

## PHENYL-SUBSTITUTED INDOLES AND INDAZOLES

5                   Cross-Reference to Related Applications

This application claims priority from U.S. Provisional Application Serial Number 60/194,071, filed on March 31, 2000, our Docket Number ORT-1158 and U.S. Provisional Application Serial Number 60/194,071, filed on February 28, 2001, our Docket Number ORT-1366.

10

Field of the Invention

The invention relates to pharmaceutically-active fused heterobicyclic compounds and methods of using them to treat or prevent disorders and conditions, such as those mediated by the histamine H<sub>3</sub> receptor.

15

Background

The histamine H<sub>3</sub> receptor is located as a presynaptic autoreceptor in the central nervous system and as a presynaptic heteroreceptor on serotonergic; noradrenergic, dopaminergic, and cholinergic neurons. The histamine H<sub>3</sub> receptor is also located peripherally in tissues such as vascular smooth muscle cells.

Proposed uses of histamine H<sub>3</sub> antagonists include the treatment or prevention of dementia, Alzheimer's disease (Panula et al. *Abstr. Society Neuroscience*, 1995, 21:1977), epilepsy (Yokoyama et al. *Eur. J. Pharmacol.*, 1993, 234:129), sleep/wake disorders (Lin et al., *Br. Res.*, 1990, 523, 325; Monti et al., *Eur. J. Pharmacol.*, 1991, 205, 283) including narcolepsy, insomnia, and jet lag, eating disorders (Machidori et al. *Brain Research*, 1992, 590:180), motion sickness, vertigo, attention deficit hyperactivity disorder, learning and memory disorders (Barnes et al. *Abstr. Society Neuroscience*, 1993, 19:1813), schizophrenia (Schlicker et al. *Naunyn Schmiedeberg's Arch. Pharmacol.*, 1996, 353:325), and sequelae associated with post-ischemic reperfusion and hypertension. (Imamura et al., *J. Pharmacol. Expt. Ther.*, 1994, 271, 1259). H<sub>3</sub> antagonists are also useful to treat or prevent neurogenic

inflammation such as migraine (McLeod et al., *Abstr. Society Neuroscience*, 1996, 22, 2010), asthma (Ichinose et al., *Eur. J. Pharmacol.*, 989, 174, 49), obesity, allergic rhinitis, substance abuse, bipolar disorders, manic disorders, and depression. Histamine H<sub>3</sub> antagonists alone or in combination with a histamine H<sub>1</sub> antagonist are believed to be useful in the treatment of upper airway allergic response or allergic rhinitis (US Patent Nos. 5217986, 5352707, and 5869479).

As noted, the prior art related to histamine H<sub>3</sub> ligands was comprehensively reviewed recently ("The Histamine H<sub>3</sub> Receptor-A Target for New Drugs", Leurs, R., and Timmerman, H., (Editors), Elsevier, 1998). Within this reference the medicinal chemistry of histamine H<sub>3</sub> agonists and antagonists was reviewed (see Krause et al. and Phillips et al., respectively). Thus the importance of an imidazole moiety containing only a single substitution in the 4 position was noted together with the deleterious effects of additional substitution on activity. Particularly methylation of the imidazole ring at any of the remaining unsubstituted positions was reported to strongly decrease activity.

More recently several publications have described histamine H<sub>3</sub> ligands that do not contain an imidazole moiety. Examples include Ganellin et al *Arch. Pharm. (Weinheim, Ger.)* 1998, 331, 395; Walczynski et al *Arch. Pharm. (Weinheim, Ger.)* 1999, 332, 389; Walczynski et al *Farmaco* 1999, 684; Linney et al *J. Med. Chem.* 2000, 2362; U.S. Patent 5,352,707; PCT Application WO99/42458, published August 26, 1999; and European Patent Application 0978512, published on February 9, 2000.

25

### Summary of the Invention

The invention features phenyl-substituted indole and indazole compounds, methods of making them, and methods of using them. One aspect of the invention provides compounds of the following formula (I)(B):



5

wherein  $X_1$  is  $CR_1$ , wherein  $R_1$  is H, halo, cyano, amino, or nitro; and  $X_2$  is  $NR_3$ ;

$R_3$  is H,  $-SO_2$  ( $C_{1-6}$  alkyl),  $-SO_2$  phenyl,  $(C=O)(C_{1-6}$  alkyl), or  $-W'Z'$ ;

$W'$  is a covalent bond,  $(C=O)$ ,  $SO_2$ , or  $C_{1-6}$  alkyl;

10            $Z'$  is  $C_{1-6}$  alkyl,  $C_{1-6}$  alkoxy,  $C_{3-8}$  cycloalkyl, phenyl, or  $C_{2-6}$  heterocyclic radical, optionally including in the ring up to 3 additional heteroatoms or moieties independently selected from O, N, NH, S, SO, and  $SO_2$ ; or  $Z'$  is  $NR_{13}R_{14}$  where each of  $R_{13}$  and  $R_{14}$  is independently selected from  $C_{1-6}$  alkyl,  $C_{2-6}$  alkenyl, phenyl, benzyl,  $C_{3-8}$  cycloalkyl, and  $C_{2-5}$  heterocyclic radical;

15           each of  $R_5$ ,  $R_6$ ,  $R_7$  and  $R_8$  is independently H,  $C_{1-6}$  alkyl,  $C_{1-6}$  alkoxy, halo, nitro, or amino;

20           one of  $R_a$ ,  $R_b$ ,  $R_c$ ,  $R_d$ , and  $R_e$  is  $WZ$  and the others are independently selected from H,  $C_{1-6}$  alkyl,  $C_{1-6}$  alkoxy, halo, nitro, and amino;

25            $W$  is  $-O-$ ,  $R_9$ ,  $O-R_9$ ,  $NR_{10}$ ,  $-(CO)(O)R_9$ ,  $-O(CO)R_9$ ,  $-(CO)NR_{10}$ , or  $-N(R_{10})-CO-R_9$ , wherein  $R_9$  is  $C_{1-6}$  alkylene,  $C_{2-6}$  alkynylene,  $C_{2-6}$  alkenylene, phenylene, or  $C_{2-5}$  heterocyclic bivalent radical, and  $R_{10}$  is H,  $C_{1-6}$  alkyl,  $C_{2-6}$  alkynyl,  $C_{2-6}$  alkenyl, phenyl, or  $C_{2-5}$  heterocyclic radical;

30            $Z$  is  $C_{2-8}$  heterocyclic radical with at least one basic nitrogen atom in the ring, optionally including in the ring up to 3 additional heteroatoms or moieties independently selected from O,  $C=O$ , N, NH, NG, S, SO, and  $SO_2$ , wherein G is  $R_{15}$ ,  $COR_{15}$ ,  $COOR_{15}$ ,  $SO_2R_{15}$ ,  $SO_2N$ ,  $CSR_{15}$ ; or  $Z$  is  $NR_{11}R_{12}$  where each of  $R_{11}$  and  $R_{12}$  is independently selected from H,  $C_{1-6}$  alkyl, phenyl, benzyl,  $C_{3-8}$  cycloalkyl, and  $C_{2-5}$  heterocyclic radical; or  $NR_{11}R_{12}$  taken together is a  $C_{6-8}$  cycloalkylimino radical; and  $R_{15}$  is  $C_{1-6}$  alkyl,  $C_{2-6}$  alkynyl,  $C_{2-6}$  alkenyl,  $C_{3-7}$  cycloalkyl, and  $C_{4-7}$  cycloalkenyl;

each of the above hydrocarbyl or heterocyclic groups being  
optionally substituted with between 1 and 3 substituents selected from C  
<sub>1-3</sub> alkyl, C <sub>1-3</sub> alkoxy, halo, hydroxy, phenyl, and phenyl(C <sub>1-3</sub> alkyl); and  
wherein each of the above heterocyclic groups may be attached to the  
rest of the molecule by a carbon atom or a heteroatom;  
5 or a pharmaceutically acceptable salt, amide, ester, or hydrate  
thereof.

According to another aspect of the invention, the disclosed  
compounds and certain other compounds, are useful for the treatment and/or  
10 prevention of diseases and conditions mediated by the histamine 3 (H<sub>3</sub>)  
receptor.

A third aspect of the invention features methods of making the disclosed  
compounds.

Additional features of the invention are disclosed in the following  
15 description and examples, and in the appended claims.

Detailed Description

The invention features pharmaceutically active phenyl-substituted

5 indoles and indazoles and methods of making and using them. The  
description is organized as follows:

- A. Terms
- B. Compounds
- C. Synthetic Methods
- 10 D. Uses (including dosages, formulations, and related compounds)
- E. Synthetic Examples
- F. Biological Examples
- G. Other Embodiments
- H. Claims

15 A. Terms

The following terms are defined below and by their usage throughout  
this disclosure.

20 “Alkyl” includes straight chain and branched hydrocarbons with at least  
one hydrogen removed to form a radical group. Alkyl groups include methyl,  
ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, 1-methylpropyl, pentyl,  
isopentyl, sec-pentyl, hexyl, heptyl, octyl, and so on. Alkyl does not include  
cycloalkyl.

25 “Alkenyl” includes straight chain and branched hydrocarbon radicals as  
above with at least one carbon-carbon double bond ( $sp^2$ ). Alkenyls include  
ethenyl (or vinyl), prop-1-enyl, prop-2-enyl (or allyl), isopropenyl (or 1-  
methylvinyl), but-1-enyl, but-2-enyl, butadienyls, pentenyls, hexa-2,4-dienyl,  
and so on. Hydrocarbon radicals having a mixture of double bonds and  
triple bonds, such as 2-penten-4-ynyl, are grouped as alkynyls herein.

30 Alkenyl does not include cycloalkenyl.

“Alkynyl” include straight chain and branched hydrocarbon radicals as  
above with at least one carbon-carbon triple bond ( $sp$ ). Alkynyls include  
ethynyl, propynyls, butynyls, and pentynyls. Hydrocarbon radicals having a

mixture of double bonds and triple bonds, such as 2-penten-4-ynyl, are grouped as alkynyls herein. Alkynyl does not include cycloalkynyl.

"Alkoxy" includes a straight chain or branched alkyl group with a terminal oxygen linking the alkyl group to the rest of the molecule. Alkoxy includes 5 methoxy, ethoxy, propoxy, isopropoxy, butoxy, t-butoxy, pentoxy and so on. "Aminoalkyl", "thioalkyl", and "sulfonylalkyl" are analogous to alkoxy, replacing the terminal oxygen atom of alkoxy with, respectively, NH (or NR), S, and SO<sub>2</sub>.

"Aryl" includes phenyl, naphthyl, biphenylyl, and so on.

10 "Cycloalkyl" includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and so on.

15 "Cycloalkenyl" includes cyclobutenyl, cyclobutadienyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, cyclohexatrienyl (phenyl), cycloheptenyl, and so on. "Cycloalkynyl" includes the analogous rings with one or more triple bonds.

