

MIFARE Plus

Technical details

Renke Bienert MIFARE Plus, technical details CAS Training M2 2011

Contents

- Features and Functionality
 - Concept & security
 - Memory mapping
- Security Levels 0, 1, 2, and 3
 - Level 0: Personalisation
 - Level 1: MIFARE Classic compatible
 - Level 2: AES and more secure use of MIFARE Crypto
 - Level 3: Use of AES and T=CL protocol
- Additional features
 - Proximity Check
 - Virtual Card Architecture
- Migration concept from MIFARE Classic to MIFARE Plus

Features and Functionality

MIFARE Plus

- is a new main stream smart card IC of the MIFARE product family,
- has been designed for use in public transport and access management,
- uniquely features outstanding AES based security enhancements,
- protects investments with existing MIFARE infrastructure,
- is available via NXP's worldwide partner network.
- Further information can be found here:

http://www.mifare.net/products/mifare_plus.asp

Features and Functionality

- MIFARE Classic compatible
 - Security Level concept allows easy system upgrade
- 4 Byte ONUID or 7 Byte UID (double size UID acc. to ISO/IEC 14443)
 - Optional Random ID
 - UİD always available e.g. to use key diversification
- 2K / 4K Byte EEPROM
 - Same memory structure as MIFARE Classic
 - No need to change the card data layout in the system
- AES Authentication/Encryption/MAC
 - Different levels of MAC and encryption
 - Configurable acc. to system requirements
- Anti-tearing for AES Keys (SL2 & SL3) and Sector Trailers (SL3)
- Originality Function
 - Guarantees correct NXP card IC
- Proximity Check
 - Offers option to prevent relay atacks
- Data rates up to 848 kbit/s
 - According to ISO/IEC 14443
- Common Criteria evaluation and certification level 4+ (HW & SW)
- Supports system migration from MIFARE Classic

MIFARE Plus Block diagram

Abbreviations & Terms

- Auth = Authentication (i.e. 3-pass mutual authentication)
- SLx = one of the 4 Security Levels of MIFARE Plus
- MAC = Message Authentication Code
- POR = Power on Reset
- VC = Virtual Card
- LSB = Least Significant Byte
- MSB = Most Significant Byte

Be aware that the training slides do not replace any of the official documents.

MIFARE Plus derivates

- MIFARE Plus S (2 KByte)
 - 4 Byte ONUID
 - 7 Byte UID
- MIFARE Plus S (4 KByte)
 - 4 Byte ONUID
 - 7 Byte UID

- MIFARE Plus X (2 KByte)
 - 4 Byte ONUID
 - 7 Byte UID
- MIFARE Plus X (4 KByte)
 - 4 Byte ONUID
 - 7 Byte UID

MIFARE Plus Type Identification

MIFARE Plus ATS Coding

TL: 'Length Byte' of the transmitted ATS (including itself, but excluding the two CRC bytes)

MIFARE Plus X ATS Coding of Historical Characters

MIFARE Plus S ATS Coding of Historical Characters

Memory Mapping of MF1 Plus 60 (2 kByte)

2048 Byte in 32 SECTORS with 128 addressable BLOCKS @ 16 BYTE each

Memory Mapping of MF1 Plus 80 (4 kByte)

4048 Byte in 40 SECTORS with 256 addressable BLOCKS @ 16 BYTE each

MIFARE Plus Security Levels

MIFARE Plus Security Levels

MIFARE Plus Security Level 0

Personalisation

MIFARE Plus Security Level 0

Personalisation

Security Level 0 just allows the personalisation of the MIFARE Plus:

- Write Perso:
 - Write Data (optional)
 - Write Configuration (optional)
 - Write Keys (mandatory)
- Commit Perso:
 - finalises personalisation
 - switches to SL1

State diagram Security Level 0 (Details)

MIFARE Plus, CONFIDENTIAL 19

Renke Bienert, BUID/CAS

March 11, 2011

State diagram Security Level 0 (simplified)

Note: Acc. to ISO/IEC 14443 RATS is only possible directly after a Select. Ready 2 is only applicable for 7-byte UID

Personalisation of MIFARE Plus

Write Perso

- Mandatory:
 - Write Card Master Key (9000_{hex})
 - Write Card Configuration Key (9001_{hex})
 - Write Level 2 Switch Key* (9002_{hex})
 - Write Level 3 Switch Key (9003_{hex})
- Optional (recommended):
 - Write all other Keys
 - Write configuration blocks
- Optional
 - Write Initial data

Commit Perso

Mandatory.

