降雨量预测

孟诗涵 2019211246 mengsh19@mails.tsinghua.edu.cn

1 简介

1.1 降水量预测任务及主流的解决方法

降水量任务多年来受到广泛关注,属于时空序列类预测问题。各领域研究人员提出了很多不同的模型,著名的有 **, ** 和 **。

- 1.2 机器学习方法在降水量预测中的应用,调研 5 篇文档
- 1.3 本文主要贡献

2 任务定义

本文将降水量预测问题定义为分类问题,根据**按照降水量的数值分成无雨,小雨,中雨和大到暴雨四类。同时,本文将问题定义为短时预测问题,基于前六小时的特征数据预测下一小时的降水量,对5个邻近气象站分别单独建模。

- 2.1 符号公式定义
- 3 数据整理
- **3.1** 数据来源,内容

数据集来自巴西国家气象研究所(INMET)【?】,它涵盖了来自东南地区(巴西)的 122 个气象站从 2000 年到 2016 年的每小时天气观测数据(并非所有气象站都是从 2000 年开始观测的)。东南部包括里约热内卢,圣保罗,米纳斯吉拉斯州和圣埃斯皮里图州等。数据是由维萨拉自动气象站AWS310 自动捕捉,所以可能发生设备故障导致数据错误或缺失的情况。整个数据集规模为 9779168条信息,31 个特征。其中有时间地点,气象站编号等信息,还有 17 个气象数据分别为 temp-瞬时空气温度(摄氏度)、tmax-最高气温(摄氏度)、tmin-最低气温(摄氏度)、hmdy-空气相对湿度(%)。hmax-最大相对空气湿度(%)、hmin-最低相对空气湿度(%)、dewp-即时露点(摄氏度)、dmax-最大露点(摄氏度)、dmin-最低露点温度(摄氏度)、stp-瞬时大气压(百帕)、smax-最大大气压(百帕)、smin-最低大气压(百帕)、wdsp-瞬时风速(米/秒)、wdct-风向(半径度)、gust-阵风强度(米/秒)、gbrd-太阳辐射、prcp-降水量(毫米)。

首先观察气象数据的分布,最大值最小值应与实际值有类似的分布,具体见图3.1。其中所有特征均有较多的零值,需要逐一分析,并进行对应的清洗。需要预测的 prcp-降水量绝大部分都是 0 值,非常稀疏,给预测带来了很大的困难。stp-气压、temp-温度、dewp-露点温度基本为正态分布,数值保持在一个范围之内。考虑到夜晚没有太阳照射,gbrd-太阳辐射绝大部分值为 0,低辐射值分布略比高辐射值大,中辐射值分布比较均匀。hmdy-空气湿度数值从 100% 降低,分布越来越少。风速是一个均值偏向 0 的正态分布。

图 1: 各气象特征数据分布直方图

3.2 数据清洗及处理

对不同的参数有不同的处理。其中降水量和太阳能将 nan 值用 0 替代,作为可用数据条。Stp,smax,smin 表示气压值,temp,tmax,tmin,dewp, dmax, dmin 表示温度,hmdy, hmax, hmin 表示湿度,wdsp,wdct,gust 表示风速有关的数据。上述特征值均为连续实数,将 nan 值用 0 替代后做线性插值,但是线性插值对长时间一整段的数据缺失无用,所以直接将一整段数据丢失的样本丢弃。

有一个气象站的经纬度及海拔信息缺失,谷歌出正确的信息补全。另外有两个气象站经纬度信息错误,改正。

考虑到计算机算力问题,在 122 个气象站中根据数据量排序选择编号为 371-375 的五个气象站,它们均在 RJ 省,经纬度上看为邻近的城市,海拔均在 100 米以下,靠近海边,受热带气候影响,降雨量较多,一定程度上缓解数据稀疏问题,有利于模型分类。

4 特征提取

4.1 数据归一化处理

采用 sklearn 包中 standardScaler 对数据统一进行归一化处理, 变为标准正态分布。即默认训练 集验证集测试集同分布。本文采用的某些模型对归一化不敏感,有些则很敏感,具体分析见章节?。

4.2 最终使用的特征维度和每一维的含义

气象数据中大气压、温度、湿度在一个小时内基本稳定,所以将最大值最小值丢弃,只采用 stp、 temp、dewp、hmdy、wdsp、wdct、gust 等进行建模。保留时间特征,因为时间序列中时间是非常 重要的特征、反应了待预测数据量的变化信息。另外考虑到五个气象站的不同、保留地理位置等信 息,最终单个气象站模型使用的特征共13维,具体见表1。在章节?会讨论全部特征和进行选择后 的部分特征对结果造成的影响。

