰り返し記録されている。

【0201】図21は、図20のリードインエリアに記録される制御データの内容の一例を説明する図である。16セクタで構成されるこの制御データは、最初の1セクタ(2048バイト)に物理フォーマット情報を含み、その後にディスク製造情報およびコンテンツプロバイダ情報を含んでいる。

【0202】図22は、図21の制御データに含まれる 2048バイトの物理フォーマット情報(表現方法は違うが図6の制御データゾーン部分に対応)の内容の一例 30 を説明する図である。

【0203】最初のバイト位置「0」には、記録情報が DVD規格のどのバージョンに準拠しているのかを示す 「ブックタイプ&パートバージョン」が記載される。

【0204】2番目のバイト位置「1」には、記録媒体(光ディスク10)のサイズ(12cm、8cm、その他)および最小読出レートが記載される。読出専用DVDビデオの場合、最小読出レートとしては、2.52Mbps、5.04Mbpsおよび10.08Mbpsが規定されているが、それ以外の最小読出レートもリザーブされている。たとえば、可変ピットレート記録が可能なDVDビデオレコーダにより2Mbpsの平均ピットレートで録画が行われた場合、上記リザーブ部分を利用することにより、最小読出レートを、1.5~1.8Mbpsに設定することができる。

【0205】3番目のバイト位置「2」には、記録媒体 (光ディスク10)のディスク構造(記録層の数、トラックピッチ、記録層のタイプなど)が記載される。この 記録層のタイプにより、そのディスク10が、何層構造 のDVD-ROMなのかDVD-RなのかDVD-RA 50 30

M (またはDVD-RW) なのかを識別することができる。

【0206】 4番目のバイト位置「3」には、記録媒体 (光ディスク10) の記録密度 (リニア密度およびトラック密度) が記載される。リニア密度は、1 ビット当たりの記録長 ( $0.267\mu$  m/ビットあるいは $0.293\mu$  m/ビットなど) を示す。また、トラック密度は、 隣接トラック間隔 ( $0.74\mu$  m/トラックあるいは $0.80\mu$  m/トラックなど) を示す。 DVD-RAM あるいはDVD-Rのリニア密度およびトラック密度として、別の数値が指定できるように、4番目のバイト位置「3」には、リザーブ部分も設けられている。

【0207】5番目のバイト位置「4~15」には、記録媒体(光ディスク10)のデータエリア28の開始セクタ番号および終了セクタ番号等が記載される。

【0208】6番目のバイト位置「16」には、バーストカッティングエリア(BCA)記述子が記載される。このBCAはDVD-ROMディスクだけにオプションで適用されるもので、ディスク製造プロセス終了後の記録情報を格納するエリアである。

【0209】7番目のバイト位置「17~20」には、記録媒体(光ディスク10)の空き容量が記述される。たとえばディスク10が片面1層記録のDVD-RAMディスクである場合、ディスク10のこの位置には、2.6Gバイト(またはこのバイト数に対応したセクタ数)を示す情報が記載される。ディスク10が両面記録DVD-RAMディスクである場合は、この位置に、5.2Gバイト(またはこのバイト数に対応したセクタ数)を示す情報が記載される。

【0210】8番目のバイト位置「21~31」および 9番目のバイト位置「32~2047」は、別目的に利 用できるようリザーブされている。

【0211】図23は、図2の光ディスク等に記録される情報(データファイル)のディレクトリ構造の一例を説明する図である。

【0212】コンピュータの汎用オペレーティングシステムが採用している階層ファイル構造と同様に、ルートディレクトリの下に、ビデオタイトルセットVTSのサブディレクトリと、オーディオタイトルセットATSのサブディレクトリと、ビデオRAMファイルのサブディレクトリが繋がっている。

【0213】そして、ビデオタイトルセットVTSのサブディレクトリ中に、種々なビデオファイル(VMGI、VMGM、VTSI、VTSM、VTS等のファイル)が配置されて、各ファイルが整然と管理されるようになっている。特定のファイル(たとえば特定のVTS)は、ルートディレクトリからそのファイルまでのパスを指定することで、アクセスできる。

○ 【0214】パーソナルコンピュータにDVD処理ボー

ドと処理ソフトウエアをインストールしたシステムでは、パーソナルコンピュータで扱うビデオファイルをA VIディレクトリに格納することができ、管理情報を含むAVファイルをビデオRAMディレクトリに格納することができる。

【0215】このようなパーソナルコンピュータシステムにおいて、AVファイル内のPGC列(図19のPGC#1~PGC#kのようなもの)をDVDビデオのフォーマットに変換し、それをビデオタイトルセットVTSディレクトリ内のVTSファイルに保存することもで 10きる。

【0216】AVIディレクトリおよびビデオRAMデ ィレクトリ内のデータ(ファイル)へのアクセス方法 は、パーソナルコンピュータでの通常ファイル (デー タ)に対するアクセス方法と同様に行なうことができ る。一般的にはルートディレクトリから目的のファイル (データ) までのパスを指定することでアクセスされる が、ハイパーテキスト構造を採用したシステムソフトウ エアがインストールされたパーソナルコンピュータで は、たとえばAVIディレクトリ内からビデオRAMデ 20 ィレクトリ内のデータに直接アクセスすることも可能で ある。あるいは、ビデオRAMディレクトリからビデオ タイトルセットVTSにアクセスすることも可能であ る。これにより、ROM/RAM2層ディスク10を用 いてRAM層に録画をしている際にROM層内のDVD ビデオのセルをRAM層への録画にインサートすること も可能になる。

【0217】図1または図2に示すようなDVD-RAMディスク(またはDVD-Rディスク)10は、図23のディレクトリ構造を持つようにプリフォーマットし30でおき、このプリフォーマット済みディスク10をDVDビデオ録画用の未使用ディスク(生ディスク)として市販することができる。

【0218】たとえば、プリフォーマットされた生ディスク10のルートディレクトリは、ビデオタイトルセットまたはオーディオ・ビデオデータというサブディレクトリを含むことができる。このサブディレクトリは、所定のメニュー情報を格納するためのメニューデータファイル(VMGM、VTSMまたは縮小画像制御情報DA214等)をさらに含むことができる。

【0219】あるいは、ディスク10がROM/RAM 2層ディスクの場合は、図23のディレクトリ構造を持つシステムソフトウエアおよび必要なアプリケーションソフトウエアをROM層に予めエンボス記録しておき、ユーザがディスクを使用するときに、ROM層のシステムソフトウエアの必要部分をRAM層にコピーしてそのディスク10を使用するようにもできる。

【0220】あるいは、図23のディレクトリ構造を図 18のボリューム/ファイル管理情報70に予め記録し ておくこともできる。そして、RAM層の初期化時にボ 50 32

リューム/ファイル管理情報70のディレクトリ構造情報をRAM層にコピーして利用することができる。

【0221】図24は、図19のビデオオブジェクトDA22に含まれる情報の階層構造を例示する図である。 【0222】図24に示すように、ビデオオブジェクトDA22を構成する各セル(たとえばセル#m)は1以上のビデオオブジェクトユニット(VOBU)により構成される。そして、各ビデオオブジェクトユニットは、ビデオパック、副映像パック、オーディオパックおよびダミーパックの集合体(パック列)として構成されている。

【0223】これらのパックは、いずれも2048バイトのサイズを持ち、データ転送処理を行う際の最小単位となる。また、論理上の処理を行う最小単位はセル単位であり、論理上の処理はこのセル単位で行わる。

【0224】上記ビデオオブジェクトユニットVOBUの再生時間は、ビデオオブジェクトユニットVOBU中に含まれる1以上の映像グループ(グループオブピクチャ;略してGOP)で構成されるビデオデータの再生時間に相当し、その再生時間は0.4秒~1.2秒の範囲内に定められる。1GOPは、MPEG規格では通常約0.5秒であって、その間に15枚程度のフレーム画像を再生するように圧縮された画面データである。

【0225】ビデオオブジェクトユニットVOBUがビデオデータを含む場合には、ビデオパック、副映像パック、オーディオパック等から構成されるGOP(MPEG規格準拠)が配列されてビデオデータストリームが構成される。しかし、このGOPの数とは無関係に、GOPの再生時間を基準にしてビデオオブジェクトユニットVOBUが定められる。

【0226】なお、ビデオを含まないオーディオおよび /または副映像データのみの再生データであっても、ビ デオオブジェクトユニットVOBUを1単位として再生 データが構成される。たとえば、オーディオバックのみ でビデオオブジェクトユニットVOBUが構成されいる 場合、ビデオデータのビデオオブジェクトの場合と同様 に、そのオーディオデータが属するビデオオブジェクト ユニットVOBUの再生時間内に再生されるべきオーデ ィオパックが、そのビデオオブジェクトユニットVOB Uに格納される。

【0227】各ビデオオブジェクトユニットVOBUを構成するパックは、ダミーパックを除き、同様なデータ構造を持っている。オーディオバックを例にとると、図24に例示するように、その先頭にパックヘッダが配置され、次にパケットヘッダが配置され、その次にサブストリームIDが配置され、最後にオーディオデータが配置される。このようなパック構成において、パケットヘッダには、パケット内の最初のフレームの先頭時間を示すプレゼンテーションタイムスタンプPTSの情報が書き込まれている。

【0228】ところで、図24に示すような構造のビデオオブジェクトDA22を含むビデオタイトルセットVTS(またはビデオプログラム)を光ディスク10に記録できるDVDビデオレコーダでは、このVTSの記録後に記録内容を編集したい場合が生じる。この要求に答えるため、各VOBU内に、ダミーバックを適宜挿入できるようになっている。このダミーバックは、後に編集用データを記録する場合などに利用できる。

【0229】図24に示した各セル#1~セル#mに関する情報は、図18のセル時間制御情報CTCI内に記録されており、その中味は、図18に示したようにセル時間情報CTI#1~CTI#m(各セル個々に関する情報);セル時間検索情報CTSI(特定のセルIDが指定された場合、それに対応するセル時間情報の記載位置(AVアドレス)を示すマップ情報);およびセル時間制御一般情報CTCGI(セル情報全体に関する情報)となっている。

【0230】また、各セル時間情報(たとえばCTI#m)は、それぞれ、セル時間一般情報(CTGI#m)およびセルVOBUテーブル(CVT#m)を含んでい 20 る。

【0231】次に、ビデオオブジェクトDA22内のデータ構造の説明を行う。

【0232】映像情報の最小基本単位をセルと呼ぶ。ビデオオプジェクトDA22内のデータは図24に示すように1以上のセル#1~#mの集合体として構成される。

【0233】ビデオオブジェクトDA22での映像情報 圧縮技術としてはMPEG2(あるいはMPEG1)を 利用している場合が多い。MPEGでは、映像情報をお よそ0.5秒刻みでGOPと呼ばれるグループに分け、 このGOP単位で映像情報の圧縮を行っている。このG OPとほぼ同じサイズでGOPに同期してビデオオブジ ェクトユニットVOBUという映像情報圧縮単位を形成 している。

【0234】この発明では、このVOBUサイズをEC Cブロックサイズ (32kバイト) の整数倍に合わせて いる (この発明の重要な特徴の1つ)。

【0235】さらに、各VOBUは2048バイト単位のパックに分けられ、それぞれのパック毎に、生の映像 40情報(ビデオデータ)、音声情報(オーディオデータ)、副映像情報(字幕データ・メニューデータ等)、ダミー情報等が記録される。それらが、ビデオパック、オーディオパック、副映像パックおよびダミーパックの形で記録されている。

【0236】ここで、ダミーパックは、録画後に追加記録する情報の事後追加用(アフターレコーディング情報をオーディオパックの中に入れてダミーパックと交換するメモ情報を、副映像情報として副映像パック内に挿入してダミーパックと交換する等); VOBUのサイズを 50

34

ECCブロックサイズ(32kバイト)の整数倍にぴたり合わせるため、32kバイトの整数倍から不足するサイズを補う;などの使用目的で各VOBU内に挿入されている。

【0237】各パック内には、オブジェクトデータ(オーディオパックならオーディオデータ)の前方に、パックヘッダ、パケットヘッダ(およびサブストリーム ID)が、この順で配置されている。

【0238】 DVDビデオ規格では、オーディオパック および副映像パックが、パケットヘッダとオブジェクト データとの間にサブストリーム IDを含んでいる。

【0239】また、パケットヘッダ内には、時間管理用のタイムコードが記録されている。オーディオパケットを例にとれば、このタイムコードとして、そのパケット内での最初のオーディオフレームの先頭時間が記録されているPTS (プレゼンテーションタイムスタンプ)情報が、図24に示すような形で挿入されている。

【0240】図25は、図24のダミーパックの内容 (ダミーパック1パック分) の構造を示す。すなわち、 1パックのダミーパック89は、パックヘッダ891 と、所定のストリームIDを持つパケットヘッダ892 と、所定のコード (無効データ) で埋められたパディングデータ893とで、構成されている。 (パケットヘッダ892およびパティングデータ893はパティングバケット890を構成している。) 未使用ダミーパックのパディングデータ893の内容は、特に意味を持たない。

【0241】このダミーパック89は、図2のディスク10に所定の録画がなされたあと、この録画内容を編集する場合に、適宜利用することができる。また、ユーザメニューに利用される縮小画像データを格納することにも、ダミーパック89を用いることができる。さらには、AVデータDA2内の各VOBUを32kバイトの整数倍に一致させる(32kバイトアライン)目的にも、ダミーパック89を用いることができる。

【0242】 たとえば、ポータブルビデオカメラで家族 旅行を録画したビデオテープをDVD-RAM(または DVD-RW)ディスク 10 に録画し編集する場合を考えてみる。

【0243】この場合、まず1枚のディスクにまとめたいビデオシーンだけを選択的にディスク10に録画する。このビデオシーンは図24のビデオパックに記録される。また、ビデオカメラで同時録音された音声は、オーディオパックに記録される。

【0244】これらのビデオパック、オーディオパック等を含むVOBUは、必要に応じて、その先頭にDVDビデオで採用されているナビゲーションパック(図示せず)を持たせることができる(通常は、図24に示すように、DVDビデオRAMではナビゲーションパックは使用しない)。このナビゲーションパックは、再生制御

情報PCIおよびデータ検索情報DSIを含んでいる。 このPCIあるいはDSIを利用して、各VOBUの再 生手順を制御できる(たとえば飛び飛びのシーンを自動 的に繋いだり、マルチアングルシーンを記録することが できる)。

【0245】あるいは、DVDビデオ規格のナビゲーションパック程複雑な内容を持たせずに、単にVOBU単位の同期情報を持たせた同期ナビゲーションパック (SNV\_PCK;図示せず)を持たせることもできる。

【0246】ビデオテープからDVD-RAMディスク 10 10に編集録画したあと、各シーンにVOBU単位で音声・効果音等をアフターレコーディングする場合あるいはバックグラウンドミュージックBGMを追加する場合に、アフターレコーディング音声またはBGMをダミーパック89に記録できる。また、録画内容の解説を追加する場合には、追加の文字、図形等の副映像をダミーパック89に記録できる。さらに追加のビデオ映像をインサートしたい場合には、そのインサートビデオをダミーパック89記録することもできる。

【0247】上述したアフターレコーディング音声等は、オーディオパックとして利用するダミーパック89のパディングデータ893に書き込まれる。また、上記追加の解説等は、副映像パックとして利用するダミーパック89のパディングデータ893に書き込まれる。同様に、上記インサートビデオは、ビデオパックとして利用するダミーパック89のパディングデータ893に書き込まれる。

【0248】さらに、録画・編集後の各パック列を含む各VOBUのサイズがECCプロックサイズ(32kバイト)の整数倍にならない場合に、このVOBUサイズ 30が32kバイトの整数倍になるような無効データをパディングデータ893として含むダミーパック89を、各VOBU中に挿入することもできる。

【0249】このように各VOBUがECCブロックの整数倍になるようなダミーパック(パディングパック)を録画・編集後の各VOBUに適宜挿入することにより、全てのVOBUを、常にECCブロック単位で書き替えることができるようになる。あるいは、ディスク10のRAM層に欠陥が生じた場合にその欠陥部分だけをECCブロック単位で交替処理できるようになる。さらには、ECCブロック単位をAVアドレス単位として各VOBUを容易にアドレス変換できるようになる。

【0250】つまり、ダミーパック89は、使用目的によってオーディオパックにも副映像パックにもビデオパックにもパディングパックもなり得る、ワイルドカードのようなパックである。

【0251】図26は、図18のセル時間情報CTIの内部構造を説明する図である。

【0252】図18の説明でも触れたが、各セル時間検 索情報 (CTI#m) はセル時間一般情報 CTGI#m 50 36

とセルVOBUテーブルCVT#mで構成されている。 【0253】セル時間一般情報は、図26の上半分に図示するように、(1)セルデータ一般情報と、(2)タイムコードテーブルと、(3)後天的欠陥情報と、

(4) セルビデオ情報と、(5) セルオーディオ情報 と、(6) セル副映像情報とを含んでいる。

【0254】(1)のセルデーター般情報は、セルIDと、そのセルの合計時間長と、セルデータ集合体の数と、セルデータ集合体記述子と、セル時間物理サイズと、そのセルの構成VOBU数の情報を含んでいる。

【0255】ここで、セルIDは各セル毎の独自のIDである。合計時間長はそのセル内の再生に要する全所要時間を示す。

【0256】セルデータ集合体数は、そのセル内でのセルデータ集合体記述子の数を示す。

【0257】セルデータ集合体記述子については、図33を参照して後述する。

【0258】セル時間物理サイズは、先天的欠陥場所も含めたセルが記録された情報記憶媒体上の記録位置サイズを示す。このセル時間物理サイズと合計時間長の情報を組み合わせることにより、そのセル内での先天的欠陥領域の大きさが分かり、実質的な転送レートの予想をすることができる。このセル時間物理サイズは、連続再生を保証できるセルの記録位置候補を定めるときに利用できる。

【0259】構成VOBU数は、そのセルを構成するVOBUの数を示す。

【0260】(2)のタイムコードテーブルは、そのセルを構成するVOBUのピクチャ番号#1~#nと、そのセルを構成するVOBUのECCブロック番号#1~#nを含んでいる。

【0261】このテーブルのタイムコードは、該当セル内のVOBU毎のピクチャ数(ビデオフレーム数;1バイトで表現)と、上記セルデータ集合体記述子で示される媒体上の記録位置でのVOBU毎の使用ECCブロック数(1バイト表現)との組で表記される。この表記方法を採用することにより、(NTSCでいえば毎秒30枚あるフレーム毎にタイムコードを付す場合に比べて)タイムコードを非常に少ない情報量で記録することが可能になる。

【0262】このタイムコードを用いたアクセス方法については、図36を参照して後述する。

【0263】(3)の後天的欠陥情報は、そのセル中で の後天的欠陥の数と後天的欠陥のアドレスの情報を含ん でいる。

【0264】後天的欠陥の数は、そのセル内で後天的欠陥(図28参照)が発生したECCブロック数を示す。また、後天的欠陥アドレスは、後天的欠陥の存在位置をECCブロック毎にAVアドレス値で示したものである。セル再生時に欠陥が発生すると(つまりECCのエ

(。)

大転送レートなどの情報を含んでいる。

ラー訂正に失敗すると)、その都度、欠陥ECCブロックのAVアドレスが、後天的欠陥アドレスに逐次登録される。

【0265】(4)のセルビデオ情報は、そのセルのビデオ情報の種類(NTSCかPALか等)、圧縮方式(MPEG2かMPEG1かモーションJPEGか等)、ストリームIDおよびサブストリームID(主画面か副画面か;複数画面同時記録・再生時に利用)、最

【0266】(5)のセルオーディオ情報は、オーディオ信号の種類(リニアPCMかMPEG1かMPEG2かドルビーAC-3か等)、標本化周波数(48kHzか96kHzか)、量子化ビット数(16ビットか20ビットか24ビット)などの情報を含んでいる。

【0267】(6)のセル副映像情報は、各セル内の副映像ストリームの数およびその記録場所を示す情報を含んでいる。

【0268】一方、セルVOBUテーブルは、図26の下半分に図示するように、そのセルを構成するVOBU情報#1~#nを含んでいる。各VOBU情報は、VOBU一般情報と、ダミーパック情報と、オーディオ同期情報を含んでいる。

【0269】図26において、セル時間情報(CTI#m)内の個々の情報内容を改めてまとめると、以下のようになる:

- (1) セルデータ一般情報(個々のセルに関する一般的情報で、以下の内容を含む);
- (1. 1) セル I D (各セル毎の独自の識別子)
- (1.2)合計時間長(セル内の再生に要する全所用時間)
- (1.3) セルデータ集合体数(セル内でのセルデータ 集合体記述子数
- (1.4)セルデータ集合体記述子(記述例は図33を 参照して後述)
- (1.5) セル時間物理サイズ(先天的欠陥場所も含めたセルが記録された情報記憶媒体上の記録位置サイズを示す。前述の「合計時間長」と組み合わせることによりセル内での先天的欠陥領域の大きさがわかり、実質的な転送レートの予想が付く。この情報は、別項で説明する「連続再生を保証できるセルの記録位置候補を定める」時に利用する。)
- (1. 6) 構成VOBUの数(セルを構成するVOBU 数
- (2) タイムコードテーブル (詳細は後述);
- (3)後天的欠陥情報(セル内に検出された後天的欠陥情報で、以下の内容を含む);
- (3.1)後天的欠陥数(セル内で後天的欠陥が発生したECCブロックの数)
- (3.2)後天的欠陥アドレス(図28に示す後天的欠 最終位置情報が必要な場合 陥の存在位置をECCブロック毎にAVアドレス値で示 50 了位置の情報を利用する。

す。セルの再生時に欠陥が発生する毎に逐次登録して行

- (4) セルビデオ情報(以下の内容を含む);
- (4.1) 映像信号種類 (NTSCか、PALか)
- (4.2) 圧縮方式 (MPEG2か、MPEG1か、モーション JPEGか)
- (4.3) ストリーム I Dおよびサブストリーム I Dの情報 (主画面か副画面か→複数画面同時記録・再生用)
- (4.4) 最大転送レート
- (5) セルオーディオ情報(以下内容を含む);
- (5.1)信号種類(リニアPCMか、MPEG1か、 MPEG2か、ドルビーAC-3か)
- (5.2) 標本化周波数
- (5.3) 量子化ビット数
- (6) セル副映像情報(各セル内の副映像情報のストリーム数やその記録場所を示す。)

上記「タイムコードテーブル」は、図26の上方に示すように、セル内のVOBU毎のピクチャ数(フレーム数:1バイト表現)#1~#nと、前記「セルデータ集合体記述子」に示されるところの情報記憶媒体上記録位置でのVOBU毎の使用ECCブロック数(1バイト表現)#1~#nの組で表わされている。

【0270】この表記方法を用いることにより、タイムコードを非常に少ない情報量で記録することができる。 以下にこのタイムコードを用いたアクセス方法に付いて説明する(図36の中身については別項で説明する)。

【0271】1. 図36の録画再生アプリケーションからアクセスしたいセルIDとその時間が指定される;

- 2. 図36の映像管理レイヤはこの指定された時間から 対応するピックチャー (ビデオフレーム) のセル開始位 置からのピクチャ番号 (フレーム番号) を割り出す;
- 3. 図36の映像管理レイヤは図26に示したセル先頭からのVOBU毎のピクチャ数(フレーム数)を順次累計計算し、図36の録画再生アプリケーションが指定したピクチャ(フレーム)が先頭から何番目のVOBU内の更に何番目のピクチャ(フレーム)に該当するかを割り出す:
- 4. 図26のセルデータ集合体記述子と図18のアロケーションマップテーブルAMTからセル内の全データの り 情報記憶媒体上の記録位置を割り出す;
  - 5. 上記「3.」で割り出したVOBU番号(# n) まで図26のVOBU(# n) のECCブロック数(# 1~# n) の値を加算し、該当するVOBU先頭位置でのAVアドレスを調べる;
  - 6. 上記「5. 」の結果に基づき直接該当するVOBU 先頭位置へアクセスし、上記「3. 」で求めた所定のピ クチャ(フレーム)に到達するまでトレースする;
  - 7. この時、アクセス先のVOBU内のIピクチャ記録 最終位置情報が必要な場合には、図27のIピクチャ終 で位置の情報を利用する

【0272】図27は、図26のセルVOBUテーブル(VOBU情報)の内部構造を説明する図である。

【0273】オーディオ情報に関する時間管理情報 (PTS) は、図24に示すように、パケットヘッダの中に記録されている。しかし記録位置が管理階層の深い所に記録されているため、この情報を取り出すためにはオーディオパックの情報を直接再生する必要があり、セル単位での映像情報の編集時には非常に時間がかかる。

【0274】この「セル単位編集時に時間がかかる」という問題に対処するために、図18のAVデータ制御情 10報DA210内に、オーディオ情報に対する同期情報を持たせている。この同期情報が、図27のオーディオ同期情報である。

【0275】図27において、VOBU情報は、MPEGエンコードされた映像情報のIピクチャの終了位置を示すもので、Iピクチャの最終位置のVOBUの先頭位置からの差分アドレスで表現される(1バイト)。

【0276】ダミーパック情報は、各VOBU内に挿入されたダミーパック(図25)の数を示すダミーパック数(1バイト)と、そのVOBUの先頭からダミーパックの挿入位置までの差分アドレス(2バイト)および個々のダミーパック数(2バイト)を含むダミーパック分布(ダミーパックの番号X2バイト)とで表現される。

【0277】オーディオ同期情報は、オーディオストリ ームのチャネル数を示すオーディオストリームチャネル 番号(1パイト)と、Iピクチャ開始時刻と同時刻のオ ーディオパックが含まれるECCプロックのVOBU先 頭からの差分アドレス値を示すIピクチャオーディオ位 置#1、#2、…(各1バイト;最上位ビットで同時刻 オーディオパックが含まれる位置の方向を指定…"0" で後方、"1"で前方)と、ECCブロック内において Iピクチャ開始時刻と同時刻のオーディオサンプル位置 のサンプル番号を全オーディオパックの連番で係数表示 したIピクチャ開始オーディオサンプル番号#1、# 2、…(各2バイト)と、オーディオストリームとビデ オストリームとの間の同期情報の有無を示すオーディオ 同期情報フラグ#1、#2、…(各1バイト)と、この オーディオ同期情報フラグが「同期情報有」を示すとき だけに各オーディオ同期情報フラグに付加されるもので 対応VOBUに含まれるオーディオサンプル数を示すオ ーディオ同期データ(2バイト)とで表現される。

【0278】図27のIピクチャ開始のオーディオ位置#1、#2、…により、Iピクチャ開始時刻と同時刻のオーディオバックが含まれるECCプロックの、該当VOBUの先頭からの差分アドレス値が示される。

【0279】さらに、図27のIピクチャ開始オーディオサンプル番号#1、#2、…により、Iピクチャ開始時刻と同時刻のオーディオサンプル位置の上記ECCプロック内サンプル番号が、全オーディオパックの連番で計数表示される。

【0280】たとえばビデオ編集時にセル内のAV情報 が分割される場合において、そのセル内のVOBUが更 に2分割されてそれぞれ分割された情報が再エンコード される場合、図27の上記情報(Iピクチャ開始のオー ディオ位置#1とIピクチャ開始オーディオサンプル番 号#1)を用いることにより、再生音の途切れや再生チ ャネル間で位相ずれのない分割をすることが可能とな る。この点について、以下に具体例を挙げて説明する。 【0281】通常のデジタルオーディオ録音機器の基準 クロックの周波数ずれ量はおよそ0.1%程度と言われ ている。すると、たとえばデジタルビデオテープ (DA T) レコーダによりデジタル録音した音源情報をデジタ ルコピーにより既に録画したビデオ情報に重ね記録する 場合、ビデオ情報とオーディオ情報間の基準クロックず れが0.1%程度ずれる可能性がある。この基準クロッ クのずれはデジタルコピー (あるいはパーソナルコンピ ユータ等を利用したノンリニア編集)を繰り返して行く うちに無視できない大きさとなり、再生音の途切れある いは再生チャネル間での位相ずれとなって現れる。

【0282】この発明での一実施の形態では、オーディオ情報の基準クロックがずれてもビデオ情報とオーディオ情報を同期して再生できるように(あるいはマルチチャネル音声のチャネル間位相同期が取れるように)、オプションで同期情報も記録できる形をとっている。

【0283】すなわち図27のオーディオ同期情報において、オーディオストリームとビデオストリーム間の同期情報の有無が、各オーディオストリームID(#1、#2、…)毎に設定できるようになっている。

【0284】このオーディオ同期情報がある場合には、その中のオーディオ同期データ内に、各VOBU単位でオーディオサンプル数が記載されている。この情報(オーディオサンプル数)を利用して、再生時に、オーディオストリーム毎にVOBU単位でビデオ情報とオーディオ情報の同期あるいはマルチチャネルオーディオのチャネル間同期をとることができるようになる。

【0285】図28は、図26の欠陥情報に関連して欠陥の種類(先天的欠陥と後天的欠陥)を説明する図である。

【0286】情報記憶媒体10上の欠陥に対しては、欠陥の発生時期に合わせて欠陥の種類を分け、それぞれの 欠陥に応じて異なる位置に欠陥情報を記録している。

【0287】情報記憶媒体上の欠陥領域検出方法としては、以下のものがある。

【0288】\*検証(サーティファイ) … 情報の記録前に検査領域にダミーデータを記録し、そこを再生してECCエラーチェックを行って欠陥箇所を検出する。

【0289】\*事前の再生チェック … 情報の記録前に検査領域を再生する。情報記憶媒体表面にゴミや傷が付くと再生信号の検出量が減少するので、たとえば図54のアンプ213出力を検出し、特定レベル以下の場所

を欠陥領域と見なすことで、チェックを行なう。

【0290】\*記録時のIDエラー … 図8に示すよ うに1セクタの最初にはエンボス構造のヘッダーが存在 する。記録時にはまずこのヘッダーの情報を再生し、物 理セクタ番号を確認後、同期コードおよび変調後信号を 記録する。このときヘッダが再生できない場合をIDエ ラーと呼び、情報記憶媒体上の欠陥の一種とする。

【0291】\*再生時のエラー … 記録完了後に再生 し、ECCブロック内でのエラー訂正が不可能な領域を 欠陥箇所と見なす。

【0292】情報記憶媒体10上で映像情報を記録もし くは情報の更新を行う場合には、ECCプロック単位の 事前の再生とECCプロック内の変更・再書き込みを行 わず、新たな情報もしくは更新すべき情報をECCプロ ック(AVアドレス)単位で直接上書きする。

【0293】記録前に事前に場所が分かっている欠陥箇 所もしくは記録中に発見されたIDエラー箇所のこと を、ここでは「先天的欠陥」と呼んでいる。この先天的 欠陥の領域に対しては図13に示したスキッピング交替 処理を行い、記録情報の保護を行う。

【0294】これに対し、

- \*記録時の記録条件の不適合によりきちんと情報記憶媒 体上に記録されなかった;または
- \*記録は正確に行われたが、その後除法記憶媒体表面に ゴミ付着、傷発生が生じて情報再生が不可能になった などの原因から、記録後の再生時にECCエラー訂正が 不能になる場所が発生することもある。

【0295】この状態で発生した欠陥を「後天的欠陥」 と呼ぶ。この後天的欠陥箇所に対しては情報の保護・補 償は不可能となる。これに対してはユーザに映像を表示 30 する側では、

- \*欠陥画面の前の画面を再度表示する;
- \*欠陥画面前後の画面を用いて間の画面を補間生成して
- \*欠陥画面の前の複数画面の表示速度を局所的に遅らせ て欠陥画面の間引き表示をする

などの補間処理が必要となる。

【0296】図28は、上述した先天的欠陥および後天 的欠陥に対する定義とその対処方法を表にしてまとめた ものである。

【0297】図29は、図23のビデオRAMファイル に含まれるAVファイルのアドレス (すなわちAVアド レス;AVA)と、図2の光ディスクの論理プロック番 号(LBN)・論理セクタ番号(LSN)・物理セクタ 番号(PSN)との対応関係を説明する図である。

【0298】情報記憶媒体10上の全記録領域は、20 48バイト (2kバイト) を最小単位とする論理セクタ に分割され、全論理セクタには論理セクタ番号(LS N) が連番で付けられている。情報記憶媒体10上に情 42

される。情報記憶媒体10上での記録位置はこの情報を 記録した論理セクタの論理セクタ番号(LSN)で管理

【0299】図29のAVアドレスがECCブロックサ イズ32kバイトを最小単位としている理由について は、図34を参照して後述する。

【0300】図29において、物理セクタ番号PSN、 論理セクタ番号LSN、論理プロック番号LBNおよび AVアドレスAVAは、以下の内容を持つ:

\*物理セクタ番号PSNは、最小単位が物理セクタサイ ズの2 kバイト (2048バイト) であり、ディスク1 0のリードインのリファレンス信号ゾーン (図5の基準 信号ゾーン)から開始する。欠陥発生時は欠陥箇所でP SNの欠番が生じる。欠陥発生の有無に拘わらずPSN はその媒体上で不変とされる。また欠陥に対する交替処 理と連動してPSNが変わることもない。PSNは媒体 の内周側(リードイン側)から外周側(リードアウト 側)に向かって順次増加するよう付番される。このPS Nは、記録再生装置 (ディスクドライブ) 内のマイクロ コンピュータ (MPU) により認知される。

【0301】\*論理セクタ番号LSNは、最小単位が物 理セクタサイズの2kパイトであり、ディスク10のデ ータエリア(図20の03000h)から開始する。 欠陥発生時の交替処理によりLSNに欠番あるいは重複 番号が生じることはなく、その開始番号および最終番号 は不変とされる。また欠陥に対する交替処理と連動して 媒体上の対応番号付加位置が適宜変更される。また欠陥 に対する交替処理と連動して番号付加位置が変化する。 LSNはDMA情報(図6のDMA1~DMA4) に対 応し、PSNに対して変化する。このLSNは、ファイ ルシステム(図36のUDF等)および記録再生装置 (ディスクドライブ) 内のMPUにより認知される。

【0302】\*論理ブロック番号LBNは、最小単位が 物理セクタサイズの2kバイトであり、ディスク10上 のファイル構造開始位置から始まる。欠陥発生時の交替 処理によりLBNに欠番あるいは重複番号が生じること はなく、その開始番号および最終番号は不変とされる。 また欠陥に対する交替処理と連動して媒体上の対応番号 付加位置が適宜変更される。また欠陥に対する交替処理 と連動して番号付加位置が変化する。LBNはLSNの 平行移動により番号変換される(LBN=LSN-LS Nfs; LSNfsはLBN開始位置でのLSN)。こ のLBNは、ファイルシステム(図36のUDF等)お よび記録再生装置 (ディスクドライブ) 内のMPUによ り認知される。

【0303】\*AVアドレスAVAは、最小単位がEC Cブロックサイズの32kバイト (=16セクタ) であ り、ディスク10上のAVデータ(図18のDA2)開 始位置から始まる。欠陥発生時の交替処理によりAVA 報を記録する場合にはこの論理セクタ単位で情報が記録 50 に欠番あるいは重複番号が生じることはなく、その開始

番号および最終番号は不変とされる。また欠陥に対する 交替処理と連動して媒体上の対応番号付加位置が適宜変 更される。また欠陥に対する交替処理と連動して番号付 加位置が変化する。AVAはLBNに対応して番号変換 される (AVA= (LBN-LBNav) ÷16; LB NavはAVA開始位置でのLBN)。このAVAは、 映像管理レイヤ(図36を参照して後述)により認知さ れる。

【0304】図30は、図2の光ディスクに欠陥が発生 した場合のAVアドレスの設定とエクステント (ECC 10 データの集合体)記述子の記述方法を説明する図であ る。

【0305】ユーザエリア集合体記述子の記述例が図3 0に示されている。この例では、個々のユーザエリア集 合体記述子を情報記憶媒体10上の配置順に合わせて並 べて記述してある。このユーザエリア集合体記述子で は、AVアドレスとして

0, 1, 2, 3, 7, 8, 9, D, E, F が登録されており、4, 5, 6, A, B, Cが欠番にな っている。

【0306】ここでの欠番位置が「先天的欠陥」の存在 する場所である。これにより、情報記憶媒体10上の欠 陥位置や欠陥長さや使用済み(既使用)のAVアドレス 番号と未使用状態のAVアドレスの分布がわかる。

【0307】この発明では、AVアドレス単位とECC プロック単位を一致させているが、それに拘わらず、た とえば論理ブロック番号で記録位置あるいは欠陥位置を 記述することも可能であり、その場合もこの発明内容に 含まれる。

【0308】図30の例で分かるように、スペアエリア 7 2 4 内での情報記憶媒体 1 0 上の配列に従った A V ア ドレス番号は

A, B, 6, C, 4, 5 と順不同の並び方をしている。

【0309】このため、スペアエリアアロケーション記 述子SAD(図18)の各エクステント(集合体)の記 述方法は、ユーザエリア集合体記述子UADのようにつ ながりのサイズと開始アドレスの組で表現するのでな く、その代わりに、情報記憶媒体10上の配列に沿った AVアドレス個々を並べて記述する。この方が記述に必 40 要なバイト数が少なくて済むからである。

【0310】したがって、スペアエリア724内でAV アドレスの設定を行ったECCプロックに対しては、ス ペアエリア集合体記述子として、図31に示すように、 AVアドレス番号のみを「3バイト」で表現する。

【0311】またユーザエリア集合体記述子と同様に、 3パイト領域の最上位ピットにフラグを付加し、最上位 ビットが"0"であるエクステント (集合体) は既に使 用されているエクステントとみなす。これにより、最上

44

クステントから区別(識別で)きるるようになる。

【0312】なお、スペアエリア724内ではAVアド レス番号は順不同の並び方をしているため、AVアドレ スの並びを見ただけでは欠陥位置を特定することはでき ない。そのためECCブロック毎に先天的欠陥集合体記 述子DED (図30) を配置し、先天的欠陥集合体記述 子DEDの識別子として3バイトの値を

FFFFFF

と設定する。

【0313】ところで、先天的欠陥に対して図13のス キッピング交替処理に合わせて情報記憶媒体10上のA Vアドレス設定位置が移動すると、情報記憶媒体10上 で多数欠陥が生じた場合、AVアドレスの番号設定順が 情報記憶媒体10上の配置順に対して異なってしまう現 象が生じる。

【0314】たとえば、図30の例において、

- 1) 映像情報新規記録前にAVアドレスの後方3ECC プロック分欠陥を発見→ スペアエリア724にA.
- B, C分A Vアドレス位置を移動;
- 20 2)映像情報重ね書き前に更にAVアドレスの後方3E CCプロック分欠陥を発見 → スペアエリア724に 4, 5, 6分AVアドレス位置を移動;
  - 3) 最後に、映像情報の重ね書きをする前に、スペアエ リア724内のAVアドレスC, 4,5位置に新たに3 ECCプロック分欠陥領域発生を発見 → スペアエリ ア724内のAVアドレスBの後方3ECCプロック分 のAVアドレス設定位置を、AVアドレス6の後ろ側に ずらす;と言うように、時間的にずれて複数回、先天的 欠陥が発生した場合には、情報記憶媒体上の並びに沿っ て見たときのAVアドレスは
  - 0, 1, 2, 3, 7, 8, 9, D, E, F, A, B, 6, C, 4, 5

の順番に設定されてしまう。

【0315】この情報に対して更に新たな映像情報を上 **費きする場合、記録・再生の連続性を確保するために、** 記録可能箇所を情報記憶媒体10上での配置順に従って 記録する必要性が生じる。従って、情報記憶媒体上の配 置順に従ったAVアドレス設定マップが必要になる。こ のAVアドレス設定マップが、図18のアロケーション マップテーブルAMTであり、これが情報記憶媒体10 に記録される。

【0316】このアロケーションマップテーブルAMT は、図18に示すように、ユーザエリアアロケーション 記述子UAD、スペアエリアアロケーション記述子SA Dおよびアドレス変換テーブルACTという3つの領域 に区分されている。

【0317】図30から分かるように、AVアドレスの 配置順は、ユーザエリア723内では情報記憶媒体10 上の配列順に一致し、スペアエリア724内では情報記 位ビットが"1"の未使用エクステントを使用済みのエ 50 憶媒体10上の配置順と一致していない。従って、ユー

ザエリア723内ではAVアドレス配置情報を圧縮して 記録することができる。

【0318】すなわち欠陥領域も含めてAVアドレス設定位置が連続して続く領域をエクステント(集合体)と言う一つのまとまりとみなし、ユーザエリア集合体記述子UED(\*,\*)で表現する。これは

(イ)連続したAVアドレス設定数(連続したECCブロック数に一致)を2バイトで表現し;

(ロ) エクステント (集合体) 先頭のA V アドレス番号を3 バイト表現し;

(ハ)上記2種類の情報(イ) (ロ)を1組として並べて記述する

というもので、記述方法は、別項(図39)で述べるアロケーション記述子(AD)の表記方法と一致している。

【0319】上記の表現方法を用いることにより、ユーザエリア723内で欠陥場所が少ない場合には、各AVアドレス毎に分布を個々に記述する場合に比べて記述に必要なビット数が少なくて済み、図18のアロケーションマップテーブルAMTの記述に必要な情報量が少なくなる。そうすると、情報記憶媒体10のトータル容量は決まっているので、各オブジェクト(図18のDA22~DA24)に対する情報記憶媒体10の記憶容量が、相対的に増加する。

【0320】また、ユーザエリア723内ではAVアドレスの配置順と情報記憶媒体配列順が一致しているので、ユーザエリア集合体記述子(図31の所で改めて説明)内で指定された以外のAVアドレス番号位置に先天的欠陥が存在することが分かる。

【0321】図31は、各種エクステント記述子(集合体記述子)の対応関係を説明する図である。

【0322】ユーザエリア集合体記述子に対しては、A Vアドレス単位で「使用済み(既使用)」か「未使用」 かの判別用フラグが付いている。すなわち、図31の

「既使用・未使用の判別情報」記載欄にあるように、ユーザエリア集合体記述子内先頭アドレスを記述する3バイト領域の最上位ビットにフラグを付加し、最上位ビットが"0"であるエクステント(集合体)は既に使用されているエクステントとみなし、最上位ビットが"1"のエクステント(集合体)は未使用のエクステントと識 40別される。

【0323】ところで、図24に示したように映像情報の最小単位はセル単位になっており、また図7に示したようにDVD-RAMディスクでは各ゾーンの間にはガードエリアが存在する。このため、セル情報を2ゾーン間にまたがって1以上のセルの記録する場合、光ヘッドがガードエリア間を移動するのに時間が取られ(さらに図5に示したようにゾーン間でディスク10の回転速度が変化するので回転サーボの切換処理に時間が取られ)、連続記録・連続再生が保証できなくなる。

46

【0324】このため、この発明では、「同一セル情報のゾーン間にまたがった録画あるいは記録を禁止する」 と言う制約条件を付加している。

【0325】またそれに従って、必ず「ユーザエリア集合体(ユーザエリアエクステント)」はゾーン間にまたがって定義しない」(すなわち全てのユーザエリアエクステントのサイズは1個のゾーンサイズより小さい)と言う制約条件も付加している。

【0326】図7に示すように1個のゾーン内に存在するECCブロック数は比較的少ないので、ユーザエリア集合体記述子に記述されるECCブロックサイズ(ECCブロック数)としては、図31に示すように、2バイトのみの表現で充分となる。

【0327】このように「ユーザエリア集合体(ユーザエリアエクステント)はゾーン間にまたがらない」と定義することにより、ユーザエリア集合体記述子の記述に必要な総バイト数(サイズ)が低減でき、その分アロケーションマップテーブルAMTのサイズが小さくなる。その結果、ビデオオブジェクトに対する記録容量を相対的に増加させることができる。

【0328】ところで、この発明の情報記憶媒体10では、図18に示すように、AVファイル(DA2)と通常のコンピュータ用のファイル(DA1、DA3)が混在記録できるようになっている。

