MDP

Blitz Course

Fabien Pesquerel and Odalric-Ambrym Maillard

January 6, 2021

MDP

4-tuple (S, A, p, r):

- S: State space
- 2 A: Action space
- **3** $p:(s',s,a)\in S\times S\times A\mapsto p(s'|s,a)$: transition model
- $r:(s,a)\in S\times A\mapsto r(s,a)$: reward model

Policy

Mapping

$$\pi:S\to A$$

(State) Value function

Value function of a policy:

$$V_{\gamma}^{\pi}(s) = \mathbb{E}_{\pi,MDP}\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s\right)$$

State-action Value function

State-action value function of a policy:

$$Q_{\gamma}^{\pi}(s, a) = \mathbb{E}_{\pi, MDP}\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s, \ a_{0} = a\right)$$

Optimal policies

An optimal policy π^* is associated to **the** value function that is uniformly dominant:

$$\forall \pi, \forall s, \ V^{\pi^*}(s) \ge V^{\pi}(s)$$

Bellman operator - Value function

 V^{π} is the unique fixed point: $V = T^{\pi}V$.

$$V(s) = r\left(s, \pi(s)\right) + \gamma \sum_{s' \in S} p\left(s'|s, \pi(s)\right) V(s')$$

- $\blacksquare T^{\pi}$ is called the Bellman operator of the policy π .
- $V = T^{\pi}V$ is a linear system of equations.
- lacksquare T^{π} is a γ -contraction.

Bellman operator - State-action value function

 Q^{π} is the unique fixed point: $Q = T^{\pi}Q$.

$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) Q(s', \pi(s'))$$

- $\blacksquare T^{\pi}$ is called the Bellman operator of the policy π .
- lacksquare $Q=T^{\pi}Q$ is a linear system of equations.
- lacksquare T^{π} is a γ -contraction.

Computing value functions

- Invert the system
- Compositions of the contraction map
- Monte-Carlo estimation

Optimal Bellman operator - Value function

 V^* is the unique fixed point: $V = T^*V$.

$$V(s) = \max_{a \in A} \left(r\left(s, \pi(s)\right) + \gamma \sum_{s' \in S} p\left(s'|s, \pi(s)\right) V(s') \right)$$

- \blacksquare T^* is called the optimal Bellman operator.
- $V = T^*V$ is a **not** a linear system of equations.
- lacksquare T^* is a γ -contraction.

Optimal Bellman operator - State-action Value function

 Q^* is the unique fixed point: $Q = T^*Q$.

$$Q(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \max_{a' \in A} Q(s', a')$$

- \blacksquare T^* is called the optimal Bellman operator.
- $lacksquare Q = T^*Q$ is **not** a linear system of equations.
- \blacksquare T^* is a γ -contraction.

Computing optimal value functions

- Invert the system (hard)
- Compositions of the contraction map (Value Iteration)
- \blacksquare Monte-Carlo estimation followed by \max non-linearities (Policy Iteration)

Algorithms

- Value Iteration: Iterate the optimal Bellman operator of your choice. Once convergence to V^* or Q^* is assumed, compute π^* as the greedy policy with respect to Q^* .
- **Policy Iteration**: Alternate between *policy evaluation*, *i.e.* evaluate the current policy, and *policy improvement*, *i.e.* greedy selection of actions according to the current policy.