Each problem is worth 14 points

Unless otherwise stated, you may use anything in Munkres's book—but be careful to make it clear what fact you are using.

When you use a set theoretic fact that isn't obvious, be careful to give a clear explanation.

1. Let $A \subset X$ and $B \subset Y$. Show that in the space $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

- 2. Let X be a topological space and let A be a dense subset of X. Let Y be a Hausdorff space, and let $g, h: X \to Y$ be continuous functions which agree on A. Prove that g = h.
- 3. Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Let G_f (called the *graph* of f) be the subspace $\{(x, f(x)) | x \in X\}$ of $X \times Y$. Prove that if Y is Hausdorff then G_f is closed.
- 4. Let X be a topological space and let $f, g: X \to \mathbb{R}$ be continuous. Define $h: X \to \mathbb{R}$ by

$$h(x) = \min\{f(x), g(x)\}\$$

Use the pasting lemma to prove that h is continuous. (You will not get full credit for any other method.)

5. Let X and Y be topological spaces and let $f: X \to Y$ be a function with the property that

$$f(\overline{A}) \subset \overline{f(A)}$$

for all subsets A of X.

Prove that f is continuous.

6. Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. **Prove** that

$$f(\overline{A}) \subset \overline{f(A)}$$

for all subsets A of X.

7. Let X be any topological space and let Y be a Hausdorff space. Let $f, g: X \to Y$ be continuous functions.

Prove that the set $\{x \in X \mid f(x) = g(x)\}$ is closed.

8. Let X be a topological space and A a subset of X. Suppose that

$$A \subset \overline{X - \overline{A}}.$$

Prove that \overline{A} does not contain any nonempty open set.

- 9. Let X be a topological space with a countable basis. **Prove** that every open cover of X has a countable subcover.
- 10. Let X_{α} be an infinite family of topological spaces.
 - (a) (6 points) Define the product topology on

$$\prod_{\alpha} X_{\alpha}$$

(b) (8 points) For each α , let A_{α} be a subspace of X_{α} . Prove that

$$\overline{\prod_{\alpha} A_{\alpha}} = \prod_{\alpha} \overline{A_{\alpha}}.$$

11. Suppose that we are given an indexing set A, and for each $\alpha \in A$ a topological space X_{α} .

Suppose also that for each $\alpha \in A$ we are given a point $b_{\alpha} \in X_{\alpha}$.

Let $Y = \prod_{\alpha} X_{\alpha}$, with the product topology. Let $\pi_{\alpha} : Y \to X_{\alpha}$ be the projection.

Prove that the set

$$S = \{ y \in Y \mid \pi_{\alpha} y = b_{\alpha} \text{ except for finitely many } \alpha \}$$

is dense in Y (that is, its closure is Y).

12. Let X be the Cartesian product

$$\prod_{i=1}^{\infty} \mathbb{R}$$

with the **box topology** (recall that a basis for this topology consists of all sets of the form $\prod_{i=1}^{\infty} U_i$, where each U_i is open in \mathbb{R}).

Let

$$f: \mathbb{R} \to X$$

be the function which takes t to (t, t, t, ...)

Prove that f is not continuous.

13. **Prove** that the countable product

$$\prod_{n=1}^{\infty} \mathbb{R}$$

(with the product topology) has the following property: there is a countable family ${\mathcal F}$ of neighborhoods of the point

$$\mathbf{0} = (0, 0, \ldots)$$

such that for every neighborhood V of ${\bf 0}$ there is a $U\in {\mathcal F}$ with $U\subset V.$

Note: the book proves that $\prod_{n=1}^{\infty} \mathbb{R}$ is a metric space, but you may not use this in your proof. Use the definition of the product topology.

14. Let X be the two-point set $\{0,1\}$ with the discrete topology. Let Y be a countable product of copies of X; thus an element of Y is a sequence of 0's and 1's.

For each $n \geq 1$, let $y_n \in Y$ be the element $(1, 1, \ldots, 1, 0, 0, \ldots)$, with n 1's at the beginning and all other entries 0. Let $y \in Y$ be the element with all 1's. **Prove** that the set $\{y_n\}_{n\geq 1} \cup \{y\}$ is closed. Give a clear explanation. Do not use a metric.