【0329】したがって、図30の例に示すように、スペアエリア724内にコンピュータデータエリアの交替 箇所が混入する場合がある。

【0330】この場所をAVデータの欠陥箇所と区別するため、図31に示すように、PC (パーソナルコンピュータ) 使用集合体記述子も記述できるようにしてあ

【0331】このPC使用集合体記述子の値は、たとえば図31に示すように

FFFFFE

とする。(図30および図31中のPEDは、パーソナルコンピュータのエクステント・ディスクリブタの頭文字を取ったものである。)

なお、図7から分かるように、DVD-RAMディスクでは記録可能領域が24ゾーンに分割されている。従って各ゾーンの境界が分かるように、図31の表図では、次ゾーン開始マークとして

FFFFFC

といった識別子も設定している。(図30および図31中の2SMは、次のゾーンのスタート・マークの頭文字を取ったものである。)

以上述べた各種集合体記述子(エクステント・ディスクリプタ)の内容と記述方法は、図31の一覧表にまとめて記述されている。この一覧表は、基本的には、情報記憶媒体10上の配列に従って、ECCブロック単位で各50 集合体記述子(エクステント・ディスクリプタ)を順次

【0332】図65は、図2の光ディスクに記録される情報の階層構造の他の例(図18のアロケーションマップテーブルAMTと異なる内容のアロケーションマップテーブルAMTを持つ例)を説明する図である。

【0333】図18に示した構造でのスペアエリアアロケーション記述子SADは、図30に示すように、各ECCプロック毎にAVアドレスや先天的欠陥状況を記述する必要がある。そのためAVデータエリアDA2内の管理領域(制御情報DA21)内のデータ量が増大する。その反面、図7から分かるように、ユーザエリア723に対するスペアエリア724の容量はおよそ1/19しかない。

【0334】このような状況から、映像情報記録方法の他の実施方法として

- \*先天的欠陥が生じた時の交替処理方法としてはスキッピング交替処理を行う:
- \*先天的欠陥が生じた時の交替処理としてスペアエリア724へのAVアドレスおよび論理セクタ番号(と論理プロック番号)の付け替えのみ行う;
- \*スペアエリア724へは情報 (映像情報等) の記録を 行わない;

と言う使い方もある。

【0335】この実施方法では、情報(映像情報等)の記録はユーザエリア723内のみで行うためスペアエリアアロケーション記述子SADでのECCブロック毎の集合体記述子(エクステントディスクリプタ)の記述が不要となり、管理領域(制御情報DA21)の情報量が大幅に減る。

【0336】図66は、図2の光ディスクに先天的欠陥 30 がある場合の先天的欠陥アロケーション記述子とアロケートされないスペース記述子の記述方法を説明する図である。

【0337】以下、図65および図66を参照して、映像情報(AVデータ)等の記録をユーザエリア723内のみで行う場合のユーザエリアアロケーション記述子SAD(図30)に対する応用例を説明する。

【0338】図65に示すように、先天的欠陥位置情報の管理方法として先天的欠陥アロケーション記述子PDADを用い、未記録場所情報の管理方法としてアロケートされないスペース記述子(Unallocated Space Descriptors) USDを利用する。その具体的な管理情報内容について、図66を用いて説明する。

【0339】ユーザエリア723内のAVデータエリアDA2内に欠陥箇所が発生した場合、交替処理により自動的にスペアエリア724内に交替箇所が作成され、欠陥箇所に事前に設定されたAVアドレスや論理セクタ番号、論理ブロック番号がそのままスペアエリア724の交替箇所に移される。

【0340】映像情報等を記録する場合には、このユー 50

48

ザエリア 7 2 3 内の欠陥箇所を飛ばしてその直後の記録 箇所に記録が行われる。

【0341】前述したように映像情報等の記録はユーザエリア723内だけに限られるため、スペアエリア724には映像情報等の記録は行わず、未記録のまま放置される。従ってこのスペアエリア724内での欠陥位置管理や未記録領域管理は不要となり、この場所内での管理情報は持たない。

【0342】図30のユーザエリアアロケーション記述子UADでは先天的欠陥位置情報を明記せず、ユーザエリア集合体記述子UEDで指定されないAVアドレスを先天的欠陥位置と判定していた。

【0343】それとは異なり、図65の先天的欠陥アロケーション記述子PDADでは、図66に示すように、 先天的欠陥位置での事前に設定されたAVアドレスを3 バイトずつ並べて記述する。

【0344】従って、先天的欠陥アロケーション記述子 PDADに指定されてないAVアドレスが利用可能な場 所と認識できる。

【0345】また、図30のユーザエリアアロケーション記述子UADでは、図31に示すように、ユーザエリア集合体記述子UEDの先頭AVアドレスの最上位ビットに既記録(既使用="0")、未記録(未使用="1")の識別フラグを持たせていた。

【0346】それとは異なり、図65のアロケートされないスペース記述子USDでは、未記録場所のAVアドレスを明示する。この未記録場所を示すアロケートされないスペース記述子USDは先天的欠陥場所を考慮に入れず、連続したAVアドレスのつながりを示す集合体(エクステント)毎に場所指定を行う。

【0347】すなわち、集合体(エクステント)内のECCブロック数を前半の2バイトで表現し、その集合体(エクステント)の先頭のAVアドレスを3バイトで表現し、両者を1組の集合体(エクステント)情報とする。

【0348】今までの説明では各AVファイル独自のAVアドレスを持ち、このAVアドレスを管理情報(制御情報DA21)に利用してきた。しかしそれに限らず管理情報(制御情報DA21)に例えば論理ブロック番号を利用することもできる。すなわち、情報記録時の基本単位を2048バイト毎の論理ブロック単位とし、アドレスに論理ブロック番号を用いてアロケーションマップテーブルAMTやセル時間制御情報CTCIを記述することが可能である。

【0349】図32は、図18の制御情報DA21に含まれる情報の階層構造を例示する図である。

【0350】図19または図24のセルは、再生データを開始アドレスと終了アドレスとで指定した再生区間を示す。また、図19のプログラムチェーンPGCは、セルの再生順序を指定した一連の再生実行単位である。図

19のビデオオブジェクトセットVOBSの再生は、そ れを構成するプログラムチェーンPGCとセルとによっ

【0351】図32のAVデータ制御情報DA210 は、このようなプログラムチェーンPGCの制御情報P GCCIを持つ。このPGC制御情報PGCCIは、P GC情報管理情報PGC\_MAIと、n個(1個以上) のPGC情報サーチポインタと、k個(1個以上)のP GC情報とで構成される。

【0352】PGC情報管理情報PGC\_MAIには、 PGCの数を示す情報が含まれる。PGC情報サーチポ インタは各PGC情報PGCIの先頭をポイントするも ので、このサーチポインタにより対応PGC情報PGC Iの検索が容易に行えるようになっている。

【0353】各PGC情報PGCIはPGC一般情報と m個のセル再生情報を含む。このPGC一般情報はPG Cの再生時間やセル再生情報の数を含む。

【0354】図33は、図26の説明で触れた「セルデ ータ集合体記述子(セルデータ・エクステント・ディス クリプタ)」の記述内容の一例を示す。ここでは、使用 20 可能なECCブロックの配列順で、同一セルに関する記 録情報の塊を、1個のセルデータ集合体(セルデータエ クステント)としている。

【0355】図33は、特定のセル#1が別のセル#2 によって分断されてない限り、1個のセルデータ集合体 とみなす。具体的記述方法としては、セルデータ集合体 の長さ(セルデータ集合体が記録されているECCプロ ック数)を「2パイト」で表現し、セルデータ集合体の 先頭のAVアドレスを「3バイト」で表現し、両者を続 けて並べて記述する。すなわち、

CED (\*,\*)

と表現する。

【0356】図33に示すように、1個のセルを構成す る全てのセルデータ集合体を並べて記述した記述文がセ ルデータ集合体記述子となる。この記述子によりセルが 記録されている全AVアドレスの分布がわかり、アクセ スが容易となる。

【0357】また、セルデータ集合体の長さとセルデー タ集合体の先頭のAVアドレスを組にして並べて記述す ることにより、情報記憶媒体10上に連続して記録され 40 た領域が多い場合には、セルデータ集合体記述子の記述 に必要なバイト数が減り、セル時間一般情報(#m)に 必要なデータ量が減り、その分、ビデオオブジェクトD A22に使用できる記録容量が相対的に増加する。

【0358】なお、図33に示すように情報記憶媒体1 0 の配列に沿って見た対応AVアドレス番号は不連続な 順番に並ぶことが多い。が、この発明の実施形態では図 18に示すようにアロケーションマップテーブルAMT を持っているため、セルデータ集合体記述子において先 頭のAVアドレスを設定するだけでセル内の全データの 50

情報記憶媒体上の記録位置を特定することができる。こ のことは、AVアドレスがECCプロック単位となって いることと相まって、この発明の大きな特徴となってい る。

【0359】次に、図34を参照してAVアドレスの最 小単位であるECCブロック位置と図24>に示したビ デオオブジェクトユニットVOBUとの間の位置がずれ た時の問題点について説明する。

【0360】図34のデータ変更領域に新たな情報の記 録もしくは情報の更新を行う場合には

- 1) VOBU#gの先頭位置に掛かるECCプロックの 再生;
- 2) 上記ECCブロックのデインターリーブ;
- 3) 上記ECCブロック内のデータ変更領域に関する部 分の情報変更:
- 4) 上記ECCブロック内のエラー訂正符号の付け替
- 5)変更後の情報の上記ECCブロック位置への重ね書 き:
- といった複雑な処理が必要となる。すると、毎秒30枚 のフレームレートが要求されるNTSCビデオ録画にお ける連続記録処理が阻害される。

【0361】さらに、情報記憶媒体(DVD-RAMデ ィスク10)の表面にゴミや傷があった場合、再生処理 よりも記録処理の方が大きく影響を受ける。

【0362】すなわち、上記1)~5)の処理を受ける ECCブロックの位置近傍にゴミや傷があった場合、そ れまでは問題なくVOBU#gの再生が行われていたの にECCプロックの書き替え処理により情報欠陥が発生 し、VOBU#gの再生が不可能になってしまう場合が ある。

【0363】またVOBU#gとは関係ないデータ変更 領域での情報の書き替えを行う毎にVOBU# gの先頭 位置の書き替えが必要となる。DVD-RAMディスク の記録材料に用いられる相変化記録膜は何度も繰り返し 記録を行うと特性が劣化し、欠陥が増加する傾向を持 つ。従って本来必要のない場所(図34ではVOBU# gの先頭部分) の書替回数はなるべく減らすことが望ま しい(この書替回数は図18の制御情報書替回数CIR WNsに記録しておくことができる)。

【0364】以上の理由から、毎秒30枚のフレームレ ートでの連続記録処理の保証と不要箇所の書替回数を減 らす等の目的のために、この発明では、図24に示すよ うに、VOBU記録単位をECCプロック(32kパイ ト) の整数倍にしている。これを32kバイトアライン という。

【0365】この32kバイトアラインのために、つま り各VOBUのサイズがデータ変更の前後で常に32k バイトの整数倍になるように、各VOBUに適当なサイ ズのダミーパック(図25)を挿入している。

示している。

【0366】上記の条件(記録単位をECCブロックの 整数倍にする32kバイトアライン) に基づきこの発明 で新規に設定したAVアドレス番号の設定方法につい て、他の論理プロック番号付け方と比較した表を図29 に示す。

【0367】ファイルシステムで用いる論理プロック番 号との換算を容易にするため、情報記憶媒体10上で発 生した欠陥に対する交替処理による欠番や重複番号は避 けるようになっている。

【0368】映像情報を記録する場合には、情報記憶媒 10 体上の欠陥に対して図13のスキッピング交替処理を行 う。このとき、交替処理により、AVアドレスの設定場 所が情報記憶媒体10上で移動する。

【0369】AVアドレス番号を「AVA」、論理プロ ック番号を「LBN」、AVファイル開始位置での論理 プロック番号LBNを「LBNav」と記号化すると、 論理プロック番号とAVアドレス番号との間には、以下 の関係がある:

 $AVA = (LBN-LBNav) \div 16$ ここで16で割った時の小数点以下の値は全て切り捨て 20

【0370】図35は、録画後にデータ変更のあったセ ル中に前記ダミーパックを挿入することにより、前記3 2 k バイトアラインが実行された場合を示している。そ うすると、セル内のビデオオブジェクトユニットVOB Uの境界位置とこのセル内のデータを構成するECCブ ロック(16セクタ32kバイト)の境界位置とが一致 する。

【0371】そうなれば、その後データを書き替える場 合もECCブロック単位で上書き(オーバーライト)で きる(ECCのエンコードをやり直す必要がない)。し かも、AVアドレスがECCブロックを単位としている ので、録画後の上書き (インサート編集等) がなされて もアドレス管理は容易である。この上書きはデータ変更 のないVOBU#gには関係無く行われるので、データ 変更領域の書替が原因でVOBU#gのデータが再生不 能になる恐れもない。

【0372】なお、ダミーパックを挿入しなくても各V OBUのサイズがデータ変更の前後で32kバイトの整 数倍となっているときは、32kパイトアラインという 40 目的のためにダミーパックをあえて追加する必要はな い。しかしダミーパックは32kバイトアライン以外の 使い途もある(アフターレコーディング用の予備エリア 等)ので、32kバイトアラインをするしないに拘わら ず適当な数のダミーバックを挿入することは好ましい。

【0373】次に、この発明で利用される情報処理機器 制御システムの階層構造の説明を行う。図36は、情報 記憶媒体(DVD-RAMディスク等)に記録される情 報を扱う情報処理機器(パーソナルコンピュータ等)内 での、システム階層と個々の管理対象情報との関係を例 50

【0374】具体的には、このシステム階層は、1番目 に「録画再生アプリケーション」の階層を持ち、2番目 に「映像管理レイヤ」の階層を持ち、3番目に「I/O マネージャ」の階層を持ち、4番目に「ファイルシステ ム (UDF等)」の階層を持ち、5番目に「デバイスド ライバ」の階層を持ち、6番目に「ハードウエア (記録 再生装置)」の階層を持っている。

52

【0375】最上位階層の「録画再生アプリケーショ ン」は、映像情報(AVファイルのデータ)に関する録 画・再生処理を行なう機能を担うもので、セルあるいは PGCを管理対象としている。ここでは処理単位として 時間が用いられ、欠陥管理は行われない。

【0376】2番目の階層の「映像管理レイヤ」は、A Vファイル内の記録位置を制御する機能を担うもので、 AVアドレスおよびセル内構造を管理対象としている。 ここでは処理単位として映像フレームが用いられ、欠陥 管理も行われる。すなわち、記録および再生の連続性を 確保するために情報記憶媒体(DVD-RAMディスク 等)上の欠陥位置も管理上考慮される。

【0377】3番目の階層の「I/Oマネージャ」は、 システムと情報記憶媒体 (DVD-RAMディスク等) との間のインターフェイス処理機能を担うもので、媒体 に記録されるファイル (図23のAVファイル等) を管 理対象としている。ここでは処理単位としてファイルが 用いられ、欠陥管理は行われない。

【0378】4番目の階層の「ファイルシステム」は、 主にファイル単位での記録・再生のアドレス制御機能を 担うもので、情報記憶媒体(DVD-RAMディスク 等)に割り当てられた論理ブロック番号LBNおよび論 理セクタ番号LSN(図29参照)を管理対象としてい る。ここでは処理単位としてファイルが用いられ、欠陥 管理は行われない。

【0379】5番目の階層の「デバイスドライバ」は、 システム側からの記録再生装置(DVD-RAMドライ ブ等)の動作制御機能を担うもので、情報記憶媒体(D VD一RAMディスク等)に割り当てられた論理セクタ 番号LSNを管理対象としている。ここでは処理単位と してセクタサイズ (2 kバイト) が用いられ、欠陥管理 は行われない。

【0380】6番目の階層の「記録再生装置」は、情報 記憶媒体(DVD-RAMディスク等)に対する単純記 録および単純再生を実行する機能を担うもので、情報記 憶媒体に割り当てられた物理セクタ番号PSN (図29 参照)を管理対象としている。ここでは処理単位として 映像フレームが用いられ、欠陥管理も行われる。

【0381】次に、図36のシステム階層とこの階層が 適用されるハードウエア(図52を参照して後述するパ ーソナルコンピュータPC等) との関係を簡単に説明す る。

【0382】図36のシステム階層のうち、録画再生アプリケーションからデバイスドライバまでのプログラムに従った処理の実行は、図52のPCのメインCPU111が行なう。また図36の最下行に示された情報記録再生装置(内部構成は図示せず)は、図52のDVD-ROM/RAMドライブ140に対応している。しかし、それに限らず、図36の情報記録再生装置を図52のCD-ROMドライブ122に対応させることもできる。図36のシステム階層のうち、I/Oマネージャーからデバイスドライバまでのプログラムは、図52のメインメモリ112の一部を構成するEEPROMなどの不揮発性半導体メモリに格納できる。

【0383】図36のシステム階層構造を利用する図52の情報処理機器は、通常のパーソナルコンピュータでは必須アイテムとなっているハードディスクドライブHDDを持たない(必要としない)ことを特徴としている(このことは、しかしながら、HDDを併用できないということではない)。

【0384】また、図36のシステム階層のうち、録画 再生アプリケーションおよび映像管理レイヤは、情報記 20 録再生装置 (DVD-ROM/RAMドライブ) 140 に装着された情報記憶媒体 (光ディスク10のROM領域) に格納されている。

【0385】次に、図36映像管理レイヤでの映像情報 (AVデータ) の記録・削除に関する制御方法について、図24のセル#3を例にとって説明する。

【0386】 [セル#3の映像情報に対して追加加工後に再記録する方法]

<01>セル#3の読み込み、追加加工処理を行う。

【0387】<02>追加加工後のセル#3がデータサ 30 イズ的に元の位置に戻るかを調べる(ここでは元の位置にサイズ的に入り切らず別の位置に記録する場合を説明する)。

【0388】<03>アロケーションマップテーブルA MT(図18)から未使用のAVアドレスを探す。

【0389】<04>PGC制御情報PGCCI(図18)からセル#3の前後の再生順にあるセルIDを調べる。

【0390】 < 05 > セル時間制御情報 CTCI からセル#3の前後の再生順にあるセルの保存場所を示す AV 40 アドレスを調査する。

【0391】<06>アロケーションマップテーブルAMT(図18)からセル#3の前後の再生順にあるセルの情報記憶媒体10上の記録位置を推測する。

【0392】<07>上記<03>で探した結果を基に連続再生を保証できるセル#3の記録位置候補を定める。

【0393】<08>上記<07>で定めた記録位置候補に対して事前の確証作業を行う。たとえば、情報記録再生装置(図52のドライブ140等)のアクセス速度 50

54

などの性能情報を情報記録再生装置からもらい、連続再 生が危ない場所を抽出する。この危ない場所のみに対し て実際に情報記録再生装置にアクセス動作をさせ、連続 再生が確保できない場合には別の記録位置を探す。ここ で最悪の場合、つまり連続再生が可能な記録位置が見つ からない場合には、その前後のセルの記録位置まで記録 位置候補をずらす。

【0394】<09>記録位置が確定したら追加加工後のセル#3の情報の記録処理に入る。

【0395】<10>記録中も記録状況をモニターし、IDエラーをチェックする。

【0396】(注)記録時のIDエラーについて:図8に示すように、1セクタの最初にはエンボス構造を有したヘッダが存在する。記録時にはまずこのヘッダ情報を再生し、物理セクタ番号を確認後、同期コード、変調後信号を記録する。その際、ヘッダが再生できない場合をIDエラーと呼び、情報記憶媒体上の欠陥の一種になる。

【0397】<11>上記<10>のIDエラーが検出された場合、IDエラー発生情報を情報記録再生装置(図52のドライブ140等)から受け取ると、スキッピング交替処理(図13)を実行させるとともに、その情報を基に逐次アロケーションマップテーブルAMT(図18)に先天的欠陥(図28)の情報を追記して行く。

【0398】<12>上記<11>の記録処理が完了すると、追加加工後のセル#3の情報を記録したAVアドレスの既使用登録を、アロケーションマップテーブルAMTに対して行う。

【0399】<13>最後に、図36のデバイスドライバを制御して、情報記憶媒体10のDMA管理領域(図6のDMA1&DMA2とDMA3&DMA4)にスキッピング交替処理情報を記録させる。

【0400】 [セル#3の映像情報を削除する方法] <21>PGC制御情報PGCCI(図18) に対して データ変更処理を実施する。

【0401】<22>セル時間制御情報CTCI(図18)からセル#3に関する情報を削除する。

【0402】<23>アロケーションマップテーブルA MT(図18)内のAVアドレスリストにおいて、セル #3が使っていたAVアドレスを「未使用」に変更する。

【0403】<24>もしセル#3に関する後天的欠陥アドレス(図26)が登録されていた場合には、その欠陥場所を先天的欠陥に変更して、擬似的なスキッピング交替処理を行い、その結果をアロケーションマップテーブルAMT(図18)に登録する。

【0404】その後、登録された情報に従いデバイスドライバ(図36)を制御して、情報記憶媒体10のDMA管理領域(図6のDMA1&DMA2とDMA3&D

20

MA4) にスキッピング交替処理情報を記録させる。

【0405】図36のファイルシステムでは、情報記憶 媒体10上での追記・更新情報の記録位置制御を行って いるが、ファイルエントリではファイル単位の論理ブロ ック番号情報しか管理してない。

【0406】一方、編集も含めた映像情報の録画・再生 処理を行うためには、図24で示したように、映像情報 の最小単位であるセル単位での情報記憶媒体10上の位 置制御が必要となる。

【0407】また、映像情報の連続記録条件および連続 10 再生条件をともに満足することも必要条件となる。情報 記憶媒体10では表面のごみ、傷による欠陥が逐次発生 する。その欠陥に対する交替処理として映像情報に対し ては図13に示すスキッピング交替処理が行われる。

【0408】しかしUDF(ユニバーサルディスクフォ ーマット)に限らずFAT(ファイルアロケーションテ ープル)、NTFS (ニューテクノロジーファイルシス テム)、UNIX(汎用オペレーティングシステムのユ ニックス)などのファイルシステムでは、情報記憶媒体 上の欠陥管理は行っていない。

【0409】別項で行なうUDFについての説明(第3 7図〜第46図)でも、論理セクタ番号空間や論理ブロ ック番号空間では欠陥がないものとして番号設定を行っ ている。

【0410】しかし、広い領域に渡り連続して欠陥が生 じた場合には、そこで映像情報の連続記録もしくは連続 再生が不可能となる。

【0411】以上のことから、連続記録・連続再生を満 足するDVDビデオレコーディングシステムでは、

\*映像情報の連続記録・連続再生を可能にするための、 情報記憶媒体10上の欠陥位置も考慮に入れた記録再生 管理:および

\*ファイル単位ではなく、それより小さい単位 (たとえ ばセル単位) での情報の記録再生管理;

という2つの管理機能を持ったシステム階層が必要とな る。

【0412】しかし、業務用(編集用)ビデオテープレ コーダVTRの例から明らかなように、一般の録画再生 関連アプリケーションソフトでは、図36に示すような タイムコードを用いた上位の録画・再生処理を行うが、 情報記憶媒体(ビデオテープ)上の欠陥管理を行わな 61

【0413】また、従来のコンピュータシステムでは、 記録・再生時の連続性確保の必要性がないため、この連 統性は考慮されていない。

【0414】そこで、この発明では、ファイルシステム (図36のUDF) の上位層に「映像管理レイヤ」を新 たに設け、ここで欠陥管理も含めた情報記憶媒体10上 の記録・再生位置の管理および制御を行っている。

【0415】次に、図36のシステム階屬の4番目に記 50

56

載されたファイルシステムで扱われるところの、情報記 憶媒体上の情報内容について、説明する。このファイル システムの代表例として、現在DVDに採用されている UDF規格について説明を行う。

【0416】初めに、DVDで採用されているUDFフ ォーマットについて説明する。

【0417】<<<UDFの概要説明>>>

<<UDFとは何か>>UDFとはユニバーサルディス クフォーマットの略で、主にディスク状情報記憶媒体に おける「ファイル管理方法に関する規約」を示す。

[0418] CD-ROM, CD-R, CD-RW, D VD-ビデオ、DVD-ROM、DVD-R、DVD-RAM等は、国際標準規格である「ISO9660」で 規格化されたUDFフォーマットを採用している。

【0419】ファイル管理方法としては、基本的にルー トディレクトリを親に持ち、ツリー状にファイルを管理 する階層ファイルシステムを前提としている。

【0420】ここでは主にDVD-RAM規格に準拠し たUDFフォーマットについての説明を行うが、この説 明内容の多くの部分はDVD-ROM規格内容とも一致 している。

#### 【0421】<<UDFの概要>>

<情報記憶媒体へのファイル情報記録内容>情報記憶媒 体に情報を記録する場合、情報のまとまりを「ファイル データ」と呼び、ファイルデータ単位で記録が行なわれ る。個々のファイルデータは、他のファイルデータと識 別するため、ファイルデータ毎に独自のファイル名が付 加されている。

【0422】共通な情報内容を持つ複数のファイルデー タ毎にグループ化すると、ファイル管理とファイル検索 が容易になる。この複数ファイルデータ毎のグループを 「ディレクトリ」または「フォルダ」と呼ぶ。各ディレ クトリ(またはフォルダ)毎に独自のディレクトリ名 (またはフォルダ名)が付加される。

【0423】さらに、複数のディレクトリ (フォルダ) を集めて、その上の階層のグループとして上位ディレク トリ(上位フォルダ)でまとめることができる。ここで はファイルデータとディレクトリ(フォルダ)を総称し てファイルと呼ぶことにする。

【0424】情報を記録する場合には

- (イ) ファイルデータの情報内容そのもの;
- (ロ) ファイルデータに対応したファイル名;および
- (ハ) ファイルデータの保存場所 (どのディレクトリの 下に記録するか)に関する情報を全て情報記憶媒体(た とえば図1のディスク10)上に記録する。

【0425】また、各ディレクトリ(フォルダ)に対す

- (二) ディレクトリ名 (フォルダ名) ;および
- (ホ) 各ディレクトリ (フォルダ) が属している位置 (つまりその親となる上位ディレクトリ/上位フォルダ

の位置)に関する情報も、すべて情報記憶媒体(10) 上に記録する。

【0426】図37は、図23の階層ファイルシステム構造と情報記憶媒体(DVD-RAMディスク10)に記録された情報内容との間の基本的な関係を説明する図である。図37は、その上側に階層ファイルシステム構造の簡単な例を示し、その下側にUDFに従ったファイルシステム記録内容の一例を示している。

【0427】<階層ファイルシステム構造の簡単な例> 小型コンピュータ用の汎用オペレーティングシステム (OS)であるUNIX、MacOS、MS-DOS、 Windowsなど、ほとんどのOSのファイル管理システムは、図37あるいは図43に例示するようなツリー状の階層構造を持つ。

【0428】図37において、1個のディスクドライブ (たとえば1台のハードディスクドライブHDDが複数 のパーティションに区切られている場合には、各パーティション単位を1個のディスクドライブとして考える) にはその全体の親となる1個のルートディレクトリ40 1が存在し、その下にサブディレクトリ40 2が属して 20 いる。このサブディレクトリ40 2の中にファイルデータ403が存在している。

【0429】実際にはこの例に限られず、ルートディレクトリ401の直接下にファイルデータ403が存在したり、複数のサブディレクトリ402が直列につながった複雑な階層構造を持つ場合もある。

【0430】 <情報記憶媒体上のファイルシステム記録 内容>ファイルシステム情報は論理プロック単位(また は論理セクタ単位;図36参照)で記録され、各論理プロック内に記録される内容としては、主に、次のような ものがある:

\*ファイルID記述子FID (ファイル情報を示す記述文) …ファイルの種類やファイル名 (ルートディレクトリ名、サブディレクトリ名、ファイルデータ名など) を記述しているもの。ファイルID記述子FIDの中には、それに続くファイルデータのデータ内容や、ディレクトリの中身に関する情報が記録されている位置も記述されている。

【0431】\*ファイルエントリFE(ファイル内容の記録場所を示す記述文)…ファイルデータの内容やディ 40レクトリ(サブディレクトリなど)の中身に関する情報が記録されている情報記憶媒体上の位置(論理ブロック番号)などを記述しているもの。

【0432】図37の中央部分は、図37の上側に示すようなファイルシステム構造の情報を情報記憶媒体10に記録したときの、記録内容を例示している。以下、この例示内容を具体的に説明する。

【0433】\*論理ブロック番号「1」の論理ブロックには、ルートディレクトリ401の中味が示されている。

【0434】図37の例では、ルートディレクトリ40 1の中にはサブディレクトリ402のみが入っている。 このため、ルートディレクトリ401の中味としては、 サブディレクトリ402に関する情報がファイルID記述子(FID)404で記載されている。なお、図示し

58

ないが、同一論理ブロック内に、ルートディレクトリ401自身の情報もファイルID記述子の文で並記されている。

【0435】このルートディレクトリ401のファイル ID記述子404中に、サブディレクトリ402の中味 が何処に記録されているかを示すファイルエントリ(F E)405の記録位置が、ロングアロケーション記述子 (LAD(2))で記載されている。

【0436】\*論理ブロック番号「2」の論理ブロックには、サブディレクトリ402の中味が記録されている位置を示すファイルエントリ405が記録されている。

【0437】・図37の例では、サブディレクトリ402の中にはファイルデータ403のみが入っている。このため、サブディレクトリ402の中味は、実質的にはファイルデータ403に関する情報が記述されているファイルID記述子406の記録位置を示すことになる。

【0438】ファイルエントリ405では、その中のショートアロケーション記述子で3番目の論理プロックにサブディレクトリ402の中味が記録されていることが記述(AD(3))されている。

【0439】\*論理ブロック番号「3」の論理ブロックには、サブディレクトリ402の中味が記録されている。

【0440】図37の例では、サブディレクトリ402の中にはファイルデータ403のみが入っているので、サブディレクトリ402の中味としてファイルデータ403に関する情報がファイルID記述子406で記載されている。なお、図示しないが、同一論理ブロック内に、サブディレクトリ402自身の情報もファイルID記述子の文で並記されている。

【0441】ファイルデータ403に関するファイルI D記述子406の中に、このファイルデータ403の中 味が何処に記録されているかを示すファイルエントリ4 07の記録位置が、ロングアロケーション記述子(LA D(4))で記載されている。

【0442】\*論理ブロック番号「4」の論理ブロックには、ファイルデータ403の内容(408、409)が記録されている位置を示すファイルエントリ407が記録されている。

【0443】ファイルエントリ407内のショートアロケーション記述子により、ファイルデータ403の内容(408、409)が、5番目と6番目の論理プロックに記録されていることが記述(AD(5)、AD(6))されている。

0 【0444】\*論理ブロック番号「5」の論理ブロック

には、ファイルデータ403の内容408が記録されている。

【0445】\*論理ブロック番号「6」の論理ブロックには、ファイルデータ403の内容409が記録されている。

【0446】<図37の情報に沿ったファイルデータへのアクセス方法>上述したように、ファイルID記述子FIDとファイルエントリFEには、それに続く情報が記述してある論理プロック番号が記述してある。

【0447】ルートディレクトリから階層を下りながらサブディレクトリを経由してファイルデータへ到達するのと同様に、ファイルID記述子FIDとファイルエントリに記述してある論理プロック番号に従って、情報記憶媒体10上の論理ブロック内の情報を順次再生しながら、目的のファイルデータの内容にアクセスする。

【0448】つまり図37に示したファイルデータ40 3にアクセスするには、まず始めに1番目の論理ブロッ ク情報を読み、その中のLAD(2)に従って2番目の 論理プロック情報を読む。ファイルデータ403はサブ ディレクトリ402の中に存在しているので、その中か 20 らサプディレクトリ402のファイルID記述子FID を探し、AD(3)を読み取る。その後、読み取ったA D(3)に従って3番目の論理ブロック情報を読む。そ の中にLAD(4)が記述してあるので、4番目の論理 プロック情報を読み、ファイルデータ403に関するフ ァイルID記述子FIDを探し、その中に記述してある AD(5)に従って5番目の論理プロック情報を読み、 AD(6)に従って6番目の論理ブロックに到達する。 【0449】なお、AD(論理ブロック番号)、LAD (論理ブロック番号)といった記述の内容については、 後述する。

【0450】<<<UDFの各記述文(記述子/ディスクリプタ)の具体的内容説明>>>

<<論理ブロック番号の記述文>>

<アロケーション記述子>前記<情報記憶媒体上のファイルシステム情報記録内容>で述べたように、ファイルID記述子FIDやファイルエントリなどの一部に含まれ、その後に続く情報が記録されている位置(論理プロック番号)を示した記述文をアロケーション記述子と呼ぶ。

【0451】アロケーション記述子には、示すロングアロケーション記述子とショートアロケーション記述子がある。

【0452】 <ロングアロケーション記述子>図38は、情報記憶媒体上の連続セクタ集合体(エクステント)の記録位置を表示するロングアロケーション記述子の記述内容を説明する図である。

【0453】ロングアロケーション記述子LAD (論理 ブロック番号) は、エクステントの長さ410と、エク ステントの位置411と、インプリメンテーション使用 50 60

412とで構成されている。

【0454】エクステントの長さ410は論理プロック数を4バイトで表示したものであり、エクステントの位置411は該当する論理プロック番号を4バイトで表示したものであり、インプリメンテーション使用412は演算処理に利用する情報を8バイトで表示したものである。

【0455】ここでは、記述を簡素化するために、「LAD (論理ブロック番号)」といった略号をロングアロケーション記述子の記述に用いている。

【0456】<ショートアロケーション記述子>図39は、情報記憶媒体10上の連続セクタ集合体(エクステント)の記録位置を表示するショートアロケーション記述子の記述内容を説明する図である。

【0457】ショートアロケーション記述子AD (論理 ブロック番号) は、エクステントの長さ410と、エク ステントの位置411とで構成されている。

【0458】エクステントの長さ410は論理ブロック数を4バイトで表示したものであり、エクステントの位置411は該当する論理ブロック番号を4バイトで表示したものである。

【0459】ここでは、記述を簡素化するために、「AD (論理ブロック番号)」といった略号をショートアロケーション記述子の記述に用いている。

【0460】<アロケートされないスペースエントリ>図40は、情報記憶媒体上の未記録連続セクタ集合体(未記録エクステント)を検索するものでアロケートされないスペースエントリ(Unallocated Space Entry;略してUSE)として使用される記述文の内容を説明する図である。

【0461】アロケートされないスペースエントリとは、情報記憶媒体10の記録領域内での「記録済み論理ブロック」か「未記録論理ブロック」かを表すスペーステーブル(図44~図46参照)に用いられる記述文である。

【0462】このアロケートされないスペースエントリ USEは、記述子タグ413と、ICBタグ414と、 アロケーション記述子列の全長415と、アロケーショ ン記述子416とで、構成されている。

10 【0463】\*記述子タグ413は記述内容の識別子を表すもので、この例では"263"となっている。

【0464】\*ICBタグ414は、ファイルタイプを示す。

【0465】ICBタグ内のファイルタイプ=1はアロケートされないスペースエントリUSEを意味し、ファイルタイプ=4はディレクトリを表し、ファイルタイプ=5はファイルデータを表している。

【0466】\*アロケーション記述子列の全長415は、アロケーション記述子列の総バイト数を4バイトで表している。

いる。

【0467】\*アロケーション記述子416は、各エク ステント(セクタ集合体)の媒体10上の記録位置(論 理ブロック番号)を列記したものである。たとえば、 (AD(\*), AD(\*), ……, AD(\*))のよ うに列記される。

【0468】<ファイルエントリ>図41は、図23ま たは図37のように階層構造を持ったファイル構造内 で、指定されたファイルの記録位置を表示するファイル エントリの記述内容の一部を抜粋して説明する図であ る。

【0469】ファイルエントリは、記述子タグ417 と、ICBタグ418と、パーミッション(許可)41 9と、アロケーション記述子420とで、構成されてい

【0470】\*記述子タグ417は、記述内容の識別子 を表すもので、この場合は"261"となっている。

【0471】\*ICBタグ418は、ファイルタイプを 示すもので、その内容は、図40のアロケートされない スペースエントリのICBタグ414と同様である。

【0472】\*パーミッション (Permissions) 419 は、ユーザ別の記録・再生・削除の許可情報を示す。主 にファイルのセキュリティー確保を目的として使われ

【0473】\*アロケーション記述子420は、該当フ ァイルの中味が記録してある位置を、エクステント毎に ショートアロケーション記述子を並べて、記述したもの である。たとえば、FE (AD (\*), AD (\*), ... ·····, AD(\*)) のように列記される。

【0474】 <ファイル I D記述子F I D > 図42は、 構造内で、ファイル(ルートディレクトリ、サブディレ クトリ、ファイルデータ等)の情報を記述するファイル ID記述子の一部を抜粋して説明する図である。

【0475】ファイルID記述子FIDは、記述子タグ 421と、ファイルキャラクタ422と、情報制御ブロ ックICB423と、ファイル識別子424と、パディ ング437とで構成されている。

【0476】\*記述子タグ421は、記述内容の識別子 を表したもので、この場合は"257"となっている。 【0477】\*ファイル特性422は、ファイルの種別 40

を示し、親ディレクトリ、ディレクトリ、ファイルデー タ、ファイル削除フラグのどれかを意味する。

【0478】\*情報制御プロックICB423は、この ファイルに対応したFE位置(ファイルエントリ位置) をロングアロケーション記述子で記述したものである。

【0479】\*ファイル識別子424は、ディレクトリ 名またはファイル名を記述したものである。

【0480】\*パディング437は、ファイル識別子4 24全体の長さを調整するために付加されたダミー領域 で、通常は全て"O"(またはOOOh)が記録されて 50

【0481】なお、この発明では、図18に示すよう に、1つのボリュームスペース内でコンピュータデータ (DA1、DA3) とAVデータ (DA2) とが混在で きるようになっている。この場合、ファイルとしてはコ ンピュータファイルとAVファイルの2種が混在する可 能性がある。

【0482】AVファイルをコンピュータファイルから 区別するためのAVファイル識別子の設定方法として 10 は、次の2つが考えられる:

1) A V ファイルのファイル名の末尾に所定の拡張 子(. VOB等)を付ける;

2) A V ファイルのパディング 4 3 7 に独自のフラグ (図示せず)を挿入する (このフラグが"1"ならAV ファイルを示し、"0"ならコンピュータファイルを示 す等)。

【0483】なお、パディング437の領域内に暗号化 されたユーザパスワードを記録することもできる。

【0484】図43は、図37に例示されたファイル構 造をより一般化したファイルシステム構造を示す。図4 3において、括弧内はディレクトリの中身に関する情 報、またはファイルデータのデータ内容が記録されてい る情報記憶媒体10上の論理プロック番号を例示してい る。

【0485】<<<UDFに従って記録したファイル構 造記述例>>>前述した<<UDFの概要>>で示した 内容(ファイルシステムの構造)について、具体的な例 を用いて以下に説明する。

【0486】情報記憶媒体(DVD-RAMディスク 図23または図37のように階層構造を持ったファイル 30 等)10上の未記録位置の管理方法としては、以下の方

> [スペースピットマップ法] この方法は、スペースビッ トマップ記述子を用いるもので、情報記憶媒体内記録領 域の全論理ブロックに対してビットマップ的に「記録済 み」または「未記録」のフラグを立てる方法である。

> 【0487】[スペーステーブル法]この方法は、図4 0の記述方式を用いてショートアロケーション記述子の 列記により記録済み論理ブロック番号を記載する方法で ある。

【0488】ここでは、説明をまとめて行なうために、 図44~図46に両方式 (スペースビットマップ法およ びスペーステーブル方法)を併記しているが、実際には 両方が一緒に使われる(情報記憶媒体上に記録される) ことはほとんど無く、どちらか一方のみが使用される。

【0489】また、スペーステーブル内での記述内容 (ショートアロケーション記述子の記述・並べ方) は取 りあえず図43のファイルシステム構造に合わせている が、これに限らず自由にショートアロケーション記述子 を記述することができる。

【0490】図44~図46は、図43のファイルシス

ート時の処理が始まる。

テム構造の情報をUDFフォーマットに従って情報記憶 媒体10上に記録した例を示す。図44はその前半を示 し、図45はその中盤を示し、図46はその後半を示し ている。

【0491】図44~図46に示すように、ファイル構造486とファイルデータ487に関する情報が記録されている論理セクタは、特に「論理ブロック」とも呼ばれ、論理セクタ番号(LSN)に連動して論理ブロック番号(LBN)が設定されている。(論理ブロックの長さは論理セクタと同様2048バイトになっている。)図44~図46に記述されている主な記述子の内容としては、次のようなものがある:

\*エクステントエリア記述子開始445は、ポリューム 認識シーケンス (Volume Recognition Sequence; 略してVRS) の開始位置を示す。

【0492】\*ボリューム構造記述子446は、ディスクの内容(ボリュームの内容)の説明を記述している。 【0493】\*ブート記述子447は、コンピュータシステムのブート開始位置など、ブート時の処理内容に関する記述をした部分である。

【0494】\*エクステントエリア記述子終了448は、ポリューム認識シーケンス (VRS) の終了位置を示す。

【0495】\*パーティション記述子450は、パーティションのサイズなどのパーティション情報を記述している。

【0496】なお、DVD-RAMでは、1ボリューム あたり1パーティションを原則としている。

【0497】\*論理ポリューム記述子454は、論理ポリュームの内容を記述している。

【0498】\*アンカーボリューム記述子ポインタ45 8は、情報記憶媒体10の記録領域内で記録済みの情報 の記録最終位置を表示している。

【0499】\*予約459~465は、特定の記述子 (ディスクリプタ)を記録する論理セクタ番号を確保す るための調整領域であり、始めは全て"00h"が書き 込まれている。

【0500】\*リザーブボリューム記述子シーケンス467は、メインボリューム記述子シーケンス449に記録された情報のパックアップ領域である。

【0501】<<<再生時のファイルデータへのアクセス方法>>>図44~図46に示したファイルシステム情報を用い、たとえば図43のファイルデータH432のデータ内容を再生する場合を想定して、情報記憶媒体10上のファイルデータアクセス処理方法について説明する。

【0502】(1)情報記録再生装置起動時または情報記憶媒体装着時のブート領域として、ボリューム認識シーケンス444領域内のブート記述子447の情報を再生しに行く。ブート記述子447の記述内容に沿ってブ 50

【0503】その際、特に指定されたブート時の処理がない場合には、

64

(2) 始めにメインボリューム記述子シーケンス 4 4 9 領域内の論理ボリューム記述子 4 5 4 の情報を再生する。

【0504】(3)論理ポリューム記述子454の中に論理ポリューム内容使用455が記述されている。そこに、ファイルセット記述子472が記録してある位置を示す論理ブロック番号が、ロングアロケーション記述子(図38)の形式で記述してある。(図44~図46の例ではLAD(100)であるから100番目の論理プロックに記録してある。)

(4) 100番目の論理プロック (論理セクタ番号では 400番目になる) にアクセスし、ファイルセット記述子472を再生する。その中のルートディレクトリIC B473に、ルートディレクトリA425に関するファイルエントリが記録されている場所 (論理プロック番号) が、ロングアロケーション記述子 (図38) の形式で記述してある (図44~図46の例ではLAD (102) であるから102番目の論理プロックに記録してある)。

【0505】この場合、ルートディレクトリICB47 3のLAD(102)に従って、

(5) 102番目の論理プロックにアクセスし、ルートディレクトリA425に関するファイルエントリ475を再生し、ルートディレクトリA425の中身に関する情報が記録されている位置(論理プロック番号)を読み込む(AD(103);103番目の論理プロックに記録)。

【0506】(6)103番目の論理プロックにアクセスし、ルートディレクトリA425の中身に関する情報を再生する。

【0507】ファイルデータH432はディレクトリD428は関するファイルID記述子FIDを探し、ディレクトリD428に関するファイルID記述子FIDを探し、ディレクトリD428に関するファイルエントリが記録してある論理プロック番号(図44~図46には図示していないがLAD(110);110番目の論理プロックに記録)を読み取る。

【0508】(7)110番目の論理プロックにアクセスし、ディレクトリD428に関するファイルエントリ480を再生し、ディレクトリD428の中身に関する情報が記録されている位置(論理プロック番号)を読み込む(AD(111);111番目の論理プロックに記録)。

【0509】(8) 111番目の論理プロックにアクセスし、ディレクトリD428の中身に関する情報を再生する。

り 【0510】ファイルデータH432はサブディレクト

*S*.

