CSE 5214 - Deep Learning & Applications

An Overview

The Traditional Programming Paradigm

The Traditional Programming Paradigm

Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed – Arthur Samuel (1959)

Machine Learning

Deep Learning vs Machine Learning

Deep Learning in One Slide

- What is it: Extract useful patterns from data.
- How: Neural network + optimization
- How (Practical):
 Python + TensorFlow & friends
- Hard Part: Good Questions + Good Data
- Why now:
 Data, hardware, community, tools, investment
- Where do we stand?
 Most big questions of intelligence have not been answered nor properly formulated

Exciting progress:

- Face recognition
- Image classification
- Speech recognition
- Text-to-speech generation
- Handwriting transcription
- Machine translation
- Medical diagnosis
- Cars: drivable area, lane keeping
- Digital assistants
- Ads, search, social recommendations
- Game playing with deep RL

History of DL Ideas and Milestones

- 1943: McCulloh and Pitts neuron model
- 1957: Rosenblatt's Perceptron
- 1974-86: In 1969, Minsky and Papert published a book called "Perceptrons"
- 1986: Backpropagation Algorithm
- 1997: Long Short-Term Memory
- 1998: Convolutional Neural Networks
- 2006: "Deep Learning"
- 2009: ImageNet
- 2012: AlexNet
- 2014: GANs
- 2014: Deep reinforcement learning
- 2016: DeepMind developed AlphaGo
- 2017: Transformers and BERT
- 2018: Turing Award
- 2018: Turing award has been awarded to the Yoshua Bengio, Geoffrey Hinton and Yann LeCun.
- 2020: GPT-3

Topics

- 1. Introduction
 - Basic neuron model
 - Activation functions
 - Learning mechanisms
 - Types of learning
- 2. Mathematical foundations
 - Learning tasks
 - Overfitting & underfitting
 - Hyperparameters
 - Bias and variance

Topics

- 3. Supervised learning
 - Linear & logistic regression example
 - Perceptron
 - Backpropagation
 - Parameter optimization with gradient descent
 - Regularization
- 4. Deep neural networks
 - Convolutional neural networks
 - Network architectures
- 5. Transfer learning techniques
- 6. Deep generative models

References

DEEP LEARNING with Python

François Chollet

SECOND EDITION

- Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press, 2017
- Simon J.D. Prince,
 "Understanding deep learning", MIT Press, 2023
- François Chollet, "Deep learning with Python", Manning press 2021
- https://machinelearningmas tery.com
- https://pyimagesearch.com

Slide credits

- Deeplearning.mit.edu
- University of Bath