Optimizavimo metodai. Paskaitų konspektas Rimantas Grigutis

13 paskaita. Transporto uždavinys

Uždavinio formulavimas ir pagrindinės sąvokos

Turime vienodų resursų krovinį, kuris paskirstytas tarp m sandėlių $A_1, A_2, ..., A_m$ taip, kad juose yra atitinkamai $a_1, a_2, ..., a_m$ resursų vienetų. Į n vietų $B_1, B_2, ..., B_n$ reikia pristatyti krovinį taip, kad juose būtų atitinkamai $b_1, b_2, ..., b_n$ šio krovinio vienetų. Sakykime, kad krovinio vieneto transportavimo kaina iš sandėlio A_i į vietą B_j yra c_{ij} .

Rasti tokį krovinio transportavimo planą, kad, įvykdžius visus užsakymus, transportavimo kaštai būtų mažiausi. Tai ir yra transporto uždavinys.

Suformuluokime šį uždavinį matematiškai. Tegu x_{ij} , i = 1, ..., m, j = 1, ..., n, yra krovinio kiekis, pervežamas iš sandėlio A_i į vietą B_j . Šie kiekiai (x_{ij}) vadinami pervežimais, o šių pervežimų visuma $x = \{x_{ij}\}$ vadinama pervežimų planu arba tiesiog planu.

Dabar galime transporto uždavinį užrašyti matematiškai, apribojimus reiškiant nelygybėmis

$$f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \longrightarrow \min;$$

$$\sum_{j=1}^{n} x_{ij} \le a_i, \qquad i = 1, ..., m;$$

$$\sum_{i=1}^{m} x_{ij} \le b_j, \qquad j = 1, ..., n;$$

$$x_{ij} \ge 0, \qquad i = 1, ..., m; \qquad j = 1, ..., n.$$

arba reiškiant transporto lentele

Sandėliai\Vietos	B_1		B_j		B_n	Resursai
A_1	c_{11} x_{11}		$\begin{array}{c c} c_{1j} & \\ x_{1j} & \end{array}$		c_{1n} x_{1n}	a_1
:						:
A_i	c_{i1} x_{i1}		c_{ij} x_{ij}		c_{in} x_{in}	a_i
:						:
A_m	c_{m1} x_{m1}		c_{mj} x_{mj}		c_{mn} x_{mn}	a_m
Paraiškos	b_1	• • •	b_j	• • •	b_n	$\sum_{j} b_{j} \backslash \sum_{i} a_{i}$

Transporto uždavinio sprendinys vadinamas optimaliu planu.

Jeigu visų paraiškų suma lygi visų resursų sumai:

$$\sum_{i} a_i = \sum_{j} b_j,$$

tai transporto uždavinys vadinamas *subalansuotu*. Mes nagrinėsime tik subalansuotus transporto uždavinius.

Sprendžiant transporto uždavinį, iš pradžių yra ieškomas *pradinis planas*, kuris vėliau gerinamas iki optimalaus.

Šiaurės-vakarų metodas pradinio planui rasti

Transporto lentelės langeliai, kuriuose $x_{ij} > 0$, yra baziniai, o likusieji, kuriuose $x_{ij} = 0$, - laisvieji. Transporto lentelėje yra m + n - 1 baziniai langeliai. Tiek pat yra ir nepriklausomų lygybių-apribojimų.

Visų metodų pradinio planui rasti bendras bruožas yra tas, kad x_{ij} reikšmės randamos formule

$$x_{ij} = \min \left\{ \begin{array}{l} \text{krovinio likutis sandėlyje } A_i \\ \text{nepatenkinti poreikiai vietoje } B_j \end{array} \right..$$

Laisvuose langeliuose reikšmė $x_{ij}=0$ nerašoma, šiame langelyje rašomas storas taškas \bullet .

Šiaurės-vakarų metode pradinio planui rasti skaičiavimai pradedami elementu x_{11} , kuris yra šiaurės-vakarų lentelės kampe.

Pavyzdys 13.1

Rasti transporto uždavinio, kurio lentelė

Sandėliai\Vietos	B_1	B_2	B_3	Resursai
A_1	2 10	3 10	4	20
A_2	1	2 10	5 30	40
Paraiškos	10	20	30	60

pradinį planą.

Sprendimas. Pradedame nuo šiaurėsvakarų lentelės kampo ir skaičiuojame

$$x_{11} = \min\{20, 10\} = 10.$$

Tada vietos B_1 poreikiai yra patenkinti ir todėl $x_{21}=0$ (A_2B_1 langelyje rašome •). Pirmasis stulpelis toliau nenagrinėjamas.

Vėl pradedame nuo šiaurės-vakarų kampo ir skaičiuojame

$$x_{12} = \min\{20 - 10, 10\} = 10.$$

Tada sandėlio A_1 atsargos išsenka ir $x_{13}=0$ (A_1B_3 langelyje rašome •). Pirmoji eilutė toliau nenagrinėjama.

