GR 10 MATHS – TRIG RATIOS & FUNCTIONS

Summary of TRIG RATIOS —

The SIGNS of the trig ratios IN A FLASH!

 $\sin \theta = \frac{\mathbf{y}}{r}$ and \mathbf{y} is positive in 1 & II

 $\cos \theta = \frac{\mathbf{X}}{r}$ and \mathbf{x} is positive in I & IV

:. $\cos \theta$ is **POSITIVE** in quadrants 1 & 4 (and negative in 2 & 3)

and x & y have the same sign in I & III

:. **tan** θ **is POSITIVE** in quadrants 1 & 3 (and negative in 2 & 4)

Learn these easy PICTURES so that you know the SIGNS of your trig ratios IN A FLASH!

NO MORE CAST RULE!!!

The 4 steps to find the trig ratios of any angle:

- **1. Place the** \angle **in STANDARD POSITION** (starting at \overrightarrow{OX}) . .
- end arm
 beginning arm
- 2. Pick a point (x; y) on the end arm of the \angle
 - we'll call its distance from the origin r
- 3. Write down x = v =
- 4. Apply the DEFINITIONS

$$\cos \theta = \frac{x}{r}$$

$$r = \begin{cases} r & (x, y) \\ \theta & (opposite) \end{cases}$$

$$tan \theta = \frac{y}{x}$$

(hypotenuse)

The trig ratios of 90° and multiples of 90°

Use this procedure to find the trig ratios of 90°; 180°; 270° & 360° (& 0°)

$$x = 0$$
; $y = 5$; $r = 5$

x = -6; y = 0; r = 6

$$x = 0$$
; $y = -4$; $r = 4$

$$x = 5$$
; $y = 0$; $r = 5$

Note: The results for 0° and 360° are the same.

The Answer Series Maths study guides offer a key to exam success. In particular, Gr 10 Maths 3 in 1 provides a superb foundation for the major topics in Senior Maths.

TRIG FUNCTIONS

Trigonometric graphs

We will learn how to sketch the graphs $y = \sin \theta$, $y = \cos \theta$ and $\tan \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$. We will use the critical values of these ratios to make it easy. But first, some terminology . . .

Terminology

The sine and cosine graphs are WAVE-shaped.

- ▶ The **amplitude** of a WAVE is the deviation from its centre line:
- ▶ The **period** of a graph is the number of degrees spanning a FULL WAVE.
- ▶ The range is the set of all the possible y-values.
 Our investigations of the trig ratios have shown us that the range of values

We write: $-1 < \sin \theta < 1$ and $-1 < \cos \theta < 1$ for all values of θ !

of sines and cosines is very small - only between -1 and 1.

By contrast, the range of tan values is from $-\infty$ to $+\infty$!

Before drawing the graphs, we will depict the 'critical values' of the ratios as the angle increases from 0° to 360° as:

> 'Wheels' of values

As θ : $0^{\circ} \rightarrow 360^{\circ}$

In these 2 'wheels' of values we are considering angles **from 0° to 360°**, going anticlockwise from the line \overline{OX} . We read the 'critical values'; i.e. the sine and cosine values of multiples of 90° accordingly, as indicated on the wheels.

$\boldsymbol{\succ}$ and now, these values on a number line:

 $\sin \theta$: $\cos \theta$:

It is clear that sin θ and cos θ can only be PROPER FRACTIONS or equal to ±1 or 0.

The graphs of $y = \sin \theta$ & $y = \cos \theta$ for $\theta \in [0^{\circ}; 360^{\circ}]$

Use the wheels to plot the 'critical points' before drawing the waves.

The range: $-1 \le \sin \theta \le 1$

The range: $-1 \le \cos \theta \le 1$

> The Critical Values of $y = tan \theta$

The **range** of tan values is $(-\infty; \infty)$!

So, we need tan values 'more often' than for sine and cosine.

Check these values on your calculator.

Also, confirm them by placing each angle in standard position. $\ \ldots$

Use the definition $\tan \theta = \frac{y}{}$

$$x = -1$$
; $y = 1$
 $\therefore \tan 135^\circ = \frac{1}{-1} = -1$
 $x = -1$; $y = -1$
 $\therefore \tan 225^\circ = \frac{1}{-1} = 1$

$$x = -1$$
; $y = -1$
 $\therefore \tan 225^\circ = \frac{1}{-1} = 1$

$$x = 1$$
; $y = -1$
 $\therefore \tan 315^\circ = \frac{-1}{1} = -1$

As
$$\theta$$
: $0^{\circ} \rightarrow 360^{\circ}$

tan θ :

The graph of y = tan θ for $\theta \in [0^{\circ}; 360^{\circ}]$

The dashed lines, $x = 90^{\circ}$ and $x = 270^{\circ}$, are called asymptotes

The range: $(-\infty; \infty)$

There is **no amplitude**, but the period of this graph is 180°.

