Department of Information Management

Advanced Encryption Standard

Pei-Ju (Julian) Lee

National Chung Cheng University
Information Security
pjlee@mis.ccu.edu.tw

Fall, 2016

Advanced Encryption Standard (AES)

- The AES was published by the NIST in 2001
- AES is a symmetric block cipher that is intended to replace DES as the approved standard for a wide range of applications
 - Compared to public-key ciphers such as RSA, the structure of AES and most symmetric ciphers is quite complex
- All operations are performed on 8-bit bytes
- All arithmetic operations (addition, multiplication, and division) are performed over GF(2⁸)
 - AES is based on the Rijndael cipher that developed by Belgian cryptographers,
 Joan Daemen and Vincent Rijmen

Review: Finite Field Arithmetic

- A field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set
- **Division** is defined with the following rule:
 - $a/b = a(b^{-1})$
- An example of a finite field (one with a finite number of elements) is the set Z_p consisting of all the integers {0, 1, ..., p 1}, where p is a prime number and in which arithmetic is carried out modulo p

Cont'd

If one of the operations used in the algorithm is **division**, then we need to work in arithmetic defined over a **field**

 Division requires that each nonzero element have a multiplicative inverse For convenience we would like to work with integers that fit exactly into a given number of bits with no wasted bit patterns

Integers in the range 0 through 2ⁿ – 1,
 which fit into an *n*-bit word

The set of such integers, \mathbb{Z}_2^n , using modular arithmetic, is **not** a field

For example, the integer 2 has no multiplicative inverse in Z₂ⁿ, that is, there is no integer b, such that 2b mod 2ⁿ = 1

A finite field containing 2ⁿ elements is referred to as GF(2ⁿ)

 Every polynomial in GF(2ⁿ) can be represented by an n-bit number

Cont'd

- A polynomial in GF(2ⁿ) can be uniquely represented by its n binary coefficients (a_{n-1}a_{n-2} 2...a₀). Therefore, every polynomial in GF(2ⁿ) can be represented by an n-bit number.
- Addition is performed by taking the bitwise XOR of the two n-bit elements.
- Multiplication of two bytes is defined as multiplication in the finite field GF(2⁸), with the irreducible polynomial m(x).
 - Example

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

 $(a_6 \dots a_1 a_0 0) \oplus (00011011)$

Review: Make S a Finite Field

- With the appropriate definition of arithmetic operations, each such set S is a finite field:
 - 1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules of algebra, with the following two refinements.
 - 2. Arithmetic on the coefficients is performed modulo p. That is, we use the rules of arithmetic for the finite field \mathbb{Z}_p .
 - 3. If multiplication results in a polynomial of degree greater than n-1, then the polynomial is reduced modulo some irreducible polynomial m(x) of degree n. That is, we divide by m(x) and keep the remainder. For a polynomial f(x), the remainder is expressed as $r(x) = f(x) \mod m(x)$.
 - To construct the finite field GF(2ⁿ) so we can:
 - Represent integers/polynomials using n-bit number
 - Performing any operation without leaving the set
 - Therefore, we can use:
 - The irreducible/prime polynomial
 - Find the multiplicative inverse

AES Encryption Process

- P block size: 128bits(16 Bytes)
- Key length: 16, 24, or 32
 Bytes (128, 192, or 256
 bits)
 - AES-128, AES-192, or AES-256

State array: modified at each stage of E or D

 Number of rounds depends on the key length

AES Data Structures

(a) Input, state array, and output

(b) Key and expanded key

128-bits key / 16Bytes
-> 44 words for 10 rounds
(1 word is for 4 Bytes)

AES Parameters

Key Size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext Block Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of Rounds	10	12	14
Round Key Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded Key Size (words/bytes)	44/176	52/208	60/240

AES Encryption and Decryption

- Initial transformation/Round0: AddRoundKey
- The first N-1 round consists of 4 transformation functions: SubBytes, ShiftRows, MixColumns, AddRoundKey
- Final round: SubBytes, ShiftRows, AddRoundKey

Each transformation takes one or more 4 * 4 matrices as input and produces a 4 * 4 matrix as output.