15. Let X be the two-point set $\{0,1\}$ with the discrete topology. Let Y be a countable product of copies of X; thus an element of Y is a sequence of 0's and 1's.

Let A be the subset of Y consisting of sequences with only a finite number of 1's. Is A closed? **Prove or disprove.**

16. Let Y be a topological space.

Let X be a set and let $f: X \to Y$ be a function. Give X the topology in which the open sets are the sets $f^{-1}(V)$ with V open in Y (you do **not** have to verify that this is a topology).

Let $a \in X$ and let B be a closed set in X not containing a.

Prove that f(a) is not in the closure of f(B).

17. Let $f: X \to Y$ be a function that takes closed sets to closed sets. Let $y \in Y$ and let U be an open set containing $f^{-1}(y)$.

Prove that there is an open set V containing y such that $f^{-1}(V)$ is contained in U.

18. Let X be a topological space with an equivalence relation \sim . Suppose that the quotient space X/\sim is Hausdorff.

Prove that the set

$$S = \{(x,y) \in X \times X \,|\, x \sim y\}$$

is a closed subset of $X \times X$.

19. Let $p: X \to Y$ be a quotient map.

Let us say that a subset S of X is saturated if it has the form $p^{-1}(T)$ for some subset T of Y.

Suppose that for every $y \in Y$ and every open neighborhood U of $p^{-1}(y)$ there is a saturated open set V with $p^{-1}(y) \subset V \subset U$.

Prove that p takes closed sets to closed sets.

20. Let X be a topological space, let D be a connected subset of X, and let $\{E_{\alpha}\}$ be a collection of connected subsets of X.

Prove that if $D \cap E_{\alpha} \neq \emptyset$ for all α , then $D \cup (\bigcup_{\alpha} E_{\alpha})$ is connected.

21. Let X and Y be connected. Prove that $X \times Y$ is connected.

22. For any space X, let us say that two points are "inseparable" if there is no separation $X = U \cup V$ into disjoint open sets such that $x \in U$ and $y \in V$.

Write $x \sim y$ if x and y are inseparable. Then \sim is an equivalence relation (you don't have to prove this).

Now suppose that X is locally connected (this means that for every point x and every open neighborhood U of x, there is a connected open neighborhood V of x contained in U).

Prove that each equivalence class of the relation \sim is connected.

23. Let X be a topological space.

Let $A \subset X$ be connected.

Prove \bar{A} is connected.

24. Let X_1, X_2, \ldots be topological spaces.

Suppose that $\prod_{n=1}^{\infty} X_n$ is locally connected.

Prove that all but finitely many X_n are connected.

- 25. Let X be a connected space and let $f: X \to Y$ be a function which is continuous and onto. **Prove** that Y is connected. (This is a theorem in Munkres—prove it from the definitions).
- 26. Given:
 - $p: X \to Y$ is a quotient map.
 - Y is connected.
 - For every $y \in Y$, the set $p^{-1}(\{y\})$ is connected.

Prove that X is connected.

- 27. Let A be a subset of \mathbb{R}^2 which is homeomorphic to the open unit interval (0,1). **Prove** that A does not contain a nonempty set which is open in \mathbb{R}^2 .
- 28. Let X be a connected space. Let \mathcal{U} be an open covering of X and let U be a nonempty set in \mathcal{U} . Say that a set V in \mathcal{U} is reachable from U if there is a sequence

$$U = U_1, U_2, \dots, U_n = V$$

of sets in \mathcal{U} such that $U_i \cap U_{i+1} \neq \emptyset$ for each i from 1 to n-1.

Prove that every nonempty V in \mathcal{U} is reachable from U.

- 29. Suppose that X is connected and every point of X has a path-connected open neighborhood. **Prove** that X is path-connected.
- 30. Let X be a topological space and let $f, g: X \to [0, 1]$ be continuous functions. Suppose that X is connected and f is onto.

Prove that there must be a point $x \in X$ with f(x) = g(x).