MUST!

- * MIFARE Plus S does not support SL2:
- -> no Level 2 Switch Key is required.

The importance of writing ALL keys at Security Level 0

- AES keys cannot be written in Security Level 1
- When switching to Security Level 2 or 3 and the AES keys are not written, sectors will be protected only by
 - default keys = no protection.
- So if AES keys are not written during Security Level 0, the switching to a higher security level cannot take place in the field:
 - Cards need to be taken from the user to a secure environment
 - Switch must be made to the higher security level
 - Keys must be replaced
 - Card can be handed back to the user

MIFARE Plus Security Level 1

MIFARE Classic compatible

MIFARE Plus Security Level 1

Security Level 1 offers the features of the well known MIFARE Classic:

- MIFARE Authentication / Encryption
 - Same as MF1 ICS 50 or MF 1ICS70
 - Consider security risks!
- MIFARE Read / Write
 - Same as MF1 ICS 50 or MF 1ICS70
- MIFARE Value operations
 - Increment / Decrement / Restore + Transfer
 - Same as MF1 ICS 50 or MF 1ICS70

Be aware of the UID length!

Vulnerability: Differences between IC types

				Emulation	E Classic on MIFARE rity Level 1	Non-NXP
	Vulnerability	MIFARE Classic Card	MIFARE Classic Emulation on ProX or SmartMX	No AES card auth.	With AES card auth. (note 1)	MIFARE Classic implem.
1	Eavesdropping Tx + Rx data during one valid transaction	Yes	Yes	Yes	Depends	Yes
2	Eavesdropping Tx data during two valid transactions	Yes	Yes	Yes	Depends	Yes
3	Eavesdropping the result of two failed authentications	Yes	Yes	Yes	No	Yes
4	Attack without a legitimate transaction	Yes	Yes	No	No	Depends
5	With one key all other keys of the card can be retrieved	Yes	No	No	No	Depends

Note 1: Other attacks (not described here) will remain possible (with other/less impact)

State diagram Security Level 1 (simplified)

Blocks and Sectors of MF1 Plus 60 (2 kByte)

Block #

1		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Read-only: Block 0 Sector 0 only
						ref		F	ът	' O'	R I	n - /	ı DI	00	KG			1: Data
		First SECTOR 0 : 4 BLOCKS														2: Data		
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	3: Sector Trailer
PROM																		
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0: Data
		Loct SECTOP 21 . A											1 D		^K¢	1: Data		
		Last SECTOR 31 : 4 BLOCKS											2: Data					
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	3: Sector Trailer

Same as in MIFARE Classic!

Block function SL1 ("MIFARE Classic")

Sector structure in SL1 and SL2 of MF1 Plus 60 (2 kByte)

Sector structure in SL1 and SL2 of MF1 Plus 80 (4 kByte)

Access condition coding Sector 0...31

3 Control bits (C1_n, C2_n, C3_n) for **each** block

Access condition coding Sector 32...39

3 Control bits (C1_n, C2_n, C3_n) for each 5 blocks

3 Control bits for each Sector Trailer

3 Control bits for each Data Block (each 5 Data Blocks)

Value Block Format

Format of "Value Block" for electronic purse and / or anti-tearing function:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Value					Va	lue			Va	alue		Adr	Adr	Adr	Adr

- Fixed block- data format (generation via WRITE)
- Automatic value error detection & correction

Commands:

- READ
- WRITE
- INCREMENT
- DECREMENT
- RESTORE
- TRANSFER

"Value": stored 3 times in 32-bit signed 2's complement

(LSB first)

"Adr": stored 4 times in 8-bit numbers - altered only via WRITE

Value Operations

State diagram Security Level 1 (simplified)

Commands additional to "MIFARE Classic" in SL1

▶ Authenticate with SL1 Authentication Key ——— Proofs valid card!

