Course Type	Title of the	Credits	Course	Pre-Requisite
	Course		Structure	
FCEC003	ELECTRONIC	4	3-0-2	None
	S AND			
	ELECTRICAL			
	ENGINEERIN			
	G			

Course Outcomes:

- 1. To understand the basics of AC and DC circuits, transformers along with DC generator and motor
- 2. To analyze series-parallel RLC circuits and
- 3. To implement basic circuits using diodes, BJTs and op-amps as circuit elements
- 4. To get familiarized with OP-AMP and its applications
- 5. To develop circuits using basic electrical and electronic components

РО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO11	PO12
СО	12	-	/		r		-	T			31	
CO 1	3	2	2	2	2	-	-		-	-		-
CO 2	3	2	2	2	2	-	-	-	-	1	-	- 1
CO 3	3	2	2	2	2	n	- =	-1	-		- 17/4	- 11
CO 4	3	2	2	2	2	-	-	-	-	-	-	-
CO 5	3	2	2	2	2	_	-	-	_	- ,	- 60	-

COURSE CONTENT

Unit-I

Electric Circuits: Basic Circuit Elements, Nodal and Loop Analysis,

Superposition, Thevenin's Theorem & Norton's Theorem and Maximum Power Transfer Theorem;

Unit-II

Steady-state analysis of AC circuits: Sinusoidal and phasor representation of Voltage and current, single phase AC circuit, behavior of R, L and C

Combination of R, L and C in series and parallel, Resonance; Introduction to three-phase circuits, Star-Delta Transformation

Unit-III

Transformers: Principle of operation and construction of single-phase transformer, Introduction to DC Motor.

Electronics Devices and Circuits: Junction Diode, Applications: rectifiers, clipping and clamping circuits, LEDs;

Unit-IV

Bipolar-junction Transistor: Physical operation, operating point, load-line, Self-bias circuit, single-stage CE amplifier configuration

Ideal op-amp, inverting, non-inverting and unity gain amplifiers, integrator, differentiator, summer/subtractor.

Unit-V

Digital circuits- Boolean Algebra, logic gates, K-Maps upto 4-variables, Combinational circuits: Adders and subtractors.

Flip-Flops: SR, JK, D, T and their characteristic tables. Introduction to Sensors, Introduction to Embedded Computers.

List of experiments for Electrical and Electronics Engineering

- 1. Verification of Maximum Power Transfer theorem
- 2. Verification of Thevenin's and Norton's theorems
- 3. Study of resonance in series RLC and parallel RLC circuits
- **4.** Analysis of step-up and step-down transformer
- 5. Implement of series RC circuit as differentiator and integrator. Also perform their analysis as low pass and high pass filters
- 6. Implementation of clipping and clamping circuits
- 7. Implementation of half-wave and full wave rectifier circuits
- 8. Application of LEDs in electronic circuits
- 9. Implementation of CE amplifying configuration. Plot gain vs frequency graph
- 10. Implementation of Adders and subtractors.
- 11. Implementation of JK and Toggle flip-flops. Subsequently implement 3-bit asynchronous up-counter.
- 12. Measurement of power in single phase circuits using three voltmeter and three ammeter method.
- 13. Experiments with common sensors
- 14. Experiment with embedded computers

Suggested Reading:

- 1. M.E. Van Valkenburg, "Network Analysis" Pearson publishers, 3rd Edition
- 2. Boylestad and Nashelsky, "Electronic Devices and Circuit Theory" Pearson publishers, 10th Edition
- 3. Edward Hughes, "Electrical and Electronic technology", Pearson publishers, 10th Edition
- **4.** Malvino and Leach, "Digital Principles and Applications", TMH publishers, 8th Edition

YS OW/VERSITY OF