Πολυτεχνείο Κρητής Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογίστων

$\Pi\Lambda H$ 402-Θεωρία Υπολογισμού <math>-2021

 Δ ιδάσκων: Μ. Γ. Λαγουδάκης 3η Σειρά Aσκήσεων Π αράδοση: 2/6/2021, 11μμ

Οδηγίες

- * Η ενασχόληση με τις ασχήσεις θα σας βοηθήσει σημαντικά ως προετοιμασία για την τελική εξέταση.
- * Η συνεργασία στην επίλυση είναι θεμιτή, αλλά η καταγραφή των λύσεων πρέπει να γίνεται **ατομικά**.
- * Στην πρώτη σελίδα θα αναγράφονται ρητά τα ονόματα όλων όσοι συνεργάστηκαν στην επίλυση.
- * Σε περιπτώσεις καθαρής αντιγραφής οι εμπλεκόμενοι αυτομάτως μηδενίζονται στο μάθημα.
- * Η παράδοση των ασχήσεων γίνεται μόνο μέσω της ιστοσελίδας https://www.eclass.tuc.gr.
- * Με την παράδοση της άσχησης, ο φοιτητής εντάσσεται στην Ομάδα Α (ασχήσεις, εργασία, εξέταση).
- * Οι ασχήσεις παραδίδονται μόνο δακτυλογραφημένες (Latex, Word, ...) και μόνο σε pdf.

1. Μηχανές Turing

- 1.1 [15%] Σχεδιάστε γραφικά (με βασικές μηχανές εγγραφής, μεταχίνησης και ανεύρεσης) μια πρότυπη μηχανή Turing (μία ταινία, μία κεφαλή) που μετασχηματίζει την είσοδο $\trianglerighteq w \lor w \lor \{a,b\}^*$.
- 1.2 [15%] Σχεδιάστε γραφικά μια πρότυπη μηχανή Turing (μία ταινία, μία κεφαλή) που μετασχηματίζει την είσοδο $\trianglerighteq \bot x \sqcup y \sqcup$ σε $\trianglerighteq \bot z \sqcup$, όπου $x, y, z \in \{0, 1\}^*$, |x| = |y| = |z| και $z = x \land y$ (bit-wise AND).

2. Αναδρομικές και αναδρομικά απαριθμήσιμες γλώσσες

- 2.1 [10%] Αποφανθείτε αν ο παρακάτω ισχυρισμός είναι σωστός ή λανθασμένος και αιτιολογήστε την απάντησή σας: Το συμπλήρωμα μιας αναδρομικής γλώσσας είναι πάντα λεξικογραφικά Turing-απαριθμήσιμη γλώσσα.
- 2.2 [10%] Αποφανθείτε αν ο παραχάτω ισχυρισμός είναι σωστός ή λανθασμένος και αιτιολογήστε την απάντησή σας: Για κάθε μηχανή ημιαπόφασης Turing μπορεί να κατασκευασθεί ένα ισοδύναμο ντετερμινιστικό αυτόματο στοίβας.

3. Γραμματικές χωρίς περιορισμούς

3.1 [20%] Κατασχευάστε γραμματική (χωρίς περιορισμούς) για τη γλώσσα $L = \{www : w \in \{a,c\}^*\}$. Εξηγείστε συνοπτικά τη λογική της και δώστε όλα τα βήματα παραγωγής της συμβολοσειράς $ccaccacca \in L$.

4. Μη επιλυσιμότητα

- **4.1** [15%] Δείξτε ότι το παραχάτω πρόβλημα είναι μη επιλύσιμο: $\Delta \epsilon \delta o \mu \epsilon \nu \eta \varsigma$ μιας μηχανής Turing M και δύο καταστάσ $\epsilon \omega \nu$ p, q της M, υπάρχ ϵ ι υπολογισμός που οδηγ ϵ ί την M από την κατάσταση p στην q;
- **4.2** [15%] Δείξτε ότι το παραχάτω πρόβλημα είναι μη επιλύσιμο: $\Delta \epsilon \delta o \mu \epsilon \nu \omega \nu$ δύο μηχανών Turing M_1 και M_2 , $\epsilon i \nu \alpha i$ η τομή $L(M_1) \cap L(M_2)$ των γλωσσών $L(M_1)$, $L(M_2)$ που ημιαποφασίζουν γλώσσα χωρίς συμφραζόμενα;