リF430の直接下に存在するので、サブディレクトリ F430に関するファイルID記述子FIDを探し、サ ブディレクトリF430に関するファイルエントリが記 録してある論理ブロック番号(LAD(112);11 2番目の論理ブロックに記録)を読み取る。

【0511】(9)112番目の論理プロックにアクセスし、サブディレクトリF430に関するファイルエントリ482を再生し、サブディレクトリF430の中身に関する情報が記録されている位置(論理プロック番号)を読み込む(AD(113);113番目の論理プロックに記録)。

【0512】(10)113番目の論理ブロックにアクセスし、サブディレクトリF430の中身に関する情報を再生し、ファイルデータH432に関するファイルID記述子FIDを探す。そしてそこからファイルデータH432に関するファイルエントリが記録してある論理ブロック番号(LAD(114);114番目の論理ブロックに記録)を読み取る。

【0513】(11)114番目の論理ブロックにアクセスし、ファイルデータH432に関するファイルエン 20トリ484を再生しファイルデータH432のデータ内容489が記録されている位置を読み取る。

【0514】(12)ファイルデータH432に関するファイルエントリ484内に記述されている論理プロック番号順に情報記憶媒体から情報を再生してファイルデータH432のデータ内容489を読み取る。

【0515】<<<特定のファイルデータ内容変更方法 >>>次に、図44~図46に示したファイルシステム 情報を用いて例えばファイルデータH432のデータ内 容を変更する場合の、アクセスも含めた処理方法につい 30 て説明する。

【0516】(1)ファイルデータH432の変更前後でのデータ内容の容量差を求め、その値を2048バイトで割り、変更後のデータを記録するのに論理ブロックを何個追加使用するかまたは何個不要になるかを事前に計算しておく。

【0517】(2)情報記録再生装置起動時または情報記憶媒体装着時のブート領域として、ボリューム認識シーケンス444領域内のブート記述子447の情報を再生しに行く。ブート記述子447の記述内容に沿ってブ 40ート時の処理が始まる。

【0518】このとき、特に指定されたブート時の処理 がない場合には、

(3)始めにメインボリューム記述子シーケンス449 領域内のパーティション記述子450を再生し、その中 に記述してあるパーティション内容使用451の情報を 読み取る。このパーティション内容使用451(パーティションヘッダ記述子とも呼ぶ)の中にスペーステーブ ルまたはスペースピットマップの記録位置が示してある。 66

【0519】\*スペーステーブル位置はアロケートされないスペーステーブル452の欄にショートアロケーション記述子の形式で記述されている(図44~図46の例ではAD(80))。また、

\*スペースピットマップ位置はアロケートされないスペースピットマップ 4 5 3 の欄にショートアロケーション記述子の形式で記述されている(図 4 4 ~ 図 4 6 の例ではAD (0))。

【0520】(4)上記(3)で読み取ったスペースビットマップが記述してある論理ブロック番号(0)へアクセスする。スペースビットマップ記述子からスペースビットマップ情報を読み取り、未記録の論理ブロックを探し、上記(1)の計算結果分の論理ブロックの使用を登録する(スペースビットマップ記述子情報の書き替え処理)。

【0521】または、

(4\*)上記(3)で読み取ったスペーステーブルが記述してある論理ブロック番号(80)へアクセスする。スペーステーブルのアロケートされないスペースエントリUSE(AD(\*))からファイルデータIのUSE(AD(\*)、AD(\*))までを読み取り、未記録の論理ブロックを探し、上記(1)の計算結果分の論理ブロックの使用を登録する(スペーステーブル情報の書き替え処理)。

【0522】実際の処理では、上記(4)か上記(4\*)のいずれか一方の処理が行なわれる。

【0523】(5)次にメインボリューム記述子シーケンス449の領域内の論理ボリューム記述子454の情報を再生する。

【0524】(6)論理ボリューム記述子454の中に、論理ボリューム内容使用455が記述されている。そこに、ファイルセット記述子472が記録してある位置を示す論理ブロック番号が、ロングアロケーション記述子(図38)の形式で記述してある(図44~図46の例ではLAD(100)から100番目の論理ブロックに記録してある)。

【0525】(7)100番目の論理ブロック(論理セクタ番号では400番目になる)にアクセスし、ファイルセット記述子472を再生する。その中のルートディレクトリICB473に、ルートディレクトリA425に関するファイルエントリが記録されている場所(論理ブロック番号)が、ロングアロケーション記述子(図38)の形式で記述してある(図44~図46の例ではLAD(102)から102番目の論理ブロックに記録してある)。

【0526】そして、ルートディレクトリICB473 のLAD(102)に従って、

(8) 102番目の論理プロックにアクセスし、ルート ディレクトリA425に関するファイルエントリ47550 を再生し、ルートディレクトリA425の中身に関する

情報が記録されている位置(論理プロック番号)を読み 込む (AD (103))。

【0527】(9)103番目の論理ブロックにアクセ スし、ルートディレクトリA425の中身に関する情報 を再生する。

【0528】ファイルデータH432はディレクトリD 428系列の下に存在するので、ディレクトリD428 に関するファイルID記述子FIDを探し、ディレクト リD428に関するファイルエントリが記録してある論 理プロック番号(LAD(110))を読み取る。

【0529】(10)110番目の論理ブロックにアク セスし、ディレクトリD428に関するファイルエント リ480を再生し、ディレクトリD428の中身に関す る情報が記録されている位置(論理ブロック番号)を読 み込む(A D (1 1 1))。

【0530】(11)111番目の論理プロックにアク セスし、ディレクトリD428の中身に関する情報を再 生する。

【0531】ファイルデータH432はサブディレクト F430に関するファイルID記述子FIDを探し、サ プディレクトリF430に関するファイルエントリが記 録してある論理プロック番号(LAD(112))を読

【0532】(12)112番目の論理プロックにアク セスし、サブディレクトリF430に関するファイルエ ントリ482を再生し、サブディレクトリF430の中 身に関する情報が記録されている位置(論理プロック番 号)を読み込む(AD(113))。

【0533】(13)113番目の論理プロックにアク セスし、サブディレクトリF430の中身に関する情報 を再生し、ファイルデータH432に関するファイルI D記述子FIDを探す。そしてそこからファイルデータ H432に関するファイルエントリが記録してある論理 ブロック番号 (LAD (114)) を読み取る。

【0534】 (14) 114番目の論理プロックにアク セスし、ファイルデータH432に関するファイルエン トリ484を再生しファイルデータH432のデータ内 容489が記録されている位置を読み取る。

【0535】(15)上記(4)か上記(4\*)で追加 40 登録した論理ブロック番号も加味して変更後のファイル データH432のデータ内容489を記録する。

【0536】<<<特定のファイルデータ/ディレクト リ消去処理方法>>>一例として、ファイルデータH4 32またはサブディレクトリF430を消去する方法に ついて説明する。

【0537】(1)情報記録再生装置起動時または情報 記憶媒体装着時のプート領域としてポリューム認識シー ケンス444領域内のブート記述子447の情報を再生 しに行く。プート記述子447の記述内容に沿ってブー 50 68

ト時の処理が始まる。

【0538】特に指定されたブート時の処理がない場合 には、

(2) 始めにメインボリューム記述子シーケンス449 領域内の論理ボリューム記述子54の情報を再生する。

【0539】 (3) 論理ポリューム記述子454の中に 論理ボリューム内容使用455が記述されており、そこ にファイルセット記述子472が記録してある位置を示 す論理プロック番号がロングアロケーション記述子(図 38)形式で記述してある(図44~図46の例ではL AD(100)から100番目の論理プロックに記録し てある)。

【0540】(4)100番目の論理ブロック(論理セ クタ番号では400番目になる)にアクセスし、ファイ ルセット記述子472を再生する。その中のルートディ レクトリICB473に、ルートディレクトリA425 に関するファイルエントリが記録されている場所(論理 ブロック番号)が、ロングアロケーション記述子(図3 8) 形式で記述してある (図44~図46の例ではLA リF430の直接下に存在するので、サブディレクトリ 20 D (102) から102番目の論理ブロックに記録して

> 【0541】そこで、ルートディレクトリICB473 のLAD(102)に従って、

> (5) 102番目の論理プロックにアクセスし、ルート ディレクトリA425に関するファイルエントリ475 を再生し、ルートディレクトリA425の中身に関する 情報が記録されている位置(論理プロック番号)を読み 込む (AD (103))。

【0542】(6)103番目の論理ブロックにアクセ スし、ルートディレクトリA425の中身に関する情報 を再生する。

【0543】ファイルデータH432はディレクトリD 428系列の下に存在するので、ディレクトリD428 に関するファイルID記述子FIDを探し、ディレクト リD428に関するファイルエントリが記録してある論 理ブロック番号(LAD(110))を読み取る。

【0544】 (7) 110番目の論理ブロックにアクセ スし、ディレクトリD428に関するファイルエントリ 480を再生し、ディレクトリD428の中身に関する 情報が記録されている位置(論理プロック番号)を読み 込む (AD (111))。

【0545】(8)111番目の論理ブロックにアクセ スし、ディレクトリD428の中身に関する情報を再生 する。

【0546】ファイルデータH432はサブディレクト リF430の直接下に存在するので、サブディレクトリ F430に関するファイルID記述子FIDを探す。

【0547】いま、サブディレクトリF430を消去す る場合を想定してみる。この場合、サブディレクトリF 430に関するファイルID記述子FID内のファイル 特性 4 2 2 (図 4 2) に「ファイル削除フラグ」を立てる。

【0548】それから、サブディレクトリF430に関するファイルエントリが記録してある論理プロック番号 (LAD (112)) を読み取る。

【0549】(9)112番目の論理ブロックにアクセスし、サブディレクトリF430に関するファイルエントリ482を再生し、サブディレクトリF430の中身に関する情報が記録されている位置(論理ブロック番号)を読み込む(AD(113))。

【0550】(10)113番目の論理ブロックにアクセスし、サブディレクトリF430の中身に関する情報を再生し、ファイルデータH432に関するファイルID記述子FIDを探す。

【0551】次に、ファイルデータH432を消去する 場合を想定してみる。この場合、ファイルデータH43 2に関するファイルID記述子FID内のファイル特性 422 (図42) に「ファイル削除フラグ」を立てる。

【0552】 さらにそこからファイルデータH432に 関するファイルエントリが記録してある論理ブロック番 20 号(LAD(114)) を読み取る。

【0553】(11)114番目の論理ブロックにアクセスし、ファイルデータH432に関するファイルエントリ484を再生しファイルデータH432のデータ内容489が記録されている位置を読み取る。

【0554】ファイルデータH432を消去する場合には、以下の方法でファイルデータH432のデータ内容489が記録されていた論理ブロックを解放する(その論理ブロックを未記録状態に登録する)。

【0555】(12)次にメインボリューム記述子シー 30 ケンス449領域内のパーティション記述子450を再生し、その中に記述してあるパーティション内容使用451の情報を読み取る。このパーティション内容使用(パーティションヘッダ記述子)451の中にスペーステーブルまたはスペースピットマップの記録位置が示してある。

【0556】\*スペーステーブル位置は、アロケートされないスペーステーブル452の欄にショートアロケーション記述子の形式で記述されている(図44~図46の例ではAD(80))。また、

\*スペースビットマップ位置は、アロケートされないスペースビットマップ453の欄にショートアロケーション記述子の形式で記述されている(図44~図46例ではAD(0))。

【0557】(13)上記(12)で読み取ったスペースピットマップが記述してある論理ブロック番号(0)へアクセスし、上記(11)の結果得られた「解放する論理ブロック番号」をスペースピットマップ記述子に書き替える。

【0558】または、

70

(13\*)上記(12)で読み取ったスペーステーブルが記述してある論理プロック番号(80)へアクセスし、上記(11)の結果得られた「解放する論理プロック番号」をスペーステーブルに書き替える。

【0559】実際の処理では、上記(13)か上記(13\*)のいずれか一方の処理が行なわれる。

【0560】ファイルデータH432を消去する場合には、

(12)上記(10)~上記(11)と同じ手順を踏ん でファイルデータ I 4 3 3 のデータ内容 4 9 0 が記録さ れている位置を読み取る。

【0561】(13)次にメインボリューム記述子シーケンス449領域内のパーティション記述子450を再生し、その中に記述してあるパーティション内容使用451の情報を読み取る。このパーティション内容使用(パーティションヘッダ記述子)451の中にスペーステーブルまたはスペースビットマップの記録位置が示してある。

【0562】\*スペーステーブル位置はアロケートされないスペーステーブル452の欄にショートアロケーション記述子の形式で記述されている。(図44~図46の例ではAD(80))。また、

\*スペースピットマップ位置は、アロケートされないスペースピットマップ453の欄にショートアロケーション記述子の形式で記述されている(図44~図46例ではAD(0))。

【0563】(14)上記(13)で読み取ったスペースピットマップが記述してある論理ブロック番号(0)ヘアクセスし、上記(11)と上記(12)の結果得られた「解放する論理ブロック番号」をスペースピットマップ記述子に書き替える。

【0564】または、

(14\*)上記(13)で読み取ったスペーステーブルが記述してある論理ブロック番号(80)へアクセスし、上記(11)と上記(12)の結果得られた「解放する論理ブロック番号」をスペーステーブルに書き替える。

【0565】実際の処理では、上記(14)か上記(14\*)のいずれか一方の処理が行なわれる。

【0566】<<<ファイルデータ/ディレクトリの追加処理>>>一例として、サブディレクトリF430の下に新たにファイルデータまたはディレクトリを追加する時のアクセス・追加処理方法について説明する。

【0567】(1)ファイルデータを追加する場合には 追加するファイルデータ内容の容量を調べ、その値を2 048バイトで割り、ファイルデータを追加するために 必要な論理プロック数を計算しておく。

【0568】(2)情報記録再生装置起動時または情報 記憶媒体装着時のブート領域としてボリューム認識シー 50 ケンス444領域内のブート記述子447の情報を再生 しに行く。ブート記述子447の記述内容に沿ってブー ト時の処理が始まる。

【0569】特に指定されたブート時の処理がない場合 には、

(3) 始めにメインボリューム記述子シーケンス449 領域内のパーティション記述子450を再生し、その中 に記述してあるパーティション内容使用451の情報を 読み取る。このパーティション内容使用(パーティショ ンヘッダ記述子)451の中にスペーステーブルまたは スペースビットマップの記録位置が示してある。

【0570】\*スペーステーブル位置はアロケートされ ないスペーステーブル452の欄にショートアロケーシ ョン記述子の形式で記述されている(図44~図46の 例ではAD(80))。また、

\*スペースビットマップ位置はアロケートされないスペ ースピットマップ453の欄にショートアロケーション 記述子の形式で記述されている(図44~図46例では AD (0))

【0571】(4)上記(3)で読み取ったスペースビ ットマップが記述してある論理ブロック番号 (0) ヘア 20 クセスする。スペースビットマップ記述子からスペース ビットマップ情報を読み取り、未記録の論理ブロックを 探し、上記(1)の計算結果分の論理ブロックの使用を 登録する(スペースビットマップ記述子情報の書き替え 処理)。

【0572】または、

(4\*) 上記(3) で読み取ったスペーステーブルが記 述してある論理ブロック番号(80)へアクセスする。 スペーステーブルのUSE(AD(\*))461からフ ァイルデータIのUSE (AD (\*), AD (\*)) 4 70までを読み取り、未記録の論理ブロックを探し、上 記(1)の計算結果分の論理ブロックの使用を登録する (スペーステーブル情報の書き替え処理)。

【0573】実際の処理では、上記(4)か上記(4 \*)のいずれか一方の処理が行なわれる。

【0574】(5)次にメインボリューム記述子シーケ ンス449領域内の論理ポリューム記述子454の情報 を再生する。

【0575】(6)論理ポリューム記述子454の中に 論理ボリューム内容使用455が記述されており、そこ 40 のファイルID記述子FIDを登録する。 にファイルセット記述子472が記録してある位置を示 す論理ブロック番号が、ロングアロケーション記述子 (図38) 形式で記述してある (図44~図46の例で は、LAD(100)から、100番目の論理プロック に記録してある)。

【0576】(7)100番目の論理ブロック(論理セ クタ番号では400番目になる)にアクセスし、ファイ ルセット記述子472を再生する。その中のルートディ レクトリICB473に、ルートディレクトリA425 に関するファイルエントリが記録されている場所 (論理 50 72

ブロック番号)が、ロングアロケーション記述子(図3 8) 形式で記述してある (図44~図46の例では、L AD(102)から、102番目の論理プロックにルー トディレクトリA425に関するファイルエントリが記 録してある)。

【0577】このルートディレクトリICB473のL AD(102)に従って、

(8) 102番目の論理プロックにアクセスし、ルート ディレクトリA425に関するファイルエントリ475 10 を再生し、ルートディレクトリA425の中身に関する 情報が記録されている位置(論理ブロック番号)を読み 込む(AD(103))。

【0578】(9)103番目の論理プロックにアクセ スし、ルートディレクトリA425の中身に関する情報 を再生する。

【0579】ディレクトリD428に関するファイルI D記述子FIDを探し、ディレクトリD428に関する ファイルエントリが記録してある論理ブロック番号(L AD(110))を読み取る。

【0580】 (10) 110番目の論理ブロックにアク セスし、ディレクトリD428に関するファイルエント リ480を再生し、ディレクトリD428の中身に関す る情報が記録されている位置(論理ブロック番号)を読 み込む (AD (111))。

【0581】 (11) 111番目の論理プロックにアク セスし、ディレクトリD428の中身に関する情報を再 生する。

【0582】サブディレクトリF430に関するファイ ルID記述子FIDを探し、サブディレクトリF430 30 に関するファイルエントリが記録してある論理プロック 番号(LAD(112))を読み取る。

【0583】(12)112番目の論理ブロックにアク セスし、サブディレクトリF430に関するファイルエ ントリ482を再生し、サブディレクトリF430の中 身に関する情報が記録されている位置(論理ブロック番 号)を読み込む(AD(113))。

【0584】 (13) 113番目の論理プロックにアク セスし、サブディレクトリF430の中身に関する情報 内に新たに追加するファイルデータまたはディレクトリ

【0585】(14)上記(4)または上記(4\*)で 登録した論理ブロック番号位置にアクセスし、新たに追 加するファイルデータまたはディレクトリに関するファ イルエントリを記する。

【0586】 (15) 上記 (14) のファイルエントリ 内のショートアロケーション記述子に示した論理プロッ ク番号位置にアクセスし、追加するディレクトリに関す る親ディレクトリのファイルID記述子FIDまたは追 加するファイルデータのデータ内容を記録する。

【0587】なお、図44~図46において、LSNは

論理セクタ番号(LSN) 491を示す略号であり、L BNは論理ブロック番号 (LBN) 492を示す略号で あり、LLSNは最後の論理セクタ番号(ラストLS N) 493を示す略号である。

【0588】図44の第1アンカーポイント456およ び図46の第2アンカーポイント45.7の具体例につい ては、図47~図49の説明中で触れる。

【0589】<<UDFの特徴>>

<UDFの特徴の説明>以下にハードディスクHDD、 使われているファイルアロケーションテーブルFATと の比較により、ユニバーサルデータフォーマットUDF の特徴を説明する。

【0590】(1)FATはファイルの情報記憶媒体へ の割り当て管理表(ファイルアロケーションテーブル) が情報記憶媒体上で局所的に集中記録されるのに対し、 UDFではファイル管理情報をディスク上の任意の位置 に分散記録できる。

【0591】FATではファイル管理領域で集中管理さ れているため頻繁にファイル構造の変更が必要な用途 (主に頻繁な書き替え用途) に適している。 (集中箇所 に記録されているので管理情報を書き替え易いため。) なお、FATではファイル管理情報の記録場所はあらか じめ決まっているので記録媒体の高い信頼性(欠陥領域 が少ないこと)が前提となる。

【0592】UDFではファイル管理情報が分散配置さ れているので、ファイル構造の大幅な変更が少なく、階 層の下の部分(主にルートディレクトリより下の部分) で後から新たなファイル構造を付け足して行く用途(主 に追記用途)に適している。(追記時には以前のファイ ル管理情報に対する変更箇所が少ないため。)

また分散されたファイル管理情報の記録位置を任意に指 定できるので、先天的な欠陥箇所を避けて記録すること

【0593】さらにファイル管理情報を任意の位置に記 録できるので、全ファイル管理情報を一箇所に集めて記 録することでFATの利点も出せるので、より汎用性の 高いファイルシステムと考えることができる。

【0594】(2) UDFでは(最小論理プロックサイ ズ、最小論理セクタサイズなどの) 最小単位が大きく、 記録すべき情報量の多い映像情報や音楽情報の記録に向

【0595】すなわち、FATの論理セクタサイズが5 12バイトに対して、UDFの論理セクタ(プロック) サイズは2048バイトと大きくなっている。

【0596】なお、UDFでは、ファイル管理情報やフ ァイルデータに関するディスク上での記録位置は、論理 セクタ(ブロック)番号としてアロケーション記述子に 記述される。

74

明を終えるにあたり、大容量情報を扱うDVDビデオレ コーダにおけるAVアドレスの新規定義の必要性につい て触れておく。

【0598】連続記録・連続再生の必要性のなかったフ ァイシシステム(UDF等)では、図36に示すよう に、アドレス指定用に「情報記憶媒体上の実際の記録位 置との対応を持たない」論理プロック番号・論理セクタ 番号を採用している。これに対して、この発明ではサイ ズの大きい映像情報(AVデータ)の管理に適した映像 フロッピーディスクFDD、光磁気ディスクMOなどで 10 管理レイヤを設定し、これに合わせ映像管理レイヤの機 能に最適なアドレスを設定する必要が生じた。この必要 に対応して新たに定義したのが、この発明の「AVアド レス」である。

> 【0599】AVアドレスに望まれる条件とそれを満た す方法について以下に述べる。

【0600】(1)別媒体への移植性

図18AVデータエリアDA2は1個ないしは複数個の AVファイルから構成され、1ポリューム=1AVファ イルとなっている。このAVファイルを、必要に応じて そのままハードディスクHDDや光磁気MOディスク等 に移植できるようにする必要性がある。

【0601】図18のようにAVファイル(DA2)の 前にコンピュータデータエリアDA1がある場合、図7 に示す論理セクタ番号(もしくは論理プロック番号)の 設定方法に従うと、AVファイル先頭位置での論理プロ ック(セクタ)番号にはオフセット値(0ではない値) が付いてしまう。

【0602】このままAVファイルをHDDあるいはM 〇などの別媒体に移植させると論理ブロック(セクタ) 30 番号にずれが生じてしまう。

【0603】別媒体への移植容易性を確保するために は、上記「論理ブロック番号のオフセット」は好ましく ない。すなわち、別媒体への移植性を考慮すれば、AV ファイル先頭位置でのAVアドレスは"0"になってい ることが望ましい。

【0604】そこで、この発明の一実施の形態では、図 18に示すように、アロケーションマップテーブルAM Tを用意している。このアロケーションマップテーブル AMTを利用すれば、AVファイルを別媒体に移植する 場合には全てのAVアドレス情報を書き替える必要がな く、移植が非常に容易になる。具体的には、移植先の媒 体のアドレス設定方法に合わせてアロケーションマップ テーブルAMT内を適宜変更するだけで良い。

【0605】(2)高速に追記記録または変更記録が可 能な記録処理単位

UDF上で使われる論理ブロック(セクタ)サイズは2 048バイト単位になっている。

【0606】ところで、DVD-RAMディスクでは、 図9に示すように、16個のセクタの塊でECCプロッ 【0597】以上がUDFの概要であるが、UDFの説 50 ク502を構成し、このECCブロック502内でエラ 一訂正符号(積符号)を付加している。たとえば図9内の1個のセクタ501bの情報を変更する場合、図示しない情報記録再生装置側でECCブロック502分の全情報(32kバイト)を読み取り、デインターリーブ処理した後、セクタ501bの情報のみを変更する。その後、再度ECCブロックのエラー訂正符号の付け直しをして記録する。

【0607】何の工夫もなしに上記エラー訂正符号の付け直し処理を行うと、記録時の連続性が損なわれる。そこで、記録時の連続性を確保するため、この発明では、情報記憶媒体10への記録をECCブロック502(32kバイト)単位とし、ECCブロック502毎に直接上書きするようにしている。

【0608】 すなわち、DVD-RAMディスクを用いた情報記録装置においては、記録処理の単位としてECCブロック単位( $2048\times16=32$  kバイト)が採用される。そして、このECCブロック単位でAVデータDA2(図18)のアドレス管理が行なわれる。

【0609】図47は、図1のディスクに録画されるA Vデータ(ビデオコンテンツ)のうちユーザが作成する 20 メニューのファイル構造の一例を概念的に示す。

【0610】ユーザメニューファイルのフォーマットは、概念図的には図47に示すような構成をとることができ、具体的には図48~図49に示すような構成をとることができる。

【0611】まず、ユーザメニューファイルに入っているデータの順番は、図47において上から下へ向かって例示するように、第1アンカーポイント(図44の第1アンカーポイント456に対応)、縮小画像管理部、縮小画像管理部のバックアップ(図示せず)、縮小画像データ群、第2アンカーポイント(図46の第2アンカーポイント457に対応)の順で記載されている。

【0612】図47で示す第1および第2アンカーポイントは図18の縮小画像制御情報DA214内に存在し、縮小画像制御情報DA214内の縮小画像管理部とこの縮小画像管理部のバックアップの記録位置を示す情報を持っている。図47で示す第1および第2アンカーポイントは、図18での制御情報DA21の記録位置を示すアンカーポインタAPとは、指し示す位置の情報内容が異なる。

【0613】このユーザメニューファイルに最初に入れてあるのは第1アンカーポイント(図47ではa, p, b, q)と呼ばれるポインタアドレスで、それぞれに、縮小画像管理部のスタートアドレス(a) およびエンドアドレス(p)、そして縮小画像管理部のバックアップデータのスタートアドレス(b)およびエンドアドレス(q)が記載されている。

【0614】第1アンカーポイントの次には縮小画像管理部(より広義には図18の制御情報DA21)が記録されており、このデータは、後述する「32kバイトア 50

76

ライン」の処理を受けている。この縮小画像管理部に は、ユーザメニューを構成する各縮小画像に関するデー タが記録されている。

【0615】ユーザメニューを構成する各縮小画像に関する実際のデータとしては、PGC番号、タイムコード(タイムサーチなどに使用できる)、縮小画像の先頭アドレス、使用セクタ数(=データ長)、縮小画像のサイズ、縮小画像の元ファイル(AVデータ)へのアドレス(ポインタ)、検索や表題に使用するテキストデータなどがある。

【0616】さらにその後には、ファイル内にもし欠陥 領域がある場合にはその欠陥領域の先頭アドレスとデー 夕長が記録される。そして、ユーザメニューの背景画像 データに関して、登録番号およびその先頭アドレスなど が記録されている。

【0617】 さらにその後には、図示しないが、縮小画像管理部のバックアップが記録されている。このバックアップは、前記縮小画像管理領域の破損に対する保険のために記録している。

【0618】さらにその後には、パック化された実際の縮小画像データ群(より広義には図18のオブジェクト群DA22~DA24;さらに広義にはAVデータDA2)が記録されている。ただし、これらのデータは、1つの縮小画像毎(あるいはその1VOBU毎に)に、32kバイトアラインされている。

【0619】さらにその後には、ユーザメニューファイルの先頭と同様な第2アンカーポイント(a, p, b, q)が記載されている。このようにするのは、ファイルは、通常、アクセスの多い先頭の管理領域から破損していくことを考えてのことである。ファイルの最後にもアンカーポイント置くことにより、より安全性を高めている。

【0620】また、このファイルの各区切りで32kバイトアラインしているのは、データの変更、追加や削除時に、32kバイト単位のECCグループ毎にアクセスすることができるようにという配慮からである。この32kバイトアライン(換言すればECCブロックアライン)することにより、より高速のアクセスが可能となり、後述する図52のDVDドライブ140内のMPUあるいは図84のデータプロセサ36の動作上の負荷が軽減される。

【0621】なお、このユーザメニューファイル中のアドレス情報は、全てファイルの先頭からの相対アドレスで表されている。

【0622】図47のユーザメニューファイルには、以下の特徴がある:

(イ)少なくともビデオデータの一部の静止画を表すところのメニュー選択用画像データ(すなわち縮小画像データ)が同一のユーザメニューファイル内に1以上記録されている。

(40)

【0623】(ロ)縮小画像管理部を有し、記録媒体 (DVD-RAMディスク、DVD-RWディスクまた はDVD-Rディスク)上に記録した全縮小画像データ (の保存場所と対応するビデオ信号の指定) の管理を一 ・ 括して行う。

【0624】図47のユーザメニューファイルには、具 体的には図48~図49に例示するような内容が書き込 まれる。

【0625】すなわち、図48および図49に示すよう に、ピクチャアドレステーブル用の第1アンカーポイン 10 タとして、ピクチャアドレステーブルの開始位置、ピク チャアドレステーブルの終了位置、予約ピクチャアドレ ステーブルの開始位置および予約ピクチャアドレステー ブルの終了位置が記述され、ピクチャアドレステーブル として、メニューインデックス情報 (INFO1)、イ ンデックスピクチャ情報(INFO2)、欠陥領域情報 (INFO5)、壁紙ピクチャ情報 (INFO6) およ びパディングデータが記述され、ピクチャアドレステー プル用の第2アンカーポインタとして、ピクチャアドレ ステーブルの開始位置、ピクチャアドレステーブルの終 20 了位置、予約ピクチャアドレステーブルの開始位置およ び予約ピクチャアドレステーブルの終了位置が記述され

【0626】なお、図48および図49のピクチャアド レステーブル内には、スライド&スチルピクチャ情報 I NFO3およびインフォメーションピクチャ情報INF 〇4も適宜記述される。

【0627】図48のメニューインデックス情報は、イ ンデックスピクチャの数、インフォメーションピクチャ の数、スライド&スチルピクチャの数、欠陥領域の数お よび壁紙ピクチャの数を含む。

【0628】図48のインデックスピクチャ情報は、内 容特性、インデックスピクチャ用プログラムチェーンの ID、インデックスピクチャのタイムコード、インデッ クスピクチャの開始位置、インデックスピクチャ記録の 使用セクタ数、ピクチャサイズ、オリジナルのオーディ オ・ビデオデータのアドレスおよび検索用テキストデー 夕を含む。

【0629】なお、インデックスピクチャ情報に含まれ る内容特性には、ユーザメニューに利用される静止画が 記録済みなら"1"が記述され、この静止画の記録位置 (アドレス) のみを記録しているなら"0"が記述され

【0630】アドレスのみでユーザメニュー用画像を指 定する場合のインデックスピクチャ情報は、図49に示 すように、"0"が記述された内容特性と、スライド& スチルピクチャ用のプログラムチェーンPGCのID と、オリジナルのオーディオ・ビデオデータのアドレス と、スライド&スチルピクチャのタイムコードを含む。

ユーの背景画像として利用できる壁紙ピクチャの数(登

78

録された背景画像の番号)と、壁紙ピクチャの開始位置 と、壁紙ピクチャが記録されている領域の使用セクタ数 を含む。

【0632】図49のパディングデータは、インデック スピクチャの内容、欠陥領域の内容および壁紙ピクチャ の内容等を含む。

【0633】次に、前述した「32kバイトアライン」 について説明する。

【0634】図47~図49に示したユーザメニューフ ァイル内は、既記録領域と未記録領域のいかんに関わら ず、すべてエラー訂正コードの単位(ECCグループ で)ある32kバイト毎に分割され、その境界部分であ る「ECCバウンダリー」の位置が事前に確定してい る。

【0635】各縮小画像データ、アンカーポイント、縮 小画像管理部と縮小画像管理部のバックアップを記録す る場合には、全てのデータの記録開始位置と記録終了位 置は、上記「ECCバウンダリー」位置と一致するよう に記録される(図35参照)。

【0636】各データ量が32kバイトの整数値より若 干少ない場合には図47に示したように「ダミー領域」 を付加して、記録終了位置を「ECCバウンダリー」位 置に一致させる。この「ダミー領域」は図48の「パデ ィング」の領域を意味している。

【0637】縮小画像データの記録・消去時には前述し た「ECCバウンダリー」毎に情報の記録・消去を行 う。この場合、ECCグループ内の一部の情報を変更す る必要が無いので、記録時にはECCバウンダリーに合 わせて縮小データを直接重ね書きできる。

【0638】以上のような「32kバイトアライン」を 行えば、縮小画像データをECCグループ単位で記録・ 消去するため付加されたエラー訂正情報の修正が不要と なるから、ECCグループ単位の記録・消去処理の高速 化が図れる。

【0639】図47のユーザメニューファイルは、パー ソナルコンピュータ等を利用した別の記録媒体への移植 性を考慮している。そのために、ユーザメニュー用の縮 小画像、背景画像、縮小画像管理領域の保存アドレス は、全てユーザメニューファイル先頭位置からの差分ア ドレス (相対アドレス) で表現している。

【0640】図47の縮小画像管理領域内の関連テープ ルの中では、PGC番号から検索用テキストデータサイ ズまでの2行が1組の対応テーブルを表している。

【0641】この場合、ビデオ信号のタイムコードと先 頭アドレスとの組の対応により記録された縮小画像デー タとビデオ信号との関係が分かる。

【0642】また、この関連テーブル全体を検索するこ とにより、ユーザメニューファイル内の未記録領域また 【0631】図49の壁紙ピクチャ情報は、ユーザメニ 50 は消去後縮小画像データの消去された位置が分かり、こ

の領域に新規な縮小画像データを記録することができる。

【0643】図47のユーザメニューファイルにおいては、オーディオ・ビデオデータを含むAVファイル上の位置と縮小画像記録位置間の関連テーブルの中で、欠陥領域の管理を行うようにしている。

【0644】ここで、ディスク(記録媒体)10の表面に付着したゴミや傷により縮小画像管理部が破損した場合の具体的処理方法に付いて説明する。

【0645】まず、ディスク(記録媒体)表面のゴミや 10 傷による縮小画像管理部の破損を検出する。(破損しているかどうかはECCグループのエラー訂正が失敗したかどうかで判定できる。)

破損が検出された場合は、アンカーポイントの情報を読み、縮小画像管理部のバックアップデータアドレスを調べ、縮小画像管理部のバックアップデータを読み込む。

【0646】次に、図47の縮小画像記録位置間の関連 テーブルから、ユーザメニューファイル内の未記録領域 を探す。そして、ユーザメニューファイル内の未記録領域に縮小画像管理データを記録し、アンカーポイントの 20 アドレス情報を更新する。

【0647】続いて、ディスク(記録媒体)表面のゴミや傷により縮小画像管理部が破損した場所を、図47の縮小画像記録位置間の関連テーブル内に、欠陥領域として登録する。

【0648】図47~図49のユーザメニューファイルフォーマットを採用すると、以下の効果が期待できる: (a)前記「32kバイトアライン」によって、縮小画像データの追加・検索とアクセス高速化が図れる;

(b) 図示しないモニタディスプレイの表示部に一度に 30 複数枚の縮小画像を表示する場合、各縮小画面毎に記録 媒体上の該当する縮小画像データ位置にアクセスする必要がある。記録媒体上にこの縮小画像データが点在(散在)する場合には、アクセスに時間がかかり、複数枚の縮小画像を表示するための所要時間が長くなるとい弊害がある。ところが、図47に例示するように、複数の縮小画像データを同一のユーザメニューファイル内にまとめて配置すれば、このユーザメニューファイルを再生するだけで高速に複数枚の縮小画像を表示させることができる。 40

【0649】(c)縮小画像管理部での全縮小画像データを一括管理することにより、縮小画像データの削除や追加処理の管理が容易となる。すなわち、ユーザメニューファイル内の未記録領域(または縮小画像データ削除領域)の検索が容易となり、新規の縮小画像データの追加登録を高速に行なうことが可能となる。

【0650】 (d) 後述するDVDビデオレコーダでは、データプロセサ36で16パック (=32kバイト) 毎にまとめてECCグループとしてエラー訂正情報を付けてディスク (DVD-RAM、DVD-RWまた 50

80

はDVD-R) 10に記録している。もしECCグループ内の一部の情報を変更した場合には、付加されたエラー訂正情報の修正が必要となり、処理が煩雑になるとともに情報変更処理に多大な時間がかかるようになる。ところが、前記「32kバイトアライン」を行うことによって、縮小画像データをECCグループ単位で記録・消去する際に付加されるエラー訂正情報の修正が不要となり、ユーザメニューデータの記録と消去が高速に処理可能となる。

【0651】 (e) 以下の方法により、アンカーポイントと縮小画像管理部、縮小画像管理部のバックアップデータの高信頼性を確保できる:

\*縮小画像管理領域の信頼性確保…縮小画像管理領域の バックアップ領域を設け、万一の縮小画像管理領域欠陥 に備えるとともに欠陥発生時には記録場所移動を可能と する;

\*縮小画像管理領域の記録場所を示すアンカーポイント情報の信頼性確保…単独でECCブロックを構成し、データ変更回数を少なくするとともに2ヶ所に記録する(図47の第1および第2アンカーポイント);

\*欠陥管理処理…ディスク (記録媒体) 表面のゴミや傷により縮小画像管理部やアンカーポイントからの情報再生が不能になった場合、前述したバックアップ部からデータを読み直して、別位置に再記録できるようにする。これにより、欠陥領域を登録して誤ってその欠陥場所を再び使用してしまうことを防止できる。

【0652】なお、ユーザメニューに用いる縮小画像データには、その元画像に、クローズドキャプションや多重文字が重畳されているケースがある。そのような場合には、文字を多重後、縮小画像を構成しても良い。また、この文字データだけで縮小画像を構成することも考えられる。

【0653】さらに、実際の縮小画像データを持たず、本画像へのポインタのみでユーザメニュー用縮小画像を表すことも可能である(後述する図51の構成において、ハードウエア側でユーザメニューを構成するために、縮小画像をデコーダ内で作りながら表示を行う場合に対応する)。この方法によると、メニュー表示時にディスクサーチを頻繁に行うため、ユーザメニュー表示に若干時間がかかるが、実際に縮小画像を持たない分、使用するディスク容量が少なくて済む利点が得られる。

【0654】ところで、図18のAVデータ制御情報DA210内のPGC制御情報PGCCIは図32に示すようなデータ構造を持ち、PGCとセルによって再生順序が決定される。PGCは、セルの再生順序を指定した一連の再生を実行する単位を示す。セルは、再生データを開始アドレスと終了アドレスで指定した再生区間を示す。

【0655】図50は、図2のディスク10に記録されたセルデータを再生する場合の一例を模式的に示してい

る。図示するように、再生データは、セルAからセルF までの再生区間で指定されている。各プログラムチェー ン(PGC)におけるこれらのセルの再生組み合わせは プログラムチェーン情報において定義される。

【0656】図51は、図50の再生データを構成する 各セルとプログラムチェーン情報(PGCI)との関係 の一例を説明する図である(図19参照)。

【0657】すなわち、3つのセル#1~#3で構成さ れるPGC#1は、セルA→セルB→セルCという順序 でセル再生を指定している。また、3つのセル#1~# 10 3で構成されるPGC#2は、セルD→セルE→セルF という順序でセル再生を指定している。さらに、5つの セル#1~#5で構成されるPGC#3は、セルE→セ ルA→セルD→セルB→セルEという順序でセル再生を 指定している。

【0658】図50および図51において、PGC#1 はセルAからセルCまでの連続再生区間を例示してお り、PGC#2はセルDからセルFまでの断続した再生 区間を例示している。また、PGC#3は、セルの再生 方向や重複再生(セルCとセルD)に拘わらず飛び飛び 20 のセル再生が可能な例を示している。

【0659】図52は、図1~図11の構成を持つ情報 記憶媒体(DVD-RAMディスク等)10を用いてデ ジタルビデオ情報の録画・再生を行えるように構成され たパーソナルコンピュータPCの一例を説明するブロッ ク図である。

【0660】<<一般的なパーソナルコンピュータシス テムPCの内部構造説明>>

(1)メインCPUに直接接続されるデータ/アドレス ライン

パーソナルコンピュータPC内のメインCPU111は メインメモリ112との間の情報入出力を直接行うメモ リデータライン114と、メインメモリ112内に記録 されている情報のアドレスを指定するメモリアドレスラ イン113を持ち、メインメモリ112内にロードされ たプログラムに従ってメインCPU111の実行処理が 進む。

【0661】さらに、メインCPU111は、I/Oデ ータライン146を通して各種コントローラとの情報転 送を行うとともに、I/Oアドレスライン145のアド レス指定により情報転送先コントローラの指定と転送さ れる情報内容の指定を行っている。

【0662】(2) ディスプレイコントロールとキーボ ードコントロール

ビットマップディスプレイ(モニタCRT)116の表 示内容制御を行うディスプレイコントローラ115はメ モリデータライン114を介しメインCPU111間の 情報交換を行っている。

【0663】さらに、高解像度で豊かな色彩表現(およ

82

6 専用のメモリとして、ビデオRAM117を備えてい る。LCDコントローラ115はメモリデータライン1 14を経由してメインメモリ112から直接情報を入力 し、CRTディスプレイ116に表示することもでき

【0664】キーボード119から入力されたテンキー 情報はキーボードコントローラ118で変換されて I/ 〇データライン146を経由してメインCPU111に 入力される。

【0665】(3)情報再生装置(DVD-ROM/R AMドライブ等) の制御系統

パーソナルコンピュータPC内に内蔵されたCD-RO Mドライブ122やDVD-ROM/RAMコンパチブ ルドライブ140などの光学式の情報再生装置には、I DEインターフェイスあるいはSCSIインターフェイ スが使われる場合が多い。CD-ROMドライブ122 からの再生情報はIDEコントローラ120を経由して Ⅰ/Oデータライン146に転送される。

【0666】(4) PC外部とのシリアル/パラレルイ ンターフェイス

パーソナルコンピュータシステムの外部機器との情報転 送用には、シリアルラインとパラレルラインがそれぞれ 用意されている。

【0667】「セントロニクス」に代表されるパラレル ラインを制御するパラレル I / F コントローラ123 は、ネットワーク等を介さずに直接プリンター124や スキャナー125を駆動する場合に使われる。スキャナ -125から転送される情報はパラレルI/Fコントロ ーラ123を経由して I/Oデータライン 146に転送 される。またI/Oデータライン146上で転送される 情報はパラレルI/Fコントローラ123を経由してプ リンター124へ転送される。

【0668】たとえば、ディスプレイ116に表示され ているビデオRAM117内の情報やメインメモリ11 2内の特定情報をプリントアウトする場合、これらの情 報をメインCPU111を介して I / Oデータライン 1 46に転送した後、パラレルI/Fコントローラ123 でプロトコル変換してプリンター124に出力する。

【0669】外部に出力されるシリアル情報に関して は、I/Oデータライン146で転送された情報がシリ アルI/Fコントローラ130でプロトコル変換され、 たとえばRS-232Cのシリアル信号として出力され る。

【0670】 (5) 機能拡張用バスライン

パーソナルコンピュータシステムは機能拡張用に各種の バスラインを持っている。デスクトップのパーソナルコ ンピュータではバスラインとしてPCIバス133とE ISAバス126を持っている場合が多い。