An asymptote is a line which a curve approaches but will never touch or cut.

The Quadrants

We have observed the relationship between angles (0° to 360°) and their trigonometric ratios ($\sin \theta$, $\cos \theta$, $\tan \theta$), both on the 'wheels' and on the graphs.

The wheels	The graphs
We observe the angles, andwrite down the ratio values.	 We write down the values of the angles on the <i>x</i>-axis, and observe the values of the ratios.

See where the quadrants lie in both cases.

The quadrants: Ш Ш IV $90^{\circ} \rightarrow 180^{\circ}$ $0^{\circ} \rightarrow 90^{\circ}$ $180^{\circ} \rightarrow 270^{\circ}$ The intervals: $270^{\circ} \rightarrow 360^{\circ}$

An investigation

Use your calculator to observe various values of $\sin \theta$, $\cos \theta$ and $\tan \theta$. Get to know how each of these three ratios behave as an angle increases, through each quadrant, from 0° to 360°.

Investigating the values of $\sin \theta$ for $\theta \in [0^{\circ}; 360^{\circ}]$

1.1 Fill in the $\sin \theta$ values (correct to 2 decimal digits) of these angles

θ	0°	20°	45°	70°	90°	110°	135°	160°	180°
$\sin \theta$									
θ	180°	200°	225°	250°	270°	290°	315°	340°	360°

Compare the values what do you notice?

Use the accompanying table to plot points, even approximately, on the set of axes.

Draw the graph of $y = \sin \theta$ on the following set of axes:

Investigating the values of $\cos \theta$ for $\theta \in [0^{\circ}; 360^{\circ}]$

Fill in the $\cos \theta$ values (correct to 2 decimal digits) of these angles

θ	0°	20°	45°	70°	90°	110°	135°	160°	180°
$\cos \theta$									
θ	180°	200°	225°	250°	270°	290°	315°	340°	360°
cos θ									

Compare the values what do you notice? (Also compare the *values of 1.1 vs 2.1*

Use the accompanying table to plot points, even approximately, on the set of axes.

2.2 Draw the graph of $\mathbf{v} = \cos \theta$ on the following set of axes:

Investigating the values of tan θ for $\theta \in [0^{\circ}; 360^{\circ}]$

3.1 Fill in the tan θ values (correct to 2 decimal digits) of these angles

θ	0°	20°	45°	70°	90°	110°	135°	160°	180°
tan θ									
θ	180°	200°	225°	250°	270°	290°	315°	340°	360°
tan θ									

Again, compare the values what do you notice?

What is happening at 90°? And at 270°?

θ	80°	85°	89°	89,9°	90°	90,1°	91°	95°	100°
tan θ	6	11	57	572	?	-572	-57	-11	-6
θ	260°	265°	269°	269,9°	270°	270,1°	271°	275°	280°

Draw the graph of $y = \tan \theta$ on the following set of axes:

Use the accompanying table to plot points, even approximately, on the set of axes.

4. Increase / Decrease

Now, use the tables and/or the graphs to fill in the spaces below and circle the correct word.

	Quadrant number	sin θ	cos θ	tan θ
θ: 0° ⇒ 90°			increases / decreases from to	
θ: 90° ⇒ 180°			increases / decreases from to	
θ: 180° ⇒ 270°			increases / decreases from to	
θ: 270° ⇒ 360°			increases / decreases from to	

5. Positive / Negative

	1	II	Ш	IV
$\sin \theta$ positive				
$\cos \theta$ positive				
$tan \theta$ positive				

	ı	Ш	Ш	IV
$\sin \theta$ negative				
$\cos \theta$ negative				
tan θ negative				

6. Maximum / Minimum

	sin θ	cos θ	tan θ
Maximum value			
Minimum value			

7. Features of the graphs

	Amplitude	Period	Range
$y = \sin \theta$			
$y = \cos \theta$			
y = tan θ			

8. Asymptotes

The equations of the asymptotes of the graph $y = \tan \theta$:

9. Function notation

If
$$f(x) = \sin x$$
; $g(x) = \cos x$ and $h(x) = \tan x$
then $f(0^{\circ}) = \dots$; $g(0^{\circ}) = \dots$ and $h(0^{\circ}) = \dots$
 $f(90^{\circ}) = \dots$; $g(180^{\circ}) = \dots$ and $h(315^{\circ}) = \dots$

10. Solving Equations

Solve the following equations where $0^{\circ} \le \theta \le 360^{\circ}$, correct to the nearest whole number.