Detailed Structure

- 1. Processes the entire data block as a single matrix during each round using substitutions and permutation (Feistel: half)
- 2. The key is expanded into an array of 44 32-bit words, w[i]. 4 words serve as a round key.
- 3. Four stages transformation: (1 of permutation, 3 of substitution)
 - Substitute bytes uses an S-box to perform a byte-by-byte substitution of the block
 - ShiftRows a simple permutation
 - MixColumns a substitution that makes use of arithmetic over GF(28)
 - AddRoundKey a simple bitwise XOR of the current block with a portion of the expanded key
- 4. The cipher begins and ends with an AddRoundKey stage (the only stage makes use the key, other stages would add no security)
- 5. Each stage is easily reversible

Cont'd

- 6. State is the same for both encryption and decryption(dash line in the fig.)
- 7. Each stage is easily reversible
- 8. The decryption algorithm makes use of the expanded key in reverse order. However, the decryption algorithm is not identical to the encryption algorithm
- 9. Once it is established that all four stages are reversible, it is easy to verify that decryption does recover the plaintext. At each horizontal point of encryption and decryption, State is the same for both encryption and decryption.
- 10. The final round of both encryption and decryption consists of only three stages. Again, this is a consequence of the particular structure of AES and is required to make the cipher reversible.

AES Transformation Function

- A discussion of each of the four transformations used in AES.
- For each stage, describe the forward (encryption) algorithm, the inverse (decryption) algorithm, and the rationale for the stage.
 - Substitute Byte Transformation
 - ShiftRows Transformation
 - MixColumns Transformation
 - AddRoundKey Transformation

1. Substitute Byte Transformation

- The forward substitute byte transformation, called SubBytes
- Each individual byte of State is mapped into a new byte using a 16 * 16 matrix of byte values of S-box
- Ex.
 S_{1,1} = {95} (Hexadecimal)
 ->S-box: row 9, col 5
 -> S'_{1,1}{2A}

(a) Substitute byte transformation

S-box

• Ex. value {95} is mapped into the value {2A}.

										v .							
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
x	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

Inverse S-box

 The inverse substitute byte transformation, called InvSubBytes, makes use of the inverse S-box

										v							
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	В3	45	06
	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
X	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	Α	47	F1	1A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	A0	E0	3B	4D	AE	2A	F5	B0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

S-box

- The S-box is designed to be resistant to known cryptanalytic attacks
 - Low correlation between input bits and output bits
 - It is invertible but does not self-inverse
 - The nonlinearity is due to the use of the multiplicative inverse
 - $Ex. S-box({95}) = {2A} IS-box({95}) = {AD}$

Construction of S-Box and IS-Box

(a) Calculation of byte at row y, column x of S-box

(a) Calculation of byte at row y, column x of IS-box

The Construction of S-box

- 1. Initialize the S-box with the byte values in ascending sequence row by row.
- 2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(2⁸).
- 3. Transform each bit of each byte in the S-box:

$$b_i' = b_i \oplus b_{(i+4) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+6) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus c_i$$

 $-c_i$ is the *i*th bit of byte *c* with the value {63}; that is,

 $(c_7c_6c_5c_4c_3c_2c_1c_0)$ =(01100011).

Matrix form of this transformation:

$$\begin{bmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Bitwise

XOR

Example

- The input value {95}
 - The multiplicative inverse in $GF(2^8)$ is $\{95\}^{-1} = \{8A\}$ which is 10001010 in binary

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \oplus \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

The result is {2A}, which should appear in row {09}
 column {05} of the S-box. This is verified by checking
 Table 5.2a.

Rationale

- The S-box is designed to be resistant to known cryptanalytic attacks
 - a design that has a low correlation between input bits and output bits
 - the output is not a linear function of the input
 - The nonlinearity is due to the use of the multiplicative inverse. In addition, the constant in Equation (5.1) was chosen so that the S-box has no fixed points [S-box(a) = a] and no "opposite fixed points" [S-box(a) = ᾱ], where ᾱ is the bitwise complement of a
- The S-box must be invertible, that is, IS-box[S-box(a)] = a. However, the S-box does not self-inverse in the sense that it is not true that S-box(a) = IS-box(a).
 - $Ex. S-box({95}) = {2A}, but IS-box({95}) = {AD}.$