【0671】PCIバス133およびEISAバス12 び階調表現)を実現するため、CRTディスプレイ11 50 6それぞれのバスラインは、PCIバスコントローラ1 43およびEISAバスコントローラ144を介して、 I/Oデータライン146とI/Oアドレスライン14 5に接続されている。

【0672】バスラインに接続される各種ボードはEISAバス126専用ボードとPCIバス133専用ボードに分かれている。比較的PCIバス133の方が高速転送に向くため、図52の構成ではPCIバス133に接続しているボードの数が多くなっているが、これは一例にすぎない。図52の構成に限らずEISAバス126専用ボードを使用すれば、たとえばLANボード139やSCSIボード138をEISAバス126に接続することも可能である。

【0673】(6)バスライン接続の各種ボードの概略 機能説明

(6.1) サウンドプラスターボード127 マイク128から入力された音声信号はサウンドプラス ターボード127によりデジタル情報に変換され、EI SAバス126、I/Oデータライン146を経由して メインメモリ112やDVD-RAMドライブ140に 入力され、適宜加工される。

【0674】また音楽等を聞きたい場合には、CD-ROMドライブ122あるいはDVD-ROM/RAMドライブ140に記録されているファイル名をユーザが指定することにより、デジタル音源信号がI/Oデータライン146、EISAバス126を経由してサウンドブラスターボード127に転送され、アナログ信号に変換された後、スピーカー129から出力される。

【0675】 (6.2) 専用DSP137 ある特殊な処理を高速で実行したい場合、その処理専用 のDSPボード137をPCIバスライン133に接続 30 することができる。

【0676】(6.3)SCSIインターフェイス外部記憶装置との間の情報入出力にはSCSIインターフェイスが利用される場合が多い。SCSIボード138内では、DVD-ROM/RAMドライブ140等の外部記憶装置との間で入出力されるSCSIフォーマット情報をPCIバス133またはEISAバス126に転送するためのプロトコル変換や、転送情報フォーマット変換が、実行される。

【0677】(6.4)情報圧縮・伸長専用ボード 40 【0684 音声、静止画、動画像などマルチメディア情報は、情報 圧縮され、DVD-ROM/RAMドライブ140等に より情報記憶媒体(図1のDVD-RAMディスク1 0)記録される。この情報圧縮・伸長専用ボード(13 行なう。 4~136)は、DVD-ROM/RAMドライブ14 (0685 0から圧縮された情報を再生する際、圧縮されている情報を伸長して、ディスプレイ116に表示する画像情報を生成したり、スピーカー129を鳴らす音声信号を生成する。またマイク128から入力された音声信号などを情報圧縮してDVD-ROM/RAMドライブ140 50 っている。 84

に記録する際にも利用される。

【0678】上記情報の圧縮・伸長機能は各種専用ボードが受け持っている。

【0679】具体的には、音楽・音声信号の圧縮・伸長はオーディオエンコーダ/デコーダボード136で行い、動画(ビデオ映像)の圧縮・伸長はMPEGボード134で行い、静止画の圧縮・伸長はJPEGボード135で行なうようにしている。

【0680】<<パーソナルコンピュータの外部ネット 10 ワークとの接続>>

(7) 電話回線を用いたネットワーク接続

電話回線を経由して外部に情報転送したい場合には、モデム131を用いる。すなわち希望の相手先へ電話接続するには図示しないNCU(Network Control Unit)が電話回線を介して電話交換機に相手先電話番号を伝達する。電話回線が接続されると、シリアルI/Fコントローラ130がI/Oデータライン146上の情報に対して転送情報フォーマット変換とプロトコル変換を行い、その結果得られるデジタル信号のRS-232C信号がモデム131でアナログ信号に変換されて電話回線に転送される。

【0681】 (8) IEEE1394を用いたネットワーク接続

音声、静止画、動画などマルチメディア情報を外部装置 (図示せず)へ転送する場合には、IEEE1394イ ンターフェイスが適している。

【0682】動画や音声では一定時間内に必要な情報を送り切れないと画像の動きがギクシャクしたり、音声が途切れたりする。その問題を解決するため I E E E 1394では  $125\mu$  s 毎にデータ転送が完了する i sochron ous転送方式を採用している。 I E E E 1394 ではこの i sochronous転送と通常の非同期転送の混在も許しているが、1 サイクルの非同期転送時間は最大  $63.5\mu$  s と上限が決められている。この非同期転送時間が長過ぎると i sochronous転送を保証できなくなるためである。

【0683】なお、IEEE1394ではSCSIのコマンド(命令セット)をそのまま使用することができる。

【0684】IEEE1394I/Fボード132は、 PCIバス133を伝わってきた情報に対し、isochron ous転送用の情報フォーマット変換やプロトコル変換、 ノード設定のようなトポロジーの自動設定などの処理を 行なう。

【0685】このようにパーソナルコンピュータシステム内で持っている情報をIEEE1394信号として外部に転送するだけでなく、同様に外部から送られて来るIEEE1394信号を変換してPCIバス133に転送する働きもIEEE1394I/Fボード132は持っている。

【0686】(9) LANを用いたネットワーク接続 企業内や官庁・学校など特定地域内のローカルエリア情 報通信のために、図示しないが、LANケーブルを媒体 としてLAN信号の入出力を行っている。

【0687】LANを用いた通信のプロトコルとしては TCP/IP、NetBEUIなどが存在し、各種プロトコルに応じて独自のデータパケット構造(情報フォーマット構造)が採用される。PCIバス133上で転送される情報に対する情報フォーマット変換や各種プロトコルに応じた外部との通信手続き処理などは、LANボード139により行われる。

【0688】一例としてDVD-ROM/RAMドライブ140にセットされたDVD-RAMディスク10(図1)内に記録してある特定ファイル情報をLAN信号に変換して、図示しない外部のパーソナルコンピュータ、EWSあるいはネットワークサーバに転送する場合の手続きと情報転送経路について、説明する。

【0689】SCSIボード138の制御によりDVDーRAMディスク10内に記録されているファイルディレクトリ(図23)を出力させ、その結果のファイルリストを、メインCPU111がメインメモリ112に記録するとともにCRTディスプレイ116に表示させる。

【0690】ユーザが転送したいファイル名をキーボード119から入力すると、その内容がキーボードコントローラ118を介してメインCPU111に送られ、CPU111により認識される。メインCPU111がSCSIボード138に転送するファイル名を通知すると、DVD一ROM/RAMドライブ140がDVD一RAMディスク10内部の情報記録場所を判定してアクセスし、そこからの再生情報がSCSIボード138およびPCIバス133を経由してLANボード139へ転送される。

【0691】LANボード139では、一連の通信手続きにより転送先とセッションを張った後、PCIバス133からのファイル情報受け、伝送するプロトコルに従ったデータパケット構造に変換後、LAN信号として外部へ転送する。

【0692】<<情報再生装置または情報記憶再生装置からの情報転送>>

(10) 標準的インターフェイスと情報転送経路 CD-ROM、DVD-ろむなど再生専用の光ディスクを扱う装置であるドライブ122、DVD-RAM、PD (相変化記録ディスク)、MO (光磁気ディスク)など記録再生可能な光ディスクを扱う装置であるドライブ140をパーソナルコンピュータシステム内に組み込んで使用する場合、標準的なインターフェイスとして"IDE""SCSI""IEEE1394"などが存在する。

【0693】一般的にはPCIバスコントローラ143 50 22と同様、音声符号化復号化ポード136、MPEG

86

やEISAバスコントローラ144は内部にDMA(ダイレクトメモリアクセス)機能を持っている。このDMAの制御により、メインCPU111を介在させることなく各プロック間で直接情報を転送することができる。【0694】たとえば、DVDドライブ140からの再生情報をMPEGボード134に転送する場合、メインCPU111からの処理はPCIバスコントローラ143へ転送命令を与えるだけで良い。情報転送管理はPCIバスコントローラ143内のDMAに任せる。その結

生情報をMPEGホード134に転送する場合、メイン CPU111からの処理はPCIバスコントローラ14 3へ転送命令を与えるだけで良い。情報転送管理はPC Iバスコントローラ143内のDMAに任せる。その結果、実際の情報転送時にはメインCPUは情報転送処理 に忙殺されることなく、その情報転送処理中に他の処理 を並行して実行できる。

【0695】同様に、CDドライブ122からの再生情報をたとえばメモリ112へ転送する場合も、メインCPU111はIDEコントローラ120へ転送命令を出すだけで、後の転送処理管理をIDEコントローラ120内のDMAに任せることができる。

【0696】(11)認証機能

情報記録再生装置(DVD-RAMドライブ等)140 もしくは情報再生装置(CD-ROMドライブ等)122に関する情報転送処理には、上述したようにPCIバスコントローラ143内のDMA、EISAバスコントローラ144内のDMAまたはIDEコントローラ120内のDMAが管理を行っているが、実際の転送処理自体は情報記録再生装置140もしくは情報再生装置122が持つ認証(authentication)機能部が実際の転送処理を実行している。

【0697】 DVDビデオ、DVD-ROM、DVD-RなどのDVDシステムでは、ビデオ、オーディオのビットストリームはMPEG2プログラムストリームフォーマットで記録されており、オーディオストリーム、ビデオストリーム、サブピクチャストリーム、プライベートストリームなどが混在して記録されている。

【0698】情報記録再生装置(DVD-ROM/RAMドライブ等)140は、情報の再生時にプログラムストリームからオーディオストリーム、ビデオストリーム、サブピクチャストリーム、プライベートストリームなどを分離抽出し、抽出したストリームを、メインCPU111を介在させることなく、PCIバス133を介して直接音声符号化復号化ボード136、MPEGボード134あるいはJPEGボード135に転送する。

【0699】同様に、情報再生装置(CD-ROMドライブ等)122もそこから再生されるプログラムストリームを各種のストリーム情報に分離抽出し、個々のストリーム情報をI/Oデータライン146、PCIバス133を経由して直接(メインCPU111を介在させることなく)音声符号化復号化ボード136、MPEGボード134あるいはJPEGボード135に転送する。

【0700】情報記録再生装置140や情報再生装置1 22と同様 音声符号化復号化ポード136、MPFG ボード134あるいはJPEGボード135自体も内部 に認証機能を持っている。

【0701】この機能により、情報転送に先立ち、PC Iバス133(およびI/Oデータライン146)を介 して情報記録再生装置140や情報再生装置122と音 声符号化復号化ポード136、MPEGポード134、 JPEGボード135間で互いに認証し合うことができ る。相互認証が完了すると、情報記録再生装置140や 情報再生装置122で再生されたビデオストリーム情報 はMPEGボード134だけに転送される。同様に、オ 10 ーディオストリーム情報は音声符号化復号化ボード13 6のみに転送される。また、静止画ストリームは IPE Gボード135へ、プライベートストリームやテキスト 情報はメインCPU111へ送られる。

【0702】ところで、情報記録再生装置は、大きく分 けて、情報記憶媒体に対して情報の記録・再生を行う情 報記録再生部(物理系ブロック)と、外部とのインター フェイス部や情報記録再生装置として独自の装置機能を 果たすための機能実施部などから構成された応用構成部 (アプリケーション系プロック)とに分類できる。

【0703】図53は、図52のデジタルビデオ録再機 能付パーソナルコンピュータPCにおいて、物理系プロ ックとアプリケーション系プロックを分けて説明する図 である。

【0704】情報再生装置(DVDプレーヤ等)もしく は情報記録再生装置(DVDレコーダ等)103は、図 53に示すように、大きく2つのブロックから構成され る。

【0705】情報再生部もしくは情報記録再生部(物理 系プロック)101は情報記憶媒体(図1の光ディスク 10)を回転させ、光ヘッドを用いて情報記憶媒体にあ らかじめ記録してある情報を読み取る(または情報記憶 媒体に新たな情報を記録する)機能を有する。

【0706】具体的には、情報記憶媒体としての光ディ スク10を回転させるスピンドルモーター、光ディスク 10に記録してある情報を再生する光ヘッド、再生した い情報が記録されている光ディスク10上の半径位置に 光ヘッドを移動させるための光ヘッド移動機構、その他 各種サーボ回路などから構成されている。この斑理系ブ ロック101の構成については後述する。

【0707】応用構成部(アプリケーションブロック) 102は、情報再生部もしくは情報記録再生部 (物理系 ブロック) 101から得られた再生信号 c に処理を加え て情報再生装置もしくは情報記録再生装置103の外に 再生情報aを送出する働きをする。このアプリケーショ ンプロック内の構成は、情報再生装置もしくは情報記録 再生装置103の具体的用途(使用目的)に応じて変化 する。このアプリケーションブロック102の構成につ いても後述する。

RR

場合には、以下の手順で外部から与えられた記録情報b を情報記憶媒体(光ディスク10)に記録する。

【0709】\*外部から与えられた記録情報bは直接ア プリケーションブロック102に転送される。.

【0710】\*アプリケーションプロック102内で記 録情報bに処理を加えた後、記録信号dを物理系プロッ ク101へ伝送する。

【0711】\*伝送された記録信号 dを物理系ブロック 101内で光ディスク10に記録する。

【0712】図54は、図52のDVD-ROM/RA Mドライブ140 (図53でいえば物理系ブロック10 1) の構成の一例を説明するプロック図である。

【0713】まず始めに、情報記録再生装置内の情報記 録再生部(物理系ブロック101)の内部構造から説明 する。

【0714】<<<情報記録再生部の機能説明>>> <<情報記録再生部の基本機能>>情報記録再生部で は、情報記憶媒体(光ディスク) 10上の所定位置に、 レーザビームの集光スポットを用いて、新規情報の記録 あるいは書き替え(情報の消去も含む)を行う。

【0715】情報記憶媒体10上の所定位置から、レー ザビームの集光スポットを用いて、既に記録されている 情報の再生を行う。

【0716】<<情報記録再生部の基本機能達成手段> >上記基本機能を達成するために、情報記録再生部で は、情報記憶媒体10上のトラックに沿って集光スポッ トをトレース(追従)させる。情報記憶媒体10に照射 する集光スポットの光量(強さ)を変化させて情報の記 録/再生/消去の切り替えを行う。外部から与えられる 記録信号dを高密度かつ低エラー率で記録するために最 適な信号に変換する。

【0717】<<<機構部分の構造と検出部分の動作> >>

<<光ヘッド202基本構造と信号検出回路>> < 光ヘッド202による信号検出>光ヘッド202は、 基本的には、光源である半導体レーザ素子と光検出器と 対物レンズから構成されている。

【0718】半導体レーザ素子から発光されたレーザ光 は、対物レンズにより情報記憶媒体(光ディスク)10 上に集光される。情報記憶媒体10の光反射膜または光 反射性記録膜で反射されたレーザ光は光検出器により光 電変換される。

【0719】光検出器で得られた検出電流は、アンプ2 13により電流-電圧変換されて検出信号となる。この 検出信号は、フォーカス・トラックエラー検出回路21 7あるいは2値化回路212で処理される。

【0720】一般的に、光検出器は、複数の光検出領域 に分割され、各光検出領域に照射される光量変化を個々 に検出している。この個々の検出信号に対してフォーカ 【0708】情報記録再生装置 (DVDレコーダ等) の 50 ス・トラックエラー検出回路217で和・差の演算を行

い、フォーカスずれおよびトラックずれの検出を行う。 この検出によりフォーカスずれおよびトラックずれを実 質的に取り除いた後、情報記憶媒体10の光反射膜また は光反射性記録膜からの反射光量変化を検出して、情報 記憶媒体10上の信号を再生する。

【0721】<フォーカスずれ検出方法>フォーカスず れ量を光学的に検出する方法としては、たとえば次のよ うなものがある:

[非点収差法]情報記憶媒体10の光反射膜または光反 射性記録膜で反射されたレーザ光の検出光路に非点収差 10 を発生させる光学素子(図示せず)を配置し、光検出器 上に照射されるレーザ光の形状変化を検出する方法であ る。光検出領域は対角線状に4分割されている。各検出 領域から得られる検出信号に対し、フォーカス・トラッ クエラー検出回路217内で対角和間の差を取ってフォ ーカスエラー検出信号を得る。

【0722】 [ナイフエッジ法] 情報記憶媒体10で反 射されたレーザ光に対して非対称に一部を遮光するナイ フエッジを配置する方法である。光検出領域は2分割さ れ、各検出領域から得られる検出信号間の差を取ってフ ォーカスエラー検出信号を得る。

【0723】通常、上記非点収差法あるいはナイフエッ ジ法のいずれかがが採用される。

【0724】<トラックずれ検出方法>情報記憶媒体 (光ディスク) 10はスパイラル状または同心円状のト ラックを有し、トラック上に情報が記録される。このト ラックに沿って集光スポットをトレースさせて情報の再 生または記録/消去を行う。安定して集光スポットをト ラックに沿ってトレースさせるため、トラックと集光ス ポットの相対的位置ずれを光学的に検出する必要があ

【0725】トラックずれ検出方法としては一般に、次 の方法が用いられている:

[位相差検出 (Differential Phase Detection) 法] 情 報記憶媒体(光ディスク)10の光反射膜または光反射 性記録膜で反射されたレーザ光の光検出器上での強度分 布変化を検出する。光検出領域は対角線上に4分割され ている。各検出領域から得られる検出信号に対し、フォ ーカス・トラックエラー検出回路217内で対角和間の 差を取ってトラックエラー検出信号を得る。

【0726】 [プッシュプル (Push-Pull) 法] 情報記 憶媒体10で反射されたレーザ光の光検出器上での強度 分布変化を検出する。光検出領域は2分割され、各検出 領域から得られる検出信号間の差を取ってトラックエラ 一検出信号を得る。

【0727】 [ツインスポット (Twin-Spot) 法] 半導 体レーザ素子と情報記憶媒体10間の送光系に回折素子 などを配置して光を複数に波面分割し、情報記憶媒体1 0上に照射する±1次回折光の反射光量変化を検出す る。再生信号検出用の光検出領域とは別に+1次回折光 50 出力信号(現状での回転数)との差を求め、その結果に

の反射光量と-1次回折光の反射光量を個々に検出する 光検出領域を配置し、それぞれの検出信号の差を取って トラックエラー検出信号を得る。

【0728】<対物レンズアクチュエータ構造>半導体 レーザ素子から発光されたレーザ光を情報記憶媒体10 上に集光させる対物レンズ (図示せず) は、対物レンズ アクチュエータ駆動回路218の出力電流に応じて2軸 方向に移動可能な構造になっている。この対物レンズの 移動方向には、次の2つがある。すなわち、フォーカス ずれ補正用に情報記憶媒体10に対する垂直方向に移動 し、トラックずれ補正用に情報記憶媒体10の半径方向 に移動する。

【0729】対物レンズの移動機構(図示せず)は対物 レンズアクチュエータと呼ばれる。対物レンズアクチュ エータ構造には、たとえば次のようなものがよく用いら れる:

[軸摺動方式]中心軸(シャフト)に沿って対物レンズ と一体のプレードが移動する方式で、ブレードが中心軸 に沿った方向に移動してフォーカスずれ補正を行い、中 心軸を基準としたブレードの回転運動によりトラックず れ補正を行う方法である。

【0730】 [4本ワイヤ方式] 対物レンズ一体のブレ ードが固定系に対し4本のワイヤで連結されており、ワ イヤの弾性変形を利用してプレードを2軸方向に移動さ せる方法である。

【0731】上記いずれの方式も永久磁石とコイルを持 ち、ブレードに連結したコイルに電流を流すことにより プレードを移動させる構造になっている。

【0732】<<情報記憶媒体10の回転制御系>>ス ピンドルモータ204の駆動力によって回転する回転テ ーブル221上に情報記憶媒体(光ディスク)10を装 着する。

【0733】情報記憶媒体10の回転数は、情報記憶媒 体10から得られる再生信号によって検出する。すなわ ち、アンプ213出力の検出信号(アナログ信号)は2 値化回路212でデジタル信号に変換され、この信号か らPLL回路211により一定周期信号(基準クロック 信号)を発生させる。情報記憶媒体回転速度検出回路 2 14では、この信号を用いて情報記憶媒体10の回転数 40 を検出し、その値を出力する。

【0734】情報記憶媒体10上で再生あるいは記録/ 消去する半径位置に対応した情報記憶媒体回転数の対応 テーブルは、半導体メモリ219に予め記録されてい る。再生位置または記録/消去位置が決まると、制御部 220は半導体メモリ219情報を参照して情報記憶媒 体10の目標回転数を設定し、その値をスピンドルモー タ駆動回路215に通知する。

【0735】スピンドルモータ駆動回路215では、こ の目標回転数と情報記憶媒体回転速度検出回路214の

応じた駆動電流をスピンドルモータ204に与えて、ス ピンドルモータ204の回転数が一定になるように制御 する。情報記憶媒体回転速度検出回路214の出力信号 は、情報記憶媒体10の回転数に対応した周波数を有す るパルス信号であり、スピンドルモータ駆動回路215 では、このパルス信号の周波数およびパルス位相の両方 に対して、制御(周波数制御および位相制御)を行な Э.

【0736】<<光ヘッド移動機構>>この機構は、情 報記憶媒体10の半径方向に光ヘッド202を移動させ 10 るため光ヘッド移動機構(送りモータ)203を持って

【0737】光ヘッド202を移動させるガイド機構と しては、棒状のガイドシャフトを利用する場合が多い。 このガイド機構では、このガイドシャフトと光ヘッド2 02の一部に取り付けられたブッシュ間の摩擦を利用し て、光ヘッド202を移動させる。それ以外に回転運動 を使用して摩擦力を軽減させたベアリングを用いる方法 もある。

【0738】光ヘッド202を移動させる駆動力伝達方 20 法は、図示していないが、固定系にピニオン (回転ギ ヤ)の付いた回転モータを配置し、ピニオンとかみ合う 直線状のギヤであるラックを光ヘッド202の側面に配 置して、回転モータの回転運動を光ヘッド202の直線 運動に変換している。それ以外の駆動力伝達方法として は、固定系に永久磁石を配置し、光ヘッド202に配置 したコイルに電流を流して直線的方向に移動させるリニ アモータ方式を使う場合もある。

【0739】回転モータ、リニアモータいずれの方式で も、基本的には送りモータに電流を流して光ヘッド20\*30 は、一般的に

[記録時の光量] > [消去時の光量] > [再生時の光量] … (1)

の関係が成り立ち、光磁気方式を用いた情報記憶媒体に※ ※対しては、一般的に

の関係がある。光磁気方式の場合では、記録/消去時に は情報記憶媒体10に加える外部磁場 (図示せず) の極 性を変えて記録と消去の処理を制御している。

【0744】情報再生時では、情報記憶媒体10上に一 定の光量を連続的に照射している。

【0745】新たな情報を記録する場合には、この再生 時の光量の上にパルス状の断続的光量を上乗せする。半 40 導体レーザ素子が大きな光量でパルス発光した時に情報 記憶媒体10の光反射性記録膜が局所的に光学的変化ま たは形状変化を起こし、記録マークが形成される。すで に記録されている領域の上に重ね書きする場合も同様に 半導体レーザ素子をパルス発光させる。

【0746】すでに記録されている情報を消去する場合 には、再生時よりも大きな一定光量を連続照射する。連 続的に情報を消去する場合にはセクタ単位など特定周期 毎に照射光量を再生時に戻し、消去処理と平行して間欠 的に情報再生を行う。これにより、間欠的に消去するト 50 92

\*2移動用の駆動力を発生させている。この駆動用電流は 送りモータ駆動回路216から供給される。

【0740】<<<各制御回路の機能>>>

<<集光スポットトレース制御>>フォーカスずれ補正 あるいはトラックずれ補正を行うため、フォーカス・ト ラックエラー検出回路217の出力信号(検出信号)に 応じて光ヘッド202内の対物レンズアクチュエータ

(図示せず) に駆動電流を供給する回路が、対物レンズ アクチュエータ駆動回路218である。この駆動回路2 18は、高い周波数領域まて対物レンズ移動を高速応答 させるため、対物レンズアクチュエータの周波数特性に 合わせた特性改善用の位相補償回路を、内部に有してい る。

【0741】対物レンズアクチュエータ駆動回路218 では、制御部220の命令に応じて、

- (イ) フォーカス/トラックずれ補正動作 (フォーカス /トラックループ)のオン/オフ処理と;
- (ロ) 情報記憶媒体10の垂直方向(フォーカス方向) へ対物レンズを低速で移動させる処理(フォーカス/ト ラックループオフ時に実行)と;
- (ハ) キックパルスを用いて、対物レンズを情報記憶媒 体10の半径方向(トラックを横切る方向)にわずかに 動かして、集光スポットを隣のトラックへ移動させる処 理とが行なわれる。

【0742】<<レーザ光量制御>>

<再生と記録/消去の切り替え処理>再生と記録/消去 の切り替えは情報記憶媒体10上に照射する集光スポッ トの光量を変化させて行う。

【0743】相変化方式を用いた情報記憶媒体に対して

[記録時の光量] ≒ [消去時の光量] > [再生時の光量] … (2)

ラックのトラック番号やアドレスを再生することで、消 去トラックの誤りがないことを確認しながら消去処理を 行っている。

【0747】<レーザ発光制御>図示していないが、光 ヘッド202内には、半導体レーザ素子の発光量を検出 するための光検出器が内蔵されている。レーザ駆動回路 205では、その光検出器出力(半導体レーザ素子発光 量の検出信号)と記録・再生・消去制御波形発生回路2 06から与えられる発光基準信号との差を取り、その結 果に基づき、半導体レーザへの駆動電流をフィードバッ ク制御している。

【0748】<<<機構部分の制御系に関する諸動作>

<<起動制御>>情報記憶媒体(光ディスク) 10 が回 転テーブル221上に装着され、起動制御が開始される と、以下の手順に従った処理が行われる。

【0749】(1)制御部220からスピンドルモータ

駆動回路215に目標回転数が伝えられ、スピンドルモータ駆動回路215からスピンドルモータ204に駆動電流が供給されて、スピンドルモータ204が回転を開始する。

【0750】(2)同時に制御部220から送りモータ 駆動回路216に対してコマンド(実行命令)が出され、送りモータ駆動回路216から光ヘッド駆動機構 (送りモータ)203に駆動電流が供給されて、光ヘッド202が情報記憶媒体10の最内周位置に移動する。 その結果、情報記憶媒体10の情報が記録されている領域を越えてさらに内周部に光ヘッド202が来ていることを確認する。

【0751】(3) スピンドルモータ204が目標回転数に到達すると、そのステータス(状況報告)が制御部220に出される。

【0752】(4)制御部220から記録・再生・消去制御波形発生回路206に送られた再生光量信号に合わせて半導体レーザ駆動回路205から光ヘッド202内の半導体レーザ素子に電流が供給されて、レーザ発光が開始する。

【0753】なお、情報記憶媒体(光ディスク)10の種類によって再生時の最適照射光量が異なる。起動時には、そのうちの最も照射光量の低い値に対応した値に、 半導体レーザ素子に供給される電流値を設定する。

【0754】(5)制御部220からのコマンドに従って、光ヘッド202内の対物レンズ(図示せず)を情報記憶媒体10から最も遠ざけた位置にずらし、ゆっくりと対物レンズを情報記憶媒体10に近付けるよう対物レンズアクチュエータ駆動回路218が対物レンズを制御する。

【0755】(6)同時にフォーカス・トラックエラー 検出回路217でフォーカスずれ量をモニターし、焦点 が合う位置近傍に対物レンズがきたときにステータスを 出して、「対物レンズが合焦点位置近傍にきた」ことを 制御部220に通知する。

【0756】(7)制御部220では、その通知をもらうと、対物レンズアクチュエータ駆動回路218に対して、フォーカスループをオンにするようコマンドを出す。

【0757】(8)制御部220は、フォーカスループをオンにしたまま送りモータ駆動回路216にコマンドを出して、光ヘッド202をゆっくり情報記憶媒体10の外周部方向へ移動させる。

【0758】(9)同時に光ヘッド202からの再生信号をモニターし、光ヘッド202が情報記憶媒体10上の記録領域に到達したら、光ヘッド202の移動を止め、対物レンズアクチュエータ駆動回路218に対してトラックループをオンさせるコマンドを出す。

【0759】(10)続いて情報記憶媒体10の内周部 に記録されている「再生時の最適光量」および「記録/ 50 消去時の最適光量」が再生され、その情報が制御部22 0を経由して半導体メモリ219に記録される。

94

【0760】(11)さらに制御部220では、その「再生時の最適光量」に合わせた信号を記録・再生・消去制御波形発生回路206に送り、再生時の半導体レーザ素子の発光量を再設定する。

【0761】(12)そして、情報記憶媒体10に記録されている「記録/消去時の最適光量」に合わせて記録 /消去時の半導体レーザ素子の発光量が設定される。

【0762】<<アクセス制御>>情報記憶媒体10に記録されたアクセス先情報が再生情報記憶媒体10上のどの場所に記録されまたどのような内容を持っているかについての情報は、情報記憶媒体10の種類により異なる。たとえばDVDディスクでは、この情報は、情報記憶媒体10内のディレクトリ管理領域またはナビゲーションパックなどに記録されている。

【0763】ここで、ディレクトリ管理領域は、通常は情報記憶媒体10の内周領域または外周領域にまとまって記録されている。また、ナビゲーションパックは、MPEG2のPS(プログラムストリーム)のデータ構造に準拠したVOBS(ビデオオブジェクトセット)中のVOBU(ビデオオブジェクトユニット)というデータ単位の中に含まれ、次の映像がどこに記録してあるかの情報を記録している。

【0764】特定の情報を再生あるいは記録/消去したい場合には、まず上記の領域内の情報を再生し、そこで得られた情報からアクセス先を決定する。

【0765】 < 粗アクセス制御 > 制御部220ではアクセス先の半径位置を計算で求め、現状の光ヘッド202 位置との間の距離を割り出す。

【0766】光ヘッド202移動距離に対して最も短時間で到達できる速度曲線情報が事前に半導体メモリ219内に記録されている。制御部220は、その情報を読み取り、その速度曲線に従って以下の方法で光ヘッド202の移動制御を行う。

【0767】すなわち、制御部220から対物レンズアクチュエータ駆動回路218に対してコマンドを出してトラックループをオフした後、送りモータ駆動回路216を制御して光ヘッド202の移動を開始させる。

【0768】集光スポットが情報記憶媒体10上のトラックを横切ると、フォーカス・トラックエラー検出回路217内でトラックエラー検出信号が発生する。このトラックエラー検出信号を用いて情報記憶媒体10に対する集光スポットの相対速度を検出することができる。

【0769】送りモータ駆動回路216では、このフォーカス・トラックエラー検出回路217から得られる集光スポットの相対速度と制御部220から逐一送られる目標速度情報との差を演算し、その結果で光ヘッド駆動機構(送りモータ)203への駆動電流にフィードバック制御をかけながら、光ヘッド202を移動させる。

【0770】前記<<光ヘッド移動機構>>の項で述べ たように、ガイドシャフトとブッシュあるいはペアリン グ間には常に摩擦力が働いている。光ヘッド202が高 速に移動している時は動摩擦が働くが、移動開始時と停 止直前には光ヘッド202の移動速度が遅いため静止摩 擦が働く。この静止摩擦が働く時には (特に停止直前に は)、相対的に摩擦力が増加している。この摩擦力増加 に対処するため、光ヘッド駆動機構(送りモータ)20 3に供給される電流が大きくなるように、制御部220 からのコマンドによって制御系の増幅率 (ゲイン) を増 10 加させる。

【0771】<密アクセス制御>光ヘッド202が目標 位置に到達すると、制御部220から対物レンズアクチ ュエータ駆動回路218にコマンドを出して、トラック ループをオンさせる。

【0772】集光スポットは、情報記憶媒体10上のト ラックに沿ってトレースしながら、その部分のアドレス またはトラック番号を再生する。

【0773】そこでのアドレスまたはトラック番号から 現在の集光スポット位置を割り出し、到達目標位置から 20 の誤差トラック数を制御部220内で計算し、集光スポ ットの移動に必要なトラック数を対物レンズアクチュエ ータ駆動回路218に通知する。

【0774】対物レンズアクチュエータ駆動回路218 内で1組のキックパルスを発生させると、対物レンズは 情報記憶媒体10の半径方向にわずかに動いて、集光ス ポットが隣のトラックへ移動する。

【0775】対物レンズアクチュエータ駆動回路218 内では、一時的にトラックループをオフさせ、制御部2 20からの情報に合わせた回数のキックパルスを発生さ 30 せた後、再びトラックループをオンさせる。

【0776】密アクセス終了後、制御部220は集光ス ポットがトレースしている位置の情報 (アドレスまたは トラック番号)を再生し、目標トラックにアクセスして いることを確認する。

【0777】<<連続記録/再生/消去制御>>フォー カス・トラックエラー検出回路217から出力されるト ラックエラー検出信号は、送りモータ駆動回路216に 入力されている。上述した「起動制御時」と「アクセス 制御時」には、送りモータ駆動回路216内では、トラ 40 ックエラー検出信号を使用しないように制御部220に より制御されている。

【0778】アクセスにより集光スポットが目標トラッ クに到達したことを確認した後、制御部220からのコ マンドにより、モータ駆動回路216を経由してトラッ クエラー検出信号の一部が光ヘッド駆動機構 (送りモー タ) 203への駆動電流として供給される。連続に再生 または記録/消去処理を行っている期間中、この制御は 継続される。

ル221の中心位置とわずかにずれた偏心を持って装着 されている。トラックエラー検出信号の一部を駆動電流 として供給すると、偏心に合わせて光ヘッド202全体 が微動する。

【0780】また長時間連続して再生または記録/消去 処理を行うと、集光スポット位置が徐々に外周方向また は内周方向に移動する。トラックエラー検出信号の一部 を光ヘッド移動機構(送りモータ)203への駆動電流 として供給した場合には、それに合わせて光ヘッド20 2が徐々に外周方向または内周方向に移動する。

【0781】このようにして対物レンズアクチュエータ のトラックずれ補正の負担を軽減することにより、トラ ックループを安定化させることができる。

【0782】<<終了制御>>一連の処理が完了し、動 作を終了させる場合には以下の手順に従って処理が行わ れる。

【0783】 (1) 制御部220から対物レンズアクチ ユエータ駆動回路218に対して、トラックループをオ フさせるコマンドが出される。

【0784】(2)制御部220から対物レンズアクチ ユエータ駆動回路218に対して、フォーカスループを オフさせるコマンドが出される。

【0785】 (3) 制御部220から記録・再生・消去 制御波形発生回路206に対して、半導体レーザ素子の 発光を停止させるコマンドが出される。

【0786】(4)スピンドルモータ駆動回路215に 対して、基準回転数として0が通知される。

【0787】<<<情報記憶媒体への記録信号/再生信 号の流れ>>>

<<再生時の信号の流れ>>

<2値化・PLL回路>前記<光ヘッド202による信 号検出>の項で述べたように、情報記憶媒体(光ディス ク) 10の光反射膜または光反射性記録膜からの反射光 量変化を検出して、情報記憶媒体10上の信号を再生す る。アンプ213で得られた信号は、アナログ波形を有 している。2値化回路212は、コンパレーターを用い て、そのアナログ信号を"1"および"0"からなる2 値のデジタル信号に変換する。

【0788】こうして2値化回路212で得られた再生 信号から、PLL回路211において、情報再生時の基 準信号が取り出される。すなわち、PLL回路211は 周波数可変の発振器を内蔵しており、この発振器から出 力されるパルス信号(基準クロック)と2値化回路21 2出力信号との間で周波数および位相の比較が行われ る。この比較結果を発振器出力にフィードバックしする ことで、情報再生時の基準信号を取り出している。

【0789】<信号の復調>復調回路210は、変調さ れた信号と復調後の信号との間の関係を示す変換テーブ ルを内蔵している。復調回路210は、PLL回路21 【0779】情報記憶媒体10の中心位置は回転テープ 50 1で得られた基準クロックに合わせて変換テーブルを参 照しながら、入力信号(変調された信号)を元の信号 (復調された信号)に戻す。復調された信号は、半導体 メモリ219に記録される。

【0790】<エラー訂正処理>エラー訂正回路209の内部では、半導体メモリ219に保存された信号に対し、内符号PIと外符号POを用いてエラー箇所を検出し、エラー箇所のポインタフラグを立てる。その後、半導体メモリ219から信号を読み出しながらエラーポインタフラグに合わせて逐次エラー箇所の信号を訂正した後、再度半導体メモリ219に訂正後情報を記録する。

【0791】情報記憶媒体10から再生した情報を再生信号cとして外部に出力する場合には、半導体メモリ219に記録されたエラー訂正後情報から内符号PIおよび外符号POをはずして、バスライン224を経由してデータI/Oインターフェイス222へ転送する。

【0792】そして、データI/Oインターフェイス222が、エラー訂正回路209から送られてきた信号を再生信号cとして出力する。

【0793】<<情報記憶媒体10に記録される信号形式>>情報記憶媒体10上に記録される信号に対しては、以下のことを満足することが要求される:

(イ)情報記憶媒体10上の欠陥に起因する記録情報エラーの訂正を可能とすること;

(ロ) 再生信号の直流成分を "0" にして再生処理回路 の簡素化を図ること;

(ハ)情報記憶媒体10に対してできるだけ高密度に情報を記録すること。

【0794】以上の要求を満足するため、情報記録再生部(物理系プロック)101では、「エラー訂正機能の付加」と「記録情報に対する信号変換(信号の変復調)」とを行っている。

【0795】<<記録時の信号の流れ>> <エラー訂正コードECC付加処理>このエラー訂正コードECC付加処理について、説明する。

【0796】情報記憶媒体10に記録したい情報 dが、生信号の形で、図54のデータI/Oインターフェイス222に入力される。この記録信号 dは、そのまま半導体メモリ219に記録される。その後、ECCエンコーダ208内において、以下のようなECCの付加処理が実行される。

【0797】以下、積符号を用いたECC付加方法の具体例について説明を行なう。

【0798】記録信号 d は、半導体メモリ219内で、172バイト毎に1行ずつ順次並べられ、192行で1組のECCブロックとされる(172バイト行×192バイト列でおよそ32kバイトの情報量になる)。

【0799】この「172バイト行×192バイト列」で構成される1組のECCブロック内の生信号(記録信号d)に対し、172バイトの1行毎に10バイトの内符号PIを計算して半導体メモリ219内に追加記録す

る。さらにバイト単位の1列毎に16バイトの外符号P Oを計算して半導体メモリ219内に追加記録する。

98

【0800】そして、10パイトの内符号PIを含めた 12行分(12×(172+10)パイト)と外符号POの1行分(1×(172+10)パイト)の合計 2366 パイト(=(12+1)×(172+10))を単位として、エラー訂正コードECC付加処理のなされた 情報が、情報記憶媒体 1001 セクタ内に記録される。

【0801】ECCエンコーダ208は、内符号PIと 10 外符号POの付加が完了すると、その情報を一旦半導体 メモリ219へ転送する。

【0802】情報記憶媒体10に情報が記録される場合には、半導体メモリ219から、1セクタ分の2366 バイトずつの信号が、変調回路207へ転送される。

【0803】<信号変調>再生信号の直流成分(DSV:Digital Sum ValueまたはDigital Sum Variation)を"0"に近付け、情報記憶媒体10に対して高密度に情報を記録するため、信号形式の変換である信号変調を変調回路207内で行う。

【0804】図54の変調回路207および復調回路2 10は、それぞれ、元の信号と変調後の信号との間の関係を示す変換テーブルを内蔵している。

【0805】変調回路207は、ECCエンコーダ20 8から転送されてきた信号を所定の変調方式に従って複数ビット毎に区切り、上記変換テーブルを参照しなが ら、別の信号(コード)に変換する。

【0806】たとえば、変調方式として8/16変調(RLL(2、10)コード)を用いた場合には、変換テーブルが2種類存在し、変調後の直流成分(DSV)が0に近付くように逐一参照用変換テーブルを切り替えている。

【0807】 <記録波形発生>情報記憶媒体(光ディスク)10に記録マークを記録する場合、一般的には、記録方式として、次のものが採用される:

[マーク長記録方式] 記録マークの前端位置と後端末位置に"1"がくるもの。

【0808】 [マーク間記録方式] 記録マークの中心位置が"1"の位置と一致するもの。

【0809】なお、マーク長記録を採用する場合、比較的長い記録マークを形成する必要がある。この場合、一定期間以上記録用の大きな光量を情報記憶媒体10に照射し続けると、情報記憶媒体10の光反射性記録膜の蓄熱効果によりマークの後部のみ幅が広がり、「雨だれ」形状の記録マークが形成されてしまう。この弊害を除去するため、長さの長い記録マークを形成する場合には、記録用レーザ駆動信号を複数の記録バルスに分割したり、記録用レーザの記録波形を階段状に変化させる等の対策が採られる。

号d) に対し、172パイトの1行毎に10パイトの内 【0810】記録・再生・消去制御波形発生回路206 符号PIを計算して半導体メモリ219内に追加記録す 50 内では、変調回路207から送られてきた記録信号に応

じて、上述のような記録波形を作成し、この記録波形を 持つ駆動信号を、半導体レーザ駆動回路205に送って いる。

【0811】次に、図54の構成におけるブロック間の 信号の流れをまとめておく。

【0812】1) 記録すべき生信号の情報記録再生装置 への入力

図54は、情報記録再生装置内の情報記憶媒体(光ディ スク) 10に対する情報の記録処理と再生処理に関連す る部分をまとめた情報記録再生部(物理系プロック)内 の構成を例示している。PC(パーソナルコンピュー タ) やEWS (エンジニアリングワークステーション) などのホストコンピュータから送られて来た記録信号d はデータI/〇インターフェイス222を経由して情報 記録再生部(物理系プロック)101内に入力される。

【0813】2) 記録信号 d の 2048 バイト毎の分割

データ I / O インターフェイス 2 2 2 では記録信号 d を 時系列的に2048バイト毎に分割し、後述する図57 のデータID510などを付加した後、スクランブル処 20 理を行う。その結果得られた信号は図54のECCエン コーダ208に送られる。

【0814】3) ECCブロックの作成

図54のECCエンコーダ208では、図57の記録信 号に対してスクランブルを掛けた後の信号を16組集め て「172バイト×192列」のブロックを作った後、 後述する図58の内符号PI (内部パリティコード) と 外符号PO(外部パリティコード)の付加を行う。

【0815】4)インターリーブ処理

図54のECCエンコーダ208ではその後、図59を 30 参照して後述するように、外符号POのインターリーブ 処理を行う。

【0816】5)信号変調処理

図54の変調回路207では、外外符号POのインター リーブ処理した後の信号を変調後、図8に示すように同 期コードを付加する。

【0817】6) 記録波形作成処理

その結果得られた信号に対応して記録・再生・消去制御 波形発生回路206で記録波形が作成され、この記録波 形がレーザ駆動回路205に送られる。

【0818】情報記憶媒体 (DVD-RAMディスク) 10では「マーク長記録」の方式が採用されているた め、記録パルスの立ち上がりタイミングと記録パルスの 立ち下がりタイミングが変調後信号の"1"のタイミン グと一致する。

【0819】7)情報記憶媒体 (光ディスク) 10への 記録処理

光ヘッド202から照射され、情報記憶媒体(光ディス ク) 10の記録膜上で集光するレーザ光の光量が断続的 100

上に記録マークが形成される。

【0820】図55は、たとえば図52のデジタルビデ オ録再PCにおいて、使用媒体(DVD-RAMディス ク等)に対する論理ブロック番号の設定動作の一例を説 明するフローチャートである。

【0821】図54のターンテーブル221にたとえば 図1のDVD-RAMディスク10が装填されると(ス テップST131)、制御部220はスピンドルモータ 204の回転を開始させる(ステップST132)。

【0822】ディスク10の回転が開始したあと光ヘット ド202内の対物レンズのフォーカスサーボループがオ ンされ(ステップST134)、光ヘッド内の半導体レ ーザがレーザ発振(発光)を開始する(ステップST1 33)。

【0823】レーザ発光後、制御部220は送りモータ 203を作動させて光ヘッド202を回転中のディスク 10のリードインエリアに移動させる (ステップST1 35)。そして光ヘッド202内の対物レンズのトラッ クサーボループがオンされる(ステップST136)。 【0824】トラックサーボがアクティブになると、光 ヘッド202はディスク10のリードインエリア内の制 御データゾーン(図6参照)の情報を再生する (ステッ プST137)。この制御データゾーン内の「ブックタ イプ&パートバージョン」を再生することで、現在回転 駆動されている光ディスク10が記録可能な媒体(DV D-RAMディスクまたはDVD-Rディスク) である と確認される(ステップST138)。ここでは、媒体 10がDVD-RAMディスクであるとする。

【0825】媒体10がDVD-RAMディスクである と確認されると、再生対象の制御データゾーンから、再 生・記録・消去時の最適光量 (半導体レーザの発光パワ ーおよび発光期間またはデューティ比等) の情報が再生 される(ステップST139)。

【0826】続いて、制御部220は、現在回転駆動中 のDVD-RAMディスク10に欠陥がないものとし て、物理セクタ番号と論理セクタ番号との変換表 (図7 参照)を作成する(ステップST140)。

【0827】この変換表が作成されたあと、制御部22 0はディスク10のリードインエリア内の欠陥管理エリ 40 アDMA1/DMA2およびリードアウトエリア内の欠 陥管理エリアDMA3/DMA4を再生して、その時点 におけるディスク10の欠陥分布を調査する(ステップ ST141).