Remember:
Use the tables and graphs
in 1, 2 and 3

10.1 Solve for θ :

(a)
$$\sin \theta = 0$$

(b)
$$\sin \theta = 1$$

(c)
$$\sin \theta = -1$$

(d)
$$\sin \theta = 0.34$$

(e)
$$\sin \theta = -0.34$$

(f)
$$\sin \theta = 1.9$$

(g)
$$\sin \theta = 0.94$$

(h)
$$\sin \theta = -0.94$$

(i)
$$\sin \theta = -1.3$$

10.2 Solve for θ :

(a)
$$\cos \theta = 0$$

(b)
$$\cos \theta = 1$$

(c)
$$\cos \theta = -1$$

(d)
$$\cos \theta = 0.34$$

(e)
$$\cos \theta = -0.34$$

(f)
$$\cos \theta = 1.9$$

(g)
$$\cos \theta = 0.94$$

(h)
$$\cos \theta = -0.94$$

(i)
$$\cos \theta = -1.3$$

10.3 Solve for θ :

(a)
$$\tan \theta = 0$$

(b)
$$\tan \theta = 1$$

(c)
$$\tan \theta = -1$$

(d)
$$\tan \theta = 0.36$$

(e)
$$\tan \theta = -0.36$$

(f)
$$\tan \theta = 2.75$$

(g)
$$\tan \theta = -2.75$$

(h)
$$\tan \theta = 572$$

(i)
$$\tan \theta = -572$$

(j) $\tan \theta$ is undefined when θ = ?

(h) & (i): correct to 1 decimal digit

EXERCISE 6.8

Exploring the role of a and q in trigonometric functions

QUESTIONS

See figures 1 to 6 alongside where the following graphs are drawn for θ : $0^{\circ} \rightarrow 360^{\circ}$:

Figure 1 & 2 both show the graph $y = \sin \theta$;

Figure 3 & 4 both show the graph $y = \cos \theta$ and

Figure 5 & 6 both show the graph $y = \tan \theta$.

1. Sketch the following graphs on the given sets of axes:

A.
$$y = 2\sin \theta$$

C.
$$y = -\cos \theta$$

E.
$$y = \frac{1}{2} \tan \theta$$

B.
$$y = \sin \theta + 1$$

D.
$$y = \cos \theta - \frac{1}{2}$$

D.
$$y = \cos \theta - 1$$
 F. $y = \tan \theta + 1$

Plot each point using the sin, cos & tan 'wheels' and not a calculator!

sin θ:

cos θ:

tan θ:

2. Compare: **A** and **B** to the given graph of $y = \sin \theta$ in figures 1 & 2;

C and **D** to the given graph of $y = \cos \theta$ in figures 3 & 4; and

E and **F** to the given graph of $y = \tan \theta$ in figures 5 & 6

Establish for each graph: • the amplitude

■ the range

the period

Figure 1 (for **A**)

Figure 2 (for **B**)

Figure 3 (for **C**)

Figure 4 (for **D**)

For A & B

	$y = 2 \sin \theta$	$y = \sin \theta$	$y = \sin \theta + 1$
Amplitude			
Range			
Period			

For C & D

	$y = -\cos \theta$	$y = \cos \theta$	y = cos θ - 1
Amplitude			
Range			
Period			

For E & F

	y = tan θ	y = tan θ + 1
Amplitude		
Range		
Period		

Figure 5 (for **E**)

Figure 6 (for **F**)

Study the 'variations' carefully once you've drawn the graphs yourself by plotting points. $In\ each\ case$, notice how the graph was different to the basic graph,

i.e.
$$y = 2 \sin \theta$$
 vs. $y = \sin \theta$, etc.

The aim of the exercise has been for you to understand the effect of the values of **a** and **q** - **the parameters** - in the graphs:

$$y = a \sin x + q$$
 • $y = a \cos x + q$ • $y = a \tan x + q$

The following table will help you make conjectures about the variations:

	amplitude	range	max value	min value	period	asymptotes
$y = 3 \sin \theta$	3	$-3 \le y \le 3$	3	-3	360°	
y = - 2 sin θ	2	-2 ≤ y ≤ 2	2	-2	360°	
y = sin θ - 1	1	-2 ≤ y ≤ 0	0	-2	360°	
y = 2 cos θ	2	-2 ≤ y ≤ 2	2	-2	360°	
$y = \cos \theta + 2$	1	1 ≤ y ≤ 3	3	1	360°	
y = -cos θ	1	-1 ≤ y ≤ 1	1	-1	360°	
y = 2 tan θ		$y \in \mathbb{R}$			180°	y = 90° & y = 270°
y = -tan θ		$y \in \mathbb{R}$			180°	y = 90° & y = 270°
y = tan θ - 1		y∈R			180°	y = 90° & y = 270°

This package is an extract from our Gr 10 Maths 3 in 1 study guide.

We trust that this will help you to grow in confidence as you prepare for your exams.

The Answer Series study guides have been the key to exam success for many learners. Visit our website to find appropriate resources for *your* success!

www.theanswer.co.za