20 "Heterocyclic radicals" include aromatic and nonaromatic rings having carbon atoms and at least one heteroatom (O, S, N) or heteroatom moiety (SO<sub>2</sub>, CO, CONH, COO) in the ring. Unless otherwise indicated, a heterocyclic radical may have a valence connecting it to the rest of the molecule through a carbon atom, such as 3-furyl or 2-imidazolyl, or through a heteroatom, such as N-piperidyl or 1-pyrazolyl. Examples of heterocyclic radicals include thiazoyl, furyl, pyranyl, isobenzofuranyl, pyrrolyl, imidazolyl, pyrazolyl, isothiazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolyl, furazanyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, indolinyl, and morpholinyl. For example, preferred heterocyclic radicals for Z include morpholinyl, piperazinyl, pyrazinyl, pyrrolidinyl, pyridyl, cyclohexylimino, cycloheptylimino, and more preferably, piperidyl.

25 "halo" includes fluoro, chloro, bromo, and iodo, and preferably fluoro or chloro.

30 "patient" or "subject" includes mammals such as humans and animals (dogs, cats, horses, rats, rabbits, mice, non-human primates) in need of

observation, experiment, treatment or prevention in connection with the relevant disease or condition. Preferably, the patient is a human.

5 "composition" includes a product comprising the specified ingredients in the specified amounts as well as any product which results directly or indirectly from combinations of the specified ingredients in the specified amounts.

10 Concerning the various radicals in this disclosure and in the claims, two general remarks are made. The first remark concerns valency. As with all hydrocarbon radicals, whether saturated, unsaturated or aromatic, and whether or not cyclic, straight chain, or branched, and also similarly with all heterocyclic radicals, each radical includes substituted radicals of that type and monovalent, bivalent, and multivalent radicals as indicated by the context of the claims. The context will indicate that the substituent is an alkylene or hydrocarbon radical with at least two hydrogen atoms removed (bivalent) or more hydrogen atoms removed (multivalent). An example of a bivalent radical linking two parts of the molecule is W in formula (I)(B) which links Z with the phenyl group (-Ph-WZ). Subject to the claims, W can be an alkyl (strictly, alkylene) group (-Ph-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-Z), an aminoalkyl group (-Ph-NH-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-Z), an alkoxy group (-Ph-O-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-Z), an "oxa" (-Ph-O-Z), and so on.

15

20

Second, radicals or structure fragments as defined herein are understood to include substituted radicals or structure fragments. Using "alkyl" as an example, "alkyl" should be understood to include substituted alkyl having one or more substitutions, such as between 1 and 5, 1 and 3, or 2 and 4 substituents. The substituents may be the same (dihydroxy, dimethyl), similar (chlorofluoro), or different (chlorobenzyl- or aminomethyl-substituted). Examples of substituted alkyl include haloalkyl (such as fluoromethyl, chloromethyl, difluoromethyl, perchloromethyl, 2-bromoethyl, and 3-iodocyclopentyl), hydroxyalkyl, aminoalkyl, nitroalkyl, alkylalkyl, and so on.

25

30

Preferred substitutions for phenyl include methyl, methoxy, fluoromethyl, difluoromethyl, perfluoromethyl (trifluoromethyl), 1-fluoroethyl, 2-fluoroethyl,

ethoxy, fluoro, chloro, and bromo, and particularly methyl, fluoromethyl, perfluoro, methoxy, and fluoro.

Examples of other substituted radicals or fragments include 1-methyl-2-pyrrolidino, 4-(piperidyl)-piperidyl, [4-(N-benzyl)piperidyl]amino, 4-fluorobenzylamino, beta-hydroxyethoxy, beta-hydroxypropoxy, 2-oxo-pyrrolidino, 4-(1-methyl-4-piperidinyl), 4-(5-methyl-thiazoyl), 4-chlorobenzyl, 4-fluorobenzyl, 4-methylbenzyl, 4-methylpiperazinyl, piperazinyl, and 4-(1-isopropyl-4-piperidinyl).

## B. Compounds

One aspect of the invention features compounds of formula (I)B as described in the Summary section above. The invention encompasses the 5 described compounds and pharmaceutically acceptable salts, esters, amides, and hydrates thereof.

Preferred compounds include those compounds of formula (I)B wherein: (a) R<sub>3</sub> is H or C<sub>1-3</sub> alkyl; (b) R<sub>3</sub> is -(C=O)C<sub>1-6</sub> alkyl; (c) R<sub>3</sub> is -SO<sub>2</sub>(C<sub>1-3</sub> alkyl); (d) R<sub>3</sub> is methylsulfonyl; (e) W' is a covalent bond; (f) W' is SO<sub>2</sub> or (C=O); (g) R<sub>c</sub> is WZ; (h) R<sub>b</sub> or R<sub>d</sub> is WZ; (i) W is ethoxy, propoxy, or 10 butoxy; (j) W is -O-; (k) one of R<sub>b</sub>, R<sub>c</sub>, and R<sub>e</sub> is WZ and the others are independently selected from H, methyl, ethyl, methoxy, ethoxy, amino, nitro, and halo; and R<sub>a</sub> and R<sub>d</sub> are each independently H or methyl; (l) at least two of 15 the following apply: R<sub>c</sub> is WZ; W is propoxy or ethoxy; and Z is N-piperidino, 2-(N-methyl)pyrrolidino, or N,N-dimethyl; or combinations thereof.

Additional preferred compounds include those wherein (m) Z is piperazino or N-methylpiperazino, and more preferably Z is pyrrolidino, N-methyl-pyrrolidino, pyridyl, thiazoyl, piperidino, or NR<sub>11</sub>R<sub>12</sub> where each of R<sub>11</sub> and R<sub>12</sub> is independently selected from H, C<sub>1-6</sub> alkyl, phenyl, benzyl, C<sub>3-6</sub> cycloalkyl, and C<sub>2-5</sub> heterocyclic radical or taken together with the N form a C<sub>6-8</sub> cycloalkylamino radical; or wherein (m) is combined with (a) through (l) above.

Further preferred compounds include those wherein (n) one of R<sub>b</sub>, R<sub>c</sub>, and R<sub>e</sub> is WZ and the others are independently selected from H, methyl, ethyl, methoxy, ethoxy, amino, and halo; and R<sub>a</sub> and R<sub>d</sub> are each independently H or methyl; W is -O- or C<sub>1-3</sub> alkoxy; Z is piperazino or N-methylpiperazino, and more preferably pyrrolidino, N-methylpyrrolidino, pyridyl, thiazoyl, piperidino, or NR<sub>11</sub>R<sub>12</sub> where each of R<sub>11</sub> and R<sub>12</sub> is independently selected from H, C<sub>1-2</sub> alkyl, phenyl, benzyl, C<sub>3-8</sub> cycloalkyl, and C<sub>2-5</sub> heterocyclic radical; each of R<sub>6</sub> and R<sub>7</sub> are each independently H, methyl, methoxy, or ethoxy; and each of R<sub>5</sub> and R<sub>8</sub> 25 is H. Preferred compounds also include those wherein for example one or more of (a) through (n) is combined with (o) R<sub>3</sub> is H or -SO<sub>2</sub>(C<sub>1-6</sub> alkyl); or (p) R<sub>3</sub> is SO<sub>2</sub>(phenyl) and (C=O)(C<sub>1-6</sub> alkyl).

Examples of more preferred compounds include: (i) 2-[4-[2-[1-(methyl)-2-pyrrolidinyl]ethoxy]phenyl]-1H-indole; 2-[4-[2-[1-(methyl)-2-pyrrolidinyl]ethoxy]phenyl]-1-(methylsulfonyl)-1H-indole; 2-[4-[3-Piperidinopropoxy]phenyl]-1H-indole; 2-[4-[3-Piperidinopropoxy]phenyl]-1-(methylsulfonyl)-1H-indole; and 2-[3-[3-Piperidinopropoxy]phenyl]-1-(methylsulfonyl)-1H-indole; and (ii) 2-(4-(3-(4-methylpiperazino)propoxy)-phenyl)indole; and 1-(methylsulfonyl)-2-(4-(3-(4-methylpiperazino)-propoxy)phenyl)indole.

Other examples of compounds, and methods of making them, are provided in the next section.

C. Synthetic Chemical Methods

The invention provides methods of making the disclosed compounds according to traditional organic synthetic methods as well as matrix or combinatorial synthetic methods. Schemes 1 through 9 describe suggested 5 synthetic routes.

Using these Schemes, the guidelines below, and the examples in section E, a person of skill in the art may develop analogous or similar methods for a given compound.

One skilled in the art will recognize that synthesis of the compounds of 10 the present invention may be effected by purchasing an intermediate or protected intermediate compounds described in any of the schemes disclosed herein. One skilled in the art will further recognize that during any of the processes for preparation of the compounds in the present invention, it may be necessary and/or desirable to protect sensitive or reactive groups on any of the 15 molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in "Protective Groups in Organic Synthesis", John Wiley & Sons, 1991. These protecting groups may be removed at a convenient stage using methods known from the art.

Examples of the described synthetic routes includes Synthetic Examples 1 20 through 17. Compounds analogous to the target compounds of these examples can be, and in many cases, have been, made according to similar routes. The disclosed compounds are useful in basic research and as pharmaceutical agents as described in the next section.

Scheme I



5 Generally, a compound of formula (V), a known compound or compound prepared by known methods, is reacted with a compound of formula (II), a known compound or compound prepared by known methods, in the presence of a palladium catalyst such as dichlorobis(triphenylphosphine) palladium, and

CuI, or the like, in the presence of a base such as triethylamine, or the like, in a solvent such as DMF, THF, DMA, and the like, to yield the corresponding compound of formula (IV). Compound (IV) is then further reacted, as outlined in Schemes 5-7 below, to form the compound of formula (I). Alternatively a compound of formula (III) can be reacted with a compound of formula (II) using the above described, or similar methods to form a compound of formula (I) directly. In addition compounds of formula (I), in which  $X_2$  is NH can be obtained by reacting a compound of formula (VI) with an aromatic hydrazine of formula (VII) in the presence of a strong acid such as PPA.

10 Compounds of formula (II) wherein R<sub>3</sub> is chosen from either -SO<sub>2</sub>(C<sub>1-6</sub> alkyl), -SO<sub>2</sub> phenyl, (C=O)(C<sub>1-6</sub> alkyl), and R<sub>5</sub>-R<sub>8</sub> are selected from H, C<sub>1-6</sub> alkyl, C<sub>1-6</sub> alkoxy, halo, nitro, may be prepared according to the process outlined in Scheme 2.



A compound of formula (VIII), wherein R<sub>5</sub>-R<sub>8</sub> are selected from H, C<sub>1-6</sub> alkyl, C<sub>1-6</sub> alkoxy, halo, nitro, a known compound or compound prepared by known methods, is treated with an iodinating agent such as N-iodo succinamide, ICl, or I<sub>2</sub> in a solvent such as acetic acid, acetonitrile, or the like, to yield the corresponding compound of formula (IX). The compound (IX), a known compound or compound prepared by known methods, is reacted with a compound of formula (XI), in which R<sub>3</sub> is chosen from either -SO<sub>2</sub>(C<sub>1-6</sub> alkyl), -SO<sub>2</sub>phenyl, (C=O)(C<sub>1-6</sub> alkyl), (C=O)(C<sub>1-6</sub> alkoxy), (C=O)phenyl, and X<sub>3</sub> is selected from Br, Cl, F, or a conventional activating anhydride, or ester, in the presence of a base such as pyridine, N,N-dimethyl aminopyridine, triethylamine, or sodium hydroxide in an organic solvent such as DCM, THF, or DMF to yield the corresponding compound of formula (II).

