Bildgestützte Navigation

Image-based navigation

1 Einleitung

2 Definitionen

- Zeitliche Bildfolgen
 - Zeitlich aufeinander folgende Aufnahmen eines Sensors
- Räumliche Bildpaare
 - Gleichzeitige Aufnahmen von r\u00e4umlich getrennten
 Sensoren
- Hybride Bildfolgen
 - Kombination aus zeitlichen Bildfolgen und r\u00e4umlichen Bildpaaren

3 Grundlagen – Geometrie (1)

- Koordinatensysteme (1)
 - Kamerasystem
 - Sensorsystem (sensor frame) ... s
 Bildkoordinatensystem (planar frame) ... s

3 Grundlagen – Geometrie (2)

- Koordinatensysteme (2)
 - Modellsystem (model frame)
 - Objektsystem (body frame)
 - Szenensystem (superior frame: ECEF, local-level, ...)

3 Grundlagen – Photogrammetrie (1)

Monoverfahren

- Innere Orientierung, Sensorkalibrierung
 - Ermittlung der momentanen Lage des Projektionszentrums der optischen Abbildung bezogen auf die Bildebene des Sensors
 - (Bestimmung der Objektivverzeichnung)
- Äußere Orientierung
 - Ermittlung von Lage und Verdrehung eines Sensors bezogen auf ein übergeordnetes Modell- oder Szenensystem
 - Parameter: 3 Verschiebungen, 3 Drehwinkel
 - Bestimmung: z.B. durch Linearisierung mit Überbestimmung (Direkte Lineare Transformation, DLT)
- Punktbestimmung
 - Z.B. durch Bildung von Schnitten mit einem Geländemodell

3 Grundlagen – Photogrammetrie (2)

Äußere Orientierung – Drehwinkel (bzgl. Local-level)

3 Grundlagen – Photogrammetrie (3)

• Äußere Orientierung über Passpunkte

3 Grundlagen – Photogrammetrie (4)

Stereo-/Multibildverfahren

- Relative Orientierung
 - Grundbeziehung: Komplanaritätsbedingung
 - Parameter: 5 (5 homologe Punkte erforderlich)
 - Methoden: Folgebildanschluss, (unabhängige Bilddrehungen)
 - Resultat: 3D-Modell der Szene
- Absolute Orientierung
 - Räumliche Drehstreckung des relativ orientierten 3D-Modells zur Einpassung in ein übergeordnetes Koordinatensystem
 - Parameter: 7 (3 Verschiebungen, 3 Drehungen, Maßstab)

3 Grundlagen – Photogrammetrie (5)

Absolute Modellorientierung:

3 Grundlagen – Photogrammetrie (6)

Mögliche Anordnung von Stereobildern:

3 Grundlagen – Digitale Bildverarbeitung (1)

Erzeugung digitaler Bilder

- Zeitliche Diskretisierung
- Zentralprojektion des 3D-Raumes in die 2D-Bildebene
- Räumliche Diskretisierung der Bildebene (Rasterung)
- Radiometrische Diskretisierung

Bearbeitung digitaler Bilder

- Bildverbesserung
 - Kontrastverbesserung
 - Rauschunterdrückung
- Filterung
 - Bildglättung (Tiefpass Filter)
 - Extraktion markanter Strukturen (Hochpass Filter)

3 Grundlagen – Digitale Bildverarb. (2)

Kantenfinder

- Filter der ersten Ableitung
 - Suchen lokale Extrema der Grauwertänderung
- Filter der zweiten Ableitung
 - Suchen Nulldurchgänge des Krümmungsbildes

3 Grundlagen – Digitale Bildverarbeitung (3)

Punktefinder

- Kriterien an Punkte:
 - Deutlichkeit
 - Seltenheit
 - Interpretierbarkeit
 - Invarianz
 - Stabilität
 - Qualität
- Spezielle Operatoren für Subpixel-Detektion

3 Grundlagen – Artificial Intelligence (1)

Motivation:

- Traditionelle Navigation: geometrische Aufgabenstellung
- Bildnavigation: kann Sensoren erlauben, sich in ihrer Umgebung "selbstständig" zurecht zu finden
- Grund: Anlehnung der Bildnavigation an den Sehsinn des Menschen (primärer Sinn zur Orientierung in der Umgebung)
- Sehsinn: nicht nur optische Wahrnehmung sondern
 Interpretation des Wahrgenommenen durch das Gehirn
- Autonom agierende Systeme können aus Bilddaten
 Schlüsse ziehen → Wissensbasis erforderlich

3 Grundlagen – Artificial Intelligence (2)

Forschungsgebiete:

- Expertensysteme
- Natürlichsprachliche Schnittstellen
- Spracherkennung und Spracherzeugung
- Computer Vision
- Robotik

→ Computer Vision

Nachahmung des menschlichen Sehsinns ("Human Vision")

3 Grundlagen – "Human Vision" (1)

– Neurophysiologie: "Wie funktioniert die Wahrnehmung?"

3 Grundlagen – "Human Vision" (2)

– Kognitive Psychologie: "Was nimmt man wahr?"

3 Grundlagen – Computer Vision (1)

- Verwendung in der Bildnavigation:
 - Objekt- und Mustererkennung
- Interne Repräsentation von Objekten/Mustern
 - Aufbau und Struktur der Wissensbasis zur Objekterkennung
 - Varianten z.B.:
 - Oberflächenmodelle vs. Raummodelle
 - Constructive Solid Geometry vs. Relationale Strukturen
 - Explizite vs. Exemplarische Verspeicherung
 - Geometrische vs. Radiometrische Modelle

3 Grundlagen – Computer Vision (2)

- Modellbeispiele:
 - (1) Generalized Cones
 - Oberflächenmodell
 - Für deformierbare Körper

3 Grundlagen – Computer Vision (3)

Modellbeispiele:

- (2) Relationaler Graph
 - Topologisches Modell
 - Für Objekte, die aus mehreren "Primitiven" aufgebaut sind

3 Grundlagen – Computer Vision (4)

Modellbeispiele:

- (3) ExpliziteVerspeicherung
 - Alle möglichen
 Ansichten eines
 Objektes werden gespeichert
 - Für einfache Objekte

3 Grundlagen – Computer Vision (5)

Objekterkennung

- Dreistufiger Prozess:
 - Entdecken
 - Erkennen
 - Identifizieren
- Probleme
 - Nur gerichtete Ansichten von Objekten
 - Hindernisse im Objektraum, die die Sicht auf die Objekte stören (Okklusionen)

4 Bildnavigation (1)

- Bildfolgenanalyse und Bildnavigation
 - Zentrales Element: von einem Sensor aufgezeichnete
 Bildfolge oder Bildsequenz
 - Analyse der Bildfolge → Lösung der Navigationsaufgabe
 - Bildung von Korrespondenzen
 zwischen aufeinanderfolgenden Bildern
 - → Deutung von
 Intensitätsänderungen
 in der Bildebene als
 geometrische Bewegungen
 im Objektraum

4 Bildnavigation (2)

Einflüsse auf die Bewegungsdeutung

- Bewegungen des Sensors
- Bewegungen im Objektraum
- Ausmaße und Freiheitsgrade der Bewegungen
- Starre, gelenkige oder beliebig deformierbare Objekte
 - → Wahl des Objektmodells
- Mono-, Stereo- oder Multibildsequenz

Vorteil der Bildnavigation

 Durch den Einsatz photogrammetrischer Methoden kann die r\u00e4umliche Umgebung des Sensors aus den Daten gewonnen werden ("Nebenprodukt" der Navigation)

4 Bildnavigation (3)

- Ablauf eines Eigenortungsverfahrens
 - 1. Sensorkalibrierung
 - 2. Startorientierung uns Maßstabsbestimmung
 - 3. Bildung von Bildkorrespondenzen
 - Rekonstruktion der Sensorbewegung (und der Struktur der Umgebung)
 - 5. Modellierung der Sensorbahn

4 Bildnavigation (4)

Sensorkalibrierung (innere Orientierung)

- Generell:
 - Meist direkt im Einsatzgebiet
 - Passpunktfeld erforderlich
 - Gleichzeitige Bestimmung der Startorientierung ist möglich (photogrammetrisch)

– Bedingungen:

- Richtige Wahl und Einstellung von Belichtungszeit und Fokussierung
- Vermeidung von Bewegungsunschärfe
- Einstellungen müssen konstant bleiben, sonst geht die Kalibrierung verloren