表 1: 最终使用的特征		
特征名称	特征含义	
yr	年	
mo	月	
da	目	
hr	小时	
stp	气压	
gbrd	太阳辐射	
temp	空气温度	
dewp	露点温度	
hmdy	空气相对湿度	
wdsp	瞬时风速	
wdct	风向	
gust	阵风强度	
prcp	过去一小时降水量	

4.3 特征相关性

在整个数据集上观察各个特征维度与预测值降水量的相关性,得到结果如图2所示。由图可得到 以下结论:

- 最大值最小值相关性基本与实际值相等,说明之前的特征选择操作是合理的;
- 湿度 hmdy, 阵风 gust 等与降水量 prcp 正相关;太阳辐射 gbrd,温度 temp,气压 stp 与降水 量 prcp 负相关,即风大气压低更有可能下雨,基本符合常识;
- 时间, 经纬度和气象站信息相关性相对不明显。

因为降水量为时间序列,为了观察时序上的相关性,以温度 temp 和湿度 hmdy 为例,得到相 关性热度图如图3所示。可以得到如下结论:

图 2: 特征相关性

- 湿度 hmdy 和温度 temp 均有明显的时间正相关性,时间越近相关性越大,接近 1;
- 湿度 hmdy 和温度 temp 有明显的负相关性。

5 模型设计

5.1 线性模型

5.1.1 逻辑回归分类器 Logistic Regression Classifier

逻辑回归假设数据服从伯努利分布,通过极大化似然函数方法,运用梯度下降来求解参数,来 达到将数据二分目的。多分类器可由二分类器推广得到。本质上是一个线性模型,可利用特征核函 数将低维特征映射到高维,类似支持向量机(SVM)。

【解决欠拟合和过拟合的问题,欠拟合可以增加特征维度,过拟合可以减小特征维度,正则化,逐渐减小梯度下降学习率等方法来解决。】

逻辑回归分类器具有如下优点:

(1) 直接对分类的可能性建模,无需事先假设数据分布,避免了假设分布不准确带来的问题。同时 对率函数是任意阶可导凸函数,有很好得数学性质,很多数值优化算法可直接用于求取最优解;

图 3:6 小时内温度和湿度相关性热度图

- (2) 不仅预测出类别,还可得到近似概率预测,因此可用作排序模型;
- (3) 算法简单,容易使用和解释,计算代价低,可应用于分布式数据和在线算法实现,用较小资源处理较大数据;
- (4) 算法稳定性高,对数据中小噪声鲁棒性很好,并且不会受到轻微多重共线性影响。 缺点:
- (1) 容易欠拟合,分类精度不高;
- (2) 数据特征有缺失或特征空间很大时效果不好。

5.1.2 SVM

支持向量机 (support vector machine, SVM) 是一种二分类模型,可推广到多分类器。其基本模型定义是特征空间上的间隔最大的线性分类器(当采用线性核时),即支持向量机的学习策略是间隔最大化,最终可转化为一个凸二次规划问题的求解。对于线性不可分问题,可利用核函数将低维特征映射到高维,再进行划分。

支持向量机算法具有如下优点:

(1) SVM 算法简单, 易于理解, 核心为最大化分类边界, 得到支持向量;

- (2) SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了"维数灾难";
- (3) 少数支持向量使算法具有较好的稳定性,比如增删非支持向量样本对模型没有影响。 缺点:
- (1) 通过二次规划来求解计算复杂度高,大样本时所需时间长;
- (2) 非线性问题的核函数难以选择;
- (3) 对缺失数据敏感。

5.1.3 KNN

KNN 是近邻法的一种,核心思想为一个样本的分类结果与它周围的邻居类别有关,通过投票法等方法确定该样本的类别。

近邻法具有如下优点:

- (1) 算法简单, 易于理解, 易于实现, 无需估计参数, 无需训练;
- (2) 适合于多分类问题 (multi-modal,对象具有多个类别标签)。

缺点:

- (1) 需要存储所有样本的距离矩阵, 计算量大, 内存开销大;
- (2) 样本不平衡时, 对稀有类别的预测准确率低;
- (3) 相比于决策树模型,可解释性不强。

5.2 树模型

5.2.1 Decision Tree

决策树是基于规则进行决策和判别的树模型,目的是构造一棵泛化能力强的树。它采用自顶向下的递归方式来生长。随着树的生长,完成对训练样本集的不断细分,最终都被细分到了每个叶子结点上。

决策树具有如下优点:

- (1) 对噪声数据具有很好的鲁棒性,且对缺失值不敏感,能处理连续离散等多种属性的数据;
- (2) 效率高,运行时间短,一旦构建完决策树模型,可以多次使用;
- (3) 学习得到的决策树可以表示为多条 if-then 形式的决策规则, 因此具有很强的可读性和可解释性。 缺点:
- (1) 容易导致过拟合,需要剪枝等操作,或者采用随机森林模型;

