SQL SQL SQL SQL SQL SQL

Eugene Wu

Fall 2018

Didn't Lecture 3 Go Over SQL?

haha

Didn't Lecture 3 Go Over SQL?

Two sublanguages

DDL Data Definition Languagedefine and modify schema (physical, logical, view)CREATE TABLE, Integrity Constraints

DML Data Manipulation Language get and modify data simple SELECT, INSERT, DELETE human-readable language

Gritty Details

DDL

NULL, Views

DML

Basics, SQL Clauses, Expressions, Joins, Nested Queries, Aggregation, With, Triggers

Why a declarative language (SQL)?

DBMS makes it run efficiently

Key: precise query semantics

Reorder/modify queries while answers stay same

DBMS estimates costs for different evaluation plans

SQL Extends Relational Algebra

More expressive power than Rel Alg

Multisets (bags) rather than sets

i.e. # duplicates in a table carefully accounted for

Ordering

NULLs

Aggregates

Most widely used query language, not just relational query language

Today's Database

Sailors

 sid sid	name	rating	age
	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Boats

<u>bid</u>	name	color
101	Legacy	red
102	Melon	blue
103	Mars	red

Reserves

<u>sid</u>	<u>bid</u>	day
I	102	9/12
2	102	9/13
2	103	9/14

Is Reserves table correct?

Today's Database

Sailors

 sid 	name	rating	age
I	Eugene	7	22
2	Luis	2	39
3	Ken	8	27

Boats

<mark>≯ bid</mark>	name	color
101	Legacy	red
102	Melon	blue
103	Mars	red

Reserves

<u>sid</u>	bid day		
I	102	9/12	
2	102	9/13	
2	103	9/14	

Is Reserves table correct?

Day should be part of key

Follow along at home!

```
https://www.instabase.com/ewu/w4111-
public/fs/Instabase%20Drive/Examples/sql.ipynb
```

<30 year old sailors

SELECT *
FROM Sailors
WHERE age < 30

<u>sid</u>	name	rating	age
1	Eugene	7	22
3	Ken	8	27

SELECT name, age FROM Sailors WHERE age < 30

name	age
Eugene	22
Ken	27

<30 year old sailors

```
SELECT * FROM Sailors \sigma_{age < 30} \text{ (Sailors)} WHERE age < 30
```

SELECT name, age FROM Sailors WHERE age < 30

 $\pi_{name, age}$ ($\sigma_{age < 30}$ (Sailors))

Multiple Relations

SELECT S.name

FROM Sailors AS S, Reserves AS R

WHERE S.sid = R.sid AND R.bid = 102

$$\pi_{\text{name}} (\sigma_{\text{bid}=2}(\text{Sailors} \bowtie_{\text{sid}} \text{Reserves}))$$

Sailors Reserves

<u>sid</u>	name	rating	age	<u>sid</u>	<u>bid</u>	<u>day</u>
I	Eugene	7	22		102	9/12
2	Luis	2	39	2	102	9/13
3	Ken	8	27	2	103	9/14

Structure of a SQL Query

DISTINCT

Optional, answer should not have duplicates Default: duplicates not removed (multiset)

target-list

List of expressions over attrs of tables in relation-list

SELECT [DISTINCT] target-list FROM relation-list WHERE qualification

relation-list

List of relation names

Can define range-variable "AS X"

qualification

Boolean expressions

- Combined w/ AND,OR,NOT
- attr op const
- attr₁ op attr₂
- op is =, <, >, !=, etc

Semantics

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

FROM compute cross product of relations

WHERE remove tuples that fail qualifications

SELECT remove fields not in target-list

DISTINCT remove duplicate rows

Conceptual Query Evaluation

```
SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification
```


Not how actually executed! Above is likely very slow

DISTINCT (vol. I)

Reserves

<u>sid</u>	<u>bid</u>	<u>day</u>
I	102	9/12
2	102	9/13
2	103	9/14

SELECT bid FROM Reserves

<u>bid</u>
102
102
103

SELECT DISTINCT bid FROM Reserves

<u>bid</u>
102
103

Sailors that reserved 1+ boats

```
SELECT S.sid
FROM Sailors AS S, Reserves AS R
WHERE S.sid = R.sid
```

Would DISTINCT change anything in this query? What if SELECT clause was SELECT S.name?

Range Variables

Disambiguate relations same table used multiple times (self join)

```
SELECT sid
FROM Sailors, Sailors
WHERE age > age
```

```
SELECT S1.sid
FROM Sailors AS S1, Sailors AS S2
WHERE S1.age > S2.age
```

Range Variables

Disambiguate relations same table used multiple times (self join)

```
SELECT sid
FROM Sailors, Sailors
WHERE age > age
```

```
SELECT S1.name, S1.age, S2.name, S2.age
FROM Sailors AS S1, Sailors AS S2
WHERE S1.age > S2.age
```