【0828】上記欠陥分布調査によりディスク10上の 欠陥分布が判ると、制御部220は、ステップST14 0で「欠陥がない」として作成された変換表を、実際の 欠陥分布に応じて修正する(ステップST142)。具 体的には、欠陥があると判明したセクタそれぞれの部分 で、物理セクタ番号PSNに対応していた論理セクタ番 に変化して情報記憶媒体 (光ディスク) 201の記録膜 50 号LSNがシフトされる (図29の「欠陥発生時の欠

番」の欄から「番号変換方法」の欄まで参照)

図56は、たとえば図52のデジタルビデオ録再PCにおいて、使用媒体(DVD-RAMディスク等)における欠陥処理動作(ドライブ側の処理)の一例を説明するフローチャートである。この処理は、図52ではDVD-ROM/RAMドライブ140で行われる。以下、このドライブ140が図54のような構成を持つものとして、図54を参照しながら、図56のフローチャートを説明する。図54の制御部220は、図示しないがマイクロコンピュータMPUで構成されている。

【0829】最初に、たとえば図52のメインCPU111が、図54の制御部220内のMPUに対して、現在ドライブに装填されている媒体(たとえばDVDーRAMディスク)10に記録する情報(たとえば図23のAVファイル)の先頭論理ブロック番号LBNおよび記録情報のファイルサイズを指定する(ステップST151)。

【0830】すると、制御部220のMPUは、図29の関係に基づいて、指定された先頭論理ブロック番号LBNから、記録する情報(AVファイル)の先頭論理セクタ番号LSNを算出する(ステップST152)。こうして算出された先頭論理セクタ番号LSNおよび指定されたファイルサイズから、ディスク10への魯込アドレス(AVアドレス)が定まる。

【0831】記録情報ファイル(AVファイル)の書込アドレス(AVアドレス)が定まると、制御部220のMPUはDVD-RAMディスク10の指定アドレスに記録情報ファイルを書き込むとともに、ディスク10上の欠陥を調査する(図28の「発生時期」および「欠陥検出方法」の欄参照)(ステップST153)。

【0832】このファイル書込中に欠陥が検出されなければ、記録情報ファイル (AVファイル) が所定のAVアドレスに異常なく(つまりエラーが発生せずに)記録されたことになり、記録処理が正常に完了する(ステップST155)。

【0833】一方、ファイル春込中に欠陥が検出されれば、所定の交替処理(たとえば図13のスキッピング交替処理)が実行される(図28の「交替処理方法」の欄参照)(ステップST156)。

【0834】この交替処理後、新たに検出された欠陥がディスクのリードインのDMA1/DMA2およびリードアウトのDMA3/DMA4に追加登録される(図28の「検出情報記載箇所」の欄参照)(ステップST157)。なお、この新たに検出された欠陥の情報は、図18のアロケーションマップテーブルAMTにも登録される(アロケーションマップテーブルAMTを構成する記述子UAD、SADについては図30を参照して説明済み)。

【0835】ディスク10へのDMA1/DMA2およ びDMA3/DMA4の追加登録後、このDMA1/D 50 102

MA 2 および DMA 3 / DMA 4 の登録内容に基づいて、図 5 5 のステップ S T 1 4 0 で作成した変換表(図7)の内容が修正される(ステップ S T 1 5 8)。

【0836】以上の記録処理/交替処理は、ドライブ140が所定のAVアドレスに所定のAVファイルデータを書き込む毎に反復される。

【0837】図57は、図2の情報記憶媒体(DVD-RAMディスク等)に記録される信号の構成を説明する図である。

10 【0838】以下、2048バイト単位でのスクランブ ル前の記録信号構造について説明する。

【0839】 (1) メインデータ (D0~D2047) 505~509の生成

PC (パーソナルコンピュータ) やEWS (エンジニアリングワークステーション) などのホストコンピュータから送られてきた記録信号 d は、データ I / O インターフェイス 2 2 2 において時系列的に沿って 2 0 4 8 バイト毎に分割される。各 2 0 4 8 バイト毎の記録信号 d は記録信号の中に組み込まれ、図 5 7 に示すように、メインデータ (D 0 ~ D 2 0 4 7) として配置される。

【0840】この記録信号には、メインデータ(D0~D2047)の前後に、後述するようなデータID(データ識別子)510、IED(データIDのエラー検出コード)511、RSV(リザーブ)512おおびEDC(エラー検出コード)513が付加される。

【0841】 (2) データID (データ識別子) 510 の作成

データ ID510は 4 バイトで記述され、このデータ I Dには、

- 30 ・「データエリア」、「リードインエリア」、「リードアウトエリア」のいずれのエリアか:
  - ・「読出専用データ」、「読み書き可能データ」のどち らのデータタイプか;
  - ・何層目のデータか(ディスクが多層ディスクの場合に 必要;図1は2層ディスクを例示している);および
  - ・該当セクタの論理セクタ番号に "3 1 0 0 0 h" を加算した値

などの情報が記載される。

【0842】 (3) IED (データIDのエラー検出コード) 511の作成

データID510に対するエラー検出コードとして、IED511が記録信号に付加される。再生時に、再生されたデータIDに対してこのIEDコードを演算処理して、再生されたデータIDの再生エラーを検出することに使用する。

【0843】(4) RSV(リザーブ)512の作成 記録信号には6バイトのリザーブ領域RSV512が用 意され、将来設定される特定の規格でこの場所に指定情 報を記録できるようにしてある。

) 【0844】 (5) EDC (エラー検出コード) 513

の作成

図57で示すデータID510からメインデータの最終 バイト(D2047)509までの2060バイト信号 に対するエラー検出コードがEDC513であり、ED Cとして4バイトが記録信号に付加される。

【0845】情報記憶媒体(光ディスク10から情報を再生する際、図54の復調回路210で復調後、エラー訂正回路209でECCプロック内のエラー訂正およびデスクランブルを行って図57の記録信号の構造に戻した後、該当セクタ内のデータID510からメインデー 10 タの最終バイト(D2047)509までの2060バイト信号に対して、このEDC513を用いてエラー検出を行う。ここでエラーが検出された場合には、再度ECCプロック内のエラー訂正処理に戻ることもある。

【0846】なお、ECCプロック内のエラー訂正とデ スクランブルについては、後述する。

【0847】 (6) メインデータ (D0~D2047) 505~509のスクランブル処理

上述した「メインデータ505~509の生成」から 「EDC513の作成」までを行い、図57に示すよう 20 なセクタ単位の記録信号の構造を生成した後、メインデ ータ (D0~D2047) のみに対してスクランブル処 理を行う。

【0848】スクランブル処理用の回路は、図示しないが、8ビットパラレル入力・シリアル出力のシフトレジスタと、0番~8番の入力ビットを持つイクスクルーシブOR回路で構成できる。この場合、シフトレジスタの10番目のビットと14番目のビットとの間のイクスクルーシブOR演算の結果が、シフトレジスタの0番目のビットに帰還される構造になっている。

【0849】スクランブル開始時のシフトレジスタの初期データには、そのセクタ内のデータID510の最終15ビットが使われる。

【0850】スクランブル処理後の記録信号の構造とトータルの信号サイズは図57と全く同じ構造・同じサイズになっている。

【0851】図58は、図57の記録信号をスクランプルして生成されたECCブロックの構成を説明する図である。

【0852】<<ECCブロック内の記録信号構造>> DVD-ROM、DVD-R、DVD-RAM等はEC C(エラー訂正コード)に積符号を採用している。

【0853】いま、図9を例にとって、ECCブロック 形成方法を説明する。

【0854】・まず、ECCプロック内の最初のセクタ501aにあるスクランブル後の信号において、図57のデータID510からメインデータ160バイト(D0~D159)505までの信号が、図58バイト521(0、0)からバイト523(0、171)に配置される。

104

【0855】・次に、ECCブロック内の最初のセクタ501aにあるスクランブル後の信号において、図57のメインデータ172バイト (D160~D331) 506の信号が、図58のバイト526 (1、0) からバイト528 (1、171) に配置される。

【0856】・以下同様に、セクタ501a内の各信号が図58内に順次配置される。

【0857】・ECCブロック内の2番目のセクタ501bにあるスクランブル後の信号において、データID510からメインデータ160バイト(D0~D159)505までの信号が、図58の上から数えて13列目(図示せず)のバイト536(12、0)からバイト538(12、171)に配置される。

【0858】・次に、ECCブロック内の2番目のセクタ501bにあるスクランブル後の信号において、メインデータ172バイト(D160~D331)506の信号が図58の上から14列目(図示せず)に配置される。

【0859】・以下同様の手順で、図9のECCプロック502内の16番目のセクタ501pにあるメインデータ168バイト(D1880~D2047)509と図57のEDC513とが図58の上から192列目のバイト551(191、0)からバイト553(191、171)に配置されるまで、順次、図58の記録信号配置が実行される。この実行結果の配置(図58)が、スクランブル後のECCプロックの信号配置となる。

【0860】・上記スクランブル終了後、図58のバイト521 (0、0) からバイト523 (0、171) までの横列172バイト信号に対して、10バイト内符号 PI (内部パリティコード) を計算し、その計算結果をバイト524 (0、172) からバイト525 (0、181) までに挿入する。

【0861】・以下同様な処理が反復される。その反復の最後に、図58のバイト551 (191、0) からバイト553 (191、171) までの172バイト信号に対して10バイトの内符号PIが計算され、バイト554 (191、172) からバイト555 (191、181) までに算出された内符号PIが挿入される。

【0862】・上記内符号PIの算出・挿入処理が終了すると、図58のバイト521 (0、0) からバイト551 (191、0) までの縦列192バイト信号に対して、16バイトの外符号PO (外部パリティコード) が計算される。その計算結果は、縦列方向のバイト556 (192、0) からバイト566 (207、0) までに挿入される。

【0863】・以下同様な処理が反復される。その反復 の最後に、図58のバイト525(0、181)からバ イト555(191、181)までの縦列192バイト 50 信号に対して16バイトの外符号POが計算され、その 計算結果がバイト 5 6 0 (192、181) からバイト 5 7 0 (207、181) までの縦列に挿入される。

【0864】図59は、図58のECCブロックをインターリーブした場合を説明する図である。

【0865】<<ECCブロック内での外符号POインターリーブ方法>>図58で内符号PIと外符号POを計算した後、この記録信号を12横列(12行)毎に分け、その間に外符号POを各1行ずつ挿入する。これが、ECCブロック内での外符号POのインターリーブである。

【0866】すなわち、図59に示すように、バイト531(11、0)からバイト533(11、171)までの12列の次(13列目)に、外符号POの最初の行(横列)のバイト556(192、0)からバイト558(192、181)までが挿入される。以下同様に、外符号POの各行(各横列)が記録信号の12行(12横列)毎にインターリーブ挿入され、図58の記録信号の配置(スクランブル後)は図59に示すような配置(インターリーブ後)に並び替えられる。

【0867】<<実際に情報記憶媒体上に記録される記録信号構造>>図59に示す外符号POインターリーブ後のECCブロック内記録信号は、各13行(13横列)ずつ分割されて、それぞれが図9の各セクタ501a~501pに記録される。

【0868】情報記憶媒体10には、各セクタ501の 先頭位置に、物理セクタ番号PSNなどがエンボス構造 で事前に記録されたヘッダ(図8)が配置されている。 図8の例示において、あるセクタのヘッダ(エンボス) から次のセクタのヘッダまでの間に、上記13行(13 横列)分の信号が記録される。

【0869】ところで、図59の記録信号構造では、ビット単位で"0"が連続して配置される可能性がある。このままの信号を情報記憶媒体10に記録すると、

"0"が連続して多数個配列された場所で再生時にビットシフトエラーを起こす危険がある。そのため、"0"の連続配置上限数を制限し、かつ高密度記録が可能なように信号の変換(変調)を行っている。DVD-ROMやDVD-RAMでは「8/16変調」(ランレングスコードで表現するとRLL(2,10)コード)と呼ばれる変調方法を採用している。

【0870】このように変調された信号は途中に同期コードが挿入された後、図8に示すような構造になって情報記憶媒体10上に記録される。

【0871】<<情報記憶媒体からの再生信号に対する 逆変換手順>>情報記憶媒体(光ディスク)10から情 報を再生するときは以下の手順で逆変換がなされた後、 再生信号cとしてPC(パーソナルコンピュータ)やE WS(エンジニアリングワークステーション)などのホ ストコンピュータへ(図54のデータI/Oインターフ ェイス222から)転送される。 106

【0872】 (1) 図54において、再生信号は、光ヘッド202、アンプ213、2値化回路212およびP LL回路211を経た後、復調回路210において復調 される。

【0873】 (2) エラー訂正回路209内で図58の内符号PIと外符号POを用いてECCブロック内のエラー訂正が行われる。

【0874】(3) その後エラー訂正回路209内で「メインデータ(D0~D2047)505~509の 10 スクランブル処理」の逆の処理である「デスクランブル処理」が行なわれ、エラー訂正後の信号は、メインデータ(D0~D2047)505~509に戻される。

【0875】(4) このデスクランブル処理によって、 図57の記録信号の構造が復元される。

【0876】(5)図57のEDC513を用いてメインデータ(D0~D2047)505~509のエラー検出が行われる。ここでエラー検出された場合には(2)のECCブロック内エラー訂正処理に戻る。

【0877】(6)各セクタ501(図9)毎に得られた情報記憶媒体10からの再生情報は、図54のデータ I/Oインターフェイス222を介して、再生信号cとしてホストコンピュータ等へ転送される。

【0878】<<情報記憶媒体上に記録される情報の記録信号構造変換手順の概説>>情報記憶媒体として記録再生可能なDVD-RAMディスク10を用いた場合には、16個のセクタ501毎にECCブロック502(図9)を構成しながら信号記録が行われる。

【0879】ECCブロック502を構成しながら記録するためには、所定の手順(図60)に従い、元の信号 に対し「信号のスクランブル化(信号の分散/暗号化)」「ECCブロック内のパリティーコードの付加」「インターリーブ処理(配置の分散化)」「高記録密度化を目的とした情報記憶媒体特性に合わせた変調処理」などの記録信号の変換処理が行われる。

【0880】図60は、記録用の生信号が所定の信号処理(ECCインターリーブ/信号変調等)を受けて情報記憶媒体に記録されるまでの手順を説明するフローチャートである。

【0881】以下、DVD-RAMディスク10を例に 0 取り、図60のフローチャートに従って、記録信号に対 する構造変換手順の概略説明を行う。

【0882】まず、記録用の生信号が、たとえば図54のECCエンコーダ回路208に入力される(ステップST116)。

【0883】入力された記録用の信号は2048バイト毎に分割され、スクランブル前の記録信号(図57)が作成される(ステップST117)。

【0884】その後ECCブロック(図58)が作成され(ステップST118)、作成されたECCブロック 50 に対してインターリーブ処理(図59)が施される(ス テップST119)。

【0885】こうしてインターリプされたECCプロッ クは図54の変調回路207で変調(たとえば前述した 8/16変調) され (ステップST120) 、記録·再 生・消去用制御波形発生回路206に送られる。

【0886】記録・再生・消去用制御波形発生回路20 6では、現在装填されているDVD-RAMディスク1 0の特性に合わせた記録波形を生成する (ステップST 121)。そして、この記録波形とそのディスク10に 最適のレーザ発光でもって、ステップST116の記録 10 用生信号に対応した信号(ECCブロックを単位とする 信号)が、ディスク10の所定箇所(指定されたAVア ドレスに相当する論理セクタと1対1に対応する物理セ クタ番号の位置) に、書き込まれる (ステップST12 2)。

【0887】図61は、図1の2層光ディスクにおける ROM層/RAM層の論理セクタの設定において、物理 セクタ番号の大きなRAM層部分を論理セクタ番号の小 さな位置へ論理的に配置替えする方法を説明する図であ る。図 6 1 は図 1 6 の R O M 層 と R A M 層 を 入れ替えた 20 構成になっている。両者は似ているが、以下の点で違 う。

【0888】すなわち、図16の構成では、ボリューム スペース前半のROM層の物理セクタ番号PSN+ボリ ユームスペース後半のRAM層の物理セクタ番号PSN がリードインからリードアウトに向かって連続的に増加 する。

【0889】これに対し、物理セクタ番号PSNが大き な方のRAM層をポリュームスペース前半に配置した図 61の構成では、RAM層の終わりとROM層の始まり とのつなぎ目において物理セクタ番号PSNが不連続に なる。この物理的なセクタ番号の不連続性は、ボリュー ムスペース全体に渡り連続した統合論理セクタ番号LS Nを予めROM層にエンボス記録しておき、このエンボ ス記録された統合論理セクタ番号LSNを用いることで 解消できる。

【0890】すなわち、物理セクタ番号PSNでみれば 不連続な「RAM層+ROM層」のボリュームスペース も、エンポス記録された統合論理セクタ番号LSNでみ れば連続化される。

【0891】あるいは、図18 (または図65) のアド レス変換テーブルACTを用いることで、物理セクタ番 号PSNでみれば不連続な「RAM層+ROM層」のボ リュームスペースを、論理的には連続化できる。すなわ ち、アドレス変換テーブルACTを用いたAVアドレス 変換により、物理セクタ番号PSNでみれば不連続な

「RAM層+ROM層」のボリュームスペースを論理セ クタ番号LSN上で連続化できる。このアドレス変換テ ーブルACTを用いたAVアドレス変換による論理セク

108

された統合論理セクタ番号LSN」を持っていないとき に利用できる。

【0892】図62は、図1の2層光ディスクにおける ROM層/RAM層の論理セクタの設定において、RA M層部分が論理的にROM層部分に割り込むように配置 替えする方法を説明する図である。

【0893】ROM層とRAM層とでは両者の物理セク 夕番号PSNが違う。そのため、ROM部分にRAM部 分を割り込ませると、RAM層の先頭および末尾の2カ 所で、物理セクタ番号PSNが不連続になる。

【0894】この物理的なセクタ番号の不連続も、前述 した「エンボス記録された統合論理セクタ番号LSN」 を用いるか、図18(または図65)のアドレス変換テ ーブルACTを用いることで、論理的には連続化でき る。すなわち、ディスク10に予めエンボス記録された 統合論理セクタ番号LSNをアドレス管理に利用するこ とで、あるいはアドレス変換テーブルACTを用いたA Vアドレス変換により、物理セクタ番号PSNでみれば 不連続な「ROM層の一部+RAM層+ROM層の他 部」からなるポリュームスペースを、論理セクタ番号し SN上で連続化できる。

【0895】図63は、図2の光ディスクに記録される 情報(データファイル)のディレクトリ構造の他の例を 説明する図である。

【0896】前述した図23の例では、ルートディレク トリの下にビデオタイトルセットVTSディレクトリ (DVDビデオファイル用)、オーディオタイトルセッ トATSディレクトリ(DVDビデオファイルまたはD VDオーディオファイル用)、オーディオ・ビデオ情報 AVI(パーソナルコンピュータで扱われるビデオファ イル用)およびビデオRAMディレクトリ(DVD-R AMディスクのAVデータファイル用)が例示されてい る。

【0897】これに対し、図63の例はDVD-RAM ディスク10を純粋なコンピュータ用に利用する場合を 想定しており、ルートディレクトリの下にアプリケーシ ョンディレクトリとアプリケーション関連ディレクトリ が配置されている。

【0898】アプリケーションディレクトリ内には、図 52のパーソナルコンピュータPCが起動 (プートまた はリプート)されると自動的に実行されるプログラム (アプリケーション実行ファイル) が格納されている。 この自動実行プログラムとしては、ウインドゥズ、ジャ バ、マックOS等のパーソナルコンピュータ用システム ソフトウエア (またはオペレーティングシステム OS) を、何種類か持つことができる(どのシステムソフトウ エアでブートするかは、ユーザが選択できる)。

【0899】アプリケーションディレクトリ内のアプリ ケーションデータファイルには、アプリケーション実行 タ番号の統合化は、ディスク10が前記「エンボス記録 50 ファイルのプログラムが作成したデータが格納される。

また、アプリケーションディレクトリの下層ディレクトリであるアプリケーションテンプレートディレクトリには、アプリケーション実行ファイルのプログラムが所定の処理を実行する際に適宜利用されるテンプレートファイル#1、#2、…が含まれている。

【0900】たとえば、アプリケーション実行ファイルにシステムソフトウエアとしてウインドウズが格納されアプリケーションプログラムとしてスプレッドシートが格納されているとする。このウインドウズで図52のパーソナルコンピュータがブートすると、ウインドウズは10スプレッドシートのフォルダ(アプリケーションデータファイル)を自動的に作成する。このウインドウズ上でスプレッドシートを立ち上げると、このスプレッドシートで作成したユーザファイルがアプリケーションデータファイルに格納され、このスプレッドシートの標準テンプレート(たとえば住宅ローン返済計画用シートなど)が、テンプレートファイル#1等に用意される。

【0901】また、アプリケーション関連ディレクトリには、ユーザが作成したアプリケーションデータファイルをオブジェクト化して利用できる他のアプリケーションソフトウエア(たとえばワードプロセサ)の実行ファイルを格納することができる。

【0902】図64は、図2の光ディスクに記録される情報(データファイル)のディレクトリ構造のさらに他の例を説明する図である。

【0903】図63の例はDVD-RAMディスク10を純粋なコンピュータ用に利用する場合を主に想定していたが、図64の例はVD-RAMディスク10をデジタルビデオ録画用に利用する場合を想定している。そこで、図64の例では、図23のビデオタイトルセットVTSディレクトリおよびオーディオタイトルセットATSディレクトリの他に、ビデオディレクトリとAV変換情報ディレクトリを含んでいる。

【0904】図64において、ビデオの録画・再生・編集等の処理を行なう映像情報処理プログラムは、ビデオディレクトリ内のビデオアプリケーション実行ファイルに入っている。このプログラムで処理された情報(録画または編集されたデジタルビデオデータ)は、AVファイルのデータとしてビデオディレクトリ内に保存される。

【0905】録画・編集された情報 (AVデータ) は全て1個のAVファイル内に記録される。このAVデータは、図18に示すように、アンカーポインタAP、制御情報DA21、ビデオオブジェクトDA22、ピクチャオブジェクトDA23およびオーディオオブジェクトDA24を含むことができる。

【0906】また、ビデオ編集用の標準テンプレート (あるいはコマーシャルCM情報等) はAVテンプレート01、02、…、のデータとして、ビデオディレクト リ内に記録できるようになっている。 110

【0907】録画が行われ編集が終了した後のAVファイルデータは、ビデオアプリケーション実行ファイル内の変換プログラムに従ってDVDビデオ形式またはDVDオーディオ形式の情報に変換されて、ビデオタイトルセットVTSディレクトリ内またはオーディオタイトルセットATSディレクトリ内に保存される。

【0908】なお、現状ではDVD-RAMディスク10の記憶容量は1層(1レイヤ)あたり2.6Gバイトであり、長時間のビデオ録画には容量が充分とは言えない。そこで、この発明では、記録層を複数持つDVD-RAMディスク(両面2層RAMディスク等)の複数記録層の全体を1ボリュームスペースとして管理したり、複数のDVD-RAMディスクそれぞれの記録層全体をまとめて1ボリュームスペースとして管理し、見かけ上非常に大きな容量のボリュームスペースを用いて長時間のビデオ録画をすることが可能なようにしている(図16~図17または図61~図62において全ての記録層をRAM層で構成した場合等)。

【0909】このように複数の記録層(DVD-RAM 層等)をまとめて1ボリュームスペースとして管理するには、各記録層毎に(あるいは各ディスク毎に)それらの論理ブロック番号のつなぎ合わせ管理をしなければならない。すなわち、各ディスクに設定された論理ブロック番号を統合したアドレス(統合論理セクタ番号との対応関係を記し、この統合論理セクタ番号と個々の記録層(または個々のディスク)の論理ブロック番号との対応関係を記憶したアドレス変換テーブルが必要になる。このアドレス変換テーブルは、たとえば図18のアロケーションマップテーブルAMT内のアドレス変換テーブルACTに相当し、図64の例ではAV変換情報ディレクトリに格納される。

【0910】なお、上記アドレス変換テーブルACTは 図16その他に例示するようにROM層およびRAM層 が混在した統合論理セクタ番号の使用も可能にしてい る。

【0911】図64の構成を利用すれば、たとえばDV DビデオのROM層に記録された情報に上記統合アドレス (AVアドレス)を用いてアクセスし、そこから取り出したDVDビデオ情報の一部を、ビデオアプリケーション実行ファイル内の変換プログラムを利用してAVファイル内のデータ(ユーザが書替・編集・消去できるデータ)に取り込むこともできる。

【0912】図63のディレクトリ構造と図23および /または図64のディレクトリ構造を組み合わせれば、 あるDVDビデオ(図23または図64のVTSディレクトリのファイル)中の特定シーン(ビデオデータ) を、ファイル変換して、パーソナルコンピュータ用のア プリケーションデータファイル(図63)に取り込むこともできる。そうなれば、パーソナルコンピュータの画 50 像処理ソフトウエアで取り込んだDVDビデオデータを

加工し、加工後のビデオ情報を図64のAVファイルに 戻すことが可能になる。

【0913】図67および図68は、たとえば図61で 説明したような配置替えが行われたROM/RAM2層 ディスクにおいて、情報の記録場所とRAM層の初期化 前後の状態を説明する図である。ここでは、図1のRO M/RAM2層DVDディスク10を例にとって、説明 する(始めは図67の最上段から)。

【0914】 [01a] DVD-RAM層17Bのリー ドインエリア内書替可能データゾーン中のディスク識別 子ゾーン(図6参照)では、初期化前は、RAM層・R OM層の積層構造とトータルの記録容量および初期化前 状態であることが明記され;初期化後は、RAM層・R OM層の積層構造とトータルの記録容量および初期化の 日時が明記される。

【0915】なお、RAM層リードインエリア内制御デ ータゾーン中のブックタイプ&パートバージョンには、 そのディスクがリライタブルディスク (DVD-RAM またはDVD-RW) であることが記載される。

【0916】 [02a] DVD-ROM層17Aのリー 20 ドインエリア内制御データ中の物理フォーマット情報の 予約エリア(図22参照)では、初期化前後を通じて、 初期化時にDVD-ROM屬17AからDVD-RAM 層17Bにコピーされる範囲が、DVD-ROM層17 Aの物理セクタ番号PSNで表示されている。

【0917】なお、ROM層リードインエリア内制御デ ータ中の物理フォーマット情報中のブックタイプ&パー トバージョンには、そのディスクがリードオンリーディ スク(DVD-ROMまたはDVDビデオ)であること が記載される。

【0918】 [03a] UDFのポリューム認識シーケ ンス(図44の444)は、初期化前は、DVD-RO M層17Aに事前に記録されており(この記録位置は実 際に使用されるときのポリューム認識シーケンスの記録 位置とは異なる);初期化後は、DVD-RAM層17 Bにコピーされる(コピー先の論理セクタ番号は開始位 置が"16"となる)。

【0919】初期化後は、RAM層17Bにコピーされ た「ボリューム認識シーケンス」が利用される。

の 4 5 6) は、初期化前は、DVD-ROM層 1 7 Aに 事前に記録されており(その指定先はコピー後のRAM 層17Bの論理セクタ番号LSNで指定する);初期化 後は、DVD-RAM層17Bにコピーされる(コピー 先の論理セクタ番号は開始位置が"256"となる)。

【0921】初期化後は、RAM層17Bにコピーされ た「第1アンカーポイント」が利用される。

【0922】 [05a] UDFのメインボリューム記述 子シーケンス(図44の449)は、初期化前は、DV

112

先はコピー後のRAM層17Bの論理セクタ番号LSN で指定する);初期化後は、DVD-RAM層17Bに コピーされる(コピー先の論理セクタ番号LSNは実際 に使用する論理セクタ番号LSNと一致する)。

【0923】初期化後は、RAM層17Bにコピーされ た「メインボリューム記述子シーケンス」が利用され

【0924】 [06a] UDFの論理ポリューム保全シ ーケンス(Logical Volume Integrity Sequence;図示 せず)は、初期化前は、DVD-ROM層17Aに事前 に記録されており;初期化後は、DVD-RAM層17 Bにコピーされる。

【0925】初期化後は、RAM層17Bにコピーされ た「論理ボリューム保全シーケンス」が利用される。

【0926】 [07a] UDFのスペースピットマップ またはスペーステーブル (図44~図45参照) は、初 期化前は、DVD-ROM層17Aに事前に記録されて おり;初期化後は、DVD-RAM層17Bにコピーさ れる。

【0927】初期化後は、RAM層17Bにコピーされ た「スペースピットマップまたはスペーステーブル」が 利用される。なお、DVD-ROM層17Aに対応する 論理プロック番号LBNは全て「使用済み」に設定され

【0928】ここで、参照図は図67に変わる。

【0929】 [08a] UDFのファイルセット記述子 (図44の472)は、初期化前は、DVD-ROM層 17Aに事前に記録されており;初期化後は、DVD-RAM層17Bにコピーされる。

【0930】初期化後は、RAM層17Bにコピーされ た「ファイルセット記述子」が利用される。なお、ここ での指定論理プロック番号LBNは、RAM層17Bを 指定している。

【0931】 [09a] UDFのルートディレクトリの ファイルエントリ(図45の475;図63参照)は、 初期化前は、DVD-ROM層17Aに事前に記録され ており;初期化後は、DVD-RAM層17Bにコピー

【0932】初期化後は、RAM層17Bにコピーされ 【0920】[04a]第1アンカーポイント(図44 40 た「ルートディレクトリのファイルエントリ」が利用さ れる。なお、ここでの指定論理プロック番号LBNは、 RAM層17Bを指定している。

> 【0933】[10a]ルートディレクトリ内のロング アロケーション記述子LAD(図45の476、481 等)は、初期化前は、アプリケーションディレクトリ

> (図63) も含めて、DVD-ROM層17Aに事前に 記録されており;初期化後は、DVD-RAM層17B にコピーされる。

【0934】初期化後は、RAM層17Bにコピーされ D-ROM層17Aに事前に記録されており(その指定 50 た情報を利用して、ユーザがこのロングアロケーション

記述子LADを追加できる。なお、アプリケーションディレクトリも含め、LADのファイルエントリを指定する論理ブロック番号LBNは、コピー前から、RAM層17Bを指定している。

【0935】 [11a] アプリケーション実行ファイルの情報(図63参照)は、初めからDVD-ROM層17Aにエンボス記録されている。初期化後にこの「アプリケーション実行ファイル」の情報をRAM層17Bにコピーすることはしない。この「アプリケーション実行ファイル」の記録位置指定論理プロック番号LBNは、ROM層17Aを指定している。

【0936】 [12a] アプリケーションテンプレートディレクトリ(図63参照)は、初めからDVD-ROM層17Aにエンボス記録されている。初期化後にこの「アプリケーションテンプレートディレクトリ」の情報をRAM層17Bにコピーすることはしない。この「アプリケーションテンプレートディレクトリ」の記録位置指定論理ブロック番号LBNは、ROM層17Aを指定している。

【0937】 [13a] アプリケーションデータファイル (図63参照) は、ROM層17AにもRAM層17Bにも記録されていない。この「アプリケーションデータファイル」は、初期化後にRAM層17Bに作成されるもので、アプリケーションソフトウエア起動後に新規作成される。

【0938】 [14a] アプリケーション関連ディレクトリ (図63参照) は、初期化前は、DVD-ROM層17Aに事前に記録されており;初期化後は、DVD-RAM層17Bにコピーされる。

【0939】初期化後は、RAM層17Bにコピーされ 30 た「アプリケーション関連ディレクトリ」が利用される。なお、ここでの指定論理プロック番号LBNは、RAM層17Bを指定している。

【0940】 [15a] 第2アンカーポイント (図46 の457) は、初めからDVD-ROM層17Aにエンボス記録されている。初期化後にこの「第2アンカーポイント」の情報をRAM層17Bにコピーすることはしない。この「アプリケーションテンプレートディレクトリ」の記録位置指定論理プロック番号LBNは、RAM層17Bを指定している。

【0941】 [16a] リザーブボリューム記述子シーケンス(図46の467)は、初めからDVD-ROM 層17Aにエンボス記録されている。初期化後にこの「リザーブボリューム記述子シーケンス」の情報をRA M層17Bにコピーすることはしない。この「リザーブボリューム記述子シーケンス」の記録位置指定論理プロック番号LBNは、RAM層17Bを指定している。

【0942】DVD-RAMのUDFに準拠したファイルシステムでは、

\*図44のボリューム認識シーケンス444の開始位置 50 - ROM/RAMドライブ140;図84ではディスク

114

の論理セクタ番号LSNを"16"に設定する; \*図44の第1アンカーポイント456および図46の 第2アンカーポイント457は

- $\cdot LSN = 256$
- ·LSN=最終LSN-256
- ·LSN=最終LSN

の内の2箇所に配置する;と言う規約を設けている。

【0943】上記規約を満足しつつ図61等に例示した 論理セクタ番号設定方法を満たす実施の形態が、図67 10 および図68に示されている。

【0944】市販される未使用DVD-RAMディスク(プランクディスク)10では、基本的に、図6に示すリードインエリア中の書替可能データゾーン内に記録されるディスク識別子ゾーンに、そのディスクが図1に示すようなROM/RAM2層構造をしたことが記述され、初期化前の状態であることが示されている以外は、全く未記録状態になっている。

【0945】ユーザがこのブランクディスク10のRA M層17Bを使用前に初期化すると、DVD-ROM層 17A内の必要情報を情報記録再生装置(DVDビデオ レコーダ)が自動コピーして使えるようになる。

【0946】このコピーされるDVD-ROM層17A 内情報の指定アドレスは、全てコピー後のDVD-RA M層17B内のアドレス(論理セクタ番号LSNまたは 論理ブロック番号LBN)で記述されている。

【0947】ブランクディスク10の初期化時には、図44~図46に示す各種情報(ボリューム認識シーケンス444、第1アンカーポイント456、メインボリューム記述子シーケンス449、論理ボリューム保全シーケンス、スペースピットマップまたはスペーステーブル、ファイルセット記述子472、ルートディレクトリのファイルエントリ、ルートディレクトリ内のロングアロケーション記述子LADs476など)がDVD-RAM層17B内にコピーされて使用可能となる。

【0948】その際、第2アンカーポイント457とリザーブポリューム記述子シーケンス467については、DVD-ROM層17A上の最終の論理セクタ番号LSN側に配置されているため、DVD-RAM層17Bへのコピーは不要となる。

0 【0949】前述した統合アドレス(統合論理セクタ番号)の設定方法は、ROM層およびRAM層を含め複数の記録層を持つ情報記憶媒体(1枚以上のDVD-RAMディスクを内蔵した多連ディスクパック)にも適用できる。

【0950】一般ユーザが購入した直後のDVD-RAMディスク10には、何も記録されていない。このようなブランクディスク10をユーザが購入後、ユーザの記録再生装置(図52あるいは後述する図84)に装填すると、この装置のディスクドライブ(図52ではDVD-ROM/RAMドライブ140:図84ではディスク

10

チェンジャ100+ディスクドライブ32) は、ドライブ内(またはディスクチェンジャ内)にあるデスク枚数および各ディスクの種類(DVD-ROMかDVD-RAMか等)を自動的に判別する。

【0951】そして、そのブランクディスク10の初期 化時に、そのディスク10のリードインエリアの書き替 え可能データゾーンに含まれるディスク識別子ゾーン (ディスクIDゾーン) に、

- \*多連ディスクパック (またはディスクチェンジャ) の 場合はパック独自の I D;
- \*ディスク全体の記録容量(ROM/RAM混成の多層 ディスクの場合はROM層の容量も含む);
- \*多連ディスクパック内のRAM層の総数;
- \*多連ディスクパック内の各RAM層毎の記録層番号; 等の情報を書き込む。

【0952】複数のROM層/RAM層を1ポリュームとしてまとめて管理できる統合アドレス(統合論理セクタ番号LSN)の設定方法として、この多連ディスクパック内の各RAM層毎の上記記録層番号を利用する。

【0953】すなわち、ディスクの初期化時に、ディス 20 クパック内の1枚目のディスク10の記録層(RAM 層)に、ボリューム認識シーケンス、第1アンカーボイント、メインボリューム記述子シーケンス(図44~図46参照)、論理ボリューム保全シーケンス等を記録し、最後の(n枚目の)ディスクの記録層(RAM層)に、第2アンカーポイントおよびリザーブボリューム記述子シーケンスを自動的に記録(コピー)して、そのディスクパックの各ディスク(n枚)を使用可能状態にする。

【0954】この発明の他の実施の形態として、図16 (または図17)で示したように前半の論理セクタ番号 LSNにDVD-ROM層を配置し、後半の論理セクタ番号LSNにDVD-RAM層を配置することも可能である。この場合の初期化方法は図69および図70に示すようになる。ここでも、図1のROM/RAM2層DVDディスク10を例にとって、説明する(始めは図69の最上段から)。

【0955】 [01b] DVD-RAM層17Bのリードインエリア内書替可能データゾーン中のディスク識別子ゾーン(図6参照) では、初期化前は、RAM層・ROM層の積層構造とトータルの記録容量および初期化前状態であることが明記され;初期化後は、RAM層・ROM層の積層構造とトータルの記録容量および初期化の日時が明記される。

【0956】なお、RAM層リードインエリア内制御データゾーン中のブックタイプ&パートバージョンには、そのディスクがリライタブルディスク (DVD-RAM またはDVD-RW) であることが記載される。

【0957】 [02b] DVD-ROM層17Aのリードインエリア内制御データ中の物理フォーマット情報の 50

116

予約エリア(図22参照)では、初期化前後を通じて、 初期化時にDVD-ROM層17AからDVD-RAM 層17Bにコピーされる範囲が、DVD-ROM層17 Aの物理セクタ番号PSNで表示されている。

【0958】なお、ROM層リードインエリア内制御データ中の物理フォーマット情報中のブックタイプ&パートパージョンには、そのディスクがリードオンリーディスク (DVD-ROMまたはDVDビデオ) であることが記載される。

【0959】 [03b] UDFのボリューム認識シーケンス(図44の444)は、初めからDVD-ROM層17Aにエンボス記録されている。初期化後にこの「アプリケーション実行ファイル」の情報をRAM層17Bにコピーすることはしない。この「アプリケーション実行ファイル」の記録位置指定論理プロック番号LBNは、ROM層17Aを指定している。

【0960】 [04b] 第1アンカーポイント(図44の456)は、初めからDVD-ROM層17Aにエンボス記録されている。初期化後にこの「アプリケーション実行ファイル」の情報をRAM層17Bにコピーすることはしない。この「アプリケーション実行ファイル」の記録位置指定論理ブロック番号LBNは、ROM層17Aを指定している。

【0961】 [05b] UDFのメインボリューム記述子シーケンス(図44の449) は、初めからDVD-ROM層17Aにエンボス記録されている。初期化後にこの「アプリケーション実行ファイル」の情報をRAM層17Bにコピーすることはしない。この「アプリケーション実行ファイル」の記録位置指定論理ブロック番号 LBNは、ROM層17Aを指定している。

【0962】 [06b] UDFの論理ボリューム保全シーケンス(Logical Volume Integrity Sequence;図示せず)は、初めからDVD-ROM層17Aにエンボス記録されている。初期化後にこの「アプリケーション実行ファイル」の情報をRAM層17Bにコピーすることはしない。この「アプリケーション実行ファイル」の記録位置指定論理ブロック番号LBNは、ROM層17Aを指定している。

【0963】 [07b] UDFのスペースピットマップまたはスペーステーブル (図44~図45参照) は、初期化前は、DVD-ROM層17Aに事前に記録されており;初期化後は、DVD-RAM層17Bにコピーされる。

【0964】初期化後は、RAM層17Bにコピーされた「スペースピットマップまたはスペーステーブル」が利用される。なお、DVD-ROM層17Aに対応する論理ブロック番号LBNは全て「使用済み」に設定される。

【0965】ここで、参照図は図67に変わる。

【0966】 [08b] UDFのファイルセット記述子

(図44の472) は、初期化前は、DVD-ROM層 17Aに事前に記録されており;初期化後は、DVD-RAM層17Bにコピーされる。

【0967】初期化後は、RAM層17Bにコピーされた「ファイルセット記述子」が利用される。なお、ここでの指定論理ブロック番号LBNは、RAM層17Bを指定している。

【0968】 [09b] UDFのルートディレクトリのファイルエントリ(図45の475;図63参照)は、初期化前は、DVD-ROM層17Aに事前に記録され 10 ており;初期化後は、DVD-RAM層17Bにコピーされる。

【0969】初期化後は、RAM層17Bにコピーされた「ルートディレクトリのファイルエントリ」が利用される。なお、ここでの指定論理プロック番号LBNは、RAM層17Bを指定している。

【0970】 [10b] ルートディレクトリ内のロング アロケーション記述子LAD (図45の476、481 等)は、初期化前は、アプリケーションディレクトリ (図63)も含めて、DVD-ROM層17Aに事前に 20 記録されており;初期化後は、DVD-RAM層17B にコピーされる。

【0971】初期化後は、RAM層17Bにコピーされた情報を利用して、ユーザがこのロングアロケーション記述子LADを追加できる。なお、アプリケーションディレクトリも含め、LADのファイルエントリを指定する論理プロック番号LBNは、コピー前から、RAM層17Bを指定している。

【0972】 [11b] アプリケーション実行ファイルの情報(図63参照)は、初めからDVD-ROM層1 307Aにエンボス記録されている。初期化後にこの「アプリケーション実行ファイル」の情報をRAM層17Bにコピーすることはしない。この「アプリケーション実行ファイル」の記録位置指定論理プロック番号LBNは、ROM層17Aを指定している。

【0973】 [12b] アプリケーションテンプレートディレクトリ (図63参照) は、初めからDVD-RO M層17Aにエンボス記録されている。初期化後にこの「アプリケーションテンプレートディレクトリ」の情報をRAM層17Bにコピーすることはしない。この「アプリケーションテンプレートディレクトリ」の記録位置指定論理ブロック番号LBNは、ROM層17Aを指定している。

【0974】 [13b] アプリケーションデータファイル (図63参照) は、ROM層17AにもRAM層17Bにも記録されていない。この「アプリケーションデータファイル」は、初期化後にRAM層17Bに作成されるもので、アプリケーションソフトウエア起動後に新規作成される。

【0975】[14b]アプリケーション関連ディレク 50 することも考えられる。

118

トリ(図63参照)は、初期化前は、DVD-ROM層 17Aに事前に記録されており;初期化後は、DVD-RAM層17Bにコピーされる。

【0976】初期化後は、RAM層17Bにコピーされた「アプリケーション関連ディレクトリ」が利用される。なお、ここでの指定論理プロック番号LBNは、RAM層17Bを指定している。

