Домашнее задание 7. Раскраски графов.

DM 1. (3 балла) Докажите, что для любого простого графа G на n вершинах выполнено следующее неравенство:

$$\chi(G) + \chi(\overline{G}) \le n + 1.$$

Рис. 1: Интервальный граф

DM 2. (2 балла) Пусть $\omega(G)$ — кликовое число графа G, то есть количество вершин в его максимальном полном подграфе. Рассмотрим n замкнутых интервалов I_1, I_2, \ldots, I_n на вещественной оси (рис. 1). Построим для этих интервалов граф на n вершинах x_1, \ldots, x_n , соединяя вершины x_i и x_j ребром в том и только в том случае, когда $I_i \cap I_j \neq \emptyset$. Такой граф называется интервальным графом. Докажите, что каждый интервальный граф является совершенным (для любого подмножества вершин интервального графа, подграф H, индуцированный этим множеством вершин, обладает свойством $\chi(H) = \omega(H)$).

[DM 3.] (3 балла) Пусть $G_0 = K_2$. Чтобы получить граф G_{k+1} из графа G_k применим следующую процедуру:

- множество вершин графа G_{k+1} составим из вершин $V(G_k) = \{x_1, \dots, x_n\}$, вершин $Y = \{y_1, \dots, y_n\}$ и вершины z;
- для каждого ребра $\{x_i, x_j\} \in E(G_k)$ в граф G_{k+1} добавим два ребра: $\{x_i, x_j\}$ и $\{y_i, x_j\}$;
- для каждого $i \in [n]$ добавим в граф G_{k+1} ребро $\{z, y_i\}$.

Докажите, что ни один из графов G_i не имеет треугольника в качестве подграфа (то есть $\forall i: \omega(G_i)=2$). Докажите также, что $\chi(G_{k+1})=\chi(G_k)+1$. Из этого будет следовать, что существуют графы со сколь угодно большим хроматическим числом, но без нетривиальных клик.