2. Shift Row Transformation

- Forward: ShiftRow
- Inverse: InvShiftRow

$s_{2,0}$ $s_{2,1}$ $s_{2,2}$ $s_{2,3}$ $s_{2,0}$ $s_{2,0}$ $s_{2,0}$ $s_{2,0}$ $s_{2,0}$ $s_{2,0}$ $s_{2,0}$ $s_{2,0}$	S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}	S _{0,0}	s _{0,1}	S _{0,2}	s _{0,3}
	S _{1,0}	s _{1,1}	S _{1,2}	s _{1,3}	<i>s</i> _{1,1}	s _{1,2}	s _{1,3}	S _{1,0}
	S _{2,0}	$s_{2,1}$	S _{2,2}	S _{2,3}	S _{2,2}	S _{2,3}	S _{2,0}	S _{2,1}
33,0 33,1 33,2 33,3 33,0 33,1 33,	S _{3,0}	s _{3,1}	S _{3,2}	S _{3,3}	S _{3,3}	S _{3,0}	s _{3,1}	s _{3,2}

- The 1st row of State is not altered.
 For the 2nd/3rd/4th row, a 1/2/3 byte circular left shift is performed
- On encryption, the first 4 bytes of the plaintext are copied to the 1st column of State, and so on
- The round key is applied to State column by column
- Thus, a row shift equal to a linear distance of a multiple of 4 bytes
- Transformation ensures that the 4 bytes of one column are spread out to four different columns

Rationale

- On encryption, the first 4 bytes of the plaintext are copied to the first column of State, and so on.
- Furthermore, the round key is applied to State column by column.
- Thus, a row shift moves an individual byte from one column to another, which is a linear distance of a multiple of 4 bytes.
- Also note that the transformation ensures that the 4 bytes of one column are spread out to four different columns.

3. MixColumn Transformation

- Forward: MixColumns
- Inverse: InvMixColumns

- Operates on each column individually
- Each byte of a column is mapped into a new value that is a function of all four bytes in that column
- Coefficients of a matrix based on a linear code with maximal distance between code words ensures a good mixing among the bytes of each column

Cont'd

Matrix multiplication:

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

Single column transformation

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j} \oplus s_{3,j})$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

Cont'd

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

 \rightarrow

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

$$\{02\} \cdot \{87\} = 0001\ 0101$$

 $\{03\} \cdot \{6E\} = 1011\ 0010$
 $\{46\} = 0100\ 0110$
 $\{A6\} = 1010\ 0110$
 $0100\ 0111 = \{47\}$

Rationale

- The coefficients of the matrix are based on a linear code with maximal distance between code words, which ensures a good mixing among the bytes of each column.
 - The mix column transformation combined with the shift row transformation ensures that after a few rounds all output bits depend on all input bits.
 - In addition, the choice of coefficients in MixColumns, which are all {01}, {02}, or {03}, was influenced by implementation considerations.
 - Multiplication by these coefficients involves at most a shift and an XOR. The coefficients in InvMixColumns are more formidable to implement.

4. AddRoundKey Transformation

- The 128 bits of State are bitwise XORed with the 128 bits of the round key
- Operation is viewed as a columnwise operation between the 4 bytes of a State column and one word of the round key

Can also be viewed as a byte-level operation

Rationale

- The add round key transformation is as simple as possible and affects every bit of State.
- The complexity of the round key expansion, plus the complexity of the other stages of AES, ensure security.

Numerical Example

SubByte

EA	04	65	85
83	45	5D	96
5C	33	98	B0
F0	2D	AD	C5

F2 4D 87 97 4C EC 6E 90 C3 4A 46 E7 8C **D**8 95 **A6**

ShiftRows

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

4D 87 F2 97 4C 90 EC 6E E7 4A C3 46 8C 95 **A**6 D8

MixColumns

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A 6	8C	D8	95

40 **A**3 4C 47 70 37 D4 9F 94 3A E4 42 ED **A5** BC**A6**

AddRoundKey

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

	AC	19	28	57
	77	FA	D1	5C
\oplus	66	DC	29	00
	F3	21	41	6A

EB	59	8B	1B
40	2E	A 1	C3
F2	38	13	42
1E	84	E7	D6

Inputs for Single AES Round

AC	19	28	57
77	FA	D1	5C
66	DC	29	00
F3	21	41	6A

AES Key Expansion

- The Rijndael developers designed the expansion key algorithm to be resistant to known cryptanalytic attacks.
- Takes as input a 4-word (16 byte) key and produces a linear array of 44 words (176) bytes
 - This is sufficient to provide a 4-word round key for the initial AddRoundKey stage and each of the 10 rounds of the cipher

Cont'd

- Key is copied into the 1st four words of the expanded key
 - The remainder of the expanded key is filled in four words at a time
- Each added word w[i] depends on the immediately preceding word, w[i – 1], and the word four positions back, w[i – 4]
- Ex. w[4] = w[3] + w[0]
 - In three out of four cases a simple XOR is used
 - For a word whose position in the w array is a multiple of 4, a more complex function is used (i.e. Function g)

