يسم الله الرحمن الرحيم

ساختمانهای داده

جلسه ۴

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

تحليل مجانبي

- زمان اجراى دقيق يك الگوريتم معمولا قابل پيش بيني نيست.
 - تحلیل مجانبی برای ورودی با اندازه بزرگ
 - تخمینی از مدت زمان اجرای برنامه
 - تخمینی از اندازه ورودی
 - مقايسه كارايي الگوريتمهاي مختلف
 - تمرکز بر بخشی از کد یا الگوریتم که بیشترین تکرار را دارد.
- در این درس ما اغلب رفتار مجانبی الگوریتمها را در نظر می گیریم.

نمادهای مجانبی

- o نماد Big-O.
- در این کلاس ما اغلب از این نماد استفاده می کنیم.

نمادهای مجانبی

o نماد Big-O.

تعداد عمليات	زمان اجرای مجانبی	
$150 \cdot n^2 + 1000$	$O(n^2)$	
$0.0052 \cdot n^25 n - 12.7$	$O(n^2)$	
$500 \cdot n^{1.5} - 2^{2000} \sqrt{n}$	$O(n^{1.5})$	
$41 \cdot n^2 \log(n) + 0.5$	$O(n^2 \log(n))$	

Def.

We write f(n) = O(g(n)) if there are positive constants n_0 and c such that for all $n \ge n_0$: $f(n) \le c \cdot g(n)$

Big-O

Def.

We write f(n) = O(g(n)) if there are positive constants n_0 and c such that for all $n \ge n_0$: $f(n) \le c \cdot g(n)$

$$3n^3 + 20n^2 + 5$$
 مثال: \circ

$$3n^3 + 20n^2 + 5 \le c \cdot n^3$$
 for $n \ge n_0$ \longrightarrow $c = 5, n_0 = 20$

$$3n^3 + 20n^2 + 5 = O(n^3)$$

$Big-\Omega$

Def.

We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that for all $n \ge n_0$: $f(n) \ge c \cdot g(n)$

$$4n^2 + 100n + 500 = \Omega(n^2)$$

Big-O

Def.

We write $f(n) = \Theta(g(n))$ if there are positive constants n_0 , c_1 , and c_2 such that for all $n \ge n_0$: $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$

○ مثال:

$$2n^2 - 10n + 8 = \Theta(n^2)$$

Big-O

Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

برخى روابط

•
$$f(n) = O(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \text{ or } c$$

•
$$f(n) = \Omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \text{ or } c$$

•
$$f(n) = \Theta(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \neq 0$$

خواص

۰ برخی از خواص نمادهای گفته شده و روابط بین آنها

•
$$f(n) = \mathbf{O}(g(n)) => g(n) = \mathbf{\Omega}(f(n))$$

•
$$f(n) = \Omega(g(n)) => g(n) = O(f(n))$$

•
$$f(n) = \Theta(g(n)) => g(n) = \Theta(f(n))$$

مثال

• با توجه به تابع زیر، کدام گزینه درست است؟

$$T(n) = \frac{1}{2}n^2 + 3n.$$

a)
$$T(n) = O(n)$$

b)
$$T(n) = \Omega(n)$$

c)
$$T(n) = \Theta(n^2)$$

d)
$$T(n) = O(n^3)$$

سوال

○ آیا درستند؟

•
$$10^{100} = O(1)$$

•
$$n^2 = O(n^5)$$

•
$$n^2 = \Theta(n^5)$$

•
$$33n^2 + 41n + \log(n) + 14 = O(n^2 + n + 1)$$

•
$$\log(n^2) = O(\log(n))$$

IUT-ECE

برخی نرخهای رشد

ullet $\Theta(1)$: ثابت

▶ $\Theta(\log n)$: لگاریتمی

ullet $\Theta(n)$:

→ Θ(n log n): خطی-لگاریتمی

 $\blacktriangleright \Theta(n^2)$:

 $ightharpoonup \Theta(n^3)$:

ullet $\Theta(2^n)$:

زمان مصرفی

○ فرض کنید هر عمل ۱ نانو ثانیه

n	$\log n$	n	$n \log n$	n^2	n^3	2^n	
8	3	8	24	64	512	256	
16	4	16	64	256	4,096	65,536	
32	5	32	160	1,024	32,768	4, 294, 967, 296	
64	6	64	384	4,096	262,144	1.84×10^{19}	
128	7	128	896	16,384	2,097,152	3.40×10^{38}	
256	8	256	2,048	65,536	16,777,216	1.15×10^{77}	
512	9	512	4,608	262, 144	134, 217, 728	1.34×10^{154}	

تحلیل مرتبسازی درجی

INSERTION-SORT (A, n)	cost	times
1 for $i = 2$ to n	c_1	n
2 key = A[i]	c_2	n-1
3 // Insert $A[i]$ into the sorted subarray $A[1:i-1]$.	0	n-1
4 j = i - 1	c_4	n-1
5 while $j > 0$ and $A[j] > key$	C_5	$\sum_{i=2}^{n} t_i$
A[j+1] = A[j]		$\sum_{i=2}^{n} (t_i - 1)$
j = j - 1	C_7	$\sum_{i=2}^{n} (t_i - 1)$
8 A[j+1] = key	C_8	n-1

○ تحلیل بدترین حالت:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8) .$$

تابع مربعی از n

$$T(n) = an^2 + bn + c$$

تحلیل مرتبسازی درجی

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i-1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j-1

8 A[j+1] = key
```

○ تحلیل بدترین حالت:

$$T(n) = O(n^2)$$

چند نکته