【0977】 [15b] 第2アンカーボイント (図46 の457) は、初期化前は、DVD-ROM層17Aに事前に記録されており (その指定先はコピー後のRAM層17Bの論理セクタ番号LSNで指定する);初期化後は、DVD-RAM層17Bにコピーされる (コピー先の論理セクタ番号LSNは"最終のLSN-256"となる)。

【0978】初期化後は、RAM層17Bにコピーされた「第2アンカーポイント」が利用される。

【0979】 [16b] リザーブボリューム記述子シーケンス(図46の467)は、初期化前は、DVD-ROM層17Aに事前に記録されており(その指定先はコピー後のRAM層17Bの論理セクタ番号LSNで指定する);初期化後は、DVD-RAM層17Bにコピーされる(コピー先の論理セクタ番号LSNと一致する)。

【0980】初期化後は、RAM層17Bにコピーされた「リザーブボリューム記述子シーケンス」が利用される。

【0981】図67~図70の説明ではアンカーポイントやボリューム記述子シーケンスをROM層からRAM層へコピーしているが、この発明はこれに限られない。たとえば、アンカーポイントやボリューム記述子シーケンス等をROM層に予め持たず、情報記録再生装置がRAM層を初期化するときに初めて、情報記録再生装置がアンカーポイントやボリューム記述子シーケンス等をRAM層に記録するように構成することは可能である。

【0982】また、別の統合アドレス設定方法として、図62に示すようにROM層の論理セクタ番号LSNのレンジ内にRAM層の論理セクタ番号LSNを挿入したり、逆にRAM層の論理セクタ番号LSNをレンジ内にROM層の論理セクタ番号LSNを挿入すること(図示せず)も可能である。

【0983】この発明の統合アドレス設定方法は、RAM層のみならずROM層も含めた複数情報記録層を持った種々な情報記憶媒体に利用できる。

【0984】この発明を適用可能な情報記憶媒体としては、相変化記録方式を利用したDVD-RAMディスクのみならず、従来の相変化(PD)記録ディスク、光磁気(MO)ディスク、ハードディスク(リムーバブルタイプも含む)あるいは高密度フロッピーディスクが考えられ、さらにはこれら異種タイプの媒体を混合して使用することも考えられる。

120

【0985】たとえば、DVD-ROM/RAMドライ ブおよびハードディスクHDDを備えたパーソナルコン ピュータにおいて、HDDとDVD-RAMディスクに 前述した統合論理セクタ番号LSNを割り振る(たとえ ばLSNの小さなアドレスレンジにHDDを割り当て、 LSNの大きなアドレスレンジにDVD-RAMを割り 当てるなど)。そして、このLSNを用いてHDDとR AMディスクの双方にアクセスできるようにする。この ようにすると、たとえばビデオ編集中に適宜作成される 中間的なデータをHDDへ一時的に記録し、編集後のピ 10 デオデータをDVD-RAMディスクに保管する、とい ったことが1つのシステムソフトウエアの管理下で実行

【0986】以上のようにこの発明は種々なタイプの情 報記憶媒体に適用可能ではあるが、マルチメディア時代 のマーケットデマンドを考えると、大容量でポータビリ ティに優れたDVD-RAMディスクが有望なので、こ の発明の実施形態の説明ではDVD-RAMディスク (あるいはDVD-ROM/RAM多層ディスク)を取 り上げている。

【0987】DVD-RAMディスクのRAM層は、G eSbTeやGeAnTe等の相変化形記録材料で構成 される(図3参照)。この材料は5万~10万回までの 繰り返し記録が保証されているが、それ以上繰り返し記 録を行うと物質移動や金属疲労などの原因により記録後 の再生信号のジッタ量が増大し、エラーが増える。

【0988】1個のAVファイルに相当するAVデータ エリアDA2内の各オブジェクト情報(図18のDA2 2~DA24)の新規記録・変更(オーバーライト)・ 消去が行なわれる毎に、管理領域(制御情報DA21) の書き替えが行なわれる。この書き替え回数が5万~1 0万回を超えると相変化記録のRAM層のエラーが増え 信頼性に乏しくなる。

【0989】そこで、この発明の実施形態では、管理領 域(制御情報DA21)の書き替え回数が5万~10万 回を越えても管理情報が失わないよう工夫されている。 【0990】すなわち、図18に示したように、制御情 報DA21の最初の位置にこの制御情報DA21の書き 替え回数を記録する制御情報書替回数CIRWNs記録 部が配置されている。この制御情報書替回数CIRWN s が所定回数(たとえば安全を見て1万回)を越える と、AVデータエリアDA2内の制御情報DA21の記 録位置が自動的に変更される。

【0991】AVデータエリアDA2内の制御情報DA 21の記録位置は図18に示すようにアンカーポインタ APに記録されている。制御情報DA21の記録位置変 更にともなってアンカーポインタAPの情報も自動的に 変更される。

【0992】図71は、映像情報とその管理領域の書き

チャートは、上述した「制御情報書替回数CIRWNs が所定回数を越えた場合の、制御情報 DA21の記録位 置自動変更」の処理も含んでいる。このフローチャート の処理は、図52の例ではメインCPU111により実 行でき、後述する図84の例ではメインMPU部30に より実行できる。以下ではハードウエアとして図52の 構成が用いられる場合を想定して説明を行なう。

【0993】始めに、たとえばユーザが編集/新規記録 を行うAVファイルを指定する(ステップST16 1)。すると、図18に示すようにAVデータエリアD A2の最初に記録してあるアンカーポインタAPが読み 取られる(ステップST162)。このアンカーポイン タAPから、制御情報DA21が記録してあるアドレス (AVアドレス)が判る。

【0994】こうして判明したアドレスを基に制御情報 DA21の記録位置へのアクセスが行われ(ステップS T163)、そこから制御情報書替回数CIRWNsが 読み取られる(ステップST164)。読み取られたC IRWNsは、アクセスされた記録位置の制御情報DA 20 21とともに、図52のメインメモリ112に取り込ま れる(ステップST165)。

【0995】新たな映像情報の記録または編集作業後の 映像情報の重ね書き(オーバーライト)を行う前に、A VデータエリアDA2内の新規情報の記録場所を決定す る必要がある。

【0996】まず、新たに記録する(または重ね書きを 行なう)新規情報のサイズを調べるとともに、その新規 情報の既記録情報との再生時のつながりをPGC情報

(図32) から調べる(連続再生を保証するため)。こ 30 の調査の結果得られた情報を基に、図18のアロケーシ ョンマップテーブルAMTから、AVデータエリアDA 2内の未記録領域を探す(ステップST166)。

【0997】未記録領域が見つかれば、その領域内で新 規記録情報の記録場所を決定し、決定された場所に、新 規映像情報または編集後の映像情報をビデオオブジェク トDA22として記録する(ステップST167)。

【0998】次にその映像情報に関するセル時間制御情 報CTCIとPGC制御情報PGCCIを作成し、メイ ンメモリ112内の制御情報DA21を変更する (ステ ップST168)。

【0999】ここで、ステップST164で読み取り済 みの制御情報書替回数CIRWNsの値を調べ、制御情 報DA21領域のそれまでの書き替え回数を検査する (ステップST169)。

【1000】制御情報DA21領域の書き替え回数値が 所定の値 (たとえば1万回) 以下の場合には (ステップ ST169ノー)、図52のメインメモリ112内の制 御情報DA21を情報記憶媒体(DVD-RAMディス ク10)上の以前の記録位置に重ね書きする (ステップ 替え方法を説明するフローチャートである。このフロー 50 ST170)。その際、図18の制御情報書替回数CI

RWNsを1つインクリメントする。

【1001】この制御情報DA21はECCブロック単位(AVアドレス単位)で記録されている。上記の処理により情報記憶媒体上に重ね書きすべき制御情報DA21の量が既存の値より若干増加した場合には、重ね書きする制御情報DA21をECCブロック単位(32kバイトの整数倍)で変更(増加)する。こうして変更された制御情報DA21が32kバイトの整数倍に対して不足分する場合は、適量のパディングデータを持つダミーパック(図25参照)を付加して情報記憶媒体上に記録 10する。

【1002】たとえば変更前の制御情報DA21が32kバイトであり、処理後の制御情報DA21が50kバイトであれば、14kバイトのパディングデータを付加して64kバイトの制御情報DA21として、情報記憶媒体上に記録する。

【1003】制御情報DA21領域のそれまでの書き替え回数が所定の値(1万回)を越えていた場合には(ステップST169イエス)、既存の場所(今後エラーが起き易いと推定される場所)とは異なる位置に制御情報 20 DA21を記録する。すなわち、図18のアロケーションマップテーブルAMTからAVデータエリアDA2内の未記録領域を探し(ステップST171)、新しく制御情報DA21を記録する場所を情報記憶媒体(DVDーRAM光ディスク10)上に設定する(ステップST172)。

【1004】そして、新しく設定した位置にメインメモリ112内の制御情報DA21を記録するとともに、図18の制御情報告替回数CIRWNsの値を"1"にリセットする(ステップST173)。その後、アンカー30ポインタAPを書き換えて、新たな制御情報DA21の記録場所(AVアドレス)をアンカーポインタAPに記憶する。

【1005】以上のように構成すれば、所定回数(たとえば1万回)以上管理領域が書き替えられると、情報記憶媒体上の管理領域記録場所が、反復書替していない場所へ自動的に変更される。このため、たとえば相変化記録膜が持つ「オーバーライトの繰り返しによる信頼性低下」の問題を克服できる。

【1006】<連続再生条件の確保方法>映像情報は、従来のコンピュータ情報と異なり、再生時の連続性の保証が必須条件となる。この連続再生を保証する情報としては、特別なフラグや記述文が存在する必要はない。この再生時の連続性を保証する情報は、図18に示したPGC制御情報PGCCI内に記録することができる。具体的には、各セルを連結するPGCの連結方法に所定条件を付加する形で、「再生時の連続性を保証する情報」を組み込むことができる。以下、この所定条件の組み込みについて説明する。

【1007】再生時の連続性を説明するための再生系シ 50 保存量は再び増加する。

122

ステム概念図を図72に示す。情報記憶媒体10に記録されている映像情報は光ヘッド202で読み取られ、バッファメモリ(半導体メモリ)219に一時保管される。外部にはこのバッファメモリ219から読み取られた映像情報が送られる。光ヘッド202からバッファメモリ219へ送られる映像情報の転送レートをここでは物理転送レート(PTR:Physical Transmission Rate)と呼ぶ。またバッファメモリ219から外部に転送される映像情報の転送レートの平均値をシステム転送レート(STR:System Transmission Rate)と名付ける。一般には、物理転送レートPTRとシステム転送レートSTRは異なる値になる。

【1008】情報記憶媒体10上の異なる場所に記録してある情報を順に再生するには、光ヘッド202の集光スポット位置を移動させるアクセス操作が必要となる。大きな移動に対しては光ヘッド202全体を動かす粗アクセスが行なわれ、微少距離の移動にはレーザ集光用の対物レンズ(図示せず)のみを動かす密アクセスが行なわれる。

【1009】アクセス制御を行いながら映像情報を外部に転送する際にバッファメモリ219内に一時的に保存される映像情報量の時間的推移を、図73に示す。

【1010】一般に、システム転送レートSTRより物理転送レートPTRの方が速いので、映像情報再生時間の期間ではバッファメモリ219内に一時的に保存される映像情報量は増加し続ける。一時保管される映像情報量がバッファメモリ219容量に達すると光ヘッド202による再生処理が間欠的に行われ、バッファメモリ219内に一時的に保存される映像情報量はバッファメモリ容量一杯状態(図73の映像情報再生時間内においてグラフの山頂が水平になった部分)のまま推移する。

【1011】続けて情報記憶媒体10上の別位置に記録された映像情報を再生する場合には、光ヘッド202のアクセス処理が実行される。

【1012】光ヘッド202のアクセス期間としては、図73に示すように、粗アクセス時間、密アクセス時間 および情報記憶媒体10回転待ち時間の3種類が必要となる。これらの期間では情報記憶媒体10からの再生が行われないので、その期間の物理転送レートPTRは実質的に"0"の状態になっている。これに対して、外部へ送られる映像情報の平均システム転送レートSTRは不変に保たれるため、バッファメモリ219内の映像情報一時保存量は減少の一途をたどる(図73において、粗アクセス時間、密アクセス時間あるいは回転待ち時間中の右下がりのグラフ)。

【1013】光ヘッド202のアクセスが完了し、情報記憶媒体10からの再生が再開されると(図73において「点」で塗りつぶされた映像情報再生時間のうち面積の小さい方)、バッファメモリ219内の映像情報一時保存量は更び増加する

【1014】この増加勾配は物理転送レートと平均シス テム転送レートとの差分すなわち(物理転送レートPT R) - (平均システム転送レートSTR)で決まる。

【1015】その後、情報記憶媒体10上の再生位置近 傍に再度アクセスする場合には、密アクセスのみでアク セス可能なので、密アクセス時間と回転待ち時間のみが 必要となる(図73の右端の右下がりグラフ)。

【1016】図73のような再生動作において連続再生 を可能にする条件は、「特定期間内のアクセス回数の上 限値」で規定することができる。すなわち、アクセス回 10 数が「特定期間内のアクセス回数上限値」以下の値にな るように、図18のPGC制御情報PGCCIの情報内\*

$$BM/STR (=BM \div STR \mathcal{O} \subset \mathcal{E})$$

の期間でバッファメモリ219内の一時保管映像情報が 枯渇し、連続再生が不可能になる。

【1020】図74の各密アクセス時間をJATi (対 ※

$$BM/STR = \Sigma (JATi+MWTi)$$
 ... (4)

の関係が成り立つ。

【1021】式(4)に対して近似を用い、平均密アク セス時間をJATa、平均回転待ち時間をMWTaとし、 20 【1022】この場合、連続再生を確保するための絶対 バッファメモリ219内の一時保管映像情報が枯渇する までの期間内のアクセス回数をnで表すと、式(4)は★

 $n < BM/(STR \cdot (JATa+MWTa)) \cdots (6)$ 

が必須条件となる。

【1023】式(6)の値を1秒当たりのアクセス回数☆

となる。

【1024】MPEG2を用いた場合の平均システム転 送レートSTRは4Mbps(ビット・パー・セコン 片面1層ディスクの平均回転周期はおよそ35ms(ミ リセコンド)なので、平均回転待ち時間MWTaは、M WTa≒18msとなる。また一般的な情報記録再生装 置ではJATa≒5msになっている。

【1025】パファーメモリ219容量BMの実際例と して、大きいものでは2Mバイト=16Mビットを搭載 しているドライブもあるが、多くのドライブ (情報記録 再生装置)のバッファメモリ容量は、現状では(製品コ ストの兼ね合いから)512kバイト=4Mピット程度 となっている。

【1026】バファーメモリ容量BM=4Mピットとし て計算すると、バッファメモリ219内の一時保管映像 情報が枯渇するまでの最短所要時間は4Mビット/4M bps≒ 1 秒となる。これを式 (6) に当てはめると、  $n < BM/(STR \cdot (JATa + MWTa)) = 1 秒/$ (18ms+5ms) ≒43回になる。

【1027】条件を特定した計算例は上記のような結果 (アクセス回数上限 n ≒ 4 3 回) になるが、装置のバッ ファメモリ容量や平均システム転送レートにより計算結 果は変化するので、式 (5) が連続再生を確保するため 50

\*容、たとえば図51に示すのセル組み合わせが設定され る。

124

【1017】ここで、連続再生を絶対的に不可能にする アクセス回数条件について、図74を用いて説明する。 【1018】最もアクセス頻度の高い場合は、図74の グラフ中央から右よりに示すように映像情報再生時間が 非常に短く、密アクセス時間と回転待ち時間だけが連続 して続く場合になる。この場合には物理転送レートPT Rがどんなに早くても再生連続性の確保が不可能にな

【1019】いま、バッファメモリ219の容量をBM で表すと

... (3)

※物レンズのJump Access Time)、各回転待ち時間をMW Ti (Spindle Motor Wait Time) とすると、図74の例 では

 $\star BM/STR = n \cdot (JATa + MWTa)$ ... (5) のように睿き直すことができる。

条件となる「バッファメモリ219内の一時保管映像情 報が枯渇するまでのアクセス回数n」として

☆Nに書き換えると

 $N=n/(BM/STR) < 1/(JATa+MWTa) \cdots (7)$ 

の必要条件式になる。

【1028】式(5)で求められたアクセス頻度より若 干低いアクセス頻度でアクセスした場合、平均システム ド)前後であり、容量2.6GバイトのDVD-RAM 30 転送レートSTRに比べて大幅に物理転送レートPTR が大きい場合には、連続再生が可能となる。

> 【1029】しかし式(5)の条件を満足するだけで連 続再生が可能になるためには

- 1)物理転送レートPTRが極端に速い;
- 2) 全てのアクセス対象映像情報が互いに近傍位置に配 置され、粗アクセスを行わず密アクセスのみでアクセス が可能;

という前提条件が必要となる。

【1030】そこで、物理転送レートPTRが比較的遅 くても連続再生を保証できる条件を以下に検討する。

【1031】図75に示すように映像情報再生時間とア クセス時間のバランスが取れ、グローバルに見てバッフ ァメモリ219内の一時保管映像情報がほぼ一定に保た れている場合には、バッファメモリ219内の一時保管 映像情報が枯渇することなく外部システムから見た映像 情報再生の連続性が確保される。

【1032】いま、各粗アクセス時間をSATi(対物 レンズのSeek Access Time)、n回アクセス後の平均粗 アクセス時間をSATaとし、各アクセス毎の再生情報 読みとり時間をDRTi(Data Read Time)、n回アク

125

セス後の平均再生情報読みとり時間をDRTa とす

【1033】すると、n回アクセスした場合の全アクセ\*

 $STR \times (\Sigma (SATi + JATi + MWTi))$ 

 $= STR \times n \times (SATa + JATa + MWTa)$ 

となる。

※情報再生した時にバッファメモリ219内に蓄えられる

\*ス期間でのバッファメモリ219から外部へ転送される

【1034】この式 (8) の値とn回アクセスして映像※

映像情報量

データ量は

 $(PTR-STR) \times \Sigma DRTi$ 

 $\Rightarrow$  (PTR-STR)  $\times$  n · DRTa

との間で、 (PTR-STR) × n·DRTa≥STR ★10 ★× n× (SATa+JATa+MWTa) 、すなわち

 $(PTR-STR) \cdot DRTa$ 

 $\geq$  STR · (SATa+JATa+MWTa)

... (10)

の関係がある時に、外部システム側から見た再生映像の 連続性が確保される。 ☆

☆【1035】ここで1秒間の平均アクセス回数をNとす ると

 $1 = N \cdot (DRTa + SATa + JATa + MWTa) \cdots (11)$ 

の関係が成立する。

 $\Phi$ TR/(PTR-STR)

が成り立つので、Nに対して解くと

【1036】式(10)と式(11)から

 $1 / |N \cdot (SATa + JATa + MWTa)| \ge 1 + S \diamond$ 

 $N \le 1 / [1 + STR / (PTR - STR)]$ 

 $\cdot$  (SATa+JATa+MWTa) | ... (12)

が得られる。

【1037】この式(12)のNが、再生映像の連続性 を確保する1秒当たりのアクセス回数上限値になる。

【1038】次に、粗アクセス距離とそれに必要な粗ア クセス時間の関係を検討する。

【1039】図76は、光ヘッドのシーク距離とシーク 時間との関係を説明する図である。

【1040】等加速度αで加減速して目標位置に到達し た場合、光ヘッド202の移動速度が最大になるまでの 時間  $t \max$ までに移動した距離は、図 7.6 から、 $\alpha \cdot t \min 30$  図 7.7 のように(シークエリアの)端から Xo の距離か ax・t max/2となる。そこで、粗アクセスにより移動 した全距離ρは

 $X_0X_0/2L + (L-X_0) \cdot (L-X_0)/2L \cdots (14)$ 

となる。

【1044】この式(14)に対してXoが0からしま L/3

となる。

【1045】いま、図18に示すデータエリアDAに対 応する光ディスク10上の半径幅のうち、例えば半分の 半径幅をAVデータエリアDA2の記録に利用した場合 40 を考える。

【1046】この場合には、式(15)から、平均シー ク距離(平均粗アクセス距離)はデータエリアDAに対 SATa = 200 ms

となる。

【1048】ここで、たとえば前述したようにMWTa ≒18ms、JATa≒5msを計算に使ってみる。す ると、容量2.6GバイトのDVD-RAMディスクで は、PTR=11.08Mbpsである。MPEG2の 平均転送レートがSTR≒4Mbpsの場合には上記の 50 バッファメモリ219に送られてくる。バッファメモリ

 $\rho = \alpha \cdot t \max \cdot t \max$ ... (13) で与えられる。

【1041】式(13)から、粗アクセスに必要な時間 は移動距離の1/2剰(つまり平方根)に比例すること がわかる。

【1042】図17は、光ヘッドの平均シーク距離を求 める方法を説明する図である。

【1043】半径幅Lの領域に映像情報を記録した場合 の平均シーク距離 (平均粗アクセス距離) を検討する。 ら全記録領域までの平均シーク距離は

で移動させた時の平均値を取ると、規格化条件下でXo に対して積分した結果平均シーク距離は

... (15)

応する光ディスク10上の半径幅の1/6になる。

【1047】たとえば、光ヘッド202が記録領域(図 18のデータエリアDA)の最内周から最外周まで移動 (シーク)するのに0.5秒かかった場合には、式(1 3)から、AVデータエリアDA2内での平均シーク時 間(平均粗アクセス時間)は0.5秒の1/6の1/2 剰に比例した値である

... (16)

数値を式(12)に代入するとN≤2.9を得る。

【1049】図78は、記録信号の連続性を説明するた 一めの記録系システム概念図である。

【1050】記録情報は、外部から平均システム転送レ ートSTR (MPEG2ビデオでは4Mbps程度) で 219はレートSTRで送られてきた情報(MPEGビデオデータ等)を一旦保持し、記憶媒体およびそのドライブの種類にあった物理転送レートPRTでもって、保持した情報を光ヘッド202に転送する。

【1051】情報記憶媒体10上の異なる場所に上記情報を順に記録するには、光ヘッド202の集光スポット位置を移動させるアクセス操作が必要となる。大きな移動に対しては光ヘッド202全体を動かす粗アクセスが行なわれ、微少距離の移動にはレーザ集光用の対物レンズ(図示せず)のみを動かす密アクセスが行なわれる。 【1052】<連続記録条件の確保方法>図82は、映像信号の連続記録時におけるアクセス動作等とバッファメモリ内の一時保存量との関係の一例(最もアクセス頻度が高い場合)を説明する図である。

【1053】また、図83は、映像信号の連続記録時におけるアクセス動作等とバッファメモリ内の一時保存量との関係の他例(記録時間とアクセス時間のバランスが取れている場合)を説明する図である。

【1054】図74を参照して説明した「バッファメモリ219上の一時保管映像情報量の枯渇時に連続再生が20不可能になる場合」と異なり、連続記録時には、図82に示すようにバッファメモリ219上の一時保管映像情報量が飽和する。すなわち、図82と図74とを比較すれば分かるように、連続記録条件を満足するアクセス頻度には式(5)を適用することができる。

【1055】また同様に、図83と図75とを比較すれば分かるように、連続記録条件を満足するアクセス頻度については式(10)が適用できる。

【1056】図73~図77および図82~図83を参照して説明した「連続性確保の条件式」に従うことによ 30 り、使用する情報記録再生装置(ドライブ)の特性に関わらず、シームレスな(再生中あるいは記録中に途切れが生じない)連続再生あるいは連続記録を保証できるようになる。

【1057】<アクセス頻度低減方法;編集によるセルの並べ替え>図79は、記録されたAVデータ(映像信号情報)の一部を構成するセルおよび各セルのビデオオブジェクトユニットVOBU配列を例示する図である。【1058】また、図80は、図79の配列において、セル#2が編集され、セル#2の途中(VOBU108

セル# 2が編集され、セル# 2の途中(VOBU108 eの所)でデータが切れた場合を説明する図(VOBU 108 e は再エンコードされる)である。

【1059】さらに、図81は、図80の編集が終わった後に、図79に例示したセル構成、VOBU配列および空き領域の位置がどのように変化しているかを説明する図である。

【1060】前記シームレスな連続再生あるいは連続記録を保証するためには、図18のPGC制御情報PGC CI内のPGC情報(図32、図51)での各セル配置は、式(5)または式(10)の条件を満たすように設 50 128

定される。しかし、たとえば編集作業時のユーザ要求によりアクセス頻度がシームレス保証値よりも多くなる場合には、式(5)または式(10)の条件が満たされるように、再度アクセス頻度低減処理が実行される。以下、この再処理について説明する。

【1061】図79に示すように、最初は セル#1→セル#2→セル#3

の順に再生するように設定されていたと仮定する (この 場合には再生途中でのアクセスは生じない)。

【1062】次に、ユーザが編集作業でセル#2内をセル#2Aとセル#2Bに2分割し(図80)、セル#2A→セル#1→セル#2B→セル#3の順に再生するよう設定したとする。この場合、セル#2A後端からセル#1先端へのアクセス;およびセル#1後端からセル#2B先端へのアクセスの2回分、アクセス回数が増加する。

【1063】このように当該PGC内でアクセス回数が増加した結果、式(5)または式(10)が満足できなくなると、図81のようにセル#2Aを空き領域107へ移動させる。その結果、「セル#2A→セル#1→セル#2B→セル#3」という再生順序を規定した当該PGC内でのアクセス回数は、セル#1後端からセル#2B先端へのアクセスの一回に減少する。

【1064】上記の例のように、式(5)または式(10)が満足できなくなると一部のセルを移動させ(つまり情報記憶媒体10上の記録位置を変更し)、アクセス頻度を低下させる。これにより式(5)または式(10)が満足されるようにして、そのPGCでのシームレスな連続再生あるいは連続記録を保証できる。

【1065】編集によるアクセス回数の増加を上記方法で減らしてもなお式(5)または式(10)が満足されないときは、ユーザは当該PGCのセル構成自体を見直して再構成し、式(5)または式(10)が満足されるようにPGCのセル数および配列(配置)を再構成する。

【1066】図84は、ビデオオブジェクト内で映像情報の並べ替え(編集等)を行った場合の映像〜音声間の同期外れにも対応できるDVDビデオレコーダの構成を説明するブロック図である。

【1067】図84に示すDVDビデオレコーダの装置本体は、大まかにいって、DVD-RAM (DVD-RW) ディスク10またはDVD-Rディスク10を回転駆動し、このディスク10に対して情報の読み書きを実行するディスクドライブ32と、ディスクドライブ32に所定のディスク10を自動供給するもので複数のディスク10を内装できるディスクチェンジャ(またはディスクバック)100と、録画側を構成するエンコーダ部50と、再生側を構成するデコーダ部60と、装置本体の動作を制御するメインMPU部30とで構成されている。

【1068】データプロセサ36は、メインMPU部30の制御に従って、エンコーダ部50からのDVD記録データをディスクドライブ32に供給したり、ディスク10から再生されたDVD再生信号をドライブ32から取り出したり、ディスク10に記録された管理情報を書き換えたり、ディスク10に記録されたデータの削除をしたりする機能を持つことができる。

【1069】データプロセサ36はまた、フォーマッタ56から送られてきたパックを16パック毎にまとめてECCグループとし、そのECCグループにエラー訂正情報をつけてディスクドライブ32へ送る。ただし、ディスクドライブ32がディスク10に対して記録準備ができていない場合には、エラー訂正情報が付加されたECCグループのデータは一時記憶部34へ転送され、データ記録の準備ができるまで一時的に格納される。ディスクドライブ32の記録準備ができた段階で、一時記憶部34に格納されたデータのディスク10への記録が開始される。

【1070】メインMPU部30は、制御プログラム等が書き込まれたROM、およびプログラム実行に必要な 20ワークエリアを提供するRAM、オーディオ情報同期処理部、電話I/FまたはインターネットI/F等を含んでいる。

【1071】このMPU30は、そのROMに格納された制御プログラムに従い、そのRAMをワークエリアとして用いて、後述するオーディオ情報同期処理(図86)その他の処理(図55、図56または図71等)を、実行する。

【1072】メインMPU部30の実行結果のうち、DVDビデオレコーダのユーザに通知すべき内容は、DVDビデオレコーダの表示部(図示せず)に表示され、またはモニタディスプレイ(図52では116)にオンスクリーンディスプレイ(OSD)で表示される。

【1073】 DVDディスク10に対して情報の読み書き (録画および/または再生)を実行する情報記録再生装置部分は、ディスクチェンジャ (ディスクバック)100と、ディスクドライブ32と、一時記憶部34と、データプロセサ36と、システムタイムカウンタ (またはシステムタイムクロック;STC)38とを備えている。

【1074】一時記憶部34は、ディスクドライブ32を介してディスク10に書き込まれるデータ(エンコーダ部50から出力されるデータ)のうちの一定量分をバッファイリングしたり、ディスクドライブ32を介してディスク10から再生されたデータ(デコーダ部60に入力されるデータ)のうちの一定量分をバッファイリングするのに利用される。その意味で、図84の一時記憶部34は図54のメモリ219あるいは図72、図78のバッファメモリ219に相当する機能を持つ。

【1075】たとえば一時記憶部34が4M~8Mバイ

130

トの半導体メモリ (DRAM) で構成されるときは、平均4Mbpsの記録レートでおよそ8~16秒分の記録または再生データのパッファリングが可能である。また、一時記憶部34が16MパイトのEEPROM (フラッシュメモリ) で構成されるときは、平均4Mbpsの記録レートでおよそ32秒の記録または再生データのパッファリングが可能である。さらに、一時記憶部34が100Mパイトの超小型HDD (ハードディスク)で構成されるときは、平均4Mbpsの記録レートで3分以上の記録または再生データのパッファリングが可能となる。

【1076】なお、図84(あるいは図52)では図示しないが、DVDビデオレコーダ(パーソナルコンピュータPC)に外部カードスロットを設けておけば、上記EEPROMはオプションのICカードとして別売できる。また、DVDビデオレコーダに外部ドライブスロットあるいはSCSIインターフェイスを設けておけば、上記HDDもオプションの拡張ドライブとして別売できる。

【1077】ついでながら、図54の実施形態(パーソナルコンピュータPCをソフトウエアでDVDビデオレコーダ化するもの)では、PC自身のハードディスクドライブの空き領域の一部またはメインメモリの一部を、図84の一時記憶部34として利用できる。

【1078】一時記憶部34は、前述した「シームレスな連続再生あるいはシームレスな連続記録」を保証する目的の他に、録画途中でディスク10を使い切ってしまった場合において、ディスク10が新しいディスクに交換されるまでの録画情報を一時記憶しておくことにも利用できる。

【1079】また、一時記憶部34は、ディスクドライブ32として高速ドライブ(2倍速以上)を採用した場合において、一定時間内に通常ドライブより余分に読み出されたデータを一時記憶しておくことにも利用できる。再生時の読み取りデータを一時記憶部34にバッファリングしておけば、振動ショック等で図示しない光ピックアップが読み取りエラーを起こしたときでも、一時記憶部34にバッファリングされた再生データを切り替え使用することによって、再生映像が途切れないようにできる。

【1080】ディスク10に記録される生信号のアナログ信号源としては、VHSビデオやレーザディスクLD等のビデオ再生信号があり、このアナログビデオ信号は図84のAV入力を介してエンコーダ部50に入力される。

【1081】別のアナログ信号源としては通常のアナログTV放送(地上放送あるいは衛星放送)があり、このアナログTV信号は図84のTVチューナからエンコーダ部50に入力される(TVの場合クローズドキャプション等の文字情報がビデオ情報と同時に放送されること

があり、そのような文字情報もエンコーダ部50に入力 されるようになっている)。

【1082】また、ディスク10に記録される生信号の デジタル信号源としては、デジタル放送チューナのデジ タル出力等があり、このデジタルビデオ信号はエンコー ダ部50ヘダイレクトに入力される。

【1083】このデジタルチューナがIEEE1394 インターフェイスまたはSCSIインターフェイスを持 っているときは、その信号ラインはメインMPU部30 に接続される。

【1084】また、DVDビデオのビットストリーム (MPEGエンコードされたビデオを含む) がそのまま デジタル放送され、デジタルチューナがそのデジタル出 力を持っているときは、このビットストリーム出力はエ ンコード済みなので、そのままデータプロセサ36に転 送される。

【1085】なお、デジタルビデオ出力は持たないがデ ジタルオーディオ出力は備えているデジタル機器、たと えばデジタルビデオカセットDVCやデジタルVHSビ デオDVHSについては、そのアナログビデオ出力は上 20 記AV入力に接続され、そのデジタルオーディオ出力 は、サンプルレートコンバータSRCを介してエンコー ダ部50に供給される。このSRCは、たとえばサンプ リング周波数が44.1kHzのデジタルオーディオ信 号をサンプリング周波数が48kHzのデジタルオーデ イオ信号に変換するものである。

【1086】また、図84では信号線を省略している が、パーソナルコンピュータPCがDVDビデオフォー マットのデジタルビデオ信号を出力できる場合は、その デジタルビデオ信号はエンコーダ部50ヘダイレクトに 30 \ 入力できる。

【1087】デジタル入力のオーディオ信号源(デジタ ルチューナ、DVC、DVHS、PC等) は全てメイン MPU部30に接続される。これは、後述する「オーデ イオ同期処理」に使用するためである。

【1088】メインMPU部30がディスクチェンジャ (ディスクパック) 100、ディスクドライブ32、デ ータプロセサ36、エンコーダ部50および/またはデ コーダ部60を制御するタイミングは、STC38から の時間データに基づいて、実行することができる (録画 40 ・再生の動作は、通常はSTC38からのタイムクロッ クに同期して実行されるが、それ以外の処理は、STC 38とは独立したタイミングで実行されてもよい)。

【1089】ディスクドライブ32を介してディスク1 0から再生されたDVDデジタル再生信号は、データプ ロセサ36を介してデコーダ部60に入力される。詳細 は図85を用いて後述するが、デコーダ部60は入力さ れたDVDデジタル再生信号から主映像ビデオ信号をデ コードするビデオデコーダと、この再生信号から副映像 信号を再生する副映像デコーダと、この再生信号からオ 50 利用するメモリ59を備えている。

132

ーディオ信号を再生するオーディオデコーダと、デコー ドされた主映像にデコードされた副映像を合成するビデ オプロセサと、ビデオ信号とオーディオ信号間あるいは マルチチャネルオーディオ信号のチャネル間のタイミン グずれを修正する手段(基準クロック発生部)が含まれ ている。

【1090】デコーダ部60でデコードされたビデオ信 号(主映像+副映像)はビデオミキサ602に供給され る。ビデオミキサ602へは、メインMPU部30か 10 ら、適宜、縮小画像/サムネールピクチャ (図18また は図47参照)やテキストデータが供給される。この縮 小画像(および/またはテキスト)はフレームメモリ6 04上でデコードされたビデオ信号に適宜合成され、録 画内容の検索等に利用されるビジュアルメニュー(ユー ザメニュー)が生成される。

【1091】ユーザメニュー用の縮小画像をモニタ (図 示せず)に表示するときには、別ファイルとして保存し ておいた縮小画像用ファイルをストリームパックとして 流し、フレームメモリ604に表示位置(X.Y座標 値)を指定して表示させる。このとき、もし、テキスト データなどがある場合には、キャラクタROM (または 漢字ROM)などを使用して、テキストを縮小画像の下 . に表示させることができる。

【1092】このビジュアルメニュー(ユーザメニュ ー)を適宜含むデジタルビデオ信号が、デジタルビデオ I/Fを介して図84の装置外部に出力される。また、 このビジュアルメニューを適宜含むデジタルビデオ信号 が、ビデオDACを介してアナログビデオ信号となっ て、外部のアナログモニタ(AV入力付のTV)に送ら

【1093】なお、ユーザメニュー用縮小画像のデータ を上述した別ファイルとせずに、別のビデオパックデー タとして、記録データ中に挿入することも考えられる。 すなわち、DVDビデオフォーマットでは主映像として はストリーム番号を0番(ストリームID=OEOh)と 規定してるたが、さらに縮小画像用にストリーム番号を 1番(ストリームID=OE1h)と規定し、多重するこ とも可能である。こうして多重されたストリーム番号 「1」の縮小画像は、メニュー編集処理時に使用される 元データとなる。

【1094】図85は、図84の構成におけるエンコー ダ部50およびデコーダ部60の内部構成を説明するブ ロック図である。

【1095】エンコーダ部50は、ADC(アナログ・ デジタル変換器)52と、ビデオエンコーダ53と、オ ーディオエンコーダ54と、副映像エンコーダ55と、 フォーマッタ56と、バッファメモリ57と、縮小画像 (サムネールピクチャ) 用のフレームメモリ51と、縮 小ビデオエンコーダ58と、縮小画像のエンコード時に

【1096】ADC52には、図84のAV入力からの 外部アナログビデオ信号+外部アナログオーディオ信 号、あるいはTVチューナからのアナログTV信号+ア ナログ音声信号が入力される。このADC52は、入力 されたアナログビデオ信号を、たとえばサンプリング周 波数13.5MHz、量子化ビット数8ビットでデジタ ル化する。(すなわち、輝度成分Y、色差成分Cr(ま たはY-R) および色差成分Cb (またはY-B) それ ぞれが、8ビットで量子化される。)

同様に、ADC52は、入力されたアナログオーディオ 信号を、たとえばサンプリング周波数48kHz、量子 化ビット数16ビットでデジタル化する。

【1097】なお、ADC52にアナログビデオ信号お よびデジタルオーディオ信号が入力されるときは、AD C52はデジタルオーディオ信号だけをスルーパスさせ る。(デジタルオーディオ信号の内容は改変せず、デジ タル信号に付随するジッタだけを低減させる処理、ある いはサンプリングレートや量子化ビット数を変更する処 理等は行っても良い)。

【1098】一方、ADC52にデジタルビデオ信号お 20 よびデジタルオーディオ信号が入力されるときは、AD C52はデジタルビデオ信号およびデジタルオーディオ 信号をともにスルーパスさせる(これらのデジタル信号 に対しても、内容は改変することなく、ジッタ低減処理 やサンプリングレート変更処理等は行っても良い)。

【1099】ADC52からのデジタルビデオ信号成分 は、ビデオエンコーダ53を介してフォーマッタ56に 送られる。また、ADC52からのデジタルオーディオ 信号成分は、オーディオエンコーダ54を介してフォー マッタ56に送られる。

【1100】ビデオエンコーダ53は、入力されたデジ タルビデオ信号を、MPEG2またはMPEG1規格に 基づき、可変ビットレートで圧縮されたデジタル信号に 変換する機能を持つ。

【1101】また、オーディオエンコーダ54は、入力 されたデジタルオーディオ信号を、MPEGまたはAC - 3 規格に基づき、固定ビットレートで圧縮されたデジ タル信号(またはリニア P C M の デジタル信号) に変換 する機能を持つ。

た場合、あるいはDVDビデオ信号 (デジタルビットス トリーム)が放送されそれがデジタルチューナで受信さ れた場合は、DVDビデオ信号中の副映像信号成分 (副 映像パック)が、副映像エンコーダ55に送られる。あ るいは、副映像信号の独立出力端子付DVDビデオプレ ーヤがあれば、その副映像出力端子から副映像信号成分 をから取り出すことができる。副映像エンコーダ55に 入力された副映像データは、所定の信号形態にアレンジ されて、フォーマッタ56に送られる。

134

モリ57をワークエリアとして使用しながら、入力され たビデオ信号、オーディオ信号、副映像信号等に対して 所定の信号処理を行い、所定のフォーマット (ファイル 構造)に合致した記録データをデータプロセサ36に出 力する。

【1104】すなわち、各エンコーダ (53~55) は、入力されたそれぞれの信号(ビデオ、オーディオ、 副映像)を圧縮してパケット化する。(ただし、各パケ ットは、パック化した時に1パックあたり2048バイ トになるように切り分けられてパケット化される。)圧 縮されたこれらの信号は、フォーマッタ56に入力され る。ここで、フォーマッタ56は、必要に応じて、ST C38からのタイマ値に従って各パケットのプレゼンテ ーションタイムスタンプPTSおよびデコードタイムス タンプDTSを決定し記録する。

【1105】ただし、ユーザメニューに利用される縮小 画像のパケットは、縮小画像蓄積用のメモリ59へ転送 され、そこに一時保存される。この縮小画像のパケット データに関しては、録画終了後、別ファイルとして記録 される。ユーザメニューにおける縮小画像の大きさは、 たとえば144画素x96画素程度に選ばれる。

【1106】なお、縮小画像の圧縮フォーマットとして は主映像と同じMPEG2圧縮を使用できるが、他の圧 縮方式でもかまわない。たとえば、JPEG圧縮、ラン レングス圧縮(パレット256色:256色の減色化が 必要)、TIFFフォーマット、PICTフォーマット などの圧縮方式が利用可能である。

【1107】フォーマッタ56は、バッファメモリ57 へパケットデータを一時保存し、その後、入力された各 30 パケットデータをパック化して、MPEGのGOP毎に ミキシングし、データプロセサ36へ転送する。

【1108】ここで、データプロセサ36へ転送される 記録データを作成するための標準的なエンコード処理内 容を簡単に説明しておく。

【1109】エンコーダ部50においてエンコード処理 が開始されると、ビデオ (主映像) データおよびオーデ イオデータのエンコードにあたって必要なパラメータが 設定される。次に、設定されたパラメータを利用して主 映像データがプリエンコードされ、設定された平均転送 【1102】DVDビデオ信号がAV入力から入力され 40 レート (記録レート) に最適な符号量の分配が計算され る。こうしてプリエンコードで得られた符号量分配に基 づき、主映像のエンコードが実行される。このとき、オ ーディオデータのエンコードも同時に実行される。

【1110】プリエンコードの結果、データ圧縮量が不 十分な場合(録画しようとするDVD-RAMディスク またはDVD-Rディスクに希望のビデオプログラムが 収まり切らない場合)、再度プリエンコードする機会を 持てるなら(たとえば録画のソースがビデオテープある) いはビデオディスクなどの反復再生可能なソースであれ 【1103】そして、フォーマッタ56は、バッファメ 50 ば)、主映像データの部分的な再エンコードが実行さ

れ、再エンコードした部分の主映像データがそれ以前に プリエンコードした主映像データ部分と置換される。こ のような一連の処理によって、主映像データおよびオー ディオデータがエンコードされ、記録に必要な平均ビッ トレートの値が、大幅に低減される。

【1111】同様に、副映像データをエンコードするに 必要なパラメータが設定され、エンコードされた副映像 データが作成される。

【1112】以上のようにしてエンコードされた主映像データ、オーディオデータおよび副映像データが組み合 10 わされて、録画用のデータ構造に変換される。すなわち、図19または図51に示すようなプログラムチェーンPGCを形成するセルの構成、主映像、副映像およびオーディオの属性等が設定され(これらの属性情報の一部は、各データをエンコードする時に得られた情報が利用される)、種々な情報を含めた情報管理テーブル情報が作成される。

【1113】エンコードされた主映像データ、オーディオデータおよび副映像データは、図24に示すような一定サイズ(2048バイト)のパックに細分化される。これらのパックには、前述した「32kバイトアライン」が実現されるように、ダミーパック(図25)が適宜挿入される。

【1114】ダミーパック以外のパック内には、適宜、PTS(プレゼンテーションタイムスタンプ;図24参照)、DTS(デコードタイムスタンプ)等のタイムスタンプが記述される。副映像のPTSについては、同じ再生時間帯の主映像データあるいはオーディオデータのPTSより任意に遅延させた時間を記述することができる。

【1115】そして、各データのタイムコード順に再生可能なように、VOBU単位で各データセルが配置されて、図19に示すような複数セルで構成されるVOBSが、ビデオオブジェクトDA22としてフォーマットされる。