Compounds of formula (V) wherein W is OH, NH<sub>2</sub>, CO<sub>2</sub>H, and Ra-Re are selected from H, C<sub>1-6</sub> alkyl, C<sub>1-6</sub> alkoxy, halo, or nitro may be prepared according to the processes outlined in Scheme 3.

5

Scheme 3



are selected from H, C<sub>1-6</sub> alkyl, C<sub>1-6</sub> alkoxy, halo, or nitro, is reacted with a diazophosphonate in the presence of a base such as, K<sub>2</sub>CO<sub>3</sub>, KOH, or DBU, in a solvent such as MeOH, EtOH, or DMF, to yield compounds of formula (V). Alternately compounds of formula (V) can also be prepared by treating a compound of formula (X) with trimethylsilyldiazomethane, in the presence of a strong base such as LDA or LHMDS, in a solvent such as, THF, Ether, or MTBE, to yield compounds of formula (V). In addition compounds of formula (V) may also be obtained using methods known to one skilled in the art as outlined in R. C. Larock "Comprehensive Organic Transformations", VCH Publishers, 1989, p. 295-296.

Specifically compounds of formula (IV) wherein W is -OH, -NH<sub>2</sub>, -C(O)OH may be prepared according to the processes outlined in Scheme 4.

25 Specifically, Compounds of formula (II), as defined in Scheme 2, are  
combined with compounds of formula (V), as defined in Scheme 3, in the

presence of a palladium catalyst such as,  $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ , or  $\text{Pd}(\text{OAc})_2$ , and a copper source such as  $\text{CuI}$ ,  $\text{CuOAc}$ , or  $\text{CuBr}$ , and a base such as triethylamine or pyridine, in a solvent such as THF or DMF, to provide the corresponding compounds of formula (IV).

- 5 Compounds of formula (I) in which n is a whole number between 0 and 4, and Z is as described in claim (1), and  $\text{R}_5\text{-R}_8$  and  $\text{Ra}\text{-Re}$  are as described in Scheme 4, can be obtained by the procedures described in Scheme 5-7.

Scheme 5

10



- Specifically a compound of formula (IVa) wherein  $\text{R}_3$ ,  $\text{R}_a\text{-R}_e$  and  $\text{R}_5\text{-R}_8$  are as described in Scheme 4, is reacted with an alcohol of formula (XII), 15 wherein Z is as described in claim (1), and n is a whole number between 0 and 4, in the presence of a phosphine such as triphenyl phosphine, polymer supported triphenylphosphine, or tributylphosphine, and an azodicarboxylate such as diisopropylazodicarboxylate, 1,1'-(azodicarbonyl)dipiperidine, or other Mitsunobu conditions, in a solvent such as DCM or THF, to afford the 20 corresponding compounds of formula (I) in which  $X_4$  is a covalent bond, and n is a whole number between 0 and 4.

- Alternatively compounds of formula (IV) as described above, can be reacted with carboxylic acids of formula (XIII), in which Z is defined as above, and n is a whole number between 0 and 3, in the presence of an activating 25 agent such as carbonyldiimidazole or thionyl chloride, with a base such as N-methyl morpholine, triethylamine, or N,N-dimethyl-4-aminopyridine to yield the corresponding compound of formula (I), in which  $X_4$  is defined as a carbonyl group.

Alternatively compounds of formula (Ib) can be obtained by the methods described in Scheme 6.

Scheme 6



5

Specifically, a compound of formula (IVb) in which  $R_3$ ,  $R_5-R_8$  and  $R_a-R_e$  is as defined in scheme 4, is reacted with an aldehyde of formula (XIV) in which n is a whole number between 0 and 3, and Z is as described in claim (1), in the presence of a reducing agent such as  $NaBH_3(CN)$  or  $NaBH(OAc)_3$ , in a solvent such as MeOH or THF, to afford the corresponding compound of formula (I).

10 Alternatively, compounds of formula (Ic) can be obtained using the methods outlined in Scheme 7.

15

Scheme 7



20 Specifically, a compound of formula (IVc) in which  $R_3$ ,  $R_5-R_8$ , and  $R_a-R_e$  is defined as in Scheme 4, is reacted with an alcohol of formula (XII), or an amine of formula (XV), in which Z is as defined in Claim (1), and n is a whole number between 0 and 4, in the presence of an activating agent such as carbonyldiimidazole or thionyl chloride, with a base such as N-methyl morpholine, triethylamine, or N,N-dimethyl-4-aminopyridine to yield the 25 corresponding compound of formula (I), in which X<sub>5</sub> is defined as O or NH.

In addition, compounds of formula (I)B can be converted to other compounds of formula (I)B as defined in Scheme 8 below.

Scheme 8



Specifically, a compound of formula (Id) in which R<sub>3</sub>, R<sub>5</sub>-R<sub>8</sub>, and R<sub>a</sub>-R<sub>e</sub> are as described in Scheme 4, is treated with; a nitrating agent such as HNO<sub>3</sub> or an electrophilic halogenating agent such as Br<sub>2</sub> or NIS, using solvents and conditions known to one skilled in the art, to yield the corresponding compound of formula (If) in which R<sub>1</sub> is defined as NO<sub>2</sub>, Br, Cl, or I. Additionally a compound of formula (If) in which R<sub>1</sub> is NO<sub>2</sub> can be further elaborated through reduction with an appropriate reducing agent such as SnCl<sub>2</sub> or iron metal, to yield the corresponding compound of formula (Ie), in which R<sub>1</sub> is NH<sub>2</sub>.

Additionally, compounds of formula (Ie) in which R<sub>3</sub> is defined as in Scheme 2, and R<sub>5</sub>-R<sub>8</sub>, and R<sub>a</sub>-R<sub>e</sub> are as described in Scheme 4, can be treated with a strong base such as KOH, K<sub>2</sub>CO<sub>3</sub>, or the like, in a solvent such as THF, MeOH, or the like, to yield the corresponding compounds of formula (If).

In addition, compounds of formula (If) can be converted to compounds of the corresponding formula (Ie) by treatment with a strong base such as n-BuLi, NaH, or the like, and an alkylating or acylating agent of formula (XI), wherein R<sub>3</sub> and X<sub>3</sub> are as defined in Scheme 2.

The synthesis of compounds of formula (III) in which Ra-Re are as defined in Scheme 3, R<sub>11</sub>, and R<sub>12</sub> are as defined claim (1), and n is an integer

ORT-1396

from 2 to 5, and compounds of formula (IV) in which the above definitions apply, and  $R_{13}$  is  $C_{1-6}$  alkyl are described in Scheme 9.

Scheme 9



- 5     Specifically, a compound of formula (XVI) in which  $R_{13}$  is H, or  $C_{1-6}$  alkyl, and  $R_a$ -Re is as previously described, is treated with a base such as NaH or  $K_2CO_3$ , and a compound of formula (XVIII), in which  $X_6$  is selected from Cl, Br, I,  $-OSO_2CH_3$ ,  $-OTs$ , or OTf, and  $X_7$  is selected from the same definition as  $X_6$  but less reactive than the element chosen for  $X_6$ , and n is an integer from 2 to 10, in a solvent such as THF, DMF or DMSO, to yield the corresponding compound of formula (XVII). The compound of formula (XVII) is then treated with a compound of formula (XIX), wherein  $R_{11}$  and  $R_{12}$  are as defined in Claim (1), in a solvent such as DMF or DCM, to afford the corresponding compound of formula (VI).
- 15    Compounds of formula (III) are prepared by treatment of corresponding compounds of formula (IV), in which  $R_{13}$  is defined as H, with a base such as LDA or LiHMDS, and TMSCHN<sub>2</sub>, in a solvent such as THF, diethylether, or the like. Alternately, compounds of formula (III) can also be prepared by treating corresponding compounds of formula (IV), with a base such as  $K_2CO_3$  or KOH, 20 and a phosphonate such as  $(CH_3O)_2P(O)C(N_2)C(O)CH_3$ , in a solvent such as MeOH.

Compounds of formula (Ig) can be obtained using the methods described in Scheme 10.

Scheme 10



5 Specifically a compound of formula (VI) as defined in scheme 9 is treated with an aryl hydrazine of formula (VII), wherein  $\text{R}_5\text{-R}_8$  is as defined as in claim (1), in polyphosphoric acid, to yield the corresponding compound of formula (Ig).

10 Additionally compounds of formula (I) can be formed using the procedures outlined in Scheme 11.

Scheme 11



15 Specifically a compound of formula (II), as defined in Scheme 2 is combined with a compound of formula (III) as defined in Scheme 9, in the presence of a palladium catalyst such as  $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$  or  $\text{Pd}(\text{OAc})_2$ , and a copper source such as  $\text{CuI}$ ,  $\text{CuOAc}$  or  $\text{CuBr}$ , and a base such as triethylamine or pyridine, in a solvent such as THF or DMF, to provide the corresponding compounds of formula (Ih).

#### D. Uses

According to the invention, the disclosed compounds and compositions are useful for the amelioration of symptoms associated with, the treatment of, and/or the prevention of, the following conditions and diseases, or symptoms associated with them: dementia, Alzheimer's disease, narcolepsy, eating disorders, motion sickness, vertigo, attention deficit hyperactivity disorder,

learning and memory disorders, schizophrenia, mild cognitive impairment upper airway allergic response (allergic rhinitis), insomnia, jet lag, obesity, asthma, neurogenic inflammation, substance abuse, bipolar disorders, manic disorders, and depression. The invention also features pharmaceutical compositions, which include, without limitation, one or more of the disclosed compounds, and a pharmaceutically acceptable carrier or excipient.

5           1.     Dosages

Those skilled in the art will be able to determine, according to known methods, the appropriate dosage for a patient, taking into account factors such 10 as age, weight, general health, the type of symptoms requiring treatment, and the use of other medications. An effective amount means that amount of pharmaceutical reagent (such as a prodrug, metabolic precursor, or active compound) that elicits the biological or medical response desired. In general, a therapeutically effective amount will be between 0.01 and 1000 mg/kg per day, preferably between 0.01 and 250 mg/kg body weight, and daily dosages will be 15 between 0.50 and 5000 mg for an adult subject of normal weight. Capsules, tablets or other formulations (such as liquids and film-coated tablets) may be of between 0.20 and 100 mg, such as 0.20, 0.50, 1.0, 2.0, 3.0, and 10 mg and can be administered according to the disclosed methods.

20           2.     Formulations

Dosage unit forms include tablets, capsules, pills, powders, granules, aqueous and nonaqueous oral solutions and suspensions, and parenteral solutions packaged in containers adapted for subdivision into individual doses. Dosage unit forms can also be adapted for various methods of administration, 25 including controlled release formulations, such as subcutaneous implants. Administration methods include oral, rectal, parenteral (intravenous, intramuscular, subcutaneous), intracisternal, intravaginal, intraperitoneal, intravesical, local (drops, powders, ointments, gels or cream), and by inhalation (a buccal or nasal spray) as appropriate depending on the overall health and 30 condition of the patient as determined by a physician or veterinary doctor.

Parenteral formulations include pharmaceutically acceptable aqueous or nonaqueous solutions, dispersion, suspensions, emulsions, and sterile powders for the preparation thereof. Examples of carriers include water,

ethanol, polyols (propylene glycol, polyethylene glycol), vegetable oils, and injectable organic esters such as ethyl oleate. Fluidity can be maintained by the use of a coating such as lecithin, a surfactant, or maintaining appropriate particle size. Carriers for solid dosage forms include (a) fillers or extenders, (b) 5 binders, (c) humectants, (d) disintegrating agents, (e) solution retarders, (f) absorption accelerators, (g) adsorbants, (h) lubricants, (i) buffering agents, and (j) propellants.