Function g

- RotWord: 1-byte left shift on a word
- SubWord: substitute each byte by S-box
- XOR the RotWord and SubWord with a round constant Rcon[j]

Round Constant

- The round constant is a word in which the three rightmost bytes are always 0. Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the leftmost byte of the word.
- Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 · RC[j-1] and with multiplication defined over the field GF(2⁸).
- The values of RC[j] in hexadecimal are

j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

Example

Suppose the round key for round 8 is:

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

 Then the first 4 bytes (first column) of the round key for round 9 are calculated as follows:

i (decimal)	temp	After RotWord	After SubWord	Rcon (9)	After XOR with Rcon	w[i-4]	$w[i] = temp$ $\oplus w[i-4]$
36	7F8D292F	8D292F7F	5DA515D2	1B000000	46A515D2	EAD27321	AC7766F3

Rationale

- The expansion key algorithm is designed to be resistant to known cryptanalytic attacks.
- The inclusion of a round-dependent round constant eliminates the symmetry, or similarity, between the ways in which round keys are generated in different rounds. The specific criteria that were used are [DAEM99] (next slide)

Criteria

The specific criteria that were used are:

- Knowledge of a part of the cipher key or round key does not enable calculation of many other roundkey bits
- An invertible transformation
- Speed on a wide range of processors
- Usage of round constants to eliminate symmetries
- Diffusion of cipher key differences into the round keys (i.e. each key bit affects many round key bits)
- Enough nonlinearity to prohibit the full determination of round key differences from cipher key differences only
- Simplicity of description

An AES example

Plaintext:	0123456789abcdeffedcba9876543210
Key:	0f1571c947d9e8590cb7add6af7f6798
Ciphertext:	ff0b844a0853bf7c6934ab4364148fb9