Toliau vėl nagrinėjame šiaurės-vakarų kampą ir skaičiuojame

$$x_{22} = \min \{40, 20 - 10\} = 10.$$

Tada vietos B_2 poreikiai yra patenkinti ir antrasis stulpelis toliau nenagrinėjamas. Skaičiuojame paskutinįjį elementą, esantį šiaurės vakarų kampe:

$$x_{23} = \min \{40 - 10, 30\} = 30.$$

Gavome tokį pradinį planą:

$$x_{11} = 10, x_{12} = 10, x_{13} = 0, x_{21} = 0, x_{22} = 10, x_{23} = 30,$$

kurio suminė kaina

$$f(x) = 2 \cdot 10 + 3 \cdot 10 + 4 \cdot 0 + 1 \cdot 0 + 2 \cdot 10 + 5 \cdot 30 = 220.$$

Bazinių langelių skaičius yra m + n - 1 = 2 + 3 - 1 = 4.

Pastaba 13.2

Atliekant skaičiavimus pradiniam planui rasti gali atsitikti taip, kad vietos B_j poreikiai patenkinti, o sandėlio A_i resursai išseko. Tada vienu metu reikia nustoti nagrinėti ir eilutę ir stulpelį. Šiuo atveju rekomenduojama į vieną iš šių eilutės ir stulpelio langelį (geriau tą, kurio kaina mažiausia) įrašyti bazinį nulį $\mathbf{0}$. Šis langelis tampa baziniu ir tokiu būdu bazinių langelių skaičius lieka m+n-1.

Pavyzdys 13.3. Rasti transporto uždavinio, kurio lentelė

Sandėliai\Vietos	B_1	B_2	B_3	B_4	Resursai
A_1	1 30	2 20	3	5	50
A_2	4	1 0	1 40	2	40
A_3	1	2	5 10	10 50	60
Paraiškos	30	20	50	50	150

pradinį planą.

Sprendimas. Pradedame nuo šiaurės-vakarų lentelės kampo ir skaičiuojame

$$x_{11} = \min\{50, 30\} = 30,$$
 $x_{21} = x_{31} = 0$ (rašome tašką).

Vėl pradedame nuo šiaurės-vakarų kampo:

$$x_{12} = \min\{50 - 30, 20\} = 20.$$

Šiuo atveju turime toliau nenagrinėti pirmąją eilutę ir antrąjį stulpelį:

$$x_{13} = x_{14} = x_{22} = x_{32} = 0.$$

Langelio A_2B_2 yra mažiausia kaina (min $\{3;5;1;2\}=1$), todėl jame ir rašome bazinį ${\bf 0}$. Kituose langeliuose rašome taškus ${ullet}$.

Toliau vėl pradedame šiaurės-vakarų kampo:

$$x_{23} = \min\{40, 50\} = 40, x_{24} = 0$$
 (rašome tašką).

Antroji eilutė toliau nenagrinėjama.

Toliau vėl pradedame šiaurės-vakarų kampo:

$$x_{33} = \min\{60, 50 - 40\} = 10 \text{ ir } x_{34} = \min\{60 - 10, 50\} = 50.$$

Gavome tokį pradinį planą:

$$x_{11} = 30, x_{12} = 20, x_{13} = x_{14} = 0, x_{21} = x_{22} = 0, x_{23} = 40, x_{24} = 0, x_{31} = x_{32} = 0, x_{33} = 10, x_{34} = 50.$$

Suminė transportavimo kaina

$$f(x) = 1 \cdot 30 + 2 \cdot 20 + 1 \cdot 40 + 5 \cdot 10 + 10 \cdot 50 = 660.$$

Bazinių langelių skaičius (įskaitant bazinį nulį) yra m+n-1=3+4-1=6.

Potencialų metodas transporto uždaviniui spręsti

1 žingsnis. Rasti pradinį planą (pvz. šiaurės vakarų kampo metodu).

2 zingsnis. Kiekvienam baziniam langeliui (i, j) sudaryti lygtį:

$$\alpha_i + \beta_j = c_{ij}$$

Pradiniame plane bazinių langelių yra m+n-1. Sudarome m+n-1 lygčių su m+n nežinomųjų (nežinomieji α_i,β_j) sistemą, kurioje tariame, kad $\alpha_1=0$. Išsprendžiame ją(sistema turi vienintėlį sprendinį).

 $3 \ \tilde{z}ingsnis$. Kiekvienam laisvajam langeliui (i,j) skaičiuiojame įverčius:

$$\Delta_{ij} = c_{ij} - \left(\alpha_i + \beta_j\right).$$

4žingsnis. Analizuojame gautus įverčius Δ_{ij} :

- (1) jei $visi \ \Delta_{ij} \ge 0$, tai algoritmą baigti ir optimalus planas jau yra rastas;
- (2) jei ne visi $\Delta_{ij} \geq 0$, tai tarp $\Delta_{ij} < 0$ randame mažiausią Δ_{kl} ir atitinkamą langelį (k,l) pažymime \otimes .
- 5 žingsnis. Langeliui (k,l) konstruojame ciklą, kurio visos viršūnės, išskyrus (k,l), yra baziniuose langeliuose. langelis (k,l) žymimas +, visi kiti šalia esantys langeliai turi turėti priešingus ženklus.
- 6 žingsnis. Randame mažiausią plano skaičių, esantį langeliuose su ženklu –. Tegu tai skaičius θ . Atliekame postūmį ciklu skaičiumi θ : langeliuose su + pridedame θ , langeliuose su atimame θ .(Jei skaičius θ yra keliuose neigiamuose langeliuose, tai viename iš jų reikia rašyti bazinį 0, o kituose rašyti •). Langeliai nesantys cikle lieka nepakitę.

Pereiti prie 2 žingsnio.