4 Bildnavigation (5)

- Startorientierung und Maßstabsbestimmung
 - Methoden:
 - Photogrammetrisch
 - GPS, GNSS
 - Terrestrische Einmessung
 - (Beliebige Festsetzung)
 - Maßstab:
 - Distanzen im Objektraum müssen bekannt sein (Passpunkte)
 - Maßstab kann aus einem Startbildpaar in die Folge übertragen werden (Genauigkeit nimmt stetig ab)

4 Bildnavigation (6)

Bildkorrespondenz

- Grundlegendes:
 - Basiseinheit zur Bildung der Bildkorrespondenz: Bewegungsstereobild ("Motion Stereo")
 - Geometrische Änderungen im Objektraum erzeugen radiometrische Änderungen in der Bildebene → Optischer Fluss
 - Problem: Uneindeutigkeit der radiometrischen Änderungen

Aperturproblem

4 Bildnavigation (7)

- Lösung der Uneindeutigkeit in drei Stufen:
 - 1. Modellierung physikalischer Einflüsse
 - 2. Schätzung der Bildbewegungen (Bildkorrespondenz)
 - 3. Rekonstruktion der Sensor- und Objektbewegungen

Wichtige Begriffe:

- Projizierte Bewegung
 - Projektion realer Bewegungen in die Bildebene
- Optischer Fluss
 - Veränderung der Intensitätsfunktion in der Bildebene
- Expansionspunkt des optischen Flusses (FOE)
 - Bei Translation: Fluchtpunkt der momentanen Bewegungsrichtung

4 Bildnavigation (8)

– Deutung des FOE:

4 Bildnavigation (8b)

Entstehungsprozess einer Bildfolge

4 Bildnavigation (9)

Bildzuordnungsverfahren:

- (1) Intensitätsbasierte Zuordnung
 - Operiert direkt auf radiometrischen Veränderungen der Bildebene (optischer Fluss)
 - Uneindeutigkeit wird durch Annahmen (Heuristiken) über den optischen Fluss reduziert
 - Lösung der Bildkorrespondenz durch Kreuzkorrelation zwischen lokalen Fenstern aufeinander folgender Bilder

4 Bildnavigation (10)

(2) Merkmalsbasierte Zuordnung [a]

Extraktion markanter Strukturen

Übertragung in das n\u00e4chste Bild

 Korrelation zwischen den extrahierten Strukturen

4 Bildnavigation (11)

- (2) Merkmalsbasierte Zuordnung [b]
 - Rekursive Sensororientierung

4 Bildnavigation (12)

- (3) Scale Space Bildzuordnung
 - Theoretische Grundlage: Abtasttheorem
 - Glättung des Bildes mit kombiniertem Filter Unschärfe Stetige Erhöhung der Unschärfe → Exakte Bildkorrespondenz Ausschnitt Bild i Zuordnung Verschiebung Ausschnitt Bild j

4 Bildnavigation (13)

- Rekonstruktion von Bewegung und Struktur
 - Grundlage: Komplanaritätsbedingung
 - Verfahren:
 - Inversionsansätze: Bestimmung des Objektraumes aus den Bilddaten
 - Projektionsansätze: Vorgabe eines Umgebungsmodells und Präzisierung durch die Bilddaten
- Modellierung der Sensorbahn
 - Gewinnung von Näherungswerten für die Orientierung
 - Durchführung anhand eines Kalman Filters

4 Bildnavigation (14)

- Eigenortung: Kenntnis der Umgebung
 - Navigation in unbekannter Umgebung
 - Navigation in bekannter Umgebung:

	Traditionelle Navigation	Bildnavigation
Sensor	opt. Instrumente	CCD-Sensor
Grundlage	Grundrisskarte, Sternenkatalog	Digitales 2D-oder 3D- Modell
Ortungsverfahren	Positionierung über LOPs	Szenenrekonstruktion über Passpunkte

4 Bildnavigation (15)

- Fremdortung
 - Anordnung
 - Kalibrierung
 - Auswertung

Weitere Informationen

http://www-2.cs.cmu.edu/~cil/vision.htmlb

Computer Vision Homepage