Compositions may also contain adjuvants such as preserving, wetting, emulsifying, and dispensing agents; antimicrobial agents such as parabens, 10 chlorobutanol, phenol, and sorbic acid; isotonic agents such as a sugar or sodium chloride; absorption-prolonging agents such as aluminum monostearate and gelatin; and absorption-enhancing agents.

### 3. Combination Therapy

The present invention also provides compositions and methods useful 15 for the treatment of disorders or conditions modulated, preferably antagonized, by the histamine H<sub>3</sub> receptor in combination with compounds that modulate other receptors including, but not limited to, histamine H<sub>1</sub> and histamine H<sub>2</sub> receptors. The present invention includes compounds and compositions useful 20 in methods of combination therapy for the treatment of diseases or conditions modulated by the histamine H<sub>3</sub> receptor in combination with compounds that are selective serotonin re-uptake inhibitors (SSRIs), such as PROZAC™, or are selective norepinephrine uptake inhibitors. Such combination methods include (a) administering the two or more pharmaceutical agents separately 25 formulated and at separate times, and (b) administering the two or more agents simultaneously in a single formulation or in separate formulations administered more or less at the same time. For example, one aspect is a method of treatment comprising administering at least one histamine H<sub>3</sub> receptor modulating compound disclosed herein and administering at least one 30 compound selected from a histamine H<sub>1</sub> receptor modulating compound, a histamine H<sub>2</sub> receptor modulating compound, a selective serotonin reuptake inhibitor (such as PROZAC™), or a selective norepinephrine uptake inhibiting compound.

#### 4. Related Compounds

The invention provides the disclosed compounds and closely related, pharmaceutically acceptable forms of the disclosed compounds, such as salts, 5 esters, amides, acids, hydrates or solvated forms thereof; masked or protected forms; and racemic mixtures, or enantiomerically or optically pure forms.

Pharmaceutically acceptable salts, esters, and amides include carboxylate salts (e.g., C<sub>1-8</sub> alkyl, cycloalkyl, aryl, heteroaryl, or non-aromatic heterocyclic) amino acid addition salts, esters, and amides which are within a 10 reasonable benefit/risk ratio, pharmacologically effective and suitable for contact with the tissues of patients without undue toxicity, irritation, or allergic response. Representative salts include hydrobromide, hydrochloride, sulfate, bisulfate, nitrate, acetate, oxalate, valerate, oleate, palmitate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulfonate. These may include alkali metal and alkali earth cations such 15 as sodium, potassium, calcium, and magnesium, as well as non-toxic ammonium, quaternary ammonium, and amine cations such as tetramethyl ammonium, methylamine, trimethylamine, and ethylamine. See example, S.M. 20 Berge, et al., "Pharmaceutical Salts," J. Pharm. Sci., 1977, 66:1-19 which is incorporated herein by reference. Representative pharmaceutically acceptable amides of the invention include those derived from ammonia, primary C<sub>1-6</sub> alkyl amines and secondary di (C<sub>1-6</sub> alkyl) amines. Secondary amines include 5- or 6-membered heterocyclic or heteroaromatic ring moieties containing at least 25 one nitrogen atom and optionally between 1 and 2 additional heteroatoms. Preferred amides are derived from ammonia, C<sub>1-3</sub> alkyl primary amines, and di (C<sub>1-2</sub> alkyl)amines. Representative pharmaceutically acceptable esters of the invention include C<sub>1-7</sub> alkyl, C<sub>5-7</sub> cycloalkyl, phenyl, and phenyl(C<sub>1-6</sub>)alkyl esters. Preferred esters include methyl esters.

30 The invention also includes disclosed compounds having one or more functional groups (e.g., hydroxyl, amino, or carboxyl) masked by a protecting group. See, e.g., Greene and Wuts, Protective Groups in Organic Synthesis, 3<sup>rd</sup> ed., (1999) John Wiley & Sons, NY. Some of these masked or protected

compounds are pharmaceutically acceptable; others will be useful as intermediates. Synthetic intermediates and processes disclosed herein, and minor modifications thereof, are also within the scope of the invention.

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
4410  
4411  
4412  
4413  
4414  
4415  
4416  
4417  
4418  
4419  
4420  
4421  
4422  
4423  
4424  
4425  
4426  
4427  
4428  
4429  
4430  
4431  
4432  
4433  
4434  
4435  
4436  
4437  
4438  
4439  
4440  
4441  
4442  
4443  
4444  
4445  
4446  
4447  
4448  
4449  
44410  
44411  
44412  
44413  
44414  
44415  
44416  
44417  
44418  
44419  
44420  
44421  
44422  
44423  
44424  
44425  
44426  
44427  
44428  
44429  
44430  
44431  
44432  
44433  
44434  
44435  
44436  
44437  
44438  
44439  
44440  
44441  
44442  
44443  
44444  
44445  
44446  
44447  
44448  
44449  
444410  
444411  
444412  
444413  
444414  
444415  
444416  
444417  
444418  
444419  
444420  
444421  
444422  
444423  
444424  
444425  
444426  
444427  
444428  
444429  
444430  
444431  
444432  
444433  
444434  
444435  
444436  
444437  
444438  
444439  
444440  
444441  
444442  
444443  
444444  
444445  
444446  
444447  
444448  
444449  
4444410  
4444411  
4444412  
4444413  
4444414  
4444415  
4444416  
4444417  
4444418  
4444419  
4444420  
4444421  
4444422  
4444423  
4444424  
4444425  
4444426  
4444427  
4444428  
4444429  
4444430  
4444431  
4444432  
4444433  
4444434  
4444435  
4444436  
4444437  
4444438  
4444439  
4444440  
4444441  
4444442  
4444443  
4444444  
4444445  
4444446  
4444447  
4444448  
4444449  
44444410  
44444411  
44444412  
44444413  
44444414  
44444415  
44444416  
44444417  
44444418  
44444419  
44444420  
44444421  
44444422  
44444423  
44444424  
44444425  
44444426  
44444427  
44444428  
44444429  
44444430  
44444431  
44444432  
44444433  
44444434  
44444435  
44444436  
44444437  
44444438  
44444439  
44444440  
44444441  
44444442  
44444443  
44444444  
44444445  
44444446  
44444447  
44444448  
44444449  
444444410  
444444411  
444444412  
444444413  
444444414  
444444415  
444444416  
444444417  
444444418  
444444419  
444444420  
444444421  
444444422  
444444423  
444444424  
444444425  
444444426  
444444427  
444444428  
444444429  
444444430  
444444431  
444444432  
444444433  
444444434  
444444435  
444444436  
444444437  
444444438  
444444439  
444444440  
444444441  
444444442  
444444443  
444444444  
444444445  
444444446  
444444447  
444444448  
444444449  
4444444410  
4444444411  
4444444412  
4444444413  
4444444414  
4444444415  
4444444416  
4444444417  
4444444418  
4444444419  
4444444420  
4444444421  
4444444422  
4444444423  
4444444424  
4444444425  
4444444426  
4444444427  
4444444428  
4444444429  
4444444430  
4444444431  
4444444432  
4444444433  
4444444434  
4444444435  
4444444436  
4444444437  
4444444438  
4444444439  
4444444440  
4444444441  
4444444442  
4444444443  
4444444444  
4444444445  
4444444446  
4444444447  
4444444448  
4444444449  
44444444410  
44444444411  
44444444412  
44444444413  
44444444414  
44444444415  
44444444416  
44444444417  
44444444418  
44444444419  
44444444420  
44444444421  
44444444422  
44444444423  
44444444424  
44444444425  
44444444426  
44444444427  
44444444428  
44444444429  
44444444430  
44444444431  
44444444432  
44444444433  
44444444434  
44444444435  
44444444436  
44444444437  
44444444438  
44444444439  
44444444440  
44444444441  
44444444442  
44444444443  
44444444444  
44444444445  
44444444446  
44444444447  
44444444448  
44444444449  
444444444410  
444444444411  
444444444412  
444444444413  
444444444414  
444444444415  
444444444416  
444444444417  
444444444418  
444444444419  
444444444420  
444444444421  
444444444422  
444444444423  
444444444424  
444444444425  
444444444426  
444444444427  
444444444428  
444444444429  
444444444430  
444444444431  
444444444432  
444444444433  
444444444434  
444444444435  
444444444436  
444444444437  
444444444438  
444444444439  
444444444440  
444444444441  
444444444442  
444444444443  
444444444444  
444444444445  
444444444446  
444444444447  
444444444448  
444444444449  
4444444444410  
4444444444411  
4444444444412  
4444444444413  
4444444444414  
4444444444415  
4444444444416  
4444444444417  
4444444444418  
4444444444419  
4444444444420  
4444444444421  
4444444444422  
4444444444423  
4444444444424  
4444444444425  
4444444444426  
4444444444427  
4444444444428  
4444444444429  
4444444444430  
4444444444431  
4444444444432  
4444444444433  
4444444444434  
4444444444435  
4444444444436  
4444444444437  
4444444444438  
4444444444439  
4444444444440  
4444444444441  
4444444444442  
4444444444443  
4444444444444  
4444444444445  
4444444444446  
4444444444447  
4444444444448  
4444444444449  
44444444444410  
44444444444411  
44444444444412  
44444444444413  
44444444444414  
44444444444415  
44444444444416  
44444444444417  
44444444444418  
44444444444419  
44444444444420  
44444444444421  
44444444444422  
44444444444423  
44444444444424  
44444444444425  
44444444444426  
44444444444427  
44444444444428  
44444444444429  
44444444444430  
44444444444431  
44444444444432  
44444444444433  
44444444444434  
44444444444435  
44444444444436  
44444444444437  
44444444444438  
44444444444439  
44444444444440  
44444444444441  
44444444444442  
44444444444443  
44444444444444  
44444444444445  
44444444444446  
44444444444447  
44444444444448  
44444444444449  
444444444444410  
444444444444411  
444444444444412  
444444444444413  
444444444444414  
444444444444415  
444444444444416  
444444444444417  
444444444444418  
444444444444419  
444444444444420  
444444444444421  
444444444444422  
444444444444423  
444444444444424  
444444444444425  
444444444444426  
444444444444427  
444444444444428  
444444444444429  
444444444444430  
444444444444431  
444444444444432  
444444444444433  
444444444444434  
444444444444435  
444444444444436  
444444444444437  
444444444444438  
444444444444439  
444444444444440  
444444444444441  
444444444444442  
444444444444443  
444444444444444  
444444444444445  
444444444444446  
444444444444447  
444444444444448  
444444444444449  
4444444444444410  
4444444444444411  
4444444444444412  
4444444444444413  
4444444444444414  
4444444444444415  
4444444444444416  
4444444444444417  
4444444444444418  
4444444444444419  
4444444444444420  
4444444444444421  
4444444444444422  
4444444444444423  
4444444444444424  
4444444444444425  
4444444444444426  
4444444444444427  
4444444444444428  
4444444444444429  
4444444444444430  
4444444444444431  
4444444444444432  
4444444444444433  
4444444444444434  
4444444444444435  
4444444444444436  
4444444444444437  
4444444444444438  
4444444444444439  
4444444444444440  
4444444444444441  
4444444444444442  
4444444444444443  
4444444444444444  
4444444444444445  
4444444444444446  
4444444444444447  
4444444444444448  
4444444444444449  
44444444444444410  
44444444444444411  
44444444444444412  
44444444444444413  
44444444444444414  
44444444444444415  
44444444444444416  
44444444444444417  
44444444444444418  
44444444444444419  
44444444444444420  
44444444444444421  
44444444444444422  
44444444444444423  
44444444444444424  
44444444444444425  
44444444444444426  
44444444444444427  
44444444444444428  
44444444444444429  
44444444444444430  
44444444444444431  
44444444444444432  
44444444444444433  
44444444444444434  
44444444444444435  
44444444444444436  
44444444444444437  
44444444444444438  
44444444444444439  
44444444444444440  
44444444444444441  
44444444444444442  
44444444444444443  
44444444444444444  
44444444444444445  
44444444444444446  
44444444444444447  
44444444444444448  
44444444444444449  
444444444444444410  
444444444444444411  
444444444444444412  
444444444444444413  
444444444444444414  
444444444444444415  
444444444444444416  
444444444444444417  
444444444444444418  
444444444444444419  
444444444444444420  
444444444444444421  
444444444444444422  
444444444444444423  
444444444444444424  
444444444444444425  
444444444444444426  
444444444444444427  
444444444444444428  
444444444444444429  
444444444444444430  
444444444444444431  
444444444444444432  
444444444444444433  
444444444444444434  
444444444444444435  
444444444444444436  
444444444444444437  
444444444444444438  
444444444444444439  
444444444444444440  
444444444444444441  
444444444444444442  
444444444444444443  
444444444444444444  
444444444444444445  
444444444444444446  
444444444444444447  
444444444444444448  
444444444444444449  
4444444444444444410  
4444444444444444411  
4444444444444444412  
4444444444444444413  
4444444444444444414  
4444444444444444415  
4444444444444444416  
4444444444444444417  
4444444444444444418  
4444444444444444419  
4444444444444444420  
4444444444444444421  
4444444444444444422  
4444444444444444423  
4444444444444444424  
4444444444444444425  
4444444444444444426  
4444444444444444427  
4444444444444444428  
4444444444444444429  
4444444444444444430  
4444444444444444431  
4444444444444444432  
4444444444444444433  
4444444444444444434  
4444444444444444435  
4444444444444444436  
4444444444444444437  
4444444444444444438  
4444444444444444439  
4444444444444444440  
4444444444444444441  
4444444444444444442  
4444444444444444443  
4444444444444444444  
4444444444444444445  
4444444444444444446  
4444444444444444447  
4444444444444444448  
4444444444444444449  
44444444444444444410  
44444444444444444411  
44444444444444444412  
44444444444444444413  
44444444444444444414  
44444444444444444415  
44444444444444444416  
44444444444444444417  
44444444444444444418  
44444444444444444419  
44444444444444444420  
44444444444444444421  
44444444444444444422  
44444444444444444423  
44444444444444444424  
44444444444444444425  
44444444444444444426  
44444444444444444427  
44444444444444444428  
44444444444444444429  
44444444444444444430  
44444444444444444431  
44444444444444444432  
44444444444444444433  
44444444444444444434  
44444444444444444435  
44444444444444444436  
44444444444444444437  
44444444444444444438  
44444444444444444439  
44444444444444444440  
44444444444444444441  
44444444444444444442  
44444444444444444443  
44444444444444444444  
44444444444444444445  
44444444444444444446  
44444444444444444447  
44444444444444444448  
44444444444444444449  
444444444444444444410  
444444444444444444411  
444444444444444444412  
444444444444444444413  
444444444444444444414  
444444444444444444415  
444444444444444444416  
444444444444444444417  
444444444444444444418  
444444444444444444419  
444444444444444444420  
444444444444444444421  
444444444444444444422  
444444444444444444423  
444444444444444444424<br

