Relatório da implementação do Robo

Gustavo José Neves da Silva¹ Wilton Jaciel Loch¹

¹Departamento de Ciência da Computação Universidade do Estado de Santa Catarina (UDESC) – Joinville, SC – Brasil

gustavo.neves@yandex.com, wilton.loch@hotmail.com.br

Resumo. O presente trabalho realizado como parte da disciplina de Inteligência Artificial propõe uma implementação de um sistema de navegação automática de um robô responsável por diferentes manutenções em unidades fabris, utilizando o algoritmo A^* para calcular o custo da rota, exibindo o custo do caminho percorrido pelo robô enquanto ele se movimenta pelo mapa e também o custo final ao terminar a execução.

1. Introdução

Esse trabalho propõe uma implementação de um sistema de navegação automática de um robô responsável por diferentes manutenções em unidades fabris. As únicas informações que o robô possui são a informações da posição das fábricas, quantas e quais ferramentas cada uma delas necessita. As ferramentas estão espalhadas no ambiente e o robô não possui informação quanto a sua localização.

Tipos de ferramentas existentes no sistema:

- Bateria de carga elétrica
- Braço de solda;
- Bomba de sucção;
- Dispositivo de refrigeração;
- Braço pneumático;

Características do robô:

- Possui um alcance máximo de 4 regiões adjacentes em todas as direções com o qual analisa o ambiente a fim de obter as informações do terreno e do que está sobre ele
- Somente se desloca na vertical e na horizontal
- A posição inicial é configurável por um arquivo de entrada
- Representado no ambiente por:

Total de cada tipo de ferramenta e suas cores de representação no ambiente:

- 20 baterias de carga elétrica •
- 10 braços de solda •
- 8 bombas de sucção •
- 6 dispositivos de refrigeração •
- 4 braços pneumáticos •

Tipos de fábricas, suas necessidades e suas cores de representação no ambiente:

- Indústria de melhoramento genético de grãos, necessita de 8 baterias de carga elétrica -
- Empresa de manutenção de cascos de embarcações, necessita de 5 braços de solda
- Indústria petrolífera com dutos entupidos, necessita de 2 bombas de sucção -
- Fábrica de fundição, necessita de 5 dispositivos de refrigeração -
- Indústria de vigas de aço, necessita de 2 braços pneumáticos -

2. Metodologia de Desenvolvimento

A linguagem utilizada na implementação foi C++, por sua robustez, variedade de ferramentas e desempenho. Para representação gráfica dos componentes(robô, ferramentas e fabricas) foi utilizada a biblioteca SFML, que oferece uma plataforma simplificada para o uso de gráficos em duas dimensões. O ambiente é representado por uma matriz 42 x 42 e é configurável por arquivo de entrada. Tal que:

Os tipos de terrenos que compõem o ambiente, suas respectivos custos e cores:

- Sólido e plano Custo: 1 🔲
- Montanhoso Custo: 5 -
- Pântano Custo: 10 -
- Árido Custo: 15 -
- Obstáculo Intransponível -

Figura 1. Ambiente explorado pelo robô

O algoritmo de decisão do robô funciona da seguinte forma:

- Se não há ferramentas escaneadas e ainda nenhuma fábrica pode ser atendida, vá para a fábrica mais próxima
- Se uma ferramenta for escaneada e ainda não há ferramentas suficientes daquele tipo, vá até a ferramenta e pegue-a
- Se estiver muito próximo (2 unidades de distância) de uma fábrica que ainda não pode ser atendida e não houver ferramentas escaneadas, vá para a fábrica mais distante

 Se muito próximo do destino do passo anterior(fábrica mais distante) e não houver ferramentas escaneadas, vá para um ponto de interesse(pontos próximos da borda do mapa em posições distintas)

O caminho do robô é representado por uma pilha de direções (0 a 3 no sentido horário) que são desempilhadas uma a uma para que o robô possa realizar um movimento. Toda vez que é definido que o robô deve ir para uma fábrica, ferramenta ou qualquer outro destino ele executa o A^* da posição atual até o ponto desejado. As ferramentas encontradas são subtraídas da quantidade faltando até que chegue em zero.

3. Descrição de Experimentos/Simulações e Resultados Obtidos

Realizadas 20 execuções consecutivas, cujos resultados foram armazenados em arquivos para posterior análise a fim de se obter o comportamento médio do sistema.

4. Análise dos resultados obtidos

	Custo total
Min.	322.0
1º quartil	393.8
Mediana	458.0
Media	475.4
3º quartil	531.5
Máx.	750.0

Tabela 1. Análise custo total

	Destinos escolhidos
Min.	27.00
1º quartil	28.75
Mediana	30.00
Media	30.65
3º quartil	32.25
Máx.	37.00

Tabela 2. Análise destinos escolhidos

	Num. movimentos realizados
Min.	297.0
1º quartil	340.5
Mediana	410.0
Media	419.9
3º quartil	459.0
Máx.	651.0

Tabela 3. Análise movimentos realizados

	Num. nós expandidos
Min.	6219
1º quartil	8916
Mediana	11220
Media	12006
3º quartil	14764
Máx.	21126

Tabela 4. Análise nós expandidos

5. Conclusões e Trabalhos Futuros

Como observado nas tabelas 1 e 4, o valor do custo em média é baixo(475.4), porém o número de nós expandidos ainda é elevado(12006). Como trabalhos futuros é pretentido otimizar abordagem utilizada visando reduzir o número de nós expandidos e analisar se há alguma correlação entre esse valor e os demais analisados no sistema(custo total, número de movimentos realizados, número de destinos escolhidos)