【1116】なお、DVDビデオプレーヤからDVD再生信号をデジタルコピーする場合は、上記セル、プログラムチェーン、管理テーブル、タイムスタンプ等の内容は初めから決まっているので、これらを改めて作成する必要はない。(ただし、DVD再生信号をデジタルコピーグを構成するには、電子すかしその他の著作権保護手段が講じられている必要がある。) (再生キーのオン等は、データプロセサンス (統合論理となってきるようにDVDビデオレコーダを構成するには、電子すかしその他の著作権保護手段が講じられている必要がある。)

図85のデコーダ部60は、図84のメインMPU部30から送られてくるオーディオ同期信号A-SYNCによりシンク・ロックされた基準クロックを発生する基準クロック発生部61と、図24に示すような構造を持つ再生データから各パックを分離して取り出すセパレータ62と、パック分離その他の信号処理実行時に使用するメモリ63と、セパレータ62で分離された主映像デー

136

タ(ビデオバックの内容)をデコードするビデオデコーダ64と、セパレータ62で分離された副映像データ(副映像パックの内容)をデコードする副映像デコーダ65と、ビデオデコーダ64からのビデオデータに副映像デコーダ65からの副映像データを適宜合成し、主映像デコーダ65からの副映像データを適宜合成し、主映像を重ねて出力するビデオプロセサ66と、セパレータ62で分離されたオーディオデータ(オーディオバックの内容)を基準クロック発生部61からの基準クロックのタイミングでデコードするオーディオデコーダ68からのデジタルオーディオ信号を外部に出力するアジタルオーディオ信号をアナログオーディオ信号に変換して外部に出力するDACとで、構成されている。

【1117】このDACからのアナログオーディオ信号は、図示しない外部コンポーネント (2チャネル~6チャネルのマルチチャネルステレオ装置) に供給される。

【1118】ここで、上記オーディオ同期信号A-SYNCは、図24のVOBU単位でオーディオ信号の同期をとるためのものである。図84のメインMPU部30は、デジタル入力機器から送られてくるデジタルオーディオ信号が図24の構成を含む場合において、各VOBUの先頭にオーディオ同期用のパック(SNV\_PCK;図示せず)が設けられておれば、このオーディオ同期用パックを検出することで、オーディオ同期信号A-SYNCを生成できる。

【1119】あるいは、図84のメインMPU部30 は、オーディオパッックに含まれるプレゼンテーション タイムスタンプPTS(図24)を検出し、検出したP TSの情報を用いて上記オーディオ同期信号A-SYN Cを生成させることもできる。

【1120】図84および図85の構成において、再生時のデータ処理は、以下のようになる。

【1121】まず、ユーザ操作によって再生開始命令 (再生キーのオン等)を受けると、メインMPU部30 は、データプロセサ36を介して、ディスクドライブ3 2からディスク10の管理領域を読み込み、再生するア ドレス(統合論理セクタ番号LSNを用いたアドレスに 対応)を決定する。

【1122】次に、メインMPU部30は、ディスクドライブ32に先ほど決定された再生データのアドレスおよびリード命令を送る。

【1123】ディスクドライブ32内の図示しないMPU(図54の制御部220に対応)は、送られてきた命令に従って、ディスク10よりセクタデータを読み出し、データプロセサ36でエラー訂正を行い、パックデータの形にして、デコーダ部60へ出力する。

62と、パック分離その他の信号処理実行時に使用する 【1124】 デコーダ部 60 の内部では、読み出されたメモリ 63 と、セパレータ 62 で分離された主映像デー 50 パックデータをパケット化する。そして、データの目的

に応じて、ビデオパケットデータ(MPEGビデオデー タ) はビデオデコーダ64へ転送し、オーディオパケッ トデータはオーディオデコーダ68へ転送し、副映像パ ケットデータは副映像デコーダ65へ転送する。

・【1125】上記各パケットデータの転送開始時に、プ レゼンテーションタイムスタンプPTSがSTC38に ロードされる。その後、デコーダ部60内の各デコーダ は、パケットデータ内のPTSの値に同期して (PTS とSTCの値を比較しながら)再生処理を行い、図示し ないモニタTVに音声・字幕付きの動画を出力する。

【1126】前述したAVアドレスの設定をすることに より、多連ディスクパック(図84のディスクチェンジ ャ100)内に挿入された複数のDVD-ROMおよび /またはDVD-RAMディスク内の映像情報をAVフ ァイルの一部として取り込むことが可能となる。

【1127】D V D ビデオ (D V D - R O M) ディスク ではファイルエントリとしてビデオオブジェクトの記録 .位置が論理ブロック番号で設定されているが、図18に 示したアドレス変換テーブルACTを用いることによ り、この論理プロック番号をAVアドレスに変換するこ とができる。このアドレス変換テーブルACTでは、個 々の論理ブロック番号とAVアドレスが組になってテー ブル上に記述されている。

【1128】図86は、図84および図86のハードウ エア(DVDビデオレコーダ)における映像〜音声間の 同期処理を説明するフローチャートである。

【1129】TVチューナーもしくはVTRやカメラレ コーダーなどAV入力からの映像信号はADC52でデ ジタル信号に変換される(ステップST200)。

【1130】変換されたデジタル信号は、ビデオ情報、 オーディオ情報に分けられ、ビデオエンコーダー53、 オーディオエンコード54で別々にエンコードされる。 クローズドキャプション情報や文字多重放送の多重文字 部で送られてきた情報は、副映像エンコーダ55で副映 像としてエンコードされる。それぞれエンコードされた 情報は、フォーマッタ56で2048バイト単位のビデ オパック、オーディオパック、副映像パック中に組み込 まれ、図24のように32kバイトの整数倍サイズを持 つVOBUを単位として、配置される (ステップST2 02)。

【1131】このとき、フォーマッタ56において、 「VOBUの先頭のIピクチャ表示開始時刻でのオーデ ィオ情報サンプル位置が、ビデオパックの位置を基準と して、何個後ろの(あるいは何個前の)オーディオパッ ク内の何番目のサンプル位置にあるか」の情報が抽出さ れる (ステップST204A)。

【11.32】こうして抽出されたオーディオ情報サンプ ル位置情報は、図84のメインMPU部30に送られ る。

138

期処理部は、送られてきたオーディオ情報サンプル位置 情報に基づいて、前記オーディオ同期信号AISYNC の元になるプレゼンテーションタイムスタンプPTSあ るいは同期用ナビゲーションパックSNV\_\_PCK (図 示せず)を生成させる信号を、フォーマッタ56に返 す。

【1134】フォーマッタ56は、エンコードされたビ デオ情報、副映像情報およびオーディオ情報とともに、 上記オーディオ同期信号A-SYNCの元になる情報 (PTSあるいはSNV\_PCK)を含めて、図24に 示すようなVOBUの情報をデータプロセサ36に送 る。その後継続して実行される「オーディオ情報サンプ ル位置情報抽出ステップST204A」と並行して、デ ータプロセサ36は、図24に示すようなVOBU情報 からなるビデオオブジェクトDA22を、ディスク10 の指定されたアドレス (AVアドレス) に記録する (ス テップST204B)。

【1135】この記録の進行にともなって、ディスクド ライプ32からメインMPU部30には、記録に使用さ れたアドレス情報 (論理セクタ番号LSN) が返されて いる。メインMPU部30は、返されたアドレス情報お よび図29のアドレス~セクタ対応関係に基づいて、デ ィスク10上の記録位置(例えば記録されたあるVOB Uの先頭のIピクチャ表示開始時刻でのオーディオ情報 サンプルがディスク10上のどの物理セクタ番号PSN 位置に対応するか)を、算出する。この算出結果は、後 のステップST208で利用される。

【1136】上記ディスク10上の記録位置(VOBU の先頭のIピクチャ表示開始時刻でのオーディオ情報サ 30 ンプルがディスク10上のどの物理セクタ番号PSN位 置に対応するか)は、図27のオーディオ同期情報に含 まれる「Iピクチャオーディオ位置#1、#2、…」に 対応する。すなわち、図27のIピクチャオーディオ位 置Iピクチャ開始時刻と同時刻のオーディオパックが含 まれるECCプロックの、VOBU先頭からの差分アド レス値が、1バイトで記録されている。この1バイトの うち、最上位の1ビットで、オーディオサンプル位置が VOBU先頭から後方にあるのか前方にあるのかを識別 している。具体的には、

40 最上位 1 bit = 0:後方にある 最上位 1 bit = 1:前方にある とする。

> 【1137】前記ビデオオブジェクトDA22のディス ク10への記録は、記録終了の入力があるまで(たとえ ば、ユーザが記録停止を指示するまで、あるいはディス ク10の空き領域を使い切ってしまうまで) 継続される (ステップST206ノー; ST200~ST204A /ST204B)。

【1138】記録終了入力があれば(ステップST20 【1133】メインMPU部30内のオーディオ情報同 50 6イエス) 記録終了アドレス (ディスク10上の物理セ クタ番号 PSN)、記録日時等の記録に関する情報がディスク 10 の管理領域(制御情報 DA21)に書き込まれる(ステップ ST208)。その際、管理領域の書込にともなって、図 18 の制御情報書替回数 CIRWNs が 1 つインクリメントされる。

【1139】なお、Iピクチャ開始時刻と同時刻のオーディオサンプル位置のECCブロック内サンプル番号を全オーディオパックの連番で計数した値は、図27のオーディオ同期情報に含まれる「Iピクチャ開始オーディオサンプル番号#1、#2、…」として、管理領域(制 10 御情報DA21)に書き込まれる(ステップST208)。

【1140】なお、ディスク10の記録位置の表現は、AVアドレスに限られない。論理プロック番号、論理セクタ番号あるいは物理セクタ番号を用いて「ディスク10の記録位置」を表現することもできる。

【1141】 <図27のオーディオ同期情報を含むセルの編集処理>いま、図79のようにディスク10上でセル#1、セル#2、セル#3の順で記録情報が並んでいたものに対し、図80のようにセル#2の途中でセル#2Aとセル#2Bに分割し、図81のようにセル#2Aを空き領域91へ移動させ、

セル#  $2A \rightarrow$ セル#  $1 \rightarrow$ セル#  $2B \rightarrow$ セル# 3の順で再生可能にする場合を考えてみる。

【1142】この場合VOBU108eは再エンコードされVOBU108pとVOBU108qに分けられる。その際、メインMPU部30内のオーディオ情報同期処理部は、ディスク10から、Iピクチャオーディオ位置(図27)と、Iピクチャ開始オーディオサンプル番号(図27)とから、移動されるセル#2Aに含まれ 30るオーディオパックの位置を探す。

【1143】もしセル#2Aに含まれるオーディオパックがVOBU108cかVOBU108q内にある場合には、その中から該当するオーディオパックを取り込みVOBU108p内に埋め込む。

【1144】この埋め込みは、そのVOBUに余分な(意味のある記録データを持たない) ダミーパックがある場合には、そこに対して行う。このようなダミーパックがない場合には、フォーマットの再配列、場合によっては再エンコードを行う。

【1145】一方、セル#2A内にVOBU108cまたはVOBU108fで使用するオーディオバックが含まれる場合には、セル#2A内から該当するオーディオパックをコピーし、VOBU108cまたはVOBU108f内に挿入(埋込)処理する。このとき、挿入(埋込)処理結果を、再度Iピクチャオーディオ位置およびIピクチャ開始オーディオサンブル番号(図27)に記録する。この一連の操作制御は、図84のメインMPU部30のオーディオ情報同期処理部が主だって実行する。

140

【1146】次に、上述のように再生・編集後の映像情報に対してCDやMDなどのデジタルオーディオ情報記憶媒体から既存のオーディオ情報をバックグランドミュージックとして重ね記録する場合について説明する。

【1147】オーディオ情報の重ね記録方法としては、 図24、図25のダミーパックをオーディオパックとし て置換する方法と、重ね記録されるオーディオ情報を再 エンコードする方法がある。

【1148】ところで、オーディオ情報のサンプリング 周波数(32kHzや44.1kHz)は録画した映像 情報内のオーディオ情報サンプリング周波数(48kHzや96kHz)と異なる場合がある。また公称周波数 は同じでも基準周波数を発生する水晶発振器の周波数 動(周波数のゆれ)は通常±0.1%程度ある。従って、デジタルオーディオ情報をデジタルダビングする場合には、異なる基準周波数で記録が行われることになる。このことから、元から記録されていたオーディオ情報の周波数で再生を行なうと同期ずれが生じてしまう。

【1149】その弊害を防ぐため、この発明では、オプションでデジタルダビングしたオーディオ情報に対する VOBU毎のオーディオサンプル数を管理領域(図18 の制御情報DA21)内に記録できるようにしている。

【1150】すなわち、図27のオーディオ同期情報フラグ#1、#2、…に示すように、オーディオストリーム番号毎にオーディオ同期データを記録するかどうかのフラグを立て、該当する(フラグが立っている)場合には図27のオーディオ同期情報によりVOBU毎のオーディオサンプル数を2バイトで表現している。

【1151】このオーディオ同期情報は、たとえば次のようにして記録することができる。

【1152】まず、重ね記録するオーディオ情報を図85のフォーマッタ56で2048バイト毎のオーディオパックに変換する。このとき、図84のメインMPU部30内のオーディオ情報同期処理部から、該当するビデオ情報のVOBU毎の所要時間が通知される。その時間情報に基づき、フォーマッタ56でVOBU毎のオーディオサンプル数をオーディオ情報同期処理部に回答する。

【1153】そして、重ね記録するオーディオ情報が含まれたオーディオパックをダミーパックと置換して、ビデオオブジェクトDA22が完成する。

【1154】その後フォーマッタ56からメインMPU部30に回答されたVOBU毎のオーディオサンプル数を基に、オーディオ情報同期処理部により、ディスク10上のオーディオ同期情報に必要な情報の記録が行われる。

【1155】再生時には、メインMPU部30のオーディオ情報同期処理部がディスク10上のオーディオ同期情報を読み取り、VOBU毎のオーディオサンプル数を「オーディオ同期信号A-SYNC」の形で、基準クロ

ック発生部61に送る。その情報(A-SYNC)に合わせた(シンク・ロックした)周波数の基準クロックを基準クロック発生部61で発生し、その基準クロックの周波数に合わせて、オーディオデコーダ68がビデオ情報に同期して、後挿入されたオーディオ情報(重ね記録するオーディオ情報)を再生する。

【1156】以上により、ビデオ情報と同期ずれのない オーディオ再生が可能になる。

【1157】なお、上記説明ではオーディオサンプル数をVOBU単位で記録しているが、それに限らずセル単 10位、あるいはビデオフレーム単位で記録することもできる。

【1158】以上述べた実施の形態によれば、以下の効果が得られる:

- A) 音声信号の同期を保証した映像情報の並べ替えが可能;
- B) ビデオの録画後にデジタルダビング処理によりオリジナルとは異なるサンプル周波数で生成されたデジタルオーディオ情報をダミーパック等に記録した場合も、同期のとれたオーディオ情報の再生が可能;
- c) AC-3等のマルチチャネルオーディオ情報の並べ替えや異なるサンプリング周波数のデジタルソースからのミックスダウン編集が行われた場合においても、各チャネル間の同期を保証できる。

【1159】なお、上記説明は情報記憶媒体としてDVD-RAMディスクを例に取って説明したが、この発明のシステム(とくに32kバイトのECCプロック単位でアドレス管理および交替処理を行なうシステム)は、情報記憶媒体として光磁気ディスク(MOディスク)を用いファイルシステムにパーソナルコンピュータ用のファイルアロケーションテーブル(FAT)を用いたシステムにも、応用できる。

【1160】また、システムソフトウエア (またはオペ レーティングシステム) としてはMSウインドウズの他  $\c c \ N \ T \ F \ S \ (New \ Technology \ File \ System)$  , U N I X 等を利用することもできる。具体的には、ROM/RA M2層ディスクにおいてROM層17Aに必要なシステ ムソフトウエア (1種または複数種類のオペレーティン グシステムOS)・アプリケーションソフトウエアなど をエンボス記録しておき、記録・再生処理時にROM層 40 17AのOSおよびディレクトリ情報をパーソナルコン ピュータのメインメモリにコピーし、アプリケーション ソフトウエアはROM層17Aに格納されたものをその まま利用するようにできる。その場合、アプリケーショ ンソフトウエアをメインメモリに展開しないで済む分メ インメモリの空間を広げることができる。このようなパ ーソナルコンピュータシステムにおいて、ROM層17 Aのアプリケーションソフトウエアによる作業結果 (編 集されたビデオなど)を保存する大容量記憶媒体とし て、同じディスク10のRAM層17Bを利用すること 50 方法を説明する図。

ができる。 【1161】さらに、AVデータ

【1161】さらに、AVデータ構造のアドレスとして ECCプロック単位のAVアドレスを取り上げ説明して きたが、AVデータのアドレス管理を、たとえば204 8パイト単位のアドレスで行うこともできる。

142

### [1162]

【発明の効果】 (1) オーディオ同期情報を持たせることで、種々な音源(種々なサンプルレートで作成されたデジタル音源)からダミーパック等を利用してアフターレコーディングを行っても(つまり元々オーディオパックに記録されている音源のサンプルレートとアフターレコーディングでダミーパックに記録した別音源の元のサンプルレートが異なっていても)、ビデオパックに記録されているビデオ信号とアフターレコーディングされたオーディオ信号との同期(再生タイミング)がずれることを防止できる。

【1163】(2)オーディオ同期情報を持たせることで、種々な音源(種々なサンプルレートで作成されたデジタル音源)を利用してマルチチャネルレコーディングを行っても、各チャネル間のオーディオ信号の同期(再生タイミング)がずれることを防止できる。

【1164】(3)編集処理等によりビデオ情報内の特定領域が情報記憶媒体上で並び替えられ記録し直されても、音切れ等を生ずることなく連続した音声信号再生が可能になる。

#### 【図面の簡単な説明】

【図1】記録再生可能な光ディスク (DVD-RAM/ DVD-RWディスク等) の構造を説明する斜視図。

情報記憶媒体として光磁気ディスク (MOディスク) を 【図2】図1の2層光ディスクのデータ記録領域とそこ 用いファイルシステムにパーソナルコンピュータ用のフ 30 に記録されるデータの記録トラックとの対応関係を説明 アイルアロケーションテーブル (FAT) を用いたシス する図。

【図3】図1の2層光ディスクのROM層およびRAM 層の構成を例示する断面図。

【図4】図1の2層光ディスクのRAM層のデータトラック構成例(交替処理用スペアエリアが各ユーザエリアの外側に配置された構成)を説明する図。

【図5】図1の2層光ディスクのRAM層のレイアウトを説明する図。

【図6】図5のレイアウトにおけるリードイン部分およびリードアウト部分の詳細を説明する図。

【図7】図5のレイアウトにおけるデータエリア部分の 詳細を説明する図。

【図8】図5のデータエリア部分に含まれるセクタの構造を説明する図。

【図9】図5のデータエリア部分に含まれる情報の記録 単位(ECC単位)を説明する図。

【図10】図5のデータエリア内でのゾーンとグループ (図7参照)との関係を説明する図。

【図11】図5のデータエリア内での論理セクタの設定 方法を説明する図。

【図12】図5のデータエリア内での交替処理 (スリッ ピング交替法)を説明する図。

【図13】図5のデータエリア内での他の交替処理 (ス キッピング交替法)を説明する図。

【図14】図5のデータエリア内でのさらに他の交替処 理(リニア交替法)を説明する図。

【図15】図1の2層光ディスクにおけるROM層の論 理セクタの設定方法を説明する図。

【図16】図1の2層光ディスクにおけるROM層/R AM層の論理セクタの設定方法を説明する図。

【図17】図1の2層光ディスクにおけるROM層/R AM層の論理セクタの他の設定方法を説明する図。

【図18】図2の光ディスクに記録される情報の階層構 造の一例を説明する図。

【図19】図18の情報階層構造においてビデオオブジ エクトのセル構成とプログラムチェーンPGCとの対応 例を例示する図。

【図20】図2の光ディスクのリードインエリアに記録 される情報 (表現方法は違うが図6のリードインデータ 部分に対応)の論理構造を説明する図。

【図21】図20のリードインエリアに記録される制御 データの内容の一例を説明する図。

【図22】図21の制御データに含まれる物理フォーマ ット情報(表現方法は違うが図6の制御データゾーン部 分に対応)の内容の一例を説明する図。

【図23】図2の光ディスク等に記録される情報(デー タファイル)のディレクトリ構造の一例を説明する図。

【図24】図19のビデオオブジェクトDA22に含ま れる情報の階層構造を例示する図。

【図25】図24のダミーパックの内容を説明する図。

【図26】図18のセル時間情報CTIの内部構造を説 明する図。

【図27】図26のVOBU情報の内部構造を説明する 図。

【図28】図26の欠陥情報に関連して欠陥の種類(先 天的欠陥と後天的欠陥)を説明する図。

【図29】図23のビデオRAMファイルに含まれるA Vファイルのアドレスと図2の光ディスクの論理ブロッ ク番号・論理セクタ番号・物理セクタ番号との対応関係 を説明する図。

【図30】図2の光ディスクに欠陥が発生した場合のA Vアドレスの設定とエクステント (ECCデータの集合 体)記述子の記述方法を説明する図。

【図31】各種エクステント記述子(集合体記述子)の 対応関係を説明する図。

【図32】図18の制御情報DA21に含まれる情報の 階層構造を例示する図。

【図33】図26のセルデータエクステント記述子(セ ルデータ集合体記述子)の表現方法を説明する図。

144

トVOBUの境界位置とこのセル内のデータを構成する ECCブロック (16セクタ32kバイト) の境界位置 とがずれる場合を説明する図。

【図35】図24のセル内のビデオオブジェクトユニッ トVOBUの境界位置とこのセル内のデータを構成する ECCプロック(16セクタ32kバイト)の境界位置 とが一致する場合を説明する図。

【図36】図2の光ディスクに記録される情報を扱う情 報処理機器 (たとえばパーソナルコンピュータ) 内での 10 システム階層と個々の管理対象情報との関係を説明する 図。

【図37】図23の階層ファイルシステム構造と情報記 憶媒体に記録された情報内容との間の基本的な関係を説 明する図。

【図38】情報記憶媒体上の連続セクタ集合体 (エクス テント)の記録位置を表示するロングアロケーション記 述子の記述内容を説明する図。

【図39】情報記憶媒体上の連続セクタ集合体 (エクス テント)の記録位置を表示するショートアロケーション 20 記述子の記述内容を説明する図。

【図40】情報記憶媒体上の未記録連続セクタ集合体 (未記録エクステント)を検索するものでスペースエン トリとして使用される記述文の内容を説明する図。

【図41】図23または図37のように階層構造を持っ たファイル構造内で、指定されたファイルの記録位置を 表示するファイルエントリの記述内容の一部を抜粋して 説明する図。

【図42】図23または図37のように階層構造を持っ たファイル構造内で、ファイル(ルートディレクトリ、 30 サブディレクトリ、ファイルデータ等)の情報を記述す るファイルID記述子の一部を抜粋して説明する図。

【図43】図23または図37のように階層構造を持っ たファイルシステムの構造の一例を説明する図。

【図44】ユニバーサルディスクフォーマット (UD F)に従って情報記憶媒体上にファイルシステムを構築 した場合の一例を説明する第1の部分図。

【図45】UDFに従って情報記憶媒体上にファイルシ ステムを構築した場合の一例を図21とともに説明する 第2の部分図。

【図46】UDFに従って情報記憶媒体上にファイルシ ステムを構築した場合の一例を図21および図22とと もに説明する第3の部分図。

【図47】図1のディスクに録画されるビデオコンテン ツのうちユーザが作成するメニューのファイル構造の一 例を概念的に説明する図。

【図48】図1のディスクに録画されるビデオコンテン ツのうちユーザが作成するメニューのファイル構造の具 体例を説明する図(その1)。

【図49】図1のディスクに録画されるビデオコンテン 【図34】図24のセル内のビデオオブジェクトユニッ 50 ツのうちユーザが作成するメニューのファイル構造の具 体例を説明する図(その2)。

【図50】図2のディスクに記録されたセルデータを再 生する場合を説明する図。を説明する図。

【図51】図50の再生データを構成する各セルとプロ グラムチェーン情報との関係の一例を説明する図 (図1 9 参照)。

【図52】図1~図11の構成を持つ情報記憶媒体 (D VDーRAMディスク等)を用いてデジタルビデオ情報 の録画・再生を行えるように構成されたパーソナルコン ピュータPCの一例を説明するプロック図。

【図53】図52のデジタルビデオ録再パーソナルコン ピュータPCにおいて、物理系プロックとアプリケーシ ョン系ブロックを分けて説明する図。

【図54】図52のDVD-ROM/RAMドライブ1 40の構成の一例を説明するブロック図(図53でいえ ば物理系プロック)。

【図55】たとえば図52のデジタルビデオ録再PCに おいて、使用媒体(DVD-RAMディスク等)に対す る論理ブロック番号の設定動作の一例を説明するフロー チャート図。

【図56】たとえば図52のデジタルビデオ録再PCに おいて、使用媒体(DVD-RAMディスク等)におけ る欠陥処理動作(ドライブ側の処理)の一例を説明する フローチャート図。

【図57】図2の情報記憶媒体(DVD-RAMディス ク等)に記録される信号の構成を説明する図。

【図58】図57の記録信号をスクランブルして生成さ れたECCブロックの構成を説明する図。

【図59】図58のECCプロックをインターリープし た場合を説明する図。

【図60】記録用の生信号が所定の信号処理(ECCイ ンターリーブ/信号変調等) を受けて情報記憶媒体 (D VD-RAMディスク等) に記録されるまでの手順を説 明するフローチャート図。

【図61】図1の2層光ディスクにおけるROM層/R AM層の論理セクタの設定において、物理セクタ番号の 大きなRAM層部分を論理セクタ番号の小さな位置へ論 理的に配置替えする方法を説明する図。

【図62】図1の2層光ディスクにおけるROM層/R AM層の論理セクタの設定において、RAM層部分が論 40 理的にROM層部分に割り込むように配置替えする方法 を説明する図。

【図63】図2の光ディスクに記録される情報(データ ファイル)のディレクトリ構造の他の例を説明する図。

【図64】図2の光ディスクに記録される情報(データ ファイル)のディレクトリ構造のさらに他の例を説明す る図。

【図65】図2の光ディスクに記録される情報の階層構 造の他の例(図18のアロケーションマップテーブルA MTと異なる内容のアロケーションマップテーブルAM 50 もアクセス頻度が高い場合)を説明する図。

146

Tを持つ例)を説明する図。

【図66】図2の光ディスクに先天的欠陥がある場合の 先天的欠陥アロケーション記述子とアロケートされない スペース記述子の記述方法を説明する図。

【図67】図61の配置替えが行われたROM/RAM 2層ディスクにおいて、情報の記録場所とRAM層の初 期化前後の状態を説明する図(その1)。

【図68】図61の配置替えが行われたROM/RAM 2層ディスクにおいて、情報の記録場所とRAM層の初 10 期化前後の状態を説明する図(その2)。

【図69】図16の配置替えが行われたROM/RAM 2層ディスクにおいて、情報の記録場所とRAM層の初 期化前後の状態を説明する図(その1)。

【図70】図16の配置替えが行われたROM/RAM 2層ディスクにおいて、情報の記録場所とRAM層の初 期化前後の状態を説明する図(その2)。

【図71】映像情報とその管理領域の書き替え方法を説 明するフローチャート図。

【図72】再生信号の連続性を説明するための再生系シ ステム概念図。

【図73】映像信号の連続再生時におけるアクセス動作 等とバッファメモリ内の一時保存量との関係の一例を説 明する図。

【図74】映像信号の連続再生時におけるアクセス動作 等とバッファメモリ内の一時保存量との関係の他例(最 もアクセス頻度が高い場合)を説明する図。

【図75】映像信号の連続再生時におけるアクセス動作 等とバッファメモリ内の一時保存量との関係の他例(再 生時間とアクセス時間のバランスが取れている場合)を 説明する図。

【図76】光ヘッドのシーク距離とシーク時間との関係 を説明する図。

【図17】光ヘッドの平均シーク距離を求める方法を説 明する図。

【図78】記録信号の連続性を説明するための記録系シ ステム概念図。

【図79】記録されたAVデータ(映像信号情報)の一 部を構成するセルおよび各セルのビデオオブジェクトユ ニットVOBU配列を例示する図。

【図80】図79の配列において、セル#2が編集さ れ、セル#2の途中(VOBU108eの所)でデータ が切れた場合を説明する図 (VOBU108 e は再エン コードされる)。

【図81】(図79~図80は編集によるセルの並べ替 え方法を説明する図) 図80の編集が終わった後に、図 79に例示したセル構成、VOBU配列および空き領域 の位置がどのように変化しているかを説明する図。

【図82】映像信号の連続記録時におけるアクセス動作 等とバッファメモリ内の一時保存量との関係の一例(最

148

【図83】映像信号の連続記録時におけるアクセス動作 等とバッファメモリ内の一時保存量との関係の他例(記 録時間とアクセス時間のバランスが取れている場合)を 説明する図。

【図84】ビデオオブジェクト内で映像情報の並べ替え (編集等)を行った場合の映像~音声間の同期外れに対 応したDVDビデオレコーダの構成を説明するブロック 図。

【図85】図84の構成におけるエンコーダ部およびデ コーダ部の内部構成を説明するプロック図。

【図86】図84のDVDビデオレコーダにおける映像 ~音声間の同期処理を説明するフローチャート図。

### 【符号の説明】

- 10…情報記憶媒体/情報記憶媒体 (DVD-RAM/
- DVD-RWまたはDVD-R等の光ディスク);
- 100…ディスクチェンジャ (ディスクパック);
- 11…カートリッジ(DVD-RAMのディスク収納 用);
- 14…透明基板(ポリカーボネート基板):
- 17…記録層:
- 17A…ROM層(半透明の光反射層):
- 17B…RAM層 (相変化記録層);
- 19…情報読み出し面 (レーザ光入射面) :
- 20…接着層;
- 22…ディスク中心孔;
- 24…クランプエリア;
- 25…情報エリア;
- 26…リードアウトエリア (書替可能);
- 27…リードインエリア(書替可能);
- 28…データ記録エリア (ボリュームスペース; 書替可 30 122… CD-ROMドライブ;
- 能);
- 30…メインMPU部:
- 32…ディスクドライブ (DVD-ROM/DVD-R
- AMコンパチブル);
- 3 4 … 一時記憶部;
- 36…データプロセサ:
- 38…システムタイムカウンタ (システムタイムクロッ
- ク);
- 50…エンコーダ部:
- 51…縮小画像用フレームメモリ;
- 52…ビデオ用アナログ・デジタルコンバータ:
- 53…ビデオエンコーダ;
- 54…オーディオエンコーダ:
- 55…副映像エンコーダ;
- 56…フォーマッタ;
- 57…パッファメモリ:
- 58…縮小ビデオエンコーダ:
- 59…メモリ:
- 60…デコーダ部;
- 61…基準クロック発生部;

- 62…セパレータ;
- 63…メモリ;
- 64…ビデオデコーダ:
- 65…副映像デコーダ;
- 66…ビデオプロセサ;
- 68…オーディオデコーダ;
- 602…ピデオミキサ:
- 604…フレームメモリ;
- 70…ボリューム/ファイル管理情報エリア(書替可
- 能);
  - 73…他記録エリア (オプション):
  - 90…相変化記録材料層90 (Ge2Sb2Te5);
  - 92、94…硫化亜鉛・酸化シリコン混合物 (ZnS・
  - SiO2);
  - 101…情報再生部/情報記録再生部(物理系プロッ
  - ク):
  - 102…応用構成部(アプリケーションプロック);
  - 103…情報再生装置(DVDプレーヤ機能)/情報記 録再生装置(DVDレコーダ機能);
- 20 1111···メインCPU;
  - 112…メインメモリ:
  - 113…メモリアドレス線:
  - 114…メモリデータ線:
  - 115…ディスプレイコントローラ;
  - 116…ビットマップディスプレイ(TVモニタ);
  - 117…ビデオRAM:
  - 118…キーボードコントローラ:
  - 119…キーボード;
  - 120…IDEコントローラ:

  - 123…パラレルI/Fコントローラ:
  - 124…プリンタ;
  - 125…イメージスキャナ;
  - 126…EISAバス;
  - 127…サウンドボード;
  - 128…マイク:
  - 129…スピーカ;
  - 130…シリアルI/Fコントローラ:
  - 131…モデム:
- 40 132...IEEE1392#-ド;
  - 133…PCIバス;
  - 134…MPEGボード;
  - 135...JPEGボード;
  - 136…オーディオエンコーダ/デコーダボード:
  - 137…専用DSP (デジタル信号プロセサ):
  - 138...SCSIボード;
  - 139…LANボード;
  - 140…DVD-ROM/DVD-RAMコンパチプル
  - ドライブ;
- 50 143…PCIパスコントローラ:

149

- 144…EISAパスコントローラ;
- 145…I/Oアドレスライン;
- 146…I/Oデータライン;
- 202…光ヘッド;
- 203…光ヘッド移動機構(送りモータ);
- 204…スピンドルモータ;
- 205…半導体レーザ駆動回路;
- 206…記録・再生・消去の制御波形発生回路;
- 207…変調回路;
- 208…ECCエンコーダ;
- 209…エラー訂正回路;
- 2 1 0 …復調回路;
- 2 1 1 ··· P L L 回路;
- 2 1 2 … 2 值化回路;
- 213…アンプ;

【図1】



150

- \*214…媒体(光ディスク)回転速度検出回路;
  - 215…スピンドルモータ駆動回路;
  - 216…送りモータ駆動回路;
  - 217…フォーカス・トラッキングエラー検出回路;
- 218…対物レンズアクチュエータ駆動回路;
- 2 1 9 … 半導体メモリ:
- 220…制御部;
- 221…ターンテーブル (回転テーブル):
- 222…データI/Oインターフェイス;
- 10 A-SYNC…MPU30内のオーディオ情報同期処理

部から得られるオーディオ同期信号;

- DVC…デジタルビデオカセット;
- DVHS…デジタルVHSカセット;
- PC…パーソナルコンピュータ;
- \* SRC…サンプルレートコンバータ。

【図2】



[図8]

|               | 4-            | _                    | 1セク:           | 9 — | _                    |                | <u>;</u>     |
|---------------|---------------|----------------------|----------------|-----|----------------------|----------------|--------------|
| 前の<br>セク<br>タ | ヘッダ<br>(エンポス) | <b>同期</b><br>コー<br>ド | 変調<br>後の<br>信号 |     | <b>同期</b><br>コー<br>ド | 変調<br>後の<br>信号 | 次セクタ<br>のヘッダ |

【図9】

|             | -           |             | セクタ 5<br>タの第四 3 |                 |             |  |
|-------------|-------------|-------------|-----------------|-----------------|-------------|--|
| セクタ<br>501s | セクタ<br>501a | セクタ<br>501b | セクタ<br>501c     | <br>セクタ<br>50?p | セクタ<br>501g |  |

### [図3]



【図6】

| ソーン        |     | <b>各ゾーンの内容</b>                                     |
|------------|-----|----------------------------------------------------|
| -          | -   |                                                    |
| _          |     | ブランクゾーン                                            |
| エン         |     | 基準信号ゾーン                                            |
| ポース        |     | ブランクゾーン                                            |
| ンポステータ     |     | ブックタイプ&パートパージョン;ディスクサイズ<br>&最小鉄出レート;ディスク構造; 記録密度;  |
| 9          | 制弾  | ご思小氏ロレート:ディスク情報;に緊密度;<br>  データエリアアロケーション;BCA(パーストカ |
| ソ          | タソ  | ッティングエリア) 記述子; 速度 (露光量指定のた                         |
| l.         | 1-5 | めの禁道皮条件);灰出パワー;ピークパワー;                             |
| ン          |     | バイアスパワー;予約;集体の製造に異する情報;<br>予約                      |
|            |     | プランクゾーン                                            |
| ミラー<br>ゾーン |     | 接続ゾーン                                              |
|            |     | ガードトラックソーン                                         |
| ٩          |     | ディスクテストゾーン                                         |
| 能デ         |     | ドライブテストゾーン                                         |
| 9          |     | ガードトラックゾーン                                         |
| ٧<br>ا     |     | ディスク嫌別子(I D)ゾーン                                    |
| ン          |     | DMA1&DMA2                                          |
|            |     | データエリアのソーン00~ゾーン23                                 |
|            |     | DMA3&DMA4                                          |
| PI I       |     | ディスク職別子(ID)ゾーン                                     |
| 龍デ         | •   | ガードトラックソーン                                         |
| 9          |     | ドライプテストソーン                                         |
| ータソー       |     | ティスクテストゾーン                                         |
| シ          |     | ガードトラックゾーン                                         |

【図11】

| ★ 着理セクタ                           | 香号小                         | <b>建</b> 理· | セクタ番号大                    |
|-----------------------------------|-----------------------------|-------------|---------------------------|
| グループ00<br>内での <b>熱理</b><br>セクタの並び | グループ 0 1<br>内での論理<br>セクタの並び |             | グループ23<br>内での論理<br>セクタの並び |
| (←内周側)                            |                             |             | (外周倒→)                    |

### 【図4】



 ◆各ゾーンはリードイン側にユーザエリアUACO~UA23をもち、 リードアウト側にスペアエリアSAOO~SA23を持つ。
 ◆村な告ゾーンにおける唇砂の回転速度;
 1 砂あたりの回転数 r p s で表すこともある。

【図7】

| 14 | ガード              |    | グルー                          | 7                    | ガード              | 各グループ          |
|----|------------------|----|------------------------------|----------------------|------------------|----------------|
| ーン | エリアのセク           | グル | ユーザ<br>エリア                   | スペア                  | エリア              | 内の先頭セ<br>クタの論理 |
| 書号 | 夕番号              | サラ | セクタ番号 (セクタ数)                 | セクタ番号                | 夕番号              | セクタ番号          |
| 00 |                  | 00 | 31000~<br>377DF<br>(26592)   | 377E0<br>~~<br>37D2F | 37D30<br>37D5F   | 0              |
| 01 | 37D60<br>37D8F   | 01 | 37D90~<br>3FB2F<br>(32160)   | 3FB30<br>401EF       | 401F0<br>4021F   | 26592          |
| 02 | 40220<br>4024F   | 02 | 40250~<br>486EF<br>(33952)   | 486F0<br>48E0F       | 48E10<br>48E3F   | 58752          |
| 03 | 48E6F            | 03 | 48E70~<br>5LA0F<br>(35774)   | 51A10<br>5218F       | 52190<br>521BF   | 92704          |
| 04 | 521C0<br>521EF   | 04 | 521F0~<br>5B48F<br>(37536)   | 5B490<br>5BC6F       | 5BC70<br>5BC9E   | 128448         |
| 1  |                  |    |                              |                      |                  | i              |
| 20 | 1244C0<br>12450F | 20 | 124510~<br>13476F<br>(66114) | 134770<br>13554F     | 135550<br>13559F | 943552         |
| 21 | 1355A0<br>1355EF | 21 | 1355F0~<br>145F4F<br>(67936) | 145F50<br>146D8F     | 146D90<br>146DDF | 1009696        |
| 22 | 146DE0<br>146E2F | 22 | 146E30~<br>157E8F<br>(69728) | 157E90<br>158D2F     | 158D30<br>158D7F | 1077632        |
| 23 | 158D80<br>158DCF | 23 | 158DD0~<br>16A578<br>(71600) | 16A580<br>16B47F     |                  | 1147360        |

【図5】

|      | T                                        | 名称                       | 回転速度(Hz)       | 物理セクタ書号       |  |
|------|------------------------------------------|--------------------------|----------------|---------------|--|
| l u  | エンポンソーン                                  | 制御データゾーン                 | 37.57          | 27ABO~2FFFF   |  |
| k    | リソーン                                     | 接続ゾーン                    |                |               |  |
| イン   | 書替<br>可能<br>ゾーン                          | _ DMAI BOMA2             | 39.78          | 30000~30FFF   |  |
|      |                                          | ソーン00                    | 39.7B          | 31000~37D5F   |  |
| 1    |                                          | ソーン01                    | 37.57          | 37D60~4021F   |  |
|      |                                          | ソーン02                    | 35.59          | 40220~48E3F   |  |
| 1    |                                          | ソーン03                    | 33.81          | 48E40~521BF   |  |
| ł    |                                          | ソーン04                    | 32.20          | 521C0~5BC9F   |  |
| Ī    |                                          | ソーン05                    | 30.74          | 5BCAO~65EDF   |  |
| 1    |                                          | ソーン06                    | 29.40<br>28.18 | 65EE0~7087F   |  |
| 1    |                                          | ソーン07                    | 70880~7B97F    |               |  |
|      |                                          | ソーン08                    | 7B980~871DF    |               |  |
| デ    |                                          | ゾーン09                    | 26.01          | 871E0~9319F   |  |
| 1    |                                          | ソーン10                    | 25.05          | 931A0~9F8BF   |  |
| 9    |                                          | ソーン11                    | 24.15          | 9F8CO~AC73F   |  |
|      |                                          | ソーン12                    | 23.32          | AC740~B9D1F   |  |
| ש    |                                          | ソーン13                    | 22.54          | B9D20~C7A5F   |  |
| 7    |                                          | ソーン14                    | 21.82          | C7A60~DSEFF   |  |
| l    |                                          | ソーン15                    | 21.13          | DSF00~E4AFF   |  |
| l    |                                          | ソーン16                    | 20.49          | E4800~F3E5F   |  |
| ł    |                                          | ソーン17                    | 19.89          | F3E60~10391F  |  |
| •    |                                          | ソーン18                    | 19.32          | 103920~113B3F |  |
|      |                                          | ソーン19                    | 18.79          | 113B40~1244BF |  |
| 1    |                                          | ソーン20                    | 18.28          | 1244CO~13559F |  |
|      |                                          | ソーン21                    | 17.80          | 1355A0~146DDF |  |
|      |                                          | ソーン22                    | 17.34          | 146DE0~158D7F |  |
|      |                                          | ソーン23                    | 16.91          | 158D80~16847F |  |
| リアーウ | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | DMASADMA4<br>FradioY->   | 16.91          | 168480        |  |
| 44   | ソーン                                      | ドライブテストソーン<br>ディスクテストソーン |                | 17966F        |  |

【図12】



[図10]



【図13】



【図15】



[図14]



【図17】



レイヤロは内局から外層へ; レイヤ1は外局から内局へ折り返す

【図19】



【図16】



【図18】



図21]



### 【図20】



【図23】



【図22】

物理フォーマット情報 パイト位置 パイト歌 ブックタイプ&パートパージョン 11541 1 ディスクサイズおよび最小波出レート 1パイト 2 ディスク保査 1111 3 尼華色皮 1パイト 4~15 データエリアアロケーション 12パイト パーストカッティング エリア (BCA) 記述子 18 1111 17~20 空色容量 41111 21~31 予例 111111 32~2047 2016/17 H 不的

【図24】



【図34】

【図25】

【図39】







【図26】

【図28】

| VO<br>ピク!            | <b>F</b> +   | V O B t<br>ピクチ・<br>番号#: | -             | ピク            | チャ                  | のE       | B U<br>C C<br>ック<br>#1 |          | のピプロ | BU<br>CC<br>Iック<br># n        |
|----------------------|--------------|-------------------------|---------------|---------------|---------------------|----------|------------------------|----------|------|-------------------------------|
|                      | •••••        | ••-                     | ·····         | •             | ·                   |          |                        |          |      |                               |
| セル                   | 合計時間         | セデタ合政                   | セデタ会配子        | 七時物サズ         | 機成<br>VO<br>B<br>の数 |          | ・イム<br>コード<br>ープル      |          | 天的な歌 | 後的<br>気<br>が<br>り<br>に<br>アレス |
|                      |              |                         |               |               |                     |          |                        |          |      | ******                        |
| セル<br>デー<br>一般<br>情報 | 9            | タイム<br>コード<br>テーブル      | 欠             |               | セルビデ                | <b>オ</b> | セル<br>ーデ<br>オガ         | =4       | せが開  | AM.                           |
| +                    | ヒノレ時         | 間情報                     | CTI           |               |                     |          |                        |          |      |                               |
| セル                   | 中間-          | 設情報                     | #m            | $\overline{}$ | VO                  | 3 U :    | テーフ                    | ル#       | m    |                               |
|                      |              |                         |               | •••••         | •••••               |          |                        |          |      | 1                             |
|                      | ¥08<br>##### | U V (                   | 0 B U<br>■# 2 |               |                     |          |                        | VO<br>情報 |      |                               |
|                      |              | V O B<br>一般ff           | _             |               | ミーパク情報              | ,        |                        | ディ       |      |                               |
|                      |              |                         |               |               |                     |          |                        |          |      | •                             |