## HYDROXYL PROTECTING GROUPS

Protection for the hydroxyl group includes methyl ethers, substituted methyl ethers, substituted ethyl ethers, substituted benzyl ethers, and silyl ethers.

### Substituted Methyl Ethers

Examples of substituted methyl ethers include methyoxyethyl, methylthiomethyl, *t*-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl, 10 benzyloxymethyl, *p*-methoxybenzyloxymethyl, (4-methoxyphenoxy)methyl, guaiacolmethyl, *t*-butoxymethyl, 4-pentenyoxyethyl, siloxymethyl, 2-methoxyethoxymethyl, 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 15 2-(trimethylsilyl)ethoxymethyl, tetrahydropyranyl, 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4-methoxytetrahydropyranyl, 4-methoxytetrahydrothiopyranyl, 4-methoxytetrahydrothiopyranyl S,S-dioxido, 1-[(2-chloro-4-methyl)phenyl]-4-methoxypiperidin-4-yl, 1,4-dioxan-2-yl, tetrahydrofuranyl, tetrahydrothiofuranyl and 2,3,3a,4,5,6,7,7a-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl.

### Substituted Ethyl Ethers

Examples of substituted ethyl ethers include 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 1-methyl-1-methoxyethyl, 1-methyl-1-benzyloxyethyl, 1-methyl-1-benzyloxy-2-fluoroethyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, 25 2-(phenylselenyl)ethyl, *t*-butyl, allyl, *p*-chlorophenyl, *p*-methoxyphenyl, 2,4-dinitrophenyl, and benzyl.

### Substituted Benzyl Ethers

Examples of substituted benzyl ethers include *p*-methoxybenzyl, 3,4-dimethoxybenzyl, *o*-nitrobenzyl, *p*-nitrobenzyl, *p*-halobenzyl, 2,6-dichlorobenzyl, *p*-cyanobenzyl, *p*-phenylbenzyl, 2- and 4-picollyl, 3-methyl-2-picollyl N-oxide, diphenylmethyl, *p*, *p*'-dinitrobenzhydryl, 5-dibenzosuberyl, triphenylmethyl,  $\alpha$ -naphthylidiphenylmethyl, *p*-methoxyphenylidiphenylmethyl, di(*p*-methoxyphenyl)phenylmethyl, tri(*p*-methoxyphenyl)methyl, 4-(4'-

- bromophenacyloxy)phenyldiphenylmethyl, 4,4',4''-tris(4,5-dichlorophthalimidophenyl)methyl, 4,4',4''-tris(levulinoyloxyphenyl)methyl, 4,4',4''-tris(benzoyloxyphenyl)methyl, 3-(1-midazol-1-ylmethyl)bis(4',4''-dimethoxyphenyl)methyl, 1,1-bis(4-methoxyphenyl)-1'-pyrenylmethyl, 9-anthryl, 5 9-(9-phenyl)xanthenyl, 9-(9-phenyl-10-oxo)anthryl, 1,3-benzodithiolan-2-yl, and benzisothiazolyl S,S-dioxido.

### Silyl Ethers

- Examples of silyl ethers include trimethylsilyl, triethylsilyl, triisopropylsilyl, 10 dimethylisopropylsilyl, diethylisopropylsilyl, dimethylhexylsilyl, *t*-butyldimethylsilyl, *t*-butyldiphenylsilyl, tribenzylsilyl, tri-*p*-xylylsilyl, triphenylsilyl, diphenylmethylsilyl, and *t*-butylmethoxyphenylsilyl.

### Esters

- In addition to ethers, a hydroxyl group may be protected as an ester. 15 Examples of esters include formate, benzoylformate, acetate, chloroacetate, dichloroacetate, trichloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, phenoxyacetate, *p*-chlorophenoxyacetate, *p*-P-phenylacetate, 3-phenylpropionate, 4-oxopentanoate(levulinate), 4,4-(ethylenedithio)pentanoate, pivaloate, adamantoate, crotonate, 4-20 methoxycrotonate, benzoate, *p*-phenylbenzoate, 2,4,6-trimethylbenzoate(mesitoate)

### Carbonates

- Examples of carbonate protecting groups include methyl, 9-fluorenylmethyl, ethyl, 2,2,2-trichloroethyl, 2-(trimethylsilyl)ethyl, 2-(phenylsulfonyl)ethyl, 2-(triphenylphosphonio)ethyl, isobutyl, vinyl, allyl, *p*-nitrophenyl, benzyl, *p*-methoxybenzyl, 3,4-dimethoxybenzyl, *o*-nitrobenzyl, *p*-nitrobenzyl, S-benzyl thiocarbonate, 4-ethoxy-1-naphthyl, and methyl 30 dithiocarbonate.

Assisted Cleavage

Examples of assisted cleavage include 2-iodobenzoate, 4-azidobutyrate, 4-nitro-4-methylpentanoate, o-(dibromomethyl)benzoate, 2-formylbenzenesulfonate, 2-(methylthiomethoxy)ethyl carbonate, 4-(methylthiomethoxy)butyrate, and 2-(methylthiomethoxymethyl)benzoate.

Miscellaneous Esters

Examples of miscellaneous esters include 2,6-dichloro-4-methylphenoxyacetate, 2,6-dichloro-4-(1,1,3,3-tetramethylbutyl)phenoxyacetate, 2,4-bis(1,1-dimethylpropyl)phenoxyacetate, chlorodiphenylacetate, isobutyrate, monosuccinate, (E)-2-methyl-2-butenoate(tiglate), o-(methoxycarbonyl)benzoate, p-P-benzoate,  $\alpha$ -naphthoate, nitrate, alkyl N,N,N',N'-tetramethylphosphorodiamide, N-phenylcarbamate, borate, dimethylphosphinothiyl, and 2,4-dinitrophenylsulfonate

Sulfonates

Examples of sulfonates include sulfate, methanesulfonate(mesylate), benzylsulfonate, and tosylate.

AMINO PROTECTING GROUPS

Protection for the amino group includes carbamates, amides, and special -NH protective groups.

Examples of carbamates include methyl and ethyl carbamates, substituted ethyl carbamates, assisted cleavage carbamates, photolytic cleavage carbamates, urea-type derivatives, and miscellaneous carbamates.

30

Carbamates

Examples of methyl and ethyl carbamates include methyl and ethyl, 9-fluorenylmethyl, 9-(2-sulfo)fluorenylmethyl, 9-(2,7-dibromo)fluorenylmethyl, 2,7-

di-*t*-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothioxanyl)]methyl, and 4-methoxyphenacyl.

#### Substituted Ethyl

- 5 Examples of substituted ethyl carbamates include 2,2,2-trichloroethyl, 2-trimethylsilyleethyl, 2-phenyleethyl, 1-(1-adamantyl)-1-methyleethyl, 1,1-dimethyl-2-haloethyl, 1,1-dimethyl-2,2-dibromoethyl, 1,1-dimethyl-2,2,2-trichloroethyl, 1-methyl-1-(4-biphenylyl)ethyl, 1-(3,5-di-*t*-butylphenyl)-1-methyleethyl, 2-(2'- and 4'-pyridyl)ethyl, 2-(N,N-dicyclohexylcarboxamido)ethyl, *t*-butyl, 1-adamantyl, 10 vinyl, allyl, 1-isopropylallyl, cinnamyl, 4-nitrocinnamyl, 8-quinolyl, N-hydroxypiperidinyl, alkylidithio, benzyl, *p*-methoxybenzyl, *p*-nitrobenzyl, *p*-bromobenzyl, *p*-chlorobenzyl, 2,4-dichlorobenzyl, 4-methylsulfinylbenzyl, 9-anthrylmethyl and diphenylmethyl.

