

Projet S7: Modélisation du Pentago

JEU DE PLATEAU SIMULÉ

HAOUD Hanane

Introduction

Les règles du jeu de Pentago

2 joueurs

4 quadrants de 3X3 cases

- Pose une bille
- Rotation de 90° (horaire ou anti-horaire d'un quadrant

Vainqueur: Aligne 5 billes à la fin de son tour

Introduction

Cadre et objectif du projet

Utiliser le langage Python pour simuler le jeu:

- Avoir une interface graphique (Pygame)
- Faire des parties informatisées
- Avoir un adversaire capable de réfléchir au prochain coup (IA)

Parties fluides et dynamiques

Sommaire

1.

Modélisation du jeu simple

Outils mathématiques Interface graphique 2.

Approche Minimax avec Alpha-Bêta pruning

Explication Tests 3.

Approche Q-learning

Explication Tests 4.

Comparaison des approches

Performances

5.

Conclusion

Résumé des résultats

Amélioration et travail futur

Modélisation du jeu

Partie entre deux joueurs réels

Plateau (board) : Matrice numpy Mise à jour, réaffichée à chaque tour

Rotation des quadrants: Rotation numpy des matrices divisées de la matrices board

Vérification du gagnant: Check des configurations gagnantes possibles appliquées au plateau

Modélisation du jeu

Interface graphique

GUI Pygame:

Trace le plateau vide Met à jour l'affichage à chaque tour Affiche les flèches cliquables pour tourner les quadrants

Minimax

Partie contre un algorithme de recherche

Principales caractéristiques : fonction d'évaluation h, max ou min des successeurs

Alpha-Bêta Pruning

Partie contre un algorithme de recherche

Minimax Alpha-Bêta

Résultats

Rapidité Minimax seul : jeu impossible

Minimax avec Alpha Bêta Pruning:

- Coup de l'adversaire joué en environ 2 minutes avant amélioration de la fonction d'évaluation et de parcours de l'arbre
- Moins long en améliorant la fonction mais toujours assez lent
- Possible de gagner contre l'algorithme en réflechissant

Q-learning

Partie contre un algorithme d'apprentissage

Comparaison

Partie contre un algorithme de recherche

Bien que l'on attende de meilleures performances obtenues plus simplement par l'algorithme minimax Alpha-Bêta, la difficulté d'implémentation d'une fonction d'évaluation ralenti cet algorithme.

Le Q-learning donne des performances bien meilleures, cependant il demande du temps avant d'être compétitif, il est encore possible de gagner en réflechissant mais les améliorations sont visibles d'épisodes en épisodes.

Conclusion

Travail futur

- Amélioration de la fonction d'évaluation
- Entrainement du modèle et ajout de réseau de neurones
- Implémentation d'une partie multijoueurs
- Optimisation de performances plus poussée (calcul parallèle) et pas seulement optimisation de la façon de coder

Merci pour votre attention