Table 5.4 AES Example

Γable 5.4 AES Example								
Start of Round	After SubBytes	After ShiftRows	After MixColumns	Round Key				
01 89 fe 76				0f 47 0c af				
23 ab dc 54				15 d9 b7 7f				
45 cd ba 32				71 e8 ad 67				
67 ef 98 10				c9 59 d6 98				
0e ce f2 d9	ab 8b 89 35	ab 8b 89 35	b9 94 57 75	dc 9b 97 38				
36 72 6b 2b	05 40 7f f1	40 7f f1 05	e4 8e 16 51	90 49 fe 81				
34 25 17 55	18 3f f0 fc	f0 fc 18 3f	47 20 9a 3f	37 df 72 15				
ae b6 4e 88	e4 4e 2f c4	c4 e4 4e 2f	c5 d6 f5 3b	b0 e9 3f a7				
65 Of c0 4d	4d 76 ba e3	4d 76 ba e3	8e 22 db 12	d2 49 de e6				
74 c7 e8 d0	92 c6 9b 70	c6 9b 70 92	b2 f2 dc 92	c9 80 7e ff				
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 c1	6b b4 c6 d3				
75 3f ca 9c	9d 75 74 de	de 9d 75 74	2d c5 1e 52	b7 5e 61 c6				
5c 6b 05 f4	4a 7f 6b bf	4a 7f 6b bf	b1 c1 0b cc	c0 89 57 b1				
7b 72 a2 6d	21 40 3a 3c	40 3a 3c 21	ba f3 8b 07	af 2f 51 ae				
b4 34 31 12	8d 18 c7 c9	c7 c9 8d 18	f9 1f 6a c3	df 6b ad 7e				
9a 9b 7f 94	b8 14 d2 22	22 b8 14 d2	1d 19 24 5c	39 67 06 c0				
71 48 5c 7d	a3 52 4a ff	a3 52 4a ff	d4 11 fe 0f	2c a5 f2 43				
15 dc da a9	59 86 57 d3	86 57 d3 59	3b 44 06 73	5c 73 22 8c				
26 74 c7 bd	f7 92 c6 7a	c6 7a f7 92	cb ab 62 37	65 0e a3 dd				
24 7e 22 9c	36 f3 93 de	de 36 f3 93	19 b7 07 ec	f1 96 90 50				
f8 b4 0c 4c	41 8d fe 29	41 8d fe 29	2a 47 c4 48	58 fd 0f 4c				
67 37 24 ff	85 9a 36 16	9a 36 16 85	83 e8 18 ba	9d ee cc 40				
ae a5 c1 ea	e4 06 78 87	78 87 e4 06	84 18 27 23	36 38 9b 46				
e8 21 97 bc	9b fd 88 65	65 9b fd 88	eb 10 0a f3	eb 7d ed bd				
72 ba cb 04	40 f4 1f f2	40 f4 1f f2	7b 05 42 4a	71 8c 83 cf				
1e 06 d4 fa	72 6f 48 2d	6f 48 2d 72	1e d0 20 40	c7 29 e5 a5				
b2 20 bc 65	37 b7 65 4d	65 4d 37 b7	94 83 18 52	4c 74 ef a9				
00 6d e7 4e	63 3c 94 2f	2f 63 3c 94	94 c4 43 fb	c2 bf 52 ef				
0a 89 c1 85	67 a7 78 97	67 a7 78 97	ec 1a c0 80	37 bb 38 f7				
d9 f9 c5 e5	35 99 a6 d9	99 a6 d9 35	0c 50 53 c7	14 3d d8 7d				
d8 f7 f7 fb	61 68 68 0f	68 Of 61 68	3b d7 00 ef	93 e7 08 a1				
56 7b 11 14	b1 21 82 fa	fa b1 21 82	b7 22 72 e0	48 f7 a5 4a				
db a1 f8 77	b9 32 41 f5	b9 32 41 f5	b1 1a 44 17	48 f3 cb 3c				
18 6d 8b ba	ad 3c 3d f4	3c 3d f4 ad	3d 2f ec b6	26 1b c3 be				
a8 30 08 4e	c2 04 30 2f	30 2f c2 04	0a 6b 2f 42	45 a2 aa 0b				
ff d5 d7 aa	16 03 0e ac	ac 16 03 0e	9f 68 f3 b1	20 d7 72 38				
f9 e9 8f 2b	99 1e 73 f1	99 1e 73 f1	31 30 3a c2	fd 0e c5 f9				
1b 34 2f 08	af 18 15 30	18 15 30 af	ac 71 8c c4	0d 16 d5 6b				
4f c9 85 49	84 dd 97 3b	97 3b 84 dd	46 65 48 eb	42 e0 4a 41				
bf bf 81 89	08 08 0c a7	a7 08 08 0c	6a 1c 31 62	cb 1c 6e 56				
cc 3e ff 3b	4b b2 16 e2	4b b2 16 e2	4b 86 8a 36	b4 ba 7f 86				
a1 67 59 af	32 85 cb 79	85 cb 79 32	b1 cb 27 5a	8e 98 4d 26				
04 85 02 aa	f2 97 77 ac	77 ac f2 97	fb f2 f2 af	f3 13 59 18				
a1 00 5f 34	32 63 cf 18	18 32 63 cf	cc 5a 5b cf	52 4e 20 76				
ff 08 69 64								
0b 53 34 14								
84 bf ab 8f								
4a 7c 43 b9								

AES Implementation: Equivalent Inverse Cipher

- AES decryption cipher is not identical to the encryption cipher
- 1. The sequence of transformations differs, the form of the key schedules is the same
 - Disadvantage: two separate software or firmware modules are needed
- Or using 2. Equivalent Inverse Cipher: has the same sequence of transformations as the encryption algorithm (with transformations replaced by their inverses). A change in key schedule is needed.

Interchanges

- The encryption round structure: SubBytes, ShiftRows, MixColumns, AddRoundKey
- The Decryption round structure: InvShiftRows, InvSubBytes, AddRoundKey, InvMixColumns
 - Thus, the first two stages of the decryption round need to be interchanged, and the second two stages of the decryption round need to be interchanged

AES Encryption and Decryption

Equivalent Inverse Cipher

Implementation Aspects

- On an 8-bit processor: typical for current smart cards
 - AddRoundKey is a bytewise XOR operation
 - ShiftRows is a simple byte-shifting operation
 - SubBytes operates at the byte level and only requires a table of 256 bytes
 - MixColumns requires matrix multiplication in the field GF(2⁸), which means that all operations are carried out on bytes

Cont'd

- On 32-bit processors: typical for PCs.
 - Redefine steps to use 32-bit words
 - Can precompute 4 tables of 256-words
 - Then each column in each round can be computed using 4 table lookups + 4 XORs
 - At a cost of 4Kb to store tables
- Designers believe this very efficient implementation was a key factor in its selection as the AES cipher