【図35】

|                      | 先天的欠陥                                                   | 後天的欠陥                                      |
|----------------------|---------------------------------------------------------|--------------------------------------------|
| 発生                   | 新規記録的、情報変更的<br>または記録時のヘッダ<br>情報の表取エラー発生時                | 情報記録後に媒体表面に<br>生じた傷、またはごみ等<br>の付着による欠陥発生   |
| 欠陥<br>検出<br>方法       | 総体のDMA情報再生に<br>より、またはヘッダ情報<br>再生回島でのエラー情報               | 配能情報再生時に訂正不能<br>エラーが発生し再生情報が<br>得られないことを検出 |
| 被出<br>情報<br>記載<br>質所 | 集体のDMA情報記録場<br>所およびAVデータ制御<br>情報内のアロケーション<br>マップテーブルAMT | セル時間 <u>一般情</u> 報内の<br>後天的欠陥情報             |
| 交替<br>処理<br>方法       | スキッピング交替処理                                              | 交響処理は行わない<br>(欠陥偏所の対応はせず)                  |
| 欠船<br>情報<br>通知<br>相爭 | 記録再生装度のMPU<br>に通知(DMA情報の<br>登録佐頼)                       | アプリケーションソフト<br>ウエアに通知 (葡萄表示<br>時に補償処理依頼)   |

【図37】



映像データVOBUをECC単位(32kバイト単位) で書き替えることによりECCとVOBUとの境界の ずれを解消

|         |    |    |                 | Ų.     | セル              |  |          |                 | _  |  |
|---------|----|----|-----------------|--------|-----------------|--|----------|-----------------|----|--|
| データ空更領域 |    |    |                 | VOBU#g |                 |  | VOBU#g+1 |                 |    |  |
| ブロ      | ブロ | ブロ | ECC<br>プロ<br>ック | プロ     | ECC<br>プロ<br>ック |  | ブロ       | ECC<br>プロ<br>ック | ブロ |  |

\* 節弾ブロック(セクタ)サイズは2048パイト。
\* 透現した論理ブロック(連続セクタ)の塊を「エクステント」
(または集合体)と呼ぶ。
\* 媒体に記述されたデータファイルへのアクセスは、矢印のアク
に示されたアドレス (AD(\*), LAD(\*)) へのアクセスを繰り返す
ことで行われる。

【図27】

| 対応情報                | 情報名称                              | 情報の内容                                                                                       |    | 使用バイト数                  |
|---------------------|-----------------------------------|---------------------------------------------------------------------------------------------|----|-------------------------|
| VOBU<br>一般情報        | Iピクチャ<br>終了位置                     | I ピクチャ最終位置のVOB<br>先頭位置からの差分アドレス                                                             |    | 1                       |
| ダミー                 | ダミーパック数                           | VOBU内のダミーバック数                                                                               | 女  | 1                       |
| バック<br>情報           | ダミーバック<br>分布                      | VOBU先頭からのダミーパック<br>押入差分アドレスと個々のダミー<br>パック数をそれぞれ2パイト表現                                       | .  | 2 x<br>ダミー<br>パック<br>番号 |
|                     | オーディオ<br>ストリーム<br>チャネル番号          | オーディオストリーム<br>のチャネル数                                                                        |    | 1                       |
|                     | I ピクチャ<br>オーディオ<br>位置#1           | 1 ピクチャ開始時郊と同時刻のオーィオパックが含まれる E C C プロッの V O B U 先頭からの差分アドレス (最上位ビット="0"で後方存在 最上位ビット="1"で前方存在 | ク値 | 1                       |
| オー                  | I ピクチャ<br>開始オーデ<br>ィオサンプ<br>ル番号#1 | 上記ECCブロック内において、<br>I ピクチャ開始時刻と同時刻の<br>オーディオサンブル位置の<br>サンプル番号を、全オーディオ<br>パックの連番で係数表示         |    | 2                       |
| ディ<br>オ<br>同期<br>情報 | オーディオ<br>同期情報<br>フラグ# 1           | オーディオストリームとビデストリームとの間の同期情報の有無(無のときは次項目なし)                                                   | 0  | 1                       |
| IA TX               | オーディオ<br>同期データ                    | VOBUに含まれる<br>オーディオサンプル数                                                                     |    | 2                       |
|                     |                                   | ***************************************                                                     | •  |                         |
| 1                   | <b>リピクチ</b>                       | ャオーディオ位置#2                                                                                  | #  | 1                       |
|                     | 「ピクチャ開始                           | オーディオサンプル番号#2                                                                               | と同 | 2                       |
| -                   | オーデ                               | ィオ同期フラグ# 2                                                                                  | じ  | 1                       |
|                     | オー                                | ディオ同期データ                                                                                    | 容容 | 2                       |
|                     | ·                                 |                                                                                             |    |                         |

【図29】

|                  | 物理セクタ<br>書号PSN                  | 遠域セクタ<br>帯号LSN                 | 論理プロック<br>番号LBN                    | AV7FVX<br>AVA                         |
|------------------|---------------------------------|--------------------------------|------------------------------------|---------------------------------------|
| 最小<br>単位         | 物理セクタ<br>サイズ2kB                 | 物理セクタ<br>サイズ2k8                | 物理セクタ<br>サイズ2kg                    | ECCプロック<br>サイズ32kB                    |
| 開始<br>位置         | リードイン<br>のリファ<br>レンス信号<br>ゾーンより | データ<br>エリア<br>開始位置<br>より       | ファイル<br>構造関始<br>位置より               | AVデータ<br>エリア<br>開始位置より                |
| 欠陥発<br>生時の<br>欠番 | <b>欠陥個所で</b><br>欠番発生            |                                | より欠答あるい<br> 始等号および最                | は重複器号は生<br>終番号は不空)                    |
| 付与位<br>裁型更<br>有無 | 銀体上で<br>御号不変                    |                                | 諸処理前後で媒介<br>な番号付加位置記               |                                       |
| 相互               | 連動なし<br>関定                      | 交替処理                           | 時に客号付与位                            | 量が連ា変化                                |
| 基号<br>安执<br>方法   | 媒体内展復<br>から順次<br>番号増加           | DMA情報<br>に対応して<br>PSNに<br>対し変化 | L S Nの<br>平行移動<br>LBN-LSN<br>LSNfs | AVA=<br>(LBN-LBNav)<br>+16で<br>概数切り捨て |
| <b>銀知</b><br>首所  | 記録再生数<br>量のMPU                  |                                | テム(UDF)<br>生薬型のMPU                 | 映像管理<br>レイヤ                           |

注1>LSNf sはLBN関始位置でのLSNを示す。 注2>LBNavはAVA関始位置でのLBNを示す。

【図31】

| 集合体<br>記述子<br>名                            | ユーザエリア<br>集合体記述子                                              | スペアエ<br>リア集合<br>体記述子                                                    | 施集合体                |                   | 次ゾー<br>ン開始<br>マーク |  |
|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|---------------------|-------------------|-------------------|--|
| 内容<br>型明                                   | A V<br>アドレス<br>情報                                             | AVア<br>ドレス<br>情報                                                        | 先天的<br>欠陥<br>サイズ    | PCデ<br>一夕記<br>貸位置 | 次ゾー<br>ン開始<br>位置  |  |
| 記述<br>条件                                   | ユーザ<br>エリア内<br>の集合体                                           | スペアエ<br>リア内の<br>策合体                                                     | 先天的<br>欠赔<br>存在     | PC<br>データ<br>軍入   | ソーン<br>の境界<br>位置  |  |
| 共通<br>記述<br>方法                             | 第合体を構<br>成するECC<br>ブロック数<br>(2パイト)<br>と先頭AV<br>アドレス<br>(3パイト) |                                                                         | 各集合体<br>それぞれ<br>で表現 |                   |                   |  |
| <競別<br>情報><br>(先頭)<br>AVアド<br>レス記述<br>情報内容 | 集合体先順<br>AVアドレス<br>をそのまま記<br>述し、その数<br>上位ピットに<br>フラグを付加       | A V アドレン・マン・ストレン・ストレン・ストレン・ストレン・ストレー・ストレー・ストレー・ストレー・ストレー・ストレー・ストレー・ストレー | FFFFFF              | FFFFFE            | FFFFFC            |  |
| 鉄使用・<br>未使用の<br>判別情報                       | 先頭AVアド<br>最上位の1ビ<br>駅使用="0<br>未使用="1                          | ット<br>- ;                                                               | なし                  |                   |                   |  |
| 表示<br>記号                                   | UED(*,*)                                                      | SED(*)                                                                  | DED                 | PED               | ZSM               |  |

【図30】



【図32】



[図33]

| ユーザエリア723                                      |      |      |           | -    | スペフ  | エリ                       | 77:   | 2 4       |            |             |
|------------------------------------------------|------|------|-----------|------|------|--------------------------|-------|-----------|------------|-------------|
| コンピ<br>ュータ<br>データ<br>エリア                       |      |      | Vデー<br>リア | -9   |      | コンピ<br>ュータ<br>データ<br>エリア |       | vデー<br>リア | - <b>9</b> | 未使用<br>エリア  |
| 記錄<br>質所                                       | 記録質所 | 欠陰個所 | 記錄箇所      | 欠箱偿所 | 記録實所 | 交替而所                     | 交替    | 欠赔复所      | 交替官所       | アドレス<br>未付与 |
| A V<br>アドレス<br>(16選 :<br>表現)<br>セル#1の<br>使用アドレ | 0123 | 0.1  | 1. 2      | 3 5  | 7.   | <b>-</b>                 | AB B. | 6.        | C. 5       | <del></del> |

注>使用可能なECCプロックの配列順で、同一セルに関する記録 ○使用可能なとじてノロックの配列場で、同一モルに関する記録情報の集合体を「個のセルデータ集合体(エクステント)とみなす。セルデータ集合体が記載されているECC ブロック数は2パイトで表現され、セルデータ集合体の先頭のA V アドレスは3パイトで表現され、両者は連続並置される(2パイト+3パイト)。1個のセルを構成する全てのセルデータ集合体を並べて記述した記述すが、セルデータ集合体配送子となる。

### 【図38】

# LAD (論程プロック書号) …情報記憶線体上のエクステント (集合体) の記録位置表示

| , · · | フステントの インブリメンテーション                  | エクステントの                |
|-------|-------------------------------------|------------------------|
| ii-   | か最ま1 1 (使用ま19 / Bent final) -       | # # # A 1 0            |
| EVC   | 望ブロック数   「日本大体報」                    | (無難プロック教)              |
|       | でくても金巻(一一では、ここの数字)                  | (なパイトや金管)              |
|       | プロック数) 利用する情報)<br>ベイトで表示] [8パイトで表示] | (論理プロック数)<br>(4パイトで表示) |

### 【図41】

# FE (AD(\*), AD(\*), …, AD(\*)) …随層構造を持ったファイル構造内でのFIDで指定された ファイルの記録媒体上での記録位置を表示。

| 記述子タグ<br>(= 26 1)<br>記述内容の<br>質別子417<br>[18パイト] | [CBタグ<br>ファイルの<br>タイプ変示<br>(Type=4/5)<br>418<br>[20パイト] | パーミッション<br>ユーザ別の記録<br>・再生・耐除の<br>許可情報419<br>【32パイト】 | アロケーシテンスを<br>ロンアインアインアイルの<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>は<br>に<br>て<br>れ<br>に<br>れ<br>に<br>れ<br>に<br>れ<br>に<br>れ<br>に<br>れ<br>に<br>れ<br>に<br>れ<br>に<br>れ<br>に |
|-------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                                                         |                                                     | ク書号) を<br>並べて列記<br>(AD(*),<br>AD(*),<br>…,AD(*))<br>4 2 0                                                                                                                                                          |

\*ICBタグ内のファイルタイプ=1は、アロケートされない スペースエントリを意味し、 \*ICBタグ内のファイルタイプ=4は、ディレクトリを表し、 \*ICBタグ内のファイルタイプ=5は、ファイルデータを表す。

### 【図36】

| システム発度                      | 分担機能                                                            | 管理对象情報                                 | 処理単位             | 欠趋管理         |
|-----------------------------|-----------------------------------------------------------------|----------------------------------------|------------------|--------------|
| <b>兼留再生</b><br>アプリケ<br>ーション | 映像情報に関<br>する上位の録<br>順・再生処理                                      | タイムコード<br>→セル/PGC                      | 時間<br>指定         | なし           |
| 映像管理<br>レイヤ                 | Aソファイル<br>内の記録性・<br>別事・記録・<br>再生時の連続性<br>性な欠略位置<br>を考慮する)       | A V アドレス<br>セル内構造                      | 映像フ<br>レーム<br>単位 | æy           |
| 1∕0<br>マネージャ                | システムと<br>記録媒体間の<br>インターフェ<br>ース処理                               | ファイル                                   | ファイル<br>単位       | なし           |
| ファイル<br>システム<br>(UDF等)      | 主にファイル<br>単位での媒体<br>上の記録再生<br>アドレス制御<br>(記録再生時<br>の連続性<br>考慮せず) | 施理プロック<br>番号<br>競理セクタ<br><del>雲号</del> | ファイル<br>単位       | なし           |
| デバイス<br>ドライバ                | 記録再生強整<br>のシステム側<br>から動作制制                                      | 発理セクタ<br>書号                            | セクタ<br>サイズ       | なし           |
| 記錄再生<br>装置                  | 記録媒体に対<br>する単純記録<br>および単純再<br>生の実行                              | 物理セクタ<br>番号                            | セクタ<br>サイズ       | <b>35.</b> 9 |

### 【図40】

## USE (AD(\*), AD(\*), …, AD(\*)) …未記録エクステント (未記録の連続集合体) を検索する 配添文で、スペーステーブルとして使用

| 記述子タグ<br>(m263)<br>記述内容の<br>数別子413<br>[16パイト] | ICBタク<br>ファイルの<br>タイプ表示<br>(Type=1)<br>414<br>[20パイト] | アロケーション記述子<br>列の会長<br>(パイト数)<br>415<br>[4パイト] | アロンエクの扱うのでは、アロンエクの扱うでは、大きなのでは、大きない。                 |
|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
|                                               |                                                       |                                               | ラ)を並べ<br>て列記<br>(AD(*),<br>AD(*),<br>AD(*)<br>4 1 6 |

- \*ICBタグ内のファイルタイプ=1は、アロケートされない スペースエントリを意味し、 \*ICBタグ内のファイルタイプ=4は、ディレクトリを丧し、 \*ICBタグ内のファイルタイプ=5は、ファイルアータを表す。

【図50】



### 【図42】

# FID (LAD (論理プロック書号)) …ファイル(ルートディレクトリ、サブディレクトリ、 ファイルデータ等)の情報を配述

| 記述子タグ ファイル特性 情報 ファイル フロ ファイル フロ ファイル フロ コロ | FE ディレク (000h)<br>り トリ名 437<br>位置 または |
|--------------------------------------------------------------------------------|---------------------------------------|
|--------------------------------------------------------------------------------|---------------------------------------|

ファイル特性 (ファイル機別) は、親ディレクトリ、ディレクトリ ファイルテータ、またはファイル削除 フラグのいずれかを示す。 A V ファイル関別 (4 2 4) 股定例 1) ファイル関別子として独自の拡張子 (.VOB等) を付ける。 2) パティング (4 3 7) に独自のフラグを挿入する。

【図44】

| LSN  | LBN | 排造441                                     | 記述子442                                                                                                                           | 内容443                                    |
|------|-----|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 0 15 |     |                                           | 子約459<br>(全て00カバイト)                                                                                                              |                                          |
| 16   |     | ポリュ                                       | エクステントエリア<br>配述子開始445                                                                                                            | VRS<br>開始位置                              |
| 17   |     | 立ム                                        | ポリューム構造<br>配述子4.4.6                                                                                                              | ディスク<br>内容説明                             |
| 18   |     | ゲンス<br>444                                | ブート<br>記述子 4 4 7                                                                                                                 | ブート 開始位置                                 |
| 19   |     |                                           | エクステントエリア<br>記述子件了448                                                                                                            | VRS<br>終了位置                              |
| ~31  |     |                                           | 手約460<br>(全て001パイト)                                                                                                              |                                          |
| n~   |     |                                           | 省略                                                                                                                               |                                          |
| 34   |     | メポー配シンユ<br>イリム<br>送ーンユ<br>チ<br>440<br>740 | パーティション<br>記述子450<br>パーティション<br>内容使用451<br>アロケートされない<br>スペースデーブル<br>452 AD (80)<br>アロケートされない<br>スペースピットで<br>フィースピットで<br>フィースピットで | スペース<br>テーブル<br>の記録位置<br>スペース<br>ビック記録位置 |
| 35   |     |                                           | <b>台</b> 週ポリューム<br>記述子454<br><b>論理ポリューム</b><br>内容使用455<br>LAD (100)                                                              | ファイルセット<br>記述子472<br>の記録位置               |
| ~47  |     |                                           | <b>314</b>                                                                                                                       |                                          |
| ~63  |     |                                           | 省略                                                                                                                               |                                          |
| ~255 |     |                                           | 子約451<br>(全て00hパイト)                                                                                                              |                                          |
| 256  | ·   | 第 1 アンカ<br>ーポイント<br>4 5 6                 | アンカーポリューム<br>記述子ポインタ458                                                                                                          |                                          |
| ~271 |     |                                           | 子約462<br>(全て00 bパイト)                                                                                                             |                                          |
| ļ    | :   |                                           |                                                                                                                                  |                                          |

### . 【図43】

ルートディレクトリA 一型ディレクトリB →ファイルデータC 425 (103) 426 (105) 427(107), (108), (109) ・ディレクトリD ・観ディレクトリE 428 (111) 429 (無し) サプティレクトリド・無サプティレクトリG 430 (113) 431 (無し) マファイルデータH 432(115)、(116)、(117) マファイルデータ I 433(119)、(120)

[図45]

| r          |          |              | ٠٠٢                                                     | ·                                  |
|------------|----------|--------------|---------------------------------------------------------|------------------------------------|
| 272<br>321 | 0<br>49  |              | スペース<br>ピットマップ<br>配述子470                                | スペース<br>ピットマップ<br>記録・未記録<br>のマッピング |
| 322<br>371 | 50<br>99 |              | USE(AD(*), AD(*),<br>, AD(*)) 4 7 1                     | スペーステーブ<br>ル未記録状態の<br>エクステント<br>一覧 |
| 372        | 100      |              | ファイルセット記述子<br>472:ルートディレ<br>クトリICB473:<br>LAD (102) 474 | ルートディレ<br>クトリFEの<br>記録位置           |
| 373        | 101      | }            | 省略                                                      |                                    |
| 374        | 102      |              | ルートディレクトリ<br>AFE (AD(100))<br>475                       | FIDsの<br>記録位置                      |
| 375        | 103      | j            | AOFID (LAD(104),<br>LAD(110)) 476                       | B、Dの<br>FE位置                       |
| 376        | 104      | ファイル         | 製ディレクトリのEFE<br>(AD(105)) 477                            | FIDsの<br>記録位置                      |
| 377        | 105      | 486          | BØFID (LAD(106))                                        | CØ                                 |
| 378        | 106      |              | FE (AD(107)AD(108)<br>AD(109)) 4 7 9                    | アを位置                               |
| 382        | 110      | }            | ディレクトリDのFE<br>(AD(111)) 480                             | データ位置<br>FID3の                     |
| 383        | 111      | j            | DOF I D (LAD(112).                                      | 記録位置<br>E、Fの<br>FE位置               |
| 384        | 112      |              | LAD(なし)) 48 [<br>サブティレクトリFの                             | FIDag                              |
| 385        | 113      |              | FE (AD(113)) 482<br>FID (LAD(TEL).LAD                   | - 紀録位置<br>H. Iの                    |
| 386        | 114      |              | (114).LAD(118)) 4 8 3<br>FE (AD(115)AD(116)             | FE位置<br>ファイル                       |
| 390        | 118      |              | I Φ F E (ADX119)                                        | データ位置<br>ファイル                      |
| 379-       |          |              | AD(120)) 4 8 5                                          | ゲータ位置                              |
| 387~-      |          | ラ <u>ァイル</u> | ファイルデータCのf                                              |                                    |
|            | ••       | 7-9<br>487   | ファイルデータHのナ                                              | <b>常報489</b>                       |
| 391~       | 119      |              | ファイルデータ【の↑                                              | R報490                              |

### 【図51】

|      |             | PGC  | - इस इस |             |     |
|------|-------------|------|---------|-------------|-----|
| PG   | PGC#1 PGC#2 |      | PGC#3   |             |     |
| せん   | サー3 セル放一3   |      | セル      | <b>X</b> =5 |     |
| セル#1 | EJVA        | セル#1 | FILD    | セル#1        | セルE |
| セル#2 | セルB         | セル#2 | セルE     | セル#2        | セルA |
| セル#3 | FINC        | セル#3 | セルド     | セル#3        | セルロ |
|      |             |      | _       | セル#4        | セルB |
|      |             |      |         | セル#5        | セルE |

【図46】

| LLSN-271<br>LLSN-257      |                                       | 予約463<br>(全て00bバイト)                                                                                                                   |                       |
|---------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| LLSN-256                  | 第2アンカ<br>ーポイント<br>457                 | アンカーボリューム<br>記述子ポインタ 4 5 8                                                                                                            | :                     |
| LLSN-235<br>LLSN-224      |                                       | 于約484<br>(全て001パイト)                                                                                                                   |                       |
| LLSN-223<br>~<br>LLSN-208 | リポープ<br>ポリム<br>エーシケ<br>イ 8 7<br>イ 8 7 | パーティション配述子450<br>パーティション内の<br>パーティション内の<br>アロケーションのカンスペーストラックルスペーストンスルインファンスルイン<br>スペースピークルでップ453<br>海環ボリューム内容使用455<br>論理ボリューム内容使用455 | メポー配シンパア<br>イリム 子ケのクブ |
| LLSN-207<br>LLSN          |                                       | 子約465<br>(全て00hパイト)                                                                                                                   |                       |

注1>LSN= 論理セクタ番号491 LBN= 論理プロック番号492 LLSN=最後の論理セクタ書号493 注2>スペースドンマップとスペースドーブルが一緒に記録される ことは希であり、遺常はスペースドットマップとスペーステー ブルのいずれか一方が媒体に記録される。

【図48】

| 起述子   | 内容                                                    | バイト数    |
|-------|-------------------------------------------------------|---------|
| ヒクチ   | <b>+アドレステーブル用第1アンカーポインタ(52s</b>                       | bytes)  |
|       | ピクチャアドレステーブル開始位置 (先頭位置<br>のメニューファイル先頭からの給理セクタ番号)      | 2       |
|       | ピクチャアドレステーブル終了位置 (終了位置<br>のメニューファイル元頭からの論理セクタ番号)      | 2       |
|       | 予備ピクチャアドレステーブル開始位置 (先頭<br>のメニューファイル先頭からの論理セクタ番号)      | 2       |
|       | 予備ピクチャアドレステーブル終了位置 (終了<br>のメニューファイル先頭からの論理セクタ番号)      | 2       |
|       | パティング                                                 | 32k 8   |
|       | ピクチャアドレステーブル (32k bytes x N)                          |         |
| L_    | メニューインテックス情報                                          | 7 2 1 2 |
|       | インデックスピクチャの数                                          | 2       |
|       | インフォメーションピクチャの数                                       | 2       |
|       | スライド&スチルビクチャの数                                        | 2       |
|       | 欠陥領域の数                                                | 2       |
| للبيم | 登紙ピクチャの数                                              | 1       |
|       | インテックスピクチャ情報                                          |         |
| İ     | 内容特性= 1 (1 では静止画情報配録済み:<br>0 では V T S 内 アドレス指定ポインタのみ) | 1       |
|       | (Via Fellis                                           |         |
|       | インテックスピクチャ用PGCのID                                     | 4       |
|       | インテックスピクチャのタイムコード (イン<br>テックスピクチャ指定位置のタイムコード)         | 4       |
|       | インデックスピクチャ開始位置(記録先頭位置<br>のメニューファイル先頭からの論理セクタ發号)       | 2       |
|       | インデックスピクチャ記録の使用セクタ数                                   | 1       |
| L     | ピクチャサイズ (画像サイズ: X. Y)                                 | 6       |
| L     | オリジナルAVアータのアドレス                                       | 4       |
|       | テキストデータ (検索用)                                         | 40      |
| 1     | (ンデックスピクチャ情報 (内容は同上) (66 byte                         | s)      |
|       |                                                       |         |

### 【図47】



【図53】



【図77】



【図49】



【図54】



【図52】



### 【図55】



### 【図56】



【図57】

記録信号(スクランブル前)

| データ<br>ID510 | . IED<br>511 | RSV<br>512 | メインデータ1<br>(D0~0159) |        |
|--------------|--------------|------------|----------------------|--------|
|              | メインデー        | タ172 バー    | (                    | 506    |
| 2            | ・インデー        | タ172 パィ    | (                    | 507    |
|              |              |            |                      |        |
| , او         | インデータ        | 17214      | F (D1708~D1879       | 508    |
| メインデー        | 9172 K       | イト (D18    | 80~D2047) 509        | EDC513 |

【図58】

|                               | 2.00 G              | 号(スクラ               | ランプ   | ンレ <b>な</b> ) 。       |                       | Pi |                       |
|-------------------------------|---------------------|---------------------|-------|-----------------------|-----------------------|----|-----------------------|
|                               |                     | 1721                | 10/14 |                       |                       |    |                       |
| E                             | バイト<br>521<br>0,0   | バイト<br>522<br>0,1   |       | バイト<br>523<br>0,171   | パイト<br>524<br>0,172   | _  | パイト<br>525<br>0,181   |
| 操作号                           | バイト<br>526<br>1,0   | パイト<br>527<br>1,1   |       | パイト<br>528<br>1,171   | バイト<br>529<br>1,172   | _  | バイト<br>530<br>1,181   |
| 1<br>9<br>2<br><del>7</del> 7 | İ                   |                     | ļ     |                       | *******               |    |                       |
|                               | バイト<br>551<br>191,0 | パイト<br>552<br>191,1 | _     | パイト<br>553<br>191,171 | パイト<br>554<br>191,172 | _  | バイト<br>555<br>191,181 |
| P                             | バイト<br>556<br>192,0 | バイト<br>557<br>192,1 |       | バイト<br>558<br>192,171 | バイト<br>559<br>192,172 |    | バイト<br>560<br>192,181 |
| O<br>1<br>6                   |                     | 1                   |       |                       | -                     |    | -                     |
| Ŋ<br>L                        | バイト<br>566<br>207,0 | バイト<br>567<br>207,1 |       | バイト<br>568<br>207,171 | バイト<br>569<br>207,172 |    | バイト<br>570<br>207,181 |

[図59]

|              |         | <b>尼斯</b>            | 宝号 (スク              |      |                       | :                     | PI   |                       |
|--------------|---------|----------------------|---------------------|------|-----------------------|-----------------------|------|-----------------------|
| •            |         | <u>:</u>             | 172/                | 77 ト | • •                   | 1                     | 0/1- | <b>1</b> F            |
| ı            | .   '   | バイト<br>521<br>0,0    | バイト<br>522<br>0,1   |      | バイト<br>523<br>0,171   | バイト<br>524<br>0,172   | -    | バイト<br>525<br>0,181   |
| 1            | 114     |                      |                     | 1    |                       |                       |      | 1                     |
| 4            |         | バイト<br>531<br>11,0   | バイト<br>532<br>11,1  | -    | パイト<br>533<br>11,171  | パイト<br>534<br>11,172  | -    | バイト<br>535<br>11,181  |
| P            |         | バイト<br>556<br>192,0  | バイト<br>557<br>192,1 |      | バイト<br>558<br>192,171 | バイト<br>559            | -    | バイト<br>560<br>192,181 |
| R            | ,       | バイト<br>536<br>12,0   | バイト<br>537<br>12,1  | _    | バイト<br>538<br>12,171  | パイト<br>539<br>12,172  |      | バイト<br>540<br>12,181  |
| 4            | 2       |                      |                     | 1    | 1                     |                       |      |                       |
| 4            |         | 747 F<br>541<br>23,0 | パイト<br>542<br>23,1  | _    | バイト<br>543<br>23,171  | パイト<br>544<br>23,172  |      | パイト<br>545<br>23,181  |
| P            | 7       | パイト<br>561<br>193,0  | パイト<br>562<br>193,1 | -    | バイト<br>563            | パイト<br>564<br>193,172 | -    | バイト<br>565<br>193,181 |
|              |         |                      |                     | T    |                       |                       |      | 133,181               |
| 足舞           | ,       | パイト<br>546<br>180,0  | バイト<br>547<br>180,1 | _    | バイト<br>548<br>180,171 | バイト<br>549<br>180,172 | _    | バイト<br>550<br>180,181 |
| 信号           | 2<br>31 |                      | 1                   | Ш    | 1                     | į                     |      |                       |
| <del>-</del> |         | バイト<br>551<br>191,0  | パイト<br>552<br>191,1 |      | パイト<br>553<br>191,171 | バイト<br>554<br>191,172 | -    | バイト<br>555<br>191,181 |
| P 0 7        | 7 万     | パイト<br>566<br>207,0  | バイト<br>567<br>207,1 | _    | バイト<br>568<br>207,171 | バイト<br>569            | _    | バイト<br>570<br>207,181 |

【図61】



レイヤ0は内局から外周へ;レイヤ1も内局から外局へ

【図79】

| 空世類<br>域107 |      | :ル#   |      |      | セル   | • -     |      |      | ・ル#: |      |
|-------------|------|-------|------|------|------|---------|------|------|------|------|
|             | VOBU | VOBU  | VO8U | VOBU | V08U | VOBU    | V08U | VO8U | V06U | V06U |
|             | 108a | 1 086 | 108c | 108d | 108e | 1 0 B F | 108g | 108h | 106i | 108j |

### [図60]



【図62】



ROM層内にRAM層が跨速的に削り込んでいる状態

【図72】



【図63】



【図64】



【図65】



【図66】

| ユーザエリア723                                                                                                                                                  |                |   |      |                                    | スペアエリア724 |      |    |        |  |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|------|------------------------------------|-----------|------|----|--------|--|-------------|
| コンピ<br>ュータ<br>データ<br>エリア                                                                                                                                   | A V データ<br>エリア |   |      | コンピ<br>ュータ AVデータ<br>データ エリア<br>エリア |           |      | 9  | 未使用エリア |  |             |
| 記録                                                                                                                                                         | 雠              | g | 記錄實所 | 開                                  | 配飾箇所      | 交替箇所 | 交替 | 欠隘個所   |  | アドレス<br>未付与 |
| A V アドレス 0123 XXX 789 -XXX -DEF AB -XXX -6C45                                                                                                              |                |   |      |                                    |           |      |    |        |  |             |
| * 先天的欠陥のA V アドレス<br>= 4、5、6、A、B、C<br>◆ 先天的欠陥プロケーション配送子<br>= 000004、000005、000006、00000A、00000B、00000C<br>* アロケートされないスペース記述子<br>= U S D (7、9) → 0007、000009 |                |   |      |                                    |           |      |    |        |  |             |
| データ未記録領域のトータル データ未記録領域の開始<br>ECCブロック数(= 7) 位置AVアドレス(= 9)                                                                                                   |                |   |      |                                    |           |      |    |        |  |             |

## 【図67】

| 情報記録箇所                                                        | 初期化前の状態                                                              | 初期化後の状態                                                    | 備考                                                                            |
|---------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|
| D V D R A M 層<br>リードインエリア<br>の書替可能データ<br>ゾーン内のディス<br>ク識別子ゾーン  | ル記録容量を明記+                                                            | RAM層/ROM層<br>の積層構造とトータ<br>ル記録容量を明記+<br>初期化の日時を明記           | リードインエリア<br>の制御データゾー<br>ン内ブックタイプ<br>&パートパージョ<br>ンではリライタブ<br>ルディスクを明記          |
| DVDROM層<br>リードインエリ<br>アの制御データ<br>の物理フォーマ<br>ット情報内の<br>「予約」エリア | 初期化時にDV<br>DVDRAM層<br>範囲を、DVD<br>物理セクタで表                             | ヘコピーする<br>ROM層の                                            | リードインエリア<br>の制御理フォーマ<br>ット情報内のブッ<br>クタイプとパート<br>パージョンでは<br>リードオンリー<br>ディスクを明記 |
| ボリューム<br>認識<br>シーケンス                                          | D V D R O M 層に事前<br>に記録されている→<br>この記録位置は使用時<br>の記録位置とは異なる            | D V D R A M層にこの<br>情報をコピーする→<br>コピー先の論理セクタ<br>番号は開始位置が"16" | 初期化後はDVD<br>RAM層にコピー<br>した情報を利用                                               |
| 第 1<br>アンカー<br>ポイント                                           | DVDROM層に率前<br>に記録されている→<br>指定先はコピー後の<br>RAM層の論理セクタ<br>番号LSNで指定       | DVDRAM層にこの<br>情報をコピーする→<br>コピー先の論理セクタ<br>番号LSNは"256"       | 初期化後はDVD<br>RAM層にコピー<br>した情報を利用                                               |
| メイン<br>ボリューム<br>記述子<br>シーケンス                                  | D V D R O M 層に事前<br>に記録されている→<br>指定先はコピー後の<br>R A M 層の論理セクタ<br>番号で指定 | D V D R A M 層にこの<br>情報をコピーする→<br>コピー先のLSNは<br>実際のLSNと一致    | 初期化後はDVD<br>R A M層にコピー<br>した情報を利用                                             |
| 論理ボリューム<br>保全シーケンス                                            | DVDROM層に事<br>前に記録されている                                               | DVDRAM層にこ<br>の情報をコピーする                                     | D V D R A M<br>層にコピーレ<br>た情報を利用                                               |
| スペースピット<br>マップまたは<br>スペース<br>テーブル                             | DVDROM層に事<br>前に記録されている                                               | DVDRAM層にこの<br>情報をコピーする→<br>コピー情報を利用する                      | D V D R O M 層に<br>対応する論理プロ<br>ック番号 L B N は<br>全て使用済に設定                        |

## [図80]

| 空き様<br>域107 | t            | ェル# '        | 1            | セル<br>#2A    |              | セル<br>#28    |              | t            | ミル# :        | 3                     |
|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------|
| -           | V08U<br>108a | VOBU<br>108b | V08U<br>108c | VOBU<br>108d | VOBU<br>108e | V08U<br>108f | VOBU<br>108g | VQ8U<br>108h | VO8U<br>108i | V <b>08</b> U<br>108j |

## 【図81】

| セル<br>#2A             | 1    | ヒル#          | 1             | - |              | セル<br>#2B    |              | t            | !ル#:         | 3            |
|-----------------------|------|--------------|---------------|---|--------------|--------------|--------------|--------------|--------------|--------------|
| VOBU VOB<br>108d* 108 | 108a | VOBU<br>1086 | V08U<br>108c* |   | VO8U<br>108q | V08U<br>108f | V08U<br>108g | V08U<br>108h | VOBU<br>108i | VOBU<br>108j |

## [図68]

| 情報記録箇所                       | 初期化前の状態                                      | 初期化後の状態                                           | 備考                                                                 |
|------------------------------|----------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|
| ファイル                         | D V D R O M                                  | D V D R A M層にこの                                   | ここでの指定論理                                                           |
| セット                          | 層に率前に記                                       | 情報をコピーする→                                         | ブロック番号LBN                                                          |
| 記述子                          | 録されている                                       | コピー情報を利用する                                        | はRAM層を指定                                                           |
| ルートディレク                      | DVDROM                                       | DVDRAM層にこの                                        | ここでの指定                                                             |
| トリのファイル                      | 層に事前に記                                       | 情報をコピーする→                                         | L B N は R A M                                                      |
| エントリ                         | 録されている                                       | コピー情報を利用する                                        | 暦を指定する                                                             |
| ルートディ<br>レクトリ内<br>のLADs      | アプリケーションディレクトリも含めて<br>DVDROM層に事<br>前に記録されている | DVDRAM層にこの<br>情報をコピーする→<br>コピー情報を利用して<br>ユーザが追加する | アプリケーション<br>ディレクトリも含<br>めコピー前からフ<br>ァイルエントリ指<br>定LBNはRAM<br>層を指定する |
| アプリケーション<br>実行ファイル情報         | DVDROM層に事<br>前に記録されている                       | コピーせず                                             | この記録位置指定<br>LBNはROM層<br>を指定する                                      |
| アプリケーション<br>テンプレート<br>ディレクトリ | DVDROM層に事<br>前に記録されている                       | コピーせず                                             | この記録位置指定<br>LBNはROM暦<br>を指定する                                      |
| アプリケーション                     | 記録されていない                                     | D V D R A M層                                      | アプリケーション                                                           |
| データファイル                      |                                              | に新たに作成                                            | 起動時に作成                                                             |
| アプリケーション<br>関連ディレクトリ         | DVDROM<br>層に事前に記<br>録されている                   | D V D R A M層にこの<br>情報をコピーする→<br>コピー情報を利用する        | ここでの指定<br>LBNはRAM<br>暦を指定する                                        |
| 第2                           | DVDROM                                       | コピーせず                                             | ここでの指定                                                             |
| アンカー                         | 層に事前に記                                       |                                                   | LBNはRAM                                                            |
| ポイント                         | 録されている                                       |                                                   | 層を指定する                                                             |
| リザーブポリ                       | D V D R O M                                  | コピーせず                                             | ここでの指定                                                             |
| ューム記述子                       | 層に事前に記                                       |                                                   | L B N は R A M                                                      |
| シーケンス                        | 録されている                                       |                                                   | 層を指定する                                                             |

【図69】

| 情報記録箇所                                                        | 初期化前の状態                                  | 初期化後の状態                               | 備考                                                                                |
|---------------------------------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------|
| D V D R A M層<br>リードインエリア<br>の書替可能データ<br>ゾーン内のディス<br>ク微別子ゾーン   | RAM暦/ROM層<br>の積層構造を明記+<br>初期化前状態を明記      | RAM層/ROM層<br>の積層構造を明記+<br>初期化の日時を明記   | リードインエリア<br>の制御データゾー<br>ン内ブックタイプ<br>&パートバージョ<br>ンではリライタブ<br>ルディスクを明記              |
| DVDROM層<br>リードインエリ<br>アの制御データ<br>の物理フォーマ<br>ット情報内の<br>「予約」エリア | 初期化時にDV<br>DVDRAM層<br>範囲を、DVD<br>物理セクタで表 | ヘコピーする<br>ROM層の                       | リードインエリア<br>の制物理フォーマット情報内のブット情報内のブット<br>クタイプをパート<br>バージョンでは<br>リードオンリー<br>ディスクを明記 |
| ボリューム<br>認識<br>シーケンス                                          | DVDROM層に事<br>前に記録されている                   | コピーせず                                 | この記録位置指定<br>LBNはROM層<br>を指定する                                                     |
| 第 1<br>アンカー<br>ポイント                                           | DVDROM層に事<br>前に記録されている                   | コピーせず                                 | この記録位置指定<br>LBNはROM層<br>を指定する                                                     |
| メイン<br>ボリューム<br>記述子<br>シーケンス                                  | DVDROM層に事<br>前に記録されている                   | コピーせず                                 | この記録位置指定<br>LBNはROM層<br>を指定する                                                     |
| 論理ポリューム<br>保全シーケンス                                            | DVDROM層に事<br>前に記録されている                   | コピーせず                                 | この記録位置指定<br>LBNはROM層<br>を指定する                                                     |
| スペースピット<br>マップまたは<br>スペース<br>テーブル                             | D V D R O M 層に事<br>前に記録されている             | DVDRAM雇にこの<br>情報をコピーする→<br>コピー情報を利用する | DVDROM暦に<br>対応する論理ブロック番号LBNは<br>全て使用済に設定                                          |

[図70]

| 情報記錄箇所                       | 初期化前の状態                                                        | 初期化後の状態                                                  | 備考                                                                 |
|------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|
| ファイル<br>セット<br>配述子           | DVDROM<br>層に事前に記<br>録されている                                     | D V D R A M層にこの<br>情報をコピーする→<br>コピー情報を利用する               | ここでの指定論理<br>ブロック番号LBN<br>はRAM層を指定                                  |
| ルートディレク<br>トリのファイル<br>エントリ   | DVDROM<br>層に事前に記<br>録されている                                     | D V D R A M層にこの<br>情報をコピーする→<br>コピー情報を利用する               | ここでの指定<br>: L B N は R A M<br>層を指定する                                |
| ルートディ<br>レクトリ内<br>のLADs      | アプリケーションディレクトリも含めて<br>DVDROM屋に事<br>前に記録されている                   | D V D R A M層にこの<br>情報をコピーする→<br>コピー情報を利用して<br>ユーザが追加する   | アプリケーション<br>ディレクトリも含<br>めコピー前からフ<br>ァイルエントリ指<br>定LBNはRAM<br>層を指定する |
| アプリケーション<br>実行ファイル情報         |                                                                | コピーせず                                                    | この記録位置指定<br>LBNはROM層<br>を指定する                                      |
| アプリケーション<br>テンプレート<br>ディレクトリ | DVDROM層に事<br>前に記録されている                                         | コピーせず                                                    | この記録位置指定<br>LBNはROM暦<br>を指定する                                      |
| アプリケーション<br>データファイル          | 記録されていない                                                       | D V D R A M 暦<br>に新たに作成                                  | アプリケーション<br>起動時に作成                                                 |
| アプリケーション<br>関連ディレクトリ         | DVDROM<br>層に事前に記<br>録されている                                     | DVDRAM層にこの<br>情報をコピーする→<br>コピー情報を利用する                    | ここでの指定<br>L B N は R A M<br>層を指定する                                  |
| 第2<br>アンカー<br>ポイント           | DVDROM層に事前<br>に記録されている→<br>指定先はコピー後の<br>RAM層の論理セクタ<br>番号LSNで指定 | D V D R A M層にこの<br>情報をコピーする→<br>コピー先のLSNは<br>"最終LSNー256" | 初期化後はD V D<br>R A M層にコピー<br>した情報を利用                                |
| リザーブボリ<br>ューム紀述子<br>シーケンス    | DVDROM層に事前<br>に記録されている→<br>指定先はコピー後の<br>RAM層の論理セクタ<br>番号LSNで指定 | DVDRAM層にこの<br>情報をコピーする→<br>コピー先のLSNは<br>実際のLSNと一致        | 初期化後はDVD<br>RAM層にコピー<br>した情報を利用                                    |

【図71】







### 【図74】



【図75】



【図76】



【図78】





ディスクチェ ンジャ(ディ スクバック) ディスクドライブ32 アナログ入力 A V 入力 一時記 世部34 A-SYNC 100-ゲータ プロセ サ36 ΤV エンコーダ部60 チューナ デコーダ部 5 0 STC 38 デジタル入力 デジタル テキストデータ 表示移動命令等 単一 降小国命データ フレーム メモリ 604 ビデオ ミキサ 602 サンブルレート コンバータSRC DVC デジタ ルビデ オ出力 DVHS メインM P U 部 3 O ワークR A M / プログラムR O M ; オーディオ情報同以近距前;電域 1 / F またはインターネット I / F

DAC

PC

【図84】

【図85】



【図86】