Authenticate with SL1 Authentication Key: Why?

Application A and B:

- No need for Security.
- (Readers cannot be upgraded.)

Application C:

- Readers can be upgraded.
- Need for Security.

Authenticate with SL1 Authentication Key: Why?

Option 1:

MIFARE Plus SL2 or 3

- Advantages:
 - Better Security.
- Disadvantage:
 - All readers must be upgraded.

Option 2:

- MIFARE Plus SL1 + Authenticatewith SL1 Authentication Key
- Advantages:
 - Only **few readers** must be upgraded.
 (all those, where the application needs more security)
- Disadvantage:
 - Limited Security Improvement.

Recommendation!

Cheaper solution...

Authenticate with SL1 Authentication Key: Option 2

MIFARE Plus Security Level 2

AES + use of MIFARE Crypto

MIFARE Plus Security Level 2

Security Level 2 offers the features of the well known MIFARE Classic:

- MIFARE Authentication / Encryption
 - Same as MF1 ICS 50 or MF 1ICS70
 - Consider security risks!
- MIFARE Read / Write
 - Same as MF1 ICS 50 or MF 1ICS70
- MIFARE Value operations
 - Increment / Decrement / Restore + Transfer
 - Same as MF1 ICS 50 or MF 1ICS70

Previous AES authentication required!

State diagram Security Level 2 (simplified)

MIFARE Plus SL2 Authentication

Generate the Session MIFARE Key, part 1

Generate the Session MIFARE Key, part 2

Generate the Session MIFARE Key, part 3

Multi Sector Authentication

- If the AES Key #X = AES Key #Y, no new AES authentication is required.
- If the also MIFARE Classic Key #X = MIFARE Classic Key #Y no new MIFARE Classic authentication is needed.
 - If AES Key #X <> AES Key #Y, both new AES and MIFARE Classic authentication is required.
- Sector X and Sector Y can but do not have to be consecutive.
- Key type must be the same (A or B).

Remarks:

- Authentication is done with Key #X, so Key #Y can be changed without loosing the authentication.
- If all keys are the same, the card can e.g. be read with one authentication only.

Commands additional to "MIFARE Classic" in SL2

- Multi Block Read Allows to read 2 or 3 blocks at once.
- Multi Block Write ———— Allows to write 2 or 3 blocks at once.
- RATS Activates T=CL protocol.
- > PPS Switches to higher bit rates.
- ▶ Authenticate with Originality Key
 Proofs NXP!

Additional commands: MultiBlockRead

Additional commands: MultiBlockWrite

MIFARE Plus Security Level 3

Use of AES and T=CL protocol

MIFARE Plus Security Level 3

AES and T=CL protocol

Security Level 3 offers the following features:

- AES Authentication / Encryption
 - First Auth., Following Auth., Reset Auth.
- Read / Write
 - Encrypted or Plain, with or without MAC
- Value operations
 - Increment / Decrement / Restore + Transfer, with or without MAC
- Proximity Check
- Select Virtual Card

State diagram Security Level 3 (simplified)

Anti tearing of AES keys in Security Level 3

- The MIFARE Plus provides an anti tearing mechanism for
 - the AES keys
 - the Sector Trailer
- When the update of an AES key or Sector Trailer is interrupted,
 - Either the old key is valid or the new one.
 - No check possible which key is written, so if updating is interrupted: try again.
 - The MIFARE Plus card needs up to appr. 25 ms after next POR (before REQA).

The PCD needs to "know", wether a roll-back of an interrupted key update takes place or not.

Sector structure in SL3

Bytes 6,7,8: Same as in SL1
Byte 5 defines whether plain communication is allowed or not.

0x0F: Plain communication allowed for all blocks.