15 Assisted Cleavage

- Examples of assisted cleavage include 2-methylthioethyl, 2-methylsulfonyleethyl, 2-(*p*-toluenesulfonyl)ethyl, [2-(1,3-dithianyl)]methyl, 4-methylthiophenyl, 2,4-dimethylthiophenyl, 2-phosphonioethyl, 2-triphenylphosphonioisopropyl, 1,1-dimethyl-2-cyanoethyl, *m*-chloro-*p*-acyloxybenzyl, *p*-(dihydroxyboryl)benzyl, 5-benzisoxazolylmethyl, and 2-(trifluoromethyl)-6-chromonylmethyl.

#### Photolytic Cleavage

- Examples of photolytic cleavage include *m*-nitrophenyl, 3,5-dimethoxybenzyl, *o*-nitrobenzyl, 3,4-dimethoxy-6-nitrobenzyl, and phenyl(*o*-nitrophenyl)methyl.

#### Urea-Type Derivatives

- Examples of urea-type derivatives include phenothiazinyl-(10)-carbonyl derivative, N' -*p*-toluenesulfonylaminocarbonyl, and N' -phenylaminothiocarbonyl.

#### Miscellaneous Carbamates

Examples of miscellaneous carbamates include *t*-amyl, S-benzyl thiocarbamate, *p*-cyanobenzyl, cyclobutyl, cyclohexyl, cyclopentyl, cyclopropylmethyl, *p*-decyloxybenzyl, diisopropylmethyl, 2,2-dimethoxycarbonylvinyl, *o*-(N,N-dimethylcarboxamido)benzyl, 1,1-dimethyl-3-(N,N-dimethylcarboxamido)propyl, 1,1-dimethylpropynyl, di(2-pyridyl)methyl, 2-furanylmethyl, 2-iodoethyl, isobornyl, isobutyl, isonicotinyl, *p*-(*p*'-methoxyphenylazo)benzyl, 1-methylcyclobutyl, 1-methylcyclohexyl, 1-methyl-1-cyclopropylmethyl, 1-methyl-1-(3,5-dimethoxyphenyl)ethyl, 1-methyl-1-(*p*-phenylazophenyl)ethyl, 1-methyl-1-phenylethyl, 1-methyl-1-(4-pyridyl)ethyl, phenyl, *p*-(phenylazo)benzyl, 2,4,6-tri-*t*-butylphenyl, 4-(trimethylammonium)benzyl, and 2,4,6-trimethylbenzyl.

Examples of amides include:

15      Amides

N-formyl, N-acetyl, N-chloroacetyl, N-trichloroacetyl, N-trifluoroacetyl, N-phenylacetyl, N-3-phenylpropionyl, N-picolinoyl, N-3-pyridylcarboxamide, N-benzoylphenylalanyl derivative, N-benzoyl, N-*p*-phenylbenzoyl.

20      Assisted Cleavage

N-*o*-nitrophenylacetyl, N-*o*-nitrophenoxyacetyl, N-acetoacetyl, (N'-dithiobenzoyloxycarbonylamino)acetyl, N-3-(*p*-hydroxyphenyl)propionyl, N-3-(*o*-nitrophenyl)propionyl, N-2-methyl-2-(*o*-nitrophenoxy)propionyl, N-2-methyl-2-(*o*-phenylazophenoxy)propionyl, N-4-chlorobutyryl, N-3-methyl-3-nitrobutyryl, N-*o*-nitrocinnamoyl, N-acetyl methionine derivative, N-*o*-nitrobenzoyl, N-*o*-(benzoyloxymethyl)benzoyl, and 4,5-diphenyl-3-oxazolin-2-one.

Cyclic Imide Derivatives

N-phthalimide, N-dithiasuccinoyl, N-2,3-diphenylmaleoyl, N-2,5-dimethylpyrrolyl, N-1,1,4,4-tetramethyldisilylazacyclopentane adduct, 5-substituted 1,3-dimethyl-1,3,5-triazacyclohexan-2-one, 5-substituted 1,3-dibenzyl-1,3,5-triazacyclohexan-2-one, and 1-substituted 3,5-dinitro-4-pyridonyl.

SPECIAL – NH PROTECTIVE GROUPS

5 Examples of special NH protective groups include

N-Alkyl and N-Aryl Amines

N-methyl, N-allyl, N-[2-(trimethylsilyl)ethoxy]methyl, N-3-acetoxypropyl,  
N-(1-isopropyl-4-nitro-2-oxo-3-pyrrolin-3-yl), quaternary ammonium salts, N-  
10 benzyl, N-di(4-methoxyphenyl)methyl, N-5-dibenzosuberyl, N-triphenylmethyl,  
N-(4-methoxyphenyl)diphenylmethyl, N-9-phenylfluorenyl, N-2,7-dichloro-9-  
fluorenylmethylene, N-ferrocenylmethyl, and N-2-picolyamine N'-oxide.

Imine Derivatives

15 N-1,1-dimethylthiomethylene, N-benzylidene, N-p-methoxybenzylidene,  
N-diphenylmethylene, N-[(2-pyridyl)mesityl]methylene, and N-(N' ,N'-  
dimethylaminomethylene).

20 PROTECTION FOR THE CARBOXYL GROUP

Substituted Methyl Esters

Examples of substituted methyl esters include 9-fluorenylmethyl,  
methoxymethyl, methylthiomethyl, tetrahydropyranyl, tetrahydrofuranyl,  
25 methoxyethoxymethyl, 2-(trimethylsilyl)ethoxymethyl, benzyloxymethyl,  
phenacyl, p-bromophenacyl,  $\alpha$ -methylphenacyl, p-methoxyphenacyl,  
carboxamidomethyl, and N-phthalimidomethyl.

2-Substituted Ethyl Esters

30 Examples of 2-substituted ethyl esters include 2,2,2-trichloroethyl,  
2-haloethyl,  $\omega$ -chloroalkyl, 2-(trimethylsilyl)ethyl, 2-methylthioethyl, 1,3-  
dithianyl-2-methyl, 2-(p-nitrophenylsulfenyl)ethyl, 2-(p-toluenesulfonyl)ethyl,

2-(2'-pyridyl)ethyl, 2-(diphenylphosphino)ethyl, 1-methyl-1-phenylethyl, *t*-butyl, cyclopentyl, cyclohexyl, allyl, 3-buten-1-yl, 4-(trimethylsilyl)-2-buten-1-yl, cinnamyl,  $\alpha$ -methylcinnamyl, phenyl, *p*-(methylmercapto)phenyl and benzyl.

5        Substituted Benzyl Esters

Examples of substituted benzyl esters include triphenylmethyl, diphenylmethyl, bis(*o*-nitrophenyl)methyl, 9-anthrylmethyl, 2-(9,10-dioxo)anthrylmethyl, 5-dibenzosuberyl, 1-pyrenylmethyl, 2-(trifluoromethyl)-6-chromylmethyl, 2,4,6-trimethylbenzyl, *p*-bromobenzyl, *o*-nitrobenzyl, *p*-nitrobenzyl, *p*-methoxybenzyl, 2,6-dimethoxybenzyl, 4-(methylsulfinyl)benzyl, 4-sulfobenzyl, piperonyl, 4-picoly and *p*-P-benzyl.

10        Silyl Esters

Examples of silyl esters include trimethylsilyl, triethylsilyl, *t*-butyldimethylsilyl, *i*-propyldimethylsilyl, phenyldimethylsilyl and di-*t*-butydimethylsilyl.

15        Activated Esters

Examples of activated esters include thiols.

20

Miscellaneous Derivatives

Examples of miscellaneous derivatives include oxazoles, 2-alkyl-1,3-oxazolines, 4-alkyl-5-oxo-1,3-oxazolidines, 5-alkyl-4-oxo-1,3-dioxolanes, ortho esters, phenyl group and pentaaminocobalt(III) complex.

25

Stannyly Esters

Examples of stannyl esters include triethylstannyl and tri-*n*-butylstannyl.

AMIDES AND HYDRAZIDES

30

Amides

Examples of amides include N,N-dimethyl-, pyrrolidinyl-, piperidinyl-, 5,6-dihydrophenanthridinyl-, o-nitroanilides, N-7-nitroindolyl-, N-8-Nitro-1,2,3,4-tetrahydroquinolyl-, and *p*-P-benzenesulfonamides.

## 5 Hydrazides

Examples of hydrazides include N-phenyl and N,N'-diisopropyl hydrazides.

## E. Chemical Examples

Example 1

2-[4-(3-Piperidinopropoxy)phenyl]-1-(methylsulfonyl)-1H-indole  
 $K_i = 7 \text{ nM}$

## 10 Step A Preparation of 2-iodo-N-(methanesulfonyl)aniline

Methanesulfonyl chloride (4.4 mL, 57 mmol) was added to a 0°C dichloromethane (200 mL) solution containing 2-iodoaniline (5.0 g, 23 mmol) and triethylamine (9.6 mL, 69 mmol). The resulting mixture was stirred for 90 minutes, washed with HCl (0.5 M). The organics were separated then dried over sodium sulfate and concentrated in vacuo. The residue was then treated with potassium hydroxide (2.0 M in 1:1 methanol:water, 75 mL) for 30 min. This material was then diluted with dichloromethane and washed with HCl (1.0 N, 300 mL). The organics were separated then dried over sodium sulfate and concentrated to provide the title compound (5.15 g) as a tan solid.

## Step B Preparation of 4-(methoxyethoxymethyl)benzaldehyde

Sodium hydride (2.4g (60%), 60 mmol) was added to 4-hydroxybenzaldehyde (6.0 g, 50 mmol) in N, N-dimethylformamide (100 mL). The suspension was stirred for 1 hour and then treated with 2-methoxyethoxymethyl chloride (6.8 mL, 60 mmol), and allowed to stir an additional 16 hours. The reaction was then partitioned between water and ether:ethyl acetate (1:1). The organics were then washed with water (4x), dried (potassium carbonate), and concentrated. The crude materials were then purified by silica gel chromatography (hexanes:ethyl acetate) to afford the title compound (9.0 g)

## Step C Preparation of 1-ethynyl-4-(methoxyethoxymethyl)benzene

Dimethyl[(2-diazo-3-oxo)propyl] phosphonate was added in 4 portions to a suspension of potassium carbonate (4.96 g, 36 mmol), the product of Step B (3.78 g, 18 mmol), and methanol (50 mL). The reaction was stirred for 16 hours, and concentrated in vacuo. The residue was taken up in ether, washed with water (3x), dried (potassium carbonate), and concentrated. The crude product was purified by silica gel chromatography (hexane:ethyl acetate) to provide the title compound (2.3 g).

Step D Preparation of 2-(4-(methoxyethoxymethyl)phenyl)-1-  
10 (methanesulfonyl)indole

The products of Step A (3.0 g, 10 mmol) and step C (2.2 g, 10 mmol) were combined in N, N-dimethylformamide (20 mL) and triethylamine (5 mL). The solution was then treated with dichlorobis(triphenylphosphine)palladium(II) (0.7 g, 1.0 mmol); copper(I)iodide (380 mg, 2.0 mmol), and stirred at 80 °C for 17 hours. The reaction was then diluted with ether:ethyl acetate (1:1, 200 mL), washed with water (5x), dried (potassium carbonate), and concentrated in vacuo. The crude material was then purified by silica gel chromatography (hexane:ethyl acetate) to afford the title compound (3.36 g).