- (2) 容易忽略数据集中属性的相互关联,特别是在本文的时间序列模型中;
- (3) 样本不均衡时,不同的判定准则会有不同的属性偏向: 比如信息增益准则对数目较多的属性有 所偏好(典型代表 ID3 算法),而增益率准则(CART)则对数目较少的属性有所偏好。

5.2.2 Random Forest

随机森林是一个用随机方式建立的,包含多个决策树的分类器,也属于集成学习中的 bagging 算法的一种。随机性主要体现在两个方面:一是重采样,训练每棵树时,从全部训练样本(样本数为 N)中选取一个可能有重复的大小同样为 N 的数据集进行训练(即 bootstrap 取样);二是随机选取特征,在每个节点,随机选取所有特征的一个子集,用来计算最优分类特征。

随机森林在决策树优缺点的基础上,具有不易过拟合,可以降低方差等优点,同时对于样本不均衡的问题,它可以平衡误差。

5.2.3 GBDT

GBDT 是梯度下降与决策树模型的结合,是一种 boosting 方法,每一次建立模型,是在之前建立模型损失函数的梯度下降方向。

GBDT 在决策树的基础上具有如下优点:

- (1) 具有 boosting 思想,每一步的残差计算其实变相地增大了分错实例 (instance) 的权重,而已 经分对的实例 (instance) 则都趋向于 0。这样后面的树就能越来越专注那些前面被分错的实例 (instance);
- (2) 表达能力强,无须对特征进行复杂的变换和选择,且能够自动对特征重要性排序。 缺点:
- (1) Boost 是一个串行过程,不好并行化,计算复杂度高;
- (2) 不太适合高维稀疏特征,如果 feature 个数太多,每一棵回归树都要耗费大量时间,甚至不如 SVM。

5.2.4 Xgboost

5.3 神经网络模型

5.3.1 MLP

MLP 多层感知机是一种前馈神经网络,基于反向梯度传播学习。 MLP 具有如下优点:

- (1) 高度的并行处理,算法效率高
- (2) 有很强的自适应,自学习的能力。

缺点:

- (1) 具有神经网络模型的统一缺点,可解释性较差;
- (2) 网络隐含层的参数选取比较困难,容易陷入局部极值。

5.3.2 LSTM

5.4 集成方法

三个臭皮匠顶个诸葛亮。在集成方法中,我们训练多个弱学习器模型以解决相同的问题,并将它们结合起来从而获得更好的结果。当弱学习期被正确组合时,可以得到更精确更鲁棒的模型。在bagging 和 boosting 等方法中,我们使用多个同一种基学习器,加入随机因子,用不同的方法训练;也可以使用不同种类的基学习器。

5.4.1 平均方法 average

投票分类器是将不同的基学习器组合,并使用多数表决或平均预测概率来预测类标签。这样的分类器可用于一组性能良好的模型,以平衡其各自的弱点。本文采用单独模型中的 LR、SVM、KNN、RF、MLP 生成组合模型,分别采用多数表决 (hard) 和平均预测概率 (soft) 两种方法实现。

用 sklearn 包中 votingclassifier 实现。

5.4.2 增强方法 boosting

6 实验设计及结果

6.1 数据集划分

X-train(n_samples, 78) 的说明,gridsearchcv 中因为 cv=5,所以只分训练集和测试集即可,交叉验证会自动从训练集中分出验证集。

6.2 评价指标的定义

precision, recall, fscore 三个指标,含义?。用 sklearn 包中的 classification report 直接得到。

6.3 每种模型单独的最好结果对比

从表2所示,共九种模型的四个指标。每一个单元格中从左到右分别为 371-375 五个气象站的结果,可以看到在同一个气象站数据下,不同模型的四个指标都有类似的数值,即不同气象站的指标具有不同的均值和方差,说明分类结果与数据集本身分布相关。标黑的数值表示在同一个气象站数据下,最优的模型表现,综合来看 GBDT 的性能最优。整体来看,各个模型的性能指标都类似,只有小幅的偏差,可能说明分类器的性能均已达到比较优的情况。另外,在 accuracy, precision, recall, fscore 里, precision 和 fscore 数值上相对稍低, recall 相对稍高。

人名· 中域快至时取为妇术的比				
模型	accuracy	precision	recall	f1-score
LR	.93 .93 .89 .96 .95	.90 .90 .83 .93 .93	.93 .93 .89 .96 .95	.91 .91 .84 .94 .93
SVM	.93 .93 .89 .96 .95	.91 .90 .84 .93 .92	.93 .93 .89 .96 .95	.91 .91 .85 .94 .92
KNN	.93 .92 .88 .96 .95	.90 .89 .83 .93 .91	.93 .93 .88 .96 .94	.91 .90 .85 .94 .92
DT	.93 .93 .90 .96 .95	.91 .92 .87 .95 .93	.93 .93 .90 .96 .95	.92 .92 .88 .95 .94
RF	.93 .93 .90 .96 .94	.91 .91 .87 .94 .93	.93 .93 .90 .95 .94	.92 .92 .88 .95 .94
GBDT	.94 .93 .90 .96 .95	.92 .92 .88 .95 .94	.94 .93 .90 .96 .95	.93 .92 .89 .95 .94
MLP	.94 .93 .90 .96 .95	.92 .91 .87 .95 .94	.94 .93 .90 .96 .95	.93 .92 .88 .95 .94

表 2: 单独模型的最好结果对比

6.4 ensemble 后的最好结果对比

以 375 气象站为例, emsemble 后结果见表3所示。ensemble 后模型性能与最优的单个模型齐平, 没有明显的提升。可能是单个模型已经有很好的性能了。

表 3:	不同	ensemble	模型的	最好结果对比	<u> </u>

模型	accuracy	precision	recall	f1-score
hard-voting	.95	.93	.95	.94
soft-voting	.95	.92	.95	.93

6.5 不同超参数对模型的影响

上述模型均为机器学习经典模型,且在上课和课后作业中讨论过不同超参数的影响,不再赘述。 此节讨论 class_weight 这一参数对模型的影响。

由上述章节?可知降水量数据具有稀疏性,导致分类后样本极度不均衡,由此训练出的分类器可能有较高的准确性但是性能较差。为了解决这一问题,可以采用以下几种措施:

- 扩大数据集, 对稀有样本重采样, 对多数样本进行欠采样;
- 采用更合理的评价指标, 比如本文中采用的 precision、recall 和 f1-score;
- 尝试不同的分类算法, 比如决策树模型等常在类别不均衡的问题上有较好的表现;
- 对问题重新定义,可将小类样本作为异常点,因此该问题即转化为异常点检测 (anomaly detection) 与变化趋势检测问题 (change detection);
- 采用代价敏感学习方法,给少数类样本分配较高的误分类代价,而给多数类样本分配较小的误分类代价,通过这种方式在训练中人为提高了少数类别样本的重要性,以此减轻分类器对多数类的偏好。
- 采用集成方法。

本文对 LR, SVM, DT 三种算法进行样本均衡,设置 class_weight 参数为'balanced',根据样本数量确定权重,以 372 气象站为例,得到结果如下表4所示。可以看到 LR 对样本均衡问题不敏感,而 SVM 和 DT 则有较大变化。SVM 增加了样本权重后,accuracy 大幅降低,precision 稍有上升,recall

和 fscore 均下降。DT 同样 accuracy 大幅降低, precision, recall 和 fscore 均下降。这是由模型特点决定的, LR 不会受到小噪声的影响; SVM 对于不同代价函数敏感,可能会导致不同的边界和支持向量; 单棵 DT 由于样本不均衡会产生一定的偏向,这一问题能够在森林中解决。另外,对于数据集的进一步清洗,包括删除缺失属性的数据条等操作,能够提高 balanced 后的模型性能,这可能是因为清洗的绝大部分是 0 类,一定程度上改善了样本不均衡的问题。

表 4: class weight 超参数结果对比

模型	accuracy	precision	recall	f1-score
LR	.93	.90	.93	.91
LR(balanced)	.91	.92	.91	.92
SVM	.93	.9	.93	.91
SVM(balanced)	.79	.92	.79	.84
DT	.93	.92	.93	.92
DT(balanced)	.83	.91	.83	.87

7 实验结果分析

【讨论数据和模型中每一部分的贡献:正则化 standardScale? one-hot?】

7.1 特征重要性分析

利用随机森林分类结果,可以得到特征重要性排序,前十个特征由下表5所示,其中特征前的数字表示前6-n小时的值。

表 5: 特征重要性分析

1/4	. 11 1	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	特征	重要性
1	5prcp	0.217
2	4prcp	0.156
3	3prcp	0.143
4	2prcp	0.097
5	5hmdy	0.016
6	5gbrd	0.016
7	4hmdy	0.016
8	5temp	0.015
9	5wdct	0.014
10	4gbrd	0.012

上述结果均由用章节?的特征子集得到,考虑把所有数值特征不经过特征选择,直接输入模型中,可以观察到结果基本相似,甚至略有提升。

另外,不清洗缺失某些数据值的数据条,也会得到略有提升的模型性能。可能是因为缺失的特征对于分类的重要性不高,保留使得数据集样本规模更大,所以会有更好的性能。

【错误分析,】

【案例分析】

7.2 回归问题

采用 LR, SVR 等线性模型,用 R2、RMSE、MAE 等指标进行评价,只能得到 R2 接近 0 的性能,基本与随机猜测没有区别,所以选择重新定义问题为分类问题。

【模型和结果可视化分析?】

【参考文献】