AC coding for plain communication (Sector 0..31)

Byte 5 of Block 3

	7	6	5	4	3	2	1	0			
	0				1				Plain allowed		Block
	1				0				No Plain allowed		DIOCK
		0				1			Plain allowed		Block
•		1				0			No Plain allowed		DIUUK /
			0				1		Plain allowed		Block
			1				0		No Plain allowed		DIOCK
				0				1	Plain allowed		Block
				1				0 No Plain allowed			יאטטום

AC coding for plain communication (Sector 32..39)

Byte 5 of Block 15

7	6	5	4	3	2	1	0				
0				1				Plain allowed		Block 15	
1				0				No Plain allowed	_	DIUCK 13	
	0				1			Plain allowed		Plack 10	
	1				0			No Plain allowed	_	Block 10.	
		0				1		Plain allowed	_	Block 59	
		1				0		No Plain allowed		DIOOK O	
			0				1	Plain allowed	_	Block 0	
			1				0	No Plain allowed		DIOCK U	

Switch to SL3 -> AC coding for plain communication

- The Byte 5 is used as MIFARE Key Byte in SL1 and SL2.
- The MFP Configuration Block contains the **Default AC coding of Byte** 5.
- The Default AC of Byte 5 is copied from the MFP Configuration Block into each Sector Trailer during Level Switch.
- Make sure that the right AC for plain communication is set during Personalisation! (Only possible in SL0!)
- Default is 0x0F (plain allowed in every block).

Transaction & Session

AES Authentication for MIFARe Plus SL3

Authentication (general)

- Is always required, and guarantees authenticity.
- Is based on AES.
- Starts a Session, and ends the previous Session (if available).
- Generates 2(!) Session keys
- Releases the Transfer buffer.

First Authentication

- Starts a transaction.
- Generates a Transaction Identifier (TI).
- Exchanges the PICC capabilities and the PCD capabilities.
- Resets Read & Write Counter (R_Ctr & C_Ctr).

Following Authentication

Does not reset the counters

A Transaction may contain several Sessions

First Authentication

PICC and PCD capabilities

PICCcap1 and PCDcap1 (3Bytes each)

6 Bytes: Details refer to the Virtual Card Selection

PCDcap2

- PCD capabilities: 6 Bytes
- Defined by the system / reader

There is no use case for the PCDCapabilities now:

- Either use no PCDCap (LenCap = 0) or fill all bytes with 00.
- All "missing" bytes in the second response of authentication are padded with 00.
- The PCD must check the PCDCap in the second response!

PICCcap2

- PICC capabilities: 6 Bytes
- Bytes 0..3 are defined by NXP (all bytes 00)
- Bytes 4 and 5 are definable by the user (Configuration Block)
- PCD must not check the PICCcap now. -> Will change later.

Following Authentication **Note:** IV= Concatenation of TI, 3x R_Ctr and 3x W_Ctr -> Same as IV for message transfer. 2 PCD to PICC 76_{hex} Generate 16 byte RndB KeyBNr 16 Generate 16 byte RndA PICC to PCD 90_{hex} E(Kx, RndB) RndB' = (RndB <<< 1)32 1 Verify RndB' PCD to PICC 72_{hex} E(Kx, RndA | RndB') RndA' = (RndA <<< 1)16 Verify RndA' PICC to PCD 90_{hex} E(Kx, RndA') Result ΤI = Transaction Identifier 4 Bytes known = Random Number A RND A 16 Bytes RND from PCD 16 Bytes RND B RND from PICC = Random Number B 6 Bytes PICCcap2 = PICC capabilities known PCDcap2 = PCD capabilities 6 Bytes known

Generation of Session Key for Encryption

Generation of Session Key for calculating Message Authentication Code

Confidentiality: MIFARE Plus AES Encryption

If plain data is more than 16 bytes long, chaining according to standard CBC mode

P_n: Plain Block (16 bytes)

C_n: Ciphered Block (16 bytes)

: addition modulo 2 ("XOR")

IV : Init vector 16 bytes

4	2	2	2	2	2	2
Transaction Identifier	R_Ctr	W_Ctr	R_Ctr	W_Ctr	R_Ctr	W_Ctr

<u>Note:</u> R_Ctr and W_Ctr -> LSB first
TI is a bytestring, so LSB/MSB does not apply.

Confidentiality: MIFARE Plus AES Decryption

P_n: Plain Block (16 bytes)

C_n: Ciphered Block (16 bytes)

: addition modulo 2 ("XOR")

IV : Init vector 16 bytes

IV:

4	2	2	2	2	2	2
Transaction Identifier	R_Ctr	W_Ctr	R_Ctr	W_Ctr	R_Ctr	W_Ctr

Integrity: MAC

CMAC: According to NIST Special Publication 800-38B

Read Counter R_Ctr

- Format:
 - 2 Byte counter (integer),
 - LSByte first ("Little Endian")
- The counter values are never transferred.
- Read Counter counts the Read commands.
- First Authentication resets the R_Ctr.

Write Counter W_Ctr

- Format:
 - 2 Byte counter (integer),
 - LSByte first ("Little Endian")
- The counter values are never transferred.
- Write Counter counts the Write, Increment, Decrement, Restore and Transfer commands.
- First Authentication resets the W_Ctr

Reset Authentication

This command resets the authentication.

MIFARE Plus SL3 Read and Write commands

With and without MAC, Encrypted or Plain

MIFARE Plus Read

MIFARE Plus Read commands

Command Code (hex)	Data	MAC on Command	MAC on Response	
30	Encrypted	Yes	No	
→ 31	Encrypted	Yes	Yes	
▶ 32	plain	Yes	No	
33	plain	Yes	Yes	S
34	Encrypted	No	No	
▶ 35	Encrypted	No	Yes	
→ 36	plain	No	No	
37	plain	No	Yes	
MIFARE	Plus X	1		

Example of Read 30h

Read encrypted, MAC on commnand, no MAC on Response

Blocknumber of the first block

Example of Read 31h

Read encrypted, MAC on commnand, MAC on Response

MAC on Response over more than one Read

MIFARE Plus Write

MIFARE Plus Write commands

Command Code (hex)	Data	MAC on Command	MAC on Response
▶ A0	Encrypted	Yes	No
→ A1	Encrypted	Yes	Yes
→ A2	plain	Yes	No
• A3	plain	Yes	Yes
MIFARE	Plus S		j
MIFARE	E Plus X		

Example of Write A0h

Write encrypted, MAC on commnand, no MAC on Response

Blocknumber of the first block

Example of Write A1h

Write encrypted, MAC on commnand, MAC on Response

ΤI

W_Ctr

90h

MIFARE Plus Virtual Card Architecture (VCA)

VCA Part 1: Principle

One VC available for the installation

No VC available for the installation

PCD supports multiple installations, PICC makes the choice

PCD supports multiple installations, PCD makes the choice

MIFARE Plus Virtual Card Architecture (VCA)

VCA Part 2: Commands

VCA commands

VCS: Virtual Card Select

- To inform the PICC about the IID (Installation supported by PCD)
- Always returns an "OK".
- Can be cascaded.

VCSL: Virtual Card Select Last

- To inform the PICC about the IID (Installation supported by PCD)
- Always returns the encrypted UID or garbage.
- Can be cascaded.

SVC: Select Virtual Card

Selects a VC with its UID.

DVC

Deselect a VC with its UID.

Virtual Card Support

Virtual Card Support Last

MAC on Virtual Card Support Last response

Select Virtual Card

Deselect Virtual Card

MIFARE Plus Virtual Card Architecture (VCA)

VCA Part 3: How to build the VC IID

Installation Identifier: Proposal of NXP

to NXP) according ISO 7816-5

If **no MAD** is used:

see next slides Variant 15 14 13 12 11 10 09 80 07 06 05 04 03 02 01 00 7 byte UID 0xA0 0x00 0x00 0x03 0x96 0x56 0x43 0x41 UID0 UID1 UID2 UID3 UID4 UID5 UID6 0x01 0x00 0x00 0x03 0x96 UID0 UID1 UID2 UID3 0x00 4 byte UID 0xA0 0x56 0x43 0x41 0x02 0x00 0x00 AID 0xA0 0x00 0x00 0x03 0x96 0x56 M1 M2 0x00 |0x00 |0x00 0x43 0x41 0x03 IM0 0x00 OXFF OXFF OXFF OXFF OXFF OXFF 0xA0 0x43 0x00 0x00 0x03 0x96 0x56 0x41 0xFF Factory default Explanation International RID for PIX (assigned Virtual Card Variant ID UID, MAD ID or default bytes, and filler bytes

Architecture (VCA)

If MAD is used:

MAD based IID see next slides

"Golden Device UID"

MAD based IID

If MAD is used:

3 bytes from the MAD (like with MIFARE DESFire)

M0 = MIFARE DESFire AID byte 0

M1 = MIFARE DESFire AID byte 1

M2 = MIFARE DESFire AID byte 2

MIFARE DESFire AID Byte 0		MIFARE DESFI	re AID Byte 1	MIFARE DESFire AID Byte 2			
Nibble 0	Nibble 1	Nibble2 Nibble3		Nibble4	Nibble5		
0xF		0x0 0xF					

Details refer to AN "MIFARE Application Directory".

"Golden Reference UID" based IID

If no MAD is used:

7 byte UID	0xA0	0x00	0x00	0x03	0x96	0x56	0x43	0x41	0x01	UID0	UID1	UID2	UID3	UID4	UID5	UID6
4 byte UID	0xA0	0x00	0x00	0x03	0x96	0x56	0x43	0x41	0x02	UID0	UID1	UID2	UID3	0x00	0x00	0x00
																J

- Take a MIFARE card (MIFARE Plus).
- Read out the UID.
- Clearly mark this card that this is the "Golden Device".
- Make sure that the UID stays readable,
 - Do not configure this card into Random ID.
 - After reading out the UID do not further interact with it.
- Lock the card away ("Golden Reference").
- Compose the IID using the table in the previous slide using the row 7 byte UID or 4 byte UID depending on the length of the UID that was read from the card.

MIFARE Plus Virtual Card Architecture (VCA)

VCA Part 4: VCA Quick and Easy!!

VCA Quick and Easy!!

- What is the target?
- How to prepare the MIFARE Plus
- How to use VCSL
- Additional Remarks

What is the target?

- We want to use the MIFARE Plus with RID -> Privacy protection!
- We want to use the UID to diversify keys -> Security!
- We want to use the fastest (& secure) way to retrieve the UID!

VCSL = Virtual Card Select Last command

How to prepare the MIFARE Plus

- Create an IID for YOUR installation.
 - IID = Installation Identifier = "Unique" Installation ID
 - Proposal from NXP available: use a "Golden Device UID" and store ayway.
 - Details see slides in VCA part 3 above.
- Create a VC Polling ENC Key for YOUR installation.
- Create a VC Polling MAC Key for YOUR installation.
- Personalize the MIFARE Plus with
 - IID (Block B001_{hex})
 VC Polling ENC Key (Block A080_{hex})
 VC Polling MAC Key (Block A081_{hex})
- Switch MIFARE Plus to use RID in SL3
 - Write Field Configuration Block (e.g. during Personalization)

How to use VCSL

- Activate Card: REQA Anticollision Select RATS (-optionally PPS)
 - This Activation sequence uses the Random ID now.
 - Privacy is protected.
- Run VCSL to get UID.
 - You need to know YOUR IID.
 - You need to know YOUR VC Polling ENC Key.
 - You need to know YOUR VC Polling MAC Key.
 - UID is transferred encrypted and MACed -> Secure!
 - Only YOU can retrieve the UID to diversify keys.
- Simple and fast!

Remarks

- VCSL is the fastest way to retrieve the UID.
 - Read Block 0 might be possible, but takes longer.
 - Read Block 0 might not be encrypted (MIFAR Plus S): not secure!
- VC Polling ENC Key must NOT be diversified!
- VC Polling MAC Key must NOT be diversified!