**Step E Preparation of 2-(4-hydroxyphenyl)-1-(methanesulfonyl)-indole**

A solution of the product of Step D (1.5 g, 4.0 mmol) in methanol (10 mL) was treated with HCl (10 mL, 4 N in dioxane). The reaction was allowed to stir for 2 hr, concentrated, and purified by silica gel chromatography (methanol:dichloromethane), to afford the title compound (0.93 g).

**Step F Preparation of 2-[4-[3-piperidinopropoxy]phenyl]-1-(methanesulfonyl)indole**

30 A mixture of immobilized triphenylphosphine resin (330 mg, 1.0 meq (Fluka)), and the product of Step E (140 mg, 0.50 mmol) in tetrahydrofuran (6.0 mL) was treated with 3-(piperidin-1-yl)propanol (143 mg, 1.0 mmol) followed by

diethylazidodicarboxylate (0.16 mL, 1.1 mmol). The reaction was shaken for 20 hr. and filtered. The filtrate was concentrated in vacuo and the residue purified by silica gel chromatography (methanol/ethyl acetate) to afford pure title compound (97 mg). MS (ESI) m/z 413 (MH<sup>+</sup>); <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 8.13 (d, 1H), 7.59 (d, 1H), 7.50 (d, 2H), 7.36 (m, 2H), 6.97 (d, 2H), 6.68 (s, 1H), 4.08 (t, 2H), 2.72 (s, 3H), 2.4 (m, 6H), 1.63 (m, 6H), 1.45 (m, 2H).

### Example 2



2-[4-(3-Piperidinopropoxy)phenyl]-1H-indole  
K<sub>i</sub> = 48 nM

A solution of the product from Step F, Example 1 (41.4 mg, 0.10 mmol) in methanol (2.0 mL) was treated with potassium hydroxide (1.0 mL, 40% aq). The reaction was stirred at 40°C for 48 hours and concentrated in vacuo. The residue was purified by silica gel chromatography (methanol:dichloromethane) to provide pure title compound (3.7 mg). MS (ESI) m/z 335 (MH<sup>+</sup>); <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 8.19 (bs, 1H), 7.48 (d, 2H), 7.27 (m, 2H), 7.07 (t, 1H), 7.00 (t, 1H), 6.86 (d, 2H), 6.61 (s, 1H), 3.96 (t, 2H), 2.5 (m, 6H), 1.4 (m, 8H).

25

### Example 3



30 2-[4-[2-(1-methyl-2-pyrrolidinyl)ethoxy]phenyl]-1-(methylsulfonyl)-1H-indole  
K<sub>i</sub> = 77 nM

The title compound was obtained (70 mg) by the same general method as Example 1 by substituting 2-ethoxy-1-methylpyrrolidine for 3-(piperidin-1-yl)propanol in step F. MS (ESI) m/z 399 (MH<sup>+</sup>); <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 8.13 (d, 1H), 7.60 (d, 1H), 7.50 (2, 2H), 7.37 (m, 2H), 6.97 (d, 2H), 6.68 (s, 1H), 4.08 (m, 2H), 3.12 (m, 1H), 2.72 (s, 3H), 2.39 (s, 3H), 2.1-1.7 (m, 8H).

Example 4

5



2-[4-[2-[1-(methyl)-2-pyrrolidinyl]ethoxy]phenyl]-1H-indole  
 $K_i = 100 \text{ nM}$

- 10 The title compound was obtained (14.3 mg) by the same general method as Example 2 by substituting the product of Example 3 for the product of example 1 as the starting material. MS (ESI) m/z 321 ( $MH^+$ );  $^1\text{H-NMR}$  ( $CDCl_3$ )  $\delta$  8.15 (bs, 1H), 7.49 (d, 1H), 7.47 (d, 2H), 7.26 (d, 1H), 7.04 (t, 1H), 6.98 (t, 1H), 6.85 (d, 2H), 6.59 (s, 1H), 3.95 (m, 2H), 2.96 (t, 1H), 2.23 (s, 3H), 2.1-1.7 (m, 8H).

15

Example 5

20



2-[4-[1-(methyl)-4-piperidinyl]oxyphenyl]-1-(methylsulfonyl)-1H-indole  
 $K_i = 107 \text{ nM}$

- The title compound was obtained (54.8 mg) by the same general method as Example 1 by substituting 4-hydroxy-1-methylpiperidine for 3-(1-piperidinyl)propanol in Step F. MS (ESI) m/z 385 ( $MH^+$ );  $^1\text{H-NMR}$  ( $CDCl_3$ )  $\delta$  8.13 (d, 1H), 7.59 (d, 1H), 7.50 (d, 2H), 7.37 (m, 2H), 6.96 (d, 2H), 6.68 (s, 1H), 4.41 (m, 1H), 2.76 (m, 2H), 2.73 (s, 3H), 2.34 (s, 3H), 2.07 (m, 2H), 1.92 (m, 2H), 1.78 (m, 2H).

30

35

Example 6

2-[4-[1-(methyl)-4-piperidinyl]oxyphenyl]-1H-indole  
 $K_i = 390 \text{ nM}$

The title compound was obtained (13.8 mg) by the same general method as Example 2 by substituting the product of Example 5 for the product of example 52 as the starting material. MS (ESI) m/z 307 (MH<sup>+</sup>); <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 8.36 (bs, 1H), 7.63 (d, 1H), 7.60 (d, 2H), 7.41 (d, 1H), 7.19 (t, 1H), 7.13 (t, 1H), 7.00 (d, 2H), 6.73 (s, 1H), 4.42 (m, 1H), 2.76 (m, 2H), 2.40 (m, 2H), 2.36 (s, 3H), 2.09 (m, 2H), 1.92 (m, 2H).

Example 7

10



2-[4-(3-Dimethylaminopropoxy)phenyl]-1-(methylsulfonyl)-1H-indole  
K<sub>i</sub> = 120 nM

15

The title compound was obtained (95 mg) by the same general method as Example 1 by substituting N, N-dimethyl-3-amino-1-propanol for 3-(piperdin-1-yl) propanol in Step F. MS (ESI) m/z 373 (MH<sup>+</sup>); <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 8.13 (d, 1H), 7.59 (d, 1H), 7.50 (d, 2H), 7.36 (m, 2H), 6.97 (d, 2H), 6.68 (s, 1H), 4.09 (t, 1H), 2.73 (s, 3H), 2.50 (t, 2H), 2.29 (s, 6H), 2.01 (m, 2H).

20

25

Example 8



2-[4-(3-Dimethylaminopropoxy)phenyl] 1H-indole  
K<sub>i</sub> = 500 nM

30

The title compound was obtained (13.8 mg) by the same general method as Example 2 by substituting the product of Example 7 for the product of Example 1 as the starting material. MS (ESI) m/z 295 (MH<sup>+</sup>); <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 8.10 (bs, 1H), 7.62 (d, 1H), 7.60 (d, 2H), 7.40 (d, 1H), 7.19 (t, 1H), 7.13 (t, 1H), 7.00 (d, 2H), 6.72 (s, 1H), 4.09 (t, 2H), 2.50 (t, 2H), 2.29 (s, 6H), 2.01 (m, 2H).

35

Example 9

5                   2-[4-(4-Pyridinyl)methoxyphenyl]-1-(methylsulfonyl)-1H-indole  
 $K_i = 5000 \text{ nM}$

The title compound was obtained (185 mg) by the same general method as Example 1 by substituting 4-hydroxymethylpyridine for 3-(piperdin-1-yl) propanol in Step F. MS (ESI) m/z 379 ( $\text{MH}^+$ );  $^1\text{H-NMR}$  ( $\text{CDCl}_3$ )  $\delta$  8.67 (d, 2H), 8.13 (d, 1H), 7.60 (d, 1H), 7.54 (d, 2H), 7.41 (d, 2H), 7.38 (m, 2H), 7.03 (d, 2H), 6.69 (s, 1H), 4.77 (s, 2H), 2.74 (s, 3H).

Example 10

20                   2-[4-(2-Diethylaminoethoxy)phenyl]-1-(methylsulfonyl)-1H-indole  
 $K_i = 369 \text{ nM}$

The title compound was obtained (140 mg) by the same general method as Example 1 by substituting 2-(N, N-diethylamino)ethanol for 3-(piperdin-1-yl) propanol in Step F. MS (ESI) m/z 387 ( $\text{MH}^+$ );  $^1\text{H-NMR}$  ( $\text{CDCl}_3$ )  $\delta$  8.14 (d, 1H), 7.59 (d, 1H), 7.50 (d, 2H), 7.16 (m, 2H), 6.97 (d, 2H), 6.67 (s, 1H), 4.12 (t, 2H), 2.91 (t, 2H), 2.73 (s, 3H), 2.67 (q, 4H), 1.10 (t, 6H).

Example 11

30                   2-[4-(2-Diethylaminoethoxy)phenyl]-1H-indole  
 $K_i = 523 \text{ nM}$

35

The title compound from Example 10 (38.6 mg, 0.10 mmol) was treated with tetrabutyl ammonium fluoride (4.0 mL, of a 0.5 M in tetrahydrofuran) and stirred for 14 hours at 60°C. The resulting solution was concentrated in vacuo, dissolved in dichloromethane, and washed with water. The organics were then 5 concentrated, and the crude product purified by silica gel chromatography (methanol/ dichloromethane) to afford pure title compound (5.9 mg). MS (ESI) m/z 309 (MH<sup>+</sup>); <sup>1</sup>H-NMR ( $\text{CDCl}_3$ ) δ 8.21 (bs, 1H), 7.53 (d, 1H), 7.51 (d, 2H), 7.31 (d, 1H), 7.09 (t, 1H), 7.04 (t, 1H), 6.90 (d, 2H), 6.64 (s, 1H), 4.06 (t, 2H), 2.88 (t, 2H), 2.63 (q, 4H), 1.04 (t, 6H).

10

 $\delta_{48}/\delta_{67}$ Example 12 $\delta_{14}/\delta_{14}$ 

15

2-[4-(3-(2-Oxo-pyrrolidino)propoxy]phenyl]-1-(methylsulfonyl)-1H-indole

The title compound was obtained (180 mg) by the same general method as Example 1 by substituting 1-(3-hydroxypropyl)-2-pyrrolidineone for 3-(piperdin-1-yl) propanol in Step F. MS (ESI) m/z 435 (M+Na); <sup>1</sup>H-NMR ( $\text{CDCl}_3$ ) δ 8.12 (d, 1H), 7.59 (d, 1H), 7.49 (d, 2H), 7.36 (m, 2H), 6.95 (d, 2H), 6.67 (s, 1H), 4.03 (t, 2H), 3.55-3.35 (m, 6H), 2.72 (s, 3H), 2.40 (m, 2H), 2.06 (m, 2H).

25

Example 13

30

2-[4-(2-Pyridinyl)ethoxyphenyl]-1-(methylsulfonyl)-1H-indole

The title compound was obtained (90 mg) by the same general method as Example 1 by substituting 2-(2-hydroxyethyl)pyridine for 3-(piperdin-1-yl)propanol in Step F. MS (ESI) m/z 393 (MH<sup>+</sup>); <sup>1</sup>H-NMR ( $\text{CDCl}_3$ ) δ 8.59 (d, 1H), 8.12 (d, 1H), 7.67 (d, 1H), 7.59 (d, 1H), 7.48 (d, 2H), 7.35 (m, 2H), 7.20 (m, 2H), 6.97 (d, 2H), 6.66 (s, 1H), 4.43 (t, 2H), 3.32 (t, 2H), 2.72 (s, 3H).

Example 14

5


 $546/277.4$   
 $514/339$ 

2-[4-(2-Pyridinyl)ethoxyphenyl]-1H-indole

The title compound was obtained (14.5 mg) by the same general method as  
 10 Example 11 by substituting the product of Example 13 for the product of  
 Example 10 as the starting material. MS (ESI) m/z 315 ( $MH^+$ );  $^1H$ -NMR ( $CDCl_3$ )  
 $\delta$  8.52 (d, 1H), 8.45 (bs, 1H), 7.58 (t, 1H), 7.53 (d, 1H), 7.50 (d, 2H), 7.29 (d,  
 1H), 7.22 (d, 1H), 7.12 (t, 1H), 7.08 (t, 1H), 7.01 (t, 1H), 6.88 (d, 2H), 6.63 (s,  
 1H), 4.32 (t, 2H), 3.21 (t, 2H).

15

Example 15

20


 $\zeta_{ub} | 2^\circ$   
 $514/323$ 
2-[3-(3-Piperidinopropoxy)phenyl]-1-(methylsulfonyl)-1H-indole  
 $K_i = 33 \text{ nM}$ 

The title compound was obtained (84 mg) by the same general method as  
 25 Example 1 by substituting 3-hydroxybenzaldehyde for 4-hydroxybenzaldehyde  
 in Step B. MS (ESI) m/z 413 ( $MH^+$ );  $^1H$ -NMR ( $CDCl_3$ )  $\delta$  8.14 (d, 1H), 7.62 (d,  
 1H), 7.37 (m, 3H), 7.16 (d, 1H), 7.12 (s, 1H), 6.98 (d, 1H), 6.74 (s, 1H), 4.08 (t,  
 2H), 2.77 (s, 3H), 2.62 (t, 2H), 2.55 (m, 2H), 2.10 (m, 2H), 1.69 (m, 4H), 1.50  
 (m, 1H).

30

Example 16

5

2-(4-(3-(4-Methylpiperazino)propoxy)phenyl)indole

 $K_i = 2000 \text{ nM}$ 

## 10 Step A Preparation of 4'-(3-chloropropoxy)acetophenone

10

A solution of 4'-hydroxyacetophenone (20 mmol, 2.72 g), 3-bromopropionyl chloride (21 mmol, 2.07 mL) and potassium carbonate (4.14g, 30.0 mmol) in acetone (50 mL) was heated at reflux for overnight. The salt was filtered off. The solvent was evaporated. After drying in vacuo, the title compound (4.24 g) was collected.

15

## Step B Preparation of 2-(4-(3-chloropropoxy)phenyl)indole

20

A mixture 4'-(3-chloropropoxy)acetophenone (10 mmol, 2.12 g) and phenylhydrazine (10 mmol, 1.08 g) was heated at 100 °C for 40 min. Then PPA (~5 g) was added and temperature was raised to 130 °C and kept for 10 min. The mixture was cooled down. Water (50 mL) was added. After 2 h, greenish solid was formed and collected via filtration. The solid then was washed by a small amount of methanol (5 mL). After drying in vacuo, the title compound (1.5 g) was obtained.

25

## Step C 2-(4-(3-(4-Methylpiperazino)propoxy)phenyl)indole

30

The mixture of (2-(4-(3-chloropropoxy)phenyl)indole (1 mmol, 285 mg) and 4-methylpiperazine (2 mL) was heated at 80 °C for 5 h. After concentration, the residue was purified by column chromatography (MeOH/CH<sub>2</sub>Cl<sub>2</sub>) afforded the title compound (285 mg): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) δ 8.26 (s, 1H), 7.53 (m, 3H), 7.32 (bd, 1H, J = 8.1 Hz), 7.1 (td, 1H, J = 1.1, 7.0 Hz), 7.05 (td, 1H, J =

1.1, 7.0 Hz), 6.90 (m, 2H), 6.64 (m, 1H), 3.99 (t, 2H,  $J$  = 6.3 Hz), 2.48 (m, 10H,  $J$  = 6.4 Hz), 2.25 (s, 3H), 1.93 (quintet, 2H,  $J$  = 6.3 Hz); EIMS  $m/z$  350 (M + H<sup>+</sup>).

5

Example 17

$S^{14}/373$   
 $S^{14}/254.0^9$



10 1-(Methylsulfonyl)-2-(4-(3-(4-methylpiperazino)propoxy)phenyl)indole  
 $K_i = 3000 \text{ nM}$

## Step A Preparation of 4-(3-chloropropoxy)benzaldehyde

15 A solution of 4-hydroxybenzaldehyde (100 mmol, 12.2 g), 3-bromopropionyl chloride (101 mmol, 20 mL) and potassium carbonate (20.7 g, 150 mmol) in acetone (250 mL) was heated at reflux for overnight. The salt was filtered off. The solvent was evaporated. Reduced pressure distillation provided the title compound (15 g).

20 Step B Preparation of 1-ethynyl-4-(3-chloropropoxy)benzene  
 To LDA (2M in THF, 15 mL) in THF (100 mL) at -78°C, TMSCHN<sub>2</sub> (2M in hexanes, 15 mL) was added dropwisely. Ten minutes later, 4-(3-chloropropoxy)benzaldehyde (0.025 mol, 4.97 g) in THF (60 mL) was added.

25 After 1 h stirring at -78°C, the mixture was warmed up and refluxed for 3 h. Water (250 mL) was added and extracted by EtOAc (2 x 200 mL). After being dried over Na<sub>2</sub>SO<sub>4</sub> and concentration, the title compound (4.8 g) was obtained.

30 Step C Preparation of 1-ethyl-4-(3-(4-methylpiperazino)propoxy)benzene

The mixture of 1-ethynyl-4-(3-chloropropoxy)benzene (2 mmol, 388 mg) and 4-methylpiperazine (2 mL) was heated at 80 °C for 5h. After concentration, the residue was purified by column chromatography (MeOH/CH<sub>2</sub>Cl<sub>2</sub>) afforded the title compound (400 mg).

5

Step D Preparation of 2-iodo-N-(methanesulfonyl)aniline

To the mixture of the 2-iodo-4-chloroaniline (5.0 g, 20 mmol) and triethylamine (8.3 mL, 60 mmol) in methylene chloride (200 mL), the solution of methanesulfonyl chloride (3.4 mL, 44 mmol) was added slowly. The solution then was stirred at room temperature for 2 h. After being washed by HCl solution (0.5 N, 2 x 100 mL), NaOH solution (0.5 N, 2 x 100 mL), brine (100 mL), the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated providing the title compound (6.6 g).

15

Step E Preparation of 1-(methylsulfonyl)-2-(4-(3-(4-methylpiperazino)propoxy)phenyl)indole

The mixture of 1-ethynyl-4-(3-(4-methylpiperazino)propoxy)benzene (230 mg, 0.89 mmol), 2-iodo-N-(methanesulfonyl)aniline (0.89 mmol, 296 mg), CuI (17 mg, 0.089 mmol), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (32 mg, 0.045 mmol) and triethylamine (0.5 mL) in DMF (5 mL) was stirred at 80 °C for overnight. After concentration, water (20 mL) was added and extracted by methylene chloride (3 x 20 mL). The organics was concentrated and purified by column chromatography afforded the title compound (260 mg): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz) δ 8.05 (d, 1H, J = 8.8 Hz), 7.55 (d, 1H, J = 2.1 Hz), 7.50 (td, 2H, J = 8.8, 2.1 Hz), 7.32 (d, 1H, J = 2.1 Hz), 7.30 (d, 1H, J = 2.1 Hz), 6.96 (td, 2H J = 2.1, 8.8 Hz), 6.60 (d, 1H, J = 0.5 Hz), 4.08 (t, 2H, J = 6.3 Hz), 2.74 (s, H), 2.55 (m, 10H), 2.33 (s, 3H), 2.02 (quintet, 2H, J = 6.3 Hz); EIMS m/z 462 (M + H<sup>+</sup>).

30

## F. Biological Examples

### Biological Example 1

#### 1(A) Transfection of cells with human histamine receptor

5 A 10 cm tissue culture dish with a confluent monolayer of SK-N-MC cells was split two days prior to transfection. Using sterile technique the media was removed and the cells were detached from the dish by the addition of trypsin. One fifth of the cells were then placed onto a new 10 cm dish. Cells were grown in a 37°C incubator with 5% CO<sub>2</sub> in Minimal Essential Media Eagle with  
10 10% Fetal Bovine Serum. After two days cells were approximately 80% confluent. These were removed from the dish with trypsin and pelleted in a clinical centrifuge. The pellet was then re-suspended in 400 µL complete media and transferred to an electroporation cuvette with a 0.4cm gap between the electrodes (Bio-Rad #165-2088). One µg supercoiled H<sub>3</sub>receptor cDNA  
15 was added to the cells and mixed. The voltage for the electroporation was set at 0.25 KV, the capacitance is set at 960 µF.

After electroporation the cells were diluted into 10 mL complete media and plated onto four 10cm dishes. Due to the variability in the efficiency of electroporation, four different concentrations of cells were plated. The ratios used were: 1:20, 1:10, and 1:5, with the remainder of the cells being added to the fourth dish. The cells were allowed to recover for 24 hours before adding the selection media (complete media with 600 µg/ml G418). After 10 days dishes were analyzed for surviving colonies of cells. Dishes with well-isolated colonies were used. Cells from individual colonies were isolated and tested.  
20 25 SK-N-MC cells were used because they give efficient coupling for inhibition of adenylate cyclase. The clones that gave the most robust inhibition of adenylate cyclase in response to histamine were used for further study.

#### 1(B) [3H]-N-methylhistamine binding

30 Cell pellets from histamine H<sub>3</sub> receptor-expressing SK-N-MC cells were homogenized in 20 mM TrisHCl/0.5mM EDTA. Supernatants from a 800 g spin were collected, reccentrifuged at 30,000 g for 30 minutes. Pellets were rehomogenized in 50 mM Tris/5mM EDTA (pH 7.4). Membranes were

incubated with 0.8 nM [<sup>3</sup>H]-N-methylhistamine plus/minus test compounds for 45 minutes at 25°C and harvested by rapid filtration over GF/C glass fiber filters (pretreated with 0.3% polyethylenimine) followed by four washes with ice cold buffer. Filters were dried, added to 4 mL scintillation cocktail and then 5 counted on a liquid scintillation counter. Non-specific binding was defined with 10 µM histamine.  $K_I$  values were calculated based on a  $K_D$  of 800 pM and a ligand concentration ([L]) of 800 pM according to the formula:

$$K_I = (IC_{50}) / (1 + ([L] / (K_D)))$$

10

B. H. Biosciences Inc.  
B. H. Biosciences Inc.

G. Other Embodiments

The features and advantages of the invention are apparent to one of ordinary skill in the art. Based on this disclosure, including the summary, detailed description, background, examples, and claims, one of ordinary skill in 5 the art will be able to make modifications and adaptations to various conditions and usages. These other embodiments are also within the scope of the invention.

10

15

What is claimed is: